Data Science Project Management

Case Study 1
Group-2

Team Members	Tasks		
Ahmad Iqbal	Data Visualization + Presentation		
Arshpreet kaur	Data Visualization + Documentation		
Abhiram Pazhuvelil Sathyan	Documentation + Github		
Basant Singh	CNN + Image PreProcessing		
Keerthi Reddy Dokuri	Dashboard + Data Preprocessing		
Meenakshi Remadevi	Data Visualization (Tableau) + Presentation		
Muhammad Anas	Data Visualization + Data Preprocessing		
Muhammad Hasan	Dashboard + Image PreProcessing		
Nigel George	Github + Data Visualization (Tableau)		
Tony Regi Jacob	CNN + Model Tuning		

Table of Content

- Tasks To Do
- Update of Dashboard
- Data Visualization and Insights
- Data PreProcessing
- CNN Model
- Results
- Links

Tasks To Do

- Updates to the project process in both the code and the project board
- Python notebook, sequentially executed code and an HTML file
- Updated Project Board and Git repository

Update on Dashboard

Added **Milestone** On Dashboard to create Data Insights using Visualization and to build Initial CNN Based Model

Update on Dashboard

Created and **assigned** Tasks among all team members to get a real time update from each member about every single task.

Used **Tags** and **Priority** tasks to know about **severity** and **current status** of tasks.

BrandDatasetVisual > My List

Update on Dashboard

Created **subtasks** for every team member and **details added** to subtasks along with declaring **prerequisite** as well as deadlines.

Added **Code Screenshots** to dashboard to keep the the members updated about other's task.

Tasks Breakdown

We have 9 unique categorical variables in our dataset among which further types are there

Brand	Use	Year	Seasonal	PrimaryColor	Article	SubType	Type	GenderType	ID
Peter England	Casual	2012.0	Summer	Blue	Jeans	Bottomwear	Apparel	Men	39386
Titan	Casual	2016.0	Winter	Silver	Watches	Watches	Accessories	Women	59263
Puma	Casual	2012.0	Summer	Grey	Tshirts	Topwear	Apparel	Men	53759
Puma	Casual	2012.0	Summer	Navy Blue	Socks	Socks	Accessories	Men	29114
Puma	Casual	2011.0	Summer	Black	Casual Shoes	Shoes	Footwear	Men	9204

The graph shows the types of Items **Wearable Items**

Apparel, Footwear and **accessories** are the highest used items by customers.

The graph shows the **high** tendency of **summer's** product usage by customers

Fall is the 2nd highest with **winter** 3rd.

While **spring** is the least.

Men's are the most user of products with women's second highest

The graph indicates that customers loves to buy products from Nike, Puma and adidas

Whereas very few number of customers buys from Ray ban.

Data Visualization (Tableau)

The **colour** most worn by particular genders in a specific season

Data Visualization (Tableau)

The **Brands** worn by different gender types in different seasons

Data Visualization (Tableau)

The **items** and **number** of item users among all seasons

Sheet 1

		Seasonal				
Gende 느	Sub Type	Null	Fall	Spring	Summer	Winter
	Flip Flops		103	8	170	7
	Fragrance			55		
	Free Gifts				1	3
	Gloves		5			
	Headwear		29	1	24	2
	Innerwear		7		366	91
	Loungewear and Nightwe		4		13	11
	Mufflers		6		5	
	Sandal		132	14	138	9
	Scarves		2		8	
	Shoes		767	32	1,300	17
	Socks		60	1	145	1
	Ties		3		33	
	Topwear	1	2,040	23	1,909	36
	Wallets		16		94	13
	Watches				31	448

Data Pre-Processing

- Data Preprocessing is done to distinguish between **Real** and **fake Images** available in dataset
- Separated **IDs** for Real and Fake images used for Model
- Train Test **split** is done in **70:30** ratio
- Processed the images using various techniques that includes gray scale, rotation range, zoom range,
 width and height range, horizontal flip, and fill mode.

CNN

- Built and used **CNN** Model to Classify target variable
- **Relu** and **Sotmax** functions were used as activation function
- Adam Optimizer helped to increase the accuracy to a great extent
- Used 12 epoch for the model to run and learn every time

Results

We only scored 69.79% for our initial Model, which is not very good.

We obtained an **AUC** of **0.771**%, which indicates that the model can distinguish between positive and negative outputs with reasonable accuracy, but still we were unable to do so.

Out of 14000 data points, we got **3900** True Negative Values , **661** False Positive Values, **7429** False Negative Values and **1307** True Positive Values which shows that our model has potential to learn but still we need to work more on model parameters.

After visualization , we came to know we have lots of categorical and highly unbalanced data that make it difficult to train CNN on it.

Due to highly unbalanced data, AUC and other kernel would be very less, and ultimately it would be tough for our model to learn from data.

Links

Github

https://github.com/Tonyrj/Data-Science

Project Dashboard

http://surl.li/ibtnd