Nonlinear Control

Stuttgart university, May 2018

Intro

Goals of Course

- overview over moder nonlinear analyses and control concepts
- modern methodologies to analyze nonlinear systems
- apply a wide range of nonlinear control method learn the mathmatic basis

Differential equations $\dot{x} = f(x)$

Nonlinear differential eqution $\dot{x} = f(t, x)$

System with input $\dot{x} = f(x, u)$

System with input and output $\dot{x} = f(x, u), y = g(x, u)$

Input-output methods

Scope

- [1] Khalil Nonlinear System, Prentice Hall, 2002
- [2] Sepulchre Constructive Nonlinear Control, Springer-Verlag 1997

1 Differential equations

Consider differential equality

$$\frac{d}{dt}x(t) = \dot{x}(t) = f(x(t)), \ x(0) = x_0 \tag{1}$$

Where $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$ is open, [here we should explain, what means open set].

Solution to 1 $x: I_{x_0} \to D, t \to x(t)$ is differentiable

Interval existence solution

Questions:

existence of solution

"how large" is I_{x_0}

uniquence of solution

Usaly we will add some restrictions on f functions, like continuous.

1.1 Existence of solutions

Definition. Function $f: D \to R^n$ is continuous at $x' \in D$ if for $\forall \epsilon > 0 \ \exists \delta > 0$ such that for $\forall x \in D$, $\|x - x'\| < \delta => \|f(x) - f(x')\| < \epsilon$

Function $f: D \to \mathbb{R}^n$ is continuous on D if it's continuous at $\forall x' \in D$

Theorem 1.1 (Piano). If $f: D \to \mathbb{R}^n$ continuous, then for each $x_0 \in D \exists x: (-\epsilon, \epsilon) \to D, \ \epsilon > 0$ satisfying (1).

Further, given a compact sed $U \subset D$, then $\exists \alpha > 0$ s.t. $\forall x_0 \in U \ \exists x : (-\epsilon, \epsilon) \to D$ satisfying (1).

Example. Consider equation $\dot{x}(t) = x(t)^2$, $x(0) = x_0 = 0$. Solution $x(t) = -\frac{1}{t-c}$, $c = \frac{1}{x_0}$. In this example solution exist in interval (-c, c).

But, what about the number of solutions? Which conditions we should add to garanty uniquence of solution?

1.2 Uniquence of solutions

Definition. Function $f: D \to \mathbb{R}^n$ is locally Lipshitz (continuous???) on D if $\forall x \in D$ there is a neighborhood $N(x) \subset D$ and $\exists L > 0$ s.t.

$$||f(x_1) - f(x_2)|| \le L||x_1 - x_2|| \tag{2}$$

For all $x_1, x_2 \in N$.

- Lipschiz on $W \in D$ if (2) holds $\forall x_1, x_2 \in W$ (with same L)
- globally Lipschitz if (2) holds $\forall x_1, x_2 \in \mathbb{R}^n$ (with same L)

We have

localy Lipschitz functions are continuous

differenciable functions are locally Lipschitz

locally Lipschitz functions are Lipschitz on each compact subset of D (Khalil Ex 3.19)

Lemma 1 (Cromwall). Suppose that $0 \le \phi(t) \le c + L \int_0^t \phi(\tau) d\tau$, c, L > 0, ϕ – continuous. Then $\phi(t) \le ce^{Lt}$.

Proof. $c + L \int_0^t \phi(\tau) d\tau := \psi(t), \ \dot{\psi}(t) = L\phi(t) \le L\psi(t).$

Consider $\frac{d}{dt} \left(\psi(t) e^{-LT} \right) = e^{-Lt} \dot{\psi}(t) - L\psi(t) \left(\right) \leq 0$, thus $\psi(t) e^{-LT}$ is decreased, and as a result we have $\phi(t) e^{-Lt} \leq \psi(t) e^{-Lt} \leq \psi(0) = c$

Theorem 1.2 (Picard Lindelof). If function $f: D \to \mathbb{R}^n$ is locally Lipschitz then for $\forall x_0 \in D \exists ! x : (-\epsilon, \epsilon) \to D, \ \epsilon > 0$ satisfying (1).

Proof. * existence from Piano theorem

Proof of uniqueness

Consider two solutions $x_1(.)$ and $x_2(.)$ to (1). $\dot{x}_1 - \dot{x}_2 = f(x_1) - f(x_2)$, $x_1(0) = x_2(0)$. Then we can integrate equality: $x_1(t) - x_2(t) = \int_0^t f(x_1(\tau)) - f(x_2(\tau)) d\tau$. $|x_1(t) - x_2(t)| \le \int_0^t |f(x_1(\tau)) - f(x_2(\tau))| d\tau$. Now we can apply Cromwall's lemma with c = 0 and $\phi(t) = |x_1(t) - x_2(t)|$, then $\phi(t) \le 0$, then $x_1(t) = x_2(t)$, $\forall t \in (-\epsilon, \epsilon)$

Example.

$$\dot{x} = \begin{cases} \sqrt{x}, & \text{if } x \ge 0\\ 0, & \text{else } x < 0 \end{cases}$$

Solutions
$$x(t) = \begin{cases} \frac{1}{4}(t-c)^2, & \text{if } t \ge c \ge 0\\ 0, & \text{else} \end{cases}$$

Global existance & uniqueness

- sufficient condition: f globally Lipschitz
- another sufficient condition: solution entirely lies in a coplex set
- forward completeness has equivalent Lyapunov-like characterization: system is forward-complete iff \exists solution $V: \mathbb{R}^n \to \mathbb{R} \geq 0$ s.t. $\frac{\partial V}{\partial x} f(x) \leq V(x), \forall x \in \mathbb{R}^n$

1.3 Lyapunov stability

If functions $\dot{V}(x) < 0$, $\forall x \in D$ $\{0\}$, then x^* is asymptotically stable.

Definition. Equilibrium point x = 0 is stable if $\forall \epsilon > 0 \ \exists \delta > 0$ s.t. from $||x_0|| < \delta$ follows $||x(t)|| \le \epsilon, \ \forall t \ge 0$.

Definition. Equilibrium point x = 0 is asymptotically stable if it stable and exist $\delta > 0$ s.t. from $||x_0|| < \delta$ follows $\lim_{t \to \infty} x(t) \to 0$.

Theorem 1.3 (Lyapunov's direct method). Let $x^* = 0 \in D$ be an equilibrium point of (1), i.e., f(0) = 0. Let $f: D \to R^n$ is continious. If there exist a differentiable $V: D \to R$ s.t.

1.
$$V(x^*) = 0, V(x) > 0, \forall x \in D$$

{0}

2.
$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x) \le 0, \forall x \in D$$

then $x^* = 0$ is stable.

Proof. Fix compact $U = \{x : V(x) \le c\}$ s.t. $U \in D$. By Piano: exist $\alpha > 0$ s.t. any solution x with $x_0 \in U$ exists at least on the interval $[0, \alpha)$.

Lyapunovs direct method gives us:

- stability
- convergence (if V < 0)
- subset of the region of attraction (all compact $U = \{x : V(x) \le c\} \in D$)
- existance of solution for all times

2 Nonlinear systems

In this section we consider function $f: R \times D \to R^n$, where $D \subseteq R^n$, and D is open.

$$\dot{x}(t) = f(t, x(t)), \quad t > t_0 > 0, \quad x(t_0) = x_0$$
 (3)

The origin $x^* \in D$ is an equilinrium point for (3), if f(t,0) = 0, $\forall t \ge 0$.

Remark: EP (equilibrium point) $x^* = 0$ can be translation of a nonzero solution.

Suppose \overline{y} is a solution of $\dot{y} = g(t, y)$.

Change of coordinates: $x(t) = y(t) - \overline{y}(t)$, then $\dot{x}(t) = \dot{y}(t) - \dot{\overline{y}}(t) = g(t, x(t) + \overline{y}(t)) - \dot{\overline{y}}(t) := f(t, x(t))$. Since $\dot{\overline{y}}(t) = g * t, \overline{y}(t)$, then $f(t, 0) = 0, \ \forall t \geq 0$. Existance and uniquence of solution to (3):

- if f continuous, then exist local colution
- if f continuous and locally Lipschitz in x^* , then exist local uniq solution

Now we need new stability definitions.

Definition. Point $x^* = 0$ is stable if $\forall \epsilon > 0$ and $\forall t_0 \geq 0$, $\exists \delta > 0$ s.t. from $||x_0|| < \delta$ follows $||x(t)|| < \epsilon$, $\forall t \geq t_0$.

Definition. Point $x^* = 0$ is uniformly stable if $\forall \epsilon > 0 \ \exists \delta > 0$, s.t $\forall t_0 \geq 0$, from $||x_0|| < \delta$ follows $||x(t)|| < \epsilon, \forall t \geq t_0$.

Definition. Point $x^* = 0$ asymptotically stable if it is stable and $\forall t_0 \ge 0 \ \exists c > 0$, s.t from $||x_0|| < c$ follows $\lim_{t\to\infty} ||x(t)|| \to 0$.

Definition. Point $x^* = 0$ uniformly asymptotically stable if it is uniformly stable and $\exists c > 0$, s.t $\forall t_0 \geq 0$ from $||x_0|| < c$ follows $\lim_{t \to \infty} ||x(t)|| \to 0$.

Definition. Convergence: $\forall \eta > 0 \ \forall t_0 \geq 0, \exists T > 0 \text{ such that } \forall t \geq t_0 + T \text{ follows } ||x(t)|| < \eta.$

Definition. Uniform convergence: $\forall \eta > 0 \ \exists T > 0$ such that $\forall t_0 \geq 0$ and $\forall t \geq t_0 + T$ follows $||x(t)|| < \eta$.

Example. Consider next equation:

$$\dot{x}(t) = -\frac{x(t)}{1+t}, \quad t_0 \ge 0$$

Solution $x(t) = x(t_0) \frac{1+t_0}{1+t}$. It is uniformly stable, because we can choose $\delta = \epsilon$. But does x(t) convergence uniformly? Answer is no.

Definition. Point $x^* = 0$ is globaly uniformly asymptotically stable if it is uniformly stable with $\delta \to \infty$ for $\epsilon \to \infty$ and $\forall c, \eta \quad \exists T > 0$ such that $\forall t_0 \geq 0$ from $||x_0|| < c$ follows $||x(t)|| < \eta$, $\forall t \geq t_0 + T$.

2.1 Lyapunov's direct method

Consider some function $V:[0,\infty)\times D\to R,\ (t,x)\to V(t,x)$ such that $\dot{V}(t,x)=\frac{\partial}{\partial t}V(t,x)+\frac{\partial}{\partial x}V(t,x)f(t,x).$

Theorem 2.1 (Lyapunov's direct method). Let $f:[0,\infty)\times D\to R^n$ is continuous and let $x^*=0$ be equilibrium point. If there is a differentiable function $V:[0,\infty)\times D\to R$ with:

- $W_1(x) \leq V(t,x) \leq W_2(x), \forall t \geq 0, x \in D$
- $\dot{V}(t,x) < 0, \forall t > 0, x \in D$

where $W_1, W_2: D \to R$ continuous and positive definite, then $x^* = 0$ is uniformly stable.

If further $\dot{V}(t,x) \leq -W_3(x)$, $\forall t \geq 0$, $x \in D$ with $W_3: D \to R$ continuous and positive definite, the $x^* = 0$ is uniformly asymptotically stable.

If $D = \mathbb{R}^n$ and W_1 is radialy unbounded then $X^* = 0$ is globally uniformly asymptotically stable.

Example. Consider the equation $\dot{x}(t) = -(1+t)x(t)$.

Check function $V(t,x) = \frac{1}{2}x^2$ as candidat for Lyapunov's function. Then $W_1(x) = W_2(x) = \frac{1}{2}x^2$ and $\dot{V}(t,x) = -(1+t)x^2 \le -x^2(t) =: W_3(x)$. Then from theorem we have, that $X^* = 0$ is globally uniformly asymptotically stable.

2.2 Exponential stability

Definition. Point $X^* = 0$ is an exponentially stable EP of (3) if $\exists \lambda, c, k > 0$ s.t. $t \ge t_0 \ge 0$ and all $||x_0|| < c$ follows $||x(t)|| \le K||x(t_0)||e^{\lambda(t-t_0)}$.

Remark: from exponential stability follows uniformly asymptotically stability.

Lemma 2 (Auxilarity result). Let $\dot{x}(t) = f(t, x(t))$, f scalar and $\dot{\xi}(t) \leq f(t, \xi(t))$ with $\xi(t_0) \leq x(t_0)$. Then $\xi(t) \leq x(t) \ \forall t \geq t_0$.

Theorem 2.2. Let $f:[0,\infty)\times D\to R^n$ be continuous and $x^*=0\in D$ be an EP.

If there is a differentiable function $V:[0,\infty)\times D\to R$ and constants $k_1,k_2,k_3,a>0$ s.t.

- 1. $k_1||x||^a \le V(t,x) \le k_2||x||^a, \forall t \ge 0, x \in D$
- 2. $\dot{V}(t,x) \leq -k_3 ||x||^a$

then $x^* = 0$ is exponentially stable.

If $D = \mathbb{R}^n$, then X^* is globally exponential stable.

Proof. For c > 0 small enough, trajectories initialized in $\{x : k_2 ||x||^a < c\}$ remain bounded and in D. From 1) and 2) we can conclude $\dot{V} \leq -\frac{k_3}{k_2}V$. Then from previous Lemma $V(t, x(t)) \leq$

$$V(t_0, x(t_0))e^{-\frac{k_3}{k_2}(t-t_0)}. \text{ Then } ||x(t)|| \leq [from 1)] \leq \left(\frac{V(t, x(t))}{k_1}\right)^{\frac{1}{a}} \leq \left(\frac{V(t_0, x(t_0))e^{-\frac{k_3}{k_2}(t-t_0)}}{k_1}\right)^{\frac{1}{a}} \leq \left(\frac{k_2||x(t_0)||^a e^{-\frac{k_3}{k_2}(t-t_0)}}{k_1}\right)^{\frac{1}{a}} \leq \left(\frac{k_2||x(t_0)||^a e^{-\frac{k_3}{k_2}(t-t_0)}}{k_1}\right)^{\frac{1}{a}}$$

Example. Consider the equation $\dot{x}(t) = -(1+t)x(t)$.

Here $V(t,x) = \frac{1}{2}x^2$ then X^* is exponentially stable.

2.3 Comparsion function

Definition. A function $\alpha:[0,\delta)\to[0,\infty)$ is (of) "klass K" if it is continuous, strictly increasing, and $\alpha(0)=0$.

Definition. A function $\alpha:[0,\delta)\to[0,\infty)$ is "class K_∞ if αinK and $\lim_{r\to\infty}\to\infty$.

Example. Function $\alpha(r) = \tan^{-1}(r) - \text{class } K$

Function $\alpha(r) = r^k - \text{class } K_{\infty}$

Definition. A function $\beta: [0, \delta) \times [0, \delta) \to [0, \infty)$ is "class KL if it is continuous, $\beta(\cdot, s) \in K$ for all fixed s, and for each fixed r, $\beta(r, \cdot)$ is strictly decreasing: $\lim_{s\to\infty} \beta(r, s) = 0$

Example. Function $\beta(x,s) = max(r,r^2)e^s$ belong class KL.

Properties of compasion functions:

- If $\alpha \in K$ on $[0, \delta)$, then α^{-1} is defined on $[0, \alpha(\delta))$ and $\alpha^{-1} \in K$.
- If $\alpha \in K_{\infty}$, then $\alpha^{-1} \in K_{\infty}$
- If $\alpha_1, \alpha_2 \in K$, then $\alpha_1 \circ \alpha_2 \in K$ (same for K_{∞}
- If $\alpha_1, \alpha_2 \in K$, $\beta \in KL$ then $\alpha_1(\beta(\alpha_2(r), s)) \in KL$

Now we conseider comparsion functions and stability definitions.

Lemma 3. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly stable iff $\exists \alpha \in K$ and c > 0 s.t. $\forall t \geq t_0, \forall ||x(t_0)|| < c$ and $||x(t)|| \leq \alpha(||x(t_0)||)$.

(only sufficiency). Given $\epsilon > 0$ choose $\delta < \min(c, \alpha^{-1}(\epsilon))$. Then from $||x(t_0)|| < \delta$ follows $||x(t)|| \le \alpha(||x(t_0)||) < \alpha(\alpha^{-1}(\epsilon)) = \epsilon$.

Lemma 4. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly asymptotically stable iff $\exists \beta \in KL \text{ and } c > 0 \text{ s.t. } \forall t \geq t_0, \forall ||x(t_0)|| < c \text{ and } ||x(t)|| \leq \beta(||x(t_0)||, t - t_0).$

(only sufficiency). Let $||x(t_0)|| < c$. Then $||x(t)|| \le \beta(||x(t_0)||, t - t_0) < \beta(c, t - t_0)$. This mean uniform convergence. $||x(t)|| \le \beta(||x(t_0)||, t - t_0) < \beta(||x_{t_0}||, 0)$. This gives us uniform stability. \square

Lemma 5. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly asymptotically stable iff $\exists \beta \in KL \text{ and } c > 0 \text{ s.t. } \forall t \geq t_0, \forall ||x(t_0)|| < c \text{ and } ||x(t)|| \leq \beta(||x(t_0)||, t - t_0).$

(only sufficiency). Let $||x(t_0)|| < c$. Then $||x(t)|| \le \beta(||x(t_0)||, t - t_0) < \beta(c, t - t_0)$. This mean uniform convergence. $||x(t)|| \le \beta(||x(t_0)||, t - t_0) < \beta(||x_{t_0}||, 0)$. This gives us uniform stability. \square

Lemma 6. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is globally uniformly asymptotically stable iff previous lemma holds for all $x_0 \in \mathbb{R}^n$.

Now consider comparsion functions and Lyapunov functions

If $W: R^n \to R$ is continuous and positive definite, then $\forall r > 0 \ \exists \alpha_1, \alpha_2 \in K$ s.t. $\alpha_1(||x||) \le W(x) \le \alpha_2(|x||)$ for all $x \in B_r(0) = \{x|||x|| \le r\}$.

If W is radially unbounded, then $\exists \alpha_1, \alpha_2 \in K_{\infty}$ s.t. $\alpha_1(||x||) \leq W(x) \leq \alpha_2(|x||)$ for all $x \in \mathbb{R}^n$.

Lemma 7 (Auxility). Consider $\dot{y} = \alpha(y)$, $y(t_0) = y_0 > 0$, $\alpha \in K$. Then $\exists \beta \in KL$ s.t. $y(t) = \beta(y_0, t - t_0)$.

Sketch of proof of Lyapunov's direct method:

$$\begin{cases} W_1(x) \le V(t, x) \le W_2(x) \\ \dot{V} \le -W_3(x) \end{cases}$$

Where W_1, W_2, W_3 – continuous and positive defined.

Then $\exists \alpha_1, \alpha_2, \alpha_3 \in K$ such that $\alpha_1(||x||) \leq V(t,x) \leq \alpha_2(||x||)$ and $\dot{V}(t,x) \leq -\alpha_3(||x||)$.

Proof uniform stability:

$$||x(t)|| \le \alpha_1^{-1}(V(t, x(t))) \le [\alpha_1 i n K] \le \alpha_1^{-1}(V(t_0, x(t_0))) \le \alpha_1^{-1}(\alpha_2(||x(t_0)||)).$$

Proof uniform convergence

$$\begin{split} \dot{V} &\leq -\alpha_3(||x||) \leq -\alpha_3(\alpha_2^{-1}(V)). \text{ We know, that } \alpha_3 \circ \alpha_2^{-1} \in K. \text{ By comparsion lemma, } V(t,x(t)) \leq W(t), \text{ where } W \text{ solves } \dot{W} &= -\alpha_3(\alpha_2^{-1}(W)) \text{ with } W(t_0) = V(t_0,x(t_0)). \text{ By auxility lemma } \exists \beta \in KL \text{ s.t. } V(t,x(t)) \leq \beta(V(t_0,x(t_0)),t-t_0), \text{ then } ||x(t)|| \leq \alpha_1^{-1}(V(t,x(t))) \leq \alpha_1^{-1}(\beta(V(t_0,x(t_0)),t-t_0)) \leq \alpha_1^{-1}(\beta(\alpha_2(||x(t_0)||),t-t_0)) =: \bar{\beta}(||x(t_0)||,t-t_0). \text{ From this follows uniform asymptotic stability since } \bar{\beta} \in KL. \end{split}$$

2.4 Converse theorems

Theorem 2.3. Let $X^* = 0$ be an EP of $\dot{x}(t) = f(t, x(t))$ with $f: [0, \infty) \times \mathbb{R}^n \to \mathbb{R}^n$ continuously differentiable and $\frac{\partial f}{\partial x}$ bounded in \mathbb{R}^n , uniformly in \mathbf{t} ($||\frac{\partial f}{\partial x}(t, x)|| \leq L$ for all $x \in \mathbb{R}^n$, $t \geq 0$, L > 0.

If $x^*=0$ is globally exponentially stale, then exists differentiable $V:[0,\infty)\times R^n\to R$ and $c_1,c_2,c_3,c_4>0$ s.t. $c_1||x||^2\leq V(t,x)\leq c_2||x||^2,\ \dot{V}(t,x)\leq -c_3||x||^2$ and $\left\|\frac{\partial V}{\partial x}\right\|\leq c_4||x||$.

Proof. Let $\Phi(\tau;t,x)$ – solution to $\dot{x}(t)=f(t,x(t))$ which static at (t,x).

 $\begin{array}{ll} V(t,x) \,=\, \int_t^{t+\delta} \Phi^T(\tau;t,x) \Phi(\tau;t,x) d\tau, & \delta > 0. \quad \text{Upper bound:} \quad V(t,x) \,=\, \int_t^{t+\delta} ||\Phi(\tau;t,x)||_2^2 d\tau \,\leq \\ [exponential \ stability] \leq \int_t^{t+\delta} k^2 e^{-2\lambda(\tau-t)} d\tau ||x||_2^2 = \frac{k^2}{2\lambda} (1-e^{-2\lambda\delta}) ||x||_2^2. \end{array}$

Lower bound: since $\left\| \frac{\partial V}{\partial x} \right\| \leq L$, then $||f(t,x)||_2 \leq L||x||_2$. Thus by comparation lemma $||\Phi(\tau;t,x)||_2^2 \geq ||x||_2^2 e^{-2L(\tau-t)}$. Set it in $V(t,x) \geq \int_t^{t+\delta} e^{-2L(\tau-t)} d\tau ||x||_2^2 = \frac{1}{2L} (1-e^{-2L\delta}) ||x||_2^2$.

Decrease conditions: $\dot{V}(t,x) = \cdots \leq -(1 - k^2 e^{-2\lambda \delta})||x||_2^2$.

3 System with inputs

Consider equation:

$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0$$
(4)

where $f: \mathbb{R}^n \to \mathbb{R}^n$.

Assumption: f in locally Lipschitz.

Exageneous signa $u: R \to R^n$.

Input can be "bad" (disturbance) or "good" (control).

3.1 Input-to-state stability

Motivation: LTI system $\dot{x} = Ax + Bu$, $x(0) = x_0$.

Solution: $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$. If A is Hurwitz, then $||e^{At}|| \le ce^{-\lambda t}$ for some $c, \lambda > 0$.

How large can x grow for some bounded u? $||x(t)|| \leq ||e^{At}|| ||x_0|| + \int_0^t ||e^{A(t-\tau)}|| ||B|| ||u(\tau)|| d\tau \leq e^{-\lambda t} c||x_0|| + \int_0^t e^{-\lambda (t-\tau)} c||B|| ||u(\tau)|| d\tau = ce^{-\lambda t} ||x_0|| + (1-e^{-\lambda t}) \frac{c}{\lambda} ||B|| \sup_{\tau \in [0,t]} ||u(\tau)||.$

- $ce^{-\lambda t}||x_0||$ class KL in $(||x_0||,t)$
- $(1 e^{-\lambda t})$ less than 1
- $\frac{c}{\lambda}||B||\sup||u(\tau)||$ class K

If $\sup_{\tau \in [0,t]} ||u(\tau)||$ is bounded than \dot{x} remains bounded. Even more: the smaller $\sup_{\tau \in [0,t]} ||u(\tau)||$, the smaller ||x(t)||.

Definition. System (4) is input-to-state stable (ISS) if $\exists \beta \in KL, \ \gamma \in K \text{ s.t. } \forall x_0 \in R^n, \ \forall t \geq 0$ follows $||x(t)|| \leq \beta(||x_0||, t) + \gamma(\sup_{\tau \in [0, t]} ||u(\tau)||)$.

Remarks:

- From ISS follows O-GAS (global assymptotical stability of x=0 for $\dot{x}=f(x,0)$
- \bullet γ can be interpreted as "gain" w.r.t. u

• if $\lim_{t\to\infty} u(t) = 0$ then $\lim_{t\to\infty} x(t) = 0$

Example. Consider equation $\dot{x} = -x + xu$. System is O-GASS, not ISS (for example $u \equiv \alpha \Rightarrow \dot{x} = x(\alpha - 1)$ all solution diverge).

Example. Consider equation $\dot{x} = -3x + (1 + 2x^2)u$. System is O-GASS, not ISS (for example $u \equiv 1, x_0 = 2, x(t) = \frac{3-e^t}{3-2e^t}$ has a finite escape time.

Theorem 3.1. Suppose that there exists a continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$ and $\alpha_1, \alpha_2 \in K_{\infty}$ and $\alpha_3, \rho \in K$ such that $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||)$, $\forall x \in \mathbb{R}^n$ and $\frac{\partial V}{\partial x} f(x, u) \leq -\alpha_3(||x||)$, $\forall x: ||x|| \geq \rho(||u||)$. Then (4) is ISS with $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$

Proof. Idea: same as Lyapunovs direct method when x is "outside" of ball $\{x|||x|| \leq \rho(||u||)\}$

Example. Consider equality $\dot{x} = -x^3 + u$. Let $V(x) = \frac{1}{2}x^2$, then $\dot{V} = -x^4 + xu = [0 < \Theta < 1] = -(1 - \Theta)x^4 - \Theta x^4 + xu \le -(1 - \Theta)x^4$ for all $x : ||x|| \ge \left(\frac{||u||}{\Theta}\right)^{\frac{1}{3}}$. Thus, system is ISS with $\gamma(v) = \rho(v) = \left(\frac{v}{\Theta}\right)^{\frac{1}{3}}$.

4 Backstepping

These remarks from the last lecture, so should be added to the last chapter

$$\forall x \neq 0 : \inf_{u} \frac{\partial V}{\partial x} f(x, u) < 0 \ \dot{x} = f(x) + G(x)u$$

So this leads to

$$\forall x \neq 0 L_G V(x) = 0 \Rightarrow L_f V(x) \neq 0$$

Remark: The last formula is "optimal" if minimize:

$$\int_0^\infty \frac{1}{2} p(x) b(x)^T b(x) + \frac{1}{2p(x)} u^T u dt$$

$$b(x) := (L_G V(x))^T$$

where c > 0

$$p(x) = \begin{cases} c + \frac{a(x) + \sqrt{a(x)^2 + (b(x)^T b(x))^2}}{b(x)^T b(x)} & b(x) \neq 0\\ c & b(x) = 0 \end{cases}$$

It still works if $u = \lambda h(x)$ with $\lambda \in [\frac{1}{2}; \infty)$ is applied (large "gain margin")

This is Backstepping

Integrator backstepping

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2$$

$$\dot{x}_2 = u$$
(5)

where $x_1 \in \mathbb{R}^m$, x_2 , $u \in \mathbb{R}$ (single input)

image to be inserted

Assumption: we know (smooth) "feedback" $\alpha_1: \mathbb{R}^n \to \mathbb{R}$, and positive definite, differentiable $v_1: \mathbb{R}^m \to \mathbb{R}$

s.t. $L_{f_1+g_1\alpha_1}V_1(x)$ is negative definite \Rightarrow origin of $\dot{x_1}=f_1(x_1)+g_1(x_1)\alpha_1(x_1)$ is asymptotically stable

Goal: Compute feedback u = k(x) which stabilises (5). Backstepping constructs $u = \alpha_2(x_1, x_2)$ s.t. $(e_1, e_2) = (x_1 - 0, x_2 - \alpha_1(x_1)) = 0$ error coordinates

Rewrite (5):

$$\dot{x}_1 = f_1(x_1) + g_1\alpha_1(x_1) + g_1(x_1)(x_2 - \alpha_1(x_1))$$

$$\dot{x}_2 = u$$

image to be inserted

In error coordinates

$$\dot{e}_{1} = f_{1}(e_{1}) + g_{1}(e_{1})\alpha_{1}(e_{1}) + g_{1}(e_{1})e_{2}
\dot{e}_{2} = u - \dot{\alpha}_{1} = u - \frac{\partial \alpha_{1}}{\partial e_{1}}\dot{e}_{1} = u - \frac{\partial \alpha_{1}}{\partial e_{1}}$$
(6)

"backstepping" α_1 through the integrator

Define $V_2(e_2) := \frac{1}{2}e_2^2$, and

$$V(e_1, e_2) = V_1(e_1) + V_2(e_2)$$

$$\dot{V}(e_1, e_2) = \frac{\partial V_1}{\partial e_1} (f_1(e_1) + g_1(e_1)\alpha_1(e_1)) + \frac{\partial V_1}{\partial e_1} g_1(e_1)e_2 + \frac{\partial V_2}{\partial e_2} (u - \dot{\alpha}_1)$$

as far as $L_{f_1+g_1\alpha_1}V_1$ -negative definite and $\frac{\partial V_2}{\partial e_2} \to e_2$

Choose

$$u = \left(-\frac{\partial V_1}{\partial e_1}g_1(e_1) + \dot{\alpha}_1\right)(\text{"canaling terms"}) - k_2 e_2(\text{"stabilizing term"})k_2 > 0 \tag{7}$$

$$\Rightarrow$$
 Then $\dot{V}(e_1, e_2) = L_{f_1 + g_1 \alpha_1} V_1(e_1) - k_2 e_2^2 < 0, \ \forall (e_1, e_2) \neq 0$

$$\Rightarrow$$
 Then $\dot{V}(e_1, e_2) = L_{f_1 + g_1 \alpha_1} V_1(e_1) - k_2 e_2^2 < 0 \ \forall (e_1, e_2) \neq 0$

 \Rightarrow $(e_1, e_2) = (0, 0)$ is an asymptotically stable EP for (6) with u as in (7)

Remark: $(e_1, e_2) \rightarrow (0, 0)$ does not necessarily imply that $(x_1, x_2) \rightarrow 0$ for $u = \alpha_2(x_1, x_2) = -\frac{\partial V_1}{\partial x_1}g_1(x_1) + \dot{\alpha_1} - k_2(x_2 - \alpha_1(x_1))$

where $u \leftarrow (7)$ the original coordinates and $\dot{\alpha}_1 \leftarrow \frac{\partial \alpha_1}{\partial x_1} (f_1(x_1) + g_1(x_1)x_2)$

But $(x_1, x_2) = (0, 0)$ is asymptotically stable if $\alpha_1(0) = 0$ why? $(e_1, e_2) \rightarrow 0 \Rightarrow x_1 \rightarrow 0 \ x_2 \rightarrow \alpha_1(0) = 0$

Example.

$$\dot{x_1} = x_1 x_2$$

$$\dot{x_2} = u$$

Choose $\alpha_1(x_1) = -k \ (k > 0) \rightarrow \dot{x_1} = -kx_1 \Rightarrow V_1(x_1) = \frac{1}{2}x_1^2$

Then:

$$e_1 = x_1 - 0 \ \dot{e_1} = e_1(e_2 - k)$$

 $e_2 = x_2 + k \ e_2 = u$

Backstepping yields: $u = -e_1^2 - k_2 e_2 \ k_2 > 0 \Rightarrow (e_1, e_2) = (0, 0)$ is asymptotically stabilized

 $(x_1, x_2) = (0, -k)$ is asymptotically stabilized

Can we choose different α_1 s.t. $(x_1, x_2) = (0, 0)$ is stabilized?

Yes, e.g.

$$\alpha_1(x_1) = -x_1^2 \Rightarrow \dot{x_1} = -x_1^3 V_1(x_1) = \frac{1}{2}x_1^2$$

So we have equations

$$e_1 = x_1 - 0 \ \dot{e_1} = e_1(e_2 - e_1^2)$$

 $e_2 = x_2 + x_1^2 \ \dot{e_2} = u + 2e_1^2(e_2 - e_1^2)$

Backstepping results in

$$u = -e_1^2 - 2e_1^2(e_2 - e_1^2) - k_2e_2, \ k_2 > 0 \Rightarrow (e_1, e_2) \to (0, 0), \ (x_1, x_2) \to (0, 0)$$

Generalization-1

$$\dot{x_1} = f_1(x_1) + g_1(x_1)x_2$$

$$\dot{x_2} = f_2(x_1, x_2) + g_2(x_1, x_2)u$$

Assumption: $g_2(x_1, x_2) \neq 0 \forall x_1, x_2 \Rightarrow$ Input transformation: $u = \frac{1}{g_2(x_1, x_2)}(V - f_2(x_1, x_2)) \Rightarrow \dot{x_1} = f_1(x_1) + g_1(x_1)x_2 \ \dot{x_2} = V \Rightarrow$ can apply integrator backstepping to determine V results in

$$u = \alpha_2(x_1, x_2) = \frac{1}{g_2(x_1, x_2)} \left(-\frac{\partial V_1}{\partial x_1} g_1(x_1) + \dot{\alpha}_1 - k_2(x_2 - \alpha_1(x_1)) - f_2(x_1, x_2) \right)$$