ALGORITMI I NJIHOVA KOMPLEKSNOST

Strukture podataka i algoritmi 1

Algoritmi i kompleksnost

- Generalni principi
- Efikasnost
- Detaljan model računara
- Pojednostavljen model računara
- Primeri

Generalni principi

- Algoritam je postupak (koji se sastoji od koraka) za rešavanje određenog problema.
- Algoritam će se izvršavati na nekom procesoru, što može biti: čovek, mehanički ili elektronski procesor.
- Algoritam se mora sastojati od koraka koje je procesor u stanju da izvrši.
- Algoritam mora biti konačan.

Još principa

- Algoritam mora biti zapisan na nekom jeziku koji procesor "razume" (mada je sama procedura na kojoj se zasniva algoritam potpuno nezavisna od izabranog jezika).
- Problem koji razmatramo mora biti rešiv, što znači da je moguće rešiti problem u konačnom nizu koraka.

Efikasnost

- Za nekoliko algoritama koji rešavaju isti problem, kako možemo reći koji je "najbolji":
 - Da li je upotrebljiv? Da li je dovoljno efikasan da se koristi u praksi?
 - Koliko vremena mu treba da se izvrši?
 - Koliko prostora, u smislu zauzeća memorije" mu je potrebno?
- U najvećem broju slučajeva, i prostorna i vremenska složenost zavise od veličine ulaznih podataka.

Primer

Na primer, poredimo dva algoritma za sortiranje:

Vreme algoritma B raste sporije od vremena algoritma A.

Merenja

- Da bi saznali više o algoritmu (i po mogućstvu o implementaciji čitavog programa) možemo analizirati algoritam.
- Šta može da se analizira:
 - Vreme izvršavanja programa kao funkcija veličine ulaza;
 - Ukupni ili maksimalni memorijski zahtevi algoritma;
 - Ukupna veličina programskog koda;
 - Da li program korektno izračunava krajnji rezultat;
 - Kompleksnost programa koliko lako program može da se čita, razume, modifikuje itd;
 - Robusnost programa u kojoj meri se program snalazi sa neočekivanim ili pogršnim ulazom?

Više o merenju

- Vreme izvršavanja (ovo nas verovatno najviše zanima).
- Zauzeće memorije tokom rada programa.
- Faktori koji utiču na vreme izvršavanja programa:
 - Sam algoritam,
 - Ulazni podaci,
 - Računar na kome se izvršava program. Hardver:
 - Procesor (tip i brzina),
 - Raspoloživa memorija (keš i RAM),
 - Raspoloživ prostor na disku.
 - Programski jezik na kome je algoritam specificiran,
 - Kompaljer ili interpreter koji je korišćen,
 - Operativni sistem.

Merenje vremena

- Merenje vremena u sekundama?
 - + korisno i jednostavno u praksi
 - zavisi od jezikam kompajlera i procesora.
- Brojanje koraka algoritma?
 - + ne zavisi od kompajlera i procesora
 - zavisi od granularnosti koraka.
- Brojanje karakterističnih operacija? (npr. aritmetičkih operacija ili operacija poređenja)
 - + zavisi samo od algoritma (što i želimo)
 - + meri suštinsku efikasnost algoritma.
- Potrebno je definisati model računara!

Detaljan model računara

- Model nezavisan od aktuelnog hardvera i operativnog sistema.
- □ Potrebno je analizirati Java kod na Java VM.
- Gubimo ekspresivnu moć programskih jezika.
- I dalje očuvavamo dovoljno detalja.
- Baziran na skupu osnovnih aksioma.

- $\hfill\Box$ Vreme potrebno da se pribavi operand iz memorije je konstantno, $\tau_{\rm fetch}$
- \square Vreme potrebno da se sačuva neka vrednost u memoriju je konstantno, $\tau_{\it store}$
- □ Primeri:

y = x	$ au_{ extit{fetch}} + au_{ extit{store}}$
y = 1	$ au_{ extit{fetch}} + au_{ extit{store}}$

- Vreme potrebno da se izvrši elementarna matematička operacija
 (sabiranje, oduzimanje, množenje, deljenje, poredjenje) je konstantno.
- \square Ova vremena označavamo sa τ_+ , τ_- , $\tau_{\rm x}$, $\tau_{\rm f}$ i $\tau_{\rm c}$, respektivno.
- □ Primeri:

$$y = y + 1;$$

$$2\tau_{fetch} + \tau_{+} + \tau_{store}$$

$$y^{++};$$

$$2\tau_{fetch} + \tau_{+} + \tau_{store}$$

- \square Vreme potrebno da se pozove metod je konstantno, au_{call}
- fill Vreme potrebno za vraćanje iz metoda je konstantno, au_{return}

- Vreme potrebno za prosleđivanje argumenta metodi je isto kao i vreme potrebno da se sačuva neka vrednost u memoriji, τ_{store}
- Primer

$$y = f(x);$$
 $\tau_{fetch} + 2\tau_{store} + \tau_{call} + T_{f(x)}$ $gde \ je \ T_{f(x)} \ vreme \ izvršavanja \ metoda \ f \ za \ ulaz \ x$

Primer

```
\sum_{i=1}^{n} i
```

i=1

```
public class Example
public static int sum (int n)

public static int sum (int n)

int result = 0;
for (int i = 1; i <= n; ++i)
result += i;
return result;
}
</pre>
```

statement	$_{ m time}$	code
5	$\tau_{\mathrm{fetch}} + \tau_{\mathrm{store}}$	result = 0
6a	$ au_{ m fetch} + au_{ m store}$	i = 1
6b	$(2\tau_{\mathrm{fetch}} + \tau_{<}) \times (n+1)$	i <= n
6c	$(2\tau_{\rm fetch} + \tau_+ + \tau_{\rm store}) \times n$	++i
7	$(2\tau_{\rm fetch} + \tau_+ + \tau_{\rm store}) \times n$	result += i
8	$ au_{ ext{fetch}} + au_{ ext{return}}$	return result
TOTAL	$(6\tau_{\text{fetch}} + 2\tau_{\text{store}} + \tau_{<} + 2\tau_{+}) \times n$	
	$+ (5\tau_{\text{fetch}} + 2\tau_{\text{store}} + \tau_{<} + \tau_{\text{return}})$	

- Vreme potrebno za računanje adresa koje je implicirano pristupom elementu niza (a[i]), je konstantno, $\tau_{[\bullet]}$. Ovo vreme ne uključuje vreme potrebno za izračunavanje izraza u uglastim zagradama niti vreme za pristup elementu niza.
- □ Primer:

$$y = a[i];$$

$$3\tau_{\text{fetch}} + \tau_{[\bullet]} + \tau_{\text{store}}$$

Primer: Hornerova šema

$\sum_{i=1}^{n} a_{i} x^{i}$

```
public class Example

public static int horner (int[] a, int n, int x)

public static int horner (int[] a, int n, int x)

int result = a [n];

for (int i = n - 1; i >= 0; --i)

result = result * x + a [i];

return result;

}
```

statement	time
5	$3\tau_{\rm fetch} + \tau_{[\cdot]} + \tau_{\rm store}$
6a	$2\tau_{\rm fetch} + \tau + \tau_{\rm store}$
6b	$(2\tau_{\mathrm{fetch}} + \tau_{<}) \times (n+1)$
6c	$(2\tau_{\rm fetch} + \tau_{-} + \tau_{\rm store}) \times n$
7	$(5\tau_{\text{fetch}} + \tau_{[\cdot]} + \tau_{+} + \tau_{\times} + \tau_{\text{store}}) \times n$
8	$ au_{ ext{fetch}} + au_{ ext{return}}$
TOTAL	$(9\tau_{\text{fetch}} + 2\tau_{\text{store}} + \tau_{<} + \tau_{[\cdot]} + \tau_{+} + \tau_{\times} + \tau_{-}) \times n$

 $+ (8\tau_{\text{fetch}} + 2\tau_{\text{store}} + \tau_{[.]} + \tau_{-} + \tau_{<} + \tau_{\text{return}})$

Analiza rekurzivnih funkcija

Faktorijel prirodnih brojeva

Iterativno

$$n! = \begin{cases} 1 & n = 0, \\ \prod_{i=1}^{n} i & n > 0. \end{cases}$$

Rekurzivno

$$n! = \begin{cases} 1 & n = 0, \\ n \times (n-1)! & n > 0. \end{cases}$$

Analiza n!

```
public class Example
public static int factorial (int n)

full time in the factorial (int n)

ful
```

, •	
f.1	$\mathrm{m}\epsilon$
UI	<i>/</i> LLL

statement	n = 0	n > 0
5	$2\tau_{\rm fetch} + \tau_{<}$	$2\tau_{\rm fetch} + \tau_{<}$
6	$ au_{\mathrm{fetch}} + au_{\mathtt{return}}$	
8		$3\tau_{\rm fetch} + \tau_{-} + \tau_{\rm store} + \tau_{\times}$
		$+ \tau_{\text{call}} + \tau_{\text{return}} + T(n-1)$

Analiza n! (nastavak)

$$T(n) = \begin{cases} t_1 & n = 0, \\ T(n-1) + t_2 & n > 0, \end{cases}$$

where $t_1 = 3\tau_{\text{fetch}} + \tau_{<} + \tau_{\text{return}}$,

and $t_2 = 5\tau_{\text{fetch}} + \tau_{<} + \tau_{-} + \tau_{\text{store}} + \tau_{\times} + \tau_{\text{call}} + \tau_{\text{return}}$.

$$T(n) = T(n-1) + t_2$$

$$= (T(n-2) + t_2) + t_2$$

$$= T(n-2) + 2t_2$$

$$= (T(n-3) + t_2) + 2t_2$$

$$= T(n-3) + 3t_2$$

$$\vdots$$

$$= T(n-k) + kt_2$$

$$\vdots$$

$$= T(0) + nt_2$$

$$= t_1 + nt_2$$

Napredniji primer

$\max_{0 \le i \le n} a_i$

```
public class Example

public static int findMaximum (int[] a)

for (int i = 1; i < a.length; ++i)

for (a [i] > result)

result = a [i];

return result;

}
```

statement	time
5	$3\tau_{\text{fetch}} + \tau_{[\cdot]} + \tau_{\text{store}}$
6a	$ au_{ m fetch} + au_{ m store}$
6b	$(2\tau_{\rm fetch} + \tau_{<}) \times n$
6c	$(2\tau_{\rm fetch} + \tau_+ + \tau_{\rm store}) \times (n-1)$
7	$(4\tau_{\text{fetch}} + \tau_{[\cdot]} + \tau_{<}) \times (n-1)$
8	$(3\tau_{\text{fetch}} + \tau_{[\cdot]} + \tau_{\text{store}}) \times ?$
9	$\tau_{\mathrm{fetch}} + \tau_{\mathrm{store}}$

$$T(n, a_0, a_1, \ldots, a_{n-1}) = t_1 + t_2 n + \sum_{\substack{i=1 \ a_i > \left(\max_{0 \le j < i} a_j\right)}}^{n-1} t_3$$

$$\begin{array}{rcl} t_1 & = & 2\tau_{\rm store} - \tau_{\rm fetch} - \tau_+ - \tau_< \\ t_2 & = & 8\tau_{\rm fetch} + 2\tau_< + \tau_{[\cdot]} + \tau_+ + \tau_{\rm store} \\ t_3 & = & 3\tau_{\rm fetch} + \tau_{[\cdot]} + \tau_{\rm store}. \end{array}$$

$$T_{\text{average}}(n) = t_1 + t_2 n + \sum_{i=1}^{n-1} p_i t_3$$

gde je p_i verovatnoća da je i-ti član niza veći od svih prethodnih a[0]..a[i-1]

- Ureme potrebno da se kreira novi objekat korišćenjem new operatora je konstantno, τ_{new} . Ovo vreme ne obuhvata vreme potrebno da se objekat inicijalizuje.
- Primer

Integer ref = new Integer (0);
$$\tau_{new} + \tau_{fetch} + 2\tau_{store} + \tau_{call} + T_{(Integer())}$$
 where $T_{(Integer())}$ is the running time of the Integer constructor

Pojednostavljeni model računara

- Detaljni model je dovoljno fleksibilan, ali ima mnogo parametara.
- Pojednostavljeni model je manje precizan, ali jednostavniji za korišćenje.
- Vremena predstavljaju umnoške taktova računara
 - $\tau_{return} = k_{return} \times T, k_{return} \in N$
- □ Pretpostavke:
 - □ Svi vremenski parametri su izraženi u jedinicama taktova, T=1
 - Sve konstante iz aksioma su jednake jedan, k=1
- Sada brojimo samo taktove!

Primer 1

$$\sum_{i=0}^{n} x^{i}$$

```
public class Example
       public static int geometricSeriesSum (int x, int n)
           int sum = 0;
           for (int i = 0; i \le n; ++i)
                int prod = 1;
                for (int j = 0; j < i; ++j)
                    prod *= x;
10
                sum += prod;
11
           }
12
           return sum;
13
14
15 }
```

statement	time
5	2
6a	2
6b	3(n+2)
6c	4(n+1)
8	2(n+1)
9a	2(n+1)
9b	$2\sum_{i=0}^{n}(i+1)$
9c	$4\sum_{i=0}^{n} i \\ 4\sum_{i=0}^{n} i$
10	
11	4(n+1)
13	2
TOTAL	$\frac{11}{2}n^2 + \frac{47}{2}n + 24$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Primer 2

```
\sum_{i=0}^{n} x^{i}
```

```
public class Example

public static int geometricSeriesSum (int x, int n)

public static int geometricSeriesSum (int x, int n)

int sum = 0;

for (int i = 0; i <= n; ++i)

sum = sum * x + 1;

return sum;

}
</pre>
```

statement	time
5	2
6a	2
6b	3(n+2)
6c	4(n+1)
7	6(n+1)
8	2
TOTAL	13n + 22

Primer xⁿ

```
public class Example
public static int power (int x, int n)

public static int power (int x, int n)

f

if (n == 0)
    return 1;

else if (n % 2 == 0) // n is even
    return power (x * x, n / 2);

else // n is odd
    return x * power (x * x, n / 2);

return x * power (x * x, n / 2);

}
```

$$T(n) = \begin{cases} 5 & n = 0 \\ 18 + T(\lfloor n/2 \rfloor) & n > 0, n \text{ is even,} \\ 20 + T(\lfloor n/2 \rfloor) & n > 0, n \text{ is odd.} \end{cases}$$

	$_{ m time}$		
statement	n = 0	n > 0	n > 0
		n is even	n is odd
5	3	3	3
6	2		
7		5	5
8		$10 + T(\lfloor n/2 \rfloor)$	
10			$12 + T(\lfloor n/2 \rfloor)$
TOTAL	5	$18 + T(\lfloor n/2 \rfloor)$	$20 + T(\lfloor n/2 \rfloor)$

$$T(n) = 19(\lfloor \log_2 n \rfloor + 1) + 5$$

Primer 3

```
\sum_{i=0}^{n} x^{i}
```

```
public class Example
public static int geometricSeriesSum (int x, int n)

return (power (x, n + 1) - 1) / (x - 1);
}
```

$$T(n) = 19(\lfloor \log_2(n+1) \rfloor + 1) + 18$$

Poređenje

Primer 1

□ Primer 2

□ Primer 3

T(n)
$$\frac{(\frac{11}{2}n^2 + \frac{47}{2}n + 24)}{13n + 22}$$

$$19(\lfloor \log_2(n+1) \rfloor + 1) + 18$$

