A Search for Long-Lived Neutral Particles Decaying to Dijets

Andrzej Maciej Zuranski

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance
by the Department of
Physics

September, 2013

 \odot Copyright 2013 by Andrzej Maciej Zuranski. All rights reserved.

Abstract

A search is performed for long-lived massive neutral particles decaying to quark-antiquark pairs. The experimental signature is a distinctive topology of a pair of jets originating at a secondary vertex. Events were collected by the CMS detector at the LHC during pp collisions at $\sqrt{s} = 8$ TeV, and selected from data samples corresponding to 18.6 fb⁻¹ of integrated luminosity. No significant excess is observed above standard model expectations, and an upper limit is set with 95% confidence level on the production cross section of a heavy scalar resonance, decaying to two long-lived massive neutral particles, each decaying to quark-antiquark pairs, as a function of the long-lived massive neutral particle lifetime.

Contents

List of Figures

List of Tables

Introduction

Displaced DiLepton Signatures

The LHC and the CMS Detector

The CMS Online Luminosity
System

Data and Monte-Carlo Samples

Event Selection and Performance

Background Estimates

Systematic Uncertainties

Results

Conclusion

Appendix A

Stand Alone Muon Reconstruction for 2012