Announcements & Overview

- Administrative Stuff
 - HW #2 grades & solutions will be posted tonight
 - The mid-term is *next Friday* March 4
 - * I've posted a practice mid-term (same structure as actual mid-term)
 - * We will go over the practice mid-term on Tuesday (March 1)
 - * I've also posted a handout with some rules/definitions you'll be given at the mid-term (otherwise, it'll be a closed-book exam).
 - HW #3 has been posted
 - * 5 truth-table exercises due next Friday (same day as mid-term)
 - I have posted 25 additional truth-table problems (with solutions)
- Today: Unit #3, Continued
 - Truth-tables and their applications (continued)

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline \top & \top & \top \\ \hline \bot & \bot & \top \\ \bot & \bot & \bot \\ \end{array}$$

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ \hline T & \bot & \bot \\ \bot & T & T \\ \hline \bot & \bot & T \end{array}$$

$$\begin{array}{c|cccc} p & q & p \leftrightarrow q \\ \hline \top & \top & \top \\ \hline \bot & \bot & \bot \\ \bot & \bot & \top \\ \hline \bot & \bot & \top \\ \end{array}$$

Chapter 3 — Semantics of LSL: Additional Remarks on \rightarrow

- Last time, I explained *why* our conditional → behaves "like a disjunction."
 - 1. We want a *truth-functional* semantics for \rightarrow . This is a simplifying *idealization*. Truth-functional semantics are the simplest compositional semantics for sentential logic. [A "Newtonian" semantic model.]
 - 2. Given (1), the *only* way to define \rightarrow is *our* way, since it's the *only* binary truth-function that has the following three essential *logical* properties:
 - (i) *Modus Ponens* [p and $\lceil p \rightarrow q \rceil$: q] is a valid sentential form.
 - (ii) Affirming the consequent $[q \text{ and } \lceil p \rightarrow q \rceil \therefore p]$ is *not* a valid form.
 - (iii) All sentences of the form $\lceil p \rightarrow p \rceil$ are logical truths.
- There are *non*-truth-functional semantics for the English conditional.
- These may be "closer" to the English *meaning* of "if". But, they agree with our semantics for \rightarrow , when it comes to the crucial *logical* properties (i)–(iii). Indeed, our \rightarrow captures *most* of the (intuitive) *logical* properties of "if".

Constructing Truth-Tables for LSL Sentences

- With the truth-table definitions of the five connectives in hand, we can now construct truth tables for arbitrary compound LSL statements.
- The procedure for constructing the truth-table of p is as follows:
 - 1. Determine the number of rows in the truth-table. This is 2^n , where n is the number of atomic sentences in the compound statement p.
 - 2. The table will have n + 1 main columns: n columns for the atomic sentences in p, and one for the truth-values of p itself.
 - 3. The table will also have some "quasi-columns" one for each atom and each connective occurring in p which needn't be drawn explicitly, but which go into the determination of p's truth values.
 - 4. Place the atomic letters in the left most columns, in alphabetical order from left to right. And, place p in the right most column.
 - 5. Write in all possible combinations of truth-values for the atomic statements. There are 2^n of these one for each row of the table.

- 6. Convention: start on the nth column (farthest down the alphabet) with the pattern $\top \bot \top \bot \ldots$ repeated until the column is filled. Then, write $\top \top \bot \bot \ldots$ in the (n-1)st column, $\top \top \top \top \top \bot \bot \bot \ldots$ in the (n-2)nd column, \ldots alternations of 2^{n-m} $\top s + 2^{n-m}$ $\bot s$ in the mth column \ldots until the first (m=1) column has been completed.
- 7. Finally, we compute the truth-values of p in each row of the table. Here, we start from the inside-out. We first copy the truth-values of the atoms, then we compute the negations, conjunctions, etc. which compose p. Finally, we will be in a position to compute the value of the main connective of p, at which point we'll be done with the table.
- Example: Step-By-Step Truth-Table Construction of ' $A \leftrightarrow (B \& A)$.'

A	$\mid B \mid$	$\mid A \mid$	\leftrightarrow	(B	&	A)
Т	T	T	Т	Т	Т	Т
Т	工	T	\perp	Т	丄	Т
	Т	上	Т	Т	丄	1
			Т			

Interpretations and the Relation of Logical Consequence

- An *interpretation* of an LSL formula p is an assignment of truth-values to all of the sentence letters in p-i.e., a row in p's truth-table.
- A formula p is a *logical consequence* of a set of formulae S [written $S \models p$] just in case there is no interpretation (*i.e.*, no row in the joint truth-table of S and p) on which all the members of S are \top but p is \bot .
- S = p is another way of saying that the argument from S to p is *valid*.
- Two LSL sentences p and q are said to be *logically equivalent* [written p = q] iff they have the same truth-value on all (joint) interpretations.
- That is, p and q are logically equivalent iff both $p \models q$ and $q \models p$.
- I will often express $\lceil p \models q \rceil$ by saying that $\lceil p \text{ entails } q \rceil$. This is easier than saying that $\lceil q \text{ is a logical consequence of } p \rceil$.
- The logical consequence relation \models is our central theoretical relation.

Logical Truth, Logical Falsity, and Contingency: Definitions

• A statement is said to be logically true (or tautologous) if it is \top on all interpretations. *E.g.*, any statement of the form $p \leftrightarrow p$ is tautological.

• A statement is logically false (or self-contradictory) if it is \bot on all interpretations. *E.g.*, any statement of the form $p \& \neg p$ is logically false:

• A statement is **contingent** if it is *neither* tautological *nor* self-contradictory. Example: 'A' (or *any* basic sentence) is contingent.

A	$\mid A \mid$
T	Т
	上

Logical Truth, Logical Falsity, and Contingency: Problems

- Classify the following statements as logically true (tautologous), logically false (self-contradictory), or contingent:
 - 1. $N \rightarrow (N \rightarrow N)$
 - $2. (G \rightarrow G) \rightarrow G$
 - 3. $(S \to R) \& (S \& \sim R)$
 - 4. $((E \rightarrow F) \rightarrow F) \rightarrow E$
 - 6. $(M \rightarrow P) \lor (P \rightarrow M)$
- 11. $[(Q \to P) \& (\sim Q \to R)] \& \sim (P \lor R)$
- 12. $[(H \to N) \& (T \to N)] \to [(H \lor T) \to N]$
- 15. $[(F \lor E) \& (G \lor H)] \leftrightarrow [(G \& E) \lor (F \& H)]$

Equivalence, Contradictoriness, Consistency, and Inconsistency

• Statements p and q are equivalent [p = q] if they have the same truth-value on all interpretations. For instance, ' $A \rightarrow B$ ' and ' $\sim A \vee B$ '.

A	\boldsymbol{B}	$\mid A \mid$	\rightarrow	\boldsymbol{B}	~	A	V	<i>B</i>
Т	Т	Т	Т	Т	上	Т	Т	Т
Т	上	Т		上	上	Т		工
上	Т	上	Т	Т	Т	丄	Т	Т
工	工	上	Т	工	Т		Т	工

• Statements p and q are contradictory [p
ightharpoonup
ightharpoonup
ightharpoonup q] if they have opposite truth-values on all interpretations. For instance, 'A
ightharpoonup B' and ' $A \& \sim B$ '.

A	В	A	→	B	A	&	~	В
Т	Т	Т	Т	Т	Т			Т
Т		Т			Т	Т	Т	
	Т	上	Т	Т	上			Т
	工	上	Т		上		Т	

• Statements p and q are inconsistent $[p \models \sim q]$ if there is no interpretation on which they are both true. For instance, ' $A \leftrightarrow B$ ' and ' $A \& \sim B$ ' are inconsistent [Note: they are *not* contradictory!].

A	B	A	\leftrightarrow	B	A	&	~	В
		Т						
Т	工	Т	1		Т	Т	Т	上
	Т	上		Т	上			T
	上	上	Т		上		Т	

• Statements p and q are consistent $[p \not\models \sim q]$ if there's an interpretation on which they are both true. *E.g.*, 'A & B' and ' $A \lor B$ ' are consistent:

A	В	$\mid A \mid$	&	В	A	V	В
Т	Т	Т	Т	Т	Т	Τ	Т
Т		T			Т	Т	工
工	Т	上		Т	上	Т	Т
					上		

Semantic Equivalence, Contradictoriness, *etc.*: Relationships

• What are the logical relationships between 'p and q are equivalent', 'p and q are consistent', 'p and q are contradictory', and 'p and q are inconsistent'? That is, which of these entails which (and which don't)?

Equivalent

Contradictory

?

₩ ? 1

Consistent

Inconsistent

- Answers:
 - 1. Equivalent *⇒* Consistent (*example*?)
 - 2. Consistent *⇒* Equivalent (*example*?)
 - 3. Contradictory \Rightarrow Inconsistent (*why*?)
 - 4. Inconsistent *⇒* Contradictory (*example*?)

Semantic Equivalence: Example #1

- Recall that $\lceil p \text{ unless } q \rceil$ translates in LSL as $\lceil \sim q \rightarrow p \rceil$.
- We've said that we can also translate $\lceil p \rceil$ unless $q \rceil$ as $\lceil p \lor q \rceil$.
- This is because $\lceil \sim q \rightarrow p \rceil$ is semantically equivalent to $\lceil p \lor q \rceil$. We may demonstrate this, using the following joint truth-table.

- The truth-tables of $\lceil p \lor q \rceil$ and $\lceil \sim q \to p \rceil$ are the same.
- Thus, $\sim q \rightarrow p = p \vee q$.

Semantic Equivalence: Example #2

- $\lceil p \leftrightarrow q \rceil$ is an abbreviation for $\lceil (p \rightarrow q) \& (q \rightarrow p) \rceil$.
- The following truth-table shows it is a *legitimate* abbreviation:

- $\lceil p \leftrightarrow q \rceil$ and $\lceil (p \to q) \& (q \to p) \rceil$ have the same truth-table.
- Thus, $p \leftrightarrow q = (p \rightarrow q) \& (q \rightarrow p)$.

Semantic Equivalence: Example #3

- Intuitively, the truth-conditions for *exclusive or* (\oplus) are such that $\lceil p \oplus q \rceil$ is true if and only if *exactly* one of p or q is true.
- I said that we could say something equivalent to this using our \lor , &, and \sim . Specifically, I said $p \oplus q = (p \lor q) \& \sim (p \& q)$.
- The following truth-table shows that this is correct:

p	q	$(p \lor q)$	&	$\sim (p \& q)$	p⊕q
Т	Т	Т	Т	Т	1
Т	\perp	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т
Т		上	Т	Т	\perp

• $\lceil p \oplus q \rceil$ and $\lceil (p \vee q) \& \sim (p \& q) \rceil$ have the same truth-table.

Equivalence, Contradictoriness, *etc.*: Some Problems

- Use truth-tables to determine whether the following pairs of statements are semantically equivalent, contradictory, consistent, or inconsistent.
 - 1. 'F & M' and ' \sim ($F \vee M$)'
 - 2. ' $R \vee \sim S$ ' and ' $S \& \sim R$ '
 - 3. ' $H \leftrightarrow \sim G$ ' and ' $(G \& H) \lor (\sim G \& \sim H)$ '
 - 4. 'N & $(A \lor \sim E)$ ' and ' $\sim A \& (E \lor \sim N)$ '
 - 5. 'W \leftrightarrow (B & T)' and 'W & (T $\rightarrow \sim B$)'
 - 6. 'R & $(Q \vee S)$ ' and ' $(S \vee R)$ & $(Q \vee R)$ '
 - 7. ' $Z \& (C \leftrightarrow P)$ ' and ' $C \leftrightarrow (Z \& \sim P)$ '
 - 8. ' $Q \to \sim (K \vee F)$ ' and ' $(K \& Q) \vee (F \& Q)$ '

Some More Semantic Equivalences

• Here is a simultaneous truth-table which establishes that

$$A \leftrightarrow B \Rightarrow (A \& B) \lor (\sim A \& \sim B)$$

A	В	$\mid A \mid$	\leftrightarrow	B	(A	&	B)	V	(~	A	&	~	B)
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т			Т
Т		T			T				Т	Т		Т	
					上								
			Т					Т	Т		Т	Т	

• Can you prove the following equivalences with truth-tables?

$$- \sim (A \& B) \Rightarrow = \sim A \lor \sim B$$

$$- \sim (A \vee B) = -A \& \sim B$$

$$-A = (A \& B) \lor (A \& \sim B)$$

$$-A = A \otimes (B \rightarrow B)$$

$$-A = A = A \vee (B \& \sim B)$$

A More Complicated Equivalence (Distributivity)

Philosophy 1115 Notes

• The following simultaneous truth-table establishes that

$$p \& (q \lor r) \Rightarrow \models (p \& q) \lor (p \& r)$$

p	q	γ	p	&	$(q \vee r)$	(p & q)	V	(p & r)
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	\perp	Т	Т	Т	Т	Т	\perp
Т	1	Т	Т	Т	Т	上	Т	Т
Т	\perp	\perp	Т	\perp		上	\perp	\perp
\perp	Т	Т	上	\perp	Т	上	\perp	\perp
\perp	Т	\perp	上	\perp	Т	上	\perp	\perp
\perp	\perp	Т	上	\perp	Т	上	\perp	\perp
丄	\perp	\perp	上	\perp		上	\perp	\perp

• This is *distributivity* of & over \vee . It also works for \vee over &.

The Exhaustive Truth-Table Method for Testing Validity

• Remember, an argument is valid if it is *impossible* for its premises to be true while its conclusion is false. Let p_1, \ldots, p_n be the premises of a LSL argument, and let q be the conclusion of the argument. Then, we have:

 $\begin{array}{c} p_1 \\ \vdots \\ p_n \\ \hline \vdots \\ q \end{array}$ is valid if and only if there is no row in the simultaneous

truth-table of p_1, \ldots, p_n , and q which looks like the following:

atoms premises conclusion

• We will use simultaneous truth-tables to prove validities and invalidities. For example, consider the following valid argument:

$$A \rightarrow B$$

$$\therefore B$$

ato	ms		pren	nises		conclusion
A	В	A	$\mid A \mid$	\rightarrow	B	В
Т	T	Т	T	Т	Т	Т
Т	上	T	T	1	上	Т
Т	T	上	上	Т	Т	Т
				Т	上	上

 \Box VALID — there is no row in which *A* and *A* → *B* are both \Box , but *B* is \bot .

- In general, we'll use the following procedure for evaluating arguments:
 - 1. Translate and symbolize the the argument (if given in English).
 - 2. Write out the symbolized argument (as above).
 - 3. Draw a simultaneous truth-table for the symbolized argument, outlining the columns representing the premises and conclusion.
 - 4. Is there a row of the table in which all premises are \top but the conclusion is \bot ? If so, the argument is invalid; if not, it's valid.
- We will practice this on examples. But, first, a "short-cut" method.

The "Short" Truth Table Method for Validity Testing I

• Consider the following LSL argument:

$$A \rightarrow (B \& E)$$

$$D \rightarrow (A \lor F)$$

$$\sim E$$

$$\therefore D \rightarrow B$$

- This argument has 3 premises and contains 5 atomic sentences. This would lead to a complete truth-table with 32 rows and 8 columns (this will be far more than 256 distinct computations).
- As such, the exhaustive truth-table method does not seem practical in this case. So, instead, let's try to construct or "reverse engineer" an invalidating interpretation.
- To do this, we "work backward" from the *assumption* that the conclusion is \bot and all the premises are \top on some row.

• Step 1: Assume there is an interpretation on which all three premises are \top and the conclusion is \bot . This leads to:

A	В	D	E	F	A	\rightarrow	(B & E)	D	\rightarrow	$(A \vee F)$	~ <i>E</i>	$D \rightarrow B$
						Т			Т		Т	

• Step 2: From the assumption that $\sim E$ is \top , we may infer that both E and B & E are \bot . This fills-in two more cells:

A	В	D	E	$\mid F \mid$	A	\rightarrow	(B & E)	D	\rightarrow	$(A \vee F)$	$\sim E$	$D \rightarrow B$
						Т	Т		Т		Т	

• Step 3: Now, the only way that $A \rightarrow (B \& E)$ can be \top (as we've assumed) is if its antecedent A is \bot . This yields the following:

A	B	D	E	F	A	\rightarrow	(B & E)	D	\rightarrow	$(A \vee F)$	$\sim E$	$D \to B$
						Т	Т		Т		Т	Т

• Step 4: Now, $D \to B$ can be \bot (as we've been assuming) if and only if D is \top and B is \bot (just by the definition of \to). So:

• Step 5: Then, $D \to (A \vee F)$ can be \top (as we've assumed) only if its consequent $A \vee F$ is \top , which gives the following:

• Step 6: Finally, since A is \bot , the only way that $A \lor F$ can be \top is if F is \top , which completes our construction!

A	B	D	E	$\mid F \mid$	A	\rightarrow	(B & E)	D	\rightarrow	$(A \vee F)$	~ <i>E</i>	$D \rightarrow B$
		Т		Т	上	Т	Τ	Т	Т	Т		