Chcemy dojść do tw Lebesque.

Twierdzenie 1 (Lebesque) Niech P - zbiór nieciągłości funkcji $f: D \to \mathbb{R}$, f - ograniczona na D, D - . . . jest zbiorem miary Lebesque'a zera $\iff f$ - całkowalna na D.

Wiemy, że f - całkowalna \iff

$$\underset{\varepsilon>0}{\forall}.\exists.|\overline{S}(f,\Pi)-\underline{S}(f,\Pi)|<\varepsilon.$$

Ostatnio pokazaliśmy, że

$$A_{\varepsilon}=\{x\in A, O(f,x)\geqslant \varepsilon\}\,,$$
 to A_{ε} jest zbiorem domkniętym.

(PS funkcja f na zbiorze A powinna być ograniczona!!!)

Obserwacja 1 Jeżeli weźmiemy stól o jakiejś długości to mogę wziąć ileś kartek (albo naleśników. Nie wiadomo czy działa dla czego innego) i go nimi przykryć. Co więcej, jeżeli będzie promocja, to mogę nawet rzucić ich przeliczalnie dużo. Pytanie: czy dla każdego zbioru mogę (niezależnie od kształtu kartek) przykryć go skończoną liczbą kartek?

Weźmy długi stół:

$$\begin{split} R &= \bigcup_{n=0}^{\infty}]n-2, n+2[\cup]-n-2, -n+2[\\]0, 1[\subset [-2,2]\\]0, 1[\subset [-2019,2018] \cup [-2,2]\\]0, 1[= \bigcup_{n=2}^{\infty}]\frac{1}{n}, 1-\frac{1}{n}[. \end{split}$$

Ostatnie jest słabe, bo nie mogę wybrać pokrycia ze skończonej ilości elementów.

Definicja 1 Niech X - zbiór a $F = \{A_{\alpha}, \alpha \in \mathbb{R}, A_i, i \in \mathbb{N}\}$ - rodzina zbiorów. Mówimy, że F jest pokryciem zbioru X, jeżeli $X \subset \bigcup_{i,\alpha} A_{\alpha}$. Jeżeli zbiory A_{α} są otwarte, to mówimy, że F jest pokryciem otwartym, jeżeli ilość zbiorów A_{α} jest skończona, to mówimy, że pokrycie jest skończone. Dowolny podzbiór F taki, że jest też pokryciem zbioru X nazywamy podpokryciem.

Definicja 2 Zbiór X nazywamy zwartym, jeżeli z **każdego** pokrycia otwartego możemy wybrać skończone podpokrycie.

Jak sprawdzamy, czy zbiór jest zwarty, to nie szukamy skończonych pokryć, tylko takie które nie są skończone.

Stwierdzenie 1 $(X - domknięty, ograniczony) \iff (X - zbiór zwarty)$

Dowód 1 $\ niech\ X\in\mathbb{X},\ \mathbb{X}$ - $przestrze\acute{n}\ metryczna$

 \Leftarrow 1 Pokażemy, że jeżeli X - zwarty, to X - ograniczony. (przypomnienie: zbiór $A \subset \mathbb{X}$ jest ograniczony jeżeli \exists . \exists \exists , że $A \subset K(x_0,r)$ Skoro X - zwarty, to niech F będzie pokryciem złożonym

Rysunek 1: Nieważne, co A myśli o sobie, jeżeli otoczymy je kulą, to jest ograniczone i koniec

 $z\,K(x,1),x_1X.\,F=\left\{K(x,1),\,\,orall_{x\in X}
ight\}.\,F\,\, jest\,\, pokryciem\,\, zbioru\,\,X,\,\, ale\,\, ponieważ\,\,X\,\,-\,\, zwarty,\,\, to\,\, znaczy,\,\, że\,\, z\,\, pokrycia\,\,F\,\, możemy\,\, wybrać\,\, skończone\,\, podpokrycie,\,\, co\,\, oznacza,\,\, że\,\, zbiór\,\,X\,\, możemy\,\, ułożyć\,\, w\,\, kulę\,\, o\,\, skończonym\,\, promieniu.\,\, Zatem\,\,X\,\,-\,\, ograniczony.$

Rysunek 2: Przykrywanie zbioru kulami

$$K(q,r),K(p,r);r=\frac{1}{2}d(p,q).$$

Widać, że $K(q,r) \cap K(p,r) = \phi$. Powtarzamy taką procedurę dla każdego $q \subset X$, oznacza to, że dostaniemy pokrycie zbioru X kulami $K(q,r_q), q \in X$, ale X jest zbiorem zwartym więc mogę wybrać **skończoną** ilość kul

 $K(q_1, r_1), K(q_2, r_2), \ldots, K(q_k, r_k)$ będącą pokryciem zbioru X. A to znaczy, że

$$\underbrace{(K(p,r_1)\cap K(p,r_2)\cap\ldots\cap K(p,r_k))}_{jest\ do\ zbi\acute{o}r\ niepusty\ i\ \textit{otwarty}}\cap\underbrace{(K(q_1,r_1)\cup K(q_2,r_2)\cup\ldots\cup K(q_k,r_k))}_{Pokrywa\ caly\ X}=\phi.$$

czyli np.

$$\bigcap_{n=1}^{\infty} \left[-\frac{1}{n}, \frac{1}{n} \right] = [0].$$

Znaleźliśmy otoczenie otwarte punktu $P: K(p, r_k) \cap \ldots K(p, r_k)$, takie, że nie ma punktów wspólnych z X, więc p jest punktem wewnętrznym, czyli X' - otwarty, czyli X - domknięty.

X - domknięty i ograniczony $\implies X$ - zwarty. Niech P - kostka z \mathbb{R}^n , metryka d_2 . Pokażemy, że P jest zwarta.

$$P = [a_1, b_1] \times \ldots \times [a_n, b_n].$$

$$\neg (p \implies q) \iff p \land \neg q.$$

Dowód przez sprzeczność:

Załóżmy, że P - domknięty i ograniczony i P nie jest zwarty. Co to znaczy, że P nie jest zwarte? Oznacza to, że istnieje pokrycie zbioru P takie, że nie da się wyciągnąć z niego skończonego podpokrycia.

Jeżeli P nie da się pokryć skończoną ilością zbiorów, to znaczy, że jeżeli weźmiemy kostkę $[a_1, c_1] \times [a_2, c_2] \times \ldots \times [a_n, c_n]$ gdzie $c_1 = \frac{a_1 + b_1}{2}, c_2 = \frac{a_2 + b_2}{2}, \ldots, c_n = \frac{a_n + b_n}{2},$ to jej też nie możemy podzielić na skończoną ilość elementów. Czyli $P_1 \subset P$, kulę P_1 też możemy

podzielić na cztery części itd... W efekcie dostaniemy ciąg kostek $PP_1P_2P_3...P_n...$ Weźmy ciąg elementów

$$x_0 \in P$$

$$x_1 \in P_1$$

$$\vdots$$

$$x_n \in P_n$$

$$\vdots$$

Znaczy, że ciąg $\{x_n\}$ jest ciągiem Cauchy (bo każdy element ciągu asdasd). Ciąg $\{x_n\} \in \mathbb{R}^n$ czyli X_n jest zbieżny. (bo \mathbb{R}^n - zupelna). Niech \tilde{x} będzie granicą $\{x_n\}$ a zbiór $\{P, P_1, P_2, \ldots, P_n, \ldots\}$ jest pokryciem P takim, z którego nie możemy wyciągnąć skończonego podpokrycia. Ale skoro $\lim_{n\to\infty} x_n = \tilde{x}$, to znaczy, że

$$\forall .\exists . \forall .x_n \in K(\tilde{x}, \varepsilon).$$

Oznacza to, że mogę tak dobrać ε , że w $K(\tilde{x}, \varepsilon)$ będą się zawierać wszystkie $P_i, i > n$. Mogę wtedy wybrać **skończone** podpokrycia kostki P.

$$\{P_1, P_2, P_3, \ldots, P_{n_i}, K(\tilde{x}, \varepsilon)\}$$
.

 $i\ sprzeczność$

Rysunek 3: mogę wybrać sobie takie kółko, że wszytkie następne kwadraty będą już leżały w tym kółku!

Wracamy do tw. Lebesque'a. Obserwacja: Niech D - zwarty, $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$ - ograniczona i niech $A = \{x \in D, o(f, x) < \varepsilon\}$. Wówczas:

$$\exists . |\overline{S}(f,\Pi) - \underline{S}(f,\Pi)| < \varepsilon |D|.$$

 $\begin{array}{l} \textbf{Dow\'od 2} \;\; \textit{Skoro} \;\; \underset{x \in A}{\forall} \; \lim_{r \to 0} |\sup_{K(x',r)} f(x') - \inf_{x' \in K(x',r)} f(x')| < \varepsilon \;\; \textit{To znaczy, $\dot{z}e$} \;\; \underset{r_{\varepsilon}}{\exists} \;\; \textit{takie, $\dot{z}e$} \;\; |\textit{supf}(x') - \inf_{x' \in K(x',r)} f(x')| < \varepsilon \;\; \textit{Je\'zeli zbadamy wszystkie kule } K(x,r_{\varepsilon}) \;\; \underset{x \in D}{\forall} \;\; \textit{to otrzymamy pokrycie } A. \;\; \textit{Ale A jest zbiorem zwartym, więc możemy wybrać skończone podpokrycie, czyli skończoną ilość kul takich, $\dot{z}e$} \end{array}$

$$(*)A \subset K(x_1, r_{\varepsilon}^1) \cup K(x_2, r_{\varepsilon}^2) \cup \ldots \cup K(x_n, r_{\varepsilon}^n).$$

Możemy zatem wybrać podział Π zbioru D zgodny z podziałem (*), w wyniku czego,

$$|\overline{S}(f,\Pi) - \underline{S}(f,\Pi)| < \varepsilon |D|.$$