I. METHODS

We used the Swendsen Wang algorithm to simulate the Potts Model with 1=1,2,3,4 on square (dim=2) lattices of various sizes L, and with q=2 in the cubic and hypercubic lattices (dim=3,4). In the largest cluster in each of $N=10^5$ realizations, we measured the chemical distance, l, between two randomly chosen sites on the largest cluster, as well as the diameter D of the largest cluster. For q=1, the standard deviation σ in the (uncorrelated) values for $\langle l \rangle$ and $\langle D \rangle$ were calculated as $\sigma_{uncorr} = \sqrt{\frac{1}{N-1}(\langle l^2 \rangle - \langle l \rangle^2)}$. For q=2,3,4, successive measurements of l and D were not independent; each system of size L was therefore allowed to thermalize for $10^*\tau_{exp}$, where τ_{exp} is the fitted exponential correlation time for the mass of the largest cluster in the system. The standard deviation σ_{corr} was then considered to be $\sigma_{corr} = \sqrt{\frac{2\tau_{int}}{N}(\langle l^2 \rangle - \langle l \rangle^2)}$, where τ_{int} is the measured integrated correlation time for the chemical distance l. A similar analysis was used for the diameter, D.

dim	q	L	L_{min}	d_{min}	D_{min}
2	1	16,32,48,64,96,128	48	1.131(1)	1.138(1)
2	2	16,32,48,64,96,128	48	1.096(1)	1.102(1)
2	3	16,32,48,64,96,128	48	1.065(3)	1.071(1)
2	4	16,32,48,64,96,128	48	1.033(3)	1.039(1)

TABLE I: Scaling exponents d_{min} and D_{min} for dim = 2, q = 1, 2, 3, 4

dim	q	L	L_{min}	d_{min}	D_{min}
3	2	20,36,48,64,128	36	1.267(5)	na
4	2	12,24,36,48,64	24	1.485(7)	na

TABLE II: Scaling exponents d_{min} and D_{min} for dim = 3, 4, q = 2

FIG. 1: d_{min} for D=2, q=1.

FIG. 3: d_{min} for D=2, q=2.

FIG. 4: D_{min} for D=2, q=2.

FIG. 5: d_{min} for D=2, q=3.

II. FIGURES

FIG. 7: d_{min} for D=2, q=4.

FIG. 8: D_{min} for D=2, q=4.

FIG. 9: d_{min} for D=2, q=4; log fit

FIG. 10: D_{min} for D=2, q=4; log fit