Examen FINAL de Física 22 de juny de 2016

Model A

Qüestions: 40% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Una bateria de cotxe de 12 V de fem té una càrrega inicial de 50 Ah i una resistència interna negligible. Si s'utilitza per alimentar el sistema d'enllumenament d'un cotxe, que dissipa una potència de 50 W, indiqueu quina de les següents afirmacions és INCORRECTA.
 - a) Pel circuit circula un corrent de 4.17 A.
 - b) L'energia inicial acumulada a la bateria és 2.16×10^6 J.
 - c) Pel circuit circula un corrent de 8.34 A.
 - d) La bateria triga 12 h a descarregar-se.
- **T2)** Les intensitats I_1 i I_2 del circuit de la figura són de 20 mA. Quina de les afirmacions referents al corrent I_3 i els potencials als punts A, B i C és la correcta? Suposeu que les resistències internes de les tres fonts de tensió són nul·les.

a)
$$V_B = -30 \text{ V}.$$

b)
$$V_A = 40 \text{ V}.$$

c)
$$V_C = 50 \text{ V}.$$

d)
$$I_3 = 40 \text{ mA}.$$

- **T3)** En un circuit RL connectat a un generador de corrent continu de fem ε , la intensitat màxima que passa pel circuit és:
 - a) Independent del valor de R.
 - b) Directament proporcional al valor de L.
 - c) Independent del valor de L.
 - d) Directament proporcional al valor de R.
- **T4)** Un circuit de corrent altern té una potència activa P = 500 W i una potència reactiva Q = 866 VAR. Quant val el seu factor de potència?

a)
$$\cos \varphi = 0.1$$
.

b)
$$\cos \varphi = 0.5$$
.

c)
$$\cos \varphi = 0.3$$
.

d)
$$\cos \varphi = 0.7$$
.

- **T5**) Quina és la càrrega del condensador en el règim estacionari? La tensió Zener és $V_Z=5$ V i la tensió llindar és $V_\gamma=1$ V
 - a) 100 nC.
- b) 100 C.
- c) 90.9 nC.
- d) 90.9 C.

- **T6)** Determineu el valor de R_D del circuit de la figura sabent que el transistor té $\beta=16\,\mathrm{mA/V^2},\,V_{DD}=5\,\mathrm{V}$ i que aquest treballa en les condicions del punt A.
 - a) 1000Ω .
- b) 250Ω .
- c) 500Ω .
- d) 2500Ω .

- T7) Una emissora de radio emet ones electromagnètiques esfèriques amb una potència mitjana \bar{P} . A una distància r_1 de l'emissora la intensitat de les ones és \bar{I}_1 . A una distància r_2 la intensitat mitjana és $\bar{I}_2 = \bar{I}_1/9$. Quina relació hi ha entre r_1 i r_2 ?
 - a) $r_1 = 3 r_2$.

b) $r_1 = r_2/9$.

c) $r_1 = r_2/3$.

- d) $r_1 = 9 r_2$.
- T8) Enviem un raig de llum no polaritzada d'intensitat $7 \text{ mW/}m^2$ sobre tres polaritzadors lineals, tals que l'angle que formen els eixos de polarització de dos polaritzadors consecutius és el mateix. Sabent que s'ha transmès el 16% de la intensitat inicial, quin angle formen els eixos de dos polaritzadors consecutius?
 - a) 41.2° .
- b) 57.2°.
- c) 32.8°.
- d) 60.5°.

Examen FINAL de Física 22 de juny de 2016

Model B

Qüestions: 40% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Un circuit de corrent altern té una potència activa P = 500 W i una potència reactiva Q = 866 VAR. Quant val el seu factor de potència?
 - a) $\cos \varphi = 0.7$.

b) $\cos \varphi = 0.5$.

c) $\cos \varphi = 0.3$.

- d) $\cos \varphi = 0.1$.
- **T2)** Determineu el valor de R_D del circuit de la figura sabent que el transistor té $\beta = 16 \,\mathrm{mA/V^2}, \,V_{DD} = 5 \,\mathrm{V}$ i que aquest treballa en les condicions del punt A.
 - a) 500Ω .
- b) 1000Ω .
- c) 2500Ω .
- d) $250\,\Omega$.

T3) Les intensitats I_1 i I_2 del circuit de la figura són de 20 mA. Quina de les afirmacions referents al corrent I_3 i els potencials als punts A, B i C és la correcta? Suposeu que les resistències internes de les tres fonts de tensió són nul·les.

- a) $I_3 = 40 \text{ mA}$.
- b) $V_A = 40 \text{ V}.$
- c) $V_C = 50 \text{ V}.$
- d) $V_B = -30 \text{ V}.$
- **T4)** Quina és la càrrega del condensador en el règim estacionari? La tensió Zener és $V_Z=5$ V i la tensió llindar és $V_\gamma=1$ V
 - a) 90.9 C.
- b) 100 nC.
- c) 90.9 nC.
- d) 100 C.

T5)	Enviem un raig de	llum no polaritzad	a d'intensitat 7 mW	T/m^2 sobre tres polaritzadors	
,	lineals, tals que l'angle que formen els eixos de polarització de dos polaritzadors conse				
	cutius és el mateix. Sabent que s'ha transmès el 16% de la intensitat inicial, quin angl				
	formen els eixos de dos polaritzadors consecutius?				
	a) 41.2° .	b) 60.5° .	c) 32.8°.	d) 57.2°.	

- **T6)** Una bateria de cotxe de 12 V de fem té una càrrega inicial de 50 Ah i una resistència interna negligible. Si s'utilitza per alimentar el sistema d'enllumenament d'un cotxe, que dissipa una potència de 50 W, indiqueu quina de les següents afirmacions és **INCORRECTA**.
 - a) Pel circuit circula un corrent de 8.34 A.
 - b) La bateria triga 12 h a descarregar-se.
 - c) Pel circuit circula un corrent de 4.17 A.
 - d) L'energia inicial acumulada a la bateria és 2.16×10^6 J.
- T7) Una emissora de radio emet ones electromagnètiques esfèriques amb una potència mitjana \bar{P} . A una distància r_1 de l'emissora la intensitat de les ones és \bar{I}_1 . A una distància r_2 la intensitat mitjana és $\bar{I}_2 = \bar{I}_1/9$. Quina relació hi ha entre r_1 i r_2 ?
 - a) $r_1 = 9 \ r_2$. b) $r_1 = r_2/3$. c) $r_1 = r_2/9$. d) $r_1 = 3 \ r_2$.
- **T8)** En un circuit RL connectat a un generador de corrent continu de fem ε , la intensitat màxima que passa pel circuit és:
 - a) Directament proporcional al valor de L.
 - b) Directament proporcional al valor de R.
 - c) Independent del valor de ${\cal L}.$
 - d) Independent del valor de R.

Cognoms i Nom:

Codi:

Examen FINAL de Física 22 de juny de 2016

Problema 1 (20% de l'examen)

Els dos amperimetres $(A_1 i A_2)$ del circuit de la figura tenen una resistència que podem considerar nul·la. Determineu:

- a) La intensitat que indica A_1 .
- b) La intensitat que circula per cada resistència.
- c) La intensitat que indica A_2 .
- d) La càrrega d'un condensador de $10\,\mu\text{F}$ connectat entre A i B.

Problema 2 (20% de l'examen)

En el circuit de la figura, la tensió eficaç aplicada és $V_{\rm ef}=220~{
m V}$ i la seva freqüència $f=50~{
m Hz}.$

- a) Si la impedància \bar{Z}_1 correspon a una resistència $R=50~\Omega$, trobeu el desfasament entre les intensitats I_1 i I_2 . Indiqueu quina de les dues intensitats està avançada respecte de l'altra.
- b) Calculeu en aquest cas la potència mitjana P subministrada pel generador.
- c) Calculeu el valor complex que hauria de tenir la impedància \bar{Z}_1 per tal que I_1 i I_2 fossin iguals en mòdul però estiguessin desfasades 90°. Quins elements correspondrien a aquesta impedància?

Problema 3 (20% de l'examen)

El circuit de la figura té un nombre de díodes N variable. Els díodes són idèntics i cadascun d'ells té una tensió llindar $V_{\gamma}=0.7$ V. El transistor NMOS té per paràmetres $V_T=1$ V i $\beta=400\,\mu A/V^2$ i la fem és de $\varepsilon=5$ V. Les resistències són $R_G=100\,\Omega$ en la porta i $R_D=2\,k\Omega$ en el drenador. Trobeu:

- a) El nombre mínim de díodes N per a que el transistor estigui en zona de tall.
- b) La tensió mínima en la porta V_G i el nombre mínim de díodes N necessari perquè el transistor treballi en zona de saturació.
- c) El valor efectiu de la resistència font-drenador R_{DS} per N=1 díode.

NOTA: La revisió d'aquest examen es farà el dia 27 de juny de 12 a 13h a l'aula B4-212.

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	С	b
T2)	d	d
T3)	c	a
T4)	b	c
T5)	c	a
T6)	b	a
T7)	c	b
T8)	a	c

Resolució del Model A

- T1) La càrrega inicial de la bateria en coulombs és $Q = 50 \cdot 3600 = 180000$ C. L'energia és $U = Q\varepsilon = 180000 \cdot 12 = 2.16 \times 10^6$ J. La intensitat que circula pel circuit és $I = P/\varepsilon = 50/12 = 4.17$ A. El temps que triga a descarregar-se és t = U/P = 43200 s = 12 h.
- T2) En primer lloc observem que amb els sentits dels corrents que s'indiquen a la figura, al nus B es verifica que $I_3 = I_1 + I_2 = 20 + 20 = 40$ mA. Per tant el potencial $V_B = -10 + 1 \cdot 40 = 30$ V. El potencial $V_A = V_B + (V_A V_B) = 30 + 1 \cdot 20 5 = 45$ V. Finalment, el potencial $V_C = V_B + (V_C V_B) = 30 + 1 \cdot 20 + 5 = 55$ V.
- **T3)** La intensitat màxima és $I = \varepsilon/R$ per tant és independent del valor de L.
- **T4)** Combinant les definicions de potència activa $P = V_{\rm ef}I_{\rm ef}\cos\varphi$, potència reactiva $Q = V_{\rm ef}I_{\rm ef}\sin\varphi$ i potència aparent $S = V_{\rm ef}I_{\rm ef}$ resulta que $\cos\varphi = P/S = P/\sqrt{P^2 + Q^2} = 0.5$.
- **T5)** La caiguda de tensió en la resistència de 100 Ω és $10\frac{100\Omega}{1000\Omega+100\Omega}=0.909$ V. És més petita que la tensió Zener. Per tant, el díode no condueix i la càrrega del condensador és $0.909 \cdot 100 = 90.9$ nC.
- T6) Del gràfic de la dreta veiem que el transistor treballa en règim de saturació, i que el punt de treball correspon a $V_{GS} V_T = -1 \,\mathrm{V}$ amb $V_{DS} = -3 \,\mathrm{V}$. Del primer fet trobem el corrent $I_D = \beta (V_{GS} V_T)^2/2 = 0.016(-1)^2/2 = 8 \,\mathrm{mA}$. A partir d'aquí amb $V_{DD} = 5 \,\mathrm{V}$ i $V_{DS} = -3 \,\mathrm{V}$ obtenim la tensió al drenador $V_D = 5 3 = 2 \,\mathrm{V}$. Aplicant la llei d'Ohm a la resistència resulta 2 = 0.008 R i per tant $R = 250 \,\Omega$.
- **T7**) En una ona electromagnètica esfèrica és $P = I_1 4\pi r_1^2 = I_2 4\pi r_2^2 \Rightarrow r_1 = \sqrt{I_2/I_1} r_2 = r_2/3$.
- **T8)** Després del primer polaritzador, ens queda una intensitat $\frac{I_0}{2} = 3.5 \text{ mW/}m^2$. Cada cop que travessem algun dels altres 2, la intensitat es modifica en un factor $\cos^2 \phi$, per la qual cosa al final tenim

$$I_{\text{final}} = 0.16 I_0 = 1.12 = 3.5 \cos^4 \phi.$$

D'aquí deduïm que

$$\phi = \arccos\left(\sqrt[4]{\frac{1.12}{3.5}}\right) = 41.2^{\circ}$$

.

Resolució dels Problemes

Problema 1

- a) La resistència equivalent del circuit val $R_{eq}=100\cdot 100/200+100\cdot 150/250=50+60=110\,\Omega$ i per tant l'amperímetre A_1 indicarà $I_1=11/110=0.1$ A
- b) A les resistències R_1 i R_3 circularà la mateixa intensitat $I_1=I_3=0.05$ A mentre que tindrem les dues equacions $100 \cdot I_2=150 \cdot I_4$ i $I_2+I_4=0.1$, d'on resulta $I_2=0.06$ A, $I_4=0.04$ A.
- c) Aplicant la llei dels nusos entre els quals es troba l'amperímetre veiem que per A_2 hi passa una intensitat de 0.01 A en sentit ascendent.
- d) $Q = V_{AB} \cdot C = I_1 \cdot R_1 \cdot C = 50 \,\mu\text{C}.$

Problema 2

a) Serà

$$ar{I}_1 = rac{ar{V}_{AB}}{ar{Z}_1} \qquad ar{I}_2 = rac{ar{V}_{AB}}{ar{Z}_2}$$

amb $\bar{Z}_1 = 50/0^\circ$ i $\bar{Z}_2 = 50 - 159.155j = 166.850/-72.6^\circ$. Per tant I_2 va avançada 72.6° respecte de I_1 .

b) La impedància total del circuit és:

$$\bar{Z} = 25 + \frac{1}{\frac{1}{Z_1} + \frac{1}{Z_2}} = 67.9 - 11.3j = 68.9 / -9.4^{\circ}$$

Llavors la intensitat és $I_{\rm ef}=V_{\rm ef}/Z=3.19~{\rm A}$ i $\cos\varphi=0.986$ i la potència subministrada pel generador és $P=V_{\rm ef}I_{\rm ef}\cos\varphi=692.0~{\rm W}.$

c) Imposem $\bar{Z}_1 = R_1 + jX_1 = 166.850 / (-72.6^{\circ} + 90^{\circ}) = 159.15 + 50 j \Rightarrow R_1 = 159.15 \Omega,$ $L_1 = X_1/(2\pi f) = 0.16 \text{ H}.$

Problema 3

a) La tensió en la porta depèn solament del nombre de díodes i de la fem, $V_G = \varepsilon - NV_{\gamma}$, i no depèn del valor de la resistència en la porta R_G . En la zona de tall la diferència de potencial entre la porta i el font V_{GS} és més petita que la tensió llindar del transistor, $V_{GS} = \varepsilon - NV_{\gamma} < V_T$. La condició per el nombre de díodes és $N > (\varepsilon - V_T)/V_{\gamma} = (5V - 1V)/0.7V = 5.7$, i el nombre mínim de díodes és N = 6.

- b) En el règim de saturació s'ha de complir que $V_{DS} \geq V_{GS} V_T$. En el punt crític, en el qual el transistor entra en saturació, $V_{DS} = V_{GS} V_T$. Aquesta diferència de potencial està relacionada amb la intensitat en el drenador com $V_{DS} = \varepsilon I_D \cdot R_D$. En zona de saturació aquesta intensitat és $I_D = \frac{\beta(V_{GS} V_T)^2}{2}$ i en el punt crític és $I_D = \frac{\beta V_{DS}^2}{2}$. L'equació per trobar la diferència de potencial és quadràtica $\frac{\beta V_{DS}^2}{2} \cdot R_D + V_{DS} \varepsilon = 0$, i posant els valors numèrics: $0.4V_{DS}^2 + V_{DS} 5 = 0$. Hi ha dues solucions: $V_{DS} = -5V$; 2.5V. La solució vàlida és la segona amb tensió en la porta corresponent a $V_G = V_{DS} + V_T = 2.5V + 1V = 3.5V$. Per tant, la condició pel nombre de díodes és $N > (\varepsilon V_G)/V_{\gamma} = (5V 3.5V)/0.7V = 2.1$. Així doncs, el nombre mínim de díodes és N = 3.
- c) Amb N=1 díode, el transistor està en zona òhmica. La tensió en la porta és $V_G=\varepsilon-V_\gamma=5V-0.7V=4.3V.$ El valor efectiu de la resistència font-drenador és $R_{DS}=\frac{1}{\beta(V_{GS}-V_T)}=\frac{1}{400\times 10^{-6}\frac{A}{V^2}(4.3V-1V)}=758\Omega.$