WHO WERE MOST LIKELY TO SURVIVE THE TITANIC CATASTROPHE?

USING LOGISTIC REGRESSION

EZEQUIEL VINCENT LUZ

JUNE 2019

DATA CLEANING

DROPPED FEATURES

The first features to be dropped were:

- Passenger ID: Not relevant towards survival
- Ticket: Also not relevant, mostly random string/number
- Cabin: 77% of data in this column was missing

	# of Missing	Percent
Cabin	1014	0.774637
Age	263	0.200917
Embarked	2	0.001528
Fare	1	0.000764
Ticket	0	0.000000

KEPT FEATURES

- Survived: What we want to predict
- Pclass: Class of passenger
- Name: The title in names can be used
- Sex: Male or female
- Age: Age in years, can include values less than a year to zero
- SibSp: Number siblings / spouses
- Parch: Number of parents / children
- Fare: Fare paid to board
- Embarked: Location embarked from

DATA TYPES I

■ Survived:

- ► Nominal datatype
- ▶ 1 meaning survival

■ Pclass:

- ► Ordinal datatype
- ▶ 1,2,3 that represents the status of the passenger, with 1 being high-class and 3 being low-class

■ Name:

- ► Nominal data type.
- ▶ Information such as Titles can be pulled from this

DATA TYPES II

- Age and Fare:
 - Continuous and quantitative data types
- SibSp and Parch:
 - ► Discrete quantitative data types
 - ► Can be used to create another feature to describe Family Size
- Sex and Embarked:
 - ► Nominal data types
 - ► Can be turned into and used as dummy variables

MISSING DATA

- Age, Embarked, and Fare
 - These 3 columns had some missing data but not a significant amount
 - ► The mode, most frequent value, of each column was used to fill in missing data for that column

	# of Missing	Percent
Cabin	1014	0.774637
Age	263	0.200917
Embarked	2	0.001528
Fare	1	0.000764
Ticket	0	0.000000

FEATURE ENGINEERING I

Unique Title Counts

Mr	757
Miss	260
Mrs	197
Master	61
Rev	8
Dr	8
Col	4
Major	2
Mlle	2
Ms	2
Sir	1
Capt	1
Jonkheer	1
Don	1
Mme	1
Lady	1
the Countess	1
Dona	1

- From the Name we could identify meaningful socioeconomic Title and do One Hot Encoding on them
- We see that there are not many repeats for other Titles than Mr, Miss, Mrs and Master
- Using them, would result in a over fitting
- We found that using the first 4 gives us better results

FEATURE ENGINEERING II

Created a new feature named Family size

- Combined Sibsp (number of siblings) and Parch (parents) to form the new feature Family Size
- Family Size was shown to be highly correlated to Sibsp and Parch, so these two variables were later dropped
- This new combined feature, as well as having less features to work with, improves modeling

Pearson Correlation of Features

					i cui	3011 C	OTTCIG	CIOII O	i i cuc	ui CJ				
Age -	1	-0.046	0.19	-0.11	0.026	-0.4	0.045	-0.19	-0.053	-0.18	0.15	-0.25	0.21	-0.35
Embarked -	-0.046	1	-0.24	0.045	-0.052	0.19	0.098	0.066	-0.17	0.068	0.094	-0.05	-0.058	0.017
Fare -	0.19	-0.24	1	0.22	0.031	-0.56	-0.19	0.16	0.26	0.23	-0.19	0.091	0.14	0.012
Parch -	-0.11	0.045	0.22	1	0.0089	0.018	-0.21	0.37	0.082	0.79	-0.3	0.068	0.22	0.25
Passengerld -	0.026	-0.052	0.031	0.0089	1	-0.038	0.013	-0.055	-0.005	-0.031	0.014	-0.05	0.034	0.0023
Pclass -	-0.4	0.19		0.018	-0.038	1	0.12	0.061		0.05	0.12	0.03	-0.18	0.095
Sex_code -	0.045	0.098	-0.19	-0.21	0.013	0.12		-0.11	-0.54	-0.19			-0.57	0.16
SibSp -	-0.19	0.066	0.16	0.37	-0.055	0.061	-0.11	1	-0.035	0.86	-0.24	0.08	0.065	0.33
Survived -	-0.053	-0.17	0.26	0.082	-0.005	-0.34	-0.54	-0.035	1	0.017	-0.55	0.33	0.34	0.085
FamilySize -	-0.18	0.068	0.23	0.79	-0.031	0.05	-0.19	0.86	0.017	1		0.09	0.16	0.36
Mr -	0.15	0.094	-0.19	-0.3	0.014	0.12	0.87	-0.24	-0.55	-0.33	1	-0.58	-0.49	-0.26
Miss -	-0.25	-0.05	0.091	0.068	-0.05	0.03	-0.67	0.08	0.33	0.09	-0.58	1	-0.21	-0.11
Mrs -	0.21	-0.058	0.14	0.22	0.034	-0.18	-0.57	0.065	0.34	0.16	-0.49	-0.21	1	-0.093
Master -	-0.35	0.017	0.012	0.25	0.0023	0.095	0.16	0.33	0.085	0.36	-0.26	-0.11	-0.093	1
	Age -	Embarked -	Fare -	Parch -	Passengerld -	Pclass -	- apoo xəs	SibSp -	Survived -	FamilySize -	Mr -	Miss -	Mrs -	Master -

- 0.9 - 0.6 - 0.3 - 0.0

--0.3

- -0.6

MODEL TESTING

Cleaning is done.

We are left with a total of 10 Features:

- Mr, Mrs, Miss, and Master
- Sex_code
- FamilySize
- Fare
- Age
- Embarked
- Pclass

FEATURE PREDICTION TESTING

Taking each feature individually, we test to look if they are a good predictor of Survival

LOGISTIC REGRESSION

- Logistic regression requires the features to be scaled. We used the sklearn.preprocessing.StandardScaler
- Evaluate different combination of parameters by doing a Grid Search with Cross-Validation over the following processed datasets
 - Standardized Features (9 features)
 - ► PCA with 7 components
 - ► PCA with 8 components

Cumulative sum: 0.9601661693062497 with 7 components Cumulative sum: 0.9933474854884274 with 8 components

LOGISTIC REGRESSION PARAMETERS

- Logistic Regression has 5 different solvers, where each is able to perform different norm penalizations
- Below is our parameters grid

STANDARDIZED FEATURES ACCURACY

```
Best parameters:
{'ll ratio': 0.75, 'max iter': 800, 'penalty': 'elasticnet', 'solver': 'saga'}
 0.8305274971941639
0.8271604938271605 {'solver': 'liblinear'}
0.8271604938271605 {'multi class': 'ovr', 'penalty': '12', 'solver': 'newton-cg'}
0.82828282828283 {'multi class': 'ovr', 'penalty': 'none', 'solver': 'newton-cg'}
0.8271604938271605 {'multi class': 'multinomial', 'penalty': '12', 'solver': 'newton-cg'}
0.82828282828283 {'multi class': 'multinomial', 'penalty': 'none', 'solver': 'newton-cg'}
0.8271604938271605 {'multi class': 'auto', 'penalty': '12', 'solver': 'newton-cg'}
0.82828282828283 {'multi class': 'auto', 'penalty': 'none', 'solver': 'newton-cg'}
0.8271604938271605 {'multi class': 'ovr', 'penalty': '12', 'solver': 'lbfgs'}
0.82828282828283 {'multi class': 'ovr', 'penalty': 'none', 'solver': 'lbfqs'}
0.8271604938271605 {'multi_class': 'multinomial', 'penalty': '12', 'solver': 'lbfgs'}
0.82828282828283 {'multi class': 'multinomial', 'penalty': 'none', 'solver': 'lbfqs'}
0.8271604938271605 {'multi_class': 'auto', 'penalty': '12', 'solver': 'lbfgs'}
0.82828282828283 {'multi class': 'auto', 'penalty': 'none', 'solver': 'lbfgs'}
0.82828282828283 {'11 ratio': 0.5, 'max iter': 800, 'penalty': 'elasticnet', 'solver': 'saga'}
0.8282828282828283 {'11 ratio': 0.6, 'max iter': 800, 'penalty': 'elasticnet', 'solver': 'saga'}
0.8305274971941639 {'l1 ratio': 0.75, 'max_iter': 800, 'penalty': 'elasticnet', 'solver': 'saga'}
0.8305274971941639 {'l1 ratio': 0.9, 'max iter': 800, 'penalty': 'elasticnet', 'solver': 'saga'}
0.8271604938271605 {'penalty': '12', 'solver': 'sag'}
```

] 19

PCA ACCURACY

■ Using 7 components

```
Best parameters:
    {'solver': 'liblinear'}
    0.8237934904601572
```

■ Using 8 components

■ Standarized Features results in better accuracy!

ROC CURVE

CONFUSION MATRIX

	Survived	Not
Survived	484	65
Not	85	257

Accuracy=0.8316 | Misclass=0.1684 Recall=0.8506 | Precision=0.8816

KAGGLE SCORES I

Kaggle Score: 0.58851

■ Submitted a file with only passengers of Pclass 1 or 2 surviving

Kaggle Score: 0.76555

 Kaggle sample submission where all females on-board survived

KAGGLE SCORES II

Kaggle Score: 0.79425

■ Used the "liblinear" logistic regression solver with all variables after cleaning

Kaggle Score: 0.79904

- Used the "saga" solver
- Elasticnet penalty and l1_ratio of 0.75
- "saga" looks to be the best solver to use

Kaggle Score: 0.80382

- "saga" solver used again, but this time the SibSp and Parch features were dropped
- Elasticnet penalty and l1_ratio of 0.75
- This resulted to be the best model

REFERENCES

- https://www.kaggle.com/ldfreeman3/a-data-scienceframework-to-achieve-99-accuracy
- https://www.kaggle.com/startupsci/titanic-data-sciencesolutions

THANKS!

NSF 1842386