Total No. of Questions: 6

Total No. of Printed Pages:3

Faculty of Engineering End Sem (Odd) Examination Dec-2022 CS3CO13 / IT3CO06

Design and Analysis of Algorithms

Programme: B.Tech. Branch/Specialisation: CSE/IT **Duration: 3 Hrs. Maximum Marks: 60**

Q.1	i.	• •			algorithm consist of when an	1	
		(a) N	ements is giver (b) N+1	1- (c) N-1	(d) N^2		
	ii.	` /	orst time com	` /		1	
		(a) n ²	(b) n log n		$(d) n (\log n)^2$		
	iii.	When the give	-	lready sorted,	which sorting technique gives	1	
		(a) Radix So	rt	(b) Quick S	ort		
		(c) Heap Sor	t	(d) Merge S	Sort		
	iv.	Average case	complexity of	binary search	n is-	1	
		(a) Θ (log n)	(b) Θ (n/2)	$(c) \Theta (1)$	(d) Θ (n ²)		
	v.	Principle of o	ptimality hold	s in-		1	
		(a) Backtrack	ing	(b) Greedy	method		
		(c) Divide and	d conquer	(d) Dynami	c Programming		
	vi.	Number of S ₁ (a) n ⁿ⁻²	panning tree of (b) nC(n-1)		raph with n vertices are- (d) $n^{n(n-2)}$	1	
	vii. Dijkstra's Algorithm cannot be applied on						
		(a) Directed a	and weighted g	raphs			
		(b) Unweight	ed graphs				
		(c) Graphs ha	ving negative	weight function	on		
		(d) Undirecte	d and unweigh	ted graphs			
			_				

P.T.O.

	viii.	Branch and bound	l applied	on-					1
		(a) Minimization	problems	(b) Ma	ximizatio	n problems	S		
		(c) Both (a) and (b	o)	(d) No	ne of thes	se			
	ix.	Which one of th	e follow	ing is an	applicat	ion of the	backtrack	ing	1
		algorithm?							
		(a) Finding the sh	ortest pat	th					
		(b) Crossword							
		(c) Ludo							
		(d) Finding the eff	ficient qu	antity to s	hop				
	х.	What answers "ar	e we buil	lding a rig	ht produc	t"?			1
		(a) Verification		(b) Per	formance	;			
		(c) Testing		(d) Va	lidation				
Q.2	i.	What are asymptotic notations? Explain.					4		
	ii.	Solve the recurren	ce relati	ons using	Masters T	heorem.			6
		(a) $T(n)=3T(n-4)+$	-n²						
		(b) $T(n)=4T(n/2)+$	-log n						
		(c) $T(n)=3T(n/3)+$	-√n						
		(d) $T(n)=3T(n/4)+$	-3n						
OR	iii.	Sort these elemen	ts using S	Selection S	Sort in asc	cending ord	ler.		6
		12 29 25 8 32 17	40						
		Also write best, w	orst and	average ca	ase comp	lexity of sel	lection sort	·•	
2.2		W 7.4		o .					•
Q.3	i. 	Write a note on m		-			1		3
	ii.	How Strassen's m					mpie matri	X	7
ΩD.		multiplication me		•		-			-
OR	iii.	Sort these elemen	_	-	`	ip)			7
		99, 70, 52, 81, 63,	93, 21, 6	83, 42, 64,	87, 92				
Q.4	i.	Find Optimal M	lerge Pa	attern for	7 files	whose le	enoth are	12	4
√ .⊤	1.	9,3,11,15,20,13.	icige 1	101	7 11103	whose it	ongui are	12,	•
	ii.	A Knapsack capa	city is 10	00.The we	ights and	values of 3	5 objects is	s as	6
		follows:	Ĭ				5		
		Weight (Wi)	10	20	30	40	50		
		Values (Pi)	20	30	66	20	60		

OR	iii.	Solve the Knapsack problem using Greedy Strategy & find the maximum profit that can be obtained. Find the longest common subsequence from X and Y X=(H,U,M,A,N) Y=(C,H,I,M,P,A,N,Z,E,E)	6
Q.5	i.	What do you mean by dynamic programming? Write any two benefits of using dynamic programming.	4
	ii.	Solve the 0/1 knapsack problem using FIFO branch & bound n=4, m=15, (p1, p2, p3, p4) = (10,10,12,18), (w1, w2, w3, w4) = (2,4,6,9)	6
OR	iii.	Explain how a reliability design can be obtained using dynamic programming.	6
Q.6		Attempt any two:	
	i.	Define hamiltonian cycle with the example.	5
	ii.	What is backtracking? Find a solution to the 4 queens problem using backtracking strategy.	5
	iii.	Explain P, NP, NP-Complete and NP-Hard problem.	5

Marking Scheme CS3CO13-IT3CO06 Design and Analysis of Algorithms

Q.1	i)	How many passes does an insertion sort algorithm consist of when an array of N elements is given (c) N-1	1
	ii)	What is the best time complexity of selection sort? (a) N ²	1
	iii)	When the given inputs are already sorted, which sorting technique gives worst performance. (b) Quick Sort	1
	iv)	Average case complexity of binary search is (a) Θ (log n)	1
	v)	Principle of optimality holds in (d) Dynamic Programming	1
	vi)	Number of Spanning tree of a complete graph with n vertices are (a) $n^{(n-2)}$	1
	vii)	Djkstra's Algorithm cannot be applied on (c) Graphs having negative weight function	1
	viii)	Branch and bound applied on (a) Minimization problems	1
	ix)	Which one of the following is an application of the backtracking algorithm? (b) Crossword	1
	x)	What answers "are we building a right product?" (d) Validation	1
Q.2	i.	Asymptotic notations 1 mark for each	4
	ii.	Solve these Recurrence Relation (a) $T(n)=3T(n/3)+\Theta(n)$ 2 marks (b) $T(n)=T(n-1)+5n$ 2 marks (c) $T(n)=8T(n/4)+\Theta(n\log n)$ 2 marks	6
OR	iii.	Sorting using Selection Sort 4 Marks best average and wort complexity 2 marks	6
Q.3	i.	Minimum Spanning tree 3 marks	3
	ii.	Strassen's matrix multiplication and simple matrix multiplication method comparison 5 marks analysis of their complexity 2 marks	7
OR	iii.	Sort these elements using Heap sort (Max Heap) 99, 70, 52, 81, 63, 95, 21, 85, 42, 64, 87, 92	7

		Stepwise 7 marks	
0.4			
Q.4	i.	Find Optimal Merge Pattern for 7 files whose length are 12,	4
		9,3,11,15,20,13 Stepwise 4 mark	
	ii.	Stepwise 4 mark Stepwise 6 marks	6
OR	iii.	Longest common subsequence from X and Y Table 4 marks Subsequence from table 2 marks	6
Q.5	i.	Definition 2 Marks	4
		Any two benefits 2 Mark	
	ii.	Solve the 0/1 knapsack problem using FIFO branch & bound Tree	6
		for FIFO branch and bound 7 marks stepwise	
OR	iii.	Algorithm or complete definition 5 marks Example 2 marks	6
Q.6		Attempt any two:	
	i.	Definition 2 marks Example 1 mark	5
	ii.	Definition 2 marks Solution 3 marks	5
	iii.	P problem 1 mark	5
		NP problem 1 mark	
		NP-Complete problem 1 mark	
		NP Hard Problem 2 marks	
