Module X: Bayesian Graphical Entity Resolution

Rebecca C. Steorts

Reading

- ▶ Binette and Steorts (2020)
- ► Steorts, Hall, Fienberg (2016)
- ► Steorts (2015)

What is "Bayesian"?

1. Setting up a *full probability model* – a joint probability distribution for all observable and unobservable quantities

$$p(\mathbf{x}|\mathbf{ heta})$$
 — likelihood $p(\mathbf{ heta})$ — prior

2. Conditioning on observed data – calculating and interpreting the appropriate *posterior distribution*

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}, \theta)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})} \propto p(\mathbf{x}|\theta)p(\theta)$$

Why Bayesian Entity Resolution

- 1. Entity resolution can be treated as a clustering problem.
- 2. Records are clustering to a latent entity.
- This results in the model becoming a bipartite graph, which allows one to estimate latent individuals across multiple high dimensional databases.
- The Bayesian paradigm naturally allows uncertainty quantification of the entity resolution process, a full posterior distribution, credible intervals, etc.
- 5. Theoretical properties have recently been explored for latent variable models, supporting the above approach.

[Copas and Hilton (1990), Tancredi and Liseo (2011), Steorts, Barnes, Neiswanger (2017), Zanella et al. (2016)]

The entity resolution graph

The latent variable approach

The latent variable approach

Notation

- ▶ $X_{ij\ell}$: observed value of the ℓ th field for the jth record in the ith data set, $1 \le i \le k$ and $1 \le j \le n_i$.
- $ightharpoonup Y_{j'\ell}$: true value of the ℓ th field for the j'th latent individual.
- λ_{ij} : latent individual to which the *j*th record in the *i*th list corresponds. Λ is the collection of these values.
 - e.g. Five records in one list $\Lambda = \{1, 1, 2, 3, 3\} \rightarrow 3$ latent entities or clusters.
- $ightharpoonup z_{ij\ell}$: indicator of whether a distortion has occurred for record field value $X_{ij\ell}$

Graphical Record Linkage

Graphical model representation of Steorts et al. (2016):

- $ightharpoonup \Lambda_{ij}$ represents the linkage structure \rightarrow uniform prior.
- ▶ Requires information about the number of latent entities a priori and it is very informative.

Bayesian Entity Resolution

Previous literature: not balanced regarding modeling, handling high-dimensional data, and uncertainty of multiple databases.

- Bayesian model: simultaneously links and de-duplicates.
- Assume records are noisy, distorted.
- We have a novel representation (Λ) : linkage structure.
- ► The strength of a Bayesian approach is that transitivity of the linked records is nearly automatic.
- Our data structure provides uncertainty estimates of linked records that can be propagated into later analyses.

[Steorts, Hall, and Fienberg (2014), Steorts, Hall, and Fienberg (2016)]

Empirically Motivated Priors

- ► The major weakness of Steorts, Hall, and Fienberg (2016) is the fact that it did not handle text (string) data.
- ▶ Steorts (2015) overcomes this issue by taking an empirical Bayesian approach, and making extensive comparisons to supervised methods.

Model Specification: String model

The distortion of string-valued variables is modeled using a probabilistic mechanism based on some measure of distance between the true and distorted strings.

$$P(X_{ij\ell} = w | \lambda_{ij}, Y_{\lambda_{ij}\ell}, z_{ij\ell}) = \frac{\alpha_{\ell} \exp[-cd(w, Y_{\lambda_{ij}\ell})]}{\sum_{w \in S_{\ell}} \alpha_{\ell} \exp[-cd(w, Y_{\lambda_{ij}\ell})]}$$

where c is a parameter that needs to be specified and d represents a string metric distance e.g. Levenshtein or Jaro-Winkler.

Model Specification: Likelihood Function

$$X_{ij\ell} = w | \lambda_{ij}, \, Y_{\lambda_{ij}\ell}, \, z_{ij\ell} \overset{iid}{\sim} egin{dcases} \delta(Y_{\lambda_{ij}\ell}), & ext{if } z_{ij\ell} = 0 \ F_\ell(Y_{\lambda_{ij}\ell}), & ext{if } z_{ij\ell} = 1 ext{ and } \ell \leq p_s \ G_\ell, & ext{if } z_{ij\ell} = 1 ext{ and } \ell > p_s \end{cases}$$

- $ightharpoonup z_{ij\ell}=0$, then $X_{ij\ell}=Y_{\lambda_{ij\ell}}$
- $ightharpoonup F_{\ell}$ is the string model in the last slide.
- ▶ G_{ℓ} is the empirical distribution function of the categorical data.

Model Specification: Hierarchical Model

$$egin{aligned} Y_{\lambda_{ij}} \ell \overset{iid}{\sim} G_{\ell} \ z_{ij\ell} | eta_{i\ell} \overset{iid}{\sim} \operatorname{Bernoulli}(eta_{i\ell}) \ eta_{i\ell} \overset{iid}{\sim} \operatorname{Beta}(a,b) \ \lambda_{ij} \overset{iid}{\sim} \operatorname{DiscreteUniform}(1,\ldots,\mathsf{N}) \end{aligned}$$

where a, b, N are unknown parameters that must be estimated or fixed.

- \triangleright $\beta_{i\ell}$ represent the distortion probabilities of the fields.
- ▶ The parameters a and b for the Beta prior need to be specified.
- ➤ The number of latent entities or clusters needs to be specified in advance.

blink package

R package that removes duplicate entries from multiple databases using the empirical Bayes graphical method:

```
library("blink")
```

- Formatting data for use with blink
- Tuning parameters
- Running the Gibbs sampler (estimate model parameters)
- Output

RLdata500 data

We will continue with the RLdata500 dataset in the blink package consisting of 500 records with 10% duplication.

library(RecordLinkage)

Attaching package ff

Loading required package: DBI

```
## Loading required package: RSQLite
## Loading required package: ff
## Loading required package: bit
##
## Attaching package: 'bit'
## The following object is masked from 'package:base':
##
## xor
```

 $\frac{16/16}{100}$