

Arm[®] Cortex[®]-M 32-bit Microcontroller

NuMicro[®] Family M4521 Series Datasheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

TABLE OF CONTENTS GENERAL DESCRIPTION ------ 8 FEATURES------ 9 2 NuMicro® M4521 Features.....9 2.1 Abbreviations ----- 14 3 PARTS INFORMATION LIST AND PIN CONFIGURATION ----- 16 4.1 NuMicro® M4521 Naming Rule ------ 16 4.1.1 NuMicro® M4521 USB Series Selection Guide------ 17 4.1.2 4.2 NuMicro® M4521 Series LQFP48 Pin Diagram ------ 18 4.2.1 NuMicro® M4521 Series LQFP64 Pin Diagram ------ 19 4.2.2 4.3 M4521 Series LQFP48 Pin Description------ 20 4.3.1 M4521 Series LQFP64 Pin Description------ 27 4.3.2 GPIO Multi-function Pin Summary ----- 36 4.3.3 BLOCK DIAGRAM ------ 43 5 5.1 NuMicro® M4521 Series Block Diagram43 FUNCTIONAL DESCRIPTION------44 6 6.1 6.2 Overview ------ 47 6.2.1 System Reset------ 47 6.2.2 Power Modes and Wake-up Sources----- 54 6.2.3 System Power Distribution----- 56 6.2.4 System Memory Map----- 58 6.2.5 SRAM Memory Organization ----- 61 6.2.6 System Timer (SysTick) ----- 6.3 6.2.7 Nested Vectored Interrupt Controller (NVIC) ----- 63 6.2.8 6.3 Overview ------ 64 6.3.1 Clock Generator ------ 66 6.3.2 System Clock and SysTick Clock ----- 67 6.3.3 Peripherals Clock ------ 68 6.3.4

6.3.5	Power-down Mode Clock	69
6.3.6	Clock Output	69
6.4	Flash Memeory Controller (FMC)	71
6.4.1	Overview	71
6.4.2	Peatures	71
6.5	External Bus Interface (EBI)	72
6.5.1	Overview	72
6.5.2	Peatures	72
6.6	General Purpose I/O (GPIO)	73
6.6.1	Overview	73
6.6.2	Peatures	73
6.7	PDMA Controller (PDMA)	74
6.7.1	Overview	74
6.7.2	Peatures	74
6.8	Timer Controller (TMR)	75
6.8.1	Overview	75
6.8.2	Peatures	75
6.9	PWM Generator and Capture Timer (PWM)	76
6.9.1	Overview	76
6.9.2	Peatures	76
6.10	Watchdog Timer (WDT)	78
6.10.	1 Overview	78
6.10.	2 Features	78
6.11	Window Watchdog Timer (WWDT)	79
6.11.	.1 Overview	79
6.11.	2 Features	79
6.12	Real Time Clock (RTC)	80
6.12.	.1 Overview	80
6.12.	2 Features	80
6.13	UART Interface Controller (UART)	81
6.13.	.1 Overview	81
6.13.	2 Features	81
6.14	Smart Card Host Interface (SC)	83
6.14.	.1 Overview	83
6.14.	2 Features	83

	6.15	I ² C Serial Interface Controller (I ² C)	84
	6.15.1	Overview	84
	6.15.2	Features	84
	6.16	Serial Peripheral Interface (SPI)	85
	6.16.1	Overview	85
	6.16.2	Features	85
	6.17	USB Device Controller (USBD)	86
	6.17.1	Overview	86
	6.17.2	Features	86
	6.18	USB 1.1 Host Controller (USBH)	87
	6.18.1	Overview	87
	6.18.2	Features	87
	6.19	CRC Controller (CRC)	88
	6.19.1	Overview	88
	6.19.2	Features	88
	6.20	Enhanced 12-bit Analog-to-Digital Converter (EADC)	89
	6.20.1	Overview	89
	6.20.2	Features	89
7	AP	PLICATION CIRCUIT	90
3	EL	ECTRICAL CHARACTERISTICS	91
	8.1	Absolute Maximum Ratings	91
	8.2	DC Electrical Characteristics	92
	8.2.1	On-chip peripheral current consumption	97
	8.3	AC Electrical Characteristics	99
	8.3.1	External 4~20 MHz High Speed Crystal (HXT) Input Clock	99
	8.3.2	External 4~20 MHz High Speed Crystal (HXT) Oscillator	99
	8.3.3	22.1184 MHz Internal High Speed RC Oscillator (HIRC)	100
	8.3.4	32.768 kHz External Low Speed Crystal (LXT) Input Clock	101
	8.3.5	32.768 kHz External Low Speed Crystal (LXT) Oscillator	101
	8.3.6	10 kHz Internal Low Speed RC Oscillator (LIRC)	102
	8.4	Analog Characteristics	103
	8.4.1	PIN AC characteristics	103
	8.4.2	12-bit SAR ADC	104
	8.4.3	LDO	106
	8.4.4	Low Voltage Reset	106

	8.4.5	Brown-out Detector	106
	8.4.6	Power-on Reset	107
	8.4.7	Temperature Sensor	107
	8.4.8	Internal Voltage Reference	108
	8.4.9	USB PHY	108
	8.5	Flash DC Electrical Characteristics	110
	8.6	I ² C Dynamic Characteristics	111
	8.7	SPI Dynamic Characteristics	112
	8.7.1	Dynamic Characteristics of Data Input and Output Pin	112
9	PA	CKAGE DIMENSIONS	115
	9.1	LQFP 64L (7x7x1.4 mm footprint 2.0 mm)	115
	9.2	LQFP 48L (7x7x1.4mm footprint 2.0mm)	116
1 (0 RE	VISION HISTORY	117

List of Figures	
Figure 4.1-1 NuMicro® M4521 Selection Code	16
Figure 4.2-1 NuMicro® M4521 Series LQFP 48-pin Diagram	18
Figure 4.2-2 NuMicro® M4521 Series LQFP 64-pin Diagram	19
Figure 5.1-1 NuMicro® M4521 Series Block Diagram	43
Figure 6.1-1 Cortex [®] -M4 Block Diagram	44
Figure 6.2-1 System Reset Sources	48
Figure 6.2-2 nRESET Reset Waveform	50
Figure 6.2-3 Power-on Reset (POR) Waveform	51
Figure 6.2-4 Low Voltage Reset (LVR) Waveform	52
Figure 6.2-5 Brown-out Detector (BOD) Waveform	53
Figure 6.2-6 Power Mode State Machine	54
Figure 6.2-7 NuMicro® M4521 Series Power Distribution Diagram	57
Figure 6.2-8 SRAM Block Diagram	61
Figure 6.2-9 SRAM Memory Organization	62
Figure 6.3-1 Clock Generator Global View Diagram	65
Figure 6.3-2 Clock Generator Block Diagram	66
Figure 6.3-3 System Clock Block Diagram	67
Figure 6.3-4 HXT Stop Protect Procedure	68
Figure 6.3-5 SysTick Clock Control Block Diagram	68
Figure 6.3-6 Clock Source of Clock Output	69
Figure 6.3-7 Clock Output Block Diagram	70
Figure 8.3-1 Typical Crystal Application Circuit	100
Figure 8.3-2 HIRC Accuracy vs. Temperature	100
Figure 8.3-3 Typical Crystal Application Circuit	102
Figure 8.4-1 Typical connection diagram using the ADC	105
Figure 8.4-2 Power-up Ramp Condition	107
Figure 8.6-1 I ² C Timing Diagram	111
Figure 8.7-1 SPI Master Mode Timing Diagram	112
Figure 8.7-2 SPI Slave Mode Timing Diagram	114

Page **6** of **118**

List of Tables

Table 2.1-1 List of Abbreviations	15
Table 4.3-1 M4521 GPIO Multi-function Table	42
Table 6.2-1 Reset Value of Registers	50
Table 6.2-2 Power Mode Difference Table	54
Table 6.2-3 Clocks in Power Modes	55
Table 6.2-4 Condition of Entering Power-down Mode Again	56
Table 6.2-5 Address Space Assignments for On-Chip Controllers	60
Table 6.13-1 NuMicro® M4521 Series UART Feature	82

1 **GENERAL DESCRIPTION**

nuvoton

The NuMicro® M4521 series 32-bit microcontroller powered by Arm® Cortex®-M4F with DSP and FPU runs up to 72 MHz. It is embedded with 128 KB Flash ROM, 32 KB SRAM and independent 4 KB In System Programming Flash ROM. The M4521 series is equipped with plenty of peripherals: 3 sets of UART with 16-byte FIFO, 2 sets of I²C that support SMBus and PMBus, SPI and Quad-SPI, ISO-7816, USB full-speed device/host, and EBI that provides great flexibility through adding external memory. It also offers four 32-bit timers, two watchdog timers, 8-ch peripheral DMA, 12-ch 16-bit PWM, and 16-ch 12-bit SAR ADC with 1 MSPS conversion rate.

The M4521 series provides two special designs. One is high-resolution 144 MHz PWM with highspeed timer (resolution<7ns). In conjunction with a driver ADC, it delivers hardware brake protection and pulse capture functions to save MCU computing resource and effectively perform advanced computing task in motor control application, making the M4521 series exceptionally outstanding in industrial automation control. The other is VAI (Voltage Adjustment Interface) which supports voltage level adjustment on individual I/O (1.8V-5.5V) for saving additional cost on adjusting the interface voltage difference with external components.

The M4521 series also provides the wide operating voltage (2.5V-5.5V), industrial operating temperature (-40°C - 105°C), 5V-tolerance input I/O to significantly enhance system stability. The 22.1184 MHz internal RC oscillator (HIRC variation < ±2%) and 32.768 kHz external crystal oscillator can trim HIRC (HIRC variation < ±0.25%) working at -40°C- 105°C to enhance system immunity and fulfill the high precision demand of communications. The M4521 series is specifically suitable for high-performance and high-precision applications, such as industrial automation, home automation, security alarm system, and gaming peripherals.

The M4521 series is suitable for a wide range of applications such as:

- **Industrial Automation**
- **PLCs**
- Home Automation
- Security Alarm System
- **Power Metering**
- **Data Collector**
- **RFID** Reader
- System Supervisors
- **Smart Card Reader**
- Printer
- Bar Code Scanner
- Motor Control
- **Digital Power**

2 FEATURES

2.1 NuMicro® M4521 Features

Core

- Arm® Cortex®-M4F core running up to 72 MHz
- Supports DSP extension with hardware divider
- Supports IEEE 754 compliant Floating-point Unit (FPU)
- Supports Memory Protection Unit (MPU)
- One 24-bit system timer
- Supports Low Power Sleep mode by WFI and WFE instructions
- Single-cycle 32-bit hardware multiplier
- Supports programmable 16 level priorities of Nested Vectored Interrupt Controller (NVIC)
- Supports programmable mask-able interrupts
- Built-in LDO for wide operating voltage ranged from 2.5V to 5.5V

Flash Memory

- Supports 128 KB application ROM (APROM)
- Supports 4 KB Flash for loader (LDROM)
- Supports Data Flash with configurable memory size
- Supports In-System-Programming (ISP), In-Application-Programming (IAP) update embedded Flash memory
- Supports 2 KB page erase for all embedded Flash

SRAM Memory

- 32 KB embedded SRAM
- Supports byte-, half-word- and word-access
- Supports PDMA mode

PDMA (Peripheral DMA)

- Supports 8 independent configurable channels for automatic data transfer between memories and peripherals
- Supports Normal and Scatter-Gather Transfer modes
- Supports two types of priorities modes: Fixed-priority and Round-robin modes
- Supports byte-, half-word- and word-access
- Auto increment of the source and destination address
- Supports single and burst transfer type

Clock Control

- Built-in 22.1184 MHz internal high speed RC oscillator (HIRC) for system operation (variation < 2% at -40°C ~ +105°C)
- Built-in 10 kHz internal low speed RC oscillator (LIRC) for Watchdog Timer and wakeup operation
- Built-in 4~20 MHz external high speed crystal oscillator (HXT) for precise timing operation
- Built-in 32.768 kHz external low speed crystal oscillator (LXT) for RTC function and low-power system operation
- Supports one PLL up to 144 MHz for high performance system operation, sourced from HIRC and HXT
- Supports clock failure detection for high/low speed external crystal oscillator
- Supports exception (NMI) generated once a clock failure detected
- Supports clock output

GPIO

Four I/O modes

- TTL/Schmitt trigger input selectable
- I/O pin configured as interrupt source with edge/level trigger setting
- Supports high driver and high sink current I/O (up to 20 mA at 5V)
- Supports software selectable slew rate control
- Supports 5V-tolerance function for following pins
 - ◆ PA.0 ~ PA.3, PC.0 ~ PC.7, PD.2 ~ PD.3, PD.7, PD.12 ~ PD.15, PE.0, PE.8 ~ PE.13, PF.2, PF.5 ~ PF.7
- Supports up to 49/35 GPIOs for LQFP64/48 respectively

Timer

- Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter
- Independent clock source for each timer
- Provides One-shot, Periodic, Toggle and Continuous Counting operation modes
- Supports event counting function to count the event from external pin
- Supports input capture function to capture or reset counter value

Watchdog Timer

- Supports multiple clock sources from LIRC (default selection), HCLK/2048 and LXT
- 8 selectable time-out period from 1.6 ms ~ 26.0 sec (depending on clock source)
- Able to wake up from Power-down or Idle mode
- Interrupt or reset selectable on watchdog time-out

Window Watchdog Timer

- Supports multiple clock sources from HCLK/2048 (default selection) and LIRC
- Window set by 6-bit counter with 11-bit prescale
- Able to wake up from Power-down or Idle mode
- Interrupt or reset selectable on time-out

●RTC

- Supports external power pin V_{BAT}
- Supports software compensation by setting frequency compensate register (FCR)
- Supports RTC counter (second, minute, hour) and calendar counter (day, month, year)
- Supports Alarm registers (second, minute, hour, day, month, year)
- Selectable 12-hour or 24-hour mode
- Automatic leap vear recognition
- Supports periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second
- Supports wake-up function
- Supports 80 bytes spare registers
- Programmable spare register erase function
- Supports 32KHz Oscillator gain control
- Supports tamper detection function

• PWM

- Supports up to 12 independent PWM outputs with 16-bit resolution
- Supports maximum clock frequency up to 144MHz
- Supports 12-bit clock prescale
- Supports one-shot or auto-reload counter operation mode
- Supports up, down or up-down PWM counter type
- Supports synchronous function
- Supports dead time with maximum divided 12-bit prescale
- Supports brake function source from pin, comparator output and system safety events
- Supports PWM auto recovery function after brake condition removed
- Supports mask function and tri-state output for each PWM pin
- Supports PWM events interrupt
- Supports trigger EADC start conversion
- Supports up to 12 independent input capture channels with rising/falling capture and

- with counter reload option
- Supports capture counter with 16-bit resolution
- Supports capture interrupt
- Supports capture PDMA mode

UART

- Supports up to four UARTs UART0, UART1, UART2 and UART3
- Supports 16-byte FIFOs with programmable level trigger
- Supports auto flow control (CTS and RTS)
- Supports IrDA (SIR) function
- Supports RS-485 9-bit mode and direction control
- Programmable baud-rate generator up to 1/16 system clock
- Supports wake-up function
- Supports PDMA mode

Smart Card Interface

- One set of ISO-7816-3 port
- Compliant to ISO-7816-3 T=0, T=1
- Separate receive / transmit 4 bytes entry FIFO for data payloads
- Programmable transmission clock frequency
- Programmable receiver buffer trigger level
- Programmable guard time selection (11 ETU ~ 266 ETU)
- A 24-bit and two 8 bit time-out counters for Answer to Request (ATR) and waiting times processing
- Supports auto inverse convention function
- Supports stop clock level and clock stop (clock keep) function
- Supports transmitter and receiver error retry and error limit function
- Supports hardware activation/deactivation sequence process
- Supports hardware warm reset sequence process
- Supports hardware auto deactivation sequence when detect the card is removal
- Supports UART function

Quad SPI

- Supports one set of SPI Quad controller SPI0
- Supports Master or Slave mode operation
- Supports 2-bit Transfer mode
- Supports Dual and Quad I/O Transfer mode
- Configurable bit length of a transfer word from 8 to 32-bit
- Provides separate 8-level depth transmit and receive FIFO buffers
- Supports MSB first or LSB first transfer sequence
- Supports the byte reorder function
- Supports Byte or Word Suspend mode
- Supports PDMA operation
- Supports 3-wired, no slave select signal, bi-direction interface
- Master up to 32 MHz, and Slave up to 16 MHz (when chip works at $V_{DD} = 5V$)

● SPI

- Supports one set of SPI controller SPI1
- Supports Master or Slave mode operation
- Configurable bit length of a transfer word from 8 to 32-bit
- Provides separate 4-level depth transmit and receive FIFO buffers
- Supports MSB first or LSB first transfer sequence
- Supports the byte reorder function
- Supports Byte or Word Suspend mode
- Supports PDMA operation
- Supports 3-wire, no slave select signal, bi-direction interface
- Master mode up to 36 MHz and Slave mode up to 18 MHz (when chip works at V_{DD} =

5V)

●I²C

- Supports up to two sets of I²C devices
- Supports Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- Programmable clocks allow versatile rate control
- Supports multiple address recognition (four slave address with mask option)
- Supports SMBus and PMBus
- Supports speed up to 1Mbps
- Supports multi-address Power-down wake-up function

● USB 2.0 Full-Speed Device Controller

- Supports one set of USB 2.0 FS device
- Compliant to USB specification version 2.0
- On-chip USB Transceiver
- Supports Control, Bulk In/Out, Interrupt and Isochronous transfers
- Auto suspend function when no bus signaling for 3 ms
- Provides 8 programmable endpoints
- Supports 512 Bytes internal SRAM as USB buffer
- Provides remote wake-up capability
- Start of Frame (SOF) locked clock pulse generation for crystal-less feature (48MHz internal RC oscillator for USB crystal-less only)
- On-chip 5V to 3.3V LDO for USB PHY

USB 2.0 Full-Speed Host Controller

- Compliant with USB Revision 1.1 Specification
- Compatible with OHCI (Open Host Controller Interface) Revision 1.0
- Supports full-speed (12 Mbps) and low-speed (1.5 Mbps) USB devices
- Supports Control, Bulk, Interrupt, Isochronous transfers
- Supports an integrated Root Hub
- Supports port power control and port over current detection
- Built-in DMA

●EBI

- Supports two dedicated external chip select pins for each memory block
- Supports external accessible space up to 1 Mbytes (need 20-bit address width) for each bank. Real addressable space size is dependent on package pin out
- Supports 8-/16-bit data width
- Supports byte write in 16-bit data width mode
- Supports PDMA mode
- Supports Address/Data multiplexed Mode
- Supports LCD interface i80 mode
- Supports Timing parameters individual adjustment for each memory block

EADC

- Analog input voltage range: 0~ V_{REF} (Max to AV_{DD})
- Supports single 12-bit SAR ADC conversion
- 12-bit resolution and 10-bit accuracy is guaranteed
- Up to 1MSPS conversion rate at 5.0V

- Up to 16 external single-ended analog input channels
- Up to 8 differential analog input pairs
- Supports single ADC interrupt
- Supports external V_{REF} pin
- Support internal reference voltages from Band-gap and Voltage divider
- An A/D conversion can be triggered by Software enable, External pin, Timer 0~3 overflow pulse trigger and PWM trigger
- Supports 3 internal channels for V_{BAT}, band-gap VBG input and Temperature sensor input
- Supports PDMA transfer
- Cyclic Redundancy Calculation Unit
 - Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32
 - Programmable initial value
 - Supports programmable order reverse setting for input data and CRC checksum
 - Supports programmable 1's complement setting for input data and CRC checksum.
 - Supports 8-/16-/32-bit of data width
 - Interrupt generated once checksum error occurs
- Voltage Adjustable Interface
 - Supports user Configurable 1.8~5.5V I/O Interface with a dedicated power input (V_{DDIO})
 - Supports UART1, SPI0, SPI1, I²C1 or I²C0 interface
- Supports 96-bit Unique ID (UID)
- Supports 128-bit Unique Customer ID (UCID)
- One built-in temperature sensor with 1°C resolution
- Brown-out detector
 - With 4 levels: 4.4 V/ 3.7 V/ 2.7 V/ 2.2 V
 - Supports Brown-out Interrupt and Reset option
- ●Low Voltage Reset
- Threshold voltage levels: 2.0 V
 Operating Temperature: -40°C ~105°C
- Packages
 - LQFP 64-pin (7mm x 7mm)
 - LQFP 48-pin (7mm x 7mm)

3 ABBREVIATIONS

Acronym	Description
ACMP	Analog Comparator Controller
ADC	Analog-to-Digital Converter
AES	Advanced Encryption Standard
APB	Advanced Peripheral Bus
AHB	Advanced High-Performance Bus
BOD	Brown-out Detection
CAN	Controller Area Network
DAP	Debug Access Port
DES	Data Encryption Standard
EBI	External Bus Interface
EPWM	Enhanced Pulse Width Modulation
FIFO	First In, First Out
FMC	Flash Memory Controller
FPU	Floating-point Unit
GPIO	General-Purpose Input/Output
HCLK	The Clock of Advanced High-Performance Bus
HIRC	22.1184 MHz Internal High Speed RC Oscillator
HXT	4~24 MHz External High Speed Crystal Oscillator
IAP	In Application Programming
ICP	In Circuit Programming
ISP	In System Programming
LDO	Low Dropout Regulator
LIN	Local Interconnect Network
LIRC	10 kHz internal low speed RC oscillator (LIRC)
MPU	Memory Protection Unit
NVIC	Nested Vectored Interrupt Controller
PCLK	The Clock of Advanced Peripheral Bus
PDMA	Peripheral Direct Memory Access
PLL	Phase-Locked Loop
PWM	Pulse Width Modulation
QEI	Quadrature Encoder Interface
SD	Secure Digital
SPI	Serial Peripheral Interface

SPS	Samples per Second				
TDES	Triple Data Encryption Standard				
TK	Touch Key				
TMR	Timer Controller				
UART	Universal Asynchronous Receiver/Transmitter				
UCID	Unique Customer ID				
USB	Universal Serial Bus				
WDT	Watchdog Timer				
WWDT Window Watchdog Timer					

Table 2.1-1 List of Abbreviations

4 PARTS INFORMATION LIST AND PIN CONFIGURATION

4.1 NuMicro® M4521 Selection Guide

4.1.1 NuMicro® M4521 Naming Rule

Figure 4.1-1 NuMicro® M4521 Selection Code

4.1.2 NuMicro® M4521 USB Series Selection Guide

er	•	3)	ROM				(Conne	ctivity	,				٦.	it)	it)			Ь	
Part Number	Flash (KB)	SRAM (KB)	ISP Loader F (KB)	0/I	Timer	UART*	SC* (ISO-7816)	Quad SPI	IdS	l²C	CAN	asn	MMd	Analog Comp.	DAC (12-Bit)	ADC (12-Bit)	RTC	IBJ	ICP/ISPI/AP	Package
M4521LE6AE	128	32	4	35	4	3+1	1	1	1	2	1	Dual Role (Device/Host)	10	1	-	10-ch	√	8-bit	√	LQFP 48
M4521SE6AE	128	32	4	49	4	4+1	1	1	1	2	1	Dual Role (Device/Host)	12		1	16-ch	√	16-bit	√	LQFP 64*

^{*}Marked in this table (4+1) means 4 UART + 1 SC UART

^{*}SC (ISO-7816) supports full duplex UART mode

^{*}Package dimension of LQFP64* of M4521 series is 7x7x1.4 mm footprint 2.0mm

4.2 Pin Configuration

nuvoton

NuMicro® M4521 Series LQFP48 Pin Diagram 4.2.1 Corresponding Part Number: M4521LE6AE

Figure 4.2-1 NuMicro® M4521 Series LQFP 48-pin Diagram

4.2.2 NuMicro[®] M4521 Series LQFP64 Pin Diagram Corresponding Part Number: M4521SE6AE

Figure 4.2-2 NuMicro® M4521 Series LQFP 64-pin Diagram

4.3 Pin Description

4.3.1 M4521 Series LQFP48 Pin Description

Corresponding Part Number: M4521LE6AE

MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)

PA.0 MFP0 means SYS_GPA_MFPL[3:0]=0x0.

PA.9 MFP5 means SYS_GPA_MFPH[7:4]=0x5.

Pin No.	Pin Name	Туре	MFP*	Description
1	PB.5	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH13	Α	MFP1	EADC analog input channel 13.
	SPI0_MOSI0	I/O	MFP2	SPI0 1st MOSI (Master Out, Slave In) pin.
	SPI1_MOSI	I/O	MFP3	SPI1 MOSI (Master Out, Slave In) pin.
	EBI_AD6	I/O	MFP7	EBI address/data bus bit 6.
	UART2_RXD	I/O	MFP9	Data receiver input pin for UART2.
2	PB.6	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH14	Α	MFP1	EADC analog input channel 14.
	SPI0_MISO0	I/O	MFP2	SPI0 1st MISO (Master In, Slave Out) pin.
	SPI1_MISO	I/O	MFP3	SPI1 MISO (Master In, Slave Out) pin.
	EBI_AD5	I/O	MFP7	EBI address/data bus bit 5.
3	PB.7	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH15	Α	MFP1	EADC analog input channel 15.
	SPI0_CLK	I/O	MFP2	SPI0 serial clock pin.
	SPI1_CLK	I/O	MFP3	SPI1 serial clock pin
	EBI_AD4	I/O	MFP7	EBI address/data bus bit 4.
	STADC	I/O	MFP10	ADC external trigger input.
4	nRESET	I	MFP0	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state. Note: It is recommended to use $10 \text{ k}\Omega$ pull-up resistor and 10 uF capacitor on nRESET pin.
5	PD.0	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH6	Α	MFP1	EADC analog input channel 6.
	UART0_RXD	I	MFP3	Data receiver input pin for UART0.
	INT3	I	MFP8	External interrupt3 input pin.
6	AV _{ss}	Р	MFP0	Ground pin for analog circuit.
7	PD.1	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH11	Α	MFP1	EADC analog input channel 11.
	PWM0_SYNC_IN	I	MFP2	PWM0 counter synchronous trigger input pin.

Pin No.	Pin Name	Туре	MFP*	Description
	UART0_TXD	0	MFP3	Data transmitter output pin for UART0.
	ТО	I/O	MFP6	Timer0event counter input / toggle output
	EBI_nRD	0	MFP7	EBI read enable output pin.
8	PD.2	I/O	MFP0	General purpose digital I/O pin.
	STADC	- 1	MFP1	ADC external trigger input.
	T0_EXT	1	MFP3	Timer0 external capture input
	PWM0_BRAKE0	1	MFP6	PWM0 break input 0
	EBI_nWR	0	MFP7	EBI write enable output pin.
	INT0	I	MFP8	External interrupt0 input pin.
9	PD.3	I/O	MFP0	General purpose digital I/O pin.
	T2	I/O	MFP1	Timer2 event counter input / toggle output
	T1_EXT	I	MFP3	Timer1 external capture input
	PWM0_BRAKE1	1	MFP6	PWM0 break input 1
	EBI_MCLK	0	MFP7	EBI external clock output pin
	INT1	I	MFP8	External interrupt1 input pin.
10	V_{BAT}		MFP0	Power supply by batteries for RTC and PF.0~PF.2.
11	PF.0	I/O	MFP0	General purpose digital I/O pin.
	X32_OUT	0	MFP1	External 32.768 kHZ (low speed) crystal output pin.
	INT5	I	MFP8	External interrupt5 input pin.
12	PF.1	I/O	MFP0	General purpose digital I/O pin.
	X32_IN	I	MFP1	External 32.768 kHZ (low speed) crystal input pin.
13	PF.2	I/O	MFP0	General purpose digital I/O pin.
	TAMPER	I/O	MFP1	TAMPER detector loop pin
14	PD.7	I/O	MFP0	General purpose digital I/O pin.
	PWM0_SYNC_IN	I	MFP3	PWM0 counter synchronous trigger input pin.
	T1	I/O	MFP4	Timer1 event counter input / toggle output
	PWM0_CH5	I/O	MFP6	PWM0 output/capture input.
	EBI_nRD	0	MFP7	EBI read enable output pin.
15	PF.3	I/O	MFP0	General purpose digital I/O pin.
	XT1_OUT	0	MFP1	External 4~20 MHz (high speed) crystal output pin.
	I2C1_SCL	I/O	MFP3	I2C1 clock pin.
16	PF.4	I/O	MFP0	General purpose digital I/O pin.
	XT1_IN	I	MFP1	External 4~20 MHz (high speed) crystal input pin.
	I2C1_SDA	I/O	MFP3	I2C1 data input/output pin.

Pin No.	Pin Name	Туре	MFP*	Description
17	V _{SS}	А	MFP0	Ground pin for digital circuit.
18	LDO_CAP	А	MFP0	LDO output pin.
				Note: This pin needs to be connected with an external capacitor.
19	PC.0	I/O	MFP0	General purpose digital I/O pin.
	SPI1_CLK	I/O	MFP2	SPI1 serial clock pin.
	UART2_nCTS	I	MFP3	Clear to Send input pin for UART2.
	PWM0_CH0	I/O	MFP6	PWM0 output/capture input.
	EBI_AD8	I/O	MFP7	EBI address/data bus bit 8.
	INT2	I	MFP8	External interrupt2 input pin.
	UART3_TXD	0	MFP9	Data transmitter output pin for UART3.
	T3_EXT	I	MFP11	Timer3 external capture input.
20	PC.1	I/O	MFP0	General purpose digital I/O pin.
	CLKO	0	MFP1	Clock Out
	UART2_nRTS	0	MFP3	Request to Send output pin for UART2.
	PWM0_CH1	I/O	MFP6	PWM0 output/capture input.
	EBI_AD9	I/O	MFP7	EBI address/data bus bit 9.
	UART3_RXD	I/O	MFP9	Data receiver input pin for UART3.
21	PC.2	I/O	MFP0	General purpose digital I/O pin.
	SPI1_SS	I	MFP2	SPI1 slave select pin.
	UART2_TXD	0	MFP3	Data transmitter output pin for UART2.
	PWM0_CH2	I/O	MFP6	PWM0 output/capture input.
	EBI_AD10	I/O	MFP7	EBI address/data bus bit 10.
22	PC.3	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MOSI	I/O	MFP2	SPI1 MOSI (Master Out, Slave In) pin.
	UART2_RXD	I	MFP3	Data receiver input pin for UART2.
	PWM0_CH3	I/O	MFP6	PWM0 output/capture input.
	EBI_AD11	I/O	MFP7	EBI address/data bus bit 11.
23	PC.4	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MISO	I/O	MFP2	SPI1 MISO (Master In, Slave Out) pin.
	I2C1_SCL	I/O	MFP3	I2C1 clock pin.
	PWM0_CH4	I/O	MFP6	PWM0 output/capture input.
	EBI_AD12	I/O	MFP7	EBI address/data bus bit 12.
24	PE.0	I/O	MFP0	General purpose digital I/O pin.
	I2C1_SDA	I/O	MFP3	I2C1 data input/output pin.

Pin No.	Pin Name	Туре	MFP*	Description
	T2_EXT	I	MFP4	Timer2 external capture input
	SC0_CD	I	MFP5	SmartCard card detect pin.
	PWM0_CH0	I/O	MFP6	PWM0 output/capture input.
	EBI_nCS1	0	MFP7	EBI chip select 1 enable output pin.
	INT4	I	MFP8	External interrupt4 input pin.
25	PF.5	I/O	MFP0	General purpose digital I/O pin.
	ICE_CLK	ı	MFP1	Serial wired debugger clock pin Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.
26	PF.6	I/O	MFP0	General purpose digital I/O pin.
	ICE_DAT	I/O	MFP1	Serial wired debugger data pin Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.
27	PE.10	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MISO	I/O	MFP1	SPI1 MISO (Master In, Slave Out) pin.
	SPI0_MISO0	I/O	MFP2	SPI0 1st MISO (Master In, Slave Out) pin.
	UART1_nCTS	I	MFP3	Clear to Send input pin for UART1.
	I2C0_SMBAL	0	MFP4	I2C0 SMBus SMBALTER# pin
	SC0_DAT	I/O	MFP5	SmartCard data pin.
	UART3_TXD	0	MFP9	Data transmitter output pin for UART3.
	I2C1_SCL	I/O	MFP11	I2C1 clock pin.
28	PE.11	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MOSI	I/O	MFP1	SPI1 MOSI (Master Out, Slave In) pin.
	SPI0_MOSI0	I/O	MFP2	SPI0 1st MOSI (Master Out, Slave In) pin.
	UART1_nRTS	0	MFP3	Request to Send output pin for UART1.
	I2C0_SMBSUS	0	MFP4	I2C0 SMBus SMBSUS# pin (PMBus CONTROL pin)
	SC0_CLK	0	MFP5	SmartCard clock pin.
	UART3_RXD	I	MFP9	Data receiver input pin for UART3.
	I2C1_SDA	I/O	MFP11	I2C1 data input/output pin.
29	PE.12	I/O	MFP0	General purpose digital I/O pin.
	SPI1_SS	I/O	MFP1	SPI1 slave select pin
	SPI0_SS	I/O	MFP2	SPI0 slave select pin.
	UART1_TXD	0	MFP3	Data transmitter output pin for UART1.
	I2C0_SCL	I/O	MFP4	I2C0 clock pin.
30	PE.13	I/O	MFP0	General purpose digital I/O pin.
	SPI1_CLK	I/O	MFP1	SPI1 serial clock pin

Pin No.	Pin Name	Туре	MFP*	Description
	SPI0_CLK	I/O	MFP2	SPI0 serial clock pin.
	UART1_RXD	1	MFP3	Data receiver input pin for UART1.
	I2C0_SDA	I/O	MFP4	I2C0 data input/output pin.
31	V_{DDIO}	Α	MFP0	Power supply for PE.10~PE.13.
32	USB_VBUS	Α	MFP0	Power supply from USB* host or HUB.
33	USB_D-	1	MFP0	USB differential signal D
34	USB_D+	I	MFP0	USB differential signal D+.
35	PF.7	I/O	MFP0	General purpose digital I/O pin.
36	USB_VDD33_CAP	A	MFP0	Internal power regulator output 3.3V decoupling pin. Note: This pin needs to be connected with a 1uF capacitor.
37	PA.3	I/O	MFP0	General purpose digital I/O pin.
	UART0_RXD	I	MFP2	Data receiver input pin for UART0.
	UART0_nRTS	0	MFP3	Request to Send output pin for UART0.
	I2C0_SCL	I/O	MFP4	I2C0 clock pin.
	SC0_PWR	0	MFP5	SmartCard power pin.
	PWM1_CH2	I/O	MFP6	PWM1 output/capture input.
	EBI_AD3	I/O	MFP7	EBI address/data bus bit 3.
38	PA.2	I/O	MFP0	General purpose digital I/O pin.
	UART0_TXD	0	MFP2	Data transmitter output pin for UART0.
	UART0_nCTS	1	MFP3	Clear to Send input pin for UART0.
	I2C0_SDA	I/O	MFP4	I2C0 data input/output pin.
	SC0_RST	0	MFP5	SmartCard reset pin.
	PWM1_CH3	I/O	MFP6	PWM1 output/capture input.
	EBI_AD2	I/O	MFP7	EBI address/data bus bit 2.
39	PA.1	I/O	MFP0	General purpose digital I/O pin.
	UART1_nRTS	0	MFP1	Request to Send output pin for UART1.
	UART1_RXD	I	MFP3	Data receiver input pin for UART1.
	SC0_DAT	I/O	MFP5	SmartCard data pin.
	PWM1_CH4	I/O	MFP6	PWM1 output/capture input.
	EBI_AD1	I/O	MFP7	EBI address/data bus bit 1.
	STADC	I/O	MFP10	ADC external trigger input.
40	PA.0	I/O	MFP0	General purpose digital I/O pin.
	UART1_nCTS	I	MFP1	Clear to Send input pin for UART1.
	UART1_TXD	0	MFP3	Data transmitter output pin for UART1.

Pin No.	Pin Name	Туре	MFP*	Description
	SC0_CLK	0	MFP5	SmartCard clock pin.
	PWM1_CH5	I/O	MFP6	PWM1 output/capture input.
	EBI_AD0	I/O	MFP7	EBI address/data bus bit 0.
	INT0	I	MFP8	External interrupt0 input pin.
41	V_{DD}	А	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital function.
42	AV_{DD}	Α	MFP0	Power supply for internal analog circuit.
43	V_{REF}	I	MFP0	Voltage reference input for ADC. Note: This pin needs to be connected with a 1uF capacitor.
44	PB.0	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH0	Α	MFP1	EADC analog input.
	SPI0_MOSI1	I/O	MFP2	SPI0 2nd MOSI (Master Out, Slave In) pin.
	UART2_RXD	I	MFP3	Data receiver input pin for UART2.
	T2	I/O	MFP4	Timer2 event counter input / toggle output
	EBI_nWRL	0	MFP7	EBI low byte write enable output pin.
	INT1	I	MFP8	External interrupt1 input pin.
45	PB.1	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH1	Α	MFP1	EADC analog input channel 1.
	SPI0_MISO1	I/O	MFP2	SPI0 2nd MISO (Master In, Slave Out) pin.
	UART2_TXD	0	MFP3	Data transmitter output pin for UART2.
	Т3	I/O	MFP4	Timer3 event counter input / toggle output
	SC0_RST	0	MFP5	SmartCard reset pin.
	PWM0_SYNC_OUT	0	MFP6	PWM0 counter synchronous trigger output pin.
	EBI_nWRH	0	MFP7	EBI high byte write enable output pin
46	PB.2	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH2	А	MFP1	EADC analog input channel 2.
	SPI0_CLK	I/O	MFP2	SPI0 serial clock pin.
	SPI1_CLK	I/O	MFP3	SPI1 serial clock pin
	UART1_RXD	1	MFP4	Data receiver input pin for UART1.
	SC0_CD	I	MFP5	SmartCard card detect pin.
	UART3_RXD	I	MFP9	Data receiver input pin for UART3.
	T2_EXT	I	MFP11	Timer2 external capture input.
47	PB.3	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH3	Α	MFP1	EADC analog input channel 3.
<u></u>	SPI0_MISO0	I/O	MFP2	SPI0 1st MISO (Master In, Slave Out) pin.

Pin No.	Pin Name	Туре	MFP*	Description
	SPI1_MISO	I/O	MFP3	SPI1 MISO (Master In, Slave Out) pin.
	UART1_TXD	0	MFP4	Data transmitter output pin for UART1.
	EBI_ALE	0	MFP7	EBI address latch enable output pin.
	UART3_TXD	0	MFP9	Data transmitter output pin for UART3.
	T0_EXT	I	MFP11	Timer0 external capture input.
48	PB.4	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH4	Α	MFP1	EADC analog input channel 4.
	SPI0_SS	I/O	MFP2	SPI0 slave select pin.
	SPI1_SS	I/O	MFP3	SPI1 slave select pin
	UART1_nCTS	I	MFP4	Clear to Send input pin for UART1.
	EBI_AD7	I/O	MFP7	EBI address/data bus bit 7.
	UART2_TXD	0	MFP9	Data transmitter output pin for UART2.
	T1_EXT	I	MFP11	Timer1 external capture input.

4.3.2 M4521 Series LQFP64 Pin Description

Corresponding Part Number: M4521SE6AE

MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)

PA.0 MFP0 means SYS_GPA_MFPL[3:0]=0x0.

PA.9 MFP5 means SYS_GPA_MFPH[7:4]=0x5.

Pin No.	Pin Name	Туре	MFP*	Description
1	PB.15	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH12	Α	MFP1	EADC analog input channel 12.
	EBI_nCS1	0	MFP7	EBI chip select 1 enable output pin.
2	PB.5	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH13	Α	MFP1	EADC analog input channel 13.
	SPI0_MOSI0	I/O	MFP2	SPI0 1st MOSI (Master Out, Slave In) pin.
	SPI1_MOSI	I/O	MFP3	SPI1 MOSI (Master Out, Slave In) pin.
	EBI_AD6	I/O	MFP7	EBI address/data bus bit 6.
	UART2_RXD	I/O	MFP9	Data receiver input pin for UART2.
3	PB.6	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH14	Α	MFP1	EADC analog input channel 14.
	SPI0_MISO0	I/O	MFP2	SPI0 1st MISO (Master In, Slave Out) pin.
	SPI1_MISO	I/O	MFP3	SPI1 MISO (Master In, Slave Out) pin.
	EBI_AD5	I/O	MFP7	EBI address/data bus bit 5.
4	PB.7	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH15	Α	MFP1	EADC analog input channel 15.
	SPI0_CLK	I/O	MFP2	SPI0 serial clock pin.
	SPI1_CLK	I/O	MFP3	SPI1 serial clock pin
	EBI_AD4	I/O	MFP7	EBI address/data bus bit 4.
	STADC	I/O	MFP10	ADC external trigger input.
5	nRESET	I	MFP0	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state.
				Note: It is recommended to use 10 $k\Omega$ pull-up resistor and 10 uF capacitor on nRESET pin.
6	PD.0	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH6	Α	MFP1	EADC analog input channel 6.
	UARTO_RXD	I	MFP3	Data receiver input pin for UART0.
	INT3	I	MFP8	External interrupt3 input pin.
	Т3	I/O	MFP11	Timer3 event counter input / toggle output.
7	AV _{SS}	Р	MFP0	Ground pin for analog circuit.

Pin No.	Pin Name	Туре	MFP*	Description
8	PD.8	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH7	Α	MFP1	EADC analog input channel 7.
	EBI_nCS0	0	MFP7	EBI chip select 0 enable output pin.
9	PD.9	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH10	Α	MFP1	EADC analog input channel 10.
	EBI_ALE	0	MFP7	EBI address latch enable output pin.
10	PD.1	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH11	Α	MFP1	EADC analog input channel 11.
	PWM0_SYNC_IN	I	MFP2	PWM0 counter synchronous trigger input pin.
	UART0_TXD	0	MFP3	Data transmitter output pin for UART0.
	ТО	I/O	MFP6	Timer0event counter input / toggle output
	EBI_nRD	0	MFP7	EBI read enable output pin.
11	PD.2	I/O	MFP0	General purpose digital I/O pin.
	STADC	I	MFP1	ADC external trigger input.
	T0_EXT	I	MFP3	Timer0 external capture input.
	PWM0_BRAKE0	I	MFP6	PWM0 break input 0
	EBI_nWR	0	MFP7	EBI write enable output pin.
	INT0	I	MFP8	External interrupt0 input pin.
12	PD.3	I/O	MFP0	General purpose digital I/O pin.
	T2	I/O	MFP1	Timer2 event counter input / toggle output
	T1_EXT	I	MFP3	Timer1 external capture input
	PWM0_BRAKE1	1	MFP6	PWM0 break input 1
	EBI_MCLK	0	MFP7	EBI external clock output pin
	INT1	1	MFP8	External interrupt1 input pin.
13	V_{BAT}		MFP0	Power supply by batteries for RTC and PF.0~PF.2.
14	PF.0	I/O	MFP0	General purpose digital I/O pin.
	X32_OUT	0	MFP1	External 32.768 kHZ (low speed) crystal output pin.
	INT5	1	MFP8	External interrupt5 input pin.
15	PF.1	I/O	MFP0	General purpose digital I/O pin.
	X32_IN	I	MFP1	External 32.768 kHZ (low speed) crystal input pin.
16	PF.2	I/O	MFP0	General purpose digital I/O pin.
	TAMPER	I/O	MFP1	TAMPER detector loop pin
17	PD.12	I/O	MFP0	General purpose digital I/O pin.
	UART3_TXD	0	MFP3	Data transmitter output pin for UART3.

Pin No.	Pin Name	Туре	MFP*	Description
	PWM1_CH0	I/O	MFP6	PWM1 output/capture input.
	EBI_ADR16	0	MFP7	EBI address bus bit 16.
18	PD.13	I/O	MFP0	General purpose digital I/O pin.
	UART3_RXD	I	MFP3	Data receiver input pin for UART3.
	PWM1_CH1	I/O	MFP6	PWM1 output/capture input.
	EBI_ADR17	0	MFP7	EBI address bus bit 17.
19	PD.14	I/O	MFP0	General purpose digital I/O pin.
	UART3_nCTS	I	MFP3	Clear to Send input pin for UART3.
	PWM1_CH2	I/O	MFP6	PWM1 output/capture input.
	EBI_ADR18	0	MFP7	EBI address bus bit 18.
20	PD.15	I/O	MFP0	General purpose digital I/O pin.
	UART3_nRTS	0	MFP3	Request to Send output pin for UART3.
	PWM1_CH3	I/O	MFP6	PWM1 output/capture input.
	EBI_ADR19	0	MFP7	EBI address bus bit 19.
21	PD.7	I/O	MFP0	General purpose digital I/O pin.
	PWM0_SYNC_IN	I	MFP3	PWM0 counter synchronous trigger input pin.
	T1	I/O	MFP4	Timer1 event counter input / toggle output
	PWM0_CH5	I/O	MFP6	PWM0 output/capture input.
	EBI_nRD	0	MFP7	EBI read enable output pin.
22	PF.3	I/O	MFP0	General purpose digital I/O pin.
	XT1_OUT	0	MFP1	External 4~20 MHz (high speed) crystal output pin.
	I2C1_SCL	I/O	MFP3	I2C1 clock pin.
23	PF.4	I/O	MFP0	General purpose digital I/O pin.
	XT1_IN	I	MFP1	External 4~20 MHz (high speed) crystal input pin.
	I2C1_SDA	I/O	MFP3	I2C1 data input/output pin.
24	V _{SS}	А	MFP0	Ground pin for digital circuit.
25	V_{DD}	А	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital function.
26	LDO_CAP	А	MFP0	LDO output pin. Note: This pin needs to be connected with an external capacitor.
27	PC.0	I/O	MFP0	General purpose digital I/O pin.
	SPI1_CLK	I/O	MFP2	SPI1 serial clock pin.
	UART2_nCTS	I	MFP3	Clear to Send input pin for UART2.
	PWM0_CH0	I/O	MFP6	PWM0 output/capture input.
	EBI_AD8	I/O	MFP7	EBI address/data bus bit 8.

Pin No.	Pin Name	Туре	MFP*	Description
	INT2	ı	MFP8	External interrupt2 input pin.
	UART3_TXD	0	MFP9	Data transmitter output pin for UART3.
	T3_EXT	ı	MFP11	Timer3 external capture input.
28	PC.1	I/O	MFP0	General purpose digital I/O pin.
	CLKO	0	MFP1	Clock Out
	UART2_nRTS	0	MFP3	Request to Send output pin for UART2.
	PWM0_CH1	I/O	MFP6	PWM0 output/capture input.
	EBI_AD9	I/O	MFP7	EBI address/data bus bit 9.
	UART3_RXD	I/O	MFP9	Data receiver input pin for UART3.
29	PC.2	I/O	MFP0	General purpose digital I/O pin.
	SPI1_SS	ı	MFP2	SPI1 slave select pin.
	UART2_TXD	0	MFP3	Data transmitter output pin for UART2.
	PWM0_CH2	I/O	MFP6	PWM0 output/capture input.
	EBI_AD10	I/O	MFP7	EBI address/data bus bit 10.
30	PC.3	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MOSI	I/O	MFP2	SPI1 MOSI (Master Out, Slave In) pin.
	UART2_RXD	I	MFP3	Data receiver input pin for UART2.
	PWM0_CH3	I/O	MFP6	PWM0 output/capture input.
	EBI_AD11	I/O	MFP7	EBI address/data bus bit 11.
31	PC.4	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MISO	I/O	MFP2	SPI1 MISO (Master In, Slave Out) pin.
	I2C1_SCL	I/O	MFP3	I2C1 clock pin.
	PWM0_CH4	I/O	MFP6	PWM0 output/capture input.
	EBI_AD12	I/O	MFP7	EBI address/data bus bit 12.
32	PC.5	I/O	MFP0	General purpose digital I/O pin.
	PWM0_CH5	I/O	MFP6	PWM0 output/capture input.
	EBI_AD13	I/O	MFP7	EBI address/data bus bit 13.
33	PC.6	I/O	MFP0	General purpose digital I/O pin.
	I2C1_SMBAL	0	MFP3	I2C1 SMBus SMBALTER# pin
	PWM1_CH0	I/O	MFP6	PWM1 output/capture input.
	EBI_AD14	I/O	MFP7	EBI address/data bus bit 14.
	UART0_TXD	0	MFP9	Data transmitter output pin for UART0.
34	PC.7	I/O	MFP0	General purpose digital I/O pin.
	I2C1_SMBSUS	0	MFP3	I2C1 SMBus SMBSUS# pin (PMBus CONTROL pin)

Pin No.	Pin Name	Туре	MFP*	Description
	PWM1_CH1	I/O	MFP6	PWM1 output/capture input.
	EBI_AD15	I/O	MFP7	EBI address/data bus bit 15.
	UART0_RXD	- 1	MFP9	Data receiver input pin for UART0.
35	PF.5	I/O	MFP0	General purpose digital I/O pin.
	ICE_CLK	I	MFP1	Serial wired debugger clock pin Note: It is recommended to use 100 kΩ pull-up resistor
				on ICE_CLK pin.
36	PF.6	I/O	MFP0	General purpose digital I/O pin.
	ICE_DAT	I/O	MFP1	Serial wired debugger data pin Note: It is recommended to use 100 k Ω pull-up resistor on ICE_DAT pin.
37	PE.8	I/O	MFP0	General purpose digital I/O pin.
	UART1_TXD	0	MFP1	Data transmitter output pin for UART1.
	SPI0_MISO1	I/O	MFP2	SPI0 2nd MISO (Master In, Slave Out) pin.
	I2C1_SCL	I/O	MFP4	I2C1 clock pin.
	SC0_PWR	0	MFP5	SmartCard power pin.
	CLKO	0	MFP9	Clock Out
	PWM0_BRAKE0	- 1	MFP10	PWM0 break input 0
	T1	I/O	MFP11	Timer1 event counter input / toggle output
38	PE.9	I/O	MFP0	General purpose digital I/O pin.
	UART1_RXD	1	MFP1	Data receiver input pin for UART1.
	SPI0_MOSI1	I/O	MFP2	SPI0 2nd MOSI (Master Out, Slave In) pin.
	I2C1_SDA	I/O	MFP4	I2C1 data input/output pin.
	SC0_RST	0	MFP5	SmartCard reset pin.
	PWM1_BRAKE1	ı	MFP10	PWM1 break input 1
	T2	I/O	MFP11	Timer2 event counter input / toggle output
39	PE.10	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MISO	I/O	MFP1	SPI1 MISO (Master In, Slave Out) pin.
	SPI0_MISO0	I/O	MFP2	SPI0 1st MISO (Master In, Slave Out) pin.
	UART1_nCTS	I	MFP3	Clear to Send input pin for UART1.
	I2C0_SMBAL	0	MFP4	I2C0 SMBus SMBALTER# pin
	SC0_DAT	I/O	MFP5	SmartCard data pin.
	UART3_TXD	0	MFP9	Data transmitter output pin for UART3.
	I2C1_SCL	I/O	MFP11	I2C1 clock pin.
40	PE.11	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MOSI	I/O	MFP1	SPI1 MOSI (Master Out, Slave In) pin.

Pin No.	Pin Name	Туре	MFP*	Description
	SPI0_MOSI0	I/O	MFP2	SPI0 1st MOSI (Master Out, Slave In) pin.
	UART1_nRTS	0	MFP3	Request to Send output pin for UART1.
	I2C0_SMBSUS	0	MFP4	I2C0 SMBus SMBSUS# pin (PMBus CONTROL pin)
	SC0_CLK	0	MFP5	SmartCard clock pin.
	UART3_RXD	1	MFP9	Data receiver input pin for UART3.
	I2C1_SDA	I/O	MFP11	I2C1 data input/output pin.
41	PE.12	I/O	MFP0	General purpose digital I/O pin.
	SPI1_SS	I/O	MFP1	SPI1 slave select pin
	SPI0_SS	I/O	MFP2	SPI0 slave select pin.
	UART1_TXD	0	MFP3	Data transmitter output pin for UART1.
	I2C0_SCL	I/O	MFP4	I2C0 clock pin.
42	PE.13	I/O	MFP0	General purpose digital I/O pin.
	SPI1_CLK	I/O	MFP1	SPI1 serial clock pin
	SPI0_CLK	I/O	MFP2	SPI0 serial clock pin.
	UART1_RXD	ı	MFP3	Data receiver input pin for UART1.
	I2C0_SDA	I/O	MFP4	I2C0 data input/output pin.
43	V_{DDIO}	А	MFP0	Power supply for PE.8~PE.13.
44	USB_VBUS	А	MFP0	Power supply from USB* host or HUB.
45	USB_D-	I	MFP0	USB differential signal D
46	USB_D+	ı	MFP0	USB differential signal D+.
47	PF.7	I/O	MFP0	General purpose digital I/O pin.
48	USB_VDD33_CAP	А	MFP0	Internal power regulator output 3.3V decoupling pin. Note: This pin needs to be connected with a 1uF capacitor.
49	PA.3	I/O	MFP0	General purpose digital I/O pin.
	UART0_RXD	I	MFP2	Data receiver input pin for UART0.
	UART0_nRTS	0	MFP3	Request to Send output pin for UART0.
	I2C0_SCL	I/O	MFP4	I2C0 clock pin.
	SC0_PWR	0	MFP5	SmartCard power pin.
	PWM1_CH2	I/O	MFP6	PWM1 output/capture input.
	EBI_AD3	I/O	MFP7	EBI address/data bus bit 3.
50	PA.2	I/O	MFP0	General purpose digital I/O pin.
	UART0_TXD	0	MFP2	Data transmitter output pin for UART0.
	UART0_nCTS	ı	MFP3	Clear to Send input pin for UART0.
	I2C0_SDA	I/O	MFP4	I2C0 data input/output pin.

Pin No.	Pin Name	Туре	MFP*	Description
	SC0_RST	0	MFP5	SmartCard reset pin.
	PWM1_CH3	I/O	MFP6	PWM1 output/capture input.
	EBI_AD2	I/O	MFP7	EBI address/data bus bit 2.
51	PA.1	I/O	MFP0	General purpose digital I/O pin.
	UART1_nRTS	0	MFP1	Request to Send output pin for UART1.
	UART1_RXD	I	MFP3	Data receiver input pin for UART1.
	SC0_DAT	I/O	MFP5	SmartCard data pin.
	PWM1_CH4	I/O	MFP6	PWM1 output/capture input.
	EBI_AD1	I/O	MFP7	EBI address/data bus bit 1.
	STADC	I/O	MFP10	ADC external trigger input.
52	PA.0	I/O	MFP0	General purpose digital I/O pin.
	UART1_nCTS	1	MFP1	Clear to Send input pin for UART1.
	UART1_TXD	0	MFP3	Data transmitter output pin for UART1.
	SC0_CLK	0	MFP5	SmartCard clock pin.
	PWM1_CH5	I/O	MFP6	PWM1 output/capture input.
	EBI_AD0	I/O	MFP7	EBI address/data bus bit 0.
	INT0	- 1	MFP8	External interrupt0 input pin.
53	V _{SS}	А	MFP0	Ground pin for digital circuit.
54	V_{DD}	А	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital function.
55	AV_{DD}	А	MFP0	Power supply for internal analog circuit.
56	V _{REF}	I	MFP0	Voltage reference input for ADC. Note: This pin needs to be connected with a 1uF capacitor.
57	PB.0	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH0	А	MFP1	EADC analog input.
	SPI0_MOSI1	I/O	MFP2	SPI0 2nd MOSI (Master Out, Slave In) pin.
	UART2_RXD	- 1	MFP3	Data receiver input pin for UART2.
	T2	I/O	MFP4	Timer2 event counter input / toggle output
	EBI_nWRL	0	MFP7	EBI low byte write enable output pin.
	INT1	- 1	MFP8	External interrupt1 input pin.
58	PB.1	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH1	А	MFP1	EADC analog input channel 1.
	SPI0_MISO1	I/O	MFP2	SPI0 2nd MISO (Master In, Slave Out) pin.
	UART2_TXD	0	MFP3	Data transmitter output pin for UART2.
	T3	I/O	MFP4	Timer3 event counter input / toggle output

Pin No.	Pin Name	Туре	MFP*	Description
	SC0_RST	0	MFP5	SmartCard reset pin.
	PWM0_SYNC_OUT	0	MFP6	PWM0 counter synchronous trigger output pin.
	EBI_nWRH	0	MFP7	EBI high byte write enable output pin
59	PB.2	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH2	Α	MFP1	EADC analog input channel 2.
	SPI0_CLK	I/O	MFP2	SPI0 serial clock pin.
	SPI1_CLK	I/O	MFP3	SPI1 serial clock pin
	UART1_RXD	I	MFP4	Data receiver input pin for UART1.
	SC0_CD	I	MFP5	SmartCard card detect pin.
	UART3_RXD	I	MFP9	Data receiver input pin for UART3.
	T2_EXT	I	MFP11	Timer2 external capture input.
60	PB.3	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH3	Α	MFP1	EADC analog input channel 3.
	SPI0_MISO0	I/O	MFP2	SPI0 1st MISO (Master In, Slave Out) pin.
	SPI1_MISO	I/O	MFP3	SPI1 MISO (Master In, Slave Out) pin.
	UART1_TXD	0	MFP4	Data transmitter output pin for UART1.
	EBI_ALE	0	MFP7	EBI address latch enable output pin.
	UART3_TXD	0	MFP9	Data transmitter output pin for UART3.
	T0_EXT	I	MFP11	Timer0 external capture input.
61	PB.4	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH4	Α	MFP1	EADC analog input channel 4.
	SPI0_SS	I/O	MFP2	SPI0 slave select pin.
	SPI1_SS	I/O	MFP3	SPI1 slave select pin
	UART1_nCTS	I	MFP4	Clear to Send input pin for UART1.
	EBI_AD7	I/O	MFP7	EBI address/data bus bit 7.
	UART2_TXD	0	MFP9	Data transmitter output pin for UART2.
	T1_EXT	I	MFP11	Timer1 external capture input.
62	PB.8	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH5	Α	MFP1	EADC analog input channel 5.
	UART1_nRTS	0	MFP4	Request to Send output pin for UART1.
	PWM0_CH2	I/O	MFP6	PWM0 output/capture input.
63	PB.11	I/O	MFP0	General purpose digital I/O pin.
	EADC_CH8	Α	MFP1	EADC analog input channel 8.
64	PB.12	I/O	MFP0	General purpose digital I/O pin.

Pin No.	Pin Name	Туре	MFP*	Description
	EADC_CH9	Α	MFP1	EADC analog input channel 9.

4.3.3 **GPIO Multi-function Pin Summary**

MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)

PA.0 MFP0 means SYS_GPA_MFPL[3:0]=0x0.

PA.9 MFP5 means SYS_GPA_MFPH[7:4]=0x5.

Group	Pin Name	GPIO	MFP*	Туре	Description
EADC	EADC_CH0	PB.0	MFP1	Α	ADC0 analog input.
	EADC_CH1	PB.1	MFP1	Α	ADC1 analog input.
	EADC_CH2	PB.2	MFP1	Α	ADC2 analog input.
	EADC_CH3	PB.3	MFP1	Α	ADC3 analog input.
	EADC_CH4	PB.4	MFP1	Α	ADC4 analog input.
	EADC_CH5	PB.8	MFP1	Α	ADC5 analog input.
	EADC_CH6	PD.0	MFP1	Α	ADC6 analog input.
	EADC_CH7	PD.8	MFP1	Α	ADC7 analog input.
	EADC_CH8	PB.11	MFP1	Α	ADC8 analog input.
	EADC_CH9	PB.12	MFP1	Α	ADC9 analog input.
	EADC_CH10	PD.9	MFP1	Α	ADC10 analog input.
	EADC_CH11	PD.1	MFP1	Α	ADC11 analog input.
	EADC_CH12	PB.15	MFP1	Α	ADC12 analog input.
	EADC_CH13	PB.5	MFP1	Α	ADC13 analog input.
	EADC_CH14	PB.6	MFP1	Α	ADC14 analog input.
	EADC_CH15	PB.7	MFP1	Α	ADC15 analog input.
	STADC	PD.2	MFP1	1	ADC external trigger input.
	STADC	PB.7	MFP10	1	ADC external trigger input.
	STADC	PA.1	MFP10	I	ADC external trigger input.
CLKO	CLKO	PC.1	MFP1	0	Clock Out
	CLKO	PE.8	MFP9	0	Clock Out
EBI	EBI_AD0	PA.0	MFP7	I/O	EBI address/data bus bit 0.
	EBI_AD1	PA.1	MFP7	I/O	EBI address/data bus bit 1.
	EBI_AD2	PA.2	MFP7	I/O	EBI address/data bus bit 2.
	EBI_AD3	PA.3	MFP7	I/O	EBI address/data bus bit 3.
	EBI_AD4	PB.7	MFP7	I/O	EBI address/data bus bit 4.
	EBI_AD5	PB.6	MFP7	I/O	EBI address/data bus bit 5.
	EBI_AD6	PB.5	MFP7	I/O	EBI address/data bus bit 6.
	EBI_AD7	PB.4	MFP7	I/O	EBI address/data bus bit 7.
	EBI_AD8	PC.0	MFP7	I/O	EBI address/data bus bit 8.

Group	Pin Name	GPIO	MFP*	Туре	Description
	EBI_AD9	PC.1	MFP7	I/O	EBI address/data bus bit 9.
	EBI_AD10	PC.2	MFP7	I/O	EBI address/data bus bit 10.
	EBI_AD11	PC.3	MFP7	I/O	EBI address/data bus bit 11.
	EBI_AD12	PC.4	MFP7	I/O	EBI address/data bus bit 12.
	EBI_AD13	PC.5	MFP7	I/O	EBI address/data bus bit 13.
	EBI_AD14	PC.6	MFP7	I/O	EBI address/data bus bit 14.
	EBI_AD15	PC.7	MFP7	I/O	EBI address/data bus bit 15.
	EBI_ADR16	PD.12	MFP7	0	EBI address bus bit 16.
	EBI_ADR17	PD.13	MFP7	0	EBI address bus bit 17.
	EBI_ADR18	PD.14	MFP7	0	EBI address bus bit 18.
	EBI_ADR19	PD.15	MFP7	0	EBI address bus bit 19.
	EBI_ALE	PD.9	MFP7	0	EBI address latch enable output pin.
	EBI_ALE	PB.3	MFP7	0	EBI address latch enable output pin.
	EBI_MCLK	PD.3	MFP7	0	EBI external clock output pin
	EBI_nCS0	PD.8	MFP7	0	EBI chip select 0 enable output pin.
	EBI_nCS1	PE.0	MFP7	0	EBI chip select 1 enable output pin.
	EBI_nCS1	PB.15	MFP7	0	EBI chip select 1 enable output pin.
	EBI_nRD	PD.1	MFP7	0	EBI read enable output pin.
	EBI_nWR	PD.2	MFP7	0	EBI write enable output pin.
	EBI_nWRH	PB.1	MFP7	0	EBI high byte write enable output pin
	EBI_nWRL	PB.0	MFP7	0	EBI low byte write enable output pin.
	I2C0_SCL	PE.12	MFP4	I/O	I2C0 clock pin.
	I2C0_SCL	PA.3	MFP4	I/O	I2C0 clock pin.
	I2C0_SDA	PE.13	MFP4	I/O	I2C0 data input/output pin.
I2C0	I2C0_SDA	PA.2	MFP4	I/O	I2C0 data input/output pin.
	I2C0_SMBAL	PE.10	MFP4	0	I2C0 SMBus SMBALTER# pin
	I2C0_SMBSUS	PE.11	MFP4	0	I2C0 SMBus SMBSUS# pin (PMBus CONTROL pin)
	I2C1_SCL	PF.3	MFP3	I/O	I2C1 clock pin.
	I2C1_SCL	PC.4	MFP3	I/O	I2C1 clock pin.
	I2C1_SCL	PE.8	MFP4	I/O	I2C1 clock pin.
I2C1	I2C1_SCL	PE.10	MFP11	I/O	I2C1 clock pin.
	I2C1_SDA	PF.4	MFP3	I/O	I2C1 data input/output pin.
	I2C1_SDA	PE.0	MFP3	I/O	I2C1 data input/output pin.
	I2C1_SDA	PE.9	MFP4	I/O	I2C1 data input/output pin.

Group	Pin Name	GPIO	MFP*	Туре	Description	
	I2C1_SDA	PE.11	MFP11	I/O	I2C1 data input/output pin.	
	I2C1_SMBAL	PC.6	MFP3	0	I2C1 SMBus SMBALTER# pin	
	I2C1_SMBSUS	PC.7	MFP3	0	I2C1 SMBus SMBSUS# pin (PMBus CONTROL pin)	
	ICE_CLK	PF.5	MFP1	I	Serial wired debugger clock pin Note: It is recommended to use 100 k Ω pull-up resistor on ICE_CLK pin.	
ICE	ICE_DAT	PF.6	MFP1	I/O	Serial wired debugger data pin Note: It is recommended to use 100 k Ω pull-up resistor on ICE_DAT pin.	
INITO	INT0	PD.2	MFP8	ı	External interrupt0 input pin.	
INT0	INT0	PA.0	MFP8	I	External interrupt0 input pin.	
INIT4	INT1	PD.3	MFP8	ı	External interrupt1 input pin.	
INT1	INT1	PB.0	MFP8	I	External interrupt1 input pin.	
INT2	INT2	PC.0	MFP8	I	External interrupt2 input pin.	
INT3	INT3	PD.0	MFP8	I	External interrupt3 input pin.	
INT4	INT4	PE.0	MFP8	I	External interrupt4 input pin.	
INT5	INT5	PF.0	MFP8	I	External interrupt5 input pin.	
	PWM0_BRAKE0	PD.2	MFP6	I	PWM0 break input 0	
	PWM0_BRAKE0	PE.8	MFP10	I	PWM0 break input 0	
	PWM0_BRAKE1	PD.3	MFP6	I	PWM0 break input 1	
	PWM0_CH0	PC.0	MFP6	I/O	PWM0 output/capture input.	
	PWM0_CH0	PE.0	MFP6	I/O	PWM0 output/capture input.	
	PWM0_CH1	PC.1	MFP6	I/O	PWM0 output/capture input.	
	PWM0_CH2	PC.2	MFP6	I/O	PWM0 output/capture input.	
PWM0	PWM0_CH2	PB.8	MFP6	I/O	PWM0 output/capture input.	
	PWM0_CH3	PC.3	MFP6	I/O	PWM0 output/capture input.	
	PWM0_CH4	PC.4	MFP6	I/O	PWM0 output/capture input.	
	PWM0_CH5	PD.7	MFP6	I/O	PWM0 output/capture input.	
	PWM0_CH5	PC.5	MFP6	I/O	PWM0 output/capture input.	
	PWM0_SYNC_IN	PD.1	MFP2	ı	PWM0 counter synchronous trigger input pin.	
	PWM0_SYNC_IN	PD.7	MFP3	I	PWM0 counter synchronous trigger input pin.	
	PWM0_SYNC_OUT	PB.1	MFP6	0	PWM0 counter synchronous trigger output pin.	
	PWM1_BRAKE1	PE.9	MFP10	I	PWM1 break input 1	
PWM1	PWM1_CH0	PD.12	MFP6	I/O	PWM1 output/capture input.	
	PWM1_CH0	PC.6	MFP6	I/O	PWM1 output/capture input.	

Group	Pin Name	GPIO	MFP*	Туре	Description
	PWM1_CH1	PD.13	MFP6	I/O	PWM1 output/capture input.
	PWM1_CH1	PC.7	MFP6	I/O	PWM1 output/capture input.
	PWM1_CH2	PD.14	MFP6	I/O	PWM1 output/capture input.
	PWM1_CH2	PA.3	MFP6	I/O	PWM1 output/capture input.
	PWM1_CH3	PD.15	MFP6	I/O	PWM1 output/capture input.
	PWM1_CH3	PA.2	MFP6	I/O	PWM1 output/capture input.
	PWM1_CH4	PA.1	MFP6	I/O	PWM1 output/capture input.
	PWM1_CH5	PA.0	MFP6	I/O	PWM1 output/capture input.
	SC0_CD	PE.0	MFP5	I	SmartCard card detect pin.
	SC0_CD	PB.2	MFP5	I	SmartCard card detect pin.
	SC0_CLK	PE.11	MFP5	0	SmartCard clock pin.
	SC0_CLK	PA.0	MFP5	0	SmartCard clock pin.
	SC0_DAT	PE.10	MFP5	I/O	SmartCard data pin.
SC0	SC0_DAT	PA.1	MFP5	I/O	SmartCard data pin.
	SC0_PWR	PE.8	MFP5	0	SmartCard power pin.
	SC0_PWR	PA.3	MFP5	0	SmartCard power pin.
	SC0_RST	PE.9	MFP5	0	SmartCard reset pin.
	SC0_RST	PA.2	MFP5	0	SmartCard reset pin.
	SC0_RST	PB.1	MFP5	0	SmartCard reset pin.
	SPI0_CLK	PB.7	MFP2	I/O	SPI0 serial clock pin.
	SPI0_CLK	PE.13	MFP2	I/O	SPI0 serial clock pin.
	SPI0_CLK	PB.2	MFP2	I/O	SPI0 serial clock pin.
	SPI0_MISO0	PB.6	MFP2	I/O	SPI0 1st MISO (Master In, Slave Out) pin.
	SPI0_MISO0	PE.10	MFP2	I/O	SPI0 1st MISO (Master In, Slave Out) pin.
	SPI0_MISO0	PB.3	MFP2	I/O	SPI0 1st MISO (Master In, Slave Out) pin.
CDIO	SPI0_MISO1	PE.8	MFP2	I/O	SPI0 2nd MISO (Master In, Slave Out) pin.
SPI0	SPI0_MISO1	PB.1	MFP2	I/O	SPI0 2nd MISO (Master In, Slave Out) pin.
	SPI0_MOSI0	PB.5	MFP2	I/O	SPI0 1st MOSI (Master Out, Slave In) pin.
	SPI0_MOSI0	PE.11	MFP2	I/O	SPI0 1st MOSI (Master Out, Slave In) pin.
	SPI0_MOSI1	PE.9	MFP2	I/O	SPI0 2nd MOSI (Master Out, Slave In) pin.
	SPI0_MOSI1	PB.0	MFP2	I/O	SPI0 2nd MOSI (Master Out, Slave In) pin.
	SPI0_SS	PE.12	MFP2	I/O	SPI0 slave select pin.
	SPI0_SS	PB.4	MFP2	I/O	SPI0 slave select pin.
SPI1	SPI1_CLK	PB.7	MFP3	I/O	SPI1 serial clock pin

Group	Pin Name	GPIO	MFP*	Туре	Description
	SPI1_CLK	PE.13	MFP1	I/O	SPI1 serial clock pin
	SPI1_CLK	PB.2	MFP3	I/O	SPI1 serial clock pin
	SPI1_CLK	PC.0	MFP2	I/O	SPI1 serial clock pin.
	SPI1_MISO PB.6		MFP3	I/O	SPI1 MISO (Master In, Slave Out) pin.
	SPI1_MISO	PE.10	MFP1	I/O	SPI1 MISO (Master In, Slave Out) pin.
	SPI1_MISO	PB.3	MFP3	I/O	SPI1 MISO (Master In, Slave Out) pin.
	SPI1_MISO	PC.4	MFP2	I/O	SPI1 MISO (Master In, Slave Out) pin.
	SPI1_MOSI	PB.5	MFP3	I/O	SPI1 MOSI (Master Out, Slave In) pin.
	SPI1_MOSI	PE.11	MFP1	I/O	SPI1 MOSI (Master Out, Slave In) pin.
	SPI1_MOSI	PC.3	MFP2	I/O	SPI1 MOSI (Master Out, Slave In) pin.
	SPI1_SS	PE.12	MFP1	I/O	SPI1 slave select pin
	SPI1_SS	PC.2	MFP2	I/O	SPI1 slave select pin.
	SPI1_SS	PB.4	MFP3	I/O	SPI1 slave select pin
TAMPER	TAMPER	PF.2	MFP1	I/O	TAMPER detector loop pin
	то	PD.1	MFP6	I/O	Timer0event counter input / toggle output
TMR0	T0_EXT	PD.2	MFP3	1	Timer0 external capture input
	T0_EXT	PB.3	MFP11	1	Timer0 external capture input
	T1	PD.7	MFP4	I/O	Timer1 event counter input / toggle output
TMD4	T1	PE.8	MFP11	I/O	Timer1 event counter input / toggle output
TMR1	T1_EXT	PD.3	MFP3	1	Timer1 external capture input
	T1_EXT	PB.4	MFP11	1	Timer1 external capture input
	T2	PD.3	MFP1	I/O	Timer2 event counter input / toggle output
	T2	PB.0	MFP4	I/O	Timer2 event counter input / toggle output
TMR2	T2	PE.9	MFP11	I/O	Timer2 event counter input / toggle output
	T2_EXT	PE.0	MFP4	I	Timer2 external capture input
	T2_EXT	PB.2	MFP11	1	Timer2 external capture input
	Т3	PB.1	MFP4	I/O	Timer3 event counter input / toggle output
TMR3	Т3	PD.0	MFP11	I/O	Timer3 event counter input / toggle output
TIVIKS	T3_EXT	PE.6	MFP3	1	Timer3 external capture input
	T3_EXT	PC.0	MFP11	1	Timer3 external capture input
	UART0_RXD	PD.0	MFP3	I	Data receiver input pin for UART0.
LIADTO	UART0_RXD	PA.3	MFP2	1	Data receiver input pin for UART0.
UART0	UART0_RXD	PC.7	MFP9	1	Data receiver input pin for UART0.
	UART0_TXD	PD.1	MFP3	0	Data transmitter output pin for UART0.

Group	Pin Name	GPIO	MFP*	Туре	Description
	UART0_TXD	PA.2	MFP2	0	Data transmitter output pin for UART0.
	UART0_TXD	PC.6	MFP9	0	Data transmitter output pin for UART0.
	UART0_nCTS	PA.2	MFP3	I	Clear to Send input pin for UART0.
	UART0_nRTS	PA.3	MFP3	0	Request to Send output pin for UART0.
	UART1_RXD	PE.9	MFP1	I	Data receiver input pin for UART1.
	UART1_RXD	PE.13	MFP3	I	Data receiver input pin for UART1.
	UART1_RXD	PA.1	MFP3	I	Data receiver input pin for UART1.
	UART1_RXD	PB.2	MFP4	I	Data receiver input pin for UART1.
	UART1_TXD	PE.8	MFP1	0	Data transmitter output pin for UART1.
	UART1_TXD	PE.12	MFP3	0	Data transmitter output pin for UART1.
LIADTA	UART1_TXD	PA.0	MFP3	0	Data transmitter output pin for UART1.
UART1	UART1_TXD	PB.3	MFP4	0	Data transmitter output pin for UART1.
	UART1_nCTS	PE.10	MFP3	I	Clear to Send input pin for UART1.
	UART1_nCTS	PA.0	MFP1	I	Clear to Send input pin for UART1.
	UART1_nCTS	PB.4	MFP4	I	Clear to Send input pin for UART1.
	UART1_nRTS	PE.11	MFP3	0	Request to Send output pin for UART1.
	UART1_nRTS	PA.1	MFP1	0	Request to Send output pin for UART1.
	UART1_nRTS	PB.8	MFP4	0	Request to Send output pin for UART1.
	UART2_RXD	PC.3	MFP3	I	Data receiver input pin for UART2.
	UART2_RXD	PB.0	MFP3	I	Data receiver input pin for UART2.
	UART2_RXD	PB.5	MFP9	I	Data receiver input pin for UART2.
LIADTO	UART2_TXD	PC.2	MFP3	0	Data transmitter output pin for UART2.
UART2	UART2_TXD	PB.1	MFP3	0	Data transmitter output pin for UART2.
	UART2_TXD	PB.4	MFP9	0	Data transmitter output pin for UART2.
	UART2_nCTS	PC.0	MFP3	I	Clear to Send input pin for UART2.
	UART2_nRTS	PC.1	MFP3	0	Request to Send output pin for UART2.
	UART3_RXD	PD.13	MFP3	I	Data receiver input pin for UART3.
	UART3_RXD	PB.2	MFP9	I	Data receiver input pin for UART3.
	UART3_RXD	PE.11	MFP9	I	Data receiver input pin for UART3.
LIADTO	UART3_RXD	PC.1	MFP9	I	Data receiver input pin for UART3.
UART3	UART3_TXD	PD.12	MFP3	0	Data transmitter output pin for UART3.
	UART3_TXD	PB.3	MFP9	0	Data transmitter output pin for UART3.
	UART3_TXD	PE.10	MFP9	0	Data transmitter output pin for UART3.
	UART3_TXD	PC.0	MFP9	0	Data transmitter output pin for UART3.

Group	Pin Name	GPIO	MFP*	Туре	Description
	UART3_nCTS	PD.14	MFP3	I	Clear to Send input pin for UART3.
	UART3_nRTS	PD.15	MFP3	0	Request to Send output pin for UART3.
LVT	X32_IN	PF.1	MFP1	I	External 32.768 kHZ (low speed) crystal input pin.
LXT	X32_OUT	PF.0	MFP1	0	External 32.768 kHZ (low speed) crystal output pin.
LIVT	XT1_IN	PF.4	MFP1	I	External 4~20 MHz (high speed) crystal input pin.
HXT	XT1_OUT	PF.3	MFP1	0	External 4~20 MHz (high speed) crystal output pin.

Table 4.3-1 M4521 GPIO Multi-function Table

5 BLOCK DIAGRAM

5.1 NuMicro® M4521 Series Block Diagram

Figure 5.1-1 NuMicro® M4521 Series Block Diagram

6 FUNCTIONAL DESCRIPTION

6.1 Arm® Cortex®-M4 Core

The Cortex®-M4 processor, a configurable, multistage, 32-bit RISC processor, has three AMBA AHB-Lite interfaces for best parallel performance and includes an NVIC component. The processor with optional hardware debug functionality can execute Thumb code and is compatible with other Cortex-M profile processors. The profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return. The Cortex®-M4F is a processor with the same capability as the Cortex®-M4 processor and includes floating point arithmetic functionality. The NuMicro® M4521 family is embedded with Cortex®-M4F processor. Throughout this document, the name Cortex®-M4 refers to both Cortex®-M4 and Cortex®-M4F processors. Figure 6.1-1 shows the functional controller of the processor.

Figure 6.1-1 Cortex®-M4 Block Diagram

Cortex[®]-M4 processor features:

- A low gate count processor core, with low latency interrupt processing that has:
 - A subset of the Thumb instruction set, defined in the ARMv7-M Architecture Reference Manual
 - Banked Stack Pointer (SP)

- Hardware integer divide instructions, SDIV and UDIV
- Handler and Thread modes
- Thumb and Debug states
- Support for interruptible-continued instructions LDM, STM, PUSH, and POP for low interrupt latency
- Automatic processor state saving and restoration for low latency *Interrupt* Service Routine (ISR) entry and exit
- Support for ARMv6 big-endian byte-invariant or little-endian accesses
- Support for ARMv6 unaligned accesses
- Floating Point Unit (FPU) in the Cortex[®]-M4F processor providing:
 - 32-bit instructions for single-precision (C float) data-processing operations
 - Combined Multiply and Accumulate instructions for increased precision (Fused MAC)
 - Hardware support for conversion, addition, subtraction, multiplication with optional accumulate, division, and square-root
 - Hardware support for denormals and all IEEE rounding modes
 - 32 dedicated 32-bit single precision registers, also addressable as 16 doubleword registers
 - Decoupled three stage pipeline
- Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low latency interrupt processing. Features include:
 - External interrupts. Configurable from 1 to 240 (the NuMicro[®] M4521 family configured with 64 interrupts)
 - Bits of priority, configurable from 3 to 8
 - Dynamic reprioritization of interrupts
 - Priority grouping which enables selection of preempting interrupt levels and nonpreempting interrupt levels
 - Support for tril-chaining and late arrival of interrupts, which enables back-to-back interrupt processing without the overhead of state saving and restoration between interrupts.
 - Processor state automatically saved on interrupt entry, and restored on interrupt exit with on instruction overhead
 - Support for Wake-up Interrupt Controller (WIC) with Ultra-low Power Sleep mode
- Memory Protection Unit (MPU). An optional MPU for memory protection, including:
 - Eight memory regions
 - Sub Region Disable (SRD), enabling efficient use of memory regions
 - The ability to enable a background region that implements the default memory map attributes
- Low-cost debug solution that features:
 - Debug access to all memory and registers in the system, including access to memory mapped devices, access to internal core registers when the core is halted, and access to debug control registers even while SYSRESETn is

asserted.

nuvoton

- Serial Wire Debug Port(SW-DP) or Serial Wire JTAG Debug Port (SWJ-DP) debug access
- Optional Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches
- Optional Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
- Optional Instrumentation Trace Macrocell (ITM) for support of printf() style debugging
- Optional Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer (TPA), including Single Wire Output (SWO) mode
- Optional Embedded Trace Macrocell (ETM) for instruction trace.

Bus interfaces:

- Three Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode. Dcode, and System bus interfaces
- Private Peripheral Bus (PPB) based on Advanced Peripheral Bus (APB) interface
- Bit-band support that includes atomic bit-band write and read operations.
- Memory access alignment
- Write buffer for buffering of write data
- Exclusive access transfers for multiprocessor systems

6.2 System Manager

6.2.1 Overview

The system manager provides the functions of system control, power modes, wake-up sources, reset sources, system memory map, product ID and multi-function pin control. The following sections describe the functions for

- System Reset
- Power Modes and Wake-up Sources
- System Power Distribution
- SRAM Memory Organization
- System Control Register for Part Number ID, Chip Reset and Multi-function Pin Control
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control register

6.2.2 System Reset

The system reset can be issued by one of the events listed below. These reset event flags can be read from SYS_RSTSTS register to determine the reset source. Hardware reset can reset chip through peripheral reset signals. Software reset can trigger reset through control registers.

- Hardware Reset Sources
 - Power-on Reset (POR)
 - Low level on the nRESET pin
 - Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)
 - Low Voltage Reset (LVR)
 - Brown-out Detector Reset (BOD Reset)
 - CPU Lockup Reset
- Software Reset Sources
 - CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])
 - MCU Reset to reboot but keeping the booting setting from APROM or LDROM by writing 1 to SYSRESETREQ (AIRCR[2])
 - CPU Reset for Cortex[®]-M4 core Only by writing 1 to CPURST (SYS_IPRST0[1])

Figure 6.2-1 System Reset Sources

There are a total of 9 reset sources in the NuMicro® family. In general, CPU reset is used to reset Cortex-M4 only; the other reset sources will reset Cortex-M4 and all peripherals. However, there are small differences between each reset source and they are listed in Table 6.2-1.

Reset Sources Register	POR	nRESET	WDT	LVR	BOD	Lockup	CHIP	MCU	CPU
SYS_RSTSTS	0x001	Bit 1 = 1	Bit 2 = 1	Bit 3 = 1	Bit 4 = 1	Bit 8 = 1	Bit 0 = 1	Bit 5 = 1	Bit 7 = 1
CHIPRST (SYS_IPRST0[0])	0x0	-	-	-	-	-	-	-	-
BODEN (SYS_BODCTL[0])	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-
BODVL (SYS_BODCTL[2:1])									
BODRSTEN (SYS_BODCTL[3])									
HXTEN (CLK_PWRCTL[0])	Reload from CONFIG0								
LXTEN (CLK_PWRCTL[1])	0x0	-	-	-	-	-	-	-	-
WDTCKEN (CLK_APBCLK0[0])	0x1	-	0x1	-	-	-	0x1	-	-
HCLKSEL (CLK_CLKSEL0[2:0])	Reload from CONFIG0	-							
WDTSEL (CLK_CLKSEL1[1:0])	0x3	0x3	-	-	-	-	-	-	-
HXTSTB (CLK_STATUS[0])	0x0	-	-	-	-	-	-	-	-
LXTSTB (CLK_STATUS[1])	0x0	-	-	-	-	-	-	-	-
PLLSTB (CLK_STATUS[2])	0x0	-	-	-	-	-	-	-	-
HIRCSTB (CLK_STATUS[4])	0x0	-	-	-	-	-	-	-	-
CLKSFAIL (CLK_STATUS[7])	0x0	0x0	-	-	-	-	-	-	-
RSTEN (WDT_CTL[1])	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0		Reload from CONFIG0	-	
WDTEN (WDT_CTL[7])									
WDT_CTL except bit 1 and bit 7.	0x0700	0x0700	0x0700	0x0700	0x0700	_	0x0700	-	-

	-							-	
WDT_ALTCTL	0x0000	0x0000	0x0000	0x0000	0x0000	-	0x0000	-	-
WWDT_RLDCNT	0x0000	0x0000	0x0000	0x0000	0x0000	-	0x0000	-	=
WWDT_CTL	0x3F0800	0x3F0800	0x3F0800	0x3F0800	0x3F0800	-	0x3F0800	-	-
WWDT_STATUS	0x0000	0x0000	0x0000	0x0000	0x0000	-	0x0000	-	-
WWDT_CNT	0x3F	0x3F	0x3F	0x3F	0x3F	-	0x3F	-	-
BS (FMC_ISPCTL[1])		Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-	Reload from CONFIG0	-	-
FMC_DFBA		Reload from CONFIG1	Reload from CONFIG1	Reload from CONFIG1	Reload from CONFIG1	-	Reload from CONFIG1	-	-
CBS (FMC_ISPSTS[2:1])		Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-	Reload from CONFIG0	-	-
PGFF (FMC_ISPSTS[5])	0x0	-	0x0	-	-	-	0x0	-	-
VECMAP (FMC_ISPSTS[23:9])	Reload base on CONFIG0	Reload base on CONFIG0		Reload base on CONFIG0	Reload base on CONFIG0	-	Reload base on CONFIG0	-	-
Other Peripheral Registers								_	
FMC Registers	Reset Value								
Note: '-' means that the	value of regis	ster keeps o	riginal settir	ng.					

Table 6.2-1 Reset Value of Registers

6.2.2.1 nRESET Reset

nuvoton

The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an asynchronous reset input pin and can be used to reset system at any time. When the nRESET voltage is lower than 0.2 V_{DD} and the state keeps longer than 36 us (glitch filter), chip will be reset. The nRESET reset will control the chip in reset state until the nRESET voltage rises above 0.7 V_{DD} and the state keeps longer than 36 us (glitch filter). The PINRF(SYS_RSTSTS[1]) will be set to 1 if the previous reset source is nRESET reset. Figure 6.2-2 shows the nRESET reset waveform.

Figure 6.2-2 nRESET Reset Waveform

6.2.2.2 Power-on Reset (POR)

The Power-on reset (POR) is used to generate a stable system reset signal and forces the system to be reset when power-on to avoid unexpected behavior of MCU. When applying the power to MCU, the POR module will detect the rising voltage and generate reset signal to system until the voltage is ready for MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be set to 1 to indicate there is a POR reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by writing 1 to it. Figure 6.2-3 shows the power-on reset waveform.

Figure 6.2-3 Power-on Reset (POR) Waveform

6.2.2.3 Low Voltage Reset (LVR)

If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit LVREN (SYS_BODCTL[7]) to 1, after 200us delay, LVR detection circuit will be stable and the LVR function will be active. Then LVR function will detect AV_DD during system operation. When the AV_DD voltage is lower than V_LVR and the state keeps longer than De-glitch time set by LVRDGSEL (SYS_BODCTL[14:12]), chip will be reset. The LVR reset will control the chip in reset state until the AV_DD voltage rises above V_LVR and the state keeps longer than De-glitch time set by LVRDGSEL (SYS_BODCTL[14:12]). The LVRF(SYS_RSTSTS[3]) will be set to 1 if the previous reset source is LVR. The default setting of Low Voltage Reset is enabled without De-glitch function. Figure 6.2-4 shows the Low Voltage Reset waveform.

Figure 6.2-4 Low Voltage Reset (LVR) Waveform

6.2.2.4 Brown-out Detector Reset (BOD Reset)

nuvoton

If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit BODEN (SYS_BODCTL[0]), Brown-Out Detector function will detect AVDD during system operation. When the AV_{DD} voltage is lower than V_{BOD} and the state keeps longer than De-glitch time set by BODDGSEL (SYS_BODCTL[10:8]), chip will be reset. The BOD reset will control the chip in reset state until the AVDD voltage rises above VBOD and the state keeps longer than Deglitch time set by BODDGSEL (SYS_BODCTL[10:8]). The default value of BODEN, BODVL and BODRSTEN is set by Flash controller user configuration register CBODEN (CONFIGO [23]), CBOV (CONFIG0 [22:21]) and CBORST(CONFIG0[20]) respectively. User can determine the initial BOD setting by setting the CONFIG0 register. Figure 6.2-5 shows the Brown-Out Detector waveform.

Figure 6.2-5 Brown-out Detector (BOD) Waveform

6.2.2.5 Watchdog Timer Reset (WDT)

nuvoton

In most industrial applications, system reliability is very important. To automatically recover the MCU from failure status is one way to improve system reliability. The watchdog timer(WDT) is widely used to check if the system works fine. If the MCU is crashed or out of control, it may cause the watchdog time-out. User may decide to enable system reset during watchdog time-out to recover the system and take action for the system crash/out-of-control after reset.

Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a watchdog reset and handle the failure of MCU after watchdog time-out reset by checking WDTRF(SYS RSTSTS[2]).

6.2.2.6 CPU Lockup Reset

CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives immediate indication of seriously errant kernel software. This is the result of the CPU being locked because of an unrecoverable exception following the activation of the processor's built in system state protection hardware. When chip enters debug mode, the CPU lockup reset will be ignored.

CPU Reset, CHIP Reset and MCU Reset

The CPU Reset means only Cortex[®]-M4 core is reset and all other peripherals remain the same status after CPU reset. User can set the CPURST(SYS IPRST0[1]) to 1 to assert the CPU Reset signal.

The CHIP Reset is same with Power-On Reset. The CPU and all peripherals are reset and BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG setting. User can set the CHIPRST(SYS_IPRST0[1]) to 1 to assert the CHIP Reset signal.

The MCU Reset is similar with CHIP Reset. The difference is that BS(FMC ISPCTL[1]) will not be reloaded from CONFIG setting and keep its original software setting for booting from APROM or LDROM. User can set the SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.

6.2.3 **Power Modes and Wake-up Sources**

nuvoTon

There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-2 lists the available clocks for each power mode.

Power Mode	Normal Mode	Idle Mode	Power-Down Mode
Definition	CPU is in active state	CPU is in sleep state	CPU is in sleep state and all clocks stop except LXT and LIRC. SRAM content retended.
Entry Condition	Chip is in normal mode after system reset released	CPU executes WFI instruction.	CPU sets sleep mode enable and power down enable and executes WFI instruction.
Wake-up Sources	N/A	All interrupts	RTC, WDT, I ² C, Timer, UART, BOD, GPIO and USBD
Available Clocks	All	All except CPU clock	LXT and LIRC
After Wake-up	N/A	CPU back to normal mode	CPU back to normal mode

Table 6.2-2 Power Mode Difference Table

Figure 6.2-6 Power Mode State Machine

- 1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in run mode.
- 2. LIRC (10 kHz OSC) ON or OFF depends on S/W setting in run mode.
- 3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.
- 4. If WDT clock source is selected as LIRC and LIRC is on.
- 5. If RTC clock source is selected as LXT and LXT is on.

	Normal Mode	Idle Mode	Power-Down Mode
HXT (4~20 MHz XTL)	ON	ON	Halt
HIRC (12/16 MHz OSC)	ON	ON	Halt
LXT (32768 Hz XTL)	ON	ON	ON/OFF ¹
LIRC (10 kHz OSC)	ON	ON	ON/OFF ²
PLL	ON	ON	Halt
LDO	ON	ON	ON
CPU	ON	Halt	Halt
HCLK/PCLK	ON	ON	Halt
SRAM retention	ON	ON	ON
FLASH	ON	ON	Halt
EBI	ON	ON	Halt
GPIO	ON	ON	Halt
PDMA	ON	ON	Halt
TIMER	ON	ON	ON/OFF ³
PWM	ON	ON	Halt
WDT	ON	ON	ON/OFF ⁴
WWDT	ON	ON	Halt
RTC	ON	ON	ON/OFF ⁵
UART	ON	ON	Halt
SC	ON	ON	Halt
I ² C	ON	ON	Halt
SPI	ON	ON	Halt
USBD	ON	ON	Halt
EADC	ON	ON	Halt

Table 6.2-3 Clocks in Power Modes

Wake-up sources in Power-down mode:

RTC, WDT, I2C, Timer, UART, BOD, GPIO and USBD

After chip enters power down, the following wake-up sources can wake chip up to normal mode. Table 6.2-4 lists the condition about how to enter Power-down mode again for each peripheral.

*User needs to wait this condition before setting PDEN(CLK PWRCTL[7]) and execute WFI to enter Power-down mode.

Wake-Up Source	Wake-Up Condition	System Can Enter Power-Down Mode Again Condition*
BOD	Brown-Out Detector Interrupt	After software writes 1 to clear SYS_BODCTL[BODIF].
GPIO	GPIO Interrupt	After software write 1 to clear the INTSRC[n] bit.
TIMER	Timer Interrupt	After software writes 1 to clear TWKF (TIMERx_INTSTS[1]) and TIF (TIMERx_INTSTS[0]).
WDT	WDT Interrupt	After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect).
RTC	Alarm Interrupt	After software writes 1 to clear ALMIF (RTC_INTSTS[0]).
	Time Tick Interrupt	After software writes 1 to clear TICKIF (RTC_INTSTS[1]).
	Snoop Detection Interrupt	After software writes 1 to clear SNPDIF (RTC_INTSTS[2]).
UART	RX Data wake-up	After software writes 1 to clear DATWKIF (UARTx_INTSTS[17]).
	nCTS wake-up	After software writes 1 to clear CTSWKIF (UARTx_INTSTS[16]).
I ² C	Falling edge in the I2C_SDA or I2C_CLK	After software writes 1 to clear WKIF(I2C_WKSTS[0]).
USBD	Remote Wake-up	After software writes 1 to clear BUSIF (USBD_INTSTS[0]).

Table 6.2-4 Condition of Entering Power-down Mode Again

6.2.4 **System Power Distribution**

nuvoton

In this chip, power distribution is divided into five segments:

- Analog power from AV_{DD} and AV_{SS} provides the power for analog components operation. The V_{REF} should be connected with an external 1uF capacitor that should be located close to the V_{REF} pin to avoid power noise for analog applications.
- Digital power from V_{DD} and V_{SS} supplies the power to the internal regulator which provides a fixed 1.8 V power for digital operation and I/O pins.
- USB transceiver power from V_{BUS} offers the power for operating the USB transceiver.
- RTC power from V_{BAT} provides the power for PF.0~PF.2, RTC and 80 bytes backup registers.
- A dedicated power from V_{DDIO} supplies the power for PE.8~PE.13.

The outputs of internal voltage regulators, LDO_CAP and USB_VDD33_CAP, require an external capacitor which should be located close to the corresponding pin. Analog power (AV_{DD}) should be the same voltage level of the digital power (V_{DD}). Figure 6.2-7 shows the NuMicro[®] M4521 series power distribution.

Figure 6.2-7 NuMicro® M4521 Series Power Distribution Diagram

6.2.5 System Memory Map

The NuMicro® M4521 series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in Table 6.2-5. The detailed register definition, memory space, and programming will be described in the following sections for each on-chip peripheral. The M4521 series only supports little-endian data format.

Address Space	Token	Controllers
Flash and SRAM Memory Space		
0x0000_0000 - 0x0001_FFFF	FLASH_BA	FLASH Memory Space (128KB)
0x0004_0000 - 0x0005_FFFF	Reserved	Reserved
0x0006_0000 - 0x0007_FFFF	Reserved	Reserved
0x2000_4000 - 0x2000_7FFF	SRAM1_BA	SRAM Memory Space
0x2000_8000 - 0x2000_BFFF	Reserved	Reserved
0x2000_C000 - 0x2000_FFFF	Reserved	Reserved
0x6000_0000 - 0x6FFF_FFF	EXTMEM_BA	External Memory Space for EBI Interface (256 MB)
Peripheral Controllers Space (0x40	00_0000 - 0x400F	_FFFF)
0x4000_0000 - 0x4000_01FF	SYS_BA	System Control Registers
0x4000_0200 - 0x4000_02FF	CLK_BA	Clock Control Registers
0x4000_0300 - 0x4000_03FF	NMI_BA	NMI Control Registers
0x4000_4000 - 0x4000_4FFF	GPIO_BA	GPIO Control Registers
0x4000_8000 - 0x4000_8FFF	PDMA_BA	Peripheral DMA Control Registers
0x4000_9000 - 0x4000_9FFF	UHC_BA	USB Host Control Registers
0x4000_B000 - 0x4000_BFFF	Reserved	Reserved
0x4000_C000 - 0x4000_CFFF	FMC_BA	Flash Memory Control Registers
0x4000_D000 - 0x4000_DFFF	Reserved	Reserved
0x4001_0000 - 0x4001_0FFF	EBI_BA	External Bus Interface Control Registers
0x4001_9000 - 0x4001_9FFF	Reserved	Reserved
0x4003_0000 - 0x4003_0FFF	Reserved	Reserved
0x4003_1000 - 0x4003_1FFF	CRC_BA	CRC Generator Registers
0x5000_8000 - 0x5000_FFFF	Reserved	Reserved
APB Controllers Space (0x4000_00	00 ~ 0x400F_FFFF	;)
0x4004_0000 - 0x4004_0FFF	WDT_BA	Watchdog Timer Control Registers
0x4004_1000 - 0x4004_1FFF	RTC_BA	Real Time Clock (RTC) Control Register
0x4004_3000 - 0x4004_3FFF	EADC_BA	Enhanced Analog-Digital-Converter (EADC) Control Registers
0x4004_4000 - 0x4004_4FFF	Reserved	Reserved
0x4004_5000 – 0x4004_5FFF	Reserved	Reserved
0x4004_6000 - 0x4004_6FFF	Reserved	Reserved

	L .	L .
0x4004_7000 – 0x4004_7FFF	Reserved	Reserved
0x4004_8000 - 0x4004_8FFF	Reserved	Reserved
0x4004_9000 - 0x4004_9FFF	Reserved	Reserved
0x4004_D000 - 0x4004_DFFF	Reserved	Reserved
0x4005_0000 - 0x4005_0FFF	TMR01_BA	Timer0/Timer1 Control Registers
0x4005_1000 - 0x4005_1FFF	TMR23_BA	Timer2/Timer3 Control Registers
0x4005_8000 - 0x4005_8FFF	PWM0_BA	PWM0 Control Registers
0x4005_9000 - 0x4005_9FFF	PWM1_BA	PWM1 Control Registers
0x4005_C000 - 0x4005_CFFF	Reserved	Reserved
0x4005_D000 - 0x4005_DFFF	Reserved	Reserved
0x4006_0000 - 0x4006_0FFF	SPI0_BA	SPI0 Control Registers
0x4006_1000 - 0x4006_1FFF	SPI1_BA	SPI1 Control Registers
0x4006_2000 - 0x4006_2FFF	Reserved	Reserved
0x4006_3000 - 0x4006_3FFF	Reserved	Reserved
0x4007_0000 - 0x4007_0FFF	UART0_BA	UART0 Control Registers
0x4007_1000 - 0x4007_1FFF	UART1_BA	UART1 Control Registers
0x4007_2000 - 0x4007_2FFF	UART2_BA	UART2 Control Registers
0x4007_3000 - 0x4007_3FFF	UART3_BA	UART3 Control Registers
0x4007_4000 - 0x4007_4FFF	Reserved	Reserved
0x4007_5000 - 0x4007_5FFF	Reserved	Reserved
0x4008_0000 - 0x4008_0FFF	I2C0_BA	I ² C0 Control Registers
0x4008_1000 - 0x4008_1FFF	I2C1_BA	I ² C1 Control Registers
0x4008_2000 - 0x4008_2FFF	Reserved	Reserved
0x4008_3000 - 0x4008_3FFF	Reserved	Reserved
0x4008_4000 - 0x4008_4FFF	Reserved	Reserved
0x4009_0000 - 0x4009_0FFF	SC0_BA	Smartcard Host 0 Control Registers
0x4009_1000 - 0x4009_1FFF	Reserved	Reserved
0x4009_2000 – 0x4009_2FFF	Reserved	Reserved
0x4009_3000 - 0x4009_3FFF	Reserved	Reserved
0x4009_4000 - 0x4009_4FFF	Reserved	Reserved
0x4009_5000 - 0x4009_5FFF	Reserved	Reserved
0x400A_0000 - 0x400A_0FFF	Reserved	Reserved
0x400A_1000 - 0x400A_1FFF	Reserved	Reserved
0x400B_0000 - 0x400B_0FFF	Reserved	Reserved
0x400B_1000 - 0x400B_1FFF	Reserved	Reserved

	ī		
0x400B_0000 - 0x400B_0FFF	Reserved	Reserved	
0x400B_1000 - 0x400B_1FFF	Reserved	Reserved	
0x400C_0000 - 0x400C_0FFF	USBD_BA	USB Device Control Register	
0x400E_0000 - 0x400E_0FFF	Reserved	Reserved	
0x400E_2000 - 0x400E_2FFF	Reserved	Reserved	
0x5008_0000 - 0x5008_0FFF	Reserved	Reserved	
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)			
0xE000_E010 - 0xE000_E0FF	SCS_BA	System Timer Control Registers	
0xE000_E100 - 0xE000_ECFF	SCS_BA	External Interrupt Controller Control Registers	
0xE000_ED00 - 0xE000_ED8F	SCS_BA	System Control Registers	

Table 6.2-5 Address Space Assignments for On-Chip Controllers

6.2.6 SRAM Memory Organization

The M4521 series supports embedded SRAM with total 32 KB size and the SRAM organization is separated to two banks: SRAM bank0 and SRAM bank1. Each of these two banks has 16 KB address space and can be accessed simultaneously.

- Supports total 32 KB SRAM
- Supports byte / half word / word write
- Supports fixed 16 KB SRAM bank for independent access
- Supports oversize response error
- Supports remap address to 0x1000_0000

Figure 6.2-8 SRAM Block Diagram

nuvoton

Figure 6.2-9 shows the M4521 series SRAM organization. There are two SRAM banks in M4521 and each bank is addressed to 16 KB. The bank0 address space is from 0x2000 0000 to 0x2000_3FFF. The bank1 address space is from 0x2000_4000 to 0x2000_7FFF. The address between 0x2000 8000 to 0x3FFF FFFF is illegal memory space and chip will enter hardfault if CPU accesses these illegal memory addresses.

The address of each bank is remapping from 0x2000_0000 to 0x1000_0000. CPU can read SRAM bank0 through 0x2000 0000 to 0x2000 3FFF or 0x1000 0000 to 0x1000 3FFF, and read SRAM bank1 through 0x2000_4000 to 0x2000_7FFF or 0x1000_4000 to 0x1000_7FFF.

Figure 6.2-9 SRAM Memory Organization

6.2.7 System Timer (SysTick)

The Cortex[®]-M4 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.

When system timer is enabled, it will count down from the value in the SysTick Current Value Register (SYST_VAL) to zero, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_LOAD) on the next clock cycle, and then decrement on subsequent clocks. When the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST_VAL value is UNKNOWN on reset. Software should write to the register to clear it to zero before enabling the feature. This ensures the timer will count from the SYST_LOAD value rather than an arbitrary value when it is enabled.

If the SYST_LOAD is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "Arm® Cortex®-M4 Technical Reference Manual" and "Arm® v6-M Architecture Reference Manual".

6.2.8 Nested Vectored Interrupt Controller (NVIC)

The NVIC and the processor core interface are closely coupled to enable low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked, or nested, interrupts to enable tail-chaining of interrupts. You can only fully access the NVIC from privileged mode, but you can cause interrupts to enter a pending state in user mode if you enable the Configuration and Control Register. Any other user mode access causes a bus fault. You can access all NVIC registers using byte, halfword, and word accesses unless otherwise stated. NVIC registers are located within the SCS (System Control Space). All NVIC registers and system debug registers are little-endian regardless of the endianness state of the processor.

The NVIC supports:

- An implementation-defined number of interrupts, in the range 1-240 interrupts.
- A programmable priority level of 0-15 for each interrupt; a higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.
- Level and pulse detection of interrupt signals.
- Dynamic reprioritization of interrupts.
- Grouping of priority values into group priority and subpriority fields.
- Interrupt tail-chaining.
- An external Non Maskable Interrupt (NMI)
- WIC with Ultra-low Power Sleep mode support

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead. This provides low latency exception handling.

6.3 Clock Controller

6.3.1 Overview

The clock controller generates clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and a clock divider. The chip will not enter Power-down mode until CPU sets the Power-down enable bit PDEN(CLK_PWRCTL[7]) and Cortex®-M4 core executes the WFI instruction. After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave Power-down mode. In Power-down mode, the clock controller turns off the 4~20 MHz external high speed crystal (HXT) and 22.1184 MHz internal high speed RC oscillator (HIRC) to reduce the overall system power consumption. Figure 6.3-1 shows the clock generator and the overview of the clock source control.

Figure 6.3-1 Clock Generator Global View Diagram

6.3.2 Clock Generator

The clock generator consists of 6 clock sources, which are listed below:

- 32.768 kHz external low speed crystal oscillator (LXT)
- 4~20 MHz external high speed crystal oscillator (HXT)
- Programmable PLL output clock frequency (PLLFOUT), PLL source can be selected from external 4~20 MHz external high speed crystal (HXT) or 22.1184 MHz internal high speed oscillator (HIRC)
- 22.1184 MHz internal high speed RC oscillator (HIRC)
- 10 kHz internal low speed RC oscillator (LIRC)
- 48 MHz internal high speed RC oscillator (HIRC48M)

Figure 6.3-2 Clock Generator Block Diagram

6.3.3 System Clock and SysTick Clock

The system clock has 5 clock sources generated from clock generator block. The clock source switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram is shown in Figure 6.3-3.

Figure 6.3-3 System Clock Block Diagram

There are two clock fail detectors to observe HXT and LXT clock source and they have individual enable and interrupt control. When HXT detector is enabled, the HIRC clock is enabled automatically. When LXT detector is enabled, the LIRC clock is enabled automatically.

When HXT clock detector is enabled, the system clock will auto switch to HIRC if HXT clock stop being detected on the following condition: system clock source comes from HXT or system clock source comes from PLL with HXT as the input of PLL. If HXT clock stop condition is detected, the HXTFIF (CLK_CLKDSTS[0]) is set to 1 and chip will enter interrupt if HXTFIE (CLK_CLKDCTL[5]) is set to 1. User can trying to recover HXT by disable HXT and enable HXT again to check if the clock stable bit is set to 1 or not. If HXT clock stable bit is set to 1, it means HXT is recover to oscillate after re-enable action and user can switch system clock to HXT again.

The HXT clock stop detect and system clock switch to HIRC procedure is shown in Figure 6.3-4.

Figure 6.3-4 HXT Stop Protect Procedure

The clock source of SysTick in Cortex®-M4 core can use CPU clock or external clock (SYST CTRL[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The clock source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]). The block diagram is shown in Figure 6.3-5.

Figure 6.3-5 SysTick Clock Control Block Diagram

6.3.4 **Peripherals Clock**

nuvoton

The peripherals clock has different clock source switch setting, which depends on the different peripheral. Please refer to the CLK_CLKSEL1 and CLK_CLKSEL2 register description in 6.3.8.

6.3.5 Power-down Mode Clock

When entering Power-down mode, system clocks, some clock sources and some peripheral clocks are disabled. Some clock sources and peripherals clock are still active in Power-down mode.

For theses clocks, which still keep active, are listed below:

- Clock Generator
 - 10 kHz internal low speed RC oscillator (LIRC) clock
 - 32.768 kHz external low speed crystal oscillator (LXT) clock
- Peripherals Clock (When the modules adopt LXT or LIRC as clock source)

6.3.6 Clock Output

This device is equipped with a power-of-2 frequency divider which is composed by16 chained divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with the frequency from $F_{in}/2^1$ to $F_{in}/2^{16}$ where F_{in} is input clock frequency to the clock divider.

The output formula is $\mathbf{F}_{out} = \mathbf{F}_{in}/2^{(N+1)}$, where \mathbf{F}_{in} is the input clock frequency, \mathbf{F}_{out} is the clock divider output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).

When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When writing 0 to CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock reaches low state and stays in low state.

Figure 6.3-6 Clock Source of Clock Output

Figure 6.3-7 Clock Output Block Diagram

6.4 Flash Memeory Controller (FMC)

6.4.1 Overview

The M4521 series is equipped with 128 KB on-chip embedded Flash for application and configurable Data Flash to store some application dependent data. A User Configuration block is provided for system initiation. A 4 KB loader ROM (LDROM) is used for In-System-Programming (ISP) function. A 4KB cache with zero wait cycle is used to improve Flash access performance. This chip also supports In-Application-Programming (IAP) function, user switches the code executing without the chip reset after the embedded Flash updated.

6.4.2 Features

- Supports 128 KB application ROM (APROM).
- Supports 4 KB loader ROM (LDROM).
- Supports Data Flash with configurable memory size.
- Supports 8 bytes User Configuration block to control system initiation.
- Supports 2 KB page erase for all embedded Flash.
- Supports 32-bit/64-bit and multi-word Flash programming function.
- Supports fast Flash programming verification function.
- Supports checksum calculation function.
- Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update embedded Flash memory.
- Supports cache memory to improve Flash access performance and reduce power consumption.

6.5 External Bus Interface (EBI)

6.5.1 Overview

The M4521 series is equipped with an external bus interface (EBI) for external device used. To save the connections between external device and the M4521, the EBI operates in address bus and data bus multiplex mode. The EBI supports two chip selects that can connect two external devices with different timing setting requirement.

6.5.2 Features

- Supports address bus and data bus multiplex mode to save the address pins
- Supports two chip selects with polarity control for each bank
- Supports external accessible space up to 1 Mbytes (need 20-bit address width) for each bank. Real addressable space size is dependent on package pin out
- Supports variable external bus base clock (MCLK) which based on HCLK
- Supports 8-bit or 16-bit data width for each chip select
- Supports LCD interface i80 mode
- Supports variable address latch enable time (tALE)
- Supports variable data access time (tACC) and data access hold time (tAHD) for each chip select
- Supports configurable idle cycle for different access condition: Idle of Write command finish (W2X) and Idle of Read-to-Read (R2R)

6.6 General Purpose I/O (GPIO)

6.6.1 Overview

The M4521 series has up to 49 General Purpose I/O pins to be shared with other function pins depending on the chip configuration. These 49 pins are arranged in 6 ports named as PA, PB, PC, PD, PE and PF. Each of the 49 pins is independent and has the corresponding register bits to control the pin mode function and data.

The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull output, Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are depending on CIOIN (CONFIG0[10]). Each I/O pin has a very weakly individual pull-up resistor which is about 110 k Ω ~ 300 k Ω for V_{DD} is from 5.0 V to 2.5 V.

6.6.2 Features

- Four I/O modes:
 - Quasi-bidirectional mode
 - Push-Pull Output mode
 - Open-Drain Output mode
 - Input only with high impendence mode
- TTL/Schmitt trigger input selectable
- I/O pin can be configured as interrupt source with edge/level setting
- Supports High Drive and High Slew Rate I/O mode
- Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting
 - CIOIN = 0, all GPIO pins in Quasi-bidirectional mode after chip reset
 - CIOIN = 1, all GPIO pins in input mode after chip reset
- I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode
- Enabling the pin interrupt function will also enable the wake-up function
- Supports 5V-tolerance function for following pins
 - PA.0 ~ PA.3, PC.0 ~ PC.7, PD.2 ~ PD.3, PD.7, PD.12 ~ PD.15, PE.0, PE.8 ~ PE.13, PF.2, PF.5 ~ PF.7

6.7 PDMA Controller (PDMA)

6.7.1 Overview

The peripheral direct memory access (PDMA) controller is used to provide high-speed data transfer. The PDMA controller can transfer data from one address to another without CPU intervention. This has the benefit of reducing the workload of CPU and keeps CPU resources free for other applications. The PDMA controller has a total of 8 channels and each channel can perform transfer between memory and peripherals or between memory and memory.

6.7.2 Features

- Supports 8 independently configurable channels
- Supports selectable 2 level of priority (fixed priority or round-robin priority)
- Supports transfer data width of 8, 16, and 32 bits
- Supports source and destination address increment size can be byte, half-word, word or no increment
- Supports software and SPI, UART, ADC and PWM request
- Supports Scatter-Gather mode to perform sophisticated transfer through the use of the descriptor link list table
- Supports single and burst transfer type
- Supports time-out function for each channel

6.8 Timer Controller (TMR)

6.8.1 Overview

The Timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily implement a timer control for applications. The timer can perform functions, such as frequency measurement, delay timing, clock generation, and event counting by external input pins, and interval measurement by external capture pins.

6.8.2 Features

- Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter
- Independent clock source for each timer
- Provides one-shot, periodic, toggle-output and continuous counting operation modes
- 24-bit up counter value is readable through CNT (TIMERx_CNT[23:0])
- Supports event counting function
- 24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])
- Supports external capture pin event for interval measurement
- Supports external capture pin event to reset 24-bit up counter
- Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated
- Support Timer0 ~ Timer3 time-out interrupt signal or capture interrupt signal to trigger PWM and EADC function

6.9 PWM Generator and Capture Timer (PWM)

6.9.1 Overview

The M4521 series provides two PWM generators — PWM0 and PWM1. Each PWM supports 6 channels of PWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit PWM counter with 16-bit comparator. The PWM counter supports up, down and updown counter types. PWM using comparator compared with counter to generate events. These events use to generate PWM pulse, interrupt and trigger signal for EADC to start conversion.

The PWM generator supports two standard PWM output modes: Independent mode and Complementary mode, they have difference architecture. There are two output functions based on standard output modes: Group function and Synchronous function. Group function can be enabled under Independent mode or complementary mode. Synchronous function only enabled under complementary mode. Complementary mode has two comparators to generate various PWM pulse with 12-bit dead-time generator and another free trigger comparator to generate trigger signal for EADC. For PWM output control unit, it supports polarity output, independent pin mask and brake functions.

The PWM generator also supports input capture function. It supports latch PWM counter value to corresponding register when input channel has a rising transition, falling transition or both transition is happened. Capture function also support PDMA to transfer captured data to memory.

6.9.2 Features

6.9.2.1 PWM function features

- Supports maximum clock frequency up to144MHz
- Supports up to two PWM modules, each module provides 6 output channels.
- Supports independent mode for PWM output/Capture input channel
- Supports complementary mode for 3 complementary paired PWM output channel
 - Dead-time insertion with 12-bit resolution
 - Synchronous function for phase control
 - Two compared values during one period
- Supports 12-bit pre-scalar from 1 to 4096
- Supports 16-bit resolution PWM counter
 - Up, down and up/down counter operation type
- Supports one-shot or auto-reload counter operation mode
- Supports group function
- Supports synchronous function
- Supports mask function and tri-state enable for each PWM pin
- Supports brake function
 - Brake source from pin, analog comparator and system safety events (clock failed, Brown-out detection and CPU lockup).
 - Noise filter for brake source from pin
 - Edge detect brake source to control brake state until brake interrupt cleared

- Level detect brake source to auto recover function after brake condition removed
- Supports interrupt on the following events:
 - PWM counter match zero, period value or compared value
 - Brake condition happened
- Supports trigger EADC on the following events:
 - PWM counter match zero, period value or compared value
 - PWM counter match free trigger comparator compared value (only for EADC)

6.9.2.2 Capture Function Features

- Supports up to 12 capture input channels with 16-bit resolution
- Supports rising or falling capture condition
- Supports input rising/falling capture interrupt
- Supports rising/falling capture with counter reload option
- Supports PDMA transfer function for PWM all channels

6.10 Watchdog Timer (WDT)

6.10.1 Overview

nuvoton

The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.

6.10.2 Features

- 18-bit free running up counter for WDT time-out interval
- Selectable time-out interval ($2^4 \sim 2^{18}$) and the time-out interval is 1.6 ms ~ 26.214s if $WDT_CLK = 10 \text{ kHz}.$
- System kept in reset state for a period of (1 / WDT_CLK) * 63
- Supports selectable WDT reset delay period, including 1026 \, 130 \, 18 or 3 WDT_CLK reset delay period
- Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0] in Config0 register
- Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC or LXT.

6.11 Window Watchdog Timer (WWDT)

6.11.1 Overview

The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified window period to prevent software run to uncontrollable status by any unpredictable condition.

6.11.2 Features

- 6-bit down counter value (CNTDAT) and 6-bit compare value (CMPDAT) to make the WWDT time-out window period flexible
- Supports 4-bit value (PSCSEL) to programmable maximum 11-bit prescale counter period of WWDT counter

6.12 Real Time Clock (RTC)

6.12.1 Overview

The Real Time Clock (RTC) controller provides the real time and calendar message. The RTC offers programmable time tick and alarm match interrupts. The data format of time and calendar messages are expressed in BCD format. A digital frequency compensation feature is available to compensate external crystal oscillator frequency accuracy.

The RTC controller also offers 80 bytes spare registers to store user's important information. The spare registers content is cleared when specified event on tamper pin is detected.

6.12.2 Features

- Supports real time counter in RTC_TIME (hour, minute, second) and calendar counter in RTC_CAL (year, month, day) for RTC time and calendar check
- Supports alarm time (hour, minute, second) and calendar (year, month, day) settings in RTC_TALM and RTC_CALM
- Supports alarm time (hour, minute, second) and calendar (year, month, day) mask enable in RTC_TAMSK and RTC_CAMSK
- Selectable 12-hour or 24-hour time scale in RTC_CLKFMT register
- Supports Leap Year indication in RTC_LEAPYEAR register
- Supports Day of the Week counter in RTC_WEEKDAY register
- Frequency of RTC clock source compensate by RTC FREQADJ register
- All time and calendar message expressed in BCD format
- Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second
- Supports RTC Time Tick and Alarm Match interrupt
- Supports chip wake-up from Idle or Power-down mode while a RTC interrupt signal is generated
- Supports 80 bytes spare registers and a snoop pin detection to clear the content of these spare registers

6.13 UART Interface Controller (UART)

6.13.1 Overview

The M4521 series provides four channels of Universal Asynchronous Receiver/Transmitters (UART). UART Controller performs Normal Speed UART and supports flow control function. The UART Controller performs a serial-to-parallel conversion on data received from the peripheral and a parallel-to-serial conversion on data transmitted from the CPU. Each UART Controller channel supports ten types of interrupts. The UART controller also supports IrDA SIR, RS-485 and auto-baud rate measuring function.

6.13.2 Features

- Full-duplex asynchronous communications
- Separates receive and transmit 16/16 bytes entry FIFO for data payloads
- Supports hardware auto-flow control
- Programmable receiver buffer trigger level
- Supports programmable baud rate generator for each channel individually
- Supports nCTS and RX data wake-up function
- Supports 8-bit receiver buffer time-out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting DLY (UART_TOUT [15:8])
- Supports Auto-Baud Rate measurement
- Supports break error, frame error, parity error and receive/transmit buffer overflow detection function
- Fully programmable serial-interface characteristics
 - Programmable number of data bit, 5-, 6-, 7-, 8- bit character
 - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
 - Programmable stop bit, 1, 1.5, or 2 stop bit generation
- Supports IrDA SIR function mode
 - Supports for 3/16 bit duration for normal mode
- Supports RS-485 function mode
 - Supports RS-485 9-bit mode
 - Supports hardware or software enables to program nRTS pin to control RS-485 transmission direction

UART Feature	UARTO / UART1	UART2 / UART3	SC_UART
FIFO	16 Bytes	16 Bytes	4 Bytes
Auto Flow Control (CTS/RTS)	V	V	-
IrDA	V	√	-
RS-485 Function Mode	V	V	-

nuvoTon

Auto-Flow Control	V	√	-
nCTS Wake-up	V	√	-
RX Data Wake-up	V	√	-
Auto-Baud Rate Measurement	√	V	-
STOP Bit Length	1, 1.5, 2 bit	1, 1.5, 2 bit	1, 2 bit
Word Length 5, 6,7, 8 bits	√	V	V
Even / Odd Parity	V	√	\checkmark
Stick Bit	√	V	-
√= Supported			

Table 6.13-1 NuMicro® M4521 Series UART Feature

6.14 Smart Card Host Interface (SC)

6.14.1 Overview

The Smart Card Interface controller (SC controller) is based on ISO/INTENC 7816-3 standard and fully compliant with PC/SC Specifications. It also provides status of card insertion/removal.

6.14.2 Features

- ISO-7816-3 T = 0, T = 1 compliant.
- EMV2000 compliant
- One ISO-7816-3 port
- Separates receive/transmit 4 byte entry FIFO for data payloads.
- Programmable transmission clock frequency.
- Programmable receiver buffer trigger level.
- Programmable guard time selection (11 ETU ~ 267 ETU).
- A 24-bit and two 8-bit timers for Answer to Request (ATR) and waiting times processing.
- Supports auto inverse convention function.
- Supports transmitter and receiver error retry and error number limiting function.
- Supports hardware activation sequence, hardware warm reset sequence and hardware
- deactivation sequence process.
- Supports hardware auto deactivation sequence when detected the card removal.
- Supports UART mode
 - Full duplex, asynchronous communications.
 - Separates receiving / transmitting 4 bytes entry FIFO for data payloads.
 - Supports programmable baud rate generator.
 - Supports programmable receiver buffer trigger level.
 - Programmable transmitting data delay time between the last stop bit leaving the TX-FIFO and the de-assertion by setting EGT (SC_EGT[7:0]).
 - Programmable even, odd or no parity bit generation and detection.
 - Programmable stop bit, 1- or 2- stop bit generation

6.15 I²C Serial Interface Controller (I²C)

6.15.1 Overview

 I^2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I^2C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

There are two sets of I²C controller which supports Bus Management (System Management (SM)/Power Management (PM) bus compatible) and Power-down wake-up function.

6.15.2 Features

The I²C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the I²C bus include:

- Supports up to two I²C ports
- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allow devices with different bit rates to communicate via one serial bus
- Built-in 14-bit time-out counter requesting the I²C interrupt if the I²C bus hangs up and timerout counter overflows.
- Programmable clocks allow for versatile rate control
- Supports 7-bit addressing mode
- Supports multiple address recognition (four slave address with mask option)
- Supports Bus Management (SM/PM compatible) function
- Supports Power-down wake-up function

6.16 Serial Peripheral Interface (SPI)

6.16.1 Overview

The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and allows full duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction interface. The M4521 series contains up to three sets of SPI controllers performing a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. Each SPI controller can be configured as a master or a slave device.

SPI0 controller supports 2-bit Transfer mode to perform full-duplex 2-bit data transfer and also supports Dual and Quad I/O Transfer mode.

6.16.2 Features

- Up to two sets of SPI controllers
- Supports Master or Slave mode operation
- Supports 2-bit Transfer mode
- Supports Dual and Quad I/O Transfer mode for SPI0
- Configurable bit length of a transaction word from 8 to 32-bit
- Provides separate 4-/8-level depth transmit and receive FIFO buffers
- Supports MSB first or LSB first transfer sequence
- Supports Byte Reorder function
- Supports PDMA transfer
- Supports 3-Wire, no slave selection signal, bi-direction interface

6.17 USB Device Controller (USBD)

6.17.1 Overview

There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is compliant with USB 2.0 full-speed device specification and supports Control/Bulk/Interrupt/ Isochronous transfer types.

In this device controller, there are two main interfaces: the APB bus and USB bus which comes from the USB PHY transceiver. For the APB bus, the CPU can program control registers through it. There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is necessary to write data to SRAM or read data from SRAM through the APB interface or SIE. User needs to set the effective starting address of SRAM for each endpoint buffer through buffer segmentation register (USBD_BUFSEGx).

There are 8 endpoints in this controller. Each of the endpoint can be configured as IN or OUT endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are implemented in this block. The block of "Endpoint Control" is also used to manage the data sequential synchronization, endpoint state, current start address, transaction status, and data buffer status for each endpoint.

There are four different interrupt events in this controller. They are the no-event-wake-up, device plug-in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend and resume, etc. Any event will cause an interrupt, and users just need to check the related event flags in interrupt event status register (USBD_INTSTS) to acknowledge what kind of interrupt occurring, and then check the related USB Endpoint Status Register (USBD_EPSTS) to acknowledge what kind of event occurring in this endpoint.

A software-disconnect function is also supported for this USB controller. It is used to simulate the disconnection of this device from the host. If user enables SE0 bit (USBD_SE0), the USB controller will force the output of USB_D+ and USB_D- to level low and its function is disabled. After disable the SE0 bit, host will enumerate this USB device again.

For more information on the Universal Serial Bus, please refer to *Universal Serial Bus Specification Revision 1.1.*

6.17.2 Features

- Compliant with USB 2.0 Full-Speed specification
- Provides 1 interrupt vector with 4 different interrupt events (NEVWK, VBUSDET, USB and BUS)
- Supports Control/Bulk/Interrupt/Isochronous transfer types
- Supports suspend function when no bus activity existing for 3 ms
- Supports 8 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types and maximum 512 bytes buffer size
- Provides remote wake-up capability

6.18 USB 1.1 Host Controller (USBH)

6.18.1 Overview

This chip is equipped with a USB 1.1 Host Controller (USBH) that supports Open Host Controller Interface (OpenHCI, OHCI) Specification, a register-level description of a host controller, to manage the devices and data transfer of Universal Serial Bus (USB).

The USBH supports an integrated Root Hub with a USB port, a DMA for real-time data transfer between system memory and USB bus, port power control and port over current detection.

The USBH is responsible for detecting the connect and disconnect of USB devices, managing data transfer, collecting status and activity of USB bus, providing power control and detecting over current of attached USB devices.

6.18.2 Features

- Supports Universal Serial Bus (USB) Specification Revision 1.1.
- Supports Open Host Controller Interface (OpenHCI) Specification Revision 1.0.
- Supports both full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.
- Supports Control, Bulk, Interrupt and Isochronous transfers.
- Supports an integrated Root Hub.
- Supports a USB host port shared with USB device (OTG function).
- Supports port power control and port over current detection.
- Supports DMA for real-time data transfer.

6.19 CRC Controller (CRC)

6.19.1 Overview

The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with programmable polynomial settings.

6.19.2 Features

- Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32
 - CRC-CCITT: X¹⁶ + X¹² + X⁵ + 1
 - CRC-8: $X^8 + X^2 + X + 1$
 - CRC-16: $X^{16} + X^{15} + X^2 + 1$
 - CRC-32: $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$
- Programmable seed value
- Supports programmable order reverse setting for input data and CRC checksum
- Supports programmable 1's complement setting for input data and CRC checksum
- Supports 8/16/32-bit of data width
 - 8-bit write mode: 1-AHB clock cycle operation
 - 16-bit write mode: 2-AHB clock cycle operation
 - 32-bit write mode: 4-AHB clock cycle operation
- Supports using PDMA to write data to perform CRC operation

6.20 Enhanced 12-bit Analog-to-Digital Converter (EADC)

6.20.1 Overview

The M4521 series contains one 12-bit successive approximation analog-to-digital converter (SAR A/D converter) with 16 external input channels and 3 internal channels. The A/D converter can be started by software trigger, PWM0/1 triggers, timer0~3 overflow pulse triggers, ADINTO, ADINT1 interrupt EOC (End of conversion) pulse trigger and external pin (STADC) input signal.

6.20.2 Features

- Analog input voltage range: 0~V_{RFF} (Max to AV_{DD}).
- Reference voltage from V_{REF} pin or AV_{DD}.
- 12-bit resolution and 10-bit accuracy is guaranteed.
- Up to 16 single-end analog external input channels or 8 pair differential analog input channels.
- 3 internal channels, they are band-gap voltage (V_{BG}), temperature sensor (V_{TEMP}), and Battery power (V_{BAT})
- Four ADC interrupts (ADINT0~3) with individual interrupt vector addresses.
- Maximum ADC clock frequency is 20 MHz.
- Up to 1 Msps conversion rate.
- Configurable ADC internal sampling time.
- Up to 19 sample modules
 - Each of sample module 0~15 which is configurable for ADC converter channel EADC_CH0~15 and trigger source.
 - Sample module 16~18 is fixed for ADC channel 16, 17, 18 input sources as band-gap voltage, temperature sensor, and battery power (V_{BAT}).
 - Double buffer for sample module 0~3
 - Configurable sampling time for each sample module.
 - Conversion results are held in 19 data registers with valid and overrun indicators.
- An A/D conversion can be started by:
 - Write 1 to SWTRGn (EADC_SWTRG[n], n = 0~18)
 - External pin STADC
 - Timer0~3 overflow pulse triggers
 - ADINT0 and ADINT1 interrupt EOC (End of conversion) pulse triggers
 - PWM triggers
- Supports PDMA transfer

APPLICATION CIRCUIT

nuvoTon

Note 1: It is recommended to use 100 k Ω pull-up resistor on both ICE_DAT and ICE_CLK pin.

Note 2: It is recommended to use 10 k Ω pull-up resistor and 10 uF capacitor on nRESET pin.

8 ELECTRICAL CHARACTERISTICS

8.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
$V_{\text{DD}} - V_{\text{SS}}$	DC Power Supply	-0.3	+7.0	V
V _{IN}	Input Voltage	V _{SS} - 0.3	V _{DD} + 0.3	V
1/t _{CLCL}	Oscillator Frequency	4	20	MHz
T _A	Operating Temperature	-40	+105	$^{\circ}\!\mathbb{C}$
T _{ST}	Storage Temperature	-55	+150	$^{\circ}\mathbb{C}$
I _{DD}	Maximum Current into V _{DD}	-	120	mA
Iss	Maximum Current out of V _{SS}		120	mA
	Maximum Current sunk by a I/O pin		35	mA
	Maximum Current sourced by a I/O pin		35	mA
I _{IO}	Maximum Current sunk by total I/O pins		100	mA
	Maximum Current sourced by total I/O pins		100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affect the lift and reliability of the device.

8.2 DC Electrical Characteristics

 $(V_{DD} - V_{SS} = 2.5 \sim 5.5 \text{ V}, T_A = 25^{\circ}\text{C})$

_			SPECIF	ICATION						
Parameter	Symbol	Min.	Тур.	Max.	Unit		Т	est Condi	tions	
Operation voltage	V_{DD}	2.5	-	5.5	٧	V _{DD} = 2.5 V ~ 5.5 V up to 72 MHz				
Power supply for PE.8~PE.13	V_{DDIO}	1.8	-	5.5	٧					
RTC Operation voltage for PF.0~PF.2	V_{BAT}	2.5	-	5.5	V					
Power Ground	V _{SS} / AV _{SS}	-0.3	0	0.3	٧					
LDO Output Voltage	V_{LDO}		1.8		٧	V _{DD} ≥ 2.5	5 V			
Band-gap Voltage	V_{BG}	1.175	1.21	1.225	V	V _{DD} = 2.5	5 V ~ 5.5 V	/, T _A = 25°	С	
Allowed voltage difference for V _{DD} and AV _{DD}	V _{DD} -AV _{DD}	-0.3	0	0.3	V					
Operating Current Normal Run Mode HCLK = 72 MHz	I _{DD1}	-	50	_	mA	V_{DD}	нхт	HIRC	PLL	All digital modules
	וטטי					5.5V	12 MHz	Х	V	V
	I _{DD2}	-	25	-	mA	5.5V	12 MHz	Х	V	Х
while(1){} executed from flash	I _{DD3}	-	48	-	mA	3.3V	12 MHz	Х	V	V
	I _{DD4}	-	22	-	mA	3.3V	12 MHz	Х	٧	Х
Operating Current	I _{DD5}	-	43	-	mA	5.5V	12 MHz	Х	V	V
Normal Run Mode	I _{DD6}	-	25	-	mA	5.5V	12 MHz	Х	٧	Х
HCLK = 50 MHz while(1){}	I _{DD7}	-	41	-	mA	3.3V	12 MHz	Х	V	V
executed from flash	I _{DD8}	-	22	-	mA	3.3V	12 MHz	Х	V	Х
Operating Current	I _{DD9}	-	17	-	mA	5.5V	Х	V	Х	V
Normal Run Mode HCLK =22.1184	I _{DD10}	-	8	-	mA	5.5V	Х	V	Х	Х
MHz	I _{DD11}	-	17	-	mA	3.3V	Х	V	Х	V
while(1){} executed from flash	I _{DD12}	-	8	-	mA	3.3V	Х	V	Х	Х
Operating Current	I _{DD13}	-	10	-	mA	5.5V	12 MHz	Х	Х	V
Normal Run Mode	I _{DD14}	-	6	-	mA	5.5V	12 MHz	Х	Х	Х
HCLK = 12 MHz while(1){}	I _{DD15}	-	8	-	mA	3.3V	12 MHz	Х	Х	V
executed from flash	I _{DD16}	-	4	-	mA	3.3V	12 MHz	Х	Х	Х
Operating Current	I _{DD17}	-	3	-	mA	5.5V	12 MHz	Х	Х	V

			SPECIF	CATION						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions				
Normal Run Mode HCLK =4 MHz	I _{DD18}	-	2	-	mA	5.5V	12 MHz	Х	Х	Х
while(1){}	I _{DD19}	-	3	-	mA	3.3V	12 MHz	Х	Х	V
executed from flash	I _{DD20}	-	2	-	mA	3.3V	12 MHz	Х	Х	Х
	I _{DD21}	-	146	-	uA	V_{DD}	LXT (kHz)	HIRC	PLL	All digital modules
Operating Current HCLK = 32.768 kHz						5.5V	32.768	Х	Х	V
while(1){}	I _{DD22}		134		uA	5.5V	32.768	Х	Х	Х
executed from flash	I _{DD23}		133		uA	3.3V	32.768	Х	Х	V
	I _{DD24}	-	121	-	uA	3.3V	32.768	Х	Х	Х
Operating Current	I _{DD25}	-	131	-	μA	V_{DD}	HXT /LXT	LIRC (kHz)	PLL	All digital modules
Normal Run Mode HCLK = 10 kHz						5.5V	Х	10	Х	V
while(1){}	I _{DD26}	-	128	-	μΑ	5.5V	Х	10	Х	Х
Executed from Flash	I _{DD27}	-	118	-	μΑ	3.3V	Х	10	Х	V
	I _{DD28}	-	115	-	μΑ	3.3V	Х	10	Х	Х
Operating Current Idle Mode	I _{IDLE1}	_	30	-	mA	V_{DD}	НХТ	HIRC	PLL	All digital modules
HCLK = 72 MHz						5.5V	12 MHz	Х	V	V
	I _{IDLE2}	-	10	-	mA	5.5V	12 MHz	Х	V	Х
	I _{IDLE3}	-	28	-	mA	3.3V	12 MHz	Х	V	V
	I _{IDLE4}	-	7	-	mA	3.3V	12 MHz	Х	V	Х
Operating Current	I _{IDLE5}	-	32	-	mA	5.5V	12 MHz	Х	٧	V
Idle Mode HCLK = 50 MHz	I _{IDLE6}	-	10	-	mA	5.5V	12 MHz	Х	V	Х
	I _{IDLE7}	-	29	-	mA	3.3V	12 MHz	Х	٧	V
	I _{IDLE8}	-	8	1	mA	3.3V	12 MHz	X	>	X
Operating Current	I _{IDLE9}	-	11	-	mA	5.5V	Х	٧	Х	V
Idle Mode HCLK =22.1184	I _{IDLE10}	-	2	-	mA	5.5V	Х	٧	Х	Х
MHz	I _{IDLE11}	-	10	-	mA	3.3V	Х	V	Х	V
	I _{IDLE12}	-	2	-	mA	3.3V	Х	V	Х	Х
Operating Current	I _{IDLE13}	-	7	-	mA	5.5V	12 MHz	Х	Х	V
Idle Mode HCLK =12 MHz	I _{IDLE14}		3		mA	5.5V	12 MHz	Х	Х	Х
TOLK IZ WILL	I _{IDLE15}	-	5	-	mA	3.3V	12 MHz	Х	Х	V
	I _{IDLE16}	-	2		mA	3.3V	12 MHz	Х	Х	Х

nuvoTon

			SPECIFI	CATION						
Parameter	Symbol	Min.	Тур.	Max.	Unit		Т	est Condi	itions	
Operating Current	I _{IDLE17}	-	2.2	-	mA	5.5V	12 MHz	Х	Х	V
Idle Mode HCLK =4 MHz	I _{IDLE18}	-	1.1	-	mA	5.5V	12 MHz	Х	Х	Х
TIOLIC TIME	I _{IDLE19}	-	1.8	-	mA	3.3V	12 MHz	Х	Х	V
	I _{IDLE20}	-	0.6	-	mA	3.3V	12 MHz	Х	Х	Х
Operating Current	I _{IDLE21}	-	136	-	uA	V_{DD}	LXT (kHz)	HIRC	PLL	All digital modules
32.768 kHz						5.5V	32.768	Х	Х	V
	I _{IDLE22}	-	126	-	uA	5.5V	32.768	Х	Х	Х
	I _{IDLE23}		123		uA	3.3V	32.768	Х	Х	٧
	I _{IDLE24}		114		uA	3.3V	32.768	Х	Х	×
Operating Current Idle Mode at 10 kHz	I _{IDLE25}	-	128	-	uA	V _{DD}	HXT /LXT	LIRC (kHz)	PLL	All digital modules
					uA	5.5V	Х	10	Х	V
	I _{IDLE26}	-	125	ı	μΑ	5.5V	Х	10	Х	Х
	I _{IDLE27}	-	115	-	μΑ	3.3V	Х	10	Х	V
	I _{IDLE28}	-	112	ı	μΑ	3.3V	Х	10	Х	X
Standby Current Power-down Mode	I _{PWD1}		21.08		μΑ	V _{DD}	HXT/HI RC/PLL	LXT (kHz)	RTC	RAM retension
(Deep Sleep Mode)						5.5V	Х	Х	Х	V
	I _{PWD2}		22.18		μА	5.5V	Х	10	V	V
	I _{PWD3}		23.21		μΑ	5.5V	Х	32.768	V	V
	I _{PWD4}		23.23		μΑ	5.5V	×	10 & 32.768	V	V
	I _{PWD5}		19.38		μА	3.3V	Х	Х	Х	V
	I _{PWD6}		20.44		μА	3.3V	Х	10	V	V
	I _{PWD7}		21.50		μА	3.3V	Х	32.768	V	V
	I _{PWD8}		21.55		μА	3.3V	Х	10 & 32.768	V	V
RTC Operating			2.01		uA	oscillator	V_{BAT} = 5.0 V, 32.768 kHz external low speed crystal oscillator (LXT), RTC ON and V_{DD}/AV_{DD} power domain OFF.			peed crystal power
Current	I _{VBAT}		1.91		uA	V_{BAT} = 3.0 V, 32.768 kHz external low speed crysoscillator (LXT), RTC ON and V_{DD}/AV_{DD} power domain OFF.				
Input Current at /RESET ^[1]	I _{IN}	-55	-45	-30	μА	V _{DD} = 3.3	V, V _{IN} = 0.	45V		

			SPECIF	ICATION		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Logic 0 Input Current (Quasi- bidirectional mode)	I _{IL}	-	-67	-75	μА	$V_{DD} = V_{DDIO} = V_{BAT} = 5.5 \text{ V}, V_{IN} = 0 \text{V}$
Logic 1 to 0 Transition Current (Quasi-bidirectional mode) [*3]	I _{TL}	-	-610	-650	μА	$V_{DD} = V_{DDIO} = V_{BAT} = 5.5 \text{ V}, V_{IN} = 2.0 \text{V}$
Input Leakage Current	I _{LK}	-1	-	+1	μА	$V_{DD} = V_{DDIO} = V_{BAT} = 5.5 \text{ V}, 0 < V_{IN} < V_{DD}$ Open-drain or input only mode
Input Low Voltage	.,	-0.3	-	0.8	.,	$V_{DD} = V_{DDIO} = V_{BAT} = 4.5 \text{ V}$
(TTL input)	V_{IL1}	-0.3	-	0.6	V	$V_{DD} = V_{DDIO} = V_{BAT} = 2.5 \text{ V}$
Input Low Voltage (TTL input for PE8 ~ PE13)	V_{IL2}	-0.3	-	0.3	٧	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 1.8 \text{ V}$
Input High Voltage	V _{IH1}	2.0	-	V _{DD} + 0.3	V	$V_{DD} = V_{DDIO} = V_{BAT} = 5.5 \text{ V}$
(TTL input)	V IH1	1.5	-	V _{DD} + 0.3	V	$V_{DD} = V_{DDIO} = V_{BAT} = 3.0 \text{ V}$
Input High Voltage (TTL input for PE8 ~ PE13)	V_{IH2}	1.0	-	V _{DDIO} + 0.3	V	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 1.8 \text{ V}$
Hysteresis voltage of PA, PB, PC, PD,PE, PF (Schmitt input)	V_{HY}		0.2V _{DD}		V	
Input Low Voltage		0	-	0.8	V	V _{DD} = 4.5 V
XT1[*2]	V_{IL3}	0	-	0.4		V _{DD} = 2.5 V
Input High Voltage	V	3.5	-	V _{DD} + 0.3	٧	V _{DD} = 5.5 V
XT1[*2]	V_{IH3}	2.4	-	V _{DD} + 0.3		V _{DD} = 3.0 V
X32 Output Pin	V_{XOUT}	0.6		0.9	V	
Input Low Voltage X32I[*4]	V_{IL4}	0	-	V _{XOUT} - 0.3	>	
Input High Voltage X32I[*4]	V_{IH4}	V _{XOUT} +0.3		1.8	V	
Negative going threshold (Schmitt input), nRST	V_{IL5}	-0.3	-	0.2 V _{DD}	V	
Positive going threshold (Schmitt input), nRST	V _{IH5}	0.7 V _{DD}	-	V _{DD} + 0.3	V	
Internal nRESET pin pull up resistor	R _{RST}	40		150	kΩ	

nuvoTon

			SPECIF	ICATION				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
Input Low Voltage (Schmitt input)	V _{IL6}	-0.3	-	0.3 V _{DD}	٧	$V_{DD} = V_{DDIO} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$		
Input Low Voltage (Schmitt input for PE8~ PE13)	V_{IL7}	-0.3	-	0.3 V _{DDIO}	V	V _{DDIO} = 1.8 V ~ 5.5V		
Input High Voltage (Schmitt input)	V _{IH6}	0.7 V _{DD}	-	V _{DD} + 0.3	V	$V_{DD} = V_{DDIO} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$		
Input High Voltage (Schmitt input for PE8~ PE13)	V_{IH7}	0.7 V _{DDIO}	-	V _{DDIO} + 0.3	V	V _{DDIO} = 1.8 V ~ 5.5V		
Source Current (Quasi-bidirectional	I _{SR11}	-300	-400	-	μА	$V_{DD} = V_{DDIO} = V_{BAT} = 4.5 \text{ V}, V_{S} = 2.4 \text{ V}$		
Mode)	I _{SR12}	-50	-80	-	μΑ	$V_{DD} = V_{DDIO} = V_{BAT} = 2.7 \text{ V}, V_{S} = 2.2 \text{ V}$		
	I _{SR13}	-40	-73	-	μΑ	$V_{DD} = V_{DDIO} = V_{BAT} = 2.5 \text{ V}, V_{S} = 2.0 \text{ V}$		
Source Current (Quasi-bidirectional Mode for PE8~ PE13)	I _{SR14}	-11	-19		μА	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 1.8 \text{ V}, V_{S} = 1.6 \text{ V}$		
Source Current	I _{SR21}	-20	-26	-	mA	$V_{DD} = V_{DDIO} = V_{BAT} = 4.5 \text{ V}, V_{S} = 2.4 \text{ V}$		
(Push-pull Mode)	I _{SR22}	-3	-5.2	-	mA	$V_{DD} = V_{DDIO} = V_{BAT} = 2.7 \text{ V}, V_S = 2.2 \text{ V}$		
	I _{SR23}	-2.5	-5	-	mA	$V_{DD} = V_{DDIO} = V_{BAT} = 2.5 \text{ V}, V_S = 2.0 \text{ V}$		
Source Current (Set IO as Push-pull Mode and basic driving strength Only for PE8~PE13)	I _{SR24}	-1	-1.5		mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 1.8 \text{ V}, V_{S} = 1.6 \text{ V}$		
Source Current (Set IO as Push-pull Mode and high	I _{SR31}	-28	-47	-	mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 4.5 \text{ V}, V_{S} = 2.4 \text{ V}$		
driving strength Only for	I _{SR32}	-5.3	-8.8	-	mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 2.7 \text{ V}, V_{S} = 2.2 \text{ V}$		
PE8~PE13)	I _{SR33}	-4.9	-8.1	-	mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 2.5 \text{ V}, V_{S} = 2.0 \text{ V}$		
	I _{SR34}	-1.5	-2.5		mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 1.8 \text{ V}, V_{S} = 1.6 \text{ V}$		
Sink Current	I _{SK11}	10	17	-	mA	$V_{DD} = V_{DDIO} = V_{BAT} = 4.5 \text{ V}, V_{S} = 0.45 \text{ V}$		
(Quasi-bidirectional, Open-Drain and	I _{SK12}	6	11	-	mA	$V_{DD} = V_{DDIO} = V_{BAT} = 2.7 \text{ V}, V_S = 0.45 \text{ V}$		
Push-pull Mode)	I _{SK13}	5	10	-	mA	$V_{DD} = V_{DDIO} = V_{BAT} = 2.5 \text{ V}, V_{S} = 0.45 \text{ V}$		
Sink Current (Only for PE8~PE13)	I _{SK14}	3.6	6		mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 1.8 \text{ V}, V_{S} = 0.45 \text{ V}$		

_ ,		SPECIFICATION					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Sink Current (Set IO as high driving strength	I _{SK21}	14.7	24.5		mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 4.5 \text{ V}, V_S = 0.45 \text{ V}$	
Only for PE8~PE13)	I _{SK22}	9.2	15.3		mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 2.7 \text{ V}, V_S = 0.45 \text{ V}$	
	I _{SK23}	8.5	14.1		mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 2.5 \text{ V}, V_S = 0.45 \text{ V}$	
	I _{SK24}	5.4	9		mA	$V_{DD} = V_{BAT} = 2.5 \sim 5.5 \text{ V}$ $V_{DDIO} = 1.8 \text{ V}, V_{S} = 0.45 \text{ V}$	

Notes:

- 1. nRESET pin is a Schmitt trigger input.
- 2. XT1_IN is a CMOS input.
- 3. All pins can source a transition current when they are being externally driven from 1 to 0. In the condition of V_{DD} =5.5V, the transition current reaches its maximum value when V_{IN} approximates to 2V.
- 4. If X32I is as external clock input, the input high voltage should be lower than 1.8V to avoid chip damage.

8.2.1 On-chip peripheral current consumption

- ALL GPIO pins are in push pull mode, output high.
- LDO = 1.8V
- The typical values for TA= 25 $^{\circ}$ C and $V_{DD} = AV_{DD} = 3.3 \text{ V}$ unless otherwise specified.
- When the peripherals are enabled HCLK is the system clock, $f_{HCLK} = 72$ MHz, $f_{PCLK0, 1} = f_{HCLK}/2$.

Peripheral	I _{DD}	Unit
PDMA0 ON	1.026	
ISP ON	0.000	
EBI ON	0.343	
USBH ON	1.488	
CRC ON	0.220	
FMC ON	0.745	
WDT ON	0.433	
RTC ON	0.417	
TMR0 ON	0.568	
TMR1 ON	0.578	
TMR2 ON	0.486	
TMR3 ON	0.507	uA
CLKO ON	0.086	
12C0 ON	0.428	
I2C1 ON	0.357	
SPI0 ON	1.154	
SPI1 ON	0.924	
UARTO ON	1.556	
UART1 ON	1.527	
UART2 ON	1.634	
UART3 ON	1.549	
USBDC ON	1.634	
EADC ON	0.964	

SC0 ON	1.243	
PWM0 ON	1.850	
PWM1 ON	1.640	

Note: Guaranteed by characterization results, not tested in production

8.3 AC Electrical Characteristics

8.3.1 External 4~20 MHz High Speed Crystal (HXT) Input Clock

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _{CHCX}	Clock High Time	10	=	=	ns	-
t _{CLCX}	Clock Low Time	10	-	-	ns	-
t _{CLCH}	Clock Rise Time	2	=	15	ns	-
t _{CHCL}	Clock Fall Time	2	-	15	ns	-
V _{IH}	Input High Voltage	$0.7V_{DD}$		V_{DD}	V	-
V _{IL}	Input Low Voltage	0		0.3V _{DD}	V	-

8.3.2 External 4~20 MHz High Speed Crystal (HXT) Oscillator

Symbol	Parameter	Min.	Тур.	Max	Unit	Test Conditions
V_{HXT}	Operation Voltage	2.5	-	5.5	V	-
T _A	Temperature	-40	=	105	$^{\circ}\!\mathbb{C}$	-
	Operating Current	-	2	-	mA	12 MHz, V _{DD} = 5.5V
I _{HXT}	Operating Current	-	0.8	-	mA	12 MHz, V _{DD} = 3.3V
f _{HXT}	Clock Frequency	4	=	20	MHz	-

8.3.2.1 Typical Crystal Application Circuits

Crystal	C1	C2
4 MHz ~ 20 MHz	10~20 pF	10~20 pF

Figure 8.3-1 Typical Crystal Application Circuit

8.3.3 22.1184 MHz Internal High Speed RC Oscillator (HIRC)

nuvoTon

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V_{HRC}	Supply Voltage	1.62	1.8	1.98	V	-
	Center Frequency	-	22.1184		MHz	-
f _{HRC}		-1	-	+1	%	$T_A = 25 ^{\circ}\text{C}$, $V_{DD} = 5 \text{V}$
THRC	Calibrated Internal Oscillator Frequency	-2	-	+2	%	$T_A = -40 ^{\circ}\text{C} \sim 105 ^{\circ}\text{C}$ $V_{DD} = 2.5 \text{V} \sim 5.5 \text{V}$
I _{HRC}	Operating Current	=	790	=	μΑ	$T_A = 25 ^{\circ}\text{C}$, $V_{DD} = 5 ^{\circ}\text{V}$
Ts	Stable time			20	us	

Figure 8.3-2 HIRC Accuracy vs. Temperature

8.3.4 32.768 kHz External Low Speed Crystal (LXT) Input Clock

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _{CHCX}	Clock High Time	TBD	=	-	ns	-
t _{CLCX}	Clock Low Time	TBD	=	-	ns	-
t _{CLCH}	Clock Rise Time	TBD	-	TBD	ns	-
t _{CHCL}	Clock Fall Time	TBD	-	TBD	ns	-
Xin_V _{IH}	LXT Input Pin Input High Voltage	Xout+0.3		1.8	V	-
Xin_V _{IL}	LXT Input Pin Input Low Voltage	0		Xout-0.3	V	-
Xout	LXT Output Pin	0.6		0.9	V	

8.3.5 32.768 kHz External Low Speed Crystal (LXT) Oscillator

Parameter	Condition	Min.	Тур.	Max.	Unit
Operation Voltage V _{BAT}	-	2.5	=	5.5	V
Operation Temperature	-	-40	=	105	$^{\circ}\!\mathbb{C}$
Operation Current	32.768KHz at V _{BAT} =5V		1.6		μА
Clock Frequency	External crystal	-	32.768	-	kHz

8.3.5.1 LXT Typical Crystal Application Circuits

CRYSTAL	C ₁	C_2
32.768 kHz	10~20 pF	10~20 pF

Figure 8.3-3 Typical Crystal Application Circuit

10 kHz Internal Low Speed RC Oscillator (LIRC)

nuvoTon

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V_{LRC}	Supply Voltage	2.5		5.5	V	-
	Center Frequency	=	10	=	kHz	-
f_{LRC}	Oscillator Francisco	-30	ı	+30	%	$V_{DD} = 2.5 \text{ V} \sim 5.5 \text{ V}$ $T_A = 25^{\circ}\text{C}$
	Oscillator Frequency	-50	ı	+50	%	$V_{DD} = 2.5 \text{ V} \sim 5.5 \text{ V}$ $T_A = -40^{\circ}\text{C} \sim +105^{\circ}\text{C}$

8.4 Analog Characteristics

8.4.1 PIN AC characteristics

● C_L = 51 pF

Px_SLEWCTL	Symbol	Parameter	Conditions	Тур	Unit
	Output high to low level fall time		V _{DD} = 5.5 V	6.87	
Basic Slew	^t f(IO)out	(90~10%)	V _{DD} = 3.3 V	10.31	
Rate	t-(10) 1	output low to high level rise time	V _{DD} = 5.5 V	6.6	
	^t r(IO)out	(10~90%)	V _{DD} = 3.3 V	10.4	ns
	^t f(IO)out	Output high to low level fall time	V _{DD} = 5.5 V	4.67	
Higher Slew	(90~10%)		V _{DD} = 3.3 V	6.82	
Rate	output low to high level rise time		V _{DD} = 5.5 V	5.66	
	T(10)0ut	(10~90%)	V _{DD} = 3.3 V	8.46	

8.4.2 12-bit SAR ADC

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
-	Resolution		12		Bit	-
DNL	Differential Nonlinearity Error	-	-	±2	LSB	-
INL	Integral Nonlinearity Error	-	-	±2	LSB	-
Eo	Offset Error	-	3	-	LSB	-
E _G	Gain Error (Transfer Gain)	-	-3	-	LSB	-
E _A	Absolute Error	-	4	-	LSB	-
-	Monotonic		Guaranteed	t	-	-
F	ADC Clash Francisco	-	-	21	NAL I-	AV _{DD} = 4.5~5.5 V
F _{ADC}	ADC Clock Frequency	-	-	8.4	MHz	AV _{DD} = 2.5~5.5 V
Fs	Sample Rate (F _{ADC} /T _{CONV})	-	-	1000	kSPS	$AV_{DD} = 4.5 \sim 5.5 \text{ V}$ $T_{CONV} = 21 \text{ clock}$ $F_{ADC} = 21 \text{ Mhz}$
rs	Sample Rate (FADC/TCONV)	-	-	400	kSPS	$AV_{DD} = 2.5 \sim 5.5 \text{ V}$ $T_{CONV} = 21 \text{ clock}$ $F_{ADC} = 8.4 \text{ Mhz}$
T _{ACQ}	Acquisition Time (Sample Stage)		2~9		1/F _{ADC}	Default: 6 (1/F _{ADC}) EADC_SCTLx[31:24]=0
T _{CONV}	Total Conversion Time		16~23		1/F _{ADC}	TCONV = TACQ+ 15 Default: 21 (1/F _{ADC}) EADC_SCTLx[31:24]=0
AV _{DD} ^{#1}	Supply Voltage	2.5	-	5.5	V	-
I _{DDA} ^{#1}	Supply Current (Avg.)	-	2.8	-	mA	AV _{DD} = 5 V
V _{IN} ^{#1}	Analog Input Voltage	0	-	V_{REF}	V	-
V_{REF}	Reference Voltage	2.5	-	AV_DD	V	AV _{DD} = 5 V
C _{IN} #1	Input Capacitance	-	6	-	pF	-
R _{IN} ^{#1}	Input Load	-	6.5	-	kΩ	-

Note:

#1: Design by guarantee, no test in production.

Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and gain error from the actual transfer curve.

Typical connection diagram using the ADC

nuvoTon

Figure 8.4-1 Typical connection diagram using the ADC

(1) Refer to ADC spec for the values of R_{IN} , C_{IN}

8.4.3 LDO

nuvoTon

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
V_{DD}	DC Power Supply	2.5	-	5.5	V	-
V_{LDO}	Output Voltage		1.8		V	-
T _A	Temperature	-40	25	105	$^{\circ}\mathbb{C}$	

Notes:

- 1. It is recommended a $0.1\mu F$ bypass capacitor is connected between V_{DD} and the closest V_{SS} pin of the device.
- 2. For ensuring power stability, a 1µF Capacitor must be connected between LDO_CAP pin and the closest V_{SS} pin of the device.

8.4.4 Low Voltage Reset

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
AV_DD	Supply Voltage	0	-	5.5	V	-
T _A	Temperature	-40	25	105	$^{\circ}\!\mathbb{C}$	-
I _{LVR}	Quiescent Current	-	1	5	μΑ	$AV_{DD} = 5.5 V$
		2.00	2.20	2.45	V	T _A = 105 °C
V_{LVR}	Threshold Voltage	1.90	2.00	2.10	V	T _A = 25 °C
		1.70	1.90	2.10	V	T _A = -40 °C

8.4.5 Brown-out Detector

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
AV_DD	Supply Voltage	0	-	5.5	V	-
T _A	Temperature	-40	25	105	$^{\circ}\!\mathbb{C}$	-
I _{BOD}	Quiescent Current	-	-	140	μA	AV _{DD} = 5.5 V
		4.2	4.4	4.6	V	BOV_VL [1:0] = 11
V_{BOD}	Brown-out Voltage	3.5	3.7	3.9	V	BOV_VL [1:0] = 10
V BOD	(Falling edge)	2.55	2.7	2.85	V	BOV_VL [1:0] = 01
		2.05	2.2	2.35	V	BOV_VL [1:0] = 00
		4.3	4.5	4.7	V	BOV_VL [1:0] = 11
V	V _{BOD} Brown-out Voltage (Rising edge)	3.6	3.8	4.0	V	BOV_VL [1:0] = 10
v BOD		2.6	2.75	2.9	V	BOV_VL [1:0] = 01
		2.1	2.25	2.4	V	BOV_VL [1:0] = 00

8.4.6 Power-on Reset

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
T _A	Temperature	-40	25	105	$^{\circ}$	-
V_{POR}	V _{POR} Reset Voltage		2	2.4	٧	-
V_{POR}	VDD Start Voltage to Ensure Power-on Reset	-	-	100	mV	
RR_{VDD}	VDD Raising Rate to Ensure Power-on Reset	0.025	-	- V/ms		
t _{POR}	Minimum Time for VDD Stays at VPOR to Ensure Power-on Reset	0.5	1	1	ms	

Figure 8.4-2 Power-up Ramp Condition

8.4.7 Temperature Sensor

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
T _A	Temperature	-40	-	105	$^{\circ}$	
I _{TEMP}	Current Consumption	-	16	-	μΑ	
-	Gain	-1.55	-1.672	-1.75	mV/°C	
-	Offset	735	748	755	mV	T _A = 0 °C

Note:

- 1. The temperature sensor formula for the output voltage (Vtemp) is as below equation.
- 2. Vtemp (mV) = Gain (mV/ $^{\circ}$ C) x Temperature ($^{\circ}$ C) + Offset (mV)

8.4.8 Internal Voltage Reference

Symbol	Parameter		Тур.	Max.	Unit	Test Condition
V_{VREF}	AV_{DD}	2.5		5.5	V	-
V _{ref1}	Vref(2.56V)	2.483	2.560	2.637	V	AV _{DD} >= 2.9V
V _{ref2}	Vref(2.048V)	1.986	2.048	2.109	V	AV _{DD} >= 2.5V
V_{ref3}	Vref(3.072V)	2.98	3.072	3.164	V	AV _{DD} >= 3.4V
V _{ref4}	Vref(4.096V)	3.973	4.096	4.219	V	AV _{DD} >= 4.5V

8.4.9 USB PHY

8.4.9.1 Low-full-Speed DC Electrical Specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
V _{IH}	Input High (driven)	2.0	-		V	-
V _{IL}	Input Low	-	-	0.8	V	-
V_{DI}	Differential Input Sensitivity	0.2	-		V	PADP-PADM
V_{CM}	Differential Common-mode Range	0.8	-	2.5	V	Includes V _{DI} range
V_{SE}	Single-ended Receiver Threshold	0.8	-	2.0	V	-
	Receiver Hysteresis	-	200		mV	-
V _{OL}	Output Low (driven)	0	-	0.3	V	-
V _{ОН}	Output High (driven)	2.8	-	3.6	V	-
V _{CRS}	Output Signal Cross Voltage	1.3	-	2.0	V	-
R _{PU}	Pull-up Resistor	1.425	-	1.575	kΩ	-
Z_{DRV}	Driver Output Resistance	-	10	-	Ω	Steady state drive*
C _{IN}	Transceiver Capacitance	-	-	20	pF	Pin to GND

^{*}Driver output resistance doesn't include series resistor resistance.

8.4.9.2 USB Full-Speed Driver Electrical Characteristics

Symbol	Parameter		Тур.	Max.	Unit	Test Conditions
T_FR	F _{FR} Rise Time		ı	20	ns	C _L =50p
T_{FF}	Fall Time	4	-	20	ns	C _L =50p
T _{FRFF}	Rise and Fall Time Matching	90	-	111.11	%	$T_{FRFF}=T_{FR}/T_{FF}$

8.4.9.3 USB LDO Specification

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
--------	-----------	------	------	------	------	-----------------

V _{BUS}	V _{BUS} Pin Input Voltage	4.0	5.0	5.5	V	-
V_{DD33}	LDO Output Voltage	-	3.3	-	V	-
C _{bp}	External Bypass Capacitor	-	1.0	-	uF	-

8.5 Flash DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
$V_{FLA}^{[2]}$	Supply Voltage	-	1.8	-	V	
N _{ENDUR}	Endurance	20,000	-	-	cycles ^[1]	
T _{RET}	Data Retention		-	-	year	
T _{ERASE}	Page Erase Time	20		-	ms	T _A = 25°C
T_{PROG}	Program Time	60		-	us	1 _A = 25 C
I _{DD1}	Read Current		-	13.5	mA	
I _{DD2}	Program Current	-	10	-	mA	
I _{DD3}	Erase Current	=	12	-	mA	

Notes:

- Number of program/erase cycles.
 V_{FLA} is source from chip LDO output voltage.

8.6 I²C Dynamic Characteristics

Symbol	Parameter	Standar	d Mode ^{[1][2]}	Fast Mod	Unit	
		Min.	Max.	Min.	Max.	
t _{LOW}	SCL low period	4.7	-	1.2	-	uS
t _{HIGH}	SCL high period	4	-	0.6	-	uS
t _{SU; STA}	Repeated START condition setup time	4.7	-	1.2	-	uS
t _{HD; STA}	START condition hold time	4	-	0.6	-	uS
t _{su; sто}	STOP condition setup time	4	-	0.6	-	uS
t _{BUF}	Bus free time	4.7 ^[3]	-	1.2 ^[3]	-	uS
t _{SU;DAT}	Data setup time	250	-	100	-	nS
t _{HD;DAT}	Data hold time	O ^[4]	3.45 ^[5]	O ^[4]	0.8 ^[5]	uS
t _r	SCL/SDA rise time	-	1000	20+0.1Cb	300	nS
t _f	SCL/SDA fall time	-	300	-	300	nS
Сь	Capacitive load for each bus line	-	400	-	400	pF

Notes:

- 1. Guaranteed by design, not tested in production.
- 2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I²C frequency. It must be higher than 8 MHz to achieve the maximum fast mode I²C frequency.
- 3. I²C controller must be retriggered immediately at slave mode after receiving STOP condition.
- 4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.
- 5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal.

Figure 8.6-1 I²C Timing Diagram

8.7 SPI Dynamic Characteristics

nuvoton

Dynamic Characteristics of Data Input and Output Pin

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT		
	SPI MASTER MODE (VDD = 4.5 V~5.5V, 30 PF LOADING CAPACITOR)						
$t_{\text{W(SCKH)}}$ $t_{\text{W(SCKL)}}$	SPI high and low time, peripheral clock = 20MHz	22.5	-	27.5	ns		
t _{DS}	Data input setup time	2	-	-	ns		
t _{H(MI)}	Data input hold time	4	-	-	ns		
t _V	Data output valid time	-	-	1	ns		
t _{H(MO)}	Data output hold time 0		-	-	ns		
	SPI MASTER MODE (VDD = 3.	0~3.6 V, 30 PF LOAI	DING CAP	ACITOR)			
$t_{\text{W(SCKH)}}$ $t_{\text{W(SCKL)}}$	SPI high and low time, peripheral clock = 20MHz	22.5	-	27.5	ns		
t _{DS}	Data input setup time	2			ns		
t _{H(MI)}	Data input hold time	4			ns		
t _V	Data output valid time		=	1	ns		
t _{H(MO)}	Data output hold time	0	-	-	ns		

Figure 8.7-1 SPI Master Mode Timing Diagram

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
	SPI SLAVE MODE (VDD = 4.5	V~5.5V, 30 PF LOA	DING CAI	PACITOR)	•
t _{SS}	Slave select setup time	3	-	-	Peripheral clock
t _{SH}	Slave select hold time	2	-	-	Peripheral clock
t _{DS}	Data input setup time	2	-	-	ns
t _{H(SI)}	Data input hold time	5.5	-	-	ns
t _{a(SO)}	Data output access time	-	-	18	ns
t _V	Data output valid time	-	18.5-	24.5	ns
t _{H(SO)}	Data output hold time	6	-	-	ns
	SPI SLAVE MODE (VDD = 3.0	V ~ 3.6 V, 30 PF LO	ADING CA	PACITOR)	
t _{SS}	Slave select setup time	3	-	-	Peripheral clock
t _{SH}	Slave select hold time	2	-	-	Peripheral clock
t _{DS}	Data input setup time	2	-	-	ns
t _{H(SI)}	Data input hold time	6	-	-	ns
t _{a(SO)}	Data output access time	-	-	24	ns
t _V	Data output valid time	-	23	30	ns
t _{H(SO)}	Data output hold time	7	-	-	ns

nuvoTon

Figure 8.7-2 SPI Slave Mode Timing Diagram

9 PACKAGE DIMENSIONS

9.1 LQFP 64L (7x7x1.4 mm footprint 2.0 mm)

9.2 LQFP 48L (7x7x1.4mm footprint 2.0mm)

nuvoTon

10 REVISION HISTORY

Date	Revision	Description
2018.10.15	1.00	Initial version.
2020.04.07	1.01	Added notes about the hardware reference design for ICE_DAT, ICE_CLK and nRESET pins in section 4.3 and chapter 7.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.