آموزش یادگیری عمیق Deep Learning

« راه اندازی بستر کدنویسی »

سعید محققی / دانشگاه شاهد / ۹۹ – ۱۳۹۸

برنامەنويسى يادگيرى عميق

- ۱- راهنمای انتخاب سختافزار
- ۲- نرمافزارهای برنامه نویسی در حوزه یادگیری عمیق
 - ۳- نحوه راهاندازی یک بستر نرمافزاری
 - ۴- کدهای نمونه

سخت افزار

■ موارد مهم

- 1. پردازنده گرافیکی (GPU)
- 2. پردازنده مرکزی (CPU)
 - 3. حافظه RAM
- 4. مادربرد (Motherboard)
 - 5. منبع تغذیه (Power)

پردازنده گرافیکی (GPU)

- شرکت NVidia
- انتخاب کارت گرافیکی بر اساس امتیاز Computational Capability

https://developer.nvidia.com/cuda-gpus/

- حداقل امتياز مورد قبول: 3.5
 - امتياز مناسب: 5 و بالاتر

پردازنده مرکزی (CPU)

- شرکت Intel
- اهمیت کم تر به دلیل استفاده از GPU
 - ردهبندی CPU ها

https://www.cpubenchmark.net/

حافظه RAM و مادربرد

RAM =

- DDR4 از نوع DDR4 ■
- حداقل 16 GB

<u>Motherboard</u> ■

- پشتیبانی از سوکت CPU
- پشتیبانی از تعداد مورد نظر RAM و کارت گرافیکی

منبع تغذيه

■ نرمافزار آنلاین محاسبه توان مصرفی قطعات کامپیوتر

https://green.ir/calculator

نرمافزار

• زبانهای برنامهنویسی

- Python .1
- *Matlab* (>2018) .2
 - *C*++ .*3*
 - Java .4

نرمافزار

بسترهای کدنویسی ■

1. Tensorflow

2. Theano

3. Caffe / Caffe 2

4. Torch / PyTorch

CNTK .5

DeepLearning4j .6

MatConvNet .7

مقایسه بسترهای نرمافزاری

Software	Interface	Owner
TensorFlow	Python, C++, Java	Google Research
Theano	Python, C++	Montreal Institute for Learning Algorithms (MILA)
Caffe / Caffe 2	Python, C++, Matlab	Berkeley Vision and Learning Center (BVLC)
Torch / PyTorch	Lua / Python	Ronan Collobert & others
CNTK	Python, C++	Microsoft Research
Deeplearning4j	Java, Scala, C	Skymind
Matlab	Matlab	MathWorks

كتابخانههاى سطح بالا

Library	Platform
PyLearn2	Theano
Blocks	Theano
Lasagna	Theano
Keras	Theano / TensorFlow / CNTK
TFLearn	TensorFlow
TF-Slim	TensorFlow
TensorLayer	TensorFlow

راهاندازی یک بستر کدنویسی

مشخصات کلی

Windows / Linux	سیستم عامل
Python	زبان برنامەنويسى
TensorFlow	بستر نرمافزاری
Keras	كتابخانه سطح بالا

پیشنیازها

- CUDA Toolkit (8.0)
 - Download: https://developer.nvidia.com/cuda-toolkit/
- **cuDNN** (5 or 5.1)
 - Download: https://developer.nvidia.com/cudnn/
 - Copy to "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0"

راهاندازی Python

- 1. نصب Anaconda برای پایتون ۳
- 2. اجرای دستور زیر در پنجره command prompt ویندوز:
- conda update conda

■ (نیاز به اتصال به اینترنت)

راهاندازی Tensorflow

- > conda install tensorflow
- conda install tensorflow-gpu
- > conda list tensorflow

1. نصب برای CPU

2. نصب برای GPU

tensorflow تست ورژن

■ (نیاز به اتصال به اینترنت)

تست import

■ اجرای دستورات زیر در پنجره command prompt ویندوز:

- > ipython
- >> import tensorflow as tf
- >> tf.test.is_gpu_available()

دادههای keras

■ دیتاستهای استاندارد keras در کتابخانه keras.datasets

- mnist
- cifar10 / cifar100
- reuters
- imdb
- boston_housing

■ دیتاستهای استاندارد keras بعد از دانلود در مسیر زیر قرار می گیرند

C:\Users\<username>\.keras\datasets

شروع كدنويسي

- روش ۱:
- نوشتن کدها در محیط python در پنجره
 - روش ۲:
 - نوشتن کدها در یک فایل متنی با پسوند py -
 - اجرای فایل از command prompt

شروع كدنويسي

- روش ۳:
- کدنویسی و اجرا در محیط Jupyter
 - روش ۴:
- کدنویسی و اجرا در برنامه هایی مانند Spyder یا

کدنویسی خودرمزنگار با Keras

کدنویسی خودرمزنگار با Keras

Import کردن توابع و کتابخانههای مورد نیاز

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.models import Model

from tensorflow.keras.datasets import mnist

import numpy as np

کدنویسی خودرمزنگار در Keras

■ بارگذاری دادههای MNIST

(x_train, _), (x_test, _) = mnist.load_data()

■ در صورتی که فایل mnist.npz در پوشه datasets موجود نباشد در ابتدای اجرا، این فایل دانلود شده و در پوشه datasets ذخیره می شود.

ايجاد لايهها

■ داده ورودی (۷۸۴ نقطه برای هر تصویر ۲۸ X ۲۸)

input_img = Input(shape=(784,))

■ لايه encoder (۳۲ نورون)

encoded = Dense(32, activation='relu')(input_img)

■ لايه decoder (۲۸۴ نورون)

decoded = Dense(784, activation='sigmoid')(encoded)

ایجاد مدل

■ تعریف مدل

autoencoder = Model(input_img, decoded)

■ کامپایل کردن مدل

autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

■ نمایش یک گزارش از مشخصات و پارامترهای مدل

autoencoder.summary()

آمادهسازي دادهها

■ نرمالیزه کردن مقادیر بین 0 و 1

 $x_{train} = x_{train.astype('float32')} / 255.$

■ تغيير ابعاد دادهها: (60000, 784) → (60000, 784)

x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))

x_train = x_train.reshape(60000, 784) → x_train = x_train.reshape

■ نمایش ابعاد دادهها

print(x_train.shape)

أموزش مدل

 $n_{epochs} = 10$

■ تعداد گامها

■ شروع أموزش

autoencoder.fit(x_train, x_train,

epochs=n_epochs,

batch_size=256,

shuffle=True,

validation_data=(x_test, x_test))

تست کدهای نمونه

"dCAE_keras.py"

■ خودرمزنگار کانولوشنی برای حذف نویز تصاویر:

■ مثالهای keras_examples در پوشه "keras_examples

- توضیحات هر کد در فایل "README.md"

پایان