

Many of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook "Computer Systems: A Programmer's Perspective." 2^{nd} Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O'Hallaron in Fall 2010. These slides are indicated "Supplied by CMU" in the notes section of the slides.

Why Should I Use Unsigned?

- · Don't use just because number nonnegative
 - easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
- can be very subtle
    #define DELTA sizeof(int)
    int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- · Do use when using bits to represent sets
 - logical right shift, no sign extension

CS33 Intro to Computer Systems

VIII-2

Supplied by CMU.

Note that "sizeof" returns an unsigned value. (Recall that, when mixing signed and unsigned items in an expression, the result will be unsigned.)

Word Size

- · (Mostly) obsolete term
 - old computers had items of one size: the word size
- Now used to express the number of bits necessary to hold an address
 - 16 bits (really old computers)
 - 32 bits (old computers)
 - 64 bits (most current computers)

CS33 Intro to Computer Systems

VIII-3

Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Read "Gulliver's Travels" by Jonathan Swift for an explanation of the egg.

Here we have a four-byte integer one. In the big-endian representation, the address of the integer is the address of the byte containing its most-significant bits (the big end), while in the little-endian representation, the address of the integer is the address of the byte containing its least-significant bits (the little end). Suppose we pass a pointer to this integer to some procedure. However, in a type-mismatch, the procedure assumes that what is passed it is a two-byte integer. On a big-endian system, it would think it was passed a zero, but on a little-endian system, it would think it was passed a one.

This is not an argument in favor of either approach, but simply an observation that behaviors could be different.

Quiz 1

```
int main() {
  long x=1;
  func((int *)&x);
  return 0;
}

void func(int *arg) {
  printf("%d\n", *arg);
}
```

What value is printed on a big-endian 64-bit computer?

- a) 1
- b) 0
- c) 2³²
- d) 232-1

CS33 Intro to Computer Systems

VIII-6

Copyright © 2021 Thomas W. Doeppner. All rights reserved.

This code prints out the value of x, one byte at a time, starting with the byte at the lowest address (little end). On x86-based computers, it will print:

00010203

which means that the address of an int is the address of the byte containing its least significant digits (little endian).

Fractional binary numbers • What is 1011.101₂? CS33 Intro to Computer Systems VIII—8

Representable Numbers

- Limitation #1
 - can exactly represent only numbers of the form n/2k
 - » other rational numbers have repeating bit representations
 - value representation
 - » 1/3 0.01010101[01]...2
 - » 1/5 0.001100110011[0011]...2
 - » 1/10 0.0001100110011[0011]...2
- Limitation #2
 - just one setting of decimal point within the w bits
 - » limited range of numbers (very small values? very large?)

CS33 Intro to Computer Systems

VIII-10

IEEE Floating Point

- IEEE Standard 754
 - established in 1985 as uniform standard for floating point arithmetic
 - » before that, many idiosyncratic formats
 - supported on all major CPUs
- Driven by numerical concerns
 - nice standards for rounding, overflow, underflow
 - hard to make fast in hardware
 - » numerical analysts predominated over hardware designers in defining standard

CS33 Intro to Computer Systems

VIII-11

Supplied by CMU.

IEEE is the Institute for Electrical and Electronics Engineers (pronounced "eye triple e").

On x86 hardware, all floating-point arithmetic is done with 80 bits, then reduced to either 32 or 64 as required.

"Normalized" Values

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - exp: unsigned value exp
 - bias = 2^{k-1} 1, where k is number of exponent bits
 - » single precision: 127 (Exp: 1...254, E: -126...127)
 - » double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - minimum when frac=000...0 (M = 1.0)
 - maximum when frac=111...1 (M = 2.0ϵ)
 - get extra leading bit for "free"

CS33 Intro to Computer Systems

VIII-14

Normalized Encoding Example • Value: float F = 15213.0; $-15213_{10} = 11101101101101_2$ $= 1.1101101101101_2 \times 2^{13}$ Significand $M = 1.101101101101_2$ frac = 1101101101101000000000002 Exponent E = 13 bias = 127 exp = 140 = 10001100₂ · Result: frac exp **CS33 Intro to Computer Systems** VIII-15

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0:

 $M = 0.xxx...x_2$

- xxx...x: bits of frac
- Cases
 - $\exp = 000...0$, frac = 000...0
 - » represents zero value
 - » note distinct values: +0 and -0 (why?)
 - $-\exp = 000...0$, frac $\neq 000...0$
 - » numbers closest to 0.0
 - » equispaced

CS33 Intro to Computer Systems

VIII-16

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - represents value ∞ (infinity)
 - operation that overflows
 - both positive and negative
 - $e.g., 1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - not-a-number (NaN)
 - represents case when no numeric value can be determined
 - e.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

CS33 Intro to Computer Systems

VIII-17

Tiny Floating-Point Example

- · 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- · Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

CS33 Intro to Computer Systems

VIII-19

Dyna	mic	Ran	ge (Positive Only)	
	s exp	frac	E	Value	
	0 000	0 000	-6	0	
	0 000	0 001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 000	0 010	-6	2/8*1/64 = 2/512	Closest to Zero
numbers					
	0 000	0 110	-6	6/8*1/64 = 6/512	
	0 000	0 111	-6	7/8*1/64 = 7/512	largest denorm
	0 000	1 000	-6	8/8*1/64 = 8/512	smallest norm
	0 000	1 001	-6	9/8*1/64 = 9/512	
	0 011	0 110	-1	14/8*1/2 = 14/16	
	0 011	0 111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 011	1 000	0	8/8*1 = 1	
numbers	0 011	1 001	0	9/8*1 = 9/8	closest to 1 above
	0 011	1 010	0	10/8*1 = 10/8	
	·	0 110	7	14/8*128 = 224	
		0 111	7	15/8*128 = 240	largest norm
	0 111	1 000	n/a	inf	
CS33 Intro to	Compute	r Systems		VIII-20	

Quiz 1

- · 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - bias is 3

s	exp	frac			
W	and the second second				

1 2-bits 3-bits

What number is represented by 0 010 10?

- a) 3
- b) 1.5
- c) .75
- d) none of the above

CS33 Intro to Computer Systems

VIII-23 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

We're assuming here the six-bit floating-point format.

Mapping Real Numbers to Float

- If R is a real number, it's mapped to the floating-point number whose value is closest to R
- · What if it's midway between two values?
 - rounding rules coming up soon!

CS33 Intro to Computer Systems

VIII-25

Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Note that we still have to discuss rounding so as to accommodate values that are equidistant from A and B or from B and C.

A special case is 0. Positive 0 represents a range of values that are greater than or equal to 0. Negative 0 represents a range of values that are less than or equal to zero.

Significance

- Normalized numbers
 - for a particular exponent value E and an S-bit significand, the range from 2^E up to 2^{E+1} is divided into 2^S equi-spaced floating-point values
 - » thus each floating-point value represents 1/2^s of the range of values with that exponent
 - » all bits of the signifcand are important
 - » we say that there are S significant bits for reasonably large S, each floating-point value covers a rather small part of the range
 - · high accuracy
 - for S=23 (32-bit float), accurate to one in 2²³ (.0000119% accuracy)

CS33 Intro to Computer Systems

VIII-27

Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Significance

- Unnormalized numbers
 - high-order zero bits of the significand aren't important
 - in 8-bit floating point, 0 0000 001 represents 2-9
 - » it is the only value with that exponent: 1 significant bit (either 2-9 or 0)
 - 0 0000 010 represents 2-8
 0 0000 011 represents 1.5*2-8
 - » only two values with exponent -8: 2 significant bits (distinguishing those two values, as well as 2-9 and 0)
 - fewer significant bits mean less accuracy
 - 0 0000 001 represents a range of values from .5*2-9 to 1.5*2-9
 - 50% accuracy

CS33 Intro to Computer Systems

VIII-28

Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Recall that the bias for the exponent of 8-bit IEEE FP is 7, thus for unnormalized numbers the actual exponent is -6 (-bias+1). The significand has an implied leading 0, thus 0 0000 001 represents $2^{-6} * 2^{-3}$.

With 8-bit IEEE FP. the value 0 0000 001 is interpreted as 2^{-9} , But the number represented could be 50% less or 50% more. The value 0 0000 010 is interpreted as 2^{-8} . But the number could be 25% less or 25% more.

Floating-Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$
- · Basic idea
 - first compute exact result
 - make it fit into desired precision
 - » possibly overflow if exponent too large
 - » possibly round to fit into frac

CS33 Intro to Computer Systems

VIII-29

Rounding					
 Rounding modes (illu 	strated w	ith \$ rou	ınding)		
	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
towards zero	\$1	\$1	\$1	\$2	- \$1
round down (−∞)	\$1	\$1	\$1	\$2	-\$2
round up (+∞)	\$2	\$2	\$2	\$3	- \$1
nearest integer	\$1	\$2	?	?	?
nearest even (default)	\$1	\$2	\$2	\$2	-\$2
CS33 Intro to Computer Systems	VIII	-30			

IEEE floating point uses the **nearest even** approach to rounding: if a value to be encoded is exactly half-way between two floating-point values, it is rounded to whichever value's rightmost bit is zero).

Floating-Point Multiplication

- (-1)s1 M1 2E1 x (-1)s2 M2 2E2
- Exact result: (-1)s M 2E
 - sign s: s1 ^ s2
 significand M: M1 x M2
 exponent E: E1 + E2
- Fixing
 - if M ≥ 2, shift M right, increment E
 - if E out of range, overflow (or underflow)
 - round M to fit frac precision
- Implementation
 - biggest chore is multiplying significands

CS33 Intro to Computer Systems

VIII-31

Supplied by CMU.

Note that to compute E, one must first convert \exp_1 and \exp_2 to E_1 and E_2 , then add them them together and check for underflow or overflow (corresponding to $-\infty$ and $+\infty$), and then convert to \exp .

Note that, by default, overflow results in either $+\infty$ or $-\infty$.