ANÁLISIS NUMÉRICO I — Examen Final

24 de Febrero de 2021

1. Para cinco instantes de tiempo se un experimento se registró la siguiente tabla:

t	-2	-1	0	1	2
u	u_{-2}	u_{-1}	u_0	u_1	u_2

Mostrar que si los datos se ajustan mediante cuadrados mínimos por una función cuadrática $\Psi(t)$, la aproximación en t=0 es dada por:

$$\Psi(0) = \frac{1}{35}(-3u_{-2} + 12u_{-1} + 17u_0 + 12u_1 - 3u_2)$$

- 2. Dado el sistema Ax = b, donde $A = \begin{bmatrix} 3 & 1 \\ 6 & 8 \end{bmatrix}$ y $b = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$:
 - a) Deduzca la iteración de Gauss-Seidel para resolver el sistema lineal Ax = b.
 - b) Determine si la sucesión $\{x^{(k)}\}$ generada por el método de Gauss-Seidel es convergente justificando su respuesta.
- 3. Determinar N de modo que la regla del trapecio compuesta otorgue el valor de $\int_0^1 e^{-x^2} dx$ con seis dígitos correctos después del punto decimal, suponiendo que e^{-x^2} se puede calcular de manera precisa.