

9

Solution. Let $\underline{x}, \underline{y} \in \underline{B}(\underline{x}_0, r)$ where $\underline{x}_0 \in \mathbb{R}^n$ and $r \ge 0$. Then $\|\underline{x} - \underline{x}_0\| \le r$ and $\|\underline{y} - \underline{x}_0\| \le r$. Let $0 \le \lambda \le 1$. To show that $\lambda \underline{x} + (1 - \lambda) y \in B(\underline{x}_0, r)$.

$$\begin{split} \|\lambda\underline{x} + (1-\lambda)\,\underline{y} - \underline{x}_0\| &= \|\lambda\underline{x} - \lambda\underline{x}_0 + (1-\lambda)\,y - \underline{x}_0 + \lambda\underline{x}_0\| \\ &= \|\lambda\left(\underline{x} - \underline{x}_0\right) + (1-\lambda)\left(\underline{y} - \underline{x}_0\right)\| \\ &\leq |\lambda|\|\underline{x} - \underline{x}_0\| + |1-\lambda|\|\underline{y} - \underline{x}_0\| \\ &= \lambda r + r - \lambda r \\ &= r. \end{split}$$

This shows that $\lambda \underline{x} + (1 - \lambda) y \in B(\underline{x}_0, r)$.

Example 1.7 A closed ball in \mathbb{R}^n is a set of type $\{\underline{x} \in \mathbb{R}^n : \|\underline{x} - \underline{x}_0\| \le \underline{r}\}$, where r > 0 is a convex set.

Solution. Let $S = \{\underline{x} : \|\underline{x} - \underline{x}_0\| \le r\}$. Let $\underline{x}, \underline{y} \in S$ and $0 \le \lambda \le 1$. To show that $\lambda \underline{x} + (1 - \lambda) \underline{y} \in S$. Consider

$$\begin{split} \left\| \lambda \underline{x} + (1 - \lambda) \, \underline{y} - \underline{x}_0 \right\| &= \left\| \lambda \underline{x} - \lambda \underline{x}_0 + \lambda \underline{x}_0 + \underline{y} - \lambda \underline{y} - \underline{x}_0 \right\| \\ &= \left\| \lambda \left(\underline{x} - \underline{x}_0 \right) + (1 - \lambda) \left(\underline{y} - \underline{x}_0 \right) \right\| \\ &= \left\| \lambda \left(\underline{x} - \underline{x}_0 \right) + (1 - \lambda) \left(\underline{y} - \underline{x}_0 \right) \right\| \\ &\leq \lambda r + (1 - \lambda) r = r. \end{split}$$

It shows that

$$\Rightarrow \left\| \lambda \underline{x} + (1-\lambda) \, \underline{y} - \underline{x}_0 \, \right\| \leq r \Rightarrow \lambda \underline{x} + (1-\lambda) \, \underline{y} \in S.$$

Theorem 1.1 (If C is a convex set then λC is convex set.

Proof. Let *C* is a convex set. To show λC is convex set. Let $\lambda C = \{\lambda c : c \in C\}$. Let $\underline{x}, y \in \lambda C$. Then $\underline{x} = \lambda \underline{c}_1$ and $\underline{y} = \lambda \underline{c}_2$ for some $\underline{c}_1, \underline{c}_2 \in C$. Let $0 \le \mu \le 1$. To show that $\mu \underline{x} + (1 - \mu) \underline{y} \in \lambda C$. Now

1.1. Introduction

where $\underline{c}_3 = \mu \underline{c}_1 + (1 - \mu) \underline{c}_2 \in C$. This show that $\mu \underline{x} + (1 - \mu) y \in \lambda C$. Thus λC is a convex set.

Theorem 1.2 If C and D are convex sets, then C + D is also convex set.

Proof. Let C and D be convex sets. Then $C + D = \{\underline{x} + \underline{y} : \underline{x} \in C, \underline{y} \in D\}$. Let $\underline{x}, \underline{y} \in C + D$ and $0 \le \mu \le 1$. Then $\underline{x} = \underline{x}_1 + \underline{y}_1$ and $\underline{y} = \underline{x}_2 + \underline{y}_2$. To show $\mu\underline{x} + (1 - \mu) \in C + D$. Consider

$$\begin{split} \mu\underline{x} + \left(1 - \mu\right)\underline{y} &= \mu\left(\underline{x}_1 + \underline{y}_1\right) + \left(1 - \mu\right)\left(\underline{x}_2 + \underline{y}_2\right) \\ &= \mu\underline{x}_1 + \mu\underline{y}_1 + \left(1 - \mu\right)\underline{x}_2 + \left(1 - \mu\right)\underline{y}_2 \\ &= \mu\underline{x}_1 + \left(1 - \mu\right)\underline{x}_2 + \mu\underline{y}_1 + \left(1 - \mu\right)\underline{y}_2 \\ &= \underline{x}_3 + \underline{y}_3. \end{split}$$

where $\underline{x}_3 = \mu \underline{x}_1 + (1 - \mu) \underline{x}_2 \in C$ and $\underline{y}_3 = \mu \underline{y}_1 + (1 - \mu) \underline{y}_2 \in D$, so $\underline{x}_3 + \underline{y}_3 \in C + D$ and hence $\mu \underline{x} + (1 - \mu) y \in C + D$. Thus C + D are convex set.

Theorem 1.3 The intersection of any convex sets is a convex set.

Proof. Let $A = \bigcap_{\alpha} S_{\alpha}$ where each S_{α} is convex set. To show that A is a convex set. Let $0 \le \lambda \le 1$ and $\underline{x}, \underline{y} \in A$. Then $\underline{x}, \underline{y} \in S_{\alpha}$ for each α . Since each S_{α} is convex set implies $\lambda \underline{x} + (1 - \lambda) \underline{y} \in S_{\alpha}$ and hence $\lambda \underline{x} + (1 - \lambda) \underline{y} \in \bigcap_{\alpha} S_{\alpha} = A$. Thus intersection of any convex set is convex set.

Theorem 1.4 If $C \subseteq \mathbb{R}^n$ is convex, then Cl(C), the closure of C, is also convex.

Proof. Suppose \underline{x} , $\underline{y} \in Cl(C)$. Then there exist sequences $\{\underline{x}_n\}$ and $\{\underline{y}_n\}$ in C such that $\underline{x}_n \to x$ and $\underline{y}_n \to \underline{y}$ as $n \to \infty$. Let $0 \le \lambda \le 1$. Consider $\underline{z}_n = \lambda \underline{x}_n + (1 - \lambda) \underline{y}_n$. Then, by convexity of C, $\underline{z}_n \in C$. Moreover

$$\lim_{n \to \infty} \underline{z}_n = \lim_{n \to \infty} \left(\lambda \underline{x}_n + (1 - \lambda) \underline{y}_n \right) = \lambda \underline{x} + (1 - \lambda) \underline{y}.$$

Hence $\lambda \underline{x} + (1 - \lambda) \underline{y} \in Cl(C)$.

Theorem 1.5 A set $S \subseteq \mathbb{R}^n$ is convex if and only if every convex combination of any finite number of points of S is contained in S.

Proof. Assume that every convex combination of any finite number of points of S is contained in S. To show that the set $S \subseteq \mathbb{R}^n$ is convex set. Let $\underline{x}_1, \underline{x}_2 \in S$ and $\lambda_1 + \lambda_2 = 1$. Then by hypothesis $\lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 \in S$. Thus S is a convex set.

Conversely, suppose that S is a convex set. To prove that every convex combination of any finite number points of S is a point of S. We prove this result by mathematical induction. For n = 2, clearly the result is true, since the convex combination of two points of S is contained in S.

Suppose, the result is true for n = k, i.e. the convex combination of k points of S is contained in S. Now, we show that the result is true for n = k + 1. Let $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_{k+1} \in S$ and $0 \le \lambda_1, \lambda_2, \dots, \lambda_{k+1} \le S$ 1 such that $\sum_{i=1}^{k+1} \lambda_i = 1$. Suppose $\underline{0} < \lambda_{k+1} < 1$. Now consider

$$\lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 + \dots + \lambda_k \underline{x}_k + \lambda_{k+1} \underline{x}_{k+1} = \sum_{i=1}^k \lambda_i \underline{x}_i + \lambda_{k+1} \underline{x}_{k+1}$$
$$= (1 - \lambda_{k+1}) \left(\sum_{i=1}^k \frac{\lambda_i \underline{x}_i}{(1 - \lambda_{k+1})} \right) + \lambda_{k+1} \underline{x}_{k+1}.$$

Clearly $\sum_{i=1}^k \frac{\lambda_i}{(1-\lambda_{k+1})} = 1$ and by assumption $\sum_{i=1}^k \frac{\lambda_i}{(1-\lambda_{k+1})} \underline{x}_i \in S$. Since S is convex, then $(1-\lambda_{k+1}) \underline{x}_i + \lambda_{k+1} \underline{x}_{k+1} \in S$ implies $\lambda_1 \underline{x}_1 + \lambda_2 \underline{x}_2 + \dots + \lambda_{k+1} \underline{x}_{k+1} \in S$. Thus every convex combination of any finite number of points of *S* is contained in *S*

Definition 1.11 Let $S \subseteq \mathbb{R}^n$ be a convex set. A point $x \in S$ is called an extreme point or vertex of *S* if there exists no points $\underline{x_1}$ and $\underline{x_2}$ in *S* such that $x = \lambda \underline{x_1} + (1 - \lambda) \underline{x_2}, 0 < \lambda < 1$.

Definition 1.12 Let $S \subseteq \mathbb{R}^n$. The intersection of all the convex setscontaining the set S is called the convex hull of S and it is denoted by $\overline{Co(S)}$.

Definition 1.13 Let $S = \{\underline{x}, \underline{y}\} \subseteq R^2$. Then Co(S) is the line segment joining \underline{x} and \underline{y} .

Example 1.8 Let $S = \{\underline{x}, \underline{y}, \underline{z}\} \subseteq R^2$. Convex hull of these three points is the solid part of triangle.

Example 1.9 If S is convex set then convex hull of this set is itself i.e. Co(S) = S.

Example 1.10 If $S = \{\underline{x} \in \mathbb{R} : |\underline{x}| = 5\}$ then Co(s) is the line segment joining -5 to 5. $\mathcal{L} = \{\underline{x} \in \mathbb{R} : |\underline{x}| > 5\} \subseteq \mathbb{R}^2 \text{ then } Co(S) = \mathbb{R}^2.$

Example 1.11 If $S = \{\underline{x} : |\underline{x}| | > 5\} \subseteq \mathbb{R}^2$ then $Co(S) = \mathbb{R}^2$.