Topics Covered by <u>Chemistry</u> Aptitude Test for Admission and Placement

Subject	Items
1- Atomic structure for chemical compounds and their physical properties	Elements, compounds and mixtures - State of Matter and Properties - Chemical symbols - Predicting the number of elements in a compound - Predicting the number of atoms in a compound - Density - Periodic table - Atomic structure - Eelectronic configuration - Predicting the number of protons, neutrons and electrons - Chemical bonds .
2- Chemical equations and naming of inorganic compounds-chemical calculations	Chemical formulae - Naming of inorganic compounds — Ionic compounds - Calculating the formula mass - Calculating the number of moles - Calculating the number of grams - Calculating the mass of one atom - Atom and mole ratio in a compound - Calculating the number of atoms and molecules - Balancing chemical equations - Predicting the products of chemical reactions - Predicting the mole ratio from a balanced chemical equation - Predicting the type of chemical reaction.
3- Chemical equilibrium for acids, bases, salts and oxidation - reduction reactions	Predicting the number of ions in a formula unit - Assigning oxidation numbers - Assigning atoms changing their oxidation state in redox reactions - Acids and bases - Acid-base reactions - Calculating the $[H^+]$ and pH - Calculating the $[OH^-]$ and pOH - Acid dissociation constants (K_a) - Base dissociation constants (K_b) - Buffer solutions - Acid - base titration - Equilibrium expressions - Equilibrium constants - The solubility and solubility product (K_{sp}) .
4- Solution chemistry	Molarity.
5- Organic compounds and functional groups	Hydrocarbon compounds - Aromatic hydrocarbons – Functional groups.

Details of the Test Topics

The students should be able to understand the following basic concepts in chemistry and solve problems related to items for each concept.

1- Atomic Structure for Chemical Compounds and Their Physical Properties:

I a	E xample 1.1: Vita	12 has the molecular form		It is used in the treatment of 4O ₁₄ P. How <u>many elements</u> are
r	A) 5	B) 181	C) 6	D) 7
I	Example 1.2: Whi A) Water	ch of the following is cla B) A pure gold coin		
ŀ	Example 1.3: White the free temperature and A) Sodium carbo C) Mercury	ch of the following substreessure?	tances exist <u>as a li</u> B) Carbon m D) Hydroger	
	alt + sugar + water	r + gasoline]		ng well-mixed system: [sand +
	A) 5	B) 3	C) 2	D) 4
	chemical property?			ygen. Which one represents a
	A) It is a gas at 2		,	iron to form rust
	C) It can be comp	pressed	D) It freezes	at -219 C
V	-	to float on water if place		a density greater than that of the following properties is
	A) Specific heat	B) Surface tension	C) Melting p	point D) Viscosity
,	Chemical Symbol Example 1.7: Whi A) Silver - Ag C) Magnesium -	ch of the following eleme	ents is paired with B) Nitrogen D) Lithium -	- Ni
A I	Atoms in a Compo Example 1.8: Whi	ound: ch of the following oxy	•	& Predicting the Number of ntaining oxygen atoms) contain
	Our oxygen atoms' A) Nitrate See example 1.1	B) Sulfate	C) Carbonate	D) Bicarbonate

v) Density: Example 1.9: A gr weighing 5.000 g an until the water level 1 A) 60	d having a density	of 2.5 g/m	L, are pla	aced into the g	graduated	
vi) Periodic Table, Number of Protons, Example 1.10: The shell (last energy leve A) 2s ² 2p ⁵	Number of Neutro electron configurations:	ons and Elion of the	lectrons: magnesiu	<u> </u>		C
Example 1.11: How A) 24	many neutrons are B) 28		$^{52}_{24}\text{Cr}^{3+}$?	D) 27		
vii) Chemical Bonds: Example 1.12: The lis known as: A) Ionic bond C) Coordinate cova			B) Coval	ent bond	hydrogen	ion (H ⁺)
Chemical Equations and i) Chemical Formulae Example 2.1: Choos Formula A) AlCl ₃ B) NaNO ₃ C) CaO D) H ₂ SO ₄	& Naming of Inorge the pair of name a Name Aluminium chlori Sodium nitrate Carbon monoxide	ganic Com and formula	pounds:		culations	:
ii) Ionic Compounds: Example 2.2: How (NH ₄) ₂ [Ce(NO ₃) ₆] in A) 3		formula C)		lld you find D) 6	if you	dissolve
iii) Calculating the For Example 2.3: Calcul A) 120.37 g/mole C) 246.54 g/mole		B)	7H ₂ O. 126.14 g 222.57 g			
iv) Calculating the Num Example 2.4: How m C ₁₆ H ₁₈ O ₄ N ₂ S? [molandary of the color of the	nany moles of nitrograms of penicillin B) 0.896 of the following co	= 334.28 g C) ontains 2.00 B)	g/mole] 0.449 0 moles of 26.0 g be	D) 0.	296 s?	

2-

,	he Number of Grams:		
-	_	-	greatest mass of chlorine (Cl ₂)
A) 5.0 g Cl ₂		B) 0.50 mole	
C) 0.10 mol	e KCl	D) 30.0 g M	gCl_2
vi) Calculating	the Mass of one Atom:		
Example 2.7:	What is the mass of one a	atom of carbon, C?	
A) 1.99 x 10	$0^{-23} g$	B) 0.502 x 1	$0^{23} { m g}$
C) 0.502 x	10^{-23} g	D) 1.99 x 10	²³ g
	Mole Ratio in a Compou		
Example 2.8:	For baking soda, NaHCC		tio of C to O?
A) 1:1	B) 3:1	C) 1:2	D) 1:3
,	the Number of Atoms a One mole of any element		
A) 3.011 x	10^{23} atoms	B) 6.022 x 1	0^{23} atoms
C) 1.506 x	10^{23} atoms	D) 12.04 x 1	0^{23} atoms
ix) Balancing C	hemical Equations:		
,	: Considering the following	ng reaction:	
-	$O_3(aq) + CaBr_2(aq)$ —	_	$a(NO_3)_2(aq)$
_	nt before AgBr is:	8 ()	(3)2(D
A) 1	B) 2	C) 4	D) 5
_	gas:	B) Carbon m D) Carbon d	
Example 2.12 2NH ₃ (the proper mo A) 3 moles (the Mole Ratio from a Balace. Given the balanced equal (g) + 3O ₂ (g) + 2CH ₄ (g) lar ratio for the mole convO ₂ /1 mole HCN	ation: \longrightarrow 2HCN(Version: $O_2 \longrightarrow$ HCN B) 2 moles 0	g) + $6H_2O(1)$ V is: $0_2/2$ moles HCN
C) 2 moles l	HCN /3 moles O ₂	D) 3 moles (O ₂ /2 moles HCN
Example 2.13	he Type of Chemical Res 3: What type of reaction is $O_3(s) \xrightarrow{MnO_2} 2KCl$	the following?	
2KCIC	$O_3(s)$ Heat \rightarrow 2KC	$1(s) + 3O_2(g)$	
A) Single di	splacement	B) Decompo	sition
C) Double d	isplacement	D) Combust	on
Chemical Equil	ibrium for Acids, Bases,	Salts and Oxidation-	Reduction Reactions:
i) Predicting th	e Number of Ions in a Fo	ormula Unit:	
Example 3.1: A) 3	How many ions per form B) 9	ula unit would you fin C) 2	d if you dissolve KClO ₃ in w D) 6
See example	,	C) 2	D_{j} \cup
See example	L.L		

ii) Assigning Oxidation Numbers and Atoms changing their Oxidation State in Redo Reactions:Example 3.2: Which of the following is an oxidation-reduction reaction?
A) $HC_2H_3O_2(aq) + H_2O(l)$ \longrightarrow $H_3O^{\dagger}(aq) + C_2H_3O_2(aq)$ B) $Zn^{2+}(aq) + H_2(g)$ \longrightarrow $Zn(s) + 2H (aq)$ C) $HNO_2(aq) + H_2O(l)$ \longrightarrow $H_3O^{\dagger}(aq) + NO_2(aq)$ D) $2H_2O(g)$ \longrightarrow $2H_2(g) + O_2(g)$
Example 3.3: The oxidation number of nitrogen atom in NaNO ₂ is: A) +3 B) -2 C) -3 D) +1
iii) Acids and Bases, and Acid-Base Reactions: Example 3.4: A neutral solution can be obtained by mixing equal volumes of the same concentration of:
A) HCl and NH ₃ B) CH ₃ COOH and NaOH C) HCOOH and KOH D) HCl and NaOH
iv) Calculating the [H ⁺] and pH, and Calculating [OH ⁻] and pOH:
Example 3.5: The pH is defined as: A) $pH = -log[H^+]$ B) $pH = log[H^+]$ C) $pH = [H^+]$ D) $pH = [H^+]^2$
Example 3.6: A solution in which $[H^+] = 10^{-6}$ has a pH of
Example 3.7: Lemon juice has a $[H^+]$ of 0.01 M. What is the $[OH^-]$? A) $1.0x10^{-14}$ M B) $1.0x10^{-7}$ M C) $1.0x10^{-12}$ M D) $1.0x10^2$ M
v) Acid Dissociation Constants (K _a) and base Dissociation Constants (K _b): Example 3.8: Given the following equilibrium system, what is the expression of K _a ? HC ₂ H ₃ O ₂ (aq) + H ₂ O(I) C ₂ H ₃ O ₂ (aq) + H ₃ O ⁺ (aq)
$\begin{array}{lll} A) \ \ K_{a} = & \frac{ \left[C_{2}H_{3}O_{2}^{-} \right] \left[H_{3}O^{+} \right] }{ \left[HC_{2}H_{3}O_{2} \right] } & B) \ \ K_{a} = & \frac{ \left[HC_{2}H_{3}O_{2} \right] \left[H_{3}O^{+} \right] }{ \left[C_{2}H_{3}O_{2}^{-} \right] \left[H_{3}O^{+} \right] } \\ C) \ \ K_{a} = & \frac{ \left[C_{2}H_{3}O_{2}^{-} \right] \left[H_{3}O^{+} \right] }{ \left[HC_{2}H_{3}O_{2} \right] \left[H_{2}O \right] } \\ D) \ \ K_{a} = & \frac{ \left[HC_{2}H_{3}O_{2} \right] \left[H_{2}O \right] }{ \left[C_{2}H_{3}O_{2}^{-} \right] \left[H_{3}O^{+} \right] } \end{array}$
vi) Buffer Solutions:

Example 3.9: Which of the following constitute a buffer?

A) HCl and NaCl

B) KOH and HCl

C) NH₃ and NH₄Cl

D) BaCl₂ and AgNO₃

vii) Acid-Base Titration:

Example 3.10: What volume of 1.80 M of an automobile sulfuric acid, (H₂SO₄) neutralizes 42.10 cm³ of 1.90 M NaOH?

A) 22.2 cm^3

B) 42.1 cm^3

C) 44.4 cm^3

D) 39.9 cm³

viii) Equilibrium Expressions and Equilibrium Constants:

Example 3.11: Given the following equilibrium system, what is the expression of K_c ?

$$N_2(g) + 3H_2(g)$$
 \longrightarrow $2NH_3(g)$

A)
$$K_c = [NH_3]^2 / [N_2] + 3[H_2]$$

B)
$$K_c = [NH_3]^2 / [N_2][H_2]^3$$

C)
$$K_c = [N_2][H_2]^3 / [NH_3]^2$$

D)
$$K_c = 2[NH_3] / [N_2] + 3[H_2]$$

ix) The Solubility and Solubility Product (K_{sp}):

Example 3.12: The solubility product (K_{sp}) of Ag₂CrO₄ is given by:

A)
$$K_{sp} = 2[Ag^+][CrO_4^2]$$

B)
$$K_{sp} = 1/[Ag^+]^2 [CrO_4^{2-}]$$

C)
$$K_{sp} = [2Ag^{+}][CrO_{4}^{2-}]$$

D)
$$K_{sp} = [Ag^+]^2 [CrO_4^{2-}]$$

4- Solution Chemistry:

- Molarity:

Example 4.1: What is the molarity of a solution made by dissolving 2.40 mole of KI in enough water to make 2.75 L of solution?

- A) 0.200 M
- B) 0.873 M
- C) 0.255 M
- D) 0.542 M

5- Organic Compounds and Functional Groups:

- Hydrocarbon Compounds, Aromatic Hydrocarbons, and Functional Groups:

Example 5.1: Not all carbon containing compounds are organic compounds. Which one of the following compounds is an <u>inorganic compound</u>?

A) CH₄(methane)

- B) CH₃OH(methanol)
- C) CH₂Cl₂(dichloromethane)
- D) CaCO₃(calcium carbonate)

Example 5.2: Which of the following is an <u>aromatic compound?</u>

- A) Methane
- B) Ethanol
- C) Benzene
- D) Acetaldehyde

Example 5.3: What is the functional group (-C-) in CH_3 -C- CH_3 .

A) Carbonyl group

B) Hydroxyl group

C) Carboxylic acid group

D) Aldehyde group

Data You May Need

Physical Constants: Avogadro's number = 6.022×10^{23} objects/mole

Atomic Masses:

H = 1.01; C = 12.0; Cl = 35.5; K = 39.1N = 14.0; O = 16.0; Mg = 24.3; S = 32.1

Atomic Number:

H = 1; N = 7; Mg = 12