Energy Characterization of Hardware Data Prefetching

Y. Guo, S. Chheda, I. Koren, M. Krishna, C. Andras Moritz

Electrical & Computer Engineering University of Massachusetts, Amherst

Jan 30th, 2004

How Does Prefetching Works?

- Prefetch Engine decides which data (address) to be prefetched.
- No prefetching if data is already in L1 Cache.

Motivation

- Data Prefetching has been successful in hiding memory access latency.
 - Different techniques have been proposed
 - Software: Mowry '94, Lipasti et al'95, Luk & Mowry '96
 - Hardware: Smith '78, Baer '91, Roth et al '98, Cooksey et al '02.
- Power and energy consumption becomes more and more important in recent years.
- How does prefetching affect on-chip energy consumption?
 - On longer term we are interested in developing new prefetching solutions to reduce energy.

Sources of Prefetching Energy

- Extra Tag-checks in L1 cache
 - When a prefetch hits in L1.
- Extra memory accesses to L2 Cache
 - Due to useless prefetches from L2 to L1.
- Extra off-chip memory accesses
 - Data cannot be found in L2 Cache.
- Prefetching hardware: data (history table) and control logic.

Prefetching Techniques Used

- **Prefetching-on-miss** (POM) basic technique
- Tagged Prefetching A variation of POM.
- Stride Prefetching [Baer & Chen]— Effective on array accesses with regular strides
- Dependence-based Prefetching [Roth & Sohi] Focuses on pointer-chasing relations
- Combined Stride and Pointer Prefetching [new]
 - Applied on general-purpose programs

Experimental Setup

- SimpleScalar
 - Implementation of prefetching techniques
 - Gather statistics which will be used for energy estimation.
- Energy Estimation for L1 & L2 cache accesses
 - Spice simulation with 100-nm BPTM technology
- Benchmark Suites
 - SPEC2000 Array-intensive benchmarks
 - Olden Pointer-intensive benchmarks

Cache Configuration & Power

Parameter	L1	L2
size	32KB	256KB
tag array	CAM-based	RAM-based
associativity	32-way	4-way
bank size	2KB	4KB
# of banks	16	64
cache line	32B	64B
Power (mW)		
P_tag	6.5	6.27
P_read	9.5	100.52
P_write	10.3	118.62
P_leakage	3.1	23.0
P_reduced_leakage	0.62	1.15

Leakage Reduction Techniques

- Many leakage optimizations proposed: body biasing, asymmetric cells, etc
 - E.g., leakage can be reduced by 7X for writes and 40X for reads in cells [Azizi et al ISLPED 2002]
- We assume L1 leakage could/will be reduced by 80% with circuit techniques.

Energy-Delay Product

■ Energy-delay product improves with prefetching in most cases.

Conclusion

- Prefetching can be considered as an energy reduction techniques as well, esp. in deep submicron era when leakage becomes dominate.
- Aggressive prefetching techniques increase L1 access energy significantly due to extra tag-checks.
 - We are working on a new technique to improve it.
- Effective prefetching techniques consistently improves energy-delay product (EDP) due to performance improvement.