

Model Essentials for Neural Net

Dr. Goutam Chakraborty

Predict new cases.

Select useful inputs.

Optimize complexity.

Prediction formula

None

Stopped training

Predict new cases.

Select useful inputs.

Optimize complexity.

Prediction formula

None

Stopped training

Neural Network Prediction Formula

bias weight estimate

$$H_1 = \tanh(\hat{w}_{10} + \hat{w}_{11} x_1 + \hat{w}_{12} x_2)$$

$$_{5}$$
 $H_{2} = \tanh(\hat{w}_{20} + \hat{w}_{21} x_{1} + \hat{w}_{22} x_{2})$

$$H_3 = \tanh(\hat{w}_{30} + \hat{w}_{31} x_1 + \hat{w}_{32} x_2)$$

activation function

Neural Network Binary Prediction Formula

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = \hat{w}_{00} + \hat{w}_{01} \cdot H_1 + \hat{w}_{02} \cdot H_2 + \hat{w}_{03} \cdot H_3$$
logit

$$H_1 = \tanh(\hat{w}_{10} + \hat{w}_{11} x_1 + \hat{w}_{12} x_2)$$

$$H_2 = \tanh(\hat{w}_{20} + \hat{w}_{21} x_1 + \hat{w}_{22} x_2)$$

$$H_3 = \tanh(\hat{w}_{30} + \hat{w}_{31} x_1 + \hat{w}_{32} x_2)$$

Neural Network Diagram

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = \hat{w}_{00} + \hat{w}_{01} H_1 + \hat{w}_{02} H_2 + \hat{w}_{03} H_3$$

input hidden target layer layer layer

$$H_1 = \tanh(\hat{w}_{10} + \hat{w}_{11} x_1 + \hat{w}_{12} x_2)$$

$$H_2 = \tanh(\hat{w}_{20} + \hat{w}_{21} x_1 + \hat{w}_{22} x_2)$$

$$H_3 = \tanh(\hat{w}_{30} + \hat{w}_{31} x_1 + \hat{w}_{32} x_2)$$

Neural Network Diagram

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = \hat{w}_{00} + \hat{w}_{01} H_1 + \hat{w}_{02} H_2 + \hat{w}_{03} H_3$$

input hidden target layer layer layer

$$H_1 = \tanh(\hat{w}_{10} + \hat{w}_{11} x_1 + \hat{w}_{12} x_2)$$

$$H_2 = \tanh(\hat{w}_{20} + \hat{w}_{21} x_1 + \hat{w}_{22} x_2)$$

$$H_3 = \tanh(\hat{w}_{30} + \hat{w}_{31} x_1 + \hat{w}_{32} x_2)$$

logit equation

logit(
$$\hat{p}$$
) = -0.5 + -2.6 H_1 + -1.9 H_2 + 0.63 H_3

$$H_1 = \tanh(-1.8 + 0.25 x_1 + -1.8 x_2)$$

$$H_2 = \tanh(2.7 + 2.7 x_1 + -5.3 x_2)$$

$$H_3 = \tanh(-5.0 + 8.1 x_1 + 4.3 x_2)^{-0.5}$$

$$\hat{p} = \frac{1}{1 + e^{-\log it(\hat{p})}}$$

Probability estimates are obtained by solving the logit equation for \hat{p} for each (x_1, x_2) .

Neural Nets: Beyond the Prediction Formula

- Manage missing values.
- Handle extreme or unusual values.
- Use non-numeric inputs.
- Account for nonlinearities.
- Interpret the model.

Model Essentials – Neural Networks

Select useful inputs.

Optimize complexity.

Prediction formula

None

Best model from sequence

Model Essentials – Neural Networks

Prediction formula

Select useful inputs.

Sequential selection

Optimize complexity.

Stopped training

initial hidden unit weights

$$logit(\hat{p}) = 0 + 0 H_1 + 0 H_2 + 0 H_3$$

$$H_1 = \tanh(-1.5 - .03x_1 - .07x_2)$$

$$H_2 = \tanh(.79 - .17x_1 - .16x_2)$$

$$H_3 = \tanh(.57 + .05x_1 + .35x_2)$$

logit(
$$\hat{p}$$
) = 0 + 0· H_1 + 0· H_2 + 0· H_3
 H_1 = tanh(1.5 - .03 x_1 - .07 x_2)
 H_2 = tanh(.79 - .17 x_1 - .16 x_2)
 H_3 = tanh(.57 + .05 x_1 + .35 x_2)
random initial
input weights and biases

logit(
$$\hat{p}$$
) = 0 + 0· H_1 + 0· H_2 + 0· H_3
 H_1 = tanh(1.5 - .03 x_1 - .07 x_2)
 H_2 = tanh(.79 - .17 x_1 - .16 x_2)
 H_3 = tanh(.57 + .05 x_1 + .35 x_2)
random initial
input weights and biases

