

第三章 函数

- 函数定义
- 函数类型
- 函数运算

定义

定义 设X和Y是集合,对每一 $x \in X$,都存在唯一的 $y \in Y$,使 $\langle x,y \rangle \in f$.则称关系f为从X到Y的函数,记为 $f:X \to Y$ 。

- 当 $\langle x,y \rangle \in f$,通常记为y=f(x). x叫做函数的自变元,y叫做对应于自变元x的函数值。
- X为函数 f 的定义域(domf), f(X)为函数的值域(ranf)。

函数与关系的差别

 $A=\{a,b,c\}, B=\{1,2\}, 则A到B的所有不同函数有多少?$ 2^3

区别:

- 1. 关系和函数的数量不同:从A到B的不同关系有 $2^{|A|\times|B|}$ 个,从A到B的不同函数仅有 $|B|^{|A|}$
- 2. 关系和函数的基数不同:每一个关系的基数可以从零一直到|A|×|B|,每一个函数的基数为|A|
- 3.关系和函数的第一元素存在差别:关系的第一个元素可以相同,函数的第一元素一定是互不相同

函数的像和原像

定义 设函数 $f: A \rightarrow B, A_1 \subseteq A, B_1 \subseteq B$

- (1)令 $f(A_1) = \{f(x) \mid x \in A_1\}$ 称为 A_1 在f下的像.当 A_1 =A时,称f(A)为函数的像
- (2)令 $f^{-1}(B_1)=\{x|x\in A \land f(x)\in B_1\}$ 称为 B_1 在f下的原像注意:
- ●函数值与像的区别:函数值 $f(x) \in B$, 像 $f(A_1) \subseteq B$

函数类型

定义 设 $f: A \rightarrow B$,

- (1) 若 ran f=B, 则称 $f:A \rightarrow B$ 是满射的(或从A到B上的函数) 否则称内射的(或从A到B内的函数)
- (2) 若 $\forall y \in \text{ran} f$ 都存在唯一的 $x \in A$ 使得 f(x)=y,则称 $f:A \rightarrow B$ 是单射的(或从A到B的一对一的函数),否则 称为多射(或从A到B的多对一的函数)
- (3) 若 $f:A \rightarrow B$ 既是满射又是单射的,则称 $f:A \rightarrow B$ 是双射的(或一一对应函数)

在双射函数 $f:A \rightarrow B$ 中,若A=B,则称此函数为A的变换

例题

例1 判断下面函数是否为单射,满射,双射的,为什么?

(1)
$$f: \mathbf{R} \to \mathbf{R}, f(x) = -x^2 + 2x - 1$$

在x=1取得极大值0. 既不是单射也不是满射的

例题

(2) $f:Z^+ \rightarrow R$, $f(x)=\ln x$, Z^+ 为正整数集

是单调上升的, 是单射的. 但不满射, ranf={ln1,ln2, ...}.

例题

(3) $f: R \to R, f(x) = 2x+1$

是满射、单射、双射的,因为它是单调函数并且ranf=R

(4) $f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) = (x^2 + 1)/x$, 其中 \mathbb{R}^+ 为正实数集.

有极小值 f(1)=2. 该函数 既不是单射的也不是满射的

3.2 常用函数

定义

- (1)设 $f:A \rightarrow B$, 如果存在 $c \in B$ 使得对所有的 $x \in A$ 都有 f(x)=c, 则称 $f:A \rightarrow B$ 是常函数.
- (2) 称 A上的恒等关系 I_A 为A上的恒等函数,对所有的 $x \in A$ 都 有 $I_A(x)=x$.
- (3) 设<A, <>>, <B, <>为偏序集,f:A \to B,如果对任意的 $x_1, x_2 \in A, x_1 < x_2$,就有 $f(x_1) < f(x_2)$,则称f 为单调递增的;如果对任意的 $x_1, x_2 \in A, x_1 < x_2$,就有 $f(x_1) < f(x_2)$,则称f 为严格单调递增的. 类似的也可以定义单调递减和严格单调递减的函数

常用函数

(4) 设A为集合,对于任意的 $A'\subseteq A$,A'的特征函数

$$f_{A'}:A \to \{0,1\}$$
定义为
$$f_{A'}(a)=1, a \in A'$$

$$f_{A'}(a)=0, a \in A-A'$$

(5) 设R是A上的等价关系,令

$$g:A \rightarrow A/R$$

$$g(a)=[a], \forall a \in A$$

称 g 是从 A 到商集 A/R 的自然映射

实例

- (1) 偏序集< $P(\{a,b\})$, R_{\subseteq} >, <{0,1}, \leq >, R_{\subseteq} 为包含关系, \leq 为一般的小于等于关系, 令
- $f:P(\{a,b\}) \rightarrow \{0,1\}, \quad f(\emptyset)=f(\{a\})=f(\{b\})=0, \quad f(\{a,b\})=1,$ f 是单调递增的,但不是严格单调递增的
- (2) A的每一个子集 A'都对应于一个特征函数, 不同的子集对应于不同的特征函数. 例如 $A=\{a,b,c\}$, 则有 $f_{\varnothing}=\{\langle a,0\rangle,\langle b,0\rangle,\langle c,0\rangle\}$, $f_{\{a,b\}}=\{\langle a,1\rangle,\langle b,1\rangle,\langle c,0\rangle\}$
- (3) 不同的等价关系确定不同的自然映射, 恒等关系确定的自然映射是双射, 其他自然映射一般来说只是满射. 例如

$$A = \{1,2,3\}, R = \{<1,2>,<2,1>\} \cup I_A$$

 $g: A \rightarrow A/R, g(1) = g(2) = \{1,2\}, g(3) = \{3\}$

3.3 函数运算及性质

定义 设 $f:A \rightarrow B$, $g:B \rightarrow C$, 则 $f \circ g:A \rightarrow C$, 且 $\forall x \in A$ 都有 $f \circ g(x) = g(f(x))$

定理 设 $f:A \rightarrow B, g:B \rightarrow C$

- (1) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是满射的, 则 $f \circ g:A \rightarrow C$ 也是满射的
- (2) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是单射的, 则 $f \circ g:A \rightarrow C$ 也是单射的
- (3) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是双射的, 则 $f \circ g:A \rightarrow C$ 也是双射的
- 函数的并与交不一定是函数 $A=\{x\}$, $B=\{a,b\}$

$$f = {\langle x,a \rangle} g = {\langle x,b \rangle}$$

实例

考虑集合
$$A=\{a_1,a_2,a_3\}, B=\{b_1,b_2,b_3,b_4\}, C=\{c_1,c_2,c_3\}.$$
 令 $f=\{\langle a_1,b_1\rangle,\langle a_2,b_2\rangle,\langle a_3,b_3\rangle\}$ $g=\{\langle b_1,c_1\rangle,\langle b_2,c_2\rangle,\langle b_3,c_3\rangle,\langle b_4,c_3\rangle\}$ $f\circ g=\{\langle a_1,c_1\rangle,\langle a_2,c_2\rangle,\langle a_3,c_3\rangle\}$ 那么 $f:A\to B$ 和 $f\circ g:A\to C$ 是单射的,但 $g:B\to C$ 不是单射 考虑集合 $A=\{a_1,a_2,a_3\}, B=\{b_1,b_2,b_3\}, C=\{c_1,c_2\}.$ 令 $f=\{\langle a_1,b_1\rangle,\langle a_2,b_2\rangle,\langle a_3,b_2\rangle\}$ $g=\{\langle b_1,c_1\rangle,\langle b_2,c_2\rangle,\langle b_3,c_2\rangle\}$ $f\circ g=\{\langle a_1,c_1\rangle,\langle a_2,c_2\rangle,\langle a_3,c_2\rangle\}$ 那么 $g:B\to C$ 和 $f\circ g:A\to C$ 是满射的,但 $f:A\to B$ 不是满射

反(逆)函数

逆函数存在的条件

函数具有单值性

- (1) 任给函数F, 它的逆 F^{-1} 不一定是函数, 只是一个
- 二元关系.

对于某些 $y \in B$ -ranf, f^{-1} 没有值与之对应

(2) 对于双射函数 $f:A \rightarrow B$, $f^{-1}:B \rightarrow A$ 是从B 到A 的双射函数.

定理 设 $f:A \rightarrow B$ 是双射的,则 $f^{-1}:B \rightarrow A$ 也是双射的.

反函数的性质

定理

(1) 设 $f:A \to B$ 是双射的,则 $f^{-1}\circ f = I_B$, $f\circ f^{-1} = I_A$

(2) 对于双射函数 $f:A \to A$,有 $f^{-1} \circ f = f \circ f^{-1} = I_A$

例 设
$$f: \mathbb{R} \to \mathbb{R}, \quad g: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x^2 & x \ge 3 \\ -2 & x < 3 \end{cases}$$

$$g(x) = x + 2$$

求 $f \circ g, g \circ f$. 如果 $f \cap g$ 存在反函数, 求出它们的反函数.

求解

解

$$f \circ g : \mathbf{R} \to \mathbf{R}$$

$$f \circ g(x) = \begin{cases} x^2 + 2 & x \ge 3 \\ 0 & x < 3 \end{cases}$$

$$g \circ f : \mathbf{R} \to \mathbf{R}$$

$$g \circ f(x) = \begin{cases} (x+2)^2 & x \ge 1 \\ -2 & x < 1 \end{cases}$$

 $f: \mathbf{R} \to \mathbf{R}$ 不是双射的,不存在反函数.

 $g: R \to R$ 是双射的,它的反函数是

$$g^{-1}: \mathbb{R} \to \mathbb{R}, g^{-1}(x) = x-2$$

练习

- **1.** 设 R 是从 $A=\{a,b,c\}$ 到 $B=\{d,e,f,g\}$ 的二元关系,下面哪个是函数? ()
 - A. $R = \{ \langle a, e \rangle, \langle b, e \rangle, \langle c, d \rangle, \langle b, f \rangle \}$
 - B. $R = \{ \langle a,e \rangle, \langle b,f \rangle, \langle c,g \rangle \}$
 - C. $R = \{ \langle a,e \rangle, \langle a,f \rangle, \langle c,e \rangle, \langle b,g \rangle \}$
 - D. $R = \{ \langle a,g \rangle, \langle b,f \rangle, \langle c,e \rangle, \langle b,f \rangle, \langle c,d \rangle \}$
- 2. 设 N 是自然数集合, f,g,h 是从 N 到 N 的函数, 其中:

$$f(n) = n+1, g(n) = 2n, h(n) = \begin{cases} 0 & n$$
是偶数
$$1 & n$$
是奇数

试求函数的复合运算 $f \circ g \cap g \circ h$ 。(注: $f \circ g(x) = g(f(x))$)

作业

徐 p44 3.3 3.4 p59 35 36 方 p150 10 (见图片)

> 9. 设R是集合X上的等价关系,在什么条件下,规范映 $\Re : \Lambda \longrightarrow \Lambda/\Lambda$ 定双射函数 10 设 $f: X \rightarrow Y$,定义 X 上的关系 R 如下: $x_1 R x_2 \Leftrightarrow f(x_1) = f(x_2)$

证明尽是等价关系。 11. 对图 4.3-3 所表示的函数确定其左或右逆元,如果它们存在。指明函数诱导的前 域上的等价关系,并构造规范映射。