

Capstone Project

(Supervised ML - Classification)

Bank Marketing Effective Prediction

By

Ajinkya Morade and Nitesh Gajakosh

CONTENTS

Al

- > Introduction.
- > Problem Statement.
- > Explanation of Features
- > Exploratory Data Analysis
- > Feature Engineering
- ➤ Model selection
- > SMOTE
- ➤ Model Performances
- ➤ Hyperparameter Tuning of models
- > ROC AUC Curve
- ➤ Comparing algorithms/Models
- **Conclusions**

INTRODUCTION

Bank marketing is the design structure, layout and delivery of customer-needed services worked out by checking out the corporate objectives of the bank and environmental constraints.

A term deposit is a fixed-term investment that includes the deposit of money into an account at a financial institution. Term deposit investments usually carry short-term maturities ranging from one month to a few years and will have varying levels of required minimum deposits.

The investor must understand when buying a term deposit that they can withdraw their funds only after the term ends. In some cases, the account holder may allow the investor early termination or withdrawal-if they give several days notification. Also, there will be a penalty assessed for early termination.

Make predictions

The classification Goal is to predict if the client will subscribe to a term deposit

Model Development

Develop a **Supervised Machine**Learning Model using Classification.

Al

Features

01	Age	Campaign-No. Of	
02	Job -type of a job	• 0	13
03	Marital -Marital Status	contacts performed during this	13
04	Education	campaign	
05	Default- Has credit in default?	Pdays- No. of days	14
06	Housing - Has housing Loan?	Previous-No. Of contacts	
07	Loan - Has a personal loan	performed before this campaign	15
08	Contact - Communication type		
0.0	Month- Last contact month of	P-outcome -Outcome of	
09	the year	previous marketing	6
10	Day_of_week -Last day of week	campaign	. •
11	Duration -Last contact duration	Target variable(y) -Has client	1′
10		subscribed to term deposit	
12	Balance		

EDA

Proportion of Subscribed & Not Subscribed term Deposit

We can see from the above plot that the dataset is imbalanced, where the number of the non-subscribed class is close to 8 times the number of Subscribed class

EDA

Majority of the customers are of the age group 30-39. Followed by 40-49 and 50-59

The Box Plot for the both subscribed and Not-subscribed customers looks the same In No class, outliers are present above age 70 and For Yes class, Outliers are present above age 75

EDA Of Categorical Variables

Distribution of Continuous Numerical Features

0.000

previous

Relation between Continuous numerical Features and Labels

previous

Find Outliers in numerical features

previous We can conclude that age, balance, duration, campaign, pdays and previous

Correlation between numerical features

0.8

- 0.6

- 0.4

0.2

-0.0

➤ pdays and previous have high correlation of 0.45 and the dependent variable has highest correlation with duration .

➤ It seems no feature is heavily correlated with other features.

Feature Engineering

01

Dropping columns

Default, pdays etc.

02

Label Encoding

Housing, Loan and y.

03

Getting Dummies

Job, Education, Marital Status, Contact, Month and Previous outcome

Model Selection

03 01 02 Gradient **Decision Tree Random Forest Boosting** Logistic Classifier Classifier Classifier Regression 05 **06** 07

XGBoost Classifier

K Neighbors Classifier Naive Bayes Classifier

SMOTE

SMOTE: a powerful solution for imbalanced data.

SMOTE is an algorithm that performs data augmentation by creating **synthetic data points** based on the original data points. SMOTE can be seen as an advanced version of oversampling, or as a specific algorithm for data augmentation. The advantage of SMOTE is that you are **not generating duplicates**, but rather creating synthetic data points that are **slightly different** from the original data points.

The SMOTE algorithm works as follows:

3.

4.

Steps Involved

1. You draw a random sample from minority class.

2. For the observations in this sample, you will identify the k nearest neighbors.

Take one of those neighbors and identify the vector between the current data point and the selected neighbor.

You multiply the vector by a random number between 0 and 1.

To obtain the synthetic data point, you add this to the current data point.

Random Forest Classifier

Classification report

1 0 10 1	110101	MAC O FMA TT
		matrix
		111/11111

Training accuracy Score	1.0
Testing accuracy Score	0.880

	Precision	recall F1-score		Support
0	0.94	0.93	0.94	8058
1	0.50	0.55	0.52	975
Accuracy			0.880	9033
Macro avg	0.72	0.74	0.73	9033
Weighted avg	0.90	0.89	0.89	9033

Feature Importance

Hyperparameter Tuning

Classification report

Training accuracy Score	1.0			
Testing accuracy Score	0.8910660909996679			

	Precision	ecision recall F		Support
0	0.95	0.93	0.94	8058
1	0.50	0.55	0.52	975
Accuracy			0.89	9033
Macro avg	0.72	0.74	0.73	9033
Weighted avg	0.90	0.89	0.89	9033

Confusion matrix

XG Boost Classifier

Classification report

Training accuracy Score	0.93
Testing accuracy Score	0.87

	Precision	recall	F1-score	Support	
0	0.92	0.95 0.93		7690	
1	0.62	0.50	0.55	1343	
Accuracy			0.87	9033	
Macro avg	0.77	0.72	0.74	9033	
Weighted avg	0.87	0.88	0.87	9033	

Confusion matrix

Gradient Boosting Classifier

Classification report

Training accuracy Score	0.93
Testing accuracy Score	0.88

	Precision	Precision recall		Support
0	0.91	0.93	0.93	7753
1	0.52	0.44	0.48	1280
Accuracy			0.88	9033
Macro avg	0.71	0.69	0.70	9033
Weighted avg	0.85	0.86	0.86	9033

Confusion matrix

ROC AUC Curve

ROC AUC Curve (Top 3 accuracy models)

ΑI

ROC AUC Curve for top 3 Models and its Performance

Comparison Of Models

Al

Sr.no	Model Name	Train Accuracy	Test Accuracy	F1 Score class 0	F1 Score class 1	ROC AUC Score
1	Logistic Regression	0.92	0.87	0.93	0.46	0.8568
2	Random Forest Classifier	1	0.89	0.94	0.52	0.9166
3	Gradient Boosting Classifer	0.93	0.88	0.93	0.48	0.8761
4	XG Boosting Classifier	0.93	0.88	0.93	0.55	0.9029
5	Decision Tree Classifier	1	0.86	0.92	0.47	0.7096
6	Naïve Byer Classifier	0.84	0.81	0.89	0.38	0.7536
7	K Neighbors Classifier	0.94	0.86	0.92	0.39	0.7573

Conclusions

Months of Marketing Activity

it will be wise for the bank to focus the marketing campaign during the months of **March**, **September**, **October and December**.

Campaign Calls

A policy should be implemented that states that no more than 3 calls should be applied to the same potential client in order to save time and effort in getting new potential clients. Remember, the more we call the same potential client, the more likely he or she will decline to open a term deposit.

Age Category

The next marketing campaign of the bank should target potential clients in their 20s or younger and 60s or older. The youngest category had a 60% chance of subscribing to a term deposit while the eldest category had a 76% chance of subscribing to a term deposit. It will be great if for the next campaign the bank addressed these two categories and therefore, increased the likelihood of more term deposits subscriptions.

Thank You