Statistics One

Lecture 12
The General Linear Model (GLM)

Two segments

- The General Linear Model (GLM)
- · Dummy coding

2

Lecture 12 ~ Segment 1

The General Linear Model (GLM)

3

General Linear Model (GLM)

 GLM is the mathematical framework used in many common statistical analyses, including multiple regression and ANOVA

ANOVA is typically presented as distinct from multiple regression but it IS a multiple regression

Characteristics of GLM

- · Linear: pairs of variables are assumed to have linear relations
- · Additive: if one set of variables predict another variable, the effects are thought to be additive

Characteristics of GLM

• BUT! This does not preclude testing non-linear or non-additive effects

Characteristics of GLM

- · GLM can accommodate such tests, for example, by

 - Transformation of variables
 Transform so non-linear becomes linear

 - Moderation analysis
 Fake the GLM into testing non-additive effects

GLM example

- · Simple regression
 - $Y = B_0 + B_1 X_1 + e$

 - Y = faculty salaryX1 = years since PhD

GLM example

- · Multiple regression
 - $Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + \Theta$
 - Y = faculty salary
 - X1 = years since PhD
 - X2 = number of publications
 - X3 = (years x pubs)

.

GLM example

- One-way ANOVA
 - $Y = B_0 + B_1 X_1 + e$
 - Y = faculty salary
 - X1 = gender

10

GLM example

- Factorial ANOVA
 - $Y = B_0 + B_1X_1 + B_2X_2 + B_3X_3 + e$
 - Y = faculty salary
 - X1 = gender
 - X2 = race
 - X3 = interaction (gender x race)

Analysis of Variance (ANOVA)

- Appropriate when the predictors (IVs) are all categorical and the outcome (DV) is continuous
 - Most common application is to analyze data from randomized experiments

Analysis of Variance (ANOVA)

- More specifically, randomized experiments that generate more than 2 means
 - If only 2 means then use:
 - Independent t-test
 - Dependent t-test

General Linear Model (GLM)

 GLM is the mathematical framework used in many common statistical analyses, including multiple regression and ANOVA

 ANOVA is typically presented as distinct from multiple regression but it IS a multiple regression

14

Characteristics of GLM

- Linear: pairs of variables are assumed to have linear relations
- Additive: if one set of variables predict another variable, the effects are thought to be additive

END SEGMENT

16

Lecture 12 ~ Segment 2

Dummy coding

Dummy coding

A system to code categorical predictors in a regression analysis

Dummy coding

- Example
 - IV: Area of research in a Psychology department
 - Cognitive
 Clinical

 - Developmental
 - DV: Number of publications

Dataframe

ProfID	Group	Pubs
NU	Cognitive	83
ZH	Clinical	74
MK	Developmental	80
RH	Social	68

Dummy coding					
	D1	D2	D3		
Cognitive	0	0	0		
Clinical	1	0	0		
Developmental	0	1	0		
Social	0	0	1		

ataframe					
ProfID	Group	Pubs	D1	D2	D3
NU	Cognitive	83	0	0	0
ZH	Clinical	74	1	0	0
MK	Developmental	80	0	1	0
RH	Social	68	0	0	1

Summary statistics						
Group	М	SD	N			
Cognitive	93.31	29.48	1:			
Clinical	60.67	11.12				
Developmental	103.50	23.64				
Social	70.13	21.82				
Total	81.69	27.88	3			

Coefficients						
	В	SE	В	t	р	
	93.31	6.50	0	14.37	<.001	
D1 (Clinical)	-32.64	10.16	51	-3.21	.003	
D2 (Devel)	10.19	11.56	.14	0.88	.384	
D3 (Social)	-23.18	10.52	35	-2.20	.03	

Unweighted effects coding					
	C1	C2	C3		
Cognitive	-1	-1	-1		
Clinical	1	0	0		
Developmental	0	1	0		
Social	0	0	1		

Coefficients					
	В	SE	В	t	р
	81.90	4.06	0	14.37	<.001
D1 (Clinical)	-21.23	6.85	51	-3.21	.003
D2 (Devel)	21.60	7.88	.14	0.88	.384
D3 (Social)	-11.78	7.12	35	-2.20	.035

Weighted effects coding					
	C1	C2	C3		
Cognitive	-N _{Clin} /N _{Cog}	-N _{Dev} /N _{Cog}	-N _{Soc} /N _{Cog}		
Clinical	N _{Clin} /N _{Cog}	0	0		
Developmental	0	N _{Dev} /N _{Cog}	0		
Social	0	0	N _{Soc} /N _{Cog}		

Segment summary

- Dummy coding

 A system to code categorical predictors in a regression analysis

END SEGMENT

END LECTURE 12