

Otonom Araç İçin Kontrol Sistemi

CSE 496 Son Sunum

Şevval MEHDER

Proje Danışmanı: Prof. Dr. Yusuf Sinan AKGÜL Mayıs 2019

İçerik

- Proje Tanımı
- İzlenen Yol
- Yapılanlar
- Sonuç
- Kaynaklar

Proje Tanımı

Meydana gelen trafik kazalarının %89'u sürücü hatalarından kaynaklanmaktadır. Otonom araçlar ile sürücü hatalarından kaynaklanan trafik kazalarının azaltılması hedeflenmektedir. Ancak bu çalışmaların birtakım zorlukları bulunmaktadır. Bu çalışmada bir otonom sürüş algoritması geliştirilmiş ve testleri CARLA ismi verilen simülasyon programında gerçekleştirilmiştir.

İzlenen yol

Veri seti oluşturma

Simülasyonun sağladığı sensörlerin incelenmesi ve uygun özellikte sensörler yardımıyla görüntü elde edilmesi işlemi

Yol piksellerinin tanınması

Enet kullanılarak kameranın görüş açısında bulunan yolun, yol olmayan diğer nesnelerden ayırt edilmesi

Uçtan Uca Öğrenme

Kamera görüntülerinden direksiyon açısının tahmin etme çalışması

CARLA ile entegrasyon

Yapılan iki çalışmanın gerçek zamanlı olarak hareket eden simülasyondaki araçta çalıştırılması ve sonuçların gözlemlenmesi

Veri Seti Oluşturma

CARLA'nın sahip olduğu sensörlerden RGB ve semantic segmentation kameraları kullanılmıştır.

Yol Piksellerinin Tanınması

4 farklı hava, 2 farklı ışık durumu kullanılaran 3 farklı şehir haritasından toplanan datasetler sayesinde hava durumundan bağımsız yol tanıma çalışması yapılmıştır.

Yol Piksellerinin Tanınması

CARLA verileri ile oluşturulan model, gerçek dünyadan görüntüler ile beslenmiştir. Test etmek için intersection over union kullanılmıştır.

Input Image Predicted Segmentation Ground Truth

Model/Test	Gerçek Dünya görüntüleri ile Tes	Carla Görüntüleri ile Test
Carla Görüntüleri ile olan model	%59	%89
Gerçk görüntülerle beşlenmiş model	%82	%81

Direksiyon Açısının Tahmini

NVIDIA tarafından sunulan PilotNet yapısı, 2 farklı şehirden 31bin tane görüntü ve direksiyon açısı ile eğitilmiştir.

Direksiyon Açısının Tahmini

Epoch sayısı / görün tü sayısı	17bin görüntü	20bin görüntü (Sadece dönüş görüntüleri ile beslenmiş)	25bin görüntü	30bin görüntü (Sadece dönüş görüntüle ile beslenmi	
10	%85	%86	%86	%86	
20	%86	%86	%86	%88	Ep
30	%86	%87	%86	%88	say /
40	%85	%88	%87	%88	göı ü
50	%85	%88	%86	%89	say
60	%59	%86	%87	%89	
70	%59	%88	%86	%89	10
					0.0

Tablo 2. Sınıflandırma methodunun epoch sayısı ve veri setinin büyüklüğüne göre kappa puanları

80	%59	%87	%87	%87	20
90	%59	%87	%86	%88	30
Tablo 1. Sınıflandırma methodunun epoch				40	
sayısı ve veri setinin büyüklüğüne göre				50	
doğruluk değerleri				60	

Epoch sayısı / görünt ü sayısı	17bin görüntü	20bin görüntü (Sadece dönüş görüntüleri ile beslenmiş)	25bin görüntü	30bin görüntü (Sadece dönüş görüntüleri ile beslenmiş)
10	0.77	0.81	0.80	0.82
20	0.79	0.81	0.80	0.85
30	0.78	0.82	0.81	0.85
40	0.76	0.83	0.83	0.85
50	0.76	0.83	0.81	0.86
60	0.24	0.81	0.82	0.86
70	0.25	0.83	0.81	0.86
80	0.25	0.83	0.82	0.83
90	0.25	0.82	0.81	0.85

CARLA ile entegrasyon

Başarı Kriterlerinin Kontrolü

 Simülasyonda %80 oranında şehir içinde düzgün sürüş

2. Hava koşullarından etkilenmeme

3. Sürüş algoritmasının 90 saniyeden fazla kararsız kalmaması

Sonuç

Çalışmanın sonucunda manuel olarak veri toplamadan, sentetik simülasyon verileri kullanılarak yapılan geliştirmelerin derin öğrenme çalışmalarının başarılı bir başlangıç basamağı olabileceği sonucuna varıldı.

Ve yapılan proje GTÜ Otonom Hazine Aracı araştırmalarının alt yapısını oluşturdu.

Kaynaklar

- 1. Dosovitskiy, Alexey, et al. "CARLA: An open urban driving simulator." *arXiv preprint arXiv:1711.03938* (2017).
- 2. Bojarski, Mariusz, et al. "End to end learning for self-driving cars." *arXiv preprint arXiv:1604.07316* (2016).
- 3. Paszke, Adam, et al. "Enet: A deep neural network architecture for real-time semantic segmentation." arXiv preprint arXiv:1606.02147 (2016).

