Scilab Textbook Companion for Op-Amps and Linear Integrated Circuit by S. Sharma¹

Created by
Vaibhav Singh
B.Tech (pursuing)
Electronics Engineering
NIT, Kurukshetra
College Teacher
NA
Cross-Checked by
Sonanya Tatikola, IITB

May 20, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Op-Amps and Linear Integrated Circuit

Author: S. Sharma

Publisher: S. K. Kataria & Sons

Edition: 1

Year: 2008

ISBN: 81-9069-190-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Differential amplifiers	5
2	Operational amplifier characteristic	17
3	Basic application of Op amps	21
4	Non linear application of op amps	30
6	Operational Transconductance Amplefier	33
7	waveform generator	34
8	Timer IC and Application	38
9	Active filter	42
10	Voltage regulator	46
11	Phase locked loop	53
12	DA and AD converter	55

List of Scilab Codes

Exa 1.1	Vout and CMMR	5
Exa 1.2	Icq and Vceq	6
Exa 1.3	Aid and Acm and CMRR and Ri and Ro	6
Exa 1.4	constant current I	7
Exa 1.5	value of RE	7
Exa 1.6	common mode op voltage and differential mode output	7
Exa 1.7	Dc bias point and ip and op resistance	8
Exa 1.8	Icq and Vceq voltage gain ip and op resistance	8
Exa 1.9	operating point voltage gain ip and op resistance	9
Exa 1.10	operating point voltage gain ip and op resistance	9
Exa 1.11	output voltage and CMRR	10
Exa 1.12	DC characteristics	11
Exa 1.13	Aid Acm CMRR	12
Exa 1.14	voltage gain and ip resistance and operating point	13
Exa 1.15	collector current	14
Exa 1.16	smallest and largest possible value of current	14
Exa 1.17	Ri Ro differential and common mode voltage gain	15
Exa 2.1	value of R1	17
Exa 2.2	input bais current and input offset current	17
Exa 2.3	Compensating network	18
Exa 2.4	Total output offset and compensating resistance	18
Exa 2.5	change in output voltage	19
Exa 2.6	error voltage and output voltage	19
Exa 3.1	voltage	21
Exa 3.2	value of Rf	21
Exa 3.3	voltage gain ip and op resistance bandwidth	22
Exa 3.4	feedback resistance Rf	22
Exa 3.5	close loop gain ip and op resistance and bandwidth	23

Exa 3.6	output voltage
Exa 3.7	practical integrator
Exa 3.8	maximum change in output voltage and slew rate 24
Exa 3.9	safe frequency DC gain
Exa 3.11	design practical differentiator
Exa 3.15	scaling adder circuit
Exa 3.16	op amp circuit
Exa 3.17	find ratio of Vout by Vin
Exa 3.18	output voltage in term of Vin1 and Vin2
Exa 3.19	range of gain
Exa 3.20	Value of Rg
Exa 3.21	transduer resistance
Exa 4.1	threshold voltage
Exa 4.2	Calculate value of R1 and R2
Exa 4.3	time duration
Exa 4.4	calculate Vlt Vut and Vh
Exa 4.5	change in output voltage
Exa 6.1	calculate frequency
Exa 7.1	calculate Vlt Vut and frequency of oscillation 34
Exa 7.2	T equal to 2RfC
Exa 7.3	frequency of oscillation
Exa 7.4	wien bridge oscillator
Exa 7.5	triangular waveform
Exa 7.6	output frequency
Exa 7.7	monoshot using 741
Exa 8.1	output pulse width
Exa 8.2	output frequency and duty cycle
Exa 8.3	timer
Exa 8.4	design an astable multivibrator
Exa 8.5	circuit design
Exa 8.6	Monostable multivibrator
Exa 8.7	555 based square wave generater
Exa 9.1	cut off frequency
Exa 9.2	first order low pass filter
Exa 9.3	second order low pass filter
Exa 9.4	cutoff frequency and pass band voltage gain 43
Exa 9.5	butterworth low pass filter
Exa. 9.6	second order butterworth filter 44

Exa 10.1	regulated dc supply 4	6
Exa 10.2	rms value of ripple	6
Exa 10.3	series regulator circuit 4	7
Exa 10.4	output voltage for regulator	8
Exa 10.5	power rating	8
Exa 10.6	adjustable voltage	8
Exa 10.10	min and max output voltage for regulator 4	9
Exa 10.11	voltage IC 723	9
Exa 10.12	power dissipation in regulator	0
Exa 10.13	design a regulated power supply	1
Exa 10.14	current source using IC 7805	1
Exa 11.1	free running frequency lock range capture range 55	3
Exa 11.2	frequency of oscillator and phase accumulator 55	3
Exa 12.1	resolution	5
Exa 12.2	final output voltage	5
Exa 12.3	Vofs and Vo 50	6
Exa 12.4	step size and analog output 50	6
Exa 12.5	full scale output	7
Exa 12.6	value of resistor and reference	7
Exa 12.7	resolution and digital output	8
Exa 12.8	quantizing error	8
Exa 12.9	calculate t2	8
Exa 12.10	digital output	9
Exa 12.11	conversion time	9
Exa 12.12	maximum frequency 60	0

Chapter 1

Differential amplifiers

Scilab code Exa 1.1 Vout and CMMR

```
1 // chapter 1
   2 // example 1.3
   3 // page no.18, figure no.1.22
   4 //given
   5 Rin1=100; Rin2=100;
   6 Re=2700; Rc=4700;
   7 Hfe=100;
   8 Hie=1000; Hoe=0;
   9 Aid=(Hfe*Rc)/(Rin1+Hie);
10 disp(Aid) // differential gain
11 / Acm = (2*Re*Hoe-Hfe)*Rc/(2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hfe)+(Rin1+Hie))(1+2*Re(1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hie)+(Rin1+Hi
                            Re*Hoe)), and Hoe=0
12 x=2*Re*1+2*Re*Hfe+Rin1+Hie;
13 Acm = -(Hfe*Rc)/x;
14 disp(Acm) // neglecting the negative value.taking mod
                             of Acm
15 Acm = -(Acm)
16 CMRR = 20 * log 10 (Aid/Acm);
17 disp(CMRR)//is in db
18 Rin=2*Rin1+2*Hie;
19 disp(Rin)//input resistance
```

```
20 Ro=Rc
21 disp(Ro)//output resistance
```

Scilab code Exa 1.2 Icq and Vceq

```
1 // chapter 1
2 // example 1.2
3 //page 17. figure 1.21
4 //given
5 Rc=4700,Re=2700;// Resistor is in ohm
6 Vcc=12; Vee=12; // voltage is in volt
7 Vbe=.7; // assuming Vbe
8 Ie=(Vee-Vbe)/(2*Re);
9 disp(Ie)//current is in ampere
10 Icq=Ie;
11 disp(Icq)//current is in ampere
12 Vc=Icq*Rc;
13 Vce=Vcc+Vbe-Vc;
14 disp(Vce)
```

Scilab code Exa 1.3 Aid and Acm and CMRR and Ri and Ro

```
11 CMRR=Aid/Acm
12 CMRR=20*log10(CMRR);
13 disp(CMRR)
14 Rin=2*(Rin1+hie)//input resistance
15 Ro=Rc//output resistance
```

Scilab code Exa 1.4 constant current I

```
1 //chapter 1
2 //example 1.4
3 // page 23, figure 1.27
4 Vee=10; R1=2400; R2=2400; R3=1000; Vbe=.7; //given
5 I=(Vee-(R2*Vee/(R1+R2))-Vbe)/R3;
6 disp(I)// result is in ampere
```

Scilab code Exa 1.5 value of RE

```
1 //chapter 1
2 // example 1.5
3 //page 27.figure 1.31
4 Ic1=10*10^-6; Vcc=50; Vbe=.7; R=50*10^3;
5 Ic2=(Vcc-Vbe)/R;
6 disp(Ic2);
7 Vt=26*10^-3// assume at room temperature of 300k
8 Re=Vt/Ic1*log(Ic2/Ic1);
9 disp(Re)//result in ohm
```

Scilab code Exa 1.6 common mode op voltage and differential mode output

```
1 //chapter 3
2 // exmaple 3.6
3 //page 124 , figure 3.17
4 R1=1*10^3; R2=R1; R3=R1; // given
5 Rf=1*10^3; // given
6 Vin1=2; Vin2=1; Vin3=4; // given
7 Vout=-((Rf/R1)*Vin1+(Rf/R2)*Vin2+(Rf/R3)*Vin3);
8 disp(Vout)
```

Scilab code Exa 1.7 Dc bias point and ip and op resistance

```
//chapter 1
// example 1.7
//page 32, figure 1.36
Vee=12; Vbe=0.7; Rin=100; Re=8400; Rc=3900; Vcc=12;
Xdc=100// dc gain
Icq=(Vee-Vbe)/((Rin/Xdc)+2*Re);
Vceq=Vcc+Vbe-Icq*Rc;
disp(Vceq, Icq)// the DC base point or Q point is at(volt, ampere)
Hie=1100// assuming
Ri=2*(Rin+Hie); //input resistance
disp(Ri)// input resistance in ohm
Ro=Rc// output resistance
```

Scilab code Exa 1.8 Icq and Vceq voltage gain ip and op resistance

```
1 // chapter 1
2 // example 1.8
3 // page 33, figure 1.37:
4 Xdc=100; Xac=100; //AC and DC gain
5 Vbe=0.7; Vee=10; Vcc=10; // voltage is in volts
6 Re=4700; Rin=50; Rc=2700; // resistance in ohm
```

```
7 Hfe=100; Hie=1100// assuming
8 Icq=(Vee-Vbe)/(2*Re+(Rin/Xdc));
9 disp(Icq)//result current
10 Vceq=Vcc+Vbe-Rc*Icq;
11 disp(Vceq)// result voltage
12 Aid=(Hfe*Rc)/(2*(Rin+Hie)); // voltage gain Aid
13 disp(Aid)
14 Ri=2*(Rin+Hie)// input resistance
15 disp(Ri)//in ohm
16 Ro=Rc; // output resistance
17 disp(Ro)//ohm
```

Scilab code Exa 1.9 operating point voltage gain ip and op resistance

```
1 // chapter 1
2 // example 1.9
3 //page 34, figure 1.38
4 Xdc=100; Xac=100; // gain
5 Vbe=0.7; Vee=12; Vcc=12; //given\ voltage\ in\ volts
6 Re=4700; Rin=50; Rc=2700; // given resistance in ohm
7 Hfe=100; Hie=1100; // given
8 Icq=(Vee-Vbe)/(2*Re+(Rin/Xdc));
9 Vceq=Vcc+Vbe-Rc*Icq;
10 disp(Icq, Vceq) // operating point (volt, ampere)
11 Aid=(Hfe*Rc)/(Rin+Hie);// voltage gain
12 disp(Aid)// result
13 Ri=2*(Rin+Hie)// input resistance
14 disp(Ri)//in ohm
15 Ro=Rc; // output resistance
16 disp(Ro)//output resistance in ohm
```

Scilab code Exa 1.10 operating point voltage gain ip and op resistance

```
1 // chapter 1
2 // example 1.10
3 //page 34, figure 1.39
4 Xdc=100; Xac=100; // gain
5 Vbe=0.7; Vee=12; Vcc=12; //given voltage in volts
6 Re=8200; Rin=150; Rc=3300; // given resistance in ohm
7 Hfe=100; Hie=1000; // given
8 Icq=(Vee-Vbe)/(2*Re+(Rin/Xdc))
9 \quad Vceq = Vcc + Vbe - Rc * Icq
10 disp(Icq, Vceq) // operating point (volt, ampere)
11 Aid=(Hfe*Rc)/(Rin+Hie);// voltage gain
12 disp(Aid)// result
13 Ri=2*(Rin+Hie)// input resistance
14 disp(Ri)//in ohm
15 Ro=Rc; // output resistance
16 disp(Ro)//output resistance in ohm
```

Scilab code Exa 1.11 output voltage and CMRR

```
1 / chapter 1
2 // example 1.11
3 // page 35
4 Rin=1000; Rc=1000; Re=2500000; // resistance is in ohm(
     given)
5 Hfe=50; Hre=0; Hoe=0; Hie=1000; //given
6 Vid=1*10^-3; Vc=20*10^-3// voltage in volts
7 Aid=-(Hfe*Rc)/(Rin+Hie);// differential gain Aid
8 Vout=Aid*Vid;// output voltage
9 disp(Vout)//result in ampere.
10 // to calculate CMRR we have to first find Acm
     common mode gain
11 Acm = ((2*Re*Hoe-Hfe)*Rc)/(2*Re*(1+Hfe)+Rin+Hie)//
     common mode gain
12 CMRR = Aid / Acm; //CMRR
13 disp(CMRR)//result
```

```
14 CMRRdb=20*log10(CMRR);
15 disp(CMRRdb)// result CMRR is in db
```

Scilab code Exa 1.12 DC characteristics

```
1 // chapter 1
2 // \text{ example } 1.12
3 // page no.38, figure 1.44
4 Kn1=.2*10^-3; Kn2=.2*10^-3; Kn3=.4*10^-3; Kn4=.4*10^-3;
      // all in mA/V<sup>2</sup>
5 Vtn=1; Vcc=12; Vee=-12; // voltage is in volts
6 R1=27000; Rd=15000;
7 // calculation of I1 and Vgs4
8 // applying KVL\Rightarrow Vcc-Vee=I1*R1+Vgs4-eq
9 // I1=Kn3*(Vgs4-Vtn)^2---eq(2)
10 // \text{ put eq } (2) \text{ in eq } (1)
11 / ((Vcc-Vee)-Vgs4)/R1=Kn3*(Vgs4-Vtn)^2
12 p1=poly([-13.2 -20.6 10], 'Vgs4', 'c');
13 roots(p1)// we have to take only value positive and
      greater than Vtn
14 I1=Kn3*(2.573-Vtn)^2; //only positive and value
      greater than Vtn of Vgs4 taken
15 disp(I1)
16 //calculation of drain current Iq
17 Iq=I1; // identical M4 and M3
18 disp(Iq)
19 // calculation of Id1 and Id2
20 \text{ Id1=Iq/2};
21 \text{ Id}2=\text{Iq}/2;
22 disp(Id1,Id2)// identical
23 // calculation of gate voltage for M1 and M2
24 Vgs1=Vtn+sqrt(Id1/Kn1); // using Id1=Kn1*(Vgs1-Vtn)^2
25 disp(Vgs1)// result gate to source voltage
26 Vgs2=Vgs1;// since they are identical
```

```
27 disp(Vgs2)
28 //calculation of Vout1 and Vout2
29 Vout1 = Vcc - Id1 * Rd;
30 disp(Vout1)// under quiescent condition
31 Vout2=Vcc-Id2*Rd;
32 disp(Vout2)
33 // calculation of maximum common mode input voltage
      Vcmmax
34 \quad Vds1 = Vgs1 - Vtn;
35 Vcmmax=Vout1-Vds1+Vgs1;//maximum common mode voltage
36 disp(Vcmmax)// result is in volts
37 // calculation of minimum common mode input voltage
      Vcmmin
38 \quad Vds4 = Vgs2 - Vtn;
39 Vcmmin=Vgs1+Vds4-Vcc; // minimum common mode input
      voltage
40 disp(Vcmmin)// volts
```

Scilab code Exa 1.13 Aid Acm CMRR

```
1  // chapter 1
2  // example 1.13
3  // page 44, figure 1.52
4  Rl=%inf;B=100;Rin=0;
5  Re=1; // let suppose
6  Iq=4*10^-3;
7  Vt=26*10^-3;Va2=150;Va4=100;
8  I2=Iq/2;
9  I4=Iq/2;
10  disp(I2,I4)
11  Gm=Iq/(2*Vt); // parameters
12  Ro2=Va2/I2;
13  Ro4=Va4/I4;
14  Aid=Gm*((Ro2*Ro4)/(Ro2+Ro4)); // Aid =Gm(Ro2 || Ro4 || Rl), Rl=%inf
```

```
disp(Aid) // differential mode gain Aid
r = (2*(B*Vt))/Iq// Vt = 26mV at 300k
//Re = 1/X*Iq and Rc = 1/x*Iq/2
//Rc/Re = 2
Rc = 2*Re;
//assuming 2*(1+B)*Re/(r+Rin)>>>>1
//Acm = ((-Gm*Rc)/1+((2*(1+B)*Re)/(r+Rin)));
k = (2*(1+B)*Re)/((r+Rin)/1000)
Acm = -((Gm*Rc)*1000)/k;
disp(Acm)// common mode gain
CMRR = Aid/-Acm;
disp(CMRR)//
CMRRdb = 20*log10(CMRR);
disp(CMRRdb)// result is in db
```

Scilab code Exa 1.14 voltage gain and ip resistance and operating point

```
1 // chapter 1
2 //example 1.14
3 // page 46, figure 1.54
4 Bac=100; Bdc=100;
5 Vbe=.715; Vd1=.715; Vz=6.2; Vee=-10; Vcc=10; Vt
      =26*10^{-3}; // at room temprature
6 Re=2700; Rin=10000; Rc=4700; // assuming Rin= 10k
7 Izt = 41 * 10^{-3};
8 Vin=0; // for dc analysis
9 //calculation of the value of Ie, Icq1 and Icq2
10 \text{ Vb3=Vee+Vz+Vd1}
11 Ve3=Vb3-Vbe
12 Ie=(Ve3-Vee)/Re;
13 disp(Ie)
14 Ie1 = Ie/2
15 \text{ Ie2=Ie/2}
16 A=B/(1+B);
17 Icq=A*Ie1; //(B/(B+1))*Ie1
```

```
disp(Icq)
Icq2=Icq;
disp(Icq2)
Gm=Icq/Vt// Vt at room temp 26mA
r=(B*Vt)/Icq
Ib=Icq/B
Ve1=-Ib*Rin-Vbe;
disp(Ve1)//result
Vc1=Vcc-Icq*Rc;
disp(Vc1)
Vceq=Vc1-Ve1;
disp(Vceq,Icq)//result operating point
```

Scilab code Exa 1.15 collector current

```
1 //chapter 1
2 // example 1.15
3 //page 47, figure 1.57
4 Bdc=100; Bac=100;
5 Vbe=.715;
6 R=5600;
7 Vr=-(Vbe-10);
8 Ir=Vr/R;// Ir=Ic+Ib=Vr/R
9 disp(Ir)
10 Ic=Ir*(Bdc/(1+Bdc));//Ir=Ic+Ib=Ic+Ic/Bdc
11 disp(Ic)//ampre
12 Ic2=Ir
13 Ic3=Ir
14 Ic4=Ir
```

Scilab code Exa 1.16 smallest and largest possible value of current

```
1 / chapter 1
```

```
2 //example 1.16
3 //page 48, figure 1.59
4 Ie=400*10^-6;
5 Bmin=80; Bmax=120;
6 //Ie=Ie1+Ie2 for identical transistor Ie1=Ie2
7 Ie1=Ie/2
8 \text{ Ie2=Ie/2}
9 IB1max=Ie1/(1+Bmin)
10 IB2max=Ie2/(1+Bmin)
II IBmax = (IB1max + IB2max)/2;
12 disp(IBmax)//largest input bais current
13 IB1min=Ie1/(1+Bmax)
14 IB2min=Ie2/(1+Bmax)
15 IBmin=(IB1min+IB2min)/2;
16 disp(IBmin)// smallest current
17 Iios=IBmax-IBmin// input bais current
18 disp(Iios)//result
```

 ${f Scilab\ code\ Exa\ 1.17}$ Ri Ro differential and common mode voltage gain

```
1 //chapter1
2 //example 1.17
3 //page 49, figure 1.60
4 I=.2*10^-3; B=200; Va=100; Rl=%inf;
5 Vt=26*10^-3//assuming at room temprature
6 I2=I/2
7 I4=I2
8 r02=Va/I2;
9 disp(r02)
10 r04=Va/I4;
11 disp(r04)
12 Gm=2/Vt
13 Aid=Gm/((1/r02)+(1/r04)+(1/R1));
14 disp(Aid)
15 Ri=2*(B/I)//Ri=2*r
```

```
16 disp(Ri)
17 Ri=(r02*r04)/(r02+r04);
18 disp(Ri)
```

Chapter 2

Operational amplifier characteristic

Scilab code Exa 2.1 value of R1

Scilab code Exa 2.2 input bais current and input offset current

```
//chapter 2
//example 2.2
//page 70
Ib1=18*10^-6; Ib2=22*10^-6; // given
Ib=(Ib1+Ib2)/2 //input base current
disp(Ib) //result
Iios=(Ib2-Ib1) // input offset current
disp(Iios)// result
```

Scilab code Exa 2.3 Compensating network

```
//chapter 2
//example 2.3 page 76
//figure 2.36
Vios=8*10^-3; V=12; Vcc=12; Vee=12; //given
Rc=10; //let choose Rc less than 100 ohm
Rb=(V*Rc)/Vios //Vios=(Rc/Rb)*V
Rmax=Rb/10// let choose
Ra=Rmax*4;
disp(Ra)//thus resistance Ra is potentiometer which can be adjusted till output reaches zero value
```

Scilab code Exa 2.4 Total output offset and compensating resistance

Scilab code Exa 2.5 change in output voltage

```
1 //chapter 2
2 //example 2.5 page 83
3 T=55-25; //chnage in temperature
4 A=150; //gain
5 Vios=.15*10^-3; //input offset voltage shift=chnage in output voltage/change in temp
6 Voos=Vios*T; // Vios=Voos/T
7 disp(Voos)
8 Vout=A*Voos;
9 disp(Vout)
```

Scilab code Exa 2.6 error voltage and output voltage

```
1 //chapter 2
2 //example 2.6 page83
3 Rf=100*10^3;R1=1*10^3//given
4 Viovd=14*10^-6;//input offset voltage drift
5 Iiocd=.5*10^-9;//input offset current drift
6 Vin=7*10^-3;
7 T=45-25;//change in tempreture
8 R2=Rf/R1;R3=R2+1;
9 Ev=R3*Viovd*T+Rf*Iiocd*T;//error voltage
10 disp(Ev)
11 A=-Rf/R1;//gain
```

- Vout = A * Vin + Ev
- Vout = A * Vin Ev

Chapter 3

Basic application of Op amps

Scilab code Exa 3.1 voltage

```
1 //chpater 3
2 // example 3.1
3 //page 106, figure 3.3
4 R1=10000; Rf=47000; //given
5 Af=-(Rf/R1); // voltage gain Af=Vout/Vin
6 disp(Af)//negative sign indicate phase shift between input and output
```

Scilab code Exa 3.2 value of Rf

```
1 //chapter 3
2 //example 3.2
3 //page 107
4 R1=4700;
5 Af=-60;
6 Rf=Af*R1//voltage gain Af=-Rf/R1
7 disp(Rf)//result
```

Scilab code Exa 3.3 voltage gain ip and op resistance bandwidth

```
1 / chapter 3
2 // example 3.3
3 / page 112
4 A=2*10^5; //open loop gain
5 Rin=2*10^6; // input resistnace
6 Ro=75;// output resistance
7 Fo=5; // single break frequency in herzt
8 R1 = 470; Rf = 4700;
9 \text{ K=Rf/(Rf+R1)}
10 B=R1/(R1+Rf)
11 Af = -(A*Rf)/(R1+Rf+R1*A); //close loop gain
12 Rinf=R1+(Rf*Rin)/(Rf+Rin+A*Rin);
13 disp(Rinf)//close loop resistance
14 Rof=Ro/(1+A*B);//close loop output resistance
15 disp(Rof)//output resistance
16 Ff = Fo * (1 + A * B);
17 disp(Ff)//bandwidth with feedback
```

Scilab code Exa 3.4 feedback resistance Rf

```
1 //chapter 3
2 // example 3.4
3 //page 114, figure 3.9
4 R1=1000;
5 Af=61; //closed loop gain
6 Rf=R1*(61-1); //Af=1+(Rf/R1)
7 disp(Rf)//feedback resistance
```

Scilab code Exa 3.5 close loop gain ip and op resistance and bandwidth

```
1 / chapter 3
2 //example 3.5
3 / page 120,
4 A=2*10^5; //open loop gain
5 R1 = 1000; Rf = 10000;
6 Ri=2*10^6; //input resistance
7 Ro=75;//output resistance
8 Fo=5; // single break frequency in Hz
9 B=R1/(R1+Rf)
10 Af = A / (1 + A * B); //gain
11 disp(Af)// closed loop gain
12 Rif=Ri*(1+A*B);// closed loop input resistance
13 disp(Rif)
14 Rof=Ro/(1+A*B);
15 disp(Rof) // colsed loop output resistance
16 Fof=Fo*(1+A*B);
17 disp(Fof)// colsed loop bandwidth in Hz
```

Scilab code Exa 3.6 output voltage

```
1 //chapter 3
2 // exmaple 3.6
3 //page 124 , figure 3.17
4 R1=1*10^3; R2=R1; R3=R1; // given
5 Rf=1*10^3; // given
6 Vin1=2; Vin2=1; Vin3=4; // given
7 Vout=-((Rf/R1)*Vin1+(Rf/R2)*Vin2+(Rf/R3)*Vin3); disp(Vout)
```

Scilab code Exa 3.7 practical integrator

```
1 // chapter 3
2 // example 3.7
3 //page 135
4 A=10; //d.c gain
5 R1=10000;
6 F=10000; //input frequency
7 CfRf=15915*10^-4;
8 Fa=F/A;
9 Rf=10*R1; // A=Rf/R1
10 //Fa=1/(2*3.14*Rf*Cf)
11 Cf=15915*10^-4/Rf;
12 disp(Cf)
13 Rcomp=(R1*Rf)/(R1+Rf);
14 disp(Rcomp)
```

Scilab code Exa 3.8 maximum change in output voltage and slew rate

```
//chapter 3
//example 3.8
//page 136, figure 3.35
F=1000;
R1=1000;Cf=.1*10^-6;
Vin=5;//voltage in V
T=1/F;//time period
disp(T)// in second
Vout=(Vin*T)/(2*R1*Cf);// change in output voltage
disp(Vout)//given saturation level is 14V hence
    output will not saturate will be triangular in nature
S=2*%pi*F*Vin;// slew rate
disp(S)//minimum slew rate
```

Scilab code Exa 3.9 safe frequency DC gain

```
1 //chapter 3
2 //example 3.9
3 / page 137
4 R1=120*10^3; Rf=1.2*10^6; Cf=10*10^-9// given
5 fa=1/(2*%pi*Rf*Cf);// corner frequency
6 F=10*10^3;
7 Vin=5;
8 disp(fa)//coner frequency
9 safefrequency=10*fa//safe frequency is 10 times of
     corner frequency
10 Adc=Rf/R1; //D.C. gain
11 Adb=20*log10(Adc)//gain in db
12 A=(Rf/R1)/sqrt(1+(F/fa)^2)/gain for practical
      intregrater circuit
13 disp(A)
14 Vout=A*Vin; //|A| = Vout(peak)/Vin(peak)
15 disp(Vout)
```

Scilab code Exa 3.11 design practical differentiator

```
1 //chapter 3
2 //example 3.11
3 //page 147
4 fa=150; fmax=150; //given
5 C1=1*10^-6; // assuming
6 Rf=1/(fa*2*%pi*C1); //fa=1/2piRfC1
7 disp(Rf)
8 fb=10*fa; // safe frequency
9 disp(fb)
10 R1=1/(2*%pi*fb*C1); //fb=1/2piC1R1
11 disp(R1)
12 Cf=((R1*C1)/Rf); //using R1C1=RfCf
13 disp(Cf)
14 Rcomp=(R1*Rf)/(R1+Rf); //rcomp=R1 || Rf
15 disp(Rcomp) // generally Rcomp is selected equal to
```

Scilab code Exa 3.15 scaling adder circuit

```
1 //chapter 3
2 // example 3.15
3 //page 148
4 // Vout=-(3Vin1+4Vin2+5Vin3)
5 Rf=120*10^3;
6 // for inverting summer we have Vout=-(Rf/R1Vin1+Rf/R2Vin2+Rf/R3Vin3)
7 R=Rf/3; //Rf/R1=3 comparing the cofficients
8 disp(R1)
9 R2=Rf/4;
10 disp(R2)
11 R3=Rf/R3;
12 disp(R3)
```

Scilab code Exa 3.16 op amp circuit

```
1 //chapter 3
2 // example 3.16
3 // page 149
4 // Vout=2Vin1-3Vin2+4Vin3-5vin4
5 Rf1=100*10^3
6 // Vout1=-(Rf1/R1Vin1+Rf1/R3Vin3)
7 R1=Rf1/2; // Rf1/R1=2 comapring the cofficient
8 R3=Rf1/4:
9 disp(R1,R2)
10 Rf2=120*10^3
11 // Vout2=-(Rf2/R2Vin1+Rf2/R4Vin3)
12 R2=Rf2/3;
13 R4=Rf2/5;
```

```
14 disp(R2,R4)
15 // output of subtracter is Vout=Vout2-Vout1
```

Scilab code Exa 3.17 find ratio of Vout by Vin

```
1 //  chapter 3
2 // example 3.17
3 //page 150, figure 3.53
4 Ri=%inf; Ro=0;
5 Aol=%inf;
6 Vb=0; //b is virtually ground
7 Vout=1;// let us assume
8 //input current of op-amp is zeroas R=%inf
9 I1 = (Vb - Vout) / 100000
10 If2=I1;
11 Va=((10000)/(100000))*(Vb-Vout)
12 //at node A Iin=I1+If1
13 // (Vin-Va)/10*10^3 = (Va-Vb)/10*10^3 + (Va-Vo)
     /100*10^3
14 Vin=Va+(10000)*((Va/10000)+((Va-Vout)/100000));
15 Ratio=Vout/Vin// result ratio of Vout/Vin
```

Scilab code Exa 3.18 output voltage in term of Vin1 and Vin2

```
1 // chapter 3
2 //example 3.18
3 // page 150, figure 3.55
4 Rf=10*10^3;R1=100*10^3;
5 Rf1=100*10^3;R11=10*10^3;
6 Vin1=1;// let suppose
7 Vin2=2
8 Vout1=(1+(Rf/R1))*Vin1;// 1st stage is non inverting amplifier
```

```
9 disp(Vout1)
10 // second stage there are two input Vout1 and Vin2
          aplly superposition theorem
11 Vout2=-(Rf1/R11)*Vout1;
12 //with Vout1 grounded, Vin2 active ,it behave as non-
          inverting amplifier
13 Vout3=(1+(Rf1/R11))*Vin2;
14 Vout=Vout2+Vout3;
15 disp(Vout)
```

Scilab code Exa 3.19 range of gain

```
1 // chapter 3
2 //example 3.19
3 //page 163, figure 3.73
4 R1=200; R2=100; Rf=100*10^3; //given
5 Rg1=100+0; //potentiometer resistance is 0 at start
6 gain1=((1+2*(Rf/Rg1))*(R2/R1));
7 Rg2=100+100*10^3; //potentiometer maximum value
8 gain2=((1+2*(Rf/Rg2))*(R2/R1));
9 disp(gain1,gain2) // range of gain
```

Scilab code Exa 3.20 Value of Rg

```
1 // chapter 3
2 // example 3.20
3 //page 164, figure 3.74
4 R1=100*10^3; R2=100*10^3; Rf=470; // given
5 // gain=(1+2Rf/Rg)(R2/R1)
6 gain=100; // given
7 Rg=(((gain/(R2/R1))-1)\(2*Rf));
8 disp(Rg)//result for Rg so that gain is 100
```

Scilab code Exa 3.21 transduer resistance

```
1 //chapter 3
2 //example 3.21
3 //page 167
4 Ro=100;
5 x=0.00392;
6 T1=25; //temp at 25c
7 R(25)=Ro*(1+(x*T1));
8 disp(R(25)) // resistance at 25 degree
9 T2=100;
10 R(100)=Ro*(1+(x*T2));
11 disp(R(100)) // resistance at 100 degree
```

Chapter 4

Non linear application of op amps

Scilab code Exa 4.1 threshold voltage

```
1  // chapter 4
2  //example 4.1
3  // page 193  ,figure 4.20
4  R1=120; R2=51*10^3; //given
5  Vsat=15; Vcc=15; Vee=15; Vin=1; //given
6  Vut=((Vsat*R1)/(R1+R2));
7  disp(Vut)//result threshold in ampere
8  Vult=((-Vsat*R1)/(R1+R2));
9  disp(Vult)//ampere
```

Scilab code Exa 4.2 Calculate value of R1 and R2

```
1 //chapter 4
2 //example 4.2
3 //page 193, figure 4.21
4 Vsat=12; Vh=6;
```

```
5 // Vh=(R1/R1+R2)(Vsat-(-Vsat))
6 R1=10000; // let assume
7 x=(Vh/(Vsat-(-Vsat)));
8 disp(x)
9 R2=((1-.25)*R1)/.25
10 disp(R2,R1)
```

Scilab code Exa 4.3 time duration

```
1 // chapter 4
2 // example 4.3
3 // page 194
4 Vp_p=5; //peak to peak volatage of sine wave
5 Vlt=-1.5; //lower threshold level
6 Vh=2; // hysteresis width
7 f = 1000;
8 \text{ Vut=Vh-(-Vlt)};
9 disp(Vut)
10 Vm = Vp_p/2;
11 disp(Vm)
12 // Vlt = Vm * sin (\%pi + x)
13 x=36.87; // taking sin invers
14 T=1/f;
15 \text{ disp}(T)
16 T1 = (T*(180+x))/360; //T1 \text{ exist for angle 0 to}
      (180+36.87)
17 disp(T1)
18 T2=T-T1; //t2 exist for angle 216.87 to 360
19 disp(T2)
```

Scilab code Exa 4.4 calculate Vlt Vut and Vh

```
1 // chapter 4
```

```
2 //example 4.4
3 //page 196
4 Vsat=12;
5 R1=1000; R2=3000; //given
6 Vlt=(-(+Vsat)*R1)/R2;
7 disp(Vlt)// lower threshold
8 Vut=(-(-Vsat)*R1)/R2; //upper threshold
9 disp(Vut)
10 Vh=(R1/R2)*(Vsat-(-Vsat)); // hysteresis width
11 disp(Vh)
```

Scilab code Exa 4.5 change in output voltage

```
1 // chapter 4
2 // example 4.5
3 //page 220
4 Vin=5;
5 FRR=80;
6 Vout=Vin/10^4*log10(10);// FRR=20log(Vin/Vout)
7 disp(Vout);//change in output voltage
```

Chapter 6

Operational Transconductance Amplefier

Scilab code Exa 6.1 calculate frequency

```
1 //chapter 6
2 // example 6.1
3 //page 246
4 Gm=55*10^-6;
5 C=8.75*10^-12;
6 Fh=Gm/(2*3.14*C);//Fh=f-3db
7 disp(Fh)//result
```

waveform generator

Scilab code Exa 7.1 calculate Vlt Vut and frequency of oscillation

```
1 //chapter 7
2 //example 7.1
3 //page 259
4 R1=86*10^3; R2=100*10^3;
5 Vsat=15; Rf=100*10^3;
6 C=.1*10^-6;
7 Vut=(R1*Vsat)/(R1+R2);
8 disp(Vut)// upper threshold
9 Vlt=(R1*(-Vsat))/(R1+R2);
10 disp(Vlt)//lower threshold
11 fo=1/(2*Rf*C)*log((Vsat-Vlt)/(Vsat-Vut));
12 disp(fo)
```

Scilab code Exa 7.2 T equal to 2RfC

```
1 //chapter7
2 // example 7.2
3 //page 259
```

```
4 R2=%s
5 R1=.86*R2
6 Vsat=%s
7 Rf=%s;
8 C=%s;
9 y=(Vsat-(R1*(-Vsat))/(R1+R2))/(Vsat-(R1*Vsat)/(R1+R2))
10 g=2.72;//g=y=5.0592/1.86
11 T=2*Rf*C*log(g)// Rf=C=%s
12 disp(T)// %s*%s=s same as 2*Rf*C=2s
```

Scilab code Exa 7.3 frequency of oscillation

```
1 // chapter 7
2 // example 7.3
3 // page 276
4 R3=6000; R4=2000; // given
5 R=5100;
6 C=.001*10^-6;
7 A=1+(R3/R4);
8 if A>3 then
9 f=1/(2*3.14*R*C)
disp(f)// frequency of oscillation
11 end
```

Scilab code Exa 7.4 wien bridge oscillator

```
1 //chapter 7
2 //example 7.4
3 //page 277
4 C=.05*10^-6; // let choose capacitor C<1uf
5 C1=C;C2=C;
6 f=1000;</pre>
```

Scilab code Exa 7.5 triangular waveform

```
1 //chapter 7
2 //example 7.5
3 // page 280
4 Vsat=15;
5 Vout=7.5;
6 fo=5000;
7 R2=10*10^3; //let assume (use a 50k POT)
8 R3=(2*Vsat*R2)/Vout;
9 disp(R3)
10 C=.01*10^-6; //let assume
11 R1=R3/(4*C*R2*fo); //fo=R3/4R1C1R2
12 disp(R1)
```

Scilab code Exa 7.6 output frequency

```
1 //chapter 7
2 //example 7.6
3 //page 285, figure 7.40
4 R1=10000; R2=5100; R3=10000;
5 C1=.001*10^-6;
```

```
6 V=10;

7 V5=(V*R3)/(R3+R2);

8 disp(V5)

9 fo=2.4*(V-V5)/(R1*C1*V);

10 disp(fo)
```

Scilab code Exa 7.7 monoshot using 741

```
1 //chapter 7
2 //example 7.7
3 // page 286, figure 7.42
4 R1=10000; R2=10000;
5 Vd1=.7; //diode drop
6 Vsat=12; //supply voltage
7 TP=2*10^-6;
8 C=.5*10^-9;
9 B=R1/(R1+R2)
10 //T=RCln((1+Vd1/Vsat)/(1-B))
11 k=((1+(Vd1/Vsat))/(1-B))
12 h=log(k)
13 R=TP/(C*h)
```

Timer IC and Application

Scilab code Exa 8.1 output pulse width

```
1 // chapter 8
2 //example 8.1
3 //page 293
4 R=10*10^3; C=.1*10^-6; // given
5 t=1.1*R*C; //output pulse width
6 disp(t)//pulse widht in sec
```

Scilab code Exa 8.2 output frequency and duty cycle

```
1 //chapter 8
2 //example 8.2
3 //page 298
4 R1=4*10^3; R2=4*10^3; // given for 555 timer
5 C=.01*10^-6; //for 555 timer
6 f=1.44/((R1+2*R2)*C);
7 disp(f)//frequency of output in Hz
8 D=(R1+R2)/(R1+2*R2);
9 disp(D)//duty cycle
10 percentage=D*100
```

Scilab code Exa 8.3 timer

```
1 //chapter8
2 //example 8.3
3 //page300
4 Ton=5; //given
5 C=10*10^-6; //let assume
6 R=Ton/(1.1*C); //using Ton=1.1RC
7 disp(R)//this not standard value but we can adjust by connecting variable resistance
```

Scilab code Exa 8.4 design an astable multivibrator

```
1 //chapter 8
2 //example 8.4
3 //page 301
4 Toff=1; Ton=3; //given
5 C=10*10^-6; //choosing
6 R2=Toff/(.693*C); //using eq Toff=.693RC
7 disp(R2) // resistance
8 //Ton=.693(R1+R2)C
9 R1=(Ton/(.693*C))-R2;
10 disp(R1) // required resistance
```

Scilab code Exa 8.5 circuit design

```
1 //chapter8
2 //example8.5
3 //page301
```

```
4 T=10*10^-3; //for proper operation of LED which
     remain ON for 10 msec
5 C = .22*10^-6 / choose
6 Vcc=15; Vbe=.7; Vcesat=.2; //given
7 Vled=1.4; Iled=20*10^-3;
8 / T = 1.1RC
9 R=T/(1.1*C);
10 disp(R)
11 Vo=Vcc-2*Vbe-Vcesat; //output of timer
12 disp(Vo)
13 Rled=(Vo-Vled)/Iled;
14 disp(Rled)//this resistance must be in series whit
15 f=1000; D=95; // for an a stable timer
16 \quad C1 = .01 * 10^{-6};
17 R1 = \%s; R2 = \%s;
20 R2=.0555*R1; // from eq (2)
21 //put it in eq(1)
22 R1=144*10^3/(1+2*.0555);
23 disp(R1)
24 R2 = .0555 * R1;
25 disp(R2)
```

Scilab code Exa 8.6 Monostable multivibrator

```
1 //chapter 8
2 //example 8.6
3 //page 302
4 T=5*10^-3;
5 C=.1*10^-6;
6 //T=1.1RC
7 R=T/(1.1*C);
8 disp(R)//value of R should be less than 100k as
```

Scilab code Exa 8.7 555 based square wave generater

```
1 //chapter8
2 //example8.7
3 //page 303
4 f=1000;
5 T=1/f
6 Td=T/2
7 C=.1*10^-6;
8 //Td=.69R2C
9 R2=Td/(.69*C);
10 disp(R2)
11 R1=R2//for square wave R1=R2
```

Active filter

Scilab code Exa 9.1 cut off frequency

```
1 //chapter 9
2 //example 9.1
3 //page 323
4 R=10*10^3; C=.001*10^-6;
5 Rf=100*10^3; R1=10*10^3;
6 fc=1/(2*3.14*R*C); //cut off frequency
7 disp(fc)
8 Ao=1+(Rf/R1); //pass band voltage gain
9 disp(Ao)//pass band voltage gain
```

Scilab code Exa 9.2 first order low pass filter

```
1 //chapter 9
2 //example 9.2
3 //page 324
4 Ao=2;fc=10*10^3;
5 Rf=10*10^3; //let choose
6 //Ao=1+(RF/R1)
```

```
7 R1=Rf/(Ao-1);
8 disp(R1)
9 C=.001*10^-6;
10 R=1/(2*3.14*fc*C);
11 disp(R)
```

Scilab code Exa 9.3 second order low pass filter

```
1 //chapter9
2 //example9.3
3 //page327
4 fc=1000;
5 C2=.005*10^-6;R1=33*10^3;//let assume
6 C3=C2;C=C2;
7 R3=1/(2*3.14*fc*C);
8 disp(R3)
9 R2=R3
10 Rf=.586*R1;
11 disp(Rf)
```

Scilab code Exa 9.4 cutoff frequency and pass band voltage gain

Scilab code Exa 9.5 butterworth low pass filter

```
1 //chapter9
2 // example 9.5
3 / page 333
4 fc=1.5*10^3;
5 Ri=1;
6 x = sqrt(2);
7 Rf = (2-x); // for equal component model
8 disp(Rf)
9 Af=1+(Rf/Ri);//pass band gain of equal component
      model
10 Wc = 2*3.14*fc;
11 C=1;
12 R=1/(Wc*C);
13 disp(R)
14 R1=R; R2=R;
15 R1=R*10^7; R2=R*10^7; //to increase R reasonable value
       we multiply R1 nad R2 by 10<sup>7</sup>
16 disp(R1,R2)
17 C1=C*10^-7; C2=C*10^-7; //in order to keep value of fc
       unchanged we have to decrease C1 and C2 by same
      factor
18 disp(C1,C2)
```

Scilab code Exa 9.6 second order butterworth filter

```
1 //chapter 9
2 //example9.6
3 //page 335
4 fc=1.5*10^3;
5 x=1.414; //damping factor
```

```
6 C1=2/x;
7 disp(C1)
8 C2=x/2;
9 disp(C2)
10 R1=1; R2=1;
11 Rf = 2;
12 \ \text{Wc} = 1;
13 Wc = 2*3.14*fc;
14 disp(Wc)
15 R=R1/Wc;//to keep C1 nad C2 unchanged
16 disp(R)
17 Rf = 2 * R
18 R1=R*10^7; R2=R*10^7; // for maiking filter for
      practical use
19 disp(R1,R2)
20 C1=C1*10^-7; C2=C2*10^-7; //to fc remain unchanged
21 disp(C1,C2)
```

Voltage regulator

Scilab code Exa 10.1 regulated dc supply

```
//chapter 10
//example 10.1
//page 345
Vnl=12;
Vfl=11.6;
Ilmax=100*10^-3;
LR=Vnl-Vfl;//load regulation
disp(LR)
percentage=((Vnl-Vfl)/Vfl)*100//% LOAD REGULATION
Vout=LR;
Ro=Vout/Ilmax;//output resistance
disp(Ro)
```

Scilab code Exa 10.2 rms value of ripple

```
1 //chapter10
2 //example 10.2
3 //page347
```

```
4 RF=.1; // ripple factor
5 Vldc=10;
6 // ripple factor=Vrms/Vldc
7 Vrms=Vldc*RF;
8 disp(Vrms)
9 Vp_p=2*sqrt(2)*Vrms; // peak to peak ripple
10 disp(Vp_p) // volts
```

Scilab code Exa 10.3 series regulator circuit

```
1 // chapter 10
2 //example 10.3
3 / page 349
4 V_=6; Vz=6; // potential at inverting (-) input is equal
       to vitual
5 \text{ Vr2=Vz};
6 Vin=30;
7 R1 = 200;
8 R2=5*10^3;
9 R1=0; // for minimum Vout
10 Voutmin=((R1+R2)/R2)*Vz;//minimum output voltage
11 disp(Voutmin)//minimum voltage
12 R1=10*10^3; //for maximum output voltage
13 Voutmax = ((R1+R2)/R2)*Vz;
14 disp(Voutmax)//maximum output voltage
15 disp(Voutmax, Voutmin) //range when potentiometer
      change from 0 to 10k
16 Vce=Vin-Voutmax; // when R1=10k and Vout=18
17 disp(Vce)
18 Ic=Voutmax/R1;
19 disp(Ic)
20 Pd=Vce*Ic;//power
21 disp(Pd)//watt
```

Scilab code Exa 10.4 output voltage for regulator

```
1 //chapter 10
2 //example 10.4
3 //page 350 figure 10.9
4 Vz=5;
5 V_=5;
6 R2=15; R3=15;
7 //V_ across R3
8 Vout=((R2+R3)/R3)*(V_)//voltage across R3
9 disp(Vout)
```

Scilab code Exa 10.5 power rating

```
1 //chapter 10
2 // example 10.5
3 // page 351
4 R1=20
5 Vin=12;
6 Vout=0;//worst case for masimum power across R1
7 VR1=Vin-Vout;
8 disp(VR1)
9 PR1=VR1^2/R1;
10 disp(PR1)//watt
```

Scilab code Exa 10.6 adjustable voltage

```
1 //chapter 10
2 //eaxmple 10.6
```

```
3 //page 354
4 Iq=4.3*10^-3;
5 R2=100;
6 Vout=7;//for maximum output voltage
7 Vr=5;//for R2 is maximum
8 //Vout=Vout(1+R2/R1)+Iq*R2
9 R1=100/(((Vout-Iq*R2)/Vr)-1)
```

Scilab code Exa 10.10 min and max output voltage for regulator

```
//chapter 10
//example 10.10
//page 357
Vref=-1.25;
Iadj=50*10^-6;
R1=240;
R2min=0;//to find minimum output voltage correspond to R2min=0
Voutmin=Vref*(1+(R2min/R1))+Iadj*R2min;
disp(Voutmin)
R2max=5*10^3;//for maximum output voltage
Voutmax=Vref*(1+(R2max/R1))+Iadj*R2max;
disp(Voutmax)//volts
```

Scilab code Exa 10.11 voltage IC 723

```
1 //chapter10
2 //example 10.11
3 //page 10.11
4 Vo=5; Io=50*10^-3;
5 Isc=75*10^-3; Vin=15;
6 Vsense=.6; Vref=7;
7 I=1*10^-3; //current through R1 and R2
```

```
8 R2=Vo/I;
9 disp(R2)
10 VR1=Vref-Vo;//voltage across R1
11 disp(VR1)
12 R1=VR1/I;
13 disp(R1)
14 R3=R1*R2/(R1+R2);//R3=R1||R2
15 disp(R3)
16 Rsc=Vsense/Isc;
17 disp(Rsc)
18 C1=7.4*10^-6/10;
19 disp(R1,R2,R3,Rsc,C1)//component value
```

Scilab code Exa 10.12 power dissipation in regulator

```
1 / chapter 10
2 //example 10.12
3 //page 372
4 Vref = 7; Vout = 5; Vin = 15;
5 Il=1*10^-3; Isc=1.5; Vsense=.65;
6 Imax=150*10^-3; //Imax of IC-723 is 150mA
7 R1=(Vref-Vout)/I1;
8 disp(R1)
9 R2=Vout/I1;
10 disp(R2)
11 R3 = (R1*R2)/(R1+R2);
12 disp(R3)
13 Rsc=Vsense/Isc;
14 disp(Rsc)
15 Bmin=Il/Imax
16 Pd=(Vin-Vout)*Isc
17 Icmax=2*Isc;//Maximum collector current
18 disp(Icmax)
19 Vout=0; //maximum collector to emitter voltage can be
       calculated as under the voltage across Q will
```

```
maximum when the load is short circuited
20 Vcemax=Vin-Vout;
21 disp(Vcemax)
```

Scilab code Exa 10.13 design a regulated power supply

```
1 // chapter 10
2 //example 10.13
3 //page 373
4 Vref = 7; Vsense = .65;
5 Voutmin=9; Voutmax=12; I1=.5; Imax=150*10^-3;
6 R2=10*10^3; //let assume
7 //(R1+R2)/R2=Vout/Vref---eq(1)
8 R1min = 2*R2/7;
9 disp(R1min)
10 \quad Voutmax=12
11 R1max=5*R2/7; //using eq (1)
12 disp(R1max)
13 Rsc=Vsense/Il;
14 disp(Rsc)
15 R3 = (R1max*R2) / (R1max+R2)
16 Bmin=Il/Imax;
17 disp(Bmin)
```

Scilab code Exa 10.14 current source using IC 7805

```
1 //chapter 10
2 //example 10.14
3 //page 376
4 Rl=10; Iq=4.3*10^-3;
5 Vr=5; Il=.5;
6 // Il=Vr/R+Iq
7 R=Vr/(Il-Iq);
```

```
8 disp(R)
9 power=(I1^2)*R;//wattage of reisstor
10 disp(power)
11 Vout=Vr+I1*R;//output voltage with respect to ground
12 disp(Vout)
13 Vd=2;//minimum voltage drop across IC 7805 which is
        called as drop out voltage is 2V
14 Vin=Vout+Vd;
15 disp(Vin)
```

Phase locked loop

Scilab code Exa 11.1 free running frequency lock range capture range

```
1 // chapter 11
2 // example 11.1
3 //page 394
4 Rt=10*10^3; Ct=.005*10^-6; C=10*10^-6;
5 V=20; //in volts
6 fout=.25/(Ct*Rt); // free running frequency
7 disp(fout)
8 fL=(8*fout)/V; //lock range
9 disp(fL)// it may be -ve or +ve
10 fc=sqrt(fL/(2*3.14*3.6*1000*C)); // capture range
11 disp(fc)
```

Scilab code Exa 11.2 frequency of oscillator and phase accumulator

```
1 //chapter 11
2 //example 11.2
3 //page 401
4 foutmax=200*10^3;
```

```
5 foutmin=4;
6 n=%s;
7 fclk=2.2*foutmax;
8 disp(fclk)//maximum output frequency
9 //resolution=foutmin=fclk/2^n
10 2*n==fclk/foutmin;
11 //n=fclk/(foutmin*2);
12 //hittrail method n=17
13 n=17
14 disp(n)
```

DA and AD converter

Scilab code Exa 12.1 resolution

```
1 //chapter 12
2 //example 12.1
3 // page 413
4 n=8; // number of bits
5 Vofs=2.55; //in volts
6 R=2^n; //resolution
7 disp(R)
8 Resolution=Vofs/(2^8-1);
9 disp(Resolution) // an input change of 1LSB cause the output to change by 10mV
```

Scilab code Exa 12.2 final output voltage

```
1 //chapter 12
2 // example 12.2
3 // page 413
4 n=4;// 4-bit DAC
5 Vofs=15;
```

```
6 inp=0110;
7 resolution=Vofs/(2^n-1);
8 disp(resolution)
9 D=0*2^3+1*2^2+1*2^1+0*2^0;//Decimal value of input
10 disp(D)
11 Vout=D*resolution
12 disp(Vout)
```

Scilab code Exa 12.3 Vofs and Vo

```
1 // chapter 12
2 // example 12.3
3 // page 414
4 n=8; // 8 bit DAC
5 R=20*10^-3; // resolution V/LSB
6 inpt=100000000;
7 Vofs=R*(2^n-1);
8 disp(Vofs)
9 D=1*2^7+0*2^6+0*2^5+0*2^4+0*2^3+0*2^2+0*2^1+0*2^0;
10 disp(D)
11 Vout=R*D; // output voltage
12 disp(Vout)
```

Scilab code Exa 12.4 step size and analog output

```
1 //chapter
2 //example 12.4
3 // page 414
4 n=4; // 4-bit R-2R ladder
5 Vofs=5;
6 R=Vofs/(2^n-1); //resolution
7 disp(R)
8 D1=1*2^3+0*2^2+0*2^1+0*2^0; //for input 1000
```

```
9 disp(D1)
10 Vout1=R*D1;
11 disp(Vout1)
12 D2=1*2^3+1*2^2+1*2^1+1*2^0;// for input 1111
13 Vout2=R*D2;
14 disp(Vout2)
```

Scilab code Exa 12.5 full scale output

Scilab code Exa 12.6 value of resistor and reference

```
1 //chapter 12
2 //example 12.6
3 //page 419
4 Vr=10; //let suppose
5 n=4; //4-bit R/2R ladder
6 Res=.5; // given Resolution
7 //Resolution=(1/2^n*Vr/R)*Rf
```

```
8 Rf=10; //let choose
9 R=(1/2^n)*(Vr/Res)*Rf;
10 disp(R)
```

Scilab code Exa 12.7 resolution and digital output

```
1 //chapter 12.7
2 // example 12.7
3 //page 425
4 n=8; //8 bit ADC
5 Vi=5.1; // when all output is 1
6 Res1=2^n;
7 Res2=Vi/(2^n-1); //resolution
8 disp(Res1, Res2)
9 vi=1.28;
10 D=vi/Res2;
11 disp(D)// digital output
12 B=(01000000)// binary equivalent of 64
```

Scilab code Exa 12.8 quantizing error

```
1 // chapter 12
2 // example 12.8
3 // page 426
4 n=12; // 12-bit ADC
5 Vi=4.095; // input voltage
6 Qe=Vi/((2^n-1)*2); // quantizing error
7 disp(Qe)
```

Scilab code Exa 12.9 calculate t2

```
1 //chapter 12
2 // example 12.9
3 // page 428
4 t1=83.33;
5 Vr=100*10^-3; // reference voltage
6 Vi=100*10^-3;
7 t2=(Vi/Vr)*t1;
8 disp(t2)
9 Vi=200*10^-3;
10 t2=(Vi/Vr)*t1;
11 disp(t2)//is in msec
```

Scilab code Exa 12.10 digital output

```
1  // chapter 12
2  // example 12.10
3  // page 429
4  t1=83.33;
5  Vr=100*10^-3; // reference voltage
6  Vi=100*10^-3; // input voltage
7  Cf=12*10^3; // clock frequency
8  DIGITALVout=Cf*t1*(Vi/Vr)
9  disp(DIGITALVout)
```

Scilab code Exa 12.11 conversion time

```
1 //chapter 12
2 // example 12.11
3 //page 431
4 f=1*10^6;
5 n=8;//8-bit ADC
6 T=1/f;//time period
7 Tc=T*(n+1);
```

```
8 disp(Tc)//conversion time
```

Scilab code Exa 12.12 maximum frequency

```
1 //chapter 12
2 //example 12.12
3 //page 432
4 Tc=9*10^-6;
5 n=8;//8-bit ADC
6 fmax=1/(2*%pi*Tc*2^n);// maximum frequency
7 disp(fmax)//Hz
```