# Day-1 Database



# **University Database**

# **Students Table**

| Student_ID | Name  | Class | Age | Marks | City      |
|------------|-------|-------|-----|-------|-----------|
| 101        | Riya  | 10    | 15  | 89    | Delhi     |
| 102        | Arjun | 10    | 16  | 92    | Mumbai    |
| 103        | Sneha | 9     | 14  | 85    | Kolkata   |
| 104        | Rahul | 8     | 13  | 78    | Chennai   |
| 105        | Priya | 9     | 14  | 95    | Bengaluru |

# **Employee Database**

# **Employee Table**

| Emp_ID | Name   | Department | Age | Salary | Location  |
|--------|--------|------------|-----|--------|-----------|
| E001   | Anil   | HR         | 30  | 45,000 | Delhi     |
| E002   | Meena  | IT         | 28  | 60,000 | Hyderabad |
| E003   | Rakesh | Finance    | 35  | 55,000 | Mumbai    |
| E004   | Pooja  | IT         | 26  | 62,000 | Bengaluru |
| E005   | Vikram | Sales      | 32  | 48,000 | Kolkata   |

# **Database System**

A Database System is a complete setup that includes:

- **1.The database** where data is stored
- **2.The DBMS (Database Management System)** software that manages the database
- **3.Users and Applications** people or programs that interact with the database
- **4. Hardware** the physical machines (computers, servers, storage) where it all runs

### **Database**

A database is a place where data is stored and organized so it can be easily accessed, managed, and updated.

**Example**: Like a digital filing cabinet for storing student records, product info, etc.

# **DBMS (Database Management System)**

A DBMS is software that helps you create, manage, and use a database. It handles storing, retrieving, and updating data.

**Example:** Microsoft Access, MySQL, Oracle.

# RDBMS (Relational Database Management System)

An RDBMS is a type of DBMS where data is stored in tables (rows and columns), and different tables can be related.

**Example:** MySQL, PostgreSQL, SQL Server.

### Structured Data

Data that is organized in a fixed format like tables. It's easy to enter, search, and analyze.

**Example:** A table with student names, roll numbers, and marks

### **Unstructured Data**

Data that has no fixed format or structure. Harder to search or organize.

**Example:** Videos, images, audio files, free-form text.

### Semi-Structured Data

Data that is not in table format, but still has some structure using tags or markers (like JSON, XML).

**Example:** A JSON document with user info — name, email, and optional fields like hobbies or address.

# File system



# File System

- Digital organizer.
- It manages how files are stored, named, and retrieved on the disk.
- Examples: ntfs, fat32, exfat, ext4.

The file system keeps track of the following things about each file

| Icon                   | What It Means                                          |  |  |
|------------------------|--------------------------------------------------------|--|--|
| <b>♦</b> Size of file  | How big the file is (in KB, MB, etc.)                  |  |  |
| Attributes             | Whether the file is read-only, hidden, etc.            |  |  |
| <pre> ¶ Location</pre> | Where on the disk the file is stored                   |  |  |
| Hierarchy              | The folder structure (which folder it's in)            |  |  |
| Path of file           | Full address of the file (like C:\Users\Name\file.txt) |  |  |

| Feature           | File System                                           | Database                                                   |  |
|-------------------|-------------------------------------------------------|------------------------------------------------------------|--|
| Definition        | A way to store and organize files on a storage device | A structured system to store, manage, and query data       |  |
| Data Storage      | Stores data in files and folders                      | Stores data in tables (rows & columns)                     |  |
| Data Format       | Unstructured or semi-<br>structured                   | Structured (using schemas)                                 |  |
| Data Access       | Manual or through limited programs                    | Can be accessed using <b>SQL</b> or queries                |  |
| Data Redundancy   | High (same data can exist in multiple files)          | Low (data normalization reduces repetition)                |  |
| Search Speed      | Slower, especially with large or scattered data       | Faster with indexing and optimized queries                 |  |
| Security          | Basic (file permissions like read/write)              | Advanced (user roles, encryption, access control)          |  |
| Backup & Recovery | Manual or OS-based backup                             | Built-in backup, restore, and transaction recovery options |  |
| Multi-user Access | Not easy or safe                                      | Supports multiple users at once safely                     |  |
| Example           | Windows File Explorer, FAT32,<br>NTFS                 | MySQL, PostgreSQL, Oracle,<br>MongoDB                      |  |

# MySql Installation Window





















# What Is Schema?

A schema is like a blueprint or structure of a database. It defines how data is organized, including:

•Just like a building plan shows where rooms, doors, and windows go — A database schema shows how tables and data are arranged. Example

| Column Name | Data Type | Description                        |  |
|-------------|-----------|------------------------------------|--|
| id          | INT       | Unique student ID<br>(Primary Key) |  |
| name        | VARCHAR   | Student name                       |  |
| age         | INT       | Student age                        |  |
| class_id    | INT       | Refers to class (Foreign<br>Key)   |  |

# CRUD in MySQL (For Database and Table)

### 1. CREATE

Create Database
CREATE DATABASE student\_db;

### **Create Table**

```
USE student_db;
CREATE TABLE students (
id INT PRIMARY KEY,
name VARCHAR(50),
age INT,
department VARCHAR(50),
marks INT
);
```

# 2. READ (Retrieve data)

### **Show Databases**

SHOW DATABASES;

#### **Show Tables**

USE student\_db;
SHOW TABLES;

### **Show Table Structure**

DESCRIBE students;

#### Select All Data

SELECT \* FROM students;

# **Select Specific Columns**

SELECT name, marks FROM students;

### With Conditions

SELECT \* FROM students WHERE age > 20;

### **UPDATE**

### **Update Table Data**

UPDATE students SET marks = 90 WHERE id = 1;

#### Rename Table

RENAME TABLE students TO student\_info;

### **Add Column**

ALTER TABLE student\_info ADD email VARCHAR(100);

# **Modify Column**

ALTER TABLE student\_info MODIFY marks FLOAT;

# Rename Column (MySQL 8+)

ALTER TABLE student\_info RENAME COLUMN email TO contact\_email;

#### 4. DELETE

### **Delete Row (Record)**

DELETE FROM student\_info WHERE id = 1;

### **Delete All Rows**

DELETE FROM student\_info;

### Drop Table (Deletes table structure and data)

DROP TABLE student\_info;

### Drop Database (Deletes all tables in DB)

DROP DATABASE student\_db;

### **Example Data Insertion (For Practice)**

INSERT INTO students (id, name, age, department, marks) VALUES

- (1, 'Ravi', 20, 'Computer Science', 85),
- (2, 'Anita', 21, 'Mathematics', 92),
- (3, 'Karan', 19, 'Physics', 78);

| id | name  | age | department          | marks |
|----|-------|-----|---------------------|-------|
| 1  | Rajat | 20  | Computer<br>Science | 85    |
| 2  | Meena | 21  | Mechanical          | 78    |
| 3  | Aman  | 22  | Electronics         | 92    |
| 4  | Neha  | 20  | Computer<br>Science | 88    |
| 5  | Ravi  | 23  | Civil               | 73    |

# **Basic SELECT Queries**

- •Write a query to display all the student records.
- •Display only name and branch of all students.
- •Show all students who belong to the 'Computer Science' branch.
- •Display students who are older than **20 years**.