

Visual World Paradigm

Acquisition and analysis of eye-tracking data (SoSe 23)

Team Pegasus

- Pritom Gogoi
- Manpa Barman
- Kapil Mulchandani

Research Question

Does the presence of similar-sounding words influence our tendency to focus more on pictures that match those words in a visual world paradigm study?

Background

What is Visual World Paradigm?

The visual world paradigm is an experimental framework that investigates language processing by monitoring participants' eye movements while they interact with visual stimuli.

Relevance to our project?

Our project is to study the nature of spoken word recognition as the word unfolds. Here the key aspect of the visual world paradigm is that participants' eye movements serve as an index of their ongoing language processing and interpretation.

Reference Paper: Allopenna, P., Magnuson, J., & Tanenhaus, M. (1998). <u>Tracking the time course of spoken word recognition using eye movements: evidence for continuous mapping models.</u> Journal of Memory and Language, 38, 419-439.

Background (contd.)

What are the key conclusions investigated in our project regarding spoken word recognition and the underlying models?

- Spoken word recognition is dynamic in nature which suggests that listeners continuously update and refine their interpretations as more information becomes available.
- Spoken word recognition models make assumptions that multiple candidates compete for recognition during the unfolding of the spoken word.

Background (contd.)

FIG: Probability of fixating on each item type over time in the full competitor condition

Design and Logic

Experiment UI

Timeline of a trial

Intro

Backend: PsychoPy

Foreground: black Background: white

- Contains introduction and preliminary instructions
- Progression requires mouse clicks

Intro

Initializes variables that are required in the trials

- Initializes the eye tracking hardware and starts the recording of the samples
- Logs: START_EXP

- The order of the trials is randomized
- ► Loop data is read from a file named stimuli.csv that contains the specific data required for each trial

The rest of the elements are children of this node.

- Randomizes the positions of the stimuli in the grid box
- Sets the variables:
 - img_top
 - img_left
 - o img_bottom
 - img_right

Log indicating the start of a trial

```
fixate_center_audio_onset,
cond: [condition]
target: [target]
```


- Displays the 3x3 grid box along with the stimuli
- Duration: 3 s
 - To allow the participant to explore the elements on the screen

Log indicating the start of a trial

```
start_trial: [count_trial_sequence]
t: [img_top]
r: [img_right]
b: [img_bottom]
l: [img_left]
```


 Indicates the onset of the audio prompt for initial fixation at the center

```
fixate_center_audio_onset,
cond: [condition]
target: [target]
```

Audio item for prompt "Fixate at the centre"

- Logs:
 centre_gaze_start
- Samples and checks if the participant's gaze is within a certain distance from the center
- Removed and later replaced by a delay of 1.1 s

 Log to indicate the onset of the instruction to click on a certain stimulus

instruction_to_click_onset

- log_audio_target_start
- audio_stimulus
- log_audio_target_end

- Logs log_audio_target_start
- Plays the audio stimulus
- b Logs log_audio_target_end

- 1 trial_response
- log_click_response_end
- record_clicked_object

- Records mouse click response
- Logs click_response_end
- Stores the id of the clicked object

- fixate_prompt_2
- log_final_fixation_start
- wait_for_centre_gaze_at_end

- Audio prompt to fixate at the center
- Logs final_fixation_start, selected: [clicked]
- Fixation check for the center (same as previous), also replaced by a delay

- Logs final_fixation_end
- A screen indicating the end of a trial
- Logger (for all variables)

Timeline of a trial (recap)

Overall Logic

- ▶ Stimuli are chosen as per the different pairs of sets included in the original paper.
 - The authors chose the pairs based on frequency (per million words in the Kucera and Francis, 1967, corpus)
- A fixation at a point on the screen indicates that the participant is paying attention to it.
- Noting timestamps of the samples is essential. Our analysis depends on the chronology of events.
- Fixations at the centre of the screen marks the start and end of a trial.

Stimulus Design

Line drawings

Sources:

- ▶ Image search for assets licensed under Creative Commons BY-SA
 - Direct use
 - o Edge detection in GIMP

Specifications:

- ≥ 256x256
- PNG Format

Line drawings (contd.)

Choice of Stimuli:

Based on the eight 'referent - cohort - rhyme - unrelated' sets:

- beaker, beetle, speaker, dolphin
- carrot, carriage, parrot, nickel
- candle, candy, handle, dollar
- pickle, picture, nickel, speaker
- casket, castle, basket,nickel
- paddle, padlock, saddle, dollar
- dollar, dolphin, collar, beaker
- ▷ sandal, sandwich, candle, parrot

Auditory stimuli

Sources:

- Generated using <u>app.acoust.io</u>
 - Voice profile: Davis
 - Playback speed: 0.8x

Specifications:

Sampling rate: 48Hz (relevant for use with psychoPy backend in OpenSesame)

Conditions

Full Competitor Set (FC)

a referent (Re), a cohort (C), a rhyme (Rh) and an unrelated (U)

a referent (Re), a rhyme (Rh), two unrelated (U)

Cohort Competitor Set (CC)

a referent (Re), a cohort (C) and two unrelated (U).

Unrelated Set (UC)

a referent (Re), three unrelated (U)

Condition Chart

Condition No	Trials (how many	Conditions		
exam	examples of such)	Competitor Set	Target	Distractors
1	3	FC	Re	C, Rh, U
2	3	FC	С	Re, Rh, U
3	3	FC	Rh	Re, C, U
4	3	FC	U	Re, C, Rh
5	3	CC	Re	C, U, U
6	3	CC	С	Re, U, U
7	3	CC	U	Re, C, U
8	3	RC	Re	Rh, U, U
9	3	RC	Rh	Re, U, U
10	3	RC	U	Re, Rh, U
11	3	UC	Re	U, U, U
12	3	UC	U	Re, U, U

Randomization of stimuli and trials

Order Randomization

The order of the trials are randomized across participants.

Stimuli Distribution

Each stimuli is shown approx. equal number of times.

Target Distribution

Each stimuli is chosen as the target an approx. equal number of times.

Link to the stimuli distribution sheet

How we organized the trials?

Total Number of Participants: 15

- 1. The GazePoint GP3 eye tracker was used for the experiment. Details on the GazePoint API can be found here.
- 2. We provided the participants with preliminary information regarding the experiment as per the protocols of data collection. You can find the information sheet and protocols that we used, here. We also asked the participants to sign the consent forms.
- 3. Prior to the experiment, the participants were made familiar with the stimuli by showing them the pictures of the stimuli on a <u>sheet</u>. They were asked to name each of the objects aloud, until named correctly.

How we organized the trials? (contd.)

- 4. The experiment is then started after calibrating the participants' eyes with the calibration software.
- 5. The experiment duration is around 18 mins per participant including the pre-experiment information and post-experiment discussion sessions.
- 6. After each experiment we briefed the participants on the main aim of our experiment and noted their feedbacks.

Quality control

Trials were not included in our analyses if:

- During a trial, the calibration deteriorated to such an extent that it was not possible to label fixations.
- the participant did not maintain fixation on the cross until the appropriate instruction began
- the participant never fixated on or selected the correct target

(Allopenna et al. 1998)

Quality control

Trials were not included in our analyses if:

- During a trial, the calibration deteriorated to such an extent that it was not possible to label fixations.
- began the participant did not maintain fixation on the cross until the appropriate instruction
- b the participant never fixated on or selected the correct target

(Allopenna et al. 1998)

We discarded the readings of 3 participants due to quality issues (see later)

Quality control (contd.)

- Gaze samples relevant for our task?
 - From the onset of auditory stimuli: LOG AUDIO TARGET START
 - o until the mouse click response: CLICK RESPONSE END
- Verify all logs checkpoints exist for each trial
 - If missing, check and adjust sampling rate

Coordinates!

OpenSesame to cartesian (scaled):

OpenGaze to cartesian:

```
def shift_coordinate_system_bottom_left_to_top_left(x, y):
    return (x, -1 * y + 1)
```

Plots of fixations (spatial view)

- Plot FPOGX vs. FPOGY (red dots)
 - Plot only those sample with FPOGV == 1 (valid samples)
- Draw the stimuli grid box
- Add label on each of the stimulus boxes
- Add a legend to the plot
 - Condition number
 - Target
 - Selected stimulus

Preprocessing & Analysis

Logs (recap)

```
START EXP
START TRIAL: 0 T: SADDLE.PNG R: PICKLE.PNG B: PADLOCK.PNG L: CANDY.PNG
FIXATE_CENTER_AUDIO_ONSET, COND: 12 TARGET: CANDY
CENTRE GAZE START
INSTRUCTION TO CLICK ONSET
LOG AUDIO TARGET START
LOG AUDIO TARGET_END
CLICK RESPONSE END
FINAL FIXATION START, SELECTED: CANDY.PNG
FINAL FIXATION END
STOP EXP
```

Logs (recap)

```
START EXP
START TRIAL: 0 T: SADDLE.PNG R: PICKLE.PNG B: PADLOCK.PNG L: CANDY.PNG
FIXATE_CENTER_AUDIO_ONSET, COND: 12 TARGET: CANDY
CENTRE GAZE START
INSTRUCTION TO CLICK ONSET
LOG AUDIO TARGET START
LOG AUDIO TARGET END
CLICK RESPONSE END
FINAL FIXATION START, SELECTED: CANDY.PNG
FINAL FIXATION END
STOP EXP
```

Extract data from logs

```
# use regex to extract the number afer 'COND:'
cond_numbers = [re.findall(r'COND: (\d+)', row)[0] for row in target_rows]
# use regex to extract the word after 'TARGET:'
target_words = [re.findall(r'TARGET: (\w+)', row)[0] for row in target_rows]
# use regex to extract the word after 'SELECTED: '
selected_words = [re.findall(r'SELECTED: (\w+)', row)[0] for row in fixation_rows]
```

Extract data from logs

```
{0: ('COLLAR', 'HANDLE', 'DOLLAR', 'BASKET', '8', 'DOLLAR', 'DOLLAR'),
1: ('PICKLE', 'PADLOCK', 'CANDY', 'SADDLE', '12', 'CANDY', 'CANDY'),
2: ('CASTLE', 'DOLPHIN', 'COLLAR', 'DOLLAR', '3', 'COLLAR', 'COLLAR'),
3: ('PADLOCK', 'SADDLE', 'PADDLE', 'CANDY', '4', 'CANDY', 'CANDY'),
4: ('DOLPHIN', 'SPEAKER', 'CANDY', 'PADDLE', '12', 'PADDLE', 'PADDLE'),
5: ('CASTLE', 'BEAKER', 'BEETLE', 'SPEAKER', '1', 'BEAKER', 'BEAKER'),
6: ('PARROT', 'COLLAR', 'SADDLE', 'PADLOCK', '7', 'SADDLE', 'SADDLE'),
7: ('BASKET', 'PARROT', 'CASKET', 'SANDAL', '8', 'BASKET', 'BASKET'),
8: ('DOLPHIN', 'HANDLE', 'CASKET', 'CASTLE', '6', 'CASKET', 'NONE'),
9: ('CANDLE', 'PICKLE', 'BASKET', 'PICTURE', '6', 'PICKLE', 'NONE'),
...
35: ('DOLPHIN', 'SANDAL', 'CANDY', 'CANDLE', '4', 'DOLPHIN', 'DOLPHIN')}
```

Logs (recap)

```
START EXP
START TRIAL: 0 T: SADDLE.PNG R: PICKLE.PNG B: PADLOCK.PNG L: CANDY.PNG
FIXATE_CENTER_AUDIO_ONSET, COND: 12 TARGET: CANDY
CENTRE GAZE START
INSTRUCTION TO CLICK ONSET
LOG AUDIO TARGET START
LOG AUDIO_TARGET_END
CLICK RESPONSE END
FINAL FIXATION START, SELECTED: CANDY.PNG
FINAL FIXATION END
STOP EXP
```

Relevant data from each trial

	TIME	BPOGX	BPOGY	FPOGD	FPOGX	FPOGY	FPOGV	USER	trial_number
0	57.91305	0.50808	0.47709	1.74694	0.49711	0.46464	1	LOG_AUDIO_TARGET_START	0
1	57.92954	0.50812	0.48550	1.76344	0.49731	0.46505	1		0
2	57.94503	0.50679	0.45819	1.77892	0.49725	0.46476	1		0
3	57.96120	0.50044	0.46452	1.79509	0.49716	0.46428	1		0
4	57.97736	0.50029	0.45900	1.81125	0.49707	0.46367	1		0
3621	469.25360	0.48646	0.25336	0.25867	0.50388	0.22997	1		35
3622	469.26984	0.48670	0.26408	0.27490	0.50293	0.23186	1		35
3623	469.28601	0.51019	0.27612	0.29108	0.50331	0.23419	1		35
3624	469.30215	0.49822	0.27407	0.30722	0.50305	0.23619	1		35
3625	469.31839	0.49828	0.26523	0.32346	0.50283	0.23757	1	CLICK_RESPONSE_END	35

Where? → Which box?

```
# define the bounds of the rectangles

top_rect = [(-128, -416), (128, -128)]

right_rect = [(128, -128), (416, 128)]

bottom_rect = [(-128, 128), (128, 416)]

left_rect = [(-416, -128), (-128, 128)]

centre_rect = [(-128, -128), (128, 128)]
```

```
def get_rect(x, y):
    if check_if_within_rect(x, y, top_rect):
        return 'top'
    elif check_if_within_rect(x, y, right_rect):
        return 'right'
    elif check_if_within_rect(x, y, bottom_rect):
        return 'bottom'
    elif check_if_within_rect(x, y, left_rect):
        return 'left'
    elif check_if_within_rect(x, y, centre_rect):
        return 'centre'
    Else:
        return 'outside'
```

rect column

	T11.4F	BBOCV	DDOCY	FROCE	FROCY	FROCY	FROCI	HEED		
	TIME	BPOGX	BPOGY	FPOGD	FPOGX	FPOGY	FPOGV	USER	trial_number	rect
0	57.91305	0.50808	0.47709	1.74694	0.49711	0.46464	1	LOG_AUDIO_TARGET_START	0	centre
1	57.92954	0.50812	0.48550	1.76344	0.49731	0.46505	1		0	centre
2	57.94503	0.50679	0.45819	1.77892	0.49725	0.46476	1		0	centre
3	57.96120	0.50044	0.46452	1.79509	0.49716	0.46428	1		0	centre
4	57.97736	0.50029	0.45900	1.81125	0.49707	0.46367	1		0	centre
				***	***				***	
3248	469.25360	0.48646	0.25336	0.25867	0.50388	0.22997	1		35	top
3249	469.26984	0.48670	0.26408	0.27490	0.50293	0.23186	1		35	top
3250	469.28601	0.51019	0.27612	0.29108	0.50331	0.23419	1		35	top
3251	469.30215	0.49822	0.27407	0.30722	0.50305	0.23619	1		35	top
3252	469.31839	0.49828	0.26523	0.32346	0.50283	0.23757	1	CLICK_RESPONSE_END	35	top

subject-X.csv

	referant	cohort	rhyme	distractor	target	count_trial_sequence	condition
0	dollar	basket	collar	handle	dollar	0	8
1	saddle	padlock	pickle	candy	candy	1	12
2	dollar	dolphin	collar	castle	collar	2	3
3	paddle	padlock	saddle	candy	candy	3	4
4	dolphin	speaker	candy	paddle	paddle	4	12
5	beaker	beetle	speaker	castle	beaker	5	1
6	parrot	padlock	collar	saddle	saddle	6	7
7	basket	parrot	casket	sandal	basket	7	8
8	castle	casket	dolphin	handle	casket	8	6
9	picture	pickle	candle	basket	pickle	9	6
10	candle	castle	basket	dolphin	dolphin	10	7
11	carrot	carriage	parrot	nickel	carrot	11	1

Primary Key! Foreign Key!

	referant	cohort	rhyme	distractor	target	count_trial_sequence	condition
0	dollar	basket	collar	handle	dollar	0	8
1	saddle	padlock	pickle	candy	candy	1	12
2	dollar	dolphin	collar	castle	collar	2	3
3	paddle	padlock	saddle	candy	candy	3	4
4	dolphin	speaker	candy	paddle	paddle	4	12
5	beaker	beetle	speaker	castle	beaker	5	1
6	parrot	padlock	collar	saddle	saddle	6	7
7	basket	parrot	casket	sandal	basket	7	8
8	castle	casket	dolphin	handle	casket	8	6
9	picture	pickle	candle	basket	pickle	9	6

top	right	bottom	left
collar	handle	dollar	basket
pickle	padlock	candy	saddle
castle	dolphin	collar	dollar
padlock	saddle	paddle	candy
dolphin	speaker	candy	paddle
castle	beaker	beetle	speaker
parrot	collar	saddle	padlock
basket	parrot	casket	sandal
dolphin	handle	casket	castle
candle	pickle	basket	picture

The Need for Binning

The Need for Binning (contd.)

```
# divide the avg duration into N equal parts
N = 80 # parameter
duration_thresholds = np.linspace(0, avg_duration, N, endpoint=True)
```

The Need for Binning (contd.)

	trial_number	condition	start_time	end_time	bin_start	bin_end	real_val_count	val_count	seen
0	0	8	57.913050	57.932882	0.000000	0.019832	2	1	
1	0	8	57.932882	57.952714	0.019832	0.039664	1	1	
2	0	8	57.952714	57.972546	0.039664	0.059496	1	1	
3	0	8	57.972546	57.992378	0.059496	0.079328	1	1	
4	0	8	57.992378	58.012210	0.079328	0.099160	2	1	
		***				***		***	
2839	35	4	469.184581	469.204413	1.467571	1.487403	1	1	top
2840	35	4	469.204413	469.224245	1.487403	1.507235	2	1	top
2841	35	4	469.224245	469.244077	1.507235	1.527067	1	1	top
2842	35	4	469.244077	469.263909	1.527067	1.546899	1	1	top
2843	35	4	469.263909	469.283741	1.546899	1.566731	1	1	top

Implementing special conditions

Condition No	Trials (how many		Conditions	s
	examples of such)	Competitor Set	Target	Distractors
1	3	FC	Re	C, Rh, U
2	3	FC	С	Re, Rh, U
3	3	FC	Rh	Re, C, U
4	3	FC	U	Re, C, Rh
5	3	CC	Re	C, U, U
6	3	CC	С	Re, U, U
7	3	CC	U	Re, C, U
8	3	RC	Re	Rh, U, U
9	3	RC	Rh	Re, U, U
10	3	RC	U	Re, Rh, U
11	3	UC	Re	U, U, U
12	3	UC	U	Re, U, U

Implementing special conditions (contd.)

```
full_competitor_sets_cond = [1, 2, 3, 4]
cohort_competitor_sets_cond = [5, 6, 7]
rhyme_competitor_sets_cond = [8, 9, 10]
distractor_competitor_sets_cond = [11, 12]

# for trials with condition numbers in cohort_competitor_sets_cond, replace 'rhyme' with 'distractor'
count_df.loc[count_df['condition'].isin(cohort_competitor_sets_cond), 'seen'] = count_df['seen'].apply(lambda x: 'distractor' if x == 'rhyme' else x)
```

- Similarly, for rhyme competitors sets replace cohort with distractor
- Replace both cohort and rhyme with distractor for the distractor competitor sets

Counting fixations (on each stimuli type)

```
# one hot encode the 'seen' column
one_hot_count_df = pd.get_dummies(count_df, columns=['seen'])
```

bin_start	bin_end	real_val_count	val_count	seen_cohort	seen_distractor	seen_referant	seen_rhyme
0.000000	0.019832	2	1	0	0	0	0
0.019832	0.039664	1	1	0	0	0	0
0.039664	0.059496	1	1	0	0	0	0
0.059496	0.079328	1	1	0	0	0	0
0.079328	0.099160	2	1	0	0	0	0
			***			***	
1.467571	1.487403	1	1	0	1	0	0
1.487403	1.507235	2	1	0	1	0	0
1.507235	1.527067	1	1	0	1	0	0
1.527067	1.546899	1	1	0	1	0	0
1.546899	1.566731	1	1	0	1	0	0

A Few Final Steps

▶ Group by the columns bin_start and bin_end across all trials and calculate the sum of fixations

```
groupby_time_bins_df = one_hot_count_df.groupby(['bin_start', 'bin_end']).sum().reset_index()
```

▶ Calculate the fixation probabilities by dividing by the val_count column

```
# ignore rows where val_count is 0
groupby_time_bins_df['seen_referent'] = groupby_time_bins_df.apply(
    lambda x: x['seen_referent'] / x ['value_count']
    if x['value_count'] != 0 else 0, axis=1
    )
```

A Few Final Steps (contd.)

start_time	end_time	real_val_count	val_count	seen_cohort	seen_distractor	seen_referant	seen_rhyme
2857.634540	2857.872524	24	12	0.0	0.000000	0.000000	0.0
2857.872524	2858.110509	12	12	0.0	0.000000	0.000000	0.0
2858.110509	2858.348493	12	12	0.0	0.000000	0.000000	0.0
2858.348493	2858.586478	12	12	0.0	0.000000	0.000000	0.0
2858.586478	2858.824462	24	12	0.0	0.000000	0.000000	0.0
2875.245388	2875.483372	8	8	0.0	0.125000	0.714286	0.0
2875.483372	2875.721357	16	8	0.0	0.125000	0.714286	0.0
2875.721357	2875.959341	8	8	0.0	0.125000	0.714286	0.0
2875.959341	2876.197326	9	9	0.0	0.111111	0.750000	0.0
2876.197326	2876.435310	8	8	0.0	0.125000	0.714286	0.0

A Few Final Steps (contd.)

- We plot the proportion of fixations graph for the trials where the referent is the target.
 - Fixations to the referent were averaged across the full competitor trials, the cohort-only and rhyme-only competitor trials.
 - Fixations to the cohort objects were averaged across the full competitor and cohort-only conditions and fixations to the rhyme were averaged over the full competitor and rhyme-only trials.

Analysis plots (individual subjects)

Analysis plots (individual subjects)

Analysis plots (individual subjects)

Analysis plots (overall)

Analysis plots (comparison)

Inference

- ► For the 0 to ~400 ms interval, the fixation proportions appear to be random. No specific trend is observed at this stage.
- ▶ In the second interval (400–800 ms), there is a trend toward more fixations to the referent and cohort items compared to the other stimuli.
- ► The line for the referent fixations separates from the cohort in the 800 to 1000 ms interval.
- Starting with 600 to 700 ms window, there is an increase in the number of fixations to the rhyme.

Inference (contd.)

- ▶ Beyond the 1000 ms mark, the referent line starts to peak leaving the other competitors behind
- One major deviation (from source) in our study is that the distractor stimuli has small peak towards the end.

What we didn't replicate?

- Average duration of auditory stimulus: 375 ms vs 750 ms
- Number of trials for each competitor set. Participants get tired after ~30 trials.
- Audio stimuli were digital (instead of analog)
- Use of a 3x3 grid instead of 5x5
- Participants respond with mouse clicks instead of drag-and-drop.
- No calibration functionality after each trial

Challenges Faced

- Balancing of trials
 - Generation of balanced trial conditions using python scripts
 - Unbalanced results
 - Reverted to manual creation

No of Stimuli Appearences

Challenges Faced

- Random 'freezes' during experiment
 - o Issue with 'fixation_check'?
 - While True loop

```
while True:
    gazepos = eyetracker.sample()
```

Periodic sampling

```
while True:
    if clock.time() - check_timer > diff:
        gazepos = eyetracker.sample()
```

- Switching backend to PsychoPy
 - Required the sample rate of all audio samples to be the same
- Removal of gaze contingent features

Shortcomings of the study

- Since we used a relatively small set of pictures, participants might have become aware of the similarity among the referent-cohort-rhyme sets despite the large number of filler trials †.
- Generalizability is affected as our study participants only include university students of a specific age group, which does not fully represent the complexities and variations of real-world spoken word recognition scenarios.
- The study also may not fully address the universality of the observed effects across different languages as the original study as well as our replication is in English.

Conclusions

- Eye movement tracking is a reliable tool for investigating the time course of spoken word recognition and capturing the mapping process while the spoken word unfolds.
- The results and plots obtained by us provide an empirical support for continuous and incremental mapping models of word recognition and not a discrete and all-or-nothing process.

Conclusions (contd.)

Our results suggest that as the spoken word unfolds over time, the listener gradually narrows down the set of candidate words based on the contextual information. This competition among candidate words occurs until a single word is identified or a clear winner emerges.

Thank you!