Name: Nathaniel Hawkins

CMSE 820 Homework 01. Due Sep 15, 2020.

I. Let $A \in \mathbb{R}^{m \times n}$ (m < n), and let $A = U \Sigma V^T$ be the singular value decomposition, where U and V are $m \times m$ and $n \times n$ orthogonal matrices respectively, and

where r is the rank of A and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \geq 0$ are the singular values of A in decreasing order. Write the columns of U as u_1, \ldots, u_m and the columns of V as v_1, \ldots, v_n . Prove

(a) $Ker(A) = span\{v_{r+1}, \dots, v_n\}.$

Solution. Suppose $x \in \text{span}\{v_{r+1}, \dots, v_n\} \subseteq \mathbb{R}^n$ is a vector of the following form,

$$x^T = \begin{pmatrix} 0 & 0 & \dots & 0 & x_{r+1} & \dots & x_n \end{pmatrix}$$

where r is the rank of A. Let w = Vx. Consider $Aw = U\Sigma V^Tw$. Since V is orthogonal, it follows that $V^T = V^{-1}$, thus $Aw = U\Sigma x$. The singular values of A are arranged such that the first r diagonal elements of Σ are nonzero, and the remaining m-r elements are 0. However, since the first r components of x are zero and the remaining n-r elements are nonzero, the multiplication of $\Sigma x = \mathbf{0}$ for any x of the prescribed form. Therefore, $Aw = \mathbf{0}$. We can say that $\mathrm{span}\{v_{r+1}, \ldots, v_n\} \subseteq \mathrm{Ker}(A)$.

Now suppose $x \in \text{Ker}(A) \Rightarrow Ax = 0$. We rewrite this as $U\Sigma V^T x = 0 \Rightarrow \Sigma V^T x = 0$ since U is orthogonal, which implies $U^T = U^{-1}$. We can write this as a system of equations

$$\sigma_1 v_1^T x = 0$$

$$\sigma_2 v_2^T x = 0$$

$$\vdots$$

$$\sigma_r v_r^T x = 0$$

$$0 = 0$$

$$\vdots$$

$$0 = 0.$$

Since $\sigma_1 \geq \cdots \geq \sigma_r > 0$, it follows that

$$v_1^T x = 0$$

$$v_2^T x = 0$$

$$\vdots$$

$$v_x^T x = 0.$$

V is an orthogonal matrix, which means $v_i^T v_j = \delta_{ij}$. Additionally, the columns of V, v_i , automatically form a basis for \mathbb{R}^n because mutual orthogonality implies linear independence. We can thus write x as a linear combination of the basis vectors, $x = \sum_{j=1}^n c_i v_i$ where $c_i \in \mathbb{R}$. Since $v_i^T x = 0$ for $i \leq r$, it follows that $c_i = 0$ for $i \leq r$. We can conclude that $x \in \text{span}\{v_{r+1}, \ldots, v_n\} \Rightarrow \text{Ker}(A) \subseteq \text{span}\{v_{r+1}, \ldots, v_n\}$.

(b) $Ran(A) = span\{u_1, ..., u_r\}.$

Solution. The singular value decomposition of A can be rewritten as $A = \sum_{j=1}^m u_j \sigma_j v_j^T$, where u_j and v_j are the columns of U and V respectively. Suppose $y \in \text{Ran}(A) \Rightarrow \exists x \text{ s.t. } Ax = y$. $Ax = \left(\sum_{j=1}^m u_j \sigma_j v_j^T\right) x = \sum_{j=1}^m u_j \sigma_j v_j^T x = y$. The values σ_j and $v_j^T x$ are both scalars, therefore, we can let $\gamma_j = \sigma_j v_j^T x$. Thus, $Ax = \sum_{j=1}^m \gamma_j u_j = y$. However, for j > r, $\sigma_j = 0 \Rightarrow \gamma_j = 0$, so we can rewrite the sum as $Ax = \sum_{j=1}^r \gamma_j u_j + \sum_{j=r+1}^m 0 = \sum_{j=1}^r \gamma_j u_j = y$. Therefore $y \in \text{span}\{u_1, \dots, u_r\} \Rightarrow \text{Ran}(A) \subseteq \text{span}\{u_1, \dots, u_r\}$.

Suppose now $y \in \text{span}\{u_1, \dots, u_r\}$. We can write y as a linear combination $y = x_1u_1 + \dots + x_ru_r$ where $x_j \in \mathbb{R}$. From the SVD of A, we can write $A = U\Sigma V^T \Rightarrow Av_j = \sigma_j u_j$. The first r singular values are nonzero, so for $j \leq r$, $u_j = \frac{Av_j}{\sigma_j}$. Therefore,

$$y = x_1 \frac{Av_1}{\sigma_1} + \dots + x_r \frac{Av_r}{\sigma_r}.$$

Let $x' = \frac{x_1}{\sigma_1}v_1 + \dots + \frac{x_r}{\sigma_r}v_r$ such that y = Ax'. Therefore, $y \in \text{Ran}(A)$ and $\text{span}\{u_1, \dots, u_r\} \subseteq \text{Ran}(A)$.

II. Recall that a square matrix P is called an orthogonal projection matrix if $P^2 = P^T = P$. Let $A \in \mathbb{R}^{m \times n}$ and suppose $(A^T A)^{-1}$ exists. Define

$$H := A(A^T A)^{-1} A^T.$$

(a) Prove that H is an orthogonal projection matrix.

Solution.

$$H^{2} = A(A^{T}A)^{-1}A^{T}(A(A^{T}A)^{-1}A^{T})$$

$$= A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}A^{T} = H.$$

$$H^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$$

$$= (A^{T})^{T}(A^{T}A)^{-T}A^{T}$$

$$= A(A^{T}(A^{T})^{T})^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}A^{T} = H.$$

Since $H^2 = H^T = H$, it follows that H is an orthogonal projection matrix.

(b) Let $x \in \mathbb{R}^m$ be a vector. If $x \in \text{Ran}(H)$, prove that Hx = x. If $x \in \text{Ran}(H)^{\perp}$, prove that Hx = 0.

Name: Nathaniel Hawkins

Solution. Suppose $x \in \text{Ran}(H)$. H is of size $m \times m$, so $\exists y \in \mathbb{R}^m$ such that Hy = x. If we multiply on the left by H, we get HHy = Hx. Since H is an orthogonal projection, $H^2 = H$, thus Hy = Hx. Therefore, y = x, and $\forall x \in \text{Ran}(H)$, Hx = x.

Suppose instead that $x \in \text{Ran}(H)^{\perp}$. From this, $\forall y \in \text{Ran}(H), y^T x = 0$. The vector x is therefore in the kernel of H, and thus Hx = 0.

(c) Let a_1, \ldots, a_n be the columns of A. Prove that

$$Ran(H) = span\{a_1, \dots, a_n\}.$$

Solution. Suppose $x \in \text{Ran}(H)$. From 2(b), we know that this implies Hx = x. We can rewrite H as $A(A^TA)^{-1}A^Tx = x$. Let $y = (A^TA)^{-1}A^Tx \in \mathbb{R}^n$. Thus, Ay = x. Since $\exists y \text{ s.t. } Ay = x$, it follows that $x \in \text{Ran}(A) = \text{span}\{a_1, \ldots, a_n\}$, and therefore $\text{Ran}(H) \subseteq \text{span}\{a_1, \ldots, a_n\}$.

Suppose now $x \in \text{span}\{a_1, \ldots, a_n\}$. It follows that $\exists y$ such that Ay = x. Left multiplying by A^T we get $A^TAy = A^Tx$. Since $(A^TA)^{-1}$ exists, we can equate this to $y = (A^TA)^{-1}A^Tx$. Left multiplying by A on both sides, we see $Ay = A(A^TA)^{-1}A^Tx = Hx \Rightarrow Ay = x = Hx$. Therefore, we can conclude that $x \in \text{Ran}(H)$ and $\text{span}\{a_1, \ldots, a_n\} \subseteq \text{Ran}(H)$.

- III. Let f be a function with domain D(f).
- (a) If f is a convex function, prove that for any $M \in \mathbb{R}$, $\{x \in D(f) : f(x) \leq M\}$ is a convex set.

Solution. Suppose $x_1, x_2 \in \{x \in D(f) : f(x) \leq M\}$ for a given value of M and f is a convex function. It follows by the convexity of f that for any $\lambda \in [0,1]$, $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2) \leq \lambda M + (1-\lambda)M = M$. Therefore, $\lambda x_1 + (1-\lambda)x_2 \in \{x \in D(f) : f(x) \leq M\}$. The set $\{x \in D(f) : f(x) \leq M\}$ is thus a convex set.

(b) Give a counter-example to show the converse of (a) is not true.

Solution. Consider $f(x) = \log(x)$. Let $x, y \in \mathbb{R}$, $\lambda \in [0, 1]$. $f(\lambda x + (1 - \lambda)y) = \log(\lambda x + (1 - \lambda)y)$, and $\lambda f(x) + (1 - \lambda)f(y) = \lambda \log(x) + (1 - \lambda)\log(y)$. Suppose $\lambda = 0.3, x = 1, y = 2$ as an example. $\log(\lambda x + (1 - \lambda)y) \approx 0.53$ and $\lambda \log(x) + (1 - \lambda)\log(y) \approx 0.49$. Thus, $f(\lambda x + (1 - \lambda)y) \nleq \lambda f(x) + (1 - \lambda)f(y)$, and therefore f is not convex.

Let $x_1, x_2 \in \{x \in D(f) : f(x) \le M\}$ for some $M \in \mathbb{R}$, and let $\lambda \in [0, 1]$. Without loss of generality, assume that $x_1 \le x_2$. Consider $f(\lambda x_1 + (1 - \lambda)x_2)$. We know that $f(x_1) = \log(x_1) \le M$ and $f(x_2) = \log(x_2) \le M$. Additionally, $x_1 \le \lambda x_1 + (1 - \lambda)x_2 \le x_2$. Since f(x) is a monotonically increasing function, it follows that $f(x_1) \le f(\lambda x_1 + (1 - \lambda)x_2) \le f(x_2) \Rightarrow f(\lambda x_1 + (1 - \lambda)x_2) \le M$. Thus, $\lambda x_1 + (1 - \lambda)x_2 \in \{x \in D(f) : f(x) \le M\}$.

f(x) has convex level sets but is not convex, therefore the reverse statement of (a) is not true.

IV. Prove that a function f is a convex function if and only if the following set

$$epi(f) := \{(x, t) \in D(f) \times \mathbb{R} : f(x) \le t\}$$

is a convex set.

Solution. Suppose $(x_1, t_1), (x_2, t_2) \in epi(f)$ and f is a convex function. From this, we know $f(x_1) \leq t_1$ and $f(x_2) \leq t_2$. By the convexity of f, we know for any $\lambda \in [0, 1]$, $f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2) \leq \lambda t_1 + (1 - \lambda)t_2$, which implies that $\lambda t_1 + (1 - \lambda)t_2 \in epi(f)$. As such epi(f) is a convex set.

Suppose epi(f) is a convex set. Let $x_1, x_2 \in \mathbb{R}$. We know $(x_1, f(x_1))$ and $(x_2, f(x_2))$ lie in the epigraph of f, and by the convexity of epi(f), for any $\lambda \in [0,1]$, $(\lambda x_1 + (1-\lambda)x_2, \lambda f(x_1) + (1-\lambda)f(x_2)) \in epi(f) \Rightarrow f(\lambda x_1 + (1-\lambda)x_2) \leq f(x_1) + (1-\lambda)f(x_2)$. f therefore must be a convex function.