CISC452/CMPE452/COGS 400 Perceptron Convergence Theorem

Farhana Zulkernine

- The theorem states that for any data set which is linearly separable, the perceptron learning rule is guaranteed to find a solution in a finite number of iterations.
- Idea behind the proof: Find upper & lower bounds on the length of the weight vector to show finite number of iterations.

Let's assume that the input variables come from two linearly separable classes $C_1 \& C_2$.

Let $T_1 \& T_2$ be subsets of training vectors which belong to the classes $C_1 \& C_2$ respectively. Then $T1 \cup T2$ is the complete training set.

As we have seen, the learning algorithms purpose is to find a weight vector w such that

$$w \cdot x > 0 \quad \forall x \in C_1$$
 (x is an input vector) $w \cdot x \leq 0 \quad \forall x \in C_2$

If the *k*th member of the training set, *x*(*k*), is correctly classified by the weight vector *w*(*k*) computed at the *k*th iteration of the algorithm, then we do not adjust the weight vector.

However, if it is incorrectly classified, we use the modifier $w(k+1)=w(k)+\eta d(k)x(k)$

So we get

$$w(k+1) = w(k) - \eta x(k) \quad \text{if} \quad w(k) \cdot x(k) > 0, \ x(k) \in C_2$$
$$w(k+1) = w(k) + \eta x(k) \quad \text{if} \quad w(k) \cdot x(k) \le 0, \ x(k) \in C_1$$

We can set $\eta = 1$, as for $\eta \neq 1$ (>0) just scales the vectors.

We can also set the initial condition w(0) = 0, as any non-zero value will still converge, just decrease or increase the number of iterations.

Suppose that $w(k) \cdot x(k) < 0$ for k = 1, 2, ... where $x(k) \in T_1$, so with an incorrect classification we get

$$w(k+1) = w(k) + x(k)$$
 $x(k) \in C_1$

By expanding iteratively, we get

$$w(k+1) = x(k) + w(k)$$

$$= x(k) + x(k-1) + w(k-1)$$

$$\vdots$$

$$= x(k) + \dots + x(1) + w(0)$$

As we assume linear separability, \exists a solution w^* where $w \cdot x(k) > 0$, $x(1)...x(k) \in T_1$. Multiply both sides by the solution w^* to get

$$w^* \cdot w(k+1) = w^* \cdot x(1) + ... + w^* \cdot x(k)$$

These are all > 0,
hence all >= α ,
where
$$\alpha = \min \ w^* \cdot x(k)$$

Thus we get

$$w^* \cdot w(k+1) \ge k\alpha$$

Now we make use of the Cauchy-Schwarz inequality which states that for any two vectors A, B

$$||A||^2 ||B||^2 = (A \cdot B)^2$$

Applying this we get

$$||w^*||^2 ||w(k+1)||^2 \ge (w^* \cdot w(k+1))^2$$

From the previous slide we know

$$w^* \cdot w(k+1) \ge k\alpha$$

Thus, it follow that

$$||w(k+1)||^2 \ge \frac{k^2 \alpha^2}{||w^*||^2}$$

We continue the proof by going down another route.

$$w(j+1) = w(j)+x(j)$$
 for $j=1,...,k$ with $x(j) \in T_1$

We square the Euclidean norm on both sides

$$||w(j+1)||^2 = ||w(j)+x(j)||^2$$

= $||w(j)||^2 + ||x(j)||^2 + 2w(j) \cdot x(j)$

Thus we get

$$||w(j+1)||^2 - ||w(j)||^2 \le ||x(j)||^2$$

incorrectly classified, so < 0

Summing both sides for all j

$$||w(j+1)||^2 - ||w(j)||^2 \le ||x(j)||^2$$

$$||w(j)||^2 - ||w(j-1)||^2 \le ||x(j-1)||^2$$

$$\vdots$$

$$||w(1)||^2 - ||w(0)||^2 \le ||x(1)||^2$$

We get

$$||w(k+1)||^2 \le \sum_{j=1}^k ||x(j)||^2$$

 $\le k\beta \qquad \beta = \max ||x(j)||^2$

But now we have a conflict between the equations, for sufficiently large values of *k*

$$||w(k+1)||^2 \le k\beta$$
 $||w(k+1)||^2 \ge \frac{k^2\alpha^2}{||w^*||^2}$

So, we can state that k cannot be larger than some value k_{max} for which the two equations are both satisfied.

$$k_{max}\beta = \frac{k_{max}^2\alpha^2}{\|w^*\|^2} \quad \Rightarrow \quad k_{max} = \frac{\beta\|w^*\|^2}{\alpha^2}$$

Thus it is proved that for $\eta_k = 1$, $\forall k$, w(0) = 0, given that a solution vector w^* exists, the perceptron learning rule will terminate after at most k_{max} iterations.