## 1.) <a href="mailto:lmage">Image</a> (base map.pgm) as starting point



- + base map.yaml with attributes like:
  - image = base map.pgm
  - resolution = 1.0 (m/px)
  - origin = [0.0, 0.0, 0.0]

(m/px=m/cell since px=cell
for the map\_server)

## 2.) Wrapper: ROS map\_server

Reads yaml and pgm  $\rightarrow$  creates array with an element for each pixel of base\_map.pgm  $\rightarrow$  stores array and metadata as OccupancyGrid  $\rightarrow$  publishes it on "map" (base\_map\_topic)



Represented with OccupancyGrid (simplified):

- height = 6 px
- width = 6 px
- resolution = 1.0 m/cell

6 m because: width · resolution = 6 px · 1 m/px = 6 m ◆

This real dimension will never change (except if only a certain map section should be used)

## 3.) Wrapper: map\_provider

Х

Uses OccupancyGrid from "map" topic and does not change the general layout but might transform the array based on the resolution (we ignore for now the cropping of a map section), and publishes the transformed OccupancyGrid on "provided\_map" (provided\_map\_topic) to e.g. simulator. Transformation example: User specified map\_resolution = 2 m/cell in parameters.yaml:



Represented with OccupancyGrid (simplified):

- height = 3 px
- width = 3 px
- resolution = 2.0 m/cell

As said: the real map dimensions (in m) stay, but for example now the array is smaller (faster for path planning, etc. but loss of detailed map information)