

Winning Space Race with Data Science

Wojciech 25.09.2021

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Methodology:

The main purpose was to complete whole process of data collection, data transformation, EDA using pandas and SQL, modeling, creating dashboards using Dash

• Summary of results:

All of this steps were completed successfully, and the results are available on this presentation

Introduction

- Project was created for Data Science Capston project on Coursera
- The main purpose was to complete whole process of data collection, data transformation, EDA using pandas and SQL, modeling, creating dashboards using Dash

Methodology

Executive Summary

- Data collection:
 - API (SpaceX API)
 - Web scrapping (wikipedia.org)
- Data wrangling
 - · Data was processed using pandas and BeautifulSoup
- Exploratory data analysis (EDA) using visualization and SQL
- Interactive visual analytics using Folium and Plotly Dash
- Predictive analysis using classification models
 - Classification models were prepared

Data Collection - SpaceX API

1. SpaceX API:

we got data using requests library:

```
spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url)
```

and filtered data:

```
# Lets take a subset of our dataframe keeping only the features we want and the flight number, and date_utc.
data = data[['rocket', 'payloads', 'launchpad', 'cores', 'flight_number', 'date_utc']]

# We will remove rows with multiple cores because those are falcon rockets with 2 extra rocket boosters and rows that have multiple payloads in a single rocket.
data = data[data['cores'].map(len)==1]
data = data[data['payloads'].map(len)==1]

# Since payloads and cores are lists of size 1 we will also extract the single value in the list and replace the feature.
data['cores'] = data['cores'].map(lambda x : x[0])
data['payloads'] = data['payloads'].map(lambda x : x[0])

# We also want to convert the date_utc to a datetime datatype and then extracting the date leaving the time
data['date'] = pd.to_datetime(data['date_utc']).dt.date

# Using the date we will restrict the dates of the launches
data = data[data['date'] <= datetime.date(2020, 11, 13)]</pre>
```

Data Collection - SpaceX API

Next we filtered data to get only information about Falcon 9 launches, and we dealt with missing values in Payload mass column. First 5 rows:

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	Launch Site	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude
0	1	2006- 03-24	Falcon 1	20.0	LEO		None None	1	False	False	False	None	NaN	0	Merlin1A	167.743129	9.047721
1	2	2007- 03-21	Falcon 1	NaN	LEO		None None	1	False	False	False	None	NaN	0	Merlin2A	167.743129	9.047721
2	4	2008- 09-28	Falcon 1	165.0	LEO		None None	1	False	False	False	None	NaN	0	Merlin2C	167.743129	9.047721
3	5	2009- 07-13	Falcon 1	200.0	LEO	. , .	None None	1	False	False	False	None	NaN	0	Merlin3C	167.743129	9.047721
4	6	2010- 06-04	Falcon 9	NaN	LEO		None None	1	False	False	False	None	1.0	0	B0003	-80.577366	28.561857

Data Collection - Scraping

2. Wikipedia: we got data using requests library and created BeautifulSoup object from the response:

```
static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922"
```

First, let's perform an HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP response.

```
# use requests.get() method with the provided static_url
# assign the response to a object
response = requests.get(static_url)
```

Create a BeautifulSoup object from the HTML response

Use BeautifulSoup() to create a BeautifulSoup object from a response text content
soup = BeautifulSoup(response.text)

Print the page title to verify if the BeautifulSoup object was created properly

```
# Use soup.title attribute
soup.find('title').text
'List of Falcon 9 and Falcon Heavy launches - Wikipedia'
```

Data Collection - Scraping

And then we extracted information we want from it using BeautifulSoup library. First 5 rows of final DataFrame:

		Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
() 1		CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	F9 v1.0B0003.1	Failure	4 June 2010	18:45
	1 2	2	CCAFS	Dragon	0	LEO	NASA (COTS)\nNRO	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43
2	2 3	8	CCAFS	Dragon	525 kg	LEO	NASA (COTS)	Success	F9 v1.0B0005.1	No attempt\n	22 May 2012	07:44
	3 4	1	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA (CRS)	Success	F9 v1.0B0006.1	No attempt	8 October 2012	00:35
4	1 5	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA (CRS)	Success	F9 v1.0B0007.1	No attempt\n	1 March 2013	15:10

Data Wrangling

- Data was filtered based on date and rocket type
- Missing values were displayed and removed from some columns:

```
# Calculate the mean value of PayloadMass column
payloadmass_mean = data_falcon9.PayloadMass.mean()

# Replace the np.nan values with its mean value
data_falcon9.PayloadMass = data_falcon9.PayloadMass.replace(np.nan, payloadmass_mean)
```

		(
FlightNumber	0	
Date	0	
BoosterVersion	0	
PayloadMass	5	
Orbit	0	
LaunchSite	0	
Outcome	0	
Flights	0	
GridFins	0	
Reused	0	
Legs	0	
LandingPad	26	
Block	0	
ReusedCount	0	
Serial	0	
Longitude	0	
Latitude	0	
dtype: int64		

EDA with Data Visualization

Missing values percent in columns:

FlightNumber	0.000
Date	0.000
BoosterVersion	0.000
PayloadMass	0.000
Orbit	0.000
LaunchSite	0.000
Outcome	0.000
Flights	0.000
GridFins	0.000
Reused	0.000
Legs	0.000
LandingPad	40.625
Block	0.000
ReusedCount	0.000
Serial	0.000
Longitude	0.000
Latitude	0.000
dtype: float64	

• Number of launches on sites:

```
CCAFS SLC 40 55
KSC LC 39A 22
VAFB SLC 4E 13
```

• Orbits used:

| GTO | 27 | ISS | 21 | VLEO | 14 | PO | 9 | LEO | 7 | SSO | 5 | MEO | 3 | SO | 1 | HEO | 1 | GEO | 1 | ES-L1 | 1

• Launch success rate:

EDA with Data Visualization

Link to notebook on IBM Watson

Display 5 records where launch sites begin with the string 'CCA' SELECT * FROM SPACEXDATASET WHERE LAUNCH_SITE LIKE('CCA%') LIMIT 5 Result set 1 TIME__UTC_ DATE BOOSTER_VERSION LAUNCH_SITE PAYLOAD F9 v1.0 B0003 Dragon Spacecraft Qualification Unit 2010-06-04 18:45:00 CCAFS LC-40 2010-12-08 15:43:00 F9 v1.0 B0004 CCAFS LC-40 Dragon demo flight C1, two CubeSats, barrel of Brouere chee 2012-05-22 07:44:00 F9 v1.0 B0005 Dragon demo flight C2 CCAFS LC-40 SpaceX CRS-1 2012-10-08 00:35:00 F9 v1.0 B0006 CCAFS LC-40 2013-03-01 15:10:00 F9 v1.0 B0007 CCAFS LC-40 SpaceX CRS-2

List the total number of successful and failure mission outcomes								
^	SELECT LANDING_OUTCO	TE, COUNT (LANDING_OUTCOME) FROM SPACEXDATASET GROUP BY LANDING_OUTCOME						
	Result set 1							
	LANDING_OUTCOME	2						
	Controlled (ocean)	5						
	Failure	3						
	Failure (drone ship)	5						
	Failure (parachute)	2						
	No attempt	22						

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

SELECT LANDING__OUTCOME, COUNT(LANDING__OUTCOME) FROM SPACEXDATASET
WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
GROUP BY LANDING__OUTCOME
ORDER BY COUNT(LANDING__OUTCOME) DESC;

LANDING_OUTCOME	2
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Build an Interactive Map with Folium

• Example map and marker creation and scrrenshot:

```
# Initial the map
site map = folium.Map(location=nasa coordinate, zoom start=5)
# For each launch site, add a Circle object based on its coordinate (Lat, Long) values. In addition, add Launch site name as a popup label
for index, row in launch sites df.iterrows():
    # Create a blue circle at NASA Johnson Space Center's coordinate with a popup label showing its name
    circle = folium.Circle([row[1], row[2]], radius=1000, color='#d35400', fill=True).add child(folium.Popup(row[0]))
    # Create a blue circle at NASA Johnson Space Center's coordinate with a icon showing its name
    marker = folium.map.Marker(
        [row[1], row[2]],
        # Create an icon as a text label
        icon=DivIcon(
            icon size=(20,20),
            icon_anchor=(0,0),
            html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % row[0],
    site map.add child(circle)
    site map.add child(marker)
display(site_map)
```


Build a Dashboard with Plotly Dash

• We added piechart, scatterplot and slider to the template:

Predictive Analysis (Classification)

- Data was prepared using StandardScaler
- GridSearchCV was used for finding best parameters for each model
- SVM performed best, with accuracy of 88%

Link to IBM Watson Notebook

Results

• Exploratory data analysis using pandas, and SQL helped us to understand the data and to get some insights in it, for example:

Number of launches on sites:

CCAFS SLC 40 55 KSC LC 39A 22 VAFB SLC 4E 13

Results

• Dash:

• Interactive analysis to check which launchsite have highest number of success launches and to check the correlation between payload and success rate

Results

* Predictive analysis results

Flight Number vs. Launch Site

At least 5 last landings on every site were successfull

The higher the flight number is, the higher chance to success is

Payload vs. Launch Site

```
# Plot a scatter point chart with x axis to be Pay Load Mass (kg) and y axis to be the launch site, and hue to be the class value
sns.scatterplot(y="LaunchSite", x="PayloadMass", hue="Class", data=df)
plt.xlabel("Flight Number",fontsize=20)
plt.ylabel("Launch Site",fontsize=20)
plt.show()
```


Now try to explain any patterns you found in the Payload Vs. Launch Site scatter point chart.

A lot of failures happened with payload close to 6000kg in KSC LC 39A

Low and high payloads are successful on CCAFS SLC 40

Almost all launches in VAFB SLC 4E are successful

Success Rate vs. Orbit Type

Analyze the ploted bar chart try to find which orbits have high sucess rate.

ES-L1, GEO, HEO, and SSO have highest success rate

Flight Number vs. Orbit Type

You should see that in the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

You should observe that Heavy payloads have a negative influence on GTO orbits and positive on GTO and Polar LEO (ISS) orbits.

Launch Success Yearly Trend

All Launch Site Names

SELECT DISTINCT LAUNCH_SITE FROM SPACEXDATASET Result set 1 LAUNCH_SITE CCAFS LC-40 CCAFS SLC-40 KSC LC-39A VAFB SLC-4E

Launch Site Names Begin with 'CCA'

Find 5 records where launch sites begin with `CCA`

Total Payload Mass

Calculate the total payload carried by boosters from NASA

SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXDATASET WHERE CUSTOMER ='NASA (CRS)'

Result set 1

1

45596

Average Payload Mass by F9 v1.1

Calculate the average payload mass carried by booster version F9 v1.1

First Successful Ground Landing Date

• Find the dates of the first successful landing outcome on ground pad

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

SELECT DISTINCT E	OOSTER_VERSION FROM SPACEXDATASET WHERE LANDINGOUTCOME = 'Success (drone ship)' .
Result set 1	
BOOSTER_VERSIO	N
F9 FT B1021.2	
F9 FT B1031.2	
F9 FT B1022	
F9 FT B1026	

Total Number of Successful and Failure Mission Outcomes

Calculate the total number of successful and failure mission outcomes

Boosters Carried Maximum Payload

• List the names of the booster which have carried the maximum payload mass

BOOSTER_VERSION
50 DE D4040 4
F9 B5 B1048.4
9 B5 B1048.5
F9 B5 B1049.4
9 B5 B1049.5
F9 B5 B1049.7
F9 B5 B1051.3
F9 B5 B1051.4
F9 B5 B1051.6
F9 B5 B1056.4
F9 B5 B1058.3
F9 B5 B1060.2
F9 B5 B1060.3

2015 Launch Records

• List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

LANDING_OUTCOME	2
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Folium Launchsites map

• Launchsites are based on coastline

Folium failed and successful launches marked

• Success vs failed launches on example launchpad

Folium – drawing lines

Dash – dashboard showing overall succes launches

Dash – most success launches site insights

Dash – payload vs launch outcome

Classification Accuracy

The SVM model have highest accuracy

```
import seaborn as sns
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
method = ['LogReg', 'SVM', 'Tree', 'KNN']
score = [0.8464285714285713,0.88888888888888888,0.777777777777778,0.861111111111111]
ax = sns.barplot(x=method, y=score)
```


Confusion Matrix

Confusion matrix of SVM model:

We see that only 3 datapoints are not correctly classified

Conclusions

- Each model performed very good
- SVM have highest accuracy: 88%
- Decision tree classifier performed worst, with 0.77% accuracy
- GridSearchCV is a great tool for finding the best model parameters

Appendix

• All of the code is available on Github