Esame scritto di Geometria 2

8 gennaio 2014

Esercizio 1. Sia \mathbb{E}^3 lo spazio euclideo tridimensionale reale dotato del riferimento cartesiano standard di coordinate (x, y, z). Siano P = (1, 2, 3) e Q = (1, 0, 1) punti di \mathbb{E}^3 e sia $\pi(k)$ il piano di equazione

$$x - kz + 2 = 0.$$

- 1. Per ogni $k \in \mathbb{R}$ si determini l'equazione cartesiana del piano passante per P e parallelo a $\pi(k)$.
- 2. Sia r la retta passante per P e Q. Si determini il valore di k per cui r e $\pi(k)$ sono paralleli.
- 3. Per ogni $k \in \mathbb{R}$ si determini, in equazioni cartesiane, la retta r(k) passante per Q e perpendicolare a $\pi(k)$.

Esercizio 2. Sia $\mathbb{P}^3_{\mathbb{C}}$ lo spazio proiettivo complesso tridimensionale dotato del riferimento proiettivo standard $[x_0, x_1, x_2, x_3]$. Consideriamo la quadrica $\mathcal{C}(k)$ definita come

$$C(k)$$
: $x_0^2 + 2kx_0x_1 + (k^2 - 1)x_1^2 + 2x_1x_3 + 2(k - 1)x_2x_3 - x_3^2 = 0$.

- 1. Al variare di $k \in \mathbb{C}$ si determini la forma canonica $\mathcal{D}(k)$ di $\mathcal{C}(k)$.
- 2. Al variare di $k \in \mathbb{C}$ si determini una proiettività $T_k : \mathbb{P}^3_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}$ tale che $T_k(\mathcal{C}(k)) = \mathcal{D}(k)$.

Esercizio 3. Su \mathbb{R} (con la topologia euclidea) si consideri la seguente relazione d'equivalenza.

$$x \sim y \text{ se } y = 2^n x \text{ per qualche } n \in \mathbb{Z}$$
.

Sia $X = \mathbb{R}/\sim$ lo spazio quoziente.

- 1. Si dica se X è connesso, compatto, di Hausdorff.
- 2. Si consideri la stessa relazione su $\mathbb{R}\setminus\{0\}$ e sia Y il nuovo spazio quoziente. Si dica se Y è connesso e se è compatto.

Esercizio 4. Per ogni intero positivo n si consideri la circonferenza

$$C_n = \{(x, y) \in \mathbb{R}^2 : (x - \frac{1}{n})^2 + y^2 = \frac{1}{n^2}\}$$

e sia $X = \bigcup_{n=1}^{+\infty} C_n$ l'unione di tali circonferenze dotato della topologia indotta da \mathbb{R}^2 .

Su \mathbb{R} si consideri la relazione di equivalenza data da $x \sim y$ se e solo se x = y oppure $x, y \in \mathbb{Z}$. Sia $Y = \mathbb{R}/\sim$.

- 1. Si dica se X è compatto, connesso, di Hausdorff.
- 2. X e Y sono omeomorfi?

Soluzioni

Soluzione esercizio 1.

1. Due piani in \mathbb{E}^3 sono paralleli se e solo se hanno la stessa giacitura. Quindi per ogni $k \in \mathbb{R}$ abbiamo un fascio di piani paralleli a $\pi(k)$

$$\tau(k,t): x - kz + t = 0$$

dipendenti dal parametro $t \in \mathbb{R}$. La condizione $P \in \tau(k,t)$ si traduce in

$$1 - 3k - 2 + t = 0$$
.

Dunque per ogni $k \in \mathbb{R}$ il piano passante per P e parallelo a $\pi(k)$ ha equazione

$$x - kz + 3k - 1 = 0.$$

2. Un vettore direzione della retta r è dato da $v = \overline{QP} = (0, 2, 2)$, mentre la direzione ortogonale al piano $\pi(k)$ è data dal vettore n(k) = (1, 0, -k).

La retta r ed il piano $\pi(k)$ sono paralleli se e solo se

$$0 = \langle v, n(k) \rangle = -2k,$$

da cui k = 0.

3. La direzione ortogonale al piano $\pi(k)$ è data dal vettore n(k) = (1, 0, -k) e dunque la retta r(k) è data parametricamente da (t+1, 0, -kt+1). In equazioni cartesiane otteniamo

$$r(k): \begin{cases} kx + z - k - 1 = 0 \\ y = 0 \end{cases}$$

Soluzione esercizio 2.

1. Nel proiettivo complesso la classe di ogni quadrica è determinata dal rango della matrice associata

$$A = \begin{pmatrix} 1 & k & 0 & 0 \\ k & k^2 - 1 & 0 & 1 \\ 0 & 0 & 0 & k - 1 \\ 0 & 1 & k - 1 & -1 \end{pmatrix}.$$

Poiché det $A=(k-1)^2$ concludiamo che per $k\neq 1$ la quadrica $\mathcal{C}(k)$ ha rango 4 e dunque la sua forma canonica è

$$\mathcal{D}(k): \quad x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0.$$

Per k = 1 abbiamo invece rkA = 2, da cui la forma canonica

$$\mathcal{D}(1): \quad x_0^2 + x_1^2 = 0.$$

- 2. Distinguiamo i due casi $k \neq 1$ e k = 1, e applichiamo il metodo del completamento dei quadrati.
 - Se $k \neq 1$,

$$C(k): x_0^2 + 2kx_0x_1 + (k^2 - 1)x_1^2 + 2x_1x_3 + 2(k - 1)x_2x_3 - x_3^2$$

$$= (x_0 + kx_1)^2 - x_1^2 + 2x_1x_3 + 2(k - 1)x_2x_3 - x_3^2$$

$$= (x_0 + kx_1)^2 - (x_1 - x_3)^2 + \frac{(k - 1)}{2}(x_2 + x_3)^2 - \frac{(k - 1)}{2}(x_2 - x_3)^2.$$

Possiamo dunque definire la proiettività

$$T_k : [x_0, x_1, x_2, x_3] \mapsto [X_0, X_1, X_2, X_3]$$

$$= [x_0 + kx_1, i(x_1 - x_3), \sqrt{\frac{(k-1)}{2}}(x_2 + x_3), \sqrt{\frac{-(k-1)}{2}}(x_2 - x_3)]$$

 \cos i che $T_k(\mathcal{C}(k)) = \mathcal{D}(k)$, dove

$$\mathcal{D}(1) = X_0^2 + X_1^2 + X_2^2 + X_3^2.$$

• Se k = 1,

$$C(1): x_0^2 + 2x_0x_1 + 2x_1x_3 - x_3^2$$

$$= (x_0 + x_1)^2 - x_1^2 + 2x_1x_3 - x_3^2$$

$$= (x_0 + x_1)^2 - (x_1 - x_3)^2,$$

per cui possiamo definire

$$T_1: [x_0, x_1, x_2, x_3] \mapsto [X_0, X_1, X_2, X_3] = [x_0 + x_1, i(x_1 - x_3), x_2, x_3]$$

così che $T_1(\mathcal{C}(1)) = \mathcal{D}(1)$, dove

$$\mathcal{D}(1) = X_0^2 + X_1^2.$$

Soluzione esercizio 3. 1. X è connesso perché quoziente di connesso. Sia $\pi: \mathbb{R} \to X$ la mappa quoziente.

Dimostriamo che l'unico intorno di $\pi(0)$ è tutto X. Sia U un intorno di $\pi(0)$, allora $\pi^{-1}(U)$ è un intorno di 0 e dunque contiene una palla aperta B(0,r). Ma per ogni $x \in \mathbb{R}$ esiste $y \in B(0,r)$ tale che $x \sim y$ e quindi U = X. Da questo segue immediatamente che X è compatto e non è di Hausdorff.

2. Sia $\phi : \mathbb{R} \setminus \{0\} \to Y$ la mappa quoziente. \mathbb{R}^+ e \mathbb{R}^- sono aperti saturi non vuoti e disgiunti e quindi Y non è connesso.

Chiaramente $Y = \phi([-2, -1] \cup [1, 2])$ e dunque Y è compatto in quanto immagine di compatto.

Soluzione esercizio 4. 1. X è di Hausdorff in quanto è un sottoinsieme di \mathbb{R}^2 . Inoltre è connesso perché è unione di connessi (le circonferenze C_n) con un punto in comune (l'origine di \mathbb{R}^2).

Dimostriamo che X è compatto. Sia $\{U_i\}_{i\in I}$ un ricoprimento aperto di X. Allora esiste $k \in I$ tale che $(0,0) \in U_k$. Essendo U_k aperto, esiste $h \in \mathbb{N}$ tale che tutte le circonferenze di raggio minore di 1/h sono contenute in U_k . Le restanti circonferenze sono un numero finito e dunque la loro unione è un compatto (chiuso e limitato). Possiamo così ottenere un sottoricoprimento finito.

2. X e Y non sono omeomorfi, dato che X è compatto ed Y non lo è. Dobbiamo dimostrare che Y non è compatto. Prendiamo come ricoprimento aperto la famiglia $\{\pi(U_n)\}_{n\in\mathbb{N}}$ dove $U_0=(-1,1)$ e $U_n=(n,n+1)\cup(-(n+1),-n)$ per ogni $n\in\mathbb{N}$. E' immediato vedere che non basta un numero finito di U_n per ricoprire Y.