Mercados Laborales: Tarea 1 (Equipo 4)

José Emilio Cendejas Guízar * Héctor González Magaña** Lino Antonio Mendoza Millán ***

3 de febrero de 2022

Contenido

Índice de figuras	2
Índice de cuadros	2
Preguntas teóricas	3
Ejercicios prácticos	7

^{*}El Colegio de México, jcendejas@colmex.mx

**El Colegio de México, hgonzalez@colmex.mx

***El Colegio de México, lamendoza@colmex.mx

ME VOY A MATAR

Índice de figuras

1.	Comparación de Variación Porcentual entre Series	10
Índ	ice de cuadros	
1.	Variación Porcentual de los Salarios Reales (2008 - 2021)	7
2.	Variación Porcentual de la Población Ocupada (2006 - 2021)	8
3.	Variación Porcentual de los Salarios Reales (2008 - 2021)	9

Preguntas teóricas

1. Resuelva los ejercicios 11.2 y 11.9 (5a Ed.). Realice estos con ayuda de su laboratorista y entregue las soluciones a máquina, utilizando LaTeX.

11.2 Efficiency wages and bargaining. (Garino and Martin, 2000). Summers (1988), p.386) states, Ïn an effiency wage environment, firms that are forced to pay their workers preminum wages suffer only second-order losses. In almost any plausible bargaining framework, this makes it easier for workers to extract concessions. "This problem asks you to investigate this claim.

Consider a firm with profits given by $\pi = \left[\frac{(eL)^{\alpha}}{\alpha}\right] - wL$, $0 < \alpha < 1$, and a union with objective function U = (w - x)L, where x is an index of its workers'outside opportunities. Assume that the firm and the union bargain over the wage, and that the firm then chooses L taking w as given.

a) Suppose that e is fixed at 1, so that the effiency-wage considerations are absent.

a.1 What value of L does the firm choose, given w? what is the resulting level of profits?.

Si e=1 y w está dado, el problema de la firma es elegir L para maximizar sus beneficios:

 $\max_{L} \pi = \frac{L^{\alpha}}{\alpha} - wL$

CPO:

$$\begin{split} \frac{\partial \pi}{\partial L} : \alpha \frac{L^{\alpha - 1}}{\alpha} - w &= 0 \\ \Rightarrow L^{\alpha - 1} &= w \\ \Rightarrow L^* &= w^{\frac{1}{\alpha - 1}} \end{split}$$

Sustituimos L* en π obtenemos π^* , donde la empresa maximiza el beneficio dado w

$$\pi^* = \frac{\left(w^{\frac{1}{\alpha-1}}\right)^{\alpha}}{\alpha} - w\left(w^{\frac{1}{\alpha-1}}\right) = \frac{w^{\frac{\alpha}{\alpha-1}} - \alpha w^{\frac{\alpha}{\alpha-1}}}{\alpha}$$
$$\Rightarrow \pi^* = \left(\frac{1-\alpha}{\alpha}\right) w^{\frac{1}{\alpha-1}}$$

a.2 Suppose that the firm and the union choose w to maximize $U^{\gamma}\pi^{1-\gamma}$, where $0<\gamma<\alpha$ indexes the union's power in the bargaining. What level of w do they choose?

$$\max_w U^\gamma \pi^{*1-\gamma}$$

Sustiuimos el nivel de L^* en la función objetivo del sindicato, $(w-x)L^*$:

$$\max_{w} [(w-x)L^*]^{\gamma} \left[\left(\frac{1-\alpha}{\alpha} \right) w^{\frac{1}{\alpha-1}} \right]^{1-\gamma}$$

Tomamos el logaritmo natural de $U^{\gamma}\pi^{1-\gamma}$ y derivamos con respecto a este, con la finalidad de simplificar los cálculos, tenemos entonces:

3

$$\max_{w} \gamma \left[\ln(w - x) + \frac{1}{\alpha - 1} \ln(w) \right] + (1 - \gamma) \left[\ln\left(\frac{1 - \alpha}{\alpha}\right) + \left(\frac{\alpha}{\alpha - 1}\right) \ln(w) \right]$$

CPO:

$$\frac{\partial U^{\gamma} \pi^{1-\gamma}}{\partial w} : \frac{\gamma}{w-x} + \frac{\gamma}{w(\alpha-1)} + \frac{\alpha(1-\gamma)}{w(\alpha-1)} = 0$$

$$\Rightarrow \frac{\gamma}{w-x} = -\left[\frac{\gamma+\alpha-\alpha\gamma}{w(\alpha-1)}\right] = -\left[\frac{\alpha+\gamma(1-\alpha)}{w(\alpha-1)}\right]$$

$$\Rightarrow \gamma = -\left[\frac{\alpha+\gamma(1-\alpha)}{w(\alpha-1)}\right](w-x) = \frac{-\alpha-\gamma(1-\alpha)}{\alpha-1} + \frac{x(\alpha+\gamma(1-\alpha))}{w(\alpha-1)}$$

$$\Rightarrow \frac{x(\alpha+\gamma(1-\alpha))}{w(\alpha-1)} = \gamma + \frac{\alpha+\gamma(1-\alpha)}{\alpha-1} = \frac{\alpha}{\alpha-1}$$

Por tanto, el salario escogido durante el proceso de negociación es:

$$\Rightarrow w^* = \frac{x(\alpha + \gamma(1 - \alpha))}{\alpha}$$

- b) Suppose that e is given by equation (11.12) in the text: $e = \left[\frac{(w-x)}{x}\right]^{\beta}$ for w > x where $0 < \beta < 1$.
- b.1. What value of L does the firm choose, given w?, What is the resulting level of profits?

Ahora vamos a encontrar L^* que maximiza π en presencia de una ecuación de esfuerzo.

 $\max_{L} \pi = \frac{\left(\left(\frac{w-x}{x}\right)^{\beta} L\right)^{\alpha}}{\alpha} - wL$

CPO:

$$\frac{\partial \pi}{\partial L} : \frac{\alpha \left(\left(\frac{w - x}{x} \right)^{\beta} L \right)^{\alpha - 1}}{\alpha} - w = 0$$

$$\Rightarrow w = \left(\frac{w - x}{x} \right)^{\alpha \beta} L^{\alpha - 1}$$

$$\Rightarrow L^{\alpha - 1} = w \left(\frac{x}{w - x} \right)^{\alpha \beta}$$

$$\Rightarrow L^* = \left(w \left(\frac{x}{w - x} \right)^{\alpha \beta} \right)^{\frac{1}{\alpha - 1}} = \left(\frac{w - x}{x} \right)^{\frac{\alpha \beta}{1 - \alpha}} w^{\frac{1}{\alpha - 1}}$$

Sustituimos L* en π , así como hicimos en pasos anteriors, y obtenemos π^* , donde la empresa maximiza el beneficio dado w

$$\pi^* = \frac{\left[\left(\frac{w-x}{x} \right)^{\beta} \left(\frac{w-x}{x} \right)^{\frac{\alpha\beta}{1-\alpha}} w^{\frac{1}{\alpha-1}} \right]^{\alpha}}{\alpha} - w \left(\frac{w-x}{x} \right)^{\frac{\alpha\beta}{1-\alpha}} w^{\frac{1}{\alpha-1}}$$

De tal modo que este es el beneficio óptimo al nivel dado de salarios en presencia de una ecuación de esfuerzo.

$$\Rightarrow \pi^* = \frac{\left[\left(\frac{w-x}{x} \right)^{\frac{\alpha\beta}{1-\alpha}} w^{\frac{\alpha}{\alpha-1}} \right]}{\alpha} - \left(\frac{w-x}{x} \right)^{\frac{\alpha\beta}{1-\alpha}} w^{\frac{\alpha}{\alpha-1}} = \left(\frac{1-\alpha}{\alpha} \right) w^{\frac{\alpha}{\alpha-1}} \left(\frac{w-x}{x} \right)^{\frac{\alpha\beta}{1-\alpha}}$$

b.2. Suppose that the firm and the union choose w to maximize $U^{\gamma}\pi^{1-\gamma}$, $0 < \gamma < \alpha$ What level of w do they choose? (Hint: For the case of $\beta = 0$, your answer should simplify to your answer in part [a][ii].)

Vamos a sustituir el nivel de L^* \$obtenido en el inciso anterior en la función objetivo del sindicato, $(w-x)L^*$:

$$\max_{m} U^{\gamma} \pi^{*1-\gamma}$$

$$\max_{w} \left[(w-x) \left(\frac{w-x}{x} \right)^{\frac{\alpha\beta}{1-\alpha}} w^{\frac{-1}{1-\alpha}} \right]^{\gamma} \left[\left(\frac{1-\alpha}{\alpha} \right) w^{\frac{-\alpha}{1-\alpha}} \left(\frac{w-x}{x} \right)^{\frac{\alpha\beta}{1-\alpha}} \right]^{1-\gamma}$$

Aplicamos logaritmo natural y derivando como en el inciso anterior, obtenemos:

$$\max_{w} \gamma \left[\ln(w-x) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln\left(\frac{w-x}{x} \right) - \left(\frac{1}{1-\alpha} \right) w \right] + (1-\gamma) \left[\ln\left(\frac{1-\alpha}{\alpha} \right) - \left(\frac{\alpha}{1-\alpha} \right) \ln(w) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln\left(\frac{w-x}{x} \right) \right] + (1-\gamma) \left[\ln\left(\frac{1-\alpha}{\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln\left(\frac{w-x}{x} \right) \right] + (1-\gamma) \left[\ln\left(\frac{1-\alpha}{\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln\left(\frac{w-x}{x} \right) \right] + (1-\gamma) \left[\ln\left(\frac{1-\alpha}{\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln\left(\frac{w-x}{x} \right) \right] + (1-\gamma) \left[\ln\left(\frac{1-\alpha}{\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln\left(\frac{w-x}{x} \right) \right] + (1-\gamma) \left[\ln\left(\frac{1-\alpha}{\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln\left(\frac{w-x}{x} \right) \right] + (1-\gamma) \left[\ln\left(\frac{1-\alpha}{\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{1-\alpha}{\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\gamma) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) - \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) + \left(\frac{\alpha\beta}{1-\alpha} \right) \ln(w) \right] + (1-\alpha) \left[\ln\left(\frac{\alpha\beta}{1-\alpha} \right) + \left$$

CPO:

$$\frac{\partial \ln U^{\gamma} \pi^{*1-\gamma}}{\partial w} : \gamma \left[\left(\frac{1-\alpha+\alpha\beta}{1-\alpha} \right) \left(\frac{1}{w-x} \right) - \left(\frac{1}{1-\alpha} \right) \left(\frac{1}{w} \right) \right] + (1-\gamma) \left[-\left(\frac{\alpha}{1-\alpha} \right) \left(\frac{1}{w} \right) + \left(\frac{\alpha\beta}{1-\alpha} \right) \left(\frac{1}{w-x} \right) \right] = 0$$

$$\Rightarrow \left(\frac{1}{w-x} \right) \left(\frac{\gamma-\alpha\gamma+\alpha\beta}{1-\alpha} \right) = \left(\frac{1}{w} \right) \left(\frac{-\gamma-\alpha+\alpha\gamma}{1-\alpha} \right)$$

$$\Rightarrow w(\gamma-\alpha\gamma+\alpha\beta) = (w-x)(-\gamma-\alpha+\alpha\gamma)$$

$$\Rightarrow \alpha\beta w - \alpha w = \alpha\gamma x - \gamma x - \alpha x$$

Así encontramos el salario óptimo fijado por la empresa y el sindicato cuando existe una ecuación de esfuerzo.

$$\Rightarrow w^* = \frac{x(\alpha\gamma - \gamma - \alpha)}{\alpha\beta - \alpha} = \frac{x(\alpha + \gamma(1 - \alpha))}{\alpha(1 - \beta)}$$

Cuando evaluamos w^* en $\beta = 0$ obtenemos:

$$w^*|_{\beta=0} = \frac{x(\alpha + \gamma(1-\alpha))}{\alpha(1-0)} = \frac{x(\alpha + \gamma(1-\alpha))}{\alpha}$$

Lo cual es igual al resultado obtenido en la segunda parte del inciso a).

b.3. Is the proportional impact of workers' bargaining power on wages greater with efficiency wages than without, as Summers implies? Is it greater when efficiency-wage effects, β , are greater?

Solucion Para comprobar en que caso tiene más poder de negociación el sindicato vamos a utilizar los resultados del salario optimo w^* que se encuentra la parte ii de los incisos a) y b), en b hay salarios de eficiencia. Donde el subíndice s representa la ausencia de ecuación de esfuerzo y β para cuando si hay ecuación de esfuerzo en los salarios.

$$w_s^* = \frac{x(\alpha + \gamma(1 - \alpha))}{\alpha}$$
 VS $w_\beta^* = \frac{x(\alpha + \gamma(1 - \alpha))}{\alpha(1 - \beta)}$

Podemos notar fácilmente que el numearador de ambos salarios optimos es igual por lo que lo podemos eliminar para la comparación.

$$w_s^* = \frac{1}{\alpha} \quad \text{VS} \quad w_\beta^* = \frac{1}{\alpha(1-\beta)}$$

Si recordamos $0 < \beta < 1$ es evidente que $\alpha(1 - \beta) < \alpha$ por lo cual tendremos que:

$$w_{s}^{*} < w_{\beta}^{*}$$

Y esto quiere decir que en presencia de salarios de eficiencia el sindicato tiene la posibilidad de negociar un salario optimo más alto que cuando no existen salarios de eficiencia (una ecuación de esfuerzo). Ahora pasamos a analizar que sucede a cuando β aumenta.

$$\frac{\partial w_{\beta}^*}{\partial \beta} = x(\alpha + \gamma(1 - \alpha)) \left[\frac{\alpha}{(\alpha(1 - \beta))^2} \right]$$

Claramente podemos ver que entre mayor sea β menor sera el denominador lo cual nos entregará un salario más alto; es decir, a mayor β será mayor el poder de negociación del sindicato.

Ejercicios prácticos

2. Estudie el mercado laboral en México siguiendo estos pasos:

a. Obtenga del INEGI una serie anual de los salarios (en términos reales) en México, calcule la serie de su tasa de cambio anual, calcule la volatilidad de dicha serie. (Serie 1)

Cambio porcentual y Volatilidad de Serie 1

Cuadro 1: Variación Porcentual de los Salarios Reales (2008 - 2021)

Año	Remuneración Media Real (Índice)	Variación $\%$
2008	98.53450	-
2009	97.12001	-1.4355262
2010	97.54441	0.4369838
2011	98.28296	0.7571351
2012	98.74439	0.4694994
2013	100.01117	1.2828820
2014	100.25436	0.2431682
2015	101.92217	1.6635752
2016	104.36493	2.3966863
2017	103.41878	-0.9065781
2018	104.76227	1.2990804
2019	107.15969	2.2884406
2020	107.51594	0.3324438
2021	108.77319	1.1693654

La volatilidad de esta tasa de crecimiento, medido por la desviación estándar es de 1.1104929

■ Obtenga del INEGI una serie anual del empleo total en México, calcule la serie de su tasa de cambio anual, calcule la volatilidad de dicha serie. (Serie 2)

Cambio Porcentual y Volatilidad de Serie $2\,$

Cuadro 2: Variación Porcentual de la Población Ocupada (2006 - 2021)

Año	Población Ocupada	Variación %
2006	43378461	3.0878123
2007	44231248	1.9659232
2008	44943527	1.6103519
2009	45435352	1.0943172
2010	46121621	1.5104307
2011	47138887	2.2056163
2012	48706734	3.3260156
2013	49227313	1.0688019
2014	49415412	0.3821029
2015	50611332	2.4201362
2016	51594748	1.9430757
2017	52340749	1.4458855
2018	53721195	2.6374197
2019	54614549	1.6629456
2020	50978915	-6.6568962
2021	54684083	7.2680397

Volatilidad

La volatilidad de esta tasa de crecimiento, medido por la desviación estándar es de 2.7055784

■ Obtenga del INEGI una serie anual del producto interno bruto en términos reales, calcule su tasa de cambio anual, calcule su volatilidad. (Serie 3)

Cambio Porcentual y Volatilidad de Serie $3\,$

Cuadro 3: Variación Porcentual de los Salarios Reales (2008 - 2021)

Año	Producto Interno Bruto	Variación %
2006	14513878	4.4965484
2007	14844883	2.2806091
2008	14981880	0.9228614
2009	14221368	-5.0762126
2010	14950360	5.1260345
2011	15499341	3.6720201
2012	16031143	3.4311306
2013	16284885	1.5828053
2014	16750118	2.8568418
2015	17304876	3.3119592
2016	17719389	2.3953571
2017	18133620	2.3377266
2018	18528996	2.1803474
2019	18494853	-0.1842665
2020	16945894	-8.3750798
2021	17825783	5.1923428

Volatilidad

La volatilidad de esta tasa de crecimiento, medido por la desviación estándar es de 3.610715

• Grafique las tres series de tasas de cambios de forma que se puedan comparar.

Figura 1: Comparación de Variación Porcentual entre Series

• Calcule la covarianza de la serie 1 con la 3 y de la 2 con la 3.

La covarianza entre Serie 1 y Serie 3 es:

$$Cov(Serie_1, Serie_3) = 1.4403256$$

La covarianza entre Serie 2 y Serie 3 es :

$$Cov(Serie_2, Serie_3) = 7.6824051$$

 Explique si sus resultados son o no consistentes con los hechos estilizados para EEUU que se discutieron en clase.

El primer hecho estilizado es que el desempleo parece ser el mismo a lo largo de la historia. La tasa de desempleo no fue requerida en algún inciso del ejercicio, pero una sencilla búsqueda en internet, puede confirmar este hecho estilizado. Históricamente, tasa de desempleo fluctúa alrededor de 3.5 %.

El segundo hecho estilizado nos dice que el nivel de empleo fluctúa con el ciclo económico, pero los salarios parecen tener nada que ver con tal ciclo. Como puede observarse en la gráfica (y como bien lo enfatiza las respectivas varianzas), México cumple con este segundo hecho estilizado con respecto a el salario real. Además, puede observarse que los cambios en el mercado laboral sí fluctúan muy similar al ciclo económico.

3. Contraste un modelo trivial de la determinación del salario con los datos siguiendo estos pasos:

+Obtenga una serie del PIB \$Y_t\$ de la economía.

- Obtenga una serie del capital K_t de la economía ("Indice de Volumen físico acumulado'').
 +Obtenga una serie del empleo L_t de la economía.
 - Cree una serie de la productividad A_t de la economía a partir de asumir una función de producción $Y_t = A_t F(K, L)$, con $F(K, L) = K^{0,3} L^{0,7}$.

$$productivadad = A_t = \frac{Y_t}{F(K,L)} = \frac{Y_t}{K^{0,3}L^{0,7}}$$

```
productividad <- empleo[,-2]
A <- PIB$PIB_an/((K$K_an)^(0.3))*((empleo$PEA_Ocup_an)^(0.7)))
A <- as.vector(A, mode = "numeric")
A <- as.data.frame(A,t(A))
productividad <- productividad %>% add_column(A_t=A$A)
```

+Cree una serie contrafactual del salario que se debió de haber observado si el salario fuera el ingreso marginal del trabajo $A_tF_L(K_t, L_t)$.

$$w_t = \frac{\partial Y_t}{\partial L} = \frac{\partial A_t F_L(K_t, L_t)}{\partial L} = 0.7(A_t K^{0,3} L^{0,3})$$

```
salario <- empleo[,-2]
w <- (0.7)*(productividad$A_t)*((K$K_an)^(0.3))*((empleo$PEA_Ocup_an)^(0.3))
w <- as.vector(w, mode = "numeric")
w <- as.data.frame(w,t(w))
salario <- salario %>% add_column(w=w$w)
```

5. Practique trabajar con datos laborales de México siguiendo estos pasos:

 Descargue los micro-datos de la ENOE (también del INEGI), correspondientes a los cuatro trimestres de 2019.

Los datos para este ejercicio se recuperaron del INEGI en formato dta.

Calcule el desempleo en cada trimestre, explicando cómo lo calculó.

La tasa de desempleo está dada por la siguiente expresión

$${\it Tasa de desempleo} = \frac{{\it Poblaci\'on Desocupada}}{{\it Poblaci\'on Econ\'omicamente Activa}}*100$$

	Desempleo
Trimestre I	3.353093
Trimestre II	3.533117
Trimestre III	3.734318
Trimestre IV	3.374074

• Calcule el subempleo en cada trimestre, explicando cómo lo calculó.

El subempleo refiere a la condición de aquellas personas que tienen trabajo pero que no laboran todas las horas que quieren por cuestiones del mercado laboral. La fórmula está dada por:

Tasa de Subocupación =
$$\frac{\text{Población Subocupada}}{\text{Población Ocupada}}*100$$

	Subempleo
Trimestre I	6.718727
Trimestre II	7.643211
Trimestre III	7.770935
Trimestre IV	7.624750

