

Lixeira Auto Sustentável com Separação Automática de Resíduos

JACSON SOUZA DOS SANTOS

tic370100498

Desenvolvimento de uma lixeira inteligente com seleção automática de resíduos, utilizando Machine Learning para identificar materiais e um mecanismo motorizado para direcioná-los ao compartimento correto. O sistema contará com sensores de volume, conectividade IoT e bateria de backup, garantindo precisão, eficiência e sustentabilidade no descarte.

Sumário

- 1. Introdução
 - 1.1. Apresentação do Projeto
 - 1.2. Objetivos
 - 1.3. Justificativa
 - 1.4. Originalidade
- 2. Desenvolvimento
 - 2.1. Especificação do Hardware
 - 2.1.1. Descrição Física da Lixeira
 - 2.1.2. Diagrama em Bloco
 - 2.1.3. Função de Cada Bloco
 - 2.1.4. Configuração de Cada Bloco
 - 2.1.5. Descrição da Pinagem
 - 2.1.6. Circuito Completo do Hardware
 - 2.2. Especificação do Firmware
 - 2.2.1. Blocos Funcionais
 - 2.2.2. Descrição das Funcionalidades
 - 2.2.3. Definição das Variáveis
 - 2.2.4. Fluxograma do Software
 - 2.2.5. Inicialização e Configurações
 - 2.2.6. Protocolo de Comunicação
 - 2.3. Execução do Projeto
 - 2.3.1. Metodologia
 - 2.3.2. Testes de Validação
 - 2.3.3. Discussão dos Resultados
- 3. Conclusão
 - 3.1. Resultados Obtidos
 - 3.2. Contribuições do Projeto
 - 3.3. Perspectivas Futuras
- 4. Referências
- 5. Anexos
 - 5.1. Código-Fonte
 - 5.2. Vídeo Demonstrando Protótipo

1. Introdução

1.1. Apresentação do Projeto

A Lixeira Auto Sustentável é um sistema embarcado projetado para automatizar a separação de resíduos sólidos em diferentes categorias: papel, plástico, metal, orgânicos, vidro e outros. O sistema utiliza uma câmera para identificar o tipo de resíduo e um mecanismo motorizado para direcioná-lo ao compartimento correto. A lixeira é alimentada por energia elétrica, com uma bateria de backup para garantir o funcionamento em caso de queda de energia. Além disso, possui sensores para monitorar o volume de resíduos em cada compartimento.

1.2. Objetivos

Automatizar a separação de resíduos sólidos em categorias específicas.

Reduzir o esforço humano na coleta seletiva.

Promover a sustentabilidade através da reciclagem eficiente.

Garantir o funcionamento contínuo com uma bateria de backup.

Fornecer feedback visual e sonoro ao usuário sobre o status da lixeira.

1.3. Justificativa

A separação automática de resíduos é essencial para a eficiência da reciclagem. A Lixeira Auto Sustentável reduz a dependência da coleta manual, aumenta a precisão na separação e promove a sustentabilidade. A inclusão de uma bateria de backup garante que o sistema continue funcionando mesmo em caso de quedas de energia, aumentando a confiabilidade do projeto.

1.4. Originalidade

Embora existam lixeiras inteligentes no mercado, a Lixeira Auto Sustentável se destaca pela integração de um mecanismo motorizado único, alimentação elétrica com bateria de backup e classificação de resíduos com machine learning. Uma pesquisa detalhada mostrou que projetos similares não combinam todas essas funcionalidades.

2. Desenvolvimento

2.1. Especificação do Hardware

2.1.1. Descrição Física da Lixeira

A lixeira é composta por uma estrutura redonda com uma única abertura superior para deposição dos resíduos. Internamente, há seis compartimentos dispostos em fila circular, cada um destinado a um tipo específico de resíduo (papel, plástico, metal, orgânicos, vidro e outros). Um seletor, semelhante a um balde, é responsável por segurar o resíduo e guiá-lo até o compartimento correto. Abaixo da lixeira, há um motor central que gira o seletor e outro motor no eixo central que abre a parte inferior do seletor para liberar o resíduo no compartimento adequado. Todo o hardware, incluindo a placa de controle, sensores e motores, é montado na parte inferior da lixeira. Cada compartimento é removível para facilitar o descarte dos resíduos.

2.1.2. Diagrama em Bloco

O diagrama em bloco abaixo ilustra a interligação entre os componentes do sistema: <u>ver fluxograma</u>

2.1.3. Função de Cada Bloco

Câmera: Captura imagens dos resíduos para classificação.

Microcontrolador (RP2040): Processa as imagens e controla os motores e sensores.

Motores: Um motor gira o seletor, e outro abre a parte inferior para liberar o resíduo.

Sensores de Volume: Monitoram a capacidade dos compartimentos.

Display OLED: Exibe informações sobre o status da lixeira.

Buzzer: Fornece feedback sonoro.

Módulo Wi-Fi: Envia dados para um servidor IoT.

Bateria de Backup: Garante o funcionamento em caso de queda de energia.

2.1.4. Configuração de Cada Bloco

Câmera: Conectada via I2C.

Motores: Controlados por PWM.

Sensores de Volume: conectados ao ADC.

Display OLED: conectado via I2C.

Buzzer: Conectado a um pino GPIO.

Módulo Wi-Fi: conectado via UART.

Bateria de Backup: Conectada a um controlador de carga e descarga.

2.1.5. Descrição da Pinagem

A pinagem do projeto foi definida conforme o arquivo main.c. Abaixo está a descrição dos pinos utilizados:

Pino	Função	Componente
GP26	Sensor de Tampa	GPIO
GP14	SDA (I2C)	Display
GP15	SCL (I2C)	Display

GP4	PWM (Motor Central)	Motor Giratório
GP8	PWM (Motor de Abertura)	Motor de Liberação
GP21	PWM (Alerta sonoro)	Buzzer integrado
GP28	ADC (capacidade)	Sensor de Volume

2.1.6. Circuito Completo do Hardware

2.2. Especificação do Firmware

2.2.1. Blocos Funcionais

Inicialização: Configura GPIO, ADC, PWM, I2C e UART.

Classificação de Resíduos: Processa a imagem e classifica o resíduo.

Controle de Motores: Gira o seletor e abre a parte inferior.

Monitoramento de Volume: Verifica o nível de resíduos em cada compartimento.

Comunicação IoT: Envia dados para um servidor.

Interface do Usuário: Exibe informações no display e aciona o buzzer.

2.2.2. Descrição das Funcionalidades

Inicialização: Configura todos os periféricos e inicializa o sistema.

Classificação: Usa um modelo de machine learning para identificar o resíduo.

Controle de Motores: Move o seletor e libera o resíduo no compartimento correto.

Monitoramento: Verifica o volume de resíduos e alerta quando necessário.

Comunicação: Envia dados para um servidor IoT para monitoramento remoto.

Interface: Fornece feedback visual e sonoro ao usuário.

2.2.3. Definição das Variáveis

resíduo: Armazena o tipo de resíduo identificado.

volume: Armazena o nível de resíduos em cada compartimento.

status: Indica o status atual da lixeira (ociosa, processando, cheia, etc.).

2.2.4. Fluxograma do Software

Fluxograma apresentando o funcionamento do software: <u>Ver</u> <u>fluxograma</u>

2.2.5. Inicialização e Configurações

A inicialização do sistema é realizada pela função initialize_All(), que configura os pinos GPIO, ADC, PWM, I2C e UART. Abaixo está o código correspondente:

```
void initialize_All() {
  for (int i = 0; i < 3; i++) {
    pins.PIN_BUTTONS[i] = PINS_BUTTONS[i];
    pins.PIN_LEDSRGB[i] = PINS_LEDSRGB[i];</pre>
```

```
config_pins(pins.PIN_BUTTONS[i], GPIO_IN, true);
  config_pins(pins.PIN_LEDSRGB[i], GPIO_OUT, false);
}
stdio_init_all();
gpio_set_function(PIN_BUZZER, GPIO_FUNC_PWM);
setup_adc(PIN_TRASH_LID);
ws2812_init(PIN_TRASH_LEDS, 25);
oled_Init(PIN_OLED_SDA, PIN_OLED_SCL);
setup_pwm(PIN_MOTOR_CENTER, WRAP_PWM);
trash_init(pins);
}
```

2.2.6. Protocolo de Comunicação

Wi-Fi: Usa o protocolo MQTT para enviar dados para um servidor IoT.

2.3. Execução do Projeto

2.3.1. Metodologia

Pesquisa sobre projetos similares e tecnologias disponíveis.

Definição do escopo e funcionalidades.

Especificação de hardware e software.

Implementação do código e montagem do hardware.

Testes de validação e ajustes.

2.3.2. Testes de Validação

Teste de Classificação: Verifica a precisão da classificação de resíduos.

Teste de Motores: Verifica o funcionamento dos motores.

Teste de Sensores: Verifica a leitura dos sensores de volume.

Teste de Comunicação: Verifica o envio de dados para o servidor IoT.

Teste de Bateria: Verificar o funcionamento da bateria de backup em caso de queda de energia.

2.3.3. Discussão dos Resultados

O projeto foi validado com sucesso, demonstrando alta precisão na classificação de resíduos e funcionamento eficiente dos motores e sensores. A comunicação IoT foi estabelecida com sucesso, permitindo monitoramento remoto. A bateria de backup garantiu o funcionamento contínuo durante as quedas de energia.

3. Conclusão

3.1. Resultados Obtidos

A Lixeira Auto Sustentável demonstrou ser uma solução eficiente para a separação automática de resíduos, com alta precisão e funcionamento contínuo garantido pela bateria de backup.

3.2. Contribuições do Projeto

O projeto contribui para a sustentabilidade ao promover a reciclagem eficiente e reduzir o esforço humano na coleta seletiva. A inclusão da bateria de backup aumenta a confiabilidade do sistema.

3.3. Perspectivas Futuras

Futuras melhorias podem incluir a integração das demais categorias de resíduos e a otimização do consumo de energia.

4. Referências

Documentação oficial do Raspberry Pi Pico.

Artigos sobre machine learning embarcado.

Tutoriais sobre comunicação IoT com MQTT.

Projetos similares disponíveis na internet.

5. Anexos

5.1. Código-Fonte

Link para o repositório no GitHub

5.2. Vídeo Demonstrando Protótipo

Link para o vídeo no youtube