Zadatak: Za rešetkasti nosač sa slike odrediti:

- a) Vertikalno pomjeranje čvora "2" "
- b) Obrtanje štapa "1-2" (U_2)
- c) Promjenu rastojanja između čvora "1" i "2' "
- d) Promjenu ugla između štapova " U_2 " i " D_2 "

Usled:

- 1) Zadatog opterećenja sa slike
- 2) Temperaturne promene u osama štapova gornjeg pojasa $t^{\circ} = +25^{\circ}\text{C}$
- 3) Pomeranja oslonca "A" u levo za $c_a = 3cm$.

EF = const.

1) Reakcije i sile u štapovima usled zadatog opterećenja

-Redukovane dužine zbog EF=const su iste kao i stvarne dužine nosača $l''=\frac{F_c}{F}d_s=l.$

a) Vertikalno pomjeranje čvora "2" "

$$EF_{c}v = \sum S \cdot \bar{S} \cdot L''$$

$$= 10 \cdot 1 \cdot 6 + 10 \cdot 1 \cdot 3 + 30 \cdot 1 \cdot 3 + (-14,14) \cdot (-1,414) \cdot 4,243 + (-44,72) \cdot (-2,236)$$

$$\cdot 6,708 + (-30) \cdot (-1) \cdot 3 + 42,43 \cdot 1,414 \cdot 4,243 + (-30) \cdot (-2) \cdot 3 = 1460,2$$

b) Obrtanje štapa "1-2" (U_2)

$$\begin{split} EF_C\varphi &= \sum S \cdot \bar{S} \cdot L'' \\ &= 10 \cdot 0,333 \cdot 6 + 10 \cdot 0,333 \cdot 3 + 30 \cdot 0,333 \cdot 3 + (-14,14) \cdot (-0,471) \cdot 4,243 \\ &+ (-44,72) \cdot (-0,37) \cdot 6,708 + (-30) \cdot (-0,333) \cdot 3 + 42,43 \cdot 0,471 \cdot 4,243 + (-30) \\ &\cdot (-0,5) \cdot 3 = 359,65 \end{split}$$

c) Promjenu rastojanja između čvora "1" i "2' "

$$EF_{c}\Delta l = \sum S \cdot \bar{S} \cdot L''$$

$$= (-30) \cdot 0,707 \cdot 3 + 42,43$$

$$\cdot (-1) \cdot 4,243 + (-30) \cdot 0,707$$

$$\cdot 3 = -307,3$$

d) Promjenu ugla između štapova " U_2 " i " D_2 "

$$EF_{c}\Delta\varphi = \sum S \cdot \bar{S} \cdot L''$$

$$= (-30) \cdot (-0.333) \cdot 3 + 42.43$$

$$\cdot 0.236 \cdot 4.243 = 72.49$$

2) Temperaturna promena u osi štapova gornjeg pojasa rešetke

a)
$$v = \sum \alpha_t t^{\circ} \cdot \bar{S} \cdot L = 25 \cdot 10^{-5} \cdot 1 \cdot 3 = 75 \cdot 10^{-5}$$

b)
$$\varphi = \sum \alpha_t t^{\circ} \cdot \bar{S} \cdot L = 25 \cdot 10^{-5} \cdot 0.333 \cdot 3 = 25 \cdot 10^{-5}$$

c)
$$\Delta l = \sum \alpha_t t^{\circ} \cdot \bar{S} \cdot L = 25 \cdot 10^{-5} \cdot 0,707 \cdot 3 = 53 \cdot 10^{-5}$$

$$d) \ \Delta \varphi = \sum \alpha_t t^{\circ} \cdot \bar{S} \cdot L = 0$$

3) Pomeranje oslonca A u levo za $c_A = 0$, 03m

a)
$$v = -\sum \bar{C}_i c_i = -[1 \cdot (-0.03)] = 0.03m$$

a)
$$v = -\sum \bar{C}_i c_i = -[1 \cdot (-0.03)] = 0.03m$$

b) $\varphi = -\sum \bar{C}_i c_i = -[0.1666 \cdot (-0.03)] = 0.005 \, rad$

c) d) deformacija je nula jer ne postoji reakcija oslonca "A" usled generalisanih sila!

Dijagram pomeranja punih nosača - Statičko kinematička analogija štapa

Pomeranje tačaka analitički primenjujemo samo u jednostavnijim slučajevima, uglavnom za prav štap konstantnog poprečnog preseka koji je opterećen jednostavnim oblicima opterećenja. U ostalim slučajevima pomeranja određujemo grafički ili numerički, pri čemu koristimo analogiju koja postoji između diferencijalnih jednačina za pomeranja tačaka ose štapa sa jedne strane i uslova ravnoteže elemenata jednog pravog fiktivnog štapa s druge strane.

Odnosno, pomeranje v datog štapa usled datih spoljašnjih uticaja su jednaka momentima M^f a uglovi obrtanja poprečnog preseka $\varphi - \varphi_T$ jednaki transverzalnim silama T^f fiktivnog štapa koji je opterećen sa fiktivnim raspodeljenim silama:

$$p^f = \left(\frac{M}{EI} + \alpha_t \frac{\Delta t}{h}\right) \frac{1}{\cos \alpha}$$

i fiktivnim raspodeljenim momentima:

$$m^f = \left(\frac{N}{EF} + \alpha_t t^\circ\right) \cdot tg\alpha + k \frac{T}{FG}$$

Da bi ovaj uslov bio ispunjen potrebno je da **granični uslovi fiktivnog nosača po silama** budu jednaki graničnim uslovima datog štapa po pomeranjima i obrtanjima.

$$M_{ik}^f = v_i, \qquad M_{ki}^f = v_k, \qquad T_{ik}^f = (\varphi - \varphi_T)_i, \qquad T_{ki}^f = (\varphi - \varphi_T)_k$$

Stvarni nosač

Fiktivni nosač

			1 intiviti nosuc	
1.	i	$v_i = 0$ $(\varphi - \varphi_T)_i \neq 0$	i	$M_i^f = 0$ $T_i^f \neq 0$
2.	i	$v_i = 0$ $(\varphi - \varphi_T)_i = 0$	i	$M_i^f = 0$ $T_i^f = 0$
3.		$v_i \neq 0$ $(\varphi - \varphi_T)_i \neq 0$	i	$M_i^f \neq 0$ $T_i^f \neq 0$
4.	i	$\begin{aligned} v_{i,l} &= v_{i,d} \neq 0 \\ (\varphi - \varphi_T)_{i,l} &= (\varphi - \varphi_T)_{i,d} \neq 0 \end{aligned}$		$M_{i,l}^f = M_{i,d}^f \neq 0$ $T_{i,l}^f = T_{i,d}^f \neq 0$
5.	i	$\begin{aligned} v_{i,l} &= v_{i,d} \neq 0 \\ (\varphi - \varphi_T)_{i,l} \\ &\neq (\varphi - \varphi_T)_{i,d} \neq 0 \end{aligned}$	i	$M_{i,l}^f = M_{i,d}^f \neq 0$ $T_{i,l}^f \neq T_{i,d}^f \neq 0$
6.	i	$v_{i,l} = v_{i,d} = 0$ $(\varphi - \varphi_T)_{i,l}$ $= (\varphi - \varphi_T)_{i,d} \neq 0$		$M_{i,l}^{f} = M_{i,d}^{f} = 0$ $T_{i,l}^{f} = T_{i,d}^{f} \neq 0$
7.	i	$v_{i,l} = v_{i,d} = 0$ $(\varphi - \varphi_T)_{i,l}$ $\neq (\varphi - \varphi_T)_{i,d} \neq 0$	i	$M_{i,l}^f = M_{i,d}^f = 0$ $T_{i,l}^f \neq T_{i,d}^f \neq 0$

Primeri – Određivanje fiktivnog nosača

Fiktivni nosač je nosač čija je osa normalna na pravac traženog pomeranja, opterećen raspodeljenim fiktivnim opterećenjem p^f i m^f i čiji su granični uslovi po silama jednaki graničnim uslovima datog nosača po pomeranjima.

Postoji mogućnost da fiktivni nosač bude kinematički labilan nosač!

Elastične težine

Kada je opterećenje fiktivnog nosača komplikovano, uticaje T^f i M^f određujemo numerički. Pri tome uticaje od p^f i m^f zamenjujemo koncentrisanim silama u tačkama za koje tražimo pomeranja, odnosno obrtanja. Te sile obilježavamo sa W I nazivamo ih elastičnim težinama.

1. Linearna promjena između čvorova

- Fiktivno opterećenje p^f

$$W_0^{(p)} = \frac{\lambda_1}{6} (2 p_0^f + p_{1,l}^f),$$

$$W_m^{(p)} = \frac{\lambda_m}{6} (p_{m-1,d}^f + 2p_{m,l}^f) + \frac{\lambda_{m+1}}{6} (2p_{m,d}^f + p_{m+1,l}^f),$$

$$m = 1, 2, \dots m-1$$

$$W_n^{(p)} = \frac{\lambda_n}{6} (p_{n-1,d}^f + 2 p_n^f).$$

- Fiktivno opterećenje m^f

$$W_0^{(m^f)} = -\frac{m_0^f + m_{1,l}^f}{2}$$
 $W_m^{(m^f)} = \frac{m_{m-1,d}^f + m_{m,l}^f}{2} - \frac{m_{m,d}^f + m_{m+1,l}^f}{2},$
 $m = 1, 2, ..., n-1,$
 $W_n^{(m^f)} = \frac{m_{n-1,d}^f + m_n^f}{2}.$

Ukoliko nema skokova kod opterećenja

$$W_0^{(p)} = \frac{\lambda}{6} (2 p_0^f + p_1^f), \qquad W_0^{(m^f)} = -\frac{m_0^f + m_1^f}{2},$$

$$W_m^{(p)} = \frac{\lambda}{6} (p_{m-1}^f + 4 p_m^f + p_{m+1}^f), \qquad m = 1, 2, \dots, n-1,$$

$$W_m^{(m^f)} = \frac{m_{m-1}^f - m_{m+1}^f}{2}, \qquad m = 1, 2, \dots, n-1,$$

$$W_n^{(p)} = \frac{\lambda}{6} (p_{n-1}^f + 2 p_n^f), \qquad W_n^{(m^f)} = \frac{m_{n-1}^f + m_n^f}{2}.$$

2. Promjena opterećenja po zakonu kvadratne parabole

$$W_0^{(p)} = \frac{\lambda}{24} (7p_0^f + 6p_1^f - p_2^f),$$

$$W_m^{(p)} = \frac{\lambda}{12} (p_{m-1}^f + 10p_m^f + p_{m+1}^f), \qquad m = 1, 2, ..., n - 1,$$

$$W_n^{(p)} = \frac{\lambda}{24} (7p_n^f + 6p_{n-1}^f - p_{n-2}^f).$$