Eigenschaften von zweistelligen Operationen

für 2-stellige Operation $*: A \times A \longrightarrow A$ $a, b \longmapsto a * b$ (infixe Notation)

1.1.3

assoziativ, falls für alle $a, b, c \in A$: (a * b) * c = a * (b * c).

kommutativ, falls für alle $a, b \in A$: a * b = b * a.

neutrales Element: $e \in A$ neutrales Element für * gdw für alle $a \in A$: a * e = e * a = a.

inverse Elemente (bzgl. * mit neutralem Element e): $a' \in A$ inverses Element zu $a \in A$, falls a*a' = a'*a = e.

Beispiel Konkatenation: assoziativ, neutrales Element ε , $w \neq \varepsilon$ hat kein inverses Element

FGdl I Sommer 2011 M.Otto und M.Ziegler

Kap 1: Grundbegriffe

Strukturen

1.1.4

Strukturtypen: Beispiele

Graphen (Transitionssysteme) als relationale Strukturen

(V, E) mit Knotenmenge V, Kantenrelation E $E \subseteq V \times V$ eine 2-stellige Relation $(a, b) \in E$ zu deuten als $a \stackrel{E}{\longrightarrow} b$

Monoide als algebraische Strukturen

Monoid: assoziative 2-stellige Operation mit neutralem Element

Beispiel Wort-Monoid

das Wort-Monoid $(\mathbf{\Sigma}^*,\cdot,arepsilon)$ über $\mathbf{\Sigma}$

 \cdot , Konkatenation, als 2-stellige Operation ε , das leere Wort, als Konstante

(algebraische) Strukturen

Strukturen

→ Abschnitt 1.1.4

Struktur =

Kap 1: Grundbegriffe

Trägermenge mit ausgezeichneten

Konstanten, Operationen, Relationen

1.1.4

typische Beispiele:

• Standardstrukturen der Algebra

$$(\mathbb{N}, +, 0)$$
, $(\mathbb{N}, +, \cdot, <, 0, 1)$, $(\mathbb{Z}, +, \cdot, 0, 1)$, ...

- Graphen (Transitionssysteme)
- Wortmonoide
- Boolesche Algebren
- später: Wortstrukturen, relationale Datenbanken, u.v.a.m.

FGdI I

sommer 201

.Otto und M.Ziegler

26/1

Kap 1: Grundbegriffe

Strukturen

1.1.4

Beispiel: Boolesche Algebren

Axiome für Boolesche Algebra $(B, \cdot, +, ', 0, 1)$:

BA1: + und \cdot assoziativ und kommutativ.

Für alle
$$x, y, z$$
: $(x + y) + z = x + (y + z)$ $x + y = y + x$
 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $x \cdot y = y \cdot x$

BA2: + und \cdot distributiv.

Für alle
$$x, y, z$$
: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
 $x + (y \cdot z) = (x + y) \cdot (x + z)$

BA3: 0 und 1 als neutrale Elemente.

Für alle x: $x \cdot 1 = x$ x + 0 = x

BA4: Komplement.

 $0 \neq 1$ und für alle x: $x \cdot x' = 0$ x + x' = 1

Beispiele: $(\mathcal{P}(M), \cap, \cup, \bar{}, \emptyset, M)$ für $M \neq \emptyset$; $(\mathbb{B}, \wedge, \vee, \neg, 0, 1)$

Homomorphismen

→ Abschnitt 1.1.5

strukturerhaltende Abbildungen zw. Strukturen desselben Typs

z.B. für Strukturen $(A, *^A, e^A)$ und $(B, *^B, e^B)$ mit einer zweistelligen Operation * und einer Konstanten e

$$F: A \longrightarrow B$$
 $a \longmapsto f(a)$ Homomorphismus, falls

- (i) $F(e^A) = e^B$ (verträglich mit Konstante e)
- (ii) $F(a_1 *^A a_2) = F(a_1) *^B F(a_2)$ (verträglich mit Operation *)

Kap 1: Grundbegriffe

Homomorphismen

1.1.5

Isomorphie - Isomorphismen

Isomorphismus: bijektiver Homomorphismus, dessen
Umkehrung auch ein Homomorphismus ist.

Beispiel

Für eine Bijektion
$$f: \Sigma_1 \longrightarrow \Sigma_2$$

 $a \longmapsto f(a) =: a'$

ist

$$\hat{f}: \Sigma_1^* \longrightarrow \Sigma_2^*$$
 $w = a_1 \dots a_n \longmapsto a'_1 \dots a'_n$

ein Isomorphismus zwischen $(\Sigma_1^*,\cdot,\varepsilon)$ und $(\Sigma_2^*,\cdot,\varepsilon)$.

Schreibweise: \hat{f} : $(\Sigma_1^*, \cdot, \varepsilon) \simeq (\Sigma_2^*, \cdot, \varepsilon)$

Beobachtung: $(\Sigma_1^*,\cdot,\varepsilon)\simeq (\Sigma_2^*,\cdot,\varepsilon)$ gdw. $|\Sigma_1|=|\Sigma_2|$

Homomorphismen: Beispiele

 $\begin{array}{cccc} (1) & h \colon \Sigma^* & \longrightarrow & \mathbb{N} \\ & w & \longmapsto & |w| \end{array}$

Homomorphismus von $(\Sigma^*, \cdot, \varepsilon)$ nach $(\mathbb{N}, +, 0)$.

- (2) $\hat{f}: \Sigma_1^* \longrightarrow \Sigma_2^*$ $w = a_1 \dots a_n \longmapsto a_1' \dots a_n'$ wobei $a_i' = f(a_i)$ für eine vorgeg. Funktion $f: \Sigma_1 \to \Sigma_2$ Homomorphismus von $(\Sigma_1^*, \cdot, \varepsilon)$ nach $(\Sigma_2^*, \cdot, \varepsilon)$.
- (3) analog zu (2), zu $f: \Sigma_1 \to \Sigma_2^*$: ersetze $a \in \Sigma_1$ durch ein Wort $f(a) \in \Sigma_2^*$.

Bemerkung: \hat{f} in (2) und (3) eindeutig bestimmt durch f und die Forderung, dass $\hat{f}: (\Sigma_1^*, \cdot, \varepsilon) \xrightarrow{\text{hom}} (\Sigma_2^*, \cdot, \varepsilon)$ und dass \hat{f} Fortsetzung von f ist: $\hat{f}(a) := f(a)$ f.a. $a \in \Sigma_1$.

l

Sommer 2011

1.Otto und M.Ziegler

-- /-

Kap 1: Grundbegriffe

Aussagenlogik

1.2.1

elementare Beweistechniken

→ Abschnitt 1.2

teilweise Vorgriff auf Teil II (Logik)

primäres Anliegen hier:

- normierte Verknüpfung von Aussagen, Aussagenlogik (AL)
- mathematische Präzision für Quantoren, Quantorenlogik
- Beweistechniken/-muster, insbesondere: Induktionsbeweise

Präzision des Ausdrucks / Strenge des Argumentierens mathematische Grunddisziplin für den Werkzeugkasten

Gd | Sommer 2011 M.Otto und M.Ziegler 31/1 FGd | Sommer 2011 M.Otto und M.Ziegler 3

aussagenlogische Junktoren

\rightarrow Abschnitt 1.2.1

normierte Wahrheitswerte für aussagenlogische Operationen Wahrheitswerte (wahr bzw. falsch; 1 bzw. 0) zusammengesetzter Aussagen als Funktion der Wahrheitswerte der Teilaussagen

und	$\wedge \colon \mathbb{B} \times \mathbb{B} \to \mathbb{B}$	<u> </u>
		0 0 0
		1 0 1
oder	$\vee \colon \mathbb{B} \times \mathbb{B} \to \mathbb{B}$	ullet $ullet$ $ullet$ 0 1
		0 0 1
		1 1 1
Negation	$\neg\colon \mathbb{B} \to \mathbb{B}$	_ 0 1

vgl. Boolesche Algebra ($\mathbb{B}, \wedge, \vee, \neg, 0, 1$)

GdI I Sommer 2

M.Otto und M.Ziegler

22 /1

Kap 1: Grundbegriffe

Aussagenlogik

1.2.1

weitere aussagenlogische Verknüpfungen

abgeleitete Junktoren , z.B.

sodass
$$(p \to q) \equiv (\neg p) \lor q$$

 $(p \leftrightarrow q) \equiv (p \land q) \lor ((\neg p) \land (\neg q))$
 $\equiv (p \to q) \land (q \to p)$

FGdI I

mmer 2011

.Otto und M.Ziegler

Kap 1: Grundbegriffe

Aussagenlogik

1.2.1

aussagenlogische Äquivalenzen und Schlussregeln

Kontraposition:

$$(p \rightarrow q) \equiv ((\neg q) \rightarrow (\neg p))$$

• beweise " $A \Rightarrow B$ " über " $\neg B \Rightarrow \neg A$ "

Indirekter Beweis/Widerspruchsbeweis:

$$p \equiv (\neg p \rightarrow 0)$$

• beweise "A" über " $(\neg A)$ unmöglich"

Biimplikation/Äquivalenz: $(p \leftrightarrow q) \equiv ((p \rightarrow q) \land (q \rightarrow p))$

• beweise " $A \Leftrightarrow B$ " über " $A \Rightarrow B$ und $B \Rightarrow A$ "

Implikationsketten:

• beweise " $A \Rightarrow B$ " z.B. über " $A \Rightarrow C$ und $C \Rightarrow B$ " (Zwischenbehauptungen)

Kap 1: Grundbegriffe

Quantoren

1.2.2

Quantoren: All- und Existenzaussagen → Abschnitt 1.2.2

 $(\forall n \in \mathbb{N})A(n)$ für die **Allaussage** "für alle $n \in \mathbb{N}$ gilt A(n)" $(\exists n \in \mathbb{N})A(n)$ für die **Existenzaussage** "A(n) gilt für mindestens ein $n \in \mathbb{N}$ "

Negationen von Allaussagen sind äquivalent zu Existenzaussagen und umgekehrt.

Beispiel

 \neg ("alle Schnurze beissen") \equiv "es gibt mindestens einen Schnurz, der nicht beisst"

beachte: "alle Schnurze beissen" ist wahr, wenn es keine Schnurze gibt!

wichtig:

Allaussagen kann man durch ein Gegenbeispiel widerlegen, aber nicht durch Beispiele beweisen!

FGdl I Sommer 2011 M.Otto und M.Ziegler 35/1 FGdl I

Kap 1: Grundbegriffe

Induktion

1.2.3

Induktionsbeweise

 \rightarrow Abschnitt 1.2.3

Prinzip der vollständigen Induktion über N:

beweise die Allaussage $(\forall n \in \mathbb{N})A(n)$ anhand von

- (i) Induktionsanfang: A(0).
- (ii) Induktionsschritt: für alle $n \in \mathbb{N}$ gilt: $A(n) \Rightarrow A(n+1)$

Rechtfertigung:

für jedes feste *n* ergibt sich aus (ii) eine Implikationskette

$$A(0) \Rightarrow A(1) \Rightarrow A(2) \Rightarrow \ldots \Rightarrow A(n-1) \Rightarrow A(n)$$

Kap 1: Grundbegriffe

Induktion

1.2.3

Induktionsprinzipien für andere Bereiche Beispiel 1.2.4

betrachte Menge M der Terme mit 2-st. Fktn * und Konst. c als Menge von Wörtern über $\Sigma = \{*, c, (,)\}, M \subseteq \Sigma^*$

$$M = \{c, c * c, c * (c * c), \dots, (c * c) * (c * (c * c)), \dots\}$$

systematische Erzeugung aller $t \in M$:

ausgehend vom Startelement $c \in M$ mit Operation $F: M \times M \longrightarrow M$

$$F(t_1, t_2) := \begin{cases} (t_1) * (t_2) & \text{für } t_1, t_2 \neq c \\ c * (t_2) & \text{für } t_1 = c, t_2 \neq c \\ (t_1) * c & \text{für } t_1 \neq c, t_2 = c \\ c * c & \text{für } t_1 = t_2 = c \end{cases}$$

 $\big| \big(\forall t \in M \big) \big(|t|_c = |t|_* + 1 \big)$ Beweise damit z.B.:

Kap 1: Grundbegriffe

Induktion

Beispiel: Induktionsbeweis über N

Beispiel 1.2.2

A(n): n Scheiben lassen sich in $2^n - 1$ Schritten gemäß der Regeln umschichten, und nicht in weniger Schritten

Induktionsanfang: A(0)

Induktionsschritt: für alle $n \in \mathbb{N}$ gilt: $A(n) \Rightarrow A(n+1)$

Kap 1: Grundbegriffe

Induktion

1.2.3

1.2.3

Induktionsprinzipien für andere Bereiche

M werde, ausgehend von $M_0 \subseteq M$. durch Operationen $F \in \mathcal{F}$ erzeugt; dann lässt sich

$$(\forall x \in M) A(x)$$

beweisen anhand von

- (i) **Induktionsanfang**: A(x) gilt für alle $x \in M_0$.
- (ii) **Induktionsschritt(e)** für $F \in \mathcal{F}$ (*n*-stellig): aus $A(x_i)$ für i = 1, ..., n folgt, dass auch $A(F(x_1, ..., x_n))$.

Induktion

1.2.3

Induktionsprinzipien für andere Bereiche

Beispiele

Bereich M	$M_0 \subseteq M$	erzeugende Operationen	
N	{0}	$S: n \longmapsto n+1$	
Σ*	$\{arepsilon\}$	$($ $w\longmapsto wa$ $)$ für $a\in \Sigma$	
$\{*,c\}$ -Terme	{c}	$(t_1,t_2)\longmapsto (t_1*t_2)$	
endl. Teilmengen von A	{Ø}	$(B \longmapsto B \cup \{a\})$ für $a \in A$	

M.Otto und M.Zieglei

Kapitel 2: Endliche Automaten Reguläre Sprachen

Kap 1: Grundbegriffe Induktion

falscher Induktionsbeweis über N

Übung 1.2.7

 $\begin{cases} \text{jede Gruppe von } n \text{ Personen besteht aus} \end{cases}$ A(n): gleichaltrigen Personen.

Induktionsanfang: A(n) wahr für n = 0 und n = 1.

Induktionsschritt: $A(n) \Rightarrow A(n+1)$.

Sei $n \ge 1$, |P| = n + 1; $p_1 \ne p_2$ beliebig aus P ausgewählt.

Betrachte $P_1 := P \setminus \{p_1\}$ und $P_2 := P \setminus \{p_2\}$. $|P_1| = |P_2| = n$.

Nach Induktionsannahme A(n) bestehen also P_1 und P_2 jeweils aus gleichaltrigen Personen.

Jedes $p \in P \setminus \{p_1, p_2\}$ ist in P_1 und in P_2 vorhanden.

Also sind alle in P gleichaltrig. Also gilt auch A(n+1).

Also gilt $(\forall n \in \mathbb{N})A(n)$?

Kap. 2: Endliche Automaten

reguläre Sprachen

2.1

1.2.3

Reguläre Σ-Sprachen

→ Abschnitt 2.1

Operationen auf **\Sum_-Sprachen**

Komplement

$$L \longmapsto \overline{L} := \Sigma^* \setminus L$$

Schnitt

$$(L_1,L_2)\longmapsto L_1\cap L_2$$

Boolesche Operationen

Vereinigung
$$(L_1, L_2) \longmapsto L_1 \cup L_2$$

Konkatenation von Sprachen

$$(L_1,L_2) \longmapsto L_1 \cdot L_2 := \{u \cdot v \colon u \in L_1, v \in L_2\}$$

Stern-Operation

$$L \longmapsto L^* := \{u_1 \cdot \ldots \cdot u_n \colon u_1, \ldots, u_n \in L, n \in \mathbb{N}\}$$

Kap. 2: Endliche Automaten

reguläre Sprachen

äre Sprachen

Definition 2.1.2

Die Menge $\mathrm{REG}(\Sigma)$ der *regulären Ausdrücke* über Σ , wird erzeugt gemäß:

(i) ∅ ist ein regulärer Ausdruck.

Reguläre Ausdrücke

- (ii) **a** ist ein regulärer Ausdruck, für $a \in \Sigma$.
- (iii) für $\alpha, \beta \in REG(\Sigma)$ ist $(\alpha + \beta) \in REG(\Sigma)$.
- (iv) für $\alpha, \beta \in REG(\Sigma)$ ist $(\alpha\beta) \in REG(\Sigma)$.
- (v) für $\alpha \in REG(\Sigma)$ ist $\alpha^* \in REG(\Sigma)$.

[evtl. auch zugelassen: $\Sigma, \Sigma^*, \Sigma^+, \varepsilon$]

Beispiel: $(b^* a b^* a b^* a)^* b^*$

GdI I Sommer 20

M.Otto und M.Ziegler

45/1

Kap. 2: Endliche Automaten

reguläre Sprachen

2.1

Die **regulären \Sigma-Sprachen** werden erzeugt aus den **Ausgangssprachen** \emptyset und $\{a\}$ für $a \in \Sigma$ durch die Operationen **Vereinigung**, **Konkatenation** und **Stern**.

Kap. 2: Endliche Automaten

reguläre Sprachen

Definition 2.1.3

Reguläre Sprachen

Semantik für $\alpha \in REG(\Sigma)$: $L(\alpha) \subseteq \Sigma^*$ die durch α bezeichnete reguläre Sprache

Induktiv/rekursiv über $\alpha \in REG(\Sigma)$ definiere $L(\alpha)$:

- (i) $L(\emptyset) := \emptyset$.
- (ii) $L(a) := \{a\}.$
- (iii) $L(\alpha + \beta) := L(\alpha) \cup L(\beta)$.
- (iv) $L(\alpha\beta) := L(\alpha) \cdot L(\beta)$.
- (v) $L(\alpha^*) := (L(\alpha))^*$.

Definition

Die *regulären* Σ -Sprachen sind genau die $L(\alpha)$ für $\alpha \in REG(\Sigma)$

Beispiel: $L(b^* a b^* a b^* a)^* b^* =$ = {alle Wörter mit einer durch 3 teilbaren Anzahl 'a's}

FGdI I

Sommer 201

Otto und M Ziegler

16/1

Kap. 2: Endliche Automaten

endliche Automaten

2.2

2.1

Endliche Automaten

→ Abschnitt 2.2

Transitionssysteme (mit endl. Zustandsmenge)

 $\mathcal{S} = (\Sigma, Q, \Delta)$ mit den Komponenten:

Σ: Alphabet (Kantenbeschriftungen)

Q: Zustandsmenge, endlich, $\neq \emptyset$

 $\Delta \subseteq Q \times \Sigma \times Q$: Transitions relation

 $(q,a,q')\in \Delta$ steht für die Transition $q\stackrel{a}{\longrightarrow} q'$

II Sommer 2011 M.Otto und M.Ziegler 47/1 FGdl Sommer 2011 M.Otto und M.Ziegler 48/1

Kap. 2: Endliche Automaten

endliche Automaten

maten

Kap. 2: Endliche Automaten

endliche Automaten

2.2

Beispiel: Transitionssystem mit Zusatzstruktur, DFA

modulo-3 Zähler für a, $|w|_a \mod 3$.

Zusatzstruktur:

→: Initialisierung;

(2): ausgezeichneter Zustand, hier für $|w|_a \equiv 2 \pmod{3}$

deterministisch:

 Δ beschreibbar durch Funktion $\delta \colon Q \times \Sigma \to Q$

FGdl I Sommer 2011 M.Otto und M.Ziegler 49/1

Kap. 2: Endliche Automaten

endliche Automaten

2.2

Deterministische endliche Automaten, DFA

 $\mathcal{A} = \big(\Sigma, Q, q_0, \delta, A\big)$

Q endliche, nicht-leere Zustandsmenge

 $q_0 \in Q$ Anfangszustand

 $A \subseteq Q$ Menge der akzeptierenden Zustände

 $\delta \colon Q \times \Sigma \to Q$ Übergangsfunktion.

Berechnung von \mathcal{A} auf $w = a_1 \dots a_n \in \Sigma^*$

die eindeutige Zustandsfolge q_0,\ldots,q_n mit

$$q_{i+1} = \delta(q_i, a_{i+1})$$
 für $0 \leqslant i < n$

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots q_{n-1} \xrightarrow{a_n} q_n$$

Endliche Automaten, DFA und NFA

Idee: Transitionssysteme zur *Erkennung von Sprachen* deterministische Transitionssysteme/Automaten

anstelle der

Transitionsrelation

 $\Delta \subseteq Q \times \Sigma \times Q$

Transitionsfunktion $\delta : Q \times \Sigma \longrightarrow Q$

 $egin{array}{lll} Q imes\Sigma &\longrightarrow & Q \ (q,a) &\longmapsto & \delta(q,a)\in Q \end{array}$

jeweils genau ein *eindeutig bestimmter Nachfolgezustand* kein deadlock, keine Auswahl

nicht-deterministische Transitionssysteme/Automaten

Transitions relation bietet u.U. bei Eingabe a in Zustand q

$$\left\{ \begin{array}{ll} \text{kein } q' \text{ mit } (q,a,q') \in \Delta. & \text{deadlock} \\ \text{verschiedene } q' \text{ mit } (q,a,q') \in \Delta. & \text{Auswahl} \end{array} \right.$$

Gdl I

Sommer 201

.Otto und M.Ziegler

EO /1

Kap. 2: Endliche Automaten

endliche Automaten

2.2

DFA: Läufe und Berechnungen

Definition 2.2.4

analog zu Berechnung (vom Startzustand q_0 aus) definiere Lauf auf w von $q \in Q$ aus

$$q \xrightarrow{a_1} q' \xrightarrow{a_2} \cdots$$

führt zu eindeutiger Fortsetzung $\hat{\delta}$ von δ :

$$\hat{\delta}\colon Q imes \Sigma^* \ \longrightarrow \ Q \ (q,w) \ \longmapsto \ \hat{\delta}(q,w) \in Q \ \left\{ egin{array}{ll} ext{der (!) Endzustand des} \ ext{Laufs auf w von q aus} \ ext{induktiv definiert} \end{array}
ight.$$

Berechnungen sind Läufe von q_0 aus;

Endzustand der Berechnung von ${\cal A}$ auf w: $\hat{\delta}(q_0,w)$

Läufe beschreiben auch Teilabschnitte von Berechnungen

FGdl I Sommer 2011 M.Otto und M.Ziegler 51/1

M.Otto und M.Ziegler

52/1

Kap. 2: Endliche Automaten

endliche Automaten

erkannte/akzeptierte Sprache

Definition 2.2.3

DFA: von \mathcal{A} erkannte/akzeptierte Sprache

$$w=a_1\dots a_n$$
 mit Berechnung q_0,\dots,q_n $q_n=\hat{\delta}(q_0,w)$ \mathcal{A} $\left\{egin{array}{ll} \textit{akzeptiert } w & \textit{falls } q_n \in \mathcal{A} \ &\textit{verwirft } w & \textit{falls } q_n
otin \mathcal{A} \end{array}
ight.$

die von A akzeptierte/erkannte Sprache:

$$L(\mathcal{A}) := \{ w \in \Sigma^* \colon \mathcal{A} \text{ akzeptiert } w \}$$

= $\{ w \in \Sigma^* \colon \hat{\delta}(q_0, w) \in A \}$

Kap. 2: Endliche Automaten

endliche Automaten

erkannte/akzeptierte Sprache

Definition 2.2.6

NFA: von A erkannte/akzeptierte Sprache

eine Berechnung q_0, \ldots, q_n von \mathcal{A} auf $w = a_1 \ldots a_n$ ist eine akzeptierende Berechnung auf w falls $q_n \in A$

die von A akzeptierte/erkannte Sprache:

$$L(\mathcal{A}):=$$
 $ig\{w\in\Sigma^*\colon \mathcal{A} \ ext{\it hat eine} \ ext{akzeptierende Berechnung auf} \ w \ ig\}$

Existenz mindestens einer akzeptierenden Berechnung beachte: Asymmetrie bzgl. akzeptieren/verwerfen

Kap. 2: Endliche Automaten

endliche Automaten

Nicht-deterministische endliche Automaten, NFA

$$\mathcal{A} = ig(\Sigma, Q, q_0, \Delta, A ig)$$

endliche, nicht-leere Zustandsmenge

 $q_0 \in Q$ Anfangszustand

 $A \subseteq Q$ Menge der akzeptierenden Zustände

 $\Delta \subseteq Q \times \Sigma \times Q$ Übergangs*relation*.

Berechnung von A auf $w = a_1 \dots a_n \in \Sigma^*$

jede (!) Zustandsfolge q_0, \ldots, q_n mit $(q_i, a_{i+1}, q_{i+1}) \in \Delta$

 $a_0 \xrightarrow{a_1} a_1 \xrightarrow{a_2} \cdots q_{n-1} \xrightarrow{a_n} q_n$

Vorsicht: i.d.R. nicht eindeutig, nicht notwendig existent!

Kap. 2: Endliche Automaten

endliche Automaten

2.2

Beispiele

 $\Sigma = \{a, b\}$

DFA A_1

 $L(\mathcal{A}_1) = ?$

NFA A_2

$$L(A_2) = ?$$

NFA A_3

 $L(\mathcal{A}_3) = ?$

Determinisierung

→ Abschnitt 2.2.3

von NFA zu äquivalentem DFA; Determinisierung

deterministische Simulation des NFA durch Potenzmengen-Trick

Satz 2.2.9

Zu NFA \mathcal{A} lässt sich ein DFA \mathcal{A}^{det} (effektiv) konstruieren, der dieselbe Sprache erkennt: $L(\mathcal{A}) = L(\mathcal{A}^{\text{det}})$.

Idee:

Zustände von \mathcal{A}^{det} geben an, in welchen Zuständen \mathcal{A} sein könnte

FGdI I

Sommer 2011

M.Otto und M.Ziegler

57/1

Potenzmengen-Trick

deterministische Simulation des NFA in DFA mittels Potenzmengen-Trick

	$\mathcal{A} = ig(\Sigma, Q, q_0, \Delta, A ig)$	$ig \; \mathcal{A}^{ ext{ iny det}} = ig(\Sigma, \hat{Q}, \hat{q}_0, \delta, \hat{A} ig)$
Zustände	$q \in Q$	$S\subseteq Q$
ZustM.	Q	$\hat{Q} := \mathcal{P}(Q) = \{S \colon S \subseteq Q\}$
Start-Z.	90	$\hat{q}_0:=\{q_0\}$
akz.	Α	$\hat{q}_0 := \{q_0\}$ $\hat{A} := \{S \colon S \cap A \neq \emptyset\}$
Trans.	$\Delta \subseteq Q \times \Sigma \times Q$	$\delta \colon \hat{Q} \times \Sigma \to \hat{Q}$

$$\delta(S,a) = \{q' \in Q \colon (q,a,q') \in \Delta \text{ für mindestens ein } q \in S\}$$

FGdI I

Sommer 2013

M.Otto und M.Ziegle

-0 /1

Kap. 2: Endliche Automaten

endliche Automaten

2.2

Beispiel: Determinisierung

 $\Sigma = \{a, b, c\}$

DFA $\mathcal{A}^{ ext{det}}$ mit $L(\mathcal{A}^{ ext{det}}) = L(\mathcal{A})$:

δ	а	Ь	С
{0}	{0,1}	{0}	Ø
$\{0,1\}$	$\{0,1\}$	$\{0, 2\}$	{3}
$\{0, 2\}$	$\{0, 1\}$	{0}	Ø
{3}	Ø	Ø	Ø
Ø	Ø	Ø	Ø

(aktive) Zustände: $\{0\},\{0,1\},\{0,2\},\{3\},\emptyset$

akzeptierende Zustände: {0,2} und {3}

$$L(A) = L((a+b)^*a(b+c))$$

Kap. 2: Endliche Automaten

endliche Automaten

2.2

Dana Scott

"Finite Automata and Their Decision Problem" (1959)

Sommer 2011 M.Otto und M.Ziegler 59/1 FGdl I Sommer 2011 M.Otto und M.Ziegler 60/1