FINAL REPORT SEPTEMBER 1994

REPORT NO. EVT 18-90

155MM METAL FIELD ARTILLERY PROJECTILE PALLET (FAPP) FIRST ARTICLE TESTING (FAT)

Prepared for:

U.S. Army Armament Research, Development and Engineering Center

ATTN: SMCAR-AEP

Picatinny Arsenal, NJ 07806-5000

Distribution Unlimited

19950309 092

VALIDATION ENGINEERING DIVISION SAVANNA, ILLINOIS 61074-9639

U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL

AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from Director, U.S. Army Defense Ammunition Center and School, ATTN: SMCAC-DEV, Savanna, IL 61074-9639.

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188		
1a. REPORT SECURITY CLASSIFICATION				1b. RESTRICTIVE MARKINGS			
UNCLAS	SSIFIED						
2a. SECURITY CLASSIFICATION AUTHORITY				3. DISTRIBUTION / AVAILABILITY OF REPORT			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE				UNL	MITED		
4. PERFORMING O	RGANIZATION REPO	ORT NUMBER(S)		5. MONITORING C	ORGANIZATION REPO	ORT NUMBE	ER(S)
EVT 18-90							
6a. NAME OF PERFORMING ORGANIZATION U.S. Army Defense Ammunition			6b. OFFICE SYMBOL (if applicable)	7a. NAME OF MO	NITORING ORGANIZA	TION	
Center and School			SMCAC-DEV				
6c. ADDRESS (City, State, and ZIP Code) ATTN: SMCAC-DEV				7b. ADDRESS (City, State, and ZIP Code)			
Savanna,	IL 61074-963	39					
8a. NAME OF FUNDING / SPONSORING ORGANIZATION (if applicable) U.S. Army Armament Research,			9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
	nent and Engir	,	SMCAR-AEP				
	State, and ZIP Cod			10. SOURCE OF F	UNDING NUMBERS		
	MCAR-AEP Arsenal, NJ	07806_5000		PROGRAM ELEMENT NO.	PROJECTNO.	TASK NO.	WORK UNIT ACCESSION NO.
						L	
	Security Classification						
155MM I	Metal Field Ar	tillery Project	ile Pallet (FAPP)	First Article	Testing (FAT)		
12. PERSONAL AUT William I							
13a. TYPE OF REPO		13b. TIME COVERE	D	14. DATE OF REP	ORT (Year, Month, D	evi	15. PAGE COUNT
Final		FROM -	то		September	"	
16. SUPPLEMENTA	RY NOTATION	THOM	10				
	OSATI CODES		18. SUBJECT TERMS (C	Continue on reverse	if necessary and iden	tify by bloc	k number)
FIELD	GROUP	SUB-GROUP					
19. ABSTRACT (Col	ntinue on reverse if n	necessary and identil	y by block number)				
The	U.S. Army De	efense Ammur	nition Center and	School (USA	DACS), Valid	ation E	ngineering
	_		by the U.S. Arm	•	• •		
			luct MIL-STD-10				
			is report contains				
			Ammunition Unit				
	, ,	14-1		,	1	0 1	
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION							
UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS U					SSIFIED		
				22b. TELEPHONE 815-273	(Include Area Code) -8929		22c. OFFICE SYMBOL SMCAC-DEV
				1			

U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL VALIDATION ENGINEERING DIVISION SAVANNA, IL 61074-9639

REPORT NO. EVT 18-90

155MM METAL FIELD ARTILLERY PROJECTILE PALLET (FAPP) FIRST ARTICLE TESTING (FAT)

TABLE OF CONTENTS

PART	GE NO.
. INTRODUCTION	1-1
A. BACKGROUND	1-1
B. AUTHORITY	1-1
C. OBJECTIVE	1-1
D. CONCLUSION	1-1
2. ATTENDEES	2-1
3. TEST PROCEDURES	3-1
4. TEST EQUIPMENT	4-1
5. TEST RESULTS	5-1
6. PHOTOGRAPHS	6-1
7. GRAPHS	7-1
8. DRAWING	8-1

INTRODUCTION

- A. <u>BACKGROUND</u>. The U.S. Army Defense Ammunition Center and School (USADACS), Validation Engineering Division (SMCAC-DEV), was tasked by the U.S. Army Armament Research, Development and Engineering Center (ARDEC) to conduct MIL-STD-1660 and rail impact testing on the 155mm metal Field Artillery Projectile Pallet (FAPP).
- B. <u>AUTHORITY</u>. This test was conducted IAW mission responsibilities delegated by the U.S. Army Armament, Munitions and Chemical Command (AMCCOM), Rock Island, IL.
- C. <u>OBJECTIVE</u>. The objective of this test was to ascertain that the projectile and the 155mm FAPP would not be damaged during transportation.
- D. <u>CONCLUSION</u>. The 155mm FAPP completed MIL-STD-1660 and rail impact testing with no damage occurring to the ammunition. Only minor dents occurred to the FAPP, which completed testing in a reusable condition. This design passed MIL-STD-1660, Design Criteria for Ammunition Unit Loads, and rail impact testing.

17 AUGUST 1994

ATTENDEES

William R. Meyer General Engineer DSN 585-8090 815-273-8090

Jerome H. Krohn Supervisory General Engineer DSN 585-8908 815-273-8908

Quinn D. Hartman General Engineer DSN 585-8992 815-273-8992

Bradley J. Haas Mechanical Engineer DSN 585-8336 815-273-8336

David V. Valant Electronics Technician DSN 585-8988 815-273-8988

Thomas J. Michels Supervisory General Engineer DSN 585-8080 815-273-8080 Director
U.S. Army Defense Ammunition Center

and School ATTN: SMCAC-DEV Savanna, IL 61074-9639

Director
U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DEV Savanna, IL 61074-9639

Director

U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DEV Savanna, IL 61074-9639

Director

U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DEV Savanna, IL 61074-9639

Director

U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DEV Savanna, IL 61074-9639

Director

U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DES Savanna, IL 61074-9639 Sandra Schultz Industrial Engineer DSN 585-8086 815-273-8086

William R. Frerichs

Supervisory General Engineer

DSN 585-8071 815-273-8071

Ralph A. Arnold

Industrial Engineering Technician

DSN 585-8073 815-273-8073

Richard S. Haynes

Industrial Engineering Technician

DSN 585-8225 815-273-8225

Dan Healy

Senior Inspector 708-392-6846

202-828-1999

Mark Rehmstedt

DSN 793-8206

309-782-8206

Brandon Wehe

DSN 793-3894 309-782-3894 Director

U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DES

Savanna, IL 61074-9639

Director

U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DET Savanna, IL 61074-9639

Director

U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DET Savanna, IL 61074-9639

Director

U.S. Army Defense Ammunition Center

and School

ATTN: SMCAC-DET

Savanna, IL 61074-9639

Association of American Railroads

Bureau of Explosives

309 N. Douglas

Arlington Heights, IL 60004

Commander

U.S. Army Armament Research,

Development and Engineering Center

ATTN: SMCAR-ESK

Rock Island, IL 61299-7300

Commander

U.S. Army Armament, Munitions and

Chemical Command

ATTN: AMSMC-ASN-N

Rock Island, IL 61299-6000

Commander Joseph Menke U.S. Army Armament Research, DSN 793-3065 Development and Engineering Center 309-782-3065 ATTN: SMCAR-ESM-H Rock Island, IL 61299-7300 Nomura Enterprise, Incorporated Jeff Gollor 309-793-4081 2832 Fifth Street Rock Island, IL 61201 Nomura Enterprise, Incorporated Mark L. Dawson 2832 Fifth Street 309-793-4081 Rock Island, IL 61201 Commander Alvin Lew U.S. Army Armament Research, DSN 880-2906 Development and Engineering Center 201-724-2906 ATTN: SMCAR-AEP Picatinny Arsenal, NJ 07806-5000 Office of the Project Manager James R. Gray **Ammunition Logistics** DSN 793-6740 ATTN: AMCPM-AL (R) 309-782-6740 Rock Island, IL 61299-6000

TEST PROCEDURES

- A. The test procedures outlined in this section were extracted from MIL-STD-1660, Design Criteria for Ammunition Unit Loads, 8 April 1977. This standard identifies nine steps that a unitized load must undergo if it is to be considered acceptable. The four tests that were conducted on the test pallets are summarized below.
- 1. STACKING TESTS. The unit load was loaded to simulate a stack of identical unit loads stacked 16 feet high, for a period of one hour. This stacking load is simulated by subjecting the unit load to a compression weight equal to an equivalent 16-foot stacking height. The compression load is calculated in the following manner. The unit load weight is divided by the unit load height in inches and multiplied by 192. The resulting number is the equivalent compressive force of a 16-foot-high load.
- 2. REPETITIVE SHOCK TEST. The repetitive shock test was conducted IAW Method 5019, Federal Standard 101. The test procedure is as follows. The test specimen was placed on, but not fastened to, the platform. With the specimen in one position, the platform vibrated at 1/2-inch amplitude (1-inch double amplitude) starting at a frequency of approximately 3 cycles-per-second. The frequency was steadily increased until the package left the platform. The resonant frequency is achieved when a 1/16-inch-thick feeler gage may be momentarily slid freely between every point on the specimen in contact with the platform at some instance during the cycle or a platform acceleration achieves 1 ± 0.1 G. Midway into the testing period, the specimen was rotated 90 degrees and the test continued for the duration. Unless failure occurs, the total time of vibration is two hours, if the specimen is tested in one position, and three hours for more than one position.

3. EDGEWISE ROTATIONAL DROP TEST. This test was conducted using the procedures of Method 5008, Federal Standard 101. The procedure for the edgewise rotational drop test is as follows. The specimen was placed on its skids with one end of the pallet supported on a beam 4-1/2-inches high. The height of the beam was increased, when necessary, to ensure there was no support for the skids between the ends of the pallet when dropping took place, but was not high enough to cause the pallet to slide on the supports when the dropped end was raised for the drops. The unsupported end of the pallet was then raised and allowed to fall freely to the concrete, pavement, or similar underlying surface from a prescribed height. Unless otherwise specified, the height of drop for level A protection conforms to the following tabulation.

	DIMENSIONS ON	HEIGHT OF
GROSS WEIGHT	ANY EDGE	DROP LEVEL A
NOT EXCEEDING	NOT EXCEEDING	PROTECTION
(Pounds)	(Inches)	(Inches)
600	72	36
3,000	no limit	24
no limit	no limit	12

4. INCLINE-IMPACT TEST. This test was conducted using the procedure of Method 5023, Incline-Impact Test of Federal Standard 101. The procedure for the incline-impact test is as follows: The specimen was placed on the carriage with the surface or edge being impacted projecting at least 2 inches beyond the front end of the carriage. The carriage was brought to a predetermined position on the incline and released. If it is desired to concentrate the impact on any particular position on the container, a 4- by 4-inch timber may be attached to the bumper in the desired position before the test. No part of the timber was struck by the carriage. The position of the container on the carriage and the sequence in which surfaces and edges are

subjected to impacts are at the option of the testing activity and depend upon the objective of the tests. This test is to determine satisfactory requirements for a container or pack, and, unless otherwise specified, the specimen was subjected to one impact on each surface that has each dimension less than 9.5 feet. Unless otherwise specified, the velocity at time of impact was 7 feet-per-second.

- B. Rail impact tests were also conducted. These test procedures were extracted from Transportability Testing Procedures, TP-94-01, July 1994.
- 1. RAIL IMPACT TEST. A total of 39 pallets of 155mm ammunition were loaded into a railcar with the blocking and bracing placed as shown in part 8. The weight and load configuration was identical to that of live ammunition. Equipment needed to perform the test included the specimen (hammer) car, five empty railroad cars connected together to serve as the anvil, and a railroad locomotive. These anvil cars were positioned on a level section of track with air and hand brakes set and with the draft gear compressed. The locomotive unit pulled the specimen car several hundred yards away from the anvil cars and, then, pushed the specimen car toward the anvil at a predetermined speed, then disconnected from the specimen car approximately 50 yards away from the anvil cars, which allowed the specimen car to roll freely along the track until it struck the anvil. This constituted an impact. Impacting was accomplished at speeds of 4, 6, and 8 mph in one direction and at a speed of 8 mph in the opposite direction. The 4 and 6 mph impact speeds are approximate; the 8 mph speed is a minimum. Impact speeds were determined using an electronic counter to measure the time required for the specimen car to traverse an 11-foot distance immediately prior to contact with the anvil cars (see figure 1). At the discretion of the test engineer, additional impacts at higher or lower speeds may be conducted on the specimen car for engineering test data after the conclusion of the four required rail impacts.

- 2. <u>DATA COLLECTION</u>. The specimen car was instrumented with accelerometers at the following locations:
 - (a) On the sill of the railcar.
 - (b) At the top of the test load on each end and in the center.
 - (c) On the coupler of the first anvil car.

Additionally, six load cells were placed between separator gates. After each rail impact, the accelerometers were downloaded to determine stresses, load forces, and accelerations during each impact. Data collected are suitable for use in investigating causes for failure as well as design criteria when developing new procedures, if required.

3. FAILURE CRITERIA. Following each impact, the load was examined for excessive shifting of contents, loosening or breaking of load restraints or blocking and bracing, or any visible damage to the items in the load or their packaging. Normally, testing is stopped when it becomes apparent that the load will fail; however, the test may be continued until complete failure if the test engineer determines usable data will be developed and safety of personnel and equipment integrity is not violated.

ASSOCIATION OF AMERICAN RAILROADS (AAR) STANDARD TEST PLAN

SPECIMEN CAR
IS RELEASED BY
SWITCH ENGINE TO

ATTAIN: IMPACT NO. 1 @ 4 MPH

IMPACT NO. 2 @ 6 MPH IMPACT NO. 3 @ 8 MPH

ANVIL CARS TOTAL WT 250,000 LBS (APPROX)

POSITION

5 BUFFER CARS (ANVIL) WITH DRAFT GEAR COMPRESSED AND AIR BRAKES IN A SET

THEN THE CAR IS REVERSED AND RELEASED BY SWITCH ENGINE TO

ATTAIN: IMPACT NO 4. @ 8 MPH

FIGURE 1

TEST EQUIPMENT

A. 155mm FAPP.

19-48-4012-5PE1000 1. Drawing Number:

29-1/8 inches 2. Width:

14-3/4 inches 3. Length:

39 inches 4. Height:

5. Weight Loaded (155mm): 928 pounds

B. Compression Tester.

Ormond Manufacturing 1. Manufacturer:

60- by 60-inches 2. Platform:

3. Compression Limit: 50,000 pounds

50,000 pounds 4. Tension Limit:

C. Transportation Simulator.

Gaynes Laboratory 1. Manufacturer:

2. Capacity: 6,000-pound pallet 1/2-inch amplitude 3. Displacement:

50 to 400 rpm 4. Speed: 5. Platform: 5- by 8-foot

D. Inclined Plane.

Conbur Incline 1. Manufacturer: **Impact Tester**

2. Type:

10 percent incline 3. Grade:

12 foot 4. Length:

E. Railcar.

1. Car Number: RBOX 38569

2. Car Type: Boxcar

3. Length: 50 feet (approximately)
4. Width: 10 feet (approximately)

4. Width: 10 feet (approximately)
5. Weight: 154,000 pounds

6. Draft Gear: Friction

F. Data Acquisition Equipment.

1. Manufacturer: Pacific Scientific

2. Number of channels: 14

TEST RESULTS

- A. <u>STACKING TEST</u>. The FAPP was initially loaded to 4,650 pounds compression. The compression was released after one hour. No damage was noted during this test.
- B. REPETITIVE SHOCK TEST. The duration of the test was 90 minutes for each orientation of the pallet. For the lateral orientation, the transportation simulator was initially set for 150 rpm until clearance appeared between the pallet and the transportation simulator bed, then decreased to 115 rpm. No damage was noted. The transportation simulator was set for 130 rpm with the pallet in the longitudinal orientation. One of the lifting rings worked loose during this orientation. Also, the plastic protective ring of one round was damaged by the forklift tine while pushing the pallet onto the vibration table.
- C. EDGEWISE ROTATIONAL DROP TEST. Each side of the pallet was placed on a beam displacing it 4-1/2-inches above the floor. The opposite end of the pallet was raised to a height of nearly 18 inches, then dropped. A height of 18 inches was employed instead of the specified 24 inches due to the dimensions of the pallet. After each side had been dropped, two additional lifting rings had loosened.
- D. <u>INCLINE-IMPACT TEST</u>. The inclined plane was set to allow the pallets to travel 8 feet prior to impacting a stationary wall. The pallet was rotated clockwise after each impact, until all four sides had been tested. No damage was noted.
- E. <u>END OF TEST INSPECTION</u>. Two of the three lifting rings that became loose during the tests were able to be retightened, the third remained loose. No other damage was noted.

F. RAIL IMPACT TEST. A total of 12 FAPPs were tested, 3 at each end and 6 at the center gates. Wooden pallets were used at the other locations to fill out the load. Transducers were placed on the end pallets, a center pallet, the sill, and a coupler for a total of five locations. Also, six load cells were inserted between the center gates. The impacts took place as follows:

		GAP AT
IMPACT	SPEED	REAR OF LOAD
NO.	(mph)	(Inches)
1	4.23	3.25
2	6.34	4.00
3	8.60	6.75
4	8.44	9.00

Superficial damage to the top adaptors of the pallets located against the end wall in the form of minor dents occurred due to pallet misalignment. Additionally, several of the wooden pallets used to fill out the load experienced severe damage to the top adaptor, resulting in the large gaps noted above.

PHOTOGRAPHS

U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

PHOTO NO. AO317-SCN94-257-5033: This photo shows the overall view of the test load. Note the three metal pallets are located at both ends of the railcar as well as six metal pallets located at the center of the test load.

U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

well as at the center. The load cells were also placed between the center gates to determine the load forces. PHOTO NO. 0317-SCN94-257-5036: This photo shows a closeup view of the high-speed data acquisition system used during rail impact testing. Note the accelerometers are located at both ends of the railcar as

U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

PHOTO NO. 0317-SPN-90-329-5214: This photo shows a closeup view of the metal top pallet adapter.

U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

PHOTO NO, 0317-SPN-90-329-5455. This photo shows a closeup view of the metal bottom pallet adapter.

U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

pallets used to fill out the test load. Note that substantial damage occurred to the top pallet adapter following PHOTO NO. 0317-SCN94-257-5039 This photo shows a closeup view of the inert-filled 155mm wooden rail impact testing.

U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

PHOTO NO. 0317-SCN94-222-4180: This photo shows a closeup view of the inert wooden pallets used during testing. Note the extreme damage which occurred to the wooden top pallet adapters.

GRAPHS

2.48

9999'T X

Long. Acceleration

MPH ø (N R.I. of FAPP, Impact

٦

Seconds X 1.8088 Time of Sample

0000 T

noitareleastion

Time of Sample Seconds X 1.0000

roud.

Roceleration

Aug 17 09:49:57 1994 5.80 5.72 5.64 MPH 9 R.I. of FAPP, Impact 2: - 689 -.600 -1.80 -4.20 -3.88

η

0000'T

Uert, Acceleration

5.48

. prol

Rcceleration

5.80

5.72

5.64

5.56

η

Seconds X 1.0000 Time of Sample

5.48

Acceleration

Seconds X 1.0000 Time of Sample

٦

MPH

9

N

٦

Time of Sample

5<u>D</u>

Acceleration

5.80

5.72

٦

5.64 5.48 -1.60

Acceleration

Time of Sample Seconds X 1.0000

Top Left

18K Load Cell

5.56

3200

1600

10K Load Cell

4898

6488

8000

Seconds X 1.0000 Time of Sample

5.80

5.72

MPH 9 R.I. of FAPP, Impact 2:

Aug 17 09:49:57 1994

٦

٦

1994

Aug 17 89:49:57 1994

MPH

9

N

R.I. of FAPP, Impact

Time of Sample Seconds X 1.0000

BOTTOM

TOK POST CEII

Seconds X 1.0000 Time of Sample 5.48

TB2

TOK POST CELL

17 09:49:57 Aug MPH

9

(1)

R.I. of FAPP, Impact

1994

η

7

Time of Sample

BOLLOM

TOK POST CELL

Seconds X 1.8888 Time of Sample

0000 T

Long. Acceleration

7

٦

noitaralazzA .traV

٦

5.86 Seconds X 1.8000 Time of Sample

noitarslaceA

noitaralaceA

Time of Sample Seconds X 1.0000

noitsrafacoA

5.30

5.22

5.14

٦

Aug 17 09:57:30 1994

8.1+ MPH

R.I. of FAPP, Impact 3:

Acceleration

8.1+ MPH <u>ლ</u> R.I. of FAPP, Impact

Aug 17 89:57:38 1994

SD

Acceleration

η

5.30

5.22

5.14

5.96

4.98

noitarelecon .trav

R.I. of FAPP, Impact 3: 8.1+ MPH

1.0000 Time of Sample × Seconds

8000.

TOK Posq Cell

qol

Seconds X 1.8888 Time of Sample

FB2

Top Center

TOK POST CELL

R.I. of FAPP, Impact

700

Top Right

TOK POST CEII

Seconds X 1.0000 Time of Sample

Time of Sample Seconds X 1.0000

TOK POST CEII

Seconds X 1.8888 Time of Sample 800

TB2

HO110E

IOK POST CELL

of FAPP, Impact

R. I.

г

Seconds X 1.0000 Time of Sample

TB2

TOK POST CELL

Aug 17 11:00:08 1994 5.88 5.72 of FAPP, Impact 4: 8.1+ MPH 5.56 5.40 200 .750 5.25 3.75 -.750

Acceleration

г

R.I.

Time of Sample Seconds X 1.0000

0000'T RoiterafionA

1.0000 Time of Sample × Seconds

Γ

Seconds X 1.8080 5.40

г

Time of Sample

R.I.

Seconds X 1.0000

noitsralscoA

5.40 . 888 -3.20

Seconds X 1.0000 Time of Sample

г

Seconds X 1.0000 Time of Sample 5.40

Acceleration

Aug 17 11:00:08 1994 R.I. of FAPP, Impact 4: 8.1+ MPH

Time of Sample Seconds X 1.0000

Long. Acceleration

г

Seconds X 1.0000 Time of Sample 5.40

noiteralaceA

8.1+ MPH

R.I. of FAPP, Impact 4:

г

0000 T

10K rosq Cell

TB2

Time of Sample Seconds X 1.0000

qol

TOK POST CELL

r

Seconds X 1.0000 Time of Sample 5.40

TB2 **GOT**

0000 T

TOK POST CELL

8.1+ MPH of FAPP, Impact 4: R. I.

Γ

10K Load Cell

Seconds X 1.0000 Time of Sample

Seconds X 1.0000 5.40 .240 . 998

TOK POST CELL

0000.00001

1994 Aug 17 11:00:08

8.1+ MPH

4

R.I. of FAPP, Impact

Г

6.84 5.88 . 720 . 960 .480

Time of Sample

TOK POST CELL

Seconds X 1.0000 Time of Sample

PART 8

DRAWING

TEST PLAN NO. 4

PER METAL PALLET PROJECTILES PACKED 8 **55MM**

THIS 4-PAGE DOCUMENT DELINEATES THE REQUIRED BLOCKING AND BRACING PROCEDURES TO BE USED IN THE LOADING OF THE NEWLY-DEVELOPED FIELD ARTILLERY METAL PALLET FOR THE 155MM PROJECTILES PACKED B PER PALLET. THERE ARE 12 METAL PALLETS IN THE TEST LOAD. THREE PALLETS ARE LOCATED AT EACH END OF THE CAR, TWO ARE ADJACENT TO EACH CENTER GATE POSITIONED WITH THE LENGTH LENGTH LENGTHMISE CAR, AND ONE ADJACENT TO EACH OF THESE, POSITIONED WITH THE LENGTH LENGTHWISE IN THE CAR. BALLAST FOR THE REMAINDER OF THE LOAD IS 155MM PROJECTILES PACKED B PER LARGE WODDEN PALLET. THE ACCOMPLISHMENT OF THIS TEST WILL DETERMINE IF THE REINFORCED PALLET UNITS ARE TRANSPORTABLE BY RAIL.

PALLET DIMENSIONS - - - 14-3/4" LONG BY 29-1/8" WIDE BY 39" HIGH (APPROX). FOR MATERIAL SPECIFICATIONS, REFER TO US ARMY MATERIEL COMMAND (AMC) DRAWING 19-48-4012-5PE1000. Prepared during August 1994 by:
U.S. Arny Defense Amunition
Center and School
ATIN: SMCAC-DET
Savana, IL 61074-9639
POC: Ms. Laura A. Fleffer
DSN 585-8072/8927
Conn (815) 273-8072/8927
* Fax 585-8811
E-nail: Ifleffer@savanna-emhl.army.nil

Willian R. Frerichs Chief, Transportation Engineering Division

LEAN VER

50'-6" LONG BY 9'-6" WIDE BOXCAR.

KEY NUMBERS

- (I) SEPARATOR GATE A (4 REOD), SEE THE DETAIL ON PAGE 3, POSITION SO THE HOLD-DOWN PIECE WILL BE UNDER THE METAL PALLET UNIT.
- (2) SEPARATOR GATE B (2 REGD), SEE THE DETAIL ON PAGE 3, POSITION BETWEEN THE LENGTHWISE-POSITIONED AND CROSSWISE-POSITIONED METAL PALLET UNITS AND SO THE HOLD-DOWN PIECE WILL BE UNDER THE ALREADY-POSITIONED PALLET UNIT.
- (3) CENTER GATE (2 REOD). SEE THE DETAIL ON PAGE 4.
- (4) SOLID FILL, 6" WIDE BY 50" LONG BY THE THICKNESS REQUIRED TO PROVIDE A WEDGE FIT BETWEEN THE CENTER GATES, PIECES MARKED (3) (REQUIRED AT THREE PLACES). NAIL FIRST PIECE TO A VERTICAL PIECE OF THE CENTER GATE WA-LOU NAILS. LAMINATE EACH ADDITIONAL PIECE TO A PREVIOUSLY INSTALLED PIECE WA-LOU NAILS. SECURE THE LAST PIECE BY NAILING THRU THE VERTICAL PIECE OF THE OTHER CENTER GATE.
- (5) SIDE GATE (4 REOD). SEE THE DETAIL ON PAGE 4. RANDOM LENGTH MATERIAL MAY BE USED FOR THE HORIZONTAL PIECES. DO NOT MAKE A JOINT WITHIN THE DOOR OPENING: A FULL LENGTH PIECE, 12'-O" OR LONGER, MUST SPAN THE DOOR.
- (B) STRUT, 2" X 4" BY CUT TO FIT (REF: 39-1/2") (BO REOD). NAIL TO THE VERTICAL PIECES OF THE SIDE GÁTES, PIECES MARKED (B), W/2-LOd NAILS AT EACH END.
- (7) SPLICE PIECE, 2° X 4" X 18" (AS REOD). CENTER ON A JOINT OF THE HORIZONTAL PIECES OF THE SIDE GATES, PIECES MARKED (\$\overline{0}\$), AND NAIL TO THE HORIZONTAL PIECE W/3-10d NAILS AT EACH END.

SEPARATOR GATE A

(2 REQD)

SEPARATOR GATE B

(2 REQD)

CENTER GATE

