Conditional Independence

$$f_{xy}(x,y) = f_x(x) f_y(y)$$

$$f_{x|y}(x|y) = f_{x}(x)$$

x, z -> inidim

$$f_{x,z|y}(x,z|y) = f_{xy}(x|y) f_{z|y}(z|y)$$

$$f(x_1, x_2, ..., x_n | y) = f_{x_1 | y}(x_1 | y) ... f_{x_n | y}(x_n | y)$$

Covariance

امید ریاضی حاصل ضرب

قضیه. اگر X و Y متغیرهای تصادفی مستقل باشند، و g(.) و تابع حقیقی باشند، آنگاه:

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

$$Z = g(x)$$

 $W = h(y)$

$$E[g(x)h(y)] = \iint g(x)h(y) f_{xy}(x,y) dxdy$$

=
$$\int \int g(x) h(y) f_{x}(x) f_{y}(y) dx dy$$

$$= \int g(x) f_{\chi}(x) dx \qquad \int h(y) f_{\gamma}(y) dy$$

$$= E[g(x)] E[h(y)]$$

کوواریانس (Covariance)

• کواریانس پارامتری است که میزان وابستگی دو متغیر تصادفی را به یکدیگر نشان میدهد:

$$Cov(X,Y) = E[(\underline{X} - \underline{E}[X])(\underline{Y} - \underline{E}[Y])]$$

$$Cov(X,Y) = 10$$

$$(2V(W,Z) = 20$$

$Cov(X, Y) = E[(X-M_X)(Y-M_Y)] = \int_{X_Y} (x-M_X)(Y-M_Y) \int_{X_Y} (x-M_X)(X-M_Y) \int_{X_Y} (x-M_X)(X-M_Y) \int_{X_Y} (x-M_X)(X-M_Y) \int_{X_Y} (x-$

 $(x - E[X])(y - E[Y])P_{XY}(x, y)$ χ y بالاي بالاي میانگین میانگین میانگین میانگین میانگین میانگین بالاي میانگین میانگین

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY - E[X]Y - X E[Y] + E[X] E[Y]]$$

$$= E[xy] - E[x]E[y] - E[x]E[y] + E[x]E[y]$$

مثال ۱:

دو متغیر تصادفی X و Y را با توزیع زیر در نظر بگیرید:

$$f_X(x) = \begin{cases} 1/2 & -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}, \quad \boxed{Y = X^2}$$

$$CON(X,Y) = E[XY] - E[X] E[Y]$$

$$E[X] = 0$$

$$CON(X,Y) = 0$$

$$E[XY] = E[X^3] = \int_{-1}^{+1} x^3 \frac{1}{2} dx = 0$$

مثال ۲

$$X \sim N(0, 1)$$
 $Y = X^2$

$$E[X] = 0$$

$$E[XY] = E[X^3] = \int_{-\infty}^{+\infty} x^3 \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

$$= \int_{-\infty}^{+\infty} x^3 \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

E[XY] E[XY] E[XYZ] E[XYZ]

$$Cov(W, H) = E[W \times H] - E[W]E[H]$$

= 3355.83 - 62.75 \times 52.75
= 45.77

مثال ۳

Weight	Height Weight × Heigh	
64	57	3648
71	59	4189
53	49	2597
67	62	4154
55	51	2805
58	50	2900
77	55	4235
57	48	2736
56	42	2352
51	42	2142
76	61	4636
68	57	3876
E[W]	E[H]	E[W×H]
= 62.75	= 52.75	= 3355.83

$$Cov(X,X) = \sqrt{ov(X)}$$

$$Cov(X,X) = E[X^2] - E[X] = VON(X)$$

$$Cov(aX + b, Y) = \alpha Cov(X, Y)$$

$$Cov(aX+b,y) = E[(aX+b)Y] - E[aX+b]E[Y]$$

$$= aE[XY] + bE[Y] - (aE[X]+b)E[Y]$$

$$= \alpha \left(E[XY] - E[X] E[Y] \right)$$

$$Cov(X,Y)$$

$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{cov}(X_{i}, Y_{j})$$

$$Cov(\sum_{i} x_{i}, \sum_{j} y_{j}) = E[(\sum_{i} x_{i})(\sum_{j} y_{j})] - E[\sum_{i} x_{i}] E[\sum_{j} y_{j}]$$

$$= E[\sum_{i} x_{i}, y_{j}] - (\sum_{i} E[x_{i}])(\sum_{j} E[y_{j}])$$

$$Var(X + Y) = Var(X) + Var(Y) + 2 cor(X,Y)$$

$$Var(X+Y) = (ov(X+Y, X+Y)) = E[(X+Y)^2] - E[X+Y]$$

$$= E[x^2] + B[y^2] + 2E[xy] - E[x] - E[x] - E[y] - 2E[x] E[y]$$

$$> vor(x) + vor(y) + 2 cov(x,y)$$

واريانس مجموع متغيرهاي تصادفي

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{vov}(x_{i}) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{cov}(x_{i}, x_{j})$$

$$Var\left(\sum_{i\geq 1}^{n}X_{i}^{*}\right)=Cov\left(\sum_{i\geq 1}^{n}X_{i}^{*},\sum_{i\geq 1}^{n}X_{i}^{*}\right)=\sum_{i\geq 1}^{n}\sum_{j\geq 1}^{n}Cov\left(X_{i}^{*},X_{j}^{*}\right)$$

واريانس مجموع متغيرهاي تصادفي

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_i, X_j)$$

$$= \sum_{i=1}^{n} \operatorname{Vew}(X_i) + 2 \sum_{i>j} \operatorname{cov}(X_i, X_j)$$

	X_{1}	X_2	X_3	X_4
X_1	l .		l	COMCANA
X_2			Contrata	CONCASTA
X_3	CONCLASTO	CONTRATA	COWYSTS	COUCTSALA
X_4	CONCLARIO	COMITANTO	CONTANTS	COUCHANTA

واريانس مجموع متغيرهاي تصادفي مستقل

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

مثال: واريانس توزيع دوجملهاي

$$\widehat{(Y)} = X_1 + X_2 + \dots + X_n : X_i \sim \operatorname{Ber}(p)$$

$$Var(y) = \sum_{i \ge 1}^{n} Var(x_i) = \sum_{i \ge 1}^{n} p(1-p) = np(1-p) = npq$$

ضریب همبستگی (Correlation Coefficient)

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = \frac{(\sim(X,Y))}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

-15/5/

مى توان نشان داد:

$$\rho(X,Y) = \operatorname{Cov}\left(\frac{X - \mu_X}{\sigma_X}, \frac{Y - \mu_Y}{\sigma_Y}\right)$$

ضریب همبستگی در واقع میزان خطی بودن رابطه بین X و Y را اندازه می گیرد.

مفهوم ضریب همبستگی

مفهوم ضريب همبستگي

$$COV(X,Y) = E[XY] - E[X] E[Y]$$

$$= CE[X] - CE[X] = 0$$

مغالطه علت شمردن همبستگی

Reichenbach

Cansality

مغالطه علت شمردن همبستگی

Correlation does not imply causation!

Global Average Temperature vs. Number of Pirates

ناهمبستگی (Uncorrelation)

• متغیرهای تصادفی X و Y را ناهمبسته (uncorrelated) می گوییم اگر یکی از موارد زیر برقرار باشد:

$$\rho(X,Y) = 0$$
or
$$cov(X,Y) = 0$$
or
$$E[XY] = E[X]E[Y]$$

تعامد

• متغیرهای تصادفی X و Y را متعامد (orthogonal) گویند، هرگاه:

$$E(XY)=0$$

وضیه ۱. اگر X و Y ناهمبسته باشند، داریم: \bigcirc

$$Var(X + Y) = Var(X) + Var(Y)$$

تفیه ۲. اگر X و Y متعامد باشند، داریم: \bigcirc

$$E((X + Y)^2) = E(X^2) + E(Y^2)$$

زيرا: $Y-\mu_Y$ و $Y-\mu_X$ متعامدند و برعكس، زيرا: $Y-\mu_X$ قضيه ۲. اگر

$$E((X - \mu_X)(Y - \mu_Y)) = Cov(X, Y) = \mathbf{0}$$

$$Cov(X, Y) = E[(X - \mu_x)(Y - \mu_y)] = E[XY] - E[X] E[Y]$$

Uncorrelated: Cov(X,y) = 0

$$P(X,y) = \frac{cov(X,y)}{\sqrt{x}}$$

نامساوی شوار تز (Schwarz Inequality)

$$E^2(XY) \leq E(X^2)E(Y^2)$$

$$E^{2}\left[\left(x-\mu_{a}\right)\left(y-\mu_{g}\right)\right] \leqslant E\left[\left(x-\mu_{a}\right)^{2}\right] E\left[\left(y-\mu_{g}\right)^{2}\right]$$

$$E[(tx+y)^{2}] \geq 0$$

$$E[t^{2}x^{2}+2txy+y^{2}] = t^{2}E[x^{2}]+2tE[xy]+E[y^{2}] \geq 0$$

$$at^2+bt+c>$$

$$b^2-4ac < 0$$
 $a > 0$

محدوده ضریب همبستگی

$$Cov(x,y) \leq Var(x) Var(y)$$

$$\frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)\operatorname{Var}(Y)} \leq 1 \implies |P| \leq 1$$

$$Y = CX$$

$$E^{2}[CX^{2}] \leq E[X^{2}] E[C^{2}X^{2}]$$

$$\begin{bmatrix} c^2 & \varepsilon \left[x^2 \right] \end{bmatrix} = c^2 \varepsilon \left[x^2 \right]$$

$$C = \frac{E[xy]}{E[x^2]}$$

تساوی در نامساوی شوار تز

• تساوی را در نامساوی شوار تز وقتی داریم اگر و فقط اگر

$$Y = cX$$

$$c = \frac{E[xy]}{E[x^2]}$$

$$\rho = \frac{\cos(x,y)}{x}$$

ضریب همبستگی واحد

$$C = \frac{cov(X,Y)}{vour(X)} = \frac{p c_X c_Y}{c_X^2}$$

$$\mathcal{E} = \pm \frac{\sigma_y}{\varsigma_x}$$

$$P = 41$$
 $\Rightarrow (Y-\mu_{X}) = C(X-\mu_{X})$