MTH 9821 Numerical Methods for Finance I Lecture 5 & 6–Monte Carlo Method

1 Monte Carlo Methods for Evaluating Integrals

$$I = \int_0^1 f(x)dx$$

Note: $\int_0^1 f(x)dx = E[f(U)]$, where U = Uniform([0,1])

Procedure:

- Generate independent samples U_1, U_2, \dots, U_n of U
- Let $X_i = f(U_i)$, then $E(X_i) = E(f(U)) = I$ By SLLN,

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} E(X) = I$$

Convergence:

If
$$\int_0^1 |f(x)|^2 dx < \infty \Rightarrow var(X) = var(f(U)) < \infty$$
, $(f(x) \text{ is a } L^2 \text{ function.})$
By CLT, $\frac{\frac{1}{n} \sum_{i=1}^n X_i - I}{\frac{\sigma_X}{\sqrt{n}}} \xrightarrow{d} Z$

Approximation Error:

$$\left| \frac{1}{n} \sum_{i=1}^{n} X_i - I \right| = O\left(\frac{1}{\sqrt{n}}\right)$$

Comments:

- Monte Carlo simulation converges at the rate $\frac{C}{\sqrt{n}}$ where n is the number of sample values, $C = \sigma_X$. Therefore, in order to optimize the speed, we need to generate random variables with smaller variation.
- The convergence of Monte Carlo method is $O\left(\frac{1}{\sqrt{n}}\right)$.
 - Convergence is actually slow.
 - Finite difference methods, on the other hand, converge at rate $O\left(\frac{1}{n^2}\right)$ for two dimensional PDEs (faster).

2 Advantages and Disadvantages of Monte Carlo Method

- Advantages:
 - Simple to code
 - Very efficient for path-dependent securities:
 - Works well for multi-asset derivative securities.
 - Disadvantages:
 - Converges slowly: computationally expensive
 - Challenging to apply for American options:
 - Difficult to compute Greeks

3 Monte Carlo Method for Non-path-dependent Single Asset Derivative Securities

3.1 Securities Pricing

* Generate independent samples of S(T), denoted S_1, S_2, \dots, S_n e.g., to valuate derivative security on underlying asset with lognormal distribution: generate Z_1, Z_2, \dots, Z_n independent samples of Z,

$$S_i = S(0)exp\left(\left(r - q - \frac{\sigma^2}{2}\right)T + \sigma\sqrt{T}Z_i\right), \quad \forall i = 1:n$$

* Compute

$$V_i = e^{-rT}V(S_i), \quad \hat{V}(n) = \frac{1}{n}\sum_{i=1}^n V_i$$

* Then

$$|\hat{V}(n) - V(0)| = O(\frac{1}{\sqrt{n}})$$

For example, put option

$$V(0) = e^{-rT} \mathbb{E}_{RN} \left(\max(K - S(T), 0) \right)$$

$$\star \quad S_i \to S(T) : \quad \text{generate } S_i \quad \forall i = 1 : n$$

$$\star \quad V_i \to V(0) : \quad V_i = e^{-rT} \max \left(K - S_i, 0 \right)$$

$$\star \quad \hat{V}(n) = \frac{1}{n} \sum_{i=1}^n V_i$$

$$|\hat{V}(n) - P_{BS}| = O(\frac{1}{\sqrt{n}})$$

Remark:

- There's no rule for convergence when using Monte Carlo Methods for vanilla European options. We can use the same sample of normal random variables for variance reduction.
- Why comparing with Black Scholes? Because BS and MC both follow the lognormal assumption.

3.2 Greeks Computations

3.2.1 Delta

$$\Delta = \frac{\partial V(0)}{\partial S(0)} = \frac{\partial V(0)}{\partial S(T)} \frac{\partial S(T)}{\partial S(0)}$$
 where
$$\frac{dS(T)}{dS(0)} = \exp\left(\left(r - q - \frac{\sigma^2}{2}\right)T + \sigma\sqrt{T}Z_i\right) = \frac{S(T)}{S(0)}$$

For example, put option

$$V(0) = e^{-rT} \mathbb{E}_{RN} \left(\max(K - S(T), 0) \right)$$

$$\star \quad S_{i} \to S(T) : \quad \text{generate } S_{i} \quad \forall i = 1 : n$$

$$\star \quad V_{i} \to V(0) : \quad V_{i} = e^{-rT} \max \left(K - S_{i}, 0 \right)$$

$$\star \quad \text{Thus,} \quad \frac{\partial V_{i}}{\partial S_{i}} = e^{-rT} \begin{cases} -1, & \text{if } S_{i} < K \\ 0, & \text{if } S_{i} > K \end{cases} = e^{-rT} \mathbb{1}(S_{i} < K)$$

$$\star \quad \Delta_{i} = -e^{-rT} \mathbb{1}(S_{i} < K) \frac{S_{i}}{S(0)}$$

$$\star \quad \frac{1}{n} \sum_{i=1}^{n} \Delta_{i} \to \Delta_{BS}(p)$$

For call option

$$\star \quad S_{i} \to S(T) : \quad \text{generate } S_{i} \quad \forall i = 1 : n$$

$$\star \quad V_{i} \to V(0) : \quad V_{i} = e^{-rT} \max \left(S_{i} - K, 0 \right) = e^{-rT} (S_{i} - K) \mathbb{1}(S_{i} > K)$$

$$\star \quad \frac{\partial V_{i}}{\partial S_{i}} = e^{-rT} \mathbb{1}(S_{i} > K)$$

$$\star \quad \Delta_{i}(c) = e^{-rT} \mathbb{1}(S_{i} > K) \frac{S_{i}}{S(0)}$$

$$\star \quad \frac{1}{n} \sum_{i=1}^{n} \Delta_{i}(c) \to \Delta_{BS}(p)$$

 $V(0) = e^{-rT} \mathbb{E}_{RN} \left(\max(S(T) - K, 0) \right)$

Remark: This above calculation also satisfies Put-Call Parity.

$$C-P \ = \ Se^{-qT} - Ke^{-rT} \ \Rightarrow \ \Delta(c) - \Delta(p) \ = \ e^{-qT}$$

We can prove that $\frac{1}{n}\sum_{i=1}^{n}\Delta_i(c) - \frac{1}{n}\sum_{i=1}^{n}\Delta_i(p) \rightarrow \Delta(c) - \Delta(p) = e^{-qT}$

$$\frac{1}{n} \sum_{i=1}^{n} \Delta_{i}(c) - \frac{1}{n} \sum_{i=1}^{n} \Delta_{i}(p) = e^{-rT} \frac{1}{nS(0)} \sum_{i=1}^{n} S_{i} (\mathbb{1}(S_{i} > K) + \mathbb{1}(S_{i} < K))$$

$$= e^{-rT} \frac{1}{nS(0)} \sum_{i=1}^{n} S_{i}$$

$$\rightarrow e^{-rT} \frac{1}{S(0)} E_{RN}(S(T)) = e^{-rT} \frac{1}{S(0)} S(0) e^{(r-q)T} = e^{-qT}$$

3.2.2 Vega

$$\Delta = \frac{\partial V(0)}{\partial \sigma} = \frac{\partial V(0)}{\partial S(T)} \frac{\partial S(T)}{\partial \sigma}$$
 where
$$\frac{dS(T)}{d\sigma} = S(T)(-\sigma T + \sqrt{T}Z)$$

For example, put option

$$V(0) = e^{-rT} \mathbb{E}_{RN} \left(\max(K - S(T), 0) \right)$$

- $\star S_i \to S(T)$: generate $S_i \forall i = 1: n$
- $\star V_i \to V(0): V_i = e^{-rT} \max \left(K S_i, 0\right)$

* Thus,
$$\frac{\partial V_i}{\partial S_i} = e^{-rT} \begin{cases} -1, & \text{if } S_i < K \\ 0, & \text{if } S_i > K \end{cases} = e^{-rT} \mathbb{1}(S_i < K)$$

$$\star \quad Vega_i = -e^{-rT}\mathbb{1}(S_i < K)(-\sigma T + \sqrt{T}Z)$$

$$\star \quad \frac{1}{n} \sum_{i=1}^{n} Vega_i \to Vega_{BS}(p)$$

4 Monte Carlo Method for Path-dependent Derivatives

* Simulate n paths of the underlying asset, each path discretized between t=0 and t=T using m time steps of length $\delta_t = \frac{T}{m}$.

* Generate $N = m \cdot n$ independent samples of Z, then use $Z_0, Z_1, \ldots, Z_{m-1}$ to generate one path as follows:

$$S(t_{j+1}) = S(t_j) \exp\left((r - q - \frac{\sigma^2}{2})\delta_t + \sigma\sqrt{\delta_t}Z_j\right), \quad \forall j = 0 : (m-1)$$

where $t_j = j\delta_t$, j = 0: m

Remark: From $dS = (r - q)Sdt + \sigma SdX$, how should we discretize?

Choice 1: (No)

$$dS = (r - q)Sdt + \sigma SdX$$

$$\Rightarrow S(t_{j+1}) - S(t_j) = (r - q)S(t_j)\delta_t + \sigma S(t_j) \big(X(t_{j+1}) - X(t_j)\big)$$
Note that $X(t_{j+1}) - X(t_j) \sim N(0, t_{j+1} - t_j) \sim N(0, \delta_t)$

$$\Rightarrow S(t_{j+1}) - S(t_j) = (r - q)S(t_j)\delta_t + \sigma S(t_j)\sqrt{\delta_t}Z_j$$

$$\Rightarrow S(t_{j+1}) = S(t_j) \big[(r - q)\delta_t + \sigma\sqrt{\delta_t}Z_j + 1 \big]$$

Note that it's possible (though with small possibility) that $[(r-q)\delta_t + \sigma\sqrt{\delta_t}Z_j + 1] < 0$, which makes $S(t_{j+1}) < 0$.

Choice 2: (Yes)

$$dS = (r - q)Sdt + \sigma SdX$$

$$\Rightarrow d \ln S = (r - q - \frac{\sigma^2}{2})dt + \sigma dX \quad \text{(Ito's Lemma)}$$

$$\Rightarrow \ln \left(\frac{S(t_{j+1})}{S(t_j)}\right) = (r - q - \frac{\sigma^2}{2})\delta_t + \sigma \sqrt{\delta_t} Z_j$$

$$\Rightarrow S(t_{j+1}) = S(t_j) \exp \left((r - q - \frac{\sigma^2}{2})\delta_t + \sigma \sqrt{\delta_t} Z_j\right)$$

Remark:

Convergence order of MC simulations for path dependent derivative securities depends both on n, the number of simulations as $O\left(\frac{1}{\sqrt{n}}\right)$, and also on δ_t , the time step of the discretization as $O\left(\delta_t\right)$.

Order of convergence is $O\left(\max\left(\frac{1}{\sqrt{n}}, \delta_t\right)\right)$.

To achieve optimal convergence speed, we try to make

$$\delta_t \approx \frac{1}{\sqrt{n}} \implies \frac{T}{m} \approx \frac{1}{\sqrt{n}} \implies n \approx \frac{m^2}{T^2}$$

Recall that

$$m \cdot \frac{m^2}{T^2} \approx N \Longrightarrow \ \frac{T}{m} \approx \sqrt[3]{\frac{T}{N}}$$

e.g., $T=1, N=1,000,000, m \approx \sqrt[3]{N}T^{\frac{2}{3}}=100$, it's approximately twice a week.

5 Methods for Generating Standard Normal Samples

- 1. Inverse Transform Method
- 2. Acceptance-Rejection Method
- 3. Box-Muller Method (with Marsaglia-Bray Algorithm)

We first need to generate samples of uniform random variables

Linear Congruential Generator of Uniform Random Variables

The generator takes the form

- Choose x_0, a, c, m positive integers
- Generate u_1, u_2, \ldots , form U[0, 1] as follows:

```
\begin{aligned} & \textbf{for } i = 0: N \\ & x_{i+1} = (ax_i + c) \mod m; \\ & u_{i+1} = \frac{x_{i+1}}{m}; \\ & \textbf{end} \end{aligned}
```

Good choice for x_0, a, c, m requires

- (1) c, m are relatively prime, i.e., (c, m) = 1 (common divisor)
- (2) every prime number that divides m divides a-1, i.e., $p|m \Rightarrow p|(a-1)$
- (3) a-1 is divisible by 4 if m is, i.e., $4|m \Rightarrow 4|(a-1)$

Linear Congruential Generators are effective since

- (1) Period has maximal length (m) if a, m, c are chosen properly
- (2) Fast it requires fewer operations to generate each sample
- (3) Portable it generates the same sequence of random numbers on different platforms
- (4) good randomness properties

5.1 Inverse Transform Method

Find samples of the random variable X with cumulative distribution function F(x): Given u_1, u_2, \ldots, u_n samples of U = Unif[0, 1],

$$x_i = F^{-1}(u_i), \ \forall i \ge 1$$

where x_1, x_2, \ldots, x_n are samples of X.

We can easily check as follows:

Let $Y = F^{-1}(U)$,

$$\mathbb{P}(Y \le a) = \mathbb{P}(F^{-1}(U) \le a) = \mathbb{P}(U \le F(a)) = F(a) = \mathbb{P}(X \le a)$$

$$\Rightarrow Y = F^{-1}(U) = X$$

e.g., for standard normal random variable,

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt$$

solve F(x) = y for x, given y.

(See class handout page 67 69 for more detailed computation)

5.2 Acceptance-Rejection Method

Goal: generate samples of random variable with pdf f(x) using samples of a random variable with pdf g(x) (which we already know how to generate, e.g., by using inverse transform method), and there exists a constant $c \in \mathbb{R}$ s.t. $f(x) \leq cg(x)$, $\forall x \in \mathbb{R}$.

Do: generate sample from g and accept it with probability $\frac{f(x)}{cq(x)}$

Step 1: Generate X from g

Step 2: Generate $U \sim Unif([0,1])$

Step 3: If $U \leq \frac{f(x)}{cg(x)}$, return X; else, go to step 1

Following above steps, we have

$$\begin{split} \mathbb{P}(Y \leq \beta) &= \mathbb{P}(X \leq \beta | U \leq \frac{f(x)}{cg(x)}) = \frac{\mathbb{P}\left((X \leq \beta) \cap (U \leq \frac{f(x)}{cg(x)})\right)}{\mathbb{P}\left(U \leq \frac{f(x)}{cg(x)}\right)} \\ \text{where } \mathbb{P}\left(U \leq \frac{f(x)}{cg(x)}\right) &= \int_{-\infty}^{\infty} g(x) \left(\int_{0}^{1} \mathbb{1}_{U \leq \frac{f(x)}{cg(x)}} du\right) dx = \int_{-\infty}^{\infty} g(x) \frac{f(x)}{cg(x)} dx = \frac{1}{c} \int_{-\infty}^{\infty} f(x) dx = \frac{1}{c} \\ \mathbb{P}\left((X \leq \beta) \cap (U \leq \frac{f(x)}{cg(x)})\right) &= \int_{-\infty}^{\beta} g(x) \left(\int_{0}^{1} \mathbb{1}_{U \leq \frac{f(x)}{cg(x)}} du\right) dx = \frac{1}{c} \int_{-\infty}^{\beta} f(x) dx \\ \Rightarrow \mathbb{P}(Y \leq \beta) &= \int_{-\infty}^{\beta} f(x) dx \end{split}$$

Generate samples of standard normal

Goal:

Generate samples of Z with $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

We use double exponential random variable with $g(x) = \frac{1}{2}e^{-|x|}$.

 \star Determine c

$$\frac{f(x)}{g(x)} = \frac{\frac{1}{\sqrt{2\pi}}e^{-x^2/2}}{\frac{1}{2}e^{-|x|}} = \sqrt{\frac{2}{\pi}}e^{|x| - \frac{x^2}{2}} = \sqrt{\frac{2}{\pi}}e^{\frac{1}{2}}e^{-\frac{1}{2}(|x| - 1)^2} \le \frac{2e}{\pi}$$

Thus, we choose $c = \frac{2e}{\pi}$, and $\frac{f(x)}{cq(x)} = e^{-\frac{1}{2}(|x|-1)^2}$

 \star Use inverse transformation method to generate double exponential r.v.

Compute $G(x) = \int_{-\infty}^{x} g(t)dt$

- If x < 0,

$$g(x) = \frac{1}{2}e^{-(-x)} = \frac{1}{2}e^x \implies G(x) = \frac{1}{2}e^x, \ G(0) = \frac{1}{2}$$

- If x > 0,

$$G(x) = G(0) + \int_0^x \frac{1}{2}e^{-t}dt = \frac{1}{2} + \frac{1}{2}(1 - e^{-x}) = 1 - \frac{1}{2}e^{-x}$$

Solve G(x) = y

-
$$x < 0 \Rightarrow y < \frac{1}{2}$$
, solve $\frac{1}{2}e^x = y \Longrightarrow x = \ln(2y)$

-
$$x > 0 \Rightarrow y > \frac{1}{2}$$
, solve $1 - \frac{1}{2}e^{-x} = y \Longrightarrow x = -\ln(2(1-y))$

$$G^{-1}(y) = \begin{cases} \ln(2y), & y < \frac{1}{2} \\ -\ln(2(1-y)), & y > \frac{1}{2} \end{cases} \sim \begin{cases} \ln U, & 0 < U < 1 \\ -\ln U, & 0 < U < 1 \end{cases}$$

choose $c = \sqrt{\frac{2e}{\pi}}$.

Step 0: Generate U_1, U_2, U_3 from U([0,1])

Step 1: $X = -\ln(U_1)$ //generate only positive samples

Step 2: If $U_2 > \exp\left(-\frac{1}{2}(|x|-1)^2\right)$, go to step 0 //acceptance-rejection else, generate U_3 from U([0,1])

If
$$U_3 \le \frac{1}{2}, X = -X$$

Return X

5.3 The Box-Muller Method

Generate a sample from the bivariate normal distribution where each component is a univariate standard normal.

Uniform $U_1, U_2 \Longrightarrow$ Exponential $R \Longrightarrow$ Independent Standard Normals Z_1, Z_2

If Z_1 , Z_2 are independent standard normals, then $R = Z_1^2 + Z_2^2$ is exponential with mean 2.

Recall: Exponential distribution with mean
$$\alpha$$
 \star pdf: $f(x) = \frac{1}{\alpha}e^{-\frac{x}{\alpha}}$, for $x > 0$; CDF: $F(x) = 1 - e^{-\frac{x}{\alpha}}$ \star Inverse function of F : $x = -\alpha \ln(1 - y)$

It's enough to show that $P(R \le a) = P(Z_1^2 + Z_2^2 \le a)$:

$$\begin{split} P(R \leq a) &= F(a) = 1 - e^{-\frac{a}{2}} \\ P(Z_1^2 + Z_2^2 \leq a) &= \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbbm{1}_{x_1^2 + x_2^2 \leq a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_1^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_2^2}{2}} dx_1 dx_2 = \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbbm{1}_{x_1^2 + x_2^2 \leq a} e^{-\frac{x_1^2 + x_2^2}{2}} dx_1 dx_2 \\ \text{Let } x_1 &= r \cos \theta, \ x_2 = r \sin \theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\infty} \mathbbm{1}_{r^2 \leq a} e^{-\frac{r^2}{2}} r dr d\theta = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\sqrt{a}} e^{-\frac{r^2}{2}} r dr d\theta \\ &= \left(-e^{-\frac{r^2}{2}} \right) \bigg|_0^{\sqrt{a}} = 1 - e^{-\frac{a}{2}} \end{split}$$

5.3.1 Implement:

Given R, (Z_1, Z_2) is uniformly distributed on the circle of center O and radius \sqrt{R} , first generate R, then choose a point uniformly on the circle of radius \sqrt{R} .

Generate
$$U_1,\ U_2 \sim Unif([0,1]);$$
 $R = -2\ln(U_1);$
(Note that U_1 and $1 - U_1$ has same distribution.)
$$V = 2\pi U_2;$$

$$Z_1 = \sqrt{R}\cos V,\ Z_2 = \sqrt{R}\sin V;$$
return $Z_1,\ Z_2;$

5.3.2 Marsaglia-Bray Algorithm

An improvement of Box-Muller by avoiding trigonometric functions.

- Let $U_1, U_2 \sim Unif([0,1])$
- For U_1, U_2 inside circle $D(0,1), X = U_1^2 + U_2^2 \sim Unif([0,1])$

$$\begin{split} P(a \leq X \leq b) &= P(a \leq U_1^2 + U_2^2 \leq b) = \iint_{D(0,1)} \mathbbm{1}_{\{a \leq u_1^2 + u_2^2 \leq b\}} \frac{1}{\pi} du_1 du_2 \\ &= \frac{1}{\pi} \int_0^{2\pi} \int_{\sqrt{a}}^{\sqrt{b}} r dr d\theta = \frac{1}{\pi} \dot{2}\pi \dot{\int}_{\sqrt{a}}^{\sqrt{b}} r dr = r^2 \Big|_{\sqrt{a}}^{\sqrt{b}} = b - a \\ &\left((U_1, U_2) \text{ subject to } X < 1 \text{ is uniformly distributed on circle } D(0, 1) \text{ with pdf } \frac{1}{\pi} \right) \end{split}$$

- $X \sim Unif([0,1]) \Rightarrow R = -2\ln(1-X) = -2$ $(1-X) \sim Unif([0,1]) \Rightarrow R = -2\ln(X) = -2, R \sim Exponential(2)$
- Look for $Z_1 = U_1Y$, $Z_2 = U_2Y$ on the circle $(0, \sqrt{R})$, i.e., $Z_1^2 + Z_2^2 = R$. $R = -2\ln(X) = Z_1^2 + Z_2^2 = (U_1^2 + U_2^2)Y^2 = XY^2$.
- Thus, $Y^2 = -2\frac{\ln(X)}{X} \Rightarrow Y = \sqrt{-2\frac{\ln(X)}{X}}$ We get $Z_1 = U_1Y$, $Z_2 = U_2Y$.

while
$$X > 1$$
 do

Generate
$$U_1$$
, $U_2 \sim Unif([0,1])$;
 $U_1 = 2U_1 - 1$, $U_2 = 2U_2 - 1$; $(U_1, U_2 \sim Unif([-1,1]))$
 $X = U_1^2 + U_2^2$;

end

$$Y = \sqrt{-2\frac{\ln X}{X}};$$

 $Z_1 = U_1Y, Z_2 = U_2Y;$
return $Z_1, Z_2;$

6 Variance Reduction Technique

6.1 Control Variates

Recall: Linear Regression of Y_i as X_i , i = 1 : n

Find
$$c_1, c_2$$
 such that $Y_i \approx c_1 X_i + c_2$

$$\Rightarrow \min ||\tilde{Y} - c_1 \tilde{X} - c_2||^2 = \min \sum_{i=1}^n (Y_i - c_1 X_i - c_2)^2$$

$$\Rightarrow c_2 = \hat{Y}(n) - c_1 \hat{X}(n),$$

$$c_1 = \frac{cov(\tilde{X}, \tilde{Y})}{var(\tilde{X})} = \frac{\sum_{i=1}^n (X_i - \hat{X}(n))(Y_i - \hat{Y}(n))}{\sum_{i=1}^n (X_i - \hat{X}(n))^2}$$

Alternatively, we need to find

$$\begin{pmatrix} X_1 & 1 \\ X_2 & 1 \\ \vdots & \vdots \\ X_n & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \approx \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$$

From the fact that the error of regression should be orthogonal to $\mathbb{1}^t$, we need that

$$\mathbb{I}^{t}(\tilde{Y} - c_{1}\tilde{X} - c_{2}\mathbb{1}) = 0$$

$$\Rightarrow \mathbb{I}^{t}\tilde{Y} - c_{1}\mathbb{I}^{t}\tilde{X} - c_{2}\mathbb{I}^{t}\mathbb{1} = 0$$

$$(Denote $\hat{X}(n) = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \hat{Y}(n) = \frac{1}{n} \sum_{i=1}^{n} Y_{i})$

$$\Rightarrow n\hat{Y}(n) - c_{1}n\hat{X}(n) - c_{2}n = 0$$

$$\Rightarrow \mathbf{c_{2}} = \hat{\mathbf{Y}}(\mathbf{n}) - \mathbf{c_{1}}\hat{\mathbf{X}}(\mathbf{n})$$

$$\tilde{Y} \approx c_{1}\tilde{X} + c_{2} = c_{1}\tilde{X} + \hat{Y}(n) - c_{1}\hat{X}(n)$$

$$\Rightarrow \tilde{Y} - \hat{Y}(n) = c_{1}(\tilde{X} - \hat{X}(n))$$

$$\Rightarrow (\tilde{X} - \hat{X}(n))^{t}(\tilde{Y} - \hat{Y}(n) - c_{1}(\tilde{X} - \hat{X}(n))) = 0$$

$$\Rightarrow \mathbf{c_{1}} = \frac{(\tilde{\mathbf{X}} - \hat{\mathbf{X}}(\mathbf{n}))^{t}(\tilde{\mathbf{Y}} - \hat{\mathbf{Y}}(\mathbf{n}))}{||\tilde{\mathbf{X}} - \hat{\mathbf{X}}(\mathbf{n})||^{2}} = \frac{\mathbf{cov}(\tilde{\mathbf{X}}, \tilde{\mathbf{Y}})}{\mathbf{var}(\tilde{\mathbf{X}})}$$$$

Control Variates Method

Generate Y_1, Y_2, \dots, Y_n n independent replications of Y

- In Monte Carlo, we use $\hat{Y}(n) = \frac{1}{n} \sum_{i=1}^{n} Y_i$ to approximate Y;
- Alternatively, every time we generate a replication Y_i of Y, also generate a replication X_i of another variable X, whose exact expected value is known.

And instead of Y_i , use

$$\tilde{Y}_i = Y_i - b\left(X_i - E(X)\right)$$

where b is a constant chosen carefully to approximate Y.

Example: Generate S_1, S_2, \dots, S_n samples of S(T), with $E(S(T)) = e^{rT}S(0)$ Use S_i to approximate V_i : $\tilde{V}_i = V_i - b\left(S_i - e^{rT}S(0)\right)$

 $Y_{CV}(n)$ is an unbiased estimation of Y

$$Y_{CV}(n) = \frac{1}{n} \sum_{i=1}^{n} \tilde{Y}_{i} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - b(X_{i} - E(X)))$$

$$= \frac{1}{n} \sum_{i=1}^{n} Y_{i} - \left(\frac{b}{n} \sum_{i=1}^{n} X_{i} - \frac{b}{n} nE(X)\right)$$

$$= \hat{Y}(n) - b\left(\hat{X}(n) - E(X)\right)$$

$$E(Y_{CV}(n)) = E(\hat{Y}(n)) - b(E(X) - E(X)) = E(\hat{Y}(n)) = E(Y)$$

b should be chosen carefully: variance of $Y_{CV}(n)$ is minimum

$$var[Y_{CV}(n)] = var\left[\frac{1}{n}\sum_{i=1}^{n}\tilde{Y}_{i}\right] = \frac{1}{n}var[\tilde{Y}_{i}]$$

$$= \frac{1}{n}var[Y_{i} - b(X_{i} - E(X))] = \frac{1}{n}var[Y - bX]$$

$$= \frac{1}{n}[var(Y) - 2bcov(Y, X) + b^{2}var(X)]$$

the minimum is obtained with $b^* = \frac{cov(Y, X)}{var(X)}$

$$var^* [Y_{CV}(n)] = \frac{1}{n} \left[var(Y) - 2 \frac{cov(Y, X)}{var(X)} cov(Y, X) + \frac{cov(Y, X)^2}{var(X)^2} var(X) \right] = \frac{1}{n} \left[var(Y) - \frac{cov(Y, X)^2}{var(X)} \right]$$
$$= \frac{1}{n} \left[\sigma_Y^2 - \frac{\sigma_X^2 \sigma_Y^2 \rho_{XY}^2}{\sigma_X^2} \right] = \frac{\sigma_Y^2}{n} \left[1 - \rho_{XY}^2 \right]$$

Therefore,

$$\frac{var\left[Y_{CV}(n)\right]}{var\left[\hat{Y}(n)\right]} = 1 - \rho_{XY}^2$$

We want to find X such that ρ_{XY} close to 1 or to -1.

If X, Y are uncorrelated $(\rho_{XY} = 0)$, then the control variates does not help.

In practice, we use sample values of b^*

$$\hat{b}(n) = \frac{\sum_{i=1}^{n} (X_i - \hat{X}(n)) (Y_i - \hat{Y}(n))}{\sum_{i=1}^{n} (X_i - \hat{X}(n))^2}$$

Remark:

* Here we use $\hat{X}(n)$ rather than E(X), which is also known.

How would the correlation matter?

ρ_{XY}	$1 - \rho_{XY}^2$	n/n_{CV}		
0.95	≈0.1	≈10		
0.9	≈0.2	≈ 5		
0.75	04375	≈ 2.5		

- Monte Carlo error is to the order of σ_Y/\sqrt{n} .
- Control variate error is to the order of $\sigma_{Y_{CV}}/\sqrt{n_{CV}}$.

If
$$1 - \rho_{XY}^2 = 0.1$$
, $\Rightarrow \frac{\sigma_{Y_{CV}}^2}{\sigma_Y^2} = 1 - \rho_{XY}^2 = 0.1$ $\Rightarrow \sigma_{Y_{CV}} = \sigma_Y/\sqrt{10}$ Therefore, for errors to be similar,

$$n \approx 10 \cdot n_{CV}$$

i.e., control variate method needs 10 times less simulations than Monte Carlo method.

When is the derivative security value perfectly correlated with the underlying? For example, European call option

$$\tilde{c}_i = c_i - b(n)(S_i - e^{rT}S(0))$$

We estimated correlation $\tilde{\rho}$ between S(T) and $\max(S(T)-K,0)$ for different value of K in Monte Carlo method $(S(0)=50,\ \sigma=0.3,\ T=0.25)$:

\overline{K}	40	45	50	55	60	65	70
$\tilde{ ho}^2$	0.99	0.94	0.8	0.59	0.36	0.19	0.08

We can see that for deep ITM options, the correlation is high, for deep OTM options, the correlation is pretty low.

We can thus valuate a different derivative security as

$$\tilde{V}_i = V_i - b(n)(C_i - C_{BS})$$

e.g. Payoff = $\max (S_T^2 - K, 0)$

More specificly, we first generate S_i , and use them to simulate both V_i and C_i .

Weighted Monte Carlo

In Control Variate,

$$\begin{split} \tilde{Y}_{i} &= Y_{i} - b(n)(X_{i} - E(X)) \\ Y_{CV}(n) &= \frac{1}{n} \sum_{i=1}^{n} \tilde{Y}_{i} = \hat{Y}(n) - b\left(\hat{X}(n) - E(X)\right) \\ \hat{b}(n) &= \frac{\sum_{i=1}^{n} \left(X_{i} - \hat{X}(n)\right)\left(Y_{i} - \hat{Y}(n)\right)}{\sum_{i=1}^{n} \left(X_{i} - \hat{X}(n)\right)^{2}} \\ &= \sum_{i=1}^{n} Y_{i} \frac{X_{i} - \hat{X}(n)}{\sum_{i=1}^{n} \left(X_{i} - \hat{X}(n)\right)^{2}} - \hat{Y}(n) \frac{\sum_{i=1}^{n} \left(X_{i} - \hat{X}(n)\right)}{\sum_{i=1}^{n} \left(X_{i} - \hat{X}(n)\right)^{2}} \\ \left(\text{where } \sum_{i=1}^{n} \left(X_{i} - \hat{X}(n)\right) = 0 \right) \\ &= \sum_{i=1}^{n} Y_{i} \frac{X_{i} - \hat{X}(n)}{\sum_{i=1}^{n} \left(X_{i} - \hat{X}(n)\right)^{2}} \\ Y_{CV}(n) &= \sum_{i=1}^{n} Y_{i} \left(\frac{1}{n} - \frac{(X_{i} - \hat{X}(n))(\hat{X}(n) - E(X))}{\sum_{i=1}^{n} \left(X_{i} - \hat{X}(n)\right)^{2}} \right) \end{split}$$

Weighted MC:

$$Y_{WMC}(n) = \sum_{i=1}^{n} \omega_i Y_i$$
s.t.
$$\sum_{i=1}^{n} \omega_i = 1, \quad \sum_{i=1}^{n} \omega_i X_i = E(X)$$
minimize
$$\sum_{i=1}^{n} \omega_i^2$$
and thus
$$var(Y_{WMC}(n)) = var(Y) \sum_{i=1}^{n} \omega_i^2$$

6.2 Moment Matching

Idea: transform the paths to match known moments of a random variable.

Example: In our derivative-underlying asset case,

$$S_i \longrightarrow V_i \longrightarrow \hat{V}(n) = \frac{1}{n} \sum_{i=1}^n V_i$$

$$E(S(T)) = e^{rT} S(0) \quad \text{(forward price)}$$
while $\frac{1}{n} \sum_{i=1}^n S_i \neq e^{rT} S(0)$

To match the first moment of S, we want to change S_i into \tilde{S}_i s.t.

$$\frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}=e^{rT}S(0)$$

Possible ways to accomplish the above transformation:

• Method 1:

$$\tilde{S}_i = S_i + e^{rT} S(o) - \hat{S}(n)$$

$$\frac{1}{n} \sum_{i=1}^n \tilde{S}_i = \frac{1}{n} \sum_{i=1}^n S_i + \frac{1}{n} \cdot n \left(e^{rT} S(0) - \hat{S}(n) \right) = \hat{S}(n) + e^{rT} S(0) - \hat{S}(n) = e^{rT} S(0)$$

Remark: Big problem here is that such \tilde{S}_i could have negative values.

• Method 2:

$$\tilde{S}_{i} = S_{i} \frac{e^{rT} S(0)}{\hat{S}(n)}$$

$$\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i} = \frac{1}{n} \sum_{i=1}^{n} S_{i} \frac{e^{rT} S(0)}{\hat{S}(n)} = e^{rT} S(0)$$

If we use moment matching method, put-call parity will be satisfied.

$$\hat{c}(n) = \frac{1}{n} \sum_{i=1}^{n} c_i = \frac{1}{n} \sum_{i=1}^{n} e^{-rT} \max \left(S_i - K, 0 \right)$$

$$\hat{p}(n) = \frac{1}{n} \sum_{i=1}^{n} p_i = \frac{1}{n} \sum_{i=1}^{n} e^{-rT} \max \left(K - S_i, 0 \right)$$

$$\hat{c}(n) - \hat{p}(n) = \frac{1}{n} e^{-rT} \sum_{i=1}^{n} \left(\max \left(S_i - K, 0 \right) - \max \left(K - S_i, 0 \right) \right)$$

$$= \frac{1}{n} e^{-rT} \sum_{i=1}^{n} (S_i - K, 0) = e^{-rT} \hat{S}(n) - e^{-rT} K$$

$$= S(0) - e^{-rT} K \quad \text{if } \hat{S}(n) = e^{rT} S(0)$$

Remark: We can use control variate method and moment matching method together.

6.3 Antithetic Variables

Reducing variance by introducing negative dependence between pairs of replication.

- Generate $U_1, U_2, \dots, U_n \sim Unif(0, 1);$ Also use $1 - U_1, 1 - U_2, \dots, 1 - U_n \sim Unif(0, 1);$
- Inverse Transform, note that N(-a) = 1 N(a)

$$Z_{1,i} = F^{-1}(U_i) \to X_i$$

$$Z_{2,i} = F^{-1}(1 - U_i) = -Z_{1,i} \to Y_i$$

<u>Remark:</u> X_i and Y_i have the same distribution but not independent.

- * Monte Carlo, $\hat{X}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i$;
- \star Antithetic Variables, $Y_{AV}(n) = \frac{1}{n} \sum\limits_{i=1}^{n} \frac{X_i + Y_i}{2}$

$$var(\hat{X}(2n)) = \frac{var(X)}{2n} = \frac{\sigma_X^2}{2n}$$

$$var(Y_{AV}(n)) = \frac{var(X+Y)}{4n}$$

$$var(X+Y) = \sigma_X^2 + 2\sigma_X\sigma_Y\rho_{XY} + \sigma_Y^2 = 2\sigma_X^2(1+\rho_{XY})$$
 since $\sigma_X = \sigma_Y$

$$var(Y_{AV}(n)) = \frac{\sigma_X^2(1+\rho_{XY})}{2n}$$

We want

$$var(Y_{AV}(n)) \leq var(\hat{X}(2n))$$

$$\Rightarrow \quad \frac{\sigma_X^2}{2n} \ \leq \ \frac{\sigma_X^2 (1 + \rho_{XY})}{2n}$$

$$\Rightarrow \rho_{XY} < 0$$