HAUSAUFGABENBLATT 8 MATHEMATISCHE METHODEN

Dr. Michael Czerner

Abgabetermin 10.01.2022

Aufgabe 1: Transformation in kartesische Koordinaten

Gegeben sei das Vektorfeld $r\vec{e}_{\theta} + \vec{e}_{\phi}$ in Kugelkoordinaten. Formulieren Sie das Feld um in kartesische Koordinaten. Berechnen Sie die Rotation und die Divergenz in beiden Koordinatensystemen und vergleichen Sie die Ergebnisse.

Aufgabe 2: Wegintegral 2. Art in 3D

Berechnen Sie das Wegintegral 2. Art für das Vektorfeld
$$\vec{f}=\begin{pmatrix}2xy-x^2\\x+y^2\\z\end{pmatrix}$$
 entlang des Weges $\vec{\gamma}(t)=\begin{pmatrix}t^2\\t\\0\end{pmatrix}$ von $t=0$ bis $t=1$.

Aufgabe 3: Wegintegral 2. Art

Ein Kraftfeld in Zylinderkoordinaten sei gegeben durch $\vec{F}(\vec{r}) = \frac{\beta}{\sqrt{\rho}} \vec{e}_{\varphi}$. Ein Teilchen bewege sich entlang einer Spiralbahn $\rho(\varphi) = \rho_0 e^{-\lambda \varphi}$.

- a) Skizzieren Sie die Bahn des Teilchens.
- b) Berechnen Sie die Arbeit $W(\varphi_1)$, welche das Kraftfeld auf dem Weg von $\varphi = 0$ bis $\varphi = \varphi_1$ an dem Teilchen verrichtet. Welche Strecke $L(\varphi_1)$ legt das Teilchen dabei zurück? Bilden Sie den Grenzwert $\varphi_1 \to \infty$ und zeigen Sie, dass sowohl die Arbeit, als auch der Weg des Teilchens endlich bleiben.
- c) Betrachten Sie nun ein Skalarfeld der Form $\Phi(\vec{r}) = -\mathrm{e}^{-x^2-y^2}$. Bestimmen Sie Lage und Art der Extrema von Φ indem Sie den Gradienten von Φ null setzen und dann die Definitheit der Hessematrix betrachten. Interpretieren Sie $\Phi(\vec{r})$ als potentielle Energie. Welche physikalische Größe beschreibt dann das Vektorfeld $\vec{F} = -\nabla\Phi$? Was bedeutet es demnach physikalisch, wenn der Gradient von Φ verschwindet?

Aufgabe 4: Gegeben ist das Kraftfeld
$$\vec{F}(\vec{r}) = \begin{pmatrix} \alpha_1 y^2 z^3 - 6\alpha_2 x z^2 \\ 2\alpha_1 x y z^3 \\ 3\alpha_1 x y^2 z^2 - 6\alpha_2 x^2 z \end{pmatrix}$$
.

- a) Untersuchen Sie, ob das Kraftfeld $\vec{F}(\vec{r})$ konservativ ist.
- b) Ein Massenpunkt werde in diesem Kraftfeld \vec{F} längs des Weges

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ y_0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \text{ verschoben. Berechnen Sie die Arbeit, die bei dieser Verschiebung geleistet wird.}$$

c) Hat \vec{F} ein Potential? Wenn ja, welches?

Aufgabe 5: Gegeben seien die Potentiale

a)
$$V(\vec{r}) = \frac{1}{2}k(x^2 + y^2 + z^2),$$

b)
$$V(\vec{r}) = \frac{m}{2} [(\vec{\omega} \cdot \vec{r})^2 - \omega^2 r^2]$$

($\vec{\omega}$ ist ein konstanter Vektor).

Berechnen Sie die Kraft $\vec{F}(\vec{r})$, die von dem jeweiligen Potential erzeugt wird. Welche physikalische Bedeutung haben die angegebenen Potentiale? Handelt es sich um Zentralkräfte?