2017-11-21

- $\{e_1, e_2, \ldots, e_n\}$ is an orthonormal set (basis) for \mathbb{R}^n .
- Orthogonal subspace: Let W_1 and W_2 be subspaces of an inner product space V. W_1 is orthogonal to W_2 ($W_1 \perp W_2$) if $\forall w_1 \in W_1$, $\forall w_2 \in W_2$, $\langle w_1, w_2 \rangle = 0$.
- Note: In \mathbb{R}^3 , xy-plane and yz-plane are *not* orthogonal to each other.
- The subspace spanned by u is orthogonal to the subspace spanned by v if $\langle u, v \rangle = 0$.
- Theorem: Given $A_{m \times n}$. The row space is orthogonal to the nullspace in \mathbb{R}^n . The column space is orthogonal to the left nullspace in \mathbb{R}^m .
- Note: The nullspace contains every vector orthogonal to the row space.
- Proposition: Let V be an inner product space, and W be a subspace of V. Define $U = \{v \in V | \forall w \in W, \langle v, w \rangle = 0\}$. Then, U is a subspace of V.
- Orthogonal complement: The subspace U is called the orthogonal complement of W in V, denoted by W^{\perp} , if U contains all vectors orthogonal to W.
- Examples:
 - $N(A) = C(A^{\top})^{\perp}$: The nullspace is the orthogonal complement of the row space in \mathbb{R}^n .
 - $N(A^{\mathsf{T}}) = C(A)^{\perp}$: The left nullspace is the orthogonal complement of the column space in \mathbb{R}^m .
- The equation Ax = b is solvable iff $b^{T}y = 0$ where $A^{T}y = 0$.
- Solvability of Ax = b:
 - Direct approach: b must be a combination of columns of A.
 - Indirect approach: b must be orthogonal to every vector that is orthogonal to the columns of A.
- V and W can be orthogonal without being complements.
- Splitting \mathbb{R}^n into orthogonal parts will split every vector into x = v + w.

- The mapping from row space to column space is actually invertible. Every matrix A transforms its row space to its column space.
- When A^{-1} fails to exist, we can see a natural substitute, which is call **pseudoinverse**, denoted by A^+ .
 - $\bullet \ \forall x \in C(A^{\top}), A^{+}Ax = x.$
 - $\bullet \quad \forall y \in N(A^{\top}), A^{+}y = 0.$
- The cosine of the angle between any two vectors a & b is $\cos \theta = \frac{a^{\mathsf{T}}b}{\|a\| \|b\|}$. If we consider the relationship between $\|a\|$, $\|b\|$ and $\|b-a\|$, then we have $\|b-a\|^2 = \|b\|^2 + \|a\|^2 2\|a\| \|b\| \cos \theta$.

• The projection of b onto the line a through O is $p = \frac{a^{T}b}{a^{T}a}a$

- Any two vectors in the inner product space satisfy the **Cauchy-Shwart Inequality**: $|a^{T}b| \leq ||a|| ||b||$. $||b-p||^2 = ||b-\frac{a^{T}b}{a^{T}a}a||^2 \geq 0$. Hence, $|a^{T}b| \leq ||a|| ||b||$.

 - The equality holds $\Leftrightarrow \|b-p\|^2 = 0 \Leftrightarrow \exists \alpha \in \mathbb{R}, b = p = \alpha a.$
- What is the projection matrix P of the linear transformation that maps b to p?

 - $p = \frac{a^{\mathsf{T}}b}{a^{\mathsf{T}}a}a = \frac{aa^{\mathsf{T}}}{a^{\mathsf{T}}a}b = Pb$. $P = \frac{aa^{\mathsf{T}}}{a^{\mathsf{T}}a}$, which is a projection of rank one.
 - P is singular and symmetric.