用示波器观测动态磁滞回线

周五 第10组 9号 甘城屹

一、数据处理

1. 给出 100 Hz 下铁氧体饱和磁滞回线的测量结果,并作图。给出 B_s , B_r , H_C 的测量结果。

 $f = 100 Hz, R_1 = 2.0 \Omega, R_2 = 50 k\Omega, C = 10.0 \mu F$

$u_{R_1}(mV)$	H(A/m)	$u_c(mV)$	B(mT)
397	229.0385	14.6	392.4731
98	56.53846	12.2	327.957
50	28.84615	10.1	271.5054
5	2.884615	5.1	137.0968
0	0	4	107.5269
-23	-13.2692	0	0
-52	-30	-5.05	-135.753
-95	-54.8077	-10	-268.817
-202	-116.538	-13.35	-358.871
-400	-230.769	-14.7	-395.161
-203	-117.115	-13.9	-373.656
-102	-58.8462	-12.45	-334.677
-50	-28.8462	-10	-268.817
0	0	-3.7	-99.4624
20	11.53846	0	0
50	28.84615	5.35	143.8172
93	53.65385	10	268.8172
149.5	86.25	12.3	330.6452
397	229.0385	14.6	392.4731

根据以上数据做出铁氧体的饱和磁滞回线:

$$B_s = \frac{392.4731 + 395.161}{2}mT = 393.8mT$$

$$B_r = \frac{107.5269 + 99.4624}{2}mT = 103.5mT$$

$$H_c = \frac{13.2692 + 11.53846}{2} = 12.40A/m$$

2. 说明不同频率下铁氧体饱和磁滞回线如何变化。给出 50/100/150~Hz~下 B_r , H_c 的测量结果,估计由仪器误差和线宽导致的测量不确定度,并对不同频率的测量结果进行比较和解释。

f/Hz	$2u_{R_1}(mV)$	$2u_c(mV)$	$H_c(A/m)$	$B_r(mT)$
50	40.9	7.40	11.80	99.46
100	43.0	7.70	12.40	103.5
150	43.0	7.85	12.40	105.5

$$\sigma_{u_{\rm c}} = (0.02u_{\rm c} + 0.003 \times 5)mV$$

$$\sigma_{u_{\rm R}} = (0.02u_{\rm R} + 0.003 \times 100) mV$$

$$\sigma_{B_r} = \frac{R_2 C}{N_2 S} \sigma_{u_{\rm c}}$$

$$\sigma_{H_c} = \frac{N_1}{l R_1} \sigma_{u_{\rm R}}$$

$$f=50Hz$$
: $\sigma_{B_r}=2.4mT, \quad \sigma_{H_c}=0.4A/m$ $B_r=(99.5\pm 2.4)mT, H_c=(11.8\pm 0.4)A/m$

$$f = 100Hz$$
: $\sigma_{B_r} = 2.5mT$, $\sigma_{H_c} = 0.4A/m$

$$B_r = (103.5 \pm 2.5)mT$$
, $H_c = (12.4 \pm 0.4)A/m$

$$f = 150Hz$$
: $\sigma_{B_r} = 2.7mT$, $\sigma_{H_c} = 0.4A/m$

$$B_r = (105.5 \pm 2.7) mT$$
, $H_c = (12.4 \pm 0.4) A/m$

综合以上结果,不同频率下 H_c 在误差范围内基本一致,但 B_r 除去误差的影响外还有较小偏差,f = 50H时的结果略偏小,可能是由于材料未达到完全饱和磁化所致。

3. 粗略画出 50 Hz 下不同积分常量下的李萨如图,说明积分常量为什么会影响李萨如图。积分常量是否影响真实的磁滞回线的形状?

$$R_2C = 0.5s$$
 $R_2C = 0.05s$ $R_2C = 0.01s$

- (1) 示波器中两个通道分别测量的是 u_{R_1} 和 u_c ,结合· $H=\frac{N_1}{lR_1}u_{R_1}$ 与 $B=\frac{R_2C}{N_2s}u_C$,知 H,B分别与 u_{R_1} , u_c 成线性关系才将示波器上的图像视为磁滞回线形状。但 $B=\frac{R_2C}{N_2s}u_C$ 成立的条件包括 $R_2C\gg T$ (外磁场周期),当 R_2C 并非足够大时会产生畸变,所以积分常量影响了李萨如图形的形状。
- (2) 积分常量不会影响真实的磁滞回线的形状,因为磁滞回线只与材料、磁化场频率和幅度有关,与电路其他部分无关。积分常量不满足 $R_2C\gg T$ 时,示波器图形不能反映磁滞回线形状。
- 4. 给出 100 Hz 下动态磁化曲线的测量结果,并作图,说明曲线的变化规律。根据测量数据计算出 μ_m ,并作 μ_m -H $_m$ 曲线图,说明曲线的变化规律。给出起始磁导率 μ_i 的测量结果。

序号	$U_{R_1}(\text{mV})$	H_m (A/m)	$U_c(mV)$	$B_m(mT)$	$\mu_m = \frac{B_m}{\mu_0 H_m}$
1	9	2.596154	0.7	9.408602	2883.931
2	11.5	3.317308	1	13.44086	3224.27
3	17.5	5.048077	1.45	19.48925	3072.269
4	26	7.5	2.3	30.91398	3280.075
5	37.6	10.84615	3.5	47.04301	3451.513

6	47.8	13.78846	4.65	62.5	3607.068
7	57.2	16.5	5.7	76.6129	3694.946
8	65.8	18.98077	6.7	90.05376	3775.532
9	76	21.92308	8.1	108.871	3951.852
10	88.6	25.55769	9.8	131.7204	4101.301
11	107.4	30.98077	12.1	162.6344	4177.441
12	120.2	34.67308	13.5	181.4516	4164.459
13	153.8	44.36538	17.4	233.871	4194.906
14	202	58.26923	20.7	278.2258	3799.691
15	231	66.63462	22.4	301.0753	3595.55
16	260	75	23.7	318.5484	3379.903
17	277.5	80.04808	24.3	326.6129	3246.927
18	305	87.98077	25	336.0215	3039.271
19	494	142.5	27.4	368.2796	2056.615
20	687	198.1731	28.65	385.0806	1546.312
21	791	228.1731	28.9	388.4409	1354.723

动态磁化曲线如上所示,可见 B_m 随 H_m 逐渐增大,且增大速率有逐渐变缓慢的趋势,最后趋于一条斜率很小的直线。

 μ_m - H_m 曲线如上所示,随着 H_m 的增大, μ_m 先增大后减小。

由表中第一个数据点可得: 起始磁导率μ_i =2883.9

5. 说明不同频率下硅钢样品在给定交变磁场幅度 H_m =400 A/m 下的动态磁滞回线如何变化。给出 20/40/60 Hz 下 B_m , B_r , H_c 的测量结果,并对不同频率的测量结果进行比较和解释。

 $R_1 = 2.0\Omega, R_2 = 50k\Omega, C = 10.0\mu F$

f/Hz	$2u_{R_1}(mV)$	$2u_c(mV)$	H(A/m)	B(mT)
	800	67.6	400	938
20	0	41.8	0	580.6
	211	0	105.5	0
	800	67.2	400	933.3
40	0	44.6	0	619.4
	245	0	122.5	0
	800	67.4	400	936.1
60	0	46.0	0	638.9
	283	0	141.5	0

整理上表, 结果如下:

f/Hz	$B_m(mT)$	$B_r(mT)$	$H_m(A/m)$
20	938	580.6	105.5

40	933.3	619.4	122.5
60	936.1	638.9	141.5

可见在给定交变磁场幅度下,随着其频率变大, B_m 基本不变,但 B_r 和 H_m 均变大,即磁滞回线整体向外张。

解释:

- (1) B_m 仅与材料的磁性特性有关和磁场强度有关,而对于同一种材料,交变磁场幅度给定时,对应于动态磁化曲线上某一个特定的点,是一个定值。
- (2) 整个过程中铁磁材料消耗能量等于磁滞曲线围成的面积。由于随着频率的增大,消耗的能量变大,而磁滞回线顶点的位置不改变,则中间部分向外扩张才能使围成的面积变大,表现出 B_r 和 H_m 均变大。

二、思考题

(1) 铁磁体动态磁滞回线和动态磁滞回线概念上差异? 动态磁滞回线形状和面积受哪些因素影响?

动态磁滞回线: 磁场高频变化时的 B-H 曲线。

静态磁滞回线:外加磁场缓慢变化时的 B-H 曲线。

动态磁滞回线的形状和面积受材料、频率、外加磁场强度影响。

(2) 铁磁体和硅钢体动态磁化特性各有什么特点?

铁磁体 B_r , H_c 不随外加磁场频率变化

硅钢体 B_r , H_c 随外加磁场频率增大而变大

(3) 电路参量应当如何设置才能保证 $u_{R_1} - 2u_C$ 所形成的·李萨如图形能够正确反映材料动态磁滞回线的形状?

 $R_2C \gg T$,从而 $B = u_c$ 满足 $B = \frac{R_2C}{N_2S}u_C$ 的线性关系。

(4) 实验中如何判断磁滞回线绕行方向?

以一个较低的频率进行磁化,频率足够低时会发现示波器上的李萨如图形闪烁, 这时便可以判断磁滞回线的绕行方向。