范德蒙行列式

定义:给定 n 个元素 x_1, x_2, \dots, x_n ,以其 i-1 次幂 $x_1^i, x_2^i, \dots, x_n^i$ 作为第 i-1 $(i=1,2,\dots,n)$ 行得到的行列式,称为由 x_1, x_2, \dots, x_n 确定的 n 阶范德蒙行列式,记为 $V(x_1, x_2, \dots, x_n)$

即:
$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \\ x_1 & x_2 & x_3 & \dots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \\ x_1 & x_2 & x_3 & \dots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \\ x_1^{n-1} & x_2^{n-1$$

这个结论说,由 x_1, x_2, \dots, x_n 确定的范德蒙行列式的值,等于所有不同的 $x_i - x_j$ $(n \ge i > j \ge 1)$ 之积;也就是下列各项之积(注意观察规律)

$$(x_{n}-x_{1})$$
 $(x_{n-1}-x_{1})$ \cdots $(x_{3}-x_{1})$ $(x_{2}-x_{1})$ $(x_{n}-x_{2})$ $(x_{n-1}-x_{2})$ \cdots $(x_{3}-x_{2})$ \cdots $(x_{n-1}-x_{n-2})$ \cdots $(x_{n-1}-x_{n-2})$ $(x_{n-1}-x_{n-2})$ $(x_{n-1}-x_{n-2})$

结论的证明:利用数学归纳法

当
$$n=2$$
 时, $V(x_1,x_2) = \begin{vmatrix} 1 & 1 \\ x_1 & x_2 \end{vmatrix} = x_2 - x_1$,结论成立;

假设当
$$n=k$$
 时,结论成立,即 $V(x_1,x_2,\cdots,x_k)=\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_k \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_k^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{k-1} & x_2^{k-1} & x_3^{k-1} & \cdots & x_k^{k-1} \\ x_1 & x_2 & x_3 & \cdots & x_k & x_{k+1} \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_k^2 & x_{k+1}^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{k-1} & x_2^{k-1} & x_3^{k-1} & \cdots & x_k^{k-1} & x_{k+1} \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{k-1} & x_2^{k-1} & x_3^{k-1} & \cdots & x_k^{k-1} & x_{k+1}^{k-1} \\ x_1^k & x_2^k & x_3^k & \cdots & x_k^k & x_{k+1}^k \\ x_1^k & x_2^k & x_3^k & \cdots & x_k^k & x_k^k \\ x_1^k & x_2^k & x_3^k & \cdots & x_k^k & x_k^k \\ x_1^k & x_2^k & x_3^k &$

将第
$$k$$
 行乘 $-x_{k+1}$ 加到第 $k+1$ 行,得: $V(x_1,x_2,\cdots,x_k,x_{k+1}) = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & x_3 & \cdots & x_k & x_{k+1} \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_k^2 & x_{k+1}^2 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & & \vdots \\ x_1^{k-1} & x_2^{k-1} & x_2^{k-1} & x_3^{k-1} & \cdots & x_k^{k-1} & x_{k+1}^{k-1} \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \end{vmatrix}_{k+1}$

将第 i 行乘 $-x_{i+1}$ 加到第 i+1 行,依次取 $i=k-1,k-2,\cdots,2,1$ 得: $V(x_1,x_2,\cdots,x_k,x_{k+1}) = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ x_1-x_{k+1} & x_2-x_{k+1} & x_3-x_{k+1} & \cdots & x_k-x_{k+1} & 0 \\ x_1(x_1-x_{k+1}) & x_2(x_2-x_{k+1}) & x_3(x_3-x_{k+1}) & \cdots & x_k(x_k-x_{k+1}) & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ x_1^{k-2}(x_1-x_{k+1}) & x_2^{k-2}(x_2-x_{k+1}) & x_3^{k-2}(x_3-x_{k+1}) & \cdots & x_k^{k-2}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_2-x_{k+1}) & x_3^{k-1}(x_3-x_{k+1}) & \cdots & x_k^{k-1}(x_k-x_{k+1}) & 0 \\ x_1^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_1-x_{k+1}) & x_2^{k-1}(x_$

$$V(x_{1}, x_{2}, \dots, x_{k}, x_{k+1}) = (-1)^{k+1+1} \begin{vmatrix} x_{1} - x_{k+1} & x_{2} - x_{k+1} & x_{3} - x_{k+1} & \cdots & x_{k} - x_{k+1} \\ x_{1}(x_{1} - x_{k+1}) & x_{2}(x_{2} - x_{k+1}) & x_{3}(x_{3} - x_{k+1}) & \cdots & x_{k}(x_{k} - x_{k+1}) \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ x_{1}^{k-2}(x_{1} - x_{k+1}) & x_{2}^{k-2}(x_{2} - x_{k+1}) & x_{3}^{k-2}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-2}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{2} - x_{k+1}) & x_{3}^{k-1}(x_{3} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{1} - x_{k+1}) & x_{3}^{k-1}(x_{2} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{1} - x_{k+1}) & x_{3}^{k-1}(x_{1} - x_{k+1}) & \cdots & x_{k}^{k-1}(x_{k} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{1} - x_{k+1}) & x_{3}^{k-1}(x_{1} - x_{k+1}) & x_{3}^{k-1}(x_{1} - x_{k+1}) \\ x_{1}^{k-1}(x_{1} - x_{k+1}) & x_{2}^{k-1}(x_{1} - x_{k+1}) & x_{3}^{k-1}(x_{1} - x_{k+1}) & x_{3}^{k-1}(x_{1} - x_{k+1}) \\ x_{1$$

第 $i(i=1,2,\dots,k)$ 列分别提取公因式 $x_i - x_{k+1}$ 得:

$$V(x_{1}, x_{2}, \dots, x_{k}, x_{k+1}) = (-1)^{k} (x_{1} - x_{k+1})(x_{2} - x_{k+1}) \dots (x_{k} - x_{k+1}) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & x_{3} & \cdots & x_{k} \\ \vdots & \vdots & \vdots & & \vdots \\ x_{1}^{k-2} & x_{2}^{k-2} & x_{3}^{k-2} & \cdots & x_{k}^{k-2} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{1}^{k-1} & x_{2}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{2}^{k-1} & x_{3}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{3}^{k-1} & x_{3}^{k-1} & x_{3}^{k-1} & \cdots & x_{k}^{k-1} \\ x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} \\ x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} \\ x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} \\ x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} \\ x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} \\ x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} \\ x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} & x_{4}^{k-1} \\ x_{4}^{k-1} & x_{4}$$

利用归纳假设,得 $V(x_1, x_2, \dots, x_k, x_{k+1}) = \prod_{l=1}^k (x_{k+1} - x_l) \prod_{1 \le j < i \le k} (x_i - x_j) = \prod_{1 \le j < i \le k+1} (x_i - x_j)$ 证毕