# **Generating Trapdoor Primes**

A short take on generating SNFS primes

Nikolai Rozanov

UCL - Computer Science

# **Table of contents - Introduction**

- 1. Importance
- 2. Method and Code
- 3. Some Analysis

Importance

# **Importance**

- Look Up
- Benchmarking
- Deliberate Weakening

# Method and Code

# **Algorithm**

- Step 1. Generating the prime q of the corresponding size.
- **Step** 2. Generating the coefficients for polynomials f and g, according to the size suggestions in [1]
- **Step** 3. Setting up a new polynomial G, which is the resultant of f and g and the variable is the leading coefficient of g.
- **Step** 4. Finding roots of G-1 modulo q, if there are no roots then going back to Step 1.
- **Step** 5. Then letting p=|G|, and checking if p is prime, (an addition is to check whether q divides p-1).

# Main Script

#### Main Script

```
# Generating required Rings
 2 \mid X. < x > = ZZ['x']
   G.<x,g1> = ZZ['x,g1']
   # Main Loop
 5
       #generating prime and Associated Field
 6
       a = get_prime(bits_a)
 7
       T. < g2 > = Integers(q)['g2']
 8
           ##while loop
 9
            f_poly , norm_f = get_f(X, degree_f, bits_q)
            g_poly, g0 = get_g(g1, x, bits_p, degree_f, norm_f)
10
11
            G_poly = get_G(f_poly,g_poly)
12
           temp = list (G_poly.coefficients())
13
           temp.reverse()
14
           T2 = T(temp)
        r = T2.roots()
15
16
        root = r[0][0]
17
            = int(root)
18
        while (rt < int (2^ (bits_p / degree_f) / norm_f)):
19
             rt+=a
20
            = X([G_poly(1, rt)+1])
```

# **Helper Functions**

#### **Helper Functions**

#### Prime Generation

```
def get.prime(bits.q):
    q = random.prime(2^bits.q -1,False,2^(bits.q -1))
    while(not is.prime(q)):
    q = random.prime(2^bits.q -1,False,2^(bits.q -1))
    return q
```

#### Poly f

```
def get_f(X, degree_f, bits_q):
        flag_irreducible = False
 3
        while (not flag_irreducible):
            \#f_{\text{vec}} = [ZZ.random_{\text{element}}(-int(2^{(10)}-1), int(2^{(10)}-1))] for _ in range(degree_f+1)]
            f_vec = [ZZ.random_element(-int(2^(bits_q/(2*(degree_f+1)))),int(2^(bits_q/(2*(degree_f
                   +1))))) for _ in range(degree_f+1)]
 6
            \#f_{\text{vec}} = [ZZ. random\_element(1.int(2^(bits\_g/(2*(degree\_f+1)))))) for _ in range(degree_f
 7
 8
            norm_f = max(map(abs,f_vec))
 9
            f_polv = X(list(f_vec))
10
            if f_polv.is_irreducible():
11
                 flag_irreducible = True
        return f_poly, norm_f
12
```

# **Helper Functions**

### Poly g

```
def get_g(g1,x,bits_p,degree_f,norm_f):
    g0 = ZZ.random_element(-int(2^(bits_p/degree_f)/norm_f),int(2^(bits_p/degree_f)/norm_f))
    #g0 = ZZ.random_element(1,int(2^(bits_p/degree_f)/norm_f))
    g_poly = g1*x+g0
    return g_poly.g0
```

#### Poly G

```
1  def get_G(f_poly,g_poly):
2    G_temp = f_poly.sylvester_matrix(g_poly,variable=x)
3    G_poly = G_temp.determinant()-1
4    return G_poly
```

# Some Analysis

# **Plots**

# **Running Time Data**

| Degree = 6/bits_q | Total Running Time (seconds) | Bit size P | Bottlenecks per iteration (seconds) |
|-------------------|------------------------------|------------|-------------------------------------|
| 63                | 12.06977391                  | 360        | 0.009566099405                      |
| 76                | 35.19902706                  | 455        | 0.02010813165                       |
| 88                | 53.86601114                  | 518        | 0.028564533                         |
| 127               | 84.4335351                   | 764        | 0.03836842561                       |
| 150               | 267.9267499                  | 900        | 0.1105723426                        |
| 200               | 262.0755301                  | 1209       | 0.1073431978                        |
| 255               | 394.7975631                  | 1543       | 0.1481677871                        |

#### **Plots**

# **Running Time Plot**



#### References I



J. Fried, P. Gaudry, N. Heninger, and E. Thomé.

A kilobit hidden snfs discrete logarithm computation.

arXiv preprint arXiv:1610.02874, 2016.