統計学2及び演習

ガイダンス

東京理科大学 創域理工学部情報計算科学科 安藤宗司

2023年4月12日

情報計算科学科の科目系統図

統計学2はここ!

情報データサイエンス系科目に注目すると

- ■統計学1及び演習(2年後期)
 - ■統計的推測の推定を扱った
- ■統計学2及び演習(3年前期)
 - ■統計的推測の検定を扱う
- □多変量解析(3年前期)
 - ■互いに従属する一群の変量間の 関係を扱う手法を扱う

- □統計学3(3年後期)
 - ■線形・非線形回帰モデル
 - ■判別分析,主成分分析, クラスター分析
- □データ解析(3年後期)
 - ■一般化線形モデル
 - ■生存時間解析
 - ■サンプルサイズ設計

統計学2のカリキュラム

	日程	内容
第1回	4/12	ガイダンス
		検定の考え方(帰無仮説、対立仮説、棄却域、有意水準)
第2回	4/19	第1種の誤り、第2種の誤り、検出力
第3回	4/26	最強力検定,ネイマン・ピアソンの補題とその例
第4回	5/10	一様最強力検定とその例
第5回	5/17	不偏検定、相似検定とその例
第6回	5/24	母比率の検定
第7回	5/31	尤度比検定とその例
第8回	6/7	適合度検定とその例

統計学2のカリキュラム

	日程	内容
第9回	6/14	適合度検定とその例
第10回	6/21	分割表における独立性検定とその応用例
第11回	6/28	線形回帰分析の考え方
第12回	7/5	最小二乗法とその性質
第13回	7/12	一般化最小二乗法,最尤法とその性質
第14回	7/19	多重共線性,Ridge回帰
第15回	7/26 or 8/2	到達度評価試験

成績評価方法

■到達度評価試験(60%)

□中間試験(40%)

統計学2及び演習

検定の考え方

東京理科大学 創域理工学部情報計算科学科 安藤宗司

2023年4月12日

Contents

■検定の考え方

- □仮説の設定
 - ■帰無仮説,対立仮説

■棄却域

■有意水準

手元にあるコインはいかさまコインかどうか

- \square 表が出る確率 π は1/2かどうか
- □実際にコインをN回投げて、確かめる実験を考える

■表が出た割合
$$p = \frac{n}{N}$$

コイン投げの実験を仮説検定で検証

- ■仮説の設定
 - ■表が出る確率は1/2かどうか
- ■設定した仮説を評価するためのデータを収集
 - ■実際にコインをN回投げる
 - **▶** *N*を設定することをサンプルサイズ設計という
- ■事前に設定した判定基準に基づき判断
 - ■表がm回以下(または以上)のとき、いかさまコインと判断
 - →この判定基準を確率論的に設定する

仮説の設定

- □ 「表が出る確率 π は1/2かどうか」を検証するために 2つの仮説を設定する
 - 帰無仮説 H_0 : $\pi = 1/2$
 - ■対立仮説 H_1 : $\pi \neq 1/2$
- □帰無仮説が成り立つと仮定する
 - ■手元にあるコインはいかさまコインではないと仮定する
 - ■収集したデータに基づき帰無仮説が 成り立つかどうかを判断する

設定した仮説を評価するためのデータを収集

- □「帰無仮説」と「対立仮説」のどちらが正しいかを 判断するために、コインを N 回投げる
 - *N* (サンプルサイズ) はどう設定すればいいのだろうか?
- □検出力に基づいてサンプルサイズを設計する
 - ■検出力は検定の精度を表す指標
 - ■詳しくは後ほど紹介

事前に設定した判定基準に基づき判断

- ■判断基準の考え方
 - ■いかさまコインではないとき 10回コインを投げれば常に表が5回出るとは限らない
 - ■表が出る回数は確率的に変動する
 - ■偶然に出る可能性のある「表の回数」の範囲を考える

□この範囲を確率論的に設定する

偶然に出る可能性のある「表の回数」の範囲

 \square いかさまコインではない(帰無仮説 H_0 : $\pi = 1/2$)と仮定

確率
0.1%
0.98%
4.39%
11.72%
20.51%
24.51%
20.51%
11.72%
4.39%
0.98%
0.1%

確率の計算式
$$_{10}C_x\left(\frac{1}{2}\right)^x\left(1-\frac{1}{2}\right)^{10-x}$$

表の回数3から7である確率は85%以上

表の回数が1以下、または9回以上である確率は2.16% 表の回数が2以下、または8回以上である確率は10.94%

有意水準

□帰無仮説のもとで、5%(または1%)未満でしか 起きない事象は偶然ではないと考える

- ■10回コインを投げた結果
 - ■表の回数が1以下,または9回以上の場合 → 偶然ではない
 - ■表の回数が2以上、または8回以下の場合 → 偶然である

- ■棄却域
 - ■偶然ではないと考える範囲

検定結果の解釈

- ■10回コインを投げた結果
 - ■表の回数が1以下,または9回以上の場合
 - ▶ 統計学的に有意と判定
 - ▶帰無仮説を棄却して、対立仮説を採択する
 - \triangleright 「表が出る確率 π は1/2 ではない」と判断する
 - ■表の回数が2以上、または8回以下の場合
 - ▶統計学的に有意でないと判定
 - ▶帰無仮説を採択する
 - \triangleright 「表が出る確率 π は1/2 ではない」とはいえないと判断する

「表が出る確率 π は1/2である」とは判断できないことに注意!

統計的仮説検定の一般論

- □記号の定義
 - ■母集団分布Pからの無作為標本 $X_1,X_2,...,X_n$
 - ■観測結果として生じうる全体の集合(標本空間) X ($\subset \mathbb{R}^n$)
 - ■実際の観測結果 $(x_1, x_2, ..., x_n)$ 集合Xの値をとる標本ベクトル $(X_1, X_2, ..., X_n)$ の1つの実現値
 - ■母数空間 Θ ($\subset \mathbb{R}^s$)
 - パラメータベクトル $\theta = (\theta_1, \theta_2, ..., \theta_n) \in \Theta$

仮説の設定

□パラメータ空間の分割

$$\Theta = \Theta_0 \cup \Theta_0^c \quad \text{ind} \quad \Theta_0 \cap \Theta_0^c = \phi$$

□ 帰無仮説 (null hypothesis)

$$\theta \in \Theta_0$$
という命題

■ 対立仮説 (alternative hypothesis)

 Θ_0^c の部分集合 Θ_1 に対して、 $\theta \in \Theta_0$ という命題

仮説の選択問題

- □仮説
- 帰無仮説 H_0 : $\theta \in \Theta_0$ 対立仮説 H_1 : $\theta \in \Theta_1$
- □問題
 - ■どちらかの仮説が正しいと仮定
 - ■帰無仮説と対立仮説のどちらかを決定する問題を考える
- ■仮説の種類
 - $lacksymbol{\Theta}_0$ が1点のとき,単純仮説 (simple hypothesis) $\Theta_0 = \{\theta_0\}$
 - $\blacksquare \Theta_0$ が2点以上のとき、複合仮説 (composite hypothesis)
 - **O**₁に関しても同様

$$\Theta_0 = \{\theta \in \Theta \mid \theta \le \theta_0\}$$

仮説の棄却

- ■標本空間の分割
 - ■標本空間Xの部分集合W $X = W \cup W^c$ $W \cap W^c = \phi$

□帰無仮説の棄却

 $(x_1, x_2, ..., x_n) \in W$ ならば帰無仮説を棄却する

■帰無仮説の採択

 $(x_1, x_2, ..., x_n) \in W^c$ ならば帰無仮説を採択する

 \square 棄却域をWと採択域をW^cという