SINHGAD COLLEGE OF ENGINEERING, PUNE

SINHGAD COLLEGE OF ENGINEERING, PUNE UNIT 4 JACOBEAN

SINHGAD COLLEGE OF ENGINEERING, PUNE

1	If $u = f(x,y)$ and $v = g(x,y)$, the Jacobian of u, v w. r. t. x, y is given by	a
	a) $J = \frac{\partial(u,v)}{\partial(x,y)}$ b) $J = \frac{\partial(u,v)}{\partial(x,x)}$ c) $J = \frac{\partial(x,y)}{\partial(u,v)}$ d) $J = -\frac{\partial(u,v)}{\partial(x,y)}$	
2	If $u = f(x,y)$ and $v = g(x,y)$, the Jacobian of inverse function is given by	С
	$J = \frac{\partial(u,v)}{\partial(x,y)} \text{b) } J = \frac{\partial(u,v)}{\partial(x,x)} \text{c) } J = \frac{\partial(x,y)}{\partial(u,v)} \text{d) } J = -\frac{\partial(u,v)}{\partial(x,y)}$	
3	If $u = x^2 + y^2$, $v = 2xy$, then $\frac{\partial(u,v)}{\partial(x,y)} =$	a
	a) $4(x^2 - y^2)$ b) $4(x^2 + y^2)$ c) $2(x^2 - y^2)$ d) $2(x^2 + y^2)$	
4	If $u = x(1-y)$, $v = xy$ then $\frac{\partial(x,y)}{\partial(y,y)} =$	b
	$a)\frac{1}{x+y}$ $b)\frac{1}{x}$ $c)\frac{1}{y}$ $d)\frac{1}{x-y}$	
5	If (u, v) are functions of (x, y) and (x, y) are functions of (r, s) then $\frac{\partial(u, v)}{\partial(r, s)} =$	С
	$\begin{vmatrix} \frac{\partial(r,s)}{\partial(u,v)} \\ \frac{\partial(u,v)}{\partial(x,y)} & \frac{\partial(u,v)}{\partial(r,s)} \end{vmatrix} b \begin{vmatrix} \frac{\partial(u,v)}{\partial(x,y)} \\ \frac{\partial(x,y)}{\partial(x,y)} & \frac{\partial(x,y)}{\partial(x,y)} \end{vmatrix} b \begin{vmatrix} \frac{\partial(u,v)}{\partial(x,y)} \\ \frac{\partial(x,y)}{\partial(x,y)} & \frac{\partial(x,y)}{\partial(x,y)} \end{vmatrix} d \begin{vmatrix} \frac{\partial(u,v)}{\partial(x,y)} \\ \frac{\partial(x,y)}{\partial(x,y)} & \frac{\partial(x,y)}{\partial(x,y)} \end{vmatrix}$	
6	Let $f(u, v, x, y) = 0$, $g(u, v, x, y) = 0$ be the implicit functions of u,v w.r.t	b
	x,y then $\frac{\partial(u,v)}{\partial(x,y)} =$	
	a) $(-1)\frac{\frac{\partial(f,g)}{\partial(x,y)}}{\frac{\partial(f,g)}{\partial(u,v)}}$ b) $(-1)^2\frac{\frac{\partial(f,g)}{\partial(x,y)}}{\frac{\partial(f,g)}{\partial(u,v)}}$ c) $(-1)^2\frac{\frac{\partial(f,g)}{\partial(u,y)}}{\frac{\partial(f,g)}{\partial(u,v)}}$ d) $(-1)^2\frac{\frac{\partial(f,g)}{\partial(x,v)}}{\frac{\partial(f,g)}{\partial(u,v)}}$	
7	If $u + v + w = x + y + z$, $uv + vw + wu = x^2 + y^2 + z^2$	a
	, $uvw = \frac{1}{3}(x^3 + y^3 + z^3)$ then $\frac{\partial (f,g,h)}{\partial (x,y,z)} =$	
	a) $2(x-y)(y-z)(x-z)$ b) $(x+y)(y+z)(x+z)$ c) $(u-v)(u-w)$	
8	$ (v - w) d)2(u + v) (u + w) (v + w) $ If $u + v + w = x + y + z$, $uv + vw + wu = x^2 + y^2 + z^2$	С
	$\int uvw = \frac{1}{3}(x^3 + y^3 + z^3) \text{ then } \frac{\partial (f,g,h)}{\partial (u,v,w)} =$	
	a) $2(x-y)(y-z)(x-z)$ b) $(x+y)(y+z)(x+z)$ c) $(u-v)(u-w)$	
	(v-w) d)2 $(u+v)$ $(u+w)$ $(v+w)$	
9	$ (v - w) d)2(u + v) (u + w) (v + w) $ If $u + v + w = x + y + z$, $uv + vw + wu = x^2 + y^2 + z^2$	a
	, $uvw = \frac{1}{3}(x^3 + y^3 + z^3)$ then $\frac{\partial(u,v,w)}{\partial(x,y,z)} =$	
	$a) - \frac{2(x-y)(y-z)(x-z)}{2(x-y)(y-z)(x-z)} \qquad b) - \frac{2(x+y)(y+z)(x+z)}{2(x+y)(y+z)(x+z)}$	
	$a) - \frac{2(x-y)(y-z)(x-z)}{(u-v)(u-w)(v-w)} b) - \frac{2(x+y)(y+z)(x+z)}{(u+v)(u+w)(v+w)}$ $c)(-1)^{2} \frac{2(x-y)(y-z)(x-z)}{(u-v)(u-w)(v-w)} d) \frac{(x+y)(y+z)(x+z)}{(u+v)(u+w)(v+w)}$	
	$c)(-1)^{2} \frac{(u-v)(u-w)(v-w)}{(u-v)(u-w)(v-w)} \qquad d) \frac{(u+v)(u+w)(v+w)}{(u+v)(u+w)(v+w)}$	
10	Let $f(u, v, w, x, y, z) = 0$, $g(u, v, w, x, y, z) = 0$, $h(u, v, w, x, y, z) = 0$ be	a
	the implicit functions of u,v,w into x,y,z then $\frac{\partial u}{\partial x} =$	
	$a) - \frac{\frac{\partial(f,g,h)}{\partial(x,v,w)}}{\frac{\partial(f,g,h)}{\partial(u,v,w)}} b) \frac{\frac{\partial(f,g,h)}{\partial(x,v,w)}}{\frac{\partial(f,g,h)}{\partial(u,v,w)}} c) \frac{\frac{\partial(f,g,h)}{\partial(u,v,w)}}{\frac{\partial(f,g,h)}{\partial(u,v,w)}} d) - \frac{\frac{\partial(f,g,h)}{\partial(x,y,z)}}{\frac{\partial(f,g,h)}{\partial(x,y,z)}}$	
11	functions u,vof x,yare said to be functionally dependent,	b
	a) if the corresponding inverse Jacobian is zero b) if the corresponding	
	Jacobian is zero c) if the corresponding Jacobian is nonzero d) none of	
12	these. $u = x^2 + y^2 + 2xy + 2x + 2y$, $v = e^x e^y$ are functionally dependent then the	h
12	$u = x^2 + y^2 + 2xy + 2x + 2y$, $v = e^x e^y$ are functionally dependent then the relation between them is	b
L		l

SINHGAD COLLEGE OF ENGINEERING, PUNE

	a) $(logv)^2 - logv = u$ b) $(logv)^2 + 2logv = u$	
	$c)-(logv)^{2} + logv = u d) (logu)^{2} + 2logu = v$	
13	If $u = \frac{x+y}{1-xy}$, $v = \tan^{-1} x + \tan^{-1} y$ are functionally dependent, then the	b
	relation between them is	
	$a)u = \sin v$ $b) v = \sin u$ $c) u = \tan v$ $d) v = \tan u$	
14	If $u = f(x, y)$, be the function of x,y then we write,	a
	$a)p = \frac{\partial u}{\partial x}$ $b)p = \frac{\partial u}{\partial y}$ $c)p = \frac{\partial^2 u}{\partial x^2}$ $d)p = \frac{\partial^2 u}{\partial y^2}$	
1.7		1
15	If $u = f(x, y)$, be the function of x,y then we write,	b
	a) $s = \frac{\partial^2 u}{\partial x^2}$ b) $s = \frac{\partial^2 u}{\partial y^2}$ c) $s = \frac{\partial^2 u}{\partial x \partial y}$ d) none of these	
16	If $u(x, y) = x^2 + y^2 + 6x + 12$ then the minimum value of the	b
	function at (-3,0) is a)10 b)12 c)-10 d) -12	
17	The function $u = f(x, y)$ is having maximum values at (a,b) if at (a,b)	С
	$a)rt - s^2 > 0$ $b)rt - s^2 < 0$ $c)rt - s^2 > 0$, $r < 0$ $d)rt - s^2 > 0$, $r > 0$	
18	The function $u = f(x, y)$ is having minimum values at (a,b) if at (a,b)	d
	$a)rt - s^2 > 0$ $b)rt - s^2 < 0$ $c)rt - s^2 > 0$, $r < 0$ $d)rt - s^2 > 0$, $r > 0$	
19	If $u(x, y) = x^2 + y^2 + 6x + 12$ then $p =$	b
20	a)2(x+3) b)2(x-3) c)(x+3) d)-2(x-3)	
20	Let $f = xy(a - x - y)$ the minimum value of $f(a/3, a/3)$ is	b
	$a)\frac{a^2}{27}$ $b)\frac{a^3}{27}$ $c)\frac{a^2}{17}$ $d)\frac{a^3}{17}$	
21	The stationary values of the function $\frac{a^3}{x^2} + \frac{b^3}{y^2} + \frac{c^3}{z^2}$, where $x + y + z = 1$ is	b
	given by	
	$(a)x = \frac{a}{a+b+c}, z = \frac{c}{a+b+c}$ b) $x = \frac{a}{a+b+c}, y = \frac{b}{a+b+c}, z = \frac{c}{a+b+c}$	
	c) $y = \frac{b}{a+b+c}$, $z = \frac{c}{a+b+c}$ d) $x = \frac{a}{a+b+c}$, $y = \frac{b}{a+b+c}$	
	a+b+c, $a+b+c$, $a+b+c$, $a+b+c$	
22	Let $u = f(x,y,z)$ be a function of x, y and z.	b
	dx, dy, dz, du are known as errors in x, y, z and u respectively	
	a) Relative b) Absolute c) Percentage d) none of these	
23	Let $u = f(x,y,z)$ be a function of x, y and z.	a
	$\frac{dx}{x}$, $\frac{dy}{y}$, $\frac{dz}{z}$, $\frac{du}{u}$ are known as errors w. r. t. x, y, z and u respectively.	
	a)Relative b) Absolute c) Percentage d) none of these	
24	In calculating the volume of a right circular cylinder, errors of 2% and 1%	d
	are found in measuring height and base radius respectively. Then the	
	percentage error in calculated volume of the cylinder is	
	a)3 b) 1 c) 2 d) 4	
25	When the errors of 2% and 3% are made in measuring its major and minor	b
23	axes of ellipse respectively then the percentage error in the area of an	
	ellipse is	
	a) 4 % b) 5 % c) 3 % d) 1 %	