Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

UZUP	EŁNIA ZDAJĄCY	miejsce
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM PODSTAWOWY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, schematu blokowego, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

17 MAJA 2016

Godzina rozpoczęcia: 14:00

WYBRANE:				
(środowisko)				
(kompilator)				
(program użytkowy)				

Czas pracy: 75 minut

Liczba punktów do uzyskania: 20

MIN-P1 **1**P-162

Egzamin maturalny z informatyki Poziom podstawowy

Zadanie 1. Kompresja.

Rozważmy algorytm kompresji, który zlicza liczbę kolejnych wystąpień tego samego znaku, a następnie zamiast całej grupy identycznych znaków podaje ten znak tylko jeden raz, poprzedzając go liczbą jego kolejnych wystąpień.

Liczba kolejnych wystąpień każdego znaku nie przekracza 9, więc do zapisania tej liczby wystarczy jeden znak.

Przykład:

tekst źródłowy	tekst	rozmiar tekstu w liczbie znaków		
22042011	skompresowany	źródłowego	skompresowanego	
FFFYYYYYYYYFFFHAAAAA	3F9Y3F1H5A	21	10	

Zadanie 1.1. *(2 pkt)*

Skompresuj powyższym algorytmem tekst podany w tabeli, oblicz rozmiar tekstu przed kompresją i po kompresji.

tekst źródłowy	źródłowy tekst skompresowany	rozmiar tekstu w liczbie znaków		
		źródłowego	skompresowanego	
***##!!*				

Zadanie 1.2. (1 pkt)

Ile powinna	wynosić	minimalna	liczba	kolejnych	znaków w	grupie,	aby jej	kompresja	była
opłacalna?									

.....

	•	1 ^	11	1 1
7.90	ania	4	<i>\ / /</i>	nkt
Lau	lanie	1.0)• (<u>1</u>	pni

Czy opisana metoda kompresji jest stratna, czy – bezstratna?						

Zadanie 1.4. (4 pkt)

Napisz (w postaci listy kroków, schematu blokowego, pseudokodu lub w wybranym języku programowania) algorytm obliczający rozmiar skompresowanego tekstu.

Specyfikacja:

Dane:

n – dodatnia liczba całkowita, długość kompresowanego tekstu T[1..n] – tablica zawierająca tekst do skompresowania; T[i] – i-ty znak w tekście Wynik:

b – rozmiar skompresowanego tekstu T

Algorytm:

agzaminator	Nr zadania	1.1.	1.2.	1.3.	1.4.
	Maks. liczba pkt.	2	1	1	4
	Uzyskana liczba pkt.				

Zadanie 2. Zapis liczb.

Dowolną liczbę $n \in N$ można zapisać za pomocą sumy: sumy jej cyfr i iloczynu pewnego współczynnika k oraz liczby 9, gdzie $k \in N$.

Przykłady:

$$19 = 1 + 9 + (1 * 9)$$

 $123 = 1 + 2 + 3 + (13 * 9)$

Zadanie 2.1. (2 pkt)

Uzupełnij tabelę – wpisz dla podanej liczby n jej rozkład i współczynnik k.

n	Rozkład liczby	k
11	1+1+(k*9)=2+1*9	1
42		
375		
913		

Aiejsce na obliczenia.	

Zadanie 2.2. *(3 pkt)*

Zapisz algorytm w wybranej przez siebie notacji obliczający sumę cyfr w zapisie dziesiętnym danej liczby $n \in N$. W zapisie algorytmu możesz korzystać tylko z następujących operacji arytmetycznych: dodawania, odejmowania, mnożenia, dzielenia całkowitego i obliczania reszty z dzielenia.

Specyfikacja:

Dane: $n \in N$

Wynik:

s – suma cyfr liczby n

Algorytm:

	Nr zadania	2.1.	2.2.
Wypełnia egzaminator	Maks. liczba pkt.	2	3
	Uzyskana liczba pkt.		

Zadanie 2.3. (2 pkt)

Zapisz algorytm w wybranej przez siebie notacji, który oblicza współczynnik k dla $n \in N$. W zapisie algorytmu możesz korzystać tylko z następujących operacji arytmetycznych: dodawania, odejmowania, mnożenia, dzielenia całkowitego i obliczania reszty z dzielenia. Możesz również zastosować funkcję $suma_cyfr(n)$ obliczającą sumę cyfr liczby n.

Specyfikacja:

Dane: $n \in N$ Wynik:

współczynnik k w rozkładzie liczby n

Algorytm:

Zadanie 3. Test.

Zaznacz znakiem "X" poprawne odpowiedzi.

Uwaga:

W każdym podpunkcie poprawna jest tylko jedna odpowiedź.

Zadanie 3.1. (1 pkt)

Protokół DHCP

- A. odpowiedzialny jest za przydzielanie adresów IP.
- B. jest protokołem przesyłania dokumentów hipertekstowych.
- C. jest protokołem terminalu sieciowego zapewniający szyfrowanie połączenia.
- D. odpowiedzialny jest za tłumaczenie adresów domenowych na adresy IP i odwrotnie.

Zadanie 3.2. (1 pkt)

Unicode to

- A. sposób kodowania znaków.
- B. protokół komunikacyjny.
- C. sposób szyfrowania danych.
- D. protokół standardowego wejścia/wyjścia.

Zadanie 3.3. (1 pkt)

Programowanie polegające na określeniu i wykorzystaniu klas nazywamy programowaniem

- A. liniowym.
- B. obiektowym.
- C. strukturalnym.
- D. mikroprocesorów.

	Nr zadania	2.3.	3.1.	3.2.	3.3.
Wypełnia egzaminator	Maks. liczba pkt.	2	1	1	1
	Uzyskana liczba pkt.				

Zadanie 3.4. (1 pkt)

Ciąg deklaracji i instrukcji zapisany w języku programowania wysokiego poziomu nazywamy kodem

- A. wynikowym.
- B. pośrednim.
- C. źródłowym.
- D. maszynowym.

Zadanie 3.5. (1 pkt)

Ile jest równe Y, aby $X+Y=60_{(10)}$, jeżeli $X=10110_{(2)}$?

- A. 100011₍₂₎
- B. 100110₍₂₎
- C. 100101₍₂₎
- D. 100111₍₂₎

Wypełnia egzaminator	Nr zadania	3.4.	3.5.
	Maks. liczba pkt.	1	1
	Uzyskana liczba pkt.		

BRUDNOPIS (nie podlega ocenie)