Al Essentials

Deep Learning & Artificial Neural Networks

Deep Learning What is DL?

- A subset of machine learning (ML)
- DL Learns features and tasks directly from data such as images, text or sound
- DL is a ML technique that automatically extracts the useful pieces of information or makes decisions using neural networks

Deep Learning

Machine Learning

Deep Learning

- Inspired by the human brain
- ANNs imitates the human brain's behavior to solve complex data problems
- Technologies to solve problems in image, speech and pattern recognition
- Consists out of neurons, the building blocks of an ANN

- Made up of an:
 - Input layer
 - Hidden layer(s)
 - Output layer

Input layer

- Layer where the ANN acquires data
- Feature extractors are used in data classification
- Each input neuron represents a single feature
- When the neurons have data, it is redirected to the neurons in the hidden layer

Hidden layer

- One or more hidden layers
- Perform the most computations
- Learns the mapping function between input and output
- Mapping function: Intelligence that once learned can be used to perform the task
- Sends data to neurons in het output layer

Artificial Neural Networks Output layer

Layers that predicts the outcome

How does it work?

• An artificial neurons or perceptron consist of:

How does it work?

- Each input (X) is assigned with weights (W)
- Weights determine what impact the input will have on the output.

How does it work?

- The inputs and weights are multiplied and their sum is sent to neurons in het hidden layer
- Bias, an additional parameter, is applied to each neuron

How does it work?

- The activation function outcome decides if a neuron is activated or not
- An activated neuron transfers information into the other layers

Feed-forward propagation

Feed-forward propagation

- Process of inputing data into an input node and getting the output through the output node
- Output wrong? Back propagation takes place
- Back propagation: re-adjusting each input's weight to minimize the errors, thus resulting in a more accurate output

Feedforward

Advantages

Fault tolerance

 In an ANN, even if a few neurons are not working properly, that would not prevent the neural networks from generating outputs.

Real-Time Operations

 ANNs can learn synchronously and easily adapt their changing environments

Advantages

Adaptive Learning

 ANNs can learn how to work on different tasks. Based on the data given to produce the right output

Parallel processing capacity

ANNs have the strength and ability to perform multiple jobs simultaneously

Disadvantages

- Unexplained behavior of the network
 - Due to the complexity of the networks, it doesn't provide the reasoning behind the decisions it made. The network is a **black box**.
- Determination of appropriate network structure
 - There is no specified rule for a neural network procedure. A proper network structure is found by a trail and error approach.

Deep Learning

Applications

Self-driving cars

 In the automotive sector, researchers and developers are working diligently on deep learning-based techniques for self-driving cars.

Natural Language Processing

 Machines are taught to understand the complexities associated with languages and semantics. NLP through DL plays a significant role to solve these problems.

Deep Learning

Applications

Healthcare

 Clinical researchers use DL to find a cure for untreatable diseases. DL helps with a speedy diagnostic of dangerous conditions. Many cancer tests, such as the Pap test and Mammograms, use DL to examine cell images under a microscope.

Fraud detection

Fraud prevention is done by recognizing patterns in customer transactions.

Machine learning vs. Deep Learning

- ML algorithms require extensive data, pre-processing, and manual feature extraction. While DL relies on its layers of neural networks and performs feature extraction automatically.
- ML can be used when there is a lack of computational power available or a small dataset. As opposed to DL's performance that improves with the increased size of a dataset. That is why DL algorithms are fed petabytes of data, which can require weeks of training.
- ML algorithms can perform well on low-end machines. While DL performs better on a powerful machine equipped with multiple GPUs, providing higher performance.