

Module d'Electronique

1ère partie : Electronique analogique

© Fabrice Sincère; version 3.0.6

http://pagesperso-orange.fr/fabrice.sincere

Sommaire du chapitre 2 : L'amplificateur opérationnel

Introduction: les circuits intégrés

1- L'amplificateur opérationnel

- 1-1- Brochage
- 1-2- Symboles
- 1-3- Alimentation

2- Caractéristiques électriques

- 2-1- Courants d'entrée
- 2-2- Tension différentielle d'entrée
- 2-3- Caractéristique de transfert
- 2-4- Courant de sortie
- 2-5- Réaction positive et contre-réaction

Sommaire du chapitre 2 : L'amplificateur opérationnel

3- L'amplificateur opérationnel en régime linéaire

- 3-1- Montage amplificateur de tension
 - 3-1-1- Introduction
 - 3-1-2- Montage « amplificateur inverseur »
- 3-2- Fonctions mathématiques
 - 3-2-1- Montage « additionneur non inverseur »
 - 3-2-2- Montage « soustracteur »

4- L'amplificateur opérationnel en régime de saturation

- 4-1- Montage comparateur simple
- 4-2- Montage « comparateur à deux seuils » ou « trigger de

Schmitt » ou « comparateur à hystérésis »

Chapitre 2 L'amplificateur opérationnel

Introduction : les circuits intégrés

Un C.I. est un circuit électronique miniaturisé, principalement constitué de transistors.

• 1958 : 1^{er} C.I. (Texas Instruments, Jack Kilby)

• Loi de Moore

« Le nombre de composants par circuit intégré double tous les deux ans. »

1- L'Amplificateur Opérationnel (A.O.)

Il s'agit d'un C.I. analogique « multifonctions ».

• Exemple : µA741 (Texas Instruments)

Il se présente sous la forme d'un boîtier à 8 broches (DIL 8) :

Docs à p

1-1- Brochage

L'A.O. possède:

• deux entrées :

broche IN+ (ou e+) : entrée « non inverseuse » broche IN- (ou e-) : entrée « inverseuse »

• une sortie:

broche OUT (ou s)

• deux broches d'alimentation :

broche Vcc+: alimentation en tension continue positive

broche Vcc-:

«

«

négative

• Schéma interne du µA741

 1 mm^2

1-2- Symboles

• symbole américain :

• symbole simplifié:

• symbole européen :

1-3- Alimentation de l'A.O.

Un A.O. nécessite une alimentation constituée de deux générateurs de tension continue symétriques :

2- Caractéristiques électriques

2-1- Courants d'entrée

En pratique, les courants d'entrée peuvent être négligés :

$$i+\approx 0$$

2-2- Tension différentielle d'entrée : ε

• Définition :

La tension différentielle d'entrée est la différence de potentiels entre l'entrée non inverseuse et l'entrée inverseuse.

$$\varepsilon = v + - v -$$

2-3- Caractéristique de transfert : $v_S(\epsilon)$

La tension de sortie dépend directement de la tension différentielle

d'entrée:

• zone de linéarité : $\epsilon \approx 0 \text{ V}$; $Vsat - \langle v_S \langle Vsat +$

• zone de saturation haute : $\epsilon > 0 \text{ V}$; $v_s = V \text{sat} +$

• « basse : $\varepsilon < 0 \text{ V}$; $v_S = V \text{sat}$

Remarque : si $Vcc\pm = \pm 15 \text{ V}$: $Vsat\pm$ est de l'ordre de $\pm 14 \text{ V}$.

2-4- Courant de sortie

La sortie se comporte comme un générateur de tension.

|i_s max| est faible (Θ): de l'ordre de 25 mA pour le μA741

2-5- Réaction positive et contre-réaction

• Définitions :

On dit qu'il y a *réaction positive* quand la sortie est reliée à l'entrée non inverseuse.

On dit qu'il y a *contre-réaction* (ou réaction négative) quand la sortie est reliée à l'entrée inverseuse.

• Conséquences importantes :

• Une contre-réaction assure un fonctionnement linéaire de l'A.O. : ε ≈ 0 V

Exemple: montage « suiveur de tension »

Loi des branches:

 $u_S = u_E - \varepsilon$ L'A.O. possède une contreréaction

 $\Rightarrow \epsilon \approx 0 \text{ V}$

Finalement : $\mathbf{u}_{\mathbf{S}} = \mathbf{u}_{\mathbf{E}}$

• Une réaction positive provoque la saturation de l'A.O.

3- L'A.O. en régime linéaire

L'A.O. doit avoir une contre-réaction (condition nécessaire mais pas toujours suffisante).

On sait qu'en régime linéaire : $\varepsilon \approx 0 \text{ V}$

3-1- Montage amplificateur de tension

3-1-1- Introduction

Par définition, l'amplification en tension est :

$$A_v = \frac{\text{tension de sortie}}{\text{tension d'entrée}}$$

Par définition, le gain en tension est :

$$G_v = 20 \log_{10} |A_v|$$
 (en décibels dB)

Tableau 1

Amplification	Gain G _v	Atténuation
$ A_{\rm v} $	(dB)	(dB)
0	- ∞	+ ∞
0,1	- 20	+20
0,5	- 6	+6
$1/\sqrt{2}$	-3	+3
1	0	0
10	+20	-20
100	+40	-40
1000	+60	-60

3-1-2- Montage « amplificateur inverseur »

A.O.
$$\mu$$
A741
Vcc± = ±15 V
R₁= 4,7 k Ω
R₂= 100 k Ω

- Cherchons la relation entre la tension d'entrée et la tension de sortie :
- (1) $\varepsilon = v + v = 0$ (en régime linéaire)
- (2) v+=0 (entrée non inverseuse reliée à la masse)
- (3) Appliquons le théorème de Millman à l'entrée inverseuse : $v = \frac{\frac{u_E}{R_1} + \frac{u_S}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}}$

$$v - = 0 \Rightarrow \frac{u_E}{R_1} + \frac{u_S}{R_2} = 0$$

$$A_{V} = \frac{u_{S}}{u_{E}} = -\frac{R_{2}}{R_{1}}$$

A.N.
$$\begin{cases} A_{v} = -\frac{100}{4,7} = -21,3 \\ G_{v} = +26,6 \,dB \end{cases}$$

• Caractéristique de transfert u_s(u_e)

• fonctionnement en régime linéaire :

u_S est proportionnelle à u_E:

$$A_V = -12,62 / 0,6063 = -20,8$$

• fonctionnement en saturation :

niveau d'entrée trop important : la sortie sature 😕

3-2- Fonctions mathématiques

3-2-1- Montage « additionneur non inverseur »

- (1) $\varepsilon = v + v = 0$ (régime linéaire)
- (2) Appliquons le théorème de Millman à l'entrée e+:

$$v+ = \frac{\frac{u_{E1}}{R} + \frac{u_{E2}}{R}}{\frac{1}{R} + \frac{1}{R}} = \frac{u_{E1} + u_{E2}}{2}$$

(3) Appliquons la formule du diviseur de tension à l'entrée e-:

$$\mathbf{v} - = \frac{\mathbf{R}}{\mathbf{R} + \mathbf{R}} \mathbf{u}_{\mathbf{S}} = \frac{\mathbf{u}_{\mathbf{S}}}{2}$$

$$\Rightarrow$$
 $u_S = u_{E1} + u_{E2}$

3-2-2- Montage « soustracteur »

$$v - = \frac{\frac{u_{E2}}{R} + \frac{u_{S}}{R}}{\frac{1}{R} + \frac{1}{R}} = \frac{u_{E2} + u_{S}}{2}$$

$$v+=\frac{R}{R+R}u_{E1}=\frac{u_{E1}}{2}$$

En régime linéaire : v+=v-

$$\mathbf{u}_{\mathbf{S}} = \mathbf{u}_{\mathbf{E}1} - \mathbf{u}_{\mathbf{E}2}$$

4- L'A.O. en régime de saturation

L'A.O. ne possède pas de contre-réaction.

La sortie de l'A.O. peut prendre deux états :

Vsat+ si
$$\varepsilon > 0$$
 V
ou Vsat- si $\varepsilon < 0$ V

4-1- Montage comparateur simple

• comparateur simple « non inverseur »

A.O.
$$\mu$$
A741
Vcc $\pm = \pm 15$ V

$$E_{ref} = +5 \text{ V}$$

• Caractéristique de transfert u_S(u_E)

Loi des branches : $\varepsilon = u_E - E_{ref}$

$$\begin{array}{l} \text{si } u_E > E_{ref} \ \text{alors } \epsilon > 0 \text{ et } u_S = Vsat + \\ \text{si } u_E < E_{ref} \ \text{alors } \epsilon < 0 \text{ et } u_S = Vsat - \end{array}$$

Le niveau d'entrée ($u_E = E_{ref}$) qui provoque le basculement de la sortie est appelé *tension de seuil*.

Ce montage compare la tension d'entrée à une tension de référence $(E_{\rm ref})$.

L'état de la sortie donne le résultat de la comparaison.

4-2- Montage « comparateur à deux seuils » ou « trigger de Schmitt » ou « comparateur à hystérésis »

• Exemple d'application : régulation de température

T > 20 °C : on coupe le chauffage

T < 18 °C : on met le chauffage

• Trigger « non inverseur symétrique »

A.O.
$$\mu$$
A741
Vcc± = ±15 V

$$R_1 = 10 \text{ k}\Omega$$
$$R_2 = 47 \text{ k}\Omega$$

Ce montage possède deux tensions de seuil : U_B et U_H

• Caractéristique de transfert u_S(u_E)

si
$$u_E > U_H$$
 alors $\epsilon > 0$ et $u_S = Vsat +$ si $u_E < U_B$ alors $\epsilon < 0$ et $u_S = Vsat +$ si $U_B < u_E < U_H$: phénomène d'hystérésis

Fig. 13d:

1 2.00V 2 5.00V XY STOP

• Calcul des tensions de seuil

A l'instant du basculement de la sortie : $\varepsilon = 0 \text{ V}$

$$\Rightarrow$$
 v+ = 0

Théorème de Millman:

$$v + = \frac{\frac{u_E}{R_1} + \frac{u_S}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}} \implies u_E = -\frac{R_1}{R_2} u_S$$

si
$$u_S = Vsat - \Rightarrow u_E = U_H = -\frac{R_1}{R_2} Vsat -$$

si $u_S = Vsat + \Rightarrow u_E = U_B = -\frac{R_1}{R_2} Vsat +$
A.N. $U_H \approx -\frac{10}{47} \cdot (-14) \approx +3 V$
 $U_B \approx -\frac{10}{47} \cdot (+14) \approx -3 V$