TEORÍA DE SINGULARIDADES Y DEL RESIDUO.

1.1 SINGULARIDAD.-

Un punto z_0 es un punto singular o una singularidad deu na función F, si F es analítica en algún punto de toda variedad de z_0 , excepto en z_0 mismo. Existen Varios tipos de Singularidades.

1º **SINGULARIDAD AISLADA.**- El punto $z = z_0$ si $\exists \delta > 0$, tal que el círculo $\|$ $z-z_0 \parallel = \delta$ no encierra puntos singulares distintos de z_0 (es decir $\exists V_{\delta}(z_0)$ sin singularidad).

Si tal $\delta \mathbb{Z}$, decimos que z_0 es una singularidad no aislada.

Si z_0 no es un punto singular y si $\exists \delta > 0 / \|z - z_0\| = \delta$ no encierra puntos singulares, decimos que z_0 es un punto ordinario de F(z).

2º **POLOS.-** Si podemos encontrar un entero positivo n tal que $\lim_{z\to z} (z-z_0)^n$ $F(z) = A \neq 0$, entonces $z = z_0$ es llamado polo de orden n, si n = 1. z_0 es

llamado un polo simple. **Ejemplo.-** $f(z) = \frac{1}{(z-2)^3}$, se tiene un polo de orden tres en z=2. **Ejemplo.-** $f(z) = \frac{3z-2}{(z-1)^2(z+1)(z-4)}$; tiene un polo de orden dos en z=1 y polos simples en z=-1 y z=4

Si $y(z) = (z - z_0)^n F(z)$, de donde $F(z_0) \neq 0$ y n es un entero positivo, entonces $z = z_0$ es llamado un cero de orden n de y(z).

Si $n=1,\,z_0$ es llamado un cero simple, en tal caso z_0 es un polo de orden n de la función $\frac{1}{y(z)}$

- 3º LOS PUNTOS DE RAMIFICACIÓN.-Ejemplos.-
 - (a) $f(z) = (z-3)^{\frac{1}{2}}$ tiene un punto de ramificación en z=3
 - (b) $f(z) = ln(z^2 + z 2)$ tiene puntos de ramificación donde $z^2 + z 2 = 0$, es decir z = 1, z = -2.
- 4° **SINGULARIDADES REMOVIBLES.-** El punto singular z_0 es llamado una singularidad removible de F(z) si $\lim_{z \to z_0 f(z)}$ existe.

Ejemplo.- El punto singular z = 0, es una singularidad removible de

$$f(z) = \frac{sen(z)}{z}$$
, puesto que $\lim_{z \to z_0} \frac{sen(z)}{z} = 1$.

5º SINGULARIDADES ESENCIALES.- Una singularidad que no sea polo, ni punto de ramificiación, ni singularidad removible es llamado una singularidad esencial.

Ejemplo.- $f(z) = e^{z-1}$, tiene una singularidad esencial en z = 2 se una función unívoca tiene una singularidad, entonces las singularidades es un polo o una singularidad esencial, por esta razón un polo es llamado algunas veces una singularidad evitable.

Equivalentemente $z = z_0$ es una singularidad esencial si no podemos encontrar algún positivo n tal que: $\lim_{z \to z_0} (z - z_0)^n f(z) = A \neq 0$.

6º SINGULARIDAD EN EL INFINITO.- El tipo de singularidad de f(z) en $z=\inf$ (el punto en el infinito) es el mismo como el de $f(\frac{1}{w})$ en w = 0.

Ejemplo.- La función $f(z) = z^3$ tiene como polo de tercer orden en $z = \inf$, ya que $f(\frac{1}{w}) = \frac{1}{w^3}$ tiene un polo de tercer orden en w = 0. **Ejemplo.**- Localizar y clasificar las singularidades

1)
$$f(z) = \frac{z}{(z^2+4)^2}$$

Desarrollo

$$f(z) = \frac{z}{(z^2 + 4)^2}$$

 $f(z) = \frac{z}{(z^2+4)^2}$ $\lim_{z \to 2i} (z-2i)^2 f(z) = \lim_{z \to 2i} \frac{z}{(z+2i)^2} = \frac{1}{8i} \neq 0, \text{ de donde } z = 2i \text{ es un polo de segundo orden, simultán meamente.}$

z = -2i es un polo de segundo orden.

Como se pueden encontrar $\delta > 0$ tal que ninguna singularidad distinta de z = 2i está dentro del círculo.

 $\parallel z - 2i \parallel = \delta$ entonces z = 2i es una singularidad aislada, simultáneamente para z = -2i es una singularidad aislada.

2)
$$f(z) = \frac{ln(z-2)}{(z^2+2z+2)^2}$$

Desarrollo

El punto z = 2 es un punto de ramificación y es una singularidad aislada, también $z^2 + 2z + 2 = 0$ de donde se tiene z = -1 + -2i y se dice que z = -1 + -2i son polos de cuarto orden de los culaes son singularidades aisladas.

3)
$$f(z) = \frac{sen(\sqrt{z})}{\sqrt{z}}$$

Desarrollo

Como $\lim_{z\to 0} f(z) = \lim_{z\to 0} \frac{sen(\sqrt{z})}{\sqrt{z}} = 1 \neq 0$, entonces z=0 es una singulari-

1.2 RESIDUOUS.-

Se conoce por el desarrollo de la serie de Laurent de una función analítica f(z) es una región anular $D = \{ z \in C | R_1 < | z - z_0 | | < R_2 \}$ está dado por:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n} \dots (*)$$

Si la parte principial consiste de un número finito de términos es decir $b_n = 0$, para n > m y $b_m \neq 0$ entonces la serie (*) toma la forma:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b1}{z - z_0} + \frac{b2}{(z - z_0)^2} + \dots + \frac{b_m}{(z - z_0)^m} + 0 + 0\dots$$

en este caso F(z) tiene un polo de orden m en $z=z_0$ y el coeficiente b_1 denotado por $a_{-1} = b_1$ recibe el nombre de residuo de F en z_0 .

Si F(z) tiene un polo simple $z=z_0$, entonces la serie es $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n+\frac{b1}{z-z_0}$

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots + a_n(z - z_0)^n + \dots + \frac{b_1}{z - z_0}$$

 $f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots + a_n(z - z_0)^n + \dots + \frac{b_1}{z - z_0}$ $(z - z_0)f(z) = a_0(z - z_0) + a_1(z - z_0)^2 + \dots + a_n(z - z_0)^{n+1} + \dots + b_1 \text{ ahora tomamos el}$

se tiene: $\lim_{z\to z_0}(z-z_0)f(z)=b_1=Re(f,z_0)$, b_1 recibe el nombre de F(z) en $z=z_0$.

Luego si F(z) tiene un polo en $z = z_0$ y z_0 est aen el interior de γ entonces $\oint_{C} F(z) dz \neq 0$

En este caso F(z) se puede expresar mediante la serie

$$F(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} b_n (z-z_0)^n \text{ , convergente } \forall \ z \in C \text{ tal que}$$

$$0 < \parallel z-z_0 \parallel < R \text{ y } a_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{F(z) dz}{(z-z_0)^{n+1}} \text{ , } b_n = \frac{1}{2\pi i} \oint_{\gamma} F(z) dz$$
 donde γ es una curva cerrada contenida e nel anillo $0 < \parallel z-z_0 \parallel < R$

$$0 < ||z - z_0|| < R y a_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{F(z)dz}{(z - z_0)^{n+1}}, b_n = \frac{1}{2\pi i} \oint_{\gamma} F(z)dz$$

Si
$$n = 1$$
, $b_1 = \frac{1}{2\pi i} \oint_{\gamma} F(z) dz$, de donde

 $\oint_{\gamma} F(z) dz = 2\pi b_1 i \text{ donde } b_1 \text{ es el coeficiente de } \frac{1}{z-z_0} \text{ y } b_1 \text{ es el residuo de } F(z) \text{ que }$ denotaremos por $Re(F, z_0) = b_1$, por lo tanto

$$\oint_{\gamma} F(z) dz = 2\pi i b_1 = 2\pi i Re(F, z_0)$$

TEOREMA DEL RESIDUO.-1.3

Si f(z) es uan fracción analítica dentror y sobre la curva γ excepto en un número finito de puntos singulares $z_1, z_2, z_3, ..., z_j, ..., z_m$ pertenecientes al interior de γ , entonces:

$$\oint f(z)dz = 2\pi i \sum_{j=1}^{m} Re(f, z_j)$$

Demostración

Sea f(z) una función analítica dentro y sobre una curva simple y cerrada en γ , excepto en los puntos $z1, z3, ..., z_m$ dentro de γ

También sea $Cr_i(z_i)$ la circunferencia de centro z_i y de radio r_i suficientemente pequeño para que $Cr_j(z_j) \subset \gamma$, $\forall j$

 $Cr_i(z_i) \cap Cr_k(z_k) = \phi$, $\forall k \neq j$ entonces

$$\oint_{gamma} f(z)dz = \sum_{j=1}^{m} \oint_{z=1} Cr_{j}(z_{j})f(z)dz = \sum_{j=1}^{m} 2\pi i Re(f, z_{j}) = 2\pi i \sum_{j=1}^{m} Re(f, z_{j})$$

$$\therefore \oint_{\gamma} f(z)dz = 2 \ pii \sum_{j=1}^{m} Re(f, z_{j})$$

OBSERVACIÓN.- Si z_0 es un polo de orden m, hay una fórmula relativamente simple para calcular $Re(f, z_0)$

1.4 TEOREMA.-

Si z_0 es un polo de orden m de la función f(z) entonces:

$$Re(f, z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)]$$

En el caso m = 1 y 0! = 1, por lo tanto si f tiene un polo simple de z_0 , entonces se tiene: $Re(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$

Demostración

Como z_0 es un polo de orden m de la función f(z), entonces f tiene un desarrollo

en serie de Laurent en el anillo
$$0 < \|z - z_0\| < R$$

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \frac{a_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots \dots (\alpha)$$
con $a_{-m} \ne 0$, puesto que $f(z)$ tiene un polo de orden m en z_0 ahora lo que quieremos evaluar es a_{-1} que es el residuo de f en z_0 es decir:

$$Re(f, z_0) = a_{-1}$$
 ...(1)

a la ecuación (α) multiplicamos por $(z-z_0)^m$

$$(z-z_0)^m f(z) = a_{-m} + a_{-m}(z-z_0)^{m-1} + a_0(z-z_0)^m + \dots$$

como la serie de la derecha es una serie de Taylor alrededor de z_0 , entonces (z – $(z_0)^m f(z)$ es analítica en (z_0) ahora derivamos esta ecuación (m-1) veces es decir:

$$\frac{d^{m-1}}{dz^{m-1}}[(z-z_0)^m f(z)] = a_{-1}(m-1)(m-2)...(1) + a_0 m(m-1)(m-2)...(2)(z-z_0) + ...$$
tomando límite cuando $z \to z_0$ se tiene:

$$\lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)] = \lim_{z \to z_0} [a_{-1}(m-1)! + a_0 m! (z - z_0) + \dots]$$

$$= a_{-1}(m-1)! + 0 + 0 + \dots + 0$$

de donde se obtiene: $a_{-1} = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)]$...(2)

al reemplazar (2) en (1) se obtiene:

$$Re(f, z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)]$$

1.5 COROLARIO.-

Sea $f(z)=\frac{g(z)}{h(z)}$, de donde g, h son analíticas en z_0 , $g(z)\neq 0$ y h tiene un cero simple en z_0 , entonces f tiene un polo simple de z_0 y $Re(f,z_0)=\frac{g(z_0)}{h'(z_0)}$

Demostración

Como f tiene un polo simple de z_0 y h tiene un cero simple en z_0 , $h(z_0)=0$ y $h'(z_0)\neq 0$ entonces:

$$Re(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z) = \lim_{z \to z_0} \frac{g(z)}{h(z)}$$

$$\lim_{z \to z_0} g(z) \frac{z - z_0}{h(z)} = \lim_{z \to z_0} g(z) \cdot \lim_{z \to z_0} \frac{1}{\frac{h(z) - h(z_0)}{z - z_0}} = g(z_0) \cdot \frac{1}{h'(z_0)} = \frac{g(z_0)}{h'(z_0)}$$

$$\therefore Re(f, z_0) = \frac{g(z_0)}{h'(z_0)}$$

1.6 EJERCICIOS DESARROLLADOS.-

1)