

SEQUENCE LISTING

<110> Gish, Kurt C.
Mack, David H.
Afar, Daniel
Eos Biotechnology, Inc.

<120> Uses of PBH1 in the Diagnosis and Therapeutic Treatment
of Prostate Cancer

<130> 018501-005910US

<140> US 10/058,513
<141> 2002-01-24

<150> US 60/263,951
<151> 2001-01-24

<160> 42

<170> PatentIn Ver. 2.1

<210> 1
<211> 4225
<212> DNA
<213> Homo sapiens

<220>
<223> prostate cancer modulating protein (PCMP) PBH1

<220>
<221> CDS
<222> (43)..(4225)
<223> PBH1

<400> 1
gcacagttct acgctgcctt caggacacag acgtgcccaa tcatggcttc ttggtgcttg 60
attacagctc aagtctgggt caaaatgaag ggagatgtgg tgggcagccg cagccctcag 120
caacacaagc ggagcacagg aacacctcag ggtcttccag ttcccatctc agaaggctca 180
atgaaaatccct tccttcctgt ccacaccatc gtgttatca gggagaatgt gtgcaagtgt 240
ggctatgcc agagccagca catggaaggc acccagatca accaaagtga gaaatggAAC 300
tacaagaaac acaccaagga atttccttacc gacgccttgc gggatattca gtttgagaca 360
ctggggaaaga aagggaagta tatacgtctg tcctgcgaca cggacgcggg aatcctttac 420
gagctgctga cccagcactg gcacctgaaa acacccaacc tggtcatttc tggacccggg 480
ggcgccaaga acttcgcctt gaagccgcgc atgcgcaaga tcttcagccg gtcatctac 540
atcgcgcaagt ccaaagggtgc ttggatttctc acgggaggca cccattatgg cctgatgaag 600
tacatcgggg aggtggtgag agataacacc atcagcagga gttcagagga gaatattgtg 660
gccattggca tagcagctt gggcatggtc tccaaaccggg acaccctcat caggaattgc 720
gatgctgagg gctattttt agcccaagttt cttatggatg acttcacaag agatccactg 780
tatatcctgg acaacaacca cacacatttgc ctgtcgtgg acaatggctg tcatggacat 840
cccactgtcg aagcaaagct ccgaaatcag ctagagaagt atatctctga gcgactatt 900
caagattcca actatggtg caagatcccc attgtgtgtt ttgcccagg aggtggaaaa 960
gagactttga aagccatcaa tacctccatc aaaaataaaaa ttcccttggtt ggtggtgaa 1020
ggctcgggcc agatcgctga tgtgatcgct agcctgggtgg aggtggagga tggccctgaca 1080
tcttcgtccg tcaaggagaa gctggtgccgc ttttacccc gcacgggtgc cccgctgcct 1140
gaggaggaga ctgagagttg gatcaaattgg ctcaaagaaaa ttctcgaatg ttctcaccta 1200
ttaacagtta taaaatggaa agaagctggg gatgaaattt tgagcaatgc catctcctac 1260
gctctataca aagccttcag caccagttag caagacaagg ataactggaa tgggcagctg 1320
aagcttctgc tggagtgaa ccagctggac ttagccaatg atgagatttt caccaatgac 1380
cgccgatggg agaagagcaa accgaggctc agagacacaa taatccaggt cacatggctg 1440
aaaaatggta gaatcaaggt tgagagcaaa gatgtgactg acggcaaaac ctcttcctcat 1500

atgctggtgg ttctcaagtc tgctgaccaa caagaagtca tgtttacggc tctcataaaag 1560
gacagaccca agtttgcg cctcttctg gagaatggct tgaacctacg gaagtttctc 1620
accatgatg tcctcaactga actcttctcc aaccaccaa gacacgcttgcgt gtaccggaaat 1680
ctgcagatcg ccaagaattc ctataatgat gcccctctca cgtttgcgt gaaactgggt 1740
gcgaacttcc gaagaggctt ccggaaggaa gacagaaatg gcccggacga gatggacata 1800
gaactccacg acgtgtctcc tattactcg caccggctgc aagctctt catctggggcc 1860
attttcaga ataagaagga actctccaaa gtcatttggg agcagaccag gggctgcact 1920
ctggcagccc tgggagccag caagcttctg aagactctgg ccaaagtgaa gaacgacatc 1980
aatgctgctg gggagtcgaa ggagctggct aatgagtaac agacccgggc tggtgagctg 2040
ttcaactgagt gttacagcag cgatgaaagac ttggcagaac agctgctgggt ctattctgt 2100
gaagcttggg gtggaaagcaa ctgtctggag ctggcgggtgg aggccacaga ccagcatttc 2160
atcgcccccgc ctgggggtccca ggagggggagg gctgtggcccg tcccatgctt gcaaggatgc 2220
tgacgatgcc cttatctctg ggtccagagaa gaaacctgtc gacaagcaca agaagctgt 2280
ttggtactat gtggcgttct tcacccccc cttcgtggtc ttcccttggaa atgtggtctt 2340
ctacatcgcc ttccctctgc tggttgccta cgtgctgctc atggatttcc attcgggtgcc 2400
acaccccccggc gagctggtcc tgtaactcgct ggtctttgtc ctcttctgt atgaagttag 2460
acagatggag caggggggtgg cgctcggtgg ggaggctgg gcagcacagg agcccaactga 2520
gggggtgggg ggctcaggca tggtgggctg cagggtcccgaa gcccctggcc acgggaaggc 2580
actacggcc cgccccgggtt cccgctcactg ccactccttc cacacttccc tgcaagctga 2640
gggtgccagc tctggccttg gccagcccg aaaggggctc ccacagtgc gcggtgggt 2700
gaagggtctcc tcaagtgcgg ccaaagtggg agcccaggca gaggaggtgc cgagagcaag 2760
cgagggtctgt gaggactgcc agcacgtgt caccctctcag aagcgttaagg gactggctga 2820
tgtcttatca cggactgggaa acaactgggaa cagtgtctgc cccacaagtgc ggtggtagct 2880
aaatggggtg aattattttt ctgacctgtg gaatgtgatg gacacgctgg ggctttttta 2940
cttcatagca ggaattgtat ttccggctcca ctcttctaat aaaagctctt tgtattctgg 3000
acgagtcat ttctgtctgg actacattat ttccactcta agattgatcc acatttttac 3060
tctaaggcaga aacttaggac ccaagattat aatgctgcag aggtgacga gcattgagat 3120
gagctcatct ggaagctcca ttccaaacact gaggttctt gagggttgg ttttaattca 3180
aagcatttctt gggacatcca gtcatcatga agtcatgcta tctgatcgat gtgttcttct 3240
tcctgttcctt ctttgcgggtgg tggatgggtgg ccttgcgtg gccaggcaag ggatccttag 3300
gcagaatgag cagcgctggaa ggtggatatt ccgttgcgtc atctacgagc cctacctggc 3360
catgttcggc caggtgcccgtt gtagcgtggaa tggtaaccacg tatgacttttgc cccactgcac 3420
cttcactggg aatgagtcgg aagccactgtg tggagactgtg gatgagcaca acctgcccc 3480
gttcccgag tggatcacca tccccctggt gtgcacatctac atgttatcca ccaacatcc 3540
gctggtaac ctgctgggtgg ccattgtttgg gtgtgttagcc ggtggcttag ttcaggttct 3600
tgactttggg acagaaaata atttggaaatg gaggtaaaag caaaagcaag caagagagtt 3660
gactgcaaag ccaaagtaca ctctagcagc cgctgggttc aggagatgga cctcagctgt 3720
caactgcattt ctccagccag cttaggtttt gccaggagca ggacgccaag ggcacaagat 3780
atcgctggag atgcacaaag gggaaatttc agaattctt cagggacaac accagatggc 3840
caactgggttcaagggact ttaagaacca tctcagatgg ggcggctaca cgggtgggcac 3900
cggtccaggag aacaatgacc aggtctggaa gttccagagg tacttctgg tgcaggagta 3960
ctgcagccgc ctcaatatcc cttcccccattt catcgcttcc gcttacttct acatgggtgg 4020
gaagaagtgc ttcaagtgtt gctgcaagga gaaaacatg gaggcttctg tctgctctgt 4080
ggaggcaggt gaagatgctt acaattatag ggaacataag gaaggctcaa aagagctttt 4140
tgggagccag tggatcgat tggatcgactt ctgattcgat gcctgtttta 4200
tttggaggcatttggaaatg cgtga 4225

<210> 2
<211> 1393
<212> PRT
<213> Homo sapiens

<220>
<223> prostate cancer modulating protein (PCMP) PBH1

<400> 2
Met Ala Ser Trp Cys Leu Ile Thr Ala Gln Val Trp Val Lys Met Lys
1 5 10 15

Gly Asp Val Val Gly Ser Arg Ser Pro Gln Gln His Lys Arg Ser Thr
 20 25 30

Gly Thr Pro Gln Gly Leu Pro Val Pro Ile Ser Glu Gly Ser Met Lys
 35 40 45

Ser Phe Leu Pro Val His Thr Ile Val Leu Ile Arg Glu Asn Val Cys
 50 55 60

Lys Cys Gly Tyr Ala Gln Ser Gln His Met Glu Gly Thr Gln Ile Asn
 65 70 75 80

Gln Ser Glu Lys Trp Asn Tyr Lys Lys His Thr Lys Glu Phe Pro Thr
 85 90 95

Asp Ala Phe Gly Asp Ile Gln Phe Glu Thr Leu Gly Lys Lys Gly Lys
 100 105 110

Tyr Ile Arg Leu Ser Cys Asp Thr Asp Ala Glu Ile Leu Tyr Glu Leu
 115 120 125

Leu Thr Gln His Trp His Leu Lys Thr Pro Asn Leu Val Ile Ser Val
 130 135 140

Thr Gly Gly Ala Lys Asn Phe Ala Leu Lys Pro Arg Met Arg Lys Ile
 145 150 155 160

Phe Ser Arg Leu Ile Tyr Ile Ala Gln Ser Lys Gly Ala Trp Ile Leu
 165 170 175

Thr Gly Gly Thr His Tyr Gly Leu Met Lys Tyr Ile Gly Glu Val Val
 180 185 190

Arg Asp Asn Thr Ile Ser Arg Ser Ser Glu Glu Asn Ile Val Ala Ile
 195 200 205

Gly Ile Ala Ala Trp Gly Met Val Ser Asn Arg Asp Thr Leu Ile Arg
 210 215 220

Asn Cys Asp Ala Glu Gly Tyr Phe Leu Ala Gln Tyr Leu Met Asp Asp
 225 230 235 240

Phe Thr Arg Asp Pro Leu Tyr Ile Leu Asp Asn Asn His Thr His Leu
 245 250 255

Leu Leu Val Asp Asn Gly Cys His Gly His Pro Thr Val Glu Ala Lys
 260 265 270

Leu Arg Asn Gln Leu Glu Lys Tyr Ile Ser Glu Arg Thr Ile Gln Asp
 275 280 285

Ser Asn Tyr Gly Gly Lys Ile Pro Ile Val Cys Phe Ala Gln Gly Gly
 290 295 300

Gly Lys Glu Thr Leu Lys Ala Ile Asn Thr Ser Ile Lys Asn Lys Ile
 305 310 315 320

Pro Cys Val Val Val Glu Gly Ser Gly Gln Ile Ala Asp Val Ile Ala
 325 330 335

Ser Leu Val Glu Val Glu Asp Ala Leu Thr Ser Ser Ala Val Lys Glu
340 345 350

Lys Leu Val Arg Phe Leu Pro Arg Thr Val Ser Arg Leu Pro Glu Glu
355 360 365

Glu Thr Glu Ser Trp Ile Lys Trp Leu Lys Glu Ile Leu Glu Cys Ser
370 375 380

His Leu Leu Thr Val Ile Lys Met Glu Glu Ala Gly Asp Glu Ile Val
385 390 395 400

Ser Asn Ala Ile Ser Tyr Ala Leu Tyr Lys Ala Phe Ser Thr Ser Glu
405 410 415

Gln Asp Lys Asp Asn Trp Asn Gly Gln Leu Lys Leu Leu Leu Glu Trp
420 425 430

Asn Gln Leu Asp Leu Ala Asn Asp Glu Ile Phe Thr Asn Asp Arg Arg
435 440 445

Trp Glu Lys Ser Lys Pro Arg Leu Arg Asp Thr Ile Ile Gln Val Thr
450 455 460

Trp Leu Glu Asn Gly Arg Ile Lys Val Glu Ser Lys Asp Val Thr Asp
465 470 475 480

Gly Lys Ala Ser Ser His Met Leu Val Val Leu Lys Ser Ala Asp Leu
485 490 495

Gln Glu Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys Phe Val
500 505 510

Arg Leu Phe Leu Glu Asn Gly Leu Asn Leu Arg Lys Phe Leu Thr His
515 520 525

Asp Val Leu Thr Glu Leu Phe Ser Asn His Phe Ser Thr Leu Val Tyr
530 535 540

Arg Asn Leu Gln Ile Ala Lys Asn Ser Tyr Asn Asp Ala Leu Leu Thr
545 550 555 560

Phe Val Trp Lys Leu Val Ala Asn Phe Arg Arg Gly Phe Arg Lys Glu
565 570 575

Asp Arg Asn Gly Arg Asp Glu Met Asp Ile Glu Leu His Asp Val Ser
580 585 590

Pro Ile Thr Arg His Pro Leu Gln Ala Leu Phe Ile Trp Ala Ile Leu
595 600 605

Gln Asn Lys Lys Glu Leu Ser Lys Val Ile Trp Glu Gln Thr Arg Gly
610 615 620

Cys Thr Leu Ala Ala Leu Gly Ala Ser Lys Leu Leu Lys Thr Leu Ala
625 630 635 640

Lys Val Lys Asn Asp Ile Asn Ala Ala Gly Glu Ser Glu Glu Leu Ala
645 650 655

Asn Glu Tyr Glu Thr Arg Ala Val Glu Leu Phe Thr Glu Cys Tyr Ser
 660 665 670
 Ser Asp Glu Asp Leu Ala Glu Gln Leu Leu Val Tyr Ser Cys Glu Ala
 675 680 685
 Trp Gly Gly Ser Asn Cys Leu Glu Leu Ala Val Glu Ala Thr Asp Gln
 690 695 700
 His Phe Ile Ala Gln Pro Gly Val Gln Arg Gly Gly Leu Cys Pro Ser
 705 710 715 720
 His Ala Cys Lys Asp Ala Asp Asp Ala Leu Ile Ser Gly Ser Arg Lys
 725 730 735
 Lys Pro Val Asp Lys His Lys Leu Leu Trp Tyr Tyr Val Ala Phe
 740 745 750
 Phe Thr Ser Pro Phe Val Val Phe Ser Trp Asn Val Val Phe Tyr Ile
 755 760 765
 Ala Phe Leu Leu Leu Phe Ala Tyr Val Leu Leu Met Asp Phe His Ser
 770 775 780
 Val Pro His Pro Pro Glu Leu Val Leu Tyr Ser Leu Val Phe Val Leu
 785 790 795 800
 Phe Cys Asp Glu Val Arg Gln Met Glu Gln Gly Val Ala Leu Val Glu
 805 810 815
 Glu Ala Arg Ala Ala Gln Glu Pro Thr Glu Gly Val Gly Ser Gly
 820 825 830
 Met Val Gly Cys Arg Ser Arg Ala Leu Pro His Gly Lys Ala Ala Thr
 835 840 845
 Ala Arg Pro Gly Ser Arg Ser Arg His Ser Phe His Thr Ser Leu Gln
 850 855 860
 Ala Glu Gly Ala Ser Ser Gly Leu Gly Gln Pro Arg Lys Gly Leu Pro
 865 870 875 880
 Gln Cys Ser Gly Gly Leu Lys Gly Ser Ser Ala Ala Lys Val Gly
 885 890 895
 Ala Gln Ala Glu Glu Val Pro Arg Ala Ser Glu Gly Cys Glu Asp Cys
 900 905 910
 Gln His Ala Val Thr Ser Gln Lys Arg Lys Gly Leu Ala Asp Val Leu
 915 920 925
 Ser Arg Thr Gly Asn Asn Trp Asp Ser Val Cys Pro Thr Ser Gly Trp
 930 935 940
 Tyr Val Asn Gly Val Asn Tyr Phe Thr Asp Leu Trp Asn Val Met Asp
 945 950 955 960
 Thr Leu Gly Leu Phe Tyr Phe Ile Ala Gly Ile Val Phe Arg Leu His
 965 970 975

Ser Ser Asn Lys Ser Ser Leu Tyr Ser Gly Arg Val Ile Phe Cys Leu
 980 985 990
 Asp Tyr Ile Ile Phe Thr Leu Arg Leu Ile His Ile Phe Thr Val Ser
 995 1000 1005
 Arg Asn Leu Gly Pro Lys Ile Ile Met Leu Gln Arg Met Thr Ser Ile
 1010 1015 1020
 Glu Met Ser Ser Ser Gly Ser Ser Ile Pro Thr Leu Arg Phe Phe Glu
 1025 1030 1035 1040
 Phe Val Val Leu Ile Gln Ser Ile Ser Gly Thr Ser Ser His His Glu
 1045 1050 1055
 Val Met Leu Ser Asp Arg Cys Val Leu Leu Pro Val Pro Leu Cys Gly
 1060 1065 1070
 Val Asp Gly Gly Leu Cys Val Ala Arg Gln Gly Ile Leu Arg Gln Asn
 1075 1080 1085
 Glu Gln Arg Trp Arg Trp Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr
 1090 1095 1100
 Leu Ala Met Phe Gly Gln Val Pro Ser Asp Val Asp Gly Thr Thr Tyr
 1105 1110 1115 1120
 Asp Phe Ala His Cys Thr Phe Thr Gly Asn Glu Ser Lys Pro Leu Cys
 1125 1130 1135
 Val Glu Leu Asp Glu His Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr
 1140 1145 1150
 Ile Pro Leu Val Cys Ile Tyr Met Leu Ser Thr Asn Ile Leu Leu Val
 1155 1160 1165
 Asn Leu Leu Val Ala Met Phe Gly Cys Val Ala Gly Gly Leu Val Gln
 1170 1175 1180
 Val Leu Asp Phe Gly Thr Glu Asn Asn Leu Lys Val Ser Gln Lys Gln
 1185 1190 1195 1200
 Lys Gln Ala Arg Glu Leu Thr Ala Lys Pro Lys Tyr Thr Leu Ala Ala
 1205 1210 1215
 Ala Gly Phe Arg Arg Trp Thr Ser Ala Val Thr Ala Cys Leu Gln Pro
 1220 1225 1230
 Ala Arg Cys Leu Pro Gly Thr Gly Arg Gln Gly His Lys Ile Ser Leu
 1235 1240 1245
 Glu Met His Lys Gly Lys Ile Ala Glu Phe Ser Gln Gly Gln His Gln
 1250 1255 1260
 Met Ala Thr Gly Cys Gln Gly Asp Phe Lys Asn His Leu Arg Trp Gly
 1265 1270 1275 1280
 Gly Tyr Thr Val Gly Thr Val Gln Glu Asn Asn Asp Gln Val Trp Lys
 1285 1290 1295

Phe Gln Arg Tyr Phe Leu Val Gln Glu Tyr Cys Ser Arg Leu Asn Ile
 1300 1305 1310
 Pro Phe Pro Phe Ile Val Phe Ala Tyr Phe Tyr Met Val Val Lys Lys
 1315 1320 1325
 Cys Phe Lys Cys Cys Cys Lys Glu Lys Asn Met Glu Ser Ser Val Cys
 1330 1335 1340
 Ser Val Glu Ala Gly Glu Asp Ala Tyr Asn Tyr Arg Glu His Lys Glu
 1345 1350 1355 1360
 Gly Ser Lys Glu Leu Phe Gly Ser Gln Cys Ala Leu Met Leu Val Phe
 1365 1370 1375
 Ala Ala Thr Leu Ile Arg Cys Leu Phe Tyr Leu Glu Gly Ile Gly Asn
 1380 1385 1390

Ala

<210> 3
 <211> 651
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: PBH1 peptide
 sequence

<400> 3
 Val Cys Lys Cys Gly Tyr Ala Gln Ser Gln His Met Glu Gly Thr Gln
 1 5 10 15
 Ile Asn Gln Ser Glu Lys Trp Asn Tyr Lys Lys His Thr Lys Glu Phe
 20 25 30
 Pro Thr Asp Ala Phe Gly Asp Ile Gln Phe Glu Thr Leu Gly Lys Lys
 35 40 45
 Gly Lys Tyr Ile Arg Leu Ser Cys Asp Thr Asp Ala Glu Ile Leu Tyr
 50 55 60
 Glu Leu Leu Thr Gln His Trp His Leu Lys Thr Pro Asn Leu Val Ile
 65 70 75 80
 Ser Val Thr Gly Ala Lys Asn Phe Ala Leu Lys Pro Arg Met Arg
 85 90 95
 Lys Ile Phe Ser Arg Leu Ile Tyr Ile Ala Gln Ser Lys Gly Ala Trp
 100 105 110
 Ile Leu Thr Gly Gly Thr His Tyr Gly Leu Met Lys Tyr Ile Gly Glu
 115 120 125
 Val Val Arg Asp Asn Thr Ile Ser Arg Ser Ser Glu Glu Asn Ile Val
 130 135 140
 Ala Ile Gly Ile Ala Ala Trp Gly Met Val Ser Asn Arg Asp Thr Leu
 145 150 155 160

Ile Arg Asn Cys Asp Ala Glu Gly Tyr Phe Leu Ala Gln Tyr Leu Met
 165 170 175
 Asp Asp Phe Thr Arg Asp Pro Leu Tyr Ile Leu Asp Asn Asn His Thr
 180 185 190
 His Leu Leu Leu Val Asp Asn Gly Cys His Gly His Pro Thr Val Glu
 195 200 205
 Ala Lys Leu Arg Asn Gln Leu Glu Lys Tyr Ile Ser Glu Arg Thr Ile
 210 215 220
 Gln Asp Ser Asn Tyr Gly Gly Lys Ile Pro Ile Val Cys Phe Ala Gln
 225 230 235 240
 Gly Gly Gly Lys Glu Thr Leu Lys Ala Ile Asn Thr Ser Ile Lys Asn
 245 250 255
 Lys Ile Pro Cys Val Val Glu Gly Ser Gly Gln Ile Ala Asp Val
 260 265 270
 Ile Ala Ser Leu Val Glu Val Glu Asp Ala Leu Thr Ser Ser Ala Val
 275 280 285
 Lys Glu Lys Leu Val Arg Phe Leu Pro Arg Thr Val Ser Arg Leu Pro
 290 295 300
 Glu Glu Glu Thr Glu Ser Trp Ile Lys Trp Leu Lys Glu Ile Leu Glu
 305 310 315 320
 Cys Ser His Leu Leu Thr Val Ile Lys Met Glu Glu Ala Gly Asp Glu
 325 330 335
 Ile Val Ser Asn Ala Ile Ser Tyr Ala Leu Tyr Lys Ala Phe Ser Thr
 340 345 350
 Ser Glu Gln Asp Lys Asp Asn Trp Asn Gly Gln Leu Lys Leu Leu Leu
 355 360 365
 Glu Trp Asn Gln Leu Asp Leu Ala Asn Asp Glu Ile Phe Thr Asn Asp
 370 375 380
 Arg Arg Trp Glu Lys Ser Lys Pro Arg Leu Arg Asp Thr Ile Ile Gln
 385 390 395 400
 Val Thr Trp Leu Glu Asn Gly Arg Ile Lys Val Glu Ser Lys Asp Val
 405 410 415
 Thr Asp Gly Lys Ala Ser Ser His Met Leu Val Val Leu Lys Ser Ala
 420 425 430
 Asp Leu Gln Glu Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys
 435 440 445
 Phe Val Arg Leu Phe Leu Glu Asn Gly Leu Asn Leu Arg Lys Phe Leu
 450 455 460
 Thr His Asp Val Leu Thr Glu Leu Phe Ser Asn His Phe Ser Thr Leu
 465 470 475 480

Val Tyr Arg Asn Leu Gln Ile Ala Lys Asn Ser Tyr Asn Asp Ala Leu
 485 490 495
 Leu Thr Phe Val Trp Lys Leu Val Ala Asn Phe Arg Arg Gly Phe Arg
 500 505 510
 Lys Glu Asp Arg Asn Gly Arg Asp Glu Met Asp Ile Glu Leu His Asp
 515 520 525
 Val Ser Pro Ile Thr Arg His Pro Leu Gln Ala Leu Phe Ile Trp Ala
 530 535 540
 Ile Leu Gln Asn Lys Lys Glu Leu Ser Lys Val Ile Trp Glu Gln Thr
 545 550 555 560
 Arg Gly Cys Thr Leu Ala Ala Leu Gly Ala Ser Lys Leu Leu Lys Thr
 565 570 575
 Leu Ala Lys Val Lys Asn Asp Ile Asn Ala Ala Gly Glu Ser Glu Glu
 580 585 590
 Leu Ala Asn Glu Tyr Glu Thr Arg Ala Val Glu Leu Phe Thr Glu Cys
 595 600 605
 Tyr Ser Ser Asp Glu Asp Leu Ala Glu Gln Leu Leu Val Tyr Ser Cys
 610 615 620
 Glu Ala Trp Gly Gly Ser Asn Cys Leu Glu Leu Ala Val Glu Ala Thr
 625 630 635 640
 Asp Gln His Phe Ile Ala Gln Pro Gly Val Gln
 645 650

<210> 4
 <211> 649
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:transient
 receptor potential-related channel 7 (TRPC7)
 peptide sequence

<400> 4
 Val Cys Gln Cys Gly Tyr Thr His Glu Gln His Leu Glu Glu Ala Thr
 1 5 10 15
 Lys Pro His Thr Phe Gln Gly Thr Gln Trp Asp Pro Lys Lys His Val
 20 25 30
 Gln Glu Met Pro Thr Asp Ala Phe Gly Asp Ile Val Phe Thr Gly Leu
 35 40 45
 Ser Gln Lys Val Lys Lys Tyr Val Arg Val Ser Gln Asp Thr Pro Ser
 50 55 60
 Ser Val Ile Tyr His Leu Met Thr Gln His Trp Gly Leu Asp Val Pro
 65 70 75 80

Asn Leu Leu Ile Ser Val Thr Gly Gly Ala Lys Asn Phe Asn Met Lys
 85 90 95
 Pro Arg Leu Lys Ser Ile Phe Arg Arg Gly Leu Val Lys Val Ala Gln
 100 105 110
 Thr Thr Gly Ala Trp Ile Ile Thr Gly Gly Ser His Thr Gly Val Met
 115 120 125
 Lys Gln Val Gly Glu Ala Val Arg Asp Phe Ser Leu Ser Ser Ser Tyr
 130 135 140
 Lys Glu Gly Glu Leu Ile Thr Ile Gly Val Ala Thr Trp Gly Thr Val
 145 150 155 160
 His Arg Arg Glu Gly Leu Ile His Pro Thr Gly Ser Phe Pro Ala Glu
 165 170 175
 Tyr Ile Leu Asp Glu Asp Gly Gln Gly Asn Leu Thr Cys Leu Asp Ser
 180 185 190
 Asn His Ser His Phe Ile Leu Val Asp Asp Gly Thr His Gly Gln Tyr
 195 200 205
 Gly Val Glu Ile Pro Leu Arg Thr Arg Leu Glu Lys Phe Ile Ser Glu
 210 215 220
 Gln Thr Lys Glu Arg Gly Gly Val Ala Ile Lys Ile Pro Ile Val Cys
 225 230 235 240
 Val Val Leu Glu Gly Gly Pro Gly Thr Leu His Thr Ile Asp Asn Ala
 245 250 255
 Thr Thr Asn Gly Thr Pro Cys Val Val Val Glu Gly Ser Gly Arg Val
 260 265 270
 Ala Asp Val Ile Ala Gln Val Ala Asn Leu Pro Val Ser Asp Ile Thr
 275 280 285
 Ile Ser Leu Ile Gln Gln Lys Leu Ser Val Phe Phe Gln Glu Met Phe
 290 295 300
 Glu Thr Phe Thr Glu Ser Arg Ile Val Glu Trp Thr Lys Lys Ile Gln
 305 310 315 320
 Asp Ile Val Arg Arg Gln Leu Leu Thr Val Phe Arg Glu Gly Lys
 325 330 335
 Asp Gly Gln Gln Asp Val Asp Val Ala Ile Leu Gln Ala Leu Lys
 340 345 350
 Ala Ser Arg Ser Gln Asp His Phe Gly His Glu Asn Trp Asp His Gln
 355 360 365
 Leu Lys Leu Ala Val Ala Trp Asn Arg Val Asp Ile Ala Arg Ser Glu
 370 375 380
 Ile Phe Met Asp Glu Trp Gln Trp Lys Pro Ser Asp Leu His Pro Thr
 385 390 395 400

Met Thr Ala Ala Leu Ile Ser Asn Lys Pro Glu Phe Val Lys Leu Phe
 405 410 415
 Leu Glu Asn Gly Val Gln Leu Lys Glu Phe Val Thr Trp Asp Thr Leu
 420 425 430
 Leu Tyr Leu Tyr Glu Asn Leu Asp Pro Ser Cys Leu Phe His Ser Lys
 435 440 445
 Leu Gln Lys Val Leu Val Glu Asp Pro Glu Arg Pro Ala Cys Ala Pro
 450 455 460
 Ala Ala Pro Arg Leu Gln Met His His Val Ala Gln Val Leu Arg Glu
 465 470 475 480
 Leu Leu Gly Asp Phe Thr Gln Pro Leu Tyr Pro Arg Pro Arg His Asn
 485 490 495
 Asp Arg Leu Arg Leu Leu Leu Pro Val Pro His Val Lys Leu Asn Val
 500 505 510
 Gln Gly Val Ser Leu Arg Ser Leu Tyr Lys Arg Ser Ser Gly His Val
 515 520 525
 Thr Phe Thr Met Asp Pro Ile Arg Asp Leu Leu Ile Trp Ala Ile Val
 530 535 540
 Gln Asn Arg Arg Glu Leu Ala Gly Ile Ile Trp Ala Gln Ser Gln Asp
 545 550 555 560
 Cys Ile Ala Ala Ala Leu Ala Cys Ser Lys Ile Leu Lys Glu Leu Ser
 565 570 575
 Lys Glu Glu Glu Asp Thr Asp Ser Ser Glu Glu Met Leu Ala Leu Ala
 580 585 590
 Glu Glu Tyr Glu His Arg Ala Ile Gly Val Phe Thr Glu Cys Tyr Arg
 595 600 605
 Lys Asp Glu Glu Arg Ala Gln Lys Leu Leu Thr Arg Val Ser Glu Ala
 610 615 620
 Trp Gly Lys Thr Thr Cys Leu Gln Leu Ala Leu Glu Ala Lys Asp Met
 625 630 635 640
 Lys Phe Val Ser His Gly Gly Ile Gln
 645

<210> 5
 <211> 8
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence:consensus
 peptide sequence from PBH1 and TRPC7 alignment

<400> 5
 Pro Thr Asp Ala Phe Gly Asp Ile
 1 5

<210> 6
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 6
Thr Gln His Trp
1

<210> 7
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 7
Ile Ser Val Thr Gly Gly Ala Lys Asn Phe
1 5 10

<210> 8
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 8
Gly Ala Trp Ile
1

<210> 9
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 9
Lys Ile Pro Ile Val Cys
1 5

<210> 10
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 10
Pro Cys Val Val Val Glu Gly Ser Gly
1 5

<210> 11
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 11
Ala Asp Val Ile Ala
1 5

<210> 12
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 12
Leu Leu Thr Val
1

<210> 13
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 13
Gln Leu Lys Leu
1

<210> 14
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 14
Leu Phe Leu Glu Asn Gly
1 5

<210> 15
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 15
Ile Trp Ala Ile
1

<210> 16
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 16
Phe Thr Glu Cys Tyr
1 5

<210> 17
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 17
Glu Ala Trp Gly
1

<210> 18
<211> 57
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PBH1 peptide
sequence

<400> 18
Ala Phe Phe Thr Ser Pro Phe Val Val Phe Ser Trp Asn Val Val Phe
1 5 10 15

Tyr Ile Ala Phe Leu Leu Leu Phe Ala Tyr Val Leu Leu Met Asp Phe
20 25 30

His Ser Val Pro His Pro Pro Glu Leu Val Leu Tyr Ser Leu Val Phe
35 40 45

Val Leu Phe Cys Asp Glu Val Arg Gln
50 55

<210> 19
<211> 57
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:transient
receptor potential-related channel 7 (TRPC7)
peptide sequence

<400> 19
Ala Phe Phe Thr Ala Pro Val Val Val Phe His Leu Asn Ile Leu Ser
1 5 10 15

Tyr Phe Ala Phe Leu Cys Leu Phe Ala Tyr Val Leu Met Val Asp Phe
20 25 30

Gln Pro Val Pro Ser Trp Cys Glu Cys Ala Ile Tyr Leu Trp Leu Phe
35 40 45

Ser Leu Val Cys Glu Glu Met Arg Gln
50 55

<210> 20
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 20
Ala Phe Phe Thr
1

<210> 21
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 21
Leu Phe Ala Tyr Val Leu
1 5

```

<210> 22
<211> 225
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PBH1 peptide
      sequence

<220>
<221> MOD_RES
<222> (77)..(82)
<223> Xaa = low complexity amino acid from BLASTP search

<400> 22
Tyr Phe Thr Asp Leu Trp Asn Val Met Asp Thr Leu Gly Leu Phe Tyr
  1           5           10          15

Phe Ile Ala Gly Ile Val Phe Arg Leu His Ser Ser Asn Lys Ser Ser
  20          25          30

Leu Tyr Ser Gly Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile Phe Thr
  35          40          45

Leu Arg Leu Ile His Ile Phe Thr Val Ser Arg Asn Leu Gly Pro Lys
  50          55          60

Ile Ile Met Leu Gln Arg Met Thr Ser Ile Glu Met Xaa Xaa Xaa Xaa
  65          70          75          80

Xaa Xaa Ile Pro Thr Leu Arg Phe Phe Glu Phe Val Val Leu Ile Gln
  85          90          95

Ser Ile Ser Gly Thr Ser Ser His His Glu Val Met Leu Ser Asp Arg
  100         105         110

Cys Val Leu Leu Pro Val Pro Leu Cys Gly Val Asp Gly Gly Leu Cys
  115         120         125

Val Ala Arg Gln Gly Ile Leu Arg Gln Asn Glu Gln Arg Trp Arg Trp
  130         135         140

Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr Leu Ala Met Phe Gly Gln
  145         150         155         160

Val Pro Ser Asp Val Asp Gly Thr Thr Tyr Asp Phe Ala His Cys Thr
  165         170         175

Phe Thr Gly Asn Glu Ser Lys Pro Leu Cys Val Glu Leu Asp Glu His
  180         185         190

Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr Ile Pro Leu Val Cys Ile
  195         200         205

Tyr Met Leu Ser Thr Asn Ile Leu Leu Val Asn Leu Leu Val Ala Met
  210         215         220

Phe
225

```

<210> 23
<211> 186
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:transient receptor potential-related channel 7 (TRPC7) peptide sequence

<400> 23
Tyr Phe Ser Asp Phe Trp Asn Lys Leu Asp Val Gly Ala Ile Leu Leu
1 5 10 15

Phe Val Ala Gly Leu Thr Cys Arg Leu Ile Pro Ala Thr Leu Tyr Pro
20 25 30

Gly Arg Val Ile Leu Ser Leu Asp Phe Ile Leu Phe Cys Leu Arg Leu
35 40 45

Met His Ile Phe Thr Ile Ser Lys Thr Leu Gly Pro Lys Ile Ile
50 55 60

Val Lys Arg Met Met Lys Asp Val Phe Phe Leu Phe Leu Leu Ala
65 70 75 80

Val Trp Val Val Ser Phe Gly Val Ala Lys Gln Ala Ile Leu Ile His
85 90 95

Asn Glu Arg Arg Val Asp Trp Leu Phe Arg Gly Ala Val Tyr His Ser
100 105 110

Tyr Leu Thr Ile Phe Gly Gln Ile Pro Gly Tyr Ile Asp Gly Val Asn
115 120 125

Phe Asn Pro Glu His Cys Ser Pro Asn Gly Thr Asp Pro Tyr Lys Pro
130 135 140

Lys Cys Pro Glu Ser Asp Ala Thr Gln Gln Arg Pro Ala Phe Pro Glu
145 150 155 160

Trp Leu Thr Val Leu Leu Leu Cys Leu Tyr Leu Leu Phe Thr Asn Ile
165 170 175

Leu Leu Leu Asn Leu Leu Ile Ala Met Phe
180 185

<210> 24
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus peptide sequence from PBH1 and TRPC7 alignment

<400> 24
Gly Arg Val Ile
1

<210> 25
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 25
His Ile Phe Thr
1

<210> 26
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 26
Leu Gly Pro Lys Ile Ile
1 5

<210> 27
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 27
Phe Pro Glu Trp
1

<210> 28
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:consensus
peptide sequence from PBH1 and TRPC7 alignment

<400> 28
Thr Asn Ile Leu Leu
1 5

<210> 29
<211> 45
<212> PRT
<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:PBH1 peptide
 sequence

<400> 29
 Tyr Thr Val Gly Thr Val Gln Glu Asn Asn Asp Gln Val Trp Lys Phe
 1 5 10 15

Gln Arg Tyr Phe Leu Val Gln Glu Tyr Cys Ser Arg Leu Asn Ile Pro
 20 25 30

Phe Pro Phe Ile Val Phe Ala Tyr Phe Tyr Met Val Val
 35 40 45

<210> 30
 <211> 45
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:transient
 receptor potential-related channel 7 (TRPC7)
 peptide sequence

<400> 30
 Tyr Thr Phe Gln Gln Val Gln Glu His Thr Asp Gln Ile Trp Lys Phe
 1 5 10 15

Gln Arg His Asp Leu Ile Glu Glu Tyr His Gly Arg Pro Ala Ala Pro
 20 25 30

Pro Pro Phe Ile Leu Leu Ser His Leu Gln Leu Phe Ile
 35 40 45

<210> 31
 <211> 5
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:consensus
 peptide sequence for PBH1 and TRPC7 alignment

<400> 31
 Trp Lys Phe Gln Arg
 1 5

<210> 32
 <211> 2181
 <212> DNA
 <213> Homo sapiens

<220>
 <223> exons 1-15 of PBH1

<400> 32
 gccagcttct acgctgcctt caggacacag acgtgccccaa tcatggcttc ttggtgcttg 60
 attacagctc aagtctgggt caaatgaag ggagatgtgg tgggcagccg cagccctcag 120

caacacaagg ggagcacagg aacacctcg ggtcttccag ttcccatctc agaaggctca 180
 atgaaatcc tccttcctgt ccacaccatc gtgttatca gggagaatgt gtgcagtgt 240
 ggctatgcc agagccagca catggaaggc acccagatca accaaagtga gaaatggAAC 300
 tacaagaaac acaccaagga attccttacc gacgccttg gggatattca gtttgagaca 360
 ctggggaaaga aagggaaagta tatacgtctg tcctgcgaca cggacgcgga aatcctttac 420
 gagctgtga cccagactg gcacctgaaa acacccaacc tggtcatttc tggaccggg 480
 ggcgccaaga acttcgcctt gaagccgcgc atgcgaaga tttcagccg gtcatctac 540
 atcgcgcagt ccaaagggtgc ttggatttc acgggaggca cccattatgg cctgatgaag 600
 tacatgggg aggtggtag agataacacc atcagcagga gttcagagga gaatattgtg 660
 gccattggca tagcagctt gggcatggc tccaaacggg acaccctcat caggaattgc 720
 gatgctgagg gctattttt agcccgatc cttatggatg acttcacaa agatccactg 780
 tatatcctgg acaacaacca cacatattt ctgcgtgtgg acaatggctg tcatggacat 840
 cccactgtcg aagcaaagct ccggaaatcg ctagagaagt atatctctga ggcacttatt 900
 caagattcca actatggtgg caagatcccc attgtgttt ttgcccagg aggtggaaaa 960
 gagactttga aagccatcaa tacctccatc aaaaataaaa ttcttgcgtgt ggtggggaa 1020
 ggctcgggcc agatcgctga tttgtatcgct agcctgggtgg aggtggagga tgccctgaca 1080
 tcttctgccc tcaaggagaa gctggtgccg ttttacccc gcacgggtgc cccgctgcct 1140
 gaggaggaga ctgagagttg gatcaaattt gtcggaaatgg ttctcaatgc ttcaccta 1200
 ttaacagttt taaaatggaa agaagctggg gatgaaattt tgagcaatgc catctctac 1260
 gctctataca aagcccttcag caccagtgg caagacaagg ataactggaa tgggcagctg 1320
 aagttctgc tggagtgaa ccagctggac ttagccatg atgagattt cacaatgac 1380
 cggccatggg agaagagcaa accgaggctc agagacacaa taatccaggt cacatggctg 1440
 gaaaatggta gaatcaaggt tgagagcaaa gatgtgactg acggcaaaagc ctcttcctcat 1500
 atgctgggtt ttctcaagtc tgctgaccc ttcaaggatca ttttacggc tctcataaaag 1560
 gacagaccca agtttgcgtt cctctttctg gagaatggct tgaacctacg gaagtttctc 1620
 accccatgatg tcctcactga actcttcctcc aaccacttca gcacgctgt gtaccggaaat 1680
 ctgcagatcg ccaagaattt ctataatgtt gcccctctca cgtttgtctg gaaactgggt 1740
 gcgaaacttcc gaagaggctt ccggaaaggaa gacagaaatg gcccggacga gatggacata 1800
 gaactccacg acgtgtctcc tattactcgg cacccttgc aagctctt catctggggcc 1860
 attcttcaga ataagaagga actctccaaa gtcatttggg agcagaccag gggctgcact 1920
 ctggcagccc tgggagccag caagcttctg aagactctgg ccaaagtgaa gaacgacatc 1980
 aatgctgctg gggagttccga ggagctgctt aatgagatcg agacccgggc ttttgagctg 2040
 ttcactgagt gttacagcag cgatgaagac ttggcagaac agctgtgtt ctattcctgt 2100
 gaagcttggg gtggaaagcaa ctgtctggag ctggcgggtgg aggccacaga ccagcatttc 2160
 atcgcccagc ctggggtcca g 2181

<210> 33
 <211> 283
 <212> DNA
 <213> Homo sapiens

<220>
 <223> exon 16 of PBH1

<400> 33
 gagggggaggg ctgtgcccgt cccatgcttca aaggatgct gacgatgccc ttatctctgg 60
 gtccaggaag aaacccgtcg acaagcacaa gaagctgctt tggtaatctatg tggcggttctt 120
 cacctcccccc ttctgtgtct ttccttgcgaa tttgtgtcttacatcgctt tcctcctgt 180
 gtttgccttac gtgctgcttca tggatttcca ttccggtgcac caccctcccg agctggtcct 240
 gtactcgctg gtctttgtcc ttttctgtga tgaagtgaga cag 283

<210> 34
 <211> 1761
 <212> DNA
 <213> Homo sapiens

<220>
 <223> exons 17-28 of PBH1

<400> 34

atggaggcagg ggggtggcgct cgtggaggag gctcgccag cacaggagcc cactgagggg 60
 gtggggaggct caggcatggt gggctgcagg tcccgagccc tgccccacgg gaaggcagct 120
 acggcccggcc ccgggttcccg ctcacgcac tccttccaca cttccctgca agctgagggt 180
 gccagctctg gccttggcca gcccagaaag gggctccac agtgcagcgg tgggctgaag 240
 ggctcctcaa gtgcccggaa agtggggagcc caggcagagg aggtgcccag agcaagcgg 300
 ggctgtgagg actgccagca cgctgtcacc tctcagaagc gtaaggact ggctgatgtc 360
 ttatcacgga ctgggaacaa ctgggacagt gtctgcccc caagtgggtg gtacgtaaat 420
 ggggtgaatt attttactga cctgtggaaat gtatggaca cgctggggct ttttacttc 480
 atagcaggaa ttgtatttcg gctccactt tctaataaaa gctctttgtt ttctggacga 540
 gtcattttct gtctggacta cattatttc actctaagat tgatccacat ttttactgtt 600
 agcagaaaact taggacccaa gattataatg ctgcagaggg tgacgagcat tgagatgagc 660
 tcatctggaa gctccattcc aacactgagg ttctttgagt ttgtgggtt aattcaaagc 720
 atttctggga catccagtc tcatgaagtc atgttatctg atcgatgtt tcttcttc 780
 gttcctctt gcggtgtgga tgggtggcctt tgcgtggcca ggcaggat ccttaggcag 840
 aatgagcagc gctggaggtg gatattcgt tcggtcatct acgagcccta cctggccatg 900
 ttcggccagg tgcccagtga cgtggatggt accacgtatg actttgccc ctgcaccc 960
 actgggaatg agtccaaagcc actgtgtgtg gagctggatg agcacaacct gccccggttc 1020
 cccgagtggta tcaccatccc cctgggtgtc atctacatgt tatccaccaa catcctgctg 1080
 gtcaacctgc tggtcgccat gtttgggtgt gtagccggtg ggctagttca ggttcttgac 1140
 tttgggacag aaaataattt gaaagtggatg caaaagcaaa agcaagcaag agagttgact 1200
 gcaaagccaa agtacactt agcagccgt ggttccagga gatggaccc agtgttcaact 1260
 gcatgtctcc agccagctag gtgtttgcca gggacaggac gccaaggatca caagatatcg 1320
 ctggagatgc acaaaggaa aattgcagaa ttctctcagg gacaacacca gatggccact 1380
 ggttgtcaag gagacttaa gaaccatctc agatggggcg gctacacggt gggcaccgtc 1440
 caggagaaca atgaccaggt ctggaagttc cagaggtact tcctggtgca ggagttactgc 1500
 agccgcctca atatcccctt ccccttcatc gtcttcgctt acttctacat ggtgggtgaag 1560
 aagtgttca agtgggtgtc caaggagaaa aacatggagt ctctgtctg ctctgtggag 1620
 gcaggtgaag atgcttacaa ttataggaa cataaggaag gctcaaaaga gctttttggg 1680
 agccagtgtg cttgtatgtc agtcttgc gccactctga ttcgttgcc ttttattt 1740
 gagggcattt gaaatgcgtg a 1761

<210> 35

<211> 713

<212> PRT

<213> Homo sapiens

<220>

<223> exons 1-15 of PBH1

<400> 35

Met	Ala	Ser	Trp	Cys	Leu	Ile	Thr	Ala	Gln	Val	Trp	Val	Lys	Met	Lys
1														15	

Gly	Asp	Val	Val	Gly	Ser	Arg	Ser	Pro	Gln	Gln	His	Lys	Arg	Ser	Thr
														30	
				20				25							

Gly	Thr	Pro	Gln	Gly	Leu	Pro	Val	Pro	Ile	Ser	Glu	Gly	Ser	Met	Lys
														45	
					35			40							

Ser	Phe	Leu	Pro	Val	His	Thr	Ile	Val	Leu	Ile	Arg	Glu	Asn	Val	Cys
															50
								55				60			

Lys	Cys	Gly	Tyr	Ala	Gln	Ser	Gln	His	Met	Glu	Gly	Thr	Gln	Ile	Asn
														65	
									70			75			80

Gln	Ser	Glu	Lys	Trp	Asn	Tyr	Lys	Lys	His	Thr	Lys	Glu	Phe	Pro	Thr
															85
									90						95

Asp Ala Phe Gly Asp Ile Gln Phe Glu Thr Leu Gly Lys Lys Gly Lys
 100 105 110

Tyr Ile Arg Leu Ser Cys Asp Thr Asp Ala Glu Ile Leu Tyr Glu Leu
 115 120 125

Leu Thr Gln His Trp His Leu Lys Thr Pro Asn Leu Val Ile Ser Val
 130 135 140

Thr Gly Gly Ala Lys Asn Phe Ala Leu Lys Pro Arg Met Arg Lys Ile
 145 150 155 160

Phe Ser Arg Leu Ile Tyr Ile Ala Gln Ser Lys Gly Ala Trp Ile Leu
 165 170 175

Thr Gly Gly Thr His Tyr Gly Leu Met Lys Tyr Ile Gly Glu Val Val
 180 185 190

Arg Asp Asn Thr Ile Ser Arg Ser Ser Glu Glu Asn Ile Val Ala Ile
 195 200 205

Gly Ile Ala Ala Trp Gly Met Val Ser Asn Arg Asp Thr Leu Ile Arg
 210 215 220

Asn Cys Asp Ala Glu Gly Tyr Phe Leu Ala Gln Tyr Leu Met Asp Asp
 225 230 235 240

Phe Thr Arg Asp Pro Leu Tyr Ile Leu Asp Asn Asn His Thr His Leu
 245 250 255

Leu Leu Val Asp Asn Gly Cys His Gly His Pro Thr Val Glu Ala Lys
 260 265 270

Leu Arg Asn Gln Leu Glu Lys Tyr Ile Ser Glu Arg Thr Ile Gln Asp
 275 280 285

Ser Asn Tyr Gly Gly Lys Ile Pro Ile Val Cys Phe Ala Gln Gly Gly
 290 295 300

Gly Lys Glu Thr Leu Lys Ala Ile Asn Thr Ser Ile Lys Asn Lys Ile
 305 310 315 320

Pro Cys Val Val Val Glu Gly Ser Gly Gln Ile Ala Asp Val Ile Ala
 325 330 335

Ser Leu Val Glu Val Glu Asp Ala Leu Thr Ser Ser Ala Val Lys Glu
 340 345 350

Lys Leu Val Arg Phe Leu Pro Arg Thr Val Ser Arg Leu Pro Glu Glu
 355 360 365

Glu Thr Glu Ser Trp Ile Lys Trp Leu Lys Glu Ile Leu Glu Cys Ser
 370 375 380

His Leu Leu Thr Val Ile Lys Met Glu Glu Ala Gly Asp Glu Ile Val
 385 390 395 400

Ser Asn Ala Ile Ser Tyr Ala Leu Tyr Lys Ala Phe Ser Thr Ser Glu
 405 410 415

Gln Asp Lys Asp Asn Trp Asn Gly Gln Leu Lys Leu Leu Leu Glu Trp
 420 425 430

Asn Gln Leu Asp Leu Ala Asn Asp Glu Ile Phe Thr Asn Asp Arg Arg
 435 440 445

Trp Glu Lys Ser Lys Pro Arg Leu Arg Asp Thr Ile Ile Gln Val Thr
 450 455 460

Trp Leu Glu Asn Gly Arg Ile Lys Val Glu Ser Lys Asp Val Thr Asp
 465 470 475 480

Gly Lys Ala Ser Ser His Met Leu Val Val Leu Lys Ser Ala Asp Leu
 485 490 495

Gln Glu Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys Phe Val
 500 505 510

Arg Leu Phe Leu Glu Asn Gly Leu Asn Leu Arg Lys Phe Leu Thr His
 515 520 525

Asp Val Leu Thr Glu Leu Phe Ser Asn His Phe Ser Thr Leu Val Tyr
 530 535 540

Arg Asn Leu Gln Ile Ala Lys Asn Ser Tyr Asn Asp Ala Leu Leu Thr
 545 550 555 560

Phe Val Trp Lys Leu Val Ala Asn Phe Arg Arg Gly Phe Arg Lys Glu
 565 570 575

Asp Arg Asn Gly Arg Asp Glu Met Asp Ile Glu Leu His Asp Val Ser
 580 585 590

Pro Ile Thr Arg His Pro Leu Gln Ala Leu Phe Ile Trp Ala Ile Leu
 595 600 605

Gln Asn Lys Lys Glu Leu Ser Lys Val Ile Trp Glu Gln Thr Arg Gly
 610 615 620

Cys Thr Leu Ala Ala Leu Gly Ala Ser Lys Leu Leu Lys Thr Leu Ala
 625 630 635 640

Lys Val Lys Asn Asp Ile Asn Ala Ala Gly Glu Ser Glu Glu Leu Ala
 645 650 655

Asn Glu Tyr Glu Thr Arg Ala Val Glu Leu Phe Thr Glu Cys Tyr Ser
 660 665 670

Ser Asp Glu Asp Leu Ala Glu Gln Leu Leu Val Tyr Ser Cys Glu Ala
 675 680 685

Trp Gly Gly Ser Asn Cys Leu Glu Leu Ala Val Glu Ala Thr Asp Gln
 690 695 700

His Phe Ile Ala Gln Pro Gly Val Gln
 705 710

<210> 36
 <211> 94
 <212> PRT
 <213> Homo sapiens

 <220>
 <223> exon 16 of PBH1

 <400> 36
 Arg Gly Gly Leu Cys Pro Ser His Ala Cys Lys Asp Ala Asp Asp Ala
 1 5 10 15

 Leu Ile Ser Gly Ser Arg Lys Lys Pro Val Asp Lys His Lys Lys Leu
 20 25 30

 Leu Trp Tyr Tyr Val Ala Phe Phe Thr Ser Pro Phe Val Val Phe Ser
 35 40 45

 Trp Asn Val Val Phe Tyr Ile Ala Phe Leu Leu Leu Phe Ala Tyr Val
 50 55 60

 Leu Leu Met Asp Phe His Ser Val Pro His Pro Pro Glu Leu Val Leu
 65 70 75 80

 Tyr Ser Leu Val Phe Val Leu Phe Cys Asp Glu Val Arg Gln
 85 90

<210> 37
 <211> 586
 <212> PRT
 <213> Homo sapiens

 <220>
 <223> exons 17-28 of PBH1

 <400> 37
 Met Glu Gln Gly Val Ala Leu Val Glu Glu Ala Arg Ala Ala Gln Glu
 1 5 10 15

 Pro Thr Glu Gly Val Gly Ser Gly Met Val Gly Cys Arg Ser Arg
 20 25 30

 Ala Leu Pro His Gly Lys Ala Ala Thr Ala Arg Pro Gly Ser Arg Ser
 35 40 45

 Arg His Ser Phe His Thr Ser Leu Gln Ala Glu Gly Ala Ser Ser Gly
 50 55 60

 Leu Gly Gln Pro Arg Lys Gly Leu Pro Gln Cys Ser Gly Gly Leu Lys
 65 70 75 80

 Gly Ser Ser Ser Ala Ala Lys Val Gly Ala Gln Ala Glu Glu Val Pro
 85 90 95

 Arg Ala Ser Glu Gly Cys Glu Asp Cys Gln His Ala Val Thr Ser Gln
 100 105 110

 Lys Arg Lys Gly Leu Ala Asp Val Leu Ser Arg Thr Gly Asn Asn Trp
 115 120 125

Asp Ser Val Cys Pro Thr Ser Gly Trp Tyr Val Asn Gly Val Asn Tyr
 130 135 140
 Phe Thr Asp Leu Trp Asn Val Met Asp Thr Leu Gly Leu Phe Tyr Phe
 145 150 155 160
 Ile Ala Gly Ile Val Phe Arg Leu His Ser Ser Asn Lys Ser Ser Leu
 165 170 175
 Tyr Ser Gly Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile Phe Thr Leu
 180 185 190
 Arg Leu Ile His Ile Phe Thr Val Ser Arg Asn Leu Gly Pro Lys Ile
 195 200 205
 Ile Met Leu Gln Arg Met Thr Ser Ile Glu Met Ser Ser Ser Gly Ser
 210 215 220
 Ser Ile Pro Thr Leu Arg Phe Phe Glu Phe Val Val Leu Ile Gln Ser
 225 230 235 240
 Ile Ser Gly Thr Ser Ser His His Glu Val Met Leu Ser Asp Arg Cys
 245 250 255
 Val Leu Leu Pro Val Pro Leu Cys Gly Val Asp Gly Gly Leu Cys Val
 260 265 270
 Ala Arg Gln Gly Ile Leu Arg Gln Asn Glu Gln Arg Trp Arg Trp Ile
 275 280 285
 Phe Arg Ser Val Ile Tyr Glu Pro Tyr Leu Ala Met Phe Gly Gln Val
 290 295 300
 Pro Ser Asp Val Asp Gly Thr Thr Tyr Asp Phe Ala His Cys Thr Phe
 305 310 315 320
 Thr Gly Asn Glu Ser Lys Pro Leu Cys Val Glu Leu Asp Glu His Asn
 325 330 335
 Leu Pro Arg Phe Pro Glu Trp Ile Thr Ile Pro Leu Val Cys Ile Tyr
 340 345 350
 Met Leu Ser Thr Asn Ile Leu Leu Val Asn Leu Leu Val Ala Met Phe
 355 360 365
 Gly Cys Val Ala Gly Gly Leu Val Gln Val Leu Asp Phe Gly Thr Glu
 370 375 380
 Asn Asn Leu Lys Val Ser Gln Lys Gln Lys Gln Ala Arg Glu Leu Thr
 385 390 395 400
 Ala Lys Pro Lys Tyr Thr Leu Ala Ala Ala Gly Phe Arg Arg Trp Thr
 405 410 415
 Ser Ala Val Thr Ala Cys Leu Gln Pro Ala Arg Cys Leu Pro Gly Thr
 420 425 430
 Gly Arg Gln Gly His Lys Ile Ser Leu Glu Met His Lys Gly Lys Ile
 435 440 445

Ala Glu Phe Ser Gln Gly Gln His Gln Met Ala Thr Gly Cys Gln Gly
 450 455 460
 Asp Phe Lys Asn His Leu Arg Trp Gly Gly Tyr Thr Val Gly Thr Val
 465 470 475 480
 Gln Glu Asn Asn Asp Gln Val Trp Lys Phe Gln Arg Tyr Phe Leu Val
 485 490 495
 Gln Glu Tyr Cys Ser Arg Leu Asn Ile Pro Phe Pro Phe Ile Val Phe
 500 505 510
 Ala Tyr Phe Tyr Met Val Val Lys Lys Cys Phe Lys Cys Cys Cys Lys
 515 520 525
 Glu Lys Asn Met Glu Ser Ser Val Cys Ser Val Glu Ala Gly Glu Asp
 530 535 540
 Ala Tyr Asn Tyr Arg Glu His Lys Glu Gly Ser Lys Glu Leu Phe Gly
 545 550 555 560
 Ser Gln Cys Ala Leu Met Leu Val Phe Ala Ala Thr Leu Ile Arg Cys
 565 570 575
 Leu Phe Tyr Leu Glu Gly Ile Gly Asn Ala
 580 585

<210> 38
 <211> 5
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence:cytokine
 receptor transmembrane protein extracellular
 domain conserved motif

 <220>
 <221> MOD_RES
 <222> (3)
 <223> Xaa = any amino acid

 <400> 38
 Trp Ser Xaa Trp Ser
 1 5

<210> 39
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence:T7- (dT) -24
 primer

 <400> 39
 tttttttttt tttttttttt tttt

<210> 40
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:amino acids
168-180 from PBH1 exons 17-28, extracellular
region used to generate therapeutic antibodies

<400> 40
Leu His Ser Ser Asn Lys Ser Ser Leu Tyr Ser Gly Arg
1 5 10

<210> 41
<211> 68
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:amino acids
274-342 from PBH1 exons 17-28, extracellular
region used to generate therapeutic antibodies

<400> 41
Arg Gln Gly Ile Leu Arg Gln Asn Glu Gln Arg Trp Arg Trp Ile Phe
1 5 10 15

Arg Ser Val Ile Tyr Glu Pro Tyr Leu Ala Met Phe Gly Gln Val Pro
20 25 30

Ser Asp Val Asp Gly Thr Thr Tyr Asp Phe Ala His Cys Thr Phe Thr
35 40 45

Gly Asn Glu Ser Lys Pro Leu Cys Val Glu Leu Asp Glu His Asn Leu
50 55 60

Pro Arg Phe Pro
65

<210> 42
<211> 41
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:amino acids
520-560 from PBH1 exons 17-28, extracellular
region used to generate therapeutic antibodies

<400> 42
Lys Lys Cys Phe Lys Cys Cys Cys Lys Glu Lys Asn Met Glu Ser Ser
1 5 10 15

Val Cys Ser Val Glu Ala Gly Glu Asp Ala Tyr Asn Tyr Arg Glu His
20 25 30

Lys Glu Gly Ser Lys Glu Leu Phe Gly
35 40