Telefonia VoIP, problematiche di networking e monitoraggio

Guido Falsi <gfalsi@gfratio.it>

22 ottobre 2016

Introduzione

- ▶ VoIP Voice over IP, termine generico per ogni metodo di trasporto della voce su IP
- La telefonia ha alle sue spalle oltre un secolo di storia
- Esistono standard precedenti per la digitalizzazione della voce già in uso da decenni
- ▶ La telefonia distingue due esigenze correlate:
 - Signaling: comunicazione delle informazioni sulle chiamate (stabilirle, concluderle, libero/occupato ecc.)
 - Media transport: trasmissione della voce, la chiamata stessa

Panoramica di alcuni protocolli più comuni

signaling	both	media	
SIP SDP MGCP H.248	IAX2 H.323 suite Jingle XMPP	RTP	open
Skinny	Whatapp Skype		proprietary

Protocollo SIP

- Protocollo testuale di segnalazione e controllo chiamata
- Trasporto UDP o TCP
- Convenzionalmente sulla port 5060
- ► Richieste e risposte composte da una intestazione e un corpo
- L'intestazione contiene informazioni sul tipo di richiesta e sulle parti coinvolte
- ▶ Il corpo viene usato per incapsulare altri protocolli
- Usa SDP nel corpo delle richieste per definire il protocollo e il formato del trasporto
- ▶ Esiste la variante SIPS, protetta con TLS

Una richiesta SIP+SDP (da RFC3665)

```
INVITE sip:bob@biloxi.example.com SIP/2.0
Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK7
Max-Forwards: 70
From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76s1
To: Bob <sip:bob@biloxi.example.com>
Call-ID: 3848276298220188511@atlanta.example.com
CSeq: 1 INVITE
Contact: <sip:alice@client.atlanta.example.com;transport=tcp>
Content-Type: application/sdp
Content-Length: 151
v=0
o=alice 2890844526 2890844526 IN IP4 client.atlanta.example.com
s=-
c=IN IP4 192.0.2.101
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000
```

Protocollo RTP

- Protocollo di trasporto dati realtime
- Protocollo binario
- Trasporto UDP su porte dinamiche
- Prevede vari tipi di payload
- ▶ Usa un codec tra i tanti esistenti (G.711, GSM, iLBC, ecc.)
- Esiste la variante SRTP, protetta con TLS

Un esempio di un dialogo SIP+RTP

Bob

Il mondo reale è molto più complesso

ATA Analog Telephone Adapter
PSTN Public Switched Telephone Network

Problematiche

Scarsa o insufficiente qualità della comunicazione:

- Dipendente dalla percezione umana
- Latenza, jitter, perdita di pacchetti
- Problemi di codec/transcoding

Soluzioni:

- Mantenere la rete efficiente evitando congestione
- I vari codec mitigano, ognuno in diversa misura, i problemi di rete, se non eccessivi
- Latenza impone un limite alle elaborazioni e redirect che possiamo effettuare
- Jitter può essere eliminato, tramite buffering, al costo di un aumento di latenza
- Evitare transcodifche

Problematiche

Assenza di collegamento:

- Impossibilità di stabilire la comunicazione a livello di protocollo (SIP/SDP/RTP/codec)
- ▶ Telefono muto o comunicazione monodirezionale
- ▶ RTP utilizza un range di porte dinamiche UDP molto ampio nelle configurazioni di default (16384 - 32767)

Soluzioni:

- ► Redirect mirati su router/firewall/NAT
- Ove possibile configurare apparati per esporre l'IP pubblico
- Symmetric RTP aiuta nel NAT traversal
- STUN e TURN sono protocolli per la scoperta di rotte e la fornitura di relay che possono essere usati da SIP tramite il protocollo ICE, che "aumenta" i dati SDP

Esempio SDP+ICE (da RFC5245)

```
v=0
o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1
s=
c=IN IP4 192.0.2.3
t = 0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
b=RS:0
b=RR:0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706431 10.0.1.1 8998 typ host
a=candidate:2 1 UDP 1694498815 192.0.2.3 45664 typ srflx
  raddr 10.0.1.1 rport 8998
```

Best practices

- Analizzare la rete su cui si andrá ad operare per identificare eventuali modifiche necessarie
- Usare VLAN per isolare il traffico VoIP se possibile
- Usare QoS per garantire bassa latenza al traffico VoIP
- Nei link WAN riservare banda tramite traffic shaping per il traffico VoIP

Monitoraggio

- ▶ È un problema ancora aperto
- Per ragioni di sicurezza e privacy non sono previsti sistemi per simulare chiamate
- ▶ Monitoraggio della rete rimane uno strumento essenziale
- ► Le periferiche e i PBX possono verificare la loro raggiungibilità reciproca
- Esistono standard e software per analizzare flussi VoIP in tempo reale
- Registri delle chiamate e log, dove disponibili, possono avere indicazioni per chiamate interrotte

Grazie per la vostra attenzione

Guido Falsi <gfalsi@gfratio.it>

http://www.gfratio.it/