PROJECT1 DAY04

I	大	Ţ	
			_

上午	09:00 ~ 09:30	作业讲解和回顾	
	09:30 ~ 10:20	传输层	
	10:30 ~ 11:20	15制层	
	11:30 ~ 12:00	ACL	
下午	14:00 ~ 14:50	ACL	
	15:00 ~ 15:50	NAT	
	16:10 ~ 17:00		
	17:10 ~ 18:00	总结和答疑	

2018/12/29 P

传输层概述

传输层的作用

- 网络层提供点到点的连接
- 传输层提供端到端的连接

传输层的协议

- TCP (Transmission Control Protocol)
 - 传输控制协议
 - 可靠的、面向连接的协议
 - 传输效率低

- UDP (User Datagram Protocol)
 - 用户数据报协议
 - 不可靠的、无连接的服务
 - 传输效率高

知识讲解

TCP协议

2018/12/29 P

TCP的应用

Athen 14.35

端口	协议	说明
21	FTP	文件传输协议,用于上传、下载
23	Telnet	用于远程登录,通过连接目标计算机的这一端口,得到验证后 可以远程控制管理目标计算机
25	SMTP	简单邮件传输协议,用于发送邮件
53	DNS	域名服务,当用户输入网站的名称后,由DNS负责将它解析成IP地址,这个过程中用到的端口号是53
80	HTTP	超文本传输协议,通过HTTP实现网络上超文本的传输

UDP协议

UDP的封装格式

0 15	16 31			
16位源端口号	16位目标端口号			
16位UDP长度	16位UDP校验和			
数据				

2018/12/29 PF

UDP的应用

知识讲解

端口	协 议	说 明
69	TFTP	简单文件传输协议
53	DNS	域名服务
123	NTP	网络时间协议

UDP的流控和差错控制

- · UDP缺乏可靠机制
- · UDP只有校验和来提供差错控制
 - 需要上层协议来提供差错控制:例如TFTP协议

2018/12/29 PF

2018/12/29

访问控制列表作用

- 访问控制列表(ACL)
 - 读取第三层、第四层 头部信息
 - 根据预先定义好的规则对数据进行过滤

知识

公讲解

访问控制列表的工作原理

- 访问控制列表在接口应用的方向
 - 出:已经过路由器的处理,正离开路由器接口的数据包
 - 入:已到达路由器接口的数据包,将被路由器处理

- 列表应用到接口的方向与数据方向有关

知识

讲解

访问控制列表的工作原理(续1)

• 访问控制列表的处理过程

Г

知识

公讲解

访问控制列表的类型

- 标准访问控制列表
 - 基于源IP地址过滤数据包
 - 标准访问控制列表的访问控制列表号是1~99
- 扩展访问控制列表
 - 基于源IP地址、目的IP地址、指定协议、端口来过滤数据包
 - 扩展访问控制列表的访问控制列表号是100~199

2018/12/29 P

标准ACL配置

标准访问控制列表的配置

• 创建ACL

知识讲解

Router(config)#access-list access-list-number { permit | deny } source[source-wildcard]

允许数据包通过 拒绝数据包通过

标准访问控制列表的配置(续1)

• 应用实例

知识讲解

Router(config)# access-list 1 permit 192.168.1.0 0.0.0.255 Router(config)# access-list 1 permit 192.168.2.2 0.0.0.0

- 允许192.168.1.0/24和主机192.168.2.2的流量通过

标准访问控制列表的配置(续2)

- 隐含的拒绝语句
 Router(config)# access-list 1 deny 0.0.0.0 255.255.255.255
- 关键字
 - host
 - any

标准访问控制列表的配置(续3)

将ACL应用于接口
 Router(config-if)# ip access-group access-list-number{in lout}

• 在接口上取消ACL的应用

Router(config-if)# no ip access-group access-list-number {in |out}

知识讲解

标准访问控制列表的配置(续4)

• 查看访问控制列表

Router# Show access-lists

• 删除ACL

Router(config)# no access-list access-list-number

案例1:标准ACL的配置(1)

- 需求描述
 - 禁止主机PC2与PC1通信,而允许所有其他的流量

案例2:标准ACL的配置(2)

- 需求描述
 - 允许主机pc2与pc1互通,而禁止其他设备访问pc1

练习

知识讲解

Tedu.cn b 内 教 育

扩展访问控制列表的配置

创建ACL

Router(config)# access-list access-list-number { permit | deny } protocol { source source-wildcard destination destination-wildcard } [operator operan]

应用实例

Router(config)# access-list 101 deny tcp 192.168.1.0 0.0.0.255 host 192.168.2.2 eq 80

Router(config)# access-list 101 permit ip any any

• 通过配置扩展acl禁止pc2访问pc1的ftp服务,禁止pc3 访问pc1的www服务器,所有主机的其他服务不受限制

课堂练习

2018/12/29 PF

NAT的作用

- NAT
 - Network Address Translation,网络地址转换
- 作用
 - 通过将内部网络的私有IP地址翻译成全球唯一的公网IP地址,使内部网络可以连接到互联网等外部网络上。

知识讲解

私有IP地址分类

- A类 10.0.0.0~10.255.255.255
- B类 172.16.0.0~172.31.255.255
- C类 192.168.0.0~192.168.255.255

2018/12/29

NAT的特性

- NAT的优点
 - 节省公有合法IP地址
 - 处理地址重叠
 - 安全性

- NAT的缺点
 - 延迟增大
 - 配置和维护的复杂性

2018/12/29 F

NAT实现方式

· NAT实现方式

- 静态转换 (Static Translation)
- 端口多路复用(Port Address Translation,PAT)

++

知

识讲解

Tedu.cn 达内教育

静态NAT

- 静态转换
 - IP地址的对应关系是一对一,而且是不变的, 借助静态转换,能实现外部网络对内部网络 中某些特设定服务器的访问。

知识

讲解

知识讲解

静态NAT的配置

- · 静态NAT配置步骤
 - 接口IP地址配置
 - 决定需要转换的主机地址
 - 决定采用什么公有地址
 - 在内部和外部接口上启用NAT

Router(config)#ip nat inside source static local-ip global-ip

静态NAT的配置(续1)

 将内网地址192.168.1.1静态转换为合法的外部地址 100.0.0.2以便访问外网。

知识讲解

静态NAT配置(续2)

• 设置外部接口的IP地址:

Router(config)#interface g0/1
Router(config-if)#ip address 100.0.0.1 255.0.0.0
Router(config-if)#no shut

• 设置内部接口的IP地址:

Router(config)#interface g0/0
Router(config-if)#ip address 192.168.1.254255.255.255.0
Router(config-if)#no shut

• 建立静态地址转换

Router(config)#ip nat inside source static 192.168.1.1 100.0.0.2

知识

分讲解

2018/12/29

静态NAT配置(续3)

· 在内部和外部接口上启用NAT

Router(config)#interface g0/1 Router(config-if)#ip nat outside Router(config)#interface g0/0 Router(config-if)#ip nat inside

知识

公讲解

案例4:配置静态NAT

在R1上配置静态NAT使192.168.1.1转换为100.0.0.2,
 192.168.1.2转换为100.0.0.3,实现外部网络访问。

课堂练习

NAT端口映射配置

- 建立NAT端口映射关系
- 配置实例

Router(config)#ip nat inside source static tcp 192.168.1.6 80 61.159.62.133 80

知识讲解

案例5:端口映射

 在R1上配置端口映射将192.168.1.1的80端口映射为 100.0.0.2的80端口,将其web服务发布到Internet。

课堂练习

2018/12/29

端口多路复用(PAT)

Tedu.cn 达内教育

PAT的作用

- PAT(端口多路复用)
 - 通过改变外出数据包的源IP地址和源端口并进行端口转换,内部网络的所有主机均可共享一个合法IP地址实现互联网的访问,节约IP。

PAT的配置

- PAT配置步骤
 - 接口IP地址配置
 - 使用访问控制列表定义哪些内部主机能做PAT
 - 确定路由器外部接口在内部和外部接口上启用NAT

知识

分讲解

Tedu.cn 达内教育

PAT的配置(续1)

• 定义内部ip地址 Router(config)#access-list 1 permit 192.168.1.0 0.0.0.255

设置复用动态IP地址转换

Router(config)#ip nat inside source list 1 interface g 0/1 overload

- · 在内部和外部接口上启用NAT,以及配置默认路由
 - 与静态NAT配置相同

知识

分讲解

课堂练习

案例6:PAT配置

在R1配置PAT端口多路复用使企业内网192.168.1.0/24复用g0/1接口的IP,实现外部网络的访问。

跟踪NAT

• debug ip nat命令跟踪NAT操作

R1#debug ip nat

IP NAT debugging is on

*Mar 1 00:03:56.875: NAT: s=192.168.4.2->145.52.23.2, d=1.1.1.1 52225]

Mar 1 00:03:57.667: NAT: s=192.168.4.2->145.52.23.2, d=1.1.1.1 [52481]

Mar 1 00:03:57.811: NAT: s=1.1.1.1, d=145.52.23.2->192.168.4.2 [52481]

s=192.168.4.2表示源地址是192.168.4.2

d=1.1.1.1表示目的地址是1.1.1.1

192.168.4.2->145.52.23.2表示将地址192.168.4.2转换为

145.52.23.2

知识

讲

2018/12/29 PF

