

KAUNO TECHNOLOGIJOS UNIVERSITETAS Informatikos fakultetas

P170B115 Skaitiniai metodai ir algoritmai

Laboratorinis darbas nr. 1

Variantas 12

Dėstytojai: Lekt. Dalia Čalnerytė

Studentai: Justas Milišiūnas IFF-7/2

Įvadas	3
Užduotis	3
f(x) ir g(x) šaknų radimas	4
Skenavimas nekintančiu žingsniu:	4
Paprastųjų iteracijų metodas:	5
Niutono (liestinių) metodas:	6
Skenavimo su mažėjančiu žingsniu metodas:	8
Netiesinės lygties sprendimas	9
Išvados	10

1. Įvadas

Šio laboratorinio darbo esmė išmokti skaičiuoti sudėtingų lygčių nežinomuosius sprendinius pasinaudojant kompiuteriu. Išmokti paskaičiuoti grubius bei tiksliuosius intervalus. Naudoti skenavimo nekintančių žingsniu rasti šaknų intervalams, pritaikyti įvairius tikslinimo metodus.

2. Užduotis

Vr.	f(x)	g(x)	metodai
12	$0.16x^5 - 1.57x^4 + 4.38x^3 - 1.15x^2 - 6.29x + 0.15$	$2x\sin(x) - \left(\frac{x}{2} + 2\right)^2; -10 \le x \le 10$	2, 3, 5

¹ pav. f(x) daugianaris, g(x) - transcendentinė funkcija

Sprendimo metodai: paprastųjų iteracijų, Niutono (liestinių), skenavimo su mažėjančiu žingsniu

Uždavinys variantams 11-15

Vertikaliai į viršų iššauto objekto greitis užrašomas dėsniu $v(t) = v_0 e^{-\frac{ct}{m}} + \frac{mg}{c} \left(e^{-\frac{ct}{m}} - 1 \right)$, čia $g = 9.8 \text{ m/s}^2$, pradinis greitis v_0 , objekto masė m. Koks pasipriešinimo koeficientas c veikia objektą, jei žinoma, kad po t_1 laiko nuo iššovimo jo greitis lygus v_1 ?

Varianto Nr.	$v_0, m/s$	m, kg	t_1 , s	v ₁ , m/s		
11	100	1,5	5	22		
12	80	0,5 4		10		
13	50	0,45	3	10 49		
14	100	0,75	3			
15	50	2	3	14		

2 pav. Netiesinių lygčių sprendimo užduotis

Pasirinktas sprendimo metodas - skenavimo su mažėjančiu žingsniu

2.1. f(x) ir g(x) šaknų radimas

Lygties f(x) = 0 šaknų grubus įvertis:

$$|x| < 1 + \frac{\max\limits_{0 \le i \le n-1} |a_i|}{a_n} = R$$

Lygties f(x) = 0 šaknų tikslesnis įvertis:

(teigiamoms šaknims)

$$x \leq R_{teig}, R_{teig} = 1 + \sqrt[k]{\tfrac{B}{a_n}}, k = n - \max_{0 \leq i \leq n-1} (i, a_i < 0), B = \max_{0 \leq i \leq n-1} (|a_i|, a_i < 0)$$

(neigiamoms šaknims)

Nagrinėjamas daugianaris f(-x), jeigu n lyginis, ir -f(-x), jei n nelyginis.

Galutinis įvertis:

$$-\min(R, R_{neig}) \le x \le \min(R, R_{teig})$$

3 pav. Intervalų skaičiavimo formulės

Grubus lygties šaknų intervalų įvertis: (-28.375, 28.375)

Tikslesnis lygties šaknų intervalų įvertis: (3.50399043568, 40.3125)

 $-\min(-28.375, 3.504) \le x \le \min(28.375, 40.3125)$

Šaknų intervalas: -3.504 ≤ x ≤ 28.375

Skenavimas nekintančiu žingsniu:

Šaknų intervalams rasti naudojamas skenavimo nekintančių žingsniu metodas. Žingsnis gaunamas padalinus visą intervalą iš 40. Tada eina per visą intervalą ir tikrina ar dabartinio x ženklas nesutampa su x + step ženklu. Jei nesutampa reiškias tame intervale yra šaknis.

Metodo kodas:

```
def scan(f, start_x, end_x):
    step = (end_x - start_x) / 40
    x = start_x
    intervals = []

while x < end_x:
        x_next = x + step
        if (f(x) > 0 > f(x_next)) or (f(x_next) > 0 > f(x)):
            intervals.append([x, x_next])

        x = x_next

return intervals
```

4 pav. Skenavimo nekintančiu žingsniu kodas

Paprastųjų iteracijų metodas:

5 pav. f(x) ir y=x grafikai

6 pav. g(x) ir y=x grafikai

f(x) šaknų radimo metode naudojama: alpha = -10, max_iterations = 1000, eps=1e-4

INTERVALAS	1	TIKSLUMAS		ITERACIJŲ SKAIČIUS	1	ŠAKNIS
[-1.1790000000000003 , -0.40400000000000005]	1	6.133895242754761e-05	1	9	1	-0.9448762649286857
[-0.40400000000000025, 0.37099999999999999999999999999999999999	1	4.971583691383216e-05	1	10	1	0.02372473802066661
[1.920999999999999 , 2.695999999999999]	1	8.818524356613011e-05	1	20	1	2.508624779060542
[3.470999999999999 , 4.24599999999999999999999999999999999999	1	8.536718436680246e-05	1	19	1	3.600290416866638
[4.245999999999999 , 5.021]	1	5.0557521611871437e-05	1	7	1	4.624287007421092

g(x) šaknų radimo metode naudojama: alpha = -10, max_iterations = 1000, eps=1e-4

			Paprastųjų iteracijų metod	las				
1	INTERVALAS	1	TIKSLUMAS	1	ITERACIJŲ SKAIČIUS	1	ŠAKNIS	1
 	[-9.500025000000278 , -9.000050000000556] [-6.500175000001943 , -6.000200000000222] [-3.5003250000036052 , -3.0003500000038823] [-3.5003250000036052 , -3.0003500000038823]		9.638714801418757e-05 9.845778482819867e-05 8.042600319813076e-05 3.8166888107760144e-05		68 71 10 10		-9.06341686644354 -9.063417834488366 -3.1097886932175487 -6.395580090605429	

8 pav. Gautos g(x) funkcijos šaknys naudojant paprastųjų iteracijų metodą

Metodo kodas:

9 pav. Paprastųjų iteracijų metodo kodas

Niutono (liestinių) metodas:

10 pav. f(x) grafikas

11 pav. g(x) frafikas

f(x) šaknų radimo metode naudojama: max_iterations = 1000, eps=1e-4

-			Viutono (liestinių) metoda	S			
	INTERVALAS	1	TIKSLUMAS	1	ITERACIJŲ SKAIČIUS	1	ŠAKNIS
-	[-1.179000000000003 , -0.4040000000000005]	1	6.708589108872509e-05	1	4	I	-0.9448602089690443
	[-0.40400000000000025, 0.37099999999999999999999999999999999999	Ì	1.2660190468888333e-08	Ì	3	Ì	0.023753472522068893
	[1.920999999999999 , 2.69599999999999999]	1	2.5446787343952337e-08	Ì	4	1	2.5088146084427816
	[3.470999999999999 , 4.24599999999999999999999999999999999999	ĺ	1.942263350862561e-05	Ì	3	Ì	3.6004987207595436
	[4.245999999999999 , 5.021]	ĺ	4.317478374815664e-08	Ì	3	Ì	4.6242933996619575

12 pav. Gautos f(x) funkcijos šaknys naudojant Niutono (liestinių) metodą

g(x) šaknų radimo metode naudojama: max_iterations = 1000, eps=1e-4

		Niutono (liestinių) metod	as			
INTERVALAS	1	TIKSLUMAS	I	ITERACIJŲ SKAIČIUS	I	ŠAKNIS
[-9.500025000000278 , -9.00005	0000000556]	1.5303070185268552e-05	1	3	1	-9.06337180372566
[-6.500175000001943 , -6.00020	000000222]	8.162260130006871e-07	1	3	1	-6.395585739123464
[-3.5003250000036052 , -3.000350	0000038823]	1.6755191842410255e-05	1	3	1	-3.109728213312953
[-1.5004250000047135 , -1.000450	0000049905]	5.29539716742633e-07	1	3	1	-1.1336261249556197

13 pav. Gautos g(x) funkcijos šaknys naudojant Niutono (liestinių) metodą

Metodo kodas:

```
def newton_method(self):
    for interval in self.intervals:
        prec = 0.1
        x = (interval[0] + interval[-1]) / 2
        current_iteration = 0

    while prec > self.eps:
        if current_iteration >= self.max_iterations:
            print("Reached max iterations limit")
            return

        next_x = (x - self.function(x) / self.derivative(x))
        prec = abs(next_x - x)

        x = next_x
        current_iteration += 1
```

14 pav. Niutono (liestinių) metodo kodas

Skenavimo su mažėjančiu žingsniu metodas:

15 pav. f(x) grafikas, melyni taškai intervalo galai, geltonas sumažinto intervalo pradžia

16 pav. g(x) grafikas, melyni taškai intervalo galai, geltonas sumažinto intervalo pradžia

f(x) šaknų radimo metode naudojama: max_iterations = 1000, eps=1e-4, žingsnis mažinimas 2 kartus, pradinis žingsnis step = 0.1

		Ske	enavimo su mažėjančiu žings	sniu			
	INTERVALAS	1	TIKSLUMAS	1	ITERACIJŲ SKAIČIUS	1	ŠAKNIS
	[-1.1790000000000003 , -0.40400000000000005]	1	3.842383258303994e-05	1	48	1	-0.9448569335937502
	[-0.40400000000000025, 0.37099999999999999999999999999999999999	Ì	3.369255118940151e-05	1	41	1	0.023734374999999745
	[1.920999999999999 , 2.695999999999999]	Ĺ	6.862807345711652e-05	Ī	39	1	2.508890625
	[3.47099999999999 , 4.24599999999999999999999999999999999999	1	1.8993442875425703e-05		35	1	3.6005898437499995
	[4.245999999999999 , 5.021]	1	2.218547740118204e-05	1	43	Î	4.624271484375

g(x) šaknų radimo metode naudojama: max_iterations = 1000, eps=1e-4, žingsnis mažinimas 2 kartus, pradinis žingsnis step = 0.1

		Sk	enavimo su mažėjančiu žing	sniu				
	INTERVALAS	1	TIKSLUMAS	I	ITERACIJŲ SKAIČIUS	1	ŠAKNIS	1
[-9.5000250000002 [-6.5001750000019]	2.9766986673784857e-05 6.841156516168567e-06	ļ	51		-9.063367285156527 -6.395682812501942	1
[-3.50032500000360	52 , -3.0003500000038823	7	2.1683300363450897e-05	-	35 49	i	-3.109748828128605	i
[-1.50042500000471	35 , -1.0004500000049905	ji	8.410199090480575e-06	İ	33	į	-1.133237500004713	

18 pav. Gautos g(x) funkcijos šaknys naudojant skenavimo su mažėjančiu žingsniu metodą

Metodo kodas:

```
def scanning method(self):
   for interval in self.intervals:
       prec = 0.1
       step = 0.1
       current = interval[0]
       is positive = self.function(current) > 0
       iteration_counter = 0
       while prec > self.eps:
           if iteration_counter >= self.max_iterations:
              print("Reached max iterations limit")
               return
           y = self.function(current)
           if is_positive is not (y > 0):
               current -= step
               step /= 2
           current += step
           prec = abs(y)
           iteration_counter += 1
           is_positive = y > 0
```

19 pav. Skenavimo su kintančiu žingsniu metodo kodas

2.2. Netiesinės lygties sprendimas

Vertikaliai į viršų iššauto objekto greitis užrašomas dėsniu $v(t) = v_0 e^{-\frac{ct}{m}} + \frac{mg}{c} \left(e^{-\frac{ct}{m}} - 1 \right)$, čia $g = 9.8 \text{ m/s}^2$, pradinis greitis v_0 , objekto masė m. Koks pasipriešinimo koeficientas c veikia objektą, jei žinoma, kad po t_1 laiko nuo iššovimo jo greitis lygus v_1 ?

Varianto Nr.	v ₀ , m/s	m, kg	t_1 , s	v ₁ , m/s
12	80	0,5	4	10

20 pav. Užduotis

Šaknies radimui pasirinkau skenavimo su mažėjančių žingsniu metodą

Šios funkcijos grafikas:

21 pav. Funkcijos grafikas, mėlyni taškai intervalo galai, geltonas taškas sumažinto intervalo pradžia

Rasti šaknį naudojau: max_iterations = 1000, step = 0.01, eps=1e-4, intervalas (-1, 1)

	Ske	navimo su mažėjančiu žing	sniu			
INTERVALAS	ı	TIKSLUMAS	ı	ITERACIJŲ SKAIČIUS	I	ŠAKNIS
[0.049475000000001546, 0.09945000000000159]		3.418645203367987e-05	1	59	1	0.09478292236328283

22 pav. Gautos šaknies intervalas, tikslumas, iteracijų skaičius, pati šaknis

Pasipriešinimo koeficientas c=0.09478292236328283

3. Išvados

Pagal gautus šaknų rezultatus matome, kad Niutono (liestini) metodas yra greičiausias, nes užtrunka mažiausią iteracijų skaičių. Niutono (liestinių) metodas taip pat yra ir tiksliausias. Trūkumas - reikia turėti funkcijos išvestinę.

Kitas pagal greitį yra paprastųjų iteracijų metodas. Bet jame greitis labai priklauso nuo gerai pasirinktos alfa.

Skenavimo metodas su mažėjančiu žingsniu gavosi lėčiausias. Jo tikslumas panašus į paprastųjų iteracijų metodo.