In [1]:

import os
import datetime
import numpy as np
import pandas as pd

try:

import matplotlib.pyplot as plt

the output of plotting commands is displayed inline within frontends like the Jupyt er notebook,

directly below the code cell that produced it. The resulting plots will then also be stored in the notebook document.

%matplotlib inline

except:

pass

merge and pre-process data

Nasdag.rom NYSE Yahoo

```
In [2]:
files = os.listdir('data')
print("There are {} csv files:".format(len(files)))
for name in files:
    print(name[:-4])
There are 31 csv files:
AAPL
AXP
BA
CAT
CSC0
CVX
DIS
DWDP
GS
HD
IBM
INTC
JNJ
JPM
KO
MCD
MMM
MRK
MSFT
NKE
PFE
PG
TRV
UNH
UTX
٧
VZ
WBA
WMT
MOX
^DJI
```

```
In [3]:
```

```
dow_jones = pd.read_csv('data/^DJI.csv')
aapl = pd.read_csv('data/AAPL.csv')
```

n [4]:

print("dimensions of Dow Jones Industrial Average: ", dow_jones.shape)
dow_jones.head()

dimensions of Dow Jones Industrial Average: (2518, 7)

Out[4]:

_												7 1		
	Date		Open		High		Low		Close		Adj	Close	Volum	
0	2008- 11-24	8048.08	39844	8599.0	19531	8048.0	89844	8443.3	389648	844	3.3	889648	49189000	
1	2008- 11-25	8445.13	39648	8607.3	79883	8281.4	59961	8479.4	169727	847	9.4	69727	37402000	
2	2008- 11-26	8464.49	90234	8726.6	10352	8311.1	69922	8726.6	610352	872	6.6	10352	28392000	
3	2008- 11-28	8724.70	00195	8831.3	49609	8672.6	90430	8829.0	040039	882	29.0	40039	15551000	
4	2008- 12-01	8826.88	39648	8827.0	49805	8141.3	59863	8149.0)89844	814	9.0	89844	32101000	

udex

In [5]:

print("dimensions of Dow Jones components: ", aapl.shape)
aapl.tail()

dimensions of Dow Jones components: (2518, 6)

Out[5]:

AAPL

	date	8	close	volume	open open	high	low
2513	12/1/2008	12	<mark>.7</mark> 043	230862519	13.0429	13.1814	12.7033
2514	11/28/2008	13	<mark>.2</mark> 386	75301403	13.5286	13.5371	13.1229
2515	11/26/2008	13	<mark>.5</mark> 714	224858127	12.8457	13.6071	12.8357
2516	11/25/2008	12	<mark>.</mark> 9714	308776603	13.5186	13.5300	12.5943
2517	11/24/2008	13	<mark>.</mark> 2786	360468748	12.1729	13.5414	12.1200

```
In [6]:
aapl['Date'] = pd.to_datetime(aapl.date)
aapl = aapl.sort_values(by=['Date'])
aapl.head()
Out[6]:
```

	date	close	volume	open	high	low	Date
2517	11/24/2008	13.2786	360468748	12.1729	13.5414	12.1200	2008-11-24
2516	11/25/2008	12.9714	308776603	13.5186	13.5300	12.5943	2008-11-25
2515	11/26/2008	13.5714	224858127	12.8457	13.6071	12.8357	2008-11-26
2514	11/28/2008	13.2386	75301403	13.5286	13.5371	13.1229	2008-11-28
2513	12/1/2008	12.7043	230862519	13.0429	13.1814	12.7033	2008-12-01

```
In [7]:
asset prices = pd.DataFrame(columns=['AAPL','AXP','BA','CAT','CSCO','CVX','DIS','DWDP',
 'GS','HD',
                                      'IBM', 'INTC', 'JNJ', 'JPM', 'KO', 'MCD', 'MMM', 'MRK', 'MS
FT', 'NKE',
                                      'PFE', 'PG', 'TRV', 'UNH', 'UTX', 'V', 'VZ', 'WBA', 'WMT',
 'XOM'.
                                      'DJI'],
                            index=dow_jones.Date)
# special cases
asset_prices.AAPL = np.array(aapl.close)
asset prices.DJI = np.array(dow jones['Adj Close'])
dwdp = pd.read csv('data/DWDP.csv')
 asset_prices.DWDP = np.array(dwdp['Adj Close'])
mrk = pd.read csv('data/MRK.csv')
 asset prices.MRK = np.array(mrk['Adj Close'])
In [8]:
 files left = sorted(list(set(files) - set(['AAPL.csv', 'DWDP.csv', 'MRK.csv', '^DJI.cs
 v'])))
 print(len(files left), files_left)
 27 ['AXP.csv', 'BA.csv', 'CAT.csv', 'CSCO.csv', 'CVX.csv', 'DIS.csv', 'GS.
csv', 'HD.csv', 'IBM.csv', 'INTC.csv', 'JNJ.csv', 'JPM.csv', 'KO.csv', 'MC
 D.csv', 'MMM.csv', 'MSFT.csv', 'NKE.csv', 'PFE.csv', 'PG.csv', 'TRV.csv',
 'UNH.csv', 'UTX.csv', 'V.csv', 'VZ.csv', 'WBA.csv', 'WMT.csv', 'XOM.csv']
 In [9]:
 for name in files_left:
     df = pd.read csv('data/'+name)
     df['Date'] = pd.to_datetime(df.date)
     df = df.sort values(by=['Date'])
     asset_prices[name[:-4]] = np.array(df.close)
```

n [28]:

#asset_prices.to_csv('data/close.csv')
asset_prices.head()

Out[28]:

	AAPL	AXP	BA	CAT	csco	CVX	DIS	DWDP	GS	HD	 	. [
Date											g	
2008- 11-24	13.2786	21.18	40.75	36.34	16.40	74.30	22.20	13.190079	67.42	21.42	 6,	
2008- 11 - 25	12.9714	21.37	40.18	37.27	15.42	76.53	22.03	13.146806	71.78	22.25	 6:	
2008- 11-26	13.5714	22.30	41.28	39.33	16.39	79.93	22.50	13.644410	76.50	23.55	 6:	
2008- 11-28	13.2386	23.31	42.63	40.99	16.54	79.01	22.52	13.377581	78.99	23.11	 6,	
2008- 12-01	12.7043	19.64	39.88	36.58	14.96	72.02	20.33	12.930458	65.76	21.21	 61	

5 rows × 31 columns

In [29]:

asset_prices.tail()

Out[29]:

	AAPL	AXP	ВА	CAT	csco	CVX	DIS	DWDP	GS	F
Date										
2018- 11-16	193.53	109.46	335.95	129.96	46.35	119.06	116.19	59.189999	202.12	177.
2018- 11-19	185.86	108.25	320.94	125.98	45.75	119.42	115.42	57.799999	198.22	173.
2018- 11-20	176.98	106.09	317.70	122.27	44.49	116.10	111.87	56.369999	191.34	169.
2018- 11-21	176.78	106.50	317.32	123.87	44.89	117.57	113.03	56.970001	192.60	169.
2018- 11-23	172.29	105.74	312.32	122.32	44.54	113.60	112.08	56.430000	189.10	168.

5 rows × 31 columns

2518 x/31

calculate log-returns window = 1

In [11]:

np.log(asset_prices.shift(1)).head()

Out[11]:

	AAPL	AXP	ВА	CAT	csco	CVX	DIS	DW
Date								
2008- 11-24	NaN	NaN						
2008- 11-25	2.586154	3.053057	3.707456	3.592919	2.797281	4.308111	3.100092	2.5794
2008- 11-26	2.562747	3.061988	3.693369	3.618189	2.735665	4.337683	3.092405	2.576
2008- 11 - 28	2.607965	3.104587	3.720378	3.671988	2.796671	4.381151	3.113515	2.6133
2008- 12 - 01	2.583137	3.148882	3.752558	3.713328	2.805782	4.369574	3.114404	2.593

5 rows × 31 columns

In [12]:

asset_returns = (np.log(asset_prices) - np.log(asset_prices.shift(1))).iloc[1:,:] asset_returns.head()

Out[12]:

	AAPL	AXP	ВА	CAT	csco	CVX	DIS	
Date								Γ
2008- 11-25	-0.023407	0.008931	-0.014086	0.025270	-0.061616	0.029572	-0.007687	-
2008- 11-26	0.045218	0.042599	0.027009	0.053799	0.061006	0.043468	0.021110	C
2008- 11-28	-0.024828	0.044296	0.032180	0.041341	0.009110	-0.011577	0.000888	-
2008- 12-01	-0.041196	-0.171314	-0.066683	-0.113826	-0.100402	-0.092631	-0.102306	-
2008- 12-02	0.039034	0.055460	0.020353	0.038085	0.023779	0.047718	0.054093	(

5 rows × 31 columns

```
n [13]:
```

len(asset returns)

Out[13]:

2517 × 31

standarize the data

In [14]:

from sklearn.preprocessing import StandardScaler

columns=asset_returns.columns.values)

standardized_asset_returns.head()

Out[14]:

	AAPL	AXP	ВА	CAT	csco	cvx	DIS	
Date								
2008- 11-25	-1.445093	0.396634	-0.889603	1.265145	-3.665218	2.054946	-0.548920	85
2008- 11-26	2.615029	2.007100	1.564708	2.721270	3.582246	3.026156	1.348636	
2008- 11-28	-1.529168	2.088282	1.873554	2.085400	0.514995	-0.820876	0.016158	
2008- 12-01	-2.497597	-8.225179	-4.030817	-5.834290	-5.957616	-6.485605	-6.783712	
2008- 12-02	2.249151	2.622298	1.167218	1.919213	1.381987	3.323185	3.522003	

5 rows × 31 columns

In [15]:

print("mean of AAPL before and after standardization: ", asset_returns.AAPL. mean(), st
andardized_asset_returns.AAPL.mean())
print("std of AAPL before and after standardization: ", asset_returns.AAPL. std(), stan

print("std of AAPL before and after standardization: ", asset_returns.AAPL. std(), sta dardized_asset_returns.AAPL.std())

mean of AAPL before and after standardization: 0.0010182858111799883 -4.4 10897992153979e-18

std of AAPL before and after standardization: 0.01690543258877368 1.00019

87083973913

near = 0, 6 = 1

insights of data by plotting correlations

```
In [16]:
```

```
fig, ax_list = plt.subplots(1, 1, figsize=(30,20))
plt.suptitle("Correlation of AAPL returns and DJI returns", fontsize = 38, fontweight=
'bold')
ax_list.scatter(standardized_asset_returns['DJI'].values.reshape((2517, 1)), standardiz
ed_asset_returns['AAPL'].values.reshape((2517, 1)))
plt.xlabel("log-return of DJI (window=1)", fontsize=30)
plt.ylabel("log-return of AAPL (window=1)", fontsize=30)
ax_list.tick_params(labelsize=20)
plt.show()
```

Correlation of AAPL returns and DJI returns

ın [17]:

```
fig, ax_list = plt.subplots(6, 5, figsize=(50,50))
plt.suptitle("Correlation of component returns and DJI returns", fontsize = 48, fontwei
ght='bold')

dji = standardized_asset_returns['DJI'].values.reshape((2517, 1))
column_names = standardized_asset_returns.columns.values
for i in range(standardized_asset_returns.shape[1]-1):
    ax_list[int(i/5)][i%5].set_title('{} vs DJI'.format(column_names[i]), fontstyle='it
alic', fontsize = 30)
    ax_list[int(i/5)][i%5].scatter(dji, standardized_asset_returns.iloc[:,i].values.res
hape((2517, 1)))
plt.show()
```

Correlation of component returns and DJI returns

split into training and testing data set

```
In [18]:
```

```
train_percentage = 0.7

df_train = standardized_asset_returns.iloc[:int(standardized_asset_returns.shape[0]*0.7
), :]

df_test = standardized_asset_returns.iloc[int(standardized_asset_returns.shape[0]*0.7
):, :]

print("dimensions of training set: ", df_train.shape)

print("dimensions of testing set: ", df_test.shape)

df_train.tail()
```

dimensions of training set: (1761, 31) dimensions of testing set: (756, 31)

Out[18]:

	AAPL	AXP	ВА	CAT	csco	CVX	DIS	Γ
Date								
2015- 11-17	-0.312104	-0.399105	0.634227	-0.754911	0.020647	-0.333504	0.076877	-
2015- 11-18	1.784146	0.663958	0.844407	0.654906	0.656030	0.888338	1.088354	,
2015- 11-19	0.686617	0.359009	0.337088	-0.242824	0.518882	-1.065635	0.274770	(
2015- 11-20	0.198201	-0.241454	0.015671	0.785331	0.406858	-1.426396	0.708230	-
2015- 11-23	-0.833974	-0.149597	-0.473567	-0.110779	-0.324355	0.769010	-0.400072	-

5 rows × 31 columns

building CAMP linear regression model

In [19]:

```
In [20]:
fig, ax_list = plt.subplots(6, 5, figsize=(50,50))
plt.suptitle("Regression of DJI component returns of testing set", fontsize = 48, fontw
eight='bold')
x_axis = df_test['DJI'].values.reshape((756, 1))
for i, stock in enumerate(tickers):
    lr.fit(df_train['DJI'].values.reshape((1761, 1)), df train[stock].values.reshape((1
761, 1)))
    alphas[i] = lr.intercept_[0]
    betas[i] = lr.coef_[0][0]
    predictions = lr.predict(df train['DJI'].values.reshape((1761, 1)))
    r2_in_sample[i] = r2_score(df_train[stock], predictions)
    predictions = lr.predict(df test['DJI'].values.reshape((756, 1)))
    r2 out sample[i] = r2 score(df test[stock], predictions)
    ax list[int(i/5)][i%5].set title('{}'.format(stock), fontstyle='italic', fontsize =
 30)
    ax_list[int(i/5)][i%5].scatter(x_axis, df_test[stock].values.reshape((756, 1)))
    ax list[int(i/5)][i%5].plot(x axis, predictions, color='red', linewidth=3)
plt.show()
# R2 score: https://en.wikipedia.org/wiki/Coefficient_of_determination
```

Regression of DJI component returnsof testing set


```
In [21]:
```

```
lr.fit(df_train['DJI'].values.reshape((1761, 1)), df_train['AAPL'].values.reshape((1761
, 1)))
alpha = lr.intercept_[0]
beta = lr.coef_[0][0]
predictions = lr.predict(df_train['DJI'].values.reshape((1761, 1)))
```

In [22]:

```
fig, ax_list = plt.subplots(1, 1, figsize=(30,20))
plt.suptitle("CAMP of the training set", fontsize = 38, fontweight='bold')
ax_list.scatter(df_train['DJI'].values.reshape((1761, 1)), df_train['AAPL'].values.resh
ape((1761, 1)), label='AAPL Original Data (Training)')
ax_list.plot(df_train['DJI'].values.reshape((1761, 1)), predictions, label='AAPL Regres
sion', color='red', linewidth=3)
plt.xlabel("log-return of DJI (window=1)", fontsize=30)
plt.ylabel("log-return of AAPL (window=1)", fontsize=30)
ax_list.tick_params(labelsize=20)
plt.legend(fontsize=20)
plt.show()
```

CAMP of the training set

In [23]:

```
lr.fit(df_train['DJI'].values.reshape((1761, 1)), df_train['AAPL'].values.reshape((1761
, 1)))
alpha = lr.intercept_[0]
beta = lr.coef_[0][0]
predictions = lr.predict(df_test['DJI'].values.reshape((756, 1)))
```

In [24]:

```
#date = np.array([datetime.datetime.strptime(t, '%Y-%m-%d').date() for t in np.array(df
_train.index)])

fig, ax_list = plt.subplots(1, 1, figsize=(30,20))
plt.suptitle("CAMP of the testing set", fontsize = 38, fontweight='bold')
ax_list.scatter(df_test['DJI'].values.reshape((756, 1)), df_test['AAPL'].values.reshape
((756, 1)), label='AAPL Original Data (Testing)')
ax_list.plot(df_test['DJI'].values.reshape((756, 1)), predictions, label='AAPL Regressi
on', color='red', linewidth=3)
plt.xlabel("log-return of DJI (window=1)", fontsize=30)
plt.ylabel("log-return of AAPL (window=1)", fontsize=30)
ax_list.tick_params(labelsize=20)
plt.legend(fontsize=20)
plt.show()
```

CAMP of the testing set

Out[25]:

systematic risk

	Alpha	Beta	R2 in-sample	R2 out-sample
AAPL	0.012884	0.540214	0.302781	0.323307
AXP	0.002493	0.778564	0.555189	0.210315
ВА	-0.004761	0.721516	0.561934	0.509038
CAT	-0.005464	0.765893	0.609088	0.494331
csco	-0.006435	0.669297	0.445433	0.459051
CVX	-0.004447	0.762649	0.639511	0.361433
DIS	0.020287	0.797565	0.617386	0.267576
DWDP	0.007085	0.733037	0.498082	0.329535
GS	0.008293	0.726647	0.511405	0.566066
HD	0.014941	0.706463	0.501144	0.411090
IBM	0.012013	0.688678	0.532743	0.362576
INTC	0.002183	0.654399	0.473203	0.377840
JNJ	-0.003915	0.653170	0.490554	0.320031
JPM	-0.001773	0.791462	0.564337	0.463749
ко	0.005496	0.634532	0.409841	0.220611
MCD	-0.005943	0.584590	0.387535	0.201514
ммм	0.005207	0.806897	0.678940	0.520118
MRK	0.014005	0.563051	0.371092	0.045215
MSFT	-0.006016	0.646649	0.437439	0.466641
NKE	0.015417	0.620695	0.416318	0.227720
PFE	-0.001233	0.643521	0.421723	0.288668
PG	-0.004812	0.627081	0.429854	0.177887
TRV	0.009836	0.740250	0.536368	0.379249
UNH	-0.002195	0.545247	0.280003	0.392731
UTX	0.000392	0.817094	0.677376	0.471482
V	0.006846	0.611793	0.365240	0.503265
VZ	-0.002187	0.598259	0.400715	0.156400
WBA	0.012990	0.508173	0.268765	0.213071
WMT	-0.013979	0.452810	0.263426	0.136823
XOM	0.001936	0.776527	0.648714	0.355225

coefficient of determination $R_2 = 1 - \frac{SS_{reciduals}}{SS_{total}}$

Shaller Rs -> more ron-Systematic risk

(other factors!)

In [26]:

df_test.head()

Out[26]:

	AAPL	AXP	ВА	CAT	csco	cvx	DIS	
Date								
2015- 11-24	0.504823	-0.436185	0.076354	0.247754	-0.369226	1.020990	-0.858538	0.2
2015- 11 - 25	-0.484795	0.009493	-0.540500	0.039683	-0.088518	-0.379988	0.358623	-1.2
2015- 11-27	-0.170627	0.076081	-0.243084	-0.217741	0.149865	-0.397403	-2.037950	0.0
2015- 11-30	0.185322	-0.170569	-0.661077	0.990044	-0.175093	0.719068	-0.999390	0.0
2015- 12-01	-0.542321	0.341900	0.884637	-0.796187	0.666562	0.870385	1.063255	1.0

5 rows × 31 columns

4

J18 CAMP

In [30]:

Out[30]:

	~	00.	1	7	ra C	log(return m)
KP	ВА	CAT	csco	CVX	DIS	

	AAPL	AXP	ВА	CAT	csco	cvx	DIS	
Date	at G							
2015- 11-24	0.455229	-0.491586	0.032085	0.201171	-0.408273	0.973611	-0.933024	0.2
2015- 11-25	-0.478551	0.034568	-0.510192	0.072266	-0.058384	-0.348536	0.366576	-1.2
2015- 11-27	-0.160723	0.106432	-0.207885	-0.179968	0.184535	-0.360783	-2.024592	0.0
2015- 11-30	0.480861	0.271443	-0.244382	1.432778	0.213463	1.158934	-0.564324	0.4
2015- 12-01	-1.046035	-0.367984	0.233841	-1.486601	0.064885	0.181903	0.318313	0.4

5 rows × 30 columns

In [34]:

```
time = np.array([datetime.datetime.strptime(t, '%Y-%m-%d').date() for t in np.array(df_
unexplained.index)])
fig, ax_list = plt.subplots(1, 1, figsize=(30,20))
plt.suptitle("Unexplained price of AAPL in the testing set", fontsize = 38, fontweight=
'bold')
ax_list.plot(time, df_unexplained['AAPL'].values.reshape((756, 1)))
#plt.xlabel("log-return of DJI (window=1)", fontsize=30)
#plt.ylabel("log-return of AAPL (window=1)", fontsize=30)
ax_list.tick_params(labelsize=20)
#plt.legend(fontsize=20)
plt.show()
```

Unexplained price of AAPL in the testing set

