

4. Geometric Interpretation of

<u>Course</u> > <u>Unit 6 Linear Regression</u> > <u>Lecture 20: Linear Regression 2</u> > Linear Regression

4. Geometric Interpretation of Linear Regression Geometric Interpretation of Linear Regression

minimizing the squared distance is really trying to find that's the closest.

I mean, here-- this right here is equal to the minimum overall beta of the square distance between y and x beta

And that's really what I'm solving.

So it's normal that this is the closest one.

That's what we did when we did least squares.

in terms of distance.

11:46 / 11:46

Video

End of transcript. Skip to the start.

xuetangX.com 学堂在线

CC

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

▶ 1.0x

Note: Also see recitation 13 *Hypothesis testing in linear regression* for some explanation and comments on the linear algebra. You will not be tested on the geometric interpretation on multivariate linear regression, ie. when $\beta \in \mathbb{R}^p$ for p > 1.

Geometric Interpretation of Linear Regression

0/1 point (graded)

Let $\mathbf{rank}\left(\mathbb{X}\right)=p$, so that $\mathbb{X}^T\mathbb{X}$ is invertible and the LSE $\hat{\boldsymbol{\beta}}$ uniquely exists. The statistical interpretation here is that the product $\mathbb{X}\hat{\boldsymbol{\beta}}$ provides the "best" prediction $\hat{\mathbf{Y}}$, in the sense that it minimizes the squared error $\|\mathbf{Y}-\hat{\mathbf{Y}}\|_2^2$. It also comes with a natural geometric interpretation, which we will now demonstrate.

Recall that the formula for the LSE is $\hat{\boldsymbol{\beta}} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{Y}$. Plugging this in gives

$$\hat{\mathbf{Y}} = \mathbb{X}\hat{eta} = \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbf{Y}.$$

Thus, the prediction $\hat{\mathbf{Y}}$ is some linear transformation of the observed values \mathbf{Y} via some matrix $\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$. Let $P=\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$. Which of the following statements about P, \mathbb{X} , \mathbf{Y} and $\hat{\mathbf{Y}}$ are true?

 $ightharpoons \mathbf{Y}$ is a linear combination of the columns of X.

实际的值,有误差

■ **Ŷ** is a linear combination of the columns of X. ✓ 预测的值

$$P^2 = P.$$

$$P\hat{\mathbf{Y}} = \hat{\mathbf{Y}}. \checkmark$$

再投射一遍也一样

Solution:

All choices are true statements, except for " \mathbf{Y} is in the column space of \mathbb{X} ".

The distinction between $\hat{\mathbf{Y}}$ and $\hat{\mathbf{Y}}$ being in the column space of \mathbb{X} demonstrates that the data points give $\hat{\mathbf{Y}}$ that may not be perfectly on the subspace generated by the columns of \mathbb{X} . However, the predictions $\hat{\mathbf{Y}}$ ought to be in the column space of \mathbb{X} , since predictions look like $\hat{\mathbf{Y}} = X^T \beta$, which are **linear functions** of \mathbf{X} .

First, observe that since the left-most side in the product $\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$ is \mathbb{X} , so $\hat{\mathbf{Y}}$ is in the column space of \mathbb{X} . There is no such restriction on \mathbf{Y} , as it is being multiplied by P regardless of whether it lies in the subspace spanned by the columns of \mathbb{X} . A direct calculation reveals

$$\begin{aligned} P^2 &= P \cdot P \\ &= \left(\mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \right) \left(\mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \right) \\ &= \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} \left(\mathbb{X}^T \mathbb{X} \right) \left(\mathbb{X}^T \mathbb{X} \right)^{-1} \mathbb{X}^T \\ &= \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T = P. \end{aligned}$$

Such a matrix is commonly called a **projection** (or **idempotent**) matrix. This gives us the geometric interpretation of linear regression: $\hat{\mathbf{Y}}$ is the orthogonal projection of \mathbf{Y} onto the column space of \mathbb{X} .

Finally, observe that $P\hat{\mathbf{Y}} = P(P\mathbf{Y}) = P\mathbf{Y} = \hat{\mathbf{Y}}$. This is natural: if we apply a projection to a vector, then apply the projection again, it should be the same as if we had applied it only once.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Discussion

Show Discussion

Topic: Unit 6 Linear Regression:Lecture 20: Linear Regression 2 / 4. Geometric Interpretation of Linear Regression

© All Rights Reserved