ECE 301 Digital Electronics

NAND & NOR Function Implementation

Revised Fall 2013

K. Hintz & C. Lorie

OBJECTIVE

To understand the practical implications of DeMorgan's Theorem.

Understand that logic functions can be implemented utilizing only NAND and NOR gates.

PREPARATION

Design and construct the circuit.

PROCEDURE

- 1. Build an AND gate from a NOR gate and two inverters. Verify its operation. (Hint: Apply the theorems and properties of Boolean algebra including DeMorgan's Theorem.)
- 2. Construct the Karnaugh Map for the following truth table and simplify.
- 3. Implement the function in both a NAND and NOR only design.
- 4. Build and verify that the circuit operates according to the truth table.

minterms	Input Variables				Output
	A	В	С	D	F(A,B,C,D)
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
A	1	0	1	0	1
В	1	0	1	1	1
С	1	1	0	0	1
D	1	1	0	1	1
Е	1	1	1	0	1
F	1	1	1	1	1