Quantitative Finance Problem Solving Assignment

As a part of the Master of Statistics (M. Stat.) Second year curriculum

Aabesh Bhattacharya (MB1910) Abhinandan Dalal (MB19xx) Subhrajyoty Roy (MB1911)

December 11, 2020

Contents

Problem 1. Pilska, Chapter 1, Problem 9: Suppose K = 2, N = 1, and the interest rate is a scalar parameter $r \geq 0$. Also, suppose $S_0 = 1, S_1(\omega_1) = u$ (up), and $S_1(\omega_2) = d$ (down), where the parameters satisfy u > d > 0. For what values of u, d and r, does there exist a risk neutral probability measure? Say what this measure is. For the complementary values of these parameters, say what all the arbitrage opportunities are.

Solution.

Problem 2. Pilska, Chapter 2, Problem 2: Suppose $u(w) = \log(w)$. Show that the inverse function $I(i) = i^{-1}$, the Lagrange multiplier is $\lambda = v^{-1}$, the optimal attainable wealth is $W = vL^{-1}B_1$, and the optimal objective value is $\ln(v) - \mathbb{E}[\ln(L/B_1)]$. Compute these expressions and solve for the optimal trading strategy in the case where $N = 1, K = 2, r = 1/9, S_0 = 5, S_1(\omega_1) = 20/3, S_1(\omega_2) = 40/9$ and $P(\omega_1) = 3/5$.

Solution.

Problem 3. Pilska, Chapter 4, Problem 9: Consider the binomial stoch price model with T = 4, $S_0 = 20$, u = 1.2214, and $d = 0.8187 = u^{-1}$. The interest rate is r = 3.82%. What is the time 0 price on an American put that has exercise price e = 18? Is it optimal to exercise early? If so, when?

Solution.

Problem 4. Hoel Port Stone, Chapter 4, Problem 3: Let $X(t), -\infty < t < \infty$ be a second order stationary process and set $Y(t) = X(t+1) - X(t), -\infty < t < \infty$. Show that the Y(t) process is a second order stationary process having zero means and covariance function

$$r_Y(t) = 2r_X(t) - r_X(t-1) - r_X(t+1)$$

Solution.

Problem 5. Hoel Port Stone, Chapter 4, Problem 11: Let, $R_1, \ldots R_n$, and $\Theta_1, \ldots \Theta_n$ be independent random variables such that Θ 's are uniformly distributed on $[0, 2\pi)$ and R_k has the density

$$f_{R_k}(r) = \begin{cases} \frac{r}{\sigma_k^2} e^{-r^2/2\sigma_k^2}, & 0 < r < \infty \\ 0, & r \le 0 \end{cases}$$

where $\sigma_1, \ldots \sigma_n$ are positive constants. Let, $\lambda_1, \ldots \lambda_n$ be positive constants and set

$$X(t) = \sum_{k=1}^{n} R_k \cos(\lambda_k t + \Theta_k)$$

Show that X(t) is a Gaussian process.

Solution.

Problem 6. Hoel Port Stone, Chapter 4, Problem 19: Let W(t) denotes the Weiner process. Define,

$$X(t) = e^{-\alpha t}W(e^{2\alpha t}), \qquad -\infty < t < \infty$$

where α is a positive constant. Show that X(t) process is a stationary Gaussian process having the covariance function

$$r_X(t) = \sigma^2 e^{-\alpha|t|}, \quad -\infty < t < \infty$$

Solution.

Problem 7. Hoel Port Stone, Chapter 5, Problem 2: Find the correlation between W(t) and

$$\int_0^1 W(s)ds$$

for 0 < t < 1.

Solution.

Problem 8. Hoel Port Stone, Chapter 5, Problem 15: Find the mean and the variance of

$$X = \int_0^1 t dW(t)$$
 and $Y = \int_0^1 t^2 dW(t)$

and find the correlation between these two random variables.

Solution.

Problem 9. Hoel Port Stone, Chapter 6, Problem 7: Show that the left side of the stochastic differential equation

$$a_0X''(t) + a_1X'(t) + a_2X(t) = W'(t)$$

is stable if and only if the coefficients a_0, a_1 and a_2 are either all positive or all negative.

Solution.

Problem 10. Oksendal B, Chapter 3, Problem 6: Prove that $N_t = B_t^3 - 3tB_t$ is a martingale, where B_t denotes a Brownian motion.

Solution.

Problem 11. Oksendal B, Chapter 4, Problem 4: Consider the vector $\theta(t, \omega) = (\theta_1(t, \omega), \dots \theta_n(t, \omega)) \in \mathbb{R}^n$ with $\theta_k(t, \omega) \in \mathcal{V}[0, T]$ for $k = 1, 2, \dots n$, where $T \leq \infty$. Define,

$$Z_t = \exp\left\{ \int_0^t \theta(s,\omega) dB(s) - \frac{1}{2} \int_0^t \theta^2(s,\omega) ds \right\}, \qquad 0 \le t \le T$$

where $B(s) \in \mathbb{R}^n$ and $\theta^2 = \theta \cdot \theta$ (dot product).

(a) Use Itô's formula to prove that

$$dZ_t = Z_t \theta(t, \omega) dB(t)$$

(b) Deduce that Z_t is a martingale for $t \leq T$, provided that $Z_t \theta_k(t, \omega) \in \mathcal{V}[0, T]$ for $1 \leq k \leq n$.

Solution.