Lista 1 – matlab

- 1. Mamy materiał składający się z 10 warstw o różnych współczynnikach załamania n i tej samej grubości. Narysuj przebieg promienia padającego na górną warstwę pod kątem α i wychodzącego z drugiej strony materiału.
- 2. Dwa płaskie lustra przecinają się pod kątem θ . Pomiędzy nimi, na dwusiecznej kąta umieszczono obiekt. Znajdź położenie 8 najbliższych obrazów, jeśli $\theta=30^{\circ}$. Wykonaj podobne rysunki dla innych kątów pomiędzy zwierciadłami.
- 3. **Zasada Fermata.** Promień światła przebiega z punktu $P_1(0,h)$ w ośrodku z prędkością v_1 do punktu O(x,o) i dalej do punktu $P_2(xm,-h)$ z prędkością v_2 . Narysuj wykres zależności całkowitego czasu biegu promienia t od położenia punktu przekraczania granicy ośrodków x. Porównaj wyniki dla: $v_1 > v_2$, $v_1 = v_2$ i $v_1 < v_2$.
- 4. Sporządź wykres kąta odchylenia δ od kąta padania światła θ dla pryzmatu o zadanym kącie i współczynniku załamania.
- 5. Sporządź wykres położenia obrazu w funkcji położenia przedmiotu dla wypukłej powierzchni zakrzywiającej o promieniu krzywizny R=10. Współczynnik załamania z jednej strony powierzchni wynosi $n_1=1$ a z drugiej $n_2=1.5$. Proszę na osobnych wykresach pokazać: (i) zależność dla całego zakresu odległości; (ii) dla obszaru, gdzie obraz będzie pozorny; (iii) dla obszaru, gdzie obraz będzie rzeczywisty.
- 6. Narysuj wykres położenia obrazu y w funkcji położenia przedmiotu x_0 dla cienkiej soczewki o ogniskowej f=-10.