1

Assignment I

design of non overlapping sequence detector

sireesha abbavaram - FWC22060

CONTENTS

I Components 1 II Hardware 1 III Finite State Machine 1

Abstract—This manual shows how to design a sequential circuit for non overlapping sequence of 110011.

I. COMPONENTS

Components	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment Display		1
Decoder	7447	1
Flip Flop	7474	2
Bread Board		1
Jumper Wires		20

II. HARDWARE

- 1) Make connections between the seven segment display in Fig 1 and the 7447 IC in Fig 2 as shown in Table I
- 2) Connect the Arduino, 7447 IC and the two 7474 ICs according to Table 2 and Fig 3.
- 3) Input is given from Arduino D8.

Table I: Connection Table

III. FINITE STATE MACHINE

1) A sequential detector is a sequential state machine that takes an input string of bits

Figure 1: Seven Segment Display

- and generates an output 1 whenever the target sequence has been detected.
- 2) The Input is changed to 0 and 1 to display the Next state.
- 3) The LED glows when the sequence 110011 is detected.

Figure 2: Pin Diagram of 7447 IC

(1)

Figure 3: Pin Diagram of 7474 IC

Figure 4: State Diagram

	INF	PUT		OUTF	PUT		CLOCK					
	P	Q	D	С	В	A	5V					
Arduino	D6	D7	D10	D11	D4	D5	D13					
7474	2	12			9	5	CLK1	CLK2	1	4	10	13
7474			5	2			CLK1	CLK2	1	4	10	13
7447					1	7					16	

Table II: Connection Table

Present State	Input	Next State	Output
A B C	X	P Q R	Y
0 0 0	0	0 0 0	0
0 0 0	1	0 0 1	0
0 0 1	0	0 0 0	0
0 0 1	1	0 1 0	0
0 1 0	0	0 1 1	0
0 1 0	1	010	0
0 1 1	0	100	0
0 1 1	1	0 0 1	0
100	0	0 0 0	0
100	1	101	0
1 0 1	0	000	0
1 0 1	1	0 0 0	1

Table III: State Table

A = X'P'QR + XPQ'R'

$$C = XQ'R' + XP'QR + X'P'QR'$$
 (3)

$$D = XPQ'R \tag{4}$$

CONCLUSION

The detection of 110011 sequence is implemented using

https://github.com/sireesha1602/sireesha/blob/main/ide/code.cpp