פתרון שאלה 4 בממ"ן 12 (בעיה 2-6 מהספר)

א. הערמה מיוצגת עייי מערך בצורה דומה לערמה בינארית. (הצמתים מופיעים במערך עפייי סדר הרמות ובכל רמה עפייי הסדר משמאל לימין.)

 $\mathrm{son}(\mathrm{i},\mathrm{j})=\mathrm{d}(\mathrm{i}-1)+\mathrm{j}+1$: טענה הבן ה- ומצא איבר הנמצא באינדקס ומצא באינדקס ישל האיבר הנמצא אינדקס ($\mathrm{d}+1$ עד בניו של האיבר הראשון זה ברור (הם נמצאים במקומות 2 עד 1).

k=i+1 נניח נכונות עבור $k\leq i$ ונראה שמכך נובעת וכונות $k\leq i$

עפייי ההנחה, בנו האחרון של האיבר ה-i נמצא באינדקס ל $d\cdot i+1$ ועל כן בנו הראשון של האיבר עפייי ההנחה, בנו האחרון של האיבר לוסחה. ל-i+1נמצא באינדקס לוסחה.

בהינתן האינדקס i של צומת כלשהו, האינדקס של אביו של i הוא והאינדקס i של צומת כלשהו, האינדקס של הצומת שבאינדקס i מגיעים (כדי להוכיח נכונות מספיק לבדוק, שמהבנים הראשון והאחרון של הצומת שבאינדקס i מגיעים בעזרת הנוסחה חזרה ל-i.)

h בגובה h יש h יש h איברים (סכום סדרה הנדסית). לכן, בערמה בגובה h איברים. (עץ שלם בגובה h איברים (עץ שלם בגובה h לבין h איברים (עץ שלם בגובה h איברים (עץ שלם בגובה h איברים h ועוד איבר אחד).

 $h>\log_d(n(d-1))-1$ ולכן $n\leq (d^{h+1}-1)\,/\,(d-1)<(d^{h+1})\,/\,(d-1)$ ולכן $n\leq (d^{h-1})\,/\,(d-1)<(d^{h+1})\,/\,(d-1)$ מצד שני: $(d^h-1)\,/\,(d-1)\geq (d^h-1)\,/\,(d-1)=(d^h-1)\,/\,(d-1)$ מצד שני: $(d^h-1)\,/\,(d-1)\geq (d^h-1)\,/\,(d-1)$ ולכן האחרון השתמשנו בעובדה ש- $d^h\leq \log_d(n(d-1))$ ולכן האחרון השתמשנו בעובדה ש- $d^h\leq \log_d(n(d-1))$

 $\log_d(n(d-1))$ לפיכך, h הוא המספר השלם הקטן או שווה ל- $\log_d(n(d-1))$, הקרוב ביותר ל- h (כי ההפרש ביניהם **קטן ממש** מ-1). מכך נובע ש- $\lfloor \log_d(n(d-1)) \rfloor$

ג. השגרה EXTRACT-MAX בנויה בצורה הבאה: האיבר המכסימלי שיושב בראש העץ מוצא ומוחלף בעלה האחרון. עתה ייתכן שהופרה תכונת הערמה ושראש העץ קטן מ(לפחות אחד) מבניו. כדי לתקן זאת קוראים ל-MAX-HEAPIFY (לכן בפרוצדורה EXTRACT-MAX עצמה אין הבדל בין ערמה d-ית לערמה רגילה.)

השגרה MAX-HEAPIFY בודקת אם השורש קטן מ(לפחות אחד) מבניו, ואם כן – מחליפה אותו השגרה MAX-HEAPIFY בבן המכסימלי. לכן בערמה d-ית יש לבדוק את ערך השורש כנגד כל d הבנים (סיבוכיות d-0.) סיבוכיות הזמן: בשגרה עצמה מתבצעת d-0. עבודה. השגרה עצמה מתבצעת d-1. עבודה בכל קריאה ועשויה להיקרא לכל רמה בעץ (שגובהו, כפי שראינו, d-1.) d-1. לכן סהייכ סיבוכיות הזמן היא d-1.

. תלוי בגודל הקלט. d קבוע. ייתכן שבאפליקציה כלשהי d תלוי בגודל הקלט.

- $m{ au}$. השגרה INSERT מגדילה ב-1 את גודל הערמה ומציבה באיבר החדש ∞ . לאחר מכן היא קוראת לשגרה קוראת לשגרה HEAP-INCREASE-KEY עם הפרמטרים המתאימים. מכיוון שגם בערמה α -ית לשגרה יש לכל איבר אב אחד, אין כל הבדל בין השגרה INSERT בערמה α -ית לבין השגרה בערמה בינארית (מלבד נוסחה שונה לחישוב מקום האב). α -יבוכיות הזמן: α -ים α
- A[i] אם A[i] אם A[i] אם A[i] ראשית, השגרה תשווה בין HEAP-INCREASE-KEY A[i] אם A[i] אז לא צריך לעשות דבר. אחרת, השגרה תציב את הערך A[i] ב-A[i] תכונת הערמה עלולה להיות מופרת, משום שעתה ייתכן ש-A[i] גדול מאביו. במקרה זה יש להשתמש באותה לולאה שמחליפה את A[i] עם אבותיו, כמו בשגרה HEAP-INCREASE-KEY הרגילה. $O(\log_d n)$, כמו השגרה $O(\log_d n)$ הרגילה.