Correction du TD d'application

I | Combinaisons de réactions et constantes d'équilibre

1) Dans cet exercice, on introduit le lien entre relation sur les équations-bilan et les constantes d'équilibre associées. En effet, on a vu dans le cours que

$$aA + bB = cC + dD$$

a pour constante d'équilibre

$$K_1^{\circ} = \prod_i a(\mathbf{X}_i)^{\nu_{i,1}}$$

Si on inverse la réaction pour avoir

$$cC + dD = aA + bB$$

alors on prend l'opposé de chaque coefficient stœchiométrique : $\nu_{i,2}=-\nu_{i,1}$, ce qui fait que cette réaction a pour constante d'équilibre

$$K_2^{\circ} = \prod_i a(\mathbf{X}_i)^{\nu_{i,2}} = \prod_i a(\mathbf{X}_i)^{-\nu_{i,1}} = \left(\prod_i a(\mathbf{X}_i)^{\nu_{i,1}}\right)^{-1} = (K_1^{\circ})^{-1}$$

Le même raisonnement tient pour montrer que

$$2aA + 2bB = 2cC + 2dD$$

a pour constante d'équilibre

$$K_3^{\circ} = K_1^{\circ 2}$$

On étend le raisonnement pour montrer que si on ajoute deux réactions (1) et (2) pour avoir une équation (3), alors on aura $K_3^{\circ} = K_1^{\circ} \times K_2^{\circ}$, et que si on a (3) = $\alpha(1) + \beta(2)$, alors on a bien

(1)
$$\sum_{i} \nu_{\mathbf{X}_{i}} \mathbf{X}_{i} = 0 \qquad K_{1}^{\circ} = \prod_{i} a(\mathbf{X}_{i})^{\nu_{\mathbf{X}_{i}}}$$

(2)
$$\sum_{j} \nu_{\mathbf{Y}_{j}} \mathbf{Y}_{j} = 0 \qquad K_{2}^{\circ} = \prod_{j} a(\mathbf{Y}_{j})^{\nu_{\mathbf{Y}_{j}}}$$

$$(3) = \alpha(1) + \beta(2) \qquad \alpha \sum_{i} \nu_{\mathbf{X}_{i}} \mathbf{X}_{i} + \beta \sum_{j} \nu_{\mathbf{Y}_{j}} \mathbf{Y}_{j} = 0 \qquad K_{3}^{\circ} = \prod_{i} a(\mathbf{X}_{i})^{\alpha \nu_{\mathbf{X}_{i}}} \cdot \prod_{j} a(\mathbf{Y}_{j})^{\beta \nu_{\mathbf{Y}_{j}}}$$

$$\Rightarrow K_{3}^{\circ} = \left(\prod_{i} a(\mathbf{X}_{i})^{\nu_{\mathbf{X}_{i}}}\right)^{\alpha} \cdot \left(\prod_{j} a(\mathbf{Y}_{j})^{\nu_{\mathbf{Y}_{j}}}\right)^{\beta}$$

$$\Leftrightarrow K_{3}^{\circ} = (K_{1}^{\circ})^{\alpha} \cdot (K_{2}^{\circ})^{\beta}$$

2) Ainsi, dans cet exercice il suffit de trouver les relations entre les équations (3), (4), (5) et les équations (1) et (2) de constantes respectives K_1° et K_2° . On trouve alors :

a -
$$(3) = \frac{(1) + (2)}{2} \Leftrightarrow K_3^{\circ} = (K_1^{\circ} \times K_2^{\circ})^{1/2} = \sqrt{K_1^{\circ} K_2^{\circ}}$$
b -
$$(4) = 2(1) \Leftrightarrow K_4^{\circ} = (K_1^{\circ})^2$$
c -
$$(5) = -(1) \Leftrightarrow K_5^{\circ} = (K_1^{\circ})^{-1}$$

Tout ceci se vérifie bien sûr en écrivant les constantes de chacune des réactions :

$$K_1^{\circ} = \frac{p^{\circ}}{p_{\mathrm{O}_2}} \quad ; \quad K_2^{\circ} = \frac{p^{\circ}}{p_{\mathrm{O}_2}} \quad ; \quad K_3^{\circ} = \frac{p^{\circ}}{p_{\mathrm{O}_2}} \quad ; \quad K_4^{\circ} = \frac{p^{\circ 2}}{p_{\mathrm{O}_2}^{\ 2}} \quad ; \quad K_5^{\circ} = \frac{p_{\mathrm{O}_2}}{p^{\circ}}$$

Transformations totales

1) Pour la quantité totale de gaz, il suffit de sommer les quantité de matière de chacun des gaz : ici, initialement on a $n_0(NO_{(g)}) + n_0(O_{2(g)}) = 3,00$ mol de gaz. Ensuite, pour la pression totale on utilise l'équation d'état des gaz parfaits :

Rappel TM2.1 : gaz parfait
$$pV = nRT \quad \text{avec} \quad \begin{cases} p \text{ en Pa} \\ V \text{ en m}^3 \\ n \text{ en mol} \\ T \text{ en Kelvin (K)} \end{cases}$$
 et $R = 8,314 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ est la constante des gaz parfaits

Il faut donc convertir le volume en m³. Pour cela, il suffit d'écrire

$$10.0 L = 10.0 dm^3 = 10.0(10^{-1} m)^3 = 10.0 \times 10^{-3} m^3$$

Il est très courant d'oublier les puissances sur les conversions du genre : n'oubliez pas les parenthèses. Il nous faut de plus convertir la température en Kelvins, attention à ne pas vous tromper de sens : il faut ici **ajouter** 273,15 K à la température en degrés Celsius, ce qui donne T=298,15 K. On peut donc faire l'application numérique pour $P_{\rm tot}$ initial.

On remplit la deuxième ligne du tableau avec les coefficients stœchiométriques algébriques des constituants en facteur de chaque ξ , et on somme les quantités de matière de gaz pour $n_{\text{tot, gaz}}$. En réalité, il est plus simple de partir de la valeur totale de la première ligne et de compter algébriquement le nombre de ξ : on en perd 3 avec les réactifs pour en gagner 2 avec les produits, donc en tout la quantité de matière totale de gaz décroit de 1ξ . On ne peut pas calculer précisément la valeur de P_{tot} ici, il faudrait l'exprimer en fonction de ξ (ça viendra dans d'autres exercices).

Enfin, pour trouver le réactif limitant, on résout :

$$\begin{cases} n_0(NO_{(g)}) - 2\xi_f = 0 \\ n_0(O_{2(g)}) - \xi_f = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_f = 0.50 \text{ mol} \\ \xi_f = 1.00 \text{ mol} > \xi_{\text{max}} \end{cases}$$

La seule valeur possible est la plus petite, $\xi_f = 0.50\,\mathrm{mol}$: si on prenait $1.00\,\mathrm{mol}$ on trouverait une quantité négative de NO à l'état final, ce qui, vous en conviendrez, est une absurdité. Même travail qu'initialement pour $n_{\mathrm{tot, gaz}}$ et P_{tot} . D'où le tableau :

Équation		$2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$			$n_{ m tot, \ gaz}$	$P_{\rm tot}({\rm bar})$
Initial (mol)	$\xi = 0$	1,00	2,00	0,00	3,00	7,40
Interm. (mol)	ξ	$1,00-2\xi$	$2,00-\xi$	2ξ	$3,00 - \xi$	_
Final (mol)	$\xi_f = 0.50$	0,00	1,50	1,00	2,50	6,20

2) Pour une réaction aA + bB = cC + dD, le fait que les réactifs soient introduits dans les proportions stœchiométriques se traduit par

$$\frac{n_{\rm A,0}}{a} = \frac{n_{\rm B,0}}{b} \Leftrightarrow n_{\rm B,0} = \frac{b}{a} n_{\rm A,0}$$

Ici, on a donc $n_{O_2,0} = 3n_{C_2H_2OH,0}$, c'est-à-dire $n_{O_2,0} = 6,00$ mol. On peut donc remplir cette case.

On suppose qu'on commence sans CO_2 ou H_2O initialement, puisque rien n'est indiqué; en revanche, on sait qu'il y a déjà du diazote dans le milieu puis que le dioxygène vient de l'air, comme c'est indiqué. Comme il y a 80% de N_2 pour 20% de O_2 , cela veut dire qu'il y a 4 fois plus de diazote que de dioxygène, donc 24,00 mol. Ici, la colonne $n_{\text{tot, gaz}}$ n'a pas grande utilité puisqu'il n'y a qu'un gaz, mais c'est une bonne pratique à ne pas oublier.

Le reste du remplissage est le même que pour la question 1. On trouve évidemment $\xi_f = 2,00 \,\text{mol}$ avec les deux réactifs limitant, c'est le principe des proportions stœchiométriques.

Équation (mol)		$C_2H_5OH_{(l)}$	$+ 3O_{2(g)} -$	$n_{ m N_2}$	$n_{ m tot,\ gaz}$		
Initial	$\xi = 0$	2,00	6,00	0,00	0,00	24,00	30,00
Interm.	ξ	$2,00-\xi$	$6,00-3\xi$	2ξ	3ξ	24,00	$30,00+2\xi$
Final	$\xi_f = 2,00$	0,00	0,00	4,00	6,00	24,00	34,00

III Équilibre... ou pas!

1) a – Par définition, $K^{\circ} = Q_{r,eq}$. On exprime donc le quotient de réaction avec les activités à l'équilibre :

$$K^{\circ} = \frac{p_{\mathcal{O}_2, eq}}{p^{\circ}}$$

b – On a la valeur de K° et la valeur de p° : de l'équation précédente on isole $p_{\mathrm{O}_{2},\mathrm{eq}}$:

$$\boxed{ p_{\rm O_2,eq} = K^{\circ} p^{\circ} } \quad \text{avec} \quad \begin{cases} K^{\circ} = 0.50 \\ p^{\circ} = 1.00 \, \text{bar} \end{cases}$$
 A.N. : $p_{\rm O_2,eq} = 0.50 \, \text{bar} = 5.0 \times 10^4 \, \text{Pa}$

c – Avec la loi des gaz parfaits, on a

$$p_{\rm O_2,eq}V = n_{\rm O_2,eq}RT \Leftrightarrow \boxed{n_{\rm O_2,eq} = \frac{p_{\rm O_2,eq}V}{RT}} \quad \text{avec} \quad \begin{cases} V = 10 \times 10^{-3}\,\rm m^3 \\ T = 1068,15\,\rm K \end{cases}$$
 A.N. : $n_{\rm O_2,eq} = 0,056\,\rm mol$

2) Cas 1:

Équation		$2BaO_{2(s)} =$	\doteq 2BaO _(s) -	$+$ $O_{2(g)}$	$n_{ m tot, \ gaz}$
Initial (mol)	$\xi = 0$	0,20	0,00	0,00	0,00
Interm. (mol)	ξ	$0,20-2\xi$	2ξ	ξ	ξ
Final (mol)	$\xi = \xi_f$	0,088	0,112	0,056	0,056

a – On change juste $p_{O_2,eq}$ de la première question en $p_{O_2,0}$; sachant qu'on commence sans gaz dans l'enceinte, cette pression est nulle :

$$Q_{r,0} = \frac{p_{O_2,0}}{p^{\circ}} = 0$$

On a donc $Q_{r,0} < K$, et l'évolution se fait en sens direct.

b - Voir tableau.

Outils TM2.1: État d'équilibre

Pour trouver l'état final dans cette situation, on détermine ξ_{eq} s'il y avait équilibre, et on regarde si c'est compatible avec ξ_{max} si la réaction était totale.

S'il y a équilibre, ça veut dire que $n_{\rm O_2,eq}=0.056\,{\rm mol}$ comme déterminé au début. Or, le tableau nous indique que $n_{\rm O_2,f}=\xi_f$, donc si c'est un équilibre $\xi_{\rm eq}=0.056\,{\rm mol}$.

L'avancement est maximal si BaO₂ est limitant : on trouve donc ξ_{max} en résolvant $0.20-2\xi_{\text{max}}=0$, c'est-à-dire $\xi_{\text{max}}=0.1$ mol.

La valeur est finale ξ_f est la plus petite valeur (en valeur absolue) de ξ_{eq} et ξ_{max} ; or ici $\xi_{eq} < \xi_{max}$: il y a donc bien équilibre, et on a

$$\xi_f = \xi_{\rm eq} = 0.056 \, {\rm mol}$$

d - Voir tableau.

3) Cas 2:

Équation		$2BaO_{2(s)} =$	\doteq 2BaO _(s) -	\vdash $O_{2(g)}$	$n_{ m tot,\ gaz}$
Initial (mol)	$\xi = 0$	0,10	0,00	0,00	0,00
Interm. (mol)	ξ	$0.10 - 2\xi$	2ξ	ξ	ξ
Final (mol)	$\xi = \xi_f$	0,00	0,10	0,05	0,05

a – On a toujours aucun gaz au départ, donc ici aussi

$$Q_{r,0} = \frac{p_{O_2,0}}{p^{\circ}} = 0$$

et la réaction est en sens direct.

b – Voir tableau.

c – Même procédé : on détermine ξ_{eq} s'il y avait équilibre, et on regarde si c'est compatible avec ξ_{max} si la réaction était totale.

S'il y a équilibre, ça veut dire que $n_{\rm O_2,eq}=0.056\,{\rm mol}$ comme déterminé au début. Or, le tableau nous indique que $n_{\rm O_2,f}=\xi_f$, donc si c'est un équilibre $\xi_{\rm eq}=0.056\,{\rm mol}$.

L'avancement est maximal si BaO₂ est limitant : on trouve donc ξ_{max} en résolvant $0.10-2\xi_{\text{max}}=0$, c'est-à-dire $\xi_{\text{max}}=0.050\,\text{mol}$.

La valeur est finale ξ_f est la plus petite valeur (en valeur absolue) de ξ_{eq} et ξ_{max} ; or ici $\xi_{eq} > \xi_{max}$: il n'y a donc **pas équilibre**, et on a

$$\underline{\xi_f = \xi_{\text{max}} = 0.050 \,\text{mol}}$$

d – Voir tableau.

4) Cas 3:

Équation		$2BaO_{2(s)} =$	$\stackrel{=}{=}$ 2BaO _(s) -	$+$ $O_{2(g)}$	$n_{ m tot,\ gaz}$
Initial (mol)	$\xi = 0$	0,10	0,050	0,10	0,10
Interm. (mol)	ξ	$0.10 - 2\xi$	$0.050 + 2\xi$	$0.10 + \xi$	$0.10 + \xi$
Final (mol)	$\xi = \xi_f$	0,15	0,00	0,075	0,075

a - On a cette fois du gaz au départ, donc ici

$$Q_{r,0} = \frac{p_{O_2,0}}{p^{\circ}} \Leftrightarrow \boxed{Q_{r,0} = \frac{n_{O_2,0}RT}{Vp^{\circ}}} \text{ avec } \begin{cases} n_{O_2,0} = 0.10 \text{ mol} \\ T = 1069.15 \text{ K} \\ V = 10 \times 10^{-3} \text{ m}^3 \end{cases}$$

$$A.N. : Q_{r,0} = 0.89$$

Cette fois, $Q_{r,0} > K$ donc la réaction se fait en sens indirect.

b – Voir tableau.

Attention TM2.1: Tableau sens indirect

Le procédé de remplissage du tableau ne doit pas changer même si la réaction se fait dans le sens indirect : les coefficients stœchiométriques de la réaction n'ont pas changé, donc les facteurs devant des $\xi(t)$ non plus.

Certes, on aura $\xi < 0$ mais il est plus naturel et moins perturbant de garder la forme de base du remplissage du tableau plutôt que de s'embêter à repenser l'écriture du tableau.

c – Même procédé : on détermine ξ_{eq} s'il y avait équilibre, et on regarde si c'est compatible avec ξ_{max} si la réaction était totale.

S'il y a équilibre, ça veut dire que $n_{\rm O_2,eq}=0.056\,\rm mol$ comme déterminé au début. Or, le tableau nous indique que $n_{\rm O_2,f}=0.10+\xi_f$, donc si c'est un équilibre $\xi_{\rm eq}=-0.044\,\rm mol$.

L'avancement est maximal si BaO ou O_2 sont limitant : on résout donc

$$\begin{cases} n_{\mathrm{BaO},0} + 2\xi_{\mathrm{max}} = 0 \\ n_{\mathrm{O}_2,0} + \xi_{\mathrm{max}} = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_{\mathrm{max}} = -0.025\,\mathrm{mol} \\ \xi_{\mathrm{max}} = -0.050\,\mathrm{mol} \end{cases}$$

Le seul ξ_{max} possible est le plus petit **en valeur absolue**, c'est-à-dire $\underline{\xi_{\text{max}}} = -0.025 \,\text{mol}$.

La valeur est finale ξ_f est la plus petite valeur **en valeur absolue** de $\xi_{\rm eq}$ et $\xi_{\rm max}$; or ici $|\xi_{\rm eq}| > |\xi_{\rm max}|$: il n'y a donc **pas équilibre**, et on a

$$\underline{\xi_f = \xi_{\text{max}} = -0.025\,\text{mol}}$$

d - Voir tableau.

Équilibre en solution aqueuse

1) Pour déterminer le sens d'évolution du système, on calcule $Q_{r,0}$ et on le compare à K° :

$$Q_{r,0} = \frac{[\text{CH}_3\text{COO}^-]_0[\text{HF}]_0}{[\text{CH}_3\text{COOH}]_0[\text{F}^-]_0} = 0 < K^{\circ}$$

La réaction évoluera donc dans le sens direct.

Pour trouver l'avancement à l'équilibre, on dresse le tableau d'avancement, que l'on peut directement faire en concentrations puisque le volume ne varie pas (ce qui est toujours le cas cette année) :

Équation		CH ₃ COOH _(aq)	⊢ F ⁻ _(aq) =	$= CH_3COO_{(aq)}^-$	+ HF _(aq)
Initial	x = 0	c	c	0	0
Final a	$x_f = x_{\rm eq}$	$c - x_{\rm eq}$	$c - x_{\text{eq}}$	$x_{\rm eq}$	$x_{\rm eq}$

D'après la loi d'action des masses, on a

$$K^{\circ} = \frac{x_{\text{eq}}^{2}}{(c - x_{\text{eq}})^{2}} \Leftrightarrow \sqrt{K^{\circ}} = \frac{x_{\text{eq}}}{c - x_{\text{eq}}} \Leftrightarrow x_{\text{eq}} = \sqrt{K^{\circ}}(c - x_{\text{eq}})$$

$$\Leftrightarrow \boxed{x_{\text{eq}} = \frac{\sqrt{K^{\circ}}}{1 + \sqrt{K^{\circ}}}c} \quad \text{avec} \quad \begin{cases} K^{\circ} = 10^{-1,60} \\ c = 0,1 \,\text{mol} \cdot \text{L}^{-1} \end{cases}$$

$$A.N. : \quad x_{\text{eq}} = 1,4 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$$

En encadrant le résultat, on vérifie la cohérence physico-chimique de la réponse : ici c'est bien cohérent de trouver $x_{eq} > 0$ puisqu'on avait déterminé que la réaction se faisait dans le sens direct.

2) De la même manière, pour déterminer le sens d'évolution du système, on calcule $Q_{r,0}$ et on le compare à K:

$$Q_{r,0} = \frac{[\text{CH}_3\text{COO}^-]_0[\text{HF}]_0}{[\text{CH}_3\text{COOH}]_0[\text{F}^-]_0} = \frac{c^2}{c^2} = 1 > K^{\circ}$$

La réaction évoluera donc dans le sens indirect.

On effectue un bilan de matière grâce à un tableau d'avancement :

Équation		CH ₃ COOH _(aq) -	$F_{(aq)}^{-} =$	$= CH_3COO_{(aq)}^-$	+ HF _(aq)
Initial	x = 0	c	c	c	c
Final	$x_f = x_{\rm eq}$	$c - x_{\text{eq}}$	$c - x_{\rm eq}$	$c + x_{\text{eq}}$	$c + x_{\text{eq}}$

D'après la loi d'action des masses, on a

$$K^{\circ} = \frac{(c + x_{\text{eq}})^2}{(c - x_{\text{eq}})^2} \Leftrightarrow \sqrt{K^{\circ}} = \frac{c + x_{\text{eq}}}{c - x_{\text{eq}}} \Leftrightarrow c + x_{\text{eq}} = \sqrt{K^{\circ}}(c - x_{\text{eq}})$$

$$\Leftrightarrow \boxed{x_{\text{eq}} = \frac{\sqrt{K^{\circ}} - 1}{\sqrt{K^{\circ}} + 1}c} \quad \text{avec} \quad \begin{cases} K^{\circ} = 10^{-1.60} \\ c = 0.1 \,\text{mol} \cdot \text{L}^{-1} \end{cases}$$

$$A.N. : \quad x_{\text{eq}} = -5.3 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$$

De même que précédemment, on vérifie qu'il est logique de trouver $x_{\rm eq} < 0$: la réaction se fait bien dans le sens indirect.

Ions mercure

1) On détermine les concentrations en mercure (I) et (II) :

$$[\mathrm{Hg}_{(\mathrm{aq})}^{2+}] = \frac{c_2 V_2}{V_1 + V_2} = c_2' = 0.4 \,\mathrm{mmol} \cdot \mathrm{L}^{-1} \qquad \text{et} \qquad [\mathrm{Hg_2}^{2+}] = \frac{c_1 V_1}{V_1 + V_2} = c_1' = 0.8 \,\mathrm{mmol} \cdot \mathrm{L}^{-1}$$

On peut donc calculer le quotient de réaction initial, avec $a(Hg_{(l)})) = 1$:

$$Q_{r,0} = \frac{c_1'}{c_2'} = 2 < K \implies \text{ évolution sens direct}$$

V. Ions mercure 7

2) On dresse le tableau d'avancement en concentration :

Équ	ation	$Hg_{(aq)}^{2+}$ -	$Hg_{(l)}$	$= Hg_2^{2+}_{(aq)}$
Initial	x = 0	c_2'	excès	c_1'
Interm.	x	$c_2' - \xi$	excès	$c_1' + \xi$
Final	$x_f = x_{\rm eq}$	$c_2' - \xi_f$	excès	$c_1' + \xi_f$

Par la loi d'action des masses, on trouve en effet

$$K^{\circ} = \frac{c_1' + x_{\text{eq}}}{c_2' - x_{\text{eq}}} \Leftrightarrow \boxed{x_{\text{eq}} = \frac{K^{\circ}c_2' - c_1'}{K^{\circ} + 1} = 0,387 \,\text{mmol} \cdot \text{L}^{-1}}$$

ce qui est bien inférieur à $x_{\rm max}=c_2'=0,4\,{\rm mmol\cdot L^{-1}}$: l'équilibre est atteint.