数理逻辑第三次作业

注: f_i^j 表示第 $i \land j$ 元函数符号, p_i^j 表示第 $i \land j$ 元谓词符号。

1

找到下列公式中变量的自由出现和界定出现。(书定义 5.2.8)

1. $\forall x_3(\forall x_1p_1^2(x_1,x_2)) \to p_1^2(x_3,a_1)$

自由出现: x2

界定出现: x_1, x_3

2. $\forall x_2 p_1^2(x_3, x_2) \to \forall x_3 p_1^2(x_3, x_2)$

自由出现:第一个 x3,第二个 x2

界定出现:第一个 x_2 ,第二个 x_3

3. $\forall x_2 \exists x_1 p_1^3(x_1, x_2, f_1^2(x_1, x_2)) \lor \neg \exists x_1 p_1^2(x_2, f_1^1(x_1))$

自由出现:第三个 x2

界定出现: x_1 和第一、二个 x_2

$\mathbf{2}$

将下列自然语言的句子表示为公式。

- 1. $\forall x(p(x) \rightarrow q(x))$
 - p(x) 表示 x is persistent , q(x) 表示 x can learn logic
- 2. $\neg \exists x (p(x) \land q(x))$
 - p(x) 表示 x is politician , q(x) 表示 x is honest
- 3. $(\neg \forall x (p(x) \rightarrow q(x))) \land (\forall x (p(x) \rightarrow \neg q(x)))$
 - p(x) 表示 x is a bird, q(x) 表示 x can fly
- 4. $(\forall x p(x)) \rightarrow p(a)$
 - p(x) 表示 x can solve the problem, a 表示 Hilary
- 5. $\neg \exists x (\exists y (p(y) \land q(x,y)))$
 - p(x) 表示 x is a loser, q(x,y) 表示 x loves y
- 6. $(\forall x \exists y \ p(x,y) \land \neg \exists x \forall y \ p(x,y)) \lor (\exists x \forall y \ p(x,y) \land \exists x \forall y \neg p(x,y))$

p(x,y) 表示 x loves y

- 7. $(\exists x \forall y \ p(x,y)) \land (\exists y \forall x \ p(x,y)) \land \neg (\forall x \forall y \ p(x,y))$
 - p(x,y) 表示 you can fool x at time y

- 8. $\forall x((\neg p(x,x)) \to p(a,x))$ a 表示 John, p(x,y) 表示 x hates y
- 9. $\forall A \forall B \ p(A,B) \rightarrow (A=B)$ A,B 表示两个集合, p(A,B) 表示 A 和 B 有相同的元素
- 10. $\neg \exists x (\forall y \ (\neg p(y, y) \leftrightarrow p(x, y)))$ $p(x, y) 表示 x \in y$
- 11. $\neg \exists x (\forall y \ (\neg p(y,y) \leftrightarrow p(x,y)))$ p(x,y) 表示 $x \leftrightarrow y$ 理发

3

证明下列公式是逻辑永真的(书5.2.5节):

1. $\forall x A(x) \leftrightarrow \neg \exists x \neg A(x)$

"\rightarrow" 方向 (即 $\forall x A(x) \rightarrow \neg \exists x \neg A(x)$):

假设存在赋值 v 使得 $(\forall x A(x))^v = 1$ 并且 $(\neg \exists x \neg A(x))^v = 0$,

由 $(\neg \exists x \neg A(x))^v = 0$ 说明论域中存在元素 a 使得 $(\neg A(x))^{v/a} = 1$,即 $(A(x))^{v/a} = 0$ 。

而 $(\forall x A(x))^v = 1$ 说明对论域中任何元素 b 均有 $(A(x))^{v/b} = 1$ 。 令 b = a 得 $(A(x))^{v/a} = 1$,与 $(A(x))^{v/a} = 0$ 矛盾。

"←" 方向 (即 $\neg \exists x \neg A(x) \rightarrow \forall x A(x)$):

假设存在赋值 v 使得 $(\neg \exists x \neg A(x))^v = 1$ 且 $(\forall x A(x))^v = 0$,

由 $(\neg \exists x \neg A(x))^v = 1$ 说明论域中存在元素 a 使得 $(\neg A(x))^{v/a} = 0$,即 $(A(x))^{v/a} = 1$ 。

而 $(\forall x A(x))^v = 0$ 说明对论域中任何元素 b 均有 $(A(x))^{v/b} = 0$ 。

令 b = a 得 $(A(x))^{v/a} = 0$ 与 $(A(x))^{v/a} = 1$ 矛盾。

2. $(\forall x A(x) \lor \forall x B(x)) \to \forall x (A(x) \lor B(x))$

假设存在赋值 v 使得 $(\forall x A(x) \lor \forall x B(x))^v = 1 (1) 且 <math>(\forall x (A(x) \lor B(x)))^v = 0 (2)$ 由 (1) 得 $(\forall x A(x))^v = 1 (3.1)$ 或 $(\forall x B(x))^v = 1 (3.2)$ 。

对论域中的任何元素 a ,如果 (3.1) 成立则 $(\forall x(A(x) \lor B(x)))^{v/a} = 1 (4)$,如果 (3.2) 成立亦可得 (4) 。从而 (4) 与 (2) 矛盾。

4

判断下列公式是否是逻辑永真的 (例题 5.2.14 下面的逻辑结论判定):

- 1. $\neg \exists y \forall x (p_1^2(x,y) \leftrightarrow \neg p_1^2(x,x))$
- 2. $\exists x \exists y (p_1^2(x,y) \rightarrow \forall z \ p_1^2(z,y))$
- 3. $\exists x \exists y (p_1^1(x) \to p_2^1(y)) \to \exists x (p_1^1(x) \to p_2^1(x))$ 以上三个公式都是永真的,(参考了书上的例子,例题 5.2.14 这一页最下)假设该公式

非永真,即存在赋值使得 $v(\cdots) = 0$,由判定过程找矛盾。 第 1 个式子判定如下:

$$\begin{split} v(\neg \exists y \forall x (p_1^2(x,y) \leftrightarrow \neg p_1^2(x,x))) &= 0 \\ v(\exists y \forall x (p_1^2(x,y) \leftrightarrow \neg p_1^2(x,x))) &= 1 \\ \mathbf{E}b(v_{y/b}(\forall x (p_1^2(x,y) \leftrightarrow \neg p_1^2(x,x))) &= 1) \\ \mathbf{E}b\mathbf{A}a(v_{y/b,x/a}(p_1^2(x,y) \leftrightarrow \neg p_1^2(x,x)) &= 1) \\ \mathbf{E}b\mathbf{A}a(v_{y/b,x/a}(p_1^2(x,y)) &= 1 \quad \text{iff} \quad v_{y/b,x/a}(\neg p_1^2(x,x)) &= 1) \\ \mathbf{E}b\mathbf{A}a(v_{y/b,x/a}(p_1^2(x,y)) &= 1 \quad \text{iff} \quad v_{y/b,x/a}(p_1^2(x,x)) &= 0) \end{split}$$

取 a=b 得到矛盾: $v_{y/b,x/b}(p_1^2(x,y))=1$ iff $v_{y/b,x/b}(p_1^2(x,x))=0$,所以该公式是永真的。

第2个式子判定如下(参考了书上的提示):

$$v(\exists x \exists y (p_1^2(x, y) \to \forall z p_1^2(z, y))) = 0$$

$$\mathbf{A}a, b(v_{x/a, y/b}(p_1^2(x, y) \to \forall z p_1^2(z, y)) = 0)$$

$$\mathbf{A}a, b(v_{x/a, y/b}(p_1^2(x, y) = 1) \& v_{x/a, y/b}(\forall z p_1^2(z, y)) = 0)$$

$$\mathbf{A}a, b(v_{x/a, y/b}(p_1^2(x, y) = 1) \& \mathbf{E}c(v_{x/a, y/b, z/c}(p_1^2(z, y) = 0))$$

可找到矛盾:

$$\begin{split} v_{x/a,y/b}(\forall z p(z,y)) &= 1 \text{ iff } \mathbf{A}c(v_{z/c,y/b}(p(z,y)) = 1) \\ v_{x/a,y/b}(\forall z p(z,y)) &= 0 \text{ iff } \mathbf{E}c(v_{z/c,y/b}(p(z,y)) = 0) \\ v_{x/a,y/b}(\exists z p(z,y)) &= 1 \text{ iff } \mathbf{E}c(v_{z/c,y/b}(p(z,y)) = 1) \\ v_{x/a,y/b}(\exists z p(z,y)) &= 0 \text{ iff } \mathbf{A}c(v_{z/c,y/b}(p(z,y)) = 0) \end{split}$$

所以该公式是永真的。

第3个式子判定如下(参考了书上的提示):

$$\begin{split} v(\exists x \exists y (p_1^1(x) \to p_2^1(y)) &\to \exists x (p_1^1(x) \to p_2^1(x))) = 0 \\ v(\exists x \exists y (p_1^1(x) \to p_2^1(y))) &= 1 \& v (\exists x (p_1^1(x) \to p_2^1(x))) = 0 \\ \mathbf{A}a\mathbf{A}b(v_{x/a,y/b}(p_1^1(x) \to p_2^1(y)) &= 1) \& \mathbf{A}c(v_{x/c}(p_1^1(x) \to p_2^1(x)) = 0) \\ \mathbf{A}a\mathbf{A}b(v_{x/a,y/b}(p_1^1(x)) &= 1 \& v_{x/a,y/b}(p_2^1(y) = 0)) \\ \& \mathbf{A}c(v_{x/c}(p_1^1(x))) &= 1 \& v_{x/c}(p_2^1(x)) = 0) \end{split}$$

令 c = a 可构造矛盾:

$$\begin{split} v_{x/a,y/b}(p_1^1(x) &\to p_2^1(y)) = 1 \\ v_{x/a,y/b}(p_1^1(x)) &= 1 \\ v_{x/a,y/b}(p_2^1(x)) &= 0 \end{split}$$

所以该公式是永真的。