考研数学高数阶段测试 (含数一、二、三)

(满分: 150分 时间: 180分)

一、选择题:1~10 小题,每小题 5 分,共 50 分,下列每题给出的四个选项中,只有一个选项符

合题目要求的.				
(1) 设当 $x \to 0^+$ 时, $(1-\cos\sqrt{x})\ln(1+x^3)$ 是 $x\arcsin x^n$ 的高阶无穷小,而 $x\arcsin x^n$ 是				
$(e^{x^2}-1)$ 的高阶无穷小,则正整数 n 为				
(A)	1. (B) 2.	(C) 3.	(D) 4.	
(2)	曲线 $y = \frac{1}{x^2} + \ln(1 + e^x)$, 渐近线的条数	效为		
(A)	0. (B) 1. (C) 2.	(D) 3.		
(3)	3) 设 $f(x) = \min\{x, x^2\}$,则 $f(x)$ 在区间 $(-2, 2)$ 上			
(A)	只有1个不可导的点.	(B) 共有2个不可导的点	₹.	
(C)	共有3个不可导的点.	(D) 没有不可导的点.		
(4)	[4] 设 $f(x)$ 连续, $F(x) = \int_0^{x^2} x^2 f(t^2) dt$ 则 $F'(x)$ 等于			
(A)	$x^2 f(x^4).$	(B) $2x^3 f(x^4)$.		
(C)	$4x^2f(x^4).$	(D) $2x^3 f(x^4) + 2x \int_0^{x^2}$	$f(t^2)dt$.	
(5) 设 m,n 为正整数,则反常积分 $\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性				
(A)	仅与m取值有关. (B)仅	与n取值有关.		
(C)	与 <i>m</i> , <i>n</i> 取值都有关. (D) 与	ī <i>m,n</i> 取值都无关.		
(6) 设 $I_k = \int_0^{k\pi} e^{x^2} \sin x dx$ ($k = 1, 2, 3$),则有				
(A)	$I_1 < I_2 < I_3$. (B) $I_3 < I_2 < I_1$.	(C) $I_2 < I_3 < I_1$.	(D) $I_2 < I_1 < I_3$.	
(7) 设 $z = \frac{\sin xy \cos \sqrt{y+2} - (y-1)\cos x}{1 + \sin x + \sin(y-1)}$, 则 $\frac{\partial z}{\partial y}\Big _{(0,1)} =$				

(A) -1. (B) $\cos \sqrt{3}$. (C) 1. (D) 0.

- (A) 3π . (B) $(2 + \frac{2\sqrt{2}}{3})\pi$. (C) $(4 + \frac{2\sqrt{2}}{3})\pi$.
- (D) 5π .
- (9) 微分方程 $y'' 2y' = x e^{2x}$ 的特解 y^* 形式为
- (A) $y^* = (ax+b)e^{2x}$.
- (B) $y^* = ax e^{2x}$.
- (C) $y^* = ax^2 e^{2x}$.

- (D) $y^* = (ax^2 + bx)e^{2x}$.
- (10) (数一、三) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数 $\sum_{n=1}^{\infty} na_n (x-1)^{n+1}$

的

- (A) 收敛点, 收敛点.
- (B) 收敛点,发散点.
- (C) 发散点,收敛点.
- (D) 发散点,发散点.

(数二) 设
$$f(x)$$
 在 $x = 0$ 的邻域内连续,且 $\lim_{x \to 0} \frac{f(x)}{x} = 0$,又 $g(x) = x^3 + \int_0^x t f(x-t) dt$,

则

- (A) x = 0 是 g(x) 的极大值点.
- (B) x = 0 是 g(x) 的极小值点.
- (C) (0,0) 是曲线 y = g(x) 的拐点.
- (D) x = 0 不是 g(x) 的极值点, (0,0) 也不是曲线 y = g(x) 的拐点.

关注公众号【考研小舟】 免费考研资料&无水印PDF

二、填空题:11~16 小题,每小题 5 分,共 30 分.

(11) 求定积分
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^2 x}{x(\pi - 2x)} dx = \underline{\qquad}$$

(12) 设
$$0 < x < y < \pi$$
,则 $I_1 = \int_0^\pi \frac{\sin x}{x} dx$ 与 $I_2 = \int_0^\pi \frac{\sin y}{y} dy$ 的大小关系是______.

(13)
$$\mathfrak{g} 2 \int_0^1 f(x) dx + f(x) - x = 0$$
, $\mathfrak{g} \int_0^1 f(x) dx = \underline{\qquad}$

- (14) 设V(a) 是由曲线 $y = xe^{-x}$, $x \ge 0$, y = 0 , x = a 所围图形绕 Ox 轴旋转一周的立体的体积,则 $\lim_{a \to +\infty} V(a) =$ ______.
 - (15) (数一、三) 幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} nx^{n-1}$ 在区间 (-1,1) 内的和函数 S(x) =______.

(数二) 当 $x \to 0$ 时, $\alpha(x) = kx^2$ 与 $\beta(x) = \sqrt{1 + x \arcsin x} - \sqrt{\cos x}$ 是等价无穷小,则 k =

(16) 已知 $y_1 = \cos 2x - \frac{1}{4}x\cos 2x$, $y_2 = \sin 2x - \frac{1}{4}x\cos 2x$ 是某二阶常系数非齐次微分

方程的两个解, $y_3 = \cos 2x$ 是它所对应的齐次方程的一个解,则该微分方程是

三、解答题:16~22 小题,共70分.解答应写出文字说明、证明过程或演算步骤.

(17) (本题满分 10 分)

已知连续函数 f(x) 满足 $\lim_{x\to 0} \frac{f(x)}{x} = 1$, 求 $\lim_{x\to 0} \frac{\int_0^1 f(tx^3)dt}{e^{\tan x} - e^{\sin x}}$.

(18) (本题满分 12 分)

求不定积分
$$\int \frac{dx}{(2x^2+1)\sqrt{1+x^2}}.$$

(19) (本题满分 12 分)

计算
$$I = \int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
,其中 $f(x) = \int_1^{\sqrt{x}} e^{-t^2} dt$.

(20) (本题满分 12 分)

由抛物线 $y = -x^2 + 4x - 3$ 与它在点 A(0,-3) 与点 B(3,0) 的切线所围成的区域的面积.

(21) (本题满分 12 分)

设 f(x) 在 $(-\infty,0]$ 上连续且满足

$$\int_0^x tf(t^2 - x^2)dt = \frac{x^2}{1 + x^2} - \frac{1}{2}\ln(1 + x^2),$$

求 f(x) 及其极小值.

(22) (本题满分 12 分)

(数一)已知L是第一象限中从点(0,0)沿圆周 $x^2+y^2=2x$ 到点(2,0),再沿圆周 $x^2+y^2=4$ 到点(0,2)的曲线段,计算曲线积分

$$J = \int_{L} 3x^{2} y dx + (x^{3} + x - 2y) dy$$

(数二) 计算二重积分

$$\iint_{D} \left[3x^2 \ln \left(y + \sqrt{1 + y^2} \right) + 6x + 9 + y^2 \right] d\sigma,$$

其中 $D = \{(x, y) | x^2 + y^2 \le 2x \}$.

(数三)设某厂家打算生产一批商品投放市场.已知该商品的需求函数为 $P = P(x) = 10e^{-\frac{x}{2}}$, 且最大需求量为 6,其中 x 表示需求量, P 表示价格.

- (I) 求该商品的收益函数和边际收益函数;
- (II) 求使收益最大时的产量、最大收益和相应的价格.