

Théorie de jauge et groupoïdes

Jean-Claude HAUSMANN

10 avril 1999

Abstract

Les résultats de cet article concernent le problème de l'existence de représentations d'un groupoïde topologique sur un fibré principal et leur classification à transformation de jauge près. De telles représentations interviennent naturellement dans divers contextes (théories de jauge classiques ou sur graphe, fibrés équivariants, etc).

Table des matières

1	Présentation des résultats	2
2	Preuve des théorèmes A et d'existence	6
3	Structures uniformes sur \mathcal{G} et $\mathcal{R}(C, \xi)$	8
4	Groupe de jauge et classifiant de Milnor	13
5	Preuve des théorèmes B, C et D	18
6	Exemples et applications	24
6.1	Le groupoïde associé à un fibré principal	24
6.2	Prégroupoïdes	25
6.3	Groupoïdes de chemins	27
6.4	Chemins lisses par morceaux – Connexions	29
6.5	Théorie de jauge sur graphes	31
6.6	Fibrés équivariants	32

1 Présentation des résultats

Soit X un espace topologique. Un X -groupoïde est un espace topologique C muni de :

a) deux applications continues $\alpha, \beta : C \rightarrow X$ (*source* et *but*). Pour $x, y \in X$, on note $C_x := \alpha^{-1}(\{x\})$, $C^y := \beta^{-1}(\{y\})$ et $C_x^y := C_x \cap C^y$. Le groupoïde C est dit *transitif* si $C_x^y \neq \emptyset$ pour tout $x, y \in X$.

b) une *composition* partiellement définie

$$C \times_X C := \{(c_1, c_2) \in C \mid \alpha(c_1) = \beta(c_2)\} \rightarrow C \quad , \quad (c_1, c_2) \mapsto c_1 c_2$$

qui est continue, $C \times_X C$ étant un sous-espace de $C \times C$ avec la topologie produit. On demande que $\alpha(c_1 c_2) = \alpha(c_2)$, $\beta(c_1 c_2) = \beta(c_1)$ et que la composition soit associative.

c) une application continue $i : X \rightarrow C$, associant à x l'*unité* $i_x \in C_x^x$ qui est élément neutre à gauche et à droite pour la composition.

d) une anti-involution continue $c \mapsto c^{-1}$ de C , envoyant C_x^y sur C_y^x , telle que $cc^{-1} = i_{\alpha(c)}$ et $c^{-1}c = i_{\beta(c)}$.

On suppose que X est muni d'un point base $\ast \in X$. En vertu de d), l'espace C_\ast^* est un groupe topologique que l'on note Ω_C .

On peut voir C comme l'espace des morphismes (tous inversibles) d'une petite catégorie topologique dont l'espace des objets est X . C'est le point de vue de [Ma]. Si l'on préfère les groupoïdes "sans objets" [Co, II.5], on présentera C comme un groupoïde topologique dont l'espace des unités est identifié à X .

Soit G un groupe topologique et soit $\xi := (E \xrightarrow{p} X)$ un G -espace principal au dessus de X . On entend par là que p est continue et que l'on s'est donné une action continue libre $E \times G \rightarrow E$ telle que p induise une bijection continue du quotient E/G sur X . Par exemple, un G -fibré principal sur X est un G -espace au dessus de X qui est localement trivial. On suppose que l'espace E est pointé par $\tilde{\ast} \in p^{-1}(\ast)$.

Une représentation d'un X -groupoïde C sur un G -espace ξ est une application continue $w : C \times_X E \rightarrow E$ (où C est vu au dessus de X via α) telle que, pour tout $c, d \in C$, $z \in E$ et $g \in G$, on ait

1. $p(w(c, z)) = \beta(c)$.
2. $w(c d, z) = w(c, w(d, z))$.
3. $w(c^{-1}, (w(c, z))) = z$.

$$4. \quad w(c, z \cdot g) = w(c, z) \cdot g.$$

Par exemple, si $X = *$, alors C est un groupe topologique et w correspond à une représentation (= homomorphisme continu) de C dans G . Plus généralement, si w est une représentation de C sur ξ , l'équation $w(c, \tilde{*}) = \tilde{*} \cdot h(c)$ définit un homomorphisme continu $h^w : \Omega_C \rightarrow G$ appelé l'*holonomie* de w .

Les résultats de cet article concernent l'existence et la classification de représentations d'un X -groupoïde C sur un G -fibré principal ξ donnés. Nos hypothèses principales seront que C est un X -groupoïde *localement trivial* et G un groupe *SIN* (définitions ci-dessous).

Soit C un X -groupoïde. Une *C-contraction* est une application continue $\rho : U_\rho \rightarrow C^*$, où U_ρ est un ouvert de X , telle que $\alpha(\rho(x)) = x$. Soit $\text{Cont}_C(X)$ l'ensemble des *C-contractions*. Le X -groupoïde C est dit *localement trivial* si $\{U_\rho \mid \rho \in \text{Cont}_C(X)\}$ est un recouvrement ouvert de X ([Ma, p. 32]; cette définition coïncide avec la terminologie de [Eh] si C est transitif). Si le recouvrement $\{U_\rho\}$ est de plus numérisable¹, c'est-à-dire s'il existe une partition de l'unité $\{\mu_\rho : X \rightarrow [0, 1]\}$ qui lui est subordonnée, on dira que C est un X -groupoïde *localement trivial numérisable*. Plusieurs exemples naturels de tels groupoïdes sont présentés au paragraphe 6.

Retenant les idées de Ch. Ehresmann [Eh], nous démontrerons au § 2 l'existence d'une *représentation universelle de C* et d'un principe de reconstruction :

Théorème 1.1 (Théorème A) *Soit C un X -groupoïde localement trivial numérisable. Alors :*

- a) *l'application $\beta : C_* \rightarrow X$ est un Ω_C -fibré principal numérisable (que nous appellerons ξ_C). La formule $\tilde{w}(c, u) := cu$ définit une représentation de C sur ξ_C .*
- b) *soit $\xi := (E \xrightarrow{p} X)$ un G -espace principal muni d'une représentation w de C . Alors ξ est le fibré associé à ξ_C*

$$E = C_* \times_{\Omega_C} G = C_* \times_{h^w} G,$$

où Ω_C agit à gauche sur G via l'*holonomie* h^w de w . En particulier, ξ est un G -fibré principal numérisable. De plus, la représentation w est obtenue de \tilde{w} par la formule $w(c, [u, g]) = [\tilde{w}(c, u), g] = [cu, g]$.

¹Nous utilisons “numérisable” pour équivalent français du néologisme anglais “numerable” introduit par Dold [Do]. De même, un fibré sera dit *numérisable* s'il admet un recouvrement numérisable d'ouverts trivialisants.

Rappelons qu'un G -fibré principal numérisable ξ sur X est induit du fibré universel $EG \rightarrow BG$ sur le classifiant de Milnor BG par une application continue (unique à homotopie près) $\nu_\xi : X \rightarrow BG$. En particulier, d'après le théorème A, un X -groupoïde localement trivial numérisable C donnera une application $\nu_C := \nu_{\xi_C} : X \rightarrow B\Omega_C$ induisant ξ_C . Le théorème d'existence d'une représentation de C sur ξ , qui découle facilement du théorème A, est le suivant :

Théorème 1.2 (Théorème d'existence) *Soit C un X -groupoïde localement trivial numérisable et ξ un G -fibré principal. Alors, ξ admet une représentation de C si et seulement si il est numérisable et s'il existe un homomorphisme continu $\phi : \Omega_C \rightarrow G$ tel que $B\phi \circ \nu_C$ soit homotope à ν_ξ .*

Ayant résolu la question de l'existence, intéressons-nous à l'ensemble $\mathcal{R}(C, \xi)$ des représentations de C sur ξ . Il est muni d'une action du *groupe de jauge* \mathcal{G} de ξ . Les éléments de \mathcal{G} , les *transformations de jauge*, sont les automorphismes G -équivariants de E au dessus de id_X . Pour $w \in \mathcal{R}(C, \xi)$ et $\chi \in \mathcal{G}$, on définit w^χ par

$$w^\chi(c, z) := \chi^{-1}(w(c, \chi(z))).$$

ce qui donne une action à droite de \mathcal{G} sur $\mathcal{R}(C, \xi)$. Le sous-groupe invariant \mathcal{G}_1 de \mathcal{G} formé des transformations de jauge $\tilde{*}$ joue un rôle important car il agit librement sur $\mathcal{R}(C, \xi)$ (voir 5.5).

Les ensembles $\mathcal{R}(C, \xi)$ et \mathcal{G} sont munis de la topologie compact-ouvert (CO-topologie). Nous démontrerons, au § 3 que \mathcal{G} est un groupe topologique et que l'action $\mathcal{R}(C, \xi) \times \mathcal{G} \rightarrow \mathcal{R}(C, \xi)$ est continue, ceci sous l'hypothèse que G est SIN. Rappelons qu'un groupe topologique est SIN, si son élément neutre admet un système fondamental de voisinages qui sont G -invariants (par conjugaison; SIN = small invariant neighbourhood). Par exemple, les groupes compacts, abélien ou discrets sont SIN (voir [Pa], pour la littérature classique sur ces groupes). Nous montrerons que si G est SIN, la CO-topologie sur $\mathcal{R}(C, \xi)$ et \mathcal{G} provient de structures uniformes et que toutes les opérations sont uniformément continues (voir § 3).

Pour étudier les quotients $\mathcal{R}(C, \xi)/\mathcal{G}_1$ et $\mathcal{R}(C, \xi)/\mathcal{G}$, introduisons l'espace $\mathcal{R}(\Omega_C, G)$ des représentations (i.e. homomorphismes continus) de Ω_C dans G , muni de la CO-topologie. Soit $\mathcal{R}(\Omega_C, G)_\xi$ le sous-espace des $\phi \in \mathcal{R}(\Omega_C, G)$ tels que l'application composée $n(\phi) := B\phi \circ \nu_C$ soit homotope à ν_ξ ($\mathcal{R}(\Omega_C, G)_\xi$ est une union de composantes connexes par arc de $\mathcal{R}(\Omega_C, G)$).

Au niveau des espaces classifiants, on désigne par $\text{Map}^\bullet(X, BG)_\xi$ l'espace des applications continues pointées de $f : X \rightarrow BG$ qui induisent ξ , muni de la CO-topologie.

Un espace topologique Z est dit *semi-localement contractile* si tout $z \in Z$ admet un voisinage U_z dont l'inclusion $U_z \hookrightarrow Z$ est homotope à une application constante. Cette condition ne dépend que du type d'homotopie de Z .

Théorème 1.3 (Théorème B) *Soit C un X -groupoïde localement trivial numérisable et séparé. Soit ξ un G -fibré principal numérisable sur X . On suppose que G est SIN, que X est localement compact et que $\text{Map}^\bullet(X, BG)_\xi$ est semi-localement contractile. Soit $h : \mathcal{R}(C, \xi) \rightarrow \mathcal{R}(\Omega_C, G)_\xi$ l'application qui à une représentation de C w associe son holonomie h^w . Alors h est un \mathcal{G}_1 -fibré principal.*

Nous ne savons pas si l'hypothèse “ $\text{Map}^\bullet(X, BG)_\xi$ semi-localement contractile” est toujours vérifiée. Observons que cette condition ne dépend que des types d'homotopie de X et de G . Elle est vraie si, par exemple, X est compact et G est un groupe de Lie compact. En effet, BG a alors le type d'homotopie d'un CW-complexe dénombrable, limite inductive quotients de variété de Stiefel [St, § 19.6]. L'espace $\text{Map}^\bullet(X, BG)_\xi$ est ainsi semi-localement contractile par [Mi1, lemmes 2 et 3 p. 277]. D'autre part, tout recouvrement d'un espace compact est numérisable, ce qui prouve le :

Corollaire 1.4 *Soit C un X -groupoïde localement trivial et séparé, avec X compact. Soit ξ un G -fibré principal sur X avec G un groupe de Lie compact. Alors $h : \mathcal{R}(C, \xi) \rightarrow \mathcal{R}(\Omega_C, G)_\xi$ est un \mathcal{G}_1 -fibré principal.*

Le théorème B montre que le quotient $\mathcal{R}(C, \xi)/\mathcal{G}_1$ est homéomorphe à $\mathcal{R}(\Omega_C, G)_\xi$. Pour décrire $\mathcal{R}(C, \xi)/\mathcal{G}$, on considère l'action à droite de G sur $\mathcal{R}(\Omega_C, G)$ par conjugaison. Si G est connexe par arc, cette action préserve $\mathcal{R}(\Omega_C, G)_\xi$.

Théorème 1.5 (Théorème C) *Avec les hypothèses du théorème B, l'application h induit un homéomorphisme $\mathcal{R}(C, \xi)/\mathcal{G}_1 \xrightarrow{\cong} \mathcal{R}(\Omega_C, G)_\xi$. Si, de plus, G est connexe par arc, elle induit un homéomorphisme $\mathcal{R}(C, \xi)/\mathcal{G} \xrightarrow{\cong} \mathcal{R}(\Omega_C, G)_\xi/G$.*

Les théorèmes B et C présentent une analogie avec des résultats de la théorie de jauge qu'il serait intéressant d'étudier plus à fond. On sait que, si

ξ est un G -fibré différentiable sur une variété compacte X (G groupe de Lie compact connexe), alors l'espace des connexions sur ξ modulo \mathcal{G}_1 a le type d'homotopie faible de $\text{Map}^\bullet(X, BG)_\xi$ [DK, Prop. 5.1.4]. On verra au § 6.4 qu'une connexion donne une représentation d'un groupoïde $\mathbf{D}(X)$ construit à l'aide des chemins dans X lisses par morceau. Pour l'instant, observons que les espaces $\mathcal{R}(\Omega_C, G)_\xi$ et $\text{Map}^\bullet(X, BG)_\xi$ sont reliés par une application continue $n : \mathcal{R}(\Omega_C, G)_\xi \rightarrow \text{Map}^\bullet(X, BG)_\xi$ (détails en 5.3) dont on peut décrire la fibre homotopique lorsque X est "bien pointé" :

Théorème 1.6 (Théorème D) *Supposons que l'on ait les hypothèses du théorème B et que l'inclusion $\{*\} \subset X$ soit une cofibration. Alors, la fibre homotopique de $n : \mathcal{R}(\Omega_C, G)_\xi \rightarrow \text{Map}^\bullet(X, BG)_\xi$ a le type d'homotopie faible de $\mathcal{R}(C, \xi)$.*

Le § 2 est consacré à la preuve du théorème A et du théorème d'existence. Les § 3 et 4 préparent aux preuves des théorèmes B, C et D qui sont données dans le § 5. Enfin, le § 6 présente quelques exemples et applications.

Remerciements : Ce travail a bénéficié du support du Fonds National Suisse de la Recherche Scientifique. L'auteur tient également à remercier E. Dror-Farjoun, P. de la Harpe et R. Vogt pour d'utiles discussions.

2 Preuve des théorèmes A et d'existence

Lemme 2.1 *Soit C un X -groupoïde localement trivial numérisable. Soit $\xi : (E \xrightarrow{p} X)$ un G -espace principal admettant une représentation w de C . Alors, ξ est un G -fibré principal avec recouvrement trivialisant (numérisable) $\{U_\rho \mid \rho \in \text{Cont}_C(X)\}$. Plus précisément, ξ restreint à U_ρ admet la trivialisation $\psi_\rho^w : p^{-1}(U_\rho) \rightarrow U_\rho \times G$ donnée par*

$$\psi_\rho^w(z) := (p(z), \lambda_w(z)) \quad \text{où} \quad w(\rho(p(z)), z) = \tilde{\ast} \lambda_w(z). \quad (1)$$

PREUVE: Il est banal que ψ_ρ^w est G -équivariante et on vérifie que inverse de ψ_ρ^w est $(\psi_\rho^w)^{-1}(x, g) := w(\rho(x)^{-1}, \tilde{\ast}) \cdot g$ \square .

Preuve du théorème A Observons que l'application $\beta : C_* \rightarrow X$ est surjective si C est localement trivial. En effet, si $x \in X$, il existe $\rho \in \text{Cont}_C(X)$ telle que $x \in U_\rho$ et alors $x = \beta(\rho(x)^{-1})$. L'action de Ω_C sur C_* est définie par $u \cdot c := u c$. Si $\beta(u) = \beta(\bar{u})$, alors $\bar{u} = \bar{u} \cdot c$ avec $c := (\bar{u}^{-1} u)$.

L'application β induit donc une bijection continue $\bar{\beta} : C_*/\Omega_C \rightarrow X$. Les trivialisations construites ci-dessous font que β est ouverte et donc $\bar{\beta}$ est un homéomorphisme.

Pour $\rho \in \text{Cont}_C(X)$, on définit la trivialisation $\hat{\psi}_\rho : \beta^{-1}(U_\rho) \rightarrow U_\rho \times \Omega_C$ de la manière suivante:

$$\hat{\psi}_\rho(u) = (\beta(u), \rho(\beta(u)) u). \quad (2)$$

Elle admet pour inverse

$$\hat{\psi}_\rho^{-1}(x, c) = \rho(x)^{-1} c. \quad (3)$$

La Ω_C -equivariance de l'homéomorphisme $\hat{\psi}_\rho$ est banale. Ceci montre que $\beta : C_* \rightarrow X$ est un fibré Ω_C -principal avec recouvrement trivialisant numérisable $\{U_\rho\}$. Le fait que la formule $\tilde{w}(c, u) = c u$ définisse une représentation de C sur ce fibré provient des axiômes de groupoïde .

Passons au point b) du théorème A. Soit w une représentation de C sur un G -espace principal $\xi := (E \xrightarrow{p} X)$. Le Lemme 2.1 montre que ξ est un fibré principal numérisable. L'espace E étant pointé par $\tilde{*} \in p^{-1}(\ast)$, on définit $\Phi : C_* \times_{\Omega_C} G \rightarrow E$ par

$$\Phi(u, g) = w(u, \tilde{*}) \cdot g \quad (4)$$

a) Φ est bien définie : Soit $c \in \Omega_C$. On a

$$\begin{aligned} \Phi(u c, g) &= w(u c, \tilde{*}) \cdot g = w(u, w(c, \tilde{*})) \cdot g = w(u, \tilde{*} \cdot h(c)) \cdot g = \\ &= w(u, \tilde{*}) \cdot (h(c)g) = \Phi(u, h(c)g). \end{aligned}$$

b) Φ est G -equivariante : évident.

c) Φ est surjective : Soit $z \in E$. Soit $\rho \in \text{Cont}_C(X)$ telle que $p(z) \in U_\rho$. Posons $u := \rho(p(z))^{-1} \in C_*^{p(z)}$. On a ainsi $p(\Phi(u, 1)) = \beta(u) = p(z)$. Il existe donc un unique $g \in G$ tel que $\Phi(u, g) = \Phi(u, 1) \cdot g = z$.

d) Φ est injective : Supposons que $\Phi(u, g) = \Phi(\bar{u}, \bar{g})$. On a donc $\bar{u} = u c$ avec $c := u^{-1} \bar{u} \in \Omega_C$ et

$$\begin{aligned} \Phi(\bar{u}, \bar{g}) &= w(u c, \tilde{*}) \cdot \bar{g} = w(u, w(c, \tilde{*})) \cdot \bar{g} = \\ &= w(u, \tilde{*}) \cdot (h(c)\bar{g}) \end{aligned}$$

Comme d'autre part

$$\Phi(\bar{u}, \bar{g}) = \Phi(u, g) = w(u, \tilde{*}) \cdot g,$$

il s'en suit que $g = h(c)\bar{g}$. Dans $C_* \times_{\Omega_C} G$, on aura ainsi les égalités

$$(\bar{u}, \bar{g}) = (u c, \bar{g}) = (u, h(c)\bar{g}) = (u, g).$$

e) Φ est un homéomorphisme : Soit $\rho \in \text{Cont}_C(X)$. Avec les trivialisations ψ_ρ et $\hat{\psi}_\rho$ introduites en (1) et (2), l'application

$$\Phi\rho := \psi_\rho \circ \Phi \circ \hat{\psi}_\rho^{-1} : U_\rho \times (\Omega_C \times_{\Omega_C} G) \rightarrow U_\rho \times G$$

s'écrit $\Phi\rho(x, (c, g)) = (x, h(c)g)$. L'application Φ_ρ est donc un homéomorphisme pour tout ρ , ce qui implique que Φ est un homéomorphisme.

Preuve du théorème d'existence Supposons que ξ admette une représentation w de C . Par le point b) du théorème A, ξ est obtenu du fibré ξ_C par la construction de Borel avec l'holonomie h^w . Cela implique que ν_ξ est homotope à $Bh^w \circ \nu_C$.

Réciproquement, supposons qu'il existe un homomorphisme continu $\phi : \Omega_C \rightarrow G$ tel que ν_ξ est homotope à $B\phi \circ \nu_C$. L'espace total du fibré induit $\nu_x i^*(EG)$ est de la forme $C_* \times_{\Omega_C} G$ et admet donc la représentation $w(c, [u, g]) = [cu, g]$. Le fibré $\nu_x i^*(EG)$ étant isomorphe à ξ , cela donne une représentation de C sur ξ . \square

3 Structures uniformes sur \mathcal{G} et $\mathcal{R}(C, \xi)$

Dans ce paragraphe, $\xi : E \xrightarrow{p} X$ désigne un G -fibré principal numérisable et \mathcal{G} son groupe de jauge, muni de la CO-topologie. Le fait que \mathcal{G} est un groupe topologique est non-trivial, car E n'est même pas supposé localement compact. Pour démontrer ce fait, nous allons, lorsque G est SIN, munir \mathcal{G} d'une structure uniforme $\mathbf{U}_\mathcal{G}$, dont on montrera, si X est séparé, qu'elle induit la CO-topologie (Proposition 3.5). La même stratégie sera utilisée pour l'action de \mathcal{G} sur $\mathcal{R}(C, \xi)$.

Pour décrire $\mathbf{U}_\mathcal{G}$, considérons l'application continue $\gamma : E \times_X E \rightarrow G$ définie par l'équation

$$y = z \cdot \gamma(y, z) \quad , \quad (y, z) \in E \times_X E. \quad (5)$$

Soit \mathcal{V}_G l'ensemble des ouverts V de G contenant l'élément neutre et tels que $V = V^{-1}$. Pour $V \in \mathcal{V}_G$ et K un compact de X , on définit

$$\mathcal{O}^\mathcal{G}(K, V) := \{(\chi, \tilde{\chi}) \in \mathcal{G} \times \mathcal{G} \mid \gamma(\chi(z), \tilde{\chi}(z)) \in V \text{ pour tout } z \in p^{-1}(K)\}.$$

Comme $\mathcal{O}^G(K_1, V_1) \cap \mathcal{O}^G(K_2, V_2)$ contient $\mathcal{O}^G(K_1 \cup K_2, V_1 \cap V_2)$, la famille $\mathcal{O}^G(K, V)$ est un système fondamental d'entourages de la diagonale dans $\mathcal{G} \times \mathcal{G}$, déterminant, par définition, la structure uniforme \mathbf{U}_G sur \mathcal{G} .

Proposition 3.1 *Si G est un groupe SIN, le groupe de jauge \mathcal{G} , muni de la structure uniforme \mathbf{U}_G , est un groupe topologique. De plus, \mathcal{G} est alors SIN.*

PREUVE: Nous allons tout d'abord démontrer que la multiplication $\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ et le passage à l'inverse sont uniformément continus. La topologie induite par \mathbf{U}_G fera donc de \mathcal{G} un groupe topologique dont on vérifiera directement qu'il est SIN.

Soient $\chi_1, \chi_2, \tilde{\chi}_1, \tilde{\chi}_2$ des éléments de \mathcal{G} . Par définition de l'application $\gamma : E \times_X E \rightarrow G$, on a, pour $z \in E$:

$$\tilde{\chi}_1 \circ \tilde{\chi}_2(z) = \chi_1 \circ \chi_2(z) \cdot \gamma(\tilde{\chi}_1 \circ \tilde{\chi}_2(z), \chi_1 \circ \chi_2(z)).$$

Par G -equivariance des transformations de jauge, on a :

$$\begin{aligned} \tilde{\chi}_1 \circ \tilde{\chi}_2(z) &= \tilde{\chi}_1(\chi_2(z) \cdot \gamma(\tilde{\chi}_2(z), \chi_2(z))) = \tilde{\chi}_1(\chi_2(z)) \cdot \gamma(\tilde{\chi}_2(z), \chi_2(z)) = \\ &= \chi_1(\chi_2(z)) \cdot \gamma(\tilde{\chi}_1(\chi_2(z)), \chi_1(\chi_2(z))) \cdot \gamma(\tilde{\chi}_2(z), \chi_2(z)) \end{aligned}.$$

On en déduit que

$$\gamma(\tilde{\chi}_1 \circ \tilde{\chi}_2(z), \chi_1 \circ \chi_2(z)) = \gamma(\tilde{\chi}_1 \circ \chi_2(z), \chi_1 \circ \chi_2(z)) \gamma(\tilde{\chi}_2(z), \chi_2(z)).$$

Soit $V \in \mathcal{V}_G$. Comme G est un groupe topologique, il existe $W \in \mathcal{V}_G$ tel que $W \cdot W \subset V$. La condition $(\tilde{\chi}_1 \circ \tilde{\chi}_2, \chi_1 \circ \chi_2) \in \mathcal{O}^G(K, V)$ sera vraie si $(\tilde{\chi}_1, \chi_1)$ et $(\tilde{\chi}_2, \chi_2)$ sont dans $\mathcal{O}^G(K, W)$. Ceci démontre la continuité uniforme de la composition $\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$.

Pour le passage à l'inverse, soient $\chi, \tilde{\chi} \in \mathcal{G}$. Les équations

$$\chi(z) = z \cdot \gamma(\chi(z), z) \quad , \quad \tilde{\chi}(z) = z \cdot \gamma(\tilde{\chi}(z), z)$$

donnent

$$\tilde{\chi}(z) = \chi(z) \cdot \gamma(\chi(z), z)^{-1} \cdot \gamma(\tilde{\chi}(z), z)$$

d'où

$$\gamma(\tilde{\chi}(z), \chi(z)) = \gamma(\chi(z), z)^{-1} \gamma(\tilde{\chi}(z), z). \quad (6)$$

Observons que

$$\chi_1(\chi_2(z)) = \chi_1(z) \cdot \gamma(\chi_2(z), z) = z \cdot \gamma(\chi_1(z), z) \cdot \gamma(\chi_2(z), z)$$

et donc

$$\gamma(\chi_1 \circ \chi_2(z), z) = \gamma(\chi_1(z), z) \gamma(\chi_2(z), z). \quad (7)$$

On en déduit que $\gamma(\chi^{-1}(z), z) = \gamma(\chi(z), z)^{-1}$. En changeant $\chi, \tilde{\chi}$ en $\chi^{-1}, \tilde{\chi}^{-1}$ dans (6), on obtient ainsi

$$\begin{aligned} \gamma(\tilde{\chi}^{-1}(z), \chi^{-1}(z)) &= \gamma(\chi(z), z) \gamma(\tilde{\chi}(z), z)^{-1} = \\ &= \gamma(\chi(z), z) \gamma(\tilde{\chi}(z), \chi(z))^{-1} \gamma(\chi(z), z)^{-1}. \end{aligned} \quad (8)$$

Soit $V \in \mathcal{V}_G$ et K un compact de X . Comme G est SIN, il existe un voisinage invariant W de l'élément neutre contenu dans V . En remplaçant au besoin W par $W \cup W^{-1}$, on peut supposer que $W = W^{-1}$. Grâce à l'équation (8), si $(\tilde{\chi}, \chi) \in \mathcal{O}^G(K, W)$, alors $(\tilde{\chi}^{-1}, \chi^{-1}) \in \mathcal{O}^G(K, V)$, ce qui prouve la continuité uniforme de $\chi \mapsto \chi^{-1}$.

Pour voir que \mathcal{G} est SIN, on utilise que tout voisinage de id_E contient un voisinage du type $\mathcal{H}(K, W) := \{\chi \mid (\chi, \text{id}_E) \in \mathcal{O}^G(K, W)\}$ où K est un compact de X et W un voisinage invariant de l'élément neutre dans G . Par la formule (7), on a, pour tout $\tilde{\chi} \in \mathcal{G}$ et tout $z \in E$

$$\gamma(\tilde{\chi}^{-1} \circ \chi \circ \tilde{\chi}(z), z) = \gamma(\tilde{\chi}(z), z)^{-1} \gamma(\chi(z), z) \gamma(\tilde{\chi}(z), z).$$

On en déduit immédiatement que $\mathcal{H}(K, W)$ est \mathcal{G} -invariant. \square

Définissons $\text{res} : \mathcal{G} \rightarrow G$ par la formule

$$\chi(\tilde{*}) = \tilde{*} \cdot \text{res}(\chi). \quad (9)$$

L'équation 7 implique que res est un homomorphisme. Le noyau de res est évidemment \mathcal{G}_1 . Le groupe G est muni de sa structure uniforme naturelle : une base d'entourages est donnée par $\mathcal{O}^V := \{(\tilde{g}, g) \mid \tilde{g}g^{-1} \in V\}$. On obtient la même structure uniforme avec la condition $\tilde{g}^{-1}g \in V$ lorsque G est SIN.

Proposition 3.2 *Si G est SIN, l'homomorphisme res est uniformément continu. Si G est connexe par arc, res est surjectif.*

PREUVE: Pour tout $V \in \mathcal{V}_G$, on a $\text{res}(\mathcal{O}^G(\{*\}, V)) \subset V$, ce qui prouve la continuité uniforme de res (ceci ne semble pas utiliser que G est SIN mais rappelons que cette condition est nécessaire pour que G soit un groupe topologique par la proposition 3.1).

La preuve de la surjectivité de res utilise que ξ est numérisable. Soit $\mu : X \rightarrow \mathbf{R}$ une application continue telle que $\mu(*) \neq 0$ et dont le support est contenu dans un ouvert trivialisant U . Soit $\psi : p^{-1}(U) \rightarrow U \times G$ une

trivialisation. Posons $\psi(z) = (p(z), \delta(z))$. En divisant μ par $\mu(*)$, on peut supposer que $\mu(*) = 1$. Soit $g \in G$. Comme G est connexe par arc, il existe un chemin continu $g(t)$ avec $g(0) = e$ et $g(1) = g$. On définit alors $\chi \in \mathcal{G}$ par

$$\chi(z) := \begin{cases} \psi^{-1}(p(z), g(\mu(p(z))) \delta(z)) & \text{si } p(z) \in U \\ z & \text{sinon.} \end{cases}$$

Il est clair que $\text{res}(\chi) = g$. \square

Nous allons maintenant munir l'espace $\mathcal{R}(C, \xi)$ des représentations de C sur ξ de la structure uniforme $\mathbf{U}_{\mathcal{R}}(C, \xi)$ dont une base d'entourages est donnée par

$$\mathcal{O}^{\mathcal{R}}(L, V) := \{(w, \tilde{w}) \in \mathcal{R}(C, \xi) \times \mathcal{R}(C, \xi) \mid \gamma(w(c, z), \tilde{w}(c, z)) \in V \ \forall (c, z) \in L \times_X E\}$$

où $V \in \mathcal{V}_G$ et L est un compact de C .

Proposition 3.3 *L'action $\mathcal{R}(C, \xi) \times \mathcal{G} \rightarrow \mathcal{R}(C, \xi)$ est uniformément continue.*

PREUVE: Soient $\chi, \tilde{\chi} \in \mathcal{G}$ et $w, \tilde{w} \in \mathcal{R}(C, \xi)$. Pour $(c, z) \in C \times_X E$, on démontre, comme dans la preuve de la proposition 3.3 que $\gamma(\tilde{w}^{\tilde{\chi}}(c, z), w^{\chi}(c, z))$ est le produit $\gamma_1 \gamma_2 \gamma_3$ avec

$$\begin{aligned} \gamma_1 &= \gamma(\tilde{\chi}^{-1}(w(c, \chi(z))), \chi^{-1}(w(c, \chi(z)))) \\ \gamma_2 &= \gamma(\tilde{w}(c, \chi(z)), w(c, \chi(z))) \\ \gamma_3 &= \gamma(\tilde{\chi}(z), \chi(z)). \end{aligned}$$

Soit L un compact de C et $V \in \mathcal{V}_G$. Si $W \in \mathcal{V}_G$ est G -invariant et satisfait $W \cdot W \cdot W \subset V$, cela prouve, en utilisant la formule (8), que si $(\tilde{\chi}, \chi) \in \mathcal{O}^{\mathcal{G}}(\alpha(L), W) \cap \mathcal{O}^{\mathcal{G}}(\beta(L), W)$ et $(\tilde{w}, w) \in \mathcal{O}^{\mathcal{R}}(L, W)$, alors $(\tilde{w}^{\tilde{\chi}}, w^{\chi}) \in \mathcal{O}^{\mathcal{R}}(L, V)$.

\square

Enfin, l'espace $\mathcal{R}(\Omega_C, G)$ peut être muni d'une structure uniforme $\mathbf{U}_{\mathcal{R}}$ ayant pour base d'entourages

$$\mathcal{O}^{\mathcal{R}}(K, V) := \{(h, \tilde{h}) \in \mathcal{R}(\Omega_C, G) \times \mathcal{R}(\Omega_C, G) \mid \tilde{h}(c)h(c^{-1}) \in V, \forall c \in K\}$$

où $V \in \mathcal{V}_G$ et K est un compact de Ω_C .

Proposition 3.4 *Si G est SIN, l'action de G sur $\mathcal{R}(\Omega_C, G)$ par conjugaison est uniformément continue.*

PREUVE: Soit $V \in \mathcal{V}_G$. Soit $W \in \mathcal{V}_G$ tel que W soit G -invariant et $W \cdot W \cdot W \subset V$. Soient $\varphi, \tilde{\varphi} \in \mathcal{R}(\Omega_C, G)$ et $g, \tilde{g} \in G$. Soit L un compact de Ω_C et $c \in L$. La formule

$$(\tilde{g}^{-1}\tilde{\varphi}(c)\tilde{g})(g^{-1}\varphi(c)g)^{-1} = \tilde{g}^{-1}\tilde{\varphi}(c)(\tilde{g}g^{-1})\tilde{\varphi}^{-1}(c)(\tilde{\varphi}(c)\varphi^{-1}(c))\tilde{g}(\tilde{g}^{-1}g)$$

montre que $\tilde{g}\tilde{g}^{-1} \in W$ et $(\tilde{\varphi}, \varphi) \in \mathcal{O}^{\mathcal{R}}(L, W)$ impliquent que $(\tilde{g}^{-1}\tilde{\varphi}\tilde{g}, g^{-1}\varphi g) \in \mathcal{O}^{\mathcal{R}}(L, V)$. \square

Nous terminons ce paragraphe en montrant que les structures uniformes considérées induisent la CO-topologie. Rappelons que, par définition, une sous-base de la CO-topologie sur l'espace fonctionnel $\text{map}(X, Y)$ est formée des ensembles $CO(K, U) := \{f \in \text{map}(X, Y) \mid f(K) \subset U\}$, où K parcourt l'ensemble des compacts de X et U celui des ouverts de Y .

Proposition 3.5 *Si G est SIN et X est un espace séparé, les topologies sur \mathcal{G} , $\mathcal{R}(C, \xi)$ et $\mathcal{R}(\Omega_C, G)$ induites par les structures uniformes $\mathbf{U}_{\mathcal{G}}$, $\mathbf{U}_{\mathcal{R}}(C, \xi)$ et $\mathbf{U}_{\mathcal{R}}$ coïncident avec la CO-topologie.*

Nous aurons besoin d'un analogue du lemme de Lebesgue (voir aussi [Bo, II.4.3]):

Lemme 3.6 *Soit $f : K \rightarrow E$ une application continue d'un compact dans l'espace total de ξ . Soit U un ouvert de E avec $f(K) \subset U$. Alors, il existe $V \in \mathcal{V}_G$ tel que $f(K) \cdot V \subset U$.*

PREUVE: Pour tout $z \in K$, il existe un ouvert S_z de E et $V_z \in \mathcal{V}_G$ tels que $f(z) \in S_z \subset U$ et S_z est de la forme $\sigma(p(S_z)) \times (f(z) \cdot V_z \cdot V_z)$, où σ est une section locale de ξ au voisinage de $p(f(z))$. Comme K est compact, on a $f(K) = \bigcup_{z \in K} S_z$ pour un sous-ensemble fini K_0 de K . Soit $V := \bigcap_{z \in K_0} V_z \in \mathcal{V}_G$. Alors, pour tout $z \in K$, on a $f(z) \cdot V \subset U$. En effet, il existe $y \in K_0$ tel que $f(z) \in f(y)\dot{V}_y$ d'où

$$f(z)\dot{V} \subset f(y) \cdot V_y \cdot V \subset f(y) \cdot V_y \cdot V_y \subset U. \quad \square$$

PREUVE DE 3.5 : L'affirmation pour $\mathcal{R}(\Omega_C, G)$ est un fait classique pour les applications dans un espace uniforme [Bo, X.3.4, théorème 2].

Preuve pour \mathcal{G} : Soit $\chi \in \mathcal{G}$, K un compact de E et U un ouvert de E tels que $\chi(K) \subset U$. Par le lemme 3.6, il existe $V \in \mathcal{V}_G$ tel que $\chi(K) \cdot V \subset U$.

On a $\chi \in \mathcal{O}^{\mathcal{G}}(p(K), V)(\chi) \subset CO(K, U)$ (observons que $p(K)$ est compact puisque X est séparé).

Réiproquement, soit $\chi \in \mathcal{G}$, L un compact de X et $V \in \mathcal{V}_G$. Il faut trouver un ouvert Σ pour la CO-topologie tel que $\chi \in \Sigma \subset \mathcal{O}^{\mathcal{G}}(L, V)(\chi)$, où $\mathcal{O}^{\mathcal{G}}(L, V)(\chi) := \{\tilde{\chi} \in \mathcal{G} \mid (\chi, \tilde{\chi}) \in \mathcal{O}^{\mathcal{G}}(L, V)\}$. Comme G est SIN, il existe $W \in \mathcal{V}_G$ qui est G -invariant avec $W \subset V$.

Considérons tout d'abord le cas où L est contenu dans un ouvert Y de X au dessus duquel ξ admet une section σ . L'ensemble $\chi(\sigma(L)) \cdot W$ est un ouvert de $p^{-1}(L)$. Il existe donc un ouvert U de E tel que $\chi(\sigma(L)) \cdot W = U \cap p^{-1}(L)$. Soit $\tilde{\chi} \in CO(\sigma(L), U)$. Si $z \in p^{-1}(L)$, il existe $g \in G$ tel que $z = \sigma(p(z)) \cdot g$. La G -équivariance de $\tilde{\chi}$ donne, pour tout $u \in E$, la formule

$$\gamma(\tilde{\chi}(u \cdot g), \chi(u \cdot g)) = g^{-1} \gamma(\tilde{\chi}(u), \chi(u)) g. \quad (10)$$

Comme W est G -équivariant, la formule (10) appliquée à $u := \sigma(p(z))$ entraîne que $\gamma(\tilde{\chi}(z), \chi(z)) \in W$, ce qui prouve que $\chi \in CO(\sigma(L), U) \subset \mathcal{O}^{\mathcal{G}}(L, V)(\chi)$.

Dans le cas général on recouvre L par un nombre fini d'ouverts trivialements, $L \subset Y_1 \cup \dots \cup Y_n$, au dessus desquels on choisit des sections σ_i de ξ . On construit comme ci-dessus les $\chi(\sigma_i(L_i)) \cdot W \subset U_i$ et on aura

$$\chi \in \bigcap_{i=1}^n CO(\sigma_i(L), U_i) \subset \mathcal{O}^{\mathcal{G}}(L, W)(\chi) \subset \mathcal{O}^{\mathcal{G}}(L, V)(\chi). \quad \square$$

Preuve pour $\mathcal{R}(C, \xi)$: Soit $w \in \mathcal{R}(C, \xi)$. Soit L un compact de $C \times_X E$ et U un ouvert de E tel que $w(L) \subset U$. Par le lemme 3.6, il existe $V \in \mathcal{V}_G$ tel que $w(L) \cdot V \subset U$ et l'on a $w \in \mathcal{O}^{\mathcal{R}}(L, V)(w) \subset CO(L, U)$.

Réiproquement, soit $w \in \mathcal{R}(C, \xi)$, K un compact de C et $V \in \mathcal{V}_G$. Comme G est SIN, il existe $W \in \mathcal{V}_G$ qui est G -invariant avec $W \subset V$. Considérons tout d'abord le cas où $\alpha(K)$ est contenu dans un ouvert Y de X au dessus duquel ξ admet une section σ . L'ensemble $w(\sigma(\alpha(K))) \cdot W$ est un ouvert de $p^{-1}(\beta(K))$. Il existe donc un ouvert U de E tel que $w(\sigma(\alpha(K))) \cdot W = U \cap p^{-1}(L)$. On démontre, comme dans la preuve pour \mathcal{G} ci-dessus, que $w \in CO(\sigma(\alpha(K)), U) \subset \mathcal{O}^{\mathcal{G}}(K, V)(w)$. Le cas général s'obtient aussi comme dans la preuve pour \mathcal{G} . \square

4 Groupe de jauge et classifiant de Milnor

Les résultats de ce paragraphe seront utilisés pour la preuve du théorème D et les techniques se retrouveront dans la preuve du théorème C.

Soit $\xi : E \xrightarrow{p} X$ et $\eta : A \xrightarrow{\bar{p}} B$ deux G -fibré principaux numérisables. Tous les espaces sont pointés. Désignons par $\text{Map}_G^\bullet(E, A)$ l'espace des applications continues pointées G -équivariantes de E dans A , muni de la CO-topologie. Le passage au quotient donne une application $q : \text{Map}_G^\bullet(E, A) \rightarrow \text{Map}^\bullet(X, B)_\xi$ où $\text{Map}^\bullet(X, B)_\xi$ est l'espace des applications continues pointées $h : X \rightarrow B$ telles que $h^* \eta \approx \xi$, muni de la CO-topologie. Le groupe de jauge \mathcal{G}_1 de ξ agit à droite sur $\text{Map}_G^\bullet(E, A)$ par pré-composition et $q(f \circ \chi) = q(f)$.

Théorème 4.1 *Supposons que X est localement compact, que $\text{Map}^\bullet(X, B)_\xi$ est semi-localement contractile et que G est SIN. Alors, l'application $q : \text{Map}_G^\bullet(E, A) \rightarrow \text{Map}^\bullet(X, B)_\xi$ est un \mathcal{G}_1 -fibré principal.*

Pour démontrer le théorème 4.1, on utilise, dans l'esprit du § 3, une sous-base particulière de la CO-topologie sur $\text{Map}_G^\bullet(E, A)$. Considérons l'ensemble \mathcal{T} des applications G -équivariantes $\tau : q^{-1}(U_\tau) \rightarrow G$ où U_τ est un ouvert de B . Comme η est un G -fibré principal, la collection $\{U_\tau \mid \tau \in \mathcal{T}\}$ est un recouvrement ouvert de B . Soit $f \in \text{Map}_G^\bullet(E, A)$. Soit K un compact de X et $\tau \in \mathcal{T}$ tel que $f(p^{-1}(K)) \in q^{-1}(U_\tau)$. Soit encore $V \in \mathcal{V}_G$. On définit $\mathbf{W}(f, K, \tau, V)$ comme l'ensemble des $\tilde{f} \in \text{Map}_G^\bullet(E, A)$ telles que, pour tout $z \in p^{-1}(K)$ on ait $q \circ \tilde{f}(z) \subset U_\tau$ et $\tau(\tilde{f}(z)) \in \tau(f(z)) \cdot V$.

Lemme 4.2 *Si G est SIN, les ensembles $\mathbf{W}(f, K, \tau, V)$ forment une sous-base de la CO-topologie sur $\text{Map}_G^\bullet(E, A)$.*

PREUVE: Appelons \mathbf{T} la topologie engendrée par les $\mathbf{W}(f, K, \tau, V)$ et \mathbf{T}_{co} la CO-topologie. Pour L un compact de E et S un ouvert de A , notons $CO(L, S) := \{h \in \text{Map}_G^\bullet(E, A) \mid h(L) \subset S\}$. Les ensembles $CO(L, S)$ forment la sous-base standard de \mathbf{T}_{co} .

Soit $\mathbf{W}(f, K, \tau, V)$. Soit $\sigma : U_\tau \rightarrow A$ une section de η restreint à U_τ . Comme l'application quotient $q(f) \in \text{Map}^\bullet(X, B)_\xi$ envoie K dans U_τ , le fibré ξ admet une section $\hat{\sigma}$ au dessus de K telle que $f \circ \hat{\sigma} = \sigma \circ q(f)$. Soit $L := \hat{\sigma}(K)$ et $S := \sigma(U_\tau) \cdot W$ où $W \in \mathcal{V}_G$ est G -invariant et contenu dans V . Soit $\tilde{f} \in CO(L, S)$. Si $z \in p^{-1}(K)$, on a $z = z_0 \cdot g$ avec $z_0 := \hat{\sigma}(p(z)) \in L$ et

$$\tilde{f}(z) := \tilde{f}(z_0) \cdot g \in f(z_0) \cdot W \cdot g = f(z_0) \cdot g \cdot (g^{-1} W g) = f(z) \cdot W.$$

Ceci montre que $f \in CO(L, S) \subset \mathbf{W}(f, K, \tau, V)$ et donc $\mathbf{T} \subset \mathbf{T}_{co}$.

Réiproquement, soient L un compact de E et S un ouvert de A avec $f(L) \subset S$. Supposons tout d'abord que $S = S(\tau, V) := \sigma(U_\tau) \times V$ pour $V \in \mathcal{V}_G$ et σ la section de η restreint à U_τ telle que $\tau \circ \sigma(y) = e$, l'élément

neutre de G . On a donc $\tau \circ f(L) \subset V$. Par l'analogue du lemme de Lebesgue [Bo, II.4.3], il existe $W \in \mathcal{V}_G$ tel que pour $\tau(f(z)) \cdot W \subset V$ pour tout $z \in K$. Il est alors clair que $f \in W(f, p(L), \tau, W) \subset CO(L; S)$.

Comme les ouverts $S(\tau, V)$ forment une base de la topologie de A , on aura, en général

$$CO(L, S) = \bigcap_{i=1}^m CO(L_i, S(\tau_i, V_i)) \supset \bigcap_{i=1}^m \mathbf{W}(f, p(L_i), \tau_i, W_i) \ni f.$$

On a ainsi prouvé $\mathbf{T} \supset \mathbf{T}_{co}$. \square

Preuve du théorème 4.1 :

4.3 *Principe de la démonstration* : on va montrer que :

1. q est continue, \mathcal{G}_1 -équivariante et induit une injection de $\text{Map}_G^\bullet(E, A)/\mathcal{G}_1$ dans $\text{Map}^\bullet(X, B)_\xi$.
2. l'action $\text{Map}_G^\bullet(E, A) \times \mathcal{G}_1 \rightarrow \text{Map}_G^\bullet(E, A)$ est libre et continue.
3. si $f_1, f_2 \in \text{Map}_G^\bullet(E, A)$ satisfont $q(f_1) = q(f_2)$, les points 1) et 2) donnent un unique $\delta(f_1, f_2) \in \mathcal{G}_1$ tel que $f_2 = f_1 \circ \delta(f_1, f_2)$. Ceci définit une application $\delta : \text{Map}_G^\bullet(E, A) \times_{\text{Map}^\bullet(X, B)_\xi} \text{Map}_G^\bullet(E, A) \rightarrow \mathcal{G}_1$. On démontre que δ est continue.
4. l'application q admet des sections locales continues.

Les points ci-dessus permettent de démontrer que q est un \mathcal{G}_1 -fibré principal. En effet, pour construire des trivialisations locales, on choisit une section continue $s : T \rightarrow \text{Map}_G^\bullet(E, A)$ de q au dessus d'un ouvert T de $\text{Map}^\bullet(X, B)_\xi$. La correspondance $(f, \chi) \rightarrow s(f) \circ \chi$ donne une bijection continue \mathcal{G}_1 -équivariante $\tau : T \times \mathcal{G}_1 \rightarrow q^{-1}(T)$. Son inverse $\tau^{-1}(\tilde{f}) = (q(\tilde{f}), \delta(s(q(\tilde{f})), \tilde{f}))$ étant continue par 3), l'application τ est un homéomorphisme.

4.4 *L'application $q : \text{Map}_G^\bullet(E, A) \rightarrow \text{Map}^\bullet(X, B)_\xi$ est continue* : Soit $f \in \text{Map}_G^\bullet(E, A)$. Soit K un compact de X et U un ouvert de B avec $q(f) \in CO(K, U)$. On peut écrire $K = \bigcup_{i=1}^m K_i$ où K_i est un compact contenu dans le domaine de définition d'une section locale σ_i de ξ . On a alors

$$q\left(\bigcap_{i=1}^m CO(\sigma_i(K_i), p^{-1}(U))\right) \subset \bigcap_{i=1}^m CO(K_i, U) = CO(K, U).$$

4.5 *L'action $\text{Map}_G^\bullet(E, A) \times \mathcal{G}_1 \rightarrow \text{Map}_G^\bullet(E, A)$ est libre et continue :* Il est banal que cette action est libre. Soit $(f, \chi) \in \text{Map}_G^\bullet(E, A) \times \mathcal{G}_1$. Considérons un voisinage de $f \circ \chi$ de la forme $\mathbf{W}(f \circ \chi, K, \tau, V)$. Soit $W \in \mathcal{V}_G$ tel que $W \cdot W \subset V$. Comme dans la preuve de la proposition 3.1, on vérifie que $\tilde{f} \circ \tilde{\chi} \in \mathbf{W}(f \circ \chi, K, \tau, V)$ si $\tilde{f} \in \mathbf{W}(f, K, \tau, W)$ et $(\tilde{\chi}, \chi) \in \mathcal{O}^G(K, W)$.

4.6 *L'application q induit une injection continue de $\text{Map}_G^\bullet(E, A)/\mathcal{G}_1$ dans $\text{Map}^\bullet(X, B)_\xi$:* Il est clair que q est \mathcal{G} -invariante. Supposons que $q(f_1) = q(f_2) =: f$. On a alors des uniques isomorphismes $\hat{f}_i : E \xrightarrow{\sim} E(f^* \eta)$, $(i = 1, 2)$. La composition $\phi := \hat{f}_2^{-1} \circ \hat{f}_1$ est un élément de \mathcal{G} et $f_1 = f_2 \circ \phi$. (Observons que q est évidemment surjective. Nous omettons ce fait car il est redonné par le point 4.8. Cette économie sera avantageuse dans la preuve du théorème B).

4.7 *Continuité de l'application δ :* Soient $f_1, f_2 \in \text{Map}_G^\bullet(E, A)$ telles que $f_2 = f_1 \circ \chi$. Il s'agit de montrer que χ dépend continûment du couple (f_1, f_2) . Soient K un compact de X et $V \in \mathcal{V}_G$. Soit $W \in \mathcal{V}_G$ tel que $W \cdot W \subset V$. Supposons tout d'abord qu'il existe τ telle que $K \subset f_1^{-1}(U_\tau) \cap f_2^{-1}(U_\tau)$. Soient $\tilde{f}_i \in \mathbf{W}(f_i, K, \tau, W)$ ($i = 1, 2$) avec $\tilde{f}_2 = \tilde{f}_1 \circ \tilde{\chi}$. Pour $z \in p^{-1}(K)$, on a

$$\tau(\tilde{f}_2(z)) \in \tau(f_2(z)) \cdot W = \tau(f_1(\chi(z))) \cdot W \in \tau(\tilde{f}_1(\chi(z))) \cdot W \cdot W.$$

D'autre part :

$$\tau(\tilde{f}_2(z)) = \tau(\tilde{f}_1(\tilde{\chi}(z))) = \tau(\tilde{f}_1(\chi(z)))\gamma(\tilde{\chi}(z), \chi(z)).$$

Comme $V = V^{-1}$, on aura $\tilde{\chi}(z) \in \chi(z) \cdot V$. Dans le cas général, on utilise que K est une réunion finie de compacts K_i tels que $K \subset f_1^{-1}(U_{\tau_i}) \cap f_2^{-1}(U_{\tau_i})$.

4.8 *Construction de sections locales :* Nous allons construire une section locale au dessus de chaque ouvert T de $\text{Map}^\bullet(X, B)_\xi$ dont l'inclusion $T \subset \text{Map}^\bullet(X, B)_\xi$ est contractile. On suppose donc qu'il existe une application $H : I \times T \rightarrow \text{Map}^\bullet(X, B)_\xi$, où $I = [0, 1]$, telle que $H(0, f) = f$ et $H(1, f) = f_1$. Comme X est localement compact, H donne naissance à une application continue $h : I \times T \times X \rightarrow B$ [Du, p. 261] telle que $h(t, f, *) = *$. Désignons par $h_t : T \times X \rightarrow A$ l'application continue $h_t(f, x) = h(t, f, x)$ et par \mathcal{E}_t

l'espace total du fibré induit sur $T \times X$ par $h_t : \mathcal{E}_t := E(h_t^* \eta)$. Vu que $h_t(f, *) = *$, l'espace \mathcal{E}_t est pointé par $(*, \tilde{*})$.

Comme η est numérisable, le relèvement des homotopies donne un isomorphisme de G -fibrés pointés de $h_1^* \eta$ sur $h_0^* \eta$. D'autre part, on a des isomorphismes de G -fibrés pointés $h_1^* \eta \approx T \times f_1^* \eta \approx T \times \xi$. Tout ceci forme un diagramme commutatif

$$\begin{array}{ccccccc} T \times E & \xrightarrow{\approx} & T \times E(h_1^* \eta) & \xrightarrow{\approx} & \mathcal{E}_1 & \xrightarrow{\approx} & \mathcal{E}_0 & \longrightarrow & A \\ \downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\ T \times X & \xrightarrow{\text{id}} & T \times X & \xrightarrow{\text{id}} & T \times X & \xrightarrow{\text{id}} & T \times X & \xrightarrow{h_0} & B. \end{array}$$

Comme $\text{Map}_G^\bullet(E, A)$ est munie de la CO-topologie, la ligne supérieure détermine une application continue $T \rightarrow \text{Map}_G^\bullet(E, A)$ au dessus de l'inclusion $T \subset \text{Map}^\bullet(X, B)_\xi$, c'est-à-dire une section locale continue au dessus de T .

Par 4.8, la démonstration du théorème 4.1 est ainsi terminée. De la même manière, on démontre le résultat analogue pour les applications non-pointées $q : \text{Map}_G(E, A) \rightarrow \text{Map}(X, B)_\xi$:

Théorème 4.9 *Supposons que X est localement compact, que $\text{Map}(X, B)_\xi$ est semi-localement contractile et que G est SIN. Alors, l'application $q : \text{Map}_G(E, A) \rightarrow \text{Map}(X, B)_\xi$ est un \mathcal{G} -fibré principal.*

Le cas particulier où η est le fibré de Milnor $EG \rightarrow BG$ est intéressant à cause de la proposition suivante, utilisée pour démontrer le théorème D :

Proposition 4.10 *Soit ξ un G -fibré principal numérisable sur X . Alors, l'espace $\text{Map}_G(E, EG)$ est contractile. Si, de plus, X est localement compact et que l'inclusion $\{*\} \subset X$ soit une cofibration, $\text{Map}_G^\bullet(E, EG)$ est faiblement contractile (i.e. ses groupes d'homotopie sont ceux d'un point).*

PREUVE: La preuve habituelle que deux applications G -équivariantes $f_0, f_1 : E \rightarrow EG$ sont toujours homotopes fournit une homotopie *canonique* entre f_0 et f_1 , qui dépend continûment de (f_0, f_1) (voir [Hu, prop. 12.3]). L'espace $\text{Map}_G(E, EG)$ est donc contractile (convexe), de même que $EG = \text{Map}_G(G, EG)$. Pour montrer l'assertion sur $\text{Map}_G^\bullet(E, EG)$, il suffit de montrer que la suite

$$\text{Map}_G^\bullet(E, EG) \hookrightarrow \text{Map}_G(E, EG) \xrightarrow{\text{ev}} EG$$

est, avec nos hypothèses sur X , une fibration de Hurewicz, où ev est l'évaluation sur le point base $\tilde{*}$.

Soit $f : A \rightarrow \text{Map}_G(E, EG)$ une application continue et $F_{\tilde{*}} : [0, 1] \times A \times \{\tilde{*}\} \rightarrow EG$ une homotopie de $\text{ev} \circ f$. Par passage au quotient, on obtient $\bar{f} : A \rightarrow \text{Map}(X, BG)$ et $\bar{F} : [0, 1] \times A \times \{\ast\} \rightarrow BG$. Comme X est localement compact, ces applications induisent des applications continues $\bar{f}^* : A \times X \rightarrow BG$ et $\bar{F}_{\ast}^* : [0, 1] \times A \times \{\ast\} \rightarrow BG$. Etant équivariante, l'application induite $f^* : A \times E \rightarrow EG$ est donc aussi continue (bien que E ne soit pas supposé localement compact).

Comme $\ast \subset X$ est une cofibration, il existe une rétraction de $[0, 1] \times X$ sur $\{0\} \times X \cup [0, 1] \times \{\ast\}$ qui permet d'étendre \bar{F}_{\ast}^* en $\bar{F}^* : [0, 1] \times A \times X \rightarrow BG$. Ceci prouve que $\text{Map}^{\bullet}(X, BG) \rightarrow \text{Map}(X, BG) \rightarrow BG$ est une fibration de Hurewicz. Par relèvement des homotopies, l'espace total du fibré induit sur $[0, 1] \times A \times X$ par \bar{F}^* est G -homéomorphe à $[0, 1] \times A \times E$, ce qui produit une homotopie $F^* : [0, 1] \times A \rightarrow \text{Map}_G(E, EG)$ partant f et au dessus de F . \square

4.11 Remarque : On déduit de 4.1, 4.9 et 4.10 que $\pi_i(\text{Map}^{\bullet}(X, BG)_{\xi}) \approx \pi_i(BG_1)$ et $\pi_i(\text{Map}(X, BG)_{\xi}) \approx \pi_i(BG)$. Nous ne savons pas, en général, si ces isomorphismes sont induits par une application $\text{Map}(X, BG)_{\xi} \rightarrow BG$. Observons que des résultats analogues ont été obtenus dans d'autres contextes ([DDK], [DK, Prop. 5.1.4]).

5 Preuve des théorèmes B, C et D

Préparatifs :

5.1 Continuité des foncteurs de Milnor. Nous aurons besoin de savoir que les foncteurs E et B de Milnor sont continus, ce qui ne semble pas figurer dans la littérature :

Lemme 5.2 *Soient $\mathcal{R}(F, G)$ l'espace des homomorphismes continus entre les groupes topologiques F et G . Supposons que F est séparé. Alors les applications*

$$E : \mathcal{R}(F, G) \rightarrow \text{Map}_F^{\bullet}(EF, EG) \quad (\phi \mapsto E\phi)$$

et

$$B : \mathcal{R}(F, G) \rightarrow \text{Map}^{\bullet}(BF, BG) \quad (\phi \mapsto B\phi)$$

sont continues (tous les espaces étant munis de la CO -topologie).

PREUVE: Comme l'application $\text{Map}_F^\bullet(EF, EG) \rightarrow \text{Map}^\bullet(BF, BG)$ est continue (se démontre comme 4.4), il suffit de donner une preuve pour l'application E .

Rappelons que si P est un groupe topologique, les éléments de EP sont représentés par des suites $(t_j p_j)$, où $j \in \mathbf{N}$, $t_j \in [0, 1]$ et $p_j \in P$. On désigne par $\tau_i : EP \rightarrow [0, 1]$ l'application $\tau_i((t_j p_j)) := t_i$ et par $\gamma_i : \tau_i^{-1}([0, 1]) \rightarrow P$ l'application $\gamma_i((t_j p_j)) := p_i$ (on utilise les mêmes notations τ_i et γ_i pour tout groupe P). L'espace EP est muni de la topologie la plus grossière telle que les applications τ_i et γ_i soient continues. Une sous-base \mathcal{S} de cette topologie est donc constituée par les ouverts du type

1. $\tau_i^{-1}(J)$ où J est un ouvert de $[0, 1]$.
2. $\gamma_i^{-1}(V)$ où V est un ouvert de P .

Soit $\phi_0 \in \mathcal{R}(F, G)$, K un compact de EF et U un ouvert de EG tel que $\phi_0(K) \subset U$. Soit $CO(K, U) := \{\alpha \in \text{Map}_F^\bullet(EF, EG) \mid \alpha(K) \subset U\}$. Il faut montrer que $E^{-1}(CO(K, U))$ est un voisinage de ϕ_0 dans $\mathcal{R}(F, G)$. Il suffit de le faire pour $U \in \mathcal{S}$ (voir [Bo, X.3.4, remarque 2]).

Si U est du type 1 ci-dessus, cela ne pose pas de problème. En effet, $\tau_i \circ E = \tau_i$, d'où $E^{-1}(CO(K, U)) = \mathcal{R}(F, G)$. Si $U = \gamma_i^{-1}(V)$ avec V un ouvert de G , on pose $K_i := \gamma_i(K)$ (γ_i est définie sur K puisque $\tau_i \circ E = \tau_i$). L'espace K_i est compact puisque F est séparé. Comme $\gamma_i \circ E\phi = \phi \circ \gamma_i$, on a $\phi_0 \in CO(K_i, V) \subset E^{-1}(CO(K, U))$. \square

5.3 *L'application $n : \mathcal{R}(\Omega_C, G)_\xi \rightarrow \text{Map}^\bullet(X, BG)_\xi$.* En choisissant une partition de l'unité μ_ρ subordonnée au recouvrement U_ρ ($\rho \in \text{Cont}_C(X)$), on détermine, grâce aux trivialisations $\hat{\psi}_\rho$ de (2), une application classifiante $\nu_C : X \rightarrow B\Omega_C$ (voir [Hu, ch. 4, prop. 12.1 et th. 12.2]). Il est possible de faire ce choix de manière que ν_C soit pointée (le point base de EF , pour un groupe topologique F , est toujours la suite $(1e, 0, 0, \dots)$, où e élément neutre de F ; le point base de BF est l'image de celui de EF). Pour cela, il faut tout d'abord avoir une partition de l'unité dénombrable et trivialisante μ_i ($i = 1, 2, \dots$) telle que $\mu_1(*) = 1$. Or, une telle partition existe car :

a) il existe une partition de l'unité $\hat{\mu}_\rho$ et $\hat{\rho} \in \text{Cont}_C(X)$ tels que $\hat{\mu}_{\hat{\rho}(x)} = 1$ au voisinage de $*$. Pour voir cela, on choisit $\hat{\rho}$ tel que $\mu_{\hat{\rho}}(*) \neq 0$. On considère une fonction $\delta : [0, 1] \rightarrow [0, 1]$ telle que $\delta(t) = 0$ si $t \geq \mu_{\hat{\rho}}(*)/2$ et $\delta(t) > 0$ si $t < \mu_{\hat{\rho}}(*)/2$. On pose

$$\mu'_\rho(x) := \begin{cases} \mu_{\hat{\rho}}(x) & \text{si } \rho = \hat{\rho} \\ \delta(\mu_{\hat{\rho}}(x)) \mu_\rho(x) & \text{sinon.} \end{cases}$$

Avec ces définitions,

$$\hat{\mu}_\rho(x) := \frac{\mu'_\rho(x)}{\sum_\sigma \mu'_\sigma(x)}$$

est une partition de l'unité avec $\hat{\mu}_{\hat{\rho}(x)} = 1$ au voisinage de $*$.

b) le procédé de [Hu, ch. 4, prop. 12.1] fournit, à partir de la partition $\hat{\mu}_\rho$ une partition de l'unité μ_i ($i = 1, 2, \dots$) telle que $\mu_1(x) = 1$ au voisinage de $*$.

On peut supposer que $\hat{\rho}(*) = i_{\hat{\rho}(*)}$. Sinon, $\hat{\rho}(*) = b \in \Omega_C$ et l'on remplace $\hat{\rho}$ par $b^{-1} \hat{\rho}$. Dans ces conditions, l'application ν_C obtenue par [Hu, ch. 4, prop. 12.1] est pointée.

Ayant fixé $\nu_C \in \text{map}(X, B\Omega_C)$ comme ci-dessus, on définit $n : \mathcal{R}(\Omega_C, G)_\xi \rightarrow \text{Map}^\bullet(X, BG)_\xi$ par $n(\phi) := B\phi \circ \nu_C$. Comme C est séparé, l'application $\phi \mapsto B\phi$ est continue (lemme 5.2), d'où la continuité de n .

Preuve du théorème B : Par le théorème d'existence, on a $\mathcal{R}(C, \xi) = \emptyset$ si et seulement $\mathcal{R}(\Omega_C, G)_\xi = \emptyset$. Dans ce cas, le théorème B est banal. On suppose donc que $\mathcal{R}(C, \xi) \neq \emptyset$. Le théorème A implique que l'image de h est dans $\mathcal{R}(\Omega_C, G)_\xi$. Le principe de la preuve du théorème B est alors le même que celui du théorème 4.1 (voir 4.3).

5.4 h est continue. Soit $w \in \mathcal{R}(C, \xi)$. Soit K un compact de Ω_C , U un ouvert de G tels que $h^w(K) \subset U$. En utilisant une trivialisation locale de ξ au voisinage de $*$, on peut trouver un ouvert \tilde{U} de E tel que $\tilde{U} \cap E_* = \tilde{*} \cdot U$. Alors $w \in CO(K \times \{\tilde{*}\}, \tilde{U})$ qui est un ouvert de $\mathcal{R}(C, \xi)$ et $h(CO(K \times \{\tilde{*}\}, \tilde{U})) \subset CO(K, U)$.

5.5 $\mathcal{R}(C, \xi) \times \mathcal{G}_1 \rightarrow \mathcal{R}(C, \xi)$ est continue et libre. La continuité, utilisant le fait que G est SIN, a été démontrée dans la proposition 3.3. Soit $w \in \mathcal{R}(C, \xi)$ et $\chi \in \mathcal{G}$. Si $\chi \neq \text{id}_E$, il existe $z \in E$ tel que $\chi(z) \neq z$. Soit $\theta \in C_{p(z)}^*$. Comme χ restreinte à $p^{-1}(*)$ est l'identité, on aura $w^\chi(\theta, z) \neq w(\theta, z)$ ce qui montre l'assertion 5.5.

5.6 \mathcal{G} -invariance de h : Soit $\chi \in \mathcal{G}$. Posons $\chi(\tilde{*}) = \tilde{*}g$, autrement dit : $g := \text{res}(\chi)$. Pour $c \in \Omega_C$, on a

$$\begin{aligned} \tilde{*}h^{(w\chi)}(c) &= w^\chi(c, \tilde{*}) = \chi^{-1}(w(c, \tilde{*} \cdot g)) = \chi^{-1}(\tilde{*} \cdot h^w(c)) \cdot g = \\ &= \chi^{-1}(\tilde{*}) \cdot (h^w(c)g) = \tilde{*} \cdot (g^{-1}h^w(c)g) \end{aligned}$$

d'où

$$h^{(w\chi)}(c) = \text{res}(\chi)^{-1} h^w(c) \text{res}(\chi) \quad (11)$$

et h induit des applications

$$\bar{h}_1 : \mathcal{R}(C, \xi)/\mathcal{G}_1 \rightarrow \mathcal{R}(\Omega_C, G)_\xi \quad \text{et} \quad \bar{h} : \mathcal{R}(C, \xi)/\mathcal{G} \rightarrow \mathcal{R}(\Omega_C, G)_\xi/G.$$

5.7 Injectivité de \bar{h}_1 : Soient $w, \tilde{w} \in \mathcal{R}(C, \xi)$ telles que $h^w = h^{\tilde{w}}$. Soit $z \in E$. Choisissons $\rho \in \text{Cont}_C(X)$ tel que $p(z) \in U_\rho$ et notons $\theta := \rho(p(z)) \in C_{p(z)}^*$. On définit

$$\chi(z) := \tilde{w}(\theta^{-1}, w(\theta, z)). \quad (12)$$

Nous allons montrer que l'égalité $h^w = h^{\tilde{w}}$ entraîne que $\chi(z)$ ne dépend pas du choix de ρ . Soit $\bar{\rho}$ une autre C -contraction, donnant $\bar{\theta}$ et $\bar{\chi}(z)$. Rappelons que la fibre $p^{-1}(\ast)$ est identifiée à G par $g \mapsto \tilde{\ast} \cdot g$. Via cette identification, G agit à gauche sur $p^{-1}(\ast)$ et, si $c \in \Omega_C$ et $y \in p^{-1}(\ast)$, on a $w(c, y) = h^w(c) \cdot y$. Avec ces conventions, on a

$$\begin{aligned} \bar{\chi}(z) &= \tilde{w}(\bar{\theta}^{-1}, w(\bar{\theta}, z)) = \tilde{w}(\bar{\theta}^{-1}, w(\bar{\theta}\theta^{-1}\theta, z)) = \\ &= \tilde{w}(\bar{\theta}^{-1}, w(\bar{\theta}\theta^{-1}, w(\theta, z))) = \tilde{w}(\bar{\theta}^{-1}, h^w(\bar{\theta}\theta^{-1}) \cdot w(\theta, z)) = \\ &= \tilde{w}(\theta^{-1}\bar{\theta}\bar{\theta}^{-1}, h^w(\bar{\theta}\theta^{-1}) \cdot w(\theta, z)) = \\ &= \tilde{w}(\theta^{-1}, \underbrace{h^{\tilde{w}}(\theta\bar{\theta}^{-1})h^w(\bar{\theta}\theta^{-1})}_{=1} \cdot w(\theta, z)) = \tilde{w}(\theta^{-1}, w(\theta, z)) = \chi(z). \end{aligned}$$

On a ainsi défini une application $\chi : E \rightarrow E$ qui, par la formule (12) est continue. Son inverse s'obtient en échangeant w et \tilde{w} . Les formules $\chi(z \cdot g) = \chi(z) \cdot g$, pour $g \in G$ et $p(\chi(z)) = p(z)$ sont banales. De plus, on a $\chi(\tilde{\ast}) = \tilde{\ast}$, d'où $\chi \in \mathcal{G}_1$.

Voyons maintenant que $\tilde{w}^\chi = w$. Soit $z \in E$ et $c \in C_{p(z)}$. Observons que, dans la formule (12), on n'utilise la C -contraction ρ que pour garantir la continuité. La définition de $\chi(z)$ ne nécessite que l'élément $\theta \in C_{p(z)}^*$ et $\chi(z)$ ne dépend pas de θ . En choisissant θ pour la définition de $\chi(z)$ et θc^{-1} pour celle de $\chi^{-1}(\tilde{w}(c, \chi(z)))$, on aura

$$\begin{aligned} \tilde{w}^\chi(c, z) &= \chi^{-1}(\tilde{w}(c, \chi(z))) = \chi^{-1}(\tilde{w}(c, \tilde{w}(\theta^{-1}, w(\theta, z)))) = \\ &= \chi^{-1}(\tilde{w}(c\theta^{-1}, w(\theta, z))) = w(c\theta^{-1}, \tilde{w}(\theta c^{-1}, \tilde{w}(c\theta^{-1}, w(\theta, z)))) = \\ &= w(c\theta^{-1}, w(\theta, z)) = w(c, z). \end{aligned}$$

5.8 *L’application $\delta : \mathcal{R}(C, \xi) \times_{\mathcal{R}(\Omega_C, G)_\xi} \mathcal{R}(C, \xi) \rightarrow \mathcal{G}$ est uniformément continue :* Soit $V \in \mathcal{V}_G$ et K un compact de X . Supposons d’abord que $K \subset U_\rho$ pour une C -contraction $\rho \in \text{Cont}_C(X)$. Comme C est séparé, les sous-espaces L et L^{-1} de C définis par

$$L := \{\rho(x) \mid x \in K\} \subset C^* \quad \text{et} \quad L^{-1} := \{\rho(x)^{-1} \mid x \in K\} \subset C_*$$

sont compacts. Soit $W \in \mathcal{V}_G$ tel que $W \cdot W \in V$. Soient $\tilde{w}_1, \tilde{w}_2 \in \mathcal{R}(C, \xi)$. Il suit de 5.7 que δ satisfait, pour $z \in p^{-1}(K)$, à l’équation

$$\delta(\tilde{w}_1, \tilde{w}_2)(z) = \tilde{w}_1(\theta^{-1}, \tilde{w}_2(\theta, z)) \quad (13)$$

avec $\theta := \rho(p(z)) \in C_{p(z)}^*$. Il s’en suit que si $(\tilde{w}_1, w_1) \in \mathcal{O}^{\mathcal{R}}(L^{-1}, W)$ et $(\tilde{w}_2, w_2) \in \mathcal{O}^{\mathcal{R}}(L, W)$, alors $(\delta(\tilde{w}_1, \tilde{w}_2), \delta(w_1, w_2)) \in \mathcal{O}^{\mathcal{G}_1}(K, V)$.

Dans le cas général, on utilise que $K := \bigcup_{\rho \in P} K_\rho$ où P est un ensemble fini dans $\text{Cont}_C(X)$ et K_ρ est un compact de U_ρ . On définit, comme ci-dessus, $L_\rho := \rho(K_\rho)$ et $L_\rho^{-1} := \rho(K_\rho)^{-1}$ et on aura

$$\left. \begin{array}{l} (\tilde{w}_1, w_1) \in \bigcap_{\rho \in P} \mathcal{O}^{\mathcal{R}}(L_\rho^{-1}, W) \\ \text{et} \\ (\tilde{w}_2, w_2) \in \bigcap_{\rho \in P} \mathcal{O}^{\mathcal{R}}(L_\rho, W) \end{array} \right\} \Rightarrow (\delta(\tilde{w}_1, \tilde{w}_2), \delta(w_1, w_2)) \in \mathcal{O}^{\mathcal{G}_1}(K, V).$$

5.9 Sections locales : Soit T un ouvert de $\text{Map}^\bullet(X, BG)_\xi$ tel que l’inclusion $T \subset \text{Map}^\bullet(X, BG)_\xi$ soit contractile. Soit $S := n^{-1}(T)$, où $n : \mathcal{R}(\Omega_C, G)_\xi \rightarrow \text{Map}^\bullet(X, BG)_\xi$ est l’application définie en 5.3. Considérons l’application composée

$$N : S \times X \xrightarrow{n \times \text{id}} T \times X \xrightarrow{\text{ev}_X} BG \quad (14)$$

Comme X est localement compact, l’évaluation ev_X est continue et N est continue. Désignons par $\mathcal{E} := N^*EG$, l’espace total du G -fibré principal sur $S \times X$ induit par N .

Observons que N est aussi la composition

$$N : S \times X \xrightarrow{\text{id}_S \times \nu_C} S \times B\Omega_C \xrightarrow{\text{ev}_\Omega} BG \quad (15)$$

de $\text{id}_S \times \nu_C$ avec l’application d’évaluation (peut-être non-continue) ev_Ω . Comme le Ω_C -fibré induit sur X par ν_C est $\xi_C : C_* \xrightarrow{\beta} X$, on obtient, en utilisant (15), que l’espace \mathcal{E} est le quotient de $S \times C_* \times G$ par la relation

d'équivalence $(\phi, ub, g) \sim (\phi, u, \phi(b)g)$, où $(\phi, u, g) \in S \times C_* \times G$ et $b \in \Omega_C$. Considérons \mathcal{E} comme un espace au dessus de X par l'application $(\phi, u, g) \mapsto \beta(u)$ et définissons l'application continue $v : C \times_X \mathcal{E} \rightarrow \mathcal{E}$ par $v(c, (\phi, u, g)) := (\phi, cu, g)$.

Comme l'application $S \rightarrow \text{Map}^\bullet(X, BG)_\xi$ est homotope à une application constante, on montre, comme dans 4.8, qu'il existe un homéomorphisme G -équivariant $S \times E \xrightarrow{\cong} \mathcal{E}$ au dessus de $\text{id}_{S \times X}$. Via cet homéomorphisme et en composant avec la projection $S \times E \rightarrow E$, l'application v donne une application continue $\hat{v} : C \times_X (S \times E) \rightarrow E$. A son tour, \hat{v} détermine une application continue $w : S \rightarrow \text{map}(C \times_X E, E)$. On vérifie facilement que l'image de w est dans $\mathcal{R}(C, \xi)$. La préservation des points base par les divers isomorphismes utilisés entraîne que w est une section locale de h au dessus de S .

Ayant établi les points 5.4 à 5.9, la démonstration du théorème B se termine comme expliqué dans 4.3. \square

Preuve du théorème C : Soient $w, \tilde{w} \in \mathcal{R}(C, \xi)$ et $g \in G$ tels que $h^w = g^{-1}h^{\tilde{w}}g$. Comme G est connexe par arc, il existe, par le lemme 3.2, un élément $\chi \in \mathcal{G}$ tel que $\chi(\tilde{*}) = \tilde{*} \cdot g$. L'équation (11) montre qu'alors $h^{w^\chi} = h^{\tilde{w}}$. Comme \bar{h}_1 est injective par 5.7, les représentations w^χ et \tilde{w} sont dans la même classe modulo \mathcal{G}_1 . Cela prouve l'injectivité de \bar{h} . Le diagramme commutatif

$$\begin{array}{ccc} \mathcal{R}(C, \xi)/\mathcal{G}_1 & \xrightarrow{\bar{h}_1} & \mathcal{R}(\Omega_C, G)_\xi \\ \downarrow & & \downarrow \\ \mathcal{R}(C, \xi)/\mathcal{G} & \xrightarrow{\bar{h}} & \mathcal{R}(\Omega_C, G)_\xi/G \end{array} \quad (16)$$

et le fait que \bar{h}_1 soit un homéomorphisme (vu le théorème B) font que \bar{h} est un homéomorphisme.

Preuve du théorème D :

Lemme 5.10 *L'application n est couverte par un morphisme de \mathcal{G}_1 -fibrés principaux*

$$\begin{array}{ccc} \mathcal{R}(C, \xi) & \xrightarrow{\hat{n}} & \text{Map}_G^\bullet(E, EG) \\ \downarrow h & & \downarrow \\ \mathcal{R}(\Omega_C, G)_\xi & \xrightarrow{n} & \text{Map}^\bullet(X, BG)_\xi. \end{array} \quad (17)$$

Le théorème D découlera du lemme 5.10 puisque, i l'inclusion $\{*\} \subset X$ est une cofibration, l'espace $\text{Map}_G^\bullet(E, EG)$ est faiblement contractile (Proposition 4.10). En fait, l'application n est classifiante pour le \mathcal{G}_1 -fibré principal $h : \mathcal{R}(C, \xi) \rightarrow \mathcal{R}(\Omega_C, G)_\xi$.

PREUVE DU LEMME 5.10 : Le procédé pour fixer l'application ν_c vu en 5.3 produit en fait un diagramme commutatif

$$\begin{array}{ccc} C_* & \xrightarrow{\hat{\nu}_C} & E\Omega_C \\ \downarrow \beta & & \downarrow \\ X & \xrightarrow{\nu_C} & E\Omega_C \end{array}$$

où $\hat{\nu}_C \in \text{map}_G^\bullet(C_*, E\Omega_C)$. L'application $\hat{n} \in \text{map}_G(\mathcal{R}(C, \xi), \text{Map}_G^\bullet(E, EG))$ est définie par $\hat{n}(w) := Eh^w \circ \hat{\nu}_C$. Le diagramme 17 est bien commutatif. Observons que \hat{n} est obtenue par le procédé de [Hu, ch. 4, prop. 12.1] à l'aide de la partition de l'unité $\hat{\mu}_\rho$ construite en 5.3 et des trivialisations ψ_ρ^w du lemme 2.1.

6 Exemples et applications

6.1 Le groupoïde associé à un fibré principal

Soit $\xi : E \xrightarrow{p} X$ un G -fibré principal. Soit $EE := EE(\xi) := (E \times E)/G$, le quotient de $E \times E$ par l'action diagonale de G . Dénotons par $\langle a, b \rangle$ l'orbite de (a, b) dans EE . On fait de EE un X -groupoïde en posant $\alpha(\langle a_2, a_1 \rangle) := p(a_1)$, $\beta(\langle a_2, a_1 \rangle) := p(a_2)$, $i_x := \langle a, a \rangle$ avec $p(a) = x$; la composition vient de la formule $\langle a_3, a_2 \rangle \langle a_2, a_1 \rangle = \langle a_3, a_1 \rangle$, ou, plus généralement,

$$\langle a_3, a'_2 \rangle \langle a_2, a_1 \rangle = \langle a_3 \cdot \gamma(a'_2, a_2), a_1 \rangle$$

où γ est l'application définie en (5). L'inverse est évidemment donné par $\langle a, b \rangle^{-1} = \langle b, a \rangle$. Le X -groupoïde ainsi obtenu s'appelle le *X-groupoïde associé à ξ* [Ma, p. 5].

Le groupe structural G de ξ est isomorphe à Ω_{EE} par $g \mapsto \langle \tilde{*} \cdot g, \tilde{*} \rangle$. Observons que EE est localement trivial numérisable si ξ est numéridable. En effet, $x \mapsto \langle \tilde{*}, \sigma(x) \rangle$ est une EE -contraction lorsque σ est une section locale de ξ .

Le X -groupoïde EE a une représentation tautologique v sur ξ déterminée par l'application continue $v : (E \times E) \times E \rightarrow E$ définie par $v((a, b), z) := a \cdot \gamma(b, z)$; son holonomie est id_G . Pour un X -groupoïde C , désignons par

$\text{Mor}(C, EE)$ l'ensemble des morphismes continus de C dans EE (au dessus de id_X).

Proposition 6.1 *La composition avec la représentation tautologique donne une bijection de $\text{Mor}(C, EE(\xi))$ sur $\mathcal{R}(C, \xi)$.*

PREUVE: La bijection inverse $w \mapsto \Psi_w$ est donnée par $\Psi_w(c) := \langle w(c, z), z \rangle$ ($z \in E_{\alpha(c)}$). La seule chose non-triviale à vérifier est que Ψ_w est continu.

Soit $c \in C$ et $T \ni \Psi_w(c)$ un ouvert de EE . Soit $z \in E_{\alpha(c)}$. Il existe

- V un ouvert de E contenant $w(c, z)$,
- U un ouvert de X contenant $x := \alpha(c) = p(z)$ et $\sigma : U \rightarrow E$ une section continue locale de ξ avec $\sigma(x) = z$ et
- $W \in \mathcal{V}_G$

tels que $\pi(V \times (\sigma(U) \cdot W)) \subset T$, où π désigne la projection de $E \times E$ sur EE . Par continuité de w , il existe A un ouvert de C contenant c et R un ouvert de E contenant z tels que $w(A \times R) \subset V$. Soient U' un ouvert de X et $W' \in \mathcal{V}_G$ tels que $x \in U' \subset U$, $W' \subset W$ et $\sigma(u') \cdot W' \subset R$. Soit $A' := A \cap \alpha^{-1}(U')$. On a $c \in A'$ et $\Psi_w(A') \subset \pi(V \times (\sigma(U') \cdot W')) \subset T$, ce qui prouve la continuité de Ψ_w en c . \square

6.2 Prégroupoïdes

Comme nous le verrons plus loin, une façon commode de définir un groupoïde topologique est de partir d'une catérorie topologique avec anti-involution (prégroupoïde). Soit X un espace topologique muni d'un point base $*$ de X . Un X -prégroupoïde est un espace topologique \tilde{C} muni de deux applications continues $\alpha, \beta : \tilde{C} \rightarrow X$, d'une *composition* partiellement définie et d'une application $x \mapsto i_x$ de X dans \tilde{C} qui satisfont aux propriétés a), b) et c) de la définition du § 1 d'un X -groupoïde. En revanche, la condition d) consiste seulement en

d') \tilde{C} est muni d'une anti-involution continue $c \mapsto \bar{c}$, envoyant \tilde{C}_x^y sur \tilde{C}_y^x .

Une *représentation* d'un X -prégroupoïde \tilde{C} sur un G -espace ξ est une application continue $w : \tilde{C} \times_X E \rightarrow E$ (où \tilde{C} est vu au dessus de X via α) telle que, pour tout $c, d \in \tilde{C}$, $z \in E$ et $g \in G$, on ait

1. $p(w(c, z)) = \beta(c)$.

2. $w(cd, z) = w(c, w(d, z)).$
3. $w(\bar{c}, (w(c, z)) = z.$
4. $w(c, z \cdot g) = w(c, z) \cdot g.$

Si X est séparé, un X -prégroupoïde détermine un X -groupoïde séparé, avec la propriété suivante :

Proposition 6.2 *Soit \tilde{C} un X -prégroupoïde localement trivial numérisable avec X séparé. Alors, il existe un unique X -groupoïde séparé localement trivial numérisable C avec un morphisme continu surjectif $\tilde{C} \rightarrow C$ satisfaisant à la condition suivante : toute représentation de \tilde{C} sur un G -fibré principal ξ au dessus de X , avec G séparé, est induite par une unique représentation de C .*

La démonstration de 6.2 utilise le lemme suivant :

Lemme 6.3 *Soit C un X -groupoïde localement trivial. Alors, C est séparé si et seulement si X et Ω_C le sont.*

PREUVE: Supposons que X et Ω_C soient séparés (l'autre sens est banal). Comme C est localement trivial, $\beta : C_* \rightarrow X$ est un Ω_C -fibré principal, par le théorème A. L'espace C_* est donc séparé. Il en est évidemment de même pour C^* . On utilise alors que $C = C_* \times_{\Omega_C} C^*$ pour établir que C est séparé. \square

PREUVE DE LA PROPOSITION 6.2 : Soit \hat{C} l'ensemble quotient de \tilde{C} par la relation d'équivalence engendrée par $c\bar{u}ud \sim cd$, pour tout $c, d, u \in \tilde{C}$ avec $\beta(d) = \alpha(u) = \alpha(c)$. Il est clair que la structure (algébrique) de X -prégroupoïde descend sur \hat{C} et que \hat{C} est un X -groupoïde (algébrique), avec $[c]^{-1} = [\bar{c}]$. La topologie sur \hat{C} sera obtenue de la manière suivante : considérons l'ensemble \mathcal{K} des paires (K, T) , où

- K est un sous-groupe normal de $\Omega_{\hat{C}}$. Le quotient de \hat{C} par le sous-groupoïde normal $N_K := \{uKu^{-1} \mid u \in \hat{C}_*\}$ est alors un X -groupoïde.
- T est une topologie sur \hat{C}/N_K qui fait de \hat{C}/N_K un groupoïde topologique et telle que la projection $\hat{C} \rightarrow \hat{C}/N_K$ soit continue.

Les projections $\hat{C} \rightarrow \hat{C}/N_K$ ($(K, T) \in \mathcal{K}$) forment un système projectif de X -groupoïdes au dessous de \hat{C} (non-vide, car on peut prendre pour T la topologie grossière). On munit \hat{C} de la topologie de limite projective pour ce système de projections. On vérifie que \hat{C} est alors un X -groupoïde, que $\tilde{C} \rightarrow \hat{C}$ est continue et que tout morphisme continu de \tilde{C} dans un X -groupoïde se factorise de façon unique par l'un des quotient \hat{C}/N_K . Comme \tilde{C} est localement trivial numérisable, \hat{C} l'est aussi. Nous ignorons si la topologie ainsi obtenue sur \hat{C} est la topologie quotient de celle de \tilde{C} .

Comme X est séparé, l'adhérence de $\{i_*\}$ est contenue dans Ω_C où elle constitue un sous-groupe fermé. En quotientant \hat{C} par le sous-groupoïde normal engendré par $\{i_*\}$, on obtient, avec la topologie quotient, un X -groupoïde C [Ma, Th. 2.15, p. 38]. Comme $\overline{\{i_*\}}$ est fermé dans Ω_C , le groupe Ω_C est séparé. On en déduit que C est séparé par le lemme 6.3. Il est aussi clair que tout morphisme continu de \tilde{C} dans un X -groupoïde séparé factorise de façon unique par $\tilde{C} \rightarrow C$.

Soit $\tilde{w} : \tilde{C} \times E \rightarrow E$ une représentation de \tilde{C} sur un G -fibré principal ξ . Comme dans la proposition 6.1, \tilde{w} détermine un morphisme continu $\Psi_{\tilde{w}}$ de \tilde{C} dans $EE := EE(\xi)$ tel que $\Psi_{\tilde{w}}(\tilde{c}) = \Psi_{\tilde{w}}(c)^{-1}$. Puisque EE est localement trivial et que X et G sont séparés, l'espace EE est séparé par le lemme 6.3. Le morphisme $\Psi_{\tilde{w}}$ se factorise en un unique morphisme continu $\Psi_w : C \rightarrow EE$ correspondant, par la proposition 6.1, à $w \in \mathcal{R}(C, \xi)$. \square

6.3 Groupoïdes de chemins

6.4 Chemins de Moore : Soit X un espace topologique séparé. Soit $\tilde{C} = \tilde{\mathbf{Ch}}(X)$ la catégorie des *chemins de Moore* dans X . Un chemin de Moore est un couple (a, c) où $a \in \mathbf{R}_{\geq 0}$ et $c : [0, a] \rightarrow X$ est une application continue.

La topologie sur \tilde{C} est induite par l'application $(a, c) \mapsto c^\sharp$ de \tilde{C} dans $\text{map}([0, 1], X)$, où $c^\sharp(t) = c(at)$, avec la CO-topologie sur $\text{map}([0, 1], X)$. (Observons que \tilde{C} n'est pas séparé puisque tous les chemins constants ont même image dans $\text{map}([0, 1], X)$). Les applications $\alpha, \beta : C \rightarrow X$ sont données par $\alpha(a, c) = c(a)$ et $\beta(a, c) = c(0)$. L'espace C_x^y est donc l'ensemble des chemins allant de y à x (cette malencontreuse inversion est due à la convention usuelle de la règle de composition des chemins). La composition $(a, c) = (a_2, c_2)(a_1, c_1)$, lorsque $\beta(a_1, c_1) = \alpha(a_2, c_2)$ est définie par $a := a_2 + a_1$ et

$$c(t) = \begin{cases} c_2(t) & \text{si } t \leq a_2 \\ c_1(t - a_2) & \text{si } t \geq a_2 \end{cases}$$

Cette composition est bien associative et l'unité i_x est donnée par le chemin

constant $[0, 0] \longrightarrow \{x\}$. La définition de l'involution est donnée par $\overline{(a, c)} := (a, \bar{c})$ où $\bar{c}(t) := c(a-t)$. On vérifie facilement que $\mathbf{Ch}(X)$ est un prégroupoïde. Il est localement trivial si et seulement si X est connexe par arc et semi-localement contractile.

Le groupoïde séparé associé à $\tilde{\mathbf{Ch}}(X)$ par la proposition 6.2 sera noté $\mathbf{Ch}(X)$ et appelé le *groupoïde des chemins de Moore dans X* .

6.5 Le groupoïde fondamental : Soit $\mathbf{Ch}_1(X) \subset \mathbf{Ch}(X)$ l'ensemble des classes de chemins (a, c) qui sont des lacets ($c(0) = c(a)$) et tels qu'il existe une homotopie $H : [0, a] \times [0, 1] \rightarrow X$ telle que $H(0, s) = H(a, s) = c(0)$, $H(t, 0) = c(t)$ et $H(t, 1) = c(0)$. Les éléments de $\mathbf{Ch}_1(X)$ forment un sous- X -groupoïde normal totalement intransitif de $\mathbf{Ch}(X)$. L'espace quotient $\pi(X)$ hérite donc d'une structure de X -groupoïde et la projection $\mathbf{Ch}(X) \rightarrow \pi(X)$ est un morphisme continu [Ma, Th. 2.15, p. 38].

Il est clair qu'algébriquement, $\pi(X)$ s'identifie au groupoïde fondamental de X et $\Omega_{\pi(X)}$ au groupe fondamental $\pi_1(X, *)$ [Sp, Ch. 1, § 7]. Cependant, $\pi(X)$ est ici muni d'une topologie. Il est localement trivial si X est connexe par arc et semi-localement simplement connexe [Sp]. Si, de plus, X est localement connexe par arc, on peut montrer que $\Omega_{\pi(X)} = \Pi_1(X, *)$ est discret, que le $\Omega_{\pi(X)}$ -fibré principal du théorème A est le revêtement universel de X et que la topologie sur $\pi(X)$ s'identifie à celle de [BD]. Nous n'utiliserons pas ces résultats. La proposition suivante est intéressante pour les G -fibrés principaux avec G un groupe de Lie.

Proposition 6.6 *Soit G un groupe topologique admettant un voisinage de son élément neutre qui ne contienne aucun sous-groupe non-trivial. Alors, toute représentation de $\mathbf{Ch}(X)$ sur un G -espace principal ξ au dessus de X se factorise par une représentation du groupoïde fondamental $\pi(X)$ de X .*

PREUVE: Soit $w \in \mathcal{R}(\mathbf{Ch}(X), \xi)$. On regarde w comme un morphisme continu $w : \mathbf{Ch}(X) \rightarrow EE(\xi)$ par le lemme 6.1. Il s'agit de montrer que $\mathbf{Ch}_1(X) \subset \ker w$.

Pour $x \in X$, désignons par Vois_x l'ensemble des voisinages ouverts de x . Observons que l'ensemble $\{\tilde{\mathbf{Ch}}(W)_x^x \mid W \in \text{Vois}_x\}$ constitue un système fondamental de voisinages ouverts de i_x dans le monoïde $\tilde{\mathbf{Ch}}(X)_x^x$. En choisissant $\tilde{x} \in E_x$, on obtient une holonomie $h_x^w : \tilde{\mathbf{Ch}}(X)_x^x \rightarrow G$ en x qui est un morphisme continu de monoïdes avec anti-involution. Comme il existe un voisinage de l'élément neutre dans G qui ne contient aucun sous-groupe non-trivial et que chaque élément de $\{\tilde{\mathbf{Ch}}(W)_x^x \mid W \in \text{Vois}_x\}$ est

un sous-monoïde avec anti-involution de $\tilde{\mathbf{Ch}}(X)_x^x$, on en déduit qu'il existe $U_x \in \text{Vois}_x$ tel que $\tilde{\mathbf{Ch}}(U_x)_x^x \subset \ker h_x^w$. Soit $\mathbf{Ch}_{\text{loc}}(X)$ le sous-groupeïde normal de $\mathbf{Ch}(X)$ engendré par l'image des $\tilde{\mathbf{Ch}}(U_x)_x^x$ pour tous les $x \in X$. Par ce qui précède, on a $\mathbf{Ch}_{\text{loc}}(X) \subset \ker w$.

Soit $\gamma \in \mathbf{Ch}_1(X)_x^x$ représenté par un lacet $c : [0, a] \rightarrow X$ en x . Par définition de $\mathbf{Ch}_1(X)$, il existe une homotopie de lacets $H : [0, a] \times [0, 1] \rightarrow X$ entre c et le lacet constant. Par l'argument habituel du nombre de Lebesgue, on peut décomposer $[0, a] \times [0, 1]$ en petits rectangles R_i ($1 = 1, \dots, N$) tels que $H(R_i) \subset U_{x(i)}$. Il s'en suit facilement que $\gamma \in \mathbf{Ch}_{\text{loc}}(X) \subset \ker w$, ce qui prouve que $\mathbf{Ch}_1(X) \subset \ker w$. \square

6.4 Chemins lisses par morceaux – Connexions

Soit X une variété différentiable C^1 paracompacte. On dénotera par $\tilde{\mathbf{D}} = \tilde{\mathbf{D}}(X)$ l'espace des chemins C^1 par morceau sur X . En tant qu'ensemble, $\tilde{\mathbf{D}}$ est le sous-prégroupoïde de $\mathbf{Ch}X$ formé des chemins qui sont des compositions de chemins C^1 . La topologie, plus fine, s'obtient via l'application $(a, c) \mapsto c^\sharp$ en topologisant l'ensemble \mathbf{M}^\sharp des applications C^1 par morceau de $[0, 1]$ dans X . Pour cela, soit

$$P = \{t_0 = 0 < t_1 < \dots < t_k = 1\}$$

un partage de $[0, 1]$. Soit

$$\mathbf{M}_P^\sharp := \{c \in \mathbf{M}^\sharp \mid c|_{[t_i, t_{i+1}]} \in C^1([t_i, t_{i+1}], X)\}$$

où $C^1([a, b], X)$ est l'espace des applications C^1 de $[a, b]$ dans X muni de la topologie C^1 . On a une application $\mathbf{M}_P^\sharp \rightarrow C^1([0, 1], X)^k$ donné par

$$c \mapsto (c|_{[t_0, t_1]}^\sharp, c|_{[t_1, t_2]}^\sharp, \dots, c|_{[t_{k-1}, t_k]}^\sharp)$$

en étendant la définition de c^\sharp à une chemin $c : [a, b] \rightarrow X$ par $c^\sharp(t) := c(a + (b - a)t)$. L'application $(a, c) \mapsto c^\sharp$ induit une topologie (non-séparée) sur \mathbf{M}_P^\sharp . Si P' est un partage plus fin que P (i.e. $P \subset P'$), on vérifie que l'inclusion naturelle $\mathbf{M}_P^\sharp \subset \mathbf{M}_{P'}^\sharp$ est continue. La topologie sur \mathbf{M} est, par définition, celle de limite inductive des \mathbf{M}_P^\sharp pour tous les partages de $[0, 1]$.

Le groupoïde séparé associé à $\tilde{\mathbf{D}}(X)$ sera noté $\mathbf{D}(X)$ et appellé le *groupoïde des chemins lisses par morceaux dans X* . Si X est connexe, alors $\mathbf{D}(X)$ est localement trivial numérisable. On a un morphisme évident de groupoïdes topologiques de $\mathbf{D}(X)$ dans $\mathbf{Ch}(X)$.

Proposition 6.7 *Soit G un groupe de Lie et $\xi : E \xrightarrow{p} X$ un G -fibré principal différentiable C^1 au dessus d'une variété X . Soit A une connexion sur ξ [KN, Ch. II]. Alors, le transport parallèle associé à A détermine une représentation de $\mathbf{D}(X)$ sur ξ .*

PREUVE: Par la proposition 6.2, il suffit de voir qu'une connexion A définit une représentation $w_A : \tilde{\mathbf{D}}(X) \times E \rightarrow E$ de $\tilde{\mathbf{D}}(X)$, le point $w_A(c, z)$ étant le résultat du transport A -parallèle de z au dessus de c . Les conditions 1. à 4. de la définition d'une représentation découlent immédiatement des propriétés classiques du transport parallèle [KN, Ch. II, prop. 3.2. et 3.3]. La seule chose à vérifier est que w_A est continue en tout $(c, z) \in \tilde{\mathbf{D}}(X) \times E$. Vu la topologie sur $\tilde{\mathbf{D}}(X)$, il est suffisant de la faire pour $c \in C^1([0, 1], U)$ où U est un ouvert de X trivialisant pour ξ et domaine d'une carte. On peut donc supposer que $E = U \times G$ ou U est un ouvert d'un espace euclidien et $z = (c(0), e)$. Le relevé horizontal \tilde{c} de c partant de z s'écrit alors $\tilde{c}(t) = (c(t), g(t))$ où $g \in C^1([0, 1], G)$ avec $g(0) = e$.

Considérons un voisinage ouvert Q dans E de $w_A(c, z) = \tilde{c}(1) = (c(1), g(1))$. Il s'agit de tourver un voisinage T de (c, z) dans $C^1([0, 1], U) \times E$ tel que $w_A(T) \subset Q$. On peut supposer que Q est de la forme $S \times (g(1) \cdot V)$ où $V \in \mathcal{V}_G$ où S est un ouvert de U . Soit $\varepsilon > 0$ tel que la boule ouverte $B(0, \varepsilon)$ de centre 0 et de rayon ε dans $T_e G = \text{Lie}(G)$, muni de la métrique de Killing, est envoyée difféomorphiquement sur $W \in \mathcal{V}_G$ avec $W \cdot W \subset V$.

Par [KN, Ch. II, prop. 1.1], la connexion A est donnée par une 1-forme $\gamma_A \in \Omega^1(E, \text{Lie}(G))$ et l'on a $\gamma_A(\dot{\tilde{c}}(t)) = 0$ pour tout t puisque \tilde{c} est horizontal. Par continuité de γ_A , il existe $\delta > 0$ tel que $B(c(1), \delta) \subset S$ et

$$\sup_{t \in [0, 1]} \{\|c_1(t) - c(t)\|, \|\dot{c}_1(t) - \dot{c}(t)\|\} < \delta \quad \Rightarrow \quad \|\gamma_A(\dot{c}_1(t))\| < \varepsilon \quad (18)$$

où $\bar{c}_1(t) := (c_1(t), g(t))$. Soit $h \in C^1([0, 1], G)$ la courbe telle que $\dot{c}_1(t) \cdot h(t)$ soit horizontal. Par [KN, preuve du lemme p. 69], la courbe h satisfait $h(0) = e$ et $\dot{h}(t) = T_e R_{h(t)}(\gamma_A(\dot{c}_1(t)))$, où R_a est la translation à droite $g \mapsto ag$. On déduit de (18) que $\ell(h)$ est $< \varepsilon$, où $\ell(h)$ est la longueur de h pour la métrique riemannienne sur G obtenue par translations à droite de la métrique de Killing. L'exponentielle des rayons donnant des géodésiques minimisantes pour cette métrique riemannienne, on en déduit que $h(1) \in W$. L'ouvert $T := T_\delta \times (B(c(0), \delta) \times W)$ de $C^1([0, 1], U) \times G$, où T_δ est l'ouvert de $C^1([0, 1], U)$ apparaissant dans (18), contient (c, z) et satisfait $w_A(T) \subset Q$. \square

Le langage des représentations de groupoïdes permet de bien poser le problème suivant : quand est-ce que le transport parallèle associé à une

connexion sur un fibré différentiable s'étend aux chemins C^0 ? La réponse est la suivante :

Proposition 6.8 *Soient G , ξ et A comme dans la proposition 6.7. Alors, la représentation $w_A \in \mathcal{R}(\mathbf{D}(X), \xi)$ induite par le transport parallèle de A s'étend en un représentation de $\mathbf{Ch}(X)$ sur ξ si et seulement si A est une connexion plate.*

PREUVE: Par définition, A est plate si et seulement si et seulement si E est feuilletée en variétés horizontales [KN, II.9]. Il est clair que dans ce cas le transport parallèle de A s'étend en un représentation $\bar{w}_A \in \mathcal{R}(\mathbf{Ch}(X), \xi)$. Réciproquement, si une telle extension existe, comme le groupe de Lie G n'a pas de petits sous-groupes, la proposition 6.6 assure que \bar{w}_A se factorise par le groupoïde fondamental $\Pi(X)$. Le théorème de réduction classique [KN, II, th. 7.1] montre qu'alors le fibré $\xi|_U : p^{-1}(U) \rightarrow U$, au dessus de tout ouvert contractile U de X , admet une réduction de son groupe structural au groupe trivial et que A restreinte à $p^{-1}(U)$ est plate. \square

6.5 Théorie de jauge sur graphes

Rappelons qu'un *graphe* (non-orienté) Γ consiste en une paire d'ensembles $(S(\Gamma), A(\Gamma))$ (sommets et arêtes) avec deux applications $\alpha, \beta : A(\Gamma) \rightarrow S(\Gamma)$ et une involution $a \mapsto \bar{a}$ sur A telle que $\alpha(\bar{a}) = \beta(a)$ et $\beta(\bar{a}) = \alpha(a)$. Par exemple, pour $n \in \mathbf{N}$, le graphe $[n]$ se définit par $S([n]) := \{0, 1, \dots, n\}$, $A([n]) := \{(i, j) \mid |i - j| = 1\}$, $\alpha(i, j) := j$, $\beta(i, j) := i$ et $\bar{(i, j)} := (j, i)$.

Un *chemin* (de longueur n) dans Γ est un morphisme de graphes de $[n]$ dans Γ . L'ensemble des chemins dans Γ forment un $S(\Gamma)$ -prégroupoïde \tilde{C}_Γ , muni de la topologie discrète. Les applications source et but, la composition et l'anti-involution sont définies comme pour les chemins de Moore dans un espace topologique (voir §6.3). Observons que $A(\Gamma)$ s'identifie naturellement au sous-ensemble de \tilde{C}_Γ formé des chemins de longueur 1. Le $S(\Gamma)$ -groupoïde associé par la proposition 6.2 sera noté $\mathbf{C}(\Gamma)$. Il est également discret et s'identifie au groupoïde fondamental de la réalisation géométrique $|\Gamma|$ de Γ . De même, $\Omega_{\mathbf{C}(\Gamma)}$ s'identifie au groupe fondamental $\pi_1(|\gamma|, *)$. Nous supposerons que $|\Gamma|$ est connexe.

Ce qui s'appelle en anglais un "G-valued lattice gauge field" sur Γ correspond à un G -fibré ξ sur $S(\Gamma)$ muni d'une représentation $w \in \mathcal{R}(\mathbf{C}(\Gamma), \xi)$. Comme $S(\Gamma)$ est discret, le fibré ξ est trivial. Une trivialisation peut en être obtenue à l'aide de w en choisissant un arbre maximal T dans Γ . En effet,

T donne une $\mathbf{C}(\Gamma)$ -contraction sur tout $S(\Gamma)$. En fixant une trivialisation $E(\xi) = S(\Gamma) \times G$ de ξ , la représentation w est déterminée par la donnée d'une application $w_1 : A(\Gamma) \rightarrow G$ telle que $w_1(\bar{a}) = w_1(a)^{-1}$. La formule reliant w à w_1 est la suivante :

$$w(a, (\alpha(a), g)) = (\beta(a), w_1(a)g), \quad a \in A(\Gamma). \quad (19)$$

Dans la littérature sur le sujet, l'application w_1 est prise comme définition d'un "G-valued lattice gauge field" ([Cr, Ch. 7], [PS, § 3]).

Si γ est fini, le groupe $\pi_1(|\gamma|, *)$ est libre de rang $1 - \chi(|\Gamma|)$, où $\chi(|\Gamma|)$ est la caractéristique d'Euler de $|\Gamma|$. Le théorèmes B et C donnent ainsi des homéomorphismes

$$\mathcal{R}(\mathbf{C}(\Gamma), \xi)/\mathcal{G}_1 \approx \mathcal{R}(\pi_1(|\gamma|, *), G) \approx G^{1-\chi(|\Gamma|)}. \quad (20)$$

et

$$\mathcal{R}(\mathbf{C}(\Gamma), \xi)/\mathcal{G} \approx G^{1-\chi(|\Gamma|)}/\text{conjugaison}. \quad (21)$$

Sous certaines hypothèses, la donnée de (ξ, w) détermine un G -fibré principal ξ_w sur $|\Gamma|$ qui n'est pas trivial (voir, par exemple, [PS]). Par (21), on obtient une partition de $G^{1-\chi(|\Gamma|)}/\text{conjugaison}$ en fonction des classes d'isomorphisme de ξ_w qu'il serait intéressant d'étudier.

6.6 Fibrés équivariants

Soit Γ un groupe topologique agissant à gauche sur X . Le graphe de l'action

$$C := \{(y, \gamma, x) \in X \times \Gamma \times X \mid y = \gamma x\}$$

est un X -groupoïde par les données suivantes : $\alpha(y, \gamma, x) := x$, $\beta(y, \gamma, x) := y$, $i_x := (x, e, x)$, $(z, \gamma_2, y)(y, \gamma_1, x) := (z, \gamma_2\gamma_1, x)$ et $(y, \gamma, x)^{-1} := (x, \gamma^{-1}, y)$. Le groupe Ω_C est banalement isomorphe au groupe d'isotropie $\Gamma^{\{*\}}$ de $*$. Le X -groupoïde C est localement trivial si l'action de Γ sur X est transitive et si l'application $q : \Gamma \rightarrow X$ donnée par $\gamma \mapsto \gamma *$ admet des sections locales continues. Cette application sera alors un $\Gamma^{\{*\}}$ (le fibré ξ_C du théorème A). On sait que cette situation se produit si, par exemple, X est le quotient Γ/Γ_0 d'un groupe de Lie Γ par un sous-groupe fermé Γ_0 [St, § 7.5].

Soit $\xi : E \xrightarrow{p} X$ un G -fibré principal sur X . Une représentation de C sur ξ est simplement une action à gauche de Γ sur E telle que la projection $p : E \rightarrow X$ soit équivariante. On parle de G -fibré principal Γ -équivariant ou d'action de Γ sur ξ . L'espace $\mathcal{R}(C, \xi)$ classe ces Γ -actions sur

ξ à conjugaison par une transformation de jauge près. Par le théorème B, $\mathcal{R}(C, \xi) \approx \mathcal{R}(\Gamma^{\{*\}}, G)_\xi$. Remarquons que $B \times_{\Gamma^{\{*\}}} E\Gamma \approx B\Gamma^{\{*\}}$; dans le cas où G est abélien, on retrouve ainsi le théorème A de [LMS]. Les relations avec d'autres approches de fibrés équivariants, comme par exemple [BH], restent à étudier.

Voici quelques exemples :

6.9 $\Gamma = SO(3)$ agissant sur $X = S^2$ et $G = S^1$. On a $\Omega_C = S^1$ et le fibré principal ξ_C du théorème A est le fibré tangent unitaire à S^2 , dont la classe d'Euler est 2. Par le théorème d'existence, un S^1 -fibré principal sur S^2 admettra une $SO(3)$ -action si et seulement si sa classe d'Euler est paire. Dans ce cas, l'espace $\mathcal{R}(S^1, S^1)$ étant discret (homéomorphe à \mathbf{Z} par le degré), le théorème B implique qu'il y a exactement une classe d'action de $SO(3)$ sur ξ à conjugaison par une transformation de jauge près. Observons qu'il n'y a aucun choix possible pour l'action sur la fibre au dessus de $*$; cette action est déterminée par ξ .

6.10 $\Gamma = SU(2)$ agissant sur $X = S^2$ et $G = S^1$. Le fibré ξ_C du théorème A est alors le fibré de Hopf $S^3 \rightarrow S^2$. On en déduit que tout S^1 -fibré principal sur S^2 admet une $SU(2)$ -action unique à conjugaison par une transformation de jauge près.

6.11 $\Gamma = SU(2)$ agissant sur $X = S^2$ et $G = SO(3)$. Il y a deux $SO(3)$ -fibrés principaux ξ_0 et ξ_1 sur S^2 , ξ_0 étant le fibré trivial. Tout deux associés au fibré de Hopf, ils admettent des $SU(2)$ -actions mais seul ξ_0 admet des $SO(3)$ -actions. Un homomorphisme continu de S^1 dans $SO(3)$ est différentiable, donc un élément de $\mathcal{R}(S^1, SO(3))$ est un sous-groupe à un paramètre dont l'image est un tore maximal de $SO(3)$. On en déduit que si l'on identifie l'algèbre de Lie $so(3)$ à \mathbf{R}^3 (quaternions purs), l'espace $\mathcal{R}(S^1, SO(3))$ est la réunion des sphères de rayons entiers $n = 0, 1, 2, \dots$. Donc, $\mathcal{R}(C, \xi_0)/\mathcal{G}_1$ est homéomorphe à la réunion des 2-sphères de rayons $2n$ ($n = 0, 1, 2, \dots$) et $\mathcal{R}(C, \xi_1)/\mathcal{G}_1$ à celles de rayon $2n+1$. Quant à $\mathcal{R}(C, \xi_i)/\mathcal{G}$, ils sont tout deux discrets dénombrables.

References

- [BD] Brown R. & Danesh-Naruie G. The fundamental groupoid as a topological groupoid. *Proc. Edinburgh Math. Soc.* bf 19 (1975) 237–244.
- [Bo] Bourbaki N. Éléments de mathématique. Livre III : Topologie générale, 3e édition *Hermann* (1960–61).
- [BH] Brandt D. & Hausmann J-Cl. Théorie de jauge et symétries des fibrés. *Ann. Inst. Fourier* **43** (1993) 509–537.
- [Co] Connes A. Noncommutative geometry. *Academic Press Inc.* 1994.
- [Cr] Creutz M. Quarks, gluons and lattices. *Cambridge University Press* 1983.
- [Do] Dold A. Partitions of unity in the theory of fibrations. *Annals of Math.* bf 78 (1963) 223–255.
- [DK] Donaldson S. & Kronheimer P. The geometry of four-manifolds. *Calenderon Press* 1991.
- [DDK] Dror E., Dwyer W. & Kan D. Automorphisms of fibrations. *Proceedings of the AMS* bf 80 (1980) 491–494.
- [Du] Dugundji J. Topology. *Allyn & Bacon Inc.* 1966.
- [Eh] Ehresmann Ch. Catégories topologiques et catégories différentiables. *Colloque de géométrie différentielle globale, Bruxelles 1958, Gauthier Villars* (1959) 137–150
- [Hu] Husemoller D. Fibre bundles *Springer-Verlag, 2e ed.* (1975)
- [KN] Kobayashi S. & Nomizu K. Foundations of differential geometry. *J. Wiley & sons* (1963).
- [LMS] Lashof R. & May, J. P. & Segal, G. B. Equivariant bundles with abelian structural group. *Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemp. Math.*, 19, Amer. Math. Soc. (1983) 167–176.
- [Ma] Mackenzie K. Lie groupoids and Lie algebroids in differential geometry. *Cambridge University Press* 1987.
- [Mi1] Milnor J. On spaces having the homotopy type of a CW-complex. *Trans. AMS* **90** (1959) 272–280
- [Mi2] Milnor J. Construction of universal bundles II. *Annals of Math.* **63** (1956) 430–436

- [Pa] Palmer T.W. Classes of nonabelian, noncompact, locally compact groups
Rocky Mountain J. of Math. **8** (1978) 683–741
- [PS] Philips A.V. & Stone D.A. The computation of characteristic classes of lattice gauge fields. *Commun. Math. Phys.* **131** (1990) 255–282.
- [Sp] Spanier E. Algebraic topology *McGraw Hill* (1966)
- [St] Steenrod N. The topology of fibre bundles *Princeton Univ. Press* (1951)

Jean-Claude HAUSMANN
 Mathématiques-Université
 B.P. 240,
 CH-1211 Genève 24, Suisse
 hausmann@math.unige.ch