3. Sea E un espacio normado. Sean $(x_n)_{n\in\mathbb{N}}\subseteq E$ y $x_0\in E$ tales que $\lim_{n\to\infty}x_n=x_0$. Probar que si definimos $(y_n)_{n\in\mathbb{N}}\subseteq E$ por

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n},$$

entonces $\lim_{n\to\infty} y_n = x_0$.

Show
$$(x_n) \subseteq E = x_0 \in E / x_n - x_0 \cap x$$

