PSTAT131HW02

Yifei Zhang

2022-04-10

Question 1

Your goal is to predict abalone age, which is calculated as the number of rings plus 1.5. Notice there currently is no age variable in the data set. Add age to the data set.

```
abalone <- read.csv("abalone.csv")

new_abalone <- abalone %>%
  mutate(age = rings + 1.5)
```

Assess and describe the distribution of age.

As we access the distribution of the new variable age, we can see it looks relatively normal, but is skewed a bit to the right, centering around 10.

```
new_abalone %>%
ggplot(aes(x = age)) +
geom_histogram(bins = 50) +
theme_bw()
```


Split the abalone data into a training set and a testing set. Use stratified sampling. You should decide on appropriate percentages for splitting the data.

Remember that you'll need to set a seed at the beginning of the document to reproduce your results.

Using the **training** data, create a recipe predicting the outcome variable, **age**, with all other predictor variables. Note that you should not include **rings** to predict **age**. Explain why you shouldn't use **rings** to predict **age**.

I should not use rings to predict age, because we have used rings to calculate age in step 1, and we wont be able to see how other predictors can predict by having rings as one of the predictors, since we already have age = rings + 1.5 function.

Steps for your recipe:

1. dummy code any categorical predictors

new_abalone $gender_m < -ifelse(new_abalonetype == "M", 1, 0)$ new_abalone $gender_f < -ifelse(new_abalonetype == "F", 1, 0)$ new_abalone $gender_i < -ifelse(new_abalonetype == "I", 1, 0)$ this don't seem to work with the latter steps

```
##
                   longest_shell
                                         diameter
                                                           height
                                                                     whole_weight
             type
##
      "character"
                        "numeric"
                                        "numeric"
                                                        "numeric"
                                                                        "numeric"
## shucked_weight viscera_weight
                                     shell_weight
                                                            rings
                                                                               age
                                                                        "numeric"
                        "numeric"
                                        "numeric"
                                                        "integer"
##
        "numeric"
##
         num_type
        "numeric"
##
```

- 2. create interactions between
 - type and shucked_weight,
 - longest_shell and diameter,
 - shucked_weight and shell_weight

I think my seed number is too large, so in order to keep the pdf short I am not going to show the result for the next two parts. I tried to show the result output, but that made my knitted pdf more than a thousand pages long!!! Way to scary. If you want to check out the result you should still be able to see it when you run my rmarkdown file, the results are just not knitted into the pdf file.

3. center all predictors, and

4. scale all predictors.

Creating recipe

You'll need to investigate the tidymodels documentation to find the appropriate step functions to use.

```
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 8
##
## Operations:
##
## Centering for longest_shell, diameter, height, ...
## Scaling for longest_shell, diameter, height, ...
```

Create and store a linear regression object using the "lm" engine.

```
##
## Call:
  lm(formula = age ~ longest_shell + diameter + height + whole_weight +
##
       shucked_weight + viscera_weight + shell_weight + num_type,
##
       data = new_abalone)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                    3Q
                                            Max
## -10.5991 -1.3120 -0.3549 0.8968 14.0582
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept)
                   5.2593
                              0.2827 18.603 < 2e-16 ***
## longest_shell
                              1.8122 -0.456
                                                0.648
                  -0.8264
## diameter
                              2.2254
                  11.9640
                                       5.376 8.02e-08 ***
                  11.2045
## height
                              1.5374
                                       7.288 3.75e-13 ***
## whole_weight
                   9.0702
                              0.7270 12.476 < 2e-16 ***
## shucked_weight -20.1061
                              0.8168 -24.617 < 2e-16 ***
## viscera_weight -10.1551
                              1.2941 -7.847 5.36e-15 ***
## shell_weight
                   8.7011
                              1.1277
                                       7.716 1.49e-14 ***
## num_type
                  -0.3885
                              0.0467
                                     -8.319 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 2.2 on 4168 degrees of freedom
## Multiple R-squared: 0.5353, Adjusted R-squared: 0.5345
## F-statistic: 600.3 on 8 and 4168 DF, p-value: < 2.2e-16
```

summary(lm model)

```
Length Class
##
                             Mode
## args
                             list
                   -none-
## eng_args 0
                   quosures list
## mode
            1
                   -none-
                             character
## method
            0
                   -none-
                             NULL
## engine
            1
                    -none-
                             character
```

Question 5

Now:

- 1. set up an empty workflow,
- 2. add the model you created in Question 4, and
- 3. add the recipe that you created in Question 3.

```
lm_wflow <- workflow() %>%
  add_model(lm_model) %>%
  add_recipe(abalone_recipe)
```

Question 6

Use your fit() object to predict the age of a hypothetical female abalone with longest_shell = 0.50, diameter = 0.10, height = 0.30, whole_weight = 4, shucked_weight = 1, viscera_weight = 2, shell_weight = 1.

```
num_type = 1)
lm_fit %>%
 extract_fit_parsnip() %>%
 tidy()
## # A tibble: 9 x 5
##
                 estimate std.error statistic p.value
    term
##
    <chr>>
                            <dbl>
                                    <dbl>
                   <dbl>
                                   300.
## 1 (Intercept)
                 11.4
                           0.0381
                           0.247
                                    0.164 8.70e- 1
## 2 longest_shell 0.0405
## 3 diameter
                  1.06
                           0.249
                                    4.25 2.16e- 5
## 4 height
                  0.419
                           0.0688
                                    6.09 1.29e- 9
                  4.22
## 5 whole_weight
                           0.399
                                   10.6 9.75e-26
## 6 shucked_weight -4.40
                           0.202
                                  -21.8
                                         1.06e-98
                                   -6.73 2.05e-11
## 7 viscera_weight -1.07
                           0.159
## 8 shell_weight
                 1.36
                           0.177
                                    7.69 1.91e-14
## 9 num_type
                 -0.345
                           0.0434
                                   -7.94 2.75e-15
predict(lm_fit, new_data = test)
## # A tibble: 1 x 1
##
    .pred
##
    <dbl>
## 1 14.1
lm_fit
## Preprocessor: Recipe
## Model: linear_reg()
##
## 2 Recipe Steps
## * step_center()
## * step_scale()
##
## Call:
## stats::lm(formula = ..y ~ ., data = data)
## Coefficients:
##
     (Intercept)
                 longest_shell
                                   diameter
                                                 height
                                                           whole_weight
                                   1.05994
                                                               4.22187
##
       11.42934
                      0.04051
                                                 0.41889
## shucked_weight viscera_weight
                               shell_weight
                                                num_type
       -4.40256
                     -1.06965
##
                                   1.36486
                                                -0.34485
```

Now you want to assess your model's performance. To do this, use the yardstick package:

- 1. Create a metric set that includes \mathbb{R}^2 , RMSE (root mean squared error), and MAE (mean absolute error).
- 2. Use predict() and bind_cols() to create a tibble of your model's predicted values from the training data along with the actual observed ages (these are needed to assess your model's performance).
- 3. Finally, apply your metric set to the tibble, report the results, and interpret the R^2 value.

From what we got for R^2 , it is not significant enough to show a strong correlation, it can only be considered relatively strong, but it is not significant enough to compare with our initial function which is age = rings + 1.5. Though the question didn't require us to plot a graph, but the scatter plot should be a clear visual representation that our model didn't do well.

```
abalone_train_res <- predict(lm_fit, new_data = abalone_train %>%
                               select(-age, -rings, -type))
abalone_train_res %>%
 head()
## # A tibble: 6 x 1
##
     .pred
     <dbl>
##
## 1 8.26
## 2
     9.43
## 3 9.79
## 4 10.2
## 5 9.96
## 6 6.83
abalone_train_res <- bind_cols(abalone_train_res, abalone_train %>% select(age))
abalone_train_res %>%
 head()
## # A tibble: 6 x 2
##
     .pred
             age
##
     <dbl> <dbl>
## 1 8.26
             8.5
## 2
     9.43
             9.5
## 3
     9.79
             8.5
## 4 10.2
             8.5
## 5 9.96
             9.5
## 6 6.83
             6.5
rmse(abalone_train_res, truth = age, estimate = .pred)
## # A tibble: 1 x 3
##
     .metric .estimator .estimate
                            <dbl>
##
     <chr>>
             <chr>
## 1 rmse
             standard
                              2.20
abalone_metrics <- metric_set(rmse, rsq, mae)
abalone metrics(abalone train res, truth = age,
                estimate = .pred)
```

```
## # A tibble: 3 x 3
##
     .metric .estimator .estimate
##
             <chr>
                            <dbl>
## 1 rmse
             standard
                            2.20
## 2 rsq
             standard
                            0.536
## 3 mae
             standard
                            1.60
abalone_train_res %>%
```

```
abalone_train_res %>%
  ggplot(aes(x = .pred, y = age)) +
  geom_point(alpha = 0.2) +
  geom_abline(lty = 2) +
  theme_bw() +
  coord_obs_pred()
```

