$\underline{\mathbf{Classe}}:T^{leD}$

DISCIPLINE: MATHEMATIQUES

RENFORCEMENT TLE D

- Le candidat doit traiter obligatoirement toutes les parties de l'épreuve.
- Il ne sera jugé que sur la base des traces écrites sur la copie.
- Il sera tenu grand compte de la clarté et de la précision des raisonnements.

Exercice 1

- 1. Résoudre l'équation différentielle : 6y'' 12y' + 10y = 0
- 2. Pour la suite numérique suivante: $(U_n)_{n\in\mathbb{N}}: \begin{cases} U_0 = 0 \\ U_{n+1} = \frac{2U_n + 3}{U_n + 4} \end{cases}$, calcule U_1 et U_2 et montre que pour tout entier naturel $n, U_n \in [0, 1]$.
- 3. Démontre que la suite de terme général $V_n = \frac{U_n 1}{U_n + 3}$ est une suite géométrique et convergente puis calcul U_n en fonction de n
- 4. $(U_n)_{n\in\mathbb{N}}$ est -elle convergente? Si oui calculer sa limite.
- 5. On considere la transformation h de centre A du plan dans lui même qui transforme B en C avec B(-6+5i), C(-4+i), et A est l'antécédent de $A'(-3-16\sqrt{5};2-12\sqrt{5})$ par la transformation plane g d'expression analytique: $\begin{cases} x'=x+y+2\\ y'=-x+y-1 \end{cases}$
- 5-a Démontrer que l'écriture complexe de h est z'=iz+1+7i et donner sa nature et ses éléments caractéristiques.
- 5-b Démontrer que l'écriture complexe de g est z'=(1-i)z+2-i et Caractériser g à parti de son écriture complexe.

Problème

- A- Soit la fonction numérique de la variable réelle x définie sur $]0;+\infty[$ par : $u(x)=x^2-\ln x$
- 6. Détermine u'(x) pour tout x appartient à $]0; +\infty[$.
- 7. Détermine le sens de variations de la fonction u
- 8. Achève l'étude des variations de la fonction de la fonction u
- 9. Déduis-en que la fonction u ne s'annule pas sur $]0; +\infty[$
- B- On considère la fonction numérique f de la variable réelle x définie par:

$$f(x) = x + \frac{1 + \ln x}{x}$$

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O,I,J) du plan

- 10. Prouve que la fonction f est définie sur $]0; +\infty[$
- 11. Justifie que la fonction f est dérivable sur $]0; +\infty[$
- 12. Démontre que pour tout x appartenant à $]0; +\infty[$, $f'(x) = \frac{u(x)}{x^2}$
- 13. Déduis-en le sens de variation de la fonction f
- 14. Achève l'étude des variations de la fonction de la fonction f
- 15. Démontre que l'application $g: \begin{cases}]0; +\infty[\to f(]0; +\infty[) \\ x \mapsto g(x) = f(x) \end{cases}$ est une bijection.
- 16. Justifie que la droite (\mathcal{D}) d'équation y=x est asymptôte à la courbe (\mathcal{C}) au voisinage de $+\infty$
- 17. Détermine la position de (C) par rapport à (D) sur $]0; +\infty[$
- 18. Prouve que la droite d'équation x=0 est asymptôte à la courbe (\mathcal{C}) Construis dans un même repère la courbe représentative (Γ) de la bijection réciproque g^{-1} de g
- 19. Détermine les coordonnées du point A de la courbe (\mathcal{C}) ou la tangente est parallèle à (\mathcal{D})
- 20. Justifie que le point A'(2,1) appartient à la courbe (Γ)
- 21. Détermine une équation de la tangente à la courbe (Γ) en A'