1 What I am assuming

Fundamental theorem (infinite version) open subgroup ⇒ closed subgroup closed subgroup of finite index ⇒ open subgroup Some basic properties of tensors Some Category theory

2 Etale Algeras

Setting: k is our base field. $k_s = k_{sep}$. L/k a finite separable extension. $G = Gal(k_s/k)$, this acts on $Hom_k(L, k_s)$ by post-composition.

Lemma 2.1. Let X be discrete space. Then, $G \times X \to X$ is continuous iff the stabilizer is open in G.

Lemma 2.2. The above left action of G on $Hom_k(L, k_s)$ is continuous and transitive, hence $Hom_k(L, k_s)$ as a G-set is isomorphic to the left coset space of some open subgroup in G. For L Galois over k this coset space is in fact a quotient by an open normal subgroup.

Proof.
$$U = Stab(\phi)$$
.
 L is separable. Hence action is transitive. $G \simeq Hom_k(L, k_s)/U$

Theorem 2.3. The contravariant functor mapping a finite separable extension L/k to the finite G-set $Hom_k(L, k_s)$ gives an anti-equivalence between the category of finite separable extensions of k and the category of finite sets with continuous and transitive left G-action. Here Galois extensions give rise to G-sets isomorphic to some finite quotient of G.

Proof. Essentially Surjective: Fixed field of the stabilizer. Fully Faithful:

$$L \to M$$

$$Hom_k(M, k_s) \to Hom_k(L, k_s)$$

$$\phi \mapsto f(\phi)$$

$$f(\phi)(L) \subset \phi(M)$$

Theorem 2.4. The functor mapping a finite étale k-algebra A to the finite set $Hom_k(A, k_s)$ gives an anti-equivalence between the category of finite étale k-algebras and the category of finite sets with continuous left G-action. Here separable field extensions give rise to sets with transitive G-action and G-action to G-sets isomorphic to finite quotients of G.

Proof. Let
$$A = \prod L_i \ A \to k_s \leftrightarrow \cup L_i \to k_s \ A \to B \leftrightarrow \cup L_i \to M_i$$

Lemma 2.5. A finite dimensional commutative algebra over a field F is isomorphic to a direct product of finite field extensions of F if and only if it is reduced.

Proof. (product \Rightarrow reduced) (reduced \Rightarrow product) Take indecomposable algebra. No non-trivial idempotents.

$$x^n = x^{2n}y^n$$

Theorem 2.6. Let A be a finite dimensional commutative k-algebra. Then the following are equivalent:

- ${\it 1. \ A \ is \ \'etale.}$
- 2. $A \otimes \bar{k}$ is isomorphic to a finite product of copies of \bar{k} ; 3. $A \otimes \bar{k}$ is reduced.

Proof. $2 \Leftrightarrow 3$.

 $1 \to 2. \ L/k, \ L = k[x]/(f) \Longrightarrow L \otimes \bar{k} \simeq \bar{k}[x]/(f).$ $2 \to 1. \ A' := A/I, A \to \bar{k} \leftrightarrow A' \to \bar{k}.$

 $Hom_k(A,k) \simeq Hom_{\bar{k}}(A \otimes \bar{k}, \bar{k}) \ dim_{\bar{k}}(A \otimes \bar{k}) = dim_k(A)$