KONGU ENGINEERING COLLEGE, PERUNDURAI 638 060 ODD SEMESTER 2017-2018 CONTINUOUS ASSESSMENT TEST 3 - OCTOBER 2017

(Regulations 2014)

Branch : CSE Semester : V	Date : 25.10.2017 Time : 9.15 am - 10.45 am
Course Code : 14CST52 Course Name : Theory of Computation	Duration : 1 1/2 Hours Max. Marks : 50

	PART - A (10 × 2 = 20 Marks)			all all a dis
-	ANSWER ALL THE QUESTIONS			
1.	Wiention the language accepted by PDA			
2,	Write the formal definition of Turing machine.			
3.			C04	[K3]
4.	Define ID for PDA.			
5.	Consider a turning machine that computer the function $f(x,y) = y$		C04	[K1]
6.			C04	[K3]
7.	When a language is said to be recursively enumerable?		C04	[K2]
	Show that the complement of recursive language is recursive.		C04	[K1]
3.	Define PCP with an example.		C04	[K1]
).	What is DPDA? Write its properties		C04	[K1]
0.	State the rules for converting PDA to CFG.			
	Port P (2× 10 - 20 Manla)			
	Part - B (3× 10 = 30 Marks) ANSWER ANY THREE OURSTIONS			
1.	ANSWER ANY THREE QUESTIONS			
1.	Find the CFG for the language whose PDA is given as $M=\{(q0,q1),\{a,b\},\delta,q0,z0,\phi\}$ and δ is defined as	10)	C03	[K3
	i) $\delta(q_0, a, z_0) = \{ (q_0, qz_0) \}$			
	ii) $\delta(q_0, a, z_0) = \{q_0, a_0\}$			
	iii) $\delta(q_0,b,a) = \{(q_0,aa)\}$			
	iv) $\delta(q_0, a, a) = \{(q_1, \epsilon)\}$	1		
	v) $\delta(q_0,a,a) = \{(q_1, \in)\}$	1		
	a) Company DDA 4	(5)	C03	[K3]
	$L = \{wcw^{R} / w \in \{a,b\}^{+}\}$	(5)	Cus	fero
	ii) Design a turing machine to perform addition of two integers.	(5)	C05	[K4]
		0)	C05	[K4]
	f(m,n) = mxn Write the code for the turing machine (1)	0)	C04	[K2]
		0)	COT	
	$M=\{(q_1,q_2,q_3), (0,1), (0_1,B), \delta (q_1,B, (q_2,3)\} \text{ when } \delta \approx \delta (q_1,1) = (q_2,0,B)$			
	δ as δ (q1,1) = (q3,0,R) δ (q2,0) = (q1,1,R)			
	$\delta(q3,0) = (q1,1,R)$	1		
	$\delta(q3,1) = (q2,0,R)$ $\delta(q3,B) = (q3,1,L)$	1		

Bloom's	Remembering	Understanding	Applying (K3)	Analysing	Evaluating	Creating
Taxonomy Level	(K1)	(K2)		(K4)	(K5)	(K6)
Percentage	26.67	33.33	26.17	13.33		**

-	
-	Parit A
1	Language Accorded by PRO
	Language Accepted by PDA
	2- Final Stals
a.	TM M= (Q, S., F, 8, 90, B, F)
	Q-Firite set of state
	5 - " i/p symbol
	F- Tape Symbol
	5 - Transition function
	$\delta(q,x) = (P,Y,D)$
	Lo mary be 2 or R
	go-Start Stale
	B - Blank Symbol
	F - Set of accepting states
	- ser g accepting and
2	In 1 manh a that contina H
0.	7m for accepting strong that contains enactly 2 b's over 2a, by
	26's over 19,69
	ala, R ala, R ala, R Que OBIB, H
	(90) 5/b, R (9) 6/b, R (9) 8/8, H (9)
	700 (2)
4.	ID for PDA.
	Execution status q DDA.
	Represented by (q, w, 8)
	9 - State
	w- remaining i/p
	y - Stack contents

5-7m to compute fray)=y 0/BIR (9) 1/BIR (9) 6. Roursively Enumerable A range Lie RE if L= L(m) & If wEL then m accepts and hall If well then many or many not be 7. If Lis Rouersive than I is also re If Lie Recursone than there is a Inwhich is halled when the strong of accepted or not. We can dosign a

Scanned by TapScanner

also halted for the Ching whether it is accepted or not. So I is also Recently. An instance of PCP consists of two lists of A= W, W2 ... WK B= x1, x2... Xe for some integer k The instance of PCP has a Solution if there is any Sequence of integers i, 12-in with m), such that is a solution to this instance of PCP. BPDAP= (Q, S, F, 8, 90, 20, F) it DPDA itt @ 8(9,a,x) has at most one member (transition). 1) It $\delta(q,a,x)$ is non empty then $\delta(q,\epsilon,x)$ must be empty.

10. Reules for convecting PDA lo CFG: Let PDA PE CO, 5, F, 8, 90,20) then the GF 61 G= (V+T, P,S) V consists y D Start Symbol S 2) All Symbols of the form [pxg] where Pig EQ and XER -Terminals T= 5 Productions of 61: a) For all States P 8-> [90 70 p] b) Let S(q, a, x)=(x, 4, 4, 42...4) where af & or a=t and [qxrk]=a[ry,n][r,y2r2]...

Scanned by TapScanner

V= 65, [902090], [90209,][9,2090][9,2090] [90990].[90991][9,990][9,991], [90b907, C90b9, J [9, b90], [9, b9,] 3 S - Stout Lymbol. Productions P: @ For start Symbol &, productions one: S-> [902090] [902091] @ For every transition function, Productions au: D For S(90, a, 20) = (90, a 20) [902090] > a[20a20][9020 90] a [90a 9,7 [9,20 90] [907091] -> a [90090] [902091] a [90 a 9,] [9, 20 9,] ii) for 8 (90, a, a) = (90, aa) [90 90 -> a [90 angro] (90 90)/ a[90a91][91940] [90 a 91] -> a [90 a 90] [90 a 91] (x a (90 a 91] [9, a 91] 111) for 8 (90 , b,a) - (90,a) 1[90 a 90] -> b [90 a 90] [90a91] -> b[90a91] IV) For o (90, a, a) = (9, 1E) [90 a 91] -) a W) 8(9, E, 20) = (9,, E) 9, 20 9,5 -> E

Scanned by TapScanner

Scanned by TapScanner

KONGUENIOURALAWALLEDE.

THOPSALTSLAWALLEDE.

PERUNDURALAWALLEDE.

PERUNDURALAWALLEDE.

PERUNDURALAWALLEDE.

PERUNDURALAWALLEDE.

KONGU ENGINEERING COLLEGE

PERUNDURAI ERODE - 638 060.

(Autonomous)

Name of the Student	M. RAGUVARS HINI	Register 1 5 C S R 1 6	0
Programme	18	Branch & CSE - 'C' Semester v	
Course Code and Name	THEORY OF COMPUTATION	Date 25-10-17 Pages Used. 9	

MARKS TO BE FILLED IN BY THE EXAMINER

		PARISB	THE TO FOR THEIR T
Question Max Marks	: 2 Quest	The Thirty	Grand Total Max. Marks: 50
1 9		1) 10	Nury Chibrishand - 6
2 2	11		Internal strong
3 1	,	ii)	1/20-11 de seco
4 12		i)	dots offs
5	12	ii)	150/
6	4	iv. de contractio	plinous resorting
7	10		60
8		ii)	off = all
9 9/	14	i) 10	a sterna
10		i)	M. Raywarsin
TOTAL	TOTA	L 20	Mostral
Total Marks in Words: Fasty Nine			

INSTRUCTION TO THE CANDIDATE

- 1. Check the Question Paper, Programme, Course Code, Branch Name etc., before answering the questions.
- 2. Use both sides of the paper for answering questions.
- 3. POSSESSION OF ANY INCRIMINATING MATERIAL AND MALPRACTICE OF ANY NATURE IS PUNISHABLE AS PER RULES.

Name of the Examiner

Signature of the Examiner 6/00/7

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

to Rules for converting pon to	CFG L.P. alephings application
D PDB P : [R, E, F, 6, 90, 70)	gor some 1 = Jeps then CFG & = (v, 7, P,S)
	(3c,p5= (0.0p)2
118 tast sysmbol - 5	the ne-Greef
S-> [qozoP]	
p. Enpul states.	(30,001 (5,000))
or T set of terminals	
so v seau symbol and all	gorms of states (PX9)
	(00 00) - (0,0 00)
D - Pandy chief P. O. T. P.O.	plo/Lepapiles Lepapi
S(B, D, V) = (+ F)	pla lipapilaga place topapi
564+7-2001/10 d 0	8 cm (m. m) - (m.d.m.P) 2
parcia va sittoviys Y3	[90090] [0000] [0000]
TO A TOWN TO BOOK IN TOT I TAK	1282] [7K-14KIN] - [1800]
157.KJ - MILTING	
	22/1/2
Pnx	t-B [18 - 18] [18 - 18] - 2 01
	80-190-91 00
11. M= {(90,91), {a16}, 5, 90, 70, 6	
Co. G. C. V. T. D. S. P. P. J. C.	0-9 10 [-9-5-9] (-9-10 9-10 s-[-9-5-9] (-1-9-5-9-1)
CEA, A. CALLING	a plat [19 atap] [apa apla e lapatapl
0 - 10 T	00010 1 [p0007 [60] 90 10 - [0000] [
10 Set of Terminals - 1	00 01 0 1 1 00 01 ((00) 20) 0 1 (100 0)
T=2: (a1b)	PD PID TIPD PILE PROPERTY
2) set of non terminals - Y	C. [arapito [apa.pide [apa.pide
V= { 9, [900 90], 190 b90	J, 590 To 90 J, 590 a 91 J, 590 to 91 J, 590 To 91
50.007.50.6.907	[917090], [9,09,7,[9,69,1], [9,7091]}

[q, aq, a) = (q, e) [q, aq, b) = (q, ata) [q, ata) [q, aq, b) = (q, ata) [q, at		5) 5 - 190 to 90)/190 to 90)
[q, q, q) > a q, a q, a q, a q, q, a q		
[q, e, b) , eq, ab) [q, e, b) , eq, ab) [q, e, a, b) = (q, ab) [q, e, a) - a[q, aq][q, eq,] a[q, aq][q, aq] [q, e, a) - [q, aa) [e, e, a) - [e, aa) [e, e, a] - a[q, eq,][q, eq,] a[q, eq,][q, eq,] [e, e, a] - b[q, eq,] [q, eq,] a[q, eq,][q, eq,] [e, e, a] - a[q, eq,][q, eq,] a[q, eq,][q, eq,] [e, eq,] - a[q, eq,][q, eq,] a[q, eq,][q, eq,] [e, eq,] - a[q, eq,][q, eq,] a[q, eq,][q, eq,] [e, eq,] - b[q, eq,][q, eq,] a[q, eq,][q, eq,] [e, eq,] - b[q, eq,][q, eq,] a[q, eq,][q, eq,] [e, eq,] - b[q, eq,][q, eq,] a[q, eq,][q, eq,] [e, eq,] - b[q, eq,][q, eq,] a[q, eq,][q, eq,] [e, eq,] - b[q, eq,][q, eq,] a[q, eq,][q, eq,][q, eq,]] [e, eq,] - b[q, eq,][q,		$S(q_0,\alpha,\alpha) = cq_0,c)$
[9,29] > 6 90 1		Igeagu - a - D
[[[[[[[[[[[[[[[[[[[8(9,0,20) - (9,0)
[q, a, a) - a[q, a, a] [a,		19,209J->E->0
[qate qi] > 0 [qaa qa][qate qi] a [qaqi][qiaqo] [qate qi] > a [qaqa][qaqi] a [qaqi][qiaqo] [qate qi] > a [qaqa][qaqi] a [qaqi][qiaqo] [qate qi] > b [qaqa] qaqi] a [qaqi] qaqi] [qate qi] > b [qaqa] qaqi] > b [qaqa] b [qate qi] qate		
[qate qi] > 0 [qaa qa][qate qi] a [qaqi][qi a qo] [qate qi] > a [qaqa][qaqi] a [qaqi][qi a qo] [qate qi] > a [qaqa][qaqi] a [qaqi][qi a qo] [qate qi] > a [qaqa][qaqi] a [qaqi][qi a qo] [qate qi] > b [qaqa] qaqi] a [qaqi] a [qaqi] b [qabqi] [qate qi] > b [qaqa] [qaqi] > b [qabqa][qaqi] b [qabqi]qaqi] b [qabqi]qaqi] b [qabqi]qaqi] b [qabqi]qaqi] b [qabqi]qaqi] a [qaqi] a [qa		5907092 -> a590a925907090]/a590a925917090]
[(\frac{1}{2}, \frac{1}{2}) + \frac{1}{2}, \		
[[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[[Isoago + a [goago] [goago] / a [goago] [goago] [goago]
[[[[[[[[[[[[[[[[[[[
8) [90 a 20] -> p [20 a 20] (01) [90 a 20] -> p [90 p 20] [90 a 20] p [90 p 20] [90 a 20] p [90 p 20] [90 a 20] p [90 p 20		
[2004] > 6[200] [2004] [2004] 6[200]		
Entering to the against a tendent to add the add to the		[90094] -> 6 [90091] [90091] > 6 [90091] de [190091]
2) [9,209] -> 0[9,090] [9,090] 0[9,090] [9,209] 5) [9,090] -> 0[9,090] (9,090] 0[9,090] [9,2090] 5) [9,090] -> 0[9,090] (9,090] / 0[9,090] [9,2090] 7) [9,090] -> 0[9,090] (9,090] / 0[9,090] [9,090] 8) [9,090] -> 0[9,090] (01) [9,090] -> 0[9,090] (9,090] 9) [9,090] -> 0[9,090] (01) [9,090] -> 0[9,090] (9,090] (9,090] 9) [9,090] -> 0[9,090] (01) [9,090] -> 0[9,090] (9,090] (9,090] (9,090]		The Antida
8) [90090] -> 6[90090] (01) [90090] (01) [90090] (01) 5) [90090] -> 6[90090] (01) [90090] (01) 5) [90090] -> 6[90090] (01) [90090] (01) 6) [90090] -> 6[90090] (01) [90090] (01) 6) [90090] -> 6[90090] (01) [90090] (01) 6) [90090] -> 6[90090] (01) [90090] -> 6[90090] (01) 9) [90090] -> 6[90090] (01) [90090] -> 6[90090] (01) 9) [90090] -> 6[90090] (01) [90090] -> 6[90090] (01) 9) [90090] -> 6[90090] -> 6[90090] -> 6[90090] -> 6[90090] (01) 9) [90090] -> 6[90000] -> 6[90000] -> 6[90000] -> 6[90000] -> 6[90000] -> 6[90000] -		Bules:
2) [90090] -> 61 (00000) [90090] (01) [90090		12 S -> [907090]/[9070 9,7
(a) [9, 7091] -> (a) [9, 2090] -> (a) [9		
4) [900092] -> 0[90090] [900000] a[90090] (9) [90000] (5) 5) [90090] -> 0[90090] [90090] / a[90090] [9, 090] 7) [90090] -> 0[90090) [90090] / a[90090] [9, 090] 8) [90090] -> b[90090) (01) [90090] -> b[90090] (9 9) [900 90] -> b[90090) (01) [90090] -> b[90090] (90090] (90090) 9) [900 90] -> b[90090) (01) [90090] -> b[90090] (90090] (90090)		31 [2, 2091] -> 6
6) [90090] - 0190090] [90090] / 0190090] [90090] (0) 8) [90090] - 0190090) [90090] / 019090] [90090] [90090] 8) [90090] - 0190090) [90090] / 019090] [90090] [90090] 9) [90090] - 0190090) (01) [90090] - 0190090] [90090] (01)	4	0 1907090] -3 Offenon-Land
6) [90090] - 0190090] [90090] / 0190090] [90090] (5) 8) [90090] - 0190090) [90090] / 019090] [90090] [90090] 8) [90090] - 0190090) [90090] / 019090] [90090] [90090] (8) 9) [90090] - 01909000 (01) [90090] - 019090] (90090] (90090] (90090] (90090] (90090) (9000) (90090) (90090) (90090) (90090) (90090) (90090) (90090) (9000) (90	2	[901091] = n[0-007] (00000) at 900091] [917090]
9) [900 97] 3 6[90090] (01) [90090] 3 6[90090] (02) [90090] (01) [9009		
9) [90 a 91] 3 b [96 a 90) (01) [90 a 90] 3 b [90 b 90] [9 a 91] [100 a 91] [7	1 [9009] 1 190090] 1 90090] 1 0 190091] [90091]
9) 190 a 91 3 h f / - 200 ago 3 -> b190 b90719 / p 9 7 1 650 10,75 a 9	8	1 (9009-7) 196090) (9609W/ a (9, 99) (6, 00,7
190091] 190091] b190690][96091] b[96091][9109	9) [900 97 - b 190 ago] (01) [90 ago] -> bra 60 70 / 200 / 200 / 200 ago]
b140640J196a9iJ/61969iJ19109		190091 190091 1900911900901190090]/6590691191
		b140640J[96a9i]/6[969i][9109
1909110000		19.09.1.10.07.1.09.097

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner