See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245236555

Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent

ARTICLE in INDU	JSTRIAL & EN	IGINEERING	CHEMISTRY RESEARCH	 MARCH 2010
------------------------	--------------	------------	--------------------	--------------------------------

Impact Factor: 2.59 · DOI: 10.1021/ie900900r

CITATIONS	DEADC	

CHAHONS

78

READS

28

2 AUTHORS:

Su Fang Wu Zhejiang University

38 PUBLICATIONS 390 CITATIONS

SEE PROFILE

Yanqing Zhu

North China University of Water Conservan...

3 PUBLICATIONS 117 CITATIONS

SEE PROFILE

Behavior of CaTiO₃/Nano-CaO as a CO₂ Reactive Adsorbent

S. F. Wu* and Y. Q. Zhu

Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China

This study focuses on the preparation of a CaTiO₃-coated nano-CaO-based CO₂ adsorbent (CaTiO₃/nano-CaO) for the improvement of sorption properties. The CaTiO₃-coated nano-CaO adsorbent was prepared by forming Ti(OH)₄ from the hydrolysis of titanium alkoxide in a nano-CaCO₃ suspended solution. The resulting Ti(OH)₄-coated nano-CaCO₃ was then heated and calcined. Test results from transmission electron microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy show that an obvious film of TiO₂ was formed on the surface of nano-CaCO₃ after heating. X-ray diffraction analysis also showed that the nano-CaTiO₃ layer was formed at 750 °C, a calcination temperature that causes the reaction of TiO₂ with nano-CaO. The cyclic tests of reactive sorption capacity were conducted in a thermogravimetric analyzer under the following conditions: 0.02 MPa CO₂ partial pressure, carbonation temperature of 600 °C, and calcination temperature of 750 °C. Test results showed that CaTiO₃ coated onto the nano-CaO caused a significant improvement in the durability of the capacity for reactive sorption. Nano-CaO that had an optimum content of 10 wt % TiO₂ showed significantly stable CO₂ reactive sorption capacity (5.3 mol/kg) after 40 cyclic carbonation—calcination runs compared to the reactive sorption capacity of CaO without TiO₂ coating (3.7 mol/kg).

1. Introduction

A CO₂ adsorption process that employs a solid CaO-based reactive adsorbent plays an important and effective role in the capture of CO₂ for many industrial purposes. For example, CO₂ sorption enhances reformation for hydrogen production, 1-4 promotes CO₂ removal from flue gas, ^{5,6} and can be utilized for chemical heat pumps⁷ and energy storage systems. Although many materials could be potentially used for CO₂ adsorption, CaO has been identified as the most promising candidate⁸ because of its stoichiometric reactive sorption capacity, low cost, and the abundance of its natural precursors. However, the natural precursors of CaO-based adsorbents, such as limestone and dolomite that both contain CaCO₃, suffer from the rapid decay of CO₂ reactive sorption capacity during multiple carbonation calcination reaction cycles. Abanades⁹ demonstrated a significant decrease in reactive sorption capacity from about 75% during the first carbonation cycle to about 20% in the 14th cycle using $100-800 \mu m$ limestone particles.

Aside from its natural precursors, Kuramoto¹⁰ reported a drop in the carbonation conversion of reagent grade CaCO₃ and Ca(OH)₂ from 50% in the first cycle to 12.2% in the sixth cycle. Florin¹¹ showed a decline in conversion of CaO adsorbents derived from CaCO₃ (Sigma Aldrich, <45 μ m) from 69% in the first cycle to only 13% after 50 reaction cycles.

Alvarez¹² found that the decay of the reactive sorption capacity of limestone (400–600 μ m) was accompanied by an obvious decrease in the pore volume and surface area. He attributed these to the occlusion of pores and shrinkage of CaO during cycling, which are consequences of sintering. Fierro¹³ had proposed a new model to describe the processes of calcination and sintering. He concluded that the main reason for reactive sorption capacity decay is the sintering of CaO during cyclic carbonation—calcination runs. This decay results in subsequent decreases in surface area and porosity and increases in the average CaO particle size.

Several investigations were conducted with the goal of improving the resistance of CaO to sintering. These involved

* To whom correspondence should be addressed E-mail: wsf@ zju.edu.cn. Telephone: +86-571-87953138. Fax: +86-571-87953735.

adding MgO,¹⁴ as well as Ca₁₂Al₁₄O₃₃, to support the CaO-based CO₂ adsorbent.¹⁵ The author found that nano-CaCO₃ had many advantages in comparison to micro-CaCO₃. These advantages include higher reactive sorption capacity, fast reaction rate, and a significant improvement in the durability of the adsorbent.¹⁶ The additional investigations have focused on SiO₂-coated nano-CaCO₃ as the precursor of nano-CaO-based CO₂ adsorbents. The use of the sol—gel method produced a good reactive sorption capacity of 6.4 mol/kg of the first cyclic run and 4.7 mol/kg of the 20th cyclic run.¹⁷ However, even though the many coating methods provided increased durability during high temperature carbonation and calcination cyclic runs, the overall durability of CaO-based CO₂ adsorbents is still too low for commercial applications.

The hydrolysis method is another technique for preparing metal oxides. Aihara¹⁸ briefly exploited the hydrolysis of $[Ca(OC_2H_5)_2]$ and $[Ti(O-i-C_3H_7)_4]$ to form a mixture of CaO and CaTiO₃. Guo¹⁹ studied monodispersed silica spheres coated with titania by using $Ti(OC_4H_9)_4$, and Li^{20} coated TiO_2 on SiO_2 cores via the hydrolysis of tetrabutyl orthotitanate (TBOT).

This research reports on the preparation of nano-CaO coated with a nanoscale layer of CaTiO₃ via hydrolysis and calcination to form a CO₂ adsorbent. Its durability performance and reasons for sintering resistance were investigated.

2. Experimental Section

2.1. Reagents and Instruments. Nano-CaCO₃ (>95% purity) with a particle size of 70 nm (Hu Zhou Ling Hua Ltd. China) was used as the CaO-based adsorbent precursor. TiO₂ powder (178 nm, Sinopharm Chemical Reagent Co., Ltd.) and tetrabutyl titanate Ti(OC₄H₉)₄ (Sinopharm Chemical Reagent Co., Ltd.) were used as sources of TiO₂.

A thermogravimetric analyzer (TGA, Pyris1, Perkin-Elmer) was used for reactive sorption capacity measurements. The crystalline phases of the components of the adsorbent were determined using an X-ray diffractometer (XRD, D/MAX-RA, Rigaku, Japan). The morphology of the adsorbent was investigated using a transmission electron microscope (TEM, JEM-

1230, JEOL, Japan) and scanning electron microscope (SEM, S-4800, HITACHI, Japan). The Ti content was measured by energy-dispersive X-ray analysis (EDX, EX350, HORIBA, Japan). Brunauer—Emmer—Teller (BET) surface area and Barrett—Joyner—Halenda (BJH) desorption average pore diameter analyses were conducted by nitrogen physisorption at liquid N_2 temperatures using a Micromeritics ASAP 2020 apparatus.

2.2. Preparation of TiO₂/Nano-CaCO₃. A total of 4.26 g of Ti(OC_4H_9)₄ was dissolved in 25 mL of dehydrated ethanol to form a clear solution. A 9 g portion of nano-CaCO₃ was dispersed in dehydrated ethanol by ultrasonic methods and then mixed with the clear solution to form a suspension. A 3 g portion of distilled water was added dropwise into the suspension while stirring. Solids were collected by vacuum filtration. The solid product was obtained through drying and heat treatment at 500 °C for 3 h. The first obtained sample is designated as sample A_1 .

The mechanism of forming $Ti(OH)_4$ by the hydrolysis of $Ti(OC_4H_9)_4$ proceeds in the following reactions steps (1)–(4):

$$Ti(OC_4H_9)_4 + H_2O \rightarrow Ti(OC_4H_9)_3(OH) + C_4H_9OH$$
(1)

$$Ti(OC_4H_9)_3(OH) + H_2O \rightarrow Ti(OC_4H_9)_2(OH)_2 + C_4H_9OH$$
(2)

$$Ti(OC_4H_9)_2(OH)_2 + H_2O \rightarrow Ti(OC_4H_9)(OH)_3 + C_4H_9OH$$
(3)

$$Ti(OC_4H_9)(OH)_3 + H_2O \rightarrow Ti(OH)_4 + C_4H_9OH$$
 (4)

The hydrolyzed product was heated to decompose $Ti(OH)_4$ to TiO_2 at a temperature of 500 °C according to the following reactions (5) and (6):

$$H_4 TiO_4 \rightarrow H_2 TiO_3 + H_2 O \tag{5}$$

$$H_2 TiO_3 \rightarrow TiO_2 + H_2 O$$
 (6)

A 9 g portion of nano-CaCO₃ was dispersed in distilled water by ultrasonic methods, and 1 g of TiO_2 powder was stirred into the suspension. The solids were collected by vacuum filtration and dried. The product obtained in this procedure is designated as sample B_1 . Sample B_1 was prepared for the purpose of comparison with sample A_1 in terms of differences in coating and mixing methods.

2.3. Preparation of CaTiO₃/Nano-CaO. Samples A_1 and B_1 were calcined at 850 °C for 1 h to form CaTiO₃/nano-CaO via the following reactions (7) and (8):

$$CaCO_3 \rightarrow CaO + CO_2$$
 (7)

$$CaO + TiO_2 \rightarrow CaTiO_3$$
 (8)

Nano-CaO was formed by the decomposition of nano-CaCO $_3$ at 850 °C for 1 h. The resulting CaO was then reacted with TiO $_2$ to form CaTiO $_3$ /nano-CaO. The resulting products after the calcination of samples A_1 and B_1 were designated as samples A_2 and B_2 , respectively.

2.4. Test of Reactive Sorption Ratio and Reactive Sorption Capacity. High purity nitrogen gas (N_2) was used as a purge to maintain an accurate TGA balance with a flow rate of 46.37 mL/min. The flow rate of CO_2 was 11.55 mL/min. About 3 mg of the samples were placed in a platinum nacelle. The cyclic CO_2 adsorption tests were conducted under carbonation, with a CO_2 partial pressure of 0.02 MPa in N_2 at 600 °C

Figure 1. XRD pattern of sample A₁.

for less than 10 min, and calcination, with an atmospheric pressure in N_2 at 750 °C for less than 10 min. These steps are similar to those employed by previous researchers. The temperature was increased at rates of 15 °C/min for calcination and was decreased at rates of 40 °C/min from calcination temperature to carbonation temperation. The reactive sorption ratio and reactive sorption capacity were calculated according to eqs 1 and 2:

reactive sorption ratio = $\frac{\text{CO}_2 \text{ adsorption mole amount}}{MY/56} \times 100(\%) \quad (1)$

reactive sorption capacity =
$$\frac{\text{CO}_2 \text{ sorption mole amount}}{M} \times 1000 \text{(mol kg}^{-1}\text{)} \quad (2)$$

where *M* is the initial mass of the adsorbent and *Y* is the content of CaO as prepared in the adsorbent.

3. Results and Discussion

- **3.1. Properties of the TiO**₂/Nano-CaCO₃. **3.1.1. XRD Pattern.** To investigate the coating of nano-TiO₂ on the surface of nano-CaCO₃, XRD analysis was performed on sample A_1 . TiO₂ was introduced into the CaCO₃ structure by hydrolysis (Figure 1).
- **3.1.2. TEM Images.** TEM images of nano-CaCO₃ and sample A₁ are shown in Figure 2. Nano-CaCO₃ exhibited a cubic crystal, according to Figure 2a. Sample A₁, prepared in a dehydrated ethanol environment, exhibited a flocculelike layer on nano-CaCO₃, according to Figure 2b. This layer was composed of a TiO₂ coating. The thickness of the TiO₂ coating was less than 10 nm.
- **3.1.3. SEM-EDX Images.** The SEM images and EDX patterns of the surfaces of nano-CaCO₃ and sample A_1 are shown in Figure 3. Compared to that of nano-CaCO₃, the particles of sample A_1 had a rough surface layer, where Ti metal was detected by EDX. These confirmed the coating structure. It also confirmed that the hydrolysis product of TiO₂ from titanium alkoxide was indeed formed on the particle surface of sample A_1 .
- **3.1.4.** Durability of TiO₂/Nano-CaCO₃ Adsorbents. Durability studies of the CO_2 adsorbents at a carbonation temperature of 600 °C and a calcination temperature of 750 °C on nano-CaCO₃ and the samples A_1 and B_1 are shown in Figure 4. Nano-CaCO₃ recorded a reactive sorption ratio of 84.3% in the

Figure 2. (a) TEM image of nano-CaCO₃. (b) TEM image of sample A₁.

first run and the lowest reactive sorption ratio at 37.7% in the tenth run. Sample B₁ had a higher reactive sorption capacity than nano-CaCO₃. This indicated that nano-CaCO₃ mixed with TiO₂ powder improved the sorption durability of adsorbents. The attenuation trend after 10 runs was also comparable with that of nano-CaCO₃. In comparison, sample A₁ showed more stable reactive sorption ratios of 80.6% in the first run and 61.4% in the tenth run. These results indicate that adsorbents prepared via the coating method performed better than those prepared via a simple mixing method.

3.2. Properties of CaTiO₃/Nano-CaO Adsorbents. Although TiO₂-coated nano-CaCO₃ had a higher reactive sorption ratio, as shown in sample A1, there was still obvious reactive sorption ratio decay. To improve the durability of sorption, calcination of TiO₂/nano-CaCO₃ to form CaTiO₃/nano-CaO was performed.

3.2.1. CaTiO₃ Identification at Different Calcination Temperatures. To investigate the effects of different calcination temperatures on the formation of CaTiO₃ from the reaction between CaO and TiO2, XRD was performed. It examined the formation of CaTiO₃ from sample A₁ at different temperatures. Three temperatures, 750, 800, and 850 °C, were selected for the calcination of sample A₁ for 1 h. Results from this experiment are shown in Figure 5. The figure shows that CaTiO₃ already formed at 750 °C but retains only a weak characteristic

Figure 3. (a) SEM image of sample A₁. (b) EDX result of sample A₁.

Figure 4. CO₂ reactive sorption ratio for different samples with a number of runs (carbonation at 600 °C in 0.02 MPa CO₂ partial pressure, calcination at 750 °C in N2).

peak. This temperature is much lower than the CaTiO₃ formation temperature, 1200 °C, which was reported in a chemistry handbook.²² Thus, this supports the formation of a nanoscale layer of CaTiO₃ at a lower temperature. At a temperature of 850 °C, the diffraction peaks of CaTiO₃ were much stronger, indicating that nano-CaCO₃ had completely decomposed to CaO.

3.2.2. Carbonation/Calcination Durability. The reactive sorption capacity of sample A₁, calcined at different tempera-

Figure 5. XRD patterns of sample A₁ calcined at different temperatures.

Figure 6. CO₂ reactive sorption capacity for sample A₁ calcined at different temperatures (carbonation at 600 °C in 0.02 MPa CO₂ partial pressure, calcination at 750 °C in N₂).

tures in the range of 750-850 °C, was tested. The sorption capacities after 10 cyclic runs at a sorption temperature of 600 °C and a decomposition temperature of 750 °C are shown in Figure 6. The results show that sample A₁ calcined below 800 °C had a low reactive sorption capacity. In contrast, sample A₁ calcined at 850 °C showed an increase in CO₂ reactive sorption capacity through several initial cycles. This increase in reactive sorption capacity was maintained at 5.3 mol/kg after 10 runs. Manovic²³ disclosed a similar phenomenon called selfreactivation. The results in Figure 6 were consistent with the results shown in Figure 5. Thus, it can be said that sample A₁ calcined below temperatures of 850 °C can form a compound with a stable content of CaTiO₃ and increased durability of CO₂ reactive sorption capacity.

The results of the reactive sorption capacity of the nano-CaO, and samples A2 and B2 are shown in Figure 7. The reactive sorption capacity of nano-CaO increased in the first several cycles then decreased slightly. In particular, sample A₂ reached a higher reactive sorption capacity than the other samples within three runs, keeping the same reactive sorption capacity after 10 cycles. The reactive sorption capacities of samples A2 and B2 were much higher than that of nano-CaO. Sample A₂, which was prepared by the coating method, was more durable than sample B₂ to which TiO₂ was added via a mixing method.

A comparison of the multicycle sorption properties of samples A₁ and A₂ are shown in Figure 8. After 40 cycles, the reactive sorption capacity of TiO₂/nano-CaCO₃ was lower than that of CaTiO₃/nano-CaO, decaying continuously as the cycles con-

Figure 7. CO₂ reactive sorption capacity for different samples with number of runs (carbonation at 600 °C in 0.02 MPa CO₂ partial pressure, calcination at 750 °C in N2).

Figure 8. CO₂ reactive sorption capacity for samples A₁ and A₂ with number of runs (carbonation at 600 °C in 0.02 MPa CO₂ partial pressure, calcination at 750 °C in N₂).

Table 1. BET Analytic Results of A2 before and after 10 Runs^a

sample BET surface area (m²/g)		average pore size (nm)	
fresh A ₂	6.13	10.15	
A2 after 10 runs	8.29	9.84	

^a Carbonation at 600 °C in 0.02 MPa CO₂ partial pressure, calcination at 750 °C in N2.

tinued. On the other hand, samples of CaTiO₃/nano-CaO retained their durability through all experimental runs.

The reactive sorption capacity of sample A_2 in the tenth cycle was 5.3 mol/kg. The reactive sorption capacity of nano-CaO with a TiO₂ coating layer was 1.6 mol/kg higher than that of nano-CaO without the TiO2 coating. One possible reason for this is that CaTiO₃ has a higher melting point (2200 K¹⁸) and this increases the sintering temperature of the adsorbent. As shown in Figure 8, the reactive sorption capacity of A₂ slightly increased within 10 runs of carbonation and calcination. From the 10th to the 40th run, the reactive sorption capacity was almost stable. The results of BET surface area measurements on A₂ before and after 10 runs are shown in Table 1. The results showed a consistent trend of surface area increase with the increase of reactive sorption capacity.

As shown in Figure 9, SEM morphology analysis showed that CaTiO₃/nano-CaO particles have an average size of 80 nm that is maintained after 10 cyclic runs. The CaTiO₃ outer layer has high thermal stability and acts as an effective barrier that resists the

Figure 9. (a) SEM image of sample A₂ before multiple carbonation—calcination runs. (b) SEM image of sample A2 after 10 carbonation-calcination runs.

Table 2. Preparation of TiO₂ Coated nano-CaCO₃

nano-CaCO ₃ (g)	$Ti(OC_4H_9)_4(g)$	$H_2O(g)$	TiO ₂ (wt %)
19	4.26	3	5
11.5			8
9			10
5.67			15
4			20

sintering of CaO, which keeps the structure of the adsorbent more stable even after long-term exposure to elevated temperatures.

3.3. Effects of TiO₂ Content on Cyclic Performances of CaTiO₃/Nano-CaO. In order to investigate the effects of TiO₂ content on cyclic performances, five samples with different TiO₂ wt % were prepared by following the synthesis method of sample A₂. Details are listed in Table 2.

TGA test results of reactive sorption capacity are shown in Figure 10. The results showed an optimum TiO₂ content of 10% among compounds containing 5, 8, 10, 15, and 20% TiO2. It is surmised that when the TiO₂ content was lower than 10 wt %, the TiO₂ amount finally produced from hydrolysis was not enough to cover the surface area of nano-CaCO₃. Thus, the resistance to sintering became weak after high temperature calcination. In contrast, when the TiO₂ content was higher than 10 wt %, some active nano-CaO reacted with TiO₂ to form CaTiO₃, thus causing the decrease of reactive sorption capacity.

Figure 10. CO₂ reactive sorption capacity for sorbents with different TiO₂ wt % (carbonation at 600 °C in 0.02 MPa CO₂ partial pressure, calcination at 750 °C in N2).

4. Conclusion

The surface of nano-CaCO₃ can be coated with a nano-TiO₂ film via Ti(OC₄H₉)₄ hydrolysis and using dehydrated ethanol as a dispersant. A layer of CaTiO₃ was formed by calcination at temperatures until 850 °C, thus preventing the nano-CaO particles from coming into contact with each other under high temperatures. Good results were obtained of CaTiO₃/nano-CaO adsorbent for the durability of reactive sorption capacity as tested by TGA. Under the same conditions, the 10th cyclic run of the synthesized coated adsorbent had a reactive sorption capacity of 5.3 mol/kg, which was 1.6 mol/kg higher than that of the uncoated nano-CaCO₃ adsorbent. Nano-CaCO₃ coated with 10 wt % TiO2 had a maximum reactive sorption capacity during multiple carbonation-calcination cyclic runs.

Acknowledgment

The National Natural Science Foundation of China is thanked for financial support (20676119).

Literature Cited

- (1) Han, C.; Harrison, D. P. Simulation Shift Reaction and Carbon Dioxide Separation for the Direct Production of Hydrogen. Chem. Eng. Sci. 1994, 49, 5875.
- (2) Barelli, L.; Bidini, G.; Gallorini, F.; Servili, S. Hydrogen Production through Sorption-Enhanced Steam Methane Reforming and Membrane Technology: A Review. Energy 2008, 33, 554.
- (3) Yi, K. B.; Harrison, D. P. Low-Pressure Sorption-Enhanced Hydrogen Production. Ind. Eng. Chem. Res. 2005, 44, 1665.
- (4) Lee, D. K.; Baek, I. H.; Yoon, W. L. Modeling and Simulation for the Methane Steam Reforming Enhanced by In Situ CO₂ Removal Utilizing the CaO Carbonation for H₂ Production. Chem. Eng. Sci. 2004, 59, 931.
- (5) Gupta, H.; Fan, L. S. Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas. Ind. Eng. Chem. Res. 2002, 41, 4035.
- (6) Anthony, E. J. Solid Looping Cycles: A New Technology for Coal Conversion. Ind. Eng. Chem. Res. 2008, 47, 1747.
- (7) Gadalla, M. A.; Olujic, Z.; Jansens, P. J.; Jobson, M.; Smith, R. Reducing CO2 Emissions and Energy Consumption of Heat-Integrated Distillation Systems. Environ. Sci. Technol. 2005, 39, 6860.
- (8) Feng, B.; An, H.; Tan, E. Screening of CO₂ Adsorbing Materials for Zero Emission Power Generation Systems. Energy Fuels 2007, 21, 426.
- (9) Abanades, J. C.; Alvarez, D. Conversion Limits in the Reaction of CO2 with Lime. Energy Fuels 2003, 17, 308.
- (10) Kuramoto, K.; Fujimoto, S.; Morita, A.; Shibano, S.; Suzuki, Y.; Hatano, H.; Ying, L. S.; Harada, M.; Takarada, T. Repetitive Carbonation-Calcination Reaction of Ca-based Sorbents for Efficient CO2 Sorption at Elevated Temperatures and Pressures. Ind. Eng. Chem. Res. 2003, 42, 975.

- (11) Florin, N. H.; Harris, A. T. Enhanced Hydrogen Production from Biomass with In Situ Carbon Dioxide Capture Using Calcium Oxide Sorbents. *Chem. Eng. Sci.* **2008**, *63*, 287.
- (12) Alvarez, D.; Abanades, J. C. Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles. *Energy Fuels* **2005**, *19*, 270.
- (13) Fierro, V.; Adánez, J.; García-Labiano, F. Effect of Pore Geometry on the Sintering of Ca-Based Sorbents During Calcination at High Temperatures. *Fuel* **2004**, *83*, 1733.
- (14) Dobner, S.; Sterns, L.; Graff, R. A.; Squires, A. M. Cyclic Calcination and Recarbonation of Calcined Dolomite. *Ind. Eng. Chem.*, *Process Des. Dev.* **1977**, *16*, 479.
- (15) Li, Z. S.; Cai, N. S.; Huang, Y. Y.; Han, H. J. Synthesis, Experimental Studies, and Analysis of a New Calcium-Based Carbon Dioxide Absorbent. *Energy Fuels* **2005**, *19*, 1447.
- (16) Wu, S. F.; Li, Q. H.; Kim, J. N.; Yi, K. B. Properties of a Nano CaO/Al₂O₃ CO₂ Sorbent. *Ind. Eng. Chem. Res.* **2008**, *47*, 180.
- (17) Wu, R.; Wu, S. F. The Performance of Nano-Calcium Coated with SiO₂ on CO₂ Adsorption and Regeneration. *Chin. J. Chem. Eng.* **2006**, *57*, 1722.
- (18) Aihara, M.; Nagai, T.; Matsushita, J.; Negishi, Y.; Ohya, H. Development of Porous Solid Rreactant for Thermal-Energy Storage and

- Temperature Upgrade Using Carbonation/Decarbonation Reaction. *Appl. Energy* **2001**, *69*, 225.
- (19) Guo, X. C.; Dong, P. Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres. *Langmuir* **1999**, *15*, 5535.
- (20) Li, Q. Y.; Dong, P. Preparation of Nearly Monodisperse Multiply Coated Submicrospheres with a High Refractive Index. *J. Colloid Interface Sci.* **2003**, *261*, 325.
- (21) Wu, S. F.; Beum, T. H.; Yang, J. I.; Kim, J. N. Properties of Ca-Base CO₂ Sorbent Using Ca(OH)₂ as Precursor. *Ind. Eng. Chem. Res.* **2007**, 46, 7896.
- (22) Liu, Y. Z. Manual for Physicochemical Properties of Inorganic Substances and Important Reaction Equations; Chengdu University of Science and Technology Publisher: Chengdu, 1993.
- (23) Manovic, V.; Anthony, E. J. Thermal Activation of CaO-Based Sorbent and Self-Reactivation during CO₂ Capture Looping Cycles. *Environ. Sci. Technol.* **2008**, *42*, 4170.

Received for review June 4, 2009 Revised manuscript received January 21, 2010 Accepted January 21, 2010

IE900900R