Report Title:	Study of Nyquist bit rate and Shannon capacity using MATLAB		
Lab Report No:	04	Date of Submission:	16-06-2022
Submitted by:	Samira Kabir Rima	ID:	20-42406-1
Semester:	Summer 21-22	Program:	BSc. CSE
Course Code:	COE3103	Course Title:	Data Communication
Course Instructor:	Afsah Sharmin	Section:	В

Problem:

Performance Task for Lab Report: (your ID = AB-CDEFG-H)

**Generate a composite signal using two simple signals as,

$$x = A_1 \sin(2\pi(C^*100)t) + A_2 \cos(2\pi(G^*100)t) + s*randn(size(t));$$

- (a) Select the value of the amplitudes as follows: let $A_1 = AB$, $A_2 = AF$ and s=AH
- (b) Calculate the SNR value of the composite signal.
- (c) Find the bandwidth of the signal and calculate the maximum capacity of the channel.
- (d) What will be the signal level to achieve the data rate?

Solution:

	MATLAB Code	Output
a	%A) %20-42406-1 %AB-CDEFG-H %A1=AB;A2=AF;s=AH A1=20 A2=20 s=21 C=4 G=6 fs = 8000; f = 400; t = 0:1/fs:1-1/fs; A = 3.0; x = A1*sin(2*3.1416*(C*100)*t) + A2*cos(2*3.1416*(G*100)*t) + s*randn(size(t));	A1 = 20 A2 = 20 s = 21 C = 4 G = 6
b	%B) A1=20; A2=20; s=21; fs=40000; t = 0:1/fs:1-1/fs; powfund=(A1^2)/2+(A2^2)/2; varnoise=s^2; C=4; G=6; x = A1*sin(2*pi*(C*100)*t)+A2*cos(2*pi*(G*100)*t)+ s*randn(size(t)); noise= s*randn(size(t)); SNR=powfund/varnoise dfSNR=10*log10(powfund/varnoise)	SNR = 0.9070 dfSNR = -0.4238
c	%C) A1=20; A2=20; s=21; fs=40000; t = 0:1/fs:1-1/fs; powfund=(A1^2)/2+(A2^2)/2; varnoise=s^2; C=4; G=6;	bandwidth = 500 capacity1 = 465.6636 capacity2 = -397.6617

```
A1*sin(2*pi*(C*100)*t)+A2*cos(2*pi*(G*100)*t)+
   s*randn(size(t));
   noise= s*randn(size(t));
   SNR=powfund/varnoise;
   dfSNR=10*log10(powfund/varnoise);
   bandwidth = 900-400
   capacity1=bandwidth*log2(1+SNR)
   capacity2=bandwidth*log2(1+dfSNR)
   apprxDataRate1=floor(bandwidth*log2(1+SNR));
   apprxDataRate2=floor(bandwidth*log2(1+dfSNR));
   %D)
   A1=20;
   A2=20;
   s=21;
   fs=40000;
   t = 0:1/fs:1-1/fs;
   powfund=(A1^2)/2+(A2^2)/2;
                                                             SNR = 0.9070
   varnoise=s^2;
   C=4;
                                                             bandwidth = 500
\mathbf{d} \mid \mathsf{G=6};
                                                             capacity1 = 465.6636
   x =
                                                             capacity2 = -397.6617
   A1*sin(2*pi*(C*100)*t)+A2*cos(2*pi*(G*100)*t)+
                                                             apprxDataRate1 = 465
   s*randn(size(t));
                                                             apprxDataRate2 = -398
   noise= s*randn(size(t));
   SNR=powfund/varnoise
                                                             level1 = 1
                                                             level2 = 0
   dfSNR=10*log10(powfund/varnoise);
   bandwidth = 900-400
   capacity1=bandwidth*log2(1+SNR)
   capacity2=bandwidth*log2(1+dfSNR)
   apprxDataRate1=floor(bandwidth*log2(1+SNR))
   apprxDataRate2=floor(bandwidth*log2(1+dfSNR))
   level1=floor(2^(apprxDataRate1/(2*bandwidth)))
   level2=floor(2^(apprxDataRate2/(2*bandwidth)))
```