Statistical analysis of $in\ vitro$ screening for inhibitors of viral infection

Normalization and target selection methods

2020 - 04 - 16

Franck Touret, Magali Gilles, Karine Barral, Antoine Nougaire, Etienne Decroly, Xavier de Lamballerie,

Contents

Introduction	2
Data	3
Supplementary data tables	3
Viability measurements	4
Cell Titer Blue intensity (CTB)	4
Distribution of raw CTB values	6
Arbidol treatment	9
Hydroxychloroquine sulfate	9
CTB boxplots	9
Plate-wise standardization	11
Plate-wise control points	11
Viability ratio and log2(ratio)	13
Viability ratio boxplots	14
Two-points scaling: defining a plate-wise inhibition index $(I_{m,i})$	15
Inhibition index boxplots	17
Dot plots: relative viability	19
IQR-based standardization	22
Plate-wise IQR-standardized viability	22
Histograms of inter-quartile standardized inhibition indices	25
Boxplots: inter-quartile standardized inhibition	27
Dot plots: inter-quartile standardized inhibition	29
P-value computation	30
P-value histogram	32
Significance plot	32
Volcano plot	34
Significance of Arbidol after IQR-based standardisation	34
Selection of candidate molecules	36
Comparison between viability scores	38
CTB versus viability	38
Relative versus IQR-standardised viability	39
FDR versus inhibition index	41
Previous versus new inhibition index	41
Candidate molecules selected by the different criteria	44

```
Venn diagram \dots
 Result files
                     48
Analysis of Touret's original Inhibition Index (II)
                     49
49
 50
51
 51
52
 56
58
 58
59
                     62
Libraries and versions
                     62
63
#### Parameters ####
## Significance threshold
alpha <- 0.05
markColor <- c(</pre>
cellCtl = "grey",
virusCtl = "red",
treated = "blue",
Arbidol = "black",
Hydroxychloroquine = "orange"
markPCh <- c(</pre>
cellCtl = 5,
virusCtl = 17,
treated = 1,
Arbidol = 19,
Hydroxychloroquine = 13
```

Introduction

This document describes in detail the procedure used to select molecules having a potential inhibitory effect on the infection of cultured cells by covid-19.

Data

Supplementary data tables

```
#### Load data from Excel workbook ####
message("Loading data from excel workbook.")
supTable <- read.xlsx(file = supTableFile, sheetIndex = 1)
#supTable <- read_xlsx(path = supTableFile, sheet = 1, col_names = TRUE)
# dim(supTable)
# View(supTable)
# view(supTable)
# names(supTable)

colNames <- colnames(supTable)
colNames[1] <- "ID"
colnames(supTable) <- colNames
## Suppress the last row (NA)
supTable <- supTable[!is.na(supTable$ID), ]
# dim(supTable)

## Assign row names for convenience
# View(supTable)

## Extract plate number
supTable$plateNumber <- as.numeric(substr(supTable[, 1], start = 1, stop = 2))
# table(supTable$plateNumber)
plateNumbers <- unique(supTable$plateNumber)

## Assign a color to each molecule according to its plate number
plateColor <- rainbow(n = length(plateNumbers))
names(plateColor) <- unique(supTable$plateNumber)

supTable$color <- plateColor[supTable$plateNumber]
message("\tLoaded main table with ", nrow(supTable), " rows ")</pre>
```

The supplementary table downloaded from bioRxiv contains 1520 molecules.

Viability measurements

Cell Titer Blue intensity (CTB)

The number of viable cells per well is measured by a colorimetric test. The primary measure is the **Cell Titer Blue intensity** (CTB).

```
#### Read the CTB values from the Excel workbook ####
message("Reading Cell Titer Blue (CTB) values from file ", supTableFile)
nbPlates <- 19
rowsPerPlate <- 8
columnsPerPlate <- 12
dataPerPlate <- list()</pre>
## Control 1: uninfected cells
cellControl <- data.frame(matrix(ncol = 8, nrow = nbPlates))</pre>
colnames(cellControl) <- LETTERS[1:rowsPerPlate]</pre>
virusControl <- data.frame(matrix(ncol = 6, nrow = nbPlates))</pre>
colnames(virusControl) <- LETTERS[3:rowsPerPlate]</pre>
inhibTable <- data.frame(matrix(ncol = 8, nrow = nbPlates*rowsPerPlate * columnsPerPlate))</pre>
colnames(inhibTable) <- c("ID",</pre>
                            "Plate",
                            "Row",
                            "Column",
                            "CTB",
                            "Chemical.name")
for (i in 1:nbPlates) {
  message("\tLoading data from plate ", i)
  sheetName <- paste0("Plate", i)</pre>
  ## Raw measures
  # rawMeasures <- read.xlsx(file = supTableFile,</pre>
  rawMeasures <- read_xlsx(path = supTableFile, col_names = FALSE,</pre>
                             sheet = sheetName,
                             range = "B30:M37", progress = FALSE)
  rawMeasures <- as.data.frame(rawMeasures)</pre>
  rownames(rawMeasures) <- LETTERS[1:nrow(rawMeasures)]</pre>
  colnames(rawMeasures) <- 1:ncol(rawMeasures)</pre>
  # dim(rawMeasures)
  # View(rawMeasures)
  cellControl[i, ] <- as.vector(rawMeasures[,1])</pre>
```

```
virusControl[i, ] <- as.vector(rawMeasures[3:8,12])</pre>
  platevc <- mean(unlist(virusControl[i, ]))</pre>
  platecc <- mean(unlist(cellControl[i, ]))</pre>
  ## Extract all values
  for (r in 1:rowsPerPlate) {
    currentRowName <- LETTERS[r]</pre>
    currentValues <- unlist(rawMeasures[currentRowName,])</pre>
    id <- paste0(sprintf("%02d",i),</pre>
                  currentRowName,
                  sprintf("%02d",1:columnsPerPlate))
    startIndex <- (i - 1) * (rowsPerPlate * columnsPerPlate) + (r - 1) * columnsPerPlate + 1
    indices <- startIndex:(startIndex + columnsPerPlate - 1)</pre>
    inhibTable[indices, "ID"] <- id</pre>
    inhibTable[indices, "Plate"] <- i</pre>
    inhibTable[indices, "Row"] <- currentRowName</pre>
    inhibTable[indices, "Column"] <- 1:columnsPerPlate</pre>
    inhibTable[indices, "CTB"] <- currentValues</pre>
    inhibTable[indices, "virusControl"] <- platevc</pre>
    inhibTable[indices, "cellControl"] <- platecc</pre>
  dataPerPlate[[i]] <- list()</pre>
  dataPerPlate[[i]][["rawMeasures"]] <- rawMeasures
# dim(inhibTable)
# names(inhibTable)
# View(dataPerPlate)
# View(dataPerPlate[[1]][["rawMeasures"]])
# table(inhibTable$Row, inhibTable$Column) ## Check that there are 19 entries for each plate position
rownames(inhibTable) <- inhibTable$ID</pre>
## and those created here
touretIDs <- unlist(supTable$ID)</pre>
inhibIDs <- inhibTable$ID</pre>
## Cell control: uninfected cells
cellControlIndices <- inhibTable$Column == 1</pre>
inhibTable[cellControlIndices, "Chemical.name"] <- "uninfected"</pre>
```

```
virusControlIndices <- (inhibTable$Column == 12) & (inhibTable$Row %in% LETTERS[3:8])
inhibTable[virusControlIndices, "Chemical.name"] <- "infected no treatment"</pre>
wellType <- NA
wellType[cellControlIndices] <- "cellCtl"</pre>
wellType[virusControlIndices] <- "virusCtl"</pre>
wellType[!(virusControlIndices | cellControlIndices)] <- "treated"</pre>
inhibTable[, "wellType"] <- wellType</pre>
for (field in c("Chemical.name",
                 "Broad.Therapeutic.class",
                 "Reported.therapeutic.effect",
                 "Inhibition.Index")) {
  inhibTable[, field] <- NA
  inhibTable[inhibTable$ID %in% touretIDs, field] <-</pre>
    as.vector(supTable[, field])
kable(t(table(inhibTable$wellType)), caption = "Well types. cellCtl: no infection; virusCtl: infection
```

Table 1: Well types. cellCtl: no infection; virusCtl: infection without treatment; treated: inhected and treated with one molecule

cellCtl	treated	virusCtl
152	1558	114

The raw data contains 19 plates with 8 rows (indiced A to H) and 12 columns (indiced from 1 to 12.) The raw data consists of CTB measurements in cell cultures.

Distribution of raw CTB values

```
#### Distribution of raw measurements ####
classInterval <- 500
# xmin <- floor(min(inhibTable$CTB)/classInterval) * classInterval</pre>
```

```
xmax <- ceiling(max(inhibTable$CTB)/classInterval) * classInterval</pre>
breaks = seq(from = xmin, to = xmax, by = classInterval)
par(mfrow = c(3, 1))
par(mar = c(2,5,3,1))
hist(inhibTable[wellType == "cellCtl", "CTB"],
     main = "Uninfected (cell control)",
     xlab = "CTB",
     ylab = "Number of plate wells",
     las = 1,
     breaks = breaks, col = "palegreen", border = "palegreen")
hist(inhibTable[wellType == "virusCtl", "CTB"],
     main = "Infected, no treatment (virus control))",
     xlab = "CTB",
     ylab = "Number of plate wells",
     las = 1,
     breaks = breaks, col = "orange", border = "orange")
hist(inhibTable[wellType == "treated", "CTB"],
     main = "Treated cells",
     xlab = "CTB",
     ylab = "Number of plate wells",
     las = 1,
     breaks = breaks, col = "#AACCFF", border = "#AACCFF")
```


Figure 1: Distributions of the CTB measures. Top: uninfected cells. Middle: infected cells without treatment. Bottom: infected cells treated with a specific molecule.

par(par.ori)

• Cell control.

- The top panel (green) shows the distribution of CTB measurements in controls cultures, where the cells were neither infected by the virus nor treated with a drug.
- Each plate contains 8 wells with uninfected cells (total = 152).

• Virus control.

- The middle panel (orange) shows the distribution of CTB measurements in infected cells without drug treatment
- The virus control was performed on 6 wells per plate, total = 114).

• Treated cells.

- The bottom distribution (pale blue) shows the CTB values for cells infected and treated with a given drug.
- Note that each drug was tested on a single well (no replicates). Indeed, in order to face the COVID-19 emergency, the study attempted to test as fast as possible a wide range of molecules. This first screening was thus performed without replicates. This has to be taken into account for the normalization, which should be done with no estimation of the variance for the individual drugs.
- The distribution is strongly asymmetrical, and seems bi- or multi-modal. This distribution can be considered as a mixture between different distributions;
 - * all the drugs that have no inhibitory effect (and are thus expected to have a CTB similar to the virus control);
 - * various drugs that inhibit the action of the virus, each one with its specific level of inhibition. This probably corresponds to the widely dispersed values above the bulk of distribution (and above the virus control distribution)

```
#### Plate-wise colors ####

## Assign a color to each plate
## A trick: we alternate the colors of the rainbow in order
## to see the contrast between successive plates
platePalette <- rainbow(n = length(plateNumbers))
plateColor <- vector(length = nbPlates)
oddIndices <- seq(1, nbPlates, 2)
evenIndices <- seq(2, nbPlates, 2)
plateColor[oddIndices] <- platePalette[1:length(oddIndices)]
plateColor[evenIndices] <- platePalette[(length(oddIndices) + 1):nbPlates]
names(plateColor) <- 1:nbPlates

## Assign a color to each result according to its plate
inhibTable$color <- plateColor[inhibTable$Plate]
inhibTable$color <- plateColor[inhibTable$Plate]
inhibTable[inhibTable$wellType == "cellCtl", "pch"] <- markPCh["cellCtl"]
inhibTable[inhibTable$wellType == "virusCtl", "pch"] <- markPCh["virusCtl"]
# table(inhibTable$color) ## Check that each plate has 96 wells
# table(inhibTable$pch)</pre>
```

Arbidol treatment

A treatment with $10\mu M$ Arbidol – a broad-spectrum antiviral – was used as control, with duplicate test in 2 wells per plate.

```
#### Select arbidol duplicates as plate-wise milestones ####
arbidolWells <- (inhibTable$Column == 12) & (inhibTable$Row %in% c("A", "B"))
inhibTable[arbidolWells, "Chemical.name"] <- "Arbidol"
# inhibTable[arbidolWells, c("ID", "Chemical.name")]

#### Extract raw CTB measures per plate for arbidol ####
arbidoltV <- inhibTable[arbidolWells, c("Plate", "CTB")]
inhibTable[arbidolWells, "color"] <- markColor["Arbidol"]

# table(inhibTable$color)</pre>
```

Hydroxychloroquine sulfate

We assin a specific label to Hydroxychloroquine sulfate, which has a specific interest since it is one of the molecules tested in an European clinical trial.

```
HOClSindex <- which(inhibTable$Chemical.name == "Hydroxychloroquine sulfate")
HOClSpch <- 13
inhibTable[HOClSindex, "color"] <- markColor["Hydroxychloroquine"]
inhibTable[HOClSindex, "pch"] <- HOClSpch</pre>
```

CTB boxplots

The boxplot of the CTB measurements highlights a plate effect, for the treated cells (middle barplots) but also for the untreated virus control (top boxplots) and uninfected cell control (bottom boxplots).

Cell Ttiter Blue (CTB) per plate

Figure 2: Distribution of CTB values per plate. Top virus control (untreated infected cells); middle: treated cells; bottom: cell control (uninfected). Black plain circles: arbidol control duplicates.

• Treated:

- The medians and interquartile ranges show strong variations between plates.
- In particular, plate 1 (in red) has a the smallest median and a remarkably compact interquartile range. There are many statistical outliers (empty circles) in this plate, which might correspond to the molecules having a significant inhibitory effect.
- In contrast, plates 11 to 15 show a high median and a wide dispersion of CTB measures, and there
 is not a single statistical outlier.

• Virus control (vc)

- As expected, untreated infected cells generally gave a very small CTB, with small variations (very compact interquartile rectangles)
- There is a problem for the virus control of plate 17, which shows a broad range of values, with a third quartile falling in the range of the uninfected cells. This suggests a problem with at least 2 of the 6 replicates (missed infection?). However, the median of the virus controls for this plate falls in the same range as for the virus control of the other plates.

• Cell control (cc)

- The cell control performs as expected in all the plates, with high CTB values.
- Note however that the CTB of uninfected cells show inter-plate variations, with median values ranging from ~37,000 to ~53,000.

Importantly, there is a consistency between the inter-plate differences observed for virus control, treated cells and cell control, respectively. For example, plate 2 whose consistently higher value than the other plates for the three types of wells. This highlights the importances to perform a plate-wise standardization.

Plate-wise standardization

Plate-wise control points

Taking into account the above-reported results, we apply the following procedure to standardize the individual viability measures.

For each plate, we define two control values:

- $CTB_{cc,i}$: median CTB of the 8 **cell controls** (uninfected cells) of plate i
- $CTB_{vc,i}$: median CTB of the 6 virus controls (infected untreated cells) of plate i

These two values are deliberately estimated with the median measurement of the control replicate, in order to avoid the effect of outliers as denoted for the virus control of plate 17.

```
#### Compute plate-wise statistics ####
plateStat <- data.frame(
  plate = plateNumbers,

## Mean CTB
CTBmean = as.vector(by(
  data = inhibTable$CTB,
  INDICES = inhibTable$Plate,
  FUN = mean)),

## Standard deviation
CTBsd = as.vector(by(
  data = inhibTable$CTB,
  INDICES = inhibTable$CTB,
  INDICES = inhibTable$CTB,
  INDICES = inhibTable$Plate,</pre>
```

```
FUN = sd)),
  ## Median
  CTBmedian = as.vector(by(
    data = inhibTable$CTB,
    INDICES = inhibTable$Plate,
    FUN = median)),
  CTBmin = as.vector(by(
    data = inhibTable$CTB,
    INDICES = inhibTable$Plate,
    FUN = min)),
 CTBmax = as.vector(by(
    data = inhibTable$CTB,
    INDICES = inhibTable$Plate,
    FUN = max)),
  # ## interquartile range
  # FUN = IQR)),
  ## Plate-wise virus control
  CTBvc <- as.vector(by(
    data = inhibTable[wellType == "virusCtl", "CTB"],
    INDICES = inhibTable[wellType == "virusCtl", "Plate"],
    FUN = median)),
  ## Plate-wise cell control
  CTBcc <- as.vector(by(</pre>
    data = inhibTable[wellType == "cellCtl", "CTB"],
    INDICES = inhibTable[wellType == "cellCtl", "Plate"],
    FUN = median))
rownames(plateStat) <- plateStat$plate</pre>
kable(plateStat, caption = "Plate-wise statistics oninhibition index")
```

Table 2: Plate-wise statistics on inhibition ind

plate	CTBmean	CTBsd	CTBmedian	CTBmin	CTBmax	$CTBvc.\dots as. vector. by. data.\dots inhib Table. well Type$
1	14968.79	9179.079	10568.5	7326	45194	
2	21151.54	11359.022	17339.0	10069	55014	
3	15561.16	8274.558	12261.0	8110	43083	
4	20376.58	10986.807	15742.0	8648	46289	
5	16882.96	9640.466	13660.5	7114	43824	
6	15654.72	9488.589	11291.5	7389	43312	

plate	CTBmean	CTBsd	CTBmedian	CTBmin	CTBmax	$CTBvc.\dots as. vector. by. data.\dots in hib Table. well Type.\dots$
7	17024.33	9779.790	12338.0	8040	43221	
8	16583.02	9286.450	12010.5	8033	43402	
9	18603.48	9702.154	14293.5	9418	45126	
10	18183.64	9574.292	14639.0	8690	45927	
11	22241.27	10113.348	19335.0	5255	46301	
12	21527.03	9444.469	19471.5	5248	43404	
13	24039.02	10818.207	23996.5	5097	44821	
14	23585.09	9364.788	23567.0	4263	42400	
15	24082.91	10388.209	23327.0	4685	45445	
16	19891.76	8991.913	19738.0	4483	45555	
17	19518.59	9053.786	17587.0	4983	41762	
18	21942.55	9706.601	19075.5	5173	44573	
19	19526.67	9930.452	15299.5	4578	43712	

```
## Add columns with the control values according to the plate
inhibTable$CTBvc <- plateStat$CTBvc[inhibTable$Plate]
inhibTable$CTBcc <- plateStat$CTBcc[inhibTable$Plate]
# sort(table(inhibTable$CTBvc))
# sort(table(inhibTable$CTBcc))</pre>
```

Viability ratio and log2(ratio)

The viability ratio (R) associated to a given treatment with molecule m on a given plate i is defined as the ratio between - the CTB measured on infected cells treated with this molecule $(CTB_{m,i})$ and - the median CTB of 8 replicates of uninfected cells (denoted cc for $cell\ control$) on the same plate $(CTB_{cc,i})$.

$$R_{m,i} = \frac{CTB_{m,i}}{CTB_{cc,i}}$$

We further apply logarithmic transformation in order to normalise this ratio.

$$R_{m,i} = log2(R) = log2\left(\frac{CTB_{m,i}}{CTB_{cc,i}}\right)$$

```
#### Compute plate-relative viability ####
inhibTable$Vratio <- inhibTable$CTB / inhibTable$CTBc
inhibTable$Vlog2R <- log2(inhibTable$Vratio)
# table(wellType)
# hist(inhibTable[wellType == "cellCtl", "Vratio"], breaks = 50)
# hist(inhibTable[wellType == "cellCtl", "Vlog2R"], breaks = 50)

## Plate-wise virus control viability ratio
plateStat$Rvc <- as.vector(by(
    data = inhibTable[wellType == "virusCtl", "Vratio"],
    INDICES = inhibTable[wellType == "virusCtl", "Plate"],
    FUN = median))

## Plate-wise cell control viability ratio
## Note: this is 1 by definition, we compute it for validation
plateStat$Rcc <- as.vector(by(
    data = inhibTable[wellType == "cellCtl", "Vratio"],</pre>
```

```
INDICES = inhibTable[wellType == "cellCtl", "Plate"],
FUN = median))

## Plate-wise virus control viability log2 ratio
plateStat$Lvc <- as.vector(by(
   data = inhibTable[wellType == "virusCtl", "Vlog2R"],
   INDICES = inhibTable[wellType == "virusCtl", "Plate"],
   FUN = median))

## Plate-wise cell control viability log2 ratio
plateStat$Lcc <- as.vector(by(
   data = inhibTable[wellType == "cellCtl", "Vlog2R"],
   INDICES = inhibTable[wellType == "cellCtl", "Plate"],
   FUN = median))</pre>
```

Viability ratio boxplots

```
par(mfrow = c(1,2))
#### Boxplots of viability ratios per plate ####
Rfloor <- floor(min(inhibTable$Vratio))</pre>
Rceiling <- max(inhibTable$Vratio) * 1.1</pre>
boxplot(Vratio ~ Plate + wellType,
        data = inhibTable,
        las = 1, col = plateColor,
        xlab = "R = CTB / CTBcc",
        ylim = c(min(inhibTable$Vratio), Rceiling),
        cex.axis = 0.5, cex = 0.5,
        horizontal = TRUE)
abline(v = 1, col = "#00BB00")
abline(v = seq(from = Rfloor, to = Rceiling, by = 0.05), col = "#EEEEEE", lty = "dashed")
abline(v = seq(from = Rfloor, to = Rceiling, by = 0.2), col = "grey")
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.6)
stripchart(Vratio ~ Plate, vertical = FALSE,
           data = inhibTable[arbidolWells, ],
           method = "jitter", add = TRUE, cex = 0.7,
           col = markColor["Arbidol"], pch = markPCh["Arbidol"])
legend("bottomleft",
       title = "Markers",
       legend = "Arbidol",
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"],
       cex = 0.8)
```

```
Lfloor <- floor(min(inhibTable$Vlog2R))</pre>
Lceiling <- ceiling(max(inhibTable$Vlog2R))</pre>
boxplot(Vlog2R ~ Plate + wellType,
        main = "Viability log2(ratio) distribution",
        data = inhibTable,
        las = 1, col = plateColor,
        xlab = "L = log2(CTB / CTBcc)",
        ylim = c(min(inhibTable$Vlog2R), Lceiling),
        cex.axis = 0.5, cex = 0.5,
        horizontal = TRUE)
abline(v = seq(from = Lfloor, to = Lceiling, by = 0.2), col = "#EEEEEEE", lty = "dashed")
abline(v = seq(from = Lfloor, to = Lceiling, by = 1), col = "grey")
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.6)
## Add points to denote the arbidol controls
stripchart(Vlog2R ~ Plate, vertical = FALSE,
           data = inhibTable[arbidolWells, ],
           method = "jitter", add = TRUE, cex = 0.7,
           col = markColor["Arbidol"], pch = markPCh["Arbidol"])
legend("bottomleft",
       title = "Markers",
       legend = "Arbidol",
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"],
       cex = 0.8)
```

par(par.ori)

The barplots of log2-transformed viability measures show another indication for the possible existence of a plate bias: in plates 11 to 19, several molecules are associated to a much smaller viability than in any of the untreated cells. This might reflect a cytotoxic effect of the drug that would enforce the viral infection, but there is a priori no reason to expect such effects to be concentrated on the last plates.

Two-points scaling: defining a plate-wise inhibition index $(I_{m,i})$

A plate-wise inhbition index $I_{m,i}$ is defined to indicate the inhibition provided by a given molecule m relative to its plate (i).

It is computed as follows.

$$I_{m,i} = 100 \cdot \frac{L_{m,i} - L_{vc}}{L_{cc} - L_{vc}}$$

where $L_{cc,i}$ and $L_{vc,i}$ respectively denote the median values of cell controls and virus controls for plate i.

 $I_{m,i}$ provides a plate-wise relative viability measurement on a scale where 0 corresponds to the median of infected untreated cells (virus control), and 100 to the median of uninfected cells.

Figure 3: Distribution of the viability ratio (R) per plate. Top virus control (untreated infected cells); middle: treated cells; bottom: cell control (uninfected). Black plain circles: arbidol control duplicates.

Note that $I_{m,i}$ values lower than 0 denote treatments with a lower viability than the untreated virus infection. This might result from various sources: experimental flucturations, cytotoxic effect of the drug or plate bias.

 $I_{m,i}$ values can in principle also take values higher than 100, denoting a highly efficient treatment.

```
#### Compute relative viability ####
inhibTable$I <- 100 *
   (inhibTable$Vlog2R - plateStat$Lvc[inhibTable$Plate]) /
     (plateStat$Lcc[inhibTable$Plate] - plateStat$Lvc[inhibTable$Plate])
# hist(inhibTable$I, breaks = 100)</pre>
```

Inhibition index boxplots

```
Ifloor = floor(min(inhibTable$I))
Iceiling = max(inhibTable$I) * 1.2
boxplot(I ~ Plate + wellType,
        main = "Inhibition index",
        data = inhibTable,
        las = 1, col = plateColor,
        xlab = "I = (L - Lvc) / (Lcc - Lvc)",
        ylim = c(Ifloor, Iceiling),
        cex.axis = 0.5, cex = 0.5,
        horizontal = TRUE)
abline(v = seq(from = Ifloor, to = Iceiling, by = 5), col = "#EEEEEEE", lty = "dashed")
abline(v = seq(from = -100, to = 150, by = 25), col = "grey")
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.6)
stripchart(I ~ Plate, vertical = FALSE,
           data = inhibTable[arbidolWells, ],
           method = "jitter", add = TRUE, cex = 0.7,
           col = markColor["Arbidol"], pch = markPCh["Arbidol"])
legend("bottomleft",
       title = "Markers",
       legend = "Arbidol",
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"],
       cex = 0.8)
```

```
par(par.ori)
```

The box plots show that the inhibition index standardises the measures by positioning each treatment relative to two milestones of its own plate:

- the median virus control (0)
- the cell control (100)

The virus controls are well regrouped in the range of smaller v_r values, except for plate 17.

The cell controls occupy the high range (their first quartile is higher than 80) and are quite compactly grouped around 100.

Inhibition index

Figure 4: Distribution of inhibition index (I) values per plate. Top virus control (untreated infected cells); middle: treated cells; bottom: cell control (uninfected). Black plain circles: arbidol control duplicates.

However, we still observe a strong difference between plates 11-19 and the other plates:

- their median is mich higher than for the plates 1 to 10;
- they also show a much wider inter-quartile rectangle, denoting a wide dispersion of values on this plate;
- for plates 11 and 13-19, this wider dispersion is even visible for the virus controls (untreated infected cells), and it is thus unlikely that it results from the particular molecules sampled on this second half of the plates.

We thus need a way to perform a between-plates standardization of the variance.

Dot plots: relative viability

```
Ifloor <- floor(min(inhibTable$I / 10)) * 10</pre>
Iceiling <- max(inhibTable$I) * 1.1</pre>
par(mfrow = c(4,1))
plot(inhibTable[wellType == "virusCtl", "I"],
     main = "Virus control (infected, untreated)",
     xlab = "Replicates, sorted per plate",
     ylab = "I = (L - Lvc) / (Lcc - Lvc)",
     col = inhibTable[wellType == "virusCtl", "color"],
     pch = inhibTable[wellType == "virusCtl", "pch"],
     xlim = c(0, (nbPlates * 6 * 1.05)),
     ylim = c(Ifloor, Iceiling),
     panel.first = c(abline(h = 0, col = "red", lwd = 2),
                      abline(h = 100, col = "#008800", lwd = 2),
                      abline(h = seq(Ifloor, Iceiling, 10), col = "#DDDDDDD"),
                      abline(v = (0:19) * 6, col = "#999999")
     xaxt = "n",
     las = \overline{1},
     cex = 0.5
mtext(plateNumbers, at = (1:19) * 6 - 3, side = 1)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
plot(inhibTable[wellType == "treated", "I"],
     main = "Relative viability (Vr)",
     xlab = "Molecules",
     ylab = "relative viability",
     col = inhibTable[wellType == "treated", "color"],
     pch = inhibTable[wellType == "treated", "pch"],
     xlim = c(0, (nbPlates * 80 * 1.05)),
     ylim = c(Ifloor, Iceiling),
     panel.first = c(abline(h = 0, col = "red", lwd = 2),
                      abline(h = 100, col = "#008800", lwd = 2),
                      abline(h = seq(Ifloor, Iceiling, 10), col = "#DDDDDD"),
                      abline(v = (0:19) * 80, col = "#999999")
```

```
xaxt = "n",
     las = 1,
     cex = 0.5
mtext(plateNumbers, at = (1:19) * 80 - 40, side = 1)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.6
plot(inhibTable[wellType == "cellCtl", "I"],
     main = "Cell control (uninfected)",
     xlab = "Replicates, sorted per plate",
     ylab = "relative viability",
     col = inhibTable[wellType == "cellCtl", "color"],
     pch = inhibTable[wellType == "cellCtl", "pch"],
     xlim = c(0, (nbPlates * 8 * 1.05)),
     ylim = c(Ifloor, Iceiling),
     panel.first = c(abline(h = 0, col = "red", lwd = 2),
                     abline(h = 100, col = "#008800", lwd = 2),
                     abline(h = seq(Ifloor, Iceiling, 10), col = "#DDDDDD"),
                     abline(v = (0:19) * 8, col = "#999999")
     xaxt = "n",
     las = 1,
     cex = 0.5
mtext(plateNumbers, at = (1:19) * 8 - 4, side = 1)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
VrRank <- order(inhibTable$I, decreasing = TRUE)</pre>
plot(inhibTable[VrRank, "I"],
     main = "Ranked relative viability values",
     xlab = "Molecules (ranked by relative viability)",
     ylab = "relative viability",
     col = inhibTable[VrRank, "color"],
     pch = inhibTable[VrRank, "pch"],
     cex = 0.5,
     panel.first = grid(),
     xlim = c(0, length(VrRank) * 1.05)
abline(h = 0, col = "red", lwd = 2)
abline(h = 100, col = "#008800", lwd = 2)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.4)
```


Molecules

8

-50 -100

Ranked relative viability values

Replicates, sorted per plate

Figure 5: Values of the plate-wise inhibition index for all the tested molecules. Molecules are colored according to the plate number. A: virus control (infected untreated); B: treated cells; C: cell control (untreated cells); D: ranked values (all types). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

IQR-based standardization

Plate-wise IQR-standardized viability

To take into account the between-plate differences in variance denoted above, we compute a z-scores from the original value.

- centering: substract an estimator of the plate-wise mean $\hat{\mu}$;
- scaling: divide by an estimator of the plate-wise standard deviation $(\hat{\sigma}_i)$

$$z_{c,i} = \frac{V_c - \hat{\mu_i}}{\hat{\sigma_i}}$$

where

- V_c is the viability for molecule c;
- $\hat{\mu_i}$ is the estimate for the mean viability of all the treated cells in plate i;
- $\hat{\sigma}_i$ is the estimate for the standard deviation of all the treated cells in plate i;

In classical statistics, the estimators of centrality and dispersion are derived from the sample mean and standard deviation, respectively:

- the population mean is used as maximum likelihood estimator of the population: $\hat{\mu} = \bar{x}$
- the population standard deviation (σ) is estimated with the sample standard deviation, corrected for the systematic bias: $\hat{\sigma} = \sqrt{n/(n-1)} \cdot s$

However, we must be careful because each plate supposedly contain a mixture of inactive (no inhibitory effect) and active (inhibitory) molecules. The previous histograms and box plots show that these inhibitory molecules appear as statistical outliers (with very high viability values) and would thus strongly bias the estimation of the background variance (the variance due to fluctuations in absence of treatment).

One possibility would be to use the standard deviation of the virus control to this purpose, but this would leat to instable estimators, since they would be based on 6 points per plate. In addition, the boxplots show that the variance among treated cells is higher than the virus control, suggesting some generic effect of the treatments.

Another strategy is to consider that the variance (and standard deviation) can be estimated from the bulk of treated cell viability measures themselves, and to use **robust estimators** of the central tendency (i.e. the plate-wise median) and dispersion (i.e. the plate-wise interquartile range).

This approach relies on the assumption that, in each plate, the number of active molecule (statistical outliers). Since teach plate contains tests of 80 molecules, there are 19 molecules above the third quartile (Q3). However, it has to be noted that the plates were manufactured with some grouping of molecules of the same structural family. It might thus happen that some plates contain more than 19 molecules having an inhibitory effect. Such a situation would result in a loss of sensitivity, since the presence of active molecules in the inter-quartile range would lead to over-estimate the dispersion.

An alternative is to estimate the dispersion based on the range between the first quartile (Q1) and the median (\tilde{x}) of each plate.

In summary, we compute robust estimators, in order to avoid the effect of outliers (in this case, the suspected outliers are the molecules having an actual inhibitory effect). To this purpose, we use:

- the median plate-wise inhibition index for all the molecules (I_i) to estimate the mean
- the plate-wise standardized inter-quantile range; (IQR_i) standardized by the normal IQR to estimate the standard deviation.

```
statPerPlate <- data.frame(</pre>
  Plate = plateNumbers,
  TrMean = as.vector(by(
    data = inhibTable[wellType == "treated", "I"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = mean)),
  TrSD = as.vector(by(
    data = inhibTable[wellType == "treated", "I"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = sd)),
  TrMedian = as.vector(by(
    data = inhibTable[wellType == "treated", "I"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = median)),
  vcMedian = as.vector(by(
    data = inhibTable[wellType == "virusCtl", "I"],
    INDICES = inhibTable[wellType == "virusCtl", "Plate"],
    FUN = median)),
  ccMedian = as.vector(by(
    data = inhibTable[wellType == "cellCtl", "I"],
    INDICES = inhibTable[wellType == "cellCtl", "Plate"],
    FUN = median)),
  arbidolMean = as.vector(by(
    data = inhibTable[arbidolWells, "I"],
    INDICES = inhibTable[arbidolWells, "Plate"],
    FUN = mean)),
  TrMin = as.vector(by(
    data = inhibTable[wellType == "treated", "I"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = min)),
  TrMax = as.vector(by(
    data = inhibTable[wellType == "treated", "I"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = max)),
  TrQ1 = as.vector(by(
    data = inhibTable[wellType == "treated", "I"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = quantile, probs = 0.25)),
  TrQ3 = as.vector(by(
    data = inhibTable[wellType == "treated", "I"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = quantile, probs = 0.75)),
  TrIQR = as.vector(by(
                           data = inhibTable[wellType == "treated", "I"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = IQR)
rownames(statPerPlate) <- statPerPlate$Plate</pre>
```

We define a plate-wise scaling factor from the interquantile range, standardized by the inter-quartile range of a Gaussian distribution.

$$S_i = \frac{Q3_N - Q1_N}{Q3_i - Q3_i} = \frac{1.349}{Q3_i - Q3_i}$$

Where Q1 and Q3 denote the first and third quartile, N the Normal distribution, and i is the plate number.

The inhibition indices of each plate are then multiplied by the corresponding scaling factor to obtain plate-wise standardized values (z), which will have the same inter-quartile range as the normal distribution.

$$z_{c,i} = \frac{I_{m,i} - \hat{\mu}_i}{\hat{\sigma}_i} = (I_{m,i} - \tilde{I}_i) \frac{Q3_N - Q1_N}{Q3_i - Q3_i} = (v_c - \tilde{v}_i) \cdot S_i$$

where

- $Q1_N$ and $Q3_N$ are the first and third quartiles of the normal distribution,
- $Q1_i$ and $Q3_i$ are the first and third quartiles of the inhibition index for all the molecules tested on plate i,

The table below indicates the plate-wise statistics and scaling factor.

```
#### Scaling factor per plate ####

## Compute scaling factor based on the standardized inter-quartile range.
statPerPlate$scaling <-
   (qnorm(p = 0.75) - qnorm(p = 0.25)) /
   (statPerPlate$TrQ3 - statPerPlate$TrQ1)

kable(statPerPlate, caption = "Plate-wise statistics of treated cells. Column prefixes: Tr = treated cells.")</pre>
```

Table 3: Plate-wise statistics of treated cells. Column prefixes: Tr = treated cells; cc = cell control (uninfected cells); vc = virus control (infected, untreated cells).

Plate	TrMean	TrSD	TrMedian	vcMedian	ccMedian	arbidolMean	TrMin	TrMax	TrQ1	
1	12.90684	28.85439	2.589052	0	100	86.95038	-25.59828	96.51344	-1.7821824	13
2	17.39446	27.93057	16.069910	0	100	83.09473	-25.25135	85.57929	-0.5736503	26
3	16.83370	18.63510	11.395323	0	100	75.08391	-19.15266	79.09630	6.5846565	21
4	24.81053	34.66755	18.942453	0	100	74.97339	-26.98529	95.77630	3.5136062	51
5	23.26384	29.05021	21.490158	0	100	77.77693	-22.65224	95.78776	6.7390393	37
6	17.43508	30.30878	8.006709	0	100	90.14721	-21.90392	93.95942	-0.8851005	33
7	21.08448	30.61298	11.384151	0	100	79.78517	-21.27708	107.11582	3.6549605	28
8	16.67873	30.63601	5.283791	0	100	89.77955	-26.97461	110.48853	-2.4830636	27
9	16.31472	25.35433	7.863786	0	100	85.92780	-25.29322	94.09538	2.5641306	19
10	19.42648	25.89632	14.943992	0	100	87.83983	-25.54365	94.03011	2.5522727	25
11	35.61332	39.56404	35.389084	0	100	95.99690	-76.49642	111.03708	14.4378585	62
12	43.11607	30.50020	44.454842	0	100	94.35243	-54.72326	102.67258	22.5882232	63
13	45.02793	47.46814	55.760669	0	100	92.00095	-71.05808	110.34226	27.3510609	78
14	48.84468	46.17014	58.970068	0	100	82.41156	-93.22169	112.33839	35.9895577	76
15	49.12716	41.55740	57.064352	0	100	85.30208	-75.32854	112.66365	28.9231837	83
16	43.91908	38.84888	53.967685	0	100	79.82340	-65.94913	122.55003	18.4567483	71
17	26.21813	40.33094	28.927309	0	100	81.93965	-82.28630	98.15012	5.1396817	53
18	35.81653	36.11849	34.146657	0	100	94.46603	-75.77164	107.65872	17.4846896	58
19	35.74937	37.27653	28.621896	0	100	87.94144	-65.45262	112.37523	15.1202507	62
19	35.74937	37.27653	28.621896	0	100	87.94144	-65.45262	112.37523	15.1202507	-

```
#### Compute plate-wise IQR-standardized inhibition ####

## Centering: substract the median
## Scaling: divide by IQR
## Standardize: multiply by IQR of the normal distribution
```

```
plate <- as.vector(inhibTable$Plate)</pre>
inhibTable$z <- (inhibTable$I</pre>
      - statPerPlate[plate, "TrMedian"]) * statPerPlate[plate, "scaling"]
# IQR(inhibTable$z)
# as.vector(by(data = inhibTable$z[wellType == "treated"], INDICES = inhibTable$Plate[wellType == "treated"]
# as.vector(by(data = inhibTable$z[wellType == "treated"], INDICES = inhibTable$Plate[wellType == "treated"]
### Descriptive statistics on the IQR-standardized inhibition ####
zstat <- data.frame(</pre>
  mean = mean(inhibTable$z[wellType == "treated"]),
  sd = sd(inhibTable$z[wellType == "treated"]),
  IQR = IQR(inhibTable$z[wellType == "treated"]),
  var = var(inhibTable$z[wellType == "treated"]),
  min = min(inhibTable$z[wellType == "treated"]),
  Q1 = as.vector(quantile(inhibTable$z[wellType == "treated"], probs = 0.25)),
  median = median(inhibTable$z[wellType == "treated"]),
  Q3 = as.vector(quantile(inhibTable$z[wellType == "treated"], probs = 0.75)),
  max = max(inhibTable$z[wellType == "treated"])
kable(t(zstat),
      col.names = "Stat",
      caption = "Statistics of the plate-wise IQR-standardized inhibition")
```

Table 4: Statistics of the plate-wise IQR-standardized inhibition

	Stat
mean	0.1656308
sd	1.4587500
IQR	1.2842621
var	2.1279515
min	-5.1287479
Q1	-0.5507888
median	0.0000000
Q3	0.7334733
max	8.4789023

Histograms of inter-quartile standardized inhibition indices

The histogram of plate-wise IQR-standardized inhibition shows a clear improvement : the median is much closer to the mode than with the raw or log-transformed II values.

```
xlab = "Plate-wise z-score",
     col = "orange", border = "orange")
abline(v = 0)
abline(v = c(-1, 1), lty = "dotted")
## Treated cells
hist(inhibTable[wellType == "treated", "z"],
     main = "Treated cells - IQR standardized inhibition",
     breaks = histBreaks,
     xlab = "Plate-wise z-score",
     col = "grey", border = "grey")
abline(v = 0)
abline(v = c(-1, 1), lty = "dotted")
abline(v = mean(inhibTable[wellType == "treated", "z"]), col = "blue")
abline(v = median(inhibTable[wellType == "treated", "z"]), col = "darkgreen")
legend("topright", legend = c("mean", "median"),
       col = c("blue", "darkgreen"),
       lwd = 2)
hist(inhibTable[wellType == "cellCtl", "z"],
     main = "Cell control (untreated) - IQR standardized inhibition",
     breaks = histBreaks,
     xlab = "Plate-wise z-score",
     col = "palegreen", border = "palegreen")
abline(v = 0)
abline(v = c(-1, 1), lty = "dotted")
```


Figure 6: Distribution of the plate-wise IQR-standardized inhibition (z-scores) Top: virus control (infected, untreated); middle: treated; bottom: cell control (untreated)

```
par(par.ori)
```

Boxplots: inter-quartile standardized inhibition

```
zfloor <- floor(min(inhibTable$z))</pre>
zceiling <- max(inhibTable$z) * 1.1</pre>
boxplot(z ~ Plate + wellType,
        main = "Inter-quartile standardized inhibition",
        data = inhibTable,
        las = 1, col = plateColor,
        xlab = \overline{z},
        ylim = c(zfloor, zceiling),
        cex.axis = 0.5,
        cex = 0.5,
        horizontal = TRUE)
abline(v = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE")
abline(v = seq(from = zfloor, to = zceiling, by = 5), col = "grey")
abline(v = 0)
abline(v = c(-1, 1), lty = "dotted")
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.6)
stripchart(z ~ Plate, vertical = FALSE,
           data = inhibTable[arbidolWells, ],
           method = "jitter", add = TRUE, cex = 0.7,
           col = markColor["Arbidol"], pch = markPCh["Arbidol"])
legend("bottomleft",
       title = "Markers",
       legend = "Arbidol",
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"],
       cex = 0.8)
```

par(par.ori)

The above boxplots show that the inter-quartile standardization efficiently corrects for the over-dispersion of the plates 11 to 19. However we may expect a lot of sensitivity for these plates. There are however still some weaknesses.

- The virus control show good properties: in absence of treatment, infected cells have sligtly negative values, except for 2 outliers in plate 17.
- The cell control box plots show wide variation in their medians and dispersion:
 - Uninfected cells (cell control) have much lower values in some plates (plates 4 and 11-19) than in other ones. This is not expected, since these cells should by definition have the same inhibition values.
 - Even for the plates where the cell controls have a high inhibition index after IQR-based standard-ization, there are strong between-plates variations.

This standardization seems thus efficient to correct the apparent over-dispersion of plates 11 to 19, and thereby reduce the rate of likely false positives, but the wide between-plate variability of the untreated cells suggest that the resulting z-scores should not be interpreted as indicators of inhibition.

Inter-quartile standardized inhibition

Figure 7: Distribution of inter-quartile standardized inhibition (z) values per plate. Top virus control (untreated infected cells); middle: treated cells; bottom: cell control (uninfected). Black plain circles: arbidol control duplicates.

Dot plots: inter-quartile standardized inhibition

```
zceiling <- max(inhibTable$z) * 1.1</pre>
zRange <- c(zfloor, zceiling)</pre>
## Virus control
par(mfrow = c(4,1))
plot(inhibTable[wellType == "virusCtl", "z"],
     panel.first = grid(),
     main = "Virus control (infected, untreated)",
     xlab = "Replicates, sorted per plate",
     ylab = "z",
     ylim = zRange,
     xlim = c(0, (19*6*1.1)),
     col = inhibTable[wellType == "virusCtl", "color"],
     pch = inhibTable[wellType == "virusCtl", "pch"],
     cex = 0.5, las = 1
abline(h = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE")
abline(h = seq(from = zfloor, to = zceiling, by = 5), col = "grey")
abline(h = 0)
abline(h = c(-1, 1), lty = "dotted")
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7
plot(inhibTable[wellType == "treated", "z"],
     panel.first = grid(),
     main = "IQR-standardized inhibition (z)",
     xlab = "Molecules",
     ylab = "z",
     ylim = zRange,
     col = inhibTable[wellType == "treated", "color"],
     pch = inhibTable[wellType == "treated", "pch"],
     cex = 0.5, las = 1,
     xlim = c(0, length(inhibTable[wellType == "treated", "z"])*1.1)
abline(h = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE")
abline(h = seq(from = zfloor, to = zceiling, by = 5), col = "grey")
abline(h = 0)
abline(h = c(-1, 1), lty = "dotted")
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.6)
legend("bottomleft",
       title = "Markers",
       legend = names(markColor),
       col = markColor,
       pch = markPCh,
       cex = 0.6)
```

```
plot(inhibTable[wellType == "cellCtl", "z"],
     panel.first = grid(),
     main = "Cell control (uninfected)",
     xlab = "Replicates, sorted per plate",
     ylab = "z",
     ylim = zRange,
     col = inhibTable[wellType == "cellCtl", "color"],
     pch = inhibTable[wellType == "cellCtl", "pch"],
     cex = 0.5, las = 1
abline(h = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE")
abline(h = seq(from = zfloor, to = zceiling, by = 5), col = "grey")
abline(h = 0)
abline(h = c(-1, 1), lty = "dotted")
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
zrank <- order(inhibTable$z, decreasing = TRUE)</pre>
plot(inhibTable[zrank, "z"],
     main = "Ranked IQR-standardized inhibition values",
     xlab = "Molecules (ranked by z index)",
     ylab = "z",
     col = inhibTable[zrank, "color"],
     pch = inhibTable[zrank, "pch"],
     cex = 0.5, las = 1,
     panel.first = grid(),
     xlim = c(0, length(zrank) * 1.05)
abline(h = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE")
abline(h = seq(from = zfloor, to = zceiling, by = 5), col = "grey")
abline(h = 0)
abline(h = c(-1, 1), lty = "dotted")
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.4)
```

```
par(mfrow = c(1,1))
```

The plot of IQR-standardized inhibition values (top panel) clearly shows that the plate-wise normalization suppressed the background bias. However it denotes a new problem: the cell controls show striking differences depending on the plates. Noticeably, they show very high values in plates 1 and 3, and very low values in plates 11 to 19, as well as in plate 4.

P-value computation

We compute the p-value as the upper tail of the normal distribution (rigth-side test) in order to detect significantly high values of the plate-wise IQR-standardized index.

Virus control (infected, untreated) -5 Replicates, sorted per plate IQR-standardized inhibition (z) Molecules Cell control (uninfected) -5 Replicates, sorted per plate Ranked IQR-standardized inhibition values

Figure 8: Values of the plate-wise IQR-standardized inhibition index (z) for all the tested molecules. Molecules are colored according to the plate number. A: virus control (infected untreated); B: treated cells; C: cell control (untreated cells); D: ranked values (all types). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

Molecules (ranked by z index)

```
#### Compute P-value from the IQR-standardized inhibition ####
inhibTable$p.value <- pnorm(inhibTable$z, mean = 0, sd = 1, lower.tail = FALSE)
inhibTable$log10Pval <- log10(inhibTable$p.value)
inhibTable$e.value <- inhibTable$p.value * sum(wellType == "treated")
inhibTable$FDR <- NA
inhibTable[wellType == "treated", "FDR"] <-
   p.adjust(inhibTable[wellType == "treated", "p.value"], method = "fdr")
inhibTable$log10FDR <- log10(inhibTable$FDR)
inhibTable$sig <- -inhibTable$log10FDR</pre>
```

P-value histogram

```
hist(inhibTable[wellType == "treated", "p.value"],
    breaks = 20,
    col = "grey",
    main = "P-value histogram after plate-wise normalization",
    xlab = "Nominal P-value (unadjusted)",
    ylab = "Frequency")
```

P-value histogram after plate-wise normalization

Figure 9: Histogram of the nominal (unadjusted) p-values derived from the plate-wise IQR-standardized inhibition index.

```
## Estimate the proportion of tests under H0 and H1
## following the method proposed by Storey-Tibshirani (2003)
# lambda <- 0.40
# table(inhibTable[wellType == "treated", "p.value"] > lambda)
# m0 <- sum(inhibTable[wellType == "treated", "p.value"] > lambda) / (1 - lambda)
# m1 <- sum(wellType == "treated") - m0
# print(m0)
# print(m1)
#</pre>
```

Significance plot

```
#### Manhattan plot ####
sigFloor <- 0</pre>
```

```
sigCeiling <- ceiling(max(inhibTable$sig, na.rm = TRUE))</pre>
plot(x = inhibTable[wellType == "treated", "sig"],
     col = inhibTable[wellType == "treated", "color"],
     pch = inhibTable[wellType == "treated", "pch"],
     main = "Significance plot",
     xlab = "Relative inhibition",
     ylab = "Significance = -log10(FDR)",
     xlim = c(0, sum(wellType == "treated") * 1.1),
     las = 1,
     xaxt = "n",
abline(h = 0)
abline(h = seq(0, sigCeiling, 1), lty = "dotted", col = "grey")
abline(h = -log10(alpha), col = "red")
abline(v = (0:19) * 82, col = "grey")
mtext(plateNumbers, at = (1:19) * 82 - 41, side = 1)
legend("bottomright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.6
legend("topright", legend = names(markColor),
       title = "Markers",
       col = markColor,
       pch = markPCh,
       cex = 0.6)
```

Significance plot

Relative inhibition

Figure 10: Volcano plot.

Volcano plot

```
plot(x = inhibTable[wellType == "treated", "I"],
     y = inhibTable[wellType == "treated", "sig"],
     col = inhibTable[wellType == "treated", "color"],
     pch = inhibTable[wellType == "treated", "pch"],
     main = "Volcano plot",
     xlab = "Inhibition index",
     ylab = "Significance = -log10(FDR)",
     xlim = c(Ifloor, Iceiling),
     panel.first = c(
       abline(h = seq(sigFloor, sigCeiling, 1), col = "#DDDDDDDD"),
       abline(v = seq(Ifloor, Iceiling, 10), col = "#DDDDDD"),
       abline(v = seq(Ifloor, Iceiling, 50), col = "#BBBBBB")
     las = 1,
     cex = 0.7
abline(h = 0)
abline(h = -log10(alpha), col = "red")
## Mark arbidol
points(x = inhibTable[arbidolWells, "I"],
     y = inhibTable[arbidolWells, "sig"],
     col = inhibTable[arbidolWells, "color"],
     pch = inhibTable[arbidolWells, "pch"], cex = 0.7)
points(x = inhibTable[HOClSindex, "I"],
     y = inhibTable[HOClSindex, "sig"],
     col = inhibTable[HOClSindex, "color"],
     pch = inhibTable[HOClSindex, "pch"], cex = 0.7)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
legend("topleft", legend = names(markColor),
       title = "Markers",
       col = markColor,
       pch = markPCh,
       cex = 0.7)
```

Significance of Arbidol after IQR-based standardisation

```
#### inhibition indices for the arbidol contron ####
# names(inhibTable)
kable(inhibTable[arbidolWells, c("Plate", "CTB", "Vratio", "I", "z", "log10FDR")], caption = "inhibition"
```

Volcano plot

Figure 11: Volcano plot.

Table 5: inhibition indices for the arbidol controls (2 replicates per plate) $\,$

	Plate	СТВ	Vratio	I	z	log10FDR
$\overline{01A12}$	1	30140	0.8102695	83.73696	7.3255223	-10.2090616
01B12	1	32753	0.8805162	90.16381	7.9056975	-11.9838973
02A12	2	43022	0.8278078	85.57929	3.4364768	-2.0193432
02B12	2	40310	0.7756249	80.61017	3.1908082	-1.7451485
03A12	3	27158	0.6786785	71.07152	5.2596065	-5.2500335
03B12	3	30240	0.7556977	79.09630	5.9668772	-6.8041204
04A12	4	28768	0.6487754	66.39001	1.3210805	-0.1938689
04B12	4	35882	0.8092102	83.55677	1.7990539	-0.4016321
05A12	5	29898	0.7116538	76.50695	2.4417358	-0.8929990
05B12	5	31018	0.7383129	79.04691	2.5544633	-0.9902034
06A12	6	32760	0.8518273	88.15047	3.1319317	-1.6681026
06B12	6	34579	0.8991250	92.14395	3.2879925	-1.8527400
07A12	7	31481	0.7995175	82.92103	3.8488803	-2.6252267
07B12	7	28998	0.7364571	76.64930	3.5114438	-2.1173377
08A12	8	32999	0.8647310	88.15897	3.7874855	-2.5281661
08B12	8	34338	0.8998192	91.40012	3.9356094	-2.7576602
09A12	9	34990	0.7969570	81.53001	5.9461083	-6.7837172
09B12	9	38983	0.8879044	90.32560	6.6560607	-8.5044463
10A12	10	36991	0.8742747	89.35443	4.3967436	-3.5299142
10B12	10	35605	0.8415169	86.32523	4.2177554	-3.2347260
11A12	11	40557	0.9954470	99.62165	1.7960449	-0.4016321
11B12	11	37285	0.9151378	92.37214	1.5933371	-0.3148733
12A12	12	38378	0.9549736	96.50145	1.7357792	-0.3798296

	Plate	CTB	Vratio	I	Z	log10FDR
12B12	12	36268	0.9024697	92.20341	1.5924375	-0.3148733
13A12	13	37554	0.9484172	95.58200	1.0523741	-0.0877510
13B12	13	34465	0.8704052	88.41989	0.8630982	-0.0497371
14A12	14	29114	0.7881003	78.69880	0.6648434	-0.0300875
14B12	14	31633	0.8562882	86.12432	0.9150780	-0.0588673
15A12	15	33124	0.8494313	86.49818	0.7232261	-0.0362559
15B12	15	32180	0.8252234	84.10597	0.6644467	-0.0300875
16A12	16	28576	0.8277740	84.63658	0.7826548	-0.0428520
16B12	16	25385	0.7353388	75.01022	0.5369949	-0.0300875
17A12	17	30476	0.8362190	83.61734	1.5110402	-0.2706807
17B12	17	29380	0.8061462	80.26197	1.4183340	-0.2367119
18A12	18	37191	0.9128754	92.23756	1.9312183	-0.4944090
18B12	18	39189	0.9619175	96.69449	2.0793879	-0.5934937
19A12	19	32305	0.8646833	88.54249	1.7199327	-0.3726772
19B12	19	31816	0.8515946	87.34039	1.6854284	-0.3626029
			·		·	

Selection of candidate molecules

```
#### Select significant normalized II values ####
kable(t(table(inhibTable$FDR < alpha)), caption = paste("Number of tests declared positive with FDR <",</pre>
```

Table 6: Number of tests declared positive with FDR < 0.05

FALSE	TRUE
1486	72

Table 7: Candidate moecules sorted by significance after plate-wise normalization.

ID	Plate	Row	СТВ	cellControl	virusControl	Broad.Therapeutic.class	Inhibitio
01F08	1	F	35557	37964.25	10135.667	Neuromuscular	
01B12	1	В	32753	37964.25	10135.667	NA	
01A12	1	A	30140	37964.25	10135.667	NA	
01H07	1	Η	29517	37964.25	10135.667	Neuromuscular	
01A06	1	A	28661	37964.25	10135.667	Neuromuscular	
09F04	9	\mathbf{F}	40831	43177.12	13104.833	Central Nervous System	

ID	Plate	Row	СТВ	cellControl	virusControl	Broad.Therapeutic.class Inhibition
09B12	9	В	38983	43177.12	13104.833	NA
09D04	9	D	38231	43177.12	13104.833	Central Nervous System
01D05	1	D	26302	37964.25	10135.667	Metabolism
01D08	1	D	25951	37964.25	10135.667	Infectiology
01H05	1	Η	25447	37964.25	10135.667	Central Nervous System
03B12	3	В	30240	39305.25	10619.000	NA
09A12	9	A	34990	43177.12	13104.833	NA
01H03	1	Η	24085	37964.25	10135.667	Central Nervous System
09G07	9	G	33578	43177.12	13104.833	Allergology 'Central Nervous System
03G08	3	G	28831	39305.25	10619.000	Allergology 'Dermatology 'Infectiology
03H10	3	Η	28214	39305.25	10619.000	Allergology 'Central Nervous System
09G08	9	G	32682	43177.12	13104.833	Allergology 'Central Nervous System
01G11	1	G	22800	37964.25	10135.667	Infectiology
03A12	3	A	27158	39305.25	10619.000	NA
07G07	7	G	43221	39295.12	10537.833	Endocrinology
01H04	1	Η	21606	37964.25	10135.667	Central Nervous System
08E11	8	\mathbf{E}	43402	38082.62	11173.500	Metabolism
01C05	1	\mathbf{C}	20965	37964.25	10135.667	Endocrinology
10G08	10	G	39237	42600.38	12007.833	Infectiology
03B05	3	В	24413	39305.25	10619.000	Neuromuscular
07G09	7	G	37155	39295.12	10537.833	Metabolism
01E08	1	\mathbf{E}	19837	37964.25	10135.667	Hematology
10A12	10	\mathbf{A}	36991	42600.38	12007.833	NA
09G09	9	G	27535	43177.12	13104.833	Infectiology
07B04	7	В	35140	39295.12	10537.833	Gastroenterology
01G06	1	G	19381	37964.25	10135.667	Allergology 'Central Nervous System
10B12	10	В	35605	42600.38	12007.833	NA V
08D06	8	D	35840	38082.62	11173.500	Endocrinology
10D08	10	D	34265	42600.38	12007.833	Endocrinology
09D02	9	D	26112	43177.12	13104.833	Endocrinology
08B12	8	В	34338	38082.62	11173.500	NA
08H03	8	Η	33883	38082.62	11173.500	Ophthalmology
07A12	7	A	31481	39295.12	10537.833	NA
08A12	8	A	32999	38082.62	11173.500	NA
07H07	7	Η	30870	39295.12	10537.833	Central Nervous System
10H10	10	Η	32205	42600.38	12007.833	Central Nervous System
03F02	3	\mathbf{F}	20971	39305.25	10619.000	Central Nervous System 'Hematology 'Metabolism
09G04	9	G	24235	43177.12	13104.833	Central Nervous System 'Metabolism
07B03	7	В	28977	39295.12	10537.833	Infectiology
07B12	7	В	28998	39295.12	10537.833	NA
07F02	7	\mathbf{F}	28578	39295.12	10537.833	Central Nervous System
02A12	2	A	43022	49597.88	14070.500	NA
07H10	7	Η	28271	39295.12	10537.833	Dermatology
07C10	7	\mathbf{C}	28189	39295.12	10537.833	Central Nervous System
09F10	9	\mathbf{F}	23712	43177.12	13104.833	Endocrinology
08H02	8	Η	29549	38082.62	11173.500	Metabolism
06D11	6	D	35439	38823.25	10013.833	Endocrinology
09A09	9	A	23449	43177.12	13104.833	Cardiovascular
05A10	5	\mathbf{A}	39526	39914.62	9950.833	Central Nervous System
06B12	6	В	34579	38823.25	10013.833	NA
07C03	7	\mathbf{C}	27275	39295.12	10537.833	Central Nervous System
09G02	9	G	23192	43177.12	13104.833	Central Nervous System

ID	Plate	Row	CTB	cell Control	${\it virus} Control$	Broad.Therapeutic.class	Inhibition
06H02	6	Н	33631	38823.25	10013.833	Oncology	
10A08	10	\mathbf{A}	28693	42600.38	12007.833	Infectiology	
02B12	2	В	40310	49597.88	14070.500	NA	
02C08	2	\mathbf{C}	40283	49597.88	14070.500	Endocrinology	
06A12	6	A	32760	38823.25	10013.833	NA	
10E06	10	\mathbf{E}	27835	42600.38	12007.833	Metabolism	
07H06	7	Η	25806	39295.12	10537.833	Infectiology 'Metabolism	
03E06	3	\mathbf{E}	19319	39305.25	10619.000	Central Nervous System 'Metabolism	
02B04	2	В	38458	49597.88	14070.500	Central Nervous System	
08G02	8	G	26652	38082.62	11173.500	Allergology	
08E07	8	\mathbf{E}	26367	38082.62	11173.500	Infectiology	
08B06	8	В	26146	38082.62	11173.500	Metabolism	
07D09	7	D	24842	39295.12	10537.833	Endocrinology	
06F06	6	F	29752	38823.25	10013.833	Allergology	

Comparison between viability scores

CTB versus viability

```
\# par(mfrow = c(2,2))
plot(inhibTable[, c("CTB", "I")],
     main = "CTB vs inhibition index",
     xlab = "Cell Titer Blue intensity (CTB)",
     ylab = "Inhibition index (I)",
     col = inhibTable[, "color"],
     pch = inhibTable[, "pch"],
     las = 1)
points(inhibTable[wellType == "cellCtl", c("CTB", "I")],
       col = markColor["cellCtl"], pch = markPCh["cellCtl"], cex = 0.5)
## Mark virus controls
points(inhibTable[wellType == "virusCtl", c("CTB", "I")],
       col = markColor["virusCtl"], pch = markPCh["virusCtl"], cex = 0.5)
points(inhibTable[arbidolWells, c("CTB", "I")],
       col = markColor["Arbidol"], pch = markPCh["Arbidol"], cex = 0.5)
points(inhibTable[HOClSindex, c("CTB", "I")],
       col = markColor["Hydroxychloroquine"], pch = markPCh["Hydroxychloroquine"], cex = 0.5)
abline(h = seq(from = -100, to = 150, by = 10), col = "#DDDDDD")
```

Relative versus IQR-standardised viability

```
#### Dot plot: IQR-standardized versus inhibition index ####
plot(inhibTable[, c("I", "z")],
     main = "Inhibition index vs IQR-standardized inhibition",
     xlab = "Inhibition index (I)",
     ylab = "IQR-standardized inhibition (z-score)",
     col = inhibTable[, "color"],
     pch = inhibTable[, "pch"],
     xlim = c(Ifloor, Iceiling),
     panel.first = grid(),
     las = 1)
points(inhibTable[wellType == "cellCtl", c("I", "z")],
       col = markColor["cellCtl"], pch = markPCh["cellCtl"], cex = 0.5)
## Mark virus controls
points(inhibTable[wellType == "virusCtl", c("I", "z")],
       col = markColor["virusCtl"], pch = markPCh["virusCtl"], cex = 0.5)
points(inhibTable[arbidolWells, c("I", "z")],
       col = markColor["Arbidol"], pch = markPCh["Arbidol"], cex = 0.5)
points(inhibTable[HOClSindex, c("I", "z")],
       col = markColor["Hydroxychloroquine"], pch = markPCh["Hydroxychloroquine"], cex = 0.5)
## Mark milestones for the selected metrics
abline(v = seq(-100, 150, 10), col = "#EEEEEEE")
abline(v = seq(-100, 150, 50), col = "#BBBBBBB")
abline(v = 0, col = "red")
abline(v = 100, col = "#00BB00")
abline(h = seq(-5, 10, 1), col = "#EEEEEE")
abline(h = seq(-5, 10, 5), col = "#BBBBBBB")
abline(h = 0)
abline(h = c(-1, 1), col = "#BBBBBB")
legend("topright", legend = names(plateColor),
```

CTB vs inhibition index

Figure 12: Comparison between viability scores. CTB versus Inhibition index (I). Diamonds: cell control (uninfected cells). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

```
title = "Plate", fill = plateColor, cex = 0.7)
legend("topleft", legend = names(markColor),
    title = "Markers",
    col = markColor,
    pch = markPCh,
    cex = 0.7)
```

FDR versus inhibition index

```
plot(x = inhibTable[, "I"],
     y = -inhibTable[, "log10FDR"],
     main = "inhibition index vs FDR",
     xlab = "inhibition index",
     ylab = "-log10(FDR)",
     col = inhibTable[, "color"],
     pch = inhibTable[, "pch"],
     cex = 0.7,
     xlim = c(Ifloor, Iceiling),
     panel.first = grid(),
     las = 1)
points(x = inhibTable[arbidolWells, "I"],
       y = -inhibTable[arbidolWells, "log10FDR"],
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"], cex = 0.7)
## Mark Hydroxychloroquine
points(x = inhibTable[HOClSindex, "I"],
       y = -inhibTable[HOClSindex, "log10FDR"],
       col = markColor["Hydroxychloroquine"],
       pch = markPCh["Hydroxychloroquine"], cex = 0.7)
abline(v = 0, col = "red")
abline(v = 100, col = "#00BB00")
abline(h = 0)
abline(h = -log10(alpha), col = "blue", lwd = 2)
## Legends
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.7)
legend("topleft", legend = names(markColor),
       title = "Markers",
       col = markColor,
       pch = markPCh,
       cex = 0.7
```

Previous versus new inhibition index

. We compare hereafter the values of the inhibition index defined above with its definition in the first bioRxiv publication.

Inhibition index vs IQR-standardized inhibition

Figure 13: Comparison between viability scores. Inhibition index versus IQR-standardized inhibition (z-score). Diamonds: cell control (uninfected cells). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

inhibition index vs FDR

Figure 14: Comparison between viability scores. Diamonds: cell control (uninfected cells). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

```
iiFloor <- floor(min(inhibTable$Inhibition.Index, na.rm = TRUE))</pre>
iiCeiling <- ceiling(max(inhibTable$Inhibition.Index, na.rm = TRUE))
#### Dot plot: FDR versus inhibition index ####
plot(x = inhibTable[, "Inhibition.Index"],
     y = inhibTable[, "I"],
     main = "Inhibition index: previous versus current definition",
     xlab = "Original nhibition index on bioRxiv",
     ylab = "I = (L - Lvc) / (Lcc - Lvc)",
     col = inhibTable[, "color"],
     pch = inhibTable[, "pch"],
     xlim = c(iiFloor, iiCeiling),
     panel.first = c(
       abline(v = seq(-0.5, 2, 0.5), col = "#BBBBBBB"),
       abline(v = 1, col = "blue", lwd = 2),
       abline(h = seq(iiFloor, iiCeiling, 0.2), col = "#DDDDDD"),
       abline(h = 1)),
     las = 1)
## Mark Hydroxychloroguine
points(x = inhibTable[HOClSindex, "Inhibition.Index"],
       y = inhibTable[HOClSindex, "I"],
       col = markColor["Hydroxychloroquine"],
       pch = markPCh["Hydroxychloroquine"], cex = 0.7)
## Legends
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.7)
legend("topleft",
       title = "Markers",
       legend = "Hydroxychloroquine",
       col = markColor["Hydroxychloroquine"],
       pch = markPCh["Hydroxychloroquine"],
       cex = 0.7)
```

Candidate molecules selected by the different criteria

par(par.ori)

```
#### Select candidate molecules accordint to different criteria ####

## False Discovery Rate computed from the IQR-standardized viabilities
inhibTable$selected.FDR <- as.numeric(inhibTable$FDR < alpha)

# `table(inhibTable$selected.FDR)

# sum(inhibTable$selected.FDR, na.rm = TRUE)

## Previous inhibition index above 1 (Arbidol)
inhibTable$selected.ii <- as.numeric(inhibTable$Inhibition.Index >= 1)

# table(inhibTable$selected.ii)

# sum(inhibTable$selected.ii, na.rm = TRUE)

# par(mfrow=c(1, 1))
```

Inhibition index: previous versus current definition

Figure 15: Comparison between viability scores. Diamonds: cell control (uninfected cells). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

Table 8: Contingency table of the molecules selected by different criteria. Columns: inhibition index >= 1. Rows: FDR < 0.05.

	0	1
0	1397	89
1	50	22

```
par(par.ori)
```

Venn diagram

Candidates per plate

```
#### Compute the number of candidates per plate depending on the criterion ####
inhibTable$selected.FDRandArbidol <-
   inhibTable$selected.FDR & inhibTable$selected.arbidolMean
inhibTable$selected.FDR | inhibTable$selected.arbidolMean
inhibTable$selected.FDR | inhibTable$selected.arbidolMean
inhibTable$selected.FDRonly <-</pre>
```


Figure 16: Venn diagram of the molecules selected by different criteria.

```
inhibTable$selected.FDR & !inhibTable$selected.arbidolMean
inhibTable$selected.ArbidolOnly <-</pre>
  !inhibTable$selected.FDR & inhibTable$selected.arbidolMean
criteria <- c("ii", "arbidolMean", "FDR", "FDRandArbidol", "FDRorArbidol", "FDRonly", "ArbidolOnly")</pre>
candidatesPerPlate <- data.frame(matrix(</pre>
  nrow = nbPlates,
  ncol = length(criteria), 0))
row.names(candidatesPerPlate) <- 1:nbPlates</pre>
names(candidatesPerPlate) <- criteria</pre>
for (criterion in criteria) {
  candidates <- as.data.frame.table(</pre>
    table(
    subset(x = inhibTable,
            subset = inhibTable[paste0("selected.", criterion)] == 1,
            select = "Plate")))
  names(candidates) <- c("Plate", "n")</pre>
  candidatesPerPlate[as.vector(candidates$Plate), criterion] <- candidates$n</pre>
# apply(candidatesPerPlate, 2, sum)
ccpp <- candidatesPerPlate</pre>
ccpp["Total", ] <- apply(ccpp, 2, sum)</pre>
kable(ccpp, row.names = TRUE, ccaption = "Candidates per plate depending on the selection criteria")
```

	ii	arbidol Mean	FDR	${\rm FDR and Arbidol}$	${\bf FDRorArbidol}$	FDRonly	ArbidolOnly
1	1	2	14	2	14	12	0
2	0	1	4	1	4	3	0
3	1	2	7	2	7	5	0
4	7	9	0	0	9	0	9

	ii	arbidolMean	FDR	FDRandArbidol	FDRorArbidol	FDRonly	ArbidolOnly
5	3	4	1	1	4	0	3
6	1	2	5	2	5	3	0
7	4	5	13	5	13	8	0
8	3	4	9	4	9	5	0
9	2	3	12	3	12	9	0
10	1	2	7	2	7	5	0
11	3	4	0	0	4	0	4
12	2	3	0	0	3	0	3
13	9	10	0	0	10	0	10
14	14	15	0	0	15	0	15
15	16	17	0	0	17	0	17
16	9	11	0	0	11	0	11
17	3	4	0	0	4	0	4
18	3	4	0	0	4	0	4
19	8	9	0	0	9	0	9
Total	90	111	72	22	161	50	89

```
maxc <- max(candidatesPerPlate)
plot(candidatesPerPlate[, c("FDR", "ii")],
    main = "Candidates per plate",
    xlab = paste("FDR < ", alpha),
    ylab = paste("Inhibition index >", 1),
    xlim = c(0, maxc * 1.1),
    las = 1, pch = 20,
    panel.first =
        c(abline(h = seq(0, maxc, by = 1), col = "#DDDDDDD"),
        abline(h = seq(0, maxc, by = 5), col = "#BBBBBBB"),
        abline(v = seq(0, maxc, by = 1), col = "#EEEEEEE"),
        abline(v = seq(0, maxc, by = 5), col = "#BBBBBBB")),
    col = plateColor[rownames(candidatesPerPlate)])
legend("topright", legend = names(plateColor),
        title = "Plate", col = plateColor, pch = 20, cex = 0.8)
```

Result files

Candidates per plate

Figure 17: Number of candidate molecules per plate depending on the method.

```
# system(paste("open", dir["results"]))

## Prepare a data frame with the relative links to output files
fileLinks <- data.frame(
   name = names(outFiles),
   path = unlist(outFiles),
   basename = basename(unlist(outFiles))
)

fileLinks$link <- pasteO("<a href='", fileLinks$path, "'>", fileLinks$basename, "</a>")

kable(fileLinks[, c("name", "link")], row.names = FALSE, caption = "Links to the result tables.")
```

Table 10: Links to the result tables.

name	link
All results (tsv) All results (xlsx)	result_table_all-molecules.tsv result_table_all-molecules.xlsx

Analysis of Touret's original Inhibition Index (II)

Inhibition index

The inhibition index is derived from the raw viability measurement in the following way.

Descriptive stats

	Stat
max	2.0988878

Distribution

The distribution of inhibition index values is trongly asymmetrical. The mode is much lower than the mean and the median (robust estimator of central tendency). A normal fit will tuhs give a poor estimate of the p-values.

Histogram of supTable\$Inhibition.Index

Figure 18: Distribution of the inhibition index

Normalization

Log transform

A classical method for normalization is to take the log of the values. We first had to shift the data in order for all of them to take positive values.

```
# fit.gamma <- fitdist(data = ii - iiStat$min + 1, distr = "gamma", method = "mge")
# summary(fit.gamma)
#
# plot(fit.gamma)

#### Compute a normalized distribution from inhibition indices ####
iiPositive <- ii - iiStat$min + 1 ## shift the distrib to achieve non-negative numbers
logII <- log(iiPositive)

logIIStat <- list(
   mean = mean(logII),</pre>
```

```
sd = sd(logII),
var = var(logII),
min = min(logII),
Q1 = as.vector(quantile(logII, probs = 0.25)),
median = median(logII),
Q3 = as.vector(quantile(logII, probs = 0.75)),
max = max(logII)
)
kable(t(as.data.frame.list(logIIStat)), col.names = "Stat", caption = "Parameters of the log-normalized")
```

Table 12: Parameters of the log-normalized inhibition index distribution

	Stat
mean	0.5272798
sd	0.2027703
var	0.0411158
\min	0.0000000
Q1	0.3868877
median	0.4768523
Q3	0.6607395
max	1.2650638

However, even after log transformation the distribution remains highly asymmetrical, with a mode much smaller than the median and mean.

Evidence of a plate bias

Ranked values

We plot the inhibition index values ordered by plate and position number (top) or ranked by decreasing value (bottom). In both cases, the color denotes the plate number.

```
par(mfrow = c(2,1))
plot(ii,
    panel.first = grid(),
    main = "Inhibition index values",
    xlab = "Molecules (ranked by inhibition index)",
    ylab = "Inhibition index",
    col = supTable$color,
    cex = 0.5,
    xlim = c(0, length(ii)*1.05)
    )
legend("topright",
```


Figure 19: Distribution of the inhibition index

```
legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
sortedTable <- supTable[order(supTable$Inhibition.Index, decreasing = TRUE), ]</pre>
plot(sortedTable$Inhibition.Index,
     panel.first = grid(),
     main = "Ranked inhibition index values",
     xlab = "Molecules (ranked by inhibition index)",
     ylab = "Inhibition index",
     col = sortedTable$color,
     cex = 0.5,
     xlim = c(0, length(ii)*1.05)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7
```

par(mfrow = c(1, 1))

The molecule-wised colored plots of inhibition index suggest a plate-wise effect.

Plate-wise normalization

We perform a plate-wise normalization using robust estimators, in order to avoid the effect of outliers (in this case, the suspected outliers are the molecules having an actual inhibitory effect).

To this purpose, we use: - plate-wise median to estimate the mean - plate-wise standardized inter-quantile range (IQR) to estimate the standard deviation

```
#### Compute plate-wise statistics ####
plateStat <- data.frame(
  plate = plateNumbers,
  mean = as.vector(by(</pre>
```


Ranked inhibition index values

Figure 20: Values of the inhibition index for all the tested molecules. Molecules are colored according to the plate number.

```
data = supTable$Inhibition.Index,
    INDICES = supTable$plateNumber,
    FUN = mean)),
  sd = as.vector(by(
    data = supTable$Inhibition.Index,
    INDICES = supTable$plateNumber,
    FUN = sd)),
  median = as.vector(by(
    data = supTable$Inhibition.Index,
    INDICES = supTable$plateNumber,
    FUN = median)),
  min = as.vector(by(
    data = supTable$Inhibition.Index,
    INDICES = supTable$plateNumber,
    FUN = min)),
  max = as.vector(by(
    data = supTable$Inhibition.Index,
    INDICES = supTable$plateNumber,
    FUN = max)),
  IQR = as.vector(by(
    data = supTable$Inhibition.Index,
    INDICES = supTable$plateNumber,
    FUN = IQR)
rownames(plateStat) <- plateStat$plate</pre>
kable(plateStat, caption = "Plate-wise statistics oninhibition index")
```

Table 13: Plate-wise statistics oninhibition index

plate	mean	sd	median	min	max	IQR
1	0.1165661	0.2665169	0.0184570	-0.1318422	1.1928831	0.0914910
2	0.1541782	0.2523084	0.1133156	-0.1450055	0.9498831	0.2156783
3	0.1443563	0.1960778	0.0863385	-0.1387721	1.0073009	0.1349143
4	0.2982710	0.4307195	0.1601301	-0.1844422	1.4836918	0.4739120
5	0.2345274	0.3194481	0.1628049	-0.1383338	1.4421869	0.2814504
6	0.1393632	0.2580634	0.0412022	-0.1109600	1.0748024	0.2271337
7	0.2241196	0.3673457	0.0873107	-0.1267828	1.6589036	0.2073556
8	0.1439492	0.2894590	0.0331407	-0.1396088	1.4326962	0.1976995
9	0.1253725	0.2449408	0.0420476	-0.1543792	1.1609812	0.1107754
10	0.1541551	0.2335481	0.0948601	-0.1365916	1.1209955	0.1617424
11	0.3071834	0.3265338	0.2478965	-0.2846758	1.2816167	0.4140013
12	0.3499997	0.2757037	0.3159377	-0.2074233	1.1619058	0.3761552
13	0.4314013	0.4397504	0.4146992	-0.3511397	1.3851376	0.5813343
14	0.5857602	0.4775020	0.6038263	-0.4444311	1.6653052	0.5380693
15	0.5187760	0.4972562	0.4842358	-0.4279441	1.6531873	0.8015369
16	0.5253860	0.4768292	0.5615571	-0.3309767	2.0988878	0.6858842
17	0.3590275	0.3386716	0.3050932	-0.2784932	1.2965981	0.4539432
18	0.2912052	0.3201378	0.2263674	-0.3152611	1.2542724	0.3426682
19	0.3404116	0.4026624	0.1982078	-0.2950106	1.5490336	0.4724498

```
## Standardize.mittiply by Iqn of the normal distribution
normII <- (supTable$Inhibition.Index - plateStat[supTable$plateNumber, "median"]) / plateStat[supTable$
# IQR(normII)
# IQR(rnorm(n = 1000000))

normIQR <- qnorm(p = 0.75) - qnorm(p = 0.25)
normII <- normII * normIQR
# sd(normII)
# IQR(normII)

supTable$normInhibIndex <- normII

### Descriptive statistics on the normalized Inhibition Index ###
normIIStat <- list(
    mean = mean(normII),
    sd = sd(normII),
    IQR = IQR(normII),
    var = var(normII),
    min = min(normII),
    q1 = as.vector(quantile(normII, probs = 0.25)),
    median = median(normII),
    Q3 = as.vector(quantile(normII, probs = 0.75)),</pre>
```

Centering: substract the median

Scaling: divide by IQR

max = max(normII)

Table 14: Statistics of the plate-wise normalized inhibition index

kable(t(as.data.frame.list(normIIStat)), col.names = "Stat", caption = "Statistics of the plate-wise no

	Stat
mean	0.4144692
sd	1.8129741
IQR	1.3183994
var	3.2868752
min	-2.6280587
Q1	-0.5094508
median	0.0000000
Q3	0.8089486
max	17.3161990

The histogram of plate-wise normalized values shows a clear improvement : the median is much closer to the mode than with the raw or log-transformed II values.

Figure 21: Distribution of the plate-wise normalized inhibition index

Normalized II plots

The plot of normalized II values (top panel) clearly shows that the plate-wise normalization suppressed the background bias.

```
par(mfrow = c(2,1))
plot(normII,
     panel.first = grid(),
     main = "Inhibition index values",
     xlab = "Molecules (ranked by inhibition index)",
     ylab = "Inhibition index",
     col = supTable$color,
     cex = 0.5,
     xlim = c(0, length(normII)*1.05)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
normIIrank <- order(supTable$normInhibIndex, decreasing = TRUE)</pre>
plot(supTable[normIIrank, "normInhibIndex"],
     panel.first = grid(),
     main = "Ranked inhibition index values",
     xlab = "Molecules (ranked by inhibition index)",
     ylab = "Inhibition index",
     col = supTable[normIIrank, "color"],
     cex = 0.5,
     xlim = c(0, length(normII)*1.05)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.4)
```


Ranked inhibition index values

Figure 22: Values of the plate-wise normalized inhibition index for all the tested molecules. Molecules are colored according to the plate number.

```
par(mfrow = c(1,1))
```

P-value computation

We compute the p-value as the upper tail of the normal distribution (rigth-side test) in order to detect significantly high values of the plate-wise normalized index.

```
#### Compute P-value for the inhibition index ####
supTable$p.value <- pnorm(normII, mean = 0, sd = 1, lower.tail = FALSE)
supTable$log10Pval <- log10(supTable$p.value)
supTable$e.value <- supTable$p.value * length(normII)
supTable$FDR <- p.adjust(supTable$p.value, method = "fdr")
supTable$log10FDR <- log10(supTable$FDR)</pre>
```

P-value histogram

P-value histogram after plate-wise normalization

Figure 23: Histogram of the nominal (unadjusted) p-values derived from the plate-wise normalized inhibition index.

Volcano plot

```
#### Volcano plot ####

plot(x = supTable$normInhibIndex,
    y = -supTable$log10FDR,
    col = supTable$color,
    main = "Volcano plot",
    xlab = "Normalized inhibition index",
    ylab = "Significance = -log10(FDR)")

grid()
```


Figure 24: Volcano plot.

Selection of candidate molecules

Table 15: Canonormalization.

ID	Prestw.number	Chemical.name	Broad.Therapeutic.class
01F08	Prestw-57	Benoxinate hydrochloride	Neuromuscular
09F04	Prestw-693	Promazine hydrochloride	Central Nervous System
01H07	Prestw-76	Dibucaine	Neuromuscular
01A06	Prestw-5	Atracurium besylate	Neuromuscular
09D04	Prestw-1456	Opipramol dihydrochloride	Central Nervous System
01D05	Prestw-34	Triamterene	Metabolism

ID	Prestw.number	Chemical.name	Broad.Therapeutic.class
01D08	Prestw-37	Pyrimethamine	Infectiology
01 H 05	Prestw-74	Amitryptiline hydrochloride	Central Nervous System
07G07	Prestw-546	Pregnenolone	Endocrinology
09G07	Prestw-706	Chlorcyclizine hydrochloride	Allergology 'Central Nervous System
08E11	Prestw-1284	Hydroxychloroquine sulfate	Metabolism
09G08	Prestw-707	Diphenylpyraline hydrochloride	Allergology 'Central Nervous System
01H03	Prestw-72	Imipramine hydrochloride	Central Nervous System
03G08	Prestw-227	Clemizole hydrochloride	Allergology 'Dermatology 'Infectiology
03H10	Prestw-239	Orphenadrine hydrochloride	Allergology 'Central Nervous System
10G08	Prestw-787	Merbromin disodium salt	Infectiology
01G11	Prestw-70	Tolnaftate	Infectiology
07G09	Prestw-548	Chloroquine diphosphate	Metabolism
01H04	Prestw-73	Sulindac	Central Nervous System
07B04	Prestw-493	Omeprazole	Gastroenterology
08D06	Prestw-1410	Exemestane	Endocrinology
01C05	Prestw-24	Norethynodrel	Endocrinology
09G09	Prestw-708	Benzethonium chloride	Infectiology
10D08	Prestw-757	Chlorotrianisene	Endocrinology
03B05	Prestw-174	Alverine citrate salt	Neuromuscular
08H03	Prestw-632	Dipivefrin hydrochloride	Ophthalmology
01E08	Prestw-47	Ticlopidine hydrochloride	Hematology
06D11	Prestw-440	Epiandrosterone	Endocrinology
00D11 07H07	Prestw-1144	Mirtazapine	Central Nervous System
10H10	Prestw-799	Pridinol methanesulfonate salt	Central Nervous System Central Nervous System
05A10	Prestw-329	Tacrine hydrochloride	Central Nervous System Central Nervous System
01G06	Prestw-65	Diphenhydramine hydrochloride	Allergology 'Central Nervous System
01G00 09D02	Prestw-671	Dydrogesterone	Endocrinology
09D02 06H02	Prestw-1358	Vatalanib	Oncology
001102 07B03	Prestw-492	Nitrofural	Infectiology
07F02	Prestw-531	Pirenperone	Central Nervous System
07F02 08H02	Prestw-1210	Alendronate sodium	Metabolism
08H02 07H10	Prestw-1210 Prestw-1817	Tazarotene	Metabonsm Dermatology
071110 07C10	Prestw-509	Bromperidol	Central Nervous System
07C10 02C08	Prestw-1314	Pioglitazone	Endocrinology
02C08 09G04	Prestw-703	Finginazione Famprofazione	Central Nervous System 'Metabolism
09G04 07C03	Prestw-703 Prestw-502	-	Central Nervous System Metabonsm Central Nervous System
10A08	Prestw-502 Prestw-1140	Biperiden hydrochloride Liranaftate	Central Nervous System Infectiology
10A08 09F10	Prestw-1140 Prestw-699	Hexestrol	Endocrinology
03F02	Prestw-099 Prestw-211	Piroxicam	Central Nervous System 'Hematology 'Metabol
$03F02 \\ 02B04$	Prestw-211 Prestw-93	Azacyclonol	Central Nervous System Hematology Metabol Central Nervous System
$02B04 \\ 09A09$	Prestw-93 Prestw-1154	Azacycionoi Nilvadipine	Cardiovascular
09A09 06F06	Prestw-1154 Prestw-455	Mebhydroline 1,5-naphtalenedisulfonate	Cardiovascular Allergology
10E06	Prestw-455 Prestw-765	Ethoxyquin	Allergology Metabolism
09G02	Prestw-701	Trihexyphenidyl-D,L hydrochloride	Central Nervous System
09G02 07H06	Prestw-555	Nifuroxazide	Infectiology 'Metabolism
07H06 08G02	Prestw-1506	Mizolastine	C.
08G02 05E07	Prestw-1506 Prestw-366	Ambroxol hydrochloride	Allergology
08E07	Prestw-300 Prestw-1331	v	Respiratory
08E07 $02B03$		Rimantadine hydrochloride Zimolidine dihydrochloride monohydrate	Infectiology Control Norwood System
	Prestw-92	Zimelidine dihydrochloride monohydrate	Central Nervous System Motabalism
08B06	Prestw-1351	Tenatoprazole	Metabolism
07D09	Prestw-518	Budesonide Medwysone	Endocrinology Metabolism
10C04	Prestw-743	Medrysone	Metabolism

ID	Prestw.number	Chemical.name	Broad.Therapeutic.class
18B09	${\bf Prestw\text{-}1951}$	Eperisone HCl	Neuromuscular
05F11	Prestw-380	Clebopride maleate	Central Nervous System
03E06	Prestw-205	Tolfenamic acid	Central Nervous System 'Metabolism
06G08	Prestw-1157	Rifapentine	Infectiology
02B07	Prestw-96	Guanabenz acetate	Central Nervous System
19B02	Prestw-1996	Budralazine	Cardiovascular
02F05	Prestw-134	Diltiazem hydrochloride	Cardiovascular 'Hematology 'Metabolism
07B10	Prestw-499	Propafenone hydrochloride	Cardiovascular
06H07	Prestw-476	Primaquine diphosphate	Infectiology
10G06	Prestw-785	Dicumarol	Hematology
04B07	Prestw-256	Isotretinoin	Dermatology
02G02	Prestw-141	Verapamil hydrochloride	Cardiovascular
07A09	Prestw-488	Dosulepin hydrochloride	Central Nervous System
05G08	Prestw-387	Carbetapentane citrate	Central Nervous System 'Neuromuscular
04D11	Prestw-280	Quinidine hydrochloride monohydrate	Cardiovascular 'Infectiology
18C04	Prestw-1961	Methandrostenolone	Endocrinology
10B11	Prestw-1820	Amprenavir	Infectiology
06E06	Prestw-445	Cyclobenzaprine hydrochloride	Neuromuscular
10G10	Prestw-789	Drofenine hydrochloride	Neuromuscular
11E11	Prestw-850	Equilin	Endocrinology
08A08	Prestw-1139	Itraconazole	Infectiology 'Metabolism
06C08	Prestw-1393	Dibenzepine hydrochloride	Central Nervous System
11F03	Prestw-1454	Nylidrin	Cardiovascular
08C11	Prestw-1409	Etretinate	Dermatology
05F02	Prestw-371	Ketotifen fumarate	Allergology
05D10	Prestw-359	Dextromethorphan hydrobromide monohydrate	Central Nervous System
18H11	Prestw-2043	Artenimol	Infectiology
03H09	Prestw-238	Lomefloxacin hydrochloride	Infectiology
19E10	Prestw-2052	Dilevalol	Cardiovascular
19H04	Prestw-1940	Acetyl spiramycin	Infectiology
05F08	Prestw-377	Nafronyl oxalate	Cardiovascular 'Neuromuscular
12E07	Prestw-926	Idazoxan hydrochloride	Central Nervous System
06G05	Prestw-1323	Quetiapine hemifumarate	Central Nervous System
09A03	Prestw-1270	Gefitinib	Oncology
16C10	Prestw-1710	Ethoxzolamide	Ophthalmology 'Gastroenterology 'Central Ne
08B02	Prestw-571	Tetracaïne hydrochloride	Neuromuscular
11E02	Prestw-1455	Olanzapine	Central Nervous System
17D04	Prestw-1857	Oxiglutatione	Ophthalmology
19A03	Prestw-2045	Eletriptan	Central Nervous System
03E08	Prestw-1181	Tibolone	Endocrinology
01G07	Prestw-66	Minaprine dihydrochloride	Central Nervous System
02G11	Prestw-150	Dihydroergotamine tartrate	Central Nervous System
02F04	Prestw-133	Hydroxyzine dihydrochloride	Allergology 'Central Nervous System
04H02	Prestw-311	Ifenprodil tartrate	Cardiovascular
03C03	Prestw-182	Levamisole hydrochloride	Immunology 'Infectiology
04C06	Prestw-265	Dimenhydrinate	Allergology 'Central Nervous System
18D06	Prestw-2008	Azaribine	Oncology 'Dermatology
06C11	Prestw-430	Cisapride	Gastroenterology
19F05	Prestw-2019	Vonoprazan	Gastroenterology
01G04	Prestw-63	Nifedipine	Cardiovascular
08H05	Prestw-1463	Tomoxetine hydrochloride	Central Nervous System
19D11	Prestw-2067	Cyclofenil	Endocrinology

ID	Prestw.number	Chemical.name	Broad.Therapeutic.class
04C05	Prestw-264	Dyclonine hydrochloride	Neuromuscular
09H08	Prestw-717	Finasteride	Endocrinology
08E05	Prestw-1252	Butenafine hydrochloride	Infectiology 'Metabolism
18B06	Prestw-1945	Exifone	Central Nervous System

Conclusions

- The analysis strongly suggests a batch effect: the distribution of viability measures show strong interplate differences. In particular, the viability measures of plates 11 to 19 are spread over the whole range from the virus control to the cell control.
- To select candidate molecules, the fact to set a plate-wise threshold based on the mean viability of the arbidol duplicates might lead to ignore highly interesting candidates.
- I propose here a plate-wise standardisation based on the median (for centering) and inter-quartile range (to standardise the dispersion).
- This enables to compute a p-value (expected rate of false positive among all the tested molecules). This nominal p-value has to be corrected for multiple testing, in order to estimate the False Discovery Rate (FDR, i.e. the expected rate of false positives among the molecules declared positive). With a threshold of 0.05 on the FDR, 114 molecules are declared significant and could be considered as candidate for further characterization.

Libraries and versions

For the sake of reproducibility, we list hereafter the R libraries used to generate this report, as well as their versions.

sessionInfo()

```
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.6
Matrix products: default
        /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid
              stats
                        graphics grDevices utils
                                                       datasets methods
                                                                           base
other attached packages:
                                              sm_2.2-5.6
                                                                  fitdistrplus_1.0-14 npsurv_0.4-0
 [1] vioplot_0.3.4
                         zoo_1.8-7
loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4
                                                pillar_1.4.3
                          highr_0.8
                                                                     cellranger_1.1.0
                                                                                           compiler_3.6.1
[15] rlang_0.4.5
                          Matrix_1.2-18
                                                cli_2.0.2
                                                                     yaml_2.2.1
                                                                                           xfun_0.12
[29] lambda.r_1.2.4
                                                htmltools_0.4.0
                                                                     ellipsis_0.3.0
                                                                                           splines_3.6.1
```

magrittr_1.5

To do

- log2 transformatio before standardizing (and comparison of the targets)
- Add the formula of the inhibition index
- distribution de valeurs plaque par plaque -> vérifier si certaines plaques ont l'air d'avoir plus de 20 cibles (percentile75)

$$II =$$

: valeurs relative à la moyenne de l'arbidol. Comme l'arbidol change d'une plaque à l'autre, pas évident qu'on la conserve. Plutôt baser sur la viabilité des deux contrôles.

$$v'_{m,i} = log2(V_{m,i})$$

- Afficher les numéros des plaques sur les dot plots, plutôt que le nombre de molécules
- Vérifier si les plaques où il y a plein de molécules comportent des
- Hybrid approach
 - for each molecule, we compute a statistical significance
 - intersection: high-confidence molecules, i.e. staistically significant relative to their plate + biologically relevant with respect to the arbidol threshold
- replace candidates by hits
- Export
 - full result table
 - statistically significant
 - above arbidol
 - high-confidence hits (intersection between the two lists)