Bil 470 / YAP 470

Introduction to Machine Learning (Yapay Öğrenme)

Batuhan Bardak

Unsupervised Learning (PCA & K-means)

Date: 14.11.2022

Plan for today

- Dimensionality Reduction
 - o PCA
- Unsupervised Learning
 - Hierarchical Clustering
 - K-Means

Learning Paradigms

- Supervised learning $\mathcal{D} = \{(\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)})\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \left\{ \mathbf{x}^{(n)} \right\}_{n=1}^{N}$
 - Clustering
 - Dimensionality reduction
- Reinforcement learning $\mathcal{D} = \left\{ \mathbf{s}^{(n)}, \mathbf{a}^{(n)}, r^{(n)} \right\}_{n=1}^N$

Dimensionality Reduction

- Goal: given some unlabeled data set, learn a latent (typically lower-dimensional) representation
- · Use cases:
 - Reducing computational cost (runtime, storage, etc...)
 - Improving generalization
 - Visualizing data
- Applications:
 - High-resolution images/videos
 - Text data
 - Financial or transaction data

Recall: Regularization (L1)

Feature Elimination

Feature Reduction

Centering the Data

- To be consistent, we will constrain principal components to be *orthogonal unit vectors* that begin at the origin
- Preprocess data to be centered around the origin:

1.
$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

2.
$$\widetilde{\mathbf{x}}^{(n)} = \mathbf{x}^{(n)} - \boldsymbol{\mu} \, \forall \, n$$

3.
$$X = \begin{bmatrix} \widetilde{\boldsymbol{x}}^{(1)^T} \\ \widetilde{\boldsymbol{x}}^{(2)^T} \\ \vdots \\ \widetilde{\boldsymbol{x}}^{(N)^T} \end{bmatrix}$$

Reconstruction Error

• The projection of $\widetilde{\pmb{x}}^{(n)}$ onto a unit vector \pmb{v} is

$$\mathbf{z}^{(n)} = \left(\frac{\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}}{\|\mathbf{v}\|_2}\right) \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$$

Length of projection

Direction of projection

Reconstruction Error

• The projection of $\widetilde{\mathbf{x}}^{(n)}$ onto a unit vector \mathbf{v} is

$$\mathbf{z}^{(n)} = (\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}) \mathbf{v}$$

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_2^2 = 1}{\operatorname{argmin}} \sum_{n=1}^N \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_2^2$$

$$\begin{aligned} \left\|\widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}\right\|_{2}^{2} \\ &= \widetilde{\boldsymbol{x}}^{(n)^{T}}\widetilde{\boldsymbol{x}}^{(n)} - 2\left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)} + \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\boldsymbol{v} \\ &= \widetilde{\boldsymbol{x}}^{(n)^{T}}\widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)} \\ &= \left\|\widetilde{\boldsymbol{x}}^{(n)}\right\|_{2}^{2} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)^{2} \end{aligned}$$

Min. Reconstruction Error ⇔ Max. the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_{2}^{2}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} \right\|_{2}^{2} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right)^{2}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \sum_{n=1}^{N} \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right)^{2} \longleftarrow \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\text{Variance of projections}}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} \left(\sum_{n=1}^{N} \widetilde{\boldsymbol{x}}^{(n)} \widetilde{\boldsymbol{x}}^{(n)}^{T} \right) \boldsymbol{v}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T}(X^{T}X)\boldsymbol{v}$$

$$\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1$$

$$\mathcal{L}(\boldsymbol{v}, \lambda) = \boldsymbol{v}^{T}(X^{T}X)\boldsymbol{v} - \lambda(\|\boldsymbol{v}\|_{2}^{2}-1)$$

$$= \boldsymbol{v}^{T}(X^{T}X)\boldsymbol{v} - \lambda(\boldsymbol{v}^{T}\boldsymbol{v}-1)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{v}} = (X^{T}X)\boldsymbol{v} - \lambda\boldsymbol{v}$$

$$\rightarrow (X^{T}X)\widehat{\boldsymbol{v}} - \lambda\widehat{\boldsymbol{v}} = 0 \rightarrow (X^{T}X)\widehat{\boldsymbol{v}} = \lambda\widehat{\boldsymbol{v}}$$

• \hat{v} is an eigenvector of X^TX and λ is the corresponding eigenvalue! But which one?

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \, \boldsymbol{v}^{T}(X^{T}X) \boldsymbol{v}$$
$$(X^{T}X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}} \, \rightarrow \, \widehat{\boldsymbol{v}}^{T}(X^{T}X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}}^{T} \widehat{\boldsymbol{v}} = \lambda$$

- The first principal component is the eigenvector $\widehat{m v}_1$ that corresponds to the largest eigenvalue λ_1
- The second principal component is the eigenvector \widehat{v}_2 that corresponds to the second largest eigenvalue λ_1
 - $m{\cdot}$ $\widehat{m{v}}_1$ and $\widehat{m{v}}_2$ are orthogonal
- Etc ...
- λ_i is a measure of how much variance falls along $\widehat{m{v}}_i$

How can we efficiently find principle components (eigenvectos)?

Singular Value Decomposition (SVD) for PCA

• Every real-valued matrix $X \in \mathbb{R}^{N \times D}$ can be expressed as

$$X = USV^T$$

where:

- 1. $U \in \mathbb{R}^{N \times N}$ columns of U are eigenvectors of XX^T
- 2. $V \in \mathbb{R}^{D \times D}$ columns of V are eigenvectors of $X^T X$
- 3. $S \in \mathbb{R}^{N \times D}$ diagonal matrix whose entries are the eigenvalues of $X \to \text{squared entries}$ are the eigenvalues of XX^T and X^TX

PCA Algorithm

- Input: $\mathcal{D} = \left\{ \left(\mathbf{x}^{(n)} \right) \right\}_{n=1}^{N}, \rho$
- Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: Z, the transformed (potentially lowerdimensional) data

How many PCs should we use?

• Input:
$$\mathcal{D} = \left\{ \left(x^{(n)} \right) \right\}_{n=1}^{N}, \rho$$

- Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: Z, the transformed (potentially lowerdimensional) data

Choosing the number of PCs

• Define a percentage of explained variance for the i^{th} PC:

$$\frac{\lambda_i}{\sum \lambda_j}$$

- Select all PCs above some threshold of explained variance, e.g., 5%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric

Shortcomings of PCA

- Principal components are orthogonal (unit) vectors
- Principal components can be expressed as linear combinations of the data

Autoencoders

Insight: neural
networks implicitly
learn low-dimensional
representations of
inputs in hidden layers

Autoencoders

Learn the weights by minimizing the reconstruction loss:

$$e(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{o}^{(L)} \right\|_2^2$$

Deep Autoencoders

PCA (A) vs Autoencoder (B)

Takeaways

- PCA finds an orthonormal basis where the first principal component maximizes the variance
 ⇔ minimizes the reconstruction error
- Autoencoders use neural networks to automatically learn a latent representation that minimizes the reconstruction error

Clustering

- Supervised learning $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \left\{ \mathbf{x}^{(n)} \right\}_{n=1}^{N}$
 - Clustering
 - Dimensionality reduction
- Reinforcement learning $\mathcal{D} = \left\{ \mathbf{s}^{(n)}, \mathbf{a}^{(n)}, r^{(n)} \right\}_{n=1}^N$

Clustering

- Goal: split an unlabeled data set into groups or clusters of "similar" data points
- · Use cases:
 - Organizing data
 - Discovering patterns or structure
 - Preprocessing for downstream machine learning tasks
- Applications:
 - Finding similar customer profiles for marketing
 - Reduce the number of data points via sampling from clusters
 - Use clustering to generate labels
 - Doing visualization

Similarity for k-nn

- Intuition: predict the label of a data point to be the label of the "most similar" training point two points are "similar" if the distance between them is small
- Euclidean distance: $d(x, x') = ||x x'||_2$

Clustering Algorithms

- Hierarchical
 - Top-down (divisive)
 - Bottom-up (agglomerative)
- Partitioning
 - K-means

Hierarchical Clustering

- Bottom-up (agglomerative)
 - Start with each data point in its own cluster
 - Iteratively combine the most similar clusters
 - Stop when all data points are in a single cluster

- Top-down (divisive)
 - Start with all data points in one cluster
 - Iteratively split the largest cluster into two clusters
 - Stop when all clusters are single data points

Bottom-up (agglomerative)

Top-down (divisive)

Bottom-up Hierarchical Clustering

- Bottom-up (agglomerative)
 - Start with each data point in its own cluster
 - Iteratively combine the most similar clusters
 - Stop when all data points are in a single cluster
- Key question: how do we define similarity between clusters?
 - Single-linkage: consider the closest data points

$$d_{SL}(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} d(\mathbf{x}, \mathbf{y})$$

Complete-linkage: consider the farthest data points

$$d_{CL}(C_i, C_j) = \max_{\boldsymbol{x} \in C_i, \, \boldsymbol{y} \in C_j} d(\boldsymbol{x}, \boldsymbol{y})$$

Single Linkage Dendrogram

Complete Linkage Dendrogram

Single vs Complete Linkage

- Single-linkage prioritizes local behaviour, can lead to long, snakelike (i.e., nonconvex) clusters.
- Complete-linkage tries to keep the diameter of clusters small; clusters tend to be more spherical (i.e., convex)

Top-down Hierarcihcal Clustering

- Top-down (divisive)
 - Start with all data points in one cluster
 - Iteratively split the largest cluster into two clusters
 - Stop when all clusters are single data points
- **Key question**: how can we partition a cluster?
 - \circ K-Means with K = 2

Partition-Based Clustering

- Given a desired number of clusters, K, return a partition of the data set into K groups or clusters, $\{C_1, \dots, C_K\}$, that optimize some objective function
 - Can be used as a subroutine for top-down hierarchical clustering when K=2
- 1. What objective function should we optimize?

2. How can we perform optimization in this setting?

Which partition is better?

Option A

Option B

Recipe for K-means

- Define a model and model parameters
 - Assume K clusters and use the Euclidean distance
 - Parameters: $\mu_1, ..., \mu_K$ and $z^{(1)}, ..., z^{(N)}$

Write down an objective function

$$\sum_{n=1}^{N} \| \boldsymbol{x}^{(n)} - \boldsymbol{\mu}_{Z^{(n)}} \|_{2}$$

- Optimize the objective w.r.t. the model parameters
 - Use (block) coordinate descent

Optimizing the K-means objective

$$\widehat{\mu}_1, \dots, \widehat{\mu}_K, z^{(1)}, \dots, z^{(N)} = \operatorname{argmin} \sum_{n=1}^N ||x^{(n)} - \mu_{z^{(n)}}||_2$$

• If $\mu_1, ..., \mu_K$ are fixed

$$\hat{z}^{(n)} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmin}} \| \mathbf{x}^{(n)} - \mathbf{\mu}_k \|_2$$

• If $z^{(1)}, \dots, z^{(N)}$ are fixed

$$\widehat{\mu}_k = \underset{\mu}{\operatorname{argmin}} \sum_{n:z^{(n)}=k} ||x^{(n)} - \mu||_2$$

$$=\frac{1}{N_k}\sum_{n:z^{(n)}=k}x^{(n)}$$

K-means Algorithm

• Input:
$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)} \right) \right\}_{n=1}^{N}, K$$

- 1. Initialize cluster centers $\mu_1, ..., \mu_K$
- While NOT CONVERGED
 - a. Assign each data point to the cluster with the nearest cluster center:

$$z^{(n)} = \underset{k}{\operatorname{argmin}} \left\| \boldsymbol{x}^{(n)} - \boldsymbol{\mu}_k \right\|_2$$

b. Recompute the cluster centers:

$$\mu_k = \frac{1}{N_k} \sum_{n: z^{(n)} = k} x^{(n)}$$

where N_k is the number of data points in cluster k

• Output: cluster centers $\mu_1, ..., \mu_K$ and cluster assignments $z^{(1)}, ..., z^{(N)}$

Setting K

 Idea: choose the value of K that minimizes the objective function

• Look for the characteristic "elbow" or largest decrease when going from K-1 to K

Next Class:

Machine Learning System Design