This is a collection of old complex analysis qualifier exam solutions, as well as some notes on useful results and proofs.

Useful Results and Proofs

Analytic Functions

Definition: Let $U \subseteq \mathbb{C}$ be an open set. A function $f: U \to \mathbb{C}$ is called *analytic* if, for any $z_0 \in U$, there is r > 0 and $(a_k)_k \subseteq \mathbb{C}$ such that

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

for all $z \in U(z_0, r)$.

Theorem (Identity Theorem): Let $f, g: U \to \mathbb{C}$ be analytic functions defined a connected open set (also known as a region). If

$$A = \{ z \in \mathbb{C} \mid f(z) = g(z) \}$$

admits an accumulation point in U, then f = g on U.

Proof. To begin, we show that if $f: U \to \mathbb{C}$ is an analytic function that is not uniformly zero, then for any $z_0 \in U$, there is $\rho > 0$ such that f is nonzero on $\dot{U}(z_0, \rho) \subseteq U$. Towards this end, we may write

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k,$$

for all $z \in U(z_0, r)$, some r > 0, and since f is not uniformly zero, there is some minimal ℓ such that $a_{\ell} \neq 0$. This yields

$$f(z) = (z - z_0)^{\ell} \sum_{k=0}^{\infty} a_{k+\ell} (z - z_0)^k;$$

the function $h: U(z_0, r) \to \mathbb{C}$ given by

$$h(z) = \sum_{k=0}^{\infty} a_{k+\ell} (z - z_0)^k$$

then has the same radius of convergence as f and is not zero at z_0 , so that g is not zero on some $U(z_0, \rho)$ as g is continuous.

Now, we let V_1 be the set of accumulation points of A in U, and let $V_2 = U \setminus V_1$.

If $z \in V_2$, then there is some $r_1 > 0$ such that $\dot{U}(z_0, r_1) \cap A = \emptyset$, or that $\dot{U}(z_0, r_1) \subseteq A^c$. Meanwhile, since U is open, there is some $r_2 > 0$ such that $U(z_0, r_2) \subseteq U$, meaning that if $r = \min\{r_1, r_2\}$, then $U(z_0, r) \subseteq U \setminus A$. Thus, V_2 is open.

Meanwhile, if $z \in V_1$, then since $V_1 \subseteq U$, it follows that there is r > 0 such that U(z, r) and $(a_k)_k$ such that

$$f(w) - g(w) = \sum_{k=0}^{\infty} a_k (w - z)^k$$

for all $w \in U(z, r)$. We claim that f(w) - g(w) is uniformly zero on U(z, r). Else, if there were $w_0 \in U(z, r)$ such that $f(w_0) \neq g(w_0)$, then it would follow that there is $0 < s \le r$ such that $f(w) \neq g(w)$ for all

 $w \in \dot{U}(w_0, s)$. Yet, this would contradict the assumption that z is an accumulation point, meaning that V_1 is open.

Since V_1 and V_2 are disjoint open sets whose union is equal to U, it follows that either $V_1 = U$ or $V_2 = U$. If $A \neq \emptyset$, then the identity theorem follows.

Differentiability

Cauchy's Integral Formula and its Consequences

Old Exams

Notation

- $U(z_0, r) = \{z \in \mathbb{C} \mid |z z_0| < r\}$
- $B(z_0, r) = \{z \in \mathbb{C} \mid |z z_0| \le r\}$
- $S(z_0, r) = \{z \in \mathbb{C} \mid |z z_0| = r\}$
- $\dot{U}(z_0, \mathbf{r}) = \{ z \in \mathbb{C} \mid 0 < |z z_0| < \mathbf{r} \}$
- $A(z_0, r_1, r_2) = \{z \in \mathbb{C} \mid r_1 < |z z_0| < r_2\}$