Development of hybrid finite element/neural network methods to help create digital surgical twins

Michel Duprez¹, Emmanuel Franck², **Frédérique Lecourtier**¹ and Vanessa Lleras³

¹Project-Team MIMESIS, Inria, Strasbourg, France ²Project-Team MACARON, Inria, Strasbourg, France ³IMAG, University of Montpellier, Montpellier, France

June 12, 2025

ጵ - Update 2025

Context: Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid | finite element | / | neural network | method. quick + parameterized accurate

ightharpoons Parametric elliptic convection/diffusion PDE : For one or several $\mu\in\mathcal{M}$, find $\mu:\Omega\to\mathbb{R}$ such that

$$\mathcal{L}(u; \mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}, \boldsymbol{\mu}), \tag{P}$$

where \mathcal{L} is the parametric differential operator defined by

$$\mathcal{L}(\cdot; \mathbf{x}, \boldsymbol{\mu}) : u \mapsto R(\mathbf{x}, \boldsymbol{\mu})u + C(\boldsymbol{\mu}) \cdot \nabla u - \frac{1}{\mathsf{Pe}} \nabla \cdot (D(\mathbf{x}, \boldsymbol{\mu}) \nabla u),$$

and some Dirichlet, Neumann or Robin BC (which can also depend on μ).

Enriched FEM = Combination of 2 standard methods

- **PINNs**: Physics Informed Neural Networks
 - FEMs: Finite Element Methods Appendix 1.2
 - Finite Element Methods Appendix 1.2

Remark: The PINN prediction enriched Finite element approximation spaces.

Enriched finite element method

Additive approach
Numerical results *

This section is based on [Lecourtier et al., 2025].

Enriched finite element method

Additive approach

Numerical results 🖈

Additive approach

Variational Problem : Let $u_{\theta} \in H^{k+1}(\Omega) \cap H^1_0(\Omega)$.

Find
$$p_h^+ \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(p_h^+, v_h) = I(v_h) - a(u_\theta, v_h)$, (\mathcal{P}_h^+)

with the enriched trial space V_h^+ defined by

$$V_h^+ = \left\{ u_h^+ = u_\theta + \rho_h^+, \quad \rho_h^+ \in V_h^0
ight\}.$$

General Dirichlet BC: If u = g on $\partial \Omega$, then

$$p_h^+ = g - u_\theta \quad \text{on } \partial\Omega,$$

with u_{θ} the PINN prior.

Convergence analysis

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote $u_h \in V_h$ the solution of (\mathcal{P}_h) with V_h the standard trial space. Then,

$$|u-u_h|_{H^1}\leqslant C_{H^1}\,h^k|u|_{H^{k+1}},$$

$$||u-u_h||_{L^2} \leqslant C_{L^2} h^{k+1} |u|_{H^{k+1}}.$$

Theorem 2: Convergence analysis of the enriched FEM [Lecourtier et al., 2025]

We denote $u_h^+ \in V_h^+$ the solution of (\mathcal{P}_h^+) with V_h^+ the enriched trial space. Then.

$$|u-u_h^+|_{H^1} \leqslant \left| \frac{|u-u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} \right| \left(C_{H^1} h^k |u|_{H^{k+1}} \right),$$

$$||u - u_h^+||_{L^2} \leqslant \frac{|u - u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} \left(C_{L^2} h^{k+1} |u|_{H^{k+1}} \right).$$

Gains of the additive approach.

0000

Additive approach

Numerical results *

1st problem considered

Problem statement: Considering an Anisotropic Elliptic problem with Dirichlet BC:

$$\begin{cases} -\mathrm{div}(\mathbf{D}\nabla u) = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$

with $\Omega = [0, 1]^2$ and $\mathcal{M} = [0.4, 0.6] \times [0.4, 0.6] \times [0.01, 1] \times [0.1, 0.8]$ (p = 4).

Right-hand side:

$$f(\mathbf{x}, \boldsymbol{\mu}) = \exp\left(-\frac{(\mathbf{x} - \mu_1)^2 + (\mathbf{y} - \mu_2)^2}{0.025\sigma^2}\right).$$

Diffusion matrix: (symmetric and positive definite)

$$D(\mathbf{x}, \boldsymbol{\mu}) = \begin{pmatrix} \epsilon x^2 + y^2 & (\epsilon - 1)xy \\ (\epsilon - 1)xy & x^2 + \epsilon y^2 \end{pmatrix}.$$

PINN training: Imposing BC exactly with a level-set function.

Numerical results

Error estimates: 1 set of parameters.

$$\boldsymbol{\mu}^{(1)} = (0.51, 0.54, 0.52, 0.55)$$

Numerical results

Error estimates : 1 set of parameters.

$$\mu^{(1)} = (0.51, 0.54, 0.52, 0.55)$$

Gains achieved : $n_p = 50$ sets of parameters.

$$\mathcal{S} = \left\{oldsymbol{\mu}^{(1)}, \dots, oldsymbol{\mu}^{(n_{oldsymbol{
ho}})}
ight\}$$

Gains in L^2 rel error of our method w.r.t. FEM

k	min	max	mean
1	7.12	82.57	35.67
2	3.54	35.88	18.32
3	1.33	26.51	8.32

$$N = 20$$

Gain:
$$||u - u_h||_{L^2} / ||u - u_h^+||_{L^2}$$

Cartesian mesh: N^2 nodes.

Numerical solutions

y

0.25

0.25

0.75

$$\mu^{(2)} = (0.46, 0.52, 0.05, 0.12)$$

 10^{-6}

0.25

0.75

Problem statement: Considering the Poisson problem with mixed BC:

$$\begin{cases}
-\Delta u = f, & \text{in } \Omega \times \mathcal{M}, \\
u = g, & \text{on } \Gamma_{\mathcal{E}} \times \mathcal{M}, \\
\frac{\partial u}{\partial n} + u = g_{\mathcal{R}}, & \text{on } \Gamma_{I} \times \mathcal{M},
\end{cases}$$

with
$$\Omega=\{(x,y)\in\mathbb{R}^2,\ 0.25\leq x^2+y^2\leq 1\}$$
 and $\mathcal{M}=[2.4,2.6]$ ($p=1$).

Analytical solution:

$$u(\mathbf{x}; \boldsymbol{\mu}) = 1 - \frac{\ln\left(\mu_1 \sqrt{x^2 + y^2}\right)}{\ln(4)},$$

Boundary conditions:

$$g(\mathbf{x}; \boldsymbol{\mu}) = 1 - rac{\ln(\mu_1)}{\ln(4)}$$
 and $g_{\mathcal{R}}(\mathbf{x}; \boldsymbol{\mu}) = 2 + rac{4 - \ln(\mu_1)}{\ln(4)}$.

PINN training: Imposing mixed BC exactly in the PINN¹.

¹[Sukumar and Srivastava, 2022]

Numerical results

Error estimates: 1 set of parameters.

$$\mu^{(1)} = 2.51$$

Gains achieved : $n_p = 50$ sets of parameters.

$$\mathcal{S} = \left\{oldsymbol{\mu}^{(1)}, \dots, oldsymbol{\mu}^{(n_p)}
ight\}$$

Gains in L^2 rel error of our method w.r.t. FEM

k	min	max	mean
1	15.12	137.72	55.5
2	31	77.46	58.41
3	18.72	21.49	20.6

$$h = 1.33 \cdot 10^{-1}$$

Gain:
$$||u - u_h||_{L^2} / ||u - u_h^+||_{L^2}$$

Numerical solutions

$$\mu^{(1)} = 2.51$$

Supplementary work I

Teaching

- 2024/2025:
 - 64h of Computer Science Practical Work L1S2 and L2S3 (Python) / L3S6 (C++)

Supplementary work

- 3 days supervising a group of high school girls in RJMI ("Rendez-vous des Jeunes Mathématiciennes et Informaticiennes")
- 2023/2024: 50h of Computer Science Practical Work L2S3 (Python) / L3S6 (C++)

Training courses (Total: 176h35)

- A dozen seminars organized by IRMA ($\approx 10h$)
- 1 Deep Learning introductory course FIDLE ($\approx 40h$)
- 2 workshops on Scientific Machine Learning ($\approx 2 \times 21h$)
- 1 summer school on "New Trend in computing" ($\approx 27h$)
- several cross-disciplinary courses Methodology, scientific English, etc. ($\approx 58h$)

Talks

- ► ICOSAHOM 2025, Montréal July 2025 (Coming soon...)
 "Enriching continuous Lagrange finite element approximation spaces using neural networks"
- ▶ DTE & AICOMAS 2025, Paris February 20, 2025 "Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems on 2D Geometries"
- Exama project, WP2 reunion March 26, 2024 "How to work with complex geometries in PINNs?"
- Retreat (Macaron/Tonus) February 6, 2024
 "Mesh-based methods and physically informed learning"
- ➤ Team meeting (Mimesis) December 12, 2023
 "Development of hybrid finite element/neural network methods to help create digital surgical twins"

Supplementary work III

Posters

- EMS-TAG-SciML 2025, Milan March 24, 2025 "Enriching continuous Lagrange finite element approximation spaces using neural networks"
- ► CJC-MA 2024, Lyon October 29, 2024 "Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems on 2D Geometries"
- MSII poster day, Strasbourg October 24, 2024
- SciML 2024, Strasbourg July 08, 2024

Publications

Enriching continuous lagrange finite element approximation spaces using neural networks. (submitted in February 2025, M2AN journal) H. Barucq, M. Duprez, F. Faucher, E. Franck, F. Lecourtier, V. Lleras, V. Michel-Dansac, and N. Victorion.

Conclusion

TODO

References

- A. Ern and I.-L. Guermond. Theory and Practice of Finite Elements. Springer New York. 2004.
- E. Franck, V. Michel-Dansac, and L. Navoret. Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural Networks. J. Comput. Phys., 512:113144, 2024. ISSN 0021-9991
- I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans, Neural Netw., 9(5):987-1000, 1998, ISSN 1045-9227.
- F. Lecourtier, H. Barucq, M. Duprez, F. Faucher, E. Franck, V. Lleras, V. Michel-Dansac, and N. Victorion. Enriching continuous lagrange finite element approximation spaces using neural networks, 2025.
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. I. Comput. Phys., 378:686-707, 2019.
- N. Sukumar and A. Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Comput. Method. Appl. M., 389:114333, 2022. ISSN 0045-7825.
- M. Tancik, P. Srinivasan, and al. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. In Advances in Neural Information Processing Systems, volume 33, pages 7537-7547. Curran Associates, Inc., 2020.

Appendix 1: Standard methods

A1.1 – Physics-Informed Neural Networks

Standard PINNs¹ (Weak BC): Find the optimal weights θ^{\star} , such that

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \omega_b J_b(\theta) \right), \tag{P_{\theta}}$$

with

residual loss
$$\int_{r}(\theta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} \left(u_{\theta}(\mathbf{x}, \boldsymbol{\mu}); \mathbf{x}, \boldsymbol{\mu} \right) - f(\mathbf{x}, \boldsymbol{\mu}) \right|^{2} d\mathbf{x} d\boldsymbol{\mu},$$
 boundary loss
$$\int_{b}(\theta) = \int_{\mathcal{M}} \int_{\partial \Omega} \left| u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) - g(\mathbf{x}, \boldsymbol{\mu}) \right|^{2} d\mathbf{x} d\boldsymbol{\mu},$$

where u_{θ} is a neural network, g=0 is the Dirichlet BC.

In (\mathcal{P}_{θ}) , ω_r and ω_b are some weights.

Monte-Carlo method: Discretize the cost functions by random process.

¹[Raissi et al., 2019]

A1.1 - Physics-Informed Neural Networks

Improved PINNs¹ (Strong BC): Find the optimal weights θ^* such that

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \underline{\omega_b} J_b(\theta) \right),$$

with $\omega_r = 1$ and

$$J_r(heta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} \left(u_{ heta}(\mathbf{x}, oldsymbol{\mu}); \mathbf{x}, oldsymbol{\mu}
ight) - f(\mathbf{x}, oldsymbol{\mu})
ight|^2 d\mathbf{x} doldsymbol{\mu},$$

where u_{θ} is a neural network defined by

$$u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) = \varphi(\mathbf{x})w_{\theta}(\mathbf{x}, \boldsymbol{\mu}) + g(\mathbf{x}, \boldsymbol{\mu}),$$

$$\partial\Omega = \{\varphi = 0\}$$

$$\Omega = \{\varphi < 0\}$$

with φ a level-set function, \textit{w}_{θ} a NN and g=0 the Dirichlet BC.

Thus, the Dirichlet BC is imposed exactly in the PINN : $u_{\theta} = g$ on $\partial \Omega$.

¹[Lagaris et al., 1998; Franck et al., 2024]

A1.2 – Finite Element Methods¹

Variational Problem:

Find
$$u_h \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $\sigma(u_h, v_h) = I(v_h)$, (\mathcal{P}_h)

with h the characteristic mesh size, a and I the bilinear and linear forms given by

$$a(u_h,v_h) = \frac{1}{\text{Pe}} \int_{\Omega} D \nabla u_h \cdot \nabla v_h + \int_{\Omega} \textit{R} \, u_h \, v_h + \int_{\Omega} v_h \, \textit{C} \cdot \nabla u_h, \quad \textit{I}(v_h) = \int_{\Omega} \textit{f} \, v_h,$$

and V_h^0 the finite element space defined by

$$V_h^0 = \left\{ v_h \in C^0(\Omega), \ \forall K \in \mathcal{T}_h, \ v_h|_K \in \mathbb{P}_k, v_h|_{\partial\Omega} = 0 \right\},$$

where \mathbb{P}_k is the space of polynomials of degree at most k.

Linear system : Let $(\phi_1, \ldots, \phi_{N_b})$ a basis of V_b^0 .

$$AU = b$$

with

$$\mathit{A} = \big(\mathit{a}(\phi_i,\phi_j)\big)_{1 \leq i,j \leq \mathit{N}_h} \quad \text{and} \quad \mathit{b} = \big(\mathit{I}(\phi_j)\big)_{1 \leq j \leq \mathit{N}_h}.$$

Find $U \in \mathbb{R}^{N_h}$ such that

$$\mathcal{T}_h = \{K_1, \dots, K_{N_e}\}$$
(N_e: number of elements)

¹[Ern and Guermond, 2004]