Supplementary report for the paper A Distance-based Ranking Model Estimation of Distribution Algorithm for Flowshop Scheduling Problem submitted to the journal IEEE Transactions on Evolutionary Computation.

Supplementary Report: the Analysis of Execution Times

Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu, and Jose A. Lozano (Member, IEEE) *†

February 26, 2013

Abstract

In this report we introduce supplementary material that extend the experimental study presented in the paper A Distance-based Ranking Model Estimation of Distribution Algorithm for Flowshop Scheduling Problem, submitted to the journal IEEE Transactions on Evolutionary Computation. In addition to the results provided in the paper, which were obtained by fixing a given number of evaluations, in this report we rerun the experiments replacing the former stopping criterion and allowing the algorithms to perform the same execution time.

1 Execution time measurements for AGA, VNS₄, GM-EDA, VNS and HGM-EDA

When estimation of distribution algorithms are executed, a stopping criterion must be set. The most common options proposed in the literature are the number of evaluations and execution time. In this case, we think that to set a maximum number of evaluations is a more appropriate criterion than the execution time, since other factors such as the characteristics of the hardware, the abilities of different compilers, or the programming skills might change the execution time of the algorithm.

However, in order to extend the experimental study introduced in the paper, we provide the execution times for the different approaches tested: AGA, VNS₄, GM-EDA, VNS and HGM-EDA. All the algorithms have been implemented by us, trying to provide efficient codes in all the cases.

Fig. 1 and Table 1 show the average CPU time spent by the algorithms when running the maximum number of evaluations allowed (see Tables III and IV of the paper). 20 repetitions of each algorithm were performed. For the sake of readability, the first instance of each configuration was only considered in this analysis.

^{*}J. Ceberio, E. Irurozki and J. A. Lozano are with the Intelligent Systems Group, Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU, Gipuzkoa 20018, Spain {e-mail: jceberio001@ikasle.ehu.es}

[†]A. Mendiburu is with the Intelligent Systems Group, Department of Computer Architecture and Technology, University of the Basque Country UPV/EHU, Gipuzkoa 20018, Spain

Supplementary report for the paper A Distance-based Ranking Model Estimation of Distribution Algorithm for Flowshop Scheduling Problem submitted to the journal IEEE Transactions on Evolutionary Computation.

Figure 1: CPU-time (seconds) spent by AGA, VNS_4 , GM-EDA, VNS and HGM-EDA to complete the maximum number of evaluations for the first instance of each configuration. The average execution times of 20 repetitions are presented. Note that CPU-time is in log scale.

Table 1: CPU-time (seconds) spent by AGA, VNS_4 , GM-EDA, VNS and HGM-EDA to complete the maximum number of evaluations for the first instance of each configuration. The average execution times of 20 repetitions are presented.

Instance	AGA	VNS_4	GM-EDA	VNS	HGM-EDA	
20×05	38	28	276	22	113	
20×10	76	65	364	51	174	
20×20	161	143	484	116	252	
50×05	97	82	1062	61	454	
50×10	196	175	1316	130	534	
50×20	406	381	1578	289	910	
100×05	194	168	3394	123	1774	
100×10	398	369	4000	263	2134	
100×20	799	769	4697	568	2094	
200×10	785	755	13737	544	7298	
200×20	1585	1568	15424	1138	8455	
250×10	973	903	20554	675	10950	
250×20	1971	1931	23259	1392	12550	
300×10	1190	1133	29944	820	15696	
300×20	2379	2288	33690	1676	18237	
350×10	1441	1318	41379	933	21616	
350×20	2808	2742	45537	1986	24405	
400×10	1608	1486	51757	1073	27551	
400×20	3289	3220	56154	2275	30240	
450×10	1779	1683	66203	1184	33592	
450×20	3733	3552	65224	2443	35217	
500×20	4130	3919	77734	2648	40304	

Supplementary report for the paper A Distance-based Ranking Model Estimation of Distribution Algorithm for Flowshop Scheduling Problem submitted to the journal IEEE Transactions on Evolutionary Computation.

In view of the results, we conclude that GM-EDA and HGM-EDA are significantly slower than the rest of the approaches, spending in some cases 18 times more execution time to complete the maximum number of evaluations set. Taking into account these differences, we wonder what would happen if all the algorithms were allowed to spend the same execution time.

For this purpose, and due to the restrictions of time and resources, we decided to perform some additional experiments allowing AGA (the second best performing algorithm) to make use of as much CPU-time as that used by HGM-EDA.

Table 2 shows the best and average results of 10 repetitions of HGM-EDA and AGA over the first instance of each configuration type. Additionally, the number of evaluations performed by each algorithm is introduced as well as the evaluation ratio between them.

Table 2: Best and average results of HGM-EDA and AGA of 10 repetitions performed over the first instance of each configuration type. The results in bold denote best average result obtained for the instance.

Instance	Time(s)	Evals.	HGM-EDA Best	Avg.	Evals.	AGA Best	Avg.	Evals. Ratio
20×05	113	1.82×10 ⁸	14033	14033	5.13×10 ⁸	14033	14033	2.8
20×10	174	2.25×10^{8}	20911	20911	4.97×10^{8}	20911	20911	2.2
20×20	252	2.57×10^{8}	33623	33623	4.00×10^{8}	33623	33623	1.6
50×05	454	2.21×10^{8}	64803	64953	1.00×10^9	64803	64842	4.5
50×10	534	2.56×10^{8}	87193	87889	6.81×10^{8}	87314	87621	2.7
50×20	910	2.76×10^{8}	125877	126833	6.16×10^{8}	125831	125958	2.2
100×05	1774	2.36×10^{8}	253941	254941	2.10×10^9	253664	254276	8.9
100×10	2134	2.66×10^{8}	299048	301184	1.40×10^9	298980	299981	5.3
100×20	2094	2.83×10^{8}	368349	370025	7.33×10^{8}	367966	370140	2.6
200×10	7298	2.73×10^{8}	1048145	1051679	2.47×10^9	1048446	1052212	9.1
200×20	8455	2.88×10^{8}	1229236	1233432	1.51×10^{9}	1226049	1233180	5.3
250×10	10950	2.68×10^{8}	1565640	1572209	2.95×10^{9}	1569665	1577148	11.0
250×20	12550	2.85×10^{8}	1846835	1854439	1.79×10^9	1850545	1863765	6.3
300×10	15696	2.74×10^{8}	2240948	2244491	3.51×10^9	2246421	2256549	12.8
300×20	18237	2.85×10^{8}	2586955	2600887	2.16×10^9	2599202	2611472	7.6
350×10	21616	2.78×10^{8}	3049101	3057335	4.22×10^9	3057753	3067347	15.2
350×20	24405	2.86×10^{8}	3459723	3478886	2.42×10^9	3475016	3499466	8.5
400×10	27551	2.75×10^{8}	3953089	3978503	4.71×10^9	3932573	3938924	17.1
400×20	30240	2.84×10^{8}	4497990	4533893	2.62×10^{9}	4456497	4484353	9.2
450×10	33592	2.77×10^{8}	4921735	4953706	5.06×10^9	4871315	4882779	18.2
450×20	35217	2.69×10^{8}	5596363	5634471	2.56×10^{9}	5525827	5552125	9.5
500×20	40304	2.60×10^{8}	6812874	6876140	2.53×10^9	6691613	6722294	9.7

As presented in Table 2, although AGA is allowed to make use of as much as CPU-time as that used by HGM-EDA, the results are similar to those provided throughout the main paper, with the exception of the configurations 100×5 and 200×20 . We see that even though the number of evaluations performed by AGA in some cases reaches ratios of 1:18, HGM-EDA still beats AGA in almost all the instances where it did on the experimental study in the main paper.