Homework (1)

Task 1: Eigenfunctions

If \hat{H} is an operator, the equation $\hat{H}\phi(x) = E\phi(x)$ indicates that $\phi(x)$ is an eigenfunction of \hat{H} , and E is the corresponding eigenvalue. In addition to statisfying this eigenvalue equation the function $\phi(\mathbf{r})$ must also be well-behaved in order to be an acceptable eigenfunction. By well-behaved we mean that $\phi(x)$ is single valued, finite, and continuous and that the first derivative of $\phi(x)$ is continuous. Which of the following functions are well-behaved? For those functions that are not well-behaved, indicate the reason.

(a) $\phi = x$.	x > 0.	and $\phi =$	0 othe	rwise

(e)
$$\phi = \cos a$$

(a)
$$\phi = x, x \ge 0$$

(b) $\phi = x^2$

(f)
$$\phi = \sin|x|$$

(g) $\phi = e^{-x^2}$

(c)
$$\phi = e^{-|x|}$$

(g)
$$\phi = e^{-x^2}$$

(d)
$$\phi = e^{-x}$$

(h)
$$\phi = 1 - x^2$$
, $-1 \le x \le 1$, $\phi = 0$ otherwise.

Task 2: Wave-function normalization

A wave function ψ at a given time (say t=0) can be written in the form $\psi(\mathbf{r}) = \sum_n c_n \phi_n(\mathbf{r})$, where $\{\phi_n\}$ are eigenfunctions of an arbitrary operator. Prove $\sum_n |c_n|^2 = 1$.

Task 3: Probability of a measurement

A certain system is in a state that is described by the wave function ψ at a specific time (say t=0). According to quantum mechanics a measurement of the physical quantity O can only give one of the eigenvalues of the operator \hat{O} that is associated with O. What is the probability of obtaining the eigenvalue O_n in a given measurement?

Hint: Expand ψ in the eigenfunctions of O.

Task 4: Commutators

The commutator of two quantum mechanical operators \hat{A} and \hat{B} is defined by $\left[\hat{A},\hat{B}\right]=\hat{A}\hat{B}-\hat{B}\hat{A}$. Calculate the commutator $[\hat{x}, \hat{p}_x]$ of the position and momentum (in one-dimensional systems) by using the definitions of these operators: $\hat{x} = x$ and $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$.