

Chapter 2 8086 Programming Model

CS238 – Assembly Language Programming
Amarnath Jasti

CS238 - Assembly Language Programming

Review

- Where assembly is used?
 - □ Embedded Systems
 - Perform specific h/w functions
 - Drivers
 - □ Flexibility (Ex: Programming in robotics)
- Computer system
 - □ Hardware (CPU, PPD, Memory, etc)
 - □ Software (OS, Drivers, Application software, etc)

CS238 – Assembly Language Programming

Assembly Language

- Assembly Language definition:
 - Machine specific programming language with a one-to-one correspondence between the statements and the computers native machine language and is specific to the processor or processor family
 - Note: Instructions in assembly are designed to match a computers machine instruction set and hardware architecture.

Microcomputer Design

- Components of a System
 - Memory storage unit
 - Bus
 - Data Bus
 - Address Bus
 - Control Bus
 - Clock
 - Internal
 - External
 - Wait states

CS238 – Assembly Language Programming

8086/88

- 8086 is the first generation 16-bit μP.
- 8088 is similar to 8086 except that it has a 8bit data bus instead of the full 16-bit bus.
- Why learning 8086?

8086/88

- 20-bit address bus = 1MB (2²⁰ =1048576 bytes)
- I/O mapped or Isolated I/O addressing in which I/O ports are addressed individually. 8088 supports up to 256 I/O ports.
- Memory Map 00000h → FFFFFh
 - □ In practice memory is divided into 64kb blocks or pages, i.e. blocks from 0000h → FFFFh
 - Physical address = (Segment Address * 16d) + Offset

CS238 – Assembly Language Programmin

Physical Address LOGICAL ADDRESS SELECTOR OFFSET SEGMENT CONTROL AND BASE PROTECTION ADDRESS 0115 DESCRIPTOR TABLE PHYSICAL ADDRESS CS238 – Assembly Language Programming

Examples

- 0000h:0000h
- 1000h:0050h
- 0800h:8005h
- 0900h:7005h
- F000h:FFFFh

Memory Map Question: Given a ROM size of 256KB starting at A0000h, determine the ending address of ROM? 256KB = 256 * 1024 = 262144 bytes = 40000h -1 = 3FFFFh So ending address = A0000h + 3FFFFh = DFFFFh

Data Registers (AX, BX, CX, DX)

- General Purpose Registers arithmetic calculations, temporary data storage, data transfer.
- AX (AH AL) Accumulator
- BX (BH BL) Base Register; holds blocks base address.
- CX (CH CL) Count register
- DX (DH DL) Data or Destination Register (Used by I/0)

CS238 – Assembly Language Programming

8086/88 Registers

- Instruction Pointer (IP)
 - □ 16-bit register
 - Maximum addressing space in KB?
 - Used in conjunction with CS to generate 20-bit physical address (CS:IP)
- Flag register

8086/88 Registers

- Segment Registers
 - These registers are required to address total RAM space(1 MB) where as all pointer registers are only 16-bits
 - CS code segment: Program instructions currently being executed are located.
 - DS Data Segment Program data is located
 - ES Extra segment used to define another segment in addition to data segment to address data beyond 64KB.
 - NOTE: Address (segment) values cannot be loaded directly into segment registers. Data registers need to be used as intermediate registers for data transfer.
 - EX.
 - MOV AX, 0B800h
 - MOV ES, AX

CS238 – Assembly Language Programming

8086/88 Registers

- Stack Pointer always points to the current location of the 'Top of the Stack'
 - It is used in conjunction with SS to get 20-bit address (SS:SP)
- Base pointer (BP) → (DS: BP)
- Source Index register (SI): Used to point to a byte or word in the current data segment that needs to be fetched as a part of a block of data. (DS:SI)
- Destination Index Register (DI) similar to SI but used as destination address in ES for data transfer (ES:DI).

Memory Map - RAM

- Interrupt Vector Table
 - Table containing addresses of interrupt service routines.
- BIOS data
 - Temporary storage used by BIOS.
- DOS data
 - Area of RAM used to store temporary program data such as current file name, directory name etc.
- Resident DOS
 - Main DOS program code
- User RAM Space
 - Available for users for program code
- Video RAM
- Video RAM is physically located on the video adaptor but must be mapped into the primary memory address space.

CS238 – Assembly Language Programming

Memory Map - ROM

- Extension ROM space
 - Reserved for additional hardware device ROM code
 - Provides space where routines can be supplied to initialize and control 'unknown' hardware.
- User ROM space
 - Provided for users to install their own program code on ROM
- BASIC ROM Space
- BIOS ROM Space

CS238 – Assembly Language Programming

Segmented addressing (cf. linear addressing) Even and Odd memory banks Segmented addressing (cf. linear addressing) Even and Odd memory banks Segmented addressing (cf. linear addressing) Segmented addressing (cf. linear addressing)

80286 (32 bit) Block Diagram **Book Diagram** **Book Diagram**

Review

- What bit general purpose register is BX?
 - **1**6
- Which one of them is not a segment register?
 - □ CS, ES, DS, GS, SS, FS.
 - All are segment registers
- Define IP?
 - IP points to the address where next instruction that needs to be executed is present.

CS238 – Assembly Language Programming

Memory Management

- Real-address mode
 - □ 1MB of memory can be addressed (00000–FFFFF)
 - One program at a time with interrupts
 - Standard memory restrictions
 - Ex: MS-DOS
- Protected mode
 - Multiple programs with reserved memory
 - Ex: Windows and Linux
- Virtual-8086 mode
- Protected mode
- □ Simulates 8086 environment with 1MB dedicated memory
- Hardware/software restrictions apply

Fetch and Execute	
■ PC – Program counter	
 Instruction queue 	
Fetch and Execute	
Fetch	
Decode	
 Fetch operands (Memory Read) 	
Execute	
Store O/P operand (Memory)	
Multi tasking	
 Scheduler (Time: slice) 	
 Round-robin scheduling 	
Task switching or swapping	

Multi-Stage Pipelining

- Stages
 - Bus interface Unit (BIU)
 - 2. Code Prefetch Unit
 - 3. Instruction Decode Unit
 - 4. Execution Unit
 - 5. Segment Unit
 - 6. Paging Unit

For k execution stages, n instructions require (n*k) cycles to process.

CS238 – Assembly Language Programmin

1 S2 S3 S4 S5 S6

Six stage pipelined Instruction Execution

■For k execution stages, n instructions require (k+(n-1)) cycles to process.

CS238 – Assembly Language Programming

Superscalar Pipelined execution

- •Using single pipeline, for k execution stages (where one stage takes two clock cycles), n instructions require (k+2n-1) cycles to process.
- •Superscalar 6-stage pipeline: S4 is divided into two pipelines. Takes (k+n) cycles

X86 family characteristics 386DX 486DX 8088 8086 286 Pentium Data bus 32 8 bits 16 16 32 Add. bus 20 bits 20 24 32 32 32 Ins. Cache Data Cache 16 bytes 32 bytes 8 Kbytes 256 bytes 8 Kbytes 8 Kbytes Address able mem. 1 MB 4 GB 1 MB 16 MB 4 GB 4 GB Internal data word 16 bits 16 bits 16 bits 32 bits 32 bits 32 bits 1979 1978 1982 1985 1989 CS238 – Assembly Language Programming