

PH451, PH551 April 8, 2025

Announcements

Midterm on Thursday

Mini-Hackathon #2

- Overall, a great job
 - Assignment scores reflect this
- Teams tried a variety of ideas for (mostly CNN) image models:
 - Dropout, Batch Normalization, ResNet, different activation functions

Hackathon

- Special team prize:
 - 1st place overall +3 grade % points
 - 2nd place overall +2 grade % points
 - 3rd place overall +1 grade % points

Group Presentations

15 minutes total (12 minutes talk + 3 min Q/A) Scoring Rubric:

- Introduce the topic (10 pts)
 - What is the question you are trying to answer
 - Why is it important
 - Previous approaches/Why ML would help
- Machine Learning (10 pts)
 - Which technique and why
 - Model, training, hyperparameters
 - Results and conclusions
- Overall Impression (5pts) + Time Management (5pts)

Energy Models

Energy Models

Key idea: minimize energy instead of error

- Compute energy gradients
- Learning = adjust weights to reduce energy
- "Energy" can take many forms
 - One common idea learning is Hebbian
 - Hebb Rule: "Fire together, wire together"

Energy Models

Every instance has an energy

- based on its induced "neural activity"
- Learning = adjusting weights such that target data produces energy minima

Hopfield Networks

- Little, 1974 (Hopfield 1982)
- Associative memory networks
 - Developed for character recognition
 - Fully connected graph

Decrease energy

function

Spin-glass theory

 Issues: scaling, spurious patterns

Boltzmann Machines

- Hinton, Sejnowski (1985)
- Fully-connected networks
 - Hidden Layer
 - Stochastic neurons
 - Output 0 or 1 with probability based on the Boltzmann distribution from statistical mechanics

Boltzmann Machines

Probability based on the Boltzmann distribution:

$$p\left(s_i^{\text{(next step)}} = 1\right) = \sigma\left(\frac{\sum_{j=1}^N w_{i,j} s_j + b_i}{T}\right)$$

- $s_i = j^{th}$ neuron's **next state**
- w_{ij} = connection weight between i,j
- b_i = ith neuron's **bias** term
- N = number of neurons
- T = temperature (higher → more random the output)
- σ = logistic fn

Reach Thermal Equilibrium: Generative model many possible probability distributions

Restrictive Boltzmann Machines

- Smolensky (1986)
- Boltzmann Machines with no connections between visible-visible or hidden-hidden units

 Don't have to wait for thermal equilibrium, can be stacked (Deep Belief Networks)