Math 510B Notes

Peter Kagey

Wednesday, January 16, 2019

Examples.

- 1. Let p be prime in \mathbb{Z} , then $x^n p \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Q}[x]$.
- 2. Let $f(x,y) = y^4 xy^3 x^2y^2 + x \in \mathbb{Z}[x]$. Then write $\mathbb{Q}[x,y] = D[y]$ where $D = \mathbb{Q}[x]$. Since x is prime in D, f(x,y) is irreducible in $\mathbb{Q}[x,y]$
- 3. Let f(x,y) be irreducible in $\mathbb{Q}[x,y]$, then $g(x,y,z)=z^k+f(x,y)$ is irreducible in $\mathbb{Q}[x,y,z]$.
- 4. Let $f(x,y) = x^2 + y^2 1 \in \mathbb{R}[x,y] \cong R[x][y]$. This can be factored as $y^2 + (x+1)(x-1)$. Then using x+1 (or x-1) as the prime, f(x,y) is prime by Eisenstein.
- 5. Let $f(x, y, z) = z^3 + x^2 + y^2 + 1$. Then let $p = x^2 + y^2 1 \in \mathbb{R}[x, y]$, so $z^3 + p$ is irreducible.
- 6. Let $g(x, y, z) = x^2 z^3 y^2 z + xyz x^2 y$. Looking at this as a polynomial in z, this factors as $g(x, y, z) = x^2 z^3 + (xy y^2)z x^2 y$, so this is irreducible with prime y.

Example. Let D be a UFD and $p \in D$ a prime, then $D/\langle p \rangle$ might not be a UFD. For example, let $D = \mathbb{Z}[x]$ and $p = x^2 - 10$ which is irreducible in D, and thus prime.

$$\frac{D}{\langle p \rangle} \cong \frac{\mathbb{Z}[x]}{\langle x^2 - 10 \rangle} \cong \mathbb{Z}(\sqrt{10})$$

which is not a UFD; for example, $9 = 3^2 = (\sqrt{10} + 1)(\sqrt{10} - 1)$.

Lemma. Assume k is an algebraically closed field (e.g. \mathbb{C}). The maximal ideals of k[x] are principal, generated by (x-a) for some $a \in k$. In particular, the ideal $M_a := \langle x-a \rangle$ is the kernel of the specialization map $s_a : k[x] \to k$ which sends $f(x) \mapsto f(a)$ and thus $M_a \mapsto \langle 0 \rangle$. Thus there exists a 1-1 correspondence between maximal ideals of k[x] and the set k.

Proof. The ring R = k[x] is a PID so $M = \langle p(x) \rangle$ for some p(x) and M is maximal so M is a prime ideal, thus p(x) is irreducible in R. Since k is closed, p(x) = x - a for some $a \in k$ so $M = \langle x - a \rangle$.

Theorem. (Hilbert's Nullstellensatz over \mathbb{C} , weak form)

The maximal ideals of $\mathbb{C}[x_1,\ldots,x_n]$ are of the form $M_{\overline{a}}=\langle x_1-a_1,\ldots,x_n-a_n\rangle$ for some $\overline{a}=(a_1,\ldots,a_n)$. Thus, there exists a 1-1 correspondence between maximal ideals of $\mathbb{C}[x_1,\ldots,x_n]$ and $\overline{a}\in\mathbb{C}^n$, where $M_{\overline{a}}$ is the kernel of the map $f(x_1,\ldots,x_n)\mapsto f(a_1,\ldots,a_n)$.

Sublemma. Any polynomial f can be written as

$$f(\widetilde{x}) = f(\overline{a}) + \sum_{i} c_i(x_i - a_i) + \sum_{i,j} c_{ij}(x_i - a_i)(x_j - a_j) + \dots$$

where the expression is finite because f is a polynomial.

Example. In $\mathbb{C}[x,y]$, let $\overline{a}=(1,-2)$ and $f(x,y)=x^2+xy+2$. Then let x=u+1 and y=v-2, so that

$$f(x,y) = (u+1)^2 + (u+1)(v-2) + 2$$

= 1 + v + u² + uv
= 1 + (y+2) + (x-1)² + (x-1)(y+2)

Proof. The proof will proceed in two steps:

- (1) The kernel $\ker(s_{\bar{a}}) = M_{\bar{a}}$, and this ideal is maximal in $\mathbb{C}[\widetilde{x}]$.
- (2) Every maximal ideal of $\mathbb{C}[\tilde{x}]$ is of the form $M_{\bar{a}}$ for some $\bar{a} \in \mathbb{C}^n$.

Proof of (1). Notice that $s_{\bar{a}} : \mathbb{C}[\tilde{x}] \to \mathbb{C}$ is a surjective ring homomorphism, and so $\mathbb{C}[\tilde{x}]/\ker(s_{\bar{a}}) \cong \mathbb{C}$ by the first isomorphism theorem for rings. Since the quotient is a field, $\ker(s_{\bar{a}})$ is maximal. Also, $M_{\bar{a}} \subset \ker(s_{\bar{a}})$ because each generator $s_{\bar{a}}(x_i - a_i) = 0$. (...)

Proof of (2). Let M be maximal ideal so that $k = \mathbb{C}[\widetilde{x}]/M$ is a field, let $\pi \colon \mathbb{C}[\widetilde{x}] \to K$ be the usual quotient $x_i \mapsto \overline{x}_i$, and let $\pi_i = \pi|_{\mathbb{C}[x_i]} \colon \mathbb{C}[x_i] \to K$ be the restriction to functions of polynomials in $\mathbb{C}[x_i]$.

Notice that $ker(\pi_i) \neq 0$ for all i, because otherwise π_i is injective.

Note. For any integral domain with fraction field F any injection $\phi \colon R \to K$ can be extended to an injection $\widetilde{\phi} \colon F \to K$ by $\widetilde{\phi}(a/b) = \phi(a)\phi^{-1}(b)$

Non-example. $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$, so (x^2+1) is maximal in $\mathbb{R}[x]$, but not of the form X=(x-a) because \mathbb{R} is not algebraically closed.

Note. Suppose that $K[x_1,\ldots,x_n]$. Then Hilbert's Nullstellensatz weak form runs into trouble if

- 1. K is not algebraically closed, (If \overline{K} is the closure of K, then there is a correspondence between maximal ideals in $K[x_1, \ldots, x_n]$ and points in \overline{K}^n .) or,
- 2. if K is countable. (Harder, must use more sophisticated methods.)