Topology: Homework 9

Peter Kagey

December 3, 2018

Problem 1.

Suppose that A is homotopoy equivalent to a point. Show that $H_n(X, A)$ is isomorphic to $H_n(X)$ for every $n \ge 1$.

Proof.

By the snake lemma we can turn the short exact sequences

$$0 \to C(A) \to C(X) \to C(X,A) \to 0$$

into the long exact sequence

$$\dots \to H_n(A) \to H_n(X) \to H_n(X,A) \xrightarrow{\delta_n} H_{n-1}(A) \to \dots$$

Since A is homotopy equivalent to a point by hypothesis, for all n > 0, $H_n(A) = 0$. Therefore for n > 1

$$\underbrace{H_n(A)}_0 \to H_n(X) \to H_n(X,A) \xrightarrow{\delta_n} \underbrace{H_{n-1}(A)}_0$$

and thus map $H_n(X) \to H_n(X, A)$ has a kernel of 0 so is injective, and it has an image of $H_n(X, A)$, so it's surjective, and thus $H_n(X) \cong H_n(X, A)$.

In the case of n = 1, the long exact sequence is

$$\dots \to \underbrace{H_1(A)}_0 \to H_1(X) \to H_1(X,A) \xrightarrow{\delta_1} \underbrace{H_0(A)}_R \to \dots,$$

so the map $H_1(X) \to H_1(X, A)$ is injective. Thus it is enough to show that the map is surjective. However, take the equivalence class $[c] \in H_1(X, A) = H_1(X)/H_1(A)$, with representative $c \in H_1(X)$. So the quotient map $c \mapsto [c]$ is surjective.

Problem 2.

Suppose that X is homotopy equivalent to a point. Show that $H_n(X, A)$ is isomorphic to $H_{n-1}(A)$ for every $n \geq 2$. Show that this is in general false if n = 1.

Proof.

By the same construction above, we have the long exact sequence

$$\dots \to H_n(X) \to H_n(X,A) \xrightarrow{\delta_n} H_{n-1}(A) \to H_{n-1}(X) \to \dots$$

If n > 1, then we have the short exact sequence

$$\underbrace{H_n(X)}_0 \to H_n(X,A) \xrightarrow{\delta_n} H_{n-1}(A) \to \underbrace{H_{n-1}(X)}_0$$

so δ_n is an isomorphism.

In the case of n = 1, $H_1(X, A) = C_1(X)/B_1(X, A)$

$$\underbrace{H_1(X)}_0 \to H_1(X,A) \xrightarrow{\delta_1} H_0(A) \to \underbrace{H_0(X)}_R.$$

The map $\delta_1: H_1(X,A) \to H_0(A)$ is injective, so it is enough to show that δ_1 is not surjective. Let X=0 and X=A. Then $X_1(X,A)=0$ and $X_0(A)=R$, so this map cannot be surjective for all pairs (X,A) as shown by this counterexample.

Problem 3.

For $A \subset X$, suppose that the inclusion map $i \colon A \to X$ is a homotopy equivalence. Show that $H_n(X,A) = 0$ for every n.

Proof.

Firstly, we have the exact sequence

$$\dots \to H_n(X,A) \xrightarrow{\delta_n} H_{n-1}(A) \xrightarrow{i_*} H_{n-1}(X) \xrightarrow{j_*} H_{n-1}(X,A) \dots$$

where $\ker(i_*) = 0 = \operatorname{Im}(\delta_n)$, where the kernel is trivial because i_* is an isomorphism. Thus δ_n must be the zero map with kernel

$$\ker(\delta_n) = H_n(X, A).$$

Since $j_* \circ i_* \colon H_{n-1}(A) \to H_{n-1}(X,A)$ maps everything to the zero element in the quotient, j_* must be the zero map, so

$$0 = \operatorname{Im}(j_*) = \ker(\delta_n) = H_n(X, A).$$

Problem 4.

Suppose that $X = X_1 \cup X_2$ for two subspaces $X_1, X_2 \subset X$. Let $C_n^{X_1X_2}(X) = C_n(X_1) + C_n(X_2) \subset C_n(X)$ consist of chains $c \in C_n(X)$ that can be written as a linear combination of simplices that are either completely contained in X_1 or completely contained in X_2 . Let $H_n^{X_1X_2}$ denote the homology modules of the corresponding chain

Prove that $H_n(i): H_n^{X_1X_2}(X) \to H_n(X)$ is an isomorphism for every n if and only if $X_1 - X_2$ can be excised from the pair (X, X_1) .

- a. Suppose that $H_n(i): H_n^{X_1X_2}(X) \to H_n(X)$ is an isomorphism for every n. We want to show that $H_n(j): H_n(X_2, X_1 \cap X_2) \to H_n(X, X_1)$ is surjective. For this, consider $[c] \in H_n(X, X_1)$ represented by $c \in C_n(X)$ with $\partial c \in C_{n-1}(X_1)$.
 - (i) Let $c' = \partial c$. Considering the classes $[c'] \in H_n^{X_1 X_2}(X)$ and $[c'] \in H_n(X)$, show that there exists $c_1 \in C_n(X_1)$ and $C_2 \in C_n(X_2)$ such that $c' = \partial c_1 + \partial c_2$.
 - (ii) Show that there exists $c_1' \in C_n(X_1), c_2' \in C_n(X_2)$ and $c' \in C_{n+1}(X)$ such that

$$c - c_1 - c_2 = c_1' + c_2' + \partial c'.$$

- (iii) Show that $\partial(c_2 + c_2') \in C_{n-1}(X_1 \cap X_2)$, so that $c_2 + c_2'$ defines a class $[c_2 + c_2'] \in H_n(X_2, X_1 \cap X_2)$.
- (iv) Show that $H_n(j)([c_2+c_2'])=[c]\in H_n(X,X_1)$, which concludes the proof that $H_n(j)$ is surjective.
- b. Suppose that $H_n(i): H_n^{X_1X_2}(X) \to H_n(X)$ is an isomorpishm for every n. We want to show that $H_n(j): H_n(X_2, X_1 \cap X_2) \to H_n(X, X_1)$ is injective. For this, consider

$$[c_2] \in \ker H_n(j) \subset H_n(X_2, X_1 \cap X_2)$$

represented by $c_2 \in C_n(X_2)$ with $\partial c_2 \in C_{n-1}(X_1 \cap X_2)$.

(i) Show that there exists $c_1 \in C_n(X_1)$, $c'_1 \in C_{n+1}(X_1)$ and $c'_2 \in C_{n+1}(X_2)$ such that $c_2 = c_1 + \partial c'_1 + \partial c'_2$. (Hint: use part a (i).)

Proof.

- a. This part will assume that $H_n(i): H_n^{X_1X_2}(X) \to H_n(X)$ is an isomorphism for every n, and prove that $H_n(j): H_n(X_2, X_1 \cap X_2) \to H_n(X, X_1)$ is surjective.
 - (i) Since $H_n(i)$ is a bijection, $H_n(i)^{-1}([c]) = [c_1 + c_2] \in H_n^{X_1 X_2}(X)$. Therefore $c = c_1 + c_2 + \partial \tilde{c}$ where $\partial \tilde{c} \in \text{Im}(\partial_{n+1})$. Moreover,

$$c' = \partial c = \partial(c_1 + c_2 + \partial \tilde{c}) = \partial c_1 + \partial c_2 + \underbrace{\partial \partial \tilde{c}}_{0}.$$

(ii) Similarly,

$$H_n(i)^{-1}(\underbrace{[c-c_1-c_2]}_{\in H_n(X)}) = [c'_1+c'_2] \in H_n^{X_1X_2}(X)$$

which means that

$$c - c_1 - c_2 = c_1' + c_2' + \underbrace{\partial c'}_{\in \operatorname{Im}(\partial)},$$

by definition of the quotient.

(iii) By the above

$$c'_{2} + c_{2} = c - c_{1} - c'_{1} - \partial c'$$

$$\partial (c'_{2} + c_{2}) = \partial (c - c_{1} - c'_{1} - \partial c')$$

$$= \partial c - \partial (c_{1} + c'_{1})$$

Since $\partial(c'_1+c_1) \in C_n(X_1)$, $\partial(c'_2+c_2) \in C_n(X_2)$, and $\partial c \in C_n(X_1)$ by hypothesis, the right hand side is in $C_n(X_1)$ and the left hand side is in $C_n(X_2)$, so both must be in $C_n(X_1 \cap X_2)$.

(iv) Using the above,

$$H_n(j)([c_2 + c_2']) = H_n(j)([c - c_1 - c_1' - \partial c']) = [j(c - c_1 - c_1' - \partial c')].$$

Since

$$\partial(c - c_1 - c'_1 - \partial c') = \partial c - \underbrace{\partial(c_1 + c'_1 + \partial c')}_{C_n(X_1)}$$

this equivalence class is

$$[j(c - c_1 - c'_1 - \partial c')] = [c] \in H_n(X, X_1)$$

so $H_n(j)$ is surjective.

- b. This part will assume that $H_n(i): H_n^{X_1X_2}(X) \to H_n(X)$ is an isomorphism for every n, and prove that $H_n(j): H_n(X_2, X_1 \cap X_2) \to H_n(X, X_1)$ is injective.
 - (i) Since $[c_2] \in \ker H_n(j)$, $[c_2] = 0 \in X_n(X, X_1) = Z(X, X_1)/B(X, X_1)$, so $c_2 \in B(X, X_1)$. By definition of relative boundary, this means that there exists some $c \in C_{n+1}(X)$ such that $c_2 \partial c \in C_n(X_1)$. Let $c_1 = c_2 \partial c \in C_n(X_1)$ so that $c_2 = c_1 + \partial c$. By part **a** (i), $\partial c = \partial c'_1 + \partial c'_2$ for some $c'_1 \in C_{n+1}(X_1)$ and $c'_2 \in C_{n+1}(X_2)$, so

$$c_2 = c_1 + \partial c$$

= $c_1 + \partial c'_1 + \partial c'_2$.

(ii) Solving for $c_1 + \partial c'_1$ yields

$$\underbrace{c_1 + \partial c_1'}_{\in C_n(X_1)} = \underbrace{c_2 - \partial c_2'}_{\in C_n(X_2)},$$

so $c_1 + \partial c_1' \in C_n(X_1 \cap X_2)$.

(iii) Therefore

$$c_2 - \partial c_2' = \underbrace{c_1 + \partial c_1'}_{C_n(X_1 \cap X_2)} \in C_n(X_1 \cap X_2)$$

so $c_2 \in B_n(X_2, X_1 \cap X_2)$, so $[c_2] = 0 \in H_n(X_2, X_1 \cap X_2) = Z_n(X_2, X_1 \cap X_2)/B_n(X_2, X_1 \cap X_2)$. Therefore $H_n(j)$ is injective.

- c. This part will assume that $X_1 X_2$ can be excised from the pair (X, X_1) and prove that $H_n(i) : H_n^{X_1 X_2}(X) \to H_n(X)$ is injective.
 - (i) Since $[c_1 + c_2] \in \ker H_n(i)$ (and thus there exists $c \in C_n(X)$ such that $c_1 + c_2 = \partial c$) we can check

$$\partial(c_1 + c_2) = \underbrace{\partial\partial c}_0$$
$$\partial c_1 = -\partial c_2 \in C_{n-1}(X_2),$$

So $\partial c_1 \in C_{n-1}(X_1) \cap C_{n-1}(X_2) = C_{n-1}(X_1 \cap X_2)$, and therefore c_2 defines a class $[c_2] \in H_n(X_2, X_1 \cap X_2)$.

(ii) By rearranging $c_1 + c_2 = \partial c$, it can be seent that $c_2 - \partial c = c_1 \in C_n(X_1)$, and so $c_2 \in B_n(X, X_1)$. Therefore $[c_2] = 0 \in Z_n(X, X_1)/B_n(X, X_1) = H_n(X, X_1)$. Since $H_n(j)$ is injective,

$$[c_2] = 0 \in H_n(X_2, X_1 \cap X_2) = Z_n(X_2, X_1 \cap X_2)/B_n(X_2, X_1 \cap X_2)$$

so $c_2 \in B_n(X_2, X_1 \cap X_2)$ and so there exists c_2' such that $c_2 - \partial c_2' \in C_n(X_1 \cap X_2)$. Name this element $c_{12} = c_2 - \partial c_2'$. Then rearranging,

$$c_2 = c_{12} - \partial c_2'.$$

(iii) By hypothesis $(X_2, X_1 \cap X_2) \to (X, X_1)$ is an excision so $H_n(j)$ is an isomorphism. We know by the first two parts that

$$\partial c = c_1 + c_2$$
, and $c_2 = c_{12} - \partial c_2'$

so it follows that $\partial(c+c_2')=c_1+c_{12}$, and we can consider $[c-c_2'] \in H_{n+1}(X,X_1)$. Because $H_n(j)$ is an isomorphism, by taking the inverse map, there exists $H_n(j)^{-1}([c-c_2'])=[c'+c''] \in H_{n+1}(X_2,X_1\cap X_2)$, meaning there exists some $c'' \in C_{n+2}$ such that

$$c - c'2 = c_2'' + c_1' + \partial c'',$$

as desired.

(iv) From above, we can write

$$\partial(c - c'_2) = \partial(c''_2 + c'_1 + \partial c'')$$

$$c_1 + c_2 = \partial c'_2 + \partial c''_2 + \partial c'_1$$

$$c_1 + c_2 = \partial(c'_2 + c''_2 + c'_1)$$

so $c_1 + c_2 \in \text{Im}(\partial)$ and thus $[c_1 + c_2] \in H_n^{X_1 X_2}(X)$, and so $H_n(i)$ is injective.

d. This part will assume that $X_1 - X_2$ can be excised from the pair (X, X_1) and prove that $H_n(i) : H_n^{X_1 X_2}(X) \to H_n(X)$ is surjective.

Let $[c] \in H_n(X)$, which meaning that the representative $c \in C_n$ is in the kernel $\ker(\partial_n)$. We will construct $c_1 \in H_n(X_1)$ and $c_2 \in H_n(X_2)$ such that $c = c_1 + c_2$. By the isomorpishm $H_n(j)$ there must exist $[c] \cong [c_2]$, namely $c = c_2 + \partial c_{12}$. Therefore $c = c_1 + c_2$ and

$$H_n(i)([c_1 + c_2]) = [c] \in H_n(X),$$

so $H_n(i)$ is surjective.

e. Given that $(X_2, X_1 \cap X_2) \to (X, X_1)$ is an excision implies that $H_n(j_1)$ is an isomorphism. Thus the previous two parts showed that $H_n(i)$ is also an isomorphism, so $c = c_1 + c_2$. Thus reversing the roles in the first two parts shows that $H_n(j_2)$ is also an isomorphism, meaning that $(X_1, X_1 \cap X_2) \to (X, X_2)$ is an excision.