Variational Autoencoders for Brain Tumor Prograssion

Sptember, 1st

Outlines

- Why Autoencoders (Variational Autoencoders)?
- Autoencoders
 - Network model
 - Objective function
 - Applications
- Variational Autoencoders
 - Network model
 - Objective function
- Why VAE is a candidade model for our work?

Why Autoencoders (Variational Autoencoders)?

- In many real world data (Image, audio, text) the underline factors which represents the data can be much simpler.
- Machine Learning (ML) algorithms transform (non-linear) high dimensional data into a smaller representation.
- One of the techniques are Autoencoders (Variational Autoencoders).
- Why?
 - Discover useful representations
 - Not just for current task but unknown tasks (future tasks)
 - Ignores irrelevant information or redudant information

Autoencoders -> learn the underlying manifold

- Takes higher dimensional data and runs it into a neural network.
- It does that with 2 components
 - Encoder -> higher dimension to lower representation
 - Decoder -> reconstruct lower representation back to input
 - Bottleneck -> specify the dimension of compression (number of variables)

Objective Function

 $loss = reconstruction(\widehat{x}, x)$

Remarks on Autoencoders

- How does feature learning or dimension reduction happen if the result is the same as the input?
- The transformation from input -> latent representation -> output allow us learn relevant properties of the dataset.

Remarks on Autoencoders

When compressing the data we want to keep the main structure that well describe the data.

Applications of Autoencoders

- Image segmentation
 - Instead of reconstruction the input, we target the label (mask).

Fig. 1. Medical image segmentation: retina blood vessel segmentation in the left, skin cancer lesion segmentation, and lung segmentation in the right.

Applications of Autoencoders - Denoising Image/image inpainting

Image Denoising

Image Impainting - [Yu et al.]

- During training, we encourage the model to learn a clean image
- For the model to be able to reconstruct clean image has to learn higher level semantics of the data.

U-net architecture [Image Segmentation]

Limitations of Autoencoders

- The latent representation is not well structured (no regularization on latent representation).
- The loss function is not optimized to enforce a regular latent space.
- It lacks two main properties for generation.

Variational Autoencoders

- Modern version of Autoencoders
- We map an input to a distribution instead of a vector space as in AE.

 $Loss = reconstruction(\hat{x}, x) - KL_D(posterior[N(\mu, \sigma) \mid prior(0, I)))$

- Reconstruction -> Pixel difference between input and output (MSE)
- KL divergence -> Regularize the latent representation (to have desired structure) for generation

Why VAE is a candidade model for our work?

- Learn a powerful feature representation (manifold learning)
- For instance in our case:
 - For the model to be able to do a smooth interpolation, it has to learn the object localization, size and shape variability.
 - Fill the missing parts
 - Generative capability

Easily we can transfer the knowledge learned to a new domain.

What can be Learned

- The relationship between the hidden manifold and the clinical parameters.
- How the tumour develop in certain:
 - Ages,
 - Gender,
 - Location

Front Propagation (Dataset)

• Intially, we are working with toy dataset

- Objective
 - Predict the progression of the front at specific time stamp knowing the first and second time stamp

The Model is based on VAE

- The objective is to control the latent space representations.
- We aim to have a latent manifold that allow smoth linear interpolation and extrapolation.
- Linear Interpolation of two blues points generates a purple one.
- Linear Extrapolation generates a red point

Results on Toy Dataset - Reconstruction

- Goal: Reconstruct the initial input data
- This is just a sanity check to evaluate if the model learned the structure (geometry) of the data.

Image Extrapolation [main objective]

- Linear Extrapolation
- Img1*alpha + img2(1-alpha)

For smaller displacement between (img1,img2) it looks fine [1st row]. However, for large one does not give good results

Image Interpolation [sanity check]

Future work

Work with actual brain tumor image [The dataset sample is in pdf file]