BASES DE DATOS ESPACIALES

SQL/MM SPATIAL

Ana Sofía Villamil Roncancio

¿QUÉES SQL/MM SPATIAL?

Es una extensión del lenguaje SQL que define el estándar de todos los datos espaciales de una base de datos espaciales.

Permite la manipulación y análisis de datos espaciales dentro de bases de datos relacionales.

HISTORIA

SQL/MM Spatial surgió como una modificación de la especificación OpenGIS Simple Features for SQL.

Estandarizar el tratamiento de los datos espaciales en SQL.

La primera versión apareció en 1999, y desde entonces ha ido mejorando, añadiendo soporte para GML y sistemas de referencia espacial

CLÁUSULAS

5 a 9

Describe tipos de geometría.

ST_Point,

ST_LineString,

ST_Polygon,

ST_GeomCollection

14

Esquema de
información basado en
esquema de definición.
ST_Geometry_Columns
ST_Spatial_Reference_
Systems
ST_Units_Of_Measure
ST_Sizings

Otras

Describe el esquema
de información
basado en el
esquema de
definición.
Complementan la
funcionalidad básica.

JERARQUÍA EN TIPOS DE GEOMETRÍA

ST_Point

Son geometrías de dimensión 0 que representan un único lugar. Consta de una coordenada X y Y

ST_Curve

Son geometrías unidimensionales que representan líneas o trayectorias.

ST_Surface

Son geometrías bidimensionales que tienen área mediante una secuencia de puntos.

ST_GeomCollection

Representa una colección de geometrías agrupando múltiples objetos espaciales en una sola geometría.

1. Creación y conversión.

Estas funciones permiten crear geometrías desde texto, coordenadas o formatos binarios, y convertir geometrías a otros formatos.

- ST_Transform(geometry, SRID)
- ST_AsBinary(geometry)
- ST_AsText(geometry)
- ST_GeomFromText(text)

2. Propiedades geométricas.

Estas funciones permiten obtener información descriptiva y básica sobre una geometría.

- ST_Dimension(geom)
- ST_SRID(geom)
- ST_CoordDim(geom)
- ST_IsEmpty(geom)
- ST_IsValid(geom)

3. Medición.

Estas funciones permiten calcular distancias entre geometrías, áreas o longitudes según el tipo de geometría.

- ST_Length(geom)
- ST_Area(geom)
- ST_Distance(geom1, geom2)
- ST_Perimeter(geom)

4. Relaciones Topológicas

Estas funciones permiten analizar cómo se relacionan espacialmente dos geometrías: si se tocan, se cruzan, una contiene a otra.

- ST_Equals(geom1, geom2)
- ST_Intersects(geom1, geom2)
- ST_Contains(geom1, geom2)
- ST_Within(geom1, geom2)
- ST_Crosses(geom1, geom2)
- ST_Disjoint(geom1, geom2)

5. Manipulación geométrica

Estas funciones permiten modificar, combinar o expandir geometrías para generar nuevas.

- ST_Buffer(geom, dist)
- ST_Union(geom1, geom2)
- ST_Intersection(geom1, geom2)

```
SELECT ST_SRID(geom) AS srid FROM "Engativa" LIMIT 1;
```

```
srid
integer
1 4686
```

```
SELECT ST_GeometryType(geom) AS tipo_geometria
FROM "Vias"
LIMIT 5;
```

	tipo_geometria text
1	ST_MultiLineString
2	ST_MultiLineString
3	ST_MultiLineString
4	ST_MultiLineString
5	ST_MultiLineString

```
SELECT e."LocNombre", s."SCANOMBRE"
FROM "Engativa" e, "sectores catastrales" s
WHERE ST_Contains(e.geom, s.geom)
LIMIT 5;
```

	LocNombre character varying (50)	SCANOMBRE character varying (60)
1	ENGATIVA	BOSQUE POPULAR
2	ENGATIVA	NORMANDIA
3	ENGATIVA	CAMPO EUCARISTICO
4	ENGATIVA	LA CABANA
5	ENGATIVA	SAN JOAQUIN

```
SELECT
    v."MVINOMBRE" AS via,
    s."SCANOMBRE" AS sector,
    ST_Length(v.geom) AS longitud_via
FROM
    "Vias" v
JOIN
    "sectores catastrales" s ON ST_Within(v.geom, s.geom)
WHERE
    v. "MVINOMBRE" IS NOT NULL
ORDER BY
    longitud_via DESC
LIMIT 1;
                                           sector
                                          character varying (60)
       character varying (35)
       AVENIDA DEL CONGRESO EUCARISTICO
                                          JARDIN BOTANICO
```

```
SELECT
    a."MVINOMBRE" AS via_1,
    a."MVITIPO" AS tipo_via_1,
    b."MVINOMBRE" AS via_2,
    b."MVITIPO" AS tipo_via_2,
    ST_AsText(ST_Intersection(a.geom, b.geom)) AS punto_cruce
FROM
    "Vias" a

JOIN
    "Vias" b ON ST_Crosses(a.geom, b.geom) AND a.id < b.id
WHERE
    a."MVINOMBRE" IS NOT NULL AND b."MVINOMBRE" IS NOT NULL
LIMIT 1;</pre>
```

	via_1 character varying (35)	tipo_via_1 character varying (2)	via_2 character varying (35)	tipo_via_2 character varying (2)	punto_cruce text
1	AVENIDA MEDELLIN	AC	AVENIDA DEL CONGRESO EUCARISTICO	AK	POINT(-74.07911403 4.68403008000007)

GRACIAS