2 Quantum Mechanics

2.1 Photon Polarization

2.1.1 Linear Polarization

Rawson Duplantis

Problem 1. Consider the following state vector $|s\rangle$ and measurement vectors $|m_1\rangle$ and $|m_2\rangle$ for photon polarization:

$$|s\rangle = {4/5 \choose 3/5}$$

$$M = (|m_1\rangle, |m_2\rangle) = {3/5 \choose 4/5}, {-4/5 \choose 3/5}.$$

- (a) Show that $|s\rangle$ is indeed a legitimate state vector and that M is indeed a legitimate pair of measurement vectors.
- (b) When the measurement M is performed on a photon in the state $|s\rangle$, what are the probabilities of the two outcomes?

For part (a), we need to check whether $||s\rangle| = 1$, as all valid polarization state vectors are normalizable¹. We know that

$$||s\rangle| = \sqrt{(4/5)^2 + (3/5)^2}$$

= $a = 1$

2.1.2 Review of Complex Numbers

Problem 1. Let z_1 and z_2 be complex numbers.

- (a) Show that the complex conjugate of z_1z_2 is $\bar{z_1}\bar{z_2}$.
- (b) Show that if $z_2 \neq 0$, the complex conjugate of z_1/z_2 is $\bar{z_1}/\bar{z_2}$.
- (c) Show that $|z_1z_2| = |z_1||z_2|$.
- (d) Show that if $z_2 \neq 0$, $|z_1/z_2| = |z_1|/|z_2|$.

Answer here...

Problem 2. Starting with $e^{3i\theta} = (e^{i\theta})^3$, derive a formula for $\cos 3\theta$ in terms of $\cos \theta$ and $\sin \theta$.

Answer here...

Problem 3. Evaluate each of the following quantities.

- (a) $e^{i\pi}$
- (b) |1+i|

¹I believe this can be decided in a more general case if the state vector is square-integrable.

- $(c) \ \frac{2+3i}{3+2i}$
- (d) $(1+i)^{16}$. (Hint: There is more than one way to approach this problem.)