HO CHI MINH CITY INTERNATIONAL UNIVERSITY

FINAL EXAMINATION

Semester 2, Academic Year 2018-2019 Duration: 120 minutes

SUBJECT: Calculus 2	
Chair of Department of Mathematics	Lecturers:
Signature:	Signature:
	T.V. Linh, M.D. Thanh

- Each student is allowed a maximum of two double-sided sheets of reference material (of size A4 or similar) and a scientific calculator.
- All other documents and electronic devices are forbidden.

Question 1.

a.(5 points) The plane y = 1 intersects the surface $z = x^4 + 6xy - y^4$ in a certain curve. Find the slope of the tangent line to this curve at the point P = (1, 1, 6).

b.(10 points) Find the equation of tangent plane to the graph of $f(x,y) = x^2y + xy^3$ at point (2,1), then use it to approximate the value of f(2.1,0.9)

Question 2.(15 points)

Find the extreme values of the function f(x, y, z) = 3x + 2y + 4z subject to the constraint $x^2 + 2y^2 + 6z^2 - 1 = 0$ using the Lagrange multiplier method.

Question 3.(15 points)

Find the critical points of the function $f(x,y) = x^3 + 2xy - 2y^2 - 10x$. Then use the Second Derivative Test to determine whether they are local minima, local maxima, or saddle points (or state that the test fails).

Question 4.

a)(15 points) Find the center of mass of an object occupying the region bounded by $y = 1 - x^2$ and y = 0 with constant density 1.

b)(10 points) Calculate the triple integral of $f(x,y,z)=x^2+y^2$ over the unit ball $B=\{(x,y,z)|x^2+y^2+z^2\leq 1\}.$

Question 5.

a)(15 points) Given a vector field $\mathbf{F} = 3\mathbf{i} + 6y\mathbf{j}$. Show that \mathbf{F} is a conservative vector field and find its potential function. Then calculate the line integral $\int_C \mathbf{F} \cdot d\mathbf{s}$ where C is a smooth path from (1,2) to (4,0.5) using the Fundamental Theorem of line integral.

b)(15 points) A satellite antenna's shape can be modeled by the part of the paraboloid $z=x^2+y^2+1$ below the plane z=2. The density of the antenna follows the formula $\rho(x,y,z)=\frac{1}{4z-3}$. Calculate the total weight of the antenna given by the surface integral $W=\iint_S \rho(x,y,z)dS$.

Calculus 2 Final Exam Solutions

Question 1.

a. The curve : $z = x^4 + 6x - 1$ The slope: $\frac{\partial z}{\partial x} = 4x^3 + 6 = 10$ when x = 1

b. f(2,1) = 6, $f_x(2,1) = 5$, $f_y(2,1) = 10$

Equation of tangent plane:

$$z = 6 + 5(x - 2) + 10(y - 1) = 5x + 10y - 14$$

Approximation

$$f(2.1, 0.9) \approx 6 + 5(0.1) + 10(-0.1) = 5.5$$

Question 2. Solve the equations

$$3 = \lambda(2x)$$

$$2 = \lambda(4y)$$

$$4 = \lambda(12z)$$

$$0 = x^2 + 2y^2 + 6z^2 - 1$$

From the first two we have $x = 3/2\lambda$, $y = 1/2\lambda$, $z = 1/3\lambda$. Plug in the third equation gives $\lambda = \pm \sqrt{123}/6$. then values at 2 critical points:

$$f(\frac{9}{\sqrt{123}}, \frac{3}{\sqrt{123}}, \frac{2}{\sqrt{123}}) = 3.7$$

$$f(-\frac{9}{\sqrt{123}}, -\frac{3}{\sqrt{123}}, -\frac{2}{\sqrt{123}}) = -3.7$$

then max is 3.7, min is -3.7.

Question 3.

Solve equations

$$3x^2 + 2y - 10 = 0$$
$$2x - 4y = 0$$

to get $(-2, -1), (\frac{5}{3}, \frac{5}{6}).$

Second Derivative test:

$$D(x,y) = -24x - 4$$

Plug in values to get (-2, -1) is local maximum, $(\frac{5}{3}, \frac{5}{6})$ is saddle point.

Question 4. a) Total mass:

$$m = \int_{-1}^{1} \int_{0}^{1-x^2} dy dx = \frac{4}{3}$$

From symmetry $\bar{x} = 0$.

$$\bar{y} = \frac{3}{4} \int_{-1}^{1} \int_{0}^{1-x^{2}} y dy dx$$
$$= \frac{3}{8} \int_{-1}^{1} (1-x^{2})^{2} dx$$
$$= \frac{2}{5}$$

Center of mass: (0, 2/5)

b) $f = \rho^2 \sin^2 \phi$, then

$$\iiint_{S} (x^{2} + y^{2}) dV = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} (\rho^{2} \sin^{2} \phi) \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \sin^{3} \phi \, d\phi \int_{0}^{1} \rho^{4} d\rho$$

$$= \frac{8\pi}{15}$$

Question 5. a) Conservative:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 0$$

Find potential function f:

$$\frac{\partial f}{\partial x} = 3 \text{ then } f = 3x + g(y).$$

$$\frac{\partial f}{\partial y} = g'(y) = 6y \text{ then } g(y) = 3y^2 + K.$$

$$\frac{\partial \widetilde{f}}{\partial y} = g'(y) = 6y \text{ then } g(y) = 3y^2 + K.$$

Then $f(x,y) = 3x + 3y^2 + K$ for any constant K.

Line integral:

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = f(4, 0.5) - f(1, 2) = -\frac{9}{4}.$$

b) Domain: Unit circle D

$$\begin{split} W &= \iint_{S} \rho(x,y,z) dS \\ &= \iint_{D} \frac{1}{4z - 3} \sqrt{1 + (2x)^{2} + (2y)^{2}} dA \\ &= \int_{0}^{2\pi} \int_{0}^{1} \frac{1}{4r^{2} + 1} \sqrt{1 + 4r^{2}} \ r \ dr \ d\theta \\ &= \frac{\pi}{2} (\sqrt{5} - 1) \end{split}$$