

Electron Self Energy for Higher Excited S Levels

Ulrich D. Jentschura^{1,2} and Peter J. Mohr²

¹*Theoretische Quantendynamik, Physikalisches Institut der Universität Freiburg,
Hermann-Herder-Straße 3, 79104 Freiburg im Breisgau, Germany*

²*National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8401*

A nonperturbative numerical evaluation of the one-photon electron self energy for the $3S$ and $4S$ states with charge numbers $Z = 1$ to 5 is described. The numerical results are in agreement with known terms in the expansion of the self energy in powers of $Z\alpha$.

PACS numbers: 12.20.Ds, 31.30.Jv, 06.20.Jr, 31.15.-p

In this brief report, we consider the one-loop self-energy shift which is the dominant radiative correction to the energy of hydrogenic bound states. For high-precision spectroscopy, S states are rather important because they can be excited from the ground state via Doppler-free two-photon spectroscopy. We calculate the self-energy numerically to high accuracy for $3S$ and $4S$ states (nuclear charge number $Z = 1, \dots, 5$). We follow the approach previously outlined for $1S$ (Ref. [1]) and $2S$ and $2P$ states (Ref. [2]).

The natural unit system with $\hbar = c = m_e = 1$ and $e^2 = 4\pi\alpha$ is employed, as is customary in bound-state quantum electrodynamics. The (real part of the) energy shift ΔE_{SE} due to the electron self-energy radiative correction is usually written as [3]

$$\Delta E_{\text{SE}} = \frac{\alpha}{\pi} \frac{(Z\alpha)^4 m_e}{n^3} F(nl_j, Z\alpha), \quad (1)$$

where F is a dimensionless quantity. In writing the expression $F(nl_j, Z\alpha)$, we follow the usual spectroscopic notation for an atomic state with principal quantum number n , orbital angular momentum l and total electron angular momentum j .

TABLE I: Numerical results for the scaled self-energy function F ($3S$ state) and the self-energy remainder function G_{SE} , in the regime of low nuclear charge numbers Z .

Z	$F(3S_{1/2}, Z\alpha)$	$G_{\text{SE}}(3S_{1/2}, Z\alpha)$
1	10.605 614 22(5)	-31.047 7(9)
2	8.817 615 14(5)	-30.512 6(2)
3	7.794 461 17(5)	-30.022 7(1)
4	7.083 612 42(5)	-29.564 53(6)
5	6.543 385 98(5)	-29.130 61(4)

$F(nS_{1/2}, Z\alpha)$ about $Z\alpha = 0$ read

$$\begin{aligned} F(nS_{1/2}, Z\alpha) &= A_{41}(nS_{1/2}) \ln(Z\alpha)^{-2} \\ &+ A_{40}(nS_{1/2}) + (Z\alpha) A_{50}(nS_{1/2}) \\ &+ (Z\alpha)^2 [A_{62}(nS_{1/2}) \ln^2(Z\alpha)^{-2} \\ &+ A_{61}(nS_{1/2}) \ln(Z\alpha)^{-2} + G_{\text{SE}}(nS_{1/2}, Z\alpha)]. \end{aligned} \quad (2)$$

The A coefficients have two indices, the first of which denotes the power of $Z\alpha$ [including those powers implicitly contained in Eq. (1)], while the second index denotes the power of the logarithm $\ln(Z\alpha)^{-2}$.

We now list the analytic coefficients and the Bethe logarithms relevant to the atomic states under investigation [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],

$$A_{41}(nS_{1/2}) = \frac{4}{3}, \quad (3a)$$

$$A_{40}(nS_{1/2}) = \frac{10}{9} - \frac{4}{3} \ln k_0(nS), \quad (3b)$$

$$A_{50}(nS_{1/2}) = 4\pi \left[\frac{139}{128} - \frac{1}{2} \ln 2 \right], \quad (3c)$$

$$A_{62}(nS_{1/2}) = -1. \quad (3d)$$

A_{61} -coefficients read

$$A_{61}(1S_{1/2}) = \frac{21}{20} + \frac{28}{3} \ln 2, \quad (4a)$$

$$A_{61}(2S_{1/2}) = \frac{67}{30} + \frac{16}{3} \ln 2, \quad (4b)$$

$$A_{61}(3S_{1/2}) = \frac{6163}{1620} + \frac{28}{3} \ln 2 - 4 \ln 3, \quad (4c)$$

$$A_{61}(4S_{1/2}) = \frac{4}{3} \ln 2 + \frac{391}{80}. \quad (4d)$$

The leading terms in the semi-analytic expansion of

The Bethe logarithms $\ln k_0(nS)$ are known [24, 25, 26,

27, 28, 29], and we here present a re-evaluation,

$$\ln k_0(1S) = 2.984\ 128\ 555\ 765\ 497\ 611(1), \quad (5a)$$

$$\ln k_0(2S) = 2.811\ 769\ 893\ 120\ 563\ 520(1), \quad (5b)$$

$$\ln k_0(3S) = 2.767\ 663\ 612\ 491\ 821\ 190(1), \quad (5c)$$

$$\ln k_0(4S) = 2.749\ 811\ 840\ 454\ 057\ 422(1). \quad (5d)$$

The results for $1S$, $2S$ and $3S$ are in agreement with values indicated for the “logarithmic sum” β_1 in [30, Tab. III]. Notice that the numerical difference of our above results for $\ln k_0$ in comparison to the results indicated for β_1 in [30] is entirely due to an additional contribution $\ln 2$ which is added to the Bethe logarithm of S states according to the somewhat non-standard convention for β_1 used in [30].

TABLE II: Numerical results for the scaled self-energy function $F(4S_{1/2}, Z\alpha)$ and the self-energy remainder function G_{SE} .

Z	$F(4S_{1/2}, Z\alpha)$	$G_{SE}(4S_{1/2}, Z\alpha)$
1	10.629 388 4(2)	-30.912(4)
2	8.841 324 1(2)	-30.380 0(9)
3	7.818 078 5(2)	-29.892 4(4)
4	7.107 116 6(2)	-29.437 1(2)
5	6.566 758 8(2)	-29.006 0(2)

The evaluation of the coefficient

$$A_{60}(nS_{1/2}) \equiv \lim_{Z\alpha \rightarrow 0} G_{SE}(nS_{1/2}, Z\alpha) \quad (6)$$

has been historically problematic [19, 20, 21, 22, 23], and it has therefore been a considerable challenge to reliably estimate the self-energy remainder function G_{SE} , especially in the range of low nuclear charge number Z . Our calculation of the nonperturbative (in $Z\alpha$) electron self-energy for the $3S_{1/2}$ state (see Table I) has a numerical uncertainty of 2 Hz in atomic hydrogen. For the $4S_{1/2}$ state, the numerical uncertainty is $3 \times Z^4$ Hz (see Table II). The value of the fine-structure constant α employed in the calculation is $\alpha^{-1} = 137.036$; this is close to the 1998 and 2002 CODATA recommended values [31, 32]. The entries for the self-energy remainder function G_{SE} in Tables I and II are in agreement with those used in the latest adjustment of the fundamental physical constants [32] (the G_{SE} -values used in [32] are based on an extrapolation of numerical data previously obtained [33] for higher nuclear charge numbers). Our all-order evaluation eliminates any uncertainty due to the unknown higher-order analytic terms that contribute to the bound electron self-energy of $3S$ and $4S$ states [see Eq. (2)]. This improves our knowledge of the spectrum of hydrogenlike atoms (e.g. atomic hydrogen, He^+).

Acknowledgments. U. D. J. thanks the National Institute of Standards and Technology for kind hospitality during a number of extended research appointments. The authors acknowledge E.-O. LeBigot for help in obtaining numerical results for selected partial contributions to the electron self-energy, for the hydrogenic energy levels discussed in this work.

[1] U. D. Jentschura, P. J. Mohr, and G. Soff, Phys. Rev. Lett. **82**, 53 (1999).
[2] U. D. Jentschura, P. J. Mohr, and G. Soff, Phys. Rev. A **64**, 042512 (2001).
[3] J. Sapirstein and D. R. Yennie, in *Quantum Electrodynamics*, edited by T. Kinoshita (World Scientific, Singapore, 1990), pp. 560–672.
[4] H. A. Bethe, Phys. Rev. **72**, 339 (1947).
[5] R. P. Feynman, Phys. Rev. **74**, 1430 (1948).
[6] R. P. Feynman, Phys. Rev. **76**, 769 (1949).
[7] J. B. French and V. F. Weisskopf, Phys. Rev. **75**, 1240 (1949).
[8] N. M. Kroll and W. E. Lamb, Phys. Rev. **75**, 388 (1949).
[9] J. Schwinger, Phys. Rev. **75**, 898 (1949).
[10] H. Fukuda, Y. Miyamoto, and S. Tomonaga, Prog. Theor. Phys. (Kyoto) **4**, 47 (1949).
[11] M. Baranger, Phys. Rev. **84**, 866 (1951).
[12] R. Karplus, A. Klein, and J. Schwinger, Phys. Rev. **86**, 288 (1952).
[13] M. Baranger, H. A. Bethe, and R. P. Feynman, Phys. Rev. **92**, 482 (1953).
[14] H. M. Fried and D. R. Yennie, Phys. Rev. **112**, 1391 (1958).
[15] H. M. Fried and D. R. Yennie, Phys. Rev. Lett. **4**, 583 (1960).
[16] A. J. Layzer, Phys. Rev. Lett. **4**, 580 (1960).
[17] A. J. Layzer, J. Math. Phys. **2**, 292 (1961).
[18] A. J. Layzer, J. Math. Phys. **2**, 308 (1961).
[19] G. W. Erickson and D. R. Yennie, Ann. Phys. (N.Y.) **35**, 271 (1965).
[20] G. W. Erickson and D. R. Yennie, Ann. Phys. (N.Y.) **35**, 447 (1965).
[21] G. W. Erickson, Phys. Rev. Lett. **27**, 780 (1971).
[22] J. Sapirstein, Phys. Rev. Lett. **47**, 1723 (1981).
[23] K. Pachucki, Ann. Phys. (N.Y.) **226**, 1 (1993).
[24] S. Klarsfeld and A. Maquet, Phys. Lett. B **43**, 201 (1973).
[25] H. A. Bethe, L. M. Brown, and J. R. Stehn, Phys. Rev. **77**, 370 (1950).

- [26] J. M. Harriman, Phys. Rev. **101**, 594 (1956).
- [27] C. Schwartz and J. J. Tieman, Ann. Phys. (N.Y.) **6**, 178 (1959).
- [28] M. Lieber, Phys. Rev. **174**, 2037 (1968).
- [29] R. W. Huff, Phys. Rev. **186**, 1367 (1969).
- [30] S. P. Goldman and G. W. F. Drake, Phys. Rev. A **61**, 052513 (2000).
- [31] P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. **72**, 351 (2000).
- [32] P. J. Mohr and B. N. Taylor, CODATA recommended values of the fundamental physical constants: 2002 (to be published).
- [33] P. J. Mohr and Y. K. Kim, Phys. Rev. A **45**, 2727 (1992).