

## Welcome

Video: Welcome to Machine Learning!
1 min

<u></u>

Reading: Machine Learning
Honor Code
8 min

## Introduction

Video: Welcome
6 min

Video: What is Machine Learning?
7 min

Reading: What is Machine Learning?
5 min

Reading: How to Use Discussion Forums
4 min

Video: Supervised Learning
12 min

Reading: Supervised Learning 4 min

Video: Unsupervised Learning 14 min

Reading: Unsupervised Learning 3 min

Reading: Who are Mentors? 3 min

Reading: Get to Know Your Classmates
8 min

Reading: Frequently Asked
Questions
11 min

## Review

Reading: Lecture Slides 20 min

**Quiz:** Introduction 5 questions

## **Model and Cost Function**

Video: Model
Representation
8 min

Reading: Model Representation

Gradient Descent Intuition

In this video we explored the scenario where we used one parameter  $\theta_1$  and plotted its cost function to implement a gradient descent. Our formula for a single parameter was :

Repeat until convergence:

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} \frac{J(\theta_1)}{J(\theta_1)}$$

Regardless of the slope's sign for  $\frac{d}{d\theta_1}J(\theta_1)$ ,  $\theta_1$  eventually converges to its minimum value. The following graph shows that when the slope is negative, the value of  $\theta_1$  increases and when it is positive, the value of  $\theta_1$  decreases.



On a side note, we should adjust our parameter  $\alpha$  to ensure that the gradient descent algorithm converges in a reasonable time. Failure to converge or too much time to obtain the minimum value imply that our step size is wrong.



How does gradient descent converge with a fixed step size  $\alpha$ ?

The intuition behind the convergence is that  $\frac{d}{d\theta_1}J(\theta_1)$  approaches 0 as we approach the bottom of our convex function. At the minimum, the derivative will always be 0 and thus we get:

$$\theta_1 := \theta_1 - lpha * 0$$