SDPC Fall 2018 #4

Tristan Shin

4 Oct 2018

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(f(x) - f(y)) + 2f(xy) = x^2 f(x) + f(y^2)$$

for all real numbers x, y. (Note: \mathbb{R} denotes the real numbers.)

The answers are $f(x) = 0, x^2, -x^2$. These clearly work since

$$0 + 0 = 0 + 0$$
$$(x^{2} - y^{2})^{2} + 2(xy)^{2} = x^{2} \cdot x^{2} + (y^{2})^{2}$$
$$-(-x^{2} + y^{2})^{2} - 2(xy)^{2} = -x^{2} \cdot x^{2} - (y^{2})^{2}$$

so it suffices to prove that any solution must be one of these three.

Let P(x, y) denote the assertion that

$$f(f(x) - f(y)) + 2f(xy) = x^2 f(y) + f(y^2).$$

P(0,0) implies

$$3f(0) = f(0)$$
,

so f(0) = 0.

P(x,x) implies

$$f(0) + 2f(x^{2}) = x^{2}f(x) + f(x^{2}),$$

SO

$$f\left(x^{2}\right) = x^{2} f\left(x\right). \tag{*}$$

Replacing x with -x gives $f(x^2) = x^2 f(-x)$. Setting both sides equal, we have $x^2 f(x) = x^2 f(-x)$. If $x \neq 0$, then f(x) = f(-x) and thus f is even.

P(x,0) implies

$$f(f(x) - f(0)) + 2f(0) = x^{2}f(x) + f(0),$$

SO

$$f(f(x)) = x^2 f(x). \tag{}$$

Taking f of both sides in (\uplus) gives

$$f(f(f(x))) = f(x^2 f(x)) = f(f(x^2)) = x^4 f(x^2) = x^6 f(x)$$

by applying (\star) , (\uplus) on x^2 , then (\star) again. Using (\uplus) on f(x) gives

$$f(f(f(x))) = f(x)^{2} f(f(x)) = x^{2} f(x)^{3}$$

by applying (\uplus) again. Then

$$x^{6}f(x) = x^{2}f(x)^{3} \tag{\triangle}$$

for all $x \in \mathbb{R}$.

Suppose that f(a) = 0 for $a \neq 0$. $P\left(\frac{x}{a}, a\right)$ implies

$$f\left(f\left(\frac{x}{a}\right) - f\left(a\right)\right) + 2f\left(x\right) = \frac{x^2}{a^2}f\left(\frac{x}{a}\right) + f\left(a^2\right) = f\left(f\left(\frac{x}{a}\right)\right) + a^2f\left(a\right)$$

by (\uplus) and (\star) , so f(x) = 0 for all $x \in \mathbb{R}$.

Otherwise, 0 is the only root of f, so we can consider (\triangle) for $x \neq 0$ and divide by $x^2 f(x)$ to get

$$f\left(x\right)^2 = x^4$$

for all $x \in \mathbb{R} \setminus \{0\}$. Then for all $x \in \mathbb{R}$, we have $f(x) \in \{x^2, -x^2\}$ (0 works because $0^2 = -0^2 = f(0)$).

Now, suppose that $a, b \in \mathbb{R}$ such that and $f(a) = a^2$ and $f(b) = -b^2$. P(a, b) implies

$$f(f(a) - f(b)) + 2f(ab) = a^2f(a) + f(b^2) = a^2f(a) + b^2f(b)$$

SO

$$f(a^2 + b^2) + 2f(ab) = a^4 - b^4.$$

• If $f(a^2 + b^2) = (a^2 + b^2)^2$ and $f(ab) = a^2b^2$, then

$$(a^2 + b^2)^2 + 2a^2b^2 = a^4 - b^4$$

and hence $4a^2b^2+2b^4=0$. If $b\neq 0$, then $4a^2b^2\geq 0$ and $2b^4>0$, contradiction. Thus b=0.

• If $f(a^2 + b^2) = (a^2 + b^2)^2$ and $f(ab) = -a^2b^2$, then

$$(a^2 + b^2)^2 - 2a^2b^2 = a^4 - b^4$$

and hence $2b^4 = 0$. Thus b = 0.

• If $f(a^2 + b^2) = -(a^2 + b^2)^2$ and $f(ab) = a^2b^2$, then

$$-(a^2+b^2)^2 + 2a^2b^2 = a^4 - b^4$$

and hence $a^4+3b^4=0$. If $b\neq 0$, then $a^4\geq 0$ and $3b^4>0$, contradiction. Thus b=0.

• If $f(a^2 + b^2) = -(a^2 + b^2)^2$ and $f(ab) = -a^2b^2$, then

$$(a^2 + b^2)^2 + 2a^2b^2 = a^4 - b^4$$

and hence $2a^4 + 4a^2b^2 + 4b^4 = 0$. If $b \neq 0$, then $2a^4 \geq 0$, $4a^2b^2 \geq 0$, and $4b^4 > 0$, contradiction. Thus b = 0.

In all cases, b=0. Thus, we have that either $f(x)=-x^2$ for all $x\in\mathbb{R}$ or $f(x)=x^2$ for all $x\in\mathbb{R}$, as desired.