EE2302 Foundations of Information and Data Engineering

Assignment 2 (Solution)

1.

- a) No, because the elements c and d map to the same element in the co-domain of F.
- b) Yes, because all the elements in Y are images of some element in X.
- c) $\{e, f, g\}$.
- d) No, because the elements a and b map to the same element in the co-domain of G.
- e) No, because the element g is not an image of any element in the domain of G.
- f) {*e*, *f*}.

2.

- a) Yes. Suppose that $g(n_1) = g(n_2)$ for some elements n_1 and n_2 in **Z**. By definition of g, $5n_1 + 7 = 5n_2 + 7$, which implies that $n_1 = n_2$. Therefore, g is injective.
- b) No. One possible counter example: Choose $0 \in \mathbf{Z}$. There does not exist $n \in \mathbf{Z}$ such that g(n) = 5n + 7 = 0, since the only root is -7/5, which is not in \mathbf{Z} . Therefore, g is not surjective.
- 3. Let x_1 and x_2 be elements in X such that $g \circ f(x_1) = g \circ f(x_2)$. That is equivalent to $g(f(x_1)) = g(f(x_2))$. Since g is injective, $f(x_1) = f(x_2)$. Since f is also injective, $x_1 = x_2$. Hence, $g \circ f$ is injective.
- 4. Yes. Define a function $f:(0,1) \to (1,100)$ such that f(x) = 99x + 1. Suppose $f(x_1) = f(x_2)$. Then $99x_1 + 1 = 99x_2 + 1$, which implies that $x_1 = x_2$. Hence, f is one to one. Given any $y \in (1,100)$, there exists $x = \frac{y-1}{100} \in (0,1)$ such that f(x) = y. Hence, f is onto. Therefore, f is a one to one correspondence. Hence, the two sets have the same cardinality.