Fundamentals of GPS Operation

GPS Critical Technologies

- Time Difference of Arrival (TDoA) Multilateration
- Direct Sequence Spread Spectrum
 - Ranging
 - Interference Rejection / AntiJam / Security

GPS SYSTEM SEGMENTS

Control Segment

Master Control Station Schriever AFB

User Segment

SPACE SEGMENT

GPS Satellite Constellation

- 24 Satellites for Worldwide Coverage
- 6 Orbital Planes Inclined at 55° to Equator
- Semi-Synchronous Circular Orbits
 - Radius: 26,560 Km (14,351 Nmi)
 - Altitude: 20,183 Km (10,905 Nmi)
- Orbital Period: 11 hrs. 58 min.

Conic Sections

Conic Sections

Properties of Conic Section Circle

Distance R from Center (or Focus) is Constant

Properties of Conic Section Ellipse

Distance D1 + D2 is a constant

Properties of Conic Section Parabola

Distance D1 (FP) + D2 (PB) is a constant

Properties of Conic Section Hyperbola

Distance D1 (F₁P) - D2 (F₂P) is a constant

Time Difference of Arrival (TDoA)

TDoA is a form of multilateration

- Only Measure Time of Arrival
 Determine Time Difference of Arrival
 Calculate pseudo-ranges
- Transmit clocks are synchronized to each other

If transmit clocks are also synchronized to time then time can be also calculated

Time Difference of Arrival

Time Difference of Arrival

hyperbolic navigation system

Time Difference of Arrival – Loran

Time Difference of Arrival – Loran Pulses

TDoA Navigation

TDoA Navigation

TDoA Navigation

Simple 2D Earth surface case

Much more complex general 3D case

Dilution of Precision - xDOP

SATELLITE GEOMETRY

Poor Satellite Geometry High DOP Good Satellite Geometry Low DOP

Dilution of Precision- DoP

HDOP – Horizontal DOP VDOP – Vertical DOP

Dilution of Precision is strictly a function of Satellite geometry

GPS Signal Structure

- Multiple Frequencies
- Multiple Modulations
- Direct Sequence Spread Spectrum (DSSS)
- Low Data Rate Date Transmission

GPS SIGNALS

GPS SIGNAL SEPARATION

- All Satellites Transmit on Same Frequencies (L1 & L2)
- How Do We Separate Signals From Satellite to Satellite?
- Code Division Multiple Access (CDMA)
 - Each Satellite Transmits a Unique C/A-Code Repeats Every Millisecond
 - Each Satellite Transmits a Unique Y-Code Encrypted P-Code That Repeats Every Week
 - Each Satellite Transmits a Navigation Message Takes 12.5 Minutes @ 50 Bits/Second

DSSS PSEUDO-RANDOM NOISE

- Desirable Properties of C/A and Y-Codes:
 - Distinctive Signals That Are Easily Generated by Satellites and GPS Receivers
 - Codes From Different Satellites Don't Interfere With Each Other
 - Look Random or Noise-Like to Unauthorized Users
- GPS Uses Pseudo-Random Noise (PRN) Sequences or Codes
 - Binary Sequences (0 or 1)
 - Appear to be Generated on the Basis of a Coin Toss
 - Actually Generated by Mathematical Algorithm

GPS Spread Spectrum Processing

Binary Phase Shift Keying (BPSK) Modulation

BPSK Modulated output wave

Satellite Signal Modulation

More on PRN Sequences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Satellite Signal Modulation

Spectrum

Satellite Signal Modulation – More Detail

C/A-Code vs. P(Y)-Code

Code	Frequency	Code Type	Chip Rate	Period	Features	
C/A	L1	Gold	1.023 MHz	1 millisecond	 Moderate Accuracy, Civil Applications Not Protected Acquisition Aid for P(Y) Code 	
P(Y)	L1 and L2	PRN	10.23 MHz	1 Week	 High Accuracy Encrypted (Anti-Spoof) Military Users 7 – 10 dB Extra AJ Compared to C/A-Code 	

GPS SIGNAL SPECTRUM

GPS Navigation Messages

GPS Navigation Data Format

- Frames (1500 bits long, 30 sec Duration) divided into five subframes
- How (hand-over-word) contained within each subframe
- Precision ephemeris and clock data (for transmitting satellite) within each frame - changes once per 2 hour
- Less precise information (almanac) transmitted on a one-satellite-per-frame basis

Subframe No.	← Ten 30-bit words, 6 sec/ Subframe →				
1	TLM	HOW	Block 1 - Clock Correction		
2	TLM	HOW	Block 2 - Ephemeris	1 Frame	
3	TLM	HOW	Block 2 - Ephemeris Continued	30 sec 1500	
4	TLM	HOW	Message	bits	
5	TLM	HOW	Block 3 - Almanac - (25 frames for complete almanac)	\neg \downarrow	

Contents of Navigation Data

Sub-Frames 1,2,3 Repeated Every Frame (Once Every Seconds)

- Ephemeris and Clock Data Unique to Each Satellite
- Required for Navigation Solution
- Normally Requires All Satellites Be Tracked to Download (Read) Data
- 18 Seconds Required to Read Data for 1 SV

Sub-Frame 4 Common to All Satellites

- Some Pages are Reserved (Partly Used for NMCT)
- Some Pages contain Data for GUV Users
- Some Pages contain Almanac for SVs 25-32
- One Sub-Frame for Iono Model Data for Single Frequency Users
- Classified Data for SAASM Users etc

Sub-Frame 5 Common to All Satellites

- Each Sub-Frame 5 Contains Almanac Data for 1 Satellite (24 Frames)
- Sub-Frame 5 of the 25th Frame Contains Health Data for 24 SVs
- Required Only for Initial Acquisition

WHERE ARE THE SATELLITES?

 Navigation Message Contains Data That Receiver Needs to Accurately Calculate Satellite Positions

Ephemeris

- Set of 17 Numbers That Accurately Describes Orbit
- Calculated from Monitor Station Measurements
- Changed Every 2 Hours
- Each Satellite transmits Only its Own Ephemeris

Almanac

- Coarse Version of Ephemeris
- Used for Satellite Acquisition and Planning
- Each Satellite Transmits Almanac for All Satellites
- GPS Receivers Store Almanac for Future Use

DISTANCE MEASUREMENT SUMMARY

- Distance is Determined Indirectly by Measuring Travel Time of GPS Signal
- Receiver Matches Locally Generated PRN Code Sequence to Transmitted Signal
- Cross-correlation Technique Used to Process Very Noisy Received Signal

Time To First Fix

Time required to

- Acquire satellite signals
- Acquire navigation data (Ephemeris and Almanac
- Calculate a position solution

Cold – Missing position, time, and Satellite Information

Typical TTFF = ~15 minutes

Warm (or Normal) – Time estimate within 20 seconds, position within 100 km, valid almanac

Typical TTFF = ~30 seconds

Hot (or Standby) – Valid time, position, almanac, and ephemeris

Typical TTFF = ~seconds

Note: TTFF can be sped considerably up by externally providing almanac, ephemeris, and pseudo-range data.

Differential GPS

Pseudo - Range Error Components

	1	1		<u>GPS J</u>	PO - PPS Budget
	IDE	JAE V	Satellite LOS ** Ephemeris Error		4.3 m
UERE	_		Satellite Clock** Contribution to PR Error		3.2 m
ر ر			Iono Path Delay		1.0 m
	Ц		Tropo Path Delay		1.0 m
	<u> </u>	5	Multipath Error		1.0 m
			Receiver Noise		1.0 m_
	•	•		UERE =	5.7 m

^{**} Ref: "DoD NAVSTAR GPS User Equipment Introduction – GPS JPO, Feb 1991"

Concept of Differential GPS (DGPS)

FAA's Wide Area Augmentation System (WAAS)

- Provides Differential Correction Data for Single Frequency Receivers
- Provides Integrity Data for All Satellites

Accuracy

Very Important!

System	95% Accuracy (Lateral / Vertical)	Details
LORAN-C Specification	460 <u>m</u> / 460 m	The specified absolute accuracy of the LORAN-C system.
Distance Measuring Equipment (DME) Specification	185 m (Linear)	DME is a radionavigation aid that can calculate the linear distance from an aircraft to ground equipment.
GPS Specification	100 m / 150 m	The specified accuracy of the GPS system with the Selective Availability (SA) option turned on. SA was employed by the U.S. Government until May 1, 2000.
LORAN-C Measured Repeatability	50 m / 50 m	The U.S. Coast Guard reports "return to position" accuracies of 50 meters in time difference mode.
Differential GPS (DGPS)	10 m / 10 m	This is the Differential GPS (DGPS) worst-case accuracy. According to the 2001 Federal Radionavigation Systems (FRS) report published jointly by the U.S. DOT and Department of Defense (DoD), accuracy degrades with distance from the facility; it can be < 1 m but will normally be < 10 m.
Wide Area Augmentation System (WAAS) Specification	7.6 m / 7.6 m	The worst-case accuracy that the WAAS must provide to be used in precision approaches.
GPS Measured	2.5 m / 4.7 m	The actual measured accuracy of the system (excluding receiver errors), with SA turned off, based on the findings of the FAA's National Satellite Test Bed, or NSTB.
WAAS Measured	0.9 m / 1.3 m	The actual measured accuracy of the system (excluding receiver errors), based on the NSTB's findings.

ADS-B

ADS-B - Automatic Dependent Surveillance-Broadcast Replaces FAA primary radar Required after 1 Jan 2020

ADS-B requirements spelled out in FAA AC 20-165A Permits TSO C129, C196, C145, and C146 based GPS receivers

WAAS is not a technical requirement, but as a practical matter, the position source requirements are stringent enough that most non WAAS position sources are not adequate to meet the FAA requirements.

Jamming

- GPS benefits greatly from DSSS against interfering sources
 - Narrow band jamming
 - Unintentional sources
 - Multipath
- But GPS is a low power signal
 - Little power margin

Cryptographically secure Y-Code protects against spoofing

Satellite Signal Modulation with Jamming

The GPS Jamming Problem

Even the Lowest Power Jammers Deny GPS Acquisition & Track

Aircraft/Weapon in a Conceptual Jamming Scenario

- \square C/A Spoofing/Jamming \Rightarrow Direct-Y Requirement for Weapon
- **?** Aircraft and Weapon Anti-Jam Level Depends on Scenario, Mission, etc.

"Nulling" Algorithm Concept

- Only one set of Antenna Weights w_1 , w_2 , w_3 , • w_N is Adaptively Determined that Minimizes Jammer Power by Minimizing Gains in the Direction of Jammers
- The "Nulling Only" Algorithm may cause inadvertent Nulling of some Satellite Signals (All-In-View Receivers can Mitigate this Effect)

"Nulling - Only" Antenna Pattern Concept

- All Jammers are Effectively Nulled due to Low Gain in their Directions
- SV₄ is Inadvertently Nulled

"Nulling and Beam - Forming" Antenna Pattern Concept

- **All Jammers are Effectively Nulled due to Low Gain in their Directions**
- Gain in Direction of all Satellites Maximized (Beams)