Departamento de Matemática Aplicada Análisis Numérico, IC303

Myrian González Orellana

UNAH

PACIII2023

Tabla de Contenidos 1 Ejercicios

Teoremas preliminares

Teorema de Weierestrass

Suponga que f está definida y es continua en [a,b]. Para cada $\epsilon>0$, existe un polinomio P(x), con la propiedad de que

$$|f(x) - P(x)| < \epsilon, \quad \forall x \in [a, b]$$

Los polinomios son ampliamente utilizados para la interpolación numérica porque:

- Aproximan de manera uniforme a las funciones conitnuas.
- Tienen derivadas e integrales fáciles de calcular. Además, sus integrales y derivadas también son polinomios.
 - Las principales limitaciones de los polinomios de Taylor son:
- Generalmente no ofrecen una buena aproximación en todo un intervalo, sino que la aproximación se concentra alrededor de x_0 .
- Aumentar el grado del polinomio de Taylor no necesariamente brindará una mejor aproximación.
- No utilizan más que un único punto para definir el polonomio.

Limitaciones de los polinomios de Taylor para la interpolación

Debido a las limitaciones expuestas, los polinomios de Taylor se usan principalmente para:

- Derivación de otros métodos numéricos, como el método de diferencias finitas.
- 2 Estimación del error

Polinomio interpolante de Lagrange

Teorema: polinomios de Lagrange

Si f es una funcion definida en los diferentes valores $\{x_0, \dots, x_n\}$, entonces existe un único polinomio P(x) de grado a lo más n, con la propiedad:

$$f(x_k) = P(x_k) \quad k = 0, 1, \dots, n$$

El polinomio P(x) se define como sigue:

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x) = f(x_0) L_{n,0} + \dots + f(x_n) L_{n,n}$$

donde

$$L_{n,k} = \frac{(x-x_0)(x-x_1)\dots(x-x_{k+1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k+1})(x_k-x_{k+1})\dots(x_k-x_n)}$$

Término del error del polinomio de Lagrange

Suponga que x_0, x_1, \ldots, x_n son números distintintos en el intervalo [a, b] y que $f \in C^{n+1}[a, b]$. Entonces, para cada x en [a, b] existe in número $\xi(x)$ en (a, b) con

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n)$$

donde P(x) es el polinomio interpolante de Lagrange.

Enlace a ejercicio.

Interpolación, Spline Cúbicos I

Considere el siguiente ajuste polinomial:

Figura: En la figura se observa la interpolación por polinomios de Lagrange para $f(x) = \frac{1}{1+25x^2}$ para $x \in [-1,1]$ con 30 puntos equidistante comenzando en -1 y finalizando en 1.

Interpolación, Spline Cúbicos II

El ejemplo anterior demuestra que los polinomios de alto orden (en el ejemplo de la figura tendríamos un polinomio de orden 31) pueden oscilar erráticamente. Evidentemente esta característica es indeseable en muchas situaciones; en este apartado se mostrará una técnica que puede evitar este problema siempre con la idea de hacer un ajuste polinomial.

Los ingredientes para construir un **spline** (esta palabra no tiene traducción al español, su significado es "larga tira flexible") **cúbico interpolante** S de alguna función f se basan en las siguiente consideraciones:

- lacksquare Una función f de variable real definida en el intervalo [a,b].
- Una partición del intervalo [a, b]; $a = x_0 < x_1 < \cdots < x_n = b$.
- S(x) restringido a $[x_j, x_{j+1}]$ es un polinomio cúbico para cada $j = 0, \dots, n-1$. A esta parte se le denota por $S_j(x)$.
- $S_j(x_j) = f(x_j)$ y $S_j(x_{j+1}) = f(x_{j+1})$ para cada $j = 0, \dots, n-1$.
- $S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1})$ para cada $j = 0, \dots, n-2$.
- $S_{j+1}''(x_{j+1}) = S_j''(x_{j+1})$ para cada $j = 0, \dots, n-2$.
- Si $S''(x_0) = S''(x_n) = 0$ se dice que es un **Spline de frontera** natural. Si $S'(x_0) = f'(x_0)$ y $S'(x_n) = f'(x_n)$ se dice que es un **Spline con frontera sujeta**.

Interpolación, Spline Cúbicos III

Figura: Aquí se muestran algunas condiciones de los spline. La función que se ve arriba en azul es $f(x) = \frac{1}{1+25x^2}$. En verde se observan los splines cúbicos.

Interpolación, Spline Cúbicos IV

Fórmulas de recurrencia para los Splines Cúbicos

Definanse los Splines Cúbicos de la función f definida en $[x_0, x_n]$:

$$S(x) = S_j(x) \equiv a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

para $x \in [x_j, x_{j+1}]$ donde $j = 0, \dots, n-1$.

Por comodidad definanse los siguientes elementos:

$$a_n \equiv f(x_n), b_n \equiv f'(x_n), c_n \equiv f''(x_n)/2, h_j \equiv x_{j+1} - x_j, j = 0, \dots, n-1.$$

Las siguientes ecuaciones de recurrencia deben ser verificadas para que los S_j cumplan con las condiciones de un Spline Cúbico.

- 1 $a_j \equiv f(x_j) \text{ para } j = 0, \dots, n-1.$
- $a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 = a_{j+1} \text{ para } j = 0, \dots, n-1.$
- 3 $b_j + 2c_jh_j + 3d_jh_j^2 = b_{j+1} \text{ para } j = 0, \dots, n-1.$
- $c_j + 3d_j h_j = c_{j+1} \text{ para } j = 0, \dots, n-1.$
- $\frac{3}{h_j}(a_{j+1}-a_j) \frac{3}{h_{j-1}}(a_j-a_{j-1}) = h_{j-1}c_{j-1} + 2(h_{j-1}+h_j)c_j + h_jc_{j+1}$ para $j=1,\cdots,n-1$.

Interpolación, Spline Cúbicos V

Las ecuaciones en el numeral 5 permiten resolver para los $\{c_j\}$; luego en el numeral 4 se pueden resolver los $\{d_j\}$ y con el numeral 2 se pueden encontrar los $\{b_j\}$. Los $\{a_j\}$ son conocidos desde el principio y con ello se pueden encontrar los Splines Cúbicos.

Si se recuerda, c_j está definido para $j=0, \cdots n$. Entonces es necesario encontrar n+1 valores. La ecuación en el numeral 5 solo provee de n-1 ecuaciones; por lo tanto faltan dos ecuaciones más que se podrán obtener de considerar las condiciones en la frontera (naturales o fijas).

Mínimos cuadrados I

Considere el siguiente conjunto de datos $\{(x_i, y_i)\}_{i=1}^N$ asociados:

Abajo se aprecian los pares ordenados correspondientes a cada par asociado:

Figura: Recta de aproximación a los pares ordenados.

Mínimos cuadrados II

El objetivo consiste en determinar la recta $Y = a_1X + a_0$ que mejor modele al conjunto de datos asociados.

Existen algunos enfoques para encontrar esta recta:

Problema Minimax

$$\min_{a_0,a_1} \max_{1 \le i \le 10} |y_i - (a_1 x_i - a_0)|$$

Problema de desviación absoluta

$$\min_{a_0, a_1} \sum_{i=1}^{10} |y_i - (a_1 x_i - a_0)|$$

Problema de mínimos cuadrados

$$\min_{a_0, a_1} \sum_{i=1}^{10} |y_i - (a_1 x_i - a_0)|^2 = \min_{a_0, a_1} \sum_{i=1}^{10} (y_i - (a_1 x_i - a_0))^2$$

Deducción del método de mínimos cuadrados

Defina los siguientes vectores:

$$X = [x_1, \dots, x_n]^T$$
$$Y = [y_1, \dots, y_n]^T$$
$$U = [1, \dots, 1]^T$$

Entonces podemos pensar en el problema de ajuste de la siguiente manera: Deseamos encontrar a_0 y a_1 tales que

$$a_1X + a_0U = Y$$

De forma matricial esto sería:

$$(X|U)\left(\begin{array}{c}a_1\\a_0\end{array}\right)=Y$$

Deducción del método de mínimos cuadrados

Si ahora se multiplica por la transpuesta de la primer matriz, se obtine:

$$\left(\begin{array}{c} \boldsymbol{X}^T \\ \boldsymbol{U}^T \end{array}\right) (\boldsymbol{X}|\boldsymbol{U}) \left(\begin{array}{c} a_1 \\ a_0 \end{array}\right) = \left(\begin{array}{c} \boldsymbol{X}^T \\ \boldsymbol{U}^T \end{array}\right) \boldsymbol{Y}$$

Esto es equivalente a lo siguiente:

$$\left(\begin{array}{cc} X^TX & X^TU \\ U^TX & U^TU \end{array}\right) \left(\begin{array}{c} a_1 \\ a_0 \end{array}\right) = \left(\begin{array}{c} X^TY \\ U^TY \end{array}\right)$$

Como se puede apreciar, resolviendo este sistema podemos encontrar las soluciones para los coeficientes de la regresión lineal.

Generalización a ajustes de tipo polinomial.

Ahora considere le problema siguiente: Se desan encontrar los valores $[a_m, a_{m-1}, \cdots, a_0]$ de manera tal que:

$$a_m X^m + \dots + a_1 X + a_0 U = Y$$

Donde $X^k = [x_1^k, \cdots, x_n^k]^T$. Nuevamente esto se puede escribir como el siguiente sistema:

$$(X^m|X^{m-1}|\cdots X|U)\left(\begin{array}{c}a_m\\\vdots\\a_0\end{array}\right)=Y$$

Multiplicando por la transpuesta...

Generalización de ajuste de tipo polinomial

$$\begin{pmatrix} (X^m)^T \\ \vdots \\ (X)^T \\ U^T \end{pmatrix} (X^m | X^{m-1} | \cdots X | U) \begin{pmatrix} a_m \\ \vdots \\ a_0 \end{pmatrix} = \begin{pmatrix} (X^m)^T \\ \vdots \\ (X)^T \\ U^T \end{pmatrix} Y$$

Lo que termina siendo equivalente a resolver el sistema:

$$\begin{pmatrix} (X^{m})^{T}X^{m} & (X^{m})^{T}X^{m-1} & \dots & (X^{m})^{T}U \\ \vdots & & \vdots & & \vdots \\ (X)^{T}X^{m} & (X)^{T}X^{m-1} & \dots & (X)^{T}U \\ U^{T}X^{m} & U^{T}X^{m-1} & \dots & U^{T}U \end{pmatrix} \begin{pmatrix} a_{m} \\ \vdots \\ a_{0} \end{pmatrix} = \begin{pmatrix} (X^{m})^{T}Y \\ \vdots \\ (X)^{T}Y \\ U^{T}Y \end{pmatrix}$$

Ejercicio del examen del IIPA2023

Sea $f(x) = \sqrt{x - x^2}$ y $P_2(x)$ el polinomio interpolante de Lagrange en $x_0 = 0$, x_1 y $x_2 = 1$. Calcule el valor de x_1 más grande en el intervalo (0,1) para el cual $f(0,5) - P_2(0,5) = -0.25$

Tip: evalúe en los puntos desde el inicio, así se sabe que términos se cancelaran.

$$f(x_0) = f(0) = 0$$
 $f(x_1) = \sqrt{x_1 - x_1^2}$ $f(x_2) = f(x_1) = 0$

Parte I: Determine el polinomio de Lagrange

$$\begin{split} &P_2(x) \\ &= L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) \\ &= \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}f(x_0) + \frac{(x - x_1)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}f(x_1) + \frac{(x - x_1)(x - x_2)}{(x_2 - x_0)(x_2 - x_1)}f(x_2) \\ &= \frac{(x - 0)(x - 1)}{(x_1 - 0)(x_1 - 1)}\sqrt{x_1 - x_1^2} \\ &= \frac{x(x - 1)}{x_1(x_1 - 1)}\sqrt{x_1 - x_1^2} \end{split}$$

Parte 2: Evalúe en 0.5

$$P_2(0,5) = \frac{0.5(0,5-1)}{x_1(x_1-0.5)} \sqrt{x_1 - x_1^2} = -\frac{0.25\sqrt{x_1 - x_1^2}}{x_1(x_1-1)}$$

Parte 3: Garantizar que $f(0,5) - P_2(0,5) = -0.25$

$$f(0,5) - P_2(0,5) = -0.25$$

$$0,5 + \frac{0.25\sqrt{x_1 - x_1^2}}{x_1(x_1 - 1)} = -0.25$$

$$\frac{0.5 + 0.25}{0.25} = \frac{\sqrt{x_1 - x_1^2}}{x_1(x_1 - 1)}$$

$$-3 = \frac{\sqrt{x_1(1 - x_1)}}{-x_1(1 - x_1)} = -\frac{1}{\sqrt{x_1(1 - x_1)}}$$

$$9x_1(x_1 - 1) = 1$$

$$-9x_1^2 + 9x_1 - 1 = 0 \implies x = \frac{1}{2} \pm \frac{\sqrt{5}}{6}$$

Por lo tanto, $x_1 = \frac{1}{2} + \frac{\sqrt{5}}{6} \approx 0.8726779$ Teoremas Preliminares.

Ejercicio Spline Cúbico

Encuentre los splines cúbicos para la función $f(x) = \frac{1}{1+25x^2}$ en los puntos $\{x_0, \dots, x_4\} = \{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\}$. Suponga condiciones naturales en -1 y fijas en 1.

Note que $h_j = \frac{1}{2}$ para todo j. Del númeral 5 en las fórmulas de recurrencia se obtiene que:

$$\frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) = h_0c_0 + 2(h_0 + h_1)c_1 + h_1c_2$$

$$\frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) = h_1c_1 + 2(h_1 + h_2)c_2 + h_2c_3$$

$$\frac{3}{h_3}(a_4 - a_3) - \frac{3}{h_2}(a_3 - a_2) = h_2c_2 + 2(h_2 + h_3)c_3 + h_3c_4$$

Sustituyendo los valores conocidos:

$$6(f(0) - f(-1/2)) - 6(f(-1/2) - f(-1)) = c_0/2 + 2c_1 + c_2/2$$

$$6(f(1/2) - f(0)) - 6(f(0) - f(-1/2)) = c_1/2 + 2c_2 + c_3/2$$

$$6(f(1) - f(1/2)) - 6(f(1/2) - f(0)) = c_2/2 + 2c_3 + c_4/2$$

■ Sustituyendo los valores conocidos:

$$6(f(0) - f(-1/2)) - 6(f(-1/2) - f(-1)) = c_0/2 + 2c_1 + c_2/2$$

$$6(f(1/2) - f(0)) - 6(f(0) - f(-1/2)) = c_1/2 + 2c_2 + c_3/2$$

$$6(f(1) - f(1/2)) - 6(f(1/2) - f(0)) = c_2/2 + 2c_3 + c_4/2$$

Simplificando:

$$\frac{3450}{377} = c_0 + 4c_1 + c_2$$
$$-\frac{600}{29} = c_1 + 4c_2 + c_3$$
$$\frac{3450}{377} = c_2 + 4c_4 + c_4$$

Sustituyendo los valores conocidos:

$$6(f(0) - f(-1/2)) - 6(f(-1/2) - f(-1)) = c_0/2 + 2c_1 + c_2/2$$

$$6(f(1/2) - f(0)) - 6(f(0) - f(-1/2)) = c_1/2 + 2c_2 + c_3/2$$

$$6(f(1) - f(1/2)) - 6(f(1/2) - f(0)) = c_2/2 + 2c_3 + c_4/2$$

Simplificando:

$$\frac{3450}{377} = c_0 + 4c_1 + c_2$$
$$-\frac{600}{29} = c_1 + 4c_2 + c_3$$
$$\frac{3450}{377} = c_2 + 4c_4 + c_4$$

En este punto se necesitan agregar las condiciones de frontera. Si se empieza por las naturales se tendría que

 $S''(-1) = S_0''(-1) = 2c_0 = 0$, lo cuál implica que $c_0 = 0$.

La condición en el extremo derecho exige que $f'(1) = -\frac{25}{338} = b_4$. Si se agrupan las últimas ecuaciones en las fórmulas de recurrencia, se obtendría:

$$a_n = a_{n-1} + b_{n-1}h_{n-1} + c_{n-1}h_{n-1}^2 + d_{n-1}h_{n-1}^3$$

$$b_n = b_{n-1} + 2c_{n-1}h_{n-1} + 3d_{n-1}h_{n-1}^2$$

$$c_n = c_{n-1} + 3d_{n-1}h_{n-1}$$

Si se despeja b_{n-1} y d_{n-1} desde la segunda y tercera ecuación respectivamente y luego se sustituye y se simplifica en la primera ecuación, se obtiene que:

$$2h_{n-1}c_n + h_{n-1}c_{n-1} = \frac{3}{h_{n-1}}(a_{n-1} - a_n)$$
$$2h_3c_4 + h_3c_3 = \frac{3}{h_3}(a_3 - a_4)$$

Sustituyendo los valores conocidos se obtiene que:

$$c_4 + c_3/2 = 6(f(1/2) - f(1))$$

$$2c_4 + c_3 = \frac{450}{377}$$

Juntando las condiciones de frontera obtenemos que:

$$0 = c_0$$

$$\frac{450}{377} = 2c_4 + c_3$$

$$\frac{3450}{377} = c_0 + 4c_1 + c_2$$

$$-\frac{600}{29} = c_1 + 4c_2 + c_3$$

$$\frac{3450}{377} = c_2 + 4c_3 + c_4$$

■ Juntando las condiciones de frontera obtenemos que:

$$0 = c_0$$

$$\frac{450}{377} = 2c_4 + c_3$$

$$\frac{3450}{377} = c_0 + 4c_1 + c_2$$

$$-\frac{600}{29} = c_1 + 4c_2 + c_3$$

$$\frac{3450}{377} = c_2 + 4c_3 + c_4$$

Resolviendo el sistema anterior se obtiene que:

$$[a_0, a_1, a_2, a_3, a_4] = \left[\frac{1}{26}, \frac{4}{29}, 1, \frac{4}{29}, \frac{1}{26}\right]$$

$$[b_0, b_1, b_2, b_3] = \left[-\frac{17850}{36569}, \frac{4425}{2813}, -\frac{1275}{36569}, -\frac{52425}{36569}\right]$$

$$[c_0, c_1, c_2, c_3, c_4] = \left[0, \frac{150750}{36569}, -\frac{268350}{36569}, \frac{166050}{36569}, -\frac{61200}{36569}\right]$$

$$[d_0, d_1, d_2, d_3] = \left[\frac{100500}{36569}, -\frac{279400}{36569}, \frac{289600}{36569}, -\frac{151500}{36569}\right]$$

Ejercicio de Richard Burden, Sección de trazadores cúbicos

Un trazador cúbico sujeto S de la función f está definido por:

$$S(x) = \begin{cases} S_0(x) = 1 + Bx + 2x^2 - 2x^3 & x \in [0, 1] \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

Obtenga f'(0) y f'(2).

Ejercicio de Richard Burden, Sección de trazadores cúbicos

Un trazador cúbico sujeto S de la función f está definido por:

$$S(x) = \begin{cases} S_0(x) = 1 + Bx + 2x^2 - 2x^3 & x \in [0, 1] \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

Obtenga f'(0) y f'(2).

Dado que estos representa trazadores cúbicos entonces se cumplen las siguientes condiciones:

$$S_0(1) = S_1(1)$$

$$S_0'(1) = S_1'(1)$$

Ejercicio de Richard Burden, Sección de trazadores cúbicos

Un trazador cúbico sujeto S de la función f está definido por:

$$S(x) = \begin{cases} S_0(x) = 1 + Bx + 2x^2 - 2x^3 & x \in [0, 1] \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

Obtenga f'(0) y f'(2).

Dado que estos representa trazadores cúbicos entonces se cumplen las siguientes condiciones:

$$S_0(1) = S_1(1)$$

$$S_0'(1) = S_1'(1)$$

Ejercicio de Richard Burden, Sección de trazadores cúbicos

Un trazador cúbico sujeto S de la función f está definido por:

$$S(x) = \begin{cases} S_0(x) = 1 + Bx + 2x^2 - 2x^3 & x \in [0, 1] \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

Obtenga f'(0) y f'(2).

Dado que estos representa trazadores cúbicos entonces se cumplen las siguientes condiciones:

$$S_0(1) = S_1(1)$$

 $S'_0(1) = S'_1(1)$

La primera ecuación deja como resultado:

$$1 + B = S_0(1) = S_1(1) = 1 \Longrightarrow B = 0.$$

La segunda ecuación dá como resultado:

$$-2 = S'_0(1) = S'_1(1) = b \Longrightarrow b = -2.$$

Con esto se puede calcular $f'(0) = S'_0(0) = 0$ y $f'(2) = S'_1(2) = 11$.

Referencias

Burden, Richard L y otros (2017). Analisis numerico.

Xiao, Xiaoyong y Hongwei Yin (2015). "A simple and efficient method with high order convergence for solving systems of nonlinear equations". En: Computers & Mathematics with Applications 69.10, págs. 1220-1231.