Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 8 Martie 2014

SOLUŢII ŞI BAREME ORIENTATIVE -CLASA a VI-a

Problema 1. Arătați că:

a)
$$\left(\frac{1}{2}\right)^3 + \left(\frac{2}{3}\right)^3 + \left(\frac{5}{6}\right)^3 = 1;$$

b)
$$3^{33} + 4^{33} + 5^{33} < 6^{33}$$
.

Gazeta Matematică

Soluție

a)
$$\left(\frac{1}{2}\right)^3 + \left(\frac{2}{3}\right)^3 + \left(\frac{5}{6}\right)^3 = \frac{1}{2} + \frac{8}{27} + \frac{125}{216} = \frac{27 + 64 + 125}{216} = \frac{216}{216} = 1.$$
 3 p

b) Ar fi suficient să arătăm că
$$\frac{3^{33}}{6^{33}} + \frac{4^{33}}{6^{33}} + \frac{5^{33}}{6^{33}} < 1$$
, adică $\left(\frac{1}{2}\right)^{33} + \left(\frac{2}{3}\right)^{33} + \left(\frac{5}{6}\right)^{33} < 1$.

Cum $\frac{1}{2}$, $\frac{2}{3}$ şi $\frac{5}{6}$ sunt subunitare, avem $\left(\frac{1}{2}\right)^{33} < \left(\frac{1}{2}\right)^3$, $\left(\frac{2}{3}\right)^{33} < \left(\frac{2}{3}\right)^3$ şi $\left(\frac{5}{6}\right)^{33} <$

$$\left(\frac{5}{6}\right)^3$$
. Adunând cele trei relații și ținând cont de a), urmează inegalitatea dorită. . . 2 **p**

Problema 2. Spunem că mulțimea nevidă M de cardinal n are proprietatea \mathcal{P} dacă elementele sale sunt numere naturale care au exact 4 divizori. Notăm cu S_M suma tuturor celor 4n divizori ai elementelor unei astfel de mulțimi M (suma conține și termeni care se repetă).

- a) Arătați că $A = \{2 \cdot 37, 19 \cdot 37, 29 \cdot 37\}$ are proprietatea \mathcal{P} și $S_A = 2014$.
- b) În cazul în care o mulțime B are proprietatea \mathcal{P} și $8 \in B$, demonstrați că $S_B \neq 2014$.

Soluție

Problema 3. Pe laturile BC, CA şi AB ale triunghiului ABC se consideră punctele M, N respectiv P astfel încât BM = BP şi CM = CN. Perpendiculara din B pe MP şi perpendiculara din C pe MN se intersectează în I. Demonstrați că unghiurile \widehat{IPA} şi \widehat{INC} sunt congruente.

Soluție

Problema 4. Determinați numerele naturale a pentru care există exact 2014 numere naturale b care verifică relația $2 \le \frac{a}{b} \le 5$.

Soluţie. Relaţia $2 \le \frac{a}{b} \le 5$ este echivalentă cu $\frac{a}{5} \le b \le \frac{a}{2}$, adică $2a \le 10b \le 5a$ **1** p Înseamnă că în secvența $2a, 2a + 1, \ldots, 5a$ trebuie să se afle exact 2014 multipli ai lui 10,