Electrónica Geral

2012/2013 - 1º Semestre

Problema

Filtros 1 – Filtro de 2 canais para altifalantes

Considere o sistema separador de sinais, representado na figura, constituído por um filtro passa-baixo e um filtro passa-alto, com entradas em paralelo, mas com saídas diferenciadas (2 vias), na saída do filtro passa-baixo liga-se um altifalante de graves e na saída passa-alto liga-se um altifalante de médios/agudos.

Os dois filtros têm função de transferência do tipo Butterworth de 2ª ordem com um erro máximo (ondulação) de 0,5 dB na banda de passagem.

I- Determinação das funções de transferência

- a) Conhecendo o posicionamento típico dos pólos de um filtro de Butterworth normalizado, determine a função de transferência do filtro passa-baixo normalizado.
- b) Determine a função de transferência do filtro passa-baixo com frequência de corte de 300 Hz com 0,5 dB de ondulação na banda de passagem.
- c) Idêntica à alínea b), mas para o filtro passa-alto.

Pólos do Filtro Passa-Baixo $\underline{S}=S\epsilon^{1/n}$		
n	Buttw. 3 dB	Chebyc. 0,5 dB
1	<u>S</u> +1	(2,87+S)
2	$(\underline{S}^2+1,40\underline{S}+1)$	$(1,516+1,43S+S^2)$

$$S = \frac{s^2 + \omega_0^2}{b.s}; S = \frac{b.s}{s^2 + \omega_0^2}; S = \frac{\omega_c}{s}; S = \frac{s}{\omega_c}$$

a)
$$N=2$$
 Butterworth mormalizate on $A_{max}=3dB$

$$T(S)=\frac{1}{S^2+1.444S+1}$$

b)
$$\omega p = z \pi \times 300 = 1885 \text{ And 5}^{-1}$$

 $A_{mnx} = 0.5 dB =) E = \sqrt{10^{A_{mnx}/A_0}} - 1 = 0.349$

$$T(3) = \frac{3191^2}{3^2 + 45133 + 3191^2}$$

(HP)
$$T_{HP}(\Lambda) = T(S) = E^{\frac{1}{m}} \frac{WP}{\Delta} = \frac{1}{0.349} \frac{1885^2}{\Delta^2} + \sqrt{0.349} \frac{1885^2}{\Delta} \times 1.414 + 1$$