Basic Analysis 2015 — Solutions of Tutorials

Section 1.2

Tutorial 1.2.1

- 1. In each of the following cases, state if the given set is bounded above or not. If a set is bounded above, give two different upper bounds for the set, give the supremum of the set and state if the set has a maximum or not.
- (a) (-3,2) is bounded above, 4 and 5 are upper bounds, the supremum is 2, and (-3,2) has no maximum.
- (b) $(1, \infty)$ is not bounded above.
- (c) [10, 11] is bounded above, 11 and 15 are upper bounds, the supremum is 11, and the maximum exists.
- (d) {5,4} is bounded above, 11 and 5 are upper bounds, the supremum is 5, and the maximum exists.
- (e) $\{10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -5\}$ is bounded above, 11 and 10 are upper bounds, the supremum is 10, and the maximum exists.
- (f) $(-\infty, 2]$ is bounded above, 3 and 10 are upper bounds, the supremum is 2, and the maximum exists.
- (g) $\{x \in \mathbb{R} : x^2 < 3\}$ is bounded above, 3 and 10 are upper bounds, the supremum is $\sqrt{3}$, and the set has no maximum.
- (h) $\{x \in \mathbb{R} : x^2 \le 3\}$ is bounded above, 3 and 10 are upper bounds, the supremum is $\sqrt{3}$, and the maximum exists.
- 2. For each of the sets in Q. 1, state if the given set is bounded below or not. If a set is bounded below, give two different lower bounds for the set, give the infimum of the set and state if the set has a minumum or not.
- (a) (-3, 2) is bounded below, -4 and -5 are lower bounds, the infimum is -3, and (-3, 2) has no minimum.
- (b) $(1, \infty)$ is bounded below, -4 and -5 are lower bounds, the infimum is 1, and the set has no minimum.
- (c) [10, 11] is bounded below, 10 and 5 are lower bounds, the infimum is 10, and the minimum exists.
- (d) {5,4} is bounded below, 1 and 4 are lower bounds, the infimum is 4, and the minimum exists.
- (e) $\{10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -5\}$ is bounded below, -11 and -10 are lower bounds, the infimum is -5, and the minimum exists.
- (f) $(-\infty, 2]$ is not bounded below.
- (g) $\{x \in \mathbb{R} : x^2 < 3\}$ is bounded below, -3 and -10 are lower bounds, the infimum is $-\sqrt{3}$, and the set has no minimum
- (h) $\{x \in \mathbb{R} : x^2 \le 3\}$ $\{x \in \mathbb{R} : x^2 < 3\}$ is bounded below, -3 and -10 are lower bounds, the infimum is $-\sqrt{3}$, and the minimum exists.
- 3. Let S be a nonempty subset of \mathbb{R} .
- (a) If a is the greatest element of S, then what is $\sup S$? $\sup S = a$.
- (b) If sup S = a, then what are the upper bounds of S? The upper bounds are all real numbers x satisfying $x \ge a$.
- (c) If $\sup S = a$, does S have a maximum? We do not know without further information on the set.
- (d) If $\sup S = a$ and $a \in S$, does S have a maximum? Yes.
- 4. Prove Proposition 1.10.

Proof. (a) We have

$$-S$$
 is bounded below $\Leftrightarrow \exists l \in \mathbb{R} \ \forall x \in -S \quad l \leq x$
 $\Leftrightarrow \exists l \in \mathbb{R} \ \forall -y \in -S \quad l \leq -y$
 $\Leftrightarrow \exists l \in \mathbb{R} \ \forall y \in S \quad l \leq -y$
 $\Leftrightarrow \exists l \in \mathbb{R} \ \forall y \in S \quad y \leq -l$
 $\Leftrightarrow S$ is bounded above.

Now let S be bounded above and let l be any lower bound of -S. Then

$$\begin{aligned} &\forall \, x \in -S \quad l \leq x \\ \Rightarrow &\forall \, -y \in -S \quad l \leq -y \\ \Rightarrow &\forall \, -y \in -S \quad y \leq -l \\ \Rightarrow &\forall \, y \in S \quad y \leq -l. \end{aligned}$$

Hence -l is an upper bound of S, so that $M = \sup S \le -l$. Therefore $l \le -M$, and we have shown that -M is the greatest lower bound of S. Hence

$$\inf(-S) = -M = -\sup S.$$

If max S exists, then $M = \sup S = \max S \in S$, and inf $S = -M \in -S$ follows, which means that $\min(-S)$ exists and $\min(-S) = -\max S$.

(b) Replacing S with -S in part (a) we have

-S is bounded above $\Leftrightarrow -(-S)$ is bounded below $\Leftrightarrow S$ is bounded below.

The identities stated in (b) now easily follow from (a).

- (c) is clear from the definition of bounded sets, (a) and (b).
- 5. Prove Theorem 1.11.

Proof. This has been shown in the proof of part (a) of Proposition 1.10.

6. Prove Theorem 1.12.

Proof. We could adapt the proof of Theorem 1.9 to this case. Alternatively, we can apply Theorem 1.9 to the nonempty set -S, and use Proposition 1.10. Then

$$m = \inf S \Leftrightarrow m = -\sup(-S) = -M$$
.

In the proof of Proposition 1.10 we have seen that m is a lower bound of S if and only -m is an upper bound of -S, and observing

$$M - \varepsilon < -s \Leftrightarrow s < m + \varepsilon$$

that x > m means -x < M, and that -x < -s for $s \in S$ means s < x, it follows that the equivalence in Theorem 1.12 follows from the equivalence in Theorem 1.9.

7. Let *S* and *T* be non-empty subsets of \mathbb{R} which are bounded above. Use Theorem 1.9 to prove that $\sup(S+T) = \sup S + \sup T$.

Proof. Step 1: Let $K = \sup S$ and $M = \sup T$. For all $x \in S$ and $y \in T$ we have $x \le K$ and $y \le M$, so that $x + y \le K + M$. But this shows that $z \le K + M$ for all $z \in S + T$. Hence K + M is an upper bound of S + T. Step 2: Let $\varepsilon > 0$. Then $\frac{\varepsilon}{2} > 0$ as well. Since $\sup S = K$, by Theorem 1.9 there is $s \in S$ such that $K - \frac{\varepsilon}{2} < s$. Also, since $\sup T = M$, there is $t \in T$ such that $M - \frac{\varepsilon}{2} < t$. Then $u = s + t \in S + T$, and

$$K+M-\varepsilon=\left(K-\frac{\varepsilon}{2}\right)+\left(M-\frac{\varepsilon}{2}\right)< s+t=u.$$

Step 3: Hence K + M satisfies Theorem 1.9 (b), and it follows from Theorem 1.9 that

$$\sup(S+T) = K + M = \sup S + \sup T.$$

8. **Some simple questions.** Decide which of the following statements are **true** and which are **false**.

- (a) $\frac{1}{2} \in \{0, 1\}$ false (b) $3 \in (0, 3)$ false (c) $17 \in [0, 17]$ true (d) $17 \in (-3, 18)$ t
- (e) $17 \in [16, 18]$ true (f) $2 \in \{1, 3, 5, 7\}$ false
- (g) $2.5 \in \{x \in \mathbb{R} : x^2 \ge 4\}$ false (h) $-1 \in \{x \in \mathbb{R} : 2x + 7 < 5\}$ fals

9*. Assume that the Dedekind cut property, Theorem 1.13, as well as the ordered field axioms are satisfied. Show that the Dedekind completeness holds.

Proof. Let S be nonempty and bounded above.

If S has a maximum, say M, the the supremum exists by Proposition 1.7.

Now consider the case that S has no maximum. Let B be the set of all upper bounds of S. Then $B \neq \emptyset$ since S is bounded above. Define $A = \mathbb{R} \setminus B$. Then clearly $(A \cap B) = \emptyset$ and $A \cup B = \mathbb{R}$. Also, since S is nonempty, there is $s \in S$. It follows for all $x \in B$ that $s - 1 < s \le x$, which means that $s - 1 \notin B$, that is, $s - 1 \in A$, and therefore A is nonempty. Hence A and B satisfy the assumptions (i) and (ii) of Theorem 1.13.

By Theorem 1.13, there is $c \in \mathbb{R}$ such that $a \le c \le b$ for all $a \in A$ and $b \in B$.

We want to show that c is the least upper bound of S, which proves the existence of the supremum of S.

Since S has no maximum, no upper bound of S belongs to S by definition of the maximum. Hence $s \notin B$ for all $s \in S$, which means $s \in A$ for all $s \in S$. But then (iii) says that $s \le c$ for all $s \in S$, that is c is an upper bound of S, and $c \le b$ for all $b \in B$ says that c is the least upper bound of S.