MATH 311

Chapter 6

SECTION 6.1: VECTOR SPACES

Contents

Column Vectors	•				•			•					•	
General Definition														
xamples														
Spaces of Matrices		•	•		•	•		•	•	•	•	•	•	
Spaces of Polynomials				•				•	•	•				•
Weird Example		•		•	•	•		•	•	•	•	•	•	
Non-Example			•		•			•		•	•	•	•	

Created by: Pierre-Olivier Parisé Spring 2024

DEFINITION

Column Vectors

Recall that

$$\mathbb{R}^n = \{ \mathbf{x} : \mathbf{x} \text{ is an } n \times 1 \text{ vector} \}.$$

① For addition:

$$A1.$$
 \vec{z} , $\vec{y} \Rightarrow \vec{z} + \vec{y} \in \mathbb{R}^n$.

$$\overline{A3.}$$
 $(\overline{\chi}' + \overline{\gamma}') + \overline{\chi}' = \overline{\chi}' + (\overline{\gamma}' + \overline{\chi})$ (Assoc.)

A5. For any
$$\vec{z}$$
, there is a \vec{y} $\vec{n}t$.
 $\vec{z} + \vec{y} = \vec{y} + \vec{z} = \vec{o}$ (hue $\vec{y} = -\vec{z}$)

② For scalar multiplication:

$$S1.$$
 \overrightarrow{z} and $a \in \mathbb{R} \Rightarrow a \overrightarrow{z} \in \mathbb{R}^{n}$

S2.
$$a(\vec{x}+\vec{y}) = a\vec{x} + a\vec{y}$$
.

S3.
$$(a+b)\vec{z} = a\vec{z} + b\vec{z}$$

$$S4.$$
 a $(b\overrightarrow{z}) = (ab) \overrightarrow{z}$

Conclusion: IRn is a vector space.

General Definition

Let V be a set of objects called **vectors**. Assume

- 1. **Vector Addition:** Two vectors \mathbf{v} and \mathbf{w} can be added and denote this operation by $\mathbf{v} + \mathbf{w}$.
- 2. Scalar Multiplication: Any vector \mathbf{v} can be multiplied by any number (scalar) a and denote this operation by $a\mathbf{v}$.

The set V is called a **vector space** if

- 1. Axioms for the vector addition:
 - A1. Closed: $\mathbf{v}, \mathbf{w} \in V \Rightarrow \mathbf{v} + \mathbf{w} \in V$.
 - A2. Commutativity: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.
 - A3. Associativity: $\mathbf{v} + (\mathbf{w} + \mathbf{z}) = (\mathbf{v} + \mathbf{w}) + \mathbf{z}$.
 - A4. Existence of a zero vector: $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$.
 - A5. Existence of a negative: For each \mathbf{v} , there is a \mathbf{w} such that $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} = \mathbf{0}$.
- 2. Axioms for the scalar multiplication:
 - $\boxed{\text{S1.}} \ \mathbf{v} \in V \Rightarrow a\mathbf{v} \in V.$
 - $\boxed{S2.} \ a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}.$
 - $\boxed{\text{S3.}} \ (a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$
 - $\boxed{\text{S4.}} \ a(b\mathbf{v}) = (ab)\mathbf{v}.$
 - $\boxed{\text{S5.}}$ $1\mathbf{v} = \mathbf{v}$.

EXAMPLES

Spaces of Matrices

EXAMPLE 1. Let $\mathbf{M_{mn}}$ be the set of all $m \times n$ matrices, that is

$$\mathbf{M_{mn}} := \{ A : A \text{ is an } m \times n \text{ matrix.} \}$$

Consider the addition and scalar multiplication for matrices. Show that $\mathbf{M_{mn}}$ is a vector space.

Spaces of Polynomials

EXAMPLE 2. Consider the space $\mathbf{P_3}$ of all polynomials of degree at most 3, that is

$$\mathbf{P} := \{a_3 x^3 + a_2 x^2 + a_1 x + a_0 : a_i \in \mathbb{R}\}.$$

Define

1. Addition: for two polynomials $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ and $q(x) = b_3x^3 + b_2x^2 + b_1x + b_0$, define p + q as the polynomial

$$(p+q)(x) = p(x) + q(x)$$

= $(a_3 + b_3)x^3 + (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0).$

2. Scalar multiplication: for a polynomial $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$, define ap as the polynomial

$$(ap)(x) = ap(x) = (aa_3)x^3 + (aa_2)x^2 + (aa_1)x + (aa_0).$$

Show that $\mathbf{P_3}$, with this addition and scalar multiplication, is a vector space.

Note:

- ① The space of polynomial of degree at most n is denoted by $\mathbf{P_n}$ and is a vector space using the addition and scalar multiplication introduced above.
- 2 The space of all polynomial of any degree is denoted by **P** and it is a vector space using the addition and scalar multiplication introduced above.

Weird Example

EXAMPLE 3. Consider the set of all 2×1 vectors \mathbb{R}^2 . Define the addition and scalar multiplication:

1.
$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix}$$
.

2.
$$a\mathbf{x} = a \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 \\ ax_2 + a - 1 \end{bmatrix}$$
.

Show that \mathbb{R}^2 , with these operations, is a vector space.

Non-Example

EXAMPLE 4. Consider the set of all 2×1 vectors \mathbb{R}^2 . Define the addition and scalar multiplication:

1.
$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix}$$
.

2.
$$a\mathbf{x} = a \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 \\ ax_2 - 1 \end{bmatrix}$$
.

Show that \mathbb{R}^2 , with these operations, is not a vector space.

PROPERTIES

Consider a general vector space V.

① Cancellation: If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then

$$\mathbf{v} + \mathbf{u} = \mathbf{v} + \mathbf{w} \Longrightarrow \mathbf{u} = \mathbf{w}.$$

2 Multiplying by scalar 0:

$$0\mathbf{v} = \mathbf{0}.$$

3 Multiplying by the zero vector:

$$a{\bf 0}={\bf 0}.$$

4 If $a\mathbf{v0}$, then a=0 or $\mathbf{v}=\mathbf{0}$.

EXAMPLE 5. Simplify the following expression:

$$3(2(\mathbf{u} - 2\mathbf{v} - \mathbf{w}) + 3(\mathbf{w} - \mathbf{v}) - 7(\mathbf{u} - 3\mathbf{v} - \mathbf{w}).$$