Sensor Principles

A generic sensor interface

OPAMP Basics

Opamps in feedback

Gain: $T(\omega) = \beta \cdot A_0(\omega)$

Phase Margin:

 $PM = 180^{\circ} + \angle (T(\omega_1)|_{|T(\omega_1)|=1}$ Gain $\mathsf{margin} : GM =$

 $20 \cdot log_{10}(rac{1}{T(\omega_2)})|_{\angle(T(\omega_2)=-180^\circ}$ Generic

Transfer function

 $V_x = \beta \cdot V_{\text{out}} = \beta \cdot A(\omega) \cdot (V_{\text{in}} - V_x) =$ $\beta \cdot A(\omega) \cdot (V_{\mathsf{in}} - \beta \cdot V_{\mathsf{out}})$

Feedback and linear operation

 $A(\omega) \gg 1 \Rightarrow$ virtual short at the input $\Delta V \approx 0$

 $Z_i \to \infty \Rightarrow i_{oa} \approx 0$

Voltage Drive → negative feedback Current drive \rightarrow positive feedback

Errors and Noise

Limit of detection(LOD): minimum measurable input amplitude ($SNR \approx 0$)

Dynamic range()DR: ratio of max and min amplitude within inaccuracy levels.

Deterministic: source loading, offset, gain error Random: thermal noise. 1/f noise

Quantification:

Quantification: Absolute :
$$\Delta x = |\hat{x} - x_0|$$
 Relative: $\left|\frac{\Delta x}{x_0}\right| = \left|\frac{\hat{x} - x_0}{\hat{x}}\right|$ Max inaccuracy:

 $\Delta x_{max} | x \in [\hat{x} - \Delta x_{max}, \hat{x} + \Delta x_{max}]$

Error Propagation

 $y = f(x_1, x_2, \dots, x_N)$ Deterministic fluctuations of $x_i \rightarrow \text{total error}$: $\begin{array}{l} \Delta y \approx \sum_{i=1}^{N} \frac{\partial f}{\partial x_i} \cdot \Delta x_i \\ \text{Partial derivative } \frac{\delta f}{\delta x_i} \text{ is called } \textbf{sensitivity} \\ \text{Additive errors are best specified absolute and} \end{array}$

multiplicative errors are best specified relative Interference:

Unwanted coupling of external signal Noise: random fluctuations from setup \rightarrow can he modeled as error sources

Combining Error sources

Output referred noise

Effect of an error-source on the output Input referred noise Equivalent effect of the error-source on the input

Find TF from ES to output

 $y:H_{y,ES}\Rightarrow y_{\mathrm{out}\,,\epsilon_2}=H_{y,\epsilon_2}\cdot\epsilon_2$ Refer result back to input wit $H_{y,x}: x_{\epsilon_2} = \frac{y_{\text{out},\epsilon_2}}{H_{y,x}} = H_{y,\epsilon_2} \cdot \frac{\epsilon_2}{H_{y,x}}$

Lin. System noise:

$$PSD = S_y(f) = |H(f)|^2 \cdot S_x(f)$$

Noise Types

Thermal noise: excitation of charge carriers(white)

Shot noise: carriers randomly crossing the barrier, dependent on DC bias and white Flicker Noise:, due to traps in semiconduct. 1/f

spectral density. MOS trans at low freq. Thermalnoise Theorem: Every closed system at temp. T has average. Energy of $kT/2 \rightarrow$ $S_{u}(f) = 2kTR(\text{ double-sided })$ math $S_u(f) = 4kTR($ single-sided) physics

Langevin Approach kt/C noise

PSD noise voltage of V_n $= S_{v_n}(f) = 4kT \cdot \Re\{Z(j2\pi f)\}$ $\rightarrow \overline{V_n^2} = kT \left[\frac{1}{C_\infty} - \frac{1}{C_0} \right] = \frac{kT}{C}$ MOS IRN

$$\begin{split} S_{\Delta V_{\text{nG-tot}}^2} &= 4kT \cdot R_{\text{nG-tot}} \,, \quad R_{\text{nG-tot}} = \\ \frac{\rho}{W \cdot L \cdot f} + \frac{\gamma_{nD}}{G_m} \, \text{with GateExcess Noise factor} \\ \vdots \\ \gamma_{nD} &= (n = 1.3) \cdot [0.5WI; 2/3SI] \end{split}$$

Bipolar Trans IRN:

 $S_{\Delta V_{nB}^2} = 4kT \cdot R_B$

Noise Aanalysis

small-signal-equivalent is valid. Total ORN:

S_{n, out}
$$(f) = \sum_{k=1}^{N} |H_k(f)|^2 \cdot S_{nk}(f)$$
 N uncorrelated NS.

 $H_{l\cdot}(f)$ TF from NS ton output. IRN:

$$S_{V_{\mathrm{neq,IRN}}}\left(f\right) = \frac{S_{V_{\mathrm{nout}}}\left(f\right)}{|A(f)|^2}$$
 with $A(f)$ is TF

Sensor types

Information domain → Electrical domain Transduction: Converting a signal from the energy domain into another.

Sensors and actuators are transducers

Sources of eerror

Noise, sensitivity to unintended quantities,

$$\begin{bmatrix} E_{\rm exp} \\ E_{\rm min} \\ E$$

Tandem transducers: Multiple steps to target domain.

cross-sensitivity, sensitivity to undesired quantity

Sensor classification:

Active Sensors:

Require external source of excitation

Passive / self-generating sensors:

Generate their own electrical output signal Draws all required energy from the measurand(source loading) E: Potentiometer for angle measurements. Modulating sensors: Measure desired quantity by modulating Additional source with modulated energy. Also

adds error. E: Non0contact displacement measrement (rotating disk)

Analog vs. Digital:

Analog: time and value continuous

Digital: Discrete outputs **Deflection mode sensors:**

Response to an output is a deviation from the equilibrium position

Null mode sensors:

Sensor or instruments exert an influence the measured system opposing the effect of the measurand. Ideally the result is a 0 measurement, typically achieved by feedback. The opposing influence is then the sensor

output. Slower than deflection, but more accurate.

Resistive sensors - strain gauges

Change in geometry under mechanical stress produces associated resistance change Volum. == const. \rightarrow

$$\frac{\partial V}{\partial V_0} = \frac{L_0}{V_0} \cdot \partial A + \frac{A_0}{V_0} \cdot \partial L \wedge \frac{\partial V}{V_0} = 0 \Rightarrow$$

$$\frac{\partial A}{\partial A_0} = -\frac{\partial L}{L_0} \rightarrow \frac{\partial R}{R_0} = \frac{\partial \rho}{\rho_0} + 2\frac{\partial L}{L_0}$$

$$\rightarrow \frac{\partial R}{R_0} = \alpha \cdot \frac{\partial L}{L_0} + 2\frac{\partial L}{L_0} = \underbrace{(\alpha + 2)}_{\underline{L_0}} \cdot \frac{\partial L}{L_0}$$

k: gauge factor

 α proportionality factor $\frac{\partial \rho}{\rho_0} \propto \frac{\partial L}{L_0}$

Readout resistive sensors

Use a half bridge resistive divider top element sensing resistor

$$rac{v_{
m out}}{v_{
m bias}} = rac{R}{2R + \Delta R} \Leftrightarrow rac{\Delta R}{R} = rac{v_{
m bias}}{v_{
m out}} - 2$$
 Full bridge to remove offset, 2 sensing

elements more sensitive.

remove nonlinearity by implementing differential measurements

Best use 4point full bridge

 $V_{
m diff}=v_2-v_1=rac{\Delta R}{R}\cdot V_{
m bias}$ Sensitivity S=45mV/V excitation for 1V

Accuracy $A = \frac{v_{\mathrm{diff}}\left(\frac{\Delta R}{R}\right) - V_{\mathrm{diff},\ln}\left(\frac{\Delta R}{R}\right)}{V_{\mathrm{diff}}\left(\frac{\Delta R}{R}\right)}$ Deviation from the ideal bridge

BridgeParameters

Bridge resistance: Unloaded R across the signal terminals

Offset error Outputvoltage at 0 input **Drift:** Outputchange conditioned on environmental condition

Differential/ Commonmode signals

$$\begin{array}{l} \text{Recall: } V_1 = \frac{1}{2} \cdot \left(1 - \frac{\Delta R}{R}\right) \cdot V_{\text{bias}} \,, \quad v_2 = \\ \frac{1}{2} \cdot \left(1 + \frac{\Delta R}{R}\right) \cdot V_{\text{bias}} \end{array}$$

Differential signal:

 $V_{\mathrm{diff}} = V_2 - V_1 = \frac{\Delta R}{R} \cdot V_{\mathrm{bias}}$ Common-mode signal:

DiffGain: $V_{\text{out}} = A_{\text{DM}} \cdot V_{\text{inDM}}$ CMMGain: $V_{\mathrm{out}} = A_{\mathrm{CM}} \cdot v_{\mathrm{inCM}}$ Ideally A_{cm} is 0 or $A_{cm} \ll A_{dm}$ Commonmode rejection ratio(CMRR): $CMRR \triangleq \left| \frac{A_{DM}}{A_{CM}} \right| = \left| \frac{dv_{out}/dv_{inDM}}{dv_{out}/dv_{inCM}} \right|$

Often in dB

Opampbase difference aplifier:

1st: $A(s)=\infty, R_2=R_2'=\alpha\cdot R_1=\alpha R_1'$ $A_{DM}=-\alpha, A_{CM}=0, CMRR=\infty$ $2^{\rm nd}$ assume $A(s)=\infty, R_2=\alpha\cdot R_1,$ $R_2' = (\alpha + \Delta \alpha) \cdot R_1', R_1' = R_1 + \Delta R$
$$\begin{split} & A_{\mathrm{DM}} = -\left(\alpha + \frac{\Delta\alpha}{2\cdot(1+\alpha+\Delta\alpha)}\right) \\ & A_{\mathrm{CM}} = \frac{\Delta\alpha}{1+\alpha+\Delta\alpha} \\ & \mathrm{CMRR} = -\frac{1}{2} + \frac{\alpha\cdot(1+\alpha+\Delta\alpha)}{\Delta\alpha} \\ & 3d: A(s) = A_{\mathrm{DC}}/\left(1+s\cdot\frac{A_{\mathrm{DC}}}{\mathrm{GBW}}\right) \end{split}$$
 $A_{\rm DM} = -\left(\alpha + \frac{\Delta\alpha}{2 \cdot (1 + \alpha + \Delta\alpha)}\right) \cdot \frac{1}{1 + \frac{1}{A_{\rm DC}} + \frac{\alpha}{A_{\rm DC}} + (1 + \alpha) \cdot \frac{s}{\rm GBW}}$ $\begin{aligned} & A_{\text{CM}} = \\ & \frac{\Delta \alpha}{1 + \alpha + \Delta \alpha} \cdot \frac{1}{1 + \frac{1}{A_{\text{DC}}} + \frac{\alpha}{A_{\text{DC}}} + (1 + \alpha) \cdot \frac{s}{\text{GBW}}} \\ & \text{CMRR} = -\frac{1}{2} + \frac{\alpha \cdot (1 + \alpha + \Delta \alpha)}{\Delta \alpha} \end{aligned}$

Magnetic Field Sensors

 $V_{ ext{hall}} = G \cdot rac{\mu \cdot
ho}{h} \cdot l \cdot B = G \cdot rac{1}{e \cdot n \cdot h} \cdot l \cdot B = S_l \cdot l \cdot B$ G: geometry factor **Noise sources:**

- Thermal noise
- -1/f noise

-Noise of conditioning electronics

Noise power: $V_{noise} \sqrt{4kT \cdot R \cdot \Delta f}$ Signal power: $V_{hall}S_I \cdot I \cdot B$

Resolution: $B_{\min} \hat{\wedge} \frac{V_{\mathrm{noise}}}{V_{\mathrm{hall}} / B} = \frac{\sqrt{4kT \cdot R \cdot \Delta f}}{S_l \cdot I}$ With $S_I = \frac{\mu \cdot \rho}{h \cdot e \cdot n} \cdot G$ At B = 0 Hall plate can be modeled as

wheatstone bridge, non-uniform stress causes intrinsic offset(5 to 30mT)

Cancel intrinsic offset by coupling ° turned sensors, current and sense ports are swapped Idea: Hall voltage is in phase and gradient caused offsets are than 180° out of phase Spinning current method:

Sense and current ports are switched every clock cycle

Idea: A DC component equal to the offset and a frequency component proportional to the hall voltage is produced (Fourier Expansion of a square wave)

By modulating the information to the clock frequency noise and offset are greatly mitigated.

Multiplying by 1 and -1 to demodulate back to low frequency.

Low pass stage to remove signal around the 2nd harmonic

This allow to see the base noise floor of the sensor not 1/f noise.

In the conventional implementation 2 bias currents are used in the low power configuration the bias form the plate is reused for the amplifier.

Temperature Sensors

Seebeck effect: Convert temp. gradient to electromotive force

$$\begin{split} F(T) & = \int_{T_{stand.}}^{T} (S_{+}(T') - S_{-}(T')) dT' \\ & \to E_{emf} = F(T_{sense} - F(T_{ref}) \\ \text{Temperature stable references:} \end{split}$$

 $V_{\text{REF}}(T) = V_{\text{CTAT}}(T) + K \cdot V_{\text{PTAT}}(T)$ Bandgap reference:

PTAT: Proportional to absolute temperature CTAT: Complementary to absolute temperature Scale one slope and add the function for a temp, constant reference

This can be built with a diode or a BJT with a shorted base and collector

Butt current is also temperature dependent so use diff pair.

$$\begin{array}{l} V_{\mathrm{PTAT}} \stackrel{\cdot}{=} \Delta V_{\mathrm{EB}} = V_{\mathrm{EB1}} - V_{\mathrm{EB2}} \approx \\ \frac{kT}{q} \cdot \ln \left[\frac{I_q \cdot I_S' \cdot A_{E2}}{I_S' \cdot A_{E1} \cdot I_q} \right] = \frac{kT}{q} \cdot \ln \left[\frac{A_{E2}}{A_{E1}} \right] \end{array}$$

Scale currents or diodes to make equal bias

$$V_{\mathrm{EB}} = \underbrace{E_g/q}_{V_G} - \underbrace{\frac{kT}{q}}_{U_T} \cdot \ln\left(\frac{I_s'}{I_D}\right) =$$

$$V_G - U_T \cdot \ln\left(\frac{K_1 \cdot T^{\gamma}}{I_D}\right)$$
$$V_G \approx V_{G0K} - a \cdot T$$

With $I_{\rm S}'>I_D$ but also temperature dependent \rightarrow curved CTAT.

Combine CTAT and PTAT: Series:

$$V_{\mathrm{REF}} = I_{\mathrm{PTAT}} \cdot R_2 + V_{\mathrm{CTAT}} = rac{R_2}{R_1} \cdot V_{\mathrm{PTAT}} + V_{\mathrm{CTAT}}$$
 Parallel:

$$\begin{aligned} V_{\text{REF}} &= \left(I_{\text{PTAT}} + I_{\text{CTAT}}\right) \cdot R_3 = \\ \frac{R_3}{R_1} \cdot V_{\text{PTAT}} + \frac{R_3}{R_2} \cdot V_{\text{CTAT}} \end{aligned}$$

Capa. Sensor Readout

$$\begin{split} &1: \Delta C = C - C_0 = \varepsilon \cdot \frac{W}{h} \cdot \Delta x \\ &2: \Delta C = \frac{\varepsilon \cdot A}{h} \cdot \frac{\Delta z/h}{1 + \Delta z h} \approx \frac{\varepsilon \cdot A}{h^2} \cdot \Delta z \\ &3: \\ &\Delta C = \varepsilon \cdot \frac{A}{h} \cdot \left(\frac{2 \cdot \Delta z/h}{1 - [\Delta z/h]^2}\right) = \frac{2 \cdot \varepsilon \cdot A}{h^2} \cdot \Delta z \\ & \text{OpenLoop readout:} \end{split}$$

$$\begin{array}{l} \text{ChargeAmp:} V_{\text{Out}} = \frac{C_{\text{Sense}}}{C_{\text{FB}}} \cdot V_{\text{ex}} \text{ ChargeAmp-} \\ \text{Nonideal:} \frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{j\omega \cdot R_{\text{FB}}C_{\text{in}}}{\left(1 + \frac{j\omega}{GBW}\right) \cdot \left(1 + \frac{j\omega}{\omega_{\text{FB}}}\right)} \\ \text{VoltAmp:} \ v_{\text{out}} = A_v \cdot \frac{C_{\text{sense}}}{C_{\text{sense}} + C_{\text{ref}}} V_{\text{ex}} \\ \end{array}$$

$$\begin{aligned} & \textbf{VoltAmp: } v_{\text{out}} = A_v \cdot \frac{C_{\text{Sense}}}{C_{\text{sense}} + C_{\text{ref}}} V_{\text{ex}} \\ & \textbf{TransImpAmp: } v_{\text{out}} = s \cdot R_{\text{FB}} C_{\text{sense}} \cdot v_{ex} \end{aligned}$$

 V_{Sense} not grounded sensitive to leakage

Bias resistor provides well defined DC-point. R_{Bias} needs to be large because of the highpass forming, corner frequency needs to be low enough compared to excitation freq. Periodic reset can also be used where $V_{p+} = V_{p-} = 0$

Correlated double sampling can also bes used:

Bootstrapping: VoltAmp

 $C_{s1} = C_{s0} + \Delta C/2C_{s2} = C_{s0} - \Delta C/2 \text{,}$ v_{out} becomes sensitive to parasitic capacitance

Can be bootstrapped out with voltage buffer

driving
$$V_{shield}$$
 $v_{\text{out}} = \frac{\Delta C}{2C_{s0} + C_{p1} + (C_{p2})} \cdot A_v \cdot v_{\text{in}} \ C_{p2}$ gets removed by V_{shied}

Can also use TIA, the virtual ground helps with the parasitic capacitance, this also works in the charge amplifier

DiffReadoutChargeAmp:i

Req V_{ex} :

Error will propagate to output directly Accuracy more important for small ΔC Mismatch or drift will introduce errors Sinewave can be created with center-tapped transformer or active balun Rectangular witch switched excitation schemes

DiffReadoutChargeAmp:

- Assuming ideal opamps (A_{nn} → ∞)
- The part of the circuit highlighted in with input voltage $v_{
 m outn}$ and output
- blue is a simple non-inverting amplifier with input voltage v_{x1} and with its reference potential pulled to
- The part of the circuit highlighted in green is a voltage divider between

 $V_{\text{outp}} = V_{\text{in}} = -V_{\text{outn}}$ Differential Capa sensing:

 $\Delta v_{x,\,\mathrm{amp}} \approx -\frac{\Delta x}{x_0} \cdot V_{\mathrm{ex}}$

Resonant readout:

DoubleDiffReadout:

$$\begin{split} \Delta V_{\text{out}} &= -\Delta V_{ex} \cdot (\frac{\Delta C_s}{C_i} \cdot \\ &\left[1 - \frac{C_s}{C_s + C_i + C_p}\right] - \underbrace{\frac{\Delta C_i + \Delta C_p}{C_i} \cdot }_{\text{offset error}} \cdot \end{split}$$

Differential Measurements

- Inherent rejection to common-mode interference ans noise
- Wider Signal swing for a given supply voltage

- Minimum effect of even order distortion including DC offset

- Can lead to improved sensor linearity But respond to some degree to common mode signal

Ideal DiffPair:

$$\begin{aligned} G_{\text{mav}} R_{\text{Lav}} / \left(g_{\text{outM1,2}} \cdot \left(\frac{g_{\text{out}}}{G_{\text{mav}}} \cdot \Delta R_{\text{L}} - 2 \right) \right) \\ \text{PSRR}_{\text{vss}} &\cong G_{\text{mav}} \cdot R_{\text{Lav}} / g_{\text{out}} \cdot \left(\Delta R_{\text{L}} + R_{\text{Lav}} \cdot \frac{\Delta G_{\text{m}}}{G_{\text{mav}}} \right) \end{aligned}$$

Modulation

Stnontms: Coherent detectrion, synchronous demodulation, lock-in amplification, chopping All modulation techniques, square wave is called chopping

Leads to better low freq. specification, smaller 1/f, bigger CMRR and PSRR

Trimming: Measuring static error offset and gain and adjusting the value of a component to reduce the error to 0

Low complexity, no bandwith limit, but regs. measure equipment

Also regs. memory element

_Dyn._offset cancel:

usually no measure eq. but more complex offset error circuits, reduce bandwidth

AutoZeroina:

periodically measure offset and substract from input(time domain)

Chopping:

Modulate signal above 1/f noise(freg. domain)

Chopper Amps

implemented with polarity reversing switch

Time-Domain-Chopping:

Complete suppression of 1/f noise if

 $f_{chop} > 1/f$ corner freq., but up-modulated offset must be filtered out. loss of bandwidth and residual chopper ripple. Charge Injection Injected charge splits half-half

Charge: $Q = W \cdot L \cdot C_{\rm ox} \cdot \left[V_{\varphi} - V_{\rm in} - V_{\rm T0} \left(\sqrt{V_{\rm in}} \right) \right]$ Linear w.r.t to $W \cdot L$ non-linear w.r.t. V_{in}

$$\frac{W \cdot L \cdot C_{ox}}{2C_L} \cdot \left[V_{\varphi} - V_{T0} \left(\sqrt{V_{\text{in}}} \right) \right]$$

offset & dostortion

Clock feedthrough

Overlap capacitance of trans.: C_{OV}

 $\Delta V_{
m out} = rac{C_{
m ov}}{C_{
m ov} + C_L} \cdot V_{arphi}$ Asymmetric clock duty cycle causes demodulation signal to have DC component which feeds, through

Bandwidth gain acc

Limited applifier Bandwidth causes output signal to not be perfectly square, therefore less gain

AutoZeroina. LF Noise Reduce

Sampling unwanted signal during Φ_1 , storing, and subtracting during Φ_2 , input is disconnected during Φ_1

Error stored on C_{AZ} will slowly leak away, C_{AZ} as large as possible

Mitigate Charge Inject.

-Use min size switch

- Diff Sampling: Const offset and nonlin, is reduced

-Comp Switch: NMOS and PMOS in parallel cancel opposite charge packets, can only occur for one V_{in} , clock feedtrough can't be cancelled perfet because of different overlap capacitance.

-Dummy Switch: Add a dummy switch of half size to such up injection of M1, but equal charging splitting rarely holds, but clock feedtrough is also mitigated

-BottomplateSampling: Disconnect C_{AZ} 's bottomplate from ground slightly before M1, C_{az} bottom plate is then floating when M1 is opened and no charge can be injected. Requires additional clock.

No ripples, like chopping, offset of a few μV can be reached, main problems switching spikes, leakage currents and finite gain

Correlated Double Sampling (CDS):

Special case of AZ

Phase 1 (calib):

 $V_1 = V(t_1) = A \cdot (0 + VOS)$

Phase 2 (measure):

 $V_2 = V(t_2) = A \cdot (V_{in} + V_{OS})$ $\Rightarrow (V_2 - V_1) = A \cdot V_{in}$

3 signal method:

Find: V_{in} , A, V_{OS}

Phase 1: $V_1 = A \cdot (V_{in} + V_{OS})$

Phase 2: $V_2 = A \cdot (V_{ref} + V_{OS})$

Phase 1: $V_3 = A \cdot V_{0S}$

Acc. is limited by ADC resolution

Switch nomically identical components with a clock

Acc. is limited by mismatch of switch resistance

Significantly reduces average error

2 Resistors in parallel: $\begin{array}{c} R_1 = R + \Delta R \\ R_2 = R - \Delta R \end{array} \rightarrow$

$$Gain_{\mathrm{av}} = \frac{\left(1 + \frac{R + \Delta R}{R - \Delta R}\right) + \left(1 + \frac{R - \Delta R}{R + \Delta R}\right)}{\mathsf{like}} = 2$$
 LPF needed like chopping, can be easily

combined

Reduces bandwidth and need more components

Coheren Detection

synonyms: coherent detection, synchronous demodulation, lock-in amplification, chopping Like chopping but sinewave instead of rect. Good for:

- low-bandwidth quasi static signals with high noise
- if high dynamic range is reg.

Mems. Infrared, magnetic sensors, strain gauges.

Behaves like bandpass but isn't one

Amplitude Synchron. detection:

 $u_{oM} =$ $G_{\text{Amp}} \cdot G_{\text{mult}} \cdot [\hat{u}_i \cdot \sin(\omega_i t) \cdot \hat{u}_r \sin(\omega_r t)]$ $G_{\text{Amp}} \cdot G_{\text{mult}} \cdot \frac{\widehat{u}_i \widehat{u}_r}{2} \cdot [1 - \cos(2\omega_i t)]$ $\label{eq:uoff} \begin{array}{l} \overset{LP}{\Rightarrow} u_{\text{oF}} = G_{\text{LPF}} \cdot G_{\text{Amp}} \cdot G_{\text{mult}} \cdot \frac{\hat{u}_i \hat{u}_r}{2} \\ \text{for } \omega_r = \omega_i \text{ Phase: } u_{\text{oM}} = G_{\text{Amp}} \cdot G_{\text{mult}} \end{array}$ $[\hat{u}_i \cdot \sin(\omega_i t + \varphi) \cdot \hat{u}_r \cdot \sin(\omega_r t)]$ $u_{\text{oF}} = G_{\text{LPF}} \cdot G_{\text{Amp}} \cdot G_{\text{mult}} \cdot \frac{\widehat{u}_i \widehat{u}_r}{2} \cdot \cos(\varphi)$ Phase sensitive coherent detector

SNR: LOD for $10nV/\sqrt{Hz}$ white noise and

$f_{LPF} = 1Hz \rightarrow \frac{10nV}{\sqrt{Hz}} \cdot \sqrt{1Hz} = 10nV$ 2 phase lock-in amp:

$$\begin{array}{l} A_0 = & \mathbf{Sta} \\ u_{\mathrm{oF},I} = G_{\mathrm{amp}} \cdot G_{\mathrm{mult}} \cdot G_{\mathrm{LPF}} \cdot \frac{\hat{u}_i \cdot \hat{u}_r}{2} \cdot \cos^{(-)} \\ u_{\mathrm{oF},Q} = G_{\mathrm{amp}} \cdot G_{\mathrm{mult}} \cdot G_{\mathrm{LPF}} \cdot \frac{\hat{u}_i \cdot \hat{u}_r}{2} \cdot \sin^{-\frac{1}{2}} \\ \Delta \varphi = & \hat{u}_i = \frac{1}{G_{\mathrm{amp}} \cdot G_{\mathrm{mult}} \cdot G_{\mathrm{LPF}}} \cdot \sqrt{u_{\mathrm{of}\,,I}^2 + u_{\mathrm{of}\,,Q}^2} \\ \varphi = \tan^{-1} \left(\frac{u_{\mathrm{of}\,,Q}}{u_{\mathrm{of}\,,I}}\right) \end{array}$$

DACs

Prerequisite for sampling is the Nyquist theorem to be able to perfectly reconstruct a band-limited signal. $f_s > f_N = 2 \cdot f_b$

Sample and hold:

Sample: S is closed $V_{out} = V_{in}$ Hold: S is open C holds V_{out}

 I_{C1} with small Z_1 for fast charge of C I_{C2} with Z_{in} for slow discharge of C S with small R_{on}

Characeristics:

Aperture time: time for switch to open Droop: discharge of capacitor Acquisition time: time to switch and charge

Switching transients: voltage buffer ringing

Large for small droop, small for fast charge Charge depends on R_{on} and Z_{out} or

 $I_{out,max}$ of IC_1 Large enough for sufficient small $\frac{kT}{G}$

Static Errors

Gain Error: $V_{\text{gain,error}} = V_{\text{MSB avg}} - V_{\text{MSB ideal}}$ **Offset:** $V_{0s} = V(000)$

Does not affect linearity, easy to compensate Diff nonlin (DNL):

Measure of nonuniformity, quantifies for each of the k binary input combinations the deviation of each step from the ideal stepsize of one LSB

DNL
$$(k) = rac{V(k) - V(k-1) - V_{\mathrm{LSB}}}{V_{\mathrm{LSB}}} =$$

 $rac{\Delta V(k)}{V_{
m LSB}}$ If DNL smaller than -1 the output is smaller than the previous and it's non-monotonic

Monotonicity is critical for feedback: turns negative feedback into positive feedback Occurs most often when switching the MSB Intefral nonlin (INL): Deviation of the output val from the ideal val:

$INL(k) = \frac{V(k) - V_{ideal}(k)}{V_{ideal}(k)}$

Dynamic Errors

Jitter: Max jitter (Δt) for error below one lsb: $\Delta t < \frac{V_{\rm LSB}}{\pi f_{\rm MAX} V_{\rm FS}} \approx \frac{1}{2^N \pi f_{\rm MAX}}$ Glitches:

Turn on and turn off time not precisely synchronized. In the moment of switching one bit to another the value can briefly be both or none of the bits.

Implementation

Resistorstring:

Simple voltage divider, inherently monotonic, amount of resistors proportional 2^N , Area $A \propto W_R \cdot L_R \cdot 2^{\dot{N}}$

Binary weighted resisitve voltage divider Inverting summing amplifier

For each bit i: $V_{\text{out,i}} = d_i \cdot \frac{R}{2i+1R} =$ $d_i \cdot \frac{1}{2^{i+1}}, \quad i = 0,..,N-1, d_i \in \{0,1\}$ $\begin{array}{l} V_{\text{out}} = \sum_{i=0}^{N-1} V_{\text{out,i}} = \\ V_{\text{ref}} \sum_{i=0}^{N-1} d_i \cdot \frac{1}{2^{i+1}}, \quad d_i \in \{0,1\} \end{array}$

Binary weighted current sources:

 $\begin{array}{l} V_{\text{out}} = I_{\text{out}}\,R = R \sum_{i=0}^{N-1} \left(b_i I_0\right) = \\ R I_0 \sum_{i=0}^{N-1} b_i \text{ with } b_i \in \left\{0, 2^i\right\} \end{array}$

Sources can be implemented as current mirror

Binary DACS: few number of components, large ratios of resistors, currents and switches, monotonicity not quaranteed, not linear, bas acc, need precise matching, prone to glitches, large portion switches.

Thermometer wighted:

Current steering DAC, reduced glitches, monotonic. 2^N sources, binary to thermometer decoder needed

	t_0	t_1	t_2	b_2	b_1	D
	0	0	0	0	0	0
Same	1	0	0	1	0	1
	1	1	0	0	1	2
	1	1	1	1	1	3

topology as binary weighted but sources are not weighted just I_0

R2R-Ladder:

$$\begin{split} I &= -\frac{V_{\text{ref}}}{2R + (2R\|2\mathrm{R})} = -\frac{V_{\text{ref}}}{3R} \\ V_{\text{out},i} &= -d_i \frac{1}{2^{i+1}} \cdot 3R = V_{\text{ref}} \cdot d_i \cdot \frac{1}{2^{i+1}} \\ V_{\text{out}} &= \sum_{i=0}^{N-1} V_{\text{out},i} = \\ V_{\text{ref}} &\cdot \sum_{i=0}^{N-1} d_i \cdot \frac{1}{2^{i+1}} \end{split}$$

Inverse R2R-Ladder:

$$\begin{array}{l} V_{\text{out,i}} = -d_i \cdot \frac{V_{\text{ref}} / (2R)}{2^i} \cdot R = V_{\text{ref}} \cdot d_i \cdot \frac{1}{2^{i+1}} \\ V_{\text{out}} = \sum_{i=0}^{N-1} V_{\text{out,i}} = \end{array}$$

$$V_{ ext{out}} = \sum_{i=0}^{N-1} V_{ ext{out},i} = V_{ ext{ref}} \cdot \sum_{i=0}^{N-1} d_i \cdot \frac{1}{2^{i+1}}$$
 Bin weighted Cap. volt divider:

 $\begin{array}{l} V_{\text{out,i}} = d_i \cdot \frac{C_0/2^{i+1}}{C_0} \cdot V_{\text{ref}} \,, \quad d_i \in \\ \{0,1\}, i = 0..., N-1 \\ V_{\text{out}} = \sum_{i=0}^{N-1} V_{\text{out}\,,i} = V_{\text{ref}} \sum_{i=0}^{N-1} d_i \cdot \\ \frac{1}{2^{i+1}} V_{\text{out}\,,i} & \text{where } d_i \in \{0,1\} \text{ Capas are} \end{array}$ weighted in the denominator, but otherwise

Realization with less capas:

Switch between lsb and msb group reset and load $V_{out} = \alpha_{right} \cdot V_{ref} \alpha_{right} =$

$$\begin{array}{l} \sum_{i=1}^{N_{\mathrm{right}}} d_{\mathrm{i,right}} \text{ with } d_{\mathrm{i,right}} \in \left\{0,2^{-i}\right\} \\ V_{out} = \frac{\alpha_{\mathrm{left}} V_{\mathrm{ref}}}{16} \\ \alpha_{\mathrm{left}} = \sum_{i=1}^{N} d_{\mathrm{i,left}} \quad \text{with} \quad d_{\mathrm{i,left}} \in \left\{0,2^{-i}\right\} \\ \mathrm{PWM \ DAC:} \end{array}$$

Course DAC(MSBs) feeds fine DAC (LSBs), matching needs to be instead $2^10\ {\rm for}\ 10\ {\rm bit}$ only $2 \cdot 2^5$

Current steering DAC with dyn calib:

Each source supposed to have I_{ref} , Assume one only has $0.9I_{Ref}$ Calib phase: V_{GS1} settles so that Q_1 draws $0.1I_{Ref}$ Operat. Phase: Q_1 calibs. so that $I_{d1} = I_{ref}$