

Chapter 18 Introduction to Decision Analysis

Chapter Goals

After completing this chapter, you should be able to:

- Describe the decision environments of certainty and uncertainty
- Construct a payoff table and an opportunity-loss table
- Define and apply the expected value criterion for decision making
- Compute the value of perfect information
- Develop and use decision trees for decision making

Decision Making Overview

The Decision Environment

Certainty: The results of decision alternatives are known

Example:

Must print 10,000 color brochures

Offset press A: \$2,000 fixed cost

+ \$.24 per page

Offset press B: \$3,000 fixed cost

+ \$.12 per page

The Decision Environment

(continued)

Uncertainty: The outcome that will occur after a choice is unknown

Example:

You must decide to buy an item now or wait. If you buy now the price is \$2,000. If you wait the price may drop to \$1,500 or rise to \$2,200. There also may be a new model available later with better features.

Decision Criteria

Nonprobabilistic Decision Criteria: Decision rules that can be applied if the probabilities of uncertain events are not known.

- maximax criterion
- maximin criterion
- minimax regret criterion

Decision Criteria

(continued)

Probabilistic Decision Criteria:

Consider the probabilities of uncertain events and select an alternative to maximize the expected payoff of minimize the expected loss

Decision Criteria

Nonprobabilistic

* Probabilistic

- maximize expected value
- minimize expected opportunity loss

A Payoff Table

A payoff table shows alternatives, states of nature, and payoffs

	Profit in \$1,000's				
Investment	(States of Nature)				
Choice (Alternatives)	Strong Economy	Stable Economy	Weak Economy		
Large factory	200	50	-120		
Average factory	90	120	-30		
Small factory	40	30	20		

Maximax Solution

The maximax criterion (an optimistic approach):

1. For each option, find the maximum payoff

Investment	Profit in \$1,000's (States of Nature)			1.
Choice (Alternatives)	Strong Economy	Stable Economy	Weak Economy	Maximum Profit
Large factory	200	50	-120 _	→ 200
Average factory	90	120	-30 —	→ 120
Small factory	40	30	20 _	→ 40

Maximax Solution

(continued)

The maximax criterion (an optimistic approach):

- 1. For each option, find the maximum payoff
- 2. Choose the option with the greatest maximum payoff

Investment	Profit in \$1,000's (States of Nature)			1.	2.
Choice (Alternatives)	Strong Economy	Stable Economy	Weak Economy	Maximum Profit	Greatest maximum is to
Large factory	200	50	-120	→ 200 —	→ choose
Average factory Small factory	90 40	30 30	-30 <u> </u>	→ 120 → 40	Large factory

Maximin Solution

The maximin criterion (a pessimistic approach):

1. For each option, find the minimum payoff

Investment	Pro (St	1.		
Choice (Alternatives)	Strong Economy	Minimum Profit		
Large factory	200	50	-120 _	-120
Average factory	90	120	-30 —	-30
Small factory	40	30	20 _	20

Maximin Solution

(continued)

The maximin criterion (a pessimistic approach):

- 1. For each option, find the minimum payoff
- 2. Choose the option with the greatest minimum payoff

Investment	Profit in \$1,000's (States of Nature)			1.	2.
Choice (Alternatives)	Strong Economy	Stable Economy	Weak Economy	Minimum Profit	Greatest
Large factory	200	50	-120 _	-120	minimum
Average factory	90	120	-30 _	-30	is to
Small factory	40	30	20 _	20	choose →Small
					factory

Opportunity loss is the difference between an actual payoff for a decision and the optimal payoff for that state of nature

	Profit in \$1,000's				
Investment	(S	(States of Nature)			
Choice	Strong Stable Weak				
(Alternatives)	Economy	Economy	Economy		
Large factory	200	50	-120		
Average factory	, 90	120	-30		
Small factory	40	30	20		

Payoff Table

The choice "Average factory" has payoff 90 for "Strong Economy". Given "Strong Economy", the choice of "Large factory" would have given a payoff of 200, or 110 higher. Opportunity loss = 110 for this cell.

Opportunity Loss

(continued)

	Profit in \$1,000's			
Investment	(S	tates of Natu	re)	
Choice (Alternatives)	Strong Economy	Stable Economy	Weak Economy	
Large factory	200	50	-120	
Average factory	90	120	-30	
Small factory	40	30	20	

Payoff Table

Opportunity Loss Table

	Opportunity Loss in \$1,000's				
Investment	(S	(States of Nature)			
Choice (Alternatives)	Strong Economy	Stable Economy	Weak Economy		
Large factory	0	70	140		
Average factory	110	0	50		
Small factory	160	90	0		

Minimax Regret Solution

The minimax regret criterion:

1. For each alternative, find the maximum opportunity loss (or "regret")

Opportunity Loss Table

	• •			
	Opportu	1.		
Investment	(S	tates of Natu	re)	Maximum
Choice (Alternatives)	Strong Economy	Stable Economy	Weak Economy	Op. Loss
Large factory	0	70	140 —	→ 140
Average factory	110	0	50 —	110
Small factory	160	90	0 _	→ 160

Minimax Regret Solution

(continued)

The minimax regret criterion:

- 1. For each alternative, find the maximum opportunity loss (or "regret")
- 2. Choose the option with the smallest maximum loss

Opportunity Loss Table

Investment	Opportunity Loss in \$1,000's (States of Nature)			1.	2.
Choice (Alternatives)	Strong Economy	Stable Economy	Weak Economy	Maximum Op. Loss	Smallest maximum loss is to
Large factory	0	70	140 —	140	choose
Average factory Small factory	110 160	90	50 —	→ 110 — → 160	→ Average factory

Expected Value Solution

The expected value is the weighted average payoff, given specified probabilities for each state of nature

	Profit in \$1,000's (States of Nature)			
Investment Choice	Strong Economy	Stable Economy	Weak Economy	
(Alternatives)	(.3)	(.5)	(.2) ←	
Large factory	200	50	-120	
Average factory	90	120	-30	
Small factory	40	30	20	

Suppose these probabilities have been assessed for these states of nature

Expected Value Solution

(continued)

	Profit in \$1,000's (States of Nature)				
Investment Choice (Alternatives)	Strong Economy (.3)	Stable Economy (.5)	Weak Economy (.2)	Expected Values	Maximize expected
Large factory Average factory Small factory	200 90 40	50 120 30	-120 <u> </u>	61 81 31	value by choosing Average factory

Example: EV (Average factory) = 90(.3) + 120(.5) + (-30)(.2)= 81

Expected Opportunity Loss Solution

Opportunity Loss Table

	Opportunity Loss in \$1,000's (States of Nature)				
Investment Choice (Alternatives)	Strong Economy (.3)	Stable Economy (.5)	Weak Economy (.2)	Expected Op. Loss (EOL)	Minimize expected
Large factory Average factory Small factory	0 110 160	70 0 90	140 <u></u> 50 <u></u> 0 <u></u>	63 + 43 + 93	op. loss by choosing Average factory

Example: EOL (Large factory) = 0(.3) + 70(.5) + (140)(.2)= 63

Cost of Uncertainty

 Cost of Uncertainty (also called Expected Value of Perfect Information, or EVPI)

- Cost of Uncertainty
 - = Expected Value Under Certainty (EVUC)
 - Expected Value without information (EV)

so:
$$EVPI = EVUC - EV$$

Expected Value Under Certainty

Expected Value Under Certainty (EVUC):

expected
value of the
best decision,
given perfect
information

	Profit in \$1,000's (States of Nature)		
Investment Choice (Alternatives)	Strong Economy (.3)	Stable Economy (.5)	Weak Economy (.2)
Large factory	200	50	-120
Average factory Small factory	90 40	30	-30 20
	<u> </u>	 	
	200	120	20
Example: Best de given "Strong Eco			

"Large factory"

Expected Value Under Certainty

(continued)

Now weight
these outcomes
with their
probabilities to
find FVUC:

	Profit in \$1,000's (States of Nature)		
Investment Choice (Alternatives)	Strong Economy (.3)	Stable Economy (.5)	Weak Economy (.2)
Large factory	200	50	-120
Average factory	90	120	-30
Small factory	40	30	20
	200	120	20

$$EVUC = 200(.3)+120(.5)+20(.2)$$
$$= 124$$

Cost of Uncertainty Solution

- Cost of Uncertainty (EVPI)
 - = Expected Value Under Certainty (EVUC)
 - Expected Value without information (EV)

Recall: EVUC = 124

EV is maximized by choosing "Average factory", where EV = 81

Decision Tree Analysis

A Decision tree shows a decision problem, beginning with the initial decision and ending will all possible outcomes and payoffs.

- Use a square to denote decision nodes
- Use a circle to denote uncertain events

Sample Decision Tree

Add Probabilities and Payoffs

(continued)

Fold Back the Tree

Make the Decision

Chapter Summary

- Examined decision making environments
 - certainty and uncertainty
- Reviewed decision making criteria
 - nonprobabilistic: maximax, maximin, minimax regret
 - probabilistic: expected value, expected opp. loss
- Computed the Cost of Uncertainty (EVPI)
- Developed decision trees and applied them to decision problems