MIXTILINEAR (IN/EX) - CIRCLES

RELATIVEMENT

À

UN CERCLE ADJOINT D'UN TRIANGLE

+

Jean-Louis AYME 1

Résumé.

L'auteur présente des constructions géométriques concernant les mixtilinear (in/ex)-circles ² relativement à cercle adjoint ³ d'un triangle.

Commentaires et notes historiques accompagnent l'article.

Les figures sont toutes en position générale et tous les théorèmes cités peuvent tous être démontrés synthétiquement.

Abstract.

The author presents geometric constructions concerning

the mixtilinear (in/ex)-circles relatively to an associate circle of a triangle.

Comments and notes historical come with the article.

The figures are all in general position and all cited theorems can all be shown synthetically.

Saint-Denis, Île de la Réunion (Océan Indien, France), le 04/08/2013

Cercle tangent à deux "côtés" d'un triangle et à un cercle ayant pour corde le troisième côté

Cercle passant par deux sommets d'un triangle

Sommaire		
Récapitulation	3	
A. Le triangle est inscrit dans un cercle	5	
1. Mixtilinear in-circle		
2. Mixtilinear in-circle bis		
3. Mixtilinear ex-circle		
B. Le triangle pointe à l'extérieur d'un cercle adjoint Mixtilinear in-circle	7	
2. Mixtilinear ex-circle		
C. Le triangle pointe à l'intérieur d'un cercle adjoint 1. Mixtilinear in-circle 2. Mixtilinear ex-circle	10	
2. Wilkumical ex-circle		

RÉCAPITULATION

A. LE TRIANGLE

EST INSCRIT DANS

UN CERCLE

1. Mixtilinear in-circle

VISION

Figure:

Traits:	ABC	un triangle,
	I	le centre de ABC,
	1	le cercle circonscrit à ABC,
	Pa	le demi-plan de frontière (BC) contenant A,
	Ма	la médiatrice de [BC],
	A+	le point de <i>Pa</i> , intersection de <i>Ma</i> et <i>1</i> ,
	1'a	le cercle tangent à (AB), (AC), intérieurement à 1
et	X, Y, Z	les points de contact de 1'a resp. avec 1, (AC), (AB).

Donnés : (1) B, I, X et Z sont cocycliques

- (2) C, I, X et Y sont cocycliques
- (3) A+, I et X sont alignés ⁴
- Y, I et Z sont alignés ⁵ et (AI) est perpendiculaire à (YZ) en I ⁶.

Commentaire:

cette situation géométrique qui permet de construire le mixtilinear in-circle 1a, a largement influencé celles qui vont suivre.

⁴ Lauvernay E., Journal de Mathématique Élémentaire, n° **390** (1892)

Ayme J.-L., Anew mixtilinear incircle adventure I, G.G.G. vol. 4, p. 17-18; http://perso.orange.fr/jl.ayme

Longchamps (Gohierre de) G., Question 659, Mathesis IX (1889) 207

Ayme J.-L., Anew mixtilinear incircle adventure I, G.G.G. vol. 4, p. 10-12; http://perso.orange.fr/jl.ayme

Deprez E., *Mathesis* **X** (1890) 67-68.

Ayme J.-L., Anew mixtilinear incircle adventure I, G.G.G. vol. 4, p. 15-16; http://perso.orange.fr/jl.ayme

2. Mixtilinear ex-circle

VISION

Figure:

Traits: ABC un triangle, Ia le A-excenti

Ia le A-excentre de ABC, le cercle circonscrit à ABC,

Pa le demi-plan de frontière (BC) contenant A,

Ma la médiatrice de [BC],

A- le point non situé dans *Pa*, intersection de *Ma* et *1*,

1"a tangent à (AB), (AC), extérieurement à 1

et X', Y', Z' les points de contact de 1"a resp. avec 1, (AC), (AB).

Donnés : (1) B, Ia, X' et Z' sont cocycliques

- (2) C, Ia, X' et Y' sont cocycliques
- (3) A-, Ia et X' sont alignés
- (4) Y', Ia et Z' sont alignés et (AIa) est perpendiculaire à (Y'Z') en Ia.

Commentaire:

les preuves synthétiques de ces résultats se calquent sur celles de la situation précédente.

B. LE TRIANGLE

POINTE

À L'EXTERIEUR

D'UN CERCLE ADJOINT

1. Mixtilinear incircle

VISION

Figure:

Traits:	:	ABC	un triangle,
		I	le centre de ABC,
		1a	un cercle passant par B, C tel que A en soit à l'extérieur,
		Pa	le demi-plan de frontière (BC) contenant A,
		Ма	la médiatrice de [BC],
		A-	le point non situé dans Pa, intersection de Ma et 1a,
		1'a	le cercle de Pa tangent à (AB), (AC), 1a
	et	X, Y, Z	les points de contact de <i>l'a</i> resp. avec <i>la</i> , (AC), (AB).

B, I, X et Z sont cocycliques 7 Donnés: **(1)**

O.M. Inde (2001) problème **2** Ayme J.-L., Un remarquable résultat de Vladimir Protasov, G.G.G. vol. **2**, p. 2-4 ; http://perso.orange.fr/jl.ayme

- (2) C, I, X et Y sont cocycliques
- (3) A-, I et X sont alignés 8.

Commentaire:

les preuves synthétiques de ces résultats se calquent sur celles de la situation A. 1.

2. Mixtilinear in-circle bis

VISION

Figure:

et

A Y la Ma Z L'a

Traits :	ABC	un triangle,
	I	le centre de ABC,
	1a	un cercle passant par B, C tel que A en soit à l'extérieur,
	Pa	le demi-plan de frontière (BC) contenant A,
	Ма	la médiatrice de [BC],
	A+	le point situé dans Pa , intersection de Ma et $1a$,
	1'a	le cercle de Pa tangent à (AR) (AC) I_a

1'a le cercle de Pa tangent à (AB), (AC), 1a X, Y, Z les points de contact de 1'a resp. avec 1a, (AC), (AB).

Protassov V., problème n° **162**, *APMEP* (1995?) 510-512 Ayme J.-L., Un remarquable résultat de Vladimir Protasov, G.G.G. vol. **2**, p. 6-7 ; http://perso.orange.fr/jl.ayme **Donnés :** (1) B, I, X et Z sont cocycliques ⁹

- (2) C, I, X et Y sont cocycliques
- (3) A+, I et X sont alignés 10.

Commentaire : les preuves synthétiques de ces résultats se calquent sur celles de la situation **A. 1.**

3. Mixtilinear ex-circle

VISION

Figure:

raits:	ABC	un triangle,
	Ia	le A-excentre de ABC,
	1a	un cercle passant par B, C tel que A en soit à l'extérieur,
	Pa	le demi-plan de frontière (BC) contenant A,
	Ма	la médiatrice de [BC],
	A+	le point de Pa, intersection de Ma et 1a,
	* **	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A+ le point de Pa, intersection de Ma et Ia, I''a le cercle, non situé dans Pa, tangent à (AB), (AC), Ia, X', Y', Z' les points de contact de I''a resp. avec Ia, (AC), (AB),

et

Ayme J.-L., Un remarquable résultat de Vladimir Protasov, G.G.G. vol. 2, p. 2-4; http://perso.orange.fr/jl.ayme Protassov V., problème n° 162, APMEP (1995?) 510-512

Ayme J.-L., Un remarquable résultat de Vladimir Protasov, G.G.G. vol. 2, p. 6-7; http://perso.orange.fr/jl.ayme

⁹ O.M. Inde (2001) problème **2**

Donnés : (1) B, Ia, X' et Z' sont cocycliques

- (2) C, Ia, X' et Y' sont cocycliques
- (3) A+, Ia et X' sont alignés.

Commentaire : les preuves synthétiques de ces résultats se calquent sur celles de la situation **A. 2.**

C. LE TRIANGLE

POINTE

À L'INTERIEUR

D'UN CERCLE ADJOINT

1. Mixtilinear in-circle

VISION

Figure:

Traits: ABC un triangle,

I le centre de ABC,

1a un cercle passant par B, C tel que A en soit à l'intérieur,

Pa le demi-plan de frontière (BC) contenant A,

Ma la médiatrice de [BC], A+ le point de Pa, intersection de Ma et 1a,

1'a le cercle de Pa tangent à (AB), (AC), 1a

et X, Y, Z les points de contact de *l'a* resp. avec *la*, (AC), (AB).

Donnés : (1) B, I, X et Z sont cocycliques

- (2) C, I, X et Y sont cocycliques
- (3) A+, I et X sont alignés.

Commentaire : les preuves synthétiques de ces résultats se calquent sur celles de la situation **A. 1.**

2. Mixtilinear ex-circle

VISION

Figure:

Traits: ABC un triangle,

Ia le A-excentre de ABC,

1a un cercle passant par B, C tel que A en soit à l'extérieur,

Pa le demi-plan de frontière (BC) contenant A,

Ma la médiatrice de [BC],

A+ le point de *Pa*, intersection de *Ma* et *la*,

et I''a le cercle, non situé dans Pa, tangent à (AB), (AC), Ia, et X', Y', Z' les points de contact de I''a resp. avec Ia, (AC), (AB),

Donnés: **(1)**

- B, Ia, X' et Z' sont cocycliques C, Ia, X' et Y' sont cocycliques A+, Ia et X' sont alignés. **(2)**
- **(3)**

les preuves synthétiques de ces résultats se calquent sur celles de la situation A. 2. **Commentaire:**