CORSO DI SICUREZZA INFORMATICA 1 (A.A. 2005/2006)

Prof. A. Armando

(20 Giugno 2006)

Si risponda alle domande utilizzando lo spazio apposito. Non è consentito l'utilizzo di libri, appunti, nè dispositivi elettronici di alcun tipo.

Nome e Cognome:			
Matricola:			

1. Crittografia simmetrica

Si determini il plaintext corrispondente al ciphertext dobdmoet ottenuto applicando la procedura di cifratura di Vigegnère ed utilizzando come chiave la sequenza di numeri 4 2 11. Si consideri l'alfabeto italiano.

Soluzione.

Ciphertext: dcbdmoet
Plaintext: zanzibar

- 2. Crittografia Simmetrica Dire quali delle seguenti affermazioni sono FALSE, giustificando la risposta data. Si assuma che e_1 ed e_2 sono generiche (ovvero arbitrarie) permutazioni sull'alfabeto considerato.
 - 1. [VERO/FALSO] Se $E_e^s(m)$ è una procedura di sostituzione polialfabetica, allora $E_{e_1}^s(E_{e_2}^s(m))$ è più sicura sia di $E_{e_1}^s(m)$ che di $E_{e_2}^s(m)$.

Soluzione. FALSO. Infatti l'applicazione consecutiva di due sostituzioni con permutazioni e_1 ed e_2 equivale ad una singola sostituzione con permutazione $e_1 \circ e_2$.

2. [VERO/FALSO] Se $E_e^t(m)$ è una procedura di trasposizione (transposition cipher), allora $E_{e_1}^t(E_{e_2}^t(m))$ è più sicura di $E_{e_1}^t(m)$.

Soluzione. FALSO. Infatti l'applicazione consecutiva di due trasposizioni con permutazioni e_1 ed e_2 equivale ad una singola trasposizione con permutazione $e_1 \circ e_2$.

3. [VERO/FALSO] Se $E_e^s(m)$ è una procedura di sostituzione polialfabetica e $E_e^t(m)$ è una procedura di trasposizione (transposition cipher), allora $E_{e_1}^s(E_{e_2}^t(m))$ è più sicura sia di $E_{e_1}^s(m)$ che di $E_{e_2}^t(m)$.

Soluzione. VERO. Ed infatti la combinazione di sostituzione e trasposizione è alla base della maggior parte degli algoritmi di cifratura simmetrica moderni.

3. Sicurezza di Rete

Indicare la verità o falsità delle seguenti affermazioni.

• [VERO/FALSO] Con la link encryption è necessaria una coppia di chiavi per ciascuna coppia di utenti.

Soluzione. FALSO.

• [VERO/FALSO] Con la link encryption i messaggi scambiati sono in chiaro nell'host di origine e in quello di destinazione.

Soluzione. VERO.

• [VERO/FALSO] Con la end-to-end encryption i messaggi vengono cifrati nei nodi intermedi

Soluzione. FALSO.

• [VERO/FALSO] Con la link encryption i meccanismi di sicurezza sono "trasparenti" (ovvero invisibili) all'utente.

Soluzione. VERO.

• [VERO/FALSO] Con la link encryption è possibile proteggere o meno i sigoli messaggi inviati ad un determinato host.

Soluzione. FALSO.

• [VERO/FALSO] Con la end-to-end encryption è necessaria una coppia di chiavi per ciascun nodo intermedio.

Soluzione. FALSO.

4. Funzioni di Hash

Si scrivano nei riquadri bianchi le proprietà di sicurezza assicurate da ciascuno dei seguenti schemi crittografici.

Siccome

- non-ripudio \Rightarrow autenticazione (di messaggio) e
- autenticazione (di messaggio) ⇒ integrità

nelle risposte è indicata tra queste solo la condizione più forte.

5. Crittografia a chiave pubblica

Durante l'esecuzione del protocollo per lo scambio di chiave di Diffie-Hellman, viene osservato il seguente scambio di messaggi: Alice manda a Bob il numero 5 e Bob manda ad Alice il numero 8. I valori del modulo e del generatore α sono (pubblicamente) noti essere rispettivamente pari a q=11 e $\alpha=2$. Si determini la chiave condivisa da Alice e Bob alla fine dell'esecuzione del protocollo.

Nota: I numeri sono sufficientemente piccoli da rendere possibile lo svolgimento dei calcoli a mano.

Si giustifichino le risposte date scrivendo tutti i calcoli intermedi.

Soluzione.

Sappiamo che $Y_A = \alpha^{X_A} \mod q = 2^{X_A} \mod 11 = 5$. È facile determinare che $X_A = 4$ è soluzione di tale equazione.

Analogamente $Y_B = \alpha^{X_B} \mod q = 2^{X_B} \mod 11 = 8$. È facile determinare che $X_B = 3$ è soluzione di tale equazione.

Possiamo quindi calcolare $K_A = Y_B^{X_A} \mod q = 8^4 \mod 11 = 4096 \mod 11 = 4$. Verifichiamo infine che la stessa chiave è ottenuta da Bob, infatti $K_B = Y_A^{X_B} \mod q = 5^3 \mod 11 = 125 \mod 11 = 4$.

6. Protocolli di Sicurezza

Si consideri il seguente protocollo P_1 utilizzato in ambito di telefonia mobile

- (1) $B \rightarrow M : B, K_B$
- (2) $M \rightarrow B : \{K\}_{K_B}$
- (3) $M \rightarrow B : \{M, P\}_K$

dove M è un terminale mobile con limitate capacità di calcolo, B è la stazione base, K_B è una chiave pubblica di B non nota a M, K è una chiave segreta per crittografia simmetrica generata da M e P una password nota solo a M e a B. Ogni qualvolta viene completato il protocollo la stazione B addebita a M un costo prestabilito.

(a) Si descrivano i singoli passi del protocollo e le proprietà di sicurezza per il quale è stato presumibilmente progettato.

Soluzione. Al passo 1 B comunica a M la propria identità e la propria chiave pubblica K_B . Al passo 2 M genera la chiave segreta K e la invia confidenzialmente a B. Siccome B non può essere ancora certo che K provenga da M, nel passo 3 M invia a B in modo confidenziale la propria identità M e la password P. A questo punto B è certo che K sia stata effettivamente generata da M (graze al messaggio ricevuto al passo 3) e che non è nota ad altri (grazie al messaggio ricevuto al passo 2). L'obiettivo del protocollo è dunque quello di stabilire una chiave di sessione tra M e B. Più in generale, il protocollo dovrebbe garantire:

- 1. la confidenzialità di K e P,
- 2. l'autenticazione di M nei confronti di B (entity authentication). Quest'ultima proprietà è importante per evitare replay attacks, qui particolarmente importante in quanto ad ogni esecuzione del protocollo viene effettuato un addebito.

(b) Spiegare una ragione per cui il protocollo P_1 è preferibile al seguente protocollo P_2 che, pur garantendo le stesse proprietà di sicurezza, è indiscutibilmente più semplice.

(1)
$$B \to M : B, K_B$$

(2) $M \to B : \{K, M, P\}_{K_B}$

Soluzione.

Perchè P_2 richiede che M applichi cifratura a chiave pubblica a un plaintext più lungo. Essendo M un dispositivo con limitate capacità computazionali, P_1 è preferibile a P_2 .

(c) Si discuta se il protocollo garantisce o meno le proprietà di sicurezza indicate nella risposta alla domanda (a).

Soluzione. La confidenzialità sia di K e di P non sono garantite come mostrato dal seguente attacco:

$$\begin{array}{cccc} B \to & I & : B, K_B \\ & I \to M & : B, K_I \\ & I \leftarrow M & : \{K\}_{K_I} \\ B \leftarrow & I & : \{K\}_{K_B} \\ & I \leftarrow M & : \{M, P\}_K \\ B \leftarrow & I & : \{M, P\}_K \end{array}$$

Neppure la entity authentication è garantita, come mostrato dal seguente (ancor più semplice) attacco:

$$\begin{array}{cccc} B \rightarrow & I \rightarrow M & : B, K_B \\ B \leftarrow & I \leftarrow M & : \{K\}_{K_B} \\ B \leftarrow & I \leftarrow M & : \{M, P\}_K \\ & & \vdots \\ B \rightarrow & I & : B, K_B \\ B \leftarrow & I & : \{K\}_{K_B} \\ B \leftarrow & I & : \{M, P\}_K \end{array}$$

dove l'intruder dopo aver osservato una normale esecuzione del protocollo "rigioca" i messaggi $\{K\}_{K_B}$ e $\{M,P\}_K$ osservati in precedenza facendo addebitare un ulteriore costo a M senza che questo abbia preso parte alla seconda esecuzione del protocollo eseguita da B. Si noti che in questo semplice caso, la confidenzialità di K e B non è violata.

- (d) Nel caso sia stata individuata una vulnerabilità, si identifichi un raffinamento del protocollo che non soffre di tale vulnerabilità. A tal fine si assuma che
 - B sia in possesso di un certificato $\{B, K_B\}_{K_{CA}^{-1}}$ emesso da un'autorità di certificazione CA relativo alla propria chiave pubblica K_B e
 - M sia in possesso di K_{CA} , ovvero della chiave pubblica di CA.

Soluzione. Se B al passo 1 trasmette il certificato $\{B,K_B\}_{K_{CA}^{-1}}$ allora M ha modo di verificare l'autenticità di K_B e il primo dei due attacchi mostrati in precedenza non è più possibile.

- (1) $B \to M : \{B, K_B\}_{K_{CA}^{-1}}$ (2) $M \to B : \{K\}_{K_B}$ (3) $M \to B : \{M, P\}_K$

Per far sì che il protocollo non sia soggetto a replay attacks è sufficiente realizzare il solito meccanismo di challenge-response mediante una nonce come indicato qui di seguito:

- (1) $B \to M : N_B, \{B, K_B\}_{K_{GA}^{-1}}$
- $(2) M \to B : \{K\}_{K_B}$
- $(3) M \to B : \{N_B, M, P\}_K$

7. Controllo degli Accessi

Si consideri un sistema informativo universitario, in cui l'informazione relativa agli studenti è memorizzata in due files piani_di_studio.xls e voti.xls. Siamo interessati a far sì che il sistema realizzi la seguente politica di sicurezza garantendo nel contempo che non vi possa essere alcun flusso informazione dal file piani_di_studio.xls al file voti.xls.

- 1. I professori possono leggere e scrivere i files piani_di_studio.xls e voti.xls.
- 2. Gli esercitatori possono leggere e scrivere il file voti.xls, ma non possono accedere in alcun modo al file piani_di_studio.xls.
- 3. Gli studenti possono solo leggere i files piani di studio.xls e voti.xls.

Si descriva un modello reticolare che consente di realizzare tale politica di sicurezza indicando gli utenti che sono autorizzati a fare downgrading all'atto del collegamento e quelli che invece non lo sono.

Si assuma che il sistema escluda le "write-up". Ovvero ogni tentativo di scrittura da parte di un processo p con security label s_p su una risorsa r con security label $s_r > s_p$ viene automaticamente negato dal sistema.

NOTA: Nel modello reticolare, normalmente un utente si collega al sistema utilizzando il proprio security label s. (Ciò significa che tutti i processi da lui invocati avranno security label s.) Tuttavia, se autorizzato, un utente può fare downgrading, ovvero può collegarsi al sistema utilizzando un security label $s' \leq s$. (Ciò significa che tutti i processi da lui invocati avranno security label s'.)

Soluzione.

Attribuiamo ai files le security labels nel seguente modo:

- piani_di_studio.xls → (CONFIDENTIAL, {PIANI})
- voti.xls → (CONFIDENTIAL, {VOTI})

e attribuiamo agli utenti le security labels nel seguente modo:

- PROFESSORE \longrightarrow (SECRET, {PIANI, VOTI})
- ESERCITATORE \longrightarrow (SECRET, {VOTI})
- Studente \longrightarrow (Confidential, {piani, voti})

Infine attribuiamo ai professori e agli esercitatori la possibilità di fare downgrading, mentre escludiamo tale possibilità per gli studenti.

Ora verifichiamo che tale modello realizza la politica di sicurezza richiesta:

- 1. I professori possono leggere entrambe i files in quando il loro security label domina quello dei files. Inoltre possono anche scrivere sui file purchè facciano downgrading.
- 2. Gli esercitatori possono leggere e scrivere il file voti.xls (la scrittura è possibile previo downgrading), ma non possono accedere in alcun modo al file piani_di_studio.xls in quanto il proprio security label non domina quello di piani_di_studio.xls (escludendo così la possibilità di lettura).
- 3. Gli studenti possono leggere i files piani_di_studio.xls e voti.xls in quanto il loro security label domina quello dei files. Tuttavia non possono scrivere su tali files in quanto non possono fare downgrading.