الوضعية التعلمية

الاشكالية:

رأينا سابقا أهمية النمط التزامني، وأن التشغيل في هذا النمط يتم بإضافة مدخلا آخرا للقلاب يسمى

فكيف يمكن الحصول على إشارة الساعة ؟

نشاط 01:

.NE555 التركيب التالي يحتوي على نوع من الدارات المندمجة R_1 =1 $k\Omega$, R_2 =10 $k\Omega$, C=100nF , V_{CC} =9V

- ♦ أنجز التركيب.
- lacktriangle قم بتوصيل قطبي الإشارتين V_C و V_S على جهاز راسم الإهتزاز المهبطى.
 - ♦ ماذا تلاحظ بالنسبة لإشارة الخروج ٧٤؟

♦ ماهى وظيفة الدارة؟

 R_1 R_2 NE555 C R_3 V_8 V_8

♦ إستنادا إلى شكل إشارة التوتر V على راسم الإهتزاز، على ما يعتمد التركيب في تشغيله؟

نتيجة: إشارة الساعة ناتجة عن ، نحصل عليها بعدة طرق من أبرزها

.....

خصائص هذه الدارة حسب وثيقة الصانع (Datasheet):

			MIN	MAX	UNIT	
.,	Curah unitara	NA555, NE555, SA555	4.5	16	v]
V _{CC}	Supply voltage	SE555	4.5	18	V	
V _I	Input voltage	CONT, RESET, THRES, and TRIG		V _{cc}	٧	1
o	Output current			±200	mA	(
		NA555	-4 0	105		١`
_	Oti fi-tt	NE555	0	70	••	
TA	Operating free-air temperature	SA555	-4 0	85	•C	
		SE555	-55	125		

1. الدارة المندمجة NE555. 8√∞ (\$) CONT (4) RESET

1

خصائص إشارة الساعة:

:t _H	:t _L	<u>T</u>	$\leftarrow T$	ŀ
:T				
التواتر:	النسبة الدورية:		<u> </u>	ᆜ
للحصول على إشارة مربعة	تكون النسبة الدورية	←→	\leftrightarrow	
		t_L	$t_H - t_L$	

نشاط 20:

اعتمادا على التركيب الداخلي للـ NE555 أجب على مايلي:

- ♦ ماهي وظيفة المضخمات العملية 1 و 2؟
- lacktriangle أوجد قيمة التوتر في المدخل غير العاكس للمضخم 1 بدلالة $f{V}_{CC}$.
 - lacktriangle أوجد قيمة التوتر في المدخل العاكس للمضخم 2 بدلالة $f V_{CC}$.
 - ♦ ماذا يمثل هذين التوترين؟
 - التركيب من اجل انتاج إشارة الساعة:

لمخططات الزمنية.	م أتمم ا	الساعة. ثد	تركيب دارة	ح كيفية تشغيل	♦ اشر
------------------	----------	------------	------------	---------------	-------

حسب المعادلة العامة لشحن وتفريغ مكثفة $\frac{t}{\tau} = V_f - (V_f - V_i)e^{-\frac{t}{\tau}}$. يكون الزمن اللازم لوصول التوتر بين $t = \tau \ln\left(\frac{V_f - V_i}{V_f - V_i}\right)$: V_t هو ثابت الشحن. أوجد الزمن اللازم لشحن المكثفة و الزمن اللازم لتفريغها.

 الشحن:	تناء	

	 		• •		 	 	 	 			 	 	• •		 ۰	 ۰		 ۰		 	• •	 	 		 	 	 ٠.	 	 ٠.	 	 ٠.	 	 	

 اء التفريغ:

.....

-	
• 4	

يمكن الحصول على إشارة الساعة بعدة طرق أهمها إستعمال الدارة المندمجة NE555 حيث:

:C زمن شحن المكثفة: t_H

عبارته:

- t_L : زمن تفریغ المکثفة t_L : عبارته:
 - ♦ عبارة دور إشارة الساعة:

لدينا *T=t_H+t_L* ومنه:

♦ النسبة الدورية:

نشاط 03:

في تركيب دارة الساعة نريد الحصول على دور إشارة الساعة قابل للضبط:

♦ ماذا تقترح كإضافة؟

نشاط 04:

لليك التركيب التالى:

بوضع : $R_1 = R_2$ ماذا تستنتج بالنسبة لإشارة الساعة؟

♦ أنجز التركيب وتحقق من التشغيل.

		سائج:	٦
••••	على دور إشارة الساعة قابل للضبط	للحصول	•
	على	للحصول	•
	•		
	•		

عمل منزلي home work

NE 555

C2 =

التركيب 1:

T= 1.5 sec \cdot R2= 20 k Ω \cdot R1= 5 k Ω

- ماذا يمثل (وظيفة) هذا التركيب ؟
 - عين دارتي الشحن و التفريغ ؟
 - أكتب علاقة زمن الشحن والتفريغ؟
- أكتب علاقة الدور T ؟ و التواتر ؟
 - أرسم إشارتي VC و VS ؟
 - أحسب قيمة سعة المكثفة C ؟
- أحسب قيمة المقاومتين R1 و R2 للحصول على دورة (T = 1 s) ؟

التركيب 2:

أ. ما هو دور المقاومة R في التركيب ؟

ب. أكتب علاقة زمن الشحن و التفريغ ؟

ت. احسب قيمة R من اجل الحصول على تواتر 1هارتز؟

ث. من اجل قيمة Rاستنتج زمن الشحن والتفريغ ؟

ج. احسب القيمة الصغرى والعظمى لـT

Vcc

R1

R₂

C1

التركيب 3:

ب. حدد دارتي الشحن و التفريغ ؟

ت. إشارة الخروج مربعة دورها 0.1 ميلي ثانية احسب المقاومتين R1و R2؟

