Computer Vision HW7: Thinning

R10741015 鄭傑鴻

Oct. 28, 2022

Since some of the operations (i.e., thresholding, down-sampling and Yokoi) are identical to the code I designed in HW6, I'll use them directly.

Step 1: Thresholding, Down Sampling and Generate Yokoi Connectivity Number

• Description:

Call the functions implemented in HW6. Please kindly refer to the report of HW6 if you are interested.

Result:

Down sampled Yokoi Connectivity Images (Value 0 replaced by '_' to better visualize):

11111111	1211111111122322221 11111111111
	115555555511 2 11 11 115555555511
15555551	11555555511 2 11 11 1155555555511
15555551	1 2115555112 21112221 155555555551 21 1 2 155112 22221511 15555555555
15555551	1_2_155112_222215111555555555111
15555551	22 2112 22 121 1555555555511
15555551	1 2 21 2 1 1 155555555555
15555551	12_11211111321155555555555511
15111551	1322_1155551111155555555555551
111_1551	1322_1155551111
11 1551	21155555511 15511155555511
21 1551	2 15555555111 1551 11555511
1 1551	2 155555555511 1551 115551 1
1551_	11211555555555115511551112
	112113333333331 1331 13311 12
1551	1555555555555551115511111111
1551	1 2221155555555555511 1151 11 1151
1551	222_1_15555555555555511_151111111551
1551 1551	2 22 1 15555555555555511 151 11111 1551 2 1 115555555555
1551	2 115555555555555555111511155511 115551
1551	12155555555555555555555555555555555
1551	11 221555555555555555555555555112 1155551
1551	11122_155555555555555555555555551_11555551
1551	1511 1 125112111112111555555555111 11555551
1551	15521 1 121 1 11 1 1555555111 155555551
1551	
1551	1151_132_21155555111115555551
1551	151 322 115555111 121 155555551
1551	1221 2 1555551 131 1155555551
1551	2 1 1155555511 1 1155555551
1551	2 1155555551 1_1555555551
1551	2 11555555551 21155555551
1551	1 115555555551 15555555551
1551	1 11511115555521 1 11555555555
	1 1 11111 1155511 2 155555555551
1551	
1551	13111115111215555555551
1551	121 1121 1 111 1 2 115555555555
1551	11 11 1 221 11 1 2 155555555555
1551	1212112111_11112155555555
1551	1 12 22 151111111551 2 11555555555555
1551	_121555551115511115555555555
1551	2 22 12555551 15551 1 155555555555555
1551	_111_555511_115112_115555555555
1551	21 155551 1 151 2 15555555555555
1551 1551	2115555111512_1555555555
1551	21 155551 1 151 2 155555555555555555555
1551	1 1 1 1155555511111 2 15555555555555
1551	2 22 111511111212 21155555555555555
1551	1_121512_11555555111555551
1551	1_12
	11111111 155555551 15555551
1551	1111111115555551_1555551
1551 1551	115551 155555551 1555511 15551 21111111 155511
1551	15551 21111111 155511
11521	112122155511211_115511
1 151	1 1 155555111 2111 15511
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
221511_	1 15555555111 155111 1511
221511	115555555511555511151
2 151	1 11155555555511 155511 1511
2 1521	1 15555555555511 15551 12151
2151	
21511_	15555555555551_115551_1511
21 1511	11 1555555555555 1 111111151
11 151	1155555555555511 111511
	155555555555555555555555555555555555555
11 151	115555555555555555555555555555555555555
	iiooooooooooiiZii
11_151	115555555555555111
11 151	155555555555555
11-111-	121111111111111

Step 2: Implement the Pair Relationship Operator

Description

Starting from the Yokoi result in step 1, find the edge pixels (those with Yokoi connectivity number quals 1), check its 4-connected neighbors to decide whether they have edge neighbors. If yes, label it as 'p': interesting. For the other scenarios, assign 'q': not interesting.

Algorithm

Scan through all the pixels:

If the pixel is an edge:

If it has edge neighbors (function h, f): assign 'p'

Else: assign 'q'

If not an edge:

Assign 'q'

Code

```
def pairRelationship(self, array):
    # Input: Yokoi (shape 64,64, integer)
    # Output: Pair Relationship result (shape 64,64, integer)
    def funH(a, m):
        if a == m:
            return 1
    else:
        return 0

def funF(al, a2, a3, a4):
    if (al + a2 + a3 + a4) < 1:
        return 'q'
    else:
        return 'p'

return 'p'

ret_array = np.zeros((64,64)).astype(str)
for i in range(64):
    if array[i][j] == 1:
        x0 = array[i][j]
        x1 = 0 if not self.inRange(i + 0, j + 1) else array[i + 0][j + 1]
        x2 = 0 if not self.inRange(i + 0, j - 1) else array[i + 0][j - 1]
        x3 = 0 if not self.inRange(i + 0, j - 1) else array[i + 0][j - 1]
        x4 = 0 if not self.inRange(i + 1, j + 0) else array[i + 0][j - 1]
        x4 = 0 if not self.inRange(i + 1, j + 0) else array[i + 1][j + 0]

        al = funH(x0, x1)
        a2 = funH(x0, x2)
        a3 = funH(x0, x3)
        a4 = funH(x0, x4)

        ret_array[i][j] = funF(a1, a2, a3, a4)
    elif array[i][j] = 0:
        ret_array[i][j] = '0'
    else:
    ret_array[i][j] = '0'
    ret_array[i][j] = 'q'
    return ret_array
</pre>
```

Result

Take the result from the first iteration as an example:

pp	pggp		_qppqqqqqq	ann	naannr	qqqqqqp	n
qp_	_pqqp		_q_pqqqqqq			pqqqqpp	
q	_pqqp		_q_pqqqqqq		_pqqp	_ppqqqp_	q
	_pqqp		pappadadda		_pqqp	_pqqpp_	pq
	_pqqp	р	qqqqqqqqq	_qqqqpp	_pqqp	_pppp	ppp
	_pqqp	qqo	appagagaga	qqqqqqpp.	_ppqp	pp	ppqp
	pqqp	qqq	q_pqqqqqq	qqqqqqp	p_pqp_	ppppp	pqqp
	_pqqp	q q'	_ppqqqqqq			pagap	ppqqp
	pqqp	q	ppggggggg				ppqqqp
	pqqp_	pa p	padadadad	annanana	adadada	ladab	pqqqqp
	_pqqp		pagagagaga				ppqqqqp
	_pqqp		padadadada				pqqqqqp
	_pqqp		ddbbdbbbbl				_ppqqqqqp
	_pqqp		qqp_q_pp_		ddddbbb		_pqqqqqqp
	_pqqp	ppqpqqq		ppqqq			ppdddddp
	_pqqp		qq	_ppqqqq			pqqqqqqp
	_pqqp	pqqqc		pqqqqq		p	pqqqqqqp
	_pqqp	qo		_ppqqqqq	ppq	p	pqqqqqqp
	_pqqp	q '	1	ppqqqqqq		q [']	pqqqqqqp
	pqqp	q		pagagaga			padadadab
	padb	a		adadadad			aaaaaaaaa
	_pqqp	p		opppqqqq			adadadada
	_pqqp	q_p	ppqi				qqqqqqqqp
	_pqqp	qqq	ppp	pqpp			qqqqqqqp
	_pqqp	pqq	ppqp	_qppp_	_pq_		qqqqqqqp
	_pqqp	pp	ppp_q_	_qqp_pp_	_pq_		qpppppppp
	_pqqp	qqq	qp_pqp	pp_ppp			qqqqqqqp
	_pqqp	qiqqi	qqpqpr	ppppppqq		ppqqq	qpppppppp
	_pqqp	_q	q`_pqqq	ppqqpppqq	ppq	pqqqq	dddddddd
	_pqqp	_q	_qqqqqq	qqp_pqq	qpc	pagaa	qqqqqqqp
	pqqp	q		ddbb_bbd			qqqqqqqp
	_pqqp			dap_a_pa			aaaaaaaaa
	_pqqp		page	ddbbd_bd			aaaaaaaaab
	_pqqp	q q q		qqqqpppp			qqqqqqqqp
							qqqqqqqqp
	_pqqp	qqq		opppppppp			
	_pqqp	q_qq	pqr				pppqqqqqp
	_pqqp		pp				p_pqqqqqp
	pqqp			opppppp			p_pqqqqqp
	_pqqp			opqqqp			p_pqqqpp
	_pqqp			_pqqqp		Ibbbbbbb	p_pqqqpp_
	ppqqq	pqq	qqc	_qpqqpp	c	pp	_ppqqpp
q	pqp	pq		qqppppp	pc	ppp	_pqqpp
qq_	pqpp_	p		ppppppp		qqppp	papp
ga	_pqpp_	p		pagaaaaa			ppqp
- a	pap			pagaaaa			papp
q	pddd	p		qqqqqqq		qqqp_qq	
a	pqp	gqq		qqqqqqq			
a	pqpp	999_		qqqqqqq			
		pp_				pppppppppppppppppppppppppppppppppppppp	
	p_pqpp_	PP_		qqqqqqqq			
	p_pqp			pppppppp		pppq	
	p_pqp			qqqqqqq		pq	
	p_pqp			ppppppppp		qp	p
	p_pqp			ppppppppp			
pi	p_pqp		pqq	pppppppp	qqqqqq)	
p	p_ppp		qqpp	oppppppp	pppppppp)	

Step 3: Implement the Connected Shrink Operator

Description:

By using the original binary image and the result from Pair Relationship operator, for those pixels who are marked as interesting ('p') by the pair relationship operator, check its neighbors in the original binary image to decide whether it can be eliminated without disconnecting the region.

Since Connected Shrink is a recursive operator, we must update the result in real time.

Algorithm:

Scan through all the pixels:

If the pixel is marked as interesting ('p'):

If it can be eliminated (by using function f and h):

Update the pixel to background

Else: Remain unchanged

Else: Remain unchanged

Code:

```
def connectedShrink(self, pr_array, binds_array):
    # Input: Pair Relationship(shape (64,64), str): '0':background, 'p': interesting, 'q':not interestin
    # Binary Down-sample array(shape (64,64), int): 0:background, 1:foreground
    # Output: Connected Shrink result(shape (64,64), int): 0:background, 1:foreground
    def funH(b,c,d,e):
        if b == c and (d!=b or e!=b): return 1
        else: return 0
    def funF(a1,a2,a3,a4):
```

```
if (al+a2+a3+a4) == 1: # make it background
    self.cnt += 1
    return 0
else:
    return 1

ret_array = np.copy(binds_array)
for i in range(64):
    if pr _array[i][j] == 'p':
        x0 = ret_array[i][j]
        x1 = 0 if not self.inRange(i + 0, j + 1) else ret_array[i + 0][j + 1]
        x2 = 0 if not self.inRange(i + 0, j - 1) else ret_array[i + 0][j + 1]
        x3 = 0 if not self.inRange(i + 0, j - 1) else ret_array[i + 0][j - 1]
        x4 = 0 if not self.inRange(i + 1, j + 0) else ret_array[i + 1][j + 0]
        x5 = 0 if not self.inRange(i + 1, j + 0) else ret_array[i + 1][j + 1]
        x6 = 0 if not self.inRange(i - 1, j + 1) else ret_array[i + 1][j + 1]
        x7 = 0 if not self.inRange(i - 1, j - 1) else ret_array[i - 1][j - 1]
        x8 = 0 if not self.inRange(i + 1, j - 1) else ret_array[i + 1][j - 1]

# Upper right: [0,0], [0, 1], [-1, 1], [-1, 0]

al = funH(x0, x1, x6, x2)
    # Upper left: [0,0], [-1, 0], [-1, -1], [0, -1]
    a2 = funH(x0, x2, x7, x3)

# Bottom left: [0,0], [0, -1], [1, -1], [1, 0]

a3 = funH(x0, x3, x8, x4)

# Bottom right: [0,0], [1, 0], [1, 1], [0, 1]

ret_array[i][j] = funF(al, a2, a3, a4)

return ret_array
```

Result:

Take the result from the first iteration as an example:

Step 4: Repeat the above procedure until no change

• Description:

Repeat the Yokoi->Pair Relationship->Connected Shrink procedure, until it can't be further skeletonized (7 times later).

Algorithm:

Set up a variable 'cnt' to keep track of whether there are changes While cnt != 0:

Repeat the Yokoi->Pair Relationship->Connected Shrink procedure Show the final result

Code:

```
def thinning(self):
    ans = np.copy(self.binds)
    while(self.cnt != 0):
        print('Iteration {}'.format(self.iter))
        # Initialize
        self.cnt = 0

    # Execute
        yk = self.yokoi(ans)
        self.printImg(yk)
        pr = self.pairRelationship(yk)
        self.printImg(pr)
        sh = self.connectedShrink(pr, ans)
        self.printImg(sh)

# Update
        ans = sh
        self.iter += 1
        self.showImg(ans, save=True)
```

Result:

After looping for 7 times:

(The result with shape (64, 64) in .bmp)

1111 _111 _1 _1	11_1111_11 1_1_1_1 111	11_1 11 1111	1111 11111 _11	1
_11 _11 _111 _11	1 <u>111111</u> 1 11 1 1	11	1 1111 1 1 1 1 1 1	1
1 1 1		1 11		1 11 1 1
1 1 1	1 1 1111111111111111111111111111111111	_11111	1 11 1	1 1 1
1 1 1	11111_11 11111 	1 11 1 11 1 11 1 1	11_11 _11	11_
1 1 1	1 1 1	1i 111 111111	1'1 1 11111	
===1 ===1 ===1	11 11 1 1 11	1 1 1	11 1 1	1 1 1111 1 1
1 1 1	1 1 11 11 11 11 11 11 11 11 11 11 11 11			1 1 1 111 1 11
1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 11 1 11 1 1 1 1	1 <u></u> 1
	1	11 111 1111111 1111	11_1 1111 1111 111	1 111 1 1
1 11 _11 _1	1_111 1 111 111	1111 111 111	1 11 1 1 111 1 11	
	1 111 1 1 1 1 11 1 1	1 11 1 1	1 11 111 1 1 1 1	1
1 1 1	1 11 11 11	11111_ 1111 1111 111	1 11 11 11 111 1	