GEOMETRÍA

Capítulo 18

4th
SECONDARY

PRISMA Y CILINDRO

MOTIVATING | STRATEGY

Muchos objetos que conocemos tienen forma de prismas y cilindros, de allí la importancia de conocer sus propiedades que presentan así como las fórmulas para calcular las áreas de las superficies lateral y total como la del volumen, con lo cual podremos encontrar luego sus aplicaciones prácticas en la vida diaria.

PRISMA

Un prisma es un poliedro en el cual, dos de sus caras son regiones poligonales congruentes y paralelas denominadas bases, y el resto de caras son regiones paralelográmicas denominadas caras laterales.

HELICO | THEORY

PRISMA RECTO.- Es el prisma cuyas aristas laterales son perpendiculares a las bases y sus caras laterales son regiones rectangulares

1. Área de la superficie lateral.

$$A_{SL} = 2p(base).h$$

2. Área de la superficie total.

3. Volumen.

PRISMA REGULAR:

Es un prisma recto cuyas bases son regiones poligonales regulares.

PRISMA TRIANGULAR REGULAR

ABC: triángulo equilátero

$$S = \frac{b^2 \sqrt{3}}{4}$$

PRISMA CUADRANGULAR REGULAR

PRISMA HEXAGONAL REGULAR

NOTA:

En todo prisma regular las caras laterales son congruentes.

Entonces, para la superficie lateral:

n: N°caras laterales.

ABCD: cuadrado ABCDEF: hexágono regular

$$S = b^2$$

$$S=6(\frac{b^2\sqrt{3}}{4})$$

Volumen.

V = A(base).h

PARALELEPÍPEDO RECTANGULAR, ORTOEDRO O RECTOEDRO.

Es un tipo de prisma donde todas sus caras son regiones rectangulares.

$$d^2 = a^2 + b^2 + c^2$$

A: Área de la superficie total.

V: Volumen del sólido.

CILINDRO CIRCULAR RECTO O DE REVOLUCIÓN

Se genera al girar una región rectangular una vuelta alrededor de un eje que contiene a un lado. Las bases son círculos y la altura mide igual que la generatriz.

Del gráfico:

- \checkmark O_1 y O_2 son los centros de las bases
- $\checkmark \overline{O_1O_2}$ es el eje del cilindro.

 $\checkmark \overline{AB}$; \overline{DC} son generatrices diametralmente opuestas

Volumen:

$$V = \pi r^2.h$$

DESARROLLO DE LA SUPERFICIE LATERAL

Desarrollar la superficie lateral de un cilindro de revolución (Cilindro circular recto) es trasladar su superficie sobre un plano; el desarrollo será una región rectangular.

Del gráfico:

Desarrollo de la superficie lateral

Se cumple:

Área de la superficie lateral:

$$ASL = 2p(base).g$$

$$ASL = 2\pi r. g$$

Área de la superficie total:

$$AST = ASL + 2A(base)$$

$$AST = 2\pi rg + 2.\pi r^2$$

$$AST = 2\pi r(g+r)$$

1. Calcule el área de la superficie lateral de un prisma triangular regular, si su arista lateral mide 4 u y su arista básica mide 2 u.

Resolución

- Piden: A_{SL} A_{SL} =(2p_{base})h (h = 4)
- Del gráfico:

Por teorema:

$$A_{SL} = (6)(4)$$

2. El volumen del prisma triangular regular es $90\sqrt{3}$ u³, y su altura mide 10 u. Halle la longitud de su arista básica.

Resolución

- Piden: x
- Por teorema.

$$V = A_{(base)} \cdot h \wedge A_{(base)} = \frac{x^2 \sqrt{3}}{4}$$
 $90\sqrt{3} = \left(\frac{x^2 \sqrt{3}}{4}\right) \cdot 10$
 $36 = x^2$
 $x = 6 \text{ u}$

3. Calcule el volumen del prisma recto mostrado.

Resolución

Piden: V

$$V = A_{(base)} \cdot h$$
 (h = 6)

ABC : Notable de 37° y 53°

$$AB = 3$$

Por teorema.

$$V = \left(\frac{3.4}{2}\right).6$$

$$V = (6).6$$

$$V = 36 u^3$$

4. En la figura observamos un envase de Tetrapak con forma de prisma cuadrangular recto, calcule la capacidad del envase.

Resolución

- $A_{(base)} = b.h$

$$A_{(base)} = 4(8)$$

$$A_{(base)} = 32$$

Reemplazando al teorema.

$$V = (32)(12)$$

$$V = 384 \text{ cm}^3$$

5. Halle la longitud del radio de un cilindro circular recto, si su volumen es $96\pi \text{ u}^3 \text{ y el}$ área de su superficie lateral es $48\pi \text{ u}^2$.

Resolución

• Piden: r

• Por dato:
$$V = 96\pi \text{ u}^3$$
 $\pi \cdot r^2 \cdot h = 96 \pi$
 $r^2 \cdot h = 96 \dots (1)$
 $A_{SL} = 48 \pi \text{ u}^2$
 $2\pi \cdot r \cdot h = 48 \pi$
 $r \cdot h = 24 \dots (2)$

Reemplazando 2 en 1.

r = 4 u

6. Determine la cantidad de agua que se puede almacenar en un cilindro circular recto si tiene 4 m de diámetro y 6 m de altura.

Resolución

· Piden: V

$$V = \pi r^2 h$$

Por dato:

$$2r = 4$$

$$r = 2$$

Reemplazando al teorema.

$$V = \pi.(2)^2(6)$$

$$V = 24\pi \text{ m}^3$$

7. En la figura se muestra el diseño de una nueva cajita para fósforos. Determine la longitud de la diagonal de dicha caja.

Piden: d

· Del gráfico.

$$d^{2} = 8^{2} + 4^{2} + 1^{2}$$

$$d^{2} = 64 + 16 + 1$$

$$d^{2} = 81$$

$$d = 9 \text{ cm}$$