

Fundamentals of estimation theory applied to wavefront reconstruction and adaptive optics control

Jean-Marc Conan, Laurent Mugnier, Thierry Fusco (ONERA, Département d'Optique)

Contact: mailto: lastname@onera.fr

Web: http://www.onera.fr/dota

Publications: http://www.onera.fr/dota/chatillon-publis/

IPAM Workshop, Los Angeles, 22/01/2004

Principle of Adaptive Optics

-M Conan - IPAM 2004

Adaptive Optics and Anisoplanatism

Anisoplanatism \rightarrow evolution of the turbulent phase in the field of view

Classical Adaptive Optics (AO):

- ullet 1 deformable mirror [DM] in pupil $ightarrow \phi_{corr}$ independent of position in the field
- ullet 1 guide star with ϕ_{corr} optimized in guide star direction

60 arcsecondes

Correction quality degrades away from the guide star

ONERA

J.-M. Conan - IPAM 2004 -

⇔ GS 1 ⇔ GS 3 WFC

Inverse Problems in AO/MCAO

- Wavefront Reconstruction from WFS data
- Optimal Mirror Control derived from WFS data
 - static mode : open loop, one data sample
 - dynamic mode: closed loop with delay, time series
- Corrected Image Processing: deconvolution.

ONERA

J.-M. Conan - IPAM 2004

Expected Performance

- ullet Observation at $2.2 \mu m$ on a 8 m telescope.
- 3 Guide Stars, 2 Deformable Mirrors

EG 2 EG 1

regular AO

MCAO

ONERA

Principle of the Shack-Hartmann WFS

K sub-apertures \longrightarrow $2\,K$ slopes $\left\{s_{x/y,i}
ight\}={
m s}$

ONERA

J.-M. Conan – IPAM 2004 –

Shack-Hartmann Model

• Shack-Hartmann measurements :

$$s_{x,i} = rac{\lambda \, f}{2 \, \pi \, S_i} \int_{S_i} rac{\partial \phi(x,y)}{\partial x} \mathrm{d}x \, \mathrm{d}y + noise$$

• Linear model:

$$s = D\phi + w$$

with for instance : $\phi=\{\phi_j\}$ and $\phi(x,y)=\sum_{j=2}^{j_{max}}\phi_j Z_j(x,y)$

$$D = {}_{2K} \left(egin{array}{ccc} \leftarrow j_{max} & \longrightarrow \\ & \ddots & \\ & \ddots$$

ONERA

.-M. Conan - IPAM 2004 -

WaveFront Reconstruction **Least Square Solution**

Looking for phase giving a best fit to the measurements :

$$\hat{\phi} = \operatorname{arg\,min}_{\phi} \|\mathbf{s} - D\phi\|^2$$

• Analytical solution :

$$\hat{\phi} = (D^t D)^{-1} D^t \mathbf{s} = R \mathbf{s}$$

Noise propagation : noise covariance matrix

$$C_{\phi \ noise} = R \, C_w R^T$$

 $oldsymbol{\Lambda}$ If D^tD ill conditioned \Longleftrightarrow badly seen modes noise amplification

ONERA

Maximum Likelihood Reconstruction a Weighted Least Square Solution

• Likelihood: probability of the measurement (slopes) with a known phase,

$$p(\mathbf{s}|\phi) \propto \exp\left(-\frac{1}{2}(\mathbf{s} - D\phi)^t C_w^{-1}(\mathbf{s} - D\phi)\right)$$

• We look for the phase that makes the measurements the most probable ones :

$$\hat{\phi}_{\mathrm{ML}} = \operatorname*{arg\,max}_{\phi} p(\mathbf{s}|\phi) = \operatorname*{arg\,min}_{\phi} \ (\mathbf{s} - D\phi)^t C_w^{-1}(\mathbf{s} - D\phi)$$

Analytical solution :

$$\hat{\phi}_{\rm ML} = \left(D^t C_w^{-1} D \right)^{-1} D^t C_w^{-1} \, {\bf s}$$

ullet Particular Case $C_w = \sigma_w^2 \, Id$:

$$\hat{\phi}_{\mathsf{ML}} = rg\min_{\phi} \|\mathbf{s} - D\phi\|^2 = \left(D^t D\right)^{-1} D^t \, \mathbf{s}$$
 ,

least square fit on the measurements

In general, $\ D^t C_w^{-1} D$ badly conditioned \implies ML unacceptable \implies "Truncated" ML : TSVD on $D^tC_w^{-1}D$

or limit the dimension of the phase space

ONERA

Numerical Simulation: Shack-Hartmann WFS Geometry

- ullet 20 imes 20 sub-apertures
- ullet central occultation d/D=0.33
- ullet K=276 valid sub-apertures $\implies 2 \times 276 = 552$ slope measurements

ONERA

11

Truncated Maximum Likelihood

 $SNR_{slopes}=1.$, $K=276\,\mathrm{sub}$ -apertures

 $\mathrm{ML}\,j_{max}=55$

 $\operatorname{ML} j_{max} = 105$

 $\operatorname{ML} j_{max} = 21$

$$\operatorname{ML} j_{max} = 210$$

Reconstruction quality highly dependent of j_{max} optimum j_{max} depends on SNR_{slopes}

ONERA

Optimal Reconstruction: Maximum A Posteriori

• Probability A Posteriori: probability of the phase for a given measurement

$$p(\phi|\mathbf{s}) \propto p(\mathbf{s}|\phi) \times p(\phi)$$

$$\propto \exp\left(-\frac{1}{2}(\mathbf{s} - D\phi)^t C_n^{-1}(\mathbf{s} - D\phi)\right) \times \exp\left(-\frac{1}{2}\phi^t C_\phi^{-1}\phi\right)$$

• MAP solution : most probable phase for a given measurement

$$\begin{split} \hat{\phi}_{\mathsf{MAP}} &= \underset{\phi}{\arg\max} \quad p(\phi|\mathbf{s}) \quad = \quad \underset{\phi}{\arg\min} \quad -2. \ln(p(\phi|\mathbf{s})) \\ &= \underset{\phi}{\arg\min} \quad (\mathbf{s} - D\phi)^t C_n^{-1} (\mathbf{s} - D\phi) \quad + \quad \phi^t C_\phi^{-1} \phi \\ &= \left(D^t C_n^{-1} D + C_\phi^{-1} \right)^{-1} D^t C_n^{-1} \mathbf{s} \quad = \quad C_\phi D^t \left(D C_\phi D^t + C_n \right)^{-1} \mathbf{s} \end{split}$$

If Gaussian priors justified, MAP solution is also the MMSE solution $\hat{\phi}_{mmse}$:

$$\left\langle \left\| \phi - \hat{\phi}_{mmse} \right\|^2 \right\rangle_{\phi,w} = \left\langle \int_{Pup} \left[\phi(x,y) - \hat{\phi}_{mmse}(x,y) \right]^2 \mathrm{d}x \, \mathrm{d}y \right\rangle_{\phi,w}$$
 minimum mean square error on the phase!

ONERA

13

M Conan - IDAM 2004

Statistical Characteristics of the Turbulent Phase

- ullet Kolmogorov spectrum \longrightarrow covariance matrix C_ϕ .
- ullet $C_{\phi}(j,j)=\sigma_{\phi_{i}}^{2}$, energy distribution on Zernikes :

ONERA

Optimal Reconstruction

 $SNR_{slopes}=1.$, K=276 sub-apertures

MAP/MMSE

Optimal estimation: minimal phase error variance

 $\mathrm{ML}\,j_{max}=55$

$$I^{2}_{1}$$

$$[\sigma_{\phi}^2 = 3.0 \ rd^2] \qquad [\sigma_{error}^2 = 0.7 \ rd^2] \qquad [\sigma_{error}^2 = 0.8 \ rd^2]$$

ONERA

15

Phase Reconstruction in MCAO

- ullet N_{gs} GS in direction $eta=\{eta_i\}$
- ullet N_{gs} WFS measurements ${\sf S}=\{s_i\}$
- ullet L layers for volumic phase $arphi=\{arphi_k\}$
- ullet Phase covariance matrix C_{arphi} : bloc diagonal, independent Kolmogorov layers with $\left[C_n^2\delta h\right]_k \ k\in\{1,L\}$
- \bullet Resulting phase in a given direction α : $\phi_{\alpha} = M_{\alpha}^{L} \varphi$

ONERA

Optimal Reconstruction in MCAO

• Measurement Equation :

$$\mathsf{S} \ = \ D\,M^L_eta\,arphi \ + \ w \ = \ D'arphi \ + \ w$$

• MMSE of the phase in the volume :

$$egin{aligned} \hat{arphi}_{mmse} &= G(\mathbf{S}) \quad ext{so that} \quad \left< \| arphi - \hat{arphi}_{mmse} \|^2
ight>_{arphi,w} \quad ext{minimal}: \ & \hat{arphi}_{mmse} &= \quad \left(D'^{\,t} C_w^{-1} D' + C_{arphi}^{-1}
ight)^{-1} D'^{\,t} C_w^{-1} \quad \mathbf{S} \ &= \quad R_{mmse} \quad \mathbf{S} \end{aligned}$$

ullet MMSE of the phase in a given direction lpha :

$$\phi_{\alpha} = M_{\alpha}^{L} \hat{\varphi}_{mmse}$$

Optimal estimation of the phase in the volume hence best interpolation of the phase between GSs $_{\text{ONERA}}$

-M. Conan - IPAM 2004 -

Unseen modes in MCAO

Good interpolation of the resulting phase between GSs

=> estimation of unseen modes

=> MMSE approach using statistical priors

J.-M. Conan – IPAM 2004

ONERA

17

Estimation/Control in AO

• DM model:

$$\phi_{cor} = Nu$$

- ullet Control problem : find ${f u}=F(s)$ that minimizes the stochastic criterion $\left\langle \left\| \phi - \mathsf{N} \mathbf{u} \right\|^2 \right\rangle_{\phi, w}$
- $\bullet\,$ Separation Principle : u also minimizes the deterministic criterion :

$$\left\|\hat{\phi}_{mmse} - \mathsf{Nu}
ight\|^2$$

Analytical solution :

$$\mathbf{u} = \mathbf{P} \ \hat{\phi}_{mmse} = \mathbf{P} \ R_{mmse} \ s$$
 with $\mathbf{P} = \left(\mathbf{N}^t\mathbf{N}\right)^+\mathbf{N}^t$

ONERA

19

Estimation/Control in MCAO

Objective : estimate u to optimize the mean performance in the FoV of Interest $\{lpha_i\}$

criterion to be minimized :

$$\left\langle \sum_{i} \left\| \phi_{\alpha_{i}} - \phi_{\alpha_{i}}^{cor} \right\|^{2} \right\rangle_{\phi,w} = \left\langle \left\| \sum_{i} \left\| \mathbf{M}_{\alpha_{i}}^{L} \varphi - \mathbf{M}_{\alpha_{i}}^{DM} \mathbf{N} \mathbf{u} \right\|^{2} \right\rangle_{\varphi,w}$$

Standard Reconstruction in MCAO

• Measurement Equation : identification of turbulence space and DM space :

$$\mathbf{S} = D \, M_{eta}^L \, \mathbf{N} \mathbf{u} + w = D_{inter} \mathbf{u} + w$$

• Truncated ML estimation :

$$egin{array}{lll} \hat{\mathbf{u}}_{ml} &=& \left(D_{inter}^t D_{inter}
ight)^- D_{inter}^t & \mathbf{S} \ &=& R_{ml} & \mathbf{S} \end{array}$$

- no explicit turbulence estimation
- brutal filtering of unseen modes
- no account of Kolmogorov statistics and turbulence profile
- no specification of a FoV of interest

=> poor performance between guide stars

21

MCAO Simulation Conditions

2 DM 3 GS Case

• Telescope diameter = 4 m

 \bullet 4 layer C_n^2 profile, $\quad h=[~0.~,~2.5~,~5.~,~7.5~{\rm km}~], \quad$ FoV = 150'' $D/r_0(@2.2\mu m)=6.8$

(a) DM and layer positions

 $h = [\,1.25\,,\,6.75\,\mathrm{km}\,]$

(b) beam section in upper layer

h = [1

ONERA

Truncated Maximum Likelihood:

choice of the threshold

Performance with Truncated ML and Optimal Control

Optimal Reconstruction: significant gain, no ad-hoc threshold

[Fusco et al., "Optimal wavefront...", JOSA A, 18, 2527–253, 2001]

23

J.-M

Dynamic Control: Basic Equations

Measurement Equation [closed loop, no mirror dynamics, two frame delay] :

$$\mathbf{S}_{\eta} = D \left(M_{\beta}^L \varphi_{\eta-1} - M_{\beta}^{DM} \mathbf{N} \mathbf{u}_{\eta-2} \right) + w$$

ullet Control problem : find ${
m u}_\eta=F({
m S}_\eta,{
m S}_{\eta-1}...)$ that minimizes the stochastic criterion :

$$\left\langle \sum_{i} \left\| \mathbf{M}_{lpha_{i}}^{L} arphi_{\eta+1} - \mathbf{M}_{lpha_{i}}^{DM} \mathbf{N} \mathbf{u}_{\eta}
ight\|^{2}
ight
angle_{arphi,w}$$

ullet solution : \mathbf{u}_{η} $\ =$ \mathbf{P} $\hat{arphi}_{\eta+1}$ back to an MMSE estimation problem : $\hat{arphi}_{\eta+1/\eta}=G(\mathtt{S}_{\eta},\mathtt{S}_{\eta-1}...)$ so that $\left\langle \|arphi_{\eta+1} - \hat{arphi}_{\eta+1/\eta}\|^2
ight
angle_{arphi_{\eta,\eta}}$ minimal

Dynamic Control: Optimal Estimation of the Turbulent Phase

Temporal and spatial priors on turbulence :

$$\boldsymbol{\varphi}_{\eta+1} = \mathcal{F}\left[\boldsymbol{\varphi}_{\eta}, \boldsymbol{\varphi}_{\eta-1}, \boldsymbol{\varphi}_{\eta-2}, \ldots\right] + \boldsymbol{\nu}_{n}$$

u white noise, covariance matrix $\mathbf{C}_{
u}$ imposes Kolmogorov statistics \mathcal{F} linear function describing temporal behavior [Taylor].

ullet State space representation : $\mathbf{X}_{\eta}^t = \{arphi_{\eta+1}, arphi_{\eta}, ..., \mathbf{u}_{\eta-1}, \mathbf{u}_{\eta-2}...\}$

$$egin{aligned} \mathbf{X}_{\eta+1} &= \mathcal{A}\mathbf{X}_{\eta} + \mathcal{B}\mathbf{u}_{\eta} + \mathbf{V}_{\eta} \ & \mathbf{s}_{\eta} &= \mathcal{C}\mathbf{X}_{\eta} + \mathbf{w}_{\eta}, \end{aligned}$$

Recursive Kalman estimator :

$$\hat{\mathbf{X}}_{\eta+1/\eta} = \mathcal{A}\hat{\mathbf{X}}_{\eta/\eta-1} + \mathcal{B}\mathbf{u}_{\eta} + \mathcal{A}\mathbf{H}_{\eta}(\mathbf{S}_{\eta} - \mathcal{C}\hat{\mathbf{X}}_{\eta/\eta-1}),$$

 $H_{\eta},$ the observer gain, is deduced from \textbf{C}_{w} and $\textbf{C}_{v}.$

$$\begin{pmatrix} \hat{\varphi}_{\eta+2/\eta} \\ \hat{\varphi}_{\eta+1/\eta} \\ \hat{\varphi}_{\eta/\eta} \end{pmatrix} = \mathbf{A} \begin{pmatrix} \hat{\varphi}_{\eta+1/\eta-1} \\ \hat{\varphi}_{\eta/\eta-1} \\ \hat{\varphi}_{\eta-1/\eta-1} \end{pmatrix} + \mathbf{H} \left[\mathbf{S}_{\eta} - \left(D \, \left(M_{\beta}^L \, \hat{\varphi}_{\eta-1/\eta-1} - M_{\beta}^{DM} \, \mathbf{N} \mathbf{u}_{\eta-2} \right) \right) \right]$$

25

Control in Adaptive Optics: Standard Approach

• Control increment from residual measurements :

$$egin{array}{lcl} \delta \hat{\mathbf{u}}_{\eta} & = & \left(D_{inter}^t D_{inter}
ight)^- D_{inter}^t & \mathbf{S}_{\eta} \ & = & R_{ml} & \mathbf{S}_{\eta} \end{array}$$

• Integrator control law:

$$\mathbf{u}_{\eta} = \mathbf{u}_{\eta-1} + g \, \delta \hat{\mathbf{u}} = \mathbf{u}_{\eta-1} + g \, R_{ml} \, \, \, \mathbf{S}_{\eta}$$
 g loop gain, can be optimized globally or mode per mode.

- no explicit turbulence estimation
- brutal filtering of unseen modes
- no global optimization of the control law using Kolmogorov/Taylor statistics
- no specification of a FoV of interest

ONERA

J.-M. Conan - IPAM

Performance with Optimal Kalman Control

• 2 turbulent layers : [0.5,5 km]

$$C_n^2 = [75\%, 25\%]$$
 ; overall $D/r_o = 6.8$; $V/D = 2$ Hz

ullet 2 DMs and 3 GSs with 1 arcmin separation ; ${\cal M} pprox 15$ 100 Hz sampling frequency

[Le Roux et al., "Optimal control law...", JOSA A, submitted]

ONERA

Image Deconvolution / Reconstruction and Control Similarities and Differences

- ullet s1: Linear direct problem : i = Ho + noise
- s2: Badly conditioned problem : regularization is required!
- s3: Even if object o not really outcome of a stochastic process,
 the regularization corresponds to an implicit statistical prior
- ullet d1: Operator H often circulant : $i = h \star o + noise$ all matrix expressions can be expressed with FFTs
- d2: Regularization (positivity, edge preserving)
 non equivalent to Gaussian prior
- ullet d3: Operator H sometimes not perfectly known (myopic deconvolution)
- d2 and d3 lead to non analytical linear solution
 iterative minimization of a multi-term criterion

ONERA

Myopic Deconvolution of AO Corrected Images

Ganymede deconvolved with our algorithm MISTRAL

AO corrected

myopic deconvolution

JPL data courtesy: NASA/JPL/Caltech

 $\lambda = 0.85 \mu m, D/r_o \simeq 23, SR \simeq 5\%$, Field = 3.80''

Exposure Time = 100 sec., Total Flux $\simeq 8.10^7$ photons (28/09/1997, 20:18 UT) Observatoire de Haute Provence, 1.52 m telescope

[Mugnier et al., "MISTRAL: a myopic...", JOSA A, accepted]

ONERA

M Const IBAM 2004

nan - IPAM 2004 -

Onera Activities on MCAO/ELTs

- AO/MCAO [4 PhDs, 2 PostDocs]:
 - study of optimal control in MCAO [collab. L2TI]
 - comparison of multi-object WFS strategies [star/layer oriented, MFOV...]
 - FALCON: MCAO for large field spectro-imaging [collab. Obs. Paris]
 - experimental validation :
 MonoCAO, off-axis optimization at Onera
 collab. ESO: test control algorithm on MAD
 - Planet Finder : design study of XAO for VLT collab. Obs. Grenoble/Marseille/Nice... [ESO contract]
 - AGN study with NAOS/MISTRAL data
- ELTs [1 PhD, 1 PostDoc] :
 - AO/MCAO for ELTs: AO/MCAO/GLAO design and simulations for 20 m class telescope: NGCFHT study with Obs. Marseille for 50 m and larger: collab. ESO/Arcetri [EC contract]
 - turbulence characterization on large scales: collab. Arcetri [EC contract]
 Paranal campaigns with NAOS/VLTI/Scidar/Balloons + specific WFS expe. on VLT
 two campaigns planned in 2005/2006