Modern Regression

Lecture 7

Xiaofei Shi

Learning objective:

- Modern methods for linear regression and regression with regulation penalty

Regression

Training data \Longrightarrow Learning algorithm \widehat{f}_n that predicts/estimates output Y given input X

- Linear Regression
- Regularized Linear Regression Ridge regression, Lasso Polynomial Regression
- Gaussian Process Regression

last time today

Recap on linear regression

Build your model:

1) relationship:
$$y = \sum_{j=0}^{K} w_j \phi_j(x)$$

2) preference: choose w to minimize $J(\mathbf{w}) = \sum_{i} (y^{i} - \sum_{j} w_{j} \phi_{j}(x^{i}))^{2}$

• Estimate your model parameters:

- 1) plugging in observed data to express your preference
- 2) get parameters estimation for your model $\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$
- Understand your model

Potential problems:

- collinearity
- too many non-zero but very small coefficients
 - too slow

Regularizer: ridge regression!

- If $\Phi^T \Phi$ is not invertible, or its determinant is very small, the optimal w is not going to be stable
- n equations < p unknowns underdetermined system of linear equations many feasible solutions

Need to impose extra constraints!

Regularizer: ridge regression!

- If $\Phi^T \Phi$ is not invertible, or its determinant is very small, the optimal w is not going to be stable
- n equations < k unknowns underdetermined system of linear equations many feasible solutions
- Adding in penalty term into loss function:

$$J(eta) = \sum_i \left(y^i - \sum_j eta_j \phi_j(x^i)
ight)^2 + \lambda \sum_j eta_j^2$$
 different norms of $= \|y - \Phi(x) eta\|_2^2 + \lambda \|eta\|_2^2$ matrix and vectors

• Equivalent to a MAP optimization problem \longrightarrow regression coefficient with Gaussian prior! $\widehat{eta} = (\Phi^{ op}(x)\Phi(x) + \lambda I)^{-1}\Phi^{ op}(x)y$

Regularizer: ridge regression!

Regularizer: Lasso

- n equations < k unknowns underdetermined system of linear equations many feasible solutions
- Sometimes our goal is to learn a *sparse* representation: select the most useful features!
- How to achieve?

Regularizer: Lasso

- n equations < k unknowns underdetermined system of linear equations many feasible solutions
- Sometimes our goal is to learn a *sparse* representation: select the most useful features!
- How to achieve?

$$J(eta) = \|y - \Phi(x)eta\|_2^2 + \lambda \|eta\|_0^2$$

No closed form! Hard to solve!

Regularizer: Lasso

- n equations < k unknowns underdetermined system of linear equations many feasible solutions
- Sometimes our goal is to learn a *sparse* representation: select the most useful features!
- How to achieve?

$$J(eta) = \|y - \Phi(x)eta\|_2^2 + \lambda \|eta\|_1^2$$

Difference: Convex optimization!

Lasso or ridge? It's a question...

Lasso Coefficients

Ridge Coefficients

What did they actually do...

Ridge Regression:

 $pen(\beta) = \|\beta\|_2^2$

Lasso:

 $pen(\beta) = \|\beta\|_1$

Ideally IO penalty, but optimization becomes non-convex

Lasso (11 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates, interpretable solution!

Regression to classification

- Instead of giving scores to these apps, can you tell which app to use?
- Can we predict the "probability" of class label – a real number – using regression methods?
- But output (probability) needs to be in [0,1]

A way to make categorical variables continuous!

•	能猫从表	Uber Eats	
	HungryPanda	Luts	 chowbus distribution
Available restaurants	30	10	20
Average delivery time	Next day	>3hr	1hr
Mandatory service fee	>10%	>20%	>13%
Score	9	7	8 COLUMBI
			UNIVERSIT

Logistic regression

• Instead of modeling Y = 0 or 1 directly, we modify the probability of P(Y=0|x) as

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Logistic function applied to a linear function of the data

Logistic function $\frac{1}{1+exp(-z)}$

Features can be discrete or continuous!

Logistic regression for 2 categories

Assumes the following functional form for P(Y|X):

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Decision boundary: Note - Labels are 0,1

$$P(Y = 0|X) \overset{0}{\underset{1}{\gtrless}} P(Y = 1|X)$$

$$w_0 + \sum_{i} w_i X_i \overset{1}{\underset{0}{\gtrless}} 0$$

(Linear Decision Boundary)

Logistic regression for K categories

• Logistic regression in more general case, where $Y \in \{y_1,...,y_K\}$

for k=K (normalization, so no weights for this class)

Are decision boundaries still linear? Why?

$$P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{d} w_{ji} X_i)}$$

Predict
$$f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$$