DSC 1408 Representation Learning

Lecture 14 | Part 1

Embedding Similarities

Similar Netflix Users

- Suppose you are a data scientist at Netflix
- ► You're given an *n* × *n* similarity matrix *W* of users
 - \triangleright entry (i,j) tells you how similar user i and user j are
 - ▶ 1 means "very similar", 0 means "not at all"

Goal: visualize to find patterns

Idea

- We like scatter plots. Can we make one?
- Users are not vectors / points!
- They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

Goal

- **Embed** nodes of a similarity graph as points.
- Similar nodes should map to nearby points.

Today

- We will design a graph embedding approach:
 - ► Spectral embeddings via Laplacian eigenmaps

More Formally

- Given:
 - A similarity graph with *n* nodes
 - \triangleright a number of dimensions, k
- **Compute**: an **embedding** of the n points into \mathbb{R}^k so that similar objects are placed nearby

To Start

- Given:
 - A similarity graph with *n* nodes
- ▶ **Compute**: an **embedding** of the *n* points into \mathbb{R}^1 so that similar objects are placed nearby

Vectors as Embeddings into \mathbb{R}^1

- Suppose we have n nodes (objects) to embed
- Assume they are numbered 1, 2, ..., n
- ▶ Let $f_1, f_2, ..., f_n \in \mathbb{R}$ be the embeddings
- We can pack them all into a vector: \vec{f} .
- ► Goal: find a good set of embeddings, \vec{f} .

Example

$$\vec{f} = (1, 3, 2, -4)^T$$

An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding \vec{f} is
- ► **Step 2**: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings

- Idea: cost is low if similar points are close
- Here is one approach:

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

 \triangleright where w_{ii} is the weight between i and j.

Interpreting the Cost

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

- If $w_{ij} \approx 0$, that pair can be placed very far apart without increasing cost
- If $w_{ij} \approx 1$, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

Hint: what embedding \vec{f} minimizes it?

Problem

- The cost is **always** minimized by taking $\vec{f} = 0$.
- ► This is a "trivial" solution. Not useful.
- ▶ **Fix**: require $\|\vec{f}\| = 1$
 - Really, any number would work. 1 is convenient.

Exercise

Do you see **another** problem with the cost function, even if we require \vec{f} to be a unit vector?

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

Hint: what other choice of \vec{f} will **always** make this zero?

Problem

- The cost is **always** minimized by taking $\vec{f} = \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$.
- ► This is a "trivial" solution. Again, not useful.
- **Fix**: require \vec{f} to be orthogonal to $(1, 1, ..., 1)^T$.
 - ► Written: $\vec{f} \perp (1, 1, ..., 1)^T$
 - Ensures that solution is not close to trivial solution
 - Might seem strange, but it will work!

The New Optimization Problem

- **Given**: an $n \times n$ similarity matrix W
- **Compute**: embedding vector \vec{f} minimizing

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

How?

- ► This looks difficult.
- Let's write it in matrix form.

We'll see that it is actually (hopefully) familiar.

DSC 1408 Representation Learning

Lecture 14 | Part 2

The Graph Laplacian

The Problem

Compute: embedding vector \vec{f} minimizing

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

Now: write the cost function as a matrix expression.

The Degree Matrix

- Recall: in an unweighted graph, the degree of node i equals number of neighbors.
- Equivalently (where A is the adjacency matrix):

$$degree(i) = \sum_{i=1}^{n} A_{ij}$$

Since $A_{ii} = 1$ only if j is a neighbor of i

The Degree Matrix

► In a weighted graph, define **degree** of node *i* similarly:

$$degree(i) = \sum_{i=1}^{n} w_{ij}$$

► That is, it is the total weight of all neighbors.

The Degree Matrix

► The **degree matrix** *D* of a weighted graph is the diagonal matrix where entry (*i*, *i*) is given by:

$$d_{ii} = degree(i)$$
$$= \sum_{i=1}^{n} w_{ij}$$

The Graph Laplacian

- ▶ Define L = D W
 - D is the degree matrix
 - W is the similarity matrix (weighted adjacency)
- L is called the **Graph Laplacian** matrix.
- ► It is a very useful object

Very Important Fact

Claim:

Cost
$$(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \frac{1}{2} \vec{f}^T L \vec{f}$$

Proof: expand both sides

Proof

DSC 1408 Representation Learning

Lecture 14 | Part 3

Solving the Optimization Problem

A New Formulation

- ► **Given**: an $n \times n$ similarity matrix W
- ► Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \frac{1}{2}\vec{f}^T L \vec{f}$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

► This might sound familiar...

Recall: PCA

► **Given**: a *d* × *d* covariance matrix *C*

Find: vector \vec{u} maximizing the variance in the direction of \vec{u} :

$$\vec{u}^T C \vec{u}$$

subject to $\|\vec{u}\| = 1$.

Solution: take \vec{u} = top eigenvector of C

A New Formulation

- Forget about orthogonality constraint for now.
- ► Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \frac{1}{2}\vec{f}^{\mathsf{T}}L\vec{f}$$

subject to $\|\vec{f}\| = 1$.

- **Solution**: the *bottom* eigenvector of *L*.
 - ► That is, eigenvector with smallest eigenvalue.

Claim

- The bottom eigenvector is $\vec{f} = \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$
- It has associated eigenvalue of 0.
- ► That is, $L\vec{f} = 0\vec{f} = \vec{0}$

Spectral¹ Theorem

Theorem

If A is a symmetric matrix, eigenvectors of A with distinct eigenvalues are orthogonal to one another.

¹"Spectral" not in the sense of specters (ghosts), but because the eigenvalues of a transformation form the "spectrum"

The Fix

- Remember: we wanted \vec{f} to be orthogonal to $\frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$.
 - i.e., should be orthogonal to bottom eigenvector of *L*.
- Fix: take \vec{f} to the be eigenvector of L with with smallest eigenvalue $\neq 0$.
- ▶ Will be $\perp \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$ by the **spectral theorem**.

Spectral Embeddings: Problem

- ► **Given**: **similarity graph** with *n* nodes
- ► **Compute**: an **embedding** of the *n* points into \mathbb{R}^1 so that similar objects are placed nearby
- **Formally**: find embedding vector \vec{f} minimizing

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \frac{1}{2} \vec{f}^T L \vec{f}$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

Spectral Embeddings: Solution

Form the graph Laplacian matrix, L = D - W

- Choose \vec{f} be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

Example

```
W = np.array([
    [1, 0.1, 0.2],
    [0.1, 1, 0.7].
    [0.2, 0.7, 1]
D = np.diag(W.sum(axis=1))
vals, vecs = np.linalg.eigh(L)
f = vecs[:,1]
```

Example

Embedding into \mathbb{R}^k

- ▶ This embeds nodes into \mathbb{R}^1 .
- ▶ What about embedding into \mathbb{R}^k ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

- With k eigenvectors $\vec{f}^{(1)}$, $\vec{f}^{(2)}$, ..., $\vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^k .
- Consider node i.
 - First new coordinate is $\vec{f}_i^{(1)}$.
 - Second new coordinate is $\vec{f}_i^{(2)}$.
 - ► Third new coordinate is $\vec{f}_i^{(3)}$.
 - **>**

Example

```
W = np.array([
    [1, 0.1, 0.2],
    [0.1, 1, 0.7],
    [0.2, 0.7, 1]
D = np.diag(W.sum(axis=1))
L = D - W
vals. vecs = np.linalg.eigh(L)
# take two eigenvectors
# to map to R^2
f = vecs[:,1:3]
```

Example

Laplacian Eigenmaps

- This approach is part of the method of "Laplacian eigenmaps"
- ► Introduced by Mikhail Belkin² and Partha Niyogi
- It is a type of spectral embedding

²Now at HDSI

A Practical Issue

► The Laplacian is often **normalized**:

$$L_{\text{norm}} = D^{-1/2}LD^{-1/2}$$

where $D^{-1/2}$ is the diagonal matrix whose *i*th diagonal entry is $1/\sqrt{d_{ii}}$.

 \triangleright Proceed by finding the eigenvectors of L_{norm} .

In Summary

We can **embed** a similarity graph's nodes into \mathbb{R}^k using the eigenvectors of the graph Laplacian

- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction

DSC 1408 Representation Learning

Lecture 14 | Part 4

Nonlinear Dimensionality Reduction

Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?

PCA?

- Does PCA work here?
- Try projecting onto one principal component.

No

PCA?

- PCA simply "rotates" the data.
- ▶ No amount of rotation will "unroll" the spiral.

We need a fundamentally different approach that works for non-linear patterns.

Today

Non-linear dimensionality reduction via spectral embeddings.

Last Time: Spectral Embeddings

- ► **Given**: a similarity graph with *n* nodes, number of dimensions *k*.
- **Embed**: each node as a point in \mathbb{R}^k such that similar nodes are mapped to nearby points
- ► **Solution**: *bottom k* non-constant eigenvectors of graph Laplacian

Idea

- Build a similarity graph from points.
- Points *near the spiral* should be similar.
- Embed the similarity graph into \mathbb{R}^1

Today

- ▶ 1) How do we build a graph from a set of points?
- 2) Dimensionality reduction with Laplacian eigenmaps

DSC 1408 Representation Learning

Lecture 14 | Part 5

From Points to Graphs

Dimensionality Reduction

- **Given**: *n* points in \mathbb{R}^d , number of dimensions $k \le d$
- ▶ **Map**: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^k$

Idea

- ▶ Build a similarity graph from points in \mathbb{R}^2
- ▶ Use approach from last lecture to embed into \mathbb{R}^k

But how do we represent a set of points as a similarity graph?

Why graphs?

Three Approaches

- ▶ 1) Epsilon neighbors graph
- ▶ 2) *k*-Nearest neighbor graph
- 3) fully connected graph with similarity function

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$, a number ε
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between nodes *i* and *j* if $\|\vec{x}^{(i)} \vec{x}^{(j)}\| \le \varepsilon$
- Result: unweighted graph

Exercise

What will the graph look like when ε is small? What about when it is large?

Note

- We've drawn these graphs by placing nodes at the same position as the point they represent
- But a graph's nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
    for j in range(n):
        if distance(X[i], X[j]) <= epsilon:
            adj[i, j] = 1</pre>
```

Picking ε

- \triangleright If ε is too small, graph is underconnected
- \triangleright If ε is too large, graph is overconnected
- If you cannot visualize, just try and see

With scikit-learn

k-Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$, a number k
- Create a graph with one node *i* per point $\vec{x}^{(i)}$
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph

k-Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
    for j in k_closest_neighbors(X, i):
        adj[i, j] = 1
```

Exercise

Is it possible for a *k*-neighbors graph to be disconected?

With scikit-learn

Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$, a similarity function h
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between every pair of nodes. Assign weight of $h(\vec{x}^{(i)}, \vec{x}^{(j)})$
- Result: weighted graph

- ► A common similarity function: Gaussian
- ightharpoonup Must choose σ appropriately

$$h(\vec{x}, \vec{y}) = e^{-\|\vec{x}-\vec{y}\|^2/\sigma^2}$$

Fully Connected: Pseudocode

```
def h(x, y):
    dist = np.linalg.norm(x, v)
    return np.exp(-dist**2 / sigma**2)
# assume the data is in X
n = len(X)
w = np.ones like(X)
for i in range(n):
    for j in range(n):
        w[i, j] = h(X[i], X[j])
```

With SciPy

```
distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)
```


