

Figure 2.12 Boundary of positive semidefinite cone in S^2 .

The set \mathbf{S}_{+}^{n} is a convex cone: if $\theta_{1}, \theta_{2} \geq 0$ and $A, B \in \mathbf{S}_{+}^{n}$, then $\theta_{1}A + \theta_{2}B \in \mathbf{S}_{+}^{n}$. This can be seen directly from the definition of positive semidefiniteness: for any $x \in \mathbf{R}^{n}$, we have

$$x^T(\theta_1 A + \theta_2 B)x = \theta_1 x^T A x + \theta_2 x^T B x > 0,$$

if $A \succeq 0$, $B \succeq 0$ and θ_1 , $\theta_2 \geq 0$.