Particle spectrograph

Wave operator and propagator

	$\sigma_1^{\#1}{}_+\alpha\beta$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	${\mathfrak l}_1^{\#1}{}_+\alpha\beta$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{lpha}$	$t_{1}^{\#1}{}_{\alpha}$	${\mathfrak l}_1^{\#2}$
$^{t1}_{+} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$^{+2}_{+}$ $+$ $^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	0	0	0	0
$^{t_1}_{+} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\frac{1}{1} + \alpha$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
$r_{1}^{#2} + \alpha$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$_{1}^{\#1}+^{\alpha}$	0	0	0	0	0	0	0
-#2 †α -1- †	0	0	0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$

$\int_{1}^{\pi} \dot{\tau}_{\alpha\beta} \omega$	$\frac{\pi^2}{1+\alpha\beta}$	$\omega_{1}^{#1} \alpha \beta \omega_{1}^{#2} \beta f_{1}^{#1} \alpha \beta$ $\frac{t_{1}}{t_{1}} \frac{t_{1}}{t_{1}} \frac{t_{1}}{t_{1}^{ikt_{1}}}$	$\omega_{1}^{\#1}$	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1^-}^{\#1}\alpha$	$f_{1-\alpha}^{#2}$
	0 22	ر م	0	0		
	0	0	0	0	0	0
	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}ik(t_1-2t_3)$
	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
	0	0	0	0	0	0
	0	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)$	$-\frac{1}{3}\bar{l}k(t_1-2t_3)-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$

dratic (free) action $\iint \int_{\alpha}^{1} (2 \omega^{\alpha'} (t_1 \omega'_{\beta}^{\theta} - 2 t_3 \omega'_{\kappa}^{\kappa}) + 6 f^{\alpha\beta} t_{\alpha\beta}$ $\omega_{\alpha}^{\theta} \partial_{i} f^{\alpha i} + 8 t_3 \omega_{\alpha}^{\kappa} \partial_{i} f^{\alpha i} + 4 t_1 \omega'_{\beta}^{\theta} \partial^{i} f^{\alpha} - 1$ $\partial_{i} f^{\theta} \partial^{j} f^{\alpha} d^{\alpha} + 4 t_3 \partial_{i} f^{\kappa} \partial^{j} f^{\alpha} d^{\alpha} + 3 t_1 \partial_{i} f^{\alpha i} \partial_{\theta} f^{\alpha} + 1$ $\partial_{\alpha} f_{i\theta} \partial^{\theta} f^{\alpha i} - 3 t_1 \partial_{\alpha} f_{\theta_{i}} \partial^{\theta} f^{\alpha i} + 3 t_1 \partial_{i} f_{\alpha\theta} \partial^{\theta} f^{\alpha i} + 1$ $\partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} + 6 t_1 \omega_{\alpha\theta_{i}} (\omega^{\alpha i\theta} + 2 \partial^{\theta} f^{\alpha i}) + 8 r_2 \partial_{\alpha\theta_{i}} \partial^{\theta} \omega^{\alpha\beta_{i}} + 4 r_2 \partial_{\beta} \omega_{i\theta_{i}} \partial^{\theta} \omega^{\alpha\beta_{i}} - 2 r_2 \partial_{i} \omega_{\alpha\beta\theta} \partial^{\theta} \omega^{\beta} \partial^{\theta} \omega^{\beta} \partial^{\theta} \omega^{\beta} \partial^{\theta} \omega^{\beta} \partial^{\beta} \omega^{\beta} \partial^{\beta}$	Quadratic (free) action	$S == \iiint (\frac{1}{6} (2 \ \omega^{\alpha \prime}_{\alpha} (t_1 \ \omega_{\prime \ \theta}^{\ \theta} - 2 t_3 \ \omega_{\prime \ \kappa}^{\ \kappa}) + 6 \ f^{\alpha \beta} \ \tau_{\alpha \beta} + 6 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi} -$	$4t_1\ \omega_{\alpha\ \theta}^{\ \theta}\ \partial_{\scriptscriptstyle{i}} f^{\alpha\prime} + 8t_3\ \omega_{\alpha\ \kappa}^{\ \kappa}\ \partial_{\scriptscriptstyle{i}} f^{\alpha\prime} + 4t_1\ \omega_{\scriptscriptstyle{i}}^{\ \theta}\ \partial^{\prime} f^{\alpha}_{\ \alpha} - 8t_3\ \omega_{\scriptscriptstyle{i}}^{\ \kappa}\ \partial^{\prime} f^{\alpha}_{\ \alpha} -$	$2t_1\partial_i f^\theta_{\ \ }\partial^i f^\alpha_{\ \alpha} + 4t_3\partial_i f^K_{\ \ }\partial^i f^\alpha_{\ \alpha} - 2t_1\partial_i f^{\alpha i}\partial_\theta f_\alpha^{\ \theta} + 4t_1\partial^i f^\alpha_{\ \alpha}\partial_\theta f_{\ i}^{\ \theta} -$	$6t_1\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha\prime} - 3t_1\partial_{\alpha}f_{\theta\prime}\partial^{\theta}f^{\alpha\prime} + 3t_1\partial_{\prime}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + 3t_1\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} +$	$3t_1\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha\prime}+6t_1\;\omega_{\alpha\theta\prime}\;(\omega^{\alpha\prime\theta}+2\partial^{\theta}f^{\alpha\prime})+8r_2\partial_{\beta}\omega_{\alpha\prime\theta}\partial^{\theta}\omega^{\alpha\beta\prime}-4r_2$	$\partial_{eta}\omega_{lpha heta_{l}}\partial^{eta}\omega^{lphaeta_{l}}+4r_{2}\partial_{eta}\omega_{\primelphalpha}\partial^{eta}\omega^{lphaeta_{l}}-2r_{2}\partial_{\prime}\omega_{lphaeta heta}\partial^{eta}\omega^{lphaeta_{l}}+2r_{2}\partial_{eta}\omega_{lphaeta_{l}}\partial^{eta}\omega^{lphaeta_{l}}-$	$4r_2\partial_\theta\omega_{\alpha\prime\beta}\partial^\theta\omega^{\alpha\beta\prime} + 4t_3\partial_{\scriptscriptstyle j}f^{\alpha\prime}\partial_\kappa f_{}^{\kappa} - 8t_3\partial^{\prime}f^{}_{}\partial_\kappa f_{\prime}^{\kappa}))[t,\kappa,y,z]dzdyd\kappadt$
---	-------------------------	--	---	--	--	---	---	--

				ω_2^{\sharp}	‡1 ! ⁺ αβ	$f_{2}^{\#1}_{\alpha\beta}$	$\omega_2^{\#}$	1 αβχ	
			$\omega_{2^+}^{\sharp 1}$ †	αβ	<u>†1</u> 2	$-\frac{ikt_1}{\sqrt{2}}$		0	
			$f_{2^{+}}^{#1}$ †	αβ <u>ii</u>	kt <u>1</u> √2	$k^2 t_1$		0	
			$\omega_2^{\#1} + ^c$	ιβχ	0	0	<u>.</u>	<u>†1</u> 2	
$\sigma_{2^{+}\alpha\beta}^{\sharp 1}$				$\omega_0^{\#}$	1	$f_{0}^{#1}$		$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\sigma_{2+}^{\#1} \uparrow^{\alpha\beta} \frac{2}{(1+2k^2)^2 t_1} - \frac{1}{(1+2k^2)^2 t_1} \tau_{2+}^{\#1} \uparrow^{\alpha\beta} \frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1} \frac{1}{(1+2k^2)^2 t_1}$	$\frac{2i\sqrt{2}k}{+2k^2)^2t_1}$	0	$\omega_{0^+}^{\sharp 1}$ †					0	0
$\tau_{2+}^{\#1} + \alpha\beta$ $2i\sqrt{2}k$	4 k ²	0	$f_{0}^{#1}$ †		kt ₃	$2k^2$	t ₃	0	0
$(1+2k^2)^2 t_1$ (1	$-2 k^2)^2 t_1$	2	$f_{0+}^{#2} \dagger$	0		0		0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi} = 0$	0	$\frac{2}{t_1}$	$\omega_0^{\sharp 1}$ †	0		0		0	$k^2 r_2 - t$
Source constraints/g			$\sigma_{0}^{\#1}$	0	0	0	1 2 2 2 2	17-7/	
$\frac{SO(3) \text{ irreps}}{\tau_{0+}^{\#2} == 0}$	1	olicities	r#2	0	0	0	0	<	
$\frac{0}{\tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} == 0}$	1		1	<u>t</u> 2	1	£3			
$\frac{\sigma}{\tau_{1}^{\#2}{}^{\alpha} + 2 i k \sigma_{1}^{\#2}{}^{\alpha} == 0}$	3		$ au_0^{\#1}$	$i \sqrt{2} k $ $(1+2k^2)^2 t_3$	2 k ²	1+2 k²)²	0		
$\tau_1^{\#1\alpha} == 0$	3			i					
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$			$\sigma_{0}^{\#1}$	$\frac{1}{1+2k^2)^2t_3}$	1 VZ k	0	0		
$\tau_{2}^{\#1\alpha\beta} - 2ik\sigma_{2}^{\#1\alpha\beta} = 0$	5			(14	!	T)			

Total constraints:

16

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $\frac{t_1}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$