查考整式

Septsea

目录

版权声明	ii
前音	V
查考整式	1
预备知识	2
整式的定义 3	7
带余除法 4	8
整式的相等 5	5
微商	2
整式的根 7	4
F 上的整式	2
插值	5
广义二项系数	7
求和公式12	6
再探微商14	4
整式的微分学初步15	9
同人作 17	1
整数的一些性质17	2
整式的一些性质19	9
复习 0	6
综合除法	7
重因子24	8
复习 1	9
整系数整式与有理系数整式26	3
整数的因子分解28	1
有理系数整式的有理根	9
有理系数整式的高次因子	6
有理系数整式的因子分解33	
复习 2	5

有理式的定义																352
有理式的运算																370

版权声明

源代码采用 the Unlicense:

This is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means.

In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to

<https://unlicense.org>

正文采用 CC0:

No Copyright

The person who associated a work with this deed has **dedicated** the work to the public domain by waiving all of his or her rights to the

work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.

You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See **Other Information** below.

Other Information

- In no way are the patent or trademark rights of any person affected by CCO, nor are the rights that other persons may have in the work or in how the work is used, such as publicity or privacy rights.
- Unless expressly stated otherwise, the person who associated a
 work with this deed makes no warranties about the work, and
 disclaims liability for all uses of the work, to the fullest extent
 permitted by applicable law.
- When using or citing the work, you should not imply endorsement[†] by the author or the affirmer.

[†] In some jurisdictions, wrongfully implying that an author, publisher or anyone else endorses your use of a work may be unlawful.

前言

本文是瞎写的. 作者给本文的另一个名字是 "Re: ゼロから始めるポリノミアルのイントロダクション". 不过想了想, 算了算了. 龙鸣日语, 不好意思直接说出来.

本文用尽可能朴素的语言讨论了整式及其部分应用.

总是可以去这儿得到本文的最新版本:

https://gitee.com/septsea/strange-book-zero

https://github.com/septsea/strange-book-zero

读者可以自由地阅读、修改、再分发本文.

如果读者发现本文有什么地方不对, 那么读者就毫不犹豫地告诉作者. 当然, 任何意见与建议也是可以的.

(记得先看看最新版本改过来没有哟. 不过就算没看最新版本也没关系啦. 作者一定会处理读者的消息的! 嘿嘿.)

就先说到这里.

评注 总算写完"预备知识"了. 作者写这玩意儿花了好久好久啊. 先发布再说吧.

June 3, 2021

评注 忘记介绍域是什么东西了. 作者真是笨蛋啊.

June 3, 2021

评注 前几日意识到, 作者不能又写得严谨, 又指望着中学生都能读懂. 不过本文业已成形, "改"不如"重写". 不过本文是开源的 (主要是无版权), 读者可以随意重写.

June 17, 2021

评注 6月6日,作者在这里发了贴,目的是让更多的人看到作者写的 ② 文.作者得到了很多意见与建议.今日,作者写完了作者想写的东西.作者维护本文就好.作者觉得超理太棒了!

June 20, 2021

评注 作者总算在改错了. 感谢超理读者"没啥好叫的"指出本文的一个错误! 然后作者自己发现了一堆印刷错误. 啊啦啊啦. 看多了视觉小说,作者的大脑生锈了呢. 顺便一提,看本文看累了的时候,不妨看看小说哦! 这里! 这里! I am sharing my copies of visual novels with my readers!

July 29, 2021

查考整式

出于无聊, Septsea 撰写本文.

读者将在本节熟悉一些记号与术语.建议读者熟悉本节的内容后学习下节的内容.

作者假定读者会初中算学. 具体地说, 作者假定读者至少会如下知识†:

有理数: 从自然数到有理数, 数轴, 绝对值, 有理数的大小比较.

有理数的运算: 加法, 减法, 乘法, 除法, 乘方, 混合运算, 近似数.

实数: 平方根, 实数, 立方根, 实数的运算.

代数式: 用字母表示数, 代数式, 代数式的值, 整式, 合并同类项, 整式的加减.

2元1次方程组: 2元1次方程, 2元1次方程组, 解2元1次方程组, 应用, 3元1次方程组.

整式的乘除: 同底数幂的乘法, 单项式的乘法, 多项式的乘法, 乘法公式, 整式的化简, 同底数幂的除法, 整式的除法.

因式分解: 因式分解, 提取公因式法, 用乘法公式分解因式.

分式: 分式, 分式的基本性质, 分式的乘除, 分式的加减, 分式方程.

1元1次不等式:认识不等式,不等式的基本性质,1元1次不等式,不等式组.

图形与坐标: 确定位置的方法, 平面直角坐标系.

- 1 次函数: 常量与变量, 函数, 1 次函数, 1 次函数的图像, 简单应用.
 - 2次根式: 2次根式, 性质, 运算.
- 1元2次方程:1元2次方程,解法,应用,1元2次方程根与系数的关系.

反比例函数: 反比例函数, 图像和性质, 应用.

2次函数: 2次函数, 图像, 性质, 应用.

[†]感谢知乎用户 "咸鱼晓孔" 先生的文章: https://zhuanlan.zhihu.com/p/305969765.

在进入小节"集"前,让我们先回顾命题、复数与算学归纳法吧! (如果读者不知道这些知识,就乘此机会跟着作者了解一下——不必感到害怕.)

定义 能判断真假的话是命题 (*proposition*). 正确的命题称为真命题; 错误的命题称为假命题. 当然, 命题也可以用"对""错"形容.

例 根据常识,"日东升西落"是真命题. 类似地,"月自身可发光"是假命题.

"这是什么?"不是命题,因为它没有作出判断.类似地,"请保持安静"也不是命题,因为它只是一个祈使句 (imperative sentence).不过,"难道中国不强?"不但是命题,它还是正确的,因为这个反问 (rhetorical question)作出了正确的判断.

"x > 3" 不是命题, 因为它不可判断真假. 像这种话里有未知元, 且揭秘未知元前不可知此话之真伪的话是开句 ($open\ sentence$).

我们会经常遇到"若p,则q"的命题.

定义 设 "若 p, 则 q" 是真命题. 我们说, p 是 q 的充分条件 (sufficient condition), q 是 p 的必要条件 (necessary condition). 用符号写出来, 就是

$$p \Rightarrow q$$
 or $q \Leftarrow p$.

例 "若刚下过雨,则地面潮湿"是对的."刚下过雨"是"充分的":根据常识可以知道这一点."地面潮湿"是"必要的":地面不潮湿,那么不可能刚下过雨.

评注 我们会遇到形如 " ℓ 的一个必要与充分条件是 r" 的命题. 换个说法, 就是 "r 是 ℓ 的一个必要与充分条件". 再分解一下, 就是 "r 是 ℓ 的一个必要条件" 与 "r 是 ℓ 的一个充分条件" 这二个命题. 根据定义, 这相当于 "若 ℓ , 则 r" 与 "若 r, 则 ℓ " 都是真命题. 也就是说, ℓ 跟 r 是等价的 (equivalent). 用符号写出来, 就是

$$p \Leftrightarrow q$$
.

证明 " ℓ " 的一个必要与充分条件是 r" 时, 我们会把它分为必要性 (ne-cessity) 与充分性 (sufficiency) 二个部分. 证明必要性, 就是证明 "r 是 ℓ 的

查考整式

一个必要条件", 也就是证明"若 ℓ , 则 r"是对的; 换句话说, 证明左边可以推出右边. 证明充分性, 就是证明"r 是 ℓ 的一个充分条件", 也就是证明"若 r, 则 ℓ "是对的; 换句话说, 证明右边可以推出左边.

命题就介绍到这里. 下面回顾复数基础.†

定义 复数 (complex number) 是形如 x + yi (x, y 是实数) 的数.

评注 可将 x + yi 写为 x + iy.

4

定义 设 a,b,c,d 是实数. 则

$$a + bi = c + di \iff a = c \text{ and } b = d.$$

评注 我们把形如 a+0i 的复数写为 a, 并认为 a+0i 是实数. 反过来, a 也可以认为是复数 a+0i.

形如 0+bi 的复数可写为 bi. 按照习惯, 1i 可写为 i, 且 -1i 可写为 -i. 设 z_1,z_2,z_3 是任意三个复数. 读者可验证, 复数的相等适合如下三条件: $z_1=z_1;$ 若 $z_1=z_2,$ 则 $z_2=z_1;$ 若 $z_1=z_2,$ 且 $z_2=z_3,$ 则 $z_1=z_3.$

定义 复数的加、乘法定义为

$$(a + bi) + (c + di) = (a + c) + (b + d)i,$$

 $(a + bi)(c + di) = (ac - bd) + (ad + bc)i.$

由此可见, 二个复数的和 (或积) 还是复数.

例 我们计算 i 与自己的积:

$$i \cdot i = (0 + 1i)(0 + 1i) = (0 \cdot 0 - 1 \cdot 1) + (0 \cdot 1 + 1 \cdot 0)i = -1.$$

简单地说, 就是

$$i \cdot i = i^2 = -1$$
.

设 z_1, z_2, z_3 是任意三个复数 (不必不同). 设 $z_1 = a + bi$.

[†]如果读者没学过复数, 也不用怕. 本文不要求读者很了解复数; 本文只要求读者看到 "i" 不觉得陌生、恐惧.

命题 复数的加法适合如下运算律:

(i) 交換律: $z_1 + z_2 = z_2 + z_1$;

(ii) 结合律:
$$(z_1+z_2)+z_3=z_1+(z_2+z_3);$$

(iii) $0 + z_1 = z_1$;

(iv) 存在复数 w = (-a) + (-b)i 使 $w + z_1 = 0$.

通常把适合 (iv) 的 w 记为 $-z_1$, 且称之为 z_1 的相反数.

评注 (-a) + (-b)i 可写为 -a - bi.

定义 复数的减法定义为

$$z_2 - z_1 = z_2 + (-z_1).$$

命题 复数的乘法适合如下运算律:

(v) 交換律: $z_1 z_2 = z_2 z_1$;

(vi) 结合律: $(z_1z_2)z_3 = z_1(z_2z_3)$;

(vii) $1z_1 = z_1$;

(viii) $(-1)z_1 = -z_1$;

(ix) 若 $z_1 \neq 0$, 则存在复数 $v = \frac{a}{a^2 + b^2} + \frac{-b}{a^2 + b^2}$ i 使 $vz_1 = 1$. 通常把适合 (ix) 的 v 记为 z_1^{-1} , 且称之为 z_1 的倒数.

定义 复数的除法定义为

$$\frac{z_2}{z_1} = z_2 z_1^{-1}.$$

命题 复数的加法与乘法还适合分配律:

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3,$$

 $(z_2 + z_3)z_1 = z_2 z_1 + z_3 z_1.$

评注 a, bi, c, di 都可以看成是复数. 这样

$$(a+bi)(c+di) = (a+bi)c + (a+bi)(di)$$

$$= ac + bic + adi + bidi$$

$$= ac + bci + adi + bdi^{2}$$

$$= (ac + bdi^{2}) + (ad + bc)i$$

$$= (ac - bd) + (ad + bc)i.$$

查考整式

也就是说, 我们不必死记复数的乘法规则: 只要用运算律与 $i^2 = -1$ 即可召唤它.

定义 设 a, b 是实数. a+bi 的共轭 (conjugate) 是复数 a-bi. 复数 z_1 的共轭可写为 $\overline{z_1}$.

命题 共轭适合如下性质:

(x) $\overline{z_1} + z_1$ 与 $i \cdot (\overline{z_1} - z_1)$ 都是实数;

(xi)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2};$$

(xii) $\overline{\overline{z_1}} = z_1$;

(xiii) $\overline{z_1}z_1$ 是正数, 除非 $z_1=0$.

定义 $|z_1| = \sqrt{\overline{z_1}z_1}$ 称为 z_1 的绝对值 (absolute value).

命题 绝对值适合如下性质:

$$|z_1 z_2| = |z_1||z_2|.$$

定义 设 n 是整数. 若 n = 0, 则说 $z_1^n = 1$. 若 $n \ge 1$, 则说 z_1^n 是 n 个 z_1 的积. 若 $z_1 \ne 0$, 且 $n \le -1$, 则说 z_1^n 是 $\frac{1}{z_1^n}$. z_1^n 的一个名字是 z_1 的 n 次幂 (power).

命题 设 m, n 是非负整数. 幂适合如下性质:

$$z_1^m z_1^n = z_1^{m+n}, \quad (z_1^m)^n = z_1^{mn}, \quad (z_1 z_2)^m = z_1^m z_2^m.$$

若 z_1 与 z_2 都不是 0, 则 m, n 允许取全体整数.

复数就先回顾到这里. 下面回顾算学归纳法.†

评注 算学归纳法 (mathematical induction) 是一种演绎推理.

命题 设 P(n) 是跟整数 n 相关的命题. 设 P(n) 适合:

- (i) $P(n_0)$ 是正确的;
- (ii) 任取 $\ell \geq n_0$, 必有 "若 $P(\ell)$ 是正确的, 则 $P(\ell+1)$ 是正确的"成立. 则任取不低于 n_0 的整数 n, 必有 P(n) 是正确的.

[†]如果读者之前从未接触算学归纳法,那么读者可从本文开始慢慢地熟悉它.

评注 可以这么理解算学归纳法. 假设有一排竖立的砖. 如果 (i) 第一块砖倒下,且 (ii) 前一块砖倒下可引起后一块砖倒下,那么所有的砖都可以倒下,是吧? 由此也可以看出, (i) (ii) 缺一不可. 第一块砖不倒,后面的砖怎么倒下呢?[†] 如果前一块砖倒下时后一块砖不一定能倒下,那么会在某块砖后开始倒不下去.

例 我们试着用算学归纳法证明,对任意正整数 n,

$$P(n)$$
: $0 + 1 + \dots + (n-1) = \frac{n(n-1)}{2}$.

既然想证明对任意正整数 n, P(n) 都成立, 我们取 $n_0=1$. 然后验证 (i): 左边只有 0 这一项, 右边是 $\frac{1\cdot(1-1)}{2}=0$. 所以 (i) 适合.

再验证 (ii). (ii) 是说, 要由 $P(\ell)$ 推出 $P(\ell+1)$. 所以, 假设

$$0+1+\cdots+(\ell-1)=\frac{\ell(\ell-1)}{2},\quad \ell\geq n_0.$$

因为

(IH)
$$\begin{aligned} 0+1+\cdots + (\ell-1) + \ell &= (0+1+\cdots + (\ell-1)) + \ell \\ &= \frac{\ell(\ell-1)}{2} + \ell \\ &= \frac{\ell(\ell-1)}{2} + \frac{\ell \cdot 2}{2} \\ &= \frac{\ell(\ell+1)}{2} \\ &= \frac{(\ell+1)((\ell+1)-1)}{2}, \end{aligned}$$

故我们由 $P(\ell)$ 推出了 $P(\ell+1)$. 我们在哪儿用到了 $P(\ell)$ 呢? 我们在标了 (IH) 的那一行用了 $P(\ell)$. 这样的假设称为归纳假设 (*induction hypothesis*).

既然 (i) (ii) 都适合, 那么任取不低于 $n_0=1$ 的整数 n, P(n) 都对.

我们用二个具体的例说明, (i) (ii) 缺一不可.

例 我们"证明", 对任意正整数 n,

$$P'(n)$$
: $0+1+\cdots+(n-1)=\frac{n(n-1)}{2}+1.$

 $^{^{\}dagger}$ 当然, 也可以从第 n 块砖开始倒下 (n > 1), 但这就照顾不到第一块了.

这里, n_0 自然取 1.

(i) 不适合: 显然 n = 1 时, 左侧是 0 而右侧是 1. 再看 (ii). 假设

$$0+1+\dots + (\ell-1) = \frac{\ell(\ell-1)}{2} + 1, \quad \ell \geq n_0.$$

由于

$$\begin{array}{ll} 0+1+\cdots+(\ell-1)+\ell=(0+1+\cdots+(\ell-1))+\ell\\ &=\frac{\ell(\ell-1)}{2}+1+\ell\\ &=\frac{\ell(\ell-1)}{2}+\frac{\ell\cdot 2}{2}+1\\ &=\frac{\ell(\ell+1)}{2}+1\\ &=\frac{(\ell+1)((\ell+1)-1)}{2}+1, \end{array}$$

故我们由 $P'(\ell)$ "推出"了 $P'(\ell+1)$. 我们也在 ("IH") 处用到了"归纳假设". 那么 P'(n) 就是正确的吗? 当然不是! 前面我们知道,

$$0+1+\dots+(n-1)=\frac{n(n-1)}{2},$$

也就是说, P'(n) 的右侧的"+1"使其错误. 当然, 一般我们很少会犯这样的错误: 毕竟, 一开始就不对的东西就不用看下去了.

- **例** 不同的老婆[†]有着不同的发色. 但是, 我们用算学归纳法却可以"证明", 任意的 $n \ (n \ge 1)$ 个老婆有着相同的发色! 称这个命题为 Q(n). 这里, n_0 自然取 1.
- (i) 当 $n=n_0=1$ 时,一个老婆自然只有一种发色. 这个时候,命题是正确的!
- (ii) 假设任意的 ℓ ($\ell \ge n_0$) 个老婆有着相同的发色! 随意取 $\ell+1$ 个老婆. 根据假设, 老婆 $1, 2, ..., \ell$ 有着相同的发色, 且老婆 $2, ..., \ell, \ell+1$ 有着相

[†]一般地,2次元人会称动画、漫画、游戏、小说中自己喜爱的女性角色为老婆 (waifu). 一个2次元人可以有不止一个老婆. 不过,有些时候,就算某角色 c 是男性角色, c 也可以是某个2次元人的老婆. 关于这一点,读者可参考 Namie 先生 (微博: @bananaNamie; 鸟叫: @namgoreng) 画的一个角色: 水月 (Mizuki).

同的发色. 这二组中都有 $2, ..., \ell$ 这 $\ell-1$ 个老婆, 所以老婆 $1, 2, ..., \ell, \ell+1$ 有着相同的发色!

根据 (i) (ii), 命题成立.

可是这对吗?不对.问题出在 (ii).如果说,任意二个老婆有着相同的发色,那任意三个老婆也有着相同的发色.这没问题.可是,由 Q(1) 推不出 Q(2):老婆 1 与老婆 2 根本就不重叠呀! (ii) 要求任取 $\ell \geq n_0$,必有 $Q(\ell)$ 推出 $Q(\ell+1)$.而 $\ell=1$ 时, (ii) 不对,因此不能推出 Q(n) 对任意正整数都对.

下面是算学归纳法的一个变体.

命题 设 P(n) 是跟整数 n 相关的命题. 设 P(n) 适合:

- (i) $P(n_0)$ 是正确的;
- (ii)' 任取 $\ell \geq n_0$, 必有"若 $\ell n_0 + 1$ 个命题 $P(n_0)$, $P(n_0 + 1)$, …, $P(\ell)$ 都是正确的, 则 $P(\ell + 1)$ 是正确的"成立.

则任取不低于 n_0 的整数 n, 必有 P(n) 是正确的.

评注 可以由下面的推理看出,上面的算学归纳法的变体是正确的.

作命题 Q(n) $(n \ge n_0)$ 为 " $n-n_0+1$ 个命题 $P(n_0), P(n_0+1), \cdots, P(n)$ 都是正确的".

- (i) $P(n_0)$ 是正确的, 所以 $n_0 n_0 + 1$ 个命题 $P(n_0)$ 是正确的, 也就是 $Q(n_0)$ 是正确的.
- (ii) 任取 $\ell \geq n_0$. 假设 $Q(\ell)$ 是正确的, 也就是假设 $\ell n_0 + 1$ 个命题 $P(n_0), P(n_0+1), \cdots, P(\ell)$ 都是正确的. 由 (ii)', $P(\ell+1)$ 是正确的. 所以, $\ell+1-n_0+1$ 个命题 $P(n_0), P(n_0+1), \cdots, P(\ell), P(\ell+1)$ 都是正确的. 换句话说, $Q(\ell+1)$ 是正确的.

由算学归纳法可知, 任取不低于 n_0 的整数 n, 必有 Q(n) 是正确的. 所以, P(n) 是正确的.

另一方面, 若命题 P(n) 适合算学归纳法的条件 (ii), 则它当然适合变体的条件 (ii)'. (读者可思考: 既然 $P(\ell)$ 推出 $P(\ell+1)$, 那么给 $P(\ell)$ "加条件" $P(n_0)$, $P(n_0+1)$, …, $P(\ell-1)$ 是不是也能推出 $P(\ell+1)$? 如果读者仍未理解, 作者举个形象的例: 若 a=b, 则 b=a. a=b 已经能推出 b=a. "若 a=b 且 $a^2=b^2$, $a^3=b^3$, 则 b=a" 是不是也是对的? 当然. 为什么? 因为我们知道, 就算没有 $a^2=b^2$, $a^3=b^3$, b=a 也是对的——这是由 a=b 推出

的, 跟其他的条件无关.) 所以, 若算学归纳法的变体是正确的, 则算学归纳法也是正确的. 换句话说, 算学归纳法与其变体是等价的.

以后, "算学归纳法" 既可以指老的算学归纳法 (由 $P(\ell)$ 推 $P(\ell+1)$), 也可以指变体 (由 $P(n_0)$, $P(n_0+1)$, …, $P(\ell)$ 推 $P(\ell+1)$).

知识就回顾到这里. 开始进入集的世界吧!

集

定义 集 (set) 是具有某种特定性质的对象汇集而成的一个整体, 其对象称为元 (element).

定义 无元的集是空集 (empty set).

评注 一般用小写字母表示元, 大写字母表示集.

定义 一般地, 若集 A 由元 a, b, c, ... 作成, 我们写

$$A=\{\,a,b,c,\cdots\,\}.$$

还有一种记号. 设集 A 是由具有某种性质 p 的对象汇集而成,则记

$$A = \{ x \mid x \text{ possesses the property } p \}.$$

定义 若 a 是集 A 的元, 则写 $a \in A$ 或 $A \ni a$, 说 a 属于 (to belong to) A 或 A 包含 (to contain) a. 若 a 不是集 A 的元, 则写 $a \notin A$ 或 $A \not\ni a$, 说 a 不属于 A 或 A 不包含 a.

例 全体整数作成的集用 $\mathbb{Z}(Zahl)^{\dagger}$ 表示. 它可以写为

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \cdots, n, -n, \cdots\}.$$

例 全体非负整数作成的集用 N (natural) 表示. 它可以写为

$$\mathbb{N} = \{ x \mid x \in \mathbb{Z} \text{ and } x \ge 0 \}.$$

为了方便, 也可以写为

$$\mathbb{N} = \{ x \in \mathbb{Z} \mid x \ge 0 \}.$$

[†]A German word which means *number*.

定义 若任取 $a \in A$, 都有 $a \in B$, 则写 $A \subset B$ 或 $B \supset A$, 说 $A \not\in B$ 的子集 (subset) 或 $B \not\in A$ 的超集 (superset). 假如有一个 $b \in B$ 不是 A 的元, 可以用 "真" (proper) 形容之.

例 空集是任意集的子集. 空集是任意不空的集的真子集.

例 全体有理数作成的集用 \mathbb{Q} (quotient) 表示. 因为整数是有理数, 所以 $\mathbb{Z} \subset \mathbb{Q}$. 因为有理数 $\frac{1}{2}$ 不是整数, 我们说 \mathbb{Z} 是 \mathbb{Q} 的真子集.

定义 全体实数作成的集用 ℝ (real) 表示.

定义 全体复数作成的集用 C (complex) 表示. 不难看出,

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
.

定义 \mathbb{F} (*field*) 可表示 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意一个. 不难看出, \mathbb{F} 适合这几条:

- (i) $0 \in \mathbb{F}, 1 \in \mathbb{F}, 0 \neq 1$;
- (ii) 任取 $x, y \in \mathbb{F}$ $(y \neq 0)$, 必有 $x y, \frac{x}{y} \in \mathbb{F}$.

后面会见到稍详细的论述.

定义 设 L 是 C, R, Q, Z, N, F 的任意一个. L* 表示 L 去掉 0 后得到的集. 不难看出, L 是 L* 的真超集.

定义 若集 A = B 包含的元完全一样, 则 A = B 是同一集. 我们说 A = B 是 B = B 是然

$$A = B \iff A \subset B \text{ and } B \subset A.$$

定义 集 A 与 B 的交 (intersection) 是集

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}.$$

也就是说, $A \cap B$ 恰由 $A \ni B$ 的公共元作成.

集 A 与 B 的并 (union) 是集

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}.$$

也就是说, $A \cup B$ 恰包含 $A \ni B$ 的全部元.

类似地, 可定义多个集的交与并.

定义 设 A, B 是集. 定义

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}.$$

 $A \times A$ 可简写为 A^2 . 类似地,

$$A \times B \times C = \{ (a, b, c) \mid a \in A, b \in B, c \in C \}, A^3 = A \times A \times A.$$

例 设
$$A = \{1, 2\}, B = \{3, 4, 5\}.$$
 则

$$A \times B = \{ (1,3), (1,4), (1,5), (2,3), (2,4), (2,5) \}.$$

而

$$B \times A = \{ (3,1), (3,2), (4,1), (4,2), (5,1), (5,2) \}.$$

评注 一般地, $A \times B \neq B \times A$. 假如 A, B 各自有 m, n 个元, 利用一点计数知识可以看出, $A \times B$ 有 mn 个元.

函数

定义 假如通过一个法则 f, 使任取 $a \in A$, 都能得到唯一的 $b \in B$, 则说这个法则 f 是集 A 到集 B 的一个函数 (function). 元 b 是元 a 在函数 f 下的象 (image). 元 a 是元 b 在 f 下的一个原象 ($inverse\ image$). 这个关系可以写为

$$f$$
: $A \to B$, $a \mapsto b = f(a)$.

称 A 是定义域 (domain), B 是陪域[†] (codomain).

 † 不要混淆陪域与象集 (image, range). f 的象集是

Im
$$f = \{ b \in B \mid b = f(a), a \in A \}.$$

这就是中学算学里的"值域".

13

例 可以把 \mathbb{R}^2 看作平面上的点集.

$$f$$
:
$$\mathbb{R}^2 \to \mathbb{R},$$

$$(x,y) \mapsto \sqrt{x^2 + y^2}$$

是函数: 它表示点 (x,y) 到点 (0,0) 的距离.

例 设

$$A = \{ \text{dinner, bath, me} \}, \quad B = \{ 0, 1 \}.$$

法则

$$f_1$$
: dinner $\mapsto 0$, bath $\mapsto 1$

不是 A 到 B 的函数,因为它没有为 A 的元 me 规定象. 但是,如果记 $A_1 = \{ \text{dinner}, \text{bath} \}$,这个 f_1 可以是 A_1 到 B 的函数. 法则

$$f_2\colon & {\rm dinner}\mapsto 0,$$

$${\rm bath}\mapsto 1,$$

$${\rm me}\mapsto b \quad {\rm where}\ b^2=b$$

不是 A 到 B 的函数, 因为它给 A 的元 me 规定的象不唯一. 法则

$$f_3$$
: dinner $\mapsto 0$, bath $\mapsto 1$, me $\mapsto -1$

不是 A 到 B 的函数, 因为它给 A 的元 me 规定的象不是 B 的元. 但是, 如果记 $B_1 = \{-1,0,1\}$, 这个 f_3 可以是 A 到 B_1 的函数.

定义 设 f_1 与 f_2 都是 A 到 B 的函数. 若任取 $a \in A$, 必有 $f_1(a) = f_2(a)$, 则说这二个函数相等, 写为 $f_1 = f_2$.

例 设 $A \subset \mathbb{C}$, 且 A 非空. 定义二个 A 到 \mathbb{C} 的函数: $f_1(x) = x^2$, $f_2(x) = |x|^2$. 如果 $A = \mathbb{R}$, 那么 $f_1 = f_2$. 可是, 若 $A = \mathbb{C}$, f_1 与 f_2 不相等.

例 设 A 是全体正实数作成的集. 定义二个 A 到 $\mathbb R$ 的函数: $f_1(x) = \frac{1}{6}\log_2 x^3$, $f_2(x) = \log_4 x$. 知道对数的读者可以看出, f_1 与 f_2 有着相同的对应法则, 故 $f_1 = f_2$. 因为 f_2 是对数函数 (logarithmic function), 所以 f_1 也是. \dagger

评注 在语境清楚的情况下,可以单说函数的对应法则. 比如,中学算学课说"2次函数 $f(x)=x^2+x-1$ "时,定义域与陪域默认都是 \mathbb{R} . 中学的函数一般都是实数的子集到实数的子集的函数. 所谓"自然定义域"是指(在一定范围内)一切使对应法则有意义的元构成的集. 比如,在中学,我们说 $\frac{1}{x}$ 的自然定义域是 \mathbb{R}^* , \sqrt{x} 的自然定义域是一切非负实数. 在研究复变函数时,我们说 $\frac{1}{z}$ 的自然定义域是 \mathbb{C}^* . 如果不明确函数的定义域,我们会根据语境作出自然定义域作为它的定义域.

定义 A 到 A 的函数是 A 的变换 (transform). 换句话说, 变换是定义域跟陪域一样的函数.

二元运算

定义 A^2 到 A 的函数称为 A 的二元运算 (binary function).

例 设 f(x,y) = x - y. 这个 $f \in \mathbb{Z}$ 的二元运算; 但是, 它不是 \mathbb{N} 的二元运算.

评注 设。是 A 的二元运算. 代替。(x,y), 我们写 $x \circ y$. 一般地, 若表示这个二元运算的符号不是字母, 我们就把这个符号写在二个元的中间.

定义 设 T(A) 是全部 A 的变换作成的集. 设 f,g 是 A 的变换. 任取 $a \in A$,当然有 $b = f(a) \in A$. 所以, g(b) = g(f(a)) 也是 A 的元. 当然, 这个 g(f(a)) 也是唯一确定的. 这样, 我们说, f 与 g 的复合 (composition) $g \circ f$ 是

$$g \circ f$$
: $A \to A$, $a \mapsto g(f(a))$.

[†]如果读者没学过对数,可放心地跳过本例哟!

15

所以, 复合是 T(A) 的二元运算:

$$T(A)\times T(A)\to T(A),$$

$$(g,f)\mapsto g\circ f.$$

评注 设 A 有有限多个元. 此时, 可排出 A 的元:

$$A=\{\,a_1,a_2,\cdots,a_n\,\}.$$

设 f 是 A^2 到 B 的函数. 则任给整数 $i,j,1 \leq i,j \leq n$, 记

$$f(a_i, a_j) = b_{i,j} \in B.$$

可以用这样的表描述此函数:

有的时候, 为了强调函数名, 可在左上角书其名:

这种表示函数的方式是方便的. 如果这些 $b_{i,j}$ 都是 A 的元, 就说这张表是 A 的运算表.

例 设 $T = \{0, 1, -1\}, \circ(x, y) = xy$. 不难看出, 。确实是 T 的二元运算. 它的运算表如下:

$$\begin{array}{c|cccc} & 0 & 1 & -1 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 \\ -1 & 0 & -1 & 1 \\ \end{array}$$

例 设 \mathbb{F}_{nu} 是将 \mathbb{F} 去掉 0,1 后得到的集 † . 看下列 6 个法则:

$$\begin{array}{lll} f_0\colon & x\mapsto x;\\ f_1\colon & x\mapsto 1-x;\\ f_2\colon & x\mapsto \frac{1}{x};\\ f_3\colon & x\mapsto 1-\frac{1}{1-x};\\ f_4\colon & x\mapsto 1-\frac{1}{x};\\ f_5\colon & x\mapsto \frac{1}{1-x}. \end{array}$$

记 $S_6 = \{f_0, f_1, f_2, f_3, f_4, f_5\}$. 可以验证, $S_6 \subset T(\mathbb{F}_{nu})$.

进一步地, 36 次复合告诉我们, 任取 $f,g\in S_6$, 必有 $g\circ f\in S_6$. 可以验证, 这是 S_6 的 (复合) 运算表:

我们在本节会经常用 S_6 举例.

定义 设。是 A 的二元运算. 若任取 $x, y, z \in A$, 必有

$$(x \circ y) \circ z = x \circ (y \circ z),$$

则说 f 适合结合律 (associativity). 此时, $(x\circ y)\circ z$ 或 $x\circ (y\circ z)$ 可简写为 $x\circ y\circ z$.

例 ℤ的加法当然适合结合律. 可是, 它的减法不适合结合律.

 $^{^{\}dagger}$ 这个 \mathbb{F}_{nu} 只是临时记号: nu 表示 nil, unity.

评注 变换的复合适合结合律. 确切地, 设 f,g,h 都是 A 的变换. 任取 $a \in A$, 则

$$(h\circ (g\circ f))(a)=h((g\circ f)(a))=h(g(f(a))),$$

$$((h\circ g)\circ f)(a)=(h\circ g)(f(a))=h(g(f(a))).$$

也就是说,

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

例 S_6 的复合当然适合结合律.

定义 设。是 A 的二元运算. 若任取 $x, y \in A$, 必有

$$x \circ y = y \circ x$$
,

则说。适合交换律 (commutativity).

例 F* 的乘法当然适合交换律. 可是, 它的除法不适合交换律.

例 S_6 的复合不适合交换律, 因为 $f_1 \circ f_2 = f_4$, 而 $f_2 \circ f_1 = f_5$, 二者不相等.

评注 在本文里, · 运算的优先级 (priority) 高于 + 运算. 所以, $a \cdot b + c$ 的意思就是

$$(a \cdot b) + c$$
,

而不是

$$a \cdot (b+c)$$
.

定义 设 +, · 是 A 的二个二元运算. 若任取 $x, y, z \in A$, 必有

(LD)
$$x \cdot (y+z) = x \cdot y + x \cdot z,$$

则说 + 与·适合左(·)分配律[†] (left distributivity). 类似地, 若

(RD)
$$(y+z) \cdot x = y \cdot x + z \cdot x,$$

[†]在不引起歧义时, 括号里的内容可省略. 或者这么说: 当我们说 +, ·适合分配律时, 我们不会理解为 $x+(y\cdot z)=(x+y)\cdot (x+z)$. 但有意思的事儿是, 如果把 + 理解为并, ·理解为交, x,y,z 理解为集, 那这个式是对的. 当然, $x\cdot (y+z)=x\cdot y+x\cdot z$ 也是对的.

查考整式

则说 + 与 · 适合右 (\cdot) 分配律 $(right\ distributivity)$. 说既适合 LD 也适合 RD 的 + 与 · 适合 (\cdot) 分配律 (distributivity). 显然, 若 · 适合交换律, 则 LD 与 RD 等价.

例 F 的加法与乘法适合分配律. 当然, 减法与乘法也适合分配律:

$$x(y-z) = xy - xz = yx - zx = (y-z)x.$$

甚至, 在正实数里, 加法与除法适合右分配律:

$$\frac{y+z}{r} = \frac{y}{r} + \frac{z}{r}.$$

定义 设。是 A 的二元运算. 若任取 $x, y, z \in A$, 必有

$$(LC) x \circ y = x \circ z \implies y = z,$$

则说。适合左消去律 (left cancellation property). 类似地, 若

$$(RC) x \circ z = y \circ z \implies x = y,$$

则说。适合右消去律 (right cancellation property). 说既适合 LC 也适合 RC 的。适合消去律 (cancellation property). 显然, 若。适合交换律, 则 LC 与 RC 等价.

例 显然, \mathbb{N} 的乘法不适合消去律, \mathbb{N} 的乘法适合消去律 † .

例 考虑 $x \circ y = x^3 + y^2$. 若把。视为 N 的二元运算, 那么它适合消去律. 若把。视为 Q 的二元运算, 那么它适合右消去律. 若把。视为 C 的二元运算, 那么它不适合任意一个消去律.

例 一般地, 当 A 至少有二个元时, 。(在 T(A) 里) 不适合消去律. 设 $a,b\in A, a\neq b$. 考虑下面 4 个变换:

$$g_0$$
: $a \mapsto a, \quad b \mapsto b, \quad x \mapsto x \text{ where } x \neq a, b;$

$$g_1$$
: $a \mapsto a, \quad b \mapsto a, \quad x \mapsto x \text{ where } x \neq a, b;$

$$g_2$$
: $a \mapsto b, \quad b \mapsto b, \quad x \mapsto x \text{ where } x \neq a, b;$

$$g_3$$
: $a \mapsto b, \quad b \mapsto a, \quad x \mapsto x \text{ where } x \neq a, b.$

[†]后面提到整环时, 我们会稍微修改一下消去律的描述.

[‡]考虑复数 $-\frac{1}{2}+i\frac{\sqrt{3}}{2}$; 它的立方是 1. 现在, 或许这个例有点难; 不过, 当读者学到后面时, 或许读者会对此有更深的理解吧!

19

可以验证,

$$g_3 \circ g_1 = g_2 \circ g_1 = g_2 \circ g_3 = g_2.$$

由此可以看出,。不适合任意一个消去律.

例 我们看。在 S_6 里是否适合消去律. 取 $f,g,h \in S_6$. 由表易知, 当 $g \neq h$ 时, $f \circ g \neq f \circ h$ (横着看运算表), 且 $g \circ f \neq h \circ f$ (竖着看运算表). 这 说明, 。在 $T(\mathbb{F}_{nu})$ 的子集 S_6 里适合消去律.

定义 设。是 A 的二元运算. 若存在 $e \in A$, 使若任取 $x \in A$, 必有

$$e \circ x = x \circ e = x$$
,

则说 $e \in A$ 的 (关于运算。的) 幺 (identity). 如果 e' 也是幺, 则

$$e = e \circ e' = e'$$
.

例 \mathbb{F} 的加法的幺是 0, 且其乘法的幺是 1.

例 不难看出, 这个变换是 T(A) 的么:

 ι : $A \to A$,

 $a \mapsto a$.

它也有个一般点的名字: 恒等变换 (*identity transform*). 在 S_6 里, f_0 就是这里的 ι .

定义 设。是 A 的二元运算. 设 e 是 A 的么. 设 $x \in A$. 若存在 $y \in A$, 使

$$y \circ x = x \circ y = e$$
,

则说 y 是 x 的 (关于运算。的) 逆 (inverse).

例 F 的每个元都有加法逆, 即其相反数.

评注 设。适合结合律. 如果 y, y' 都是 x 的逆, 则

$$y = y \circ e = y \circ (x \circ y') = (y \circ x) \circ y' = e \circ y' = y'.$$

此时, 一般用 x^{-1} 表示 x 的逆. 因为

$$x^{-1} \circ x = x \circ x^{-1} = e$$
.

由上可知, x^{-1} 也有逆, 且 $(x^{-1})^{-1} = x$.

例 一般地, 当 A 至少有二个元时, T(A) 既有有逆的变换, 也有无逆的变换. 还是看前面的 g_0 , g_1 , g_2 , g_3 . 首先, g_0 是幺 ι . 不难看出, g_0 与 g_3 都有逆:

$$g_0 \circ g_0 = g_3 \circ g_3 = g_0.$$

不过, g_1 不可能有逆. 假设 g_1 有逆 h, 则应有

$$(h \circ g_1)(a) = \iota(a) = a, \quad (h \circ g_1)(b) = \iota(b) = b.$$

可是, $g_1(a)=g_1(b)=a$, 故 $(h\circ g_1)(a)=(h\circ g_1)(b)=h(a)$, 它不能既等于 a 也等于 b, 矛盾!

例 再看 S_6 . 由表可看出, f_0 , f_1 , f_2 , f_3 , f_4 , f_5 的逆分别是 f_0 , f_1 , f_2 , f_3 , f_5 , f_4 .

评注 设。适合结合律. 如果 x, y 都有逆, 那么 $x \circ y$ 也有逆, 且

$$(x\circ y)^{-1} = y^{-1}\circ x^{-1}.$$

为了说明这一点, 只要按定义验证即可:

$$(y^{-1} \circ x^{-1}) \circ (x \circ y) = y^{-1} \circ (x^{-1} \circ x) \circ y = y^{-1} \circ e \circ y = y^{-1} \circ y = e,$$

$$(x \circ y) \circ (y^{-1} \circ x^{-1}) = x \circ (y \circ y^{-1}) \circ x^{-1} = x \circ e \circ x^{-1} = x \circ x^{-1} = e.$$

这个规则往往称为袜靴规则 (socks and shoes rule): 设 y 是穿袜, x 是穿靴, $x \circ y$ 表示动作的复合: 先穿袜后穿靴. 那么这个规则告诉我们, $x \circ y$ 的逆就是先脱靴再脱袜.

评注 由此可见, 结合律是一条很重要的规则. 我们算 $63 \cdot 8 \cdot 125$ 时也 会想着先算 $8 \cdot 125$.

半群与群

定义 设 S 是非空集. 设。是 S 的二元运算. 若。适合结合律,则称 S (关于。) 是半群 (semi-group).

例 № 关于加法 (或乘法) 作成半群.

例 T(A) 关于。作成半群.

评注 事实上, 这里要求 S 非空是有必要的.

首先, 空集没什么意思. 其次, 前面所述的结合律、交换律、分配律等自动成立, 这是因为对形如"若 p, 则 q"的命题而言, p 为假推出整个命题为真. 这是相当"危险"的!

定义 设 m 是正整数. 设 x 是半群 S 的元. 令

$$x^1 = x, \quad x^m = x \circ x^{m-1}.$$

 x^m 称为 x 的 m 次幂. 不难看出, 当 m, n 都是正整数时,

$$x^{m+n} = x^m \circ x^n, \quad (x^m)^n = x^{mn}.$$

假如 S 有二个元 x, y 适合 $x \circ y = y \circ x$, 那么还有

$$(x \circ y)^m = x^m \circ y^m.$$

例 还是看熟悉的 №. 对于乘法而言, 这里的幂就是普通的幂——一个数自乘多次的结果. 对于加法而言, 这里的幂相当于乘法——一个数自加多次的结果.

定义 设 G 关于。是半群. 若 G 的关于。的幺存在, 且 G 的任意元都有关于。的逆, 则 G 是群 (group).

例 \mathbb{N} 关于加法 (或乘法) 不能作成群. \mathbb{Z} 关于加法作成群, 但关于乘法不能作成群. \mathbb{F} 关于乘法不能作成群, 但 \mathbb{F}^* 关于乘法作成群. 不过, \mathbb{F}^* 关于加法不能作成群.

例 T(A) 一般不是群. 不过, S_6 是群.

评注 群有唯一的么. 群的每个元都有唯一的逆.

评注 设 G 关于。是群. 我们说,。适合消去律. 假如 $x \circ y = x \circ z$. 二侧左边乘 x 的逆 x^{-1} , 就有

$$x^{-1} \circ (x \circ y) = x^{-1} \circ (x \circ y).$$

由于。适合结合律,

$$(x^{-1} \circ x) \circ y = (x^{-1} \circ x) \circ y.$$

也就是

$$e \circ y = e \circ z$$
.

这样, y = z. 类似地, 用同样的方法可以知道, 右消去律也对.

定义 已经知道, 群的每个元 x 都有逆 x^{-1} . 由此, 当 m 是正整数时, 定义 $x^{-m} = (x^{-1})^m$. 再定义 $x^0 = e$. 利用半群的结果, 可以看出, 当 m, n 都是整数时,

$$x^{m+n} = x^m \circ x^n, \quad (x^m)^n = x^{mn}.$$

假如 G 有二个元 x, y 适合 $x \circ y = y \circ x$, 那么还有

$$(x \circ y)^m = x^m \circ y^m.$$

例 对于 \mathbb{F}^* 的乘法而言, 这里的任意整数幂跟普通的整数幂没有任何 区别. 我们学习数的负整数幂的时候, 也是借助倒数定义的.

子群

定义 设 G 关于。是群. 设 $H \subset G$, H 非空. 若 H 关于。也作成群, 则 H 是 G 的子群 (subgroup).

例 对加法来说, \mathbb{Z} 是 \mathbb{F} 的子群. 对乘法来说, \mathbb{Z}^* 不是 \mathbb{F}^* 的子群.

评注 设 $H \subset G$, H 非空. H 是 G 的子群的一个必要与充分条件是: 任取 $x, y \in H$, 必有 $x \circ y^{-1} \in H$.

怎么说明这一点呢? 先看充分性. 任取 $x \in H$, 则 $e = x \circ x^{-1} \in H$. 任 取 $y \in H$, 则 $y^{-1} = e \circ y^{-1} \in H$. 所以

$$x\circ y=x\circ (y^{-1})^{-1}\in H.$$

。在 G 适合结合律, $H \subset G$, 所以。作为 H 的二元运算也适合结合律. 至此, H 是半群.

前面已经说明, $e \in H$, 所以 H 的关于。的幺存在. 进一步地, $x \in H$ 在 G 里的逆也是 H 的元, 所以 H 的任意元都有关于。的逆. 这样, H 是群. 顺便一提, 我们刚才也说明了, G 的幺也是 H 的幺, 且 H 的元在 G 里的逆也是在 H 里的逆.

再看必要性. 假设 H 是一个群. 任取 $x,y \in H$, 我们要说明 $x \circ y^{-1} \in H$. 看上去有点显然呀! H 是群, 所以 y 有逆 y^{-1} , 又因为 \circ 是 H 的二元运算, $x \circ y^{-1} \in H$. 不过要注意一个细节. 我们说明充分性时, y^{-1} 被认为是 y 在 G 里的逆; 可是, 刚才的论证里 y^{-1} 实则是 y 在 H 里的逆. 大问题! 怎么解决呢? 如果我们说明 y 在 H 里的逆也是 y 在 G 里的逆, 那这个漏洞就被修复了.

我们知道, H 有幺 e_H , 所以 $e_H \circ e_H = e_H$. e_H 是 G 的元, 所以 e_H 在 G 里有逆 $(e_H)^{-1}$. 这样,

$$\begin{split} e_H &= e \circ e_H \\ &= ((e_H)^{-1} \circ e_H) \circ e_H \\ &= (e_H)^{-1} \circ (e_H \circ e_H) \\ &= (e_H)^{-1} \circ e_H \\ &= e. \end{split}$$

取 $y \in H$. y 在 H 里有逆 z, 即

$$z \circ y = y \circ z = e_H = e.$$

y, z 都是 G 的元. 这样, 根据逆的唯一性, z 自然是 y 在 G 里的逆.

加群

定义 若 G 关于名为 + 的二元运算作成群, 幺 e 读作 "零元" 写作 0, $x \in G$ 的逆 x^{-1} 读作 "x 的相反元" 写作 -x, 且 + 适合交换律, 则说 G 是加群 (additive group). 相应地, "元的幂" 也应该改为 "元的倍": x^m 写为 mx. 用加法的语言改写前面的幂的规则, 就得到了倍的规则: 对任意 $x,y \in G$, $m,n \in \mathbb{Z}$, 有

$$(m+n)x = mx + nx,$$

$$m(nx) = (mn)x,$$

$$m(x+y) = mx + my.$$

顺便一提, 在这种记号下, x-y 是 x+(-y) 的简写. 并且

$$x + y = x + z \implies y = z$$
.

由于这里的加法适合交换律, 直接换位就是右消去律. 前面说, 若运算适合结合律, 则 x 的逆的逆还是 x. 这句话用加法的语言写, 就是

$$-(-x) = x$$
.

前面的"袜靴规则"就是

$$-(x+y) = (-y) + (-x) = (-x) + (-y) = -x - y.$$

这就是熟悉的去括号法则,这里体现了交换律的作用,

评注 初见此定义可能会觉得有些混乱:怎么"倒数"又变为"相反数"了?其实这都是借鉴已有写法.前面,。虽然不是·,但这个形状暗示着乘法,因此有 x^{-1} 这样的记号;现在,运算的名字是 +,自然要根据形状作出相应的改变.其实,这里"名为 +""零元""相反元"都不是本质——换句话说,还是可以用老记号.不过,我们主要接触至少与二种运算相关联的结构——整环与域,所以用二套记号、名字是有必要的.

评注 前面的 $x^0 = e$ 在加群里变为 0x = 0. 看上去 "很普通", 不过左 边的 0 是整数, 右边的 0 是加群的零元, 二者一般不一样!

例 显而易见, \mathbb{Z} , \mathbb{F} 都是加群.

M S_6 不是加群, 因为它的二元运算不适合交换律.

评注 类似地,可以定义子加群 $(sub\text{-}additive\ group)$. 这里,就直接用等价刻画来描述它: "G 的非空子集 H 是加群 G 的子加群的一个必要与充分条件是: 任取 $x,y\in H$, 必有 $x-y\in H$."

和

定义 设 f 是 \mathbb{Z} 的非空子集 S 到加群 G 的函数. 设 p, q 是二个整数. 如果 p < q, 则记

$$\sum_{j=p}^{q} f(j) = f(p) + f(p+1) + \dots + f(q).$$

也就是说, $\sum_{j=p}^q f(j)$ 就是 q-(p-1) 个元的和的一种简洁的表示法. 如果 p>q, 约定 $\sum_{j=p}^q f(j)=0$.

例 我们已经知道, $n \ge 0$ 时

$$0+1+\dots+(n-1)=\frac{n(n-1)}{2}.$$

用 ∑ 写出来, 就是

$$\sum_{k=0}^{n-1} k = \frac{n(n-1)}{2}.$$

这里的 k 是所谓的 "dummy variable". 所以

$$\sum_{i=0}^{n-1} j = \sum_{k=0}^{n-1} k = \sum_{\ell=0}^{n-1} \ell = \frac{n(n-1)}{2}.$$

例 f 可以是常函数:

$$\sum_{t=p}^{q} 1 = \begin{cases} q-p+1, & q \ge p; \\ 0, & q < p. \end{cases}$$

例 设 f 与 g 是 \mathbb{Z} 的非空子集 S 到加群 G 的函数. 因为加群的加法适合结合律与交换律, 所以

$$\sum_{j=p}^{q} (f(j) + g(j)) = \sum_{j=p}^{q} f(j) + \sum_{j=p}^{q} g(j).$$

评注 设 f(i,j) 是 \mathbb{Z}^2 的非空子集到加群 G 的函数. 记

$$S_C = \sum_{j=p}^q \sum_{i=m}^n f(i,j), \quad S_R = \sum_{i=m}^n \sum_{j=p}^q f(i,j),$$

其中 $q \ge p, n \ge m$. $\sum_{i=m}^{n} f(i,j)$ 是何物? 暂时视 i 之外的变元为常元, 则

$$\sum_{i=m}^{n} f(i,j) = f(m,j) + f(m+1,j) + \dots + f(n,j).$$

 $\sum_{j=p}^{q} \sum_{i=m}^{n} f(i,j)$ 是 $\sum_{j=p}^{q} \left(\sum_{i=m}^{n} f(i,j) \right)$ 的简写:

$$\sum_{j=p}^{q} \sum_{i=m}^{n} f(i,j) = \sum_{i=m}^{n} f(i,p) + \sum_{i=m}^{n} f(i,p+1) + \dots + \sum_{i=m}^{n} f(i,q).$$

 $\sum_{i=m}^n \sum_{j=p}^q f(i,j)$ 有着类似的解释. 我们说, S_C 一定与 S_R 相等. 记

$$C_j = \sum_{i=m}^n f(i,j), \quad R_i = \sum_{j=p}^q f(i,j).$$

考虑下面的表:

由此, 不难看出, S_C 与 S_R 只是用不同的方法将 (n-m+1)(q-p+1) 个元相加罢了.

评注 上面的例其实就是一个特殊情形 (n-m+1=2).

环

定义 设 R 是加群. 设 \cdot (读作 "乘法") 也是 R 的二元运算. 假设

- (i). 适合结合律;
- (ii) + 与·适合·分配律.

我们说 R (关于 + 与 ·) 是环 (ring).

评注 在不引起歧义的情况下,可省去 \cdot . 例如, $a \cdot b$ 可写为 ab.

例 ℤ, F (关于普通加法与乘法) 都是环.

例 全体偶数作成的集也是环. 一般地, 设 k 是整数, 则全体 nk ($n \in \mathbb{Z}$) 作成的集是环.

例 这里举一个 "平凡的" (trivial) 例. N 只有一个元 0. 可以验证, N 关于普通加法与乘法作成群. 这也是 "最小的环". 在上个例里, 取 k=0 就是 N.

例 这里举一个 "不平凡的" (nontrivial) 例. 设 $R = \{0, a, b, c\}$. 加法和乘法由以下二个表给定:

+	0	a	b	c	•	0	a	b	c
0	0	a	b	c	0	0	0	0	0
a	a	0	c	b	a	0	0	0	0
		c			b	0	a	b	c
	1	b			c	0	a	b	c

可以验证, 这是一个环.

评注 我们看一下环的简单性质.

已经知道, R 的任意元的 "整数 0 倍" 是 R 的零元. 不禁好奇, 零元乘任意元会是什么结果. 首先, 回想起, R 的零元适合 0+0=0. 利用分配律, 当 $x \in R$ 时,

$$0x = (0+0)x = 0x + 0x.$$

我们知道, 加法适合消去律. 所以

$$0 = 0x$$
.

类似地, x0 = 0. 也许有点眼熟? 但是这里左右二侧的 0 都是 R 的元, 不一定是数!

因为

$$xy + (-x)y = (x - x)y = 0,$$

 $xy + x(-y) = x(y - y) = 0,$

所以

$$(-x)y = x(-y) = -xy.$$

从而

$$(-x)(-y) = -(x(-y)) = -(-xy) = xy.$$

根据分配律,

$$x(y_1+\cdots y_n)=xy_1+\cdots+xy_n,$$

$$(x_1+\cdots+x_m)y=x_1y+\cdots+x_my.$$

二式联合, 就是

 $(x_1 + \dots + x_m)(y_1 + \dots + y_n) = x_1y_1 + \dots + x_1y_n + \dots + x_my_1 + \dots + x_my_n.$

利用 ∑ 符号, 此式可以写为

$$\left(\sum_{i=1}^m x_i\right) \left(\sum_{j=1}^n y_j\right) = \sum_{i=1}^m \sum_{j=1}^n x_i y_j.$$

所以, 若 n 是整数, $x, y \in R$, 则

$$(nx)y = n(xy) = x(ny).$$

对于正整数 m, n 与 R 的元 x, 有

$$x^{m+n}=x^mx^n,\quad (x^m)^n=x^{mn}.$$

假如 R 有二个元 x, y 适合 xy = yx, 那么还有

$$(xy)^m = x^m y^m.$$

29

例 在 Z, F 里, 这些就是我们熟悉的 (部分的) 数的运算律.

评注 类似地,可以定义子环 (subring). 这里,就直接用等价刻画来描述它: "R 的非空子集 S 是环 R 的子环的一个必要与充分条件是: 任取 $x,y\in S$,必有 $x-y\in S$, $xy\in S$."

定义 设 R 是环. 假设任取 $x, y \in R$, 必有 xy = yx, 就说 R 是交换环 (commutative ring).

评注 以后接触的环都是交换环.

整环

定义 设 D 是环. 假设

- (i) 任取 $x, y \in D$, 必有 xy = yx;
- (ii) 存在 $1 \in D$, $1 \neq 0$, 使任取 $x \in D$, 必有 1x = x1 = x;
- (iii) · 适合 "消去律变体"[†]: 若 xy = xz, $x \neq 0$, 则 y = z.

我们说 D (关于 + 与 ·) 是整环 (domain, integral domain).

例 \mathbb{Z} , \mathbb{F} 都是整环. 当然, 也有介于 \mathbb{Z} 与 \mathbb{F} 之间的整环. 假如 $s \in \mathbb{C}$ 的平方是整数, 那么全体形如 x + sy $(x, y \in \mathbb{Z})$ 的数作成一个整环.

例 看一个有限整环的例. 设 V (Vierergruppe) ‡ 是 4 元集:

$$V = \{0, 1, \tau, \tau^2\}.$$

加法与乘法由下面的运算表决定:

+	0	1	au	$ au^2$	
0	0	1	au	$ au^2$	
1	1	0	$ au^2$	au	
au	τ	$ au^2$	0	1	
$ au^2$	$ au^2$	$1 \\ 0 \\ \tau^2 \\ \tau$	1	0	

			au	
0	0	0	0	0
1	0	1	au	$ au^2$
$ au^2$	0	au	$ au^2$	1
$ au^2$	0	$ au^2$	0 τ τ^2 1	au

[†]一般地,这也可称为消去律.

[‡]A German word which means *four-group*.

可以验证, V 不但是一个环, 它还适合整环定义的条件 (i) (ii) (iii). 因此, V 是整环.

在 V = 1, 1 + 1 = 0, 这跟平常的加法有点不一样. 换句话说, 这里的 0 跟 1 已经不是我们熟悉的数了.

评注 整环 D 有乘法幺 1. 因为 D 是加群, 1 当然有相反元 -1. 任取 $a \in D$. 根据分配律,

$$0 = 0a = (1 + (-1))a = 1a + (-1)a = a + (-1)a.$$

又因为 a 的相反元 -a 适合

$$0 = a + (-a),$$

故由 (加法) 消去律知 -a = (-1)a.

例 全体偶数作成的集是交换环, 却不是整环.

例 再来看一个非整环例. 考虑 \mathbb{Z}^2 . 设 $a,b,c,d \in \mathbb{Z}$. 规定

$$(a,b) = (c,d) \iff a = b \text{ and } c = d,$$

 $(a,b) + (c,d) = (a+b,c+d),$
 $(a,b)(c,d) = (ac,bd).$

可以验证,在这二种运算下, \mathbb{Z}^2 作成一个交换环,其加法、乘法幺分别是(0,0),(1,1).可是

$$(1,0) \neq (0,0), \quad (0,1) \neq (0,-1), \quad (1,0)(0,1) = (1,0)(0,-1).$$

也就是说, 乘法不适合消去律.

评注 可是, 如果这么定义乘法, 那么 \mathbb{Z}^2 可作为一个整环:

$$(a,b)(c,d) = (ac - bd, ad + bc).$$

事实上, 这就是复数乘法, 因为

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc).$$

评注 整环 D 有乘法幺 1. 任取 $a \in D$. 我们定义

$$a^0 = 1$$
.

我们已经知道, 当 m, n 是正整数, $x \in D$ 时,

$$x^m x^n = x^{m+n}, \quad (x^m)^n = x^{mn}.$$

现在, 当 m, n 是非负整数时, 上面的关系仍成立. 并且, 既然 D 的乘法适合交换律, 那么任取 x, $y \in D$, 必有

$$(xy)^m = x^m y^m,$$

m 可以是非负整数.

评注 类似地,可以定义子整环 (subdomain). 这里,就直接用前面的等价刻画来描述它: "D 的非空子集 S 是整环 D 的子整环的一个必要与充分条件是: (i) $1 \in S$; (ii) 任取 $x, y \in S$, 必有 $x - y \in S$, $xy \in S$."

例 设 $D \subset \mathbb{C}$, 且 D 是整环. 不难看出, $\mathbb{Z} \subset D$.

积

定义 设 f 是 \mathbb{Z} 的非空子集 S 到整环 D 的函数. 设 p, q 是二个整数. 如果 $p \leq q$, 则记

$$\prod_{j=p}^{q} f(j) = f(p) \cdot f(p+1) \cdot \dots \cdot f(q).$$

也就是说, $\prod_{j=p}^q f(j)$ 就是 q-(p-1) 个元的积的一种简洁的表示法. 如果 p>q, 约定 $\prod_{j=p}^q f(j)=1$.

定义 设 n 是正整数. 那么 1, 2, ..., n 的积是 n 的阶乘 (factorial):

$$n! = \prod_{j=1}^{n} j.$$

顺便约定 0! = 1.

评注 不难看出, 当 n 是正整数时,

$$n! = n \cdot (n-1)!.$$

例 不难验证,下面是0至9的阶乘:

$$0! = 1,$$
 $1! = 1,$ $2! = 2,$ $3! = 6,$ $4! = 24,$ $5! = 120,$ $6! = 720,$ $7! = 5040,$ $8! = 40320,$ $9! = 362880.$

评注 因为整环的乘法也适合结合律与交换律,所以

$$\begin{split} &\prod_{j=p}^q (f(j)\cdot g(j)) = \prod_{j=p}^q f(j) \cdot \prod_{j=p}^q g(j), \\ &\prod_{j=p}^q \prod_{i=m}^n f(i,j) = \prod_{i=m}^n \prod_{j=p}^q f(i,j), \end{split}$$

其中, $\prod_{j=p}^q \prod_{i=m}^n f(i,j)$ 当然是 $\prod_{j=p}^q \left(\prod_{i=m}^n f(i,j)\right)$) 的简写.

评注 回顾一下 ∑ 符号. 我们已经知道

$$\sum_{j=p}^{q} (f(j) + g(j)) = \sum_{j=p}^{q} f(j) + \sum_{j=p}^{q} g(j).$$

因为整环有分配律, 故当 $c \in D$ 与变元 j 无关时[†]

$$\sum_{j=p}^{q} cf(j) = c \sum_{j=p}^{q} f(j).$$

进而, 当 c, d 都是常元时,

$$\sum_{i=p}^{q} (cf(j) + dg(j)) = c \sum_{i=p}^{q} f(j) + d \sum_{i=p}^{q} g(j).$$

类似地, 当 $q \ge p$, c 是常元时,

$$\prod_{j=p}^q cf(j) = c^{q-p+1} \prod_{j=p}^q f(j).$$

[†]这样的元称为常元 (constant)

33

定义 最后介绍一下双阶乘 (double factorial). 前 n 个正偶数的积是 2n 的双阶乘:

$$(2n)!! = \prod_{j=1}^{n} 2j.$$

前 n 个正奇数是 2n-1 的双阶乘:

$$(2n-1)!! = \prod_{j=1}^{n} (2j-1).$$

顺便约定 0!! = (-1)!! = 1.

评注 不难看出, 对任意正整数 m, 都有

$$m!! = m \cdot (m-2)!!$$
.

双阶乘可以用阶乘表示:

$$(2n)!! = 2^n n!,$$

 $(2n-1)!! = \frac{(2n)!}{(2n)!!} = \frac{(2n)!}{2^n n!}.$

由此可得

$$n!! \cdot (n-1)!! = n!$$
.

例 不难验证, 下面是 1 至 10 的双阶乘:

$$1!! = 1,$$
 $2!! = 2,$ $3!! = 3,$ $4!! = 8,$ $5!! = 15,$ $6!! = 48,$ $7!! = 105,$ $8!! = 384,$ $9!! = 945,$ $10!! = 3 840.$

单位与域

定义 设 D 是整环. 设 $x \in D$. 若存在 $y \in D$ 使 xy = 1, 则说 $x \in D$ 的单位 (unit).

评注 不难看出, D 至少有一个单位 1, 因为 $1 \cdot 1 = 1$. 定义里的 y 自然就是 x 的 (乘法) 逆, 其一般记为 x^{-1} . x^{-1} 当然也是单位. 二个单位 x, y 的积 xy 也是单位: $(xy)(y^{-1}x^{-1}) = 1$. 单位的乘法当然适合结合律. 这样, D 的单位作成一个 (乘法) 群. 姑且叫 D 的所有单位作成的集为单位群 $(unit\ group)$ 吧!

评注 不难看出, 0 一定不是单位.

例 看全体整数作成的整环 \mathbb{Z} . 它恰有二个单位: 1 与 -1.

例 \mathbb{F} 也是整环. 它有无限多个单位: 任意 \mathbb{F}^* 的元都是单位.

例 前面的 4 元集 V 的非零元都是单位.

例 现在看一个不那么平凡的例. 设

$$D = \{ x + y\sqrt{3} \mid x, y \in \mathbb{Z} \}.$$

这个 D (关于数的运算) 作成整环.

首先, 我们说, 不存在有理数 q 使 $q^2=3$. 用反证法. 设 $q=\frac{m}{n}, m, n$ 是非零整数. 我们知道, 有理数可以约分, 故可以假设 3 不是 m 与 n 的公因子. 这样

$$m^2 = 3n^2.$$

所以 3 一定是 m^2 的因子. 因为

$$(3\ell)^2 = 3 \cdot 3\ell^2,$$

 $(3\ell \pm 1)^2 = 3(3\ell^2 \pm 2\ell) + 1,$

故由此可看出, 3 也是 m 的因子. 记 m = 3u. 这样

$$3u^2 = n^2$$
.

所以 3 也是 n 的因子. 这跟假设矛盾!

再说一下 D 的二个元相等意味着什么. 设 a, b, c, d 都是整数. 那么

$$a + b\sqrt{3} = c + d\sqrt{3} \implies (a - c)^2 = 3(d - b)^2.$$

若 $d-b\neq 0$, 则 $\frac{a-c}{d-b}$ 是有理数, 且

$$\left(\frac{a-c}{d-b}\right)^2 = 3,$$

而这是荒谬的. 所以 d-b=0. 这样 a-c=0.

现在再来看单位问题. 若 k 是高于 1 的整数, 则 k 不是 D 的单位. 反证法. 若 k 是单位, 则有 $c,d\in\mathbb{Z}$ 使

$$1 = k(c + d\sqrt{3}) = kc + kd\sqrt{3} \implies 1 = kc,$$

矛盾!

D 有无限多个单位. 因为

$$(2+\sqrt{3})(2-\sqrt{3}) = 1,$$

故对任意正整数 n, 有

$$(2+\sqrt{3})^n(2-\sqrt{3})^n = 1.$$

所以, $(2 \pm \sqrt{3})^n$ 是单位.

定义 设 F 是整环. 若每个 F 的不是 0 的元都是 F 的单位, 则说 F 是域 (field).

例 不难看出, $\mathbb F$ 是域. 这也解释了为什么我们用 $\mathbb F$ 表示 $\mathbb Q$, $\mathbb R$, $\mathbb C$ 之 一

评注 在域 F 里, 只要 $a \neq 0$, 则 a^{-1} 有意义. 那么, 我们说 $\frac{b}{a}$ 就是 $ba^{-1} = a^{-1}b$ 的简写. 不难验证, 当 $a, c \neq 0$ 时,

$$\frac{b}{a} = \frac{d}{c} \iff bc = da,$$

$$\frac{b}{a} \pm \frac{d}{c} = \frac{bc \pm da}{ac},$$

$$\frac{b}{a} \cdot \frac{d}{c} = \frac{bd}{ac}.$$

若 $d \neq 0$, 则

$$\frac{\frac{b}{a}}{\frac{d}{c}} = \frac{bc}{da}.$$

这就是我们熟知的有理数运算法则.

36 查考整式

评注 类似地, 可以定义子域 (subfield). 这里, 就直接用前面的等价刻 画来描述它: "F 的非空子集 K 是域 F 的子域的一个必要与充分条件是: (i) $1 \in K$; (ii) 任取 $x,y \in K$, $y \neq 0$, 必有 $x-y \in K$, $\frac{x}{y} \in K$."

例 设 $F \subset \mathbb{C}$, 且 F 是域. 不难看出, $\mathbb{Q} \subset F$.

整式的定义 37

整式的定义

现在开始介绍整式.

定义 设 D 是整环. 设 x 是不在 D 里的任意一个文字. 形如

$$f(x) = a_0 x^0 + a_1 x^1 + \dots + a_n x^n \quad (n \in \mathbb{N}, \ a_0, a_1, \dots, a_n \in D, \ a_n \neq 0)$$

的表达式称为 $D \perp x$ 的一个整式[†] (polynomial in x over D). n 称为其次 (degree), a_i 称为其 i 次系数 (the i^{th} coefficient), $a_i x^i$ 称为其 i 次项 (the i^{th} term). f(x) 的次可写为 $\deg f(x)$.

若二个整式的次与各同次系数均相等,则二者相等.

整式的系数为 0 的项可以不写.

约定 $0 \in D$ 也是整式, 称为零整式. 零整式的次是 $-\infty$. 任取整数 m, 约定

$$-\infty = -\infty, \quad -\infty < m,$$

 $-\infty + m = m + (-\infty) = -\infty + (-\infty) = -\infty.$

当然, 还约定, 零整式只跟自己相等, 换句话说,

$$a_0x^0+a_1x^1+\cdots+a_nx^n=0$$

的一个必要与充分条件是

$$a_0=a_1=\cdots=a_n=0.$$

[†]事实上, 英语的 "polynomial" 应翻译为汉语的 "多项式"——不过, 读者在中学算学里学到的 "多项式" 是不包括形如 $3x^2$, $-4x^3$ 等 "恰有 1 项的整式" 的. 的确, 形如 cx^n ($c \in D$, $n \in \mathbb{N}$) 的表达式是 "单项式" (monomial); 读者在中学算学里学到的 "多项式" 是 "几个单项式的和"; "单项式" 与 "多项式" 统称 "整式". 可惜, "integral expression" 似乎并不表示 "整式". 顺便一提, 算学的术语似乎是混乱的. 我们在中学算学学习有理数的时候, "整数与分数统称有理数", 可是有的时候 "分数" 是 "有理数" 的同义词. 正如读者所见, "单项式与多项式统称整式", 可是在深一些的算学里, 由于 "单项式" 被认为是 "恰有 1 项的多项式", 故几乎所有算学家都用 "多项式" 一词代替 "整式", 这使得 "整式" 反而变为了 "野鸡名词" (毕竟, 英语的 "integral expression" 似乎并不表示 "整式"). 作者不打算在术语问题上浪费过多的时间, 故作者使用对读者友好的 "整式" 一词——代价就是, 读者很有可能在别的算学文献里看不到 "整式", 而是 "多项式" (英语就是这样).

 $D \perp x$ 的所有整式作成的集是 D[x]:

$$D[x] = \{\, a_0 x^0 + a_1 x^1 + \dots + a_n x^n \mid n \in \mathbb{N}, \,\, a_0, a_1, \dots, a_n \in D \,\}.$$

文字 x 只是一个符号, 它与 D 的元的和与积都是形式的. 我们说, x 是不定元 (indeterminate).

例 $0y^0 + 1y^1 + (-1)y^2 + 0y^3 + (-7)y^4 \in \mathbb{Z}[y]$ 是一个 4 次整式. 顺便一提, 一般把 y^1 写为 y. 这个整式的一个更普通的写法是

$$y - y^2 - 7y^4$$
.

也许 y^0 看起来有些奇怪. 如上所言, 这只是一个形式上的表达式. 我们之后再处理这个小细节.

例 $z^0 + z + z^{\frac{3}{2}}$ 不是 z 的整式.

例 考虑 \mathbb{Z} 与 $\mathbb{Z}[x]$. 设

$$f(x) = ax^0 + x + 2x^2 - x^4 - bx^5, \quad g(x) = cx + dx^2 - x^4 - 3x^5,$$

其中 a, b, c, d 都是整数. 那么, f(x) = g(x) 相当于

$$a = 0$$
, $1 = c$, $2 = d$, $0 = 0$, $-1 = -1$, $-b = -3$,

也就是

$$a = 0, \quad b = 3, \quad c = 1, \quad d = 2.$$

评注 文字 x 的意义在算学中是不断进化的 (evolving). 在中小学里, x 是未知元 (unknown): 虽然它是待求的, 但是它是一个具体的数. 后来在函数里, x 表示变元 (variable), 不过它的取值范围是确定的. 在上面的定义里, x 仅仅是一个文字, 成为不定元.

下面考虑整式的运算. 先从加法开始.

定义 设

$$f(x)=a_0x^0+a_1x+\cdots+a_nx^n,\quad g(x)=b_0x^0+b_1x+\cdots+b_nx^n$$
 是 $D[x]$ 的元. 规定加法如下:

$$f(x) + g(x) = (a_0 + b_0)x^0 + (a_1 + b_1)x + \dots + (a_n + b_n)x^n.$$

整式的定义 39

例 取 $\mathbb{Z}[x]$ 的二个元 $f(x)=x^0+2x^2, g(x)=-3x^0+4x-x^3.$ 先改 写一下:

$$f(x) = 1x^0 + 0x + 2x^2 + 0x^3$$
, $g(x) = -3x^0 + 4x + 0x^2 + (-1)x^3$.

所以

$$f(x) + g(x) = -2x^0 + 4x + 2x^2 - x^3.$$

命题 D[x] 作成加群.

证设

$$\begin{split} f(x) &= a_0 x^0 + a_1 x + \dots + a_n x^n, \\ g(x) &= b_0 x^0 + b_1 x + \dots + b_n x^n, \\ h(x) &= c_0 x^0 + c_1 x + \dots + c_n x^n \end{split}$$

是 D[x] 的元. 根据加法的定义, + 显然是 D[x] 的二元运算. 因为 D 的加法适合交换律, 故

$$\begin{split} g(x)+f(x) &= (b_0+a_0)x^0 + (b_1+a_1)x + \dots + (b_n+a_n)x^n \\ &= (a_0+b_0)x^0 + (a_1+b_1)x + \dots + (a_n+b_n)x^n \\ &= f(x)+g(x). \end{split}$$

也就是说, D[x] 的加法适合交换律.

注意到

$$\begin{split} &(f(x)+g(x))+h(x)\\ &=((a_0+b_0)x^0+(a_1+b_1)x+\dots+(a_n+b_n)x^n)\\ &\qquad +(c_0x^0+c_1x+\dots+c_nx^n)\\ &=((a_0+b_0)+c_0)x^0+((a_1+b_1)+c_1)x+\dots+((a_n+b_n)+c_n)x^n\\ &=(a_0+b_0+c_0)x^0+(a_1+b_1+c_1)x+\dots+(a_n+b_n+c_n)x^n. \end{split}$$

类似地, 计算 f(x) + (g(x) + h(x)) 也可以得到一样的结果. 也就是说, D[x] 的加法适合结合律.

8

零整式可以写为

$$0 = 0x^0 + 0x + \dots + 0x^n$$
.

这样

$$\begin{aligned} 0 + f(x) &= (0 + a_0)x^0 + (0 + a_1)x + \dots + (0 + a_n)x^n \\ &= a_0x^0 + a_1x + \dots + a_nx^n \\ &= f(x). \end{aligned}$$

类似地, f(x) + 0 = f(x).

记

$$f(x) = (-a_0)x^0 + (-a_1)x + \dots + (-a_n)x^n.$$

这样

$$\begin{split} \underline{f}(x) + f(x) &= (-a_0 + a_0)x^0 + (-a_1 + a_1)x + \dots + (-a_n + a_n)x^n \\ &= 0x^0 + 0x + \dots + 0x^n \\ &= 0. \end{split}$$

类似地, f(x) + f(x) = 0. 以后, 我们把这个 f(x) 用普通的符号写为

$$-f(x)=-a_0x^0-a_1x-\cdots-a_nx^n.$$

综上, D[x] 是加群.

定义 设 $f(x), g(x) \in D[x]$. 规定减法如下:

$$f(x)-g(x)=f(x)+(-g(x)). \label{eq:force}$$

评注 可以看出, $f(x) \pm g(x)$ 的次既不会超出 f(x) 的次, 也不会超出 g(x) 的次. 用符号写出来, 就是

$$\deg(f(x)\pm g(x))\leq \max\{\,\deg f(x),\deg g(x)\,\}.$$

若 $\deg f(x) > \deg g(x)$, 则

$$\deg(f(x)\pm g(x))=\deg f(x).$$

类似地, 若 $\deg f(x) < \deg g(x)$, 则

$$\deg(f(x) \pm g(x)) = \deg g(x).$$

整式的定义 41

评注 既然 D[x] 是加群, 且每个 $a_i x^i$ $(i = 0, 1, \dots, n)$ 都可以看成是整式, 那么整式的项的次序是不重要的. 前面的写法称为升次排列 (ascending order). 下面的写法称为降次排列 (descending order):

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 x^0.$$

这跟中学里接触的整式是一样的.

(非零)整式的最高次非零项是首项 (leading term). 它的系数是此整式的首项系数 (the coefficient of the leading term).

例 $y-y^2-7y^4\in\mathbb{Z}[x]$ 可以写为 $-7y^4-y^2+y$, 其首项是 $-7y^4$, 且 其首项系数是 -7.

现在考虑乘法.

定义 设

$$f(x) = a_0 x^0 + a_1 x + \dots + a_m x^m, \quad g(x) = b_0 x^0 + b_1 x + \dots + b_n x^n$$

是 D[x] 的元. 规定乘法如下:

$$f(x)g(x) = c_0 x^0 + c_1 x + \dots + c_{m+n} x^{m+n},$$

其中

$$c_k=a_0b_k+a_1b_{k-1}+\cdots+a_kb_0.$$

且约定 i>m 时 $a_i=0,\ j>n$ 时 $b_j=0$. 在这个约定下,不难看出, $\ell>m+n$ 时, $c_\ell=0$. 所以,我们至少有

$$\deg f(x)g(x) \le \deg f(x) + \deg g(x).$$

例 取 $\mathbb{Z}[x]$ 的二个元 $f(x)=x^0+2x^2,\ g(x)=-3x^0+4x-x^3.$ 先改 写一下:

$$f(x) = 1x^{0} + 0x + 2x^{2}, \quad g(x) = -3x^{0} + 4x + 0x^{2} + (-1)x^{3}.$$

所以

$$\begin{split} c_0 &= 1 \cdot (-3) = -3, \\ c_1 &= 1 \cdot 4 + 0 \cdot (-3) = 4, \\ c_2 &= 1 \cdot 0 + 0 \cdot 4 + 2 \cdot (-3) = -6, \\ c_3 &= 1 \cdot (-1) + 0 \cdot 0 + 2 \cdot 4 = 7, \\ c_4 &= 0 \cdot (-1) + 2 \cdot 0 = 0, \\ c_5 &= 2 \cdot (-1) = -2. \end{split}$$

所以

$$f(x)g(x) = -3x^0 + 4x - 6x^2 + 7x^3 - 2x^5.$$

例 设

$$f(x)=a_0x^0+a_1x+\cdots+a_mx^m.$$

是 D[x] 的元. 零整式可以写为

$$0 = 0x^0,$$

由此易知

$$0f(x) = f(x)0 = 0.$$

评注 设

$$f(x) = a_0 x^0 + a_1 x + \dots + a_m x^m, \quad g(x) = b_0 x^0 + b_1 x + \dots + b_n x^n$$

是 D[x] 的元, 且 $a_m \neq 0$, $b_n \neq 0$. 这样, f(x)g(x) 的 m+n 次项就是 cx^{m+n} , 其中

$$\begin{split} c &= a_0 b_{m+n} + \dots + a_{m-1} b_{n+1} + a_m b_n + a_{m+1} b_{n-1} + \dots + a_{m+n} b_n \\ &= 0 + \dots + 0 + a_m b_n + 0 + \dots + 0 \\ &= a_m b_n. \end{split}$$

整式的定义 43

因为 $a_m \neq 0$, $b_n \neq 0$, 所以 $a_m b_n \neq 0$ (反证法: 若 $a_m b_n = 0 = a_m 0$, 因为 $a_m \neq 0$, 根据 D 的消去律, 得 $b_n = 0$, 矛盾!). 所以

$$\deg f(x)g(x) = \deg f(x) + \deg g(x).$$

可以验证, 若 f 或 g 的任意一个是 0, 这个关系也对.

评注 设

$$f(x)=px^m=a_0+a_1x+\cdots+a_mx^m,$$

$$g(x)=qx^n=b_0+b_1x+\cdots+b_nx^n.$$

当 $i\neq m$ 时, $a_i=0$; 当 i=m 时, $a_i=p\neq 0$. 当 $j\neq n$ 时, $b_j=0$; 当 j=n 时, $b_j=q\neq 0$. 现在考虑这二个整式的积

$$f(x)g(x) = c_0 + c_1 x + \dots + c_{m+n} x^{m+n},$$

其中

$$c_k=a_0b_k+a_1b_{k-1}+\cdots+a_kb_0.$$

我们来看什么时候 $a_\ell b_{k-\ell}$ 不是 0. 这相当于要求 a_ℓ 跟 $b_{k-\ell}$ 都不是 0, 所以

$$\ell = m, \quad k - \ell = n,$$

也就是

$$\ell = m, \quad k = m + n.$$

所以, 当 $k \neq m + n$ 时, $c_k = 0$; 当 k = m + n 时,

$$c_{m+n} = a_m b_n = pq \neq 0.$$

所以, 任取 $m, n \in \mathbb{N}$, 必有

$$(px^m)(qx^n) = (pq)x^{m+n}.$$

特别地, 取 p = q = 1, 有

$$x^m x^n = x^{m+n}.$$

这里提醒读者: 这个式是形式上的表达式, 其内涵与中学的"同底数幂相乘, 底数不变, 指数相加"的内涵是不一样的!

顺便一提, 若 p 跟 q 的一个是 0, 则每个 c_k 全为 0, 故此时积是零整式, 此式仍成立.

命题 D[x] 作成整环. 所以, D[x] 的一个名字就是 (整环) $D \perp (x)$ 的整式 (整) 环.

证 已经知道, D[x] 是加群. 下面先说明 D[x] 是交换环. 根据定义, 整式的乘法还是整式, 也就是说, 乘法是二元运算. 设

$$\begin{split} f(x) &= a_0 x^0 + a_1 x + \dots + a_m x^m, \\ g(x) &= b_0 x^0 + b_1 x + \dots + b_n x^n, \\ h(x) &= u_0 x^0 + u_1 x + \dots + u_s x^s \end{split}$$

是 D[x] 的元. 则

$$\begin{split} f(x)g(x) &= c_0 x^0 + c_1 x + \dots + c_{m+n} x^{m+n}, \\ g(x)f(x) &= d_0 x^0 + d_1 x + \dots + d_{n+m} x^{n+m}, \end{split}$$

其中

$$\begin{split} c_k &= a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0, \\ d_k &= b_0 a_k + b_1 a_{k-1} + \dots + b_k a_0. \end{split}$$

因为 D 的乘法适合交换律, 加法适合交换律与结合律, 故 $c_k = d_k$. 这样, D[x] 的乘法适合交换律.

不难算出

$$\begin{split} &(f(x)g(x))h(x)\\ &=(c_0x^0+c_1x+\dots+c_{m+n}x^{m+n})(u_0x^0+u_1x+\dots+u_sx^s)\\ &=v_0x^0+v_1x+\dots+v_{m+n+s}x^{m+n+s}, \end{split}$$

整式的定义 45

其中

$$\begin{split} v_t &= (\text{the sum of all } a_ib_ju_r\text{'s with } i+j+r=t)\\ &= a_0b_0u_t + a_0b_1u_{t-1} + \dots + a_0b_tu_0 + a_1b_0u_{t-1} + \dots. \end{split}$$

类似地, 计算 f(x)(g(x)h(x)) 也可以得到一样的结果. 也就是说, D[x] 的乘法适合结合律.

现在验证分配律. 前面已经看到, 整式的乘法是交换的, 所以只要验证一个分配律即可. 不失一般性, 设 s=n. 这样

$$g(x) + h(x) = (b_0 + u_0)x^0 + (b_1 + u_1)x + \dots + (b_n + u_n)x^n.$$

所以

$$f(x)(g(x) + h(x)) = p_0 x^0 + p_1 x^1 + \dots + p_{m+n} x^{m+n},$$

其中

$$\begin{split} p_k &= a_0(b_k + c_k) + a_1(b_{k-1} + c_{k-1}) + \dots + a_k(b_0 + c_0) \\ &= (a_0b_k + a_0c_k) + (a_1b_{k-1} + a_1c_{k-1}) + \dots + (a_kb_0 + a_kc_0) \\ &= (a_0b_k + a_1b_{k-1} + \dots + a_kb_0) + (a_0c_k + a_1c_{k-1} + \dots + a_kc_0). \end{split}$$

不难看出, 这就是 f(x)g(x) 的 k 次系数与 f(x)h(x) 的 k 次系数的和. 这样, D[x] 的加法与乘法适合分配律. 至此, 我们知道, D[x] 是交换环.

交换环离整环还差二步: 一是乘法幺, 二是消去律. 先看消去律. 若 f(x)g(x) = f(x)h(x), $f(x) \neq 0$, 根据分配律,

$$0=f(x)g(x)-f(x)h(x)=f(x)(g(x)-h(x)).$$

如果 $g(x) - h(x) \neq 0$, 则 g(x) - h(x) 的次不是 $-\infty$. f(x) 的次不是 $-\infty$. 故 f(x)(g(x) - h(x)) 的次不是 $-\infty$. 换句话说, $f(x)(g(x) - h(x)) \neq 0$, 矛盾!

再看乘法幺. 设

$$e(x) = x^0.$$

不难算出

$$e(x)f(x) = f(x)e(x) = f(x).$$

8

综上, D[x] 是整环.

例 在前面, 我们直接用定义计算了下面二个整式的积:

$$f(x) = x^0 + 2x^2$$
, $g(x) = -3x^0 + 4x - x^3$.

现在,我们利用

$$(px^m)(qx^n)=(pq)x^{m+n}\quad (p,q\in D,\,m,n\in\mathbb{N})$$

与运算律再算一次:

$$\begin{split} f(x)g(x) &= (x^0 + 2x^2)(-3x^0 + 4x - x^3) \\ &= x^0(-3x^0 + 4x - x^3) + 2x^2(-3x^0 + 4x - x^3) \\ &= -3x^{0+0} + 4x^{0+1} - x^{0+3} - 6x^{2+0} + 8x^{2+1} - 2x^{2+3} \\ &= -3x^0 + 4x - x^3 - 6x^2 + 8x^3 - 2x^5 \\ &= -3x^0 + 4x - 6x^2 + 7x^3 - 2x^5. \end{split}$$

这跟之前的结果是一致的.

定义 设 $m \in \mathbb{N}$. 整式 f(x) 的 m 次幂就是 $m \uparrow f(x)$ 的积:

$$(f(x))^m = \underbrace{f(x) \cdot f(x) \cdot \dots \cdot f(x)}_{m \ f(x)$$
's

既然 D[x] 是整环, 那么前面的幂规则都适用. 具体地说, 设 $m, n \in \mathbb{N}, f(x), g(x) \in D[x],$ 则

$$(f(x))^{m}(f(x))^{n} = (f(x))^{m+n},$$

$$((f(x))^{m})^{n} = (f(x))^{mn},$$

$$(f(x)g(x))^{m} = (f(x))^{m}(g(x))^{m}.$$

整式的定义 47

前面, 我们知道

$$x^m x^n = x^{m+n}.$$

当时, 我们还说, 这跟中学的"同底数幂相乘, 底数不变, 指数相加"有着不一样的内涵. 有了"幂"这个概念后, 我们发现, x^m 的确可以视为 $m \land x$ 的积.

评注 以后, 我们把 x⁰ 写为 1. 换句话说, 代替

$$a_0x^0 + a_1x + \dots + a_nx^n,$$

我们写

$$a_0 + a_1 x + \dots + a_n x^n.$$

这儿还有一件事儿值得一提. 考虑

$$D_0 = \{ ax^0 \mid a \in D \} \subset D[x].$$

任取 D_0 的二元 ax^0 , bx^0 . 首先, $ax^0 = bx^0$ 的一个必要与充分条件是 a = b. 然后, 不难看出,

$$ax^{0} + bx^{0} = (a+b)x^{0}, \quad (ax^{0})(bx^{0}) = (ab)x^{0}.$$

由此可以看出, D_0 与 D "几乎完全一样". 用摩登 (modern) 算学的话来说, " D_0 与 D 是天然同构的 ($naturally\ isomorphic$)".

我们不打算深究这一点. 上面, 我们把 x^0 写为 1; 反过来, D 的元 a 也可以理解为是整式 ax^0 . 这跟中学的习惯是一致的.

最后, 我们指出: 既然非零的 $c \in D$ 可视为 0 次整式, 那么 cf(x) 也是整式. 如果

$$f(x) = a_0 + a_1 x + \dots + a_n x^n,$$

那么

$$cf(x) = ca_0 + ca_1x + \dots + ca_nx^n,$$

且

$$\deg cf(x) = \deg f(x).$$

带余除法

我们知道, 非负整数有这样的性质:

命题 设 f 是正整数, q 是非负整数. 则必有一对非负整数 q, r 使

$$g = qf + r$$
, $0 \le r < f$.

例如, 取 f = 5, g = 23. 不难看出,

$$23 = 4 \cdot 5 + 3$$
.

整式也有类似的性质哟.

命题 设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in D[x],$$

且 a_n 是 D 的单位. 对任意 $g(x) \in D[x]$, 存在 $q(x), r(x) \in D[x]$ 使

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < n.$$

一般称其为带余除法: q(x) 就是商 (quotient); r(x) 就是余式 (remainder).

证 用算学归纳法. 记 $\deg g(x) = m$. 若 m < n, 则 q(x) = 0, r(x) = g(x) 适合要求. 所以, 命题对不高于 n-1 的 m 都成立.

设 $m \le \ell$ ($\ell \ge n-1$) 时, 命题成立. 考虑 $m = \ell+1$ 的情形. 此时, 设

$$g(x)=b_{\ell+1}x^\ell+b_\ell x^\ell+\cdots+b_0\in D[x].$$

作一个跟 q(x) 有着共同首项的整式:

$$\begin{split} s(x) &= b_{\ell+1} a_n^{-1} x^{\ell+1-n} f(x) \\ &= b_{\ell+1} a_n^{-1} x^{\ell+1-n} (a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) \\ &= b_{\ell+1} a_n^{-1} (a_n x^{\ell+1} + a_{n-1} x^\ell + \dots + a_0 x^{\ell+1-n}) \\ &= b_{\ell+1} (x^{\ell+1} + a_n^{-1} a_{n-1} x^\ell + \dots + a_n^{-1} a_0 x^{\ell+1-n}) \\ &= b_{\ell+1} x^{\ell+1} + b_{\ell+1} a_n^{-1} a_{n-1} x^\ell + \dots + b_{\ell+1} a_n^{-1} a_0 x^{\ell+1-n}. \end{split}$$

带余除法 49

因为 a_n 是单位,故 $s(x)\in D[x]$. 设 $r_1(x)=g(x)-s(x)\in D[x]$. 这样, $r_1(x)$ 的次不高于 ℓ . 根据归纳假设,有 $q_2(x)$, $r_2(x)\in D[x]$ 使

$$r_1(x) = q_2(x)f(x) + r_2(x), \quad \deg r_2(x) < n.$$

所以

$$\begin{split} g(x) &= b_{\ell+1} a_n^{-1} x^{\ell+1-n} f(x) + r_1(x) \\ &= b_{\ell+1} a_n^{-1} x^{\ell+1-n} f(x) + q_2(x) f(x) + r_2(x) \\ &= (b_{\ell+1} a_n^{-1} x^{\ell+1-n} + q_2(x)) f(x) + r_2(x). \end{split}$$

记 $q(x) = b_{\ell+1} a_n^{-1} x^{\ell+1-n} + q_2(x), \ r(x) = r_2(x), \ \text{则} \ q(x), \ r(x)$ 适合要求. 所以, $m \leq \ell+1$ 时, 命题成立. 根据算学归纳法, 命题成立.

例 取 $\mathbb{F}[x]$ 的二元 $f(x)=2(x-1)^2(x+2),$ $g(x)=8x^6+1.$ 我们来找一对整式 $g(x), r(x) \in \mathbb{F}[x]$ 使

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < \deg f(x).$$

不难看出, f(x) 的次是 3, 且

$$f(x) = 2(x^2 - 2x + 1)(x + 2) = 2x^3 - 6x + 4.$$

我们按上面证明的方法寻找 q(x) 与 r(x). $a_3=2$ 是 $\mathbb F$ 的单位,且 $a_3^{-1}=\frac{1}{2}$. 取

$$q_1(x) = 8 \cdot \frac{1}{2} \cdot x^{6-3} = 4x^3.$$

则

$$\begin{split} r_1(x) &= g(x) - q_1(x) f(x) \\ &= (8x^6 + 1) - 4x^3 (2x^3 - 6x + 4) \\ &= (8x^6 + 1) - (8x^6 - 24x^4 + 16x^3) \\ &= 24x^4 - 16x^3 + 1. \end{split}$$

 $r_1(x)$ 的次仍不低于 3. 因此, 再来一次. 取

$$q_2(x) = 24 \cdot \frac{1}{2} \cdot x^{4-3} = 12x.$$

则

$$\begin{split} r_2(x) &= r_1(x) - q_2(x) f(x) \\ &= (24x^4 - 16x^3 + 1) - 12x(2x^3 - 6x + 4) \\ &= (24x^4 - 16x^3 + 1) - (24x^4 - 72x + 48x) \\ &= -16x^3 + 72x^2 - 48x + 1. \end{split}$$

 $r_2(x)$ 的次仍不低于 3. 因此, 再来一次. 取

$$q_3(x) = -16 \cdot \frac{1}{2} \cdot x^{3-3} = -8.$$

则

$$\begin{split} r_3(x) &= r_2(x) - q_3(x) f(x) \\ &= (-16x^3 + 72x^2 - 48x + 1) - (-8)(2x^3 - 6x + 4) \\ &= (-16x^3 + 72x^2 - 48x + 1) - (-16x^3 + 48x - 32) \\ &= 72x^2 - 96x + 33. \end{split}$$

 $r_3(x)$ 的次低于 3. 这样

$$\begin{split} g(x) &= q_1(x)f(x) + r_1(x) \\ &= q_1(x)f(x) + q_2(x)f(x) + r_2(x) \\ &= q_1(x)f(x) + q_2(x)f(x) + q_3(x)f(x) + r_3(x) \\ &= (q_1(x) + q_2(x) + q_3(x))f(x) + r_3(x) \\ &= (4x^3 + 12x - 8)f(x) + (72x^2 - 96x + 33). \end{split}$$

也就是说,

$$q(x) = 4x^3 + 12x - 8, \quad r(x) = 72x^2 - 96x + 33.$$

评注 带余除法要求 f(x) 的首项系数是单位是有必要的.

在上面的例里, f(x) 与 g(x) 可以看成 $\mathbb{Z}[x]$ 的元, 但 2 不是 \mathbb{Z} 的单位. 虽然最终所得 q(x), r(x) 也是 $\mathbb{Z}[x]$ 的元, 但这并不是一定会出现的. 我们看下面的简单例.

考虑 $\mathbb{Z}[x]$ 的整式 f(x) = 2x. 设

$$\begin{split} r(x) &= r_0,\\ q(x) &= q_0 + q_1 x + \dots + q_p x^p,\\ g(x) &= g_0 + g_1 x + \dots + g_s x^s, \end{split}$$

且 $r_0,\,q_0,\,\cdots,\,q_p,\,g_0,\,\cdots,\,g_s\in\mathbb{Z},\,q_p,\,g_s\neq0.$ 若 $g(x)=q(x)f(x)+r(x),\,$ 則

$$g_0 + g_1 x + \dots + g_s x^s = r_0 + 2q_0 x + 2q_1 x^2 + \dots + 2q_p x^{p+1}.$$

所以

$$\begin{split} p &= s-1,\\ r_0 &= g_0,\\ 2q_{i-1} &= g_i, \quad i=1,\cdots,s. \end{split}$$

这说明, g(x) 的 i 项系数 $(i=1,\cdots,s)$ 必须是偶数. 所以, 不存在 q(x), $r(x) \in \mathbb{Z}[x]$ 使

$$1 + 3x + x^2 = q(x) \cdot 2x + r(x), \quad \deg r(x) < 1.$$

我们知道, 用一个正整数除[†]非负整数, 所得的余数与商是唯一的. 比方说, 5 除 23 的余数只能是 3.

整式也有类似的性质哟. 不过, 我们需要借助另一个命题的帮助.

命题 设 $f(x) \in D[x]$, 且 $f(x) \neq 0$. 若 D 上 x 的 2 个整式 q(x), r(x) 适合

$$q(x)f(x) + r(x) = 0, \quad \deg r(x) < \deg f(x),$$

则必有

$$q(x) = r(x) = 0.$$

通俗地说, 二个非零整式的积的次不可能变低.

 $^{^{\}dagger}f$ 除 g 意味着 g 除以 f, 也就是 $g \div f$.

证 题设条件即

$$-q(x)f(x) = r(x).$$

反证法. 若 $-q(x) \neq 0$, 则 $\deg(-q(x)) \geq 0$. 从而

$$\deg r(x) = \deg(-q(x)) + \deg f(x) \ge \deg f(x).$$

可是,

52

$$\deg r(x) < \deg f(x),$$

矛盾! 故 -q(x) = 0. 这样, r(x) = 0.

命题 设 $f(x) \in D[x]$, 且 $f(x) \neq 0$. 若 D 上 x 的 4 个整式 $q_1(x)$, $r_1(x), q_2(x), r_2(x)$ 适合

$$\begin{split} q_1(x)f(x) + r_1(x) &= q_2(x)f(x) + r_2(x), \\ \deg r_1(x) &< \deg f(x), \quad \deg r_2(x) < \deg f(x), \end{split}$$

则必有

$$q_1(x) = q_2(x), \quad r_1(x) = r_2(x).$$

证 记

$$Q(x) = q_1(x) - q_2(x), \quad R(x) = r_1(x) - r_2(x).$$

题设条件即

$$(q_1(x)-q_2(x))f(x)+(r_1(x)-r_2(x))=0,\\$$

也就是

$$Q(x)f(x) + R(x) = 0.$$

注意到

$$\begin{split} \deg R(x) &= \, \deg(r_1(x) - r_2(x)) \\ &\leq \, \max\{\, \deg r_1(x), \deg r_2(x) \,\} \\ &< \, \deg f(x). \end{split}$$

根据上个命题, Q(x) = R(x) = 0. 所以

$$q_1(x) = q_2(x), \quad r_1(x) = r_2(x).$$

带余除法 53

这样, 我们得到了这个命题:

命题 设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in D[x],$$

且 a_n 是 D 的单位. 对任意 $g(x) \in D[x]$, 存在唯一的 $q(x), r(x) \in D[x]$ 使

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < n.$$

一般称其为带余除法: q(x) 就是商; r(x) 就是余式. 并且, 当 f(x) 的次不高于 g(x) 的次时, f(x), g(x), q(x) 间还有如下的次关系:

$$\deg g(x) = \deg(g(x) - r(x)) = \deg q(x) + \deg f(x).$$

最后, 我们指出一个有用的事实.

设 D, E 是整环, 且 $D \subset E$ (也就是说, D 是 E 的子整环). 设 f(x), $g(x) \in D[x]$, 且 $f(x) \neq 0$. 设 D 上的整式 $g_1(x)$, $g_1(x)$ 适合

$$g(x)=q_1(x)f(x)+r_1(x),\quad \deg r_1(x)<\deg f(x).$$

因为 D 的元都是 E 的元, 故 f(x), g(x) 当然可认为是 E 上的整式. 设 E 上的整式 $q_2(x)$, $r_2(x)$ 适合

$$g(x)=q_2(x)f(x)+r_2(x),\quad \deg r_2(x)<\deg f(x).$$

我们说, $q_1(x) = q_2(x)$, 且 $r_1(x) = r_2(x)$. 为什么呢? 因为 D 的元都是 E 的元, 故 $q_1(x)$, $r_1(x)$ 当然可认为是 E 上的整式. 这样, 根据前面的命题, 必有

$$q_2(x) = q_1(x), \quad r_2(x) = r_1(x).$$

由此可见: $q_2(x), r_2(x) \in D[x]$. 这有什么用处呢?

在前面的例里, 我们知道, 不存在 q(x), $r(x) \in \mathbb{Z}[x]$, 使

$$1+3x+x^2=q(x)\cdot 2x+r(x),\quad \deg r(x)<1.$$

当初, 我们根据整式的相等的定义, 再根据奇偶性, 得出了这个判断. 现在我们可以简便地作出推理. 用反证法. 假设这样的 $q(x), r(x) \in \mathbb{Z}[x]$ 是存在的, 也就是

$$1 + 3x + x^2 = q(x) \cdot 2x + r(x), \quad \deg r(x) < 1.$$

我们考虑 $\mathbb{Q}[x]$. \mathbb{Z} , \mathbb{Q} 都是整环, 且 $\mathbb{Z} \subset \mathbb{Q}$. $1+3x+x^2$ 与 2x 当然是 \mathbb{Q} 上的整式. 我们不难算出

$$1 + 3x + x^2 = \underbrace{\left(\frac{3}{2} + \frac{1}{2}x\right)}_{v(x)} \cdot 2x + \underbrace{1}_{u(x)}, \quad \deg u(x) = 0 < 1.$$

由此可见, v(x) = q(x), 且 r(x) = u(x). 但是, $v(x) \notin \mathbb{Z}[x]$. 矛盾! 所以, 这样的 q(x), r(x) 不存在!

不过, 对 $1 + 4x + 2x^2$ 与 2x 而言, 我们有

$$1 + 4x + 2x^2 = (2+x) \cdot 2x + 1$$
, deg 1 < 1.

我们知道, 若视 $1+4x+2x^2$ 与 2x 是 \mathbb{Z} 上的整式, 则因为 2x 的首项系数 不是 \mathbb{Z} 的单位, 我们无法直接用 ($\mathbb{Z}[x]$ 的) 带余除法算 2x 除 $1+4x+2x^2$. 若考虑 \mathbb{Q} 与 $\mathbb{Q}[x]$, 我们可以算出上面的式. 很凑巧地, 2+x 与 1 都是 \mathbb{Z} 上的整式, 故, 具体地说, 我们可在 $\mathbb{Z}[x]$ 算 2x 除 $1+4x+2x^2$; 作为对比, 我们不可在 $\mathbb{Z}[x]$ 算 2x 除 $1+3x+x^2$.

不正式地说, 若 D, E 是整环, 且 $D \subset E$, 则 E 是 D 的 "扩大" (extension). 由此, 我们有: 整式的带余除法不因系数的范围变大而改变.

整式的相等 55

整式的相等

本节讨论二个整式的相等.

设 $a_0,\,b_0,\,a_1,\,b_1,\,\cdots,\,a_n,\,b_n$ 都是整环 D 的元. 根据定义, 我们已经知道,

$$a_0 + a_1 x + \dots + a_n x^n = b_0 + b_1 x + \dots + b_n x^n$$

的一个必要与充分条件是

$$a_0 = b_0, \quad a_1 = b_1, \quad \cdots, \quad a_n = b_n.$$

之后, 我们会遇到形如

$$f(x) = a_0 + a_1(x-c) + a_2(x-c)^2 + \dots + a_n(x-c)^n$$

的式, 这里 $c \in D$. 因为

1,
$$x-c$$
, $(x-c)^2$, ..., $(x-c)^n$

是首项系数为 1 的 0, 1, 2, …, n 次整式, 所以这个 f(x) 也是整式, 且 $\deg f(x) \leq n$. 当 $a_n \neq 0$ 时, $\deg f(x) = n$, 且 f(x) 的首项系数为 a_n .

再作一个整式

$$g(x) = b_0 + b_1(x-c) + b_2(x-c)^2 + \dots + b_n(x-c)^n.$$

f(x) 与 g(x) 都是整式,自然可以讨论是否相等.若 $c=0, (x-c)^\ell$ 就变为普通的 x^ℓ . 所以, c=0 时, f(x)=g(x) 的一个必要与充分条件是

$$a_0 = b_0, \quad a_1 = b_1, \quad \cdots, \quad a_n = b_n.$$

可是, 如果 $c \neq 0$ 呢? 这个时候, 还是一样的条件吗? 先看一个例.

例 我们试研究

$$(\bigstar) \qquad a_0 + a_1(x-c) + a_2(x-c)^2 = b_0 + b_1(x-c) + b_2(x-c)^2.$$

在中学, 我们已经知道

$$(x-c)^2 = c^2 - 2cx + x^2.$$

这样,(★)的左侧变为

$$\begin{split} &a_0 + a_1(x-c) + a_2(x-c)^2 \\ &= a_0 + a_1(-c+x) + a_2(c^2 - 2cx + x^2) \\ &= a_0 + (-a_1c + a_1x) + (a_2c^2 + (-2a_2c)x + a_2x^2) \\ &= (a_0 - a_1c + a_2c^2) + (a_1 - 2a_2c)x + a_2x^2. \end{split}$$

同理, (★) 的右侧变为

$$(b_0-b_1c+b_2c^2)+(b_1-2b_2c)x+b_2x^2.$$

所以,(★)成立等价于

$$a_0 - a_1c + a_2c^2 = b_0 - b_1c + b_2c^2,$$

$$a_1 - 2a_2c = b_1 - 2b_2c,$$

$$a_2 = b_2,$$

即

$$(a_0-b_0)-c(a_1-b_1)+c^2(a_2-b_2)=0,$$

$$(a_1-b_1)-2c(a_2-b_2)=0,$$

$$(a_2-b_2)=0.$$

由这个方程组, 可解出

$$a_0 - b_0 = a_1 - b_1 = a_2 - b_2 = 0.$$

这跟 c=0 时的

$$a_0 = b_0, \quad a_1 = b_1, \quad a_2 = b_2$$

是完全一致的.

定义 设
$$p_0(x), p_1(x), \cdots, p_n(x) \in D[x]$$
. 设 $c_0, c_1, \cdots, c_n \in D$. 我们说
$$c_0p_0(x) + c_1p_1(x) + \cdots + c_np_n(x)$$

整式的相等 57

是整式 $p_0(x), p_1(x), \cdots, p_n(x)$ 的一个线性组合 (linear combination). c_0, c_1, \cdots, c_n 就是此线性组合的系数.

若不存在一组不全为 0 的 D 中元 d_0, d_1, \dots, d_n 使

$$d_0 p_0(x) + d_1 p_1(x) + \dots + d_n p_n(x) = 0,$$

则说 $p_0(x),\ p_1(x),\ \cdots,\ p_n(x)$ 是线性无关的 (linearly independent). 换句话说," $p_0(x),\ p_1(x),\ \cdots,\ p_n(x)$ 是线性无关的" 意味着: 若 D 中元 $r_0,\ r_1,\ \cdots,\ r_n$ 使

$$r_0 p_0(x) + r_1 p_1(x) + \dots + r_n p_n(x) = 0,$$

则 $r_0 = r_1 = \dots = r_n = 0.$

例 显然, $1, x, \dots, x^n$ 是线性无关的. 当然, 前面的例告诉我们, 1, x-c, $(x-c)^2$ 也是线性无关的.

例 单独一个非零整式是线性无关的.

评注 设 $p_0(x), p_1(x), ..., p_n(x)$ 是线性无关的.

- (i) 显然, 因为整式的加法可交换, 随意打乱这 n+1 个整式的次序后得到的整式仍线性无关.
- (ii) 对任意 ℓ $(0 \le \ell \le n), p_0(x), p_1(x), \cdots, p_\ell(x)$ 这 $\ell+1$ 个整式也是线性无关的. 设 $c_0, c_1, \cdots, c_\ell \in D$, 且

$$c_0 p_0(x) + c_1 p_1(x) + \dots + c_\ell p_\ell(x) = 0.$$

这个相当于

$$c_0p_0(x) + c_1p_1(x) + \dots + c_\ell p_\ell(x) + 0p_{\ell+1}(x) + \dots + 0p_n(x) = 0.$$

所以

$$c_0=c_1=\cdots=c_\ell=\underbrace{0=\cdots=0}_{(n-\ell)\text{ 0's}}=0.$$

(iii) 根据 (i) (ii) 可知, 线性无关的整式的片段也是线性无关的.

评注 设 $p_0(x)$, $p_1(x)$, …, $p_n(x)$ 是线性无关的. 设 a_0 , b_0 , a_1 , b_1 , …, a_n , b_n 都是 D 的元. 那么

$$a_0p_0(x) + a_1p_1(x) + \dots + a_np_n(x) = b_0p_0(x) + b_1p_1(x) + \dots + b_np_n(x)$$

相当于

$$(a_0 - b_0)p_0(x) + (a_1 - b_1)p_1(x) + \dots + (a_n - b_n)p_n(x) = 0,$$

也就是

$$a_0 - b_0 = a_1 - b_1 = \dots = a_n - b_n = 0,$$

亦即

$$a_0 = b_0, \quad a_1 = b_1, \quad \cdots, \quad a_n = b_n.$$

由此可见, 线性无关的整式有着优良的性质: 二个线性组合相等的一个必要与充分条件是对应的系数相等.

我们知道, $1, x, \dots, x^n$ 是线性无关的. 在这串整式里, 后一个的次比前一个的次多 1. 不仅如此, 由整式的定义可见, 每一个次不高于 n 的整式都可以写为它们的线性组合. 下面的命题就是这二件事实的推广.

命题 设 $p_0(x), p_1(x), ..., p_n(x) \in D[x]$ 分别是 0, 1, ..., n 次整式. 则:

- (i) $p_0(x), p_1(x), ..., p_n(x)$ 是线性无关的;
- (ii) 若 $p_0(x)$, $p_1(x)$, …, $p_n(x)$ 的首项系数都是 D 的单位, 则任意次不高于 n 的整式都可写为 $p_0(x)$, $p_1(x)$, …, $p_n(x)$ 的线性组合. 由 (i) 知, 这个组合的系数一定是唯一的.
- 证 (i) 用算学归纳法. 当 n=0 时, 只有一个 0 次整式 $p_0(x)=c\neq 0$ 那么, 由 dc=0 可推出 d=0. 这样, 命题对 n=0 成立. 假定命题对 $n=\ell\geq 0$ 成立. 设 $c_0,\,c_1,\,\cdots,\,c_{\ell+1}\in D$ 使

$$c_0p_0(x) + c_1p_1(x) + \dots + c_\ell p_\ell(x) + c_{\ell+1}p_{\ell+1}(x) = 0.$$

记

$$r(x) = c_0 p_0(x) + c_1 p_1(x) + \dots + c_\ell p_\ell(x),$$

整式的相等 59

则 r(x) 的次不高于 ℓ . 所以

$$c_{\ell+1}p_{\ell+1}(x) + r(x) = 0$$
, $\deg r(x) \le \ell < \deg p_{\ell+1}(x)$.

由上节命题知

$$c_{\ell+1} = 0, \quad r(x) = 0.$$

根据归纳假设,

$$r(x)=c_0p_0(x)+c_1p_1(x)+\cdots+c_\ell p_\ell(x)=0\implies c_0=c_1=\cdots=c_\ell=0.$$
 这样,

$$c_0 = c_1 = \dots = c_\ell = c_{\ell+1} = 0.$$

也就是说, $n = \ell + 1$ 时, 命题成立.

(ii) 用算学归纳法. 当 n=0 时, 只有一个 0 次整式 $p_0(x)=c\neq 0$, 且 c 是单位. 任取次不高于 0 的整式 d. 因为 $d=(dc^{-1})c$, 这样, 命题对 n=0 成立. 这样, 命题对 n=0 成立. 假定命题对 $n=\ell\geq 0$ 成立. 任取次不高于 $\ell+1$ 的整式 f(x). 由于 $p_{\ell+1}(x)$ 的首项系数是单位, 所以, 由带余除法知道, 存在整式 q(x), $r(x)\in D[x]$ 使

$$f(x) = q(x)p_{\ell+1}(x) + r(x), \quad \deg r(x) \le \ell.$$

如果 f(x) 的次不高于 ℓ , 则 q(x) = 0; 如果 f(x) 的次是 $\ell + 1$, 则

$$\deg q(x) = \deg f(x) - \deg p_{\ell+1}(x) = 0.$$

也就是说, 存在 $c_{\ell+1} \in D$ 使 $q(x) = c_{\ell+1}$. 所以

$$f(x) = r(x) + c_{\ell+1}p_{\ell+1}(x), \quad \deg r(x) \leq \ell.$$

根据归纳假设, 存在 $c_0, c_1, \dots, c_\ell \in D$ 使

$$r(x)=c_0p_0(x)+c_1p_1(x)+\cdots+c_\ell p_\ell(x),$$

即

$$f(x) = c_0 p_0(x) + c_1 p_1(x) + \dots + c_\ell p_\ell(x) + c_{\ell+1} p_{\ell+1}(x).$$

所以, $n = \ell + 1$ 时, 命题成立.

评注 这里, (ii) 要求每个整式的首项系数为单位是有必要的. 考虑 \mathbb{Z} 与 $\mathbb{Z}[x]$. 取 n=2, 及

$$p_0(x) = -1, \quad p_1(x) = 2x, \quad p_2(x) = 3x^2.$$

根据上面的命题, 这三个整式是线性无关的. 考虑 $f(x)=3+x-2x^2$. 设 $c_0,\,c_1,\,c_2\in\mathbb{Z}$ 使

$$3 + x - 2x^2 = c_0 \cdot (-1) + c_1 \cdot 2x + c_2 \cdot 3x^2$$
.

这相当于

$$3 = -c_0, \quad 1 = 2c_1, \quad -2 = 3c_2.$$

容易看出, 这个方程组无整数解, 所以 $p_0(x)$, $p_1(x)$, $p_2(x)$ 的 (系数为 $\mathbb Z$ 的元的) 线性组合不能表示每一个次不高于 2 的整式.

评注 不难看出, 1, x^2 , x^3 线性无关. 可是, 它们不能表示每一个次不高于 3 的整式. 因为其线性组合

$$c_0 + c_1 x^2 + c_2 x^3, \quad c_0, c_1, c_2 \in D$$

的 1 次系数总是 0. 所以, 最简单的 1 次式 x 无法用 1, x^2 , x^3 的线性组合表出.

设 $p_0(x)$, $p_1(x)$, ..., $p_n(x)$ 线性无关. 设这些整式的次的最大值为 d:

$$d=\max\{\,\deg p_0(x),\deg p_1(x),\cdots,\deg p_n(x)\,\}.$$

在什么条件下, 其线性组合能表示每一个次不高于 d 的整式? 上面的命题给出了部分的解答. 为什么说它是"部分的解答"呢? 考虑 $\mathbb{Z}[x]$ 的二个 1 次整式

$$p_0(x) = 3 - 7x, \quad p_1(x) = -2 + 5x.$$

读者可验证, 这二个整式线性无关. 由于

$$1=5p_0(x)+7p_1(x),\quad x=2p_0(x)+3p_1(x),$$

故每一个次不高于 1 的整式都可写为 $p_0(x)$ 与 $p_1(x)$ 的线性组合.

这个问题的详细讨论将超出本文的范围. 读者也许可在线性代数中找 到破解此问题的方法. 整式的相等 61

本节开头的问题总算得到了解答. 不仅如此, 我们得到了更深的结论:

命题 设 $a_0,\,b_0,\,a_1,\,b_1,\,\cdots,\,a_n,\,b_n$ 都是 D 的元. 设 $c\in D$. 再设

$$\begin{split} f(x) &= a_0 + a_1(x-c) + a_2(x-c)^2 + \dots + a_n(x-c)^n, \\ g(x) &= b_0 + b_1(x-c) + b_2(x-c)^2 + \dots + b_n(x-c)^n. \end{split}$$

则 f(x) = g(x) 的一个必要与充分条件是

$$a_0=b_0,\quad a_1=b_1,\quad \cdots,\quad a_n=b_n.$$

并且, 任取

$$f(x)=u_0+u_1x+u_2x^2+\cdots+u_nx^n\in D[x],$$

必存在 $v_0, v_1, \dots, v_n \in D$ 使

$$f(x) = v_0 + v_1(x-c) + v_2(x-c)^2 + \dots + v_n(x-c)^n.$$

微商

本节讨论整式的微商.

在本节, 我们会将一些容易证明的命题留给读者练习. 读者可乘此机会让自己熟悉证明命题的过程与算学归纳法.

定义 设

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n \in D[x].$$

f(x) 的微商 (derivative) 是整式

$$f'(x)=0+1a_1+2a_2x+\cdots+(n-1)a_{n-1}x^{n-2}+na_nx^{n-1}\in D[x].$$
 $f'(x)$ 也可写为 $(f(x))'.$

评注 整环 D 里不一定有名为 ± 2 , ± 3 , ... 的元. 回忆一下, 若 $a \in D$, $n \in \mathbb{N}$, 则

$$na = n \cdot a = \underbrace{a + a + \dots + a}_{n \text{ } a \text{'s}}.$$

若 $-n \in \mathbb{N}$, 则

$$na = -((-n)a).$$

当然, 在 \mathbb{Z} (或 \mathbb{F}) 里, na 可以认为是 \mathbb{Z} (或 \mathbb{F}) 的二个元 n 与 a 的积.

例 取
$$f(x) = x^6 - x^3 + 1 \in D[x]$$
. 若 $D = \mathbb{F}$, 则
$$f'(x) = 6x^5 - 3x^2 + 0 = 6x^5 - 3x^2.$$

若 D 是 4 元集 V,则

$$f'(x) = (6 \cdot 1)x^5 + (3 \cdot (-1))x^2 + 0 = x^2.$$

这里, $V = \{0, 1, \tau, \tau^2\}$. 它的加法与乘法如下:

+	0	1	au	$ au^2$			0	1	au	$ au^2$
		1			•	0	0	0	0	0
1	1	0	$ au^2$	au				1		
au	τ	$ au^2$	0	1		au	0	au	$ au^2$	1
$ au^2$	$ au^2$	au	1	0		$ au^2$	0	$ au^2$	1	au

在前面 ("预备知识" 节的 "整环" 小节), 我们知道, V 是整环. 任取 $a \in V$, 都有

$$2 \cdot a = a + a = 0.$$

所以 a = -a. 这样,

$$6 \cdot 1 = 2 \cdot (3 \cdot 1) = (3 \cdot 1) + (3 \cdot 1) = 0,$$

$$3 \cdot (-1) = (-1) + (-1) + (-1) = 1 + 1 + 1 = 0 + 1 = 1.$$

所以, 当我们把 f(x) 视为 V[x] 中元时, 它的微商 "有点奇怪". 同样的道理, 在 V 与 V[x] 中,

$$(x^{2k})' = (2k \cdot 1)x^{2k-1} = 0x^{2k-1} = 0.$$

评注 微商就是 D[x] 到 D[x] 的函数 (也就是 D[x] 的变换):

':
$$D[x] \to D[x],$$

$$a_0 + a_1 x + \dots + a_n x^n \mapsto a_1 + 2a_2 x + \dots + na_n x^{n-1}.$$

定义 设

$$f(x) = a_0 + a_1 x + \dots + a_m x^m,$$

$$g(x) = b_0 + b_1 x + \dots + b_n x^n$$

为 D[x] 中的二个元. 我们称

$$(g\circ f)(x)=g(f(x))=b_0+b_1f(x)+\cdots+b_n(f(x))^n$$

为 f(x) 与 g(x) 的复合 (composition).

评注 可以看到, f(x) 与 g(x) 的复合仍为整式. 设

$$h(x)=d_0+d_1x+\cdots+d_sx^s\in D[x].$$

记

$$\begin{split} \ell(x) &= (h \circ g)(x) \\ &= d_0 + d_1(b_0 + b_1x + \dots + b_nx^n) + \dots \\ &\quad + d_s(b_0 + b_1x + \dots + b_nx^n)^s, \end{split}$$

则

$$\begin{split} ((h \circ g) \circ f)(x) &= (\ell \circ f)(x) \\ &= d_0 + d_1(b_0 + b_1 f(x) + \dots + b_n (f(x))^n) + \dots \\ &\quad + d_s(b_0 + b_1 f(x) + \dots + b_n (f(x))^n)^s \\ &= d_0 + d_1(g \circ f)(x) + \dots + d_s ((g \circ f)(x))^s \\ &= (h \circ (g \circ f))(x). \end{split}$$

换句话说,整式的复合适合结合律.

例 取

$$g(x)=b_0+b_1x+\cdots+b_nx^n,\quad f(x)=x-c\in D[x].$$

那么

$$\begin{split} (g \circ f)(x) &= g(f(x)) = b_0 + b_1(x-c) + \dots + b_n(x-c)^n, \\ (f \circ g)(x) &= f(g(x)) = -c + b_0 + b_1x + \dots + b_nx^n. \end{split}$$

这表明:整式的复合一般不交换.

下面的命题相当显然了.

命题 设
$$f(x)$$
, $g(x)$, $h(x) \in D[x]$.

(i) 设
$$p(x) = f(x) + g(x)$$
. 则

$$p(h(x)) = f(h(x)) + g(h(x)).$$

(ii) 设
$$q(x) = f(x)g(x)$$
. 则

$$q(h(x)) = f(h(x))g(h(x)).$$

证设

$$f(x)=a_0+a_1x+\cdots+a_nx^n,$$

$$g(x)=b_0+b_1x+\cdots+b_nx^n$$

微商 65

是 D[x] 中二个元. 这样,

$$\begin{split} f(h(x)) &= a_0 + a_1 h(x) + \dots + a_n (h(x))^n, \\ g(h(x)) &= b_0 + b_1 h(x) + \dots + b_n (h(x))^n. \end{split}$$

(i) 根据加法的定义, 有

$$p(x) = f(x) + g(x) = c_0 + c_1 x + \dots + c_n x^n,$$

其中

$$c_i = a_i + b_i, \quad i = 0, 1, \cdots, n.$$

所以

$$p(h(x))=c_0+c_1h(x)+\cdots+c_n(h(x))^n.$$

根据整式的运算律,有

$$\begin{split} &f(h(x))+g(h(x))\\ &=(a_0+a_1h(x)+\dots+a_n(h(x))^n)+(b_0+b_1h(x)+\dots+b_n(h(x))^n)\\ &=(a_0+b_0)+(a_1+b_1)h(x)+\dots+(a_n+b_n)(h(x))^n\\ &=c_0+c_1h(x)+\dots+c_n(h(x))^n\\ &=p(h(x)). \end{split}$$

(ii) 根据乘法的定义, 有

$$q(x)=f(x)g(x)=d_0+d_1x+\cdots+d_{2n}x^{2n},$$

其中

$$d_i=a_0b_i+a_1b_{i-1}+\cdots+a_ib_0,\quad i=0,1,\cdots,2n.$$

所以

$$q(h(x)) = d_0 + d_1 h(x) + \dots + d_{2n}(h(x))^{2n}.$$

根据整式的运算律,有

$$\begin{split} &f(h(x))g(h(x))\\ &=(a_0+a_1h(x)+\dots+a_n(h(x))^n)(b_0+b_1h(x)+\dots+b_n(h(x))^n)\\ &=(a_0b_0)+(a_0b_1+a_1b_0)h(x)+\dots+(a_nb_n)(h(x))^{2n}\\ &=(a_0b_0)+(a_0b_1+a_1b_0)h(x)+\dots+(a_0b_{2n}+a_1b_{2n-1}+\dots+a_nb_n\\ &\qquad \qquad +a_{n+1}b_{n-1}+\dots+a_{2n}b_0)(h(x))^{2n}\\ &=c_0+c_1h(x)+\dots+c_{2n}(h(x))^{2n}\\ &=q(h(x)). \end{split}$$

我们得到了如下命题:

命题 若整式 $f_0(x)$, $f_1(x)$, …, $f_{n-1}(x)$ 之间有一个由加法与乘法计算得到的关系, 那么将 x 换为整式 h(x), 这样的关系仍成立.

下面, 我们来了解微商的运算法则. 先看一个例.

例 考虑 \mathbb{Z} 与 $\mathbb{Z}[x]$. 取

$$f(x) = x^3 + 2$$
, $g(x) = x^2 + x - 1$.

不难得到

$$f'(x) = 3x^2$$
, $g'(x) = 2x + 1$.

(i) 4g(x) 也是整式, 当然可以有微商. 因为

$$4q(x) = 4x^2 + 4x - 4,$$

故

$$(4q(x))' = 8x + 4,$$

这刚好是 4g'(x):

$$4g'(x) = 4(2x+1) = 8x + 4.$$

(ii)
$$f(x) + g(x)$$
 也是整式. 因为

$$f(x) + g(x) = x^3 + 2 + x^2 + x - 1 = x^3 + x^2 + x + 1,$$

故

$$(f(x) + g(x))' = 3x^2 + 2x + 1,$$

而这刚好是 f'(x) + g'(x):

$$f'(x) + g'(x) = 3x^2 + 2x + 1.$$

一般地, 我们有

命题 设 $f(x), g(x) \in D[x], c \in D$. 则

- (i) (cf(x))' = cf'(x);
- (ii) $(f(x) \pm g(x))' = f'(x) \pm g'(x)$.

由 (i) (ii) 与算学归纳法可知: 当 $c_0,\,c_1,\,\cdots,\,c_{k-1}\in D,$ 且 $f_0(x),\,f_1(x),$ …, $f_{k-1}(x)\in D[x]$ 时,

$$\begin{split} &(c_0f_0(x)+c_1f_1(x)+\cdots+c_{k-1}f_{k-1}(x))'\\ &=c_0f_0'(x)+c_1f_1'(x)+\cdots+c_{k-1}f_{k-1}'(x). \end{split}$$

证 我们证明 (i) (ii), 将剩下的推论留给读者作练习. 设

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1} + b_n x^n$$

是 D[x] 中二个元.

(i) cf(x) 就是整式

$$ca_0 + ca_1x + ca_2x^2 + \dots + ca_{n-1}x^{n-1} + ca_nx^n,$$

故

$$\begin{split} (cf(x))' &= (ca_0 + ca_1x + ca_2x^2 + \dots + ca_{n-1}x^{n-1} + ca_nx^n)' \\ &= ca_1 + 2ca_2x + \dots + (n-1)ca_{n-1}x^{n-2} + nca_nx^{n-1} \\ &= ca_1 + c2a_2x + \dots + c(n-1)a_{n-1}x^{n-2} + cna_nx^{n-1} \\ &= c(a_1 + 2a_2x + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}) \\ &= cf'(x). \end{split}$$

(ii) $f(x) \pm g(x)$ 就是整式

$$\begin{split} (a_0 \pm b_0) + (a_1 \pm b_1)x + (a_2 \pm b_2)x^2 + \cdots \\ + (a_{n-1} \pm b_{n-1})x^{n-1} + (a_n \pm b_n)x^n, \end{split}$$

故

$$\begin{split} (f(x) \pm g(x))' \\ &= ((a_0 \pm b_0) + (a_1 \pm b_1)x + (a_2 \pm b_2)x^2 + \cdots \\ &\quad + (a_{n-1} \pm b_{n-1})x^{n-1} + (a_n \pm b_n)x^n)' \\ &= (a_1 \pm b_1) + 2(a_2 \pm b_2)x + \cdots + (n-1)(a_{n-1} \pm b_{n-1})x^{n-2} \\ &\quad + n(a_n \pm b_n)x^{n-1} \\ &= (a_1 \pm b_1) + (2a_2x \pm 2b_2x) + \cdots + ((n-1)a_{n-1}x^{n-2} \\ &\quad \pm (n-1)b_{n-1}x^{n-2}) + (na_nx^{n-1} \pm nb_nx^{n-1}) \\ &= (a_1 + 2a_2x + \cdots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}) \\ &\quad \pm (b_1 + 2b_2x + \cdots + (n-1)b_{n-1}x^{n-2} + nb_nx^{n-1}) \\ &= f'(x) \pm g'(x). \end{split}$$

命题 设 f(x), $g(x) \in D[x]$. 则

$$(\bigstar) \qquad (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

由 (★) 与算学归纳法可知: 当 $f_0(x),\,f_1(x),\,\cdots,\,f_{k-1}(x)\in D[x]$ 时,

$$\begin{split} (f_0(x)f_1(x)\cdots f_{k-1}(x))' \\ &= f_0'(x)f_1(x)\cdots f_{k-1}(x) + f_0(x)f_1'(x)\cdots f_{k-1}(x) + \cdots \\ &\quad + f_0(x)f_1(x)\cdots f_{k-1}'(x). \end{split}$$

取
$$f_0(x)=f_1(x)=\cdots=f_{k-1}(x)=f(x)$$
 知
$$((f(x))^k)'=k(f(x))^{k-1}f'(x).$$

证 我们证明 (\star) ,将剩下的二个式留给读者作练习. 首先,任取 i, $j \in \mathbb{N}, p, q \in D$,有

$$px^i \cdot qx^j = pqx^{i+j}.$$

微商 69

这样,

$$\begin{split} (px^i \cdot qx^j)' &= (pqx^{i+j})' \\ &= (i+j)pqx^{i+j-1} \\ &= ipqx^{(i-1)+j} + jpqx^{i+(j-1)} \\ &= ipqx^{i-1}x^j + jpqx^ix^{j-1} \\ &= (ipx^{i-1})(qx^j) + (px^i)(jqx^{j-1}) \\ &= (px^i)'(qx^j) + (px^i)(qx^j)'. \end{split}$$

设

$$f(x) = a_0 + a_1 x + \dots + a_m x^m,$$

$$g(x) = b_0 + b_1 x + \dots + b_n x^n$$

为 D[x] 中的二个元. 取 px^i 为 a_0, a_1x, \dots, a_mx^m , 有

$$\begin{split} (a_0 \cdot qx^j)' &= (a_0)'(qx^j) + (a_0)(qx^j)', \\ (a_1x \cdot qx^j)' &= (a_1x)'(qx^j) + (a_1x)(qx^j)', \\ &\dots \\ (a_mx^m \cdot qx^j)' &= (a_mx^m)'(qx^j) + (a_mx^m)(qx^j)'. \end{split}$$

所以

$$\begin{split} &(f(x)\cdot qx^j)'\\ &=(a_0\cdot qx^j+a_1x\cdot qx^j+\cdots+a_mx^m\cdot qx^j)'\\ &=(a_0\cdot qx^j)'+(a_1x\cdot qx^j)'+\cdots+(a_mx^m\cdot qx^j)'\\ &=((a_0)'(qx^j)+(a_0)(qx^j)')+((a_1x)'(qx^j)+(a_1x)(qx^j)')\\ &+\cdots+((a_mx^m)'(qx^j)+(a_mx^m)(qx^j)')\\ &=((a_0)'(qx^j)+(a_1x)'(qx^j)+\cdots+(a_mx^m)'(qx^j))\\ &+((a_0)(qx^j)'+(a_1x)(qx^j)'+\cdots+(a_mx^m)(qx^j)')\\ &=((a_0)'+(a_1x)'+\cdots+(a_mx^m)')(qx^j)\\ &+(a_0+a_1x+\cdots+a_mx^m)(qx^j)' \end{split}$$

₿

$$\begin{split} &= (a_0 + a_1 x + \dots + a_m x^m)'(qx^j) + f(x)(qx^j)' \\ &= f'(x)(qx^j) + f(x)(qx^j)'. \end{split}$$

再取 qx^j 为 b_0 , b_1x , ..., b_nx^n , 有

$$(f(x) \cdot b_0)' = f'(x)(b_0) + f(x)(b_0)',$$

$$(f(x) \cdot b_1 x)' = f'(x)(b_1 x) + f(x)(b_1 x)',$$

....,

$$(f(x)\cdot b_nx^n)'=f'(x)(b_nx^n)+f(x)(b_nx^n)'.$$

所以

$$\begin{split} &(f(x)g(x))'\\ &= (f(x)\cdot b_0 + f(x)\cdot b_1x + \dots + f(x)\cdot b_nx^n)'\\ &= (f(x)\cdot b_0)' + (f(x)\cdot b_1x)' + \dots + (f(x)\cdot b_nx^n)'\\ &= (f'(x)(b_0) + f(x)(b_0)') + (f'(x)(b_1x) + f(x)(b_1x)')\\ &+ \dots + (f'(x)(b_nx^n) + f(x)(b_nx^n)')\\ &= (f'(x)(b_0) + (f'(x)(b_1x) + \dots + f'(x)(b_nx^n)')\\ &+ (f(x)(b_0)' + f(x)(b_1x)' + \dots + f(x)(b_nx^n)')\\ &= f'(x)(b_0 + b_1x + \dots + b_nx^n)\\ &+ f(x)((b_0)' + (b_1x)' + \dots + (b_nx^n)')\\ &= f'(x)g(x) + f(x)(b_0 + b_1x + \dots + b_nx^n)'\\ &= f'(x)g(x) + f(x)g'(x). \end{split}$$

例 考虑 \mathbb{Z} 与 $\mathbb{Z}[x]$. 取

$$f(x) = x^3 + 2$$
, $g(x) = x^2 + x - 1$.

不难得到

$$f'(x) = 3x^2$$
, $g'(x) = 2x + 1$.

f(x) 与 g(x) 的积

$$f(x)g(x) = x^5 + x^4 - x^3 + 2x^2 + 2x - 2$$

微商 71

的微商是

$$(f(x)g(x))' = 5x^4 + 4x^3 - 3x^2 + 4x + 2.$$

如果用上面的(★)计算,就是

$$f'(x)g(x) + f(x)g'(x)$$

$$= 3x^{2}(x^{2} + x - 1) + (x^{3} + 2)(2x + 1)$$

$$= 3x^{4} + 3x^{3} - 3x^{2} + 2x^{4} + x^{3} + 4x + 2$$

$$= 5x^{4} + 4x^{3} - 3x^{2} + 4x + 2.$$

也许这不太能体现 (★) 的作用: 算二个整式积的微商时, 先拆再算好像 没什么不方便的. 的确如此. 可是 (★) 的推论

$$((f(x))^k)' = k(f(x))^{k-1}f'(x)$$

很有用. 看下面的例.

例 还是考虑 \mathbb{Z} 与 $\mathbb{Z}[x]$. 计算

$$p(x) = (g \circ f)(x) = g(f(x)) = (x^3 + 2)^2 + (x^3 + 2) - 1,$$

$$q(x) = (f \circ q)(x) = f(q(x)) = (x^2 + x - 1)^3 + 2$$

的微商.

用定义写出 p(x) 的微商并不是很难. 因为

$$p(x) = (x^6 + 4x^3 + 4) + x^3 + 2 - 1 = x^6 + 5x^3 + 5,$$

故

$$p'(x) = 6x^5 + 15x^2.$$

不过用定义写出 q(x) 就有点麻烦了: 三项的立方不是那么好算. 但是, 我们利用这个推论, 可直接写出

$$q'(x) = 3(x^2 + x - 1)^2(2x + 1).$$

记 $g(x) = x^k$. 取 $f(x) \in D[x]$. 不难看出,

$$(f(x))^k = (g \circ f)(x).$$

所以

$$(g\circ f)'(x) = ((f(x))^k)' = k(f(x))^{k-1}f'(x) = (g'\circ f)(x)f'(x).$$

这告诉我们什么呢? 如果我们把 f(x) 看成文字 y, 那么 $y^k \in D[y]$ 的 微商是 ky^{k-1} . 将此结果乘 $y=f(x)\in D[x]$ 的微商 f'(x), 就是 $(g\circ f)(x)\in D[x]$ 的微商.

取 $h(x) = x \in D[x]$. 那么 $(f \circ h)(x)$ 就是 f(x). 因为 (x)' = 1, 所以

$$(f\circ h)'(x)=f'(x)=(f'\circ h)(x)h'(x).$$

我们作出猜想: 任取 f(x), $g(x) \in D[x]$, 必有

$$(g\circ f)'(x)=(g'\circ f)(x)f'(x).$$

幸运的事儿是,这个猜想是正确的.

命题 设 f(x), $g(x) \in D[x]$. 则 f(x) 与 g(x) 的复合的微商适合链规则 (the chain rule):

$$(g\circ f)'(x)=(g'\circ f)(x)f'(x).$$

证 设

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1} + b_n x^n \in D[x],$$

则

$$(g\circ f)(x)=b_0+b_1f(x)+b_2(f(x))^2+\cdots+b_{n-1}(f(x))^{n-1}+b_n(f(x))^n.$$

微商 73

所以

$$\begin{split} &(g\circ f)'(x)\\ &=b_1f'(x)+b_2((f(x))^2)'+\dots+b_{n-1}((f(x))^{n-1})'+b_n((f(x))^n)'\\ &=b_1f'(x)+b_2\cdot 2f(x)f'(x)+\dots+b_{n-1}\cdot (n-1)(f(x))^{n-2}f'(x)\\ &\qquad +b_n\cdot n(f(x))^{n-1}f'(x)\\ &=b_1f'(x)+2b_2f(x)f'(x)+\dots+(n-1)b_{n-1}(f(x))^{n-2}f'(x)\\ &\qquad +nb_n(f(x))^{n-1}f'(x)\\ &=(b_1+2b_2f(x)+\dots+(n-1)b_{n-1}(f(x))^{n-2}+nb_n(f(x))^{n-1})f'(x)\\ &=(g'\circ f)(x)f'(x). \end{split}$$

例 我们用链规则计算 p(x) 的微商:

$$p'(x) = (q' \circ f)(x)f'(x) = (2(x^3 + 2) + 1)(3x^2) = 3x^2(2x^3 + 5).$$

这跟前面算出的 $6x^5 + 15x^2$ 是一致的.

整式的根

我们回顾一下熟悉的整式函数.

定义 设
$$a_0, a_1, \cdots, a_n \in D$$
. 称

f: $D \to D$,

$$t\mapsto a_0+a_1t+\cdots+a_nt^n$$

为 D 的整式函数 (polynomial function). 我们也说, 这个 f 是由 D 上 x 的整式

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

诱导的整式函数 (the polynomial function induced by f). 不难看出, 若二个整式相等, 则其诱导的整式函数也相等.

定义 设 f 与 g 是 D 的二个整式函数. 二者的和 f+g 定义为

f+g: $D \to D$,

$$t\mapsto f(t)+g(t).$$

二者的积 fg 定义为

 $fg: D \to D,$

 $t \mapsto f(t)g(t)$.

设 f, g 是 D 的二个整式函数:

 $f: D \to D,$

 $t \mapsto a_0 + a_1 t + \dots + a_n t^n$,

 $g: D \to D,$

$$t \mapsto b_0 + b_1 t + \dots + b_n t^n.$$

利用 D 的运算律, 可以得到

 $f+g: D \to D,$

$$t\mapsto (a_0+b_0)+(a_1+b_1)t+\cdots+(a_n+b_n)t^n,$$

 $fg: D \to D,$

$$t\mapsto c_0+c_1t+\cdots+c_{2n}t^{2n},$$

整式的根 75

其中

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0.$$

由此可得下面的命题:

命题 设 f(x), $g(x) \in D[x]$, f, g 分别是 f(x), g(x) 诱导的整式函数. 那么 f+g 是 f(x)+g(x) 诱导的整式函数, 且 fg 是 f(x)g(x) 诱导的整式函数.

通俗地说, 若整式 $f_0(x)$, $f_1(x)$, …, $f_{n-1}(x)$ 之间有一个由加法与乘法计算得到的关系, 那么将 x 换为 D 的元 t, 这样的关系仍成立.

例 考虑 \mathbb{F} 与 $\mathbb{F}[x]$. 前面, 利用带余除法, 得到关系

$$8x^6 + 1 = (4x^3 + 12x - 8) \cdot 2(x - 1)^2(x + 2) + (72x^2 - 96x + 33).$$

这里 x 只是一个文字, 不是数! 但是, 上面的命题告诉我们, 可以把 x 看成一个数. 比如, 由上面的式可以立即看出, $8t^6+1$ 与 $72t^2-96t+33$ 在 t=1 或 t=-2 时值是一样的.

可是, 对于这样的式, 我们不能将 x 改写为 \mathbb{F} 的元 t:

$$\deg 3x^2 < \deg 2x^3.$$

可以看到, 若 t = 0, 则 $3t^2 = 2t^3 = 0$, 而 0 的次是 $-\infty$; 若 $t \neq 0$, 则 $3t^2$ 与 $2t^3$ 都是非零数, 次都是 0.

评注 我们已经知道,整式确定整式函数. 自然地,有这样的问题: 整式函数能否确定整式? 一般情况下,这个问题的答案是 no.

考虑 4 元集 V. 作 V 上 x 的二个整式:

$$f(x)=x^4-x,\quad g(x)=0.$$

显然, 这是二个不相等的整式. 但是, 任取 $t \in V$, 都有

$$t^4 - t = 0.$$

因此, f(x) 与 g(x) 诱导的整式函数是同一函数!

不过, 在某些场合下, 整式函数可以确定整式. 之后我们还会提到这一点.

76 查考整式

评注 设 $f(x)=a_0+a_1x+\cdots+a_nx^n\in D[x]$. 设 t 是 D 的元. 以后,我们直接写

$$f(t) = a_0 + a_1 t + \dots + a_n t^n.$$

并称 f(t) 是整式 f(x) 在点 (point) t 的值. 至少,一方通行 (one-way traffic) 是没问题的.

顺便一提, f(x) 的微商也是整式:

$$f'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1}.$$

我们把

$$a_1 + 2a_2t + \dots + na_nt^{n-1} \in D$$

简单地写为 f'(t).

了解了整式与整式函数的关系后,下面的这个命题就不会太突兀了.

命题 设 $f(x) \in D[x]$ 是 n 次整式 $(n \ge 1), a \in D$. 则存在 n-1 次整式 $q(x) \ (\in D[x])$ 使

$$f(x) = q(x)(x - a) + f(a).$$

根据带余除法, 这样的 q(x) 一定是唯一的.

证 因为 x-a 的首项系数 1 是单位, 故存在 D[x] 的二元 q(x), r(x) 使

$$f(x)=q(x)(x-a)+r(x),\quad \deg r(x)<\deg (x-a)=1.$$

所以, r(x) = c, $c \in D$. 用 D 的元 a 替换 x, 有

$$f(a) = q(a)(a-a) + c = c.$$

所以

$$f(x) = q(x)(x-a) + f(a).$$

再看这个 q(x) 的次. 因为 f(x) 的次不低于 x-a 的次, 故

$$\deg q(x) = \deg f(x) - \deg(x-a) = n-1.$$

整式的根

77

评注 如果用 D 的元 b 替换 x, 则

$$f(b) = (b - a)q(b) + f(a),$$

也就是说, 存在 $r \in D$ 使

$$f(b) - f(a) = (b - a)r.$$

所以, 若 $f(x) \in D[x]$ 是 n 次整式 $(n \ge 1)$, $a,b \in D$, 则存在 $r \in D$ 使 f(b) - f(a) = (b - a)r. 当 f(x) 的次低于 1 时, 这个命题也对 (p) = 0.

举个简单的例. 我们说,不存在系数为整数的整式 f(x) 使 f(1) = f(-1) + 1. 假如说这样的 f 存在,那么应存在整数 r 使

$$1 = f(1) - f(-1) = (1 - (-1))r = 2r,$$

而1不是偶数,矛盾.

现在, 我们讨论整式的根的基本性质.

定义 设 f(x) 是 D 上 x 的整式. 若有 $a \in D$ 使 f(a) = 0, 则说 a 是 (整式) f(x) 的根 (root).

例 设 $D \subset \mathbb{C}$, 且 $\mathbb{Z} \subset D$. 看 $D \perp x$ 的整式

$$f(x) = (2x-1)(x+1)(x^2-3)(x^2+1)(x^2+4).$$

如果 $D=\mathbb{Z}$, 则 f(x) 有一个在 D 里的根: -1. 如果 $D=\mathbb{Q}$, 则 f(x) 有二个在 D 里的根: $-1, \frac{1}{2}$. 如果 $D=\mathbb{R}$, 则 f(x) 有四个在 D 里的根: $-1, \frac{1}{2}$, $\pm \sqrt{3}$. 如果 $D=\mathbb{C}$, 则 f(x) 有八个在 D 里的根: $-1, \frac{1}{2}$, $\pm \sqrt{3}$, $\pm i$, $\pm 2i$.

例 再来一个例. 看 $D \perp x$ 的整式

$$f(x) = x^2 + x - 1.$$

若 $D = \mathbb{R}$, 则 f(x) 的二个根是 $\frac{-1 \pm \sqrt{5}}{2}$. 若 D = V, 则 f(x) 的二个根是 τ , τ^2 . 当然, 若 $D \subset \mathbb{Q}$, 则 f(x) 无 $(D \ b)$ 根.

评注 设 $a, b \in D$, 且 $a \neq 0$.

若 f(x) = a, 则 f(x) 无根. 换句话说, 零次整式至多有零个根.

再设 f(x) = ax + b 是 1 次整式. 若存在 $c \in D$ 使 b = ac, 则 f(x) 有一个根 -c. 并且, f(x) 也不会有另一个根 (若 $at_1 + b = at_2 + b$, 则 $at_1 = at_2$, 故 $t_1 = t_2$). 若这样的 c 不存在, 则 f(x) 无根 (反设 f(x) 有根 d, 则由 ad + b = 0 知 b = a(-d), 矛盾). 换句话说, 1 次整式至多有一个根.

结合上面的二个例, 我们猜想: n 次整式 ($n \in \mathbb{N}$) 至多有 n 个 (不同的) 根. 幸运的事儿是, 这个猜想是正确的.

命题 设 $f(x) \in D[x]$ 是 n 次整式 $(n \ge 1)$. a 是 f(x) 的根的一个必要与充分条件是: 存在 n-1 次整式 g(x) $(\in D[x])$ 使

$$f(x) = q(x)(x - a).$$

根据带余除法, 这样的 q(x) 一定是唯一的.

证 先看充分性. 若这样的 q(x) 存在, 则

$$f(a) = g(a)(a-a) = 0.$$

再看必要性. 设 f(a) = 0. 根据上面的命题, 存在 n-1 次整式 $q(x) \in D[x]$ 使

$$f(x) = q(a)(x-a) + f(a) = q(a)(x-a).$$

命题 设 $f(x) \in D[x]$ 是 n 次整式 $(n \in \mathbb{N})$. 则 f(x) 至多有 n 个不同的根.

证 n=0 或 n=1 时, 我们已经知道这是对的. 用算学归纳法. 假设 ℓ 次整式至多有 ℓ 个不同的根. 看 $\ell+1$ 次整式 f(x). 如果它没有根, 当然 至多有 $\ell+1$ 个不同的根. 如果它有一个根 a, 则存在 ℓ 次整式 g(x) 使

$$f(x) = q(x)(x - a).$$

根据归纳假设, q(x) 至多有 ℓ 个不同的根. 而且, 若 $b \neq a$, 且 b 不是 q(x) 的根, 利用消去律可知 $f(b) \neq 0$. 这样, f(x) 至多有 $\ell + 1$ 个不同的根.

整式的根 79

由此可推出一个很有用的事实:

命题 设 a_0, a_1, \dots, a_n 是 D 的元. 设 n 是非负整数. 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n.$$

若 t_0, t_1, \dots, t_n 是 n+1 个互不相同的 D 的元, 且

$$f(t_0)=f(t_1)=\cdots=f(t_n)=0,$$

则 f(x) 必为零整式. 通俗地说, 次不高于 n (且系数为整环的元) 的整式不可能有 n 个以上的互不相同的根, 除非这个整式是零.

证 反证法. 设 f(x) 不是零整式. 设 f(x) 的次为 m, 则 $0 \le m \le n$. 根据上个命题, f(x) 至多有 m 个不同的根, 这与题设矛盾! 故 f(x) = 0.

评注 再看前面提到的 4 元集 V. 可以看出, 因为 V 的元 "不够多", 所以出现了取零值的非零整式.

此事实的一个推论是:

命题 设 $a_0, b_0, a_1, b_1, ..., a_n, b_n$ 是 D 的元. 设 n 是非负整数. 设

$$f(x)=a_0+a_1x+\cdots+a_nx^n,$$

$$g(x)=b_0+b_1x+\cdots+b_nx^n.$$

若 $t_0,\,t_1,\,\cdots,\,t_n$ 是 n+1 个互不相同的 D 的元, 且

$$f(t_0)=g(t_0),\quad f(t_1)=g(t_1),\quad \cdots,\quad f(t_n)=g(t_n),$$

则 f(x) 必等于 g(x). 通俗地说, 若次不高于 n (且系数为整环的元) 的二个整式若在多于 n 处取一样的值, 则这二个整式相等.

证 考虑 h(x) = f(x) - g(x). 则 $\deg h(x) \le n$. h(x) 有 n+1 个不同的根. 根据上个命题, h(x) 是零整式. 这样, f(x) = g(x).

在中学, 我们学过解 1 元 2 次方程 $at^2 + bt + c = 0$ (a, b, c) 为实数, 且 $a \neq 0$) 的一种方法: 直接套用公式

$$t = \frac{-b \pm \sqrt{\Delta}}{2a},$$

其中

$$\Delta = b^2 - 4ac$$

是判别式: 当 $\Delta > 0$ 时, 方程有二个不等的实数解; 当 $\Delta = 0$ 时, 方程有二个相等的实数解; 当 $\Delta < 0$ 时, 方程无实数解.

当
$$\Delta = 0$$
 时, $c = \frac{b^2}{4a}$, 则

$$at^2 + bt + c = a\left(t^2 + 2\frac{b}{2a}t + \left(\frac{b}{2a}\right)^2\right) = a\left(t + \frac{b}{2a}\right)^2.$$

记

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 \in \mathbb{R}[x].$$

根据根的定义, $-\frac{b}{2a} \in \mathbb{R}$ 是 f(x) 的根. 我们发现, 这个根 "出现了" 2 次, 是重复的. 我们给这样的根一个特殊点的称呼.

定义 设 $a \in D$ 是整式 $f(x) \in D[x]$ 的根. 那么, 存在唯一的整式 $g(x) \in D[x]$ 使

$$f(x) = (x - a)q(x).$$

若 q(a) = 0, 则说 a 是 f(x) 的一个重根 (multiple root). 若 $q(a) \neq 0$, 则说 a 是 f(x) 的一个单根 (simple root).

例 看 \mathbb{Z} 上 x 的整式

$$f(x) = (x^2 - 3)(x^2 + 2)(x - 1)^2(x + 2).$$

显然, f(x) 的根是 1 与 -2. 因为

$$f(x) = (x+2)\underbrace{(x^2-3)(x^2+2)(x-1)^2}_{q_1(x)},$$

整式的根 81

且 $q_1(x) \neq 0$, 故 -2 是 f(x) 的单根. 类似地, 由于

$$f(x) = (x-1)\underbrace{(x^2-3)(x^2+2)(x-1)(x+2)}_{q_2(x)},$$

且 $q_2(x) = 0$, 故 1 是 f(x) 的重根.

命题 设 $a \in D$ 是整式 $f(x) \in D[x]$ 的根. 则:

- (i) 若 a 是 f(x) 的重根, 则 a 是 f'(x) 的根;
- (ii) 若 a 是 f(x) 的单根, 则 a 不是 f'(x) 的根.

所以, f(x) 有重根的一个必要与充分条件是: f(x) 与 f'(x) 有公共根.

证 因为 a 是 f(x) 的根, 故存在唯一的 g(x) 使

$$f(x) = (x - a)q(x).$$

从而

$$f'(x) = (x-a)'q(x) + (x-a)q'(x) = q(x) + (x-a)q'(x).$$

这样

$$f'(a) = q(a) + (a - a)q'(a) = q(a).$$

- (i) 若 a 是 f(x) 的重根, 则 q(a) = 0, 故 f'(a) = 0.
- (ii) 若 a 是 f(x) 的单根, 则 $q(a) \neq 0$, 故 $f'(a) \neq 0$.

例 我们看

$$f(x) = ax^2 + bx + c \in \mathbb{R}[x], \quad a \neq 0.$$

它的微商 f'(x)=2ax+b 恰有一个根 $t_0=-\frac{b}{2a}$. 由上个命题, f(x) 有重根相当于 $f(t_0)=0$, 即

$$0 = f(t_0) = a \cdot \frac{b^2}{4a^2} - \frac{b^2}{2a} + c = \frac{4ac - b^2}{4a} = -\frac{\Delta}{4a}.$$

F 上的整式

我们在前几节讨论的都是整环 D 上的整式, 所以它们看上去是有些抽象的. 从现在开始, 我们不讨论抽象的 D 与 D[x], 而是讨论 \mathbb{F} 与 $\mathbb{F}[x]$, 其中 \mathbb{F} 可代指 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意一个. 细心的读者会注意到我们在前几节未使用 Σ 符号: 这是为了让读者没那么困难地适应整式理论. 从本节起, 我们会较多地使用这个 Σ . 读者也可以乘此机会让自己熟悉它. 当然, 我们偶尔也会使用 Γ 符号.

本节并没有什么新的知识. 读者可以乘此机会温习一下所学内容. 我们将重述一些定义与命题. 我们在学校学算学的时候, 也会有复习课. 就当本节就是"复习节"吧!

先从整式的定义与运算开始.

定义 设x是不在 \mathbb{F} 里的任意一个文字. 形如

$$\begin{split} f(x) &= \sum_{i=0}^n a_i x^i \\ &= a_0 + a_1 x + \dots + a_n x^n \quad (n \in \mathbb{N}, \ a_0, a_1, \dots, a_n \in \mathbb{F}, \ a_n \neq 0) \end{split}$$

的表达式称为 \mathbb{F} 上 x 的一个整式. n 称为其次, a_i 称为其 i 次系数, a_ix^i 称为其 i 次项. f(x) 的次可写为 $\deg f(x)$.

若二个整式的次与各同次系数均相等,则二者相等.

整式的系数为 0 的项可以不写.

约定 $0 \in \mathbb{F}$ 也是整式, 称为零整式. 零整式的次是 $-\infty$. 任取整数 m, 约定

$$-\infty = -\infty, \quad -\infty < m,$$

$$-\infty + m = m + (-\infty) = -\infty + (-\infty) = -\infty.$$

当然, 还约定, 零整式只跟自己相等. 换句话说,

$$\sum_{i=0}^{n} a_i x^i = 0$$

的一个必要与充分条件是

$$a_0 = a_1 = \dots = a_n = 0.$$

F 上的整式

83

 \mathbb{F} 上 x 的所有整式作成的集是 $\mathbb{F}[x]$:

$$\mathbb{F}[x] = \left\{ \left. \sum_{i=0}^n a_i x^i \; \right| \; n \in \mathbb{N}, \; a_0, a_1, \cdots, a_n \in \mathbb{F} \; \right\}.$$

文字 x 只是一个符号, 它与 $\mathbb F$ 的元的和与积都是形式的. 我们说, x 是不定元.

定义 设

$$f(x) = \sum_{i=0}^n a_i x^i, \quad g(x) = \sum_{i=0}^n b_i x^i \in \mathbb{F}[x].$$

规定加法如下:

$$f(x)+g(x)=\sum_{i=0}^n(a_i+b_i)x^i.$$

命题 设 f(x), g(x), $h(x) \in \mathbb{F}[x]$. $\mathbb{F}[x]$ 的加法适合如下性质:

- (i) $f(x) + g(x) \in \mathbb{F}[x];$
- (ii) (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x));
- (iii) 存在整式 0 使 0 + f(x) = f(x) + 0 = f(x);
- (iv) 存在整式 -f(x) 使 -f(x) + f(x) = f(x) + (-f(x)) = 0;
- (v) f(x) + g(x) = g(x) + f(x).

定义 设

$$f(x) = \sum_{i=0}^n a_i x^i, \quad g(x) = \sum_{i=0}^n b_i x^i \in \mathbb{F}[x].$$

则

$$-g(x) = \sum_{i=0}^{n} (-b_i)x^i.$$

规定减法如下:

$$f(x)-g(x)=f(x)+(-g(x)).$$

命题 设 $f(x), g(x) \in \mathbb{F}[x]$. 则

$$\deg(f(x) \pm g(x)) \le \max\{\deg f(x), \deg g(x)\}.$$

若 $\deg f(x) > \deg g(x)$, 则

$$\deg(f(x) \pm g(x)) = \deg f(x).$$

类似地, 若 $\deg f(x) < \deg g(x)$, 则

$$\deg(f(x) \pm g(x)) = \deg g(x).$$

定义 设

$$f(x)=\sum_{i=0}^n a_i x^i=a_0+a_1 x+\cdots+a_n x^n\in \mathbb{F}[x].$$

这称为 f(x) 的升次排列. 下面的写法称为 f(x) 的降次排列:

$$\sum_{j=0}^n a_{n-j} x^{n-j} = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0.$$

(非零) 整式的最高次非零项是首项. 它的系数是此整式的首项系数.

定义 设

$$f(x) = \sum_{i=0}^m a_i x^i, \quad g(x) = \sum_{j=0}^n b_j x^j \in \mathbb{F}[x].$$

规定乘法如下:

$$f(x)g(x) = \sum_{k=0}^{m+n} \left(\sum_{i=0}^k a_i b_{k-i}\right) x^k.$$

命题 设 $m, n \in \mathbb{N}, p, q \in \mathbb{F}$. 则

$$px^i\cdot qx^j=(px^i)(qx^j)=(pq)x^{i+j}.$$

命题 设 $f(x), g(x) \in \mathbb{F}[x]$. 则

$$\deg f(x)g(x) = \deg f(x) + \deg g(x).$$

ℙ上的整式 85

命题 设 f(x), g(x), $h(x) \in \mathbb{F}[x]$. $\mathbb{F}[x]$ 的加法与乘法适合 (i) 至 (v) 及如下性质:

- (vi) $f(x)g(x) \in \mathbb{F}[x]$;
- (vii) (f(x)g(x))h(x) = f(x)(g(x)h(x));
- (viii) 存在整式 1 使 1f(x) = f(x)1 = f(x);
- (ix) (-1)f(x) = -f(x);
- (x) f(x)g(x) = g(x)f(x);
- (xi) 若 $f(x) \neq 0$, 则

$$f(x)g(x) = f(x)h(x) \implies g(x) = h(x),$$

 $g(x)f(x) = h(x)f(x) \implies g(x) = h(x);$

(xii) 二个分配律都对:

$$f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x),$$

$$(g(x) + h(x))f(x) = g(x)f(x) + h(x)f(x).$$

评注 $\mathbb{F}[x]$ 的一个名字就是 (域) \mathbb{F} 上 (x) 的整式环.

定义 设 $m \in \mathbb{N}$. 整式 f(x) 的 m 次幂就是 $m \uparrow f(x)$ 的积:

$$(f(x))^m = \underbrace{f(x) \cdot f(x) \cdot \cdots \cdot f(x)}_{m \ f(x) \text{'s}} = \prod_{\ell=0}^{m-1} f(x).$$

设 $m, n \in \mathbb{N}, f(x), g(x) \in \mathbb{F}[x],$ 则整式的幂适合如下规则:

$$(f(x))^{m}(f(x))^{n} = (f(x))^{m+n},$$

$$((f(x))^{m})^{n} = (f(x))^{mn},$$

$$(f(x)g(x))^{m} = (f(x))^{m}(g(x))^{m}.$$

命题 设 $f(x) \in \mathbb{F}[x]$. 非零的 $c \in \mathbb{F}$ 是 0 次整式, 那么

$$\deg cf(x) = \deg f(x).$$

再来看整式的带余除法. 因为 F 的每个非零元都是 F 的单位, 所以有

命题 设 $f(x) \in \mathbb{F}[x]$ 是非零整式. 对任意 $g(x) \in \mathbb{F}[x]$, 存在唯一的 $q(x), r(x) \in \mathbb{F}[x]$ 使

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < \deg f(x).$$

一般称其为带余除法: q(x) 就是商; r(x) 就是余式. 并且, 当 f(x) 的次不高于 g(x) 的次时, f(x), g(x), q(x) 间还有如下的次关系:

$$\deg g(x) = \deg(g(x) - r(x)) = \deg q(x) + \deg f(x).$$

可以看到, 在 $\mathbb{F}[x]$ 里, 带余除法的适用范围更广了. 我们还得到了一个有用的事实.

命题 整式的带余除法不因系数的范围变大而改变. 具体地说, 设 E, K 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 $K \subset E$. 设 f(x), $g(x) \in K[x]$, 且 $f(x) \neq 0$. 设 K 上的整式 $g_1(x)$, $g_1(x)$ 适合

$$g(x) = q_1(x)f(x) + r_1(x), \quad \deg r_1(x) < \deg f(x).$$

因为 K 的元都是 E 的元, 故 f(x), g(x) 当然可认为是 E 上的整式. 设 E 上的整式 $q_2(x)$, $r_2(x)$ 适合

$$g(x) = q_2(x)f(x) + r_2(x), \quad \deg r_2(x) < \deg f(x).$$

下面回顾整式的相等. 我们借助"线性无关"讨论相等问题.

定义 设 $p_0(x), p_1(x), \dots, p_n(x) \in \mathbb{F}[x]$. 设 $c_0, c_1, \dots, c_n \in \mathbb{F}$. 我们说

$$\sum_{i=0}^{n} c_i p_i(x)$$

是整式 $p_0(x), p_1(x), ..., p_n(x)$ 的一个线性组合. $c_0, c_1, ..., c_n$ 就是此线性组合的系数.

若不存在一组不全为 0 的 $\mathbb F$ 中元 $d_0,\,d_1,\,\cdots,\,d_n$ 使

$$\sum_{i=0}^{n} d_i p_i(x) = 0,$$

F 上的整式 87

则说 $p_0(x),\ p_1(x),\ \cdots,\ p_n(x)$ 是线性无关的. 换句话说, " $p_0(x),\ p_1(x),\ \cdots,\ p_n(x)$ 是线性无关的" 意味着: 若 $\mathbb F$ 中元 $r_0,\ r_1,\ \cdots,\ r_n$ 使

$$\sum_{i=0}^{n} r_i p_i(x) = 0,$$

 $\text{ } \square \mid r_0=r_1=\cdots=r_n=0.$

命题 设 $p_0(x), p_1(x), ..., p_n(x) \in \mathbb{F}[x]$ 分别是 0, 1, ..., n 次整式. 则:

- (i) $p_0(x)$, $p_1(x)$, ..., $p_n(x)$ 是线性无关的;
- (ii) 任意次不高于 n 的整式都可唯一地写为 $p_0(x),\,p_1(x),\,\cdots,\,p_n(x)$ 的线性组合.

由于 F 的每个非零元都是单位, 上面的命题的结论变强了. 下面的例体现了这一点.

例 考虑 \mathbb{F} 与 $\mathbb{F}[x]$. 取 n=2, 及

$$p_0(x) = -1, \quad p_1(x) = 2x, \quad p_2(x) = 3x^2.$$

这三个整式是线性无关的. 考虑 $f(x)=3+x-2x^2$. 设 $c_0,\,c_1,\,c_2\in\mathbb{F}$ 使

$$3 + x - 2x^2 = c_0 \cdot (-1) + c_1 \cdot 2x + c_2 \cdot 3x^2.$$

这相当于

$$3=-c_0, \quad 1=2c_1, \quad -2=3c_2.$$

由此可得

$$c_0=-3, \quad c_1=\frac{1}{2}, \quad c_2=-\frac{2}{3}.$$

可以看到, 在 \mathbb{Z} 与 $\mathbb{Z}[x]$ 里 $p_0(x)$, $p_1(x)$, $p_2(x)$ 的线性组合还不能表示这个 f(x), 但当我们在"大环境" \mathbb{F} 与 $\mathbb{F}[x]$ 下讨论问题时就可以了.

评注 我们常常把 D 的元分为三类:零、单位、非零且不是单位的元.但是在 \mathbb{F} ,只要分为二类即可:零与非零.

命题 设 $a_0,\,b_0,\,a_1,\,b_1,\,\cdots,\,a_n,\,b_n\in\mathbb{F}$. 设 $c\in\mathbb{F}$. 再设

$$f(x)=\sum_{i=0}^n a_i(x-c)^i,\quad g(x)=\sum_{i=0}^n b_i(x-c)^i.$$

则 f(x) = g(x) 的一个必要与充分条件是

$$a_0 = b_0, \quad a_1 = b_1, \quad \cdots, \quad a_n = b_n.$$

并且, 任取

$$f(x) = \sum_{i=0}^n u_i x^i \in \mathbb{F}[x],$$

必存在 $v_0,\,v_1,\,\cdots,\,v_n\in\mathbb{F}$ 使

$$f(x) = \sum_{i=0}^{n} v_i (x - c)^i.$$

我们看看整式的微商.

定义 设

$$f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{F}[x].$$

f(x) 的微商是整式

$$f'(x) = \sum_{i=1}^n ia_i x^{i-1} \in \mathbb{F}[x].$$

f'(x) 也可写为 (f(x))'.

评注 若 $f(x) = c, c \in \mathbb{F}$, 则 f'(x) 为零整式.

定义 设

$$f(x) = \sum_{i=0}^m a_i x^i, \quad g(x) = \sum_{j=0}^n b_j x^j$$

为 $\mathbb{F}[x]$ 中的二个元. 我们称

$$(g\circ f)(x)=g(f(x))=\sum_{j=0}^n b_j(f(x))^j$$

为 f(x) 与 g(x) 的复合.

ℙ上的整式 89

命题 整式的复合适合结合律. 具体地说, 设 $f(x), g(x), h(x) \in \mathbb{F}[x],$ 则

$$((h\circ g)\circ f)(x)=(h\circ (g\circ f))(x).$$

命题 设 f(x), g(x), $h(x) \in \mathbb{F}[x]$.

(i) 设 p(x) = f(x) + g(x). 则

$$p(h(x)) = f(h(x)) + g(h(x)).$$

(ii) 设 q(x) = f(x)g(x). 则

$$q(h(x)) = f(h(x))g(h(x)).$$

命题 若整式 $f_0(x)$, $f_1(x)$, …, $f_{n-1}(x)$ 之间有一个由加法与乘法计算得到的关系, 那么将 x 换为整式 h(x), 这样的关系仍成立.

命题 设 $f(x), g(x) \in \mathbb{F}[x], c \in \mathbb{F}$. 则

- (i) (cf(x))' = cf'(x);
- (ii) $(f(x) \pm g(x))' = f'(x) \pm g'(x)$.

由 (i) (ii) 与算学归纳法可知: 当 $c_0,\,c_1,\,\cdots,\,c_{k-1}\in\mathbb{F},\,$ 且 $f_0(x),\,f_1(x),\,\cdots,\,f_{k-1}(x)\in\mathbb{F}[x]$ 时,

$$\left(\sum_{\ell=0}^{k-1} c_{\ell} f_{\ell}(x)\right)' = \sum_{\ell=0}^{k-1} c_{\ell} f'_{\ell}(x).$$

命题 设 $f(x), g(x) \in \mathbb{F}[x]$. 则

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

由 (★) 与算学归纳法可知: 当 $f_0(x),\,f_1(x),\,\cdots,\,f_{k-1}(x)\in\mathbb{F}[x]$ 时,

$$\begin{split} (f_0(x)f_1(x)\cdots f_{k-1}(x))' \\ &= f_0'(x)f_1(x)\cdots f_{k-1}(x) + f_0(x)f_1'(x)\cdots f_{k-1}(x) + \cdots \\ &\quad + f_0(x)f_1(x)\cdots f_{k-1}'(x). \end{split}$$

取
$$f_0(x) = f_1(x) = \dots = f_{k-1}(x) = f(x)$$
 知
$$((f(x))^k)' = k(f(x))^{k-1}f'(x).$$

命题 设 f(x), $g(x) \in \mathbb{F}[x]$. 则 f(x) 与 g(x) 的复合的微商适合链规则:

$$(g\circ f)'(x)=(g'\circ f)(x)f'(x).$$

最后, 我们回顾整式函数与整式的根.

定义 设 $a_0, a_1, \cdots, a_n \in \mathbb{F}$. 称

 $f \colon \mathbb{F} \to \mathbb{F},$

$$t \mapsto \sum_{i=0}^{n} a_i t^i$$

为 \mathbb{F} 的整式函数. 我们也说, 这个 f 是由 \mathbb{F} 上 x 的整式

$$f(x) = \sum_{i=0}^{n} a_i x^i$$

诱导的整式函数. 不难看出, 若二个整式相等, 则其诱导的整式函数也相等.

定义 设 $f 与 g 是 \mathbb{F}$ 的二个整式函数. 二者的和 f + g 定义为

f+g: $\mathbb{F} \to \mathbb{F}$,

$$t\mapsto f(t)+g(t).$$

二者的积 fg 定义为

fg: $\mathbb{F} \to \mathbb{F}$,

 $t \mapsto f(t)g(t)$.

设 f, g 是 \mathbb{F} 的二个整式函数:

 $f \colon \mathbb{F} \to \mathbb{F},$

 $t \mapsto \sum_{i=0}^{n} a_i t^i,$

g: $\mathbb{F} \to \mathbb{F}$,

 $t\mapsto \sum_{i=0}^n b_i t^i.$

F*上的整*式 91

利用 F 的运算律, 可以得到

$$\begin{split} f+g\colon & \qquad \mathbb{F} \to \mathbb{F}, \\ & \qquad t \mapsto \sum_{i=0}^n (a_i+b_i)t^i, \\ & \qquad fg\colon & \qquad \mathbb{F} \to \mathbb{F}, \\ & \qquad t \mapsto \sum_{i=0}^{2n} \left(\sum_{\ell=0}^i a_\ell b_{i-\ell}\right)t^i. \end{split}$$

由此可得下面的命题:

命题 设 f(x), $g(x) \in \mathbb{F}[x]$, f, g 分别是 f(x), g(x) 诱导的整式函数. 那么 f + g 是 f(x) + g(x) 诱导的整式函数, 且 fg 是 f(x)g(x) 诱导的整式函数.

通俗地说, 若整式 $f_0(x)$, $f_1(x)$, …, $f_{n-1}(x)$ 之间有一个由加法与乘法计算得到的关系, 那么将 x 换为 \mathbb{F} 的元 t, 这样的关系仍成立.

定义 设

$$f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{F}[x].$$

设 $t \in \mathbb{F}$. 我们把 \mathbb{F} 的元

$$\sum_{i=0}^{n} a_i t^i$$

简单地写为 f(t), 并称其为整式 f(x) 在点 t 的值. 顺便一提, f(x) 的微商也是整式:

$$f'(x) = \sum_{i=1}^{n} i a_i x^{i-1}.$$

我们把

$$\sum_{i=1}^n ia_it^{i-1}\in \mathbb{F}$$

简单地写为 f'(t).

下面是带余除法的推论. 它在根的讨论里起了重要的作用.

命题 设 $f(x) \in \mathbb{F}[x]$ 是 n 次整式 $(n \ge 1), a \in \mathbb{F}$. 则存在 n-1 次整式 q(x) $(\in \mathbb{F}[x])$ 使

$$f(x) = q(x)(x - a) + f(a).$$

根据带余除法, 这样的 q(x) 一定是唯一的.

定义 设 f(x) 是 \mathbb{F} 上 x 的整式. 若有 $a \in \mathbb{F}$ 使 f(a) = 0, 则说 a 是 (整式) f(x) 的根.

命题 设 $f(x) \in \mathbb{F}[x]$ 是 n 次整式 $(n \ge 1)$. a 是 f(x) 的根的一个必要与充分条件是: 存在 n-1 次整式 q(x) $(\in \mathbb{F}[x])$ 使

$$f(x) = q(x)(x - a).$$

根据带余除法, 这样的 q(x) 一定是唯一的.

命题 设 $f(x) \in \mathbb{F}[x]$ 是 n 次整式 $(n \in \mathbb{N})$. 则 f(x) 至多有 n 个不同的根.

评注 在上节, 我们知道, 整环 D 上的整式 f(x) = ax + b $(a \neq 0)$ 不一定有根. 可是, 在域 \mathbb{F} 里, f(x) 就有根 $-\frac{b}{a}$.

命题 设 a_0, a_1, \dots, a_n 是 \mathbb{F} 的元. 设 n 是非负整数. 设

$$f(x) = \sum_{i=0}^{n} a_i x^i.$$

若 t_0, t_1, \dots, t_n 是 n+1 个互不相同的 $\mathbb F$ 的元, 且

$$f(t_0)=f(t_1)=\cdots=f(t_n)=0,$$

则 f(x) 必为零整式. 通俗地说, 次不高于 n (且系数为 \mathbb{F} 的元) 的整式不可能有 n 个以上的互不相同的根, 除非这个整式是零.

F*上的*整式 93

命题 设 $a_0, b_0, a_1, b_1, \dots, a_n, b_n$ 是 \mathbb{F} 的元. 设 n 是非负整数. 设

$$f(x) = \sum_{i=0}^{n} a_i x^i, \quad g(x) = \sum_{i=0}^{n} b_i x^i.$$

若 t_0, t_1, \dots, t_n 是 n+1 个互不相同的 \mathbb{F} 的元, 且

$$f(t_0)=g(t_0),\quad f(t_1)=g(t_1),\quad \cdots,\quad f(t_n)=g(t_n),$$

则 f(x) 必等于 g(x). 通俗地说, 若次不高于 n (且系数为 \mathbb{F} 的元) 的二个整式若在多于 n 处取一样的值, 则这二个整式相等.

定义 设 $a \in \mathbb{F}$ 是整式 $f(x) \in \mathbb{F}[x]$ 的根. 那么, 存在唯一的整式 $g(x) \in \mathbb{F}[x]$ 使

$$f(x) = (x - a)q(x).$$

若 q(a) = 0, 则说 a 是 f(x) 的一个重根. 若 $q(a) \neq 0$, 则说 a 是 f(x) 的一个单根.

命题 设 $a \in \mathbb{F}$ 是整式 $f(x) \in \mathbb{F}[x]$ 的根. 则:

- (i) 若 a 是 f(x) 的重根, 则 a 是 f'(x) 的根;
- (ii) 若 a 是 f(x) 的单根, 则 a 不是 f'(x) 的根.

所以, f(x) 有重根的一个必要与充分条件是: f(x) 与 f'(x) 有公共根.

下面是一些新命题. 由于 F 里有无限多个元, 所以

命题 设 $f(x) \in \mathbb{F}[x]$. 设 $S \subset \mathbb{F}$, 且 S 有无限多个元. 若任取 $t \in S$, 必有 f(t) = 0, 则 f(x) 必为零整式. 通俗地说, 系数为 \mathbb{F} 的元的整式不可能有无限多个根, 除非这个整式是零.

证 f(x) 的次不可能是非负整数. 所以 f(x) 只能是 0.

由此立得

命题 设 $f(x), g(x) \in \mathbb{F}[x]$. 设 $S \subset \mathbb{F}$, 且 S 有无限多个元. 若任取 $t \in S$, 必有 f(t) = g(t), 则 f(x) 与 g(x) 是二个相同的整式. 通俗地说, 若 系数为 \mathbb{F} 的元的二个整式在无限多个地方有相同的取值, 则这二个整式必相等.

查考整式

证 考虑 h(x) = f(x) - g(x), 并利用上个命题.

8

前面已经知道,整式确定整式函数.利用上面的命题,我们有

命题 \mathbb{F} 上的整式与 \mathbb{F} 的整式函数是一一对应的: 不但二个不同的 \mathbb{F} 上的整式给出二个不同的 \mathbb{F} 的整式函数, 而且二个不同的 \mathbb{F} 的整式函数给出二个不同的 \mathbb{F} 上的整式.

评注 以后,我们不再区分"整式"与"整式函数".从现在开始,读者可以认为本文接下来讨论的"整式"跟中学里的整式是同一事物.

插值

本节讨论整式插值问题.

"插值" 听上去可能比较陌生. 不过, 读者在初中一定见过这样的问题:

例 已知 1 次函数的图像经过点 (-1,2) 与 (1,3), 求其解析式.

例 已知 2 次函数的图像经过点 (-1,-1), (1,1) 与 (2,5), 求其解析式.

在初中, 我们是用"待定系数法" (the method of undetermined coefficients) 求解的. 它的基本思想是"求什么,设什么". 设此 1 次函数的解析式为

$$y = ax + b, \quad a \neq 0.$$

代入已知条件,得到2元1次方程组

$$\begin{cases} 2 = -a + b, \\ 3 = a + b. \end{cases}$$

由此可解出

$$a = \frac{1}{2}, \quad b = \frac{5}{2}.$$

所以此1次函数的解析式为

$$y = \frac{1}{2}x + \frac{5}{2}.$$

完全类似地,设此2次函数的解析式为

$$y = ax^2 + bx + c, \quad a \neq 0.$$

代入已知条件,得到3元1次方程组

$$\begin{cases}
-1 = a - b + c, \\
1 = a + b + c, \\
5 = 4a + 2b + c.
\end{cases}$$

由此可解出

$$a=1,\quad b=1,\quad c=-1.$$

所以此 2 次函数的解析式为

$$y = x^2 + x - 1$$
.

在初中,一般用左 y 右 x 的等式表示函数 (的解析式). 这种表示法强调因变元 (dependent variable) y 与自变元 (independent variable) x 的关系. 不过, 既然我们有 f(x) 这样的记号, 那么因变元就不必写出了. 并且, 我们在前节提到, 我们不再区分整式与整式函数. 所以, 为方便, 我们用另一种方式叙述这二个问题:

例 求次为 1 的整式 f(x), 使 f(-1) = 2, f(1) = 3.

例 求次为 2 的整式 f(x), 使 f(-1) = -1, f(1) = 1, f(2) = 5.

设 x_0, x_1, \dots, x_n 是 \mathbb{F} 的 n+1 个互不相同的元. 这 n+1 个不同的元称为 n+1 个节点 (node). 设 $y_0, y_1, \dots, y_n \in \mathbb{F}$. 通俗地说,整式插值 $(polynomial\ interpolation)$ 的任务是: 找一个整式 $f(x) \in \mathbb{F}[x]$ 使

$$f(x_i)=y_i \quad (i=0,1,\cdots,n),$$

且适合"附加条件".

这里, "附加条件" 是有必要的: 如果太松, 可能找出的 f(x) 不止一个; 如果太紧, 则可能找不到 f(x).

例 找一个整式 f(x) 使 f(-1) = -1, f(0) = 0, f(1) = 1.

如果不作任何别的约束, 那么 n 是奇数时, $f(x) = x^n$ 适合这些条件. 不仅如此, 下面的整式也适合条件:

$$\frac{1}{6}x + \frac{1}{3}x^3 + \frac{1}{2}x^5$$
, $-x + 2x^7$, $\frac{x + x^3 + \dots + x^{2k-1}}{k}$.

在初中, 我们知道, 若平面直角坐标系的三点 A, B, C 不在同一直线上, 且任意二点的连线既不与 y 轴平行也不与 y 轴重合, 则存在 (唯一的) 2 次

函数 $y = ax^2 + bx + c$ $(a \neq 0)$ 使其图像过此三点. 假如"附加条件"是"f(x) 是次为 2 的整式"呢? 设

$$f(x) = ax^2 + bx + c, \quad a \neq 0.$$

代入已知条件,得到3元1次方程组

$$\begin{cases}
-1 = a - b + c, \\
0 = c, \\
1 = a + b + c.
\end{cases}$$

由此可解出

$$a = 0, \quad b = 1, \quad c = 0.$$

这与假定 $a \neq 0$ 不符. 所以, 这个条件太紧了.

有没有什么"松紧得当的""附加条件"呢?回想一下这个命题:

命题 设 $a_0,\,b_0,\,a_1,\,b_1,\,\cdots,\,a_n,\,b_n$ 是 $\mathbb F$ 的元. 设 n 是非负整数. 设

$$f(x) = \sum_{i=0}^{n} a_i x^i, \quad g(x) = \sum_{i=0}^{n} b_i x^i.$$

若 t_0, t_1, \dots, t_n 是 n+1 个互不相同的 $\mathbb F$ 的元, 且

$$f(t_0) = g(t_0), \quad f(t_1) = g(t_1), \quad \cdots, \quad f(t_n) = g(t_n),$$

则 f(x) 必等于 g(x). 通俗地说, 若次不高于 n (且系数为 \mathbb{F} 的元) 的二个整式若在多于 n 处取一样的值, 则这二个整式相等.

由此,我们可以试着作出这样的"附加条件":整式的次低于节点数.至少,这个条件不是太松:因为上面的命题说,这样的整式若存在,必唯一.

这个"附加条件"一定能让我们求出这个整式吗?不好说.

例 如果把 \mathbb{F} 跟 $\mathbb{F}[x]$ 改为 \mathbb{Z} 跟 $\mathbb{Z}[x]$, 那么就没有 1 次整式 f(x) 使 f(-1)=2, f(1)=3. 为啥? 看 2 元 1 次方程组

$$\begin{cases} 2 = -a + b, \\ 3 = a + b. \end{cases}$$

二式相加, 可得 5 = 2b. 可是, 如果 b 是整数, 那么 2b 是偶数. 偶数 2b 不可能等于奇数 5 呀!

具体地说, 设次低于节点数 n+1 的整式

$$f(x) = \sum_{i=0}^n a_i x^i = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{F}[x]$$

适合

$$f(x_i) = y_i \quad (i = 0, 1, \cdots, n),$$

则可得到下面的方程组:

$$\begin{cases} y_0 = 1a_0 + x_0a_1 + \dots + x_0^na_n, \\ y_1 = 1a_0 + x_1a_1 + \dots + x_1^na_n, \\ \dots \\ y_n = 1a_0 + x_na_1 + \dots + x_n^na_n. \end{cases}$$

这是一个有 n+1 个 n+1 元 1 次方程的方程组, 且未知元是 a_0 , a_1 , …, a_n . 假如我们能解出这个方程组, 且这个方程组的解 "不超出 $\mathbb F$ 的范围" (我们说, 上面的 2 元 1 次方程组超出了 $\mathbb Z$ 的范围, 但没有超出 $\mathbb F$ 的范围), 那么就能说明 "整式的次低于节点数" 这个 "附加条件" 是 "松紧得当的".

可惜,我们在初中并没有研究一般的多元 1 次方程组. 我们在学习 2 (或 3)元 1 次方程组的时候,主要学习怎么用代入消元法与加减消元法解方程组,并没有过多地讨论方程组什么时候有解与解的结构这样的问题.

我们换一个角度看问题. 首先, 我们有如下命题:

命题 设 $t_0, t_1, \cdots, t_{s-1} \in \mathbb{F}$ 互不相同. 则 $t_0, t_1, \cdots, t_{s-1}$ $(1 \le s \le n)$ 是 n 次整式 f(x) 的根的一个必要与充分条件是: 存在 n-s 次整式 $q(x) \in \mathbb{F}[x]$ 使

$$f(x)=(x-t_0)(x-t_1)\cdots(x-t_{s-1})q(x).$$

证 先看充分性. 既然 f(x) 能写为这种形式, 将 x 换为 t_i $(i = 0, 1, \dots, s-1)$, 则有 $f(t_i) = 0$.

8

再看必要性. 因为 t_0 是 f(x) 的根, 故存在 n-1 次整式 $q_1(x) \in \mathbb{F}[x]$ 使

$$f(x) = (x - t_0)q_1(x).$$

设 t_i 是 t_1 , t_2 , ..., t_{s-1} 的一个. 则 $t_i \neq t_0$. 因为 t_i 也是 f(x) 的根, 故

$$(t_j-t_0)q_1(t_j)=f(t_j)=0=(t_j-t_0)0.$$

根据消去律, $q_1(t_j)=0$. 这样, $t_1,$ …, t_{s-1} 这 s-1 个 $\mathbb F$ 中元是 $q_1(x)$ 的根. 所以, 对 $q_1(x)$ 来说, 存在 n-1-1=n-2 次整式 $q_2(x)\in \mathbb F[x]$ 使

$$q_1(x) = (x - t_1)q_2(x) \implies f(x) = (x - t_0)(x - t_1)q_2(x),$$

且 t_2,\cdots,t_{s-1} 这 s-2 个 $\mathbb F$ 中元是 $q_2(x)$ 的根. 再将这个过程进行 s-2 次,可得到 n-s 次整式 $q_s(x)\in\mathbb F[x]$ 使

$$f(x)=(x-t_0)(x-t_1)\cdots(x-t_{s-1})q_s(x).$$

取 $q(x) = q_s(x)$ 即可.

例 我们考虑非常特殊的情形. 如果 y_0, y_1, \dots, y_n 中恰有一个是 1, 而剩下的全是 0, 那这样的整式应该长什么样呢?

以 $y_0=1,\ y_1=y_2=\dots=y_n=0$ 为例. 这样, 整式 f(x) 有根 $x_1,\ x_2,\dots,x_n$. 根据上个命题, 存在整式 q(x) 使

$$f(x) = q(x)(x - x_1)(x - x_2) \cdots (x - x_n).$$

因为 f(x) 的次低于 n+1, 而 $(x-x_1)(x-x_2)\cdots(x-x_n)$ 的次为 n, 故 q(x)一定是非零数 c, 即

$$f(x) = c(x-x_1)(x-x_2)\cdots(x-x_n).$$

因为 $f(x_0)=y_0=1$, 故

$$1 = c(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n),$$

100

也就是

$$c = \frac{1}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n)}.$$

故

$$f(x) = \frac{(x-x_1)(x-x_2)\cdots(x-x_n)}{(x_0-x_1)(x_0-x_2)\cdots(x_0-x_n)}.$$

类似地, 适合条件 $y_1=1,\,y_0=y_2=y_3=\cdots=y_n=0$ 的整式是

$$\frac{(x-x_0)(x-x_2)(x-x_3)\cdots(x-x_n)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)\cdots(x_1-x_n)}.$$

可以将这个整式简单地写为

$$\prod_{\substack{0 \le \ell \le n \\ \ell \ne 1}} \frac{x - x_\ell}{x_1 - x_\ell}.$$

上面的 f(x) 也可以写为

$$\prod_{\substack{0 \leq \ell \leq n \\ \ell \neq 0}} \frac{x - x_\ell}{x_0 - x_\ell}.$$

回到一般的设定 (也就是说, $y_0,\,y_1,\,\cdots,\,y_n$ 是 $\mathbb F$ 的任意元). 作 n+1 个整式

$$L_i(x) = \prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} \frac{x - x_\ell}{x_i - x_\ell} \quad (i = 0, 1, \cdots, n).$$

不难看出, 任取 $i, j = 0, 1, \dots, n$,

$$L_i(x_j) = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$$

所以

$$f(x) = \sum_{i=0}^n y_i L_i(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$

适合条件

$$f(x_i) = y_i \quad (i = 0, 1, \cdots, n),$$

且

$$\deg f(x) \le n < n + 1.$$

综合上面的事实, 我们已经证明了

命题 设 $x_0, x_1, ..., x_n$ 是 \mathbb{F} 的 n+1 个互不相同的元. 设 $y_0, y_1, ..., y_n \in \mathbb{F}$. 存在唯一的整式

$$f(x) = \sum_{i=0}^n y_i \prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} \frac{x - x_\ell}{x_i - x_\ell}$$

适合条件

$$f(x_i) = y_i \quad (i=0,1,\cdots,n),$$

且

$$\deg f(x) < n+1.$$

这个公式的一个名字是 "Lagrange 插值公式" (Lagrange's interpolation formula).

评注 我们在前面接触的线性无关的整式组 (几乎都) 是次不等的整式. Lagrange 插值公式告诉我们, $L_0(x)$, $L_1(x)$, …, $L_n(x)$ 适合:

- (i) $L_0(x), L_1(x), \dots, L_n(x)$ 是线性无关的;
- (ii) 任意次不高于 n 的整式都可唯一地写为 $L_0(x),\,L_1(x),\,\cdots,\,L_n(x)$ 的线性组合;
 - (iii) $L_0(x)$, $L_1(x)$, …, $L_n(x)$ 全为 n 次整式.

评注 由上面的公式,可以看出, f(x) 的 n 次系数是

$$\sum_{i=0}^{n} y_i \prod_{\substack{0 \le \ell \le n \\ \ell \ne i}} \frac{1}{x_i - x_\ell}.$$

看上去有点复杂. 我们想个办法简单地写出 \prod 符号代表的内容. 作 n+1 次整式

$$N_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n).$$

从 0, 1, ..., n 里任取一个整数 i. 那么

$$N_{n+1}(x) = (x-x_i) \prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} (x-x_\ell).$$

二边求微商,有

$$N_{n+1}(x) = \prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} (x-x_\ell) + (x-x_i) \left(\prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} (x-x_\ell)\right)'.$$

用 x_i 代替 x, 有

$$N_{n+1}'(x) = \prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} (x_i - x_\ell) + 0,$$

即

$$\prod_{\substack{0\leq \ell\leq n\\\ell\neq i}}\frac{1}{x_i-x_\ell}=\frac{1}{N'_{n+1}(x_i)}.$$

这样, f(x) 的 n 次系数可简单地写为

$$\sum_{i=0}^{n} \frac{y_i}{N'_{n+1}(x_i)}.$$

例 取 n=2. 取

$$x_0 = -1, \quad x_1 = 1, \quad x_2 = 2,$$

$$y_0 = -1, \quad y_1 = 1, \quad y_2 = 5.$$

计算 $L_0(x)$, $L_1(x)$, $L_2(x)$:

$$\begin{split} L_0(x) &= \prod_{\substack{0 \le \ell \le 2 \\ \ell \ne 0}} \frac{x - x_\ell}{x_0 - x_\ell} = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} = \frac{1}{6}x^2 - \frac{1}{2}x + \frac{1}{3}, \\ L_1(x) &= \prod_{\substack{0 \le \ell \le 2 \\ \ell \ne 1}} \frac{x - x_\ell}{x_1 - x_\ell} = \frac{(x+1)(x-2)}{(1+1)(1-2)} = -\frac{1}{2}x^2 + \frac{1}{2}x + 1, \\ L_2(x) &= \prod_{\substack{0 \le \ell \le 2 \\ \ell \ne 2}} \frac{x - x_\ell}{x_2 - x_\ell} = \frac{(x+1)(x-1)}{(2+1)(2-1)} = \frac{1}{3}x^2 - \frac{1}{3}. \end{split}$$

所以,适合条件

$$f(-1) = -1$$
, $f(1) = 1$, $f(2) = 5$,
 $\deg f(x) < n + 1 = 3$

的整式 f(x) 就是

$$\begin{split} &(-1)L_0(x)+1L_1(x)+5L_2(x)\\ &=-L_0(x)+L_1(x)+5L_2(x)\\ &=-\frac{1}{6}x^2+\frac{1}{2}x-\frac{1}{3}-\frac{1}{2}x^2+\frac{1}{2}x+1+\frac{5}{3}x^2-\frac{5}{3}\\ &=x^2+x-1. \end{split}$$

这跟前面用 3 元 1 次方程组算出的答案完全一致.

例 取 n=3. 在上例的基础上, 追加

$$x_3 = -2, \quad y_3 = -11.$$

我们的目标是: 找整式 f(x) 适合条件

$$f(-1) = -1$$
, $f(1) = 1$, $f(2) = 5$, $f(-2) = -11$, $\deg f(x) < n+1 = 4$.

在原理上, 并没有什么复杂的地方. 求出 $L_0(x)$, $L_1(x)$, $L_2(x)$, $L_3(x)$ 后, 答案就出来了:

$$f(x) = -\frac{(x-1)(x-2)(x+2)}{(-1-1)(-1-2)(-1+2)} + \frac{(x+1)(x-2)(x+2)}{(1+1)(1-2)(1+2)} + \frac{5 \cdot \frac{(x+1)(x-1)(x+2)}{(2+1)(2-1)(2+2)} - 11 \cdot \frac{(x+1)(x-1)(x-2)}{(-2+1)(-2-1)(-2-2)}.$$

不过,实践告诉我们,拆开 4 个 3 次整式后再相加可不是什么轻松的事儿——至少比前一个例复杂一些.而且,加一个节点后, $L_0(x)$, $L_1(x)$, $L_2(x)$ (跟之前相比)都要多乘一个 1 次整式.有无稍微容易一些的算法呢?

定义 设 x_0, x_1, \cdots, x_n 是 $\mathbb F$ 的 n+1 个互不相同的元. 设 $y_0, y_1, \cdots, y_n \in \mathbb F$. 定义

$$[x_i,x_j] = \frac{y_i - y_j}{x_i - x_j} \quad (i \neq j).$$

这称为 1 级差商 (first-order divided difference). 类似地, 当 i, j, k 互不相同时, 2 级差商是

$$[x_i,x_j,x_k] = \frac{[x_i,x_j]-[x_j,x_k]}{x_i-x_k}.$$

一般地, 当 i_0 , i_1 , …, $i_{\ell-1}$ 互不相同时, $\ell-1$ 级差商定义为

$$[x_{i_0},x_{i_1},\cdots,x_{i_{\ell-1}}] = \frac{[x_{i_0},x_{i_1},\cdots,x_{i_{\ell-2}}] - [x_{i_1},x_{i_2},\cdots,x_{i_{\ell-1}}]}{x_0 - x_{\ell-1}}.$$

"差商"可指代任意级差商. 高级差商可任意指代 ℓ 级差商, 此处 $\ell > 1$.

例 取 n=2. 取

$$x_0 = -1, \quad x_1 = 1, \quad x_2 = 2,$$

$$y_0 = -1, \quad y_1 = 1, \quad y_2 = 5.$$

我们随意地计算三个 1 级差商:

$$\begin{split} [x_0,x_1] &= \frac{y_0-y_1}{x_0-x_1} = 1, \\ [x_0,x_2] &= \frac{y_0-y_2}{x_0-x_2} = 2, \\ [x_1,x_2] &= \frac{y_1-y_2}{x_1-x_2} = 4. \end{split}$$

由此可知

$$[x_0,x_1,x_2] = \frac{[x_0,x_1] - [x_1,x_2]}{x_0 - x_2} = \frac{1-4}{-1-2} = 1.$$

根据1级差商的定义,

$$[x_{j},x_{i}] = \frac{y_{j} - y_{i}}{x_{i} - x_{i}} = \frac{y_{i} - y_{j}}{x_{i} - x_{j}} = [x_{i},x_{j}],$$

故

$$[x_2, x_1] = [x_1, x_2] = 4.$$

所以

$$[x_0,x_2,x_1] = \frac{[x_0,x_2] - [x_2,x_1]}{x_0 - x_1} = \frac{2-4}{-1-1} = 1.$$

同样的道理,

$$[x_1,x_0] = [x_0,x_1] = 1. \\$$

所以

$$[x_1,x_0,x_2] = \frac{[x_1,x_0] - [x_0,x_2]}{x_1 - x_2} = \frac{1-2}{1-2} = 1.$$

我们发现, 在这些特殊的 x_i 与 y_j (i, j = 0, 1, 2) 下

$$[x_0,x_1,x_2] = [x_0,x_2,x_1] = [x_1,x_0,x_2].$$

类似地, 读者还可以计算 $[x_1,x_2,x_0]$, $[x_2,x_0,x_1]$, $[x_2,x_1,x_0]$, 它们跟上面三个 2 级差商有着同样的值. 换句话说, 我们猜想, 2 级差商 $[x_i,x_j,x_k]$ 的三个文字 x_i,x_j,x_k 的次序可以任意交换, 且值不变 (当然, y_i,y_j,y_k 的次序也要交换).

幸运的事儿是, 我们没猜错:

命题 设 m 是高于 1 的整数. m-1 级差商 $[x_0, x_1, \cdots, x_{m-1}]$ 可表示为

$$[x_0,x_1,\cdots,x_{m-1}]=\sum_{k=0}^{m-1}\frac{y_k}{N_m'(x_k)},$$

这里

$$N_m(x) = (x-x_0)(x-x_1)\cdots(x-x_{m-1}) = \prod_{k=0}^{m-1}(x-x_k).$$

由此立得: 随意交换 $x_0, x_1, ..., x_{m-1}$ 的次序, 若 $y_0, y_1, ..., y_{m-1}$ 的次序也跟着改变, 得到的新 m-1 级差商的值不变.

证 回想一下, ℓ 级差商 ($\ell > 1$) 是用 $\ell - 1$ 级差商定义的. 所以, 我们用算学归纳法证明这个结论.

当 m=2 时,

$$N_2(x)=(x-x_0)(x-x_1)=x^2-(x_0+x_1)x+x_0x_1,\\$$

故

$$N_2'(x) = 2x - (x_0 + x_1).$$

从而

$$N_2'(x_0)=x_0-x_1,\quad N_2'(x_1)=x_1-x_0.$$

根据定义,

$$\begin{split} [x_0,x_1] &= \frac{y_0-y_1}{x_0-x_1} \\ &= \frac{y_0}{x_0-x_1} - \frac{y_1}{x_0-x_1} \\ &= \frac{y_0}{x_0-x_1} + \frac{y_1}{x_1-x_0} \\ &= \frac{y_0}{N_2'(x_0)} + \frac{y_1}{N_2'(x_1)} \\ &= \sum_{k=0}^{2-1} \frac{y_k}{N_2'(x_k)}. \end{split}$$

所以, 结论对 m=2 成立.

假设结论对 $m=\ell\geq 2$ 成立. 我们要由此推出: 结论对 $m=\ell+1$ 也成立. $x_0,\,x_1,\,\cdots,\,x_\ell$ 这 $\ell+1$ 个元的 ℓ 级差商, 按定义, 是

$$[x_0,x_1,\cdots,x_\ell] = \frac{[x_0,x_1,\cdots,x_{\ell-1}] - [x_1,x_2,\cdots,x_\ell]}{x_0 - x_\ell}.$$

这里, $[x_0,x_1,\cdots,x_{\ell-1}]$ 与 $[x_1,x_2,\cdots,x_\ell]$ 都是 $\ell-1$ 级差商. 按归纳假设,

$$\begin{split} [x_0, x_1, \cdots, x_{\ell-1}] &= \sum_{k=0}^{\ell-1} \frac{y_k}{P'(x_k)}, \\ [x_1, x_2, \cdots, x_\ell] &= \sum_{k=1}^{\ell} \frac{y_k}{Q'(x_k)}, \end{split}$$

其中

$$\begin{split} P(x) &= (x-x_0)(x-x_1)\cdots(x-x_{\ell-1}),\\ Q(x) &= (x-x_1)(x-x_2)\cdots(x-x_{\ell}). \end{split}$$

作

$$N_{\ell+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_{\ell-1})(x-x_\ell),$$

我们观察 $N_{\ell+1}(x)$ 与 P(x) (或 Q(x)) 的关系. 显然,

$$N_{\ell+1}(x) = P(x)(x - x_{\ell}).$$

二边求微商,有

$$N'_{\ell+1}(x) = P'(x)(x - x_\ell) + P(x).$$

用 x_u $(u \neq \ell)$ 代替 x, 有

$$\begin{split} N'_{\ell+1}(x_u) &= P'(x_u)(x_u - x_\ell) + P(x_u) = P'(x_u)(x_u - x_\ell) \\ &\Longrightarrow \frac{1}{P'(x_u)} = \frac{x_u - x_\ell}{N'_{\ell+1}(x_u)}. \end{split}$$

同理, 若 $v \neq 0$, 则

$$\frac{1}{Q'(x_v)} = \frac{x_v - x_0}{N'_{\ell+1}(x_v)}.$$

所以

$$\begin{split} & [x_0, x_1, \cdots, x_{\ell-1}] - [x_1, x_2, \cdots, x_\ell] \\ &= \sum_{k=0}^{\ell-1} \frac{y_k}{P'(x_k)} - \sum_{k=1}^{\ell} \frac{y_k}{Q'(x_k)} \\ &= \sum_{k=0}^{\ell-1} \frac{y_k(x_k - x_\ell)}{N'_{\ell+1}(x_k)} + \sum_{k=1}^{\ell} \frac{-y_k(x_k - x_0)}{N'_{\ell+1}(x_k)} \\ &= \sum_{k=0}^{\ell} \frac{y_k(x_k - x_\ell)}{N'_{\ell+1}(x_k)} + \sum_{k=0}^{\ell} \frac{y_k(x_0 - x_k)}{N'_{\ell+1}(x_k)} \end{split}$$

$$\begin{split} &= \sum_{k=0}^{\ell} \frac{y_k(x_k - x_\ell) + y_k(x_0 - x_k)}{N'_{\ell+1}(x_k)} \\ &= \sum_{k=0}^{\ell} \frac{y_k(x_0 - x_\ell)}{N'_{\ell+1}(x_k)} \\ &= (x_0 - x_\ell) \sum_{k=0}^{\ell} \frac{y_k}{N'_{\ell+1}(x_k)}. \end{split}$$

这样

$$\begin{split} [x_0, x_1, \cdots, x_\ell] &= \frac{[x_0, x_1, \cdots, x_{\ell-1}] - [x_1, x_2, \cdots, x_\ell]}{x_0 - x_\ell} \\ &= \frac{1}{x_0 - x_\ell} \cdot (x_0 - x_\ell) \sum_{k=0}^\ell \frac{y_k}{N'_{\ell+1}(x_k)} \\ &= \sum_{k=0}^{(\ell+1)-1} \frac{y_k}{N'_{\ell+1}(x_k)}. \end{split}$$

评注 前面, 我们知道, 用 Lagrange 插值公式算出的次不高于 n 的整式的 n 次系数是

$$\sum_{i=0}^{n} \frac{y_i}{N'_{n+1}(x_i)},$$

其中

$$N_{n+1}(x) = (x-x_0)(x-x_1)\cdots (x-x_n).$$

用差商的语言, 有: f(x) 的 n 次系数可用 n 级差商

$$[x_0,x_1,\cdots,x_n]$$

表示.

现在, 我们来看看差商在整式插值里的用处. 设 $x_0,\,x_1,\,\cdots,\,x_n$ 是 $\mathbb F$ 的

n+1 个互不相同的元. 设 $y_0, y_1, ..., y_n \in \mathbb{F}$. 作 n+1 个整式:

$$\begin{split} N_0(x) &= 1, \\ N_1(x) &= x - x_0, \\ N_2(x) &= (x - x_0)(x - x_1), \\ &\cdots \\ N_n(x) &= (x - x_0)(x - x_1) \cdots (x - x_{n-1}). \end{split}$$

因为 $N_0(x)$, $N_1(x)$, …, $N_n(x)$ 的次分别是 0, 1, …, n, 所以:

- (i) $N_0(x), N_1(x), ..., N_n(x)$ 是线性无关的;
- (ii) 任意次不高于 n 的整式都可唯一地写为 $N_0(x),\,N_1(x),\,\cdots,\,N_n(x)$ 的线性组合.

由前面的 Lagrange 插值公式可知, 存在一个次不高于 n 的整式 f(x) 使

$$f(x_i) = y_i \quad (i = 0, 1, \dots, n).$$

对这个 f(x) 而言, 存在 (唯一的) $c_0, c_1, \cdots, c_n \in \mathbb{F}$ 使

$$f(x) = \sum_{i=0}^{n} c_i N_n(x).$$

我们的任务就是找出 $c_0,\,c_1,\,\cdots,\,c_n$. 先从 c_n 看起. 显然, 左侧的 n 次系数是 $[x_0,x_1,\cdots,x_n]$, 而右侧的 n 次系数是 c_n , 故

$$c_n = [x_0, x_1, \cdots, x_n].$$

找出 c_n , 还有 n 个系数要找呢! 接下来的系数该怎么找呢?

命题 设 $x_0, x_1, ..., x_n$ 是 $\mathbb F$ 的 n+1 个互不相同的元 $(n \ge 1)$. 设 $y_0, y_1, ..., y_n \in \mathbb F$. 作 n+1 个整式:

$$\begin{split} N_0(x) &= 1, \\ N_1(x) &= x - x_0, \\ N_2(x) &= (x - x_0)(x - x_1), \\ & \dots \\ N_n(x) &= (x - x_0)(x - x_1) \cdots (x - x_{n-1}). \end{split}$$

110 查考整式

由 Lagrange 插值公式可知, 存在一个次不高于 n 的整式 f(x) 使

$$f(x_i) = y_i$$
 $(i = 0, 1, \dots, n).$

对这个 f(x) 而言, 存在 (唯一的) $c_0, c_1, \cdots, c_n \in \mathbb{F}$ 使

$$f(x) = \sum_{i=0}^{n} c_i N_n(x).$$

这些系数有着简单的形式:

$$\begin{split} c_0 &= y_0, \\ c_i &= [x_0, x_1, \cdots, x_i] \quad (i=1,2,\cdots,n). \end{split}$$

证 用算学归纳法. 当 n=1 时,

$$\begin{split} f(x) &= y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0} \\ &= y_0 \frac{(x - x_0) + (x_0 - x_1)}{x_0 - x_1} - y_1 \frac{x - x_0}{x_0 - x_1} \\ &= y_0 + y_0 \frac{x - x_0}{x_0 - x_1} - y_1 \frac{x - x_0}{x_0 - x_1} \\ &= y_0 + \frac{y_0 - y_1}{x_0 - x_1} (x - x_0) \\ &= y_0 N_0(x) + [x_0, x_1] N_1(x). \end{split}$$

这样, 结论对 n=1 成立.

设结论对 $n = \ell \ge 1$ 成立. 我们看 $n = \ell + 1$ 的情形.

由 Lagrange 插值公式可知, 存在一个次不高于 $\ell+1$ 的整式 f(x) 使

$$f(x_i) = y_i \quad (i=0,1,\cdots,\ell+1).$$

对这个 f(x) 而言, 存在 (唯一的) $c_0, c_1, ..., c_\ell, c_{\ell+1} \in \mathbb{F}$ 使

$$f(x) = \sum_{i=0}^{\ell} c_i N_i(x) + c_{\ell+1} N_{\ell+1}(x).$$

左侧的 $\ell+1$ 次系数是 $[x_0,x_1,\cdots,x_\ell,x_{\ell+1}]$, 右侧的 $\ell+1$ 次系数是 $c_{\ell+1}$, 故

$$c_{\ell+1} = [x_0, x_1, \cdots, x_\ell, x_{\ell+1}].$$

8

作

$$g(x) = f(x) - [x_0, x_1, \cdots, x_{\ell}, x_{\ell+1}] N_{\ell+1}(x).$$

则

$$g(x) = \sum_{i=0}^{\ell} c_i N_i(x),$$

且 $i \neq \ell + 1$ 时,

$$g(x_i) = f(x_i) - [x_0, x_1, \cdots, x_\ell, x_{\ell+1}]0 = y_i.$$

这个 g(x) 的次不会高于 ℓ . 并且, $i=0,1,\cdots,\ell$ 时, $g(x_i)=y_i$. 由 Lagrange 插值公式, 存在一个次不高于 ℓ 的整式 h(x) 使

$$h(x_i) = y_i \quad (i = 0, 1, \cdots, \ell).$$

对这个 h(x) 而言, 存在 (唯一的) $d_0, d_1, \cdots, d_\ell \in \mathbb{F}$ 使

$$h(x) = \sum_{i=0}^{\ell} d_i N_i(x).$$

根据归纳假设,

$$\begin{split} &d_0=y_0,\\ &d_i=[x_0,x_1,\cdots,x_i] \quad (i=1,2,\cdots,\ell). \end{split}$$

由插值的唯一性, g(x) = h(x). 所以

$$\begin{split} c_0 &= d_0 = y_0,\\ c_i &= d_i = [x_0, x_1, \cdots, x_i] \quad (i=1,2,\cdots,\ell). \end{split}$$

所以, $n = \ell + 1$ 时, 结论是正确的.

为方便, 记 $[x_i] = y_i$, 称其为 x_i 的 0 级差商. 我们证明了

命题 设 x_0, x_1, \cdots, x_n 是 $\mathbb F$ 的 n+1 个互不相同的元. 设 $y_0, y_1, \cdots, y_n \in \mathbb F$. 存在唯一的整式

$$\begin{split} f(x) &= \sum_{i=0}^n [x_0, x_1, \cdots, x_i] \prod_{j=0}^{i-1} (x - x_j) \\ &= [x_0] + [x_0, x_1] (x - x_0) + \cdots + [x_0, x_1, \cdots, x_n] (x - x_0) \\ &\qquad \qquad \cdot (x - x_1) \cdots (x - x_{n-1}) \end{split}$$

适合条件

$$f(x_i) = y_i \quad (i = 0, 1, \dots, n),$$

且

$$\deg f(x) < n+1.$$

这个公式的一个名字是 "Newton 插值公式" (Newton's interpolation formula).

我们举三个具体的例帮读者消化这个 Newton 插值公式.

例 求次不高于 1 的整式 f(x), 使 f(-1) = 2, f(1) = 3. 这里, n = 1, 且

$$x_0 = -1, \quad x_1 = 1,$$

 $y_0 = 2, \quad y_1 = 3.$

不难算出

$$\begin{split} [x_0] &= y_0 = 2, \\ [x_0, x_1] &= \frac{y_0 - y_1}{x_0 - x_1} = \frac{1}{2}. \end{split}$$

所以

$$f(x)=2+\frac{1}{2}(x-(-1))=\frac{1}{2}x+\frac{5}{2}.$$

例 求次不高于 2 的整式 f(x), 使 f(-1) = -1, f(1) = 1, f(2) = 5. 这里, n = 2, 且

$$x_0 = -1, \quad x_1 = 1, \quad x_2 = 2,$$

 $y_0 = -1, \quad y_1 = 1, \quad y_2 = 5.$

不难算出

$$\begin{split} [x_0] &= y_0 = -1, \\ [x_0, x_1] &= \frac{y_0 - y_1}{x_0 - x_1} = 1, \\ [x_1, x_2] &= \frac{y_1 - y_2}{x_1 - x_2} = 4, \\ [x_0, x_1, x_2] &= \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2} = 1. \end{split}$$

所以

$$f(x) = -1 + (x+1) + (x+1)(x-1) = x^2 + x - 1.$$

前面, 我们用 Lagrange 插值公式, 得到了一样的结果, 不过计算过程稍繁. 实操时, 往往用名为"差商表"的表进行计算. 当 n=2 时, 它长这样:

$$\begin{array}{c|cccc} x_2 & [x_2] \\ x_1 & [x_1] & [x_1, x_2] \\ x_0 & [x_0] & [x_0, x_1] & [x_0, x_1, x_2] \end{array}$$

在这个问题里, 差商表如下:

例 求次不高于 3 的整式 f(x), 使 f(-1) = -1, f(1) = 1, f(2) = 5, f(-2) = -11.

这里, n=3, 且

$$x_0 = -1, \quad x_1 = 1, \quad x_2 = 2, \quad x_3 = -2$$
 $y_0 = -1, \quad y_1 = 1, \quad y_2 = 5, \quad y_3 = -11.$

画出 n=3 时的差商表:

我们已经在上个例里算出了 $[x_0, x_1], [x_1, x_2], [x_0, x_1, x_2]$:

我们的目标是算出 $[x_0, x_1, x_2, x_3]$. 所以, 我们要算出 $[x_1, x_2, x_3]$; 所以, 我们要算出 $[x_2, x_3]$; 所以, 我们要算出 $[x_3]$. 不过, $[x_3]$ 是已知的, 它就是 y_3 , 也就是 -11.

列出算式:

$$\begin{split} x_3 &= -2, \\ [x_3] &= y_3 = -11, \\ [x_2, x_3] &= \frac{y_2 - y_3}{x_2 - x_3} = 4, \\ [x_1, x_2, x_3] &= \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3} = 0, \\ [x_0, x_1, x_2, x_3] &= \frac{[x_0, x_1, x_2] - [x_1, x_2, x_3]}{x_0 - x_3} = 1. \end{split}$$

此时, 差商表如下:

所以

$$\begin{split} f(x) &= \, -1 + (x+1) + (x+1)(x-1) + (x+1)(x-1)(x-2) \\ &= (x^2 + x - 1) + (x^3 - 2x^2 - x + 2) \\ &= x^3 - x^2 + 1. \end{split}$$

用 Lagrange 插值公式, 有

$$f(x) = -\frac{(x-1)(x-2)(x+2)}{(-1-1)(-1-2)(-1+2)} + \frac{(x+1)(x-2)(x+2)}{(1+1)(1-2)(1+2)} + \frac{5 \cdot \frac{(x+1)(x-1)(x+2)}{(2+1)(2-1)(2+2)} - 11 \cdot \frac{(x+1)(x-1)(x-2)}{(-2+1)(-2-1)(-2-2)}.$$

有兴趣的读者可展开上式,以验证我们的计算是否正确. 由此可见, Newton 插值公式在实操上优于 Lagrange 插值公式.

我们以带余除法与插值的关系结束本节.

命题 设 x_0, x_1, \dots, x_n 是 \mathbb{F} 的 n+1 个互不相同的元. 设

$$d(x)=(x-x_0)(x-x_1)\cdots(x-x_n)\in\mathbb{F}[x]$$

是 n+1 次整式. 由带余除法知, 任取 $f(x) \in \mathbb{F}[x]$, 存在唯一的 q(x), $r(x) \in \mathbb{F}[x]$ 使

$$f(x) = q(x)d(x) + r(x), \quad \deg r(x) < n+1.$$

余式 r(x) 可具体地写出:

$$r(x) = \sum_{i=0}^n f(x_i) \prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} \frac{x-x_\ell}{x_i-x_\ell}$$

或

$$r(x) = \sum_{i=0}^{n} [x_0, x_1, \cdots, x_i] \prod_{i=0}^{i-1} (x - x_j),$$

其中差商的 y_i 取 $f(x_i)$, $i=0,1,\cdots,n$.

证 由带余除法知, 任取 $f(x) \in \mathbb{F}[x],$ 存在唯一的 q(x), $r(x) \in \mathbb{F}[x]$ 使

$$f(x) = q(x)d(x) + r(x), \quad \deg r(x) < n+1.$$

用 x_i 代替 x, 有

$$f(x_i) = q(x_i)d(x_i) + r(x_i) = r(x_i).$$

8

因为 $\deg r(x) < n+1$, 故由插值公式即得待证命题.

广义二项系数 117

广义二项系数

本节讨论广义二项系数.

回忆一下: 正整数 n 的阶乘 n! 是前 n 个正整数的积: 0 的阶乘 0! 是 1.

定义 设 n 是整数. 设 $r \in \mathbb{F}[x]$. 定义广义二项系数 (generalized binomial coefficient) 如下:

$$\binom{r}{n} = \begin{cases} \frac{1}{n!}(r-0)(r-1)\cdots(r-(n-1)), & n>0;\\ 1, & n=0;\\ 0, & n<0. \end{cases}$$

广义二项系数在计数上是有用的.

从 m 人里选出 n 人 $(1 \le n \le m, 1$ 且任意二个人都不同),并按一定的顺序让他们坐在 n 个座位上. 一个座位上至多坐一人,且每一个选出的人都要坐在座位上. 共有多少种不同的安排座位的方法?

不难看出,我们可以分步安排座位.可以从m人里选1人坐第1个座位,再从剩下的m-1人里选1人坐第2个座位……最后从剩下的m-(n-1)人里选1人坐第m个座位.所以,共有

$$m \cdot (m-1) \cdot \cdots \cdot (m-(n-1))$$

种不同的安排座位的方法.

前面, 我们是直接按座位数选人坐座位; 现在我们先选 n 人, 再让他们坐在这 n 个座位上. 设从 m 人里选 n 人有 C 种选法. 给这 n 人安排座位, 有多少种不同的方法呢? 跟上面的推理完全一致: 从这 n 人里选 1 人坐第 1 个座位, 再从剩下的 n-1 人里选 1 人坐第 2 个座位……最后剩下的 1 人 坐第 n 个座位. 所以, 有

$$n\cdot (n-1)\cdot \dots \cdot 1=n!$$

种不同的为这 n 人安排座位的方法. 进而共有

 $C \cdot n!$

种不同的安排座位的方法.

综上, 我们有

$$m \cdot (m-1) \cdot \cdots \cdot (m-(n-1)) = C \cdot n!$$

由此可得,从 m 人里选 n 人有

$$C = \frac{m \cdot (m-1) \cdot \dots \cdot (m-(n-1))}{n!} = \binom{m}{n}$$

种选法.

一般地, 我们有

命题 从m个不同的文字里选n个的选法数为广义二项系数

$$\binom{m}{n} = \frac{m(m-1)\cdots(m-(n-1))}{n!} = \frac{m!}{n!(m-n)!}.$$

证 把上面的"人"换为"文字",再拟人化文字,使其"坐在座位上",即可套用上面的推理,从而得到第一个等号.至于第二个等号,直接计算即可:

$$\begin{split} &\frac{m(m-1)\cdots(m-(n-1))}{n!} \\ &= \frac{m(m-1)\cdots(m-(n-1))(m-n)(m-n-1)\cdots 1}{n!(m-n)!} \\ &= \frac{m!}{n!(m-n)!}. \end{split}$$

命题 广义二项系数适合如下性质:

(i) $n \ge 0$ 时, $\binom{x}{n}$ 是首项系数为 $\frac{1}{n!}$ 的 n 次整式, 前 n 个非负整数恰为 其根, 且

$$\binom{n}{n} = 1;$$

(ii) 任取 $n \in \mathbb{Z}$, 必有

$$\binom{x+1}{n} = \binom{x}{n} + \binom{x}{n-1};$$

(iii) 若 m, n 是非负整数, 则

$$\sum_{\ell=0}^{m-1} \binom{\ell}{n} = \binom{m}{n+1};$$

广义二项系数 119

(iv) 任取 $n \in \mathbb{Z}$, 必有

$$\binom{-x}{n} = (-1)^n \binom{x+n-1}{n};$$

(v) 若 t, n 是整数, 则

$$\binom{t}{n} \in \mathbb{Z}.$$

证 (i) $\binom{x}{0} = 1$ 是 0 次整式, 无根, 首项系数为 1, 且 $\binom{0}{0} = 1$. n > 0 时,

$$\binom{x}{n} = \frac{1}{n!}(x-0)(x-1)\cdots(x-(n-1)),$$

故 $\binom{x}{n}$ 是首项系数为 $\frac{1}{n!}$ 的 n 次整式, 且 0, 1, ..., n-1 恰为 $\binom{x}{n}$ 的根. 最后, 不难验证

$$\binom{n}{n}=\frac{(n-0)(n-1)\cdots(n-(n-1))}{n!}=1.$$

(ii) 若 n < 0, 则 $\binom{x+1}{n}$, $\binom{x}{n}$, $\binom{x}{n-1}$ 都是 0, 显然. 若 n = 0, 则 $\binom{x+1}{n}$, $\binom{x}{n}$ 都是 1, 而 $\binom{x}{n-1}$ 都是 0, 显然. 若 n = 1, 则 $\binom{x+1}{n}$, $\binom{x}{n}$, $\binom{x}{n-1}$ 分别是 x + 1, x, 1, 显然. 若 $n \ge 2$, 则

$$\begin{split} &\binom{x}{n} + \binom{x}{n-1} \\ &= \frac{x(x-1)\cdots(x-(n-2))(x-(n-1))}{n!} + \frac{x(x-1)\cdots(x-(n-2))}{(n-1)!} \\ &= \frac{x(x-1)\cdots(x-(n-2))(x-(n-1))}{n!} + \frac{x(x-1)\cdots(x-(n-2))(n)}{n!} \\ &= \frac{x(x-1)\cdots(x-(n-2))(x-(n-1)+n)}{n!} \\ &= \frac{(x+1)x(x-1)\cdots(x-(n-2))}{n!} \\ &= \frac{(x+1)(x+1-1)(x+1-2)\cdots(x+1-(n-1))}{n!} \\ &= \binom{x+1}{n}. \end{split}$$

(iii) 由 (ii) 知

$$\binom{\ell}{n} = \binom{\ell+1}{n+1} - \binom{\ell}{n+1}.$$

所以

(iv) 当 n < 0 时, $\binom{-x}{n}$ 与 $\binom{x+n-1}{n}$ 都是 0. 当 n = 0 时, $\binom{-x}{n}$ 与 $\binom{x+n-1}{n}$ 都是 1, 且 $(-1)^n = 1$. 当 n > 0 时,

$$\begin{split} \begin{pmatrix} -x \\ n \end{pmatrix} &= \frac{(-x)(-x-1)\cdots(-x-(n-1))}{n!} \\ &= (-1)^n \frac{x(x+1)\cdots(x+(n-1))}{n!} \\ &= (-1)^n \frac{(x+n-1)(x+n-1-1)\cdots(x+n-1-(n-1))}{n!} \\ &= (-1)^n \binom{x+n-1}{n}. \end{split}$$

(v) 若 n<0, 则 $\binom{t}{n}=0\in\mathbb{Z}$. 若 n=0, 则 $\binom{t}{n}=1\in\mathbb{Z}$. 下面考虑 $n\geq 1$ 的情形.

我们先说明, 当 t 是非负整数时, $\binom{t}{n} \in \mathbb{Z}$.

对 n 用算学归纳法. 当 n=1 时, $\binom{t}{n}=t\in\mathbb{Z}$.

设 $n=s\geq 1$ 时, $\binom{t}{n}\in\mathbb{Z}$. 考虑 n=s+1 的情形. 由 (iii) 可知

$$\binom{t}{s+1} = \sum_{\ell=0}^{t-1} \binom{\ell}{s}.$$

广义二项系数 121

根据归纳假设, $\binom{\ell}{s}$ $(\ell=0,\,1,\,\cdots,\,t-1)$ 都是整数, 故它们的和 $\binom{t}{s+1}$ 也是整数. 所以, n=s+1 时, $\binom{t}{n}\in\mathbb{Z}$.

现在考虑 t 为负整数的情形. 由 (iv) 可知

$$\binom{t}{n} = (-1)^n \binom{-t+n-1}{n} \in \mathbb{Z}.$$

8

综上, 若 t, n 是整数, 则 $\binom{t}{n} \in \mathbb{Z}$.

性质 (i) (ii) 有计数相关的解释. 下面我们为读者提供二例.

例 (i) 表明, 从 n 个不同的文字里选 n 个的选法数是 1. 这是显然的, 因为所有的文字都被选中了, 也没得选.

例 此例有"生活的气息".由(ii)可知,

$$\binom{7}{3} = \binom{6}{2} + \binom{6}{3}.$$

据说在中华人民共和国东部的浙江省,参加"普通高等学校招生全国统一考试"(Nationwide Unified Examination for Admissions to General Universities and Colleges) 的人,除了有必考的语文、算学、外语,还要从物理、化学、生物、技术、政治、历史、地理这7个科目里选择3个作为选考科目.由于物理是"很有挑战性的科目",故有不少人不选物理.上式右侧的 $\binom{6}{2}$ 表示选择物理的选法数,而 $\binom{6}{3}$ 表示不选物理的选法数.因为人要么选物理,要么不选,故它们的和就是7选3的选法数.

命题 设 n 是非负整数. 广义二项系数适合如下性质:

(vi) 任意次不高于 n 的整式都可唯一地写为 $\binom{x}{0}$, $\binom{x}{1}$, ..., $\binom{x}{n}$ 的线性组合:

(vii) 设 $c_0, c_1, \cdots, c_n \in \mathbb{F}$. 设

$$f(x) = c_0 \binom{x}{0} + c_1 \binom{x}{1} + \dots + c_n \binom{x}{n}.$$

若 $c_0,\,c_1,\,\cdots,\,c_n\in\mathbb{Z}$, 则任取 $t\in\mathbb{Z}$, 必有 $f(t)\in\mathbb{Z}$; 若 $c_0,\,c_1,\,\cdots,\,c_n$ 不全是整数, 则存在整数 u 使 f(u) 不是整数. 换句话说, 任取 $t\in\mathbb{Z}$, 必有 $f(t)\in\mathbb{Z}$ 的一个必要与充分条件是: $c_0,\,c_1,\,\cdots,\,c_n$ 全是整数.

证 (vi) 注意到 $\binom{x}{0}$, $\binom{x}{1}$, ..., $\binom{x}{n}$ 的次分别是 0, 1, ..., n.

(vii) 设 $c_0, c_1, \dots, c_n \in \mathbb{Z}$. 设 $t \in \mathbb{Z}$. 由 (v), $\binom{t}{0}$, $\binom{t}{1}$, \dots , $\binom{t}{n}$ 都是整数, 故 f(t) 也是整数.

设 $c_0, c_1, ..., c_n$ 不全是整数. 这样, 存在 ℓ 使 $c_0, c_1, ..., c_{\ell-1}$ 这 ℓ 个数 全为整数, 而 c_ℓ 不是整数 (从左往右, 一个一个地看). 那么

$$\begin{split} f(\ell) &= \underbrace{c_0 \binom{\ell}{0} + c_1 \binom{\ell}{1} + \dots + c_{\ell-1} \binom{\ell}{\ell-1}}_{\ell \text{ terms}} + c_\ell \binom{\ell}{\ell} \\ &+ \underbrace{c_{\ell+1} \binom{\ell}{\ell+1} + \dots + c_n \binom{\ell}{n}}_{(n-\ell) \text{ terms}} \\ &= (\text{an integer } q) + c_\ell + 0 \\ &= q + c_\ell. \end{split}$$

我们说, $f(\ell)$ 不是整数. 用反证法. 若 $f(\ell)$ 是整数, 因为 q 也是整数, 故 $c_{\ell} = f(\ell) - q$ 是整数, 矛盾!

例 我们知道, 若整式 f(x) 的系数全为整数, 则 $t \in \mathbb{Z}$ 时 $f(t) \in \mathbb{Z}$. 不过, 反过来就不对了. 在中学, 读者也许知道 n 是整数时 $\frac{n(n+1)}{2}$ 也是整数: n 与 n+1 必一奇一偶, 故积是偶数, 从而被 2 除后仍为整数. 现在可以这么看:

$$\frac{n(n+1)}{2} = \frac{(n+1)(n+1-1)}{2} = \binom{n+1}{2}.$$

下面我们介绍二个与广义二项系数有关的和. 不过, 我们先介绍一个用完就丢的工具.

定义 固定某 $h \in \mathbb{F}[x]$. 设 n 是非负整数, $r \in \mathbb{F}[x]$. 定义

$$r^{[n]} = \begin{cases} (r-0)(r-h)\cdots(r-(n-1)h), & n>0;\\ 1, & n=0. \end{cases}$$

不难看出,

$$r^{[n+1]} = r^{[n]}(r - nh).$$

若 h = 0, $r^{[n]}$ 就变为 r 的 n 次幂. 若 h = 1, $r^{[n]}$ 就变为 $n!\binom{x}{n}$.

广义二项系数 123

命题 设 $r, s \in \mathbb{F}[x]$. 设 n 是非负整数. 则

$$(\star) \qquad (r+s)^{[n]} = \sum_{k=0}^{n} \binom{n}{k} r^{[n-k]} s^{[k]}.$$

取 h = 0, 得到二项展开 (binomial expansion):

(BE)
$$(r+s)^n = \sum_{k=0}^n \binom{n}{k} r^{n-k} s^k.$$

取 h=1, 得

$$n! \binom{r+s}{n} = \sum_{k=0}^{n} \binom{n}{k} (n-k)! k! \binom{r}{n-k} \binom{s}{k}.$$

二边同乘 $\frac{1}{n!}$, 再利用

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

可得 Vandermonde 恒等式 (Vandermonde's identity):

(VI)
$$\binom{r+s}{n} = \sum_{k=0}^{n} \binom{r}{n-k} \binom{s}{k}.$$

证 用算学归纳法. 当 n=0 时, (\star) 的左侧是 1, 右侧是 $1 \cdot 1 \cdot 1$. 当 n=1 时, (\star) 的左侧是 r+s, 右侧是 $1 \cdot r \cdot 1 + 1 \cdot 1 \cdot s$.

设 $n = \ell \ge 1$ 时, (\bigstar) 正确, 即

$$(\star) \qquad (r+s)^{[\ell]} = \sum_{k=0}^{\ell} {\ell \choose k} r^{[\ell-k]} s^{[k]}.$$

现在, 考虑 $n = \ell + 1$ 的情形:

$$\begin{split} &(r+s)^{[\ell+1]} \\ &= (r+s)^{[\ell]}(r+s-\ell h) \\ &= \sum_{k=0}^{\ell} \binom{\ell}{k} r^{[\ell-k]} s^{[k]}(r+s-\ell h) \\ &= \sum_{k=0}^{\ell} \binom{\ell}{k} r^{[\ell-k]} s^{[k]}(r+s-(\ell-k+k)h) \end{split}$$

$$\begin{split} &= \sum_{k=0}^{\ell} \binom{\ell}{k} r^{[\ell-k]} s^{[k]} ((r-(\ell-k)h) + (s-kh)) \\ &= \sum_{k=0}^{\ell} \binom{\ell}{k} (r^{[\ell-k]} (r-(\ell-k)h) s^{[k]} + r^{[\ell-k]} s^{[k]} (s-kh)) \\ &= \sum_{k=0}^{\ell} \binom{\ell}{k} (r^{[\ell-k+1]} s^{[k]} + r^{[\ell-k]} s^{[k+1]}) \\ &= \sum_{k=0}^{\ell} \binom{\ell}{k} r^{[\ell+1-k]} s^{[k]} + \sum_{k=0}^{\ell} \binom{\ell}{k} r^{[\ell-k]} s^{[k+1]} \\ &= \sum_{k=0}^{\ell} \binom{\ell}{k} r^{[\ell+1-k]} s^{[k]} + \sum_{k=0}^{\ell} \binom{\ell}{k+1-1} r^{[\ell+1-(k+1)]} s^{[k+1]} \\ &= \sum_{k=0}^{\ell} \binom{\ell}{k} r^{[\ell+1-k]} s^{[k]} + \sum_{k=1}^{\ell+1} \binom{\ell}{k-1} r^{[\ell+1-k]} s^{[k]} \\ &= \sum_{k=0}^{\ell+1} \binom{\ell}{k} r^{[\ell+1-k]} s^{[k]} + \sum_{k=0}^{\ell+1} \binom{\ell}{k-1} r^{[\ell+1-k]} s^{[k]} \\ &= \sum_{k=0}^{\ell+1} \binom{\ell}{k} r^{[\ell+1-k]} s^{[k]}. \end{split}$$

评注 Too cruel though it is, let's say farewell to $r^{[n]}$. We will not use $r^{[n]}$ any longer from this moment forward. It is born to be a good old tool for us. May $r^{[n]}$ and its soul rest in peace!

例 (VI) 也有计数相关的解释. 老规矩, 先写下算式:

$$\binom{7}{3} = \binom{3}{3} \binom{4}{0} + \binom{3}{2} \binom{4}{1} + \binom{3}{1} \binom{4}{2} + \binom{3}{0} \binom{4}{3}.$$

回到中华人民共和国东部的浙江省. 回到"普通高等学校招生全国统一考试". 前面提到, 在那儿, 参加考试的人从 7 科目里选 3 个. 政治、历史、地理是偏"阿先生"(arts)的; 物理、化学、生物、技术是偏"赛先生"(science)的.

7 选 3 可以这么选:

广义二项系数 125

- (i) 选 3 个阿先生与 0 个赛先生: $\binom{3}{3}\binom{4}{0}$;
- (ii) 或者, 选 2 个阿先生与 1 个赛先生: $\binom{3}{2}\binom{4}{1}$;
- (iii) 或者, 选 1 个阿先生与 2 个赛先生: $\binom{3}{1}\binom{4}{2}$;
- (iv) 或者, 选 0 个阿先生与 3 个赛先生: $\binom{3}{0}\binom{4}{3}.$
- 把这 4 种情形下的选法数相加, 就是 $\binom{7}{3}$.

求和公式

本节讨论求和公式 (summation formula) 问题: 设 $f(x) \in \mathbb{F}[x]$, 求

$$S(n) = \sum_{\ell=0}^{n-1} f(\ell) = f(0) + f(1) + \dots + f(n-1).$$

例 相信大家应该听说过德意志算学家 Carl Friedrich Gauß. 1787 年, Gauß 还只是一个 10 岁的孩子. 据说, 当时他的算学教师给全班同学出了这样的算术题:

$$1 + 2 + 3 + \dots + 100 = ?$$

这里, 后一个数比前一个数多 1, 且共有 100 个数. 教师刚写完问题, Gauß 就算出, 答案是 5050. 他的同学还在一个一个地加, 算了很久, 还没算对.

Gauß 是怎么快速算出答案的呢? 设

$$S = 1 + 2 + 3 + \dots + 100.$$

因为加法适合交换律, 故

$$S = 100 + 99 + 98 + \dots + 1.$$

所以

$$2S = (1+100) + (2+99) + (3+98) + \dots + (100+1)$$

$$= \underbrace{101+101+101+\dots+101}_{\text{a hundred 101's}}$$

$$= 100 \cdot 101$$

$$= 10 \, 100.$$

由此可得

$$S = \frac{10\,100}{2} = 5\,050.$$

如果记
$$f(x) = x + 1$$
, 则

$$\begin{split} S &= 1 + 2 + 3 + \dots + 100 \\ &= f(0) + f(1) + f(2) + \dots + f(100 - 1) \\ &= \sum_{\ell = 0}^{100 - 1} f(\ell). \end{split}$$

考虑更一般的情形. 设 f(x) = a + bx. 记

$$S(n) = f(0) + f(1) + \dots + f(n-1).$$

类似地, 把右侧倒着写:

$$S(n)=f(n-1)+f(n-1)+\cdots+f(0).$$

因为

$$f(k) + f(n-1-k) = a + bk + a + b(n-1-k) = 2a + b(n-1),$$

故

$$\begin{split} &2S(n)\\ &= (f(0)+f(n-1)) + (f(1)+f(n-2)) + \dots + (f(n-1)+f(0))\\ &= n(2a+b(n-1)), \end{split}$$

即

$$S(n) = \frac{n(2a + b(n-1))}{2} = \left(a - \frac{b}{2}\right)n + \frac{b}{2}n^2.$$

我们还可以看出: S(n) 是整式, 且

$$\deg S(n) = \deg f(n) + 1.$$

上面讨论了当 f(x) 的次不高于 1 时如何求 S(n). 那么, 当 f(x) 的次高于 1 时, 怎么找 S(n)? 它还是整式吗?

在求和前, 我们看 S(n) 适合什么性质. S(n) 是 f(0), f(1), …, f(n-1) 这 n 个数的和. 因为 0 个数的和是 0, 故 S(0) = 0. 同时, 不难看出, S(n+1) 比 S(n) 多出 f(n), 也即

$$S(n+1) - S(n) = f(n).$$

反过来, 设 $\mathbb N$ 到 $\mathbb F$ 的函数 W(n) 适合 W(0)=0 与 W(n+1)-W(n)=f(n), 则

$$\begin{split} \sum_{\ell=0}^{n-1} f(\ell) &= \sum_{\ell=0}^{n-1} (W(\ell+1) - W(\ell)) \\ &= \sum_{\ell=0}^{n-1} W(\ell+1) - \sum_{\ell=0}^{n-1} W(\ell) \\ &= \sum_{\ell=1}^{n} W(\ell) - \sum_{\ell=0}^{n-1} W(\ell) \\ &= W(n) - W(0) \\ &= W(n). \end{split}$$

这样, 任给 $f(x) \in \mathbb{F}[x]$, 若我们能找到适合条件 S(0) = 0 与 S(x+1) - S(x) = f(x) 的整式, 则

$$\sum_{\ell=0}^{n-1} f(\ell) = S(n).$$

命题 设 $f(x) \in \mathbb{F}[x]$ 是 m 次整式. 存在唯一的 m+1 次整式 $F(x) \in \mathbb{F}[x]$ 适合条件:

- (i) F(0) = 0;
- (ii) F(x+1) F(x) = f(x).

证 先看存在性. 若 f(x) = 0, 则 F(x) = 0 显然适合 (i) (ii), 且

$$\deg F(x) = -\infty = -\infty + 1 = \deg f(x) + 1.$$

设 $m \geq 0$. 根据广义二项系数的性质, 存在 m+1 个 $\mathbb F$ 中元 $c_0,\,\cdots,\,c_m$ 使

$$f(x) = \sum_{\ell=0}^{m} c_{\ell} \binom{x}{\ell}, \quad c_{m} \neq 0.$$

(读者可思考: 若 $c_m = 0$, f(x) 还能是 m 次整式吗?) 作整式

$$F(x) = \sum_{\ell=0}^{m} c_{\ell} \binom{x}{\ell+1} \in \mathbb{F}[x].$$

求和公式 129

显然 $\deg F(x) = m + 1$. 验证 (i):

$$F(0) = \sum_{\ell=0}^{m} c_{\ell} \binom{0}{\ell+1} = \sum_{\ell=0}^{m} 0 = 0.$$

验证 (ii):

$$F(x+1) - F(x) = \sum_{\ell=0}^{m} c_{\ell} {x+1 \choose \ell+1} - \sum_{\ell=0}^{m} c_{\ell} {x \choose \ell+1}$$

$$= \sum_{\ell=0}^{m} c_{\ell} \left({x+1 \choose \ell+1} - {x \choose \ell+1} \right)$$

$$= \sum_{\ell=0}^{m} c_{\ell} {x \choose \ell}$$

$$= f(x).$$

再看唯一性. 设 $G(x) \in \mathbb{F}[x]$ 是 m+1 次整式, 并适合条件 G(0)=0 与 G(x+1)-G(x)=f(x). 作

$$H(x) = F(x) - G(x).$$

则 H(0)=0, H(x+1)-H(x)=0. 所以, r 为非负整数时, H(r)=0. 从而 H(x) 一定是零整式, 即 F(x)=G(x).

例 记 $f(x) = x^2$. 我们求

$$S(n) = f(0) + f(1) + \dots + f(n-1) = \sum_{\ell=0}^{n-1} f(\ell).$$

由上个命题可知, 存在唯一的次为 3 的整式 F(x) 使 F(0) = 0, F(x+1) - F(x) = f(x), 且 S(n) = F(n).

可以用插值的思想求 F(x). 取 x_0, x_1, x_2, x_3 为 0, 1, -1, 2. 不难算出:

$$\begin{split} y_0 &= F(0) = 0, \\ y_1 &= F(1) = F(0) + f(0) = 0, \\ y_2 &= F(-1) = F(0) - f(-1) = -1, \\ y_3 &= F(2) = F(1) + f(1) = 1. \end{split}$$

注意到 $y_0=y_1=0$, 故可以考虑 Lagrange 插值 (只要算 $L_2(x)$ 与 $L_3(x)$):

$$\begin{split} L_2(x) &= \frac{(x-0)(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)} = -\frac{x(x-1)(x-2)}{6}, \\ L_3(x) &= \frac{(x-0)(x-1)(x+1)}{(2-0)(2-1)(2+1)} = \frac{x(x-1)(x+1)}{6}, \\ F(x) &= y_2 L_2(x) + y_3 L_3(x) = \frac{x(x-1)(2x-1)}{6}. \end{split}$$

当然, 也可利用 Newton 插值. 作出差商表:

故

$$\begin{split} F(x) &= [0] + [0,1](x-0) + [0,1,-1](x-0)(x-1) \\ &\quad + [0,1,-1,2](x-0)(x-1)(x+1) \\ &= -\frac{1}{2}x(x-1) + \frac{1}{3}x(x-1)(x+1) \\ &= \frac{x(x-1)(2x-1)}{6}. \end{split}$$

综上, 我们有

$$\sum_{\ell=0}^{n-1} \ell^2 = 0^2 + 1^2 + \dots + (n-1)^2 = \frac{n(n-1)(2n-1)}{6}.$$

其实, 我们可以在此处结束本节. 设 f(x) 是 n 次整式. 上面的命题告诉我们, 存在唯一的 n+1 次整式 F(x) 使 F(0)=0, F(x+1)-F(x)=f(x), 且 S(n)=F(n). 利用这些条件, 可以确定 F(x) 在 n+2 个整数点处的值, 从而可用插值公式求出 F(x). 不过, 为了使实操容易一些, 我们还得多研究一点.

由上个命题的证明过程,有

命题 若

$$f(x) = c_0 \binom{x}{0} + c_1 \binom{x}{1} + \dots + c_m \binom{x}{m},$$

则

$$S(n) = \sum_{\ell=0}^{n-1} f(\ell) = c_0 \binom{n}{1} + c_1 \binom{n}{2} + \dots + c_m \binom{n}{m+1}.$$

由此可见, 若我们能把 f(x) 写为广义二项系数的线性组合, 则寻找 S(n) 的过程将十分简单. 接下来, 我们讨论怎么方便地把整式写为广义二项系数的线性组合.

定义 设 $f(x) \in \mathbb{F}[x]$. 定义 f(x) 的差分 (difference) 为

$$\Delta f(x) = f(x+1) - f(x) \in \mathbb{F}[x].$$

设 $t \in \mathbb{F}$. 我们把

$$f(t+1) - f(t) \in \mathbb{F}$$

也写为 $\Delta f(t)$.

例 取 $f(x) = x^2 + x - 1$. 则

$$f(x+1) = (x+1)^2 + (x+1) - 1 = x^2 + 3x + 1,$$

故

$$\Delta f(x) = 2x + 2.$$

所以

$$\Delta f(332) = 2 \cdot 332 + 2 = 666.$$

命题 设 k 是整数. 则

$$\Delta \binom{x}{k} = \binom{x}{k-1}.$$

回忆一下, 微商适合如下二条性质:

(i) (cf(x))' = cf'(x);

(ii) $(f(x) \pm g(x))' = f'(x) \pm g'(x)$.

差分也有类似的性质.

命题 设 f(x), $g(x) \in \mathbb{F}[x]$, $c \in \mathbb{F}$. 则

(i) $\Delta(cf(x)) = c\Delta f(x)$;

(ii) $\Delta(f(x) \pm g(x)) = \Delta f(x) \pm \Delta g(x)$.

由 (i) (ii) 与算学归纳法可知: 当 $c_0,\,c_1,\,\cdots,\,c_{k-1}\in\mathbb{F},\,$ 且 $f_0(x),\,f_1(x),\,\cdots,\,f_{k-1}(x)\in\mathbb{F}[x]$ 时,

$$\Delta\left(\sum_{\ell=0}^{k-1}c_\ell f_\ell(x)\right) = \sum_{\ell=0}^{k-1}c_\ell \Delta f_\ell(x).$$

证 老样子, 我们证明 (i) (ii), 将剩下的推论留给读者作练习. 设

(i) 设 p(x) = cf(x). 则

$$\begin{split} \Delta(cf(x)) &= \Delta p(x) \\ &= p(x+1) - p(x) \\ &= cf(x+1) - cf(x) \\ &= c(f(x+1) - f(x)) \\ &= c\Delta f(x). \end{split}$$

(ii) 设 $q(x) = f(x) \pm g(x)$. 则

$$\begin{split} \Delta(f(x) \pm g(x)) &= \Delta q(x) \\ &= q(x+1) - q(x) \\ &= (f(x+1) \pm g(x+1)) - (f(x) \pm g(x)) \\ &= (f(x+1) - f(x)) \pm (g(x+1) - g(x)) \\ &= \Delta f(x) \pm \Delta g(x). \end{split}$$

定义 设 $f(x) \in \mathbb{F}[x]$. 记

$$\Delta^0 f(x) = f(x) \in \mathbb{F}[x],$$

求和公式 133

并称其为 f(x) 的 0 级差分 (zeroth-order difference). 1 级差分就是差分:

$$\Delta^1 f(x) = \Delta f(x) = \Delta(\Delta^0 f(x)) \in \mathbb{F}[x].$$

1级差分的差分是2级差分:

$$\Delta^2 f(x) = \Delta(\Delta^1 f(x)) \in \mathbb{F}[x].$$

2 级差分的差分是 3 级差分:

$$\Delta^3 f(x) = \Delta(\Delta^2 f(x)) \in \mathbb{F}[x].$$

一般地, e 级差分就是 e-1 级差分的差分:

$$\Delta^e f(x) = \Delta(\Delta^{e-1} f(x)) \in \mathbb{F}[x].$$

高级差分可指代任意 e 级差分, 此处 e > 1.

设 $t \in \mathbb{F}$. 既然 $\Delta^e f(x)$ 是某个整式

$$v_0 + v_1 x + \dots + v_s x^s \in \mathbb{F}[x],$$

我们将

$$v_0+v_1t+\cdots+v_st^s\in\mathbb{F}$$

简单地写为 $\Delta^e f(t)$.

例 设

$$f(x) = 2x^3 + 3x^2 + 5x + 7.$$

根据定义, f(x) 的 0 级差分就是自己:

$$\Delta^0 f(x) = 2x^3 + 3x^2 + 5x + 7.$$

因为

$$(1+x)^3 = (1+x)^2(1+x)$$

$$= (1+2x+x^2)(1+x)$$

$$= 1+2x+x^2+x+2x^2+x^3$$

$$= 1+3x+3x^2+x^3.$$

故

$$f(x+1) = 2(x+1)^3 + 3(x+1)^2 + 5(x+1) + 7$$
$$= 2x^3 + 9x^2 + 17x + 17.$$

从而 f(x) 的 1 级差分是

$$\Delta^1 f(x) = \Delta f(x) = f(x+1) - f(x) = 6x^2 + 12x + 10.$$

因为

$$\Delta^{1} f(x+1) = 6(x+1)^{2} + 12(x+1) + 10 = 6x^{2} + 24x + 28,$$

故 f(x) 的 2 级差分是

$$\Delta^2 f(x) = \Delta(\Delta^1 f(x)) = \Delta^1 f(x+1) - \Delta^1 f(x) = 12x+18.$$

因为

$$\Delta^2 f(x+1) = 12(x+1) + 18 = 12x + 30,$$

故 f(x) 的 3 级差分是

$$\Delta^3 f(x) = \Delta(\Delta^2 f(x)) = \Delta^2 f(x+1) - \Delta^2 f(x) = 12.$$

因为

$$\Delta^3 f(x+1) = 12,$$

故 f(x) 的 4 级差分是

$$\Delta^4 f(x) = \Delta(\Delta^3 f(x)) = \Delta^3 f(x+1) - \Delta^3 f(x) = 0.$$

读者不难验证: 对任意超出 3 的整数 e. 必有

$$\Delta^e f(x) = 0.$$

由上面的计算,可知

$$\begin{split} &\Delta^0 f(1) = 2 \cdot 1^3 + 3 \cdot 1^2 + 5 \cdot 1 + 7 = 17, \\ &\Delta^1 f(1) = 6 \cdot 1^2 + 12 \cdot 1^2 + 10 = 28, \\ &\Delta^2 f(1) = 12 \cdot 1 + 18 = 30, \\ &\Delta^3 f(1) = 12, \\ &\Delta^e f(1) = 0 \quad (e > 3). \end{split}$$

求和公式 135

高级差分适合如下性质:

命题 设 e 是非负整数. 当 $c_0, c_1, \cdots, c_{k-1} \in \mathbb{F}$, 且 $f_0(x), f_1(x), \cdots, f_{k-1}(x) \in \mathbb{F}[x]$ 时,

$$\Delta^e \left(\sum_{\ell=0}^{k-1} c_\ell f_\ell(x) \right) = \sum_{\ell=0}^{k-1} c_\ell \Delta^e f_\ell(x).$$

证 用算学归纳法. 我们把具体过程留给读者当练习.

命题 设 e 是非负整数. 设 k 是整数. 则

$$\Delta^e \binom{x}{k} = \binom{x}{k-e}.$$

证 用算学归纳法. 我们把具体过程留给读者当练习.

命题 设 e 是非负整数. 设 $f(x) \in \mathbb{F}[x]$. 则

$$\Delta^e f(x) = \sum_{k=0}^e (-1)^{e-k} \binom{e}{k} f(x+k).$$

证 当 e = 0 时, 左侧是 f(x), 右侧是

$$(-1)^0 \binom{0}{0} f(x+0) = f(x).$$

当 e=1 时, 左侧是 f(x+1)-f(x), 右侧是

$$(-1)^1 \binom{1}{0} f(x+0) + (-1)^0 \binom{1}{1} f(x+1) = -f(x) + f(x+1).$$

所以, 命题对 e = 0 或 e = 1 成立.

设命题对 $e = \ell \ge 1$ 成立, 即

$$\Delta^{\ell} f(x) = \sum_{k=0}^{\ell} (-1)^{\ell-k} \binom{\ell}{k} f(x+k).$$

则 $e = \ell + 1$ 时,

$$\begin{split} &\Delta^{\ell+1}f(x)\\ &=\Delta(\Delta^{\ell}f(x))\\ &=\Delta^{\ell}f(x+1)-\Delta^{\ell}f(x)\\ &=\sum_{k=0}^{\ell}(-1)^{\ell-k}\binom{\ell}{k}f(x+1+k)-\sum_{k=0}^{\ell}(-1)^{\ell-k}\binom{\ell}{k}f(x+k)\\ &=\sum_{k=0}^{\ell}(-1)^{(\ell+1)-(k+1)}\binom{\ell}{k+1-1}f(x+k+1)\\ &+\sum_{k=0}^{\ell}(-1)^{\ell+1-k}\binom{\ell}{k}f(x+k)\\ &=\sum_{k=1}^{\ell+1}(-1)^{\ell+1-k}\binom{\ell}{k-1}f(x+k)+\sum_{k=0}^{\ell}(-1)^{\ell+1-k}\binom{\ell}{k}f(x+k)\\ &=\sum_{k=0}^{\ell+1}(-1)^{\ell+1-k}\binom{\ell}{k-1}f(x+k)+\sum_{k=0}^{\ell+1}(-1)^{\ell+1-k}\binom{\ell}{k}f(x+k)\\ &=\sum_{k=0}^{\ell+1}\binom{\ell}{k-1}f(x+k)+\binom{\ell}{k-1}f(x+k)+\binom{\ell}{k}f(x+k)\\ &=\sum_{k=0}^{\ell+1}\binom{\ell}{k-1}\ell^{\ell+1-k}\binom{\ell}{k-1}+\binom{\ell}{k}f(x+k)\\ &=\sum_{k=0}^{\ell+1}(-1)^{\ell+1-k}\binom{\ell}{k-1}+\binom{\ell}{k}f(x+k). \end{split}$$

我们再补充一个跟广义二项系数有关的性质:

命题 设k是整数.则

$$\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1, & k = 0; \\ 0, & k \neq 0. \end{cases}$$

证 显然. 8

设 $f(x) \in \mathbb{F}[x]$ 是次不高于 m 的整式. 我们知道, f(x) 一定可以写为

求和公式 137

广义二项系数的线性组合:

$$f(x) = \sum_{k=0}^{m} c_k \binom{x}{k}.$$

对左右二侧求 e 级差分 $(e \le m)$, 有

$$\Delta^e f(x) = \sum_{k=0}^m c_k \binom{x}{k-e}.$$

用 0 替换 x, 有

$$\Delta^e f(0) = \sum_{k=0}^m c_k \binom{0}{k-e} = c_e.$$

所以

$$\begin{split} f(x) &= \sum_{k=0}^m \Delta^k f(0) \binom{x}{k} \\ &= \Delta^0 f(0) \binom{x}{0} + \Delta^1 f(0) \binom{x}{1} + \dots + \Delta^m f(0) \binom{x}{m} \\ &= f(0) + \Delta f(0) \binom{x}{1} + \dots + \Delta^m f(0) \binom{x}{m}. \end{split}$$

我们已经证明了

命题 设 $f(x) \in \mathbb{F}[x]$ 是次不高于 m 的整式. 则

$$\begin{split} f(x) &= \sum_{k=0}^m \Delta^k f(0) \binom{x}{k} \\ &= \Delta^0 f(0) \binom{x}{0} + \Delta^1 f(0) \binom{x}{1} + \dots + \Delta^m f(0) \binom{x}{m} \\ &= f(0) + \Delta f(0) \binom{x}{1} + \dots + \Delta^m f(0) \binom{x}{m}, \end{split}$$

所以

$$S(n) = \sum_{\ell=0}^{n-1} f(\ell) = f(0) \binom{n}{1} + \Delta f(0) \binom{n}{2} + \dots + \Delta^m f(0) \binom{n}{m+1}.$$

注意到

$$\Delta^{k} f(0) = \sum_{u=0}^{k} (-1)^{k-u} \binom{k}{u} f(u),$$

故计算 $\Delta^k f(0)$ 需要用到 f(0), f(1), ..., f(k) 这 k+1 个数. 也就是说, 计算 $\Delta^0 f(0)$, $\Delta^1 f(0)$, ..., $\Delta^m f(0)$ 需要用到 f(0), f(1), ..., f(m) 这 m+1 个数. 下面我们举几个具体的例, 帮助读者消化这种求和方法.

例 设
$$f(x)=x^2+x-1$$
. 求
$$S(n)=\sum_{\ell=0}^{n-1}f(\ell)=f(0)+f(1)+\cdots+f(n-1).$$

这里, m = 2. 所以, 我们计算 f(0), f(1), f(2):

$$f(0) = -1, \quad f(1) = 1, \quad f(2) = 5.$$

由此, 不难算出:

$$\begin{split} &\Delta^0 f(0) = f(0) = -1, \\ &\Delta^1 f(0) = f(1) - f(0) = 2, \\ &\Delta^1 f(1) = f(2) - f(1) = 4, \\ &\Delta^2 f(0) = \Delta^1 f(1) - \Delta^1 f(0) = 2. \end{split}$$

所以

$$\begin{split} f(x) &= f(0) + \Delta f(0) \binom{x}{1} + \Delta^2 f(0) \binom{x}{2} \\ &= -1 + 2 \binom{x}{1} + 2 \binom{x}{2}. \end{split}$$

从而

$$\begin{split} S(n) &= \sum_{\ell=0}^{n-1} f(\ell) \\ &= -1 \binom{n}{1} + 2 \binom{n}{2} + 2 \binom{n}{3} \\ &= -n + n(n-1) + \frac{n(n-1)(n-2)}{3} \\ &= \frac{n(n+2)(n-2)}{3}. \end{split}$$

求和公式 139

实操时, 往往用名为"差分表"的表进行计算. 当 m=2 时, 它长这样:

$$\Delta^{0} f(2)$$
 $\Delta^{0} f(1) \quad \Delta^{1} f(1)$
 $\Delta^{0} f(0) \quad \Delta^{1} f(0) \quad \Delta^{2} f(0)$

在这个问题里, 差分表如下:

例 求前 n 个非负整数的立方和

$$S(n) = 0^3 + 1^3 + \dots + (n-1)^3 = \sum_{\ell=0}^{n-1} \ell^3.$$

取 $f(x) = x^3$. 这里, m = 3. 画出 m = 3 时的差分表:

$$\begin{array}{lll} \Delta^0 f(3) & & & \\ \Delta^0 f(2) & \Delta^1 f(2) & & \\ \Delta^0 f(1) & \Delta^1 f(1) & \Delta^2 f(1) & & \\ \Delta^0 f(0) & \Delta^1 f(0) & \Delta^2 f(0) & \Delta^3 f(0) & & \end{array}$$

 $\Delta^0 f(t)$ 就是 f(t):

$$f(0) = 0$$
, $f(1) = 1$, $f(2) = 8$, $f(3) = 27$.

写在表上, 就是

$$\begin{array}{lll} 27 & & & \\ 8 & \Delta^1 f(2) & & \\ 1 & \Delta^1 f(1) & \Delta^2 f(1) & \\ 0 & \Delta^1 f(0) & \Delta^2 f(0) & \Delta^3 f(0) \end{array}$$

由此可确定 1 级差分:

$$\begin{split} &\Delta^1 f(2) = f(3) - f(2) = 19, \\ &\Delta^1 f(1) = f(2) - f(1) = 7, \\ &\Delta^1 f(0) = f(1) - f(0) = 1. \end{split}$$

写在表上, 就是

类似地, 可确定 2 级差分:

$$\begin{split} &\Delta^2 f(1) = \Delta^1 f(2) - \Delta^1 f(1) = 12, \\ &\Delta^2 f(0) = \Delta^1 f(1) - \Delta^1 f(0) = 6. \end{split}$$

写在表上, 就是

最后, 可确定 3级差分:

$$\Delta^3 f(0)=\Delta^2 f(1)-\Delta^2 f(0)=6.$$

写在表上, 就是

所以

$$\begin{split} f(x) &= f(0) + \Delta f(0) \binom{x}{1} + \Delta^2 f(0) \binom{x}{2} + \Delta^3 f(0) \binom{x}{3} \\ &= \binom{x}{1} + 6 \binom{x}{2} + 6 \binom{x}{3}. \end{split}$$

求和公式 141

从而

$$\begin{split} S(n) &= \sum_{\ell=0}^{n-1} f(\ell) \\ &= \binom{n}{2} + 6\binom{n}{3} + 6\binom{n}{4} \\ &= \frac{n(n-1)}{2} + n(n-1)(n-2) + \frac{n(n-1)(n-2)(n-3)}{4} \\ &= \frac{n(n-1)}{4}(2 + 4(n-2) + (n-2)(n-3)) \\ &= \frac{n(n-1)}{4}n(n-1) \\ &= \left(\frac{n(n-1)}{2}\right)^2. \end{split}$$

评注 回忆一下, 前 n 个非负整数的和

$$0+1+\dots+(n-1)=\frac{n(n-1)}{2}.$$

上面的例告诉我们,

$$0^3 + 1^3 + \dots + (n-1)^3 = (0+1+\dots + (n-1))^2$$
.

所以, 前 n 个非负整数的立方和等于前 n 个非负整数的和的平方.

例 求前 n 个非负整数的 4 次幂和

$$S(n) = 0^4 + 1^4 + \dots + (n-1)^4 = \sum_{\ell=0}^{n-1} \ell^4.$$

取 $f(x) = x^4$. 这里, m = 4. 画出 m = 4 时的差分表:

$$\begin{array}{lllll} \Delta^0 f(4) & & & & \\ \Delta^0 f(3) & \Delta^1 f(3) & & & \\ \Delta^0 f(2) & \Delta^1 f(2) & \Delta^2 f(2) & & & \\ \Delta^0 f(1) & \Delta^1 f(1) & \Delta^2 f(1) & \Delta^3 f(1) & & \\ \Delta^0 f(0) & \Delta^1 f(0) & \Delta^2 f(0) & \Delta^3 f(0) & \Delta^4 f(0) \end{array}$$

我们直接填差分表:

所以

$$\begin{split} f(x) &= f(0) + \Delta f(0) \binom{x}{1} + \Delta^2 f(0) \binom{x}{2} + \Delta^3 f(0) \binom{x}{3} + \Delta^4 f(0) \binom{x}{4} \\ &= \binom{x}{1} + 14 \binom{x}{2} + 36 \binom{x}{3} + 24 \binom{x}{4}. \end{split}$$

求和公式 143

从而

$$\begin{split} S(n) &= \sum_{\ell=0}^{n-1} f(\ell) \\ &= \binom{n}{2} + 14 \binom{n}{3} + 36 \binom{n}{4} + 24 \binom{n}{5} \\ &= \frac{n(n-1)}{2} + \frac{7n(n-1)(n-2)}{3} + \frac{3n(n-1)(n-2)(n-3)}{2} \\ &\quad + \frac{n(n-1)(n-2)(n-3)}{5} \\ &= \frac{n(n-1)}{30} (15 + 70(n-2) + 45(n-3)(n-2) \\ &\quad + 6(n-4)(n-3)(n-2)) \\ &= \frac{n(n-1)}{30} (6n^3 - 9n^2 + n + 1) \\ &= \frac{n(n-1)}{120} (24n^3 - 36n^2 + 4n + 4) \\ &= \frac{n(n-1)}{120} (3(2n)^3 - 9(2n)^2 + 2(2n) + 4) \\ &= \frac{n(n-1)}{120} (3(2n)^3 - 3 - 9(2n)^2 + 9 + 2(2n) - 2) \\ &= \frac{n(n-1)}{120} (3((2n)^3 - 1) - 9((2n)^2 - 1) + 2((2n) - 1)) \\ &= \frac{n(n-1)}{120} (2n-1)(3((2n)^2 + 2n + 1) - 9(2n + 1) + 2) \\ &= \frac{n(n-1)(2n-1)}{30} (3n^2 - 3n - 1) \\ &= \frac{n(n-1)(2n-1)}{30} (3n^2 - 3n - 1) \\ &= \frac{n(n-1)(2n-1)(3n^2 - 3n - 1)}{30} . \end{split}$$

再探微商

本节将再讨论整式的微商.

在讨论微商前, 让我们捡起在"广义二项系数"节里没用过的二项展开:

命题 设 $r, s \in \mathbb{F}[x]$. 设 n 是非负整数. 则

$$(r+s)^n = \sum_{k=0}^n \binom{n}{k} r^{n-k} s^k.$$

此式称为二项展开.

评注 等式右侧的 $\binom{n}{k}$ 称为二项系数 (binomial coefficient). 事实上, $\binom{n}{k}$ 一开始就是为讨论 $(r+s)^n$ 的展开而生的.

例 在中学. 我们学过完全平方和公式:

$$(r+s)^2 = r^2 + 2rs + s^2.$$

在二项展开里, 取 n=2, 就可以得到这个公式:

$${2 \choose 0} = 1, \quad {2 \choose 1} = 2, \quad {2 \choose 2} = 1,$$
$$(r+s)^2 = 1r^2s^0 + 2r^1s^1 + 1r^0s^2$$
$$= r^2 + 2rs + s^2.$$

在上节, 我们用分配律拆开了 (1+x)3:

$$(1+x)^3 = (1+x)^2(1+x)$$

$$= (1+2x+x^2)(1+x)$$

$$= 1+2x+x^2+x+2x^2+x^3$$

$$= 1+3x+3x^2+x^3.$$

在二项展开里, 取 n=3:

$$\binom{3}{0} = 1 = \binom{3}{3}, \quad \binom{3}{1} = 3 = \binom{3}{2},$$

$$(r+s)^3 = 1r^3s^0 + 3r^2s^1 + 3r^1s^2 + 1r^0s^3$$

$$= r^3 + 3r^2s + 3rs^2 + s^3.$$

再探微商 145

用 1, x 替换 r, s, 有

$$(1+x)^3 = 1^3 + 3 \cdot 1^2 x + 3 \cdot 1 x^2 + x^3$$
$$= 1 + 3x + 3x^2 + x^3.$$

设 $c \in \mathbb{F}$. 在 "整式的相等" 节, 我们用 $1, x-c, (x-c)^2, \cdots, (x-c)^n$ 引出线性无关, 并证明了

命题 设 $a_0, b_0, a_1, b_1, \dots, a_n, b_n \in \mathbb{F}$. 设 $c \in \mathbb{F}$. 再设

$$f(x)=\sum_{i=0}^n a_i(x-c)^i,\quad g(x)=\sum_{i=0}^n b_i(x-c)^i.$$

则 f(x) = g(x) 的一个必要与充分条件是

$$a_0 = b_0, \quad a_1 = b_1, \quad \cdots, \quad a_n = b_n.$$

并且, 任取

$$f(x) = \sum_{i=0}^{n} u_i x^i \in \mathbb{F}[x],$$

必存在 $v_0,\,v_1,\,\cdots\!,\,v_n\in\mathbb{F}$ 使

$$f(x) = \sum_{i=0}^{n} v_i (x - c)^i.$$

利用二项展开,有

$$\begin{split} x^i &= (c + (x-c))^i \\ &= \sum_{i=0}^i \binom{i}{j} c^{i-j} (x-c)^j. \end{split}$$

由此, 我们可以把任意整式

$$f(x) = \sum_{i=0}^{n} u_i x^i \in \mathbb{F}[x]$$

写为

$$f(x) = \sum_{i=0}^{n} v_i(x-c)^i \in \mathbb{F}[x].$$

例 设

$$f(x) = x^3 - 6x^2 + 15x - 12.$$

取 c=2. 利用二项展开, 有

$$\begin{split} x^3 &= (2 + (x - 2))^3 \\ &= 1 \cdot 2^3 + 3 \cdot 2^2 (x - 2) + 3 \cdot 2^1 (x - 2)^2 + 1 \cdot 2^0 (x - 2)^3 \\ &= 8 + 12(x - 2) + 6(x - 2)^2 + (x - 2)^3, \\ x^2 &= (2 + (x - 2))^2 \\ &= 1 \cdot 2^2 + 2 \cdot 2^1 (x - 2) + 1 \cdot 2^0 (x - 2)^2 \\ &= 4 + 4(x - 2) + (x - 2)^2, \\ x &= 2 + (x - 2). \end{split}$$

所以

$$\begin{split} f(x) &= x^3 - 6x^2 + 15x - 12 \\ &= 8 + 12(x-2) + 6(x-2)^2 + (x-2)^3 \\ &\quad - 6(4 + 4(x-2) + (x-2)^2) \\ &\quad + 15(2 + (x-2)) - 12 \\ &= (x-2)^3 + 3(x-2) + 2. \end{split}$$

现在,读者可能不再那么不熟悉二项展开了. 我们正式重述微商. 不过,我们并不会完全照搬"微商"节.

定义 设

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n \in \mathbb{F}[x].$$

f(x) 的微商是整式

$$Df(x) = 0 + 1a_1 + 2a_2x + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1} \in \mathbb{F}[x].$$

设 $t \in \mathbb{F}$. 我们把

$$0+1a_1+2a_2t+\cdots+(n-1)a_{n-1}t^{n-2}+na_nt^{n-1}\in\mathbb{F}$$

简单地写为 Df(t).

再探微商

147

评注 若 f(x) = c, $c \in \mathbb{F}$, 则 Df(x) 为零整式.

评注 读者可能会注意到我们在这里换了个记号. 之前, 我们用 f'(x) 或 (f(x))' 表示整式 f(x) 的微商——那个时候, 我们还是在抽象的整环 D 上讨论问题. 现在, 我们在熟悉的 $\mathbb F$ 里讨论问题. 读者已经很久都没见到 D 了吧? 从此节开始, 我们用 D 记号表示微商. 所以, D 将不表示整环.

例 取
$$f(x) = x^6 - x^3 + 1 \in \mathbb{F}[x]$$
. 则

$$Df(x) = 6x^5 - 3x^2.$$

下面的命题也是老朋友了.

命题 设 $f(x), g(x) \in \mathbb{F}[x], c \in \mathbb{F}$. 则

- (i) D(cf(x)) = cDf(x);
- (ii) $D(f(x) \pm g(x)) = Df(x) \pm Dg(x)$.

由 (i) (ii) 与算学归纳法可知: 当 $c_0,\,c_1,\,\cdots,\,c_{k-1}\in\mathbb{F},$ 且 $f_0(x),\,f_1(x),$ …, $f_{k-1}(x)\in\mathbb{F}[x]$ 时,

$$D\left(\sum_{\ell=0}^{k-1}c_\ell f_\ell(x)\right) = \sum_{\ell=0}^{k-1}c_\ell Df_\ell(x).$$

证 本来我们不必重复证明这些命题. 不过, 为了让读者更好地熟悉 D 记号, 我们还是在此处证明 (i) (ii), 并将剩下的推论留给读者作练习. 设

$$\begin{split} f(x) &= a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n, \\ g(x) &= b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1} + b_n x^n \end{split}$$

是 $\mathbb{F}[x]$ 中二个元.

(i) cf(x) 就是整式

$$ca_0 + ca_1x + ca_2x^2 + \dots + ca_{n-1}x^{n-1} + ca_nx^n,$$

故

$$\begin{split} D(cf(x)) &= D(ca_0 + ca_1x + ca_2x^2 + \dots + ca_{n-1}x^{n-1} + ca_nx^n) \\ &= ca_1 + 2ca_2x + \dots + (n-1)ca_{n-1}x^{n-2} + nca_nx^{n-1} \\ &= ca_1 + c2a_2x + \dots + c(n-1)a_{n-1}x^{n-2} + cna_nx^{n-1} \\ &= c(a_1 + 2a_2x + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}) \\ &= cDf(x). \end{split}$$

(ii) $f(x) \pm g(x)$ 就是整式

$$(a_0 \pm b_0) + (a_1 \pm b_1)x + (a_2 \pm b_2)x^2 + \cdots$$

 $+ (a_{n-1} \pm b_{n-1})x^{n-1} + (a_n \pm b_n)x^n,$

故

$$\begin{split} D(f(x) \pm g(x)) &= D((a_0 \pm b_0) + (a_1 \pm b_1)x + (a_2 \pm b_2)x^2 + \cdots \\ &\quad + (a_{n-1} \pm b_{n-1})x^{n-1} + (a_n \pm b_n)x^n) \\ &= (a_1 \pm b_1) + 2(a_2 \pm b_2)x + \cdots + (n-1)(a_{n-1} \pm b_{n-1})x^{n-2} \\ &\quad + n(a_n \pm b_n)x^{n-1} \\ &= (a_1 \pm b_1) + (2a_2x \pm 2b_2x) + \cdots + ((n-1)a_{n-1}x^{n-2} \\ &\quad \pm (n-1)b_{n-1}x^{n-2}) + (na_nx^{n-1} \pm nb_nx^{n-1}) \\ &= (a_1 + 2a_2x + \cdots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}) \\ &\quad \pm (b_1 + 2b_2x + \cdots + (n-1)b_{n-1}x^{n-2} + nb_nx^{n-1}) \\ &= Df(x) \pm Dg(x). \end{split}$$

8

例 取

$$f(x) = x^3 + 2$$
, $g(x) = x^2 + x - 1$.

不难得到

$$Df(x) = 3x^2, \quad Dg(x) = 2x + 1.$$

再探微商

149

(i) 4q(x) 也是整式, 当然可以有微商. 因为

$$4g(x) = 4x^2 + 4x - 4,$$

故

$$D(4g(x)) = 8x + 4,$$

这刚好是 4Dg(x):

$$4Dg(x) = 4(2x+1) = 8x+4.$$

(ii) f(x) + g(x) 也是整式. 因为

$$f(x) + g(x) = x^3 + 2 + x^2 + x - 1 = x^3 + x^2 + x + 1,$$

故

$$D(f(x) + g(x)) = 3x^2 + 2x + 1,$$

而这刚好是 Df(x) + Dq(x):

$$Df(x) + Dg(x) = 3x^2 + 2x + 1.$$

前面讲差商与差分时, 我们引入了高级差商与高级差分. 类似地, 我们引入高级微商.

定义 设 $f(x) \in \mathbb{F}[x]$. 记

$$D^0 f(x) = f(x) \in \mathbb{F}[x],$$

并称其为 f(x) 的 0 级微商 (zeroth-order derivative). 1 级微商就是微商:

$$D^1f(x)=Df(x)=D(D^0f(x))\in \mathbb{F}[x].$$

1级微商的微商是2级微商:

$$D^2f(x)=D(D^1f(x))\in \mathbb{F}[x].$$

2级微商的微商是3级微商:

$$D^3 f(x) = D(D^2 f(x)) \in \mathbb{F}[x].$$

一般地, e 级微商就是 e-1 级微商的微商:

$$D^e f(x) = D(D^{e-1} f(x)) \in \mathbb{F}[x].$$

高级微商可指代任意 e 级微商, 此处 e > 1.

设 $t \in \mathbb{F}$. 既然 $D^e f(x)$ 是某个整式

$$v_0 + v_1 x + \dots + v_s x^s \in \mathbb{F}[x],$$

我们将

$$v_0 + v_1 t + \dots + v_s t^s \in \mathbb{F}$$

简单地写为 $D^e f(t)$.

例 设

$$f(x) = 2x^3 + 3x^2 + 5x + 7.$$

根据定义, f(x) 的 0 级微商就是自己:

$$D^0 f(x) = 2x^3 + 3x^2 + 5x + 7.$$

f(x) 的 1 级微商是

$$D^1 f(x) = Df(x) = 6x^2 + 6x + 5.$$

f(x) 的 2 级微商是

$$D^2 f(x) = D(D^1 f(x)) = 12x + 6.$$

f(x) 的 3 级微商是

$$D^3 f(x) = D(D^2 f(x)) = 12.$$

f(x) 的 4 级微商是

$$D^4f(x)=D(D^3f(x))=0. \\$$

读者不难验证: 对任意超出 3 的整数 e, 必有

$$D^e f(x) = 0.$$

类似地, 高级微商适合如下性质:

命题 设 e 是非负整数. 当 $c_0, c_1, \dots, c_{k-1} \in \mathbb{F}$, 且 $f_0(x), f_1(x), \dots, f_{k-1}(x) \in \mathbb{F}[x]$ 时,

$$D^e \left(\sum_{\ell=0}^{k-1} c_\ell f_\ell(x) \right) = \sum_{\ell=0}^{k-1} c_\ell D^e f_\ell(x).$$

证 用算学归纳法. 我们把具体过程留给读者当练习.

当初我们为得到 Vandermonde 恒等式与二项展开, 我们引入了临时工具 $r^{[k]}$. 现在, 类似地, 为了更方便地讨论整式的高级微商, 我们引入

定义 设 m 为整数. 设 $r \in \mathbb{F}[x]$. 定义

$$q_m(r) = \begin{cases} \frac{1}{m!} r^m, & m > 0; \\ 1, & m = 0; \\ 0, & m < 0. \end{cases}$$

设 k 是整数. 我们知道

$$\Delta \binom{x}{k} = \binom{x}{k-1}.$$

类似地, 我们有

命题 设 m 为整数. 则

$$Dq_m(x) = q_{m-1}(x).$$

证 m > 0 时,

$$Dq_m(x) = m \cdot \frac{x^{m-1}}{m!} = \frac{x^{m-1}}{(m-1)!} = q_{m-1}(x).$$

 $m \leq 0$ 时, $q_m(x) = a,$ 这里 $a \in \mathbb{F}.$ 故

$$Dq_m(x) = 0 = q_{m-1}(x).$$

由此可得

命题 设 e 是非负整数. 设 m 为整数. 则

$$D^e q_m(x) = q_{m-e}(x).$$

证 用算学归纳法. 我们把具体过程留给读者当练习.

₩

现在, 我们看高级微商与二项展开的关系.

固定某 $c \in \mathbb{F}$. 固定某非负整数 n. 任取不高于 n 的非负整数 i. 则

$$\begin{split} q_i(x) &= \frac{1}{i!} \sum_{j=0}^i \binom{i}{j} c^{i-j} (x-c)^j \\ &= \frac{1}{i!} \sum_{j=0}^i \frac{i!}{(i-j)! j!} c^{i-j} (x-c)^j \\ &= \frac{1}{i!} \sum_{j=0}^i i! q_{i-j}(c) q_j (x-c) \\ &= \sum_{j=0}^i q_{i-j}(c) q_j (x-c) \\ &= \sum_{i=0}^n q_{i-j}(c) q_j (x-c). \end{split}$$

任取次不高于 n 的整式

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{F}[x].$$

设

$$b_{\ell} = \ell! a_{\ell} \quad (\ell = 0, 1, \dots, n).$$

则

$$f(x)=b_0q_0(x)+b_1q_1(x)+\cdots+b_nq_n(x).$$

不难看出, 当 j 是非负整数时,

$$D^j f(x) = b_0 q_{0-j}(x) + b_1 q_{1-j}(x) + \dots + b_n q_{n-j}(x).$$

所以

$$\begin{split} f(x) &= \sum_{i=0}^n b_i q_i(x) \\ &= \sum_{i=0}^n b_i \sum_{j=0}^n q_{i-j}(c) q_j(x-c) \\ &= \sum_{i=0}^n \sum_{j=0}^n b_i q_{i-j}(c) q_j(x-c) \\ &= \sum_{j=0}^n \sum_{i=0}^n b_i q_{i-j}(c) q_j(x-c) \\ &= \sum_{j=0}^n \left(\sum_{i=0}^n b_i q_{i-j}(c) \right) q_j(x-c) \\ &= \sum_{j=0}^n D^j f(c) q_j(x-c) \\ &= \sum_{j=0}^n \frac{D^j f(c)}{j!} (x-c)^j. \end{split}$$

我们已经证明了

命题 设 n 是非负整数. 设 f(x) 是次不高于 n 的整式. 设 $c \in \mathbb{F}$. 则 Taylor 公式 (Taylor's formula) 成立:

$$f(x) = \sum_{j=0}^{n} \frac{D^{j} f(c)}{j!} (x - c)^{j}.$$

评注 我们可以说, Taylor 公式是二项展开的推广. 也可以说, 二项展开是 Taylor 公式的特例.

评注 取 c=0, 有

$$f(x) = \sum_{j=0}^{n} \frac{D^{j} f(0)}{j!} x^{j}.$$

读者可能会注意到, 上式的形式与

$$f(x) = \sum_{k=0}^{n} \Delta^{k} f(0) \binom{x}{k}$$

的形式十分相似.

评注 以后我们不用 $q_m(r)$ 记号了.

评注 我们提一个读者可能已经注意到的事实. 设 n 是非负整数. 则 n 次整式的 n 级微商不是 0, 但 n+1 级微商是 0. 这也解释了为什么在 Taylor 公式里, 我们只要求 n 不低于 f(x) 的次.

例 取 n=3. 设

$$f(x) = x^3 - 6x^2 + 15x - 12.$$

则 f(x) 的次不高于 n, 且

$$\begin{split} D^0f(x) &= f(x) = x^3 - 6x^2 + 15x - 12,\\ D^1f(x) &= Df(x) = 3x^2 - 12x + 15,\\ D^2f(x) &= D(Df(x)) = 6x - 12,\\ D^3f(x) &= D(D^2f(x)) = 6. \end{split}$$

取 c=2. 则

$$\begin{split} D^0f(2) &= 2^3 - 6 \cdot 2^2 + 15 \cdot 2 - 12 = 2, \\ D^1f(2) &= 3 \cdot 2^2 - 12 \cdot 2 + 15 = 3, \\ D^2f(2) &= 6 \cdot 2 - 12 = 0, \\ D^3f(2) &= 6. \end{split}$$

根据 Taylor 公式,

$$\begin{split} f(x) &= 2 + \frac{3}{1!}(x-2) + \frac{0}{2!}(x-2)^2 + \frac{6}{3!}(x-2)^3 \\ &= 2 + 3(x-2) + (x-2)^3. \end{split}$$

Taylor 公式一个用途是证明

命题 设 $f(x), g(x) \in \mathbb{F}[x]$. 则

$$(\bigstar) \qquad \qquad D(f(x)g(x)) = Df(x) \cdot g(x) + f(x) \cdot Dg(x).$$

再探微商 155

证 设 h(x) = f(x)g(x). 取整数 n 使 $\deg f(x) \leq n$, $\deg g(x) \leq n$, $\deg h(x) \leq n$, 且 $1 \leq n$. 任取 $c \in \mathbb{F}$. 则

$$f(x) = \sum_{i=0}^{n} \frac{D^{i} f(c)}{i!} (x - c)^{i},$$

$$g(x) = \sum_{j=0}^{n} \frac{D^{j} g(c)}{j!} (x - c)^{j},$$

$$h(x) = \sum_{k=0}^{n} \frac{D^{k} h(c)}{k!} (x - c)^{k}.$$

不过, 既然 h(x) 是 f(x) 与 g(x) 的积, 也应有

$$h(x) = \sum_{k=0}^{n+n} s_k(x-c)^k = \sum_{k=0}^n s_k(x-c)^k,$$

其中

$$\begin{split} s_k &= \sum_{i=0}^k \frac{D^i f(c)}{i!} \cdot \frac{D^{k-i} g(c)}{(k-i)!} \\ &= \frac{1}{k!} \sum_{i=0}^k \binom{k}{i} D^i f(c) D^{k-i} g(c). \end{split}$$

所以, 任取不超过 n 的非负整数 k, 必有

$$\begin{split} s_k &= \frac{D^k h(c)}{k!} \\ \Longrightarrow D^k h(c) &= \sum_{i=0}^k \binom{k}{i} D^i f(c) D^{k-i} g(c). \end{split}$$

作整式

$$E(x) = D^k h(x) - \sum_{i=0}^k \binom{k}{i} D^i f(x) D^{k-i} g(x).$$

上面的推理告诉我们, 任取 $c \in \mathbb{F}$, 必有 E(c) = 0. 所以 E(x) 一定是零整式, 即

$$D^k h(x) = \sum_{i=0}^k \binom{k}{i} D^i f(x) D^{k-i} g(x).$$

取 k=1,有

$$\begin{split} &D(f(x)g(x))\\ &= D^1 h(x)\\ &= \sum_{i=0}^1 \binom{1}{i} D^i f(x) D^{1-i} g(x)\\ &= 1 \cdot D^0 f(x) D^1 g(x) + 1 \cdot D^1 f(x) D^0 g(x)\\ &= D f(x) \cdot g(x) + f(x) \cdot D g(x). \end{split}$$

评注 事实上, 我们得到了高级微商的 Leibniz 公式 (*Leibniz's formula*): 若 k 是非负整数, 且 f(x), $g(x) \in \mathbb{F}[x]$, 则

$$D^k(f(x)g(x)) = \sum_{i=0}^k \binom{k}{i} D^i f(x) D^{k-i} g(x).$$

不过, 在本文里, 我们用不到这个公式.

例 取

$$f(x) = x^3 + 2$$
, $g(x) = x^2 + x - 1$.

不难得到

$$Df(x) = 3x^2, \quad Dg(x) = 2x + 1.$$

f(x) 与 g(x) 的积

$$f(x)g(x) = x^5 + x^4 - x^3 + 2x^2 + 2x - 2$$

的微商是

$$D(f(x)g(x)) = 5x^4 + 4x^3 - 3x^2 + 4x + 2.$$

如果用上面的(★)计算,就是

$$Df(x)g(x) + f(x)Dg(x)$$

$$= 3x^{2}(x^{2} + x - 1) + (x^{3} + 2)(2x + 1)$$

$$= 3x^{4} + 3x^{3} - 3x^{2} + 2x^{4} + x^{3} + 4x + 2$$

$$= 5x^{4} + 4x^{3} - 3x^{2} + 4x + 2.$$

再探微商 157

下面的二个命题是正确的:

命题 当 $f_0(x), f_1(x), \dots, f_{k-1}(x) \in \mathbb{F}[x]$ 时,

$$\begin{split} &D(f_0(x)f_1(x)\cdots f_{k-1}(x))\\ &=Df_0(x)f_1(x)\cdots f_{k-1}(x)+f_0(x)Df_1(x)\cdots f_{k-1}(x)+\cdots\\ &+f_0(x)f_1(x)\cdots Df_{k-1}(x). \end{split}$$

取
$$f_0(x)=f_1(x)=\cdots=f_{k-1}(x)=f(x)$$
 知
$$D((f(x))^k)=k(f(x))^{k-1}Df(x).$$

证 用算学归纳法. 我们把具体过程留给读者当练习.

例 设 $f(x)=(x^2+x-1)^{666}$. 求 Df(x). 取 $g(x)=x^2+x-1$. 显然, $f(x)=(g(x))^{666}$. 所以

$$\begin{split} Df(x) &= D((g(x))^{666}) \\ &= 666(g(x))^{666-1}Dg(x) \\ &= 666(x^2 + x - 1)^{665}(2x + 1) \\ &= 666(2x + 1)(x^2 + x - 1)^{665}. \end{split}$$

命题 设 f(x), $g(x) \in \mathbb{F}[x]$. 则 f(x) 与 g(x) 的复合的微商适合链规则:

$$D(g \circ f)(x) = (Dg \circ f)(x)Df(x).$$

8

证 可看"微商"节的相应内容.

例 设 $f(x)=(x^2+x-1)^5+3(x^2+x-1)^4-1$. 求 Df(x). 取 $g(x)=x^5+3x^4-1$ 与 $h(x)=x^2+x-1$. 则

$$Dg(x) = 5x^4 + 12x^3 = x^3(5x + 12),$$

 $Dh(x) = 2x + 1.$

显然,

$$f(x)=g(h(x))=(g\circ h)(x).$$

所以

$$\begin{split} Df(x) &= (Dg \circ h)(x)Dh(x) \\ &= (x^2 + x - 1)^3(5(x^2 + x - 1) + 12)(2x + 1) \\ &= (2x + 1)(5x^2 + 5x + 7)(x^2 + x - 1)^3. \end{split}$$

整式的微分学初步

本节讨论整式的微分学 (differential calculus) 初步[†]. 这也是本文的最终节.

How time flies! 一开始, 我们在"预备知识"给读者介绍预备知识. 然后, 我们给读者介绍了系数为整环的元的整式. 当初, 整式还是有点抽象的. 我们利用带余除法推出了几个很重要的命题, 并指出: 当整式的系数为 F 的元时, 整式与中学学的整式 (函数) 没有根本上的区别. 我们在"插值"节开始介绍整式的应用. 后面的"求和公式"节告诉读者一种方便的求和法. 在上节, 我们捡起很久未出场的微商, 并把它重讲了一遍. 我们利用高级微商推广了二项展开, 得到了 Taylor 公式, 并用它重证整式的积的微商规则.

之前, 微商都是形式的——有点"空降"的味道. 现在, 我们要用 Taylor 公式给微商一种含义. 如果读者知道一点微积分 (*calculus*), 读者将不会对本节感到特别陌生; 如果读者没有学过微积分, 无妨视本节为"入微作".

我们在" \mathbb{F} 上的整式"节说过,我们不再讨论抽象的整环或系数为整环的元的整式,而是讨论 \mathbb{F} 与 $\mathbb{F}[x]$. 现在,我们再具体一点——讨论老朋友 \mathbb{R} 与 $\mathbb{R}[x]$ ——再准确点,其实是 \mathbb{R} 到 \mathbb{R} 的整式函数.

不过, 我们需要承认一个事实是对的. 为什么说"承认"呢? 因为它的证明需要超出本文的知识很多很多的工具. 但是, 它并不是什么"牵强附会"的命题. 是什么命题呢? 我们不必现在就说: 我们在用到它的时候再说.

我们先带读者熟悉实数.

读者也许还记得实数 a 的绝对值:

$$|a| = \begin{cases} a, & a \ge 0; \\ -a, & a < 0. \end{cases}$$

请读者尝试自行证明下面四个命题. 当然, 熟悉这四个命题的读者可以不证. 我们把它们写在这里供读者参考.

命题 设 $a \in \mathbb{R}$.则 $|a| \ge 0$.

[†]学过1元函数微分学的读者可能会觉得本节废话连篇. 不过, 为照顾不熟悉三角不等式及相关知识的读者, 作者也没什么更好的写作思路了.

命题 设 $a \in \mathbb{R}$.则

$$a = \begin{cases} |a|, & a \ge 0; \\ -|a|, & a < 0. \end{cases}$$

命题 设 $a \in \mathbb{R}$. 则 $-|a| \le a \le |a|$.

命题 设 $a \in \mathbb{R}$, 且 b > 0. 则

$$|a| \le b \iff -b \le a \le b;$$

$$|a| < b \iff -b < a < b.$$

读者也许还记得平方的性质:

$$a^2 = (-a)^2$$
.

并且, 若 a, b 都是非负数, 则

$$a = b \iff a^2 = b^2$$
.

利用这些性质, 我们有

命题 设 $a_0, a_1, \cdots, a_{n-1} \in \mathbb{R}$. 则

$$|a_0 a_1 \cdots a_{n-1}| = |a_0| \cdot |a_1| \cdot \cdots \cdot |a_{n-1}|.$$

特别地, 若 $a_0=a_1=\cdots=a_{n-1}=a$, 则

$$|a^n| = |a|^n.$$

下面是一个十分重要的不等式:

命题 设 $a_0, a_1, \dots, a_{n-1} \in \mathbb{R}$. 则

$$|a_0 + a_1 + \dots + a_{n-1}| \le |a_0| + |a_1| + \dots + |a_{n-1}|.$$

这个不等式的一个名字是三角不等式 (triangle inequality).

证 易知

$$\begin{split} - & |a_0| \le a_0 \le |a_0|, \\ - & |a_1| \le a_1 \le |a_1|, \\ \dots & \dots & \dots \\ - & |a_{n-1}| \le a_{n-1} \le |a_{n-1}|. \end{split}$$

记

$$b = |a_0| + |a_1| + \dots + |a_{n-1}|.$$

易知 $b \ge 0$, 且

$$-b \le a_0 + a_1 + \dots + a_{n-1} \le b.$$

所以

$$|a_0+a_1+\dots+a_{n-1}| \leq b = |a_0|+|a_1|+\dots+|a_{n-1}|.$$

定义 设 a, b 是实数, 且 a < b. 称

$$[a,b] = \{\, t \in \mathbb{R} \mid a \le t \le b \,\}$$

为闭区间 (closed interval); 称

$$(a,b) = \{ t \in \mathbb{R} \mid a < t < b \}$$

为开区间 (open interval). 类似地, 有半闭区间 (half-closed interval):

$$[a, b) = \{ t \in \mathbb{R} \mid a \le t < b \},\$$
$$(a, b] = \{ t \in \mathbb{R} \mid a < t \le b \}.$$

[a,b], (a,b), [a,b), (a,b] 都是有限区间 (finite interval). 此名暗示着, 还有无限区间 (infinite interval):

$$\begin{split} (-\infty,a) &= \big\{\, t \in \mathbb{R} \mid t < a \,\big\}, \\ (-\infty,a] &= \big\{\, t \in \mathbb{R} \mid t \leq a \,\big\}, \\ (b,+\infty) &= \big\{\, t \in \mathbb{R} \mid t > b \,\big\}, \\ [b,+\infty) &= \big\{\, t \in \mathbb{R} \mid t \geq b \,\big\}, \\ (-\infty,+\infty) &= \mathbb{R}. \end{split}$$

有限区间与无限区间都是区间 (interval).

命题 设 a, b 是实数, 且 a < b. 若 r > |a| 且 r > |b|, 则 [a,b], (a,b), [a,b), (a,b) 都是 [-r,r] 的真子集.

证 请读者尝试自行证明此命题.

æ

下面建立一些关于整式的不等式.

命题 设 n 是非负整数. 设 $a_0, a_1, \, \cdots, \, a_n \in \mathbb{R}$. 任取正数 $r, \,$ 必存在正数 M 使

$$|u| \le r \implies |a_0 + a_1 u + \dots + a_n u^n| \le M.$$

证 设正数 C 不低于 $|a_0|, |a_1|, \dots, |a_n|$ 的任意一个. 则 $|u| \le r$ 时,

$$\begin{split} |a_0 + a_1 u + \cdots + a_n u^n| \\ & \leq |a_0| + |a_1 u| + \cdots + |a_n u^n| \\ & = |a_0| + |a_1||u| + \cdots + |a_n||u|^n \\ & \leq C(1 + |u| + \cdots + |u|^n) \\ & \leq C(1 + r + \cdots + r^n). \end{split}$$

记

$$M = C(1 + r + \dots + r^n) > 0.$$

由此,

$$|u| \le r \implies |a_0 + a_1 u \cdots + a_n u^n| \le M.$$

命题 设 I 是有限区间. 设 $f(x) \in \mathbb{R}[x]$. 存在正数 M 使

$$u \in I \implies |f(u)| \le M$$
.

用文字描述这句话, 就是:整式函数在任意有限区间上都是有界的 (to be bounded).

证 取
$$r > 0$$
 使 $I \subset [-r, r]$. 设

$$f(x)=a_0+a_1x+\cdots+a_nx^n\in\mathbb{R}[x].$$

整式的微分学初步

163

根据上个命题, 存在正数 M 使

$$|u| \le r \implies |f(u)| \le M.$$

所以

$$u \in I \implies |f(u)| \le M.$$

我们有时称 ℝ 的元为点.

命题 设 $f(x) \in \mathbb{R}[x]$. 设 $t_0 \in \mathbb{R}$. 任取 $\varepsilon > 0$, 必有 $\delta > 0$, 使

$$|t - t_0| < \delta \implies |f(t) - f(t_0)| < \varepsilon.$$

通俗地说, 当点 t 与点 to 足够近时, 整式在二点的值可任意接近.

证 若 $f(x) = c, c \in \mathbb{R}$, 则

$$|f(t) - f(t_0)| = |c - c| = 0 < \varepsilon$$

总是成立的. 下设 f(x) 的次高于 0.

根据"整式的根"节的结论, 存在整式 q(x) 使

$$f(x) = (x - t_0)q(x) + f(t_0).$$

所以

$$|f(t) - f(t_0)| = |q(t)||t - t_0|.$$

设 $I = [t_0 - 1, t_0 + 1]$. 不难看出,

$$\begin{split} I &= \{\, t \in \mathbb{R} \,\mid t_0 - 1 \leq t \leq t_0 + 1\,\} \\ &= \{\, t \in \mathbb{R} \,\mid -1 \leq t - t_0 \leq 1\,\} \\ &= \{\, t \in \mathbb{R} \,\mid |t - t_0| \leq 1\,\}. \end{split}$$

利用上个命题, 存在 M > 0 使

$$|t-t_0| \leq 1 \implies |q(t)| \leq M.$$

这样,

$$|t-t_0| \leq 1 \implies |f(t)-f(t_0)| \leq M|t-t_0|.$$

任取 $\varepsilon>0$. 取一个既低于 1 也低于 $\frac{\varepsilon}{M}$ 的正数 δ . 这样, $|t-t_0|<\delta$ 时, 必有

$$|f(t) - f(t_0)| \leq M|t - t_0| < M \cdot \frac{\varepsilon}{M} = \varepsilon.$$

命题 设 $t_0 \in \mathbb{R}$. 设 ℓ 是非负整数. 设

$$\begin{split} f(x) &= a_\ell (x - t_0)^\ell + a_{\ell+1} (x - t_0)^{\ell+1} + \dots + a_n (x - t_0)^n, \\ g(x) &= a_\ell (x - t_0)^\ell, \end{split}$$

且 $a_{\ell} \neq 0$. 则存在 $\delta > 0$, 使 $0 < |t - t_0| < \delta$ 时, 必有 f(t) 与 g(t) 同号.

证 我们说, 二个不为 0 的数 a, b 同号, 相当于 ab > 0. 记

$$p(x) = \frac{1}{a_\ell} \sum_{j=\ell+1}^n a_j (x-t_0)^{j-(\ell+1)}.$$

则

$$\begin{split} f(x) &= a_\ell(x-t_0)^\ell + a_\ell(x-t_0)^\ell(x-t_0)p(x) \\ &= a_\ell(x-t_0)^\ell(1+(x-t_0)p(x)) \\ &= g(x)(1+(x-t_0)p(x)). \end{split}$$

所以

$$f(x)g(x) = (g(x))^2(1 + (x - t_0)p(x)).$$

记 $q(x)=1+(x-t_0)p(x)$. 取 $\varepsilon=\frac{1}{2}$. 由上个命题, 存在 $\delta>0$ 使

$$|t-t_0|<\delta \implies |q(t)-1|=|q(t)-q(t_0)|<\varepsilon=\frac{1}{2}.$$

所以

$$|t-t_0|<\delta \implies q(t)-1>-\frac{1}{2}.$$

所以

$$0<|t-t_0|<\delta \implies q(t)>\frac{1}{2}.$$

因为

$$0 < |t - t_0| \implies (g(t))^2 > 0,$$

故

$$0<|t-t_0|<\delta \implies f(t)g(t)>\frac{1}{2}(g(t))^2>0.$$

下面讨论微商与变率的关系.

定义 设 a, b 是实数, 且 a < b. 设 $f(x) \in \mathbb{R}[x]$. 我们说整式 f(x) 在 区间 [a,b] 的平均变率 (average rate of change) 是

$$\frac{f(b) - f(a)}{b - a}.$$

例 设 $f(x) = a_0 + a_1 x$. 则

$$\frac{f(b)-f(a)}{b-a} = \frac{(a_0+a_1b)-(a_0+a_1a)}{b-a} = a_1.$$

可以看到, f(x) 在 [a,b] 的平均变率与具体区间无关. 反过来, 若整式 f(x) 适合: 任取 $c,d \in \mathbb{R}, c < d$, 都有

$$\frac{f(d) - f(c)}{d - c}$$

为常数 A, 则

$$d > 0 \implies f(d) = f(0) + Ad$$
.

作整式

$$E(x) = f(0) + Ax - f(x),$$

则任取 d > 0, 都有 E(d) = 0. 这样, E(x) 是零整式, 即

$$f(x) = f(0) + Ax.$$

从上面的例可知: 次低于 2 的整式 $f(x) = a_0 + a_1 x$ 在任意闭区间 [a,b] 的平均变率都是常数. 我们说, 任取 $t \in \mathbb{R}$, f(x) 在点 t 的变率 $(rate\ of\ change)$ 是 a_1 .

不过. 次高于1的整式有着不一样的平均变率.

例 设
$$f(x) = x^2 + x - 1$$
. 取 $a = 0$, $b = 1$, $c = 2$. 易知

$$f(a) = -1, \quad f(b) = 1, \quad f(c) = 5.$$

所以, f(x) 在 [a,b] 的平均变率是

$$\frac{f(b) - f(a)}{b - a} = \frac{1 - (-1)}{1 - 0} = 2.$$

而 f(x) 在 [b,c] 的平均变率是

$$\frac{f(c)-f(b)}{c-b} = \frac{5-1}{2-1} = 4.$$

顺便一提, f(x) 在 [a,c] 的平均变率是

$$\frac{f(c) - f(a)}{c - a} = \frac{5 - (-1)}{2 - 0} = 3.$$

虽然我们现在还不知道任意整式 f(x) 在点 t 的变率, 但我们还是能作出一些定性判断的.

例 设 $f_1(x)$, $f_2(x)$ 是整式. 设想 P_1 , P_2 二人同时同地在一条笔直的路上骑车单向前进. 设 $f_1(t)$, $f_2(t)$ 分别表示 t s 后 P_1 , P_2 距始点的距离. 所以, $f_1(x)$ (或 $f_2(x)$) 在 [a,b] 的平均变率代表 a s 至 b s 这一段的平均速率. 如果 $f_1(x)$ (或 $f_2(x)$) 的次为 1, 则平均变率 A 不变, 也就是我们常说的"匀速直线运动". 我们也说, 任取 a > 0, P_1 (或 P_2) 在 a s 的速率都是 A.

设 t_0 s 后, P_1 从后赶上 P_2 并超越之. 这相当于, 存在 $\delta > 0$ 使

$$\begin{split} t_0 - \delta < t < t_0 \implies f_1(t) < f_2(t), \\ t = t_0 \implies f_1(t) = f_2(t), \\ t_0 < t < t_0 + \delta \implies f_1(t) > f_2(t). \end{split}$$

经验告诉我们, P_1 在 t_0 s 的速率一定不低于 P_2 在 t_0 s 的速率. 若不然, P_1 是不可能赶上 P_2 后并超越之, 是不是?

抽象上面的例, 我们可得到

命题 虽然我们还不能准确地定义变率, 但生活经验告诉我们, 变率应适合如下特性:

设
$$f(x), g(x) \in \mathbb{R}[x]$$
. 若 $f(t_0) = g(t_0)$, 且存在 $\delta > 0$ 使
$$t_0 - \delta < t < t_0 \implies f(t) < g(t),$$

$$t_0 < t < t_0 + \delta \implies f(t) > g(t).$$

我们说, f(x) 在点 t_0 的变率不低于 g(x) 在点 t_0 的变率.

为充分利用此特性, 我们特化之.

设 $A\in\mathbb{R}$. 取 $g(x)=f(t_0)+A(x-t_0)$, 则 $f(t_0)=g(t_0)$. 因为 g(x) 在 t_0 的变率是 A, 故

命题 变率应适合如下特性:

设 $f(x) \in \mathbb{R}[x]$. 若存在 $\delta_0 > 0$ 使

$$\begin{split} t_0 - \delta_0 < t < t_0 \implies f(t) < f(t_0) + A(t - t_0), \\ t_0 < t < t_0 + \delta_0 \implies f(t) > f(t_0) + A(t - t_0). \end{split}$$

我们说, f(x) 在点 t_0 的变率不低于 A.

若存在 $\delta_1 > 0$ 使

$$\begin{split} t_0 - \delta_1 < t < t_0 \implies f(t) > f(t_0) + A(t - t_0), \\ t_0 < t < t_0 + \delta_1 \implies f(t) < f(t_0) + A(t - t_0). \end{split}$$

我们说, f(x) 在点 t_0 的变率不高于 A.

若
$$t_0 - \delta < t < t_0$$
, 则 $t_0 - t > 0$. 所以

$$\begin{split} f(t) < f(t_0) + A(t-t_0) &\iff f(t) < f(t_0) - A(t_0-t) \\ &\iff A(t_0-t) < f(t_0) - f(t) \\ &\iff A < \frac{f(t_0) - f(t)}{t_0-t} \\ &\iff \frac{f(t) - f(t_0)}{t-t_0} > A. \end{split}$$

若 $t_0 < t < t_0 + \delta$, 则 $t - t_0 > 0$. 所以

$$\begin{split} f(t) > f(t_0) + A(t-t_0) &\iff f(t) - f(t_0) > A(t-t_0) \\ &\iff \frac{f(t) - f(t_0)}{t-t_0} > A. \end{split}$$

 $t_0 - \delta < t < t_0$ 与 $t_0 < t < t_0 + \delta$ 相当于

$$0 < |t - t_0| < \delta.$$

这样, 我们有

命题 变率应适合如下特性:

设 $f(x) \in \mathbb{R}[x]$. 若存在 $\delta > 0$ 使

$$0<|t-t_0|<\delta \implies \frac{f(t)-f(t_0)}{t-t_0}>A,$$

我们说, f(x) 在点 t_0 的变率不低于 A.

同理可得

命题 变率应适合如下特性:

设 $f(x) \in \mathbb{R}[x]$. 若存在 $\delta > 0$ 使

$$0<|t-t_0|<\delta \implies \frac{f(t)-f(t_0)}{t-t_0}< A,$$

我们说, f(x) 在点 t_0 的变率不高于 A.

现在, 让我们揭秘变率.

设 $t_0 \in \mathbb{R}$. 设 f(x) 的次不高于 n. 根据 Taylor 公式,

$$f(x) = f(t_0) + Df(t_0)(x - t_0) + \sum_{j=2}^{n} \frac{D^j f(t_0)}{j!} (x - t_0)^j.$$

所以, $t \neq t_0$ 时,

$$\frac{f(t)-f(t_0)}{t-t_0} = Df(t_0) + \sum_{j=2}^n \frac{D^j f(t_0)}{j!} (t-t_0)^{j-1}.$$

设 $A \in \mathbb{R}$. 则

$$\frac{f(t)-f(t_0)}{t-t_0}-A=(Df(t_0)-A)+\sum_{j=2}^n\frac{D^jf(t_0)}{j!}(t-t_0)^{j-1}.$$

记

$$q(x) = (Df(t_0) - A) + \sum_{j=2}^n \frac{D^j f(t_0)}{j!} (x - t_0)^{j-1}.$$

若 $Df(t_0) - A \neq 0$, 则存在 $\delta > 0$, 使 $0 < |t - t_0| < \delta$ 时, q(t) 与 $Df(t_0) - A$ 同号.

设 f(x) 在点 t_0 的变率为 r. 任取 $A < Df(t_0)$, 必有

$$0<|t-t_0|<\delta \implies \frac{f(t)-f(t_0)}{t-t_0}>A \implies r\geq A.$$

任取 $A > Df(t_0)$, 必有

$$0<|t-t_0|<\delta \implies \frac{f(t)-f(t_0)}{t-t_0}< A \implies r \le A.$$

我们证明: $r = Df(t_0)$. 反证法. 若 $r < Df(t_0)$, 作

$$A_0 = \frac{Df(t_0) + r}{2}.$$

不难看出

$$A_0 < \frac{Df(t_0) + Df(t_0)}{2} = Df(t_0),$$

故

$$r \geq A_0 = \frac{Df(t_0) + r}{2} \implies r \geq Df(t_0),$$

矛盾! 若 $r > Df(t_0)$, 作

$$A_1 = \frac{Df(t_0) + r}{2}.$$

不难看出

$$A_1 > \frac{Df(t_0) + Df(t_0)}{2} = Df(t_0),$$

故

$$r \leq A_1 = \frac{Df(t_0) + r}{2} \implies r \leq Df(t_0),$$

矛盾! 所以, r 必为 $Df(t_0)$.

我们得到了本节最重要的命题:

命题 设 $f(x) \in \mathbb{R}[x]$. 设 $t_0 \in \mathbb{R}$. 则 $Df(t_0)$ 是 f(x) 在点 t_0 的变率.

至此,我们找到了微商的一种含义,本节的任务终了.我们就讨论到这里吧.再见,读者朋友!

同人作

"啊, 这.'查考整式'都能出同人作?"

"还真有人写呢. 不过, 挺烂的. Still better than nothing, though."

"Fine. I get it."

部分命题的证明比较长. 所以, 读者不必细读每一个证明.

同人作

整数的一些性质

本文的目标是补充一点整数的性质; 我们后面会用到这些东西.

为尽可能多地照顾读者,本文被加了一点细节.

在正式进入讨论前, 作者希望读者能回想起二件事:

(i) 整数 f 的绝对值是

$$|f| = \begin{cases} f, & f \ge 0; \\ -f, & f < 0. \end{cases}$$

若整数 g, h 适合 $f = gh, 则 |f| = |g| \cdot |h|$.

(ii) 整数的乘法适合消去律. 设 f, g, h 是整数. 若 $f \neq 0$, 且 fg = fh, 则 g = h.

我们先从整数的单位开始.

定义 设 f 是整数. 若存在整数 g 使 fg = 1, 则说 f 是单位 (unit). g 称为 f 的逆 (inverse).

命题 1 是单位.

命题 0 一定不是单位.

 \mathbf{u} 0 与任何整数的积都是 0, 不等于 1.

命题 设 f 是单位. 若整数 g, h 适合 fg = fh = 1, 则 g = h.

证 因为整数的乘法是交换的、结合的、故

$$g = g1 = g(fh) = (gf)h = (fg)h = 1h = h.$$

定义 设 f 是单位. 上个命题指出, f 的逆一定是唯一的 (根据单位的定义, f 的逆当然存在). 我们用 f^{-1} 表示 f 的逆.

命题 设 f 是单位. f 的逆 f^{-1} 也是单位, 且 $(f^{-1})^{-1} = f$.

证 因为 f 是单位, 故存在整数 f^{-1} 使 $ff^{-1} = 1$. 因为乘法可交换, 故 $f^{-1}f = 1$. 所以对整数 f^{-1} 而言, 存在整数 f 使 $f^{-1}f = 1$. 由单位的定义, f^{-1} 是单位. 因为单位的逆唯一, 故 f 是 f^{-1} 的逆.

命题 设 $f_1,\,f_2,\,\cdots,\,f_n$ 是单位. 则 $f_1f_2\cdots f_n$ 也是单位, 且

$$(f_1f_2\cdots f_n)^{-1}=f_n^{-1}\cdots f_2^{-1}f_1^{-1}.$$

证 既然 f_1 , f_2 , …, f_n 是单位, 那么它们都有逆, 分别为 f_1^{-1} , f_2^{-1} , …, f_n^{-1} . 所以

$$\begin{split} &(f_1f_2\cdots f_{n-1}f_n)(f_n^{-1}f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=(f_1f_2\cdots f_{n-1})(f_nf_n^{-1})(f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=(f_1f_2\cdots f_{n-1})(1)(f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=(f_1f_2\cdots f_{n-1})(f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=(f_1f_2\cdots f_{n-1})(f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=\cdots\cdots\cdots\\ &=f_1f_1^{-1}\\ &=1. \end{split}$$

所以, $f_1 f_2 \cdots f_n$ 是单位. 因为单位的逆唯一, 故

$$(f_1f_2\cdots f_n)^{-1}=f_n^{-1}\cdots f_2^{-1}f_1^{-1}.$$

定义 整数的全体单位称为整数的单位群.

命题 整数的单位群恰由 1 与 -1 作成.

证 1 当然是单位. 因为 $(-1) \cdot (-1) = 1$, 故 -1 也是单位.

设 f 是单位. 所以, 存在整数 g 使 fg=1. 我们证明: |f|=1.

反证法. 若 |f| > 1, 则 $|g| = \frac{1}{|f|} < 1$. 因为 g 是整数, 故 |g| 是非负整数, 且 |g| = 0. 所以, g = 0. 但 $f0 = 0 \neq 1$, 矛盾! 若 |f| < 1, 类似地, 有 f = 0. 但 $0g = 0 \neq 1$, 矛盾! 所以 |f| 一定是 1.

综上, 整数的单位恰有二个: 1 与 -1.

定义 设 t 是实数. 称最大的且不超过 t 的整数 [t] 为 t 的整数部分 (integer part); t - |t| 为 t 的小数部分 (fractional part).

例 读者可能已经知道算学里有一个叫 2π 的数. 如果圆的半径为 r, 则圆的周长是 $2\pi r$, 圆的面积是 $\frac{1}{2}\cdot 2\pi r\cdot r$. 由定义, 知

$$|2\pi| = 6.$$

不过,

$$|-2\pi| = -7;$$

不仔细的读者很容易犯错哟.

命题 对任意实数 t,

$$0 \leq t - \lfloor t \rfloor < 1.$$

证 $0 \le t - \lfloor t \rfloor$ 是显然的: $\lfloor t \rfloor$ 被定义为最大的且"不超过"t 的整数. 另一半 $t - \lfloor t \rfloor < 1$ 可以这么看: 既然 $\lfloor t \rfloor$ 被定义为"最大的"且不超过t 的整数, 那么

$$|t| + 1 > t$$
.

这就是我们所需要的关系.

8

我们知道, 非负整数有这样的性质:

命题 设 f 是正整数, g 是非负整数. 则必有一对非负整数 q, r 使

$$g = qf + r, \quad 0 \le r < f.$$

例如, 取 f = 5, g = 23. 不难看出,

$$23 = 4 \cdot 5 + 3$$
.

现在, 我们看一看为什么上面的命题是正确的. 顺便一提, 我们可以抛弃一个假定: $g \ge 0$.

还是假定 f 是正整数. $\frac{g}{f}$ 是一个有理数, 当然也是实数. 所以

$$\frac{g}{f} = \underbrace{\left\lfloor \frac{g}{f} \right\rfloor}_{q} + \left(\frac{g}{f} - \left\lfloor \frac{g}{f} \right\rfloor \right).$$

二边同乘 f, 有

$$g = f \cdot q + \underbrace{\left(g - f \left\lfloor \frac{g}{f} \right\rfloor\right)}_{r}.$$

175

显然 q 与 r 是整数. 注意到 $0 \le \frac{r}{f} < 1$, 所以 $0 \le r < f$. 换句话说, 我们证明了

命题 设 f 是正整数, g 是整数. 则必有一对整数 q, r 使

$$g = qf + r, \quad 0 \le r < f.$$

设 f 是负整数. 那么 -f 是正整数. 所以, 有一对整数 q, r 使

$$g = q(-f) + r, \quad 0 \le r < -f.$$

也就是

$$g = (-q)f + r, \quad 0 \le r < |f|,$$

综上, 我们证明了"整数的带余除法":

命题 设 f 是非零整数, g 是整数. 则必有一对整数 g, r 使

$$q = qf + r$$
, $0 \le r < |f|$.

还有一个小惊喜: 上述命题的 q 与 r 必定唯一. 设

$$\begin{split} q_1 f + r_1 &= q_2 f + r_2, \\ 0 &\leq r_1 < |f|, \quad 0 \leq r_2 < |f|. \end{split}$$

这样

$$|q_1 - q_2||f| = |r_1 - r_2|.$$

不难看出

$$0 - |f| < r_1 - r_2 < |f| + 0,$$

即

$$|r_1 - r_2| < |f|$$
.

从而

$$|q_1-q_2|=\frac{|r_1-r_2|}{|f|}<\frac{|f|}{|f|}=1.$$

因为 $|q_1 - q_2|$ 是整数, 故

$$|q_1 - q_2| = 0 \implies q_1 = q_2.$$

进而

$$|r_1 - r_2| = |q_1 - q_2||f| = 0 \implies r_1 = r_2.$$

请读者休息一会儿.

读者或许还记得"因子"与"公因子"的概念.

定义 设 f, g 是整数. 若存在整数 h 使 f = gh, 则说 g 是 f 的因子 (factor).

评注 或许, 读者更熟悉"因数", 而不是"因子". 毕竟, 在小学, 我们就已经接触了"因数". 之后我们还会利用整式的带余除法作类似的讨论, 所以作者特地选用了更一般的词.

- 例 (i) 单位是任意整数的因子; 单位的因子一定是单位.
- (ii) 任意整数都是 0 的因子; 非零整数的因子一定不是 0.

设 f, g 是整数, 且 $g \neq 0$. 根据带余除法, 存在整数 h, r 使

$$f = gh + r, \quad 0 \le r < |g|.$$

若 r = 0, 则 f = gh, 故 $g \neq f$ 的因子. 反过来, 若 $g \neq f$ 的因子, 则存在整数 h' 使

$$f = gh' = gh' + 0.$$

根据带余除法的唯一性, g 除 f 的余数一定是 0. 所以, 我们有

命题 设 f, g 是整数, 且 $g \neq 0$. g 是 f 的因子的一个必要与充分条件 是: g 除 f 的余数为 0.

这就是带余除法与因子的关系.

下面是因子的基本的性质.

命题 设 f, g, h 是整数. 因子适合如下性质:

- (i) f 是 f 的因子;
- (ii) 若 $h \neq g$ 的因子, 且 $g \neq f$ 的因子, 则 $h \neq f$ 的因子;
- (iii) 若 f 是 g 的因子, 且 g 是 f 的因子, 则存在单位 q 使 f = qg;
- (iv) 设 k, ℓ 是整数. 若 h 是 f 的因子, 且 h 是 g 的因子, 则 h 是 $kf \pm \ell g$ 的因子;
 - (v) 若 ε_1 , ε_2 是单位, 且 g 是 f 的因子, 则 $\varepsilon_2 g$ 是 $\varepsilon_1 f$ 的因子.
 - **证** (i) 注意到 f = 1f, 其中 1 是单位.
- (ii) 因为 h 是 g 的因子, 故存在整数 p 使 g = ph. 因为 g 是 f 的因子, 故存在整数 q 使 f = qg. 所以

$$f = qg = q(ph) = (qp)h.$$

因为 qp 也是整数, 故 h 是 f 的因子.

(iii) 若 f = 0, 则 g = 0, 当然有 f = 1g = 0, 其中 1 是单位. 下设 $f \neq 0$. 因为 f 是 g 的因子, 故存在整数 p 使 g = pf; 因为 g 是 f 的因子, 故存在整数 g 使 f = gg. 所以

$$f = qg = q(pf) = (qp)f.$$

因为 $f \neq 0$, 故可从等式二边消去 f, 即

$$1 = qp$$
.

由此可知 q 是单位.

(iv) 因为 h 是 f 的因子, 且 h 是 g 的因子, 故存在整数 p, q 使 f = ph 且 g = qh. 所以

$$kf \pm \ell g = k(ph) \pm \ell(qh) = (kp)h \pm (\ell q)h = (kp \pm \ell q)h.$$

8

(v) 若存在整数 q 使 f = qq, 则

$$\varepsilon_1 f = g(\varepsilon_1 q) = g(\varepsilon_2 \varepsilon_2^{-1})(\varepsilon_1 q) = (g\varepsilon_2)(\varepsilon_2^{-1}\varepsilon_1 q).$$

因为单位的逆是整数, 且 (有限多个) 整数的积是整数, 故 $\varepsilon_2^{-1}\varepsilon_1q$ 是整数. 从 而 ε_2g 是 ε_1f 的因子.

为方便, 我们定义一个新词.

定义 设 f, g 是整数. 若存在单位 ε 使 $f = \varepsilon g$, 则说 f 是 g 的相伴 (associate). 因为

$$g = 1g = (\varepsilon^{-1}\varepsilon)g = \varepsilon^{-1}(\varepsilon g) = \varepsilon^{-1}f,$$

故 g 当然也是 f 的相伴. 所以, 我们说 f 与 g 相伴 (to be associate).

显然, 因为 f = 1f, 故 f 与 f 相伴. 上面的文字已经说明 f 与 g 相伴 相当于 g 与 f 相伴. 我们还有下面的

命题 设 f, g, h 是整数. 若 f 与 g 相伴, 且 g 与 h 相伴, 则 f 与 h 相伴.

证 因为 f 与 g 相伴, 故存在单位 ε_1 使 $f = \varepsilon_1 g$. 因为 g 与 h 相伴, 故存在单位 ε_2 使 $g = \varepsilon_2 h$. 所以

$$f=\varepsilon_1g=\varepsilon_1(\varepsilon_2h)=(\varepsilon_1\varepsilon_2)h.$$

因为 $\varepsilon_1 \varepsilon_2$ 是单位, 故 f 与 g 相伴.

根据因子的性质 (iii), 我们有

命题 设 f, g 是整数. f 与 g 相伴的一个必要与充分条件是 f 是 g 的因子, 且 g 是 f 的因子.

定义 设 f, g 是整数. 若 d 是 f 的因子, 且 d 是 g 的因子, 则 d 是 f 与 g 的公因子 ($common\ factor$).

评注 若 d 是 f 与 g 的公因子, 则 d 当然也是 g 与 f 的公因子. 换句话说, 公因子与次序无关.

例 单位是任意二个整数的公因子.

现在我们引出"最大公因子"的概念.

定义 设 f, g 是整数. 适合下述二性质的整数 d 是 f 与 g 的最大公因子 (greatest common factor):

- (i) d 是 f 与 g 的公因子;
- (ii) 若 e 是 f 与 g 的公因子, 则 e 是 d 的因子.

评注 若 d 是 f 与 g 的最大公因子, 则 d 当然也是 g 与 f 的最大公因子. 换句话说, 最大公因子与次序无关. 这是因为公因子与次序无关.

评注 或许, 读者更熟悉这句话 (小学里学到的定义): "设 f, g 是二个整数. f 与 g 的公因数的最大者是 f 与 g 的最大公因数."

由定义立即可得

命题 设 f, g 是整数. 若 d_1 与 d_2 都是 f 与 g 的最大公因子, 则 d_1 与 d_2 相伴.

证 因为 d_1 是 d_2 的因子, 且 d_2 也是 d_1 的因子.

8

评注 由此可见, 最大公因子不一定是唯一的. 但这不是很重要.

- **例** 不难看出, $d = f \neq 0$ 与 f 的最大公因子: (i) $d \neq 0$ 的因子, 且 $d \neq f$ 的因子; (ii) 若 $e \neq 0$ 与 f 的公因子, 则 e 当然是 d (即 f) 的因子.
- **例** 设 ε 是单位. 不难看出, $d = \varepsilon$ 是 ε 与 f 的最大公因子: (i) d 是 ε 的因子, 且 d 是 f 的因子; (ii) 若 e 是 ε 与 f 的公因子, 则 e 当然是 d (即 ε) 的因子.
- **命题** 设 f, g, q 是整数. 设 f 与 g 的最大公因子是 d_1 ; 设 f gq 与 g 的最大公因子是 d_2 . 则 d_1 与 d_2 相伴.
- 证 因为 d_1 是 f 与 g 的公因子, 故 d_1 是 $1 \cdot f q \cdot g$ 的因子. 这说明, d_1 是 f gq 与 g 的公因子. 因为 d_2 是 f gq 与 g 的最大公因子, 故 d_1 是 d_2 的因子.

同人作

180

因为 d_2 是 f-gq 与 g 的公因子, 故 d_2 是 $1\cdot(f-gq)+q\cdot g$ 的因子. 这说明, d_2 是 f 与 g 的公因子. 因为 d_1 是 f 与 g 的最大公因子, 故 d_2 是 d_1 的因子.

综上, d₁ 与 d₂ 相伴.

æ

我们现在可以证明

命题 设 f, g 是整数. f 与 g 的最大公因子一定存在.

证 无妨假定 q 不是 0. 所以, 根据带余除法, 有

$$f = gq_0 + r_0, \quad 0 \le r_0 < |g|.$$

根据上一个命题, r_0 与 g 的最大公因子是 f 与 g 的最大公因子. 若 $r_0=0$, 则 g 就是 0 与 g (从而也是 f 与 g) 的最大公因子. 若 $r_0\neq 0$, 则

$$g = r_0 q_1 + r_1, \quad 0 \le r_1 < r_0.$$

根据上一个命题, r_1 与 r_0 的最大公因子是 r_0 与 g 的最大公因子, 所以也是 f 与 g 的最大公因子. 若 $r_1=0$, 则 r_0 就是 0 与 r_0 (从而也是 f 与 g) 的最大公因子. 若 $r_1\neq 0$, 则

$$r_0 = r_1 q_2 + r_2, \quad 0 \le r_2 < r_1.$$

这个过程必定会在有限多步后停止. 反证法. 如果此过程可一直进行下去,则我们可得到无限多个正整数 r_0, r_1, \cdots 使

$$|g| > r_0 > r_1 > \dots > r_k > r_{k+1} > \dots$$

可是, 不存在无限递降的正整数列 (低于 |g| 的正整数至多有 |g|-1 个), 矛盾!

为方便, 分别称 f 与 g 为 r_{-2} 与 r_{-1} . 根据上面的讨论, 一定存在整数 n 使

$$\begin{split} r_{\ell-2} &= r_{\ell-1}q_\ell + r_\ell, \quad 0 < r_\ell < |r_{\ell-1}|, \quad \ell = 0, 1, \cdots, n-2; \\ r_{n-3} &= r_{n-2}q_{n-1}. \end{split}$$

 r_{n-2} 是 0 与 r_{n-2} 的最大公因子, 也是 r_{n-2} 与 r_{n-3} 的最大公因子, 也是 r_{n-3} 与 r_{n-4} 的最大公因子……也是 r_{-2} 与 r_{-1} 的最大公因子. 所以, r_{n-2} 是 r_{n-2} 与 r_{n-3} 的最大公因子.

这个命题的证明过程事实上也给出了一个计算二个整数的最大公因子的算法 ("辗转相除法").

例 设 f = 2116, g = 667. 我们来找一个 f 与 g 的最大公因子. 不难作出如下计算:

$$2116 = 667 \cdot 3 + 115,$$

$$667 = 115 \cdot 5 + 92,$$

$$115 = 92 \cdot 1 + 23,$$

$$92 = 23 \cdot 4.$$

所以, 23 是 92 与 115 的最大公因子, 是 115 与 667 的最大公因子, 是 667 与 2116 的最大公因子.

当然, 读者不难说明, -23 是另一个最大公因子. ± 23 是 f 与 g 唯二的最大公因子.

根据上面的计算, 我们有

$$1 \cdot 115 + (-1) \cdot 92 = 23.$$

又因为

$$92 = 1 \cdot 667 + (-5) \cdot 115,$$

故

$$1 \cdot 115 + (-1 \cdot 1) \cdot 667 + (-1 \cdot (-5)) \cdot 115 = 23$$

即

$$6 \cdot 115 + (-1) \cdot 667 = 23.$$

又因为

$$115 = 1 \cdot 2116 + (-3) \cdot 667,$$

182

故

$$(6 \cdot 1) \cdot 2116 + (6 \cdot (-3)) \cdot 667 + (-1) \cdot 667 = 23,$$

即

$$6 \cdot 2116 + (-19) \cdot 667 = 23.$$

一般地, 我们有

命题 设 f, g 是整数. 设 d 是 f 与 g 的最大公因子. 存在整数 s 与 t 使

$$sf + tg = d$$
.

这个等式的一个名字是 Bézout 等式 (Bézout's identity).

证 若 f = g = 0, 则可取 s = t = 0. 下设 $g \neq 0$. 为方便, 分别称 f = g 为 $r_{-2} = r_{-1}$. 设存在整数 n 使

$$\begin{split} r_{\ell-2} &= r_{\ell-1}q_\ell + r_\ell, \quad 0 < r_\ell < |r_{\ell-1}|, \quad \ell = 0, 1, \cdots, n-2; \\ r_{n-3} &= r_{n-2}q_{n-1}. \end{split}$$

为方便,记

$$r_{\ell} = 0, \quad \ell \ge n - 1.$$

我们用算学归纳法证明辅助命题 $P(\ell)$: 任取非负整数 ℓ , 必有二整数 s, t 使

$$r_{\ell} = sf + tg.$$

 r_0 可写为

$$r_0 = 1 r_{\ell-2} + (-q_0) r_\ell = 1 f + (-q_0) g.$$

 r_1 可写为

$$r_1 = 1 \\ r_{-1} + (-q_1) \\ r_0 = (-q_1) \\ f + (1 + q_0 \\ q_1) \\ g.$$

所以 P(0) 与 P(1) 正确. 假定 P(0), P(1), …, P(k-1) 正确. 我们的目标 是: 推出 P(k) 正确. 若 $k \ge n-1$, 则

$$r_k = 0 = 0f + 0g.$$

若 $k \le n-2$, 则根据归纳假设, 存在整数 u, v, z, w 使

$$r_{k-2} = uf + vg, \quad r_{k-1} = zf + wg.$$

所以

$$r_k = r_{k-2} - r_{k-1} q_k = (u - z q_k) f + (v - w q_k) g.$$

因为 $u - zq_k$ 与 $v - wq_k$ 均为整数, 故 P(k) 正确.

所以, 存在整数 s, t 使

$$sf + tg = r_{n-2}$$
.

因为 r_{n-2} 与 d 都是 f 与 g 的最大公因子, 故 $d=\varepsilon r_{n-2}$, 其中 ε 是单位. 所 以

$$(\varepsilon s) f + (\varepsilon t) q = d.$$

有了最大公因子的概念, 我们可以引出"互素":

定义 设 f, g 是整数. 若单位是 f 与 g 的最大公因子, 则称 f 与 g 互素 (to be relatively prime).

评注 因为最大公因子与次序无关,故互素也与次序无关. 换句话说,"f 与 g 互素"相当于"g 与 f 互素".

例 显然,单位与任意整数都互素.

下面给出一个极重要的命题:

命题 设 f, g 是整数. f 与 g 互素的一个必要与充分条件是: 存在整数 s, t 使

$$sf + tg = 1.$$

证 先看必要性. 显然; 这是 Bézout 等式的结果.

再看充分性. 设 d 是 f 与 g 的最大公因子. 因为 sf + tg = 1, 故 d 是 1 的因子. 这样, d 一定是单位.

下面是几个关于互素的性质.

命题 设 f, q, h 是整数. 互素有如下性质:

- (i) 若 h 是 fg 的因子, 且 h 与 f 互素, 则 h 是 g 的因子;
- (ii) 若 f 与 g 互素, 且 f 与 h 互素, 则 f 与 gh 互素;
- (iii) 若 f 是 h 的因子, g 是 h 的因子, 且 f 与 g 互素, 则 fg 是 h 的因子.

证 (i) 因为 h 与 f 互素, 故存在整数 s 与 t 使

$$sh + tf = 1.$$

所以

$$(gs)h + t(fg) = g.$$

因为 $h \in h$ 的因子, 且 $h \in fg$ 的因子, 故 $h \in g = (gs)h + t(fg)$ 的因子.

(ii) 因为 f 与 g 互素, 故存在整数 u, v 使

$$uf + vq = 1.$$

因为 f 与 h 互素, 故存在整数 s, t 使

$$sf + th = 1.$$

从而

$$1 = (uf + vg)(sf + th) = (ufs + uth + vgs)f + (vt)(gh).$$

所以 f 与 gh 互素.

(iii) 因为 f 是 h 的因子, 故存在整数 p 使 h=fp. 因为 g 是 h=fp 的因子, 且 f 与 g 互素, 故由 (i) 知 g 是 p 的因子. 设 p=gq. 这样

$$h = fp = f(qq) = (fq)q,$$

故 fg 是 h 的因子.

感谢读者的阅读. 请休息一会儿.

现在我们推广公因子、最大公因子、互素的概念.

前面,我们讨论了二个整数的公因子、最大公因子、互素;现在,我们从量的角度推广.

定义 设 $f_1, f_2, ..., f_n$ 是整数. 若 $d \in f_1$ 的因子, $d \in f_2$ 的因子...... $d \in f_n$ 的因子, 则 $d \in f_1, f_2, ..., f_n$ 的公因子.

评注 我们并没有禁止 n 取 1: 一个整数的 "公因子" 当然是它的因子. 同理, 一个整数也可以有"最大公因子"; 一个整数也可以 "互素".

作为练习, 请读者证明

命题 设 $k_1, k_2, \dots, k_n, f_1, f_2, \dots, f_n$ 是整数. 若 $d \in f_1, f_2, \dots, f_n$ 的公因子,则 $d \in k_1 f_1 + k_2 f_2 + \dots + k_n f_n$ 的因子.

定义 设 f_1 , f_2 , ..., f_n 是整数. 适合下述二性质的整数 d 是 f_1 , f_2 , ..., f_n 的最大公因子:

- (i) $d \in f_1, f_2, ..., f_n$ 的公因子;
- (ii) 若 e 是 d 是 f_1 , f_2 , ..., f_n 的公因子, 则 e 是 d 的因子.

由定义立即可得

命题 设 f_1 , f_2 , …, f_n 是整数. 若 d_1 与 d_2 都是 f_1 , f_2 , …, f_n 的最大公因子, 则 d_1 与 d_2 相伴.

证 因为 d_1 是 d_2 的因子,且 d_2 也是 d_1 的因子.

命题 设 $f_1, f_2, ..., f_n$ 是整数.

- (i) f_1, f_2, \dots, f_n 的最大公因子存在;
- (ii) 若 d 是 $f_1,\,f_2,\,\cdots,\,f_n$ 的最大公因子, 则存在整数 $u_1,\,u_2,\,\cdots,\,u_n$ 使

$$u_1f_1+u_2f_2+\cdots+u_nf_n=d.$$

证 (i) 对 n 用算学归纳法. 显然, n=1 或 n=2 时, 命题成立. 设 n=k $(k\geq 2)$ 时命题成立, 即: $f_1,\,f_2,\,\cdots,\,f_k$ 的最大公因子存在.

今看 n=k+1 时的情形. 令 d_k 为 $f_1,\,f_2,\,\cdots,\,f_k$ 的最大公因子. 令 d 为 d_k 与 f_{k+1} 的最大公因子. 我们证明: d 是 $f_1,\,f_2,\,\cdots,\,f_k,\,f_{k+1}$ 的最大公因子.

首先, d 是 f_1 , f_2 , ..., f_k , f_{k+1} 的公因子. d 当然是 f_{k+1} 的因子. 任取某个 1 至 k 间的 ℓ . 因为 d 是 d_k 的因子, 而 d_k 是 f_ℓ 的因子, 故 d 是 f_ℓ 的因子. 这样, d 确为 f_1 , f_2 , ..., f_k , f_{k+1} 的公因子.

其次, 若 e 是 f_1 , f_2 , …, f_k , f_{k+1} 的公因子, 则 e 当然是 f_1 , f_2 , …, f_k 的公因子, 故 e 是 d_k 的因子. 又因为 e 是 f_{k+1} 的因子, 则 e 是 d_k 与 f_{k+1} 的公因子. 这样, e 是 d 的因子.

根据最大公因子的定义, d 一定是 f_1 , f_2 , …, f_k , f_{k+1} 的最大公因子. 所以, n = k+1 时, (i) 正确.

(ii) 对 n 用算学归纳法. 显然, n=1 或 n=2 时, 命题成立. 设 n=k $(k\geq 2)$ 时命题成立, 即: 若 d_k 是 f_1, f_2, \cdots, f_k 的最大公因子, 则存在整数 u_1, u_2, \cdots, u_k 使

$$u_1 f_1 + u_2 f_2 + \dots + u_k f_k = d_k.$$

今看 n = k + 1 时的情形. 令 d 为 d_k 与 f_{k+1} 的最大公因子. 由 (i) 知, d 是 $f_1, f_2, ..., f_k, f_{k+1}$ 的最大公因子. 由 Bézout 等式知, 存在整数 u, u_{k+1} 使

$$ud_k + u_{k+1}f_{k+1} = d. \label{eq:def_def}$$

根据归纳假设, 存在整数 $v_1, v_2, ..., v_k$ 使

$$v_1 f_1 + v_2 f_2 + \dots + v_k f_k = d_k.$$

这样

$$(uv_1)f_1+(uv_2)f_2+\dots+(uv_k)f_k+u_{k+1}f_{k+1}=d.$$

所以, n = k + 1 时, (ii) 正确.

跟之前一样, 有了最大公因子的概念, 我们可以引出"互素":

定义 设 f_1 , f_2 , ..., f_n 是整数. 若单位是 f_1 , f_2 , ..., f_n 的最大公因子, 则称 f_1 , f_2 , ..., f_n 互素.

下面的命题也是十分自然的.

命题 设 $f_1, f_2, ..., f_n$ 是整数. $f_1, f_2, ..., f_n$ 互素的一个必要与充分条件是: 存在整数 $u_1, u_2, ..., u_n$ 使

$$u_1 f_1 + u_2 f_2 + \dots + u_n f_n = 1.$$

证 先看必要性. 显然: 这是上个命题的结果.

再看充分性. 设 d 是 f_1, f_2, \cdots, f_n 的最大公因子. 因为 $u_1f_1 + u_2f_2 + \cdots + u_nf_n = 1$, 故 d 是 1 的因子. 这样, d 一定是单位.

命题 设 f_1 , f_2 , ..., f_n , f 是整数. 若 f_1 与 f 互素, f_2 与 f 互素..... f_n 与 f 互素, 则 f_1f_2 ... f_n 与 f 互素.

证 用算学归纳法. n=1 时, 显然. 设 $f_1f_2\cdots f_{n-1}$ 与 f 互素. 因为 f_n 与 f 互素, 故 $f_1f_2\cdots f_{n-1}\cdot f_n$ 与 f 互素.

命题 设整数 $f_1, f_2, ..., f_n$ 不全是零.

- (i) f_1, f_2, \dots, f_n 的最大公因子 d 不是零;
- (ii) 任取 1 至 n 间的整数 ℓ , 必有 (唯一的) 整数 g_{ℓ} 使 $f_{\ell}=dg_{\ell}$;
- (iii) 单位是 $g_1,\,g_2,\,\cdots,\,g_n$ 的最大公因子; 换句话说, $g_1,\,g_2,\,\cdots,\,g_n$ 互素;
- (iv) 反过来, 若整数 $u_1,\,u_2,\,\cdots,\,u_n$ 互素, 则 w 是 $wu_1,\,wu_2,\,\cdots,\,wu_n$ 的最大公因子.
- **证** (i) 零一定不是非零整数的因子, 故零不是 f_1, f_2, \cdots, f_n 的公因子, 当然也不是最大公因子.
- (ii) 既然 d 是最大公因子, 当然也是公因子. 对 f_{ℓ} 而言, 由因子的定义, 知: 存在整数 g_{ℓ} 使 $f_{\ell} = dg_{\ell}$. 现在看唯一性. 假定 $f_{\ell} = dg_{\ell} = dg_{\ell}'$. 因为 $d \neq 0$, 故可从等式二边消去 d, 即 $g_{\ell} = g_{\ell}'$.
- (iii) 设 g_1,g_2,\cdots,g_n 的最大公因子是 δ . 这样, 由 (ii), 知: 对任意 g_ℓ , 有整数 h_ℓ 使 $g_\ell=\delta h_\ell$. 所以

$$f_\ell = dg_\ell = d(\delta h_\ell) = (d\delta) h_\ell.$$

所以 $d\delta$ 是 f_1 , f_2 , ..., f_n 的公因子. 所以 $d\delta$ 是 d 的因子. d 显然是 $d\delta$ 的因子, 故 $d\delta = \varepsilon d$, 其中 ε 是单位. 因为 $d \neq 0$, 故可从等式二边消去 d, 即 $\delta = \varepsilon$.

(iv) 若 w=0, 命题显然成立: $0,0,\cdots,0$ 的最大公因子当然是 0. 下设 $w\neq 0$.

w 显然是 wu_1, wu_2, \cdots, wu_n 的公因子. 设 ws 是 wu_1, wu_2, \cdots, wu_n 的最大公因子, 这里 s 是某个整数. 由 (ii), 对每个 wu_ℓ , 都有整数 q_ℓ 使 $wu_\ell = wsq_\ell$. 因为 $w \neq 0$, 故可从等式二边消去 w, 即 $u_\ell = sq_\ell$. 这样, s 是 u_1, u_2, \cdots, u_n 的公因子, 故 s 是单位的因子, 即 s 是单位. 所以 w 是 wu_1, wu_2, \cdots, wu_n 的最大公因子.

例 读者可能还记得,有理数是全体形如 $\frac{p}{q}$ 的数,其中 p, q 为整数,且 $q \neq 0$. 我们说,每一个有理数都可以写为 $\frac{m}{n}$,其中 m 为整数,n 为正整数,且 m 与 n 互素. 通俗地说,就是"每个有理数都可以化简为最简有理数".有了上面的整数知识,我们可以解释为什么.

任取有理数 $\frac{P}{Q}$. 若 Q<0, 则令 q=-Q, p=-P; 若 Q>0, 则令 q=Q, p=P. 所以

$$\frac{P}{Q} = \frac{p}{q}, \quad q > 0.$$

既然 $q \neq 0$, 那么 $p \neq q$ 的最大公因子不是零. 令 d 是正的最大公因子. 这样, 必有 (唯一的) 整数 m, n 使 p = dm, q = dn. 所以

$$\frac{p}{q} = \frac{dm}{dn} = \frac{m}{n}.$$

因为 q > 0, d > 0, 故 n > 0. 根据上个命题, m 与 n 互素.

这是一个相当常见的事实.

互素的一个特殊情形是 PRP.

定义 设 f_1 , f_2 , ..., f_n 是整数 $(n \ge 2)$. 若任取 1 至 n 间的二个不同的整数 i, j, 都有 f_i 与 f_j 互素, 则 f_1 , f_2 , ..., f_n PRP † (to be pairwise relatively prime).

[†]因为作者的汉语不是很好, 所以作者用英语缩写表示这个概念. 作为参考, 作者用英语定义 PRP: A list of integers p_1, p_2, \cdots, p_n is said to be *pairwise relatively prime* if p_i and p_j are relatively prime for any two distinct integers i, j in $\{1, 2, \cdots, n\}$.

为方便, 若 f 是单位, 我们也说 "f PRP" (这相当于定义了 n=1 时 PRP 的意义).

例 设 $f_1 = 2$, $f_2 = 3$, $f_3 = 5$. 因为 f_1 与 f_2 互素, f_2 与 f_3 互素, f_3 与 f_1 互素, 故 f_1 , f_2 , f_3 PRP. 读者不难发现: f_1 , f_2 , f_3 互素.

一般地, 我们有

命题 设整数 $f_1, f_2, ..., f_n$ PRP. 则 $f_1, f_2, ..., f_n$ 互素.

证 用算学归纳法. n = 1 时, f_1 是单位, 故 f_1 "互素". n = 2 时, f_1 与 f_2 PRP 相当于 f_1 与 f_2 互素.

设 n = s 时命题成立. 考虑 n = s + 1 的情形.

既然 f_1 , f_2 , …, f_s , f_{s+1} PRP, 那么"暂时地不考虑 f_{s+1} ", 可知 f_1 , f_2 , …, f_s PRP. 所以, 单位 ε 是 f_1 , f_2 , …, f_s 的最大公因子 (归纳假设). 设 d 是 f_1 , f_2 , …, f_s , f_{s+1} 的最大公因子. d 当然是 f_1 , f_2 , …, f_s 的公因子. 所以 d 是 ε 的因子. 故 d 也是单位.

所以, n = s + 1 时, 命题也成立.

æ

不过反过来就不一定了.

例 设 $g_1 = 1$, $g_2 = 2$, $g_3 = 4$. 显然, g_1 , g_2 , g_3 互素. 可是, 2 是 g_2 与 g_3 的最大公因子. 所以, g_1 , g_2 , g_3 不 PRP.

命题 设整数 f_1, f_2, \dots, f_n PRP. 设 m_1, m_2, \dots, m_n 是非负整数. 记 $F_i = f_i^{m_i}, i$ 是 1 至 n 间的整数. 则 F_1, F_2, \dots, F_n 也 PRP.

证 根据 PRP 的定义, 我们只需证: 若 f 与 g 互素, 且 s, t 是非负整数, 则 f^s 与 g^t 互素.

若 s=0 或 t=0, 因为 1 与任意整数都互素, 故此时显然. 下设 $s\geq 1$ 且 t>1.

我们先证: f^s 与 g 互素. 因为 f 与 g 互素, f 与 g 互素……f 与 g 互素 $(s \uparrow f)$ 与 g 互素"), 故 $f^s = \underbrace{f \cdot f \cdots f}_{s f : s}$ 与 g 互素.

暂时记 $F=f^s$. 因为 F 与 g 互素, 故 (照搬上段的推理) F 与 g^t 互素.

命题 设整数 f_1 , f_2 , …, f_n PRP. 则 f_1f_2 … f_{i-1} 与 f_i 互素 (i 是 1, 2, …, n 中的数). 我们约定: 0 个整数的和为 0, 而 0 个整数的积为 1. 所以, i=1 时, 1 当然与 f_1 互素.

证 i=1 时, 显然. 设 $i\geq 2$. 因为 f_1 与 f_i 互素, f_2 与 f_i 互素…… f_{i-1} 与 f_i 互素, 故 $f_1\cdot f_2\cdots f_{i-1}$ 与 f_i 互素.

评注 设六整数 f_1 , f_2 , …, f_6 PRP. 作者问: $f_1f_4f_6$ 与 f_3 互素吗? 当 然了. 为什么呢?

既然 f_1, f_2, \dots, f_6 PRP, 那么 $f_1, f_4, f_6, f_3, f_2, f_5$ 也 PRP, 对不对? 令 $g_1 = f_1, g_2 = f_4, g_3 = f_6, g_4 = f_3, g_5 = f_2, g_6 = f_5, 则 <math>g_1, g_2, \dots, g_6$ PRP. 所以, 根据刚证过的命题, $g_1g_2g_3$ 与 g_4 互素. 因为 $g_1g_2g_3 = f_1f_4f_6, g_4 = f_3,$ 故 $f_1f_4f_6$ 与 f_3 互素.

本评注的目的是告诉读者,不要死学作者所讲述的知识. 读者要灵活运用所学的知识,并逐渐适应"显然""当然"等词语. 的确,作者可以写得更详细,但这没有必要. "学而不思则罔,思而不学则殆." 读者一定要边学边想! 还有,如果读者真地想学作者讲述的知识,作者建议读者不要狼吞虎咽.相信作者;作者不会害读者的!

命题 设整数 $f_1, f_2, ..., f_n$ PRP. 若 $f_1, f_2, ..., f_i$ 都是 f 的因子,则 $f_1f_2...f_i$ 也是 f 的因子 (i 是 1, 2, ..., n 中的数). 特别地, i = n 时, $f_1f_2...f_n$ 是 f 的因子.

证 用算学归纳法. i=1 时, 显然. 设 $f_1f_2\cdots f_{i-1}$ 是 f 的因子 (归纳假设). 因为 f_i 也是 f 的因子, 且 $f_1f_2\cdots f_{i-1}$ 与 f_i 互素, 故 $f_1f_2\cdots f_{i-1}\cdot f_i$ 也是 f 的因子.

评注 其实读者在小学或中学一定见过 (甚至用过) 本文的很多命题, 所以这些命题是自然的 (不突兀的). 本文的目的有:

- (i) 总结与"查考整式"(原作) 相关的整数性质. 同人作还会讨论原作未讨论的整式理论, 而部分内容要求读者了解整数的稍深的知识.
- (ii) 相对系统地为读者展示初等数论初步 (的初步) 理论. 本文相对独立; 或者说, 读者就算没读原作, 也可以只读"整数的一些性质".
 - (iii) 杀作者的时间. 这是最重要的点; 或者说, 上面二点都是胡扯. 请读者休息一下. 等会儿还有一点东西呢.

现在, 我们讨论不可约的整数.

定义 设整数 f 既不是 0, 也不是单位.

- (i) 若存在二个不全为单位的整数 f_1 , f_2 使 $f=f_1f_2$, 则 f 是可约的 (reducible).
- (ii) 若 f 不是可约的, 则说 f 是不可约的 (irreducible). 换言之, 若 f 是不可约的, 则"整数 f_1 , f_2 使 $f = f_1 f_2$ "可推出" f_1 是单位或 f_2 是单位".

评注 或许, 读者还能记起素数[†] (prime number) 的定义:

设整数 f > 1. 若 "正整数 f_1 , f_2 使 $f = f_1 f_2$ " 可推出 " $f_1 = 1$ 或 $f_2 = 1$ ", 则 f 是素数.

作者当然可以不用"不可约的整数"; 但是, 为了让读者更好地体会到整数与整式的相似的地方, 作者还是使用了一般的词.

评注 0 或单位既不是可约的, 也不是不可约的.

例 2是不可约的.

设整数 f_1, f_2 适合 $f_1f_2 = 2$. 所以, $|f_1||f_2| = 2$.

设 $|f_1| \le |f_2|$. 这样,由 $|f_1|^2 \le |f_1||f_2| = 2$ 知 $|f_1| \le 1$; 由 $|f_2|^2 \ge |f_1||f_2| = 2$ 知 $|f_2| \ge 2$. $|f_1||f_2| = 2$ 知 $|f_2| \ge 2$. 所以 $|f_1| = \pm 1$.

若设 $|f_1|>|f_2|$, 可得 $|f_1|^2>2$, 且 $|f_2|^2<2$. 这样, 因为 f_2 不为零, 有 $|f_2|=1$. 所以 $f_2=\pm 1$.

不管怎么样, 我们已经证明了"整数 f_1 , f_2 使 $2 = f_1 f_2$ "可推出" f_1 是单位或 f_2 是单位". 这样, 2 是不可约的.

类似地, 读者可 (几乎完全一样地) 证明: 3 是不可约的.

例 6 是可约的: $6 = 2 \cdot 3$, 而 2 不是单位, 3 也不是单位.

命题 设整数 p 既不是 0, 也不是单位. 设 ε 是单位. 若 p 是不可约的, 则 εp 也是不可约的.

^{†&}quot;素数"的一个同义词是"质数".

证 设二整数 f_1 , f_2 使 $\varepsilon p = f_1 f_2$. 所以, $p = (\varepsilon^{-1} f_1)(f_2)$. 因为 p 是不可约的, 故 $\varepsilon^{-1} f_1$ 是单位或 f_2 是单位. 这也就是说, f_1 是单位或 f_2 是单位. 所以, εp 是不可约的.

命题 设整数 p 既不是 0, 也不是单位. 下述四命题等价:

- (i) 若整数 f_1 , f_2 使 $f = f_1 f_2$, 则 f_1 是单位或 f_2 是单位;
- (ii) 对任意整数 f, 要么 p 是 f 的因子, 要么 p 与 f 互素 (二者不会同时发生);
- (iii) 若 f, g 是整数, 且 p 是 fg 的因子, 则 p 是 f 的因子, 或 p 是 g 的因子:
 - (iv) 不存在整数 f_1 , f_2 使 $p = f_1 f_2$, $\mathbb{E} |f_1| < |p|$, $|f_2| < |p|$.
- **证** (i) \Rightarrow (ii): 任取整数 f. 设 d 是 p 与 f 的最大公因子. 所以, 存在整数 g 使 p = dg. 所以, d 是单位或 g 是单位. 若 d 是单位, 则单位是 p 与 f 的最大公因子, 即 p 与 f 互素; 若 g 是单位, 则 $d = pg^{-1}$, 故 p 是 f 的因子.

若二者同时发生,则 d 是单位且 g 是单位,故 p 也是单位. 这与 p 不是单位矛盾.

- $(ii) \Rightarrow (iii)$: 若 p 是 f 的因子,则不必证了. 今假设 p 不是 f 的因子. 所以, p 与 f 互素. 因为 p 是 fq 的因子, 故 p 一定是 q 的因子.
- (iii) \Rightarrow (iv): 反证法. 设 $p=f_1f_2$, 且 $|f_1|<|p|$, $|f_2|<|p|$. 因为 $p\neq 0$, 故 $f_1\neq 0$, 且 $f_2\neq 0$. 所以, $|f_1|\geq 1$, 且 $|f_2|\geq 1$. 既然 $p=f_1f_2$, p 当然是 f_1f_2 的因子. 所以, p 是 f_1 的因子, 或 p 是 f_2 的因子. 若 p 是 f_1 的因子, 则存在整数 g_1 使 $f_1=pg_1$. 因为 $f_1\neq 0$, 故 $g_1\neq 0$. 这样, $|g_1|\geq 1$. 所以 $|f_1|=|p||g_1|\geq |p|$. 这与假定 $|f_1|<|p|$ 矛盾! 类似地, 若 p 是 f_2 的因子, 也 有 $|f_2|\geq |p|$, 矛盾! 综上, 这样的 f_1 与 f_2 不存在.
- $\begin{array}{c} (\mathrm{iv}) \Rightarrow (\mathrm{i}) \colon \dot{\boxtimes} \dot{\boxtimes} \mathrm{HI} \colon \ddot{\Xi} \mathrm{E} \, & f_1, \, f_2 \oplus p = f_1 f_2, \, \mathrm{J} \, |f_1| \geq |p| \, \mathrm{J} \, |f_2| \geq |p|. \\ \ddot{\Xi} \, |f_1| \geq |p|, \, \mathrm{J} \, |p| = |f_1||f_2| \geq |p||f_2|, \, \dot{\boxtimes} \, |f_2| \leq 1 \, (\mathrm{J} \, \mathrm{J} \, p \neq 0, \, \dot{\boxtimes} \, |p| \neq 0, \\ \mathrm{J} \, & \mathrm{J} \, \mathrm$

评注 利用 (iii) 与算学归纳法, 读者可得如下结论 (作为练习):

设 $f_1, f_2, ..., f_n$ 是整数. 设整数 p 是不可约的. 若 p 是 $f_1 f_2 ... f_n$ 的因子, 则存在 $1 \subseteq n$ 间的整数 ℓ , 使 p 是 f_ℓ 的因子.

评注 设整数 f 既不是 0, 也不是单位. (iv) 表明, "f 是可约的"的一个必要与充分条件是"存在二个整数 f_1 , f_2 , 使 $f = f_1 f_2$, 且 $|f_1| < |f|$, $|f_2| < |f|$ ".

事实上, $|f_1| \geq 2$, 且 $|f_2| \geq 2$. 反证法. 设 $|f_1| < 2$. 因为 $f \neq 0$, 故 $f_1 \neq 0$, 即 $|f_1| \geq 1$. 所以 $|f_1| = 1$. 所以 $|f_2| = 1 \cdot |f_2| = |f_1| |f_2| = |f| > |f_2|$. 这是矛盾! 类似地, 若 $|f_2| < 2$, 则 $|f_1| = |f| > |f_1|$. 这也是矛盾.

综上, 我们得到了一个更好用的命题: "f 是可约的"的一个必要与充分条件是"存在二个整数 f_1 , f_2 , 使 $f = f_1 f_2$, 且 $2 \le |f_1| < |f|$, $2 \le |f_2| < |f|$ ".

评注 设 p, q 是不可约的整数. 要么 p 是 q 的相伴, 要么 p 与 q 互素 (二者不会同时发生).

为什么呢? 若 p 与 q 互素, 则不必论证了. 所以, 我们假定 p 与 q 不互素. 所以 p 一定是 q 的因子 (因为 p 是不可约的), 且 q 一定是 p 的因子 (因为 q 是不可约的). 所以, p 与 q 相伴.

若 p 与 q 相伴, 且 p 与 q 互素, 则有单位 ε 使 $q = p\varepsilon$. 故 p 是 p 与 q 的公因子. 从而 p 是单位的因子. 所以 p 是单位. 这跟 p 是不可约的矛盾!

下面是关于不可约的整数的积的命题.

命题 设整数 $p_1, p_2, ..., p_m, q_1, q_2, ..., q_n$ 都是不可约的. 设

$$p_1 p_2 \cdots p_m = q_1 q_2 \cdots q_n$$
.

- (i) m = n;
- (ii) 可以适当地调换 q_1, q_2, \cdots, q_m (注意, n=m) 的顺序, 使任取 1 至 m 间的整数 ℓ, p_ℓ 与 q_ℓ 相伴 (注意: 调换顺序后的 q_ℓ 不一定跟原来的 q_ℓ 相等!).
- 证 对等式左侧的不可约的整数的数目 m 用算学归纳法. 当 m=1 时, 有

$$p_1 = q_1 q_2 \cdots q_n.$$

先证明: n=1. 反证法. 设 n>1. 因为 $p_1=q_1q_2\cdots q_n$, 故 p_1 是某个 q_i 的因子 (i 是某个 1 至 n 间的整数). 因为乘法可交换, 不失一般性, 设 p_1

是 q_1 的因子. 因为 q_1 是不可约的, 且 q_1 与 p_1 不是互素的, 故 q_1 也是 p_1 的因子. 所以, 存在单位 ε 使 $q_1=\varepsilon p_1$. 进而

$$p_1=(\varepsilon p_1)q_2\cdots q_n=p_1(\varepsilon q_2)\cdots q_n.$$

因为 $p_1 \neq 0$, 故可从等式二边消去 p_1 , 即

$$1 = (\varepsilon q_2) \cdots q_n$$
.

因为 q_2 是不可约的, 故 εq_2 也是不可约的. 上式表明, εq_2 是 1 的因子, 故 εq_2 是单位. 这与假定矛盾! 所以, n 不可高于 1. 这样, n=1.

既然 n=1, 那么 $p_1=q_1$. 所以, 不必调换顺序即可知 p_1 与 q_1 相伴. 所以, m=1 时, 命题成立.

假定 m=k 时, 命题成立. 现在看 m=k+1 时的情形. 设 $p_1, p_2, ..., p_k, p_{k+1}, q_1, q_2, ..., q_n$ 是不可约的. 设

$$p_1p_2\cdots p_kp_{k+1}=q_1q_2\cdots q_n.$$

因为 p_1 是 $q_1q_2\cdots q_n$ 的因子, 故 p_1 是某个 q_j 的因子 (j 是某个 1 至 n 间的整数). 因为乘法可交换, 不失一般性, 设 p_1 是 q_1 的因子. 因为 q_1 是不可约的, 且 q_1 与 p_1 不是互素的, 故 q_1 也是 p_1 的因子. 所以, 存在单位 ε' 使 $q_1=\varepsilon'p_1$. 进而

$$p_1p_2\cdots p_kp_{k+1}=(\varepsilon'p_1)q_2\cdots q_n=p_1(\varepsilon'q_2)\cdots q_n.$$

因为 $p_1 \neq 0$, 故可从等式二边消去 p_1 , 即

$$p_2\cdots p_k p_{k+1} = (\varepsilon'q_2)\cdots q_n.$$

因为 q_2 是不可约的, 故 $\varepsilon'q_2$ 也是不可约的. 上式左侧的不可约的整数的数目是 k. 根据归纳假设, n-1=k, 即 n=k+1. 这证明了 m=k+1 时 (i) 成立.

前面已证得,适当地调换 q_1, q_2, \cdots, q_n 的顺序,可使 p_1 与 q_1 相伴. 根据归纳假设,可以适当地调换 $\varepsilon'q_2, \cdots, q_{k+1}$ (注意,n=k+1) 的顺序,使任取 3 至 k+1 间的整数 u, p_u 与 q_u 相伴. 当然 p_2 与 $\varepsilon'q_2$ 也相伴. 因为 $\varepsilon'q_2$ 与 q_2 相伴,所以 p_2 与 q_2 相伴. 把这些事实放在一块儿,就是: 可以适当地调换 $q_1, q_2, \cdots, q_{k+1}$ 的顺序,使任取 1 至 k+1 间的整数 ℓ, p_ℓ 与 q_ℓ 相伴. 这样,m=k+1 时,(ii) 成立.

命题 设整数 f 既不是 0, 也不是单位. 存在不可约的整数 $p_1, p_2, ..., p_m$ 使

$$f = p_1 p_2 \cdots p_m.$$

证 对 f 的绝对值 N 用算学归纳法. 因为 f 既不是 0, 也不是单位, 故 $N \ge 2$. N = 2 时, $f = \pm 2$. 我们已经知道, 2 是不可约的; 所以, -2 也是不可约的. 这样, f 是不可约的, 故存在不可约的整数 $p_1 = f$ 使 $f = p_1$. 这样, N = 2 时, 命题成立.

设 $N \le k \ (k \ge 2)$ 时,命题成立.考虑 N = k+1.若 f 是不可约的,则存在不可约的整数 $p_1 = f$ 使 $f = p_1$.若 f 是可约的,则存在二整数 f_1 , f_2 ,使 $f = f_1 f_2$,且 $2 \le |f_1| < |f|$, $2 \le |f_2| < |f|$.所以 $|f_1| \le |f| - 1 = k$, $|f_2| \le |f| - 1 = k$.根据归纳假设,存在不可约的整数 p_1 , p_2 ,…, p_i , p_i ,, p_i , p_i ,

$$f_1 = p_1 p_2 \cdots p_i, \quad f_2 = p_{i+1} p_{i+2} \cdots p_m.$$

所以

$$f = f_1 f_2 = p_1 p_2 \cdots p_i p_{i+1} p_{i+2} \cdots p_m.$$

故 N = k + 1 时, 命题也成立.

合并上二个命题,可得"算术基本定理"(the fundamental theorem of arithmetic):

命题 设整数 f 既不是 0, 也不是单位.

(i) 存在不可约的整数 p_1, p_2, \dots, p_m 使

$$f = p_1 p_2 \cdots p_m;$$

(ii) 若 $q_1,\,q_2,\,\cdots,\,q_m,\,s_1,\,s_2,\,\cdots,\,s_n$ 是不可约的整数, 且

$$f = q_1 q_2 \cdots q_m = s_1 s_2 \cdots s_n,$$

则 m=n, 且可以适当地调换 $s_1,\,s_2,\,\cdots,\,s_m$ 的顺序, 使任取 1 至 m 间的整数 $\ell,\,q_\ell$ 与 s_ℓ 相伴 (注意: 调换顺序后的 s_ℓ 不一定跟原来的 s_ℓ 相等!).

设整数 f 既不是 0, 也不是单位. 利用上个命题, 我们可以方便地定出 f 的因子.

命题 设整数 f 既不是 0, 也不是单位. 设 p_1, p_2, \cdots, p_m 是不可约的整数, 且

$$f = p_1 p_2 \cdots p_m$$
.

f 的因子必为

$$\varepsilon p_{j_1} p_{j_2} \cdots p_{j_s},$$

其中 ε 是单位, j_1, j_2, \dots, j_s 是 1, 2, …, m 中 s 个不同的数 (s 可取 0; 此时, 这就是单位).

证 从 $1, 2, \dots, m$ 中选出 s 个不同的数 j_1, j_2, \dots, j_s , 那么还剩 m-s 个数未被挑选. 记这 m-s 个数为 j_{s+1}, \dots, j_m . 由于

$$\begin{split} f &= p_1 p_2 \cdots p_m \\ &= (p_{j_1} p_{j_2} \cdots p_{j_s}) (p_{j_{s+1}} \cdots p_{j_m}) \\ &= (\varepsilon p_{j_1} p_{j_2} \cdots p_{j_s}) (\varepsilon^{-1} p_{j_{s+1}} \cdots p_{j_m}), \end{split}$$

且 $\varepsilon^{-1}p_{j_{s+1}}\cdots p_{j_m}$ 是整数, 故 $\varepsilon p_{j_1}p_{j_2}\cdots p_{j_s}$ 是 f 的因子.

设 g 是 f 的因子. 我们证明: g 一定能写为 (★) 的形式.

首先, g 一定不是 0. 若 g 是单位, 取 s=0, g 即可写为 (\star) 的形式. 现在设 g 既不是 0, 也不是单位.

设整数 h 使 f = gh. h 当然不是 0. 若 h 是单位, 则

$$g = h^{-1} f = h^{-1} p_1 p_2 \cdots p_m.$$

 h^{-1} 也是单位,且 $1, 2, \cdots, m$ 当然是 $1, 2, \cdots, m$ 中 m 个不同的数. 若 h 不是单位,则存在不可约的整数 $q_1, q_2, \cdots, q_s, q_{s+1}, \cdots, q_n$ 使

$$g=q_1q_2\cdots q_s,\quad h=q_{s+1}\cdots q_n.$$

所以

$$f = gh = q_1q_2\cdots q_sq_{s+1}\cdots q_n.$$

从而 n=m, 且可以适当地调换 p_1, p_2, \cdots, p_m 的顺序, 使任取 $1, 2, \cdots, m$ 中的数 ℓ , q_ℓ 与 p_ℓ 相伴. 但是, 我们注意到, 调换后的 p_ℓ 跟题设的 p_ℓ 不一定是相等的, 所以我们稍微变通一下.

我们把 s 个不可约的整数 $q_1, q_2, ..., q_s$ 写在左边, 把 m 个不可约的整数 $p_1, p_2, ..., p_m$ 写在右边:

$$q_1,q_2,\cdots,q_s; \qquad p_1,p_2,\cdots,p_m.$$

对 q_1 而言,肯定有整数 j_1 使 q_1 不与 p_i $(i < j_1)$ 相伴 (从左向右看诸 p_ℓ 即可),但 q_1 与 p_{j_1} 相伴.也就是说,存在单位 ε_1 使 $q_1=\varepsilon_1 p_1$.去掉左边的 q_1 与右边的 p_{j_1} ,有

$$q_2,\cdots,q_s; \qquad p_1,\cdots,p_{j_1-1},p_{j_1+1},\cdots,p_m.$$

类似地, 对 q_2 而言, 肯定有整数 j_2 使 q_2 不与 p_i $(i < j_2, i \neq j_1)$ 相伴, 但 q_2 与 p_{j_2} 相伴. 也就是说, 存在单位 ε_2 使 $q_2 = \varepsilon_2 p_{j_2}$.

反复地执行此事, 可知: 存在 $1, 2, \cdots, m$ 中 s 个不同的数 j_1, j_2, \cdots, j_s ,存在 s 个单位 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_s$ 使 $q_\ell = \varepsilon_\ell p_{j_\ell}$. 所以

$$\begin{split} &q_1q_2\cdots q_s\\ &=(\varepsilon_1p_{j_1})(\varepsilon_2p_{j_2})\cdots(\varepsilon_sp_{j_s})\\ &=(\varepsilon_1\varepsilon_2\cdots\varepsilon_s)p_{j_1}p_{j_2}\cdots p_{j_s}\\ &=\varepsilon p_{j_1}p_{j_2}\cdots p_{j_s}. \end{split}$$

我们以一个简单的命题结束本文.

命题 设 f_1 , f_2 , ..., f_n 是整数. f_1 , f_2 , ..., f_n 互素的一个必要与充分条件是: 任取不可约的整数 p, 存在某个 f_i , 使 p 不是 f_i 的因子.

证 先看必要性. 反证法. 假定结论不成立, 即: 存在不可约的整数 p, 使任取 f_i , p 是 f_i 的因子. 这样, p 就是 f_1 , f_2 , …, f_n 的公因子. 所以, p 是单位的因子. 矛盾!

再看充分性. 还是反证法. 假定结论不成立, 即: 设 d 是 f_1 , f_2 , …, f_n 的最大公因子, 且 d 不是单位. 若 d 是 0, 则 f_1 , f_2 , …, f_n 全是 0, 故任意的不可约的整数都是 f_1 , f_2 , …, f_n 的公因子, 矛盾! 若 d 不是 0, 也不是单位,

那么一定存在不可约的整数 p_0 ,使 p_0 是 d 的因子. 所以, 存在不可约的整数 p_0 ,使任取 f_i , p_0 是 f_i 的因子. 矛盾!

本文就到这里. 再见, 亲爱的读者朋友!

整式的一些性质 199

整式的一些性质

本文的目标是补充一点整式的性质; 我们后面会用到这些东西.

为尽可能多地照顾读者,本文被加了一点细节.

 \mathbb{F} 表示全体有理数 (或实数、复数) 作成的集. $\mathbb{F}[x]$ 是全体系数为 \mathbb{F} 的元的整式作成的集. 在本文"整式的一些性质"里, 我们约定:"整式"都是 $\mathbb{F}[x]$ 的元, 而"数"都是 \mathbb{F} 的元 (当然也是整式). "整数"还是读者熟悉的整数; 当然, 这也是整式.

整式与整数类似. 不过, 整式与整数也有一些不同. 整数一定是整式, 但整式不一定是整数. 而且, 整式的系数的范围变大或变小时, 有些结论在变化; 当然, 也有一些结论是不变的. 本文讨论的内容会稍多一些.

读者可能还记得, 我们写整式时, 一般都会带 "(x)" 记号:

$$f(x) = a_0 + a_1 x + \dots + a_n x^n.$$

这个记号的优点有: (i) 清楚地表示出整式的不定元为 x; (ii) 若 t 是数, 可用 f(t) 表示数

$$a_0 + a_1 t + \dots + a_n t^n$$
;

(iii) 若 g(x) 是整式, 可用 f(g(x)) 表示整式

$$a_0 + a_1 g(x) + \dots + a_n (g(x))^n$$
.

不过, 在本文里, 我们一般不干 (ii) (iii) 这二件事. 所以, 为了方便, 我们也写

$$f = a_0 + a_1 x + \dots + a_n x^n.$$

为方便, 我们定义一些词.

定义 设 f 是整式. 若 f 的系数都是复数,则 f 是复系数整式 (polynomial with complex coefficients); 若 f 的系数都是实数,则 f 是实系数整式 (polynomial with real coefficients); 若 f 的系数都是有理数,则 f 是有理系数整式 (polynomial with rational coefficients); 若 f 的系数都是整数,则 f 是整系数整式 (polynomial with integral coefficients).

评注 我们提醒读者: 因为实数是复数, 故实系数整式当然是复系数整式; 因为有理数是实数, 故有理系数整式当然是实系数整式; 因为整数是有理数, 故整系数整式当然是有理系数整式.

以 $x^2 + 3$ 为例. 当我们讨论复系数整式 $x^2 + 3$ 时, 我们允许不是实数的复数出现, 所以 " $x^2 + 3$ 可写为二个 1 次整式的积"是对的[†]. 但是, 当我们讨论有理系数整式 $x^2 + 3$ 时, 我们不允许不是有理数的复数出现, 所以 " $x^2 + 3$ 可写为二个 1 次整式的积"是错的.

所以, 明确整式的系数范围是有必要的. 不过, 正如前面所说, 我们讨论系数为 \mathbb{F} 的整式, 而 \mathbb{F} 可以是 \mathbb{Q} , 可以是 \mathbb{R} , 也可以是 \mathbb{C} . 所以, 读者不必 (在本文) 过于关注这件小事. 不同的系数的范围引起的差别主要体现在可约的与不可约的整式上.

在正式进入讨论前, 作者希望读者能回想起二件事:

(i) 整式 f 的次用 $\deg f$ 表示. 零整式的次是 $-\infty$. 若整式 g, h 适合 f = gh, 则

$$\deg f = \deg g + \deg h.$$

(ii) 整式的乘法适合消去律. 设 f, g, h 是整式. 若 $f \neq 0$, 且 fg = fh, 则 g = h.

我们先从整式的单位开始.

定义 设 f 是整式. 若存在整式 g 使 fg = 1, 则说 f 是单位 (unit). g 称为 f 的逆 (inverse).

命题 1 是单位.

命题 0 一定不是单位.

证 0 与任何整式的积都是 0, 不等于 1.

命题 设 f 是单位. 若整式 g, h 适合 fg = fh = 1, 则 g = h.

[†]因为 $x^2 + 3 = x^2 - (\sqrt{3}i)^2 = (x + \sqrt{3}i)(x - \sqrt{3}i)$.

整式的一些性质 201

证 因为整式的乘法是交换的、结合的, 故

$$g = g1 = g(fh) = (gf)h = (fg)h = 1h = h.$$

定义 设 f 是单位. 上个命题指出, f 的逆一定是唯一的 (根据单位的定义, f 的逆当然存在). 我们用 f^{-1} 表示 f 的逆.

命题 设 f 是单位. f 的逆 f^{-1} 也是单位, 且 $(f^{-1})^{-1} = f$.

证 因为 f 是单位, 故存在整式 f^{-1} 使 $ff^{-1} = 1$. 因为乘法可交换, 故 $f^{-1}f = 1$. 所以对整式 f^{-1} 而言, 存在整式 f 使 $f^{-1}f = 1$. 由单位的定义, f^{-1} 是单位. 因为单位的逆唯一, 故 f 是 f^{-1} 的逆.

命题 设 f_1, f_2, \dots, f_n 是单位. 则 $f_1 f_2 \dots f_n$ 也是单位, 且

$$(f_1f_2\cdots f_n)^{-1}=f_n^{-1}\cdots f_2^{-1}f_1^{-1}.$$

证 既然 f_1 , f_2 , …, f_n 是单位, 那么它们都有逆, 分别为 f_1^{-1} , f_2^{-1} , …, f_n^{-1} . 所以

$$\begin{split} &(f_1f_2\cdots f_{n-1}f_n)(f_n^{-1}f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=(f_1f_2\cdots f_{n-1})(f_nf_n^{-1})(f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=(f_1f_2\cdots f_{n-1})(1)(f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=(f_1f_2\cdots f_{n-1})(f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=(f_1f_2\cdots f_{n-1})(f_{n-1}^{-1}\cdots f_2^{-1}f_1^{-1})\\ &=\cdots\cdots\cdots\\ &=f_1f_1^{-1}\\ &=1. \end{split}$$

所以, $f_1 f_2 \cdots f_n$ 是单位. 因为单位的逆唯一, 故

$$(f_1f_2\cdots f_n)^{-1}=f_n^{-1}\cdots f_2^{-1}f_1^{-1}.$$

定义 整式的全体单位称为整式的单位群.

命题 整式的单位群恰由全体非零数作成.

8

证 每个非零数 c 都有倒数 $\frac{1}{c}$. $\frac{1}{c}$ 也是非零数, 故由 $c \cdot \frac{1}{c} = 1$ 可知 c 是单位.

设 f 是单位. 所以, 存在整式 g 使 fg = 1. 我们证明: $\deg f = 0$.

这很容易. 因为 fg = 1, 故 $\deg f + \deg g = \deg 1 = 0$. 显然 $\deg f$ 与 $\deg g$ 都是非负整数. 这样, $\deg f = 0$. 零次整式就是非零数.

综上,整式的单位群恰由全体非零数作成.

读者可能还记得,整式也有带余除法:

命题 设 f 是非零整式. 对任意整式 q, 存在唯一的一对整式 q, r 使

$$g = qf + r$$
, $\deg r < \deg f$.

一般称其为带余除法: q 就是商; r 就是余式. 并且, 当 f 的次不高于 g 的次时, f, g, q 间还有如下的次关系:

$$\deg g = \deg(g - r) = \deg q + \deg f.$$

我们已经在前面证明过这个关系, 所以我们就不赘述了. 请读者休息一会儿.

定义 设 f, g 是整式. 若存在整式 h 使 f = gh, 则说 g 是 f 的因子 (factor).

- **例** (i) 单位是任意整式的因子; 单位的因子一定是单位.
- (ii) 任意整式都是 0 的因子; 非零整式的因子一定不是 0.

设 f, g 是整式, 且 $g \neq 0$. 根据带余除法, 存在整式 h, r 使

$$f = gh + r$$
, $\deg r < \deg g$.

若 r = 0, 则 f = gh, 故 g 是 f 的因子. 反过来, 若 g 是 f 的因子, 则存在整式 h' 使

$$f = gh' = gh' + 0.$$

根据带余除法的唯一性, g 除 f 的余式一定是 0. 所以, 我们有

整式的一些性质 203

命题 设 f, g 是整式, 且 $g \neq 0$. g 是 f 的因子的一个必要与充分条件 是: g 除 f 的余式为 0.

这就是带余除法与因子的关系.

因为整式的带余除法不因系数的范围变大而改变, 根据带余除法与因 子的关系, 我们有

命题 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.

- (i) 若存在 K 上的整式 h, 使 f = gh, 则当然存在 E 上的整式 h', 使 f = gh' (不难看出, 取 h' 为 h 即可).
- (ii) 若任取 K 上的整式 h, 都有 $f \neq gh$, 则任取 E 上的整式 h', 都有 $f \neq gh'$.

简单地说, 问题 "g 是否是 f 的因子" 的回答不因系数的范围扩大而改变.

证 (i) 显然.

(ii) 若 g = 0, 我们说 $f \neq 0$. 用反证法. 若 f = 0, 则存在整式 h = 0 使 f = gh, 矛盾! 任取 E 上的整式 h', 则 $gh' = 0 \neq f$.

若 $g \neq 0$, 我们用 g 除 f. 因为 f, g 是 K 上的整式, 故存在 K 上的整式 g, r 使

$$f = gh + r$$
, $\deg r < \deg g$.

因为整式的带余除法不因系数的范围变大而改变, 故这也是 E 上的整式 f, g 的带余除法. 也就是说, 在 E 上的整式中, g 除 f 的余式仍不是 0. 所以, 不存在 E 上的整式 h', 使 f = gh' (若这样的 h' 存在, 就跟 "g 除 f 的余式仍不是 0" 矛盾).

下面是因子的基本的性质.

命题 设 f, q, h 是整式. 因子适合如下性质:

- (i) f 是 f 的因子;
- (ii) 若 h 是 q 的因子, 且 q 是 f 的因子, 则 h 是 f 的因子;
- (iii) 若 f 是 g 的因子, 且 g 是 f 的因子, 则存在单位 g 使 f = gg;

- (iv) 设 k, ℓ 是整式. 若 h 是 f 的因子, 且 h 是 g 的因子, 则 h 是 $kf \pm \ell g$ 的因子;
 - (v) 若 ε_1 , ε_2 是单位, 且 g 是 f 的因子, 则 $\varepsilon_2 g$ 是 $\varepsilon_1 f$ 的因子.
 - **证** (i) 注意到 f = 1f, 其中 1 是单位.
- (ii) 因为 h 是 g 的因子, 故存在整式 p 使 g=ph. 因为 g 是 f 的因子, 故存在整式 q 使 f=qg. 所以

$$f = qg = q(ph) = (qp)h.$$

因为 qp 也是整式, 故 h 是 f 的因子.

(iii) 若 f = 0, 则 g = 0, 当然有 f = 1g = 0, 其中 1 是单位. 下设 $f \neq 0$. 因为 f 是 g 的因子, 故存在整式 p 使 g = pf; 因为 g 是 f 的因子, 故存在整式 g 使 f = qg. 所以

$$f = qg = q(pf) = (qp)f.$$

因为 $f \neq 0$, 故可从等式二边消去 f, 即

$$1 = qp$$
.

由此可知 q 是单位.

(iv) 因为 h 是 f 的因子, 且 h 是 g 的因子, 故存在整式 p, q 使 f=ph 且 g=qh. 所以

$$kf \pm \ell g = k(ph) \pm \ell(qh) = (kp)h \pm (\ell q)h = (kp \pm \ell q)h.$$

(v) 若存在整式 q 使 f = gq, 则

$$\varepsilon_1 f = g(\varepsilon_1 q) = g(\varepsilon_2 \varepsilon_2^{-1})(\varepsilon_1 q) = (g\varepsilon_2)(\varepsilon_2^{-1}\varepsilon_1 q).$$

因为单位的逆是整式,且 (有限多个) 整式的积是整式,故 $\varepsilon_2^{-1}\varepsilon_1q$ 是整式. 从 而 ε_2g 是 ε_1f 的因子.

为方便, 我们定义一个新词.

整式的一些性质 205

定义 设 f, g 是整式. 若存在单位 ε 使 $f = \varepsilon g$, 则说 f 是 g 的相伴 (associate). 因为

$$g = 1g = (\varepsilon^{-1}\varepsilon)g = \varepsilon^{-1}(\varepsilon g) = \varepsilon^{-1}f,$$

故 g 当然也是 f 的相伴. 所以, 我们说 f 与 g 相伴 (to be associate).

显然, 因为 f=1f, 故 f 与 f 相伴. 上面的文字已经说明 f 与 g 相伴 相当于 g 与 f 相伴. 我们还有下面的

命题 设 f, g, h 是整式. 若 f 与 g 相伴, 且 g 与 h 相伴, 则 f 与 h 相伴.

证 因为 f 与 g 相伴, 故存在单位 ε_1 使 $f=\varepsilon_1 g$. 因为 g 与 h 相伴, 故存在单位 ε_2 使 $g=\varepsilon_2 h$. 所以

$$f=\varepsilon_1g=\varepsilon_1(\varepsilon_2h)=(\varepsilon_1\varepsilon_2)h.$$

8

因为 $\varepsilon_1 \varepsilon_2$ 是单位, 故 f 与 g 相伴.

根据因子的性质 (iii), 我们有

命题 设 f, g 是整式. f 与 g 相伴的一个必要与充分条件是 f 是 g 的因子, 且 g 是 f 的因子.

由此, 不难得到

命题 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.

- (i) 若存在 K 的单位 ε , 使 $f = g\varepsilon$, 则当然存在 E 上的单位 ε' , 使 $f = g\varepsilon'$ (不难看出, 取 ε' 为 ε 即可).
- (ii) 若任取 K 的单位 ε , 都有 $f \neq g\varepsilon$, 则任取 E 上的单位 ε' , 都有 $f \neq g\varepsilon'$.

简单地说, 问题 "g 是否与 f 相伴" 的回答不因系数的范围扩大而改变.

命题 设整式 $f \neq 0$. 存在唯一的整式 $f_{\rm m}$ 使 $f_{\rm m}$ 与 f 相伴, 且 $f_{\rm m}$ 的首项系数为 1. 这样的 $f_{\rm m}$ 就是 f 的首一的相伴 (the monic associate).

证 先看存在性. 设

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

且 $a_n \neq 0$. 作

$$g = x^n + \frac{a_{n-1}}{a_n}x^{n-1} + \dots + \frac{a_1}{a_n}x + \frac{a_0}{a_n}.$$

不难看出, $f=a_ng$, 且 g 的首项系数为 1. 因为 a_n 是单位, 故 g 与 f 相伴. 取 f_m 为 g 即可.

再看唯一性. 设 g, h 都是 f 的首一的相伴. 也就是说, 存在单位 ε_1 , ε_2 使

$$\varepsilon_1 g = \varepsilon_2 h.$$

设

$$g = x^{u} + a_{u-1}x^{u-1} + \dots + a_{1}x + a_{0},$$

$$h = x^{v} + b_{v-1}x^{v-1} + \dots + b_{1}x + b_{0}.$$

 $\varepsilon_1 g$ 与 $\varepsilon_2 h$ 的次分别是 u,v, 故 u=v; $\varepsilon_1 g$ 与 $\varepsilon_2 h$ 的首项系数分别是 $\varepsilon_1,$ $\varepsilon_2,$ 故 $\varepsilon_1=\varepsilon_2.$ 从等式的二侧消去 $\varepsilon_1,$ 有 g=h.

定义 设 f, g 是整式. 若 d 是 f 的因子, 且 d 是 g 的因子, 则 d 是 f 与 g 的公因子 (common factor).

评注 若 d 是 f 与 g 的公因子, 则 d 当然也是 g 与 f 的公因子. 换句话说, 公因子与次序无关.

例 单位是任意二个整式的公因子.

现在我们引出"最大公因子"的概念.

定义 设 f, g 是整式. 适合下述二性质的整式 d 是 f 与 g 的最大公因 子 (greatest common factor):

- (i) d 是 f 与 g 的公因子;
- (ii) 若 e 是 f 与 g 的公因子, 则 e 是 d 的因子.

整式的一些性质 207

评注 若 d 是 f 与 g 的最大公因子, 则 d 当然也是 g 与 f 的最大公因子. 换句话说, 最大公因子与次序无关. 这是因为公因子与次序无关.

由定义立即可得

命题 设 f, g 是整式. 若 d_1 与 d_2 都是 f 与 g 的最大公因子, 则 d_1 与 d_2 相伴.

证 因为 d_1 是 d_2 的因子, 且 d_2 也是 d_1 的因子.

评注 由此可见, 最大公因子不一定是唯一的. 但这不是很重要.

例 不难看出, $d = f \ge 0$ 与 f 的最大公因子: (i) $d \ge 0$ 的因子, 且 d 是 f 的因子; (ii) 若 $e \ge 0$ 与 f 的公因子, 则 e 当然是 d (即 f) 的因子.

例 设 ε 是单位. 不难看出, $d = \varepsilon$ 是 ε 与 f 的最大公因子: (i) d 是 ε 的因子, 且 d 是 f 的因子; (ii) 若 e 是 ε 与 f 的公因子, 则 e 当然是 d (即 ε) 的因子.

命题 设 f, g, q 是整式. 设 f 与 g 的最大公因子是 d_1 ; 设 f - gq 与 g 的最大公因子是 d_2 . 则 d_1 与 d_2 相伴.

证 因为 d_1 是 f 与 g 的公因子, 故 d_1 是 $1 \cdot f - q \cdot g$ 的因子. 这说明, d_1 是 f - gq 与 g 的公因子. 因为 d_2 是 f - gq 与 g 的最大公因子, 故 d_1 是 d_2 的因子.

因为 d_2 是 f-gq 与 g 的公因子, 故 d_2 是 $1\cdot(f-gq)+q\cdot g$ 的因子. 这说明, d_2 是 f 与 g 的公因子. 因为 d_1 是 f 与 g 的最大公因子, 故 d_2 是 d_1 的因子.

综上, d_1 与 d_2 相伴.

æ

8

我们现在可以证明

命题 设 f, g 是整式. f 与 g 的最大公因子一定存在.

 \mathbf{L} 无妨假定 q 不是 0. 所以, 根据带余除法, 有

$$f = gq_0 + r_0, \quad \deg r_0 < \deg g.$$

根据上一个命题, r_0 与 g 的最大公因子是 f 与 g 的最大公因子. 若 $r_0=0$, 则 g 就是 0 与 g (从而也是 f 与 g) 的最大公因子. 若 $r_0 \neq 0$, 则

$$g = r_0 q_1 + r_1, \quad \deg r_1 < \deg r_0.$$

根据上一个命题, r_1 与 r_0 的最大公因子是 r_0 与 g 的最大公因子, 所以也是 f 与 g 的最大公因子. 若 $r_1=0$, 则 r_0 就是 0 与 r_0 (从而也是 f 与 g) 的最大公因子. 若 $r_1\neq 0$, 则

$$r_0 = r_1 q_2 + r_2$$
, $\deg r_2 < \deg r_1$.

这个过程必定会在有限多步后停止. 反证法. 如果此过程可一直进行下去,则我们可得到无限多个非负整数 $\deg r_0$, $\deg r_1$, … 使

$$\deg g > \deg r_0 > \deg r_1 > \dots > \deg r_k > \deg r_{k+1} > \dots.$$

可是,不存在无限递降的非负整数列 (低于 $\deg g$ 的非负整数至多有 $\deg g$ 个),矛盾!

为方便, 分别称 f 与 g 为 r_{-2} 与 r_{-1} . 根据上面的讨论, 一定存在整数 n 使

$$\begin{split} r_{\ell-2} &= r_{\ell-1}q_\ell + r_\ell, \quad 0 \leq \deg r_\ell < \deg r_{\ell-1}, \quad \ell = 0, 1, \cdots, n-2; \\ r_{n-3} &= r_{n-2}q_{n-1}. \end{split}$$

 r_{n-2} 是 0 与 r_{n-2} 的最大公因子,也是 r_{n-2} 与 r_{n-3} 的最大公因子,也是 r_{n-3} 与 r_{n-4} 的最大公因子……也是 r_{-2} 与 r_{-1} 的最大公因子.所以, r_{n-2} 是 f 与 g 的最大公因子.

这个命题的证明过程事实上也给出了一个计算二个整式的最大公因子的算法 ("辗转相除法").

例 设 $f = x^5 + 3x + 1$, $g = x^2 - x - 1$. 我们来找一个 $f \ni g$ 的最大公因子.

不难作出如下计算:

$$\begin{aligned} x^5 + 3x + 1 &= (x^2 - x - 1) \cdot (x^3 + x^2 + 2x + 3) + (8x + 4), \\ x^2 - x - 1 &= (8x + 4) \cdot \frac{2x - 3}{16} - \frac{1}{4}. \end{aligned}$$

所以, $-\frac{1}{4}$ 是 8x + 4 与 $x^2 - x - 1$ 的最大公因子, 是 $x^2 - x - 1$ 与 $x^5 + 3x + 1$ 的最大公因子.

当然, 读者不难说明, 每个单位都是 f 与 g 的最大公因子.

根据上面的计算, 我们有

$$1 \cdot (x^2 - x - 1) + \frac{-2x + 3}{16} \cdot (8x + 4) = -\frac{1}{4}.$$

又因为

$$8x + 4 = 1 \cdot (x^5 + 3x + 1) + (-x^3 - x^2 - 2x - 3) \cdot (x^2 - x - 1),$$

故

$$\begin{aligned} &\frac{-2x+3}{16}(x^5+3x+1)\\ &+\left(1+\frac{-2x+3}{16}(-x^3-x^2-2x-3)\right)(x^2-x-1)=-\frac{1}{4}. \end{aligned}$$

即

$$\frac{-2x+3}{16}(x^5+3x+1) + \frac{2x^4-x^3+x^2+7}{16}(x^2-x-1) = -\frac{1}{4}.$$

一般地, 我们有

命题 设 f, g 是整式. 设 d 是 f 与 g 的最大公因子. 存在整式 s 与 t 使

$$sf + tq = d$$
.

这个等式的一个名字是 Bézout 等式 (Bézout's identity).

证 若 f = g = 0, 则可取 s = t = 0. 下设 $g \neq 0$. 为方便, 分别称 f = g 为 r_{-2} 与 r_{-1} . 设存在整数 n 使

$$\begin{split} r_{\ell-2} &= r_{\ell-1}q_\ell + r_\ell, \quad 0 \leq \deg r_\ell < \deg r_{\ell-1}, \quad \ell = 0, 1, \cdots, n-2; \\ r_{n-3} &= r_{n-2}q_{n-1}. \end{split}$$

为方便,记

$$r_{\ell} = 0, \quad \ell \ge n - 1.$$

我们用算学归纳法证明辅助命题 $P(\ell)$: 任取非负整数 ℓ , 必有二整式 s, t 使

$$r_{\ell} = sf + tg.$$

 r_0 可写为

$$r_0 = 1r_{\ell-2} + (-q_0)r_{\ell} = 1f + (-q_0)g.$$

 r_1 可写为

$$r_1 = 1r_{-1} + (-q_1)r_0 = (-q_1)f + (1+q_0q_1)g.$$

所以 P(0) 与 P(1) 正确. 假定 P(0), P(1), …, P(k-1) 正确. 我们的目标是: 推出 P(k) 正确. 若 $k \ge n-1$, 则

$$r_k = 0 = 0f + 0g.$$

若 $k \le n-2$, 则根据归纳假设, 存在整式 u, v, z, w 使

$$r_{k-2}=uf+vg,\quad r_{k-1}=zf+wg.$$

所以

$$r_k = r_{k-2} - r_{k-1} q_k = (u - z q_k) f + (v - w q_k) g. \label{eq:rk}$$

因为 $u-zq_k$ 与 $v-wq_k$ 均为整式, 故 P(k) 正确.

所以, 存在整式 s, t 使

$$sf + tg = r_{n-2}$$
.

因为 r_{n-2} 与 d 都是 f 与 g 的最大公因子, 故 $d=\varepsilon r_{n-2}$, 其中 ε 是单位. 所 以

$$(\varepsilon s)f + (\varepsilon t)q = d.$$

命题 设 f, g 是整式, 且 f, g 不全是 0. 存在唯一的整式 d_{m} , 使:

- (i) $d_{\rm m}$ 是 f 与 g 的最大公因子;
- (ii) $d_{\rm m}$ 的首项系数为 1.

证 先看存在性. 设 d 是 f 与 g 的最大公因子. 这样, $d \neq 0$. 考虑 d 的首一的相伴 d_m . 它的首项系数是 1; 它也是 f 与 g 的最大公因子.

再看唯一性. 设 $d_1,\,d_2$ 都适合条件 (i) (ii). 因为 (i), d_1 与 d_2 相伴; 因为 (ii), $d_1=d_2$.

由此, 我们有

命题 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.

- (i) 设 f = g = 0. 则 f 与 g 的最大公因子是 0. 不管在哪儿 (K 还是 E), 它都是 0.
- (ii) 设 f, g 不全是 0. 设 d_K 是 K 上的整式, 首项系数为 1, 且是 f 与 g 的最大公因子. 设 d_E 是 E 上的整式, 首项系数为 1, 且是 f 与 g 的最大公因子. 则 $d_K = d_E$. 简单地说, (不全是 0 的) 整式 f, g 的首项系数为 1 的最大公因子不因系数的范围扩大而改变.

证 (i) 显然.

(ii) d_K 当然也是 E 上的整式. 由上个命题, $d_K = d_E$.

有了最大公因子的概念, 我们可以引出"互素":

定义 设 f, g 是整式. 若单位是 f 与 g 的最大公因子, 则称 f 与 g 互素 (to be relatively prime).

评注 因为最大公因子与次序无关,故互素也与次序无关. 换句话说,"f 与 g 互素"相当于"g 与 f 互素".

例 显然, 单位与任意整式都互素.

命题 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.

若 f 与 g 在 K 上的整式中互素, 则 f 与 g 的首项系数为 1 的最大公因子是 1. 因为首项系数为 1 的最大公因子不因系数的范围扩大而改变, 故 f 与 g 在 E 上的整式中也互素.

简单地说, 问题 "f 是否与 g 互素"的回答不因系数的范围扩大而改变.

下面给出一个极重要的命题:

命题 设 f, g 是整式. f 与 g 互素的一个必要与充分条件是: 存在整式 s, t 使

$$sf + tq = 1.$$

证 先看必要性. 显然; 这是 Bézout 等式的结果.

再看充分性. 设 d 是 f 与 g 的最大公因子. 因为 sf + tg = 1, 故 d 是 1 的因子. 这样, d 一定是单位.

下面是几个关于互素的性质.

命题 设 f, g, h 是整式. 互素有如下性质:

- (i) 若 h 是 fg 的因子, 且 h 与 f 互素, 则 h 是 g 的因子;
- (ii) 若f与g互素,且f与h互素,则f与gh互素;
- (iii) 若 f 是 h 的因子, g 是 h 的因子, 且 f 与 g 互素, 则 fg 是 h 的因子.

证 (i) 因为 h = f 互素, 故存在整式 s = t 使

$$sh + tf = 1.$$

所以

$$(gs)h + t(fg) = g.$$

因为 $h \neq h$ 的因子, 且 $h \neq fg$ 的因子, 故 $h \neq g = (gs)h + t(fg)$ 的因子.

(ii) 因为 f 与 q 互素, 故存在整式 u, v 使

$$uf + vq = 1.$$

因为 f 与 h 互素, 故存在整式 s, t 使

$$sf + th = 1.$$

从而

$$1 = (uf + vg)(sf + th) = (ufs + uth + vgs)f + (vt)(gh).$$

所以 f 与 gh 互素.

(iii) 因为 f 是 h 的因子, 故存在整式 p 使 h = fp. 因为 g 是 h = fp 的因子, 且 f 与 g 互素, 故由 (i) 知 g 是 p 的因子. 设 p = gq. 这样

$$h = fp = f(gq) = (fg)q,$$

故 fg 是 h 的因子.

8

感谢读者的阅读. 请休息一会儿.

现在我们推广公因子、最大公因子、互素的概念.

前面,我们讨论了二个整式的公因子、最大公因子、互素;现在,我们从量的角度推广.

定义 设 $f_1, f_2, ..., f_n$ 是整式. 若 d 是 f_1 的因子, d 是 f_2 的因子...... d 是 f_n 的因子, 则 d 是 $f_1, f_2, ..., f_n$ 的公因子.

评注 我们并没有禁止 n 取 1: 一个整式的 "公因子" 当然是它的因子. 同理, 一个整式也可以有"最大公因子"; 一个整式也可以 "互素".

作为练习, 请读者证明

命题 设 $k_1, k_2, \dots, k_n, f_1, f_2, \dots, f_n$ 是整式. 若 d 是 f_1, f_2, \dots, f_n 的公因子,则 d 是 $k_1f_1 + k_2f_2 + \dots + k_nf_n$ 的因子.

定义 设 f_1, f_2, \cdots, f_n 是整式. 适合下述二性质的整式 d 是 f_1, f_2, \cdots, f_n 的最大公因子:

- (i) d 是 $f_1, f_2, ..., f_n$ 的公因子;
- (ii) 若 e 是 d 是 f_1 , f_2 , ..., f_n 的公因子, 则 e 是 d 的因子.

由定义立即可得

命题 设 f_1 , f_2 , ..., f_n 是整式. 若 d_1 与 d_2 都是 f_1 , f_2 , ..., f_n 的最大公因子, 则 d_1 与 d_2 相伴.

证 因为 d_1 是 d_2 的因子, 且 d_2 也是 d_1 的因子.

命题 设 $f_1, f_2, ..., f_n$ 是整式.

214

- (i) $f_1, f_2, ..., f_n$ 的最大公因子存在;
- (ii) 若 d 是 f_1 , f_2 , …, f_n 的最大公因子, 则存在整式 u_1 , u_2 , …, u_n 使

$$u_1f_1 + u_2f_2 + \dots + u_nf_n = d.$$

证 (i) 对 n 用算学归纳法. 显然, n = 1 或 n = 2 时, 命题成立. 设 n = k ($k \ge 2$) 时命题成立, 即: f_1, f_2, \dots, f_k 的最大公因子存在.

今看 n=k+1 时的情形. 令 d_k 为 $f_1, f_2, ..., f_k$ 的最大公因子. 令 d 为 d_k 与 f_{k+1} 的最大公因子. 我们证明: d 是 $f_1, f_2, ..., f_k, f_{k+1}$ 的最大公因子. 因子.

首先, d 是 f_1 , f_2 , ..., f_k , f_{k+1} 的公因子. d 当然是 f_{k+1} 的因子. 任取某个 1 至 k 间的 ℓ . 因为 d 是 d_k 的因子, 而 d_k 是 f_ℓ 的因子, 故 d 是 f_ℓ 的因子. 这样, d 确为 f_1 , f_2 , ..., f_k , f_{k+1} 的公因子.

其次, 若 e 是 f_1 , f_2 , ..., f_k , f_{k+1} 的公因子, 则 e 当然是 f_1 , f_2 , ..., f_k 的公因子, 故 e 是 d_k 的因子. 又因为 e 是 f_{k+1} 的因子, 则 e 是 d_k 与 f_{k+1} 的公因子. 这样, e 是 d 的因子.

根据最大公因子的定义, d 一定是 $f_1, f_2, ..., f_k, f_{k+1}$ 的最大公因子. 所以, n=k+1 时, (i) 正确.

(ii) 对 n 用算学归纳法. 显然, n=1 或 n=2 时, 命题成立. 设 n=k $(k\geq 2)$ 时命题成立, 即: 若 d_k 是 $f_1,\,f_2,\,\cdots,\,f_k$ 的最大公因子, 则存在整式 $u_1,\,u_2,\,\cdots,\,u_k$ 使

$$u_1 f_1 + u_2 f_2 + \dots + u_k f_k = d_k.$$

今看 n=k+1 时的情形. 令 d 为 d_k 与 f_{k+1} 的最大公因子. 由 (i) 知, d 是 $f_1, f_2, \cdots, f_k, f_{k+1}$ 的最大公因子. 由 Bézout 等式知, 存在整式 u, u_{k+1} 使

$$ud_k + u_{k+1}f_{k+1} = d. \\$$

根据归纳假设, 存在整式 $v_1, v_2, ..., v_k$ 使

$$v_1f_1+v_2f_2+\cdots+v_kf_k=d_k.$$

这样

$$(uv_1)f_1 + (uv_2)f_2 + \dots + (uv_k)f_k + u_{k+1}f_{k+1} = d.$$

215

8

所以, n = k + 1 时, (ii) 正确.

跟之前一样, 有了最大公因子的概念, 我们可以引出"互素":

定义 设 f_1 , f_2 , ..., f_n 是整式. 若单位是 f_1 , f_2 , ..., f_n 的最大公因子, 则称 f_1 , f_2 , ..., f_n 互素.

下面的命题也是十分自然的.

命题 设 $f_1, f_2, ..., f_n$ 是整式. $f_1, f_2, ..., f_n$ 互素的一个必要与充分条件是: 存在整式 $u_1, u_2, ..., u_n$ 使

$$u_1 f_1 + u_2 f_2 + \dots + u_n f_n = 1.$$

证 先看必要性. 显然; 这是上个命题的结果.

再看充分性. 设 d 是 f_1, f_2, \cdots, f_n 的最大公因子. 因为 $u_1f_1+u_2f_2+\cdots+u_nf_n=1,$ 故 d 是 1 的因子. 这样, d 一定是单位.

命题 设 f_1 , f_2 , ..., f_n , f 是整式. 若 f_1 与 f 互素, f_2 与 f 互素..... f_n 与 f 互素, 则 $f_1 f_2 \cdots f_n$ 与 f 互素.

证 用算学归纳法. n=1 时, 显然. 设 $f_1f_2\cdots f_{n-1}$ 与 f 互素. 因为 f_n 与 f 互素, 故 $f_1f_2\cdots f_{n-1}\cdot f_n$ 与 f 互素.

命题 设整式 $f_1, f_2, ..., f_n$ 不全是零.

- (i) f_1, f_2, \cdots, f_n 的最大公因子 d 不是零;
- (ii) 任取 1 至 n 间的整数 ℓ , 必有 (唯一的) 整式 g_{ℓ} 使 $f_{\ell}=dg_{\ell}$;
- (iii) 单位是 $g_1, g_2, ..., g_n$ 的最大公因子; 换句话说, $g_1, g_2, ..., g_n$ 互素;
- (iv) 反过来, 若整式 u_1, u_2, \cdots, u_n 互素, 则 w 是 wu_1, wu_2, \cdots, wu_n 的最大公因子.

证 (i) 零一定不是非零整式的因子, 故零不是 f_1, f_2, \cdots, f_n 的公因子, 当然也不是最大公因子.

- (ii) 既然 d 是最大公因子, 当然也是公因子. 对 f_{ℓ} 而言, 由因子的定义, 知: 存在整式 g_{ℓ} 使 $f_{\ell} = dg_{\ell}$. 现在看唯一性. 假定 $f_{\ell} = dg_{\ell} = dg_{\ell}'$. 因为 $d \neq 0$, 故可从等式二边消去 d, 即 $g_{\ell} = g_{\ell}'$.
- (iii) 设 g_1, g_2, \cdots, g_n 的最大公因子是 δ . 这样, 由 (ii), 知: 对任意 g_ℓ , 有整式 h_ℓ 使 $g_\ell = \delta h_\ell$. 所以

$$f_{\ell} = dg_{\ell} = d(\delta h_{\ell}) = (d\delta)h_{\ell}.$$

所以 $d\delta$ 是 f_1 , f_2 , ..., f_n 的公因子. 所以 $d\delta$ 是 d 的因子. d 显然是 $d\delta$ 的因子, 故 $d\delta = \varepsilon d$, 其中 ε 是单位. 因为 $d \neq 0$, 故可从等式二边消去 d, 即 $\delta = \varepsilon$.

(iv) 若 w = 0, 命题显然成立: 0, 0, ..., 0 的最大公因子当然是 0. 下设 $w \neq 0$.

w 显然是 wu_1, wu_2, \cdots, wu_n 的公因子. 设 ws 是 wu_1, wu_2, \cdots, wu_n 的最大公因子, 这里 s 是某个整式. 由 (ii), 对每个 wu_ℓ , 都有整式 q_ℓ 使 $wu_\ell = wsq_\ell$. 因为 $w \neq 0$, 故可从等式二边消去 w, 即 $u_\ell = sq_\ell$. 这样, s 是 u_1, u_2, \cdots, u_n 的公因子, 故 s 是单位的因子, 即 s 是单位. 所以 w 是 wu_1, wu_2, \cdots, wu_n 的最大公因子.

互素的一个特殊情形是 PRP.

定义 设 f_1 , f_2 , ..., f_n 是整式 $(n \ge 2)$. 若任取 $1 \le n$ 间的二个不同的整数 i, j, 都有 f_i 与 f_j 互素, 则 f_1 , f_2 , ..., f_n PRP † (to be pairwise relatively prime).

为方便, 若 f 是单位, 我们也说 "f PRP" (这相当于定义了 n=1 时 PRP 的意义).

例 设 $f_1 = x$, $f_2 = x + 3$, $f_3 = x - 1$. 因为 f_1 与 f_2 互素, f_2 与 f_3 互素, f_3 与 f_1 互素, 故 f_1 , f_2 , f_3 PRP. 读者不难发现: f_1 , f_2 , f_3 互素.

一般地, 我们有

[†]因为作者的汉语不是很好, 所以作者用英语缩写表示这个概念. 作为参考, 作者用英语定义 PRP: A list of polynomials p_1, p_2, \cdots, p_n is said to be *pairwise relatively prime* if p_i and p_j are relatively prime for any two distinct integers i, j in $\{1, 2, \cdots, n\}$.

命题 设整式 $f_1, f_2, ..., f_n$ PRP. 则 $f_1, f_2, ..., f_n$ 互素.

证 用算学归纳法. n=1 时, f_1 是单位, 故 f_1 "互素". n=2 时, f_1 与 f_2 PRP 相当于 f_1 与 f_2 互素.

设 n = s 时命题成立. 考虑 n = s + 1 的情形.

既然 f_1 , f_2 , …, f_s , f_{s+1} PRP, 那么"暂时地不考虑 f_{s+1} ", 可知 f_1 , f_2 , …, f_s PRP. 所以, 单位 ε 是 f_1 , f_2 , …, f_s 的最大公因子 (归纳假设). 设 d 是 f_1 , f_2 , …, f_s , f_{s+1} 的最大公因子. d 当然是 f_1 , f_2 , …, f_s 的公因子. 所以 d 是 ε 的因子. 故 d 也是单位.

所以, n = s + 1 时, 命题也成立.

ൃ

不过反过来就不一定了.

例 设 $g_1 = 1$, $g_2 = x$, $g_3 = x^2$. 显然, g_1 , g_2 , g_3 互素. 可是, x 是 g_2 与 g_3 的最大公因子. 所以, g_1 , g_2 , g_3 不 PRP.

命题 设整式 f_1, f_2, \cdots, f_n PRP. 设 m_1, m_2, \cdots, m_n 是非负整数. 记 $F_i = f_i^{m_i}, i$ 是 1 至 n 间的整数. 则 F_1, F_2, \cdots, F_n 也 PRP.

证 根据 PRP 的定义, 我们只需证: 若 f 与 g 互素, 且 s, t 是非负整数, 则 f^s 与 g^t 互素.

若 s=0 或 t=0, 因为 1 与任意整式都互素, 故此时显然. 下设 $s\geq 1$ 且 $t\geq 1$.

我们先证: f^s 与 g 互素. 因为 f 与 g 互素, f 与 g 互素……f 与 g 互素"), 故 $f^s = \underbrace{f \cdot f \cdots f}_{s \ f's}$ 与 g 互素.

暂时记 $F = f^s$. 因为 $F \ni g$ 互素, 故 (照搬上段的推理) $F \ni g^t$ 互素.

命题 设整式 f_1 , f_2 , ..., f_n PRP. 则 f_1f_2 ... f_{i-1} 与 f_i 互素 (i 是 1, 2, ..., n 中的数). 我们约定: 0 个整式的和为 0, 而 0 个整式的积为 1. 所以, i=1 时, 1 当然与 f_1 互素.

证 i=1 时, 显然. 设 $i\geq 2$. 因为 f_1 与 f_i 互素, f_2 与 f_i 互素…… f_{i-1} 与 f_i 互素, 故 $f_1\cdot f_2\cdots f_{i-1}$ 与 f_i 互素.

评注 设六整式 f_1 , f_2 , …, f_6 PRP. 作者问: $f_1f_4f_6$ 与 f_3 互素吗? 当然了. 为什么呢?

既然 f_1, f_2, \dots, f_6 PRP, 那么 $f_1, f_4, f_6, f_3, f_2, f_5$ 也 PRP, 对不对? 令 $g_1 = f_1, g_2 = f_4, g_3 = f_6, g_4 = f_3, g_5 = f_2, g_6 = f_5, 则 <math>g_1, g_2, \dots, g_6$ PRP. 所以, 根据刚证过的命题, $g_1g_2g_3$ 与 g_4 互素. 因为 $g_1g_2g_3 = f_1f_4f_6, g_4 = f_3$,故 $f_1f_4f_6$ 与 f_3 互素.

本评注的目的是告诉读者,不要死学作者所讲述的知识. 读者要灵活运用所学的知识,并逐渐适应"显然""当然"等词语. 的确,作者可以写得更详细,但这没有必要. "学而不思则罔,思而不学则殆."读者一定要边学边想! 还有,如果读者真地想学作者讲述的知识,作者建议读者不要狼吞虎咽.相信作者:作者不会害读者的![†]

命题 设整式 $f_1, f_2, ..., f_n$ PRP. 若 $f_1, f_2, ..., f_i$ 都是 f 的因子,则 $f_1f_2...f_i$ 也是 f 的因子 (i 是 1, 2, ..., n 中的数). 特别地, i = n 时, $f_1f_2...f_n$ 是 f 的因子.

证 用算学归纳法. i=1 时, 显然. 设 $f_1f_2\cdots f_{i-1}$ 是 f 的因子 (归纳假设). 因为 f_i 也是 f 的因子, 且 $f_1f_2\cdots f_{i-1}$ 与 f_i 互素, 故 $f_1f_2\cdots f_{i-1}\cdot f_i$ 也是 f 的因子.

现在, 我们讨论不可约的整式.

定义 设整式 f 既不是 0, 也不是单位.

- (i) 若存在二个不全为单位的整式 f_1 , f_2 使 $f=f_1f_2$, 则 f 是可约的 (reducible).
- (ii) 若 f 不是可约的, 则说 f 是不可约的 (irreducible). 换言之, 若 f 是不可约的, 则 "整式 f_1 , f_2 使 $f = f_1f_2$ " 可推出 " f_1 是单位或 f_2 是单位".

评注 0 或单位既不是可约的, 也不是不可约的.

[†]敏锐的读者应该注意到了: 此评注是从"整数的一些性质"复制过来的; "六整数" 被替换为 "六整式"; 别的没变.

例 设 t 是数. 则 x-t 是不可约的.

设整式 f_1, f_2 适合 $f_1f_2 = x - t$. 所以, $\deg f_1 + \deg f_2 = \deg(x - t) = 1$. f_1 与 f_2 当然是非零的. 这样, $\deg f_1$ 与 $\deg f_2$ 都是非负整数. 所以, $\deg f_1$ 与 $\deg f_2$ 必定有一个是 0, 另一个是 1. 无妨假设 $\deg f_1 = 0$. 所以 f_1 是非零数. 所以 f_1 是单位. 类似地, 若 $\deg f_2 = 0$, 则 f_2 是单位.

不管怎么样, 我们已经证明了"整式 f_1 , f_2 使 $x-t=f_1f_2$ "可推出" f_1 是单位或 f_2 是单位". 这样, x-t 是不可约的.

例 x^2-1 是可约的: $x^2-1=(x+1)(x-1)$, 而 x+1 不是单位, x-1 也不是单位.

评注 作者在此有必要提醒读者: 不可约的整式与整式的系数所在范围密切相关.

我们看 $f=x^2-2$. 显然, 读者在中学可能已经知道, "这没法再 (在有理数范围里)'分解'了". 的确, f 作为有理系数整式是不可约的. 不过, 如果视 f 为实系数整式, 则可继续将 f 写为 $(x+\sqrt{2})(x-\sqrt{2})$. 类似地, 若视 $g=x^2+1$ 为实系数整式, 则 g "也没办法再 (在实数范围里)'分解'了". 可是, 若视 g 为复系数整式, 则 $g=(x+\mathrm{i})(x-\mathrm{i})$.

所以,除非语境明确 (或者系数所在范围无关紧要), 我们总是说"某整式作为有理 (实、复) 系数整式是不可约的".

命题 设整式 p 既不是 0, 也不是单位. 设 ε 是单位. 若 p 是不可约的, 则 εp 也是不可约的.

证 设二整式 f_1 , f_2 使 $\varepsilon p = f_1 f_2$. 所以, $p = (\varepsilon^{-1} f_1)(f_2)$. 因为 p 是不可约的, 故 $\varepsilon^{-1} f_1$ 是单位或 f_2 是单位. 这也就是说, f_1 是单位或 f_2 是单位. 所以, εp 是不可约的.

例 由上个命题可知: 1 次整式一定是不可约的.

命题 设整式 p 既不是 0, 也不是单位. 下述四命题等价:

- (i) 若整式 f_1 , f_2 使 $f = f_1 f_2$, 则 f_1 是单位或 f_2 是单位;
- (ii) 对任意整式 f, 要么 p 是 f 的因子, 要么 p 与 f 互素 (二者不会同时发生);

- (iii) 若 f, g 是整式, 且 p 是 fg 的因子, 则 p 是 f 的因子, 或 p 是 g 的因子;
 - (iv) 不存在整式 f_1 , f_2 使 $p = f_1 f_2$, 且 $\deg f_1 < \deg p$, $\deg f_2 < \deg p$.
- **证** (i) \Rightarrow (ii): 任取整式 f. 设 d 是 p 与 f 的最大公因子. 所以, 存在整式 g 使 p = dg. 所以, d 是单位或 g 是单位. 若 d 是单位, 则单位是 p 与 f 的最大公因子, 即 p 与 f 互素; 若 g 是单位, 则 $d = pg^{-1}$, 故 p 是 f 的因子.

若二者同时发生, 则 d 是单位且 g 是单位, 故 p 也是单位. 这与 p 不是单位矛盾.

- $(ii) \Rightarrow (iii)$: 若 p 是 f 的因子, 则不必证了. 今假设 p 不是 f 的因子. 所以, p 与 f 互素. 因为 p 是 fg 的因子, 故 p 一定是 g 的因子.
- (iii) \Rightarrow (iv): 反证法. 设 $p = f_1 f_2$, 且 $\deg f_1 < \deg p$, $\deg f_2 < \deg p$. 因为 $p \neq 0$, 故 $f_1 \neq 0$, 且 $f_2 \neq 0$. 所以, $\deg f_1 \geq 0$, 且 $\deg f_2 \geq 0$. 既然 $p = f_1 f_2$, p 当然是 $f_1 f_2$ 的因子. 所以, p 是 f_1 的因子, 或 p 是 f_2 的因子. 若 p 是 f_1 的因子,则存在整式 g_1 使 $f_1 = pg_1$. 因为 $f_1 \neq 0$,故 $g_1 \neq 0$. 这样, $\deg g_1 \geq 0$. 所以 $\deg f_1 = \deg f_1 + \deg f_2 \geq \deg f_2$. 这与假定 $\deg f_1 < \deg f_2 \geq \deg f_1$. 类似地,若 $f_1 \in f_2$ 的因子,也有 $\deg f_2 \geq \deg f_2$,矛盾! 综上,这样的 $f_1 \in f_2$ 不存在.
- $(iv)\Rightarrow (i)$: 这说明: 若整式 $f_1,\,f_2$ 使 $p=f_1f_2,\,\mathbb{M}\,\deg f_1\geq \deg p$ 或 $\deg f_2\geq \deg p$. 若 $\deg f_1\geq \deg p,\,\mathbb{M}\,\deg p=\deg f_1+\deg f_2\geq \deg p+\deg f_2,$ 故 $\deg f_2\leq 0,\,\mathbb{M}\,f_2$ 是非零数,即 f_2 是单位. 类似地,若 $\deg f_2\geq \deg p,\,\mathbb{M}\,f_1$ 是单位.

评注 利用 (iii) 与算学归纳法, 读者可得如下结论 (作为练习):

设 f_1, f_2, \cdots, f_n 是整式. 设整式 p 是不可约的. 若 p 是 $f_1 f_2 \cdots f_n$ 的因子, 则存在 $1 \subseteq n$ 间的整数 ℓ , 使 p 是 f_ℓ 的因子.

评注 设整式 f 既不是 0, 也不是单位. (iv) 表明, "f 是可约的"的一个必要与充分条件是"存在二个整式 f_1 , f_2 , 使 $f = f_1 f_2$, 且 $\deg f_1 < \deg f$, $\deg f_2 < \deg f$ ".

事实上, $\deg f_1 \geq 1$, 且 $\deg f_2 \geq 1$. 反证法. 设 $\deg f_1 < 1$. 因为 $f \neq 0$, 故 $f_1 \neq 0$, 即 $\deg f_1 \geq 0$. 所以 $\deg f_1 = 0$. 所以 $\deg f_2 = 0 + \deg f_2 = 0$

 $\deg f_1 + \deg f_2 = \deg f > \deg f_2$. 这是矛盾! 类似地, 若 $\deg f_2 < 1$, 则 $\deg f_1 = \deg f > \deg f_1$. 这也是矛盾.

综上, 我们得到了一个更好用的命题: "f 是可约的"的一个必要与充分条件是"存在二个整式 f_1 , f_2 , 使 $f = f_1 f_2$, 且 $1 \le \deg f_1 < \deg f$, $1 \le \deg f_2 < \deg f$ ".

评注 设 p, q 是不可约的整式. 要么 p 是 q 的相伴, 要么 p 与 q 互素 (二者不会同时发生).

为什么呢? 若 p 与 q 互素, 则不必论证了. 所以, 我们假定 p 与 q 不互素. 所以 p 一定是 q 的因子 (因为 p 是不可约的), 且 q 一定是 p 的因子 (因为 q 是不可约的). 所以, p 与 q 相伴.

若 p 与 q 相伴, 且 p 与 q 互素, 则有单位 ε 使 $q = p\varepsilon$. 故 p 是 p 与 q 的公因子. 从而 p 是单位的因子. 所以 p 是单位. 这跟 p 是不可约的矛盾!

下面是关于不可约的整式的积的命题.

命题 设整式 $p_1, p_2, ..., p_m, q_1, q_2, ..., q_n$ 都是不可约的. 设

$$p_1 p_2 \cdots p_m = q_1 q_2 \cdots q_n.$$

- (i) m = n;
- (ii) 可以适当地调换 q_1, q_2, \cdots, q_m (注意, n=m) 的顺序, 使任取 1 至 m 间的整数 ℓ, p_ℓ 与 q_ℓ 相伴 (注意: 调换顺序后的 q_ℓ 不一定跟原来的 q_ℓ 相等!).
- 证 对等式左侧的不可约的整式的数目 m 用算学归纳法. 当 m=1 时, 有

$$p_1 = q_1 q_2 \cdots q_n.$$

先证明: n=1. 反证法. 设 n>1. 因为 $p_1=q_1q_2\cdots q_n$, 故 p_1 是某个 q_i 的因子 (i 是某个 1 至 n 间的整数). 因为乘法可交换, 不失一般性, 设 p_1 是 q_1 的因子. 因为 q_1 是不可约的, 且 q_1 与 p_1 不是互素的, 故 q_1 也是 p_1 的因子. 所以, 存在单位 ε 使 $q_1=\varepsilon p_1$. 进而

$$p_1=(\varepsilon p_1)q_2\cdots q_n=p_1(\varepsilon q_2)\cdots q_n.$$

因为 $p_1 \neq 0$, 故可从等式二边消去 p_1 , 即

$$1=(\varepsilon q_2)\cdots q_n.$$

因为 q_2 是不可约的, 故 εq_2 也是不可约的. 上式表明, εq_2 是 1 的因子, 故 εq_2 是单位. 这与假定矛盾! 所以, n 不可高于 1. 这样, n=1.

既然 n=1, 那么 $p_1=q_1$. 所以, 不必调换顺序即可知 p_1 与 q_1 相伴. 所以, m=1 时, 命题成立.

假定 m=k 时, 命题成立. 现在看 m=k+1 时的情形. 设 $p_1, p_2, ..., p_k, p_{k+1}, q_1, q_2, ..., q_n$ 是不可约的. 设

$$p_1p_2\cdots p_kp_{k+1}=q_1q_2\cdots q_n.$$

因为 p_1 是 $q_1q_2\cdots q_n$ 的因子, 故 p_1 是某个 q_j 的因子 (j 是某个 1 至 n 间的整数). 因为乘法可交换, 不失一般性, 设 p_1 是 q_1 的因子. 因为 q_1 是不可约的, 且 q_1 与 p_1 不是互素的, 故 q_1 也是 p_1 的因子. 所以, 存在单位 ε' 使 $q_1=\varepsilon'p_1$. 进而

$$p_1p_2\cdots p_kp_{k+1}=(\varepsilon'p_1)q_2\cdots q_n=p_1(\varepsilon'q_2)\cdots q_n.$$

因为 $p_1 \neq 0$, 故可从等式二边消去 p_1 , 即

$$p_2\cdots p_k p_{k+1} = (\varepsilon'q_2)\cdots q_n.$$

因为 q_2 是不可约的, 故 $\varepsilon'q_2$ 也是不可约的. 上式左侧的不可约的整式的数目是 k. 根据归纳假设, n-1=k, 即 n=k+1. 这证明了 m=k+1 时 (i) 成立.

前面已证得,适当地调换 q_1, q_2, \cdots, q_n 的顺序,可使 p_1 与 q_1 相伴.根据归纳假设,可以适当地调换 $\varepsilon'q_2, \cdots, q_{k+1}$ (注意,n=k+1) 的顺序,使任取 3 至 k+1 间的整数 u, p_u 与 q_u 相伴.当然 p_2 与 $\varepsilon'q_2$ 也相伴.因为 $\varepsilon'q_2$ 与 q_2 相伴,所以 p_2 与 q_2 相伴.把这些事实放在一块儿,就是:可以适当地调换 $q_1, q_2, \cdots, q_{k+1}$ 的顺序,使任取 1 至 k+1 间的整数 ℓ, p_ℓ 与 q_ℓ 相伴.这样,m=k+1 时,(ii) 成立.

命题 设整式 f 既不是 0,也不是单位. 存在不可约的整式 $p_1, p_2, ..., p_m$ 使

$$f = p_1 p_2 \cdots p_m.$$

证 对 f 的次 N 用算学归纳法. 因为 f 既不是 0, 也不是单位, 故 $N \ge 1$. N = 1 时, f = ax + b, 这里 a, b 是数, 且 $a \ne 0$. 我们已经知道, 1 次整式是不可约的. 这样, f 是不可约的, 故存在不可约的整式 $p_1 = f$ 使 $f = p_1$. 这样, N = 1 时, 命题成立.

设 $N \le k \ (k \ge 1)$ 时,命题成立.考虑 N = k + 1.若 f 是不可约的,则存在不可约的整式 $p_1 = f$ 使 $f = p_1$.若 f 是可约的,则存在二整式 f_1, f_2 ,使 $f = f_1 f_2$,且 $1 \le \deg f_1 < \deg f$, $1 \le \deg f_2 < \deg f$.所以 $\deg f_1 \le \deg f - 1 = k$, $\deg f_2 \le \deg f - 1 = k$.根据归纳假设,存在不可约的整式 $p_1, p_2, ..., p_i, p_{i+1}, p_{i+2}, ..., p_m$ 使

$$f_1 = p_1 p_2 \cdots p_i, \quad f_2 = p_{i+1} p_{i+2} \cdots p_m.$$

所以

$$f = f_1 f_2 = p_1 p_2 \cdots p_i p_{i+1} p_{i+2} \cdots p_m.$$

故 N = k + 1 时, 命题也成立.

合并上二个命题, 可得

命题 设整式 f 既不是 0, 也不是单位.

(i) 存在不可约的整式 p_1, p_2, \dots, p_m 使

$$f = p_1 p_2 \cdots p_m;$$

(ii) 若 $q_1, q_2, ..., q_m, s_1, s_2, ..., s_n$ 是不可约的整式, 且

$$f = q_1 q_2 \cdots q_m = s_1 s_2 \cdots s_n,$$

则 m=n, 且可以适当地调换 $s_1,\,s_2,\,\cdots,\,s_m$ 的顺序, 使任取 1 至 m 间的整数 $\ell,\,q_\ell$ 与 s_ℓ 相伴 (注意: 调换顺序后的 s_ℓ 不一定跟原来的 s_ℓ 相等!).

设整式 f 既不是 0, 也不是单位. 利用上个命题, 我们可以方便地定出 f 的因子.

命题 设整式 f 既不是 0, 也不是单位. 设 p_1, p_2, \cdots, p_m 是不可约的整式, 且

$$f = p_1 p_2 \cdots p_m$$
.

f 的因子必为

$$\varepsilon p_{j_1} p_{j_2} \cdots p_{j_s},$$

其中 ε 是单位, $j_1, j_2, ..., j_s$ 是 1, 2, ..., m 中 s 个不同的数 (s 可取 0; 此时, 这就是单位).

证 从 1, 2, ..., m 中选出 s 个不同的数 $j_1, j_2, ..., j_s$, 那么还剩 m-s 个数未被挑选. 记这 m-s 个数为 $j_{s+1}, ..., j_m$. 由于

$$\begin{split} f &= p_1 p_2 \cdots p_m \\ &= (p_{j_1} p_{j_2} \cdots p_{j_s}) (p_{j_{s+1}} \cdots p_{j_m}) \\ &= (\varepsilon p_{j_1} p_{j_2} \cdots p_{j_s}) (\varepsilon^{-1} p_{j_{s+1}} \cdots p_{j_m}), \end{split}$$

且 $\varepsilon^{-1}p_{j_{s+1}}\cdots p_{j_m}$ 是整式, 故 $\varepsilon p_{j_1}p_{j_2}\cdots p_{j_s}$ 是 f 的因子.

设 g 是 f 的因子. 我们证明: g 一定能写为 (★) 的形式.

首先, g 一定不是 0. 若 g 是单位, 取 s=0, g 即可写为 (\star) 的形式. 现在设 g 既不是 0, 也不是单位.

设整式 h 使 f = gh. h 当然不是 0. 若 h 是单位, 则

$$g = h^{-1} f = h^{-1} p_1 p_2 \cdots p_m.$$

 h^{-1} 也是单位, 且 1, 2, ..., m 当然是 1, 2, ..., m 中 m 个不同的数.

若 h 不是单位, 则存在不可约的整式 $q_1,\,q_2,\,\cdots,\,q_s,\,q_{s+1},\,\cdots,\,q_n$ 使

$$g=q_1q_2\cdots q_s,\quad h=q_{s+1}\cdots q_n.$$

所以

$$f = gh = q_1q_2\cdots q_sq_{s+1}\cdots q_n$$
.

从而 n=m, 且可以适当地调换 p_1, p_2, \cdots, p_m 的顺序, 使任取 $1, 2, \cdots, m$ 中的数 ℓ , q_ℓ 与 p_ℓ 相伴. 但是, 我们注意到, 调换后的 p_ℓ 跟题设的 p_ℓ 不一定是相等的, 所以我们稍微变通一下.

我们把 s 个不可约的整式 $q_1, q_2, ..., q_s$ 写在左边, 把 m 个不可约的整式 $p_1, p_2, ..., p_m$ 写在右边:

$$q_1,q_2,\cdots,q_s; \qquad p_1,p_2,\cdots,p_m.$$

对 q_1 而言,肯定有整数 j_1 使 q_1 不与 p_i $(i < j_1)$ 相伴 (从左向右看诸 p_ℓ 即可),但 q_1 与 p_{j_1} 相伴. 也就是说,存在单位 ε_1 使 $q_1 = \varepsilon_1 p_1$. 去掉左边的 q_1 与右边的 p_{j_1} ,有

$$q_2,\cdots,q_s; \qquad p_1,\cdots,p_{j_1-1},p_{j_1+1},\cdots,p_m.$$

类似地, 对 q_2 而言, 肯定有整数 j_2 使 q_2 不与 p_i $(i < j_2, i \neq j_1)$ 相伴, 但 q_2 与 p_{j_2} 相伴. 也就是说, 存在单位 ε_2 使 $q_2 = \varepsilon_2 p_{j_2}$.

反复地执行此事, 可知: 存在 $1, 2, \cdots, m$ 中 s 个不同的数 j_1, j_2, \cdots, j_s ,存在 s 个单位 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_s$ 使 $q_\ell = \varepsilon_\ell p_{j_\ell}$. 所以

$$\begin{split} &q_1q_2\cdots q_s\\ &=(\varepsilon_1p_{j_1})(\varepsilon_2p_{j_2})\cdots(\varepsilon_sp_{j_s})\\ &=(\varepsilon_1\varepsilon_2\cdots\varepsilon_s)p_{j_1}p_{j_2}\cdots p_{j_s}\\ &=\varepsilon p_{j_1}p_{j_2}\cdots p_{j_s}. \end{split}$$

我们以一个简单的命题结束本文.

命题 设 f_1 , f_2 , …, f_n 是整式. f_1 , f_2 , …, f_n 互素的一个必要与充分条件是: 任取不可约的整式 p, 存在某个 f_i , 使 p 不是 f_i 的因子.

证 先看必要性. 反证法. 假定结论不成立, 即: 存在不可约的整式 p, 使任取 f_i , p 是 f_i 的因子. 这样, p 就是 f_1 , f_2 , …, f_n 的公因子. 所以, p 是单位的因子. 矛盾!

再看充分性. 还是反证法. 假定结论不成立, 即: 设 d 是 f_1 , f_2 , …, f_n 的最大公因子, 且 d 不是单位. 若 d 是 0, 则 f_1 , f_2 , …, f_n 全是 0, 故任意的不可约的整式都是 f_1 , f_2 , …, f_n 的公因子, 矛盾! 若 d 不是 0, 也不是单位, 那么一定存在不可约的整式 p_0 , 使 p_0 是 d 的因子. 所以, 存在不可约的整式 p_0 , 使任取 f_i , p_0 是 f_i 的因子. 矛盾!

评注 作者说一件不是很重要的事. 事实上, 本文改编自"整数的一些性质". 作者干了这么几件事: (i) 将大量的"整数"替换为"整式"; (ii) 修改一些细节; (iii) 修改了几个例. (i) 是最容易的, 而 (iii) 是最繁的.

本文就到这里. 再见, 亲爱的读者朋友!

复习 0

本文的目标是帮助读者回顾所学的知识.

本文不会有新的东西.

为方便, 我们用 I 表示"整数集"或"整式集"[†]; 相应地, "f 是整数"或"f 是整式"统称"f 是 I 的元". 这里的"整式"是系数是 $\mathbb F$ 的元的整式 (也即 $\mathbb F$ 上的整式)——毕竟, 整系数整式不一定有带余除法, 故没法像 $\mathbb F$ 上的整式那样讨论整系数整式.

作者会列出定义与命题. 读者可试着写出命题的证明. 读者不必写出与作者的证明完全一样的证明; 但是, 读者至少要能使推理说服自己.

在正式进入复习前,作者希望读者能回想起三件事:

(i) 整数 f 的绝对值是

$$|f| = \begin{cases} f, & f \ge 0; \\ -f, & f < 0. \end{cases}$$

若整数 g, h 适合 $f = gh, 则 |f| = |g| \cdot |h|$.

(ii) 整式 f 的次用 $\deg f$ 表示. 零整式的次是 $-\infty$. 若整式 g, h 适合 f=gh, 则

$$\deg f = \deg g + \deg h.$$

(iii) I 的乘法适合消去律. 设 f, g, h 是 I 的元. 若 $f \neq 0$, 且 fg = fh, 则 g = h.

好. 先从 I 的单位开始.

定义 设 f 是 I 的元. 若存在 I 的元 g 使 fg = 1, 则说 f 是单位. g 称为 f 的逆.

命题 1 是单位.

命题 0 一定不是单位.

命题 设 f 是单位. 若 I 的元 g, h 适合 fg = fh = 1, 则 g = h.

[†] I stands for integral domain.

定义 设 f 是单位. 上个命题指出, f 的逆一定是唯一的 (根据单位的定义, f 的逆当然存在). 我们用 f^{-1} 表示 f 的逆.

命题 设 f 是单位. f 的逆 f^{-1} 也是单位, 且 $(f^{-1})^{-1} = f$.

命题 设 $f_1, f_2, ..., f_n$ 是单位. 则 $f_1 f_2 ... f_n$ 也是单位, 且

$$(f_1f_2\cdots f_n)^{-1}=f_n^{-1}\cdots f_2^{-1}f_1^{-1}.$$

定义 I 的全体单位称为 I 的单位群.

命题 (i) 整数的单位群恰由 1 与 -1 作成.

(ii) 整式的单位群恰由全体非零数作成.

评注 虽然整数与整式很相似, 但有的时候我们不得不单独地写出整数与整式适合的性质.

整数与整式都有带余除法.

命题 设 f 是非零整数. 对任意整数 q, 存在唯一的一对整数 q, r 使

$$g = qf + r$$
, $0 \le r < |f|$.

一般称其为带余除法: q 就是商; r 就是余数.

命题 设 f 是非零整式. 对任意整式 g, 存在唯一的一对整式 g, r 使

$$g = qf + r$$
, $\deg r < \deg f$.

一般称其为带余除法: q 就是商; r 就是余式.

在 I 里, 概念 "因子" 很重要——它给出了 I 的很多性质.

定义 设 f, g 是 I 的元. 若存在 I 的元 h 使 f = gh, 则说 g 是 f 的因子.

命题 (i) 单位是任意 *I* 的元的因子; 单位的因子一定是单位.

(ii) 任意 I 的元都是 0 的因子; 非零的 I 的元的因子一定不是 0.

带余除法与因子有密切的关系.

命题 设 f, g 是 I 的元, 且 $g \neq 0$. g 是 f 的因子的一个必要与充分条件是: g 除 f 的余数 (余式) 为 0.

下面是因子的基本的性质.

命题 设 $f, g, h \in I$ 的元. 因子适合如下性质:

- (i) f 是 f 的因子;
- (ii) 若 h 是 g 的因子, 且 g 是 f 的因子, 则 h 是 f 的因子;
- (iii) 若 f 是 g 的因子, 且 g 是 f 的因子, 则存在单位 g 使 f = qg;
- (iv) 设 k, ℓ 是 I 的元. 若 h 是 f 的因子, 且 h 是 g 的因子, 则 h 是 $kf \pm \ell g$ 的因子;
 - (v) 若 ε_1 , ε_2 是单位, 且 g 是 f 的因子, 则 $\varepsilon_2 g$ 是 $\varepsilon_1 f$ 的因子.

为方便, 我们定义一个新词.

定义 设 f, g 是 I 的元. 若存在单位 ε 使 $f = \varepsilon g$, 则说 f 是 g 的相伴. 因为

$$q = 1q = (\varepsilon^{-1}\varepsilon)q = \varepsilon^{-1}(\varepsilon q) = \varepsilon^{-1}f,$$

故 g 当然也是 f 的相伴. 所以, 我们说 f 与 g 相伴.

显然, 因为 f = 1f, 故 f = f 相伴. 上面的文字已经说明 f = g 相伴相当于 g = f 相伴. 我们还有下面的

命题 设 f, g, h 是 I 的元. 若 f 与 g 相伴, 且 g 与 h 相伴, 则 f 与 h 相伴.

根据因子的性质 (iii), 我们有

命题 设 f, g 是 I 的元. f 与 g 相伴的一个必要与充分条件是 f 是 g 的因子, 且 g 是 f 的因子.

定义 设 f, g 是 I 的元. 若 d 是 f 的因子, 且 d 是 g 的因子, 则 d 是 f 与 g 的公因子.

评注 若 d 是 f 与 g 的公因子, 则 d 当然也是 g 与 f 的公因子. 换句话说, 公因子与次序无关.

命题 单位是任意二个整式的公因子.

现在我们引出"最大公因子"的概念.

定义 设 f, g 是 I 的元. 适合下述二性质的 I 的元 d 是 f 与 g 的最大公因子:

- (i) d 是 f 与 g 的公因子;
- (ii) 若 e 是 f 与 g 的公因子, 则 e 是 d 的因子.

评注 若 d 是 f 与 g 的最大公因子,则 d 当然也是 g 与 f 的最大公因子. 换句话说,最大公因子与次序无关. 这是因为公因子与次序无关.

由定义立即可得

命题 设 f, g 是 I 的元. 若 d_1 与 d_2 都是 f 与 g 的最大公因子, 则 d_1 与 d_2 相伴.

评注 由此可见, 最大公因子不一定是唯一的. 但这不是很重要.

命题 设f是I的元.

- (i) $f \neq 0$ 与 f 的最大公因子.
- (ii) 设 ε 是单位. ε 是 ε 与 f 的最大公因子.

命题 设 f, g, q 是 I 的元. 设 f 与 g 的最大公因子是 d_1 ; 设 f - gq 与 g 的最大公因子是 d_2 . 则 d_1 与 d_2 相伴.

命题 设 $f, g \in I$ 的元. $f \in g$ 的最大公因子一定存在.

命题 "辗转相除法"是计算 I 的二个元的最大公因子的一个方法.

根据辗转相除法, 我们有

命题 设 f, g 是 I 的元. 设 d 是 f 与 g 的最大公因子. 存在 I 的元 s 与 t 使

$$sf + tq = d$$
.

这个等式的一个名字是 Bézout 等式.

有了最大公因子的概念, 我们可以引出"互素":

定义 设 f, g 是 I 的元. 若单位是 f 与 g 的最大公因子, 则称 f 与 g 互素.

评注 因为最大公因子与次序无关,故互素也与次序无关. 换句话说,"f 与 q 互素"相当于"q 与 f 互素".

命题 显然,单位与 I 的任意元都互素.

下面的命题极重要:

命题 设 f, g 是 I 的元. f 与 g 互素的一个必要与充分条件是: 存在 I 的元 s, t 使

$$sf + tg = 1.$$

下面是几个关于互素的性质.

命题 设 $f, q, h \in I$ 的元. 互素有如下性质:

- (i) 若 h 是 fg 的因子, 且 h 与 f 互素, 则 h 是 g 的因子;
- (ii) 若 f 与 g 互素, 且 f 与 h 互素, 则 f 与 gh 互素;
- (iii) 若 f 是 h 的因子, g 是 h 的因子, 且 f 与 g 互素, 则 fg 是 h 的因子.

现在我们推广公因子、最大公因子、互素的概念.

前面,我们讨论了 I 的二个元的公因子、最大公因子、互素; 现在, 我们从量的角度推广.

定义 设 f_1 , f_2 , ..., f_n 是 I 的元. 若 d 是 f_1 的因子, d 是 f_2 的因子 d 是 f_n 的因子, 则 d 是 f_1 , f_2 , ..., f_n 的公因子.

评注 我们并没有禁止 n 取 1: I 的一个元的 "公因子" 当然是它的因子. 同理, I 的一个元也可以有 "最大公因子"; I 的一个元也可以 "互素".

命题 设 $k_1, k_2, \cdots, k_n, f_1, f_2, \cdots, f_n$ 是 I 的元. 若 d 是 f_1, f_2, \cdots, f_n 的公因子,则 d 是 $k_1f_1+k_2f_2+\cdots+k_nf_n$ 的因子.

定义 设 f_1, f_2, \cdots, f_n 是 I 的元. 适合下述二性质的 I 的元 d 是 f_1, f_2, \cdots, f_n 的最大公因子:

- (i) $d \in f_1, f_2, \dots, f_n$ 的公因子;
- (ii) 若 e 是 d 是 $f_1, f_2, ..., f_n$ 的公因子, 则 e 是 d 的因子.

由定义立即可得

命题 设 f_1 , f_2 , ..., f_n 是 I 的元. 若 d_1 与 d_2 都是 f_1 , f_2 , ..., f_n 的最大公因子, 则 d_1 与 d_2 相伴.

命题 设 $f_1, f_2, ..., f_n$ 是 I 的元.

- (i) $f_1, f_2, ..., f_n$ 的最大公因子存在;
- (ii) 若 d 是 $f_1, f_2, ..., f_n$ 的最大公因子, 则存在 I 的元 $u_1, u_2, ..., u_n$ 使

$$u_1f_1 + u_2f_2 + \dots + u_nf_n = d.$$

跟之前一样, 有了最大公因子的概念, 我们可以引出"互素":

定义 设 f_1 , f_2 , …, f_n 是 I 的元. 若单位是 f_1 , f_2 , …, f_n 的最大公因 子, 则称 f_1 , f_2 , …, f_n 互素.

下面的命题也是十分自然的.

命题 设 f_1, f_2, \cdots, f_n 是 I 的元. f_1, f_2, \cdots, f_n 互素的一个必要与充分条件是: 存在 I 的元 u_1, u_2, \cdots, u_n 使

$$u_1 f_1 + u_2 f_2 + \dots + u_n f_n = 1.$$

命题 设 f_1 , f_2 , ..., f_n , $f \in I$ 的元. 若 f_1 与 f 互素, f_2 与 f 互素..... f_n 与 f 互素, 则 f_1f_2 ... f_n 与 f 互素.

命题 设 I 的元 $f_1, f_2, ..., f_n$ 不全是零.

- (i) f_1, f_2, \dots, f_n 的最大公因子 d 不是零;
- (ii) 任取 1 至 n 间的整数 $\ell,$ 必有 (唯一的) I 的元 g_ℓ 使 $f_\ell=dg_\ell;$
- (iii) 单位是 g_1, g_2, \cdots, g_n 的最大公因子; 换句话说, g_1, g_2, \cdots, g_n 互素;
- (iv) 反过来, 若 I 的元 $u_1,\,u_2,\,\cdots,\,u_n$ 互素, 则 w 是 $wu_1,\,wu_2,\,\cdots,\,wu_n$ 的最大公因子.

互素的一个特殊情形是 PRP.

定义 设 f_1, f_2, \cdots, f_n 是 I 的元 $(n \ge 2)$. 若任取 1 至 n 间的二个不同的整数 i, j, 都有 f_i 与 f_j 互素, 则 f_1, f_2, \cdots, f_n PRP.

为方便, 若 f 是单位, 我们也说 "f PRP" (这相当于定义了 n=1 时 PRP 的意义).

命题 设 I 的元 $f_1, f_2, ..., f_n$ PRP. 则 $f_1, f_2, ..., f_n$ 互素. 不过, 反过来就不一定了.

命题 设 I 的元 $f_1, f_2, ..., f_n$ PRP. 设 $m_1, m_2, ..., m_n$ 是非负整数. 记 $F_i = f_i^{m_i}, i$ 是 1 至 n 间的整数. 则 $F_1, F_2, ..., F_n$ 也 PRP.

命题 设 I 的元 f_1 , f_2 , …, f_n PRP. 则 f_1f_2 … f_{i-1} 与 f_i 互素 (i 是 1, 2, …, n 中的数). 我们约定: I 的 0 个元的和为 0, 而 I 的 0 个元的积为 1. 所以, i = 1 时, 1 当然与 f_1 互素.

命题 设 I 的元 f_1 , f_2 , ..., f_n PRP. 若 f_1 , f_2 , ..., f_i 都是 f 的因子, 则 f_1f_2 ... f_i 也是 f 的因子 (i 是 1, 2, ..., n 中的数). 特别地, i = n 时, f_1f_2 ... f_n 是 f 的因子.

现在, 我们讨论不可约的 I 的元.

定义 设 I 的元 f 既不是 0, 也不是单位.

- (i) 若存在二个不全为单位的 I 的元 f_1 , f_2 使 $f=f_1f_2$, 则 f 是可约的.
- (ii) 若 f 不是可约的, 则说 f 是不可约的. 换言之, 若 f 是不可约的, 则 "I 的元 f_1 , f_2 使 $f=f_1f_2$ " 可推出 " f_1 是单位或 f_2 是单位".

评注 0 或单位既不是可约的, 也不是不可约的.

命题 (i) 2 = -2 是不可约的整数.

(ii) 次为 1 的整式是不可约的整式.

命题 设 I 的元 p 既不是 0, 也不是单位. 设 ε 是单位. 若 p 是不可约的, 则 εp 也是不可约的.

命题 设整数 p 既不是 0, 也不是单位. 下述四命题等价:

- (i) 若整数 f_1 , f_2 使 $f = f_1 f_2$, 则 f_1 是单位或 f_2 是单位;
- (ii) 对任意整数 f, 要么 p 是 f 的因子, 要么 p 与 f 互素 (二者不会同时发生);
- (iii) 若 f, g 是整数, 且 p 是 fg 的因子, 则 p 是 f 的因子, 或 p 是 g 的因子;
 - (iv) 不存在整数 f_1 , f_2 使 $p = f_1 f_2$, $\mathbb{E} |f_1| < |p|$, $|f_2| < |p|$.

命题 设整式 p 既不是 0, 也不是单位. 下述四命题等价:

- (i) 若整式 f_1 , f_2 使 $f=f_1f_2$, 则 f_1 是单位或 f_2 是单位;
- (ii) 对任意整式 f, 要么 p 是 f 的因子, 要么 p 与 f 互素 (二者不会同时发生);
- (iii) 若 f, g 是整式, 且 p 是 fg 的因子, 则 p 是 f 的因子, 或 p 是 g 的因子:
 - (iv) 不存在整式 f_1 , f_2 使 $p = f_1 f_2$, 且 $\deg f_1 < \deg p$, $\deg f_2 < \deg p$.

命题 设 f_1 , f_2 , …, f_n 是 I 的元. 设 I 的元 p 是不可约的. 若 p 是 f_1f_2 … f_n 的因子, 则存在 $1 \subseteq n$ 间的整数 ℓ , 使 p 是 f_ℓ 的因子.

- **命题** (i) 设整数 f 既不是 0, 也不是单位. "f 是可约的"的一个必要与充分条件是"存在二个整数 f_1 , f_2 , 使 $f = f_1 f_2$, 且 $|f_1| < |f|$, $|f_2| < |f|$ ".
- (ii) 设整式 f 既不是 0, 也不是单位. "f 是可约的" 的一个必要与充分条件是"存在二个整式 f_1 , f_2 , 使 $f = f_1 f_2$, 且 $\deg f_1 < \deg f$, $\deg f_2 < \deg f$ ".

命题 设 p, q 是不可约的 I 的元. 要么 p 是 q 的相伴, 要么 p 与 q 互素 (二者不会同时发生).

下面是关于不可约的 I 的元的积的命题.

命题 设 I 的元 $p_1, p_2, ..., p_m, q_1, q_2, ..., q_n$ 都是不可约的. 设

$$p_1 p_2 \cdots p_m = q_1 q_2 \cdots q_n.$$

- (i) m = n;
- (ii) 可以适当地调换 q_1, q_2, \cdots, q_m (注意, n=m) 的顺序, 使任取 1 至 m 间的整数 ℓ, p_ℓ 与 q_ℓ 相伴 (注意: 调换顺序后的 q_ℓ 不一定跟原来的 q_ℓ 相等!).

命题 设 I 的元 f 既不是 0, 也不是单位. 存在不可约的 I 的元 p_1, p_2, \dots, p_m 使

$$f = p_1 p_2 \cdots p_m$$
.

合并上二个命题,可得

命题 设 I 的元 f 既不是 0, 也不是单位.

(i) 存在不可约的 I 的元 $p_1, p_2, ..., p_m$ 使

$$f = p_1 p_2 \cdots p_m;$$

(ii) 若 $q_1, q_2, ..., q_m, s_1, s_2, ..., s_n$ 是不可约的 I 的元, 且

$$f = q_1 q_2 \cdots q_m = s_1 s_2 \cdots s_n,$$

则 m=n, 且可以适当地调换 $s_1,\,s_2,\,\cdots,\,s_m$ 的顺序, 使任取 1 至 m 间的整数 $\ell,\,q_\ell$ 与 s_ℓ 相伴 (注意: 调换顺序后的 s_ℓ 不一定跟原来的 s_ℓ 相等!).

命题 设 I 的元 f 既不是 0, 也不是单位. 设 p_1, p_2, \cdots, p_m 是不可约的整式, 且

$$f = p_1 p_2 \cdots p_m$$
.

f 的因子必为

$$\varepsilon p_{j_1} p_{j_2} \cdots p_{j_s}$$

其中 ε 是单位, j_1, j_2, \dots, j_s 是 1, 2, …, m 中 s 个不同的数 (s 可取 0; 此时, 这就是单位).

命题 设 f_1 , f_2 , ..., f_n 是 I 的元. f_1 , f_2 , ..., f_n 互素的一个必要与充分 条件是: 任取不可约的 I 的元 p, 存在某个 f_i , 使 p 不是 f_i 的因子.

最后, 我们讨论一些整式特有的命题.

整式与整数类似. 不过, 整式与整数也有一些不同. 整数一定是整式, 但整式不一定是整数. 而且, 整式的系数的范围变大或变小时, 有些结论在变化; 当然, 也有一些结论是不变的.

定义 设 f 是整式. 若 f 的系数都是复数,则 f 是复系数整式; 若 f 的系数都是实数,则 f 是实系数整式; 若 f 的系数都是有理数,则 f 是有理系数整式; 若 f 的系数都是整数,则 f 是整系数整式.

因为整式的带余除法不因系数的范围变大而改变, 根据带余除法与因 子的关系, 我们有

- **命题** 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.
- (i) 若存在 K 上的整式 h, 使 f = gh, 则当然存在 E 上的整式 h', 使 f = gh' (不难看出, 取 h' 为 h 即可).
- (ii) 若任取 K 上的整式 h, 都有 $f \neq gh$, 则任取 E 上的整式 h', 都有 $f \neq gh'$.

简单地说,问题 "g 是否是 f 的因子" 的回答不因系数的范围扩大而改变.

- **命题** 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.
- (i) 若存在 K 的单位 ε , 使 $f = g\varepsilon$, 则当然存在 E 上的单位 ε' , 使 $f = g\varepsilon'$ (不难看出, 取 ε' 为 ε 即可).
- (ii) 若任取 K 的单位 ε , 都有 $f \neq g\varepsilon$, 则任取 E 上的单位 ε' , 都有 $f \neq g\varepsilon'$.

简单地说, 问题 "g 是否与 f 相伴" 的回答不因系数的范围扩大而改变.

命题 设整式 $f \neq 0$. 存在唯一的整式 $f_{\rm m}$ 使 $f_{\rm m}$ 与 f 相伴, 且 $f_{\rm m}$ 的首项系数为 1. 这样的 $f_{\rm m}$ 就是 f 的首一的相伴.

命题 设 f, g 是整式, 且 f, g 不全是 0. 存在唯一的整式 d_m , 使:

- (i) $d_{\rm m}$ 是 f 与 g 的最大公因子;
- (ii) $d_{\rm m}$ 的首项系数为 1.
- **命题** 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.
- (i) 设 f = g = 0. 则 f 与 g 的最大公因子是 0. 不管在哪儿 (K 还是 E), 它都是 0.

(ii) 设 f, g 不全是 0. 设 d_K 是 K 上的整式, 首项系数为 1, 且是 f 与 g 的最大公因子. 设 d_E 是 E 上的整式, 首项系数为 1, 且是 f 与 g 的最大公因子. 则 $d_K = d_E$. 简单地说, (不全是 0 的) 整式 f, g 的首项系数为 1 的最大公因子不因系数的范围扩大而改变.

命题 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.

若 f 与 g 在 K 上的整式中互素, 则 f 与 g 的首项系数为 1 的最大公因子是 1. 因为首项系数为 1 的最大公因子不因系数的范围扩大而改变, 故 f 与 g 在 E 上的整式中也互素.

简单地说, 问题"f 是否与 q 互素"的回答不因系数的范围扩大而改变.

姑且复习到这里吧.本文没有练习(作者自己写练习,还得准备练习的解答,对吧?).不过,读者可以参考"高等代数""初等数论"教材;也可以参考成册的习题集.本文当然不是教材;本文只是算学普及文罢了.

辛苦了, 读者! Take a break, will you?

综合除法 237

综合除法

本文的目标是为读者介绍带余除法的一个特殊情况——综合除法 (synthetic division). 当然, 细心的读者一定不会只学到综合除法.

还是老样子: "数"一定是复数 (或实数、有理数); "整式"的系数一定是数.

前面, 我们讨论了整式的一些性质. 我们没有在"查考整式"里讨论那些性质, 是因为当时我们不需要"因子""公因子""最大公因子"等概念. 读者应该还记得, 整式的微商、整式的根、插值、广义二项系数、求和公式等内容是我们讨论的重点. 现在, 我们的方向变了很多.

在讨论整式的根时, 我们曾经为读者介绍过这个命题:

命题 设 f(x) 是 n 次整式 $(n \ge 1)$, a 是数. 则存在 n-1 次整式 q(x) 使

$$f(x) = q(x)(x - a) + f(a).$$

根据带余除法, 这样的 q(x) 一定是唯一的.

这是带余除法的推论. 我们当时并不关心 q(x) 是什么; 我们只关心这个 q(x) 不但存在, 且唯一. 我们用它建立了整式与整式函数的联系: (系数为数的) 整式与整式函数没有本质区别. 但现在, 我们不但关心 q(x) 到底是什么, 我们还要给出一种方便计算 q(x) 的方法——这就是综合除法所干的事情.

综合除法, 原则上, 当然也可以放在"整式的一些性质"里讨论. 不过, 作者为了让"整数的一些性质"与"整式的一些性质"的结构一致, 作者决定专门写二篇文讨论整式独有的东西: 综合除法与重因子. 这么安排, 还有一个好处: 消除了过长的文给读者带来的压力.

例 设 $f(x) = x^6 + x^3 + 1$. 我们计算 x - 2 除 f(x).

我们先用普通的带余除法试试看. 显然, $\deg(x-2) = 1$. 这里, x-2 的 首项系数为 1, 所以我们的计算并不会很复杂. 取

$$q_1(x) = 1 \cdot 1^{-1} \cdot x^{6-1} = x^5.$$

则

$$\begin{split} r_1(x) &= f(x) - q_1(x)(x-2) \\ &= (x^6 + x^3 + 1) - x^5(x-2) \\ &= (x^6 + x^3 + 1) - (x^6 - 2x^5) \\ &= 2x^5 + x^3 + 1. \end{split}$$

 $r_1(x)$ 的次仍不低于 1. 因此, 再来一次. 取

$$q_2(x) = 2 \cdot 1^{-1} \cdot x^{5-1} = 2x^4.$$

则

$$\begin{split} r_2(x) &= r_1(x) - q_2(x)(x-2) \\ &= (2x^5 + x^3 + 1) - 2x^4(x-2) \\ &= (2x^5 + x^3 + 1) - (2x^5 - 4x^4) \\ &= 4x^4 + x^3 + 1. \end{split}$$

 $r_2(x)$ 的次仍不低于 1. 因此, 再来一次. 取

$$q_3(x) = 4 \cdot 1^{-1} \cdot x^{4-1} = 4x^3.$$

则

$$\begin{split} r_3(x) &= r_2(x) - q_3(x)(x-2) \\ &= (4x^4 + x^3 + 1) - 4x^3(x-2) \\ &= (4x^4 + x^3 + 1) - (4x^4 - 8x^3) \\ &= 9x^3 + 1. \end{split}$$

 $r_3(x)$ 的次仍不低于 1. 因此, 再来一次. 取

$$q_4(x) = 9 \cdot 1^{-1} \cdot x^{3-1} = 9x^2.$$

则

$$\begin{split} r_4(x) &= r_3(x) - q_4(x)(x-2) \\ &= (9x^3+1) - 9x^2(x-2) \\ &= (9x^3+1) - (9x^3-18x^2) \\ &= 18x^2+1. \end{split}$$

综合除法 239

 $r_{A}(x)$ 的次仍不低于 1. 因此, 再来一次. 取

$$q_5(x) = 18 \cdot 1^{-1} \cdot x^{2-1} = 18x.$$

则

$$\begin{split} r_5(x) &= r_4(x) - q_5(x)(x-2) \\ &= (18x^2 + 1) - 18x(x-2) \\ &= (18x^2 + 1) - (18x^2 - 36x) \\ &= 36x + 1. \end{split}$$

 $r_5(x)$ 的次仍不低于 1. 因此, 再来一次. 取

$$q_6(x) = 36 \cdot 1^{-1} \cdot x^{1-1} = 36.$$

则

$$\begin{split} r_6(x) &= r_5(x) - q_6(x)(x-2) \\ &= (36x+1) - 36(x-2) \\ &= (36x+1) - (36x-72) \\ &= 73. \end{split}$$

 $r_6(x)$ 的次低于 1. 这样

$$\begin{split} f(x) &= q_1(x)(x-2) + r_1(x) \\ &= q_1(x)(x-2) + q_2(x)(x-2) + r_2(x) \\ &= q_1(x)(x-2) + q_2(x)(x-2) + q_3(x)(x-2) + r_3(x) \\ &= q_1(x)(x-2) + q_2(x)(x-2) + q_3(x)(x-2) + q_4(x)(x-2) + r_4(x) \\ &= q_1(x)(x-2) + q_2(x)(x-2) + q_3(x)(x-2) + q_4(x)(x-2) \\ &\quad + q_5(x)(x-2) + r_5(x) \\ &= q_1(x)(x-2) + q_2(x)(x-2) + q_3(x)(x-2) + q_4(x)(x-2) \\ &\quad + q_5(x)(x-2) + q_6(x)(x-2) + r_6(x) \\ &= (q_1(x) + q_2(x) + q_3(x) + q_4(x) + q_5(x) + q_6(x))(x-2) + r_6(x) \\ &= (x^5 + 2x^4 + 4x^3 + 9x^2 + 18x + 36)(x-2) + 73. \end{split}$$

也就是说,

$$q(x) = x^5 + 2x^4 + 4x^3 + 9x^2 + 18x + 36, \quad f(2) = r_6(x) = 73.$$

读者可能感到疲劳. 的确, 作者自己都快要睡着了. 这些文字打出来, 作者可再算九遍了吧.

设 a 为数. 我们用 x-a 除 f(x). 设 f(x) 的次为 n, 且 $n \ge 1$ (若 n < 1, 则 x-a 除 f(x) 的商与余式分别是 0 与 f(x)). 所以, 商的次是 n-1, 且余式 (可认为) 是数. 这样, 我们可以待定系数. 具体地说, 设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

且

$$f(x)=(x-a)(b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_0)+b_{-1}.$$

上式可写为

$$\begin{split} f(x) &= b_{n-1}x^n + (b_{n-2} - ab_{n-1})x^{n-1} + \dots + (b_{j-1} - ab_j)x^j \\ &+ \dots + (b_0 - ab_1)x + (b_{-1} - ab_0). \end{split}$$

比较系数,有

$$\begin{split} a_n &= b_{n-1}, \\ a_{n-1} &= b_{n-2} - ab_{n-1}, \\ & \dots \\ a_j &= b_{j-1} - ab_j \quad (0 \leq j < n), \\ & \dots \\ a_1 &= b_0 - ab_1, \\ a_0 &= b_{-1} - ab_0. \end{split}$$

由此解出

(R)
$$b_{n-1}=a_n,$$

$$b_{j-1}=ab_j+a_j \quad (j=n-1,n-2,\cdots,0).$$

评注 或许, 读者觉得 $b_{j-1}=ab_j+a_j$ 的右侧还有"未知的" b_j , 因此作者"并没有解出 $b_{n-1},\,b_{n-2},\,\cdots,\,b_0,\,b_{-1}$ ". 事实上, 作者在后面也写了, j 取 $n-1,\,n-2,\,\cdots,\,0$. 因为 b_{n-1} 已知 (它就是 a_n), 故可求出 $b_{n-2}=ab_{n-1}+a_{n-1}=a_na+a_{n-1}$. 所以, 读者可接着求出 $b_{n-3}=ab_{n-2}+a_{n-2}=a_na^2+a_{n-1}a+a_{n-2}$. 也就是说, $b_{n-1},\,b_{n-2},\,\cdots,\,b_0,\,b_{-1}$ 是按次序被求出的数. 当然, 作者知道, 肯定有读者不服. 作为参考, 作者也给出一个直接的表达式.

一般地, b_{n-1} , b_{n-2} , …, b_0 , b_{-1} 的具体的表达式如下:

$$\begin{aligned} b_{n-1} &= a_n, \\ b_{n-2} &= a_n a + a_{n-1}, \\ b_{n-3} &= a_n a^2 + a_{n-1} a + a_{n-2}, \\ &\dots &\dots &\dots \end{aligned}$$

例 还是取 $f(x) = x^6 + x^3 + 1$. 我们计算 x - 2 除 f(x). 这里, a = 2. 如果利用公式 (R), 则

$$\begin{split} b_5 &= a_6 = 1, \\ b_4 &= ab_5 + a_5 = 2, \\ b_3 &= ab_4 + a_4 = 4, \\ b_2 &= ab_3 + a_3 = 9, \\ b_1 &= ab_2 + a_2 = 18, \\ b_0 &= ab_1 + a_1 = 36, \\ b_{-1} &= ab_0 + a_0 = 73. \end{split}$$

故

$$\begin{split} f(x) &= (x-a)(b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0) + b_{-1} \\ &= (x^5 + 2x^4 + 4x^3 + 9x^2 + 18x + 36)(x-2) + 73. \end{split}$$

同人作

可是, 如果用公式 (E), 则

$$\begin{split} b_5 &= a_6 = 1, \\ b_4 &= a_6 a + a_5 = a = 2, \\ b_3 &= a_6 a^2 + a_5 a + a_4 = a^2 = 4, \\ b_2 &= a_6 a^3 + a_5 a^2 + a_4 a + a_3 = a^3 + 1 = 9, \\ b_1 &= a_6 a^4 + a_5 a^3 + a_4 a^2 + a_3 a + a_2 = a^4 + a = 18, \\ b_0 &= a_6 a^5 + a_5 a^4 + a_4 a^3 + a_3 a^2 + a_2 a = a^5 + a^2 = 36, \\ b_{-1} &= a_6 a^6 + a_5 a^5 + a_4 a^4 + a_3 a^3 + a_2 a^2 + a_1 a + a_0 \\ &= a^6 + a^3 + 1 \\ &= 73. \end{split}$$

结果当然是一样的. 不过, 读者是否感觉, 公式 (E) 不如公式 (R) 简单? 公式 (R) 里, 后一个数 (b_{j-1}) 都是 f(x) 的某个系数 (a_j) 加前一个数 (b_j) 乘 a; 公式 (E) 里, 越到后面, 表达式越长. 作者挑选的 f(x) 的 1, 2, 4, 5 次系数都是 0, 所以还不是那么可怕. 但如果作者挑选的整式的系数全都不是 0 呢?

这就是作者推荐公式 (R) 的理由.

下面我们来看看综合除法的应用.

读者可能已经注意到了, $b_{-1}=f(a)$. 这是正确的: 因为商与余式是唯一的. 所以, 如果不关心 b_{-1} 之前的数 b_{n-1} , b_{n-2} , …, b_1 , b_0 的意义, 我们可得到计算整式在点 a 的值的秦九韶算法[†]:

命题 设 a 是数. 设 n 是正整数. 设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

[†]在西方, 一般用不列颠算学家 William George Horner 的名字命名此算法; 在中国, 一般用中国算学家秦九韶的名字命名此算法.

综合除法 243

接如下规则作 n 个数 $b_{n-1}, b_{n-2}, \dots, b_0, b_{-1}$:

$$\begin{split} b_{n-1} &= a_n,\\ b_{j-1} &= ab_j + a_j \quad (j=n-1,n-2,\cdots,0). \end{split}$$

则 $b_{-1} = f(a)$.

例 设

$$f(x) = 8x^8 - 12x^7 - 2x^6 + 43x^5 - 78x^4 + 77x^3 - 46x^2 + 15x - 2.$$

设 a = 3. 求 f(a).

读者可以试试直接将 x 替换为 a. 不难看出, 计算 a_ja^j 需 j+1 次乘法 $(j\geq 1)$, 故直接将 x 替换为 a, 需 $9+8+7+\cdots+2+0=35$ 次乘法. 最后, 把 9 个数相加, 需 8 次加法. 挑战有点大; 请有兴趣的读者这么算一算.

再试试上个命题所说的方法:

$$\begin{aligned} b_7 &= a_8 = 8, \\ b_6 &= ab_7 + a_7 = 12, \\ b_5 &= ab_6 + a_6 = 34, \\ b_4 &= ab_5 + a_5 = 145, \\ b_3 &= ab_4 + a_4 = 357, \\ b_2 &= ab_3 + a_3 = 1148, \\ b_1 &= ab_2 + a_2 = 3398, \\ b_0 &= ab_1 + a_1 = 10209, \\ b_{-1} &= ab_0 + a_0 = 30625. \end{aligned}$$

由此可见,每步

$$b_{j-1}=ab_j+a_j \quad (j=7,6,\cdots,0)$$

需 1 次乘法与 1 次加法. j 从 7 降到 0, 故有 8 步. 所以, 用此方法, 需 8 次乘法与 8 次加法.

现在, 读者应该能体会到此法的威力了.

我们还可利用综合除法得到一个很有用的乘法公式. 设 n 是正整数. 设

$$f(x) = x^n = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

则

$$a_n = 1$$
, $a_{n-1} = a_{n-2} = \dots = a_1 = a_0 = 0$.

设 a 是某个非零数. 设

$$f(x)=(x-a)(b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_0)+b_{-1}.$$

根据综合除法,知

$$b_{n-1}=a_n,$$

$$(\bigstar) \qquad \qquad b_{j-1}=ab_j+a_j \quad (j=n-1,n-2,\cdots,0).$$

由于 $0 \leq j < n$ 时 $a_j = 0,$ 故 (\bigstar) 变为

$$b_{j-1} = ab_j.$$

二侧同乘 a^{j-1} , 得

$$a^jb_j = a^{j-1}b_{j-1}, \quad 0 \leq j < n.$$

由此可知

$$a^{-1}b_{-1}=\cdots=a^{j-1}b_{j-1}=a^{j}b_{j}=a^{j+1}b_{j+1}=\cdots=a^{n-1}b_{n-1}=a^{n-1}.$$

所以

$$a^j b_j = a^{n-1}, \quad -1 \leq j < n.$$

所以

$$b_j = a^{n-1-j}, \quad -1 \leq j < n.$$

综合除法

245

所以

$$x^n = (x - a)(x^{n-1} + ax^{n-2} + \dots + a^{n-2}x + a^{n-1}) + a^n.$$

此式也可写为

$$x^{n} - a^{n} = (x - a)(x^{n-1} + ax^{n-2} + \dots + a^{n-2}x + a^{n-1}).$$

我们得到了重要的乘法公式:

命题 设 n 是正整数. 设 a 是数, 且 $a \neq 0$. 则

$$x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + \dots + a^{n-2}x + a^{n-1}).$$

值得一提的是,这个公式可推广为

命题 设 f, q 是整式. 设 n 是正整数. 则

$$f^{n} - g^{n} = (f - g)(f^{n-1} + f^{n-2}g + \dots + f^{n-i}g^{i-1} + \dots + g^{n-1}).$$

证 记

$$P = f^{n-1} + f^{n-2}g + \dots + f^{n-i}g^{i-1} + \dots + g^{n-1}.$$

则

$$\begin{split} fP &= f^n + f^{n-1}g + f^{n-2}g^2 + \dots + fg^{n-1}, \\ gP &= \qquad f^{n-1}g + f^{n-2}g^2 + \dots + fg^{n-1} + g^n. \end{split}$$

从而

$$(f-g)P = fP - gP = f^n - g^n.$$

例 设 n=2. 则

$$f^2 - g^2 = (f - g)(f + g).$$

这就是平方差公式. 类似地, 取 n=3. 则

$$f^3 - g^3 = (f - g)(f^2 + fg + g^2).$$

这就是立方差公式. 若把 q 换为 -q, 则

$$\begin{split} f^3 - (-g)^3 &= f^3 + g^3, \\ (f - (-g))(f^2 + f(-g) + (-g)^2) &= (f + g)(f^2 - fg + g^2). \end{split}$$

由此可得立方和公式:

$$f^3 + g^3 = (f+g)(f^2 - fg + g^2).$$

最后, 我们以一个稍复杂的 (但有用的) 例结束本文.

例 设 f, q, h 都是整式. 则

$$\begin{split} f^3 + g^3 + h^3 - 3fgh \\ &= (f+g)(f^2 - fg + g^2) + h^3 - 3fgh \\ &= (f+g)(f^2 + 2fg + g^2 - 3fg) + h^3 - 3fgh \\ &= (f+g)(f^2 + 2fg + g^2) - (f+g)(3fg) + h^3 - 3fgh \\ &= (f+g)^3 + h^3 - (3fg(f+g) + 3fgh) \\ &= (f+g+h)((f+g)^2 - (f+g)h + h^2) - (f+g+h)(3fg) \\ &= (f+g+h)(f^2 + 2fg + g^2 - fh - gh + h^2 - 3fg) \\ &= (f+g+h)\underbrace{(f^2 + g^2 + h^2 - fg - fh - gh)}_{P}. \end{split}$$

由此, 我们得到了新的公式:

$$f^3+g^3+h^3-3fgh=(f+g+h)(f^2+g^2+h^2-fg-fh-gh).$$

若假定 f, g, h 都是复系数整式, 我们还可以对 P 下手:

$$\begin{split} &f^2+g^2+h^2-fg-fh-gh\\ &=f^2-2f\cdot\frac{g+h}{2}+(g^2-gh+h^2)\\ &=f^2-2f\cdot\frac{g+h}{2}+\frac{(g+h)^2}{4}+(g^2-gh+h^2)-\left(\frac{g^2}{4}+\frac{2gh}{4}+\frac{h^2}{4}\right)\\ &=\left(f-\frac{g}{2}-\frac{h}{2}\right)^2+\frac{3}{4}(g^2-2gh+h^2) \end{split}$$

综合除法

247

$$\begin{split} &= \left(f - \frac{g}{2} - \frac{h}{2}\right)^2 - \left(\frac{\mathrm{i}\sqrt{3}}{2}(g - h)\right)^2 \\ &= \left(f - \frac{g}{2} - \frac{h}{2} + \mathrm{i}\sqrt{3}\frac{g}{2} - \mathrm{i}\sqrt{3}\frac{h}{2}\right)\left(f - \frac{g}{2} - \frac{h}{2} - \mathrm{i}\sqrt{3}\frac{g}{2} + \mathrm{i}\sqrt{3}\frac{h}{2}\right) \\ &= \left(f + \frac{-1 + \mathrm{i}\sqrt{3}}{2}g + \frac{-1 - \mathrm{i}\sqrt{3}}{2}h\right)\left(f + \frac{-1 - \mathrm{i}\sqrt{3}}{2}g + \frac{-1 + \mathrm{i}\sqrt{3}}{2}h\right). \end{split}$$

记

$$\omega = \frac{-1 + i\sqrt{3}}{2}.$$

则

$$\omega^2 = \frac{(-1)^2 + 2(-1)\mathrm{i}\sqrt{3} + 3\mathrm{i}^2}{4} = \frac{-1 - \mathrm{i}\sqrt{3}}{2}.$$

故

$$\begin{split} f^2 + g^2 + h^2 - fg - fh - gh \\ &= \left(f + \frac{-1 + \mathrm{i}\sqrt{3}}{2} g + \frac{-1 - \mathrm{i}\sqrt{3}}{2} h \right) \left(f + \frac{-1 - \mathrm{i}\sqrt{3}}{2} g + \frac{-1 + \mathrm{i}\sqrt{3}}{2} h \right) \\ &= (f + \omega g + \omega^2 h) (f + \omega^2 g + \omega h). \end{split}$$

所以

$$f^3+g^3+h^3-3fgh=(f+g+h)(f+\omega g+\omega^2 h)(f+\omega^2 g+\omega h).$$

感谢读者的阅读.

重因子

本文将为读者介绍整式的重因子.

还是老样子: "数"一定是复数 (或实数、有理数); "整式"的系数一定是数.

在正式进入本文的讨论前,作者带领读者回忆一下微商.设

$$f = a_0 + a_1 x + a_2 x^2 + \dots + a_i x^i + \dots + a_n x^n$$

是整式. f 的微商也是整式:

$$Df = 0 + a_1 + 2a_2x + \dots + ia_ix^{i-1} + \dots + na_nx^{n-1}.$$

由此可知: 若 f 是数, 则 Df 是 0; 若 f 的次 $n \ge 1$, 则 Df 的次为 n - 1. 设 a, b 是数; 设 f, g 是整式; 设 m 是正整数. 微商有如下运算规则:

$$\begin{split} &D(af+bg)=aDf+bDg,\\ &D(fg)=Df\cdot g+f\cdot Dg,\\ &D(f^m)=mf^{m-1}Df. \end{split}$$

例 设
$$f = x^8 + x^4 + 1$$
, $g = 3x^2 - 9x + 1$. 不难算出
$$Df = 8x^7 + 4x^3, \quad Dg = 6x - 9.$$

(i) f 与 g 的和:

$$f + g = x^8 + x^4 + 3x^2 - 9x,$$

故

$$D(f+g) = 8x^7 + 4x^3 + 6x - 9.$$

这恰好与 Df + Dq 相等.

(ii) f 与 g 的积:

$$fg = x^8g + x^4g + g$$

$$= (3x^10 - 9x^9 + x^8) + (3x^6 - 9x^5 + x^4) + (3x^2 - 9x + 1)$$

$$= 3x^10 - 9x^9 + x^8 + 3x^6 - 9x^5 + x^4 + 3x^2 - 9x + 1.$$

重因子 249

故

$$D(fg) = 30x^9 - 81x^8 + 8x^7 + 18x^5 - 45x^4 + 4x^3 + 6x - 9.$$

而

$$\begin{split} Df \cdot g &= (8x^7 + 4x^3)(3x^2 - 9x + 1) \\ &= 24x^9 - 72x^8 + 8x^7 + 12x^5 - 36x^4 + 4x^3, \\ f \cdot Dg &= (x^8 + x^4 + 1)(6x - 9) \\ &= 6x^9 - 9x^8 + 6x^5 - 9x^4 + 6x - 9, \end{split}$$

故

$$Df \cdot g + f \cdot Dg = 30x^9 - 81x^8 + 8x^7 + 18x^5 - 45x^4 + 4x^3 + 6x - 9.$$

这与 D(fg) 一致.

(iii) 不难算出

$$(x^{2} + x + 1)^{2} = x^{4} + 2x^{3} + 3x^{2} + 2x + 1,$$

$$(x^{2} + x + 1)^{3} = x^{6} + 3x^{5} + 6x^{4} + 7x^{3} + 6x^{2} + 3x + 1,$$

故

$$f^{2} = (x^{8} + x^{4} + 1)^{2} = x^{16} + 2x^{12} + 3x^{8} + 2x^{4} + 1,$$

$$f^{3} = (x^{8} + x^{4} + 1)^{3} = x^{24} + 3x^{20} + 6x^{16} + 7x^{12} + 6x^{8} + 3x^{4} + 1.$$

所以

$$D(f^3) = 24x^{23} + 60x^{19} + 96x^{15} + 84x^{11} + 48x^7 + 12x^3.$$

因为

$$\begin{aligned} 3f^2Df &= 3(x^8+x^4+1)^2(8x^7+4x^3) \\ &= 12x^3(2x^4+1)(x^{16}+2x^{12}+3x^8+2x^4+1) \\ &= 12x^3(2x^{20}+5x^{16}+8x^{12}+7x^8+4x^4+1) \\ &= 24x^{23}+60x^{19}+96x^{15}+84x^{11}+48x^7+12x^3, \end{aligned}$$

故

$$D(f^3) = 3f^2 Df.$$

温习微商后, 我们进入本文的正题.

定义 设 p 是不可约的整式. 设 m 是非负整数. 设整式 $f \neq 0$. 若 p^m 是 f 的因子, 但 p^{m+1} 不是 f 的因子, 则 p 是 f 的 m 重因子[†]. 若 m = 0, p 当然不是 f 的因子; 若 m = 1, 则 p 是 f 的单因子 (simple factor); 若 $m \geq 2$, 则 p 是 f 的重因子 (multiple factor).

命题 设 p 是不可约的整式. 设 m 是非负整数. 设整式 $f \neq 0$. p 是 f 的 m 重因子的一个必要与充分条件是: 存在整式 g 使 $f = p^m g$, 且 p 不是 g 的因子.

证 先看必要性. 设 p 是 f 的 m 重因子. 所以, p^m 是 f 的因子, 也就是说, 存在整式 h 使 $f = p^m h$. 我们的目标是: 证明 p 不是 h 的因子. 用反证法. 若存在整式 ℓ 使 $h = p\ell$, 则 $f = p^{m+1}\ell$. 所以, p^{m+1} 是 f 的因子. 不过, 既然 p 是 f 的 m 重因子, p^{m+1} 不是 f 的因子. 矛盾!

再看充分性. 设整式 g 使 $f = p^m g$, 且 p 不是 g 的因子. 所以, p^m 是 f 的因子. 我们的目标是: 证明 p^{m+1} 不是 f 的因子. 还是用反证法. 若整式 k 使 $f = p^{m+1}k$, 则 $p^{m+1}k = p^m g$. 因为 $p \neq 0$, 故 $p^m \neq 0$, 从而可从等式二 边消去 p^m . 即 pk = g. 所以, p 是 g 的因子. 矛盾!

例 设

$$f = (x+1)(x^2-3)^2(x^2+4)^3.$$

若视 f 为有理系数整式, 则 x+1, x^2-3 , x^2+4 都是不可约的[‡]. 由此 易知: x+1 是 f 的 1 重因子 (亦即单因子); x^2-3 是 f 的 2 重因子; x^2+4

[†]此定义是合理的. 因为 $f \neq 0$, 故次是非负整数 n. 因为 p 是不可约的, 故 p 的次是正整数 b. 若整数 $k \geq \frac{n+1}{b}$, 则 p^k 的次 $bk \geq n+1 > n$. 此时, p^k 当然不是 f 的因子. $p^0 = 1$ 显然是 f 的因子. 所以, 从左向右看 p^k , p^{k-1} , …, p^0 , 必有某整数 m 使 k-m 个整式 p^k , p^{k-1} , …, p^{m+1} 不是 f 的因子, 但 p^m 是 f 的因子.

 $[\]ddagger x + 1$ 的次为 1, 故它是不可约的. 若有理系数整式 $x^2 + b$ 是可约的, 则存在有理数 s, t 使 $x^2 + b = (x - s)(x - t)$. 比较系数, 有 s + t = 0, st = b. 所以 $s^2 = t^2 = -b$. 当 b = -3 时, $s^2 = t^2 = 3$. 不过, 有理数的平方一定不是 3, 故 $x^2 - 3$ 是不可约的. 同理, b = 4 时, $s^2 = t^2 = -4$. 有理数的平方一定是非负的, 故 $x^2 + 4$ 也是不可约的. 顺便一提, 因为实数的平方也是非负的, 故就算视 $x^2 + 4$ 为实系数整式, 它也不是可约的.

是 f 的 3 重因子; $x^2 - 3$ 与 $x^2 + 4$ 都是 f 的重因子; 不跟 x + 1, $x^2 - 3$ 或 $x^2 + 4$ 相伴的不可约的整式都是 f 的 0 重因子.

若视 f 为实系数整式,则 x+1, x^2+4 仍是不可约的. 所以, x+1 仍为 f 的单因子, x^2+4 仍为 f 的 3 重因子. 可是

$$x^2 - 3 = (x + \sqrt{3})(x - \sqrt{3}),$$

从而

$$f = (x+1)(x+\sqrt{3})^2(x-\sqrt{3})^2(x^2+4)^3.$$

也就是说, $x^2 - 3$ "不配当" m 重因子, 此处 m 是任意的非负整数. 不过, $x + \sqrt{3}$ 与 $x - \sqrt{3}$ 是可以的. 且它们都是 f 的 2 重因子.

若视 f 为复系数整式, 则 x+1 依旧为 f 的单因子. $x+\sqrt{3}$ 与 $x-\sqrt{3}$ 都是 f 的 2 重因子. 不过, x^2+4 是可约的:

$$x^2 + 4 = (x + 2i)(x - 2i).$$

所以

$$f = (x+1)(x+\sqrt{3})^2(x-\sqrt{3})^2(x+2i)^3(x-2i)^3.$$

类似地, $x^2 + 4$ 也不配成为 m 重因子; x + 2i 与 x - 2i 都是 f 的 3 重因子. 作者举本例的目的是使读者明白: f 的重因子 (究竟是什么) 与系数的范围有关. 这跟之前讨论不可约的整式时是类似的.

下面的命题是有用的.

命题 设 p 是不可约的整式. 设整式 $f \neq 0$. p 是 f 的重因子的一个必要与充分条件是: p^2 是 f 的因子.

证 先看必要性. 既然 p 是 f 的重因子, 则 p^m 是 f 的因子, 这里 m 是某个不低于 2 的整数. 因为 p^2 是 p^m 的因子, 故 p^2 是 f 的因子.

再看充分性. 设整式 g 使 $f=p^2g$. 因为 $f\neq 0$, 故 $g\neq 0$. 设 p 是 g 的 j 重因子, 这里 j 是非负整数. 所以, 存在整式 h 使 $g=p^jh$, 且 p 不是 h 的 因子. 故 $f=p^{2+j}h$, 且 p 不是 h 的因子. 因为 2+j 是不低于 2 的整数, 故 p 是 f 的重因子.

命题 设 p 是不可约的整式. p 一定不是 Dp 的因子.

证 设 $\deg p = n$. 因为 p 是不可约的, 故 $n \ge 1$. 所以 $\deg Df = n - 1$. 用反证法. 若 p 是 Dp 的因子, 则有 (非零) 整式 h 使 Dp = ph. 从而

$$n - 1 = \deg Dp = \deg p + \deg h \ge \deg p = n.$$

这是矛盾! ⊗

下面的命题揭示了微商与重因子的关系.

命题 设 p 是不可约的整式. 设 m 是正整数. 设整式 $f \neq 0$. 若 p 是 f 的 m 重因子, 则 p 是 Df 的 m-1 重因子. 由此可见:

- (i) 若 p 是 f 的单因子 (m=1), 则 p 不是 Df 的因子;
- (ii) 若 p 是 f 的重因子 ($m \ge 2$), 则 p 也是 Df 的因子;
- (iii) p 是 f 的重因子的一个必要与充分条件是: p 是 f 与 Df 的公因子.

证 设 $f = p^m q$, 其中 p 不是 q 的因子. 从而

$$Df = D(p^{m}) \cdot g + p^{m} \cdot Dg$$
$$= mp^{m-1}Dp \cdot g + p^{m} \cdot Dg$$
$$= p^{m-1}\underbrace{(mgDp + pDg)}_{h}.$$

所以, p^{m-1} 是 Df 的因子. 我们的目标是: 证明 p 不是 h 的因子.

我们先证明: p 不是 mgDp 的因子. 用反证法. 若 p 是 mgDp 的因子, 则 p 是 mg 的因子, 或 p 是 Dp 的因子. 因为 p 不是 g 的因子, 故 p 也不是 mg 的因子 (此判断又可以用反证法来证; 这里, 作者就不赘述了). 这样, p 一定是 Dp 的因子. 不过, 根据上个命题, p 一定不是 Dp 的因子. 矛盾!

现在我们总算可以证明 p 不是 h 的因子了. 还是用反证法. 若 p 是 h 的因子, 则因 p 显然是 pDg 的因子, 故 p 是 mgDp = h - pDg 的因子. 这跟上段文字得到的结论矛盾!

 下面的命题讨论了 f 与 Df 的最大公因子. (vii) 是重要的、有用的.

命题 设整式 $f \neq 0$. 设 p_1, p_2, \cdots, p_k 是 f 的重因子. 设 p_i 不与 p_j 相伴 $(i \neq j)$. (这说明, p_1, p_2, \cdots, p_k 是 f 的所有的 "互不相伴的" 重因子.) 设 "若不可约的整式 u 是 f 的重因子, 则 u 必跟某 p_ℓ 相伴" 是真命题 (因为 p_1, p_2, \cdots, p_k 互不相伴,故 u 只能跟一个 p_ℓ 相伴). 设 p_1, p_2, \cdots, p_k 分别是 f 的 m_1, m_2, \cdots, m_k 重因子,其中 m_1, m_2, \cdots, m_k 全是不低于 2 的整数.

- (i) 设 ℓ 是 1 至 k 间的整数. $M_{\ell} = p_{\ell}^{m_{\ell}-1}$ 是 f 与 Df 的公因子.
- (ii) 设 s, t 是 1 至 k 间的整数, 且 $s \neq t$. M_s 与 M_t 互素. 也就是说, M_1, M_2, \cdots, M_k PRP.
 - (iii) $M_1M_2\cdots M_{\ell-1}$ 与 M_ℓ 互素.
 - (iv) $M = M_1 M_2 \cdots M_k$ 是 f 与 Df 的公因子.
 - (v) M 是 f 与 Df 的最大公因子.
- (vi) 存在整式 w 使 $f=p_1^{m_1}p_2^{m_2}\cdots p_k^{m_k}w$, 且 $p_1,\,p_2,\,\cdots,\,p_k$ 都不是 w 的 因子.
- (vii) 设整式 h 适合 f = hM. 设 p 是不可约的整式. 若 p 是 f 的因子, 则 p 是 h 的单因子. 也就是说, h 与 f 有相同的不可约的因子, 但 h 无重因子. (显然 h 的因子都是 f 的因子; 本条有意思的地方是: f 的不可约的因子一定是 h 的因子.)
- 证 (i) 因为 p_{ℓ} 是 f 的 m_{ℓ} 重因子 ($m_{\ell} \geq 2$), 故 p_{ℓ} 是 Df 的 $m_{\ell} 1$ 重因子 ($m_{\ell} 1 \geq 1$). 所以 M_{ℓ} 是 f 与 Df 的公因子.
- (ii) 因为 $s\neq t$, 故 p_s 不与 p_t 相伴, 从而 p_s 与 p_t 互素. 也就是说, p_1 , $p_2,$ …, p_k PRP. 由 PRP 的性质, 知: $M_1,$ $M_2,$ …, M_k 亦 PRP.
 - (iii) 由 PRP 的性质, 立得.
- (iv) 设 $d \in f$ 与 Df 的最大公因子. 从而 M_1, M_2, \dots, M_k 都是 d 的因子. 由 PRP 的性质, 知: $M \in d$ 的因子. 故 M 当然是 f 与 Df 的公因子.
- (v) 设 $d \neq f \neq Df$ 的最大公因子. 由 (iv) 知, $M \neq d$ 的因子. 所以, 存在整式 $g \notin d = Mg$. 因为 $f \neq 0$, 故 $d \neq 0$, 从而 $g \neq 0$. 我们证明: $g \rightarrow \mathbb{C}$ 定是单位. 此时, $d \neq M$ 相伴, 故 M 也是 $f \neq Df$ 的最大公因子.

用反证法. 若 g 不是单位, 则存在某个不可约的整式 q' 使 q' 是 g 的因子. 当然, q' 是 d 的因子, 故 q' 是 f 与 Df 的公因子. 所以, q' 是 f 的重因子. 所以, q' 与某个 p_ℓ 相伴. 从而必有单位 ε 使 $q' = \varepsilon p_\ell$. 所以, p_ℓ 是 g 的

因子. 因为 M_{ℓ} 是 M 的因子, 故 $p_{\ell}^{m_{\ell}-1}p_{\ell}=p_{\ell}^{m_{\ell}}$ 是 Mg=d 的因子. 所以 $p_{\ell}^{m_{\ell}}$ 是 Df 的因子. 这跟 p_{ℓ} 是 Df 的 $m_{\ell}-1$ 重因子矛盾!

(vi) 因为 p_1, p_2, \cdots, p_k PRP, 故 $p_1^{m_1}, p_2^{m_2}, \cdots, p_k^{m_k}$ 亦 PRP. $p_1^{m_1}, p_2^{m_2}, \cdots, p_k^{m_k}$ 都是 f 的因子, 故 $p_1^{m_1} \cdot p_2^{m_2} \cdots p_k^{m_k}$ 是 f 的因子. 所以, 存在整式 w 使 $f = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} w$.

现在我们说明, 每个 p_ℓ 都不是 w 的因子. 用反证法. 若存在整式 v 使 $w=p_\ell v$, 则

$$f = \underbrace{(p_1^{m_1} \cdots p_{\ell-1}^{m_{\ell-1}})}_{(\ell-1) \ p\text{'s}} p_\ell^{m_\ell+1} \underbrace{(p_{\ell+1}^{m_{\ell+1}} \cdots p_k^{m_k})}_{(k-\ell) \ p\text{'s}} v.$$

故 $p_\ell^{m_\ell+1}$ 是 f 的因子. 可是, p_ℓ 是 f 的 m_ℓ 重因子, 矛盾!

(vii) 由 (v), $M=p_1^{m_1-1}p_2^{m_2-1}\cdots p_k^{m_k-1}$ 是 f 与 Df 的最大公因子. 由 (vi), 知

$$\begin{split} f &= p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} w \\ &= (M_1 p_1) (M_2 p_2) \cdots (M_k p_k) w \\ &= (M_1 M_2 \cdots M_k) (p_1 p_2 \cdots p_k) w \\ &= M (p_1 p_2 \cdots p_k w). \end{split}$$

所以 $h = p_1 p_2 \cdots p_k w$, 且 p_1, p_2, \cdots, p_k 都不是 w 的因子.

设不可约的整式 p 是 f 的因子. 所以, p 要么是 f 的单因子, 要么是 f 的重因子.

若 p 是 f 的重因子, 则 p 恰与某一个 p_ℓ 相伴, 即存在单位 ε 使 $p_\ell = \varepsilon p$. 故

$$\begin{split} h &= p_{\ell}(p_1 \cdots p_{\ell-1} p_{\ell+1} \cdots p_k w) \\ &= p\underbrace{(\varepsilon p_1 \cdots p_{\ell-1} p_{\ell+1} \cdots p_k w)}_{Q}. \end{split}$$

p 不是 Q 的因子. 用反证法. 如果 p 是 Q 的因子, 则因 p 是不可约的, 故 p 是 $p_1, ..., p_{\ell-1}, p_{\ell+1}, ..., p_k$ 或 w 的因子, 矛盾!

若 p 是 f 的单因子,则由 (vi),p 一定是 $p_1^{m_1}$, $p_2^{m_2}$,…, $p_k^{m_k}$ 或 w 的因子.p 一定不是 p_1 , p_2 ,…, p_k 的任意一个的因子,故p 一定是 w 的因子.所

以 p 也是 h 的因子. p 能为 h 的重因子吗? 不能. 如果 p 是 h 的重因子, 则 p^2 是 h 的因子, 故 p 是 f 的重因子, 矛盾!

为方便, 我们给出

命题 设整式 $f \neq 0$. f 无重因子的一个必要与充分条件是: f 与 Df 互素.

证 先看必要性. 反证法. 若 f 与 Df 不互素, 则存在不可约的整式 p 使 p 是 f 与 Df 的公因子. 所以 p 是 f 的重因子. 矛盾!

再看充分性. 还是用反证法. 若 f 有重因子 q, 则 q 是 f 与 Df 的公因 子. 故 f 与 Df 不互素. 矛盾!

因为问题 "f 是否与 g 互素" 的回答不因系数的范围扩大而改变, 故我们有

命题 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.

- (i) 设 f 作为 K 上的整式有重因子. 所以, f 与 Df 在 K 上的整式中不互素. 所以, f 与 Df 在 E 上的整式中不互素. 所以, f 作为 E 上的整式有重因子.
- (ii) 设 f 作为 K 上的整式无重因子. 所以, f 与 Df 在 K 上的整式中互素. 所以, f 与 Df 在 E 上的整式中互素. 所以, f 作为 E 上的整式无重因子.

简单地说, 问题"f 是否有重因子"的回答不因系数的范围扩大而改变.

作者举一个例. 此例的运算量比较大; 请读者忍耐一会儿. 有兴趣的读者可自己试试此例的 f; 无兴趣的读者可试试 $f = x^4 - x^2 + 2x + 2$ (也可"就看看, 不算"; 毕竟, 作者无权也无法强迫读者动手). 不过, 作者还是先给出一个有用的评注.

评注 读者或许有这样的经验: 不是整数的有理数的加、乘运算似乎没有整数的加、乘容易. 带余除法时, 我们往往会碰到商或余式不是整系数的情形. 如果只是执行一次带余除法, 读者 (也包括作者) 还是可以接受的. 可

是, 我们用辗转相除法找二个整式的最大公因子时, 要执行多次带余除法. 作者愿意解救读者[†].

设 f 与 g 是二个整式. 无妨设 $g \neq 0$. 设 ε_1 与 ε_2 是单位. 若 f = gq + r, 则

$$\begin{split} \varepsilon_1 f &= \varepsilon_1 g q + \varepsilon_1 r \\ &= \varepsilon_1 (\varepsilon_2^{-1} \varepsilon_2) g + \varepsilon_1 r \\ &= (\varepsilon_2 q) (\varepsilon_1 \varepsilon_2^{-1}) + (\varepsilon_1 r). \end{split}$$

也就是说, 商与余式顶多差个单位.

设 f 与 g 的最大公因子为 d_1 , $\varepsilon_1 f$ 与 $\varepsilon_2 g$ 的最大公因子为 d_2 . 我们看 d_1 与 d_2 的关系. 因为 f 是 $\varepsilon_1 f$ 的因子, g 是 $\varepsilon_2 g$ 的因子, 故 d_1 是 $\varepsilon_1 f$ 与 $\varepsilon_2 g$ 的公因子. 这样, d_1 是 d_2 的因子. 不过, $\varepsilon_1 f$ 是 $f = \varepsilon_1^{-1} \varepsilon_1 f$ 的因子, $\varepsilon_2 g$ 是 $f = \varepsilon_2^{-1} \varepsilon_2 g$ 的因子, 故 d_2 是 f 与 g 的公因子. 这样, d_2 是 d_1 的因子. 所以 d_1 与 d_2 相伴.

综上可知: 在辗转相除法里, 将被除式与除式[‡]乘单位因子 (不要求一样), 不影响最大公因子的结果.

例 设

$$f = x^9 - 2x^6 + 3x^5 - 6x^4 + 12x - 8.$$

我们看看 f 是否有重因子.

不难算出

$$Df = 9x^8 - 12x^5 + 15x^4 - 24x^3 + 12.$$

所以

$$f = \frac{x}{9}Df - \frac{2}{3}\underbrace{(x^6 - 2x^5 + 5x^4 - 16x + 12)}_{r_0}.$$

[†]这是给不用计算机计算的读者的建议;如果读者用计算机计算,这些建议就没什么用了.

[‡]在 $f = gq + r (\deg r < \deg g)$ 里, f 是 "被除式" (dividend), g 是 "除式" (divisor).

用 r_0 (这里的 r_0 不是余式!) 除 Df, 有

$$Df = 9(x^2 + 2x - 1)r_0 - 60\underbrace{(2x^5 - x^4 - 2x^3 - 3x^2 + 6x - 2)}_{r_1}.$$

用 r_1 除 r_0 , 有

$$r_0 = \frac{1}{4}(2x-3)r_1 + \frac{21}{4}\underbrace{(x^4-x^2-2x+2)}_{r_2}.$$

用 r_2 除 r_1 , 有

$$r_1 = (2x - 1)r_2.$$

所以, r_2 就是 f 与 Df 的最大公因子. 记 $M = r_2 = x^4 - x^2 - 2x + 2$. 利用 带余除法, 可算出适合 f = hM 的 h:

$$f = (x^5 + x^3 + 2x - 4)M \implies h = x^5 + x^3 + 2x - 4.$$

上面的计算告诉我们, f 有重因子. 虽然我们不知道 f 的重因子是什么, 但我们知道 f 有重因子! 这很有用, 因为我们还不知道怎么找 f 的不可约的因子 (之后作者会告诉读者执行此事的方法).

作为一个额外的挑战, 我们看看 h 是否有重因子. 按照前面的命题, 这么作出的 h 跟 f 有相同的不可约的因子, 且 h 无重因子. 假如我们 "忘记了" 这个结论呢? 我们可以求 h 与 Dh 的最大公因子呀! 不难写出

$$Dh = 5x^4 + 3x^2 + 2.$$

用 Dh 除 h:

$$h = \frac{x}{5}Dh + \frac{2}{5}\underbrace{(x^3 + 4x - 10)}_{r_0}.$$

用 r_0 除 Dh:

$$Dh = 5xr_0 + \underbrace{(-17x^2 + 50x + 2)}_{r_1}.$$

用 r_1 除 r_0 :

$$r_0 = -\frac{1}{289}(17x + 50)r_1 + \frac{90}{289}\underbrace{(41x - 31)}_{r_2}.$$

用 r_2 除 r_1 :

$$r_1 = -\frac{1}{1\,681}(697x - 1\,523)r_2 + \underbrace{\frac{50\,575}{1\,681}}_{r_3}\,.$$

到此为止, 我们不用执行带余除法了 $(r_3$ 是单位; 单位当然是 r_2 的因子). 由此可见, 单位就是 h 与 Dh 的最大公因子, 故 h 无重因子.

作者就说这么多吧! 再见, 读者.

复习1

本文的目标是帮助读者回顾所学的知识.

本文不会有新的东西. 我们又开始复习了. 不过, 不像"复习 0", 这次的"复习 1" 不会有特别多的知识.

命题 设 a 为数. 我们用 x-a 除 f(x). 设 f(x) 的次为 n, 且 $n \ge 1$ (若 n < 1, 则 x-a 除 f(x) 的商与余式分别是 0 与 f(x)). 所以, 商的次是 n-1, 且余式 (可认为) 是数. 这样, 我们可以待定系数. 具体地说, 设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

且

$$f(x) = (x-a)(b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_0) + b_{-1}.$$

上式可写为

$$\begin{split} f(x) &= b_{n-1}x^n + (b_{n-2} - ab_{n-1})x^{n-1} + \dots + (b_{j-1} - ab_j)x^j \\ &+ \dots + (b_0 - ab_1)x + (b_{-1} - ab_0). \end{split}$$

比较系数,有

$$\begin{split} a_n &= b_{n-1}, \\ a_{n-1} &= b_{n-2} - ab_{n-1}, \\ & \dots \\ a_j &= b_{j-1} - ab_j \quad (0 \leq j < n), \\ & \dots \\ a_1 &= b_0 - ab_1, \\ a_0 &= b_{-1} - ab_0. \end{split}$$

由此解出

$$\begin{split} b_{n-1} &= a_n,\\ b_{j-1} &= ab_j + a_j \quad (j=n-1,n-2,\cdots,0). \end{split}$$

这就是1次式除整式的综合除法.

如果不关心 b_{-1} 之前的数 b_{n-1} , b_{n-2} , …, b_1 , b_0 的意义, 我们可得到计算整式在点 a 的值的秦九韶算法:

命题 设 a 是数. 设 n 是正整数. 设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

按如下规则作 n 个数 $b_{n-1}, b_{n-2}, \dots, b_0, b_{-1}$:

$$\begin{split} b_{n-1} &= a_n,\\ b_{j-1} &= ab_j + a_j \quad (j=n-1,n-2,\cdots,0). \end{split}$$

则 $b_{-1} = f(a)$.

下面的乘法公式很有用.

命题 设 f, q 是整式. 设 n 是正整数. 则

$$f^n-g^n=(f-g)(f^{n-1}+f^{n-2}g+\cdots+f^{n-i}g^{i-1}+\cdots+g^{n-1}).$$

命题 下面是中学算学的三个乘法公式. 设 f, g 是整式.

- (i) 平方差公式: $f^2 g^2 = (f g)(f + g)$.
- (ii) 立方差公式: $f^3-g^3=(f-g)(f^2+fg+g^2)$.
- (ii) 立方和公式: $f^3+g^3=(f+g)(f^2-fg+g^2)$.

命题 设 f, g, h 都是整式. 则

$$f^3+g^3+h^3-3fgh=(f+g+h)(f^2+g^2+h^2-fg-fh-gh).$$

若 f, g, h 都是复系数整式,则

$$f^3+g^3+h^3-3fgh=(f+g+h)(f+\omega g+\omega^2 h)(f+\omega^2 g+\omega h),$$
其中 $\omega=\frac{-1+\mathrm{i}\sqrt{3}}{2}.$

定义 设 p 是不可约的整式. 设 m 是非负整数. 设整式 $f \neq 0$. 若 p^m 是 f 的因子, 但 p^{m+1} 不是 f 的因子, 则 p 是 f 的 m 重因子. 若 m = 0, p 当然不是 f 的因子; 若 m = 1, 则 p 是 f 的单因子; 若 $m \geq 2$, 则 p 是 f 的重因子.

评注 请读者思考: 这样的 m 是否存在? 为什么?

命题 设 p 是不可约的整式. 设 m 是非负整数. 设整式 $f \neq 0$. p 是 f 的 m 重因子的一个必要与充分条件是: 存在整式 g 使 $f = p^m g$, 且 p 不是 g 的因子.

评注 f 的重因子 (究竟是什么) 与系数的范围有关. 这跟之前讨论不可约的整式时是类似的.

命题 设 p 是不可约的整式. 设整式 $f \neq 0$. p 是 f 的重因子的一个必要与充分条件是: p^2 是 f 的因子.

命题 设 p 是不可约的整式. p 一定不是 Dp 的因子.

下面的命题揭示了微商与重因子的关系.

命题 设 p 是不可约的整式. 设 m 是正整数. 设整式 $f \neq 0$. 若 p 是 f 的 m 重因子, 则 p 是 Df 的 m-1 重因子. 由此可见:

- (i) 若 p 是 f 的单因子 (m=1), 则 p 不是 Df 的因子;
- (ii) 若 p 是 f 的重因子 ($m \ge 2$), 则 p 也是 Df 的因子;
- (iii) p 是 f 的重因子的一个必要与充分条件是: p 是 f 与 Df 的公因子.

命题 设整式 $f \neq 0$. 设 $M \neq f = Df$ 的最大公因子. 设整式 h 适合 f = hM.

- (i) M 的不可约的因子都是 f 的重因子.
- (ii) f 的不可约的因子都是 h 的因子.
- (iii) h 无重因子.

这就是所谓的"去重".

命题 设整式 $f \neq 0$. f 无重因子的一个必要与充分条件是: f 与 Df 互素.

因为问题 "f 是否与 g 互素" 的回答不因系数的范围扩大而改变, 故我们有

命题 设 K, E 是三文字 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意二个, 且 E 的范围不比 K 的范围窄. 设 f 与 g 是 K 上的整式.

- (i) 设 f 作为 K 上的整式有重因子. 所以, f 与 Df 在 K 上的整式中不互素. 所以, f 与 Df 在 E 上的整式中不互素. 所以, f 作为 E 上的整式有重因子.
- (ii) 设 f 作为 K 上的整式无重因子. 所以, f 与 Df 在 K 上的整式中互素. 所以, f 与 Df 在 E 上的整式中互素. 所以, f 作为 E 上的整式无重因子.

简单地说, 问题 "f 是否有重因子"的回答不因系数的范围扩大而改变.

"复习1"的知识或许难一些; 但是, 如果读者消化了"复习0", 那么"复习1"就不会那么难了.

读者就复习到这里吧. 休息.

整系数整式与有理系数整式

在"整数的一些性质"与"整式的一些性质"里, 我们系统地介绍了整数与 (系数为 \mathbb{F} 的元的)整式的一些性质. 它们有一个共同点:都可以作带余除法. 因为带余除法, 我们证明了最大公因子的存在性与 Bézout 等式; 因为最大公因子与 Bézout 等式, 我们考察了互素, 进而考虑了不可约的整数 (整式).

读者可能注意到,在"整式的一些性质"里,我们没有讨论整系数整式.为什么没讨论呢?读者可以想一想,整系数整式是否还有带余除法.

例 以 $f = x^2 + 1$, g = 2x 为例. 设存在整系数整式 q, r 使

$$f = gq + r$$
, $\deg r < \deg g = 1$.

由此可设 r = c, c 是某个待确定的整数. 设

$$q = a_0 + a_1 x + \dots + a_n x^n,$$

且 a_0, a_1, \dots, a_n 都是整数. 所以

$$x^{2} + 1 = c + 2a_{0}x + 2a_{1}x^{2} + \dots + 2a_{n}x^{n+1}.$$

由此可知 n+1=2, 且

$$1 = c$$
, $0 = 2a_0$, $1 = 2a_1$.

问题来了: 哪个整数乘 2 等于 1? 所以这样的 q 不存在.

当然, 如果读者视 f, q, q, r 为有理系数整式, 立即可得

$$q = \frac{1}{2}x, \quad r = 1.$$

在"整式的一些性质"里,我们把"整数的一些性质"的套路几乎原封不动地搬了过来.不过,由于整系数整式不一定有带余除法,故我们没法"偷懒地"讨论整系数整式.

但情况不是特别糟. 首先, 整数是有理数, 故整系数整式是有理系数整式. 其次, 读者知道, 有理数是二个整数的比 (分母不为零). 取不为零的有理系数整式

$$f = \frac{p_0}{q_0} + \frac{p_1}{q_1}x + \dots + \frac{p_n}{q_n}x^n,$$

这里 $p_0, q_0, p_1, q_0, ..., p_n, q_n$ 都是整数, 且 $q_0, q_1, ..., q_n$ 都不是零. 作整数

$$\begin{split} Q &= q_0 q_1 \cdots q_n, \\ Q_0 &= q_1 q_2 \cdots q_n = \frac{Q}{q_0}, \\ Q_1 &= q_0 q_2 \cdots q_n = \frac{Q}{q_1}, \\ &\cdots \\ Q_n &= q_0 q_1 \cdots q_{n-1} = \frac{Q}{q_n}, \end{split}$$

将 f 改写为

$$f=\frac{p_0Q_0}{Q}+\frac{p_1Q_1}{Q}x+\cdots+\frac{p_nQ_n}{Q}x^n.$$

设 d 是整数 (而不是整式) $p_0Q_0,\,p_1Q_1,\,...,\,p_nQ_n$ 的最大公因子. 这样, 存在整数 $m_0,\,m_1,\,...,\,m_n$ 使

$$p_0Q_0 = dm_0, \quad p_1Q_1 = dm_1, \quad \cdots, \quad p_nQ_n = dm_n.$$

所以

$$f = \frac{d}{Q}(m_0 + m_1 x + \dots + m_n x^n).$$

由最大公因子的性质, 知 m_0, m_1, \cdots, m_n 互素. 最后, 设 D 是 d 与 Q 的最大公因子, 且 d=Dd', Q=DQ'. 所以

$$f=\frac{d'}{Q'}(m_0+m_1x+\cdots+m_nx^n).$$

上面的叙述看起来有些抽象, 实则很好理解.

例 取

$$f = 1 + \frac{2}{3}x + \frac{1}{6}x^2 + \frac{3}{5}x^3.$$

这里

$$q_0=1, \quad q_1=3, \quad q_2=6, \quad q_3=5.$$

所以

$$Q = 180, \quad Q_0 = 180, \quad Q_1 = 60, \quad Q_2 = 30, \quad Q_3 = 36.$$

因为

$$p_0 = 1, \quad p_1 = 2, \quad p_2 = 1, \quad p_3 = 3,$$

故

$$p_0Q_0 = 180$$
, $p_1Q_1 = 120$, $p_2Q_2 = 30$, $p_3Q_3 = 108$.

所以 f 可被改写为

$$f = \frac{180}{180} + \frac{120}{180}x + \frac{30}{180}x^2 + \frac{108}{180}x^3.$$

读者可能一眼就认出来,这如果不是通分,那它什么都不是.

不难算出 6 是 180, 120, 30, 108 的最大公因子是 6. 所以

$$f = \frac{6}{180}(30 + 20x + 5x^2 + 18x^3).$$

不难算出, 1 是 30, 20, 5, 18 的最大公因子. 最后, 因为 6 是 6 与 180 的最大公因子, 故可进一步将 f 改写为

$$f = \frac{1}{30}(30 + 20x + 5x^2 + 18x^3).$$

上面假定 $f \neq 0$; 现在考虑 0. 显然 $0 = 0 \cdot 1$, 其中 1 是整系数整式, 且 其系数互素.

上面的文字说明: 有理系数整式 f 总可以写为一个有理数 c_f 与一个整系数整式 f^* 的积, 且 f^* 的系数互素.

因此, 我们可以借助有理系数整式讨论整系数整式.

定义 设

$$f=a_0+a_1x+\cdots+a_nx^n.$$

若系数 a_0, a_1, \dots, a_n 都是整数, 且整数 a_0, a_1, \dots, a_n 互素, 则 f 是本原的 (primitive).

命题 设 f 是有理系数整式, 且 f 不是零.

- (i) f 一定可以写为有理数 c_f 与本原的整式 f^* 的积, 即 $f = c_f f^*$;
- (ii) 若有理数 r 与本原的整式 g 适合 f=rg, 必有 $r=\varepsilon c_f$, $g=\varepsilon^{-1}f^*$, 其中 $\varepsilon=+1$.

 c_f 称为 f 的容量 (content); f^* 称为 f 的本原的相伴 (primitive associate).

证 (i) 显然.

(ii) 设 $c_f f^* = rg$, 其中 c_f , r 是有理数, f^* , g 是本原的整式. 不难看出, f 的次一定等于 g 的次. 设

$$f^* = s_0 + s_1 x + \dots + s_n x^n,$$

$$g = t_0 + t_1 x + \dots + t_n x^n.$$

设 $\frac{c_f}{r} = \frac{p}{q}$, p, q 为整数, $q \ge 1$ 且 p 与 q 互素. 所以

$$pf^* = q\frac{c_f f^*}{r} = q\frac{rg}{r} = qg.$$

所以

$$ps_i=qt_i, \quad i=0,1,\cdots,n.$$

因为 p 与 q 互素, 故任取 g 的系数 t_i , p 一定是 t_i 的因子. 所以 p 是 t_0 , t_1 , ..., t_n 的公因子. 因为 t_0 , t_1 , ..., t_n 互素, 故 p 是 (整数的) 单位 ε_1 . 既然 p 与 q 互素, 则 q 也是 (整数的) 单位 ε_2 . 所以

$$r = c_f \frac{q}{n} = (\varepsilon_1^{-1} \varepsilon_2) c_f.$$

从而

$$g=f^*\frac{c_f}{f}=(\varepsilon_1\varepsilon_2^{-1})f^*.$$

记 $\varepsilon=\varepsilon_1^{-1}\varepsilon_2$, 则 $\varepsilon^{-1}=\varepsilon_1\varepsilon_2^{-1}$. 因为 ε_1 , ε_2 都是整数的单位, 故 ε 也是整数的单位. 所以, $\varepsilon=\pm 1$.

评注 我们可以这么叙述我们刚才证明的命题: 若忽略 (整数的) 单位的区别, 有理系数整式可唯一地写为有理数与本原的整式的积.

命题 设整式 f, g, h 的系数都是整数. 设 f = gh.

- (i) 若 f 是本原的, 则 g 与 h 也是本原的;
- (ii) 若 g 与 h 是本原的, 则 f 也是本原的.
- 证 (i) 反证法. 因为乘法可交换, 故不失一般性, 设 g 不是本原的. 这样, 存在整系数整式 ℓ 与不是 (整数的) 单位的整数 t, 使 $g = t\ell$. 这样, $f = t \cdot (\ell h)$. 所以 t 是 f 的所有系数的公因子, 故 t 是 (整数的) 单位的公因子, 即 t 也是 (整数的) 单位. 矛盾!
- (ii) 任取不可约的整数 p. 我们证明: 存在 f 的系数 c, 使 p 不是 c 的因子. 设

$$g = g_m x^m + g_{m-1} x^{m-1} + \dots + g_0,$$

$$h = h_n x^n + h_{n-1} x^{n-1} + \dots + h_0$$

是二个本原的整式. 所以, 从次高的项往次低的项看, 一定存在二个整数 s, t 使 p 是 g_m , g_{m-1} , …, g_{s+1} , h_n , h_{n-1} , …, h_{t+1} 的因子, 但 p 不是 g_s 的因子, 且 p 不是 h_t 的因子. 我们看 f 的 s+t 次系数:

$$\begin{split} f_{s+t} &= g_s h_t + g_{s+1} h_{t-1} + \dots + g_{s+t} h_0 \\ &+ g_{s-1} h_{t+1} + \dots + g_0 h_{s+t}. \end{split}$$

由此可见, p 是上式右侧除 g_sh_t 外的任意一项的因子. 这样, p 不是 f 的 s+t 次系数 f_{s+t} 的因子. 所以 f 的全部系数一定互素.

命题 设整式 f, q 的系数都是整数.

- (ii) 在 (i) 的基础上, 若还假定 f 也是本原的, 则 h 也是本原的.
- 证 (i) f 与 g 当然可以视为有理系数整式. 由带余除法知, h 至少也是有理系数整式. 将 h 写为 $c_h h^*$, 其中 c_h 是某有理数, h 是本原的整式. 所以

$$f = gh = g(c_h h^*) = c_h(gh^*).$$

显然, qh^* 是本原的. 当然, f 也可写为

$$f = c_f f^*,$$

其中 c_f 是整数 (因为 f 的系数都是整数), 且 f^* 是本原的整式. 所以, 存在 (整数的) 单位 ε , 使

$$c_h = \varepsilon c_f, \quad gh^* = \varepsilon^{-1} f^*.$$

从而

$$h = c_h h^* = \varepsilon c_f h^*$$

的系数都是整数.

(ii) 若 f 也是本原的,则由 (i) 的证明过程,知 h 是本原的.

命题 设整式 f 的系数都是整数. 设 f 可写为二个有理系数整式 g, h 的积. 则 f 可写为

$$f = c_f g^* h^*.$$

上式应这么理解: 存在 g 的某个本原的相伴 g^* , 存在 h 的某个本原的相伴 h^* , 存在 f 的某个容量 c_f , 使上式成立.

证 设 $f=c_ff^*, g=c_gg^*, h=c_hh^*,$ 其中 f^*, g^*, h^* 都是本原的整式, c_g 与 c_h 使有理数, 且 c_f (由题设) 是整数. 因为 f=gh, 故

$$c_f f^* = (c_g c_h)(g^*h^*).$$

 g^*h^* 是本原的. 所以, 存在 (整数的) 单位 ε , 使

$$c_g c_h = \varepsilon c_f, \quad g^* h^* = \varepsilon^{-1} f^*.$$

所以

$$f=c_gc_hg^*h^*=(\varepsilon c_f)g^*h^*=c_f'g^*h^*.$$

评注 设整式 f 的系数都是整数. 上个命题表明: 若 f 可写为二个有理系数整式的积,则 f 可写为二个整系数整式的积. 反过来,因为整数是有理数,故若 f 可写为二个整系数整式的积, f 当然可写为二个有理系数整式的积. 每个有理系数整式都可写为有理数与本原的整式的积. 所以,我们可以借整数的性质研究有理系数整式是否是可约的.

作者本想到此结束本文. 不过, 抱着认真、负责的态度, 作者再给几个重要的命题就结束本文吧.

先从几个简单的小命题开始吧. 这里, 为了方便, 称正的不可约的整数为素数.

命题 设 p 是素数. 若 j 是低于 p 的正整数, 则 p 是 (广义) 二项系数 $\binom{p}{i}$ 的因子.

证 易知

$$\binom{p}{j} = \frac{p \cdot (p-1) \cdots (p-(j-1))}{j!} = K,$$

其中 K 是整数. 所以

$$p\cdot (p-1)\cdots (p-(j-1))=K\cdot j!.$$

我们的目标是: 证明 p 是 K 的因子. 这里, p 已经是 $K \cdot j!$ 的因子了. 如果我们能证明 p 与 j! 互素, 那么 p 一定是 K 的因子. 想法很美好, 是吧? 确实.

继续分解这个目标. 假如我们能说明 $1, 2, \dots, j$ 都与 p 互素, 那 1! = 1 与 p 互素, $2! = 1! \cdot 2$ 与 p 也互素, $3! = 2! \cdot 3$ 与 p 也互素……一直到 $j! = (j-1)! \cdot j$ 与 p 也互素.

f! 任取低于 p 的正整数 ℓ . 我们证明: p 与 ℓ 互素. 反证法. 若 p 与 ℓ 不互素, 则 p 一定是 ℓ 的因子. 所以, 存在整数 q 使 $\ell=pq$. 因为 $\ell\neq 0$, 故 $q\neq 0$, 即 $|q|\geq 1$. 所以

$$\ell = |\ell| = |p||q| \ge |p| \cdot 1 = p.$$

但是, 这与假定 $\ell < p$ 矛盾. 彳亍. 完了.

前面, 我们讨论整式的性质时, 为了简单, 我们把 f(x), g(x), h(x), … 写为 f, g, h, …. 现在, 因为我们需要整式的复合, 我们需要写出被省略的 "(x)".

命题 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

是有理系数整式,且 $n \ge 1$, $a_n \ne 0$ (这表明, f(x) 不是 0, 也不是整式的单位,且 f(x) 的次为 n). 设 α , β 是有理数,且 $\alpha \ne 0$. 设

$$g(x) = f(\alpha x + \beta) = a_0 + a_1(\alpha x + \beta) + \dots + a_n(\alpha x + \beta)^n.$$

显然, g(x) 也是有理系数整式, 且次仍为 n (g(x) 的次不超过 n, 且其 n 次系数 $a_n\alpha^n\neq 0$). 因为

$$x = \alpha \cdot \left(\frac{1}{\alpha}x + \frac{-\beta}{\alpha}\right) + \beta,$$

故

$$f(x) = f\left(\alpha \cdot \left(\frac{1}{\alpha}x + \frac{-\beta}{\alpha}\right) + \beta\right) = g\left(\frac{1}{\alpha}x + \frac{-\beta}{\alpha}\right).$$

这里, $\frac{1}{\alpha}$, $\frac{-\beta}{\alpha}$ 当然也是有理数, 且 $\frac{1}{\alpha} \neq 0$.

- (i) 若 f(x) 是可约的[†], 则 g(x) 是可约的;
- (ii) 若 g(x) 是可约的, 则 f(x) 是可约的.

简单点说, "f(x) 是可约的 (不可约的)" 的一个必要与充分条件是: " $f(\alpha x + \beta)$ (α , β 是有理数, 且 $\alpha \neq 0$) 是可约的 (不可约的)".

证 事实上, 我们只要证明 (i). (ii) 的证明就是把 (i) 的证明里的 f 与 g 互换, 且 α , β 分别换为 $\frac{1}{\alpha}$, $\frac{-\beta}{\alpha}$.

设 f 是整系数整式. 若存在整系数整式 g 使 fg=1, 则说 f 是整系数整式的单位. 由此, 读者可以证明: 整系数整式的单位恰为 1,-1——这跟有理系数整式的单位很不一样.

设 f 是整系数整式, 且 f 既不是 0, 也不是单位. f 作为整系数整式是可约的, 是指存在二个不是单位的 (整系数) 整式 f_1 , f_2 , 使 $f=f_1f_2$. 所以, 若把 4x 视为整系数整式, 4x 是可约的: $4=4\cdot x$, 且 4 与 x 都不是 (整系数整式的) 单位. 但若视 4x 为有理系数整式, 则 4x 当然是不可约的.

作者不希望这些小差异影响读者. 而且, 这不是什么很重要的点.

[†]这里的 "可约的" 是指 f(x) 作为有理系数整式是可约的 (也就是说, 这是 "整式的一些性质"里的 "可约的"). 作者不打算讨论详细讨论整系数整式的 "可约的" 的含义; 相反, 作者决定只在脚注里简单地提一提.

设 f(x) 是可约的. 所以, 存在二个不是单位的 (次高于 0 的) 整式 $f_1(x)$, $f_2(x)$ 使

$$f(x) = f_1(x)f_2(x).$$

记

$$g_1(x)=f_1(\alpha x+\beta),\quad g_2(x)=f_2(\alpha x+\beta),$$

则

$$g(x) = f(\alpha x + \beta) = f_1(\alpha x + \beta)f_2(\alpha x + \beta) = g_1(x)g_2(x).$$

因为 $\deg g_1(x)=\deg f_1(x),$ $\deg g_2(x)=\deg f_2(x),$ 故 $g_1(x),$ $g_2(x)$ 都不是单位. 从而 g(x) 也是可约的.

评注 有一点值得读者注意.

设 f(x) = x + 4. 显然, f(x) 是不可约的.

设 $g(x) = f(x^2) = x^2 + 4$. 我们证明: g(x) 是不可约的.

反证法. 假定存在二个有理系数整式 $g_1(x)$, $g_2(x)$ 使

$$g(x)=g_1(x)g_2(x), \\$$

且 $g_1(x)$, $g_2(x)$ 都不是单位. 根据前面的命题, 可进一步假定 $g_1(x)$, $g_2(x)$ 的系数都是整数 (这可以简化讨论). 因为 $\deg g_1(x) + \deg g_2(x) = 2$, 而 $\deg g_1(x) > 0$, $\deg g_2(x) > 0$, 故 $g_1(x)$ 与 $g_2(x)$ 的次都是 1. 所以, 设

$$g_1(x) = ax + b, \quad g_2(x) = cx + d,$$

其中 a, b, c, d 都是整数. 从而

$$x^{2} + 4 = (ax + b)(cx + d) = (ac)x^{2} + (ad + bc)x + (bd),$$

也就是

$$ac = 1$$
, $ad + bc = 0$, $bd = 4$.

由 ac = 1 知 a = c = 1 或 a = c = -1. 所以

$$b+d=\frac{ad+ba}{a}=\frac{ad+bc}{a}=0,$$

$$bd=4.$$

消去 d, 有

$$b^2 = -4$$
.

看到这里, 读者可能笑了: 整数的平方不可能是 -4 呀! 所以, g(x) 一定是不可约的.

设 $h(x) = g(x^2) = x^4 + 4$. 我们证明: h(x) 是可约的.

这里就没必要反证了. 作者直接点吧. 无非就是添平方嘛! 具体一点, 就是

$$x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2$$

$$= (x^2 + 2)^2 - (2x)^2$$

$$= (x^2 + 2x + 2)(x^2 - 2x + 2).$$

显然 $x^2 \pm 2x + 2$ 不是单位. 所以, h(x) 是可约的.

设
$$\ell(x) = h(x^2) = x^8 + 4$$
. 显然,

$$\begin{split} x^8 + 4 &= (x^2)^4 + 4 \\ &= ((x^2)^2 + 2x^2 + 2)((x^2)^2 - 2x^2 + 2) \\ &= (x^4 + 2x^2 + 2)(x^4 - 2x^2 + 2), \end{split}$$

且 $x^4 \pm 2x^2 + 2$ 不是单位, 故 $\ell(x)$ 是可约的.

作者举这个例的目的是提醒读者: 上个命题的 $\alpha x + \beta$ 不能改为较高次的整式: 否则, 命题不一定成立.

定义 设

$$f(x)=a_0+a_1x+\cdots+a_nx^n$$

是整式, $a_n \neq 0$, 且 $a_0 \neq 0$. f(x) 的反整式 (reciprocal polynomial) 是

$$f^{\mathbf{r}}(x) = a_n + a_{n-1}x + \dots + a_0x^n.$$

也就是说, $f^{\mathbf{r}}(x)$ 的 j 次系数是 a_{n-j} $(j=0,1,\cdots,n)$.

请读者注意: 上面的 f(x) 的 0 次系数不是 0. 如果 $a_0 = 0$, 它的反整式是未定义的.

例 设

$$f(x) = 1 + 3x + 6x^2 + 10x^3 + 15x^4 + 21x^5.$$

所以

$$f^{r}(x) = 21 + 15x + 10x^{2} + 6x^{3} + 3x^{4} + x^{5}.$$

例 设

$$q(x) = -6 - 5(x - 1) + 2(x - 1)^{2} + (x - 1)^{3}.$$

读者可能会觉得

$$g^{r}(x) = 1 + 2(x-1) - 5(x-1)^{2} - 6(x-1)^{3}.$$

但这不对. 按照定义, 我们要先展开 g(x):

$$\begin{split} g(x) &= \, -6 - 5(x - 1) + 2(x^2 - 2x + 1) + (x^3 - 3x^2 + 3x - 1) \\ &= \, -6 + (-5x + 5) + (2x^2 - 4x + 2) + (x^3 - 3x^2 + 3x - 1) \\ &= \, -6x - x^2 + x^3. \end{split}$$

由此可见, g(x) 的 0 次系数为 0. 所以, $g^{r}(x)$ 是未定义的.

命题 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

是整式, $a_n \neq 0$, 且 $a_0 \neq 0$.

- (i) f(x) 的反整式 $f^{r}(x)$ 的次仍为 n;
- (ii) $f^{\mathbf{r}}(x)$ 的反整式 $(f^{\mathbf{r}})^{\mathbf{r}}(x)$ 是 f(x);
- (iii) 若 t 是非零数, 则

$$f^{\mathrm{r}}(t) = t^n f\left(\frac{1}{t}\right).$$

证 (i) f(x) 的反整式是

$$f^{\mathbf{r}}(x) = a_n + a_{n-1}x + \dots + a_0x^n.$$

因为 $a_0 \neq 0$, 故 $f^{r}(x)$ 的次仍为 n.

(ii) 设

$$b_j = a_{n-j}, \quad j = 0, 1, \dots, n.$$

则 f(x) 的反整式可写为

$$f^{r}(x) = b_0 + b_1 x + \dots + b_n x^n.$$

因为 $b_0=a_n\neq 0$, 且 $b_n=a_0\neq 0$, 故 $f^{\mathrm{r}}(x)$ 的反整式是

$$\begin{split} (f^{\mathbf{r}})^{\mathbf{r}}(x) &= b_n + b_{n-1}x + \dots + b_0x^n \\ &= a_0 + a_1x + \dots + a_nx^n \\ &= f(x). \end{split}$$

(iii) 设 t 是非零数. 则

$$\begin{split} f\left(\frac{1}{t}\right) &= a_0 + a_1 \frac{1}{t} + a_2 \left(\frac{1}{t}\right)^2 + \dots + a_n \left(\frac{1}{t}\right)^n \\ &= a_0 + a_1 \frac{1}{t} + a_2 \frac{1}{t^2} + \dots + a_n \frac{1}{t^n} \\ &= a_0 \frac{t^n}{t^n} + a_1 \frac{t^{n-1}}{t^n} + a_2 \frac{t^{n-2}}{t^n} + \dots + a_n \frac{1}{t^n} \\ &= \frac{a_0 t^n + a_1 t^{n-1} + a_2 t^{n-2} + \dots + a_n}{t^n} \\ &= \frac{a_n + a_{n-1} t + \dots + a_0 t^n}{t^n} \\ &= \frac{f^{\mathrm{r}}(t)}{t^n}. \end{split}$$

所以

$$f^{\mathbf{r}}(t) = t^n f\left(\frac{1}{t}\right).$$

命题 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n,$$

$$f_1(x) = p_0 + p_1 x + \dots + p_u x^u,$$

$$f_2(x) = q_0 + q_1 x + \dots + q_v x^v$$

是整式, 其中 $p_u \neq 0$, $q_v \neq 0$, $a_n \neq 0$ 且 $a_0 \neq 0$. 设

$$f(x) = f_1(x)f_2(x).$$

- (i) u + v = n;
- (ii) $p_0 \neq 0, q_0 \neq 0$;
- (iii) $f^{r}(x) = f_{1}^{r}(x)f_{2}^{r}(x)$.

证 (i) 显然[†].

- (ii) 因为 $f(x)=f_1(x)f_2(x)$, 故 $p_0q_0=a_0$. 因为 $a_0\neq 0$, 故 $p_0\neq 0$, $q_0\neq 0$.
 - (iii) 因为 $a_0 \neq 0$, $p_0 \neq 0$, $q_0 \neq 0$, 故 f(x), $f_1(x)$, $f_2(x)$ 都有反整式:

$$\begin{split} f^{\mathrm{r}}(x) &= a_n + a_{n-1}x + \dots + a_0x^n, \\ f^{\mathrm{r}}_1(x) &= p_u + p_{u-1}x + \dots + p_0x^u, \\ f^{\mathrm{r}}_2(x) &= q_v + q_{v-1}x + \dots + q_0x^v. \end{split}$$

记

$$E(x) = f^{\mathrm{r}}(x) - f_1^{\mathrm{r}}(x) f_2^{\mathrm{r}}(x).$$

任取非零数 t. 则

$$\begin{split} E(t) &= f^{\mathrm{r}}(t) - f_{1}^{\mathrm{r}}(t) f_{2}^{\mathrm{r}}(t) \\ &= t^{n} f\left(\frac{1}{t}\right) - t^{u} f_{1}\left(\frac{1}{t}\right) t^{v} f_{2}\left(\frac{1}{t}\right) \\ &= t^{n} f\left(\frac{1}{t}\right) - t^{u} t^{v} f_{1}\left(\frac{1}{t}\right) f_{2}\left(\frac{1}{t}\right) \end{split}$$

[†]因为 $f(x)=f_1(x)f_2(x)$,故 $\deg f(x)=\deg f_1(x)+\deg f_2(x)$.

$$= t^n f\left(\frac{1}{t}\right) - t^{u+v} f\left(\frac{1}{t}\right)$$
$$= t^n f\left(\frac{1}{t}\right) - t^n f\left(\frac{1}{t}\right)$$
$$= 0.$$

这说明, 整式 E(x) 有无限多个根. 所以, E(x) 一定是零整式, 即

$$f^{r}(x) = f_{1}^{r}(x)f_{2}^{r}(x).$$

命题 设

$$\begin{split} f(x) &= a_0 + a_1 x + \dots + a_n x^n, \\ f_1(x) &= p_0 + p_1 x + \dots + p_u x^u, \\ f_2(x) &= q_0 + q_1 x + \dots + q_v x^v \end{split}$$

是整式, 其中 $p_u \neq 0$, $q_v \neq 0$, $a_n \neq 0$ 且 $p_0 \neq 0$, $q_0 \neq 0$, $a_0 \neq 0$. 设

$$f^{r}(x) = f_1^{r}(x)f_2^{r}(x).$$

则

$$f(x) = f_1(x)f_2(x).$$

证 因为 (0 次系数不为 (0) 整式 (0) 整式 (0) 的)整式 (0) 的)整式 (0) 的反整式的反整式是 (0) 的。

跟前面的 " $\alpha x + \beta$ " 类似, 我们有

命题 设整式 f(x) 既不是 0,也不是单位,且 0 次系数不为 0. "f(x) 是可约的 (不可约的)" 的一个必要与充分条件是: "反整式 $f^{r}(x)$ 是可约的 (不可约的)".

证 这是作者留给读者的练习题; 请读者尝试自行补充细节 (可以说, 这跟 " $\alpha x + \beta$ " 几乎一致).

抱歉, 读者朋友. 作者一不小心, 又写多了. "喧宾夺主了, 属于是." 所以, 请读者消化一下.

我们继续吧!

本来,作者只想用下面的判别法结束本文,但又觉得只是冷冰冰地丢下一个判别法不是很负责.所以,作者决定加几个例.为尽可能地消除读者的疑惑,作者再加了一点细节.加着加着,又写多了……

下述命题一般被称为 Eisenstein 判别法 (*Eisenstein criterion*). 当然了, 此命题仅仅是 "f 是不可约的"的一个充分条件哟.

命题 设整式

$$f = a_0 + a_1 x + \dots + a_n x^n$$

的系数都是整数. 若存在不可约的整数 p 适合如下三条件, 则 f 是不可约的:

- (i) p 不是 a_n 的因子 (这说明 $a_n \neq 0$);
- (ii) p 是 $a_{n-1}, a_{n-2}, \cdots, a_0$ 的因子;
- (iii) p^2 不是 a_0 的因子 (这说明 $a_0 \neq 0$).

证 用反证法. 设二个 (系数都是整数的 †) 的整式 g,h 使 f=gh, 其中

$$g = g_0 + g_1 x + \dots + g_\ell x^\ell,$$

$$h = h_0 + h_1 x + \dots + h_m x^m$$

都不是单位, 且 $g_{\ell} \neq 0$, $h_{m} \neq 0$. 所以 $1 \leq \ell < n$, $1 \leq m < n$, 且 $\ell + m = n$. 因为 p 是 $a_{0} = g_{0}h_{0}$ 的因子, 故 p 是 g_{0} 的因子, 或 p 是 h_{0} 的因子. 因为 p^{2} 不是 a_{0} 的因子, 故 p 不可能是 g_{0} 与 h_{0} 的公因子. 不失一般性, 设 p 是 g_{0} 的因子, 且 p 不是 h_{0} 的因子. 因为 p 不是 $a_{n} = g_{\ell}h_{m}$ 的因子, 故 p 不

[†]这个假定是没有问题的. 若 f 是可约的, 则存在二个不是单位的有理系数整式 g, h 使 f=gh. g 的本原的相伴一定不是单位; h 的本原的相伴也一定不是单位. 所以, 存在 f 的某个容量 c_f , g 的某个本原的相伴 g^* , h 的某个本原的相伴 h^* , 使 $f=c_fg^*h^*$. 因为 c_f 是整数, 故 $\ell=c_fg^*$ 是整系数整式. 所以, f 可写为二个不是单位的整系数整式 ℓ , h^* 的积.

是 g_{ℓ} 的因子. 所以, 从次低的项往次高的项看, 必有整数 k $(1 \le k \le \ell < n)$ 使 p 是 $g_0, g_1, ..., g_{k-1}$ 的因子, 但 p 不是 g_k 的因子. 所以

$$a_k = g_k h_0 + g_{k-1} h_1 + \dots + g_0 h_k.$$

由此可见, p 是上式右侧除 g_kh_0 外的任意一项的因子. 这样, p 不是 a_k 的因子. 这跟 k < n 矛盾!

我们用几个例帮助读者消化此判别法.

例 我们可以随手写出任意次的不可约的整式: $x^n + p$, 这里 p 是某个不可约的整数, 且 n 是正整数.

例 设 $h = x^{m+1} + x^n - 2$, 其中 m 是正整数. 所以, h 的次不低于 2. 所以, h 既不是 0, 也不是单位. 这样, h 一定可以写为不可约的整式的积. 我们试写 h 为不可约的整式的积.

读者可能还记得

$$f^n - g^n = (f - g)(f^{n-1} + f^{n-2}g + \dots + f^{n-i}g^{i-1} + \dots + g^{n-1}).$$

由此, 我们可以将 h 改写为

$$h = (x^{m+1} - 1) + (x^m - 1).$$

因为

$$\begin{split} &x^n-1\\ &=x^n-1^n\\ &=(x-1)(x^{n-1}+x^{n-2}\cdot 1+\cdots +x^{n-i}\cdot 1^{i-1}+\cdots +1^{n-1})\\ &=(x-1)(x^{n-1}+x^{n-2}+\cdots +1), \end{split}$$

故

$$\begin{split} h &= (x-1)(x^m + x^{m-1} + x^{m-2} + \dots + 1) \\ &\quad + (x-1)(x^{m-1} + x^{m-2} + \dots + 1) \\ &= (x-1)\underbrace{(x^m + 2x^{m-1} + 2x^{m-2} + \dots + 2)}_q. \end{split}$$

显然 x-1 是不可约的. 我们再看看 q 是不是可约的. 读者不难看出, 取 p=2, 则 p (与 q) 适合 Eisenstein 判别法的三条件, 故 q 是不可约的. 所以, h 可写为二个不可约的整式的积: $(x-1)\cdot q$.

例 设 $f = -7 + 9x + 3x^6$. 不难看出, 不存在不可约的整数 p 适合 Eisenstein 判别法的三条件.

因为 (不是单位的) 整式与其反整式 (若存在) 要么都是可约的, 要么都是不可约的, 所以我们可以试试[†]反整式. f 的 0 次系数不是 0, 故 f 的反整式存在, 且 $f^{r} = 3 + 9x^{5} - 7x^{6}$. 由此可见, 取 p = 3, 则 p (与 f^{r}) 适合 Eisenstein 判别法的三条件, 故 f^{r} 是不可约的. 从而 f 也是不可约的.

一般地, 下面的 Eisenstein 判别法的变体成立:

命题 设整式

$$f = a_0 + a_1 x + \dots + a_n x^n$$

的系数都是整数. 若存在不可约的整数 p 适合如下三条件, 则 f 是不可约的:

- (i) p 不是 a_0 的因子 (这说明 $a_0 \neq 0$);
- (ii) p 是 a_1, a_2, \dots, a_n 的因子;
- (iii) p^2 不是 a_n 的因子 (这说明 $a_n \neq 0$).

证 考虑 f 的反整式 f^r . 对 f^r 施行 Eisenstein 判别法, 可知 f^r 是不可约的. 故 f 也是不可约的. (作者邀请感兴趣的读者补全细节.)

我们用一个经典的例结束本文.

例 设 q 是素数. 设

$$f(x) = 1 + x + \dots + x^{q-2} + x^{q-1}.$$

我们证明: f(x) 是不可约的.

显然, 不存在不可约的整数 p 适合 Eisenstein 判别法的三条件. 反整式 也没有帮助: f(x) 的反整式刚好是 f(x). 我们试试 " $\alpha x + \beta$ " 吧.

[†]只是"试试";不一定管用哟.

考虑

$$g(x) = f(x+1) = (1+x)^0 + (1+x)^1 + \dots + (1+x)^{q-2} + (1+x)^{q-1}.$$

我们需要展开 g(x). 我们知道, $(1+x)^\ell$ 的 j 次系数是 $\binom{\ell}{j}$. 所以, g(x) 的 j 次系数是

$$\binom{0}{j} + \binom{1}{j} + \dots + \binom{q-2}{j} + \binom{q-1}{j} = \binom{q}{j+1}.$$

也就是说,

$$g(x) = \binom{q}{1} + \binom{q}{2}x + \dots + \binom{q}{q-1}x^{q-2} + x^{q-1}.$$

取 p=q. 因为 q 是素数 (正的不可约的整数), p 当然是不可约的整数. 由此可见, p (与 g(x)) 适合 Eisenstein 判别法的三条件, 故 g(x) 是不可约的. 故 f(x) 也是不可约的.

感谢读者的阅读! 再见.

整数的因子分解 281

整数的因子分解

作者将在本文为读者介绍整数的因子分解,并告诉读者如何寻找整数的所有因子.

读者可能还能想起这个命题 (算术基本定理):

命题 设整数 f 既不是 0. 也不是单位.

(i) 存在不可约的整数 $p_1, p_2, ..., p_m$ 使

$$f = p_1 p_2 \cdots p_m;$$

(ii) 若 $q_1, q_2, \dots, q_m, s_1, s_2, \dots, s_n$ 是不可约的整数, 且

$$f=q_1q_2\cdots q_m=s_1s_2\cdots s_n,$$

则 m=n, 且可以适当地调换 $s_1,\,s_2,\,\cdots,\,s_m$ 的顺序, 使任取 1 至 m 间的整数 $\ell,\,q_\ell$ 与 s_ℓ 相伴 (注意: 调换顺序后的 s_ℓ 不一定跟原来的 s_ℓ 相等!).

如果读者还能回忆起此命题的证明, 读者就会发现: 我们只要知道 ±2 是不可约的就够了 (算学归纳法的始条件: 命题对绝对值为 2 的整数成立). 甚至, ±3 是不是可约的不影响此命题的证明: 如果 ±3 是可约的, 根据可约的整数的定义, 我们将它写为二个不是单位的整数的积, 然后再对这二个整数进行讨论; 如果 ±3 是不可约的, 则不必证了. (当然, 正如读者所想象的那样, ±3 是不可约的.) 换句话说, 虽然此命题断言, 我们可写既不是 0, 也不是单位的整数为若干个不可约的整数的积, 但它可没告诉我们怎么写. 本文就是要告诉读者一个具体的写法.

在前面, 我们稍细致地讨论了不可约的整式 † , 并知道, 任取非负整数 N, 必有次高于 N 的不可约的整式 ‡ (如 $x^{N+1}+2$). 类似地, 我们也有

命题 设 N 是非负整数. 存在不可约的整数 p 使 |p| > N. 通俗地说, 有无限多个不可约的整数.

[†]这里的整式的系数是有理数.

[‡]但是,不可约的复系数整式的次一定是 1;不可约的实系数整式的次一定是 1 或 2. 由于作者不假定读者有实分析 (这里的 "实分析" 是 "广义的": 研究实数的子集到实数的函数的学问) 或复分析 (类似地, "复分析" 是研究复数的子集到复数的函数的学问) 的知识, 故作者无法详细地展开这些事实. 读者可参考任意一本讲 "高等代数" 的教材. 如果读者不知道什么是 "分析学",那么读者可以粗略地视分析学为 "微积分".

证 设 N 是某非负整数. 用反证法. 假定不存在不可约的整数 p 使得 |p|>N; 也就是说, 每个不可约的整数 p 都适合 $|p|\leq N$. 因为适合条件 $|t|\leq N$ 的非负整数 t 至多有 2N+1 个 † , 故只有有限多个不可约的整数. 设 $p_1,\,p_2,\,\cdots,\,p_s$ 是所有的不可约的整数. 考虑整数

$$M = |p_1| \cdot |p_2| \cdots |p_s| + 1.$$

任取一个不可约的整数 p_{ℓ} . 因为不可约的整数的绝对值不低于 1, 故

$$M \ge |p_{\ell}| + 1 > |p_{\ell}|.$$

所以,M 不等于 p_{ℓ} . 换句话说,M 不是不可约的整数. 因为 $|p_{\ell}| \geq 1$,故 $M \geq 2$. 所以,M 既不是 0,也不是单位. 所以,M 是可约的. 既然 M 是可约的,那必有某个不可约的整数 p_k 是 M 的因子. p_k 当然也是 $|p_1| \cdot |p_2| \cdots |p_s|$ 的因子. 所以 p_k 也是

$$1 = M - |p_1| \cdot |p_2| \cdots |p_s|$$

的因子. 1 当然是 p_k 的因子, 故 p_k 与 1 相伴. 所以 p_k 是单位. 矛盾!

前面, 我们知道: 有无限多个不可约的整数. 那么, 不可约的整数有什么特征呢? 作者给一个简单的命题.

命题 设 p 是整数, 且 $|p| \ge 5$. 若 p 是不可约的, 则存在整数 ℓ 使 $p = 6\ell + 1$ 或 $p = 6\ell + 5$.

证 既然 p 是整数, 那么一定存在唯一的一对整数 q, r 使

$$p = 6q + r, \quad 0 \le r \le 5.$$

假定 p = 6q. 因为 $|p| \ge 5$, 故 $p \ne 0$. 所以 $q \ne 0$. 因为 $p = 2 \cdot 3q$, 而 2 不是单位, 3q 也不是单位 (因为 $|3q| = 3|q| \ge 3$), 这与 p 是不可约的矛盾!

假定 p = 6q + 2 = 2(3q + 1). 因为 $|p| \ge 5$, 故 $|3q + 1| \ge \frac{5}{2}$. 因为 3q + 1 是整数, 故 $|3q + 1| \ge 3$. 2 不是单位, 且 3q + 1 也不是单位. 这与 p 是不可约的矛盾.

[†]也就是 $0, 1, -1, 2, -2, \dots, N, -N$.

整数的因子分解 283

假定 p = 6q + 3 = 3(2q + 1). 因为 $|p| \ge 5$, 故 $|3q + 1| \ge \frac{5}{3}$. 因为 3q + 1 是整数, 故 $|3q + 1| \ge 2$. 3 不是单位, 且 2q + 1 也不是单位. 这与 p 是不可约的矛盾.

假定 p = 6q + 4 = 2(3q + 2). 因为 $|p| \ge 5$, 故 $|3q + 2| \ge \frac{5}{2}$. 因为 3q + 2 是整数, 故 $|3q + 2| \ge 3$. 2 不是单位, 且 3q + 2 也不是单位. 这与 p 是不可约的矛盾.

综上, 若 $|p| \ge 5$, 且 p 是不可约的, 则 p = 6q + 1 或 p = 6q + 5. 取 $\ell = q$ 即可.

评注 读者可能听说过, $25 = 5 \cdot 5$. 5 不是单位, 故 25 是可约的. 不过, $25 = 6 \cdot 4 + 1$. 类似地, $143 = 11 \cdot 13$. 11 与 13 都不是单位, 故 143 也是可约的. 不过, $143 = 6 \cdot 23 + 5$. 此评注的目的是告诉读者, 上个命题反过来不一定对. 换句话说, 不是所有的 $6\ell + 1$ 或 $6\ell + 5$ 都是不可约的.

设 f 既不是 0, 也不是单位. 判断 f 是否是不可约的整数的最简单的方法可能是试除法. 设 N=|f|. 若 f 是不可约的, 则不存在整数 f_1 , f_2 使 $f=f_1f_2$, 且 $2\leq |f_1|< N$, $2\leq |f_2|< N$; 反之也对. 适合条件 $2\leq |t|< N$ 的整数至多有 2(N-2) 个[†],故我们可以用这 2(N-2) 个整数一个一个地除,以判断这样的 f_1 , f_2 是否存在. 因为 g 是 f 的因子的一个必要与充分条件是 -g 是 f 的因子,故我们不必用负整数除 f; 也就是说,用 N-2 个整数 2, 3, …, N-1 除 f 就够了. 当然,如果这 N-2 个整数中有一个是 f 的因子,则 f 是可约的;我们可以停下来了.

例 设 f = 17. 则 N = |f| = 17. 我们用 N - 2 = 15 个整数 2, 3, …, 16 除 f. 2 不是 f 的因子; 3 不是 f 的因子……16 不是 f 的因子[‡]. 所以, 17 是不可约的. 当然, -17 也是不可约的.

例 设 f = 35. 则 N = |f| = 35. 我们用 N - 2 = 33 个整数 2, 3, …, 34 除 f. 2, 3, 4 都不是 f 的因子, 但 5 是 f 的因子. 所以, f 是可约的. 我们看看 5. 5 是最小的高于 1 的 f 的因子. 读者可能也知道, 5 是不可约的.

[†]也就是 $2, -2, 3, -3, \dots, N-1, -(N-1)$.

[‡]感兴趣的读者可自行完成 15 次带余除法.

再看 g = 49. 则 N = |g| = 49. 我们用 N - 2 = 47 个整数 2, 3, …, 48 除 g. 2, 3, 4, 5, 6 都不是 g 的因子, 但 7 是 f 的因子. 所以, g 是可约的. 我们看看 7. 7 是最小的高于 1 的 h 的因子. 读者可能也知道, 7 是不可约的.

一般地, 我们有

命题 设 f 既不是 0, 也不是单位. 若 p 是最小的高于 1 的 f 的因子, 则 p 是不可约的.

证 用反证法. 若 p 是可约的, 则存在整数 f_1 , f_2 使 $p = f_1 f_2$, 且 f_1 , f_2 不是单位. 因为 p 高于 1, 故可假定 f_1 , f_2 是正整数. 所以, f_1 与 f_2 也都高于 1. 所以

$$p - f_1 = f_1 f_2 - f_1 = f_1 (f_2 - 1) > 0.$$

因为 f_1 是 p 的因子, 而 p 是 f 的因子, 故 f_1 是 f 的因子. 因为 $f_1 > 1$, 且 $f_1 < p$, 故 p 不是最小的高于 1 的 f 的因子. 矛盾!

评注 上面的命题表明: 若 f 是可约的,则 2,3,...,|f|-1 的首个 f 的因子一定是不可约的. 这也是一种找不可约的整数的办法. 后面, 我们在讨论整数的因子分解时, 此命题将很有用.

或许读者觉得试除法要太长时间了. 的确如此; 作者也这么认为. 若 f 是可约的, 则我们不必试全部的 |f|-2 个整数; 可如果 f 不是可约的, 那这 太糟糕了——试了 |f|-2 次. 所以, 我们有必要简化试除法.

请读者先回忆一下算术平方根. 若 t 是非负实数, 则存在唯一的非负实数 s 适合 $s^2 = t$. 我们用 \sqrt{t} 表示这个 s; \sqrt{t} 就是 t 的算术平方根[†]. 比方说, $\sqrt{4} = 2$, $\sqrt{121} = 11$, $\sqrt{0} = 0$, $\sqrt{1} = 1$.

命题 设 f 是整数. 设整数 f_1 , f_2 适合 $f = f_1 f_2$. 设 $|f_1| \le |f_2|$. 则 $|f_1| \le \sqrt{|f|}$.

[†]证明至多有一个这样的 s 是容易的: 若非负实数 s_1, s_2 的平方都是 t, 则 $0 = t - t = s_1^2 - s_2^2 = (s_1 - s_2)(s_1 + s_2)$. 若 $s_1 + s_2 = 0$, 则因 s_1, s_2 是非负的, 必有 $s_1 = s_2 = 0$; 若 $s_1 + s_2 \neq 0$, 则必有 $s_1 - s_2 = 0$. 关键的问题是: 为什么这样的 s 是存在的? 我们也知道, 任何有理数的平方都不可能等于 $s_1 + s_2 \neq 0$, 则必有 $s_1 - s_2 = 0$. 关键的问题是: 为什么这样的 $s_1 + s_2 \neq 0$, 则必有 $s_2 \neq 0$, 则必有 $s_3 \neq 0$ 0 并不可能等于 $s_1 \neq 0$ 0 计算数的 "实数"就有了呢? 这个问题的 严格的讨论需要本文未曾介绍过的 (分析学的) 知识; 这些知识的讨论又可单独成册了.

整数的因子分解

285

证 用反证法. 若 $|f_1| > \sqrt{|f|}$, 则 $|f_2|$ 也高于 $\sqrt{|f|}$. 所以

$$|f|=|f_1|\cdot|f_2|>\sqrt{|f|}\cdot\sqrt{|f|}=|f|,$$

矛盾!

根据此命题, 我们在试除时, 不必从 2 到 N-2 (这里 N=|f|), 只要用从 2 到 \sqrt{N} 的整数即可. 最大的且不超过 \sqrt{N} 的整数是 $\left\lfloor \sqrt{N} \right\rfloor$. 所以, 试除法的 "N-2 个整数 2, 3, …, N-1" 可改为 " $\left\lfloor \sqrt{N} \right\rfloor -1$ 个整数 2, 3, …, $\left\lfloor \sqrt{N} \right\rfloor -1$ ".

例 设 f = 233. 则 N = |f| = 233. 对人而言, 233 已经不算小了. 如果不进行任何优化, 我们需要用 N - 2 = 231 个整数除 f. 作者不知道读者怎么想; 作者肯定不愿意用 231 个整数除 f. 所以, 我们用上面的花招简化一下.

如果读者背诵过"小整数" (绝对值不高于 100 的整数) 的平方, 就会知道 $15^2 = 225$, $16^2 = 256$. 所以, 最大的且不超过 $\sqrt{233}$ 的整数就是 15. 我们用 14 个整数 2, 3, …, 15 除 f. 从 233 到 14, 这是很大的进步! 现在, 我们可以试除了. 14 次除法后, 可知: 2, 3, …, 15 都不是 f 的因子. 所以, 233 是不可约的.

事实上, 试除时, 我们可以只用不可约的整数试除. 这很明显. 若 g 是可约的, 则存在不可约的整数 p 使 p 是 g 的因子. 进一步, 我们可假定此 p 是正整数. 若 g 是 f 的因子, 则 p 当然也是 f 的因子; 所以, 若 p 不是 f 的因子, 那么 g 不可能是 f 的因子.

不过, 不可约的整数应该往哪儿找呢?

前面, 我们已看到: 任给不是 ± 2 , ± 3 的不可约的整数 p (4 当然是可约的: $4 = 2 \cdot 2$), 必有整数 ℓ 使 $p = 6\ell + 1$ 或 $p = 6\ell + 5$. 因为

$$6\ell + 5 = 6\ell + 6 - 1 = 6(\ell + 1) - 1$$

故 p 可写为 $6k \pm 1$, 其中 k 是整数. 为方便, 无妨假定 p 是正整数[†]. 这样, $p \ge 5$. 由此可知 $6k \pm 1 \ge 5$, 即 $k \ge \frac{5 \mp 1}{6}$. 因为 k 是整数, 故 $k \ge 1$. 换句话说, 我们证明了

[†]若整数 p 是不可约的, 则 -p 也是不可约的. 试除时只需选正的整数, 故作者在此处 (为方便) 也选正的不可约的整数.

命题 设正整数 p 是不可约的. 则 p=2, 或 p=3, 或存在正整数 k 使 $p=6k\pm 1$.

综上, 我们有如下的方法判断一个整数 f (既不是单位, 也不是 0) 是否是不可约的:

- (i) 置 $S = |\sqrt{|f|}|$.
- (ii) 若 2 > S, 则 f 是不可约的, 停止. 若 $2 \le S$, 用 2 除 f. 若 2 是 f 的因子, 则 f 是可约的, 停止; 若 2 不是 f 的因子, 跳转到 (iii).
- (iii) 若 3 > S, 则 f 是不可约的, 停止. 若 $3 \le S$, 用 3 除 f. 若 3 是 f 的因子, 则 f 是可约的, 停止; 若 3 不是 f 的因子, 跳转到 (iv).
 - (iv) 置 p = 5 (这相当于是令 k = 1, p = 6k 1).
- (v) 若 p > S, 则 f 是不可约的, 停止. 若 $p \le S$, 用 p 除 f. 若 p 是 f 的因子, 则 f 是可约的, 停止; 若 p 不是 f 的因子, 跳转到 (vi).
 - (vi) 将 p 替换为 p+2 (这相当于把 p=6k-1 变为 p=6k+1).
- (vii) 若 p > S (这里的 p 是新 p, 下同), 则 f 是不可约的, 停止. 若 $p \le S$, 用 p 除 f. 若 p 是 f 的因子, 则 f 是可约的, 停止; 若 p 不是 f 的因子, 跳转到 (viii).
- (viii) 将 p 替换为 p+4 (这相当于把 6k+1 变为 6k+5=6(k+1)-1; 换句话说, 先把 k 变为 k+1, 再把 p 变为 6k+1). 跳转到 (v).

这个方法, 当然, 还是"试除法". 而且, 上面的叙述相当"死板": 初见此方法的读者可能不会立即理解此法是正确的. 此法适合丢给计算机, 让计算机判断一个"不太大的"整数[†]是否是不可约的. 如果人在脑中 (或用纸笔)作运算, 那么作者给个建议: 若 (v) (vii) 里的 p 是可约的, 则跳过此步 (也就是所谓的 continue).

"光说不练, 假把式"所以, 作者举一个例.

例 设 f = 2333. 则 N = |f| = 2333. 如果读者背诵过小整数的平方,就会知道 $48^2 = 2304$, $49^2 = 2401$. 所以, $S = \lfloor \sqrt{N} \rfloor = 48$. 利用 " $6k \pm 1$ ",我们只要用 17 个整数 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47 除 f (49 > S, 故我们不必考虑 49 及其以后的整数). 事实上,因为

[†]设 t 是整数. 若 t 不高于 $2^{31} - 1$ 且 t 不低于 -2^{31} , 则说 t 是 "不太大的". 了解一点计算机 知识的读者可看出, 这恰为 int (或 int32) "数据类型" 的 "取值范围".

整数的因子分解 287

 $25 = 5 \cdot 5$, $35 = 5 \cdot 7$, 故 $25 = 5 \cdot 8$ 都是可约的; 这样, 我们可以划去这二个数——只剩 15 个啦! 一个一个地除, 发现这 15 个整数都不是 f 的因子. 所以, 2333 是不可约的.

辛苦了! 请读者休息一会儿.

前面, 我们用试除法判断一个 (既不是 0, 也不是单位的) 整数是否是可约的. 现在, 我们考虑不等于非零整数的因子分解.

在正式地给出因子分解的定义前, 我们看一个例.

例 设 f=12. 读者不难验证

$$f = 2 \cdot 2 \cdot 3$$
.

这是写 f 为不可约的整数的积的一个结果. 为什么只是一个呢? 因为

$$f = (-2) \cdot (-2) \cdot 3,$$

而 -2 也是不可约的. 读者不至于认为 -2 不是不可约的吧?

当然了, 作者清楚, 读者更习惯正的不可约的整数; 作者知道, 负的不可约的整数看上去有些奇怪. 可是, g=-12 该怎么写呢? 因为 g=(-1)f, 故一个自然的写法是

$$q = (-1) \cdot 2 \cdot 2 \cdot 3$$
.

不过, -1 是单位, 故它既不是可约的, 也不是不可约的. 此时, 如果仍要写 g 为不可约的整数的积, 读者不得不至少用一个负的不可约的整数:

$$q = 2 \cdot 2 \cdot (-3).$$

此处, -3 自然也是不可约的. 当然, 在这个特殊的例里, 读者也可以写

$$g = (-2) \cdot (-2) \cdot (-3)$$
.

这里, 可写 g 为负的不可约的整数的积. 不过 -6 要怎么办? 读者不至于写 $-6 = (-2) \cdot (-3)$ 吧? 负负得正呀!

评注 读者应该意识到了上例暴露的"问题". 怎么办呢, 读者朋友? 作者提供三个方案:

- (i) "剥夺" 负整数的 "因子分解权". 别笑! 虽然中国人很早 (1 世纪左右) 就开始玩负数了 (见《九章算术》的《方程》), 可是有的西方人 (主要是欧洲人) 怀疑负数 (据说, 到 19 世纪中期, 西方的算学家才普遍地接受负数). 法兰西算学家 Blaise Pascal 的朋友 Antoine Arnauld 如此质疑负数: 如果允许负数, 那么 = 1 = 1; 可是, 这说明小数 (较小的数, 下同) 与大数的比等于大数与小数的比, 矛盾! * 西方人接受 0 的过程也是漫长的 (感兴趣的读者可自行查阅相关资料), 更别提负数了. 所以, 早期西方人研究 "因数" "最大公因数" "素数" 时, 这些数至少都是非负的. 所以 "素数" 一般都是指正的不可约的整数. 在研究不可约的整数的 "高级性质" 时, 为方便, 算学家往往要求它是正的; 这算是历史习惯了. 作者并没有说这个习惯不好; 事实上, 有时, 为方便, 作者自己也用 "素数".‡
- (ii) 忽视这个问题, 且不限定不可约的整数的正负. 当然可以; 毕竟, 作者一开始可没说不可约的整数一定是正的. 不过, 有一点小问题. 为方便, 我们往往会把相伴的整数化为同一个. 比方说, 我们往往不写 $-12 = (-2) \cdot 2 \cdot 3$, 而是写 $-12 = 2 \cdot 2 \cdot (-3)$. 可是, -9 要怎么办呢? 要么写 $3 \cdot (-3)$, 要么写 $(-3) \cdot 3$; 毕竟, 负负得正. 当然, 我们可以无视这一点: 相伴的整数可以不化为同一个.
- (iii) 跳出 "不可约的整数的积"的 "舒适圈" (comfort zone). 假如我们允许单位, 那么每个非零整数都可以写为 (至多) 一个单位与有限多个不可

[†]如果这里的数都是正数,那么小数与大数的比当然不是大数与小数的比;可这里出现了负数.如果读者还有印象,就会记得,不等式二侧同乘负数,不等式反向.或许此事实有助于解释此"怪事".

[‡]既然作者说这么多了,那么作者解释一下作者为什么讨论"整数的一些性质"而不是"非负整数的一些性质"吧. 在整数里,我们可自由地加、减、乘;类似地,整式也可自由地被加、减、乘. 整数与整式都有带余除法;整数与整式都有用来求最大公因子的辗转相除法……作者在此就不重复整数与整式的大量的共同点了. 我们再看非负整数. 非负整数可加、乘,但不一定能减(小数减大数"不够减"). 在同人文里,作者先讨论整数,再讨论整式. 如果负数还能通过只考虑非整数避开(毕竟,因子可正可负),那整式呢?只考虑0与首项系数为1的整式吗(毕竟,二个非零整式的首项系数为1的最大公因子恰有一个;这跟二个非零整数的正的最大公因子恰有一个类似)? 当然可以;不过,没有必要:借助"单位""相伴"的概念,我们克服了这个小问题.

整数的因子分解 289

约的整数的积. 这很好理解:单位自然是"一个单位与零个不可约的整数的积 (我们约定,零个数的积是 1;这跟零个数的和是 0 类似)";既不是 0,也不是单位的整数自然是"零个单位 (也可以是一个: 1)与有限多个 (至少有 1个)不可约的整数的积".而且,相伴的整数一定可被化为同一个. 若 q与 p相伴,则有单位 ε 使 $q=\varepsilon p$,则 $pq=\varepsilon(pp)$. 因为乘法可交换、结合,故我们可把多个单位都写在最前;因为有限多个单位的积还是单位,故多个单位可被写为一个单位. 具体地, $-9=3\cdot(-3)=3\cdot(-1)\cdot3=(-1)\cdot3\cdot3$ (当然,也可以是 $-9=(-1)\cdot(-3)\cdot(-3)$).

在这里, 作者选用方案 (iii). 毕竟, 如果允许单位, 读者可自由地改变不可约的整数的形式, 直到其适合读者的口味为止. 所以, 相应地, 作者给出

定义 设整数 $f \neq 0$. 那么, f 一定可写为 (至多一个) 单位与有限多个 (可以是零个) 不可约的整数的积, 即: 存在单位 ε 与不可约的整数 p_1, p_2, \dots, p_s (s 可为 0; 此时, f 是单位) 使

$$f = \varepsilon p_1 p_2 \cdots p_s$$
.

上式右侧即为 f 的因子分解 (factorization of f). 动词短语 "写 f 为单位与有限多个不可约的整数的积"的一个简单的称呼是 "因子分解 f" (to factorize f).

评注 有时,为书写方便,允许在因子分解里出现幂.读者不难看出, $2000 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5$.我们可将此式写为 $2000 = 2^4 \cdot 5^3$.此时,我们视 2^4 (或 5^3)为 4 个 2 的积 (或 3 个 5 的积),而不是一个不可约的整数!

作为一个挑战, 作者邀请读者从下面的例中自行提炼出因子分解整数的方法.

例 设 f = -83143. 这里, 作者用负整数举例. 还是老样子, f 的绝对值 N = 83143. 我们看 f 是否是可约的. 因为 $28^2 = 784$, $29^2 = 841$, 故 $280 < \sqrt{N} < 290$. \dagger 我们看看 285^2 (285 恰好是 280 与 290 的和的一半):

$$285^2 = (280 + 5)^2 = 280^2 + 2800 + 25 = 81225 < N.$$

[†]设 a, b 是非负实数. 若 $a^2 < b^2$, 则 a < b; 若 a < b, 则 $a^2 < b^2$. 证明也很容易: $a^2 - b^2 = (a - b)(a + b)$.

所以 $285 < \sqrt{N} < 290$. 我们看 287^2 与 288^2 (287 或 288 当然不是 285 与 290 的和的一半, 287.5; 为避开小数的运算, 我们同时算离 287.5 最近的二个整数的平方):

$$287^2 = (285 + 2)^2 = 285^2 + 570 \cdot 2 + 4 = 82369 < N,$$

$$288^2 = (290 - 2)^2 = 290^2 - 580 \cdot 2 + 4 = 82944 < N.$$

所以 $288 < \sqrt{N} < 290$. 我们看 289^2 :

$$289^2 = (290 - 1)^2 = 290^2 - 580 + 1 = 83521 > N.$$

所以 $288 < \sqrt{N} < 289$. 也就是说, $S = \lfloor \sqrt{N} \rfloor = 288$. 当然, 有计算器 (计算机) 的读者可直接算 \sqrt{N} , 从而得 S.

现在我们可以用不超过 S 的 $2, 3, 5, 7, \cdots$, $6k-1, 6k+1, \cdots$ 除 f. 有一点值得读者注意: 从绝对值小的到绝对值大的,一个一个地试. 我们作一个"空盒子" B. 此 B 的作用是: 存放不是 f 的因子的 (被用来试除 f 的) 数. 比方说, 2, 3, 5, 7 都不是 f 的因子,故我们依次把 2, 3, 5, 7 丢入 B. 类似地, 11, 13, 17, 19, 23 都被丢入 B. 25 呢? 老朋友了—— $25 = 5 \cdot 5$,故我们不必除,直接舍弃(也不必放入 B). 当然,若读者没认出可约的 25,也没有任何影响. 这里,为了不过多地让小细节影响读者,我们假装用 25 除 f,且发现 25 不是 f 的因子,故 25 被丢入 B. 下一个数是 29. 好! $f = 29 \cdot (-2\,867)$. 所以,f 是可约的. (提醒一下读者: 现在不要把 29 丢入 B. 为什么呢? B 存放不是 f 的因子的数. 29 是 f 的因子,所以我们不把 29 放入 B 里.)

不过, 我们的任务是因子分解 $f.\ g=-2\,867$ 是不是可约的?我们还不知道呢.不过,根据前面的讨论,既然 29 是最小的高于 1 的 f 的因子,那么 29 本身是不可约的 (这就是让读者从绝对值小的到绝对值大的,一个一个地试的理由). 我们继续研究 $g.\$ 设 $g=\varepsilon p_2 p_3\cdots p_s$,其中 ε 是单位, p_2,p_3,\cdots,p_s 是 s-1 个不可约的整数. 把这个结果跟 f=29g 合并,就得到了 f 的因子分解,对不 (29 是不可约的!)?

继续. 我们看 $g=-2\,867$. g 的绝对值 $N'=2\,867$. 背过小整数的平方的读者可能知道, $53^2=2\,809$, $54^2=2\,916$, 故 $S'=\left\lfloor\sqrt{N'}\right\rfloor=53$. 所以, 我们只需用不超过 S' 的 $2,3,5,7,\cdots,6k-1,6k+1,\cdots$ 除 g. 跟前面类似, 还是从绝对值小的到绝对值大的,一个一个地试. 我们也作一个新的"空盒子" B'.

又有一点值得读者留意. 前面的 B 的数一定不是 g 的因子. 为什么? 用反证法. 假如 B 里有个 "坏" b 是 g 的因子. 因为 g 是 f 的因子, 故 b 也 是 f 的因子. 可是, b 为什么在 B 里? 因为 b 不是 f 的因子, 我们才把 b 放入 B 的, 是不? 矛盾! 所以, 我们把 B 里的数 2, 3, 5, 7, 11, 13, 17, 19, 23, 25 (注意: 没有 29) 都丢入 B'. 这仿佛开加速器了, 是不?

这样, 我们从 29 开始. 不过这一次, 29 不是 g 的因子了. 所以我们把 29 丢入 B'. 类似地, 31, 35 (跟 25 一样, 假装不知道 35 是可约的), 37, 41, 43 都被丢入 B'. 47 是 g 的因子: $g = 47 \cdot (-61)$. 所以, g 仍为可约的. 老样子, 既然 47 是最小的高于 1 的 g 的因子, 那么 47 本身是不可约的.

我们还剩下 h = -61. 它是可约的吗? N'' = |h| = 61, $S'' = \lfloor \sqrt{N''} \rfloor = 7$. 类似地, B' 里的数都不是 h 的因子. 所以, 没数可试了. 所以, h 是不可约的.

综上, 我们可将 f 写为 $29 \cdot 47 \cdot (-61)$. 如果读者不想看到负的不可约的整数, 读者可写 f 为 $(-1) \cdot 29 \cdot 47 \cdot 61$. 这里, 读者应该能体会到允许一个单位是有用的: 至少 "好看了". 当然, 读者也可写 f 为 $(-29) \cdot (-47) \cdot (-61)$: 单位 1 不必显明地写出来了.

评注 作者还是提醒一下读者: 若整数 f "太大了", 则此法就不好用了. 读者完全可以用计算机因子分解不太大的整数; 作者在本文里给的方法适合人在脑中 (或用纸笔) 作运算. 读者可自行了解有关太大的整数的因子分解的资料 (事实上, 挺复杂的). 如果读者是蟒蛇 (Python) 玩家, 可体验这里的因子分解程序:

https://zhuanlan.zhihu.com/p/389061210

感谢读者读到这里. 请读者休息一下, 并试着作出"因子分解整数的技术总结".

我们还剩下一个小任务: 找整数 f 的所有因子.

常言道, 0 的因子是任意的整数, 而单位的因子只能是单位. 这二位是老朋友了: 我们不必多言.

或许读者还能记起

命题 设整数 f 既不是 0, 也不是单位. 设 $p_1, p_2, ..., p_m$ 是不可约的整数, 且

$$f = p_1 p_2 \cdots p_m$$
.

f的因子必为

$$\varepsilon p_{j_1} p_{j_2} \cdots p_{j_s}$$

其中 ε 是单位, j_1 , j_2 , …, j_s 是 1, 2, …, m 中 s 个不同的数 (s 可取 0; 此时, 这就是单位).

所以, 如果我们有 f 的因子分解, 我们就能立即写出 f 的所有因子. 为方便读者应用, 作者给出此命题的一个变体.

命题 设整数 $f \neq 0$. 设 ε 是单位, p_1, p_2, \cdots, p_m 是不可约的整数 (m可取 0; 此时, f 是单位), 且

$$f = \varepsilon p_1 p_2 \cdots p_m$$
.

f 的因子必为

$$\varepsilon' p_{j_1} p_{j_2} \cdots p_{j_s},$$

其中 ε' 是单位, $j_1, j_2, ..., j_s$ 是 1, 2, ..., m 中 s 个不同的数 (s 可取 0; 此时, 这就是单位).

证 若 f 是单位,则 m = 0. 此时我们无法从 m 个数 $1, 2, \dots, m$ 中 "取出"数,故 s = 0. 所以 (\star) 变为单位——这恰为 f 的因子.

若 f 既不是 0, 也不是单位, 则

$$g=\varepsilon^{-1}f=p_1p_2\cdots p_m$$

既不是 0, 也不是单位 (如果读者不能理解这一点, 读者可用反证法). 因为 f 与 g 相伴, 故 g 的因子都是 f 的因子,且 f 的因子都是 g 的因子 (如果读者不能理解这一点, 读者可设 d 是 f 的因子,则因 f 是 g 的因子,故 d 也是 g 的因子; 反过来也是类似的). 这样, 既然 g 的因子都形如 (\star) (可直接套用上命题于 g), 那么 f 的因子也都形如 (\star).

整数的因子分解 293

作者给一个建议. *f* 的因子分解里, 可能会有相伴的不可约的整数. 最好将相伴的整数化为相同的整数 (顶多差一个单位罢了); 否则, 得到的结果不会特别好看.

作者举二个例.

例 设 f = 60. 我们知道

 $60 = 2 \cdot 2 \cdot 3 \cdot 5.$

所以, f 的因子有

 $\varepsilon;$

 $2\varepsilon, 2\varepsilon, 3\varepsilon, 5\varepsilon;$

 $(2 \cdot 2)\varepsilon$, $(2 \cdot 3)\varepsilon$, $(2 \cdot 5)\varepsilon$, $(2 \cdot 3)\varepsilon$, $(2 \cdot 5)\varepsilon$, $(3 \cdot 5)\varepsilon$;

 $(2 \cdot 2 \cdot 3)\varepsilon$, $(2 \cdot 2 \cdot 5)\varepsilon$, $(2 \cdot 3 \cdot 5)\varepsilon$, $(2 \cdot 3 \cdot 5)\varepsilon$;

 $(2 \cdot 2 \cdot 3 \cdot 5)\varepsilon$.

这里, ε 取遍所有单位 (1 与 -1). 将上面的式化简、去重, 有

 $\varepsilon;$

 $2\varepsilon, 3\varepsilon, 5\varepsilon;$

 $4\varepsilon, 6\varepsilon, 10\varepsilon, 15\varepsilon;$

 $12\varepsilon, 20\varepsilon, 30\varepsilon;$

 60ε .

由此可见, f 有 2·12 个因子.

当然, 读者可能想用这个因子分解求 f 的所有因子:

$$f = (-2) \cdot 2 \cdot (-3) \cdot 5.$$

这里, -2 与 2 相伴, 但未被化为同一个. f 的因子有

 $\varepsilon;$

 $-2\varepsilon, 2\varepsilon, -3\varepsilon, 5\varepsilon;$

$$\begin{split} &(-2\cdot 2)\varepsilon, (-2\cdot (-3))\varepsilon, (-2\cdot 5)\varepsilon, (2\cdot (-3))\varepsilon, (2\cdot 5)\varepsilon, ((-3)\cdot 5)\varepsilon; \\ &(-2\cdot 2\cdot (-3))\varepsilon, (-2\cdot 2\cdot 5)\varepsilon, (-2\cdot (-3)\cdot 5)\varepsilon, (2\cdot (-3)\cdot 5)\varepsilon; \\ &(-2\cdot 2\cdot (-3)\cdot 5)\varepsilon. \end{split}$$

还是老样子, ε 取遍所有的单位. 将上面的式化简、去重, 有

$$\begin{split} &\varepsilon;\\ &-2\varepsilon, 2\varepsilon, 3\varepsilon, 5\varepsilon;\\ &-4\varepsilon, 6\varepsilon, -10\varepsilon, -6\varepsilon, 10\varepsilon, -15\varepsilon;\\ &12\varepsilon, -20\varepsilon, 30\varepsilon, -30\varepsilon;\\ &60\varepsilon. \end{split}$$

粗看这些式, 读者可能会觉得 f 有 $2 \cdot 16$ 个因子. 其实并不是. 显然, -2ε 与 2ε 相伴; 6ε 与 -6ε 相伴; -10ε 与 10ε 相伴; 30ε 与 -30ε 相伴. 这里有 4 组相伴元, 每组有 2 个. 我们从每组里选一个代表. 这样, 我们去除了 8-4=4 个式. 所以, f 应有 $2 \cdot (16-(8-4))$ 个因子.

例 设 f = -83143. 我们知道

$$f = 29 \cdot 47 \cdot (-61)$$
.

所以, f 的因子有

$$\begin{split} &\varepsilon;\\ &29\varepsilon,47\varepsilon,-61\varepsilon;\\ &(29\cdot47)\varepsilon,(29\cdot(-61))\varepsilon,(47\cdot(-61))\varepsilon;\\ &(29\cdot47\cdot(-61))\varepsilon. \end{split}$$

还是老样子, ε 取遍所有的单位. 将上面的式化简、去重, 有

$$\varepsilon$$
;
 $29\varepsilon, 47\varepsilon, -61\varepsilon$;
 $1363\varepsilon, -1769\varepsilon, -2867\varepsilon$;

 -83143ε .

由此可见, f 有 2.8 个因子.

一般地, f 的因子的数目有如下规律.

命题 设整数 $f \neq 0$. 设 f 的因子分解为

$$\varepsilon p_1 p_2 \cdots p_m$$

其中 ε 是单位, $p_1,\,p_2,\,\cdots,\,p_m$ 是不可约的整数 (m 可取 0). 将相伴的整数化 为同一个, 可得

$$f = \varepsilon' q_1^{r_1} q_2^{r_2} \cdots q_s^{r_s},$$

其中 ε' 是单位, q_1, q_2, \cdots, q_s 是互不相伴的不可约的整数 (亦即: 不可约的整数 q_1, q_2, \cdots, q_s PRP), r_1, r_2, \cdots, r_s 是正整数. (s 亦可取 0.) 则 f 至多有

$$n = (1 + r_1)(1 + r_2) \cdots (1 + r_s)$$

个互不相伴的因子. 因为整数恰有二个单位, 故 f 有 2n 个因子.

证 首先我们说明, f 的因子一定形如

$$\varepsilon^{\prime\prime}q_1^{t_1}q_2^{t_2}\cdots q_s^{t_s},$$

其中 ε'' 是单位, t_i 是不高于 r_i 的非负整数 $(i=1,2,\cdots,s)$. 显然, (\star) 是 f 的因子:

$$f = \left(\varepsilon^{\prime\prime}q_1^{t_1}q_2^{t_2}\cdots q_s^{t_s}\right)\left((\varepsilon^{\prime\prime})^{-1}\varepsilon^{\prime}q_1^{r_1-t_1}q_2^{r_2-t_2}\cdots q_s^{r_s-t_s}\right).$$

现在, 我们要说明, f 的因子可写为 (\star) 的形式. 我们已经知道, f 的因子一定形如

$$g=\varepsilon^{\prime\prime\prime}p_{j_1}p_{j_2}\cdots p_{j_u},$$

其中 ε''' 是单位, $j_1,\,j_2,\,\cdots,\,j_u$ 是 $1,\,2,\,\cdots,\,m$ 中 u 个不同的数. 既然每个 p_i 都能写为 $\varepsilon_i q_{v_i}$ $(v_i$ 是 $1,\,2,\,\cdots,\,s$ 的某个数), 那么每个 p_{j_i} 都能写为 $\varepsilon_{j_i} q_{v_{j_i}}$. 将所有的单位写在一块儿, 再把多个 $q_{v_{j_i}}$ 写为 $q_{v_{j_i}}$ 的幂, 就有

$$g = \delta q_{k_1}^{w_1} q_{k_2}^{w_2} \cdots q_{k_\ell}^{w_\ell},$$

同人作

其中 δ 是单位, k_1, k_2, \cdots, k_ℓ 是 1, 2, \cdots , s 中不同的 ℓ 个数, w_1, w_2, \cdots, w_ℓ 都是正整数. 我们说明: w_i 不超过 r_{k_i} . 用反证法. 若 $w_i > r_{k_i}$, 则因 $q_{k_i}^{w_i}$ 是 g 的因子, 且 g 是 f 的因子, 故 $q_{k_i}^{w_i}$ 是 f 的因子. 也就是说, 有整数 F 使

$$q_{k_i}^{w_i-r_{k_i}}q_{k_i}^{r_{k_i}}F = \varepsilon'q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}.$$

因 $q_{k_i} \neq 0$, 故

$$q_{k_i}^{w_i-r_{k_i}}F = \varepsilon' q_1^{r_1} \cdots q_{k_i-1}^{r_{k_i-1}} q_{k_i+1}^{r_{k_i+1}} \cdots q_s^{r_s}.$$

因为 $w_i > r_{k_i}$, 故 q_{k_i} 仍为上式左侧的因子; 这样, q_{k_i} 也是上式右侧的因子. 因为 q_{k_i} 是不可约的, 所以 q_{k_i} 一定是 $q_1^{r_1}$, …, $q_{k_i-1}^{r_{k_i-1}}$, $q_{k_i+1}^{r_{k_i+1}}$, …, $q_s^{r_s}$ (此处无 q_{k_i} 的幂!) 这 s-1 个整数中的某一个 (不要求恰有一个) 的因子. 设 q_{k_i} 是 $q_{\alpha}^{r_{\alpha}}$ ($r_{\alpha} \neq k_i$) 的因子. 类似地, 把幂写为 r_{α} 个 q_{α} 的积, 即知 q_{k_i} 是 q_{α} 的因子. 所以 q_{k_i} 与 q_{α} 不互素. 所以 q_{k_i} 与 q_{α} 相伴! 矛盾.

由上述讨论, 知: 每个 w_i 不超过 r_{k_i} . q_{k_1} , q_{k_2} , …, q_{k_ℓ} 可能不能包含 q_1 , q_2 , …, q_s ; 如果这样, 就把缺的 q_i 用 $1=q_i^0$ 补上. 综上, f 的每一个因子都可写为 (\bigstar) 的形式.

设

$$\begin{split} f_1 &= \varepsilon_1 q_1^{t_{1,1}} q_2^{t_{1,2}} \cdots q_s^{t_{1,s}}, \\ f_2 &= \varepsilon_2 q_1^{t_{2,1}} q_2^{t_{2,2}} \cdots q_s^{t_{2,s}}. \end{split}$$

这里, ε_1 与 ε_2 都是单位, $t_{1,1}$, $t_{2,1}$, $t_{1,2}$, $t_{2,2}$, …, $t_{1,s}$, $t_{2,s}$ 是 2s 个非负整数; q_1, q_2, \ldots, q_s 自然还是互不相伴的不可约的整数. 我们证明, f_1 与 f_2 相伴的一个必要与充分条件是

$$t_{1,i} = t_{2,i}, \quad i = 1, 2, \cdots, s.$$

充分性很容易. 既然 $t_{1,i} = t_{2,i}$, 那么

$$\varepsilon_1^{-1}f_1=\varepsilon_2^{-1}f_2.$$

由此, 读者在脑中将上式同乘 ε_1 , 可知 f_1 与 f_2 相伴. 有点复杂的是必要性. 设 f_1 与 f_2 相伴. 我们先固定 i, 然后再证 $t_{1,i}=t_{2,i}$. 既然 f_1 与 f_2 相伴,

整数的因子分解 297

那么存在单位 δ 使

$$\varepsilon_1 q_i^{t_{1,i}} \underbrace{\left(q_1^{t_{1,1}} \cdots q_{i-1}^{t_{1,i-1}} q_{i+1}^{t_{1,i+1}} \cdots q_s^{t_{1,s}}\right)}_{F_1} = \delta \varepsilon_2 q_i^{t_{2,i}} \underbrace{\left(q_1^{t_{2,1}} \cdots q_{i-1}^{t_{2,i-1}} q_{i+1}^{t_{2,i+1}} \cdots q_s^{t_{2,s}}\right)}_{F_2}.$$

稍作整理,就有

$$\varepsilon_1 q_i^{t_{1,i}} F_1 = (\delta \varepsilon_2) q_i^{t_{2,i}} F_2.$$

我们用反证法证明 $t_{1,i} = t_{2,i}$. 假定 $t_{1,i} > t_{2,i}$. 这样

$$(\varepsilon_1\delta^{-1}\varepsilon_2^{-1})q_i^{t_{1,i}-t_{2,i}}F_1=F_2.$$

既然 $t_{1,i} > t_{2,i}$, 那么 q_i 是上式左侧的因子. 所以, q_i 也是上式右侧 (即 F_2) 的因子. 因为

$$F_2 = q_1^{t_{2,1}} \cdots q_{i-1}^{t_{2,i-1}} q_{i+1}^{t_{2,i+1}} \cdots q_s^{t_{2,s}},$$

且 q_i 是不可约的,故 q_i 是 $q_1^{t_{1,1}}$, …, $q_{i-1}^{t_{2,i-1}}$, $q_{i+1}^{t_{2,i+1}}$, …, $q_s^{t_{2,s}}$ (此处无 q_i 的幂!) 这 s-1 个数中的某一个 (不要求恰有一个) 的因子.设 q_i 是 $q_{\alpha}^{t_{2,\alpha}}$ ($i \neq \alpha$) 的因子.类似地,把幂写为 $t_{2,\alpha}$ 个 q_{α} 的积,即知 q_i 是 q_{α} 的因子.所以 q_i 与 q_{α} 不互素.所以 q_i 与 q_{α} 相伴! 矛盾.类似地,若假定 $t_{1,i} < t_{2,i}$,也可导出矛盾.

上段文字说明: 在 (★) 里, 不同的 t_1, t_2, \cdots, t_s 给出不相伴的整数. 所以, 为计算 f 至多有多少个互不相伴的因子, 我们只要计算有多少 t_1, t_2, \cdots, t_s 适合条件 $0 \le t_i \le r_i$ 且 t_i 为整数即可. 显然, 每个 t_i 有 $1 + r_i$ 种取值 $(0, 1, \cdots, r_i)$, 且 t_i 的取值与 t_j 的取值是互不影响的 $(i \ne j)$. 根据乘法原理, 这样的 t_1, t_2, \cdots, t_s 的数目为

$$n = (1 + r_1)(1 + r_2) \cdots (1 + r_s).$$

最后, 因为整数恰有二个单位 1 与 -1, 故 f 的所有的因子的数目是 $n \cdot 2 = 2n$.

例 再谈前面的二个例. 因为 $60 = 2^2 \cdot 3 \cdot 5$, 故 60 有 $(1+2) \cdot (1+1) \cdot (1+1) = 12$ 个互不相伴的因子. 60 的全部的因子的数目是 $24 = 12 \cdot 2$. 同理, 因为 $-83143 = 29 \cdot 47 \cdot (-61)$, 故 -83143 有 $(1+1) \cdot (1+1) \cdot (1+1) = 8$ 个互不相伴的因子. -83143 的全部的因子的数目是 $16 = 8 \cdot 2$.

由上个命题的证明, 我们提取出

命题 设整数 $f \neq 0$. 设 ε 是单位, q_1, q_2, \cdots, q_s 是互不相伴的不可约的整数 (s 可取 0; 此时, f 是单位), r_1, r_2, \cdots, r_s 是正整数, 且

$$f=\varepsilon q_1^{r_1}q_2^{r_2}\cdots q_s^{r_s}.$$

则 f 的因子一定形如

$$\varepsilon' q_1^{t_1} q_2^{t_2} \cdots q_s^{t_s},$$

其中 ε' 是单位, t_i 是不高于 r_i 的非负整数 $(i=1,2,\cdots,s)$.

我们以一个简单的例结束本文.

例 设 f = -392. 因为 f = 8-400, 而 400 = 8.50, 故 f = 8.(1-50) = 8.(-49). 又因为 -49 = (-1).7.7, 故

$$f = (-1) \cdot 2^3 \cdot 7^2.$$

读者不难验证, 2 与 7 都是不可约的, 且 2 与 7 不相伴. 所以, f 的因子的数目为

$$2 \cdot (1+3) \cdot (1+2) = 24.$$

f 的因子是 $\varepsilon' 2^{t_1} 7^{t_2}$, 其中 ε' 是单位, t_1 取 0 至 3 间的整数, t_2 取 0 至 2 间的整数. 由此不难写出 f 的因子:

$$\pm 1;$$

 $\pm 2, \pm 7;$
 $\pm 4, \pm 14, \pm 49;$
 $\pm 8, \pm 28, \pm 98;$
 $\pm 56, \pm 196;$
 $\pm 392.$

本文就到这里了. 感谢读者的阅读!

有理系数整式的有理根

本文讨论有理系数整式的有理根.

首先, 作者还是给一个定义吧; 作者怕读者不知道什么叫"有理根".

定义 设 f(x) 是有理系数整式. 若有理数 a 适合 f(a) = 0, 则 a 是 f(x) 的有理根 (rational root).

例 设 a, b 是有理数, 且 $a \neq 0$. $-\frac{b}{a}$ 是 f(x) = ax + b 的有理根.

例 设 $f(x) = x^2 - 1$. ±1 是 f(x) 的有理根.

读者或许还能记起

命题 设 f(x) 是 n 次整式 $(n \ge 1)$, a 是数. 则存在 n-1 次整式 q(x) 使

$$f(x) = q(x)(x - a) + f(a).$$

根据带余除法, 这样的 q(x) 一定是唯一的.

利用此命题, 我们可得

命题 设 f(x) 是 n 次整式 $(n \ge 1)$. a 是 f(x) 的根的一个必要与充分条件是: 存在 n-1 次整式 q(x) 使

$$f(x) = q(x)(x - a).$$

根据带余除法, 这样的 q(x) 一定是唯一的.

此命题告诉我们: 找到 f 的有理根, 就相当于找到了 f 的 1 次因子. 在前面, 我们也知道, 1 次 (有理系数) 整式总是不可约的. 本文就是要告诉读者如何寻找有理系数整式的最简单的不可约的因子——1 次因子.

前面, 我们也讨论过整系数整式与有理系数整式的关系. 作者帮读者整理一下知识要点:

(i) 整系数整式当然是有理系数整式. 虽然有理系数整式不一定是整系数整式, 可我们总能把非零的有理系数整式写为一个有理数与整系数整式

的积. 我们可以进一步要求, 此整系数整式的系数互素. 一般地, 系数全是整数, 且系数还互素的整式是本原的整式.

- (ii) 二个本原的整式的积也是本原的; 若本原的整式是二个整系数整式 g, h 的积, 则 g 与 h 也是本原的.
- (iii) 若 f 是整系数整式, 且本原的整式 g 是 f 的因子, 则存在整系数整式 h 使 f=gh.
- (iv) 若一个整系数整式 f 可写为二个有理系数整式的积, 则 f 也一定可写为二个整系数整式的积. 反过来, 若整系数整式 f 可写为二个整系数整式的积, 则 f 已经是二个有理系数整式的积了.

比方说, 我们想研究

$$f = 1 + \frac{1}{2}x + \frac{1}{3}x^2 + \frac{1}{4}x^3.$$

我们可以"通分":

$$f = \frac{24}{24} + \frac{12}{24}x + \frac{8}{24}x^2 + \frac{6}{24}x^3$$

$$= \frac{1}{24}(24 + 12x + 8x^2 + 6x^3)$$

$$= \frac{2}{24}(12 + 6x + 4x^2 + 3x^3)$$

$$= \frac{1}{12}\underbrace{(12 + 6x + 4x^2 + 3x^3)}_{f^*}.$$

这样, 我们把 f 化为了一个有理数与整系数整式 f^* 的积; 读者不难看出, f^* 的系数互素, 故 f^* 是本原的.

读者朋友也应该看到了,虽然"查考整式"主要讨论整式,可如果我们想对整式作更深入的研究,我们必须好好地研究整式的系数.或许,有理系数整式是读者经常遇见的对象——我们从初中就知道了.有理数与整数的关系甚是密切——有理数是二个整数的比(分母自然是非零的).所以,作者用很多文字,带领读者好好地回忆小学就学过的"因数""最大公因数""素数"……当然,为了让读者更好地关联知识(使读者更好地理解同人文里整数的与整式的知识),作者用"因子"代替"因数".为了让读者了解素数的含义,作者引入"不可约的整数",并指出:正的不可约的整数即为素数.读者了解足够多的整数知识后,就可以具体地讨论如何寻找有理系数整式的不可约

的因子了. 作者再说一次: 本文就是要告诉读者如何用整数的性质找有理系数整式的最简单的不可约的因子——1 次因子. 准备好了吗? 我们开始了哟.

命题 设整数 u, v 互素, 且 $u \neq 0$. 这样, g = ux - v 是本原的 1 次整式. 设 f 是整系数整式. 若 g 是 f 的因子, 则 u 是 f 的首项系数的因子, 且 v 是 f 的 0 次系数的因子.

证设

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

是整系数整式, 且 $a_n \neq 0$. 因为 g = ux - v 是本原的, g 是 f 的因子, 故存在整系数整式 h 使 f = gh. 因为 $\deg f = \deg g + \deg h$, 故 $\deg h = n - 1$. 所以, 可设

$$h = b_{n-1}x^{n-1} + \dots + b_1x + b_0,$$

且 $b_{n-1} \neq 0$. 从而

$$a_n = ub_{n-1}, \quad a_0 = -vb_0.$$

故 u 是 a_n 的因子, 且 v 是 a_0 的因子.

评注 事实上, 找出所有的本原的 1 次因子, 也就找到了所有的 1 次因子——也就差个单位. 此命题充分地运用了事实"若 f 是整系数整式, 且本原的整式 g 是 f 的因子, 则存在整系数整式 h 使 f=gh".

既然 ux - v 是 f 的因子, 那么有整式 h 使

$$f = (ux - v)h.$$

适当地改写一下:

$$f = \left(x - \frac{v}{u}\right)(uh)$$

由此可见, $\frac{v}{u}$ 是 f 的根. 所以, 用根的语言描述上个命题, 就是

命题 设整数 u, v 互素, 且 $u \neq 0$. 设 f 是整系数整式. 若 $\frac{v}{u}$ 是 f 的根, 则 u 是 f 的首项系数的因子, 且 v 是 f 的 0 次系数的因子.

同人作

证 把上个命题用根的语言说一遍就彳亍了.

1坐4. 🖂

8

评注 每个有理数都可以被约分. 所以, 此命题指出: 若有理数 r 是 f(x) 的根, 则 r 的 "最简形式" 一定适合某些 "因子条件".

评注 我们也可以如此证明此命题. 还是设

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

是整系数整式. 既然 $\frac{v}{u}$ 是 f 的根, 那么

$$0 = a_n \left(\frac{v}{u}\right)^n + a_{n-1} \left(\frac{v}{u}\right)^{n-1} + \dots + a_1 \frac{v}{u} + a_0.$$

等式二侧同乘 u^n , 有

$$(\bigstar) \qquad 0 = a_n v^n + a_{n-1} v^{n-1} u + \dots + a_i v^i u^{n-i} + \dots + a_1 v u^{n-1} + a_0 u^n.$$

将 (★) 改写为

$$-a_nv^n=u(a_{n-1}v^{n-1}+\cdots+a_iv^iu^{n-i-1}+\cdots+a_1vu^{n-2}+a_0u^{n-1}).$$

上式右侧是 u 的因子, 故上式左侧也是 u 的因子. 因为 u 与 v 互素, 故 u 与 $-v^n$ 互素. 所以 u 是 a_n 的因子.

将(★)改写为

$$-a_0u^n=v(a_nv^{n-1}+a_{n-1}v^{n-2}u+\cdots+a_iv^{i-1}u^{n-i}+\cdots+a_1u^{n-1}).$$

上式右侧是 v 的因子, 故上式左侧也是 v 的因子. 因为 u 与 v 互素, 故 $-u^n$ 与 v 互素. 所以 v 是 a_0 的因子.

作者承认, 这个证明简单一些. 不过, 借助本原的整式, 我们可以方便地获取更多情报. 读者马上就会看到这一点.

评注 如果 f 的 0 次系数为 0,则因每个整数都是 0 的因子,可知此命题在"说废话". 它真地在说废话吗?嘛,它本身不会说话; 这取决于读者怎么想.

设 $f = x^5 + x^3 - 2x^2$. 明显地, x^2 是 x^5 , x^3 , $-2x^2$ 的公因子. 所以, $f = x^2(x^3 + x^2 - 2)$. 如果读者还记得 m 重因子的概念, 读者不难看出, x

是 f 的 2 重因子. $g = x^3 + x^2 - 2$ 的 0 次系数不是 0. 所以, 若 ux - v 是 g 的因子, 且 u 与 v 互素, 则 u 是 1 的因子, v 是 2 的因子. 这还是在"说废话"吗? g 的 1 次因子就不是 f 的 1 次因子了吗? 读者一定不要"死"学算学呀!

一般地, 若 x 是 f(x) 的 m 重因子 ($m \ge 1$), 我们总是可写 f(x) 为 $x^m g(x)$ 的形式, 且 x = x - 0 不是 g(x) 的因子. 因为 x - 0 除 g 的余式是 g(0), 故 $g(0) \ne 0$. 因为 g(x) 的 0 次系数是 g(0), 故 g(x) 的 0 次系数不是 0.

作者再具体一点吧. 设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_{m+1} x^{m+1} + a_m x^m,$$

且 $n \ge m \ge 1$, $a_n \ne 0$, $a_m \ne 0$. f(x) 的每一项 $a_i x^i$ $(m \le i \le n)$ 均可写为 $x^m \cdot a_i x^{i-m}$. 所以

$$f(x)=x^m\underbrace{(a_nx^{n-m}+a_{n-1}x^{n-m-1}+\cdots+a_{m+1}x+a_m)}_{g(x)}.$$

不难看出, g(x) 的 0 次系数 $a_m \neq 0$.

以后, 当读者要寻找 f 的 1 次因子时, 如果 x 的幂是 f 的因子, 就先将它与 f "分离".

设 $f \in n$ 次整系数整式. 怎么方便地判断 $ux - v \in f$ 的因子呢? 可考虑综合除法. $ux - v \in f$ 的因子, 相当于 $x - \frac{v}{u} \in f$ 的因子. 作者在前面也讲过, 计算 x - a 除 f 的一个简便方法就是综合除法——n 次加法与 n 次乘法即可给出商与余式. 这样, 剩下的问题就是: 列出适合上个命题条件的全部 $\frac{v}{u}$.

设 f 的首项系数是 a_n , 0 次系数是 a_0 . 根据前面的评注, 我们可假定 $a_0 \neq 0$. 所以, a_n 与 a_0 的因子的数目都是有限多个的. 设 a_n 的全部因子是 $\pm u_1, \pm u_2, \cdots, \pm u_s$; 设 a_0 的全部因子是 $\pm v_1, \pm v_2, \cdots, \pm v_t$. 这样, $\frac{v}{u}$ 必形如 \dagger

$$\pm \frac{v_j}{u_i}, \qquad 1 \leq i \leq s, \quad 1 \leq j \leq t.$$

 $[\]dagger + \frac{v}{u}$ 与 $= \frac{v}{u}$ 表示同一个数 $\frac{v}{u}$, 且 $= \frac{v}{u}$ 与 $= \frac{v}{u}$ 表示同一个数 $= \frac{v}{u}$. 因为现假定 $a_0 \neq 0$, 而首项系数 a_n 也非零, 故 $= \frac{v}{u}$ 与 $= \frac{v}{u}$ 是二个不同的数. 表面上, 将 $= \frac{v}{u}$ 放在分子, $= \frac{v}{u}$ 放在分母, 会产生四个数; 实则恰有二个.

当然, 还有一个条件: v_i 与 u_i 互素.

"One more thing." 若 f 是有理系数整式, 但 f 不是整系数整式, 我们总可将其变为本原的相伴.

有了上面的讨论, 作者举二个例帮助读者消化.

例 设 $f(x) = 2x^4 - 3x^3 + 3x^2 - 13x + 6$. 我们试找 f(x) 的有理根. f(x) 的首项系数与 0 次系数分别是 2 与 6. 2 的全部因子是

$$\pm 1, \pm 2.$$

6 的全部因子是

$$\pm 1, \pm 2, \pm 3, \pm 6.$$

这应该是好找的; 作者教过读者怎么找整数的全部因子, 对吧? 所以, 若 $\frac{v}{u}$ 是 f(x) 的有理根, 则 $\frac{v}{u}$ 必形如

$$\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{3}{1}, \pm \frac{6}{1};$$
$$\pm \frac{1}{2}, \pm \frac{3}{2}.$$

因为 2 与 2 不互素, 6 与 2 不互素, 故不必考虑这些组合 (读者牢记: u 与 v 互素!). 适当简化上面的有理数:

$$\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}.$$

这里有 12 个有理数. 有点多, 但作者请读者忍一下.

先试试 ± 1 吧. 再具体点, 先试试 1 吧. 记 a=1. 临时地, 记

$$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0. \label{eq:force}$$

我们用综合除法算算:

$$\begin{aligned} b_3 &= a_4 = 2,\\ b_2 &= ab_3 + a_3 = 2 - 3 = -1,\\ b_1 &= ab_2 + a_2 = -1 + 3 = 2,\\ b_0 &= ab_1 + a_1 = 2 - 13 = -11,\\ b_{-1} &= ab_0 + a_0 = -11 + 6 = -5. \end{aligned}$$

很遗憾, 1 不是 f(x) 的根. 再看看 -1? 记 a = -1. 上综合除法!

$$\begin{split} b_3 &= a_4 = 2, \\ b_2 &= ab_3 + a_3 = -2 - 3 = -5, \\ b_1 &= ab_2 + a_2 = 5 + 3 = 8, \\ b_0 &= ab_1 + a_1 = -8 - 13 = -21, \\ b_{-1} &= ab_0 + a_0 = 21 + 6 = 27. \end{split}$$

很遗憾. -1 不是 f(x) 的根. 再看看 2? 记 a = 2. 上综合除法!

$$\begin{split} b_3 &= a_4 = 2, \\ b_2 &= ab_3 + a_3 = 4 - 3 = 1, \\ b_1 &= ab_2 + a_2 = 2 + 3 = 5, \\ b_0 &= ab_1 + a_1 = 10 - 13 = -3, \\ b_{-1} &= ab_0 + a_0 = -6 + 6 = 0. \end{split}$$

好消息! 2 是 f(x) 的根. 不仅如此, 我们还知

$$f(x) = (x-2)\underbrace{(2x^3 + x^2 + 5x - 3)}_{g(x)}.$$

任务完成了吗? 还没呢. 不过, 我们的任务变轻松了——毕竟, g(x) 的次为 3; 少了一点, 是不是? 继续看. g(x) 的首项系数与 0 次系数分别是 2 与 -3. 2 的因子——不必再找一次了. 3 的因子呢? 不就是 ± 1 与 ± 3 嘛! 所以, 若 $\frac{v}{n}$ 是 g(x) 的有理根, 则 $\frac{v}{n}$ 必形如

$$\pm \frac{1}{1}, \pm \frac{3}{1};$$

 $\pm \frac{1}{2}, \pm \frac{3}{2}.$

读者可能会注意到, 这里只有 8 个数. 一般地, 若我们找到的有理根不是 ± 1 , 则首项系数的绝对值或 0 次系数的绝对值会变小, 从而"候选根"的数目也会变少; 这一点, 读者可从整式的乘法看出. 我们知道 ± 1 不是 f(x) 的根; 所以, ± 1 一定不会是 g(x) 的根 (读者可用反证法使自己相信这一点).

去掉不可能的选择,并简化上面的有理数:

$$\pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}.$$

先试试 ± 3 吧. 再具体点, 先试试 3 吧. 记 a=3. 临时地, 记

$$g(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0.$$

我们用综合除法算算:

$$\begin{split} b_2 &= a_3 = 2, \\ b_1 &= ab_2 + a_2 = 6 + 1 = 7, \\ b_0 &= ab_1 + a_1 = 21 + 5 = 26, \\ b_{-1} &= ab_0 + a_0 = 78 - 3 = 75. \end{split}$$

很遗憾, 3 不是 g(x) 的根. 再看看 -3? 记 a = -3. 上综合除法!

$$\begin{split} b_2 &= a_3 = 2, \\ b_1 &= ab_2 + a_2 = -6 + 1 = -5, \\ b_0 &= ab_1 + a_1 = 15 + 5 = 20, \\ b_{-1} &= ab_0 + a_0 = -60 - 3 = -63. \end{split}$$

很遗憾, -3 不是 g(x) 的根. 再看看 $\frac{1}{2}$? 记 $a=\frac{1}{2}$. 上综合除法!

$$\begin{split} b_2 &= a_3 = 2, \\ b_1 &= ab_2 + a_2 = 1 + 1 = 2, \\ b_0 &= ab_1 + a_1 = 1 + 5 = 6, \\ b_{-1} &= ab_0 + a_0 = 3 - 3 = 0. \end{split}$$

好消息! $\frac{1}{2}$ 是 g(x) 的根. 不仅如此, 我们还知

$$g(x) = \left(x - \frac{1}{2}\right)(2x^2 + 2x + 6) = (2x - 1)\underbrace{(x^2 + x + 3)}_{h(x)}.$$

任务完成了吗? 还没呢. 不过, 我们的任务变轻松了——毕竟, h(x) 的次为 2; 少了一点, 是不是? 继续看. h(x) 的首项系数与 0 次系数分别是 1

与 3. 1 的因子是 ± 1 ; 3 的因子——不必再找一次了. 所以, 若 $\frac{v}{u}$ 是 h(x) 的有理根, 则 $\frac{v}{u}$ 必形如 ± 3 . 我们知道 ± 3 不是 g(x) 的根; 所以, ± 3 一定不会是 h(x) 的根. 换句话说, h(x) 无有理根.

综上, f(x) 恰有二个有理根: $2 与 \frac{1}{2}$.

例 令 $f(x) = 12x^5 - 7x^3 + 21x^2 + 56$. 我们试找 f(x) 的有理根. f(x) 的首项系数与 0 次系数分别是 12 与 56. 12 的全部因子是

$$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12.$$

56 的全部因子是

$$\pm 1, \pm 2, \pm 7, \pm 4, \pm 14, \pm 8, \pm 28, \pm 56.$$

所以, 若 $\frac{v}{u}$ 是 f(x) 的有理根, 则 $\frac{v}{u}$ 必形如

$$\begin{split} &\pm\frac{1}{1},\pm\frac{2}{1},\pm\frac{7}{1},\pm\frac{4}{1},\pm\frac{14}{1},\pm\frac{8}{1},\pm\frac{28}{1},\pm\frac{56}{1};\\ &\pm\frac{1}{2},\pm\frac{7}{2};\\ &\pm\frac{1}{3},\pm\frac{2}{3},\pm\frac{7}{3},\pm\frac{4}{3},\pm\frac{14}{3},\pm\frac{8}{3},\pm\frac{28}{3},\pm\frac{56}{3};\\ &\pm\frac{1}{4},\pm\frac{7}{4};\\ &\pm\frac{1}{6},\pm\frac{7}{6};\\ &\pm\frac{1}{12},\pm\frac{7}{12}. \end{split}$$

适当简化上面的有理数:

$$\pm 1, \pm 2, \pm 7, \pm 4, \pm 14, \pm 8, \pm 28, \pm 56,$$

$$\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{4}{3}, \pm \frac{14}{3}, \pm \frac{8}{3}, \pm \frac{28}{3}, \pm \frac{56}{3},$$

$$\pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{6}, \pm \frac{7}{6}, \pm \frac{1}{12}, \pm \frac{7}{12}.$$

这里有 48 个有理数. 是不是有点太多了? 确实. 我们先把此例放一边.

读者从上个例可感受到一点压力. 理论上, 若 f(x) 有有理根, 则其必在上 48 个数内. 可是, f(x) 的次为 5—f(x) 至多有 5 个有理根! 读者可能

会想:要是能再少点就好了!作者听到了读者的愿望.喏,下面就是作者的回应.

命题 设整数 u, v 互素, 且 $u \neq 0$. 这样, g(x) = ux - v 是本原的 1 次整式. 设 f(x) 是整系数整式. 若 g(x) 是 f(x) 的因子, 则 v - u 是 f(1) 的因子, 且 v + u 是 f(-1) 的因子.

证设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

是整系数整式, 且 $a_n \neq 0$. 因为 g(x) = ux - v 是本原的, g(x) 是 f(x) 的因子, 故存在整系数整式 h(x) 使 f(x) = g(x)h(x). 所以

$$f(1) = g(1)h(1) = -(v - u)h(1),$$

$$f(-1) = g(-1)h(-1) = -(v + u)h(-1).$$

由题设, f(1) 与 f(-1) 都是整数; $v \pm u$ 自然也是整数; 因为 h(x) 是整系数的, 故 h(1) 与 h(-1) 都是整数. 所以 -h(1) 与 -h(-1) 都是整数. 所以 v - u 是 f(1) 的因子, 且 v + u 是 f(-1) 的因子.

用根的语言描述上个命题, 就是

命题 设整数 u, v 互素, 且 $u \neq 0$. 设 f(x) 是整系数整式. 若 $\frac{v}{u}$ 是 f(x) 的根, 则 v-u 是 f(1) 的因子, 且 v+u 是 f(-1) 的因子.

证 把上个命题用根的语言说一遍就彳亍了.

评注 注意到, $\frac{v}{u} = \frac{-v}{-u}$, 且 -v - (-u) = -(u-v), -v + (-u) = -(v+u). 所以, 分子与分母同时差 ± 1 并不影响结论.

8

评注 设 f(x) 是整系数整式. 若 1 (或 -1) 是 f(x) 的根,则 f(1) = 0 (或 f(-1) = 0). 跟前面的情况类似: 任意整数自然是 0 的因子,所以又在"说废话". 还是一样,设 x - 1 是 f(x) 的 m_1 重因子,且 x + 1 是 f(x) 的 m_2 重因子,这里 m_1 与 m_2 都是非负整数. 所以存在整式 g(x), h(x) 使

$$f(x) = (x-1)^{m_1}g(x) = (x+1)^{m_2}h(x),$$

且 x-1 不是 g(x) 的因子, x+1 不是 h(x) 的因子. 因为 x-1 与 x+1 互素, 故 $(x-1)^{m_1}$ 与 $(x+1)^{m_2}$ 互素. 所以 $(x-1)^{m_1}$ 是 h(x) 的因子, 且 $(x+1)^{m_2}$ 是 g(x) 的因子. 换句话说, 存在整式 $\ell_1(x)$, $\ell_2(x)$ 使

$$g(x) = (x+1)^{m_2} \ell_1(x), \quad h(x) = (x-1)^{m_1} \ell_2(x).$$

所以

$$f(x) = (x-1)^{m_1}(x+1)^{m_2}\ell_1(x) = (x-1)^{m_1}(x+1)^{m_2}\ell_2(x).$$

所以 $\ell_1(x) = \ell_2(x)$. 记 $\ell(x) = \ell_1(x) = \ell_2(x)$, 则

$$f(x) = (x-1)^{m_1}(x+1)^{m_2}\ell(x).$$

x-1 与 x+1 都是本原的, 故 $(x-1)^{m_1}$ 与 $(x+1)^{m_2}$ 也是本原的, 从而 $(x-1)^{m_1}(x+1)^{m_2}$ 是本原的. 所以, $\ell(x)$ 一定是整系数的. 而且, 1 (或 -1) 都不是 $\ell(x)$ 的根. 用反证法. 若 1 (或 -1) 是 $\ell(x)$ 的根, 故 1 (或 -1) 也是 g(x) (或 h(x)) 的根. 所以 x-1 (或 x+1) 是 g(x) (或 h(x)) 的因子. 矛盾! 所以, 若 1 或 -1 是 f(x) 的根, 我们总可以先去除所有的 1 与 -1, 再寻找 f(x) 的其他的有理根.

我们回头看前二例.

例 先请出简单的老朋友 $f(x) = 2x^4 - 3x^3 + 3x^2 - 13x + 6$. 我们也知道, 若 $\frac{v}{u}$ 是 f(x) 的有理根, 且 u 与 v 互素, 则 $\frac{v}{u}$ 必形如

$$\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}.$$

现在可以用 " $v \pm u$ " 挑出不可能是 f(x) 的根的数. 从前面的综合除法的计算过程, 我们可读出

$$f(1) = -5, \quad f(-1) = 27.$$

 ± 1 自然不是 f(x) 的根, 故不必用 " $v \pm u$ " 检验 1, -1 了. 因为 -5 是不可约的, 故 -5 的因子的数目是 4; 而 $27 = 3^3$, 故 27 的因子的数目是 $2 \cdot (1+3) = 8$. 所以, 我们先用没那么多因子的 f(1) = -5 进行 "v - u"

检验. 这总比综合除法简单吧? 通过运算, 我们可排除 -2, 3, -3, -6, $-\frac{1}{2}$; 也就是说, 2, 6, $\frac{1}{2}$, $\frac{3}{2}$, $-\frac{3}{2}$ 通过 "v-u" 检验. 我们还要用 f(-1)=27 进行 "v+u" 检验. 通过运算, 我们可排除 6, $\frac{3}{2}$; 也就是说, 2, $\frac{1}{2}$, $-\frac{3}{2}$ 还通过 "v+u" 检验. 我们把 12 个数降为 3 个数. 效果不错. 接下来, 感兴趣的读者可自行再检验 2, $\frac{1}{2}$, $-\frac{3}{2}$ 到底是不是 f(x) 的根.

例 再请出不是那么简单的老朋友 $f(x)=12x^5-7x^3+21x^2+56$. 我们也知道, 若 $\frac{v}{u}$ 是 f(x) 的有理根, 且 u 与 v 互素, 则 $\frac{v}{u}$ 必形如

$$\pm 1, \pm 2, \pm 7, \pm 4, \pm 14, \pm 8, \pm 28, \pm 56,$$

$$\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{4}{3}, \pm \frac{14}{3}, \pm \frac{8}{3}, \pm \frac{28}{3}, \pm \frac{56}{3},$$

$$\pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{6}, \pm \frac{7}{6}, \pm \frac{1}{12}, \pm \frac{7}{12}.$$

现在可以用 $v \pm u$ 挑出不可能是 f(x) 的根的数. 不过, 在此之前, 我们看看 1 或 -1 是否是 f(x) 的根. 先试 1. 记 a = 1. 临时地, 记

$$f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0.$$

我们用综合除法算算:

$$\begin{split} b_4 &= a_5 = 12, \\ b_3 &= ab_4 + a_4 = 12 + 0 = 12, \\ b_2 &= ab_3 + a_3 = 12 - 7 = 5, \\ b_1 &= ab_2 + a_2 = 5 + 21 = 26, \\ b_0 &= ab_1 + a_1 = 26 + 0 = 26, \\ b_{-1} &= ab_0 + a_0 = 26 + 56 = 82. \end{split}$$

很遗憾, 1 不是 f(x) 的根. 再看看 -1? 记 a = -1. 上综合除法!

$$\begin{split} b_4 &= a_5 = 12, \\ b_3 &= ab_4 + a_4 = -12 + 0 = -12, \\ b_2 &= ab_3 + a_3 = 12 - 7 = 5, \\ b_1 &= ab_2 + a_2 = -5 + 21 = 16, \end{split}$$

$$b_0 = ab_1 + a_1 = -16 + 0 = -16,$$

$$b_{-1} = ab_0 + a_0 = 16 + 56 = 72.$$

很遗憾, -1 不是 f(x) 的根. 不过, 这对我们进行 " $v \pm u$ " 检验是有利的. 从前面的综合除法的计算过程, 我们可读出

$$f(1) = 82, \quad f(-1) = 72.$$

 ± 1 自然不是 f(x) 的根, 故不必用 " $v \pm u$ " 检验 1, -1 了. $82 = 2 \cdot 41$, 2 与 41 都是不可约的, 故 82 的因子的数目是 $2 \cdot (1+1) \cdot (1+1) = 8$; $72 = 2^3 \cdot 3^2$, 3 是不可约的, 故 72 的因子的数目是 $2 \cdot (3+1) \cdot (2+1) = 24$. 所以, 我们 先用没那么多因子的 f(1) = 82 进行 "v - u" 检验. 简单的运算后, 我们发现, 只有 $2, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{1}{2}, \frac{7}{6}$ 通过 "v - u" 检验. 我们还要用 f(-1) = 72 进行 "v + u" 检验. 简单的运算后, 我们发现, 只有 $2, \frac{1}{3}, \frac{1}{2}$ 还通过 "v + u" 检验. 我们把 48 个数降为 3 个数, 效果不错. 接下来, 感兴趣的读者可自行再检验 $2, \frac{1}{3}, \frac{1}{2}$ 到底是不是 f(x) 的根. 这里作者给个参考答案: 都不是; 换句话说, f(x) 无有理根. 事实上, 取 p = 7, 则 p (与 f(x)) 适合 Eisenstein 判别法的 三条件, 故 f(x) 是不可约的. 这也说明, f(x) 不可能有有理根.

下例是"知乎"的一个讨论较多的问题†.

例 求 (整系数整式) $f(x) = x^3 + x^2 - 392$ 的根.

首先, 作者提醒读者: 这里没说"有理根". 即使 f(x) 是整系数整式, 难道 f(x) 就不是复系数整式了吗? 不过,"十千丈高楼平地起". 我们看看 f(x) 是否有有理根. 如果没有, 我们就不继续讨论下去——毕竟, 没有有理根的整式的根求起来不是那么方便; 而且, 它也超"纲"了.

f(x) 的首项系数与 0 次系数分别是 1 与 -392. 1 的全部因子是 ± 1 . -392 的全部因子是

$$\pm 1, \pm 2, \pm 7, \pm 4, \pm 14, \pm 49, \pm 8, \pm 28, \pm 98, \pm 56, \pm 196, \pm 392.$$

所以, 若 $\frac{v}{u}$ 是 f(x) 的有理根, 则 $\frac{v}{u}$ 必形如

$$\pm 1, \pm 2, \pm 7, \pm 4, \pm 14, \pm 49, \pm 8, \pm 28, \pm 98, \pm 56, \pm 196, \pm 392.$$

[†]感兴趣的读者可进入 https://www.zhihu.com/question/357995704 查看更多情报.

这里有 24 个有理数. 我们先看 ± 1 是否是 f(x) 的根. 先试 1. 记 a=1. 临时地, 记

$$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0.$$

我们用综合除法算算:

$$\begin{split} b_2 &= a_3 = 1, \\ b_1 &= ab_2 + a_2 = 1 + 1 = 2, \\ b_0 &= ab_1 + a_1 = 2 + 0 = 2, \\ b_{-1} &= ab_0 + a_0 = 2 - 392 = -390. \end{split}$$

很遗憾, 1 不是 f(x) 的根. 再看看 -1? 记 a = -1. 上综合除法!

$$\begin{split} b_2 &= a_3 = 1, \\ b_1 &= ab_2 + a_2 = -1 + 1 = 0, \\ b_0 &= ab_1 + a_1 = 0 + 0 = 0, \\ b_{-1} &= ab_0 + a_0 = 0 - 392 = -392. \end{split}$$

很遗憾, -1 不是 f(x) 的根. 不过, 这对我们进行 " $v \pm u$ " 检验是有利的. 从前面的综合除法的计算过程, 我们可读出

$$f(1) = -390, \quad f(-1) = -392.$$

 ± 1 自然不是 f(x) 的根, 故不必用 " $v\pm u$ " 检验 1,-1 了. $-390=(-1)\cdot 2\cdot 3\cdot 5\cdot 13, 2, 3, 5, 13$ 都是不可约的, 故 -390 的因子的数目是 $2\cdot (1+1)^4=32;$ -392 的因子的数目是 24. 所以, 我们先用没那么多因子的 f(-1)=-392 进行 "v+u" 检验. 简单的运算后, 我们发现, 只有 -2, 7, -8 通过 "v+u" 检验. 我们还要用 f(1)=-390 进行 "v-u" 检验. 简单的运算后, 我们发现, 只有 -2, 7 还通过 "v-u" 检验. 我们把 24 个数降为 2 个数,效果不错. 接下来, 我们用综合除法检验仅剩的二个数.

先试 -2. 记 a = -2. 上综合除法!

$$\begin{split} b_2 &= a_3 = 1, \\ b_1 &= ab_2 + a_2 = -2 + 1 = -1, \\ b_0 &= ab_1 + a_1 = 2 + 0 = 2, \\ b_{-1} &= ab_0 + a_0 = -4 - 392 = -396. \end{split}$$

很遗憾, -2 不是 f(x) 的根. 再看看 7? 记 a = 7. 上综合除法!

$$\begin{split} b_2 &= a_3 = 1, \\ b_1 &= ab_2 + a_2 = 7 + 1 = 8, \\ b_0 &= ab_1 + a_1 = 56 + 0 = 56, \\ b_{-1} &= ab_0 + a_0 = 392 - 392 = 0. \end{split}$$

好消息! 7 是 f(x) 的根. 不仅如此, 我们还知

$$f(x) = (x-2)\underbrace{(x^2 + 8x + 56)}_{g(x)}.$$

任务完成了吗? 还没呢. 不过, 我们的任务变轻松了——毕竟, g(x) 的次为 2; 少了一点, 是不是? 继续看. g(x) 的首项系数与 0 次系数分别是 1 与 56. 1 的因子——不必再找一次了. 56 的因子——作者从别的例搬过来:

$$\pm 1, \pm 2, \pm 7, \pm 4, \pm 14, \pm 8, \pm 28, \pm 56.$$

所以, 若 $\frac{v}{u}$ 是 g(x) 的有理根, 则 $\frac{v}{u}$ 必形如

$$\pm 1, \pm 2, \pm 7, \pm 4, \pm 14, \pm 8, \pm 28, \pm 56.$$

不过, 我们前面已经排除了除 7 以外的所有数. 现在再看 7 行不行. 读者可以上综合除法. 不过, 读者, g(x) 的次是 2 呀! g(x) = 0 是 1 元 2 次方程呀! 这是读者在中学接触的玩意儿. 作者说过, 读者一定不要死板地学算学. 这里, 我们对 g(x) 稍变形:

$$g(x) = x^2 + 8x + 16 + 40 = (x+4)^2 + 40.$$

314 同人作

由此可见, 若 t 是实数, 则 $g(t) \ge 40$. 所以, g(t) 不可能为 0. 所以, g(x) 没有实根. 有理根? 肯定也没有.

如果我们的任务只是找 f(x) 的有理根, 那 7 就是答案. 若我们想找复根呢? 那我们就要找 g(x) 的复根, 再添上已找到的有理根. 设 z 是复数, 且 g(z)=0. 则

$$z^{2} + 8z + 56 = 0$$

$$\iff (z+4)^{2} + 40 = 0$$

$$\iff \frac{(z+4)^{2}}{40} + 1 = 0$$

$$\iff \left(\frac{z+4}{2\sqrt{10}}\right)^{2} + 1 = 0.$$

所以, $w = \frac{z+4}{2\sqrt{10}}$ 是 $x^2 + 1$ 的根.

读者不难验证

$$x^2 + 1 = (x - i)(x + i).$$

所以, $x^2 + 1$ 的根恰有二个: $\pm i$. 因为 w 是 $x^2 + 1$ 的根, 故

$$w = \frac{z+4}{2\sqrt{10}} = \pm i.$$

由此可知 $z = -4 \pm 2\sqrt{10}$ i.

综上, f(x) 的复根是 7, $-4 \pm 2\sqrt{10}$ i.

本文的理论有助于读者判断一个数是否是无理数. 这里, 无理数自然是不是有理数的实数.

设 f 是整系数整式, 且其首项系数是 ± 1 . 设整数 u, v 互素. 若 $\frac{v}{u}$ 是 f 的根, 则 u 一定是首项系数 ± 1 的因子. 所以, u 也必须是 ± 1 . 由此可得

命题 设 f 是整系数整式, 且其首项系数是 ± 1 . 若有理数 r 是 f 的根, 则 r 一定是整数, 且 r 是 f 的 0 次系数的因子.

例 设 n 是正整数. 设 m 是整数, 且不存在整数 s 使 $s^n = m$. 我们证明: 不存在有理数 r 使 $r^n = m$.

用反证法. 若存在有理数 r 使 $r^n = m$, 则有理数 r 是整系数整式 $f = x^n - m$ 的根. 因为 f 的首项系数是 1, 故 r 一定是整数. 可是, m 不是整数的平方, 矛盾!

读者可能听说过, $\sqrt{2}$ 是无理数. 我们可以这么看: $\sqrt{2}$ 是实数; 实数不是有理数就是无理数; $\sqrt{2}$ 的平方是 2: 整数的平方不可能是 2.

类似地, 读者可证明: ∛2 也是无理数.

感谢读者的阅读. 作者坚信: 会有读者的.

有理系数整式的高次因子

本文讨论有理系数整式的高次因子.

在"有理系数整式的有理根"里,我们讨论了有理整式的有理根——也即有理整式的1次因子.

我们先了解一些简单的、有用的事实.

命题 设 f 既不是 0, 也不是单位. 设 p 是 f 的因子, p 不是单位, 且 $N = \deg p$. 若 f 没有次低于 N 且不是单位的因子, 则 p 是不可约的.

证 用反证法. 若 p 是可约的, 则存在整式 f_1 , f_2 使 $p = f_1 f_2$, 且 f_1 , f_2 不是单位. 所以, $1 \le \deg f_1 < N$. 既然 f_1 是 p 的因子, p 是 f 的因子, 那么 f_1 自然也是 f 的因子. 所以, f 有一个次低于 N 且不是单位的因子 f_1 . 矛盾!

评注 此命题与下述命题很相似:

设 f 既不是 0, 也不是单位. 若 p 是最小的高于 1 的 f 的因子, 则 p 是不可约的.

命题 设 f 是整式. 设整式 f_1 , f_2 适合 $f = f_1 f_2$. 设 $\deg f_1 \leq \deg f_2$. 则 $\deg f_1 + \deg f_1 \leq \deg f$.

证 设 f = 0. 则 f_1 不可能非零. 用反证法. 若 $f_1 \neq 0$, 则由 $f_1 f_2 = f$ 知 $f_2 = 0$. 所以 $\deg f_2 = -\infty$. 但是 $\deg f_1 \geq 0 > -\infty$, 矛盾! 所以, $f_1 = 0$. 也就是说,

$$\deg f_1 + \deg f_1 = -\infty + (-\infty) = -\infty = \deg f \leq \deg f.$$

设 $f \neq 0$. 则 f_1 , f_2 都不是零. 所以, $\deg f_1$, $\deg f_2$, $\deg f$ 都是非负整数. 所以

$$\deg f_1 + \deg f_1 \le \deg f_1 + \deg f_2 = \deg f.$$

评注 本命题的证明稍繁——因为 $-\infty$ 不是数.

如果我们接受,对任意正数 t,都有

$$t(-\infty) = (-\infty)t = -\infty,$$

那么 $\frac{1}{2}(-\infty) = -\infty$. 也就是说, 上面的命题可写为

命题 设 f 是整式. 设整式 f_1 , f_2 适合 $f = f_1 f_2$. 设 $\deg f_1 \leq \deg f_2$. 则 $\deg f_1 \leq \frac{1}{2} \deg f$.

评注 此命题与下述命题很相似:

设 f 是整数. 设整数 f_1 , f_2 适合 $f=f_1f_2$. 设 $|f_1|\leq |f_2|$. 则 $|f_1|\leq \sqrt{|f|}$.

评注 设整式 f 既不是 0, 也不是单位. 设 $N = \deg f$.

若 f 是不可约的,则 f 的次不高于 $\frac{1}{2}N$ 的因子只能是单位. 毕竟,若 f 有次不高于 $\frac{1}{2}N$ 且不是单位的因子 f_1 ,则 $1 \le \deg f_1 \le \frac{1}{2}N$. 若 f_2 适合 $f = f_1 f_2$,则 $\deg f_2 = \deg f - \deg f_1 \ge N - \frac{1}{2}N = \frac{1}{2}N > 0$. 所以, f_2 也不是单位. 也就是说,f 可写为二个不是单位的整式的积,矛盾!

若 f 是可约的,则 f 有次不高于 $\frac{1}{2}N$ 且不是单位的因子. 毕竟,既然 f 是可约的,则 f 可写为二个不是单位的整式 f_1 , f_2 的积. 无妨设 $\deg f_1 \leq \deg f_2$. 由上个命题知, $\deg f_1 \leq \frac{1}{2}N$.

评注 设 f 的次为 2 (或 3).

由上述评注知, 若 f 是可约的, 则 f 有次不高于 $\frac{2}{2}$ (或 $\frac{3}{2}$) 且不是单位的因子. 也就是说, f 有 (系数是有理数的) 1 次因子. 也就是说, f 有有理根.

反过来, 若 f 是不可约的, 则 f 的次不高于 $\frac{2}{2}$ (或 $\frac{3}{2}$) 的因子只能是单位. 也就是说, f 无 (系数是有理数的) 1 次因子. 也就是说, f 无有理根.

综上, 若 f 的次为 2 (或 3), 则 "f 是可约的"的一个必要与充分条件是 "f 有有理根"; "f 是不可约的"的一个必要与充分条件是 "f 无有理根".

例 设 $f(x) = ax^2 + bx + c$, 其中 a, b, c 是有理数, 且 $a \neq 0$. 则

$$\begin{split} f(x) &= \frac{1}{4a}(4a)(ax^2 + bx + c) \\ &= \frac{1}{4a}(4ax^2 + 4abx + 4ac) \\ &= \frac{1}{4a}((2ax)^2 + 2 \cdot (2ax) \cdot b + 4ac) \\ &= \frac{1}{4a}((2ax)^2 + 2 \cdot (2ax) \cdot b + b^2 + (4ac - b^2)) \\ &= \frac{1}{4a}((2ax + b)^2 + (4ac - b^2)). \end{split}$$

记 $\Delta = b^2 - 4ac$. 则

$$f(x) = \frac{1}{4a}((2ax + b)^2 - \Delta).$$

(i) 若存在有理数 r 使 $r^2 = \Delta$, 则

$$\begin{split} f(x) &= \frac{1}{4a}((2ax+b)^2 - r^2) \\ &= \frac{1}{4a}(2ax+b-r)(2ax+b+r). \end{split}$$

由此可见, f(x) 是可约的.

(ii) 若 Δ 不是有理数的平方, 则对任意有理数 t, 因 2at+b 也是有理数, 故 $f(t) \neq 0$ (如果有某有理数 s 使 f(s) = 0, 则 $(2as+b)^2 = \Delta$, 即 Δ 是有理数的平方, 矛盾). 所以, f(x) 无有理根. 根据上述评注, f(x) 是不可约的.

综上, "f(x) 是可约的"的一个必要与充分条件是" $\Delta = b^2 - 4ac$ 是有理数的平方". 利用此结论, 读者可迅速判断一个系数全为有理数的 2 次整式是否是可约的.

例 设 $f(x) = x^3 + ax^2 + bx + 1$, 其中 a, b 是整数. 我们知道, f(x) 的有理根只能是 ± 1 . 所以, 若 f(1) 与 f(-1) 都不是 0, 即 $a + b \neq -2$ 且 $a \neq b$, 则 f(x) 无有理根. 也就是说, 此时 f(x) 是不可约的. 这样, 我们可随手写出很多次为 3 的不可约的整式 (不借助 Eisenstein 判别法).

看到这里, 我们明白了一件事: 欲探 2 次或 3 次整式的因子, 有理根很方便, 且够用. 那么, 次高一些的整式 (譬如 4 次) 还能这么简单吗?

设 f 是次不低于 4 的整式. 若 f 有有理根 a, 则 x - a 是 f 的因子. 所以, 若 g 适合 f = (x - a)g, 则 $\deg g = \deg f - 1 \ge 3$, 故 g 不是单位. 所以, f 是可约的. 但, 就算 f 无有理根, f 仍可是可约的.

例 设 $h(x) = x^4 + 4$. 我们在"整系数整式与有理系数整式"里说过,h(x) 是可约的:

$$x^{4} + 4 = x^{4} + 4x^{2} + 4 - 4x^{2}$$

$$= (x^{2} + 2)^{2} - (2x)^{2}$$

$$= (x^{2} + 2x + 2)(x^{2} - 2x + 2).$$

显然 $x^2 \pm 2x + 2$ 不是单位. 所以, h(x) 是可约的.

可是, h(x) 无有理根: 若 t 是有理数, 则 $h(t) \ge 4$, 当然有 $h(t) \ne 0$.

顺便一提: 既然 h(x) 无 1 次因子, 而 h(x) 有 2 次因子, 因为 h(x) 的次为 4, 故 h(x) 还有一个 2 次因子; 这二个 2 次因子自动地是不可约的 † .

由上个例, 我们看到: 只考虑有理根 (1 次因子) 是不够的. 也就是说, 没有 1 次因子, 并不代表没有 2 次因子 (当然, 次为 2 或 3 的整式还是很简单的). 我们需要一种找高次因子的办法.

前面, 我们在找有理根时, 用了整系数整式, 从而可充分地利用整数的性质找出有理根. 所以, 不失一般性, 设 f(x) 是整系数整式, 且 $f(x) \neq 0$. 设本原的整式 g(x) 的次不高于 n, 且 g(x) 是 f(x) 的因子. 这样, 存在整系数整式 h(x) 使 f(x) = g(x)h(x). 取 n+1 个互不相同的整数 x_0, x_1, \cdots, x_n . 既然 g(x) 的次不高于 n, 且 g(x) 可视为有理系数整式, 根据插值公式[‡], 有

(L)
$$g(x) = \sum_{i=0}^n g(x_i) \prod_{\substack{0 \le \ell \le n \\ \ell \ne i}} \frac{x - x_\ell}{x_i - x_\ell}.$$

我们看 $g(x_i)$. 因为 f(x) = g(x)h(x), 故 $f(x_i) = g(x_i)h(x_i)$. 因为 f(x), g(x), h(x) 都是整系数整式, 故 $f(x_i)$, $g(x_i)$, $h(x_i)$ 都是整数. 也就是说, $g(x_i)$ 一定是 $f(x_i)$ 的因子!

如果每个 $f(x_i)$ 都不是 0, 那么每个 $g(x_i)$ 只有有限多个取值! 所以, 无妨假定 f(x) 没有 1 次因子 (f(x)) 的所有的 1 次因子均可用 "有理系数整式的有理根"的方法找出). 这样, 对任意整数 a, $f(a) \neq 0$.

若 $f(x_i)$ 有 $2d_i$ 个因子 (包括正、负), 由式 (L) 可知, 这样的 g(x) 的数目 (至多) 是

$$N=(2d_0)(2d_1)\cdots(2d_n)=2^{n+1}d_0d_1\cdots d_n.$$

为什么我们加上了"至多"呢? 因为我们假定 g(x) 是本原的整式, 所以 g(x) 至少得是整系数整式; 在整数点有整数值的整式不一定是整系数整式 (参考"广义二项系数")!

[†]即 to be automatically irreducible.

[‡]在这里, 插值公式的具体的形式不重要; 重要的是插值思想. 读者可翻阅 "插值" 以获取更多情报.

既然 q(x) 只有有限多个, 那么我们可列出这些 q(x), 并用它们除 f(x). 这就是本文的最核心的思想.

评注 读者要活学活用算学呀! 很明显, $N \geq 2^{n+1}$; 所以, 当 n 很大时, 由式 (L) 给出的 g(x) 的数目也很多. 我们当然要用一些手段使我们轻松一

设 f(x) 是整系数整式. 无妨假定 f(x) 没有 1 次因子. 设本原的整式 g(x) 的次不高于 n, 且 g(x) 是 f(x) 的因子.

(i) 为方便, 我们 (临时地) 简单地记由 n+1 个短句合成的长句 " $g(x_0) =$ $y_0, g(x_1) = y_1, \dots, g(x_{n-1}) = y_{n-1}, \perp g(x_n) = y_n$ " 为

$$(g; y_0, y_1, \cdots, y_{n-1}, y_n).$$

设 $g_1(x)$, $g_2(x)$ 都是次不高于 n 的整式. 设

$$(g_1;y_0,y_1,\cdots,y_{n-1},y_n),\\ (g_2;-y_0,-y_1,\cdots,-y_{n-1},-y_n).$$

也就是说, $g_2(x_i) = -g_1(x_i)$. 由式 (L) 知

$$\begin{split} g_2(x) &= \sum_{i=0}^n (-y_i) \prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} \frac{x - x_\ell}{x_i - x_\ell} \\ &= -\sum_{i=0}^n y_i \prod_{\substack{0 \leq \ell \leq n \\ \ell \neq i}} \frac{x - x_\ell}{x_i - x_\ell} \\ &= -q_1(x). \end{split}$$

所以, 若 $f(x) = g_1(x)h_1(x)$, 则 $f(x) = g_2(x)(-h_1(x))$; 反过来, 若 f(x) = $g_2(x)h_2(x)$,则 $f(x) = g_1(x)(-h_2(x))$. 既然 f(x) 已被假定无 1 次因子,那 么 $f(x_0) \neq 0$. 既然 $g(x_0)$ 是 $f(x_0)$ 的因子, $g(x_0) \neq 0$. 再结合刚才的讨论, 我们可以假定 $g(x_0) > 0$; 换句话说, 我们可假定 $g(x_0)$ 只取 $f(x_0)$ 的正的因 子. 所以, 我们不必列出 $N \uparrow g(x)$; $\frac{1}{2}N \uparrow g(x)$ 就够用了.

(ii) 就算 (i) 让我们少考虑一半的整式, 但 $\frac{1}{2} \cdot 2^{n+1} = 2^n$ 还是不小 (更 别提 $\frac{1}{2}N$) 了. 所以, 我们还要一点技术——比方说, 排除一些不可能是整系 数整式的 g(x).

设 a 是整数. 设 g(x) 是整系数整式. 作整式 $g_a(x)=g(x)-g(a)$. 因为 $g_a(a)=0$,且 $g_a(x)$ 与 x-a 都是有理系数整式, 故存在有理系数整式 q(x) 使

$$g(x) - g(a) = g_a(x) = (x - a)q(x).$$

因为 $g_a(x)$ 是整系数整式, 且 x-a 是本原的, 故 q(x) 也是整系数整式. 设 b 是整数. 则

$$g(b) - g(a) = g_a(b) = (b - a)q(b).$$

因为 g(b)-g(a), b-a, q(b) 都是整数, 故 b-a 一定是 g(b)-g(a) 的因子! 此事实是有用的. 比方说, 若 x_0 , x_1 , x_2 为 -2, -1, 3, 而 $g(x_0)$, $g(x_1)$, $g(x_2)$ 分别是 2, 3, 7, 则此 g(x) 一定不是整系数整式.

- (iii) 若 $f(x_0) = 1$ 或 $f(x_0) = -1$, 根据 (i), 我们总可选 $g(x_0) = 1$. 若 f(x) 的首项系数为 1 或 -1, 则可考虑 f(x) 的反整式 $f^{\mathrm{r}}(x)$ (因为已假定 f(x) 无 1 次因子, 故 f(x) 的 0 项系数一定不是 0). 若 $f^{\mathrm{r}}(x) = G(x)H(x)$, 则 $f(x) = G^{\mathrm{r}}(x)H^{\mathrm{r}}(x)$.
- (iv) g(x) 的首项系数当然是 f(x) 的首项系数的因子; g(x) 的 0 次系数当然是 f(x) 的 0 次系数的因子. 这一点, 显明地写出 f(x) 与 g(x) 的系数即可看出.

(v) 设

$$\begin{split} &(f_1; w_0, w_1, \cdots, w_{n-1}, w_n), \\ &(f_2; \varepsilon_0 w_0, \varepsilon_1 w_1, \cdots, \varepsilon_{n-1} w_{n-1}, \varepsilon_n w_n), \end{split}$$

其中 ε_0 , ε_1 , …, ε_{n-1} , ε_n 是 n+1 个整数的单位 (即 ± 1). 也就是说, $f_2(x_i) = \varepsilon_i f_1(x_i)$. 节 因为 $f_1(x_i)$ 与 $\varepsilon_i f_1(x_i)$ 有相同的因子, 故用诸 $f_2(x_i)$ 的因子算出的 g(x) 与用诸 $f_1(x_i)$ 的因子算出的 g(x) 是一样的.

下面, 作者举几个例, 帮助读者消化、理解.

[†]作者举一个例. 取 n=2. 设 x_0, x_1, x_2 分别是 0, 1, -1. 设 $f_1(x)=1-x-x^2$; 设 $f_2(x)=2x^2-1$. 那么 $f_1(x_0)=1, f_2(x_0)=-1, f_1(x_1)=-1, f_2(x_1)=1, f_1(x_2)=1,$ $f_2(x_2)=1$. 这样, ε_0 就是 $-1, \varepsilon_1$ 就是 $-1, \varepsilon_2$ 就是 1. 通俗地说, $f_1(x_i)$ 与 $f_2(x_i)$ 最多差 ± 1 .

例 设 $f(x) = 6x^7 - 6x^6 - 5x^5 - 13x^4 + 9x^3 + 20x^2 - 4x - 6$. 我们试写 f(x) 为若干个不可约的整式的积.

老样子, 先试着找 f(x) 的 1 次因子——有理根. f(x) 的首项系数是 6, 且 0 次系数是 -6. 6 的因子有 ± 1 , ± 2 , ± 3 , ± 6 ; -6 的因子有 ± 1 , ± 2 , ± 3 , ± 6 . 所以, 若 $\frac{v}{u}$ 是 f(x) 的有理根, 且 u, v 互素, 则 $\frac{v}{u}$ 必形如

$$\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{3}{1}, \pm \frac{6}{1};$$

$$\pm \frac{1}{2}, \pm \frac{3}{2};$$

$$\pm \frac{1}{3}, \pm \frac{2}{3};$$

$$\pm \frac{1}{6}.$$

这里有 18 个数; 我们可以用 " $v \pm u$ " 检验排除一些. 不过, 我们先确定 ± 1 是不是 f(x) 的根. 利用综合除法, 读者不难算出

$$f(x) = (x-1)(6x^6 - 5x^4 - 18x^3 - 9x^2 + 11x + 7) + 1,$$

$$f(x) = (x+1)(6x^6 - 12x^5 + 7x^4 - 20x^3 + 29x^2 - 9x + 5) - 11.$$

所以, ± 1 都不是 f(x) 的根. 不过, 这并不是很糟; 至少, 我们知道, f(1)=1, f(-1)=-11. 因为 f(1)=1, 故 v-u 是 1 的因子——也就是说, $v-u=\pm 1$. 由此, 恰有 $2, \frac{1}{2}, \frac{3}{2}, \frac{2}{3}$ 通过 "v-u" 检验. 因为 f(-1)=-11, 故 v+u 是 -11 的因子. 由此, 这四数都不通过 "v+u" 检验——换句话说, f(x) 无有理根.

现在, 我们寻找 f(x) 的次不高于 2 的因子. 因为 f(x) 无 1 次因子, 故 f(x) 的 2 次因子一定是不可约的 (若其真地存在). 不难看出, f(0) = -6; 前面的计算告诉我们, f(1) = 1, f(-1) = -11. 假定本原的整式 g(x) 是 f(x) 的因子, 且 g(x) 的次不高于 2. 根据前面的讨论, g(0) 一定是 -6 的因子, g(1) 一定是 1 的因子, 且 g(-1) 一定是 -11 的因子. 取 x_0 , x_1 , x_2 为 1, 0, -1. 根据前面的评注, 可假定 g(1) = 1. 根据式 (L), 有

$$g(x) = \sum_{i=0}^2 g(x_i) \prod_{\substack{0 \leq \ell \leq 2 \\ \ell \neq i}} \frac{x-x_\ell}{x_i-x_\ell}$$

$$\begin{split} &=g(1)\frac{(x-0)(x-(-1))}{(1-0)(1-(-1))}+g(0)\frac{(x-1)(x-(-1))}{(0-1)(0-(-1))}\\ &+g(-1)\frac{(x-1)(x-0)}{(-1-1)(-1-0)}\\ &=g(1)\left(\frac{1}{2}x^2+\frac{1}{2}x\right)+g(0)(1-x^2)+g(-1)\left(\frac{1}{2}x^2-\frac{1}{2}x\right)\\ &=g(0)+\frac{g(1)-g(-1)}{2}x+\frac{g(1)-2g(0)+g(-1)}{2}x^2. \end{split}$$

从上面的公式可看出, 若 g(x) 是整系数整式, 则 g(0) 是整数, 且 2 是 g(1) — g(-1) 的因子[†]——这也是评注里提到过的点. 因为现在我们假定 g(x) 的次不高于 2, 故我们可以直接写出 g(x) 的显明的式. 当 n 较高时, 显明地写出 g(x) 的公式就不方便了.

现在, 我们具体地写出 g(x). 我们限定 g(1)=1; 又因 f(0) 有 8 个因子, 且 f(-1) 有 4 个因子, 故这样的 g(x) 至多有 32 个. 下面, 我们一个一个地写出这些 g(x). 还是老样子, 我们 (临时地) 用 " $(g;y_0,y_1,y_2)$ " 表示长句 " $g(x_0)=y_0,\,g(x_1)=y_1,\,$ 且 $g(x_2)=y_2$ ". 当然, 作者再说一次: $x_0,\,x_1,\,x_2$ 分别是 $1,\,0,\,-1$. 这里, $g_0(x),\,g_1(x),\,\cdots,\,g_{31}(x)$ 的次都不超过 2.

```
若 (g_0; 1, 1, 1), 则 g_0(x) = 1.

若 (g_1; 1, 1, -1), 则 g_1(x) = -x^2 + x + 1.

若 (g_2; 1, 1, 11), 则 g_2(x) = 5x^2 - 5x + 1.

若 (g_3; 1, 1, -11), 则 g_3(x) = -6x^2 + 6x + 1.

若 (g_4; 1, -1, 1), 则 g_4(x) = 2x^2 - 1.

若 (g_5; 1, -1, -1), 则 g_5(x) = x^2 + x - 1.

若 (g_6; 1, -1, 11), 则 g_6(x) = 7x^2 - 5x - 1.

若 (g_7; 1, -1, -11), 则 g_7(x) = -4x^2 + 6x - 1.

若 (g_8; 1, 2, 1), 则 g_8(x) = -x^2 + 2.

若 (g_9; 1, 2, -1), 则 g_9(x) = -2x^2 + x + 2.

若 (g_{10}; 1, 2, 11), 则 g_{10}(x) = 4x^2 - 5x + 2.
```

[†]为什么这里没说 2 次系数呢? 因为 g(1)-2g(0)+g(-1) 可写为 g(1)-g(-1)+2(g(0)+g(-1)). 现在读者不难看出, 若 g(0), g(1), g(-1), $\frac{g(1)-g(-1)}{2}$ 都是整数, 则 g(x) 是整系数整式.

若
$$(g_{12};1,-2,1)$$
, 则 $g_{12}(x)=3x^2-2$.
若 $(g_{13};1,-2,-1)$, 则 $g_{13}(x)=2x^2+x-2$.
若 $(g_{14};1,-2,11)$, 则 $g_{14}(x)=8x^2-5x-2$.
若 $(g_{15};1,-2,-11)$, 则 $g_{15}(x)=-3x^2+6x-2$.
若 $(g_{16};1,3,1)$, 则 $g_{16}(x)=-2x^2+3$.
若 $(g_{17};1,3,-1)$, 则 $g_{17}(x)=-3x^2+x+3$.
若 $(g_{18};1,3,11)$, 则 $g_{18}(x)=3x^2-5x+3$.
若 $(g_{19};1,3,-11)$, 则 $g_{19}(x)=-8x^2+6x+3$.
若 $(g_{20};1,-3,1)$, 则 $g_{20}(x)=4x^2-3$.
若 $(g_{21};1,-3,-1)$, 则 $g_{21}(x)=3x^2+x-3$.
若 $(g_{22};1,-3,11)$, 则 $g_{22}(x)=9x^2-5x-3$.
若 $(g_{23};1,-3,-11)$, 则 $g_{23}(x)=-2x^2+6x-3$.
若 $(g_{23};1,-3,-11)$, 则 $g_{24}(x)=-5x^2+6$.
若 $(g_{25};1,6,-1)$, 则 $g_{24}(x)=-5x^2+6$.
若 $(g_{25};1,6,-1)$, 则 $g_{26}(x)=-5x+6$.
若 $(g_{27};1,6,-11)$, 则 $g_{26}(x)=-5x+6$.
若 $(g_{28};1,-6,1)$, 则 $g_{28}(x)=7x^2-6$.
若 $(g_{29};1,-6,-1)$, 则 $g_{29}(x)=6x^2+x-6$.
若 $(g_{30};1,-6,11)$, 则 $g_{30}(x)=12x^2-5x-6$.
若 $(g_{31};1,-6,-11)$, 则 $g_{31}(x)=x^2+6x-6$.

我们不难看到,这 32 个整式里,有二个"坏蛋": $g_0(x)$ 与 $g_{26}(x)$. 它们的次低于 2. 为什么会混入这些"坏蛋"呢? 因为 (L) 式不保证求出的 g(x) 的次必须是 n 呀! 它只保证 g(x) 的次不高于 n. $g_0(x)$ 当然没什么用; 事实上,它总是会出现的 (毕竟, 1 是每一个整数的因子). $g_{26}(x)$ 在此处也没什么用,因为我们知道 f(x) 无 1 次因子. †

我们可排除一些 g(x). 我们刚才就排除了 $g_0(x)$ 与 $g_{26}(x)$. 还能再排除一些吗?

[†]但有一点很有意思. 设 f'(x) 有本原的 1 次因子 $\ell(x)$ (这里的 f' 自然是为与 f 区分). 因为 $\ell(x)$ 的次不高于 2, 故 $\ell(x)$ 也会出现在 g'(x) 中. 这也是找 f'(x) 的 1 次因子的办法——不过, 没有 "有理系数整式的有理根" 里的好用、方便, 是不?

这些 g(x) 是本原的吗? 的确,每一个都是本原的 (也包括 $g_0(x)$ 与 $g_{26}(x)$).

评注说过, g(x) 的首项系数必是 f(x) 的首项系数 6 的因子——所以, 我们不必考虑以下 13 个整式: $g_2(x)$, $g_6(x)$, $g_7(x)$, $g_{10}(x)$, $g_{11}(x)$, $g_{14}(x)$, $g_{19}(x)$, $g_{20}(x)$, $g_{22}(x)$, $g_{24}(x)$, $g_{27}(x)$, $g_{28}(x)$, $g_{30}(x)$. 还有 17 个整式.

还能再排除一些吗? 当然可以. g(2) 是不是 f(2) 的因子? 是吧? 利用综合除法, 我们可算出 f(2)=154. 还可进一步地写 f(2) 为 $2\cdot7\cdot11$. 我们现在就看, 在剩下的 17 个 $g_i(x)$ 里, 哪些 $g_i(2)$ 是 154 的因子. 运算后, 我们又排除了 9 个整式: $g_5(x)$, $g_9(x)$, $g_{12}(x)$, $g_{13}(x)$, $g_{16}(x)$, $g_{18}(x)$, $g_{25}(x)$, $g_{29}(x)$, $g_{31}(x)$. 还有 8 个整式.

我们当然可以再想办法排除一些; 不过, f(-2) = -1190, f(3) = 6885 ……这些数有点大呢. 那就到此为止吧! 我们开始带余除法了. 我们挺幸运—— $g_1(x)$ 就是 f(x) 的因子:

$$f(x) = g_1(x) \underbrace{\left(-6x^5 - x^3 + 12x^2 + 2x - 6\right)}_{f_1(x)}.$$

因为 f(x) 无 1 次因子, 故 $g_1(x)$ 自动地是不可约的. $f_1(x)$ 的次是 5; 所以,我们的任务轻松了一点. 因为 $g_1(1)$, $g_1(0)$, $g_1(-1)$ 分别是 1, 1, -1, 故 $f_1(1)$, $f_1(0)$, $f_1(-1)$ 分别是 1, -6, 11. $f_1(x)$ 当然没有 1 次因子. $f_1(x)$ 的次不高于 2 的因子可能有哪些呢? 正如评注所言, $g_0(x)$, $g_1(x)$, …, $g_{31}(x)$ 恰好是用诸 $f_1(x_i)$ 的因子算出的 g(x). 我们淘汰了 24 个整式,是吧? 因为我们用一些简单的事实,确定了那些 $g_i(x)$ 一定不是 f(x) 的因子——所以它们也肯定不是 $f_1(x)$ 的因子! 所以, $f_1(x)$ 的次不高于 2 的因子仍在剩下的 8 个整式里. 继续从 $g_1(x)$ 开始. 不过,这一次, $g_1(x)$ 不是 $f_1(x)$ 的因子了. $g_3(x)$ 也不是 $f_1(x)$ 的因子. 不过, $g_4(x)$ 是 $f_1(x)$ 的因子:

$$f_1(x) = g_4(x) \underbrace{(-3x^3 - 2x + 6)}_{f_2(x)}.$$

因为 $f_1(x)$ 无 1 次因子, 故 $g_4(x)$ 自动地是不可约的. $f_2(x)$ 的次是 3; 所以, 我们的任务轻松了一点. $f_2(x)$ 也没有 1 次因子! 这样, $f_2(x)$ 是不可约的.

综上, 我们有

$$f(x) = (-x^2 + x + 1)(2x^2 - 1)(-3x^3 - 2x + 6).$$

或许, 读者会觉得上面的那个 7 次式 "怪" "偏" "难". 那我们看一个简单的例?

例 设 $f(x) = x^{15} - 1$. 我们试写 f(x) 为若干个不可约的整式的积. 读者可能还记得 "综合除法" 里的乘法公式[†]:

$$F^m - G^m = (F - G)(F^{m-1} + F^{n-2}G + \dots + F^{m-i}G^{i-1} + \dots + G^{m-1}).$$

这里, F, G 是任意的二个整式, m 是正整数. 取 G=1, 有

(D)
$$F^m - 1 = (F - 1)(F^{m-1} + F^{m-2} + \dots + F + 1).$$

所以, 取 m = 15, F = x, 有

$$f(x) = (x-1)(x^{14} + x^{13} + \dots + x + 1).$$

这个公式是正确的; 不过, $x^{14} + x^{13} + \dots + x + 1$ 是不是不可约的呢? 现在, 还不好说. 我们直接拿本文的方法讨论这个 14 次整式吗? 似乎不太方便呢.

所以, 这个时候, 读者需要灵活地使用算学知识破解此题! 怎么"灵活地"呀? 作者给一个思路.

首先, $15 = 3 \cdot 5 = 5 \cdot 3$; 读者应该对此不陌生吧? 取式 (D) 的 $F = x^3$, m = 5, 有

$$\begin{split} f(x) &= F^5 - 1 \\ &= (F-1)(F^4 + F^3 + F^2 + F + 1) \\ &= (x^3 - 1)\underbrace{(x^{12} + x^9 + x^6 + x^3 + 1)}_{q_1} \\ &= (x-1)\underbrace{(x^2 + x + 1)}_{p_1} q_1. \end{split}$$

取式 (D) 的 $F = x^5$, m = 3, 有

$$f(x) = F^3 - 1$$
$$= (F - 1)(F^2 + F + 1)$$

[†]为避免与这里的 f, g 混淆, 此公式的字母被改写了.

$$= (x^5 - 1) \underbrace{(x^{10} + x^5 + 1)}_{q_2}$$

$$= (x - 1) \underbrace{(x^4 + x^3 + x^2 + x + 1)}_{p_2} q_2.$$

(提醒读者: 这里的二个 "F" 当然不是同一个 F.) 所以

$$(x-1)p_1q_1=(x-1)p_2q_2.$$

因为 x-1 是非零的整式, 故

$$p_1q_1 = p_2q_2.$$

我们回想, 在"整系数整式与有理系数整式"里, 我们利用 Eisenstein 判别法与" $\alpha x + \beta$ "法得出, 当 q 是正的不可约的整数 (素数) 时, $1 + x + \cdots + x^{q-2} + x^{q-1}$ 是不可约的. 所以, p_1 (对应 q = 3), p_2 (对应 q = 5) 都是不可约的. 所以, p_1 一定是 q_2 的因子, 且 p_2 一定是 q_1 的因子. 所以, 存在整式 r_1 , r_2 使 $q_2 = p_1 r_2$, 且 $q_1 = p_2 r_1$. 所以

$$p_1p_2r_1 = p_2p_1r_2$$
.

因为 $p_1,\,p_2$ 是非零的, 故 p_1p_2 是非零的; 由此可知 $r_1=r_2$. 记 $r_2=r(x)$. 则

$$f(x) = (x-1)p_2q_2 = (x-1)p_2p_1r(x).$$

此 r(x) 可用带余除法确定. 既然 $q_2 = p_1 r(x)$, 那么我们用 p_1 除 q_2 :

$$\begin{split} x^{10} + x^5 + 1 \\ &= x^8 \cdot x^2 + x^5 + 1 \\ &= x^8(x^2 + x + 1) - x^8(x + 1) + x^5 + 1 \\ &= x^8p_1 - x^9 - x^8 + x^5 + 1 \\ &= x^8p_1 - x^7 \cdot x^2 - x^8 + x^5 + 1 \\ &= x^8p_1 - x^7 \cdot (x^2 + x + 1) + x^7 \cdot (x + 1) - x^8 + x^5 + 1 \\ &= (x^8 - x^7)p_1 + x^7 + x^5 + 1 \end{split}$$

328

$$= (x^8 - x^7)p_1 + x^5 \cdot x^2 + x^5 + 1$$

$$= (x^8 - x^7)p_1 + x^5 \cdot (x^2 + x + 1) - x^5(x + 1) + x^5 + 1$$

$$= (x^8 - x^7 + x^5)p_1 - (x^6 - 1).$$

注意到

$$\begin{aligned} x^6 - 1 &= (x^3)^2 - 1 \\ &= (x^3 + 1)(x^3 - 1) \\ &= (x^3 + 1)(x - 1)p_1 \\ &= (x^4 - x^3 + x - 1)p_1, \end{aligned}$$

故

$$\begin{split} x^{10} + x^5 + 1 &= (x^8 - x^7 + x^5)p_1 - (x^4 - x^3 + x - 1)p_1 \\ &= (x^8 - x^7 + x^5)p_1 + (-x^4 + x^3 - x + 1)p_1 \\ &= (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)p_1. \end{split}$$

也就是说,

$$r(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1.$$

所以

$$f(x) = (x-1)(x^2+x+1)(x^4+x^3+x^2+x+1)r(x), \\$$

且在 r(x) 前的三个整式都是不可约的. 我们还要继续研究 r(x).

r(x) 的首项系数与 0 次系数都是 1, 故 r(x) 的有理根只能是 ± 1 . 利用综合除法, 有

$$\begin{split} r(x) &= (x-1)(x^7 + x^4 + x^2 + x) + 1, \\ r(x) &= (x+1)(x^7 - 2x^6 + 2x^5 - x^4 + x^2 - x) + 1. \end{split}$$

所以, r(x) 无 1 次因子. 因为 r(x) 的次为 8, 故若 r(x) 是可约的,则 r(x) 必有次不高于 4 的本原的因子 g(x). 取 x_0 , x_1 , x_2 , x_3 , x_4 为 0, 1, -1, 2, -2. 显然, $r(x_0) = 1$; 根据前面的计算, $r(x_1) = r(x_2) = 1$. 不

难用综合除法算出 $r(x_3)=151,\ r(x_4)=331.$ 这二个数看上去很大;其实,并没有特别可怕! 读者可用"整数的因子分解"的知识得出: 151 与331 都是不可约的整数! $g(x_i)$ 是 $r(x_i)$ 的因子. 因为 $r(x_0)=1$,故我们可限定 $g(x_0)=1$. $r(x_1),\ r(x_2)$ 都恰有 2 个因子; $r(x_3),\ r(x_4)$ 都恰有 4 个因子. 所以,这样的 g(x) 至多有 $2\cdot 2\cdot 4\cdot 4=64$ 个. 因为 g(x) 至少是整系数的,故 3 一定是 g(2)-g(-1) 与 g(1)-g(-2) 的因子,且 4 一定是 g(2)-g(-2) 的因子。所以,(g(2),g(-1)) 的组合只能是 $(1,1),\ (151,1),\ (-1,-1),\ (-151,-1);\ (g(1),g(-2))$ 的组合只能是 $(1,1),\ (1,331),\ (-1,-1),\ (-1,-331);\ (g(2),g(-2))$ 的组合只能是 $(1,1),\ (1,331),\ (-1,331),\ (151,-1),\ (151,331),\ (-151,1),\ (-151,-331).$ 如何方便地写出一组 (g(0),g(1),g(-1),g(2),g(-2)) 呢? 考虑到 $g(0),\ g(1),\ g(-1)$ 较为简单,故我们用它们入手.

设 g(0), g(1), g(-1) 分别是 1, 1, 1. 所以 g(2) 能取 1, 151. 若 g(2) 取 1, 则 g(-2) 能取 1, -331; 但考虑到 g(1)=1, 故 g(-2)=1. 若 g(2) 取 151, 则 g(-2) 能取 -1, 331; 但考虑到 g(1)=1, 故 g(-2)=331. 这给出二组可能:

其对应的 g(x) 分别是

1.
$$20x^4 - 15x^3 - 20x^2 + 15x + 1$$
.

设 g(0), g(1), g(-1) 分别是 1, -1, 1. 所以 g(2) 能取 1, 151. 若 g(2) 取 1, 则 g(-2) 能取 1, -331; 但考虑到 g(1) = -1, 故 g(-2) = -331. 若 g(2) 取 151, 则 g(-2) 能取 -1, 331; 但考虑到 g(1) = -1, 故 g(-2) = -1. 这给出二组可能:

$$(1,-1,1,1,-331), (1,-1,1,151,-1).$$

其对应的 q(x) 分别是

$$-\frac{27}{2}x^4 + 28x^3 + \frac{25}{2}x^2 - 29x + 1, \quad \frac{13}{2}x^4 + 13x^3 - \frac{15}{2}x^2 - 14x + 1.$$

[†]因为 $12^2 = 144, 13^2 = 169$, 故用 2,3 及 " $6k \pm 1$ 数" 5,7,11 试除可知, 151 是不可约的; 因为 $18^2 = 324, 19^2 = 361$, 故用 2,3 及 " $6k \pm 1$ 数" 5,7,11,13,17 试除可知, 331 也是不可约的.

这二个整式都不是整系数的, 故被舍去.†

设 g(0), g(1), g(-1) 分别是 1, -1, -1. 所以 g(2) 能取 -1, -151. 若 g(2) 取 -1, 则 g(-2) 能取 -1, 331; 但考虑到 g(1) = -1, 故 g(-2) = -1. 若 g(2) 取 -151, 则 g(-2) 能取 1, -331; 但考虑到 g(1) = -1, 故 g(-2) = -331. 这给出二组可能:

$$(1,-1,-1,-1,-1), (1,-1,-1,-151,-331).$$

其对应的 q(x) 分别是

$$\frac{1}{2}x^4 - \frac{5}{2}x^2 + 1$$
, $-\frac{39}{2}x^4 + 15x^3 + \frac{35}{2}x^2 - 15x + 1$.

这二个整式都不是整系数的, 故被舍去.

设 g(0), g(1), g(-1) 分别是 1, 1, -1. 所以 g(2) 能取 -1, -151. 若 g(2) 取 -1, 则 g(-2) 能取 -1, 331; 但考虑到 g(1)=1, 故 g(-2)=331. 若 g(2) 取 -151, 则 g(-2) 能取 1, -331; 但考虑到 g(1)=1, 故 g(-2)=1. 这 给出二组可能:

$$(1, 1, -1, -1, 331), (1, 1, -1, -151, 1).$$

其对应的 g(x) 分别是

$$14x^4 - 28x^3 - 15x^2 + 29x + 1$$
, $-6x^4 - 13x^3 + 5x^2 + 14x + 1$.

读者可能会想: 刚才没有检验 2 是否为 g(1) - g(-1) 的因子; 为什么呢? 因为 g(1) 与 g(-1) 都是奇数, 而 2 一定是二个奇数的因子[‡].

总之, 通过稍细致的考虑, 我们把 $64 \uparrow g(x)$ 降低到 $8 \uparrow$; 用插值法具体地算出 g(x) 后, 此数又减半. 作为对比, 我们回想起, 在上个例 (f(x)) 的次为 7) 中, 由于 f(1) = 1, f(-1) = -11, 故 g(1), g(-1) 都是奇数, 从而 "2 必是 g(1) - g(-1) 的因子" 帮不上什么忙.

再看看仅剩的 4 个整系数整式. 首先, 1 没什么用, 故被舍去. 剩下的 3 个整式都是 4 次的. 不过, 它们的首项系数都不是 r(x) 的首项系数的因子,

[†]事实上, 若用 Newton 插值公式, 那么不用具体地算出整式即可知道它一定不是整系数的. 这里, 作者具体地写出整式来, 仅供读者参考.

[‡]若读者不相信这一点, 可自行用反证法证明. 当然, 明确定义是有必要的: 若 2 是整数 t 的因子, 则 t 是偶数; 否则, t 是奇数.

故它们也不是 r(x) 的因子. 所以, r(x) 没有 1, 2, 3, 4 次因子. 所以, r(x) 是不可约的.

综上, 我们有

$$f(x) = (x-1)(x^2 + x + 1)(x^4 + x^3 + x^2 + x + 1)$$
$$\cdot (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1).$$

评注 一般地, 欲写 $x^n - 1$ (n 为正整数) 为若干个不可约的整式的积, 我们有更好、更系统的方法——可惜, 它需要更深、更抽象的知识, 故作者无法在本文讲述这些精彩的理论. 感兴趣的读者可查找分圆整式 (cyclotomic polynomials) 的相关理论.

最后, 读者可自行思考这个小问题:

试找出整数 u, v, 使有理系数整式 $(ux-v)(x^3-x)-1$ 可写为二个系数是有理数且次均为正整数的整式的积.

这里, 作者稍解释本题:

- (i) 本题不要求找出所有的 u, v. 解谜者写出一组 u, v 就很不错了. 当然, 作者并不是说不欢迎找出了所有的 u, v 的解答.
- (ii) 可以用任何"有道理的"知识求解本题. 也就是说, 就算不用本文的知识, 也是可以的——解谜者不要学死算学!
- (iii) 如果解谜者理解了本题在说什么, 解谜者马上就会意识到, "可写为二个系数是有理数且次均为正整数的整式的积" 只不过是 "是可约的" 的一种稍复杂的说法罢了. 不过, 作者避开术语的目的就是不想限制解谜者的思维. 这也解释了 (i).

参考解答:

https://chaoli.club/index.php/6727

https://www.zhihu.com/question/485329457/answer/2108231297

感谢读者读到这里. 读者辛苦了! 休息一下吧!

有理系数整式的因子分解

作者将在本文为读者介绍有理系数整式的因子分解. 读者可能还能想起这个命题:

命题 设整式 f 既不是 0, 也不是单位.

(i) 存在不可约的整式 $p_1, p_2, ..., p_m$ 使

$$f = p_1 p_2 \cdots p_m;$$

(ii) 若 $q_1, q_2, ..., q_m, s_1, s_2, ..., s_n$ 是不可约的整式, 且

$$f=q_1q_2\cdots q_m=s_1s_2\cdots s_n,$$

则 m=n, 且可以适当地调换 $s_1,\,s_2,\,\cdots,\,s_m$ 的顺序, 使任取 1 至 m 间的整数 $\ell,\,q_\ell$ 与 s_ℓ 相伴 (注意: 调换顺序后的 s_ℓ 不一定跟原来的 s_ℓ 相等!).

如果读者还能回忆起此命题的证明, 读者就会发现: 我们只要知道 1 次整式是不可约的就够了 (算学归纳法的始条件: 命题对次为 1 的整式成立). 换句话说, 虽然此命题断言, 我们可写既不是 0, 也不是单位的整式为若干个不可约的整式的积, 但它可没告诉我们怎么写. 本文就是要告诉读者一个具体的写法.

作者先提醒读者: 或许, 本文跟"整数的因子分解"类似; 读者可对比阅读二文.

在进入正题前, 作者先给出因子分解的定义.

例 事实上, 我们在初中就学习了如何"因式分解"整式[†]. 作者查阅了初中算学课本. 在人民教育出版社出版的算学课本[‡]里, 因式分解被描述为:

(探究) 请把下列整式写成整式的积的形式:

- (1) $x^2 + x$;
- (2) $x^2 1$.

[†]这里, "因式" 就是我们常说的 "因子". 在算学里, 整数的 "因子" 是 "因数", 整式的 "因子" 是 "因式". 不过, 我们在此统一使用 "因子".

[‡]感兴趣的读者可进入 https://mp.weixin.qq.com/s/YBX0oYzlADELmtjOM-wJaw;八年级,上册;114页.

根据整式的乘法,可以联想得到

$$x^{2} + x = x(x + 1),$$

 $x^{2} - 1 = (x + 1)(x - 1).$

上面我们把一个整式化成了几个整式的积的形式,像这样的式的变形叫作整式的因式分解 (factorization),也叫作把这个整式分解因式.

现在, 作者提出一个问题: 1 是不是整式? 如果是, 那么任意的整式 f 均可写为几个整式的积: $f = 1 \cdot f$. 这样, 我们根本就不必讨论因式分解了! 所以, 看上去, 1 不是整式! 不过, 如果 1 不是整式, 那么 1 是什么呢? 仅仅是一个数? 又或者说, 什么都不是?

读者可能会说: 分解因式, 必须进行到每一个整式因式都不能再分解为止. 彳亍. 那么, 作者再排出几个问题: 什么是 "不能再分解"? 3x+2 能不能再分解? 4x-8 能不能再分解? -x-1 能不能再分解? x^2-2 能不能再分解? 或许, 读者认为 3x+2 不能再分解, 而 4x-8 还能再分解, 是吧? 作者知道读者怎么想: 4x-8=4(x-2), 对不? 可这个 4 能不能再分解? $4=2\cdot 2$, 对吧? 读者为什么不写 $4x-8=2\cdot 2\cdot (x-2)$ 呢? -x-1 能不能写为 $(-1)\cdot (x+1)$? x^2-2 能不能写为 $(x-\sqrt{2})\cdot (x+\sqrt{2})$?

由此可见, 读者在中学算学里学到的"因式分解"不是十分清楚. 作者的任务就是: 清楚地写出本文的 (显然作者无法让别的地方的)"有理系数整式的因子分解"的含义.

作者顺便提一下, 作者在互联网上看到很多关于 0.9 (零点九, 九循环) 与 1 的大小关系的讨论了. 由于不明确 0.9 的定义, 大家就在说"这不对!""这有大问题!"等评论. 由于此问题的详尽的讨论需要微积分, 作者就不在这里讨论这个问题了. 作者的目的是: 告诉读者"定义很重要!".

跟整数的因子分解类似, 作者给出

定义 设 (有理系数) 整式 $f \neq 0$. 那么, f 一定可写为 (至多一个; 因为有限多个单位的积还是单位) (有理系数整式的) 单位与有限多个 (可以是零

个) (有理系数整式的) 不可约的整式的积, 即: 存在单位 ε 与不可约的整式 $p_1, p_2, ..., p_s$ (s 可为 0; 此时, f 是单位) 使

$$f = \varepsilon p_1 p_2 \cdots p_s$$
.

上式右侧即为 f 的因子分解 (factorization of f). 动词短语 "写 f 为单位与有限多个不可约的整式的积"的一个简单的称呼是 "因子分解 f" (to factorize f).

评注 依此定义, 3x + 2, 4x - 8, -x - 1 的因子分解可以是自身. 当然, 2(2x - 4) 也是 4x - 8 的一个因子分解; 甚至, $\frac{1}{5}(15x + 10)$ 也是 3x + 2 的一个因子分解. 这些差异, 在"单位""相伴"下, 不是差异!

 x^2-2 (作为有理系数整式) 是不可约的 (Eisenstein 判别法). 而且, 我们在本文里, 不考虑系数不全是有理数的整式. 所以, $(x-\sqrt{2})\cdot(x+\sqrt{2})$ 自然是 "跑远了".

评注 有时, 为书写方便, 允许在因子分解里出现幂. 比如说, 设

$$f = (x-1) \cdot (x-1) \cdot (x-1) \cdot (5x-20) \cdot (5x-20).$$

上式右侧已经是 f 的因子分解了. 不过, 为了方便, 我们可以认为,

$$(x-1)^3(5x-20)^2$$

也是 f 的因子分解. 此时, 我们视 $(x-1)^3$ (或 $(5x-20)^2$) 为 3 个 x-1 的积 (或 2 个 5x-20 的积), 而不是一个不可约的整式!

事实上,我们已经在"有理系数整式的有理根""有理系数整式的高次因子"里讨论过因子分解的方法了——我们讨论了如何寻找有理系数整式的不可约的因子. 仔细的读者可能注意到,我们一直在说"试写某整式为(若干个)不可约的整式的积",而不是直接说"因子分解某整式"——这是因为我们还未明确"因子分解"的确切含义. 毕竟,在中学,"因式分解"只要求将整式写为几个整式的积,并没有明确地要求这几个整式适合哪些条件(顶多说"不可再分解").

作者将在本文介绍更多的因子分解整式的方法.

事实上,有二个基本的方法,我们一直在用——不过,我们没有正式地提到它们.

一个方法是提取公因子. 设 $f, g_1, g_2, ..., g_n$. 因为整式适合乘法分配律, 故

$$f \cdot (g_1 + g_2 + \dots + g_n) = fg_1 + fg_2 + \dots + fg_n.$$

将此等式的左、右二侧互换,有

$$fg_1 + fg_2 + \dots + fg_n = f(g_1 + g_2 + \dots + g_n).$$

例 设 $f(x) = x^4 - 2x^2$. 不难看出

$$f(x) = x^2 \cdot x^2 - x^2 \cdot 2$$

= $x^2(x^2 - 2)$.

我们说, 视 x^2 为 2 个 x 的积 $x \cdot x$ 的简写. 根据 Eisenstein 判别法, $x^2 - 2$ 是不可约的. 所以 $x^2(x^2 - 2)$ 是 f(x) 的因子分解. 当然, 若读者喜欢使 0 次系数非负, $-x^2(2-x^2)$ 也是可以的.

另一个方法是套用公式. 我们在中学, 学过"平方差公式""完全平方公式":

$$f^2 - g^2 = (f+g)(f-g),$$

$$f^2 \pm 2fg + g^2 = (f \pm g)^2,$$

其中 f,g 是任意的整式. 在 "广义二项系数", 我们接触了二项展开:

$$(f+g)^n=f^n+\binom{n}{1}f^{n-1}g+\cdots+\binom{n}{i}f^{n-i}g^i+\cdots+g^n.$$

"完全平方公式"就是取二项展开的 n 为 2 所得的式. 在 "综合除法", 我们还接触了

$$f^n-g^n=(f-g)(f^{n-1}+f^{n-2}g+\cdots+f^{n-i}g^{i-1}+\cdots+g^{n-1}).$$

"平方差公式"就是取上式的 n 为 2 所得的式.

例 设
$$f(x) = 4x^2 - 4x + 1$$
. 则
$$f(x) = (2x)^2 + 2(2x)(-1) + (-1)^2$$
$$= (2x + (-1))^2$$
$$= (2x - 1)^2.$$

我们当然也可以用找有理根的方法因子分解 f(x).

例 设
$$f(x) = 18 - 2x^2$$
. 则
$$f(x) = 2 \cdot 9 + 2 \cdot (-x^2)$$

$$= 2(9 + (-x^2))$$

$$= 2(3^2 - x^2)$$

$$= 2(3 + x)(3 - x).$$

我们当然也可以用找有理根的方法因子分解 f(x). 喜欢使非单位的因子的首项系数为正数的读者也可写

$$f(x) = (-2)(x+3)(x-3).$$

注意到, 我们不但套用了公式, 还提取了公因子.

例 设
$$f(x) = x^4 + x^2 + 1$$
. 则
$$f(x) = x^4 + 2x^2 + 1 - x^2$$

$$= (x^2)^2 + 2x^2 \cdot 1 + 1^2 - x^2$$

$$= (x^2 + 1)^2 - x^2$$

$$= (x^2 + 1 + x)(x^2 + 1 - x).$$

不难判断, $x^2 \pm x + 1$ 是不可约的.

注意到, 我们同时套用了二个乘法公式.

例 设
$$f(x) = x^4 - 16$$
. 则
$$f(x) = (x^2)^2 - (4)^2$$

$$= (x^2 + 4)(x^2 - 4)$$

$$= (x^2 + 4)(x^2 - 2^2)$$

$$= (x^2 + 4)(x + 2)(x - 2).$$

不难判断, $x^2 + 4$ 是不可约的. 当然, 我们也可以这样:

$$f(x) = x^4 - 2^4$$

$$= (x - 2)(x^3 + x^2 \cdot 2 + x \cdot 2^2 + 2^3)$$

$$= (x - 2)(x^3 + 2x^2 + 4x + 8)$$

$$= (x - 2)(x^2(x + 2) + 4(x + 2))$$

$$= (x - 2)(x^2 + 4)(x + 2).$$

例 设 $f(x) = ax^2 + bx + c$, 且 $a \neq 0$. 我们可以配方:

$$f(x) = a\left(x^2 + \frac{b}{a}x\right) + c$$

$$= a\left(x^2 + 2x\frac{b}{2a}\right) + c$$

$$= a\left(x^2 + 2x\frac{b}{2a} + \frac{b^2}{4a^2}\right) - \frac{ab^2}{4a^2} + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - a\frac{b^2 - 4ac}{4a^2}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right).$$

若 $b^2 - 4ac$ 是有理数 r 的平方, 则

$$\begin{split} f(x) &= a \left(\left(x + \frac{b}{2a} \right)^2 - \frac{r^2}{4a^2} \right) \\ &= a \left(\left(x + \frac{b}{2a} \right)^2 - \left(\frac{r}{2a} \right)^2 \right) \\ &= a \left(x + \frac{b+r}{2a} \right) \left(x + \frac{b-r}{2a} \right) \\ &= a \left(x - \frac{-b-r}{2a} \right) \left(x - \frac{-b+r}{2a} \right). \end{split}$$

由此可见, f(x) 的二个根是

$$\frac{-b \pm r}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

这是 2 次式的一种通用的因子分解法. 当然, 读者可能也还记得, 在 "有理系数整式的高次因子"里, 我们有

$$ax^{2} + bx + c = \frac{1}{4a}((2ax + b)^{2} + (4ac - b^{2})).$$

感兴趣的读者可自行比较此式与

$$ax^{2} + bx + c = a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right).$$

例 设 $f(x) = 4x^2 - 4x - 3$. 则

$$f(x) = (2x)^{2} + 2(2x)(-1) - 3$$

$$= (2x)^{2} + 2(2x)(-1) + (-1)^{2} - (-1)^{2} - 3$$

$$= (2x)^{2} + 2(2x)(-1) + (-1)^{2} - 2^{2}$$

$$= (2x + (-1))^{2} - 2^{2}$$

$$= (2x + (-1) + 2)(2x + (-1) - 2)$$

$$= (2x + 1)(2x - 3).$$

"具体的式, 具体地分析." 显然, 我们没有必要再将 $4x^2$ 的 4 写出来了——毕竟, $4\left(x^2-x-\frac{3}{4}\right)$ 涉及稍繁的不是整数的有理数的运算.

还有一个公式值得一提:

$$f^3 + g^3 + h^3 - 3fgh = (f + g + h)(f^2 + g^2 + h^2 - fg - fh - gh),$$

其中, f, g, h 都是整式. 感兴趣的读者可自行再[†]推出此式.

读者可以看到, 提取公因子法与套用公式法可简化因子分解. 读者应灵活地运用算学知识因子分解整式. 我们在因子分解 $x^{15}-1$ 时就用到了乘法公式. 当然, $x^{n+1}+x^n-2$ 也是.

接下来, 作者将为读者展现一个可选的方法. 为什么说"可选"呢? 因为运算不少. 请读者休息片刻.

[†]见"综合除法".

设 $f(x) \neq 0$. 读者可能还能记起, 若 M(x) 是 f(x) 与 Df(x) 的最大公因子, 则 f(x) 有重因子的一个必要与充分条件是 M(x) 不是单位. 进一步, 若 h(x) 适合 f(x) = h(x)M(x), 则 h(x) 与 f(x) 有相同的不可约的因子, 但 h(x) 无重因子. 这有什么好处呢? 当时作者在"重因子"里没说此性质的好处. 现在, 请读者看下面的例.

例 设 $f(x) = x^6 - 2x^5 - 8x^4 + 14x^3 + 11x^2 - 28x + 12$. 我们先试着找 1 次因子 (也就是有理根). 首先, x 不是 f(x) 的因子. 因为 f(x) 的首项系数是单位, 故 f(x) 的有理根一定是整数 v, 且 v 还是 0 次系数 12 的因子. 所以, v 可能是

$$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12.$$

还是老样子, 我们打算用 " $v \pm u$ " 检验排除一些不可能是 f(x) 的根的数 (这里 u = 1). 我们希望 $f(1) \neq 0$. 利用综合除法, 我们有

$$f(x) = (x-1)\underbrace{(x^5 - x^4 - 9x^3 + 5x^2 + 16x - 12)}_{q_1(x)}.$$

1 居然是 f(x) 的根! 不过, 这也不是坏事. $g_1(x)$ 的首项系数仍为单位, 且其 0 次系数是 f(x) 的 0 次系数的相伴, 故 $g_1(x)$ 的有理根仍可能是上面的 12 个整数的一个. 还是用 1 试; 我们希望 $g_1(1) \neq 0$. 不过

$$g_1(x) = (x-1)\underbrace{(x^4 - 9x^2 - 4x + 12)}_{g_2(x)}.$$

1 居然也是 $g_1(x)$ 的根! 也就是说, $(x-1)^2$ 是 f(x) 的因子! 事实上, 读者可继续用 x-1 除 $g_2(x)$:

$$g_2(x) = (x-1)\underbrace{(x^3 + x^2 - 8x - 12)}_{g_3(x)}.$$

再用 x-1 除 $g_3(x)$:

$$g_3(x) = (x-1)(x^2 + 2x - 6) - 18.$$

由此可见, $f(x) = (x-1)^3 g_3(x)$, 且 x-1 不再是 $g_3(x)$ 的因子. 还有一点请读者注意: 我们还没试 -1 呢. 当然, 读者可用综合除法算出

$$g_3(x) = (x+1)(x^2-8) - 4.$$

也就是说, x+1 不是 $g_3(x)$ 的因子. 现在,总算可以用 " $v\pm u$ " 检验了. $-4=(-1)\cdot 2^2$,故 -4 的因子数为 $2\cdot (1+2)=6$; $-18=(-2)\cdot 3^2$,故 -18 的因子数为 $2\cdot (1+1)\cdot (1+2)=12$. 我们从 -4 入手. 因为 v+u=v+1 一定是 $g_3(-1)=-4$ 的因子,故恰有 3 个数通过 "v+u" 检验: -2, 3, -3. 再看 -18. 因为 v-u=v-1 一定是 $g_3(1)=-18$ 的因子,故恰有 2 个数又通过 "v-u" 检验: -2, 3. 继续进行综合除法,发现 -2 是 $g_3(x)$ 的根:

$$g_3(x) = (x+2)\underbrace{(x^2 - x - 6)}_{g_4(x)}.$$

我们可直接对 $g_4(x)$ 作如下变形:

$$\begin{split} g_4(x) &= \frac{1}{4}(4x^2 - 4x - 24) \\ &= \frac{1}{4}((2x)^2 - 2(2x) \cdot 1 - 24) \\ &= \frac{1}{4}((2x)^2 - 2(2x) \cdot 1 + 1 - 25) \\ &= \frac{1}{4}((2x - 1)^2 - 5^2) \\ &= \frac{1}{4}(2x - 1 - 5)(2x - 1 + 5) \\ &= (x - 3)(x + 2). \end{split}$$

换句话说,

$$\begin{split} g_4(x) &= (x+2)(x-3), \\ g_3(x) &= (x+2)^2(x-3), \\ f(x) &= (x-1)^3(x+2)^2(x-3). \end{split}$$

我们发现, x-1 与 x+2 都是重因子. x-1 一直影响我们的发挥——我们连除三次才消去了 x-1. x+2 呢? 好在 f(x) 的次不是很高, 我们用 2 次式的技巧, 避开了除法. 但读者也不难看出: 若我们 "机械地" 判断 $g_4(x)$ 的有理根, 那么 -2 与 3 仍为 "候选根". 我们用综合除法可判断一个数是不是整式的根, 但却不知道它是否会重复出现.

例 还是用 $f(x) = x^6 - 2x^5 - 8x^4 + 14x^3 + 11x^2 - 28x + 12$. 不过, 这次, 我们先看 f(x) 有无重因子. 读者应该还记得求微商的法则吧? (如果不

记得了, 就再往前看看.) 不难写出

$$Df(x) = 6x^5 - 10x^4 - 32x^3 + 42x^2 + 22x - 28.$$

用 Df(x) 除 f(x):

$$f(x) = \frac{3x-1}{18}Df(x) - \frac{1}{9}\underbrace{(29x^4 - 47x^3 - 87x^2 + 199x - 94)}_{r_0(x)}.$$

用 $r_0(x)$ 除 Df(x):

$$Df(x) = \frac{2}{841}(87x - 4)r_0(x) - \frac{12150}{841}\underbrace{(x^3 - 3x + 2)}_{r_1(x)}.$$

用 $r_1(x)$ 除 $r_0(x)$:

$$r_0(x) = (29x - 47)r_1(x).$$

由此可见, $r_1(x)$ 就是 f(x) 与 Df(x) 的最大公因子. 因为 $r_1(x)$ 不是单位, 故 f(x) 有重因子. 用 $r_1(x)$ 除 f(x):

$$f(x)=r_1(x)\underbrace{(x^3-2x^2-5x+6)}_{h(x)}.$$

接下来该怎么办呢? 我们可以先找 h(x) 的有理根, 从而得到 h(x) 的 1 次因子. h(x) 的 1 次因子是 f(x) 的 1 次因子. 不仅如此, $r_1(x)$ 的不可约的因子也一定是 h(x) 的因子[†]. 所以, h(x) 的因子分解可帮助我们找出 $r_1(x)$ 的因子分解. $f(x) = r_1(x)h(x)$, 故 f(x) 的因子分解就是 h(x) 与 $r_1(x)$ 的因子分解的合并. 因为 h(x) 无重因子, 故找出 h(x) 的一个 (不是单位的) 因子 p(x), 得 $h(x) = p(x)\ell(x)$ 后, 就不必判断 p(x) 是否为 $\ell(x)$ 的因子了.

我们就拿上面的 h(x) 举例. 老样子, h(x) 的有理根 v 一定是 (6 的因子):

$$\pm 1, \pm 2, \pm 3, \pm 6.$$

[†]因为 $r_1(x)$ 的不可约的因子是 f(x) 的重因子, 而 f(x) 的重因子, 至少, 按定义, 是不可约的. f(x) 的不可约的因子都是 h(x) 的因子.

先试 ±1. 利用综合除法, 可得

$$h(x)=(x-1)\underbrace{(-6-x+x^2)}_{h_1(x)}.$$

老样子, $h_1(x)$ 的有理根 v 一定是 (-6 的因子):

$$\pm 1, \pm 2, \pm 3, \pm 6.$$

不过, x-1 不再是 $h_1(x)$ 的因子了. 利用综合除法, 我们有

$$h_1(x) = (x+1)(x-2) - 4.$$

所以, x+1 也不是 $h_1(x)$ 的因子. 当然, 就算 x-1 不是 $h_1(x)$ 的因子, 我们还是要知道 $h_1(1)$:

$$h_1(x) = (x-1)x - 6.$$

由此可见, v-u=v-1 一定是 $h_1(1)=-6$ 的因子, 且 v+u=v+1 一定 是 $h_1(-1)=-4$ 的因子. 由此, 我们可排除 2, -3, 6, -6, 从而还剩 -2, 3. 接下来不难检验, -2 与 3 都是 $h_1(x)$ 的根:

$$h_1(x) = (x+2)(x-3).$$

由此可知

$$h(x) = (x-1)(x+2)(x-3).$$

还剩 $r_1(x)$. 我们可以用 h(x) 帮助我们. $r_1(x)=x^3-3x+2$, 故 3 不可能是 $r_1(x)$ 的根. 也就是说, x-3 不是 $r_1(x)$ 的因子 (故 x-3 不是 f(x) 的重因子!). 因为 -1, 2 不是 h(x) 的根, 故 x+1, x-2 不可能是 $r_1(x)$ 的因子. 还有 x-1 与 x+2. 根据综合除法, 我们得到

$$r_1(x) = (x-1)(x^2+x-2) = (x-1)(x-1)(x+2).$$

所以

$$f(x) = h(x)r_1(x) = (x-1)^3(x+2)^2(x-3).$$

例 再看 $f(x) = x^{15} - 1$. 还是老样子, 先看看 f(x) 是否有重因子. 事实上, 对任意正整数 $n, x^n - 1$ 都不会有重因子:

$$(-1)(x^n-1)+\frac{x}{n}(nx^{n-1})=1.$$

也就是说, $x^n - 1$ 与其微商 nx^{n-1} 是互素的.

此事实有什么用呢?读者可能还记得:当时,在"有理系数整式的高次因子"里,我们因子分解 f(x)时,用了二遍乘法公式,得

$$f(x) = (x-1)(x^2+x+1)(x^4+x^3+x^2+x+1)$$

$$\cdot \underbrace{(x^8-x^7+x^5-x^4+x^3-x+1)}_{r(x)}.$$

在 r(x) 前的三个整式都是不可约的; 我们还得继续因子分解 r(x), 是不? 我们先从 1 次因子开始寻找, 是吧? 我们知道, 若 r(x) 有有理根, 则 r(x) 的有理根只能是 ± 1 . 我们当初作了二遍综合除法, 对不? 现在, 我们换一个视角判断. 因为 f(x) 无重因子, 故 1 不可能是 r(x) 的有理根; 至于 -1, 可以用 f(x) 判断: f(-1) = -2, 故 -1 也不是 r(x) 的有理根. 至于 r(1) 与 r(-1), 直接将 r(x) 的 x 换为 ± 1 即可——我们都知道, x 的整数次幂是 x 1, x 1 的奇数次幂是 x 1, x 1 的偶数次幂是 x 1——也就是说, 不需要综合除法, 也能算出 x x x 1 与 x x 1.

综上, 欲因子分解 f(x), 可以这样:

- (i) 求 Df(x).
- (ii) 找 f(x) 与 Df(x) 的一个最大公因子 M(x).
- (iii) 设 f(x) = h(x)M(x), 则 f(x) 的不可约的因子都是 h(x) 的因子,且 h(x) 不再有重因子. 因为 M(x) 包含 f(x) 的重因子, 故 M(x) 的不可约的因子也是 h(x) 的因子.
- (iv) 因子分解 h(x). 好消息: 若不是单位的 p(x) 使 $h(x) = p(x)\ell(x)$, 则 p(x) 一定不是 $\ell(x)$ 的因子.
- (v) 借助 h(x) 的因子分解, 并结合其他事实, 写出 M(x) 的因子分解. 当然, 我们也可以利用 M(x) 与 DM(x) 的最大公因子来判断 M(x) 有无重因子.
 - (vi) 合并 h(x) 与 M(x) 的因子分解, 即得 f(x) 的因子分解.

对于特殊的 f(x), 其微商可能很简单 (如 x^n-1), 故我们很快就能判断 出 f(x) 是否有重因子; 对于稍一般的 f(x), 计算 f(x) 与 Df(x) 的一个最大公因子将是一件麻烦的事——所以, 这是可选的. 当然, 对于计算机而言, 找最大公因子不是难题——不过, 这就不是我们所讨论的话题了.

感谢读者能读到这里!

复习 2

本文的目标是帮助读者回顾所学的知识.

本文不会有新的东西. 我们又开始复习了. 这次, 我们要复习五篇文的内容. 有点大; 请读者忍一下.

当然, 读者要清楚一个事实: "复习 2" 的整式的系数都是有理数. 这很重要.

我们先复习因子分解. 不过, 作者不说怎么具体地进行因子分解.

命题 设 N 是非负整数. 存在不可约的整数 p 使 |p| > N. 通俗地说, 有无限多个不可约的整数.

命题 设 N 是非负整数. 存在不可约的 (有理系数) 整式 p 使 $\deg p > N$. 通俗地说, 有无限多个不可约的整数.

评注 同时复习整数与整式的相似的性质是有好处的.

命题 设 f 既不是 0, 也不是单位. 若 p 是最小的高于 1 的 f 的因子, 则 p 是不可约的.

命题 设 f 既不是 0, 也不是单位. 设 p 是 f 的因子, p 不是单位, 且 $N = \deg p$. 若 f 没有次低于 N 且不是单位的因子, 则 p 是不可约的.

命题 设 f 是整数. 设整数 f_1 , f_2 适合 $f = f_1 f_2$. 设 $|f_1| \leq |f_2|$. 则 $|f_1| \leq \sqrt{|f|}$.

命题 设 f 是整式. 设整式 f_1 , f_2 适合 $f=f_1f_2$. 设 $\deg f_1 \leq \deg f_2$. 则 $\deg f_1 \leq \frac{1}{2} \deg f$.

命题 设正整数 p 是不可约的. 则 p=2, 或 p=3, 或存在正整数 k 使 $p=6k\pm 1$.

评注 不可约的 (有理系数) 整式也可以有类似的结论. 设 p 是不可约的. 存在整式 q 与非零的数 c 使 p=xq+c. 不过, 这就不像 " $6k\pm1$ " 那么有用了……

沿用"复习 0"的记号,用 I 表示整数或整式. 由此,我们可写出如下定义.

定义 设 I 的元 $f \neq 0$. 那么, f 一定可写为 (至多一个) 单位与有限多个 (可以是零个) 不可约的 I 的元的积, 即: 存在单位 ε 与不可约的 I 的元 $p_1, p_2, ..., p_s$ (s 可为 0; 此时, f 是单位) 使

$$f = \varepsilon p_1 p_2 \cdots p_s$$
.

上式右侧即为 f 的因子分解. 动词短语 "写 f 为单位与有限多个不可约的 I 的元的积"的一个简单的称呼是 "因子分解 f".

作者给读者留点习题. 请读者自行总结如何用试除法判断一个整数是 否是可约的. 请读者自行总结如何用试除法写出整数的因子分解.

评注 任给正实数 t. 只有有限多个整数 n 适合条件 |n| < t 的整数 n——这是整数的试除法的地基.

下面的命题与整数的因子有关.

命题 设整数 $f\neq 0$. 设 ε 是单位, $q_1,\,q_2,\,\cdots,\,q_s$ 是互不相伴的不可约的整数 (s 可取 0; 此时, f 是单位), $r_1,\,r_2,\,\cdots,\,r_s$ 是正整数, 且

$$f = \varepsilon q_1^{r_1} q_2^{r_2} \cdots q_s^{r_s}.$$

(i) f 的因子一定形如

$$\varepsilon' q_1^{t_1} q_2^{t_2} \cdots q_s^{t_s},$$

其中 ε' 是单位, t_i 是不高于 r_i 的非负整数 $(i=1,2,\cdots,s)$.

(ii) f 至多有

$$n = (1 + r_1)(1 + r_2) \cdots (1 + r_s)$$

个互不相伴的因子. 因为整数恰有二个单位, 故 f 有 2n 个因子.

因子分解就说到这里.下面,我们将复习整系数整式与有理系数整式的知识.

定义 设

$$f = a_0 + a_1 x + \dots + a_n x^n.$$

若系数 a_0, a_1, \dots, a_n 都是整数, 且整数 a_0, a_1, \dots, a_n 互素, 则 f 是本原的.

命题 设 f 是有理系数整式, 且 f 不是零.

- (i) f 一定可以写为有理数 c_f 与本原的整式 f^* 的积, 即 $f = c_f f^*$;
- (ii) 若有理数 r 与本原的整式 g 适合 f=rg, 必有 $r=\varepsilon c_f$, $g=\varepsilon^{-1}f^*$, 其中 $\varepsilon=\pm 1$.

 c_f 称为 f 的容量; f^* 称为 f 的本原的相伴.

命题 设整式 f, g, h 的系数都是整数. 设 f = gh.

- (i) 若 f 是本原的, 则 g 与 h 也是本原的;
- (ii) 若 g 与 h 是本原的, 则 f 也是本原的.

命题 设整式 f, g 的系数都是整数.

- (i) \ddot{H} g 是本原的, 且存在整式 h 使 f = gh, 则 h 的系数也都是整数;
- (ii) 在 (i) 的基础上, 若还假定 f 也是本原的, 则 h 也是本原的.

命题 设整式 f 的系数都是整数. 设 f 可写为二个有理系数整式 g, h 的积. 则 f 可写为

$$f = c_f g^* h^*.$$

上式应这么理解: 存在 g 的某个本原的相伴 g^* , 存在 h 的某个本原的相伴 h^* , 存在 f 的某个容量 c_f , 使上式成立.

命题 设 p 是素数. 若 j 是低于 p 的正整数, 则 p 是 (广义) 二项系数 $\binom{p}{i}$ 的因子.

命题 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

是有理系数整式, 且 $n \ge 1$, $a_n \ne 0$ (这表明, f(x) 不是 0, 也不是整式的单位, 且 f(x) 的次为 n). 设 α , β 是有理数, 且 $\alpha \ne 0$. 设

$$g(x) = f(\alpha x + \beta) = a_0 + a_1(\alpha x + \beta) + \dots + a_n(\alpha x + \beta)^n.$$

显然, g(x) 也是有理系数整式, 且次仍为 n (g(x) 的次不超过 n, 且其 n 次系数 $a_n\alpha^n\neq 0$). 因为

$$x = \alpha \cdot \left(\frac{1}{\alpha}x + \frac{-\beta}{\alpha}\right) + \beta,$$

故

$$f(x) = f\left(\alpha \cdot \left(\frac{1}{\alpha}x + \frac{-\beta}{\alpha}\right) + \beta\right) = g\left(\frac{1}{\alpha}x + \frac{-\beta}{\alpha}\right).$$

这里, $\frac{1}{\alpha}$, $\frac{-\beta}{\alpha}$ 当然也是有理数, 且 $\frac{1}{\alpha} \neq 0$.

- (i) 若 f(x) 是可约的, 则 g(x) 是可约的;
- (ii) 若 g(x) 是可约的, 则 f(x) 是可约的.

简单点说, "f(x) 是可约的 (不可约的)" 的一个必要与充分条件是: " $f(\alpha x + \beta)$ (α , β 是有理数, 且 $\alpha \neq 0$) 是可约的 (不可约的)".

定义 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

是整式, $a_n \neq 0$, 且 $a_0 \neq 0$. f(x) 的反整式是

$$f^{\mathrm{r}}(x)=a_n+a_{n-1}x+\cdots+a_0x^n.$$

也就是说, $f^{\mathrm{r}}(x)$ 的 j 次系数是 a_{n-j} $(j=0,1,\cdots,n)$.

请读者注意: 上面的 f(x) 的 0 次系数不是 0. 如果 $a_0=0$, 它的反整式是未定义的.

命题 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

是整式, $a_n \neq 0$, 且 $a_0 \neq 0$.

- (i) f(x) 的反整式 $f^{r}(x)$ 的次仍为 n;
- (ii) $f^{\mathbf{r}}(x)$ 的反整式 $(f^{\mathbf{r}})^{\mathbf{r}}(x)$ 是 f(x);
- (iii) 若 t 是非零数, 则

$$f^{\mathrm{r}}(t) = t^n f\left(\frac{1}{t}\right).$$

命题 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n,$$

$$f_1(x) = p_0 + p_1 x + \dots + p_u x^u,$$

$$f_2(x) = q_0 + q_1 x + \dots + q_v x^v$$

349

是整式, 其中 $p_u \neq 0,\, q_v \neq 0,\, a_n \neq 0$ 且 $a_0 \neq 0.$ 设

$$f(x) = f_1(x) f_2(x).$$

- (i) u + v = n;
- (ii) $p_0 \neq 0, q_0 \neq 0$;
- (iii) $f^{r}(x) = f_{1}^{r}(x)f_{2}^{r}(x)$.

命题 设

$$\begin{split} f(x) &= a_0 + a_1 x + \dots + a_n x^n, \\ f_1(x) &= p_0 + p_1 x + \dots + p_u x^u, \\ f_2(x) &= q_0 + q_1 x + \dots + q_v x^v \end{split}$$

是整式, 其中 $p_u \neq 0$, $q_v \neq 0$, $a_n \neq 0$ 且 $p_0 \neq 0$, $q_0 \neq 0$, $a_0 \neq 0$. 设

$$f^{r}(x) = f_{1}^{r}(x)f_{2}^{r}(x).$$

则

$$f(x) = f_1(x)f_2(x).$$

命题 设整式 f(x) 既不是 0, 也不是单位, 且 0 次系数不为 0. "f(x) 是可约的 (不可约的)" 的一个必要与充分条件是: "反整式 $f^{r}(x)$ 是可约的 (不可约的)".

命题 设整式

$$f = a_0 + a_1 x + \dots + a_n x^n$$

的系数都是整数. 若存在不可约的整数 p 适合如下三条件, 则 f 是不可约的:

- (i) p 不是 a_n 的因子 (这说明 $a_n \neq 0$);
- (ii) p 是 $a_{n-1}, a_{n-2}, \dots, a_0$ 的因子;
- (iii) p^2 不是 a_0 的因子 (这说明 $a_0 \neq 0$).

命题 设整式

$$f = a_0 + a_1 x + \dots + a_n x^n$$

的系数都是整数. 若存在不可约的整数 p 适合如下三条件, 则 f 是不可约的:

- (i) p 不是 a_0 的因子 (这说明 $a_0 \neq 0$);
- (ii) p 是 a_1, a_2, \dots, a_n 的因子;
- (iii) p^2 不是 a_n 的因子 (这说明 $a_n \neq 0$).

命题 设 q 是素数. 则

$$f(x) = 1 + x + \dots + x^{q-2} + x^{q-1}$$

是不可约的.

下面我们复习如何找 (有理系数) 整式的因子.

定义 设 f(x) 是有理系数整式. 若有理数 a 适合 f(a) = 0, 则 a 是 f(x) 的有理根.

命题 设 a, b 是有理数, 且 $a \neq 0$. $-\frac{b}{a}$ 是 f(x) = ax + b 的有理根.

命题 设整数 u, v 互素, 且 $u \neq 0$. 这样, g = ux - v 是本原的 1 次整式. 设 f 是整系数整式. 若 g 是 f 的因子, 则 u 是 f 的首项系数的因子, 且 v 是 f 的 0 次系数的因子.

命题 设整数 u, v 互素, 且 $u \neq 0$. 设 f 是整系数整式. 若 $\frac{v}{u}$ 是 f 的根, 则 u 是 f 的首项系数的因子, 且 v 是 f 的 0 次系数的因子.

命题 设整数 u, v 互素, 且 $u \neq 0$. 这样, g(x) = ux - v 是本原的 1 次整式. 设 f(x) 是整系数整式. 若 g(x) 是 f(x) 的因子, 则 v - u 是 f(1) 的因子, 且 v + u 是 f(-1) 的因子.

命题 设整数 u, v 互素, 且 $u \neq 0$. 设 f(x) 是整系数整式. 若 $\frac{v}{u}$ 是 f(x) 的根, 则 v-u 是 f(1) 的因子, 且 v+u 是 f(-1) 的因子.

命题 设 f 是整系数整式, 且其首项系数是 ± 1 . 若有理数 r 是 f 的根, 则 r 一定是整数, 且 r 是 f 的 0 次系数的因子.

复习2 351

命题 设 n 是正整数. 设 m 是整数, 且不存在整数 s 使 $s^n = m$. 不存在有理数 r 使 $r^n = m$. 由此, $\sqrt{2}$, $\sqrt[3]{2}$ 都不是有理数.

命题 若 f 的次为 2 (或 3), 则 "f 是可约的"的一个必要与充分条件 是 "f 有有理根"; "f 是不可约的"的一个必要与充分条件是 "f 无有理根".

命题 设 $f(x) = ax^2 + bx + c$, 其中 a, b, c 是有理数, 且 $a \neq 0$. "f(x) 是可约的"的一个必要与充分条件是" $\Delta = b^2 - 4ac$ 是有理数的平方".

命题 设 $f(x) = x^3 + ax^2 + bx + 1$, 其中 a, b 是整数. 若 f(1) 与 f(-1) 都不是 0, 则 f(x) 是不可约的.

请读者自行总结用插值法探整式的因子的方法.请读者自行总结如何因子分解有理系数整式.

命题 设 $f(x) = x^{15} - 1$. 则

$$f(x) = (x-1)(x^2+x+1)(x^4+x^3+x^2+x+1)$$

$$\cdot (x^8-x^7+x^5-x^4+x^3-x+1).$$

设 $g(x) = x^{15} + 1$. 请读者试写出 g(x) 的因子分解. 设 $h(x) = x^{30} - 1$. 请读者试写出 h(x) 的因子分解. 好. 读者休息吧.

有理式的定义

在前面, 我们深入地讨论了整数与整式. 现在, 我们讨论有理式.

不正式地说,有理式就是二个整式的比 (分母不为零). 我们已经知道,有理数是二个整数的比 (分母不为零); 这么看来, 就像整数与整式很相似那样,有理数与有理式也会很相似.

有理数是怎么来的? 据说,很久很久以前,有二个天使[†]在重樱(the Sakura Empire)观光: 一个青发天使 (an angel with blue hair),一个赤发天使 (an angel with red hair). 二个天使很饿. 不过,很幸运,她们找到了 ⑨ 个应急食品 (nine paimons). 如果平分应急食品,那么,按当时的习惯,每个天使只能得到四个应急食品——因为还剩一个应急食品不够二个天使分. 但天使终究是天使;天使可不是笨蛋! 因为她们实在是太饿了,于是,她们想出了聪明的方法: 打开最后一个应急食品,再平分它. 通俗地说,每个天使又获得了"半个应急食品". 用算学描述此事,就是每个天使获得了 $4+\frac{1}{2}$ 个应急食品,也就是 $\frac{9}{2}$ 个应急食品. $\frac{p}{a}$ 就是有理数——分子 p 表示应急食品的数目,分母 a 表示天使的数目. $\frac{p}{a}$ 就是将 p 个应急食品平分给 a 个天使后,每个天使得到的应急食品的量.

以后, "整式" 都是指系数为 \mathbb{F} 的元的整式; 如果我们想说整式 f 的系数全是整数, 我们会说形如 "f 是整系数的" 或 "f 是整系数整式" 的话.

命题 设 I 表示整数或整式. 设 f, g, u, v 是 I 的 4 元.

I 的"相等"适合如下性质‡:

- (R) 反射律 (reflexive law): f = f.
- (S) 对称律 (symmetric law): 若 f = q, 则 q = f.
- (T) 推移律 (transitive law): 若 f = g, 且 g = u, 则 f = u.

I 的"加法"适合如下性质:

(A0)§ f+q 也是 I 的元.¶

[†]一个叫 Mostima, 一个叫 Exusiai.

[‡]我们之前可能没提到此事. 毕竟, 我们知道, 数的相等适合此三律; 整式的相等归结为 "次相等"与 "对应的系数相等", 故整式的相等也适合此三律. 不过, 在讨论有理式时, "相等" 会不太一样, 但仍适合此三律.

[§] A stands for addition.

[¶]此事与(M0)的意义是:加法与乘法是"闭的"——不会"跳出"I的圈子.

- (A1) 若 f = u, g = v, 则 f + g = u + v.[†]
- (A2) 加法交換律: f + g = q + f.
- (A3) 加法结合律: (f+g) + u = f + (g+u).
- (A4) 零: 存在一个称为 "0" 的 I 的元, 使 0 + f = f.
- (A5) 相反元: 存在一个称为 "-f" 的 I 的元, 使 -f+f=0.
- I 的 "乘法" 适合如下性质:
- $(M0)^{\ddagger} fg$ 也是 I 的元.
- (M1) 若 f = u, q = v, 则 fq = uv.
- (M2) 乘法交换律: fg = gf.
- (M3) 乘法结合律: $(f \cdot g) \cdot u = f \cdot (g \cdot u)$.
- (M4) 幺: 存在一个称为 "1" 的 I 的元, 使 $1 \cdot f = f$.
- (M5) 乘法消去律: 若 $f \neq 0$, 且 fg = fu, 则 g = u.
- I 的加法与乘法不是孤立的:
- (D)§ 分配律: $f \cdot (g + u) = fg + fu$.

我们约定, 在不会产生歧义的情况下, 乘号可省略. 比如, $1 \cdot f$ 当然可写为 1f. 我们还约定: 乘法的"优先级"高于加法. 比如, $f \cdot g + f \cdot u$ 是 $(f \cdot g) + (f \cdot u)$ 的简写.

由 (A4) 可知, 零是唯一的. 假定有二个零: 0 与 0'. 因为 0 是零, 故 0 + 0' = 0'. 因为 0' 是零, 故 0 + 0' = 0' 所以 0' = 0.

由 (A5) 知, 一个元的相反元是唯一的. 设 f_1 , f_2 适合 $f_1+f=0$, 且 $f_2+f=0$. 所以

$$f_1 = 0 + f_1 = (f_2 + f) + f_1 = f_2 + (f + f_1)$$
$$= f_2 + (f_1 + f) = f_2 + 0 = 0 + f_2$$

[†]我们之前可能没提到此事. (A1) 与 (M1) 的意义是: 相同的输入 (*input*) 给出相同的输出 (*output*). 对于整数, 这就是读者在中学学到的 "二个等式可相加" "二个等式可相乘". 设 $f=a_0+a_1x+\cdots+a_nx^n, g=b_0+b_1x+\cdots+b_nx^n, u=c_0+c_1x+\cdots+c_nx^n, v=d_0+d_1x+\cdots+d_nx^n$. 若 f=u,g=v,则 $a_i=c_i,b_i=d_i$. f+g 的 i 次系数是 a_i+b_i , 这恰好是 c_i+d_i , 也就是 u+v 的 i 次系数. fg 的 k 次系数是 $a_0b_k+a_1b_{k-1}+\cdots+a_kb_0$, 这恰好是 $c_0d_k+c_1d_{k-1}+\cdots+c_kd_0$, 也就是 uv 的 k 次系数.

[‡] M stands for multiplication.

[§] D stands for distributivity.

$$= f_2$$
.

由 (M4) 可知, 么是唯一的. 假定有二个么: 1 与 1'. 因为 1 是 4. 故 $1 \cdot 1' = 1'$. 因为 1' 是 4. 故 $1 \cdot 1' = 1'$. 因为 1' = 1.

可由 (D) 推出 0f = 0. 根据 0 的定义, 0 + 0 = 0. 所以

$$0f = f0 = f(0+0) = f0 + f0 = 0f + 0f.$$

从而

$$0f = 0 + 0f = (-0f + 0f) + 0f$$
$$= -0f + (0f + 0f) = -0f + 0f = 0.$$

由 (D), 我们可推出 -fg = (-f)g, 这里 -fg 是 -(fg) 的简写. 因为

$$0 = 0g = (-f + f)g = g(-f + f) = g(-f) + gf = (-f)g + fg,$$

故 (-f)g 就是 fg 的相反元 -fg.

整数离有理数就差一点点. 我们也知道, 对任意高于 1 的整数 m, 都不存在整数 n, 使 mn = 1—通俗地说, 1 个应急食品没法"完整地"平分给m 个天使. 但是, 有理数填补了此八哥 (bug). 具体地说, 就是

命题 (i) 有理数的"相等"适合(R)(S)(T).

- (ii) 有理数的 "加法" 适合 (A0) 至 (A5). 当然, "I 的元" 得改为 "有理数".
- (iii) 有理数的 "乘法" 适合 (M0) 至 (M4). 当然, "I 的元" 得改为 "有理数".
 - (iv) 有理数的加法与乘法仍适合分配律.
- (v) 有理数的乘法额外适合如下性质: 任取不是零的有理数 f, 必有有理数 f^{-1} 使 $f^{-1}f=1$.

读者可能注意到, (iii) 没说有理数的乘法适合 (M5). 但事实上, (iii) 可以保证 (M5) 是正确的. 设 f, g, u 是有理数. 若 fg = fu, 且 $f \neq 0$, 则

$$g = 1g = (f^{-1}f)g = f^{-1}(fg),$$

$$u = 1u = (f^{-1}f)u = f^{-1}(fu).$$

由此, 不难看出, 因为 fg = fu, 故 g = u. 因为整数是有理数, 故限定 f, g, u 为整数时 $(f \neq 0)$, (v) 可推出整数乘法的 (M5).

适合 $f^{-1}f = 1$ 的有理数 f^{-1} 是 f 的倒数. 我们知道, 非零的有理数总是有倒数的——我们也希望非零的有理式都有"倒元". 这么看来, 如果整数的乘法不适合消去律, 那么非零的有理数也不会有倒数! 读者可用反证法使自己相信这一点.

整式的乘法的 (M5) 能否保证非零的有理式有倒元? 不好说——毕竟, 我们还没严格地说明有理式是什么. 不过, 这的确是对的.

现在, 我们正式地定义有理式.

定义 设 f, g 是整式, 且 $f \neq 0$. 形如 $\frac{g}{f}$ 的文字是有理式 (rational expression).

评注 请读者注意: 现在 $\frac{g}{f}$ 只是文字——这就跟当初我们定义整式一样, $a_0x^0+a_1x^1+\cdots+a_nx^n$ 只是用文字 x 及 "加号" 连结的文字而已. x 不是数! 类似地, $\frac{g}{f}$ 中间的 " $\frac{*}{*}$ " 也只是文字罢了——读者完全可用 (f,g) 表示它.

例 $\frac{2}{x-1}$ 就是有理式. 当然, $\frac{x-1}{2}$ 也是有理式.

接下来, 我们定义有理式的相等.

我们看看有理数的相等是什么. 设 a, b, c, d 是整数, 且 a, c 不是零. 若 $\frac{b}{a}=\frac{d}{c}$, 去分母, 就有 bc=ad. 类似地, 若 bc=ad, 则 $\frac{b}{a}\cdot c=d$, 故 $\frac{b}{a}=\frac{d}{c}$. 所以, 我们定义

定义 设 f, g, u, v 是整式, 且 f, u 不是零. $\frac{g}{f} = \frac{v}{u}$ 定义为 gu = fv.

例 设 $r=\frac{x}{x-1}, s=\frac{x^2+x}{x^2-1}$. 因为 $x(x^2-1)=x^3-x$, 且 $(x-1)(x^2+x)=x^3-x$. 故 r=s.

这个"相等"。它适合相等三律吗?

我们设 f, g, u, v, p, q 是整式, 且 f, u, p 不是零.

- (R): 自己等于自己吗? 或者说, $\frac{g}{f} = \frac{g}{f}$ 吗? 根据定义, 就是, gf = fg 吗? 因为乘法交换律, 由此可见, 有理式的相等也适合 (R).
- (S): 若 $\frac{g}{f} = \frac{v}{u}$, 则 $\frac{v}{u} = \frac{g}{f}$ 吗? $\frac{g}{f} = \frac{v}{u}$ 相当于 gu = fv; $\frac{v}{u} = \frac{g}{f}$ 相当于 vf = ug. 我们的目标是: 由 gu = fv 推出 vf = ug. 因为整式的相等适合

(S), 故 fv = gu. 因为乘法交换律, 故 gu = ug. 因为整式的相等适合 (T), 故 fv = ug. 因为乘法交换律, 故 vf = fv. 因为整式的相等适合 (T), 故 vf = ug. 由此可见, 有理式的相等也适合 (S).

(T): 若 $\frac{g}{f} = \frac{v}{u}$, 且 $\frac{v}{u} = \frac{q}{p}$, 则 $\frac{g}{f} = \frac{q}{p}$ 吗? $\frac{g}{f} = \frac{v}{u}$ 相当于 gu = fv; $\frac{v}{u} = \frac{q}{p}$ 相当于 vp = uq; $\frac{g}{f} = \frac{q}{p}$ 相当于 gp = fq. 我们由 gu = fv 与 vp = uq 推出 gp = fq. 注意到

$$u(gp) = (ug)p = (gu)p = (fv)p,$$

 $u(fq) = (uf)q = (fu)q = f(uq) = f(vp) = (fv)p.$

也就是说, u(gp) = u(fq). 因为 $u \neq 0$, 根据整式的乘法消去律, 我们有 gp = fq. 由此可见, 有理式的相等也适合 (T).

命题 设 r, s, t 是有理式. 有理式的相等适合如下性质:

- (R) 反射律: r = r.
- (S) 对称律: 若 r = s, 则 s = r.
- (T) 推移律: 若 r = s, 且 s = t, 则 r = t.

根据有理式的相等, 我们有"有理式的基本性质".

命题 设 f, g, h 是整式, 且 f, h 不是零. 则

$$\frac{g}{f} = \frac{gh}{fh} = \frac{hg}{hf}.$$

证 $fh \neq 0$, 故 $\frac{gh}{fh}$ 也是有理式. 因为

$$g(fh) = (gf)h = (fg)h = f(gh),$$

故 $\frac{g}{f} = \frac{gh}{fh}$.

类似地, 读者可证明 $\frac{g}{f} = \frac{hg}{hf}$.

例 设 $r=\frac{2x^2-2}{x^4-1}$. 因为 $2x^2-2=2(x^2-1),$ $x^4-1=(x^2+1)(x^2-1),$ 且 $x^2-1\neq 0$, 故 $r=\frac{2}{x^2+1}$.

接下来, 考虑有理式的加法.

还是看有理数怎么加. 设 a,b,c,d 是整数,且 a,c 不是零. 设 $t=\frac{b}{a}+\frac{d}{c}$. 去分母,有 act=bc+ad. 这样, $t=\frac{bc+ad}{ac}$. 所以,我们定义

定义 设 f, q, u, v 是整式, 且 f, u 不是零. 有理式的加法定义为

$$\frac{g}{f} + \frac{v}{u} = \frac{gu + fv}{fu}.$$

例 设 $r = \frac{1}{x}$, $s = \frac{x}{1}$. 则

$$r+s = \frac{1}{x} + \frac{x}{1} = \frac{1 \cdot 1 + x \cdot x}{x \cdot 1} = \frac{1+x^2}{x}.$$

现在我们逐一验证有理式的加法是否适合 (A0) 至 (A5).

我们设 f, g, u, v, p, q, m, n 是整式, 且 f, u, p, m 不是零.

 $(\mathrm{A0})$: $\frac{g}{f}+\frac{v}{u}$ 是不是有理式? 因为 gu+fv与 fu 是整式, 且 $fu\neq 0,$ 故 $\frac{gu+fv}{fu}$ 也是有理式.

(A1): 设 $\frac{g}{f} = \frac{q}{p}$, 且 $\frac{v}{u} = \frac{n}{m}$. 我们问, $\frac{g}{f} + \frac{v}{u} = \frac{q}{p} + \frac{n}{m}$ 吗? 根据有理式的加法的定义, 就是问是否有

$$\frac{gu + fv}{fu} = \frac{qm + pn}{pm}.$$

根据有理式的相等的定义, 就是问是否有

$$(gu + fv)(pm) = (fu)(qm + pn).$$

已知的条件相当于

$$gp = fq$$
, $vm = un$.

所以

$$(gu + fv)(pm) = (pm)(gu + fv)$$

$$= (pm)(gu) + (pm)(fv)$$

$$= (gu)(pm) + (fv)(pm)$$

$$= ((gu)p)m + f(v(pm))$$

$$= (g(up))m + f(v(mp))$$

$$= (g(pu))m + f((vm)p)$$

$$= ((gp)u)m + f((vm)p)$$

$$= ((fq)u)m + f((un)p)$$

$$= (f(qu))m + f(u(np))$$

$$= (f(uq))m + f(u(pn))$$

$$= ((fu)q)m + (fu)(pn)$$

$$= (fu)(qm) + (fu)(pn)$$

$$= (fu)(qm + pn).$$

(A2): 直接验证:

$$\frac{g}{f} + \frac{v}{u} = \frac{gu + fv}{fu}$$

$$= \frac{ug + vf}{uf}$$

$$= \frac{vf + ug}{uf}$$

$$= \frac{v}{u} + \frac{g}{f}.$$

(A3): 直接验证:

$$\left(\frac{g}{f} + \frac{v}{u}\right) + \frac{q}{p} = \frac{gu + fv}{fu} + \frac{q}{p}$$

$$= \frac{(gu + fv)p + (fu)q}{(fu)p}$$

$$= \frac{p(gu + fv) + f(uq)}{f(up)}$$

$$= \frac{p(gu) + p(fv) + f(uq)}{f(up)}$$

$$= \frac{(gu)p + (fv)p + f(uq)}{f(up)}$$

$$= \frac{g(up) + f(vp) + f(uq)}{f(up)}$$

$$= \frac{g(up) + f(vp + uq)}{f(up)}$$

$$= \frac{g}{f} + \frac{vp + uq}{up}$$

$$= \frac{g}{f} + \left(\frac{v}{u} + \frac{q}{p}\right).$$

(A4): 我们定义零为 $\frac{0}{p}$, 其中 p 是任意的非零的整式. 我们看这个零的定义是否合理 (任取二个零,它们应相等). 任取二个零 $\frac{0}{p}$ 与 $\frac{0}{m}$. 因为 0m=0, p0=0p=0, 故 $\frac{0}{p}=\frac{0}{m}$. 既然所有的零是相等的, 我们用 0 表示零. 所以

$$0 + \frac{g}{f} = \frac{0}{f} + \frac{g}{f} = \frac{0f + fg}{ff}$$
$$= \frac{0 + fg}{ff} = \frac{fg}{ff}$$
$$= \frac{g}{f}.$$

(A5): 我们定义 $\frac{g}{f}$ 的相反元为 $\frac{-g}{f}$. 我们看这个相反元的定义是否合理 (任取二个有理式, 它们应有相同的相反元). 假定 $\frac{g}{f} = \frac{v}{u}$, 则 gu = fv, 故

$$(-g)u = -(gu) = -(fv) = -(vf) = (-v)f = f(-v).$$

由此可知 $\frac{-g}{f} = \frac{-v}{u}$. 既然有理式的相反元是相等的, 我们用 $-\frac{g}{f}$ 表示 $\frac{g}{f}$ 的相反元. 所以

$$-\frac{g}{f} + \frac{g}{f} = \frac{-g}{f} + \frac{g}{f}$$

$$= \frac{(-g)f + fg}{ff}$$

$$= \frac{f(-g) + fg}{ff}$$

$$= \frac{f(-g+g)}{ff}$$

$$= \frac{f0}{ff} = \frac{0f}{ff}$$

$$= \frac{0}{ff} = 0.$$

有了加法与相反元, 我们不难定义减法.

定义 设 r, s 是有理式. 有理式的减法定义为

$$r-s=r+(-s).$$

读者可自行证明: 若 r = t, s = w, 则 r - s = t - w. 我们作了大部分工作; 读者只要用减法的定义与加法、相反元的性质就可证明这一点.

命题 设 r, s, t, w 是有理式. 有理式的加法适合如下性质:

- (A0) r+s 也是有理式.
- (A1) 若 r = t, s = w, 则 r + s = t + w.
- (A2) 加法交換律: r + s = s + r.
- (A3) 加法结合律: (r+s)+t=r+(s+t).
- (A4) 零: 存在一个称为 "0" 的有理式, 使 0 + r = r.
- (A5) 相反元: 存在一个称为 "-r" 的有理式, 使 -r + r = 0.

接下来, 考虑有理式的乘法.

还是看有理数怎么乘. 设 a,b,c,d 是整数,且 a,c 不是零. 设 $t=\frac{b}{a}\cdot\frac{d}{c}$. 去分母,有 act=bd. 这样, $t=\frac{bd}{ac}$. 所以, 我们定义

定义 设 f, g, u, v 是整式, 且 f, u 不是零. 有理式的乘法定义为

$$\frac{g}{f} \cdot \frac{v}{u} = \frac{gv}{fu}.$$

例 设 $r = \frac{1}{x^2+1}$, $s = \frac{x^2+1}{x^3+1}$. 则

$$rs = \frac{1 \cdot (x^2 + 1)}{(x^2 + 1)(x^3 + 1)} = \frac{(x^2 + 1) \cdot 1}{(x^2 + 1)(x^3 + 1)} = \frac{1}{x^3 + 1}.$$

现在我们逐一验证有理式的乘法是否适合 (M0) 至 (M4).

我们设 f, g, u, v, p, q, m, n 是整式, 且 f, u, p, m 不是零.

(M0): $\frac{g}{f} \cdot \frac{v}{u}$ 是不是有理式? 因为 gv 与 fu 是整式, 且 $fu \neq 0$, 故 $\frac{gv}{fu}$ 也是有理式.

(M1): 设 $\frac{g}{f}=\frac{q}{p}$, 且 $\frac{v}{u}=\frac{n}{m}$. 我们问, $\frac{g}{f}\cdot\frac{v}{u}=\frac{q}{p}\cdot\frac{n}{m}$ 吗? 根据有理式的加法的定义, 就是问是否有

$$\frac{gv}{fu} = \frac{qn}{pm}.$$

根据有理式的相等的定义, 就是问是否有

$$(qv)(pm) = (fu)(qn)$$

已知的条件相当于

$$gp = fq$$
, $vm = un$.

所以

$$(gv)(pm) = ((gv)p)m = (g(vp))m$$

 $= (g(pv))m = ((gp)v)m$
 $= (gp)(vm) = (fq)(un)$
 $= ((fq)u)n = (f(qu))n$
 $= (f(uq))n = ((fu)q)n$
 $= (fu)(qn).$

(M2): 直接验证:

$$\frac{g}{f} \cdot \frac{v}{u} = \frac{gv}{fu} = \frac{vg}{uf} = \frac{v}{u} \cdot \frac{g}{f}.$$

(M3): 直接验证:

$$\begin{split} \left(\frac{g}{f} \cdot \frac{v}{u}\right) \cdot \frac{q}{p} &= \frac{gv}{fu} \cdot \frac{q}{p} \\ &= \frac{(gv)q}{(fu)p} \\ &= \frac{g(vq)}{f(up)} \\ &= \frac{g}{f} \cdot \frac{vq}{up} \\ &= \frac{g}{f} \cdot \left(\frac{v}{u} \cdot \frac{q}{p}\right). \end{split}$$

(M4): 我们定义幺为 $\frac{p}{p}$, 其中 p 是任意的非零的整式. 我们看这个幺的定义是否合理 (任取二个幺, 它们应相等). 任取二个幺 $\frac{p}{p}$ 与 $\frac{m}{m}$. 因为 pm=pm, 故 $\frac{p}{p}=\frac{m}{m}$. 既然所有的幺是相等的, 我们用 1 表示幺. 所以

$$1 \cdot \frac{g}{f} = \frac{f}{f} \cdot \frac{g}{f} = \frac{fg}{ff} = \frac{g}{f}.$$

所以, 有理式的乘法确实适合 (M0) 至 (M4).

我们知道, 非零的有理式有倒数. 类似地, 对任意非零的有理式 $\frac{g}{f}$, 我们定义其倒元为 $\frac{f}{g}$. 因为 $\frac{g}{f} \neq 0$, 故 $g \neq 0$; 从而 $\frac{f}{g}$ 也是有理式. 类似地, 我们看这个倒元的定义是否合理 (任取二个非零的有理式, 它们应有相同的倒

元). 假定 $\frac{g}{f}=\frac{v}{u}$, 则 gu=fv, 故 fv=gu. 因为 $\frac{g}{f}\neq 0$, 且 $\frac{v}{u}\neq 0$, 故 $g\neq 0$, 且 $v\neq 0$. 所以 $\frac{f}{g}=\frac{u}{v}$. 既然非零的有理式的倒元是相等的,我们用 $\left(\frac{g}{f}\right)^{-1}$ 表示 $\frac{g}{f}$ 的倒元. 所以

$$\left(\frac{g}{f}\right)^{-1} \cdot \frac{g}{f} = \frac{f}{g} \cdot \frac{g}{f} = \frac{fg}{gf} = \frac{fg}{fg} = 1.$$

有了乘法与倒元, 我们不难定义除法.

定义 设 r, s 是有理式, 且 $s \neq 0$. 有理式的除法定义为

$$r \div s = rs^{-1}$$
.

读者可自行证明: 若 r=t, s=w, 且 $s\neq 0$, $w\neq 0$, 则 $r\div s=t\div w$. 我们作了大部分工作; 读者只要用除法的定义与乘法、倒元的性质就可证明这一点.

命题 设 r, s, t, w 是有理式. 有理式的乘法适合如下性质:

- (M0) rs 也是有理式.
- (M1) 若 r = t, s = w, 则 rs = tw.
- (M2) 乘法交换律: rs = sr.
- (M3) 乘法结合律: (rs)t = r(st).
- (M4) 幺: 存在一个称为 "1" 的有理式, 使 1r = r.
- (M5)' 倒元: 若 $r \neq 0$, 则存在一个称为 " r^{-1} " 的有理式, 使 $r^{-1}r = 1$.

加法与乘法还有一座桥——分配律:

$$\begin{split} \frac{g}{f} \cdot \left(\frac{v}{u} + \frac{q}{p}\right) &= \frac{g}{f} \cdot \frac{vp + uq}{up} \\ &= \frac{g(vp + uq)}{f(up)} \\ &= \frac{f(g(vp + uq))}{f(f(up))} \\ &= \frac{(fg)(vp + uq)}{f((fu)p)} \\ &= \frac{(fg)(vp) + (fg)(uq)}{(f(fu))p} \end{split}$$

$$\begin{split} &= \frac{((fg)v)p + ((fg)u)q}{((fu)f)p} \\ &= \frac{(f(gv))p + (f(gu))q}{(fu)(fp)} \\ &= \frac{((gv)f)p + (f(ug))q}{(fu)(fp)} \\ &= \frac{(gv)(fp) + ((fu)g)q}{(fu)(fp)} \\ &= \frac{(gv)(fp) + (fu)(gq)}{(fu)(fp)} \\ &= \frac{gv}{fu} + \frac{gq}{fp} \\ &= \frac{g}{f} \cdot \frac{v}{u} + \frac{g}{f} \cdot \frac{q}{p}. \end{split}$$

363

8

命题 设 r, s, t 是有理式. 则

$$r(s+t) = rs + rt.$$

我们作出的有理式的确像有理数那样适合相等、加法、乘法的性质; 不仅如此, 任取不是零的有理式 r, 必有有理式 r^{-1} 使 $r^{-1}r=1$. 由此, 读者可自行证明: 若 r, s, t 是有理式, $r \neq 0$, 且 rs=rt, 则 s=t.

当然,下面的命题也是对的:

命题 设 r, s 是有理式. 则:

- (i) 0r = r0 = 0.
- (ii) -rs = (-r)s.
- (iii) 取 (ii) 的 r = 1, 有 -s = -1s = (-1)s.

证 照搬本文开头的讨论即可.

不过,还有一些小细节.

整式是不是有理式? 我们知道,整数是有理数. 从定义上看,整式似乎不是有理式——因为整式的形式跟有理式不一样. 不过,由此能草率地断定整式真地不是有理式吗? 我们看看 $\frac{2}{x} + \frac{2x-2}{x}$ 是什么. 根据加法的定义,

$$\frac{2}{x} + \frac{2x - 2}{x} = \frac{2x + x(2x - 2)}{x^2} = \frac{2x^2}{x^2} = \frac{2}{1}.$$

或许, 读者很想写 $\frac{2}{1}$ 为 2. 的确——我们把 $\frac{0}{p}$ 写为 0, 把 $\frac{p}{p}$ 写为 1; 自然地, 为 什么 $\frac{2}{1}$ 不能写为 2 呢? 如果不能, 那我们似乎也不该写 $\frac{0}{p}$ 为 0, 是吧? ax^0 可写为 a, x^1 可写为 x, 那 $\frac{2}{1}$ 也可写为 2. 下面的命题说明, 这么写的确是有 道理的.

命题 固定某非零的整式 d. 设 f, g 是整式. 则

- (i) f = g 的一个必要与充分条件是: $\frac{fd}{d} = \frac{gd}{d}$.
- (ii) 若 f+g=s, 则 $\frac{fd}{d}+\frac{gd}{d}=\frac{sd}{d}$.
- (iii) 若 fg = p, 则 $\frac{fd}{d} \cdot \frac{gd}{d} = \frac{pd}{d}$.

证 (i) 设 f=g. 则 (fd)d=f(dd)=g(dd)=(gd)d=d(gd), 故 $\frac{fd}{d}=\frac{gd}{d}$. 反过来,设 $\frac{fd}{d}=\frac{gd}{d}$. 则 (fd)d=d(gd). 因为 (fd)d=f(dd)=(dd)f, d(gd)=d(dg)=(dd)g, 故 (dd)f=(dd)g. 因为 $d\neq 0$, 故 $dd\neq 0$, 故 f=g.

(ii) 依加法的定义,

$$\begin{split} \frac{fd}{d} + \frac{gd}{d} &= \frac{(fd)d + d(gd)}{dd} = \frac{f(dd) + d(dg)}{dd} \\ &= \frac{(dd)f + (dd)g}{dd} = \frac{(dd)(f+g)}{dd} \\ &= \frac{(dd)s}{dd} = \frac{d(ds)}{dd} \\ &= \frac{d(sd)}{dd} = \frac{sd}{d}. \end{split}$$

(ii) 依乘法的定义,

$$\begin{split} \frac{fd}{d} \cdot \frac{gd}{d} &= \frac{(fd)(gd)}{dd} = \frac{(fd)(dg)}{dd} \\ &= \frac{((fd)d)g}{dd} = \frac{(f(dd))g}{dd} \\ &= \frac{f((dd)g)}{dd} = \frac{f(g(dd))}{dd} \\ &= \frac{(fg)(dd)}{dd} = \frac{p(dd)}{dd} \\ &= \frac{(pd)d}{dd} = \frac{pd}{d}. \end{split}$$

8

由此可见, 虽然 f 与 $\frac{fd}{d}$ 的内涵是不一样的, 但我们可视二者等同. 也就是说, 我们约定, $\frac{fd}{d}=f$. 此约定是自然的: 对任意非零的整数 a 与任意整数 b, 也有 $\frac{ba}{a}=b$.

还有一个细节. 我们用 $\frac{g}{f}$ 表示有理式. 我们一般也用 $\frac{*}{*}$ 表示除法: 比 如, $9 \div 2 = \frac{9}{2}$. 那么, 在有理式里, $* \div * = \frac{*}{*}$ 有什么关联吗? 或者说, 我们 选用的 * 记号合理吗?

命题 设 f, g 是整式, 且 $f \neq 0$. 则

$$\frac{g}{f} = g \div f.$$

固定某非零的整式 d. 我们可视 g, f 为 $\frac{gd}{d}$, $\frac{fd}{d}$. 所以 证

$$g \div f = \frac{gd}{d} \div \frac{fd}{d} = \frac{gd}{d} \cdot \left(\frac{fd}{d}\right)^{-1}$$

$$= \frac{gd}{d} \cdot \frac{d}{fd} = \frac{(gd)d}{d(fd)}$$

$$= \frac{g(dd)}{(fd)d} = \frac{g(dd)}{f(dd)}$$

$$= \frac{g}{f}.$$

所以, 有理式的 $*\div*$ 与 $\frac{*}{*}$ 可认为是除法的二种表示. 既然当 g, f 是整 式时 $(f \neq 0)$, $g \div f$ 与 $\frac{g}{f}$ 一致, 我们无妨放宽 $\frac{*}{*}$ 的使用范围——

定义 设 r, s 是有理式, 且 $s \neq 0$. 定义

$$\frac{r}{s} = r \div s = rs^{-1}.$$

读者在中学算学里已经不怎么见到 * ÷ * 了 (小学算学里, * ÷ * 还是比 较常见的). 所以, 改 * ÷ * 为 * 不是没有道理的.

有理式的除法与有理式有类似的性质.

命题 设 r, s, t, w 是有理式, 且 $s \neq 0, w \neq 0$.

- (i) $\frac{r}{s} = \frac{t}{w}$ 的一个必要与充分条件是 rw = st.
- (ii) $\frac{r}{s} = \frac{rw}{sw} = \frac{wr}{ws}$
- (iii) $\frac{r}{s} + \frac{t}{w} = \frac{rw + st}{sw}$.
- (iv) $-\frac{r}{s} = \frac{-r}{s}$.
- $(v) \frac{r}{s} \frac{t}{w} = \frac{rw st}{sw}.$
- $(vi) \frac{r}{s} \cdot \frac{t}{w} = \frac{rt}{sw}.$ $(vii) \left(\frac{s}{w}\right)^{-1} = \frac{w}{s}.$
- (viii) $\frac{s}{s} = 1$.

评注 读者要注意一件事. 在定义有理式的时候, * 只不过是由二个整式作成的文字; 但现在 * 是除法式 * · * 的一种写法, 故这些关系是 "新的".

证 (i) 注意到

$$\frac{r}{s} = \frac{t}{w} \iff rs^{-1} = tw^{-1}$$

$$\iff (rs^{-1})s = (tw^{-1})s$$

$$\iff r(s^{-1}s) = t(w^{-1}s)$$

$$\iff r1 = t(sw^{-1})$$

$$\iff (r1)w = (t(sw^{-1}))w$$

$$\iff r(1w) = t((sw^{-1})w)$$

$$\iff rw = t(s(w^{-1}w))$$

$$\iff rw = (ts)(w^{-1}w)$$

$$\iff rw = (ts)1$$

$$\iff rw = st.$$

(ii) 因为

$$r(sw) = r(ws) = (rw)s = s(rw),$$

由 (i) 知,
$$\frac{r}{s} = \frac{rw}{sw}$$
.

类似地, 读者可证明 $\frac{r}{s} = \frac{wr}{ws}$.

(iii) 设
$$S = \frac{r}{s} + \frac{t}{w}$$
. 则

$$S = \frac{r}{s} + \frac{t}{w}$$

$$\iff S = rs^{-1} + tw^{-1}$$

$$\iff sS = s(rs^{-1} + tw^{-1})$$

$$\iff sS = s(rs^{-1}) + s(tw^{-1})$$

$$\iff sS = s(s^{-1}r) + (st)w^{-1}$$

$$\iff sS = (ss^{-1})r + (st)w^{-1}$$

$$\Leftrightarrow sS = (s^{-1}s)r + w^{-1}(st)$$

$$\Leftrightarrow sS = 1r + w^{-1}(st)$$

$$\Leftrightarrow sS = r + w^{-1}(st)$$

$$\Leftrightarrow w(sS) = w(r + w^{-1}(st))$$

$$\Leftrightarrow (ws)S = wr + w(w^{-1}(st))$$

$$\Leftrightarrow (sw)S = rw + (ww^{-1})(st)$$

$$\Leftrightarrow (sw)S = rw + (w^{-1}w)(st)$$

$$\Leftrightarrow (sw)S = rw + 1(st)$$

$$\Leftrightarrow (sw)S = rw + st$$

$$\Leftrightarrow (sw)^{-1}((sw)S) = (sw)^{-1}(rw + st)$$

$$\Leftrightarrow ((sw)^{-1}(sw))S = (rw + st)(sw)^{-1}$$

$$\Leftrightarrow 1S = (rw + st)(sw)^{-1}$$

$$\Leftrightarrow S = \frac{rw + st}{sw}$$

(iv) 设 $N=-\frac{r}{s}$. 则

$$\begin{split} N &= -\frac{r}{s} \\ \iff N &= -(rs^{-1}) \\ \iff N &= (-r)s^{-1} \\ \iff N &= \frac{-r}{s}. \end{split}$$

(v) 利用 (iii), (iv), 有

$$\begin{split} \frac{r}{s} - \frac{t}{w} &= \frac{r}{s} + \frac{-t}{w} \\ &= \frac{rw + s(-t)}{sw} \\ &= \frac{rw + (-t)s}{sw} \\ &= \frac{rw - ts}{sw} \\ &= \frac{rw - st}{sw}. \end{split}$$

(vi) 设
$$P = \frac{r}{s} \cdot \frac{t}{w}$$
. 则

$$P = \frac{r}{s} \cdot \frac{t}{w}$$

$$\Leftrightarrow P = (rs^{-1})(tw^{-1})$$

$$\Leftrightarrow P = (rs^{-1})(w^{-1}t)$$

$$\Leftrightarrow P = ((rs^{-1})w^{-1})t$$

$$\Leftrightarrow P = (r(s^{-1}w^{-1}))t$$

$$\Leftrightarrow P = ((s^{-1}w^{-1})r)t$$

$$\Leftrightarrow P = (s^{-1}w^{-1})(rt)$$

$$\Leftrightarrow P = (w^{-1}s^{-1})(rt)$$

$$\Leftrightarrow wP = w((w^{-1}s^{-1})(rt))$$

$$\Leftrightarrow wP = ((ww^{-1}s^{-1}))(rt)$$

$$\Leftrightarrow wP = ((ww^{-1})s^{-1})(rt)$$

$$\Leftrightarrow wP = ((w^{-1}w)s^{-1})(rt)$$

$$\Leftrightarrow wP = (1s^{-1})(rt)$$

$$\Leftrightarrow wP = s^{-1}(rt)$$

$$\Leftrightarrow wP = s^{-1}(rt)$$

$$\Leftrightarrow (sw)P = (ss^{-1})(rt)$$

$$\Leftrightarrow (sw)P = (sr^{-1}s)(rt)$$

$$\Leftrightarrow (sw)P = 1(rt)$$

$$\Leftrightarrow (sw)P = rt$$

$$\Leftrightarrow (sw)P = rt$$

$$\Leftrightarrow (sw)P = (rt)(sw)^{-1}$$

$$\Leftrightarrow 1P = (rt)(sw)^{-1}$$

$$\Leftrightarrow 1P = (rt)(sw)^{-1}$$

$$\Leftrightarrow P = \frac{rt}{sw}$$

(vii) 设
$$R = \left(\frac{s}{w}\right)^{-1}$$
. 则

$$R = \left(\frac{s}{w}\right)^{-1}$$

$$\Leftrightarrow R = (sw^{-1})^{-1}$$

$$\Leftrightarrow R(sw^{-1}) = (sw^{-1})^{-1}(sw^{-1})$$

$$\Leftrightarrow (Rs)w^{-1} = 1$$

$$\Leftrightarrow ((Rs)w^{-1})w = 1w$$

$$\Leftrightarrow (Rs)(w^{-1}w) = w$$

$$\Leftrightarrow (sR)1 = w$$

$$\Leftrightarrow 1(sR) = w$$

$$\Leftrightarrow sR = w$$

$$\Leftrightarrow s^{-1}(sR) = s^{-1}w$$

$$\Leftrightarrow (s^{-1}s)R = ws^{-1}$$

$$\Leftrightarrow 1R = ws^{-1}$$

$$\Leftrightarrow R = \frac{w}{s}.$$

(viii) 或许这是最简单的命题了:

$$\frac{s}{s} = ss^{-1} = s^{-1}s = 1.$$

例 设
$$r = \frac{2}{x}$$
, $s = \frac{x}{x^2 - 1}$. 则

$$\frac{r}{s} = \frac{r \cdot x \cdot (x^2 - 1)}{s \cdot x \cdot (x^2 - 1)} = \frac{2(x^2 - 1)}{x^2}.$$

还有一点值得我们注意. 我们作有理式时, 我们并不关心整式是什么——我们只关心整式适合的运算律. 作为一个挑战, 读者可用完全相同的套路从整数作出有理数.

本文就到这里. 感谢读者的阅读.

本文讲述如何进行有理式的运算.

在"有理式的定义"里,我们定义了有理式与其最基本的三事物:相等、加法、乘法.利用整式的运算律,我们得到了有理式的运算律.借助相反元,减法归结为加法;借助倒元,除法归结为乘法.并且,整式也可视为有理式,并保持相等、加法、乘法的结果.在这种等同下,**可认为是*÷*.所以,我们放宽了**的使用范围,*也可是有理式.利用有理式的运算律,我们得到跟定义长得很像的公式.具体地说,我们有如下定义与命题†:

定义 设 f, g 是整式, 且 $f \neq 0$. 形如 $\frac{g}{f}$ 的文字是有理式.

定义 设 f, g, u, v 是整式, 且 f, u 不是零.

- (i) $\frac{g}{f} = \frac{v}{u}$ 定义为 gu = fv.
- (ii) 有理式的加法定义为

$$\frac{g}{f} + \frac{v}{u} = \frac{gu + fv}{fu}.$$

(iii) 有理式的乘法定义为

$$\frac{g}{f} \cdot \frac{v}{u} = \frac{gv}{fu}.$$

定义 设r, s是有理式.

(i) 有理式的减法定义为

$$r-s=r+(-s).$$

(ii) 若 $s \neq 0$, 则有理式的除法定义为

$$\frac{r}{s} = rs^{-1}.$$

命题 设 r, s, t, w 是有理式.

 $(I)^{\ddagger}$ 整式都是有理式. 具体地说, 若 f, d 是整式, 且 $d \neq 0$, 则 $f = \frac{fd}{d}$. 有理式的相等适合如下性质:

[†]读者可乘此机会复习前文的内容.

^{‡ /} stands for identification.

- (R) 反射律: r = r.
- (S) 对称律: 若 r = s, 则 s = r.
- (T) 推移律: 若 r = s, 且 s = t, 则 r = t.

有理式的加法适合如下性质:

- (A0) r+s 也是有理式.
- (A1) 若 r = t, s = w, 则 r + s = t + w.
- (A2) 加法交換律: r + s = s + r.
- (A3) 加法结合律: (r+s) + t = r + (s+t).
- (A4) 零: 存在一个称为 "0" 的有理式, 使 0 + r = r.
- (A5) 相反元: 存在一个称为 "-r" 的有理式, 使 -r+r=0.

有理式的减法适合如下性质:

- $(S0)^{\dagger} r s$ 也是有理式.
- (S1) 若 r = t, s = w, 则 r s = t w.

有理式的乘法适合如下性质:

- (M0) rs 也是有理式.
- (M1) 若 r = t, s = w, 则 rs = tw.
- (M2) 乘法交换律: rs = sr.
- (M3) 乘法结合律: (rs)t = r(st).
- (M4) 幺: 存在一个称为 "1" 的有理式, 使 1r = r.
- (M5)' 倒元: 若 $r \neq 0$, 则存在一个称为 " r^{-1} " 的有理式, 使 $r^{-1}r = 1$. 加法与乘法还有一座桥:
- (D) 分配律: r(s+t) = rs + rt.

根据分配律, 我们有 0r = r0 = 0, -rs = (-r)s, -s = (-1)s.

下设 $s \neq 0$, $w \neq 0$. 有理式的除法适合如下性质:

- $(D0)^{\ddagger} \frac{r}{s}$ 也是有理式.
- (D1) 若 r = t, s = w, 则 $\frac{r}{s} = \frac{t}{w}$.
- (D2) $\frac{r}{s}=\frac{t}{w}$ 的一个必要与充分条件是 rw=st.
- (D3) $\frac{r}{s} = \frac{rw}{sw} = \frac{wr}{ws}$
- (D4) $\frac{r}{s} \pm \frac{t}{w} = \frac{rw \pm st}{sw}$.

[†]This S stands for subtraction.

[‡]This *D* stands for *division*.

$$(D5) - \frac{r}{s} = \frac{-r}{s}.$$

(D6)
$$\frac{r}{s} \cdot \frac{t}{w} = \frac{rt}{sw}$$
.
(D7) $\left(\frac{s}{w}\right)^{-1} = \frac{w}{s}$.

$$(D7) \left(\frac{s}{w}\right)^{-1} = \frac{w}{s}.$$

(D8)
$$\frac{s}{s} = 1$$
.

评注 改上个命题的"整式""有理式"为"整数""有理数",命题仍是 对的.

在正式进入有理式的运算前, 我们先介绍有理式的最简形.

设 r, s 是有理式, 且 $s \neq 0$. 所以存在整式 f, g, u, v (f, u, v 均不为零)使 $r = \frac{g}{f}$, $s = \frac{v}{u}$. 所以

$$\frac{r}{s} = rs^{-1} = \frac{g}{f} \cdot \frac{u}{v} = \frac{gu}{fv}.$$

gu, fv 都是整式, 且 $fv \neq 0$. 我们可求出 gu, fv 的一个最大公因子 d. 因为 $fv \neq 0$, 故 $d \neq 0$. 设整式 F, G 使 gu = dG, fv = dF. 则

$$\frac{r}{s} = \frac{gu}{fv} = \frac{dG}{dF} = \frac{G}{F}.$$

F, G 都是整式, 且 $F \neq 0, F$ 与 G 互素. 换句话说, 我们有

设 r, s 是有理式, 且 $s \neq 0$. 存在二个互素的整式 F, G 使 $F \neq 0$, 且

$$\frac{r}{s} = \frac{G}{F}.$$

这样的 F 与 G 不是唯一的, 因为最大公因子不是唯一的. 不过, 因为 整式的任意二个最大公因子相伴, 故这样的 F 与 G 也顶多差一个单位.

不正式地说, $\frac{G}{F}$ 是 $\frac{r}{s}$ 的一个最简形.

顺便一提: 若 F 是整式的单位, 则 $\frac{G}{F}$ 就是整式. 我们通常写它为 $GF^{-1} = F^{-1}G$, 这里 F^{-1} 当然也是整式的单位.

设 $r = \frac{4x^2-4}{-2}$. 显然, $4x^2-4$ 与 -2 互素 (因为 -2 是整式的单位). 所以

$$r = (-2)^{-1}(4x^2 - 4) = (-2)^{-1} \cdot 4(x^2 - 1) = -2(x^2 - 1).$$

评注 我们写有理数 $\frac{b}{a}$ 时, 也会将它写为 $\frac{g}{f}$ 的形式, 其中 $f \neq 0$, 且整数 f 与 g 互素. 当然, $\frac{g}{+1}$ 就是 $\pm g$. 写有理数为其最简形的过程是 "约分".

为什么我们需要约分? 古代中国算学家刘徽曾为《九章算术》作注[†]. 下面是他在《九章算术注》里给出的理由[‡]:

约分者, 物之数量, 不可悉全, 必以分言之. 分之为数, 繁则难用. 设有四分之二者, 繁而言之, 亦可为八分之四; 约而言之,则二分之一也. 虽则异辞, 至于为数, 亦同归尔. 法实相推, 动有参差, 故为术者先治诸分.

作为对比, 我们试算 $a=\frac{18}{4}+\frac{233}{699}$ 与 $a'=\frac{9}{2}+\frac{1}{3}$. 因为 $\frac{18}{4}=\frac{9}{2}$, 且 $\frac{233}{699}=\frac{1}{3}$, 故 a=a'. 不过, 如果我们不使用最简形, 我们有

$$a = \frac{18}{4} + \frac{233}{699} = \frac{18 \cdot 699 + 4 \cdot 233}{4 \cdot 699} = \frac{13514}{2796}$$

注意到 9 与 2 互素, 且 1 与 3 互素, 故出现在 a' 中的二个有理数已为最简形. 不难算出

$$a' = \frac{9}{2} + \frac{1}{3} = \frac{9 \cdot 3 + 2 \cdot 1}{2 \cdot 3} = \frac{29}{6}.$$

或许读者怀疑 a = a'. 我们可直接验证:

$$13514 \cdot 6 = 81084 = 2796 \cdot 29.$$

所以, a = a' 是正确的.

作者希望本评注能够帮助读者理解为什么我们需要最简形.

例 设 $s = \frac{x^m - 1}{x^{m+1} - 1}$, 其中 m 是正整数. 我们试找 s 的一个最简形. 根据乘法公式, 对任意正整数 n, 有

$$x^{n} - 1 = (x - 1) \underbrace{(x^{n-1} + x^{n-2} + \dots + 1)}_{g_{n}}.$$

[†]亦即《九章算术注》.

[‡]此话的一个 (现代) 汉语翻译可以是: "约分的原因是物品的数量不可能全部是整数, 这时必须用分数表示. 分数作为一个数来说, 如果太繁琐就难用. 例如 $\frac{2}{4}$, 繁琐的表示形式有 $\frac{1}{8}$, 简约的表示形式有 $\frac{1}{2}$. 虽然表示形式不同, 但数值上是相同的. 分母分子互相推算, 经常有不同的情况, 所以计算前要进行约分."

所以

$$s = \frac{x^m - 1}{x^{m+1} - 1} = \frac{(x - 1)g_m}{(x - 1)g_{m+1}} = \frac{g_m}{g_{m+1}}.$$

注意到

$$g_{m+1} = xg_m + 1 \implies 1 \cdot g_{m+1} + (-x) \cdot g_m = 1,$$

故 g_{m+1} 与 g_m 互素. 所以, s 的一个最简形是 $\frac{g_m}{g_{m+1}}$.

例 设 $s = \frac{x^4 - 1}{x^3 - 2x^2 - x + 2}$. 我们试找 s 的一个最简形.

求最大公因子的一个好方法是辗转相除法. 以小除大 (以低次的整式除高次的整式), 直到余式为零:

$$\underbrace{x^4-1}_{r_{-1}} = (x+2)\underbrace{(x^3-2x^2-x+2)}_{r_0} + 5\underbrace{(x^2-1)}_{r_1},$$

$$r_0 = (x-2)r_1.$$

所以 $r_1 = x^2 - 1$ 就是 r_{-1} 与 r_0 的一个最大公因子. 再作二次带余除法 (当然, 事实上, 只要再作一次):

$$\begin{split} r_{-1} &= (x^2+1)r_1, \\ r_0 &= (x-2)r_1. \end{split}$$

所以

$$s = \frac{r_{-1}}{r_0} = \frac{(x^2 + 1)r_1}{(x - 2)r_1} = \frac{x^2 + 1}{x - 2}.$$

评注 事实上, 上二个例无本质区别: 有的可直接看出来, 而有的需要稍繁的计算.

现在, 我们考虑有理式的加、减法.

命题 若 r, s, t, w 是有理式, 且 $s \neq 0, w \neq 0, 则$

$$\frac{r}{s} \pm \frac{t}{w} = \frac{rw \pm st}{sw}.$$

证 作者不必再证一遍吧?

当然, 我们在运算前, 一般先分别写 $\frac{r}{s}$ 与 $\frac{t}{w}$ 为最简形——这可使运算容易一些.

例 设
$$r = \frac{2x^3 - 3x^2 + 1}{x^2 - 2x + 1}$$
, $s = \frac{x^2 - 4}{x^3 - 8}$, 求 $r + s$ 与 $r - s$. 首先, 化 r , s 为最简形:

$$\begin{split} r &= \frac{2x^3 - 3x^2 + 1}{x^2 - 2x + 1} = \frac{(x^2 - 2x + 1)(2x + 1)}{(x^2 - 2x + 1)} = \frac{2x + 1}{1}, \\ s &= \frac{x^2 - 4}{x^3 - 8} = \frac{(x - 2)(x + 2)}{(x - 2)(x^2 + 2x + 4)} = \frac{x + 2}{x^2 + 2x + 4}. \end{split}$$

所以

$$r \pm s = \frac{(2x+1)(x^2+2x+4) \pm 1(x+2)}{1(x^2+2x+4)}$$
$$= \frac{(2x^3+5x^2+10x+4) \pm (x+2)}{x^2+2x+4}.$$

所以

$$r+s = \frac{(2x^3+5x^2+10x+4)+(x+2)}{x^2+2x+4} = \frac{2x^3+5x^2+11x+6}{x^2+2x+4},$$

$$r-s = \frac{(2x^3+5x^2+10x+4)-(x+2)}{x^2+2x+4} = \frac{2x^3+5x^2+9x+2}{x^2+2x+4}.$$

例 设
$$r = \frac{x}{r^2-4}$$
, $s = \frac{3}{r^2-4}$. 求 $r+s$ 与 $r-s$.

因为 x 与 x^2-4 互素, 且 3 与 x^2-4 互素, 故我们不必写 r 或 s 为最简形. 所以

$$r\pm s = \frac{x(x^2-4)\pm(x^2-4)3}{(x^2-4)(x^2-4)} = \frac{(x\pm3)(x^2-4)}{(x^2-4)(x^2-4)} = \frac{x\pm3}{x^2-4}.$$

一般地,下面的命题成立.

命题 若 r, s, t 是有理式, 且 $s \neq 0$, 则

$$\frac{r}{s} \pm \frac{t}{s} = \frac{r \pm t}{s}.$$

证 直接计算即可:

$$\frac{r}{s} \pm \frac{t}{s} = \frac{r}{s} + \frac{\pm t}{s}$$

$$= \frac{rs + s(\pm t)}{ss}$$

$$= \frac{sr + s(\pm t)}{ss}$$

$$= \frac{s(r \pm t)}{ss}$$

$$= \frac{r \pm t}{s}.$$

评注 有时, 此公式可使计算稍容易一些.

$$r = \frac{1}{(x-1)^2(x+1)} = \frac{x+1}{(x-1)^2(x+1)^2},$$

$$s = \frac{1}{(x-1)(x+1)^2} = \frac{x-1}{(x-1)^2(x+1)^2}.$$

所以

$$r - s = \frac{(x+1) - (x-1)}{(x-1)^2(x+1)^2} = \frac{2}{(x-1)^2(x+1)^2}.$$

接下来, 我们考虑有理式的乘、乘法.

相比加、减法, 乘法与除法的公式简单一些.

命题 若 r, s, t, w 是有理式, 且 $s \neq 0, w \neq 0$, 则

$$\frac{r}{s} \cdot \frac{t}{w} = \frac{rt}{sw},$$
$$\frac{r/s}{t/w} = \frac{rw}{st}.$$

评注 r/s 是 $\frac{r}{s}$ 的一种写法.

证 请读者自行证明这二个公式. 不过, 作者可给一个提示:

$$\frac{r/s}{t/w} = (r/s)(t/w)^{-1} = (r/s)(w/t).$$

例 若 $r = \frac{x}{x-1}$, $s = \frac{x+1}{x}$, 求 $rs 与 \frac{r}{s}$. 直接套用公式即可:

$$rs = \frac{x(x-1)}{(x+1)x} = \frac{x-1}{x+1},$$
$$\frac{r}{s} = \frac{xx}{(x-1)(x+1)} = \frac{x^2}{x^2-1}.$$

例 若 $r = \frac{x}{x^2-1}$, s = x+1, 求 rs. 视 $s = \frac{x+1}{1}$, 再套用公式:

$$rs = \frac{x(x+1)}{(x^2-1)\cdot 1} = \frac{x(x+1)}{(x-1)(x+1)} = \frac{x}{x-1}.$$

一般地,下面的命题成立.

命题 若 r, s, t 是有理式, 且 $s \neq 0$, 则

$$\frac{r}{s} \cdot t = t \cdot \frac{r}{s} = \frac{rt}{s} = \frac{tr}{s}.$$

证 因为乘法是交换的, 证明 $\frac{r}{s} \cdot t = \frac{rt}{s}$ 就够了. 因为 $t = \frac{t}{1}$, 故

$$\frac{r}{s} \cdot t = \frac{r}{s} \cdot \frac{t}{1} = \frac{rt}{s1} = \frac{rt}{s}.$$

评注 这个命题也是省事的——乘法时, 不必每次都写 t 为 $\frac{t}{1}$ 了.

最后我们介绍幂与一些乘法公式.

定义 设 r 是有理式. 设 n 是正整数.

- (i) r^0 是 r 的 0 次幂. 定义 $r^0 = 1$.
- (ii) r^n 是 $n \uparrow r$ 的积.
- (iii) r^{-n} 是 $n \uparrow r^{-1}$ 的积.

命题 设 r, s 是有理式, 且 m, n 是非负整数. 则

- (i) $r^{m+n} = r^m r^n$.
- (ii) $(r^m)^n = r^{mn}$.
- (iii) $r^m s^m = (rs)^m$.

证 (i) 根据结合律, $m+n \uparrow r$ 的积是 $m \uparrow r$ 的积与 n 的 r 的积的 积. (读者也可对 n 用算学归纳法. 当然, 因为我们约定 $r^0 = 1$, " $0 \uparrow r$ 的积" 当然是 1.)

- (ii) $(r^m)^n$ 按定义, 是 $n \uparrow r^m$ 的积. r^m 是 $m \uparrow r$ 的积. 这里有 $mn \uparrow r$,根据结合律, 这个积就是 r^{mn} .
- (iii) m=0 或 m=1 时, 显然. 这里, 就需要交换律与结合律了. 读者可体会一下:

$$r^2s^2 = (rr)(ss) = ((rr)s)s = (r(rs))s$$

= $((rs)r)s = (rs)(rs) = (rs)^2$.

结合 (i), 读者可用算学归纳法 (起步的 m 可以选 0):

$$\begin{split} r^{m+1}s^{m+1} &= (r^mr)(s^ms) = ((r^mr)s^m)s = (r^m(rs^m))s \\ &= (r^m(s^mr))s = ((r^ms^m)r)s = (rs)^m(rs) \\ &= (rs)^{m+1}. \end{split}$$

命题 设 r, s 是非零的有理式, 且 m, n 是整数. 则

- (i) $r^{m+n} = r^m r^n$.
- (ii) $(r^m)^n = r^{mn}$.
- (iii) $r^m s^m = (rs)^m$.

证 这里 m 与 n 可以是整数了. 不过, 对 r, s 的要求也高了.

(i) 假如 m, n 都是非负整数, 这是显然的.

假如 m, n 都是负整数, 那么 r^{m+n} , r^m , r^n 就是 $(r^{-1})^{-m-n}$, $(r^{-1})^{-m}$, $(r^{-1})^{-n}$. -m, -n 都是非负整数, 且 -m+(-n) 就是 -m-n.

假如 m 或 n 的某一个是 0, 此事也是显然的. 麻烦的事情是 m 与 n 有正有负. 不失一般性, 设 m>0>n.

若 m+n=0, 则 n=-m. 所以

$$\begin{split} r^m r^n &= r^m r^{-m} = r^m (r^{-1})^m \\ &= (rr^{-1})^m = 1^m \\ &= 1 = r^{m+n}. \end{split}$$

若 m+n>0, 则 m>-n. 所以

$$r^m r^n = (r^{m+n} r^{-n}) r^n = r^{m+n} (r^{-n} r^n) = r^{m+n}.$$

若 m+n < 0, 则 m < -n. 所以

$$\begin{split} r^m r^n &= r^m (r^{-1})^{-n} = r^m (r^{-1})^{m+(-m-n)} \\ &= r^m ((r^{-1})^m (r^{-1})^{-m-n}) = (r^m (r^{-1})^m) (r^{-1})^{-m-n} \\ &= (r^{-1})^{-m-n} = r^{m+n}. \end{split}$$

(ii) 若 m 或 n 为 0, 这是显然的——左、右二侧都是 1. 若 m, n 是正整数, 就不必再证了.

若 $m<0,\ n>0,\ 则\ r^m=(r^{-1})^{-m}.\ ((r^{-1})^{-m})^n=(r^{-1})^{(-m)n}=(r^{-1})^{-mn}=r^{mn}.$

若 m>0, n<0, 则 $(r^m)^n=((r^m)^{-1})^{-n}$. $(r^m)^{-1}$ 是什么呢? 因为 $(r^m)^{-1}r^m=1$, 且 $(r^{-1}r)^m=(r^{-1})^mr^m=1$, 故 $(r^m)^{-1}=(r^{-1})^m$. 所以 $(r^m)^n=((r^{-1})^m)^{-n}=(r^{-1})^{m(-n)}=(r^{-1})^{-mn}=r^{-(-mn)}=r^{mn}$.

若 m < 0, n < 0, 则 $r^m = (r^{-1})^{-m}$. 所以 $(r^m)^n = ((r^{-1})^{-m})^n = (r^{-1})^{-mn} = ((r^{-1})^{-1})^{-(-mn)} = ((r^{-1})^{-1})^{mn}$. $(r^{-1})^{-1}$ 是什么呢? 因为 $rr^{-1} = r^{-1}r = 1$, 且 $(r^{-1})^{-1}r^{-1} = 1$, 故 $(r^{-1})^{-1} = r$. 综上, $(r^m)^n = r^{mn}$.

(iii) 若 $m \geq 0$, 则不必证了. 若 m < 0, 则 $r^m = (r^{-1})^{-m}$, $s^m = (s^{-1})^{-m}$. 所以 $r^m s^m = (r^{-1}s^{-1})^{-m}$. 不过, 因为 $(rs)^{-1}(rs) = 1$, 且 $(r^{-1}s^{-1})(rs) = (r^{-1}r)(s^{-1}s) = 1$, 故 $(rs)^{-1} = r^{-1}s^{-1}$. 所以, $r^m s^m = ((rs)^{-1})^{-m} = (rs)^m$.

总结一下上述二个命题, 就是

命题 设 r, s 是有理式, 且 m, n 是非负整数. 有理式的幂适合如下规则:

- (i) $r^{m+n} = r^m r^n$.
- (ii) $(r^m)^n = r^{mn}$.
- (iii) $r^m s^m = (rs)^m$.

若 r, s 均不为 0, 则 m, n 可取全体整数.

评注 上个命题的"有理式"可替换为"复数""实数"或"有理数"——这些数的乘法都适合结合律与交换律,且非零的数有倒数. 推理过程完全一致——改"有理式"为"复数""实数"或"有理数"即可.

现在, 我们看一些乘法公式. 不过, 在此之前, 我们先了解有理式与整式的复合.

定义 设

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

是整式. 设 r(x) 是有理式. 定义

$$(f \circ r)(x) = f(r(x)) = a_0 + a_1 r(x) + \dots + a_n (r(x))^n.$$

这称为有理式 r(x) 与整式 f(x) 的复合. 显然, $(f \circ r)(x)$ 仍为有理式. 在语境明确的情况下, "(x)" 可不写出.

例 设 $f = 1 + 2x + 3x^2$, $r = \frac{1}{x}$. 则

$$f \circ r = 1 + \frac{2}{x} + \frac{3}{x^2} = \frac{x^2 + 2x + 3}{x^2}.$$

命题 设 f, g 是整式, 且 r 是有理式.

- (i) 若 f = q, 则 $f \circ r = q \circ r$.
- (ii) 若 f + g = s, 则 $f \circ r + g \circ r = s \circ r$. 这里, \circ 的优先级高于 +; 所 以, $f \circ r + g \circ r$ 是 $(f \circ r) + (g \circ r)$ 的简写.
 - (iii) 若 fg = p, 则 $(f \circ r) \cdot (g \circ r) = p \circ r$.

证设

$$f = a_0 + a_1 x + \dots + a_n x^n,$$

 $g = b_0 + b_1 x + \dots + b_n x^n.$

(i) 若 f=g, 则对 0 至 n 间的任意整数 i, 都有 $a_i=b_i$. 所以

$$\begin{split} f\circ r &= a_0 + a_1 r + \dots + a_n r^n \\ &= b_0 + b_1 r + \dots + b_n r^n \\ &= g\circ r. \end{split}$$

(ii) 若
$$s = f + q$$
, 则

$$s = c_0 + c_1 x + \dots + c_n x^n,$$

其中

$$c_i = a_i + b_i, \quad i = 0, 1, \dots, n.$$

所以

$$\begin{split} &f\circ r + g\circ r\\ &= (a_0 + a_1r + \dots + a_nr^n) + (b_0 + b_1r + \dots + b_nr^n)\\ &= (a_0 + b_0) + (a_1 + b_1)r + \dots + (a_n + b_n)r^n\\ &= c_0 + c_1r + \dots + c_nr^n\\ &= s\circ r. \end{split}$$

(iii) 若 p = fg, 则

$$p = d_0 + d_1 x + \dots + d_{2n} x^{2n}$$

其中

$$d_i = a_0 b_i + a_1 b_{i-1} + \dots + a_i b_0, \quad i = 0, 1, \dots, 2n.$$

所以

$$\begin{split} &(f\circ r)\cdot (g\circ r)\\ &=(a_0+a_1r+\dots+a_nr^n)(b_0+b_1r+\dots+b_nr^n)\\ &=(a_0b_0)+(a_0b_1+a_1b_0)r+\dots+(a_nb_n)r^{2n}\\ &=d_0+d_1r+\dots+d_{2n}r^{2n}\\ &=p\circ r. \end{split}$$

8

我们得到了如下命题:

命题 若整式 $f_0(x)$, $f_1(x)$, …, $f_{n-1}(x)$ 之间有一个由加法与乘法计算得到的关系, 那么将 x 换为有理式 r(x), 这样的关系仍成立.

从而, 我们有

命题 设 r, s, t 是有理式, n 是正整数. 下面的乘法公式成立:

$$\begin{split} &(r+s)^n = r^n + \binom{n}{1} r^{n-1} s + \dots + \binom{n}{i} r^{n-i} s^i + \dots + s^n, \\ &r^n - s^n = (r-s)(r^{n-1} + r^{n-2} s + \dots + r^{n-i} s^{i-1} + \dots + s^{n-1}), \\ &r^2 - s^2 = (r-s)(r+s), \\ &r^3 - s^3 = (r-s)(r^2 + rs + s^2), \\ &r^3 + s^3 = (r+s)(r^2 - rs + s^2), \\ &r^3 + s^3 + t^3 - 3rst = (r+s+t)(r^2 + s^2 + t^2 - rs - rt - st). \end{split}$$

评注 事实上, 上面的乘法公式都可以直接验证. 不过, 不正式地说, 因为有理式与整式的加法与乘法的运算律是完全一致的 (当然, 涉及倒元的除外), 且这些乘法公式都是运用运算律推出的, 故它们自动地在有理式里也成立.

本文就到这里. 读者辛苦了!