

아파치 하둡 소개

순천향대학교 컴퓨터공학과 이 상 정

순천향대학교 컴퓨터공학과

1

아파치 하둡 소개

학습 내용

- 1. 로컬 파일 시스템의 문제점
- 2. 아파치 하둡 소개
- 3. 하둡 에코 시스템
- 4. 응용 사례

1. 로컬 파일 시스템의 문제점

순천향대학교 컴퓨터공학과

3

아파치 하둡 소개

로컬 파일 시스템 (Local File System)

- □ 로컬 파일 시스템의 각 파일은 inode(메타 데이터)와 데이터 블록으로 구성
- □ inode
 - 파일에 관한 속성 (파일 타입, 권한, 소유자, 파일 이름, 갱신 시간)을 나타내는 메타 데이터
 - 파일 저장된 데이터 블록의 위치를 가리키는 포인터
- □ 데이터 블록
 - 파일의 실제 내용이 저장

순천향대학교

데이터 손실

- □ 하드 드라이브의 고장 시 모든 파일의 데이터가 손실
- □ 동일한 로컬 드라이브를 설치하여 미러링 (mirroring)
- □ 컴퓨터 자체가 고장 나거나 잃어 버리면 여전히 데이터 손실

□ 클라우드에 중요한 파일들을 미러링하여 데이터 손실 방지

순천향대학교 컴퓨터공학과

5

아파치 하둡 소개

인간 실수

- □ 작업자가 실수로 주요한 파일이나 디렉토리를 삭제한 경우 미러링은 도움이 안됨
 - 미러링은 로컬 또는 원격에서 동기화되므로 한 쪽에서 삭제하면 다른 쪽도 삭제됨
- □ 위의 방지를 위해 백업 드라이브에 정기적으로 백업
 - 운영체제는 증분 백업(incremental backup)을 지원
 - 변경 또는 갱신된 부분만 백업하여 공간 맟 처리 시간을 줄임
 - 백업된 시간 이전으로 복구도 가능

저장 공간 (1)

- □ 로컬 드라이브의 비디오, 오디오등의 데이터 등으로 저장 공간 부족은 흔히 발생
- □ 새로운 하드 드라이브를 파일 시스템에 추가하여 확장
 - 이를 RAID-0라고 함

Redundant Array of Inexpensive Disks (RAID)

RAID-0: Space = Sum of All Disks

순천향대학교 컴퓨터공학과

7

아파치 하둡 소개

로컬 파일 시스템의 문제점 - 저장 공간 (2)

- □ 로컬 미러(local mirror)는 RAID-1 이라고 함
 - 전체 공간은 두 개의 디스크 중 하나의 크기

Redundant Array of Inexpensive Disks (RAID)

RAID-1: Space = One of Two Disks

순천향대학교 컴퓨터공학과

2. 아파치 하둡 소개

순천향대학교 컴퓨터공학과

ç

아파치 하둡 소개

아파치 하둡 (Apache Hadoop) 소개

- □ 아파치 하둡은 대용량 데이터의 분산 저장 및 처리를 위한 오픈 소스 프레임워크
 - 특수한 전용 하드웨어가 아닌 일반 범용 머신들로 클러스터의 노드 구성
 - 여분의 리던던시(redundancy)로 구현되어 높은 고장 감내(fault-tolerant) 시스템
 - 한 디스크가 노드가 고장 나도 데이터 손실 없이 나머지 노드가 작업을 수행 _____

순천향대학교 컴퓨터공학과

하둡 분산 파일 시스템 (HDFS) - 복제

- □ 하둡 분산 파일 시스템 (Hadoop Distributed File System)
 - 디폴트로 데이터가 3번 복제(replication)

• 최소한 하나는 다른 노드에 위치

순천향대학교 컴퓨터공학과

11

아파치 하둡 소개

하둡 분산 파일 시스템 - 노드와 클러스터

- □ 물리적 디스크는 노드와 클러스터로 구성
 - 노드 (node)는 디스크들로 구성
 - 클러스터 (cluster)는 노드들로 구성

Cluster: Collection of nodes

순천향대학교 컴퓨터공학과

하둡 분산 파일 시스템 - 블록

- □ 대규모 파일들이 블록으로 분할
- □ 블록 단위로 데이터가 복제, 읽기, 쓰기 수행
 - 예를들어 1 TB의 파일의 경우 블록으로 분할되고 복제되어 여러 노드들에 분산되어 저장

순천향대학교 컴퓨터공학과

13

아파치 하둡 소개

분산 처리 - 맵리듀스 (MapReduce) 알고리즘

□ 하둡의 분산 처리를 위한 맵리듀스 알고리즘은 맵(Map), 셔플(Shuffle), 리듀스(Reduce)의 3 단계로 구성

순천향대학교 컴퓨터공학과

맵리듀스 알고리즘 - 맵 (Map)

□ 맵 단계에서는 데이터를 분할하고, 맵 함수를 적용하여 키-값 쌍 (key-value pair)을 생성

아파치 하둡 소개

맵리듀스 알고리즘 - 셔플 (Shuffle)

□ 셔플 단계에서는 맵 단계 출력의 키/값들의 쌍들을 정렬하고 분할하여 리듀스 단계로 전달

순천향대학교 컴퓨터공학과

맵리듀스 알고리즘 - 리듀스 (Reduce)

- □ 리듀스 단계에서는 각 분할에 대해 리듀스 함수를 적용
- □ 맵리듀스 알록리즘은 분할정복 (divide-and-conquer) 기반 알고리즘으로 하나의 큰 작업을 여러 개의 작은 작업 으로 나누어 병렬 처리

아파치 하둡 소개

맵리듀스 단어 카운트 예 - 입력

- □ 맵리듀스 알고리즘의 "Hello World" 버전인 단어 카운트 (word count) 예로 동작 설명
 - Lewis Carroll 의 모든 책에 대한 단어를 카운트
- □ 하둡은 먼저 데이터 파일들을 분할하여 데이터 노드들에 분배
 - 분배 받은 한 노드 예

순천향대학교 컴퓨터공학과

맵리듀스 단어 카운트 예 - 맵

- □ 맵 단계에서 입력 문자열을 토큰화하여 모든 단어에 대해 키-값 쌍을 출력
 - 이 예에서는 3개의 "and"가 3개의 다른 키-값 쌍으로 생성

아파치 하둡 소개

맵리듀스 단어 카운트 예 - 병합 및 셔플

□ 병합 및 셔플 단계에서는 중복된 같은 키-값 쌍을 병합한 후에 셔플

순천향대학교 컴퓨터공학과

맵리듀스 단어 카운트 예 - 리듀스

□ 리듀스 단계에서 다른 노드의 맵 결과들을 취합하여 통합

순천향대학교 컴퓨터공학과

21

아파치 하둡 소개

맵리듀스 단어 카운트 예 - 출력

□ 마지막으로 하둡 프레임워크는 <mark>출력을 취합하여 파일 시스템</mark> 에 저장

3. 하둡 에코 시스템

순천향대학교 컴퓨터공학과

23

아파치 하둡 소개

하둡 에코 시스템

□ 하둡의 핵심 2 요소

• HDFS: 데이터 저장

• 맵리듀스: 데이터의 처리

□ 하둡은 다양한 소스의 구조화/비구조화 데이터를 하둡 클러스터에 가져와 처리하는 응용들을 제공

• 이들 데이터 처리 응용들의 일부는 하둡 에코 시스템 (Hadoop

ecosystem)으로 알려짐

빅 데이터 파이프라인

□ 하둡 에코 시스템은 시스템 관리자, 프로그램 개발자, 데이터 분석가 들이 빅 데이터를 데이터의 소스로 부터 수집 (ingestion) 되어 처리(processing) 및 분석(analysis) 의 파이프라인 단계의 과정을 수행할 수 있는 툴을 제공

순천향대학교 컴퓨터공학과 25

아파치 하둡 소개

하둡 에코 시스템 - 클러스터 관리

□ 하둡 관리자는 주키퍼(Zookeeper)를 사용하여 클러스터를 관리하고, 클러스터에 실행되고 있는 맵리듀스나 YARN의 버전을 파악하고 있어야 함

Responsible for many aspects of cluster maintenance

순천향대학교 컴퓨터공학과

아파치 주키퍼 (Apache Zookeeper)

□ 아파치 주키퍼는 클러스터의 각 노드들 사이의 서비스들을 관리하고 조정

- 하둡에서 처음 실행되는 서비스
- 서비스들 간의 동기화
- 장애 상황 판단 및 복구
- 네임서비스를 통한 부하분산
- 환경 설정 관리

- · Coordinates other services
 - Maintains configuration information
 - Monitors cluster heartbeats
- Runs on an odd number of nodes
 - Requires a majority for tie-breakers
- · Starts before other services

순천향대학교 컴퓨터공학과

27

아파치 하둡 소개

YARN

YARN (Yet Another Resource Negotiator)

- 하둡 클러스터의 각 응용에 자원을 할당하고 모니터링
- 다양한 응용들이 하둡 클러스터 자원의 공유 지원
 - 초기에는 하둡에 맵리듀스만 지원

하둡 에코 시스템 - 작업 기술 및 데이터 수집

□ 개발자는 자바, 파이썬, 스칼라 등을 사용하여 수행할 작업을 기술하고, 플럼(Flume), 우지(Oozie), 스쿱(Sqoop) 등의 툴을 사용하여 데이터를 수집

Responsible for data ingestion

순천향대학교 컴퓨터공학과

29

아파치 하둡 소개

아파치 플럼 (Apache Flume)

- □ 아파치 플럼은 하둡 클러스터에 스트리밍 데이터를 수집하는 오픈소스 서비스
 - 시스템 로그(syslog), 웹 서버 로그, 소셜 미디어 피드 등의 외부 소스로 부터의 스트림 이벤트 데이터들을 하둡 클러스터에 가져옴

- Ingests data into Hadoop cluster
- Commonly used with log files

순천향대학교 컴퓨터공학과

아파치 스쿱 (Apache Sqoop)

□ 아파치 스쿱은 하둡 클러스터와 외부 데이터 저장소 (RDBMS, NoSQL 데이터) 사이에 데이터를 가져오고 내보내는 툴

- Transfers data between HDFS and external data stores
- Can be used with RDBMS and NoSQL

순천향대학교 컴퓨터공학과

31

아파치 하둡 소개

아파치 우지 (Apache Oozie)

- □ 아파치 우지는 하둡의 워크 플로우(workflow, 작업 흐름)를 생성하고 스케줄링하는 툴
 - 하둡의 워크 플로우는 여러 응용들이 직렬 또는 병렬로 수행하여 복잡함
 - 워크플로우에는 자바나 스크립트 뿐만 아니라 맵리듀스, 피그(Pig), 하이브(Hive), 스쿱(Sqoop) 등과 같은 다수의 수행 작업들이 포함

- Schedules workflows
- · Manages multiple jobs

순천향대학교 컴퓨터공학과

하둡 에코 시스템 - 데이터 처리

□ 개발자는 데이터 수집 뿐만 아니라 스파크(Spark), HBase, 피그(Pig) 등의 툴을 사용하여 데이터를 처리

Responsible for data processing

순천향대학교 컴퓨터공학과

33

아파치 하둡 소개

아파치 스파크 (Apache Spark)

- □ 아파치 스파크는 하둡 등과 같은 분산 컴퓨팅 클러스터 상 에서 범용 데이터 분석을 수행하는 프레임워크
 - 메모리 상에 캐시된 데이터를 사용하여 반복적인 작업을 수행하여 기계학습 등과 같은 복잡한 분석을 맵리듀스 보다 빨리 처리
 - 스칼라(Scala), 파이썬, 자바로 응용을 작성

- Iterative, in-memory jobs
 - Cached and fault-tolerant
- Written in Java, Scala, or Python

순천향대학교 컴퓨터공학과

아파치 HBase

- □ 아파치 HBase는 구글의 빅테이블 모델을 따라 개발된 오픈 소스 NoSQL 데이터베이스
 - 시스템 측정 값, 사용자 클릭 등과 같은 대용량 데이터를 행과 열들을 저장
 - 채팅, 이메일과 같은 일관성이 없는 값들을 갖는 데이터를 열에 저장
 - 웹 응용이나 검색 색인과 같이 랜덤 읽기/쓰기 접근이 연속으로 발생 하는 데이터 저장
 - 자바로 Hbase 응용 작성

- NoSQL database
 - Capture large amounts of data
 - Store sparse data with inconsistent values
 - Continuous data with read/write access
- Written in Java

35

아파치 하둡 소개

아파치 피그 (Apache Pig)

□ 아파치 피그는 데이터를 분석하는 플랫폼

- 데이터 플로우 스크립트 언어 "Pig Latin" 제공
- 스크립트를 맵리듀스 프로그램 시퀀스로 변환
- 파이썬, 자바, 자바스크립트, 루비로 함수 작성

- Includes scripting language called Pig Latin
- Transform and analyze large datasets
- Write functions in Python, Java, JavaScript, Ruby

하둡 에코 시스템 - 데이터 분석

- □ 데이터 분석가는 하이브(Hive), 드릴(Drill), 머하웃(Mahout) 등의 툴을 사용하여 데이터를 분석
 - 데이터 마이닝, 추출, 정규화, 필터링, 집계, 질의, 해석, 도식화, 머신러닝을 이용한 예측

Responsible for analyzing data

Data Analyst

순천향대학교 컴퓨터공학과

37

아파치 하둡 소개

아파치 하이브 (Apache Hive)

- □ 아파치 하이브는 하둡 상에서 구축되는 데이터웨어하우스 (data warehouse) 인프라스트럭처
 - HCatalog를 사용하여 데이터를 테이블에 저장하고, Hive Metastore 를 사용하여 데이터를 추적
 - HiveQL이라는 SQL과 같은 질의 언어를 사용하여 맵리듀스 프로그램을 생성하고 실행

- · Stores data in HCatalog and Hive Metastore
- Hive Query Language (HQL)
 - SQL-like query language
- Uses MapReduce

순천향대학교 컴퓨터공학과

아파치 드릴 (Apache Drill)

□ 아파치 드릴은 빅데이터 탐색을 위한 질의 엔진

 SQL을 사용하여 HDFS나 하이브에 저장된 구조화, 반구조화, 비구조화 데이터들에 대한 동적 질의를 수행

- · Structured, semi-structured, and unstructured data
- Multiple data sources and data types
- ANSI-SQL compliant

순천향대학교 컴퓨터공학과

39

아파치 하둡 소개

아파치 머하웃 (Apache Mahout)

□ 아파치 머하웃은 기계학습 라이브러리

- 군집화(clustering), 분류(classification), 협업 필터링(collaborative filtering) 알고리즘 지원
- 대규모 빅데이터를 알고리즘에 적용하여 추천 등과 같은 예측을 시도

- Clustering
- Classification
- Collaborative filtering

순천향대학교 컴퓨터공학과

4. 응용 사례

순천향대학교 컴퓨터공학과

41

아파치 하둡 소개

응용 사례

- □ 3가지 하둡 응용 사례 소개
 - 데이터 웨어하우스 최적화 (Data Warehouse Optimization)
 - 추천 엔진 (Recommendation Engine)
 - 대규모 로그 분석 (Large-Scale Log Analysis)

순천향대학교 컴퓨터공학과

데이터 웨어하우스란?

□ 데이터 웨어하우스 (Data Warehouse)

- 다양한 소스의 데이터를 저장하는 중앙 저장소 (centralized repository)
 - 마케팅, 재정, 인사관리, 웹 사이트, 외부 데이터 저장

Data Warehouse

- 분산 운영되는 각각의 다양한 데이터 소스를 통합 관리
 - 모든 데이터가 단일의 소스인 것처럼 질의. 처리
- 통합 관리를 위해 공통의 구조화된 형식으로 데이터를 저장

순천향대학교 컴퓨터공학과

43

아파치 하둡 소개

데이터 웨어하우스 ETL

- □ 데이터 웨어하우스는 각각의 소스에 대해 ETL (Extract, Transform, Load) 을 수행
 - 데이터 수집 시 저장 및 처리 전에 데이터 웨어하우스의 스키마와 일치되도록 변환이 필요
- □ 데이터의 속도, 다양성, 규모 (3V)가 증가됨에 따라 ETL 처리 비용 증가

Data Warehouse

> Hadoop Cluster

순천향대학교 컴퓨터공학과

온라인 쇼핑의 데이터 웨어하우스 예 - 다양성

- □ 온라인 쇼핑 업체는 자신의 상품의 판매와 관련하여 발생되는 모든 정보의 이해를 원함
 - 각 품목의 메타데이터를 추적하고, 고객 평가와 감성분석(sentiment analysis)의 연관성을 알고자 함
 - 크기, 중량, 색상, 제조업자 등의 상품 관련 정보는 JSON과 같은 <mark>구</mark> 조화 또는 반-구조화 형식으로 기술
 - 감성 분석으로 소셜 미디어 데이터를 활용
 - 소셜 미디어 데이터는 반-구조화 또는 비구조화된 데이터로 저장 및 처리가 어려움

순천향대학교 컴퓨터공학과

45

아파치 하둡 소개

온라인 쇼핑의 데이터 웨어하우스 예 - 속도

- □ 데이터는 수시로 변함
 - 소셜 미디어 데이터는 고객이 새로운 평가를 작성할 때마다 변경
 - 상품 정보도 변경되고, 새로운 기능이 추가될 때마다 상품의 용어도 변경
- □ 기업의 데이터 웨어하우스에서 빈번한 데이터의 변경은 처리 비용 및 시간 증대
 - 변경될 때마다 데이터를 변환하여 저장

순천향대학교 컴퓨터공학과

데이터 웨어하우스 최적화

□ 기존의 질의 방식 및 기법들을 그대로 활용하면서 효율적인 비용으로 확장 가능한 솔루션을 어떻게 구축하는가?

How do we build a cost-effective, scalable solution to consume big data while taking advantage of legacy query work and skills our data analysts have developed?

순천향대학교 컴퓨터공학과

47

아파치 하둡 소개

하둡과 데이터 웨어하우스 (1)

- □ 하둡은 데이터 웨어하우스에서 ETL 과정을 분리하여 최적화 된 솔루션 제공
 - 데이터 웨어하우스는 저장에만 초점
 - 데이터 추출 및 변환 단계에서 아파치 플럼(Flume)이나 피그(Pig)를 사용
 - 데이터 웨어하우스는 변환된 데이터 만을 저장하기만 하여 비용 절감

Data Warehouse

> Hadoop Cluster

순천향대학교 컴퓨터공학과

하둡과 데이터 웨어하우스

- □ 데이터 분석가들이 기존의 툴과 코드를 사용하여 데이터 웨 어하우스에 질의 가능
- □ 데이터 웨어하우스에 변환된 데이터를 저장하면서 수집된 데 이터는 원래 형식대로 하둡 클러스터에 저장
 - 데이터를 다른 방식으로 처리한 후 데이터 웨어하우스에 저장도 가능

순천향대학교 컴퓨터공학과

49

아파치 하둡 소개

추천 (Recommendation)

- □ 아마존과 같은 사이트에서 쇼핑 시 상품을 추천
 - 고객의 취향에 부합하는 상품을 추천
 - 추천은 고객의 참여 및 만족도, 구매 이력 등을 반영하여 웹 사이트 방문 시 마다 갱신
- □ 성공적인 추천은 개별 고객의 취향에 맞추어서 적절한 시점 에 해야함
 - 개별 고객의 취향을 정확하게 예측하기 위해 머신 러닝(machine learning) 알고리즘을 적용

순천향대학교 컴퓨터공학과

협업 필터링 (Collaborative Filtering)

- □ 머신 러닝 알고리즘 중 <mark>협업 필터링</mark>을 적용하여 추천 시스템 개발
 - 협업 필터링 알고리즘은 서로 다른 사용자들 사이의 선호도를 비교하여 추천이나 예측에 상요되는 모델을 생성
 - 추천 예
 - 3명의 사용자 선호도
 - Ted는 죠스, 스타 워즈, 인디아나 존스를 선호
 - Sue는 스타워즈, 인디아나 존스 선호
 - Bob은 스타 워즈 선호
 - 스타 워즈를 선호하는 사용자는 인디아나 존스를 선호할 것이라고 예측
 - Bob에게 추천되는 영화는 인디아나 존스

아파치 하둡 소개

하둡을 이용한 추천 시스템 구축

- □ 과거 사용자의 선호(구매) 히스토리를 나타내는 대규모 데이터 세트를 오프라인으로 하둡 클러스터에 적재
 - 데이터는 테스트와 훈련 데이터로 분리
 - 이들 데이터 세트가 협업 필터링 모델을 학습(훈련)에 사용
 - 아파치 스파크(Spark)나 머하웃(Mahout)과 같은 머신 러닝 툴을 사용
 - 사용자 데이터가 추가될 수록 추천은 정확해짐

로그 분석 (Log Analysis) 사용 사례

- □ 사용자의 웹사이트 사용 패턴을 파악하기 위해 클릭 스트림 데이터가 로그파일에 저장
- □ 인터넷 TV의 셋탑 박스가 사용 중일 때 일련의 사용 기록 로 그를 기록
- □ 서버의 로그는 컴퓨터 시스템의 사용자 접속, 사용한 응용 프 로그램. 에러 등과 같은 시스템과 응용의 이벤트를 기록

Clickstream Data Log Files

Set-Top Box Streaming Logs

l공학과

Server Logs User Activity

3

아파치 하둡 소개

서버 로그 분석 예

□ 서버의 로그

- 특정 기간 동안 수집되어 실시간으로 분석한 후 폐기
 - 이들 데이터의 폐기로 향 후에 유용하게 활용될 수 있는 데이터 손실
- 이벤트의 발생 날짜와 시간 단위로 조직화되어 중첩된 형식(nested format)으로 저장
 - SQL과 같은 분석 툴을 사용하여 중첩된 데이터를 처리하기 어려움
- 효율적인 비용으로 모든 히스토리의 대규모 로그들을 저장하고 분석 하는 새로운 로그 분석 기법이 필요
 - 하둡 에코 시스템 아파치 드릴(Drill)은 효율적인 비용으로 다양한 소스로 부터의 반구조화된 대규모 로그 데이터를 배치와 실시간으로 분석

Difficult to process nested data

순천향대학교 컴퓨터공학과

서버 해킹 탐지 예

- □ 데이터가 하둡 클러스터에 저장되면 머신 러닝 및 통계 분석 으로 데이터를 분석하여 지능적이고 유용한 정보를 제공할 수 있음
 - 서버 해킹 탐지 예
 - 서버의 비정상적인 동작을 감지하고 해킹 공격과의 연관성을 탐지
 - 의심되는 사용자의 행동 및 트랜잭션 감지
 - 네트워크 상의 디바이에서 비인가된 접속 발견
 - 히스토리 데이터 상에서 포렌식 분석 또는 조사(과학 수사, 범죄 규명)를 수행

┝천향대회

Anomaly detection

Suspicious behavior

Unauthorized access

Forensic analysis

5

아파치 하둡 소개

과제

- □ 아파치 하둡 에코 시스템 중 하나를 선택하여 상세히 조사
 - 앞에서 소개한 또는 소개하지 않은 에코 시스템
 - 맵리듀스, YARN 포함
 - 응용 사례

참고 자료

- MapR Academy, http://learn.mapr.com/
 - Apache Hadoop Essentials
 - https://learn.mapr.com/series/essentials-series/ess-105-apachehadoop-essentials
- Apache Hadoop
 - http://hadoop.apache.org/
- ZK ZooKeeper: https://zookeeper.apache.org/
- YARN: http://hadoop.apache.org/
- FL Flume: http://flume.apache.org/
- oo Oozie: http://oozie.apache.org/
- so Sqoop: http://sqoop.apache.org/
- SP Spark: http://spark.apache.org/
- HB HBase: https://hbase.apache.org/
- PI Pig: https://pig.apache.org/
- н Hive: https://hive.apache.org/
- DR Drill: https://drill.apache.org/
- Mahout: http://mahout.apache.org/

순천향대학교 컴퓨터공학과