Лекція 28. Класифікація випадкових процесів

За аналогією з теорією випадкових величин у теорія ймовірності, якщо система S в момент t описується однією випадковою величиною $\xi(t)$, то процес називають *скалярним випадковим процесом* $\xi(t)$. Якщо ж стан системи S у момент t описується декількома ВВ $\xi_1(t), \xi_2(t), ..., \xi_k(t)$, то відповідний процес *називають векторним ВП* $\xi(t)$, або *системою ВП* із k складовими, або k - вимірним ВП.

В залежності від характеру зміни аргументу і будови фазового простору усі випадкові процеси ділять на чотири класи (групи):

- 1. Дискретний процес (дискретне стан) з дискретним часом.
- 2. Дискретний процес з неперервним часом.
- 3. Неперервний процес (неперервний стан) з дискретним часом.
- 4. Неперервний процес з неперервним часом.

Елементарною класифікацією випадкових процесів ϵ класифікація за ознаками часу та стану.

Випадковий процес $\xi(t)$ називається *процесом з дискретним часом*, якщо система, у якій він відбувається, може змінювати свої стани тільки у визначені, наперед відомі моменти часу $t_1, t_2, ..., t_n$ які називають *кроками* (або *етапами*) цього процесу. Область визначення (існування) ВП – множина T – може бути скінченною або зліченною.

ВП $\xi(t)$ із дискретним часом називають також випадковою послідовністю: $\xi_1(t), \xi_2(t), ..., \xi_k(t)$, або випадковим ланцюгом. Часто в позначенні такого ВП моменти часу замінюють їх індексами: $\xi(1), \xi(2), ..., \xi(k)$.

Перетини випадкового процесу з дискретним часом утворюють послідовність випадкових величин, тому випадкові процеси з дискретним часом називають також випадковою послідовністю або часовими рядами.

Випадковий процес $\xi(t)$ називається *процесом з неперервним часом*, якщо переходи системи із стану в стан можуть відбуватись у довільний момент часу обраного періоду. Для процесу з неперервним часом множина T — множина моментів часу, коли система змінює свої стани, є незліченою, тобто T — деякий проміжок дійсної осі.

Випадковий процес $\xi(t)$, який задано в деякій системі S, називається **процесом з дискретними станами**, якщо у довільний момент часу $t \in T$ множина станів є скінченою або зліченою множиною, іншими словами, якщо його переріз у будь-який момент t описується однією дискретною $BB - \xi(t)$ в одновимірному випадку та k- вимірною $BB - \xi_1(t), \xi_2(t), \dots, \xi_k(t)$ — в багатовимірному випадку.

Випадковий процес $\xi(t)$ називається *процесом з неперервними станами*, якщо множина можливих станів системи S незліченна; іншими словами, якщо переріз процесу в будь -який момент часу t описується неперервною (або мішаною) випадковою величиною — в одновимірному випадку та векторною BB — у багатовимірному випадку (неперервною або мішаною).

Коли спостерігаються випадкові процеси, перебіг яких у часі приблизно однаковий, тобто середнє значення процесу залишається сталим, а його характеристики не змінюються. Такі випадкові процеси називаються *стаціонарними*.

Стаціонарні процеси є частковим випадком більш широкого класу – нестаціонарних процесів. У *нестаціонарних випадкових процесах* характеристики змінюються в часі.

Оскільки математичний опис СВП та їхнє перетворення значно спрощуються, порівняно з нестаціонарними процесами, широкого застосування на практиці набула теорія СВП (теорія стаціонарних ВФ).

Стаціонарні ВП (однорідні у часі) — ВП, статистичні (усереднені) характеристики яких не змінюються з часом, тобто незмінні (інваріантні)

відносно часових "зсувів": $(t \to t + \tau) \Rightarrow (\xi(t) \to \xi(t + \tau))$. Інакше кажучи, якщо розглядати дві довільні пари перерізів: $(\xi(t_1), \xi(t_2))$ і $(\xi(t_1 + \tau), \xi(t_2 + \tau))$, то їх розподіли будуть однакові.

Випадкова функція $\xi(t)$ називається стаціонарною, якщо вона має:

1)
$$m_{\xi}(t) = const$$
;

2)
$$D_{\varepsilon}(t) = K_{\varepsilon}(0) = const$$
;

3)
$$K_{\xi\eta}(t_1,t_2) = K_{\xi\eta}(t_2-t_1) = K_{\xi\eta}(\tau)$$
, де $\tau = t_2 - t_1$.

Виразним прикладом стаціонарного $\xi(t)$ є гармонічне коливання з випадковими параметрами: $\xi(t) = A(t) \cdot \cos(\omega t + \varphi)$, де φ – випадкова початкова фаза, рівномірно розподілена на інтервалі $(-\pi;\pi)$; A(t) – випадкова амплітуда, яка не залежить від φ і є, у свою чергу, стаціонарним ВП.

Застосовують стаціонарні ВП при вивченні реальних явищ: пульсацій струму чи напруги в електричному колі (електричний "шум"), коливання виробничого процесу в економіці тощо.

Якщо математичне сподівання мінливе, тобто *процес не є стаціонарним*, то можна перейти до центрованого процес $\dot{\xi}(t) = \xi(t) - m_{\xi}(t)$ та розглядати його як стаціонарний.

Властивості кореляційної функції СВФ:

1.
$$K_{\xi}(\tau) = K_{\xi}(-\tau)$$
.

$$2. \left| K_{\xi}(\tau) \right| \leq K_{\xi}(0)$$

Для оцінювання ступеня залежності між розрізами СВФ можна також використовувати нормовану автокореляційну функцію СВП, яка є невипадковою функцією аргументу $\tau \colon r_{\xi}(\tau) = \frac{K_{\xi}(\tau)}{K_{\varepsilon}(0)} = \frac{K_{\xi}(\tau)}{D_{\varepsilon}(t)}$.

Оскільки $D_{\xi}(t) = K_{\xi}(t,t) = K_{\xi}(0) = const$, то $r_{x}(0) = 1$. Отже, абсолютна величина нормованої кореляційної функції не перевищує одиниці та має місце нерівність $|r_{\xi}(\tau)| \leq 1$.

Випадковий процес $\xi(t)$ називається *стаціонарним* у вузькому розумінні, статистичні характеристики якого незмінні в часі.

Випадковий процес називається *стаціонарним у широкому розумінні*, якщо його математичне сподівання не залежить від часу та є сталою величиною, а автокореляційна функція залежить лише від різниці аргументів $t_2 - t_1 = \tau$.

Нестаціонарні ВП

Серед нестаціонарних випадкових процесів, які часто використовуються в дослідженнях, зазначимо процеси з незалежними приростами (неоднорідні та однорідні).

Випадковий процес $\xi(t)$, $t \in T$, ϵ **процесом з незалежними приростами (ВПн.п.)**, якщо для довільних двох різних значень t, $t + \tau \in T$ перерізи $\xi(t)$ і $\left[\xi(t+\tau) - \xi(t)\right]$ ϵ незалежними випадковими величинами.

Процес з незалежними приростами $\xi(t)$, $t \in T$ називається однорідними процесами з незалежними приростами, якщо для довільних двох різних значень t, $t+\tau$ часового параметра $(t,t+\tau\in T)$ закон розподілу ймовірностей випадкової величини $\left[\xi(t+\tau)-\xi(t)\right]$ не залежить від конкретного значення параметра часу t, а залежить лише від довжини часового приросту τ .