Bases Ortonormales Método de ortogonalización de Gram-Schmidt

Algebra II FIUBA 2020

Recordemos algunas definiciones

Trabajaremos en un espacio vectorial V sobre \mathbb{R} o \mathbb{C} con **producto interno** $\langle \cdot, \cdot \rangle$ y **norma** definida a partir de ese producto interno :

$$||v|| = \sqrt{\langle v, v \rangle}, \ v \in V$$

.

Una **base ortonormal** de un subespacio es una base cuyos elementos son ortogonales entre si y tienen norma 1 .

$$B = \{v_1, v_1, \cdots, v_m\}$$

$$\langle v_i, v_j \rangle = 0, \quad \forall i \neq j \qquad ||v_i|| = 1, \quad \forall i = 1, \cdots, m$$

Recordemos el

Teorema de Pitágoras : Si $v \perp w$, es decir $\langle v, w \rangle = 0$, entonces

$$||v + w||^2 = ||v||^2 + ||w||^2$$

Entonces si v es combinación lineal de vectores ortogonales v_1, v_2, \cdots, v_m , la norma de $v = \sum_{i=1}^m a_i v_i$ resultará

$$||v||^2 = ||\sum_{i=1}^m a_i v_i||^2 = \sum_{i=1}^m |a_i|^2 ||v_i||^2$$

Más aún, si los vectores tienen norma 1

 $||v||^2 = ||\sum_{i=1}^m a_i v_i||^2 = \sum_{i=1}^m |a_i|^2$ y la norma de v puede calcularse sumando los cuadrados de sus coeficientes en la base ortonormal.

También conocemos una fórmula para calcular la proyección ortogonal $P_S(v)$ cuando conocemos una base ortogonal de S.

Resulta entonces muy conveniente tener una base ortonormal del espacio, o del subespacio donde vive un vector v cuya norma queremos calcular.

Ejemplo

Sea $V = \mathbb{R}^3$, $S = gen\{(1,1,1), (1,2,0)\}$, claramente S está descripto a partir de una base que no es ortogonal (ni ortonormal),

Podríamos hallar otra base de S que sea ortonormal ?

Empecemos por hallar una base ortogonal de S, después dividiremos los vectores por su norma y tendremos una base ortonormal.

Sean $v_1 = (1, 1, 1)$ y $v_2 = (1, 2, 0)$.

Construyamos una base ortogonal de S, $\{\tilde{v_1}, \tilde{v_2}\}$, y luego si los vectores no resultan de norma 1 podemos dividirlos por su norma:

Elijamos $\tilde{v_1}=(1,1,1)$ y hallemos un vector $\tilde{v_2}$ de manera que $\tilde{v_2}\perp \tilde{v_1}$ y $gen\{\tilde{v_1},\tilde{v_2}\}=S$

Observemos que $\tilde{v_2} \in S$ de manera que $\tilde{v_2} = c_1 \tilde{v_1} + c_2 v_2$. Como queremos que $\tilde{v_1}$ y $\tilde{v_2}$ generen el mismo subespacio S, c_2 no puede ser nulo y como además $\tilde{v_2} \perp \tilde{v_1}$, resulta

$$\langle \tilde{v_2}, \tilde{v_1} \rangle = \langle c_1 \tilde{v_1} + c_2 v_2, \tilde{v_1} \rangle$$

= $c_1 \langle \tilde{v_1}, \tilde{v_1} \rangle + c_2 \langle v_2, \tilde{v_1} \rangle = 0$

Tenemos entonces que

$$|c_1||\tilde{v_1}||^2 + c_2\langle v_2, \tilde{v_1}\rangle = 0$$

Elijamos por ejemplo $c_2=1$ y despejemos $c_1=-\frac{\langle v_2, \tilde{v_1} \rangle}{\|\tilde{v_1}\|^2}=-\frac{3}{3}=-1$ Entonces resulta

$$\tilde{v_1} = (1, 1, 1), \quad \tilde{v_2} = v_2 - \tilde{v_1} = (0, 1, -1)$$

Para que esta nueva base resulte ortonormal dividimos los vectores por sus normas

$$\tilde{B} = \{\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(0,1,-1)\}$$

Podríamos utilizar este método para construir, a partir de una base finita , una base ortonormal con todas las ventajas que ya comentamos que tienen las BON.

Ese procedimiento se llama **Método de Ortogonalización de Gram Schmidt**.

A continuación lo presentamos.

Método de Ortogonalización de Gram Schmidt

Sea V un espacio con producto interno \langle , \rangle y $B = \{v_1, v_2, \cdots, v_m\}$ un conjunto linealmente de V.

Vamos a construir de manera recursiva, un conjunto ortogonal $\tilde{B} = \{w_1, w_2, \cdots, w_m\}$ que satisfacerá

$$gen\{v_1, v_2, \dots, v_k\} = gen\{w_1, w_2, \dots, w_k\}, \quad k = 1, \dots m$$

Finalmente dividiremos los vectores por sus norma para obtener una base ortonormal.

Elijamos $w_1 = v_1$.

Ciertamente se satisface $gen\{v_1\} = gen\{w_1\}$

Para elegir w_2 tengamos en cuenta que debe ser

$$gen\{v_1, v_2\} = gen\{w_1, w_2\}$$
 (1)

por lo tanto w_2 será de la forma $w_2 = c_1v_1 + c_2v_2$. Como además debe ser ortogonal a w_1 , obtenemos

$$\langle w_2, w_1 \rangle = \langle c_1 v_1 + c_2 v_2, v_1 \rangle = 0$$

Notemos que no puede ser $c_2=0$ ya que en ese caso no valdría (1), entonces si elegimos $c_2=1$ podemos despejar $c_1=-\frac{\langle v_2,v_1\rangle}{\|v_1\|\|^2}$ y obtener

$$w_2 = v_2 - \frac{\langle v_2, v_1 \rangle}{\|v_1\|\|^2} v_1 = v_2 - \frac{\langle v_2, v_1 \rangle}{\|v_1\|\|^2} w_1$$

Este vector w_2 satisface todo lo pedido.

Con este mismo procedimiento podemos construir w_3, \dots, w_k . Supogamos que lo hemos hecho .

Es decir que tenemos vectores ortogonales w_1, \dots, w_k tales que

$$gen\{v_1, v_2, \cdots, v_k\} = gen\{w_1, w_2, \cdots, w_k\}$$

Cómo construiríamos w_{k+1} ? w_{k+1} debe satisfacer

$$\langle w_{k+1}, w_j \rangle = 0, \quad j = 1, \cdots, k$$

$$gen\{v_1, v_2, \cdots, v_{k+1}\} = gen\{w_1, w_2, \cdots, w_{k+1}\}$$

A partir de la construcción que ya hicimos para w2 proponemos

$$w_{k+1} = v_{k+1} - \sum_{i=1}^{k} \frac{\langle v_{k+1}, w_j \rangle}{\|w_j\|^2} w_j$$
 (2)

Los productos internos con los otros elementos de la base resultan para $i \leq k$

$$\langle w_{k+1}, w_i \rangle = \langle v_{k+1} - \sum_{j=1}^k \frac{\langle v_{k+1}, w_j \rangle}{\|w_j\|^2} w_j, w_i \rangle =$$

$$\langle v_{k+1}, w_i \rangle - \sum_{j=1}^k \frac{\langle v_{k+1}, w_j \rangle}{\|w_j\|^2} \langle w_j, w_i \rangle$$

Como $\langle w_i, w_i \rangle = 0$ cuando $i \neq j$ resulta

$$\langle w_{k+1}, w_i \rangle = \langle v_{k+1}, w_i \rangle - \frac{\langle v_{k+1}, w_j \rangle}{\|w_i\|^2} \langle w_j, w_i \rangle = 0$$

Ya hemos visto qu se satisface la condición de ortogonalidad. Nos faltaría ver que

$$gen\{v_1, v_2, \cdots, v_k, v_{k+1}\} = gen\{w_1, w_2, \cdots, w_k, w_{k+1}\}$$

Esta condición se satisface ya que, $gen\{v_1, v_2, \cdots, v_k\} = gen\{w_1, w_2, \cdots, w_k\}$ y por la construcción que realizamos, $w_{k+1} = v_{k+1} - \sum c_j w_j$.

$$\{w_1, w_2, \cdots, w_m\}$$

es el conjunto ortogonal que buscábamos.

Para obtener un conjunto ortonormal que genere el mismo espacio, basta simplemente con dividir cada vector w_j por su norma y obtener $z_j = \frac{w_j}{\|w_i\|}$.

El conjunto $\{z_1, z_2, \dots, z_m\}$ es un conjunto ortonormal de vectores que satisface

$$gen\{z_1, z_2, \cdots, z_m\} = gen\{v_1, v_2, \cdots, v_m\}$$

.

Ejemplo

Dada $B=\{(1,0,1),(-1,1,-1),(2,2,0)\}$ construyamos a partir de ella una base ortonomal de \mathbb{R}^3 utilizando el método de ortogonalización de Gram-Schmidt.

Consideraremos el producto interno canónico.

Utilizando la notación anterior

$$v_1 = (1,0,1), v_2 = (-3,1,-1), v_3 = (2,2,1)$$

Entonces

$$w_1 = v_1 = (1, 0, 1)$$

Para hallar w_2 planteamos $w_2=c_2v_2+c_1w_1$, elegimos $c_2=1$ y pedimos $w_2\perp w_1$ de donde resulta

$$w_2 = v_2 - \frac{\langle v2, w_1 \rangle}{\|w_1\|^2} w_1 = (-3, 1, -1) - \frac{-4}{2} (1, 0, 1)$$

Entonces
$$w_2 = v_2 + 2w_1 = (-3, 1, -1) + 2(1, 0, 1) = (-1, 1, 1)$$

$$w_2 = (-1, 1, 1)$$

Para calcular w_3 planteamos

$$w_3 = v_3 - \frac{\langle v_3, w_1 \rangle}{\|w_1\|^2} w_1 - \frac{\langle v_3, w_2 \rangle}{\|w_2\|^2} w_2 = (2, 2, 1) - \frac{3}{2} (1, 0, 1) - \frac{1}{3} (-1, 1, 1)$$

de donde resulta

$$w_3 = (\frac{5}{6}, \frac{5}{3}, -\frac{5}{6})$$

La base obtenida

$$\{(1,0,1),(-1,1,1),(\frac{5}{6},\frac{5}{3},-\frac{5}{6})\}$$

es ortogonal pero no es ortonormal.

Si dividimos cada vector por su norma obtenemos la base ortonormal

$$\{\frac{\left(1,0,1\right)}{\sqrt{2}},\frac{\left(-1,1,1\right)}{\sqrt{3}},\frac{\left(\frac{5}{6},\frac{5}{3},-\frac{5}{6}\right)}{\sqrt{\frac{150}{36}}}\}$$

Observación

El método de ortogonalización se puede aplicar a conjuntos de m vectores linealmente independientes en un espacio de dimensión n $(n \ge m)$.

No es necesario que el conjunto inicial sea una base del espacio, como sucedió en el primer ejemplo que desarrollamos.

Descomposición QR

Escribamos una vez más la relación entre v_j y w_i a partir de la construcción que propone el método de ortogonalización de Gram Schmidt.

$$w_{1} = v_{1}$$

$$w_{2} = v_{2} - a_{1,2}w_{1}$$

$$w_{3} = v_{3} - a_{1,3}w_{1} - a_{2,3}w_{2}$$

$$\vdots$$

$$w_{k} = v_{k} - a_{1,k}w_{1} - a_{2,k}w_{2} \cdot \cdot \cdot - a_{j-1,k}w_{j-1}$$

$$\vdots$$

$$w_{m} = v_{m} - a_{1,m}w_{1} - a_{2,m}w_{2} - \cdot \cdot \cdot - a_{m-1,m}w_{m-1}$$

Si en lugar de w_j despejamos v_j en cada ecuación obtnemos

$$v_{1} = w_{1}$$

$$v_{2} = a_{1,2}w_{1} + w_{2}$$

$$v_{3} = a_{1,3}w_{1} + a_{2,3}w_{2} + w_{3}$$

$$\vdots$$

$$v_{k} = a_{1,k}w_{1} - a_{2,k}w_{2} \cdot \cdot \cdot - a_{j-1,k}w_{j-1} + w_{k}$$

$$\vdots$$

Esta relación puede escribirse matricialmente

 $v_m = a_{1,m}w_1 + a_{2,m}w_2 + \cdots + a_{m-1,m}w_{m-1} + w_m$

Sea $A \in \mathbb{R}^{n \times m}$ la matriz cuyas columnas son los vectores v_i

$$A = [v_1 \ v_2 \cdots v_m] = [w_1 \ w_2 \cdots w_m] \begin{bmatrix} 1 & a_{1,2} & a_{1,3} & \cdots & a_{1,m} \\ 0 & 1 & a_{2,3} & \cdots & a_{2,m} \\ 0 & 0 & 1 & \cdots & a_{3,m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Si llamamos $S \in \mathbb{R}^{m imes m}$ a la matriz triangular superior

$$S = \begin{bmatrix} 1 & a_{1,2} & a_{1,3} & \cdots & a_{1,m} \\ 0 & 1 & a_{2,3} & \cdots & a_{2,m} \\ 0 & 0 & 1 & \cdots & a_{3,m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

y $P \in \mathbb{R}^{n \times m}$ a la matriz cuyas columnas son los vectores w_j (que son ortogonales), hemos obtenido una descomposición de A como A = PS.

Si dividimos cada columna de P por su norma obtenemos una matriz cuyas columnas son ortogonales y unitarias

$$Q = [q_1 \ q_2 \ \cdots \ q_n] = \left[\frac{w_1}{\|w_1\|}, \ \frac{w_2}{\|w_2\|}, \cdots, \frac{w_m}{\|w_m\|}\right]$$

Para mantener la descomposición anterior debemos alterar S multiplicando la fila j por $||w_i||$

$$R = \begin{bmatrix} \|w_1\| & a_{1,2} \|w_1\| & a_{1,3} \|w_1\| & \cdots & a_{1,m} \|w_1\| \\ 0 & \|w_2\| & a_{2,3} \|w_2\| & \cdots & a_{2,m} \|w_2\| \\ 0 & 0 & \|w_3\| & \cdots & a_{3,m} \|w_3\| \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La descomposición de A resulta entonces

$$A = QR$$

donde Q es una matriz de columnas ortogonales y unitarias $Q^TQ = Id$ y R es una matriz triangular superior con elementos positivos en su diagonal.

Observación

Así como sucediera con el método de otogonalización, la descomposición QR, se puede aplicar a conjuntos de m vectores linealmente independientes en un espacio de dimensión n ($n \ge m$), es decir a matrices $A \in \mathbb{R}^{n \times m}$ de rango m. No es necesario que el conjunto inicial sea una base del espacio.

Resultado

Si $A \in \mathbb{R}^{n \times m}$ con rg(A) = m (es decir que sus columnas son linealmente independientes) exiten matrices Q que satisface $Q^TQ = Id$ y R triangular superior con elementos positivos en su diagonal, que satisfacen

$$A = QR$$

Observación

Si $A \in \mathbb{C}^{n \times m}$ la matriz Q de la desomposición es unitaria , decir $\overline{Q^T}Q = Id$.

Por qué sería útil o conveniente poder expresar una matriz de esta forma?

Supongamos que queremos encontrar una solución de Ax = b por cuadrados mínimos

$$A^{T}Ax = A^{T}b \Rightarrow R^{T}Q^{T}QRx = A^{T}b \Rightarrow$$
$$\Rightarrow R^{T}Rx = R^{T}Q^{T}b \Rightarrow Rx = Q^{T}b$$

esta última ecuación es fácil de resolver ya que R es una matriz triangular.

Ejemplo

Retomemos el ejemplo anterior y hallemos la descomposición QR de la matriz cuyas columnas son los vectores v_1, v_2, v_3 . Habiendo hallado, por medio de la ortogonalización de Gram Schmidt

$$w_1 = v_1$$

$$w_2 = v_2 + 2w_1$$

$$w_3 = v_3 - \frac{3}{2}w_1 - \frac{1}{3}w_2$$

y despejando los vectores v_1 , v_2 y v_3 , resulta

$$v_1 = v_1$$

$$v_2 = w_2 - 2w_1$$

$$v_3 = w_3 + \frac{3}{2}w_1 + \frac{1}{3}w_2$$

Entonces

$$A = \begin{bmatrix} v_1 \ v_2 \cdots v_n \end{bmatrix} = PS = \begin{bmatrix} 1 & -1 & \frac{5}{6} \\ 0 & 1 & \frac{5}{3} \\ 1 & 1 & -\frac{5}{6} \end{bmatrix} \begin{bmatrix} 1 & -2 & \frac{3}{2} \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 1 \end{bmatrix}$$

Para obtener la descomposición QR de A, debemos dividir por la norma de w_i la i.ésima columna de P y, consistentemente, multiplicar la i-ésima fila d S por ese mismo valor.

Como
$$||w_1|| = \sqrt{2}$$
, $||w_2|| = \sqrt{3}$, $||w_3|| = \sqrt{\frac{150}{36}} = \frac{5\sqrt{6}}{6}$ obtenemos

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & -2\sqrt{2} & \frac{3}{2}\sqrt{2} \\ 0 & \sqrt{3} & \frac{\sqrt{3}}{3} \\ 0 & 0 & 5\frac{\sqrt{6}}{6} \end{bmatrix}$$

y la descomposición resulta

$$\begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & -2\sqrt{2} & \frac{3}{2}\sqrt{2} \\ 0 & \sqrt{3} & \frac{\sqrt{3}}{3} \\ 0 & 0 & 5\frac{\sqrt{6}}{6} \end{bmatrix}$$