

No documents, no calculators, no cell phones or electronic devices allowed. Cute and fluffy pets allowed (for moral support only).

All your answers must be fully (but concisely) justified, unless noted otherwise.

Exercise 1. Let $E = \mathbb{R}^3$ and let

$$F = \{(x, y, z) \in E \mid x + y + z = 0\}$$

and let

$$G = \text{Span}\{(1, -1, 1)\}.$$

You're given that F and G are subspaces of E.

- 1. Determine a basis of F, and deduce the dimension of F.
- 2. Show that $E = F \oplus G$.
- 3. From the previous question, we know that every vector $u \in E$ can be uniquely written as $u = u_F + u_G$ with $u_F \in F$ and $u_G \in G$. Find u_F and u_G for u = (4, 1, -3).

Exercise 2. Let $E = \mathbb{R}^3$ and $F = \mathbb{R}^2$. Let \mathscr{B}_E be the standard basis of E and let \mathscr{B}_F be the standard basis of F. Let

$$f: E \longrightarrow F$$

 $(x, y, z) \longmapsto (x + y + z, y - z).$

You're given that f is a linear map.

- 1. Determine the matrix $A = [f]_{\mathscr{B}_E, \mathscr{B}_F}$ of f in the bases $\mathscr{B}_E, \mathscr{B}_F$.
- 2. Let

$$\mathscr{C}_E = ((1, 2, 1), (0, 1, 1), (1, 0, 1))$$

and

$$\mathscr{C}_F = ((1,2),(-1,1)).$$

Check that \mathscr{C}_E is a basis of E and that \mathscr{C}_F is a basis of F.

Note that, in the sequel, we won't need to determine coordinates in \mathscr{C}_E , but we'll need to determine some coordinates in \mathscr{C}_F ; so you can choose the most appropriate method to show that \mathscr{C}_E and \mathscr{C}_F are bases.

- 3. Express the matrix $A' = [f]_{\mathscr{C}_E,\mathscr{C}_F}$ of f in the basis \mathscr{C}_E and \mathscr{C}_F in two different ways:
 - a) Using a direct method (i.e., the definition of the matrix of a linear map in bases).
 - b) Using the Change of Basis Formula (after stating the general formula).

Exercise 3. Let

$$A = \begin{pmatrix} 6 & -4 & -3 \\ 3 & -1 & -3 \\ 4 & -4 & -1 \end{pmatrix}.$$

Show that A is diagonalizable and find an invertible matrix $P \in M_3(\mathbb{R})$ such that $P^{-1}AP$ is diagonal. Don't compute P^{-1} .

Exercise 4. Let $E = \mathbb{R}^3$, let \mathscr{B} be the standard basis of E, and let $f: E \to E$ be the endomorphism the matrix of which in the basis \mathscr{B} is:

$$A = [f]_{\mathscr{B}} = \begin{pmatrix} 4 & -2 & -5 \\ 0 & 2 & 1 \\ 1 & -1 & -1 \end{pmatrix}.$$

- Compute the characteristic polynomial of A to determine that 1 is an eigenvalue of A of multiplicity 1 and that 2 is an eigenvalue of A of multiplicity 2.
- 2. Explain why A is not diagonalizable.
- 3. Check that the vector u = (1, -1, 1) is an eigenvector of f associated to 1, and that the vector v = (1, 1, 0) is an eigenvector of A associated to 2.
- 4. We set w = (3, 0, 1), and we define:

$$\mathscr{C} = (u, v, w).$$

Write matrix $P = [\mathscr{C}]_{\mathscr{B}}$ (i.e., the columns of P are the coordinates of the vectors of \mathscr{C} in \mathscr{B}), show that P is invertible and compute P^{-1} . This shows that \mathscr{C} is a basis of E.

5. Show that

$$[f]_{\mathscr{C}} = T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

6. Let D and N be the matrices

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

so that T = D + N.

- a) Compute N^2 and deduce, for $k \in \mathbb{N}$ with $k \ge 2$, the value of N^k .
- b) Let $n \in \mathbb{N}$ with $n \ge 2$. Use the Binomial Theorem (after checking that you can apply it) to determine the value of T^n .
- 7. Determine, for $n \in \mathbb{N}$ with $n \ge 2$, the value of $f^n((1,0,0))$.

Exercise 5. Let $A \in M_n(\mathbb{R})$ be a matrix with a unique eigenvalue λ_0 of multiplicity n. Show that:

A is diagonalizable \iff $A = \lambda_0 I_n$.

Exercise 6. Let E be a vector space over K and let $p: E \to E$ be an endomorphism such that $p^2 = p$ (i.e., $p \circ p = p$). What are the possible values for the eigenvalues of p?