

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Proceso: Autoevaluación y Acreditación

Versión: 01

Fecha de Aprobación: 27/07/2023

FACULTAD:		Tecnológica									
PROYECTO CUR	ECTO CURRICULAR: Tecnología en Ele			ectrónica Industrial		CÓDIGO PLAN DE ESTUDIOS:					
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO											
NOMBRE DEL ESPACIO ACADÉMICO: ELECTRÓNICA I											
Código del espacio académico:			24816	Número de créditos académicos:			3				
Distribución horas de trabajo:			HTD	4	нтс	2	НТА	3			
Tipo de espacio académico:			Asignatura	х	Cátedra						
NATURALEZA DEL ESPACIO ACADÉMICO:											
Obligatorio Básico	х	Obligatorio Complementario			Electivo Intrínseco		Electivo Extrínseco				
CARÁCTER DEL ESPACIO ACADÉMICO:											
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:			
	MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:										
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:			
	II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS										

Es recomendable que el estudiante haya cursado las asignaturas de Circuitos Eléctricos I y tenga conocimientos sobre análisis de circuitos resistivos, leyes de Ohm y Kirchhoff, respuesta en frecuencia y uso básico de software de simulación como LTSpice, Proteus o Multisim. También se espera habilidad para la lectura técnica, manejo de instrumentos de laboratorio, pensamiento lógico y disposición para el trabajo colaborativo.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La electrónica análoga continúa siendo esencial para la comprensión y desarrollo de sistemas electrónicos en sensores, comunicaciones, procesamiento de señal e instrumentación industrial. Esta asignatura proporciona las bases del diseño, análisis y modelado de dispositivos semiconductores como diodos y transistores, además de integrar conceptos actuales como el diseño centrado en la eficiencia energética, la interacción con señales reales y el uso de herramientas de simulación. Su enfoque práctico permite desarrollar habilidades relevantes para enfrentar los desafíos tecnológicos contemporáneos en la automatización, el IoT y la electrónica embebida.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Diseñar y analizar circuitos análogos utilizando semiconductores (diodos, BJT, FET), mediante el estudio de su comportamiento en DC y AC, con aplicación en soluciones electrónicas actuales y fundamentación en prácticas de laboratorio y simulación.

Objetivos Específicos:

Analizar el comportamiento físico y eléctrico de dispositivos semiconductores.

Diseñar circuitos rectificadores, de conmutación y amplificación con diodos, BJT y FET.

Usar modelos de pequeña señal para análisis en AC de amplificadores.

Introducir el diseño de circuitos eficientes en consumo y respuesta temporal.

Utilizar herramientas de simulación para validar el comportamiento de los diseños.

Implementar un proyecto de aplicación que integre dispositivos semiconductores, diseño de circuito y respuesta dinámica.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación Relacionados:

Consolidar conocimientos sobre semiconductores aplicados al diseño de soluciones electrónicas.

Desarrollar habilidades para interpretar y construir circuitos análogos en contextos reales.

Fomentar el uso ético, sostenible y responsable de la tecnología electrónica.

Promover la integración de conocimiento teórico-práctico mediante proyectos interdisciplinarios.

Resultados de Aprendizaje de la Asignatura (alineados con el programa):

Analiza e interpreta el comportamiento de diodos, transistores BJT y FET en configuraciones típicas.

Diseña e implementa circuitos análogos en protoboard y simuladores, cumpliendo especificaciones de operación.

Evalúa el comportamiento de circuitos amplificadores en función de parámetros eléctricos y de eficiencia.

Interpreta y aplica datos de hojas técnicas (datasheets) en el diseño de circuitos.

Integra los conceptos aprendidos en un proyecto técnico colaborativo.

VI. CONTENIDOS TEMÁTICOS

Diodos y aplicaciones (2 semanas)

Polarización.

Circuitos con diodos y aplicaciones

Optoacopladores

Diodos especiales: Zener, LED, Schottky, fotodiodo.

Fuentes de Voltaje y Corriente (2 semanas)

Transformadores

Rectificadores

Filtrado

Regulación

Transistor BJT y FET (5 semanas)

Polarización de transistores BJT

Polarización de transistores FET

Aplicaciones del transistor como interruptor

Amplificación análoga discreta (4 semanas)

Modelos de pequeña señal para BJT y FET

Análisis de señal pequeña.

Parámetros de ganancia, impedancia, respuesta en frecuencia.

Amplificadores operacionales (3 semanas)

Configuraciones inversoras, no inversoras, sumadores, restadores.

Comparadores, integradores, derivadores, seguidor de voltaje.

Amplificadores de instrumentación, operacionales reales.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante aprendizaje activo, incluyendo clases magistrales breves, ejercicios guiados, análisis de circuitos reales, simulaciones, prácticas de laboratorio y desarrollo de un proyecto integrador. El estudiante asume un rol protagonista en la construcción de su conocimiento, mientras el docente orienta el proceso con asesorías, desafíos técnicos, guías prácticas y retroalimentación continua. Se hará énfasis en el uso de simuladores (LTspice, Proteus, Multisim) y en la interpretación de hojas de datos.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, bibliografía especializada, simuladores de circuitos (Multisim, Proteus, Tinkercad, LTSpice o Orcad), textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Cada estudiante deberá contar con su protoboard, resistencias, capacitores, diodos, transistores, amplificadores operacionales, potenciómetros, cables y conectores básicos necesarios para el desarrollo de las prácticas. En algunos casos, se requerirán sensores, microcontroladores (Arduino, ESP32, etc.) y módulos de comunicación. Asimismo, se recomienda el uso de software de simulación con licencia o de acceso abierto.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Durante el curso se pueden organizar visitas a laboratorios especializados de la universidad para observar la aplicación de principios electrónicos en la industria. También se promoverá la participación en ferias académicas y encuentros estudiantiles que sean desarrollados en la institución educativa. En todo caso, las salidas estarán orientadas a fortalecer el vínculo entre teoría y realidad industrial.

XI. BIBLIOGRAFÍA

Sedra & Smith. Microelectrónica. Oxford.

Malvino, A. & Bates, D. Electronic Principles. McGraw-Hill.

Boylestad & Nashelsky. Electrónica: Teoría de Circuitos. Pearson.

Millman & Halkias. Electrónica Integrada. Ed. Hispano Europea.

Horenstein, M. Microelectrónica. Prentice Hall.

Neamen, D. Electronic Circuit: Analysis and Design. McGraw Hill. 2001

Savant, C., Roden, M., & Carpenter, D. Diseño Electrónico: Circuitos y Sistemas. Addison Wesley

Schilling, D. & Belove, C. Circuitos Electrónicos Discretos e Integrados. 3º Ed. McGraw Hill

Fernández, O. Teoría de Circuitos con ORCAD PSPICE. Alfaomega. 2001

Báez, D. Microsim PSPICE. Alfaomega. 1995

Tuinenga, P. SPICE: a guide to circuit simulation and analysis using PSPICE. Prentice Hall. 1995.

Datasheets de fabricantes como Texas Instruments, STMicroelectronics y Fairchild.

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricular:		
Fecha aprobación por Consejo Curricular:	Número de acta:	