Prop. Si 11-1 < 1 ⇒ \(\frac{\pi}{\pi} \) \(\arg \conf \) \(\frac{\pi}{\pi \conf} \)

Nota: Recordenos: 1+x+x²+... = \(\frac{2}{5} \) xN = \(\frac{1}{1-x} \),

Prop: (eniterio de comparación). 00 o Terminos positiva)

i) 80 \(\frac{1}{5} \) bx comvage \(y \) \(\frac{1}{5} \) ax \(\text{comvage} \) \(\frac{1}{5} \) Cx \(\text{divenge} \) \(\frac{1}{5} \) \(\text{divenge} \) \(\text{divenge} \) \(\frac{1}{5} \) \(\text{divenge} \) \(\frac{1}{5} \) \(\text{divenge} \) \(\text{divenge} \) \(\frac{1}{5} \) \(\text{divenge} \) \(\frac{1}{5} \) \(\text{divenge} \)

positivor of robemos que, para y & na tiene $NP \subseteq N^1 \implies \frac{1}{NP} \gg \frac{1}{NP}$ diverge.

(Criterio de condusación)

Prop: (Criterio de la razón)

Suponga que Lim | $\frac{a_{N+1}}{a_{N}}$ | existe y en menor que 1

El a perie I an converge absolutamente. Si el

l'unide tiende a infinito o en mayor que 1.

El a perie diverge. Si el límite en 1, el exitacio

no en concluyente.

Dem. O suponga que Lim | $\frac{a_{N+1}}{a_{N+1}}$ | $\frac{1}{2}$ | \frac

Lee $\Gamma^{\prime} \in \mathbb{R}_{3}$ $\Gamma \subset \Gamma^{\prime} \subset 1$ by near $N_{0} \in \mathbb{Z}^{+}_{3}$ si $n \geq N_{0}$ $E = \left(\frac{\alpha_{n+1}}{\alpha_{n}} \right) \leq \Gamma^{\prime} \right)$. Surfaceup, $F \in \mathbb{Z}^{+}_{3}$ si $n \geq N_{0}$ $= \left(\frac{\alpha_{n+1}}{\alpha_{n}} \right) \leq \Gamma^{\prime} \left(\frac{\alpha_{n+1}$

(a) Considere la revie $\sum_{n=1}^{\infty} \frac{1}{N^2}$, la cual w convergent pour p-serie. Pero:

Lim $\left|\frac{\alpha_{N21}}{\alpha_N}\right| = \lim_{n\to\infty} \frac{1}{(n+N^2)} = \lim_{n\to\infty} \frac{N^2}{(n+N^2)} = 1$ Pour otra parte, la perie divergente $1+1+1+\cdots$ au t-q. $\lim_{n\to\infty} \left|\frac{\alpha_{N21}}{\alpha_N}\right| = \lim_{n\to\infty} \frac{1}{1} = 1$ (a) Suponga que $\lim_{n\to\infty} \left|\frac{\alpha_{N21}}{\alpha_N}\right| = T > 1$. Sea $T' \in \mathbb{R}^2$ T > T' > 1 y rea $N_0 \in \mathbb{R}^2$ y si $n > N_0$, entrucue $\left|\frac{\alpha_{N21}}{\alpha_N}\right| > T' = 1$ ($C = 1 > T' \mid C_{N-1} \mid > T' \mid C_{N-2} \mid > 1$) $\left|\frac{\alpha_{N21}}{\alpha_N}\right| > T' = 1$ ($C = 1 > T' \mid C_{N-1} \mid > T' \mid C_{N-2} \mid > 1$)

Teorema (condensación): Sea \mathbb{Z}_1 an \mathfrak{Z}_2 and \mathfrak{Z}_3 and \mathfrak{Z}_4 the \mathbb{Z}_4 (an) is deserrable. Cultivarient, \mathbb{Z}_1^n an \mathbb{Z}_1^n \mathbb{Z}_2^n \mathbb{Z}_2^n and

convergen o divergen de forme conjunta

convergen o divergen de \mathbb{Z}_1^n \mathbb{Z}_2^n \mathbb

 $= \sum_{n=1}^{\infty} 2^{n} \cdot \left(\frac{1}{(2^{n})^{2}}\right) = \sum_{n=1}^{\infty} \frac{2}{2^{2n}} = \sum_{n=1}^{\infty} \frac{2}{2^{n}} = \sum_{n=1}^{\infty} \frac{1}{(2^{n})^{2}} + 1 = 2 - 1$ $= \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n} + 1 = 1 = \sum_{n=0}^{\infty} \left(\frac{1}{1}\right)^{n} - 1 = \frac{1}{(1 - 1)^{2}} - 1 = 2 - 1$ $= \sum_{n=1}^{\infty} 2^{n} \cdot Q_{2^{n}} \quad \text{converge} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text{converge}.$ $= \sum_{n=1}^{\infty} \frac{1}{n \cdot [2^{n}(2^{n})]^{2}} = \sum_{n=1}^{\infty} \frac{1}{[n \cdot 2^{n}]^{2}} = \sum_{n=1}$

4) $\sum_{n=9}^{\infty} \frac{1}{n (\ln n) \sqrt{\ln (\ln n)}} = cons. due$ $\sum_{n=9}^{\infty} 2^n a_{2n} = \sum_{n=9}^{\infty} \frac{2^n}{2^n (\ln 2^n) \sqrt{\ln (\ln 2^n)}} = \frac{1}{\ln 2} \sum_{n=3}^{\infty} \frac{1}{n \sqrt{\ln (\ln 2^n)}} = \frac{1}{\ln 2} \sum_{n=3}^{\infty} \frac{1}{n \sqrt{\ln (\ln 2^n)}} = \frac{1}{\ln 2} \sum_{n=3}^{\infty} \frac{1}{n \sqrt{\ln (\ln 2^n)}} = \frac{1}{\ln 2} \sum_{n=3}^{\infty} \frac{1}{\sqrt{\ln (\ln 2^n)}} = \frac{1}{\ln 2} \sum_{n=3}^{\infty$

=> lim

\[\frac{2^{\times}}{\sqrt{2^{\times} \left| \left| \left| \left| \left| \left| \left| \left| \frac{2^{\times} \left| \left| \left| \frac{2^{\times} \left| \left| \left| \left| \frac{2^{\times} \left| \left| \left| \left| \left| \frac{2^{\times} \left| \left| \left| \left| \left| \left| \left| \left| \left| \frac{2^{\times} \left| \lef

(2) Sea $\sum_{n=1}^{\infty} a_n y$ consider $\int f(x) dx$ Sea $x = 2^t \Rightarrow dx = 2^t \ln 2 dt$ $\Rightarrow \int f(x) dx = (\ln 2) \int 2^t f(2^t) dt$ Si $x = 1 \Rightarrow 1 = 2^t \Rightarrow t = 0$ =) $\sum_{n=1}^{\infty} a_n$ converge sei

Si $x = \infty \Rightarrow t = \infty$ = $\sum_{n=1}^{\infty} 2^n f(2^n)$ considere ha pair $\sum_{n=1}^{\infty} a_n$, y rean

Considere ha pair $\sum_{n=1}^{\infty} a_n$, y rean

Lim $\left|\frac{\alpha_{2n}}{\alpha_n}\right| = L_1$ M Lim $\left|\frac{\alpha_{2n+1}}{\alpha_n}\right| = L_2$.

So:

i) $L_1 < \frac{1}{2}$ y $L_2 < \frac{1}{2}$ $\Rightarrow \sum_{n=1}^{\infty} (a_n \text{ converge.})$ ii) $L_1 > \frac{1}{2}$ y $L_2 > \frac{1}{2}$ $\Rightarrow \sum_{n=1}^{\infty} (a_n \text{ diverge.})$ iii) $L_1 = \frac{1}{2}$ b $L_2 = \frac{1}{2}$, b iii $L_1 > \frac{1}{2}$ y $L_2 < \frac{1}{2}$)

8 resceversa, al exiterio no en concluyante.

Et: Sea $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$. Utilizando el 2do enterio de la razón:

1) Liun $\frac{\alpha_{2n}}{\alpha_n} = \lim_{n \to \infty} \frac{2n}{n^2+1}$

=
$$\lim_{n\to\infty} \frac{2n(n^3+n)}{n(6n^3+n)} = \frac{1}{4} = L_1$$

..) $\lim_{n\to\infty} \left| \frac{a_{2m1}}{a_n} \right| = \lim_{n\to\infty} \frac{\frac{2n+1}{(2n+n)^3+1}}{\frac{n}{n^3+1}} = \lim_{n\to\infty} \frac{(2n+n)(n^3+n)}{n[(2n+n)^3+1]}$

(one $L_1 < \frac{1}{2}$ y $L_2 < \frac{1}{2}$ \Rightarrow L_n perie converge.

E: $\int_{n=1}^{\infty} \frac{ln(n)}{n^2}$
 $\lim_{n\to\infty} \frac{a_{2n}}{a_n} = \lim_{n\to\infty} \frac{ln(2n)}{ln(n)} = \frac{-1}{4}\lim_{n\to\infty} \frac{ln(2n)}{ln(n)} = \frac{1}{4}\lim_{n\to\infty} \frac{1}{2n} \frac{1}{2n}$

= $\lim_{n\to\infty} \frac{1}{2n} \frac{1}{2n} = \frac{1}{4}$

lim
$$\frac{\alpha_{2n+1}}{\alpha_n} = \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2 \ln(2n+1)}{(2n+1)^2} \ln n$$

lim $\frac{\ln(2n+1)}{\ln n} = \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$

$$= \lim_{n \to \infty} \frac{\ln(2n+1)}{\ln n} = \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{\ln(2n+1)}{\ln n} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{\alpha_2}{(2n+1)^2} \ln n$$

$$= \lim_{n \to \infty} \frac{1}{2n+1} =$$

Ej:
$$\sum_{n=2}^{\infty} \sqrt{\ln \ln(n)}$$
 $\sqrt{1 \ln \frac{\alpha_{2n}}{\alpha_{n}}} = \lim_{n \to \infty} \frac{\sqrt{2n} \ln(2n)}{\sqrt{2n} \ln(2n)} = \lim_{n \to \infty} \frac{\sqrt{n} \ln(2n)}{\sqrt{2n} \ln(2n)}$
 $= \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{\ln(n)}{\ln(2n)} = \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{2n} \ln(2n)}$
 $= \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{\ln(n)}{\ln(2n)} = \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{1}{\sqrt{2n} \ln(2n+1)}$
 $= \lim_{n \to \infty} \frac{1}{\sqrt{2n} \ln(2n+1)} = \lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} \lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} = \frac{1}{\sqrt{2n}} = \lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} = \lim_{n$

Teorema (criterio de Raabe): Sta $\sum_{n=1}^{\infty} a_n$, $a_{n>0}$, y anima que $L = \lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right)$.

i) $G: L>1 \Rightarrow la$ perie converge.

ii) $G: L<1 \Rightarrow la$ (rie diverge).

per $G: L=1 \Rightarrow la$ criterio $G: L=1 \Rightarrow la$ $G: L=1 \Rightarrow la$ G: L=

Et:
$$\sum_{n=1}^{\infty} \frac{n!}{2^n}$$
; for flaabe, he time.

Lim $n \left[\frac{n!/2^n}{(n+n)!/2^{n+1}} - 1 \right] = \lim_{n \to \infty} n \left[\frac{n! \cdot 2^{n+1}}{(n+n)! \cdot 2^n} - 1 \right] = \lim_{n \to \infty} n \left[\frac{2-n-1}{(n+n)! \cdot 2^n} - 1 \right] = \lim_{n \to \infty} n \left[\frac{2-n-1}{n+1} \right] = \lim_{n \to \infty} n \left[\frac{2-n-1}{n+1} \right] = \lim_{n \to \infty} n \left[\frac{2-n-1}{n+1} \right] = \lim_{n \to \infty} \frac{2n-n^2-1}{n+1} \rightarrow -\infty \quad \text{(a)} \quad \text{(b)} \quad \text{(a)} \quad \text{(b)} \quad \text$

Lim
$$n = \frac{(2n-1)!!}{(2n+2)!!} - 1 = \frac{(2n+2)!!}{(2n+2)!!}$$

= $\lim_{n\to\infty} n = \frac{(2n-2)!!}{(2n+2)!!} = 1$

= $\lim_{n\to\infty} n = \frac{(2n+2)!}{(2n+2)!!} = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2}$

= $\lim_{n\to\infty} n = \frac{(2n+2)!}{(2n+2)!!} = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2}$
 $\lim_{n\to\infty} n = \frac{1}{2}$

I have $\lim_{n\to\infty} n = \frac{1}{2}$