Reproducing a LATEX document # 2

"Your name here"

Theorem 1. The set $\{x \in \mathbb{Z} : |x - 2.5| = 2\}$ is the empty set.

Proof. Let y be an integer such that $y \in \{x \in \mathbb{Z} : |x - 2.5| = 2\}$ Then $y \in \mathbb{Z}$ and |y - 2.5| = 2. Since |y - 2.5| = 2 then y = 4.5 or y = -.5. But then y is not an integer. Therefore the set $\{x \in \mathbb{Z} : |x - 2.5| = 2\}$ has no elements and

$${x \in \mathbb{Z} : |x - 2.5| = 2} = \emptyset.$$

Theorem 2. There exist two positive irrational numbers s and t such that s^t is rational.

Proof. We will consider two cases. For the first case, suppose that $\sqrt{2}^{\sqrt{2}}$ is rational. Then we may take $s=t=\sqrt{2}$. For the second case, suppose that $\sqrt{2}^{\sqrt{2}}$ is irrational. Let $s=\sqrt{2}^{\sqrt{2}}$ and $t=\sqrt{2}$. Then

$$\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^2 = 2.$$

Since 2 is rational, s^t is rational. Therefore, there exists irrational numbers s and t such that s^t is rational.

Theorem 3. Let n be a natural number. Then

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

Consider the following matrix,

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)$$