STEM学习单元设计报告

设计者:

科学教师 科学-人员

技术教师 技术-人员

工程教师 工程-人员

数学教师 数学-人员

STEM学习单元主题:水过滤适用年级:小学三年级

问题情境: 现在你是一名环境工程师,受雇于普陀区自来水公司,最近普陀区部分新村的 居民反映自来水呈现偏红色的现象,为保证居民用水安全,作为应急预案,需要你的帮助 来去除饮用水中的有害杂质(红色)。你需要设计建造一个水处理过滤器(特别是过滤器中的介质),尽可能地去除水中的有害杂质(红色),以便向该地区的居民提供安全的饮用水源。

学习驱动问题: 作为一名环境工程师, 你能设计建造一个尽可能除去水中杂质的水过滤器吗?

【学习目标 - 学科核心问题】

学科	学习目标	学科核心问题
科学	S1. 能够通过模型描述水循环系统; (模型举例: 概念图、表格、流程图等)。 S2. 能够测量并绘制数据图,以证明过滤材料的吸附能力和其表面积相关。 S3. 能够设计控制变量的实验方案,以探究过滤材料与过滤效果的关系。 S4. 能够获取关于溶液过滤效果物理检测方法的信息。(如:肉眼检测法、色标法、分光光度计等)。	S-Q1: 安全水源和干净水源的区别是什么? S-Q2: 在水循环的哪一个步骤汲取安全水? S-Q3: 如何通过图表表现水循环的具体过程及 水循环和水处理的关系? S-Q4: 过滤材料的吸附能力和表面积存在怎样的关系? S-Q5: 如何设计实验方案观察过滤材料对过滤 效果的影响? S-Q6: 有哪些方法能够检测过滤器的过滤效果?
	T1. 能使用数字工具绘制图表、探究数据的规律。	T-Q1: 你能使用Excel制作过滤材料吸附能力和表

技术	T2. 能够创建数字作品清晰的传达自己的思想。 T3. 能利用协作性数字工具与他建立联系去探索问题。	面积的关系图吗? T-Q2: 你能和小伙伴—同用process on完成水循环、水处理关系图的制作吗? T-Q3: 你能通过PPT展示小组在课上的设计思路及最终设计结果吗?	
工程	E1. 定义一个简单的设计问题,用于反映某个需求,这个需求包括了在物料、时间和成本上的成功标准和约束条件。 E2. 基于问题的约束条件和成功标准,提出并比较多个可能的问题解决方案。 E3. 通过设计和实施控制变量的测试方案和故障测试方案,寻找模型或原型系统可改进的方面。	E-Q1: 在材料选择时,如何安排材料预算? E-Q2: 在设计时,你们产生了几种方案? E-Q3: 你认为如何设计实验检测过滤器的过滤 效果? E-Q4: 如何改进方案?	
数学	M1. 在具体情境中了解简单的数量关系,并能解决简单的实际问题。 (如:总价=单价*数量)。 M2. 通过实例了解表面积的意义以及度量单位,能进行单位之间的换算,接受单位的实际意义。 M8. 了解比例尺,在具体情境中,能将实际距离与图上距离换算。	M-Q1: 已知材料的单价,按拟定的计划购买材料要花费多少钱? M-Q2: 什么是表面积? M-Q3: 如何换算表面积? M-Q4: 如何将过滤器的实物设计按比例绘制到图上?	

【任务模式】

基于设计的学习

设计 汇报与反思

【课程设计】

任务一:需求分析———初识环境工程

任务描述:

教师引导学生理解项目背景,发布设计任务。促进学生理解工程设计,从环境工程师的角度思考问题。

学科核心问题:

- S-Q1 安全水源和干净水源的区别是什么?
- S-Q2 在水循环的哪一个步骤汲取安全水?
- S-Q3 如何通过图表表现水循环的具体过程及 水循环和水处理的关系?
- T-Q2 你能和小伙伴一同用process on完成水循环、水处理关系图的制作吗?

学习证据:

证据内容	对应核心问题	学习评价
证据内容1	S-Q1	观察记录
证据内容2	T-Q2	概念图
证据内容3	S-Q3	书面测试
证据内容4	S-Q3	
证据内容5	S-Q1, T-Q2	展示绩效

讨论 安全水源"和 平净水源"的差别

探讨水处理、水循环的关系

活动内容:

活动1: 讨论 安全水源"和 干净水源"的差别

活动类型	思考-配对-共享		
阶段	学生活动	教师活动	
思考	学生根据教师提出的问题 独立思考答案;	教师提出问题 环境工程师的职责是什么?"请学生举例回答。引出,处理饮用水是环境工程师所做最重要的事请之一。随后,教师 提出关键问题,安全水源和干净水源的差别 是什么?(支架问题:1. 首先除去什么物质 能让湖泊中的水成为饮用水?2. 有哪些污染 物是无色的,或者体积小到肉眼无法看到,但却是有害的,以至于你不想去饮用?3. 为 何湖泊水的净化如此重要?)	
配对	学生四人结队	教师安排学生分组	
共享	学生互相分享自己的答案, 并整合组内讨论 内容梳理 出新的答案 教师巡视小组讨论情况,在学生讨论出现停 滞时给予支持 帮助。讨论结束后,教 师抽取两组学生回答问题。依据 情 况对答案梳理,通过板书总结饮用水的性质		
材料工具	需要的材料1 需要的工具1 需要的工具2		
资源链接	百度 - https://www.baidu.com		
附件	logo , 未来教育幻想总结反思		

活动2: 探讨水处理、水循环的关系

活动类型	思考-配对-共享		
阶段	学生活动	教师活动	
思考	学生搜集关于水处理、水 循环的相关信息	1. 教师带领学生复习搜索引擎的使用方法, 向学生发布讨论任务。水处理、水循环及工程设计之间的关系是什么? 在水循环的哪一个步骤汲取安全水? 请小组讨论生成关系图表。水处理、水循环及工程设计之间的关系是什么? 请小组讨论生成关系图表。 (支架问题1. 我们在水循环的哪个步骤中汲取饮用水? 2. 环境工程师如何帮助水循环?)	
配对	学生四人结队	安排学生依据上次的分组模式讨论	
共享	1. 学生互相分享自己的答 案,用Process on 小组在 线协作画出二者的关系图。 2. 学生简 单讨论并回答教 师问题。	1. 在学生讨论期间,巡视讨论情况,给予支 架支持。最后,请小组代表展示小组成果, 教师依据成果展示情况总结水处理、水循环 之间的关系。 2. 教师发布本单元课程主要任务,让学生以环境工程师的身份展开活动。提出问题: 环境工程师是如何去除水中的污染物,让水成 为安全的饮用水的? 随后 教师总结学生答案, 点出: 过滤是一种常见的去除水中有害杂质 的方法。接下来向学生发布课程设计任务, 说明问题情境。	
材料工具	需要的工具2 需要的工具3		
资源链接	在线JSON校验工具 - http://www.bejson.com/ Babel编译器 - https://www.babeljs.cn/		

任务二:设计方案———设计过滤器

任务描述:

学生了解工程设计理念,在具体预算情境下,设计有效的过滤器制作方案。

学科核心问题:

E-Q1 在材料选择时,如何安排材料预算?

E-Q2 在设计时, 你们产生了几种方案?

M-Q1 已知材料的单价,按拟定的计划购买材料要花费多少钱?

学习证据:

证据内容	对应核心问题	学习评价
证据内容 - 1	M-Q1	口头汇报
证据内容 - 2	E-Q1, E-Q2	调查问卷

活动设计:

活动内容:

★ 活动1: 做出设计图纸

活动类型	游戏教学		
游戏规则	在学生独立完成他们的决策工作表后,将学生分成4-5人组成的小组。教师告诉学生工程师必须在固定的预算内进行设计,每组有50元启动资金。有以下4种材料可供购买:活性炭(4元/克),沙(2元/克),砾石(1元/克)和棉球(1元/个)。请学生小组查找资料了解材料的用途,选择合适的材料绘出1张过滤器的草图,并制定1个可行的小组预算计划提交给教师,在教师处换取材料卡片。		
游戏地点	教室		
奖惩规则	无		
	学生活动	教师活动	
活动	学生分组活动,小组查找资料,了解教师给出的几种材料的过滤特点和用途,小组讨论得出一致的材料选择方案,绘制图纸,填写预算表。 小组派出一位学生,将预算表提交给教师,在教师处换取材料卡片。	教师向学生说明商店中的物品是水 过滤器中常用的几种材料,请学生 思考其过滤特点和用途。在学生提 交预算表时,作为商店店长给学生 换取材料卡片,以便对学生小组计 算情况打分。	

子节点:

任务一:自主探究———自主探究任务名

任务描述:

自主探究的任务描述

学科核心问题:

- S-Q1 安全水源和干净水源的区别是什么?
- S-Q3 如何通过图表表现水循环的具体过程及水循环和水处理的关系?

学习证据:

证据内容	对应核心问题	学习评价
证据内容1	S-Q1	口头汇报
证据内容2	S-Q3	观察记录

活动设计:

活动内容:

活动1:金字塔类型

活动类型	金字塔讨论	
问题	问题描述	
	第一层讨论 规则	第一层讨论规则描述
活动	第二层讨论 规则	第二层讨论规则描述
	第三层讨论 规则	第三层讨论规则描述

任务二:分析解释———分析解释任务名

任务描述:

分析解释的任务描述

学科核心问题:

- S-Q4 过滤材料的吸附能力和表面积存在怎样的关系?
- T-Q1 你能使用Excel制作过滤材料吸附能力和表面积的关系图吗?
- E-Q2 在设计时, 你们产生了几种方案?
- E-Q3 你认为如何设计实验检测过滤器的过滤 效果?

学习证据:

证据内容	对应核心问题	学习评价
证据内容描述	E-Q2, E-Q3	制作成果

活动内容:

活动类型	拼图策略	
	专家组	原属小组
任务	专家组 - 任务	原组 - 任务
学生活动	专家组 - 学生活动	原组 - 学生活动
教师活动	专家组 - 教师互动	原组 - 教师活动

无数 活动2:拼图策略2

活动类型	拼图策略	
	专家组	原属小组
任务	专家组 - 任务	原组 - 任务
学生活动	专家组 - 学生	原组 - 学生
教师活动	专家组 - 教师	原组 - 教师

任务三:迁移———迁移任务名

任务描述:

迁移任务描述

学科核心问题:

- S-Q1 安全水源和干净水源的区别是什么?
- S-Q3 如何通过图表表现水循环的具体过程及 水循环和水处理的关系?
- T-Q3 你能通过PPT展示小组在课上的设计思路 及最终设计结果吗?
- E-Q1 在材料选择时,如何安排材料预算?
- M-Q1 已知材料的单价,按拟定的计划购买材料要花费多少钱?

学习证据:

证据内容	对应核心问题	学习评价
证据1	S-Q1	调查问卷
证据2	E-Q1	同行评审
证据3	M-Q1	制作成果

活动内容:

活动1: 实验活动

活动类型	实验教学	
实验安排	实验的具体安排: 1.。。。。。 2.XXXXXXXX 3.XXXXXXX 4.23453245	
实验环境	实验室	
	学生活动	教师活动
活动	学生的活动: Step One: XXX Step Two: XXXXXXX	教师活动描述

任务四:汇报与反思———汇报与反思任务名

任务描述:

汇报与反思任务描述

学科核心问题:

学习证据:

无

活动设计:

任务三:评价测试———制作并测试过滤器

任务描述:

学生称量实验材料,制作过滤器并对其过滤效果进行测试。

学科核心问题:

S-Q6 有哪些方法能够检测过滤器的过滤效果?

E-Q3 你认为如何设计实验检测过滤器的过滤 效果?

M-Q4 如何将过滤器的实物设计按比例绘制到 图上?

学习证据:

证据内容	对应核心问题	学习评价
证据内容的描述1	M-Q4	制作成果
证据内容的描述2	E-Q3	

活动设计:

活动内容:

活动1: 采购原材料

活动类型	游戏教学		
游戏规则	教师将小组两两结对,每两组中间都安排一个材料站用于存放足够的原材料,小组用卡片在材料站采购相应的材料。两组各出一人作为材料站的管理员,监督对方小组学生取材料的数量和取样操作规范程度。		
游戏地点	实验室		
奖惩规则	无		
	学生活动	教师活动	
活动	学生学习实验室规范和天平的使用 技巧。小组派出管理员,并安排其 它成员采购不同物品。活动期间,需佩戴化学护目镜,在采购结束后,学生要洗净双手。	教师向学生讲解实验室基本规则, 任何实验材料不得放入口中,实验 期间需佩戴化学护目镜。教师讲解 天平的使用技巧。在学生采购的过 程中巡视学生操作规范情况。	
材料工具	需要的工具		
资源链接	百度 - https://www.baidu.com		

活动2: 组装过滤器

活动类型	实验教学		
实验安排	学生将采购的材料按设计方案组装起来		
实验环境	实验室		
	学生活动	教师活动	
活动	学生在注射器内组装过滤器,并根据组装成品重新绘制设计草图(过滤器工作表中)。	教师给学生提供引导,告诉学生如 何在注射器内构建过滤器,并且组 装起来以便测试。	

活动3: 动手测试

活动类型	实验教学	
实验安排	将200毫升红色的水流过注射器,并用1个玻璃杯收集流出的水。学生在佩戴化学护目镜的条件下,按照自己选择的速率将液体加入到过滤器中。要求学生使用分光光度计测试液体的过滤情况。	
实验环境	实验室	
	学生活动 教师活动	
	1. 学生小组讨论几种测试方法的应 用,根据已有的仪器设计测试方案。 2. 学生动手操作,学习使用分光光 度	1. 教师引导学生自己探索几种测试 方法: 肉眼检查、色标色度法、分光光度计法。帮助学生明确前后测的意

活动

日、村头远结果记家住过滤罐工作表中。 5. 则似结果 后,每组都要向全班介 绍自己的过滤器设计,包括每种 材料用了多少,以及过滤后的液体的 吸收值。 4. 学生 小组讨论比较各组过滤结果,在过滤器工作表中反思自 己的过滤 器设计是否成功。

文。(如何将流山的被体与流入的被体进行对比;什么是前测? 什么是后测?)请学生设计测试方案。 2. 教师总结对比几种测试方法的特征,说明分光光度计方法的优势,向学生介绍分光光度计的使用方法 和测得的数据用途,请学生使用分光光度计完成实验测试。 3. 在学生汇报期间对学生表现进行评价。 4. 学生汇报结束后请学生比较各组 过滤后液体的颜色(肉眼检查)和 吸收值(分光光度计)。引导学生思考,为什么某些过滤器的过滤效果更好。什么样的结果能表明红色完全去除?

任务四:改进设计———过滤器迭代设计

任务描述:

学生对自己的过滤器设计方案修改。

学科核心问题:

- S-Q4 过滤材料的吸附能力和表面积存在怎样的关系?
- S-Q5 如何设计实验方案观察过滤材料对过滤 效果的影响?
- T-Q1 你能使用Excel制作过滤材料吸附能力和表面积的关系图吗?
- E-Q4如何改进方案?
- M-Q2 什么是表面积?
- M-Q3 如何换算表面积?
- M-Q4 如何将过滤器的实物设计按比例绘制到 图上?

学习证据:

无

活动设计:

活动内容:

活动1: 吸附实验

活动类型	实验教学		
实验安排	教师给每个小组提供5个100室升的玻璃广口瓶,引导学生设计探究方案。 学生用4克的某种物质(沙、砾石和活性炭)来分别填充进3个广口瓶, 同时将棉球装入另一个广口瓶。学生们测量出20室升红色溶液装入每一个广口瓶,并用盖子盖上。剩余的那个广口瓶将作为控制组而装入20室 升的红色溶液。1~2分钟后,用分光光度计检测过滤结果。		
实验环境	实验室		
	学生活动 教师活动		
活动	1. 学生小组探讨如何通过实验判断 材料的过滤效果。根据已有的物品 进行实验设计。 2. 学生小组开展实验。 3. 1-2分钟后,学生记录实验数据, 分析实验结果,填写吸收实验工作 表。	1.教师请学生小组讨论测试材料过滤效果的方法,教师 不告知实验流程,通过问题引导学生开展简单的吸附 实验,(比如:什么是控制,因变量是什么)。 2. 在学生小组开展实验时进行实验 规范的指导。	

活动2: 红色颜料去哪了?

活动类型	思考-配对-共享	
阶段	学生活动	教师活动
思考	1. 学生小组讨论,回答教 师问题。 2. 学生使用excel绘制统计 图,统计图的形式由学生 自由选择。根据生成的图 表解释统计结果,分析表 面积与过滤效果的关系,总结规律。	1. 教师询问学生红色颜料去哪了?为什么不同材料的过滤效果不同?总结学生观点,提出吸附的概念。2. 教师拿出5g活性炭,并告知学生碳分子表面的所有区域的大小等同于一个足球场的面积。一般来说,沙和砾石的表面积比活性炭分别小了100倍和1000倍。请学生根据已记录的数据用计算机绘制图表,探索表面积与过滤效果的关系。
配对	学生四人结队	指导学生
共享	学生小组共同总结数据的 规律,并讨论根据 实验数 据如何重新设计过滤器?	教师请学生讨论如何重新设计过滤器,请学 生记录在吸附工作表中。

活动3: 重新设计过滤器

活动类型	实验教学		
实验安排	学生修改设计方案,在50元的预算之下,利用同样4种材料来重新设计他们的过滤器。学生将流出溶液的颜色与他们设计的第1个过滤器的测量结果进行比较。		
实验环境	实验室		
	学生活动	教师活动	
活动	1.学生小组讨论在50元的预算下如 何修改最佳设计方案。 2. 依据设计方案在材料站采购原材 料,材料站管理员负责管理材料, 检验小组预算计算准确性。 3. 小组将采购的材料放入注射器中, 再次制作过滤器。 4. 小组将200m以工色溶液倒入过滤 器中,用分光光度计对过滤后的溶 液检测,记录实验数据于工作表中。	1. 说明设计约束:50元的预算约束; 2. 学生实验过程中对小组实验情况 巡视	

子节点:

任务一:个人准备———个人准备任务名

任务描述:

个人准备任务描述

学科核心问题:

- S-Q1 安全水源和干净水源的区别是什么?
- S-Q2 在水循环的哪一个步骤汲取安全水?

学习证据:

证据内容	对应核心问题	学习评价
证据内容1	S-Q1	调查问卷
证据内容2	S-Q2	观察记录

任务二:分组讨论———分组讨论任务名

任务描述:

分组讨论的任务描述

学科核心问题:

- T-Q1 你能使用Excel制作过滤材料吸附能力和 表面积的关系图吗?
- T-Q2 你能和小伙伴一同用process on完成水循环、水处理关系图的制作吗?
- E-Q2 在设计时, 你们产生了几种方案?

学习证据:

证据内容	对应核心问题	学习评价
证据内容	E-Q2	书面测试

活动设计:

任务三:深入讨论———深入讨论任务名

任务描述:

深入讨论的任务描述

学科核心问题:

E-Q3 你认为如何设计实验检测过滤器的过滤 效果?

M-Q1 已知材料的单价,按拟定的计划购买材 料要花费多少钱?

学习证据:

无

活动设计:

任务四:总结反思———总结与反思任务名

任务描述:

总结反思任务描述

学科核心问题:

学习证据:

无

任务五:汇报与反思———汇报与反思

任务描述:

学生各小组展示自己的物理过滤器模型,用数字作品呈现设计思路和测试结果。 汇报结束后各小组反思自己的设计作品,设想下一步优化方案

学科核心问题:

T-Q3 你能通过PPT展示小组在课上的设计思路 及最终设计结果吗?

E-Q4如何改进方案?

学习证据:

证据内容	对应核心问题	学习评价
反思总结证据内容	T-Q3, E-Q4	展示绩效

活动设计:

活动内容:

活动1: 汇报反思

活动类型	金字塔讨论				
问题	你认为最佳的过滤器设计方案是什么?				
活动	第一层讨论 规则	学生小组派代表展示小组的设计作品,向班内同学介绍 自己小组的设计思路和测试结果。每个小组都在评价表 上为展示组的过滤器打分并提出建议			
	第二层讨论 规则	组内讨论选出最优组。并商议出最优组方案可进一步修 改的地方			
	第三层讨论 规则	全班成员对最优组选择及方案的完善统一意见达成一致。 此间过程学生可进行不同意见的争辩、讨论。最后学生 反思小组作品。填写活动后决策工作表,反映本次课程 的学习情况。			