Ch01. Linear Regression

Hwanjo Yu POSTECH

http://hwanjoyu.org

Outline

Regression and linear models

- Ordinary least squares (OLS)
 - Least squared method
 - Maximum likelihood perspective

- Regularization
 - Ridge regression
 - Sparse regression (LASSO)
- Bias-Variance Dilemma

Regression?

Problem Setup

Given a set of N labeled examples, $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N \ (\mathbf{x}_n \in X \subset \mathbb{R}^D \ \text{and} \ y_n \in Y \subset \mathbb{R})$, the goal is to learn a mapping

$$f(\mathbf{x}): X \to Y$$

which associates \mathbf{x} with y, such that we can make prediction about y^* , when a new input $\mathbf{x}^* \notin \mathcal{D}$ is provided.

- Linear models: $f(\mathbf{x}) = \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) + w_0$.
- Neural networks: $f(\mathbf{x}) = \sum_{j=1}^{M} w_j^{(2)} \phi \left(\sum_k W_{j,k}^{(1)} x_k + b_j^{(1)} \right)$.
- Kernel regression: $f(\mathbf{x}) = \sum_{n=1}^{N} w_n k(\mathbf{x}, \mathbf{x}_n) + w_0$.
- Regression model: $y = f(\mathbf{x}) + \epsilon$.
- x: input, independent variable, predictor, regressor, covariate
- y: output, dependent variable, response
- $\phi_i(\mathbf{x})$: basis function, feature
- w_i : weight, coefficient, learning parameter

Why Linear Models?

$$y_n = w_1 x_{1,n} + w_2 x_{2,n} + \dots + w_M x_{M,n} + w_0 + \epsilon_n, \quad \forall n = 1, \dots, N.$$

- Easy to solve (can be solved analytically)
- Interpretable (in contrast to deep learning)

Linear Regression

Linear regression refers to a model in which the conditional mean of y_n given the value of \mathbf{x}_n is an affine function of $\phi(\mathbf{x}_n)$

$$f(\mathbf{x}_n) = \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}_n) + w_0 \phi_0(\mathbf{x}_n) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n),$$

where $\phi_j(\mathbf{x}_n)$ are known as basis functions and

•
$$\mathbf{w} = [w_0, w_1, ..., w_M]^{\mathrm{T}} \in \mathbb{R}^{M+1}$$

•
$$\phi(\mathbf{x}_n) = [\phi_0(\mathbf{x}_n), \phi_1(\mathbf{x}_n), ..., \phi_M(\mathbf{x}_n)]^T \in \mathbb{R}^{M+1}$$

•
$$\phi_0(\mathbf{x}_n) = 1$$

By using nonlinear basis functions, we allow the function $f(\mathbf{x}_n)$ to be a nonlinear function of the input vector \mathbf{x}_n (but a linear function of $\boldsymbol{\phi}(\mathbf{x}_n)$).

Polynomial Regression: $f(\mathbf{x}) = \sum_{j=0}^{M} w_j \phi_j(\mathbf{x}) = \sum_{j=0}^{M} w_j \mathbf{x}^j$

Figure: M = 0,1,3,9

Ordinary Least Squares (OLS)

Least Squared Method

Given a set of training data $\{(\mathbf{x}_n, y_n)\}_{n=1}^N$, we determine the weight vector $\mathbf{w} \in \mathbb{R}^{M+1}$ which minimizes

$$\mathcal{J}_{LS}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 = \frac{1}{2} \left\| \mathbf{y} - \boldsymbol{\phi}^{\mathrm{T}} \mathbf{w} \right\|_{2}^{2},$$

where $\mathbf{y} = [y_1, \dots, y_N]^{\mathrm{T}} \in \mathbb{R}^N$ and $\mathbf{\phi} \in \mathbb{R}^{(M+1)\times N}$ is known as the **design** matrix with $\mathbf{\phi}_{j,n} = \phi_{j-1}(\mathbf{x}_n)$ for $j=1,\dots,M+1$ and $n=1,\dots,N$, i.e.,

$$\mathbf{\Phi}^{\mathrm{T}} = \begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_M(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \dots & \phi_M(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \dots & \phi_M(\mathbf{x}_N) \end{bmatrix}.$$

Note that

$$\|\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w}\|_{2}^{2} = (\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w})^{\mathrm{T}} (\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w})$$

Least Squared Method (2)

Find the estimate $\widehat{\mathbf{w}}_{IS}$ such that

$$\mathbf{w}_{LS} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w} \|_{2}^{2}$$

where both y and ϕ are given.

How do you find the minimizer \mathbf{w}_{LS} ?

Solve
$$\frac{\partial}{\partial \mathbf{w}} \left(\frac{1}{2} \left\| \mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w} \right\|_{2}^{2} \right) = 0$$
 for \mathbf{w} .

Least Squared Method (3)

Note that

$$\frac{1}{2} \|\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w}\|_{2}^{2} = \frac{1}{2} (\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w})^{\mathrm{T}} (\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w})$$
$$= \frac{1}{2} (\mathbf{y}^{\mathrm{T}} \mathbf{y} - \mathbf{w}^{\mathrm{T}} \mathbf{\phi} \mathbf{y} - \mathbf{y}^{\mathrm{T}} \mathbf{\phi}^{\mathrm{T}} \mathbf{w} + \mathbf{w}^{\mathrm{T}} \mathbf{\phi} \mathbf{\phi}^{\mathrm{T}} \mathbf{w})$$

Then, we have

$$\frac{\partial}{\partial \mathbf{w}} \left(\frac{1}{2} \left\| \mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w} \right\|_{2}^{2} \right) = \mathbf{\phi} \, \mathbf{\phi}^{\mathrm{T}} \mathbf{w} - \mathbf{\phi} \mathbf{y}.$$

Least Squared Method (4)

Therefore, $\frac{\partial}{\partial \mathbf{w}} \left(\frac{1}{2} \| \mathbf{y} - \mathbf{\phi}^T \mathbf{w} \|_2^2 \right) = 0$ leads to the normal equation that is of the form

$$\mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} \mathbf{w} = \mathbf{\Phi} \mathbf{y}.$$

Thus, LS estimate of is w given by

$$\mathbf{w}_{LS} = \left(\mathbf{\phi} \, \mathbf{\phi}^{\mathrm{T}}\right)^{-1} \mathbf{\phi} \mathbf{y} = \mathbf{\phi}^{\dagger} \mathbf{y}$$

where ϕ^{\dagger} is known as **Moore-Penrose pseudo-inverse**

Maximum Likelihood Perspective

We consider a linear model where the target variable y_n is assumed to be generated by a deterministic function $f(\mathbf{x}_n; \mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n)$ with additive Gaussian noise:

$$y_n = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + \epsilon_n$$

for n=1,...,N and $\epsilon_n \sim \mathcal{N}(0,\sigma^2)$.

In a compact form, we have

$$y = \mathbf{\Phi}^{\mathrm{T}} \mathbf{w} + \boldsymbol{\epsilon}.$$

In other words, we model $p(\mathbf{y}|\mathbf{\phi},\mathbf{w})$ as

$$p(\mathbf{y}|\mathbf{\phi},\mathbf{w}) = \mathcal{N}(\mathbf{\phi}^{\mathrm{T}}\mathbf{w},\sigma^{2}\mathbf{I}).$$

Maximum Likelihood Perspective (2)

The log-likelihood is given by

$$\mathcal{L} = \log p(\mathbf{y}|\mathbf{\phi}, \mathbf{w}) = \log \prod_{n=1}^{N} p(y_n | \phi(\mathbf{x}_n), \mathbf{w}) = \sum_{n=1}^{N} \log p(y_n | \phi(\mathbf{x}_n), \mathbf{w})$$

$$= \sum_{n=1}^{N} \log \mathcal{N}(\mathbf{w}^{T} \phi(\mathbf{x}_n), \sigma^{2}) = \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(y_n - \mathbf{w}^{T} \phi(\mathbf{x}_n))^{2}}{2\sigma^{2}}}$$

$$= \sum_{n=1}^{N} (\log \frac{1}{\sqrt{2\pi\sigma^{2}}} + \log e^{-\frac{(y_n - \mathbf{w}^{T} \phi(\mathbf{x}_n))^{2}}{2\sigma^{2}}}) = \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^{2}}} - \sum_{n=1}^{N} \frac{(y_n - \mathbf{w}^{T} \phi(\mathbf{x}_n))^{2}}{2\sigma^{2}}$$

$$= \sum_{n=1}^{N} \log(2\pi\sigma^{2})^{-\frac{1}{2}} - \frac{1}{\sigma^{2}} \frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{w}^{T} \phi(\mathbf{x}_n))^{2} = -\frac{N}{2} \log \sigma^{2} - \frac{N}{2} \log$$

MLE is given by

$$\mathbf{w}_{ML} = \underset{\mathbf{w}}{\operatorname{argmax}} \log p(\mathbf{y}|\mathbf{\phi}, \mathbf{w})$$

Leading to

$$\mathbf{w}_{ML} = \mathbf{w}_{LS}$$

which we arrived at under Gaussian noise assumption.

Regularization

- Ridge regression: L_2 norm regularization
- LASSO: L_1 norm regularization

Why Regularization?

Improve the generalization of the learned model.

Regularization

Interested in: Inferring a function of any \mathbf{x} , given N examples $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$

Consider a loss function $\ell(f(\mathbf{x}_n; \mathbf{w}), y_n)$. For instance, LS regression uses the square loss:

$$\sum_{n=1}^{N} \ell(f(\mathbf{x}_n; \mathbf{w}), y_n) = \frac{1}{2} \|\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w}\|_{2}^{2}$$

A **regularizer** (which imposes a penalty on the **complexity** of f) is added to the loss function, leading to

$$\sum_{n=1}^{N} \ell(f(\mathbf{x}_n; \mathbf{w}), y_n) + \lambda \quad \underbrace{R(f)}_{\text{regularizer}},$$

where λ controls the importance of the regularization term (hyperparameter)

(b) M = 3

	M = 0	M = 1	M = 3	M = 9
w ₀	0.1861	1.0977	0.0880	-8.1
w_1		-1.8913	9.9135	401.2
W2			-29.8721	-6326.3
W3			20.1642	49778.9
W4				-222555.2
W5				599603.0
W6				-990507.7
W7				980248.7
w ₈				-532736.3
Wg				122122.1

(c) M = 9

(d)

Ridge Regression

Ridge Regression

The ridge regression can be written as

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2},$$

or as a bounded constrained form:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w}\|_{2}^{2}$$
, s.t. $\|\mathbf{w}\|_{2}^{2} \leq B$.

A small (tight) bound B corresponds to the penalty λ and vice versa.

(a)
$$\log \lambda = -\infty \ (\lambda = 0)$$

(b) $\log \lambda = -18$

	$\log \lambda = -\infty$	$\log \lambda = -18$	$\log \lambda = 0$
wo	-8.1	0.1503	0.0183
w_1	401.2	9.8564	-0.0083
W2	-6326.3	-43.3276	-0.0112
w ₃	49778.9	98.8418	-0.0101
W4	-222555.2	-127.4478	-0.0085
W5	599603.0	-8.6068	0.0071
W ₆	-990507.7	139.2564	-0.0059
W7	980248.7	19.9290	-0.0050
w ₈	-532736.3	-165.8182	-0.0042
Wg	122122.1	77.6305	-0.0036

(d)

Ridge Regression

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} = \frac{1}{2} (\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w})^{\mathrm{T}} (\mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
$$= \frac{1}{2} (\mathbf{y}^{\mathrm{T}} \mathbf{y} - 2\mathbf{y}^{\mathrm{T}} \mathbf{\phi}^{\mathrm{T}} \mathbf{w} + \mathbf{w}^{\mathrm{T}} \mathbf{\phi} \mathbf{\phi}^{\mathrm{T}} \mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Then,

$$\frac{\partial}{\partial \mathbf{w}} \left[\frac{1}{2} \| \mathbf{y} - \mathbf{\phi}^{\mathrm{T}} \mathbf{w} \|_{2}^{2} + \frac{\lambda}{2} \| \mathbf{w} \|_{2}^{2} \right]$$

$$= \frac{\partial}{\partial \mathbf{w}} \left[\frac{1}{2} (\mathbf{y}^{\mathrm{T}} \mathbf{y} - 2 \mathbf{y}^{\mathrm{T}} \mathbf{\phi}^{\mathrm{T}} \mathbf{w} + \mathbf{w}^{\mathrm{T}} \mathbf{\phi} \mathbf{\phi}^{\mathrm{T}} \mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \right]$$

$$= -\mathbf{\phi} \mathbf{y} + \mathbf{\phi} \mathbf{\phi}^{\mathrm{T}} \mathbf{w} + \lambda \mathbf{w} = -\mathbf{\phi} \mathbf{y} + (\mathbf{\phi} \mathbf{\phi}^{\mathrm{T}} + \lambda \mathbf{I}) \mathbf{w}$$

Equating to zero yields

$$\mathbf{w}_{rilge} = (\mathbf{\phi} \mathbf{\phi}^{\mathrm{T}} + \lambda \mathbf{I})^{-1} \mathbf{\phi} \mathbf{y}$$

Ridge Regression: Illustration

Dataset Description: Prostate Data

A study of 97 men with prostate cancer examined the correlation between (log of) PSA (prostate specific antigen) and a number of clinical measurements (lcavol, lweight, lbph, svi, lcp, gleason, pgg45) and age.

- Icavol: log-cancer volume
- lweight: log prostate weight
- age: age in years
- Ibph: log benign prostatic hyperplasia
- svi: seminal vesicle invation
- lcp: log of capsular penetration
- gleason: Gleason score
- pgg45: percent of Gleason scores 4 or 5

Stamey, T.A., Kabalin, J.N., McNeal, J.E., Johnstone, I.M., Freiha, F., Redwine, E.A. and Yang, N. (1989)

Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate: II. radical prostatectomy treated patients, Journal of Urology 141(5), 1076–1083.

Profiles of ridge coefficients

 $df(\lambda)$: effective degree of freedom ($\propto \frac{1}{\lambda}$)

LASSO

• Robert Tibshirani (1996), "Regression shrinkage and selection via the LASSO," Journal of the Royal Statistical Society. Series B (Methodological).

Not satisfied with OLS estimates?

- Prediction accuracy
 - Often have low bias but large variance
 - Can sometimes improve the prediction accuracy by shrinking or setting to zero some coefficients. (sacrifice a little bias to reduce the variance of the predicted values)
- Interpretability
 - Often would like to determine a smaller subset of covariates that exhibit the strongest effects.
 - The larger the number of covariates is, the less interpretable the model is.

LASSO (Least Absolute Selection and Shrinkage operator)

The LASSO regression can be written as

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}^{\mathrm{T}} \boldsymbol{\theta}\|_{2}^{2} + \lambda \|\boldsymbol{\theta}\|_{1},$$

or as a bounded constrained form (a quadratic function with linear constraints):

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}^{\mathrm{T}} \boldsymbol{\theta}\|_{2}^{2}, \text{ s.t. } \|\boldsymbol{\theta}\|_{1} \leq B.$$

A small (tight) bound B corresponds to the penalty λ and vice versa.

LASSO: Illustration

LASSO calculation

Now we calculate the derivative of

$$\frac{1}{2} \|\mathbf{y} - \mathbf{X}^{\mathrm{T}}\boldsymbol{\theta}\|_{2}^{2} + \lambda \|\boldsymbol{\theta}\|_{1},$$

to find the LASSO solution.

$$\|\boldsymbol{\theta}\|_1 = |\theta_1| + |\theta_2| + \cdots$$
 is not differentiable!

Coordinate descent: optimize one by one

To this end, we rewrite the objective function:

$$\mathcal{J}_{LASSO} = \frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n^{\mathrm{T}} \boldsymbol{\theta})^2 + \lambda \sum_{d=1}^{D} |\theta_d|$$
$$= \frac{1}{2} \sum_{n=1}^{N} (y_n - x_{n,d} \theta_d - \mathbf{x}_{n,-d}^{\mathrm{T}} \boldsymbol{\theta}_{-d})^2 + \lambda \sum_{d'=1}^{D} |\theta_{d'}|$$

Calculate the derivative:

$$\frac{\partial}{\partial \theta_{d}} \mathcal{J}_{LASSO} = \sum_{n=1}^{N} (y_{n} - x_{n,d} \theta_{d} - \mathbf{x}_{n,-d}^{\mathrm{T}} \boldsymbol{\theta}_{-d}) (-x_{n,d}) + \lambda \frac{\partial |\theta_{d}|}{\partial \theta_{d}}$$

$$= \left(\sum_{n=1}^{N} x_{n,d}^{2}\right) \theta_{d} - \sum_{n=1}^{N} (y_{n} - \mathbf{x}_{n,-d}^{\mathrm{T}} \boldsymbol{\theta}_{-d}) x_{n,d} + \lambda \frac{\partial |\theta_{d}|}{\partial \theta_{d}}$$

Subdifferentials

The subdifferential (subderivative, subgradient) $\partial f(x_0)$ of a convex function f at a point x_0 is the set defined by

$$\partial f(x_0) = \{ z \in \mathbb{R} | f(x) - f(x_0) \ge z(x - x_0), \forall x \in \mathbb{R} \}.$$

As a special case, if $f(x_0)$ is differentiable, then $\partial f(x_0) = \{f'(x_0)\}.$

Thus, we have

$$\partial \mathcal{J}_{LASSO} = \alpha_d \theta_d - \beta_d + \lambda \partial |\theta_d| = \begin{cases} \{\alpha_d \theta_d - \beta_d - \lambda\} & \text{if } \theta_d < 0 \\ [-\beta_d - \lambda, -\beta_d + \lambda] & \text{if } \theta_d = 0 \\ \{\alpha_d \theta_d - \beta_d + \lambda\} & \text{if } \theta_d > 0 \end{cases}$$

Thus, the estimate of θ_d given the other parameters is calculated as:

$$\hat{\theta}_{d} = \begin{cases} \frac{\beta_{d} + \lambda}{\alpha_{d}} & \text{if } \beta_{d} < -\lambda \\ 0 & \text{if } \beta_{d} \in [-\lambda, \lambda], \\ \frac{\beta_{d} - \lambda}{\alpha_{d}} & \text{if } \beta_{d} > \lambda \end{cases}$$

where

$$\alpha_d = \sum_{n=1}^N x_{n,d}^2,$$

$$\beta_d = \sum_{n=1}^N (y_n - \mathbf{x}_{n,-d}^T \boldsymbol{\theta}_{-d}) x_{n,d}.$$

Shooting Algorithm

The coordinate descent algorithm for LASSO, is also knowns as shooting algorithm.

- I W. J. Fu (1998), "Penalized regressions: The bridge versus the LASSO," Journal of Computational and Graphical Statistics.
- IT. T. Wu and K. Lange (2008), "Coordinate descent algorithms for LASSO penalized regression," The Annals of Applied Statistics.

Algorithm: Coordinate Descent for Sparse Regression

Input: Initialize parameters $\boldsymbol{\theta}$ (e.g. use $\boldsymbol{\theta}_{LS} = \left(\mathbf{X}\mathbf{X}^{\mathrm{T}}\right)^{-1}\mathbf{X}\mathbf{y}$)

- repeat
 - for d = 1, 2, ..., D do
 - Compute $\alpha_d = \sum_{n=1}^N x_{n,d}^2$
 - Compute $\beta_d = \sum_{n=1}^N (y_n \mathbf{x}_{n,-d}^\mathsf{T} \boldsymbol{\theta}_{-d}) x_{n,d}$
 - if $\beta_d < -\lambda$ then $\theta_d = \frac{\beta_d + \lambda}{\alpha_d}$
 - else if $\beta_d > \lambda$ then $\theta_d = \frac{\beta_d \lambda}{\alpha_d}$
 - else $\theta_d = 0$
 - end if
 - end for
- until convergence
- return $\boldsymbol{\theta}_{LASSO} = [\theta_1, ..., \theta_D]^{\mathrm{T}}$

Bias-Variance Trade-off

There is a trade-off between bias and variance:

- Flexible models: low bias but high variance
- Rigid models: high bias but low variance

