

Decidability of the Admissible Rules in Intuitionistic Propositional Logic

Jeroen P. Goudsmit
Utrecht University
Workshop on Admissibility and Unification 2
January 31st 2015

3

 $\overline{A}/\overline{\Delta}$ admissible

$$\sigma A$$
 is derivable

 A / Δ admissible

 σC is derivable for some $C \in \Delta$

 σA is derivable $A \sim \Delta \text{ admissible}$

 σC is derivable for some $C \in \Delta$

Given a rule A/Δ ,

is it admissible?

— 1979 Citkin

1975 Friedman

_ 1984 Rybakov

Semantics for Admissible Rules

Senantics for Admissible Rules Adequate Semantics

Semantics for Admissible Rules

What is a good notion of

semantics for admissibility?

Definition

Say that A/Δ is valid on v, denoted $v \Vdash A/\Delta$, if:

 $v \Vdash A$ implies $v \Vdash C$ for some $C \in \Delta$.

Theorem (Rieger, 1949; Nishimura, 1960; Esakia and Grigolia, 1977; Shehtman, 1978; Rybakov, 1984)

For each finite set of variables X, there exists a model $u: U(X) \rightarrow P(X)$ such that:

 $u \Vdash A iff \vdash A for all A \in \mathcal{L}(X).$

 $v \Vdash A/\Delta$ for all $v \in \mathcal{K}$

 $A \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \Delta$

$v \Vdash A/\Delta \text{ for } A \, \trianglerighteq \, A \, \trianglerighteq \, \Delta$

$$v \Vdash A/\Delta \text{ for } A \vdash \Delta$$
 sound

Definition

A map $f: u \rightarrow v$ is definable if there is a substitution σ such that:

 $u, p \Vdash \sigma A \text{ iff } v, f(p) \Vdash A \text{ for all } A.$

Definition

A map $f: u \rightarrow v$ is definable if there is a substitution σ such that:

$$u, p \Vdash \sigma A \text{ iff } v, f(p) \Vdash A \text{ for all } A.$$

Definition (de Jongh, 1982)

A model v called exact if there exists a definable map $u \rightarrow v$.

A map $f: u \rightarrow v$ is definable if there is a substitution σ such that:

$$u, p \Vdash \sigma A \text{ iff } v, f(p) \Vdash A \text{ for all } A.$$

Definition (de Jongh, 1982)

A model v called exact if there exists a definable map $u \rightarrow v$, where u is a universal model.

with respect to exact models.

The admissible rules of IPC are sound and complete

What is a good notion of

semantics for admissibility?

What is a good notion of semantics for admissibility? Exact models!

Theorem (Fedorishin and Ivanov, 2003; Goudsmit, 2014b)

The admissible rules of IPC are not sound and complete with respect to finite exact models.

III

Adequate Semantics

What is a *fair* notion of

semantics for admissibility?

A map $f: u \rightarrow v$ is adequate if there exists a substitution such that:

 $u, p \Vdash \sigma A \text{ iff } v, f(p) \Vdash A \text{ for all } A.$

A map $f: u \rightarrow v$ is Σ -adequate if there exists a substitution such that:

 $u, p \Vdash \sigma A \text{ iff } v, f(p) \Vdash A \text{ for all } A \in \Sigma.$

A map $f: u \rightarrow v$ is Σ -adequate if there exists a substitution such that:

$$u, p \Vdash \sigma A \text{ iff } v, f(p) \Vdash A \text{ for all } A \in \Sigma.$$

Definition

A model v is Σ -adequately exact if there exists a Σ -adequate map $u \to v$.

A map $f: u \rightarrow v$ is Σ -adequate if there exists a substitution such that:

$$u, p \Vdash \sigma A \text{ iff } v, f(p) \Vdash A \text{ for all } A \in \Sigma.$$

Definition

A model v is Σ -adequately exact if there exists a Σ -adequate map $u \to v$, where u is a universal model.

The admissible rules of IPC are sound and complete with respect to exact models.

The admissible rules of IPC from an adequate set Σ are sound and complete with respect to Σ -adequately exact models.

Let $A \in \Sigma$ and $\Delta \subseteq \Sigma$. The following are equivalent:

- 1. $A \vdash \Delta$;
- **2.** $v \Vdash A/\Delta$ for all Σ -adequately exact models v of size at most $2^{|\Sigma|}$.

What is a fair notion of

semantics for admissibility?

What is a *fair* notion of semantics for admissibility? Adequately exact models!

IV

Effective Description

When is a model

 Σ -adequately exact?

Theorem (Citkin, 1977)

A finite submodel of a universal model is exact iff it is extendible.

Theorem (Ghilardi, 1999)

A definable submodel of a universal model is exact iff it is extendible.

Theorem

Let $U \subseteq U(X)$ be an upset. Now, U is extendible iff for each finite $W \subseteq U$ there exists a $p \in U$ such that $W \subseteq \uparrow p$ and for all $A \to B$:

 $p \Vdash A \rightarrow B \text{ iff } (W \Vdash A \rightarrow B \text{ and } p \Vdash A \text{ implies } p \Vdash B).$

Definition

Let $U \subseteq U(X)$ be an upset. Now, U is Σ -extendible iff for each finite $W \subseteq U$ there exists a $p \in U$ such that $W \subseteq \uparrow p$ and for all $A \to B \in \Sigma$:

 $p \Vdash A \rightarrow B \text{ iff } (W \Vdash A \rightarrow B \text{ and } p \Vdash A \text{ implies } p \Vdash B).$

Theorem

A finite submodel of a universal model is Σ -adequately exact iff it is Σ -extendible.

When is a model Σ -adequately exact? If it's Σ -extendible.

Given a rule A/Δ ,

is it admissible?

Given a rule A/Δ , is it admissible?

Take Σ as all subformulae of A and Δ . Compute whether $v \Vdash A/\Delta$ for all Σ -extendible models of size at most $2^{|\Sigma|}$. If it is, then yes. Otherwise, no.

are decidable.

The admissible rules of IPC

The admissible rules of IPC are decidable.

Rybakov (1984) see Goudsmit (2014a) for more details.

Intuitionistic Rules Admissible Rules of Intermediate Logics

Admissible Rules of Intermediate Logics Jeroen P. Goudsmit

References I

- Citkin, A. (1977). "On Admissible Rules of Intuitionistic Propositional Logic". In: *Mathematics of the USSR-Sbornik* 31.2, pp. 279–288. DOI: 10.1070/SM1977v031n02ABEH002303. Zbl: 0386.03011 (see p. 67).
- (1979). "О Проверке Допустимости Не́которых Правил Интуиционистской Логике". Russian. In: V-th All-Union Conference in Mathematical Logic. English translation of title: On verification of admissibility of some rules of intuitionistic logic. Novosibirsk, p. 162 (see pp. 8–11).
- Esakia, L. and Grigolia, R. (1977). "The criterion of Brouwerian and closure algebras to be finitely generated." In: *Bulletin of the Section of Logic* 6, pp. 46–52. ISSN: 0138-0680. MR: 0476400. Zbl: 0407.03048 (see p. 20).
- Fedorishin, B. and Ivanov, V. (2003). "The finite model property with respect to admissibility for superintuitionistic logics". In: *Siberian Advances in Mathematics* 13.2, pp. 56–65. MR: 2029995. Zbl: 1047.03020 (see p. 42).

References II

- Friedman, H. (1975). "One Hundred and Two Problems in Mathematical Logic". In: *The Journal of Symbolic Logic* 40.2, pp. 113–129. ISSN: 00224812. DOI: 10.2307/2271891 (see pp. 7–11).
- Ghilardi, S. (1999). "Unification in Intuitionistic Logic". In: *The Journal of Symbolic Logic* 64.2, pp. 859–880. ISSN: 00224812. DOI: 10.2307/2586506 (see pp. 11, 68).
- Goudsmit, J. P. (2014a). "Decidability of Admissibility: On a Problem of Friedman and its Solution by Rybakov". In: *Logic Group Preprint Series* 322 (see pp. 79, 80).
- (2014b). "Finite Frames Fail". In: Logic Group Preprint Series 321.
 URL: http://www.phil.uu.nl/preprints/lgps/number/321 (see p. 42).

References III

- de Jongh, D. H. J. (1982). "Formulas of One Propositional Variable in Intuitionistic Arithmetic". In: *The L. E. J. Brouwer Centenary Symposium, Proceedings of the Conference held in Noordwijkerhout.* Ed. by A. S. Troelstra and D. van Dalen. Vol. 110. Studies in Logic and the Foundations of Mathematics. Elsevier, pp. 51–64. DOI: 10.1016/S0049-237X(09)70122-3 (see pp. 35–37).
- Nishimura, I. (1960). "On Formulas of One Variable in Intuitionistic Propositional Calculus". In: *The Journal of Symbolic Logic* 25.4, pp. 327–331. ISSN: 00224812. DOI: 10.2307/2963526 (see p. 20).
- Rieger, L. (1949). "On the lattice theory of Brouwerian propositional logic". In: *Acta Facultatis Rerum Naturalium Universitatis Carolinae* 189, pp. 1–40. MR: 0040245 (see p. 20).
- Rozière, P. (1992). "Règles admissibles en calcul propositionnel intuitionniste". PhD thesis. Université de Paris VII (see pp. 10, 11).

References IV

- Rybakov, V. V. (1984). "A criterion for admissibility of rules in the model system S4 and the intuitionistic logic". In: *Algebra and Logic* 23.5, pp. 369–384. ISSN: 0002-5232. DOI: 10.1007/BF01982031 (see pp. 9–11, 20, 79, 80).
- Shehtman, V. B. (1978). "Rieger-Nishimura lattices". In: *Soviet Mathematics Doklady* 19.4, pp. 1014–1018. ISSN: 0197-6788. Zbl: 0412.03010 (see p. 20). Trans. of V. B. Šehtman. "Reiger-Nishimura ladders". In: *Doklady Akademii Nauk SSSR* 241.6, pp. 1288–1291. ISSN: 0002-3264. MR: 504235.