

Contenido

- Contexto de la problemática
- 2 Métodos de control
- 3 Simulación de una red de fibra óptica
- Modelo de aprendizaje
- Evaluación y Resultados
- 6 Limitaciones del modelo
- 7 Actividad

1. Contexto de la problemática

2. Métodos de control

2. Métodos de control

centers).

3. Simulación de una red fibra óptica en OMNeT++

Archivo .csv con 100 líneas de datos simulados de deflexión de ruta para una OBS en OMNeT++ con las siguientes columnas:

- •source
- target
- •delay_ms
- packet loss
- •bandwidth_used_Mbps
- •prob_failure
- •cost
- •distance_km

4. Modelo de aprendizaje (aplicación del algoritmo)

Instalación de librerías

!pip install -q polars networkx matplotlib

import polars as pl import networks as nx import matplotlib.pyplot as plt import pandas as pd

from google.colab import files

Subir archivo desde dispositivo

print(" 11 Carga tu archivo CSV con columnas: source,target,delay_ms,packet_loss,cost,distance _km,prob_failure") uploaded = files.upload()

file_name = list(uploaded.keys())[0] df = pl.read_csv(file_name)

raise ValueError("X No se cargó ningún archivo")

Crear grafo dirigido con atributos

G = nx.DiGraph()

for row in df.to_dicts(): G.add_edge(row['source'], row['target'], delay=row['delay_ms'], packet_loss=row['packet_loss'], cost=row['cost'], distance=rowl'distance km'l. prob_failure=row['prob_failure'])

Algoritmo de Dijkstra

def dijkstra(graph, start, end, weight='weight'): path = nx.dijkstra_path(graph,

source=start, target=end, weight=weight) nx.dijkstra_path_length(graph, source=start, target=end, weight=weight)

return path, total_weight

Visualización del grafo con más rutas

def draw_graph_with_path(graph, path, metric): pos = nx.spring_layout(graph, seed=42) plt.figure(figsize=(12, 8))

Dibujar todos los nodos y todas las aristas nx.draw_networkx_nodes(graph, pos, node_color='lightblue', node_size=800) nx.draw_networkx_labels(graph, pos, font_size=10, font_weight='bold')

Dibujar todas las aristas en gris nx.draw_networkx_edges(graph, pos, edge_color='gray', width=1.5)

Resaltar aristas del camino óptimo if path:

edge_path = list(zip(path[:-1], path[1:])) nx.draw_networkx_edges(graph, pos, edgelist=edge_path, edge_color='red', width=3)

Etiquetas con valor de la métrica elegida edge_labels = nx.get_edge_attributes(graph, metric) nx.draw_networkx_edge_labels(graph, pos, edge_labels={(u, v): f"{d:.2f}" for (u, v), d in edge_labels.items()},

font_color='black', font_size=8)

plt.title(f"Ruta óptima resaltada usando la métrica: {metric}") plt.axis('off') plt.show()

Ejecutar para múltiples métricas

start_node = 'A' end_node = 'F' metrics = ['delay', 'packet_loss', 'cost', 'distance', 'prob_failure']

for metric in metrics:

path, total = dijkstra(G, start_node, end_node, weight=metric)

print(f"\n € Ruta óptima de '{start_node}' a '{end_node}' usando '{metric}':")

print(" → ".join(path)) print(f" Total {metric}: {total:.4f}")

draw_graph_with_path(G, path, metric) except nx.NetworkXNoPath:

print(f" No hay ruta de {start_node} a {end_node}

except Exception as e:

print(f" A Error con métrica '{metric}': {e}')

5. Evaluación y Resultados

Ruta óptima de 'A' a 'F' usando 'delay':

■ Total delay: 26.7700

Ruta óptima resaltada usando la métrica: delay

Ruta óptima de 'A' a 'F' usando 'packet_loss': Total packet_loss: 0.0160

Ruta óptima resaltada usando la métrica: packet_loss


```
\bigcirc Ruta óptima de 'A' a 'F' usando 'cost': A \rightarrow H \rightarrow F \bigcirc Total cost: 5.0000
```

Ruta óptima resaltada usando la métrica: cost

5. Evaluación y Resultados

Ruta óptima de 'A' a 'F' usando 'distance':

 $A \rightarrow D \rightarrow C \rightarrow F$

Total distance: 57.2000

Ruta óptima resaltada usando la métrica: distance

Ruta óptima de 'A' a 'F' usando 'prob_failure':

 $A \rightarrow H \rightarrow F$

Total prob_failure: 0.0413

Ruta óptima resaltada usando la métrica: prob_failure

7. Actividad

Análisis de datos de deflexión de ruta, con un enfoque en la optimización del uso de energía en el envío de paquetes.

Gracias!!! jortiza@udistrital.edu.co

Falta implementar el aprendizaje supervisado

Proyecto final: randomforest con criterio, entonces hacer el paso a paso (crear el algoritmo) para reemplazar criterio