Cambridge (CIE) A Level Chemistry

Gibbs Free Energy Change, ΔG

Contents

- ★ Gibbs Free Energy Change & Gibbs Equation
- * Reaction Feasibility

Gibbs Free Energy Change & Gibbs Equation

The Gibbs Equation

Gibbs free energy

- The feasibility of a reaction does not only depend on the entropy change of the reaction but can also be affected by the enthalpy change
- Therefore, using the entropy change of a reaction **only** to determine the feasibility of a reaction is inaccurate
- The Gibbs free energy (G) is the energy change that takes into account both the entropy change of a reaction and the enthalpy change
- The Gibbs equation is:

$$\Delta G^{\theta} = \Delta H_{reaction}^{\theta} - T\Delta S_{system}^{\theta}$$

- The units of ΔG^{θ} are in **kJ mol**⁻¹
 - The units of $\Delta H_{reaction}^{\theta}$ are in **kJ mol**⁻¹
 - The units of T are in K
 - The units of $\Delta S_{system}^{\theta}$ are in $J K^{-1} mol^{-1}$

Worked Example

Calculate the free energy change for the following reaction at a temperature of 298 K:

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(l) + CO_2(g)$$

- $\Delta H^{\theta} = +135 \text{ kJ mol}^{-1}$
- $\Delta S^{\theta} = +344 \text{ J K}^{-1} \text{ mol}^{-1}$

Answer:

• Step 1: Convert the entropy value in kilojoules

$$\Delta S^{\theta} = +344 \text{ J K}^{-1} \text{ mol}^{-1} \div 1000 = +0.344 \text{ kJ K}^{-1} \text{ mol}^{-1}$$

• Step 2: Substitute the terms into the Gibbs Equation

$$\Delta G^{\theta} = \Delta H_{reaction}^{\Xi} - T \Delta S_{system}^{\Xi}$$

$$\Delta G^{\theta} = +135 - (298 \times 0.344)$$

$$\Delta G^{\theta}$$
 = +32.49 kJ mol⁻¹

Examiner Tips and Tricks

The Gibbs Equation: Calculations

■ The Gibbs equation can be used to calculate the Gibbs free energy change of a reaction

$$\Delta G^{\theta} = \Delta H_{reaction}^{\theta} - T\Delta S_{system}^{\theta}$$

- The equation can also be rearranged to find values of $\Delta H_{reaction}^{\pm}$, ΔS_{system}^{\pm} or the temperature, T
- For example, if for a given reaction, the values of ΔG^{Ξ} , $\Delta H_{reaction}^{\Xi}$ and ΔS_{system}^{Ξ} are given, the temperature can be found by rearranging the Gibbs equation as follows:

$$T = \frac{\Delta H_{\text{reaction}}^{\theta} - \Delta G^{\theta}}{\Delta S_{\text{system}}^{\theta}}$$

Worked Example

Calculate the Gibbs free energy for the reaction of methanol, CH₃OH, with hydrogen bromide, HBr, at 298 K.

$$CH_3OH(I) + HBr(g) \rightarrow CH_3Br(g) + H_2O(I)$$
 $\Delta H_r^{\theta} = -47 \text{ kJ mol}^{-1}$

- ΔS^{θ} [CH₃OH(I)] = +240 J K⁻¹ mol⁻¹
- $\Delta S^{\theta}[HBr(g)] = +99.0 \text{ J K}^{-1} \text{ mol}^{-1}$
- $\Delta S^{\theta}[H_2O(I)] = +70.0 \text{ J K}^{-1} \text{ mol}^{-1}$
- $\Delta S^{\theta}[CH_3Br(g)] = +246 \text{ J K}^{-1}\text{mol}^{-1}$

Answer:

Step 1: Calculate ΔS_{system}^θ

$$\Delta S_{\text{system}}^{\theta} = \Sigma \Delta S_{\text{products}}^{\theta} - \Sigma \Delta S_{\text{reactants}}^{\theta}$$

$$\Delta S_{system}{}^{\theta} = (\Delta S^{\Xi} [CH_3Br(g)] + \Delta S^{\theta} [H_2O(I)]) - (\Delta S^{\theta} [CH_3OH(I)] + \Delta S^{\theta} [HBr(g)])$$

$$\Delta S_{\text{system}}^{\theta} = (246 + 70.0) - (240 + 99.0)$$

$$\Delta S_{system}^{\theta} = -23.0 \text{ J K}^{-1} \text{ mol}^{-1}$$

■ Step 2: Convert ΔS^θ into kJ K⁻¹ mol⁻¹

$$\Delta S_{system}^{\theta} = \frac{-23.0}{1000} = 0.023 \, kJ \, K^{-1} \, mol^{-1}$$

Step 3: Calculate ∆G[≡]

$$\Delta G^{\theta} = \Delta H_{reaction}^{\theta} - T \Delta S_{system}^{\theta}$$

$$\Delta G^{\theta} = -47 - (298 \times -0.023)$$

$$\Delta G^{\theta} = -40.146 \text{ kJ mol}^{-1}$$

Reaction Feasibility

Reaction Feasibility

• The Gibbs equation can be used to calculate whether a reaction is **feasible** or not

$$\Delta G^{\theta} = \Delta H_{reaction}^{\theta} - T\Delta S_{system}^{\theta}$$

- When ΔG^{θ} is **negative**, the reaction is **feasible** and likely to occur
- When ΔG^{θ} is **positive**, the reaction is **not feasible** and unlikely to occur

Worked Example

Calculate the Gibbs free energy for the following reaction at 298 K and determine whether the reaction is feasible.

$$2Ca(s) + O_2(g) \rightarrow 2CaO(s) \Delta H^{\theta} = -635.5 \text{ kJ mol}^{-1}$$

- $S^{\theta}[Ca(s)] = 41.00 \text{ J K}^{-1} \text{ mol}^{-1}$
- $S^{\theta}[O_2(s)] = 205.0 \text{ J K}^{-1} \text{ mol}^{-1}$
- $S^{\theta}[CaO(s)] = 40.00 \text{ J K}^{-1} \text{ mol}^{-1}$

Answer:

Step 1: Calculate ΔS_{system}^θ

$$\Delta S_{\text{system}}^{\theta} = \Sigma \Delta S_{\text{products}}^{\theta} - \Sigma \Delta S_{\text{reactants}}^{\theta}$$

$$\Delta S_{system}^{\theta} = (2 \times \Delta S^{\theta} [CaO(s)]) - (2 \times \Delta S^{\theta} [Ca(s)] + \Delta S^{\theta} [O_2(g)])$$

$$\Delta S_{\text{system}}^{\theta} = (2 \times 40.00) - (2 \times 41.00 + 205.0)$$

$$\Delta S_{system}^{\theta} = -207.0 \text{ J K}^{-1} \text{ mol}^{-1}$$

■ Step 2: Convert ΔS^θ to kJ K⁻¹ mol⁻¹

$$\Delta S^{\theta} = \frac{-207.0}{1000} = -0.207 \,\text{kJ} \,\text{K}^{-1} \,\text{mol}^{-1}$$

■ Step 3: Calculate ΔG^{θ}

$$\Delta G^{\theta} = \Delta H_{reaction}^{\theta} - T\Delta S_{system}^{\theta}$$

$$\Delta G^{\theta} = -635.5 - (298 \times -0.207)$$

$$\Delta G^{\theta} = -573.8 \text{ kJ mol}^{-1}$$

- Step 4: Determine whether the reaction is feasible
 - Since the ΔG^{θ} is **negative** the reaction is feasible and likely to occur

Reaction Feasibility & Temperature Changes

- The **feasibility** of a reaction can be affected by the **temperature**
- The Gibbs equation will be used to explain what will affect the feasibility of a reaction for exothermic and endothermic reactions

$$\Delta G = \Delta H_{reaction} - T\Delta S_{system}$$
FIRST TERM SECOND TERM

Exothermic reactions

- In exothermic reactions, $\Delta H_{reaction}^{\theta}$ is **negative**
- If the $\Delta S_{system}^{\theta}$ is **positive**:
 - Both the first and second term will be **negative**
 - Resulting in a **negative** ΔG^{θ} so the reaction is **feasible**
 - Therefore, regardless of the temperature, an exothermic reaction with a positive $\Delta S_{system}^{\theta}$ will always be feasible
- If the $\Delta S_{system}^{\theta}$ is **negative**:
 - The first term is **negative** and the second term is **positive**
 - At high temperatures, the $-T\Delta S_{\text{system}}^{\theta}$ will be very **large** and **positive** and will overcome $\Delta H_{reaction}^{\theta}$
 - Therefore, at **high temperatures** ΔG^{θ} is **positive** and the reaction is not feasible
 - The reaction is more **feasible** at low temperatures, as the second term will not be large enough to overcome $\Delta H_{reaction}^{\theta}$ resulting in a negative ΔG^{θ}
- This corresponds to Le Chatelier's principle which states that for **exothermic reactions** an increase in temperature will cause the equilibrium to shift position in favour of the reactants, i.e. in the endothermic direction
 - In other words, for exothermic reactions, the products will **not be formed** at high temperatures
 - The reaction is **not feasible** at high temperatures

Summary of factors affecting Gibbs free energy for exothermic reactions

If Δ <i>H</i>	And if ΔS	Then ∆G is	Spontaneous?	Because
	20			

is negative < 0 exothermic	is positive > 0 more disorder	always negative < 0	Always	Forward reaction spontaneous at any T
is negative < 0 exothermic	is negative < 0 more order	negative at low T positive high T	Dependent on T	Spontaneous only at low <i>T</i> T∆S < H

Endothermic reactions

- In endothermic reactions, $\Delta H_{reaction}^{\theta}$ is **positive**
- If the $\Delta S_{system}^{\theta}$ is **negative**:
 - Both the first and second term will be **positive**
 - Resulting in a **positive** ΔG^{θ} so the reaction is **not feasible**
 - Therefore, regardless of the temperature, endothermic with a negative $\Delta S_{system}^{\theta}$ will never be feasible
- If the $\Delta S_{system}^{\equiv}$ is **positive**:
 - The first term is **positive** and the second term is **negative**
 - \blacksquare At low temperatures, the -TDS $_{system}{}^{\theta}$ will be \mathbf{small} and $\mathbf{negative}$ and will not overcome the larger $\Delta H_{reaction}$
 - Therefore, at low temperatures ΔG^{θ} is **positive** and the reaction is less feasible
 - The reaction is more feasible at high temperatures as the second term will become negative enough to overcome the $\Delta H_{reaction}^{\theta}$ resulting in a negative ΔG^{θ}
- This again corresponds to Le Chatelier's principle which states that for **endothermic** reactions an increase in temperature will cause the equilibrium to shift position in favour of the products
 - In other words, for endothermic reactions, the products will **be formed** at high temperatures
 - The reaction is therefore **feasible**

Summary of factors affecting Gibbs free energy for endothermic reactions

If ΔH And if Then ΔG ΔS	s Spontaneous? Because
-------------------------	------------------------

is positive > 0 endothermic	is negative < 0 more order	always positive > 0	Never	Reverse reaction spontaneous at any T
is positive > 0 endothermic	is positive > 0 more disorder	negative at high T positive low T	Dependent on T	Spontaneous only at high <i>T</i> T∆S > H

