情報科学のための数学演習 (線形代数) 試験問題

1. 行列 $A = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$ を考える. A を表現行列とする写像によって点 (-1,0),(0,1) はどのような点に写像されるかを座標平面を書いて図示せよ.

また,この行列を表現行列としてもつ線形写像 f の $\mathrm{Im} f$ および $\mathrm{Ker} f$ の次元と一組の基底を求め,図示せよ.(20 点)

2. 行列式 $D=egin{array}{c|cccc} 3&1&0&2\\3&1&-2&4\\-1&1&2&1\\2&0&0&5 \end{array}$ において,(2,3) 成分 -2 の余因数 A_{23} を求めよ.ま

た、第3列で余因数展開することにより、Dの値を求めよ。(20 点)

- 3. \mathbb{R}^3 のベクトル $\boldsymbol{a}=(4,0,-1)$, $\boldsymbol{b}=(-2,1,1)$ をベクトル $\boldsymbol{a}_1=(2,-2,1)$, $\boldsymbol{a}_2=(-1,-1,1)$, $\boldsymbol{a}_3=(-5,3,-1)$ の一次結合で表せ. (20 点)
- 4. 行列 $A=\begin{pmatrix}1&-2&2\\-1&1&1\\1&0&2\end{pmatrix}$ が対角化可能ならば変換の行列を求めて対角化せよ. $(20\, \text{点})$
- 5. $A = \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 2 & 2 & 2 \\ 1 & 0 & -1 & 2 \end{pmatrix}$ とする. \mathbb{R}^4 から \mathbb{R}^3 への線形写像 f を $f(\boldsymbol{x}) = A\boldsymbol{x}$ で与える とき,f の Imf および Kerf の次元と 1 組の基底を求めよ.(20 点)