MA 2017, Tutorial Sheet-7 Wave equation and Laplace equation

- 1. Solve the following wave equations.
 - (a) $u_{tt} = 9u_{xx}$, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), $t \ge 0$ u(x,0) = x(1-x), $u_t(x,0) = 0$, $0 \le x \le 1$.
 - (b) $u_{tt} = 9u_{xx}$, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), $t \ge 0$ u(x,0) = 0, $u_t(x,0) = x(1-x)$, $0 \le x \le 1$.
 - (c) $u_{tt} = 4u_{xx}$, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), $t \ge 0$ u(x,0) = 0, $u_t(x,0) = x(x^3 - 2x^2 + 1)$, $0 \le x \le 1$.
 - (d) $u_{tt} = 5u_{xx}$, $0 < x < \pi$, t > 0, $u(0,t) = 0 = u(\pi,t)$, $t \ge 0$ $u(x,0) = x \sin x$, $u_t(x,0) = 0$, $0 \le x \le \pi$.
 - (e) $u_{tt} = 5u_{xx}$, 0 < x < 2, t > 0, $u_x(0,t) = 0 = u_x(2,t)$, $t \ge 0$ $u(x,0) = 2x^2(3-x)$, $u_t(x,0) = 0$, $0 \le x \le 2$.
 - (f) $u_{tt} = 5u_{xx}$, 0 < x < 2, t > 0, $u_x(0,t) = 0 = u_x(2,t)$, $t \ge 0$ u(x,0) = 0, $u_t(x,0) = 2x^2(3-x)$, $0 \le x \le 2$.
 - (g) $u_{tt} = 16u_{xx}$, $0 < x < \pi, t > 0$, $u_x(0,t) = 0 = u_x(\pi,t)$, $t \ge 0$ $u(x,0) = x^2(x-\pi)^2$, $u_t(x,0) = 0$, $0 \le x \le \pi$.
 - (h) $u_{tt} = 16u_{xx}$, $0 < x < \pi, t > 0$, $u_x(0,t) = 0 = u_x(\pi,t)$, $t \ge 0$ u(x,0) = 0, $u_t(x,0) = x^2(x-\pi)^2$, $0 \le x \le \pi$.
- 2. Solve the following Laplace equations.
 - (a) $u_{xx} + u_{yy} = 0$, 0 < x < 1, 0 < y < 1, $u(x,0) = x(1-x), \ u(x,1) = 0, \qquad 0 \le x \le 1$, $u(0,y) = 0, \ u(1,y) = 0, \qquad 0 \le y \le 1$.

- (b) $u_{xx} + u_{yy} = 0$, 0 < x < 2, 0 < y < 3, $u(x,0) = x^2(2-x)$, u(x,3) = 0, $0 \le x \le 2$ u(0,y) = 0, u(2,y) = 0 $0 \le y \le 3$.
- (c) $u_{xx} + u_{yy} = 0$, $0 < x < \pi$, $0 < y < \pi$, $u(x,0) = x \sin x$, $u(x,\pi) = 0$, $0 \le x \le \pi$, u(0,y) = 0, $u(\pi,y) = 0$ $0 \le y \le \pi$.
- (d) $u_{xx} + u_{yy} = 0$, 0 < x < 2, 0 < y < 2, u(x,0) = 0, $u(x,2) = x^2 4$, $0 \le x \le 2$ $u_x(0,y) = 0$, $u_x(2,y) = 0$, $0 \le y \le 2$
- (e) $u_{xx} + u_{yy} = 0$, 0 < x < 2, 0 < y < 1, $u_y(x,0) = 0$, $u_y(x,1) = 0$, $0 \le x \le 2$ $u(0,y) = y^2(3-2y)$, u(2,y) = 0, $0 \le y \le 2$.
- (f) $u_{xx} + u_{yy} = 0$, 0 < x < 2, 0 < y < 3, $u(x,0) = 0, u(x,3) = 0, 0 \le x \le 2$ $u_x(0,y) = 0, u_x(2,y) = y(3-y), 0 \le y \le 3$.