

Erika Ávila,

Ing. CARLOS JOSE VILCHEZ GARCÍA, Instructor

AGENDA

- Introducción.
- · Definición.
- · Equipo de Fondo.
- · Equipo de Superficie.
- · Variador de Frecuencia.
- Mantenimiento.
- Ventajas y Desventajas.
- Condiciones de uso (Rangos).
- Consideraciones de diseño.
- Conclusiones
- Bibliografía.

BOMBA DE CAVIDAD PROGRESIVA - BCP (PCP-PROGRESSIVE CAVITY PUMP)

- · Creada en 1932 por René Moineau.
- En 1970 empieza a usarse en la industria del petróleo en USA, por Robbins & Myers.
- Mas de 100.000 Equipos BCP en el Mundo

BOMBA DE CAVIDAD PROGRESIVA - BCP (PCP-PROGRESSIVE CAVITY PUMP)

¿QUE ES?

Sistema de levantamiento artificial que usa un Bomba de Desplazamiento Positivo que consta de dos engranajes helicoidales interiores entre el rotor y el estator, al girar el rotor dentro de este, las cavidades se mueven axialmente de uno al otro extremo del estator creando la acción de bombeo.

Funcionamiento

Ancla de Torque

- Evita el riesgo de desconexión de la tubería al girar la sarta de cabillas hacia la derecha, por fricción entre el Rotor y el Estator en el sentido de su desenrosque.
- Previene el giro del Estator al estar fijado al revestidor por medio de cuñas verticales.
- · Se conecta debajo del Niple de Paro.
- No se requieren en Pozos someros y de bajo caudal.

Níple de Paro

- Punto tope al Rotor para el espaciamiento.
- Brinda espacio libre al Rotor para permitir la elongación de la sarta de cabillas en la operación del sistema.
- Evita que el Rotor y/o las cabillas lleguen al fondo del pozo si existe una desconexión.
- Actúa como punto de conexión para accesorios: oAncla de Gas, Antitorques, Filtros de arena, etc.

Rotor

Fabricado en acero de alta resistencia y recubierto por un proceso electro químico de Cromado.

Ejerce el movimiento de desplazamiento de fluido por rotación, en el Estator, un vez que recibe el accionamiento desde la superficie a partir del impulsor, mediante la sarta de cabillas (Bomba tipo Tubular)

Rotor -Geometría

Conf. Moineau 3:4

Confi. Moineau 2:3

Conf. Moineau 1:2

Rotor -Geometría

Cilindro de acero o tubo, revestido internamente con un ELASTOMERO sintético.

- Es moldeado en forma de dos hélices adherido fuertemente a dicho cilindro por un proceso especial.
- Se baja al pozo con la tubería de Producción (Bombas tipo tubería o con la sarta de varillas-insertables).
- Se obtiene por la inyección del Elastómero a alta Temperatura y Presión entre la camisa de acero y un núcleo, similar a un Rotor de dos Lóbulos.

Elastómero

Elemento delicado de la BCP, es un polímero de alto peso molecular.

- La hermeticidad entre cavidades contiguas determina la eficiencia de la Bomba.
- Puede deformarse y recuperarse elásticamente (Resiliencia) haciendo posible la interferencia entre el Rotor y el Estator.
- Deben presentar resistencia Química y excelentes propiedades Mecánicas.

Elastómero

Son:

- 1. Base Nitrílica (convencionales)
- 2. Hidrogenación catalítica (Hidrogenados)
- 3. Fluoelastómeros.

Elastómero

Propiedades Mecánicas Mínimas:

- 1-Hinchamiento 3 al 7% (máx.)
- 2-Dureza 55 a 78 puntos.
- 3-Resistencia tensíl > 55 Mpasc
- 4-Elongación /Ruptura > 500%
- 5-Resistencia/ Fatiga >55000 C.
- 6-Resistencia/ Corte > 4 Kg/m
- Composición de los Elastómeros
- Elastómeros 60%, Rellenos 20%, plastificantes 5%, agentes de curado 10%, Misceláneos 5%.

¿QUE ES?

Sarta de Varillas

Es la parte del equipo que transmite la energía a la Bomba mediante un movimiento de rotación (TORQUE) y CARGA AXIAL constante.

CONVENCIONALES CONTINUAS

Equipo de Superficie

Equipo de Superficie

Cabezal de Rotación

• Existen de Eje macizo y Eje hueco. El rodamiento de carga puede ser lubricados por aceite ó grasa.

- Sirve de soporte para las cargas axiales.
- Evita o retarde el giro inverso en la sarta cabillas.
- · Aísla los fluidos del Pozo del medio ambiente.
- Soporta el accionamiento electromecánico (Algunos modelos.)

Clases de Cabezales de Rotación

FIGURA N° 15. Evolución de los equipos de superficie.

Cabezales de Rotación

Cabezales de Rotación

Variador de Frecuencia

Son equipos utilizados junto con los motoreductores y los equipos de polea correa para establecer el cambio de velocidad de rotación en un corto tiempo sin recurrir a modificaciones mecánicas; mediante el cambio de la frecuencia de la corriente alterna con que opera el motor

Variador de Frecuencia

Ventajas

- Ajuste de velocidad
- · Ajuste de arranque y parada
- Ajuste de torque
- Entradas / Salidas analógicas y digitales
- Facilita la optimización: La mayoría de las acciones de campo (supervisión y control) se pueden ejecutar de manera remota.
- Se reduce la cantidad de equipos montados sobre el cabezal del pozo.

- La condiciones de producción de pozos vecinos
- El comportamiento de influjo IPR
- Conocimiento de las propiedades de los fluidos producidos
- Tasa de Producción requerida
- Desplazamiento Mínimo Requerido (m³/día/rpm o Bls/día/rpm)
- La capacidad mínima de presión requerida

• La presión de la columna de líquido o gas.

Carga axial

• REQUERIMIENTOS DE TORQUE

• La Potencia requerida para mover la bomba

- 1. Conexión Ancla Antitorque.
- 2. Conexión Niple de Paro.
- 3. Conexión del Estator.
- 4. Conexión Niple de Maniobra al Estator
- 5. Bajada de la Tubería de Producción
- 6. Cabezal del Pozo
- 7. Conexión del Rotor a la sarta de Cabillas
- 8. Conexión sarta de Cabillas
- 9. Bajada de la sarta de Cabillas
- 10. Espaciamiento del Rotor

Instalación BCP

- 1. Instalación del Motovaríador ó Motoreductor.
- 2. Instalación del Cabezal de Rotación.
- 3. Instalación Variador de Frecuencia.

Diagnostico y Análisis de Fallas

ABRASION CONTACTO ROTOR TUBING

ABRASION ROTOR - ESTATOR

CUBIERTA CORTADA

EROSION POR FLUJO ARENOSO

ATAQUE ÁCIDO

ATAQUE QUÍMICO

HISTERESIS

HINCHAMIENTO

ENDURECIMINETO / DESPRENDIMIENTO

AGRIETAMIENTO POR RESIDUOS

PRESION EXCESIVA

ALTA TEMPERATURA

MANTENIMIENTO

EQUIPO DE SUPERFICIE

- Lubricación (Grasa ó Aceite)
- · Rodamientos de cabezal y caja Reductora.
- · Ajuste ó remplazo (Prensa estopa)
- Cabezales y Motores con base Grasa, (lubricación periódica)

Mantenimiento Preventivo

EQUIPO DE Sub-SUELO

Realizar inspección y mediciones de prueba, Estator y Rotor:

- El Estator puede ser reutilizado con otro Rotor.
- El Rotor puede ser utilizado, con o sin un nuevo cromado, con otro Estator.

Mantenimiento Correctivo

Variador De Frecuencia

Desenergizado:

- · Inspección visual.
- · Chequeo de los dispositivos de Potencia
- Medición del Aislamiento/Resistencias en terminales del Motor.

Energizado:

- Prueba en vacío (Formación/Capacitadores)
- Prueba en corto circuito
- · Parámetros operación normal
- Parámetros arranque inicial
- Obtención parámetros eléctricos

Mantenimiento Preventivo

Variador De Frecuencia

Desenergizado:

- · Verificación parámetros eléctricos de entrada.
- Verificación Protectores: Fusibles /Breakers/ Sensores (T)
- Verificación conexiones entre tarjetas: Medición de continuidad y Verificación conexiones inseguras
- Medición Capacitadores/Resistencias sangría.
- · Verificación parámetros de calibración.

Energizado:

 Pruebas en vacío / corto circuito y Prueba Tarjetas de control.

Mantenimiento Correctivo

Condiciones De Uso

Rango	Típico	Máximo
Profundidad	2000 - 4000' TVD	6000'TVD
Volumen	5 – 2200 BPD	4500 BPD
Temperatura	75° - 150° F	250° F
Desviación A criterio		<60°
Dogleg (Grados/100')		<7°/100′
Manejo de Corrosión	Malo	
Manejo de Gas	Regular	
Manejo sólidos	Excelente	
Gravedad de fluido	<35° API	
Servicio	Workover ó Taladro	
Tipo de Motor	Eléctrico o Combustión Interna	
Aplicación costa afuera	Bueno	
Eficiencia	40%- 70%	

Ventajas y Desventajas

	"
Ventajas	Desventajas
Fácil de Operar y de diseños simples.	Desgaste de Varillas y tubería en pozos altamente desviados.
Sistema de levantamiento artificial de mayor eficiencia	Porcentaje de gas libre, alto GOR.
No presenta problemas con pozos desviados, horizontales, etc.	Incompatibilidad con ciertos fluidos (aromáticos, aminas, H ₂ S, CO ₂ , etc.).
Excelente para producción de crudos altamente viscosos.	El Resbalamiento afecta su eficiencia
Manejo de fluidos con presencia de sólidos y abrasivos.	Baja eficiencia del sistema cuando existe alto contenido de gas libre.
Opera con bajo torque, bajo costo de mantenimiento, y bombeo de caudales constantes sin válvulas.	Requieren la remoción de la tubería de producción para sustituir la bomba (ya sea por falla, por adecuación o por cambio de sistema).
El bajo nivel de ruido y pequeño impacto visual la hace ideal para áreas urbanas.	Temperatura de operación de hasta 210 °F (máximo 350 °F).

Conclusiones

- Este sistema de Levantamiento recupera cantidades considerables de Hidrocarburo en Yacimientos de Crudo Pesado.
- Es amigable con el medio reduciendo el Impacto Ambiental entre los que cabe destacar ruido, derrames y facilidades.
- No tolera yacimientos con elevadas temperaturas.
- Con controladores de frecuencia son relativamente fáciles de operar.

BIBLIOGRAFÍA

- ➤ PCPump-Handbook-2008V1
- ➤ NETZSCH. Manual de Sistemas PCP.
- Chacín Nelvy, Bombeo de Cavidad Progresiva, ESP OIL INTERNATIONAL TRAINING GROUP, Venezuela, 2003.
- American Petroleum Institute, NORMA API, "Progressive cavity pumps systems for artificial lift—Part 1: Pumps —Part 2: Surface drive systems", | 1220 L Street, NW | Washington, DC 20005-4070 | USA Petroleum and natural gas industries.
- Hirschfeldt Marcelo, "Manual de Bombeo de Cavidades Progresivas", Versión 2008V1, Argentina, Junio de 2008

