Multiple Linear Regression Analysis Report

1. Introduction

Multiple Linear Regression is a statistical method used to predict the value of a **dependent variable (target)** based on two or more **independent variables (predictors)**. This report explains the steps taken to build and evaluate the model, compares different regression techniques, and provides recommendations for best performance.

2. Methodology

2.1 Model Equation

The model follows the equation:

Y=b0+b1X1+b2X2+...+bnXn*Y*=b0+b1X1+b2X2+...+bnXn

- Y = Target variable (what we want to predict).
- $X_1, X_2, ..., X_n = \text{Predictor variables (features)}.$
- $\mathbf{b_0}$ = Intercept (starting value when all predictors are zero).
- $b_1, b_2, ..., b_n$ = Coefficients (how much each predictor affects the target).

2.2 Steps Taken

Step 1: Data Preprocessing

- Missing Values Check: Ensured no empty data points.
- Exploratory Data Analysis (EDA): Studied how features relate to each other.
- Categorical Encoding: Converted text categories into numbers (if needed).
- Train-Test Split: Divided data into:
 - o 70% Training set (to train the model).
 - o **30% Testing set** (to evaluate performance).

Step 2: Model Training

- Used LinearRegression() from sklearn.
- Checked **coefficients** to see which features matter most.

Step 3: Performance Evaluation

Measured using:

- \mathbb{R}^2 Score (0-1): How well the model explains the data (closer to 1 = better).
- Mean Absolute Error (MAE): Average prediction error.
- Mean Squared Error (MSE): Larger errors penalized more.

3. Model Comparison & Results **Model Type Key Settings** R² Score **Notes Standard Linear** Works well when intercept is fit intercept=True 0.9358 Regression included. fit intercept=False 0.7389 Much worse without intercept. normalize=True Normalization breaks the model. 19,155,898,675 Using multiple CPUs gives bad n jobs=-1 (parallel) 21,724,334,601 results. Ridge Regression (L2) alpha=1.0 $0.9357 \approx \text{Same}$ Helps prevent overfitting. solver='saga' $0.9353 \approx \text{Same}$ Slightly lower but stable. Good for feature selection. Lasso Regression (L1) max iter=1000 $0.9357 \approx \text{Same}$

 $0.9355 \approx \text{Same}$

 $0.9355 \approx \text{Same}$

Balanced regularization.

Scaling doesn't help much here.

Key Findings:

Feature Scaled

Regression

Elastic Net (L1 + L2)

- 1. **Standard Linear Regression** works best when fit intercept=True ($R^2 = 0.9358$).
- 2. Normalization & n jobs cause huge errors—avoid them.

11 ratio=0.5

with mean=True,

with std=True

- 3. Ridge, Lasso, and Elastic Net perform almost the same as standard regression.
- 4. Feature Scaling doesn't improve results in this case.

4. Recommendations

Best Model Choice:

Standard Linear Regression (with fit_intercept=True)

- Simple and performs best.
- Avoid normalize and n jobs—they ruin performance.

Alternative Models (If Needed):

Ridge or Lasso Regression

• Almost as good as standard regression.

• Helps prevent overfitting.

Elastic Net Regression

• Good if you want both L1 & L2 regularization.

General Tips:

- ✓ Always check if intercept is needed (fit intercept=True is usually better).
- ✓ Avoid normalization unless necessary (it caused extreme errors here).
- ✓ Feature scaling is good practice, but it didn't help much in this case.

5. Conclusion

The best model is **Standard Linear Regression** with fit_intercept=True. Other models (Ridge, Lasso, Elastic Net) are also good but don't improve results significantly. Avoid normalization and multi-CPU settings (n_jobs) as they cause errors. Feature scaling is safe but not necessary here.

For future work:

- Try more datasets to confirm findings.
- Test other advanced models if needed.

Final Decision: Use Standard Linear Regression for best performance.