

1. Title of the Invention

Liquid crystal display device

2. Scope of the Claims

(1) A liquid crystal display device characterized by comprising a liquid crystal layer; a pair of substrates, each substrate having an electrode and an alignment film formed thereon and being spaced from the liquid crystal layer by a predetermined gap, wherein at least one of the substrates is transparent; and a spacer disposed at a position corresponding to a space part that is installed besides a pixel corresponding portion between the pair of the substrates, for controlling a thickness of the liquid crystal layer.

(2) The liquid crystal display device according to claim 1, characterized in that the spacer is made of an adhesive material, and adheres and fixes the pair of substrates, respectively, to be spaced on opposite sides.

(3) The liquid crystal display device according to claim 2, characterized in that the spacer is a thermoplastic resin.

(4) The liquid crystal display device according to one of claims 1 to 3, characterized in that the spacer is made of a light-shielding material.

3. Detailed Explanation of the Invention

Industrially Applicable Field

The present invention relates to a liquid crystal display device, more specifically, to a liquid crystal display device capable of improving contrast and electric optical characteristics.

Structure of the Conventional Embodiment and Problems thereof

Fig. 3 illustrates a structure of a conventional liquid crystal display device 1. As shown in the drawing, the liquid crystal display device 1 generally includes substrates 4a, 4b formed of a liquid crystal layer 2 and transparent electrodes 3a, 3b, and a polarizing plate (not shown). In this type of liquid crystal display device 1, the thickness of the liquid crystal layer 2 is assumed to be constant, so spacers 5 are interposed not only to the end portion of the substrates 4a, 4b but also to the inner side thereof as means of separating the substrates 4a, 4b by a predetermined distance. The spacers 5 are formed of glass fiber, thin & small glass instrument, fine particles of high polymer resins, or crystal alumina particles, and make the pair of substrates 4a, 4b face from opposite sides.

Meanwhile, to improve the contrast of the liquid crystal display, a shielding film 6 for constantly shielding light is formed on the substrate 4a except for the pixel corresponding portion (a space between pixels). This shielding film 6 is formed by coating the space between pixels with black pigments or layering a metallic film that does not transmit light on the substrate.

However, in the conventional liquid crystal display device 1, the spacers 5 are interposed even among the pixel corresponding portions (denoted by A in the drawing),

so that the difference of optical characteristics such as the index of refraction between the liquid crystal inside the liquid crystal layer 2 and the spacers 5 results in deteriorations of the display quality. Also, a non-continuous molecular array is formed due to many defects on the boundary surface between the particles used as the spacers 5 and the liquid crystal, which resultantly lowers the contrast and the electric, optical characteristics.

Moreover, although it is possible to prevent the thickness of the liquid crystal layer 2 from being thinner than a desired thickness by interposing the spacers 5, when the pair of substrates 4a, 4b are distorted and curved, the thickness of the liquid crystal layer 2 becomes larger than the diameter of the spacers 5. In consequence, interference colors occur in the panel or it becomes difficult to set a driving voltage. This in turn lowers the display quality markedly. On the other hand, the formation of the conventional shielding film 6 accompanies a difficult process and complicates the fabrication process of the liquid crystal display device 1, so the product price is increased.

Object of the Invention

Accordingly, an object of the present invention is to provide a liquid crystal display layer having a reasonable panel gap for obtaining good contrast and electric & optical characteristics, and spacers capable of shielding light from shedding on spaces among pixels.

Means for Solving the Problem(s)

To solve the above problem, the present invention provides a liquid crystal layer device including a liquid crystal layer; a pair of substrates, each substrate having an electrode and an alignment film formed thereon and being spaced from the liquid crystal layer by a predetermined gap, wherein at least one of the substrates is transparent; and a spacer disposed at a position corresponding to a space part that is installed besides a pixel corresponding portion between the pair of the substrates, for controlling a thickness of the liquid crystal layer.

Applications of the Invention

By constituting the display device as explained above, no spacers need to be interposed among the pixel corresponding portions. Therefore, it becomes possible to prevent defects in liquid crystal alignment in the pixel corresponding portions that have a direct influence on the liquid crystal display.

Embodiment

Fig. 1 and Fig. 2 illustrate one embodiment of a liquid crystal display device according to the present invention. In particular, Fig. 1 is a plane view of a liquid crystal display device 8, and Fig. 2 is a cross-sectional view taken along the line II-II in Fig. 1.

In each drawing, for instance, transparent glass substrates 9a, 9b with sufficiently smooth surfaces like float glasses are used, and transparent electrodes 10a, 10b in stripe shape are formed, as shown in Fig. 1, in predetermined positions of opposed surfaces of the glass substrates over both directions thereof, respectively (e.g., in Fig. 1 the electrode 10a is denoted by a broken line). These transparent electrodes

10a, 10b are made of metallic oxides such as ITO, and are formed on the substrates 9a, 9b in a predetermined pattern corresponding to the pixels by using the technique for formation of a thin film. Also, inner surfaces of the substrates 9a, 9b in contact with a liquid crystal 11, which have the transparent electrodes 10a, 10b formed thereon, are coated with molecular alignment films and at the same time, undergo a rubbing treatment.

Reference numeral 12 is a spacer, the main part of the present invention. The spacer 12 is made of thermoplastic resin mixed with black pigment, and its formation position is limited to a space part (a narrow portion in each transparent electrode 10a) installed in positions besides the pixel corresponding portions. That is, the spacer 12 is formed in stripe shape, being inserted into the transparent electrode 10a on the pixel corresponding position (refer to Fig. 1). For formation of the spacer 12, a substrate 4a formed of a transparent electrode 3a needs to be formed first. Then, a thermoplastic resin mixed with the black pigment is coated thereon in such manner that the thickness of the thermoplastic resin is equal or slightly greater than the thickness of a desired liquid crystal layer, and the transparent electrode 3a being left is patterned. Furthermore, the substrate 4a having the thermoplastic resin pattern and another substrate 4b are parallelly disposed on opposite sides, and are compressed and heated until the liquid crystal layer has a desired thickness. As such, the thermoplastic resin is adhesive, thereby adhering both substrates 4a, 4b together. By cooling and hardening this continuously, the spacer 12 is formed and the substrates 4a, 4b are spaced by a predetermined distance, resulting in a liquid crystal cell 14 shown in Figs. 1 and 2. Also, reference numeral 13 in Fig. 1 denotes a sealing member for sealing the liquid crystal 11, in which the liquid crystal 11 is injected from a liquid crystal injection part

into the liquid crystal cell 14, indicated by an arrow B. At this time, the liquid crystal 11 is easily filled from a gap of the spacer 12 to a gap inside the liquid crystal cell 14 and as a result, a liquid crystal display device 8 is formed. By forming the spacer 12 in this manner, the spacer no longer scatters non-uniformly as in the conventional art. In addition, since the opposed substrates 4a, 4b are adhered to each other by the adhesive spacer 12, they are not distorted or curved, but the thickness of the liquid crystal layer is evenly maintained. Thus, neither interference colors nor display mottles occur, and a reasonable panel gap can be formed.

As explained before, the formation (installation) position of the spacer 12 corresponds to the position of the space part besides the pixel corresponding portion, i.e., the formation position of the shielding film 6 in the conventional liquid crystal display device 1 (Fig. 3). Accordingly, other objects besides the liquid crystal can exist in the pixel portion, and the contrast and the electric & optical characteristics of the liquid crystal display can be improved. Moreover, since the spacer 12 contains the black pigment, it is able to shield light. In other words, it is now possible to shield the light more effectively by using the spacer 12.

In the present embodiment, the spacer 12 is patterned in stripe shape, but the scope of the invention is not limited thereto. For example, the spacer 12 can be formed in grid shape or intermittently on the positions besides the pixel corresponding portion.

Also, in the present embodiment, the transparent electrode 3a is formed on the stripe-shaped spacer 12 with respect to the substrate 4a. However, it is also possible to implement the transparent electrode to non-stripe shaped spacer, for example, a liquid crystal cell where an active element is formed on the substrate.

Moreover, instead of forming the spacer 12 only on the one substrate 4a, it is possible to form the spacer 12 on both substrates 4a, 4b, respectively, and then a liquid crystal cell is assembled therein.

Effect of the Invention

According to the liquid crystal display device of the present invention, the spacer for controlling the thickness of the liquid crystal layer is installed between the two substrates, that is, in a position corresponding to the space part which is disposed in area besides the pixel corresponding portion. In this manner, the defects in liquid crystal alignment can be prevented, and the contrast, electric & optical characteristics of the display device can be enhanced. Also, thanks to the adhesive spacer, the thickness of the liquid crystal layer is maintained, and the occurrence of the interference colors is prevented very effectively. Moreover, the spacer can also be used for shielding light from shedding on the spaces among pixels.

4. Brief Explanation of the Drawings

Fig. 1 is a plane view of a liquid crystal display device according to one embodiment of the present invention;

Fig. 2 is a cross-sectional view taken along the line II-II in Fig. 1; and

Fig. 3 is a cross-sectional view of one embodiment of a conventional liquid crystal display device.

<Explanation of Reference Numerals>

8 : Liquid crystal display device 9a, 9b : Substrate

10a, 10b : Transparent electrode

11 : Liquid crystal

12 : Spacer

14 : Liquid crystal cell

⑨ 日本国特許庁 (JP) ⑩ 特許出願公開
 ⑪ 公開特許公報 (A) 昭63-128315

⑫ Int.Cl. ¹	識別記号	厅内整理番号	⑬ 公開 昭和63年(1988)5月31日
G 02 F 1/133	320	7370-2H	
G 09 F 9/30	323	6866-5C	

審査請求 未請求 発明の数 1 (全3頁)

④発明の名称 液晶表示素子

⑤特 願 昭61-275570
 ⑥出 願 昭61(1986)11月19日

⑦発明者 江口 稔康 神奈川県横浜市神奈川区守屋町3丁目12番地 日本ピクタ
 ー株式会社内
 ⑧出願人 日本ピクター株式会社 神奈川県横浜市神奈川区守屋町3丁目12番地
 ⑨代理人 弁理士 伊東 忠彦 外1名

明細書

1. 発明の名称

液晶表示素子

2. 特許請求の範囲

(1) 液晶層と、夫々電極及び配向膜を積層形成されており該液晶層を所定間隔をもって挟持する少なくとも一方が透明な一对の基板とにより構成される液晶表示素子において、該一对の基板間の面素対応部以外に設けられるスペース部

対応位置に、上記液晶層の厚さを制御するスペーサを設けてなることを特徴とする液晶表示素子。

(2) 該スペーサは接着力を有する材質よりなり、該一对の基板と夫々接着して該一对の基板を対向離開した状態で固定することを特徴とする特許請求の範囲第1項記載の液晶表示素子。

(3) 該スペーサは熱可塑性樹脂であることを特徴とする特許請求の範囲第2項記載の液晶表示素子。

(4) 該スペーサは遮光する性質を有する材質よ

りなることを特徴とする特許請求の範囲第1項乃至第3項のいずれかに記載の液晶表示素子。

3. 発明の詳細な説明

産業上の利用分野

本発明は液晶表示素子に係り、特にコントラスト及び電気光学特性を向上し得る液晶表示素子に関する。

従来の技術

第3図に従来の液晶表示素子1の構成を示す。同図に示されるように、一般に液晶表示素子1は、大略液晶層2と、透明電極3a, 3b等が形成されてなる基板4a, 4bと、図示しない偏光板とにより構成されている。この種の液晶表示素子1において、液晶層2の厚さ寸法を一定とするため一对の基板4a, 4bを所定寸法で一様に離間させる手段として、基板4a, 4bの端部のみならず、内側部分にもスペーサ5(ガラスファイバー、ガラス微小球、高分子樹脂の微小粒子、結晶アルミニナ粒等)を分散、介在させ、一对の基板4a, 4bを対向させている。

一方、液晶表示のコントラストを向上させるために、画素対応部以外（画素間スペース）の基板4a上には常時光を遮断する遮蔽膜6が形成されていた。この遮蔽膜6は、上記画素間スペースに黒色の染色物を塗布したり、或は光を透過しない金属膜を被覆することにより形成されていた。

発明が解決しようとする問題点

しかるに上記従来の液晶表示素子1では、画素対応部に対してもスペーサ5が介在し（図中矢印Aで示す）、その為に、液晶層2内の液晶とスペーサ5の屈折率など光学的特性の違いから、表示の品位を劣化させるばかりかスペーサ5として使用した粒子と液晶との境界面に於いて多くの欠陥を境界とした不連続な分子配列を形成され、これによりコントラストが低下し電気光学特性が悪化するという問題点があった。

また、スペーサ5の介在により液晶層2の厚さが所望の厚さより小さくなることは防止できるが、一対の基板4a, 4bが歪み沈曲が発生したとき液晶層2の厚さがスペーサ5の直径より大なる部

分が生じ、それを原因としてパネルに干渉色を生じ、あるいは駆動電圧の設定にも不都合を生じ、著しく表示品位を低下させるという問題点があつた。一方、従来の遮蔽膜6の形成は煩雑な形成工程を伴い、液晶表示素子1の製造工程が複雑化し製品価格が高くなるという問題点があつた。

そこで本発明では、上記、従来の問題点を解消し、良好なコントラスト及び電気光学特性が得られる合理的なパネル間隙の形成と、画素間スペースの遮光とを可能とし得るスペーサを有した液晶表示素子を提供することを目的とする。

問題点を解決するための手段

上記問題点を解決するために本発明では、液晶層と、夫々電極及び配向膜を積層形成されており液晶層を所定間隔をもって挟持する少なくとも一方が透明な一対の基板とにより構成される液晶表示素子において、上記一対の基板間の画素対応部以外に設けられるスペース部対応位置に、上記液晶層の厚さを制御するスペーサを設けた。

- 3 -

- 4 -

作用

液晶表示素子を上記構成とすることにより画素対応部にスペーサが介在することがなくなり、よって液晶表示に直接影響を与える画素対応部における液晶の配向欠陥を防止することができる。

実施例

次に本発明になる液晶表示素子の一実施例について第1図及び第2図を用いて説明する。尚、第1図は液晶表示素子8の平面図であり、また第2図は第1図におけるII-II線上の断面図である。

各図において9a, 9bは例えばフロートガラス等の平滑性の良好な透明ガラス基板であり、夫々対向する面の所定位置には透明電極10a, 10bが第1図において左右方向に亘り帯状に形成されている（第1図では電極10aを破線で示す）。この透明電極10a, 10bは例えば酸化インジウムのような金属酸化物よりなり、薄膜形成技術により基板9a, 9b上に画素に対応する所定パターンで被膜形成されている。尚、この透明電極10a, 10bが形成された基板10a,

10bの液晶11と接する内側面には図示しない分子配向膜が被膜されると共にラビング処理が施される。

12は本発明の要部となるスペーサである。このスペーサ12は、黒色系色素を混入された熱可塑性樹脂よりなり、画素対応部以外の位置に設けられるスペース部（各透明電極10aに挟まれた部分）に形成位置を選定されて配設されている。即ち、スペーサ12は画素対応位置に形成された透明電極10aに挟まれた状態（第1図に示す）で格状に形成されている。このスペーサ12を形成するに際しては、まず透明電極3aが形成されてなる基板4aに上記の黒色系色素が混入された熱可塑性樹脂を所望する液晶層の厚さ寸法と等しいか、或はこれより若干大なる厚さ寸法まで塗布形成し、透明電極3aを残してバターニングする。続いて上記熱可塑性樹脂がバターン形成された基板4aと、これと対をなす一方の基板4bを平行直正しく対向させながら、所望の液晶層の厚さ寸法となるまで加圧し加熱する。これにより熱可塑

- 5 -

-76-

- 6 -

性樹脂は接着力をもつて両基板4a, 4bを接着し、抜いてこれを冷却固化することによりスペーサ12が形成されると共に基板4a, 4bは所定寸法離間されて固定され、第1図及び第2図に示す液晶セル14が形成される。尚、第1図中13は液晶11を封入するためのシール部材であり、液晶11は矢印Bで示す液晶注入部より液晶セル14内に注入される。この際、液晶11はスペーサ12の隙間から液晶セル14内の隙間へ容易に充填されてゆき、液晶表示素子8が形成される。上記の如くスペーサ12を形成することにより、従来のようにスペーサが不均一に分散されることはない。これに加えてスペーサ12に接着力を付与することにより対向する基板4a, 4bは接着力を介して密着されるため、基板4a, 4bの歪み弯曲は相互に引かれ、液晶層厚が均一に保持され干渉色や表示むらの発生しない合理的なパネル隙間を形成できる。

前記したようにスペーサ12の配設位置は画素対応部以外のスペース部位置、即ち、従来の液晶

表示素子1(第3図に示す)における遮蔽膜6の形成位置である。よって画素部に液晶以外の物が存在するようなことはなく、液晶表示のコントラスト及び電気光学特性を向上させることができる。更にスペーサ12には黒色系色素が混入されているため遮光機能を有し、スペーサ12により常時光を有効に遮蔽することができる。

尚、上記実施例ではスペーサ12を帯状のパターンとしたがこれに限るものではなく、例えば画素対応位置以外の位置に格子状或は断続的に形成しても良い。

また、上記実施例では、透明電極3aがストライプ状に形成された基板4aに対するスペーサ12の形成について述べたが、アクティプ素子を基板に作り込む方式の液晶セルなど透明電極がストライプ状でないものにも実施することができる。

また、一方の基板4a上にスペーサ12を形成するものに限らず、双方の基板4a, 4b上にスペーサ12を夫々形成してから、液晶セルを組み立てる構成としても良いことは勿論のことである。

- 7 -

発明の効果

上述の如く本発明になる液晶表示素子では、一对の基板間の画素対応部以外に設けられるスペース部対応位置に液晶層の厚さを制御するスペーサを設けることにより、画素対応部にスペーサによる液晶の配向欠陥を防止することができ、その結果、コントラスト電気光学特性の良好な表示素子が得られ、またスペーサに接着力を付与することにより、液晶層厚を一様に保つことが可能となり、干渉色の発生を有効に防止することができ、更にスペーサは、画素間スペースの遮光を利用してることも可能である等の特長を有する。

4. 図面の簡単な説明

第1図は本発明になる液晶表示素子の一実施例の平面図、第2図は第1図におけるⅠ-Ⅱ線に沿う断面図、第3図は従来の液晶表示素子の一例の断面図である。

8…液晶表示素子、9a, 9b…基板、10a, 10b…透明電極、11…液晶、12…スペーサ、14…液晶セル。

- 8 -

第1図

第2図

第3図

- 9 -

-77-