Redes Neuronales Convolucionales (CNN)	2
Capas convolucionales	
Fundamentos de las capas convolucionales	2
Operación de convolución	
Paso a paso:	. 2
Objetivo	2
Comparación con capas completamente conectadas	3
Capas Convolucionales	3
Fully connected layers	
Padding	3
Striding	3
Explicación de las capas de pooling	4
Objetivo de las capas de pooling	. 4
Tipos de Pooling	4
Max Pooling	4
Average Pooling	4
Ventajas de las capas de Pooling	. 4
Reducción de Dimensiones	4
Control de Sobreajuste	4
Invariancia a Traslaciones	5
Data Augmentation	5
Técnicas Comunes	5
Deconvolución	. 6
GAN	6
Red Discriminativa	. 6
Red Generativa	6
Union RD y RG	6
U-Nets	. 6
UpSampling	7
Entropía	7
Difusión Directa	7
Ruido Gaussiano	7
Deconvolution and ch	7
Modelos de Difusión	7

Redes Neuronales Convolucionales (CNN)

- Son un tipo de red neuronal especialmente eficaz para tareas de visión por computadora.
- A diferencia de las redes neuronales conectadas, las CNN utilizan capas convolucionales para detectar patrones locales en las imágenes
 - o Esto las hace más eficientes y precisas para estas tareas

Capas convolucionales

- Se utilizan principalmente en el procesamiento y análisis de imágenes.
- Estas capas aplican operaciones de convolución sobre las entradas para extraer características importantes y reducir la dimensionalidad de las imágenes.

Fundamentos de las capas convolucionales

- Las capas convolucionales están diseñadas para reconocer patrones espaciales en las imágenes.
- Funcionan mediante la aplicación de filtros (kernels) que recorren la imagen de entrada y producen mapas de características que resaltan ciertas propiedades, como:
 - Bordes
 - Texturas
 - o Formas.

Operación de convolución

• La convolución busca reducir la imagen.

Paso a paso:

- Selección de un filtro (kernel): Un pequeño conjunto de pesos, típicamente de tamaño 3x3 o 5x5.
- Desplazamiento del filtro: El filtro se desplaza sobre la imagen de entrada.
- **Producto punto:** En cada posición, se realiza un producto punto entre el filtro y la región correspondiente de la imagen.
- Mapa de características: Los resultados se combinan para formar un mapa de características.

Objetivo

- El objetivo principal de la convolución es extraer características importantes de la imagen.
- Debido a la aplicación de filtros y la posible reducción de resolución a través de técnicas como el stride y el padding, puede ocurrir una reducción en la dimensionalidad de la imagen.

Comparación con capas completamente conectadas

• Las capas convolucionales se diferencian significativamente de las capas completamente conectadas (fully connected layers) en varios aspectos:

Capas Convolucionales

- Localización de Conexiones: Cada neurona está conectada solo a una pequeña región de la entrada (campo receptivo).
- Compartición de Pesos: Los filtros se aplican en toda la imagen, compartiendo los mismos pesos.
- Extracción de Características: Están diseñadas para extraer y aprender características espaciales.

Fully connected layers

- Globalización de Conexiones: Cada neurona está conectada a todas las neuronas de la capa anterior.
- Pesos Únicos: Cada conexión tiene un peso único, sin compartición.
- Transformación de Características: Están diseñadas para combinar y transformar las características aprendidas en las capas anteriores.

#Cuando se define una capa convolucional, se debe definir el tamaño del kernel

Padding

- La matriz de caracteristicas tambien se llama
- La tecnica mas comun es la 0 padding

Striding

- Controla el paso con el que el kernel se mueve sobre la imagen de entrada
- Ventaja
- Desventaja

Si el striding es muy grande, se puede saltar pixeles de la imagen

Explicación de las capas de pooling

 Las capas de pooling son una parte esencial de las redes neuronales convolucionales (CNNs) y se utilizan para reducir las dimensiones de las representaciones de datos (imágenes) y la cantidad de parámetros y cálculos en la red. Estas capas funcionan resumiendo las características dentro de una región específica de la entrada.

Objetivo de las capas de pooling

El objetivo principal de las capas de pooling es:

- Reducción de Dimensiones: Disminuir la resolución espacial de las representaciones.
- **Control de Sobreajuste**: Reducir el número de parámetros y, por lo tanto, el riesgo de sobreajuste.
- **Invariancia a Traslaciones**: Hacer que las características detectadas sean menos sensibles a las traslaciones pequeñas de la entrada.

Tipos de Pooling

Max Pooling

 Selecciona el valor máximo de una región específica (ventana) de la entrada. Esto permite capturar la característica más prominente dentro de esa región.

Average Pooling

 Calcula el valor promedio de una región específica (ventana) de la entrada. Esto ofrece una representación más suave en comparación con Max Pooling.

Ventajas de las capas de Pooling

Reducción de Dimensiones

 Al disminuir la resolución espacial de las representaciones, se reduce la cantidad de datos que la red debe procesar y el número de parámetros, lo que mejora la eficiencia computacional.

Control de Sobreajuste

 Al reducir el número de parámetros, se disminuye la capacidad de la red para aprender patrones espurios en los datos de entrenamiento, ayudando así a controlar el sobreajuste.

Invariancia a Traslaciones

 Las capas de pooling hacen que las características detectadas sean más robustas a pequeñas traslaciones o desplazamientos de la entrada, lo que es crucial para tareas de reconocimiento de imágenes donde los objetos pueden aparecer en diferentes posiciones.

Data Augmentation

- Su objetivo es aumentar la cantidad y diversidad de dato de entrenamiento aplicando transformaciones aleatorias a los datos existentes
- Ayuda a mejorar la capacidad de generalización del modelo y reduce el riesgo de sobreajuste
- Se hace para mejorar la calidad de los datos de entrenamiento
- ¿Qué pasa si yo tengo un problema donde aplicar transformaciones y estas no representan la realidad?
 - o Pues entonces el modelo nunca va a resolver el problema real

Técnicas Comunes

- Rotación
- Traslación
- Escalado
- Flip
- Ajuste de Brillo y Contraste
- Recorte
- Ruido Aleatorio

Deconvolución

- También conocida como convolución transpuesta, es una operación utilizada en redes neuronales convolucionales para aumentar la resolución espacial de una representación de datos.
- Permite reconstruir la imagen original o generar imágenes más grandes a partir de representaciones más pequeñas.

GAN

- Tipo de modelo de aprendizaje profundo que consiste en dos redes neuronales que compiten entre sí: una red generativa y una red discriminativa.
- Estas redes se entrenan conjuntamente en un proceso de retroalimentación, donde la red generativa intenta generar datos realistas y la red discriminativa intenta distinguir entre datos reales y generados.

Red Discriminativa

- Se llama así porque bota todo lo que no le sirve
- Se encarga de distinguir entre los datos reales y los datos generados por la red generativa.
- Su objetivo es identificar correctamente si un ejemplo es real o ha sido generado por el modelo.
- Red Discriminativa como Encoder: La red discriminativa toma los datos de entrada y produce una probabilidad de que esos datos sean reales.
 - o "codifica" la información en una representación que facilita la clasificación.

Red Generativa

- Su objetivo es aprender la distribución de los datos reales y generar ejemplos que sean lo suficientemente convincentes para engañar a la red discriminativa.
- Red Generativa como Decoder:
 - La red generativa toma una representación latente (a menudo ruido aleatorio)
 y "decodifica" esa información en datos que se asemejan a los datos reales.

Union RD y RG

- Se podría decir que RD es un Encoder y las RG son un Decoder
- Por ende, también son U-Nets

U-Nets

- Se caracteriza por su estructura en forma de "U".
- Hay una serie de capas de convolución que reducen la dimensionalidad (encoder) y luego una serie de capas de deconvolución que la aumentan (decoder).

UpSampling

- Técnica utilizada en redes neuronales para aumentar la resolución espacial de una imagen o una representación de datos.
- Se aplica comúnmente en la reconstrucción de imágenes, segmentación semántica
 - Tareas donde es necesario recuperar la información espacial después de haberla reducido.

Entropía

- Medida de incertidumbre o aleatoriedad en un conjunto de datos.
- Cuantifica la cantidad de información que se espera obtener de una variable aleatoria.
- En modelos de clasificación, la entropía cruzada (cross-entropy) se utiliza como una función de pérdida para evaluar la discrepancia entre la distribución de probabilidad predicha y la real.

Difusión Directa

Ruido Gaussiano

- A menudo se añade a los datos de entrada o a las salidas intermedias para:
 - Simular perturbaciones reales
 - Mejorar la robustez del modelo
 - o Prevenir el sobreajuste.

Deconvolution and ch...

Modelos de Difusión

- Estos modelos pueden incluir procesos donde las características de los datos se difunden a través de una estructura de red
- Se refieren a la generación de datos mediante procesos iterativos que imitan la difusión natural de características.

- Que es un feature map en CNN
- Flattering: aplanar la imagen a una dimensión
- FC: Fully Connected
- Recent 101 Architecture, buscar imagen
- El cuadrado azul es la imagen de input
- El verde se llama Feature Map, Mapeo de características
- La capa de POOLING reduce el tamaño
- Otro objetivo del Padding es destacar de igual manera los detalles en los bordes de las imágenes (Zero Padding)
- Objetivo de la capa convolucional es conservar lo mas importante y descartar lo irrelevante
- MAX Pooling se utiliza para descartar caracteristicas en imagenes que no tienen muchos colores
- Average Pooling sirve para no descartar tantas características en una imagen muy colorida, o en la que aparecen muchos objetos
- Transfer Learning:
- Numpy Array 2 de es una matriz
- ¿Qué es un tensor?
- Data augmentation
- Con **Pre Trained=True** agregó los pesos al modelo
- Que es Max Pooling
 - o Identifica la característica más importante, esta se hace al inicio
- Que es average Pooling y porque se encuentra al final?

C

- ¿Qué significa que sea secuencial?
- ¿Por qué se reduce de 1000 labels a 10 labels?
 - Básicamente porque estoy adaptando a mi problema, osea mi imagen puede tener 10 características, y no necesitare mas de 10 para realizar predicciones
- ¿Por qué se hace Cross Entropy?
 - o Porque es multiclase
- Tasa de aprendizaje mas alta cuando se acerca a las capas de salida, ya que tengo más que ajustar, pero no siempre es necesario.
- Temb_1 agrega el ruido dato n t definido

.....

- A nosotros nos interesa que la red generalize
- En el segundo paso estamos normalizando la escala de píxeles