Électronique Approche système, quadripôles et introduction aux amplificateurs opérationnels

Andres Arciniegas

IUT Ceray-Pontoise, Dep GEII, site de Neuville

Plan du cours

Schémas blocs

Quadripôles

Introduction aux amplificateurs opérationnels

Schémas blocs

Systèmes électroniques - vue d'ensemble

Système Electronique = ensemble complexe de fonctions

 \Rightarrow impossibilité d'étudier le schéma complet d'une traite

Systèmes électroniques - vue d'ensemble

Système Electronique = ensemble complexe de fonctions

⇒ impossibilité d'étudier le schéma complet d'une traite

Solution

- Diviser le système en « **blocs** » simples.
- Étudier chaque bloc indépendamment.
- Étudier l'assemblage des blocs.

Systèmes électroniques - vue d'ensemble

Système Electronique = ensemble complexe de fonctions

⇒ impossibilité d'étudier le schéma complet d'une traite

Solution

- Diviser le système en « **blocs** » simples.
- Étudier chaque bloc indépendamment.
- Étudier l'assemblage des blocs.

C'est cette démarche que nous allons adopter par la suite.

Exemple 1 : Dimensionnement d'un pont diviseur

- Concerne l'étude d'un bloc simple
- Fait l'interface entre un capteur et un micro-contrôleur

Exemple 1 : Dimensionnement d'un pont diviseur

- Concerne l'étude d'un bloc simple
- Fait l'interface entre un capteur et un micro-contrôleur

Si $I_m \approx 0$ A, nous pouvons exprimer $V_m = f(V_{pres})$:

Exemple 1: Dimensionnement d'un pont diviseur

- Concerne l'étude d'un bloc simple
- Fait l'interface entre un capteur et un micro-contrôleur

Si $I_m \approx 0$ A, nous pouvons exprimer $V_m = f(V_{pres})$:

$$V_m = \frac{R_2}{R_1 + R_2} V_{pres} \tag{1}$$

Exemple 1 : Dimensionnement d'un pont diviseur

- Concerne l'étude d'un bloc simple
- Fait l'interface entre un capteur et un micro-contrôleur

- le bloc (diviseur de tension) relie une entrée à une sortie,
- nous pouvons déduire de l'étude du schéma le lien entre l'entrée et la sortie.

Exemple 2 : Commande de l'inclinaison d'un quadricoptère

Le même raisonnement peut être mené sur des systèmes plus complexes

Exemple 2 : Commande de l'inclinaison d'un quadricoptère

Le même raisonnement peut être mené sur des systèmes plus complexes

schéma de principe:

Exemple 2 : Commande de l'inclinaison d'un quadricoptère

Le même raisonnement peut être mené sur des systèmes plus complexes

schéma de principe:

schéma bloc:

Permet des premiers calculs!

Bloc: définition (1/3)

Bloc = boite noire (peu importe le schéma interne)

Bloc: définition (1/3)

Bloc = boite noire (peu importe le schéma interne)

- e est le signal d'entrée (tension, courant... : quantité physique)
- s est le signal de sortie (tension, courant... : quantité physique)

Bloc: définition (2/3)

Bloc = boite noire (peu importe le schéma interne)

On parle du bloc H, où H est définie mathématiquement par :

$$H = \frac{s}{e}$$

Bloc: définition (2/3)

Bloc = boite noire (peu importe le schéma interne)

On parle du bloc H, où H est définie mathématiquement par :

$$H = \frac{s}{e}$$

Rmq 1: H peut avoir une unité,

Rmq 2 : H est la caractéristique de **transfert** de l'entrée vers la sortie, on parle de **fonction de transfert**

Rmq 3 : si H est un nombre réel on parle également de Gain du bloc!

Bloc: définition (3/3)

On défini également deux blocs pour l'addition et la soustraction, avec plusieurs entrées et une seule sortie :

$$\xrightarrow{e_1} \xrightarrow{s_1}$$

$$- \mid e_2 \mid$$

$$s_1 = e_1 + e_2$$

$$s_1 = e_1 - e_2$$

Opérations sur les blocs (1/2)

Mise en cascade (attention : \neq mise en série)

Opérations sur les blocs (1/2)

Mise en cascade (attention : \neq mise en série)

$$H' = H_1 \cdot H_2$$

Opérations sur les blocs (2/2)

Contre-réaction (attention : \neq mise en parallèle)

Opérations sur les blocs (2/2)

Contre-réaction (attention : \neq mise en parallèle)

$$H' = \frac{A}{1 + \beta \cdot A}$$

Opérations sur les blocs (2/2)

Contre-réaction (attention : \neq mise en parallèle)

La fonction de transfert/Gain équivalent(e) H' est :

$$H' = \frac{A}{1 + \beta \cdot A}$$

Cette configuration est très importante en électronique, notamment pour les montages à Amplificateurs Opérationnels

Quadripôles

Schémas bloc

• Permettent une vue synthétique d'un système (sans vue « composant »),

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,
- en particulier : en électronique, une flèche (entrée/sortie) = paire de fils

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,
- en particulier : en électronique, une flèche (entrée/sortie) = paire de fils

Solution

Utilisation de quadripôles qui permettent :

• une vue synthétique d'un système de manière similaire aux blocs,

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,
- en particulier : en électronique, une flèche (entrée/sortie) = paire de fils

Solution

Utilisation de quadripôles qui permettent :

- une vue synthétique d'un système de manière similaire aux blocs,
- de prendre en compte les grandeurs électriques (courant/tension),

Schémas bloc

- Permettent une vue synthétique d'un système (sans vue « composant »),
- mais : ne sont pas spécifiques à l'électricité,
- en particulier : en électronique, une flèche (entrée/sortie) = paire de fils

Solution

Utilisation de quadripôles qui permettent :

- une vue synthétique d'un système de manière similaire aux blocs,
- de prendre en compte les grandeurs électriques (courant/tension),
- d'inclure les lois électriques (Ohm, Kirchhoff...)

Représentation sous forme d'une boite noire avec deux paires de fils :

- ullet un couple tension/courant d'entrée V_1 , I_1
- ullet un couple tension/courant de sortie V_2 , I_2

Représentation sous forme d'une boite noire avec deux paires de fils :

- ullet un couple tension/courant d'entrée V_1 , I_1
- ullet un couple tension/courant de sortie V_2 , I_2

Attention!

contrairement aux blocs, pas de sens entrée/sortie,

Représentation sous forme d'une boite noire avec deux paires de fils :

- ullet un couple tension/courant d'entrée V_1 , I_1
- ullet un couple tension/courant de sortie V_2 , I_2

Attention!

- o contrairement aux blocs, pas de sens entrée/sortie,
- Convention quadripôle: tous les courants sont rentrants,

Représentation sous forme d'une boite noire avec deux paires de fils :

- ullet un couple tension/courant d'entrée V_1 , I_1
- ullet un couple tension/courant de sortie V_2 , I_2

Attention!

- o contrairement aux blocs, pas de sens entrée/sortie,
- Convention quadripôle: tous les courants sont rentrants,
- il y a quatre quantités, définir le fonctionnement du quadripôle nécessite de définir 4 – 1 = 3 propriétés.

Définitions : Gain en tension à vide

Caractéristique de transfert :

On définit le gain en tension à vide par :

$$A_0 = \left. \frac{V_2}{V_1} \right|_{I_2 = 0}$$

<u>attention</u>: pour le calcul ou la mesure, on doit impérativement débrancher la charge en sortie.

Définitions : Résistance d'entrée

Caractéristique d'entrée :

On définit la résistance d'entrée par la loi d'Ohm en entrée :

$$R_{\Theta} = \left. \frac{V_1}{I_1} \right|_{I_2 = 0}$$

<u>attention</u>: pour le calcul ou la mesure, on doit impérativement débrancher la charge en sortie.

Définitions : Résistance de sortie

Caractéristique de sortie :

On définit la résistance de sortie par la loi d'Ohm en sortie :

$$R_{s} = \left. \frac{V_2}{I_2} \right|_{I_1 = 0}$$

<u>attention</u>: pour le calcul ou la mesure, on doit impérativement annuler l'excitation en entrée.

Quadripôle en tension

- entrée : simple résistance,
- sortie : générateur non idéal de tension (générateur de Thévenin).

Quadripôle en tension

• entrée : simple résistance,

• sortie : générateur non idéal de tension (générateur de Thévenin).

<u>Question</u>: que ce passe t'il si l'on met un générateur non idéal en entrée et une charge en sortie ?

Mise en cascade

Mise en cascade

• en entrée et sortie : quadripôles de même type,

Mise en cascade

- en entrée et sortie : quadripôles de même type,
- \bullet à priori, on s'attend à avoir sur la charge $R_{\rm C}$ la tension d'entrée V_g multipliée par le gain A_0

Mise en cascade

- en entrée et sortie : quadripôles de même type,
- \bullet à priori, on s'attend à avoir sur la charge $R_{\rm C}$ la tension d'entrée V_g multipliée par le gain A_0

ATTENTION: vrai sous certaines conditions uniquement!

Condition en entrée

Condition en entrée

$$V_1 = \frac{R_{\Theta}}{R_{\Theta} + R_{\mathcal{G}}} V_{\mathcal{G}}$$

Condition en entrée

$$V_1 = \frac{R_{\Theta}}{R_{\Theta} + R_{\Theta}} V_{\mathcal{G}}$$

On a tout intérêt à avoir $R_{\Theta}\gg R_{G}$, ou dans l'idéal $R_{\Theta}\to +\infty$ (ainsi $V_{1}=V_{G}$)

Condition en sortie

Condition en sortie

$$V_2 = \frac{R_C}{R_C + R_S} A_0 V_1$$

Condition en sortie

$$V_2 = \frac{R_C}{R_C + R_S} A_0 V_1$$

On a tout intérêt à avoir $R_s \ll R_c$, ou dans l'idéal $R_s \to 0$ (ainsi $V_2 = A_0 V_1$)

Introduction aux amplificateurs opérationnels

Rappel: contre-réaction

Nous avons vu avec le schéma bloc la configuration suivante en contre-réaction :

Rappel

Dans ce cas, la fonction de transfert est :

Rappel: contre-réaction

Nous avons vu avec le schéma bloc la configuration suivante en contre-réaction :

Rappel

Dans ce cas, la fonction de transfert est :

$$H = \frac{s}{e} = \frac{A_0}{1 + \beta A_0}$$

Que se passe-t'il maintenant si :

Que se passe-t'il maintenant si :

• β est un diviseur de tension ($\Rightarrow \beta < 1$, facile à réaliser avec deux résistances)

Que se passe-t'il maintenant si :

- β est un diviseur de tension ($\Rightarrow \beta < 1$, facile à réaliser avec deux résistances)
- et A_0 est un gain énorme (peu importe sa valeur exacte), pour les calculs $A_0 \to +\infty$

Que se passe-t'il maintenant si :

- β est un diviseur de tension ($\Rightarrow \beta < 1$, facile à réaliser avec deux résistances)
- et A_0 est un gain énorme (peu importe sa valeur exacte), pour les calculs $A_0 \to +\infty$

Solution

$$\lim_{A_0 \to +\infty} H =$$

Que se passe-t'il maintenant si :

- β est un diviseur de tension ($\Rightarrow \beta < 1$, facile à réaliser avec deux résistances)
- et A_0 est un gain énorme (peu importe sa valeur exacte), pour les calculs $A_0 \to +\infty$

Solution

$$\operatorname{lim}_{A_0 \to +\infty} H = \operatorname{lim}_{A_0 + \to \infty} \frac{A_0}{1 + \beta A_0} =$$

Que se passe-t'il maintenant si :

- β est un diviseur de tension ($\Rightarrow \beta < 1$, facile à réaliser avec deux résistances)
- et A_0 est un gain énorme (peu importe sa valeur exacte), pour les calculs $A_0 \to +\infty$

Solution

$$\lim_{A_0 \to +\infty} H = \lim_{A_0 \to +\infty} \frac{A_0}{1+\beta A_0} = \lim_{A_0 \to +\infty} \frac{1}{\frac{1}{A_0}+\beta} =$$

Que se passe-t'il maintenant si :

- β est un diviseur de tension
 (⇒ β < 1, facile à réaliser avec deux résistances)
- et A_0 est un gain énorme (peu importe sa valeur exacte), pour les calculs $A_0 \to +\infty$

Solution

$$\begin{split} \lim_{A_0 \to +\infty} H = \lim_{A_0 \to +\infty} \frac{A_0}{1+\beta A_0} = \lim_{A_0 \to +\infty} \frac{1}{\frac{1}{A_0}+\beta} = \frac{1}{\beta} \\ \text{et } \frac{1}{\beta} > 1 \end{split}$$

nous venons de créer un schéma qui est un <u>amplificateur</u> de **gain contrôlé** $^{
m l}/_{
m eta}$

L'idée derrière l'Amplificateur opérationnel est exactement là :

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

L'idée derrière l'Amplificateur opérationnel est exactement là :

L'idée derrière l'Amplificateur opérationnel est exactement là :

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil: une entrée non-inverseuse,
- un gain à vide A₀ énorme (quasi-infini)

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil: une entrée non-inverseuse,
- un gain à vide A_0 énorme (quasi-infini)
- une paire de fils : tension de sortie

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil : une entrée inverseuse,
- un fil: une entrée non-inverseuse,
- un gain à vide A_0 énorme (quasi-infini)
- une paire de fils : tension de sortie

Attention

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil: une entrée non-inverseuse,
- un gain à vide A_0 énorme (quasi-infini)
- une paire de fils : tension de sortie

Attention

on parlera d'un composant électronique : plus de flèche mais des fils,

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil: une entrée non-inverseuse,
- un gain à vide A_0 énorme (quasi-infini)
- une paire de fils : tension de sortie

Attention

- on parlera d'un composant électronique : plus de flèche mais des fils,
- restent à définir les propriétés manquantes : résistances d'entrée et sortie.

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil : une entrée non-inverseuse,
- un gain à vide A_0 énorme (quasi-infini)
- une paire de fils : tension de sortie

Attention

- on parlera d'un composant électronique : plus de flèche mais des fils,
- restent à définir les propriétés manquantes : résistances d'entrée et sortie.
- TOUT CELA N'EST VALABLE QUI SI LE SCHÉMA INCLUT UNE CONTRE-RÉACTION!

AOP, symbole et broches

AOP, symbole et broches

- v_{-} entrée inverseuse,
- v₊ entrée non-inverseuse,
- *v_o* sortie, référencée à la masse

AOP, symbole et broches

- v₋ entrée inverseuse,
- v_+ entrée non-inverseuse,
- *v_o* sortie, référencée à la masse
- VCC et VEE les tensions d'alimentation (symétrique ou non)

leur représentation n'est pas obligatoire mais en pratique :

$$VCC > v_O > VEE$$

AOP, symbole et broches

- v₋ entrée inverseuse,
- ullet v_+ entrée non-inverseuse,
- *v_o* sortie, référencée à la masse
- VCC et VEE les tensions d'alimentation (symétrique ou non)

leur représentation n'est pas obligatoire mais en pratique :

$$VCC > v_O > VEE$$

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741 (1)

PARAMETER	TEST C	TEST CONDITIONS		TYP	MAX	UNIT
lt	D < 40.10	T _A = 25°C		1	5	mV
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V	$T_A = 25$ °C, $V_S = \pm 20 \text{ V}$		±15		mV
Input offset current	T _A = 25°C			20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500 nA	
land the annual	T _A = 25°C	T _A = 25°C		80	500	nA
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$			1.5	μA
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		٧
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _I ≥ 2	T _A = 25°C	50	200		V//
	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741(1)

PARAMETER	TEST C	TEST CONDITIONS		TYP	MAX	UNIT
	5 . 10.10	T _A = 25°C		1	5	mV
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current	T _A = 25°C			20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		85	500	nA
	T _A = 25°C			80	500	nA
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		٧
l!l #!-	V _S = ±15 V, V _O = ±10 V, R _I ≥ 2	T _A = 25°C	50	200		V/m\
Large signal voltage gain	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			v/mv

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741(1)

PARAMETER	TEST C	TEST CONDITIONS		TYP	MAX	UNIT
Input offset voltage	D = 1010	T _A = 25°C		1	5	mV
	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	$T_A = 25$ °C, $V_S = \pm 20 \text{ V}$			±15		mV
Input offset current	$T_A = 25^{\circ}C$ $T_{AMIN} \le T_A \le T_{AMAX}$			20	200	nA
				85	500	nA
	T _A = 25°C			80	500	nΑ
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$			1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V/mV
	kΩ	$T_{\Delta MIN} \le T_{\Delta} \le T_{\Delta M\Delta X}$	25			v/mV

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ?

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics I M741(1)

PARAMETER	TEST C	TEST CONDITIONS		TYP	MAX	UNIT	
	5	T _A = 25°C		1	5	mV	
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV	
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV	
Input offset current	T _A = 25°C		20 2		200	nA	
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	00 nA	
	T _A = 25°C			80	500	nA	
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ	
Input resistance	T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		2		ΜΩ	
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V	
lll	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		1//1	
Large signal voltage gain	kΩ	$T_{\Delta MIN} \le T_{\Delta} \le T_{\Delta M\Delta X}$	25			V/mV	

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ? si l'alimentation est à 15 V, $v_o < 15V$:

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741(1)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
lt	D < 40.10	T _A = 25°C		1	5	mV
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current	T _A = 25°C			20	200	0 nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	500
Input bias current	T _A = 25°C			80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		1//1
	kΩ	$T_{\Delta MIN} \le T_{\Delta} \le T_{\Delta M\Delta X}$	25			V/m\

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ?

si l'alimentation est à 15 V, $v_o < 15 V$:

$$\Rightarrow v_{+} - v_{-} < \frac{v_{o}}{A_{0}} < \frac{15}{2 \cdot 10^{5}} = 75 \ \mu V$$

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741(1)

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT	
lt	D = 1010	T _A = 25°C		1	5	mV	
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV	
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV	
Input offset current	T _A = 25°C		20		200	nA	
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	500 HA	
to and to be a second	T _A = 25°C			80	500	nA	
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ	
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ	
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V	
Lanca alamat cathana anta	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V//V	
Large signal voltage gain	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV	

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ?

si l'alimentation est à 15 V, $v_o < 15V$:

$$\Rightarrow v_{+} - v_{-} < \frac{v_{o}}{A_{0}} < \frac{15}{2 \cdot 10^{5}} = 75 \ \mu V$$

soit
$$\varepsilon = v_+ - v_- \approx 0 \ V$$

Exemple tiré de la documentation du LM741:

6.5	Electrical	Characteristics,	LM741 (1)
-----	------------	------------------	-----------

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT	
lt	D = 1010	T _A = 25°C		1	5	mV	
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV	
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV	
Input offset current	T _A = 25°C		20		200	nA	
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	500 HA	
to and to be a second	T _A = 25°C			80	500	nA	
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ	
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ	
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V	
Lanca alamat cathana anta	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V//V	
Large signal voltage gain	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV	

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ?

si l'alimentation est à 15 V, $v_0 < 15V$:

$$\Rightarrow v_{+} - v_{-} < \frac{v_{o}}{A_{0}} < \frac{15}{2 \cdot 10^{5}} = 75 \ \mu V$$

soit
$$\varepsilon = v_+ - v_- \approx 0 \ V$$

Hypothèse 1

En pratique, si l'AOP est contre-réactionné, on pose :

$$V_+ = V_-$$

AOP: résistance d'entrée

Rappel: Dans un quadripôle en tension, la résistance d'entrée idéale est infinie.

AOP: résistance d'entrée

Rappel: Dans un quadripôle en tension, la résistance d'entrée idéale est infinie.

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741 (1)

PARAMETER	TEST C	TEST CONDITIONS		TYP	MAX	UNIT
Input offset voltage	5 - 1010	T _A = 25°C		1	5	mV
	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current	T _A = 25°C		20		200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	nA
	T _A = 25°C			80	500	nA
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μA
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V
I	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		
Large signal voltage gain	kΩ	$T_{\Delta MIN} \le T_{\Delta} \le T_{\Delta M\Delta X}$	25			V/mV

AOP: résistance d'entrée

Rappel: Dans un quadripôle en tension, la résistance d'entrée idéale est infinie.

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
Input offset voltage	B + 40.10	T _A = 25°C		1	5	mV
	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	$T_A = 25^{\circ}C$, $V_S = \pm 20 \text{ V}$			±15		mV
Input offset current	T _A = 25°C			20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		85	500	nA
Input bias current	T _A = 25°C			80	500	nA
input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μA
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V
	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		
Large signal voltage gain	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV

Hypothèse 2

Dans un AOP, on considère la résistance d'entrée comme infinie. On pose :

$$i_{+} = i_{-} = 0$$

AOP : résistance de sortie

Rappel: Dans un quadripôle en tension, la résistance de sortie idéale est nulle.

AOP: résistance de sortie

Rappel: Dans un quadripôle en tension, la résistance de sortie idéale est nulle.

Hypothèse 3

Dans un AOP, on considère la résistance de sortie comme nulle, la sortie est un générateur de tension idéal.

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert).

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert).

Méthode

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert).

Méthode

 dans un premier temps: on vérifie TOUJOURS que le circuit comporte une contre-réaction (lien électrique entre la sortie et l'entrée inverseuse)

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert).

Méthode

- dans un premier temps: on vérifie TOUJOURS que le circuit comporte une contre-réaction (lien électrique entre la sortie et l'entrée inverseuse)
- si et uniquement si c'est le cas, on peut poser l'équation $v_+ = v_-$

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert).

Méthode

- dans un premier temps: on vérifie TOUJOURS que le circuit comporte une contre-réaction (lien électrique entre la sortie et l'entrée inverseuse)
- si et uniquement si c'est le cas, on peut poser l'équation $v_+ = v_-$
- en utilisant $i_+ = 0$ et $i_- = 0$ on peut généralement calculer v_+ et v_- en fonction des autres tensions du circuit,
- la suite est normalement plus évidente...

Un premier exemple

Objectif: calculer le gain du montage suivant

• y a-t'il une contre-réaction ? :

• y a-t'il une contre-réaction ? : oui $(R_2$ et R_1), donc l'AOP est en régime linéaire et :

$$V_+ = V_-$$

• y a-t'il une contre-réaction ? : oui $(R_2$ et R_1), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

•
$$i_{-} = 0$$
,

 y a-t'il une contre-réaction ? : oui (R₂ et R₁), donc l'AOP est en régime linéaire et :

$$V_+ = V_-$$

• $i_-=0$, on peut donc relier v_- à V_s en utilisant un diviseur de tension :

$$V_- = \frac{R_1}{R_1 + R_2} V_s$$

 y a-t'il une contre-réaction ? : oui (R₂ et R₁), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• $i_- = 0$, on peut donc relier v_- à V_s en utilisant un diviseur de tension :

$$V_- = \frac{R_1}{R_1 + R_2} V_s$$

ullet de manière plus évidente : $v_+=V_e$

• y a-t'il une contre-réaction ? : oui $(R_2$ et R_1), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• $i_- = 0$, on peut donc relier v_- à V_s en utilisant un diviseur de tension :

$$V_- = \frac{R_1}{R_1 + R_2} V_s$$

- ullet de manière plus évidente : $v_+ = V_{
 m e}$
- or nous avons déjà écrit $v_+=v_-$, donc $V_{\rm e}=\frac{R_1}{R_1+R_2}V_{\rm s}$

 y a-t'il une contre-réaction ? : oui (R₂ et R₁), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• $i_- = 0$, on peut donc relier v_- à V_s en utilisant un diviseur de tension :

$$V_- = \frac{R_1}{R_1 + R_2} V_s$$

- ullet de manière plus évidente : $v_+ = V_{
 m e}$
- ullet or nous avons déjà écrit $v_+=v_-$, donc $V_{ullet}=rac{\mathcal{R}_1}{\mathcal{R}_1+\mathcal{R}_2}V_{ullet}$

$$\Rightarrow \frac{Vs}{Ve} = 1 + \frac{R_2}{R_1}$$