Aluminium: It was first prepared by Wohler, by [Wholer → father of organic chemistry]

The reaction of K and AlCl₃. $3K + AlCl_3 \rightarrow 3KCl + Al$

Since, Al is reactive metal, it occurs only in the combined state

Minerals:

Corundum $\rightarrow Al_2O_3$

Diaspore $\rightarrow Al_2O_3H_2O$

Bauxite \rightarrow Al₂O₃.2H₂O

Gibsite \rightarrow Al₂O₃.3H₂O

Cryolite \rightarrow 3NaF.AlF₃ or Na₃AlF₆

Felspar \rightarrow KAlSi₃O₈ (or) K₂O.Al₂O₃.6SiO₂

China or Kaolin Clay \rightarrow Al₂O₃.2SiO₂.2H₂O

Mica or potash \rightarrow K₂O₃.Al₂O₃.6SiO₂.2H₂O

Alunite or Alum stone \rightarrow K₂SO₄ Al₂(SO₄)₃.4Al(OH)₃

Torquoise \rightarrow AlPO₄.Al(OH)₃.H₂O

Extraction of Aluminum:

- Al is extracted from Bauxite by the electrolytic reduction. It involves three stages
 - 1) Purification of bauxite
 - 2) Electrolysis of alumina
 - 3) Refining of aluminium
- Naturally occurring bauxite contains Fe₂O₃ or SiO₂ as impurities
- If iron oxide impurity is present, it is called red bauxite
- If silica impurity is present, it is called white bauxite
- Red bauxite is purified by
 - 1) Baeyer's process 2) Hall's process

White bauxite is purified by Serpeck's process.

1. Baeyer's process: Reagnet is caustic soda. (NaOH)

seeding agent (initiates) – Al(OH)₃. It initiates precipitation of Al(OH)₃.

Bauxite is powdered & roasted to convert FeO into Fe₂O₃, if present.

Bauxite is dissolved in NaOH to give sodium meta aluminte.

Only bauxite dissolves in NaOH and the insoluble Fe₂O₃ can be removed by filtration.

 $Al_2O_3.2H_2O + 2NaOH \rightarrow 2NaAlO_2 + 3H_2O$

 $AI(OH)_3$ is precipitated by adding seeding agent.

 $NaAlO_2 + 2H_2O \rightarrow NaOH + Al(OH)_3 \downarrow$

Al(OH)₃ on ignition gives pure anhydrous alumina

$$2AI(OH)_3 \rightarrow AI_2O_3 + 3H_2O$$

2. Hall's process: Reagent is Na₂CO₃

Red bauxite is powdered and roasted to convert FeO, (if any), into Fe₂O₃.

Red bauxite is treated with Na₂CO₃ to convert into sodium meta – aluminate.

Only bauxite dissolves and impurity remains insoluble. The insoluble Fe_2O_3 is removed by filtration.

 $Al_2O_3.2H_2O + NaCO_3 \rightarrow 2NaAlO_2 + CO_2 + 2H_2O$

Al(OH)₃ is precipitated from NaAlO₂

 $2NaAlO_2 + CO_2 + 3H_2O \rightarrow Na_2CO_3 + 2Al(OH)_3 \downarrow$

On heating, Al(OH)₃ decomposes to give pure anhydrous alumina.

3. Serpeck's process: Reagent is coke + N₂.

Impurity is SiO₂

Impurity is removed as Si. Byproduct is NH₃.

White bauxite is heated with coke powder and N₂.

Bauxite is converted to AIN (Nitride)

 $Al_2O_3 + 3C + N_2 \rightarrow 2AIN + 3CO^{\uparrow}$

 $SiO_2 + 2C \rightarrow Si\uparrow + 2CO\uparrow$

The above AIN is hydrolysed to give AI(OH)₃ & NH₃.

 $AIN + 3H_2O \rightarrow AI(OH)_3 \downarrow + NH_3$

Al(OH)₃ on heating gives pure anhydrous alumina.

II stage: Electrolytic reduction of alumina: (Hall & Heroult's process)

Anhydrous. Al₂O₃ is bad conductor and its MP is very high.

Little amount of fluorspar (CaF₂) is added to reduce its melting point.

Little amount of cryolite (Na₃AlF₆) is added to increase conductivity.

Thus, fused electrolytic mixture of Al₂O₃+ fluorspar + Cryolite is to be elctrolysed

Temperature is maintained at 900 – 950° C.

Electrolytic cell:Rectangular Fe tank lined inside with carbon.

Cathode: Carbon lining of tank.

Anode: Bunch of C rods suspended from top.

 ${\it Coke powder is sprayed over the electrolyte to prevent oxidation of Al.\ Product\ at\ cathode.}$

Al.

Product at anode: O₂ (first F₂ is formed)

Anodes are to be replaced from time to time because of evolution of O_2 at anode.

$$C + O_2 \rightarrow Co + CO_2$$

Al sinks to the bottom and can be tapped from there.

The following reactions occur during the electrolysis.

$$2AIF_3$$
 $2AI^{3+} + 6F^{-}$

$$Al^{3+} + 3e^{-} \rightarrow Al$$
 (cathode)

 $2F^{-} + 2Al_2O_3 \rightarrow 4AlF_3 + 3O_2 \uparrow$ (at anode), Al obtained in the above reaction is 99% pure.

Refining of Aluminium: (Hoope's electrolytic refining)

- The cell used is a rectangular Fe tank lined inside with gas carbon. It consists of three layers pure Al is taken in top layer impure Al is taken as bottom layer. Middle layer is electrolytic layer which consists of NaF, BaF₂, AlF₃, Al₂O₃.
- These 3 layers differ in density. Bottom layer is densest & upper layer is lightest.
- C lining of the bottom layer acts as anode and graphite rods in the upper layers act as cathode.
- The impurities in the impure Al are Cu, Mn, Si.
- Some more impurity is added to it to increase its density.
- On passing electric current, pure Al transfers from bottom to middle and from middle to upper layer.
- Thus, complete pure Al deposits in the upper layer and impurities are left behind in the bottom layer or middle layer.

Physical properties of aluminium:

- It is light metal with bluish tinge
- It is malleable (sheet) and ductile
- It can be cast, weld but, difficult in soldering.
- It is a good conductor.
- It has greater tensile strength next to steel and copper.

Chemical reactions: All is more reactive metal and good reducing agent because of more electro positive nature.

1. With air: Al is not affected by dry air but, reacts with moist air and forms a thin oxide layer.

Al + dry air
$$\rightarrow$$
 no reaction

$$4AI + 3O_2 \xrightarrow{\text{moist air}} 2AI_2O_3$$

Aluminium readily burns in air to give aluminium oxide and aluminium nitride.

$$4Al + 3O_2 \xrightarrow{\Delta} 2Al_2O_3$$
, $2Al + N_2 \xrightarrow{\Delta} 2AIN$

2. With water: Al will not react with pure water but reacts with sea water.

$$2AI + 6H_2O \rightarrow 2A(OH)_3 + 3H_2\uparrow$$

Though Al will not react with cold water, it reacts with boiling water or steam.

3. With acids: It liberates H₂ gas on reaction with dil.HCl or dil. H₂SO₄

$$2AI + 6HCI \rightarrow 2AICI_3 + 3H_2 \uparrow$$

$$2AI + 3H2SO4 (dil) \rightarrow Al2(SO4)3 + 3H2 \uparrow$$

with con.H₂SO₄, it liberates SO₂

$$2AI + 6H_2SO_4$$
 (con.) $\rightarrow AI_2(SO_4)_3 + 3SO_2 + 6H_2O$

It reacts with dil. Nitric acid to give aluminium nitrate and ammonium nitrate but not H_2 gas.

$$8AI + 30HNO_3 \rightarrow 8AI(NO_3)_3 + 3NH_4NO_3 + 9H_2O$$

Al will not react with con. HNO_3 due to the formation of protective Al_2O_3 layer on its surface by the oxidising action of HNO_3 . Thus, Al is rendered passive by con. HNO_3 .

Concentrated HNO₃ is transported or stored in Al containers

Reaction with alkalies: Al also reacts with alkalis to liberate H2 gas

$$2AI + 2NaOH + 2H2O \rightarrow 2NaAlO2 + H2$$

(sodium meta aluminate)

Meta aluminate ion (AlO₂) actually exists as (Al(OH)₄(H₂O)₂) -

Reaction with non-metals:

$$2AI + 3CI_2 \rightarrow 2AICI_3$$
; $2AI + N_2 \rightarrow 2AIN$

Reducing nature: All is good reducing agent because it is more electropositive

$$AI \rightarrow AI^{3+} + 3e^{-}$$

It reduces metal oxides such as Fe₂O₃, Cr₂O₃, Mn₃O₄ to their respective metals.

$$2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe + heat$$

$$AI + Cr_2O_3 \rightarrow 2Cr + Al_2O_3 + heat$$

$$8AI + 3Mn_3O_4 \rightarrow 9Mn + 4AI_2O_3 + heat$$

Gold schmidt's alumino themic process: (Thermite process)

The reduction of iron oxide to iron by aluminium is called alumino thermic process. In this process, Al acts as reducing agent.

This reaction is highly exothermic. The heat liberated in the process is useful to get Fe in molten state. The mixture of Al and Fe_2O_3 in 1:3 ratio is called thermit.

Ignition mixture consists of Al and BaO₂.

Thermite is taken in a graphite crucible which is lined inside with magnesite. A Mg ribbon is inserted in the ignition mixture.

When Mg ribbon is ignited, the ribbon catches fire and Fe₂O₃ is reduced to Fe.

The molten Fe is taken out through tapping plug and is directly used in welding the broken ends of railway tracks.

$$2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe + heat$$

Uses of Al: In electric cables.

Eventhough Cu is better conductor, Al is preferred over Cu because its atomic weight is less and conducts more amount of current [in case of equal weights of Al and Cu]

In making trays, picture frames etc.

As deoxidiser in metallurgy. It is used as reducing agent in thermit welding.

In the packing of chocolates, sweets, cigarettes, etc.

In painting iron surface to prevent rust in place of zinc or tin.

Its alloys are used in aircrafts, motor vehicle spare parts, coins, balances etc.

Alloys of AI:

Alloy	Composition	Uses
1)Magnalium	Mg (2-15%) Al (85- 98%	Making cheap Balances, Laboratory utensils
2) Al Bronze	Al(10%) Cu(90%)	Utensils, Coins (French)
3) Duralumin	Cu(4%), Mg(0.5%), Mn(0.5%), Al(95%)	Air crafts ships
4) 🛚 - Alloy	Al(92.5%), Cu(4%) Mg(1.5%) Ni(2%)	Air crafts submarines

Alloys of Al are light, tough and resist corrosion.

Alums : Alums are double sulphate salts with similar composition and similar crystalline structure i.e. isomorophous.

General formula of alum is

 X_2SO_4 . $Y_2(SO_4)_3$. 24H₂O or $XY(SO_4)_2$. 12H₂O.

Where X is monovalent cation

(NH₄⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Tl⁺), Y is trivalent cation

(Al³⁺, Fe³⁺, Cr³⁺, Mn³⁺) Among alkali metal ions, Li⁺ doesnot form alums because of its small size.

In alum, each cation is co-ordinated to 6H₂O molecules.

Potash alum or common alum K₂SO₄.Al₂(SO₄)₃.24H₂O (or) KAl(SO₄)₂. 12H₂O

Chrome alum:

 $K_2SO_4.Cr_2(SO_4)_3.24H_2O$ (or) $KCr(SO_4)_2.12H_2O$

Ferric alum:

 $(NH_4)_2SO_4.Fe_2(SO_4)_3.24H_2O$ (or) $NH_4Fe(SO_4)_212H_2O$

Ammonia alum:

 $(NH_4)_2SO_4.Al_2(SO_4)_3.24H_2O$ (or) $NH_4Al(SO_4)_2.12H_2O$

Pseudoalums contain divalent and trivalent cations with 24 water molecules.

Eg : $FeSO_4$. $Al_2(SO_4)_3$. $24H_2O$ $MgSO_4$. $Fe_2(SO_4)_3$. $24H_2O$

Pseudoalums are not isomophous as those of alums

Preparation of common alum:

- 1) By crystallisation: By taking K_2SO_4 & $Al_2(SO_4)_3$ in same number of moles and their aqueous solution is allowed to crystallize out.
- 2) From alunite or alum stone: $(K_2SO_4.Al_2(SO_4)_3.4Al(OH)_3)$

Alunite is treated with dil.H₂SO₄ and required amount of potassium sulphate is added on cooling the solution, crystals of alum are separated out.

3) From alum shale: Aluminum silicate mixed with iron sulphide is alum shale.

Al₂O₃.xSiO₂ +FeS₂., FeSO₄ is crystallized out.

 H_2SO_4 converts Al_2O_3 into $Al_2(SO_4)_3$ and then required amount of K_2SO_4 is added.

Properties: It is white crystalline substance

Soluble in water. Its aqueous solution is slightly acidic due to hydrolysis of Al³⁺ ion.

Uses: In purification of drinking water by coagulation of dust particles. As styptic to prevent bleeding. As mordant to fix the dye on the fabric. In the tanning of leather. In the sizing of paper.

Boron: It does not occur in free state but occurs only in the combined state.

Borax or tincal : Na₂B₄O₇.10H₂O Kernite or Razorie : Na₂B₄O₇. 4H₂O

Colemanite : $Ca_2B_6O_{11}.5H_2O$

Boric acid : H₃BO₃ or B(OH)₃

Borax: Chemical name is sodium tetraborate deca hydrate

Boron has two allotropes

1) Amorphous: It is reactive

2) Crystalline: It is less reactive

Amorphous B burns in air and readily combines with elements like F, Cl. B forms only covalent compounds. In all the compounds, it contains sextet configuration.

∴ almost all B compounds are electron deficient and act as Lewis acids.

Hydrides of boron : The compounds of B & H₂ are called boranes.

Based on the ratio of B to Hydrogen two types of borons are possible.

 B_nH_{n+4} : B_nH_{n+6}

 B_2H_6 : B_4H_{10} B_5H_9 : B_5H_{11}

The boranes are electron deficient

The simplest and more important is B₂H₆