ELECTRICITY 2

Contents

Ι	Electric Current	1
1	Current and Current Density	1
2	Continuity Law	1

PART

Ι

Section 1

Current and Current Density

Electric charge in motion constitutes an electric current. In the steady flow of charge in a wire of cross-sectional area A, the total charge passing through this area in unit time is defined to be the electric current I at this place. If a total charge q flows through this area in time t, the current I is given by:

$$I = \frac{q}{t}. (1.1)$$

where I is measured in Ampere. Sometimes it is also convenient to look at the density of the current we're observing over a certain area A called $current\ density$

$$J = \frac{I}{A}. (1.2)$$

If the area in which the current is running through changes at points 1 and 2, the current between those 2 points remain constant $(I_1 = I_2)$ while the current density changes to become

$$\frac{J_1}{J_2} = \frac{A_2}{A_1}.$$

If a positively charged cloud of n particles moves through a space with speed v and charge q, we find that 1

q can be positive or negative

$$\vec{\mathbf{J}} = nq\vec{\mathbf{v}} = \varrho_{\tau}\vec{\mathbf{v}}.\tag{1.3}$$

The total current through a slice of space mentioned prior it calculated using

$$I = \iint_A \vec{\mathbf{J}} \, \mathrm{d}A \,. \tag{1.4}$$

The volume element here is $\vec{\mathbf{v}} \, \mathrm{d}A \, \mathrm{d}t = \mathrm{d}\tau$

SECTION 2

Continuity Law

The continuity law for current is

$$\nabla \cdot \left(\vec{\mathbf{J}} + \vec{\mathbf{J}}_c \right) = -\frac{\partial \varrho_{\tau}}{\partial t}.$$
 (2.1)

Where

 $\vec{\mathbf{J}}_{}$ is the conduction current density.

 $\vec{\mathbf{J}}_c = \varrho_{\tau} \vec{\mathbf{v}}_{\tau}$ is the convection current density.

 $\vec{\mathbf{v}}_{ au}$ is the velocity of the volume containing the particles.

There are 2 particular cases for the equation above

1. The volume is not moving $(\vec{\mathbf{v}}_{\tau} = 0 \implies \vec{\mathbf{J}}_{c} = 0)$. The continuity law of static structures is

$$\nabla \cdot \vec{\mathbf{J}} = -\frac{\partial \varrho_{\tau}}{\partial t}.$$
 (2.2)

2. The volume is not moving and we are in a steady state, so the charge density of the particles doesn't change much as they are static so $\partial \varrho_{\tau}/\partial t = 0$ so

$$\iint \vec{\mathbf{J}} \, \mathrm{d}A = 0.$$
(2.3)