Blake E. Zimmerman

1844 S 1700 E Salt Lake City, UT bezimmerman.com 970-316-1639 (cell) blakez@sci.utah.edu blakezimmerman13@gmail.com

As a recent graduate from the University of Utah with a doctoral degree in Biomedical Engineering, I have experience in computational applications. I am passionate about machine learning, computational optimization, applied mathematics, and image processing. I am looking for employment that will continue applying and developing my creative problem solving skills in computational sciences and machine learning applications.

Education

Ph.D. Biomedical Engineering, GPA: 3.906

University of Utah

M.S. Bioengineering *University of Utah*

B.S. Biomedical Engineering, GPA: 3.808

University of Utah

December 2020

Salt Lake City, UT

December 2018

Salt Lake City, UT

May 2016 Salt Lake City, UT

Selected Courses:

- Mathematics of Imaging

Programming for Engineers

Introduction to Topology

- Image Processing

Computational Methods

Medical Imaging Systems

Introduction to Bioimaging

Introduction to Optimization

Advanced Magnetic Resonance ImagingProposal Writing & Presentation

- Ultrasound

Classical Control Systems

Skills

Languages & Libraries: Python, LATEX, MATLAB, PyTorch, Tensorflow, Git, Bash, CMake, C/C++

Operating Systems: Linux (Ubuntu, openSUSE, CentOS), Windows, macOS

Applications: Adobe Premier Pro, Adobe Illustrator, Blender, Solidworks, MS Office Suite, GSuite, Visual Studio

Code, Amira, 3D Slicer, Paraview, Seg3D

Lab Skills: Automated digital imaging, soft tissue sectioning, non-primate surgery, oscilloscopes, bioelectrical

instrumentation, signal analysis, confocal and bright-field microscopy

Prototyping: Soldering, 3D printing, plastic casting

Professional: Strong verbal and written communication skills, excellent presentation abilities, superb group

collaboration and team skills, outstanding project and time management.

Relevant Experience

• Utah Center for Advanced Imaging Research (UCAIR)

Postdoctoral Researcher

Salt Lake City, UT December 2020 – Present May 2018 – December 2020

Graduate Research Assistant to Allison H. Payne

- Applied machine learning techniques to clinically targeted biomedical applications.

- Designed and implemented novel histology workflow for quantitative imaging applications.
- Developed standard operating procedures for transferring histology procedures.
- Communicated results and collaborated on grant proposals.
- Scientific Computing and Imaging (SCI) Institute Graduate Research Assistant to Sarang C. Joshi

Salt Lake City, UT January 2016 – December 2020

Applemental populational projects with CDU directors and distributed Linux computing

- Accelerated computational projects with GPU clusters and distributed Linux computing.
- Designed and implemented diffeomorphic image registration algorithms for multi-modality images.
- Machine learning projects including image super resolution using convolution neural networks.

- Initiated and coordinated deep learning meetings for students and faculty.
- Animated and produced video summary for effective communication of image registration projects.

Department of Biomedical Engineering

Salt Lake City, UT

Teaching Assistant for Biosystems Analysis, Computational Methods

Fall 2016, Spring 2017

- Managed office hours to reinforce course content from lectures and assignments.
- Guided and instructed student groups in their development of introductory computational projects.
- Provided constructive feedback to students on lab report documents.
- Led laboratory exercises and communicated student evaluations to professors.

Bard Access Systems

Salt Lake City, UT

Imaging Research and Development Intern Field Assurance Engineer Intern

January 2015 - January 2016 May 2014 - December 2014

- Traveled to implement product design changes at remote manufacturing facilities.
- Designed and led component qualification operations for product development.
- Communicated and implemented standard operating procedures and reports according to FDA standards.
- Coordinated with component suppliers and manufacturing teams to ensure product success.
- Wrote professional reports to communicate identified failure mode analysis on implanted medical devices.

Orthopedic Research Lab

Salt Lake City, UT

Undergraduate Research Assistant

May 2013 - May 2014

- Segmented and built 3D models of human hips from CT images and perform real-life motion experiments.
- Generated mesh structures of hip joint cartilage for finite element analysis during motion animations.
- Communicated scientific results with poster and oral presentations in professional conference settings.

Open Source Projects

CAMP GitHub Repository **Documentation**

Computational Anatomy and Medical imaging using PyTorch

- Wrote core techniques, including data i/o, as building blocks other research projects.
- Contributed GPU-accelerated implementations of medical image registration algorithms.
- Documented functions and examples, including coordinate system conventions for medical images.
- Developed 3D deformable surface registration for triangular mesh objects.
- Implemented volume-preserving deformable registration to reflect physiological tissue deformations.

Selected Contributions:

Google Scholar, arXiv

- 1. Zimmerman, B. E., Johnson, S. L., Odéen, H. A., Shea, J. E., Winkler, N. S., Factor, R. E., Joshi, S. C., & Payne, A. H. (2020). Towards Acute, Non-contrast Assessment of Magnetic Resonance Guided Focused Ultrasound Thermal Therapies. In Preparation.
- 2. Zimmerman, B. E., Johnson, S. L., Odéen, H. A., Shea, J. E., Factor, R. E., Joshi, S. C., & Payne, A. H. (2020). Histology to 3D In Vivo MR Registration for Volumetric Evaluation of MRgFUS Treatment Assessment Biomarkers. Scientific Reports, Manuscript submitted for publication.
- 3. Zimmerman, B. E., Johnson, S., Odéen, H., Shea, J., Foote, M. D., Winkler, N., Sarang Joshi, & Payne, A. (2020). Learning Multiparametric Biomarkers for Assessing MR-Guided Focused Ultrasound Treatments. IEEE Transactions on Biomedical Engineering.
- 4. Johnson, S. L., Zimmerman, B. E., Shea, J. E., Odéen, H. A., Winkler, N. S., ., Factor, R. E., Merrill, R., Hadley, R., Joshi, S. C., & Payne, A. H. (2020). Assessment of Acute Thermal Lesions after MRgFUS Ablation with Longitudinal Volumetric MRI Registration [Submitted: Journal of Hyperthermia]
- 5. Foote, M. D., Zimmerman, B. E., Sawant, A., & Joshi, S. C. (2019, June). Real-time 2d-3d deformable registration with deep learning and application to lung radiotherapy targeting. In International Conference on Information Processing in Medical Imaging (pp. 265-276). Springer, Cham.

Honors and Awards

Undergraduate Research Opportunities Program Student Research Award (\$1200) Dean's List Eagle Scout Award Spring 2014 Fall 2011 – Spring 2016

Volunteer Experience

• Graduate Student Activities Committee Member Bioengineering Department Sep. 2015

- Hosted incoming graduate students for recruitment weekend, including poster sessions, faculty interviews, and a ski day.
- Participated in planning for department activities and the Utah Bioengineering Conference.
- Lowell Bennion Community Service Center's Project Youth Campus Host

Apr. 2015

- Welcomed hundreds of local 6th graders to the University of Utah campus for a day.
- Led a small group of students during and between interactive lectures to encourage college attendance.

Interests

Academic: Machine Learning, Applied Mathematics, Image Registration, Image Processing

Sports: Skiing, mountain biking, rock climbing, ice climbing, mountaineering, trail running, river rafting, and more.

Computers: GPU coding, networking, home automation, web development.