Tutorial 2 - Recap

01 September 2020 09:01 AM

Given a sequence (an) of complex numbers, we get seguen ce 0

$$S_{n} := \sum_{k=1}^{n} a_{k}.$$

We say that $\underset{n=1}{\overset{\infty}{=}}$ an converges if $\underset{n\to\infty}{\lim}$ so exists.

Otherwise, we say that it diverges.

in this case

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n.$$

Given a sequence (20) of reals, define $y_n := \sup \{ \chi_m : m \ge n \}.$

Then, (yn) is a mono. decr' sequence and hun, lim yn exists. (one or more yn an he as.)
The limit can also be as.)

We write lim sup $x_n := \lim_{n \to \infty} y_n$.

Thm. Given a series of the form $(PS) \qquad \qquad \sum_{n=0}^{\infty} a_n \left(2 - Z_0 \right)^n,$ where ZEG and On EC Ynchu {o}, there exists $R \in [0, \infty]$ s.t. · (PS) converges for all z s.t. |z-zo/< R (PS) diverges for all z s.t. |z-zo|> R Nothing is said for those Z s.t. |z-zo| = R. Then. (Calculation of R)

Let (an) be as above. d = 0 d = 0Define d := 0 Then, R = 1/x ' (R is the rad. of conv. as before.) Let (an) be as above. Then, If $\alpha := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists, THEN R = 1/2. Kemark. This limit & need not always exist.

Remark. (General) If $\lim_{n\to\infty} x_n$ exists, then $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_n$.

This can also be applied to the root test above.

X

Note. In general, the equality $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_n$ I'm sup $(a_n + b_n) = \lim_{n\to\infty} \sup_{n\to\infty} a_n + \lim_{n\to\infty} \sup_{n\to\infty} b_n$ IS NOT TRUE. $a_n = (-n)^n, b_n = -a_n$. $\lim_{n\to\infty} \sup_{n\to\infty} a_n = 1 = \lim_{n\to\infty} \sup_{n\to\infty} b_n$ but $a_n + b_n = 0$.

01 September 2020

09:02 AM

1. If u(X,Y) and v(X,Y) are harmonic conjugates of each other, show that they are constant functions.

Remark (my own): This is true iff u and v are defined on domains, that is, open and path-connected sets.

V is a harmonic conjugate of U: $U_{x} = V_{y} \quad \text{and} \quad U_{y} = -V_{x}.$

U is a harmonic conjugate of V: $V_{x} = U_{y} \quad \text{and} \quad V_{y} = -U_{x}.$

Red eq's: $U_x = -U_x = V_y = -V_y$. \vdots $U_x = 0 = V_y$.

(4) Blue ex's: $V_{x} = -V_{x} = h_{y} = -H_{y}$ $\therefore V_{x} = 6 = h_{y}.$

Sine $U_y = 0 = U_y$, $U_y = U_y$,

Similarly V is constant.

Remark

let of two disjoint open disce.

of two disjoint open disce

Define $u: \Omega \rightarrow \mathbb{R} \rightarrow$

Check: $u_x = v_y = 0$. But u is not - constant.

Ex. Let $f: \mathbb{R}^2 \setminus \{0,0\} \rightarrow \mathbb{R}$ be defined $\infty \quad f(x,y) = \log(x^2 + y^2).$

Show that: 1 f is harmonic,

① f has no harmonic conj.

on $\mathbb{R}^2 \setminus \{(0/0)^{\frac{1}{2}}$.

but not simply.

his is not the good of anything.

01 September 2020

09:02 AM

2. Show that $u = XY - 3X^2Y - Y^3$ is harmonic and find its harmonic conjugate.

Smort Day. Consider
$$f: C \rightarrow C$$
 defined as $f(z) = z^3 + \frac{1}{2}z^2$.

Then, $u = Im \circ f$.

$$f(x,y) = \chi^{3} - 3\chi y^{2} + \frac{1}{2}(\chi^{2} - \gamma^{2}) + i(u(x,y))$$

Thus,
$$y = \chi^3 - 3\chi y^2 + \frac{1}{2}(\chi^2 - \gamma^2)$$

(It happened to work nicely here.)

3. Find the radius of convergence of the following power series:

(a)
$$\sum_{n=0}^{\infty} nz^n,$$

In each part, an denotes

(b)
$$\sum_{p \text{ prime}} z^p$$
,

(c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n.$$

Note that lim Jan

$$\left(\begin{array}{ccc} & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\$$

$$\alpha = \limsup_{n \to \infty} n^{\gamma_n} = 1 \text{ and hence,}$$

$$R = \alpha^{-1} = 1.$$

$$R = 2^{-1} = 1^{-1} = 1$$

(b)
$$\alpha_n = \frac{1}{2}$$

$$\begin{array}{ccc} (b) & \Omega_{n} = & 2 \\ \end{array}$$

$$\exists m \geq n$$

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \left(\sup_{n\to\infty} \left\{ a_m : m \ge n \right\} \right)$$

$$=\lim_{N\to\infty} (1) = 1.$$

Thus, $\alpha = 1$ and $\beta = 1$.

(C) (Ratio)

Here, we have

 $a_n = \frac{n!}{n^n}$. Thus,

Note $a_{n+1} = \frac{n!}{(n+1)!} \cdot \frac{(n+1)^{n+1}}{n^n}$ $= \frac{1}{n!} \cdot (n+1) \cdot (n+1)^n = (1+\frac{1}{n})^n$

Thus, $\lim_{n\to\infty} \left| \frac{a_n t_1}{a_n} \right| = \lim_{n\to\infty} \left(\left(\frac{1+1}{n} \right)^n \right)^{-1} = e^{-1}$

Thus, $d = e^{-1}$ and $R = e^{-1}$.

Remark. Here the limit happened to exist. Thus, we could use the test.

NO LIMSUP TEST WITH RATIO FOR POW. SERVES! 4. Show that L>1 in the ratio test (Lecture 3 slides) does not necessarily imply that the series is divergent.

this was
$$\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$$
.

Fact:
$$\int_{n^2} \frac{1}{n^2}$$
 converges

$$a_{2n-1} = \frac{1}{n^2} \quad j \quad n = 1$$

$$a_{2n} = \frac{2}{n^2} \quad ; \quad n > 1$$

 $+(x_n)$ is a

$$\left| \sum_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > \left| \lim \sup_{2n-1} \left| \frac{a_{2n}}{a_{2n-1}} \right| = 2.$$

$$(y_n) \text{ is a subseq.},$$

$$(y_n) \text{ is a subseq.},$$

then $\limsup x_n \ge \limsup y_n$ Thus, $L \ge 2 > 1$.

Hence. 1 - 1 but the series

Hence, L > 1 but the series still converges.

01 September 2020 09:02 AM

f is non-zero means that f is not identically zero.

5. Construct a infinitely differentiable function $f: \mathbb{R} \to \mathbb{R}$ which is non-zero but vanishes outside a bounded set 2 Show that there are no holomorphic functions which satisfy this property.

f is non zero at SOME XEIR

1 Recall

$$g: \mathbb{R} \to \mathbb{R}$$
 defined as $x \in \mathbb{R}$.

 $g(x) := \begin{cases} e^{-1/x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$

we saw that g was inf. diff.

(but not analytic)

Define $f: \mathbb{R} \to \mathbb{R}$ as f(x) = g(x)g(1-x).

Then, Of (n) = 0 if n < 0. (alt)

Thus, f is zero outside the bounded set

[0, 1].

[on the care what happens here

Moreover, f is non-zero since $f(\frac{1}{2}) = (\frac{9(\frac{1}{2})^2}{2} = e^4 + 0.$ Also, f is inf. diff. (hy?)

② Claim. If $f: C \to C$ is holo. It vanishes outside a bounded set, then f = O.

(f is identically 0.)

Proof We will show that the zeroes of f do NOT form a discrete set By hyp., He know there exists a bounded KCC s.f. Subject f(z) = 0 if $z \notin K$. By det, JM>0 s.t. 121 & M for z & K. Let 2 := M + 43 and take $\delta = 42$. Then, $B_{42}(z_0) \cap B_{M}(0) = \emptyset$. Thus, f(z) = 0 for all Z G B42(Zo). let f: 2 -> E be analytic Thus, f is identically zero. (Since holomorphic functions are analytic.) R is not a discrete subset of C. Thus, if f: C > C vanishes on R and is analytic, then $f \equiv 0$ In particular, Consider $f(z) = \cos^2 z + \sin^2 z - 1$. We know that f(z) =0 If ZEIR.

Thus,
$$f(z) = 0$$
 $\forall z \in C$.
Thus, $\cos^2 z + \sin^2 z = 1$ $\forall z \in C$.

01 September 2020

09:02 AM

6. Show that $\exp: \mathbb{C} \to \mathbb{C}^{\times}$ is onto.

Let Zo E C. We wish to show

that

7 Z + 6 st. exp(z) = Zo.

Since $Z_0 \in C^{\times}$, $Z_0 \neq 0$. Thus,

ro:= 1201 +0.

Thus, $W_0 := \frac{Z_0}{r}$ is well-defined.

Moreover, $|w_0| = \frac{|z_0|}{|z_0|} = \frac{|z_0|}{|z_0|} = 1$.

Thus, Wo = xo +iyo for some

(xo, yo) EIR satisfying xo + yo = 1.

70 € [0, 27) sit.

 $\chi_0 = \cos \theta$ and $y_0 = \sin \theta$.

Now, define Z:= log(5) + 20.

Is is the usual log: IR -> IR.

Then, we have
$$\exp(z) = \exp(\log r_0 + i0)$$

 $= \exp(\log r_0) \cdot \exp(i0)$
 $= r_0 \cdot (\cos 0 + i\sin 0) = \delta \cdot \omega_0$
 $= z_0 \cdot 12$

01 September 2020

09:02 AM

7. Show that $\sin, \cos : \mathbb{C} \to \mathbb{C}$ are surjective. (In particular, note the difference with real sine and cosine which were bounded by 1).

Sin
$$\sin(z) = \frac{e^{1z} - e^{-2z}}{2i}$$

Let $z \in C$. [we want to show: $\exists z \in C$ s.t. $\sin z = z_0$]

Consider the quadratic

 $(t - 1/t) = z_0$
 $2i$
 2

Tutorial 2 Page 16

Consider z'= 2/2 E C.

Then,
$$e^{iz'} = t_1$$
. Put this back in the quadratic. (**)

Thus,

$$\frac{e^{iz'} - (e^{iz'})^{-1}}{2i} = z_0.$$

Sin $(z') = z_0$.

01 September 2020

09:02 AM

8. Show that for any complex number z, $\sin^2(z) + \cos^2(z) = 1$.

Frutely compute:

(Sin2) = eⁱ² - e⁻ⁱ²

2i

 $(\cos z) = e^{iz} + e^{iz}$

2) Look at remark at the end of Q5.