Physics

Schematic

 $E_0 o open \ circuit \ voltage \ (V)$

 $V_t o terminal\ voltage\ (V) \leftarrow output\ of\ the\ model$

 $i \rightarrow current \; draw \; (A) \leftarrow input \; to \; the \; model$

 $r_n, c_n
ightarrow resistance \ and \ capacitances \ (\Omega, F)$

Model equations

Electrical model

$$egin{aligned} V_t &= E_0 - \sum_{1 o n} V_{c_n} - i r_0 \ & rac{dV_{c_n}}{dt} = rac{i}{c_n} - rac{V_{c_n}}{r_n c_n} \ & rac{soc}{dt} = rac{-i}{Q_{Ah} imes 3600} \end{aligned}$$

Thermal model

$$P_{heatGen} = i^2 r_0 + \sum_{1
ightarrow n} rac{V_{c_n}^2}{r_n} \ P_{heatOut} =$$

BMS

SOC estimation (real time)

- 1. Direct methods
 - 1. CC (Coulomb couting)
 - 2. ECC (Enhanced CC)
- 2. Model-based methods
 - 1. Kalman filtering
- 3. Data-driven methods

Define SOC

SOC is the ratio of the present charge content of the cell to the maximum possible charge content at a pre-defined temperature and C-rate

$$SOC = rac{Q_{remaining}}{Q_{max}} imes 100~\%$$

Direct methods

Coulomb counting (CC)

In this method, the SOC of a cell (battery) is estimated by counting the amount of charge (coulombs) entering or leaving the battery

$$SOC(t) = SOC(t_0) + rac{1}{Q_{max_{As}}} \int_0^T i dt imes 100~\%$$

Problems

- · strong dependence of initial value of SOC
- requires high precision current measurement
- does not consider health of the battery (unless $Q_{max_{As}}$ is calibrated)

Enhance coulomb counting (ECC)

This follows the crux of couting charge, but adds corrections in terms of:

- reseting battery SOC from SOC-OCV table as it rests beyond its largest time constant (this solves the initial SOC value problem with CC)
- adding correction terms like discharge efficiency and Peukert equation coefficient and generic current-based polynomial to the term that is integrated (this solves the lack of precision with current integration)
- the additional coefficients ($\eta_{coulumb}$, k, n, a_n) are tuned from repeated power draw \leftrightarrow rest cycles with SOC-OCV resets baked in between the cycles

$$SOC(t) = SOC(t_0) + rac{\eta_{coulomb}}{Q_{max_{As}}} \int_0^T [i^k + \sum_{0}^n (a_n i^n)] \ dt imes 100 \ \%$$

this method works for a particular power draw cycle

Note: OCV measurement and EIS can be used to estimate SOCs for non-real-time applications

Model-based methods