

(9) BUNDESREPUBLIK DEUTSCHLAND

PATENT- UND
MARKENAMT

[®] Offenlegungsschrift[®] DE 198 13 839 A 1

(2) Aktenzeichen: 198 13 839.3
 (2) Anmeldeteg: 20. 3.98

(4) Offenlegungstag: 23. 9.99

(5) Int. Cl. 6; C 07 K 14/435

> C 12 N 15/11 C 07 H 21/04 C 12 N 15/63 C 12 N 1/21 C 12 N 1/19 C 12 N 5/10 C 07 K 16/18 A 61 K 38/17-// (C12N 1/21,C12R 1:19)G01N 33/68, 33/15

198 13 839

Manage Annual Annual

metaGe: Geselischaft für Genomforschung mbH, 14195 Berlin, DE

Wertreter:

Klose, W., Dipl.-Chem.Dr.rer.nat., Pat.-Ass., 13505 Berlin (7) Erfinder:

Specht, Thomas, Dipl.-Bit Chief Dr., 12209 Berlin, DE; Hinzmann, Bernd, Dipl.-Chem. Dr., 13127 Berlin, DE; Schmitt, Armin, Dipl.-Phys. Dr., 14197 Berlin, DE; Pilarsky, Christian, Dipl.-Biol. Dr., 01474 Schönfeld-Weißig, DE; Dahl, Edgar, Dipl.-Biol. Dr., 14480 Potsdam, DE; Rosentahl, André, Prof. Dipl.-Chem. Dr., 10115 Berlin, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Menschliche Nukleinsäuresequenzen aus Brusttumorgewebe

(f) Es werden menschliche Nukleinsäuresequenzen -mRNA, cDNA, genomische Sequenzen- aus Brusttumorgewebe, die für Genprodukte oder Teile davon kodieren und deren Verwendung beschrieben.
Es werden weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung beschrieben.

Beschreibung

Die Erfindung betrifft menschliche Nukleinsäuresequenzen aus Brusttumorgewebe, die für Genprodukte oder Teile davon kodieren, deren funktionale Gene, die mindestens ein biologisch aktives Polypeptid kodieren und deren Verwendung.

Die Erfindung betrifft weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung.

Eine der Haupttodesursachen bei Frauen ist der Brustkrebs, für dessen Bekämpfung neue Therapien notwendig sind. Bisher verwendete Therapien, wie z. B. Chemotherapie, Hormontherapie oder chirurgische Entfernung des Tumorgewebes, führen häufig nicht zu einer vollständigen Heilung.

Das Phänomen Krebs geht häufig einher mit der Über- oder Unterexpression gewisser Gene in den entarteten Zellen, wobei noch unklar ist, ob diese veränderten Expressionsraten Ursache oder Folge der malignen Transformation sind. Die Identifikation solcher Gene wäre ein wesentlicher Schritt für die Entwicklung neuer Therapien gegen Krebs. Der spontanen Entstehung von Krebs geht häufig eine Vielzahl von Mutationen voraus. Diese können verschiedenste Auswirkungen auf das Expressionsmuster in dem betroffenen Gewebe haben, wie z. B. Unter- oder Überexpression, aber auch Expression verkürzter Gene. Mehrere solcher Veränderungen durch solche Mutationskaskaden können schließlich zu bösartigen Entartungen führen. Die Komplexität solcher Zusammenhänge erschwert die experimentelle Herangehensweise sehr.

Für die Suche nach Tumor-bezogenen Kandidatengenen, d. h. Genen; die als Ursache für oder als Folge von bösartigen Entartungen germalen, menschlichen Gewebes angesehen werden können, wird eine Datenbank verwendet, die angesogenannten ESTs besteht. ESTs (Expressed Sequence Tags) sind Sequenzen von cDNAs, d. h. revers transkribieren mRNAs, den Molekülen also, die die Expression von Genen widerspiegeln. Die EST-Sequenzen werden für normale und entartete Gewebe ermittelt. Solche Datenbanken werden von verschiedenen Betreibern z. T. kommerziell angeboten. Die ESTs der LifeSeq-Datenbank, die hier verwendet wird, sind in der Regel zwischen 150 und 350 Nukleotide lang. Sie repräsentieren ein für ein bestimmtes Gen unverkennbares Muster, obwohl dieses Gen normalerweise sehr viel länger ist (> 2000 Nukleotide). Durch Vergleich der Expressionsmuster von normalen und Tumorgewebe können ESTs identifiziert werden, die für die Tumorentstehung und -prolifertion wichtig sind. Es besteht jedoch folgendes Problem: Da durch unterschiedliche Konstruktionen der cDNA-Bibliotheken die gefundenen EST-Sequenzen zu unterschiedlichen Regionen eines unbekannten Gens gehören können, ergäbe sich in einem solchen Fall ein völlig falsches Verhältnis des Vorkommens dieser ESTs in dem jeweiligen Gewebe. Dieses würde erst bemerkt werden, wenn das vollständige Gen bekannt ist und somit die ESTs dem gleichen Gen zugeordnet werden können.

Es wurde nun gefunden, daß diese Fehlermöglichkeit verringert werden kann, wenn zuvor sämtliche ESTs aus dem jeweiligen Gewebstyp assembliert werden, bevor die Expressionsmuster miteinander verglichen werden. Es wurden also überlappende ESTs ein und desselben Gens zu längeren Sequenzen zusammengefaßt (s. Fig. 1, Fig. 2a und Fig. 3). Durch diese Verlängerung und damit Abdeckung eines wesentlich größeren Genbereichs in jeder der jeweiligen Banken sollte der oben beschriebene Fehler weitgehenst vermieden werden. Da es hierzu keine bestehenden Softwareprodukte gab, wurden Programme für das Assemblieren von genomischen Abschnitten verwendet, die abgewandelt eingesetzt und durch eigene Programme ergänzt wurden. Ein Flowchart der Assemblierungsprozedur ist in Fig. 2b1–2b4 dargestellt.

Es konnten nun die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 gefunden werden, die als Kandidatengene beim Brusttumor eine Rolle spielen.

Von besonderem Interesse sind die Nukleinsäure-Sequenzen Seq. ID Nos. 9, 17,18, 21, 23-25, 27, 31, 36, 38, 39, 42-44, 46-48, 50-53, 55-59, 61-63, 67, 68.

Die Erfindung betrifft somit Nukleinsäure-Sequenzen, die ein Genprodukt oder ein Teil davon kodieren, umfassend

- a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe der Nukleinsäure-Sequenzen Seq. ID Nos. 9, 17, 18, 21, 23–25, 27, 31, 36, 38, 39, 42–44, 46–48, 50–53, 55–59, 61–63, 67, 68.
 - b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen oder

45

c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.

Die Erfindung betrifft weiterhin eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq. ID Nos. 9, 17, 18, 21, 23–25, 27, 31, 36, 38, 39, 42–44, 46–48, 50–53, 55–59, 61–63, 67, 68 oder eine komplementäre oder allelische Variante davon und die Nukleinsäure-Sequenzen davon, die eine 90%ige bis 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweisen.

Die Erfindung betrifft auch die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 68, die im Brusttumorgewebe erhöht exprimiert sind.

Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, umfassend einen Teil der oben genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen Seq. ID Nos. 9, 17, 18, 21, 23–25, 27, 31, 36, 38, 39, 42–44, 46–48, 50–53, 55–59, 61–63, 67, 68 hybridisieren.

Die erfindungsgemäßen Nukleinsäure-Sequenzen weisen im allgemeinen eine Länge von mindestens 50 bis 4500 bp, vorzugsweise eine Länge von mindestens 150 bis 4000 bp, insbesondere eine Länge von 450 bis 3500 bp auf.

Mit den erfindungsgemäßen Teilsequenzen Seq. ID Nos. 9, 17, 18, 21, 23–25, 27, 31, 36, 38, 39, 42–44, 46–48, 50–53, 55–59, 61–63, 67, 68 können gemäß gängiger Verfahrenspraxis auch Expressionskassetten konstruiert werden, wobei auf der Kassette mindestens eine der erfindungsgemäßen Nukleinsäure-Sequenzen zusammen mit mindestens einer dem Fachmann allgemein bekannten Kontroll- oder regulatorischen Sequenz, wie z. B. einem geeigneten Promotor, kombiniert wird. Die erfindungsgemäßen Sequenzen können in sense oder antisense Orientierung eingefügt sein.

In der Literatur sind ist eine große Anzahl von Expressionskassetten bzw. Vektoren und Promotoren bekannt, die verwenden werden können.

Unter Expressionskassetten bzw. Vektoren sind zu verstehen: 1. bakterielle, wie z. B., phagescript, pBs, \$\phi X174\$, pBlu-

escript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene), pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), 2. eukaryontische, wie z. B. pwLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene), pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Unter Kontroll- oder regulatorischer Sequenz sind geeignete Promotoren zu verstehen. Hierbei sind zwei bevorzugte Vektoren der pKK232-8 und der PCM7 Vektor. Im einzelnen sind folgende Promotoren gemeint: lacI, lacZ, T3, T7, gpt, lambda P_R, trc, CMV, HSV Thymidin-Kinase, SV40, LTRs aus Retrovirus und Maus Metallothionein-I.

Die auf der Expressionskassette befindlichen DNA-Sequenzen können ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.

Die Expressionskassetten sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die erfindungsgemäßen Nukleinsäure-Fragmente können zur Herstellung von Vollängen-Genen verwendet werden. Die erhältlichen Gene sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die Erfindung betrifft auch die Verwendung der erfindungsgemäßen Nukleinsäure-Sequenzen, sowie die aus der Verwendung erhältlichen Gen-Fragmente.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können mit geeigneten Vektoren in Wirtszellen gebracht werden, in denen als heterologer Teil die auf den Nukleinsäure-Fragmenten enthaltene genetischen Information befindet, die exprimiert wird.

Die die Nukleinsäure-Fragmente enthaltenden Wirtszellen sind ebenfalls Gegenstand der vorliegenden Erfindung. Geeignete Wirtszellen sind z. B. prokaryontische Zellsysteme wie E. coli oder eukaryontische Zellsysteme wie tierische oder humane Zellen oder Heien.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können in sense oder antisense Form verwendet werden.

Die Herstellung der Polypeptide oder deren Fragment erfolgt durch Kultivierung der Wirtszellen gemäß gängiger Kultivierungsmethoden und anschließender Isolierung und Aufreinigung der Peptide bzw. Fragmente, ebenfalls mittels gängiger Verfahren. Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodieren.

Ferner betrifft die vorliegende Erfindung Polypeptid-Teilsequenzen, sogenannte ORF (open-reading-frame)-Peptide, gemäß den Sequenzprotokollen Seq. ID Nos. 72–76, 79–81, 84–92, 95–98, 102–104, 107–117, 119–127, 129–144, 147.

Die Erfindung betrifft ferner die Polypeptid-Sequenzen, die mindestens eine 80%ige Homologie, insbesondere eine 90%ige Homologie zu den erfindungsgemäßen Polypeptid-Teilsequenzen der Seq. ID Nos. 72–76, 79–81, 84–92, 95–98, 102–104, 107–117, 119–127, 129–144, 147 aufweisen.

Die Erfindung betrifft auch Antikörper, die gegen ein Polypeptid oder Fragment davon gerichtete sind, welche von den 30 erfindungsgemäßen Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID 68 kodiert werden.

Unter Antikörper sind insbesondere monoklonale Antikörper zu verstehen.

Die erfindungsgemäßen Polypeptide der Sequenzen Seq. ID Nos. 71 bis 148 können auch als Tool zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden, was ebenfalls Gegenstand der vorliegerden Erfindung ist.

Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden können.

Die Erfindung betrifft auch die Verwendung der gefundenen Polypeptid-Teilsequenzen Seq. ID No. 71 bis Seq. ID No. 148 zur Herstellung eines Arzneimittels zur Behandlung des Brustkrebses.

Die Erfindung betrifft auch Arzneimittel, die mindestens eine Polypeptid-Teilsequenz Seq. ID No. 71 bis Seq. ID No. 148 enthalten.

Die gefundenen erfindungsgemäßen Nukleinsäure-Sequenzen können auch genomische oder mRNA-Sequenzen sein. Die Erfindung betrifft auch genomische Gene, ihre Exon- und Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 68, sowie deren Verwendung zusammen mit geeigneten regulativen Elementen, wie geeigneten Promotoren und/oder Enhancern.

Mit den erfindungsgemäßen Nukleinsäuren (cDNA-Sequenzen) werden genomische BAC-, PAC- und Cosmid-Bibliotheken gescreent und über komplementäre Basenpaarung (Hybridisierung) spezifisch humane Klone isoliert. Die so isolierten BAC-, PAC- und Cosmid-Klone werden mit Hilfe der Fluoreszenz-in-situ-Hybridisation auf Metaphasenchromosomen hybridisiert und entsprechende Chromosomenabschnitte identifiziert, auf denen die entsprechenden genomischen Gene liegen. BAC-, PAC- und Cosmid-Klone werden sequenziert, um die entsprechenden genomischen Gene in ihrer vollständigen Struktur (Promotoren, Enhancer, Silencer, Exons und Introns) aufzuklären. BAC-, PAC- und Cosmid-Klone können als eigenständige Moleküle für den Gentransfer eingesetzt werden (s. Fig. 5).

Die Erfindung betrifft auch BAC-, PAC- und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 68, zur Verwendung als Vehikel zum Gentransfer.

Bedeutungen von Fachbegriffen und Abkürzungen

Nukleinsäuren = Unter Nukleinsäuren sind in der vorliegenden Erfindung zu verstehen: mRNA, partielle cDNA, vollängen cDNA und genomische Gene (Chromosomen).

ORF = Open Reading Frame, eine definierte Abfolge von Aminosäuren, die von der cDNA-Sequenz abgeleitet werden kann.

Contig = Eine Menge von DNA-Sequenzen, die aufgrund sehr großer Ähnlichkeiten zu einer Sequenz zusammengefaßt werden können (Consensus).

Singleton = Ein Contig, der nur eine Sequenz enthält.

65

Erklärung zu den Alignmentparametern

minimal initial match = minimaler anfänglicher Identitätsbereich maximum pads per read = maximale Anzahl von Insertionen maximum percent mismatch = maximale Abweichung in %.

Erklärung der Abbildungen

Fig. 1 zeigt die systematische Gen-Suche in der Incyte LifeSeq-Datenbank.

Fig. 2a zeigt das Prinzip der EST-Assemblierung.

Fig. 2b1-2b4 zeigt das gesamte Prinzip der EST-Assemblierung.

Fig. 3 zeigt die in silico Subtraktion der Genexpression in verschiedenen Geweben.

Fig. 4a zeigt die Bestimmung der gewebsspezifischen Expression über elektronischen Northern.

Fig. 4b zeigt den elektronischen Northern.

Fig. 5 zeigt die Isolierung von genomischen BAC- und PAC-Klonen.

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Nukleinsäure-Sequenzen, ohne die Erfindung auf diese Beispiele und Nukleinsäure-Sequenzen zu beschränken.

Reispiel 1

20

50

5

10

Suche nach Tumor-bezogenen Kandidatengenen

Zuerst wurden sämtliche ESTs des entsprechenden Gewebes aus der LifeSeq-Datenbank (vom Oktober 1997) extrahiert. Diese wurden dann mittels des Programms GAP4 des Staden-Pakets mit den Parametern 0% mismatch, 8 pads per read und einem minimalen match von 20 assembliert. Die nicht in die GAP4-Datenbank aufgenommenen Sequenzen (Fails wurden erst bei 1% mismatch und dann nochmals bei 2% mismatch mit der Datenbank ausgenommenen Sequenzen der Datenbank, die aus mehr als einer Sequenz bestanden, wurden Consensussequenzen errechnet. Die Singletons der Datenbank, die nur aus einer Sequenz bestanden, wurden mit den nicht in die GAP4-Datenbank aufgenommenen Sequenzen bei 2% mismatch erneut assembliert. Wiederum wurden für die Contigs die Consensussequenzen ermittelt. Alle übrigen ESTs wurden bei 4% mismatch erneut assembliert. Die Consensussequenzen wurden abermals extrahiert und mit den vorherigen Consensussequenzen sowie den Singletons und den nicht in die Datenbank aufgenommenen Sequenzen abschließend bei 4% mismatch assembliert. Die Consensussequenzen wurden gebildet und mit den Singletons und Fails als Ausgangsbasis für die Gewebsvergleiche verwendet. Durch diese Prozedur konnte sichergestellt werden, daß unter den verwendeten Parametern sämtliche Sequenzen von einander unabhängige Genbereiche darstellten.

Fig. 2b1-2b4 veranschaulicht die Verlängerung der Brusttumorgewebe ESTs.

Die so assemblierten Sequenzen der jeweiligen Gewebe wurden anschließend mittels des gleichen Programms miteinander verglichen (Fig. 3). Hierzu wurden erst alle Sequenzen des ersten Gewebes in die Datenbank eingegeben. (Daher war es wichtig, daß diese voneinander unabhängig waren.)

Dann wurden alle Sequenzen des zweiten Gewebes mit allen des ersten verglichen. Das Ergebnis waren Sequenzen, die für daz erste bzw. das zweite Gewebe spezifisch waren, sowie welche, die in beiden vorkamen. Bei Letzteren wurde das Verhältnis der Häufigkeit des Vorkommens in den jeweiligen Geweben ausgewertet. Sämtliche, die Auswertung der assemblierten Sequenzen betreffenden Programme, wurden selbst entwickelt.

Alle Sequenzen, die mehr als viermal in jeweils einem der verglichenen Gewebe vorkamen, sowie alle, die mindestens fünfmal so häufig in einem der beiden Gewebe vorkamen wurden weiter untersucht. Diese Sequenzen wurden einem elektronischen Northern (s. Beispiel 2.1) unterzogen, wodurch die Verteilung in sämtlichen Tumor- und Normal-Geweben untersucht wurde (s. Fig. 4a und Fig. 4b). Die relevanten Kandidaten wurden dann mit Hilfe sämtlicher Incyte ESTs und allen ESTs öffentlicher Datenbanken verlängert (s. Beispiel 3). Anschließend wurden die Sequenzen und ihre Übersetzung in mögliche Proteine mit allen Nukleotid- und Proteindatenbanken verglichen, sowie auf mögliche, für Proteine kodierende Regionen untersucht.

Beispiel 2

Algorithmus zur Identifikation und Verlängerung von partiellen cDNA-Sequenzen mit verändertem Expressionsmuster

Im folgenden soll ein Algorithmus zur Auffindung über- oder unterexprimierter Gene erläutert werden. Die einzelnen Schritte sind der besseren Übersicht halber auch in einem Flußdiagramm zusammengefaßt (s. Fig. 4b).

2.1 Elektronischer Northern-Blot

Zu einer partiellen DNA-Sequenz S, z. B. einem einzelnen EST oder einem Contig von ESTs, werden mittels eines Standardprogramms zur Homologiesuche, z. B. BLAST (Altschul, S. F., Gish W., Miller, W., Myers, E. W. und Lipman, D. J. (1990) J. Mol. Biol., 215, 403-410), BLAST2 (Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. und Lipman, D. J. (1987) Nucleic Acids Research 25 3389-3402) oder FASTA (Pearson, W. R. und Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85 2444-2448), die homologen Sequenzen in verschiedenen nach Geweben geordneten (privaten oder öffentlichen) EST-Bibliotheken bestimmt. Die dadurch ermittelten (relativen oder absoluten) Gewebe-spezifischen Vorkommenshäufigkeiten dieser Partial-Sequenz S werden als elektronischer Northern-Blot bezeichnet.

2.1.1

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 2 gefunden, die 9x stärker im Brusttumorgewebe als im normalen Gewebe vorkommt. Die mögliche Funktion dieses Genbereiches betrifft ein 17-kDa-Interferon-induzierbares Gen. 5 Das Ergebnis ist wie folgt: Elektronischer Northern für SEQ. ID. NO: 2 NORMAL TUMOR Verhaeltnisse 10 %Haeufigkeit %Haeufigkeit N/T T/N Blase 0.0000 0.0102 0.0000 undef Brust 0.0053 0.0458 0.1165 8.5843 Eierstock 0.0030 0.0338 0.0899 11.1243 Endokrines Gewebe 0.0000 0.0000 undef undef 15 0.0143 Gastrointestinal 0.0039 0.2714 3.6843 Gehirn 0.0085 0.0099 0.8601 1.1626 Haematopoetisch 0.0028 undef 0.0000 0.0000 Haut 0.0000 0.0000 undef undef Hepatisch 0.0000 0.0000 undef adef. 20 Herz 0.0074 0.0000 undef 0.0000 Hoden 0.0000 0.0117 0.0000 undef Lunge 0.0037 0.0024 1.5801 0.6329 Magen-Speiseroehre 0.0097 0.0077 1.2599 0.7937 Muskel-Skelett 0.0034 0.0120 0.2855 3.5025 25 Niere 0.0030 0.0000 undef 0.0000 Pankreas 0.0038 0.0000 undef 0.0000 Penis 0.0030 0.1066 0.0281 35.6161 Prostata 0.0048 0.0043 1.1186 0 8939 Uterus 0.0083 0.0000 undef 0.0000 30 Brust-Hyperplasie 0.0000 Duenndarm 0.0093 Prostata-Hyperplasie 0.0030 Samenblase 0.0089 Sinnesorgane 0.0000 35 Weisse Blutkoerperchen 0.0035 **FOETUS** %Haeufigkeit Entwicklung 0.0000 Gastrointenstinal 0.0031 Gehirn 0.0000 Haematopoetisch 0.0039 Herz-Blutgefaesse 0.0000 Lunge 0.0000 45 Niere 0.0000 Prostata 0.0000 Sinnesorgane 0.0000 50 NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN %Haeufigkeit Brust 0.0000 Eierstock-Uterus 0.0228 Endokrines Gewebe 0.0000 55 Foetal 0.0082 Gastrointestinal 0.0244 Haematopoetisch 0.0057 Haut-Muskel 0.0032 Hoden 0.0000 60 Lunge 0.0082

5

Nerven 0.0010 Prostata 0.0128 Sinnesorgane 0.0000

2.1.2.

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 5 gefunden, die 30x stärker im Brusttumorgewebe als im normalen Gewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft "macrophage migration inhibition factor related Protein 14(MRP-

Das Ergebnis ist wie folgt:

10

Elektronischer Northern für SEQ. ID. NO: 5

10				
		NORMAL	TUMOR %Haeufigkeit	Verhaeltnisse N/T T/N
	n 1	-	-	
		0.0093	0.1508	0.0616 16.2223
		0.0013	0.0392	0.0340 29.4320
15	Eierstock		0.0000	undef 0.0000
	Endokrines_Gewebe		0.0027	0.6698 1.4930
	Gastrointestinal	0.0174	0.0048	3.6642 0.2729
	Gehirn	0.0051	0.0055	0.9289 1.0765
	Haematopoetisch	0.0993	0.0000	undef 0.0000
20		0.0249	0.0000	undef 0.0000
20	Hepatisch		0.0129	0.0000 undef
	-	0.0053	0.0000	undef 0.0000
		0.0061	0.0000	undef 0.0000
		0.0261	0.0307	0.8508 1.1753
			0.0230	4.6197 0.2165
25	Magen-Speiseroehre			0.9517 1.0508
	Muskel-Skelett		0.0180	
		0.0000	0.0068	0.0000 undef
	Pankreas		0.0000	undef 0.0000
		0.1258	0.1600	0.7862 1.2720
30	Prostata		0.0000	undef undef
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie	0.0036		•
	Duenndarm	0.0000		
	Prostata-Hyperplasie	0.0000		
~=	Samenblase			
35	Sinnesorgane	0.0000		
	Weisse Blutkoerperchen			
	•			
		POEMHE		
40		FOETUS		
		%Haeufigkeit		•
•	Entwicklung	0.0000		
	Gastrointenstinal			
	Gehirn			
45	Haematopoetisch	0.0000		
43	Herz-Blutgefaesse	0.0000		
		0.0037		
	Niere	0.0000		
	Prostata	0.0000		
	Sinnesorgane	0.0000		
50				•
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
	Brust	0.0000		
55	Eierstock-Uterus			
50				
	Endokrines_Gewebe Foetal			
	Gastrointestinal			
	Haematopoetisch			
60	Haut-Muskel			
		0.0000		
	Lunge			
	Nerven			
	Prostata			
	Cinnacarrana	0 0000		
65	Sinnesorgane	0.0000		

2.1.3.

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 16 gefunden, die 30x stärker im Brusttumorgewebe als im normalen Gewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft menschliches Tim23, welches im Proteintranslokase-Komplex der inneren mitochondrialen Membran lokalisiert ist.

Das Ergebnis ist wie folgt:

Elektronischer Northern für SEQ. ID. NO: 16

15
ž
Ž
ž.
2
25
22
30
ېد
35
33
. 40
40
45
45
45
45
45
-
50
-
-
-
50
-
50
50
50
50
50
50
50
50
50

In analoger Verfahrensweise wurden auch folgende Northerns gefunden:

Elektronischer Northern für SEO. ID. NO: 1

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                             T/N
                      Blase 0.0000
                                          0.0102
                                                        0.0000 undef
                      Brust 0.0040 ·
                                          0.0196
                                                        0.2039 4.9053
                  Eierstock 0.0182
                                          0.0156
                                                        1.1686 0.8557
          Endokrines Gewebe 0.0219
                                          0.0409
                                                        0.5358 1.8663
           Gastrointestinal 0.0174
                                          0.0238
                                                        0.7328 1.3646
                     Gehirn 0.0534
                                          0.0526
                                                        1.0160 0.9842
10
            Haematopoetisch 0.0154
                                                        undef 0.0000
                                          0.0000
                       Haut 0.0398
                                          0.0000
                                                        undef 0.0000
                                                        1.5303 0.6535
                  Hepatisch 0.0099
                                          0.0065
                       Herz 0.0519
                                                        undef 0.0000
                                          0.0000
                      Hoden 0.0061
                                          0.0117
                                                        0.5224 1.9144
15
                      Lunge 0.0224
                                          0.0378
                                                        0.5926 1.6876
         Magen-Speiseroehre 0.0193
                                          0.0077
                                                        2.5198 0.3968
             Muskel-Skelett 0.0411
                                          0.0300
                                                       1.3704 0.7297
                      Niere 0.0297
                                          0.1232
                                                        0.2412 4.1459
                   Pankreaum 0.0076
                                          0.0276
                                                       0.2743 3.6460
                                        " 0.0267
20
                      Penis 0.0389
                                                       1.4600 0.6849
                   Prostata 0.0119
                                          0.0192
                                                       0.6215 1.6091
                     Uterus 0.0248
                                          0.0356
                                                       0.6963 1.4363
         Brust-Hyperplasie 0.0218
                  Duenndarm 0.0156
25
      Prostata-Hyperplasie 0.0238
                 Samenblase 0.0000
               Sinnesorgane 0.0000
    Weisse_Blutkoerperchen 0.0087
30
                            FOETUS
                            %Haeufigkeit
                Entwicklung 0.0154
         Gastrointenstinal 0.0216
35
                     Gehirn 0.0188
           Haematopoetisch 0.0079
         Herz-Blutgefaesse 0.0368
                      Lunge 0.0481
                      Niere 0.0124
40.
                   Prostata +0.0000
              Sinnesorgane 0.0279
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0204
          Eierstock-Uterus 0.0320
         Endokrines_Gewebe 0.0245
                    Foetal 0.0414
          Gastrointestinal 0.0000
50
           Haematopoetisch 0.0171
               Haut-Muskel 0.0745
                      Hoden 0.0312
                     Lunge 0.0082
                    Nerven 0.0241
55
                  Prostata 0.0321
              Sinnesorgane 0.0077
```

60

65

Elektronischer Northern für SEQ. ID. NO: 3

	NORMAL	TUMOR	Verhaeltnisse	
	%Haeufigkeit	%Haeufigkeit	N/T T/N	
Blase	0.0046	0.0128	0.3637 2.7495	_
Brust	0.0067	0.0174	0.3822 2.6162	5
Eierstock	0.0061	0.0000	undef 0.0000	•
Endokrines_Gewebe	0.0018	0.0082	0.2233 4.4791	
Gastrointestinal		0.0048	0.8143 1.2281	
Gehirn	0.0339	0.0110	3.0964 0.3230	
Haematopoetisch	0.0112	0.0000	undef 0.0000	10
Haut	0.0149	0.0000	undef 0.0000	
Hepatisch	0.0050	0.0000	undef 0.0000	
Herz	0.0064	0.0000	undef 0.0000	
Hoden	0.0183	0.0000	undef 0.0000	
Lunge	0.0137	0.0000	undef 0.0000	15
Magen-Speiseroehre		0.0153	0.6300 1.5874	•
Muskel-Skelett	0.0086	0.0120	0.7138 1.4010	
Niere	0.0030	0.0342	0.0868 11.5165	
Pankreas	0.0057	0.0115	0.5143 1.9446	
Penis	0.0030	0.0000	undef 0.0000	20
Prostata	0.0024	0.0085	0.2797 3.5758	
	0.0116	0.0071	1.6246 0.6155	
Brust-Hyperplasie	0.0036			
Duenndarm	0.0093			
Prostata-Hyperplasie	0.0030	,		25
Samenblase				
Sinnesorgane	0.0118			
Weisse_Blutkoerperchen	0.0061			
	•			
	FOETUS			30
	%Haeufigkeit			
Entwicklung	•			
Gastrointenstinal				
Gehirn				
Haematopoetisch				35
Herz-Blutgefaesse	0.0000			
	0.0000			
Niere	0.0000			
Prostata	0.0000		**	
Sinnesorgane	0.0000	••		48-
			•	
	NORMIERTE/SUB	יידם שתפשודעם	TOPHEVEN	
	%Haeufigkeit	INMITERIE DID	GIOTHEREN	
Brust	0.0204			45
Eierstock-Uterus				
Endokrines Gewebe				
Foetal		•		•
Gastrointestinal				
Haematopoetisch				50
Haut-Muskel				30
	0.0000			
Lunge				
Nerven			•	
Prostata	0.0000	. •		50
Sinnesorgane	0.0000			55

60

Elektronischer Northern für SEQ. ID. NO: 4

```
Verhaeltnisse
                            NORMAL
                                          TUMOR
                            %Haeufigkeit %Haeufigkeit N/T
                                                            T/N
                      Blase 0.0093
                                          0.0256
                                                       0.3637 2.7495
                      Brust 0.0133
                                          0.0283
                                                       0.4704 2.1256
                  Eierstock 0.0091
                                          0.0104
                                                       0.8765 1.1409
         Endokrines Gewebe 0.0274
                                          0.0490
                                                       0.5582 1.7916
          Gastrointestinal 0.0116
                                                       1.2214 0.8187
                                          0.0095
                     Gehirn 0.0212
                                          0.0164
                                                       1.2902 0.7751
10
           Haematopoetisch 0.0084
                                          0.0000
                                                       undef 0.0000
                                                       undef 0.0000
                       Haut 0.0348
                                          0.0000
                 Hepatisch 0.0149
                                          0.0259
                                                       0.5739 1.7426
                      Herz 0.0191
                                          0.0137
                                                       1.3873 0.7208
                      Hoden 0.0122
                                          0.0000
                                                       undef 0.0000
15
                      Lunge 0.0162
                                          0.0165
                                                       0.9782 1.0223
        Magen-Speiseroehre 0.0290
                                          0.0153
                                                       1.8899 0.5291
            Muskel-Skelett 0.0069
                                          0.0120
                                                       0.5710 1.7513
                      Niere 0.0178
                                         0.0068
                                                       2.6050 0.3839
                   Pankreas 0.0038
                                         0.0221
                                                       0.1 75 2:0337
20
                      Penis 0.0180
                                         0.0000
                                                       undef 0000
                   Prostata 0.0214
                                         0.0234
                                                       0.9152 1.0926
                    Uterus 0.0182
                                         0.0214
                                                       0.8510 1.1751
         Brust-Hyperplasie 0.0073
                 Duenndarm 0.0218
25
      Prostata-Hyperplasie 0.0357
                Samenblase 0.0178
              Sinnesorgane 0.0118
    Weisse_Blutkoerperchen 0.0218
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0154
                    Gehirn 0.0125
35
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0123
                     Lunge 0.0111
                     Niere 0.0124
                  Prostata 0.0499
40
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0000
          Eierstock-Uterus 0.0183
         Endokrines_Gewebe 0.0000
                    Foetal 0.0076
          Gastrointestinal 0.0488
50
           Haematopoetisch 0.0000
               Haut-Muskel 0.0259
                     Hoden 0.0000
                     Lunge 0.0000
                    Nerven 0.0090
55
                  Prostata 0.0128
              Sinnesorgane 0.0000
```

Elektronischer Northern für SEQ. ID. NO: 6

	NORMAL	TUMOR	Verhae	ltnisse	
	%Haeufigkeit	%Haeufigkeit	N/T	T/N	
Blase	0.0000	0.0102	0.0000	undef	5
Brust	0.0053	0.0196		3.6790	
Eierstoc)		0.0052		0.8557	
Endokrines Gewebe	0.0018	0.0027		1.4930	
Gastrointestina]	0.0039	0.0095		2.4562	
Gehirn	0.0076	0.0033	2.3223		10
Haematopoetisch	0.0042	0.0000	undef		
	0.0050	0.0000	undef		
Hepatisch	0.0099	0.0129	0.7651		
Herz	0.0064	0.0000	undef		
	0.0000	0.0117	0.0000		15
Lunge	0.0050	0.0142	0.3511		
Magen-Speiseroehre	0.0000	0.0230	0.0000	· ·	
Muskel-Skelett		0.0000	undef		
	0.0119	J.0137	0.8683		
Pankreas	0.0038	0.0055	0.6857		20
Penis	0.0030		undef		
Prostata	_		1.3051		
		_	0.2321		
Brust-Hyperplasie			V. 2521	·	
Duenndarm	0.0062				25
Prostata-Hyperplasie					_
Samenblase	0.0089				
Sinnesorgane					
Weisse Blutkoerperchen					
_					30
	FOETUS				
Patrol alabases	%Haeufigkeit				
Entwicklung Gastrointenstinal					
					35
	0.0000				
Haematopoetisch Herz-Blutgefaesse					
	0.0041				
	0.0062				
Prostata				•	410
Sinnesorgane					
brimesorgane	0.0000				
			,		
	NORMIERTE/SUBT	RAHIERTE BIBI	IOTHEKE	en .	
	%Haeufigkeit				45
Brust	0.0000				
Eierstock-Uterus					
Endokrines_Gewebe				F.	
Foetal				•	
Gastrointestinal				•	50
Haematopoetisch		•			
Haut-Muskel					
	0.0000				
	0.0000				
Nerven					55
Prostata					
Sinnesorgane	0.0000				

65

Elektronischer Northern für SEQ. ID. NO: 7

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                             T/N
                      Blase 0.0186
                                          0.0051
                                                        3.6370 0.2750
5
                                                        0.5606 1.7838
                     Brust 0.0147
                                          0.0261
                  Eierstock 0.0182
                                          0.0234
                                                        0.7791 1.2836
          Endokrines Gewebe 0.0456
                                          0.0245
                                                       1.8605 0.5375
           Gastrointestinal 0.0233
                                          0.0190
                                                       1.2214 0.8187
                     Gehirn 0.0314
                                          0.0230
                                                       1.3639 0.7332
10
            Haematopoetisch 0.0196
                                          0.0378
                                                       0.5175 1.9325
                       Haut 0.0199
                                          0.0000
                                                       undef 0.0000
                  Hepatisch 0.0050
                                          0.0388
                                                       0.1275 7.8416
                       Herz 0.0328
                                          0.0275
                                                       1.1947 0.8371
                      Hoden 0.0183
                                          0.0351
                                                       0.5224 1.9144
15
                      Lunge 0.0149
                                          0.0284
                                                       0.5267 1.8986
        Magen-Speiseroehre 0.0193
                                          0.0460
                                                       0.4200 2.3811
            Muskel-Skelett 0.0223
                                          0.0480
                                                       0.4639 2.1554
                      Niere 0.0208
                                          0.0205
                                                       1.0130 0.9871
                   Toukream#0:0246
                                          0.0055
                                                       4.4503/072244
20
                      ⇔nis 0.0449
                                          0.0267
                                                       1.6846 0.5936
                   Prostata 0.0167
                                          0.0383
                                                       0.4350 2.2987
                     Uterus 0.0231
                                          0.0214
                                                       1.0831 0.9233
         Brust-Hyperplasie 0.0109
                  Duenndarm 0.0125
25
      Prostata-Hyperplasie 0.0357
                 Samenblase 0.0356
              Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0165
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0307
         Gastrointenstinal 0.0247
                    Gehirn 0.0375
           Haematopoetisch 0.0118
35
         Herz-Blutgefaesse 0.0204
                      Lunge 0.0296
                     Niere 0.0185
                   Prostata 0.0249
              Sinnesorgane C.C279
43
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                     Brust 0.0068
          Eierstock-Uterus 0.0068
45
         Endokrines_Gewebe 0.0000
                    Foetal 0.0093
          Gastrointestinal 0.0000
           Haematopoetisch 0.0114
               Haut-Muskel 0.0097
50
                     Hoden 0.0078
                     Lunge 0.0082
                    Nerven 0.0100
                  Prostata 0.0000
              Sinnesorgane 0.0155
55
```

60

65

Elektronischer Northern für SEQ. ID. NO: 8

	0.0139 0.0080 0.0122 0.0274	TUMOR %Haeufigkeit 0.0281 0.0414 0.0260 0.0354 0.0333	Verhaeltnisse N/T T/N 0.4959 2.0163 0.1931 5.1778 0.4674 2.1393 0.7728 1.2940 0.7561 1.3226	•
Gehirn Haematopoetisch Haut Hepatisch	0.0237 0.0098 0.0149 0.0149	0.0175 0.0000 0.1693 0.0129	1.3547 0.7382 undef 0.0000 0.0881 11.3508 1.1477 0.8713	10
Hoden		0.0412 0.0000 0.0615 0.0383 0.0180	0.9249 1.0812 undef 0.0000 0.2836 3.5259 0.2520 3.9685 0.9517 1.0508	. 15
Pankreus Penis Prostata	0.0180	0.0548 0.0000 0.1066 0.0213	0.3799 2.6323 ndef 0.0000 0.1685 5.9360 0.5593 1.7879 0.4061 2.4622	- 20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0109 0.0374 0.0386 0.0356		0.4001 2.4022	25
Weisse_Blutkoerperchen				30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0307 0.0216 0.0188 0.0079			35
				40
	NORMIERTE/SUBS %Haeufigkeit 0.0068	FRAHIERTE BIBI	LIOTHEKEN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0233 0.0366 0.0000			50
Haut-Muskel Hoden Lunge Nerven Prostata	0.0078 0.0164 0.0181			
Sinnesorgane				. 55

60

Elektronischer Northern für SEO. ID. NO: 9

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T T/N
                      Blase 0.0046
                                          0.0128
                                                        0.3637 2.7495
5
                      Brust 0.0053
                                          0.0218
                                                        0.2446 4.0878
                  Eierstock 0.0122
                                          0.0026
                                                        4.6745 0.2139
          Endokrines Gewebe 0.0036
                                          0.0109
                                                        0.3349 2.9861
           Gastrointestinal 0.0213
                                          0.0048
                                                        4.4784 0.2233
                     Gehirn 0.0051
                                          0.0000
                                                        undef 0.0000
10
            Haematopoetisch 0.0028
                                          0.0000
                                                        undef 0.0000
                       Haut 0.0348
                                          0.0000
                                                        undef 0.0000
                  Hepatisch 0.0297
                                          0.0000
                                                        undef 0.0000
                       Herz 0.0064
                                          0.0137
                                                        0.4624 2.1624
                      Hoden 0.0000
                                          0.0000
                                                        undef undef
15
                      Lunge 0.0324
                                          0.0189
                                                        1.7118 0.5842
        Magen-Speiseroehre 0.0000
                                          0.0077
                                                        0.0000 undef
             Muskel-Skelett 0.0017
                                          0.0000
                                                        undef 0.0000
                                                       undef 0.0000 andef 300000
                      Niere 0.0357
                                          0.0000
                   Parkreas 0.0208
                                          0.0000
27
                                                       undef unces.
                      Penis 0.0000
                                          0.0000
                   Prostata 0.0214
                                          0.0085
                                                        2.5169 0.3973
                     Uterus 0.0050
                                          0.0000
                                                       undef 0.0000
         Brust-Hyperplasie 0.0145
                  Duenndarm 0.0031
25
      Prostata-Hyperplasie 0.0178
                 Samenblase 0.0089
              Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0000
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0062
                    Gehirn 0.0000
35
           Haematopoetisch 0.0039
         Herz-Blutgefaesse 0.0041
                     Lunge 0.0148
                     Niere 0.0000
                  Prostata 0.0000
40
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0000
          Eierstock-Uterus 0.0068
         Endokrines_Gewebe 0.0000
                    Foetal 0.0058
          Gastrointestinal 0.0244
50
           Haematopoetisch 0.0000
               Haut-Muskel 0.0130
                     Hoden 0.0000
                     Lunge 0.0246
                    Nerven 0.0020
                  Prostata 0.0256
55
              Sinnesorgane 0.0000
```

65

Elektronischer Northern für SEQ. ID. NO: 10

	normal	TUMOR	Verhaeltnisse	
	%Haeufigkeit	%Haeufigkeit		
Blase	0.0465	0.0051	9.0924 0.1100	_
Brust	0.0107	0.0458	0.2330 4.2922	5
Eierstock	0.0030	0.0078	0.3895 2.5671	
Endokrines Gewebe		0.0082	0.6698 1.4930	
Gastrointestinal	0.0058	0.0048	1.2214 0.8187	
Gehirn	0.0042	0.0088	0.4838 2.0669	
Haematopoetisch	0.0084	0.0000	undef 0.0000	10
_	0.0099	0.0000	undef 0.0000	
Hepatisch	0.0149	0.0129	1.1477 0.8713	
-	0.0064	0.1649	0.0385 25.9489	
		0.0117	0.5224 1.9144	
	0.0050	0.0047	1.0534 0.9493	15
Magen-Speiseroehre		0.0230	0.0000 undef	
Muskel-Skelett		0.0120	4.2826 0.2335	
	0.0000	0.0000	undef undef	
	0.0076	0.0000	undef 0.033399	
		0.0000		
Prostata			undef 0.0000	
		0.0362	0.8554 1.1690	
Brust-Hyperplasie		0.0427	0.2708 3.6932	
Duenndarm				
Prostata-Hyperplasie				25
Samenblase				
Sinnesorgane				
Weisse_Blutkoerperchen	0.0000		•	
	DODBELO			30
	FOETUS			
Parked -1-3	*Haeufigkeit			
Entwicklung				
Gastrointenstinal				
Gehirn			•	35
Haematopoetisch				
Herz-Blutgefaesse				
	0.0185			
	0.0000			
Prostata	,			. 40
Sinnesorgane	0.0140			40
	NORMIERTE/SUB		LOWIEREN	
	%Haeufigkeit	TOUTE BIR	TIOTHEREN	
Brust	0.1156			45
Eierstock-Uterus				43
Endokrines Gewebe				
Foetal			•	
Gastrointestinal				
Haematopoetisch				
Haut-Muskel				50
	0.0000			
	0.0000			
Nerven				
PLOSCATA				
	0.0321			55
Sinnesorgane	0.0321			55

Elektronischer Northern für SEQ. ID. NO: 11

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	N/T T/N
5		0.0139	0.0179	0.7793 1.2831
	Brust	0.0133	0.0414	0.3219 3.1067
	Eierstock	0.0000	0.0156	0.0000 undef
	Endokrines Gewebe	0.0073	0.0027	2.6791 0.3733
	Gastrointestinal	0.0058	0.0048	1.2214 0.8187
		0.0093	0.0153	0.6082 1.6441
10	Haematopoetisch		0.0000	undef 0.0000
		0.0199	0.0000	undef 0.0000
	Hepatisch		0.0129	0.3826 2.6139
		0.0085	0.0123	0.6166 1.6218
		0.0061	0.0117	0.5224 1.9144
15		0.0237	0.0213	
	Magen-Speiseroehre		0.0213	1.1120 0.8993
	Muskel-Skelett			1.2599 0.7937
			0.0180	0.5710 1.7513
		0.0030	0.0479	0.0620 16.1231
20	Pankreas		0.0221	0.17-4 5.8357
20		0.0090	0.0533	0.1685 5.9360
			0.0085	0.8390 1.1919
		0.0050	0.0214	0.2321 4.3088
	Brust-Hyperplasie	0.0182		
	Duenndarm	0.0062		
25	Prostata-Hyperplasie	0.0000		
	Samenblase	0.0089		
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0331		
				
30				
		FOETUS		
	5	%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			·
		0.0000		
		0.0000		
-40-	Prostata			
•••	Sinnesorgane	0.0000		
	•			
		NORMIERTE/SUB	TRAHIERTE BIB	Liotheken
		%Haeufigkeit	•	
45	Brust	0.0340		
	Eierstock-Uterus	0.0023		
	Endokrines_Gewebe	0.0000		
	Foetal	0.0006		
	Gastrointestinal	0.0000		
50	Haematopoetisch	0.0057		
	Haut-Muskel	0.0032		
	Hoden	0.0000		
	Lunge	0.0656		
	Nerven			
55	Prostata			
33	Sinnesorgane			
	•			

60

65

Elektronischer Northern für SEQ. ID. NO: 12

	J			
	NORMAL	TUMOR	Verhaeltnisse	
	%Haeufigkeit	%Haeufigkei		
Blase	0.0093	0.0026	3.6370 0.2750	_
Brust	0.0160	0.0545	0.2936 3.4065	5
Eierstock	0.0061	0.0078	0.7791 1.2836	
Endokrines Gewebe	0.0091	0.0082	1.1163 0.8958	
Gastrointestinal		0.0000	undef 0.0000	
	0.0034	0.0000	undef 0.0000	
Haematopoetisch		0.0000	undef 0.0000	10
• -	0.0149	0.0000	undef 0.0000	
Hepatisch		0.0000	undef undef	
-	0.0021	0.0275	0.0771 12.9744	
	0.0021	0.0000	undef 0.0000	
	0.0025	0.0000	undef 0.0000	15
Magen-Speiseroehre		0.0000		
Muskel-Skelett			undef undef	
	0.0089	0.0000	undef 0.0000	
		0.0000	undef 0.0000	
Pankreas		£.0000	undef 0.0000	
	0.0120	0.0000	undef 0.0000	20
Prostata		0.0106	0.4475 2.2349	
	0.0066	0.0000	undef 0.0000	
Brust-Hyperplasie				
Duenndarm			• •	
Prostata-Hyperplasie				25
Samenblase				
Sinnesorgane				
Weisse_Blutkoerperchen	0.0044			
			·	
				30
	FOETUS			
	%Haeufigkeit			
Entwicklung				
Gastrointenstinal			•	
Gehirn				35
Haematopoetisch				
Herz-Blutgefaesse				
_	0.0074		•	•
	0.0000			
Prostata			•	40;
Sinnesorgane	0.0000			40;
	NODWIEDER /CITE	MDAUTEDBE DI		
	NORMIERTE/SUB %Haeufigkeit	IVAUITEKIE BI	TOUTOLUEVEN	
Dwint	0.0000		-	45
Eierstock-Uterus				43
Endokrines_Gewebe				
Foetal		•		
Gastrointestinal				
Haematopoetisch				
Haut-Muskel				50
	0.0000			
	0.0000			
Nerven				
Prostata		•		
Sinnesorgane				55
Simesorgane	0.0000			

60

Elektronischer Northern für SEQ, ID. NO: 13

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	n/T T/N
5	•	0.0186	0.0128	1.4548 0.6874
		0.0093	0.0283	0.3293 3.0366
	Eierstock		0.0026	4.6745 0.2139
	Endokrines_Gewebe		0.0136	1.7414 0.5742
	Gastrointestinal	0.0271	0.0000	undef 0.0000
10	Gehirn	0.0068	0.0120	0.5630 1.7762
10	Haematopoetisch	0.0084	0.0000	undef 0.0000
	Haut	0.0050	0.0000	undef 0.0000
	Hepatisch	0.0198	0.0065	3.0606 0.3267
	Herz	0.0307	0.0275	1.1176 0.8948
	Hoden	0.0122	0.0234	0.5224 1.9144
15	Lunge	0.0125	0.0047	2.6336 0.3797
	Magen-Speiseroehre		0.0230	1.2599 0.7937
	Muskel-Skelett		0.0180	0.4758 2.1015
		0.0119	0.0137	0.8683 1.1517
	Pankreas		0.0166	0.208943.2753
20		0.0539	0.0000	undef 0.0000
	Prostata		0.0341	0.6292 1.5892
		0.0446	0.0142	3.1331 0.3192
	Brust-Hyperplasie		0.0142	3.1331 0.3132
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane Weisse Blutkoerperchen			
	wersse_bruckoerperchen	0.0104		
30				
30		EORBITO		
		FOETUS		•
	Entwicklung	%Haeufigkeit		
	Gastrointenstinal			•
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse.			
		0.0370	•	
	_	0.0062		
	Prostate			
40	Sinnesorgane			
	oriniesorgane	0.000		
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
45		0.0204		
	Eierstock-Uterus	0.0114		
	Endokrines Gewebe	0.0245		
	Foetal	0.0099		
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge			•
	Nerven			
55	Prostata			
<i></i>	Sinnesorgane	0.0155		
	-	•		

60

Elektronischer Northern für SEQ. ID. NO: 14

0.0000 0.0080 0.0061	0.0077 0.0261 0.0234	0.0000 undef 0.3058 3.2702 0.2597 3.8507		5
0.0078 0.0076 0.0182 0.0000	0.0048 0.0077 0.0000 0.0000	1.6285 0.6141 0.9953 1.0047 undef 0.0000 undef undef		10
0.0042 0.0061 0.0125 0.0097 0.0034	0.0000 0.0000 0.0165 0.0153 0.0000	undef 0.0000 undef 0.0000 0.7524 1.3290 0.6300 1.5874 undef 0.0000		15
0.0149 0.0019 0.0090 0.0524 0.0066	0.0137 0.0055 0.0267 0.0341 0.0000	1.0854 0.9213 3.3428-2.9568 0.3369 2.9680 1.5381 0.6501 undef 0.0000	·	20
0.0062 0.0386 0.0000 0.0235				25
FOETUS %Haeufigkeit 0.0154				30
0.0092 0.0000 0.0000 0.0041 0.0259				35
0.0247 0.0000 0.0000		. **		40
%Haeufigkeit	TRAHIERTE BIBI	LIOTHEKEN		45
0.0183 0.0000 0.0181				
0.0285 0.0324 0.0078 0.0246				50
0.0020 0.0705				55
	*Haeufigkeit 0.0000 0.0080 0.0061 0.0073 0.0078 0.0076 0.0182 0.0000 0.0000 0.0042 0.0061 0.0125 0.0097 0.0034 0.0149 0.0619 0.00524 0.0066 0.0036 0.0062 0.0386 0.0000 0.0235 0.0113 FOETUS *Haeufigkeit 0.0154 0.0092 0.0000 0.0235 0.0113 FOETUS *Haeufigkeit 0.0154 0.0092 0.0000 0.0235 0.0113	*Haeufigkeit *Haeufigkeit 0.0000	**Haeufigkeit	#Haeufigkeit #Haeufigkeit N/T T/N 0.0000 0.0077 0.0000 undef 0.0080 0.0261 0.3058 3.2702 0.0061 0.0234 0.2597 3.8507 0.0073 0.0163 0.4465 2.2395 0.0078 0.0048 1.6285 0.6141 0.0076 0.0077 0.9953 1.0047 0.0182 0.0000 undef 0.0000 0.0000 0.0000 undef 0.0000 undef 0.0000 0.0001 0.0000 undef 0.0000 undef 0.0000 0.0041 0.0000 undef 0.0000 0.0125 0.0165 0.7524 1.3290 0.0097 0.0153 0.6300 1.5874 0.0034 0.0000 undef 0.0000 0.0149 0.0137 1.0854 0.9213 0.0619 0.3055 3.3426 2.3268 0.0090 0.0267 0.3369 2.9680 0.0524 0.0341 1.5381 0.6501 0.0066 0.0000 undef 0.0000 0.0036 0.0062 0.03386 0.0062 0.03386 0.0062 0.03360 0.0000 0.0237 0.0000 0.0000 0.00131 NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN #Haeufigkeit 0.0193 0.0000 0.0021 0.0036 0.0000 0.0036 0.0000 0.0037 0.0036 0.0000 0.0037 0.0036 0.0000 0.00386 0.0000 0.00386 0.0000 0.00397 0.0000

19

Elektronischer Northern für SEQ. ID. NO: 15

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5		0.0093	0.0102	0.9092 1.0998
		0.0027	0.0196	0.1359 7.3580
	Eierstock		0.0234	0.0000 undef
	Endokrines_Gewebe		0.0381	0.1435 6.9675
	Gastrointestinal		0.0143	0.4071 2.4562
10		0.0076	0.0066	1.1612 0.8612
10	Haematopoetisch		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Hepatisch		0.0000	undef undef
	Herz	0.0201	0.0000	undef 0.0000
1.5		0.0122	0.0000	undef 0.0000
15	Lunge	0.0100	0.0165	0.6020 1.6612
	Magen-Speiseroehre	0.0000	0.0153	0.0000 undef
	Muskel-Skelett	0.0017	0.0060	0.2855 3.5025
	Niere	0.0119	0.0137	0.8683 1.1517
	Paniessus	0.0038	0.0000	undef 0.0560
20	Porcis	0:0120	0.0000	undef 0.0000
	Prostata	0.0095	0.0128	0.7458 1.3409
	Uterus	0.0066	0.0142	0.4642 2.1544
	Brust-Hyperplasie			
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal		•	
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
	•	0.0185		
		0.0124		
40 e s	Prostata			
	'Sinnesorgane'	,0.0140		
	•			
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
45	Brust	0.0000		
	Eierstock-Uterus	0.0068	•	
	Endokrines_Gewebe	0.0000		
	Foetal	0.0064		
	Gastrointestinal	0.0122		
50	Haematopoetisch			
	Haut-Muskel	0.0130	•	
		0.0312		
	Lunge	0.0164		
	Nerven	0.0070		
55	Prostata	0.0128		
	Sinnesorgane	0.0000		•

60

Elektronischer Northern für SEQ. ID. NO: 17

Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0018 0.0271 0.0000	TUMOR %Haeufigkeit 0.0077 0.0240 0.0130 0.0000 0.0095 0.0000 0.0000	Verhaeltnisse N/T T/N 0.6062 1.6497 0.1668 5.9954 0.2337 4.2786 undef 0.0000 2.8499 0.3509 undef undef undef 0.0000	5
Haut Hepatisch Herz Hoden	0.0448	0.0000 0.0000 0.0000 0.0000 0.0234 0.0071	undef 0.0000 undef undef undef undef 0.0000 undef 1.2290 0.8137	15
Magen-Speiseroehre Muskel-Skelett	0.0869 0.0000 0.0000	0.0230 0.0000 0.0000 0.0000	3.7798 0.2646 undef undef undef undef undef undef	
Prostata Uterus Brust-Hyperplasie	0.0048 0.0116 0.0000	0.0533 0.0021 0.0000	0.3369 2.9680 2.2373 0.4470 undef 0.0000	.20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0089 0.0118		,	25
Entwicklung				30
Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0039 0.0000 0.0074			35
Niere Prostata Sinnesorgane			•	49 .
	NORMIERTE/SUBT	TRAHIERTE BIB	Liotheken	
Eierstock-Uterus Endokrines_Gewebe	0.0000			45
Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0057			50
Lunge Nerven Prostata Sinnesorgane	0.0000 -			55

Elektronischer Northern für SEQ. ID. NO: 18

```
TUMOR
                            NORMAL
                                                       Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T T/N
                      Blase 0.0000
                                          0.0077
                                                       0.0000 undef
 5
                                                       0.1359 7.3580
                      Brust 0.0027
                                          0.0196
                                          0.0208
                  Eierstock 0.0030
                                                       0.1461 6.8457
          Endokrines Gewebe 0.0182
                                          0.0109
                                                       1.6745 0.5972
           Gastrointestinal 0.0019
                                                       undef 0.0000
                                          0.0000
                     Gehirn 0.0051
                                          0.0099
                                                       0.5161 1.9377
10
            Haematopoetisch 0.0028
                                          0.0000
                                                       undef 0.0000
                       Haut 0.0000
                                          0.0000
                                                       undef undef
                  Hepatisch 0.0050
                                          0.0065
                                                       0.7651 1.3069
                       Herz 0.0085
                                          0.0000
                                                       undef 0.0000
                                          0.0117
                                                       0.0000 undef
                      Hoden 0.0000
15
                      Lunge 0.0100
                                          0.0071
                                                       1.4046 0.7120
        Magen-Speiseroehre 0.0097
                                          0.0000
                                                       undef 0.0000
            Muskel-Skelett 0.0188
                                          0.0060
                                                       3.1406 0.3184
                      Niere 0.0030
                                          0.0000
                                                       undef 0.0000
Pankreas 0.0000
                                          0.0655
                                                       0.0000 undef
20
                      Penis 0.0090
                                          0.0533
                                                       U.1685 5.9360
                   Prostata 0.0191
                                          0.0106
                                                       1.7898 0.5587
                                          0.0071
                     Uterus 0.0116
                                                       1.6246 0.6155
         Brust-Hyperplasie 0.0036
                  Duenndarm 0.0062
25
      Prostata-Hyperplasie 0.0208
                 Samenblase 0.0089
               Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0044
30
                            FOETUS
                            %Haeufigkeit
                Entwicklung 0.0154
         Gastrointenstinal 0.0062
                     Gehirn 0.0000
35
           Haematopoetisch 0.0118
         Herz-Blutgefaesse 0.0245
                      Lunge 0.0074
                      Niere 0.0000
                   Prostata 0.0000
40
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0136
          Eierstock-Uterus 0.0000
         Endokrines_Gewebe 0.0000
                     Foetal 0.0082
          Gastrointestinal 0.0122
50
           Haematopoetisch 0.0456
                Haut-Muskel 0.0097
                      Hoden 0.0078
                     Lunge 0.0164
                     Nerven 0.0050
                   Prostata 0.0064
55
              Sinnesorgane 0.0000
```

65

Elektronischer Northern für SEQ. ID. NO: 19

Brust	0.0000 0.0120	TUMOR %Haeufigkeit 0.0000 0.0763	undef undef 0.1573 6.3588	5
Eierstock		0.0234	2.5969 0.3851	
Endokrines_Gewebe		0.0245	0.2977 3.3593	
Gastrointestinal		0.1000	0.8724 1.1462	
	0.0017	0.0000	undef 0.0000	10
Haematopoetisch		0.0000	undef 0.0000	
Haut Hepatisch	0.0000	0.0000	undef undef	
•	0.0011	0.0388	0.3826 2.6139 undef 0.0000	
	0.0000	0.0000	undef undef	
	0.0050	0.0355	0.1405 7.1196	15
Magen-Speiseroehre		0.0230	0.0000 undef	
Muskel-Skelett		0.0000	undef undef	
	0.0000	0.0000	undef undef	
?: Pankreas		1.0165	3.000 3.000 a.m. 3.000.0	
	0.0000	0.0000	undef undef	20
Prostata	0.0119	0.0958	0.1243 8.0455	
Uterus	0.0017	0.0214	0.0774 12.9263	
Brust-Hyperplasie	0.0073			
Duenndarm	0.0436			
Prostata-Hyperplasie	0.0119			25
Samenblase	0.0089			
Sinnesorgane	0.0470			
Weisse_Blutkoerperchen	0.0009			
				. 30
				. 50
	FOETUS	•		50
Entwicklung	%Haeufigkeit	•		
Entwicklung	%Haeufigkeit 0.0000			
Gastrointenstinal	%Haeufigkeit 0.0000 0.0247			
Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0247 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		•	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata	*Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	TRAHIERTE BIB	Liotheken	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust	*Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB *Haeufigkeit 0.0000	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0205	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	*Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB *Haeufigkeit 0.0000 0.0205 0.0000	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0205 0.0000 0.0052	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0205 0.0000 0.0052 0.0366	TRAHIERTE BIB	LIOTHEKEN	35 49 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0205 0.0000 0.0052 0.0366 0.0000	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0205 0.0000 0.0052 0.0366 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 49 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0205 0.0000 0.0052 0.0000 0.0052 0.0000 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 49 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0205 0.0000 0.0052 0.0000 0.0052 0.0000 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 49 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	*Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB **Haeufigkeit 0.0000 0.0205 0.0000 0.025 0.0000 0.052 0.0366 0.0000 0.0000 0.0000 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	45 50
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Frostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	*Haeufigkeit 0.0000 0.0247 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB **Haeufigkeit 0.0000 0.0205 0.0000 0.052 0.0000 0.0052 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 49 45

Elektronischer Northern für SEQ. ID. NO: 20

	•	•		•
		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0000	0.0051	0.0000 undef
-	Brust	0.0040	0.0240	0.1668 5.9954
	Eierstock	0.0182	0.0078	2.3372 0.4279
	Endokrines Gewebe	0.0164	0.0245	0.6698 1.4930
	Gastrointestinal		0.0190	1.1196 0.8932
		0.0144	0.0186	0.7741 1.2918
10	Haematopoetisch		0.0000	undef 0.0000
	-	0.0000	0.0000	undef undef
	Hepatisch		0.0065	
	<u>=</u>	0.0138	0.0000	3.8257 0.2614
		0.0138		undef 0.0000
15		0.0199	0.0000	undef 0.0000
			0.0165	1.2039 0.8306
	Magen-Speiseroehre Muskel-Skelett	0.0097	0.0230	0.4200 2.3811
			0.0000	undef 0.0000
		0.0119	0.0137	0.8683 1.7517
20	Pankreas		0.0000	undef 3.3330
20		0.0150		undef 0.0000
	Prostata			0.6215 1.6091
		0.0132	0.0142	0.9283 1.0772
	Brust-Hyperplasie			
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase	0.0178		
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0044		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal	0.0062		
35	Gehirn	0.0125		
	Haematopoetisch			
	Herz-Blutgefaesse	0.0000		
	Lunge	0.0111		
		0.0185		
40 .	Prestata			
40 .	Sinnesorgane	0.0140		•
		• •		
		NORMIERTE/SUB	FRAHIERTE BIBI	LIOTHEKEN
		%Haeufigkeit		
45	Brust	0.0000		
	Eierstock-Uterus	0.0068		
	Endokrines_Gewebe	0.0000		
	Foetal	0.0058		
	Gastrointestinal			
50	Haematopoetisch	0.0114		
	Haut-Muskel			•
	Hoden	0.0000		
	Lunge	0.0000		
	Nerven			
55	Prostata	0.0385	•	
55	Sinnesorgane			•

65

Elektronischer Northern für SEQ. ID. NO: 21

	NORMAL	TUMOR	Verhaeltnisse	
	%Haeufigkeit	%Haeufigkeit	N/T · T/N	
Blase	0.0000	0.0026	0.0000 undef	5
Brust	0.0067	0.0261	0.2548 3.9243	3
Eierstock		0.0000	undef undef	
Endokrines_Gewebe		0.0000	undef 0.0000	
Gastrointestinal	0.0039	0.0048	0.8143 1.2281	
	0.0017	0.0022	0.7741 1.2918	••
Haematopoetisch	0.0112	0.0000	undef 0.0000	10
	0.0050	0.0000	undef 0.0000	·
Hepatisch	0.0000	0.0065	0.0000 undef	
	0.0042	0.0137	0.3083 3.2436	
	0.0000	0.0000	undef undef	_
	0.0037	0.0024	1.5801 0.6329	15
Magen-Speiseroehre	0.0000	0.0000	undef undef	
Muskel-Skelett	0.0034	0.0000	undef 0.0000	
Niere	0.0030	0.0137	0.2171 4.6066	
* Saukreas	0.0000	€.0055	0.0000 ಮಾಜಿಂದ	
Penis	ü.0060	0.0000	undef 0.0000	in in
Prostata	0.0024	0.0000	undef 0.0000	
Uterus	0.0017	0.0000	undef 0.0000	
Brust-Hyperplasie	0.0073			
Duenndarm	0.0000			
Prostata-Hyperplasie	0.0000			25
Samenblase	0.0000			~
Sinnesorgane	0.0000			
Weisse Blutkoerperchen				
_				
			-	30
	FOETUS			30
	% Haeufigkeit			
Entwicklung	0.0000			
Gastrointenstinal				
Gehirn	0.0000			25
Haematopoetisch	0.0039			35
Herz-Blutgefaesse	0.0000			
Lunge	0.0000			
Niere	0.0000			
Prostata	0.0000			•
Sinnesorgane	0.0000		•	40
•	NORMIERTE/SUB	TRAHIERTE BIB	Liotheken	
•	%Haeufigkeit			
	0.0068			45
Eierstock-Uterus				
Endokrines_Gewebe				
Foetal				
Gastrointestinal				
Haematopoetisch				50
Haut-Muskel				
	0.0000			
	0.0000			
Nerven				
Prostata				55
Sinnesorgane	0.0000		•	55

Elektronischer Northern für SEQ. ID. NO: 22

		NORMAL	TUMOR %Haeufigkeit	Verhaeltnisse
_	Rlase	0.0046	0.0051	
5		0.0093	0.0218	0.9092 1.0998
	Eierstock		0.0218	0.4281 2.3359
	Endokrines_Gewebe		0.0000	0.7791 1.2836
	Gastrointestinal			undef 0.0000
		0.0059	0.0000	undef 0.0000
10	Haematopoetisch		0.0033	1.8062 0.5536
	•	0.0120	0.0000 0.0847	undef 0.0000
	Hepatisch		0.0000	0.0587 17.0262
		0.0138	0.0137	undef 0.0000 1.0020 0.9980
		0.0061	0.0000	
15		0.0112	0.0024	undef 0.0000 4.7404 0.2110
	Magen-Speiseroehre		0.0537	
·	Muskel-Skelett		0.0180	0.1800 5.5559 0.4758 2.1015
		0.0119	0.0180	
			0.0000	0.4342 2.3033
20			0.0067	undef 0.0000
	Prostata		0.0207	0.1123 8.9040
		0.0033		3.3559 0.2980
	Brust-Hyperplasie		0.0071	0.4642 2.1544
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
	"orono" pracyocrporomen	0.0070		•
30		•		
50		FOETUS		
		%Haeufigkeit		•
	Entwicklung			
	Gastrointenstinal	0.0092		
35	Gehirn	0.0125		
33	Haematopoetisch	0.0157		
	Herz-Blutgefaesse	0.0041		
	Lunge	0.0037		
	Niere	0.0000		
40	Prostata	0.0000		
40 117	Sinnesorgane	0.0000		
		MARKETTER / ATT		
		NORMIERTE/SUB	rkahierte bibi	LIOTHEKEN
45	Domina	%Haeufigkeit		
43	Eierstock-Uterus	0.0000		
	Endokrines_Gewebe			
	Foetal			
50	Gastrointestinal Haematopoetisch			
50	Haut-Muskel			
		0.0000		
		0.0000		
	Nerven			
	Prostata			
55	Sinnesorgane			
			•	

65

Elektronischer Northern für SEQ. ID. NO: 23

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz Hoden	0.0000 0.0040 0.0030 0.0109 0.0136 0.0059 0.0056 0.0597 0.0000 0.0064 0.0000 0.0012	TUMOR %Haeufigkeit 0.0077 0.0131 0.0000 0.0000 0.0048 0.0099 0.0000 0.0000 0.0065 0.0137 0.0351 0.0095 0.0230 0.0060	Verhaeltnisse N/T T/N 0.0000 undef 0.3058 3.2702 undef 0.0000 undef 0.0000 2.8499 0.3509 0.6021 1.6609 undef 0.0000 undef 0.0000 0.0000 undef 0.4624 2.1624 0.0000 undef 0.1317 7.5943 0.8399 1.1905 1.1420 0.8756		10
	0.0059	0.0068	0.8683 1.1517		
Pankreas	0.0038	0.0000	undef 0.0000	¥.	Yes
Penis	0.0000	0.0000	undef undef		20
Prostata	0.0143	0.0213	0.6712 1.4899		
	0.0066	0.0000	undef 0.0000		
Brust-Hyperplasie					
Duenndarm					
Prostata-Hyperplasie					25
Samenblase Sinnesorgane					
Weisse_Blutkoerperchen					
	0.0011				
Entwicklung	FOETUS %Haeufigkeit 0.0154			·	30
Gastrointenstinal	0.0031				
	0.0250				
Haematopoetisch					35
Herz-Blutgefaesse					
_	0.0037				
	0.0185				
Prostata Sinnesorgane					40
Dimesorgane	0.0000				
	•				
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN		
	%Haeufigkeit			•	
	0.0136				45
Eierstock-Uterus					
Endokrines_Gewebe	0.0000				
Foetal					
Gastrointestinal Haematopoetisch					
Haut-Muskel					50
	0.0000				
Lunge					
Nerven					
Prostata					
Sinnesorgane	0:0077	•			55

Elektronischer Northern für SEQ. ID. NO: 24

5	Blase		TUMOR %Haeufigkeit 0.0102	Verhaeltnisse N/T T/N 0.4546 2.1996
,	Brust	0.0027	0.0174	0.1529 6.5404
	Eierstock	0.0152	0.0234	0.6492 1.5403
	Endokrines Gewebe		0.0327	0.4465 2.2395
	Gastrointestinal	0.0291	0.0095	3.0535 0.3275
10	Gehirn	0.0203	0.0252	0.8078 1.2380
10	Haematopoetisch	0.0084	0.0000	undef 0.0000
	Haut	0.0149	0.0000	undef 0.0000
		0.0137	0.0118	1.1588 0.8630
	Magen-Speiseroehre		0.0153	0.6300 1.5874
15	Muskel-Skelett		0.0060	3.4261 0.2919
		0.0327	0.0411	0.7960 1.2563
	Pankreas		0.0221	0.5143 1.9446
		0.0329	0.0000	undef 0.0000
	Prostata		0.0234	1.2203 0.8195
24.			9.0074	I 328 0.4309
-	Brust-Hyperplasie			
	Duenndarm			
	Prostata-Hyperplasie Samenblase			
	Sinnesorgane			
25	Weisse Blutkoerperchen			
	wershe Procyoerberchen	0.0122		
	•			
		FOETUS		
		%Haeufigkeit		
30	Entwicklung			
	Gastrointenstinal			
	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
35	_	0.0111 0.0124		
	Prostata			
	Sinnesorgane			
	52,23,000,302,0	,		
40	•			
1,00		NORMIERTE/SUB	FRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
		0.0000	•	
	Eierstock-Uterus			
45	Endokrines_Gewebe			
43	Foetal			
	Gastrointestinal			
	Haematopoetisch Haut-Muskel			
		0.0156		
50		0.0246		
50	Nerven			
	Prostata			
	Sinnesorgane		·	*

Elektronischer Northern für SEQ. ID. NO: 25

	0.0000 0.0040 0.0000	TUMOR %Haeufigkeit 0.0051 0.0131 0.0052	Verhaeltnisse N/T T/N 0.0000 undef 0.3058 3.2702 0.0000 undef 1.3396 0.7465	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0039 0.0102 0.0084 0.0000 0.0000	0.0048 0.0077 0.0000 0.0000 0.0000	0.8143 1.2281 1.3270 0.7536 undef 0.0000 undef undef undef undef	10
Hoden		0.0137 0.0000 0.0047 0.0000 0.0240	0.0000 undef undef undef 0.2634 3.7971 undef undef	15
Niere Pankreas Penis Prostata	0.0059 0.0000 0.0030	0.0068 0.0000 0.0267 0.0064 0.0071	0.1428 7.0051 0.8683 1.1517 undef gurdef 0.1123 8.9040 0.0000 undef 0.2321 4.3088	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0062 0.0059 0.0000 0.0118			25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit			30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0000 0.0000			35
_	0.0000			40 ·
Eierstock-Uterus Endokrines_Gewebe	0.0000	TRAHIERTE BIB	LIOTHEKEN	45
	0.0000 0.0000			50
Nerven Prostata Sinnesorgane	0.0040 0.0000			55

60

Elektronischer Northern für SEQ. ID. NO: 26

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T T/N
                      Blase 0.0186
                                                        1.8185 0.5499
                                          0.0102
5
                      Brust 0.0053
                                          0.0131
                                                        0.4077 2.4527
                  Eierstock 0.0091
                                          0.0182
                                                        0.5008 1.9967
          Endokrines Gewebe 0.0055
                                          0.0109
                                                        0.5023 1.9907
           Gastrointestinal 0.0097
                                          0.0143
                                                        0.6786 1.4737
                     Gehirn 0.0017
                                                        0.3871 2.5836
                                          0.0044
10
            Haematopoetisch 0.0126
                                          0.0378
                                                        0.3327 3.0061
                       Haut 0.0348
                                          0.0000
                                                        undef 0.0000
                  Hepatisch 0.0050
                                          0.0000
                                                        undef 0.0000
                       Herz 0.0148
                                          0.0000
                                                        undef 0.0000
                      Hoden 0.0061
                                                        undef 0.0000
                                          0.0000
15
                      Lunge 0.0050
                                          0.0142
                                                        0.3511 2.8478
        Magen-Speiseroehre 0.0097
                                          0.0153
                                                        0.6300 1.5874
             Muskel-Skelett 0.0103
                                          0.0060
                                                       1.7130 0.5838
                      Niere 0.0119
                                          0.0479
                                                        0.2481 4.0308
                   lankreas 0.0038
                                                       0.0857 12:8573
                                          0.0442
20
                      Penis 0.0060
                                          0.0000
                                                       undef 0.0000
                   Prostata 0.0143
                                          0.0149
                                                        0.9588 1.0429
                     Uterus 0.0033
                                          0.0142
                                                       0.2321 4.3088
         Brust-Hyperplasie 0.0073
                  Duenndarm 0.0093
25
      Prostata-Hyperplasie 0.0119
                 Samenblase 0.0178
               Sinnesorgane 0.0000
    Weisse_Blutkoerperchen 0.0131
30
                            FOETUS
                            %Haeufigkeit
                Entwicklung 0.0307
         Gastrointenstinal 0.0031
                     Gehirn 0.0000
35
           Haematopoetisch 0.0118
         Herz-Blutgefaesse 0.0082
                      Lunge 0.0037
                      Niere 0.0062
                   Prostata 0.0249
404
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                      Brust 0.0068
          Eierstock-Uterus 0.0228
         Endokrines_Gewebe 0.0000
                    Foetal 0.0216
          Gastrointestinal 0.0000
           Haematopoetisch 0.0000
50
               Haut-Muskel 0.0648
                      Hoden 0.0000
                      Lunge 0.0000
                    Nerven 0.0050
                  Prostata 0.0000
55
              Sinnesorgane 0.0000
```

60

Elektronischer Northern für SEQ. ID. NO: 27

•	••				
	NORMAL	TUMOR	Verhaeltnisse		
		%Haeufigkeit	N/T T/N		
	0.0093	0.0077	1.2123 0.8249		5
	0.0067	0.0131	0.5096 1.9621		-
Eierstock		0.0000	undef undef		
Endokrines_Gewebe		0.0000	undef 0.0000		
Gastrointestinal		0.0000	undef 0.0000		
	0.0042	0.0175	0.2419 4.1338	-	10
Haematopoetisch		0.0000	undef 0.0000	_	10
	0.0050	0.0000	undef 0.0000		
Hepatisch		0.0000	undef undef		
	0.0064	0.0412	0.1541 6.4872		
	0.0061	0.0000	undef 0.0000		15
	0.0062	0.0000	undef 0.0000		13
Magen-Speiseroehre		0.0153	0.0000 undef		
Muskel-Skelett		0.0120	0.1428 7.0051	•	
	0.0089	0.0000	undef 0.0000		
	G. 2038	0.0000	undef 0.0000		20
		0.0267	0.0000 undef	ž. •	20 •
Prostata		0.0021	4.4745 0.2235		
	0.0033	0.0142	0.2321 4.3088		
Brust-Hyperplasie Duenndarm			•		
Prostata-Hyperplasie Samenblase					25
Sinnesorgane					
Weisse Blutkoerperchen					
wersse_bluckOelperchen	0.0003				
					20
	FOETUS				30
	%Haeufigkeit				
Entwicklung	0.0307				
Gastrointenstinal	0.0062				
Gehirn	0.0250				25
Haematopoetisch	0.0197				35
Herz-Blutgefaesse	0.0000				
	0.0185				
	0.0062				
Prostata				••	
Sinnesorgane	0.0558				4C
					:
	NODMIEDTE /cmp	TO THE PROTECTION	TOBUEVEN		
	NORMIERTE/SUB	TRADIERIE BIB	LIOTHEKEN		
Renet	0.0068				45
Eierstock-Uterus					45
Endokrines Gewebe					
Foetal					
Gastrointestinal					
Haematopoetisch					50
Haut-Muskel					50
	0.0000				
	0.0082				
Nerven					
Prostata					
Sinnesorgane					55
-					

Elektronischer Northern für SEQ. ID. NO: 28

		******		<u>.</u>
		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5		0.0000	0.0000	undef undef
		0.0080	0.0174	0.4587 2.1801
	Eierstock		0.0000	undef undef
	Endokrines_Gewebe		0.0027	2.0093 0.4977
	Gastrointestinal		0.0095	0.2036 4.9124
10		0.0034	0.0110	0.3096 3.2295
10	Haematopoetisch	0.0000	0.0000	undef undef
	Haut	0.0099	0.0000	undef 0.0000
	Hepatisch	0.0000	0.0194	0.0000 undef
	Herz	0.0053	0.0137	0.3854 2.5949
	Hoden	0.0000	0.0000	undef undef
15	Lunge	0.0037	0.0024	1.5801 0.6329
	Magen-Speiseroehre	0.0000	0.0000	undef undef
	Muskel-Skelett	0.0034	0.0060	0.5710 1.7513
		0.0000	0.0000	undef undef
	Pank 1918	0.0013	3 8281	0.0857 11.6573
20		0.0060		undef 0.0000
	Prostata		0.0043	0.5593 1.7879
		0.0050		0.1741 5.7450
	Brust-Hyperplasie		******	0.1141 0.7450
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			•
	Sinnesorgane			
	Weisse_Blutkoerperchen			
30	•			
50		FOETUS		
		%Haeufigkeit		
	Entwicklung	_		
	Gastrointenstinal	0.0031		
25	Gehirn	0.0000		
35	Haematopoetisch	0.0000		
	Herz-Blutgefaesse	0.0000		
		0.0037		
	Niere	0.0000		
	Prostata	0.1347	,	
40	Sinnesorgane	0.0000	• •	
	_			
		NORMIERTE/SUBT	TRAHIERTE BIBI	LIOTHEKEN
		%Haeufigkeit		
45 -		0.0068		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal			•
50	Haematopoetisch			
	Haut-Muskel			
		0.0078		•
		0.0082		
	Nerven			
55	Prostata			
	Sinnesorgane	U.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 29

	NORMAL	MINOD	77	
		TUMOR	Verhaeltnisse	
Place	0.0000	%Haeufigkeit		
	0.0013	0.0102	0.0000 undef	5
Eierstock		0.0109	0.1223 8.1755	
Endokrines Gewebe		0.0052	0.5843 1.7114	
Gastrointestinal		0.0082	0.4465 2.2395	
	0.0058	0.0000	undef 0.0000	
Haematopoetisch		0.0307	0.0829 12.0569	10
	0.0050	0.0000	undef 0.0000	
Hepatisch		0.0000	undef 0.0000	
_	0.0000	0.0000	undef 0.0000	
	0.0000	0.0000 0.0234	undef undef	
	0.0037		0.0000 undef	15
Magen-Speiseroehre		0.0000	undef 0.0000	13
Muskel-Skelett		0.0000	undef undef	
	0.0001	0.0060	0.8565 1.1675	
Pankreas		0.0205	0.0000 undef	
	0.0000			
		0.0000	unsef uncef	20
Prostata			1.6779 v.5960	
	0.0033	0.0000	undef 0.0000	
Brust-Hyperplasie Duenndarm				
Prostata-Hyperplasie				
Samenblase				25
Sinnesorgane Weisse_Blutkoerperchen				
*ersse_bruckoerperchen	0.0226	•		
	FOETUS			30
	%Haeufigkeit		·	
Entwicklung				
Gastrointenstinal				
Gehirn	0.0000			
Haematopoetisch	0.0197			35
Herz-Blutgefaesse	0.0000			
Lunge	0.0000			
Niere	0.0000			,
Prostata	0.0000	•		
Sinnesorgane	0.0000	• ,	•	40
	NORMIERTE/SUBT	FRAHIERTE BIBI	JOTHEKEN	
	%Haeufigkeit	TRAHIERTE BIBI	JOTHEKEN	
Brust	%Haeufigkeit 0.0204	FRAHIERTE BIBI	JOTHEKEN	45
Brust Eierstock-Uterus	%Haeufigkeit 0.0204 0.0023	FRAHIERTE BIBI	JOTHEKEN	45
Brust Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0204 0.0023 0.0000	FRAHIERTE BIBI	JOTHEKEN	45
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023	FRAHIERTE BIBI	JOTHEKEN	45
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023 0.0000	FRAHIERTE BIBI	JOTHEKEN	45
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023 0.0000 0.0114	FRAHIERTE BIBI	JOTHEKEN	45
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023 0.0000 0.0114 0.0000	FRAHIERTE BIBI	JOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023 0.0000 0.0114 0.0000 0.0000	FRAHIERTE BIBI	JOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023 0.0000 0.0114 0.0000 0.0000 0.0164	FRAHIERTE BIBI	IOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023 0.0000 0.0114 0.0000 0.0000 0.0164 0.0030	FRAHIERTE BIBI	IOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023 0.0000 0.0114 0.0000 0.0164 0.0030 0.0128	FRAHIERTE BIBI	JOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0204 0.0023 0.0000 0.0023 0.0000 0.0114 0.0000 0.0164 0.0030 0.0128	FRAHIERTE BIBI	JOTHEKEN	50

33

60

Elektronischer Northern für SEQ. ID. NO: 30

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                            T/N
                      Blase 0.0186
                                          0.0153
                                                        1.2123 0.8249
                      Brust 0.0133
                                          0.0436
                                                        0.3058 3.2702
                  Eierstock 0.0182
                                          0.0130
                                                        1.4023 0.7131
          Endokrines Gewebe 0.0073
                                          0.0191
                                                        0.3827 2.6128
           Gastrointestinal 0.0194
                                          0.0095
                                                        2.0357 0.4912
                     Gehirn 0.0237
                                          0.0449
                                                        0.5287 1.8916
10
            Haematopoetisch 0.0098
                                                        undef 0.0000
                                          0.0000
                       Haut 0.0099
                                          0.0000
                                                        undef 0.0000
                  Hepatisch 0.0050
                                          0.0065
                                                        0.7651 1.3069
                       Herz 0.0254
                                          0.0550
                                                        0.4624 2.1624
                      Hoden 0.0244
                                          0.0000
                                                        undef 0.0000
15
                      Lunge 0.0224
                                          0.0165
                                                       1.3544 0.7383
         Magen-Speiseroehre 0.0000
                                          0.0307
                                                       0.0000 undef
             Muskel-Skelett 0.0086
                                          0.0180
                                                       0.4758 2.1015
                      Niere 0.0208
                                          0.0205
                                                       1.0130 0.9871
                   Pankreas 0.0114
                                          0.03877
                                                       0.1939 3.4035~
20
                      Penis 0.0120
                                          0.0267
                                                       0.4492 2.2260
                   Prostata 0.0214
                                          0.0128
                                                       1.6779 0.5960
                     Uterus 0.0066
                                          0.0142
                                                       0.4642 2.1544
         Brust-Hyperplasie 0.0073
                  Duenndarm 0.0031
25
      Prostata-Hyperplasie 0.0059
                 Samenblase 0.0000
               Sinnesorgane 0.0118
    Weisse Blutkoerperchen 0.0305
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.1537
         Gastrointenstinal 0.0401
                     Gehirn 0.1126
35
           Haematopoetisch 0.0472
         Herz-Blutgefaesse 0.0164
                      Lunge 0.0481
                     Niere 0.0247
                  Prostata 0.0499
              Sinnesorgane 0.1954
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0544
          Eierstock-Uterus 0.0320
         Endokrines_Gewebe 0.0000
                    Foetal 0.0636
          Gastrointestinal 0.0610
           Haematopoetisch 0.0057
50
               Haut-Muskel 0.1328
                     Hoden 0.0000
                     Lunge 0.0082
                    Nerven 0.0191
                  Prostata 0.0064
55
              Sinnesorgane 0.0000
```

60

Elektronischer Northern für SEQ. ID. NO: 31

Brust Eierstock	0.0046 0.0027 0.0000	TUMOR %Haeufigkeit 0.0026 0.0109 0.0078	1.8185 0.5499 0.2446 4.0878 0.0000 undef		5
Haematopoetisch	0.0078 0.0263 0.0042 0.0050	0.0054 0.0048 0.0110 0.0000 0.0000	0.3349 2.9861 1.6285 0.6141 2.3997 0.4167 undef 0.0000 undef 0.0000 undef 0.0000		10
Herz Hoden	0.0064 0.0000 0.0112 0.0000	0.0275 0.0117 0.0047 0.0000 0.0060	0.2312 4.3248 0.0000 undef 2.3702 0.4219 undef undef 0.8565 1.1675		15
Niere Pankreas Penis Prostata	0.0089 0.0057 0.0150	0.0000 0.0000 0.0000 0.0064 0.0000	undef 0.0000 undef 0.0000 undef 0.0000 0.7458 1.3409 undef undef		20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0036 0.0125 0.0059 0.0089				25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit				30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0063 0.0079 0.0000				35
_			,		40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIB	LIOTHEKEN		45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000				50
Nerven Prostata Sinnesorgane	0.0231 0.0064			·	55

65

Elektronischer Northern für SEQ. ID. NO: 33

```
NORMAL
                                           TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                                      T/N
                       Blase 0.0139
                                           0.0230
                                                        0.6062
5
                                                                      1.6497
                      Brust 0.0013
                                           0.0131
                                                        0.1019
                                                                      9.8107
                  Eierstock 0.0061
                                           0.0078
                                                        0.7791
                                                                      1.2836
          Endokrines Gewebe 0.0128
                                           0.0027
                                                        4.6885
                                                                      0.2133
           Gastrointestinal 0.0174
                                           0.0048
                                                        3.6642
                                                                      0.2729
                     Gehirn 0.0085
                                           0.0142
                                                        0.5955
                                                                      1.6794
10
            Haematopoetisch 0.0056
                                           0.0000
                                                        undef
                                                                      0.0000
                       Haut 0.0249
                                           0.0000
                                                        undef
                                                                      0.0000
                  Hepatisch 0.0000
                                           0.0259
                                                        0.0000
                                                                      undef
                       Herz 0.0159
                                           0.0137
                                                        1.1561
                                                                      0.8650
                      Hoden 0.0000
                                           0.0000
                                                        undef
                                                                      undef
15
                      Lunge 0.0224
                                           0.0260
                                                        0.8619
                                                                      1.1602
        Magen-Speiseroehre 0.0097
                                           0.0000
                                                        undef
                                                                      0.0000
             Muskel-Skelett 0.0154
                                           0.0060
                                                        2.5696
                                                                      0.3892
                      Niere 0.0149
                                           0.0137
                                                        1.0854
                                                                      0.9213
                   Zunkreas 6.9039
                                           0.0110
                                                        0.3128
                                                                      2.9168
20
                      Penis 9.0120
                                           0.0267
                                                        0.4492
                                                                      2.2260
                   Prostata 0.0191
                                          0.0255
                                                        0.7458
                                                                      1.3409
                     Uterus 0.0132
                                          0.0071
                                                        1.8567
                                                                      0.5386
         Brust-Hyperplasie 0.0145
                  Duenndarm 0.0093
25
      Prostata-Hyperplasie 0.0208
                 Samenblase 0.0000
               Sinnesorgane 0.0000
    Weisse_Blutkoerperchen 0.0183
30
                             FOETUS
                             %Haeufigkeit
                Entwicklung 0.0000
         Gastrointenstinal 0.0123
                     Gehirn 0.0063
35
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0041
                      Lunge 0.0037
                      Niere 0.0124
                   Prostata 0.0748
4Q: -
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0204
          Eierstock-Uterus 0.0091
         Endokrines_Gewebe 0.0000
                    Foetal 0.0070
          Gastrointestinal 0.0366
50
           Haematopoetisch 0.0114
               Haut-Muskel 0.0356
                     Hoden 0.0000
                     Lunge 0.0164
```

Nerven 0.0010 Prostata 0.0128

Sinnesorgane 0.0155

65

55

Elektronischer Northern für SEQ. ID. NO: 35

			٧		
	NORMAL	TUMOR	Verhaeltnisse		
21		%Haeufigkeit			
	0.0139	0.0000	undef 0.0000		5
	0.0013	0.0109	0.1223 8.1755		-
Eierstock		0.0078	1.1686 0.8557		
Endokrines_Gewebe Gastrointestinal		0.0082	1.5628 0.6399		
		0.0095	1.0178 0.9825		
Haematopoetisch	0.0068	0.0066	1.0321 0.9689		10
		0.0000	undef 0.0000	•	10
Hepatisch	0.0099	0.0000	undef 0.0000		
	0.0053	0.0000	undef 0.0000		
	0.0000	0.0000 0.0000	undef 0.0000		
	0.0037		undef undef		15
Magen-Speiseroehre		0.0095	0.3950 2.5314		13
Muskel-Skelett		0.0153 0.0060	0.0000 undef		
	0.0149		1.1420 0.8756		
Pankreas		0.0068	2.1708 0.4607		
	0.0120	0.0655. 0.0000	1.0.350.9723	· ·	
Prostata		0.0064	under 0.0000		20
	0.0017	0.0064	0.7458 1.3409		
Brust-Hyperplasie	·	0.0071	0.2321 4.3088		
Duenndarm					
Prostata-Hyperplasie					
Samenblase					25
Sinnesorgane					
Weisse_Blutkoerperchen					
	FOETUS				30
	%Haeufigkeit				
Entwicklung					
Gastrointenstinal	0.0062				
Gehirn	0.0063				
Haematopoetisch	0.0000				35
Herz-Blutgefaesse	0.0041				
Lunge	0.0074	·			
Niere	0.0000				
Prostata					
Sinnesorgane	0.0000				40
				•	•
),OD1/275577 (0				
	NORMIERTE/SUB	rrahierte bibi	LIOTHEKEN		
Proch	%Haeufigkeit 0.0068				
Eierstock-Uterus					45
Endokrines Gewebe					
Foetal					
Gastrointestinal					
Haematopoetisch					
- Haut-Muskel					50
Hoden			•		
Lunge					
Nerven					
Prostata					
Sinnesorgane	0.0000				55
-					

Elektronischer Northern für SEQ. ID. NO: 36

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5		0.0000	0.0026	$0.0000 \mathrm{undef}$
		0.0013	0.0109	0.1223 8.1755
	Eierstock		0.0000	undef undef
	Endokrines_Gewebe		0.0027	0.0000 undef
	Gastrointestinal		0.0000	undef 0.0000
10	Gehirn	0.0051	0.0011	4.6446 0.2153
	Haematopoetisch	0.0042	0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Hepatisch	0.0000	0.0065	0.0000 undef
		0.0000	0.0000	undef undef
15		0.0000	0.0000	undef undef
13		0.0000	0.0000	undef undef
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
••	i distribus		9.0000	undef andef
20	Tenis	0.0000	0.0000	undef undef
	Prostatá	0.0048	0.0021	2.2373 0.4470
	Uterus		0.0000	undef undef
	Brust-Hyperplasie			
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0026		•
30		CODMINA		
		FOETUS		
	Entwicklung	%Haeufigkeit		
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse			
	-	0.0000		
	_	0.0062		
	Prostata			
	Sinnesorgane		•	
-	•			
	÷	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45	-	%Haeufigkeit		
43		0.0000		
	_Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch Haut-Muskel			
	Haut-Muskel Hoden			
	Lunge			
	Lunge Nerven			
	Prostata			
55	Sinnesorgane			
	orimesordane	5.0000		

60

Elektronischer Northern für SEQ. ID. NO: 37

			•	•	
	NORMAL	TUMOR	Verhaeltnisse		
	%Haeufigkeit				
	0.0046	0.0102	0.4546 2.1996		5
	0.0000	0.0218	0.0000 undef		•
Eierstock		0.0442	0.2750 3.6368	•	
Endokrines_Gewebe		0.0027	0.0000 undef		
Gastrointestinal	0.0136	0.0190	0.7125 1.4035	•	
Haematopoetisch		0.0077	0.1106 9.0427		10
-	0.0050	0.0000	undef 0.0000		
Hepatisch		0.0000	undef 0.0000		
	0.0021	0.0129	0.0000 undef		
	0.0000	0.0000 0.0234	undef 0.0000		
	0.0535	0.0234	0.0000 undef 1.1324 0.8831		15
Magen-Speiseroehre		0.0767	0.8819 1.1339		
Muskel-Skelett		0.0000	undef 0.0000		
	0.0000	0.0068	0.0000 undef		
Patkithas		0.0055	2.0570 0.4861		
• '	0.0030	0.0000	undef 0.0000	•	· 20
Prostata		0.0128	0.5593 1.7879		. 20
	0.0017	0.0000	undef 0.0000		
Brust-Hyperplasie			ander 0.0000		
Duenndarm					
Prostata-Hyperplasie	0.0030				25
Samenblase					20
Sinnesorgane	0.0235				
Weisse_Blutkoerperchen	0.1140		•		•
					30
	FOETUS				
	%Haeufigkeit				
Entwicklung Gastrointenstinal					
Gastrointenstinai					
Haematopoetisch					35
Herz-Blutgefaesse		•			
-	0.0037		•		
_	0.0000				
Prostata					
Sinnesorgane	•	•	•	•	40
-					2.
	NORMIERTE/SUB	TRAHIERTE BI	BLIOTHEKEN		
	%Haeufigkeit				
	0.0000				45
Eierstock-Uterus		,			
Endokrines_Gewebe					
Foetal Gastrointestinal					
Haematopoetisch			•		
Haut-Muskel					50
Hoden					
Lunge					
Nerven					
Prostata					
Sinnesorgane					55
3					

Elektronischer Northern für SEO. ID. NO: 38

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                             T/N
                      Blase 0.0000
                                          0.0026
                                                        0.0000 undef
                      Brust 0.0067
                                          0.0131
                                                        0.5096 1.9621
                  Eierstock 0.0061
                                          0.0000
                                                       undef 0.0000
                                                       undef 0.0000
undef 0.0000
          Endokrines Gewebe 0.0036
                                          0.0000
           Gastrointestinal 0.0019
                                          0.0000
                     Gehirn 0.0000
                                                       0.0000 undef
                                          0.0033
10
            Haematopoetisch 0.0084
                                          0.0000
                                                       undef 0.0000
                                          0.0000
                       Haut 0.0000
                                                       undef undef
                  Hepatisch 0.0000
                                          0.0000
                                                       undef undef
                       Herz 0.0021
                                          0.0000
                                                       undef 0.0000
                      Hoden 0.0000
                                                       undef undef
                                          0.0000
15
                      Lunge 0.0000
                                          0.0000
                                                       undef undef
        Magen-Speiseroehre 0.0000
                                          0.0000
                                                       undef undef
             Muskel-Skelett 0.0000
                                          0.0000
                                                       undef undef
                      Niere 0.0119
                                          0.0000
                                                       undef 0.0000
                   2ankreum 0.0000:
                                          040003...
                                                       undef unde.
20
                      Penis 0.0000
                                          0.0000
                                                       undef undef
                   Prostata 0.0024
                                          0.0043
                                                       0.5593 1.7879
                     Uterus 0.0017
                                          0.0000
                                                       undef 0.0000
         Brust-Hyperplasie 0.0073
                 Duenndarm 0.0031
25
      Prostata-Hyperplasie 0.0030
                Samenblase 0.0000
              Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0026
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0000
                    Gehirn 0.0000
35
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
                     Lunge 0.0000
                     Niere 0.0124
                   Prostata 0.0000
40.
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0000
          Eierstock-Uterus 0.0046
         Endokrines_Gewebe 0.0490
                    Foetal 0.0029
          Gastrointestinal 0.0000
50
           Haematopoetisch 0.0000
               Haut-Muskel 0.0000
                     Hoden 0.0000
                     Lunge 0.0082
                    Nerven 0.0131
                  Prostata 0.0000
55
              Sinnesorgane 0.0000
```

60

65

Elektronischer Northern für SEQ. ID. NO: 39

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0093 0.0053 0.0122 0.0347 0.0136 0.0153 0.0056 0.0199	TUMOR %Haeufigkeit 0.0077 0.0283 0.0130 0.0300 0.0000 0.0131 0.0000 0.0000 0.0000	1.2123 0.8249 0.1882 5.3141 0.9349 1.0696 1.1569 0.8644 undef 0.0000 1.1612 0.8612 undef 0.0000 undef 0.0000		5
Herz Hoden	0.0127 0.0122 0.0212 0.0193	0.0137 0.0117 0.0165 0.0000	3.0606 0.3267 0.9249 1.0812 1.0447 0.9572 1.2792 0.7818 undef 0.0000		15
Niere Pankreas	0.0030 0.0133 0.0030 0.0167 0.0066	0.0064	0.6662 1.5011 undef 0.0000 0.0562 17.6081 2.6101 0.3831 0.9283 1.0772		20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0125 0.0208 0.0000 0.0353				25
	FOETUS %Haeufigkeit				30
	0.0000 0.0031 0.0000 0.0079 0.0041 0.0111 0.0000 0.0000				35
Simesorgane	0.0000				 -
	NORMIERTE/SUBT	TRAHIERTE BIBI	LIOTHEKEN		
Brust	0.0068				45
Eierstock-Uterus					
Endokrines_Gewebe Foetal			•		
Gastrointestinal					
Haematopoetisch	0.0000				50
Haut-Muskel	0.0421				~
Hoden				•	
Lunge Nerven					
Prostata					
Sinnesorgane					55

60

Elektronischer Northern für SEQ. ID. NO: 40

		•	_	
		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
	Blase	0.0000	0.0000	undef undef
5		0.0027	0.0174	0.1529 6.5404
	Eierstock		0.0000	
	Endokrines Gewebe		0.0082	undef undef
	Gastrointestinal			0.0000 undef
			0.0048	0.0000 undef
10		0.0076	0.0000	undef 0.0000
	Haematopoetisch		0.0000	undef 0.0000
		0.0149	0.0000	undef 0.0000
	Hepatisch		0.0000	undef 0.0000
		0.0021	0.0000	undef 0.0000
16	Hoden	0.0061	0.0000	undef 0.0000
15		0.0087	0.0000	undef 0.0000
	Magen-Speiseroehre	0.0097	0.0000	undef 0.0000
	Muskel-Skelett	0.0051	0.0000	undef 0.0000
	Niere	0.0000	0.0000	undef undef
	Pankreas	0.0000	0.0000	under undef
20	Penis	0.0060		undef 0.0000
	Prostata	0.0024	0.0021	1.1186 0.8939
		0.0017		undef 0.0000
	Brust-Hyperplasie			ander 0.0000
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
		0.00.0		
30				
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			•
	Herz-Blutgefaesse			
	_	0.0000		
	<u> </u>			
		0.0000		
40:	Prostata			
	Sinnesorgane	0.0000		•
		NORMIERTE/SUBT	PRAHTERTE BIR	TOTUEVEN
		%Haeufigkeit		HOTHEREN
45	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
50	Haut-Muskel			
		0.0000		
	Lunge			
	Nerven			
	Prostata			
55	Sinnesorgane			
	Grimesorgane	0.0000		

60

Elektronischer Northern für SEQ. ID. NO: 41

	NORMAL	TUMOR	Verhaeltnisse	
		%Haeufigkeit	N/T T/N	
	0.0000	0.0128	0.0000 undef	5
	0.0040	0.0218	0.1835 5.4504	,
Eierstock		0.0026	0.0000 undef	
Endokrines_Gewebe		0.0000	undef 0.0000	
Gastrointestinal		0.0095	0.6107 1.6375	
	0.0000	0.0033	0.0000 undef	10
Haematopoetisch		0.0000	undef 0.0000	10
	0.0000	0.0000	undef undef	
Hepatisch		0.0000	undef undef	
	0.0032	0.0000	undef 0.0000	
	0.0000	0.0000	undef undef	
	0.0012		0.2634 3.7971	15
Magen-Speiseroehre		0.0000	undef undef	
Muskel-Skelett		0.0000	undef 0.0000	
	0.0000		undef undef	
Cankreas	•	0.0055	0.0000 Endef	
	0.0030		undef 0.0000	: 20
Prostata	-	0.0021	2.2373 0.4470	
	0.0050	0.0000	undef 0.0000	
Brust-Hyperplasie				
Duenndarm				
Prostata-Hyperplasie				25
Samenblase				
Sinnesorgane				
Weisse_Blutkoerperchen	0.0061			
Entwicklung	FOETUS %Haeufigkeit 0.0000			30
Gastrointenstinal		•		
Gehirn				
Haematopoetisch				35
Herz-Blutgefaesse	0.0000			
Lunge	0.0000			
Niere	0.0185			•
Prostata				
Sinnesorgane	0.0000			40
	NORMIERTE/SUB	TRAHIERTE BIBI	IOTHEKEN	
	%Haeufigkeit			
Brust				45
Eierstock-Uterus Endokrines_Gewebe				
Foetal				•
Gastrointestinal				
Haematopoetisch				
Haut-Muskel				50
Hoden				
Lunge				
Nerven			,	
Prostata				
Sinnesorgane				55

Elektronischer Northern für SEO, ID, NO: 42

```
NORMAL
                                           TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                             T/N
                      Blase 0.0000
                                          0.0051
                                                        0.0000 undef
5
                                                        0.4893 2.0439
                      Brust 0.0053
                                          0.0109
                  Eierstock 0.0030
                                          0.0052
                                                        0.5843 1.7114
          Endokrines Gewebe 0.0000
                                          0.0027
                                                        0.0000 undef
           Gastrointestinal 0.0000
                                          0.0000
                                                        undef undef
                     Gehirn 0.0000
                                          0.0000
                                                        undef undef
10
            Haematopoetisch 0.0000
                                          0.0000
                                                        undef undef
                       Haut 0.0000
                                          0.0000
                                                        undef undef
                  Hepatisch 0.0050
                                          0.0000
                                                        undef 0.0000
                       Herz 0.0000
                                          0.0000
                                                        undef undef
                      Hoden 0.0000
                                          0.0000
                                                       undef undef
15
                      Lunge 0.0050
                                          0.0024
                                                       2.1069 0.4746
         Magen-Speiseroehre 0.0000
                                          0.0000
                                                       undef undef
             Muskel-Skelett 0.0000
                                          0.0000
                                                       undef undef
                      Niere 0.0000
                                                       undef undef
                                          0.0000
                   Paidrasas CVG998
                                      **** 0.0000
                                                       undef
                                                              undef
20
                      Penis 0.0000
                                          0.0000
                                                       undef undef
                   Prostata 0.0046
                                          0.0000
                                                       undef 0.0000
                     Uterus 0.0000
                                          0.0000
                                                       undef undef
         Brust-Hyperplasie 0.0036
                  Duenndarm 0.0000
25
      Prostata-Hyperplasie 0.0000
                 Samenblase 0.0000
               Sinnesorgane 0.0235
    Weisse_Blutkoerperchen 0.0000
30
                            FOETUS
                            %Haeufickeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0000
                     Gehirn 0.0000
35
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
                     Lunge 0.0000
                     Niere 0.0000
                  Prostata 0.0000
40.
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0340
          Eierstock-Uterus 0.0000
         Endokrines_Gewebe 0.0000
                    Foetal 0.0146
          Gastrointestinal 0.0000
50
           Haematopoetisch 0.0000
               Haut-Muskel 0.0130
                    Hoden 0.0000
                     Lunge 0.0082
                    Nerven 0.0181
                  Prostata 0.0000
55
              Sinnesorgane 0.0077
```

65

Elektronischer Northern für SEQ. ID. NO: 43

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0000 0.0013 0.0030 0.0018 0.0000 0.0008 0.0000	TUMOR %Haeufigkeit 0.0026 0.0109 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.1223 8.1755 undef 0.0000 undef 0.0000 undef	·	5
Herz Hoden	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0024 0.0000	undef undef undef undef 0.0000 undef undef undef undef undef		15
Pankraas Penis Prostata Uterus	0.0000 0.0000 0.0017	0.0000 0.0000 0.0007 0.0000	undef 0.0000 undef unde£ 0.0000 undef undef undef undef 0.0000		20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0000 0.0000 0.0000 0.0118				25
Entwicklung	FOETUS %Haeufigkeit				30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000 0.0000				35
Niere Prostata Sinnesorgane		·	· .		40
	0.0000	TRAHIERTE BIBI	LIOTHEKEN	•	45
Lunge	0.0000 0.0000 0.0000 0.0000				50
Nerven Prostata Sinnesorgane	0.0064				55

45

Elektronischer Northern für SEQ. ID. NO: 44

				* *1 *5
		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0000	0.0000	undef undef
•	Brust	0.0013	0.0153	0.0874 11.4458
	Eierstock	0.0000	0.0052	0.0000 undef
	Endokrines_Gewebe	0.0000	0.0000	undef undef
	Gastrointestinal	0.0000	0.0048	0.0000 undef
	Gehirn	0.0000	0.0000	undef undef
10	Haematopoetisch	0.0000	0.0000	undef undef
	Haut	0.0000	0.0000	undef undef
	Hepatisch	0.0000	0.0000	undef undef
	Herz	0.0000	0.0000	undef undef
	Hoden	0.0000	0.0000	undef undef
15	Lunge	0.0012	0.0000	undef 0.0000
	Magen-Speiseroehre	0.0193	0.0000	undef 0.0000
	Muskel-Skelett	0.0000	0.0000	undef undef
		0.0000	0.0000	undef undef
*. * *	Pankreas	0.0000	0.0030	andof undef
20	Penis	0.0060		undof 0.0000
	Prostata	0.0000	0.0000	undef undef
	Uterus	0.0000		undef undef
	Brust-Hyperplasie			
	Duenndarm			
25	Prostata-Hyperplasie	0.0000		
	Samenblase			
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0000		
	_			
30				
		FOETUS		
	·	% Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
		0.0000		
40	Prostata		•	
,•	Sinnesorgane	0.0000		
		NORMIERTE/SUB	ים ב שהמשדע מקם	TOTUEVEN
		%Haeufigkeit	remitterie Dibi	HOLDENEN
45	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines Gewebe			·
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
	Nerven			
55	Prostata	0.0000		
55	Sinnesorgane	0.0000		

65

Elektronischer Northern für SEQ. ID. NO: 45

Pl	NORMAL %Haeufigkeit	TUMOR %Haeufigkeit		
	0.0139 0.0093	0.0000	undef 0.0000	5
Eierstock		0.0196	0.4757 2.1023	
Endokrines Gewebe		0.0078 0.0054	1.5582 0.6418 0.6698 1.4930	
Gastrointestinal		0.0000	undef 0.0000	
	0.0110	0.0131	0.8386 1.1924	
Haematopoetisch		0.0378	0.0739 13.5274	10
	0.0348	0.0000	undef 0.0000	
Hepatisch	0.0099	0.0000	undef 0.0000	
	0.0106	0.0000	undef 0.0000	
	0.0061	0.0117	0.5224 1.9144	
	0.0112	0.0095	1.1851 0.8438	15
Magen-Speiseroehre		0.0000	undef undef	
Muskel-Skelett		0.0060	0.8565 1.1675	
	0.0089	0.0068	1.3025 0.7678	
Pankreas			2.3550 G.4157	
Penis Prostata			undef 0.0000	, 20,
		0.0043 0.0071	2.2373 0.4470	
Brust-Hyperplasie		0.0071	0.9283 1.0772	
Duenndarm				•
Prostata-Hyperplasie				25
Samenblase				ے
Sinnesorgane		•		
Weisse_Blutkoerperchen	0.0078			
Entwicklung Gastrointenstinal				30
Gehirn				
Haematopoetisch				35
Herz-Blutgefaesse				
-	0.0296			
Niere	0.0000			
Prostata	0.0000			
Sinnesorgane	0.0000		• • •	- 40
	NORMIERTE/SUBT	FRAHIERTE BIBI	IOTHEKEN	
Brust				45
Eierstock-Uterus				
Endokrines_Gewebe				
Foetal Gastrointestinal				
Haematopoetisch				
Haut-Muskel				50
Hoden				
Lunge				
Nerven	0.0131			
Prostata	0.0000			
Sinnesorgane	0.0000			55

65

Elektronischer Northern für SEQ. ID. NO: 46

		NORMAL	#ITMOD	12amh - 14m /
			TUMOR %Haeufigkeit	Verhaeltnisse N/T T/N
_	Rlage	0.0232	0.0051	4.5462 0.2200
5		0.0027	0.0153	0.1747 5.7229
	Eierstock		0.0078	
	Endokrines Gewebe		0.0054	0.3895 2.5671 0.0000 undef
	Gastrointestinal		0.0095	
		0.0076		0.2036 4.9124
10	Haematopoetisch		0.0099	0.7741 1.2918
	-	0.0000	0.0000	undef 0.0000
	Hepatisch		0.0000	undef undef
	_		0.0065	0.7651 1.3069
		0.0053 0.0122	0.0550	0.0963 10.3795
15			0.0117	1.0447 0.9572
		0.0037	0.0071	0.5267 1.8986
	Magen-Speiseroehre		0.0077	3.7798 0.2646
	Muskel-Skelett		0.0000	undef 0.0000
		0.0089	0.0068	1.3025 0.7678
20	Pankreas		0.5055	1.3713 0.7292
20		0.0030		undef 0.0000
	Prostata			0.2237 4.4697
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie		•	
25	Duenndarm			
23	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0017		
30				
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
25	Gehirn			•
35	Haematopoetisch			
	Herz-Blutgefaesse			
	Lunge			
	Niere	0.0247		
	Prostata	0.0000		
49u	Sinnesorgane	0.0000		
	•			
		NORMIERTE/SUBT	TRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
45	Brust	0.0000		
	Eierstock-Uterus		•	
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge			
	Nerven			•
55	Prostata			
	Sinnesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 47

Blase Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0055 0.0000 0.0068 0.0042 0.0000	TUMOR %Haeufigkeit 0.0051 0.0131 0.0052 0.0000 0.0000 0.0055 0.0000 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.1019 9.8107 0.5843 1.7114 undef 0.0000 undef undef 1.2386 0.8074 undef 0.0000 undef undef undef undef 0.0000 undef undef undef 0.0000 undef 0.0000 undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0000 0.0000 0.0034	0.0000 0.0047 0.0153 0.0000	under 0.0000 undef undef 0.0000 undef undef 0.0000 1.3025 0.7678	15
Pankreas Penis Prostata Uterus	5.0000 0.0000 0.0033	0.0000 0.0000 0.0085	undef under undef 0.0000 0.0000 undef undef 0.0000	2
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0062 0.0059 0.0178 0.0000			25
Entwicklung	FOETUS %Haeufigkeit			30
	0.0063 0.0000 0.0000 0.0000			35
Niere Prostata Sinnesorgane			••	40
	NORMIERTE/SUBT	TRAHIERTE BIBI	IOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe	0.0000 0.0023 0.0000			45
Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000 0.0065 0.0000			50
Lunge Nerven Prostata Sinnesorgane	0.0000 0.0000			55

Elektronischer Northern für SEQ. ID. NO: 48

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	n/T T/N
5		0.0093	0.0051	1.8185 0.5499
	Brust	0.0053	0.0196	0.2718 3.6790
	Eierstock	0.0061	0.0052	1.1686 0.8557
	Endokrines_Gewebe		0.0109	0.6698 1.4930
	Gastrointestinal	0.0097	0.0143	0.6786 1.4737
10		0.0059	0.0022	2.7094 0.3691
	Haematopoetisch	0.0042	0.0378	0.1109 9.0183
	Haut	0.0050	0.0000	undef 0.0000
	Hepatisch		0.0065	0.0000 undef
		0.0138	0.0000	undef 0.0000
15		0.0122	0.0234	0.5224 1.9144
13		0.0012	0.0071	0.1756 5.6957
	Magen-Speiseroehre		0.0000	undef 0.0000
	Muskel-Skelett	0.0051	0.0120	0.4283 2.3350
	Niere	0.0000	0.0000	undef undef
••	- Funkteas	0.0005	2.00004	undef 0.3000
20	Penis	0.0150	0.0000	undef 0.0000
	Prostata	0.0048	0.0085	0.5593 1.7879
		0.0050	0.0071	0.6963 1.4363
	Brust-Hyperplasie	0.0000		
	Duenndarm			
25	Prostata-Hyperplasie	0.0089		
	Samenblase		•	
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0044		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal	· ·		
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0148		
		0.0062		
4000	Prostata			
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	TRAHTERTE BIR	I.TOTHEKEN
		%Haeufigkeit		31011
45	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden	0.0156	•	
	Lunge	0.0000		
	Nerven	0.0131		
55	Prostata	0.0321		•
	Sinnesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 49

·				
	NORMAL	TUMOR	Verhaeltnisse	
	%Haeufigkeit	%Haeufigkeit	N/T T/N	
Blase	0.0000	0.0077	0.0000 undef	
Brust	0.0040	0.0153	0.2621 3.8153	5
Eierstock		0.0286	0.3187 3.1376	
Endokrines Gewebe		0.0327	0.5582 1.7916	
Gastrointestinal		0.0095		
	0.0133		1.6285 0.6141	•
		0.0099	1.2902 0.7751	10
Haematopoetisch		0.0000	undef 0.0000	10
	0.0000	0.0000	undef undef	
Hepatisch		0.0000	undef 0.0000	
Herz	0.0265	0.0275	0.9634 1.0380	
Hoden	0.0061	0.0117	0.5224 1.9144	
Lunge	0.0149	0.0260	0.5746 1.7403	15
Magen-Speiseroehre	0.0097	0.0077	1.2599 0.7937	
Muskel-Skelett	0.0103	0.0060	1.7130 0.5838	
	0.0208	0.0342	0.6078 1.6452	
Pankreas		0.7555	_	
	0.0060		0.3428,2.9168	
		0.0000	undel 0.0000	20
Prostata		0.0106	0.2237 4.4697	
	0.0099	0.0000	undef 0.0000	
Brust-Hyperplasie				•
Duenndarm				
Prostata-Hyperplasie	0.0059		•	25
Samenblase	0.0178			
Sinnesorgane	0.0118			
Weisse Blutkoerperchen	0.0052		•	
	FOETUS			30
	%Haeufigkeit			
Entwicklung				
Gastrointenstinal				
Gehirn				35
Haematopoetisch				33
Herz-Blutgefaesse	0.0286			
Lunge	0.0074			
Niere	0.0062			•
Prostata	0.0000			
Sinnesorgane	0.0279			. 40
		•		
	NORMIERTE/SUB	ומדם שהמשדשגמה	TORUPYPM	
	%Haeufigkeit	INMITERIE DID	JIOIHEREN	
Bereat				
	0.0000			45
Eierstock-Uterus				
Endokrines_Gewebe				
Foetal				•
Gastrointestinal				
Haematopoetisch				50
Haut-Muskel				30
	0.0000			
Lunge	0.0164			
Nerven				
Prostata				
Sinnesorgane				55
Jamesougane				

Elektronischer Northern für SEQ. ID. NO: 50

5	Brust Eierstock	0.0000 0.0013 0.0000	TUMOR %Haeufigkeit 0.0179 0.0065 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.2039 4.9053 undef undef
10	Haematopoetisch	0.0019 0.0008 0.0014 0.0000	0.0000 0.0000 0.0022 0.0000 0.0000	undef 0.0000 undef 0.0000 0.3871 2.5836 undef 0.0000 undef undef undef 0.0000
15	Hoden Lunge Magen-Speiseroehre		0.0000 0.0000 0.0047 0.0000	undef 0.0000 undef undef 0.2634 3.7971 undef undef
21·	Pankreas Penis	0.0000 0.0000 0.0000	0.0060 0.0000 0.0055 0.0000	0.2855 3.5025 undef undef 0.2000 unded undef under
,	Brust-Hyperplasie Duenndarm	0.0083 0.0000 0.0000	0.0000 0.0000	undef undef undef 0.0000
25	Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000	,	
30				
50		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal	0.0000		
35	Gehirn	0.0000		
33	Haematopoetisch			
	Herz-Blutgefaesse			
	_	0.0000		
		0.0000		
40~	Prostata			
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	FRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
45		0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal Haematopoetisch			
50	Haut-Muskel			
		0.0065		
	Lunge			
	Nerven			
	Prostata			
55	Sinnesorgane			

60

Elektronischer Northern für SEQ. ID. NO: 51

			• • •		
	NORMAL	TUMOR	Verhaeltnisse		
		%Haeufigkeit	N/T T/N		
	0.0000	0.0051	0.0000 undef		5
	0.0053	0.0153	0.3495 2.8614		_
Eierstock		0.0234	0.9089 1.1002		
Endokrines_Gewebe		0.0518	0.3525 2.8368		
Gastrointestinal		0.0048	1.6285 0.6141		
	0.0136	0.0120	1.1260 0.8881		10
Haematopoetisch		0.0000	undef 0.0000		10
	0.0000	0.0000	undef undef	•	
Hepatisch		0.0194	0.0000 undef		
	0.0095	0.0000	undef 0.0000		
	0.0428	0.0117	3.6565 0.2735		15
	0.0137	0.0142	0.9656 1.0356		13
Magen-Speiseroehre		0.0000	undef 0.0000		
Muskel-Skelett		0.0600	0.0286 35.0255		
	0.0178	0.0479	0.3721 2.6872		ų
Pankreas		0.0000	table 0.0000	•	
	0.0150	0.0000	undef 0.0000	•	20
Prostata		0.0383	0.1864 5.3637	٠.	
+	0.0066	0.0071	0.9283 1.0772		
Brust-Hyperplasie					
Duenndarm					
Prostata-Hyperplasie					25
Samenblase					
Sinnesorgane Weisse Blutkoerperchen					
wersse_bruckoerperchen	0.0218				
	FOETUS				30
	%Haeufigkeit				
Entwicklung					
Gastrointenstinal				• •	
Gehirn	0.0000				
Haematopoetisch	0.0039				35
Herz-Blutgefaesse			,		
Lunge	0.0037				
Niere	0.0185				
Prostata	0.0249				
Sinnesorgane	0.0140		•		40
		•			
		,			
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN		
	%Haeufigkeit				
	0.0000				45
Eierstock-Uterus					
Endokrines_Gewebe					
Foetal					
Gastrointestinal			•		
Haematopoetisch					50
Haut-Muskel					
Hoden					
Lunge .					
Nerven					
Prostata					55
Sinnesorgane	0.0310				

60

Elektronischer Northern für SEQ. ID. NO: 52

```
NORMAL
                                          TUMOR
                                                       Verhaeltnisse
                            %Haeufigkeit %Haeufigkeit N/T T/N
                      Blase 0.0232
                                                       0.9092 1.0998
                                         0.0256
5
                      Brust 0.0053
                                          0.0131
                                                       0.4077 2.4527
                  Eierstock 0.0061
                                         0.0078
                                                       0.7791 1.2836
         Endokrines Gewebe 0.0109
                                         0.0054
                                                       2.0093 0.4977
          Gastrointestinal 0.0097
                                         0.0000
                                                       undef 0.0000
                     Gehirn 0.0042
                                        0.0131
                                                       0.3225 3.1004
10
           Haematopoetisch 0.0098
                                                       undef 0.0000
                                         0.0000
                       Haut 0.0249
                                         0.0000
                                                       undef 0.0000
                 Hepatisch 0.0000
                                         0.0000
                                                       undef undef
                      Herz 0.0201
                                         0.0000
                                                       undef 0.0000
                     Hoden 0.0000
                                         0.0117
                                                       0.0000 undef
15
                     Lunge 0.0125
                                         0.0118
                                                       1.0534 0.9493
        Magen-Speiseroehre 0.0386
                                         0.0153
                                                       2.5198 0.3968
            Muskel-Skelett 0.0034
                                         0.0060
                                                       0.5710 1.7513
                     Niere 0.0119
                                         0.0137
                                                       0.8683 1.1517
                  Fankreass 0.0038
                                         0.0110
                                                       0.3428 2.5158
20
                     Penis 0.009u
                                         0.0533
                                                      0.1685 5.9360
                  Prostata 0.0119
                                         0.0170
                                                       0.6991 1.4303
                    Uterus 0.0099
                                         0.0142
                                                      0.6963 1.4363
         Brust-Hyperplasie 0.0073
                 Duenndarm 0.0125
25
      Prostata-Hyperplasie 0.0119
                Samenblase 0.0178
              Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0052
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0307
         Gastrointenstinal 0.0062
                    Gehirn 0.0063
35
           Haematopoetisch 0.0236
         Herz-Blutgefaesse 0.0041
                     Lunge 0.0037
                     Niere 0.0000
                  Prostata 0.0748
40
              Sinnesorgane 0.0000
                           NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0000
          Eierstock-Uterus 0.0205
         Endokrines_Gewebe 0.0000
                    Foetal 0.0128
          Gastrointestinal 0.0244
50
           Haematopoetisch 0.0057
               Haut-Muskel 0.0130
                     Hoden 0.0078
                     Lunge 0.0000
                    Nerven 0.0030
                  Prostata 0.0128
55
              Sinnesorgane 0.0000
```

60

65

Elektronischer Northern für SEQ. ID. NO: 53

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0093 0.0053 0.0000 0.0018 0.0039 0.0034 0.0028 0.0050	TUMOR %Haeufigkeit 0.0051 0.0153 0.0026 0.0000 0.0143 0.0164 0.0000 0.0000	Verhaeltnisse N/T T/N 1.8185 0.5499 0.3495 2.8614 0.0000 undef undef 0.0000 0.2714 3.6843 0.2064 4.8443 undef 0.0000 undef 0.0000 0.0000 undef	5
Herz Hoden	0.0032 0.0061 0.0075 0.0000	0.0000 0.0000 0.0047 0.0000 0.0180	undef 0.0000 undef 0.0000 1.5801 0.6329 undef undef 0.1903 5.2538	15
-nkreas Penis Prostata	0.0066	(.0000 0.0043	0.4342 2.3033 0.3428 2.9168 undef 0.0000 0.5593 1.7879 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0093 0.0030 0.0000 0.0118			. 25
 Entwicklung	FOETUS %Haeufigkeit	,		30
	0.0000 0.0079 0.0000 0.0000			35
Niere Prostata Sinnesorgane				. 40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0057			50
Nerven Prostata Sinnesorgane	0.0050 0.0000			55

65

Elektronischer Northern für SEQ. ID. NO: 54

	•	NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0139	0.0102	1.3639 0.7332
-	Brust	0.0080	0.0218	0.3669 2.7252
	Eierstock	0.0122	0.0182	0.6678 1.4975
	Endokrines Gewebe		0.0191	0.6698 1.4930
	Gastrointestinal		0.0286	0.3393 2.9474
		0.0059	0.0110	0.5419 1.8454
10	Haematopoetisch		0.0000	undef 0.0000
		0.0050	0.0000	undef 0.0000
	Hepatisch		0.0129	0.0000 undef
		0.0127	0.0000	undef 0.0000
		0.0122	0.0117	
15				1.0447 0.9572
	_	0.0100	0.0071	1.4046 0.7120
	Magen-Speiseroehre		0.0153	0.0000 undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0149	0.0137	1.0854 0.9213
20	Pankreas			. 3.2000 3.3335
20		0.0060	0.0000	mder 0.0000
	Prostata		0.0128	0.7458 1.3409
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie	0.0036		
	Duenndarm	0.0125		
25	Prostata-Hyperplasie	0.0238		
	Samenblase	0.0267		
	Sinnesorgane	0.0118		
	Weisse Blutkoerperchen	0.0026		
	_			•
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal	0.0123		
35	Gehirn	0.0125		
	Haematopoetisch	0.0118		
	Haematopoetisch Herz-Blutgefaesse			
	Herz-Blutgefaesse			
	Herz-Blutgefaesse Lunge	0.0000 0.0111 ·		,
A 4:	Herz-Blutgefaesse Lunge Niere	0.0000 0.0111 0.0309		
\$5~.	Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0111 0.0309 0.0249	s*	
\$5~.	Herz-Blutgefaesse Lunge Niere	0.0000 0.0111 0.0309 0.0249	ν	
₹ 5~-	Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0111 0.0309 0.0249	ν	
₹5×-	Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0111 0.0309 0.0249 0.0000		LIOTHEKEN
Algeri.	Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0111 0.0309 0.0249 0.0000		LIOTHEKEN
45·~.	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUBS		LIOTHEKEN
·	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136		LIOTHEKEN
·	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274		LIOTHEKEN
·	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274 0.0245		LIOTHEKEN
·	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274 0.0245 0.0099		LIOTHEKEN
·	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274 0.0245 0.0099 0.0122		LIOTHEKEN
45	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274 0.0245 0.0099 0.0122 0.0228		LIOTHEKEN
45	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274 0.0245 0.0099 0.0122 0.0228 0.0324		LIOTHEKEN
45	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274 0.0245 0.0099 0.0122 0.0228 0.0324 0.0000		LIOTHEKEN
45	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274 0.0245 0.0099 0.0122 0.0228 0.0324 0.0000 0.0082		LIOTHEKEN
45	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB'8Haeufigkeit 0.0136 0.0274 0.0245 0.0099 0.0122 0.0228 0.0324 0.0000 0.0082 0.0131		LIOTHEKEN
45	Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0111 0.0309 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0274 0.0245 0.0099 0.0122 0.0228 0.0324 0.0000 0.0082 0.0131		LIOTHEKEN

65

Elektronischer Northern für SEQ. ID. NO: 55

•					
	NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T T/N		
Blase	0.0046	0.0051	0.9092 1.0998		5
	0.0067	0.0153	0.4368 2.2892		
Eierstock		0.0130	0.0000 undef		
Endokrines_Gewebe		0.0136	0.6698 1.4930		
Gastrointestinal		0.0143	0.9500 1.0527		
	0.0144	0.0088	1.6450 0.6079		10
Haematopoetisch		0.0000	undef 0.0000		
	0.0000	0.0000	undef undef		
Hepatisch	0.0042	0.0000 0.0137	undef 0.0000		
	0.0000	0.0137	0.3083 3.2436 0.0000 undef		
	0.0062	0.0095	0.6584 1.5189		15
Magen-Speiseroehre		0.0997	0.0000 undef		
Muskel-Skelett		0.0180	0.0952 10.5076		
	0.0119	0.0137	0.8683 1.1517		
Pankreas		Ü.UI10	บ. 3571 1. แล้ง?"	rts a	
•	0.0150	0.0000	undef 0.0000	•	-20
Prostata	0.0071	0.0128	0.5593 1.7879		
Uterus	0.0099	0.0071	1.3925 0.7181		
Brust-Hyperplasie	0.0036		•		
Duenndarm	0.0218				
Prostata-Hyperplasie	0.0089				25
Samenblase	0.0089				
Sinnesorgane			·		
Weisse_Blutkoerperchen	0.0070				
	TODBEIO				30
	FOETUS				
Entwicklung	%Haeufigkeit				
Gastrointenstinal					
Gehirn					35
Haematopoetisch					33
Herz-Blutgefaesse					
_	0.0000				
	0.0000				
Prostata	0.0000				49
Sinnesorgane	0.0000				733
	NODMIEDER /cmp	MD3/1700M0 070			
	NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	PIOTHEKEN		
Rmst	0.0068				45
Eierstock-Uterus					
Endokrines Gewebe					
Foetal					
Gastrointestinal					
Haematopoetisch	0.0171				50
Haut-Muskel	0.0032				
	0.0078				
_	0.0082				
Nerven					
Prostata					55
Sinnesorgane	0.0077				

Elektronischer Northern für SEQ. ID. NO: 56

	•	NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0000	0.0204	0.0000 undef
	Brust	0.0000	0.0218	0.0000 undef
	Eierstock	0.0000	0.0026	0.0000 undef
	Endokrines_Gewebe	0.0000	0.0054	0.0000 undef
	Gastrointestinal		0.0048	0.8143 1.2281
10		0.0008	0.0011	0.7741 1.2918
10	Haematopoetisch		0.0000	undef undef
		0.0000	0.0000	undef undef
	Hepatisch		0.0000	undef undef
		0.0000	0.0000	undef undef
		0.0000	0.0000	undef undef
15		0.0012	0.0047	0.2634 3.7971
	Magen-Speiseroehre			
	Muskel-Skelett		0.0000	undef undef
			0.0000	undef undef
		0.0000	0.0000	undef undef
20	Pankreas		0.0116	3.0000 unda5
20	•	0.0000	0.0267	0.0000 undef
	Frostata		0.0000	undef undef
		0.0033	0.0000	undef 0.0000
	Brust-Hyperplasie			
	Duenndarm	0.0000		
25	Prostata-Hyperplasie	0.0000		•
	Samenblase	0.0000		
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0009		
				•
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung	0.0000		
	Gastrointenstinal	0.0062		
35	Gehirn	0.0000		
	Raematopoetisch	0.0079		
	Herz-Blutgefaesse	0.0000		
	Lunge	0.0000		
	Niere	0.0000		
	Prostata	0.0000		• • • •
A STATE OF	Sinnesorgane	0.0000	•	, "
•				
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
45	Brust	0.0136		
	Eierstock-Uterus	0.0320	•	
	Endokrines Gewebe	0.0000		
•	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
	Lunge			
	Nerven			
55	Prostata			
55	Sinnesorgane			

60

65

Elektronischer Northern für SEQ. ID. NO: 57

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0046 0.0027 0.0091 0.0036 0.0019 0.0017 0.0028 0.0000	TUMOR %Haeufigkeit 0.0051 0.0109 0.0026 0.0054 0.0000 0.0044 0.0000 0.0847 0.0000 0.0000	Verhaeltnisse N/T T/N 0.9092 1.0998 0.2446 4.0878 3.5059 0.2852 0.6698 1.4930 undef 0.0000 0.3871 2.5836 undef 0.0000 0.0000 undef undef undef undef 0.0000		5
Hoden	0.0000	0.0000	undef undef		
	0.0050	0.0000	undef 0.0000		15
Magen-Speiseroehre		0.0000	undef undef		
Muskel-Skelett		0.0060	0.2855 3.5025		
	0.0000	0.0000	undef undef		
	.0.0057 .0.5550	0.011C 0.0000	0.5113 1.9446	t.	20.00
Prostata		0.0000	undef undef 0.0000 undef	•	20
	0.0033	0.0000	undef 0.0000		
Brust-Hyperplasie		0.0000	wider 0.0000		
Duenndarm			1		
Prostata-Hyperplasie	0.0059				25
Samenblase		•			~
Sinnesorgane			•		
Weisse_Blutkoerperchen	0.0061				
Entwicklung					30
Gastrointenstinal					
Gehirn Haematopoetisch	-				35
Herz-Blutgefaesse					
	0.0074				
	0.0000				
Prostata	0.0000				
Sinnesorgane	0.0000			•	40
	NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN		
	0.0000				45
Eierstock-Uterus					
Endokrines_Gewebe					
Foetal					
Gastrointestinal Haematopoetisch					
наематороетіsсп Haut-Muskel					50
	0.0000				
	0.0000				
Nerven					
Prostata					
Sinnesorgane	0.0000				55

60

Elektronischer Northern für SEQ. ID. NO: 58

```
NORMAL
                                          TUMOR
                                                       Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T T/N
                      Blase 0.0000
                                          0.0000
                                                       undef undef
5
                      Brust 0.0173
                                          0.0523
                                                       0.3313 3.0187
                  Eierstock 0.0000
                                                       0.0000 undef
                                          0.0026
          Endokrines_Gewebe 0.0018
                                          0.0000
                                                       undef 0.0000
           Gastrointestinal 0.0000
                                          0.0000
                                                       undef undef
                     Gehirn 0.0000
                                          0.0000
                                                       undef undef
10
            Haematopoetisch 0.0028
                                          0.0000
                                                       undef 0.0000
                      Haut 0.0050
                                          0.0000
                                                       undef 0.0000
                  Hepatisch 0.0000
                                          0.0000
                                                       undef undef
                       Herz 0.0000
                                          0.0000
                                                       undef
                                                             undef
                      Hoden 0.0000
                                          0.0000
                                                       undef undef
15
                      Lunge 0.0000
                                          0.0000
                                                       undef undef
        Magen-Speiseroehre 0.0000
                                          0.0000
                                                       undef undef
            Muskel-Skelett 0.0000
                                          0.0000
                                                       undef undef
                      Niere 0.0000
                                          0.0000
                                                       undef undef
                                                       undef undef
                   Pankreas 0.0000
                                          0.2000.
20
                      Penis 0.0000
                                         0.0000
                   Prostata 0.0024
                                         0.0000
                                                       undef 0.0000
                    Uterus 0.0066
                                         0.0285
                                                       0.2321 4.3088
         Brust-Hyperplasie 0.0073
                  Duenndarm 0.0000
      Prostata-Hyperplasie 0.0000
25
                 Samenblase 0.0000
              Sinnesorgane 0.0000
    Weisse_Blutkoerperchen 0.0000
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0000
                    Gehirn 0.0000
35
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
                     Lunge 0.0000
                     Niere 0.0000
                  Prostata 0.0000
10-..
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            &Haeufigkeit
45
                     Brust 0.0000
          Eierstock-Uterus 0.0000
         Endokrines_Gewebe 0.0000
                   Foetal 0.0000
          Gastrointestinal 0.0000
           Haematopoetisch 0.0000
50
               Haut-Muskel 0.0000
                     Hoden 0.0000
                     Lunge 0.0000
                    Nerven 0.0000
                  Prostata 0.0128
55
              Sinnesorgane 0.0000
```

65

Elektronischer Northern für SEQ. ID. NO: 59

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn	0.0046 0.0013 0.0061 0.0018 0.0039	TUMOR %Haeufigkeit 0.0051 0.0109 0.0000 0.0000 0.0095 0.0066	Verhaeltnisse N/T T/N 0.9092 1.0998 0.1223 8.1755 undef 0.0000 undef 0.0000 0.4071 2.4562 0.3871 2.5836		5
Hepatisch Herz	0.0000	0.0000 0.0000 0.0065 0.0000 0.0234	undef undef undef undef 0.0000 undef undef 0.0000 0.2612 3.8288		10
Lunge Magen-Speiseroehre Muskel-Skelett	0.0025 0.0000 0.0017 0.0030	0.0095 0.0000 0.0000 0.0068	0.2634 3.7971 undef undef undef 0.0000 0.4342 2.3033	·	15
Finis Prostata Uterus Brust-Hyperplasie	0.0060 0.0024 0.0017 0.0073	0.0000 0.0000	0.0000 undes undef 0.0000 undef 0.0000 undef 0.0000	with	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0089 0.0089 0.0000				25
Entwicklung Gastrointenstinal		·			30
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0000				35
Prostata Šinnėšorganė	6.6000 NORMIERTE/SUBT	FR4HIERTE BIBI	JOTHEKEN	د	40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0068 0.0160 0.0245				45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0114 0.0000 0.0000 0.0000				50
Nerven Prostata Sinnesorgane	0.0064				55

65

Elektronischer Northern für SEQ. ID. NO: 61

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	n/T T/N
5		0.0000	0.0000	undef undef
		: 0.0013	0.0109	0.1223 8.1755
	Eierstock		0.0000	undef undef
	Endokrines_Gewebe		0.0245	0.3721 2.6874
	Gastrointestinal	0.0000	0.0000	undef undef
10	Gehirn	0.0017	0.0022	0.7741 1.2918
10	Haematopoetisch	0.0014	0.0000	undef 0.0000
	Haut	0.0000	0.0000	undef undef
	Hepatisch	0.0000	0.0000	undef undef
	Herz	0.0032	0.0000	undef 0.0000
	Hoden	0.0061	0.0000	undef 0.0000
15	Lunge	0.0050	0.0024	2.1069 0.4746
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0030	0.0000	undef 0.0000
÷			1.0055	0.0000 undef
20		0.0030	- 3	
•	Prostata		0.0085	undef 0.0000
				0.2797 3.5758 undef undef
	Brust-Hyperplasie		0.0000	under under
	Duenndarm			
25	Prostata-Hyperplasie			
ىد	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen			
	werase_proception	0.0000		
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
		0.0000		
35	Haematopoetisch			
	Herz-Blutgefaesse		•	
	_	0.0000		
		0.0000		
	Prostata			
40	Sinnesorgane			
	Simesorgane	0.0000		
	•	NORMIERTE/SUBT	DAUTDOME DIG	TOMOTOM
			KANTEKLE BIBI	TOTHEKEN
45	Drint	%Haeufigkeit 0.0000		
43	Eierstock-Uterus			
	Endokrines_Gewebe Foetal			
	Gastrointestinal			
50				
50	Haematopoetisch Haut-Muskel			
		0.0162		
		0.0082		
	Nerven			
	nerven Prostata			
55				
	Sinnesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 62

	NORMAL	TUMOR	Verhaeltnisse	
•	%Haeufigkeit	%Haeufigkeit	N/T T/N	
	0.0000	0.0051	0.0000 undef	5
Brust	0.0080	0.0153	0.5242 1.9076	3
Eierstock		0.0078	1.1686 0.8557	
Endokrines_Gewebe		0.0109	0.5023 1.9907	
Gastrointestinal	0.0078	0.0238	0.3257 3.0703	
Gehirn	0.0051	0.0077	0.6635 1.5071	
Haematopoetisch	0.0140	0.0000	undef 0.0000	10
	0.0000	0.0000	undef undef	
Hepatisch		0.0000	undef 0.0000	
	0.0000	0.0000	undef undef	
	0.0061	0.0000	undef 0.0000	
	0.0050	0.0047	1.0534 0.9493	15
Magen-Speiseroehre		0.0077	0.0000 undef	
Muskel-Skelett	0.0017	0.0000	undef 0.0000	
Niere	0.0059	0.0068	0.8683 1.1517	
Pankreas	0.0019	0.0000	undef %,0000	
Penis	0.0030	0.0000	undef 0.0000	20
Prostata	0.0048	0.0021	2.2373 0.4470	
	0.0033	0.0214	0.1547 6.4632	
Brust-Hyperplasie				
Duenndarm				
Prostata-Hyperplasie	0.0119			25
Samenblase	0.0000		•	
Sinnesorgane				
Weisse_Blutkoerperchen	0.0035	•		
Entwicklung		·		30
Gastrointenstinal				
Gehirn				35
Haematopoetisch				55
Herz-Blutgefaesse				
_	0.0074			
	0.0185			
Prostata				40
Sinnesorgane	0.0140			i,
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN	
	0.0000			45
Eierstock-Uterus				
Endokrines_Gewebe				
Foetal				
Gastrointestinal				
Haematopoetisch				50
Haut-Muskel			•	
Hoden				
Lunge				
Nerven Prostata				
Sinnesorgane				55
· Cimesorgane	0.0057			

63

Elektronischer Northern für SEQ. ID. NO: 63

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	
5	Blase	0.0046	0.0000	undef 0.0000
,	Brust	0.0000	0.0109	0.0000 undef
	Eierstock		0.0026	1.1686 0.8557
	Endokrines Gewebe		0.0027	0.6698 1.4930
	Gastrointestinal		0.0027	
		0.0034	0.0044	undef 0.0000
10	Haematopoetisch			0.7741 1.2918
	-		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Hepatisch		0.0000	undef 0.0000
		0.0011	0.0000	undef 0.0000
15		0.0000	0.0000	undef undef
		0.0012	0.0000	undef 0.0000
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0060	0.2855 3.5025
		0.0059	0.0000	undef 0.0000
	Finkreas	0.0019	0.0055	9.3420#C8 01/58/-
20	'Penis	0.0060	0.0000	undef 0.0000
	Prostata	0.0000	0.0000	undef undef
	Uterus	0.0033	0.0000	undef 0.0000
	Brust-Hyperplasie	0.0036	,	
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
	"CIOSE_BIUCKOEIPEICHEN	0.0020		
••				
30		DORMHO		
		FOETUS	•	
	Protect ablace	%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal	•		
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
	-	0.0000		
		0.0062		•
20 mm	Prostata			
aggree .	Sinnesorgane	0.0000	•	
	•			
		NORMIERTE/SUB	FRAHIERTE BIB	LIOTHEKEN
	•	%Haeufigkeit		
45	Brust	0.0000		
	Eierstock-Uterus	0.0046		
	Endokrines Gewebe	0.0490		
	Foetal	0.0058		
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
	Nerven			
	Prostata			
55	Sinnesorgane			
	orintesoryane			

60 ·

Elektronischer Northern für SEQ. ID. NO: 64

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0000 0.0213 0.0008 0.0028 0.0000	0.0665 0.0436 0.0234 0.0000 0.0571 0.0000 0.0000 0.0000	0.0699 14.2976 0.1835 5.4504 0.2597 3.8507 undef undef 0.3732 2.6795 undef 0.0000 undef 0.0000 undef undef 0.0000 undef	5
Hoden		0.0000 0.0000 0.0142 0.0000 0.0000	undef undef undef undef 0.6145 1.6273 undef 0.0000 undef undef	15
Pantroas Penis Prostata	0.0000 0.0119	0.0205 0.0276 0.0000 0.0106 0.0071	0.5789 1.7275 0.4800 2.0835 undef undef 1.1186 0.8939 0.4642 2.1544	. 20 <i>*</i>
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0073 0.0343 0.0208 0.0178 0.0353	0.0071	0.4042 2.1344	25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit			30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0092 0.0000 0.0000			35
Niere Prostată Sinnesorgane		·		 40
	0.0000	FRAHIERTE BIB	Liotheken	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0122 0.0000 0.0000 0.0000 0.0082	ş .		50
Nerven Prostata Sinnesorgane	0.0064			55

and the second s

60

Elektronischer Northern für SEQ. ID. NO: 65

```
NORMAL
                                          TUMOR
                                                       Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T T/N
                      Blase 0.0000
                                          0.0051
                                                       0.0000 undef
5
                      Brust 0.0053
                                          0.0174
                                                       0.3058 3.2702
                  Eierstock 0.0061
                                          0.0026
                                                       2.3372 0.4279
          Endokrines_Gewebe 0.0073
                                          0.0027
                                                       2.6791 0.3733
           Gastrointestinal 0.0097
                                          0.0048
                                                       2.0357 0.4912
                     Gehirn 0.0059
                                          0.0055
                                                       1.0837 0.9227
            Haematopoetisch 0.0042
                                          0.0000
                                                       undef 0.0000
                      Haut 0.0050
                                          0.0000
                                                       undef 0.0000
                  Hepatisch 0.0000
                                          0.0000
                                                       undef undef
                      Herz 0.0053
                                          0.0000
                                                       undef 0.0000
                      Hoden 0.0000
                                          0.0000
                                                       undef undef
15
                      Lunge 0.0087
                                          0.0071
                                                       1.2290 0.8137
        Magen-Speiseroehre 0.0000
                                         0.0153
                                                       0.0000 undef
            Muskel-Skelett 0.0103
                                          0.0000
                                                       undef 0.0000
                      Niere 0.0000
                                         0.0068
                                                       0.0000 undef
                                       A. 0. 0355
                   Pankreas 0.0039
                                                   ... 0.6857 1.45E1
20
                     Penis 0.0120
                                                       0.4492 2.2260
                                         0.0257
                   Prostata 0.0000
                                         0.0021
                                                       0.0000 undef
                    Uterus 0.0099
                                         0.0142
                                                       0.6963 1.4363
         Brust-Hyperplasie 0.0000
                 Duenndarm 0.0000
      Prostata-Hyperplasie 0.0000
25
                Samenblase 0.0000
              Sinnesorgane 0.0000
    Weisse_Blutkoerperchen 0.0087
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0154
                    Gehirn 0.0000
35
           Haematopoetisch 0.0039
         Herz-Blutgefaesse 0.0041
                     Lunge 0.0000
                     Niere 0.0000
                  Prostata 0.0000
              Sinnesorgane .0.0000
                           NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                           %Haeufigkeit
45
                     Brust 0.0136
         Eierstock-Uterus 0.0046
         Endokrines_Gewebe 0.0000
                   Foetal 0.0082
         Gastrointestinal 0.0000
          Haematopoetisch 0.0000
50
              Haut-Muskel 0.0032
                    Hoden 0.0156
                     Lunge 0.0082
                   Nerven 0.0040
                 Prostata 0.0128
55
             Sinnesorgane 0.0000
```

65

Elektronischer Northern für SEQ. ID. NO: 66

			.1		
	NORMAL	TUMOR	Verhaeltnisse		
	%Haeufigkeit	%Haeufigkeit	N/T T/N		
	0.0093	0.1508	0.0616 16.2223		
Brust	0.0013	0.0392	0.0340 29.4320		5
Eierstock	0.0152	0.0000	undef 0.0000		
Endokrines_Gewebe	0.0018	0.0027	0.6698 1.4930		
Gastrointestinal	0.0174	0.0048	3.6642 0.2729		
Gehirn	0.0051	0.0055	0.9289 1.0765		
Haematopoetisch	0.0993	0.0000	undef 0.0000		10
-	0.0249	0.0000	undef 0.0000		
Hepatisch		0.0129	0.0000 undef		
-	0.0053	0.0000	undef 0.0000		
	0.0061	0.0000	undef 0.0000		
	0.0261	0.0307	0.8508 1.1753		15
Magen-Speiseroehre		0.0230	4.6197 0.2165		
Muskel-Skelett		0.0180	0.9517 1.0508		
	0.0000	0.0068	0.0000 undef		
Pankreas		0.0000			
Penis			1. 1. 5. (1.0000		20
		0.1600	0.7832 1.1720		20
Prostata		0.0000	undef undef		
	0.0826	0.0000	undef 0.0000		
Brust-Hyperplasie			•		
Duenndarm					
Prostata-Hyperplasie		•			25
Samenblase				-	
Sinnesorgane			•		
Weisse_Blutkoerperchen	0.1018				
					30
	FOETUS				•
	%Haeufigkeit				
Entwicklung	0.0000				
Gastrointenstinal					
Gehirn	0.0000				05
Haematopoetisch	0.0000				35
Herz-Blutgefaesse	0.0000		•		
Lunge ·	0.0037				
Niere	0.0000				
Prostața	0.0000				
Sinnesorgane					40
_					
·	NORMIERTE/SUB	TRAHIERTE BIBI	LIOTHEKEN		
	%Haeufigkeit		-		
Brust	0.0000				45
Eierstock-Uterus					.5
Endokrines Gewebe	0.0000				
Foetal					
Gastrointestinal					
Haematopoetisch					50
Haut-Muskel	0.0000				30
Hoden					
Lunge	0.0410				
Nerven					
Prostata					•
Sinnesorgane					55
-1.m.oboryane					

Elektronischer Northern für SEQ. ID. NO: 67

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	n/t t/n
5		0.0093	0.0051	1.8185 0.5499
		0.0013	0.0044	0.3058 3.2702
	Eierstock		0.0052	0.0000 undef
	Endokrines_Gewebe		0.0109	0.6698 1.4930
	Gastrointestinal		0.0000	undef undef
10	Gehirn	0.0068	0.0055	1.2386 0.8074
10	Haematopoetisch		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Hepatisch		0.0129	0.0000 undef
		0.0042	0.0000	undef 0.0000
15		0.0000	0.0234	0.0000 undef
13	_	0.0025	0.0000	undef 0.0000
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett	0.0000	0.0000	undef undef
	Niere	0.0000	0.0068	0.0000 undef
	Pankreas	0.0057	0.COCS	tadef 0.0000
20	Penis	0.0030	0.0000	undef 0.0000
	. Prostata	0.0786	0.0554	1.4198 0.7043
	Uterus	0.0033	0.0000	undef 0.0000
	Brust-Hyperplasie	0.0000		
	Duenndarm	0.0000		
25	Prostata-Hyperplasie	0.1011		
	Samenblase	0.0000		
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0017		
				•
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			
••	Herz-Blutgefaesse			
	-	0.0037		
	_	0.0000		
	Prostata			
40	Sinnesorgane			
		NORMIERTE/SUBT	ימדם שהמשדעמסי	TOTHENDA
		%Haeufigkeit	HAMITERIE DIDI	BIOINEREN
45	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
50	Haut-Muskel			
		0.0078		
		0.0082		
	Nerven			
	Prostata			
55	Sinnesorgane			
	3	· 		

60

Elektronischer Northern für SEQ. ID. NO: 68

	NORMAL	TUMOR	Verhaeltnisse		
		%Haeufigkeit			
	0.0000	0.0179	0.0000 undef		5
	0.0013	0.0065	0.2039 4.9053		_
Eierstock		0.0000	undef undef		
Endokrines_Gewebe		0.0000	undef 0.0000		
Gastrointestinal		0.0000	undef 0.0000		
-	0.0008	0.0022	0.3871 2.5836		
Haematopoetisch		0.0000	undef 0.0000		10
	0.0000	0.0000	undef undef		
Hepatisch		0.0000	undef 0.0000		
	0.0032	0.0000	undef 0.0000		
		0.0000	undef undef		
	0.0012	0.0047	0.2634 3.7971		15
Magen-Speiseroehre		0.0000	undef undef		
Muskel-Skelett		0.0060	0.2855 3.5025		
	0.0000	0.0000	undef undef		
Pankreas	· · · ·	0.0035	0.0000 dadef		
	0.0000	0.0000	undef undef ,		20
Prostata		0.0000	undef undef	- 2.	
	0.0083	0.0000	undef 0.0000	·	
Brust-Hyperplasie				•	
Duenndarm					
Prostata-Hyperplasie					25
Samenblase					
Sinnesorgane					
Weisse_Blutkoerperchen	0.0009				
	1				
	DOEMNO				30
	FOETUS				
Patroi alel una	%Haeufigkeit				
Entwicklung Gastrointenstinal		•			
	0.0000				
Haematopoetisch					35
Herz-Blutgefaesse					
_	0.0000				
	0.0000				
Prostata			•		
Sinnesorgane					40
brimesorgane	0.0000			•	
	NORMIERTE/SUB	TRAHIERTE BIBI	LIOTHEKEN		
	%Haeufigkeit				
	0.0000				45
Eierstock-Uterus					
Endokrines_Gewebe					
Foetal					
Gastrointestinal					
Haematopoetisch					50
Haut-Muskel					
Hoden	0.0000	1			
Nerven Prostata					
Sinnesorgane					55
Simesorgane	0.0000				

2.2 Fisher-Test

60

Um zu entscheiden, ob eine Partial-Sequenz S eines Gens in einer Bibliothek für Normal-Gewebe signifikant häufiger oder seltener vorkommt als in einer Bibliothek für entartetes Gewebe, wird Fishers Exakter Test, ein statistisches Standardverfahren (Hays, W. L., (1991) Statistics, Harcourt Brace College Publishers, Fort Worth), durchgeführt.

Die Null-Hypothese lautet: die beiden Bibliotheken können bezüglich der Häufigkeit zu S homologer Sequenzen nicht unterschieden werden. Falls die Null-Hypothese mit hinreichend hoher Sicherheit abgelehnt werden kann, wird das zu S gehörende Gen als interessanter Kandidat für ein Krebs-Gen akzeptiert, und es wird im nächsten Schritt versucht, eine Verlängerung seiner Sequenz zu erreichen.

Beispiel 3

Automatische Verlängerung der Partial-Sequenz

- 5 Die automatische Verlängerung der Partial-Sequenz S vollzieht sich in drei Schritten:
 - 1. Ermittlung aller zu S homologen Sequenzen aus der Gesamtmenge der zur Verfügung stehenden Sequenzen mit Hilfe von BLAST
 - 2. Assemblierung dieser Sequenzen mittels des Standardprogramms GAP4 (Bonfield, J. K., Smith, K. F., und Staden R. (1995), Nucleic Acids Research 23 4992–4999) (Contig-Bildung).
 - 3. Berechnung einer Konsens-Sequenz C aus den assemblierten Sequenzen.

Die Konsens-Sequenz C wird im allgemeinen länger sein als die Ausgangssequenz S. Ihr elektronischer Northern-Blot wird demzufolge von dem für S abweichen. Ein erneuter Fisher-Test entscheidet, ob die Alternativ-Hypothese der Abweichung von einer gleichmäßigen Expression in beiden Bibliotheken aufrechterhalten werden kann.

Ist dies der Fall, wird versucht, C in gleicher Weise wie S zu verlängern. Diese Iteration wird mit der jeweils erhaltenen Konsensus-Sequenzen C_i (i: Index der Iteration) fortgesetzt bis die Alternativ-Hypothese verworfen wird (if H_0 Exit; Abbruchkriterium I) oder bis keine automatische Verlängerung mehr möglich ist (while $C_i > C_{i-1}$; Abbruchkriterium II).

Im Fall des Abbruchkeiteriums II bekommt man mit der nach der letzten Iteration vorliegenden Konsens-Sequenceine komplette oder annähernd komplette Sequenceines Gens, das mit hoher statistischer Sicherheit mit Krebs in Zusammenhang gebracht werden kann.

Analog der oben beschriebenen Beispiele konnten die in der Tabelle I beschriebenen Nukleinsäure-Sequenzen aus Brusttumorgewebe gefunden werden.

Ferner konnten zu den einzelnen Nukleinsäure-Sequenzen die Peptidsequenzen (ORFs) bestimmt werden, die in der Tabelle II aufgelistet sind, wobei wenigen Nukleinsäure-Sequenzen kein Peptid zugeordnet werden kann und einigen Nukleinsäure-Sequenzen mehr als ein Peptid zugeordnet werden kann. Wie bereits oben erwähnt, sind sowohl die ermittelten Nukleinsäure-Sequenzen, als auch die den Nukleinsäure-Sequenzen zugeordneten Peptid-Sequenzen Gegenstand der vorliegenden Erfindung.

30

10

35

60 ur

45

50

55

60

TABELLE I

OS.	;	<u>_</u> _			Τ							1.	, 6)					_ <u>+</u>	 !			T		
Chromos.		Lokali-	sation		unbkt		unbkt.		unbkt.			himonop	Chromoso	m 4016:3		unbkt				STS nicht	kartiert.			unbkt		
Länge	der	ange-		Seguenz	513		670		1845			1499	}			688	}			606				930	3	
EST) 		Ausg.	länge	265		238		214			238	3			209)			268	,			260		
	ě.				ctase MLRQ-	Elektronen-	er dessen		5E5-Antigens	ומהוכנו מונו		ptor-	Proteinase-	e-Aktivität ab)		r relate.	inlich er e		•	ins bilden die	r inneren	oielt eine	enstruktur krintion	-bindenden	ichts publiziert	
		Funktion			none oxidoredu	əin Enzym der E	ziertes Gen übe	ISI.	egenstück des	teit es sich venn etor		roglobulin rece	hört zu einem "	ängt Proteinase		inhibition facto	spielt wahrsche	dulation		MB2) Gen, Larr	he unterhalb de	erns liegt, sie sp	egulation der Ne stind der Transl	theit eines RNA	Funktion noch n	
					humane NADH_ubiquinone oxidoreductase MLRQ-	Untereinheit; sie stellt ein Enzym der Elektronen- Transportkette dar	17-kDA Interferon-induziertes Gen über dessen	runkilon nicht bekannt ist	Vermutlich humanes Gegenstück des 5E5-Antigens	einen Transkriptionsfaktor		humanes "alpha-2-macroglobulin receptor-	associated protein", gehört zu einem "Proteinase-	Scavanging-System" (fängt Proteinase-Aktivität ab)		"macrophage migration inhibition factor relate."	im entspr. Normalgewebe, ca. 16 x protein 14 (MRP-14)", spielt wahrscheinlich $e_{E(3)}$	Rolle bei der Immunmodulation		humanes lamin B2 (LAMB2) Gen, Lamins bilden die	nukleäre Lamina, welche unterhalb der inneren	Zellmembran des Zellkerns liegt, sie spielt eine	wichinge holle in der Negulauon der Nernstruktur Während des Zellzvklus und der Transkrintion	regulatorische Untereinheit eines RNA-bindenden	Proteins, über dessen Funktion noch nichts publiziert wurde	3
					mor als hur	T Cr		T	>	s im eine						ımor als "ma	ca. 16 x prof	s im Rol			<u> </u>	Zell Zell	Wäh	s als im regu	Protein	
		Expression			ca. 5 x stärker im Brusttun	im entspr. Normalgewebe	ca. 9 x stärker im Brusttumor als im entspr. Normalgewiche	ol I laigewede	ca. 3 x starker im Brusttumor als im entspr. Normaldewebe. ca. 12 x	erentumor als	nalgewebe	ca. 6 x stärker im Pankreasturmor	als im entspr. Normalgewebe, ca.	n Brusttumor	algewebe	ca. 30 x stärker im Brusttu	ormalgewebe,	asentumor als	algewebe	ca. 4 x stärker im Brusttumor als	im entspr. Normalgewebe			er im Pankrea	algewebe	
	P	ш	4	·	ca. 5 x stärk	im entspr. No	ca. 9 x stärke	IIII CIIIODII IN	ca. 3 x stark(im entspr Nc	stärker im Nierentumor al	entspr. Normalgewebe	ca. 6 x stärke	als im entspr	2 x stärker in	entspr. Normalgewebe	ca. 30 x stärk	im entspr. No	stärker im Blasentumor al	entspr. Normalgewebe	ca. 4 x stärke	im entspr. No			ca. 4 x stärker im Pankrea	entspr. Normalgewebe	
Lfd.		ż			-		7	7	n			4				ιΩ			T	ဖ				7		ĺ

5	Chromos.	Lokali- sation		unbkt.	unbkt.	Hum.Chro m.1 zw. D18477u D1S504 (219-222 cM)	Hum.Chro m. 2 zw. D2S289u. D2S388 (107-111	Hum.Chro m. 18 zw. D18S1114 u.D18S468 (61-64 cM)
10	Länge der	ange- mel.	Sequenz		2017	2233	1365	1597
15	EST	Ausg.	länge	260	276	252	252	273
20				welch: proxired xin- ven	,	ıteoglykan	, neuerdings Actine die	ınktion rıoch
25				E37-2, ellt (Pe oxidati		ein Pro	orotein er die A	sen Fu
30		Funktion		ıt Enzym AOI xxidase darst die Zelle vor		ılin, es stellt (age capping r	ires Gen, des
35 48m				humanes Antioxidant Enzym AOE37-2, welches vermutlich eine Peroxidase darstellt (Peroxired xin-Familie), es schützt die Zelle vor oxidativen Prozessen.	unbekannt	humanes Fibromodulin, es stellt ein Proteoglykan des Knorpels dar	humanes "macrophage capping protein", neuerdings "CapG" genannt und reguliert über die Actine die Zellbeweglichkeit	Östrogen-induzierbares Gen, dessen Funktion noch nicht verstanden ist
	•	** * * *		hum verm Fam Proz	aqun	hum des l	hum; ×"Cap Zellb	Ostro
45 50		Expression		n Brusttumor als ialgewebe		ca. 4 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 9x stärker im Blasengewebe als im entspr. Tumorgewebe	ca. 3 x stärker im Brusttumor als humanes "macrophage capping protein", neuerdi im entspr. Normalgewebe, ca. 16 x "CapG" genannt und reguliert über die Actine die stärker im Nierentumor als im Zellbeweglichkeit entspr. Normalgewebe	ca. 3 x stärker im Brusttumor als Östrogen-induzierb im entspr. Normalgewebe, ca. 13 x nicht verstanden ist stärker im Herztumor als im entspr. Normalgewebe
55		EXD EXD		ca. 5 x stärker im Brusttumo im entspr. Normalgewebe	ca. 4 x stärker im Brusttumo im entspr. Normalgewebe	ca. 4 x stärker im Brusttumor im entspr. Normalgewebe, ca stärker im Blasengewebe als entspr. Tumorgewebe	ca. 3 x stärker im Brusttumor im entspr. Normalgewebe, ca stärker im Nierentumor als im entspr. Normalgewebe	ca. 3 x stärker im Brusttumoi im entspr. Normalgewebe, co stärker im Herztumor als im entspr. Normalgewebe
	Lfd.	ž		∞	6	9	-	25
65								

Lfd.			EST	Länge der	Chrom.
ž	Expression	Funktion		angemel.	angemel. Lokalisati
			Ausg		o
			länge	Sequenz	
<u>ჯ</u>	ca. 3 x stärker im Brusttumor als im	humane "integrin-linked kinase (ILK)", steuert den	296	1780	Hum.Chro
	entspr. Normalgewebe	Zusammenabau der Fibrinection-Matrix und hemmt die			m. 11 zw.
		Synthese von E-Cadherin, ILK-überexprimierende			D11S1318
		Zellen erzeugen Tumoren in Nacktmäusen			j
					D11S1338
					(6-14 cM)
4	_	unbekannt, humanes HISTONE H2B2	301	892	Hum.Chro
	entspr. Normalgewebe	A. *			m. 6 zw.
_					D6276u.
					D6S439
					(44-48 cM)

40.

-

				_				_			_	_												_
5	Chromos.	Lokali-	sation	Hum.Chro	m. 14 zw.	D14S63 u.	D14S251	(38-03 Civi)		unbkt.	Hum.Chro	m. 7, zw.	D7S499 u.	D7S2429	(76-77 cM)	unbkt.	Chromoso m 13	unbkt.		STS nicht	капеп.		unbkt.	
10	Länge der			992				1196	3	1105	2006					834	292	6//		2327			911	
15	EST		Ausg	263				260		293	272					246	627	245	-	282			260	
20				s Drosop vila	udimentary	lle im	· • • • • • • • • • • • • • • • • • • •	rnaslokase-	ıbran	•	Maus						factor	em huma en		ent bestent	,			
25		Funktion		humanes Gegenstück des Enhancers des Drosogniale	"rudimentary"-Gens ("human enhancer of rudimentary	homolog"), spielt möglicherweise eine Rolle im		menschliches Tim23 welches im Proteintrnaslokase-	Komplex der ineren mitochondrialen Membran lokalisiert ist		neues humanes Gen mit Ahnlichkeit zum Maus	orotein"				J.	humaer RNA polymerase II transcription factor	unbekannt, hat geringe Homologie zu einem huma en		humane JAK1 Tyrosinkinase, ein US-Patent besteht				
35		Fun		enstück des	-Gens ("huma	ielt möglichen	ffwechsel	Tim23, welch	neren mitocho		es Gen mit Al	"synaptosomal associated protein"				human in estinal trefoil factor	polymerase II	at geringe Hon	ue	Tyrosinkinas				
40' " 45				humanes Geg	"rudimentary"	homolog"), sp	Pyrimidin-Stoffwechsel	menschliches	Komplex der i lokalisiert ist	unbekannt	neues human	"synaptosoma				numan in esti	humaer RNA	unbekannt, ha	പരണഭരമാ-хев	humane JAK1	٥		unbekannt	
50		e		umor als im				tumor als im		umor als im	umor und im	pr.					·	umor als im		Imor als im	im entsor.			
55		Expression		ca. 7 x stärker im Brusttumor als im	entspr. Normalgewebe			ca. 11 x stärker im Brusttumor als	entspr. Normalgewebe	ca. 6 x stärker im Brusttumor als entspr. Normalgewebe	ca. 7 x stärker im Brusttumor und	Blasentumor als im entspr.	vebe			in Brusttumoren ernöht	in Brusttumoren erhöht	ca. 4 x stärker im Brusttumor als im	enispi. Normalgewebe	ca. 2 x stärker im Brusttumor als im	stärker im Hauttumor als im entspr	vebe	ca. 3 x stärker im Brusttumor als im	enspi. Normalgewebe
60					entspr. No.			ca. 11 x st	entspr. No	ca. 6 x stäl entspr. No	ca. 7 x stäl	Blasentum	Normalgewebe			In Brusttun	in Brusttun	ca. 4 x stäl	enispi. No	ca. 2 x stäl	stärker im	Normalgewebe	ca. 3 x stål	GIISDI. NO
65	Lfd.	ż		15				16		17	18				ļ	S C	50	7		7.7			23	

Chromos.	- I okali	cotion	S S S S S S S S S S S S S S S S S S S	unbkt.	unbkt.	unbkt.	unbkt.	unbkt.	STS nicht kartiert	STS fehit i	. 5
Länge	Ange		တ်	595	886	1008	2273	3448	1579	3070	10
EST		Aug.	länge	264	251	239	269	252	281	270	15
	Finktion			unbekannt, möglicherweise humanes Gegenstück eines Gens von arabidopsis thaliana (Chromosom ,)	unbekannt, vermutlich humanes Gegenstück eines Gens von caenorhabditis elegans, das auf Cosmid R11H6 lokalisiert ist	humane "macropain subunit zeta", ein Proteinbestandteil eines Proteosoms, das den Abbau von Proteinen und möglicherweise auch von RNA reguliert	unbekannt	humanes Cyclin D1, ein US-Patent besteht, gemäß einer Veröffentlichung wird Cyclin D1 in Pankreastumoren überexprimiert	Ribonuklease 6-Vorläufer-Molekül	humanes 80K-L Protein, ein Substrat der Protein- Kinase C	20 25 · · · · · · · · · · · · · · · · · · ·
	Expression			ca. 7 x stärker im Brusttumor als im entspr. Normalgewebe	ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe	ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Pankreastumor als im entspr. Normalgewebe	ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 4 x stärker im Uterustumor als im entspr. Normalgewebe	ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 6 x stärker im Uterustumor als im entspr. Normalgewebe	ca. 8 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe	ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe	50 55 60
Lfd.	ż		I	24	25			-		30	65

				_																		
5	Chromos.	Lokali-	sation		unbkt.	KEINE	ANGABE	KEINE	ANGABE	KEINE	ANGABE	KEINE	ANGABE		KEINE	ANGABE	STS WI-	13202	(Chrom. 6,	Koordinate	761	CentiRays)
10	Länge der	angemel.	C	Sednenz	2751	890		693		1054		541			1187		2281					
15	EST		Ausg	lange	291	275		287		282		155			291		239					
26		e·	. ,							esine												
25										lie der Kin	(IF2)											
30		Funktion			:	ptor		ktase		e zur Fami	nolog zu k						ninkinase					
35						epin-Reze		Oxidoredu		se, welch	nanes Hor						rin-/Threo					
40 580				-	unbekannt	Benzodiazepin-Rezeptor	*	Ubiquinon Oxidoreduktase		neue ATPase, welche zur Familie der Kinesine	gehört (humanes Homolog zu KIF2)	Lysozym			unbekannt		putative Serin-/Threoninkinase					
45					als ım	stark						ren					tark					
50		Expression	,		31 ca. 4 x starker im Brusttumor a entspr. Normalgewebe	33 Expression in Brusttumoren stark		rk erhöht		rk erhöht		37 erhöht in Brust- sowie mehreren	Blase-,		ם		39 in Brust- und Penistumoren stark			į		
55		Expre			ca. 4 x starker im Brust entspr. Normalgewebe	sion in Bru		35 im Brusttumor stark erhöht		im Brusttumor stark erhöht		n Brust- sc	anderen (Gehirn-, Blase-,	Eierstocktumoren)	38 erhöht in Brust- und	Prostatatumoren	- und Peni					
60				,	ca. 4 x : entspr.	Express	erhöht	im Brus		im Brus		erhöht i	anderer	Eierstoc	erhöht i	Prostata	in Brust	erhöht				7-
	rta .		ž	1	31	33		35		36		37			38		39					

Ę				•					EST	Länge	Chromos.
•		2						,		der	
		Expression		÷		Funktion		6°1 ,		angemel.	Lokali-
ž									Ausg		sation
									länge	Sednenz	
40	im Brusttumor stark erhöht	stark erhöht		putatives Kupfer-Aufnahme Gen	upfer-Aufn	ahme Gen			271	1759	STS WI-
											11879
				.*				ŕ			(Chrom. 9,
				***							Koordinate
	AAA/										429.1
											CentiRays)
41	41 Im Brusttumor stark erhöht	stark erhöht		Alpha Galaktosidase A	ktosidase ,	⋖			245	1447	KEINE ANGABE
42	im Brusttumor stark erhöht	stark erhöht		neues Homologes zu humanem B-cell	lologes zu	humanem	B-cell		151	831	KEINE
			·	Wachstumsfaktor (BCGF1)	sfaktor (BC	:GF1)					ANGABE
43	im Brusttumor stark erhöht	stark erhöht		unbekannt					263	528	KEINE
	:									٠	ANGABE
44	im Brusttumor sehr stark erhö	sehr stark erhöht		unbekannt					270	1027	Siehe PAC
45		schen und		Phosphatase	ě				303	2160	KEINE
!	Brusttumoren e	ILIONI									ANGABE
46	im Brusttumor	erhöht		HUMANES Homologes zu einem Maus co- Chaperonin	Homologe	s zu einer	n Maus co		323	642	KEINE ANGABE
47	im Brusttumor stark erhöht	stark erhöht		Homolog zu einem imprinted Gen von Chromosom	ı einem im	printed Ge	n von Ch	товот	266	1415	KEINE
5											ANGABE
48	im Brusttumor erhöht	ərnönt		RNA-Helicase	Se			٠,٦	261	2949	KEINE ANGABE
49		n und		Kopplungsfaktor F6 ist eine Komponente der	aktor F6 is	t eine Kon	ponente	der	268	665	KEINE
	Prostatatumoren erhöht	n erhöht		mitochondrialen ATP-Synthase, welcher für d	alen ATP-	Synthase,	welcher fü	ir d			ANGABE
				interaction des Kalaiyuschen und	res kalaiyi	uscnen und	s :				
	:			protonenubertragenden Segments erforderlich	ertragende	en Segmer	its erforde	riici ist			
20	ım Brusttumor erhöht	srhöht .		unbekannt					173	904	
				.2							
	55 60	50	45	40	35	30	25	20	15	10	5

			<u>.</u>		_				·				_														
5	Chromos.	Lokali-	sation		KEINE	ANGABE	KEINE	ANGABE	KEINE	ANGABE	ZEINIE		ANGABE	Chromoso	m 17	KEINE	ANGABE	Keine	Angabe	Chrom.	11q12 pac	pDJ363p2	Keine	Angabe	Keine	Angabe	
10	Länge	angemel.		Sequenz	1239		996		556		4240	9 10 10 10 10 10 10 10 10 10 10 10 10 10	,	2021		006		1212		464			. 67/		1315		2011
15	EST		Ausg	länge	291		260		250		205	62		284		262		272		242			173		241		219
20		•								· · · ·		•		,:					-	Ë,					molog		14.
25																		in		dem Prote					lenase Ho		
30		Funktion			ě				3-2 Gen		raco	200						ndes Prote		ata binden					e dehydrog		
35					ne ATPas				zum NA(hyltranefe							TP binde		zu Prosta	င်- 				ohosphate		
₹9 150 //		. *, *			neue humane ATPase		unbekannt		Homologes zum NAG-2 Gen	•:	Arginin Methyltransferase			unbekannt	٠	Stromelysin		humanes GTP bindendes Protein		Homologes zu Prostata bindendem Protein,	Untereinheit C-1		unbekannt		Glucose-6-phosphate dehydrogenase Homolog		unbekannt
45					pun -							2ht		ย	(za)											10	John
50		Expression			erhöht in Brust- sowie Prostata	noren	52 in Gehirn-, Brust-, Penis- und	n erhöht	erhöht in Brust- sowie mehreren	anderen Tumoren (Gastrointestinal, Gehirn. Niere. Pankreas, Protstata)	as- sowie	Gastrointestinaltumoren erhöhl		in Brust-sowie anderen Lumor	(nerz, okeletunuskel, Prostata) erhöht	nur im Brusttumor gefunden		näht		nönt			ığht		ווסר	7	oz in Brust- und Oterustumoren er
55		Expi			t in Brust- s	Skelettmuskeltumoren	nirn-, Brust-	Pankreastumoren erhöht	t in Brust- s	en Tumoreı ภ. Niere. Pa	in Brust- Pankreas- sowie	ointestinalt.		st- sowie al	okelettmu.	Brusttumo		im Brusttumor erhöht		ım Brusttumor erhöht			ım Brusttumor erhöht		IIM Brusttumor ernont	4.	st- und Ote
60		,			erhöhl	Skelet	in Get	Pankr		ander Gehirr		_	2	בוק בון				im Bru				_	<u> </u>	_			III BICK
	Lfd .	:	ż		51		52		23		54)	ŀ	င္သင့		99		24	1	၁႙			ည်		6	Ç	20

<u>.</u>				EST	Länge	Chrom
ž.	Expression	Funktion			ange-	Lokalisat.
		<i>A.</i>		Ausg länge	ဟ	
63	im Brusttumor stark erhöht	unbekannt		246	2009	STS SHGC-
						32788
						(Chrom.1,
						Koordinate
		-				5089.0 Centiravs)
2	in Brust- und Blasentumoren stark erhöht	Ets Transkriptionsfaktor		256	2269	Keine Angabe
65	im Brusttumor erhöht	IL13 Rezeptor alpha-1 Kette		246	1874	STS SHGC-
0	<u>.</u>	I				34461 (
9	In Blasen- und Brustumoren stark erhöht	Inhibition der Zellteilung und der Makrophagen Aktivität. Protein-Kinasen Inhibitor	er Makrophagen bitor	238	687	
29	im Brusttumor erhöht	möglicherweise eine Dehydrogenase	jenase	218	1528	
88	In Brustfumoren erhöht	linhakannt		470	700	
		dibonalin.		3	408	
		e de la composition della comp				
		*.				
		[
65	45505560	35	20	15	10	

Tabelle II

		•
	DNA-Sequenz Seq. ID. No.	Peptid-Sequenz (ORFs) Seq. ID. No.
5	3	71
-	9	
	9	72
		73
		74
		75
10		7 6
	14	77
	16	78
	17	79
		80
15	18	81
	19	82
	20	83
	21	84
		85
20		86
		87
•	23	88
		89
	24	90
25	25	91
	27	92
	21	
	00	93
	29	94
	31	95
30		96
		97
		98
	33	99
		100
35	35	101
	36	102
	38	103
	39	
		104
40	40	105
40	41	106
	42	107
	43	108
		109
		110
45	44 .	111
		112
		113
	46 .	114
	47	115
50	47	
	48	116
		117
	49	118
		119
	50	120
55	51	121
		122
	52	123
		124
		125
60	53	
	JJ	126
	£4	127
	54	128
	55	129
		130
65		131
		132
		133
		200

DNA-Sequenz Seq. ID. No.	Peptid-Sequenz (ORF's) Seq. ID. No.	; -•		
56	134			
57	135 136			
58	137			5
59	138			
	139			
61	140			
62	141			10
63	142			10
	143			•
	144			
64	145			
66	146		•	. 15
67	147		•	15
68	148		•	

Die erfinderischen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 des grmittelten Kandidatengene und die crmstelten Aminosäure-Sequenzen Seq. ID No. 71 bis Seq. ID No. 148 werden in den nach allegenden Sequenzprotokoll 20 beschrieben.

25

3

. 45

50

•

55

60

Sequenzprotokoll

(1) ALLGEMEINE INFORMATION:

(i) ANMELDER:

10

15

20

30

35

40 200

50

55

(A) NAME: metaGen - Gesellschaft für Genomforschung mbH

(B) STRASSE: Ihnestrasse 63

(C) STADT: Berlin

(E) LAND: Deutschland

(F) POST CODE (ZIP): D-14195

(G) TELEFON: (030)-8413 1672

(H) TELEFAX: (030)-8413 1671

(ii) IT ELGER ERFINDUNG:

Menschliche Nukleinsäure-Sequeกลอก ผล

Brusttumorgewebe

(iii) Anzahl der Sequenzen: 143

25 (iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC compatible

(C) OPERATING SYSTEM: PC-DOS/MS-DOS

(D) SOFTWARE: Patentln Release #1.0, Version #1.25 (EPO)

(2) INFORMATION ÜBER SEQ ID NO: 1:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 513 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 1:

	CCTTCAGGTA GGAGGTCCTG GGTGACTTTG GAAGTCCGTA GTGTCTCATT GCAGATAATT TTTAGCTTAG GGCCTGGGGG CTAGGTCGGT TCTCTCCTTT CCAGTCGGAG ACCTCTGCCG 1	60 20	:
	CAAACATGCT CCGCCAGATC ATCAGTCAGG CCAAGAAGCA TCCGAGCTTG ATCCCCCTCT 1 TTGGATTTAT TGGAACTGGA GCTACTGGAG CAACACTGTA TCTCTTGCGT CTGGCATTGT 2	.80	
	TCAATCCAGA TGTTTGTTGG GACAGAAATA ACCCAGAGCC CTGGAACAAA CTGGGTCCCA 3		
	ATGATCAATA CAAGTTCTAC TCAGTGAATG TGGATTACAG CAAGCTGAAG AAGGAACGTC 3		10
	CAGATTTCTA AATGAAATGT TTCACTATAA CGCTGCTTTA GAATGAAGGT CTTCCAGAAG 4		10
	CCACATCEGC ACAATTTTCC ACTTAACCAG GAAATATTTC TCCTCTAAAT GCATGAAATC 4		
	ATGITGGAGA TCTCTATTGT AATCICTATT GGN	513	
((2) INFORMATION ÜBER SEQ ID NO: 2:		15
	(i) SEQUENZ CHARAKTERISTIK: (i) SEQUENZ CHARAKTERISTIK: (ii) (iii)		20
	(A) LÄNGE: 670 Basenpaare		20
	(B) TYP: Nukleinsäure		
	(C) STrang: einzel		
	(D) TOPOLOGIE: linear		
	(D) TOPOLOGIE. IIIIedi		25
	(ii) MON FIXÎN TVD: que cintalnen ESTe durch Accomblicauna und Editionuna		
	(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung		
	hergestellte partielle cDNA		
			30
	(iii) HYPOTHETISCH: NEIN		
	(iii) ANTI-SENSE: NEIN		
			35
	(vi) HERKUNFT:		
	(A) ORGANISMUS: MENSCH		
	(C) ORGAN:	*1	
	(O) ONOMI.		.10
	ASS CONCTICE HEDICINET		40
	(vii) SONSTIGE HERKUNFT:		
	(A) BIBLIOTHEK: cDNA library		
	•		
	112		45
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2:		
	atagggccgg tgctgcctgc ggaagccggc ggctgagagg cagcgaactc atctttgcca	60	
	gtacaggage tegtgeegtg geccaeagee caeageecae agecatggge tgggaeetga 1	20	50
	cggtgaagat gctggcgggc aacgaattcc aggtgtccct gagcagctcc atgtcggtgt 1		
	cagagetgaa ggegeagate acceagaaga teggegtgea egeetteeag cagegtetgg 2		
	ctgtccaccc gagcggtgtg gcgctgcagg acagggtccc ccttgccagc cagggcctgg 3		
	gccccggcag cacggtcctg ctggtggtgg acaaatgcga cgaacctctg agcatcctgg 3		¢.
	tgaggaataa caagggccgc agcagcacct acgaggtgcg gctgacgcag accgtggccc 4		55
	acctgaagca gcaagtgagc gggctggagg gtgtgcagga cgacctgttc tggctgacct 4		
	tcgaggggaa gcccctggag gaccagctcc cgctggggga gtacggcctc aagcccctga 5		
	gcaccgtgtt catgaatctg cgcctgcggg gaggcggcac agagcctggc gggcggagct 6		
	aagggcctcc accagcatcc gagcaggatc aagggccgga aataaaggct gttgtaaaga 6		60
		70	

(2) INFORMATION ÜBER SEQ ID NO: 3:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 25

30

10

- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 3:
- ggtgccgtca cgggacagag cagtcggtga caggacagag cagtcggtga cgggacacaq 60 tggttggtga cgggacagag cggtcggtga cagcctcaag ggcttcagca ccgcgcccat 120 ggcagagcca gaccgactca gattcagact ctgagggagg agccgctggt ggagaagcag 180 acatggactt cctgcggaac ttattctccc agacgctcag cctgggcagc cagaaggagc 240 gtctgctgga cgagctgacc ttggaagggg tggcccggta catgcagagc gaacgctgtc 300 ുമുന്നു geagagteat etgittiggig ggayetggaa telegaeate egeaggeate edegaetite 360 getetecate cacegoete tatgacaace tagagaagta ceatetteec tacecagagg 420 ccatctttga gatcagctat ttcaagaaac atccggaacc cttcttcgcc ctcgccaagg 480 aactctatcc tgggcagttc aagccaacca tctgtcacta cttcatgcgc ctgctgaagg 540 acaaggggct actectgcgc tgctacacgc agaacataga taccetggag cgaatageeg 600 ggctggaaca ggaggacttg gtggaggcgc acggcacctt ctacacatca cactgcgtca 660 ggccaagtgc cggcacgaat acccgctaag ctggatgaaa gagaagatct tctctgaggt 720 gacgcccaag tgtgaagact gtcagagcct ggtqaagcct gatatcgtct tttttggtga 780 gagcetecca gegegtttet teteetgtat geagteagae tteetgaagg tggaeeteet 840 cctggtcatg ggtacctcct tgcaggtgca gccctttgcc tccctcatca gcaagqcacc 900 cctctccacc cctcgcctgc tcatcaacaa ggagaaagct ggccagtcgg accctttcct 960 ggggatgatt atgggcctcg gaggaggcat ggactttgac tccaaqaagg cctacaqqqa1020 cgtggcctgg ctgggtgaat gcgaccaggg ctgcctggcc cttgctgagc tccttggatg1080 gaagaaggag ctggaggacc ttgtccggag ggagcacgcc agcatagatg cccagtcggg1140 ggcggggtc cccaaccca gcacttcagc ttccccaag aagtccccgc cacctgccaa1200 ggacgaggcc aggacaacag agagggagaa accccagtga cagctgcatc tcccaggcqq1260 gatgccgagc tcctcaggga cagctgagcc ccaaccgggc ctggcccct cttaaccagc1320 agttettgte tggggagete agaacateee ceaatetett acageteeet ceccaaaact1380 ggggtcccag caacctggc ccccaaccc agcaaatctc taacacctcc tagaggccaal440 ggcttaaaca ggcatctcta ccagccccac tgtctctaac cactcctggg ctaaggagta1500 acctccctca tctctaactg cccccacggg gccagggcta ccccagaact tttaactctt1560 ccaggacagg gagetteggg ecceeactet gteteetgee eccgggggee tgtggetaaq1620 taaaccatac ctaacctacc ccagtgtggg tgtgggcctc tgaatctaac ccacacccag1680 cgtaggggga gtctgagccg ggagggctcc cgagtctctg ccttcagctc ccaaagtggg1740

attggagaca aattaaaaac aaaaacaact aacaaaaaa aaaaa 184	
(2) INFORMATION ÜBER SEQ ID NO: 4:	5
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1499 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	10
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	15
(iii) HYPOTHETISCH: NEW	20
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	25
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 4:	35
cggctcgagg gcgccgcgga gggtcaggtc gtttctgcgc gggctcccgg cgctgctact 60 gctgctgctc ttcctcgggc cctggccgc tgcgagccac ggcggcaagt actcgcggga 120 gaagaaccag cccaagccgt ccccgaaacg cyagtccgga gaggagttcc gcatggagaa 180 gttgaaccag ctgtgggaga aggcccagcg actgcatctt cctcccgtga ggctggccga 240 gctccacgct gatctgaaga tacaggagag ggacgaactc gcctggaaga aactaaagct 300	40 ·
tgacggettg gacgaagatg gggagaagga agcgagacte atacgcaace teaatgteat 360 ettggecaag tatggtetgg acggaaagaa ggacgetegg caggtgacca gcaactecet 420 cagtggeace caggaagacg ggetggatga eeccaggetg gaaaagetgt ggeacaagge 480 gaagacetet gggaaattet eeggegaaga actggacaag etetggeggg agtteetgea 540	45
tcacaaagag aaagttcacg agtacaacgt cctgctggag accctgagca ggaccgaaga 600 aatccacgag aacgtcatta gcccctcgga cctgagcgac atcaagggca gcgtcctgca 660 cagcaggcac acggagctga aggagaagct gcgcagattc aaccagggcc tggaccgcct 720 gcgcagggtc agccaccagg gctacagcac acgaggctgat 780 tgaggctgat gacctgagg gacctgaggag agtccgcac aggagaggag	50
tgacctgtgg gacctggcgc agtccgccaa cctcacggac aaggagctgg aggcgttccg 840 ggaggagctc aagcacttcg aagccaaaat cgagaagcac aaccactacc agaagcagct 900 ggagattgcg cacgagaagc tgaggcacgc agagagcgtg ggcgacggcg agcgtgtgag 960 ccgcagccgc gagaagcacg ccctgctgga ggggcggacc aaggagctgg gctacacggt1020 gaagaagcat ctgcaggacc tgtccggcag gatctccaga gctcggcaca acgaactctg1080	55
aaggcattgg ggagcccagc ccggcaggga agaggccagc gtgaaggacc tgggctcttg1140 gccgtggcat ttccgtggac agcccgccgt cagggtggct ggggctggca cgggtgtcga1200 ggcaggaagg attgtttctg gtgactgcag ccgctgccgt cgcgacacag ggcttggtgg1260 tggtagcatt tgggtctgag atcggcccag ctctgactga aggggcttgg cttccactca1320 gcatcagcgt ggcagtcacc accccagtga ggacctcgat gtccagctgc tgtcaggtct1380	60
gatagtcctc tgctaaaaca acacgattta cataaaaaat cttacacatc tgccaccgga1440 aataccatgc acagagtcct taaaaaaatag agtgcagtat ttaaaccaaa aaaaaaaa 1499	65

(2) INFORMATION ÜBER SEQ ID NO: 5:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 688 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
- (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 25

30

10

15

- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 5:
- gggccaagtg ccccagtcag gagctgccta taaatgccga gcctgcacag ctctggcaaa 60
 cactctgtgg ggctcctcgg ctttgacaga gtgcaagacg atgacttgca aaatgtcgca 120
 gctggaacgc aacatagaga ccatcatcaa caccttccac caatactctg tgaagctggg 180
 gcacccagac accctgaacc agggggaatt caaagagctg gtgcgaaaag atctgcaaaa 240
 ttttctcaag aaggagaata agaatgaaaa ggtcatagaa cacatcatgg aggacctgga 300
 cscaaatgca gacaagcagc cgagcttcga ggggttcatc atgctgutgg cgaggctaac 360
 ctgggcctcc cacgagaaga tgcacgaggg tgacgagggc cctggccacc accataagcc 420
 aggcctcggg gagggcaccc cctaagacca cagtggccaa gatcacagtg gccacggcca 480
 cggccacagt catggtgcc acggccacag cactaatca ggaggccagg ccaccctgcc 540
 tctacccaac cagggcccc gggcctgtta tgtcaaactg tcttggctgt tggggctaggg 600
 gctggggcca aataaagtct cttcctcaa gtcagtgctc tgtgtgcttc ttccagctcc 660
 tgttcaacac tgcctttcca ggggtgtg
- 50 (2) INFORMATION ÜBER SEQ ID NO: 6:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 909 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN

65

55

(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	5
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:6:	15
togagoogoa ttogacoaga agtoggogoa ogoggootog gtooggttga otttgoggae 60 catggaggge ggottoggot ocgatttogg gggotoogge agogggaago tggacocagg 120 gbbootantg gagoaggtga aagtgoagat ogoogtggoo aaogogogogos ecotggacaa 180 gaggatgacg gacaagtgtt tooggaagtg tatagggaaa cotgggggot cootggacaa 240)
ctccgagcag aagtgcatcg ccatgtgcat ggaccgctac atggacgcct ggaacaccgt 300 gtctcgcgcc tacaactcgc ggctgcagcg ggaacgagcc aacatgtgac cggcgagcgc 360 gggccacccc accctgttca tttccataaa cgtgctttga gaggcggggt ccgcatgtac 420 gtactgcctg cccggggctt aggagggtgg caccggtgct gggacacacg ggactgtgtc 480)
ctcgccaccc cccgccctgc cccctgccag ccagtgcagc ttggatctcg ggggtgtggg 540	
gccctgtgcc ttcctgaagt gctggcagcc cagtggcacc tccttcaggc ctttggggta 600 ttcccctagt gtgcccaagt cagcctcata ttctgggcgg acagcttgtc tggacttcgg 660 agttgggggt ggtcagacac cacaggagct gtcacctcct gcggatgggc aaataaattg 720 gtggaggacg gaaagaaacc tctttatttc cctcctgagg ggtctctctc tgggaagagg 780	30
tgacgcgtgt ccctggaacc ccagctcgga gggtctcagc ctcccctggg ttgggagaag 840 tccatctttc cccttagtgc caccgggctg ctgagtcacg aggaatgtgt tgctgctgcc 900 acccctgcc 909	35
(2) INFORMATION ÜBER SEQ ID NO: 7:	"40
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: Basenpaare (B) TYP: Nukleinsäure	٠
(C) STrang: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	50
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	60
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 7:

```
tqaqqccaaq qcqqcqtgag tctqcqcagt gtggggctga gggaggccgg acggcgcgcg
    tgcgtgctgg cgtgcgttca ctttcagcct ggtgtggggc ttgtaaacat ataacataaa 120
    aatqqcttcc aaaagagctc tggtcatcct ggctaaagga gcagaggaaa tggagacggt 180
    catccctqta gatgtcatga ggcgagctgg gattaaggtc accgttgcag gcctggctgg 240
    aaaaqaccca gtacagtgta gccgtgatgt ggtcatttgt cctgatgcca gccttgaaga 300
10
    tgcaaaaaaa gagggaccat atgatgtggt ggttctacca ggaggtaatc tgggcgcaca 360
    gaatttatct gagtctgctg ctgtgaagga gatactgaag gagcaggaaa accggaaggg 420
    cctgatagcc qccatctgtg caggtcctac tgctctgttg gctcatgaaa taggttttgg 480
    aagtaaagtt acaacacacc ctcttgctaa agacaaaatg atgaatggag gtcattacac 540
    ctactctqaq aatcqtqtqq aaaaagacqq cctqattctt acaagccqqq gqcctqqqac 600
    carcttegag tttgcgcttg caattgttga agccctgaat ggcaaggagg tggcggctca 660
    agtgaaggct ccacttgttc ttaaagacta gagcagcgaa ctgcgacgat cacttagaga 720
    aacaggeegt taggaateea tteteactgt gttegeteta aacaaaacag tggtaggtta 780
    atgtg::cag:\.agh.motgt cottactact tttgcggaag tatggaagto accaptacer 340 -
    agagattict callictacaa attigtigticta tacatticta agocttigtit goagaataaa 1900
    cagggcattt agcaaactaa aaaaaaaaa
```

25

(2) INFORMATION ÜBER SEQ ID NO: 8:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 989 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear

35

30

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - 50 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - 55 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 8:

```
cgcgcggcg tcgtgcacgc ggttgtagct gcccggcggc ggcagaagcg gcgctcgcgc 60
caagggacgt gtttctgcgc tcgcgtggtc atggaggcgc tgccgctgct agccgcgaca 120
actccggacc acggccgcca ccgaaggctg cttctgctgc cgctactgct gttcctgctg 180
ccggctggag ctgtgcaggg ctgggagaca gaggagaggc cccggactcg cgaagaggag 240
tgccacttct acgcgggtgg acaagtgtac ccgggagagg catcccgggt atcggtcgcc 300
gaccactccc tgcacctaag caaagcgaag atttccaagc cagcgcccta ctgggaagga 360
```

ttggttttct tttggcgaca gattcacagt ccaataagga tacctagagg ctaagacaaa ttggttcaag cctggtagtg aattgagaaa	tcttctacco gacttgaaga ttacccattt ttccacttct actcaggcca ttactctgaa cattccagta aaacaataat tacttctca	acttgattto attcagatct ggcctggatt tcagatttg cactcttaga tgatcttcct cactgacaaa cccagatcca	acatttgtgt ataaatactg aatacccctc acccatcaga ggtctcttca gtgggtagat cacggagaag	ctgattatcg cgtccaactga aagtggtagc gaagacaagga tctcaaagga ttattgatga cagtggatga tctgccctgc tgaagtattt	aattateget atgetetgtt aggaettggg etatggtgta caaaggaate gacaetaegt tggetggaaa	480 540 660 660 720 780 840 900 960	
cattaccaaa	aaaaaaaaa	aaaaaaaa				989	15
(2) INFORMA	TION ÜBER S	SEQ ID NO: 9	:				
(A) LÄN (B) TYP (C) STR	NZ CHARAKT GE: 2017 Bas : Nukleinsäur ANG: einzel OLOGIE: line	senpaare e				•	20
(b) 10F	OLOGIE. IIIIe	aı					25
(ii) MOLEKÜ hergeste	DLTYP: aus e elite partielle	inzelnen EST cDNA	s durch Asser	mblierung und	Editierung		
(iii) HYPOTH	IETISCH: NE	IN					30
(iii) ANTI-SE	NSE: NEIN			•			
(vi) HERKUI (A) ORG (C) ORG	ANISMUS: M	MENSCH				•	35
(0) 0.10	7,114	*			•		40
	GE HERKUN IOTHEK: cDI						70
(xi) SEQUEN	NZ-BESCHRE	EIBUNG: SEQ	ID NO: 9:			•	45
225025055		habakk					
aagcaacctc aaggcccagg	tctgtattat	cctactqcca	cataggaagt	aaaatgagta	ttcttaaagg ctcacagcct	60 120	50
tgcgcctaat	cactgaacac	agcttttagt	aatgttttac	acaagaacag	gatattggca	180	30
actcaactgt	taagcctttc	tgtgattatt	cttccttgag	atcactctga	tgtcaccagt	240	
gtaatttgag acagactctc	togaaageet	aggagetgaa	tttaaatagc	agtcccagaa	tgatttcact.	300	
aagcgaagca	ccaagccatc	atcatotcca	cotcoctaca	antrances	tecatecate	30U 420	55
gctaccactt	cgacacagec	tctcgtaaga	aaqccqtqqq	caacatcttt	gaaaacacag	480	
accaagaatc	actagaaagg	ctcttcagaa	actctggaga	caagaaagca	gaggagagag	540	
ccaagatcat	ttttgccata	gatcaagatg	tggaggagaa	aacgcgtgcc	ctgatggcct	600	
tgaagaagag	gacaaaagac	aagcttttcc	agtttctgaa	actgcggaaa	tattccatca	660	60
aagttcactg acagtgagtt	aayayaayag totoacatto	yaiyyataag taacacatac	yacgttatcc	tactacetta	attcaaagac	720	
ttctgtcagg a	actccagagg	ctagaaaaaa	accognacto	daaaddaacc	annactrass	70U 840	
agactggtta	caaagactcc	aaacaatttc	atqccctata	ctattacada	ggagaacaaa	900	
atgctttcag	caaggatttg	aaaactcttc	cgtccctgca	ggaaaggatt	gatgctgata	960	65

```
gaagagcctg gacagatgta atgagaacta aagaaaacag atggctggag atgacattta1020
    tccagggtca ctttgtcagg ccctaggact taaatcgaag ttgaactttt tttttttt1080
    aaccaaatag ataggggagg ggaggaggga gagggaggac agggagagaa aataccatgc1140
    ataaattgtt tactgaattt ttatatctga gtgttcaaaa tatttccaag cctgagtatt1200
    gtctattggt atagattttt agaaatcaat aattgattat ttatttgcac ttattacaat1260
    qcctqaaaaa qtgcaccaca tggatgttaa qtaqaaattc aaqaaaqtaa qatqtcttca1320
    qcaactcagt aaaaccttac gccacctttt ggtttgtaaa aggtttttta tacatttcaa1380
    acaqqttqca caaaagttaa aataatgggg tcttttataa atccaaagta ctgtgaaaac1440
    attttacata ttttttaaat cttctgacta atgctaaaac gtaatctaat taaatttcat1500
    acagttactg cagtaagcat taggaagtga atatgatata caaaatagtt tataaagact1560
    ctatagtttc tataatttat tttactggca aatgtcatgc aacaataata aattattgta1620
    aactttgtgg cttttggtct gtgatgcttg gtctcaaagg aaaaaataaq atggtaaatq1680
15
    ttgatattta caaacttttc taaagatgtg tc:ctaacaa taaaagttaa ttttagagta1740
    gttttatatt aattaccaaa ctttttcaaa acaaattctt acgtcaaata tctgggaagt1800
    ttctctgtcc caatcttaaa atataaaata tagatataga agttcataga ttgactcctt1860
    ggcatttcta tttatgtatc culmaaggst gasttttaaa aggctttctc ttcatacttt1923
20
    tgaaaaattt cttctatgat tacagtagct atgtacatgt gtacatctat ttttcccaag1980
    caatatgttt tgggtttaga gtctgagtga tgaccaa
```

(2) INFORMATION ÜBER SEQ ID NO: 10:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2233 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- 45 (vi) HERKUNFT:

25

30

35

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 50 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 10:

```
cggctcgagc ggcgcgaagt tccatgaggg gcctccggtc actgatcttg ctggacctga 60
gttataacca ccttcggaag gtgcctgatg ggctgcctc agctcttgag cagctgtaca 120
tggagcacaa caatgtctac accgtccccg atagctactt ccggggggcg cccaagctgc 180
tgtatgtgcg gctgtcccac aacagtctaa ccaacaatgg cctggcctcc aacaccttca 240
attccagcag cctccttgag ctagacctct cctacaacca gctgcagaag atccccccag 300
tcaacaccaa cctggagaac ctctacctcc aaggcaatag gatcaatgag ttctccatca 360
gcagcttctg caccgtggtg gacgtcgtga acttctccaa gctgcaggtg ctgcgcctgg 420
acgggaacga gatcaagcgc agggcatgcc tgccgacgcg cccctctgcc tgcgccttgc 480
```

```
caqcctcatc gagatetgag cageeetgge accgggtact gggeggagag ecceegtgge 540
 atttggcttg atggtttggt ttggcttttg ctggaaggtc caggatggac catgtgacag 600
 aagtocaegg geaccetetg tagtettett teetgtaggt ggggttaggg ggggegatea 660
 gggacaggca gccttctgct gaggacatag gcagaagctc actcttttcc agggacagaa 720
 gtggtggtag atggaaggat ccctggatgt tccaacccca taaatctcac ggctcttaag 780
 ttcttcccaa tgatctgagg tcatggaact tcaaaagtgg catgggcaat agtatataac 840
 catacttttc taacaatccc tggctgtctg tgagcagcac ttgacagctc tccctctgtg 900
 ctgqqctgqt cgtgcagtta ctctgggctc ccatttgttq cttctcaaaa tatacctctt 960
 gcccagctgc ctcttctgaa atccacttca cccactccac tttcctccac agatgcctct1020
 totgtgcctt aagcagagto aggagaccco aaggcatgtg agcatctgcc cagcaacctg1080
 tggagacaac ccacactgtg tctgagggtg aaaggacacc aggagtcact tctatacctc1140
 cctaacctca cccctggaaa gccaccagat tggaggtcac cagcatgatg ataatattcal200
 tgacctgatg tgggaggaga cagccaacct caggcttaga tcaatgtata gggctatatt1260
 ttggcagctg ggtagctctt tgaaggtgga taagacttca gaagaggaaa ggccagactt1320
 tgcttaccat cagcatctgc aatgggccaa acacacctca aattggctga gttgagaaag1380
 cagococagt agttocatto tigocoagoa cilectgilo tocaaacago atoctacotg1440
 ggtttttatc cacaaaggta gcggccacat ggtttttaaa tacgagaaa cacagtttgt1500
 cctctccttt tatccaagca ggaagattct atatcctgat ggtagagaca gactccaggc1560
 agccctggac ttgctagccc aaagaaggag gatgtggtta atctqtttca cctqqtttgt1620
 cctaaqqcca tagttaaaaa gtaccagctc tqqctqqqqt ccqtqaaqcc caqqccagqc1680
 agccaaatct tgcctgtgct gggcatacaa ccctctgctt tcacatctct qaqctatatc1740 25
 ctcattagtg aaggtggctt ttgctttata gtttggctgg ggagcactta attcttccca1800
 tttcaaaagg taatgttgcc tggggcttaa cccacctgcc ctttgggcaa ggttgggaca1860
 aagccatctg ggcagtcagg ggcaaggact gttggaggag agttagccca agtataggct1920
 ctgcccagat gccatcacat ccctgatact gtgtatgctt tgaagcacct tccctgagaa1980
 gggaagaggg gatctttgga ctacgttctt ggctccagac ctggaatcca caaaaqccaa2040
 accageteat tteaacaaag gageteegat gtgaggggea aggetgeeee etgeeceaqq2100
 gctcttcaga aagcatctgc atgtgaacac catcatgcct ttataaagga tccttattac2160
 aggaaaagca tgagtggtgg ctaacctgac caataaagtt attttatgat tgcaaataaa2220
 aaaaaaaaa aaa
(2) INFORMATION ÜBER SEQ ID NO: 11.
  (i) SEQUENZ CHARAKTERISTIK:
     (A) LÄNGE: 1365 Basenpaare
     (B) TYP: Nukleinsäure
     (C) STrang: einzel
                                                                         45
     (D) TOPOLOGIE: linear
 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung
                                                                         50
     hergestellte partielle cDNA
 (iii) HYPOTHETISCH: NEIN
                                                                        55
 (iii) ANTI-SENSE: NEIN
 (vi) HERKUNFT:
    (A) ORGANISMUS: MENSCH
                                                                        60
    (C) ORGAN:
 (vii) SONSTIGE HERKUNFT:
    (A) BIBLIOTHEK: cDNA library
```

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 11:

```
qqqqcaqqct qaqacaqcqc ccaqaacctc qqaqcaaqqc qttqqcaqat ctqaaqacaq 60
    catgtacaca gccattcccc agagtggctc tccattccca ggctcagtgc aggatccagg 120
    cctgcatgtg tggcgggtgg agaagctgaa gccggtgcct gtggcgcaag agaaccaggg 180
    cqtcttcttc tcgggggact cctacctagt gctqcacaat ggcccaqaaq aqqtttccca 240
    tctqcacctg tggataggcc agcagtcatc ccgggatgag cagggggcct gtgccgtqct 300
    ggctgtgcac ctcaacacgc tgctgggaga gcggcctgtg cagcaccgcg aggtqaqqqc 360
    aatgagtctg acctetteat gagetaette ceaeggggee teaagtacea ggaaggtggt 420
    gtggagtcag catttcacaa gacctccaca ggagccccag ctgccatcaa gaaactctac 480
    caggtgaagg ggaagaagaa catccgtgcc accgagcggg cactgaactg ggacaqcttc 540
15
    aacactgggg actgcttcat cctggacctg ggccagaaca tcttcgcctg gtqtqqtgga 600
    aagtccaaca teetggaacg caacaaggeg agggacetgg ceetggeeat eegggacagt 660
    gagcgacagg gcaaggccca ggtggagatt gtcactgatg gggaggagcc tgctgagatg 720
    aticcaggice tgggeeceaa geetgetetg aacqaggea accetgadda adaceteaca 780
    yingacangg caaatgooca ggoogcagot otgtataagg tototgatgg აგგარევით 840
    atgaacctga ccaaggtggc tgactccagc ccatttgccc ttgaactgct gatatctgat 900
    qactqctttg tgctggacaa cgggctctgt ggcaagatct atatctggaa ggggcgaaaa 960
    gcgaatgaga aggagcggca ggcagccctg caggtggccg agggcttcat ctcgcgcatg1020
    cagtacgccc cgaacactca ggtggagatt ctgcctcagg gccgtgagag tcccatcttc1080
    aagcaatttt tcaaggactg gaaatgaggg tgggcgtctt cctgccccat gctcccctqc1140
    ccccaccac ctgcctgctt gcttctctgg ctgcctggtc agtgcagagg tgccccttgc1200
    agatgttcaa taaaggagac aagtgctttc ccagctcttt tcctgcaaaa cctgccctgg1260
    gctgattctc actgtcaccc acctattcac ctgggttcat ccccatgctg ggggtggagt1320
    agcacacaga tgacaattgg acagccttgg aggggccaga gctgc
                                                                     1365
```

- 35 (2) INFORMATION ÜBER SEQ ID NO: 12:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1597 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 50 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- ss (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 12:

	aggecatege						
	ggcctgcaca						
	agtggtttaa						
	tttgctgttc						
	tcagccatgc						
	aatgtttcta						
	gatatggtac						
	tatttctttt						1
	atatttgaac						
	agcttaaaaa						
	atgcagcgtt						
	aaagtcagtt						1
	atgtgcaatt						•
-	tctgtatgtt		_	_	_		
	tatactggat						
	goctaaaata						
	agaatetgag						2
	agaggggaga						
	aaacattttt						
	tttagttgta						
	caatatatca						2
	tgagtacagt						
	caaaagctgt						
	actttgatat						
	gtactttgat						3
	ggtactgtag			gcattctcta	gatgtttctt1	560	3
ttttacacaa	taaattcctt	atatcagctt	gaaaaaa		1	597	
(i) SEQUE	TION ÜBER S NZ CHARAKT	ERISTIK:	3:				3.
(B) TYF (C) STr	IGE: 1780 Bas P: Nukleinsäure ang: einzel POLOGIE: line	e .			· · · · · · · · · · · · · · · · · · ·		44
	ÜLTYP: aus ei tellte partielle d		durch Assen	nblierung und	Editierung	•	45
(iii) HYPOTI	HETISCH: NEI	N					50
(iii) ANTI-SE	ENSE: NEIN						
(vi) HERKU (A) OR((C) OR(GANISMUS: M	IENSCH					55
	IGE HERKUN LIOTHEK: cDN				·		60
(xi) SEQUE	NZ-BESCHRE	EIBUNG: SEQ	ID NO: 13:				65

```
egggegegge eggaeggtag tteeceggag aaggateetg cageeegagt eeegaggata 60
    aagettgggg tteateetee tteeetggag eeegagteee gteeteagge tteeeeaate 120
     caggggactc ggcgccggga cgctgctatg gacgacattt tcactcagtg ccgggagggc 180
     aacqcaqtcq ccgttcgcct gtggctggac aacacggaga acqacctcaa ccaqqqqqac 240
    gatcatggct tetececett geactgggce tgeegagagg. geegetetge tgtggttgag 300
    atgttgatca tgcggggggc acggatcaat gtaatgaacc gtggggatga caccccctg 360
    catctqqcag ccagtcatgg acaccgtgat attgtacaga agctattqca gtacaaggca 420
    gacatcaatg cagtgaatga acacgggaat gtgcccctgc actatgcctq tttttqqqqc 480
    caaqatcaag tggcagagga cctggtggca aatggggccc ttgtcagcat ctgtaacaag 540
    tatggagaga tgcctgtgga caaagccaag gcacccctga gagagcttct ccgagagcgg 600
    gcagagaaga tgggccagaa tctcaaccgt attccataca aggacacatt ctggaaggg 660
    accaccegca cteggeeceg aaatggaace etgaacaaac actetggeat tgaetteaaa 720
15
    cagcttaact tcctgacgaa gctcaacgag aatcactctg gagagctatg gaagggccgc 780
    tggcagggca atgacattgt cgtgaaggtg ctgaaggttc gagactggag tacaaggaaq 840
    agcagggact tcaatgaaga gtgtccccgg ctcaggattt tctcgcatcc aaatgtgctc 900
    ccaqtgctaq gtgcctycca gtctclacct (.tcctcatc ctactcteat cacacactqq 050 %
20
    atgccqtatg gatccctcta caatgtacta calgaaqqca ccaatttcgt cqtqqaccag1020
    agccaggctg tgaagtttgc tttggacatg gcaaggggca tggccttcct acacacacta1080
    gagecectea teccaegaca tgeacteaat ageegtagtg taatgattga tgaggacatg1140
    actgcccqaa ttagcatggc tgatgtcaag ttctctttcc aatgtcctgg tcgcatgtat1200
25
    gcacctgcct gggtagcccc cgaagctctg cagaagaagc ctgaagacac aaacaqacqc1260
    tcagcagaca tgtggagttt tgcagtgctt ctgtgggaac tggtgacacg ggaggtaccc1320
    tttgctgacc tctccaatat ggagattgga atgaaggtgg cattggaagg ccttgggcta1380
    ccatcccacc aggtatttcc cctcatgtgt gtaagctcat gaagatctgc atgaatgaag1440
    accetgeaaa gegaeecaaa tttgaeatga ttgtgeetat eettgagaag atgeaggaea1500
    agtaggactg gaaggteett geetgaacte cagaggtgte gggacatggt tqqqqqaatq1560
    cacctcccca aagcagcagg cctctggttg cctcccccgc ctccagtcat ggtactaccc1620
    cagocatggg gtocatococ ttococcato cotaccactg tggccccaag agggqcqggc1680
    tcagagettt gtcacttgcc acatggtgtc tcccaacatg ggaqqgatca gccccqcctq1740
35
    tcacaataaa gtttattatg aaaacaaaaa aaaggtgtgg
```

(2) INFORMATION ÜBER SEC ID NO: 14: ...

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 892 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

45

55

60

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 14:

```
aacqactcct ggtaccttgc tcccattact tcccgttttc tcgatctgct gctcgtctca
ggetegtagt tegeetteaa catgeeggaa ceagegaagt eegeteeege geecaagaag 120
 ggctcgaaga aagccgtgac taaggcgcag aagaaggacg gcaagaagcg caaggcagcc 180
gcaaggagag ctactccgta tacgtgtaca aggtgctgaa gcaggtccac cccgacaccg 240
 qcatctcctc taaggccatg ggaatcatga actccttcgt caacgacatc ttcgaacgca 300
 tegegggtga ggetteeege etggegeatt acaacaageg etegaceate acetecaggg 360
 agatccagac ggccgtgcgc ctgctgctgc ccggggagtt ggccaagcac gccgtgtccg 420
 agggcaccaa ggccgtcacc aagtacacca gcgctaagta aacttgccaa ggagggactt 480
 tctctggaat ttcctgatat gaccaagaaa gcttcttatc aaaagaagca caattgcctt 540
 cggttacctc attatctact gcagaaaaga agacgagaat gcaaccatac ctagatggac 600
 ttttccacaa gctaaagctg gcctcttgat ctcattcaga ttccaaagag aatcatttac 660
 aagttaattt ctgtctcctt ggtccattcc ttctctctaa taatcattta ctgttcctca 720
 aagaattqtc tacattaccc atctcctctt ttgcctctga gaaagagtat ataagcttct 780
grance -striggggggttgg ggtaatatto tgtggtssto agsSS gtas staaat 845
 ttqtalgoot tttctcttaa aaaaaaaaag gagggaagaa ggaagaggat gc 🚉
(2) INFORMATION ÜBER SEQ ID NO: 15:
  (i) SEQUENZ CHARAKTERISTIK:
     (A) LÄNGE: 992 Basenpaare
     (B) TYP: Nukleinsäure
                                                                         30
     (C) STrang: einzel
     (D) TOPOLOGIE: linear
  (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung
     hergestellte partielle cDNA
 (iii) HYPOTHETISCH: NEIN
 (iii) ANTI-SENSE: NEIN
  (vi) HERKUNFT:
     (A) ORGANISMUS: MENSCH
     (C) ORGAN:
 (vii) SONSTIGE HERKUNFT:
     (A) BIBLIOTHEK: cDNA library
  (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 15:
 ctctcgcgag gattggctgt tagcggcgtt gtagttaagc tcgtgtaacg gcggcggtgt
 cggcagctgc tgtagcgaag agagtttggc gcgatgtctc acaccatttt gctggtacag 120
 cctaccaaga ggccagaagg cagaacttat gctgactacg aatctgtgaa tgaatgcatg 180.
 gaaggtgttt gtaaaatgta tgaagaacat ctgaaaagaa tgaatcccaa cagtccctct 240
 atcacatatg acatcagtca gttgtttgat ttcatcgatg atctggcaga cctcagctgc 300
 ctggtttacc gagctgatac ccagacatac cagccttata acaaagactg gattaaagag 360
 aagatctacg tgctccttcg tcggcaggcc caacaggctg ggaaataatt gtgttggaag 420
 cactgggggg gttggggtgg gcttggaaca caggtgtgta cagcgtgctg tagtggaagt 480
 ttrgtatcat agtaatcctg tttccacttt gttatactct agccaagatt gactgtatta 540
```

```
gatgaaatgt gaggatcttg ttcaatcgga aacccccgtt acctcctct tttctttctc 600 tttcttttt ttttttact taaacatttt tatgatgatt tagatggaag ttgttcttcg 660 tcacttaatg ttggttccag tccttcaact gttcatatct actttataac attcacatac 720 taacccttct tcaagatggg gtggggggtg gaaatgcagt ttagccatgt cctcaagata 780 aagtcttggt aaaaataaat aaatgtcctt tagttataaa aaaaaaaaa aaaattgaag 840 gactggaacc aacattaagt gacgaagaac aactgtggtg tgtgggaaag gctttggacc 900 tagaccaacc tggattgaaa tctaatttc tcacttaagg gaagttcaat tactcctcag 960 ttcccacatc tatcagtggg gataatgcct ag
```

15 (2) INFORMATION ÜBER SEQ ID NO: 16:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1196 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

20

25

30

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT: ...
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 16:

```
gggcgcccgg aaggtcagcg tgtgaagtag gcgctggcaa cgcggggtta cccgctgtta
    ttgaggagta acggcccagc ggaccaccca ggcttgaggc agcggcggga accactcggt 120
    ttqctqcqat accatqgaaq qagqcgqggg aagcggcaac aaaaccacag ggggattggc 180
50
    cggctttttc ggagccggcg gagcaggtta ctcgcacgcg gatttggctg gcgtcccgct 240
    aactggtatg aaccetetgt eteettattt aaatgtggat eeaegatace tegtgeagga 300
    tacagatgag tttattttac ctaccggagc taataaaacc cggggcagat ttgagctggc 360
    cttctttacg attggaggat gttgcatgac aggggctgcg tttggtgcaa tgaatggtct 420
    tcqqctaqqa ttqaaqqaaa cccaqaacat ggcctggtcc aaaccaagaa atgtacagat 480
55
    tttqaatatq qtqactaqqc aaqqqqcact ttgggctaat actctaggtt ctctggcttt 540
    qctctataqt qcatttqqtq tcatcattqa qaaaacacga ggtgcagaag atgaccttaa 600
    cacagtagca getggaacca tgacaggcat gttgtataaa tgtacaggtg gtcttcgagg 660
    gatagcacga ggtggtctga caggactaac acttaccagc ctctatgcac tatataataa 720
    ctgggagcac atgaaaggct ccttgctcca acagtcactc tgaagatttt gccaactcat 780
    qaatqqaqqa cacttcaqta qtcatctaga tccttttata agacagtttg gagttattct 840
    ctctcttcta cctacaatta gtttgaaaaa ttggagattt tgatttgctg tgatgaaaat 900
    cctggatggc tgaccaagac tggcacttgt tccagccatt agtgagttga agccaaagcc 960
    ctttqqtgac tcactgagta ccatggttct gttctcctct ggagatcttg cacgtatctg1020
    ttttcctccc ccatgaacta gaaaaccact tactcccaga attcaggtcg tgcttgttag1080
```

tactatatca ccaagtccat to					1140	
aaataaaggg taaaaacaga ac	caaagtta	taactccaac	acacaaaaaa	aaaaaa	1196	
(2) INFORMATION ÜBER SEQ) ID NO: 17	':				
• •						
(i) SEQUENZ CHARAKTER	ISTIK:					10
(A) LÄNGE: 1105 Basen						
(B) TYP: Nukleinsäure	puulo					
`					•	
(C) STrang: einzel		•				15
(D) TOPOLOGIE: linear						1.
_						
(ii) MOLEKÜLTYP: aus einze	elnen ESTs	durch Assen	nblierung und	Editierung		
hergestellte partielle cDN	V A			-		
		•				20
(iii) HYPOTHETISCH: NEIN						
(11) 1111 011121100111112111				•		
WIN ANTI CENCE, MEIN						
(iii) ANTI-SENSE: NEIN						25
(vi) HERKUNFT:						
(A) ORGANISMUS: MEN	ISCH					
(C) ORGAN:						30
						30
(vii) SONSTIGE HERKUNFT:						
(A) BIBLIOTHEK: cDNA		•				
(A) BIBLIOTTIER. CONT.	iibiaiy					
						35
/ " OF OUR 17 DE OOUDE ID		ID NO: 47:		•		
(xi) SEQUENZ-BESCHREIB	UNG: SEQ	ID NO: 17:				
		,				
gysttaggcc-cagccccctg cc						40
tgagetgget ceteetgtet tg						٠,٠,٠
tctggggcca gctataggac aad						
tgggacagtg tcggtcagcc aad						
ccattgagac cctcatcaag aad						45
tgaccccttc tgagctacgg gad			-			43
actgtggcct ggaagagaaa att						
tcaggagttt ctgggagctg at						
teegggggea etgagaacte eet						
cctggagata aaacttgtct cct						50
atctctgcaa agttcagctt cct						
gggagctcat gggtggagga gto						
ggatgaatat ttgagggata aaa						
acagagagga gctgggctat ggg						55
tatctggtac taaaaaaggg tc						
ccatagetgt etgtecagtg etc						
actctgtccc tgggctaggg cag						
agagtgtgac atgtggggag agg		gggtgcttgg	gcattgacag			۲0
gttttgtatc atttgattaa taa	aaa				1105	60
·						
(2) INFORMATION ÜBER SEQ	ID NO: 18	:				65

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2006 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 20 (VI) HERECENET:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 25 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 18:

```
tgcgagccga ggcgccgagc aagatggcgg cgcgagtgct gcgcgcccgc ggaggcgctg 60
         ggccggcggc ctcctgcagc gggcggcccc ctgcagcctc ctgcccaggc tccggacatg 120
         gacatettee ageaacagat etegagaaga eagetggeta aaateettat ttgteeggaa 180
         agttgatcca agaaaagatg cccactccaa tctcctagcc aaaaaggaaa caagcaatct 240
         atacaaatta cagtttcaca atgttaaacc ggaatgccta gaagcataca acaaaatttg 300
         tcaagaggtg ttgccaaaga ttcacgaaga taaacactac ccttgtactt tggtggggac 360
a book to taggaacacg tggtatggcg ageaggacea, agetgtecae etetggaggt atgaaggagg 420.
         ctatccagcc ctcacagaag tcatgaataa actcagagaa aataaggaat ttttggaatt 480
         teqtaaqqca aqaaqtqaca tgettetete caggaagaat cageteetgt tggagtteag 540
         tttctggaat gagcctgtgc caagatccgg acctaatata tatgaactca ggtcttacca 600
         actocgacca ggaaccatga ttgaatgggg caattactgg gctcgtgcaa.tccgcttcaq 660
         acaggatggt aacgaagccg tcggaggatt cttctctcag attgggcagc tgtacatggt 720
         gcaccatctt tgggcttaca gggatcttca gaccagggaa gacatacgga atgcagcatg 780
         gcacaaacat ggctgggagg aattggtata ttacacagtt ccacttattc aggaaatgga 840
         atccaquatc atgateceae tgaagacete geeecteeag taaagetgta gagtttetat 900
         gtgcctacat acatttctgt gacaagtatt tgtcgtaaat taattttaat tgtgtatcaa 960
         qtqaaaaaqa aacactqaqq ttttaaqctg ctgtatatag cttgtgagaa acctcttttc1020
         tttaaaattt acataatcac aagaaaggaa agaattacag ttggactgat tgtgacagtg1080
         ccttqtcqtc ctctttqaaa caccccqtqt tqtccaqtat accttataac acttagccac1140
      55 ttctccccac cctccagaag gggtccacgt tgaattctga atcatcttga aaataagatt1200
         ccaaccacaa aaaaaattta gccatttctt tactaaaaaa aaccaaaaaa caaatctgtt1260
         ttataatcac agatttttag acaaatttct tgtatcagga agaaatacaa attttgtcat1320
         gtttctcaag cagtttttct gagtagtttc tgaggaggaa caaattacaa gtgtacccaa1380
         taactgaaaa tgttttaact cactctcatt tgtaagcagt ccacatagta gacaatgggt1440
         tttccaagct gggcaaggta catttaatca gtaaatcagt ttcacatcat gtattgtgat1500
        gtttcaatgt gagacacaaa aacaatggct tgaaacttgt gtatcatatg tgattttgaa1560
         atgaacacct tgaatagcac taatttttat ttgtggtatt tttctataac aaaacaagta1620
         gctctaggaa aagaggtttt attttgtaaa cgatcatttg tgacctcaga cactctctgg1680
         ctaatatttt aataagctca cagcagataa ttctgagatc atgggtgagg ggtggtgcat1740
         gttgagattt aaattggcat aaagctgcat actttttgtc tagctgtttg atttcattt1800
         ttaatatagt atgccaattt tgtgactgtt accatgtgaa agtcctgttg aaatgaacaa1860
```

tigicigoco cacaatcaag aatgtaigig taaagigiga ataaatotoa tatoaaatgi192 caaactitta caigigaatg attitotoaa agaacataga aaagicaata aaatcototi198 aatticoaca aaaaaaaaaa aaaaac 200	0
aatticcaca aaaaaaaaa aaaaac	5
(2) INFORMATION ÜBER SEQ ID NO: 19:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 834 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	
(D) TOPOLOGIE: linear	15
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	20
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	30
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19:	35
ucogaaccag aactggaato egecettaco gettgetges aagagagtgg gggetgaast 6 gacetetece etttgggaga gaaaaactgt etgggagett gacaaaggea tgeaggagag 12 aacaggagea gecacageca ggagggagag eetteeecaa geaaacaate cagagcaget 18	0 ***
gtgcaaacaa cggtgcataa atgaggcctc ctggaccatg aagcgagtcc tgagctgcgt 240 cccggagccc acggtggtca tggctgccag agcgctctgc atgctggggc tggtcctggc 300 cttgctgtcc tccagctctg ctgaggagta cgtgggcctg tctgcaaacc agtgtgccgt 360 gccagccaag gacagggtgg actgcggcta cccccatgtc acccccaagg agtgcaacaa 420 ccggggctgc tgctttgact ccaggatccc tggagtgcct tggtgtttca agcccctgca 480	0 0 45 0
ggaagcagaa tgcaccttct gaggcacctc cagctgcccc cggccggggg atgcgaggct 540 cggagcaccc ttgcccggct gtgattgctg ccaggcactg ttcatctcag cttttctgtc 600 cctttgctcc cggcaagcgc ttctgctgaa agttcatatc tggagcctga tgtcttaacg 660 aataaaggtc ccatgctcca cccgaggaca gttcttcgtg cctgagactt tctgaggttg 720	0 0 50 0
tgctttattt ctgctgcgtc gtggacagcg ggagggtgtc aggggagagt ctgcccaggc 786 ctcaagggca ggaaaagact ccctaaggag ctgcagtgca tgcaaggata tttt 834	
(2) INFORMATION ÜBER SEQ ID NO: 20:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 765 Basenpaare (B) TYP: Nukleinsäure	
(C) STrang: einzel	65

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

10

30

45

50

55

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:20:

- (2) INFORMATION ÜBER SEQ ID NO: 21:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 779 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
- 65 (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 21:	
gcggggagte caggttecge eceggageeg acttecteet ggteggegge tgeagegggg 60 tgageggegg cageggeegg ggateetgga gecatgggge gegegegega egecateetg 120 gatgegetgg agaacetgae egecgaggag eteaagaagt teaagetgaa getgetgteg 180 gtgeegetge gegagggeta egggegeate eegeggggeg egetgetgte eatggaegee 240 ttggaeetea eegacaaget ggteagette taeetggaga eetaeggege egageteace 300)) 10)
gctaacgtgc tgcgcgacat gggcctgcag gagatggccg ggcagctgca ggcggccacg 360 caccagggct ctggagccgc gccagctggg atccaggccc ctcctcagtc ggcagccaag 420 ccaggcctgc actttataga ccagcaccgg gctgcgctta tcgcgagggt cacaaacgtt 480)) 15)
gagtggetge tggatgetet gtaegggaag gteetgaegg atgageagta ceaggeagtg 540 cqqqeeqage ceascaacce aagcaagatg eggaagetet teagttteac accageetgg 600 aactggaeet geaaggaete geteeteeag geeetaaggg agteecagte etaeetggtg 660 gaggaeetgg ageggagetg aggeteette eeageaacae teeggteage eeetggeaat 720 ceeaccaaat cateetgaat etgatetttt tatacacaat ataegaaaag ceagettga 779) }
	25
(2) INFORMATION ÜBER SEQ ID NO: 22:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2327 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	30
(D) TOPOLOGIE: linear	35
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN	40
(iii) ANTI-SENSE: NEIN	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 22:	55
cccacgcgtc cgagacatta ataagcttga agagcagaat ccagatattg tttcagaaaa 60 aaaaccagca actgaagtgg accccacaa ttttgaaaag cgcttcctaa agaggatccg 120 tgacttggga gagggccact ttgggaaggt tgagctctgc aggtatgacc ccgaagggac 180 caatacaggg gagcaggtgg ctgttaaatc tctgaagcct gagagtggag gtaaccacat 240 agctgatctg aaaaaggaaa tcgagatctt aaggaacctc tatcatgaga acattgtgaa 300	
gtacaaagga atctgcacag aagacggagg aaatggtatt aagctcatca tggaatttct 360	

```
gcagctaaaa tatgccgttc agatttgtaa ggggatggac tatttgggtt ctcggcaata 480
    cgttcaccgg gacttggcag caagaaatgt ccttgttgag agtgaacacc aagtgaaaat 540
    tqqaqacttc qqtttaacca aagcaattga aaccqataaq qaqtattaca ccqtcaaqqa 600
    tgaccgggac agccctgtgt tttggtatgc tccagaatgt ttaatgcaat ctaaatttta 660
    tattqcctct qacqtctggt cttttggagt cactctqcat qagctqctqa cttactqtqa 720
    ttcagattct agtcccatgg ctttgttcct gaaaatqata ggcccaaccc atggccagat 780
    qacaqtcaca aqacttqtga atacgttaaa agaaggaaaa cgcctgccqt qcccacctaa 840
    ctqtccaqat qaggtttatc aacttatgag gaaatgctgg gaattccaac catccaatcg 900
    qacaaqcttt caqaacctta ttgaaggatt tgaagcactt ttaaaataaq aagcatqaat 960
    aacatttaaa ttccacagat tatcaagtcc ttctcctgca acaaatgccc aagtcatttt1020
    ttaaaaattt ctaatgaaag aagtttgtgt tctgtccaaa aagtcactga actcatactt1080
    caqtacatat acatqtataa ggcacactgt agtqcttaat atgtgtaaqq acttcctctt1140
15
    taaatttggt accagtaact tagtgacaca taatgacaac caaaatattt gaaagcactt1200
    aagcactcct ccttgtggaa agaatatacc accatttcat ctggctagtt caccatcaca1260
    actqcattac caaaagggga tttttgaaaa cgaggagttg accaaaataa tatctgaaga1320
   "fgattgcftt tccctgctgc cagctgatct gaaatyuttt youguscat taatcataga1380
    taaaqaaaqa ttqatqqact tagccctcaa atttcagtat ctalacagta ctaqaccatq1440
    cattettaaa atattagata eeaggtagta tatattgttt etgtacaaaa atgactgtat1500
    teteteacea gtaggaetta aactttgttt etceagtgge ttageteetg tteetttggg1560
    tgatcactag cacccatttt tgagaaagct ggttctacat ggggggatag ctgtggaata1620
    gataatttgc tgcatgttaa ttaattctca agaactaagc ctgtgccagt gctttcctaa1680
    gcagtatacc tttaatcaga actcattccc agaacctgga tgctattaca catgctttta1740
    aqaaacqtca atqtatatcc ttttataact ctaccacttt ggggcaagct attccagcac1800
    tqqttttqaa tqctqtatqc aaccagtctq aataccacat acgctgcact gttcttagag1860
    ggtttccata cttaccaccg atctacaagg gttgatccct gtttttacca tcaatcatca1920
30
    ccctqtqqtq caacacttga aagacccggc tagaggcact atggacttca ggatccacta1980
    gacagttttc agtttgcttg gaggtagctg ggtaatcaaa aatgtttagt cattgattca2040
    atgtgaacga ttacggtctt tatgaccaag agtctgaaaa tctttttgtt atgctgttta2100
    qtattcqttt qatattgtta cttttcacct gttgagccca aattcaggat tggttcagtg2160
35
    qcaqcaatqa aqttqccatt taaatttgtt cataqcctac atcaccaagg tctctgtgtc2220
    aaacctgtgg ccactctata tgcactttgt ttactcttta tacaaataaa tatactaaag2280
```

(2) INFORMATION ÜBER SEQ ID NO: 23:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 911 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

40

45

50

55

60

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:23:

```
ctggtttgtg cgcccgtcgc aggtcgcagg cctctttgtc agctggagtt gcgcgggctg 120
 acqcqccact atgtagcggg tttcgggcgg gccacgcgtg cgggacagga acccaacccc 180
 agccgacctt gagctccagg agttcgtctc ttacgtctgc ggaagtgcag ctgcctcagt 240
 tettagegea ggttgacaac tacaggeaca agecattgaa getggaatgt cetgttgetg 300
 gtatttcaat tgacttaagc caactatccc ttcagttaca ataggaaagt gcctctaata 360
 aggecaaata tgegtaetaa ettgtageaa eeaegtgtee gtgeagtgee acaggageta 420
 gagcagtgac aatgctggtg gcaacagggc agtgtagcag gtgcttcatg ttcacctttt 480
 caaccttttc atttaattgt cacaactcgg aggtggattc tgttagggac aggctgcccc 540
 aggaccactc egececeget aactcaatgc agetgaccet taccetgaat actetgeage 600
 tgcattcctg aaccgttatc taggcgctat agcaaggtca ccagacttgc tacaccgaag 660
 ccctctgggt ggcacggggg aggtcatgag aaacgtggat tacaccccct tgtaaattcc 720
tottttcaca agataatata, ttgtaagccg gtgatgagat, tatatgtggt...aaagttaatt 780
gautaacaac cocagggtot ctotococca tataaaccco toattttgta ago cagggo 840, 20
 tgccacctcc gactggtgga gaagcctggc aggttaataa acttacttgg cctgaaaagg 900
 gaaaagcaag a
(2) INFORMATION ÜBER SEQ ID NO: 24:
  (i) SEQUENZ CHARAKTERISTIK:
     (A) LÄNGE: 595 Basenpaare
                                                                       30
     (B) TYP: Nukleinsäure
     (C) STrang: einzel
     (D) TOPOLOGIE: linear
  (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung
     hergestellte partielle cDNA
 (iii) HYPOTHETISCH: NEIN
 (iii) ANTI-SENSE: NEIN
  (vi) HERKUNFT:
                                                                       45
     (A) ORGANISMUS: MENSCH
     (C) ORGAN:
 (vii) SONSTIGE HERKUNFT:
                                                                       50
    (A) BIBLIOTHEK: cDNA library
  (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:24:
                                                                       55
 cccacgcgtc cggccaggat actgcgagta tggcggcgtc aaaggtgaag caggacatgc 60
 ctccgccggg gggctatggg cccatcgact acaaacggaa cttgccgcgt cgaggactgt 120
 cgggctacag catgctggcc atagggattg gaaccctgat ctacgggcac tggagcataa 180
 tgaagtggaa ccgtgagcgc aggcgcctac aaatcgagga cttcgaggct cgcatcgcgc 240
 tqttqccact qttacaqqca gaaaccgacc ggaggacctt gcagatgctt cgggagaacc 300
 tgqaqqaqqa qqccatcatc atgaaggacg tgcccgactg gaaggtgggg gagtctgtgt 360
 tecacacaac ecqetqqqtq ecceettga teggggaget gtaegggetg egcaceacag 420
```

	•
	aggaggetet ccatgecage caeggettea tgtggtacae gtaggecetg tgcceteegg 480
	ccacctggat ccctgcccct ccccactggg acggaataaa tgctctgcag acctggaaaa 540
•	aagaaaggag gacaagaaaa aacgggggtc agaagggaga gagtgggccc ccgta 595
5	
	(2) INFORMATION ÜBER SEQ ID NO: 25 :
10	(i) SEQUENZ CHARAKTERISTIK:
	(A) LÄNGE: 886 Basenpaare
	(B) TYP: Nukleinsäure
	(C) STrang: einzel
15	(D) TOPOLOGIE: linear
15	(D) TOPOLOGIE. IIIIeai
	(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung
	hargestellte partielle cDNA
20	
	(iii) HYPOTHETISCH: NEIN
	(iii) ANTI-SENSE: NEIN
25	
	(vi) HERKUNFT:
	(A) ORGANISMUS: MENSCH
•	(C) ORGAN:
20	(o) onto in.
30	(vii) SONSTIGE HERKUNFT:
	(A) BIBLIOTHEK: cDNA library
	() DISEIGHTER OSTOTIONALLY
35	
33	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 25:
	(,,, ==================================
	ctcagtatta agcaacagaa aatgagactc atcgtagact cagcatagac ccatcacaga 60
er. Movement	compteagag geogatigia agetegetgi agacecatga tageagaece graqteacta 120
	gcactggate aaatgcaage ttataaagea ttggacaeet caagtetagt eggegageag 180
	gtcacaagct acctaactaa gaagtttgct gaactacgca gccccaatga gttcaaggtg 240
	tacatgggcc acggtgggaa gccctgggtc tccgacttca gtcaccctca ttacctggct 300
	gggagaagag ccatgaagac agtttttggt gttgagccag acttgaccag ggaaggcggc 360
45	agtattcccg tgaccttgac ctttcaggag gccacgggca agaacgtcat gctgctgcct 420
	gtggggtcag cggatgacgg agcccactcc cagaatgaaa agctcaacag gtataactac 480 atagagggaa ccaagatgct ggccgcgtac ctgtatgagg tctcccagct gaaggactag 540
	gccaagcct ctgtgtgcca tctccaatga gaaggaatcc tgccctcacc tcaccctttt 600
	ccaacttgcc cagggaagtg gaggttccct ctttcctttc
50	gactttagag aacagacaca agtgtateca getgtecacg ggtggageta ceegttggge 720
	ttatgagtga cctggagtga cagctgagtc accctgggta agttctcaga gtggtcagga 780
	tggcttgacc tgcagaagat acccaaggtc caaaagcaca aggtctgcgg aaagttctgg 840
	ttgtcggctg ggcaccacgg ctcacaccta taatcgagca tttggg 886
55	, , , , , , , , , , , , , , , , , , , ,
	(2) INFORMATION ÜBER SEQ ID NO: 26:
	(% OF OUT A DALGTED OT IC
60	(i) SEQUENZ CHARAKTERISTIK:
	(A) LÄNGE: 1008 Basenpaare
	(B) TYP: Nukleinsäure
	(C) STrang: einzel

(b) TOPOLOGIE. linear	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	1
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	1
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: பெரிக் பெர்க்கு	. 2
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:26 :	
	2
ccttagtact gcggccgtgt gggtgagttg gctgccggtg agttgggtgc cggtggagtc 60 gtgttggtcc tcagaatccc cgcgtagcgc tgcctcctcc taccctcgcc atgtttctta 120 cccggtctga gtacgacagg ggcgtgaata cttttctcc cgaaggaaga ttatttcaag 180	
tggaatatgc cattgaggct atcaagcttg gttctacagc cattgggatc cagacatcag 240 agggtgtgtg cctagctgtg gagaagagaa ttacttcccc actgatggag cccagcagca 300	34
ttgagaaaat tgtagagatt gatgctcaca taggttgtgc catgagtggg ctaattgctg 360 atgctaagac tttaattgat aaagccagag tggagacaca gaaccactgg ttcacctaca 420	
atgagacaat gacagtggag agtgtgaccc aagctgtgtc caatctggct ttgcagtttg 480 gagaagaaga tgcagatcca ggtgccatgt ctcgtccctt tggagtagca ttattatttg 540 gaggagttga tgagaaagga ccccagctgt ttcatatgga cccatctggg acctttgtac 600	35
agtgtgatgc tcgagcaatt ggctctgctt cagagggtgc ccagagctcc ttgcaagaag 660 tttaccacaa gtctatgact ttgaaagaag ccatcaagtc ttcactcatc atcctcaacc 720 aagtaatgga ggagaagctg aatgcaacaa acattgagct agccacagtg cagcctggcc 780 agaatttcca catgttcaca aaggaagaac ttgaagaggt tatcaaggac atttaaggaa 840 tcctgatcct cagaacttct ctgggacaat ttcagttcta ataatgtcct taaattttat 900	. 40
ttccagctcc tgttccttgg aaaatctcca ttgtatgtgc atttttaaa tgatgtctgt 960 acataaaggc agttctgaaa taaagaaaat tttaaaatta aaaaaaaa 1008	45
(2) INFORMATION ÜBER SEQ ID NO: 27:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2273 Basenpaare (B) TYP: Nukleinsäure	50
(C) STrang: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	60
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNET:	65

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:

10

- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 27:

```
ttaaaaaaaa aaccgcctgg tcttggggtc cattaaaccc atggaacttc actatcccca 60
         gttagccgtc ccagcgggtt aagtggacct ccaagtgtat ggctttatgg tttatggccg 120
    15
         ggttcaggcc cttaataaag tgtaattatg tattaccagc agggtgtttt taactgtgac 180
         tattgtataa aaacaaatct tgatatccag aagcacatga agtttgcaac tttccaccct 240
         gcccattttt gtaaaactgc agtcatcttg gaccttttaa aacacaaatt ttaaactcaa 300
         ccaagetgtg ataagtggaa tggttactgt ttatactgtg gtatattttt gattacagca 360
         gataatgett tetttteeag tegrettiga gaataaagga paggaaatet teagatgeaa 420
         tggttttgtg tagcatcttg tctatcatgt tttgtaaata otggagaagc tttgaccaat 480
         ttgacttaga gatggaatgt aactttgctt acaaaaattg ctattaaact cctgcttaag 540
         gtgttctaat tttctgtgag cacactaaaa gcgaaaaata aatgtgaata aaatgtacaa 600
         attigtigtg tittittatg tictaataat actgagactt ctaggictta ggitaattit 660
    25
         taggaaqatc ttgcatgcca tcaggagtaa attttattgt ggttcttaat ctgaagtttt 720
         caagetetga aatteataat eegeagtgte agattaegta gaggaagate ttacaacatt 780
         ccatqtcaaa tctgttacca tttattggca tttagttttc atttaagaat tgaacataat 840
         tatttttatt gtagctatat agcatgtcag attaaatcat ttacaacaaa aggggtgtga 900
         acctaagact atttaaatgt cttatgagaa aatttcataa agccattctc ttgtcattca 960
   30
         ggtccagaaa caaattttaa actgagtgag agtctataga atccatactg cagatgggtc1020
         atgaaatgtg accaaatgtg tttcaaaaat tgatggtgta ttacctgcta ttgtaattqc1080
         ttagtgcttg gctaatttcc aaattattgc ataatatgtt ctaccttaaq aaaacaggtt1140
         tatgtaacaa agtaatggtg ttgaatggat qatgtcagtt catgggcctt tagcatagtt1200
         ttaagcatcc tttttttttg aaagtgttga aagtgtgtta gcatcttgtt actcaaagga1260
         taagacagac aataatactt cactgaatat taataatctt tactagttta cctcctctgc1320
         tettigecae eegataactg gatatetttt eetteaaagg accetaaact gattgaaatt1380
         taagatatgt atcaaaaaca ttatttcatt taatgcacat ctgttttgct gtttttgagc1440
*** 40 ... agtgtgcagt ttagggttca tyataaatca ttgaaccaca tgtgtaacaa etgaatgeca1500
         aatettaaac teattagaaa aataacaaat taggttttga cacgcattet taattqqaat1560
         aatggatcaa aaatagtggt tcatgacctt accaaacacc cttgctacta ataaaatcaa1620
         ataacactta gaagggtatg tatttttagt tagggtttct tgatcttgga ggatgtttga1680
         aagttaaaaa ttgaatttgg taaccaaagg actgatttat gggtctttcc tatcttaacc1740
   45
         aacgttttct tagttaccta gatggccaag tacagtgcct ggtatgtagt aagactcagt1800
         aaaaaagtgg atttttaaaa ataactccca aagtgaatag tcaaaaatcc tgttagcaaa1860
         ctgttatata ttgctaagtt tgttctttta acagctggaa tttattaaga tgcattattt1920
         tgattttatt cactgcctaa aacactttgg gtggtattga tggagttggt ggattttcct1980
         ccaagtgatt aaatgaaatt tgacgtatct tttcatccaa agttttgtac atcatgtttt2040
   50
         ctaacggaaa aaaatgttaa tatggctttt ttgtattact aaaaatagct ttgagattaa2100
         ggaaaaataa ataactcttg tacagttcag tattgtctat taaatctgta ttggcagtat2160
         gtataatggc atttgctgtg gttacaaaat acttcctctg ggttataata atcatttgat2220
         ccaattccta ttgcttgtaa aataaagttt taccagttga tataaaaaaa aaa
   55
```

(2) INFORMATION ÜBER SEQ ID NO: 28:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 3448 Basenpaare
 - (B) TYP: Nukleinsäure

65

- (C) STrang: einzel
 (D) TOPOLOGIE: linear
 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 (iii) HYPOTHETISCH: NEIN
 (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH (C) ORGAN:
- (vii) SONSTIGE HERAUNFT:
 (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 28:

tgtgggccac tgtggtagtg gaggtggggt gtttgggagg ctgcgtgcca gtcaagaaga 60 aaaaggtttg cattctcaca ttgccaggat gataagttcc tttccttttc tttaaagaag 120 ttgaagttta ggaatccttt ggtgccaact ggtgtttgaa agtagggacc tcagaggttt 180 30 acctagagaa caggtggttt ttaagggtta tcttagatgt ttcacaccgg aaggttttta 240 aacactaaaa tatataattt atagttaagg ctaaaaagta tatttattgc agaggatgtt 300 cataaggcca gtatgattta taaatgcaat ctccccttga tttcttctgc ctttgatgtt 360 acagatttaa tacagtttat ttttaaagat agatcctttt ataggtgaga aaaaaacaat 420 35 ctggaagaaa aaaaccacac aaagacattg attcagcctg tttggcqttt cccagagtca 480 tctgattgga caggcatggg tgcaaggaaa attagggtac tcaacctaag ttcggttccg 540 atgaattett atcccetgce cetteettta aaaaacttag tgacaaaata gacaatttgc 600 acatettgge tatgtaatte ttgtaatttt tatttaggaa gtgttgaagg gaggtggcaa 660. gagtgtggag gctgacgtgt gagggaggac aggcgggagg aggtgtgagg agccccaaca 720 acttcctgtc ctactaccgc ctcacacgct tcctctccag agtgatcaag tgtgacccgg 780 actgcctccg ggcctgccag gagcagatcg aagccctgct ggagtcaagc ctgcgccagg 840 cccagcagaa catggacccc aaggccgccg ggaggaggga aaaggaggag gaggaggtgg 900 acctggcttg cacacccacc gacgtgcggg acgtggacat ctgagggcgc caggcaggcg 960 ggcgccaccg ccacccgcag cgagggcgga gccggcccca ggtgctcccc tgacagtccc1020 tecteteegg ageattttga taccagaagg gaaagettea tteteettgt tgttggttgt1080 tttttccttt gctctttccc ccttccatct ctgacttaag caaaagaaaa agattaccca1140 aaaactgtct ttaaaagaga gagagagaaa aaaaaaatag tatttgcata accctgagcg1200 gtgggggagg agggttgtgc tacagatgat agaggatttt ataccccaat aatcaactcg1260 tttttatatt aatgtacttg tttctctgtt gtaagaatag gcattaacac aaaggaggcg1320 tctcgggaga ggattaggtt ccatccttta cgtgtttaaa aaaaagcata aaaacatttt1380 aaaaacatag aaaaattcag caaaccattt ttaaagtaga agagggtttt aggtagaaaa1440 acatattett gtgettttee tgataaagea cagetgtagt ggggttetag geatetetgt1500 actttgcttg ctcatatgca tgtagtcact ttataagtca ttgtatgtta ttatattccg1560 tagtagatgt gtaacctctt caccttattc atggctgaag tcacctcttg gttacagtag1620 cgtagggggg ccgtgtgcat gtcctttgcg cctgtgacca ccaccccaac aaaccatcca1680 gtgacaaacc atccagtgga ggtttgtcgg gcaccagcca gcgtagaggg tcgggaaagg1740 ccacctgtcc cactcctacg atacgctact ataaagagaa gacgaaatag tgacataata1800 tattctattt ttatactctt cctattttg tagtgacctg tttatgagat gctggtttc1860 tacccaacgg ccctgcagcc agctcacgtc caggttcaac ccacagctac ttggtttgtg1920 ttcttcttca tattctaaaa ccattccatt tccaaqcact ttcagtccaa taggtgtagg1980 aaatagcgct gtttttgttg tgtgtgcagg gagggcagtt ttctaatgga atggtttggg2040 aatatccatg tacttgtttg caagcaggac tttgaggcaa gtgtgggcca ctgtggtggc2100

```
agtggaggtg gggtgtttgg gaggctgcgt gccagtcaag aagaaaaagg tttgcattct2160
    cacattgcca ggatgataag ttcctttcct tttctttaaa gaagttgaag tttaggaatc2220
    ctttgqtqcc aactggtgtt tgaaagtagg gacctcagag gtttacctag agaacaggtg2280
    gtttttaagg gttatcttag atgtttcaca ccggaaggtt tttaaacact aaaatatata2340
    atttatagtt aaggctaaaa agtatattta ttgcagagga tgttcataag gccagtatga2400
    tttataaatg caatctcccc ttgatttaaa ccttctgcct ttgatgttac agatttaata2460
    cagtttattt ttaaagatag atccttttat aggtgagaaa aaaacaatct ggaagaaaaa2520
10
    aaccacaca agacattgat tcagcctgtt tggcgtttcc cagagtcatc tgattggaca2580
    ggcatgggtg caaggaaaat tagggtactc aacctaagtt cggttccgat gaattcttat2640
    cccctgcccc ttcctttaaa aaacttagtg acaaaataga caatttgcac atcttggcta2700
    tgtaattctt gtaattttta tttaggaagt gttgaaggga ggtggcaaga gtgtggaggc2760
15
    tgacgtgtga gggaggacag gcgggaggag gtgtgaggag gaggctcccg aggggaaggg2820
    gcggtgccca caccggggac aggccgcagc tccattttct tattgcgctg ctaccgttga2880
    cttccaggca cggtttggaa atattcacat cgcttctgtg tatctctttc acattgtttg2940
    ctgctattgg aggatcagtt ttttgtttta caatgtcata tactgccatg tactagtttt3000
    agtiticict tagaacatig tattacagat goottlibiting thigitititi tittittatq3060"
    tgatcaattt tgacttaatg tgattactgc tctattccaa aaaggttgct gtttcacaat3120
    acctcatgct tcacttagcc atggtggacc cagcgggcag gttctgcctg ctttggcggg3180
    caqacacqcq qqcqcqatcc cacacagqct gqcqgqqqcc qqccccqaqq ccqcqtqcqt3240
    tgatgctggg cacttcatct gatcgggggc gtagatcata gtagttttta cagctgtgtt3360
    attctttqcq tqtagctatg gaagttgcat aattattatt tatattataa caatgtgtct3420
    acgtgccaca gggcgttgta ctgtagga
```

- 30 (2) INFORMATION ÜBER SEQ ID NO: 29:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1574 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 55 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 29:

```
gctctctgct ccggtgcagg cgcgcagggc gccctgggct gggagcaacg cgactgaccg 60 tggtcgtggg cggacggcgg ctgcagcgtg gaggagctgg ggtcgctgtg ggtcgcgaac 120 agagcccggg acgtgcgcc ttggtgcacg atcctgaagg ggagctccga ggggcccggg 180 tcgccagggc tgctgcggc attcccggag cccggcggg ggcccgcgag atactggttt 240 aggccgtccc agggctccgg gcgcacccgg tggccgctgc tgcagcggag ggagcgcggc 300
```

```
ggcgcggggg gctcggagac agcgtttctc ccggaagtct tcctcgggca gcaggtggga 360
 agtgggagcc ggagcggcag ctggcagcgt tctctccgca ggtcggcacc atgcgccctq 420
 cagccctgcg cggggccctg ctgggctgcc tctgcctggc gttgctttgc ctgggcggtg 480
 cggacaagcg cctgcgtgac aaccatgagt ggaaaaaact aattatggtt cagcactggc 540
 ctgagacagt atgcgagaaa attcaaaacg actgtagaga ccctccggat tactggacaa 600
 tacatggact atggcccgat aaaagtgaag gatgtaatag atcgtggccc ttcaatttag 660
 aagagattaa ggatcttttg ccagaaatga gggcatactg gcctgacgta attcactcgt 720
 ttcccaatcg cagccgcttc tggaagcatg agtgggaaaa gcatgggacc tgcgccgccc 780
 aggtggatgc gctcaactcc cagaagaagt actttggcag aagcctggaa ctctacaggg 840
 agctggacct caacagtgtg cttctaaaat tggggataaa accatccatc aattactacc 900
 aagttqcaga ttttaaagat gcccttgcca gagtatatgg agtgataccc aaaatccagt 960
 gccttccacc aagccaggat gaggaagtac agacaattgg tcagatagaa ctgtgcctca1020
 ctaaqcaaqa ccaqcagctg caaaactgca ccgagccggg ggagcagccg tcccccaaqc1080
 aggaagtetg getggeaaat ggggeegeeg agageegggg tetgagagte tgtgaagatg1140
 scccagtett etatececca ectaaaaaga ecaageattg atgeceaagt tttggaaata1200
 toty who aaaagcaaga gaaattcaca aactgcayes ttctaacea accompana 260
 gtgaagtess titattttgc tgtttcccct ccatgcctgt gaattgggtg ttgtg-tccc1320
 tgtagagtga gtgcatgtgg cgtacacggg gggaaaggag ctctgccacg cctqqqtqqc1380
 tgttttgggc ttgggataaa ggtcgcggga ttgtttaggg ttttttctct gttaaactct1440
 tcagtgcccg ggtagatcag gcagggatac ttgggattta gacaggtggc accggttcag1500
 ggggactecg ctgggcggag gttttccccc tgggagccgg cttgcctgct ttggggaagg1560
 qqccctqqqa aqqc
                                                                         30
(2) INFORMATION ÜBER SEQ ID NO: 30:
  (i) SEQUENZ CHARAKTERISTIK:
     (A) LÄNGE: 3070 Basenpaare
     (B) TYP: Nukleinsäure
     (C) STrang: einzel
     (D) TOPOLOGIE: linear
  (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung
     hergestellte partielle cDNA
 (iii) HYPOTHETISCH: NEIN
 (iii) ANTI-SENSE: NEIN
 (vi) HERKUNFT:
                                                                         50
    (A) ORGANISMUS: MENSCH
    (C) ORGAN:
 (vii) SONSTIGE HERKUNFT:
    (A) BIBLIOTHEK: cDNA library
 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 30:
                                                                         60
ccggagtgta tttaatcggt tctgttctgt cctctccacc accccaccc ccctcctcc 60
ggtgtgtgtg ccgctgccgc gcgaccgccg agcctcgtca gcctgcgcag cccctcacag 120
gaggcccagc ccgagtgcag tccagaagcc cccccagcgg aggcgccaga gtaaaagagc 180
aagcttttgt gagataatcg aagaactttt ctcccccgtt tgtttgttgg agtggtgcca 240
```

```
ggtactggtt ttggagaact tgtctacaac cagggattga ttttaaagat gtctttttt 300
     attttacttt tttttaagca ccaaattttg ttgtttttt tttttctccc ctccccacag 360
     atcccatctc aaatcattct gttaaccacc attccaacag gtcgaggaga gcttaaacac 420
     cttcttcctc tgccttgttt ctcttttatt ttttattttt tcgcatcagt attaatgttt 480
     ttgcatactt tgcatcttta ttcaaaagtg taaactttct ttgtcaatct atggacatgc 540
     ccatatatga aggagatggg tgggtcaaaa agggatatca aatgaagtga taggggtcac 600
     aatggggaaa ttgaagtggt gcataacatt gccaaaatag tgtgccacta gaaatggtgt 660
     aaaggctctt ttttttttt ttaaaagaaa agttattacc atgtattttg tgaggcaggt 720
     ttacaacact acaagtettg agttaagaag gaaagaggaa aaaagaaaaa acaccaatac 780
     ccagatttaa aaaaaaaaa acgatcatag tcttaggagt tcatttaaac cataggaact 840
     tttcacttat ctcatgttag ctgtaccagt cagtgattaa gtagaactac aagttgtata 900
     ggctttattg tttattgctg gtttatgacc ttaataaagt gtaattatgt attaccagca 960
15
    gggtgttttt aactgtgact attgtataaa aacaaatctt gatatccaga agcacatgaa1020
    gtttgcaact ttccaccctg cccatttttg taaaactgca gtcatcttgg accttttaaa1080
     acacaaattt taaactcaac caagctgtga taagtggaat ggttactgtt tatactgtgg1140
    tatgtttttg attacagcag ataatgcttt cttttccagt cgtctttgag aataaaggaal200
    aaaaaatctt cagatgcaat ggttttgtgt agcatcttgt ctatcatgtt ttgtaaatac1260
20
    tggagaagct ttgaccaatt tgacttagag atggaatgta actttgctta caaaaattqc1320
    tattaaactc ctgcttaagg tgttctaatt ttctgtgagc acactaaaag cgaaaaataa1380
    atgtgaataa aatgtaaaaa attgttgtgt ttttttatgt tctaataata ctgagacttc1440
    taggtcttag gttaattttt aggaagatct tgcatgccat caggagtaaa ttttattqtq1500
    gttcttaatc tgaagttttc aagctctgaa attcataatc cgcagtgtca gattacgtag1560
    aggaagatet tacaacatte catgteaaat etgttaceat ttattggeat ttagttttca1620
    tttaagaatt gaacataatt atttttattg tagctatata gcatgtcaga ttaaatcatt1680
    tacaacaaaa ggggtgtgaa cctaagacta tttaaatgtc ttatgagaaa atttcataaa1740
    gccattctct tgtcattcag gtccagaaac aaattttaaa ctgagtgaga gtctatagaa1800
30
    tccatactgc agatgggtca tgaaatgtga ccaaatgtgt ttcaaaaatt gatggtgtat1860
    tacctgctat tgtaattgct tagtgcttgg ctaatttcca aattattgca taatatgttc1920
    taccttaaga aaacaggttt atgtaacaaa gtaatggtgt tgaatggatg atgtcagttc1980
    tcttgttact caaaggataa gacagacaat aatacttcac tgaatattaa taatctttac2100
    tagtttacct cetetgetet ttgecaceeg ataactggat atetttteet tcaaaggace2160
    ctaaactgat tgaaatttaa gatatgtatc aaaaacatta tttcatttaa tgcacatctg2220
    ttttgctgtt tttgagcagt gtgcagttta gggttcatga taaatcattg aaccacatgt2280
 - Egtamemacty aatgecaaat ettaaaetea ttagaaaaat aacaaattag gettegacac2340....
    gcattcttaa ttggaataat ggatcaaaaa tagtggttca tgaccttacc aaacaccctt2400
    gctactaata aaatcaaata acacttagaa gggtatgtat ttttagttag ggtttcttga2460
    tcttggagga tgtttgaaag ttaaaaattg aatttggtaa ccaaaggact gatttatggg2520
    tctttcctat cttaaccaac gttttcttag ttacctagat ggccaagtac agtgcctggt2580
    atqtaqtaaq actcaqtaaa aaagtggatt tttaaaaaata actcccaaag tgaatagtca2640
    aaaatcctgt tagcaaactg ttatatattg ctaagtttgt tcttttaaca gctqqaattt2700
    attaagatgc attattttga ttttattcac tgcctaaaac actttgggtg gtattgatgg2760
    agttggtgga ttttcctcca agtgattaaa tgaaatttga cgtatctttt catccaaagt2820
    tttgtacatc atgttttcta acggaaaaaa atgttaatat ggcttttttg tattactaaa2880
    aatagctttg agattaagga aaaataaata actcttgtac agttcagtat tgtctattaa2940
    atctgtattg gcagtatgta taatggcatt tgctgtggtt acaaaatact tcctctgggt3000
    tataataatc attigatcca attoctattg cttgtaaaat aaagttttac cagttgatat3060
    aaaaaaaaa
55
```

(2) INFORMATION ÜBER SEQ ID NO 31:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2751 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

33

	(D) 10	POLOGIE: IIn	ear			• ,	•	
		ÜLTYP: aus e tellte partielle		s durch Asse	mblierung und	d Editierung		:
	(iii) HYPOT	HETISCH: NE	EIN	raser		·		
	(iii) ANTI-SE	ENSE: NEIN						10
	(vi) HERKL (A) OR((C) OR(GANISMUS: I	MENSCH					15
		IGE HERKUN LIOTHEK: cD			·.		•.	20
	(xi) SEQUE	NZ-BESCHR	EIBUNG: SEC	Q ID NO:31:	· .		·	
								25
	aattccgaag	atacaccagc	tcacaaatga	aaacgtcagc	ctctgcgcca	ggttaaaaat ccctccctcc	60 120	
	catgtactca	ctgtgggcag	atgcaccaat	acatggtaat	cctcttactc	tttctcccag attttaagac tttaatgata	240	30
	tgaacctcac	aatgttcttg	ggatggagtc	agttgttcag	ggtccccgtg	taatgtcatt tgtgtgataa agtgctaacc	420	-
	actttgagca gcatttgttt	aggctgcctt cctagcagta	cttgtagatg tttagcacct	acttgctgtt ttttgccacc	ctttatgaca ttggtgaaca	gggatcagtg gaaaattgta	540 600	35
	actgcccctc	ccctcattga	gggtcactgc	tcaagagtgc	aggagtggac	gtttgcagaa tctccactga ggtttgaaga	720	
	ctgacagcca	gcctggctca	ttctcattat	tggctagtta	gctttcttta	tcaacctgct tacagcttct	840	40
	aaaaaaatag catagtgtat	atttctaatt cattgtgtaa	tgtcctactc actcccaggc	atgttaggag ttgatgtagc	cattatcttt agaagagatc	gaaggtaaaa atttctggagl	960 020	45
	gagttcttaa	atccaggtag	ggaactcact	cttctttctt	ctctggacct	<pre>aaagtggtccl aattgggcat1 attcaatggcl</pre>	140	
	aactctattt ggagagtcca	caaagaataa tagatcagcc	aagcctttgg gtaactggaa	agagttgcgg cgtagaatct	cagttctggg acgtctgcct	ggcgggctcal ctgaatggacl	260 320	50
	tctttcatcc	ttgacaggct	ggtaatgtgc	tggccacctc	cagctcctgc	cccaaggtggl atcgagtctgl	440	
,	ggccatccat	acccacccca	gggtaacggg	gctggcctgg	cattagtcat	gggagcccagl tatttagttt1 tcaagagctc1	560	55
,	cgtgcctgtc ctatattcat	cacaatgacc ccaggatact	tagagtgcat tggaagtgct	cctgctcatt aaaataggaa	gtcagtgtag gggattcggc	cccctcgcccl tttcaacttt1	680 740	
						tgaaaaaaccl		
						gcaggtgccal		60
						agcaccatccl		
	tgatttetta	gaycccaggc	attataataa	Egaagcatca	trgaaatagc	aggagcatgt1 cgaaacaact2	980 040	
	tacaatatac	atttcttcac	accadtacat	tettaantnt	acttottt=+	aaggaataac2	040 100	
	ataaactaat	ctgtaccttt	atatatatgt	gtgtgtacat	atatacatat	ataaactgta2	160	65
			-			-		

	tagtgtacat	ggtaatgatt	tattgctatg	ccccagatcc	ttaatgtagt	tctcatcctc2220
						cccacctcct2280
5						gtgcacagaa2340
_						ttctgagcat2400
						gcagtattaa2460
						cagaaaattg2520
						aaagccagac2580
10						ttgtgtaaat2640
						tatttgggtt2700
	aaaaataaaa	cagactggac	tttgttacct	gacctactga	aaaaaaaaa	a 2751

15

20

25

30

35

(2) INFORMATION ÜBER SEQ ID NO: 33:

- (i) SEQUERRISTIK:
 - (A) LÄNGE: 890 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN;
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

45

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 33:

(C) INFORMATION (UPER OFO ID NO. OF	
(2) INFORMATION ÜBER SEQ ID NO: 35:	
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 693 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	10
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	•
(iii) HYPOTHETISCH: NEIN	15
(iii) ANTI-SENSE: NEIN	21
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	25
· · · · · · · · · · · · · · · · · · ·	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 35:	
cgtcetttca tccgggcgtt tgcctgcage aagatggcgg cggtctcaat gtcagtggta 60 ctgaggcaga cgttgtggcg gagaagggca gtggctgtag ctgccctttc cgtttccagg 120 gttccgacca ggtcgttgag gacttccaca tggagattgg cacaggacca gactcaagac 180 acacaactca taacagttga tgaaaaattg gatatcacta ctttaactgg cgttccagaa 240 gagcatataa aaactagaaa agtcaggatc tttgttcctg ctcgcaataa catgcagtct 300 ggagtaaaca acacaaagaa atggaagatg gagtttgata ccagggagcg etgggaaaat 360	35
cctttgatgg gttgggcatc aacggctgat cccttatcca acatggttct aaccttcagt 420 actaaagaag atgcagtttc ctttgcagaa aaaaatggat ggagctatga cattgaagag 480	40
aggaaggttc caaaacccaa gtccaagtct tatggtgcaa acttttcttg gaacaaaaga 540 acaagagtat ccacaaaata ggttggcact gactatatct ctgcttgact gtgaataaag 600 tcagctatgc agtatttata gtccatgtat aataaataca tctcttaatc tcctaataaa 660 ttggaccttt aaactacaaa aaaaaaaaaa aaa 693	45
(2) INFORMATION ÜBER SEQ ID NO: 36:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1054 Basenpaare	50
(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	60
(iii) HYPOTHETISCH: NEIN	

- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 10 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 36:

```
gcagctcacg cgactgctgc agccggcgct gggcccaggc accaccgcgg tgctgctc 60 · ·
    gosaga ztoc-acgoggoogg aggatotogg ggagaclyto typtocatos aggatotoga 120
    ccgagiggot caagtggage tggggccage ccggcgccgc agggtcccgc gcagctccgg 180
    gacgcettet teceteagea ecgacaetee geteaceggg acceeetgea eccetaegee 240
    gtcccctggc agtcctccat gccccagtcc cgacaacggc tcgggctcgg ctctcgcgcc 300
    cgcagagggc ctgcccctct agtcctgggt cgcggccctg cccatggggt ctcaggccag 360
    gtctctgctg gcagaggcgg tagtaaagtc cctgtacccc gtctcccagg gcacaagctc 420
    cctagcctct ttggatccat tgcccctgag ctcccagagt gacccctcca cctccgcagc 480
    cagtgaagtg tgttgtgcct gctgaagtga tcacccccg ccccagccc tgcatcaggc 540
    cacaggtett ggetttetee ttateaceat ttgetgttat caeggeacae ageagggaat 600
    cccaggcccc cccgccaagt ggttacccaa gtcaccactc ctgacccaaa aatcaggcat 660
30
    ggcattaaaa cgttgcaaat tcctttactg ttatccccc caccaccagg accatgtagg 720
    gtgcagtctt tactccctaa cccgtttccc gaaaaaggtg ctacctcctt tccagacaga 780
    tgagagaggg caggacttca ggctggatcc accactgggc tctccctccc ccagcctgga 840
    gcacgggagg ggaggtgacg gctggtgact gatggatggg tagtgggctg agaagagggg 900
    actaggaagg gctattccag gctcagccct gctcctgcag ctttqccqct gagtqtagga 960
    aaaacaggca tgacagacca gggtgagggt tgtgcccagc tgggccacgg ccatgcgtgq1020
    ggtggcccaa taaacaccgt ggactcccaa aaaa
```

- (2) INFORMATION ÜBER SEQ ID NO. 37:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 541 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- 50 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

45

55

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 37:

aaaaatattt gctggaaagg acggtgggag gattacagge gtgagccact gcgcccggcc acattcagtt cttatcaaag aaataaccca gacttaatct tgaatgatac gattatgccc aatattaagt aaaaaatata agaaaaggtt atcitaaata gatcttaggc aaaataccag ctgatgaagg catctgatgc cttcatctgt tcagtcatct ccaaaaacag taaaaataac cactttttgt tgggcaatat gaaattttta aaggagtaga ataccaaatg atagaaacag actgcctgaa ttgagaattt tgatttttta aagtgtgttt ctttctaaat tgctgttcct taatttgatt aatttaatc atgtattatg attaaatctg aggcagatga gcttacaagt attgaaataa ttactaatta atcacaaatg tgaagttatg catgatgtaa aaaatacaaa catctaatt aaaggctttg caacacaaaa gaaagaaaaa aagaaaagaa	120 180 240 300 360 420 480 540	10
g	541	15
(2) INFORMATION ÜBER SEQ ID NO: 38: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1187 Basenpaare (B) TYP: Nukleinsäure		20
(C) STrang: einzel	•	25
(D) TOPOLOGIE: linear		
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA		30
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		10.
(vii) SONSTIGE HERKUNFT:		
(A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 38:		45
cggctcgagg ccattcacca acccggcccg caaggacgga gcaatgttet tecactggcg acgtgcagcg gaggagggca aggactacce ctttgccagg ttcaataaga ctgtgcaggt 1 gcctgtgtac tcggagcagg agtaccagct ttatctccac gatgatgctt ggactaaggc 1	5 0	50
agaaactgac cacctettg aceteageeg eegetttgac etgegttttg ttgttates 2	.20 80	
agadactgae caectettig accteageeg eegettigae etgegittig tigitateea 2 tgaeeggtat gaeeaceage agiteaagaa gegitetgig gaagaeetga aggageggia 3 etaeeacate igigetaage tigeeaaegi gegggeigig eeaggeaeag accitaagai 3 accagiatit gaigeiggge aegaaegaeg geggaaggaa eageitgage gieteiaeaa 4	.20 .80 .40 .00 .60 .20	55
dyddaetgae caectettig aceteageeg eegetitigae etgegiittig tigitateea 2 tgaeeggiat gaeeaeeage agiicaagaa gegiictigig gaagaeetga aggageggia 3 etaeeaeate igigetaage tigeeaaegi gegggeigig eeaggeaeag acetiaagai 3	20 80 40 00 60 20 80 40	55

```
gaagaagatc aaggccctgg aacagatgct gctgcagctt ggtgtggagc tgagcccgac 780
acctacggag gagctggtgc acatgttcaa tgagctgcga aggacctggt gctgctctac 840
gagctcaagc aggcctgtgc caactgcgag tatgagctgc agatgctgcg gcaccgtcat 900
gaggcactgg cccgggctgg tgtgctaggg ggccctgcca caccagcatc aggcccaggc 960
ccggcctctg ctgagccggc agtgactgaa cccggacttg gtcctgaccc caaggacacc1020
atcattgatg tggtgggcgc acccctcacg cccaattcga gaaagcgacg ggagtcggcc1080
tccagctcat cttccgtgaa gaaagccaag aagccgtgag agggcccacg gggtgtgggc1140
gacgctgtta tgtaaataga gctgctgagt tggaaaaaaa aaaaaaa
```

(2) INFORMATION ÜBER SEQ ID NO: 39:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2281 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STracts signal of
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA

man the second

- (iii) HYPOTHETISCH: NEIN
- 30 (iii) ANTI-SENSE: NEIN

15

20

25

35

400

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

· (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 39:

```
gggtagaagt cggtagagcc agaaactcac ttttgatgtt ggtgtgcccc tagtggcgag 60
ctggattcta aatcgtgccc tttattccct gcagccctga agttcagtcc atcttgaaga 120
teteceaace teaggageet gagettatga atgecaacee tteteeteea ceaagteett 180
ctcagcaaat caaccttggc ccgtcgtcca atcctcatgc taaaccatct gactttcact 240
tcttgaaagt gatcggaaag ggcagttttg gaaaggttct tctagcaaga cacaaggcag 300
aaqaaqtqtt ctatgcagtc aaagttttac agaagaaagc aatcctgaaa aagaaagagg 360
aqaagcatat tatgtcggag cggaatgttc tgttgaagaa tgtgaagcac cctttcctgg 420
tgggccttca cttctctttc cagactgctg acaaattgta ctttgtccta gactacatta 480
atggtggaga gttgttctac catctccaga gggaacgctg cttcctggaa ccacgggctc 540
gtttctatgc tgctgaaata gccagtgcct tgggctacct gcattcactg aacatcgttt 600
atagagactt aaaaccagag aatattttgc tagattcaca gggacacatt gtccttactg 660
acttcggact ctgcaaggag aacattgaac acaacagcac aacatccacc ttctgtggca 720
cgccggagta tctcgcacct gaggtgcttc ataagcagcc ttatgacagg actgtggact 780
ggtggtgcct gggagctgtc ttgtatgaga tgctgtatgg cctgccgcct ttttatagcc 840
gaaacacage tgaaatgtac gacaacatte tgaacaagee tetecagetg aaaccaaata 900
ttacaaattc cgcaagacac ctcctggagg gcctcctgca gaaggacagg acaaagcggc 960
tcggggccaa ggatgacttc atggagatta agagtcatgt cttcttctcc ttaattaact1020
gggatgatct cattaataag aagattactc ccccttttaa cccaaatgtg agtgggccca1080
acgacctacg gcactttgac cccgagttta ccgaagagcc tgtccccaac tccattggcal140
```

agreed age suggested greated greated greated age refered ag decreted 1200	1
gcttttccta tgcgcctccc acggactctt tcctctgaac cctgttaggg cttggtttta1260	ı
aaggatttta tgtgtgtttc cgaatgtttt agttagcctt ttggtggagc cgccagctgal320	٠.
caggacatct tacaagagaa tttgcacatc tctggaagct tagcaatctt attgcacact1380	. 5
gttcgctgga agctttttga agagcacatt ctcctcagtg agctcatgag gttttcattt1440	
ttattcttcc ttccaacgtg gtgctatctc tgaaacgagc gttagagtgc cgccttagac1500	
ggaggcagga gtttcgttag aaagcggacg ctgttctaaa aaaggtctcc tqcagatctg1560	
totgggctgt gatgacgaat attatgaaat gtgccttttc tgaagagatt gtgttagctc1620	
caaagctttt cctatcgcag tgtttcagtt ctttattttc ccttgtggat atgctgtgtg1680	10
aaccgtcgtg tgagtgtggt atgcctgatc acagatggat tttgttataa gcatcaatgt1740	
gacacttgca ggacactaca acgtgggaca ttgtttgttt cttccatatt tggaagataa1800	
atttatgtgt agactttttt gtaagatacg gttaataact aaaatttatt gaaatggtct1860	
tgcaatgact cgtattcaga tgcttaaaga aagcattgct gctacaaata tttctatttt1920	15
tagaaagggt ttttatggac caatgcccca gttgtcagtc agagccgttg gtgtttttca1980	
ttgtttaaaa tgtcacctgt aaaatgggca ttatttatgt ttttttttt gcattcctga2040	
taattgtatg tattgtataa agaacgtctg tacattgggt tataacacta gtatatttaa2100	
acttacagge ttatttgtaa tgtaaaccae	
taatacgtac aatcetteec teateceate acamaacttt ttttgtgtgt gataaactga2220	20
this gold and the color of the color at a same the color of the color	
ttttggtttg caataaaacc ttgaaaaata tttaaaaaaa aaaaaaaaa ggggcggccg2280	
C 2281	
	25
	25
(A) INTORNATION POPO OF OR NO. (A)	
(2) INFORMATION ÜBER SEQ ID NO:40 :	
(i) SEQUENZ CHARAKTERISTIK:	30
(A) LÄNGE: 1759 Basenpaare	
(B) TYP: Nukleinsäure	
(C) STrang: einzel	
(D) TOPOLOGIE: linear	35
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	
hergestellte partielle cDNA	
	40
(iii) HYPOTHETISCH: NEIN	> `
, , , , , , , , , , , , , , , , , , , ,	
(iii) ANTI-SENSE: NEIN .	
(m)/ (1411 OE(10E) 14E(14	
6-2 HERKINET	45
(vi) HERKUNFT:	
(A) ORGANISMUS: MENSCH	
(C) ORGAN:	
	50
(vii) SONSTIGE HERKUNFT:	-
(A) BIBLIOTHEK: cDNA library	
(A) DIDLIOTTILIA. ODIAA IIDIAI y	
	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 40:	
·	
gcggcggcgg ttgaactgac tcggagcgag gagacccgag cgagcagacg cggccctggc 60	
gcccgccctg cgcactcacc atggcgatgc atttcatctt ctcagataca gcggtgcttc 120	
tgtttgattt ctggagtgtc cacagtcctg ctggcatggc cctttcggtg ttggtgctcc 180	60
tgcttctggc tgtactgtat gaaggcatca aggttggcaa agccaagctg ctcaaccagg 240	
tactggtgaa cctgccaacc tccatcagcc agcagaccat cgcagagaca gacggggact 300	
ctgcaggctc agattcattc cctgttggca gaacccacca caggtggtat ttgtgtcact 360	
organgues againeante congreggea gaacecacea caggiggiat rigigicact 360	65
	w

```
ttggccaqtc tctaatccat gtcatccagg tggtcatcgg ctacttcatc atgctggccg 420
    taatgtccta caacacctgg attttccttg gtgtggtctt gggctctgct gtgggctact 480
    acctagetta eccaettete ageaeagett agetggtgag gaaegtgeag geaetgagge 540
    tggagggaca tggagccccc tcttccagac actatacttc caactgccct ttcttctgat 600
    ggctatteet ceacettatt eccageeest ggaaactttg agetgaagee ageacttget 660
    ccctggagtt cggaagccat tgcagcaacc ttccttctca gccagcctac atagggccca 720
    ggcatggtct tgtgtcttaa gacagctgct gtgaccaaag ggagaatgga gataacaggg 780
    gtggcagggt tactgagccc atgacaatgc ttctctgtga ctcaaaccag gaatttccaa 840
    agatttcaag ccagggagaa gggttcttgg tgatgcaggg catggaacct ggacaccctc 900
    agctctcctg ctttgtgcct tatctacagg agcatcgccc attggacttc ctgacctctt 960
    ctgtctttga gggacagaga ccaagctaga tcctttttct cacctttctg cctttggaac1020
    acatgaagat catctcgtct atggatcatg ttgacaaact aagttttttt tatttttccc1080
15
    attgaactcc tagttggcaa ttttgcacat tcatacaaaa aaatttttaa tgaaatgatt1140
    tcattgattc atgatggatg gcagaaactg ctgagaccta tttccctttc ttggggagag1200
    aataagtgac agctgattaa aggcagagac acaggactgc tttcaggctc ctqqtttatt1260
    ctotgataga otgagotoct tocaccagaa ggoantgoot gcagrangaa gatgototga1320,
    tggccgtggg tgtctgggin gctcttcgtg gcctcaatgc cctcctttat cctcatcttl. 🙌 😁 🦠
20
    cttctatgca gaacaaaaag ctgcatctaa taatgttcaa tacttaatat tctctattta1440
    ttacttactg cttactcgta atgatctagt ggggaaacat gattcattca cttaaaatac1500
    tgattaagcc atggcaggta ctgactgaag atqcaatcca accaaaqcca ttacattttt1560
    tgagttagat gggactctct ggatagttga acctcttcac tttataaaaa aggaaagaga1620
25
    gaaaatcact gctgtatact aaatacctca cagattagat gaaaaqatqq ttqtaaqctt1680
    tgggaattaa aaacaaacaa atacatttta gtaaatatat aaattttaaa tagaaaaaaa1740
    agaaaaagt agcaggggt
```

(2) INFORMATION ÜBER SEQ ID NO: 41:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1447 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 45 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 50 (vi) HERKUNFT:

30

35

40.

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 55 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 60 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 41:
 - ggtctacctc tggggataac cgtcccagtt gccagagaaa caataacgtc attatttaat 60 aagtcatcgg tgattggtcc gcccctgagg ttaatcttaa aagcccaggt tacccgcgga 120 aatttatgct gtccggtcac cgtgacaatg cagctgagga acccagaact acatctgggc 180

tgcgcgcttg	cgcttcgctt	cctggccctc	grrtcctggg	acatccctgg	ggctagagca	a 240	
ctggacaatg	gattggcaag	gacgcctacc	atgggctggc	tgcactggga	gcgcttcato	300	
tgcaaccttg	actgccagga	agagccagat	tcctgcatca	gtgagaagct	cttcatggad	360	
atggcagagc	: tcatggtctc	agaaggctgg	aaggatgcag	gttatgagta	cctctgcatt	420	5
gatgactgtt	ggatggctcc	ccaaagagat	tcagaaggca	gacttcaggc	agaccctcad	1 480	
cgctttcctc	atgggattcg	ccagctagct	aattatgttc	acagcaaagg	actgaagcta	540	
gggatttatg	cagatgttgg	aaataaaacc	tgcgcaggct	tccctgggag	ttttggatac	600	
tacgacattg	atgcccagac	ctttgctgac	tggggagtag	atctgctaaa	atttgatggt	: 660	
tgttactgtg	acagtttgga	aaatttggca	gatggttata	agcacatgtc	cttqqccctq	720	10
aataggactg	gcagaagcat	tgtgtactcc	tgtgagtggc	ctctttatat	gtggcccttt	780	
caaaagccca	attatacaga	aatccgacag	tactgcaatc	actggcgaaa	ttttgctgac	840	
attgatgatt	cctggaaaag	tataaagagt	atcttggact	ggacatcttt	taaccaggag	900	
agaattgttg	atgttgctgg	accagggggt	tggaatgacc	cagatatgtt	agtgattggc	960	15
aactttggcc	tcagctggaa	tcagcaagta	actcagatgg	ccctctgggc	tatcatggct	1020	
gctcctttat	tcatgtctaa	tgacctccga	cacatcagcc	ctcaagccaa	agctctcctt	1080	
caggataagg	acgtaattgc	catcaatcag	gaccccttgg	gcaagcaagg	gtaccagctt	1140	
agacagggag	acaactttga	agtgtg@gg;	· ************************************	caggettage	ctgggctgta	1200	20
gctatgataa	accggcagga	gattggtgga	cctcgctctt	ataccatcgc	agttgcttcc	1260	20
ctgggtaaag	gagtggcctg	taatcctgcc	tgcttcatca	cacagctcct	ccctgtgaaa	1320	
aggaagctag	ggttctatga	atggacttca	aggttaagaa	gtcacataaa	tcccacaggc	1380	
actgttttgc	ttcagctaga	aaatacaatg	cagatgtcat	taaaagactt	actttaaaat	1440	
gtttaaa						1447	25
							
(2) INFORMA	TION UBER S	EQ ID NO: 42)• •				30
(i) SEQUEN	NZ CHARAKT	ERISTIK.					
	GE: 831 Base						
	: Nukleinsäure						
		,					35
	ang: einzel	~					
יט) וטף	OLOGIE: line	aı					
(ii) MOLEKU	DLTYP: aus ei	nzelnen ESTs	durch Assem	blierung und l	Editierung	•	4.0
· nergest	ellte partielle c	UNA ·					.40
(iii) HYPOTH	IETISCH: NEII	N					
(iii) ANTI-SE	NSE: NEIN						45
			•				
(vi) HERKUI	NFT:						
(A) ORG	SANISMUS: M	ENSCH					
(C) ORG							50
(-,	· - · - · · · · · · · · · · · · · · · ·						
(vii) SONSTI	GE HERKUNF	- Τ:			. -		
	IOTHEK: cDN						
ç.,, 2.02		·······································					e e
							55
(xi) SEQUE	NZ-BESCHRE	IBUNG: SEQ	ID NO: 42:				
			•				
ygagtccctc	ttgctcaccc 1	ttgacttgga a	aaaaccagtt 1	tctcttttat ·	tgtctgttac	60	60
caatctctat	tctaaaaatt (cagctcaatt (ctcaaccata o	ctccaaactc 1	tctcttttcc	120	
tascagazza	actecetete e	cttcaattcc a	actttcctct c	cttactttt 1	ttttttttc	180	
LyacagggtC	tcactttgtc q	gcccgggcag (gagtgcagtg g	ctcaatctt q	gggctcactg	240	
						•	

```
cagceteaac eteccagagg eggggteta ceatgttgee eagactggte ttgaacteet 300 gagettaage aatecacetg ecteggeete ecaaagtgtt gggateacag gegtgageaa 360 eegeateegg eeteatgtte tttteatta aagagagaaa teaactatte aggaceggee 420 eceaeettte eteaggagte atttetgtte egeaeaggee tgetgaactg ggtgetttat 480 ataggattee agtggagtga agtteaggag geatggaget gacaaceatg aggeetegge 540 agceaeegee aceaeegeeg eegeeaeeae egtageagea geageageage eageageage 600 ageageagea geaagagtaa etettgaetta ggaatagaga eageeaggag eageageage 600 eaatgaagga gacatetgga gtgtgegtge ttetteagag ggaegggtga tgggeagat 720 ggaaaaagea eegeagatg gaacettaat etttettte taaaattgat getatgaaaa 780 tttgegttt etgtaacttg taaaaactaa aagttgeeeg tetaeegaa a 831
```

- 15 (2) INFORMATION ÜBER SEQ ID NO: 43:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) AMGE: 528 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 30 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

20

25

35

. .20

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 45 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 43:

```
acgaagctga ctcctggcca ggccagcccc tggttcccta cccatacccc tgtgagcttg 60 cgcagctcac gccttacctc cctcctctg gtctgcagat ctctcacttc aagattccga 120 agtacatcgt gtttgtcaca aactaccccc tcaccattc aggaaagatc cagaaattca 180 aacttcgaga gcagatggaa cgacatctaa atctgtgaat aaagcagcag gcctgtcctg 240 gccggttggc ttgactctc cctgtcagaa tgcaacctgg ctttatgcac ctagatgtcc 300 ccagcaccca gttctgagcc aggcacatca aatgtcaagg aattgactga acgaactaag 360 agctcctgga tgggtccggg aactcgcctg ggcacaaggt gccaaaaggc aggcagcctg 420 cccaggccct ccctcctgtc catccccac attcccctgt ctgtccttgt gatttggcat 480 aaagaagcttc tgtttcttt ggctaaaaaa aaaaaaaaa aaaaaaaaa
```

- (2) INFORMATION ÜBER SEQ ID NO: 44:
- (i) SEQUENZ CHARAKTERISTIK:
 (A) LÄNGE: 1027 Basenpaare

(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	10
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	15
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:44:	25
ggctttgtcc tttgctcctg ctccccgtgg accatgggac cttaaagcgt tgcaggttcc 60 tgatttggac agaggtgtgg ggccttccag gccgttacat acctcctgcc aattctctaa 120 ctctctgaga ctgcgaggat ctccaggcag ggttctcacc tctggagtct gaccaattac 180 ttcattttgc ttcaaatggc caattgtgca gagggacaaa gccacagcca cactcttcaa 240	30
cggttaccaa actgtttttg gaaattcaca ccaaggtcgg gcccactgca ggcagctggc 300 acacgtggcc cgaggggctg tggaacgggt cccggaactg tcagacatgt ttgattttag 360 cgtttccttt gttcttcaaa tcaggtgccc aaataagtga tcagcacagc tgcttccaaa 420 taggagaaac cataaaatag gatgaaaatc aagtaaaatg caaagatgtc cacactgttt 480 taaacttgac cctgatgaaa atgtgagcac tgttagcaga tgcctatggg agaggaaaag 540	35
cgtatctgaa aatggtccag gacaggagga tgaaatgaga teecagagte etcacacetg 600 aatgaattat acatgtgeet taccaggtga gtggtettte gaagataaaa aactetagte 660 eetttaaaeg tttgeecetg gegttteeta agtaegaaaa ggtttttaag tettegaaca 720 gteteettte atgaetttaa eaggattetg eeceetgagg tgtaattttt ttgttetatt 780	40
tttttccacg tactccacag ccaacatcac gaggtgtaat ttttaatttg atcagaactg 840 ttaccaaaaa acaactgtca gttttattga gatgggaaaa atgtaaacct atttttatta 900 cttaagactt tatgggagag attagacact ggaggttttt aacagaacgt gtatttatta 960 atgttcaaaa cactggaatt acaaatgaga agagtctaca ataaattaag atttttgaat1020 ttaaaaa	45
2) INFORMATION ÜBER SEQ ID NO: 45:	50
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2160 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	60
(iii) HYPOTHETISCH: NEIN	65

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

15

60

65

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 10 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:45:

```
acttcctcca agtgataatc cagattttga tccagaagag gatgaaccac gcttgaggcc 60
    tetiggeete acatacagtt ggtatatgaa ttettettga qatttttgga gogeetgat 120
20
    ttocagoot: ಭಾಷವಿತ್ರcaaa acgatacatt gatcagaaat togtacaaca gotcotqು ಹೇಳಿದ್ದುಕ್ಕ
    ctttttgata gayangatoc cagagaacgt gacttootga agactgttot gcaccgaatt 249
    tatgggaaat ttcttggatt aagagcattc atcagaaaac aaattaacaa cattttcctc 300
    aggittatat atgaaacaga acatitcaat ggigtigcig aacticitga aatattagga 360
    agtattatca atggctttgc attgccactg aaagcagaac ataaacaatt tctaatgaag 420
25
    qttcttattc ctatgcatac tgcaaaagga ttagctttgt ttcatgctca gctagcatat 480
    tgtgttgtac agttcctgga gaaagataca acactaacag agccagtgat caqaqqactg 540
    ctgaaatttt ggccaaaaac ctgcagtcag aaagaggtga tgtttttagg agaaattgaa 600
    gaaatcttag atgtcattga accaacacag ttcaaaaaaa ttgaagagcc acttttcaag 660
    cagatatcca agtgtgtatc cagttctcat tttcaggttg cagaaagggc attgtacttc 720
    tggaataacg aatatattct tagtttgatt gaggagaaca ttgataaaat tctgccaatt 780
    atgtttgcca gtttgtacaa aatttccaaa gaacactgga atccgaccat tgtagcactg 840
    gtatacaatg tgctgaaaac cctaatggaa atgaatqqca aqcttttcga tgaccttact 900
    agctcataca aagctgaaag acagagagag aaaaagaagg aattggaacg tgaagaatta 960
    tqqaaaaaat tagaggagct aaagctaaag aaagctctag aaaaacagaa tagtgcttac1020
    aacatgcaca gtattctcag caatacaagt gccgaataaa aaaaaaqcct cccacctctq1080
    ccggataggc agagttttgt atgctttttt gaaatatgta aaaattacaa aacaaacctcl140
    atcagtataa tataattaaa aggocaattt tttotggcaa ctgtaaatgg aaaaatagat1200.
    ggactuaacg tagccctgtg ctgtatcatg gccatagtat attgtaacct ttgtctaatc1260
    attggattta ttgtgtcact tctgaagttt cacagaaatg aatgaatttt atcatctatg1320
    atatgagtga gataattatg ggagtggtaa gaattatgac ttgaattctt ctttgattgt1380
    gttgcacata gatatggtag tctgctctgt atatttttcc cttttataat gtgcttttca1440
    cactgctgca aaccttagtt acatcctagg aaaaaatact tcctaaaata aaactaaggt1500
45
    atcatcctta cccttctctt tgtctcaccc agaaatatga tggggggaat tacctgccct1560
    aacccctccc tcaataaata cattactgta ctctggaatt taggcaaaac cttaaatctc1620
    caggettttt aaageacaaa atataaataa aagetgggaa agtaaaccaa aattetteaq1680
    attgttcctc atgaatatcc cccttcctct gcaattctcc agagtggtaa cagatgggta1740
    gaggcagete aggtgaatta eccagettge eteteaatte attecteete tteeteteaa1800
    aggctgaagg cagggccttt ccagtcctca caacctgtcc ttcacctagt ccctcctgac1860
    ccagggatgg aggctttgag tcccacagtg tggtgataca gagcactagt tgtcactgcc1920
    tggctttatt taaaggaact gcagtaggct tcctctgtag agctctgaaa aggttgacta1980
55
    tatagaggtc ttgtatgttt ttacttggtc aagtatttct cacatctttt gttatcagag2040
    taccattcca atctcttaac ttgcagttgt gtggaaaact gttttgtaat gaaagatctt2100
    cattggggga ttgagcagca tttaataaag tctatgtttg tattttgcct taaaaaaaaa2160
```

(2) INFORMATION ÜBER SEQ ID NO: 46:

(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 642 Basenpaare

(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	10
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	1:
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	. 20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:46 :	25
cgacgggccg cgcgcctggc gcatgcgcgc cggcgaccac gcctaaatag ccgcagcctc 60 tgcgcgtcgc cctccacggt taccccggct ctccgccct ccttctcgcg gcgctcgagg 120 gaccatggcc gatcctcgcg tgagacagat caagatcaag accggcgtgg tgaagcggtt 180 ggtcaaagaa aaagtgatgt atgaaaaaga ggcaaaacaa caagaagaaa agattgaaaa 240 aatgagagct gaagacggtg aaaattatga cattaaaaag caggcagaga tcctacaaga 300) 30)
atccaggatg atgateccag attgccageg caggttggaa geegeatatt tggatettea 360 aeggataeta gaaaatgaaa aagaettgga agaagetgag gaatataaag aageaegttt 420 agtaetggat teagtgaagt tagaageetg aaaettttet egtatggggt ggtttttgea 480 ttaaateetg gggtecattt tacaateeat tatttttgae eactgetaat tgtggteaag 540 gagggatgag gaattgtega ttggttttta getggttaea atataagatt egtttgegta 600	35
、 清末を行き panatu gananganang tiggggguacoegattanan an i i i i i i i i i i i i i i i i	· · - 47
(2) INFORMATION ÜBER SEQ ID NO: 47:	
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1415 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	45
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	50
(iii) HYPOTHETISCH: NEIN	55
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	60
	65

(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library

5

40

45

50

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:47:

```
qqcatctqqc aqaqqqqqt qqqqctqqqc caqctqqqqt aqaqcqqaqq aqcqqqtqcc 60
     ggctgaagcg gggcggtggg cgcggagcga atgggggcac cgacaccact cctcaccggc 120
     agcogggtgc tgagggccgc ggtgtgggtg cgcggacagt cagggcgcag gtgggcagcg 180
     cgcacggcct gccagcccgg ggcgccagaa tcctgcgctg cggggccgag aggggcqcc 240
     cgcccgccgc agcctggagc tttccgcgaa cctcggggcg cccatgacgg cggcgqcqac 300
     ggctaccgtg ctcaaggagg gcgtgctgga gaagcgcagg gcggggctgc tgcagctgtg 360
     gaagcggaac gctgcgtcct caccgaacgc gggctgcagc tcttcgaggc caagggcacg 420
     ggcggccggc ccaaggagct cagcttcgcc cgcatcaagg ccgtggagtg cgtggagagc 480
    provingence, restotacht cacyctggtg.accqaaqqqq eggegaqate.gactteeqqii.540
20
    gccccetgga agatcccggc tgyaacgccc agatcaccct aggcctggtc aagttcaaga 600
     accagcagge catecagaca gtgcgggccc ggcagagect cgggaccggg accetegtgt 660°
     cctaaaccac cgggcgcacc atctttcctt catgctaccc accacctcag tgctgaggtc 720
     aaggcagctt cgttgttccc tctggcttgt gggggcacgg ctgtgctcca tgtggcaagg 780
    tggaaggcat ggacgtgtgg aggaggcgct ggagctgaag gaatggacga gccctgggag 840
     gagggcagaa ggctacgcag ggctgaggat gaagatgcag cccctggatg gtcccaqact 900
    ctcaggacat gcccagctca ggggcttcga gccacaggcc tggcctcata tggcatgagg 960
    gggagetgge ataggageee cetecetget gtggteetge cetetgteet geagactget1020
    cttagccccc tggctttgtg ccaggcctgg aggagggcag tcccccatqq qqtqccqaqc1080
30
    caacgeetea ggaateagga ggecageetg gtaccaaaag gagtacccag ggeetqqtac1140
    ccaggcccac tccagaatgg cctctggact caccttgaga agggggagct gctgggccta1200
    aagcccactc ctgggggtct cctgctgctt aggtcctttt gggaccccca cccatccaqq1260
    ccctttcttt gcacacttct tcccccact ctacgcatct tccccccact gcqqtqttcq1320
    gcctgaaggt ggtgggggtg aggggggtt tggccattag catttcatgt ctttccccaal380
    atgaagatgc cctgcaaagg gcagtaacca caaaa
                                                                      1415
```

(2) INFORMATION ÜBER SEQ ID NO: 48:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2949 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 55 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 60 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 65 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:48:

```
gcgcaggcgc agtggtgagc ggcaacatgg cgtccaggtc taagcggcgt qccgtggaaa 60
gtggggttcc gcagccgccg gatcccccag tccagcgcga cgaggaagag gaaaaagaag 120
tcgaaaatga ggatgaagac gatgatgaca gtgacaagga aaaggatgaa gaggacgagg 180
tcattgacga ggaagtgaat attgaatttg aagcttattc cctatcagat aatgattatg 240
acggaattaa gaaattactg cagcagcttt ttctaaaggc tcctgtgaac actgcagaac 300
taacagatct cttaattcaa cagaaccata ttgggagtgt gattaagcaa acggatgttt 360 10
cagaagacag caatgatgat atggatgaag atgaggtttt tggtttcata agccttttaa 420
atttaactga aagaaagggt acccagtgtg ttgaacaaat tcaagagttg gttctacgct 480
tctgtgagaa gaactgtgaa aagagcatgg ttgaacagct ggacaagttt ttaaatgaca 540
ccaccaagcc tgtgggcctt ctcctaagtg aaagattcat taatgtccct ccacagatcq 600 15
ctctgcccat gtaccagcag cttcagaaag aactggcggg ggcacacaga accaataagc 660
catgtgggaa gtgctacttt taccttctga ttagtaagac atttgtggaa gcaggaaaaa 720
acaattccaa aaagaaacct agcaacaaaa agaaagctgc gttaatgttt gcaaatgcag 780
・ 要素は まずした tttctatgag aaggcaattc tcaagttcaa ctactcagig では、ではggaga:840
gcgacacttg totgggaggc aaatggtott ttgatgacgt accaatgacg scottgcgaa 900
ctgtgatgtt aattccaggc gacaagatga acgaaatcat ggataaactg aaagaatatc 960
tatctgtcta acccatttcc aatggacagt gatgggcttg tttttgtaaa attaccagaa1020
aactcagtgg agatttactg aaaaactcag actttattca gattaagttc ctctacaaaa1080
agtaqqgttc tgtcccatgt gtctctgaca catttacaaa ataccagttt tttaaaattt1140
tggtcaaatt atgagtggtt gatttaaaaa cttttccaag aagaagaaaa gcatggagtc1200
gtaatttaaa gaactcaata aaaacttcta tttttattt taaaataata tacacagtgt1260
tattttcttc aagaccgtcc tgtggatgtg aaatccgtct tcgcgtcatg tatctcccat1320
atccagcagt tcagccatcc agctaccttt gggaccctgc tgcaccttgt gtttgctggg1380
gagtcactgg agagtgcatc tctgttcagt ttcagggcac gtctcacaca tttgctgttc1440
cttattcatt gttgacacag gggataggtg atccactact tgctgtagaa tgtccttact1500
ttcactagga ggcagattac tgaaatagta ttgtggtacc agctgcataa atagttcagg1560
agagatttct gaggtaatcc tgatgtagtt gttctcagaa atgctgaatt tatggaaqag1620
gacccactct ggcatcttct tggtgattga gtaaccagac aggggatgca gctgagcaac1680
ctgcttatgt gtcagcatta agtagttacc tgatccatca acatcccgag caatctgcat1740
aaagtaaccg gacagaagag ctttctttat gtttagagtg ttttccttgg agccaaaagc1800
aggiticiqua tagggaagut ugathogott gataattitot aagagiticag otogaataac1860-
atctgccatt ctgagtgctg aacagttgag gaagtaatca cgacaccact tttccacaca1920
gtactcactg ctagaattca gagttgtgtc ttggtaagcc ttgtaaatgc tgatgagggt1980
aaagtgatct ccttcgggat gtaaaaatgt cttccaacaa gtcaaggcag cctcttcagc2040
tccatgtggc acatgtgaaa agcaatttgg agctgttacc atggccgcga ttgttagcac2100
ttcatctaca cagtcaaatt cacaggacgc taagatagac ttcgagagtt gtggatcaag2160
aggaaactct gacatgatga ttccaaattc agaaagattt ccatcattat ccagtgctgc2220
cagataatct aagtetteca atgeetgeat caaactttet ggtgetggte tgtteatgaa2280
gtcacagtgg cctaggcccg caatgtctat cctcttcata aaaagcacca tqcttgttag2340
gttggcttcc tgcatttctg ctggcttcag tggcgtcatg tctttggagg caaattcttc2400
agtgtacagg cagaaaaatt ttcctgaaga agatgagcca agaatctgct tgcgtatctc2460
tgcctggctc tggctgatgg gctgcatgac gagcgagttt gctcttattc tcgggttgta2520
cacctttctt ctttccacac ccacatcgat aacaaatctg actgagttgc tccagatcaa2580
aaactctcca gagctagtag ttaacaccac tcttctttga taaacttggc atctttttc2640
tgtttcatcg agtggcttga acaatgaaca tttctctttt ggatacaaag gaacaaccac2700
cagttctcca agatctgggt ttaggttaga tccttgatag acagtttcac agactttctc2760
aatatettgt teacaggeca gaaagactae aatgteacet tteteaceeg agtggtgaat2820
ttcaaagata aggcgtaaaa tagactcaaa agaatccttt tgagcctcac taaggtacac2880
aacctccaca gggtgtttat ttttcacttc tatgacaggc acgtttccat aataagaatt2940
gagtttgct .
                                                                 2949
```

(2) INFORMATION ÜBER SEQ ID NO: 49:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 665 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

10

15

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 49:

cctagacccg tccggtcgca gactgtcctc cgagacgctt cctgtccggt gagcgtcgac 60
cgactgaaac ggcggcccat aatacattgc gatggcggt aggcgttgg gggcggagcc 120
agggccggaa gtagagcgga ggtggtggcg gcggaggctt tggcagctcg ggactgagtg 180
caagaatcag catgattctt cagaggctct tcaggttctc ctctgtcatt cggtcagccg 240
tctcagtcca tttgcggagg acacattggtg ttacagcagt ggcatttaat aaggaacttg 300
atcctataca gaaactcttt gtggacaaga ttagagaata caaatctaag cgacagacat 360
ctggaggacc tgttgatgct agttcagagt atcagcaaga gctggagagg gagcttttta 420
agctcaagca aatgtttggt aatgcagaca tgaatacatt tcccaccttc aaatttgaag 480
atcccaaatt tgaagtcatc gaaaaacccc aggcctgaag aaataaagta aaattaatct 540
ggtaatttgt cacggattag ttgtacaact agttagaagt ttcagaataa acatgcattt 600
cataactgtc aaatgttctt ttaattctga gtccaaataa attatttggt gatgttgaaa 660
aaaaa

- 50 (2) INFORMATION ÜBER SEQ ID NO:50 :
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 904 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN

65

(iii) ANTI-SEN	NSE: NEIN						
(vi) HERKUN (A) ORG (C) ORG	ANISMUS: N	MENSCH					
(vii) SONSTIO (A) BIBLI	GE HERKUN IOTHEK: cDI						1
(xi) SEQUEN	IZ-BESCHRI	EIBUNG: SEC	Q ID NO:50 :				
tcaccaccga aggcagtgc aggcagtgc acacatcatgata tatatctcat aaacttaaaa tactgcaaat taaacatttgt cataagttctt tcataaagat acaaaatact agttttcagc t	attcagcaça ctacilizado tectgty at caccetgett acaaaagcaa tttctatgca gtttcaacaa aacctcaact gttttcatat ttttaggtag tatagcaaaa	ggagagctct agtatggca ttaaaaactc atcaatattc gttgtcctta aacttgcctc gggacagtaa tttgtagaag ctgaactcct ccatgcttga ggtagttatg	ttttgccttt ctagttatga taattccatg agtttgatga aaagttcttt ctgctgttat actgtgtgtt tattttttc aaataagtga gacttttaa tatgccagac	ggctttcaat agtatctgct ttttcttccc gcactattaa ttttaagtaa ctgtgaagct tacagccaaa tctgtaatat aattacagta aaatataact ctaatatgag	tccaaaxcat TadaGCCTC atctgcctta ctaaaatatg attgttgaca caggaaatcc agaaatgcct ttttattggc gattatatta ttttccttaa ctgccaccaa	120 240 300 360 420 480 540 600 660 720	
caccctaga a aaatcctcct t gatctctagg a cccg	ttacccgtt	gaatgttttg	aatgccttga	ctctaccagc	gcccataaat	840	3
2) INFORMATI	ON ÜBER S	EQ ID NO: 51	· :		·	·.	4
(A) LÄNG (B) TYP: (C) STrar	Z CHARAKTI SE: 1239 Bas Nukleinsäure ng: einzel DLOGIE: line:	enpaare •				•	4:
(ii) MOLEKÜL		nzelnen ESTs	durch Assem	nblierung und	Editierung		50
(iii) HYPOTHE	ETISCH: NEII	N					55
(iii) ANTI-SEN	ISE: NEIN						
(vi) HERKUN (A) ORGA (C) ORGA	ANISMUS: M	ENSCH			·		60
(vii) SONSTIG	SE HERKUNF	FT:					

(A) BIBLIOTHEK: cDNA library

5

35

45

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 51:

```
cgaaggcagg cgcaaggagc aagcgcagat tqtqqqcqqc tqtqtcaqct qacccaaggg 60
    geettegagg tgeettagge egettgeett geteteagaa tegetgeege catggetagt 120
    cagteteagg ggatteagea getgetgeag geegagaage gggeageega gaaqqtqtee 180
    gaggcccgca aaagaaagaa ccggaggctg aagcaggcca aagaagaagc.tcaggctgaa 240
    attgaacagt accgcctgca gagggagaaa gaattcaagg ccaaggaagc tgcggcattg 300
    ggatcccgtg gcagttgcag cactgaagtg gagaaggaga cccaggagaa gatgaccatc 360
    ctccagacat acttccggca gaacagggat gaagtcttgg acaacctctt ggcttttgtc 420
    tgtgacattc ggccagaaat ccatgaaaac taccgcataa atggatagaa gagagaagca 480
    cctqtqctqt ggagtggcat tttagatgcc ctcacgaata tgaagcttag cacagctcta 540
    gttacattot tatgatatgg cattaaatta tttccatata ttatataata ggtccttcca 600
    ്യൂന്ന് tggag agtagcaaat ctagcttttt tgtacagact tagaa. ് ജെല്ലാaagattt 660
    catotittta cotoatatti ottaggaatt taatggttat atgttgtock * tittootat 720
    gtcttttggc tcaagcaaca tgtatatcag tgttgacttt ttctttctta gatctagttt 780
    aaaaaaaaaa aaaaccacat aacaattott tgaagaaagg aagggattaa ataatttttt 840
    tccctaacac tttcttgaag gtcaggggct ttatctatga aaaagtagta aatagttctt 900
    tgtaacctgt gtgaagcagc agccagcctt aaagtagtcc attcttgcta atggttagaa 960
    cagtgaatac tagtggaatt gtttgggctg cttttagttt ctcttaatca aaattactag1020
    atgatagaat tcaagaactt gttacatgta ttacttggtg tatcgataat catttaaaag1080
    taaagactct gtcatgcaaa tttaacccca tattttttt ttccctgtct ccgtgacaac1140
30
    cagtggttct tcatttttga tcatgcgaaa tgcatcttga cccagatggt ctgcaqaact1200
    tcacttagga cattagcaca caaatagcac acatatctt
```

(2) INFORMATION ÜBER SEQ ID NO:52:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 966 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA

13. 44

- 50 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 55 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 60 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 65 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 52:

gagettgtgg geogegetge tectagggge egtggegetg aggeeggegg aggeggtgte 12 egageecacg aeggtggegt ttgaegtgeg geoeggegge gtegtgeatt cetteteca 18	50
cgagcccacg acggtggcgt ttgacgtgcg gcccggcggc gtcgtgcatt ccttctccca 18	20
	30
taacgtgggc ccgggggaca aatatacgtg tatgttcact tacgcctctc aaggagggac 24	10 5
caatgagcaa tggcagatga gtctggggac cagcgaagac caccagcact tcacctgcac 30	
catctggagg ccccagggga agtcctatct gtacttcaca cagttcaagg cagaggtgcg 36	
gggcgctgag attgagtacg ccatggccta ctctaaagcc gcatttgaaa gggaaagtga 42	
tgtccctctg aaaactgagg aatttgaagt gaccaaaaca gcagtggctc acaggcccgg 48	10
ggcattcaaa gctgagctgt ccaagctggt gattgtggcc aaggcatcgc gcactgagct 54	10
gtgaccagca gccctgttgc gggtggcacc ttctcatctc cggtgaagct gaaggggcct 60	
gtgtccctga aaggccagca catcactggt tttctaggag ggactcttaa gttttctacc 66	
tgggctgacg ttgccttgtc cggaggggct tgcagggtgg ctgaagccct ggggcagaga 72	0
acagagggtc cagggccctc ctggctccca acagcttctc agttcccact tcctgctgag 78	0 15
ctcttctgga ctcaggatcg cagatccggg ggcacaaaga gggtggggaa caagtggggg 84	0
ctatttttgg ggaaaaaaac ccatggttcc cctaactttg agccggggag tgctttaatt 90	0
gggcttgaaa cottttttc cggtttttcc ccagggggcc gtccttttaa attaaacttg 96	0
agaaag shirting g	· ·
	199
(2) INFORMATION ÜBER SEQ ID NO: 53:	•
(2) IN ONIMATION OBEN CER ID NO. 00.	
(A REQUENT OUADAI/TEDISTII/	
(i) SEQUENZ CHARAKTERISTIK:	25
(A) LÄNGE: 556 Basenpaare	2.5
(B) TYP: Nukleinsäure	
(C) STrang: einzel	
(D) TOPOLOGIE: linear	
	30
(ii) MOLEKŪLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	
nergetalite nartielle el INÚ	
hergestellte partielle cDNA	
	35
hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN	35
(iii) HYPOTHETISCH: NEIN	35
	35
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN	35
(iii) HYPOTHETISCH: NEIN	40
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT:	
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT:	
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	. · · 40
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT:	
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	. · · 40
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT:	. · · 40
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	. · · 40
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT:	. · · 40
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	40
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	40 45
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53:	45 50
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53: taaagctgcg gcggcggttc gcgtttctcg tgtccgcttg actgacagct gcgcggcggg	45
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53: taaagctgcg gcggggggtc gcgttctcg tgtccgcttg actgacagct gcgcgggggggggg	45
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53: taaagctgcg gcggcggttc gcgtttctcg tgtccgcttg actgacagct gcgcggcggg agcggggcggc cagagcttgg gcgttccttg gtcgcacca 120 gcacctgct gccacctgct cagccttcag ggaccctgag caccgcctgg tctctttcct 180 gtggccagcc cagaactgaa gcgctgcggc atggcgcgc cctgcctcaa ggccgtcaag 240	45
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53: taaagctgcg gcggcggtc gcgttctcg tgtccgcttg actgacagct gcgcggcggg agcgggggggggg	40 45 50 0 0 55
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53: taaagetgeg geggeggtte gegtteteg tgteegettg aetgacaget gegggggggg ageggggggggggggggggggggg	40 45 50 0 0 0 55
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53: taaagetgeg gegagegga gegageggeg eagagetteg gegetteette gagegegeggeg gegagegga gegageggeg eagagetteg gegetteette gegetteette gagegetteette gegetteette gagegetteette gegetteette telecteetteetteetteetteetteetteetteettee	40 45 50 0 0 0 55
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53: taaagetgeg geggeggtte gegtteteg tgteegettg aetgacaget gegggggggg ageggggggggggggggggggggg	40 45 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(2) INFORMATION ÜBER SEQ ID NO:54:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1349 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

5

10

15

25

30

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:54:

```
cgggggagtg aggagaaagg gggggcttgg cggccggagg aggagtaggt gcgggtgaaq 60
35
    atggcggcag ccgaggccgc gaactgcatc atggaggtgt cctgtggcca ggcggaaagc 120
    agtgagaagc ccaacgctga ggacatgaca tccaaagatt actactttga ctcctacgca 180
    cactttggca tccacgagga gatgctgaag gacgaggtgc gcaccctcac ttaccgcaac 240
    tccatgtttc ataaccggca cctcttcaag gacaaggtgg tgctggacgt cggctcgggc 300
    accognation tolgoatott tootgocaag googgageen goaaggteat ogggalegag 360
    tgttccagta tctctgatta tgcggtgaag atcgtcaaag ccaacaagtt agaccacgtg 420
    gtgaccatca tcaaggggaa ggtggaggag gtggagctcc cagtggagaa ggtggacatc 480
    atcatcagcg agtggatggg ctactgcctc ttctacgagt ccatgctcaa caccgtgctc 540
    tatgcccggg acaagtggct ggcgcccgat ggcctcatct tcccagaccg ggccacgctg 600
45
    tatgtgacgg ccatcgagga ccggcagtac aaagactaca agatccactg gtgggagaac 660
    gtgtatggct tcgacatgtc ttgcatcaaa gatgtggcca ttaaggagcc cctagtggat 720
    gtcgtggacc ccaaacagct ggtcaccaac gcctgcctca taaaggaggt ggacatctat 780
    accetcaage tegaagacct gaccttcacc tecceettet geetgeaagt gaageggaat 840
    gactacgtgc acgccctggt ggcctacttc aacatcgagt tcacacgctg ccacaagagg 900
    accggcttct ccaccagccc cgagtccccg tacacgcact ggaagcagac ggtgttctac 960
    atggaggact acctgaccgt gaagacgggc gaggagatct tcggcaccat cggcatgcgg1020
    cccaacgcca agaacaaccg ggacctggac ttcaccatcg acctggactt caagggccag1080
    ctgtgcgagc tgtcctgctc caccgactac cggatgcgct gaggcccggc tctcccqccc1140
    tgcacgagcc caggggctga gcgttcctag gcggtttcgg ggctccccct tcctctccct1200
    ccctcccgca gaagggggtt ttaggggcct gggctggggg gatgggggagg gcacatcgtg1260
    actgtgtttt tcataactta tgtttttata tggttgcatt tacgccaata aatcctcagc1320
    tggggaaaaa aaaaaaaaa aaaaaagga
                                                                   .. 1349
60
```

(2) INFORMATION ÜBER SEQ ID NO: 55:

(A) LÄN (B) TYF (C) STr	:NZ CHARAK NGE: 2021 Ba P: Nukleinsäu rang: einzel POLOGIE: lin	isenpaare re		·		5			
	ÜLTYP: aus e tellte partielle		rs durch Asse	mblierung und	l Editierung	10			
iii) HYPOTHETISCH: NEIN									
(iii) ANTI-SE	ENSE: NEIN					15			
(vi) HERKU (A) ORG (C) ORG	GANISMUS: 1	MENSCH	væ.			20			
	IGE HERKUN LIOTHEK: cD					25			
(xi) SEQUE	NZ-BESCHR	EIBUNG: SE	Q ID NO:55 :			30			
ctctgtctca	aaagagaaaa	aaaaagaaaa	gtaaccttca	gagattetta	gaagagttgc 60	50			
					taacttttgt 120				
ctggatggga	agagaagtaa	gtctaccccg	aggttgccat	gttgaagagt	gagaggtcca 180				
agtgattctg	tgcattgaaa	ccaagacacc	ccacccagaa	cacttcttcc	ctccctcagc 240	35			
					cccaagccgc 300				
					ggggcccagg 360				
ctgggtatga	acgggtgcag	ccctcttctc	ctcttcccc	ccacatctct	catgagagag 420				
regtçycat	ticctictes	gggagcttca	atgggaaagg	totoganage	trtcିପ୍ରଅବସ୍ତୁଣ 460°	40			
gcagaatacc	aacgcagggg	gatggctgta	acgatctcac	cgtctcctaa	cctcagtccc 540	ar.			
raaaaaaaaa	grgaargggg	gagggtggga	agggacccag	atttgtagat	ctctttgtct 600				
gggggagggg	tattecease	ctcactcacc	ggaagcagag	restances	catgagagca 660 gtggagttgg 720				
stattcccac	cctcactcac	aaaatataaa	tagagatace	tatagagga	gtgcctgctg 780	45			
					tcatttcagc 840				
					acagggccag 900				
acaagccct	caggactgtg	gcctcctqqc	ccttggttcc	cctqccccac	aacatggtct 960				
cacatggct	ggctggctgg	ctgtccctgt	gtgtgtgtga	cacacqqtqt	gagtgcaggg1020	50			
tgtgcccgg	ggtgggaggg	tgtctatgtg	gcactgactg	tcttagctca	gagctggtgg1080				
tcctctcca	tggacaatga	cactttaagg	attgtcttgg	tttgtttttc	ctatttgtgg1140				
gtattttcc	ccctcaggct	cctgggtctg	ctgctgcctc	aaggtgtcct	gaccttgagg1200				
tgatgaggg	gacccctgcc	tgtttccccc	atactgagtt	ctagggaggt	gctcacccca1260	55			
actcttagg	aagggtctag	agaaatgaga	ggagcccaag	ccaggggcca	gctccgagaa1320	33			
gggtaacct	ccacgcttct	ctctcccaaa	ttggaaatga	agacaggttt	tcaaaggcac1380				
ggctcccc	tgccagcttc	taggatcttc	cttggtgtgc	aatgggccag	ttaggggtag1440				
cagcttgca	cccagttctc	ctttatctca	acttattttc	ctggggagag	gtgcctagag1500	7 0			
gattgaggt	aacttcaact	yggaattcca	aggaaggtgg	gcaagtagcc	ttggctctct1560	60			
trassartt	aggazetes-	agatacett-	LCLAGCECCC	gaccactttg	tcttgaccta1620				
ttaaaayul	gggaactgag	actoracase	teresecte	tocatte	tccagctcaa1680				
				tcccgtcccg	cccctttct1740				

```
ttgcaaaccc aggggctcct ttttcatct ttctaaaacc ttgatatcct cagcccaaag1860 gcgatgccc cctgccacct ccaagcctgg aattgtgcat aacccggatc ttgtatcttt1920 gtataacgga tgttatttgt acgaagggca gttcgtaaac agcacttgtt cttttaataa1980 aagaatgttt tgcaaaaaaa aaaaaaaaa tccgaaaaaa a 2021
```

(2) INFORMATION ÜBER SEQ ID NO:56:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 900 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (i) MOLTICUTYP: aus einzelnen ESTs durch Assemblierung und Salarung herges illte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- ²⁵ (iii) ANTI-SENSE: NEIN

15

30

35

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:56:

```
gogacogout ctactygåag ettgacoctgritgaaggtgaa gyototggaz gyotoccoch (50%) (40%)
       gteregtggg teetgactte tttggetgtg egageetgee aacaetttee tetgaceatg 120
       gettggatge ceteaggggt getgaceeet geeaggeeac gaatateagg etagagaeee 180
       atggccatct ttgtggctgt gggcaccagg catgggactg agcccatgtc tcctcagggg 240
       gatggggtgg ggtacaacca ccatgacaac tgccgggagg gccacgcagg tcgtggtcac 300
45
       ctgccagcga ctgtctcaga ctgggcaggg aggctttggc atgacttaag aggaagggca 360
       gtettgggee egetatgeag gteetggeaa acetggetge cetgteteea tecetgteee 420
       tcagggtagc accatggcag gactggggga actggagtgt ccttgctgta tccctgttgt 480
       gaggttcctt ccaggggctg gcactgaagc aagggtgctg gggccccatg gccttcagcc 540
       .50
       ectgcatetg tetgcettet ggetgacaat cetggaaate tgttetecag aatecaggee 660
       aaaaagttca cagtcaaatg gggaggggta ttcttcatgc aggagacccc aggccctgga 720
       ggctgcaaca tacctcaatc ctgtcccagg ccggatcctc ctgaagccct tttcgcagca 780
       ctgctatcct ccaaagccat tgtaaatgtg tgtacagtgt gtataaacct tcttcttctt 840
       ttttttttt aaactgagga ttgtcattaa acacagttgt tttctaaaaa aaaaaaaaa 900
55
```

(2) INFORMATION ÜBER SEQ ID NO: 57:

(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1212 Basenpaare

65

	(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
	(iii) HYPOTHETISCH: NEIN	1
	(iii) ANTI-SENSE: NEIN	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	1
	(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	2
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:57:	2
	ggcggggcct gcgggcggac cgcggccgaa gccgcacggg agacgacgag gaggagccgg 60 aagatgcgga cgaggcggga gttccccgtg atctccgtgg tggggtacac caactgcgga 120 aagaccacgc tgatcaaggc actgacggc gatgccgcca tccagccacg ggaccagctg 180 tttgccacgc tggacgtcac ggcccacgcg ggcacgctgc cctcacgcat gaccgtcctg 240	34
	tacgtggaca ccatcggett ccteteccag etgeegeacg geeteatega gteettetee 300 geeaceetgg aagaegtgge ccacteggat eteatettge aegtgaggga egteageeac 360 eeeggeege agteeagaaa tgeagegtte tgteeacget gegtggeetg eagetgeeeg 420 eeeegeteet ggaeteeatg gtggaggtte acaacaaggt ggaeetegtg eeegggtaca 480 geeceacgga aeegaacgte gtgeeegtgt etgeeetgeg gggeeaeggg eteeaggage 540	35
	grandents cotegation organization aggregation and aggregation of the control of the stranger of the cotegation of the co	di
	gggcatcgct gcctggggag ctgaggcgtt accgctgtgt tgggggcagc ttggtgtcag 840 gtgcagcagg gtcctccttg tctggttctg cacccgtctc gctcccagcc atttgctggg 900 atgaccgtgc aggccggta cacggccgca cctgccccaa agcgggccgc ccgagcgtcc 960 actccaagcc tgagcatcca cacaattcca gtgggccctc ggtgcctgct gtgaactgct1020 ttccctcgga atgtttccgt aacaggacat taaacctttg atttacttc agtgaaaaaa1080	45
	aaatccagtt ceteetgeac etgeegtgag eegtggeetg gtggeacega eggeecetee1140 geeeggetgt etgtgtteac agatggtete ggttteecat ggtggtgteg gggaaatgae1200 gaaaaatcag gt 1212	50
(2	2) INFORMATION ÜBER SEQ ID NO: 58:	55
	(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 494 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	60
	(D) TOPOLOGIE: linear	20

(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assembiierung und Editierung hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN 10 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 15 (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:58: ctccctaggt acaaatagcc ctgggctctg cagctccaca ggctcctggg gtggagtcca 60 aatcactcat tgtttgtgaa agctgagctc acagcaaaac aagccaccat gaagctgtcg 120 gtgtgtctcc tgctggtcac gctggccctc tgctgctacc aggccaatgc cgagttctgc 180 ccagctcttg tttctgagct gttagacttc ttcttcatta gtgaacctct gttcaagtta 240 agtcttgcca aatttgatgc ccctccggaa gctgttgcag ccaagttagg agtgaagaga 300 tgcacggatc agatgtccct tcagaaacga agcctcattg cggaagtcct ggtgaaaata 360 ttgaagaaat gtagtgtgtg acatgtaaaa actttcatcc tggtttccac tgtctttcaa 420 tgacaccctg atcttcactg cagaatgtaa aggtttcaac gtcttgcttt aataaatcac 480 ttgctctcca cqtc 35 (2) INFORMATION ÜBER SEQ ID NO: 59: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 729 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 45 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA 50 (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN 55 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 60 (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library 65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:59:

	cacaacaaac a acgattcttt t gattctgtct t ttgccaagca g tctccacacg c cactggcggc t atctcattca c agaacaactt c tatgaagtgc t cccgaaggtc t agggaagatg c acgcgaacc	acggagcaat acttcttgaa attcaatgac acgtgaagtt aaggtctag aggcaaagtg acttcttcac atggccaagg actgtgaatt aaggatgct	ctcaatgctg gttttcctt tgtggcttct gtctgccca ttcatttcca caccacggca gacctctgca tggtgaactc gaaccttcga gtggctgcac	tttatccgga ttcctgaatca actcgaacaa accagcagga attaagatca aagagcctgc tggtgtctgg agggatgttt gaagcagacc gcggacgcca	ggacagtctg tcataatgat gatcetttee cettetecag ggtetteaga catactgee tcteeteaac taggaacata aaagggagge geegeectaa	cggggtcgtg tcttggccat gaggagtggc tcgaattctc ggtcaccttc cgtgacgatc tgggtctggc tcctggtaga tgctccggc ggtgaccgtc	1 120 1 180 2 240 3 360 4 420 4 480 5 40 6 600 6 600	11
	(2) INFORMATIO	ON ÜDED O	FO ID NO.04					20
		Z CHARAKTI E: 1315 Bas	ERISTIK: enpaare					25
	(C) STrang	Nukleinsäure g: einzel LOGIE: linea						30
	(ii) MOLEKÜL hergestell (iii) HYPOTHE	te partiellé c	DNA	s durch Assen	nblierung und	Editierung		35
ì	(iii) ANTI-SENS			t ne			• ****	40
	(A) ORGA (C) ORGA (vii) SONSTIGI	NISMUS: MI N:	т :					45
	(xi) SEQUENZ	Z-BESCHRE	IBUNG: SEQ	ID NO:61 :				50
	cagaggetet tt gateaggeet ge cattgteagg ac ggeeagatta at	egtggattg (etgagaata (ectetttee (tgggtcagct tggtgtgagt ccctccatg	agggaagcag tgcttttgag atggtggcag	aaggaggaag ggtggccatg gggcaggagc	acgctggaat tgagcacctt tgacttcgtg	180 240	55
	atgctgggtg go ggcaagaagt ac gggggcgtgg ct cagaactcat gg ggctcaatgc ta	caagctctt (cgagtacag (gctgctgag a	ctatggaatg gtatgtgtgg agggggatgg	agttctgaaa aggcccagga tacagttctc	tggccatgaa gcttagtaat agagaagcat	gaagtatgct agtatggagg ggtgaaccgg	360 420 480	60
		,						•

(2) INFORMATION ÜBER SEQ ID NO: 62:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2011 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - 6-1) HERKUNFT:

James and the first of the first first first first first

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 45 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 50 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:62:

```
tagaatatte atgtgagtte attecteet getgagattg tteageteet cetteeetge 60
tatacegact ggaettgaae actaagtett caatagetga ggggatgatg gtaacettat 180
tateaaaaag aggtttgtgt etgaggeaga actagatgaa eggegeaaaa ggaggeaaga 240
agaatgggag aaagttegaa aacetgaaga teeagaagaa tgteeagagg aggtttatga 300
ecetegatet etatatgaaa ggetacagga acagaaggae aggaageage aggagtaega 360
ggaacagtte aaatteaaaa acatggtaag aggettagat gaagatgaga ecaacetteet 420
tgatgaggtt tetegacage aggaactaat agaaaageaa egaagaagaa aagaacetgaa 480
agaactgaag gaatacagaa ataaceteaa gaaggttgga atteeteaag agaacaagaa 540
ggaagtggaa aagaaactga etgtgaagee tatagaaace aagaacaagt teteceagge 600
gaagtgttgg caggagetgt gaagcataag ageteagaga gtggeaacag tgtgaaaaga 660
etgaaaceeg accetgagee agatgacaag aateaagage eetecateete 720
ggaaacacet eeetgagtgg eeeetecate eaetgeeeet etgetgeagt atgtategge 780
```

	atcctcccag q							
	gaaggcacca t	tcaatgccac	cggaaagatt	gtctcctcca	tcttccgaac	caacacctto	900	
	ctcgaggccc d	cctagtttct	ccgtccctac	acagggagct	cctccccaa	ggtagat.cgc	960	
	accettcate o	ctacctataa	gcattatgtc	cctcaaaaaa	aaactccttt	acctacated	1020	5
	tgtgtacaac a	atgacatttt	taaccaatco	aatctaaaaa	tataccadaa	tccacctata	1020	
	gcccgaatcg t							
	gccactttcc t							
	gccccaggag a							
٠	tttttcttt c							10
	cattctattg t							
	gagaactgac c							
	gtgtgactaa g							15
	gcattgtgaa a							
	ttatgcagga a							
	aaattattt a	itgtttgttt	ttgaaataaa	ggatttagtt	taagattcta	aattttagag	1.580	
	nganogradyt, s	igg,acttata:	tactaatagc	cagacatcag	aactgcaggt	- gotatostas	35,340 _{ca}	"
	atgagatgac t	tatttctgg	ಾಗ್ರತಿ ucctgg	aatcctaata	ttgtaaatga	gtgggacaca	.1800 "	Ž.
	cttgcatatt g	gtgaccattc	tatigaggcc	cttctctgtt	taatgcatat	tatacttgtg	1860	
	cttttaactg t	ggaatctat	ttctaaccta	aaggtgctgc	cctagtactt	ttcttttgct	1920	
	gcctctgctg c	tcttttcc	ttttccaaac	agcaaactct	gaggccatga	qcaqccaaaa	1980	
	actagaggta c				2 2 2 2		2011	25
	2 22	•				•		2.
C	2) INFORMATI	ON ÜBER S	EQ ID NO:63					
1.	2) 0	ON ODEN O	- LQ 15 140.00	•				
	() OF OUT N	CUADACT	TDIOTIL.					30
	(i) SEQUENZ							
	(A) LANG	E: 2009 Bas	senpaare					
	(B) TYP: I	Nukleinsäure	e .					
	(C) STran							35
		LOGIE: line	ar					33
	(6) 101 0	PLOOIL. IIIIC	ai					
		TVD: 0110 oi	inneilene FOT					
	(II) MOLEKUL	ITP. aus ei	nzemen EST	s durch Asser	nblierung und	Editierung.		
	hergestel	lte partielle d	DNA	·		• .*.		49
	•							
	(iii) HYPOTHE	TISCH: NEI	N					
	•			•	• •	•		
	(iii) ANTI-SEN	SE- NEIN						45
		OL. INLIN					•	45
	(») () () () () () () () ()				1			
	(vi) HERKUNI				•			
	(A) ORGA	NISMUS: M	IENSCH			•		
	(C) ORGA	AN:						50
	(-,							
	(vii) SONSTIG	E HEDKI INI	ET.					
						•		
	(A) DIDLIC	OTHEK: cDN	NA library					
								55
	(xi) SEQUENZ	Z-BESCHRE	EIBUNG: SEQ	ID NO:63:				
			1.2"			•		
	addddddata c	220002020	uuusteeses	22020202	~~~~ ~ ~~	4244+++++	60	60
	aggggggata g						60	-
	acgagatcgt g							
	cagagaagta g							
	cacagagatg a							
	gaaaggaaac a							65
	agcaaagaga a	atcaagtaa	acataaaaat	gaaagtaaag	aaaaatcaaa	taaacgaagt	360	•

```
cqaaqtqqca gtcaaggaag aactgacigt gttgaaaaat cauaaaaacq qqaacataqt 420
     cccaqcaaaq aaaaatctaq aaaqcqtaqt aqaaqcaaaq aacqttccca caaacqaqat 480
      cacagtgata gtaaggacca gtcagacaaa catgatcgtc gaaggagcca aagtatagaa 540
     caaqaqagcc aagaaaaaca gcataaaaac aaagatgaga ctgtgtgaaa atattttgta 600
     aaagtggatc acattgaatc ctataaatga ttaaatctgc ttttttcccc cacgttgaga 660
     ttqtqcaqta gttcgcactc ctcaagctct ccctgtaggc tgcattttca tttcctcttt 720
     cqtqtaggga agtgcctttg taattccatt tattgcattg gtgttttcac ccaattqtta 780
     aqtttqatac atgatgcaca gattgttctt gcatttttat tgtttgtttt tgaaatgtac 840
 10
     agtotgtaca tatgtootga aaatgtttta attootttgg catggttgcc atgttgqtta 900
     aatttgtata aggcaataaa ctgccactaa tctatttttg ttttgtaggt gtgggattat 960
     ggtttgtgta ctgaagttag catggctgtg cttttcgtaa tagaatgcta aagactttga1020
     gaatggatct tggatgtcta ttataggaga agtatgtgct gccaatgtac aagaaggcag1080
     cattgtagga ttaacattct tgtctactgt atattatctt ggaaggctct tgttaatatg1140
     ttacacttaa tatteteeac agttacettt agagagaatt tatgagaagt tagtttetga1200
     tqcaqaqqtt tttaqqctqt qatttcatca aaaqtccttt taqcattcta cctcaaaqqq1260
     acacttagta tgcctaaaat ttattcactt aghtttonttatttatttga aaanatacat1320.
     qacatqtaat cttttttct tqaattcttt ctcaqatti, aaagaactat attaaaqaaa1380
     aaaattaatg totaaagoot agoattottg cagaaccota tactaacatg taatggggag1440
     agggtggggc agatgagtag agaaacagat tcaagcctca agcttccaaa gcatttttat1500
     aaatggaaaa toottaaatt atgaaacago ttgatatagt gtootttttt taaaattcag1560
     aactttttt attgataatg gagattgctg tttgagtttt taaacttaat ctagaacaga1620
. 25
     qqaqtattaa aaqtaatqct qtqctqcatt atttaaqact atcaqcaaat tatttqataq1680
     attgttctta caacttgtat tctgattaca gaaccatcat gagtgtggaa taaatactgg1740
     attaaatcct ttatcctggg tcttggcttt tcccccattt gttaaatttt tttagcatat1800
     ttatattgtg gaaattgatg aaacgtcagt agagtcacac tttgtgtaca gggatgtctt1860
 30
     agtgcccaga tgacaagtga attttggaga aatgcataga ctgggattgg gcatgtggta1920
     atcaataatc tttattagaa tacttgataa tggcagttcc ctttgtcagt ggttgttaca1980
     tgtgtcattt gattactttg ttccatgtc
```

(2) INFORMATION ÜBER SEQ ID NO:64:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 2269 Basenpaare

(B) TYP: Nukleinsäure

(C) STrang: einzel

(D) TOPOLOGIE: linear

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

65

35

45

50

55

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:64:

```
gcctggccct tgcagagaag gccagctggt tgggggaaca gccccagttc tqqtcqaaqa
 qcaqqttctq gactggatca gctaccaagt ggagaagaac aagtacgacg caagcqccat 120
 tgacttctca cgatgtgaca tggatggcgc caccctctgc aattgtgccc ttgaggagct 180
 gcgtctggtc tttgggcctc tgggggacca actccatgcc cagctgcgag acctcacttc 240
  cagetettet gatgagetea gttggateat tgagetgetg gagaaggatg geatggeett 300
 ccaggaggcc ctagacccag ggccctttga ccagggcagc ccctttgccc aggagctgct 360
 ggacgacggt cagcaagcca gcccctacca ccccggcagc tgtggcgcag gagccccctc 420
 ccctggcagc tctgacgtct ccaccgcagg actggtgctt ctcggagctc ccactcctca 480
 gactccggtg gaagtgacgt ggacctggat cccactgatg gcaagctctt ccccaqcgat 540
 ggttttcgtg actgcaagaa gggggatccc aagcacggga agcggaaacg aggccqqccc 600
 cgaaagctga gcaaagagta ctgggactgt ctcgagggca agaagagcaa gcacqcqccc 660
 agaggcaccc acctgtggga gttcatccgg gacatcctca tccacccgga gctcaacgag 720
 ggcctcatga agtgggagaa tcggcatgaa ggcgtcttca agttcctqcq ctccqaqqct 780
 gtéroccaac tatggggoca aaagaaaaag abbagcaaca bgaccabkka gaaqotqaqo 840
 egggneatga ggtactacta caaacgggag atcctggaac gggtggatgg ccggcgactc 900
 gtctacaagt ttggcaaaaa ctcaagcggc tggaaggagg aagaggttct ccagagtcgg 960
 aactgagggt tggaactata cccgggacca aactcacgga ccactcgagg cctgcaaacc1020
 ttcctgggag gacaggcagg ccagatggcc cctccactgg ggaatgctcc cagctgtqct1080
 gtggagagaa gctgatgttt tggtgtattg tcagccatcg tcctgggact cggagactat1140
 ggcctcgcct ccccaccctc ctcttggaat tacaagccct ggggtttgaa gctgacttta1200
 tagctgcaag tgtatctcct tttatctggt gcctcctcaa acccagtctc agacactaaa1260
 tgcagacaac accttcctcc tgcagacacc tggactgagc caaggaggcc tggggaggcc1320
 ctaggggagc accgtgatgg agaggacaga gcaggggctc cagcaccttc tttctggact1380
 ggcgttcacc tccctgctca gtgcttgggc tccacgggca ggggtcagaq cactccctaa1440
 tttatgtgct atataaatat gtcagatgta catagagatc tattttttct aaaacattcc1500
 cctcccact cctctccac agagtgctgg actgttccag gccctccagt gggctgatgc1560
 tgggaccett aggatggggc teccagetec ttteteetgt gaatggaggc agagacetec1620
 aataaagtgc cttctgggct ttttctaacc tttgtcttag ctacctqtqt actqaaattt1680
 gggcctttgg atcqaatatg gtcaagaggt tggagggag gaaaatgaag gtctaccagg1740
 ctgagggtga gggcaaaggc tgacgaagag gggagttaca gatttcctgt agcaggtgtg1800
 ggcttacaga cacatggact gggctqqqag qcqaqcaaaq qaaqcaqctq aqactqttqq1860
့် agastyétta caagacttea tgcasgcsasg-yacotgaset cagaacactg aggtcagaaq1920+ 40
 catectgetg teatgacace getegagtga cettgacett gaccaagtet gteetgttta1980
 ggactgattt ttcctattag gctagggttt ggacctgatg ttctcaagat gtctagaatt2040
 gcatggctgg ccttgtggaa tagatggttt tgcattccag ccaagtgtgc tgtaaactgt2100
 atatctgtaa tatgaatccc agcttttgag tctgacaaaa tcagagttag gatcttgtaa2160
 aggtggagat gagtacttgc tgagaaagaa tgggggaagg agttggcatt tqttgaaaqt2220
 atagtctttt tctctggggt tttttaattg caacttttac tttagattt
                                                                         50
(2) INFORMATION ÜBER SEQ ID NO:65:
   (i) SEQUENZ CHARAKTERISTIK:
     (A) LÄNGE: 1874 Basenpaare
                                                                         55
     (B) TYP: Nukleinsäure
     (C) STrang: einzel
     (D) TOPOLOGIE: linear
                                                                         60
  (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung
     hergestellte partielle cDNA
  (iii) HYPOTHETISCH: NEIN
                                                                         65
```

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

10

55

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:65:

```
caaaaaaacc tcttaatatt ctggagtcat cattcccttc gacagcattt tcctctqctt
    tgaaagcccc agaaatcag: gttggccatg atgacaacta cagaaaaacc agaggcagct 120
    tottigecaa yacutiteaa age hobe singotgttagg ggcagtggag glayaatgac 100
    teettgggta ttagagttte aaccatywag tetetaacaa tgtattttet teacetetge 240
    tactcaagta gcatttactg tgtctttggt ttgtgctagg cccccgggtg tgaagcacag 300
    accccttcca ggggtttaca gtctatttga gactcctcag ttcttgccac ttttttttt 360
    aatctccacc agtcattttt cagacctttt aactcctcaa ttccaacact gatttcccct 420
    tttqcattct ccctccttcc cttccttgta gccttttgac tttcattgga aattaggatg 480
    taaatctgct caggagacct ggaggagcag aggataatta gcatctcaqq ttaaqtqtqa 540
    gtaatctgag aaacaatgac taattcttgc atattttgta acttccatgt gagggttttc 600
    agcattgata tttgtgcatt ttctaaacag agatgaggtg gtatcttcac gtagaacatt 660
    ggtattcgct tgagaaaaaa agaatagttg aacctatttc tcttttta caagatgggt 720
30
    ccaggattcc tctttctct gccataaatg attaattaaa tagcttttgt gtcttacatt 780
    ggtagccagc cagccaaggc tctgtttatg cttttggggg gcatatattg ggttccattc 840
    tcacctatcc acacaacata tccgtatata tcccctctac tcttacttcc cccaaattta 900
    aagaagtatg ggaaatgaga ggcatttccc ccaccccatt tctctcctca cacacagact 960
35
    catattactg gtaggaactt gagaacttta tttccaagtt gttcaaacat ttaccaatca1020
    tattaataca atgatgctat ttgcaattcc tgctcctagg ggaggggaga taaqaaaccc1080
    teacteteta caggtttggg tacaagtgge aacetgette catggeegtg tagaagcatg1140
    gtgccctggc ttctctgagg aagctggggt tcatgacaat ggcagatgta aagttattct1200
    tgaagtcaga ttgaggctgg gagacagccg tagtagatgt tctactttgt tctgctgttc1260
    tctagaaaga atatttggtt ttcctgtata ggaatgagat taattccttt ccaqqtattt1320
    tataattctg ggaagcaaaa cccatgcctc cccctagcca tttttactgt tatcctattt1380
    agatggccat gaagaggatg ctgtgaaatt cccaacaaac attgatgctg acagtcatgc1440
    agtotgggag tggggaagtg atottttgtt cocatoctot tottttagca gtaaaatagc1500
45
    tgagggaaaa gggagggaaa aggaagttat gggaatacct gtggtggttg tgatccctag1560
    gtcttgggag ctcttggagg tgtctgtatc agtggatttc ccatcccctg tgggaaatta1620
    gtaggctcat ttactgtttt aggtctagcc tatgtggatt ttttcctaac atacctaagc1680
    aaacccagtg tcaggatggt aattcttatt ctttcgttca gttaagtttt tcccttcatc1740
    tgggcactga agggatatgt qaaacaatgt taacattttt qqtaqtcttc aaccagggat1800
    tgtttctgtt taacttctta taggaaagct tgagtaaaat aaatattgtc tttttgtatg1860
    tcaaaaaaa aaaa
                                                                      1874
```

(2) INFORMATION ÜBER SEQ ID NO:66:

- 60 (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 687 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
- 65 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: aus einzelnen ESTs durcn Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	4
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	10
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	15
	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:66:	-
gggccaagtg ccccagtcag gagctgccta taaatgccga gcctgcacag ctctggcaaa 60 cactctgtgg ggctcctcgg ctttgacaga gtgcaagacg atgacttgca aaatgtcgca 120 gctggaacgc aacatagaga ccatcatcaa caccttccac caatactctg tgaagctggg 180	25
gcacccagac accetgaace agggggaatt caaagagetg gtgcgaaaag atctgcaaaa 240 tttteteaag aaggagaata agaatgaaaa ggtcatagaa cacatcatgg aggacetgga 300 cacaaatgca gacaagcage tgagettega ggagtteate atgetgatgg cgaggetaac 360 ctgggcetee cacgagaaga tgeacgagggg tgagaggge cetggcacc accataagee 420	30
aggcctcggg gagggcaccc cctaagacca cagtggccaa gatcacagtg gccacggcca 480 cggccacagt catggtggcc acggccacag ccactaatca ggaggccagg ccaccctgcc 540 tetacccaac cagggcccg gggcctgtta tgtcaaactg tcttggctgt ggggctaggg 600 gctggggcca aataaagtct cttcctccaa gtcagtgctc tgtgtgcttc ttccaccttt 660 ctgcaagcct gcctttccag gggtgtg	35
I) INFORMATION ÜBER SEQ ID NO: 67:	4 0
(i) SEQUENZ CHARAKTERISTIK:(A) LÄNGE: 1528 Basenpaare(B) TYP: Nukleinsäure(C) STrang: einzel(D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	50
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	60
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:67:

```
qaqcaacqct qgagcatccc gctctggtgc cgctgcagcc ggcagagatg gttgagctca
                                                                        60
    tgttcccgct gttgctcctc cttctgccct tccttctgta tatggctgcg ccccaaatca 120
    ggaaaatgct gtccagtggg gtgtgtacat caactgttca gcttcctggg aaagtagttg 180
    tggtcacagg agctaataca ggtatcggga aggagacagc caaagagctg gctcagagag 240
    gagetegagt atatttaget tgeegggatg tggaaaaggg ggaattggtg geeaaagaga 300
10
    tccagaccac gacagggaac cagcaggtgt tggtgcggaa actggacctg tctgatacta 360
    agtotattcg agottttgct aagggottct tagctgagga aaagcacctc cacgttttga 420
    tcaacaatgc aggagtgatg atgtgtccgt actcgaagac agcagatggc tttgagatgc 480
    acataggagt caaccacttg ggtcacttcc tcctaaccca tctgctgcta gagaaactaa 540
    aggaatcagc cccatcaagg atagtaaatg tgtcttccct cgcacatcac ctgggaagga 600
    tccacttcca taacctgcag ggcgagaaat tctacaatgc aggcctggcc tactgtcaca 660
    gcaagctagc caacatcctc ttcacccagg aactggcccg gagactaaaa ggctctggcg 720
    ttacgacgta ttctgtacac cctggcacag tccaatctga actggt cgg cactcatctt 780
    toakysmati matgiggigg citticicci tittcatcaa gactccubag to 35% composition
20
    agaccaçect geactgtgee ttaacagaag gtettgagat tetaagtggg aatembrea 900
    gtgactgtca tgtggcatgg gtctctgccc aagctcgtaa tgagactata gcaaggcggc 960
    tgtgggacgt cagttgtgac ctgctgggcc tcccaataga ctaacaggca gtgccagttg1020
    qacccaagag aagactgcag cagactacac agtacttctt gtcaaaatga ttctccttca1080
    aggttttcaa aacctttagc acaaagagag caaaaccttc cagccttgcc tqcttqqtqt1140
    ccagttaaaa ctcagtgtac tgccagattc gtctaaatgt ctgtcatgtc cagatttact1200
    ttgcttctgt tactgccaga gttactagag atatcataat aggataagaa gaccctcata1260
    tgacctgcac agctcatttt ccttctgaaa gaaactacta cctaggagaa tctaagctat1320
    agcagggatg atttatgcaa atttgaacta gcttctttgt tcacaattca gttcctccca1380
    accaaccagt cttcacttca agagggccac actgcaacct cagcttaaca tgaataacaa1440
    agactggctc aggagcaggg cttgccaagg catggtggat caccggagtc aagtagttca1500
    agaccagcct ggccaacatg gtgaaacc
                                                                      1528
```

(2) INFORMATION ÜBER SEQ ID NO: 68:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 904 Basenpagre
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 50 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- ss (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 60 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

65

35

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:68

acaaaatact ttttaggtag ccatgcttga gactttttaa aaatataact ttttccttaa 660	1
agttttcage tatagcaaaa ggtagttatg tatgccagac ctaatatgag ctgccaccaa 720 cacccctaga acttcagec atggtgtctt cagaattgta gcgcatttct gaatctagge 780 aaatczzet tragccqtt gaatgttttg aatgccttga ctctagage gcccctaaac gatctctagg aaggcactgt aggtaccaat tctgttttt caactttgga aggtaaaaac 900 cccg	
	2
(A) LÄNGE: 212 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	3
(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja	3:
	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 71	4:
RDTVVGDGTE RSVTASRASA PRPWQSQTDS DSDSEGGAAG GEADMDFLRN LFSQTLSLGS 60 QKERLLDELT LEGVARYMQS ERCRRVICLV GAGISTSAGI PDFRSPSTGL YDNLEKYHLP 120 YPEAIFEISY FKKHPEPFFA LAKELYPGQF KPTICHYFMR LLKDKGLLLR CYTQNIDTLE 180 RIAGLEQEDL VEAHGTFYTS HCVRPSAGTN TR 212	54
(2) INFORMATION ÜBER SEQ ID NO. 72:	55
(A) LÄNGE: 29 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	60
(ii) MOLEKÜLTYP: ORF	65

	(iii) TTT OTTETIOOTI. Ja	
5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
10	: (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 72	
		•
15	SLNTAFSNVL HKNRILATQL LSLSVIILP	29
13	(2) INFORMATION ÜBER SEQ ID NO:73 :	
20 ,	(C) LÄNGE. A Amis suren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
25	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
30		
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
35		٠
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 73	
1 10	OSQNDFTTDS LESLGAEFRK JPTSMKAKRS TKPSSCPRRY ESAHPSMATT STOPLVRKPW ATSLKTQTKN H	60 71
45	(2) INFORMATION ÜBER SEQ ID NO: 74:	•
•	(A) LÄNGE: 44 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
50	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
45	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 74	

SNLVYVLSLH FPVFSYFLKG RPRSVLSYCH IGSKMSTHSL APNH	44	
(2) INFORMATION ÜBER SEQ ID NO: 75:		5
(A) LÄNGE: 30 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		10
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 75		25
ATSFMSYLCI FLYSAIFLKE GPGLYYPTAT	30	
(2) INFORMATION ÜBER SEQ ID NO: 76:		30
(A) LÄNGE: 113 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		35
(ii) MOLEKÜLTYP: ORF		49
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	·	45
(A) ORGANISMOS. MENSON		50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 76		<i>5</i> 0
IPEDPHIDES KAKHQAIIMS TSLRVSPSIH GYHFDTASRK KAVGNIFENT DQESLERLF NSGDKKAEER AKIIFAIDQD VEEKTRALMA LKKRTKDKLF QFLKLRKYSI KVH	R 60 113	55
(2) INFORMATION ÜBER SEQ ID NO:77 :		
(A) LÄNGE: 105 Aminosäuren (B) TYP: Protein (C) STRANG: einzel		60
()		65

	(D) TOPOLOGIE: linear	
5	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
10	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
15	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 77	
20	GAEEGRQEAQ GSRKESYSVY VYKVLKQVHP DTGISSKAMG IMNSEVIDIF ERIAGEASRL 60 AHYNKKSTYTT SREIQTAVRL LLPGELAKHA VSEGTKAVTK YTSAK 10	
25	(2) INFORMATION ÜBER SEQ ID NO: 78:	
30	(A) LÄNGE: 221 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
. 35	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
40. -	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
45	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 78	
50	GSGGNHSVCC DTMEGGGGSG NKTTGGLAGF FGAGGAGYSH ADLAGVPLTG MNPLSPYLNV 60 DPRYLVQDTD EFILPTGANK TRGRFELAFF TIGGCCMTGA AFGAMNGLRL GLKETQNMAW 120 SKPRNVQILN MVTRQGALWA NTLGSLALLY SAFGVIIEKT RGAEDDLNTV AAGTMTGMLY 180 KCTGGLRGIA RGGLTGLTLT SLYALYNNWE HMKGSLLQQS L 221)
55	(2) INFORMATION ÜBER SEQ ID NO:79:	
60	(A) LÄNGE: 118 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
65	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 79	
DNRTLTKGPD TVSTMGQCRS ANAEDAQEFS DVERAIETLI KNFHQYSVEG GKETLTPSEL 60 RDLVTQQLPH LMPSNCGLEE KIANLGSCND SKLEFRSFWE LIGEAAKSVK LERPVRGH 118	10
(2) INFORMATION ÜBER SEQ ID NO:80:	15
(A) LÄNGE: 60 Aminosäuren (B) TYP: Protein	
(C) STRANG: einzel (D) TOPOLOGIE: linear	20
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 80	35
NLSPLPPPCT LACTCPHLCK VQLPSPGLCA LCLGCSGELM GGGVSTRGRL RGLVGPGMNI 60	<u> </u>
(2) INFORMATION ÜBER SEQ ID NO: 81:	
(A) LÄNGE: 293 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: ORF	50
(iii) HYPOTHETISCH: ja	
	55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 81	60
	65

5	ASRGAEQDGG ASAARPRRW AGGLLQPAAP CSLLTRLRTW TS3SNRSRED SWLKSLFVRK 60 VDPRKDAHSN LLAKKETSNL YKLQFHNVKP ECLEAYNKIC QEVLPKIHED KHYPCTLVGT 120 WNTWYGEQDQ AVHLWRYEGG YPALTEVMNK LRENKEFLEF RKARSDMLLS RKNQLLLEFS 180 FWNEPVPRSG PNIYELRSYQ LRPGTMIEWG NYWARAIRFR QDGNEAVGGF FSQIGQLYMV 240 HHLWAYRDLQ TREDIRNAAW HKHGWEELVY YTVPLIQEME SRIMIPLKTS PLQ 293	
10	(2) INFORMATION ÜBER SEQ ID NO: 82:	
15	(A) LÄNGE: 80 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
20	(ii) MOLEKÜLTYP: ORF (iii) HYPO METISCH: ja	
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 82	
. 35	MAARALCMLG LVLALLSSSS AEEYVGLSAN QCAVPAKDRV DCGYPHVTPK ECNNRGCCFD 60 SRIPGVPWCF KPLQEAECTF 80 (2) INFORMATION ÜBER SEQ ID NO: 83:	
√63c +	(A) LÄNGE: 118 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	and Rose and
45	(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja	
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
55	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 83	
60	MDVFLMIRRH KTTIFTDAKE SSTVFELKRI VEGILKRPPD EQRLYKDDQL LDDGKTLGEC 60 GFTSQTARPQ APATVGLAFR ADDTFEALCI EPFSSPPELP DVMKPQDSGS SANEQAVQ 118	
	(2) INFORMATION ÜBER SEQ ID NO:84:	
	•	

(A) LÄNGE: 195 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	. 1
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	1
SEQUEND BESCHREIBUNG: SEQ ID NO: 84	
MGRARDAILD ALENLTAEEL KKFKLKLLSV PLREGYGRIP RGALLSMDAL DLTDKLVSFY LETYGAELTA NVLRDMGLQE MAGQLQAATH QGSGAAPAGI QAPPQSAAKP GLHFIDQHRI	A 120
ALIARVTNVE WLLDALYGKV LTDEQYQAVR AEPTNPSKMR KLFSFTPAWN WTCKDLLLQI LRESQSYLVE DLERS	195 ₂
2) INFORMATION ÜBER SEQ ID NO: 85:	
(A) LÄNGE: 39 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	3
(ii) MOLEKÜLTYP: ORF	3
(iii) HYPOTHETISCH: ja	 4
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	4
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 85	
MSSTRQCGP SPPTQARCGS SSVSHQPGTG PARTCSSRP	39 s
2) INFORMATION ÜBER SEQ ID NO: 86:	
(A) LÄNGE: 37 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	5:
(ii) MOLEKÜLTYP: ORF	6
wy modernout in . Old	
	£.

	(iii) HYPOTHETISCH: ja	
5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
10	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 86	
	WSGAEAPSQQ HSGQPLAIPP NHPESDLFIH NIRKASL	37
15	(2) INFORMATION ÜBER SEQ ID NO: 87:	
pa ((A) LÄNGE: 100 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
25	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
30 .	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 87	
43	GESRFRPGAD FLLVGGCSGV SGGSGRGSWS HGARARRHPG CAGEPDRRGA QEVQAEAAVG AAARGLRAHP AGRAAVHGRL GPHRQAGQLL PGDLRRRAHR	60 100
	(2) INFORMATION ÜBER SEQ ID NO: 88:	
45	(A) LÂNGE: 63 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
50	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
60	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 88	

PGLAAGLATL LLPSPPRAAS LVCAPVAGRR PLCQLELRGL TRHYVAGFGI SRP	R ATRAGQEPNP	60 63	
(2) INFORMATION ÜBER SEQ ID NO:89 :			
(A) LÄNGE: 113 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	`		1
(ii) MOLEKÜLTYP: ORF			1
(iii) HYPOTHETISCH: ja	n; 43€*	el "1500.	· ·
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :			2
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 89			_
GIGCGPRDPP ASLPAPRRLS GLCARRRSQA SLSAGVARAD APLCSGFRAG PTLSSRSSSL TSAEVQLPQF LAQVDNYRHK PLKLECPVAG ISIDLSQLSL			3
(2) INFORMATION ÜBER SEQ ID NO: 90:			
(A) LÄNGE: 153 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear			3
(ii) MOLEKÜLTYP: ORF	••		
(iii) HYPOTHETISCH: ja			4.
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :			5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 90			
HASGQDTASM AASKVKQDMP PPGGYGPIDY KRNLPRRGLS GYSMLAIGIG KWNRERRRLQ IEDFEARIAL LPLLQAETDR RTLQMLRENL EEEAIIMKDV HTTRWVPPLI GELYGLRTTE EALHASHGFM WYT	PDWKVGESVF	60	5:
(2) INFORMATION ÜBER SEQ ID NO: 91:		,	61
			6

5	(A) LANGE: 141 Aminosauren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
10	(iii) HYPOTHETISCH: ja	
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
20	(xi) SEQUENZ-BESCHRE会協会 SEQ ID NO: 91	,
25	SLALDQMQAY KALDTSSLVG EQVTSYLTKK FAELRSPNEF KVYMGHGGKP WVSDFSH LAGRRAMKTV FGVEPDLTRE GGSIPVTLTF QEATGKNVML LPVGSADDGA HSQNEKI NYIEGTKMLA AYLYEVSQLK D	
	(2) INFORMATION ÜBER SEQ ID NO: 92:	
30	(A) LÄNGE: 39 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
35	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
40	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	٠
45	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 92	
50	KMYKFVVFFY VLIILRLLGL RLIFRKILHA IRSKFYCGS 39	
	(2) INFORMATION ÜBER SEQ ID NO: 93:	
55	(A) LÄNGE: 61 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
60	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
65	(iii) HYPOTHETISCH: ja	

(A) ORGANISMUS: MENSCH	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 93	:
SFQALKFIIR SVRLRRGRSY NIPCQICYHL LAFSFHLRIE HNYFYCSYIA CQIKSFTTKG	60 61 ¹⁰
(2) INFORMATION ÜBER SEQ ID NO: 94:	
(A) LÄNGE: 284 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	1 9
(ii) MULEKÜLTYP: ORF	. 20
(iii) HYPOTHETISCH: ja	•
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 94	
FVRESSSGSR WEVGAGAAVA AFSPQVGTMR PAALRGALLG CLCLALLCLG GADKRLRDNH EWKKLIMVQH WPETVCEKIQ NDCRDPPDYW TIHGLWPDKS EGCNRSWPFN LEEIKDLLPE MRAYWPDVIH SFPNRSRFWK HEWEKHGTCA AQVDALNSQK KYFGRSLELY RELDLNSVLL KLGIKPSINY YQVADFKDAL ARVYGVIPKI QCLPPSQDEE VQTIGQIELC LTKQDQQLQN CTEPGEQPSP KQEVWLANGA ASSRGLEVCE DGPVFYPPFK KTKH	120 180 240
(2) INFORMATION ÜBER SEQ ID NO: 95:	40
(A) LÄNGE: 63 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: ORF	50
(iii) HYPOTHETISCH: ja	55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	. 60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 95	
	65

	QKRSFLEASA MEFSIIREIG QTSPKWSEFL NPGRELTLLS SLDLIGHWAL VRPQTRPVSP VGF	60 63
5	(2) INFORMATION ÜBER SEQ ID NO:96 :	
10	(A) LÄNGE: 74 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
15	(ii) MOLEKÜLTYP: ORF	
20	(iii) HYPOTHETISCH: ja	
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 96	
30	SFCLVVLHGL GLKIIPKIHQL TNENVSLCAT LPPAQSEFGT QKRTVYTTHL SPSMYSLWA DAPIHGNPLT HFKT	60 74
35	(2) INFORMATION ÜBER SEQ ID NO: 97:	
ឆ្ល«	(A) LÄNGE: 67 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	٠,٠٠.
4 5	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
55	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 97	٠
50	FRRYTSSQMK TSASAPPSLL PKVNLVLRKE LFIPLTFLPA CTHCGQMHQY MVILLLILRR RKLNILL	60 67
	(2) INFORMATION ÜBER SEQ ID NO: 98:	
55	(A) LÄNGE: 77 Aminosäuren	

(B) TYP: Protein (C) STRANG: elnzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	1
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	. 1
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 98	
CHLNLTMFLG WSQLFRVPVC VISSAGWLSS ELLEIFTHAS ANHIEQCCLL VDDLLFFMTG 60 ISGICFLAVF STFLPPW 77	
(2) INFORMATION ÜBER SEQ ID NO:99:	2
(A) LÄNGE: 132 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	3
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	3.
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	4:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 99	4
TAAAAAMAPP WVPAMGFTLAP SLGCFVGSRF VHGEGLRWYA GLQKPSWHPP HWVLGPVWGT 60 LYSAMGYGSY LVWKELGGFTE KAVVPLGLYT GQLALNWAWP PIFFGARQMG WALVDLLLVS 120 GAAAALPWPG TR	
ON INCORMATION OPEN OF OR ID NO. 400	50
2) INFORMATION ÜBER SEQ ID NO:100 :	
(A) LÄNGE: 130 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	5:
(ii) MOLEKÜLTYP: ORF	61
(iii) HYPOTHETISCH: ja	
·	6:

5	(VI) HERKUNFT: (A) ORGANISMUS: MENSCH :		
-	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID	NO: 100	
10	AAGRGGADAG TAAWLTPARQ CPSRSVPSPL SSPE WAPALSTARV SAGTPACRSP RGTRPTGCWA LSGA PWASTLGSWP		
15	(2) INFORMATION ÜBER SEQ ID NO: 101:		
20	(A) LÄNGE: 186 Aminosäuren (B) TYP: Protein (U) STICANG: einzel (D) TOPOLOGIE: linear		7 - 1 - 1844.
25	(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja		
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID I	NO: 101	
i de la companya di santa di s	RPFIRAFACS KMAAVSMSVV LRQTLWRRRA VAVA TQLITVDEKL DITTLTGVPE EHIKTRKVRI FVPAI PLMGWASTAD PLSNMVLTFS TKEDAVSFAE KNGW: TRVSTK	RNNMQS GVNNTKKWKM	EFDTRERWEN 120
45	(2) INFORMATION ÜBER SEQ ID NO: 102:	·	
50	(A) LÄNGE: 106 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		
	(ii) MOLEKÜLTYP: ORF		
55	(iii) HYPOTHETISCH: ja		
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	• *	

(xi)	SEQUE	NZ-BESC	HREIBUNG:	SEQ II	D NO:	102

QLTRLLQPAL GPGTTAVLLL QISTRPEDLG ETVCSLKFAD RVGQVELGPA RRRRV TPSSLSTDTP LTGTPCTPTP SPGSPPCPSP DNGSGSALAP AEGLPL	VPRSSG 60 106	. 5
• •		
(2) INFORMATION ÜBER SEQ ID NO: 103:		10
(A) LÄNGE: 308 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		15
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja	•. 0	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 103		30
GSRPFTNPAR KDGAMFFHWR RAAEEGKDYP FARFNKTVQV PVYSEQEYQL YLHDD ETDHLFDLSR RFDLRFVVIH DRYDHQQFKK RSVEDLKERY YHICAKLANV RAVPG PVFDAGHERR RKEQLERLYN RTPEQVAEEE YLLQELRKIE ARKKEREKRS QDLQK DTTAEQRRTE RKAPKKKLPQ KKEAEKPAVP ETAGIKFPDF KSAGVTLRSQ RMKLP KKIKALEQML LELGVELSPT PTEELVHMFN ELRRTWCCST SSSRPVPTAS MSCRC RHWPGLVC	TDLKI 120 LITAA 180 SSVGQ 240	35
(2) INFORMATION ÜBER SEQ ID NO: 104:	;	40
(A) LÄNGE: 388 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		45
(ii) MOLEKÜLTYP: ORF		50
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 104		60
IVPFIPCSPE VQSILKISQP QEPELMNANP SPPPSPSQQI NLGPSSNPHA KPSDF1 IGKGSFGKVL LARHKAEEVF YAVKVLQKKA ILKKKEEKHI MSERNVLLKN VKHPF1 FSFOTADKLY FVLDYINGGE LFYHLORERC FLEPRARFYA AEIASALGYL HSLNIV	LVGLH 120	65

5	KPENILLDSQ GHIVLTDFGL CKENIEHNST ISTFCGIPEY LAPEVLHKQP YDRTVDWWCL GAVLYEMLYG LPPFYSRNTA EMYDNILNKP LQLKPNITNS ARHLLEGLLQ KDRTKRLGAK DDFMEIKSHV FFSLINWDDL INKKITPPFN PNVSGPNDLR HFDPEFTEEP VPNSIGKSPD SVLVTASVKE AAEAFLGFSY APPTDSFL	300
10	(2) INFORMATION ÜBER SEQ ID NO: 105:	
15	(A) LÄNGE: 165 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
20	(iii) HYPOTHETISCH: ja	٠., ٠
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 105	
35	TDSERGDPSE QTRPWRPPCA LTMAMHFIFS DTAVLLFDFW SVHSPAGMAL SVLVLLLLAV LYEGIKVGKA KLLNQVLVNL PTSISQQTIA ETDGDSAGSD SFPVGRTHHR WYLCHFGQSL IHVIQVVIGY FIMLAVMSYN TWIFLGVVLG SAVGYYLAYP LLSTA	
	(2) INFORMATION ÜBER SEQ ID NO: 106:	
Æ.	(A) LÄNGE: 478 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	Fr.
45	(ii) MOLEKÜLTYP: ORF	•
50	(iii) HYPOTHETISCH: ja	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
55	:	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 106	
60	GLPLGITVPV ARETITSLFN KSSVIGPPLR LILKAQVTRG NLCCPVTVTM QLRNPELHLG CALALRFLAL VSWDIPGARA LDNGLARTPT MGWLHWERFM CNLDCQEEPD SCISEKLFME MAELMVSEGW KDAGYEYLCI DDCWMAPQRD SEGRLQADPQ RFPHGIRQLA NYVHSKGLKL CLYADVONET CACEBOORGE VDLDAGED MGUNILEDG GYCDOLENIA DCYWNGLAL	120 180
65	GIYADVGNKT CAGFPGSFGY YDIDAQTFAD WGVDLLKFDG CYCDSLENLA DGYKHMSLAL : NRTGRSIVYS CEWPLYMWPF QKPNYTEIRQ YCNHWRNFAD IDDSWKSIKS ILDWTSFNQE : RIVDVAGPGG WNDPDMLVIG NFGLSWNQQV TQMALWAIMA APLFMSNDLR HISPQAKALL :	300

QDKDVIAINQ DPLGKQGYQL RQGDNFEVWE KPLSGLAWAV AMINRQEIGG PRSYTIAVAS LGKGVACNPA CFITQLLPVK RKLGFYEWTS RLRSHINPTG TVLLQLENTM QMSLKDLL	478	
(2) INFORMATION ÜBER SEQ ID NO:107:		5
(2) INFORMATION OBER SEQ ID NO. 107.		
(A) LÄNGE: 115 Aminosäuren (B) TYP: Protein (C) STRANG: einzel		10
(D) TOPOLOGIE: linear		
(ii) MOLEKÜLTYP: ORF		15
(iii) HYPOTHETISCH: ja		20
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 107		
ESLLLTLDLE KPVSLLLSVT NLYSKNSAQF STILQTLSFP ATFTPSPSIP LSSAYFFFFS DRVSLCRPGR SAVAQSWGSL QASTSQRASD HHASAPQVGW GLTRHTTTA GLIFC	60 115	30
(2) INFORMATION ÜBER SEQ ID NO: 108:		35
(A) LÄNGE: 69 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	,	40
(ii) MOLEKÜLTYP: ORF	•	45
(iii) HYPOTHETISCH: ja	•	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 108		55
TKLTPGQASP WFPTHTPVSL RSSRLTSLPL VCRSLTSRFR STSCLSQTTP SPFQERSRNS NFESRWNDI	60 69	60
(2) INFORMATION ÜBER SEQ ID NO:109:		
(A) LÄNGE: 78 Aminosäuren (B) TYP: Protein		65

	(C) STRANG: einzel (D) TOPOLOGIE: linear	
5	(ii) MOLEKÜLTYP: ORF	
10	(iii) HYPOTHETISCH: ja	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
15		
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 109	
20	SPAPSSEPG TSNVKELTER TKSSWMGPGT RLGTRCQKAG SLPROGUST, PHIPLSVLVI WHKELLFSLA KKKKKKK	60 78
25	(2) INFORMATION ÜBER SEQ ID NO: 110:	
30	(A) LÄNGE: 78 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(II) MOLEKÜLTYD. ODE	
25	(ii) MOLEKÜLTYP: ORF	
35	(iii) HYPOTHETISCH: ja	
÷j	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
45	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 110	
	FFFFFFLAK ENRSSLCQIT RTDRGMWGMD RREGLGRLPA FWHLVPRRVP GPIQELLVRS VNSLTFDVPG SELGAGDI	60 78
50	(2) INFORMATION ÜBER SEQ ID NO: 111:	
55	(A) LÄNGE: 77 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
60	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
	•	

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 111	
LSETARISRQ GSHLWSLTNY FILLQMANCA EGQSHSHTLQ RLPNCFWKFT PRSGPLQAAG 6 TRGPRGCGTG PGTVRHV 7	0 I 7
(2) INFORMATION ÜBER SEQ ID NO: 112:	. 1
(A) LÄNGE: 75 Aminosäuren (B) TYP: Protein (D) TOPOLOGIE: linear	.·· - 2
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	2
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	3
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 112	3
PITSFCFKWP IVQRDKATAT LFNGYQTVFG NSHQGRAHCR QLAHVARGAV ERVPELSDMF 60 DFSVSFVLQI RCPNK 73	-
(2) INFORMATION ÜBER SEQ ID NO: 113:	<u>4</u>
(A) LÄNGE: 103 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	. 4:
(ii) MOLEKÜLTYP: ORF	5(
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	5:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 113	. 60
DCEDLQAGFS PLESDQLLHF ASNGQLCRGT KPQPHSSTVT KLFLEIHTKV GPTAGSWHTW 60 PEGLWNGSRN CQTCLILAFP LFFKSGAQIS DQHSCFQIGE TIK 10))3 &

	(2) INFORMATION ÜBER SEQ ID NO:	114:	•		•
5	(A) LÄNGE: 134 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear				
10	(ii) MOLEKÜLTYP: ORF			·	
15	(iii) HYPOTHETISCH: ja				
20	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	î.		e e jane belleje e i jane e i jane belleje e i jane belleje e i jane belleje e i jane e i jane e i jane e i ja	. •
	(xi) SEQUENZ-BESCHREIBUNG: SE	Q ID NO: 114	ļ		
25	IAAASARRPP RLPRLSAPPS RGARGTMADP EKIEKMRAED GENYDIKKQA EILQESRMMI KEARLVLDSV KLEA				
30	(2) INFORMATION ÜBER SEQ ID NO:	115:			
35	(A) LÄNGE: 171 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear			•	
. 40	(ii) MOLEKÜLTYP: ORF				•
	(iii) HYPOTHETISCH: ja				
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH				
50	(xi) SEQUENZ-BESCHREIBUNG: SE	Q ID NO: 115			
55 .	SGAVGAERMG APTPLLTGSR VLRAAVWVRG PQPGAFREPR GAHDGGGDGY RAQGGRAGEA RPKELSFARI KAVECVESTG RHIYFTLVTE	QGGAAAAVEA	ERCVLTERGL	QLFEAKGTGG	
60	(2) INFORMATION ÜBER SEQ ID NO: 1 (A) LÄNGE: 247 Aminosäuren (B) TYP: Protein	16:			

(C) STRANG: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 116	. 1
AWSSSRTSRP SRQCGPGRAS GPGPSCPKPP GAPSFLHATH HUMAEVKAAS LFPLACGGTA 60 LHVERWKAW TCGGGAGAEG MDEPWEEGRR LRRAEDEDAA PGWSQTLK VACULRATGL 12 ASYGMRGSWH RSPLPAVVLP SVLQTALSPL ALCQAWRRAV PHGVPSQRLR RQEASLVPKG 18 VPRAWYPGPL QNGLWTHLEK GELLGLKPTP GGLLLLRSFW DPHPSRPFLC TLLPPPLRIF 24 PPLRCSA 24	0 _ 2 0 0
	2
(2) INFORMATION ÜBER SEQ ID NO: 117:	
(A) LÄNGE: 521 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	3
(ii) MOLEKÜLTYP: ORF	3
(iii) HYPOTHETISCH: ja	•
	.4
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	, 46
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 117	4:
SKLNSYYGNV PVIEVKNKH PVEVVYLSEAQ KDSFESILRL IFEIHHSGEK GDIVVFLACE 60 QDIEKVCETV YQGSNLNPD LGELVVVPLYP KEKCSLFKPL DETEKRCQVY QRRVVLTTSS 120 GEFLIWSNSV RFVIDVGVE RRKVYNPRIRA NSLVMQPISQ SQAEIRKQIL GSSSSGKFFC 180 LYTEEFASKD MTPLKPAEM QEANLTSMVLF MKRIDIAGLG HCDFMNRPAP ESLMQALEDL 240)
DYLAALDNDG NLSEFGIIM SEFPLDPQLSK SILASCEFDC VDEVLTIAAM VTAPNCFSHV 300 PHGAEEAALT CWKTFLHPE GDHFTLISIYK AYQDTTLNSS SEYCVEKWCR DYFLNCSALR 360 MADVIRAELL EIIKRIELP YAEPAFGSKEN TLNIKKALLS GYFMQIARDV DGSGNYLMLT 420 HKQVAQLHPL SGYSITKKM PEWVLFHKFSI SENNYIRITS EISPELFMQL VPQYYFSNLP 480 PSESKDILQQ VVDHLSPVS TMNKEQQMCET CPETEQRCTL Q 521)) 5:)
(2) INFORMATION ÜBER SEQ ID NO:118 :	60
(A) LÄNGE: 65 Aminosäuren	
	66

5	(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
10	(iii) HYPOTHETISCH: ja	
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 118	
20	MAGRRVGAEP GPEVERRWWR RRLWQLGTEC KNQHDSSEAL QVLLCHSVSR LSPFAEEHWC YSSGI	60 65
25	(2) INFORMATION ÜBER SEQ ID NO:119:	
30	(A) LÄNGE: 108 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
35	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
do-	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
45	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 119	•
50	MILQRLFRFS SVIRSAVSVH LRRNIGVTAV AFNKELDPIQ KLFVDKIREY KSKRQTSGGP VDASSEYQQE LERELFKLKQ MFGNADMNTF PTFKFEDPKF EVIEKPQA	60 108
	(2) INFORMATION ÜBER SEQ ID NO: 120:	
55	(A) LÄNGE: 67 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	•
60	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 120	
RGFYLPKLKK QNWYLTALPR DHLWALVESR HSKHSTGKRR ICLDSEMRYN SEDTMAESSR 60 GVGGSSY 67	10
(2) INFORMATION ÜBER SEQ ID NO:121 :	
(A) LÄNGE: 129 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	15
(ii) MOLEKÜLTYP: ORF	
(ііі) HYPOTHETISCH: ja	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	. 30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 121	
AACLALRIAA AMASQSQGIQ QLLQAEKRAA EKVSEARKRK NRRLKQAKEE AQAEIEQYRL 60 QREKEFKAKE AAALGSRGSC STEVEKETQE KMTILQTYFR QNRDEVLDNL LAFVCDIRPE 120 IHENYRING 129	35
(2) INFORMATION ÜBER SEQ ID NO:122 :	40
(A) LÄNGE: 167 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: ORF	50
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	. 55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 122	60
	65

	NATPOHRCFS LLSIYAVVFM DFWPNVTDKS QEVVQDFIPV LPEVCLEDGH LLLGLLLHFS 60 AATATGSQCR SFLGLEFFLP LQAVLFNFSL SFFFGLLQPP VLSFAGLGHL LGCPLLGLQQ 120 LLNPLRLTSH GGSDSESKAS GLRHLEGPLG QLTQPPTICA CSLRLPS 167
5	(O) INFORMATION UPER OFO ID NO. 400
	(2) INFORMATION ÜBER SEQ ID NO: 123:
10	(A) LÄNGE: 175 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear
15	(ii) MOLEKÜLTYP: ORF
20	(iii) HYPOTHETISCH: ja
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 123
30	SNMAAPSGGW NGVGASLWAA LLLGAVALRP AEAVSEPTTV AFDVRPGGVV HSFSHNVGPG 60 DKYTCMFTYA SQGGTNEQWQ MSLGTSEDHQ HFTCTIWRPQ GKSYLYFTQF KAEVRGAEIE 120 YAMAYSKAAF ERESDVPLKT EEFEVTKTAV AHRPGAFKAE LSKLVIVAKA SRTEL 175
35	(2) INFORMATION ÜBER SEQ ID NO: 124:
40	(A) LÄNGE: 143 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
45	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
55	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 124
60	AVTSSPVAGG TFSSPVKLKG PVSLKGQHIT GFLGGTLKFS TWADVALSGG ACRVAEALGQ 60 RTEGPGPSWL PTASQFPLPA ELFWTQDRRS GGTKRVGNKW GLFLGKKTHG SPNFEPGSAL 120 IGLETFFSGF SPGGRPFKLN LRK
	(2) INFORMATION ÜBER SEQ ID NO: 125:

(A) LANGE: 90 Aminosauren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		1
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		1
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 125		`2
EAVGSQEGPG PSVLCPRASA TLQAPPDKAT SAQVENLRVP PRKPVMCWPF RDTGPFSFTG DEKVPPATGL LVTAQCAMPW PQSPAWTAQL	60 90	2:
(2) INFORMATION ÜBER SEQ ID NO: 126:		
(A) LÄNGE: 132 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		3(
(ii) MOLEKÜLTYP: ORF		35
(iii) HYPOTHETISCH: ja		745
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 126		
APPGLFPVAS PELKRCGMAR ACLQAVKYLM FAFNLLFWLG GCGVLGVGIW LAATQGSFAT LSSSFPSLSA ANLLIITGAF VMAIGFVGCL GAIKENKCLL LTFFRCCWLE ATIAILFFAY TDKIDRYAQQ DL		50
2) INFORMATION ÜBER SEQ ID NO: 127:		55
(A) LÄNGE: 118 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		60
(ii) MOLEKÜLTYP: ORF		65

(iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 10 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 127 SAAAWRAPAS RPSSTSCSPS TCSSGWEAVA CWVSASGWPP HRGASPRCPL PSRPCRLPTC 60 SSSPAPLSWP SASWAAWVPS RRTSASCSLS SGAAGWRPPS PSSSSPTRTR LTGMPSKT 15 (2) INFORMATION ÜBER SEQ ID NO: 128: 20 (A) LÄNGE: 357 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 25 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 30 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 35 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 128 VRVKMAAAEA ANCIMEVSCG QAESSEKPNA EDMTSKDYYF DSYAHFGIHE EMLKDEVRTL 60 TYRNSMFHNR HLFKDKVVLD VGSGTGILCM FAAKAGARKV IGIECSSISD YAVKIVKANK 120 LDHVVTIIKG KVEEVELPVE KVDIIISEWM GYCLFYESML NTVLYARDKW LAPDGLIFPD 180 RATLYVTAIE DRQYKDYKIH WWENVYGFDM SCIKDVAIKE PLVDVVDPKO LVTNACLIKE 240 VDIYTVKVED LTFTSPFCLQ VKRNDYVHAL VAYFNIEFTR CHKRTGFSTS PESPYTHWKQ 300 TVFYMEDYLT VKTGEEIFGT IGMRPNAKNN RDLDFTIDLD FKGQLCELSC STDYRMR 357 (2) INFORMATION ÜBER SEQ ID NO: 129: (A) LÄNGE: 129 Aminosäuren (B) TYP: Protein 55 (C) STRANG: einzel

(ii) MOLEKÜLTYP: ORF

(iii) HYPOTHETISCH: ja

60

65

(D) TOPOLOGIE: linear

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 129	
NQDTPPRTLL PSLSPNQRLG FSSPSGCSPT FPSRLHSPDW TTVAVRLDLK TGPRLGMNGC 60 SPLLLFPPTS LMREVVAFPS QGASMGKVSK ASGGAEYQRR GMAVTISPSP NLSPFFESEW 120 GRVGRDPDL 129	1
(2) INFORMATION ÜBER SEQ ID NO: 130:	. 1
(A) LÄNGE: 41 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	21
(ii) MOLEKÜLTYP: ORF	2:
(iii) HYPOTHETISCH: ja	۷.
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	3(
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 130	35
RQCLLWGHNW CMPAPKGPVF RGHFSQLLPS QMTAPSLEGA Q 41	
(2) INFORMATION ÜBER SEQ ID NO: 131:	4
(A) LÄNGE: 125 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: ORF	50
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 131	60
QGQDKPSGLW PPGPWFPCPT TWSPHGWLAG CPCVCVTHGV SAGLCPGWEG VYVALTVLAQ 60 SWWILSMDND TLRIVLVCFS YLWGIFPLRL LGLLLPQGVL TLRLMRGPLP VSPILSSREV 120	65

125

LTPDS

65

5	(2) INFORMATION ÜBER SEQ ID NO: 132:
10	(A) LÄNGE: 120 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear
15	(ii) MOLEKŪLTYP: ORF (iii) HYPOTHETISCH: ja
20	(v.)
25	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 132
	DKGELGASCL PLTGPLHTKE DPRSWQGEPV PLKTCLHFQF GREKRGGYPF SELAPGLGSS 60 HFSRPFLRVW GEHLPRTQYG GNRQGSPHQP QGQDTLRQQQ TQEPEGENTP QIGKTNQDNP 12
30	(2) INFORMATION ÜBER SEQ ID NO: 133:
35	(A) LÄNGE: 105 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear
6.0	(ii) MOLEKÜLTYP: ORF
1.4	(iii) HYPOTHETISCH: ja
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
50	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 133
	PHSRHCLYMH PHSHLLTEGG NTQLHMLTHS HLLTEGGNTR SSALMRFQTL LPLCKPHPSP 60 PPDKEIYKSG SLPTLPHSLS KKGLRLGDGE IVTAIPLRWY SAPPEAFETF PIEAP 105
55	(2) INFORMATION ÜBER SEQ ID NO: 134:
60	(A) LÄNGE: 72 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear

170

(ii) MOLEKÜLTYP: ORF	•	
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		1
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 134		
	60 72	1:
(2) INFORMATION ÜBER SEO ID NO: 135:		20
(A) LÄNGE: 67 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	2	2:
(ii) MOLEKÜLTYP: ORF	3	3(
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	3	3.5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 135	4	
PLPGHEYQAR DPWPSLWLWA PGMGLSPCLL RGMGWGTTTM TTAGRATQVV VTCQRLSQTG 60 QGGFGMT		15
(2) INFORMATION ÜBER SEQ ID NO: 136:		
(A) LÄNGE: 180 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	5	
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja	6	0
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	6	5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 136 GGACGRTAAE AARETTRRSR KMRTRREFPV ISVVGYTNCG KTTLIKALTG DAAIQPRDQL 60 FATLDVTAHA GTLPSRMTVL YVDTIGFLSQ LPHGLIESFS ATLEDVAHSD LILHVRDVSH 120 PEAESRNAAF CPRCVACSCP PRSWTPWWRF TTRWTSCPGT APRNRTSCPC LPCGATGSRS 180 10 (2) INFORMATION ÜBER SEQ ID NO: 137: (A) LÄNGE: 120 Aminosäuren (B) TYP: Protein 15 (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 20 (iii) HYPOTHETISCH: ja (vi) HERKUNFT: 25 (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 137 30 PWALQLHRLL GWSPNHSLFV KAELTAKQAT MKLSVCLLLV TLALCCYQAN AEFCPALVSE 60 LLDFFFISEP LFKLSLAKFD APPEAVAAKL GVKRCTDOMS LQKRSLIAEV LVKILKKCSV 120 35 (2) INFORMATION ÜBER SEQ ID NO:138: · 40 -(A) LÄNGE: 226 : Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 45 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 50 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 55

172

LGNHNKHGAI SMLFIRRTVC GVVTILFFLK FFLFLNLIMI LGHDSVFSMT VASTRTRSFP 60

RSGLPSSVKL SAPTSRTFSS RILSPHARSS SFPIKIRSSE VTFHWRLAKC TTAKSLPYCP 120

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 138

60

65

VTIISFTFFT TSAWCLVSST GSGRTTSGQG GELRDVLGTY PGRYEVLCEL NLREADQREA APGPEGLRML WLHADASRPK VTVREDAAMA AAIFPQPRPE TETTRT	A 180 226	
(2) INFORMATION ÜBER SEQ ID NO:139:		;
(A) LÄNGE: 222 Aminosāuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		10
(ii) MOLEKÜLTYP: ORF		15
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 139		25
VRVVSVSGRG CGKMAAAMAA SSLTVTLGRL ASACSHSILR PSGPGAASLW SASRRFNSQS TSYLPGYVPK TSLSSPPWPE VVLPDPVEET RHHAEVVKKV NEMIVTGQYG RLFAVVHFAS RQWKVTSEDL ILIGNELDLA CGERIRLEKV LLVGADNFTL LGKPLLGKDL VRVEATVIEK TESWPRIIMR FRKRKNFKKK RIVTTPQTVL RINSIEIAPC LL	120	30
(2) INFORMATION ÜBER SEQ ID NO:140:		35
(A) LÄNGE: 181 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		40
(ii) MOLEKÜLTYP: ORF	٠.	45
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 140		55
MMVAGAGADF VMLGGMLAGH SESGGELIER DGKKYKLFYG MSSEMAMKKY AGGVAEYRYV WRPRSLVIVW RQNSWLLRGG WYSSQRSMVN RGSMLGSVEK SLGLRNPEGE DNKVFPTLRA SEGKTVEVPF KGDVEHTIRD ILGGIRSTCT YVGAAKLKEL SRRTTFIRVT QQVNPIFSEA C	120	60

	(2) INFORMATION ÜBER SEQ ID NO:141:	
5	(A) LÄNGE: 168 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
10	(ii) MOLEKÜLTYP: ORF	
15	(iii) HYPOTHETISCH: ja	
20	(vi) HERKUNFT: (A) ORGANISMIUS: in the second secon	,
25	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 141	
30	STWRQEQIGC FIMDGGDDGN LIIKKRFVSE AELDERRKRR QEEWEKVRKP EDPEECPEEV YDPRSLYERL QEQKDRKQQE YEEQFKFKNM VRGLDEDETN FLDEVSRQQE LIEKQRREEE LKELKEYRNN LKKVGISQEN KKEVEKKLTV KPIETKNKFS QAKCWQEL	60 120 168
30	(2) INFORMATION ÜBER SEQ ID NO:142:	
35 .	(A) LÄNGE: 153 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
.40 · · ·	(ii) MOLEKÜLTYP: ORF	
45	(iii) HYPOTHETISCH: ja	
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 142	
55	TRKERSKEQR SRGEVEEKKH KEDKDDRRHR DDKRDSKKEK KHSRSRSRER KHRSRSRSRN AGKRSRSRSK EKSSKHKNES KEKSNKRSRS GSQGRTDSVE KSKKREHSPS KEKSRKRSRS KERSHKRDHS DSKDQSDKHD RRRSQSIEQE SQEKQHKNKD ETV	
60	(2) INFORMATION ÜBER SEQ ID NO:143:	
65	(A) LÄNGE: 131 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	

(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	1
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 143	
KRRNIKKTKM IGGTEMTKEI PRKRKNTVEA EAEKGNTEVG VEVEMQGNEV EVEAKRNQVN 60 IKMKVKKNQI NEVEVAVKEE LTVLKNQKNG NIVPAKKNLE SVVEAKNVPT NEITVIVRTS 120 QTNMIVEGAK V 131	
(2) INFORMATION ÜBER SEQ ID NO:144:	2
(A) LÄNGE: 144 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	2
(ii) MOLEKÜLTYP: ORF	3
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	3:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 144	4
IFLCWDYVPV FLIFQHCQFF LDCHFDFVYL IFLYFHFYVY LISLCFYFYF VSLHFYFDSY 60 FCVSFLCFCF YCVFSLSWNL FCHLCAAYHL CLLYVSSLLP LPYFSVPWTF LFSFISSFLI 120 IVTISSSTSL IFFLSFSIPC PFYPP 144	45
(2) INFORMATION ÜBER SEQ ID NO: 145:	50
(A) LÄNGE: 131 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	60
	65

	(A) ORGANISMUS: MENSCH		
5			
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 145		-
10	RLHRRTGASR SSHSSDSGGS DVDLDPTDGK LFPSDGFRDC KKGDPKHGKR EYWDCLEGKK SKHAPRGTHL WEFIRDILIH PELNEGLMKW ENRHEGVFKF GQKKKNSNMT YEKLSRAMRY YYKREILERV DGRRLVYKFG KNSSGWKEEE	LRSEAVAQLW	60 120
15	·		
	(2) INFORMATION ÜBER SEQ ID NO: 146:		
20	(A) ÄNGE: 114 Aminosäuren (B) TYP: Protein (C) STRANG: einzei (D) TOPOLOGIE: linear	:	1.2
25	(ii) MOLEKÜLTYP: ORF		
	(iii) HYPOTHETISCH: ja		
30			
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		
35	:		
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 146		
40 ·- ·	MTCKMSQLER NIETIINTFH QYSVKLGHPD TLNQGEFKEL VRKDLQNFLK K HIMEDLDTNA DKQLSFEEFI MLMARLTWAS HEKMMZGDEG-PGHHHKPGLG E	ENENEKVIE GTP	60 114
45	(2) INFORMATION ÜBER SEQ ID NO: 147;		
50	(A) LÄNGE: 333 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		
	(ii) MOLEKÜLTYP: ORF		
55	(iii) HYPOTHETISCH: ja		
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	. ·	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 147		

ATLEHPALVP LQPAEMVELM FPLLLLLPF LLYMAAPQIR KMLSSGVCTS TVQLPGKVVV 60 VTGANTGIGK ETAKELAQRG ARVYLACRDV EKGELVAKEI QTTTGNQQVL VRKLDLSDTK 120 SIRAFAKGFL AEEKHLHVLI NNAGVMMCPY SKTADGFEMH IGVNHLGHFL LTHLLLEKLK 180 ESAPSRIVNV SSLAHHLGRI HFHNLQGEKF YNAGLAYCHS KLANILFTQE LARRLKGSGV 240 TTYSVHPGTV QSELVRHSSF MRWMWWLFSF FIKTPQQGAQ TSLHCALTEG LEILSGNHFS 300 DCHVAWVSAQ ARNETIARRL WDVSCDLLGL PID 333	5
(2) INFORMATION ÜBER SEQ ID NO: 148:	10
(A) LÄNGE: 67 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	15
(ii) MOLEKÜLTYP: ORF	20
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 148	30
RGFYLPKLKK QNWYLTALPR DHLWALVESR HSKHSTGKRR ICLDSEMRYN SEDTMAESSR 60 GVGGSSY 67	35
Patentansprüche	
1. Eine Nukleinsäure-Sequenz, die ein Genprodukt oder ein Teil davon kodiert, umfassend a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe Seq. ID No. 9, 17, 18, 21, 23–25, 27, 31, 36, 38, 39, 42–44, 46–48, 50–53, 55–59, 61–63 und 67, 68 b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen oder	· 40
c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.	45
 Eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq. ID Nos. 9, 17, 18, 21, 23–25, 27, 31, 36, 38, 39, 42–44, 46–48, 50–53, 55–59, 61–63 und 67, 68 oder eine komplementäre oder allelische Variante davon. Nukleinsäure-Sequenz Seq. ID No. 1 bis Seq. ID No. 68, dadurch gekennzeichnet, daß sie in Brusttumorgewebe 	
erhöht exprimiert sind. 4. BAC, PAC und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 68, zur Verwendung als Vehikel zum Gentransfer. 5. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 90%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist.	50
 6. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist. 7. Eine Nukleinsäure-Sequenz, umfassend einen Teil der in den Ansprüchen 1 bis 6 genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen gemäß den Ansprüchen 1 bis 6 hybridisieren. 	55
8. Ein Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 50 bis 4500 bp aufweist.	60
 Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 150 bis 4000 bp aufweist. Eine Nukleinsäure-Sequenz gemäß einem der Ansprüche 1 bis 9, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodiert. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß einem der Ansprü- 	65
the 1 bis 9, zusammen mit mindestens einer Kontroll- oder regulatorischen Sequenz.	

rin die Kontroll- oder regulatorische Sequenz ein geeigneter Promotor ist.

15

20

LEVIN C

45

50

55

60

65

- 13. Eine Expressionskassette gemäß einem der Ansprüche 11 und 12, dadurch gekennzeichnet, daß die auf der Kassette befindlichen DNA-Sequenzen ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.
- Verwendung der Nukleinsäure-Sequenzen gemäß den Ansprüchen 1 bis 10 zur Herstellung von Vollängen-Genen.
 - 15. Ein DNA-Fragment, umfassend ein Gen, das aus der Verwendung gemäß Anspruch 14 erhältlich ist.
 - 16. Wirtszelle, enthaltend als heterologen Teil ihrer exprimierbaren genetischen Information ein Nukleinsäure-Fragment gemäß einem der Ansprüche 1 bis 10.
- 17. Wirtszelle gemäß Anspruch 16, dadurch gekennzeichnet, daß es ein prokaryontisches oder eukaryontische Zellsystem ist.
 - 18. Wirtszelle gemäß einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, daß das prokaryontische Zellsystem E. coli und das eukaryontische Zellsystem ein tierisches, humanes oder Hefe-Zellsystem ist.
 - 19. Ein Verfahren zur Herstellung eines Polypeptids oder eines Fragments, dadurch gekennzeichnet, daß die Wirtszellen gemäß den Ansprüchen 16 bis 18 kultiviert werden.
 - 20. Ein Antikörper, der gegen ein Polypeptid oder ein Fragment gerichtet ist, welches von den Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 kodiert wird, das gemäß Anspruch 19 erhältlich ist.
 - 21. Ein Antikörper gemäß Anspruch 20, dadurch gekennzeichnet, daß er monoklonal ist.
 - 22. Polypoptid-Teilsequenzen, gemäß den Sequenzen Seq. ID Nos. 72, 76, 50, 81, 84,02, 95, 98, 102-104, 107-107, 119-107, 129-144, 147.
 - 23. Polypeptid-Teilsequenzen gemäß Anspruch 22, mit mindestens 80%iger Homologie zu diesen Bernenzen.
 - 24. Polypeptid-Teilsequenzen gemäß Anspruch 22, mit mindestens 90% iger Homologie zu diesen Sequenzen.
 - 25. Verwendung der Polypeptid-Teilsequenzen gemäß den Sequenzen Seq. ID No. 71 bis Seq. ID No. 148, als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs.
- 25 26. Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden können.
 - 27. Verwendung der Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 in sense oder antisense Form.
 - 28. Verwendung der Polypeptid-Teilsequenzen Seq. ID No. 71 bis Seq. ID No. 148 als Arzneimittel in der Gentherapie zur Behandlung des Brustkrebses.
- 29. Verwendung der Polypeptid-Teilsequenzen Seq. ID No. 71 bis Seq. ID No. 148, zur Herstellung eines Arzneimittels zur Behandlung des Brustkrebses.
 - 30. Arzneimittel, enthaltend mindestens eine Polypeptid-Teilsequenz Seq. ID No. 71 bis Seq. ID No. 148.
 - 31. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es eine genomische Sequenz ist.
- 32. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es eine mRNA-Sequenz ist.
 - 33. Genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 68.
 - 34. Verwendung der genomischen Gene gemäß Anspruch 33, zusammen mit geeigneten regulativen Elementen.
 - 35. Verwendung gemäß Anspruch 34, dadurch gekennzeichnet, daß das regutative Element ein geeigneter Promostor und/oder Enhancer ist.
 - 36. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 450 bis 3500 bp aufweist.

Hierzu 10 Seite(n) Zeichnungen

haire de se

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 198 13 839 A1 C 07 K 14/43523. September 1999

Systematische Gen-Suche in der Incyte LifeSeq Datenbank

Fig. 1

DE 198 13 839 A1 C 07 K 14/43523. September 1999

Prinzip der EST-Assemblierung

~50.000 ESTs pro Gewebe

Contigs

Singletons

In Anzahl und Länge zunehmende Contigs

Iterative Assemblierung mit steigendem Mismatch (1%,2%,4%)

5000-6000 Contigs ~2

~25.000 übrige Singletons

~30.000 Konsensussequenzen pro Gewebe

Fig. 2a

Fig. 2b2

Fig. 2b3

Fig. 2b4

£ 125

Nummer: Int. Cl.6: Offenlegungstag: DE 198 13 839 A1 C 07 K 14/435 23. September 1999

In silico Subtraktion der Genexpression in verschiedenen Geweben

~30,000 Kcasensussequenzen Krebsgewebe ~30.000 Konsensussequenzen Normalgewebe

Assemblierung bei 4% Mismatch

Krebsgewebe Spezifische Gene

Normalgewebe Spezifische Gene

In beiden Geweben expremierte Gene

Fig. 4a

Fig. 4b

DE 198 13 839 A1 C 07 K 14/435 23. September 1999

Isolieren von genomischen BAC und PAC Klonen

Chromosomale Klon-Lokalisation über FISH

Hybridisierungssignai

Sequenzierung von Klonen, die in Regionen lokalisiert sind, die chromosomale Deletionen in Prostata- und Brustkrebs aufweisen, führt zur Identifizierung von Kandidatengenen

Bestätigung der Kandidatengene durch Screening von Mutationen und/oder Deletionen in Krebsgeweben