Linear Algebra II (MATH1049) — Coursework Sheet 4 — 2020/21

Submit a single pdf with scans of your work to Blackboard by Monday, 15 March 2021, 17:00.

Exercise 1

Let $n \geq 2$. Which of the conditions defining a subspace are satisfied for the following subsets of the vector space $M_{n \times n}(\mathbb{R})$ of real $(n \times n)$ -matrices? (Proofs or counterexamples are required.)

$$U := \{A \in M_{n \times n}(\mathbb{R}) \mid \operatorname{rank}(A) \le 1\}$$

$$V := \{A \in M_{n \times n}(\mathbb{R}) \mid \det(A) = 0\}$$

$$W := \{A \in M_{n \times n}(\mathbb{R}) \mid \operatorname{trace}(A) = 0\}$$

(Recall that rank(A) denotes the number of non-zero rows in a row-echelon form of A and trace(A) denotes the sum $\sum_{i=1}^{n} a_{ii}$ of the diagonal elements of the matrix $A = (a_{ij})$.)

Exercise 2

Which of the following subsets of the vector space $\mathbb{R}^{\mathbb{R}}$ of all functions from \mathbb{R} to \mathbb{R} are subspaces? (Proofs or counterexamples are required.)

```
U := \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ is differentiable and } f'(-5) = 0 \}
V := \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ is polynomial of the form } f = at^{2} \text{ for some } a \in [0, \infty) \}
= \{ f \in \mathbb{R}^{\mathbb{R}} \mid \exists a \in [0, \infty] : \forall s \in \mathbb{R} : f(s) = as^{2} \}
W := \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ is polynomial of the form } f = at^{3} \text{ or } f = at^{5} \text{ for some } a \in \mathbb{R} \}
= \{ f \in \mathbb{R}^{\mathbb{R}} \mid \exists i \in \{3, 5\} \exists a \in \mathbb{R} : \forall s \in \mathbb{R} : f(s) = as^{i} \}
X := \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ is even} \}
```

(Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is called even if f(-s) = f(s) for all $s \in \mathbb{R}$.)

Exercise 3

Let $\mathbb{F}_2 = \{0, 1\}$ denote the field with 2 elements.

- (a) Let V be a vector space over \mathbb{F}_2 . Show that every non-empty subset W of V which is closed under addition is a subspace of V.
- (b) Show that $\{(0,0),(1,0)\}$ is a subspace of the vector space \mathbb{F}_2^2 over \mathbb{F}_2 .
- (c) Write down all subsets of \mathbb{F}_2^2 and underline those subsets which are subspaces. (No explanations are required.)

Exercise 4 (optional, not marked)

Let V be a vector space over a field F. Putting S = V in Example 2.7 we obtain the vector space F^V consisting of all functions from V to F. Consider the subset

$$V^* := \{L : V \to F \mid L \text{ is a linear transformation}\},$$

consisting of all linear transformations from the vector space V to the (one-dimensional) vector space F. Show that V^* is a subspace of F^V . (To get you started, at the end of this sheet you'll find a detailed proof of the first of the three conditions that need to be verified for a subspace.)

Extra question (not marked, do not submit)

Let V be a vector space over a field F and let X, Y and Z be subspaces of V, such that $X \subseteq Y$. Show that $Y \cap (X + Z) = X + (Y \cap Z)$. (Note: this is an equality of sets, so you need to show that every vector in the LHS also belongs to RHS, and vice versa.)

Verification of the first condition of being a subspace, for V^* from Exercise 4

(You don't need to reproduce this in your solution, just say that the first condition is proved.)

The first condition for a subspace asserts that the zero vector of the "big" vector space F^V belongs to set V^* that we are showing to be a subspace.

The zero vector (= the additive identity element for vector addition) of F^V is the zero function $\underline{0}: V \to F$, defined by $\underline{0}(v) = 0_F$ for all $v \in V$, that is, it maps *every* vector v from V to the additive identity element 0_F in the field F.

We need to show that this function $\underline{0}$ belongs to the set V^* , in other words, that it is a linear transformation from V to F. This entails checking two conditions:

(a) $\underline{0}$ is compatible with addition: take arbitrary vectors $x, y \in V$. We need to check that $\underline{0}(x+y) = \underline{0}(x) + \underline{0}(y)$ in F:

LHS = 0_F (by definition of $\underline{0}$)

RHS = $0_F + 0_F = 0_F$ (by definition of $\underline{0}$ and the field axioms)

So LHS = RHS.

(b) $\underline{0}$ is compatible with scalar multiplication: take a vector $x \in V$ and a scalar $a \in F$. We need to check that $\underline{0}(ax) = a(\underline{0}(x))$ in F:

LHS = 0_F (by definition of 0)

RHS = $a0_F = 0_F$ (by definition of $\underline{0}$ and Prop. 2.3(a))

So again LHS = RHS.