MATH205A: Measure Theory

September 14, 2020

1 Lecture 1

1.1 Motivation

Motivation of this course is to define a notion of *length* on subsets of \mathbb{R} such that

- 1. length([a, b]) = b a.
- 2. (countable additivity) $length(\bigcup^{\infty} A_i) = \sum^{\infty} length(A_i)$ where A_i 's are disjoint.
- 3. (translation invariance) for all $a \in \mathbb{R}$, length(A + a) = length(A).

Fact 1.1. it is impossible to construct such length for all subsets of \mathbb{R} .

Proof. This proof shows it is impossible to construct a notion of length on [0,1] with desired properties.

For $x, y \in [0, 1]$, define an equivalence relation as $x \sim y \iff x - y \in \mathbb{Q}$. By the axiom of choice, we may construct a set A containing exactly one element from each equivalence class of $x \in [0, 1]$. Obviously, $A \subseteq [0, 1]$.

For each $r \in [-1,1] \cap \mathbb{Q}$, let $A_r := A + r$, and $A_r \subseteq [-1,2]$. By translation invariance, $length(A_r) = length(A)$. Note that for any $y \in [0,1]$, there exists some $x \in A$ such that $x \sim y$, therefore, $y \in A_{y-x} \subseteq \bigcup_r A_r$. Hence, $[0,1] \subseteq \bigcup_r A_r$.

If the notion of length satisfies countable additivity, $length(\bigcup_r A_r)$ is either zero or infinity, which leads to a contradiction.

Lebesgue's Resolution: we only defines length for a subset of $\mathcal{P}(\mathbb{R})$, which contains *everything* that may ever arrive in practice, i.e., σ -algebras.

1.2 Algebras and σ -algebra

Definition 1.1. Let X be a set, a collection \mathcal{A} of subsets of X is called an algebra if

- 1. $X \in \mathcal{A}$,
- $2. A \in \mathcal{A} \implies A^c \in \mathcal{A},$
- 3. $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$.

Consequently: (1) $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$; (2) $A_1, \dots, A_n \in \mathcal{A} \implies \bigcup_i A_i, \bigcap_i A_i \in \mathcal{A}$ (easily shown by induction); (3) $\emptyset \in \mathcal{A}$.

Definition 1.2. Let X be a set, a collection \mathcal{A} of subsets of X is called a σ -algebra if

- 1. $X \in \mathcal{A}$,
- $2. A \in \mathcal{A} \implies A^c \in \mathcal{A}.$
- 3. $A_1, A_2 \dots, \in \mathcal{A}, \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}.$

Example 1.1 (trivial examples). The power set of X is a σ -algebra on X; $\{\emptyset, X\}$ is a σ -algebra on X.

Example 1.2 (finite/co-finite algebra). Let X be an infinite set and A be the collection of subsets A such that either A is finite or A^c is finite. A is an algebra.

Proof. $X \in \mathcal{A}$ since $X^c = \emptyset$ is finite. For a $X \in \mathcal{A}$, if X is finite, then $X^c \in \mathcal{A}$. If X is infinite, X^c is finite and $X^c \in \mathcal{A}$. Let $A, B \in \mathcal{A}$, if both A and B are finite, $A \cup B$ is finite and in \mathcal{A} . If A is finite and B is co-finite, then $(A \cup B)^c = A^c \cap B^c \subseteq B^c$ is finite. If both A and B are co-finite, $(A \cup B)^c$ is finite so that $A \cup B \in \mathcal{A}$.

Note the \mathcal{A} is <u>not</u> a σ -algebra if X is infinite: take distinct points $x_1, x_2, \dots \in \mathcal{A}$, then the union of them is neither finite or co-finite, and therefore not in \mathcal{A} .

Example 1.3 (countable/co-countable σ -algebra). The collection of subsets $A \subseteq X$, such that either A is countable or A^c is countable, forms a σ -algebra.

Example 1.4. Let $X = \mathbb{R}$ and \mathcal{A} be the collection of all <u>finite</u> <u>disjoint</u> unions of half-open intervals (i.e., sets like $(a, b], (-\infty, b], (a, \infty)$), \mathcal{A} is an algebra. (Not working for open intervals).

Example 1.5 (counter example). Let X be an infinite set, \mathcal{A} be the collection of finite subsets of X. Then, \mathcal{A} is not an algebra.

Proposition 1.1. Let X be a set and $\{A_i\}_{i\in\mathcal{I}}$ be an arbitrary (not necessarily countable) collection of σ -algebras, then $\bigcap_{i\in\mathcal{I}} A_i$ is a σ -algebra.

Proof. Since $X \in \mathcal{A}_i$ for all $i \in \mathcal{I}$

Corollary 1.1. Let X be a set, and \mathcal{P} is an arbitrary collection of subsets of X, then $\exists!$ smallest σ -algebra \mathcal{A} containing \mathcal{P} . That is, for any σ -algebra $\mathcal{B} \supseteq \mathcal{P}$, $\mathcal{A} \subseteq \mathcal{B}$. \mathcal{A} is defined as the σ -algebra generated by \mathcal{P} , denoted as $\sigma(\mathcal{P})$.

Proof. For any \mathcal{P} , the power set of X is obviously a σ -algebra containing \mathcal{P} . Then we can take \mathcal{A} as the intersection of all σ -algebras containing \mathcal{P} .

1.3 Borel σ -algebra

Definition 1.3. The **Borel** σ -algebra of \mathbb{R} , denoted as $\mathcal{B}(\mathbb{R})$, is the σ -algebragenerated by the set of open intervals in \mathbb{R} .

Fact 1.2. $\mathcal{B}(\mathbb{R})$ is generated by the collection of all closed intervals as well.

Proof. Let \mathcal{F} denote the σ -algebragenerated by all closed intervals. Any open interval can be written as a countable union of closed sets: $(a,b) = \bigcup_{n=1}^{\infty} [a+1/n,b-1/n]$, therefore $(a,b) \in \mathcal{F}$ and $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{F}$.

Similarly, $[a,b] = \bigcap_{n=1}^{\infty} (a-1/n,b+1/n)$, hence $\mathcal{B}(\mathbb{R})$ is a σ -algebra and all closed sets. Therefore, $\mathcal{F} \subseteq \mathcal{B}(\mathbb{R})$.

Fact 1.3. $\mathcal{B}(\mathbb{R})$ is generated by

- 1. all open sets,
- 2. all closed sets,
- 3. all half-open intervals.

Example 1.6 (counter example). $\mathcal{B}(\mathbb{R})$ is not generated by the collection of singletons.

Proof.

Definition 1.4. The Borel algebra of \mathbb{R}^d , $\mathcal{B}(\mathbb{R}^d)$, is the σ -algebragenerated by

- 1. all open sets in \mathbb{R}^d ,
- 2. all closed sets in \mathbb{R}^d ,
- 3. all closed cubes (regions) in \mathbb{R}^d : $\prod_{i=1}^d [a_i, b_i]$.

1.4 Measures

Definition 1.5. For a set X and a σ -algebra \mathcal{A} of X, the pair (X, \mathcal{A}) is called a **measurable space**.

Definition 1.6. A measure μ on a measurable space (X, \mathcal{A}) is a map $\mu : \mathcal{A} \to [0, \infty]$ such that

- 1. $\mu(\emptyset) = 0$,
- 2. $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ for disjoint sequence (A_i)

For now, we don't require the translation invariance property.

The triple (X, \mathcal{A}, μ) is called a **measure space**.

Example 1.7 (counting measure).

Example 1.8 (point-mass measure).

Proposition 1.2. A measure μ possesses the following basic properties:

- 1. (Monotonicity) $A \subseteq B \implies \mu(A) \le \mu(B)$.
- 2. (Sub-additivity) $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$.

Proof.