Language recognizer

Language recognizer

What is the language of this text?

A Csillagok haboruja egy uropera filmsorozatnak, irodalmi muveknek es szamitogepes jatekoknak a neve.

Language recognizer

What is the language of this text?

A Csillagok haboruja egy uropera filmsorozatnak, irodalmi muveknek es szamitogepes jatekoknak a neve.

This is Hungarian, of course!

Classification

Texts LABEL

English, Norwegian, French, ...

The plan

- •Get sample text from from Wikipedia pages (done)
- •Calculate features frequencies of letter pairs
- Compare languages using their features
- •Classify language find the most similar one

Constructing features

- Texts are not directly comparable
- Frequencies of pairs of letters

the three

_t	2
th	2
he	1

e_	2
hr	1
re	1

ee 1

Constructing features

- Frequencies depend on length of text
- Compute probabilities instead

the three

_t	0.2		
th	0.2		
he	0.1		

e_	0.2		
hr	0.1		
re	0.1		

ee 0.1

Distance between features

	th	e_	ee	el
English	0.3	0.2	0.2	0.1
Norwegian	0.0	0.2	0.1	0.3

Nearest neighbor classifier

- Given an unknown subject to classify
- Lookup all the known examples
- Find the closest example
- Predict the label that the closest example has

Nearest neighbour classifier

- 1. Transform data into features that are comparable
- 2. Define a distance measure
- 3. ???
- 4. PROFIT

Coding

Classification with neural networks

• K-nearest neighbours doesn't actually learn anything

Perceptron
Logistic regression

Neural networks for classification

Neuron is a function

Sigmoid function

$$f(x) = \frac{1}{1 + e^{-x}}$$

Classification

Texts LABEL

0 for Language A1 for Language B

Training the perceptron

- Start with random weights
- Compute output of the perceptron
- How different is the output from the true label?
- Improve weights by gradient descent
- Iterate!

Gradient descent

Gradient descent

