Pemanfaatan Machine Learning Berbasis Kamera untuk Efisiensi dan Keamanan

Penerapan Machine Learning (ML) di industri saat ini semakin marak, terutama dalam bidang keamanan dan efisiensi operasional. Salah satu teknologi yang paling menjanjikan adalah penggunaan ML berbasis kamera. Sistem ini memanfaatkan algoritma Al untuk menganalisis gambar dan video yang direkam oleh kamera, memungkinkan identifikasi pola dan anomali yang sulit dideteksi oleh manusia.

Tantangan Operasional dan Keselamatan di Kilang

- Pemantauan Efisien

 Kilang membutuhkan pemantauan proses yang terus-menerus dan efektif untuk memastikan operasional yang lancar dan aman.
- 2 Masalah Operasional
 Potensi masalah operasional, seperti kebocoran, kerusakan mesin, dan
 pelanggaran prosedur keselamatan, harus diatasi dengan cepat dan
 tepat.
- Efisiensi dan Keselamatan

 Penanganan masalah yang terlambat dapat berdampak serius pada efisiensi dan keselamatan kerja.

Solusi dengan Machine Learning Berbasis Kamera

Pemantauan Visual

Kamera dapat dipasang di lokasi strategis untuk memantau kondisi peralatan, area kerja, dan aktivitas pekerja.

Deteksi Anomali

Algoritma ML dapat menganalisis gambar dan video untuk mendeteksi pola, anomali, atau kegagalan sistem secara real-time.

Prediksi Downtime

Sistem ini dapat memprediksi potensi masalah dan memberikan peringatan dini, sehingga downtime dapat dihindari.

Implementasi dibidang HSSE

APD

Sistem ML dapat mendeteksi apakah pekerja mengenakan APD dengan benar, mengurangi risiko kecelakaan.

Area Terlarang

Sistem dapat memantau akses ke area terlarang, mencegah pelanggaran aturan dan potensi bahaya.

Bahan Berbahaya

Sistem dapat mendeteksi kebocoran atau tumpahan bahan berbahaya, sehingga respon darurat dapat diaktifkan dengan cepat.

Di bidang PM

Deteksi Suara Anomali

Sistem dapat mendeteksi perubahan suara yang mengindikasikan kerusakan pada mesin.

ollo

Deteksi Data Anomali

Sistem dapat menganalisis data sensor untuk mendeteksi anomali yang menunjukkan masalah pada equipment.

Deteksi Pemakaian Alat Pelindung Diri (APD)

Identifikasi

Sistem mendeteksi pekerja di area kerja.

Analisis

Sistem menganalisis gambar untuk mendeteksi keberadaan APD.

Pemberitahuan

Sistem memberikan peringatan jika APD tidak terdeteksi.

7

Pemantauan Area Terlarang

Deteksi Objek

Sistem mendeteksi objek yang memasuki area terlarang.

7 Verifikasi

Sistem memverifikasi apakah objek tersebut diizinkan berada di area tersebut.

_____ Pemberitahuan

Sistem mengirimkan peringatan kepada petugas keamanan jika terjadi pelanggaran.

Deteksi Kebocoran atau Tumpahan Bahan Berbahaya

Deteksi Visual

Sistem mendeteksi perubahan warna, tekstur, atau bentuk yang menunjukkan kebocoran.

Pemantauan Sensor

Sistem dapat terintegrasi dengan sensor untuk mendeteksi perubahan konsentrasi bahan berbahaya.

Deteksi Api dan Asap

Deteksi Api	Sistem mendeteksi cahaya, panas, dan pergerakan yang mengindikasikan api.
Deteksi Asap	Sistem mendeteksi perubahan warna, tekstur, dan pergerakan yang mengindikasikan asap.
Pemberitahuan	Sistem mengirimkan peringatan kepada petugas pemadam kebakaran.

Pemantauan Kondisi Lalu Lintas di Area Kerja

- Deteksi Kendaraan
 Sistem mendeteksi jumlah dan jenis kendaraan yang melintas di area kerja.
- 2 Analisis Kecepatan
 Sistem menganalisis kecepatan kendaraan dan memberikan peringatan jika melebihi batas.
- Pemantauan Jalur
 Sistem memantau jalur kendaraan dan memberikan peringatan jika terjadi pelanggaran.

