KOMBINATORIK-POSTER

(Urnen-Modell)

Die Kombinatorik beschäftigt sich mit der Bestimmung der Anzahl möglicher Anordnungen oder Auswahlen von unterscheidbaren oder nicht unterscheidbaren Objekten mit oder ohne Beachtung der Reihenfolge. Die Kombinatorik bildet eine wichtige Grundlage für die Wahrscheinlichkeitsrechung.

Betrachtete Menge	Werden alle Kugeln aus der Urne herausgenommen/gezogen?					
	ja (k=n) => Anordnung		nein (k <n k="" ∨="">n) => Auswahl/Stichprobe</n>			
Reihenfolge	Reihenfolge muss immer beachtet werden, sonst ist das Ergebnis identisch mit der Ausgangslage / Grundgesamtheit).		Muss die Reihenfolge beachtet werden?			
			ja		nein	
Art	Permutation (1, 2,, k)		Variation {a,b} ≠ {b,a}		Kombination {a,b} = {b,a}	
Unterscheid- barkeit	Gibt es gleiche (nicht unterscheidbare) Kugeln in der Urne? *		Werden gezogene Kugeln zurück gelegt?			
	ja	nein	ja (k <n k="" ∨="">n)</n>	nein (k <n)< td=""><td>ja (k<n k="" ∨="">n)</n></td><td>nein (k<n)< td=""></n)<></td></n)<>	ja (k <n k="" ∨="">n)</n>	nein (k <n)< td=""></n)<>
Formel(n)	[1]	[2]	[3]	[4]	[5]	[6]
	$\frac{n!}{k_1! \times k_2! \times \dots \times k_s!}$ $= \binom{n}{k_1, k_2, \dots, k_s}$	n!	n^k	$\frac{n!}{(n-k)!}$ $= \binom{n}{k} \times k!$	$\frac{(n+k-1)!}{(n-1)! \times k!}$ $= \binom{n+k-1}{k}$	$\frac{n!}{(n-k)! \times k!}$ $= \binom{n}{k} = \binom{n}{n-k}$
	$-(k_1, k_2, \cdots, k_s)$ Multinomialkoeffizent					$\frac{-(k)-(n-k)}{\text{Binomialkoefizient}}$
	Transpositionsverfahren	Ausverkauftes Kino	Passwörter	Sitzordnung	Briefmarkenserien	Lotto (6 aus 49)
Beispiel	Wieviele Möglichkeiten gibt es, den Klartext "MONOTON" zu transponieren?	Ein kleines Kino mit 10 Plätzen und freier Platzwahl ist ausver- kauft. Wieviele Möglichkeiten zur Belegung der Sitzplätze gibt es?	Für ein 6-stelliges Passwort sind nur die Ziffern 0 - 9 und die deutschen Großbuch- staben zugelassen. Wieviele mögliche Passwörter gibt es?	Ein Besprechungsraum hat 10 Sitzplätze. Wieviel mögliche Verteilungen für die Plätze gibt es, wenn 8 Teilnehmer den Raum belegen?	Das Porto für einen Brief beträgt 5 €. Zum frankieren stehen 1€ Marken aus 3 Serien zur Verfügung. Wieviel Möglichkeiten zur Freimachung gibt es?	Wieviele Möglichkeiten gibt es beim klassischen Lotto, 6 Zahlen aus 49 zu ziehen?
Die "Kugeln" aus der Urne	Die Buchstaben: U = {M, N, N, O, O, O, T}	Die Plätze: U = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10}	Die Ziffern und Buchstaben: U = {0, 1, 2,, 9} ∪ {A, B, C,, Z}	Die Plätze: U = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10}	Die Briefmarken: U = {S1, S2, S3}	Die 49 Zahlen/Kugeln: U = {1, 2, 3,, 49}
Θ	$n = 7$, $k_1 = 3$, $k_2 = 2$	n = 10	n = 36	n = 10	n = 3	n = 49
Anzahl der Ziehungen	7 Ziehungen	10 Ziehungen	6 Ziehungen	8 Ziehungen	5 Ziehungen	6 Ziehungen
An Zie	k = 7	k = 10	k = 6	k = 8	k = 5	k = 6
Lösung	$\frac{7!}{3! \times 2!} = \frac{5.040}{6 \times 2}$ $= 420$	10! = 3.628.800	$(10 + 26)^6 = 36^6$ = 2.176.782.336	$\frac{10!}{(10-8)!}$ $= \frac{10!}{2!}$ $= 1.814.400$	$\frac{(3+5-1)!}{2! \times 5!}$ $= \frac{7!}{2! \times 5!}$ $= 21$	${\binom{49}{6}}$ $= \frac{49!}{(49-6)! \times 6!}$ $= \frac{49!}{(43)! \times 6!}$ $= 13.983.816$

U = Grundgesamtheit (Menge der Kugeln in der Urne) | n = Anzahl der Elemente (Kugeln) aus U | k = Auswahl aus U

^{*} Es gibt kein Zurücklegen bei Permutationen.