Home Work #4

Ali BaniAsad 96108378

November 12, 2021

1 Question 1

System:

$$G(s) = \frac{(s+1)(s+4)(s+8)}{s^3(s^2+0.2s+100)}$$

1.1 part a

• K = 0.5

Figure 1: Nichols chart for KG, (K = 0.5)

 \bullet K=1

Ali BaniAsad 96108378 1.1 part a

Figure 2: Nichols chart for KG, (K = 1)

• K = 5

Figure 3: Nichols chart for KG, (K = 5)

Ali BaniAsad 96108378 1.2 part b

Phase margin and gain margin are shown in above figures and all closed loop systems are unstable with K form 1 to 5. In all of them phase margin is negetive.

1.2 part b

I use a zero and a far pole to make controller feasible.

Controller:

$$C(s) = \frac{2.2368 \times 10^5 (s+11.91)}{s+10^4}$$

Phase margin is above 40 degree.

Figure 4: Phase margin with controller

Maximum closed loop is below than 3 decibels.

Ali BaniAsad 96108378 1.2 part b

Figure 5: Nichols chart with controller

Setteing time and overshoot for step responde in closed loop system are shown in figure.

Figure 6: Step responde

Ali Bani Asad 96108378 $1.3 \quad \mathrm{part} \ \mathrm{c}$

1.3 part c

For transfer function we use common architecture.

Figure 7: Architecture

 $\bullet\,$ r to y refrence

$$\frac{y}{r} = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

Figure 8: r to y bode magnitude

System has a good performance at high frequency but not good performance at low frequency.

Ali Bani Asad 96108378 $1.3 \quad \mathrm{part} \ \mathrm{c}$

• du to y distubance

$$\frac{y}{du} = \frac{G(s)}{1 + C(s)G(s)}$$

Figure 9: du to y bode magnitude

System has a better performance at high frequency but pretty good performance at low frequency.

• dy to y distubance

$$\frac{y}{dy} = \frac{1)}{C(s)G(s)}$$

Ali Bani Asad 96108378 $1.3 \quad \mathrm{part} \ \mathrm{c}$

Figure 10: dy to y bode magnitude

System has a good performance at high frequency but very bad performance at low frequency.

• n to y noise

$$\frac{y}{du} = \frac{-C(s)G(s)}{1 + C(s)G(s)}$$

Ali Bani Asad 96108378 $1.4 \quad \mathrm{part} \ \mathrm{d}$

Figure 11: n to y bode magnitude

System has a good performance at high frequency but not good performance at low frequency.

1.4 part d

 $\bullet\,$ sensitivity function

$$S_G^{G_{cl}} = \frac{1}{1 + C(s)G(s)}$$

Ali Bani Asad 96108378 $1.4 \quad \mathrm{part} \ \mathrm{d}$

Figure 12: sensitivity function bode magnitude

System sensitivity is very hight at high frequency but low at low frequency.

• complementary sensitivity function

$$S_G^{G_{cl}} = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

Ali Bani Asad 96108378 $1.4 \quad \mathrm{part} \ \mathrm{d}$

Figure 13: complementary sensitivity function bode magnitude

• Nichols chart for sensitivity function and complementary sensitivity function

Figure 14: nyquist chart

Ali BaniAsad 96108378 CONTENTS

Contents

1	Que	stion 1																							1
	1.1	part a		 							 				 								 		1
	1.2	part b		 							 				 								 		3
	1.3	part c		 							 				 								 		5
	1 4	part d																							8

Ali BaniAsad 96108378 LIST OF FIGURES

List of Figures

1	Nichols chart for KG , $(K=0.5)$
2	Nichols chart for $KG, (K = 1) \dots $
3	Nichols chart for $KG, (K=5)$
4	Phase margin with controller
5	Nichols chart with controller
6	Step responde
7	Architecture
8	r to y bode magnitude
9	du to y bode magnitude
10	dy to y bode magnitude
11	n to y bode magnitude
12	sensitivity function bode magnitude
13	complementary sensitivity function bode magnitude
14	nyquist chart

Ali BaniAsad 96108378 LIST OF TABLES

List of Tables