

Projet 3 : 2017 - 2018

STRUCTURES DES DONNÉES ET ALGORITHMES

Prof. P. Geurts

Perin Alexis Muramutsa Jean

18 mai 2018

1) Analyse Théorique

1)

Le niveau v associé à l'intervalle $[p_i, p_{i+1}]$ est le niveau compris dans cet intervalle qui minimise l'erreur associée à la compression. L'erreur s'exprime alors comme la somme $\sum_{i=p_i}^{p_{i+1}-1} h[i](i-v)^2$.

2)

Ici, l'approche par recherche exhaustive, le niveau v_i correspondant à la compression des niveaux de gris dans l'intervalle $[p_{i-1},p_i]$ est calculé selon cette formule : $v_i=p_{i-1}+\frac{maxValue+1}{2*numLevels}$ où maxValue est la valeur maximale contenue dans la matrice représentant l'image et numLevels est le nombre de niveaux de gris voulus après compression.

3)

a

Pour un histogramme de n valeurs et un nombre final de niveaux k, la valeur n va être divisée par deux k-1 fois pour obtenir, au final, une valeur n2 (qui sera, par défaut toujours supérieure ou égale à un). Les k-1 premiers multiples non nuls de n2 deviennent les k-1 premiers seuils p_i (i=1,...,k-1), le seuil p_k étant n. Les niveaux v_i sont les niveaux minimisant l'erreur de compression sur les intervalles $[p_{i-1},p_i]$.

b

Complexité dans le temps de

 \mathbf{c}

Ne prend pas en compte les valeurs de l'histogramme entre deux seuils (grand nombre de zeros...).

4)

a

ErrMin(n,k)=0 si k>n ou = $min_{1\leq i\leq n}minError(i)+ErrMin(n-i,k-i)$ sinon. Le terme minError(i) renvoie l'erreur minimale commise pour un niveau de gris choisi dans l'intervalle $[p_{i-1},p_i]$.

b

Pour n=6 et k=4, où les noeuds de l'étage i (i0=1,...,4) sont le nombre de niveaux dans l'intervalle $[p_{i-1},p_i]$.

 \mathbf{c}

 \mathbf{d}

 \mathbf{e}

2) Implémentation

1)

Après avoir annulé les dérivées de la fonction d'erreur Err(g) pour obtenir l'erreur minimale, nous calculons les valeurs du vecteur p (contenant les seuils) et v (contenant les niveaux de gris)

selon :
$$p_i = \frac{v_i + v_{i+1}}{2}$$
 et $v_i = \frac{\sum_{k=i-1}^{i} k * h[k]}{\sum_{k=i-1}^{i} h[k]}$

- 2)
- 3)