### **Moving Beyond Linearity**

Aldo Solari



#### auto

- Reading: AS 4.1 4.2.4, 4.4 4.4.2
- *n* = 203 models of cars in circulation in 1985 in the United States but produced elsewhere
- We want identify a relationship allowing the prediction of city.distance, the distance covered per unit of fuel (km/L), as a function of engine.size, the car's engine size





### Nonparametric estimation

- Let's try to leave data 'speak for themselves' in a free way
- No reference to any parametric formulation for f(x) (e.g. polynomials)
- The nonparametric approach to regression turns out to be particularly effective, especially when there is a considerable amount of data



# **Averaging**

- To predict Y at  $x = x_0$ , gather all the training points  $(x_i, y_i)$  having  $x_i = x_0$ , then
- to estimate  $f(x_0) = \mathbb{E}(Y|X=x_0)$ , use the mean of their  $y_i$ :

$$\hat{f}(x_0) = \text{Average}\{y_i : x_i = x_0\} = \frac{1}{\sum_{i=1}^n I\{x_i = x_0\}} \sum_{i: x_i = x_0} y_i$$

• Problem: in the training data, there may be no observations having  $x_i = x_0$ 







### **Outline**

*k*-Nearest-Neighbour

Local Regression

Regression Splines



## **Nearest Neighbour Averaging**

- Estimate  $f(x_0) = \mathbb{E}(Y|X = x_0)$  by averaging those  $y_i$  whose  $x_i$  are in a neighbourhood of  $x_0$
- e.g. define the neighbourhood  $\mathcal{N}_k(x_0)$  to be the set of k observations having values  $x_i$  closest to  $x_0$  in euclidean distance  $||x_i x_0||$

$$\hat{f}(x_0) = \text{Average}\{y_i : x_i \in \mathcal{N}_k(x_0)\} = \frac{1}{k} \sum_{i \in \mathcal{N}_k(x_0)} y_i$$

• This method is called *k*-nearest-neighbour regression



### Choice of k

- By varying the number of neighbours k, we can achieve a wide range of flexibility in the estimated function  $\hat{f}(x)$
- Small k corresponds to a more flexible fit: the k points are closer to target x (low bias), but averages based on a small sample have high variance
- Large *k* corresponds to a less flexible fit: it includes points far from *x* (high bias), but have smaller variance
- Best value for k depends on how smooth the true function f(x) is, and how noisy y is
- Can try different values of k and use cross-validation





$$k = 10 \qquad \qquad k = 60$$

### **Extensions of the linear model**

- Polynomial regression
- Local regression
- Step functions
- Regression splines
- . . .



### **Outline**

*k*-Nearest-Neighbour

Local Regression

Regression Splines



# **Local linear regression**

• If f(x) is a derivable function in  $x_0$  then it is locally approximated by a line passing through  $(x_0, f(x_0))$ , i.e.,

$$f(x) = \underbrace{f(x_0)}_{\alpha} + \underbrace{f'(x_0)}_{\beta} (x - x_0) + \text{error}$$

 We introduce the weighted least squares by weighting observations x<sub>i</sub> with their distance from x<sub>0</sub>:

$$\min_{\alpha,\beta} \sum_{i=1}^{n} \left\{ y_i - \alpha - \beta(x_i - x_0) \right\}^2 w_h(x_i - x_0)$$

- h (h > 0) is a scale factor, called bandwidth or smoothing parameter, and
- $w_h(\cdot)$  is a symmetric density function around 0, said kernel



#### **Local Regression**



The fit  $\hat{f}(x_0)$  at  $x_0$  is obtained by fitting a weighted linear regression (orange line segment), and using the fitted value at  $x_0$  (orange solid dot) as the estimate  $\hat{f}(x_0)$ 

Source: ISL p. 281



## **Local linear regression**

- By varying  $x_0$ , we obtain a whole estimated curve  $\hat{f}(x)$
- We can show that the estimate relative to a general point x can be obtained from the explicit formula

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{\{a_2(x;h) - a_1(x;h)(x_i - x)\} w(x_i - x;h)}{a_2(x;h) a_0(x;h) - a_1(x;h)^2} y_i,$$

where 
$$a_r(x; h) = \{\sum (x_i - x)^r w(x_i - x; h)\}/n$$
, for  $r = 0, 1, 2$ 

- The most important component is *h*, which regulates the smoothness of the curve, while the choice of *w* is less relevant.
- We could think to w as the density of the normal distribution  $N(0, h^2)$





Source: AS p. 71

## Local quadratic regression



Source: ELS p. 197



### Choice of kernel

- is not critical, as many studies on the subject have shown
- Let  $w(t; h) = \frac{1}{h} w_0 \left(\frac{t}{h}\right)$
- The density N(0, 1) is a common choice for  $w_0$ , i.e., we choose  $N(0, h^2)$  for w(t; h)
- Many other choices are possible, in particular those with limited support as e.g. the tricubic or biquadratic ones that is

$$w_0(t) = \begin{cases} (1-t^2)^2 & \text{if } |t| < 1, \\ 0 & \text{otherwise,} \end{cases}$$
  $w_0(t) = \begin{cases} (1-|t|^3)^3 & \text{if } |t| < 1, \\ 0 & \text{otherwise,} \end{cases}$ 

 the limited support reduces the computational burden, thanks to the many null terms



### Some common choices for kernels

| kernel       | w(z)                                                     | support      |
|--------------|----------------------------------------------------------|--------------|
| Gaussian     | $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right)$ | $\mathbb{R}$ |
| Rectangular  | $\frac{1}{2}$                                            | (-1, 1)      |
| Epanechnikov | $\frac{3}{4}(1-z^2)$                                     | (-1, 1)      |
| biquadratic  | $\frac{15}{16} (1-z^2)^2$                                | (-1, 1)      |
| tricubic     | $\frac{70}{81} (1 -  z ^3)^3$                            | (-1, 1)      |



### Choice of h

• A critical aspect is the choice of the smoothing parameter *h*, since we can prove that, for *n* sufficiently large,

$$\mathbb{E}(\hat{f}(x)) \approx f(x) + \frac{h^2}{2} \sigma_w^2 f''(x), \quad \mathbb{V}\mathrm{ar}(\hat{f}(x)) \approx \frac{\sigma^2}{nh} \frac{\alpha(w)}{g(x)},$$

where  $\sigma_w^2 = \int z^2 w(z) dz$ ,  $\alpha(w) = \int w(z)^2 dz$  and g(x) indicates the density from which the  $x_i$  where sampled;

- The bias is  $\propto h^2$  and the variance is  $\propto 1/(nh)$
- Therefore, although we would like to choose h → 0 to bring down the bias, this makes the variance of the estimate diverge. For h → ∞, the opposite occurs
- Once again, in choosing *h*, we have a trade-off between bias and variance



#### loess

- in many cases, there is an advantage in using a nonconstant bandwidth along the x-axis, according it to the level of sparseness of observed points
- variable bandwidth: it is reasonable to use larger values of h
  when x<sub>i</sub> are more scattered
- Good idea! ... but how do we modify *h*?
- loess: express the smoothing parameter (span) defining the fraction of effective observations for estimating f(x) at a certain point  $x_0$  on the x-axis;
- this fraction is kept constant
- this imply automatically a setting of the bandwidth related to the sparsity of data



# Variability bands

A pivotal quantity, approximately, is

$$\frac{\hat{f}(x) - f(x) - b(x)}{\sqrt{\mathbb{V}\mathrm{ar}(\hat{f}(x))}} \sim N(0, 1)$$

where b(x) indicates the bias, which cannot be neglected

• Instead of looking for complicated corrections for the unknown b(x), a current solution is to construct variability bands of the type

$$(\hat{f}(x) - z_{\alpha/2} \operatorname{std.err}(\hat{f}(x)), \hat{f}(x) + z_{\alpha/2} \operatorname{std.err}(\hat{f}(x)))$$

providing an indication of the local variability of the estimate

 Variability bands do not have the coverage guarantee of confidence intervals





### **Data visualization**

Reading: GW 3.1 - 3.6





### **Outline**

*k*-Nearest-Neighbour

Local Regression

Regression Splines



### bmd

- Bone mineral density data
- The following slides are from P. Breheny (2011) BST 764
- Reading: ISL 7.1-7.4, 7.6, 7.8.1, 7.8.2



### **Basis functions**

Consider

$$Y = f(X) + \varepsilon$$

where

$$f(X) = \sum_{j=0}^{q} \beta_j b_j(X)$$

- $b_i(\cdot)$  are known functions called basis functions
- E.g. 3rd degree polynomial regression:

$$b_0(x) = 1$$
,  $b_1(x) = x$ ,  $b_2(x) = x^2$ ,  $b_3(x) = x^3$ 



### **Step functions**

- Define cutpoints  $\xi_1, \ldots, \xi_K$  in the range of X, called *knots*
- Basis functions: K + 1 step functions

$$b_{0}(X) = I\{X < \xi_{1}\}$$

$$b_{1}(X) = I\{\xi_{1} \le X < \xi_{2}\}$$

$$\vdots$$

$$b_{K-1}(X) = I\{\xi_{K-1} \le X < \xi_{K}\}$$

$$b_{K}(X) = I\{X \ge \xi_{K}\}$$



# **Step functions**





## Piecewise linear regression

- Define K knots  $\xi_1, \ldots, \xi_K$
- Basis functions: 2(K+1), fitting K+1 simple regressions for each partition of the data

$$b_{0}(X) = I\{X < \xi_{1}\}$$

$$b'_{0}(X) = X \cdot I\{X < \xi_{1}\}$$

$$b_{1}(X) = I\{\xi_{1} \le X < \xi_{2}\}$$

$$b'_{1}(X) = X \cdot I\{\xi_{1} \le X < \xi_{2}\}$$

$$\vdots$$

$$b_{K}(X) = I\{X \ge \xi_{K}\}$$

$$b'_{K}(X) = X \cdot I\{X \ge \xi_{K}\}$$



# Piecewise linear regression





## Continuos piecewise linear regression

- Define K knots  $\xi_1, \ldots, \xi_K$
- Basis functions: K + 2, giving a continuos piecewise linear model

$$b_{0}(X) = 1$$

$$b_{1}(X) = X$$

$$b_{2}(X) = (X - \xi_{1})_{+}$$

$$\vdots$$

$$b_{K+1}(X) = (X - \xi_{K-1})_{+}$$

$$b_{K+2}(X) = (X - \xi_{K})_{+}$$

where  $(\cdot)_+$  defines the positive portion of its argument

$$(z)_{+} = \begin{cases} z & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$



# Continuos piecewise linear regression









### **Splines**

- The preceding is an example of a *spline*
- An order-d spline with knots  $\xi_1,\ldots,\xi_K$  is a piecewise-polynomial of order d, and has continuous derivatives up to order d-1
- Truncated power basis

$$b_j(X) = X^j, \quad j = 0, ..., d$$
  
 $b_{d+k}(X) = (X - \xi_k)^d_+, \quad k = 1, ..., K$ 

- While the truncated power basis is conceptually simple, it is not too attractive numerically: powers of large numbers can lead to severe rounding problems
- The *B*-spline basis allows for efficient computations: ?bs



# **Quadratic Splines**

- Define K knots  $\xi_1, \ldots, \xi_K$
- Basis functions: K + 3

$$b_{0}(X) = 1$$

$$b_{1}(X) = X$$

$$b_{2}(X) = X^{2}$$

$$b_{3}(X) = (X - \xi_{1})_{+}^{2}$$

$$\vdots$$

$$b_{K+2}(X) = (X - \xi_{K-1})_{+}^{2}$$

$$b_{K+3}(X) = (X - \xi_{K})_{+}^{2}$$



# **Quadratic splines**





## **Cubic splines**

- Define K knots  $\xi_1, \ldots, \xi_K$
- Basis functions: K + 3

$$b_{0}(X) = 1$$

$$b_{1}(X) = X$$

$$b_{2}(X) = X^{2}$$

$$b_{3}(X) = X^{3}$$

$$b_{4}(X) = (X - \xi_{1})^{3}_{+}$$

$$\vdots$$

$$b_{K+3}(X) = (X - \xi_{K-1})^{3}_{+}$$

$$b_{K+4}(X) = (X - \xi_{K})^{3}_{+}$$



# **Cubic splines**





#### Piecewise Cubic Polynomials





### **Natural cubic splines**

- Cubic splines to be erratic at the boundaries of the data
- Natural cubic splines ameliorate this problem by adding 4 constraints that the function is linear beyond the boundaries of the data
- A natural cubic spline with K knots has K basis functions



# Natural cubic splines





### **Problems with knots**

- Regression splines have one shortcoming: the placement of knots
- Choices regarding the number of knots and where they are located are not particularly easy to make
- Next: smoothing splines

