## ECON-GA 1025 Macroeconomic Theory I Lecture 13

John Stachurski

Fall Semester 2018

## Today's Lecture

- Lots of new theory
- Just joking
- Euler equation + revision
- See "Lecture 14" for general DP results (not examinable)

## Optimal Savings: The Envelope Condition

Recall the IID model with Bellman equation

$$v(y) = \max_{0 \leqslant c \leqslant y} \left\{ u(c) + \beta \int v(f(y-c)z) \varphi(dz) \right\} \qquad (y \in \mathbb{R}_+)$$

We know that

$$\sigma$$
 is optimal  $\iff \sigma$  is  $v^*$ -greedy

We can get additional characterizations of optimality if we impose more conditions **Assumption.** (INA) Both f and u are strictly increasing, continuously differentiable and strictly concave

In addition,

$$f(0) = 0$$
,  $\lim_{k \to 0} f'(k) > 0$ 

and

$$u(0) = 0$$
,  $\lim_{c \to 0} u'(c) = \infty$  and  $\lim_{c \to \infty} u'(c) = 0$ 

**Remark**. We ignore the restriction u(0)=0 in some applications below — I'm aiming to remove it

### Proposition. Let

- ullet v be an increasing concave function in  $bc\mathbb{R}_+$
- $\sigma$  be the unique v-greedy policy in  $\Sigma$

If assumption (INA) holds, then

- 1.  $\sigma$  is interior, while
- 2. Tv is continuously differentiable and satisfies

$$(Tv)' = u' \circ \sigma$$

**Corollary** If  $\sigma^*$  is the optimal consumption policy, then

$$(v^*)' = u' \circ \sigma^*$$

Proof that  $(Tv)' = u' \circ \sigma$  when  $\sigma$  is v-greedy:

Since  $\sigma$  is v-greedy,

$$Tv(y) = u(\sigma(y)) + \beta \int v(f(y - \sigma(y))z)\varphi(dz)$$

By the envelope theorem,

$$(Tv)'(y) = \beta \int (v)'(f(y - \sigma(y))z)f'(y - \sigma(y))z\varphi(dz)$$

The FOC from the Bellman equation yields

$$u'(\sigma(y)) = \beta \int (v)'(f(y - \sigma(y))z)f'(y - \sigma(y))z\varphi(dz)$$

Combining the last two equations gives  $(Tv)' = u' \circ \sigma$ 

Let  $\mathscr{C}:=$  all continuous strictly increasing  $\sigma\in\Sigma$  satisfying

$$0 < \sigma(y) < y$$
 for all  $y > 0$ 

We say that  $\sigma \in \mathscr{C}$  satisfies the Euler equation if

$$(u' \circ \sigma)(y) = \beta \int (u' \circ \sigma)(f(y - \sigma(y))z)f'(y - \sigma(y))z\varphi(dz)$$

for all y > 0

• A functional equation in policies

In sequence notation,  $u'(c_t) = \beta \mathbb{E} u'(c_{t+1}) f'(k_t) z_{t+1}$ 

Let's introduce an operator K corresponding to the Euler equation

Fix  $\sigma \in \mathscr{C}$  and y > 0

The value  $K\sigma(y)$  is the c in (0,y) that solves

$$u'(c) = \beta \int (u' \circ \sigma)(f(y - c)z)f'(y - c)z\varphi(dz)$$

We call *K* the **Coleman–Reffett** operator

**Ex.** Show  $\sigma$  in  $\mathscr C$  is a fixed point of K if and only if it satisfies the Euler equation

Proof that *K* is well defined:

For any  $\sigma \in \mathscr{C}$ , the RHS of

$$u'(c) = \beta \int (u' \circ \sigma)(f(y - c)z)f'(y - c)z\varphi(dz)$$

is continuous, strictly increasing in c, diverges to  $+\infty$  as  $c \uparrow y$ 

The LHS is continuous, strictly decreasing in c, diverges to  $+\infty$  as  $c\downarrow 0$ 

Hence

$$H(y,c) := u'(c) - \beta \int (u' \circ \sigma)(f(y-c)z)f'(y-c)z\varphi(dz)$$

when regarded as a function of c, has exactly one zero



Figure: Solving for the c that satisfies H(y,c)=0.

## The Euler Equation and Optimality

**Proposition.** If assumption (INA) holds and  $\sigma^*$  is the unique optimal policy, then

- 1.  $(\mathscr{C}, K)$  is globally stable and
- 2. the unique fixed point of K in  $\mathscr C$  is  $\sigma^*$

In particular,  $\sigma\in\mathscr{C}$  is optimal if and only it satisfies the Euler equation

Sketch of proof:

Let  $\mathscr V$  be all strictly concave, continuously differentiable v mapping  $\mathbb R_+$  to itself and satisfying v(0)=0 and v'(y)>u'(y) whenever y>0

As before, let  $\mathscr C$  be all a continuous, strictly increasing functions on  $\mathbb R_+$  satisfying  $0<\sigma(y)< y$ 

For  $v \in \mathscr{V}$  let Mv be defined by

$$(Mv)(y) = \begin{cases} m(v'(y)) & \text{if } y > 0\\ 0 & \text{if } y = 0 \end{cases}$$
 (1)

where  $m(y) := (u')^{-1}(y)$ 

#### The course notes show that

- 1. M is a homeomorphism from  $\mathscr V$  to  $\mathscr C$
- 2. for every increasing concave function in  $bc\mathbb{R}_+$ ,

$$\sigma := MTv$$

is the unique v-greedy policy

The Bellman operator and Coleman–Reffett operator are related by

$$T = M^{-1} \circ K \circ M$$
 on  $\mathscr{V}$ 

**Ex.** Use 1–3 above to show that  $(\mathscr{C},K)$  is globally stable with unique fixed point  $\sigma^*$ 

**Remark.** The Euler equation is often paired with the **transversality condition** 

$$\lim_{t\to\infty}\beta^t\mathbb{E}u'(c_t)k_t=0$$

Standard results (see, e.g., Stokey and Lucas) tell us that

Euler + transversality condition  $\implies$  optimality

Our last result shows transversality is not needed under our assumptions

**Ex.** Following the basic CRRA cake eating model, set

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$
 and  $f(k)z = Rk$ 

Insert the conjecture  $\sigma^*(y)=\theta y$  into the Euler equation Recover our earlier result that this policy is optimal when

$$\theta = 1 - \left(\beta R^{1-\gamma}\right)^{1/\gamma}$$

**Ex.** Repeat for the log / CD model, where  $u(c) = \ln c$  and

$$f(k)z = Ak^{\alpha}z, \quad 0 < A, \quad 0 < \alpha < 1$$

Insert the conjecture  $\sigma^*(y) = \theta y$  into the Euler equation and recover your earlier result for the optimal policy

# **Exercise: Predicting Quadratics**

### Let

- $\{\mathscr{G}_t\}_{t\geqslant 1}$  be a filtration
- ullet  $\{w_t\}_{t\geqslant 1}$  be a stochastic process in  $\mathbb{R}^j$

Recall:  $\{w_t\}_{t\geqslant 1}$  is called a martingale difference sequence (MDS) with respect to  $\{\mathscr{G}_t\}$  if

- $\mathbb{E}\|w_t\|_1 < \infty$  and
- $\{w_t\}_{t\geqslant 1}$  is adapted to  $\{\mathscr{G}_t\}$
- and

$$\mathbb{E}[w_{t+1} \mid \mathscr{G}_t] = 0, \quad \forall \, t \geqslant 1$$

## Suppose that

- $x_{t+1} = Ax_t + C\xi_{t+1}$  in  $\mathbb{R}^n$  with  $x_0$  given
- $\bullet \ \mathscr{G}_t = \{x_0, \xi_0, \xi_1, \dots, \xi_t\}$
- $\{\xi_t\}_{t\geqslant 1}$  is an  $\mathbb{R}^j$ -valued MDS with respect to  $\mathscr{G}_t$  satisfying

$$\mathbb{E}[\xi_t \xi_t'] = I$$

Question: Is  $\{x_t\}$  adapted to  $\mathcal{G}_t$ ?

**Ex.** Let  $\mathbb{E}_t := \mathbb{E}[\cdot \, | \, \mathscr{G}_t]$ 

Show that if  $H \in \mathcal{M}(n \times n)$ , then

$$\mathbb{E}_t[x'_{t+1}Hx_{t+1}] = x'_tA'HAx_t + \operatorname{trace}(C'HC)$$

Solution: We have

$$\mathbb{E}_{t}[x_{t+1}'Hx_{t+1}] = \mathbb{E}_{t}[(Ax_{t} + Cw_{t+1})'H(Ax_{t} + Cw_{t+1})]$$

The RHS expands to

$$\mathbb{E}_{t}[x'_{t}A'HAx_{t}] + 2\mathbb{E}_{t}[x'_{t}A'HCw_{t+1}] + \mathbb{E}_{t}[w'_{t+1}C'HCw_{t+1}]$$

$$= I + II + III$$

Since  $x_t$  is known at t we have

$$I = \mathbb{E}_t[x_t'A'HAx_t] = x_t'A'HAx_t$$

Since  $\{w_t\}$  is an MDS,

$$II = 2\mathbb{E}_t[x_t'A'HCw_{t+1}] = 2x_t'A'HC\mathbb{E}_t[w_{t+1}] = 0$$

Finally,

$$III = \mathbb{E}_t[w'_{t+1}C'HCw_{t+1}] = \operatorname{trace}(C'HC)$$

Hence

$$\mathbb{E}_t[x'_{t+1}Hx_{t+1}] = x'_tA'HAx_t + \operatorname{trace}(C'HC)$$

# Application: LQ Risk Neutral Asset Pricing

Recall the risk neutral asset pricing formula

$$p_t = \beta \, \mathbb{E}_t[d_{t+1} + p_{t+1}]$$

#### Here

- $\{d_t\}$  is a cash flow
- $p_k$  is asset price at time k
- $\beta \in (0,1)$  discounts values
- $\mathbb{E}_t$  is time t conditional expectation

Aim: solve for  $\{p_t\}$ 

#### Assume that

$$d_t = x_t' D x_t$$
 for some positive definite  $D$ 

#### Here

- $x_{t+1} = Ax_t + C\xi_{t+1}$  in  $\mathbb{R}^n$  with  $x_0$  given
- $\mathcal{G}_t = \{x_0, \xi_0, \xi_1, \dots, \xi_t\}$
- $\{\xi_t\}_{t\geqslant 1}$  is an  $\mathbb{R}^j$ -valued MDS with respect to  $\mathscr{G}_t$  satisfying

$$\mathbb{E}[\xi_t \xi_t'] = I$$

## Prices as Functions of the State

We conjecture that

$$p_t = p(x_t)$$
 for some function  $p$ 

Another leap: guess that prices are a quadratic in  $x_t$ 

In particular, we guess that

$$p(x) = x'Px + \delta$$

for some positive definite P and scalar  $\delta$ 

### Substituting

$$p_t = x_t' P x_t + \delta$$
 and  $d_t = x_t' D x_t$ 

into

$$p_t = \beta \mathbb{E}_t [d_{t+1} + p_{t+1}]$$

gives

$$x'_{t}Px_{t} + \delta = \beta \mathbb{E}_{t}[x'_{t+1}Dx_{t+1} + x'_{t+1}Px_{t+1} + \delta]$$

$$= \beta \mathbb{E}_{t}[x'_{t+1}(D+P)x_{t+1}] + \beta \delta$$

$$= \beta x'_{t}A'(D+P)Ax_{t} + \beta \operatorname{trace}(C'(D+P)C) + \beta \delta$$

So, we seek a pair  $P \in \mathcal{M}(n \times n)$ ,  $\delta \in \mathbb{R}$  such that

$$x'Px+\delta=\beta x'A'(D+P)Ax+\beta\operatorname{trace}(C'(D+P)C)+\beta\delta$$
 for any  $x\in\mathbb{R}^n$ 

Claim: If  $P^*$  satisfies

$$P^* = \beta A'(D + P^*)A$$

and

$$\delta^* := \frac{\beta}{1 - \beta} \operatorname{trace}(C'(D + P^*)C)$$

then  $P^*$ ,  $\delta^*$  solves the above equation for any x

Proof: By hypothesis,  $P^* = \beta A'(D+P^*)A$ 

$$\therefore x'P^*x = \beta x'A'(D+P^*)Ax$$

$$\therefore x'P^*x + \delta^* = \beta x'A'(D+P^*)Ax + \delta^*$$

To complete the proof, suffices to show that

$$\delta^* = \beta \operatorname{trace}(C'(D + P^*)C) + \beta \delta^*$$

True by definition of  $\delta^*$ 

Summary: With such a  $P^*$ ,

$$p_t := x_t' P^* x_t + \delta^*$$

is an equilibrium price sequence

But does there exist a  $P \in \mathcal{M}(n \times n)$  that solves

$$P = \beta A'(D+P)A$$

Ex. Under what condition does a unique solution exist?

Solution: Write  $P = \beta A'(D+P)A$  as the discrete Lyapunov equation

$$P = \Lambda' P \Lambda + M$$

where

- $\Lambda := \sqrt{\beta}A$
- $M := \Lambda' D \Lambda$

The solution  $P^*$  is the fixed point of operator  $\ell$  defined by

$$\ell P = \Lambda' P \Lambda + M$$

As shown previously,  $\ell$  is globally stable when  $r(\Lambda) < 1$ 

Equivalent:  $r(A) \leq 1/\sqrt{\beta}$ 

Recall that  $P^*$  is the solution to

$$P = \beta A'(D+P)A$$

**Ex.** Show that P is positive semidefinite

We need to show that  $x'P^*x \geqslant 0$  for all  $x \in \mathbb{R}^n$ 

Let  $\mathcal{M}_P$  be the set of positive semidefinite matrices in  $\mathcal{M}(n \times n)$ 

This set is closed in  $\mathcal{M}(n \times n)$  under the matrix norm

To see this, pick

- any  $\{E_n\} \subset \mathcal{M}_P$  and  $E \in \mathcal{M}(n \times n)$  with  $E_n \to E$
- any  $x \in \mathbb{R}^n$

We showed in another context that  $x'E_nx \to x'Ex$  in  $\mathbb R$ 

Since  $x'E_nx \ge 0$  for all n, we have  $x'Ex \ge 0$ 

Since x was arbitrary we have  $E \in \mathcal{M}_P$ 

Hence  $\mathcal{M}_P$  is closed

### Since

- 1.  $\mathcal{M}_P$  is closed in  $\mathcal{M}(n \times n)$
- 2.  $P^*$  is the fixed point of  $\ell P = \Lambda' P \Lambda + M$

it suffices to show that  $\ell$  maps  $\mathcal{M}_P$  to itself

So pick any  $P \in \mathcal{M}_P$  and any  $x \in \mathbb{R}^n$ 

We have, with y := Ax,

$$x'(\ell P)x = x'(\Lambda' P \Lambda + M)x$$

$$= x'(\beta A'(D + P)A)x$$

$$= \beta x'A'DAx + \beta x'A'PAx$$

$$= \beta y'Dy + \beta y'Py \geqslant 0$$

# Application: Firm Entry and Exit

#### Let

- Z be a finite subset of  $\mathbb{R}$
- $\bullet$   $\Pi$  a stochastic kernel on Z
- q be a distribution in  $\mathcal{P}(\mathsf{Z})$

An individual firm's productivity  $\{z_t\}$  obeys  $\Pi$ 

•  $z_{t+1} \sim \Pi(z_t, \cdot)$  for all t

When a firm's productivity falls below  $\bar{z} \in \mathsf{Z}$ , the firm exits

Replaced by a new firm with productivity  $z_{t+1} \sim q$ 

Ex. How does the distribution of firms (i.e., cross-section) evolve?

Solution: A randomly selected firm has

$$\mathbb{P}\{z_{t+1} = z' \mid z_t = z\} = \begin{cases} \Pi(z, z') & \text{if } z > \bar{z} \\ q(z') & \text{if } z \leqslant \bar{z} \end{cases}$$

The cross-sectional firm distribution sequence  $\{\psi_t\}$  satisfies

$$\psi_{t+1}(z') = q(z') \sum_{z \leqslant \bar{z}} \psi_t(z) + \sum_{z > \bar{z}} \Pi(z, z') \psi_t(z)$$

$$= \sum_{z \in \bar{z}} \left[ \mathbb{1} \{ z \leqslant \bar{z} \} q(z') + \mathbb{1} \{ z > \bar{z} \} \Pi(z, z') \right] \psi_t(z)$$

We can write

$$\psi_{t+1}(z') = \sum_{z \in \mathsf{Z}} \left[ \mathbb{1}\{z \leqslant \bar{z}\} q(z') + \mathbb{1}\{z > \bar{z}\} \Pi(z, z') \right] \psi_t(z)$$

as

$$\psi_{t+1}(z') = \sum_{z \in \mathsf{Z}} Q(z, z') \psi_t(z)$$

where

$$Q(z,z') := \mathbb{1}\{z \leqslant \bar{z}\}q(z') + \mathbb{1}\{z > \bar{z}\}\Pi(z,z')$$

is the stochastic kernel for the "rejuvenating firm"

### Ex.

Under what conditions does

$$Q(z,z') := \mathbb{1}\{z \leq \bar{z}\}q(z') + \mathbb{1}\{z > \bar{z}\}\Pi(z,z')$$

have a stationary distribution?

- What's a simple condition on  $q,\Pi$  under which  $(Q,\mathcal{P}(\mathsf{Z}))$  is globally stable?
- How would you go about computing that stationary distribution when it the condition is satisfied?

# Application: Optimal Firm Exit

An incumbent within an industry has current profits

$$\pi_t = \pi(z_t, p_t)$$

- $\{z_t\} \stackrel{\text{\tiny IID}}{\sim} \varphi$  is a firm-specific productivity process
- $\{p_t\} \stackrel{\text{\tiny IID}}{\sim} \nu$  is an exogenous price process
- $(z_t, p_t)$  takes values in  $X \subset \mathbb{R}^k$

Decision problem: Continue or exit? (optimal stopping)

### Timing runs as follows

At the start of time t, observe  $z_t$  and  $p_t$ 

If decision = continue, then

- 1. receive  $\pi_t$  now
- 2. start next period as an incumbent

If decision = exit, then

- 1. receive scrap value  $s \in \mathbb{R}$
- 2. receive 0 in all subsequent periods

### Maximizes

$$\mathbb{E}\sum_{t\geqslant 0}\beta^t r_t$$

Here

$$r_t = egin{cases} \pi_t & ext{if still incumbent} \ s & ext{upon exit} \ 0 & ext{after exit} \end{cases}$$

Assume that  $0 < \beta < 1$  and  $\pi$  is continuous and bounded

**Ex.** Without looking at the next slide, try to write down the Bellman equation for an incumbent firm

Bellman equation:

$$v(z,p) = \max \left\{ s, \ \pi(z,p) + \beta \int v(z',p') \varphi(\mathrm{d}z') \nu(\mathrm{d}p') \right\}$$

Bellman operator:

$$Tv(z,p) = \max \left\{ s, \ \pi(z,p) + \beta \int v(z',p') \varphi(dz') \nu(dp') \right\}$$

**Ex.** Without looking ahead, show that T is a self-mapping on bcX

If  $v \in bcX$ , then

$$|Tv(z,p)| = \left| \max \left\{ s, \ \pi(z,p) + \beta \int v(z',p') \varphi(\mathrm{d}z') \nu(\mathrm{d}p') \right\} \right|$$
  
$$\leq |s| + ||\pi||_{\infty} + ||v||_{\infty}$$

Moreover,

$$Tv(z,p) = \max \left\{ s, \ \pi(z,p) + \beta \int v(z',p') \varphi(\mathrm{d}z') \nu(\mathrm{d}p') \right\}$$
$$= \max \left\{ s, \ \pi(z,p) + \mathrm{constant} \right\}$$

is clearly continuous in (z, p)

Without looking ahead, show that T is a contraction of mod  $\beta$  on  $(\mathit{bc}\mathsf{X},\mathit{d}_\infty)$ 

We use the elementary bound

$$|\alpha \lor x - \alpha \lor y| \le |x - y| \qquad (\alpha, x, y \in \mathbb{R})$$

Fix v, w in bcX and  $(z, p) \in X$ 

By this bound and the triangle inequality (check details),

$$\begin{split} |Tv(z,p) - Tw(z,p)| & \leq \beta \int |v(z',p') - w(z',p')| \varphi(\mathrm{d}z') \nu(\mathrm{d}p') \\ & \leq \beta \|v - w\|_{\infty} \end{split}$$

Taking the supremum over all  $(z, p) \in X$  leads to

$$||Tv - Tw||_{\infty} \leq \beta ||v - w||_{\infty}$$

The value function  $v^*$  is the unique fixed point of T in bcX

• proof is in lecture 14

Suppose that p and z are real valued

**Ex.** Under what conditions is  $v^*$  increasing in (z, p)?

Hint: Look at

$$Tv(z,p) = \max \left\{ s, \ \pi(z,p) + \beta \int v(z',p') \varphi(dz') \nu(dp') \right\}$$

Solution: If  $\pi$  is increasing in (z, p), then so is  $v^*$ 

Indeed, under this condition

$$Tv(z,p) = \max \left\{ s, \ \pi(z,p) + \beta \int v(z',p') \varphi(dz') \nu(dp') \right\}$$

maps *ibc*X into itself (increasing bounded continuous)

Moreover, ibcX is closed in  $(bcX, d_{\infty})$ 

Hence the fixed point  $v^*$  lies in ibcX

**Ex.** Can you suggest an easier way to solve the Bellman equation

$$v(z,p) = \max \left\{ s, \ \pi(z,p) + \beta \int v(z',p') \varphi(\mathrm{d}z') \nu(\mathrm{d}p') \right\}$$

Can you map it to a lower dimensional problem?

Hint: We only need to find the expectation of the value function

One solution: set  $h := \int v(z', p') \varphi(dz') \nu(dp')$ 

The Bellman equation is

$$v(z, p) = \max\{s, \ \pi(z, p) + \beta h\}$$

Now shift forward in time and take expectations to get

$$h = \int \max\{s, \ \pi(z', p') + \beta h\} \ \varphi(dz')\nu(dp')$$

Ex. Show that

$$F(h) := \int \max \{s, \pi(z', p') + \beta h\} \varphi(dz') \nu(dp')$$

is a contraction on  $\mathbb{R}_+$ 

Solution: The triangle inequality for integrals gives

$$|F(g)-F(h)| \leqslant$$

$$\int \left| \max \left\{ s, \ \pi(z', p') + \beta g \right\} - \max \left\{ s, \ \pi(z', p') + \beta h \right\} \right| \varphi(\mathrm{d}z') \nu(\mathrm{d}p')$$

From the elementary bound

$$|\alpha \lor x - \alpha \lor y| \le |x - y| \qquad (\alpha, x, y \in \mathbb{R})$$

this leads to

$$|F(g) - F(h)| \le \int |\beta g - \beta h| \varphi(dz') \nu(dp') \le \beta |g - h|$$

### Final comments

Exam might ask you to provide algorithms

- Describe steps of a computer solution, why the procedure works
- You don't need to write code by hand

All lemmas / thms / facts from the slides can be used freely in the exam

Example. "From the lectures we have  $|\alpha \lor x - \alpha \lor y| \le |x - y|$ , from which it follows that ..."

Good luck :-)