Generalized Linear Models

Poisson Regression and Multinomial (Logistic) Regression

University of California, San Diego Instructor: Armin Schwartzman

1 / 16

Aircraft Damage dataset

- ☐ Consider the Aircraft Damage dataset taken from *Applied Linear Regression* (4th Edition) by Weisberg.
 - This is a dataset on the result of strike missions during the Vietnam War with A-4 or A-6 aircrafts.
- ☐ The variables are:
 - y: is the number of locations where the aircraft was damaged
 - x_1 : indicates the type of plane (0 for A-4; 1 for A-6)
 - x_2 : is the bomb load in tons
 - x_3 : is the total months of aircrew experience

2 / 16

Dealing with count data: standard model

☐ The response represents counts.

Here the number of different values it takes is not large compared to the sample size. It could be considered numerical, but we have another option.

☐ The standard linear model

$$y|\mathbf{x} \sim \mathcal{N}(\mu(\mathbf{x}), \sigma^2), \qquad \mu(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = \boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}$$

is not appropriate because

- 1. y is an integer
- 2. $\mu(\mathbf{x})$ will be negative for some \mathbf{x} 's

This model is relevant and may hold approximately if y takes a large number of values. This is because the Poisson distribution looks normal if its mean is large.

Dealing with count data: Poisson model

☐ A more appropriate is the Poisson regression model:

$$y|\mathbf{x} \sim \text{Poisson}(\mu(\mathbf{x})), \qquad \log(\mu(\mathbf{x})) = \boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}$$

- \Box The logarithm could be replaced by any other (link) function $g:(0,\infty)\to(-\infty,\infty)$ monotone.
- □ Note that, by design, the variance is a function of the mean:

$$\sigma(\mathbf{x})^2 = \text{Var}(y|\mathbf{x}) = \mu(\mathbf{x})$$

4 / 16

MLE for Poisson regression

A Poisson model is usually fitted by maximum likelihood. The log-likelihood is:

$$\ell(\mu_1, \dots, \mu_n) = \sum_{i=1}^n \left[y_i \log(\mu_i) - \mu_i - \log(y_i!) \right]$$
$$= \sum_{i=1}^n \left[y_i \mathbf{b}^\top \mathbf{x}_i - \exp(\mathbf{b}^\top \mathbf{x}_i) - \log(y_i!) \right]$$

since $\mu_i = \mu(\mathbf{x}_i) = \exp(\mathbf{b}^{\top}\mathbf{x}_i)$.

We want to maximize this function of \mathbf{b} . No closed form expression exists in general, but the problem is convex (maximize a concave function).

5 / 16

Deviance

The deviance is defined as twice the log-likelihood ratio:

$$DEV = 2 \log \frac{\mathcal{L}(y_1, \dots, y_n)}{\mathcal{L}(\hat{\mu}_1, \dots, \hat{\mu}_n)} = 2 \left[\ell(y_1, \dots, y_n) - \ell(\hat{\mu}_1, \dots, \hat{\mu}_n) \right]$$

For linear regression:

$$\ell(\mu_1, \dots, \mu_n) = -\log(\sqrt{2\pi}\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu_i)^2 \qquad \Rightarrow \qquad \text{DEV} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \hat{\mu}_i)^2$$

For Poisson regression:

DEV =
$$2\left(\sum_{i=1}^{n} \left[y_i \log(y_i) - y_i - \log(y_i!)\right] - \sum_{i=1}^{n} \left[y_i \log(\hat{\mu}_i) - \hat{\mu}_i - \log(y_i!)\right]\right)$$

= $2\sum_{i=1}^{n} \left[y_i \log(y_i/\hat{\mu}_i) - y_i + \hat{\mu}_i\right]$

The deviance plays the role of the residual sum of squares.

Education by Age dataset

☐ Consider the Education by Age data taken from http://lib.stat.cmu.edu/DASL/Datafiles/Educationbyage.html.

There are two categorical variables (factors): age group and highest degree.

- ☐ The main question is whether the two factors are independent.
- \square In general, suppose we have two paired categorical variables $\{(U_i, V_i) : i = 1, \dots, n\}$, with

$$U_i \in \{u_a : a = 1, \dots, A\}, \qquad V_i \in \{v_b : b = 1, \dots, B\}$$

If the observations are independent, then the cell counts

$$y_{ab} = \#\{i : (U_i, V_i) = (u_a, v_b)\}$$

are sufficient statistics.

These counts are organized in a (two-way) contingency table with A rows and B columns, which is the analog of a two-way table for numerical data.

 \square Note that $y=(y_{ab}:a=1,\ldots,A;b=1,\ldots,B)$ is multinomial with sample size n and probabilities $p_{ab}=\mathbb{P}(U=u_a,V=v_b).$

7 / 16

Pearson's χ^2 test

 \Box Testing for independence means testing $H_0: p_{ab} = p_{a.}p_{.b}$, where

$$p_{a.} = \mathbb{P}(U = u_a), \qquad p_{.b} = \mathbb{P}(V = v_b)$$

☐ The most popular method is the chi-square test of independence. It rejects for large values of

$$\mathbb{X} = \sum_{a=1}^{A} \sum_{b=1}^{B} \frac{(y_{ab} - \widehat{y}_{ab})^2}{\widehat{y}_{ab}} \quad \text{where} \quad \widehat{y}_{ab} = \frac{y_{a.} \ y_{.b}}{y_{..}}$$

 $\triangleright y_{ab}$ is the observed count for cell (a,b), and

$$y_{a.} = \sum_{b} y_{ab}, \qquad y_{.b} = \sum_{a} y_{ab} \qquad y_{..} = \sum_{a} \sum_{b} y_{ab} = n$$

are the sum for row a, the sum for column b, and the total sum (equal to the sample size).

- $\triangleright \widehat{y}_{ab}$ is the predicted count for cell (a,b) under independence.
- \triangleright Under the null, as $n \to \infty$, \mathbb{X} has the limiting distribution $\chi^2_{AB-A-B+1} = \chi^2_{(A-1)(B-1)}$.

Poisson model for contingency tables

- □ Count data is, strictly speaking, multinomial data (assuming the observations were independently sampled from a homogeneous population).
- ☐ As an approximation, we model the count data as Poisson distributed:

$$y_{ab} \sim \text{Poisson}(\mu_{ab}), \qquad \mu_{ab} = np_{ab}$$

This approximation is accurate if the sample is large enough.

☐ Then testing for independence of the two factors is formalized as testing

$$H_0: \mu_{ab} = \frac{\mu_{a.} \ \mu_{.b}}{n} \quad \forall a, b$$

 \Box From a Poisson regression point of view, testing for H_0 corresponds to testing for the restricted model with no interaction term.

9 / 16

Cleveland Clinic Foundation heart disease study

☐ Consider the cleveland dataset taken from https://www.kaggle.com/datasets/cherngs/heart-disease-cleveland-uci

8 variables are categorical, and 6 variables are numerical.

We first focus on predicting cond based on the other (14) characteristics.

- ☐ The response cond is categorical (binary), therefore this is a classification task.
- ☐ A standard linear model is not that relevant here.

10 / 16

Logistic regression

- \square Assume the response y is binary and "coded" as $y \in \{0,1\}$.
- $\hfill\Box$ We want to fit the following model:

$$y|\mathbf{x} \sim \text{Bernoulli}(\mu(\mathbf{x})), \qquad \mu(\mathbf{x}) = \mathbb{P}(y = 1|\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$$

with

$$\mu(\mathbf{x}) = \frac{e^{\boldsymbol{\beta}^{\top} \mathbf{x}}}{1 + e^{\boldsymbol{\beta}^{\top} \mathbf{x}}}.$$

This relationship is defined through the logit link function, yielding the log odds

$$\operatorname{logit}(\mu(\mathbf{x})) = \log \left(\frac{\mu(\mathbf{x})}{1 - \mu(\mathbf{x})} \right) = \boldsymbol{\beta}^{\top} \mathbf{x}$$

 $\hfill\square$ Note that, by design, the variance is a function of the mean:

$$\sigma(\mathbf{x})^2 = \text{Var}(y|\mathbf{x}) = \mu(\mathbf{x})(1 - \mu(\mathbf{x}))$$

Coefficient interpretation

 \Box Let $\mathbf{e}_j = (0, \dots, 1, \dots, 0)^{\top}$ be a vector of zeros with a 1 in the j-th position. Suppose we increase variable x_j by 1 unit. Then the log odds ratio is:

$$\log \left(\frac{\mu(\mathbf{x} + \mathbf{e}_j)}{1 - \mu(\mathbf{x} + \mathbf{e}_j)} \right) - \log \left(\frac{\mu(\mathbf{x})}{1 - \mu(\mathbf{x})} \right) = \boldsymbol{\beta}^{\top}(\mathbf{x} + \mathbf{e}_j) - \boldsymbol{\beta}^{\top}\mathbf{x} = \beta_j$$

 \Box The coefficient β_i is the log odds ratio when increasing x_i by unit while keeping all the other variables constant.

12 / 16

Classification boundary

 \Box This model predicts (classifies) y=1 at a new observation ${\bf x}$ if $\mu({\bf x})>1/2$, meaning that it predicts the class that is the most likely at ${\bf x}$.

As a consequence, the boundary b/w the two classes is the hyperplane:

$$\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x} = 0$$

(If the first entry of x is equal to 1 to represent the intercept, then this is an affine hyperplane.)

13 / 16

MLE and Deviance

☐ We again fit the model by maximum likelihood.

Let g = logit. The log-likelihood is:

$$\ell(\mu_1, \dots, \mu_n) = \sum_{i=1}^n \left[y_i \log(\mu_i) + (1 - y_i) \log(1 - \mu_i) \right]$$
$$= \sum_{i=1}^n \left[y_i \log(g^{-1}(\mathbf{b}^\top \mathbf{x}_i)) + (1 - y_i) \log(1 - g^{-1}(\mathbf{b}^\top \mathbf{x}_i)) \right]$$

Maximizing this concave function (of b) is a convex optimization problem.

 $\hfill\Box$ The deviance has the following expression here:

DEV =
$$-2\sum_{i=1}^{n} [y_i \log(\hat{\mu}_i) + (1 - y_i) \log(1 - \hat{\mu}_i)]$$

where $\hat{\mu}_i = g^{-1}(\widehat{\boldsymbol{\beta}}^{\top} \mathbf{x}_i)$.

Multinomial regression

- ☐ We turn to predicting attplus based on the individual characteristics. This is a categorical variable taking 5 distinct values.
- \square Assume the response y is categorical with K levels, e.g., $y \in \{1, \dots, K\}$.
- \square Let $\mu_k(\mathbf{x}) = \mathbb{P}(y = k|\mathbf{x})$. For $k = 1, \dots, K-1$, we model these as

$$\log\left(\frac{\mu_k(\mathbf{x})}{\mu_K(\mathbf{x})}\right) = \boldsymbol{\beta}_k^{\top} \mathbf{x}$$

same as

$$\mu_k(\mathbf{x}) = \frac{e^{\boldsymbol{\beta}_k^{\top} \mathbf{x}}}{1 + \sum_{\ell=1}^{K-1} e^{\boldsymbol{\beta}_{\ell}^{\top} \mathbf{x}}}, \quad k = 1, \dots, K-1$$
$$\mu_K(\mathbf{x}) = \frac{1}{1 + \sum_{\ell=1}^{K-1} e^{\boldsymbol{\beta}_{\ell}^{\top} \mathbf{x}}}$$

 \square In this model, the boundary b/w the classes k and ℓ is the hyperplane:

$$(\boldsymbol{\beta}_k - \boldsymbol{\beta}_\ell)^{\mathsf{T}} \mathbf{x} = 0$$

15 / 16

Overdispersion

- \square Assuming a one-parameter family as in the Poisson or logistic models implicitly ties the variance to the mean, in that $\sigma^2 = V(\mu)$. This may be found to be incongruent with the data.
- \Box Introduce the dispersion parameter $\phi = \sigma^2/V(\mu)$. The one-parameter model is correct when $\phi = 1$. When $\phi > 1$, we have overdispersion.
- $\hfill\Box$ The function glm in R allows for an overdispersion parameter.