CMPE 493 INTRODUCTION TO INFORMATION RETRIEVAL

Term Weighting, Scoring and the Vector Space Model

Department of Computer Engineering, Boğaziçi University October 20-21, 2015

Ranked retrieval

- ▶ Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - ▶ Also good for applications: Applications can easily consume 1000s of results.
- ▶ Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - ▶ This is particularly true of web search.

Problem with Boolean search: feast or famine

- ▶ Boolean queries often result in either too few (=0) or too many (1000s) results.
- ▶ Query I [Boolean conjunction]:
 - "justin bieber istanbul konseri" → 283,000 hits feast
- Query 2 [Boolean conjunction]:
 - "justin bieber istanbul konseri yeri" → 0 hits famine
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - In general: AND gives too few; OR gives too many

Ranked retrieval models

- ▶ Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering over the (top) documents in the collection with respect to a query
- ▶ Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval models have normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - ▶ We just show the top k (≈ 10) results
 - We don't overwhelm the user
 - ▶ Premise: the ranking algorithm works

Importance of ranking:

- ▶ Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- ▶ Clicking: Distribution is even more skewed for clicking
- In I out of 2 cases, users click on the top-ranked page.
- ▶ Even if the top-ranked page is not relevant, 30% of users will click on it.
- ▶ Getting the ranking right is very important.
- Getting the top-ranked page right is most important.

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- ► How can we rank-order the documents in the collection with respect to a query?
- ▶ Assign a score say in [0, 1] to each document
- ► This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- ▶ The more frequent the query term in the document, the higher the score (should be)
- ▶ We will look at a number of alternatives for this.

Jaccard coefficient

- ▶ Recall from Lecture 4: A commonly used measure of overlap of two sets A and B
- ▶ jaccard(A,B) = $|A \cap B| / |A \cup B|$
- ▶ jaccard(A,A) = I
- ▶ jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- ▶ <u>Document</u> 1: caesar died in march
- ▶ <u>Document</u> 2: the long march

Issues with Jaccard for scoring

- ▶ It doesn't consider term frequency (how many times a term occurs in a document)
- ▶ Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information

Recall (Lecture 1): Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Term-document count matrices

- ► Consider the number of occurrences of a term in a document:
 - Each document is a count vector in \mathbb{N}^{v} : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- ▶ John is quicker than Mary and Mary is quicker than John have the same vectors
- ▶ This is called the <u>bag of words</u> model.

Term frequency tf

- ▶ The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - ▶ But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

Log-frequency weighting

▶ The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- ▶ $0 \rightarrow 0$, $I \rightarrow I$, $2 \rightarrow I$.3, $I0 \rightarrow 2$, $I000 \rightarrow 4$, etc.
- ▶ Score for a document-query pair: sum over terms t in both q and d:

$$score = \sum (1 + \log tf_{t,d})$$

The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
 - ▶ Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query *arachnocentric*
- \rightarrow We want a high weight for rare terms like *arachnocentric*.

Document frequency, continued

- ▶ Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- ▶ But it's not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like high, increase, and line
- ▶ But lower weights than for rare terms.
- ▶ We will use document frequency (df) to capture this.

idf weight

- ▶ df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - ightharpoonup df, is an inverse measure of the informativeness of t
 - \rightarrow df_t $\leq N$
- ▶ We define the idf (inverse document frequency) of *t* by

$$idf_t = \log_{10}(N/df_t)$$

We use log (N/df_t) instead of N/df_t to "dampen" the effect of idf

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = \log_{10}(N/df_t)$$

There is one idf value for each term t in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - ▶ iPhone
- Idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- ▶ The collection frequency of *t* is the number of occurrences of *t* in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

tf-idf weighting

▶ The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$W_{t,d} = (1 + \log_{10} tf_{t,d}) \times \log_{10} (N / df_t)$$

- ▶ Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- ▶ Increases with the rarity of the term in the collection

Final ranking of documents for a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents as vectors

- ▶ So we have a |V|-dimensional vector space
- ▶ Terms are axes of the space
- ▶ Documents are points or vectors in this space
- ▶ Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- ▶ These are very sparse vectors most entries are zero.

The Vector-space model Term 1 Doc 1 Doc 2 Term 3

Queries as vectors

- ▶ <u>Key idea 1:</u> Do the same for queries: represent them as vectors in the space
- ▶ <u>Key idea 2:</u> Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- ▶ proximity ≈ inverse of distance
- ▶ Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- ▶ First cut: distance between two points
 - (= distance between the end points of the two vectors)
- ▶ Euclidean distance?
- ▶ Euclidean distance is a bad idea ...
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

 \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

Use angle instead of distance

- ▶ Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- ► The Euclidean distance between the two documents can be quite large
- ➤ The angle between the two documents is 0, corresponding to maximal similarity.
- ▶ Key idea: Rank documents according to angle with query.

From angles to cosines

- ▶ The following two notions are equivalent.
 - ▶ Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in increasing order of cosine(query, document)
- ➤ Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L₂ norm: $\|\vec{x}\|_2 = \sqrt{\sum x_i^2}$
- ▶ Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- ▶ Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length-normalized vectors

► For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q},\vec{d}) = \vec{q} \cdot \vec{d} = \sum_{\text{for q, d length-normalized.}} q_i d_i$$

Cosine similarity amongst 3 documents

How similar are

the novels

SaS: Sense and

Sensibility (Jane Austen)

PaP: Pride and

Prejudice (Jane Austen)

WH: Wuthering

Heights? (Emily Bronte)

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

 $cos(SaS,PaP) \approx$

 $0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0$ ≈ 0.94

 $cos(SaS,WH) \approx 0.79$

 $cos(PaP,WH) \approx 0.69$

Computing cosine scores

CosineScore(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term *t*
- **do** calculate $w_{t,q}$ and fetch postings list for t
- for each $pair(d, tf_{t,d})$ in postings list 5
- **do** $Scores[d] += w_{t,d} \times w_{t,a}$
- 7 Read the array Length
- for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- **return** Top *K* components of *Scores*[] 10

Summary – vector space ranking

- ▶ Represent the query as a weighted tf-idf vector
- ▶ Represent each document as a weighted tf-idf vector
- ▶ Compute the cosine similarity score for the query vector and each document vector
- ▶ Rank documents with respect to the query by score
- ▶ Return the top K (e.g., K = 10) to the user

Computing Scores in a Complete Search System

Outline

- Speeding up vector space ranking
- Putting together a complete search system
 - Will require learning about a number of miscellaneous topics and heuristics

Efficient cosine ranking

- ▶ Find the K docs in the collection "nearest" to the query $\Rightarrow K$ largest query-doc cosines.
- ▶ Efficient ranking:
 - ▶ Computing a single cosine efficiently.
 - ▶ Choosing the K largest cosine values efficiently.
 - ▶ Can we do this without computing all N cosines?

.

Special case – unweighted queries

- ▶ No weighting on query terms
 - Assume each query term occurs only once
- ▶ Then for ranking, don't need to normalize query vector

Faster cosine: unweighted query FastCosineScore(q) 1 float Scores[N] = 02 for each d 3 **do** Initialize Length[d] to the length of doc d4 for each query term t $\mathbf{w}_{t,q}$ set to \mathbf{I} 5 **do** calculate $w_{t,q}$ and fetch postings list for tfor each $pair(d, tf_{t,d})$ in postings list 6 **do** add $wf_{t,d}$ to Scores[d]8 Read the array *Length*[*d*] 9 for each d 10 **do** Divide *Scores*[d] by *Length*[d] 11 **return** Top *K* components of *Scores*[] Figure 7.1 A faster algorithm for vector space scores.

Computing the *K* largest cosines: selection vs. sorting

- ▶ Typically we want to retrieve the top *K* docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- ▶ Can we pick off docs with *K* highest cosines?
- ▶ Let / = number of docs with nonzero cosines
 - ▶ We seek the K best of these I

Use heap for selecting top K

- Binary tree in which each node's value > the values of children (max-heap)
- ► Takes O(J) time to build the heap. Then, for each of K "winners": O(I) time to read the max element, and O(log J) time to maintain heap property.
- O(J) time to select top K using heap vs. O(J log J) time when sorting used.

Bottlenecks

- ▶ Primary computational bottleneck in scoring: <u>cosine</u> computation
- ▶ Can we avoid all this computation?
- ▶ Yes, but may sometimes get it wrong
 - ▶ a doc not in the top K may creep into the list of K output docs
 - Is this such a bad thing?

Cosine similarity is only a proxy

- User has a task and a query formulation
- Cosine matches docs to query
- ▶ Thus cosine is anyway a proxy for user happiness
- ▶ If we get a list of *K* docs "close" to the top *K* by cosine measure, should be ok

Generic approach

- Find a set A of contenders, with K < |A| << N
 - ▶ A does not necessarily contain the top *K*, but has many docs from among the top *K*
 - ▶ Return the top *K* docs in *A*
- ▶ Think of A as pruning non-contenders
- ➤ The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach

Index elimination

- ▶ Basic algorithm FastCosineScore only considers docs containing at least one query term
- ▶ Take this further:
 - Only consider high-idf query terms
 - ▶ Only consider docs containing many query terms

High-idf query terms only

- For a query such as catcher in the rye
- ▶ Only accumulate scores from catcher and rye
- Intuition: in and the contribute little to the scores and so don't alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from set A of contenders

Docs containing many query terms

- ▶ Any doc with at least one query term is a candidate for the top *K* output list
- ► For multi-term queries, only compute scores for docs containing several of the query terms
 - > Say, at least 3 out of 4
- ▶ Easy to implement in postings traversal

3 of 4 query terms

Scores only computed for docs 8, 16 and 32.

Champion lists

- ▶ Precompute for each dictionary term *t*, the *r* docs of highest weight in *t*'s postings
 - Call this the champion list for t
 - ightharpoonup (aka fancy list or top docs for t)
- Note that r has to be chosen at index build time
 - ▶ Thus, it's possible that r < K
- ▶ At query time, only compute scores for docs in the champion list of some query term
 - ▶ Pick the K top-scoring docs from amongst these

Static quality scores

- We want top-ranking documents to be both relevant and authoritative
- ▶ Relevance is being modeled by cosine scores
- Authority is typically a query-independent property of a document
- Examples of authority signals
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - ▶ (Pagerank)

Modeling authority

- ▶ Assign a *query-independent* <u>quality score</u> in [0,1] to each document *d*
 - Denote this by g(d)
- ► Thus, a quantity like the number of citations is scaled into [0,1]

Net score

- ► Consider a simple total score combining cosine relevance and authority
- - Can use some other linear combination than an equal weighting
- ▶ Now we seek the top *K* docs by <u>net score</u>

Top *K* by net score – fast methods

- First idea: Order all postings by g(d)
- ▶ Key: this is a common ordering for all postings
- ▶ Thus, can concurrently traverse query terms' postings for
 - ▶ Postings intersection
 - ▶ Cosine score computation

Why order postings by g(d)?

- ▶ Under g(d)-ordering, top-scoring docs likely to appear early in postings traversal
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - ▶ Short of computing scores for all docs in postings

High and low lists

- ▶ For each term, we maintain two postings lists called *high* and *low*
 - ▶ Think of high as the champion list
- When traversing postings on a query, only traverse high lists first
 - If we get more than K docs, select the top K and stop
 - ▶ Else proceed to get docs from the *low* lists
- ▶ Can be used even for simple cosine scores, without global quality g(d)
- A means for segmenting index into two tiers

Impact-ordered postings

- We only want to compute scores for docs for which $wf_{t,d}$ is high enough
- We sort each postings list by wf_{td}
- Now: not all postings in a common order!
- ▶ How do we compute scores in order to pick off top *K*?
 - ▶ Two ideas follow

1. Early termination

- ▶ When traversing t's postings, stop early after either
 - ▶ a fixed number of *r* docs
 - \blacktriangleright $\textit{wf}_{t,d}$ drops below some threshold
- ▶ Take the union of the resulting sets of docs
 - One from the postings of each query term
- ▶ Compute only the scores for docs in this union

2. idf-ordered terms

- When considering the postings of query terms
- ▶ Look at them in order of decreasing idf
 - ▶ High idf terms likely to contribute most to score
- ▶ As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- ▶ Can apply to cosine or some other net scores

Cluster pruning: preprocessing

- ▶ Pick √N docs at random: call these leaders
- ▶ For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - ▶ <u>Likely</u>: each leader has $\sim \sqrt{N}$ followers.

Cluster pruning: query processing

- ▶ Process a query as follows:
 - ▶ Given query Q, find its nearest leader L.
 - Seek K nearest docs from among L's followers.

Visualization

●Follower

Leader

Why use random sampling

- ▶ Fast
- ▶ Leaders reflect data distribution

General variants

- ▶ Have each follower attached to b_1 =3 (say) nearest leaders.
- ▶ From query, find b₂=4 (say) nearest leaders and their followers.

Parametric and zone indexes

- Thus far, a doc has been a sequence of terms
- In fact documents have multiple parts, some with special semantics:
 - Author
 - ▶ Title
 - Date of publication
 - Language
 - ▶ Format
 - etc.
- ▶ These constitute the metadata about a document

Fields

- We sometimes wish to search by these metadata
 - ▶ E.g., find docs authored by William Shakespeare in the year 1601, containing *alas poor Yorick*
- ▶ Year = 1601 is an example of a field
- ▶ Also, author last name = shakespeare, etc
- ▶ Field or parametric index: postings for each field value
 - Sometimes build range trees (e.g., for dates)
- ▶ Field query typically treated as conjunction
 - (doc *must* be authored by shakespeare)

Zone

- A zone is a region of the doc that can contain an arbitrary amount of text e.g.,
 - ▶ Title
 - ▶ Abstract
 - ▶ References ...
- Build inverted indexes on zones as well to permit querying
- ▶ E.g., "find docs with *merchant* in the title zone and matching the query *gentle rain*"

Tiered indexes

- ▶ Break postings up into a hierarchy of lists
 - Most important
 - **...**
 - ▶ Least important
- ▶ Can be done by g(d) or another measure
- ▶ Inverted index thus broken up into <u>tiers</u> of decreasing importance
- ▶ At query time use top tier unless it fails to yield K docs
 - ▶ If so drop to lower tiers

Query term proximity

- ► Free text queries: just a set of terms typed into the query box common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let w be the smallest window in a doc containing all query terms, e.g.,
- ▶ For the query strained mercy the smallest window in the doc The quality of mercy is not strained is 4 (words)
- Would like scoring function to take this into account.

Query parsers

- ▶ Free text query from user may in fact spawn one or more queries to the indexes, e.g. query *rising interest rates*
 - ▶ Run the query as a phrase query
 - ▶ If <*K* docs contain the phrase *rising interest rates*, run the two phrase queries *rising interest* and *interest rates*
 - If we still have <K docs, run the vector space query rising interest rates
 - Rank matching docs by vector space scoring
- ▶ This sequence is issued by a query parser

Aggregate scores

- We've seen that score functions can combine cosine, static quality, proximity, etc.
- ▶ How do we know the best combination?
- ▶ Some applications expert-tuned
- Increasingly common: machine-learned

References

- Introduction to Information Retrieval, chapters 6 & 7.
 - ▶ http://nlp.stanford.edu/IR-book/information-retrieval-book.html