Université de Tours-L2-Géométrie 2020-2021

Feuille 1

Exercice 1

a) Résoudre le système suivant (par élimination de Gauss puis par la méthode de Cramer) :

$$\begin{cases} x + 2y = 3 \\ 3x + 4y = 5 \end{cases}$$

b) Soit f une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 . dont la matrice $A_{\mathscr{B}}$ dans une base \mathscr{B} , est de déterminant non nul.

Montrer que la matrice de f dans n'importe quelle base de \mathbb{R}^2 est de déterminant non nul.

- c) Montrer que f est bijective.
- d) Montrer que l'image d'une droite vectorielle par f est encore une droite vectorielle.

Exercice 2

On considère \mathbb{R}^2 muni de sa base canonique $\{\vec{i},\vec{j}\}$; soit $\mathscr{B}' := \{\vec{e_1} = 2\vec{i} + \vec{j}, \vec{e_2} = 2\vec{i} + 3\vec{j}\}$ a) Représenter graphiquement \mathscr{B}' et montrer que \mathscr{B}' est une base.

- b) Soit $\vec{v_1} = \vec{i} + \vec{j}$; trouver $a, b \in \mathbb{Z}$ tels que $\vec{v_1} = a\vec{e_1} + b\vec{e_2}$; représenter graphiquement a, b.
- c) Réciproquement si $\vec{v_1} = \vec{e_1} + \vec{e_2}$; trouver $a', b' \in \mathbb{Z}$ tels que $\vec{v_1} = a\vec{i} + b\vec{j}$; représenter graphiquement a',b'.
- d) Plus généralement si (x, y) sont les coordonnées de \vec{v} dans la base canonique; trouver les coordonnées (x', y') de \vec{v} dans la base \mathscr{B}' .

Exercice 3

On considère un système de 3 équations linéaires à 3 inconnues: où a est un paramètre réel qu'on suppose fixé.

$$\begin{cases} (a+4)x + 3y + z &= 3\\ -(a+3)x - 2y - z &= -1\\ (a-6)x + (a-4)y + (a-2)z &= -2 \end{cases}$$
 (1)

a) Ecrire la matrice A du système.

On pourra écrire le système (??) comme une équation matricielle: A.X = Y

- b) Calculer le déterminant de A.
- c)Pour quelles valeurs de a le système a une solution unique ? Exprimer la solution en fonction de A et de Y. Calculer A^{-1} .
- **d)** Résoudre pour a = 0.
- e) Résoudre pour a = 1

Exercice 4

a) Montrer que $\cos(x+y) = \cos x \cdot \cos y - \sin x \sin y$; $\sin(x+y) = \sin x \cdot \cos y - \sin y \cos y$ on pourra utiliser la formule d'Euler $e^{iz} = \cos z + i \cos z$.

En déduire une expression de tan(x + y) en fonction de tan x et de tan y.

- b) Montrer que $\cos(2x) = 2\cos^2 x 1$ et $\sin(2x) = 2\sin x \cos x$. En déduire une expression de $\tan(2x)$ en fonction de tan x.
- c) Démontrer les identités $\sin^3 x = \frac{3}{4}\sin x \frac{1}{4}\sin 3x$, et $\cos^4 x = \frac{1}{8}\cos 4x + \frac{1}{2}\cos 2x + \frac{3}{8}$

Exercice 5

Soit \mathcal{B} une base orthonormée de \mathbb{R}^2 . On identifiera un vecteur de \mathbb{R}^2 à la matrice colonne (de taille 2x1) formée de ses coordonées dans la base \mathcal{B} .

a) Calculer, pour chaque paire de vecteurs suivantes : le produit scalaire, la longueur de chaque vecteur et leur angle:

$$\{\vec{e},\vec{f}\} := \left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right\}, \{\vec{e'},\vec{f'}\} := \left\{ \left(\begin{array}{c} 1 \\ \sqrt{3} \end{array} \right), \left(\begin{array}{c} -2 \\ 2\sqrt{3} \end{array} \right) \right\}, \{\vec{e''},\vec{f''}\} := \left\{ \left(\begin{array}{c} a \\ b \end{array} \right), \left(\begin{array}{c} c \\ d \end{array} \right) \right\}$$

- b) Calculer l'aire du paralélogramme défini par chaque paire de vecteurs.
- c) Pour tout $x, y, z, t \in \mathbb{R}$ montrer que

$$(x^2+y^2)(z^2+t^2) = (xz+yt)^2 + (xt-yz)^2$$

En déduire que pour deux vecteurs $v, w \in \mathbb{R}^2$:

$$||v||^2 \cdot ||w||^2 = \langle v, w \rangle^2 + \phi(v, w)^2$$

où ϕ est une forme bilinéaire antisymétrique qu'on déterminera et qu'on interprétera géométriquement d) En déduire l'inégalité de Cauchy-Schwartz.

Exercice 6

a)On considére l'application $b: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par f((x,y),(x',y')) = xx' - yy'.

Montrer que c'est une application bilinéaire symétrique, mais que ce n'est pas un produit scalaire.

- b) Soient u, v deux vecteurs de \mathbb{R}^2 . On définit la distance de u à v par $d(u, v) = \sqrt{|b(u v, u v)|}$. Est-ce que d vérifie l'inégalité triangulaire?
- c) Plus géneralement soit $b: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$

définie par f((x,y),(x',y')) = axx' + bxy' + cx'y + dyy' où $a,b,c,d \in \mathbb{R}$. A quelles conditions sur les coefficients a,b,c,d, l'application b définit-elle un produit scalaire?

Exercice 7

Soit \mathbb{R}^2 muni du produit scalaire Euclidien noté \langle , \rangle .

- a)On pose $N(\vec{v}) := \sqrt{\langle v, v \rangle}$; montrer que N est une norme sur l'espace vectoriel \mathbb{R}^2
- b) On définit d(v, w) := N(v w); montrer que d est une distance sur \mathbb{R}^2 .
- c) On notera d(v, w) par $||v w||_2$ ou simplement par ||v w||.
- **d)** Montrer que, pour tout $u, v \in \mathbb{R}^2$:

$$\langle u,v\rangle = \frac{1}{4}(||u+v||^2 - ||u-v||^2) = \frac{1}{2}(||u+v||^2 - ||u||^2 - ||v||^2) = -\frac{1}{2}(||u-v||^2 - ||u||^2 - ||v||^2)$$

Exercice 8

a) Orthonormaliser les familles de vecteurs suivants :

$$\left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 3\\4 \end{pmatrix} \right\} \quad \left\{ \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix} \right\} \quad \left\{ \begin{pmatrix} 0\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\3\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix} \right\} \tag{2}$$

b) Soit $\{e_1, e_2 \cdots, e_n\}$ une base orthonormale de \mathbb{R}^n ; montrer que

$$\forall v \in \mathbb{R}^2 \quad v = \sum_{i=1}^n \langle v, e_i \rangle e_i$$

b) Soit (E,d) un espace muni d'une distance; on appelle isométrie toute application $E \longrightarrow E$ qui conserve la distance ie telle que

$$\forall x, y \in E, \quad d(f(x), f(y)) = d(x, y)$$

Montrer que toute isométrie est injective.

Montrer qu'une isométrie-en toute généralité- n'est pas nécéssairement surjective (on considérera par exemple $(\mathbb{R}^+,|.|)$

c) On considère \mathbb{R}^2 muni de la distance Euclidienne notée ||.|| et on suppose que f est une isométrie telle que $f(0_{\mathbb{R}^2}) = 0_{\mathbb{R}^2}$. Montrer que

$$\forall u \in \mathbb{R}^2 \qquad ||f(u)||^2 = ||u||^2$$

d) En déduire que

$$\forall u, v \in \mathbb{R}^2$$
 $\langle f(u), f(v) \rangle = \langle u, v \rangle$

Et que l'image d'une base orthonormale par f est une base orthonormale.

- e)* Montrer alors que f est linéaire et que f est une bijection.
- f) Soit A la matrice représentant f dans une base orthonormée. Montrer que

$${}^{t}A.A = Id$$

g) En déduire que A est de la forme

$$A = \begin{pmatrix} a & \mp b \\ b & \pm a \end{pmatrix} \tag{3}$$

avec $a^2 + b^2 = 1$