Proof for – Fairness-Driven Downlink Optimization in NOMA-MEC with UAV-IRS for 5G/6G Networks

Huaiwen He, Feng Huang, Chenghao Zhou, Hong Shen, Hui Tian

APPENDIX A PROOF OF LEMMA 1

By applying Jensen's inequality [1], we obtain the following approximation for the expected rate:

$$\mathbb{E}\left\{R_{i}\right\} \approx \log_{2} \left(1 + \frac{\mathbb{E}\left\{\left|\boldsymbol{H}_{i}\right|^{2}\right\} p_{i}}{\mathbb{E}\left\{\left|\boldsymbol{H}_{i}\right|^{2}\right\} \sum_{j=1, j \neq i}^{M} p_{j} + \sigma^{2}}\right)$$
(1)

Let
$$\hat{\mathbf{s}}_i^H = \sqrt{\frac{\kappa_1}{\|\boldsymbol{w}_s - \boldsymbol{w}_i\|^{\beta_1}}} \overline{\mathbf{s}}_i^H$$
, $\breve{\mathbf{s}}_i^H = \sqrt{\frac{\rho_0 - \kappa_1}{\|\boldsymbol{w}_s - \boldsymbol{w}_i\|^{\beta_1}}} \widetilde{\mathbf{s}}_i^H$, $\hat{\boldsymbol{h}}_i^H = \sqrt{\frac{\kappa_2}{\|\boldsymbol{q}_u - \boldsymbol{w}_i\|^{\beta_2}}} \bar{\boldsymbol{h}}_i^H$, $\breve{\boldsymbol{h}}_i^H = \sqrt{\frac{\rho_0 - \kappa_2}{\|\boldsymbol{q}_u - \boldsymbol{w}_i\|^{\beta_2}}} \tilde{\boldsymbol{h}}_i^H$, $\kappa_1 = \frac{K_1 \rho_0}{K_1 + 1}$, and $\kappa_2 = \frac{K_2 \rho_0}{K_2 + 1}$.

Then, the expected value of $\mathbb{E}\left\{|\boldsymbol{H}_i|^2\right\}$ can be decomposed

$$\mathbb{E}\left\{\left|\boldsymbol{H}_{i}\right|^{2}\right\} = \mathbb{E}\left\{\left|\left(\widehat{\mathbf{s}}_{i}^{H} + \widecheck{\mathbf{s}}_{i}^{H}\right) + \left(\widehat{\boldsymbol{h}}_{i}^{H} + \widecheck{\boldsymbol{h}}_{i}^{H}\right)\boldsymbol{\Theta}\boldsymbol{G}\right|^{2}\right\} \\
\stackrel{(a)}{=}\left|\widehat{\mathbf{s}}_{i}^{H} + \widehat{\boldsymbol{h}}_{i}^{H}\boldsymbol{\Theta}\boldsymbol{G}\right|^{2} + \mathbb{E}\left\{\left|\widecheck{\mathbf{s}}_{i}^{H}\right|^{2}\right\} + \mathbb{E}\left\{\left|\widecheck{\boldsymbol{h}}_{i}^{H}\boldsymbol{\Theta}\boldsymbol{G}\right|^{2}\right\} \quad (2)$$

where the equality $\stackrel{(a)}{=}$ follows from the fact that $\breve{\mathbf{s}}^H$ and $\breve{\boldsymbol{h}}^H$ are zero-mean and independent of each other. Thus, we have:

$$\mathbb{E}\left\{\left|\mathbf{\breve{s}}_{i}^{H}\right|^{2}\right\} = \frac{\rho_{0} - \kappa_{1}}{\|\boldsymbol{w}_{s} - \boldsymbol{w}_{i}\|^{\beta_{1}}},\tag{3}$$

$$\mathbb{E}\left\{\left|\breve{\boldsymbol{h}}_{i}^{H}\boldsymbol{\Theta}\boldsymbol{G}\right|^{2}\right\} = \frac{L\rho_{0}(\rho_{0} - \kappa_{2})}{\|\boldsymbol{q}_{u} - \boldsymbol{w}_{i}\|^{\beta_{2}}\|\boldsymbol{q}_{u} - \boldsymbol{w}_{s}\|^{2}} \tag{4}$$

Let $\gamma_i = \frac{\rho_0 - \kappa_1}{\|\boldsymbol{w}_s - \boldsymbol{w}_i\|^{\beta_1}}$, $\tau_i = L\rho_0(\rho_0 - \kappa_2)$. Substituting (3) and (4) into (2), we obtain the expected effective composite channel power gain from the AP to GMD_i:

$$\mathbb{E}\left\{|\boldsymbol{H}_{i}|^{2}\right\} \triangleq \Omega_{i}$$

$$= \left|\hat{\mathbf{s}}_{i}^{H} + \hat{\boldsymbol{h}}_{i}^{H}\boldsymbol{\Theta}\boldsymbol{G}\right|^{2} + \gamma_{i} + \frac{\tau_{i}}{\|\boldsymbol{q}_{u} - \boldsymbol{w}_{i}\|^{\beta_{2}}\|\boldsymbol{q}_{u} - \boldsymbol{w}_{s}\|^{2}}$$
(5)

Substituting (5) into (1), the upper bound of the expected achievable rate $\mathbb{E}\{R_i\}$ for GMD can be derived as (11). From formula (11), it is evident that the communication rate \overline{R}_i is primarily influenced by the deterministic component of the LoS path, the larger path loss, and the IRS reflection characteristics. This suggests that when calculating \overline{R}_i , the reliance is on the statistical data of Channel State Information (CSI), rather than instantaneous changes. This is particularly feasible in IRS-assisted systems, as the passive operation of the IRS makes it challenging to obtain its instantaneous CSI.

APPENDIX B PROOF OF THEOREM 2

Let $f(z) = \log_2(1+z)$. By applying the first-order Taylor expansion of f(z) around z_0 , we obtain:

$$\mathbb{E}\left\{R_{i}\right\} \approx \log_{2}\left(1 + \frac{\mathbb{E}\left\{\left|\boldsymbol{H}_{i}\right|^{2}\right\}p_{i}}{\mathbb{E}\left\{\left|\boldsymbol{H}_{i}\right|^{2}\right\}\sum_{j=1, j \neq i}^{M} p_{j} + \sigma^{2}}\right)$$

$$(1) \qquad \log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{1}{\ln(2)} \cdot \frac{1}{1 + z_{0}}(z - z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}} \cdot \frac{1}{\ln(2)} \cdot \frac{1}{z_{0}}(z - z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_{0}) + \frac{z_{0}}{1 + z_{0}}(\log_{2}z - \log_{2}z_{0}),$$

$$\log_{2}(1 + z) \geq \log_{2}(1 + z_$$

where $\varepsilon=\frac{z_0}{1+z_0}, \eta=\log_2(1+z_0)-\frac{z_0}{1+z_0}\log_2 z_0.$ Thus, the proof of Theorem 2 is complete.

APPENDIX C PROOF OF LEMMA 3

The expression $\boldsymbol{X}_i^H \boldsymbol{\Phi} \boldsymbol{X}_i$ is a quadratic form, where \boldsymbol{X}_i is a complex matrix. Given that $\boldsymbol{\Phi} = \boldsymbol{\check{\theta}} \boldsymbol{\check{\theta}}^H = (\boldsymbol{\check{\theta}} \boldsymbol{\check{\theta}}^H)^H = \boldsymbol{\Phi}^H$, Φ is a Hermitian matrix.

For any non-zero vector \boldsymbol{v} , since $\boldsymbol{\Phi} = \boldsymbol{\breve{\theta}} \boldsymbol{\breve{\theta}}^H$, we have:

$$\mathbf{v}^H \mathbf{\Phi} \mathbf{v} = \mathbf{v}^H \check{\boldsymbol{\theta}} \check{\boldsymbol{\theta}}^H \mathbf{v} = (\check{\boldsymbol{\theta}}^H \mathbf{v})^H (\check{\boldsymbol{\theta}}^H \mathbf{v}) = |\check{\boldsymbol{\theta}}^H \mathbf{v}|^2 \ge 0$$
 (7)

Thus, Φ is Hermitian and positive semidefinite in the complex domain. Consequently $oldsymbol{X}_i^H oldsymbol{\Phi} oldsymbol{X}_i$ is a convex function with respect to Φ . Additionally, the trace operation $Tr(P_iY_i)$ is linear. Therefore, both $f(\Phi)$ and $g(\Phi)$ are convex functions with respect to Φ .

This completes the proof of Lemma 3.

APPENDIX D **PROOF LEMMA 4**

Assume that in the optimal solution of problem (P5.1), there exists $\xi > 0$ such that at least one of the constraints (33a) to (33d) is satisfied as follows:

$$(\overline{u}_i - \xi)^2 \ge \|\boldsymbol{q}_u - \boldsymbol{w}_i\|^2, i \in \mathcal{M}, \tag{8a}$$

$$\|\boldsymbol{q}_{u} - \boldsymbol{w}_{i}\|^{2} \ge (\underline{u}_{i} + \xi)^{2}, i \in \mathcal{M},$$
 (8b)

$$\left(\overline{u}_s - \xi\right)^2 \ge \left|\boldsymbol{q}_u - \boldsymbol{w}_s\right|^2,\tag{8c}$$

$$\left|\boldsymbol{q}_{u}-\boldsymbol{w}_{s}\right|^{2}\geq\left(\underline{u}_{s}+\xi\right)^{2},$$
 (8d)

To ensure that all constraints (33a) to (33d) are satisfied with equality, we can carefully adjust the parameter ξ to either reduce the values of \overline{u}_i and \overline{u}_s or increase the values of \underline{u}_i and \underline{u}_s . This adjustment allows us to increase the value of $\underline{\Omega}_i$ or decrease the value of $\overline{\Omega}_i$ to meet the equality conditions of constraints (34) and (35). Consequently, the objective function value is improved.

Thus, the optimal solution of problem (**P5.1**) will satisfy all equality conditions of constraints (33a) to (33d) and (34), (35). Therefore, we conclude that problem (**P5.1**) and problem (**P5.1**) are mathematically equivalent.

This completes the proof of Lemma 4.

REFERENCES

[1] S. Boyd and L. Vandenberghe, *Convex optimization*. Cambridge university press, 2004.