CMP 670

Statistical Natural Language Processing (Spring 2019) Homework 1

> EROL ÖZKAN N18245609 erolozkan@outlook.com

1. BASIC MODEL

a. Data Cleaning

Beginning and end of sentence speech tags (<s> and </s>) are added to all sentences. An example is shown in Table 1.

Table 1: Data Cleaning Example

I am Sam
$$\rightarrow$$
 ~~I am Sam~~

b. N-Gram Language Model – Simple Test (Runner_First.py)

3 simple sentences are given in Table 2. From these sentences <u>Unigram</u>, <u>Bigram</u> and <u>Trigram</u> models are trained. Some of the statistics are shown in Table 3.

Table 2: Example Training Corpus

Tuble 2. Example Training Corpus
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Table 3: Some Examples from trained N-gram model

ONEGRAM	COUNT	PROB	
	300000	-	
<s></s>	3	0.15	
I	3	0.15	
am	2	0.1	
Sam	2	0.1	
	3	0.15	
do	1	0.05	
not	1	0.05	
like	1	0.05	
green	1	0.05	
eggs	1	0.05	
and	1	0.05	
ham	1	0.05	

ONEGRAM ADD ONE						
ONEGRAM	COUNT	PROB				
<s></s>	3	0.125				
I	3	0.125				
am	2	0.09				
Sam	2	0.09				
	3	0.12				
do	1	0.06				
not	1	0.06				
like	1	0.06				
green	1	0.06				
eggs	1	0.06				
and	1	0.06				
ham	1	0.06				

BIGRAN	A PROBABII	LITIES	
ONEGRAM	COUNT	PROB	
(' <s>', 'T)</s>	2	0.66	
('I', 'am')	2	0.66	
('am', 'Sam')	1	0.5	
('Sam', '')	ī	0.5	
(' <s>', 'Sam')</s>	1	0.33	
('Sam', 'I')	1	0.5	
('I', 'am')	2	0.66 0.5 0.66	
('am', '')	1		
(' <s>', 'I')</s>	2		
(T, 'do')	1	0.33	
('do', 'not')	i	1	
('not', 'like')	ì	1	
('like', 'green')	1	1	
('green', 'eggs')	1	1	
('eggs', 'and')	1	1	
('and', 'ham')	1	1	
('ham', '')	1	1	

TRIGRAM	PROBABILI	TIES	
ONEGRAM	COUNT	PROB	
(' <s>', 'I', 'am')</s>	1	0.5	
(T, 'am', 'Sam')	1	0.5	
('am', 'Sam', '')	1	1	
(' <s>', 'Sam', 'T')</s>	1	1	
('Sam', 'I', 'am')	1	1	
('I', 'am', '')	1	0.5	
(' <s>', 'I', 'do')</s>	1	0.5	
('I', 'do', 'not')	1	1	
('do', 'not', 'like')	1	1	
('not', 'like', 'green')	1	1	
('like', 'green', 'eggs')	1	1	
('green', 'eggs', 'and')	1	1	
('eggs', 'and', 'ham')	1	1	
('and', 'ham', '')	1	1	

c. Laplace Smoothing (output/1gram-add-one.txt)

For unigram model <u>Laplace Smoothing</u> is implemented. Table 3 shows <u>Laplace Smoothing</u> results. Here K value is 1. So it is simply <u>Add-one Smoothing</u>. Formula is shown below.

$$P(w_s)_{add-one} = \frac{C(w_s) + 1}{N + V}$$

d. Good-Turing Smoothing (output/good turing smooting*.txt)

For Bigram and Trigram model <u>Good-Turing Smoothing</u> is implemented. For this purpose frequencies of frequencies are calculated using below formula.

$$N_c = \sum_{x} count(x) = c$$

Using this c values c^* values are calculated with below formula. These new c^* values are then used to replace the maximum likelihood scores. Note that there exists some N_{c+1} values which are zero. Therefore, some c^* values for these values are also zero. This is because of data sparsity problem. There are some methods to estimate this zero values.

$$c* = (c+1)\frac{N_{c+1}}{N_c}$$

The purpose of Good-Turing Smoothing is to estimate the frequency of zero count events. To do this bigram zero occurrence and trigram zero occurrence probabilities are calculated using below formula. In this equation, N_1 is the number of counts seen once and N is the total number of counts seen in the training corpus. These values are assigned to test dataset words that never occurred in the training corpus.

$$P(N - gram with zero - count) = \frac{N_1}{N}$$

e. N-Gram Language Model - Real Dataset Test - Perplexity of Test Dataset

Perplexity of test data is calculated using unigram, bigram and trigram models. Results are shown in Table 4.

Table 4: Perplexity Scores of Test Data

- west it - or pressing as a sign of							
UNIGRAM PERPLEXITY	TY 726.57 add-one smoothing used						
BIGRAM PERPLEXITY	17.52	log ₂ (0) is assumed as zero. Some c* values are zero					
TRIGRAM PERPLEXITY	1.97	$log_2(0)$ is assumed as zero. Some c* values are zero.					

f. N-Gram Language Model – Generate Sentences, Calculate Perplexity

Foreach unigram, bigram and trigram model, 5 sentences are generated. Word are selected randomly from the corpus. That's why, for example, the probability of p("</s>"), p(".") or p("</s>"\".") are high. Perplexity of these sentences are calculated. Generated sentences and their perplexity score are given in Table 5. $log_2(0)$ is assumed as zero not as -infinite.

Table 5: Randomly Genereated Sentences and Their Perplexity Score

<s> flatus banking 214,938 transmittable computations Sewer Dequindre concordant lucks brothels Billions accommodated veal abyss embroiled world-oriented blacking hypocrites dynamical confusion</s>		
<s> impressionistic zipper Westchester countries athletics Ideal yardstick Pm all-purpose obsession Women resourcefully True chafe every vibrated debated skin-perceptiveness Sea animosity </s>	UNIGRAM PERPLEXITY 185054.64	
<s> qualitative Grovers dazzler strutted drip- phrasing uniforms France-Germany politicking hawk-faced Owing preponderantly forts cross-legged Curzon Bassi Harding Maeterlinck rove bracket </s>	UNIGRAM PERPLEXITY (Add-One Smoothing)	
<s> Revolutionibus armament earnestly grinding recitative undertaken customarily hurley ambidextrous Division's 1500 oblong Continental Masters self-deceiving persiflage terrorists unwarrantable Comique churning </s>	125766.33	
<s> widens reserve edgy unobtrusive 135 validly gingerly 20% felt joking 1966 Magi swift remnant Potemkin predispositions ceremony steaming Keeshond sceneries </s>		
<s> Speaking generally the ward-personnel and regard to Muller's would shoot at Fox reported Wagner and surprised . </s>	UNIGRAM PERPLEXITY	
<s> set targets have cooling-heating units would curse : Forensic Pathology Seminar . </s>	2866.33	
<s> Mayor approving) bodies such reference height . </s>	UNIGRAM PERPLEXITY (Add-One Smoothing) 2720.43	
<s>Jobs for Warwickshire in batting for irradiation of shame ? ? </s>	BIGRAM PERPLEXITY	
<s> Cousin Joshua R. F. Gregorio that Hino decided he snarled . </s>	73.51	
<s> Reception into the action be unilateral or multilateral ? ? </s>	UNIGRAM PERPLEXITY 1271.61	
<s> Marty's heart skipped a piece up the rear gate in the work progresses the frame and moving parts become a composer </s>	UNIGRAM PERPLEXITY (Add-One Smoothing)	
<s> Garth brought one in a curve C means a square with its fellows . </s>	1258.56	
<s> Oso growled . </s>	BIGRAM PERPLEXITY 65.02	
<s> Poetry for a final desperate plea from the Stalag commander . </s>	TRIGRAM PERPLEXITY 4.16	

- Unigram model selects random words without using any context information for the words. That's why, generated sentences have no meanings and the grammar is the worst.
- Bigram model selects the first word as "<s", then randomly generates next words using bigram model ($p(x \le s)$). It is better than the unigram model and sentences are grammatically more correct. Perplexity is also way lower.
- Trigram model selects first word as "<s>". It selects second word using bigram model, then generates next words using trigram model. Sentences are better than both unigram and bigram model considering both meaning and the grammar.

g. Error Analysis

- There are unigram, bigram and trigram word units that occur in test dataset, but does not occur in training dataset. The probability of these word unit's is 0. logg:00]\text{=-infinite} without any smoothing. In order to calculate Perplexity, I considered these values as zero! Only add-one smoothing has non-zero values. There were zero values in Good-Turing Smoothing also.
- As going from <u>unigram</u> to <u>trigram</u>, the probability of test dataset word unit does not occur in training dataset increases. That's why in these cases, some <u>interpolation</u> or <u>back-off</u> strategies are necessary.

h. Language Model Evaluation

Entropy: $H(X) = \sum_{x} P(x) log_2 P(x)$ a measure of uncertainty/disorder

Cross-entropy: $H_m(w_1..w_n) = \frac{-1}{n} log_2 P_m(w_1..w_n)$ Model should have low uncertainty (entropy) about which word comes next. (Lower cross-entropy \Rightarrow model is better at predicting next word.)

Perplexity: 2^{cross-entropy} Lower perplexity is better for a language model

2. LINEAR INTERPOLATION

Simple interpolation formula is given below.

$$\hat{P}(w_n|w_{n-1}w_{n-2}) = \lambda_1 P(w_n|w_{n-1}w_{n-2})
+ \lambda_2 P(w_n|w_{n-1})
+ \lambda_3 P(w_n)$$

We are trying to find λ s to maximize the probability of held-out data. This formulate is shown below.

$$\log P(w_1...w_n \mid M(\lambda_1...\lambda_k)) = \sum_i \log P_{M(\lambda_1...\lambda_k)}(w_i \mid w_{i-1})$$

One of the simplest technique is to build an interpolated language model using brute-force approach. Note that sum of the λ s equals to one. Perplexity scores using different lambda values are shown in Table 6.

Table 6: Validation Dataset Perplexity Scores Using Different Lambda Values

Lambda Set	Validation Dataset Perp. Score				
[0.5, 0.3, 0.2]	177.43				
[0.4, 0.4, 0.2]	179.89				
[0.6, 0.2, 0.2]	182.95				
[0.4, 0.3, 0.3]	184.64				
[0.3, 0.4, 0.3]	192.29				
[0.4, 0.2, 0.4]	197.73				
[0.3, 0.3, 0.4]	200.46				
[0.8, 0.1, 0.1]	211				
[0.2, 0.6, 0.2]	212.82				
[0.2, 0.4, 0.4]	218.81				
[0.2, 0.2, 0.6]	252.05				
[0.1, 0.8, 0.1]	278.99				
[0.1, 0.4, 0.5]	281.43				
[0.1, 0.3, 0.6]	299.59				
[0.1, 0.2, 0.7]	330.99				
[0.1, 0.1, 0.8]	395.77				
0.05, 0.15, 0.8]	471.68				
[0.05, 0.05, 0.9]	636.17				

Test dataset best perplexity score using lambda set [Unigram=0.5, Bigram=0.3, Trigram=0.2] is 177.43.

3. DISCOUNTING(output/*discounted*.txt)

Below table shows the discounted probabilities with β =0.5 and saved probability mass.

BIGRAM DISCOUNTED AND SAVED PROBABILITY MASS					TRIGRAM DISCOUNTED AND SAVED PROBABILITY MASS						
BIGRAM	COUNT	DISCOUNTED	UNIGRAM	SUM	1-SUM	TRIGRAM	COUNT	DISCOUNTED	BIGRAM	SUM	1-SUM
(' <s>', T)</s>	2	0.5	I	0.6666667	0.333333333	(' <s>', 'T, 'am')</s>	1	0.25	('Sam', 'I')	0.5	0.5
(T, 'am')	2	0.5	not	0.5	0.5	(T, 'am', 'Sam')	1	0.25	('Sam', '')	0	1
('am', 'Sam')	1	0.25	Sam	0.5	0.5	('am', 'Sam', '')	1	0.5	('like', 'green')	0.5	0.5
('Sam', '')	1	0.25	like	0.5	0.5	(' <s>', 'Sam', 'I')</s>	1	0.5	(' <s>', T)</s>	0.5	0.5
(' <s>', 'Sam')</s>	1	0.166666667		0	1	('Sam', 'T, 'am')	1	0.5	('and', 'ham')	0.5	0.5
('Sam', 'T)	1	0.25	am	0.5	0.5	(T, 'am', '')	1	0.25	('eggs', 'and')	0.5	0.5
(T, 'am')	2	0.5	ham	0.5	0.5	(' <s>', 'T, 'do')</s>	1	0.25	('do', 'not')	0.5	0.5
('am', '')	1	0.25	do	0.5	0.5	(T, 'do', 'not')	1	0.5	(T, 'do')	0.5	0.5
(' <s>', T)</s>	2	0.5	and	0.5	0.5	('do', 'not', 'like')	1	0.5	('am', '')	0	1
(T, 'do')	1	0.166666667	green	0.5	0.5	('not', 'like', 'green')	1	0.5	('green', 'eggs')	0.5	0.5
('do', 'not')	1	0.5	eggs	0.5	0.5	('like', 'green', 'eggs')	1	0.5	('I', 'am')	0.5	0.5
('not', 'like')	1	0.5	<s></s>	0.6666667	0.333333333	('green', 'eggs', 'and')	1	0.5	('not', 'like')	0.5	0.5
('like', 'green')	1	0.5				('eggs', 'and', 'ham')	1	0.5	(' <s>', 'Sam')</s>	0.5	0.5
('green', 'eggs')	1	0.5				('and', 'ham', '')	1	0.5	('am', 'Sam')	0.5	0.5
('eggs', 'and')	1	0.5							('ham', '')	0	1
('and', 'ham')	1	0.5									
('ham', '')	1	0.5									