University of California San Diego Course: GPIM452 Big Data Analytics

Predicting Stock Profitability with Machine Learning in Python

Author: Amy Huang Date: June 2020

Problem Description

- Currently over 3,671 publicly traded stocks
- Average rate of return for Nasdaq stock: 6%
- Perfect Markets Theory
 - → no way to accurately predict future value of stocks
- Goal: Find out what stocks or industries generate positive ROI

Financial Dataset

- 5 datasets that contain 224 financial indicators of 4,000+ stocks from 2014 to 2018.
- Assuming Price variance (VAR) determines profitability
 - Positive Price VAR → Profitable
 - Negative Price VAR → Unprofitable
- Binary outcome variable
 - Class = 1 if Price VAR > 0
 - Class = 0 if Price $VAR \le 0$

Year	# of stocks/rows			
2014	3808			
2015	4120			
2016	4797			
2017	4960			
2018	4392			

Analysis task

- Use 2017 data set to train and test the ML model and ran it on 2018 data
- Supervised learning using scikit-learn package:
 Use decision tree classifier to solve binary classification problem
- Explanatory variable: financial indicators
- Outcome variable: stock class

2017 Financial Dataset Overview

Pre-analysis: Challenges & Solutions

Challenges	Solutions
Duplicate columns with same values and/or different numbers of nulls	Omit columns with same values and keep columns with fewer nulls
Extreme values/outliers	Omit entries with any values below 1st percentile or above 99th percentile
Large amount of missing values (each entry has at least 1 nulls)	Remove columns with above average number of nulls and then remove entries with any nulls
Numerical columns are on different scales	Normalization based on Z-transform
Categorical information (Sector)	One-hot encoding
Large amount of features	Dimensionality reduction using feature importance score by scikit-learn
Effect of sectors	Construct two models and compare results

Analysis Roadmap

Data cleaning

- Drop duplicate columns
 (columns with same values & columns with same names)
- Drop columns with 1,000+ missing values (unrepresentative indicators)
- Omit rows with any missing values
- 4. Omit rows with any values below 1st percentile and above 99th percentile

Preprocessing

- Dimensionality reduction based on feature importance (# of features: 141 → 10)
- 2. Scale numerical columns with z-transformation
- 3. One-hot encode categorical columns (Sector)
- 4. Merge normalized numerical columns, one-hot columns, and outcome variable into one dataframe

Analysis

- Split data into train, test, and validation sets
- 2. Construct decision tree classifier
- 3. Address overfitting issue by validating the maximum depth of the decision tree
- 4. Hyperparameter tuning
- 5. Accuracy report and model improvement

Preprocessing

Determining Top 10 Important Features

- Used Decision Tree Classifier from scikit-learn package
 - o Label: Class
 - Features: all financial indicators except Price VAR and Sector
 - Random state = 120
 - Class weight = balanced

Analysis I - Splitting datasets

- Splitting data into train, test, and validation datasets
 - o Test size: 20%
 - Validation size: 10% of the remaining data
- Shuffle the result to prevent the order of data from biasing the analysis outcome

Training samples: 1249 Validation samples: 139

Test samples: 348

Analysis II - Deciding Maximum Depth

Accuracy of validation dataset starts falling below its highest number (59%) once tree depth goes over **6**. This means the ability of generalization decreases when the tree splits more than 6 times.

Analysis III - Hyperparameter tuning

Used GridSearchCV to perform 5-fold cross validation

```
GridSearchCV(cv=5, error score='raise-deprecating',
             estimator=DecisionTreeClassifier(class weight=None,
                                              criterion='gini', max depth=None,
                                              max features=None,
                                              max leaf nodes=None,
                                              min impurity decrease=0.0,
                                              min impurity split=None,
                                              min samples leaf=1,
                                              min samples split=2,
                                              min weight fraction leaf=0.0,
                                              presort=False, random state=120,
                                              splitter='best'),
             iid='warn', n jobs=-1,
             param_grid={'class_weight': ['balanced'],
                         'criterion': ['gini', 'entropy'],
                         'max depth': [1, 2, 3, 4, 5, 6],
                         'min samples_split': [2, 3, 4, 5, 6, 7, 8, 9]},
             pre dispatch='2*n jobs', refit=True, return train score=False,
             scoring=None, verbose=0)
```

Results - Best Estimators

Model I: Important features & Sector

Model II: Without Sector

```
DecisionTreeClassifier(class_weight='balanced', criterion='gini', max_depth=2, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=120, splitter='best')
```

Results - Accuracy Report

- Model I: Important features & Sector
 - Train accuracy: 0.69
 - Test accuracy: 0.65

	\$200e00:00=100000000			Contractor Contractor
0	0.75	0.78	0.76	252
1	0.36	0.32	0.34	96
accuracy			0.65	348
macro avg	0.55	0.55	0.55	348
weighted avg	0.64	0.65	0.65	348

recall f1-score

precision

- Model II: Without Sector
 - Train accuracy: 0.64
 - Test accuracy: 0.63

	precision	recall	f1-score	support
0	0.76	0.72	0.74	252
1	0.35	0.39	0.36	96
accuracy			0.63	348
macro avg	0.55	0.55	0.55	348
weighted avg	0.64	0.63	0.64	348

Results - Decision Trees

- Model I: Important features & Sector
 - The Utilities sector is determining factor, followed by tangible book value per share, and gross profit growth

Results - Decision Trees

- Model II: Without Sector
 - Gross profit margin becomes the determining factor, followed by tangible book value per share and price to free cash flows ratio

Application on 2018 data - Accuracy Report

Model I: Important features & Sector

		precision	recall	f1-score	support
	0	0.25	0.74	0.37	439
	1	0.76	0.27	0.40	1330
accurac	у			0.39	1769
macro av	g	0.50	0.50	0.39	1769
weighted av	/g	0.63	0.39	0.39	1769

Model II: Without Sector

	precision	recall	f1-score	support
0	0.26	0.73	0.39	439
1	0.78	0.32	0.45	1330
accuracy			0.42	1769
macro avg	0.52	0.53	0.42	1769
weighted avg	0.65	0.42	0.44	1769

Conclusions

- Model II has stronger ability to generalize on other datasets
- Top features to determine the success of a stock:
 - Model II
 - Gross profit margin
 - Tangible book value per share
 - Price to free cash flows ratio
- Stock market unpredictability explains the difficulty to accurately predict stock profitability

Thank you.