Chapter 1

EXERCISE 1.1.i.i: Show that a morphism can have at most one inverse isomorphism.

Given $f: x \to y$ and $g, g': y \to x$ with $fg = 1_y$, $gf = 1_x$, $fg' = 1_y$ and $g'f = 1_x$, then $g = 1_x g = g' f g = g' 1_y = g'$

EXERCISE 1.1.i.ii: Consider a morphism $f: x \to y$. Show that if there exists a pair of morphisms $g, h: y \Rightarrow x$ so that $gf = 1_x$ and $fh = 1_y$, then g = h and f is an isomorphism.

Then $g = g1_y = gfh = 1_x h = h$ so that $fg = fh = 1_y$ and we already know that $gf = 1_x$ hence f is an isomorphism.

EXERCISE 1.1.1.iii: For any category C and any object $c \in C$, show that:

i. There is a category c/\mathbb{C} whose objects are morphisms $f:c\to x$ with domain c and in which a morphism from $f:c\to x$ to $g:c\to y$ is a map $h:x\to y$ between the codomains so that the triangle

commutes, i.e., so that g = hf

Suppose $f: c \to x, g: c \to y, h: c \to z$ are objects of c/\mathbb{C} and $\alpha: x \to y, \beta: y \to z$ are morphisms $f \to g$ and $g \to h$ in c/\mathbb{C} . In that case we have $\alpha f = g$ and $\beta g = h$. Then define composition $\beta \alpha$ in c/\mathbb{C} as composition in \mathbb{C} . This is a morphism $f \to h$ in c/\mathbb{C} because

$$(\beta \alpha)f = \beta(\alpha f) = \beta g = h$$

Associativity follows from associativity in C.

Define the identity 1_f for $f:c\to x$ as the identity 1_x in \mathbb{C} . Then given $\alpha:f\to g$ ($\alpha:x\to y$ and $\alpha f=g$), we have $\alpha 1_f=\alpha 1_x=\alpha$ and $1_g\alpha=1_y\alpha=\alpha$.

ii. There is a category \mathbb{C}/c whose objects are morphisms $f: x \to c$ with codomain c and in which a morphism from $f: x \to c$ to $g: y \to c$ is a map $h: x \to y$ between the codomains so that the triangle

commutes, i.e., so that f = gh.

EXERCISE 1.2.i: Show that $C/c \cong (c/C^{op})^{op}$. Defining C/c to be $(c/C^{op})^{op}$, deduce Exercise 1.1.iii(ii) from Exercise 1.1.iii(i).

Say f is an object of $(c/\mathbb{C}^{op})^{op}$ which is, by definition, simply an object of c/\mathbb{C}^{op} which is a morphism $f^{op}: c \to x$ in \mathbb{C}^{op} which is simply a morphism $f: x \to c$ in \mathbb{C} . This is the definition of objects in \mathbb{C}/c .

Now say f and g are objects of $(c/\mathbf{C}^{\mathrm{op}})^{\mathrm{op}}$ which means they are morphisms $f^{\mathrm{op}}:c\to x$ and $g^{\mathrm{op}}:c\to y$ and say $\alpha^{\mathrm{op}}:f\to g$ is a morphism in $(c/\mathbf{C}^{\mathrm{op}})^{\mathrm{op}}$. This means that $\alpha:g^{\mathrm{op}}\to f^{\mathrm{op}}$ is a morphism in $c/\mathbf{C}^{\mathrm{op}}$. This means α is a morphism $\alpha^{\mathrm{op}}:y\to x$ in \mathbf{C}^{op} such that $\alpha^{\mathrm{op}}g^{\mathrm{op}}=f^{\mathrm{op}}$. Then

$$\alpha^{\mathrm{op}} g^{\mathrm{op}} = f^{\mathrm{op}} \Leftrightarrow (g\alpha)^{\mathrm{op}} = f^{\mathrm{op}} \Leftrightarrow g\alpha = f$$

which means α is a morphism $f \to g$ in \mathbb{C}/c .

We deduce that $C/c \cong (c/\mathbb{C}^{op})^{op}$ is a category as follows: c/\mathbb{C}^{op} is a category because C is and $(c/\mathbb{C}^{op})^{op}$ is a category because c/\mathbb{C}^{op} is.

EXERCISE 1.2.ii:

i. Show that a morphism $f: x \to y$ is a split epimorphism in a category \mathbf{C} if and only if for all $c \in \mathbf{C}$, post-composition $f_*: \mathbf{C}(c,x) \to \mathbf{C}(c,y)$ defines a surjective function.

PROOF: If f is a split epi then we have $f': y \to x$ such that $ff' = 1_y$. Given $g: c \to y$ let g' = f'g in which case post-composition gives $f_*(g') = fg' = ff'g = 1_y g = g$ so that f_* is a surjection.

In the other direction, if f_* is a surjection then $1_y: y \to y$ is in its image which is to say there exists $f': y \to x$ such that $f_*(f') = ff' = 1_y$. Thus f is a split epi.

ii. Argue by duality that f is a split monomorphism if and only if for all $c \in \mathbb{C}$, precomposition $f^* : \mathbb{C}(y,c) \to \mathbb{C}(x,c)$ defines a surjective function.

By definition, $f: x \to y$ is a split mono if and only if $f^{op}: y \to x$ is a split epi in \mathbb{C} . This is the case if and only if post-composition $f_*^{op}: \mathbb{C}^{op}(c,y) \to \mathbb{C}^{op}(c,x)$ is a surjection by the previous exercise. This is saying $f^{op}g^{op}=(gf)^{op}$ is a surjection on morphisms $g'^{op}: c \to x$ which is the same as pre-composition gf being a surjection to $g': x \to c$.