Feature selection

Obsah

Filter

Wrapper

Embedded

Preco by som mal vyberat len niektore atributy?

- redundancia skryte zavyslosti medzi nimi
- irelevancia nemusia mat ziadny vplyv na predikovanu hodnotu
- pretrenovanie model sa da natrenovat aj na nahodnych datach a na trenovacej sade bude fungovat. Na testovacej ale bude fungovat uplne strasne
- prekliatie dimenzionality pri velkom pocte atributov potrebujem vela dat na to aby som dostatocne pokryl priestor moznych hodnot
- produktivita / rychlost moja ako analytika a aj mojich modelov (trenovanie aj predikcia)
- zrozumitelnost lahsie sa vysvetluje model, ktory ma menej atributov

```
In [24]:
```

```
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn
plt.rcParams['figure.figsize'] = 9, 6
```

Filter

Vyber atributov bez ohladu na model, ktory sa chystame trenovat.

- rychle
- nezavisle na modeli (to je dobre aj zle)

Najjednoduchsie je vyhodit atributy, ktore maju vsade rovnake hodnoty

pozor, nie malu varianciu. Hlavne pri nevyvazenych triedach mozu byt prave taketo atributy velmi uzitocne

Potom mozeme vyberat atributy na zaklade zavislosti atributu a predikovanej hodnoty

Priklad: vyberieme K vlastnosti, s najvyssou zavislostou s predikovanou hodnotou.

```
In [28]: from sklearn.datasets import load_iris
    from sklearn.feature_selection import SelectKBest
    from sklearn.feature_selection import chi2 # daju sa pouzit ine metriky
    iris = load_iris()
    X, y = iris.data, iris.target
    X.shape

Out[28]: (150, 4)

In [29]: X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
    X_new.shape

Out[29]: (150, 2)
```

Daju sa pouzivat rozne metriky

Klasifikacia

- · chi2 nezaporne cisla
- mutual info classif diskretne data
- f classif ANOVA medzi predikovanou premennou a atributmi

Regresia

- f_regression F test medzi predikovanou hodnotou a atributmi
- mutual info regression Mutual information na realnych cislach

Da sa vyberat K najlepsich alebo nejaky percentil alebo nechat pocet atributov na statisticky test

- SelectKBest
- SelectPercentile
- SelectFpr false positive rate
- SelectFdr false discovery rate
- · SelectFwe family wise error
- GenericUnivariateSelect Vsetko dohromady a strategia sa da nastavit parametrom

Vlastnosti filtrov

- · vacsinou rychle
- nezavisle na modely (nepotrebujem opakovane trenovat model ale vybrane atributy nemusia byt najvhodnejsie pre kazdy model)
- vacsinou sa pozeraju len na vlastnosti dvojic predikovana premenna atribut, kombinacie viacerych atributov nezohladnuju

Varovanie, PCA sa casto pouziva na redukciu dimenzionality ale nie na vyber atributov

Je to casta chyba

Nemohol som si odpustit tuto poznamku

Preco je to tak sa mozeme porozpravat v diskusii

Wrapper

Zakladna myslienka

haldame podmnozinu atributov, na ktorej bude model davat najlepsie vysledky

Skusame rozne podmnoziny a vyberame tu najlepsiu

Problem

Ak mame dataset s N atributmi, tak pocet roznych podmnozin je 2^N

To znamena, ze by sme museli nas model natrenovat 2^N krat.

Chcelo by to najst proces, ktory minimalizuje pocet pokusov a zaroven maximalizuje uspesnost modelu

Greedy pristupy

Najcastejsie sa pouzivaju greedy pristupy, ktore postupne zvacsuju sadu atributov (alebo zmensuju) tak, ze pridavaju (odoberaju) atribut tak aby sa co najviac zvysila uspesnost.

MIxtend

Sequential Forward Selection (SFS)

Postupne zvacsuje mnozinu atributov o ton, ktory najviac prispel k zlepseniu

• Sequential Backward Selection (SBS)

Postupne zmensuje mnzoinu atributov o ten, ktory najmenej pomahal

• Sequential Floating Forward Selection (SFFS)

SFS s pokusom o vyhodenie uz pridanych atributov ak sa ukaze ze velmi nepomahaju

• Sequential Floating Backward Selection (SFBS)

SBS s pokusom o pridanie uz raz vyhodeneho atributu

Scikit-Learn

• RFE - Recursive feature elimination

Postupne vyhadzovanie atributov, ktore maju v modeli najnizsiu vahu (potrebujeme aby to model vedel povedat)

RFECV - RFE with cross-validation

RFE s cross validaciou

Priklad SFS

```
In [30]: from sklearn.neighbors import KNeighborsClassifier
        from sklearn.datasets import load iris
        iris = load iris()
        X = iris.data
        y = iris.target
        knn = KNeighborsClassifier(n neighbors=4)
In [31]: from mlxtend.feature selection import SequentialFeatureSelector as SFS
        sfs1 = SFS(knn, k features=3, forward=True, floating=False, verbose=2, scoring='accuracy', cv=0)
        # pomocou tejto triedy vieme robit SFS, SFFS, SBS aj SFBS a dokonca aj pridat cross-validaciu
        sfs1 = sfs1.fit(X, y)
        [2017-04-06 10:29:59] Features: 1/3 -- score: 0.96
        [2017-04-06 10:29:59] Features: 2/3 -- score: 0.973333333333
        [2017-04-06 10:29:59] Features: 3/3 -- score: 0.973333333333
In [32]: sfs1.subsets_
'cv scores': array([ 0.96]),
          'feature idx': (3,)},
         'cv scores': array([ 0.97333333]),
          'feature idx': (2, 3)},
         'cv scores': array([ 0.97333333]),
          'feature idx': (1, 2, 3)}}
```

Viem si vytiahnut zoznam najlepsich vlastnosti a uspesnost modelu pri nich

Embedded

Hlavna myslienka

Skombinovat vyhody filtrov a wrapprov

Model, ktory sa trenuje si bude priamo vyberat atributy, ktore su pre neho najlepsie

- Linearne modely penalizovnae L1 (Lasso) alebo L1+L2 (Elastic Net) regularizaciou: SVM, Linearna regresia, Logisticka regresia ...
- RandomForest

```
In [35]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.datasets import load_iris
    from sklearn.feature_selection import SelectFromModel
    iris = load_iris()
    X, y = iris.data, iris.target
    X.shape

Out[35]: (150, 4)

In [36]: clf = RandomForestClassifier()
    clf = clf.fit(X, y)
    clf.feature_importances_

Out[36]: array([ 0.15331839,  0.01613406,  0.43087666,  0.39967089])
```

```
In [37]: model = SelectFromModel(clf, prefit=True)
    X_new = model.transform(X)
    X_new.shape
```

Out[37]: (150, 2)

Zaver

Zvazte ktory sposob vyberu atributov sa hodi prave pre vas. Zalezi to hlavne od pouziteho algoritmu na vytvorenie modelu.

- Ak pouzivate nejaky linearny model alebo les, tak je zbytocne robit filtre a este viac zbytocne robit wrappre.
- Ak nemate cas na opakovane trenovanie modelu, tak filtre mozu byt dostatocny hotfix. Treba ale zvazit aku vlastnost atributov chcete pouzit na najdenie najdolezitejsich.
- Ak mate cas spustit to trenovanie viac krat, tak asi najlepsia moznost je SFFS alebo SFECV

Zdroje

- http://scikit-learn.org/stable/modules/feature_selection.html (http://scikit-learn.org/stable/modules/feature_selection.html)
- http://jotterbach.github.io/2016/03/24/Principal_Component_Analysis/ (http://jotterbach.github.io/2016/03/24/Principal_Component_Analysis/)
- https://plot.ly/scikit-learn/plot-feature-selection/ (https://plot.ly/scikit-learn/plot-feature-selection/ (https://plot.ly/scikit-learn/plot-feature-selection/ (https://plot.ly/scikit-learn/plot-feature-selection/)
- https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-an-example-or-how-to-select-the-right-variables/)
- http://www.kdnuggets.com/2017/04/must-know-fewer-predictors-machine-learning-models.html?
 utm_content=buffer42ed6&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
 (http://www.kdnuggets.com/2017/04/must-know-fewer-predictors-machine-learning-models.html?
 utm_content=buffer42ed6&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer)

In []: