LESSON PLAN

Subject code: EP-202 Course title: Condensed Matter Physics

Unit	Detailed Syllabus to be covered for Mid and End Semester Examinations		
1.	Crystal structure and bonding:		
	Crystalline and Amorphous solids		
	➤ Lattice points and Space lattice		
	Basis and Crystal structure		
	➤ Unit cell, Primitive and non-primitive cell, Wigner-Seitz cell		
	Crystal systems and Bravais lattices		
	> Symmetry operations		
	Point and Space groups		
	Crystallographic points, Directions and Planes		
	Miller indices, Interplanar spacings		
	 Simple crystal structures: Simple Cubic, BCC, FCC 		
	> Relation between the density of crystal material and lattice constant in a cubic crystal		
	Crystal structures: NaCl and CsCl		
	> Diffraction conditions, Bragg's law, Correction for Bragg's equation		
	> X-ray diffraction methods: Powder Method, Rotating Crystal Method, Laue's Method		
	 Review of Reciprocal Lattice 		
	➤ Vector algebraic discussion- Relation between fundamental reciprocal lattice vectors		
	(a*, b* and c*) and primitive translation vectors of the direct lattice (a, b and c),		
	▶ Properties of reciprocal lattice vector (i.e. $\sigma_{hkl} \perp (h k l)$; $ \sigma_{hkl} = 1/d_{hkl}$)		
	Reciprocal Lattice to SC, BCC and FCC lattice		
	Properties of Reciprocal lattice and proofs		
	Construction of Brillouin Zones for simple square lattice, BCC and FCC lattices		
	> Types of bonding: ionic, covalent, metallic, van der waals and hydrogen bond		
	➤ Bond dissociation energy of NaCl molecule		
	Calculation of lattice and Cohesive energy of Ionic crystals		
	 Calculation of Madelung constant of Ionic crystals 		
	Point defects: Interstitial, Vacancy, Schottky defect, Frenkel defect, Impurities		
	To determine the concentration of Schottky, Frenkel defects		
	Expression to calculate the number of vacancies at a given temperature		
	➤ Line defects: Edge dislocation and Screw dislocation, Burger's vector and circuit		
2.	Free Electron Theory:		
	> Drude-Lorentz's theory, Main drawbacks of this theory, Review of Sommerfeld theory		
	➤ Electronic motion in one- and three-dimensional box, quantum state and degeneracy		
	➤ Brief Review of Fermi-Dirac statistics, Effect of temperature on Fermi distribution		
	function, Fermi level		
	Conduction by free electrons: Electrical conductivity of Metals		
	Density of states, Fermi Energy, Total energy, Mean or Average energy		
	> Bloch's theorem		
	➤ Kronig-Penny model		
	> Origin of Energy bands, Construction of Brillouin Zones		
	Energy Band formation in solids		
	> Bands in solids and classification of solids on the basis of band theory,		
	Distinction between metal, semiconductor and insulators.		

3. Dielectrics:

- ➤ Dielectric Polarization, Polarizability, Dielectric Constant
- ➤ Different types of polarization: Electronic, Ionic, Orientation and Space charge polarization
- Local Field, Clausius-Mossoti equation
- > Ferroelectric materials
- Piezoelectric and pyroelectric materials
- > Applications of Dielectric Materials

4. Magnetism:

- Concept of Magnetism, Permeability and susceptibility
- > Classification of dia, para, ferro, antiferro and ferrimagnetism, Ferrites,
- > Hysteresis, Soft and Hard Magnetic Materials
- ➤ Langevin's theory of Diamagnetism & Paramagnetism
- ➤ Weiss theory of Paramagnetism & Ferromagnetism (Weiss molecular field theory)
- Ferromagnetic Materials, Origin of internal field and exchange interaction
- ➤ Domain theory and Bloch wall (Exchange, Magnetostatic, Anisotropy, Domain wall/ Bloch wall and Magnetostrictive energy)
- > GMR and other Applications of Magnetic materials

5. Superconductivity:

- ➤ Introduction, Zero resistance and historical developments
- Meissner effect and its contradiction to the Maxwell's equation
- Effect of Magnetic field
- > Type-I and Type-II superconductors
- Critical Parameters, Thermal properties (Entropy, Specific heat), Origin of Energy gap
- ➤ Isotope effect
- > London equations, Penetration depth and Coherence length
- > BCS theory, Cooper Pair, Ground state
- Josephson effect and tunneling, Flux quantization
- ➤ High T_c- superconductors
- > Applications of Superconductors

S. No.	Name of Books/ Authors	Year of publication/Reprint
1.	Introduction to Solid State Physics by C. Kittel	1996/ John Wiley
2.	Elements of Solid State Physics by J.P. Srivastava	2015/PHI
3.	Solid State Physics, by A. J. Dekker	1986/ Macmillan
4.	Solid State Physics, N. W. Ashcroft and N. D. Mermin	1976/ HBC Publication
5.	Materials Science and Engineering by V. Raghavan	2009/PHI Learning
6.	Material Science and engineering: An Introduction by	2003/ John Wiley & Sons, Inc
	W. D. Callister Junior	
7.	Solid State Physics by S.O. Pillai	Wiley Eastern Ltd, 1994