kostra grafu (Spanning Tree) neorientovaný graf!

 $\boldsymbol{G} = (\boldsymbol{V}, \, \boldsymbol{E})$ undirected connected graph and $\!W$ weight function.

 $H = (V_H, \, E_H) \text{ with } V_H \subseteq \ V \text{ and } E_H \subseteq \ E \text{ subgraph of } G.$

· The **weight** of H is the number

W(H) = X e2EH

W(e).

• H is a spanning subgraph of G if $V_H = V$.

Observation 10.2

A connected spanning subgraph of minimum weight is a tree

Prim's Algorithm

Idea

Grow an MST out of a single vertex by always adding edges of minimum weight.

A $\mbox{\it fringe edge}$ for a subtree T of a graph is an edge with exactly one

endpoint in T (so $e=(u,\,v)$ with $u\subseteq\ T$ and v $6\subseteq\ T).$

Algorithm PRIM(G,W)

- 1. $T \leftarrow$ one vertex tree with arbitrary vertex of G
- 2. while there is a fringe edge do
- 3, add fringe edge of minimum weight to T
- 4. return T

Minimum Spanning Trees

 $(G,\!W)$ undirected connected weighted graph

Definition 10.3

A minimum spanning tree (MST) of \boldsymbol{G} is a connected spanning

subgraph T of G of minimum weight.

The minimum spanning tree problem:

Input: Undirected connected weighted graph (G,W)

Output: An MST of G

Implementation of Prim's Algorithm

Algorithm PRIM(G,W)

1. Initialise parent array _:

 $_[v] \leftarrow \text{ NIL for all vertices } v$

2. Initialise weight array:

 $\mathsf{weight}[v] \leftarrow \ \infty \ \mathsf{for all vertices} \ v$

3. Initialise priority queue \boldsymbol{Q}

 $\textit{4. } v \leftarrow \text{ arbitrary vertex of } G$

5. Q.INSERT(v, 0)

6. weight[v] = 0

7. while not(Q.Is-EMPTY()) do

8. $y \leftarrow Q.Extract-Min()$

9. for all z adjacent to y do

10. RELAX(y, z)

11. return _

$\textbf{Algorithm} \; \mathsf{RELAX}(y,z)$

1.
$$w \leftarrow W(y, z)$$

2. if $weight[z] = \infty$ then

3. weight[z] \leftarrow w

4. _[z] ← y

5. Q.Insert(z,w)

6. else if w < weight[z] then

7. $weight[z] \leftarrow w$

8. _[z] ← y

9. Q.DECREASE KEY(z,w)

Kruskal's Algorithm

A different approach to computing MSTs.

A **forest** is a graph whose connected components are trees.

Idea

Starting from the spanning forest without any edges, repeatedly

add edges of minimum weight until the forest becomes a tree.

$\textbf{Algorithm} \ \mathsf{KRUSKAL}(G,W)$

- 2. for all $e \in E$ in the order of increasing weight do
- 3. if the endpoints of e belong to different connected components of $(V,\,F)$ then

4.
$$F \leftarrow F \cup \{e\}$$

5. return tree with edge set F

Implementation of Kruskal's Algorithm

Algorithm KRUSKAL(G,W)

- 1. F ←0
- 2. for all vertices v of G do
- 3. MAKE-SET(v)
- 4. sort edges of G into non-decreasing order by weight
- 5. for all edges $(u,\,v)$ of G in non-decreasing order by weight \mbox{do}
- 6. if $\mathsf{FIND}\text{-}\mathsf{SET}(u) \mathrel{/=} \mathsf{FIND}\text{-}\mathsf{SET}(v)$ then
- 7. $F \leftarrow F \cup \{(u, v)\}$
- 8. UNION(u, v)
- 9. return F

Data Structures for Disjoint Sets

- · A disjoint set data structure maintains a collection $S = \{S_1, \dots, S_k\} \text{ of disjoint sets.}$
- · The sets are **dynamic**, i.e., they may change over time.
- $\cdot\;$ Each set S_i is identified by some representative, which is some

member of that set.

Operations:

· Make-Set(x): Creates new set whose only member is $\boldsymbol{x}.$ The

representative is x.

· Union(x, y): Unites set S_x containing x and set S_y containing y

into a new set \boldsymbol{S} and removes $\boldsymbol{S}_{\boldsymbol{x}}$ and $\boldsymbol{S}_{\boldsymbol{y}}$ from the collection.

· FIND-SET(x): Returns representative of the set holding x.