Neural Word Embedding as Implicit Matrix Factorization

Shih-Ming Wang

NLPLab, Institute of Information Science, Academia Sinica

February 8, 2016

Outline

Introduction

Skip-Gram with Negative Sampling (SGNS) Skip-Gram Model Negative Sampling

SGNS as Implicit Matrix Factorization

Alternative Word Representations

Point-wise Mutual Information Singular Value Decomposition

Empirical Results

Experiment Setting
Deviation from Optimal
Linguistic Tasks

Conclusion

Introduction

Introduction

- Word representation why and how
- Distributional hypothesis
 - Words in similar contexts have similar meanings
 - Word-context matrix
- Skip-gram model
 - Neural-network based
 - Represent both word and context as vector
 - Maximize the dot-product of frequently occurring word-context vector pairs
 - Not well (theoretically) understood
- Analyze skip-gram as an implicit word-context matrix factorization

- Words as dense vector (projected from one-hot)
- Different projection matrix for input and output words (context)
- Loss function:

$$\frac{1}{T} \sum_{t=1}^{.} \sum_{-c \leq j \leq c} logp(w_{t+j}|w_t), \text{ where}$$

$$p(w_o|w_t) = \frac{exp(\vec{w}_o \cdot \vec{w}_t)}{\sum_{i=1}^{||Y||} exp(\vec{w}_i \cdot \vec{w}_t)}$$

 Problem: softmax impractical because ||V|| is usually large

- From now on, represent input and context word as w and c
- Skip-Gram optimizes conditional probability P(c|w)
- Negative Sampling optimizes joint probability P(w, c)
 - Maximize observed pairs $\sigma(\vec{w} \cdot \vec{c})$
 - Minimize k randomly sampled negative pairs $\sigma(\vec{w} \cdot \vec{c}_N)$
 - $\sigma(x) = \frac{1}{1 + \exp(-x)}$, Property: $\sigma(-x) = -\sigma(x)$
- Paired-wise loss function $L(w,c) = log(\sigma(\vec{w} \cdot \vec{c}) + k\mathbb{E}_{C_N \sim P(D)}[log(\sigma(-\vec{w} \cdot \vec{c}_N))]$
- Global loss function: $\sum_{w \in V_w} \sum_{c \in V_c} \#(w, c) L(w, c)$

SGNS as Implicit Matrix Factorization I

- SGNS learn a (input) word embedding ${\it W}$ and a (output) context embedding ${\it C}$
- Rows of W are used as word vectors while C is usually ignored
- But effectively, SGNS is implicitly factorizing a word-context matrix $M = W \cdot C^T$
- Each cell of M equals $\vec{w} \cdot \vec{c}$, measuring the strength of association for a (w, c) pair
- But what is the explicit form $f(w, c) = \vec{w} \cdot \vec{c}$?

SGNS as Implicit Matrix Factorization II

- Assume that SGNS can fully reconstruct M (this requires infinite dimension for W, C)
- The global loss then equals the summation of M's cells $\sum_{w \in V_w} \sum_{c \in V_c} \#(w,c) \cdot L(w,c) = \sum_i \sum_j M_{ij} = \sum_i \sum_j f(w_i,c_j)$
- The global loss is optimized when each cell of M is optimized
- Goal: find explicit form $f(w,c) = \vec{w} \cdot \vec{c}$
- Strategy: Find $\sum_{w \in V_w} \sum_{c \in V_c} \ell(w,c) = \sum_{w \in V_w} \sum_{c \in V_c} \#(w,c) \cdot L(w,c), \text{ and let } \frac{\partial \ell(w,c)}{\partial (\vec{w} \cdot \vec{c})} = 0 \text{ to find } \vec{w} \cdot \vec{c} \text{ that optimizes } \ell(w,c)$

SGNS as Implicit Matrix Factorization III

- $\ell(w,c) = \#(w,c)\log\sigma(\vec{w},\vec{c}) + k \cdot \#(w) \cdot \frac{\#(c)}{|D|}\log\sigma(-\vec{w}\cdot\vec{c})$
- $\vec{w} \cdot \vec{c} = log\left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)}\right) log \ k$ (Wait, PMI?)
- $M_{ii}^{SGNS} = W_i \cdot C_j = \vec{w_i} \cdot \vec{c_j} = PMI(w_i, c_j) log \ k =$ $M_{ii}^{PMI} - log k$
- M^{SGNS} was assumed to be fully reconstructed (not possible)
- In $\ell(w,c)$, the deviation of $\vec{w_i} \cdot \vec{c_i}$ from $M^{PMI} \log k$ is weighted by #(w,c) and $k \cdot \#(w) \cdot \frac{\#(c)}{|D|}$
- SGNS is a weighted matrix factorization of $M^{PMI} log k$
- Deviation of frequent word-context pairs pay more

Point-wise Mutual Information

- $PMI(x, y) = log \frac{P(x, y)}{P(x)P(y)}$
- Empirically, $PMI(w, c) = log \frac{\#(w, c) \cdot |D|}{\#(w) \cdot \#(c)}$
- Issue: M^{PMI} is dense
 - For unobserved (w, c), $PMI(w, c) = log 0 = -\infty$
 - Solution: PPMI(w, c) = max(PMI(w, c), 0)
 - PPMI lose information of infrequent word-context pairs
 - Intuition: prefer positive ('Canada', 'Snow') association against negative ('Canada', 'Desert') association
- $M^{SGNS} = M^{PMI} log k$ is dense
- Modify: M^{SPPMI} , where SPPMI(w, c) = max(PMI(w, c) log k, 0)

- M^{SPPMI} could directly be used as word embedding
- But it's sparse, dense vectors sometimes could be better?
- $M^{SPPMI} = U \cdot \Sigma \cdot V^T \Rightarrow U_d \cdot \Sigma_d \cdot V_d^T = M^{SVD}$
- Choose $W^{SVD} = U_d \cdot \Sigma_d$ and $C^{SVD} = V_d$
 - Under-perform SGNS empirically
 - C^{SVD} is orthogonal while W^{SVD} is not
 - Both C^{SGNS} and W^{SGNS} are not orthogonal
 - $W^{SVD_{1/2}} = U_d \cdot \sqrt{\Sigma_d}$ and $C^{SVD_{1/2}} = V_d \cdot \sqrt{\Sigma_d}$
 - Generally $W^{SVD_{\alpha}} = U_d \cdot \Sigma^{\alpha}$ (set to 1/2 in experiments)

- Corpus: English Wikipedia, 77.5 million sentences, 1.5 billion tokens
- Window size is set to 5, dropping words appears less than 100 times
- 189533 terms derived for both words and contexts

Deviation from Optimal

Method	$PMI - \log k$	SPPMI		SVD		SGNS			
			d = 100	d = 500	d = 1000	d = 100	d = 500	d = 1000	
k = 1	0%	0.00009%	26.1%	25.2%	24.2%	31.4%	29.4%	7.40%	
k = 5	0%	0.00004%	95.8%	95.1%	94.9%	39.3%	36.0%	7.13%	
k = 15	0%	0.00002%	266%	266%	265%	7.80%	6.37%	5.97%	

- The optimal solution is PMI − log k
- SPPMI is near-perfect approximation of the optimum
- SVD is better when d < 500 and k = 1
- SVD fails to leverage higher dimension as SGNS does
- k's meaning for SGNS
 - higher k means more sample and better estimation of negative sample distribution (good news)
 - higher k means that negative examples are more probable (actually not a good thing)
- SPPMI(w, c) = max(PMI(w, c) log k, 0), only losing information as k increases

Linguistic Tasks

WS353 (WORDSIM) [13]			MEN (WORDSIM) [4]			MIXED ANALOGIES [20]			SYNT. ANALOGIES [22]		
Representation		Corr.	Representation		Corr.	Representation		Acc.	Representation		Acc.
SVD	(k=5)	0.691	SVD	(k=1)	0.735	SPPMI	(k=1)	0.655	SGNS	(k=15)	0.627
SPPMI	(k=15)	0.687	SVD	(k=5)	0.734	SPPMI	(k=5)	0.644	SGNS	(k=5)	0.619
SPPMI	(k=5)	0.670	SPPMI	(k=5)	0.721	SGNS	(k=15)	0.619	SGNS	(k=1)	0.59
SGNS	(k=15)	0.666	SPPMI	(k=15)	0.719	SGNS	(k=5)	0.616	SPPMI	(k=5)	0.466
SVD	(k=15)	0.661	SGNS	(k=15)	0.716	SPPMI	(k=15)	0.571	SVD	(k=1)	0.448
SVD	(k=1)	0.652	SGNS	(k=5)	0.708	SVD	(k=1)	0.567	SPPMI	(k=1)	0.445
SGNS	(k=5)	0.644	SVD	(k=15)	0.694	SGNS	(k=1)	0.540	SPPMI	(k=15)	0.353
SGNS	(k=1)	0.633	SGNS	(k=1)	0.690	SVD	(k=5)	0.472	SVD	(k=5)	0.337
SPPMI	(k=1)	0.605	SPPMI	(k=1)	0.688	SVD	(k=15)	0.341	SVD	(k=15)	0.208

- Similarity test (WD353, Men)
 - SVD \geq SPPMI \geq SGNS (but the difference is small)
 - ullet k matters, SVD, SPPMI prefer small k, SGNS prefers large k
- Analogies test (Mixed, Synt)
 - SVD is not good
 - SGNS significantly outperforms others on syntactic dataset
 - Might be due to that SGNS's higher weight for frequent word such as "the", "will", "each", "had"

Conclusion

- SGNS is shown to implicitly factorizing the M^{PMI} log k matrix
- M^{SPPMI} , where SPPMI = max(PMI log k, 0)
 - Practical modification of SPMI
 - Approximate $M^{PMI} log k$ better than SGNS
 - Not necessarily performs better on linguistic tasks
 - Might be due to SGNS's ability to perform weighted matrix factorization
- SVD
 - Leads to no significantly improvement but sometimes worse performance
 - The data is "big" enough to support M^{SPPMI}?