KING SAUD UNIVERSITY

COLLEGE OF COMPUTER & INFORMATION SCIENCES
DEPT OF COMPUTER SCIENCE

CSC281 Discrete Mathematics for Computer Science Students

First Semester 1440/1441 AH

Due: TBA

Instructor: Prof. Aqil Azmi

Group Term Project

In this project you will solve a quadratic congruence equation of the form,

$$ax^2 + bx + c \equiv 0 \bmod p,$$

where $a,b,c\in\mathbb{Z}$, and p is an odd prime. Let $\mathbb{Z}_p=\{0,1,\ldots,p-1\}$. We show how to solve this problem when $a\not\equiv 0 \bmod p$. Then,

$$ax^2 + bx + c \equiv 0 \mod p \iff 4a^2x^2 + 4abx + 4ac + b^2 - b^2 \equiv 0 \mod p,$$

$$\Leftrightarrow (2ax + b)^2 \equiv b^2 - 4ac \mod p.$$

So, for the congruence to have solutions, it must be that $b^2-4ac=\alpha^2$ (i.e. a perfect square) for some $\alpha\in\mathbb{Z}_p$. That is, $2ax+b\equiv\pm\alpha\bmod p\Leftrightarrow x\equiv (-b\pm\alpha)\,/\,2a\bmod p$. Which is our solution.

How to determine if b^2-4ac has a solution and what is the value of α . Consider the problem of solving the equation $y^2\equiv d \bmod p$ where $p\not\mid d$. This equation has either no solution or exactly two solutions. There is a theorem that says $y^2\equiv d \bmod p$ has a solution iff $d^{(p-1)/2}\equiv 1 \bmod p$, and no solution iff $d^{(p-1)/2}\equiv p-1 \bmod p\equiv -1 \bmod p$.

Next, to calculate the value of α , use the following simple algorithm:

$$k \leftarrow 0$$
 while $(d + pk)$ is NOT perfect square $k \leftarrow k + 1$ $\alpha \leftarrow \sqrt{d + pk}$

For example, solve $15x^2 + 19x + 6 \equiv 0 \mod 11$. We have (p = 11, a = 15, b = 19, c = 6), and $b^2 - 4ac \equiv 1^2 \mod 11$, and so we use the above theorem to get,

 $15x^2+19x+6\equiv 0 \ \mathrm{mod}\ 11 \Leftrightarrow x\equiv \frac{-19\pm 1}{2\cdot 15} \ \mathrm{mod}\ 11 \Leftrightarrow \frac{3\pm 1}{8} \ \mathrm{mod}\ 11.$ We get the solutions $x\equiv \{4\cdot \mathrm{inverse}\ \mathrm{of}\ 8\ \mathrm{mod}\ 11,\ 2\cdot \mathrm{inverse}\ \mathrm{of}\ 8\ \mathrm{mod}\ 11\}\ \equiv\ \{6,\ 3\}.$ Recall that inverse of 8 in modulo 11 is 7, which can be computed using going backward through Euclidean Algorithm.

Another example. Solve $14x^2 + 7x + 6 \equiv 0 \mod 11$. Here we get $b^2 - 4ac \equiv 10 \mod 11$. We do not have a solution since 10⁵ \equiv -1 mod 11.

Yet another example. Solve $y^2 \equiv 5 \mod 61$. This system has a solution as $5^{30} \equiv 1 \mod 61$. To find the solutions, we keep adding the modulus to d = 5 until we get a perfect square (see the algorithm),

$$y^2 \equiv 5 \equiv 5 + 61 \equiv 5 + 2 \cdot 61 \equiv 5 + 3 \cdot 61 \equiv \dots \equiv 5 + 20 \cdot 61 = 1225 = 35^2 \mod 61.$$

This gives the solution y = 35, and $y = -35 \equiv 26 \mod 61$.

Project

Write a program that accepts four inputs: a, b, c and p. Make sure $a \not\equiv 0 \bmod p$ and p is odd prime. You should output the solution $x = \{t, s\}$, or "NO SOLUTION".

Instructions

This is a group project. Each 4-5 students will work as a team. You are free to use *any* convenient programming language. This project is worth 15 points.

What to submit

- (a) Cover sheet with your names and a signed pledge.
- (b) Write-up of the project (brief description of your algorithm; the data structure(s) used; sample runs and the conclusion).
- (c) Hardcopy of your source code + Flash memory/CD with source and executable.