Universidade de Aveiro

Departamento de Electrónica, Telecomunicações e Informática

Laboratório de Sistemas Digitais

Ano Letivo 2016/17

Teste 2 – 3/maio/2017

Nome:______ N. Mec.:_____

Grupo I
O seguinte trecho de código (incompleto) descreve em VHDL um registo de deslocamento com entradas de carregamento paralelo e que deve ser capaz de realizar deslocamentos lógicos, aritméticos e rotações, quer para a direita, quer para a esquerda.
library IEEE; use IEEE.STD_LOGIC_1164.all;
<pre>entity SeqShiftUnit is port(clk : in std_logic; dataIn : in std_logic_vector(3 downto 0); loadEn : in std_logic; rotate : in std_logic; dirLeft : in std_logic; shArith : in std_logic; dataOut : out std_logic_vector(3 downto 0)); end SeqShiftUnit;</pre>
<pre>architecture Behavioral of SeqShiftUnit is signal s_shiftReg : std_logic_vector(3 downto 0); begin</pre>
<pre>process(clk) begin if (falling_edge(clk)) then if (loadEn = '1') then s_shiftReg <= dataIn;</pre>
<pre>elsif (rotate = '1') then if (dirLeft = '1') then s_shiftReg <= s_shiftReg(2 downto 0) & s_shiftReg(3); else s_shiftReg <= s_shiftReg(0) & s_shiftReg(3 downto 1); end if;</pre>
########

1. [0.5 valores] Classifique os sinais de entrada e de saída do módulo do ponto de vista do seu tipo.

end if;

dataOut <= s_shiftReg;</pre>

end if;
end process;

end Behavioral;

Sinal(ais) de sincroniza	ıção:
Sinal(ais) de controlo:	
Sinal(ais) de dados:	

۷.	[0.75 valores] identifique os tipos de operações e desiocamentos realizadas no codigo vribe fornecido.
3.	[1.25 valores] Desenhe o diagrama lógico do circuito que resultaria da síntese do trecho de código fornecido. Pode usar no diagrama primitivas do tipo: portas lógicas, multiplexers e flip-flops. Identifique claramente todos os sinais internos e de interface do módulo, incluindo a sua dimensão.
4.	[1.5 valores] Escreva o código VHDL que teria que ser inserido acima, no local assinalado com #########, de forma a implementar o deslocamento aritmético, quer à esquerda quer à direita.

Nome:______N. Mec.:_____

Grupo II

Considere o código VHDL seguinte que descreve o funcionamento de uma máquina de estados finitos, com uma entrada "x", uma saída "z" de um bit e uma saída "y" com dois bits.

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity FiniteStateMachine is
 port(clk : in std logic;
       reset : in std logic;
       X : in std logic;
            : out std logic;
            : out std logic vector(1 downto 0));
end FiniteStateMachine;
architecture Behavioral of FiniteStateMachine is
  type TState is (E0, E1, E2);
  signal PS, NS : TState;
                            -- PS: Present State, NS: Next State
begin
  sync_proc: process(clk)
  begin
    if (rising edge(clk)) then
      if (reset = '1') then
        PS <= E0;
      else
        PS \le NS;
      end if;
    end if;
  end process;
  comb proc: process(PS, X)
  begin
    case PS is
      when E0 =>
        z <= '0';
        if (X = '0') then NS <= E0;
        else NS <= E1;
        end if;
      when E1 =>
        Z <= '0';
        if (X = '0') then NS \leq E0;
        else NS <= E2;
        end if;
      when E2 =>
        Z <= '1';
        if (X = '0') then NS \leq E0;
        else NS <= E2;
        end if;
      when others =>
        NS \le E0; Z \le '0';
    end case;
  end process;
  with PS select
    Y \le "00" when E0,
         "10" when E1,
         "11" when E2,
         "00" when others;
end Behavioral;
```

[O E :													4		- d-		مامد	- / A	_		۸.4.	(١.			
	! .		7 1 4	+ :	£: ~		::									200	ลดด									
	valc 	res	:] Id 	enti	fiqu	ıe,	justi 	fica ——	nao 	, 0	tipo	o da 	mac		a ue			S (<i>IV</i>	1001	<i>re</i> ou). 			
	valc	ores	:] Id 	enti 	fiqu	ıe, _.	justi 	fica 			tipo	o da 						S (<i>IV</i>	1001	re ou).			
	vald	ores	:] Id 	enti 	fiqu 	ie,	justi 	ifica), O	tipo) da						S (<i>IV</i>		re ou	IVIE)· 			
[0.5 \)·			
																					- IVIE					
																					TVIE). 			
	ulorj	' Ide	enti	fiqu	e, ju	usti	ificai	ndo	, a f	unc	ion	alida	ade	da r	máq	uina	de	esta	dos	33.).		
[1 va	ulorj	' Ide	enti	fiqu	e, ju	usti	ificai	ndo	, a f	unc	ion	alida	ade	da r	máq	uina	de	esta	dos	33.).		
[1 va	ulorj	' Ide	enti	fiqu	e, ju	usti	ificai	ndo	, a f	unc	ion	alida	ade	da r	máq	uina	de	esta	dos	33.).		
[1 va	ulorj	' Ide	enti	fiqu	e, ju	usti	ificai	ndo	, a f	unc	ion	alida	ade	da r	máq	uina	de	esta	dos	33.).		
[1.5 \ [1.5 \	ulorj	' Ide	enti	fiqu	e, ju	usti	ificai	ndo	, a f	unc	ion	alida	ade	da r	máq	uina	de	esta	dos	33.).		
[1 va	ulorj	' Ide	enti	fiqu	e, ju	usti	ificai	ndo	, a f	unc	ion	alida	ade	da r	máq	uina	de	esta	dos	33.).		
[1.5 \ [1.5 \	ulorj	' Ide	enti	fiqu	e, ju	usti	ificai	ndo	, a f	unc	ion	alida	ade	da r	máq	uina	de	esta	dos	33.).		

1. [2.5 valores] Desenhe o diagrama de estados/saídas desta máquina.

Página 4 de 8

Nome:	N. Mec.:	

Grupo III

Analise cuidadosamente o código VHDL e responda às questões que se seguem.

```
architecture v1 of Timer is
library IEEE;
                                                                       signal s count, s kb : unsigned(7 downto 0);
use IEEE.STD LOGIC 1164.all;
                                                                 begin
use IEEE.NUMERIC STD.all;
                                                                       process(clk)
                                                                       begin
entity Timer is
                                                                             if(rising edge(clk)) then
      generic(KA : unsigned(7 downto 0) := X"06");
                                                                                    if (s count = KA - 1) then
                : in std logic;
                                                                                          s kb <= unsigned(kb);</pre>
     port( clk
                                                                                          s count <= (others => '0');
                  : in std_logic_vector(7 downto 0);
            count : out std logic vector(7 downto 0);
                                                                                          pls <= '1';
           pls : out std logic;
                                                                                    else
            tout : out std logic);
                                                                                          s count <= s count + 1;
                                                                                         pls <= '0';
end Timer;
                                                                                    end if;
                                                                             end if;
                                                                       end process;
                                                                       tout <= '1' when s count < s kb else '0';
                                                                       count <= std logic vector(s count);</pre>
                                                                 end v1;
```

1. [2 valores] Complete o diagrama temporal seguinte (sinais "count", "pls" e "tout").

2.	[2 valores] Descreva, em menos de 40 palavras, o funcionamento do circuito. Explicite, em particular, o papel desempenhado pela contante "KA" e pelo valor fornecido através da entrada "kb".
_	
3.	[1.5 valores] Apresente a expressão que relaciona a frequência de entrada com a frequência do sinal de saída "pls" e calcule a frequência desse sinal supondo que tem à entrada um relógio com uma frequência de 1200 Hz. Se não respondeu à questão anterior, justifique adequadamente a sua resposta.
_	

Nome:	N. Mec.:

Grupo IV

Analise o seguinte código VHDL.

```
entity BlockA is
       generic(N : positive := 4);
            (clk : in std_logic;
dataIn : in std_logic_vector(N-1 downto 0);
reset, load : in std_logic;
       port(clk
                          : out std_logic_vector(N-1 downto 0));
             dataOut
end BlockA;
begin
       process(clk)
      begin
             if (rising_edge(clk)) then
   if (reset = '1') then s_reg <= (others => '0');
   elsif (load = '1') then s_reg <= dataIn;</pre>
                                                   s reg <= '0' & s reg(N-1 downto 1);</pre>
                     else
                     end if;
              end if;
       end process;
       dataOut <= s_reg;
end Behavioral;
entity BlockB is
       generic(N
                    : positive := 2);
                    : in std logic vector(N-1 downto 0);
: out std_logic_vector(N-1 downto 0));
       port(a, b
            s
end BlockB;
architecture Behavioral of BlockB is
begin
       s <= std_logic_vector(unsigned(a) + unsigned(b));</pre>
end Behavioral;
entity Circuit is
       generic(N : positive := 4);
             clk : in std logic;

X : in std logic vector(N-1 downto 0);

start : in std logic;
       port(clk
            result : out std_logic_vector(N downto 0));
end Circuit;
architecture Structural of Circuit is
       signal s_p, s_a, s_r : std_logic_vector(N downto 0);
   inst_1 : entity work.BlockA(Behavioral)
              generic map (N => N)
                            (clk => clk, dataIn => X, reset => '0',
                             load => start, dataOut => s_p(N-1 downto 0));
       s_p(N) <= '0';
   inst_2 : entity work.BlockB(Behavioral)
              generic map (N => N+1)
              port map
                            (a \Rightarrow s_p, b \Rightarrow s_r, s \Rightarrow s_a);
   inst 3 : entity work.BlockA(Behavioral)
              generic map (N => N+1)
                            (clk => clk, dataIn => s_a, reset => start,
load => '1', dataOut => s_r);
              port map
       result <= s_r;
end Structural;
```

 [0.25 valores] Identifique, justificando, a função realizada pelo módulo descrito na entidade BlockA e arquitetura Behavioral.

2. [0.25 valores] Identifique, justificando, a função realizada pelo módulo descrito na entidade BlockB e arquitetura Behavioral.

3. [2 valores] Desenhe o diagrama lógico do circuito descrito na entidade Circuit e arquitetura Structural. Identifique claramente as entradas/saídas externas, o nome de cada sub-módulo, os seus portos, os nomes e a dimensão dos sinais que interligam os blocos entre si.

4. [1.5 valores] Complete o diagrama temporal seguinte.

5. [1 valor] Descreva o funcionamento do circuito modelado na entidade Circuit e arquitetura Structural.
