Documentação das Entidades - Sistema de Monitoramento ML **V4**

Visão Geral do Sistema

O Sistema de Monitoramento ML V4 foi projetado especificamente para suportar análises preditivas de falhas em máquinas industriais através de Machine Learning. A estrutura do banco de dados foi otimizada para capturar correlações entre sensores e facilitar o treinamento de modelos preditivos.

ENTIDADE: FABRICANTE

Propósito

Centraliza informações dos fabricantes das máquinas industriais, permitindo análises por marca, país de origem e facilitando contatos técnicos quando necessário.

Campos

Campo	Тіро	Motivo da Inclusão
id_fabricante	INT IDENTITY(1,1)	Chave primária artificial: Garante identificação única e eficiência em
	PRIMARY KEY	joins. IDENTITY elimina necessidade de controle manual de sequência.
	NVARCHAR(100) NOT NULL	Identificação do fabricante: Campo obrigatório para rastreabilidade.
nome_fabricante		NVARCHAR suporta caracteres especiais internacionais. Tamanho 100
		suficiente para nomes corporativos.
pais_origem	NVARCHAR(50)	Análise geográfica: Permite identificar padrões de qualidade por
		região. Opcional pois pode não estar disponível para equipamentos
		antigos.
contato	(NVARCHAR(100))	Suporte técnico: Facilita comunicação direta em caso de falhas
		recorrentes. Flexível para armazenar email, telefone ou URL.

Justificativa da Entidade

- Normalização: Evita repetição de dados de fabricante em cada máquina
- Integridade: Centraliza dados corporativos para manutenção consistente
- Análise: Permite correlações entre fabricante e padrões de falha

ENTIDADE: MAQUINA

Propósito

Registro central das máquinas monitoradas. Funciona como dimensão principal para todas as análises, conectando dados de sensores às características físicas dos equipamentos.

Campos

Campo	Тіро	Motivo da Inclusão
:	INT IDENTITY(1,1)	Identificador único: Chave artificial para performance otimizada
id_maquina	PRIMARY KEY	em consultas temporais massivas de sensores.
	NVARCHAR(100) NOT	Identificação operacional: Nome usado pelos operadores.
nome_maquina	NULL	Obrigatório para rastreabilidade em relatórios e alertas de ML.
		Agrupamento técnico: Permite análises comparativas entre
modelo	(NVARCHAR(50)	máquinas do mesmo modelo. Útil para identificar defeitos de
		projeto.
numero_serie	NVARCHAR(50) NOT	Identificação única física: Rastreabilidade absoluta do
numero_serie	NULL UNIQUE	equipamento. UNIQUE previne duplicação acidental.
		Relacionamento com fabricante: Permite análises de
id_fabricante	INT FOREIGN KEY	confiabilidade por marca. Foreign Key garante integridade
		referencial.
data instalacao	DATE	Análise temporal: Correlaciona idade do equipamento com
data_instalacao		frequência de falhas. Fundamental para modelos de degradação.
localizacao	(NVARCHAR(100))	Contexto ambiental: Permite identificar se localização influencia
		padrões de falha (umidade, temperatura ambiente, etc.).
status operacional	NVARCHAR(20) DEFAULT	Controle operacional: Filtra máquinas ativas para análises.
status_operacional	'ATIVO'	CHECK constraint garante valores válidos.

Constraints Implementadas

- **FK_maquina_fabricante**: Integridade referencial com FABRICANTE
- **CHK_status_operacional**: Valores controlados ('ATIVO', 'INATIVO', 'MANUTENCAO')

Justificativa da Entidade

- **Hub central**: Conecta todos os dados de sensores e falhas a características físicas
- **Contexto para ML**: Fornece features categóricas importantes (modelo, fabricante, idade)
- Controle operacional: Permite filtrar análises por equipamentos ativos

II ENTIDADE: LEITURA_SENSORES

Propósito

Coração do sistema de ML. Armazena todas as métricas dos sensores em um registro desnormalizado otimizado para análises. Estrutura projetada especificamente para alimentar algoritmos de Machine Learning.

Campos Principais

Campo	Тіро	Motivo da Inclusão
id_leitura	BIGINT IDENTITY(1,1) PRIMARY KEY	Suporte a Big Data : BIGINT suporta milhões de leituras. Essencial para dados temporais massivos.
id_maquina	INT FOREIGN KEY NOT NULL	Ligação com equipamento : Conecta métricas à máquina específica. NOT NULL garante integridade.
data_hora_leitura	DATETIME2 DEFAULT GETDATE()	Série temporal : Timestamp preciso para análises temporais. DATETIME2 oferece maior precisão que DATETIME.

Métricas dos Sensores (Features para ML)

Campo	Tipo	Justificativa Técnica	
corrente_eletrica	DECIMAL(8,3)	Indicador de carga : Correlaciona com esforço da máquina. Precisão de 3 casas para miliamperes. Range até 99.999A suficiente para equipamentos industriais.	
pressao	DECIMAL(8,3)	Estado hidráulico/pneumático : Crítico para bombas e compressores. Detecta vazamentos e obstruções. Precisão necessária para variações sutis.	
temperatura	DECIMAL(6,2)	Indicador de atrito/sobrecarga : Principal feature para predição de falhas. Correlaciona fortemente com desgaste. Range -99.99 a 999.99°C.	
umidade	DECIMAL(5,2)	Condições ambientais : Afeta componentes eletrônicos e lubrificação. Percentual de 0.00 a 100.00%.	
vibracao	DECIMAL(8,4)	Detecção de desbalanceamento : Indicador precoce de problemas mecânicos. 4 casas decimais para detectar micro-variações.	

Metadados Contextuais

Campo	Тіро	Valor para ML
qualidade_sinal	TINYINT DEFAULT 100	Confiabilidade da leitura : Permite filtrar dados ruins. Feature adicional para ajustar peso das observações.

Campo	Tipo	Valor para ML
temperatura_ambiente	DECIMAL(5,2)	Normalização contextual: Distingue aquecimento interno de
		fatores externos. Melhora precisão dos modelos.
turno	(NVARCHAR(10))	Feature categórica temporal: Captura padrões operacionais.
		Diferentes turnos podem ter perfis de uso distintos.
<	1	>

Design para Machine Learning

Estrutura Desnormalizada Intencional:

- Todos os sensores em um registro facilitam análises multivariadas
- Reduz complexidade de joins em consultas analíticas
- Otimizada para algoritmos que processam features simultaneamente

Correlações Implementadas no Script:

- Temperatura → Vibração: Dilatação térmica causa desalinhamentos
- Corrente ↔ Pressão: Bombas/compressores consomem mais energia sob alta pressão

ENTIDADE: FALHA

Propósito

Target principal para ML. Registra eventos de falha que os modelos devem aprender a predizer. Estrutura otimizada para criar labels temporais para treinamento supervisionado.

Campos

Campo	Тіро	Propósito no ML
id_falha	PRIMARY KEY	Identificação única : Rastreamento individual de cada evento de falha.
id_maquina	INT FOREIGN KEY NOT NULL	Conexão com contexto: Liga falha à máquina específica e seus dados de sensores.
tipo_falha	(NVARCHAR(50)	Classificação multiclasse : Permite modelos que predizem não apenas SE haverá falha, mas QUAL TIPO.
data_hora_falha	DATETIME2 NOT NULL	Janela temporal para labels: Define o momento exato para criar targets "falha nas próximas X horas".

Campo	Тіро	Propósito no ML
gravidade	(NVARCHAR(20))	Priorização : Permite modelos focados em falhas críticas.
gravidade		Feature ordinal (BAIXA < MEDIA < ALTA < CRITICA).
to one that the delice of	DECIMAL(6,2)	Impacto econômico: Permite otimizar modelos para
tempo_inatividade_horas		minimizar custos de parada, não apenas falhas.
descricao falha	(NVARCHAR(500))	Análise qualitativa: Texto livre para análise posterior com
uescricao_iairia		NLP se necessário.
resolvido	(BIT DEFAULT 0)	Status operacional: Filtra falhas resolvidas vs. ativas para
TESOIVIGO		relatórios.
€		>

Lógica de Criação de Labels

A view (VW_DADOS_ML) implementa a lógica:

```
CASE
WHEN EXISTS (
SELECT 1 FROM FALHA f
WHERE f.id_maquina = ls.id_maquina
AND f.data_hora_falha BETWEEN ls.data_hora_leitura
AND DATEADD(hour, 2, ls.data_hora_leitura)

THEN 1 ELSE 0
END AS falha_proximas_2h
```

Janela de 2 horas escolhida porque:

- Tempo suficiente para ação preventiva
- Evita labels muito esparsos (muito tempo) ou densos demais (pouco tempo)
- Equilibra precisão temporal com praticidade operacional

Propósito

Interface otimizada para Machine Learning. Combina dados de sensores com labels de falha em formato pronto para algoritmos de ML.

Features Principais

- falha_proximas_2h: Target binário principal (0/1)
- proxima_gravidade: Target categórico para classificação de severidade
- Todas as métricas de sensores como features numéricas
- Informações contextuais (turno, modelo, fabricante) como features categóricas

Otimizações Implementadas

- Join único entre LEITURA_SENSORES e MAQUINA
- Subconsulta otimizada para detectar falhas futuras
- Estrutura que evita necessidade de joins complexos em análises

o Decisões de Design para Machine Learning

1. Granularidade Temporal

- Leituras a cada ~21.6 minutos (4000 registros em 60 dias)
- Frequência equilibrada: captura tendências sem saturar o modelo

2. Balanceamento de Classes

- Script gera ~20% de condições de falha
- Evita datasets extremamente desbalanceados
- Probabilidades ajustadas por tipo de máquina e horário

3. Correlações Realistas

- Relações físicas implementadas via código
- Temperatura como driver principal
- Efeitos em cascata entre variáveis

4. Índices Estratégicos

```
sql

IX_leitura_data_maquina -- Consultas temporais por máquina
IX_leitura_maquina -- Agregações por equipamento
IX_falha_data_maquina -- Junção com janelas temporais
```

5. Tipos de Dados Otimizados

- DECIMAL para precisão numérica (evita erros de ponto flutuante)
- BIGINT para suportar milhões de leituras
- DATETIME2 para precisão temporal
- CHECK constraints para qualidade de dados

📊 Métricas de Qualidade Implementadas

O sistema inclui queries de validação que verificam:

- Diferenças estatísticas entre condições normais e de falha
- Correlações esperadas entre variáveis
- Distribuição balanceada de classes
- Qualidade temporal dos dados

Esta estrutura garante que o banco forneça dados limpos, correlacionados e balanceados para treinar modelos de Machine Learning eficazes na predição de falhas industriais.