Introduction

1.1 Graph Isomorphism

Definition 1.1: An undirected graph G is a set of vertices, V(G), and a function g: $V(G) \to P(V(G))$, defined by g(v) = N(v), where N(v) is the set of vertices that are adjacent to v and P(V(G)) is the power-set of V(G).

Remark: We call N(v) the neighborhood of v.

Remark: Since the graphs we are concerned with are undirected, for any graph G and any vertices $u, v \in V(G)$, $u \in N(V)$ if and only if $v \in N(u)$.

Definition 1.2: Two graphs, G and G', are isomorphic, denoted $G \cong G'$, if there exists a bijection $f: V(G) \to V(G')$ such that for every $u, v \in V(G)$, $u \in N(v)$ if and only if $f(u) \in N(f(v))$.

The String Isomorphism Problem

2.1 A graph as a string

Following Luks [1982], a graph can be represented as a string using the following procedure. Let $\Omega = [1, ..., n]$. Let G_1 and G_2 be undirected graphs on n vertices, labelled using Ω . Let δ be the indicator function, $\delta: \binom{V(G)}{2} \to \{0, 1\}$, defined by

$$\delta(x,y) = \begin{cases} 1, & x \in N(y) \\ 0, & \text{o/w} \end{cases},$$

where $\binom{V(G)}{2}$ denotes the set of all unordered pairs in V(G) for some undirected graph G (Babai 2018). To create a string from delta that represents G, we must order the pre-image of δ . We choose a straightforward ordering. We have

$$S = \delta(1,2) \dots \delta(1,n)\delta(2,3) \dots \delta(2,n) \dots \delta(k,k+1) \dots \delta(k,n) \dots \delta(n-1,n).$$

Notice that S has a total length of $\binom{n}{2}$.

Figure 2.1: Two non-isomorphic graphs on 4 vertices.

Example 2.1: Consider graphs G_1 and G_2 in Figure 2.1. Since G_1 has a vertex with degree 2 while G_2 does not, we know immediately that the two are non-isomorphic. The string representations of G and G' are both of length $\binom{4}{2} = 6$. Applying the ordering used

above, the string representation of G_1 is

001100,

while that of G_2 is

101000.

Notice that the string representation of graph is only unique after an order has been established on $\binom{V(G)}{2}$. We also have

$$Sym (V(G)) = \{(), (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23)\}.$$

Definition 2.3: Let G be an undirected graph on n vertices. We define Sym(V(G)) as the group of possible permutations of V(G).

Definition 2.4: Let G be an undirected graph on n ordered vertices. Let δ be the indicator function for G while S is the string representation of G produced by δ and the order on $\binom{V(G)}{2}$.

Then

Sym
$$(V(G))^{(2)} = \{ \{ \sigma a, \sigma b \} : a, b \in V(G), \sigma \in \text{Sym } (V(G)) \}.$$

When does $\delta(\{\sigma a, \sigma b\}) = \delta(\{a, b\})$ come into play (i.e. valid vs invalid?)?

Definition 2.5: Let S_1 and S_2 be string representations of undirected graphs G_1 and G_2 , respectively. Then S_1 and S_2 are $Sym(V(G_1))^{(2)}$ -isomorphic, denoted $S_1 \cong_{Sym(V(G_1))^{(2)}} S_2$, if there exists $\overline{\sigma} \in Sym(V(G_1))^{(2)}$ such that $S_1^{\overline{\sigma}} = S_2$.

Example 2.2: Consider graphs G and G' in Fig. 2.1. Let the order of the string be 12, 13, 14, 23, 24, 34. To show that $S \cong_{\text{Sym }(V(G))^{(2)}} S'$, let σ be the permutation of S' that is induced by (14)(23) applied to V(G'). Then $\sigma \in \text{Sym}(V(G))^{(2)}$. QUESTION: What is σ in this case? Hence, by Definition 2.3, $S \cong_{\text{Sym }(V(G))^{(2)}} S'$.

Figure 2.2: Undirected, isomorphic graphs G and G'

Lemma 2.1: Two graphs are isomorphic if and only if their string representations are $\operatorname{Sym}(V(G))^{(2)}$ -isomorphic.

Proof. \rightarrow

Let S and S' be string representations of undirected graphs G and G', respectively. Suppose $G \cong G'$. Without loss of generality, suppose G and G' each have n vertices. By Definition 1.2, there exists a bijection $f:V(G)\to V(G')$ such that for every $u,v\in V(G),\ u\in N(V)$ if and only if $f(u)\in N(f(v))$. This means that for every vertex $u\in G$, there is a vertex $f(u)\in G'$ such that f(N(u))=N(f(u)). Recall that S and S' both contain n binary n-tuples that describe the neighborhood of each vertex in graphs G and G', respectively. We want to show that there exists $\sigma\in \mathrm{Sym}\ (V(G))^{(2)}$ such that $S^{\sigma}=S'$. I'm stuck here. I'm having trouble figuring out how to deal with elements of $\mathrm{Sym}\ (V(G))^{(2)}$.