Solutes and water cycling in catchments

Prof. Kate Heal School of GeoSciences

Soil, Water & Atmospheric Processes

Carbon and Nitrogen Cycling in the Forest Water Cycle

Prof. Kate Heal, Nick Forrest, Daniele Ferraretto

School of GeoSciences, The University of Edinburgh

Prof. Xiangqing Ma, Dr Xiaolong Hou Forestry College Fujian Agriculture and Forestry University, China

Acknowledgements

- Funders: China Scholarship Council, NERC, Elizabeth Sinclair Irvine Bequest, Forest Research
- Dr Robert Clement, Prof. Maurizio Mencuccini, Dr Lisa Wingate, Prof. Dave Reay, Prof. John Moncrieff, Prof. Paul Jarvis (University of Edinburgh)
- Dr Sirwan Yamulki, Dr Nadeem Shah (Forest Research)
- Technical support at the University of Edinburgh: Robert Howard, Michael Spencer, Emanuel Blei, Philip Stack, Andrew Gray, John Morman
- Dr Andy Stott (NERC Life Sciences Mass Spectrometry Facility)
- Tillhill Economic Forestry Ltd. for site access

Background

- Climate change; increasing atmospheric CO₂
 concentrations => carbon (C) sequestration in biomass
- Forests apparent C sinks BUT sink strength affected by:
 - Release from soil
 - Loss of C through water flux
 - Nutrient availability
 - Forest age and management

Research questions

- How do C losses in water compare with C uptake by forest?
- What is the relationship between C sequestration and forest nitrogen cycling?
- How to scale from point measurements to forest-wide fluxes?

Study site: Griffin Forest (56.6°N, 3.8°W)

- Cool temperate climate
- Altitude: 275-532 m above sea level
- Catchment area 4.47 km²
- Average slope 6°
- Geology: Dalradian schist overlain by glacial till
- Soils: 0.7 m depth humic gley
- Forest planted 1980-1981
- Sitka spruce dominant
- C sequestration measured since 1997

Field measurements of hydrological flux

Storage raingauges

Stream outflow

www.met-office.gov.uk

Water depth readings every 15 minutes recorded electronically by data logger

Other measurements

- Chemical analyses of water samples
 - pH
 - $-NO_3-N, NH_4-N$
 - Total carbon (TC), dissolved organic carbon (DOC), total inorganic carbon (TIC = TC-DOC)
- Forest characterisation
 - tree DBH (diameter at breast height) surveyed

Image credit: Michael Spencer

Measurement of C uptake by the forest

- Measured as flux of CO₂ up and down from forest
- Eddy covariance (micrometeorological method)
- Movement of air parcels measured in 3 dimensions using a sonic anemometer
- Air analysis => flux of CO₂ calculated
- Other micrometeorological measurements to check energy balance and calculate evapotranspiration

Rainfall amount results

No spatial variation in rainfall totals in catchment No relationship between rainfall and altitude

Rainfall and streamflow 2000

Annual evapotranspiration estimates 2000

Catchment water balance method

E = precipitation – streamflow

Eddy covariance

$$E = \frac{Measured\ latent\ energy}{Latent\ heat\ of\ energy\ of\ evaporation\ of\ water}$$

(Nick Forrest)

Problems of scaling up throughfall/stemflow fluxes

Need to take account of factors such as:

Depth/volume vs. tree properties relationships

Relationship between N in rainfall and altitude

Increased N deposition with altitude well-documented

Streamwater carbon and nitrogen flux calculations

- Mass flux = concentration x flow
- Frequent flow measurements BUT infrequent concentration measurements => different flux calculation methods

1) Mean value

Flux = flow volume (from mean flow) x mean concentration for whole study period

2) Individual time periods

$$Flux = \sum_{t=1}^{t=n} (flow \ volume \ (from \ mean \ flow) \times mean \ concentration)$$

3) Continuous

Where relationship between concentration and flow, concentration estimated for every streamflow measurement

Flow-concentration relationships for TIC in stream water

At low flows TIC inputs from mineral weathering in deeper soil horizons less diluted

Flow-concentration relationships for DOC in stream water

DOC flushed from organic near-surface soil horizons at high flows

Annual hydrological N and C fluxes, 2000

Net nitrogen gain by catchment (0.027 t ha⁻¹ a⁻¹) Net carbon loss from catchment (0.026 t ha⁻¹ a⁻¹)

Comparison of C losses in water to C sequestration

Parameter	Study site		
	Griffin Forest (Scotland)	Hokkaido (N Japan)	Moor House (N England)
Reference	This research	Shibata et al. (2005)	Worrall et al. (2003)
Vegetation	Sitka spruce plantation	Temperate deciduous forest	Heather (dwarf shrub)
C loss in water (t ha ⁻¹ a ⁻¹)	-0.026	-0.04 (incl. POC)	-0.348 (-0.149 without POC)
C sequestered (t ha ⁻¹ a ⁻¹)	6.1	2.6	0.55
% sequestered C lost in water	0.43	1.5	63 (27 without POC)

Carbon losses in river water small % of C sequestered in forests, BUT may be more significant for shrub vegetation cover

Ongoing research focus on role of the forest canopy in nitrogen cycling

Rainfall and cloud water collection x 2

Throughfall and litter collection x 18

Preliminary results for forest canopy N processing

Confirms c.70% N deposition intercepted by canopy Stemflow insignificant for N fluxes

Interaction between atmospheric N and C sequestration by forests

- Possible explanations for atmospheric N uptake by forest canopy
 - 1. Foliar uptake by needles
 - Cation exchange for NH₄-N
 - 3. Uptake by microfauna & algae in canopy (sometimes associated with aphid infestation)
- C sequestration per unit added N (ΔC:ΔN)
 - 210 (Magnani et al., 2007) considering atmospheric N deposition (onto forest canopy)
 - 46 (De Vries et al., 2006) considering N application onto forest soil
 - c.170 in 2000 at Griffin Forest
- Although atmospheric N deposition may enhance C sequestration it may => acidification of soils and disruption of nutrient cycling

Recommended papers with further information on this topic

Clement, R. J., Jarvis, P. G. and Moncrieff, J. B. (2012). Carbon dioxide exchange of a Sitka spruce plantation in Scotland over five years. Agricultural and Forest Meteorology, 153, 106-123.

Dail, D. B., Hollinger, D. Y., Davidson, E. A., Fernandez, I., Sievering, H. C., Scott, N. A. and Gaige, E. (2009). Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA. Oecologia, 160, 589-599.

Magnani, F. et al. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848-850.