PART A: Answer ALL questions.

Q1. (a) Let p, q, r be atomic statements. **State** the truth table for the following compound statement

$$\sim (p \rightarrow ((p \lor q) \land r)).$$

Use the truth table to **recognise** whether the compound statement is a tautology, contingency or contradiction. (10 marks)

Ans. The truth table is stated below. [8 marks]

p q r	$(p \lor q) \land r$	$p \to ((p \lor q) \land r)$	
TTT	T	T	F
T T F	F	F	Т
T F T	T	Т	F
T F F	F	F	T
F T T	T	Т	F
F T F	F	Т	F
F F T	F	Т	F
F F F	F	Т	F

It is sometimes true, sometimes false, depending on the truth assignment, by definition, the compound statement is a *contingency*. [2 marks]

(b) Show that the statement $(p \rightarrow q \lor r)$ and the statement $(p \land q \rightarrow r)$ are not logically equivalent. (4 marks)

Ans. One can either construct a truth table or just give a counterexample below to show that they are not equivalent:

\overline{p}	\overline{q}	r	$p \rightarrow q \lor r$	$p \land q \rightarrow r$
T	T	T	T	T
T	\mathbf{T}	\mathbf{F}	T	F

......[2 marks]

When v(p) = T, v(q) = T and v(r) = F, the two statements has different truth values and they are not logically equivalent. [2 marks]

(c) Simplify the following statement

$$((p \lor q) \to (p \land q)) \lor (\sim p \land q).$$

to a logically equivalent statement with no more than TWO(2) logical connectives from the set $\{\sim, \land, \lor\}$ by stating the law used in each step of the simplification. (5 marks) *Ans.* The steps are shown below:

$$\begin{array}{l} ((p \vee q) \rightarrow (p \wedge q)) \vee (\sim p \wedge q) \\ \equiv (\sim (p \vee q) \vee (p \wedge q)) \vee (\sim p \wedge q) \\ \equiv (\sim p \wedge \sim q) \vee (p \wedge q) \vee (\sim p \wedge q) \\ \equiv (\sim p \wedge \sim q) \vee (p \wedge q) \vee (\sim p \wedge q) \\ \equiv (\sim p \wedge \sim q) \vee (p \wedge q) \vee (\sim p \wedge q) \vee (\sim p \wedge q) \\ \equiv \sim p \wedge (q \vee \sim q) \vee ((p \vee \sim p) \wedge q) \\ \equiv \sim p \vee q \end{array} \qquad \begin{array}{l} [\text{Implication law, 1 mark}] \\ [\text{Idempotent law, 1 mark}] \\ [\text{Distributive law, 1 mark}] \\ [\text{Negation and identity, 1 mark}] \\ \end{array}$$

(d) Let F(u,x,y), G(y,v) and H(x) be predicates. List down the steps and the logical equivalent rules to transform the following quantified statement

$$\sim [\forall x \exists y F(u, x, y) \rightarrow \exists x (\sim \forall y G(y, v) \rightarrow H(x))]$$

to prenex normal form.

(6 marks)

Ans. The steps and rules are listed below:

Q2. (a) Let p, q, r be atomic statements. Use a truth table or a comparison table to show that

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r.$$
 (9 marks)

Ans. The comparison table is given below.

p q r	$(p \rightarrow r) \land (q \rightarrow r)$	$(p \lor q) \to r$
TTT	T	T
T T F	F	F
T F T	T	T
T F F	F	F
F T T	Т	T
F T F	F	F
F F T	Т	T
F F F	T	T

Since the last two columns are the same for all different assignments, therefore, the two statements $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent. [1 mark]

(b) Simplify the following statement to a logically equivalent statement with no more than TWO(2) logical connectives from the set $\{\sim, \land, \lor\}$ by stating the law used in each step of the simplification:

$$(\sim p \land q) \lor (\sim p \land r) \lor (p \land \sim q \land r) \lor (q \land r). \tag{7 marks}$$

Ans. The simplification is shown below:

$$(\sim p \land q) \lor (\sim p \land r) \lor (p \land \sim q \land r) \lor (q \land r).$$

$$\equiv \left(\sim p \land (q \lor r)\right) \lor (p \land \sim q \land r) \lor (q \land r) \qquad \text{[Distributive law, 1 mark]}$$

$$\equiv (q \land r) \lor \left((q \lor r) \land \sim p\right) \lor (p \land \sim q \land r)$$

$$[Associative and commutative laws, 1 mark]$$

$$\equiv (q \land r) \lor (p \land \sim q \land r) \qquad \text{[Absorption law, 1 mark]}$$

$$\equiv \left(q \lor (p \land \sim q)\right) \land r \qquad \text{[Distributive law, 1 mark]}$$

$$\equiv \left((q \lor p) \land (q \lor \sim q)\right) \land r \qquad \text{[Distributive law, 1 mark]}$$

$$\equiv \left((p \lor q) \lor T\right) \land r \qquad \text{[Negation law, 1 mark]}$$

$$\equiv \left(p \lor q\right) \land r \qquad \text{[Identity law, 1 mark]}$$

(c) Given the following quantified statement:

$$\forall x \forall y \left[((x > 0) \land (y > 0)) \rightarrow \left(\sqrt{x + y} = \sqrt{x} + \sqrt{y} \right) \right]. \tag{*}$$

- (i) Translate the quantified statement into an informal English sentence. (2 marks) *Ans*. The square root of the sum of two numbers is equal to the sum of the square roots of the two numbers
- (ii) Determine whether the quantified statement is true or false in the domain of real numbers. You need to defend your answer. (2 marks) Ans. The quantified statement is false. [1 mark] To defend, we write a counterexample: Let x = y = 1, $\sqrt{x+y} = \sqrt{2} \neq \sqrt{1} + \sqrt{1} = 2$. [1 mark]
- (iii) Write down the negation of the quantified statement (*) in prenex normal form.(5 marks)Ans. By applying the generalised de Morgan law, the negation of (*) is logically equivalent to

$$\exists x \exists y \sim \left[((x > 0) \land (y > 0)) \rightarrow \left(\sqrt{x + y} = \sqrt{x} + \sqrt{y} \right) \right].$$

In prenex normal form, it can be written as

$$\exists x \exists y [(x > 0) \land (y > 0) \land (\sqrt{x + y} \neq \sqrt{x} + \sqrt{y})].$$
 [5 marks]

PART B: Answer **ALL** questions.

Q3. (a) Use **truth table** to explain whether the following argument is valid or invalid:

$$(p \lor q) \to (p \land q)$$

$$\sim (p \lor q)$$

$$\therefore \qquad \sim (p \land q)$$

$$(9 \text{ marks})$$

Ans. The truth table is

p q	$(p \lor q) \to (p \land q)$	$\sim (p \lor q)$	$\sim (p \land q)$
TT	T	F	F
T F	F	F	T
F T	F	F	T
F F	Т	T	T

 $[4 \times 2 = 8 \text{ marks}]$

(b) Infer the argument

$$p \lor q, p \to r, \sim s \to \sim q \vdash r \lor s$$

syntatically by stating the **rules of inference** in each step. (6 marks)

Ans.

The p-assumption[2 marks]The q-assumption[3 marks]Line 12[1 mark]

(c) Show that the following argument

$$\forall x (F(x) \to \sim G(x))$$

$$\exists x (H(x) \land G(x))$$

$$\therefore \exists x (H(x) \land \sim F(x))$$

is valid using the rules of logical equivalence and implication.

(5 marks)

Ans. The semantic deduction is shown below

$\phi_1 \ \forall x (F(x) \to \sim G(x))$	premise
$\phi_2 \exists x (H(x) \land G(x))$	premise
$\psi_1 \ H(s) \wedge G(s)$	φ ₂ , existential instantiation [1 mark]
$\psi_2 \ F(s) \rightarrow \sim G(s)$	ϕ_1 , universal instantiation
$\psi_3 G(s)$	ψ_1 , specialisation[1 mark]
$\psi_4 \sim F(s)$	$\psi_2, \psi_3, \ MT \ \dots [1 \ mark]$
$\psi_5 H(s)$	ψ_1 , specialisation[1 mark]
$\psi_6 \ H(s) \wedge \sim F(s)$	ψ_3, ψ_4 conjunction
$\therefore \exists x (H(x) \land \sim F(x))$	ψ_6 , existential generalisation[1 mark]

(d) Let R(x,y) be a predicate with two variables. Infer the argument involving quantified statements

$$\forall x \forall y (R(x,y) \rightarrow \sim R(y,x)) \vdash \forall x (\sim R(x,x))$$

syntatically by stating the rules of inference in each step.

(5 marks)

Ans. Let *t* be an arbitrary term independent of variables *x* and *y*.

Q4. (a) Prove by mathematical induction that $17^n - 6^n$ is divisible by 11 for every positive integer n. (8 marks)

Ans. Base step: When n = 1,

$$17^1 - 6^1 = 11 = 11 \times 1 \Rightarrow 11 \mid (17^1 - 6^1).$$

Inductive step: Suppose that the predicate P(k) is valid when n = k, i.e.

$$11 \mid (17^k - 6^k) \Rightarrow 17^k - 6^k = 11m$$

for some integer m. When n = k + 1,

$$17^{k+1} - 6^{k+1} = 17^k \times 17 - 6^k \times 6$$

= $17^k \times 11 + 17^k \times 6 - 6^k \times 6 = 17^k \times 11 + 6 \times 11m = 11(17^k + 6m)$

which implies $11 \mid (17^{k+1} - 6^{k+1})$.

By the principle of mathematical induction, $17^n - 6^n$ is divisible by 11 for every positive integer n.

(b) Use a proof by contraposition to show that if n is an integer and $n^2 + 5$ is odd, then n is even. (5 marks)

Ans. Let n be an integer. Suppose n is odd, then there is an integer k such that n = 2k + 1 and

$$n^2 + 5 = (2k+1)^2 + 5 = 4k^2 + 4k + 1 + 5 = 2(2k^2 + 2k + 3)$$

which shows that $n^2 + 5$ is even.

- (c) Use the Euclidean algorithm to prove or disprove that gcd(198,54) is prime. (4 marks) Ans. gcd(198,54) = gcd(54,36) = gcd(36,18) = 1818 is not a prime. The statement "gcd(198,54) is prime" is disproved.
- (d) Prove or disprove the following congruence relations.
 - (i) $-122 \equiv 5 \pmod{7}$ (3 marks) $Ans. 5 - (-122) \mod{7} = 127 \mod{7} = 1$. Therefore, $7 \cancel{(}(5 - (-122))$, so $-122 \not\equiv 5 \pmod{7}$ and it is disproved.
 - (ii) $3^{2019} \equiv 27 \pmod{40}$ (5 marks) Ans. The computation below shows that $3^{2019} \equiv 27 \pmod{40}$ is true (Python $3^{**}2019 \% 40$ also confirms this).

x^2	q/2	$q \mod 2$	m2
$3^2 \equiv_{40} 9$	2019/2 = 1009	1	3
	1009/2 = 504	1	$3 \times 9 \equiv_{40} = 27$
$1^2 \equiv_{40} 1$	504/2 = 252	0	27
			'

Q5. (a) Let $R = \{(x, y) \in \mathbb{N}^* \times \mathbb{N}^* \mid xy = 1\}$, where \mathbb{N}^* is the set of positive integers. Determine whether R is reflexive, symmetric, or transitive. Hence, determine whether R is an equivalence relation. Justify your answers. (7 marks)

Ans.
$$R = \{(1,1)\}.$$

Since $(2,2) \notin R$, *R* is not reflexive.

Since there is no symmetric pair in *R*, *R* is symmetric.

R is transitive because there is only one loop.

R is not an equivalence relation because it is not reflexive.

Let R be the relation on $A = \{1, 2, 5, 6, 7, 11\}$ defined by (b)

$$xRy \text{ if } x \equiv y \pmod{5}.$$

Write out the equivalence classes of *R* and verify that they partition *A*. (5 marks)

Ans.

$$M_R = \begin{bmatrix} 1 & 2 & 5 & 6 & 7 & 11 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 7 & 0 & 1 & 0 & 0 & 1 & 0 \\ 11 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

The equivalence classes of R is $\{1,6,11\}, \{2,7\}, \{5\}.$

They partition A because their pair intersections are empty and the union is A.

(c) Let *R* be a relation defined on the set *A* whose matrix is

$$M_R = egin{pmatrix} 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \end{pmatrix}$$

Use M_R to explain why R is not transitive. Then use the Warshall's algorithm to find the transitive closure of R. (6 marks)

Ans. From M_R we see $(3,4), (4,3) \in R$ but no $(3,3) \in R$. So R is not transitive.

Step 1: $M_R^{(1)} = M_R$.

Step 2:
$$M_R^{(2)} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 4 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$1 \quad 2 \quad 3 \quad 4$$

Step 3:
$$M_R^{(3)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = M_R^{(4)}$$
 in step 4.

$$cl_{trn}(R) = \{(2,1), (2,3), (2,4), (3,1), (3,3), (3,4), (4,1), (4,3), (4,4)\}.$$

- (d) Define what it means for a relation R on a set A to be a partial order. (3 marks) Ans. A relation R is said to be partial order if R is reflexive, anti-symmetric and transitive.
 - Let $R = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,c)\}$ a relation on A =(ii) $\{a,b,c\}$. Draw the directed graph of R and use it to explain why R is not a partial order. (4 marks)

Ans. The directed graph of R is

It is not symmetric because we have $(a,b) \in R$ and $(b,a) \in R$ in which R violates antisymmetry.

Laws of Logical Equivalence and Implication

Let p, q and r be atomic statements, T be a tautology and F be a contradiction. Suppose the variable x has no free occurrences in ξ and is substitutable for x in ξ . Then

- 1. Double negative law: $\sim (\sim p) \equiv p$.
- 2. Idempotent laws: $p \land p \equiv p$; $p \lor p \equiv p$.
- 3. Universal bound laws: $p \lor T \equiv T$; $p \land F \equiv F$.
- 4. Identity laws: $p \wedge T \equiv p$; $p \vee F \equiv p$.
- 5. Negation laws: $p \lor \sim p \equiv T$; $p \land \sim p \equiv F$.
- 6. Commutative laws: $p \land q \equiv q \land p$; $p \lor q \equiv q \lor p$.
- 7. Absorption laws: $p \lor (p \land q) \equiv p$; $p \land (p \lor q) \equiv p$.
- 8. Associative laws: $(p \land q) \land r \equiv p \land (q \land r); \quad (p \lor q) \lor r \equiv p \lor (q \lor r).$
- 9. Distributive laws: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r);$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r).$
- 10. De Morgan's laws: $\sim (p \land q) \equiv \sim p \lor \sim q; \sim (p \lor q) \equiv \sim p \land \sim q.$
- 11. Implication law: $p \rightarrow q \equiv \sim p \lor q$
- 12. Biconditional law: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$.
- 13. Modus Ponens (MP in short): $p \rightarrow q$, $p \models q$
- 14. Modus Tollens (MT in short): $p \rightarrow q, \sim q \models \sim p$
- 15. Generalisation: $p \models p \lor q$; $q \models p \lor q$
- 16. Specialisation: $p \land q \models p$; $p \land q \models q$
- 17. Conjunction: $p, q \models p \land q$
- 18. Elimination: $p \lor q, \sim q \models p; \ p \lor q, \sim p \models q$
- 19. Transitivity: $p \rightarrow q, q \rightarrow r \models p \rightarrow r$
- 20. Contradiction Rule: $\sim p \rightarrow F \models p$
- 21. Quantified de Morgan laws: $\sim \forall x \phi \equiv \exists x \sim \phi; \sim \exists x \phi \equiv \forall x \sim \phi;$
- 22. Quantified conjunctive law: $\forall x(\phi \land \psi) \equiv (\forall x \phi) \land (\forall x \psi);$
- 23. Quantified disjunctive law: $\exists x (\phi \lor \psi) \equiv (\exists x \phi) \lor (\exists x \psi);$
- 24. Quantifiers swapping laws: $\forall x \forall y \phi \equiv \forall y \forall x \phi$; $\exists x \exists y \phi \equiv \exists y \exists x \phi$;
- 25. Independent quantifier law: $\xi \equiv \forall x \xi \equiv \exists x \xi$;
- 26. Variable renaming laws: $\forall x \phi \equiv \forall y \phi [y/x]; \quad \exists x \phi \equiv \exists y \phi [y/x];$
- 27. Free variable laws: $\forall x(\xi \land \psi) \equiv \xi \land (\forall x\psi); \quad \exists x(\xi \land \psi) \equiv \xi \land (\exists x\psi);$
 - $\forall x(\xi \lor \psi) \equiv \xi \lor (\forall x \psi); \quad \exists x(\xi \lor \psi) \equiv \xi \lor (\exists x \psi);$
- 28. Universal instantiation: $\forall x \phi \Rightarrow \phi[a/x];$
- 29. Universal generalisation: $\phi[a/x] \Rightarrow \forall x \phi$;
- 30. Existential instantiation: $\exists x \phi \Rightarrow \phi[s/x];$
- 31. Existential generalisation: $\phi[s/x] \Rightarrow \exists x \phi$.

Rules of Inference

Let ϕ , ψ , ξ be any well-formed formulae. Then

1. \wedge -introduction: ϕ , $\psi \vdash \phi \land \psi$

2. \land -elimination: $\phi \land \psi \vdash \phi$ or $\phi \land \psi \vdash \psi$

3. \rightarrow -introduction: $\phi, \dots, \psi \vdash (\phi \rightarrow \psi)$

4. \rightarrow -elimination: $\phi \rightarrow \psi, \ \phi \vdash \psi$

5. \vee -introduction: $\phi \vdash \phi \lor \psi$ or $\psi \vdash \phi \lor \psi$

6. \vee -elimination: $\phi \lor \psi, \ \phi, \cdots, \xi, \ \psi, \cdots, \xi \vdash \xi$

7. \neg -introduction or \sim -introduction: $\boxed{\sim \phi, \, \cdots, \, \bot} \vdash \phi$ or $\boxed{\phi, \, \cdots, \, \bot} \vdash \sim \phi$

8. \neg -elimination or \sim -elimination: ϕ , $\sim \phi \vdash \bot$

9. \forall -introduction: $\phi(a) \vdash \forall x \phi(x)$

10. \forall -elimination: $\forall x \phi(x) \vdash \phi(t)$

11. \exists -introduction: $\phi(t) \vdash \exists x \phi(x)$

12. \exists -elimination: $\exists x \phi(x), \boxed{\phi(s) \cdots \xi} \vdash \xi$

The term t is free with respect to x in ϕ and [t/x] means "t replaces x".