UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA

INF01112 – 2010 – Estado atual do desenvolvimento de microprocessadores

Nome: Diogo Costa Num. Identificação: 180188

Passo 1 – Arquitetura Intel Core

Com a arquitetura Core, a Intel introduz também vários conceitos novos. Pesquise na Internet e descreva o que significam as características abaixo. Para cada uma delas, indique também o URL final utilizada (Observação: utilize sempre um URL de um site da Intel, e separe a propaganda dos aspectos técnicos!!).

1.1 Turbo Boost Technology: Serve para que os núcleos do processador aumentem aos poucos em 133 Mhz sua freqüência quando estiverem operando abaixo dos limites especificados para energia, corrente e temperatura.

URL: http://www.intel.com/technology/turboboost/?iid=RL_Search+turbo_boost_technology

1.2 Hyper-Threading Technology: Melhora o thread dos núcleos dos processadores e/ou desativa os inativos e aumentando a freqüência dos já em uso

URL: http://www.intel.com/technology/platform-technology/hyper-threading/

1.3 Trusted Execution Technology: Seria um "antivírus" em hardware, onde o próprio processador protege contra todos os outros softwares

URL: http://www.intel.com/technology/security/

1.4 Virtualization Technology: A tecnologia de virtualização permite que softwares de virtualização possam controlar a maquina virtual e executar diretamente sobre o hardware, fazendo o chaveamento entre a máquina virtual e a máquina "emulada" de forma transparente, proporcionando maior desempenho.

URL: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/1-abstract.htm

1.5 AES New Instructions: Através da criptografia e descriptografia, deixa o processador mais rápido e também o computado mais seguro (principalmente contra os ataques em cache)

URL: http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/

Passo 2 – Processadores Intel

Atualmente, a Intel caracteriza seus processadores por um número. Acesse o site da Intel, em http://ark.intel.com, e preencha a tabela a seguir:

2.1 Preencha a tabela a seguir:

Modelo	Freqüência	Cache L2	Número de	Número de	64 bits ou	Potência
	(GHz)	(MB)	Núcleos	Threads	32 bits	dissipada
			(# Cores)	(#Threads)		(TDP),
						Watts
Atom Z550	2	1/2	1	2	32	2.4
Core 2 Quad Q9505	2.83	6	4	4	64	95
Core 2 Duo E8400	3	6	2	2	64	65
Core i3 540	3.06	4	2	4	64	73
Core i7-950	3.06	8	4	8	64	130
Core i5-660	3.33	4	2	4	64	73
Core Solo U1500	1.33	2	1	1	32	5.5

A AMD também tem conceitos novos e exclusivos. Pesquise na Internet e descreva o que significam as características abaixo. (Observação: *utilize sempre um URL de um site da AMD*, *e separe a propaganda dos aspectos técnicos!!*).

3.1 O que significa a arquitetura Direct Connect? É uma tecnologia o barramento frontal é eliminado, fazendo uma conexão direta da CPU com a memória, sendo assim, o controlador de memória se localiza no processador ao invés da placa-mãe (quando o processador possui barramento frontal).

 $\begin{tabular}{ll} URL: & $\underline{$http://www.amd.com/us/products/technologies/direct-connect-architecture/Pages/direct-connect-architecture/Pages/direct-connect-architecture.} \end{tabular}$

3.2 O que significa a tecnologia Hyper Transport? : Hyper Transport é uma conexão ponto-a-ponto de alta velocidade e baixa latência, projetada para aumentar a velocidade da comunicação entre os circuitos integrados em computadores, servidores e sistemas embutidos, e equipamentos de redes e telecomunicações até 48 vezes mais do que algumas tecnologias existentes.

URL: http://www.amd.com/br-pt/Processors/DevelopWithAMD/0,,30_2252_869_2353,00.html

3.3 Qual a principal diferença arquitetural entre os processadores da família Athlon II e os da família Phenom II?

Athlon II: não possui cache de nível 3. Phenom II: possui cache de nível 3.

URL: http://www.amd.com/br/products/desktop/processors/Pages/desktop-processors.aspx

3.3 Acesse o site da AMD em http://products.amd.com/en-us/ no link "Desktop Processors", e preencha a tabela a seguir

Modelo	Freqüência	Cache L2	Cache L3	64 bits ou	Número de	Potência
	(GHz)	(KB)	(KB)	32 bits	Núcleos	dissipada
					(Cores)	(TDP),
						Watts
Athlon II X3 425	2.7	1/2		32/64	3	95
Athlon II X4 635	2.9	1/2		32/64	4	95
Phenom II X4 910	2.6	1/2	6144kb	32/64	4	95
Phenom II X3 710	2.6	1/2	6144kb	32/64	3	95
Phenom II X2 550	3.1	1/2	6144kb	32/64	2	80
Phenom X4 9600	2.3	1/2	2	32/64	4	95
Athlon 4000+	2.4	1	0	32/64	1	89
Phenom X3 8650	2.3	1/2	2	32/64	3	95
Athlon X2 6000+	3	1	0	32/64	2	125

Passo 4 – Processadores PowerPC

Para o projeto de computadores e controladores, não existe só os modelos x86, da Intel e AMD. Um exemplo disto é o processador PowerQuicc 885, desenvolvido pela empresa freescale com base na arquitetura Power-PC. Consulte o manual do MPC885 (disponível em www.freescale.com ou no próprio Moodle) e responda:

4.1 Qual o significado da sigla QUICC? **QU**ad **I**ntegrated **C**ircuit **C**ontroller

4.2 Quais as frequências de operação deste processador? 66, 133, 80 Mhz

4.3 No processador, o que significam as siglas UISA, VEA e OEA?

UISA: User Instruction Set Architecture VEA: Virtual Environment Architecture OEA: Operating Environment Architecture

4.4 Quantas níveis de cache existem, e quais os tamanhos? Porque o manual denomina esta implementação de "Arquitetura de Harward? Qual o tamanho de um bloco da cache?

Possui 2 níveis de cache com 8kb cada.

Possui Arquitetura de Harvard, pois se baseia na separação de barramentos de dados das memórias onde estão as instruções de programa e das memórias de dados, permitindo que um processador possa acessar as duas simultaneamente, sendo mais eficiente do que a Arquitetura de von Neumann.

4.5 O processador tem gerência de memória virtual? Segmentada ou paginada? Quais os tamanhos dos blocos gerenciados?

Possui gerência de memória virtual paginadas. Os blocos não possui tamanhos fixos, variando de 4 Kbytes a 8 Mbytes, além do suporte para subpáginas de 1kb para páginas de 4kb.

4.5 Na gerência de memória, o que significam as siglas DTLB e ITLB? Dual Translation Lookaside Buffer Instruction Translation Lookaside Buffer