SISTEMA DE AVALIAÇÃO POSTURAL PARA DIAGNÓSTICO DE ESCOLIOSE

Ari Cristiano Raimundo¹, Adriana Cursino Thomé²

UNICENP – Centro Universitário Positivo Rua Professor Viriato Parigot de Souza, 5300 – Campo Comprido, CEP 81.280-330 – Curitiba – PR acretba@gmail.com, adriana.thome@unicenp.edu.br

Resumo. Este trabalho descreve desenvolvimento de um sistema de avaliação postural que tem o objetivo de auxiliar fisioterapeutas a realizar o diagnóstico de escoliose em pacientes. O sistema possibilita ao fisioterapeuta diagnosticar qual o tipo de escoliose ele possui através de imagens digitais do paciente. O fisioterapeuta pode então verificar a evolução da doença fazendo comparações entre as avaliações realizadas. Além disso, pode-se calcular o IMC (Índice de Massa Corporal) do paciente utilizando imagens digitais e dados provenientes de uma balança.

Palavras-chave: avaliação postural computadorizada, escoliose, balança, índice de massa corporal.

1. INTRODUÇÃO

Na Fisioterapia e na Educação Física, áreas que trabalham mais diretamente com Avaliação Postural, é grande a utilidade dos sistemas computacionais, principalmente porque os critérios de avaliação sem essa ferramenta são muito subjetivos (MOLINARI, 2000).

O sistema proposto nesse trabalho é responsável por possibilitar a um fisioterapeuta ter em mãos uma ferramenta para realizar o diagnóstico do tipo de escoliose em pacientes, que é, na realidade, um desvio postural muito comum. Esse diagnóstico será realizado pelo sistema através de imagens digitais do paciente.

Normalmente, o diagnóstico da escoliose é realizado usando radiografias do paciente por meio do cálculo de ângulos nas vértebras espinhais (MORRISSY et al, 1990). O sistema então, utilizando uma técnica não-invasiva, vai eliminar a exposição do paciente à radiação.

Outra técnica também utilizada para o diagnóstico é colocar o paciente em frente a um simetrógrafo, que possibilita ao profissional realizar uma avaliação subjetiva do desvio postural (MOLINARI, 2000).

Com o advento do sistema computacional é possível melhorar a precisão da avaliação através de uma análise quantitativa dos dados extraídos das imagens digitais do paciente.

Um módulo do sistema também é responsável por calcular a altura de pacientes por meio de imagens digitais e, com seu peso, classificar o paciente segundo o IMC (Índice de Massa Corporal).

2. REVISÃO BIBLIOGRÁFICA

É conveniente apresentar os tipos e características da escoliose (doença que será diagnosticada pelo sistema), a classificação de pacientes segundo o IMC (Índice de Massa Corporal), além de técnicas para identificação de pontos em imagens e de transformações geométricas.

2.1. Escoliose

A escoliose caracteriza-se pela curvatura lateral da coluna, e envolve tanto a flexão lateral quanto a rotação da mesma, já que a coluna vertebral não pode inclinar-se lateralmente sem realizar rotação (KENDALL, 1995). A Fig. 1 mostra um paciente com escoliose.

Fig. 1 – Paciente com Escoliose. FONTE: PEP(2007).

Segundo MOLINARI(2000) a escoliose pode ser classificada quanto ao seu grau de acometimento:

- Escoliose Simples apresenta uma única curvatura em uma das regiões da coluna, sendo causada geralmente pela hipertrofia da musculatura lateral da respectiva região. Pode ser dorsal/torácica direita ou dorsal/torácica esquerda, lombar direita ou lombar esquerda, como mostra a Fig. 2 A a D;
- Escoliose Total apresenta uma única curvatura ocasionada por fraqueza e encurtamento das musculaturas laterais da coluna. Pode ser total direita e total esquerda como mostra a Fig. 3 A e B;

- Escoliose Dupla e Tripla – apresentam duas ou três curvaturas, uma em cada região da coluna, tendo curvas de desvio opostas entre si. É ocasionada pela compensação de uma escoliose simples, geralmente localizada na região inferior. Pode ser dorsal esquerda e lombar direita, dorsal direita e lombar esquerda, cervical direita, dorsal esquerda e lombar direita e cervical esquerda, dorsal direita e lombar esquerda, como mostra a Figura 4 – A a D.

Fig. 2 – Escoliose Simples. FONTE: Adaptada de MOLINARI(2000).

Fig. 3 – Escoliose Total. FONTE: Adaptada de MOLINARI(2000).

Fig. 4 – Escoliose Dupla e Tripla. FONTE: Adaptada de MOLINARI(2000).

2.2. IMC (Índice de Massa Corporal)

O Índice de Massa Corporal, também chamado de índice de Quetelet, é um cálculo que se faz com base no peso e na altura da pessoa e serve para avaliar se determinado peso é excessivo ou não para determinada altura. Ele também pode ser utilizado para avaliar magreza, entretanto, sua maior utilidade mesmo é para avaliar obesidade (BATISTA, 2004).

Para calcular o IMC divide-se a massa do indivíduo em kg pelo quadrado de sua altura em m.

A Tab. 1 mostra a faixa de valores possíveis para o IMC e também a sua classificação de acordo com seu valor.

Tabela 1. Índice de Massa Corporal

Classificação	Valor do IMC
Desnutrição	$IMC \le 12 \text{ kg/m}^2$
crônica	
Desnutrição	$12 \text{ kg/m}^2 < \text{IMC} \le 18,5 \text{ kg/m}^2$
Baixo peso	$18,5 \text{ kg/m}^2 < \text{IMC} \le 20 \text{ kg/m}^2$
Normal	$20 \text{ kg/m}^2 < \text{IMC} <= 25 \text{ kg/m}^2$
Obeso Grau 1	$25 \text{ kg/m}^2 < \text{IMC} \le 30 \text{ kg/m}^2$
Obeso Grau 2	$30 \text{ kg/m}^2 < \text{IMC} \le 40 \text{ kg/m}^2$

FONTE: FERNANDES(1999).

2.3. Identificação de Pontos por Correlação de Imagens

Em várias aplicações faz-se necessária a localização de um ponto, em uma ou mais imagens, que é homólogo a determinado ponto de outra imagem.

A comparação de imagens para a identificação de pontos consiste em fazer correr uma matriz de amostra de uma das imagens em uma janela, denominada de matriz de busca na imagem homóloga e calcular, para cada posição da matriz de amostra, um valor de comparação (ANDRADE, 1998).

É possível calcular a correlação existente entre a matriz de amostra e qualquer candidata na matriz de busca, tendo como dados os níveis de cinza de cada imagem (ANDRADE, 1998). Para calcular o valor da correlação utiliza-se a Eq. (1).

$$r = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right) \left(\sum_{i=1}^{n} y_{i} \right)}{\sqrt{\left(\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right) \left(\sum_{i=1}^{n} y_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} y_{i} \right)^{2} \right)}}$$
(1)

Em que x_i é o valor da cor no pixel i na matriz de amostra, y_i é o valor da cor no pixel i na matriz de busca, n é o número de pixels na matriz de amostra e r é o valor da correlação.

A correlação r é um número que varia entre -1 e +1. O valor 0 (zero) significa ausência de correlação; o valor +1 significa correlação total positiva, ou seja, quando uma das variáveis cresce em valor, a outra também cresce; o valor -1 significa correlação negativa, ou seja, quando uma variável cresce a outra decresce (ANDRADE, 1998).

2.4. Transformações Geométricas

As transformações geométricas são transformações que relacionam as coordenadas de um sistema a outro. Para tal há que se conhecerem os modelos de transformação entre os sistemas, além de coordenadas de pontos de controle nos dois sistemas. De posse destes valores, pode-se determinar os parâmetros de transformação entre eles. Uma vez

determinados os parâmetros de transformação entre os sistemas, por intermédio de um determinado modelo matemático, utilizam-se esses parâmetros para converter qualquer outra coordenada do sistema origem para o sistema destino (LIMA, 2006).

No estudo realizado por LIMA(2006), o melhor modelo de transformação entre o sistema retificado e o sistema a retificar é o da transformação projetiva. A transformação projetiva é uma transformação não-linear e pode ser linearizada de acordo com o princípio da colinearidade (ANDRADE, 1998). Para realizar a transformação projetiva, utilizase e Eq. (2) e a Eq. (3):

$$X = \frac{b_{11}x + b_{12}y + b_{13}}{b_{31}x + b_{32}y + 1}$$

$$Y = \frac{b_{21}x + b_{22}y + b_{23}}{b_{31}x + b_{32}y + 1}$$
(2)

Em que b_{11} , b_{12} , b_{13} , b_{21} , b_{22} , b_{23} , b_{31} e b_{32} são os parâmetros da transformação; x e y são as coordenadas sistema de referência e X e Y são as coordenadas calculadas no novo sistema.

Conhecendo as coordenadas dos pontos de controle de ambos os sistemas, é possível calcular os parâmetros da transformação projetiva utilizando o método dos mínimos quadrados (LIMA, 2006).

3. PROJETO

Neste projeto um *software* é responsável pelo cadastro, aquisição das imagens digitais de uma câmera digital, interface com a balança, armazenamento e processamento das informações.

Um *hardware* foi desenvolvido para simular o funcionamento de uma balança. O *software* pode então ler os dados provenientes da balança por meio da porta USB.

3.1. Software

Uma aplicação *Windows* denominada *Scoliosis* realiza o cadastro e o processamento das informações. O *software* possui basicamente as seguintes funções:

- Cadastro de pacientes e fisioterapeutas.
- Aquisição da imagem do paciente por meio de uma câmera digital.
- Aquisição da massa de um paciente por meio do *hardware* da balança.
- Cálculo do IMC de um paciente.
- Localização dos pontos anatômicos do paciente em uma imagem digital.
- Diagnóstico do tipo de escoliose de um paciente.
- Cálculo da altura de um paciente por meio da imagem digital.
- Todas as informações (dados e imagens) ficam armazenadas em um banco de dados *Microsoft SQL Server*.

3.2. Aquisição da Imagem

A aquisição da imagem da câmera digital foi realizada usando a API WIA (Windows Image Acquisition) da família Windows (WIA, 2007) que habilita comunicação entre um software e um hardware de imagem, tal como scanners, câmeras digitais e equipamentos de vídeo.

3.3. Correção da Imagem

Para reduzir as distorções da câmera digital é necessário corrigir a imagem realizando uma transformação projetiva no sistema de coordenadas da imagem para um sistema de coordenadas conhecido.

A Fig. 5 mostra os pontos de controle (pontos verdes) que são colocados ao redor do paciente, estes pontos tem a sua coordenada conhecida pelo sistema. O paciente é posicionado entre os pontos de controle tanto no cálculo de sua altura quanto no diagnóstico da escoliose.

Fig. 5 – Pontos de Controle.

A câmera digital deverá estar posicionada a 2,30m a 2,40m dos pontos de controle a uma altura de 1,10m a 1,20m. Preferencialmente a câmera não deve estar configurada com *zoom*.

Identificando os pontos de controle na imagem por correlação é possível então calcular os parâmetros de uma transformação projetiva.

Para o diagnóstico da escoliose cada ponto anatômico identificado no paciente é transformado para esse novo sistema de coordenadas e então os ângulos entre as linhas criadas a partir destes pontos são calculados.

Para o cálculo da altura é necessário identificar as ordenadas Y limite do corpo do paciente, transformá-las para o novo sistema de coordenadas e então calcular a altura como sendo o módulo de sua diferença.

3.4. Identificação dos Pontos na Imagem

A identificação dos pontos na imagem segue as seguintes etapas de processamento da imagem:

- Aumento da saturação.
- Limiarização na cor desejada.
- Redução de ruído.
- Identificação de um ponto semente.

- Identificação dos pontos por correlação.

O aumento da saturação é necessário para que os pontos anatômicos do paciente (em azul) e os pontos de controle (em verde) tenham sua intensidade aumentada, fazendo com que cores sejam aproximadas ao mais verde possível ou mais azul possível. Após a saturação da imagem, uma limiarização é realizada para isolar os pontos a serem identificados. O valor do limiar nesta etapa compreende a faixa da cor dos pontos (azul ou verde).

Com o processo de limiarização remove-se os ruídos da imagem modificando a cor de cada pixel para o valor da média dos pixels vizinhos. Segue-se então procurando pelo pixel com a cor branca e cujos vizinhos são também brancos.

O pixel identificado delimita uma região cujo centróide é o ponto semente utilizado na correlação, onde se encontra os outros pontos da imagem. Neste processo de correlação, um fator de correlação baixo deve ser utilizado (entre 0,1 e 0,4) pois alguns pontos não possuem semelhanca em forma mas em cor.

A Fig. 6 mostra os passos descritos anteriormente.

Fig. 6 – Identificação de Pontos na Imagem.

3.5. Diagnóstico da Escoliose

O fisioterapeuta identifica no paciente alguns pontos anatômicos com adesivos coloridos azuis, tal como mostra a Tabela 2.

Tabela 2. Pontos Anatômicos

Ponto	Descrição
1	Protuberância occipital externa.
2	Acrômio direito.
3	Acrômio esquerdo.
4	Processo espinhoso da 4ª vértebra cervical.
5	Processo espinhoso da 7 ^a vértebra cervical.
6	Processo espinhoso da 1ª vértebra torácica.
7	Processo espinhoso da 3ª vértebra torácica.
8	Processo espinhoso da 5 ^a vértebra torácica.
9	Processo espinhoso da 7 ^a vértebra torácica.
10	Processo espinhoso da 9 ^a vértebra torácica.
11	Processo espinhoso da 12ª vértebra
	torácica.
12	Processo espinhoso da 1ª vértebra lombar.

Ponto	Descrição
13	Processo espinhoso da 3ª vértebra lombar.
14	Processo espinhoso da 5 ^a vértebra lombar.
15	Espinha ilíaca posterior direita.
16	Espinha ilíaca posterior esquerda.

O sistema transforma cada um dos 16 pontos para o sistema definido pelos pontos de controle e calcula os ângulos mostrados na Tabela 3. Os ângulos são calculados pelo eixo X positivo deste sistema.

Tabela 3. Ângulos Calculados

Ângulo	Ponto	Ponto
	Anatômico 1	Anatômico 2
1	2	3
2	15	16
3	14	13
4	13	12
5	11	10
6	10	9
7	8	7
8	7	6
9	5	4
10	4	1

É possível então comparar os ângulos com os formatos dos tipos de escoliose existentes e então realizar o diagnóstico.

Os tipos de escoliose diagnosticados pelo sistema são listados na Tabela 4.

Tabela 4. Tipos de Escoliose

Ponto	Descrição
1	Normal (Não possui escoliose)
2	Simples Dorsal/Torácica Direita
3	Simples Dorsal/Torácica Esquerda
4	Simples Lombar Direita
5	Simples Lombar Esquerda
6	Total Direita
7	Total Esquerda
8	Tripla Lombar Direita Cervical Direita
	Dorsal Esquerda
9	Tripla Lombar Esquerda Cervical Esquerda
	Dorsal Direita
10	Dupla Dorsal Esquerda Lombar Direita
11	Dupla Dorsal Direita Lombar Esquerda

Para todas as comparações de ângulos é introduzido um erro que pode ser configurado pelo fisioterapeuta no sistema. Por exemplo, para um erro de 3 graus, se a comparação é que um ângulo seja menor que 90 graus, considera-se que este ângulo deve ser menor ou igual a 90 - 3 = 87 graus.

Como esta técnica para determinação do tipo da escoliose não foi encontrada na literatura, o valor do erro angular que deve ser utilizado é desconhecido. Para tentar resolver esse problema, propõe-se que o fisioterapeuta configure 4 níveis de diagnóstico:

- Nível 1 erro de 3 graus.
 Nível 2 erro de 5 graus.

- Nível 3 erro de 7,5 graus.
- Nível 4 erro de 10 graus.

Percebe-se que níveis mais baixos realizam um diagnóstico mais minucioso em comparação com níveis mais altos.

3.6. Hardware

Para a simulação da balança, utilizou-se uma célula de carga existente em uma balança eletrônica FILIZOLA cuja capacidade era de até 15kg. Esta célula é alimentada com uma tensão de 15Vcc e fornece uma diferença de tensão quando algum objeto é colocado em sua base.

Como a diferença de tensão fornecida pela célula de carga é pequena, em torno de -6,07mVcc e +6,07mVcc, deve-se amplificar essa diferença utilizando 3 amplificadores operacionais LM324. Estes amplificadores devem ser ajustados para um ganho de valor 10.

A saída do LM324 é então enviada a um microcontrolador PIC16F277 que, por meio de uma conversão A/D, envia o sinal ao computador através de um adaptador USB-Serial (PL2303).

4. TESTES E RESULTADOS

Nos tópicos a seguir, é apresentado os resultados obtidos no diagnóstico da escoliose e no cálculo do IMC.

4.1. Diagnóstico da Escoliose

A validação do diagnóstico da escoliose foi realizada através de testes em uma equipe feminina de basquete de uma instituição de ensino de Curitiba-PR, familiares do autor e uma paciente de uma clínica de fisioterapia da mesma cidade, totalizando 24 indivíduos.

Os testes foram supervisionados por duas fisioterapeutas: Viviane Helena Raimundo (LTT-F nº 3397, CREFITO 8) e Talyta Camargo Alves Simão (LTT-F nº 3335, CREFITO 8), que identificaram os pontos anatômicos nos indivíduos.

As características dos indivíduos são especificadas na Tabela 5.

Tabela 5. Indivíduos (Diagnóstico da Escoliose)

	Mínimo	Máximo	Média	Desvio Padrão
Idade (anos)	12	36	19	6,1
Estatura (m)	1,56	1,92	1,71	0,094
Peso (kg)	40	88	62	11,0

A Tabela 6 mostra as porcentagens encontradas para cada tipo de escoliose da Tabela 4.

Tabela 6. Porcentagens

Tipo de Escoliose	Nível	Nível	Nível	Nível
	1	2	3	4
1	4%	21%	41%	74%
2	8%	13%	13%	-
3	21%	17%	13%	13%
4	4%	4%	-	-
5	-	4%	-	-
6	-	-	-	-
7	-	-	-	-
8	4%	-	-	-
9	17%	4%	-	-
10	21%	8%	8%	-
11	-	-	-	-
Não Identificado	21%	29%	25%	13%

Os tipos de escoliose que o sistema não conseguiu diagnosticar não estão entre os 10 tipos existentes na literatura. Isso acontece porque alguns indivíduos possuem desvios somente na região cervical.

Pode-se perceber que, quanto maior o nível de diagnóstico configurado no sistema, maior foi a predominância de indivíduos sem escoliose (tipo Normal), o que era esperado pois os níveis mais altos consideram desvios maiores.

4.2. Cálculo do IMC

O cálculo do IMC foi realizado com 28 indivíduos, dentre eles, os 24 indivíduos descritos no item anterior e mais 4 alunos de Engenharia da Computação do UnicenP.

Observou-se uma diferença entre a altura real do indivíduo e a altura calculada pelo sistema, que é justificada pelos seguintes itens:

- Não foi realizado nenhum ajustamento das observações (GEMAEL, 1994).
- As coordenadas reais dos pontos de controle foram medidas com uma trena.
- A câmera digital não passou por nenhum processo de calibração.
- O ambiente não era favorável e controlado (pouca luz, várias cores na imagem etc.).
- Alguns indivíduos usavam tênis.

5. CONCLUSÕES

O sistema obteve sucesso no diagnóstico da escoliose pois foi possível detectar o tipo de escoliose nos indivíduos que participaram dos testes e confrontar o diagnóstico do sistema com a opinião das fisioterapeutas. Para um diagnóstico de escoliose no nível 1 do sistema, ou seja, que considerava desvios pequenos de até 3 graus, foi possível diagnosticar o tipo da escoliose em 79% dos indivíduos, sendo os 21% restantes aqueles cujos tipos de escoliose não existem na literatura.

Com os resultados apresentados, o sistema pode ser utilizado em qualquer clínica de fisioterapia como um método alternativo aos métodos atuais de diagnóstico de escoliose. Além disso, é possível acompanhar a eficiência do tratamento realizado pelo fisioterapeuta em avaliações sucessivas.

Para o cálculo do IMC, os resultados dos testes mostraram que a diferença encontrada na altura não foi significativa na classificação dos indivíduos.

Futuramente, melhorias podem ser realizadas neste projeto, tais como: melhorar a precisão da altura, determinar a precisão dos ângulos calculados, tentar diagnosticar os tipos que não existem na literatura, e até mesmo melhorar a identificação dos pontos de controle e anatômicos em ambientes diversos.

6. REFERÊNCIAS BIBLIOGRÁFICAS

ANDRADE, J. B. **Fotogrametria**. SBEE, 1^a Edição, 1998.

BATISTA, J. S.; NASCIMENTO T. S.; CUNHA S. F. C. Software para Cálculo de Índice de Massa Corporal. IX Congresso Brasileiro de Informática em Saúde. Brasil, 2004.

FERNANDES, J. A Prática da Avaliação Física. Shape, Rio de Janeiro, 1999.

FERREIRA, E. A. G. Postura e Controle Postural: desenvolvimento e aplicação de método quantitativo de avaliação postural. São Paulo: Faculdade de Medicina, Universidade de São Paulo, 2005. Tese (Doutorado).

GEMAEL, C. **Introdução ao Ajustamento de Observações**. Editora UFPR, 1ª Edição, Curitiba, 1994.

KENDALL H.O.; WADSMORTH G. E. **Músculos: provas e funções**. Manole, São Paulo, 1995.

LIMA S. A.; BRITO J. L. N. S. Estratégias para Retificação de Imagens Digitais. Congresso Brasileiro de Cadastro Técnico Multifinalitário, Brasil, 2006.

MOLINARI, B. et al. Avaliação médica e física: para atletas e praticantes de atividades físicas. Roca, São Paulo, 2000.

PEP. **Programa de Educação Postural**. Disponível em: http://www.programapostural.com.br>. Acesso em: março de 2007.

MORRISSY R. T.; et al. Measurement on the Cobb Angle on Radiographs of Patients Who Have Scoliosis. **The Journal of Bone and Joint Surgery**. 1990;72:320-327.

WIA. Windows Imaging Architecture. Disponível em:

http://www.microsoft.com/whdc/device/stillimage/WI A-arch.mspx>. Acesso em: marco de 2007.