Logika intuicjonistyczna i izomorfizm Curry'ego Howarda

Julia Majkowska

21 Października 2018

- Logika ituicjonistyczna
 - Wstęp
 - Dedukcja Naturalna
 - Algebraiczna Semantyka
 - Fragment implikacyjny
- Izomorfizm Curry'ego Howarda
 - Bezkontekstowa dedukcja naturalna
 - Izomorfizm Curry'ego Howarda
 - Ćwiczenia

- Logika ituicjonistyczna
 - Wstęp
 - Dedukcja Naturalna
 - Algebraiczna Semantyka
 - Fragment implikacyjny
- Izomorfizm Curry'ego Howarda
 - Bezkontekstowa dedukcja naturalna
 - Izomorfizm Curry'ego Howarda
 - Ćwiczenia

Wstęp

- Logika oparta na konstukcji zmiennej
- Koncepcję przypisuje się matematykowi filozofowi Luitzen Egbertus Jan Brouwer (początek XX w)
- Formalna gałąź logiki od 1930r.

Semantyka

Interpretacja BHK zasad tworzenia formuł

- **1** Konstrukcja $\phi_1 \wedge \phi_2$ składa się z konstrukcji ϕ_1 i ϕ_2 .
- **2** Konstrukcja $\phi_1 \lor \phi_2$ składa się z kostukcji $i \in \{1,2\}$ i ϕ_i .
- **3** Konstrukcja $\phi_1 \to \phi_2$ to funkcja zamieniająca konstrukcje ϕ_1 na konstrukcje ϕ_2 .
- \bullet $\neg \phi$ to skrócony zapis $\phi \rightarrow \bot$

Example

- \bullet $\perp \rightarrow \phi$
- $p \rightarrow \neg \neg p$

Semantyka

Konwencje zapisu formuł

- **1** $\neg p$ to skrót dla $p \rightarrow \bot$
- 2 $p \leftrightarrow q$ to skrót dla $(p \rightarrow q) \land (q \rightarrow p)$
- ma najwyższy proprytet
- ∧ i ∨ wiążą do lewej i mają ten sam priorytet
- Nie piszemy najbardziej zewnętrznych nawiasów

Example

$$\neg p \land q \rightarrow r \Leftrightarrow (((\neg p) \land q) \rightarrow r)$$

- Logika ituicjonistyczna
 - Wstęp
 - Dedukcja Naturalna
 - Algebraiczna Semantyka
 - Fragment implikacyjny
- Izomorfizm Curry'ego Howarda
 - Bezkontekstowa dedukcja naturalna
 - Izomorfizm Curry'ego Howarda
 - Ćwiczenia

Dedukcja naturalna logiki intuicjonistycznej

Oznaczenia

- PV zbiór wszystkich zmiennych
- **3** Kontekst to skończony podzbiór Φ .Będziemy używali Γ i Δ do oznaczania kontekstów
- **1** $\Gamma \vdash p$ intuicyjnie oznacza, że p wynika z założeń Γ .
- **Solution** Samiast $\Gamma \cup \Delta$ będziemy pisać Γ , Δ , a zamiast $\{\}$ ⊢ p będziemy pisać ⊢ p.
- Formalnym dowodem Γ ⊢ p jest drzewo, w którym Γ ⊢ p jest korzeniem, liśćmi są axiomy, a przejścia od ojca do syna odbywają się zgodnie z niżej podanymi zasadmi.
- **②** Jeśli $\vdash p$ to p jest tautologią logiki inuicjonistycznej

Dedukcja naturalna logiki intuicjonistycznej

$$\Gamma, \varphi \vdash \varphi \text{ (Ax)}$$

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \text{ (\wedgeI$)} \qquad \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \text{ (\wedgeE$)} \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \text{ (\veeI$)} \qquad \frac{\Gamma, \varphi \vdash \rho \quad \Gamma, \psi \vdash \rho \quad \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \rho} \text{ (\veeE$)}$$

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \text{ (\rightarrowI$)} \qquad \frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \text{ (\rightarrowE$)}$$

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \text{ (\botE$)}$$

Przykłady dowodów

(i)

$$\frac{\varphi \vdash \varphi}{\vdash \varphi \to \varphi} \ (\to I)$$

(ii)

$$\frac{\varphi,\psi \vdash \varphi}{\varphi \vdash \psi \to \varphi} \; (\to I) \\ \frac{}{\vdash \varphi \to (\psi \to \varphi)} \; (\to I)$$

(iii)

$$\frac{(\rightarrow E)\frac{\Gamma \vdash \varphi \rightarrow (\psi \rightarrow \vartheta) \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi \rightarrow \vartheta} \qquad \frac{\Gamma \vdash \varphi \rightarrow \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} (\rightarrow E)}{\frac{\Gamma \vdash \vartheta}{\varphi \rightarrow (\psi \rightarrow \vartheta), \varphi \rightarrow \psi \vdash \varphi \rightarrow \vartheta}} (\rightarrow I)}{\frac{\varphi \rightarrow (\psi \rightarrow \vartheta), \varphi \rightarrow \psi \vdash \varphi \rightarrow \vartheta}{\varphi \rightarrow (\psi \rightarrow \vartheta) \vdash (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \vartheta)} (\rightarrow I)}{\frac{\varphi \rightarrow (\psi \rightarrow \vartheta)) \rightarrow (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \vartheta)}{(\rightarrow I)}}$$

Własności dedukcji

Lemat

Logika intuicjonistyczna jest zamknięta na osłabienie i podstawienie. To znaczy :

$$\Gamma \vdash p \Rightarrow \Gamma, \psi \vdash p$$

$$\Gamma \vdash p \Rightarrow \Gamma[q := \psi] \vdash p[q := \psi]$$

Dowód - indukcja

- Logika ituicjonistyczna
 - Wstęp
 - Dedukcja Naturalna
 - Algebraiczna Semantyka
 - Fragment implikacyjny
- Izomorfizm Curry'ego Howarda
 - Bezkontekstowa dedukcja naturalna
 - Izomorfizm Curry'ego Howarda
 - Ćwiczenia

Logika klasyczna

Niech $v: \Phi \rightarrow \{0,1\}$

Wartościowanie dla logiki klasycznej

Zdefinujemy funkcję mapującą $[\cdot]_v:\Phi \to \{0,1\}$, spełniającą : $[p]_v = v(p)$ $[\bot]_v = 0$ $[\phi \lor \psi]_v = \max\{[\phi]_v, [\psi]_v\}$ $[\phi \land \psi]_v = \min\{[\phi]_v, [\psi]_v\}$ $[\phi \to \psi]_v = \max\{1 - [\phi]_v, [\psi]_v\}$

Ciało zbiorów

Definicja

Ciało zbiorów nad X to niepusta rodzina pozdbiorów X zamknięta na sumę, przecięcie i dopełnienie zbiorów

Example

- P(X)

Algebra zbiorów

Wartościowanie na zbiorach

Niech \Re ciało zbiorów nad zbiorem X.

Wartosciowaniem v w \Re nazywamy $v : PV \to \Re$

Zdefinujemy funkcję mapującą $[\cdot]_{v}:\Phi \rightarrow X$, spełniającą :

$$[\rho]_{v} = v(\rho)$$

$$[\bot]_{v} = \{\}$$

$$[\phi \lor \psi]_{v} = [\phi]_{v} \cup [\psi]_{v}$$

$$[\phi \land \psi]_{v} = [\phi]_{v} \cap [\psi]_{v}$$

$$[\phi \to \psi]_{v} = X - [\phi]_{v} \cup [\psi]_{v}$$

Twierdzenie

Powyższe dwie semantyki są równoważne.

 ϕ jest tautologią $\Leftrightarrow v(\phi) = X$ dla każdego v w \Re .

Dowód

 \Rightarrow

Załóżmy nie wprost, że istnieje a takie, że $a\notin v(\phi)$. Więc tworzymy wartościowanie zmiennych w PV takie, że w(p)=1 wtw. gdy $a\in v(p)$. Indukcyjnie można udowodnić że $w(\phi)\neq 1$.

 \Leftarrow

Wartościowanie 0/1 kowe to interpretacja $v(\phi) \in \{\{\}, X\}$.

Definicia

Algebra boolowska nazywamy $\mathcal{B} = \langle B, \cup, \cap, -, 0, 1 \rangle$, gdzie:

- ∪, ∩ są łączne, przemienne i rozdzielne jedno względem drugiego.
- **2** $a \cup 0 = a \mid a \cap 1 = a$
- **3** $-a \cup a = 1$ i $-a \cap a = 0$

Relacja $a \leq b \Leftrightarrow a \cup b = b$ jest częściowym porządkiem dla wszyskich algebr boolowskich. ∪ ∩ są odpowiednio kresami dolnym (glb) i górnym (lub) na tym porządku.

Algebra Lindenbauma

Definicja

Niech Φ - zbiór wszystkich formuł i $\Gamma \in \Phi$

Zdefiniujmy relację $\phi \sim \psi \Leftrightarrow (\Gamma, \phi \vdash \psi) \land (\Gamma, \psi \vdash \phi)$. Relacja jest relacją równoważności ponieważ następujące formuły są dowodliwe:

Zbiór Lindenbauma

Niech $\mathcal{L}_{\Gamma} = \Phi / \sim = \{ [\phi]_{\sim} : \phi \in \Phi \}.$

Zdefiniujmy częściowy porządek $[\phi]_{\sim} \leqslant [\psi]_{\sim} \Leftrightarrow \Gamma, \phi \vdash \psi$

Algebra Lindenbauma

Operatory

Możemy zdefiniować dodatkowe operatory nad \mathcal{L}_{Γ}

Dowód

Operatory są dobrze zdefiniowane ponieważ następujące fomuły są dowodliwe

Algebra Lindenbauma

Twierdzenie

 \cup i \cap są łączne , przemienne i rozdzielne oraz są operatorami lub i glb na porządku $\leqslant.$

Algebra Heytinga

Definicja

Algebrą Heytlinga nazywamy system algebraiczny w postaci

$$(H)=< H, \cup, \cap, \Rightarrow, -, 0, 1>$$
 spełniający

- ∪, ∩ są łączne, przemienne i rozdzielne jedno względem drugiego.
- ② $a \cup 0 = a \ i \ a \cap 1 = a$
- \bigcirc $a \cup a = a$
- ① $a \cap c \le b$ jest równoważne $c \le a \Rightarrow b$ (gdzie $a \le b$ to $a \cup b = b$)
- \bullet $-a = a \Rightarrow 0$

Algebra Heytinga

Definicja

Niech $\mathcal{H} = \langle H, \cup, \cap, \Rightarrow, -, 0, 1 \rangle$ będzie algebrą Heytinga.

Wartosciowaniem v w \mathcal{H} nazywamy $v: PV \to H$

Zdefinujmy funkcję mapującą $[\cdot]_{v}:\Phi \rightarrow H$, spełniającą :

$$[\rho]_{v} = v(\rho)$$

$$[\bot]_{v} = 0$$

$$[\phi \lor \psi]_{v} = [\phi]_{v} \cup [\psi]_{v}$$

$$[\phi \land \psi]_{v} = [\phi]_{v} \cap [\psi]_{v}$$

$$[\phi \to \psi]_{v} = [\phi]_{v} \Rightarrow [\psi]_{v}$$

Dowodliwość a algebra Heytinga

Twierdzenie

Następujące zdania sa równoważne

- \bullet $\Gamma \vdash \phi$
- \bullet $\Gamma \models \phi$

Twierdzenie

- Formuła ϕ o długości n jest prawdziwa jeśli jest prawdziwa we wszekich algebrach Heytinga o liczności zbioru wartości nie większej niż 2^{2^n}
- ② Niech $\mathcal H$ będzie algebrą wszystkich podzbiorów gestej przestrzeni metrycznej. $\mathcal H\models\phi$ wtw. gdy ϕ jest prawdziwe.

Model Kripkego

Definicja

Jeśli $\mathcal{C} = \langle C, \leq, \Vdash \rangle$ jest **modelem Kripkego** wtedy :

- \circ $c \Vdash \phi \land \psi \Leftrightarrow c \Vdash \phi \mid c \Vdash \psi$
- \bullet $c \Vdash \bot$ nie jest prawdą

Wnioski

- **1** $c \Vdash \neg \phi \Leftrightarrow c' \nvDash \phi$ dla każdego $c' \geqslant c$.

Zupełność

Twierdzenie

Poniższe zdanie są równoważne

$$\bullet$$
 $\Gamma \vdash \phi$

- Logika ituicjonistyczna
 - Wstęp
 - Dedukcja Naturalna
 - Algebraiczna Semantyka
 - Fragment implikacyjny
- Izomorfizm Curry'ego Howarda
 - Bezkontekstowa dedukcja naturalna
 - Izomorfizm Curry'ego Howarda
 - Ćwiczenia

Logika inuicjonistyczna z samą impllikacją

Twierdzenie

Rachunek zdań z samą implikacją jest zupełny w kontekscie modelu Kripkego. :

- \bullet $\Gamma \vdash \phi$

są równoważne.

Twierdzenie

Niech ϕ zdanie implikacyjne, a Γ zbiór formuł implikacyjnych. Jeśli $\Gamma \vdash \phi$ jest prawdą w rachunku intuicjonistycznym to jest też prawdą w rachunku z samymim implikacjami.

- Logika ituicjonistyczna
 - Wstęp
 - Dedukcja Naturalna
 - Algebraiczna Semantyka
 - Fragment implikacyjny
- Izomorfizm Curry'ego Howarda
 - Bezkontekstowa dedukcja naturalna
 - Izomorfizm Curry'ego Howarda
 - Ćwiczenia

Dedukcja bez kontekstu

Założenia są umieszczane w liściu drzewa i uwalniane w momencie kiedy stosujemy w dowodzie wprowadzenie implikacji.

Normalizacja dowodów

Niektóre dowody wprowadzają nowe spójniki, tylko po to, żeby je wyeliminować później

Example

$$\frac{[\varphi]^{(3)}}{\varphi \to \varphi^{(3)}}$$

$$\psi \to \varphi \to \varphi^{(2)}$$

Normalizacja dowodów

- Logika ituicjonistyczna
 - Wstęp
 - Dedukcja Naturalna
 - Algebraiczna Semantyka
 - Fragment implikacyjny
- Izomorfizm Curry'ego Howarda
 - Bezkontekstowa dedukcja naturalna
 - Izomorfizm Curry'ego Howarda
 - Ćwiczenia

Izomorfizm Currego Howarda

Definicja

Będziemy rozpatrywać część implikacyjną logiki inuicjonistycznej.

- Jeśli $\Gamma \vdash M : \phi$ to $|\Gamma| \vdash \phi$ gdzie $|\cdot|$ oznacza zbiór typów zbioru zmiennych.
- ② Jeśli $\Gamma \vdash \phi$ to istnieje $M \in \Lambda_{\pi}$ takie, że $\Delta \vdash M : \phi$ gdzie $\Delta = \{(X_{\phi} : \phi) | \phi \in \Gamma\}$

Dowód - indukcja po konstrukcji formuły / dowodu.

Izomorfizm Currego Howarda a logika intuicjonistyczna

Aby rozszerzyć izomorfizm do pełnego rachunku zdań logiki intuicjonistycznej należy dołożyć następujące typy do prostego typowango rachunku lambda.

$$\begin{array}{lll} \Lambda_{\Pi} & ::= & \dots & | <\Lambda_{\Pi}, \Lambda_{\Pi} > | \pi_{1}(\Lambda_{\Pi}) | \pi_{2}(\Lambda_{\Pi}) \\ & & | \operatorname{in}_{1}^{\psi \vee \varphi}(\Lambda_{\Pi}) | \operatorname{in}_{2}^{\psi \vee \varphi}(\Lambda_{\Pi}) | \operatorname{case}(\Lambda_{\Pi}; V.\Lambda_{\Pi}; V.\Lambda_{\Pi}) \end{array}$$

Izomorfizm Currego Howarda a logika intuicjonistyczna

Należy dołożyć także dodatkowe zasady typowanie i redukcji

$$\begin{split} \frac{\Gamma \vdash M : \psi \quad \Gamma \vdash N : \varphi}{\Gamma \vdash < M, N > : \psi \land \varphi} & \frac{\Gamma \vdash M : \psi \land \varphi}{\Gamma \vdash \pi_1(M) : \psi} & \frac{\Gamma \vdash M : \psi \land \varphi}{\Gamma \vdash \pi_2(M) : \varphi} \\ \\ \frac{\Gamma \vdash M : \psi}{\Gamma \vdash \operatorname{in}_1^{\psi \lor \varphi}(M) : \psi \lor \varphi} & \frac{\Gamma \vdash M : \varphi}{\Gamma \vdash \operatorname{in}_2^{\psi \lor \varphi}(M) : \psi \lor \varphi} \\ \\ \frac{\Gamma \vdash L : \psi \lor \varphi}{\Gamma \vdash \operatorname{case}(L; x.M; y.N) : \rho} \\ \\ \pi_1(< M_1, M_2 >) & \to M_1 \\ \pi_2(< M_1, M_2 >) & \to M_2 \\ \\ \operatorname{case}(\operatorname{in}_1^{\varphi}(N); x.K; y.L) & \to K\{x := N\} \\ \operatorname{case}(\operatorname{in}_1^{\varphi}(N); x.K; y.L) & \to L\{y := N\} \\ \end{split}$$

Przedstawienie dowodu jako λ termu

 $\lambda \rightarrow$

reduction

value

Można zauważyć podobieństwa pomiędzy cechami dowodu a cechami λ -termu.

```
term variable
                                        assumption
                                   construction (proof)
     term
                                   propositional variable
 type variable
                                          formula
      type
                                        connective
type constructor
  inhabitation
                                        provability
 typable term
                               construction for a proposition
     redex
                   construction representing proof tree with redundancy
```

 $IPC(\rightarrow)$

normalization

normal construction

Przedstawienie dowodu jako λ termu - redukcja

$$\frac{y:\psi \vdash y:\psi}{\vdash \lambda y:\psi \cdot y:\psi \to \psi} \frac{x:\varphi \vdash x:\varphi}{\vdash \lambda x:\varphi \cdot x:\varphi \to \varphi}$$
$$\frac{\vdash <\lambda x:\varphi \cdot x,\lambda y:\psi \cdot y>:(\varphi \to \varphi) \land (\psi \to \psi)}{\vdash \pi_1(<\lambda x:\varphi \cdot x,\lambda y:\psi \cdot y>):\varphi \to \varphi}$$

Własność silnej redukcji

<u>Tw</u>ierdzenie

Każda redukcja termu typowanego rachunku lambda ma skończoną długość.

- Logika ituicjonistyczna
 - Wstęp
 - Dedukcja Naturalna
 - Algebraiczna Semantyka
 - Fragment implikacyjny
- Izomorfizm Curry'ego Howarda
 - Bezkontekstowa dedukcja naturalna
 - Izomorfizm Curry'ego Howarda
 - Ćwiczenia

Własność silnej redukcji

- Udowodnij w systemie dedukcji naturalnej używając termów logiki inuicjonistycznej. Staraj się aby powstały dowód był znormalizowany.
 - $1 \rightarrow p$
 - $p \to \neg \neg p$
- Znajdź lambda termy odpowiadające tym dowodom.
- **③** Udowodnij, że a ≤ b ⇔ a ∪ b = b zdefiniowana na algebrze boolowskiej jest porządkiem częściowym oraz:
 - $a \cap b \leq a$
 - $a \leq b$ wtw $a \cap b = a$
 - $\bigcirc \cap, \cup \text{ to odpowiednio infimum i supremum względem porządku } \leqslant$
 - 0 i 1 to odpowiednio naimieiszy i naiwiekszy element w tym

Sources I

- Morten Heine B. Sørensen, Paweł Urzyczyn Lectures on the Curry-Howard Isomorphism.
- Paweł Urzyczyn Materiały do wykładu Rachunek Lambda.