МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра "Системи автоматизованого проектування"

Звіт

до лабораторної роботи №3 з курсу: «Методи нечіткої логіки та еволюційні алгоритми при автоматизованому проектуванні» на тему:

> «Комбінаторна оптимізація за допомогою еволюційних методів»

> > Виконав:

ст. гр. КНСП-11

Гуль О. В.

Перевірив:

Кривий Р. 3.

Мета: ознайомитися з основними теоретичними відомостями, вивчити еволюційні оператори схрещування та мутації, що використовуються при розв'язуванні задач комбінаторної оптимізації.

Теоретичні відомості

При використанні методів еволюційного пошуку для розв'язку задач комбінаторної оптимізації, як правило, застосовуються негомологічні числові хромосоми, тобто такі хромосоми, гени яких можуть приймати значення в заданому інтервалі. При цьому інтервал однаковий для всіх генів, але в хромосомі не може бути двох генів з однаковим значенням.

Комбінаторні задачі оперують **i**3 дискретними структурами або розміщенням об'єктів, незначні зміни яких часто викликають стрибкоподібну зміну показників якості (фітнесс- функції). Традиційні оператори еволюційні оператори, що генерують нових нащадків, не можуть бути застосовані при використанні негомологічних хромосом, оскільки внаслідок виконання таких операторів генеруються нащадки, що містять однакові гени і тому не можуть бути інтерпретовані при розв'язку комбінаторної задачі. Тому для розв'язку комбінаторної оптимізації були розроблені спеціальні генетичні оператори, що не створюють неприпустимих рішень.

Завдання

Розробити за допомогою пакету Matlab програмне забезпечення для вирішення задачі комівояжера. Параметри еволюційного методу обрати з таблиці 1 відповідно до варіанту.

No	Еволюційні оператори	
	Схрещування	Мутація
3	Циклове	Мутація золотого перетину

Хід роботи

Для виконання завдання була використана функція ga пакету Matlab, і реалізовано власні функції мутації та схрещування, згідно з варіантом.

Рис. 1. Графічне представлення задачі комівояжера

Функція для схрещування

```
function [xoverKids] = CrossoverFcn(parents, options, nvars, FitnessFcn, ...
   unused, this Population )
% Реалізація функції для схрещування потомків
(циклове схрещування)
% parents — індекси батьків в поточній популяції, що
беруть участь у
         схрещуванні, вектор з парною кількістю
елементів
% nvars — кількість змінних (генів)
% unused — вектор-стовбець із оцінкою кожної особини
% thisPopulation - поточна популяція (матриця)
ret = zeros(length(parents)/2, nvars);
for i = 1:2:length(parents)-1
   p1 = thisPopulation(parents(i), :);
   p2 = thisPopulation(parents(i+1), :);
   % генеруємо цикл
   t = randi(nvars);
                    % початок циклу (індекс)
   cycle = zeros(1, nvars);
   for j = 1:1:nvars
      cycle(1, j) = t;
      nv = p2(t);
      t = find(p1==nv);
      if (p1(cycle(1, 1)) == nv)
         break; % цикл замкнувся
      end;
   end:
   % елементи, що не попали в цикл успадковуються
від іншого батька
   child = p2;
   for j = 1:1:nvars
      if (cycle(1, j) = 0)
         child(1, cycle(1, j)) = p1(cycle(1, j));
```

```
end;
end;
ret((i+1)/2,:) = child;
end;
xoverKids = ret;
end
```

```
Точка запуску програми
```

mutationChildren = mutant;

mutant(t) = d1; mutant(t+1) = d;

end

Функція мутації

```
%% точка запуску програми
%% Варіант 3
%% Схрещування: цеклове
%% Мутація: золотого перетину
% Задача: знайти найвигідніший маршрут,
% який проходить через кожне місто по одному разу
% одною особою є послідовність обходу міст
% значення генів не можуть повторюватися
% а довжина хромосоми рівна кількості міст
% для матриці з 5 міст можливо всього 5! = 120 різних
способів обходу
```

```
% тому розмір популяції візьмемо рівний кількості
міст (5)
startPopulation = \Gamma
   1. 2. 3. 4. 5;
   2, 3, 4, 5, 1;
   3, 4, 5, 1, 2;
   4, 5, 1, 2, 3;
   5, 1, 2, 3, 4
];
options = gaoptimset(...
    'EliteCount', 0, ...
   'PopulationSize', 5, ...
   'InitialPopulation', startPopulation, ...
   'MutationFcn', @MutationFcn, ...
   'CrossoverFcn', @CrossoverFcn, ...
   'TimeLimit', 3 ...
[x, fval, exitflag, output, population, scores] = ga(@optim function, 5, options);
disp('Найращей потомок:'); disp(x);
fprintf('f(x) = %dYn', fval);
disp('Остання популяція:');
for i=1:1:5
   for i=1:1:5
       fprintf('\forall t\%d', population(i, j));
   fprintf('\forall t=\forall t\%d\forall n', scores(i));
end;
```

Результат виконання

```
>> main
Optimization terminated: average change in the fitness value less than options.TolFun.
Найращей потомок:
           1
                       5
                              4
     2
f(x) = 18
Остання популяція:
        2
                        3
                                                         18
        2
                1
                        3
                                                         18
                                                =>
                        3
                                5
        2
                1
                                        4
                                                =>
                                                         18
                                5
        2
                        3
                                        4
                1
                                                =>
                                                         18
        2
                        3
                                4
                1
                                                         19
                                                 =>
>>
```

```
New to MATLAB? See resources for Getting Started.
  >> main
  Optimization terminated: average change in the fitness value less than options.TolFun.
  Найращей потомок:
              2
  f(x) = 21
  Остання популяція:
                             3
                                               5
                                                                 22
           1
                    2
                                                        =>
                    2
           1
                             3
                                      5
                                               4
                                                                 21
                                                        =>
                    2
           1
                             3
                                      4
                                               5
                                                                 22
                                                        =>
                    2
                                      5
           1
                             3
                                               4
                                                                  21
                                                        =>
                    2
           1
                             3
                                               5
                                                                 22
                                                         =>
f\underline{x} >>
```

```
New to MATLAB? See resources for Getting Started.
  Optimization terminated: average change in the fitness value less than options.TolFun.
  Найращей потомок:
        1
              2
                     3
                            5
                                   4
  f(x) = 21
  Остання популяція:
                                                5
                              3
                                       4
                                                                  22
           1
                    2
                                                         =>
                    2
                                       5
           1
                             3
                                                                  21
                                                4
                                                         =>
                             3
                                       5
                    2
           1
                                                4
                                                                  21
                                                         =>
                    2
                             3
                                       5
           1
                                                4
                                                         =>
                                                                  21
                                       5
           1
                     2
                              3
                                                                  21
f_{\underline{x}} >>
```

Висновок

На відміну від класичних методів розв'язання задачі комівояжера, використовуючи генетичні алгоритми, ми зразу отримуємо декілька оптимальних варіантів. Але такий підхід не гарантує, що результат є найоптимальніший.