Момент инерци

Программа рассчитывает моменты инерции молекулы I_x , I_y и I_z относительно осей x, y и z (за ось x принята ось вращения с минимальным моментом инерции, оси y и z перпендикулярны ей и друг другу). В качестве данных для расчёта используются координаты атомов из XYZ-файла.

Требования к программному обеспечению

Для выполнения программы необходим интерпретатор языка Perl версии не ниже 5.10 и командная оболочка для запуска программы. Программа может выполняться в командной оболочке Unix на операционной системе Linux, в которой интерпретатор Perl, как правило, уже присутствует с системе, и на операционной системе Microsoft Windows с использованием Windows Power Shell и установленного интерпретатора Perl, например, Strawberry Perl.

Использование программы

Для использования программы запустите ее в командном интерпретаторе с указанием расположения XYZ-файла, например:

```
$ ./moments_of_inertia.pl filename.xyz
```

Программа создаст текстовый файл *filename.txt* с результатами расчета в директории, в которой расположен файл *filename.xyz*. Примеры исходных ХҮХ-файлов можно найти в директории *Examples*. Например, запуск программы с файлом *Pentane.xyz* создаст файл *Pentane.txt* с результатами расчета:

Можно задавать параметры работы программы, используя следующие ключи запуска:

- v	Показать версию программы и завершить работу				
	Точность подсчета. Задается интервал перемещения направляющего				
-a[1-5]	вектора оси вращения в пространстве. Чем меньше интервал – тем				
	точнее и дольше происходит расчет (см. принцип работы):				

	-a1 - 0,1;
	-a2 – 0,05;
	-a3 – 0,01;
	-a4 – 0,005;
	-a5 − 0,001.
	По умолчанию используется ключ -а3
	Число цифр после запятой, до которого будет округлено значение
-o[1-5]	моментов инерции (в единицах Da*Ų). По умолчанию используется
	ключ -03
-d	Отображать координаты направляющих векторов осей с минимальным
-u	и максимальным моментами инерции
-i	Вывести исходную информацию для расчёта
-1	Создать лог-файл с подробным отчётом

Например, результат расчета для молекулы пентана с использованием XYZ-файла из папки *Examples* с ключами **-a2 -o4 -d** будет выглядеть так:

```
$ ./moments_of_inertia.pl -a2 -o4 -d ./Pentane.xyz
$ cat ./Pentane.txt
This is Moment of inertia version 1.2
System date is Mon Mar 4 19:04:56 2019
Calculation for data from file /mnt/d/Pentane.xyz
Step of the directing vector is 0.05
|Coordinates of the center of gravity |
-----
   |y |z |
-----
|3.13712 |0.78884 |-0.90687 |
_____
|Moments of inertia, Da*A^2
|Ix |Iy |Iz |
-----
|29.9888 |255.0583 |269.2769
|Coordinates of the directing vectors |
|a_x |0.55 |0.25 |-0.30 |
|a_z |0.00 |0.85 |0.70 |
```

Обратите внимание!

• Обычно программы 3D-визуализации молекул сохраняют XYZ-файлы с координатной сеткой, в которой в качестве единицы длины взят 1 Å. При

- несоблюдении этого условия программа рассчитает моменты инерции некорректно по абсолютной величине, но в правильных соотношениях.
- Расчёт доступен для молекул, состоящих из следующих атомов: H, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, Br, I.

Контакты

С исправлениями, вопросами, замечаниями и предложениями обращаться по электронной почте:

Михаил Коверда <u>m.kov@pm.me</u>

Евгений Офицеров ofitser@mail.ru

Лицензия

Данная программа распространяется под лицензией GNU GPL v3.0.

Принцип работы

XYZ-файл представляет собой текстовый файл, в котором для каждого атома молекулы указаны его координаты в декартовой системе, например, XYZ-файл для пентана содержит следующую информацию:

17			
С	0.88843	0.03444	0.00635
	2.40855		
С		0.05283	-0.01558
С	2.94163	0.96482	-1.12020
С	4.46987	0.98077	-1.13892
С	5.00405	1.88707	-2.23658
Н	0.52876	-0.62374	0.80344
Н	0.48677	-0.33185	-0.94384
Н	0.48652	1.03669	0.18608
Н	2.77834	-0.96831	-0.16472
Н	2.77808	0.39277	0.95890
Н	2.56526	1.98395	-0.96898
Н	2.56572	0.62305	-2.09233
Н	4.85117	-0.03520	-1.29421
Н	4.85071	1.32591	-0.17064
Н	4.66744	1.54992	-3.22215
Н	6.09853	1.88355	-2.23189
Н	4.66701	2.91854	-2.09234
11	4.00701	2.71034	2.09234

Программа работает по следующему алгоритму:

- 1) Считываются данные из файла и производится замена символа элемента значением его атомной массы в дальтонах.
- 2) Рассчитываются координаты центра тяжести молекулы по формуле

$$X_C = \frac{\sum_i m_i x_i}{\sum_i m_i}$$

$$Y_C = \frac{\sum_i m_i y_i}{\sum_i m_i}$$

$$Z_C = \frac{\sum_i m_i z_i}{\sum_i m_i}$$

Где x_i, y_i, z_i – координаты i-го атома в молекуле, а m_i – его масса.

3) Задается прямая, проходящая через центр тяжести молекулы и имеющая произвольный направляющий вектор, например $\vec{a} = (0, -1, -1)$.

- 4) Координаты направляющего вектора итеративно изменяются с некоторым интервалом перемещения (задающимся ключом -a), так чтобы направление вектора соответствовало всем возможным направлением оси вращения в пространстве, например, $\mathbf{a}_x = [0,1]$, $\mathbf{a}_y = [-1,1]$, $\mathbf{a}_z = [-1,1]$.
- 5) Для каждого положения оси в пространстве рассчитывается момент инерции относительно этой оси с учетом расстояния каждого атома до этой оси r_i и сохраняется в памяти:

$$I = \sum_{i} m_i r_i^2$$

- 6) После проведения расчета моментов инерции для всех положений оси программа выбирает наибольший и наименьший моменты инерции и возвращает их значения в единицах $Da*Å^2$, а также координаты направляющих векторов \vec{a} и \vec{b} для этих осей.
- 7) Полученные оси всегда перпендикулярны друг другу, в чем можно легко убедиться, подсчитав скалярное произведение направляющих векторов для этих осей.

$$(\vec{a}, \vec{b}) = a_x b_x + a_y b_y + a_z b_z = 0$$

8) Находится уравнение прямой, перпендикулярной двум найденным осям. Относительно этой оси рассчитывается третье значение момента инерции (I_{ν}) .