Estimation in Domains

Week 5 (4.2)

Stat 260, St. Clair

Domains

Domain: subpopulations of interest \mathcal{U}_d

ullet We want to estimate a domain parameter: $t_d, ar{y}_{\mathcal{U}_d}, p_d$

Design

We take a SRS of size n from a population ${\cal U}$

ullet **Problem:** n_d , the number of respondents in the domain, varies from sample to sample

Domain estimation: a ratio estimator

Domain indicator:

$$x_i = \left\{egin{array}{ll} 1 & ext{if unit } i ext{ is in the domain} & ext{STEM} \ 0 & ext{if unit } i ext{ is not in the domain} & ext{Not} \end{array}
ight.$$

• Domain sample size:

Domain estimation: a ratio estimator

· Domain responses: U; for every sampled unit

$$u_i = x_i y_i = egin{cases} y_i & ext{if unit } i ext{ is in the domain} \ 0 & ext{if unit } i ext{ is not in the domain} \end{cases}$$

• Domain sample mean:

$$\bar{y}_d = \frac{\sum_{i \in \text{domain}} y_i}{n_d} = \frac{\sum_{i=1}^n u_i}{\sum_{i=1}^n x_i} \qquad \text{SE cale.}$$

$$\text{based on}$$

$$\text{ratio est.}$$

$$\text{SE}$$

Domain estimation for a mean

- Domain Parameter mean $ar{y}_{\mathcal{U}_d}$
- Estimator with a SRS of units: a ratio estimator

$$ar{y}_d = rac{\sum_{i=1}^n u_i}{\sum_{i=1}^n x_i}$$
 de main sample

• **SE**: when n is "large" (or bias about 0)

$$SE(ar{y}_d) pprox \sqrt{\left(1-rac{n}{N}
ight)rac{s_e^2}{nar{x}^2}} = \sqrt{\left(1-rac{n}{N}
ight)\left(rac{n}{n-1}
ight)\left(rac{n_d-1}{n_d}
ight)rac{s_d^2}{n_d}}$$

where s_d is the sample SD of the measurements y_i in the sampled domain.

Domain estimation for a proportion

- **Domain Parameter** proportion p_d
- ullet Response y_i is an indicator of "success"
- Estimator with a SRS of units: a ratio estimator

$$\hat{p}_d = \frac{\sum_{i=1}^n u_i}{\sum_{i=1}^n x_i} = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i} - \text{Sample prop.}$$
 of success in domain

Domain estimation for a total

- Domain Parameter total t_d

Two scenarios:

1. If N_d , population size of the domain, is **known**

$$\hat{t}_{\,d} = N_d ar{y}_{\,d}, \;\; SE(\hat{t}_{\,d}) = N_d SE(ar{y}_{\,d})$$

Domain estimation for a total

• Domain Parameter total $t_d = \sum_{i=1}^{N} y_i \cdot X_i$ Two scenarios:

ullet Estimator: SRS total estimate with u_i as the response

• Estimator: SRS total estimate with
$$u_i$$
 as the Measure ment u_i ? RS $\hat{t}_d = N\bar{u}$ • SE:

$$SE(\hat{t}_{\,d}) = NSE(ar{u}) = N\sqrt{\left(1-rac{n}{N}
ight)rac{s_u^2}{n}}$$

where s_u is the sample SD of the measurements u_i in the sample and

$$s_u^2 = rac{1}{n-1} \Big[(n_d-1) s_d^2 + n_d ar{y}_d^2 \left(1 - rac{n_d}{n}
ight) \Big]$$

Example

An economist wants to estimate the average weekly amount spent on food by households containing children in a small town. A complete list of all 2500 households in the county is available, but identifying those households with children is impossible. So the economist selects a SRS of 500 households and observes 420 that contain children. Of the 420 households with children, he records an average of \$120.35 spent on food during a week and a sample SD of \$42.20.

records an average of \$120.35 spent on food during a week and a sample SD \$42.20.

Population

Units = households (HH)
$$N = 2500$$

Units = households (HH) $N = 2500$

Domain: HH with children

 $y_i = cost of food$
 $y_i = cost of food$
 $SRS: N = 500$
 $N_1 = 420 \rightarrow S_1 = 42.20$

Example:

Estimate the average weekly amount of money spent on food by all households with children in the county and compute the standard error of your estimate.

your estimate.

Est :
$$y_d = \frac{1}{20.35}$$

SE : $N = 500$ $N_d = 420$ $S_d = 42.20$
 $N = 2500$
 $N = 2500$

Example:

Estimate the total weekly amount of money spent on food by households with children and compute the standard error of your estimate.

$$\frac{\hat{t}_{d} = ??}{\hat{t}_{d}} = \frac{7d \times Nd}{500} = \frac{(120.35)(420)}{500} = \frac{50.547}{500}$$

$$\frac{\hat{t}_{d} = 2500}{500} = \frac{50.547}{500} = \frac{1420}{500} = \frac{252,735}{500} = \frac{2500(420)}{500} = \frac{12500}{500} = \frac{1420}{500} = \frac{1420}{500$$

Bias of domain mean estimator

Small when n is large or n_d/n is close to 1

$$SE(ar{y}_d) pprox \sqrt{\left(1-rac{n}{N}
ight)rac{s_e^2}{nar{x}^2}} = \sqrt{\left(1-rac{n}{N}
ight)\left(rac{n}{n-1}
ight)\left(rac{n_d-1}{n_d}
ight)rac{s_d^2}{n_d}}$$

2
$$e_i = u_i - y_i X_i$$
 $S_e^2 = Sample SD of e_i$

Ratto

Ratto

$$\overline{e} = \frac{1}{N} \sum_{i=1}^{N} (u_i - \overline{y}_d \times_i) = \frac{1}{N} \sum_{i=1}^{N} (\underline{z}u_i - \overline{y}_d \times_i)$$

$$= \frac{1}{N} (\underline{z}u_i - \underline{z}u_i) = \underline{0} \qquad \underline{\Sigma}u_i$$

$$\underline{\Sigma}u_i - \underline{\Sigma}u_i = \underline{\Sigma}u_i$$

Fact SD:
$$8^{2} = \frac{1}{N-1} \sum (y_{1}y_{2})^{2} = \cdots = \frac{1}{N-1} \sum y_{1}^{2} - ny^{2}$$

$$\sum_{i=1}^{n} y_{i}^{2} = (n-1)S^{2} + ny^{2} \qquad Nox + 1$$

$$8^{2} = \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} \rightarrow \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} \qquad Nox + 1$$

$$= \frac{1}{N-1} \sum_{i=1}^{n} (x_{i} - y_{d} \times x_{i})^{2} - \sum_{i=1}^{n} s_{i} + ny^{2} - \sum_{i=1}^{n} s_{i} + ny^{2$$

Proof
$$s_{u}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (u_{i} - \bar{u})^{2} = \frac{1}{n-1} \left[(n_{d} - 1)s_{d}^{2} + n_{d}\bar{y}_{d}^{2} \left(1 - \frac{n_{d}}{n} \right) \right]$$

$$S_{u}^{2} = \frac{1}{n-1} \left[\sum_{j=1}^{n} u_{i}^{2} - n u^{2} \right] = \frac{1}{n-1} \left[\sum_{j=1}^{n} x_{i}^{2} q_{i}^{2} - n \left(\frac{1}{n} \sum_{j=1}^{n} x_{j}^{2} q_{i}^{2} - n \left(\frac{$$