Tutorial Sheet 5

Sets:

 \mathbb{R} - All real numbers positive and negative

 \mathbb{R}^+ - All positive real numbers including 0

 \mathbb{R}^- - All negative real numbers including 0

[a,b] - All real numbers x such that a < x < b

(a,b) - All real numbers x such that a < x < b

 $[a,\infty)$ - All real numbers x such that $a \leq x$

 (a, ∞) - All real numbers x such that a < x

1. Which of the following functions are well defined functions? If the function is not well defined, give a counterexample showing that it is not.

i)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2 + 1$

ii)
$$f: \mathbb{R}^+ \to \mathbb{R}^+, \quad f(x) = x^2 + 1$$

iii)
$$f: \mathbb{R}^+ \to [1, 10], \quad f(x) = x^2 + 1$$

iv)
$$f: \mathbb{R}^+ \to [1, \infty), \quad f(x) = x^2 + 1$$

v)
$$f: \mathbb{R}^+ \to \mathbb{R}^+, \quad f(x) = \sqrt[t]{x}$$

vi)
$$f: \mathbb{R}^- \to \mathbb{R}^-$$
, $f(x) = \sqrt[4]{x}$

vii)
$$f: \mathbb{R}^+ \to \mathbb{R}^-, \quad f(x) = \sqrt[+]{x}$$

viii)
$$f: \mathbb{R}^+ \to \mathbb{R}$$
, $f(x) = \sqrt[+]{x}$

ix)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \frac{1}{x}$

$$(x)$$
 $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \quad f(x) = \frac{1}{x}$

xi)
$$f: \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}$$
, $f(x) = \frac{1}{x}$

xii)
$$f: \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}$$
, $f(x) = \frac{1}{x-1}$

xiii)
$$f: \mathbb{R}^+ \setminus \{1\} \to \mathbb{R}^+, \quad f(x) = \frac{1}{x-1}$$

$$xiv) f: \mathbb{R} \to \mathbb{R}, \quad f(x) = e^x$$

$$xv) f: \mathbb{R} \to \mathbb{R}^+, \quad f(x) = e^x - 1$$

xvi)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \ln(x)$

xvii)
$$f: \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}^+, \quad f(x) = \ln(x)$$

xviii)
$$f: \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}, \quad f(x) = \ln(x)$$

xix)
$$f:(1,\infty)\to\mathbb{R}, \quad f(x)=\ln(x+1)$$

2. For each of the following well defined functions, say whether the function is one-toone, onto, or invertible. In the case of invertible functions, give the inverse function. In the case of non-invertible functions, modify the domain and codomain of the functions to make them invertible and give the corresponding inverse function.

i)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 4$

vii)
$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = e^x$$

ii)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x$

viii)
$$f: \mathbb{R}^+ \to [1, \infty), \quad f(x) = e^x$$

iii)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$

ix)
$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
, $f(x) = e^x + 1$

1V)
$$f : \mathbb{R} \to \mathbb{R}^+, \quad f(x) = x^2 + 4$$

iv)
$$f: \mathbb{R} \to \mathbb{R}^+$$
, $f(x) = x^2 + 4$ x) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$

v)
$$f: \mathbb{R}^+ \to \mathbb{R}, \quad f(x) = \sqrt[4]{x}$$

xi)
$$f: (-\pi, \pi) \to [-1, 1], f(x) = \sin(x)$$

vi)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \quad f(x) = \frac{1}{x}$$

xii)
$$f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to [-1, 1], \ f(x) = \sin(x)$$

3. Graph the well defined function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cosh(x)$ on the interval [-2, 2]. Based on the graph, give a suitable domain and codomain of the function to make it invertible.

- 4. For each of the following graphs,
 - i) Use the vertical line test to determine whether it is a graph of a well defined function mapping subsets of the reals to the reals.
 - ii) Use the horizontal line test to determine over which domains and codomains (on the graph) the function is one-to-one, onto, or invertible.