Számítógépes Hálózatok

5. Előadás: Adatkapcsolati réteg III.

Közeg hozzáférés vezérlése Media Access Control (MAC)

Mi az a közeg hozzáférés?

- Ethernet és a Wifi is többszörös hozzáférést biztosító technológiák
 - Az átviteli közegen több résztvevő osztozik
 - Adatszórás (broadcasting)
 - Az egyidejű átvitel ütközést okot
 - Lényegében meghiúsítja az átvitelt
- Követelmények a Media Access Control (MAC) protokolljaival szemben
 - Szabályok a közeg megosztására
 - Stratégiák az ütközések detektálásához, elkerüléséhez és feloldásához

- Eddigi tárgyalásaink során pont-pont összeköttetést feltételeztünk.
- Most az adatszóró csatornát (angolul broadcast channel) használó hálózatok tárgykörével foglalkozunk majd.
 - Kulcskérdés: Melyik állomás kapja a csatornahasználat jogát?
- A csatorna kiosztás történhet:
 - statikus módon (FDM, TDM)
 - 2. dinamikus módon
 - a) verseny vagy ütközés alapú protokollok (ALOHA, CSMA, CSMA/CD)
 - b) verseny-mentes protokollok (bittérkép-alapú protokollok, bináris visszaszámlálás)
 - korlátozott verseny protokollok (adaptív fa protokollok)

Frekvenciaosztásos nyalábolás

- N darab felhasználót feltételezünk, a sávszélet N egyenlő méretű sávra osztják, és minden egyes sávhoz hozzárendelnek egy felhasználót.
- Következésképpen az állomások nem fogják egymást zavarni.
- Előnyös a használata, ha fix számú felhasználó van és a felhasználók nagy forgalmi igényt támasztanak.
- Löketszerű forgalom esetén használata problémás.

Időosztásos nyalábolás

- N darab felhasználót feltételezünk, az időegységet N egyenlő méretű időrésre úgynevezett slot-ra osztják, és minden egyes réshez hozzárendelnek egy felhasználót.
- Löketszerű forgalom esetén használata nem hatékony.

Dinamikus csatornakiosztás

1. Állomás modell

- N terminál/állomás
- Annak a valószínűsége, hogy Δt idő alatt csomag érkezik λΔt, ahol λ az érkezési folyam rátája.

2. Egyetlen csatorna feltételezés

- Minden állomás egyenrangú.
- Minden kommunikáció egyazon csatornán zajlik.
- Minden állomás tud ezen küldeni és fogadni csomagot.

3. Ütközés feltételezés

- Ha két keret egy időben kerül átvitelre, akkor átlapolódnak, és az eredményül kapott jel értelmezhetetlenné válik.
- Ezt nevezzük ütközésnek.
- 4. Folytonos időmodell VS diszkrét időmodell
- 5. Vivőjel értékelés VS nincs vivőjel érzékelés

Dinamikus csatornakiosztás

Használt időmodell

Kétféle időmodellt különböztetünk meg:

- a) Folytonos Mindegyik állomás tetszőleges időpontban megkezdheti a küldésre kész keretének sugárzását.
- b) **Diszkrét** Az időt diszkrét résekre osztjuk. Keret továbbítás csak időrés elején lehetséges. Az időrés lehet üres, sikeres vagy ütközéses.

Vivőjel érzékelési képesség

Az egyes állomások vagy rendelkeznek ezzel a tulajdonsággal vagy nem.

- a) Ha **nincs**, akkor az állomások nem tudják megvizsgálni a közös csatorna állapotát, ezért egyszerűen elkezdenek küldeni, ha van rá lehetőségük.
- b) Ha **van**, akkor állomások meg tudják vizsgálni a közös csatorna állapotát a küldés előtt. A csatorna lehet: foglalt vagy szabad. Ha a foglalt a csatorna, akkor nem próbálják használni az állomások, amíg fel nem szabadul.

Megjegyzés: Ez egy egyszerűsített modell!

Hogyan mérjük a hatékonyságot?

- Átvitel [Throughput] (S)
 - A sikeresen átvitt csomagok/keretek száma egy időegység alatt

- Késleltetés [Delay]
 - Egy csomag átviteléhez szükséges idő

- Fairség [Fairness]
 - Minden állomás egyenrangúként van kezelve

Átvitel és terhelés

□ Terhelés (G)

- A protokoll által kezelendő csomagok száma egy időegység alatt (beérkező kérések)
- □ G>1: túlterhelés
- A csatorna egy kérést tud elvezetni

□ Ideális esetben

- □ Ha G<1, S=G
- Ha G≥1, S=1
- Ahol egy csomag kiküldése egy időegységet vesz igénybe.

(Tiszta) ALOHA

- Az algoritmust a 70-es években a Uni. of Hawaii fejlesztette
 - Ha van elküldendő adat, akkor elküldi
 - Alacsony költségű, nagyon egyszerű megoldás

- Topológia: broadcast rádió több állomással
- Protokoll:

- Egyszerű, de radikális megoldás
- Korábbi megoldások, mind felosztották a csatornát
 - TDMA, FDMA, etc.
- Kévés küldő esetére készült

Teljesítmény elemzés -Poisson Folyam

- A "véletlen érkezések" egyik ünnepelt modellje a sorban-állás elméletben a Poisson folyam.
- A modell feltételezései:
 - Egy érkezés valószínűsége egy rövid Δt intervallum alatt arányos az intervallum hosszával és nem függ az intervallum kezdetétől (ezt nevezzük memória nélküli tulajdonságnak)
 - Annak a valószínűsége, hogy több érkezés történik egy rövid Δt intervallum alatt közelít a nullához.

Teljesítmény elemzés -Poisson eloszlás

Annak a valószínűsége, hogy *k* érkezés történik egy *t* hosszú intervallum során:

$$P_k(t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

ahol λ az érkezési ráta. Azaz ez egy egy-paraméteres modell, ahol csak λ -át kell ismernünk.

Poisson Eloszlás példák

- □ Jelölés:
 - \square $T_f = \text{keret-idő}$ (feldolgozási, átviteli és propagációs)
 - S: A sikeres keret átvitelek átlagos száma T_f idő alatt; (throughput)
 - □ G: T_f idő alatti összes átviteli kísérletek átlagos száma
 - D: Egy keret küldésre kész állapota és a sikeres átvitele között eltelt átlagos idő
- □ Feltételezéseink
 - Minden keret konstans/azonos méretű
 - A csatorna zajmentes, hibák csak ütközések miatt történnek
 - A keretek nem kerülnek sorokba az egyedi állomásokon
 - Egy csatorna egy Poisson folyamként viselkedik

Mivel S jelöli a "jó" átviteleket egy keret idő alatt és G jelöli az összes átviteli kísérletet egy keret idő alatt, így a következő összefüggést írhatjuk:

$$S = S(G) = G \times (A , jó" átvitelek valószínűsége)$$

□ A sebezhetőségi idő egy keret sikeres átviteléhez: 2T_f

 Azaz a "jó" átvitel valószínűsége megegyezik annak a valószínűségével, hogy a sebezhetőségi idő alatt nincs beérkező keret.

Sebezhetőségi időintervallum a kékkel jelölt kerethez

Tudjuk, hogy:

$$P_k(t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

Azaz most $t = 2T_t$ és k = 0 (t legyen a seb. ldő, k=0, hogy ne érkezzen új keret a kék küldése során)

$$P_0(2T_f) = \frac{(\lambda \cdot 2T_f)^0 e^{-\lambda 2T_f}}{0!} = e^{-2G}$$

$$P_0(2T_f) = \frac{(\lambda \cdot 2T_f)^0 e^{-\lambda 2T_f}}{0!} = e^{-2G}$$

becasue $\lambda = \frac{G}{T_f}$. Thus, $S = G \cdot e^{-2G}$

S(G) = Ge^{-2G} függvényt G szerint deriválva és az eredményt nullának tekintve az egyenlet megoldásával megkapjuk a maximális sikeres átvitelhez tartozó G értéket:

$$G = 0.5$$
,

melyre S(G) = 1/2e = 0.18. Azaz a maximális throughput csak 18%-a a teljes kapacitásnak!!!

ALOHA vs TDMA

Réselt ALOHA

- A csatornát azonos időrésekre bontjuk, melyek hossza pont egy keret átviteléhez szükséges idő.
- Átvitel csak az időrések határán lehetséges

- Algoritmus:
 - Amikor egy új A keret küldésre kész:
 - Az A keret kiküldésre kerül a (következő) időrés-határon

A réselt ALOHA vizsgálata

- A sebezhetőségi idő a felére csökken!!!
- Tudjuk, hogy:

$$P_k(t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

Ez esetben $t = T_f$ és továbbra is k = 0, amiből kapjuk, hogy:

$$P_0(T_f) = \frac{(\lambda \cdot T_f)^0 e^{-\lambda T_f}}{0!} = e^{-G}$$

because $\lambda = \frac{G}{T_f}$. Thus, $S = G \cdot e^{-G}$

Réselt ALOHA

Adatszóró (Broadcast) Ethernet

Eredetileg az Ethernet egy adatszóró technológia volt

Vivőjel érzékelés Carrier Sense Multiple Access (CSMA)

- További feltételezés
 - Minden állomás képes belehallgatni a csatornába és így el tudja dönteni, hogy azt más állomás használja-e átvitelre

26

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Folytonos időmodellt használ a protokoll

Algoritmus

- Keret leadása előtt belehallgat a csatornába:
 - Ha foglalt, akkor addig vár, amíg fel nem szabadul. Szabad csatorna esetén azonnal küld. (perzisztens)
 - b) Ha szabad, akkor küld.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

Tulajdonságok

- A terjedési késleltetés nagymértékben befolyásolhatja a teljesítményét.
- Jobb teljesítményt mutat, mint az ALOHA protokollok.

Nem-perzisztens CSMA protokoll

27

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Folytonos időmodellt használ a protokoll
- Mohóság kerülése

Algoritmus

- Keret leadása előtt belehallgat a csatornába:
 - Ha foglalt, akkor véletlen ideig vár (nem figyeli a forgalmat), majd kezdi előröl a küldési algoritmust. (nem-perzisztens)
 - b) Ha szabad, akkor küld.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

Tulajdonságok

Jobb teljesítményt mutat, mint az 1-perzisztens CSMA protokoll. (intuitív)

28

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Diszkrét időmodellt használ a protokoll

Algoritmus

- Adás kész állapotban az állomás belehallgat a csatornába:
 - a) Ha foglalt, akkor vár a következő időrésig, majd megismétli az algoritmust.
 - b) Ha szabad, akkor p valószínűséggel küld, illetve 1-p valószínűséggel visszalép a szándékától a következő időrésig. Várakozás esetén a következő időrésben megismétli az algoritmust. Ez addig folytatódik, amíg el nem küldi a keretet, vagy amíg egy másik állomás el nem kezd küldeni, mert ilyenkor úgy viselkedik, mintha ütközés történt volna.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

CSMA áttekintés

Nem-perzisztens
 1-perzisztens
 P-perzisztens
 Konstans v. változó
 Késleltetés
 Készenses
 Átvitel ha szabad
 Különben: késleltetés, újrapróbáljuk

1-perzisztens:

Átvitel amint a csatorna szabad Ütközés esetén visszalépés, majd újrapróbáljuk

p-perzisztens:

Átvitel p valószínűséggel, ha a csatorna szabad Különben: várunk 1 időegységet és újrapróbáljuk

CSMA és ALOHA protokollok

összehasonlítása

30

CSMA/CD - CSMA ütközés detektálással (CD = Collision Detection)

- Ütközés érzékelés esetén meg lehessen szakítani az adást.
 ("Collision Detection")
 - Minden állomás küldés közben megfigyeli a csatornát,
 - ha ütközést tapasztal, akkor megszakítja az adást, és véletlen ideig várakozik, majd újra elkezdi leadni a keretét.
- Mikor lehet egy állomás biztos abban, hogy megszerezte magának a csatornát?
 - Az ütközés detektálás minimális ideje az az idő, ami egy jelnek a két legtávolabbi állomás közötti átviteléhez szükséges.

CSMA/CD

 Egy állomás megszerezte a csatornát, ha minden más állomás érzékeli az átvitelét.

 Az ütközés detektálás működéséhez szükséges a keretek hosszára egy alsó korlátot adnunk

Ethernet a CSMA/CD-t használja

CSMA/CD

- Carrier sense multiple access with collision detection
- Alapvetés: a közeg lehetőséget ad a csatornába hallgatásra
- Algoritmus
 - Használjuk valamely CSMA variánst
 - A keret kiküldése után, figyeljük a közeget, hogy történik-e ütközés
 - 3. Ha nem volt ütközés, akkor a keretet leszállítottuk
 - 4. Ha ütközés történt, akkor azonnal megszakítjuk a küldést
 - Miért is folytatnánk hisz a keret már sérült...
 - 5. Alkalmazzuk az bináris exponenciális hátralék módszert az újraküldés során (binary exponential backoff)

CSMA/CD Ütközések

34

- Ütközések történhetnek
- Az ütközéseket gyorsan észleljük és felfüggesztjük az átvitelt
- Mi a szerepe a távolságnak, propagációs időnek és a keret méretének?

35

- □ Ütközés érzékelésekor a küldő egy ún. "jam" jelet küld
 - Minden állomás tudomást szerezzen az ütközésről
- Binary exponential backoff működése:
 - □ Válasszunk egy $k \in [0, 2^n 1]$ egyenletes eloszlás szerint, ahol n = az ütközések száma
 - □ Várjunk k időegységet (keretidőt) az újraküldésig
 - n felső határa 10, 16 sikertelen próbálkozás után pedig eldobjuk a keretet
- A hátralék idő versengési résekre van osztva

Binary Exponential Backoff

Tekintsünk két állomást, melyek üzenetei ütköztek

- Első ütközés után: válasszunk egyet a két időrés közül
 - □ A siker esélye az első ütközés után: 50%
 - Átlagos várakozási idő: 1,5 időrés
- Második ütközés után: válasszunk egyet a négy rés közül
 - □ Sikeres átvitel esélye ekkor: 75%
 - Átlagos várakozási idő: 2,5 rés
- Általában az m. ütközés után:
 - A sikeres átvitel esélye: 1-2^{-m}
 - Average delay (in slots): $0.5 + 2^{(m-1)}$

- Miért 64 bájt a minimális keretméret?
 - Az állomásoknak elég időre van szüksége az ütközés detektálásához
- Mi a kapcsolat a keretméret és a kábelhossz között?
- t időpont: Az A állomás megkezdi az átvitelt
- t + d időpont: A B állomás is megkezdi az átvitelt
- t + 2*d időpont: A érzékeli az ütközést

Alapötlet: Az A állomásnak 2*d ideig kell küldenie!

CSMA/CD

CSMA/CD három állapota:
 versengés, átvitel és szabad.

 Ahhoz, hogy minden ütközést észleljünk szükséges:

$$T_f \ge 2T_{pg}$$

- ahol T_f egy keret elküldéséhez szükséges idő
- és T_{pg} a propagációs késés A
 és B állomások között

Minimális keretméret

- Az A küldésének 2*d ideig kell tartania
 - Min_keret = ráta (b/s) * 2 * d(s)
 - 10 Mbps Ethernet
 - Pr A keretméret és a kábelhossz változik a gyorsabb szabványokkal... Aza
 - Min_keret = N
- □ Azaz a kábel össx
- - Távolság = min_ke
- * fénysebesség /(2 * ráta)

* 2 * távolság (m) / fényseb. (m/s)

sség

 $(64B*8)*(2*10^8 \text{mps})/(2*10^7 \text{bps}) = 5120 \text{ méter}$

Minimális keretméret

- Az A küldésének 2*d ideig kell tartania
 - Min_keret = ráta (b/s) * 2 * d (s)
 - ... de mi az a d? propagációs késés, melyet a fénysebesség ismeretében ki tudunk számolni
 - Propagációs késés (d) = távolság (m) / fénysebesség (m/s)
 - Azaz:
 - □ Min_keret = ráta (b/s) * 2 * távolság (m) / fényseb. (m/s)
- Azaz a kábel összhossza
 - □ Távolság = min_keret * fénysebesség /(2 * ráta)

$$(64B*8)*(2*10^8 \text{mps})/(2*10^7 \text{bps}) = 5120 \text{ méter}$$

Kábelhossz példa

```
min_keret*fénysebesség/(2*ráta) = max_kábelhossz
(64B*8)*(2*108mps)/(2*10Mbps) = 5120 méter
```

- Mi a maximális kábelhossz, ha a minimális keretméret 1024 bájtra változik?
 - 81,9 kilométer
- Mi a maximális kábelhossz, ha a ráta 1 Gbps-ra változik?
 - □ 51 méter
- Mi történik, ha mindkettő változik egyszerre?
 - □ 819 méter

- Maximum Transmission Unit (MTU): 1500 bájt
- □ Pro:
 - Hosszú csomagokban levő biz hibák jelentős javítási költséget okozhatnak (pl. túl sok adatot kell újraküldeni)
- □ Kontra:
 - Több bájtot vesztegetünk el a fejlécekben
 - Összességében nagyobb csomag feldolgozási idő
- Adatközpontokban Jumbo keretek
 - 9000 bájtos keretek

Köszönöm a figyelmet!