Chiral Symmetry Breaking from Monopoles and Duality

Thomas Schaefer, North Carolina State University

with A. Cherman and M. Unsal, PRL 117 (2016) 081601

Motivation

Confinement and chiral symmetry breaking are well established

Goal: Find defomations of QCD, continuously connected to the full theory, that exhibit χSB and confinement.

Background: Confinement in Weak Coupling

Consider SU(2) gauge theory with $N_f^{ad}=1$ on $R^3\times S_1$

$$\mathcal{L} = -\frac{1}{4g^2} F^a_{\mu\nu} F^{a\,\mu\nu} - \frac{i}{g^2} \lambda^a \sigma \cdot D^{ab} \lambda^b + \frac{m}{g^2} \lambda^a \lambda^a$$

$$A_{\mu}^{a}(0)=A_{\mu}^{a}(L)$$

Large mass limit: Pure YM. Small mass limit: SUSY YM.

Small S_1 and m: Confinement can be studied using semi-classical methods, based on monopole-instantons, instantons, and bions.

Low energy fields: Holonomy b and dual photon σ

Non-perturbative effects

Topological classification on $R^3 \times S_1$ (GPY)

1. Topological charge

$$Q_{top} = \frac{1}{16\pi^2} \int d^4x \, F\tilde{F}$$

2. Holonomy (eigenvalues q^{α} of Polyakov line at spatial infinity)

$$\langle \Omega(\vec{x}) \rangle = \left\langle \text{Tr} \exp \left[i \int_0^\beta A_4 dx_4 \right] \right\rangle$$

3. Magnetic charges

$$Q_M^{\alpha} = \frac{1}{4\pi} \int d^2 S \operatorname{Tr} \left[P^{\alpha} B \right]$$

Periodic instantons (calorons)

Instanton solution in \mathbb{R}^4 can be extended to solution on $\mathbb{R}^3 \times \mathbb{S}^1$

SU(2) solution has 1+3+1+3=8 bosonic zero modes

$$\int \frac{d\rho}{\rho^5} \int d^3x \, dx_4 \int dU \, e^{-2S_0} \qquad 2S_0 = \frac{8\pi^2}{g^2}$$

 $4n_{adj}$ fermionic zero modes

$$\int d^2\zeta d^2\xi$$

Calorons at finite holonomy: monopole constituents

KvBLL (1998) construct calorons with non-trivial holonomy

BPS and KK monopole constituents. Fractional topological charge, 1/2 at center symmetric point.

 $2 \times (3+1) = 8$ bosonic zero modes, 2×2 fermionic ZM.

$$\int d\phi_1 \int d^3x_1 \int d^2\zeta \, e^{-S_1} \int d\phi_2 \int d^3x_2 \int d^2\xi \, e^{-S_2}$$

Topological objects

$$(Q_M, Q_{top}) = (\int_{S_2} B \cdot d\Sigma, \int_{R^3 \times S_1} F\tilde{F})$$

Note: BPS/KK topological charges in \mathbb{Z}_2 symmetric vacuum. Also have (2,0) (magnetic) bions.

Effective potential

Instantons and monopoles: Exact solutions, but $V(b, \sigma) = 0$.

Bions: Approximate solutions

$$V_{BPS,\overline{BPS}} \sim e^{-2b} e^{-2S_0} \int d^3r \, e^{-S_{12}(r)}$$

$$S_{12}(r) = \frac{4\pi L}{g^2 r} (q_m^1 q_m^2 - q_b^1 q_b^2) + 4\log(r)$$

Saddle point integral after analytic continuation $g^2 \rightarrow -g^2$ (BZJ)

$$V(b,\sigma) \sim \frac{M_{PV}^6 L^3 e^{-2S_0}}{g^6} \left[\cosh \left(\frac{8\pi}{g^2} \left(\Delta \theta - \pi \right) \right) - \cos(2\sigma) \right]$$

Center symmetric vacuum $tr(\Omega) = 0$ preferred

Mass gap for dual photon $m_{\sigma}^2 > 0 \ (\rightarrow \text{confinement})$

What about chiral symmetry breaking?

Original setup: One adjoint fermion, chiral symmetry is discrete.

$$\langle \bar{\lambda} \lambda \rangle \neq 0 \qquad Z_{2N_c} \to Z_2$$

Light fundamental fermions: Need strong coupling.

$$\mathcal{L} \sim G \det_{N_f}(\bar{\psi}_L \psi_R) + \text{h.c.}$$

Heavy fundamental fermions: Study explicit breaking of \mathbb{Z}_N center symmetry.

Role of Boundary Conditions

Consider flavor twisted boundary conditions

$$\psi(\tau + \beta) = \Omega_F \psi(\tau) \qquad \Omega_F = \operatorname{diag}(1, e^{2\pi i/N_f}, \dots, e^{2\pi i(N_f - 1)/N_f})$$

Flavor holonomy Ω_F has several interesting properties:

- 1. $N_f = N_c$: Respects Z_{N_c} center symmetry.
- 2. Large L: Breaks flavor symmetry, but in a controlled fashion.
- 3. Small L: New semi-classical picture of chiral symmetry breaking: Distributed zero modes and color-flavor transmutation.

Large L expectations

Flavor holonomy corresponds imaginary flavor (isospin) chemical potential $\tilde{\mu}_F \sim i/L$.

Can be studied using chiral Lagrangian

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left[\nabla_{\mu} U \nabla^{\mu} U^{\dagger} \right] - B \operatorname{Tr} \left[MU + h.c \right]$$

with $\nabla_{\mu}U = \partial_{\mu}U + i[\tilde{\mu}_F T_F, U]$.

Consider $N_f = 2$ (isopsin chemical potential)

$$m_{\pi^0}^2 = m_{\pi}^2 \quad m_{\pi^{\pm}}^2 = m_{\pi}^2 + \tilde{\mu}_I^2$$

 $N_f - 1$ exact Goldstone modes (m=0), others acquire gaps.

Small L theory: Perturbation theory

Consider center symmetric gauge holonomy (add double trace deformation). For $l \gtrsim N_c L$ theory abelianizes

$$SU(N_c) \rightarrow [U(1)]^{N_c-1}$$

Gapless (Cartan) gluons described by dual photon $\vec{\sigma}$

$$S = \frac{g^2}{8\pi^2 L} \int d^3x \, (\partial_\mu \vec{\sigma})^2$$

with $F^i_{\mu\nu}=rac{g^2}{2\pi L}\epsilon_{\mu\nu\alpha}\partial^{\alpha}\sigma^i$.

Remain gapless to all orders in perturbation theory due to emergent shift symmetry $\vec{\sigma} \rightarrow \vec{\sigma} + \vec{\epsilon}$.

Small L theory: Semiclassical objects

Center symmetric background, <u>no fermions</u>: Instanton fractionalize into N_c constituents

$$\mathcal{M}_i \sim e^{-S_0} e^{i\vec{\alpha_i}\cdot\vec{\sigma}}$$
 $S_0 = \frac{8\pi^2}{g^2 N_c}$ $\vec{\alpha}_i \ SU(N_c) \ \text{root vectors}$

In the ground state these objects proliferate: The monopole-anti-monopole gas.

$$V(\vec{\sigma}) \sim m_W^3 e^{-S_0} \sum_i \cos(\vec{\alpha}_i \cdot \vec{\sigma})$$

Mass gap for the dual photon, continuous shift symmetry broken.

Massless fermions: Take into account fermion zero modes.

Small L theory: Fermion zero modes

Many eigenvalue circles: Polyakov line Flavor holonomy

Instanton-monopoles θ flavor singlet twist

$$N_c = N_f = 4$$

$$N_c = 4 N_f = 3$$

Zero modes localize on monopoles jumping over flavor eigenvalues

Two basic scenarios $(N_c = N_f)$

No flavor twist: Standard 't Hooft vertex carried by one monopole

$$\mathcal{M}_1 \sim e^{-S_0} e^{i\vec{\alpha}_1 \cdot \vec{\sigma}} \det_F(\bar{\psi}_L^f \psi_B^g) \quad \mathcal{M}_{i>1} \sim e^{-S_0} e^{i\vec{\alpha}_i \cdot \vec{\sigma}}$$

Center symmetric flavor holonomy: Single flavor 't Hooft vertex carried by each monopole

$$\mathcal{M}_i \sim e^{-S_0} e^{i\vec{\alpha}_i \cdot \vec{\sigma}} (\bar{\psi}_L^i \psi_R^i)$$

trivial flavor holonomy

center symmetric holonomy

Spontaneous symmetry breaking

Unbroken symmetries of flavor twisted theory

$$[U(1)_J]^{N_c-1} \times [U(1)_V]^{N_f-1} \times [U(1)_A]^{N_f-1} \times U(1)_Q$$

Shift symmetry Exact flavor symmetry

Symmetries of monopole vertex

$$\mathcal{M}_i \sim e^{-S_0} e^{i\vec{\alpha}_i \cdot \vec{\sigma}} (\bar{\psi}_L^i \psi_R^i)$$

Preserves vectorial symmetry $[U(1)_V]^{N_f-1} \times U(1)_Q$. Breaks axial symmetry

$$[U(1)_A]^{N_f-1}: \quad (\bar{\psi}_L^f \psi_R^f) \to e^{i\epsilon_i} (\bar{\psi}_L^i \psi_R^i)$$

Spontaneous symmetry breaking, continued

Monopole vertex is invariant provided $[U(1)_A]^{N_f-1}$ is combined with $[U(1)_J]^{N_c-1}$ shift symmetry

$$[\tilde{U}(1)_A]^{N_f - 1} : \begin{cases} (\bar{\psi}_L^f \psi_R^f) \to e^{i\epsilon_i} (\bar{\psi}_L^i \psi_R^i) \\ e^{i\vec{\alpha}_i \cdot \vec{\sigma}} \to e^{-i\epsilon_i} e^{i\vec{\alpha}_i \cdot \vec{\sigma}} \end{cases}$$

Ground state $\langle e^{i\vec{\alpha}_i \cdot \vec{\sigma}} \rangle \to 1$. Breaks

$$[U(1)_V]^{N_f-1} \times [\tilde{U}(1)_A]^{N_f-1} \to [U(1)_V]^{N_f-1}$$

For m=0 the ground state is degenerate. Massless Goldstone boson

$$S_{\sigma} = L \int d^3x \left\{ \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \right] - B \operatorname{Tr} \left[M \Sigma + h.c. \right] \right\}$$

Microscopically $\Sigma=e^{i\Pi/f_\pi}$ with $\Pi=\pi^aT^a$ and $\pi^a=\frac{g}{2\pi L}\sigma^a$

Color-flavor transmutation

Chiral Lagrangian

Chiral lagrangian has calculable coefficients

$$S_{\sigma} = L \int d^3x \left\{ \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \right] - B \operatorname{Tr} \left[M \Sigma + h.c. \right] \right\}$$
$$f_{\pi}^2 = \left(\frac{g}{\sqrt{6}\pi L} \right)^2 = \frac{N_c \lambda m_W^2}{24\pi^2}$$

$$B = -\frac{1}{2} \langle \bar{\psi}\psi \rangle \sim m_W^{-3} e^{-\frac{8\pi^2}{\lambda}}$$

Also note: VEV of monopole operator can be viewed as effective constituent quark mass

$$m_Q \sim m_W e^{-\frac{8\pi^2}{\lambda}}$$

Conclusions and Outlook

Calculabe mechanism for chiral symmetry breaking in a compactified version of QCD.

Results consistent with continuity between large L (full QCD) and small L theory.

Mechanism based on monopole instantons and color flavor transmutation.

Study: Extension to $N_f > N_c$? Relation between χSB and confinement?