Requirement already satisfied: pandas in c:\users\ayush\anaconda3\lib\site-packages (2.0.3) Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\ayush\anaconda3\lib\site-packages (from pandas) (2.8.2) Requirement already satisfied: pytz>=2020.1 in c:\users\ayush\anaconda3\lib\site-packages (from pandas) (2023.3.post 1) Requirement already satisfied: tzdata>=2022.1 in c:\users\ayush\anaconda3\lib\site-packages (from pandas) (2023.3) Requirement already satisfied: numpy>=1.21.0 in c:\users\ayush\anaconda3\lib\site-packages (from pandas) (1.24.3) Requirement already satisfied: six>=1.5 in c:\users\ayush\anaconda3\lib\site-packages (from python-dateutil>=2.8.2->p andas) (1.16.0) Note: you may need to restart the kernel to use updated packages.

- In [2]: import pandas as pd
- In [5]: df = pd.read_csv('data.csv')

In [6]: df

Out[6]:

	Unnamed: 0	id	cons_12m	cons_gas_12m	cons_last_month	forecast_cons_12m	forecast_discount_energy
0	0	24011ae4ebbe3035111d65fa7c15bc57	0.000000	4.739944	0.000000	0.000000	0.0
1	1	d29c2c54acc38ff3c0614d0a653813dd	3.668479	0.000000	0.000000	2.280920	0.0
2	2	764c75f661154dac3a6c254cd082ea7d	2.736397	0.000000	0.000000	1.689841	0.0
3	3	bba03439a292a1e166f80264c16191cb	3.200029	0.000000	0.000000	2.382089	0.0
4	4	149d57cf92fc41cf94415803a877cb4b	3.646011	0.000000	2.721811	2.650065	0.0
14601	14601	18463073fb097fc0ac5d3e040f356987	4.508812	4.680707	0.000000	3.667360	0.0
14602	14602	d0a6f71671571ed83b2645d23af6de00	3.858778	0.000000	2.260071	2.801191	0.0
14603	14603	10e6828ddd62cbcf687cb74928c4c2d2	3.265996	0.000000	2.255273	2.281919	0.0
14604	14604	1cf20fd6206d7678d5bcafd28c53b4db	2.120574	0.000000	0.000000	1.308351	0.0
14605	14605	563dde550fd624d7352f3de77c0cdfcd	3.941064	0.000000	0.000000	2.882758	0.0

14606 rows × 64 columns

(

In [7]: import pandas as pd
from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix

In [8]: df = pd.read_csv('data.csv')

```
In [13]: print("Dataset Overview:")
    print(df.head())
```

```
Dataset Overview:
   Unnamed: 0
                                              id cons_12m cons_gas_12m \
                                                  0.000000
0
                                                                4.739944
            0 24011ae4ebbe3035111d65fa7c15bc57
1
               d29c2c54acc38ff3c0614d0a653813dd
                                                  3.668479
                                                                0.000000
2
            2 764c75f661154dac3a6c254cd082ea7d 2.736397
                                                                0.000000
3
               bba03439a292a1e166f80264c16191cb 3.200029
                                                                0.000000
            4 149d57cf92fc41cf94415803a877cb4b 3.646011
                                                                0.000000
   cons last month forecast cons 12m forecast discount energy \
0
          0.000000
                             0.000000
                                                             0.0
                                                             0.0
1
          0.000000
                             2.280920
2
                                                             0.0
          0.000000
                             1.689841
3
                                                             0.0
          0.000000
                             2.382089
4
                                                             0.0
          2.721811
                             2.650065
   forecast meter rent 12m forecast price energy off peak \
                  0.444045
0
                                                   0.114481
                                                   0.145711
1
                  1.237292
2
                  1.599009
                                                   0.165794
3
                  1.318689
                                                   0.146694
                  2.122969
                                                   0.116900
   forecast_price_energy_peak
                                    months modif prod
                                                        months renewal \
0
                     0.098142
                                                     2
                                                                     6
                                                    76
                                                                     4
1
                     0.000000
2
                     0.087899
                                                    68
                                                                     8
3
                     0.000000
                                                    69
                                                                     9
4
                     0.100015
                                                    71
                    channel ewpakwlliwisiwduibdlfmalxowmwpci
   channel MISSING
0
                 0
                                                            0
1
                 1
                                                            0
2
                 0
                                                            0
3
                                                            0
   channel foosdfpfkusacimwkcsosbicdxkicaua
0
                                           1
1
                                           0
2
                                           1
                                           0
```

4	0	
0 1 2 3 4	<pre>channel_lmkebamcaaclubfxadlmueccxoimlema \ 0 0 0 1 0</pre>	
0 1 2 3 4	<pre>channel_usilxuppasemubllopkaafesmlibmsdf \ 0 0 0 0 0 0 0</pre>	
0 1 2 3 4	origin_up_kamkkxfxxuwbdslkwifmmcsiusiuosws 0 1 1 1 1	•
0 1 2 3 4	origin_up_ldkssxwpmemidmecebumciepifcamkci 0 0 0 0 0 0	•
0 1 2 3 4	origin_up_lxidpiddsbxsbosboudacockeimpuepw 1 0 0 0 0	

[5 rows x 64 columns]

```
In [20]: df encoded = pd.get dummies(df)
In [21]: | X = df.drop("churn", axis=1)
         y = df["churn"]
In [22]: X train, X test, y train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
In [28]: import pandas as pd
         from sklearn.model selection import train test split
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.preprocessing import LabelEncoder
         from sklearn.metrics import accuracy score
In [37]: label encoder = LabelEncoder()
         df['your categorical column encoded'] = label encoder.fit transform(df['id'])
In [65]: X = df.drop(["churn", 'id'], axis=1)
         y = df["churn"]
In [64]: X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
In [61]: rf model = RandomForestClassifier(random state=42)
         rf model.fit(X train, y train)
Out[61]:
                   RandomForestClassifier
         RandomForestClassifier(random state=42)
In [62]: y pred = rf model.predict(X test)
```

```
In [63]: accuracy = accuracy score(y test, y pred)
         print(f"Accuracy: {accuracy:.2f}")
         Accuracy: 0.90
In [59]: accuracy = accuracy score(y test, y pred)
         precision = precision score(y test, y pred)
         recall = recall score(y test, y pred)
         f1 = f1 score(y test, y pred)
         conf matrix = confusion matrix(y test, y pred)
In [68]: print("Evaluation Metrics:")
         print(f"Accuracy: {accuracy:.2f}")
         print(f"Precision: {precision:.2f}")
         print(f"Recall: {recall:.2f}")
         print(f"F1 Score: {f1:.2f}")
         print("Confusion Matrix:")
         print(conf matrix)
         Evaluation Metrics:
         Accuracy: 0.90
         Precision: 0.76
         Recall: 0.04
         F1 Score: 0.08
         Confusion Matrix:
         [[2613 4]
          [ 292 13]]
In [ ]:
```