Mathématiques pour l'informatique. L1 Informatique I23.

TD 4. Relations, applications ¹

EXERCICE 1. Considérons les trois ensembles

$$C:=\{R,V,B\}, \quad V:=\{0,1,2,3,4,5,6,7\}, \quad G:=\{(R,2),(V,5),(B,7)\}.$$

- 1. Comment qualifie-t-on les éléments de G?
- **2.** De quel ensemble G est-il un sous-ensemble?
- **3.** Dessinez le diagramme sagittal de la correspondance c := (C, G, V).
- **4.** Est-ce une fonction, une application?

EXERCICE 2. On considère la correspondance c dont le diagramme sagittal est représenté en figure (1).

- 1. Écrivez l'ensemble de départ, d'arrivée et le graphe de c en extension.
- **2.** S'agit-il d'une fonction? D'une application?
- 3. Dessinez le diagramme sagittal de la correspondance réciproque.

Figure 1. Diagramme sagittal de la correspondance c

EXERCICE 3. Écrivez la définition de la correspondance réciproque d'une correspondance c = (X, G, Y).

EXERCICE 4. † Soit X un ensemble non-vide et $f: X \times X \to \mathscr{P}(X)$ l'application définie par $f(x,y) := \{x,y\}$ (Il s'agit d'un abus de notation, en toute rigueur on devrait écrire f((x,y))).

- 1. Dessinez le diagramme sagittal de cette application dans le cas particulier où $X := \{x, y, z\}$.
- 2. Dans le cas général, cette application est-elle injective? Surjective? Justifiez votre réponse.

EXERCICE 5. Soit X un ensemble, $(A, B) \in (\mathscr{P}(X))^2$ avec $A \neq \emptyset$ et $A \neq X$. Soit f et q deux applications de $\mathscr{P}(X)$ dans $\mathscr{P}(X)$ définies par

$$f(B) := A \cup B, \qquad g(B) = A \cap B.$$

Ces applications sont-elles injectives, surjectives, bijectives?

EXERCICE 6. Soit X l'ensemble des étudiants de I23 et $\mathscr{A} := \{a, b, \dots, z\}$ l'alphabet latin. L'application $f: X \to \mathscr{A}$ qui a tout étudiant associe la première lettre de son nom de famille est-elle injective?

EXERCICE 7. Les fonctions trigonométriques sinus, cosinus et tangente de $\mathbb{R}^{\mathbb{R}}$ sont-elles des applications? Si oui sont-elles injectives, surjectives, bijectives? Quelles modifications sur les ensembles de départ et/ou d'arrivée pour qu'elles vérifient ces propriétés?

EXERCICE 8. Soit X, Y et Z trois ensembles et $f: X \to Y$ et $g: Y \to Z$ deux applications.

- 1. Démontrez que $g\circ f$ peut-être injective (resp. surjective) sans que g le soit. Montrez que $g\circ f$ ne peut-être injective si f ne l'est pas.
- 2. Démontrez que $g\circ f$ peut-être surjective sans que f le soit. Montrez que $g\circ f$ ne peut-être surjective si g ne l'est pas.

EXERCICE 9. † Soit \mathscr{C} le cercle de rayon R et de centre C du plan $\mathbb{R} \times \mathbb{R}$.

- 1. Définissez formellement la correspondance c de graphe $\mathscr{C}.$
- **2.** Dans un repère orthonormé, tracez les graphes G_c et $G_{c \circ c}$ des correspondances c et $c \circ c$ pour le centre C := (0,0) et le rayon R := 1.

L

^{1.} version du 8 mars 2023, 13 : 26

EXERCICE 10. [‡] Soit A et B deux parties non-vides d'un ensemble E non-vide. On définit $f: \mathscr{P}(E) \to \mathscr{P}(A) \times \mathscr{P}(B)$ par $f(X) := (X \cap A, X \cap B)$.

- 1. Démontrez que f est injective si et seulement si $A \cup B = E$.
- **2.** Démontrez que f est surjective si et seulement si $A \cap B = \emptyset$.

EXERCICE 11. Exprimez formellement qu'une correspondance n'est pas fonctionnelle en écrivant la négation de :

$$\forall x \in X \ \forall (y, z) \in Y \times Y \ \left((x, y) \in G \land (x, z) \in G \right) \Rightarrow y = z. \tag{1}$$

Réécrivez la définition d'une fonction en remplaçant cette proposition par sa contraposée.

EXERCICE 12. Soit f et g les deux applications définies par les diagrammes sagittaux de la figure 2.

FIGURE 2. Diagrammes sagittaux des applications f et g.

- 1. Écrivez les graphes G_f et G_g des deux applications f et g respectivement en extension.
- 2. Ces applications sont-elles injectives, surjectives, bijectives?
- **3.** Dessinez le diagramme sagittal de la composition $g \circ f$ de ces deux applications et écrivez son graphe $G_{g \circ f}$ en extension.
- **4.** L'application $g \circ f$ est-elle injective, surjective, bijective?
- **5.** La correspondance réciproque de $g \circ f$ est-elle une fonction? Une application?

EXERCICE 13. † Soit $\mathscr{B} := \{0, 1\}$ muni de l'addition et de la multiplication définies sur \mathbb{Z} . Soit X un ensemble quelconque et A et B deux parties de X. On définit la fonction indicatrice de A notée $1_A : X \to \mathscr{B}$ par

$$1_A(x) := \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{sinon.} \end{cases}$$

- **1.** Que peut-on dire des ensembles A et B si $1_A = 1_B$?
- **2.** Exprimez la fonction indicatrice du complémentaire de A dans X, de $A \cap B$ et de $A \times B$ à l'aide des fonctions indicatrices de A et B.
- **3.** Si les ensembles A et B sont disjoints, exprimez la fonction indicatrice de $A \cup B$.
- **4.** Si A et B sont quelconques, créez une partition de $A \cup B$ qui contient A et un autre ensemble à déterminer. En déduire une expression de la fonction indicatrice de $A \cup B$ à l'aide des fonctions indicatrices de A et B.
- **5.** Soit $f: X \to Y$ et C une partie de Y. De quel ensemble la fonction $1_C \circ f$ est-elle la fonction indicatrice?
- **6.** Soit $n \in \mathbb{N} \setminus \{0\}$ et $(X_i)_{i \in [1,n]}$ une partition de X. Montrez que

$$\sum_{i=1}^{n} 1_{X_i} = 1_X.$$

EXERCICE 14. Écrivez le domaine de définition \mathcal{D}_f d'une fonction $f: X \to Y$ de graphe G_f en compréhension. Comment qualifie-t-on l'écriture

$$\mathcal{D}_f = \{glace, alcool, cinéma, smartphone, livre\}. \tag{2}$$

de l'ensemble \mathcal{D}_f ?

EXERCICE 15. La fonction f de \mathbb{R} dans \mathbb{R} définie par $x \mapsto x^2$ est-elle une application? Si oui, est-elle injective, surjective? Sa correspondance réciproque est-elle une fonction?

EXERCICE 16. † Soit $f: X \to Y$ et $g: Y \to Z$ deux bijections. Démontrez que

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Quelle est la nature de la preuve qui permet de généraliser ce résultat à la composition de n applications f_1, f_2, \ldots, f_n où pour tout $i \in \{1, 2, \ldots, n\}$,

 $f_i: X_i \to Y_i \text{ avec } Y_i = X_{i+1}:$

$$(f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1)^{-1} = f_1^{-1} \circ f_2^{-1} \circ \cdots \circ f_{n-1}^{-1} \circ f_n^{-1}.$$

EXERCICE 17. Montrez qu'une application $f: X \to Y$ est une bijection si et seulement s'il existe une application $g: Y \to X$ telle que

$$g \circ f = \operatorname{Id}_X \quad \text{et} \quad f \circ g = \operatorname{Id}_Y.$$
 (3)

Montrez dans ce cas que g est l'application réciproque f^{-1} de f.

EXERCICE 18. Écrivez la négation logique de chacune des propriétés remarquables du graphe d'une relation binaire sur un ensemble (réflexif, symétrique, transitif, etc.).

EXERCICE 19. On définit une relation binaire \mathscr{R} sur l'ensemble $\mathbb{N}^{\mathbb{N}}$ des applications de \mathbb{N} dans \mathbb{N} par $f \mathscr{R} g$ si et seulement les deux applications sont égales à partir d'un certain rang. Formalisez la définition de cette relation binaire. Démontrez qu'il s'agit d'une relation d'équivalence sur $\mathbb{N}^{\mathbb{N}}$.

EXERCICE 20. Démontrez que si \mathcal{R} est une relation d'équivalence sur un ensemble X et $x \in X$, alors

$$\forall y \in \overline{x} \quad \overline{y} = \overline{x}.\tag{4}$$

EXERCICE 21. Démontrez que si \mathscr{R} une relation d'équivalence définie sur un ensemble X alors l'ensemble quotient X/\mathscr{R} est une partition de l'ensemble X. Réciproquement démontrez que si $P\subseteq \mathscr{P}(X)$ est une partition de X alors il existe une unique relation d'équivalence \mathscr{R} sur X telle que $X/\mathscr{R}=P$ et qu'elle est définie par

$$x \mathcal{R} y \Leftrightarrow \exists A \in P \ (x \in A) \text{ et } (y \in A).$$
 (5)

EXERCICE 22. Démontrez que la relation binaire d'inclusion \subseteq définie sur l'ensemble $\mathscr{P}(X)$ des parties d'un ensemble X est une relation d'ordre. Est-ce un ordre total ou partiel?

EXERCICE 23. † On définit la relation de divisibilité | sur l'ensemble des entiers naturels $\mathbb N$ par

$$a \mid b \Leftrightarrow \exists c \in \mathbb{N} \ ac = b.$$

- 1. Démontrez qu'il s'agit d'une relation d'ordre partiel.
- 2. Vérifiez que 0 est le plus grand élément pour cette relation.
- 3. Existe-t-il un plus petit élément?

On restreint à présent cette relation à l'ensemble $\mathbb{N}\setminus\{0,1\}$.

- 4. Existe-t-il un plus petit élément? Un plus grand élément?
- 5. Quels sont alors les éléments minimaux, maximaux s'il en existe?
- 6. Tracez le diagramme de Hasse de la relation de divisibilité restreinte à l'ensemble [1,15].