Constantin Lazari, Marco Wettstein

12. Mai 2013

1. (a) Beschreiben Sie den Unterschied zwischen berechenbaren (= rekursiven = partiell rekursiven = μ -rekursiven = Turing-berechenbaren) Funktionen und primitiv rekursiven Funktionen.

Lösung:

Turing-berechenbare Funktionen Funktionen zu deren Lösung ein Lösungsweg (Algorithmus) definiert werden kann.

Primitiv rekursive Funktionen Sind alle Funktionen, bei denen die Dauer der Berechnung im Voraus ermittelt werden kann.

Primitiv rekursive Funktionen sind somit eine Teilmenge der Turingberechenbaren Funktionen.

(b) Beweisen Sie, dass die Ackermann-Funktion für alle Werte $x, y \in \mathbb{N}$ einen Wert annimmt.

Lösung:

Die Ackermann bzw. Péter-Funktion:

$$a(0,m) = m + 1$$

$$a(n+1,0) = a(n,1)$$

$$a(n+1,m+1) = a(n,a(n+1,m))$$

Zu zeigen: Die Funktion nimmt für alle $m, n \in \mathbb{N}$ einen Wert an.

Beweis. Vollständige Induktion:

Induktionsannahme: Die Funktion ist für $\mathbf{a}(m,n)$ ist berechenbar. Induktionsanfang für m=n=0

$$m=0: a(0,0)=0+1=1 \Rightarrow$$
 Funktion für m berechenbar $n=0: a(1,0)=a(0,1)=1+1=2 \Rightarrow$ Funktion für n berechenbar

i. Induktionsschritt: Wir schliessen von m auf m + 1:

$$a(n, m + 1) = a(n - 1, a(n, m))$$

= $a(n, berechenbar)) \Rightarrow a(n, m + 1)$ ist berechenbar

ii. Induktionsschritt: Wir schliessen von n auf n + 1:

$$a(n+1,m) = a(n, a(n+1, m-1))$$

= $a(n, a(a(n, m-2)))$

- a) Falls n+2>m lässt sich die Berechnung fortsetzen, bis in der letzten Funktion a(n-m+2,0) steht. Dabei handelt es sich dann um einen berechenbaren Term.
- b) Falls n+2 < m lässt sich die Berechnung fortsetzen, bis in der letzen Funktion a(0, m-n-2) steht. Auch dieser Term ist berechenbar.
- c) Fall n+2=m lässt sich die Berechnung fortsetzen, bis in der letzen Funktion a(0,0) steht. Auch das ist berechenbar. Somit ist die Funktion für alle $m,n\in\mathbb{N}$ berechenbar.
- 2. Implementieren Sie (in einer Programmiersprache Ihrer Wahl) **ohne die Verwendung von Iterationen**, eine Funktion/Methode myLoop in 3 Parametern, so dass

```
myLoop (lowerBound, upperBound, body)
```

den gleichen Effekt wie folgendes Pseudocode-Fragment verursacht

```
for (i=lowerBound ; i <= upperBound; i++){ body(i); }
```

Lösung:

Implementiert in Coffee Script:

 $doSome = (i) -> console.log "do something with \#\{i\}"$

```
\begin{array}{lll} n &=& 0 \\ doMore &=& (i \ ) \ -\!\!\!> \ n \ +\!\!\!= \ i \end{array}
```

- (a) Test Case 1: Es sei "doSome(int i)" eine Funktion/Methode mit folgendem Effekt:
 - do something with 0
 - do something with 1
 - do something with 2
 - do something with 3
 - do something with 4
 - do something with 5

Lösung:

Die Konsole gibt für doSome(5) exakt diese Werte aus (siehe Laptop Marco Wettstein).

(b) Test Case 2: Es sei "doMore(int i)" eine Funktion/Methode mit folgendem Effekt:

```
doMore (int i) {
   n -> n + i ;
}
```

Rufen Sie die Funktion myLoop(0, 5000, doMore) auf. Die mit 0 initialisierte Variable n sollte nun den Wert n = 12502500 halten.

```
Lösung:
Stimmt :-)
```

- 3. Gegeben sei eine Codierung für eine TM als Zeichenreihe mit der Nummer: $12\,271\,502\,270\,684\,926\,242_{10}$ Die Codierung erfolgt wie in der Vorlesung angegeben (bzw. Hopcroft et al. S. 379 /380)
 - (a) Um welche Zeichenreihen handelt es sich bei w_{27} und w_{100} ?

Lösung:

$$27_{10} = 10\,0101_2 \rightarrow w_{27} = 00\,101$$

 $100_{10} = 110\,0100_2 \rightarrow w_{100} = 10\,0100_2$

(b) Um welche Zeichenreihe handelt es sich bei $w_{6\,096\,260\,467\,660\,300\,868}$?

Lösung:

```
6\,096\,260\,467\,660\,300\,868_{10} = 11\,0100\,1110\,0000\,0110\,1010\,1101 1111\,0101\,1010\,1011\,0111\,1101\,0101\,0110\,1010\,1000_2
```

 $w_{6\,096\,260\,467\,660\,300\,868} = 1\,0100\,1110\,0000\,0110\,1010\,1101$ $1111\,0101\,1010\,1011\,0111\,1101\,0101\,0110\,1010\,1000_2$

(c) Skizieren Sie die TM graphisch

Lösung:

$$w_{12\,271\,502\,270\,684\,926\,242_{10}} = (1)01010100100(11)$$

$$01001000100100100(11)$$

$$000100100100100100$$

$$x_1 = 0$$

$$x_2 = 1$$

$$x_3 = B$$

$$\delta(q_i, x_i) = (q_k, x_l, D_m)$$

$$\delta(q_1, x_1) = (q_1, x_2, D_2)$$

$$\delta(q_1, x_2) = (q_3, x_2, D_2)$$

$$\delta(q_3, x_2) = (q_3, x_2, D_2)$$

$$\delta(q_3, x_3) = (q_2, x_3, D_1)$$

