Programación Lógica

Fundamentos teóricos: Resolución

Instituto de Computación - Facultad de Ingeniería

Objetivos

- Regla de resolución para cláusulas de 1er orden
- Refinamientos de la resolución
 - Resolución lineal
 - Resolución con cláusulas de entrada
 - Resolución SLD
- Mecanismo de ejecución de Prolog y árbol-SLD

Resolución en 1er orden

Unificador más general (m.g.u.)

θ es un mgu para E1 y E2 si:

- a. θ es un unificador para E1 y E2 y
- b. si σ es un unificador para E1 y E2 , existe una sustitución γ t.q. $\theta \circ \gamma = \sigma$

Resolución

$$\frac{\alpha \ v \ \beta, \ \gamma \ v \ \neg \beta}{\alpha \ v \ \gamma}$$

- Combinando estos 2 conceptos definiremos resolución para 1er orden.
- Nos restringimos a cláusulas.

```
C1: \{p(X), q(f(X),a), \neg r(Y)\}
```

C2: $\{s(Z), t(a), \neg q(f(b), Z)\}$

Podemos aplicar resolución entre C1 y C2?

```
C1: \{p(X), q(f(X),a), \neg r(Y)\}
```

C2: $\{s(Z), t(a), \neg q(f(b), Z)\}$

Podemos aplicar resolución entre C1 y C2?

No hay literales complementarios, pero podemos hacer que dos literales sean complementarios mediante sustituciones.

```
C1: \{p(X), q(f(X),a), \neg r(Y)\}
```

C2: $\{s(Z), t(a), \neg q(f(b), Z)\}$

Podemos aplicar resolución entre C1 y C2?

No hay literales complementarios, pero podemos hacer que dos literales sean complementarios mediante sustituciones.

Debemos hacer idénticos q(f(X),a), q(f(b),Z)

```
C1: \{p(X), q(f(X),a), \neg r(Y)\}
```

C2: $\{s(Z), t(a), \neg q(f(b), Z)\}$

Podemos aplicar resolución entre C1 y C2?

No hay literales complementarios, pero podemos hacer que dos literales sean complementarios mediante sustituciones.

Debemos hacer idénticos q(f(X),a), q(f(b),Z)

Para ello buscamos θ , mgu { q(f(X),a), q(f(b),Z) }

```
C1: {p(X), q(f(X),a), ¬r(Y)}

C2: {s(Z), t(a), ¬q(f(b),Z)}

Para ello buscamos \theta , mgu { q(f(X),a) , q(f(b),Z) } , \theta = { X/b, Z/a}
```

Y aplicamos el unificador a ambas cláusulas:

```
C1 \theta : {p(X), q(f(X),a), ¬r(Y)} = {p(b), q(f(b),a), ¬r(Y)}
C2 \theta : {s(Z), t(a), ¬q(f(b),Z) } = {s(a), t(a), ¬q(f(b),a) }
```

La resolvente es C3: $\{p(b), \neg r(Y), s(a), t(a)\}$

```
C1: \{p(X), q(f(X),a), \neg r(Y)\}
```

C2: $\{s(Z), t(a), \neg q(f(b), Z)\}$

Por qué el mgu y no un unificador cualquiera?

Para ello buscamos θ , mgu { q(f(X),a), q(f(b),Z) }, θ = { X/b, Z/a}

Y aplicamos el unificador a ambas cláusulas:

```
C1 \theta : {p(X), q(f(X),a), ¬r(Y)} = {p(b), q(f(b),a), ¬r(Y)}
C2 \theta : {s(Z), t(a), ¬q(f(b),Z) } = {s(a), t(a), ¬q(f(b),a) }
```

La resolvente es C3: $\{p(b), \neg r(Y), s(a), t(a)\}$

```
C1: \{p(X), q(f(X),a), \neg r(Y)\}
```

C2:
$$\{s(Z), t(a), \neg q(f(b), Z)\}$$

Por qué el mgu y no un unificador cualquiera?

Para ello buscamos θ , mgu { q(f(X),a), q(f(b),Z) }, θ = { X/b, Z/a}

Y aplicamos el unificador a ambas cláusulas:

```
C1 \theta : {p(X), q(f(X),a), ¬r(Y)} = {p(b), q(f(b),a), ¬r(Y)}
C2 \theta : {s(Z), t(a), ¬q(f(b),Z) } = {s(a), t(a), ¬q(f(b),a) } ¬
```

Por qué aplicar el mgu a toda la clásula ?

La resolvente es C3: $\{p(b), \neg r(Y), s(a), t(a)\}$

```
Def.
Para C1 y C2 cláusulas de 1er orden, <mark>sin variables en común</mark>
```

```
C1: {L1, L2, ..., Ln}
C2: {M1, M2, ..., Mh}
θ, mgu de Li y ¬Mj
```

```
resolvente C3 : 
 {L1 , L2 , ... , Li-1 , Li+1 , ... , Ln , M1 , ... , Mj-1 , Mj+1 , ... , Mh} \theta
```

Correctitud.

• Sean C1 y C2 dos cláusulas de 1er orden. Si R es una resolvente de C1 y C2 se cumple:

C1, C2
$$\models$$
 R

Correctitud.

Sean C1 y C2 dos cláusulas de 1er orden. Si R es una resolvente de C1 y C2 se cumple:

C1, C2
$$\models$$
 R

- 1. C \models C θ , C cláusula, θ sustitución cualquiera
- 2. A v B y C v \neg B \models A v C, siendo A, B y C flas. de 1er orden cualesquiera

Completitud.

$$S \models C \text{ implica } S \models R C ?$$

Completitud.

$$S \models C \text{ implica } S \mid -R C ?$$

No podemos derivar p(f(y)) a partir de p(x), aunque $p(x) \neq p(f(y))$

Sí podemos probar $\{p(x), \neg p(f(y))\}\$ es inconsistente.

Procedimientos de resolución

Aplicación sistemática de resolución

- Saturación por niveles
- Resolución lineal
- Resolución con cláusula de entrada

Ejs.-
S = {{p,q}, {
$$\neg$$
p,q}, {p, \neg q}, { \neg p, \neg q}}

$$S^0 = S$$

 $S^{i+1} = \{ resolventes \ de \ C1 \ \epsilon \ (S^0 \ U \ ... \ U \ S^i) \ y$
 $C2 \ \epsilon \ S^i \}$

- Se resuelven sistemáticamente todas las cláusulas entre si.
- Se para cuando $\square \in S^i$

```
S^{0} = S
S^{H1} = \{ resolventes \ de \ C1 \ \epsilon \ (S^{0} \ U \ ... \ U \ S^{0} ) \ y
C2 \ \epsilon \ S^{0} \}
S = \{ \{p,q\}, \{\neg p,q\}, \{p,\neg q\}, \{\neg p,\neg q\} \}
```

```
S^{0} = S
S^{H1} = \{ resolventes \ de \ C1 \ \epsilon \ (S^{0} \ U \ ... \ U \ S^{i}) \ y \ C2 \ \epsilon \ S^{i} \}
S = \{ \{p,q\}, \{\neg p,q\}, \{p, \neg q\}, \{\neg p, \neg q\} \}
```

```
S^{0} = \{\{p,q\}, \{\neg p,q\}, \{p, \neg q\}, \{\neg p, \neg q\}\}\}
S^{1} = \{\{p,q\}, \{\neg p,q\}, \{p, \neg q\}, \{\neg p, \neg q\}, \{q\}, \{p\}, \{\neg q\}\}\}
S^{2} = \{\{p,q\}, \{\neg p,q\}, \{p, \neg q\}, \{\neg p, \neg q\}, \{q\}, \{p\}, \{\neg q\}, \dots, \square, \}
```

```
S^{0} = S
S^{H1} = \{ resolventes \ de \ C1 \ \epsilon \ (S^{0} \ U \ ... \ U \ S^{i}) \ y
C2 \ \epsilon \ S^{i} \}
S = \{ \{p,q\}, \{\neg p,q\}, \{p,\neg q\}, \{\neg p,\neg q\} \}
```

```
S^{0} = \{\{p,q\}, \{\neg p,q\}, \{p, \neg q\}, \{\neg p, \neg q\}\}\}
S^{1} = \{\{p,q\}, \{\neg p,q\}, \{p, \neg q\}, \{\neg p, \neg q\}, \{q\}, \{p\}, \{\neg q\}\}\}
S^{2} = \{\{p,q\}, \{\neg p,q\}, \{p, \neg q\}, \{\neg p, \neg q\}, \{q\}, \{p\}, \{\neg q\}, \dots, \square, \}
```

Procedimiento seguro pero muy costoso!!

Refinamientos de la resolución

 El método general (saturación por niveles) es muy costoso.

- Se proponen refinamientos para evitar resolver todas las cláusulas contra todas.
 - Resolución lineal
 - Resolución con cláusulas de entrada
- Se debe analizar la completitud.

Resolución lineal

- En cada paso de resolución, una de las cláusulas es la resolvente del paso anterior.
- Ej. $\{\{p, \neg q, r\}, \{q, s\}, \{\neg s\}, \{\neg r\}\}$
- La resolución lineal es completa.
- Atención !! La elección de la cláusula inicial influye.

```
\{\{p, \neg q, r\}, \{q, s\}, \{\neg s\}, \{\neg r\}, \{a, b, c\}\}\}
```

Resolución lineal

- En cada paso de resolución, una de las cláusulas es la resolvente del paso anterior.
- Ej. {{p,¬q,r}, {q, s}, {¬s}, {¬r}}
- La resolución lineal es completa.
- Atención !! La elección de la cláusula inicial influye.

```
\{\{p, \neg q, r\}, \{q, s\}, \{\neg s\}, \{\neg r\}, \{a, b, c\}\}\}
```

- Es completa sin restricciones para conjuntos mínimamente insatisfactibles.
- Conjunto mínimamente insatisfactible: queda satisfactible si eliminamos una cláusula cualquiera.

Resolución con cláusula de entrada

 Resolución lineal en donde una de la clásulas pertenece al conjunto S de entrada.

No es completa.

Resolución con cláusula de entrada

- Resolución lineal en donde una de la clásulas pertenece al conjunto S de entrada.
- No es completa.

Considerar:

$$S = \{\{p,q\}, \{\neg p,q\}, \{p,\neg q\}, \{\neg p,\neg q\}\}\}$$

todas las clásulas tienen dos literales, lo que hace que cualquier resolvente siempre tenga al menos un literal.

Resolución SLD

 La resolución con cláusula de entrada es completa para cláusulas de Horn (cláusulas definidas + objetivo).

SLD = Selection Linear Definite

 En el primer paso de resolución interviene necesariamente el objetivo. Por qué?

Resolución SLD

• Ejemplo:

```
p(x):- q(x), p(a).
```

q(b).

p(a).

r(c).

r(b)

Objetivo:

?- p(Z),r(Z).

Resolución SLD

Def. Resolvente-SLD.

Sea P un programa definido,

G un objetivo, \leftarrow A1,...,An

G' es la **resolvente SLD** de G y una cláusula

 $A \leftarrow B1,...,Bn$ de P con mgu θ si:

- Am es un átomo (átomo seleccionado) de G
- $-\theta$ es un mgu de Am y A
- − G' es ←(A1,...,Am-1,B1,...,Bn,Am+1,...,An)θ

Derivación SLD

Sea P un programa definido, G un objetivo definido ← A1,...,An.

Una **derivación-SLD** de $P \cup \{G\}$ es

- una secuencia G0=G, G1, G2,... de objetivos,
- una secuencia C1,C2,... de variantes de cláusulas de P y
- una secuencia θ 1, θ 2,... de mgus tal que cada Gi+1 se deriva de Gi y Ci con unificador θ i.

Refutación SLD

Una refutación-SLD para $P \cup \{G\}$ es una derivación-SLD finita cuyo último objetivo es \square .

Procedimientos de refutación-SLD.

- El objetivo de un interpréte es, dado un programa P y una consulta C, encontrar una refutación-SLD para P \cup {G}, siendo G = \neg C.
- Una refutación está compuesta por una cantidad finita de pasos de resolución-SLD. En cada uno de estos pasos hay 2 aspectos que podrían resolverse de más de un modo:
 - cuál es el átomo del objetivo que se selecciona para reducir
 - cuál es la cláusula del programa que reduce con el átomo seleccionado del objetivo.

Respuesta computada

Def.-Respuesta computada.

 Una respuesta computada para P ∪{G} es la sustitución obtenida restringiendo a las variables de G la composición de mgus utilizados en una refutación-SLD de P ∪ {G}.

• La correctitud de la resolución-SLD ya fue demostrada (fue demostrada respecto a resolución en general, se cumple para resolución-SLD). Es posible demostrar además un resultado de correctitud respecto a la respuesta computada.

Respuesta correcta

Def. Respuesta correcta.

Sea P un programa lógico, G un objetivo, θ una sustitución para las variables de G, θ es una respuesta correcta si

 $\forall x1...\forall xk((A1,A2,...,Ak)\theta)$ es consecuencia lógica de P.

Respuesta computada / correcta

Nos interesa establecer relaciones entre respuestas computadas y correctas

1- ¿Toda respuesta computada es una respuesta correcta?

2-¿Toda respuesta correcta es una respuesta computada?

Completitud de resolución-SLD

Para cláusulas definidas la resolución-SLD es completa.

En otros términos, si $P \cup \{G\}$ es insatisfactible, existe una refutación-SLD para $P \cup \{G\}$.

Completitud respecto a respuestas

```
Si \theta es una respuesta correcta, existe una respuesta computada \sigma y una sustitución \gamma tales que \theta = \sigma \gamma. (Notar que las respuestas correctas no son necesariamente las más generales).
```

Regla de computación:

Política de selección del siguiente átomo a reducir en un objetivo.

La regla de computación no afecta la existencia de una refutación-SLD.

Considerando una regla de computación fija, el espacio de búsqueda (asociado a las distintas formas de elegir las cláusulas del programa) es un árbol.

Lo llamamos árbol-SLD.

Def. Sea P un programa lógico, G un objetivo.

Un **árbol-SLD para P** \cup **{G**} es un árbol que satisface:

- 1. Todo nodo es un objetivo (eventualmente vacío)
- 2. La raíz es G
- 3. Sea ← A1,...,Am,...,Ak , k>0, un nodo del árbol. Supongamos que Am es el átomo seleccionado. Entonces, para toda cláusula A ← B1,...,Bq tal que Am y A unifican con mgu θ, hay un hijo cuyo objetivo es la resolvente-SLD entre el objetivo y la cláusula: ← (A1,...Am-1,B1,...,Bq,Am+1,...,Ak)θ
- 4. Los nodos con la cláusula vacía no tienen hijos

- Cada rama del árbol SLD corresponde a una posible derivación SLD.
- Por lo tanto, el árbol SLD representa todas las posibles derivaciones SLD a partir de un objetivo, utilizando una determinada regla de computación.
- La regla de computación determina las ramas del árbol: para un mismo programa lógico y objetivo, el árbol SLD posiblemente cambie al cambiar la regla de computación.
- A las ramas que corresponden a refutaciones (la hoja es un objetivo vacío) se les llama ramas exitosas.
- A las ramas que corresponden a derivaciones infinitas se les llama ramas infinitas.
- A las ramas que corresponden a derivaciones fallidas se les llama ramas de falla.

Ejemplo

```
p(X,Z) \leftarrow q(X,Y), p(Y,Z)

p(X,X)

q(a,b)

Consulta : p(X,b)
```

con Reglas de Computación:

- 1 átomo de más a la izquierda
- 2 átomo de más a la derecha

Refutación SLD

Independencia de la regla de computación

Sea P un programa lógico, G un objetivo : Si existe una refutación-SLD para P \cup {G} con respuesta computada θ , entonces para cualquier regla de computación R existe una refutación-SLD con respuesta computada θ ', tal que G θ ' es una variante de G θ .

Procedimiento de refutación SLD

Definición

Una regla de computación junto a una estrategia de búsqueda en un árbol SLD definen un **procedimiento de refutación SLD**.

Dos estrategias clásicas: BFS y DFS.

- Si el árbol es finito, ambas llegan a todos los nodos del árbol (posiblemente en distinto orden).
- Si no, BFS sigue llegando a cualquier nodo en una cantidad finita de pasos pero DFS no (aunque es más eficiente).

Procedimiento de refutación SLD

Un intérprete Prolog estándar utiliza el siguiente procedimiento de refutación SLD:

- regla de computación: elegir el átomo de más a la izquierda.
- estrategia de búsqueda: en profundidad, eligiendo las ramas del árbol según el orden de aparición de las cláusulas en el programa.

Por lo tanto, Prolog es incompleto: existen objetivos para los cuales hay alguna refutación SLD que el intérprete es incapaz de encontrar.

Resumen

- Resolución en 1er orden
- Algunos refinamientos, completitud
- Resolución-SLD
 - Derivación
 - Refutación
 - Árbol-SLD
 - Rama de éxito, rama fallida, rama infinita
- Cómo implementa Prolog la resolución-SLD

Próxima: predicados extralógicos

- Cut
- fail, not
- Análisis de terminos