HR-Analytics - Attrition Prediction for Employee using Logistic Regression & classification Model

1. Classification Report:

The model has an overall accuracy of 84.2%. It predicts the 'False' class (no attrition) very well, with precision of 0.84 and recall of 1.00. However, for the 'True' class (attrition), recall is only 0.02 - indicating the model fails to capture most actual attritions. The F1-score is low at 0.04.

Classification	precision	recall	f1-score	support
False	0.84	1.00	0.91	239
True	1.00	0.02	0.04	46
accuracy			0.84	285
macro avg	0.92	0.51	0.48	285
weighted avg	0.87	0.84	0.77	285

2. Confusion Matrix:

The confusion matrix shows the following results:

[[239 0]] [[45 1]]

The model predicts almost all examples as 'False'. 45 attritions were missed and only 1 was correctly classified.

```
Accuracy: 0.8421052631578947

confusion = confusion_matrix(y_test, y_pred)
print("Confusion Matrix: \n", confusion)

Confusion Matrix:
[[239 0]
[ 45 1]]
```

3. Logistic Regression and Imbalanced Data:

To handle class imbalance, LogisticRegression was used with class_weight='balanced'. However, the model still shows bias toward the majority class.

4. SHAP Feature Importance:

SHAP analysis helps identify features that most influence model predictions. The chart below shows which features contributed most to model decisions.

