(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-244036 (P2002-244036A)

(43)公開日 平成14年8月28日(2002.8.28)

(51) Int.Cl. ⁷	識別記号	FI 7~7	'コード(参考)
G 0 2 B 13/24			2H087
13/18		-	5F046
13/22		13/22	
G03F 7/20	5 2 1	G 0 3 F 7/20 5 2 1	
HO1L 21/027		H01L 21/30 515D	
·		審査請求 未請求 請求項の数11 〇L	(全 10 頁)
(21)出願番号	特願2001-392742(P2001-392742)	(71) 出願人 390032414	
		カールーツアイスースチフツ	ング
(22) 出顧日	平成13年12月25日(2001.12.25)	CARL-ZEISS-ST	IFTUNG
		ドイツ連邦共和国ハイデンハ	イム アン
(31)優先権主張番号 10064685.9		デア ブレンツ (番地なし))
(32)優先日	平成12年12月22日(2000.12.22)	(72)発明者 カールーハインツ シュース	ター
(33)優先権主張国	ドイツ (DE)	ドイツ連邦共和国 ケーニヒ	スプロン レ
		ヒベルクシュトラーセ 24	
		(72)発明者 アレクサンダー エップレ	
		ドイツ連邦共和国 アーレン	ベーメルヴ
		アルトシュトラーセ 33	
		(74)代理人 100061815	
		弁理士 矢野 敏雄 (外4:	名)
			最終頁に続く

(54) 【発明の名称】 投影レンズ、及び微細構造化部品の製造方法

(57)【要約】

【課題】 正の屈折力のレンズだけからなる第1レンズ 群を有するリソグラフィー投影レンズを提供する。

【解決手段】 正の屈折力を有する第1レンズ群(G 1)、負の屈折力を有する第2レンズ群(G2)、及び絞りが配置された正の屈折力を有する少なくとも1つの別のレンズ群を有し、その際第1レンズ群(G1)が正の屈折力を有するレンズだけからなる投影レンズにおいて、第1レンズ群(G1)の正の屈折力を有するレンズ(L101~L103;L201~L202)の数が、前記別のレンズ群(G5)の絞りの前方に配置された正の屈折力を有するレンズ(L116~L119;L215~L217)の数よりも小さい。

1

【特許請求の範囲】

【請求項1】 正の屈折力を有する第1レンズ群(G 1)、負の屈折力を有する第2レンズ群(G2)、及び 絞りが配置された正の屈折力を有する少なくとも1つの 別のレンズ群を有し、その際第1レンズ群(G1)が正 の屈折力を有するレンズだけからなる投影レンズにおい て、第1レンズ群(G1)の正の屈折力を有するレンズ (L101~L103; L201~L202) の数が、 前記の別のレンズ群(G5)の絞りの前方に配置された 正の屈折力を有するレンズ(L116~L119; L2 10 15~L217)の数よりも小さいことを特徴とする投 影レンズ。

【請求項2】 第1レンズ群(G1)の少なくとも1つ のレンズが非球面レンズ(L103, L201)であ る、請求項1記載の投影レンズ。

【請求項3】 第1レンズ群(G1)が少なくとも2つ の正のレンズ(L201~L202, L101~L10 3)を有する、請求項1記載の投影レンズ。

【請求項4】 第1レンズ群(G1)の全てのレンズ (L201~L202, L101~L103) が両凸で 20 ンズが使用される。 ある、請求項1記載の投影レンズ。

【請求項5】 第1レンズ群(G1)内の非球面レンズ (L103)の非球面度が最適な球面レンズ表面に対し て200ミクロンより大きくずれている、請求項2記載 の投影レンズ。

【請求項6】 投影レンズが少なくとも0.8、有利に は0.9の開口数を有する、請求項1から5までのいず れか1項記載の投影レンズ。

【請求項7】 第2レンズ群(G2)の最後のレンズを 別にして、第1及び第2レンズ群のレンズが殆ど同一の 30 直径を有する、請求項1から6までのいずれか1項記載 の投影レンズ。

【請求項8】 少なくとも初めの9つのレンズ表面の直 径が殆ど同じ大きさか又は有利には1.3よりも小さ い、請求項1から7までのいずれか1項記載の投影レン ズ。

【請求項9】 物体側に配置されたレンズの近似値的に 同じ直径(D1)が後続のレンズ(L120, L21 8)の最大直径(D2)のほぼ半分の大きさである、請 求項14記載の投影レンズ。

【請求項10】 投影レンズが、有利には、250nm よりも小さい波長を有する投影露光のために必要な光線 を調達するための光源としてエキシマーレーザを有す る、マイクロリソグラフィーの投影露光装置の構成成分 である、請求項1から9までのいずれか1項記載の投影 レンズ。

【請求項11】 感光層を有する基板をマスク、及び前 記請求項1から9までのいずれか1項記載の投影レンズ を有する投影露光装置を用いて紫外レーザ光により露光 しかつ場合により感光層の現像後にマスクに含まれたパ 50 さい直径を有するように構成することができる。それに

ターンに相応して構造化することを特徴とする、微細構 造化部品の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、正の屈折力を有す る少なくとも2つのレンズ群を有する、マイクロリソグ ラフィー用の投影レンズに関する。

[0002]

【従来の技術】米国特許第5,990,926号明細書か ら、3つの腹部、即ち3つの正の屈折力のレンズ群を有 するマイクロリソグラフィーのための投影レンズが公知 である。該投影レンズは、光の伝播方向で観察される。 この場合、第1レンズ群は正のレンズのみを有し、この 場合ウェハ側の開口数は0.6である。

【0003】米国特許第5,969,803号明細書か ら、3つの腹部、即ち3つの正の屈折力のレンズ群を有 するマイクロリソグラフィーのための投影レンズが公知 である。該投影レンズは、光の伝播方向で観察される。 この開口数も0.6であり、その際純粋に球面の対物レ

【0004】欧州特許出願公開第332201号明細書 から、結像性能の改善のためにウェハ側に最後の2つの レンズがそれぞれ非球面のレンズ表面を有し、その際非 球面のレンズ表面が向かい合うように配置されているマ イクロリソグラフィーための投影レンズが公知である。 【0005】との刊行物から公知の投影系は、ホトリソ グラフィーのために設計されており、かつそれに相応し て僅かな数のレンズを有する。それで達成可能な結像性 能は、マイクロリソグラフィーのための投影系に設定さ れる要求に相応しない。特に、この投影レンズで達成す ることができる開口数は、0.45であるに過ぎない。 [0006]

【発明が解決しようとする課題】本発明の課題は、高い 開口数並びに極めて良好な結像性能を有する、マイクロ リソグラフィーための投影レンズを提供することであ る。

[0007]

【課題を解決するための手段】本発明の課題は、請求項 1 に記載の特徴により解消される。

【0008】第1レンズ群を、このレンズ群が正の屈折 力のレンズのみからなりかつ第1レンズ群の正の屈折力 のレンズの数が、正の屈折力の別のレンズ群の絞りの前 方に配置された正のレンズの数よりも小さいように構成 することにより、小さい構造長さで特に高い開口数を有 する投影レンズが提供される。

【0009】正の屈折力のレンズのみからなる第1レン ズ群を設けることにより、該投影レンズの入力領域にお いて入力光線の広がりが阻止される。この手段に基づ き、この第1レンズ群は極めて細い、即ち該レンズは小

より一面では第1レンズ群において少ない材料が必要とされ、他面ではこのレンズ群によって要求され、かつ開口数を高めるために絞りの前方に別の正のレンズを使用することができる構造スペースが縮小される。

【0010】特に細く構成された第1レンズ群においては、正の屈折力の後続のレンズ群の僅かな拡大による構造スペース取得に基づきますます、ペッツバール補正をこの後続の正のレンズ群に転位させることが可能である。ペッツバール補正のための特に大きな貢献を、絞りが配置された正のレンズ群が、強度の負の屈折力による10この群の前方の強度の光線入射と結合してもたらす。

【0011】有利には、第1レンズ群のレンズの直径は 物体野の1.3倍未満である。

【0012】第1レンズ群において少なくとも1つのレンズに、投影レンズの結像性能の改善に貢献する非球面表面を付与するが有利であることが判明した。

【0013】第1レンズ群において、最適な球面レンズ表面に対して300ミクロンより大きくずれる球面レンズ表面を設けるのが有利であることが判明した。特に、このような非球面をレンズ装置の第1レンズ群の物体側のレンズ表面に配置することが有利であることが判明した。レチクルの直ぐ後方の前記強度の非球面度は、視野に依存する収差を補正するために必要かつ特に効果的である。非球面度の大きさは、光束横断面、及び常に出力開口よりも小さい入力開口に依存する。球面に対する偏差が大きいにもかかわらず、簡単な非球面形は全結像収差補正に対して最適な貢献を行う。それにもかかわらず、簡単な非球面形に従い、この非球面形は極めて良好に製作可能である。

【0014】その他の有利な手段は、別の従属請求項に 30 記載されている。

[0015]

【実施例】次に、実施例により本発明を説明する。

【0016】図1により、まず投影露光装置の原理的構造を説明する。投影露光装置1は、照明装置3及び投影レンズ5を有する。投影レンズ5は開口絞りAPを有するレンズ装置19を含み、この場合該レンズ装置19によって光軸7が規定される。種々のレンズ装置については、図2~3により詳細に説明する。照明装置3と投影レンズ5の間にマスク9が配置されており、該マスクは 40マスクホルダ11により光路内に保持される。このようなマイクロリソグラフィーで使用されるマスク9は、マイクロメートル~ナノメートルの構造を有し、該構造は投影露光により10分の1まで、特に4分の1に縮小されて像面13に結像される。像面13内に、基板ホルダ17によって位置決めされた基板15ないしはウェハが保持される。

【0017】なお解像可能な最小構造は、照明のために使用される光の波長並びに投影レンズ5の像側の開口数に依存し、その際投影露光装置1の最大達成可能な解像 50

力は照明装置3の波長が小さくなるに伴いかつ投影レンズ5の像側の開口数が高くなるに伴い向上する。

【0018】図2には、マイクロリソグラフィーのための投影レンズが示されている。この投影レンズは、6つのレンズ群を有する。

【0019】第1レンズ群は、全てが両凸である正のレンズL101~103を有する。最後のレンズL103は、両側の表面に非球面を備えている。第1のウエスト部の前方に設けられた非球面表面により、特に像野帯域の領域内のコマ収差の意図された補正が可能である。この非球面のレンズ表面は、正接断面及びサジタル断面における斜角球面収差に僅かな影響を及ぼすに過ぎない。それに対して、ウエスト部の後方の非球面のレンズ表面により、特に像野帯域と像野縁部の間の領域における斜角サジタル収差を補正することができる。

【0020】従って、第2の非球面のレンズ表面を設けるとは、高められた開口数においてコマ収差に起因する像性能の低下に反作用するための貴重な手段である。【0021】第2レンズ群は、4つのレンズL104~L107を有する。第2レンズ群の前記の最後のレンズL107の像側に配置されたレンズ表面は、非球面のレンズ表面を有する。この非球面のレンズ表面により、特に像野帯域と像野縁部の間の領域における像収差の補正が可能である。特に、サジタル断面の観察において明らかになるように、高次の像収差を補正することができる。これらのサジタル断面に現れる像収差を補正することは特に困難であるので、これは特に貴重な貢献であるとは特に困難であるので、これは特に貴重な貢献である

【0022】第3レンズ群は、レンズL108~L111を有する。とのレンズ群は、正の屈折力を有する。との場合も、このレンズ群の最後のレンズの最後の、像側に配置されたレンズ面は非球面化されている。との非球面は一面では有利にコマ収差に作用し、他面ではこの非球面は軸上及び斜角球面収差に補正作用する。収差の補正は、との非球面表面の領域内の大きな光束直径に基づき特に良好に可能である。

【0023】さらに引き続くレンズL112~L115を有するレンズ群は、負の屈折力を有する。

【0024】引き続いての、正の屈折力を有しかつレンズL116~L123を有するレンズ群には、絞りが配置されている。この絞りは、レンズL119の後方に設けられている、従って絞りの前方に正の屈折力を有する4つのレンズが配置されている。この投影レンズの像収差の良好な補正は、決定的に絞りの前方の正のレンズにも起因する。これらのレンズの大きな直径により、これらのレンズは大きな部分焦点距離を有し、それにより視野負荷は低下しかつ比較的高い開口数において良好な補正が可能である。就中、絞りの前方のこれらの正のレンズは有利にコマ収差に作用する。さらに、これらのレンズ群は少ないレンズ数を特徴とする。

【0025】第6のかつ最後のレンズ群は、レンズL1 *影レンズのための必要な構造スペースは1000mmで 24~L127を有する。レンズの正確なデータは、第 1表に示されている。像野は8×26mmである。との 投影レンズがこのように高い開口数で27個に過ぎない レンズを有することは、注目すべきことである。この投*

ある。正確なレンズデータは、第1表に示されている。 [0026]

【表1】

第1表

レンズ	半径	厚さ	材料	%レンズ直径	248nm にお ける屈折率
0	無限	20,9706	1710	61,246	0,999982
L101	1160,20105			66,130	1,508373
	-363,46168			66,788	0.999982
L102	256,92295			68.174	1,50837
L., U.	-429,93637	0.7500		67,973	0,99998
L103	353,94471	15,3795		66,245	1,50837
	-1064,34630			65,385	0.99998
L104	365,62225	10,0788		62,164	1,508373
	150,28204	24,6344		57,665	0,999982
L105	-160,21163	7,0000		57,121	1,508373
	138,69010	21,4314	L710	57,066	0,999982
L106	-257,68200			57,709	1,508373
	280,52202	27,7747		62,688	0,999982
L107	-122,86419	7,0000		64,152	1,508373
	-524,02005	A 21,2270	L710	75,975	0,99998
L108	-334,99360			88,903	1,50837
	-142,00372			92,514	0,999983
L109	-1079,51219	40,8554		109,187	1.50837
	-172,00795			111,327	0.99998
L110	438,67858			122,583	1,50837
	-378,94602	0.7500		122,708	0,99998
L111	162,42382	51,1885	SIO2	113,015	1,50837
	-5736,26278			110,873	0,99998
L112	165,15494	14.7530	SIO2	92,577	1,50837
	110,95539	37,6018	L710	79,631	0,99998
L113	2352,60464	7,0000		78,360	1,50837
	158.84317	34,9167		71,086	0,99998
L114	-168,34448			70,590	1,50837
	245,44885	39,3735		71,824	0,99998
L115	-113,75821	7,0000	SIO2	72,408	1,50837
	666,85880	23,5469	L710	88,173	0,99998
L116	-278,47485			90,415	1,50837
	-195,62311	0,7500		95,097	0,99998
L117	1596621.30490			113,071	1,50837
	-223,02293			115,353	0,99998
L118	2651,21287	31,3744		127,060	1,50837
	-371,06734			128,117	0,99998

[0027]

※ ※【表2】

L119	1313,12466	25,1961	SIO2	131,302	1,508373
	-666,16100	0,0		131,498	1,000000
	無限	9,5632	L710	130,856	0,999983
絞り		0,0		130,856	
L120	812,62806	22,4028	SIO2	132,498	1,50837
	-1458,91764	10,9629	L710	132,481	0,99998
L121	344,45037	42,1137	\$102	130,307	1,50837
	-765,47811	29,1268	L710	129,380	0,99998
L122	-250,24553	7,0000	SIO2	127,451	1,50837
	-632,30447	15,5964	L710	127,304	0,99998
L123	-398,61314	20,5840	SIO2	126,393	1,50837
	-242,62300	1,2010	L710	126,606	0,99998
L124	143,95358	37,1050	SIO2	103,455	1,50837
	419,96225	0,8946	L710	100,698	0,99998
L125	120,37736	30,9217	SIO2	85,039	1,50837
	263,87928	14,8885	L710	79,065	0,99998
L126	1886,79345	7,6305	\$102	74,319	1,50837
	277,58693	3,7474	L710	65,935	0,99998
L127	144,27214	50,1938	SIO2	58,929	1,50837
	423,41846	15,0000	L710	32,250	0,99998
0-	無限	0,0001		13,602 *	.999982

L710 は 950ミリバールで空気である。

非球面 L 103:

EX=0

 $C1 = -0.10457918*10^{-6}$

C2= 0.37706931*10⁻¹¹

C3= 0,61848526*10*16

C4=-0,13820933*10-19

 $C5 = 0.36532387*10^{-24}$

 $C6 = -0.11262277 * 10^{-28}$

非球面 L107:

 $EX = 0,4532178*10^{2}$

C1= 0,19386780*10⁻⁷

 $C2 = -0.22407622 * 10^{-11}$

 $C3 = -0.42016344*10^{-15}$

C4= 0,45154959*10⁻¹⁹

 $C5 = -0.19814724*10^{-23}$

C6= - 0,43279363*10⁻²⁸

非球面 L111:

EX=0

 $C1 = 0.57428624*10^{-8}$

 $C2 = 0,22697489*10^{-12}$

 $C3 = -0.71160755 *10^{-18}$

C4= - 0,72410634 *10-21

C5= 0,32264998 *10⁻²⁵,

 $C6 = -0.55715555 * 10^{-30}$

【0029】非球面表面は、方程式:

*【数1】

[0030]

 $\frac{1}{1+\sqrt{1-(1-EX)\bullet\delta\bullet\delta\bullet h\bullet h}}+C_1 h^4+...+C_n h^{2n+2}$

*

 $\delta = 1/R$

【0031】により記載され、この場合Pは、表に示さ れた非球面定数C、~C。を有する半径hの関数として の矢高(光軸7に対する高さ)である。 Rは、表に示さ れた頂点半径である。

【0032】図3には、開口数0.8を有する波長19 3 n mのための投影レンズが示されている。この投影レ ンズを用いると、8×26mmの視野を投影可能であ り、この場合この投影レンズのための必要な構造スペー スは1000mmである。

【0033】第1レンズ群は、2つだけの正のレンズを 有し、これらは両者とも両凸である。このレンズ群G1 の第1レンズL201は、物体側に非球面のレンズ表面 を備えている。

【0034】第2レンズ群G2はレンズL203~L2 05を含み、この場合レンズL203は物体側に非球面 れた、第1及び第2レンズ群G1、G2内に設けられ た、レンズ表面L201及びL202の非球面のレンズ 表面により、投影レンズの入力領域内で良好な光東分離 が達成される。物体に面した側に非球面のレンズ表面を 配置することは、非球面のレンズ表面を有するレンズ表 面が球面レンズ表面でレンズフレームに載るという利点 を有する。それに伴い、球面レンズ表面でのレンズフレ

ームへの良好な接触を著しく容易に保証することができ

【0035】第3のレンズ群は、レンズL206~L2 10を有する。このレンズ群は正の屈折力を有し、その 際両者のレンズL208及びL209は2つの互いに強 度に湾曲した表面を有する。このレンズ群の最後のレン ズL210は、両側に非球面のレンズ表面を有する。と の非球面のレンズ表面により、良好なコマ収差補正が実 施可能である。軸上及び斜角収差の補正はこの領域にお ける大きな光束直径に基づき特に意図的に可能である。 【0036】第4レンズ群は、L211~L214を有 する。これらのレンズ群は、全体で負の屈折力を有す る。それに引き続いた、レンズL215~L220を含 む第5レンズ群においては、レンズL217の後方に絞 りが配置されている。これらのレンズ群は3つの正のレ のレンズ表面を備えている。これらの視野近くに配置さ 40 ンズを有し、この場合絞りの前方の最後のレンズは特に 厚く構成されている。最後のレンズ群G6はレンズL2 21~L225を含み、この際レンズL224は特に厚 く構成されている。とのレンズにより強度の過剰球面収 差補正が達成される。

> 【0037】レンズデータは、第2表に示されている。 [0038]

【表4】

第2表

	レンズ	半径		厚さ	材料	%レンズ直径	193nm にお ける屈折率
0		無限		32,7500	L710	61,249	0,999982
Ē	L201	469,70813	A	14,5480		62,591	
		-20081.10295	i -	5,1612		63,071	0,999712
	L202	354,88345		18,8041	SIO2	63,983	1,560289
		-334,15750		9,4004		63,889	0,999712
г	L203	381,44025		28.0599	SIQ2	61,107	1,560289
Г		140,16853		27,1615	HE	55,898	0,999712
	L204	-149,89590		23,2652	SIO2	55,910	1,560289
		229,41466		33,1065		62,024	0,999712
	L205	-105,40274		7,0000	SIO2	63,462	1,560289
		-336,55620		16,9549	HE	74,238	0,999712
Г	L206	-165,03805		10,7419	SIO2	78,416	1,560289
		-147,21753		0,7575	HE	82,164	0,999712
	1.207	-314,39712		27,7710	SIO2	90,707	1,560289
		-145,41305		0,7500	HE	94,176	0,999712
Г	L208	-50326,68803		38,7705	SIO2	107,592	1,560289
		-211,33124		0,7500	HE	109,537	0,999712
	L209	184,32395		41,8364	SIO2	112,438	1,560289
		1282,45923		0,7500		110,470	0,999712
	L210	153,97703		35,8150	SIO2	99,821	1,560289
		538,04124	Α	8,4636	HE	95,507	0,999712
	L211	180,72102		7,8641	\$102	82,558	1,560289
		116,94830		38,5761	HE	73,768	0,999712
	L212	-292,06054		7,0000	SIO2	71,989	1.560289
		121,89815		26,8278		65,096	0.999712
	L213	-416,86096		7,0000		65,191	1,560289
		320,06306		34,0097		66,681	0.999712
	L214	-106,74033		7,1599		67,439	1,560289
		842,66128		12,4130		82,767	0,999712
	L215	-531,44217		35,2270		84,311	1,560289
		-173,85357		0,7500	HE	93,111	0,999712
	L216	5293,05144		34,6817		109,462	1,560289
		-359,30358		5,8421	HE	114,271	0,999712
	L217	1423,10335		73,8658	SIO2	123,709	1,560289
		-302,64507		11,7059	HE	130,054	0,999712
		無限		-4,1059	HE	129,751	0,999712
		無限		0,0000		129,751	

[0039]

【表5】

644,68375	29,3314	SIO2	130,947	1,560289
-1224,04524	0,7500	HE	130,998	0,999712
324,02485	28,7950	SIO2	129,211	1,560289
1275,35626	44,6599	HE	127,668	0,999712
-246,29714	25,7695	\$102	126,964	1,560289
-260,21284	0,7500	HE	129,065	0,999712
265,62632	25,9894	\$102	115,965	1,560289
689,74229	1,8638	HE	113,297	0,999712
148,08236	25,7315	SIO2	100,768	1,560289
256,32650	14,8743	HE	97,685	0,999712
130,15491	28,8792	SIO2	81,739	1,560289
554,81058	6,6463	HE	77,855	0,999712
無限	67,6214	CAF2HL	76,291	1,501436
無限	0,9000	HE	33,437	0,999712
無限	4,0000	SIO2	32,220	1,560289
無限		L710	29,816	0,999982
	-1224,04524 324,02485 1275,35626 -246,29714 -260,21284 265,62632 689,74229 148,08236 256,32650 130,15491 554,81058 無限	-1224,04524 0,7500 324,02485 28,7950 1275,35626 44,6599 -246,29714 25,7695 -260,21284 0,7500 689,74229 1,8638 148,08236 25,7315 256,32650 14,8743 130,15491 28,8792 554,81058 6,6463 無限 67,6214 無限 0,9000 無限 4,0000	-1224,04524 0,7500 HE 324,02485 28,7950 StO2 1275,35626 44,6599 HE -246,29714 25,7696 StO2 -260,21284 0,7500 HE 265,62632 25,9894 StO2 689,74229 1,8638 HE 148,08236 25,7315 StO2 256,32650 14,8743 HE 130,15491 28,8792 StO2 554,81058 6,6463 HE 無限 67,6214 CAF2HL 無限 0,9000 HE	-1224,04524 0,7500 HE 130,998 324,02485 28,7950 SIO2 129,211 1275,35626 44,6599 HE 127,668 -246,29714 25,7695 SIO2 128,964 -260,21284 0,7500 HE 129,065 265,62632 25,9894 SIO2 115,965 689,74229 1,8638 HE 113,297 148,08236 25,7315 SIO2 100,768 256,32650 14,8743 HE 97,685 130,15491 28,8792 SIO2 81,739 554,81058 6,6463 HE 77,855 無限 67,6214 CAF2HL 76,291 無限 0,9000 HE 33,437 無限 4,0000 SIO2 32,220

L710 は 950ミリバールで空気である。

非球面 L201:

EX=0

非球面 L203:

 $C1 = 0.98184588 *10^{-7}$

EX=0

C2= - 0,34154428 *10-11

 $C1 = 0.26561042 * 10^{-7}$

 $C3 = 0.15764865 *10^{-15}$

C2= 0,78262804 *10⁻¹²

 $C4 = 0.22232520 * 10^{-19}$

 $C3 = -0.24383904 * 10^{-15}$

 $C5 = -0.79813714 * 10^{-23}$

C4= - 0,24860738 *10⁻¹⁹

C5= 0,82092885 8 *10⁻²³

C6= 0.71685766 *10⁻²⁷

C6= -0,85904366 *10⁻²⁷

非球面 L210:

EX=0

 $C1 = 0.20181058 *10^{-7}$

 $C2 = -0.73832637*10^{-12}$

C3= 0,32441071 *10*17

 $C4 = -0.10806428 * 10^{-21}$

 $C5 = -0.48624119 *10^{-25}$

C6= 0,10718490 *10⁻²

【0040】図4には、波長248nmのために設計さ れたもう1つのレンズ装置19が示されている。このレ 30 に良好に可能である。 ンズ装置は、6つのレンズ群に分割可能である25個の レンズを有する。このレンズ装置の物体面0から像面 0' までの構造長さは1000mmである。このレンズ 装置の開口数は、像側で0.8である。

【0041】第1レンズ群G1は、2つの正の両凸レン ズL301及びL302を有する。該レンズL301 は、物体側に非球面のレンズ表面を備えている。

【0042】負の屈折力を有する第2レンズ群G2は、 L303~L305を有する。レンズL303は、物体 側に非球面のレンズ表面を備えている。レンズL301 ~ L303の前記の両者の非球面のレンズ表面により、 視野収差の良好な補正が可能である。さらに、との視野 近くに配置された非球面により強度の光束分離が達成さ れる。

【0043】第3レンズ群G3は、レンズL306~L 310を含みかつ正の屈折力を有する。レンズL310 は、物体側に非球面のレンズ表面を備えている。との非 球面のレンズ表面により、特にコマ収差並びに軸上及び 斜角収差の良好な補正が可能である。軸上及び斜角球面 収差の間の媒介する補正は、特に、大きい、しかしの常 50 差は、波長248nmで最大5.0mλである。

に自由レンズ直径未満にある大きな光束直径に基づき特

【0044】第4レンズ群G4は、レンズL311~L 314からなりかつ負の屈折力を有する。

【0045】第5レンズ群G5は、レンズL315~L 320を含みかつ正の屈折力を有する。レンズL317 の後方に、絞りAPが配置されている。L317とL3 18に自由空間を設けることにより、これらの両者のレ ンズの間にスライド絞りを配置することが可能である。 【0046】第6レンズ群は、レンズL321~L32 5を有する。とのレンズ群は同様に正の屈折力を有す る。メニスカスレンズL321~L323は、物体に向 けて湾曲されている。とのレンズ群は、なお、視野に依 存しない、強度の過剰球面補正作用する集光レンズだけ を有する。高い開口数を有する投影レンズの場合には、 このような集光レンズを用いて高次の球面収差の補正も 可能である。

【0047】との投影レンズは、特に非球面のレンズ表 面の使用により、並びに第1レンズ群の正のレンズの数 及び絞りの前方に高い数の正のレンズの特殊な配置によ り特に良好に補正される。理想的球面波の波面からの偏

12

14

【0048】有利には、非球面のレンズ表面は前方に突起したレンズ面に配置されており、それにより相応するレンズはその球面レンズ表面でフレーム面に載る。それに伴い、この非球面レンズは標準フレームで把持するととができる。

【0048】有利には、非球面のレンズ表面は前方に突 *【0049】正確なレンズデータは、第3表に記載され起したレンズ面に配置されており、それにより相応する ている。

[0050]

【表6】

第3表

M1652	a			屈折率	1/2
面	半径	厚さ	ガラス		自由直径
0	無限	32.750000000	L710	0.99998200	54.410
1	480.223886444AS	16.335451604	5102	1.50839641	62.519
2	-1314.056977504	2.406701682	L710	0.99998200	63.128
3	329.047567482	20.084334424	SI02	1.50839641	63.870
4	-305.091682732	4.977873027	L710	0.99998200	63.737
5	383.800850809AS	34.498893572	SIO2	1.50839641	61.345
6	132.468446407	27.572735356	L710	0.99998200	54.949
7	-146.238861297	7.000000000	SIO2	1.50839641	54.908
8	202.067070373	26.902804948	L710	0.99998200	58.294 59.529
9	-124.604159239	7.000000000	SIO2	1.50839641	69.147
10	-9484.579900199	32.328722869	L710	0.99998200	80,852
11	-199.920035154	13.239699068	S102	1.50839641 0.99998200	84.387
12	-156.061108055	0.750000376	L710	1.50839641	96.077
13	-647.599685325	32.765465982	SIO2	0.99998200	99.492
14	-169.327287667	0.750000000	L710	1.50839641	110,237
15	54987.154632328	43.791248851	SIO2 L710	0.99998200	112.094
16	-198.179168899	0.750000000	SIO2	1.50839641	110.618
17	179.965671297	37.961498762 0.750000000	L710	0.99998200	108.526
18	730.008903751	40.190627192	\$102	1.50839641	99.471
19	155.802150060	3.398727679	L710	0.99998200	93.056
20	525.570694901AS 210.625893853	10.671567855	SIO2	1.50839641	85.361
21	118,365024068	39.388505884	L710	0.99998200	74.596
22 23	-290.993996128	7.000000000	5102	1.50839641	72.941
23 24	153.643732808	24.440280468	L710	0.99998200	67.256
25	-364.763623225	7.000000000	5102	1.50839641	67.177
26	201.419421908	40.566258495	L710	0.99998200	68.276
27	-109.336657265	7.00000000	SIO2	1.50839641	69.319
28	1061.293067334	13.765515688	L710	0.99998200	84.656
29	-569.739152405	43.187833722	S102	1.50839641	87.749
30	-187.461049756	0.750000000	L710	0.99998200	99.718
31	1880.153525684	40.009394091	S102	1.50839641	117.515
32	-286.975850149	0.750000000	L710	0.99998200	120.535 127.909
33	1960.535354230	35.788625356	S102	1.50839641	129.065
34	-378.322213808	11.705900000	L710	0.99998200 0.99998200	129.546
35	unendlich	-4.105900000	L710 SIO2	1.50839641	130.708
36	665.988216308	27.299895961	L710	0.99998200	130.863
37	-1514.956732781	0.750000000	SIO2	1.50839641	130.369
38	392.166724592	35.529695156	L710	0.99998200	129.155
39	-2215.367253951	37.377386813 38.989537996	SIO2	1.50839641	128.458
40	-235.632993037	0.835229633	L710	0.99998200	131.819
41	-252.020337993 269.631401556	32.688617719	SIO2	1.50839641	118.998
42	1450.501345093	0.750000001	L710	0.99998200	116.187
43 44	138.077824305	29.652384517	SIO2	1.50839641	100.161
44	255.416969175	2.589243681	L710	0.99998200	96.793
46	139.090220366	30.752909421	SIO2	1.50839641	86.930
47	560.532964454	8.142484947	L710	0.99998200	82.293
48	無限	73.619847203	SIO2	1.50839641	79.524
49	無限	0.900000000	£710	0.99998200	33,378 32,173
50	無限	4.000000000	SI02	1.50839641	29,666
51	無限	12.000000000	L710	0.99998200	13,603
52	無限				13,003
	ANC PAG				

16

15 L710 は 950ミリバールで空気である。

非球面定数

面番号 1	
EX 0.0000	C1 9.53339646e-008
C2 -3.34404782e-012	C3 1.96004118e-016
C4 8.21742864e-021	C5 -5.28631864e-024
C6 4.96925973e-028	C7 0.00000000e+000
C8 0.00000000e+000	C9 0.0000000e+000
面番号 5	
EX 0.0000	
C1 2.89631842e-008	C2 7.74237590e-013
C3 -2.72916513e-016	C4 -8.20523716e-021
C5 4.42916563e-024	C6 -5.10235191e-028
C7 0.00000000e+000	C8 0.00000000e+000
C9 0.00000000e+000	
面番号 20	

0.0000 Eх 1.99502967e-008 C1 -7.64732709e-013 C2 C3 3.50640997e-018 -2.76255251e-022 C4 -3.64439666e-026 C5 5.10177997e-031 C6 C7

0.00000000e+000

【図面の簡単な説明】

【図1】投影露光装置の略示構成図である。

【図2】開口数0.8を有する248nmのための投影 レンズの構成図である。

【図3】開口数0.8を有する193nmのための投影 レンズの構成図である。

【図4】開口数0.8を有する248nmのための投影*

20*レンズの構成図である。

【符号の説明】

1 投影露光装置、 3 照明装置、 5 投影レン ズ、 7 光軸、 9マスク、 11 マスクホルダ、 13 像面、 15 基板、 17 基板ホルダ、 L レンズ、 G レンズ群、 19 レンズ装置、

D レンズの直径、 AP 開口絞り

【図1】

【図2】

[図3]

【図4】

フロントページの続き

Fターム(参考) 2H087 KA21 LA01 NA02 NA04 PA15

PA17 PB20 QA02 QA06 QA14

QA21 QA25 QA26 QA32 QA41

QA42 QA45 RA05 RA12 RA13

RA32 RA42 UA03 UA04 5F046 BA04 CA04 CB12 CB25 【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第2区分

【発行日】平成17年6月23日(2005.6.23)

【公開番号】特開2002-244036(P2002-244036A)

【公開日】平成14年8月28日(2002.8.28)

【出願番号】特願2001-392742(P2001-392742)

【国際特許分類第7版】

G 0 2 B 13/24

G 0 2 B 13/18

G 0 2 B 13/22

G 0 3 F 7/20

H 0 1 L 21/027

[FI]

G 0 2 B 13/24

G 0 2 B 13/18

G 0 2 B 13/22

G 0 3 F 7/20 5 2 1

H 0 1 L 21/30 5 1 5 D

【手続補正書】

【提出日】平成16年10月6日(2004.10.6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

【補正の内容】

【請求項1】

正の屈折力を有する第1レンズ群(G1)、負の屈折力を有する第2レンズ群(G2)、及び絞りが配置された正の屈折力を有する少なくとも1つの別のレンズ群 \underline{b} らなり、その際第1レンズ群 (G1) が正の屈折力を有するレンズだけからなる投影レンズにおいて、第1レンズ群 (G1) の正の屈折力を有するレンズ($L101\sim L103$; $L201\sim L202$)の数が、別のレンズ群(G5)内で絞りの前方に配置された正の屈折力を有するレンズ($L116\sim L119$; $L215\sim L217$)の数よりも小さいことを特徴とする投影レンズ。