Λ) $y'(x) = 3x^{2}(y(x) + 1)$, XER y'(x)=exp(x3).3x2 a) $y(x) = \exp(x^3)$ $3 \times^{2} (y(x)+1) = 3 \times^{2} (e \times p(x^{3}) + 1)$ b) y(x)=-1 y'(x) = 03x2(y(x)+1)=3x2(-1+1)=0 $c)y(x)=2 exp(x^3)-1$ $y'(x) = 2 \exp(x^3) 3 x^2 = 6 x^2 \exp(x^3)$ 3x2(y(x)+1)=3x2(2exp(x3)-1+1)=6x2exp(x3) V $y'(x) = \frac{1}{3}(-2)x^{-3} = -\frac{2}{3x^3}$ d) $y(x) = -1 + \frac{1}{3x^2}$ $3 \times {}^{2}(y(x)+1) = 3 \times {}^{2}(-1+\frac{1}{3x^{2}}+1) = 0$

DGL UA	
2) a) y'(+)+y(+)sin(+)=1	$y: R \rightarrow R$
1. Ordnung, linear, gewöhnlich	
$6) \frac{\partial^2}{\partial x^2} U(x,y) + \frac{\partial^2}{\partial y^2} U(x,y) = 0$	$U: \mathbb{R}^2 \to \mathbb{R}$
2. Ordning, linear, partiell	0 . 03
c) $y''(t) = t \sin(y(t))$	$y: \mathbb{R} \to \mathbb{R}^2$
2. Ordnung, nicht linear, gewöhnlich d) y'(t) + A(t) B(t) y(t) = f(t)	$f \in C(R, R^2)$ $A, B \in C(R, R^{2 \times 2})$
1. Ordning, System, gewöhnlich	

DGLUA	
5) a) $x^2 y_{xxx} - 5 x y_x + 7 y = 0$	3. Ordning, linear, gewöhnlich
b) y'++3y = e-+	1. Ordnung, linear, genölnlich
c) $y' + + y^3 = e^{-+}$. Ordning, micht linear, ge wöhnlich
(d) $y'' + 9y = 0$ 2	-13 cm (2x) - 45c; (2x) + 18 cm (2x) + 45c; (2x) = 12
	-18cos (3x)-45sin (3x)+18cos (3x)+45sin (3x)=0
$\{1\} \times = \{(x,y), y = g(x,y)\}$	1. Ordnuy, System, gewohnlich
	1. Ordning, linear, partiell
	2. Ordning, linear, partiell $\frac{1}{2} - y^{2} - z^{2} - x^{2} + 2y^{2} - z^{2} + 2z^{2} = 0$ $\frac{1}{2} + y^{2} + z^{2} + 5 + \sqrt{x^{2} + y^{2} + z^{2}} = 0$
	1. Ordning, will linear, partiell
	3. Ordning, micht linear, parkiell

6) a) y (x)-sin(x) (y (x))2 y(x)= cosh(x)- (y/x))2 $y'(x) = \cosh(x) - (y(x))^2 + \sinh(x)(y'(x))^2 y(x)$ $x_1 = y$ $x_2 = y$ $X_1 = X_2$ $X_2 = \cosh(x) - x_1^2 + \sin(x) \times_2^2 \times_1$ 6) $y'''(x) + 2 y''(x) + y'(x) = 2e^{3x}$ $y'''(x) = 2e^{3x} - 2y''(x) - y'(x)$ $X_1 = y$ $X_2 = y$ $X_3 = y$ X1 = X2 $x_3 = 2e^3 \times -2 \times_3 - \times_2$

DGL U1 7) x'(+)= f(x(+)) a) 22: Wenn x eine hösung ist, so anch x (++a) mit a ER v(+) = x(++a) U'(+) = x'(++a) = f(x(++a)) = f(u(+))b) 3(x)=x(x-1) 1. Fall x=0 oder x=1 => x = x(x-1) = 0 Ruhelage 2. Fall x #0 und x #1 $\Rightarrow x' = x(x-1) \iff \frac{x'}{x(x-1)} = 1$ $\leq \int \frac{x}{x(x-1)} = S1$ <=> log (1-x) - log (x) = + (=) X= exp(+)+1 X:R > R+