$\label{eq:Fanzhang} Fan Zhang \\ fanzp@seas.upenn.edu$

1. [10 pts] Prove by induction that for all positive integers n, we have:

$$1+3+5+\cdots+(2n-1)=n^2$$

Solution.

(BC) (n=1) Since
$$2n - 1 = 2 * 1 - 1 = 1$$
 so $1 = n^2 = 1$. Check.

(IS) Let $k \ge 1$ be any arbitrary positive integer.

Assume (IH)
$$1 + 3 + 5 + \cdots + (2k - 1) = k^2$$
.

WTS
$$1 + 3 + 5 + \dots + (2(k+1) - 1) = (k+1)^2$$
. Then:

$$1+3+5+\cdots+(2(k+1)-1)$$

$$=k^2+2(k+1)-1$$

$$=k^2+2k+1$$

$$=(k+1)^2$$

The proof is finished.

2. [10 pts] Use the recursion tree method or the telescopic method to solve the recurrence relation f(0) = 7 and, for all $n \in \mathbb{Z}^+$ f(n) = f(n-1) - 2n.

Solution.

$$f(n) = f(n-1) - 2n$$

$$f(n-1) = f(n-2) - 2(n-1)$$

$$f(n-2) = f(n-3) - 2(n-2)$$

$$f(n-3) = f(n-4) - 2(n-3)$$
...
$$f(2) = f(1) - 2 * 2$$

$$f(1) = f(0) - 2 * 1$$

Add all the LHSs and RHSs and cancel terms that appear on both sides:

$$f(n) = f(0) - 2n - 2(n-1) - 2(n-2) - 2(n-3) - \dots - 2 - 1$$

$$= f(0) - 2 * [n + (n-1) + (n-2) + (n-3) + \dots + 2 + 1]$$

$$= f(0) - 2 * n(n+1)/2$$

$$= f(0) - n(n+1)$$

Done.

3. [10 pts] Use strong induction to prove that $C(n) = 2^n + 3$ is a solution to the recurrence C(0) = 4, C(1) = 5, and, for all $n \in \mathbb{Z}^+$, n > 1 $C(n) = 3 \cdot C(n-1) - 2 \cdot C(n-2)$.

Solution.

(BC) (n=2)
$$C(2) = 2^2 + 3 = 7$$

$$C(2) = 3 \cdot C(1) - 2 \cdot C(0) = 3 * 5 - 2 * 4 = 7$$

Therefore C(n) is a solution to $3 \cdot C(n-1) - 2 \cdot C(n-2)$ when n=2. Check.

(IS) Let $k \ge 2$ arbitrary. Assume (IH) that for all integers 2, 3, ..., k, $C(k) = 2^k + 3$ is a solution to $C(k) = 3 \cdot C(k-1) - 2 \cdot C(k-2)$.

WTS $C(k+1) = 2^{k+1} + 3$ is a solution to $C(k+1) = 3 \cdot C(k) - 2 \cdot C(k-1)$.

From IH we know $C(k)=2^k+3$ is a solution to $C(k)=3\cdot C(k-1)-2\cdot C(k-2)$ and $C(k-1)=2^{k-1}+3$ is a solution to $C(k-1)=3\cdot C(k-2)-2\cdot C(k-3)$. Then:

$$C(k+1) = 3 \cdot C(k) - 2 \cdot C(k-1)$$

$$= 3 \cdot (2^k + 3) - 2 \cdot (2^{k-1} + 3)$$

$$= 3 \cdot 2^k + 9 - 2^k - 6$$

$$= (3-1) \cdot 2^k + 3$$

$$=2^{k+1}+3$$

Therefore we can conclude $C(k+1) = 2^{k+1} + 3$ is a solution to $C(k+1) = 3 \cdot C(k) - 2 \cdot C(k-1)$. The proof is finished. 4. [10 pts] Recall the Fibonacci sequence, where every number in the sequence is the sum of the previous two numbers (except for the first and second positions, which are 0 and 1 respectively). Let F_n represent the nth number in the Fibonacci sequence. Use strong induction to prove that for Fibonacci numbers $F_{n+1} - F_{n-1} < 2^n$ for all positive integers n.

Solution.

(BC) (n=1) Since
$$F_{n+1} = F_2 = 1$$
, $F_{n-1} = F_0 = 0$, so $F_{n+1} - F_{n-1} = 1$. Since $2^n = 2$, therefore $F_{n+1} - F_{n-1} < 2^n$ when $n = 1$. Check.

(IS) Let
$$k \ge 1$$
 arbitrary. Assume (IH) that for all integers $1, 2, ..., k, F_{k+1} - F_{k-1} < 2^k$.

And WTS
$$F_{k+2} - F_k < 2^{k+1}$$
. Then:

$$F_{k+2} - F_k$$

$$= (F_{k+1} + F_k) - (F_{k-1} + F_{k-2})$$

$$= (F_{k+1} - F_{k-1}) + (F_k - F_{k-2})$$

From IH we know $F_{k+1} - F_{k-1} < 2^k$ and $F_k - F_{k-2} < 2^{k-1}$

Then
$$(F_{k+1} - F_{k-1}) + (F_k - F_{k-2}) < 2^k + 2^{k-1} < 2^k + 2^k = 2^{k+1}$$

So we got $F_{k+2} - F_k < 2^{k+1}$.

The proof is finished.

5. [10 pts] Use ordinary induction to prove that for every positive integer n, $n^3 - n$ is a multiple of 6. Only proofs by induction are accepted.

Solution.

(BC) (n=1)
$$n^3 - n = 1 - 1 = 0$$
. Check.

(IS) Let $k \geq 1$ arbitrary.

Assume (IH) $k^3 - k$ is a multiple of 6. And WTS $(k+1)^3 - (k+1)$ is a multiple of 6. Then $(k+1)^3 - (k+1)$

$$=k^3 + 3k^2 + 3k + 1 - k - 1$$

$$=k^3+3k^2+2k$$

$$=k^3 - k + 3k^2 + 3k$$

$$=(k^3-k)+3k(k+1)$$

From IH we know $(k^3 - k)$ is a multiple of 6.

Since $k \ge 1$, we know $(k+1) \ge 2$ therefore 3(k+1) is a multiple of 6 which means 3n(k+1) is also a multiple of 6. In summary, $(k+1)^3 - (k+1) = (k^3 - k) + 3k(k+1)$ is also a multiple of 6. The proof is finished.