Theorem (2.3.43). Let x be a real number. $\lceil x - \frac{1}{2} \rceil$ is the closest integer to x, except when x is midway between two integers, when it is the smaller of these two integers.

Proof. By cases. Let n be the integer such that $n \le x < n+1$ and $\lceil x - \frac{1}{2} \rceil = \lceil (n+\epsilon) - \frac{1}{2} \rceil \rceil$. ϵ is the decimal part of x.

- (i) If $\epsilon > \frac{1}{2}$, then $\epsilon \frac{1}{2} > \frac{1}{2} \frac{1}{2} = 0$. So $\lceil (n + \epsilon) \frac{1}{2} \rceil = n + 1$.
- (ii) If $\epsilon \leq \frac{1}{2}$, then $\epsilon \frac{1}{2} \leq 0$. So $(n-1) \leq \lfloor (n+\epsilon) \frac{1}{2} \rfloor < n$, and $\lceil x \frac{1}{2} \rceil = n$.