Operációs rendszerek

8. Gyakorlat

2022.03.28.

Készítette:

Kazsimér Marcell

Mérnökinformatikus hallgató

T9CJ0Z

1. feladat – Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR:10ms) ütemezési algoritmus alapján határozza meg következő **teljesítmény értékeket, metrikákat** (külön-külön táblázatba):

FCFS ütemezés:

P1 -	P2 ~	P3 ×	P4 ~	Oszlop1 🔻	Oszlop2 🔻
0	7	11	20		
14	8	36	10		
0	14	22	58		
14	22	58	68		S
0	7	11	38		
neve		FCFS			
náltság		100%			
ási idől átl	aga	31			
átlaga		14			
idők átlag	a	161,5			

SJF ütemezés:

SJF 🔻	P1 *	P2 ×	P3 ×	P4 🔻	Oszlop1 🔻	Oszlop2 ×
Érkezés	0	7	11	20		
CPU idő	14	8	36	10		
Indulás	0	14	32	22		
Befejezés	14	22	68	32		S
Várakozás	0	7	21	2		
Algoritmus neve			SJF			
CPU kihasználtság			100%			
Körülfordu	ılási idől átl	aga	24,5			
Válaszidők átlaga			163,5			
Várakozás	i idők átlag	a	7,5			

RR:

RR:10m 🕆	P1 ×	P1.1	P2 ~	P3 ×	P3.1 ×	P4 ~
Érkezés	0	10	7	11	32	20
CPU idő	14	4	8	36	26	10
Indulás	0	18	10	22	42	32
Befejezés	10	22	22	32	68	42
Várakozás	0	8	3	11	10	12
Algoritmus	neve		RR			
CPU kihasz	ználtság		144%			
Körülfordu	ılási idől átl	aga	17			
Válaszidők	átlaga		114,5			
Várakozás	i idők átlag	a	7,333333			

2. feladat – Adott négy processz a rendszerbe, melynek a ready sorban a beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész.

Kezdetben mindegyik processz p_uspri = 60.

Az A, B, C processz $p_nice = 0$, a D processz $p_nice = 5$.

Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 301. óraütés-ig.

- a.) Határozza meg az ütemezést *RR nélkül 301 óraütésig* és *RR*-nal *201 óraütésig*külön-külön táblázatba!
- **b.)** Minden óraütem esetén határozza meg a processzek sorrendjét óraütés *előtt/után*.
- c.) Igazolja a számítással a tanultak alapján.

RR nélkül:

	A pro	ocess	B pro	ocess	C pro	cess	D pro	ocess	Resch	nedule	A,B,C p_nice	0
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after	D p_nice	5
Starting point	60	0	60	0	60	0	60	0	A	Α		
1	60	1	60	0	60	0	60	0	Α	Α	p_uspri:	p_user+p_cpu/2+2*p_nice
2	60	2	60	0	60	0	60	0	Α	Α		
3	60	3	60	0	60	0	60	0	Α	Α	p_cpu	p_cpu/2
99	60	99	60	0	60	0	60	0	A	Α		
100	65	50	60	0	60	0	60	0	Α	В		
101	65	50	60	1	60	0	60	0	В	В		
199	65	50	60	99	60	0	60	0	В	В		
200	55	25	65	50	60	0	60	0	В	С		
201	55	25	65	50	60	1	60	0	С	С		
299	55	25	65	50	60	99	60	0	С	C		
300	43	12	55	25	65	50	60	0	С	D		
301	43	12	55	25	65	50	60	1	D	D		

RR 201:

	A pro	A process B proc		ocess	C pro	ocess	D pro	ocess	Resch	edule
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after
Starting point	60	0	60	0	60	0	60	0	А	Α
1	60	1	60	0	60	0	60	0	А	Α
9	60	9	60	0	60	0	60	0	А	Α
10	60	10	60	0	60	0	60	0	А	В
19	60	10	60	9	60	0	60	0	В	В
20	60	10	60	10	60	0	60	0	В	С
29	60	10	60	10	60	9	60	0	С	С
30	60	10	60	10	60	10	60	0	С	D
39	60	10	60	10	60	10	60	9	D	D
40	60	10	60	10	60	10	60	10	D	Α
50	60	20	60	10	60	10	60	10	А	В
60	60	20	60	20	60	10	60	10	В	С
70	60	20	60	20	60	20	60	10	С	D
80	60	20	60	20	60	20	60	20	D	Α
90	60	30	60	20	60	20	60	20	Α	В
100	67	26	67	26	64	17	64	27	В	С
199	67	46	67	46	64	37	64	46	D	D
200	70	39	70	39	68	31	70	40	D	Α
201	70	40	70	39	68	31	70	40	А	Α

Minden 100. órasütésnél van ütemezés, illetve korrekciós faktor.

100. órasütésnél korrekciós faktro:

KF = 2*FK / 2*FK + 1 = (2*3) / (2*3 + 1) = 0.85					
A $p_{cpu} = 30 * 0.85 = 26$	A p_uspri = $60 + (26/4) = 67$				
B $p_cpu = 30 * 0.85 = 26$	B p_uspri = $60 + (26/4) = 67$				
$C p_cpu = 20 * 0.85 = 17$	$C p_uspri = 60 + (17/4) = 64$				
$D p_cpu = 20 * 0.85 = 17$	D p_uspri = $60 + (26/4) + 10 = 74$				

200. óraütésnél korrekciós faktor:

KF = 2*FK / 2*FK + 1 = (2*3) / (2*3 + 1) = 0.85						
A $p_{cpu} = 46 * 0.85 = 39$	A $p_uspri = 60 + (39/4) = 70$					
B $p_cpu = 46 * 0.85 = 39$	B p_uspri = $60 + (39/4) = 70$					
$C p_cpu = 37 * 0.85 = 31$	$C p_uspri = 60 + (31/4) = 68$					
$D p_cpu = 46 * 0.85 = 40$	D p_uspri = $60 + (40/4) + 10 = 70$					