



## Recapitulare

- Importanță
  - De ce credeți ca este nevoie să studiați algortmi de sortare?
- Exemple practice
  - Unde sunt utili algoritmii de sortare?







#### **Bubble sort**

Complexitate:  $O(N^2)$ 

for i=0, N-1
for j=N, i+1
if(not in order)
then swap

| 5          | 2 | 6 | 1 | 9 |
|------------|---|---|---|---|
| 2          | 5 | 6 | 1 | 9 |
| 2          | 5 | 6 | 1 | 9 |
| 2          | 5 | 6 | 1 | 9 |
| 2          | 5 | 1 | 6 | 9 |
| <b>2</b> 2 | 5 | 1 | 6 | 9 |
| 2          | 5 | 1 | 6 | 9 |
| 2          | 1 | 5 | 6 | 9 |
| 2          | 1 | 5 | 6 | 9 |
| 2          | 1 | 5 | 6 | 9 |
| 1          | 2 | 5 | 6 | 9 |



#### **Selection Sort**

Complexitate:  $O(N^2)$ 

for i=0, N-1 for j=i+1, N find min swap (current, min)

| 5 | 2 | 6 | 1 | 9 |
|---|---|---|---|---|
| 2 | 5 | 6 | 1 | 9 |
| 1 | 5 | 6 | 2 | 9 |
| 1 | 2 | 6 | 5 | 9 |
| 1 | 2 | 5 | 6 | 9 |



#### **Count Sort/ Rank Sort**

Complexitate:  $O(N^2)$ 

```
for i=0, N-1
for j=i+1, N
if(bigger)
increase index
```

| 5 | 2 | 6 | 1 | 9 |
|---|---|---|---|---|
| 2 | 1 | 3 | 0 | 4 |





# MergeSort

Complexitate: O(N log(N))

```
for i=0, N-1

if(list1(j) < list2(k))

rez(i) = list1(j++);

else

rez(i) = list2(k++);
```





## QuickSort

Complexitate: O(N log(N))

```
while(! modificat){
  pick pivot
  for i=0, N-1
     if(element > pivot){
           switch;
           modified = true;
```

| 5 | 2 | 6 | 1 | 9 |
|---|---|---|---|---|
| 5 | 2 | 6 | 1 | 9 |
| 2 | 1 | 5 | 6 | 9 |
| 1 | 2 | 5 | 6 | 9 |



#### **RadixSort**

Complexitate: O(bN)

$$for(j=0, b) \\ for(i=0,N-1) \\ if(list(i).bit\_j < list(i).bit\_j) \\ switch$$

| 5 | 2 | 6 | 1 | 9 |
|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 |

| 2 | 6 | 5 | 1 | 9 |
|---|---|---|---|---|
| 5 | 1 | 9 | 2 | 6 |
| 1 | 9 | 2 | 5 | 6 |
| 1 | 2 | 5 | 6 | 9 |





## **HeapSort**

- Folosește o structură ajutătoare Heap de tip arbore binar in care fiecare nod al arborelui este un element din lista care urmează a fi sortată;
- Fazele algorimului:
  - Popularea arborelui stânga la dreapta;
  - Condiţia Min/max (nod părinte < ambii copii) | (nod părinte > ambii copii);
  - Popularea listei de elemente.



# HeapSort- Popularea arborelui binar







# **HeapSort- Condiția Min/Max**





# **HeapSort – Populare lista elemente**









# HeapSort – Condiția Min/Max II







## HeapSort – Populare lista elemente II









# HeapSort – Condiția Min/Max III







# HeapSort – Populare lista elemente III









# HeapSort – Condiția Min/Max IV + Populare listă elemente IV





1

| 5 | 2 | 6 | 1 | 9 |
|---|---|---|---|---|
| 1 | 2 | 5 | 6 | 9 |



# **HeapSort**

Complexitate?



# **HeapSort**

Complexitate: O(N logN)





#### **ShellSort**

- O variantă optimizată a lui InsertionSort în vederea mutării mai rapide a elementelor;
- Lista de elemente este văzută ca o mulțime care se sparge în submulțimi de K elemente(secvențe).
- Ex: Pentru o listă L de N elemente L(1),L(2),...L(N) alegem K=4 (K < N) ceea ce rezultă în submulțimile:

```
s(1) = L(1), L(5), L(9), L(13), ...
```

$$s(2) = L(2), L(6), L(10), L(14), ...$$

$$s(3) = L(3), L(7), L(11), L(15), ...$$

$$s(4) = L(4), L(8), L(12), L(16), ...$$



# ShellSort, k=3





# ShellSort, k=1





## ShellSort – Secvențe de pași

- S. lui Shell de tipul  $\left[\frac{N}{2^k}\right]: \left[\frac{N}{2}\right], \left[\frac{N}{4}\right], \left[\frac{N}{8}\right], \dots 1$
- S. lui Shell de tipul  $2^k$ :  $2^n$ ,  $2^{n-1}$ , ... 2, 1
- S. lui Hibbard de tipul  $2^k 1$ : 1, 3, 7, 15, ....
- **S.** lui Knuth de tipul  $\frac{3^{k}-1}{2}$ : 1, 4, 13, 40, ....
- S. lui Pratt de tipul  $2^p 3^q : 1, 2, 3, 4, 6, 8, 9, 12, ...$



## **Algorithmul ShellSort**

## Complexitate: depinde de secvența aleasă

| Secvența | Complexitate   |
|----------|----------------|
| Shell    | $O(N^2)$       |
| Hibbard  | $O(N\sqrt{N})$ |
| Knuth    | $O(N\sqrt{N})$ |
| Pratt    | $O(N\ln(N)^2)$ |





## Shear sort (Row-column sort) (Snake sort)

9 6 9 4 2 7 6 5 9 3 6 2 5 4 1 5

```
9 6 9 4 > 2 7 6 5 < 9 3 6 2 > 5 4 1 5 <
```





Sortarea liniilor pare în ordine crescătoare Sortarea liniilor impare în ordine descrescătoare



```
      2
      3
      4
      1

      4
      5
      5
      2

      5
      6
      6
      9

      7
      6
      9
      9
```

Sortarea coloane în ordine crescătoare



```
      1
      2
      3
      4
      >

      5
      5
      4
      2
      <</td>

      5
      6
      6
      9
      >

      9
      9
      7
      6
      <</td>
```

Se repetă de  $log_2n$  ori



```
      1
      2
      3
      2

      5
      5
      4
      4

      5
      6
      6
      6

      9
      9
      7
      9
```





Metoda par/impar asigura compararea elementului maxim de pe linia i cu cel minim de pe linia i+1.



```
    1
    2
    2
    3

    5
    5
    4
    4

    5
    6
    6
    6

    9
    9
    9
    7
```





Lista finală se citește în mod "șerpuit".



#### **Shear sort**



1 2 2 3 4 4 5 5 5 6 6 6 7 9 9 9



#### **Shear Sort**

Complexitate?



#### **Shear Sort**

Complexitate: O(N logN)





# Comparație

| Algoritm       | Cazul cel<br>mai Favorabil                 | Cazul cel mai<br>Defavorabil         | Cazul<br>Mediu                          | Cost<br>Memorie |
|----------------|--------------------------------------------|--------------------------------------|-----------------------------------------|-----------------|
| Insertion Sort | $\theta(n)$                                | $\theta(n^2)$                        | $\theta(n^2)$                           | $\theta(1)$     |
| ShellSort      | $m{	heta}(m{nlog}(m{n})) \ 	ext{(Knuth )}$ | $m{	heta}(m{n}\sqrt{m{n}})$ (Knuth ) | $m{	heta}(m{n}\sqrt[4]{m{n}})$ (Knuth ) | $\theta(1)$     |
| Merge Sort     | $\theta(nln(n))$                           | $\theta(nln(n))$                     | $\theta(nln(n))$                        | $\theta(n)$     |
| Quick Sort     | $\theta(nln(n))$                           | $\theta(n^2)$                        | $\theta(nln(n))$                        | $\theta(1)$     |
| Radix Sort     | $\theta(Kn)$                               | $\theta(Kn)$                         | $\theta(Kn)$                            | $\theta(n)$     |





#### Demonstratie corectitudine BubbleSort

- Ipoteza inducție matematică: algoritmul BubbleSort poate cu succes să sorteze liste de dimensiune k.
- Scop inducție matematică: verificarea că algoritmul BubbleSort funcționează și pentru liste de dimensiune (k+1).
- Invarianta:
  - pentru buclă for exterior (linia 1)
  - pentru buclă for interior (linia 2)

#### Pseudocod BubbleSort

```
1: for i=0, N-1
2: for j=N, i+1
3: if(not in order)
```

4: then swap



# Invariant pentru buclă for exterior (linia 1)

- La pasul i = k, elementele listei 0,1,...,k-1 sunt sortate;
- Pentru restul elementelor k+1,..., N se execută cel de-al doilea for(liniile 2-4), ceea ce garantează că elementul de la pozitia k are valoarea minimă dintre elementele k+1,..., N

#### Pseudocod BubbleSort

```
1: for i=0, N-1
2: for j=N, i+1
3: if(not in order)
4: then swap
```

Alexandra Mocanu - Structuri de Date și Algoritmi



# Invariant pentru buclă for interioară (linia 2)

- La pasul i = k, elementele listei k+1,...,N sunt sortate;
- Pentru restul elementelor 0,1,...,k se execută primul for(liniile 1-4). Prin verificări succesive, se stabilește noua poziție a elementului de la poziția k astfel încât elementele k, k+1,...,N să fie sortate.

#### Pseudocod BubbleSort

```
1: for i=0, N-1
2: for j=N, i+1
3: if(not in order)
```

4: then swap





• În cele două cazuri (pivot minim sau maxim), avem:

$$T(N) = T_{partitie} + T(N-1) = O(N) + T(N-1)$$

Prin rezolvarea formulei de recurență :  $T(N) = O(N^2)$ 

 Cazul cel mai favorabil este atunci când pivotul este ales în aşa fel încât să împartă mulţimea iniţială în două submulţimi de dimensiuni egale (val. mediană):

$$T(N) = T_{partitie} + 2T\left(\frac{N}{2}\right) = O(N) + 2T\left(\frac{N}{2}\right)$$

Prin rezolvarea formulei de recurență : T(N) = O(Nln(N))



• În cazul generic al alegerii pivotului la poziția q avem:

$$T(N) = T_{partitie} + T(q) + T(N - q) = O(N) + T(q) + T(N - q)$$

Pivotul poate fi cu aceeaşi probabilitate (1/N) oricare dintre elementele vectorului (presupunem distincte):

$$T(N) = \frac{1}{N} \left[ \sum_{q=1,N} T(q) + T(N-q) \right] + O(N)$$



$$T(N) = \frac{1}{N} \left[ \sum_{q=1,N} T(q) + T(N-q) \right] + O(N)$$

$$T(N) = \frac{1}{N} \left[ \sum_{q=1,N-1} \{ T(q) + T(N-q) \} + T(N-1) + T(1) \right] + O(N)$$

$$\frac{T(N-1)+T(1)}{N}\leq \frac{O(N^2)}{N}=O(N);$$

$$O(N) + O(N) = O(N)$$



$$T(N) = \frac{2}{N} \sum_{q=1,N-1} T(q) + O(N) = \frac{2}{N} \sum_{q=1,N-1} T(q) + aN + b$$

$$NT(N) = 2 \sum_{q=1,N-1} T(q) + aN^2 + bN$$

$$(N+1)T(N+1) = 2\sum_{q=1,N} T(q) + a(N+1)^2 + b(N+1)$$

$$(N+1)T(N+1) - NT(N) = 2\sum_{q=1,N} T(q) + a(N+1)^2 + b(N+1) - (2\sum_{q=1,N-1} T(q) + a(N+1)^2 + b(N+1)^2 + b(N+1) - (2\sum_{q=1,N-1} T(q) + a(N+1)^2 + b(N+1)^2 + b(N+1)$$



$$(N+1)T(N+1) - NT(N) = 2\sum_{q=1,N-1} T(q) + 2T(N) + aN^2 + 2aN + a + bN + b - 2\sum_{q=1,N-1} T(q) - aN^2 - bN$$

$$(N+1)T(N+1) - NT(N) = 2T(N) + a(2N+1) + b$$

$$(N+1)T(N+1) = (N+2)T(N) + 2a(N+1) + b - a$$

$$\frac{T(N+1)}{N+2} = \frac{T(N)}{N+1} + \frac{2a}{(N+2)} + \frac{B}{(N+1)(N+2)}$$



$$\frac{T(N+1)}{N+2} = \frac{T(N)}{N+1} + \frac{2a}{N+2} + \frac{B}{(N+1)(N+2)}$$

$$\frac{T(N)}{N+1} = \frac{T(N-1)}{N} + \frac{2a}{N+1} + \frac{B}{N(N+1)}$$

$$\frac{T(N-1)}{N} = \frac{T(N-2)}{N-1} + \frac{2a}{N} + \frac{B}{(N-1)N}$$

.....

$$\frac{T(1)}{2} = \frac{T(0)}{1} + \frac{2a}{2} + \frac{B}{1*2}$$



$$\frac{T(N+1)}{N+2} = \frac{T(N)}{N+1} + \frac{2a}{N+2} + \frac{B}{(N+1)(N+2)}$$

$$\frac{T(N)}{N+1} = \frac{T(N-1)}{N} + \frac{2a}{N+1} + \frac{B}{N(N+1)}$$

$$\frac{T(N-1)}{N} = \frac{T(N-2)}{N-1} + \frac{2a}{N} + \frac{B}{(N-1)N}$$

......

$$\frac{T(1)}{2} = \frac{T(0)}{1} + \frac{2a}{2} + \frac{B}{1*2}$$



$$\frac{T(N)}{N+1} = \frac{T(0)}{1} + B \sum_{1 \le k \le N} \frac{1}{k(k+1)} + 2a \sum_{1 \le k \le N} \frac{1}{k+1}$$

$$\frac{T(N)}{N+1} = \frac{T(0)}{1} + B \sum_{1 \le k \le N} \left[ \frac{1}{k} - \frac{1}{k+1} \right] + 2a \sum_{1 \le k \le N} \frac{1}{k+1}$$

$$\frac{T(N)}{N+1} = B \left[ 1 - \frac{1}{N+1} \right] + 2a \left( \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N+1} \right)$$

$$\frac{T(N)}{N+1} = B \frac{N}{N+1} + 2a \left( \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N+1} \right)$$



$$\frac{T(N)}{N+1} = B\frac{N}{N+1} + 2a\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N+1}\right)$$

$$T(N) = BN + 2a(N+1)\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N+1} - 1\right)$$
$$\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N+1}\right) > \int_{1}^{N+1} \frac{1}{x} dx = \ln(N+1)$$

$$T(N) \approx BN + 2a(N+1)(\ln(n+1)-1)$$
, unde a, b - constante

$$T(N) = O[Nln(N)]$$