CS 33

Caches

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory
- Typical system structure:

General Cache Organization (S, E, B)

Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set Assume: cache block size 8 bytes

No match: old line is evicted and replaced

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0	[0 <u>00</u> 0 ₂],	miss
1	[0 <u>00</u> 1 ₂],	hit
7	$[0\underline{11}_{2}],$	miss
8	$[1\underline{0000}_{2}],$	miss
0	[0000]	miss

	V	Tag	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here

32 B = 4 doubles

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
   int i, j;
   double sum = 0;

for (j = 0; i < 16; i++)
      for (i = 0; j < 16; j++)
        sum += a[i][j];
   return sum;
}</pre>
```



```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```


Conflict Misses: Aligned

```
double dotprod(double x[8], double y[8]) {
  double sum = 0.0;
  int i;

  for (i=0; i<8; i++)
    sum += x[i] * y[i];

  return sum;
}</pre>
```


Different Alignments

```
double dotprod(double x[8], double y[8]) {
  double sum = 0.0;
  int i;

  for (i=0; i<8; i++)
    sum += x[i] * y[i];

  return sum;
}</pre>
```


E-way Set-Associative Cache (Here: E = 2)

E = 2: two lines per set

E-way Set-Associative Cache (Here: E = 2)

E = 2: two lines per set

short int (2 Bytes) is here

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

Quiz 1

Address of int:

100 01 100

Given the address above and the cache contents as shown, what is the value of the *int* at the given address?

- a) 1111
- b) 3333
- c) 4444
- d) 7777

2-Way Set-Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0	$[00\underline{0}0_{2}],$	miss
1	$[00\underline{0}1_{2}],$	hit
7	[01 <u>1</u> 1 ₂],	miss
8	[10 <u>0</u> 0 ₂],	miss
0	[0000]	hit

	V	Tag	Block
Set 0	1	00	M[0-1]
	1	10	M[8-9]
Set 1	1	01	M[6-7]
	0		

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

Ignore the variables sum, i, j

Ignore the variables sum, i, j

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```


32 B = 4 doubles

Ignore the variables sum, i, j

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```


Conflict Misses

```
double dotprod(double x[8], double y[8]) {
  double sum = 0.0;
  int i;

  for (i=0; i<8; i++)
    sum += x[i] * y[i];

  return sum;
}</pre>
```


Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache:

32 KB, 8-way, Access: 4 cycles

L2 unified cache:

256 KB, 8-way, Access: 11 cycles

L3 unified cache:

8 MB, 16-way, Access: 30-40 cycles

Block size: 64 bytes for

all caches

What About Writes?

- Multiple copies of data exist:
 - L1, L2, main memory, disk
- What to do on a write-hit?
 - write-through (write immediately to memory)
 - write-back (defer write to memory until replacement of line)
 - » need a dirty bit (line different from memory or not)
- What to do on a write-miss?
 - write-allocate (load into cache, update line in cache)
 - » good if more writes to the location follow
 - no-write-allocate (writes immediately to memory)
- Typical
 - write-through + no-write-allocate
 - write-back + write-allocate

Cache Performance Metrics

Miss rate

- fraction of memory references not found in cache (misses / accesses)
 - = 1 hit rate
- typical numbers (in percentages):
 - » 3-10% for L1
 - » can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit time

- time to deliver a line in the cache to the processor
 - » includes time to determine whether the line is in the cache
- typical numbers:
 - » 1-2 clock cycles for L1
 - » 5-20 clock cycles for L2

Miss penalty

- additional time required because of a miss
 - » typically 50-200 cycles for main memory (trend: increasing!)

Let's Think About Those Numbers

- Huge difference between a hit and a miss
 - could be 100x, if just L1 and main memory
- Would you believe 99% hit rate is twice as good as 97%?
 - consider:
 cache hit time of 1 cycle
 miss penalty of 100 cycles
 - average access time:

```
97% hits: .97 * 1 cycle + 0.03 * 100 cycles ≈ 4 cycles
```

99% hits: .99 * 1 cycle + 0.01 * 100 cycles ≈ 2 cycles

This is why "miss rate" is used instead of "hit rate"

Writing Cache-Friendly Code

- Make the common case go fast
 - focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - repeated references to variables are good (temporal locality)
 - stride-1 reference patterns are good (spatial locality)

Key idea: our qualitative notion of locality is quantified through our understanding of cache memories

Miss-Rate Analysis for Matrix Multiply

Assume:

- Block size = 32B (big enough for four 64-bit words)
- matrix dimension (N) is very large
 - » approximate 1/N as 0.0
- cache is not big enough to hold multiple rows

Analysis method:

look at access pattern of inner loop

Matrix Multiplication Example

Description:

- multiply N x N matrices
- O(N³) total operations
- N reads per source element
- N values summed per destination
 - » but may be able to hold in register

```
/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

 sum = 0.0;

for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

}
```

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
- for (i = 0; i < N; i++)
sum += a[0][i];
```

- accesses successive elements
- if block size (B) > 4 bytes, exploit spatial locality
 - » compulsory miss rate = 4 bytes / B
- Stepping through rows in one column:

```
- for (i = 0; i < n; i++)
sum += a[i][0];
```

- accesses distant elements
- no spatial locality!
 - » compulsory miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
    }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>	
0.25	1.0	0.0	

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum
    }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>	
1.0	0.0	1.0	

Summary of Matrix Multiplication

```
for (i=0; i<n; i++)
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}</pre>
```

for (k=0; k<n; k++) for (i=0; i<n; i++) { r = a[i][k]; for (j=0; j<n; j++) c[i][j] += r * b[k][j]; }</pre>

```
for (j=0; j<n; j++)
for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = **1.25**

kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

Core i7 Matrix Multiply Performance

Matrix Multiplication: More Analysis

Cache-Miss Analysis

- Assume:
 - matrix elements are doubles
 - cache block = 8 doubles
 - cache size C << n (much smaller than n)</p>
- First iteration:

- n/8 + n = 9n/8 misses

afterwards in cache: (schematic)

Cache-Miss Analysis

- · Assume:
 - matrix elements are doubles
 - cache block = 8 doubles
 - cache size C << n (much smaller than n)</p>
- Second iteration:
 - again: n/8 + n = 9n/8 misses

- Total misses:
 - $-9n/8 * n^2 = (9/8) * n^3$

Blocked Matrix Multiplication

Cache-Miss Analysis

- Assume:
 - cache block = 8 doubles
 - cache size C << n (much smaller than n)</p>
 - three blocks fit into cache: 3B² < C</p>
- First (block) iteration:
 - B²/8 misses for each block
 - -2n/B * B²/8 = nB/4 (omitting matrix c)

afterwards in cache (schematic)

n/B blocks

Cache-Miss Analysis

- Assume:
 - cache block = 8 doubles
 - cache size C << n (much smaller than n)</p>
 - three blocks fit into cache: 3B² < C</p>
- Second (block) iteration:
 - same as first iteration
 - -2n/B * B²/8 = nB/4

- Total misses:
 - $nB/4 * (n/B)^2 = n^3/(4B)$

Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³
- Suggest largest possible block size B, but limit 3B² < C!
- Reason for dramatic difference:
 - matrix multiplication has inherent temporal locality:
 - » input data: 3n², computation 2n³
 - » every array element used O(n) times!
 - but program has to be written properly

Quiz 2

What is the smallest value of B (in 8-byte doubles) for which the cache-miss analysis works?

- a) 1
- b) 2
- c) 4
- d) 8

Concluding Observations

- Programmer can optimize for cache performance
 - how data structures are organized
 - how data are accessed
 - » nested loop structure
 - » blocking is a general technique
- All systems favor "cache-friendly code"
 - getting absolute optimum performance is very platform specific
 - » cache sizes, line sizes, associativities, etc.
 - can get most of the advantage with generic code
 - » keep working set reasonably small (temporal locality)
 - » use small strides (spatial locality)