Travaux pratiques: Électronique cablée

PeiP 2A

Résumé

Un compte-rendu décrivant les grands résultats observés sera réalisé durant la séance et sera envoyé par mail au format PDF uniquement à votre enseignant. Celui-ci sera nommé impérativement de la manière suivante: CABLE_X_NOM_PRENOM_grTP_Y.pdf avec X le numero du TP, Y votre groupe de TP, NOM votre nom et PRENOM votre prénom (ne pas mettre d'accent dans le titre du fichier).

1. Amplificateur opérationnel : montages de base à fonctionnement linéaire

BUT

Mettre en œuvre les montages de base utilisant un amplificateur opérationnel en fonctionnement linéaire et déterminer expérimentalement leurs caractéristiques .

1.1 Montage suiveur

Étudier le comportement théorique du montage.

Soit V_e une sinusoïde d'amplitude $\pm 1V$ et de fréquence 1kHz. Vérifier expérimentalement la relation entre V_s et V_e en relevant les deux signaux.

En prenant d'autres valeurs pour R $(10k\Omega, 100\Omega \text{ et } 0\Omega)$, déter -miner l'influence de R sur le montage.

En utilisant la position X-Y de l'oscilloscope, visualiser et relever la courbe $V_s = f(V_e)$.

FIGURE 1. Montage suiveur

1.2 Montage inverseur

Déterminer théoriquement R_2 pour avoir $V_s/v_e = 3$. Réaliser le montage, visualiser directement à l'écran et relever la courbe $V_s = f(V_e)$.

Vérifier l'influence de la fréquence sur la fonction de transfert V_s/V_e .

Déterminer expérimentalement la résistance d'entrée du montage.

Comparer à sa valeur théorique.

FIGURE 2. Montage inverseur

1.3 Montage non inverseur

Déterminer théoriquement R_2 pour avoir $V_s/V_e = 4$. Reprendre la même étude qu'au 1.2.

FIGURE 3. Montage non inverseur

1.4 Montage sommateur-inverseur

Déterminer théoriquement les résistances pour obtenir $V_s = -(V_1 + 0.5V_2)$.

Réaliser le montage en prenant pour V_1 une sinusoïde d'amplitude $\pm 5V$, de fréquence 1kHz et pour V_2 une tension continue pouvant varier entre +12V et -12V

En utilisant un potentiomètre, tracer Vs pour $V_2 = \pm 5V$.

FIGURE 4. Montage sommateur inverseur

1.5 Montage soustracteur

Établir l'équation de $V_s = f(V_1, V_2)$ en fonction de R_1, R_2 , R_3 et R_4 .

Choisir R_2 , R_3 , R_4 pour obtenir $V_s = V_2 - V_1$ sachant que $R_1 = 10k\Omega$

Réaliser le montage.

Vérifier son fonctionnement en relevant $V_s = f(t)$ pour es deux cas suivants :

- V_1 est une tension continue comprise entre $\pm 10V$ et $V_2 = 5\sin(2000\pi t)$
- $V_1 = 5\sin(2000\pi t)$ et V_2 est une tension continue comprise entre $\pm 12V$

Déterminer les résistances d'entrée R_{e1} et R_{e2} .

Régler le GBF pour obtenir une sinusoïde d'amplitude $\pm 5V$ et de fréquence 10kHz.

Observer simultanément, à l'oscilloscope, la sortie classique et la sortie synchro du GBF.

Relever le graphe de ces deux signaux. A partir de ces signaux prédéterminer $V_s = V_2 - V_1$

Prendre pour V_1 et V_2 les signaux correspondants à l'étude théorique.

Relever le graphe de V_s et comparer à la prédétermination.

2. Caractéristiques essentielles d'un amplificateur opérationnel réel

BUT

Déterminer expérimentalement les caractéristiques principales (gain statique - tension de saturation de la sortie -

FIGURE 5. Montage soustracteur

courant de sortie maximum - tension d'offset - slew rate) de l'amplificateur opértaionnel TL081.

2.1 Gain propre de l'amplificateur opérationnel : A

On utilisera le montage ci-dessous $R_1 = R_2 = 10k\Omega$, $R_3 = 100k\Omega$, $R_4 = 100\Omega$

Déterminer l'expression de A en fonction de Vs, V, R_3 et R_4 . Faire l'application numérique pour le montage proposé. Déterminer V_s/V_e en fonction de .

Réaliser le montage. Les tensions d'alimentation sont de $\pm 12V$. Prendre pour V_e un signal sinusoïdal d'amplitude $\pm 6V$ et de fréquence 100Hz

Relever V_s et V, en déduire A, le gain propre de l'ampli op. Déterminer comment évolue A en fonction de la fréquence. Illustrer en relevant A pour 10Hz, 100Hz, 1kHz, 10kHz et 100kHz de fréquence du signal d'entrée.

Tracer A(f) en semi-log et calculer la pente $\Delta A/\Delta f$ Remarque : A(f) = A0/(1+jf/f0)

FIGURE 6. Gain propre

2.2 Tension de saturation et courant maxi de sortie

Déterminer théoriquement V_s/V_e pour ce montage. Pour V_e sinusoidal, d'amplitude $\pm 2V$ et de fréquence 1kHz, tracer le graphe théorique de V_s en fonction du temps.

Pour V_e sinusoidal, d'amplitude $\pm 1V$ et de fréquence 1kHz, en supposant que le courant max de sortie soit égal à 25mA et que le montage alimente une résistance de 100Ω , tracer le graphe de V_s en fonction du temps.

Réaliser le montage.

Régler l'amplitude de V_e à 2V, relever sur le graphe théorique, V_s en fonction du temps.

En déduire les valeurs (positive et négative) de la tension de saturation réelle.

Ramener V_e à 1V, mettre une résistance de $R_L=100\Omega$ en sortie.

Relever V_s sur le deuxième graphe théorique.

En déduire le courant maxi réel de la sortie (valeurs positives et négatives).

FIGURE 7. Tension de saturation

2.3 Slew rate

On appelle slew rate la pente maximale du signal de sortie. Elle est donnée en V/μ_s .

Utiliser le montage précédent (Fig.7) en prenant $R_1 = R_2 = 10k\Omega$ et pour V_e une tension en créneaux d'amplitude $\pm 6V$ et de fréquence 50kHz.

Relever V_e et V_s .

Vérifier que la pente est beaucoup plus important que celle de V_s (ampli op limite la vitesse de variation de vs sinon débrancher R_2 - ampli op en boucle ouverte) et vérifier que les conditions de fonctionnement précédentes sont vérifiées. Relever V_e et V_s . En déduire la valeur la valeur du slew rate.

2.4 Tension d'offset

On utilisera encore le montage de la figure 7 avec $R_1 = 1k\Omega$, $R_2 = 10k\Omega$.

En principe pour $V_e = 0V$, on relève $V_s = 0V$

En pratique on relève une tension de faible niveau en sortie. Relever cette tension en remplaçant le GBF à l'entrée par un court circuit Cette tension peut être annulée en utilisant le montage suivant : Rajouter cet élément sur le montage précédent et vérifier qu'il est possible d'obtenir parfaitement $V_s = 0V$ par un réglage correct du potentiomètre.

FIGURE 8. Tension d'offset