Základní chemické zákony

Chemické zákony, látkové množství, atomová a molekulová hmotnost, stechiometrický vzorec, platné číslice

http://z-moravec.net

Zákony zachování

- Zákon zachování hmoty
 - ► Lavoisier, 1785
 - Hmota se netvoří, ani nemůže být zničena
- Zákon zachování energie
 - Energii nelze ani vyrobit, ani zničit, lze ji pouze přeměnit na jiný druh energie.
- ► Zákon zachování hmoty a energie
 - Ekvivalence hmoty a energie je dána rovnicí $E = mc^2$
 - $u = 1.66.10^{-27} kg = 931.4 MeV = 1.49.10^{-10} J$
 - Uzavřená soustava hmotnost a energie v soustavě je konstantní
 - Otevřená soustava hmotnost v soustavě je konstantní a energie se vyměňuje s okolím

Zákon stálých poměrů slučovacích

- ► Louis Joseph Proust, 1799¹
- Hmotnostní poměr prvků nebo součástí dané sloučeniny je vždy stejný a nezávisí na způsobu přípravy sloučeniny.
- $ightharpoonup C + O_2 \longrightarrow CO_2$
- ightharpoonup 2 CO + O₂ \longrightarrow 2 CO₂
- $ightharpoonup CaCO_3 \longrightarrow CaCO_2$
- ▶ V CO₂ je vždy obsah uhlíku 27,29 % a kyslíku 72,71 %.

¹Proust, J.-L. (1799). Researches on copper, Ann. chim., 32:26-54.

Zákon násobných poměrů slučovacích

- ▶ John Dalton, 1808
- Tvoří-li spolu dva prvky více sloučenin, pak hmotnosti jednoho prvku, který se slučuje se stejným množstvím prvku druhého, jsou vzájemně v poměrech, které lze vyjádřit malými celými čísly.

Sloučenina	m (N) [g]	m (O) [g]	$\frac{m(O)N_2O}{m(O)N_xO_y}$
N ₂ O	1,00	0,57	1,00
NO	1,00	1,14	2,00
$N_2 O_3$	1,00	1,72	3,00
NO_2	1,00	2,28	4,00
N_2O_5	1,00	2,85	5,00

- Daltonidy sloučeniny, které splňují zákon násobných poměrů slučovacích.
- ▶ **Bertolidy** nestechiometrické sloučeniny, např. pyrhotin, minerál s přibližným vzorcem $Fe_{1-x}S$, kde x=0-0,2.

Zákon stálých poměrů objemových

- ► Gay-Lussac, 1805
- Při stálém tlaku a teplotě jsou objemy plynů vstupujících spolu do reakce, popřípadě též objemy plynných produktů reakce, vždy ve stejném poměru, který je možno vyjádřit malými celými čísly.
- ▶ 1 dm³ kyslíku se sloučí s 2 dm³ vodíku za vzniku 2 dm³ vody.
- ► $O_2 + 2 H_2 \rightarrow 2 H_2 O$

Avogadrův zákon

- ► Amadeo Avogadro
- Stejné objemy všech plynů obsahují za stejného tlaku a teploty vždy stejný počet molekul.

- ▶ Avogadrova konstanta: $N_A = 6,022.10^{23}$ částic. Její hodnotu stanovil roku 1865 rakouský chemik Johan Josef Loschmidt.
- ▶ Látkové množství: $n = \frac{\text{počet částic}}{N_A} = \frac{m}{M}$
- Molární objem: $V_m = 22,414dm^3$. Objem 1 molu plynu za standardních podmínek.

Atomová, molekulová a molární hmotnost

- Hmotnost atomu je dána především počtem protonů a neutronů v jádře, hmotnost elektronů je zanedbatelná.
- ► Hmotnost atomu je velmi malé číslo, např. hmotnost ¹²₆C je 1,99.10⁻²⁶ kg. Proto tuto hmotnost vztahujeme na atomovou hmotnostní jednotku, která je rovna ¹/₁₂ hmotnosti nuklidu ¹²/₆C.
- $u = 1,661.10^{-27} \text{ kg}; A_r = \frac{m}{u}$
- ► **Relativní atomová hmotnost** (*A_r*) je dána hmotnostním poměrem atomových hmotností jednotlivých izotopů prvku.
- ► Chlor: ³⁵Cl (75,529 %), ³⁷Cl (24,471 %)
- ► $Ar(Cl) = w(^{35}Cl) \cdot A_r(^{35}Cl) + w(^{37}Cl) \cdot A_r(^{37}Cl) = 0,75529 \cdot 34,97 + 0,24471 \cdot 36,97 = 35,45$
- ▶ **Relativní molekulová hmotnost** (M_r) prvku nebo sloučeniny je rovna součtu A_r všech atomů v molekule.
- Molární hmotnost (M) látky je rovna podílu hmotnosti a látkového množství.
- $M = \frac{m}{n} [g.mol^{-1}]$

¹IUPAC Commission on Isotopic Abundances and Atomic Weights ²NIST Atomic Weights and Isotopic Compositions for All Elements

Stechiometrický vzorec

- Stechiometrický vzorec vyjadřuje poměr zastoupení prvků v molekule. Získáme jej např. z elementární analýzy.
- Uzavíráme jej do složených závorek {}.
- Elementární analýza poskytuje procentuální zastoupení prvků ve zkoumaném vzorku.
- Stechiometrický vzorec nemusí odpovídat pouze jedné sloučenině.

Sloučenina	Stechiometrický vzorec	Sumární vzorec
Voda	{H ₂ O}	H_2O
Modrá skalice	$\{H_{10}O_{9}SCu\}$	$CuSO_4 \cdot 5H_2O$
Methan	{CH ₄ }	CH ₄
Ethan	{CH ₃ }	C_2H_6
Propan	${C_3H_8}$	C ₃ H ₈
Benzen	{CH}	C_6H_6
Ethyn	{CH}	C_2H_2

Stechiometrický vzorec

Získání stechiometrického vzorce z elementární analýzy

Elementární analýzou fosforečnanu hlinitého bylo zjištěno, že obsahuje 10,22~% Al, 35,21~% P a 54,56~% O. Určete stechiometrický vzorec sloučeniny.

Jedná se o sloučeninu se stechiometrickým vzorcem AIP₃O₉.

Platné číslice

- Exaktní čísla mají nekonečný počet platných desetinných míst, nemají chybu měření.
- ▶ **Výsledek měření** počet platných míst je dán přesností měření.
- Nuly mezi desetinnou čárkou a první nenulovou číslicí nejsou platné číslice. 0,000 124; 0,0105 002
- Nuly, které jsou na konci výsledkou mohou, ale nemusí být platnými číslice, záleží na přesnosti měření. 0,010 400 0
- ► Čísla je výhodné zapisovat v exponenciálním tvaru: 1,040.10⁻².
- Při násobení a dělení má výsledek tolik platných číslic jako nejméně přesné číslo.
- Při sčítání a odčítání má výsledek tolik desetinných míst jako nejméně přesné číslo.