20(9 苏州大学 高等数学一(上)期末试卷 共6页

考试形式: 闭卷

院系______年级 _____专业 学号 姓名_____ 成绩 ____

特别提醒:请将答案填写在答题纸上,若填写在试卷纸上无效。

- 一. 选择题: (每小题 3 分, 共 15 分)
- 1. 使 $f(x) = \sqrt[3]{x^2(1-x^2)}$ 不符合罗尔定理条件的区间是()

- A. [-1,1] B. [0,1] C. [-1,0] D. $[\frac{3}{5},\frac{4}{5}]$
- 2. $f''(x_0) = 0$ 是点 $(x_0, f(x_0))$ 为曲线 y = f(x) 的拐点的()

- A. 充分条件 B. 必要条件 C. 充要条件 D. 既不充分也不必要条件
- 3. 设函数 f(x) 在定义域内可导,y = f(x) 的图形如图 1,则导函数 f'(x) 的图 形为()

- 4. 曲线 y = x(x-1)(2-x) 与 x 轴所围成图形的面积可表示为(
- A. $-\int_0^2 x(x-1)(2-x)dx$ B. $-\int_0^1 x(x-1)(2-x)dx + \int_1^2 x(x-1)(2-x)dx$
- C. $\int_0^1 x(x-1)(2-x)dx \int_1^2 x(x-1)(2-x)dx$ D. $\int_0^2 x(x-1)(2-x)dx$
- 5. 若广义积分 $\int_{2}^{+\infty} \frac{\mathrm{d}x}{x(\ln x)^{k}}$ 收敛,则 k ()

- A. k > 1 B. $k \ge 1$ C. k < 1 D. $k \le 1$

填空题: (每小题 3 分, 共 15 分)

- 1. 设曲线 $y = \left(\frac{x-a}{x}\right)^x$ 的水平渐近线为 y = e, 则常数 a =______
- 2. 定积分 $\int_{1}^{1} \sqrt{1-x^2} (e^x e^{-x} + 1) dx = _____.$
- 4. 设 f(x) 具有二阶连续导数, y = f(x) 的图形如右图所示,则定积分 $\int_{-1}^{3} f''(x) dx$

5. 设 $f(x^2-1) = \ln \frac{x^2}{x^2-2}$, 且 $f[\varphi(x)] = \ln x$, 则 $\int \varphi(x) dx =$ ______

三. 解下列各题: (每小题 10 分, 共 40 分)

- 1. 求极限 $\lim_{x\to 0} \frac{\int_{\cos x}^{1} t \ln t dt}{\arctan x^4}$. 2. 讨论方程 $\ln x = ax(a>0)$ 有几个实根?
- 3. 计算定积分 $\int_{0}^{a} x^{2} \sqrt{a^{2} x^{2}} dx$ (a > 0).
- 4. 从一块半径为R的圆铁片上挖去一个扇形做成一个漏斗(如图),问留下的扇形的圆心角 φ

取多大时, 做成的漏斗的容积最大?

四.解下列各题: (每小题 10 分,共 30 分)

- 1. 设 F(x) 为 f(x) 的原函数,且当 $x \ge 0$ 时, $f(x)F(x) = xe^x$. 已知 F(0) = 1, F(x) > 0, 试求 f(x).
- 2. 求摆线 $\begin{cases} x = a(t \sin t), \\ y = a(1 \cos t), \end{cases}$ 的一拱 $(0 \le t \le 2\pi)$,直线 y = 0 所围成图形绕直线 y = 2a 旋转一周所 成立体的体积
- 3. 设 f(x) 在 [a,b](a>0) 上连续,在 (a,b) 内可导,且 f(a)=f(b)=1. 证明: $\exists \xi, \eta \in (a,b)$,使得

$$\left(\frac{\eta}{\xi}\right)^{n-1} = f(\xi) + \frac{\xi}{n} f'(\xi), 其中 n \ge 1 为正整数.$$

参考答案

一、选择题

- **1.** A **2.** D
- **3.** D
- **4.** B
- **5.** A

二、填空题

- **1.** -1 **2.** $\frac{\pi}{2}$ **3.** $\frac{1}{2} \ln|1+2\ln x|+1$ **4.** <0 **5.** $x+2\ln|x-1|+C$

三、解答题

1.
$$\lim_{x \to 0} \frac{\int_{\cos x}^{1} t \ln t dt}{\arctan x^{4}} = \lim_{x \to 0} \frac{\cos x \cdot \ln \cos x \cdot \sin x}{4x^{3}} = \lim_{x \to 0} \frac{\ln \cos x}{4x^{2}} = \lim_{x \to 0} \frac{\cos x - 1}{4x^{2}} = -\frac{1}{8}$$

2.
$$a > \frac{1}{e}$$
, 没有实根; $a = \frac{1}{e}$, 有一个实根; $0 < a < \frac{1}{e}$, 有两个实根

3.
$$\int_0^a x^2 \sqrt{a^2 - x^2} dx = a^4 \left(\int_0^{\frac{\pi}{2}} \sin^2 t dt - \int_0^{\frac{\pi}{2}} \sin^4 t dt \right) = a^4 \left(\frac{1}{2} - \frac{3}{4 \cdot 2} \right) \frac{\pi}{2} = \frac{a^4 \pi}{16}$$

4.
$$V = \frac{1}{3}\pi (\frac{\varphi R}{2\pi})^2 \sqrt{R^2 - (\frac{\varphi R}{2\pi})^2} = \frac{R^3}{12\pi} \varphi^2 \sqrt{1 - \frac{\varphi^2}{4\pi^2}}$$
,当 $\varphi^2 = \frac{8\pi^2}{3}$,即 $\varphi = \frac{2\sqrt{6}\pi}{3}$ 时,最大

四、解答题

1.
$$F'(x) = f(x) \Rightarrow (\frac{1}{2}F^2(x))' = F(x)f(x) = xe^x$$

$$\Rightarrow \frac{1}{2}F^2(x) = \int xe^x dx + C = xe^x - e^x + C$$

曲
$$F(0) = 1 \Rightarrow F^2(x) = 2(xe^x - e^x) + 3$$
,即有 $f(x) = \frac{xe^x}{F(x)} = \frac{xe^x}{\sqrt{2(xe^x - e^x) + 3}}$

2.
$$V = \pi (2a)^{2} (2\pi a) - \int_{0}^{2\pi a} \pi (y - 2a)^{2} dx = 8\pi^{2} a^{3} - \int_{0}^{2\pi} \pi a^{3} (\cos t + 1)^{2} (1 - \cos t) dt$$
$$= 8\pi^{2} a^{3} - \pi a^{3} \int_{0}^{2\pi} (\cos t + 1)^{2} (1 - \cos t) dt = 7\pi^{2} a^{3}$$

3. 由拉格朗日中值定理有: 存在
$$\xi, \eta \in (a,b)$$
,使得 $(x^n)'|_{x=\eta} = \frac{b^n - a^n}{b-a} \Rightarrow n\eta^{n-1} = \frac{b^n - a^n}{b-a}$

$$(x^{n} f(x))'|_{x=\xi} = \frac{b^{n} f(b) - a^{n} f(a)}{b - a} = \frac{b^{n} - a^{n}}{b - a} \Rightarrow n\xi^{n-1} f(\xi) + \xi^{n} f'(\xi) = \frac{b^{n} - a^{n}}{b - a}$$

$$\mathbb{H} n\eta^{n-1} = n\xi^{n-1}f(\xi) + \xi^n f'(\xi) \Rightarrow \left(\frac{\eta}{\xi}\right)^{n-1} = f(\xi) + \frac{\xi}{n}f'(\xi).$$