Implementasi Algoritma K-Nearest Neighbor Pada Website Rekomendasi Laptop

Chandra Arief Rahardja¹, Try Juardi², Halim Agung³

Teknik Informatika, Fakultas Teknologi & Desain, Universitas Bunda Mulia Jakarta Jl. Lodan Raya no.2, Jakarta Utara-14430, DKI Jakarta, Indonesia Email: ¹riefrahardj@gmail.com, ²ari.tryjuardi@gmail.com, ³hagung@bundamulia.ac.id

Masuk: 10 Desember 2018; Direvisi: 22 Februari 2019; Diterima: 23 Februari 2019

Abstract.

There are various types of laptops that make consumers experiencing confusion in determining choices fitting the criteria that consumers want. The K-Nearest Neighbor (K-NN) algorithm was chosen since K-NN algorithm is a model that can classify data based on the closest distance. This system was created to help consumers in choosing a laptop based on purchasing objectives such as for gaming, design, and office, price, also specifications of the desired laptop. This system helps providing a reference to consumers in determining the laptop that suits their needs. Based on consumer satisfaction test which is carried out to ten consumers, eight out of ten people agree to the given recommendations. The percentage of satisfaction is 80%, therefore the created laptop recommendation was considered successful.

Keywords: KNN, Recommendation, Selection, Laptop

Abstrak. Berbagai jenis laptop yang ada membuat konsumen mengalami kebingungan dalam menentukan pilihan yang sesuai dengan kriteria yang konsumen inginkan. Algoritma K-Nearest Neighbor (K-NN) ini dipilih karena algoritma K-NN merupakan suatu model yang dapat mengklasifikasikan data berdasarkan jarak terdekat. Sistem ini dibuat untuk membantu konsumen dalam memilih laptop berdasarkan tujuan pembelian seperti untuk gaming, desain, atau kantor, harga, juga spesifikasi mengenai laptop yang diinginkan. Sistem ini membantu memberikan referensi kepada pengguna atau konsumen dalam menentukan laptop yang sesuai dengan kebutuhan. Berdasarkan uji kepuasan pengguna yang dilakukan kepada sepuluh orang pengguna, delapan dari sepuluh orang menjawab dengan jawaban setuju dengan hasil rekomendasi yang diberikan. Persentase kepuasan terhadap hasil rekomendasi sebesar 80% oleh karena itu rekomendasi laptop yang dibuat dinyatakan berhasil.

Kata kunci: KNN, Rekomendasi, Pemilihan, Laptop

1. Pendahuluan

Melihat bagaimana perkembangan teknologi saat ini membuat kebutuhan akan laptop semakin meningkat. Akan tetapi sering kali seseorang terkadang bingung dalam menentukan laptop yang akan dibeli. Hal itu tentunya akan mempengaruhi karena melihat harga laptop yang bisa dikatakan tidak murah sehingga apabila penggunanya salah dalam menentukan laptop yang akan dibeli sesuai dengan kebutuhannya maka tentunya orang itu tidak dapat memanfaatkan laptop yang ada secara maksimal. Dengan mempertimbangkan hal tersebut maka dibuatlah website yang dapat memberikan rekomendasi laptop sesuai dengan kebutuhan pengguna menggunakan algoritma *K-Nearest Neighbor* yang dapat membantu dalam memberikan rekomendasi laptop sesuai dengan keinginan pengguna.

2. Tinjauan Pustaka

Dalam bagian ini akan dibahas teori-teori pendukung penelitian yang membantu dalam proses penelitian yang dijalankan yaitu penerapan algoritma *K-Nearest Neighbor* pada *website* rekomendasi laptop.

2.1 Sistem Rekomendasi

Sistem rekomendasi membantu pengguna untuk mengidentifikasi produk yang sesuai dengan kebutuhan, kesenangan, dan keinginan pengguna. Sistem rekomendasi dapat membantu pengguna dalam menemukan produk yang relevan dan berguna dari banyaknya produk yang tersedia [1].

2.2 Sistem Pendukung Keputusan (SPK)

SPK merupakan sistem informasi berbasis komputer yang dipakai untuk mendukung dalam pengambilan keputusan, yang dikembangkan untuk mendukung solusi untuk masalah manajemen spesifik yang tidak terstruktur. Sistem Pendukung Keputusan menggunakan data dan dapat menggabungkan pemikiran pengambilan keputusan [2].

2.3 K-Nearest Neighbor (KNN)

Algoritma *K-Nearest Neighbor* (KNN) merupakan algoritma yang digunakan untuk mengklasifikasikan objek baru berdasarkan atribut dan *training sample* [3]. Prinsip kerja KNN adalah dengan mencari jarak terdekat antara data yang digunakan dengan K tetangga (*neighbor*) terdekatnya dalam *data training* [4]. Metode KNN digunakan karena memiliki beberapa kelebihan, diantaranya yaitu dapat menghasilkan data yang lebih akurat dan efektif apabila memliki *training* data yang cukup besar [5]. Namun, metode ini juga memiliki beberapa kekurangan, seperti biaya komputasi yang cukup tinggi karena diperlukan perhitungan jarak *query instance* pada keseluruhan *training sample* [5]. Persamaan 1 berikut ini adalah persamaan untuk menghitung jarak Euclidean.

$$D(a,b) = \sqrt{\Sigma_i (a_i - b_i)}$$
Keterangan:

a_i: Total variabel ab_i: Total variabel b

Peneliti juga menggunakan beberapa referensi yang terkait dengan KNN. Referensi pertama yang digunakan adalah penelitian dengan judul Implementasi Metode *K-Nearest Neighbor* untuk Rekomendasi Keminatan Studi (Studi Kasus: Jurusan Teknik Informatika Universitas Brawijaya). Dimana peneliti pada penelitian ini menggunakan data uji sebanyak 30 data mahasiswa yang telah memilih keminatan yang hasil akurasinya adalah sebesar 76,66% terhadap *data training* dengan nilai K yang paling optimal adalah 10 [6].

Referensi kedua yang digunakan adalah penelitian dengan judul Penerapan Metode *K-Nearest Neighbor* pada Aplikasi Penentu Penerima Beasiswa Mahasiswa di STMIK Sinar Nusantara Surakarta. Untuk mengetahui dampak dari penerapan KNN pada penelitian ini maka peneliti menggunakan 22 data sampel yang dijadikan acuan dalam menghasilkan keputusan untuk diuji dan diperoleh nilai akurasi sebesar 90,90%, dimana dalam algoritma KNN nilai tersebut termasuk besar karena algoritma KNN tidak menggunakan parameter untuk dijadikan acuan melainkan menggunakan nilai dari data sampel [7].

Referensi ketiga untuk penggunaan KNN juga diterapkan pada penelitian dengan judul Algoritma *K-Nearest Neighbor Classification* Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa. Proses prediksi dilakukan terhadap mahasiswa Program Studi Sistem Informasi angkatan 2014/2015 yang dijadikan sebagai *data testing* dengan jumlah 50 data, serta berdasarkan dari data angkatan 2012/2013 sebagai *data training* dengan jumlah 165 data yang menghasilkan pengujian akurasi sebesar 82%. Hasil dari perhitungan algoritma KNN diimplememetasikan terhadap sebuah *Early Warning System* (EWS). Keluaran dari sistem yang

dibangun dapat dijadikan sebagai acuan bagi mahasiswa untuk meningkatkan prestasi dan predikat perkuliahan di masa yang akan datang [8].

Referensi keempat penggunaan KNN adalah pada penelitian dengan judul Implementation of K-Nearest Neighbor Algorithm Analysis in Predicting Regular Hajj Applicant Failure. Hasil akurasi tertinggi dalam penelitian ini adalah 96,2% dengan menggunakan nilai k optimum = 9. Semua kasus akan diklasifikasikan berdasarkan pada kumpulan data (data training), dalam hal ini jarak yang ada pada algoritma KNN tidak akan mencapai 100% untuk setiap kasus. Bobot nilai yang didapatkan bervariasi berdasarkan asumsi pengguna. Tetapi, sangat mempengaruhi nilai akhir jarak pada setiap hasil dari kasus yang ada. Penentuan bobot variabel dan bobot komparatif rasio variabel yang ditetapkan secara manual memungkinkan nilai yang berbeda sesuai dengan persepsi pengguna, sedangkan nilai bobot variabel dan bobot nilai variabel sangat mempengaruhi jarak antara satu kasus dan yang lainnya [9].

2.4 Website

Website atau situs dapat diartikan sebagai kumpulan dari halaman-halaman yang digunakan untuk menampilkan informasi berupa teks, gambar, animasi, suara, dan atau gabungan dari semuanya baik yang bersifat statis maupun dinamis yang membentuk satu rangkaian bangunan yang saling terkait dan biasanya dibuat untuk perorangan, organisasi, dan perusahaan [10].

2.5 PHP

PHP merupakan singkatan dari PHP:*Hypertext Preprocessor* yaitu Bahasa pemrograman *web server-side* yang bersifat *open source*. PHP adalah *script* yang dapat disisipkan ke dalam HTML dan dapat membuat halaman *website* yang dinamis. Mekanisme ini membuat informasi yang diterima oleh *client* selalu terbaru. Semua *script* PHP dieksekusi pada *server* dimana *script* tersebut dijalankan [10].

2.6 MvSOL

MySQL (*My Structure Query Language*) adalah sebuah perangkat lunak sistem manajemen basis data *SQL* yang bersifat *open source*. *Open* disini maksudnya adalah MySQL dapat digunakan oleh siapa saja baik perorangan ataupun perusahaan, dan bisa digunakan secara gratis baik untuk dimodifikasi sesuai dengan kebutuhan seseorang maupun sebagai suatu program aplikasi komputer [11].

2.7 Flowchart

Flowchart merupakan gambaran pekerjaan yang akan dilakukan oleh sistem secara keseluruhan maupun secara terpisah dalam sebuah proses dan menjelaskan cara kerja yang ada dalam sistem. Pada sistem ini data training akan diolah untuk menjadi aturan atau rule, kemudian aturan tersebut akan dijadikan sebuah aturan baku yang digunakan sebagai prediksi keputusan data-data yang baru.

2.8 Data Flow Diagram (DFD)

DFD (*Data Flow Diagram*) adalah suatu diagram yang menggunakan notasi untuk menggambarkan arus data sistem, serta menjelaskan proses kerja suatu sistem yang dapat membantu penggunanya untuk memahami sistem secara logika, terstruktur, dan jelas. Implementasi program menggunakan bahasa PHP yang merupakan program yang dikembangkan secara bersama oleh para *programmer* [12].

3. Metodologi Penelitian

Dalam memperoleh hasil rekomendasi yang maksimal maka peneliti mengumpulkan data *real* dan juga data hasil kuesioner yang disebarkan ke sejumlah orang dimana kelak acuan

yang diinginkan oleh pengguna akan dibandingkan dengan basis data yang berisi data *real* dan data kuesioner yang telah diisikan oleh pengguna.

3.1 Pemilihan Algoritma

Algoritma yang dipilih dan diterapkan oleh peneliti dalam pembangunan website rekomendasi laptop ini adalah algoritma K-Nearest Neighbor (KNN). Pemilihan algoritma ini dikarenakan algoritma ini melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Perhitungan rekomendasi pada website ini dikelompokan menjadi dua kali perhitungan, yaitu menggunakan data yang diisi oleh pengguna lain sebagai data training dan menggunakan data laptop yang telah dimasukkan oleh admin dalam pembuatan website ini. Data yang digunakan pada perhitungan rekomendasi ini antara jenis kelamin, budget, preferensi, umur, pekerjaan, RAM, HDD, VGA, processor, dan merek pada penentuan rekomendasinya. Pada Tabel 1 berikut adalah contoh data training dan data testing.

Tabel 1. Tabel Data Training dan Data Testing

Nama	Jenis Kelamin	Budget	Preferensi	Umur	Pekerjaan	RAM	HDD
Jono	1	1	0	0	1	1	0
Angel	0	0	1	0	0	0	1

Dan berikut adalah contoh hasil nilai penentuan algoritma KNN dan metode collaborative filtering dari data training dan data testing.

Tabel 2. Tabel Nilai Similarity dan Penentuan Collaborative Filtering

Nama	Jenis Kelamin	Budget	Preferensi	Umur	Pekerjaan	RAM	HDD	Total
Jono	1	1	0	0	1	1	0	4
Angel	0	0	1	0	0	0	1	2
Nilai Similarity	1	1	0	0	1	1	0	
Nilai	1.7320							
Collaborative Filtering								

Pada Tabel 2 di atas terdapat dua *row* baru yang berisikan nilai *similarity* dan nilai *collaborative filtering*. Nilai *similarity* merupakan nilai yang didapatkan berdasarkan apa yang *pengguna* isikan dan akan dihitung dengan *data training/data testing*, dengan perhitungan total nilai *similarity* yang dicocokkan dengan nilai tertinggi pada *data testing*.

3.2 Implementasi Antarmuka

3.2.1 Halaman Persetujuan Pengisian Kuisioner

Gambar 1. Halaman Persetujuan Pengisian Kuisioner

Gambar 1 menunjukkan halaman pertama saat *pengguna* membuka *website*. Halaman ini bertujuan untuk meminta izin dan kesediaan dari *pengguna* untuk membantu memberikan rekomendasi yang nantinya akan digunakan untuk perekomendasian pada *website* ini.

3.2.2 Halaman Pengisian Kuisioner

Silahkan isi da	ata dibawah ini :	
Nama :		
Jenis Kelamin :	●Laki-Laki ●Perempuan	
Budget:		
Preferensi :	Daily Laptop	₹
Umur :		
Pekerjaan :		
RAM:	1GB	٧
HDD:	500GB	٧
Merek :	Lenovo	٧
Processor:	Intel Celeron	٧
Rekomendasi Anda :		
submit reset		

Gambar 2. Halaman Pengisian Kuisioner

Gambar 2 menunjukkan halaman ketika *pengguna* menekan tombol bersedia pada halaman sebelumnya. Pengguna akan diminta untuk mengisi data-data yang dibutuhkan untuk perekomendasian seperti nama, jenis kelamin, *budget*, preferensi, umur, pekerjaan, RAM, HDD, merek, *processor*, dan rekomendasi yang diberikan oleh pengguna.

3.2.3 Halaman Menu Utama

Gambar 3. Halaman Menu Utama

Gambar 3 menunjukkan halaman menu utama pada *website* ini, terdapat informasi berupa nama peneliti pada halaman menu utama, dan juga terdapat navigasi *bar* dengan beberapa menu diantaranya laptop, rekomendasi laptop, dan preferensi.

3.2.4 Halaman Menu Laptop

Gambar 4. Halaman Menu Laptop

Gambar 4 menunjukkan halaman menu laptop ketika ditekan oleh pengguna akan menampilkan informasi laptop dan beberapa merek laptop yang dapat dipilih antara lain Asus, HP, Acer, Lenovo, dan Dell.

3.2.5 Halaman Rekomendasi Laptop

LAPTOPKU	Home	Laptop	Rekomendasi Laptop	Preferensi ▼
Nama :				
Jenis Kelamin :		•	Laki-Laki ●Perempuan	
Budget :				
Preferensi :			Daily Laptop	
Umur :				
Pekerjaan :				
RAM:			1GB	
HDD:			500GB	
Merek:			Lenovo	
Processor:			Intel Celeron	
VGA:			Intel HD	
Rekomendasi :			Kosongkan	
		submit		

Gambar 5. Halaman Rekomendasi Laptop

Gambar 5 menunjukkan halaman rekomendasi laptop. Pada halaman ini *pengguna* dapat mencari rekomendasi laptop dengan cara mengisikan data pada setiap tabel pada halaman ini antara lain, nama, jenis kelamin, *budget*, preferensi, umur, pekerjaan, RAM, HDD, merek, *processor*, dan *VGA*.

3.2.6 Halaman Preferensi

Gambar 6. Halaman Preferensi

Gambar 6 menunjukkan halaman prefrensi dimana pengguna dapat memilih satu dari empat preferensi laptop yang disediakan berupa, *daily laptop, gaming laptop, work laptop,* dan *design laptop.* Yang ketika ditekan maka akan menampilkan informasi laptop yang bersangkutan dengan preferensi yang pengguna pilih.

3.2.7 Halaman Hasil Rekomendasi

Gambar 7 menunjukkan halaman hasil rekomendasi dengan menampilkan *data training* yaitu data yang diisikan oleh pengguna lain yang digunakan sebagai acuan perekomendasian. Seletah itu ada data hasil pencocokan dan dua hasil rekomendasi dimana hasil rekomendasi yang pertama berasal dari data *training* dan hasil rekomendasi kedua data laptop yang telah disediakan oleh *admin* beserta dengan alamat *website* sesuai dengan merek laptop yang disarankan.

Laptop Rekomendasi Laptop Preferensi ▼

TABEL DATA TRAINING

Nama	Jenis Kelamin	Budget	Preferensi	Umur	Pekerjaan	RAM	HDD	Merek	Processor	Rekomendasi
leona	perempuan	5000000	daily	22	Karyawan	2GB	1TB	acer	intel celeron	ACER ASPIRE ES1-432
chandra	laki2	15000000	gaming	21	Karyawan	32GB	2TB	acer	intel core i7	ACER PREDATOR TRITON 700
try	laki2	10000000	work	21	Mahasiswa	4GB	500GB	asus	intel core i3	ASUS X441U
Putri	perempuan	8000000	daily	23	Karyawan	2GB	500GB	asus	intel celeron	ASUS EEEBOOK E202SA
Lana	laki2	15000000	daily	24	Karyawan	4GB	500GB	acer	intel celeron	ACER ASPIRE 3 A311-31
Wasista	laki2	10000000	design	27	Designer	8GB	1TB	lenovo	intel core i7	LENOVO FLEX 4-1480
Lydia	perempuan	8000000	daily	23	Karyawan	4GB	500GB	hp	AMD	HP 15-BW541AU
Irwan	laki2	15000000	gaming	25	Manajer	4GB	1TB	msi	intel core i7	MSI GL62 6QE
Felix	laki2	10000000	work	25	Designer	4GB	1TB	lenovo	intel core i7	LENOVO IDEAPAD 305-15IBD
Julius	laki2	5000000	daily	20	Staff	4GB	500GB	hp	amd a4	HP 14-BW005AU
Jennifer	perempuan	15000000	design	23	Designer	4GB	1TB	asus	intel core i5	ASUS VIVOBOOK \$15-\$510UQ
Vernanda	perempuan	8000000	work	21	Mahasiswa	4GB	500GB	acer	intel core i3	ACER ASPIRE E5-575G
Fernan	perempuan	5000000	work	21	Mahasiswa	2GB	1TB	acer	intel core i3	ACER ASPIRE E5-475G

HASIL PENCOCOKAN DATA USER DENGAN DATA TRAINING

HASIL REKOMENDASI

Berdasarkan Data Rekomendasi User Lain

Nama	Merek	Processor	RAM	Rekomendasi
leona	acer	intel celeron	2GB	ACER ASPIRE ES1-432
Jennifer	asus	intel core i5	4GB	ASUS VIVOBOOK S15-S510UQ
try	asus	intel core i3	4GB	ASUS X441U

HASIL REKOMENDASI

Berdasarkan Data Laptop Yang Ada

Nama Laptop	RAM	Processor	VGA	Website
LENOVO MIIX 320-10ICR	2GB	Intel Atom X5	Intel Hd Graphics	https://www.lenovo.com/id/in
ASUS X441U	4GB	Intel Core i3	Intel Hd Graphics 520	https://www.asus.com/id/
ASUS PRO P2430UA-WO1127D	4GB	Intel Core i3	Intel Hd Graphics 520	https://www.asus.com/id/

Back To Home

Gambar 7. Halaman Hasil Rekomendasi

4. Hasil dan Diskusi

4.1 Pengujian Hasil Rekomendasi Terhadap Pengguna

Berikut adalah hasil pengujian yang dilakukan berdasarkan data yang telah diisikan oleh 20 pengguna dengan mengisikan *requirement*, dan hasil dari perolehan rekomendasi yang diterima oleh pengguna.

Tabel 3. Tabel Kepuasan Pengguna

Nama	Merek	Processor	Ram	Rekomendasi	Hasil
Andi	Acer	Intel Celeron	4GB	Acer Aspire 3A311-31	Setuju
Jaja	Acer	Intel Core i7	4GB	Acer Predator triton 700	Kurang Setuju
Vivi	Asus	Intel Celeron	2GB	ASUS EEEBOOK E202SA	Setuju
Hana	Acer	Intel Celeron	4GB	Acer Aspire 3A311-31	Setuju
Joko	MSI	Intel Core i7	4GB	MSI GL62 6QE	Setuju
Lily	Asus	Intel Core i3	4GB	Asus x441u	Setuju
Jannah	Acer	Intel Core i7	4GB	Acer Predator triton 700	Kurang Setuju
Ilham	Asus	Intel Core i3	4GB	Asus x441u	Setuju
Irvan	Acer	Intel Celeron	2GB	Acer Aspire es1- 432	Setuju
Vannessa	Lenovo	Intel Core i7	8GB	LENOVO FLEX 4- 1480	Setuju
Felix	Acer	Intel Core i3	4GB	Asus X441u	Setuju
Julius	Lenovo	Intel Core i5	4GB	Lenovo Flex 4- 1480	Kurang Setuju
Fernanda	HP	Intel Celeron	4GB	HP 15-BW541AU	Setuju
Lydia	Acer	Intel Celeron	4GB	Acer Aspire 3 A311-31	Setuju
Putik	Acer	Intel Core i3	4GB	Acer Aspire 3 A311-31	Setuju
Irwan	MSI	Intel Core i7	8GB	MSI GL62 6QE	Setuju
Edwin	Asus	Intel Core i7	4GB	Asus Vivobook S15-S510UQ	Setuju
Ranita	Acer	Intel Core i3	2GB	Acer Aspire E5- 575G	Setuju
Junaidi	Lenovo	AMD	4GB	Lenovo Ideapad 305-151BD	Setuju
Griselda	Asus	AMD A4	4GB	Asus X441U	Setuju

Tingkat kepuasan pengguna yaitu 17 dari 20 pengguna setuju dan tiga kurang setuju dengan hasil rekomendasi, sehingga persentase yang diperoleh yaitu = 17 / 20 * 100% = 85%

Berdasarkan data pada Tabel 3, dapat disimpulkan bahwa pengguna merasa sangat puas dengan hasil rekomenasi laptop yang diberikan. Dengan hasil persentase kepuasaan pengguna sebesar 85%.

5. Kesimpulan dan Saran

5.1 Kesimpulan

Kesimpulan yang dapat dambil berdasarkan hasil dari penelitian yang dilakukan adalah, diantaranya: *Website* rekomendasi laptop menggunakan algoritma *K-Nearest Neighbor* dapat dinyatakan berhasil. Pengujian dilakukan dengan cara membuka *website* yang dibuat kepada 20 orang pengguna untuk mengisikan data laptop yang diingikan. Hasilnya rata-rata pengguna menjawab dengan kategori setuju dengan hasil rekomendasi yang diberikan. Persentase kepuasan terhadap hasil rekomendasi yang diberikan adalah sebesar 85%.

5.2 Saran

Berdasarkan kesimpulan penelitian, maka penulis merekomendasikan berupa saransaran sebagai berikut: Untuk dapat memberikan rekomendasi yang spesifik sesuai dengan keinginan pengguna maka dalam proses pembuatan *website* perlu diperhatikan penggunaan indikator yang ada agar lebih mengarah kepada kemungkinan indikator yang dicari oleh pengguna. Untuk memberikan hasil penghitungan algoritma *K-Nearest Neighbor* yang optimal, maka dalam proses pembuatan *website* perlu diperhatikan basis data yang ada agar memiliki data yang bersifat *real* dan memiliki jumlah data yang banyak sebagai perbandingan nilai K supaya lebih *valid* sesuai dengan hasil yang diinginkan oleh pengguna.

6. Ucapan Terima Kasih

Ucapan terima kasih kepada Tuhan YME karena kami dapat menyelesaikan penelitian yang kami lakukan sesuai dengan apa yang kami inginkan selain itu ucapan ini juga ditunjukan kepada Universitas Bunda Mulia yang telah membantu dalam proses penelitian yang kami lakukan dari proses perencanaan hingga selesainya penelitian yang telah kami lakukan.

Referensi

- [1] C. S. D. Prasetya, "Sistem Rekomendasi Pada E-Commerce Menggunakan K-Nearest Neighbor," *Jurnal Teknologi Informasi dan Ilmu Komputer*, vol. 4, no. 3, p. 194, 2017.
- [2] E. Turban, R. Sharda and D. Delen, *Decision Support and Business Intelligence Systems*, 9th edition. New Jersey: Pearson Education Inc., 2011.
- [3] Y. Widiastuti, S. W. Sihwi, M. E. Sulistyo, "Decision Support System for House Purchasing using KNN (K-Nearest Neighbor) Method," *ITSMART: Jurnal Teknologi dan Informasi*, vol. 5, no.1, p. 43-49, 2016.
- [4] T. Rismawan, A. W. Irawan, W. Prabowo, and S. Kusumadewi, "Sistem Pendukung Keputusan Berbasis Pocket Pc Sebagai Penentu Status Gizi Menggunakan Metode Knn (K-Nearest Neighbor)," *Teknoin*, vol. 13, no. 2, 2008.
- [5] A. Ridok, "Klasifikasi Dokumen Berbahasa Indonesia Menggunakan Metode K-NN," *Jurnal POINTER*, vol. 1, no.1, p. 44, 2010.
- [6] L. Anshori, R. R. M. Putri, Tibyani. (2018). Implementasi Metode K-Nearest Neighbor Untuk Rekomendasi Keminatan Studi (Studi Kasus: Jurusan Teknik Informatika Universitas Brawijaya). vol. 2, no. 7, E-ISSN: 2548-964X.
- [7] H. Risman, D. Nugroho, and Y. R. W. Utami, "Penerapan Metode K-Nearest Neighbor Pada Aplikasi Penentu Penerima Beasiswa Mahasiswa Di STMIK Sinar Nusantara Surakarta," *Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN)*, vol. 3, no. 2, 2015.
- [8] Mustakim, dan Giantika Oktafiani F.(2016). Algoritma K-Nearest Neighbor Classification sebagai sistem Prediksi Predikat Prestasi Mahasiswa. ISSN:1693-2390.
 Mustakim, and G. Oktaviani, "Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa," *Jurnal Sains dan Teknologi Industri*, vol. 13, no. 2, p. 195-202, 2016.
- [9] E. Purnamaningtyas, and E. Utami, "Implementation of k-nearest neighbor algorithm analysis in predicting regular hajj applicant failure," *Journal of Theoretical & Applied Information Technology*, vol. 95, no. 20, 2017.
- [10] F. A. Batubara, "Perancangan Website Pada PT. Ratu Enim Palembang," *JURNAL ILMU PENGETAHUAN DAN TEKNOLOGI TERAPAN" REINTEK"* (REKAYASA INOVASI TEKNOLOGI), vol. 7, no.1, 2015.
- [11] Y. B. Hege, U. Lestari, and E. Kumalasari, "Sistem Informasi Geografis (SIG) Pelayanan Kesehatan di Kotamadya Yogyakarta Berbasis Web," *Jurnal Script*, vol. 1, no. 2, 2014.
- [12] Lasminiasih, A. Akbar, M. Andriansyah, and R. B. Utomo, "Perancangan Sistem Informasi Kredit Mikro Mahasiswa Berbasis Web," *Sriwijaya Journal of Information Systems*, vol. 8, no. 1, 2016.