Causal Inference, Time Series and Economic History

3. Single-equation Models

Jason Lennard

Overview

- Distributed lag models
- Autoregressive distributed lag models
- Local projections
- Class discussion paper: Kelly, M. and Ó Gráda, C., 'Numerare est errare:
 Agricultural output and food supply in England before and during the
 Industrial Revolution', Journal of Economic History, 73 (2013), pp. 1132-63.

Dynamic Models

• The time series regression model is not always appropriate:

$$y_t = \alpha + \beta x_t + u_t \tag{1}$$

- One reason is that time series are sometimes persistent
- Another is that some independent variables affect the dependent variable with a lag

Lags in Economics

- The effect of an independent variable on a dependent variable may not be instantaneous but delayed
- Consider the response of inflation to a change in monetary policy
- One potential mechanism:
- 1. Central bank increases rate charged to commercial banks
- 2. Commercial banks increase deposit and borrowing rates
- 3. Saving more attractive, borrowing less attractive
- 4. Consumption and aggregate demand falls
- 5. Inflation falls

Lags in Economics

Figure 1. The Effect of Monetary Policy on the Price Level Source: Romer and Romer (2004)

Dynamic Models

Three commonly-used types of dynamic models:

- 1. Finite distributed lag
- 2. Autoregressive distributed lag
- 3. Local projections

Finite Distributed Lag Model (FDL): Bivariate

- The dependent variable is modeled as a function of current and past values of the independent variables
- Generalized *FDL(Q)*:

$$y_t = \alpha + \sum_{q=0}^{Q} \beta_q x_{t-q} + u_t$$

• With 1 lag, *FDL*(1):

$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + u_t$$

• With 2 lags, *FDL*(2):

$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + u_t$$

Finite Distributed Lag Model (FDL): Multivariate

• Generalized FDL(Q, R) with 2 independent variables:

$$y_t = \alpha + \sum_{q=0}^{Q} \beta_q x_{t-q} + \sum_{r=0}^{R} \gamma_r z_{t-r} + u_t$$

• Example with 2 lags each, FDL(2, 2):

$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \gamma_0 z_t + \gamma_1 z_{t-1} + \gamma_2 z_{t-2} + u_t$$

Finite Distributed Lag Model (FDL): Interpretation

- Impact multiplier = β_0
- Intermediate multiplier at horizon $h = \beta_0 + \ldots + \beta_h$
- Total long-run effect = $\beta_0 + \ldots + \beta_Q$
 - In other words, the long-run effect of a change in *x*

Autoregressive Distributed Lag Model (ARDL):Bivariate

- The dependent variable is modeled as a function of its own past values and current and past values of the independent variables
- Generalized *ARDL*(*P*, *Q*):
 - P = number of lags of y and Q = number of lags of x

$$y_t = \alpha + \sum_{p=1}^{P} \delta_p y_{t-p} + \sum_{q=0}^{Q} \beta_q x_{t-q} + u_t$$

• With 1 lag each, *ARDL*(1, 1):

$$y_t = \alpha + \delta_1 y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + u_t$$

• With 2 lags each *ARDL*(2, 2):

$$y_t = \alpha + \delta_1 y_{t-1} + \delta_2 y_{t-2} + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + u_t$$

Autoregressive Distributed Lag Model (ARDL): Multivariate

• Generalized ARDL(P, Q, R) with 3 independent variables:

$$y_{t} = \alpha + \sum_{p=1}^{P} \delta_{p} y_{t-p} + \sum_{q=0}^{Q} \beta_{q} x_{t-q} + \sum_{r=0}^{R} \gamma_{r} z_{t-r} + u_{t}$$

• Example with 2 lags each, *ARDL*(2, 2, 2):

$$y_{t} = \alpha + \delta_{1}y_{t-1} + \delta_{2}y_{t-2} + \beta_{0}x_{t} + \beta_{1}x_{t-1} + \beta_{2}x_{t-2} + \gamma_{0}z_{t} + \gamma_{1}z_{t-1} + \gamma_{2}z_{t-2} + u_{t}$$

Autoregressive Distributed Lag Model (ARDL): Interpretation

- Impact multiplier = β_0
- Intermediate multiplier at horizon h for h
- Intermediate multiplier at horizon h for $h \ge p = \frac{\beta_0 + ... + \beta_h}{1 \delta_1 ... \delta_P}$
- Total long-run effect = $\frac{\beta_0 + ... + \beta_Q}{1 \delta_1 ... \delta_P}$
 - In other words, the long-run effect of a change in *x*
- See the appendix for the derivation of these multipliers

How Many Lags to Include? 3 Approaches

- 1. Average economic regression (AER)
 - Start with simplest model and build up until you have a well-behaved model
 - i.e., correct signs, significant coefficients, a good fit and white-noise residuals
 - However, this approach potentially suffers from omitted variable bias from the start
- 2. The Hendry approach
 - Start with the most general model and work down
 - Difficult to know when to stop
- 3. Use information criteria

Information Criteria

- Information criteria (IC) are measures of a model's relative goodness of fit
- Two main ICs:
- 1. Akaike Information Criterion (AIC) by Akaike (1974):

$$AIC = \left(\frac{SSR}{n}\right)e^{2k/n}$$

2. Schwarz Bayesian Information Criterion (SBIC) by Schwarz (1978):

$$SBIC = \left(\frac{SSR}{n}\right) n^{k/n}$$

- where SSR is the sum of squared residuals, n is the number of observations, $e \approx 2.71828$ (base of the natural log) and k is the number of parameters (including the intercept)
- Trade off:
 - ICs decrease with the goodness of fit (higher R^2 and lower SSR)
 - ICs increase with the number of parameters (*k*)

Information Criteria

- Step 1: Estimate different models (lag length may vary by variable)
- Step 2: Calculate information criteria
- Step 3: Select model that *minimizes* a given information criteria

Notes:

- ICs may give conflicting results
- SBIC penalizes complexity more heavily
- Stata uses slightly different formulas to those in the previous slide, but the intuition is the same

Local Projections

- The local projections model was developed by Jordà (2005)
- It is something between an FDL/ARDL and VAR model
- A simple example with no controls is:

$$y_{t+h} = \alpha_h + \beta_h x_t + u_{t+h}$$

• The coefficient β_h gives the impulse response of y at time t+h to a shock in the independent variable at time t. Thus, one constructs the impulse responses as a sequence of the β_h 's estimated in a series of single regressions for each horizon

Local Projections

• For the impulse response at h = 0, we would estimate:

$$y_t = \alpha_0 + \beta_0 x_t + u_t$$

• For the impulse response at h = 1, we would estimate:

$$y_{t+1} = \alpha_1 + \beta_1 x_t + u_{t+1}$$

• For the impulse response at h = 2, we would estimate:

$$y_{t+2} = \alpha_2 + \beta_2 x_t + u_{t+2}$$

And so on ...

Local Projections: Standard Errors

- The residuals will be serially correlated because they are a moving average of the forecast errors from t to t+h
- This violates the Gauss-Markov assumption of no serial correlation of errors
- Therefore, best practice is to include y_{t-1} as a control variable, which is known as lag-augmented local projections (Montiel Olea and Plagborg-Møller, 2021)
- Lag-augmented local projections are also valid for non-stationary time series

Local Projections: Pros and Cons

Strengths

- Impulse response functions calculated directly
- Standard errors calculated directly
- Robust to misspecification of the data generating process
- Very flexible

Weaknesses

- Can be less efficient relative to other models
- Can be more variable relative to other models
- Multiple (*h*) residuals to monitor

Local Projections: Flexibility

• Differential responses by regimes (expansions (E_t) and recessions (R_t), for example):

$$y_{t+h} = E_t(\alpha_h^E + \beta_h^E x_t) + R_t(\alpha_h^R + \beta_h^R x_t) + u_{t+h}$$

• Differential responses by sign of shocks (positive (+) and negative (-)):

$$y_{t+h} = \alpha_h + \beta_h^+ x_t^+ + \beta_h^- x_t^- + u_{t+h}$$

• Differential responses by size of shocks (small (*s*) and large (*l*)):

$$y_{t+h} = \alpha_h + \beta_h^s x_t + \beta_h^l x_t^2 + u_{t+h}$$

Dynamic Models: Excluding x_t

- As with the static time series regression model, dynamic models must satisfy the Gauss-Markov assumptions (including the zero conditional mean assumption) to be the Best Linear Unbiased Estimator (BLUE)
- But many relationships of interest suffer from reverse causality
- In order to overcome the issue of reverse causality, a common approach is to exclude the contemporaenous value of an independent variable (e.g. x_t)
- The idea is that whereas there may be reverse causality between y_t and x_t , only x_{t-1} can affect y_t but y_t can't affect x_{t-1}
- Reed (2015) shows that this is a mistake and that OLS is still biased

Research Question

- To compare various estimates of agricultural output for England between 1270 and 1800
- To construct a compromise estimate for 1750/70 and 1800

- Crude death rate (Wrigley and Schofield, 1981)
- Real wage (Clark, 2010)

Data

- Real agricultural output per head (Broadberry et al., 2015)
- Real GDP per head (Broadberry et al., 2015)
- Sample: 1546-99, 1600-49, 1650-99, 1700-49, 1750-99

Model

$$\Delta cdr_t = \alpha + \sum_{p=1}^4 \delta_p \Delta cdr_{t-p} + \sum_{q=0}^4 \beta_q \Delta i_{t-q} + u_t$$
 (2)

where:

 Δcdr_t is the change in the log crude death rate Δi_t is the change in the log of a measure of real income

Results

TABLE 6							
SHORT-RUN RESPONSE OF	THE DEATH RATE	TO ANNUAL VAR	IATIONS IN REAL	INCOME			

Period and Lags	Wage	Agricultural Output per Head	GDP per Head
1546-1599			
0	-0.131	0.054	0.267
Ĭ.	-0.273	-0.266 *	-0.518 *
2	-0.572 **	-0.383 *	-0.868 **
3	-0.197	-0.400 **	-0.999 **
4	-0.331 *	0.136	-0.132
1600-1649			
0	0.223	0.063	0.155
1	-0.518 **	0.065	0.165
2	-0.049	-0.189	-0.371
3	-0.085	-0.049	-0.119
4	-0.112	0.070	0.101
1650-1699			
0	-0.024	-0.020	0.038
1	-0.000	0.040	0.069
2	-0.110	0.087	0.194
3	0.206	0.045	0.123
4	0.194	0.041	0.202
1700-1749			
0	-0.017	0.176	-0.077
1	-0.522 **	-0.076	-0.196
2	-0.180	-0.305 **	-0.660 **
3	-0.199	-0.139	0.087
4	0.036	0.261	0.405
1750-1799			
0	0.151	0.145	0.468
1	0.214	-0.048	-0.004
2	0.187	0.289 **	0.619 *
3	0.351 **	0.198 **	0.259
4	0.534 **	0.110	0.130

^{* =} Significant at 10 percent. ** = Significant at 5 percent.

Note: Estimated using robust regressions.

Next Class

• Class discussion paper: Nicolini, E. A., 'Was Malthus right? A VAR analysis of economic and demographic interactions in pre-industrial England', European Review of Economic History, 11 (2007), pp. 99-121.

Further Reading

- Stock and Watson, Introduction to Econometrics, chapters 15 (pp. 578-82) and 16
- Koudijs, P., 'The boats that did not sail: Asset price volatility in a natural experiment', *Journal of Finance*, 71 (2016), pp. 1185-226
- Steinwender, C., 'Real effects of information frictions: When the States and the Kingdom became United', *American Economic Review*, 108 (2018), pp. 657-96
- Fochesato, M., 'Origins of Europe's north-south divide: Population changes, real wages and the "little divergence" in early modern Europe', *Explorations in Economic History*, 70 (2018), pp. 91-131

• In order to derive the *ARDL*(*P*, *Q*) multipliers, let's begin with the simplest form, an *ARDL*(1, 1) model:

$$y_t = \alpha + \delta_1 y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + u_t$$

• Take expected values (note that the expectation of a variable is the same at each point in time, therefore: $Ey_t = Ey_{t-1}$ and so on):

$$Ey_t = \alpha + \delta_1 Ey_t + \beta_0 Ex_t + \beta_1 Ex_t + u_t$$

• Subract $\delta_1 E y_t$ from both sides:

$$Ey_t - \delta_1 Ey_t = \alpha + \beta_0 Ex_t + \beta_1 Ex_t + u_t$$

• Collect terms:

$$(1 - \delta_1) Ey_t = \alpha + (\beta_0 + \beta_1) Ex_t + u_t$$

• Divide both sides by $1 - \delta_1$:

$$Ey_t = \frac{\alpha}{1 - \delta_1} + \frac{\beta_0 + \beta_1}{1 - \delta_1} Ex_t + u_t$$

• The partial derivative of the above with respect to the independent variable is:

$$\frac{\partial E y_t}{\partial E x_t} = \frac{\beta_0 + \beta_1}{1 - \delta_1}$$

• Let's move on to a more complex form, an *ARDL*(2, 2) model:

$$y_t = \alpha + \delta_1 y_{t-1} + \delta_2 y_{t-2} + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + u_t$$

• Take expected values:

$$Ey_t = \alpha + \delta_1 Ey_t + \delta_2 Ey_t + \beta_0 Ex_t + \beta_1 Ex_t + \beta_2 Ex_t + u_t$$

• Subract $\delta_1 E y_t + \delta_2 E y_t$ from both sides:

$$Ey_t - \delta_1 Ey_t - \delta_2 Ey_t = \alpha + \beta_0 Ex_t + \beta_1 Ex_t + \beta_2 Ex_t + u_t$$

• Collect terms:

$$(1 - \delta_1 - \delta_2) Ey_t = \alpha + (\beta_0 + \beta_1 + \beta_2) Ex_t + u_t$$

• Divide both sides by $1 - \delta_1 - \delta_2$:

$$Ey_t = \frac{\alpha}{1 - \delta_1 - \delta_2} + \frac{\beta_0 + \beta_1 + \beta_2}{1 - \delta_1 - \delta_2} Ex_t + u_t$$

• The partial derivative of the above with respect to the independent variable is:

$$\frac{\partial Ey_t}{\partial Ex_t} = \frac{\beta_0 + \beta_1 + \beta_2}{1 - \delta_1 - \delta_2}$$

• Use this approach to derive the mutliplier for any ARDL model