Streaming Algorithms

Data Sampling

Debugging a big data program is usually tedious, so instead of storing the streams, data is sampled.

- 1. Store 1/10 of the stream, by generating a random integer from 0 to 9 and store when 0 is encountered
 - a. Causes bias
 - b. Causes problems when examples have been repeated
- 2. Sample 1/10th of the users, not the transactions
 - a. Each time a search query arrives, see if user exists in sample
 - b. If so, add query to sample
 - c. If not, generate a random number and pick the user if the number is 0
 - d. To avoid storing a list of users, we can hash the userid from 0-9 and select if the user hash is 0

The general algorithm is to identify the key components of the query, hash them in some range 0 to b. Get a sample size a/b by selecting a query if its hash is lesser than a.

Data Filtering

We take a general example of a spam filter. Storing all spam email addresses in memory is not convenient, as disk access is slow and disk storage is limited. We use a Bloom Filter where

- 1. Hash the non spam email IDs to 0 8 billion and set the corresponding bit to 1
- 2. Hash the incoming mail ID
- 3. If the corresponding bit is 0, reject
- 4. If bit is 1, maybe spam, may not be spam, so call it not spam

Cascaded Bloom Filters can be used together to make a series of hashes for efficient spam detection as well.

A bloom filter in general contains

- 1. Array of n bits
- 2. A collection of k hash functions
- 3. A set S of keys with m elements
- 4. Given a key a, determine if it is in S

Initialisation is done by computing the k hash functions and setting the corresponding bits to 1.

Usage is hash(a) and then observing if the corresponding k bits are 1.

The probability of a false positive is given by $(1 - e^{-km/n})^k$.

Counting Distinct Elements

The problem to solve here is for example, how many different users visit each webpage of a website, given User x Webpage combinations.

For this, the Flajolet-Martin algorithm is used by

- 1. Picking a hash function bigger than the set to be hashed.
- 2. Hash element in the stream
- 3. Let R be the number of trailing 0s in the hash or the tail length.
- 4. 2^R is approximately the number of distinct elements seen

This basic property works because

 $P(h(a) \text{ ends in at least r 0s}) = 2^{-r}$.

This can be seen by

- 1. Suppose the hash is $h_1h_2...h_n$.
- 2. Probability that a bit is a 0 is 0.5.
- 3. Probability that h_n is 0 is 2^{-1} .
- 4. Probability that the last 2 bits are 0 is $2^{-1}x2^{-1} = 2^{-2}$
- 5. Probability that last r bits are 0 is hence 2^{-r}.

Hence, for m distinct elements, this probability that no element has tail length r is $(1 - 2^{-r})^m$.

This probability $(1 - 2^{-r})^m$ can be generalised to e^{-mx} where $x = 2^{-r}$.

P(At least one element has tail r) = $1 - e^{-mx}$.

When m >> 2^r , e^{-mx} approaches 0, which means 1 - e^{-mx} is almost 0, which says we're most likely to find an element with a tail length r.

When m $\sim 2^r$, there is some probability of finding tail lengths of r.

When $m \ll 2^r$ it is highly unlikely that we are going to find elements with tail length r.

We can implement this filter in two ways

1. Simple approach

- a. If we have only one hash, m will always be a power of 2.
- b. We can pick k hash functions and estimate $m = 2^R$ for each and take average or median
- c. Better estimate
- d. But average might be pulled towards max (outliers)
- e. Median will give the estimate as a power of 2 which is undesirable

2. Combined approach

- a. Divide k hashes into groups
- b. Compute average of each group
- c. Take median of averages