SAS Optimization - Challenge

Team: Miss YSL

Our Team

Mu-Hua Hsu.

Yi-Hsuan Hsu

Su-Tien Lee.

Li-Ci Chuang

Agenda

- 1. Project Introduction
- 2. Project Flow
- 3. Conclusion

Project Introduction

Client

XYZ Corporation

Project Goal

Forecast Demand, Minimize Total Cost

Methodology

Time-Series Forecast Optimization Model

Project Flow

Objective 1

Forecast the weekly demand for the next four weeks.

Objective 2

Build optimization model to minimize total cost with specified constraint

Objective 1

Forecast of water usage for different use in each future four weeks.

SAS: Additive Season	Minitab	Python: ARIMA
SAS: Additive Winter	Excel	Python: SARIMAX
SAS: Random Walk		Python: Holt-Winters
•••		

SAS: Additive Season	Minitab	Python: ARIMA
SAS: Additive Winter	Excel	Python: SARIMAX
SAS: Random Walk		Python: Holt-Winters
•••		

Cooling

Main

Objective 2

Build optimization model to minimize total cost with specified constraint.

Model Building Steps

Identify model objectives and constraints

Turn into mathematical formulas.

Set up on SAS

Run the solution on SAS

Identify Model Objectives and Constraints

Objectives

Minimize
The overall
purchase cost + treatment cost

Constraints

- Minimum purchase amount from The Water Co., based on the contract the company would signed.
- Ending water tank storage of each week >= 30,000 gallons.
- At least 25% of total water usage should come from the water storage tank.
- Amount sourced from purchase and water storage tank >= Forecast.

x = Weekl water usage sourced from The Water Co.

y = Weekl water usage sourced from Water Storage Tank.

The overall usage cost from purchase the two sources.

Overall water usage cost in weekl

- = x * Weekl cost of purchase per gallon +
 - y * Weekl treatment cost per gallon

Overall water usage cost in weekl

- = x * Weekl cost of purchase per gallon + y * Weekl treatment cost per gallon
- = x * Weekly cost of purchase per gallon + y * 0.18

Note: Week I purchase cost is 0.15 or 0.12, depending on the contract selected.

Minimum purchase amount from The Water Co., based on the contract the company would signed.

$$x > = 25,000$$

or

$$x > = 35,000$$

Constraint 02 Ending water tank storage of each week >= 30,000 gallons. (Beginning + Percipitation - Weekly usage from water tank >=30,000)

$$62,500 + 12,000 - y > = 30,000$$

At least 25% of total water usage should come from the water storage tank.

$$y > = (x+y)*0.25$$

Amount sourced from purchase and water storage tank >= Forecast.

x+y >= Forecast total demand for week 1


```
proc optmodel;
set WCCONTRACT=/WC1 WC2/; /***Set index for data WCCONTRACT***/
set DETAIL=/1 2 3 4/; /***Set index for data DETAIL***/
put WCCONTRACT=;
put DETAIL=;
```


num tanklevel = 62500;

parameters


```
/***Declare a variable demandwcweekly
var demandwcweekly{DETAIL};
for {i in DETAIL}
do;
  demandwcweekly[i].lb=0;
end;
```

```
/***Declare demandstweekly variable
var demandstweekly{DETAIL};
for {i in DETAIL}
do;
  demandstweekly[i].lb=0;
end;
```

3. Set up on SAS

3. Set up on SAS

Ending inventory

cost

/***Set implicit variables currentlevel and do the cumulative demand over the four weeks***/
impvar currentlevel{i in DETAIL} =
if i=1 then tanklevel + precipitation[i] - demandstweekly[i]
else currentlevel[i-1] + precipitation[i] - demandstweekly[i];

impvar totalcostst= sum{i in DETAIL} demandstweekly[i]*costst[i];

4. Run the solution on SAS


```
expand;
solve with lso / maxtime=600 nthreads=4 primalin;  /***Solve the problem using the LSO Solver***/
print costst weeklydemand demandstweekly demandwcweekly precipitation; /*DETAIL*/
print costwc mindemand; /*WCCONTRACT*/

print TotalCost.sol;
print x;
print selectweeklycost selectweekly;
```

4. Run the solution on SAS

[1]	costst	weeklydemand	demandstweekly	demandwcweekly	precipitation
1	0.18	52997	13249	39748	12000
2	0.18	54932	13733	41199	18000
3	0.10	72141	36794	35347	20000
4	0.10	77860	40724	37137	22000

[1]	costwc	mindemand
WC1	0.15	25000
WC2	0.12	35000

What is "Contract selection influence" on the overall cost and demand from the two sources?

What is "Contract selection influence" on the overall cost and demand from the two sources?

An alternative set!

4. Run the solution on SAS_ALTERNATIVE SET


```
print costst weeklydemand altdemandstweekly altdemandwcweekly precipitation;
print ALT_TotalCost.sol;
print y;
print altweeklycost altweekly;
```

4. Run the solution on SAS_ALTERNATIVE SET

[1]	costst	weeklydemand	altdemandstweekly	altdemandwcweekly	precipitation
1	0.18	52997	13252	39756	12000
2	0.18	54932	13741	41222	18000
3	0.10	72141	33262	38879	20000
4	0.10	77860	44246	33615	22000

[1]	у
WC1	1
WC2	0

altweeklycost	altweekly
0.15	25000

Our Suggestions

- 1. Sign Contract 2 to optimize the total cost.
- \$0.12 per gallons
- minimum demand 35,000 per week

Detail

[1]	у
WC1	1
WC2	0

[1]	costst	weeklydemand	demandstweekly	demandwcweekly	precipitation
1	0.18	52997	13249	39748	12000
2	0.18	54932	13733	41199	18000
3	0.10	72141	36794	35347	20000
4	0.10	77860	40724	37137	22000

TotalCost.SOL 31020

Our Suggestions

2. Select contract 2 will save the company \$4,610 at the end of the four weeks.

(*\$35,630 - \$31,020 = \$4,610)

Detail

[1]	У
WC1	1
WC2	0

[1]	costst	weeklydemand	altdemandstweekly	altdemandwcweekly	precipitation
1	0.18	52997	13252	39756	12000
2	0.18	54932	13741	41222	18000
3	0.10	72141	33262	38879	20000
4	0.10	77860	44246	33615	22000

ALT_TotalCost.SOL 35630

Thank you!