Aquaculture, Eelgrass, and Fish

Chris Comiskey

Oregon State University

Fal 2016

Project Information

Project no: C1617-3

Secondary: Shivani Patel

• Client name: Measure N. Fish

Client degree: M.S. student

Department: CEOAS - Marine Resource Management

Statistical background: ST 511, ST 512

Major professor: Flaxen Conway

Approximate timeline: Data collected, defend June '17

Requested Help

In client's words...

- Advice on analysis procedures
- Advice on interpretation of (computer) analysis
- Writing R script
- Figuring out what my variables are (response, independent, etc)
- What to put in my models
- How to put my numbers from my data into models
- How to import a spreadsheet into r to run analyses

Introduction

- Shellfish aquaculture
 - Oysters (yum?) → \$\$\$
- Estuary bay where freshwater and saltwater meet
 - Where eelgrass lives
- Robust eelgrass habitats → happy, healthy fish
- Overarching research qeustion
 - What is the relationship between shellfish aquaculture, predation, eelgrass habitat complexity, and fish species abundance and activity?

Project Layout

Site Layout

Data

What is the relationship between shellfish aquaculture, eelgrass habitat complexity, and fish species abundance and activity?

- Shellfish aquaculture
- Predation
- Eelgrass habitat complexity
- Fish species abundance and activity

Data Collection Mechanisms

Data Collection Procedures

What is the relationship between shellfish aquaculture, eelgrass habitat complexity, and fish species abundance and activity?

- Shellfish aquaculture
- Predation PTUs
- Eelgrass habitat complexity Quadrats
- Fish species abundance and activity GoPros

Data Collection - Predation

- Shellfish aquaculture
- Predation PTUs
 - PTU Predation Tethering Unit
 - Two squid chunks tied to stick at two heights
 - Checked for presence/absence 9 AM, 9:30 AM, 7:30 AM
- Eelgrass habitat complexity Quadrats
- Fish species abundance and activity GoPros

Data Collection - Eelgrass Habitats

- Shellfish aquaculture
- Predation PTUs
- Eelgrass habitat complexity Quadrats
 - Quadrat Square, PVC pipe, 0.5m on each side
 - Inside quadrat boundaries, visually assess: percent cover, percent epiphyte cover, percent macroalgae, shoot density
 - Remove one eelgrass shoot (if possible*) and store for further analysis in laboratory setting
- Fish species abundance and activity GoPros

Data Collection - Species

- Shellfish aquaculture
- Predation PTUs
- Eelgrass habitat complexity Quadrats
- Fish species abundance and activity GoPros
 - Place three cinder blocks at 5m, 25m, 45m at low tide
 - Snorkelers place two GoPros one hour before high tide
 - Retrieved one hour after high tide
 - Data... to be continued

Research Questions...

...in the client's words.

- Are there differences in fish and crab composition across habitat types?
 - H₀: There is no difference among fish and crab community across habitat types.
 - H₁: There is a difference among fish and crab community across habitat types.
- Does relative predation vary across habitat types?
 - H₀: There is no difference in relative predation across habitat types.
 - H₁: There is a difference in relative predation across habitat types.

Eelgrass: $20 \times 3 \times 3 \times 2 = 360$ observations

```
Estuary Site Habitat
                                          Col by Ent by Quad# Inun %Epi %MacAl Sht dnsty
                                  Date
1 241 Tillamook Mercer
                           AQ 07/07/16 L. Clarke L. Clarke
2 242 Tillamook Mercer
                          AO 07/07/16 L. Clarke L. Clarke
                                                                              100
                                                               3 Y 0 25
4 N 85 60
5 N 0 5
6 Y 0 100
3 243 Tillamook Mercer
                          AQ 07/07/16 L. Clarke L. Clarke
4 244 Tillamook Mercer
                          AQ 07/07/16 L. Clarke L. Clarke
                                                                        85 60
                           AO 07/07/16 L. Clarke L. Clarke
5 245 Tillamook Mercer
                           AO 07/07/16 L. Clarke L. Clarke
6 246 Tillamook Mercer
```

Predation Tethering Units: $20 \times 3 \times 3 \times 2 = 360$ observations

```
Estuary Site Hab TDepl RecBy
                                          CollBy
                                                   Ch1Time Ch2TND Ch1L Ch2L Ch1H Ch2H
1 07/07/16 Tillamook Mercer AO
                            855 Suhbrier L. Clarke
                                                      1145
                                                             940
                                                                       NA
2 07/07/16 Tillamook Mercer AO 855 Subbrier L. Clarke
                                                     1145
                                                             940
                                                                      0
3 07/07/16 Tillamook Mercer AQ 855 Suhbrier L. Clarke
                                                     1145
                                                             940
                                                                      NA
                                                                                NA
4 07/07/16 Tillamook Mercer AO 855 Suhbrier L. Clarke
                                                     1145
                                                             940
                                                                      NA 1
5 07/07/16 Tillamook Mercer AO 855 Suhbrier L. Clarke
                                                     1145
                                                             940
                                                                      NA
6 07/07/16 Tillamook Mercer AQ 855 Suhbrier L. Clarke
                                                     1145
                                                             940
```

Species Abundance and Activitiy: 3 x 3 x 3 x 2 = 54 GoPros...

Predation

Habitat Complexity

Habitat Complexity

Initial Recommendations

- \bullet Since no random selection of bay, sites \to no inference to all bays, sites
- Hypothesis tests need a parameter
- What are the covariates?
- Use presence/absence = 0/1 instead of the opposite, and sum for a "rate"
- Review literature for techniques to turn video footage into species abundance measurements

Initial Recommendations

- Response and explanatory variables need to have the same number of observations
- When a quadrat has no shoots—record that. Do not pull shoots from outside of quadrat.
- Be aware, numerous sources of uncertainty
- Could fit GLM, log link for Poisson fish count, random effect for bay, random effect for site

GLM

- Bay: $i = 1, 2 \rightarrow \text{Random effect: } \alpha_i \sim N(0, \sigma_{\alpha}^2)$
- Site: $j = 1, 2, \dots, 6 \rightarrow \text{Random effect: } \delta_j \sim N(0, \sigma_\delta^2)$
- Habitat: k=1,2,3 → Fixed effect
- $\log(E[y_{ijk}]) = \mu + \alpha_i + \delta_j + \beta_k$
- $\log(E[y_{ijk}]) = \mu + \alpha_i + \delta_j + \beta_k + X\beta$

