

ANALISIS SENSIVITAS KANAL-KANAL MODIS UNTUK DETEKSI TITIK API DAN ASAP KEBAKARAN

Arum Tjahjaningsih¹, Katmoko Ari Sambodo¹, dan Indah Prasasti¹

¹Pusat Pengembangan dan Pemanfaatan Data Inderaja, LAPAN Jl. LAPAN No. 70 Jakarta 13710, Indonesia Tel. 62 21 8710786, Fax 62 21 8717715

email: k-ari-s@lapanrs.com, rizkinov@yahoo.co.id

ABSTRACT

Sensitivities Analysis of MODIS Bands for Fire Detection and Haze. Forest/land fire is important issue in Indonesia because it has many social, economic and environmental impacts. Fire locations can be detected using satellite remote sensing data. Currently, TERRA/AQUA satellites that carry Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are using by many researchers because these satellites are relative new operation. These satellites have many bands and better spatial resolution than NOAA satellite. This paper presents the analysis result of thermal bands AQUA MODIS for extracting hotspot information. The research has four step i.e. 1/ Geometric correction processing and cropping data, 2/ Data conversion from digital number to radiance number, 3/ conversion radiance number to brightness temperature (Tb) using D'Souza Method (1993) and 4/ Exstract hotspots based on six (6) models using thermal bands. Hotspots extraction using MODIS Data based on algorithm absolute fire detection. The results of analysis show that model 4 (band 20 and 32) and model 1 (band 20 and 31) have the most hotspots, each model has 49 and 47 hotspots. The models, that its not sensitive for fire detection, are model 3 (band combination 23 and 31) and model 6 (band combination 23 and 32). Haze and fire location can be detected using band composite 1 and 2. Those results need ground check for knowing the accuracy.

Keyword: Forest/land fire, AQUA-MODIS, hotspot absolute.

1. PENDAHULUAN

Kebakaran hutan merupakan salah permasalahan yang serius dan berpengaruh terhadap keseimbangan hutan yang berdampak sangat merugikan baik segi ekonomi maupun politik. Dari sisi ekonomi berakibat pada hilang dan rusaknya sumberdaya hutan yang sangat besar dan terganggunya keseimbangan ekologi hutan. Di bidang politik dapat mengganggu hubungan dengan Negara tetangga akibat adanya asap kebakaran hutan. Selain itu, asap kebakaran yang ditimbulkan dapat mengganggu lalu lintas transportasi udara dan pencemaran udara.

Oleh sebab itu, untuk mengantisipasi dini terjadinya dan makin meluasnya kerusakan sumberdaya hutan tersebut akibat kebakaran hutan diperlukan suatu upaya pemantauan adanya titiktitik api (hot spots), khususnya dengan memanfaatkan teknologi penginderaan jauh (inderaia). Pemanfaatan teknologi inderaja tersebut diharapkan mampu memberikan informasi yang lebih akurat, mencakup wilayah yang luas dan relatif cepat.

Dengan telah diluncurkannya satelit TERRA (yang beroperasi pada siang hari) dan AQUA (beroperasi pada malam hari) yang membawa sensor MODIS (Moderate Resolution Imaging Spectroradiometer) diharapkan dapat memberikan kemampuan yang relatif lebih baik dari NOAA-AVHRR. Hal ini dikarenakan, MODIS memiliki cakupan lebih luas, yakni 2330 Km dengan resolusi spasial yang relatif lebih baik, yakni 250 m (kanal 1 dan 2), 500 m (kanal 3 sampai dengan 7) dan 1000 m (kanal 8 sampai dengan 36) serta resolusi temporal 1-2 hari. Selain itu, MODIS mempunyai jendela/kanal spektral yang lebih sempit dan beragam. Namun demikian, satelit ini

dalam operasi dan aplikasi datanya masih relatif baru, khususnya deteksi titik api sebagai indikator adanya kebakaran hutan untuk wilayah Indonesia. Oleh karena itu diperlukan adanya suatu pengkajian untuk aplikasi datanya.

Deteksi titik api dengan data MODIS dapat dilakukan dengan memanfaatkan kanal-kanal yang mempunyai panjang gelombang 4µm dan 11µm, sedangkan kanal yang beresolusi 250 m dapat dipergunakan untuk mengestimasi luas kebakaran yang aktif dan bekas kebakaran. Penelitian ini merupakan hasil kajian yang mencoba untuk ekstraksi data titik-titik api dengan menerapkan beberapa model dan kanal MODIS. Akan tetapi, hasil dari ekstraksinya belum divalidasi di lapangan atau dibandingkan dengan data hasil ekstraksi dari jenis satelit yang lain.

Titik-titik api didefinisikan sebagai titik-titik pada citra (pixel atau sub-pixel) yang mempunyai suhu sangat tinggi dan berhubungan dengan *active fire* (*Kobaran Api*) di permukaan bumi. Menurut hukum pergeseran WIEN'S, suhu tersebut berkisar antara 400 °K sampai dengan 700 °K di permukaan bumi. Sementara itu, suhu titik api tersebut dapat dihasilkan berdasarkan nilai suhu kecerahannya (*Temperature Brightness=Tb*), yang bisa diturunkan berdasarkan persamaan yang dikembangkan oleh D'Souza (1993).

Penelitian ini merupakan hasil analisis aplikasi kanal-kanal MODIS dan algoritma/model ekstraksi titik-titik api dari data MODIS.

2. METODOLOGI PENELITIAN

2.1. Data

Data yang digunakan adalah data AQUA/MODIS kanal emissive (20, 21, 22, 23, 31 dan 32) tanggal 14 Agustus 2002 dengan resolusi spasial 1000 m dan kanal 1 dan 2 dengan resolusi spasial 250 m untuk wilayah Pulau Kalimantan. Data MODIS tersebut diperoleh dari website milik NASA (www.modis.gsfc.nasa.gov). Sedangkan, pemrosesan data dilakukan dengan menggunakan perangkat lunak HDFLlook dan MSPHINX.

2.2. Metode

Pemrosesan data dilakukan melalui beberapa tahap, yakni 1). Proses koreksi geometris dan kropping data yang dilakukan menggunakan perangkat lunak HDFLook. Proses koreksi geometris dikerjakan dengan menerapkan metode linier yang tersedia pada perangkat lunak HDFLook, 2). Proses konversi data dari nilai digital (Digital Number) menjadi nilai radiansi dengan persamaan R = R Scale_b ($SI_b - R$ offset_b) dengan R adalah nilai Radiansi, R scaleb adalah R scale pada kanal b, dan R offset_b adalah nilai R offset pada kanal b, 3). Proses konversi dari nilai radiansi menjadi Tb dengan persamaan (D'Souza, 1993) sebagai berikut:

$$T_b = \frac{C_2 V_1}{In(1 + (C_1 V_i^3 / R))}....(1)$$

dengan Tb: suhu kecerahan (0 K), $C_1 = 1,1910659$ $\times 10^{-5} \text{ m}^{-1} \text{ Wsr}^{-1} \text{ cm}^4, C_2 = 1,438833 \text{ cmK}, Vi$ adalah central wave number kanal 31 (867,302 cm⁻¹) dan untuk kanal 32 (831.95 cm⁻¹), dan R adalah nilai radiansi, dan 4). Proses ekstraksi nilai titik-titik api menggunakan kanal-kanal termal MODIS dalam 6 model kombinasi kanal, yakni Model 1 (kanal 20 dengan kanal 31), Model 2 (kanal 21 dengan kanal 31), Model 3 (kanal 23 dengan kanal 31), Model 4 (kanal 20 dengan kanal 32), Model 5 (kanal 21 dengan kanal 32), dan Model 6 (kanal 23 dengan kanal 32). Ekstraksi nilai titik-titik api menggunakan data MODIS berdasarkan algoritma deteksi titik api absolut memerlukan paling sedikit satu atau dua kondisi, vaitu:

- 1. T4 > 360 °K (330 °K pada malam hari), atau
- 2. T4 > 330 °K (315 °K pada malam hari) dan T4 T11 > 25 °K (10 °K pada malam hari), sedangkan jika kedua kriteria titik api absolute tidak dipenuhi, maka digunakan algoritma deteksi **titik api relatif**, yaitu:

Untuk data MODIS dari satelit TERRA (data yang direkam pada siang hari)

- 1. {T4 > mean (T4) + 3 std.dev(T4) atau T4>330 °K}, dan
- 2. {T4 T11> median (T4 T11) + 3 std.dev (T4-T11) atau T4-T11 > 25 °K} atau T4 > 360 ° K

Untuk data MODIS dari satelit AQUA (data yang direkam pada malam hari)

- 1. {T4 > Mean (T4) + 3std. dev(T4) atau T4 > 315 ° K}, dan
- 2. {T4-T11 > Median (T4-T11) + 3 std. dev(T4-T11) atau T4-T11 > 10 ° K} atau T4 > 330 ° K

dengan T4 adalah Tb pada kanal dengan panjang gelombang 4 µm, dan T11 adalah Tb pada kanal dengan panjang gelombang 11µm.

3. HASIL DAN PEMBAHASAN

Hasil pengolahan koreksi geometris yang dilakukan pada data MODIS level 1B secara linier dan kropping data untuk wilayah P. Kalimantan (dengan ukuran pixel 1176 X 1205) dengan menggunakan perangkat lunak HDFLook disajikan pada Gambar 1.

Selanjutnya data di-format/di-ekspor ke MSPHINX untuk dilakukan pemilihan kanal, penghitungan Tb dan lokasi titik-titik api. Hasil ekstraksi nilai Tb dan selisih Tb serta posisi lokasi titik-titik api dari masing-masing kombinasi kanal (model) dapat dilihat pada Tabel Lampiran 1 – 6. Sementara itu, Tabel 1 menyajikan kisaran nilai Tb minimum-maksimum, selisih Tb, dan jumlah titik-titik api yang terdeteksi dari kombinasi kanal yang digunakan dalam model.

Gambar 1. Citra MODIS Wilayah P. Kalimantan Tanggal 14 Agustus 2002 Resolusi 250m yang Telah Terkoreksi Secara Linier

Tabel 1. Kisaran Nilai Tb (4μ), Selisih Tb (ΔTb), dan Jumlah Titik-titik Api Yang Terdeteksi pada Masingmasing Model

Model	Kisaran Tb (4μ) (°K)	Selisih Tb (ΔTb) (°K)	Jumlah Titik Api
Model 1 (kanal 20,31)	330.0 - 361.4	27.90 – 72.66	47
Model 2 (kanal 21, 31)	330.0 - 387.2	25.95 – 79.41	31
Model 3 (kanal 23, 31)	330.2 - 355.3	27.03 – 57.95	22
Model 4 (kanal 20 ,32)	305.7 - 361.4	8.53 – 66.91	49
Model 5 (kanal 21,32)	330.0 - 387.2	28.09 – 81.31	33
Model 6 (kanal 23 ,32)	330.2 –355.3	28.68 – 62.51	22

Berdasarkan Tabel 1 di atas tampak bahwa penggunaan kombinasi kanal yang berbeda akan menghasilkan jumlah titik-titik api yang berbeda pula. Hal ini dikarenakan, sensivitas masingmasing kanal terhadap panas yang dipancarkan oleh permukaan adalah berbeda. Jumlah titik api yang paling banyak (49 titik api) dihasilkan oleh model 4 yakni yang menggunakan kombinasi kanal 20 dengan 32, dan sebanyak 47 titik api dihasilkan oleh model 1 yang menggunakan kombinasi kanal 20 dengan 31. Jumlah titik api yang paling sedikit (22 titik api) dihasilkan oleh model 3 dan 6, yakni masing-masing dari kombinasi kanal 23 dengan 31 atau 32.

Namun demikian, apabila didasarkan pada ketentuan yang ditulis oleh Kaufman dan Justice (1998) dalam MODIS – ATBD, yang menuliskan bahwa semua piksel yang mempunyai nilai Tb < 315°K pada kanal 4 µm pada data siang hari (atau 305 °K pada data malam hari) atau $\Delta Tb < 5$ °K pada siang hari (atau 3 °K pada malam hari) tidak bisa dipertimbangkan sebagai kebakaran, atau berdasarkan ketentuan bahwa bisa diidentifikasikan sebagai titik api pada data AQUA-MODIS adalah jika T4 - T11 > 10° K}atau T4 > 330 $^{\circ}$ K. Dari hasil perhitungan Tb 4 μm dan ΔTb pada model 4 (lihat Tabel Lampiran 4), maka titik ke -21 dan 22 tidak bisa dikategorikan sebagi titik api. Hal ini dikarenakan pada titik ke- 21 (pada posisi 2.8548° LS dan 112.6547° BT), besarnya Tb pada kanal 4 µm hanya sebesar 308.3°K dan ΔTb sebesar 9.659°K. Demikian pula titik ke-22 (posisi 2.9178° LS dan 112.6547° BT), dengan Tb pada kanal 4 μm hanya sebesar 305.7°K dan ΔTb sebesar 8.533°K. Oleh karena itu, dengan adanya pengurangan kedua titik api tersebut pada model 4, maka terdapat

kesamaan perolehan jumlah titik api yang dihasilkan antara model 4 dengan model 1, yakni berjumlah 47 titik api.

Dari Tabel 1 juga terlihat bahwa penggunaan kanal 31 atau 32 akan menghasilkan jumlah titik api yang relatif sama, yang akan membedakan hasil jumlah titik api adalah berasal dari sensivitas dari kanal 21 – 23. Menurut Kaufman dan Justice (1998), kanal MODIS yang bekerja pada kisaran panjang gelombang 4 μ m (kanal 21 – 23) dan dengan resolusi 1 km dirancang untuk dapat mendeteksi suhu hingga 500°K dengan NEΔT sebesar 0.3°K dan dapat merespon dengan sangat kuat refleksi (pemantulan) dari permukaan pada siang hari. Namun demikian, posisi geometri antara satelit – permukaan – matahari pada siang hari dapat menghasilkan sunglint yang akan tercatat kondisi seperti di atas lautan (Nath et al., 1993; Cracknell, 1993 dalam Kaufman dan Justice, 1998) dan dapat menyebabkan kesalahan pendeteksian titik api yang terjadi di daratan (Alberto Setzer, pers. comm. dalam Kaufman dan Justice, 1998). Oleh karena itu, pengujian algoritma pada deteksi titik api dari data MODIS harus pula meliputi koreksi sunglint pada pikselpiksel yang terdeteksi sebagai titik api. Kanal ini tidak dipengaruhi oleh penyerapan uap air dan hanya sedikit dipengaruhi oleh serapan gas-gas yang lain.

Sedangkan kanal yang bekerja pada kisaran panjang gelombang 11 μ m dengan resolusi 1 km, mampu mendeteksi suhu hingga 400°K dengan NE Δ T sebesar 0.1°K. Berdasarkan hasil penelitian pada kasus kebakaran hutan di Yellowstone menunjukkan bahwa kanal dengan panjang gelombang 11 μ m pada data Landsat TM tersebut dapat menggambarkan kondisi kebakaran aktif (dengan suhu 325°K), lahan bekas terbakar (dengan suhu 317°K), dan area sekitar lokasi kebakaran (dengan suhu 303°K).

Kanal-kanal ini (20 – 23, dan 31 – 32) dapat digunakan untuk deteksi permukaan / suhu awan. Penggunaan kombinasi kanal antara kanal 21 – 23 dengan kanal 31 – 32 dalam penelitian ini dimaksudkan untuk mendapatkan kombinasi kanal yang paling sensitif dalam mendeteksi titik api yang mengindikasikan adanya kebakaran hutan/lahan.

Kanal 31 dan 32 digunakan untuk mewakili kanal dengan panjang gelombang 11 μm. Selain itu,

penggunaan kombinasi kanal 4 μm dengan 11 μm tersebut sekaligus dimaksudkan untuk koreksi terhadap pengaruh atmosferis, karena suhu yang terdeteksi pada kedua kanal tersebut akan terkoreksi oleh adanya gas-gas yang terserap seperti penyerapan uap air oleh kanal 11 μm, atau awan-awan tipis yang dapat mereduksi suhu kebakaran yang terdeteksi oleh satelit (Kaufman dan Justice, 1998).

Deteksi api juga mungkin pada malam hari dengan memanfaatkan kanal 0.86 µm dengan resolusi 250 m atau dengan kanal dengan panjang gelombang 2.1 µm dan 1.6 µm dengan resolusi 500 m, namun demikian kanal-kanal tersebut tidak dirancang untuk mengumpulkan secara rutin kanal-kanal reflektif matahari selama malam hari. Kanal-kanal dengan resolusi 250 m dapat pula digunakan untuk memberikan informasi keragaman spasial dari piksel-piksel kebakaran pada resolusi 1 km dan permukaan sekitar lokasi kebakaran.

MODIS dirancang untuk dapat memberikan informasi yang meyakinkan tentang lokasi titik api yang memiliki kemungkinan paling tinggi dan tepat dan dapat memberikan pemantauan kebakaran hutan secara multitemporal (Kaufman dan Justice, 1998). Registrasi antar kanal dengan kanal yang lain dan antar scene dengan scene perlu dilakukan dengan baik (0,1 dari satu piksel), karena kesalahan registrasi akan menyebabkan kesalahan pendugaan (overestimation) kejadian kebakaran hutan.

Untuk mendeteksi sebaran posisi lokasi kebakaran dapat dilakukan dengan menggunakan kanal 1 dan 2 dengan resolusi 250 m. Gambar 2 memperlitkan lokasi sebaran titik-titik api pada citra MODIS resolusi 250 m.

Gambar 2. Hasil Kropping Citra MODIS Resolusi 250 m pada Lokasi Titik-api

4. KESIMPULAN DAN SARAN

Dari hasil peneltian dapat disimpulkan sebagai berikut:

- Model 4 dan 1 (kombinasi kanal 20 dengan kanal 31 atau 32) yang paling sensitif dalam mendeteksi titik-titik api, dengan jumlah 47 titik api.
- 2. Penggunaan kanal 31 atau 32 akan menghasilkan jumlah titik api yang relatif sama, yang akan membedakan hasil jumlah titik api adalah hanya berasal dari sensivitas dari kanal 21 23.
- 3. Deteksi lokasi dan asap kebakaran dapat dilakukan dengan memanfaatkan kanal 1 dan 2 MODIS resolusi 250 m.
- 4. Untuk kepentingan operasional lebih lanjut perlu dilakukan verifikasi di lapangan dan sebelum ekstraksi titik api dilakukan perlu pula dilakukan koreksi terhadap adanya kesalahan akibat *sunglint* (dengan menghilangkan piksel-piksel titik api pada siang hari jika berhubungan dengan pengukurun *glint*, yakni $\rho_{0.64} > 0.3$ dan $\rho_{0.86} > 0.3$ (berhubungan dengan 312 °K pada 4 µm) dan sudut *glint* < 40°.

DAFTAR PUSTAKA

Agnes, L. S. C. Liew, K. H. Lim, L. K. Kwoh. 2003. Effects of Water Vapour in Retrieval of Sub Pixel Fire Temperature and Fire Area in Modis Data

D' Souza, G, A. S. Belward and J.P. Malingreu. 1993. Advance in the Use of NOAA AVHRR Data for Land Applications. Remote Sensing Vol.5. Kluwer Academic Publishers

Hwa, L. K, K. L. Keong, L. S. Chin. 2002. Development of a MODIS Data Reception System for Regional Environmental Monitoring in Southeast Asia. CRISP Singapore

Kaufman, Y. and C. Yustice. 1998. MODIS Fire Products, Algorithm Technical Background Document, Version 2.2"

Louis, G.; C. Yustice, S.Korontzi, J. Oweus, D. Roy. 2000. Modis Fire and Thermal Anomalies, *Version 1.0 (MOD 14)*

Matson, M., G. Stephens and J. Robinson. Fires Detected Using Data from NOAA-N Satellites. *International Journal on Remote Sensing. Vol.8.* No.7

LAMPIRAN

Tabel 1: Hasil Pengolahan Hotspot Dengan Menggunakan Model 1

No	X	y	Tb ₂₀ (K)	ΔTb(K)	Longitude	Latitude
1	71	827	334.6	32.96	109.308977	-0.1113675
2	182	1072	361.4	53.58	110.307311	-2.3151425
3	237	1090	361.4	54.34	110.801981	-2.4770525
4	244	1090	331.2	28.56	110.864939	-2.4770525
5	256	1148	361.4	60.43	110.972867	-2.9987625
6	295	1073	361.4	53.48	111.323633	-2.3241375
7	297	1070	361.4	53.37	111.341621	-2.2971525
8	334	892	361.4	63.54	111.674399	-0.6960425
9	399	1094	361.4	55.03	112.259009	-2.5130325
10	400	1083	361.4	59.4	112.268003	-2.4140875
11	400	1090	361.4	54.13	112.268003	-2.4770525
12	413	589	361.4	63.08	112.384925	2.0294425
13	421	1064	361.4	56.75	112.456877	-2.2431825
14	428	1072	361.4	57.78	112.519835	-2.3151425
15	432	1061	361.4	58.21	112.555811	-2.2161975
16	434	1063	361.4	63.05	112.573799	-2.2341875
17	436	1058	361.4	60.95	112.591787	-2.1892125
18	437	1093	361.4	65.38	112.600781	-2.5040375
19	439	1062	361.4	54.95	112.618769	-2.2251925
20	448	1093	332.4	30.36	112.699715	-2.5040375
21	451	1093	331.9	27.9	112.726697	-2.5040375
22	464	1047	361.4	59.58	112.843619	-2.0902675
23	467	1037	361.4	57.48	112.870601	-2.0003175
24	471	1041	332.1	31.67	112.906577	-2.0362975
25	503	1036	361.4	58.34	113.194385	-1.9913225
26	504	1039	361.4	58.75	113.203379	-2.0183075
27	529	1143	361.4	64.74	113.428229	-2.9537875
28	560	1021	330	45.15	113.707043	-1.8563975
29	560	1027	361.4	72.66	113.707043	-1.9103675
30	585	1150	361.4	66.34	113.931893	-3.0167525
31	601	1027	361.4	58.61	114.075797	-1.9103675
32	602	1154	361.4	61.23	114.084791	-3.0527325
33	605	1025	333.3	28.22	114.111773	-1.8923775
34	608	608	361.4	54.78	114.138755	1.8585375
35	609	1023	330.7	27.77	114.147749	-1.8743875
36	612	1017	361.4	59.72	114.174731	-1.8204175
37	612	1024	1024	30.19	114.174731	-1.8833825
38	628	1073	336.3	39.75	114.318635	-2.3241375
39	628	1095	333.4	36.06	114.318635	-2.5220275
40	642	1062	361.4	55.75	114.444551	-2.2251925
41	643	1066	336	36.69	114.453545	-2.2611725

No	X	y	Tb ₂₀ (K)	ΔTb(K)	Longitude	Latitude
42	649	1077	334.1	33.94	114.507509	-2.3601175
43	658	1092	335.7	35.01	114.588455	-2.4950425
44	666	1075	361.4	62.95	114.660407	-2.3421275
45	712	1119	333.9	31.9	115.074131	-2.7379075
46	952	347	333.2	40.62	117.232691	4.2062325
47	1028	538	361.4	63.5	117.916235	2.4881875

Tabel 2 : Hasil Pengolahan Hotspot Dengan Menggunakan Model 2

No.	X	y	Tb(4µ)	ΔTb	longitude	Latitude
1	182	1072	387.2	79.41	110.307311	-2.3151425
2	256	1148	332.8	31.82	110.972867	-2.9987625
3	295	1073	378.4	70.48	111.323633	-2.3241375
4	297	1070	353.9	45.94	111.341621	-2.2971525
5	330	1027	337.1	48.35	111.638423	-1.9103675
6	334	892	332.9	35.1	111.674399	-0.6960425
7	399	1083	346.2	45.5	112.259009	-2.4140875
8	399	1094	341.2	34.87	112.259009	-2.5130325
9	401	1090	343.6	36.4	112.276997	-2.4770525
10	413	589	356.8	58.46	112.384925	2.0294425
11	421	1064	330.6	25.95	112.456877	-2.2431825
12	428	1072	337	33.43	112.519835	-2.3151425
13	433	1061	331.1	28.67	112.564805	-2.2161975
14	434	1063	336.9	38.62	112.573799	-2.2341875
15	437	1058	334.3	34.16	112.600781	-2.1892125
16	437	1093	331.8	35.85	112.600781	-2.5040375
17	439	1062	350.5	44.04	112.618769	-2.2251925
18	503	1036	343.3	40.28	113.194385	-1.9913225
19	504	1039	331.4	28.73	113.203379	-2.0183075
20	529	1143	330	33.39	113.428229	-2.9537875
21	585	1150	335.1	40.04	113.931893	-3.0167525
22	602	1028	356.2	53.97	114.084791	-1.9193625
23	602	1154	338.1	37.95	114.084791	-3.0527325
24	608	1028	334.3	27.7	114.138755	-1.9193625
25	612	1017	333.2	31.5	114.174731	-1.8204175
26	629	1073	347.2	48.43	114.327629	-2.3241375
27	643	1062	354	47.16	114.453545	-2.2251925
28	658	1092	330.1	29.33	114.588455	-2.4950425
29	666	1075	339.7	41.26	114.660407	-2.3421275
30	951	348	363.5	66.12	117.223697	4.1972375
31	1027	538	349.1	51.47	117.907241	2.4881875

Tabel 3: Hasil Pengolahan Hotspot Dengan Menggunakan Model 3

No.	X	y	Tb(4µ)	ΔTb	Longitude	Latitude
1	183	1072	355.3	47.51	110.316305	-2.3151425
2	237	1090	355.3	48.26	110.801981	-2.4770525
3	295	1073	355.3	47.4	111.323633	-2.3241375
4	297	1070	355.3	47.3	111.341621	-2.2971525
5	335	892	355.3	57.76	111.683393	-0.6960425
6	399	1083	355.3	54.6	112.259009	-2.4140875
7	400	1090	355.3	48.06	112.268003	-2.4770525
8	400	1094	355.3	48.96	112.268003	-2.5130325
9	413	589	355.3	57	112.384925	2.0294425
10	428	1072	355.3	51.71	112.519835	-2.3151425
11	432	1061	330.2	27.03	112.555811	-2.2161975
12	434	1063	330.9	32.53	112.573799	-2.2341875
13	438	1093	355.3	52.38	112.609775	-2.5040375
14	440	1062	355.3	48.88	112.627763	-2.2251925
15	503	1036	355.3	52.27	113.194385	-1.9913225
16	602	1027	355.3	45.78	114.084791	-1.9103675
17	608	1028	355.3	48.7	114.138755	-1.9193625
18	625	1013	355.3	53.58	114.291653	-1.7844375
19	629	1073	355.3	56.58	114.327629	-2.3241375
20	642	1062	355.3	49.68	114.444551	-2.2251925
21	951	348	355.3	57.95	117.223697	4.1972375
22	1027	538	355.3	57.66	117.907241	2.4881875

Tabel 4: Hasil Pengolahan Hotspot Dengan Menggunakan Model 4

No.	X	y	Tb(4µ)	ΔTb	Longitude	Latitude
1	71	827	334.6	35.94	109.308977	-0.1113675
2	166	1080	335.6	31.34	110.163407	-2.3871025
3	182	1072	361.4	55.48	110.307311	-2.3151425
4	237	1090	361.4	56.56	110.801981	-2.4770525
5	244	1090	331.2	30.1	110.864939	-2.4770525
6	274	1061	332.4	28.57	111.134759	-2.2161975
7	295	1073	361.4	55.02	111.323633	-2.3241375
8	297	1070	361.4	54.63	111.341621	-2.2971525
9	311	1028	330.7	29.23	111.467537	-1.9193625
10	335	892	361.4	65.9	111.683393	-0.6960425
11	399	1094	361.4	57.19	112.259009	-2.5130325
12	400	1084	333.7	31.17	112.268003	-2.4230825
13	400	1090	361.4	57.36	112.268003	-2.4770525
14	420	1064	333.2	13.29	112.447883	-2.2431825
15	428	1072	361.4	60.2	112.519835	-2.3151425
16	432	842	331.1	43.73	112.555811	-0.2462925

No.	X	y	Tb(4µ)	ΔTb	Longitude	Latitude
17	433	1061	335.8	35.84	112.564805	-2.2161975
18	434	1063	361.4	65.99	112.573799	-2.2341875
19	436	1058	361.4	63.31	112.591787	-2.1892125
20	440	1062	361.4	57.34	112.627763	-2.2251925
21	443	1132	308.3	9.659	112.654745	-2.8548425
22	443	1139	305.7	8.533	112.654745	-2.9178075
23	464	1047	361.4	61.54	112.843619	-2.0902675
24	465	1048	334.4	37.62	112.852613	-2.0992625
25	467	1037	361.4	59.69	112.870601	-2.0003175
26	471	1041	332.1	34.25	112.906577	-2.0362975
27	503	1036	361.4	60.27	113.194385	-1.9913225
28	504	1039	361.4	60.64	113.203379	-2.0183075
29	514	1024	332.7	61.33	113.293319	-1.8833825
30	529	1143	361.4	66.28	113.428229	-2.9537875
31	560	1021	330	50.51	113.707043	-1.8563975
32	560	1028	335.9	52.86	113.707043	-1.9193625
33	585	1151	335.6	43.07	113.931893	-3.0257475
34	601	1027	361.4	59.85	114.075797	-1.9103675
35	605	1025	333.3	30.24	114.111773	-1.8923775
36	608	1028	361.4	56.91	114.138755	-1.9193625
37	609	1023	330.7	29.91	114.147749	-1.8743875
38	612	1017	361.4	61.57	114.174731	-1.8204175
39	612	1024	331.2	32.08	114.174731	-1.8833825
40	625	1013	361.4	61.89	114.291653	-1.7844375
41	628	1073	336.3	40.93	114.318635	-2.3241375
42	628	1095	333.4	38	114.318635	-2.5220275
43	642	1062	361.4	57.81	114.444551	-2.2251925
44	643	1066	336	38.75	114.453545	-2.2611725
45	649	1077	334.1	36.26	114.507509	-2.3601175
46	658	1092	335.7	37.02	114.588455	-2.4950425
47	666	1075	361.4	64.77	114.660407	-2.3421275
48	952	348	361.4	66.91	117.232691	4.1972375
49	1028	538	361.4	66.13	117.916235	2.4881875

Tabel 5 : Hasil Pengolahan Hotspot Dengan Menggunakan Model 5

No.	X	y	Tb(4μ)	ΔTb	Latitude	Longitude
1	182	1072	387.2	81.31	110.307311	-2.3151425
2	237	1090	341.6	36.81	110.801981	-2.4770525
3	256	1148	332.8	33.58	110.972867	-2.9987625
4	295	1073	378.4	72.02	111.323633	-2.3241375
5	297	1070	353.9	47.2	111.341621	-2.2971525
6	335	892	339.1	43.58	111.683393	-0.6960425

No.	X	y	Tb(4μ)	ΔTb	Latitude	Longitude
7	399	1083	346.2	46.52	112.259009	-2.4140875
8	399	1094	341.2	37.02	112.259009	-2.5130325
9	401	1090	343.6	39.63	112.276997	-2.4770525
10	421	1064	330.6	28.09	112.456877	-2.2431825
11	428	1072	337	35.85	112.519835	-2.3151425
12	433	1061	331.1	31.08	112.564805	-2.2161975
13	434	1063	336.9	41.56	112.573799	-2.2341875
14	437	1058	334.3	36.09	112.600781	-2.1892125
15	438	1093	364.1	63.45	112.609775	-2.5040375
16	439	1062	350.5	46.43	112.618769	-2.2251925
17	464	1047	337	37.19	112.843619	-2.0902675
18	467	1037	335.4	33.67	112.870601	-2.0003175
19	503	1036	343.3	42.21	113.194385	-1.9913225
20	504	1039	331.4	30.62	113.203379	-2.0183075
21	529	1143	330	34.92	113.428229	-2.9537875
22	560	1027	337.1	51.45	113.707043	-1.9103675
23	585	1150	335.1	42.42	113.931893	-3.0167525
24	601	1027	354.9	53.35	114.075797	-1.9103675
25	602	1154	338.1	40.16	114.084791	-3.0527325
26	608	1028	334.3	29.83	114.138755	-1.9193625
28	629	1073	347.2	50.28	114.327629	-2.3241375
29	642	1062	365.7	62.11	114.444551	-2.2251925
30	658	1092	330.1	31.34	114.588455	-2.4950425
31	666	1075	339.7	43.08	114.660407	-2.3421275
32	951	348	363.5	70.68	117.223697	4.1972375
33	1027	538	349.1	53.81	117.907241	2.4881875

Tabel 6: Hasil Pengolahan Hotspot Dengan Menggunakan Model 6

No.	X	Y	Tb(4µ)	ΔTb	Latitude	Longitude
1	183	1072	355.3	49.4	110.316305	-2.3151425
2	237	1090	355.3	50.49	110.801981	-2.4770525
3	295	1073	355.3	48.95	111.323633	-2.3241375
4	297	1070	355.3	48.55	111.341621	-2.2971525
5	399	1083	355.3	55.61	112.259009	-2.4140875
6	399	1094	355.3	51.11	112.259009	-2.5130325
7	401	1090	355.3	51.29	112.276997	-2.4770525
8	413	589	355.3	59.57	112.384925	2.0294425
9	428	1072	355.3	54.12	112.519835	-2.3151425
10	432	1061	330.2	28.68	112.555811	-2.2161975
11	434	1063	330.9	35.48	112.573799	-2.2341875
12	438	1093	355.3	54.67	112.609775	-2.5040375
13	439	1062	355.3	51.26	112.618769	-2.2251925

No.	X	Y	Tb(4µ)	ΔTb	Latitude	Longitude
14	503	1036	355.3	54.2	113.194385	-1.9913225
15	601	1027	355.3	53.77	114.075797	-1.9103675
16	602	1154	355.3	57.36	114.084791	-3.0527325
17	608	1028	355.3	50.84	114.138755	-1.9193625
18	625	1013	355.3	55.81	114.291653	-1.7844375
19	629	1073	355.3	58.43	114.327629	-2.3241375
20	643	1062	355.3	51.43	114.453545	-2.2251925
21	951	348	355.3	62.51	117.223697	4.1972375
22	1027	538	355.3	60	117.907241	2.4881875