

Why This Matters

Goal: Predict the wages of FIFA soccer players using players' attributes: physical attributes, contract details, and technical skills.

Relevance: Help soccer clubs, analysts, and stakeholders make data-driven decisions on players' wages and the recruitment process.

Hypotheses:

- Players in their prime age (20-30) earn higher wages.
- Overall score is the strongest predictor of wages.
- Physical attributes (e.g., height, weight) have less impact than technical skills.

Exploring the Dataset

Source: Web-scraped FIFA data with 56 attributes.

Structure:

- Each row = 18240 players of 2024
- Each column = performance/characteristics

Key Features: Age, height, weight, overall score, technical and physical attributes, wages.

A	В	С	D	E	F	G	H I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W
1 name	overall_sc	position_s	k height	weight	pref_foot	birthdate a	ge pref_pos	work_rate	weak_foot	skill_move	value	wage	joined_clul c	ontract_e	Ball Contro	Dribbling M	arking	Slide Tackl S	tand Tack A	ggressior R	eactions At
2 Erling Haa	al 91	94	195 cm	94 kg	Left	21-Jul-00	24 ST	High / Med	3	3	\$157.000.0	\$340.00	1-Jul-22	2027	82	79 N	one	29	47	87	94
3 Kylian Mb	a 91	94	182 cm	75 kg	Right	Dec. 20, 19	25 STLW	High / Low	4	5	\$153.500.0	\$225.00	1-Jul-18	2024	92	93 N	one	32	34	64	93
4 Kevin De l	91	91	181 cm	75 kg	Right	28-Jun-91	33 CMCAM	High / Med	5	4	\$103.000.0	\$350.00	Aug. 30, 20	2025	92	86 N	one	53	70	75	92
5 Harry Kar	€ 90	90	188 cm	89 kg	Right	28-Jul-93	31 ST	High / High	5	3	\$119.500.0	\$230.00	28-Jul-10	2024	87	82 N	one	38	46	80	93
6 Thibaut C	o 90	90	199 cm	96 kg	Left	#######	32 GK	Medium / I	3	1	\$63.000.0	\$250.00	Aug. 9, 201	2026	23	13 N	one	16	18	23	88
7 Robert Le	w 90	90	185 cm	81 kg	Right	Aug. 21, 19	35 ST	High / Med	4	4	\$58.000.0	\$340.00	18-Jul-22	2026	90	86 N	one	19	42	81	93
8 Karim Bei	n: 90	90	185 cm	81 kg	Right	Dec. 19, 19	36 CFST	Medium / I	4	4	\$51.000.0	\$95.00	1-Jul-23	2026	91	87 N	one	18	24	63	92
9 Lionel Me	s 90	90	169 cm	67 kg	Left	24-Jun-87	37 CFCAM	Low / Low	4	4	\$41.000.0	\$23.00	16-Jul-23	2025	93	96 N	one	24	35	44	88
10 Rúben D	i: 89	90	187 cm	82 kg	Right	#######	27 CB	Medium / I	4	2	\$97.500.0	\$250.00	Sept. 29, 2	2027	75	64 N	one	87	91	93	89

Data Preprocessing - Wage

Creating New Features

HighScore = 0, if score < 25 HighScore = 1, otherwise

Then centered the scores with sklearn's Robust Scaler.

Prime = 1, if 20 < age <= 40 Prime = 0, otherwise

Helped the model!

Feature Selection

XGBoost after data preprocessing...

MSE: $90.91 \rightarrow 76.73$

R squared: $0.73 \rightarrow 0.77$

Dimensionality reduction using XGBoost to select top 20 features from 56.

Building Predictive Models

Models used: Linear Regression, Random Forest, XGBoost and SVR.

Evaluation metrics: R² and MSE.

Models Comparison

Linear regression	Random forest	SVR	XGBoost
Mean Squared Error: 200.03 R² Score: 0.40	Mean Squared Error: 109.73 R² Score: 0.67	Mean Squared Error: 99.86 R² Score: 0.70	Mean Squared Error: 76.73 R² Score: 0.77
Easy interpretability as coefficients correspond to factors	Provides robust predictions by aggregating outputs from multiple decision trees	Effective in High-dimensional spaces, and Robust to Outliers	Ability to handle non-linear relationships
Not effective in this case	Limited interpretability due to ensemble nature	Sensitivity to Hyperparameters	XGBoost performed best

Lessons

Challenges:

- Handling missing data and skewed distributions.
- Balancing feature relevance and redundancy.
- Dimensionality and redundancy.

Limitations:

- Dataset doesn't include external factors (e.g., sponsorships, team performance).
- Focused on limited seasonal data

Linear regression with preprocessed dataset

Actual Wage

Closing Thoughts

Summary:

- Hypotheses validated with data and modeling.
- Preprocessing and feature engineering improved model accuracy.
- XGBoost was the most effective predictive model.

Future Work:

- Enhance prediction accuracy
- Integrate additional data of the players

Applications:

- Wage negotiation
- Player recruitment
- Talent identification