Campaña de Marketing

Inés Murtagh

Objetivo

Entrenar un modelo predictivo que permita a la empresa maximizar el beneficio de la próxima campaña de marketing. Poder predecir quién responderá a una oferta de un producto.

Datos de iFood

consiste en información sobre los clientes de la empresa de delivery de comida, y las interacciones de cada uno de ellos con las campañas enviadas.

`AcceptedCmp1` - 1 si el cliente aceptó la oferta en la 1ª campaña, 0 en caso contrario

...

- `AcceptedCmp5` 1 si el cliente aceptó la oferta en la 5ª campaña, 0 en caso contrario
- `MntFishProducts` cantidad gastada en productos pesqueros en los últimos 2 años
- `MntMeatProducts` cantidad gastada en carne en los últimos 2 años
- `MntFruits` cantidad gastada en frutas en los últimos 2 años
- `MntSweetProducts` cantidad gastada en dulces en los últimos 2 años
- `MntWines` cantidad gastada en vino en los últimos 2 años
- `NumDealsPurchases` número de compras realizadas con descuento
- `NumCatalogPurchases` número de compras realizadas con el catálogo
- `NumStorePurchases` número de compras realizadas en el lugar
- `NumWebPurchases` número de compras realizadas con la página web
- `NumWebVisitsMonth` número de visitas al sitio web de la empresa en el último mes
- 'Complain' 1 if customer complained in the last 2 years
- `Recency` number of days since the last purchase

La variable `Response` es la variable target. Vale 1 si el cliente aceptó la oferta en la última campaña, 0 en caso contrario.

Cambios en el Dataset

01	Verificar el formato	 ID como factor, y no como número Dt_Customer como fecha
02	Creación de nuevas variables	 Edad (con la fecha de nacimiento) Hijos: Teens + Kids Purchases y Products Accepted
03	Eliminar variables	Z_CostContactZ_Revenue
04	Arreglar las columnas (rename, mutate)	 Marital Status (4 categorías) Response
05	Análisis de datos faltantes	• Income

Outliers (valores atípicos)

Outliers (valores atípicos)

Min. 1st Qu. Median Mean 3rd Qu. Max. 1730 35539 51742 52247 68290 666666 **Education:** Graduation

Marital_Status: Graduation

Income: 666666

Enrolment: 2013-06-02

Recency: 23

NumWebVisitsMonth: 6

Complain: 0

Response: No

Age: 45

Children: 1

Purchases: 11

Accepted: 0

RegularProducts: 50

GoldProducts: 12

Análisis de correlación

Las variables correlacionadas positivamente están en rojo y las variables negativamente correlacionadas están en azul.

1.0

0.5

0.0

-0.5

-1.0

Conocer al cliente

Cantidad por edad

Cómo están distribuidas las edades Entender cuántos años tienen mis clientes Entender que público es mi target Qué día se dio de alta el cliente Entender que meses se registran + personas

Fecha de registro

Análisis de la cantidad gastada en productos

Cantidad gastada por Ingreso

Cómo se relacionan las variables de Ingreso y Cantidad total gastada en productos

¿Existe una relación entre las dos?

¿Existe una relación entre la edad que tiene una persona, y la cantidad que gasta en productos?

Cantidad gastada por edad

Aceptación de las campañas

Cantidad de respuestas por nivel de Educación

Cuántas personas respondieron, por sí o por no, a una campaña lanzada por la empresa, dependiendo del nivel educativo en el que están Visualizar por cada tipo de estado civil de una persona, si acepta o no la campaña

Cantidad de respuestas por estado civil

Armado del modelo

predicción

Se elige el árbol de decisión ya que este expresa las variables y condiciones que va a utilizar para la clasificación, lo cual puede ser útil para entender la razón por la que se está aceptando o no la campaña.

set.seed(154); particion=createDataPartition(y=dfpred\$Response, **p=0.80**, list=F) entreno = dfpred[particion,] testeo = dfpred[-particion,]

Quedaron 1792 regitros en entreno, y 447 en testeo

En el árbol de decisión de tipo clasificación se utilizan todas las variables menos ID, Fecha, Educación y Edad

Reference

L		No	Yes
rediction	No	366	39
Pred	Yes	15	27

Accuracy: 0.8792 (87,9%)

El equipo de marketing necesita mejorar su estrategia utilizada para adquirir nuevos clientes, y una buena manera de empezar es a través de una base de datos como esta.

Analizar el conjunto de datos es clave para comprender los problemas y proponer soluciones basadas en datos.

- Medir la participación de los clientes en las campañas de marketing
- Evaluar el éxito de campañas anteriores
- Proponer soluciones basadas en datos

El desafío para los equipos de marketing es saber a quién están tratando de llegar, y esto se hace contando con la información sobre cada uno de los clientes.

Hay un gran valor en saber cómo apelar a los distintos usuarios que una organización tiene. Que cada una pueda recibir un mensaje diferente que se relaciona más con ellos, viniendo de la misma campaña de marketing.

Conclusiones