Caminhos de Peso Mínimo

Prof. Andrei Braga

Conteúdo

- Caminhos de peso mínimo
- Algoritmo de Dijkstra
- Algoritmo de Bellman-Ford
- Exercícios
- Referências

Grafos dirigidos (Digrafos)

Vimos situações que podem ser modeladas com grafos dirigidos (digrafos) –
 grafos cujas arestas têm uma direção (ou orientação ou sentido)

- Temos um mapa de vias (ruas ou rodovias)
 e estamos interessados nos caminhos que podemos percorrer neste mapa
- Uma via que conecta um ponto x a um ponto y pode ter apenas a mão de x para y, apenas a mão de y para x ou ambas as mãos
- Podemos representar este mapa como um grafo onde cada aresta tem uma direção e representa uma mão de uma via

Grafos dirigidos (Digrafos)

Vimos situações que podem ser modeladas com grafos dirigidos (digrafos) –
 grafos cujas arestas têm uma direção (ou orientação ou sentido)

- Temos um mapa de vias (ruas ou rodovias)
 e estamos interessados nos caminhos que podemos percorrer neste mapa
- Uma via que conecta um ponto x a um ponto y pode ter apenas a mão de x para y, apenas a mão de y para x ou ambas as mãos
- Podemos representar este mapa como um grafo onde cada aresta tem uma direção e representa uma mão de uma via

Digrafos com pesos nas arestas

 Em situações como estas, também pode fazer sentido considerarmos pesos nas arestas do digrafo

Exemplo:

Temos um mapa de vias (ruas ou rodovias)
 e estamos interessados em caminhos curtos
 (considerando as distâncias no mapa) que
 podemos percorrer neste mapa

Podemos representar este mapa como um grafo onde cada **aresta** tem uma direção, que representa uma mão de uma via, e tem um **peso**, que representa a distância no mapa entre os pontos conectados

Digrafos com pesos nas arestas

 Em situações como estas, também pode fazer sentido considerarmos pesos nas arestas do digrafo

- Temos um mapa de vias (ruas ou rodovias)
 e estamos interessados em caminhos curtos
 (considerando as distâncias no mapa) que
 podemos percorrer neste mapa
- Podemos representar este mapa como um grafo onde cada aresta tem uma direção, que representa uma mão de uma via, e tem um peso, que representa a distância no mapa entre os pontos conectados

Digrafos com pesos nas arestas

 Em situações como estas, também pode fazer sentido considerarmos pesos nas arestas do digrafo

• Exemplo:

Temos um mapa de vias (ruas ou rodovias)
e estamos interessados em caminhos curtos
(considerando as distâncias no mapa) que
podemos percorrer neste mapa

Podemos representar este mapa como um grafo onde cada **aresta** tem uma direção, que representa uma mão de uma via, e tem um **peso**, que representa a distância no mapa entre os pontos conectados

20 19 19 16 19 13 13 12 caminhos de peso mínimo

14

20

• O **peso** de um caminho em um digrafo *G* é a soma dos pesos das arestas do caminho (o mesmo vale para um passeio, uma trilha e um ciclo)

- Exemplo:
 - No digrafo ao lado,
 - O peso do caminho $v_0 v_1 v_2$

• O **peso** de um caminho em um digrafo *G* é a soma dos pesos das arestas do caminho (o mesmo vale para um passeio, uma trilha e um ciclo)

- No digrafo ao lado,
 - O peso do caminho v₀v₁v₂
 é 11

 O peso de um caminho em um digrafo G é a soma dos pesos das arestas do caminho (o mesmo vale para um passeio, uma trilha e um ciclo)

- No digrafo ao lado,
 - O peso do caminho v₀v₁v₂
 é 11
 - O peso do caminho $v_0 v_1 v_3 v_2 v_4$

 O peso de um caminho em um digrafo G é a soma dos pesos das arestas do caminho (o mesmo vale para um passeio, uma trilha e um ciclo)

- No digrafo ao lado,
 - O peso do caminho $v_0 v_1 v_2$ é 11
 - O peso do caminho $v_0v_1v_3v_2v_4$ é 25

- A distância ponderada de um vértice v_i para um vértice v_j em um digrafo G, denotada por dp(v_i, v_i), é
 - o menor peso de um $v_i v_i$ -caminho em G ou
 - ∞ (infinita) caso não exista um v_iv_i-caminho em G
- Note que, em geral, dp(v_i, v_j) ≠ dp(v_j, v_i)
- Exemplo:
 - No digrafo ao lado,
 - $dp(v_0, v_1) = e dp(v_1, v_0) = ,$
 - \blacksquare $dp(v_3, v_2) = e dp(v_2, v_3) = e$

- A distância ponderada de um vértice v_i para um vértice v_j em um digrafo G, denotada por $dp(v_i, v_i)$, é
 - o menor peso de um $v_i v_i$ -caminho em G ou
 - ∞ (infinita) caso não exista um v_iv_i-caminho em G
- Note que, em geral, dp(v_i, v_j) ≠ dp(v_j, v_i)
- Exemplo:
 - No digrafo ao lado,
 - $dp(v_0, v_1) = 8 e dp(v_1, v_0) = 11,$
 - $dp(v_3, v_2) = 4 e dp(v_2, v_3) = 16 e$
 - $= dp(v_4, v_4) = 0$

- A **distância ponderada** de um vértice v_i para um vértice v_j em um digrafo G, denotada por $dp(v_i, v_i)$, é
 - o menor peso de um $v_i v_i$ -caminho em G ou
 - ∞ (infinita) caso não exista um v_iv_i-caminho em G
- Note que, em geral, $dp(v_i, v_j) \neq dp(v_j, v_i)$
- Exemplo:
 - No digrafo ao lado,

- A distância ponderada de um vértice v_i para um vértice v_j em um digrafo G, denotada por $dp(v_i, v_i)$, é
 - o menor peso de um $v_i v_i$ -caminho em G ou
 - ∞ (infinita) caso não exista um v_iv_i-caminho em G
- Note que, em geral, dp(v_i, v_j) ≠ dp(v_j, v_i)
- Exemplo:
 - No digrafo ao lado,

Problema dos caminhos de peso mínimo

 Problema: Dado um digrafo G e um vértice s de G, encontre, para cada vértice v de G, um sv-caminho de peso mínimo em G

Exemplo:

 Sendo G dado pelo digrafo ao lado e s igual a v_o, uma solução para o problema é

 $- v_0 v_3 - dp(v_0, v_3) = 5 e$

 $v_0 v_3 v_4 - dp(v_0, v_4) = 7$

Vamos omitir este caminho daqui em diante

Problema dos caminhos de peso mínimo

- Problema: Dado um digrafo G e um vértice s de G, encontre, para cada vértice v de G, um sv-caminho de peso mínimo em G
- Existem algumas variações interessantes deste problema

Exemplo:

 Sendo G dado pelo digrafo ao lado e s igual a v_o, uma solução para o problema é

 $- v_0 v_3 - dp(v_0, v_3) = 5 e$

 $v_0 v_3 v_4 - dp(v_0, v_4) = 7$

Vamos omitir este caminho daqui em diante

- Os algoritmos que veremos para resolver o problema dos caminhos de peso mínimo se baseiam em uma operação chamada de relaxação de uma aresta
- Antes de ver os algoritmos, vamos entender esta operação

 Considere um digrafo G, um vértice s de G, e uma aresta uv de G com peso p(uv)

- Considere um digrafo G, um vértice s de G, e uma aresta uv de G com peso p(uv)
- Seja P_{su} um su-caminho de peso mínimo em G e P_{sv} um sv-caminho de peso mínimo em G

- Considere um digrafo G, um vértice s de G, e uma aresta uv de G com peso p(uv)
- Seja P_{su} um su-caminho de peso mínimo em G e P_{sv} um sv-caminho de peso mínimo em G
- O que podemos dizer sobre os pesos de P_{su} e P_{sv} ?

 peso de P_{sv} ? peso de P_{su} + p(uv) \leq ?

- Considere um digrafo G, um vértice s de G, e uma aresta uv de G com peso p(uv)
- Seja P_{su} um su-caminho de peso mínimo em G e P_{sv} um sv-caminho de peso mínimo em G
- O que podemos dizer sobre os pesos de P_{su} e P_{sv} ?

 peso de $P_{sv} \le peso de P_{su} + p(uv)$

- Considere um digrafo G, um vértice s de G, e uma aresta uv de G com peso p(uv)
- Seja P_{su} um su-caminho de peso mínimo em G e P_{sv} um sv-caminho de peso mínimo em G
- O que podemos dizer sobre os pesos de P_{su} e P_{sv} ?

 peso de $P_{sv} \le peso de P_{su} + p(uv)$
- Consequentemente,

$$dp(s,v) \leq dp(s,u) + p(uv)$$

- Os algoritmos que veremos a seguir usam um vetor dp sobre o qual podemos falar o seguinte:
 - Durante a execução do algoritmo,
 - dp[u] contém o menor peso de um su-caminho encontrado até o momento e
 - \blacksquare dp[v] contém o menor peso de um sv-caminho encontrado até o momento
 - Ao fim da execução do algoritmo,
 - dp[u] contém o peso mínimo de um su-caminho, ou seja, dp[u] = dp(s,u) e
 - dp[v] contém o peso mínimo de um sv-caminho, ou seja, dp[v] = dp(s,v)
- O que podemos dizer sobre dp[u] e dp[v]?

- Os algoritmos que veremos a seguir usam um vetor dp sobre o qual podemos falar o seguinte:
 - Durante a execução do algoritmo,
 - dp[u] contém o menor peso de um su-caminho encontrado até o momento e
 - \blacksquare dp[v] contém o menor peso de um sv-caminho encontrado até o momento
 - Ao fim da execução do algoritmo,
 - dp[u] contém o peso mínimo de um su-caminho, ou seja, dp[u] = dp(s,u) e
 - dp[v] contém o peso mínimo de um sv-caminho, ou seja, dp[v] = dp(s,v)
- O que podemos dizer sobre dp[u] e dp[v]?

- Os algoritmos que veremos a seguir usam um vetor dp sobre o qual podemos falar o seguinte:
 - Durante a execução do algoritmo,
 - dp[u] contém o menor peso de um su-caminho encontrado até o momento e
 - \blacksquare dp[v] contém o menor peso de um sv-caminho encontrado até o momento
 - Ao fim da execução do algoritmo,
 - dp[u] contém o peso mínimo de um su-caminho, ou seja, dp[u] = dp(s,u) e
 - dp[v] contém o peso mínimo de um sv-caminho, ou seja, dp[v] = dp(s,v)
- O que podemos dizer sobre dp[u] e dp[v]?
 Se dp[v] > dp[u] + p(uv), então dp[v] ainda não contém o peso mínimo de um sv-caminho

- Os algoritmos que veremos a seguir usam um vetor dp sobre o qual podemos falar o seguinte:
 - Durante a execução do algoritmo,
 - dp[u] contém o menor peso de um su-caminho encontrado até o momento e
 - \blacksquare dp[v] contém o menor peso de um sv-caminho encontrado até o momento
 - Ao fim da execução do algoritmo,
 - dp[u] contém o peso mínimo de um su-caminho, ou seja, dp[u] = dp(s,u) e
 - dp[v] contém o peso mínimo de um sv-caminho, ou seja, dp[v] = dp(s,v)
- O que podemos dizer sobre dp[u] e dp[v]?
 Se dp[v] > dp[u] + p(uv), então dp[v] ainda não contém o peso mínimo de um sv-caminho e podemos fazer dp[v] = dp[u] + p(uv)

- Os algoritmos que veremos a seguir usam um vetor dp sobre o qual podemos falar o seguinte:
 - Durante a execução do algoritmo,
 - dp[u] contém o menor peso de um su-caminho encontrado até o momento e
 - *dp[v]* contém o menor peso de um *sv*-caminho encontrado até o momento
 - Ao fim da execução do algoritmo,
 - dp[u] contém o peso mínimo de um su-caminho, ou seja, dp[u] = dp(s,u) e
 - dp[v] contém o peso mínimo de um sv-caminho, ou seja, dp[v] = dp(s,v)
- O que podemos dizer sobre dp[u] e dp[v]?
 Com isso, garantimos que dp[v] ≤ dp[u] + p(uv).
 Então, podemos dizer que esta restrição está satisfeita ou relaxada, que relaxamos esta restrição, ou ainda que relaxamos esta aresta

- Assim, a operação de relaxação da aresta uv consiste no seguinte:
 - 1. Se dp[v] > dp[u] + p(uv):
 - 2. dp[v] = dp[u] + p(uv)

- Vamos representar os caminhos de peso mínimo de maneira semelhante ao que fizemos em algoritmos vistos anteriormente: vamos representar estes caminhos através de uma árvore
- Esta árvore terá as seguintes propriedades:
 - O vértice s será a raiz da árvore
 - Para todo vértice v, o caminho entre s e v na árvore no sentido de s para v corresponderá a um sv-caminho de peso mínimo no digrafo G

- Esta árvore terá as seguintes propriedades:
 - O vértice s será a raiz da árvore
 - Para todo vértice v, o caminho entre s e v na árvore no sentido de s para v corresponderá a um sv-caminho de peso mínimo no digrafo G

• Exemplo:

Caminhos de peso mínimo

Árvore

s é igual a v_0

•
$$v_0 v_3 v_1 - dp(v_0, v_1) = 8$$
,

•
$$v_0 v_3 v_1 v_2 - dp(v_0, v_2) = 9$$
,

•
$$v_0 v_3 - dp(v_0, v_3) = 5 e$$

 Além disso, vamos usar a mesma representação de árvores utilizada em algoritmos vistos anteriormente: vamos representar a árvore através de um vetor pai

Exemplo:

Caminhos de peso mínimo

s é igual a v_0

- $v_0 v_3 v_1 dp(v_0, v_1) = 8$,
- $v_0 v_3 v_1 v_2 dp(v_0, v_2) = 9$,
- $v_0 v_3 dp(v_0, v_3) = 5 e$
- $v_0 v_3 v_4 dp(v_0, v_4) = 7$

Árvore

- Quando fazemos a operação de relaxar uma aresta uv, podemos encontrar um sv-caminho de menor peso
- Relaxação da aresta uv:
 - 1. Se dp[v] > dp[u] + p(uv):
 - 2. dp[v] = dp[u] + p(uv)

- Quando fazemos a operação de relaxar uma aresta uv, podemos encontrar um sv-caminho de menor peso
- Relaxação da aresta uv:
 - 1. Se dp[v] > dp[u] + p(uv):
 - 2. dp[v] = dp[u] + p(uv)
 - 3. pai[v] = u

• Se encontrarmos um *sv*-caminho de menor peso, vamos armazenar este caminho usando o vetor *pai*

- Sendo assim, os algoritmos que veremos a seguir usam o vetor pai da seguinte maneira:
 - Durante a execução do algoritmo,
 - pai[u] contém o predecessor (o vértice que vem antes) de u no su-caminho de menor peso encontrado até o momento e
 - pai[v] contém o predecessor (o vértice que vem antes) de v no sv-caminho de menor peso encontrado até o momento
 - Ao fim da execução do algoritmo,
 - pai[u] contém o predecessor de u em um su-caminho de peso mínimo e
 - pai[v] contém o predecessor de v em um sv-caminho de peso mínimo

Arestas com pesos não-negativos

- Vamos considerar primeiro o problema dos caminhos de peso mínimo no caso em que todas as arestas do digrafo possuem peso não negativo
- Neste caso, o problema pode ser resolvido usando o Algoritmo de Dijkstra
- O Algoritmo de Dijkstra pode ser descrito de maneira semelhante ao Algoritmo de Prim

Dijkstra(G, s)

Inicialmente, *T* é uma árvore que consiste apenas no vértice *s* de *G*

- 1. $T = (\{s\}, \emptyset)$
- 2. Enquanto é possível aumentar *T*:
- 3. Encontre um vértice w de G tal que w não está em T e a distância ponderada de s para w é mínima
- 4. Encontre uma aresta xw de G tal que x está em T e xw completa um caminho de peso mínimo de s para w
- 5. Adicione xw a T
- 6. Retorne *T*

$$s = V_0$$

$$s = v_0$$

•
$$v_0 v_3 v_1 - dp(v_0, v_1) = 8,$$

$$v_0 v_3 v_1 v_2 - dp(v_0, v_2) = 9,$$

•
$$v_0 v_3 - dp(v_0, v_3) = 5$$
e

•
$$v_0 v_3 v_4 - dp(v_0, v_4) = 7$$

$$s = V_0$$

$$s = v_0$$

- $v_0 v_3 v_1 dp(v_0, v_1) = 8,$
- $v_0 v_3 v_1 v_2 dp(v_0, v_2) = 9,$
- $v_0 v_3 dp(v_0, v_3) = 5$ e

- 3. Encontre um vértice w de G tal que w não está em T e a distância ponderada de s para w é mínima
- 4. Encontre uma aresta xw de G tal que x está em T e xw completa um caminho de peso mínimo de s para w

$$s = v_0$$

$$s = v_0$$

•
$$v_0 v_3 v_1 - dp(v_0, v_1) = 8,$$

•
$$v_0 v_3 v_1 v_2 - dp(v_0, v_2) = 9,$$

•
$$v_0 v_3 - dp(v_0, v_3) = 5$$

$$s = V_0$$

$$s = v_0$$

- $v_0 v_3 v_1 dp(v_0, v_1) = 8,$
- $v_0 v_3 v_1 v_2 dp(v_0, v_2) = 9,$
- $v_0 v_3 dp(v_0, v_3) = 5$ e

- 3. Encontre um vértice w de G tal que w não está em T e a distância ponderada de s para w é mínima
- 4. Encontre uma aresta xw de G tal que x está em T e xw completa um caminho de peso mínimo de s para w

$$s = v_0$$

$$s = v_0$$

•
$$v_0 v_3 v_1 - dp(v_0, v_1) = 8,$$

$$v_0 v_3 v_1 v_2 - dp(v_0, v_2) = 9,$$

•
$$v_0 v_3 - dp(v_0, v_3) = 5$$

•
$$v_0 v_3 v_4 - dp(v_0, v_4) = 7$$

$$s = v_0$$

$$s = v_0$$

- $v_0 v_3 v_1 dp(v_0, v_1) = 8,$
- $v_0 v_3 v_1 v_2 dp(v_0, v_2) = 9,$
- $v_0 v_3 dp(v_0, v_3) = 5$ e

- 3. Encontre um vértice w de G tal que w não está em T e a distância ponderada de s para w é mínima
- 4. Encontre uma aresta xw de G tal que x está em T e xw completa um caminho de peso mínimo de s para w

$$s = V_0$$

$$s = v_0$$

•
$$v_0 v_3 v_1 - dp(v_0, v_1) = 8,$$

•
$$v_0 v_3 v_1 v_2 - dp(v_0, v_2) = 9,$$

•
$$v_0 v_3 - dp(v_0, v_3) = 5$$

$$s = V_0$$

$$s = V_0$$

- $v_0 v_3 v_1 dp(v_0, v_1) = 8,$
- $v_0 v_3 v_1 v_2 dp(v_0, v_2) = 9,$
- $v_0 v_3 dp(v_0, v_3) = 5$ e

- 3. Encontre um vértice w de G tal que w não está em T e a distância ponderada de s para w é mínima
- 4. Encontre uma aresta xw de G tal que x está em T e xw completa um caminho de peso mínimo de s para w

$$s = V_0$$

$$s = v_0$$

•
$$v_0 v_3 v_1 - dp(v_0, v_1) = 8,$$

•
$$v_0 v_3 v_1 v_2 - dp(v_0, v_2) = 9,$$

•
$$v_0 v_3 - dp(v_0, v_3) = 5$$

Fila de prioridade:

pai:

Fila de prioridade:

Dijkstra(G, s, pai, dp)

- 1. Para cada vértice w de G:
- 2. $dp[w] = \infty$
- 3. pai[w] = -1
- $4. \quad dp[s] = 0$
- Crie uma fila de prioridade Q com todos os vértices de G e com a prioridade de cada vértice w sendo dp[w]
- 6. Enquanto Q não está vazia:
- 7. Remova o item de menor prioridade de *Q*; seja *u* o item removido
- 8. Se $dp[u] != \infty$:
- 9. Para cada vizinho de saída *v* de *u* em *G*:
- 10. Se dp[v] > dp[u] + p(uv): // p(uv) é o peso da aresta uv
- 11. dp[v] = dp[u] + p(uv)
- 12. pai[v] = u
- 13. Altere a prioridade de v em Q para (o novo valor de) dp[v]

Relaxação da aresta uv

Exercícios

• Exercício 1 da Lista de Exercícios "Caminhos de Peso Mínimo".

Arestas com pesos negativos

- Em algumas situações, faz sentido considerarmos arestas com pesos negativos
- Nestas situações, é possível termos ciclos de peso negativo
- Execute o Algoritmo de Dijkstra para o grafo abaixo. O que acontece?

Arestas com pesos negativos

- Dado um vértice v, se existe no digrafo um sv-passeio (um sv-caminho onde podem existir vértices repetidos) que contém um ciclo de peso negativo, então sempre podemos construir um sv-passeio de menor peso
- Como consequência, a noção de distância ponderada de s para v não tem um significado preciso
- Exemplo:
 - No digrafo ao lado,
 - $\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_2 \mathbf{v}_1$ é um ciclo de peso negativo

Arestas com pesos negativos

- Vamos considerar agora o problema dos caminhos de peso mínimo no caso em que as arestas do digrafo podem ter peso negativo
- Neste caso, o problema pode ser resolvido usando o Algoritmo de Bellman-Ford
- O Algoritmo de Bellman-Ford retorna
 - o **falso** caso exista um ciclo de peso negativo alcançável a partir de s ou
 - verdadeiro caso contrário, retornando também os caminhos mínimos encontrados e os seus pesos

Algoritmo de Bellman-Ford

```
Bellman-Ford(G, s, pai, dp)
```

```
Para cada vértice w de G:
       dp[w] = \infty
     pai[w] = -1
    dp[s] = 0
     Para i = 1 até |V(G)| - 1:
        Para cada aresta uv de G: // p(uv) é o peso da aresta uv
          Se dp[u] != \infty e dp[v] > dp[u] + p(uv):
               dp[v] = dp[u] + p(uv)
               pai[v] = u
10.
     Para cada aresta uv de G:
        Se dp[u] != \infty e dp[v] > dp[u] + p(uv):
11.
12.
             Retorne falso
13.
      Retorne verdadeiro
```

Relaxação da

Este código detecta se existe um ciclo de peso negativo em G

Exercícios

• Exercício 2 da Lista de Exercícios "Caminhos de Peso Mínimo".

Exercícios

• Demais exercícios da Lista de Exercícios "Caminhos de Peso Mínimo".

Referências

- Esta apresentação é baseada nos seguintes materiais:
 - Capítulo 24 do livro
 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
 3rd. ed. MIT Press, 2009.
 - Capítulo 21 do livro
 Sedgewick, R. Algorithms in C++ Part 5. Graph Algorithms. 3rd. ed. Addison-Wesley, 2002.