

82.05 - Análisis Predictivo

Examen Final

Inés Murtagh

Trabajo Final Análisis Predictivo

Airline Passenger Satisfaction

Encuesta de satisfacción de pasajeros de una línea aérea.

Objetivo

El objetivo o meta de este proyecto es guiar a una compañía aérea a determinar los factores importantes que influyen en la satisfacción del cliente o pasajero de la aerolínea.

Hipótesis

¿Se puede predecir la satisfacción de un pasajero?

¿Existe un patrón, en función de las calificaciones otorgadas por los pasajeros, que refleje la experiencia general del cliente y su satisfacción?

Análisis Exploratorio base de datos

Airline Passenger Satisfaction

#	=	∞ id	=	≜ Gender	=	A Customer =	# Age =	△ Type of Tr =	A Class =	# Flight Dist =	# Inflight wif =	# Departure =	# Ease of On =	A satisfaction
0		70172		Male		Loyal Customer	13	Personal Travel	Eco Plus	460	3	4	3	neutral or dissatisfied
1		5047		Male		disloyal Customer	25	Business travel	Business	235	3	2	3	neutral or dissatisfied
2		110028		Female		Loyal Customer	26	Business travel	Business	1142	2	2	2	satisfied
3		24026		Female		Loyal Customer	25	Business travel	Business	562	2	5	5	neutral or dissatisfied
4		119299		Male		Loyal Customer	61	Business travel	Business	214	3	3	3	satisfied
5		111157		Female		Loyal Customer	26	Personal Travel	Eco	1180	3	4	2	neutral or dissatisfied
6		82113		Male		Loyal Customer	47	Personal Travel	Eco	1276	2	4	2	neutral or dissatisfied
7		96462		Female		Loyal Customer	52	Business travel	Business	2035	4	3	4	satisfied
8		79485		Female		Loyal Customer	41	Business travel	Business	853	1	2	2	neutral or dissatisfied
9		65725		Male		disloyal Customer	20	Business travel	Eco	1061	3	3	3	neutral or dissatisfied
10		34991		Female		disloyal Customer	24	Business travel	Eco	1182	4	5	5	neutral or dissatisfied
11		51412		Female		Loyal Customer	12	Personal Travel	Eco Plus	308	2	4	2	neutral or dissatisfied
12		98628		Male		Loyal Customer	53	Business travel	Eco	834	1	4	4	neutral or dissatisfied
13		83502		Male		Loyal Customer	33	Personal Travel	Eco	946	4	2	4	
Cant	idad d	de Filas	s v	columna	as:	(103904, 2	4)	Personal Travel	Eco	453	3	2	3	target

Análisis Exploratorio de datos

Análisis Exploratorio base de datos

Variables

Género: Género de los pasajeros

(Femenino, Masculino)

Edad: La edad real de los pasajeros.

Tipo de cliente: el tipo de cliente (cliente fiel, cliente desleal)

Tipo de Viaje: Propósito del vuelo de los pasajeros

(Viaje Personal, Viaje de Negocios)

Clase: Clase de viaje en el avión de los pasajeros

(Business, Eco, Eco Plus)

Distancia de vuelo: la distancia de vuelo de este viaje

Retraso de salida en minutos: Minutos de retraso en la salida

Retraso de llegada en minutos: Minutos de retraso en la llegada

Satisfacción: Nivel de satisfacción de la aerolínea

(Satisfacción, neutral o insatisfacción)

- + Total Score
- + Total Score %
- + Average Rating

Calificaciones (nivel de satisfacción):

Embarque en línea: Nivel de satisfacción del embarque en línea

Comodidad del asiento: Nivel de satisfacción de Confort del asiento

Entretenimiento a bordo: Nivel de satisfacción del entretenimiento a bordo

Servicio a bordo: Nivel de satisfacción del servicio a bordo

Servicio de sala de piernas: Nivel de satisfacción del servicio de sala de piernas

Manejo de equipaje: Nivel de satisfacción del manejo de equipaje

Servicio de Check-in: Nivel de satisfacción del servicio de Check-in

Servicio a bordo: Nivel de satisfacción del servicio a bordo

Servicio wifi a bordo: Nivel de satisfacción del servicio wifi a bordo

Limpieza: Nivel de satisfacción de Limpieza

Hora de salida/llegada conveniente: Nivel de satisfacción de la hora de salida/llegada

Facilidad de reserva en línea: Nivel de satisfacción de la reserva en línea

Ubicación de la puerta: nivel de satisfacción de la ubicación de la puerta

Alimentos y bebidas: Nivel de satisfacción de Alimentos y bebidas

Análisis Exploratorio variable target

A satisfaction = neutral or dissatisfied neutral or dissatisfied satisfied neutral or dissatisfied satisfied neutral or dissatisfied neutral or dissatisfied satisfied neutral or dissatisfied neutral or dissatisfied neutral or dissatisfied neutral or dissatisfied target

Objetivo: predecir la satisfacción de un pasajero del vuelo

Variable Target: satisfaction

Modelo: clasificación

neutral or dissatisfied 58879 satisfied 45025 Name: satisfaction, dtype: int64

Missings

Análisis Exploratorio missings

Г⇒	id	0			
	Gender	0			
	Customer Type	0			
	Age	0			
	Type of Travel	0			
	Class	0			
	Flight Distance	0			
	Inflight wifi service	0			
	Departure/Arrival time convenient	0			
	Ease of Online booking	0			
	Gate location	0			
	Food and drink	0			
	Online boarding	0			
	Seat comfort	0			
	Inflight entertainment	0			
	On-board service	0			
	Leg room service	0			
	Baggage handling	0			
	Checkin service	0			
	Inflight service	0			
	Cleanliness	0			
	Departure Delay in Minutes	0			
	Arrival Delay in Minutes				
	satisfaction	0			
	dtype: int64				

supuestos:

'Arrival delay in Minutes': si el valor es nulo, se toma como supuesto que no se retrasó el aterrizaje para ese mismo vuelo.

Para los valores nulos, se asignó el número 0

Outliers

Análisis Exploratorio outliers

Análisis Exploratorio

outliers

Departure Delay in Minutes Arrival Delay in Minutes

count	103904.000000	103904.000000
mean	14.815618	15.133392
std	38.230901	38.649776
min	0.000000	0.000000
25%	0.000000	0.000000
50%	0.000000	0.000000
75%	12.000000	13.000000
max	1592.000000	1584.000000

Correlación

Análisis Exploratorio correlación

Análisis Exploratorio correlación

Distribución de las variables y visualizaciones

Distribución de las variables Histogramas

Distribución de las variables por nivel de satisfacción

Modelos Utilizados

Encoding Variables categóricas

One-Hot Encoding

variable: 'Customer Type' (loyal or disloyal), 'Type of Travel' (business or personal)

```
# Creamos las variables binarias
dummies = pd.get_dummies(df['Columna'])
# Añadimos las variables binarias al DataFrame
df = pd.concat([df, dummies], axis = 1)
```

Ordinal Encoding

```
variable: 'Class' (eco, eco plus, business)

encoder = OrdinalEncoder(categories=[['Eco Plus', 'Business', 'Eco']])

# Ajustamos el codificador con la variable class y la transformamos encoder.fit(df[["Class"]])
df["Class-encoded"] = encoder.transform(df[["Class"]])
```


Partición de la base train y test

Para la evaluación de los modelos se divide la base y se destina el 25% a test

75% 25%

train

Cantidad de registros en train: 77928 Cantidad de registros en test: 25976

test

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

Comparación de modelos

Modelos Probados

para clasificación

- 1. DecisionTreeClassifier()
- 2. RandomForestClassifier()
- 3. Extra Tree Classifier()
- 4. KNeighborsClassifier()
- 5. AdaBoostClassifier()
- 6. CatBoostClassifier()
- 7. LGBMClassifier()

Modelos utilizados comparación

Modelos utilizados comparación

DecisionTreeClassifier():

0.6903605981590883

RandomForestClassifier()

0.8092596187241394

ExtraTreesClassifier()

0.7993775101547487

KNeighborsClassifier()

0.09633607193237459

AdaBoostClassifier()

0.6393814666503261

XGBClassifier()

0.7146737224171132

CatBoostClassifier()

0.8229063400818697

LGBMClassifier()

0.8098870541888628

Ajuste de hiperparametros

Ajuste de hiperparámetros learning_rate y max_depth

```
fila = []
lista = [0.1, 0.2, 0.5, 0.7, 0.8, 1, 1.5, 2.0]

for i in lista :
    cb = CatBoostClassifier(learning_rate = i)
    cb.fit(X_train,y_train)
    train = cb.score(X_train, y_train)
    test = cb.score(X_test, y_test)
    fila.append([i, train, test])

scores = pd.DataFrame(fila, columns=["learning_rate", "r2_train", "r2_test"])

fig, ax = plt.subplots(figsize=(7, 4))
    ax = sns.lineplot(scores, x="learning_rate", y="r2_train", color = 'orange')
    ax = sns.lineplot(scores, x="learning_rate", y="r2_test", color = 'blue')
```



```
fila = []

for i in range(18, 31, 2):
    extratree = ExtraTreesClassifier(bootstrap = False, max_depth = i)
    extratree.fit(X_train,y_train)
    train = extratree.score(X_train, y_train)
    test = extratree.score(X_test, y_test)
    fila.append([i, train, test])

scores = pd.DataFrame(fila, columns=["max_depth","r2_train","r2_test"])

fig, ax = plt.subplots(figsize=(8, 5))
    ax = sns.lineplot(data=scores, x="max_depth", y="r2_train", color = 'orange')
    ax = sns.lineplot(data=scores, x="max_depth", y="r2_test", color = 'blue')
```


Ajuste de hiperparámetros learning_rate, n_estimators y depth

```
# optimizando learning_rate
lista = [0.1, 0.2, 0.5, 0.7, 0.8, 1, 1.5, 2.0]
accuracy = []

for x in lista:
    lgbmc = LGBMClassifier(learning_rate = x)
    lgbmc.fit(X_train, y_train)
    accuracy.append(lgbmc.score(X_train, y_train))

plt.plot(lista, accuracy, color = '#le77b4')
plt.grid()
plt.xlabel("learning rate")
plt.ylabel("accuracy")
```

```
# optimizando n estimators
                                                     # optimizando depth
lista = range(90, 180, 20)
                                                     lista = [2, 3, 5, 7, 8, 10, 12]
accuracy = []
                                                     accuracy = []
for x in lista:
                                                     for x in lista:
    rf = RandomForestClassifier(n estimators = x)
                                                          cb = CatBoostClassifier(learning rate = 0.2, depth = x)
    rf.fit(X train, y train)
                                                         cb.fit(X train, y train)
                                                         accuracy.append(cb.score(X_train, y_train))
    accuracy.append(rf.score(X train, y train))
plt.plot(lista, accuracy)
                                                     plt.plot(lista, accuracy, color = '#1e77b4')
plt.plot(lista[0], accuracy[0], marker='o')
                                                     plt.xlabel("depth")
plt.grid()
                                                     plt.ylabel("accuracy")
plt.ylabel('accuracy')
plt.xlabel('n estimators')
```


Grid Search: recorre todas las combinaciones de hiperparametros posibles y elegir la mejor.

Ajuste de hiperparámetros Grid Search

Ajuste de hiperparámetros modelos

```
[199] extra = ExtraTreesClassifier(bootstrap = False, max depth= 28, max features = 10, min samples split = 3, n estimators = 400)
      extra.fit(X_train, y_train)
     ExtraTreesClassifier(max depth=28, max features=10, min samples split=3,
                           n estimators=400)
202] # {'max depth': 15, 'n estimators': 325, 'num leaves': 24, 'objective': 'binary'}
     lgbm = LGBMClassifier(boosting type='gbdt', max depth = 15, learning rate = 0.2, n estimators = 325, num leaves = 24, objective = 'binary')
     lgbm.fit(X train, y train)
    LGBMClassifier(learning rate=0.2, max depth=15, n estimators=325, num leaves=24,
                   objective='binary')
[193] # 'bootstrap': True, 'max depth': 40, 'max features': 5, 'min samples leaf': 3, 'min samples split': 8
     rf = RandomForestClassifier(bootstrap = True, max depth = 40, max features = 5, min_samples_leaf = 3, min_samples_split = 8, n_estimators = 120)
     rf.fit(X train, y train)
[46] # {'depth': 8, 'iterations': 500, '12 leaf reg': 5, 'learning rate': 0.2}
     catboost = CatBoostClassifier(depth = 8, iterations = 500, learning rate = 0.2, 12 leaf reg = 5)
     catboost.fit(X train, y train)
```


Modelos utilizados

Random Forest

Confusion Matrix Gall 14416 329 913 10318 Not Satisfied

Accuracy: 0.9516091777024946 Precision: 0.9673851921274602 Recall: 0.919063306918351 F1: 0.9426053604858226

Predicted

[] roc_auc_score(y_test, y_pred)

0.9483626391480081

Extra Trees

Accuracy: 0.9539574992300586 Precision: 0.9698473639853918 Recall: 0.9221796812394266 F1: 0.9454130534002738

[] roc_auc_score(y_test, y_pred)

Light Gradient Boosting Machine

Accuracy: 0.9557668617185094
Precision: 0.9689302325581395
Recall: 0.9274329979520969
F1: 0.9477275829125154

[] roc_auc_score(y_test, y_pred)

Cat Boost

Precision: 0.9664051684356253 Recall: 0.9323301575995013 F1: 0.9490619051935103

[] roc_auc_score(y_test, y_pred)

Modelo Ganador

Modelos ganador Cat boost

CatBoostClassifier()

CatBoost resuelve las características categóricas mediante una alternativa impulsada por permutación en comparación con el algoritmo clásico.

Confusion Matrix

Classific	atio	n Report precision	recall	f1-score	support
	0	0.96	0.98	0.97	14745
	1	0.97	0.95	0.96	11231
accur	асу			0.96	25976
macro	avg	0.96	0.96	0.96	25976
weighted	avg	0.96	0.96	0.96	25976

Accuracy: 0.9632737911918694 Precision: 0.9681151498587957 Recall: 0.9462202831448668

F1: 0.9570425072046108

Modelo Ganador k-Fold Cross Validation

catboost = CatBoostClassifier(depth = 8, iterations = 500, learning_rate = 0.2, l2_leaf_reg = 5)

Cross Validation Scores: [0.96184014 0.96251383 0.96102209 0.96299504 0.96280077]

Average CV Score: 0.962234375638997 Number of CV Scores used in Average: 5

Conclusiones

Conclusiones

Objetivo

El objetivo o meta de este proyecto es guiar a una compañía aérea a determinar los factores importantes que influyen en la satisfacción del cliente o pasajero de la aerolínea.

Hipótesis

- ¿Se puede predecir la satisfacción de un pasajero?
- ¿Existe un patrón, en función de las calificaciones otorgadas por los pasajeros, que refleje la experiencia general del cliente y su satisfacción?

Modelos utilizados feature importance

Random Forest

Extra Trees

Light Gradient Boosting Machine

Cat Boost

Distribución de las variables

Distribución de las variables por nivel de satisfacción

¡Muchas gracias!