Matematická logika

Rostislav Horčík

horcik@math.feld.cvut.cz
horcik@cs.cas.cz
www.cs.cas.cz/~horcik

Sémantická věta o dedukci

Věta

Pro množinu formulí S a formule φ a ψ platí

$$S \cup \{\varphi\} \models \psi$$
 právě tehdy, když $S \models \varphi \Rightarrow \psi$.

Důkaz

- Zleva doprava: nechť u(S)=1. Pokud $u(\varphi)=0$, pak $u(\varphi\Rightarrow\psi)=1$. Pokud $u(\varphi)=1$, pak z předpokladu plyne $u(\psi)=1$, tj. $u(\varphi\Rightarrow\psi)=1$.
- Zprava doleva: nechť $u(S \cup \{\varphi\}) = 1$, tj. $u(\varphi) = 1$ a u(S) = 1. Takže z předpokladu plyne $u(\varphi \Rightarrow \psi) = 1$. Z pravdivostní tabulky pro implikaci tedy plyne $u(\psi) = 1$.

Tautologická ekvivalence

Definice

Řekneme, že formule φ a ψ jsou tautologicky ekvivalentní (sémanticky ekvivalentní), jestliže $\varphi \models \psi$ a také $\psi \models \varphi$. Tento fakt označujeme $\varphi \models \psi$.

Pozorování

Formule φ a ψ jsou tautologicky ekvivalentní právě tehdy, když pro každé pravdivostní ohodnocení u platí $u(\varphi) = u(\psi)$. Tj. právě tehdy, když formule $\varphi \Leftrightarrow \psi$ je tautologie.

Kongruence

Věta

Relace \models na množině všech formulí $\mathcal{P}(A)$ je ekvivalence. Navíc, jsou-li $\varphi, \psi, \alpha, \beta$ formule splňující $\varphi \models \psi$ a $\alpha \models \beta$, pak platí

- $\bullet \neg \varphi \models \neg \psi$
- $\varphi \wedge \alpha \models \psi \wedge \beta$
- $\varphi \lor \alpha \models \psi \lor \beta$
- $\varphi \Rightarrow \alpha \models \psi \Rightarrow \beta$
- $\varphi \Leftrightarrow \alpha \models \psi \Leftrightarrow \beta$

Důsledek

Nechť φ je formule a α některá její podformule. Pokud $\alpha \models \beta$, pak $\varphi \models \psi$, kde ψ je formule vzniklá z φ nahrazením podformule α formulí β .

Vlastnosti spojek

Věta

Pro každé formule α, β, γ , tautologii T a kontradickci F platí:

- $\alpha \wedge \alpha \models \alpha, \alpha \vee \alpha \models \alpha$ (idempotence)
- $\alpha \wedge \beta \models \beta \wedge \alpha$, $\alpha \vee \beta \models \beta \vee \alpha$ (komutativita)
- $\alpha \wedge (\beta \wedge \gamma) \models (\alpha \wedge \beta) \wedge \gamma$, $\alpha \vee (\beta \vee \gamma) \models (\alpha \vee \beta) \vee \gamma$ (asociativita)
- $\alpha \wedge (\alpha \vee \beta) \models \alpha, \alpha \vee (\alpha \wedge \beta) \models \alpha$ (absorpce)
- $\neg \neg \alpha \models \alpha$ (zákon dvojné negace)
- $\neg(\alpha \land \beta) \models \neg\alpha \lor \neg\beta$, $\neg(\alpha \lor \beta) \models \neg\alpha \land \neg\beta$ (De Morganovy zákony)
- $\alpha \wedge (\beta \vee \gamma) \models (\alpha \wedge \beta) \vee (\alpha \wedge \gamma), \ \alpha \vee (\beta \wedge \gamma) \models (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$ (Distributivita)
- $T \wedge \alpha \models \alpha, T \vee \alpha \models T, F \wedge \alpha \models F, F \vee \alpha \models \alpha$
- $\bullet \ \alpha \land \neg \alpha \models F, \alpha \lor \neg \alpha \models T$

Booleovské funkce

Definice

Zobrazení $f: \{0,1\}^n \to \{0,1\}$ se nazývá Booleovská fce. Každé formuli φ sestavenou z výrokových proměnných x_1,\ldots,x_n můžeme přiřadit Booleovskou funkci $f_{\varphi}: \{0,1\}^n \to \{0,1\}$ takto

$$f_{\varphi}(a_1,\ldots,a_n)=u(\varphi),$$

kde u je ohodnocení takové, že $u(x_i) = a_i$.

Tvrzení

Pro dvě formule φ a ψ platí $\varphi \models \psi$ právě tehdy, když $f_{\varphi} = f_{\psi}$.

Normální formy

Definice

- Literál je logická proměnná nebo negace logické proměnné.
- Řekneme, že formule je v disjunktivním normálním tvaru (DNF), jestliže je disjunkcí jedné nebo několika formulí, z nichž každá je literálem nebo konjunkcí literálů.
- Řekneme, že formule je v konjunktivním normálním tvaru (CNF), jestliže je konjunkcí jedné nebo několika formulí, z nichž každá je literálem nebo disjunkcí literálů.

Příklad

- DNF: $(x \land \neg y) \lor (y \land z) \lor (\neg x \land y \land \neg z)$
- CNF: $(x \vee \neg y) \wedge (y \vee z) \wedge (\neg x \vee y \vee \neg z)$

Disjunktivní normální forma

Věta

Ke každé Booleovské funkci f existuje formule φ v DNF taková, že $f=f_{\varphi}.$

Důsledek

Ke každé formuli α existuje formule β , která je v DNF a $\alpha \models \beta$.

Konjunktivní normální forma

Věta

Ke každé Booleovské funkci f existuje formule φ v CNF taková, že $f=f_{\varphi}.$

Důsledek

Ke každé formuli α existuje formule β , která je v CNF a $\alpha \models \beta$.

Unarní spojky

- f_3 negace $\neg x$
- f_1 kontradikce F (nulární)
- f_4 tautologie T (nulární)

Binární spojky

Χ	<i>y</i>	f_1	f_2	f_3	<i>f</i> ₄	<i>f</i> ₅	f_6	<i>f</i> ₇	<i>f</i> ₈
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0 0 0	1	0	1	0	1	0	1

- f₁ kontradikce F
- f_2 konjunkce $x \wedge y$
- f_8 disjunkce $x \vee y$
- f_7 vylučovací nebo (XOR) $x \oplus y \models \neg(x \Rightarrow y)$

Binární spojky

Χ	y	<i>f</i> ₉	f ₁₀	f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅	f ₁₆
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	1 1 0 0	1	0	1

- f_{10} ekvivalence $x \Leftrightarrow y$
- f_{14} implikace $x \Rightarrow y$
- f₁₆ tautologie T
- f_9 Peirceova šipka (NOR) $x \downarrow y \models \neg(x \lor y)$
- f_{15} Shefferův operátor (NAND) $x \mid y \models \neg(x \land y)$

Uplný systém spojek

Příklad

$$\varphi = (\neg x \land y) \Rightarrow (y \Rightarrow (x \lor \neg y))$$
.

Protože $a \Rightarrow b \models \neg a \lor b$ máme:

$$\varphi \models \neg(\neg x \land y) \lor (\neg y \lor (x \lor \neg y)))$$

$$\varphi \models \neg \neg x \lor \neg y \lor \neg y \lor x \models x \lor \neg y$$

Definice

Řekneme, že množina logických spojek Δ tvoří úplný systém logických spojek, jestliže pro každou formuli α existuje formule β s ní tautologicky ekvivalentní, která používá pouze spojky z množiny Δ .

Uplný systém spojek

Tvrzení

Nechť Δ tvoří úplný systém logických spojek a nechť Π je množina spojek. Jestliže platí

- pro každou binární spojku $\square \in \Delta$ existuje formule α obsahující pouze spojky z množiny Π taková, že $\alpha \models x \square y$,
- pro každou unární spojku $\Diamond \in \Delta$ existuje formule β obsahující pouze spojky z množiny Π taková, že $\beta \models \Diamond x$,
- pro každou nulární spojku $K \in \Delta$ existuje formule γ obsahující pouze spojky z množiny Π taková, že $\gamma \models K$,

pak Π je také úplný systém logických spojek.

Příklady úplných systémů spojek

Tvrzení

Následující množiny tvoří úplný systém logických spojek:

$$\{\neg, \lor\}, \{\neg, \land\}, \{\neg, \Rightarrow\}, \{\Rightarrow, F\}, \{|\}, \{\downarrow\}$$

Tvrzení

Množina $\{\land,\lor,\Rightarrow,\Leftrightarrow\}$ (ani žádná její podmnožina) netvoří úplný systém logických spojek.