ning-algorithms-linear-regression

May 26, 2025

1	Machine Learning Algorithms – (Banglish Version)
Macl	hine Learning (ML)
	Supervised Unsupervised Semi-Supervised Reinforcement Learning
1.1	1. Supervised Learning
(\rightarrow) Classification Regression
1.1.1	Classification
•	Logistic Regression: Binary outcome (e.g., yes/no) Decision Trees: (: C4.5, CART) Random Forest: Decision tree- ensemble (overfitting) Support Vector Machines (SVM): optimal hyperplane k-Nearest Neighbors (k-NN): nearest values classify Naïve Bayes: Bayes' theorem feature independence Regression
•	Linear Regression: (e.g., Ordinary Least Squares) Ridge/Lasso Regression: Overfitting L2 L1 regularization Gradient Boosting Machines (GBM): tree (: XGBoost, LightGBM)
1.2	2. Unsupervised Learning
(\rightarrow)
1.2.1	Clustering
•	k-Means: k Hierarchical Clustering: Tree structure (agglomerative divisive) DBSCAN: Density-

1.2.2 Dimensionality Reduction	
 PCA (Principal Component Analysis): or t-SNE: High-dimensional non-linear visualization 	
1.2.3 Association Rules	
• Apriori Algorithm: itemsets (e.g	g., Market Basket Analysis)
1.3 3. Semi-Supervised Learning	
 Self-Training: Labelled unlabeled pse Generative Adversarial Networks (GANs): Synt 	
1.4 4. Reinforcement Learning (RL)	
(Agent)	
 Q-Learning: Q-value (model-free) Deep Q-Networks (DQN): Q-learning + deep neur Policy Gradient Methods: optimize (e.g 	
1.5 5. Neural Networks & Deep Learning	
 Feedforward Neural Networks (FNN): Input → . Convolutional Neural Networks (CNN): Image/ Recurrent Neural Networks (RNN): Time series Transformers: Self-attention model (e.g., BERT 	video data- sequential (e.g., ResNet) (e.g., LSTM, GRU)
1.6 6. Ensemble Methods	
(
 Bagging: Parallel (e.g., Random Forest) Boosting: Sequential (e.g., AdaBoost, XGBoost Stacking: Multiple model- meta-model 	

2

1.7

Algorithm

Problem Type	Classification, Regres	ssion, Clustering	
Data Size &	SVM		
Quality			
Interpretability	Linear models	; Deep Learning	"Black Box"
Training Time	Deep Learning		

1.8 Popular Libraries/Frameworks

Scikit-learn	Traditional machine learning (Python)
TensorFlow / PyTorch	Deep learning & neural networks
XGBoost / LightGBM	High-performance gradient boosting

1.9 . Supervised Learning

1.9.1 Regression (

- Linear Regression
- Ridge / Lasso Regression
- Polynomial Regression
- Support Vector Regression (SVR)
- Decision Tree Regressor
- Random Forest Regressor
- Gradient Boosting Regressor (XGBoost, LightGBM, etc.)

1.9.2 Classification (

- Logistic Regression
- K-Nearest Neighbors (KNN)
- Decision Tree Classifier
- Random Forest Classifier
- Naive Bayes
- Support Vector Machine (SVM)
- Gradient Boosting Classifier (XGBoost, CatBoost, etc.)

1.10 . Unsupervised Learning

1.10.1 Clustering

- K-Means Clustering
- Hierarchical Clustering
- DBSCAN

t-SNEUMAP
1.10.3 Association Rule Learning
• Apriori • Eclat
1.11 . Semi-Supervised Learning
• Example: Label Spreading, Self-training Classifier
1.12 . Reinforcement Learning (RL)
 Q-Learning Deep Q Network (DQN) Policy Gradient Methods Actor-Critic Methods
1.13 . Neural Networks (Deep Learning) 1.13.1 Basic
 Perceptron Multi-layer Perceptron (MLP)
1.13.2 Computer Vision
• Convolutional Neural Network (CNN)
1.13.3 NLP / Time Series
 Recurrent Neural Network (RNN) LSTM / GRU Transformer / BERT
1.14 Frequently Used Libraries (Python)
Basic ML scikit-learn

1.10.2

Dimensionality Reduction

• Principal Component Analysis (PCA)

Deep Learning TensorFlow, Keras, PyTorch Gradient Boosting XGBoost, LightGBM, CatBoost NLP spaCy, nltk, transformers Clustering & PCA scikit-learn, UMAP, hdbscan

1.15

• Classification: Logistic Regression, KNN, Decision Tree

• Regression: Linear Regression

• Unsupervised: K-Means, PCA

2 Simple Linear Regression Implemented my handsOn

```
[]: class myLR:
       def __init__(self):
         self.m=None
         self.b=None
       def fit(self, X_train, y_train):
         num=0
         den=0
         for i in range(X_train.shape[0]):
           num+= ((y_train[i]-y_train.mean()) * (X_train[i]-X_train.mean()))
           den+= (X_train[i]-X_train.mean())**2
         self.m=num/den
         self.b= y_train.mean()-(self.m*X_train.mean())
         print(f'Slop (m):{self.m} and y-intercept (b):{self.b}')
       def predict(self, X_test):
         y=self.m*X_test+self.b
         print(f'Predicted value :{y}')
```

```
[]: import numpy as np import pandas as pd
```

```
[]: df=pd.read_csv('/content/placement.csv') df.head()
```

```
[]:
       cgpa package
    0 6.89
                 3.26
    1 5.12
                 1.98
    2 7.82
                 3.25
    3 7.42
                 3.67
    4 6.94
                 3.57
[]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 200 entries, 0 to 199
    Data columns (total 2 columns):
                  Non-Null Count Dtype
         Column
                  _____
                  200 non-null
     0
         cgpa
                                  float64
         package 200 non-null
                                  float64
    dtypes: float64(2)
    memory usage: 3.3 KB
[]: from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test=train_test_split(df['cgpa'].values, df['package'].
      →values,test_size=0.2,random_state=2)#.values cause our model need values not_
      ⇔Series/Dataframe
    X_{train}
[]: array([7.14, 8.93, 5.42, 5.1, 7.77, 6.76, 6.89, 6.68, 7.91, 7.89, 8.71,
           7.95, 6.61, 6.26, 6.53, 6.42, 5.11, 6.09, 6.93, 7.04, 5.94, 6.05,
           5.83, 5.95, 9.31, 5.58, 7.88, 6.13, 7.76, 4.85, 6.19, 8.6, 6.07,
           7.18, 5.12, 7.39, 8.25, 8.28, 7.13, 7.35, 5.66, 5.99, 8.01, 7.14,
           6.34, 6.89, 5.42, 6.47, 7.69, 7.4, 7.28, 5.95, 7.38, 6.93, 8.99,
           7.36, 7.08, 5.38, 7.56, 8.22, 5.84, 6.78, 7.19, 7.28, 6.79, 6.12,
           6.85, 8.2, 6.84, 7.37, 6.22, 6.61, 5.23, 7.21, 6.85, 6.19, 7.3,
           6.17, 5.89, 8.09, 7.11, 4.26, 6.94, 5.98, 6.71, 7.33, 9.06, 6.1,
           5.48, 6.1, 7.56, 7.29, 5.84, 7.48, 7.61, 5.79, 5.61, 7.34, 9.38,
           7.91, 6.94, 7.94, 8.31, 6.96, 6.93, 7.11, 8.44, 8.18, 6.66, 8.44,
           7.12, 6.3, 5.84, 6.98, 7.63, 5.64, 7.43, 8.87, 7.84, 5.84, 9.58,
           8.37, 7.63, 6.31, 6.5, 8.11, 6.07, 4.73, 7.3, 6.51, 7.28, 6.92,
           6.35, 8.62, 7.05, 9.26, 6.33, 6.22, 6.94, 5.13, 8.13, 5.9, 9.04,
           6.06, 7.57, 8.1, 9.16, 5.84, 7.89, 6.63, 7.09, 5.53, 6.75, 7.62,
           6.97, 7.66, 6.14, 7.78, 7.25, 8.65])
[]: mylr=myLR()
[]: mylr.fit(X_train,y_train)
```

Slop (m):0.5579519734250721 and y-intercept (b):-0.8961119222429152

[]:	<pre>mylr.predict(X_test[0])</pre>
	Predicted value :3.891116009744203
[]:	