Содержание

1. Математическая логика 2
1.1. Включение и равенство множеств. Основные способы задания множеств
Операции и основные тождества алгебры множеств. Упорядоченные пары и декар-
тово произведение
1.2. Бинарные отношения; композиция и обращение. Функции. Равномощность
и вложение. Теорема Кантора; тождества в смысле равномощности для множеств
$\mathbb{N} \times \mathbb{N}, (A \times B)^C$ и C^{B^A} . Теорема Кантора—Бернштейна—Шрёдера (без доказатель-
ства) с примером применения
1.3. Частичные порядки. Связь строгих и нестрогих порядков. Максимальные
и минимальные, наибольшие и наименьшие элементы, верхние и нижние грани
супремум и инфимум. Изоморфизм порядков. Отношения эквивалентности, фак-
тор-множество. Разбиения и отношения эквивалентности
1.4. Принципы математической индукции, «сильной» индукции и наименьшего
числа. Их равносильность. Теорема о рекурсии в различных формах (без доказа-
тельства). Принцип Дирихле (с доказательством). Основные теоремы о мощностях
конечных и счетных множеств (про подмножество, объединение, произведение
степень и пр.; доказательства как доп. вопросы)
1.5. Вполне упорядоченные множества (ВУМ). Теорема о строении элементов
ВУМ. Начальные отрезки ВУМ и их свойства; теорема о сравнении ВУМ (доказа-
тельство как доп. вопрос). Сложение и умножение ВУМ; свойства этих операций.
14
1.6. Аксиома выбора (с любой мотивировочной задачей — например, о суще-
ствовании правой обратной у сюръекции). Лемма Цорна и теорема Цермело (без
доказательства). Любой пример применения. Теоремы о мощностях бесконечных
множеств, вытекающие из них (доказательства как дополнительные вопросы) . 16
1.7. Структуры и сигнатуры. Изоморфизм структур. Термы и формулы первого
порядка. Их значения. Значение формулы при изоморфизме структур. Выразимые
отношения и автоморфизмы структуры
1.8. Эквивалентность, общезначимость и выполнимость формул первого поряд-
ка. Приведение булевой комбинации к дизъюнктивной и конъюнктивной нормаль-
ным формам. Корректные подстановки. Приведение формулы к предваренной
нормальной форме

ДМ Гос (ИВТ: Матлог + ДС)

Disclaymer: доверять этому конспекту или нет выбирайте сами

1. Математическая логика

1.1. Включение и равенство множеств. Основные способы задания множеств. Операции и основные тождества алгебры множеств. Упорядоченные пары и декартово произведение.

Определение 1.1.1: Множество
$$A$$
 включено \subseteq в множество $B \Leftrightarrow x \in A \Rightarrow x \in B$

Определение 1.1.2: Множество
$$A$$
 равно множеству $B \Leftrightarrow x \in A \Leftrightarrow x \in B$

Лемма 1.1.1 (Свойства включения):

- $A \subseteq A$
- $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
- $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

Лемма 1.1.2 (Свойства равенства):

- \bullet A=A
- $A = B \land B = C \Rightarrow A = C$
- $A = B \Rightarrow B = A$

Замечание 1.1.1 (Основные способы задания множеств):

- Назвать все его элементы, когда число этих элементов конечно и все они уже определены
- Выделение всех элементов какого-нибудь уже определённого множества A, обладающих некоторым точно определённым свойством φ
- Рассмотреть **множество всех подмножеств** множества A. Такое множество обозначают выражением $\mathcal{P}(A)$
- Располагая каким-нибудь множеством X, рассмотреть его объединение, обозначаемое $\cup X$ и состоящее из всевозможных элементов множеств, принадлежащих X

Определение 1.1.3: **Объединением** множеств A и B называется множество $A \cup B$:

$$x \in A \cup B \Leftrightarrow x \in A \lor x \in B$$

Определение 1.1.4: **Пересечением** множеств A и B называется множество $A \cap B$:

$$x \in A \cap B \Leftrightarrow x \in A \land x \in B$$

Определение 1.1.5: **Разностью** множеств A и B называется множество $A \setminus B$:

$$x \in A \setminus B \Leftrightarrow x \in A \land x \notin B$$

Определение 1.1.6: Нередвко все рассматриваемые множества оказываются подмножествами какого-нибудь множества U.

Такое U называют тогда **универсумом**.

Для каждого подмножества A заданного универсума U определено дополнение

$$\overline{A} = U \setminus A$$

Теорема 1.1.1 (Основные тождества алгебры множеств): $\forall A, B, C$ и любого включающего их универсума U верно:

- $A \cap B = B \cap A$; $A \cup B = B \cup A$
- $(A \cap B) \cap C = A \cap (B \cap C); (A \cup B) \cup C = A \cup (B \cup C)$
- $A \cap A = A$; $A \cup A = A$
- $A \cap (A \cup B) = A$; $A \cup (A \cap B) = A$
- $\overline{A} = A$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\overline{A \cap B} = \overline{A} \cup \overline{B} : \overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\bullet \ \ A\cap\emptyset=\emptyset; A\cup\emptyset=A; A\cap U=A; A\cup U=U; \overline{\emptyset}=U; \overline{U}=\emptyset$
- $A \cap \overline{A} = \emptyset; A \cup \overline{A} = U$

Определение 1.1.7: Для произвольных множеств a и b символом (a,b) обозначают множество $\{\{a\},\{b,c\}\}$, называемое упорядоченной парой множеств a и b

Определение 1.1.8: **Декартовым (или прямым)** произведением множеств A и B называется множество

$$A\times B=\{z\in\mathcal{P}(\mathcal{P}(A\cup B))\ |\ \exists a\in A:\exists b\in B:z=(a,b)\}$$

1.2. Бинарные отношения; композиция и обращение. Функции. Равномощность и вложение. Теорема Кантора; тождества в смысле равномощности для множеств $\mathbb{N} \times \mathbb{N}$, $(A \times B)^C$ и C^{B^A} . Теорема Кантора-Бернштейна-Шрёдера (без доказательства) с примером применения.

Определение 1.2.1: Множество R называется бинарным отношением, если каждый его элемент является упорядоченной парой множеств.

Определение 1.2.2: Назовём **областью определения** отношения R множество

$$\dim R=\{a\in\cup\cup R\mid\exists b:(a,b)\in R\}$$
 и областью значений отношения R – множество
$$\operatorname{rng} R=\{b\in\cup\cup R\mid\exists a:(a,b)\in R\}$$

Определение 1.2.3: Для любых отношений P и Q определена композиция отношений P и Q:

$$Q\circ P=\{(a,c)\in \operatorname{dom} P\times\operatorname{rng} Q\mid \exists b:(a,b)\in P\wedge (b,c)\in Q\}$$

Определение 1.2.4: Пусть R — бинарное отношение. **Обратным отношением** к R называется отношение

$$R^{-1} = \{(b,a) \in \operatorname{rng} R \times \operatorname{dom} R \ | \ (a,b) \in R\}$$

Определение 1.2.5: Пусть R — бинарное отношение и X — некоторое множество.

Мы называем образом под действием отношения R множества X множество

$$R[X] = \{b \in \operatorname{rng} R \mid \exists a \in X : aRb\}$$

Определение 1.2.6: Бинарное отношение R называется:

- Функциональным, если $\forall x : \forall y : \forall z : xRy \land xRz \Rightarrow y = z$
- Инъективным, если $\forall x : \forall y : \forall z : xRy \land zRy \Rightarrow x = z$
- Тотальным для множества Z, если $\forall x \in Z : \exists y : (x,y) \in R$
- Сюръективным для множества Z, если $\forall y \in Z : \exists x : (x,y) \in R$

Определение 1.2.7: Функциональное отношение $f \subseteq A \times B$ называется частичной функцией на множестве A во множество B. В таком случае пишем $f: A \to B$.

Если, помимо того, отношение является тотальным для множества A, то оно называется функцией на множестве A во множество B. В таком случае пишем $f:A\to B$.

Определение 1.2.8: Множество

$$\{f \in \mathcal{P}(A \times B) \mid f : A \to B\}$$

всех функций из A в B обозначается символом B^A

Определение 1.2.9: Если функция $f:A\to B$ инъективна, она называется **инъекцией из** A в B.

Определение 1.2.10: Если функция $f:A\to B$ сюръективна, она называется **сюръекцией из** A в B.

Определение 1.2.11: Если функция $f:A\to B$ инъективна и сюръективна, она называется **биекцией из** A в B.

Определение 1.2.12: Будем писать $A \stackrel{p}{\sim} B$, если $f: A \to B$ есть биекция. Скажем, что множество A равномощно множеству B, если существует f, такая что $A \stackrel{f}{\sim} B$. Тогда пишем $A \sim B$.

Определение 1.2.13: Множество A не превосходит по мощности (вкладывается во) множество B, если существует инъекция $f:A\to B$. Тогда пишем $A\lesssim B$ и $A\lesssim B$

Теорема 1.2.1 (Кантора): Ни для какого множества A невозможно $\mathcal{P}(A)\lesssim A$

Доказательство: Пусть не так. Рассмотрим произвольную инъекцию f : $\mathcal{P}(A) \to A$. Положим

$$Y=\{a\in A\mid \forall X\in \mathcal{P}(A): a=f(X)\Rightarrow a\notin X\}$$
 Очевидно, $Y\in \mathcal{P}(A)$. По определению Y следует, что $f(Y)\notin Y$.

Рассмотрим произвольное $X \in \mathcal{P}(A): f(Y) = f(X)$. В силу инъективности f имеем X = Y. Но тогда $f(Y) \notin X$ для всех таких X.

По определению множества Y получаем $f(Y) \in Y$. Противоречие. \square

Утверждение 1.2.1: Убедимся, что

 $\mathbb{N}^2 \sim \mathbb{N}$

Доказательство: Положим

$$\forall (m,n) \in \mathbb{N}^2: f(m,n) = 2^m(2n+1)-1$$

Докажем инъективность, если f(m,n) = f(m',n'), то

$$2^m(2n+1) = 2^{m'}(2n'+1)$$

Допустим, что $m \neq m'$ и БОО m < m'. Тогда

$$2n + 1 = 2^{m' - m}(2n' + 1)$$

Причём второе число чётно, а первое – нет. Противоречие показывает, что m=m', но тогда $2n+1=2n'+1\Rightarrow n'=n$. Инъективность доказана.

Докажем сюръективность. Пусть некоторое положительное натуральное число не имеет вида $2^m(2n+1)$. Тогда найдётся наименьшее такое число k.

Это число чётно (иначе оно имело бы вид $2^0(2n+1)$). Следовательно k=2k'. Но k' < k, а, значит,

$$k' = 2^{m'}(2n'+1)$$
 для некоторых $m', n' \in \mathbb{N}$.

Но тогда $k=2^{m'+1}(2n'+1)$ – противоречие. Сюръективность, а значит и биективность доказана

Утверждение 1.2.2:

$$(A\times B)^C\sim A^C\times B^C$$

Доказательство: Рассмотрим функции-проекторы $\pi_1: A \times B \to A$ и $\pi_2: A \times B \to B.$

Положим теперь $\psi: f \mapsto (\pi_1 \circ f, \pi_2 \circ f)$ для всех $f \in (A \times B)^C$.

Это отображения является биекцией, доказывается очевидной проверкой инъективности и сюръективности. $\hfill \Box$

Утверждение 1.2.3:

$$C^{B^A} \sim C^{A \times B}$$

Доказательство: Для всех $f\in C^{B^A}$ и $z\in A\times B$ положим $\psi(f):z\mapsto (f(\pi_1(x)))(\pi_2(z))$

Это отображения является биекцией, доказывается очевидной проверкой инъективности и сюръективности. $\hfill \Box$

Теорема 1.2.2 (Кантора-Шрёдера-Бернштейна): Для любых множеств A и B, если $A \lesssim B$ и $B \lesssim A$, то $A \sim B$.

С другой стороны, $\mathbb{Q} \lesssim \mathbb{N}^3$: каждое положительное рациональное число q однозначно представляется несократимой дробью $\frac{m}{n}$, где $m,n\in\mathbb{N}$. Тогда отображение

 $f(q) = \begin{cases} ^{(0,1,0),q=0} \\ ^{(m,n,0),q>0} \\ ^{(m,n,1),q<0} \end{cases}$

является искомой инъекцией. Осталось вспомнить, что $\mathbb{N}^3=\mathbb{N}^2\times\mathbb{N}\sim\mathbb{N}\times\mathbb{N}\sim\mathbb{N}.$

Показали инъекцию в обе стороны, а значит по КШБ $\mathbb{Q} \sim \mathbb{N}$.

1.3. Частичные порядки. Связь строгих и нестрогих порядков. Максимальные и минимальные, наибольшие и наименьшие элементы, верхние и нижние грани, супремум и инфимум. Изоморфизм порядков. Отношения эквивалентности, фактор-множество. Разбиения и отношения эквивалентности.

Определение 1.3.1: Бинарное отношение R называется

- Рефлексивным для множества Z, если $\forall x \in Z: (x,x) \in R$
- Иррефлексивным, если $\forall x:(x,x)\notin R$
- Симметричным, если $\forall x: \forall y: xRy \Rightarrow yRx$
- Антисимметричным, если $\forall x: \forall y: xRy \land yRx \Rightarrow x=y$
- Транзитивным, если $\forall x: \forall y: \forall z: xRy \land yRz \Rightarrow xRz$

Лемма 1.3.1: Отношение $R \subseteq A^2$:

- Рефлексивно $\Leftrightarrow \mathrm{id}_A \subseteq R$
- Иррефлексивно $\Leftrightarrow \operatorname{id}_A \cap R = \emptyset$
- Симметрично $\Leftrightarrow R \subseteq R^{-1} \Leftrightarrow R = R^{-1} \Leftrightarrow R^{-1} \subseteq R$
- Антисимметрично $\Leftrightarrow R \cap R^{-1} \subseteq \mathrm{id}_A$
- Транзитивно $\Leftrightarrow R \circ R \subseteq R$

Определение 1.3.2: Отношение R на каком-либо множестве называется **строгим частичным порядком** на этом множестве, если R иррефлексивно и транзитивно.

Определение 1.3.3: Отношение R на каком-либо множестве называется **нестрогим частичным порядком** на этом множестве, если R рефлексивно, транзитивно и антисимметрично.

Утверждение 1.3.1: Пусть $P \subseteq A \times B, Q, R$ – бинарные отношения, тогда

- $(P^{-1})^{-1} = P$
- $(P \cup Q)^{-1} = P^{-1} \cup Q^{-1}$ $P^{-1} = P^{-1}$
- $(P \cup Q) \circ R = (P \circ R) \cup (Q \circ R)$
- $(P \cap Q) \circ R \subseteq (P \circ R) \cap (Q \circ R)$

Теорема 1.3.1 (Связь строгих и нестрогих порядков): Положим

$$S(A) = \{R \in \mathcal{P}(A^2) \mid R \text{ строгий порядок}\}$$

и аналогично выделим множество N(A) всех нестрогих порядков на A.

Рассмотрим функции $\varphi: S(A) \to \mathcal{P}(A^2)$ и $\psi: N(A) \to \mathcal{P}(A^2)$:

$$\varphi(P) = P \cup \operatorname{id}_A \quad \psi(Q) = Q \setminus \operatorname{id}_A$$

Тогда утверждается, что

- $\varphi(P) \in N(A) \land \psi(\varphi(P)) = P$
- $\psi(Q) \in S(A) \land \varphi(\psi(Q)) = Q$

Доказательство: Проверим нестрогость $\varphi(P)$:

- Рефлексивно, так как $\mathrm{id}_A \subseteq \varphi(P)$
- Транзитивно, так как

$$\begin{split} \varphi(P) \circ \varphi(P) &= (P \cup \mathrm{id}_A) \circ (P \cup \mathrm{id}_A) = \\ (P \circ P) \cup (P \circ \mathrm{id}_A) \cup (\mathrm{id}_A \circ P) \cup (\mathrm{id}_A \circ \mathrm{id}_A) = \\ (P \circ P) \cup P \cup \mathrm{id}_A \subseteq P \cup \mathrm{id}_A = \varphi(P) \end{split}$$

• Антисимметрично, так как

$$\varphi(P)\cap (\varphi(P))^{-1}=(P\cup \mathrm{id}_A)\cap (P\cup \mathrm{id}_A)^{-1}=$$

$$(P\cup \mathrm{id}_A)\cap (P^{-1}\cup \mathrm{id}_A)=(P\cap P^{-1})\cup \mathrm{id}_A=\mathrm{id}_A$$

Итак, $\varphi(P) \in N(A)$. Далее,

$$\psi(\varphi(P)) = (P \cup \mathrm{id}_A) \cap \overline{\mathrm{id}_A} =$$

$$\left(P\cap\overline{\operatorname{id}_A}\right)\cup\emptyset=\left(P\cap\overline{\operatorname{id}_A}\right)\cup\left(P\cap\operatorname{id}_A\right)=P\cap\left(\operatorname{id}_A\cup\overline{\operatorname{id}_A}\right)=P\cap A^2=P$$

Проверим нестрогость $\psi(Q)$:

- Ирефлексивно, так как $\mathrm{id}_A \cap \psi(Q) = \emptyset$
- Транзитивно, так как пусть $xQy \wedge yQz$, где $x \neq y \wedge y \neq z$. Если x = z, то $zQy \wedge yQz \Rightarrow z = y$ – противоречие.

Итак,
$$\psi(Q) \in S(A)$$
. Далее,
$$\varphi(\psi(Q)) = \left(Q \cap \overline{\operatorname{id}_A}\right) \cup \operatorname{id}_A = \left(Q \cup \operatorname{id}_A\right) \cap \left(\operatorname{id}_A \cup \overline{\operatorname{id}_A}\right) = Q \cap A^2 = Q$$

Определение 1.3.4: Если на множестве A задан строгий частичный порядок P, элемент $x \in A$ называется **максимальным**, если

$$\forall y \in A : \neg(xPy)$$

В случае нестрогого порядка Q определяется, как

$$\forall y \in A : xQy \Rightarrow y = x$$

Определение 1.3.5: Если на множестве A задан строгий частичный порядок P, элемент $x \in A$ называется **минимальным**, если

$$\forall y \in A : \neg(yPx)$$

В случае нестрогого порядка Q определяется, как

$$\forall y \in A : yQx \Rightarrow y = x$$

Определение 1.3.6: Если R есть строгий или нестрогий частичный порядок на множестве A, пара (A,R) называется частично упорядоченным множеством (ч.у.м.)

Определение 1.3.7: Элемент $x \in B$ называется **наибольшим** в подмножестве B ч.у.м. (A,<), если

$$\forall y \in B : y < x$$

и наименьшим, если

$$\forall y \in B : x < y$$

Определение 1.3.8: Пусть (A,<) ч.у.м. и $B\subseteq A$. Элемент $x\in A$ назовём верхней гранью множества B, если

$$\forall y \in B : y \leq x$$

Аналогично определяются нижние грани.

Определим B^{\triangle} – множество всех верхних граней, а также B^{∇} – нижних граней.

Определение 1.3.9: Мы говорим, что $x \in A$ есть точная верхняя грань (супремум) множества B, если x есть наименьший элемент множества B^{\triangle} . Аналогично определяется точная нижняя грань (инфимум).

Определение 1.3.10: Структуры $\mathcal{A}=(A,R); \mathcal{B}=(B,Q)$ изоморфны, если существует функция $\alpha:A\to B$, т.ч. $A\overset{\alpha}{\sim} B$ и $xRy\Leftrightarrow \alpha(x)Q\alpha(y)$

Определение 1.3.11: Отношение $R \subseteq A^2$ называется отношением эквивалентности (эквивалентностью) на A, если R рефлексивно, симметрично и транзитивно.

Определение 1.3.12: Пусть E есть эквивалентность на множестве A и $x \in A$. Назовём множество

$$[x]_E = \{ z \in A \mid xEz \}$$

классом эквивалентности элемента x по отношению E.

Определение 1.3.13: Множество

$$A_{/E} = \{ \sigma \in \mathcal{P}(A) \mid \exists x \in A : [x]_E = \sigma \} = \{ [x]_E \mid x \in A \}$$

называется фактор-множеством множества A по отношению E.

Определение 1.3.14: Назовём множество $\Sigma \subseteq \mathcal{P}(A)$ разбиением множества A, если

$$\emptyset \not\in \Sigma \land \cup \Sigma = A \land (\forall \sigma, \tau \in \Sigma : \sigma \cap \tau \neq \emptyset \Leftrightarrow \sigma = \tau)$$

1.4. Принципы математической индукции, «сильной» индукции и наименьшего числа. Их равносильность. Теорема о рекурсии в различных формах (без доказательства). Принцип Дирихле (с доказательством). Основные теоремы о мощностях конечных и счетных множеств (про подмножество, объединение, произведение, степень и пр.; доказательства как доп. вопросы).

Определение 1.4.1: Принцип математической индукции:

$$\forall X\subseteq \mathbb{N}: (0\in X \land (\forall n\in \mathbb{N}: n\in X \Rightarrow n+1\in X))\Rightarrow X=\mathbb{N}$$

Определение 1.4.2: Назовём множество $X\subseteq\mathbb{N}$ прогрессивным, если

$$\forall n \in \mathbb{N} : \forall m < n : (m \in X \Rightarrow n \in X)$$

Принцип порядковой индукции:

$$\forall X \subseteq \mathbb{N} : X$$
 — прогрессивное $\Rightarrow X = \mathbb{N}$

Определение 1.4.3: Принцип наименьшего числа:

$$\forall X\subseteq \mathbb{N}: X\neq\emptyset\Rightarrow \exists \min X$$

Теорема 1.4.1: Следующие утверждения равносильны:

- 1. Принцип порядковой индукции
- 2. Принцип наименьшего числа
- 3. Принцип математической индукции

Доказательство: $(1 \Rightarrow 2)$. Предположим, что в некотором X нет наименьшего элемента. Покажем, что \overline{X} прогрессивно:

$$\forall m < n : m \notin X \Rightarrow n \notin X$$

ибо иначе $n = \min X$, что невозможно.

По принципу порядковой индукции $\overline{X} = \mathbb{N} \Rightarrow X = \emptyset$.

 $(2\Rightarrow 3)$. Рассмотрим множество \overline{X} . Допустим, что $\overline{X}\neq\emptyset$. Тогда $\exists n=\min\overline{X}$.

По предположению, $n \neq 0$ (так как $0 \in X$). Значит, n = m+1 для некоторого $m \in \mathbb{N}$. Поскольку m < n, имеем $m \in X$, но по предположению должно было быть, что $m+1=n \in X$, что не так. Следовательно $\overline{X}=\emptyset, X=\mathbb{N}$. (3 \Rightarrow 1). Рассмотрим множество

$$Y = \{ n \in \mathbb{N} \mid \forall m < n : m \in X \}$$

Очевидно, $0 \in Y$.

Допустим, что $n \in Y$. Тогда $\forall m < n : m \in X$, что, в силу прогрессивности, влечёт $n \in X$, а значит и $n+1 \in Y$.

Для множества Y мы проверили базу и шаг индукции, а значит $Y = \mathbb{N}$.

Наконец, для всякого $n \in \mathbb{N}$ имеем $n < n+1 \in Y \Rightarrow n \in X$. Следовательно, и $X = \mathbb{N}$.

Теорема 1.4.2 (О рекурсии): Пусть U – некоторое множество, $u_0 \in U$ и $h:U \to U$.

Тогда существует единственная функция $f: \mathbb{N} \to U$:

$$f(0)=u_0 \wedge \forall n \in \mathbb{N}: f(n+1)=h(f(n))$$

Теорема 1.4.3 (О рекурсии, знающей шаг): Пусть U – некоторое множество, $u_0 \in U$ и $h: \mathbb{N} \times U \to U$.

Тогда существует единственная функция $f: \mathbb{N} \to U$:

$$f(0)=u_0 \land \forall n \in \mathbb{N}: f(n+1)=h(n,f(n))$$

Теорема 1.4.4 (О примитивной рекурсии): Пусть U, V – некоторые множества, $g: V \to U$ и $h: \mathbb{N} \times V \times U \to U$.

Тогда существует единственная функция $f: \mathbb{N} \times V \to U$:

$$\forall v \in V : f(0, v) = g(v) \land \forall n \in \mathbb{N} : f(n + 1, v) = h(n, v, f(n))$$

Определение 1.4.4: Пусть $n \in \mathbb{N}$, тогда определим множество $\underline{n} = \{m \in \mathbb{N} \mid m < n\} = \{0, ..., n-1\}$

Определение 1.4.5: Множество A конечно, если $\exists n \in \mathbb{N} : A \sim \underline{n}$

Определение 1.4.6: Множество A счётно, если $A \sim \mathbb{N}$

Лемма 1.4.1: Для каждого $n \in \mathbb{N}$, если $f: n+1 \to \underline{n}$, то f не инъекция

Доказательство: Предположим противное, пусть найдётся $n \in \mathbb{N}$, для которого есть инъекция $f: n+1 \to \underline{n}$.

Согласно принципу наименьшего числа, расммотрим наименьшее такое n.

Заметим, что инъекция $f:\underline{1}\to\underline{0}=\emptyset$ невозможна. Значит $n\neq 0\Rightarrow \exists m\in\mathbb{N}:n=m+1.$

Пусть $f(n) = x \in \underline{n}$. Рассмотрим функцию g, меняющую m < n и x < n местами.

Ясно, что g – биекция, а ограничение инъекции $f|_{\underline{n}}$ также является инъекцией. Тогда и $h=g\circ f|_{\underline{n}}$ также инъекция.

Заметим, если h(k)=m, то $f|_{\underline{n}}=x,$ но f принимала x только на n, так что текущая ситуация невозможна из-за инъективности.

Значит rng $h\subseteq \underline{m} \Rightarrow h: \underline{m+1} \to \underline{m}$ – инъекция для m < n – противоречие. \square

Теорема 1.4.5 (Принцип Дирихле): Если m>n и $f:\underline{m}\to\underline{n}$, то f не инъекция

 $\ \ \, \mathcal{A}$ оказательство: Допустим, $\exists m>m:f:\underline{m} \to \underline{n}$ – инъекция.

Но тогда $f|_{\underline{n+1}}:\underline{n+1}\to\underline{n}$ — тоже инъекция, что противоречит предыдущей лемме.

Теорема 1.4.6 (Правило подмножеств): Если $A \subseteq \mathbb{N}$, то множество A конечно или счётно.

Доказательство: Согласно теореме о рекурсии, существует функция $\alpha: \mathbb{N} \to \mathcal{P}(A)$

$$\alpha(0) \coloneqq A \wedge \alpha(n+1) \coloneqq \left\{ \begin{smallmatrix} \alpha(n) \backslash \{\min \alpha(n)\}, \alpha(n) \neq \emptyset \\ \emptyset, \text{ else} \end{smallmatrix} \right.$$

Определим $f(m)\coloneqq\min\alpha(m),$ тогда будут два случая

- $\exists n_0: \alpha(n_0)=\emptyset,$ выберем из таких n_0 наименьшее и докажем, что $f:\overline{n_0}\to$ A – биекция
- Иначе $f: \mathbb{N} \to A$, также является биекцией.

Теорема 1.4.7 (Правило суммы): Пусть множества A и B конечны и $A \cap$ $B = \emptyset$.

Тогда множество $A \cup B$ тоже конечно, причём

$$|A \cup B| = |A| + |B|$$

Доказательство: Допустим, что $A \stackrel{f}{\sim} n, B \stackrel{g}{\sim} m$. Определим функцию $h: A \cup$ $B \to n + m$:

 $h(x) = \begin{cases} f(x), x \in A \\ n+g(x), x \in B \end{cases}$ Доказательство её биективности тривиально.

Теорема 1.4.8 (Правило произведения): Пусть множества A и B конечны. Тогда множество $A \times B$ тоже конечно, причём

$$|A \times B| = |A| \cdot |B|$$

Доказательство: Допустим, что $A \stackrel{f}{\sim} \underline{n}, B \stackrel{g}{\sim} m$. Если $m=0 \lor n=0$, то $A \times$ $B = \emptyset$ – тривиальный случай.

Определим функцию $h: A \times B \to nm$:

$$h(x,y) = mf(x) + g(y)$$

Доказательство её биективности тривиально.

Теорема 1.4.9 (Правило объединения): Пусть множества A и B конечны. Тогда множество $A \times B$ тоже конечно, причём

$$|A \times B| = |A| + |B| - |A \cap B|$$

Доказательство: Заметим, что $A \cup B = (A \setminus B) \cup B$, причём $(A \setminus B) \cap B = \emptyset$. Тогда по правилу суммы

$$|A\cup B|=|(A\smallsetminus B)\cup B|=|A\smallsetminus B|+|B|=|A|-|A\cap B|+|B|$$

Теорема 1.4.10 (Правило степени): Если множество A конечно, то при любом $n \in \mathbb{N}$ множество A^n тоже конечно, причём

$$|A^n| = |A|^n$$

Доказательство: Индукция по n с учётом $A^{n+1} = A^n \times A$.

1.5. Вполне упорядоченные множества (ВУМ). Теорема о строении элементов ВУМ. Начальные отрезки ВУМ и их свойства; теорема о сравнении ВУМ (доказательство как доп. вопрос). Сложение и умножение ВУМ; свойства этих операций.

Определение 1.5.1: Порядок < на множестве A называется **линейным**, если любые два элемента A сравнимы.

Мы говорим, что ч.у.м. (A,<) есть **линейно упорядоченное множество** (**л.у.м.**), если порядок < линейный.

Определение 1.5.2: Порядок < на множестве X фундирован, если во всяком непустом $Y \subseteq X$ существует минимальный элемент.

Множество **вполне упорядоченно (в.у.м.)**, если оно линейно и фундировано.

Определение 1.5.3: Для элемента x в.у.м. (X,<) введём обозначение $[0,x) \coloneqq \{y \mid y < x\}$

Элемент x называется **предельным**, если

$$x \in \lim \Leftrightarrow x = \sup[0, x) \land x \neq 0$$

Наименьший элемент в.у.м. 0 тоже иногда считают предельным, поскольку $0 = \sup \emptyset = \sup [0,0)$, мы не станем этого делать, но обозначим

$$\lim^* = \lim \cup \{0\}$$

Утверждение 1.5.1 (Свойства предельных элементов): Следующие условия эквивалентны:

- $x \in \lim^*$
- $\forall y : \neg (y+1=x)$
- $\forall y < x : y + 1 < x$

Теорема 1.5.1 (О строении элементов в.у.м.): Всякий элемент $x \in X$ однозначно однозначно представим в виде x = y + n, где $y \in \lim^*$

Доказательство: Если x = 0, то всё доказано.

Пусть x > 0. Рассмотрим множество

$$C = \{ z \in X \mid \exists k \in \mathbb{N}_+ : z + k = x \}$$

Если $C=\emptyset$, то $\forall z\in X:z+1\neq x\Rightarrow x$ – предельный. (по свойствам выше) Иначе $C\neq\emptyset\Rightarrow\exists z':=\min C$ и для некоторого k'>0:x=z'+k'.

Если z'=0, то y=0, n=k'. Если же $z'\notin \lim$, то по свойствам $\exists z'':z'=z''+1$, что противоречит минимальности $z'\Rightarrow z'\in \lim$. Значит можно брать y=z', n=k'.

Пусть $x=y_1+n_1=y_2+n_2$. Если БОО $n_1 < n_2$, то $y_1=y_2+(n_2-n_1)$, что противоречит предельности $y_1 \Rightarrow n_1=n_2 \Rightarrow y_1=y_2$, всё доказали.

Определение 1.5.4: Подмножество I в.у.м. X называется **начальным отрезком**, если оно «замкнуто вниз»:

$$\forall x \in I : \forall y < x : y \in I$$

Если $I \neq X$, то это **собственный начальный отрезок**.

Утверждение 1.5.2 (Свойства начальных отрезков в.у.м.): Пусть (X,<) в.у.м. Тогда

- 1. X есть свой начальный отрезок
- 2. Пусть I_a н.о. X при всех $a \in A.$ Тогда $\cup_{a \in A} I_a$ тоже н.о.
- 3. Если $x \in X$, то [0, x) есть н.о. X
- 4. Если I собственный н.о. X, то существует и единственен такой $x \in X:$ I = [0,x)
- 5. Пусьб $\mathcal{I} = \{I \mid I$ начальный отрезок $X\}$. Тогда (\mathcal{I}, \subseteq) есть в.у.м.
- 6. $(\mathcal{I}, \subseteq) \simeq X + 1; (\mathcal{I} \setminus X, \subseteq) \simeq X$

Доказательство:

- 2. Пусть $x \in \cup_{a \in A} \land y < x$. Тогда найдётся $I_a \ni x \Rightarrow y \in I_a \subseteq \cup_{a \in A} I_a$
- 4. Имеем $X \setminus I \neq \emptyset$. Возьмём наименьший x элемент этого множества. Очевидно $y < x \Rightarrow y \in I$. Причём если $x \leq y \Rightarrow x \in I$ не может быть.
- 5. Порядок (\mathcal{I}, \subseteq) линеен: все собственные н.о. вложены в X и сравнимы между собой по предыдущему пункту. Выделим в произвольном подмножестве $\mathcal{J} \subseteq \mathcal{I}$ наименьший элемент. Если $\mathcal{J} = \{X\}$, то всё ясно. Иначе возьмём в непустом множестве $\{x \mid [0,x) \in \mathcal{J} \setminus X\}$ наименьший элемент x'.
- 6. Изоморфизм строится как $[0,x) \mapsto x$, а X переходит в наибольший элемент множества X+1.

Определение 1.5.5 (Сравнение в.у.м.):

 $A < B \Leftrightarrow A$ изоморфен собственному н.о. B

Лемма 1.5.1: Пусть (X,<) – в.у.м. и функция $f:X\to X$ монотонна. Тогда $\forall x\in X: f(x)\geq x$

Доказательство: От противного. Тогда подмножество

$$C := \{x \mid f(x) < x\} \neq \emptyset$$

Пусть x' его наименьший элемент. Имеем f(x') < x' по монотонности, но тогда $f(f(x')) < f(x') \Rightarrow f(x') \in C$, т.е. x' не наименьший.

Теорема 1.5.2 (О сравнении в.у.м.): Пусть C – в.у.м. и $B \subseteq C$. Тогда $B \le C$.

Доказательство: Допустим B>C. Тогда, по определению

$$\exists b \in B : C \stackrel{J}{\simeq} [0_B, b) \subset B$$

Поскольку $b \in C$, то f(b) < b, но f монотонна, как изоморфизм, а значит $f(b) \ge b$ (по предыдущей лемме) – противоречие.

Определение 1.5.6: Произведением AB в.у.м. $\left(A, <\atop A\right)$ и $\left(B, <\atop B\right)$ называется $(A\times B,<)$: $(a_1,b_1)<(a_2,b_2)\coloneqq \left(b_1<\atop B}b_2\right)\vee \left((b_1=b_2)\wedge \left(a_1<\atop A}a_2\right)\right)$

Определение 1.5.7: Сумма в.у.м.
$$A+B$$
 есть $(A\times\{0\}\cup B\times\{1\},<)$: $(x,\varepsilon)<(y,\delta):=(\varepsilon<\delta)\vee\left((\varepsilon=\delta=0)\wedge\left(x\overset{<}{_A}y\right)\right)\vee\left((\varepsilon=\delta=1)\wedge\left(x\overset{<}{_B}y\right)\right)$

Лемма 1.5.2 (Свойства операций над в.у.м.):

- 1. $A + (B + C) \simeq (A + B) + C$
- 2. $A(BC) \simeq (AB)C$
- 3. $C(A+B) \simeq CA + CB$
- 1.6. Аксиома выбора (с любой мотивировочной задачей например, о существовании правой обратной у сюръекции). Лемма Цорна и теорема Цермело (без доказательства). Любой пример применения. Теоремы о мощностях бесконечных множеств, вытекающие из них (доказательства как дополнительные вопросы)

Определение 1.6.1 (Аксиома выбора): Пусть множество A таково, что $\emptyset \notin A$.

Тогда существует функция $f: A \to \cup A$, т.ч. $f(a) \in a$ для всех $a \in A$.

Пример: Пусть $f:A\to B$. Правая обратная функция $g:B\to A$ существует тогда и только тогда, когда f есть сюръекция.

- \Rightarrow . Тогда $f \circ g = \mathrm{id}_B \Rightarrow \forall b \in B : (b,b) \in f \circ g$, а значит найдётся $a \in A$, для которого $(a,b) \in f$, что и есть сюръективность.
- \Leftarrow . Ясно теперь, что множества $f^{-1}[\{b\}]$ непусты для все $b \in B$. Определим функцию $g: B \to A$, полагая

$$g(b) =$$
 какой-либо элемент множества $f^{-1}[\{b\}]$

Теперь очевидно, что f(g(b)) = b.

Определение 1.6.2: Пусть (A,<) – ч.у.м. Множество $C\subseteq A$ называется **цепью** в A, если

$$\forall x,y \in C: x \leq y \vee y \leq x$$

Напротив, множество $D \subseteq A$ называется **антицепью**, если никакие два его (различные) элемента несравнимы.

Лемма 1.6.1 (Цорна): Пусть (X,<) – частично упорядоченное множество, в котором любая цепь $C\subset X$ имеет верхнюю грань. Тогда в (X,<) найдётся максимальный элемент.

Теорема 1.6.1 (Цермело): Для всякого множества X существует бинарное отношение < на X такое, что (X,<) – в.у.м.

Теорема 1.6.2: Любые два множества сравнимы по мощности, то есть для любых множеств A, B найдётся инъекция из A в B или из B в A.

Доказательство: Вполне упорядочим эти множества по теореме Цермело. Тогда одно из них вложено в другое, как начальный отрезок. □

1.7. Структуры и сигнатуры. Изоморфизм структур. Термы и формулы первого порядка. Их значения. Значение формулы при изоморфизме структур. Выразимые отношения и автоморфизмы структуры.

Определение 1.7.1: **Структурой** \mathcal{M} называется кортеж $(M, \mathcal{R}, \mathcal{F}, \mathcal{C})$:

- $M \neq \emptyset$ носитель структуры
- $\forall f \in \mathcal{F} : \exists n \in \mathbb{N} : f \in M^{M^n}$
- $\forall R \in \mathcal{R} : \exists n \in \mathbb{N} : R \subset M^n$
- $\forall c \in \mathcal{C} : c \in M$

Пример: Пример структуры натуральных чисел

$$(\mathbb{N}, \{=,<\}, \{+,\cdot\}, \{0,1\})$$

Определение 1.7.2: Сигнатурой σ называется кортеж $(\mathrm{rel}_{\sigma}, \mathrm{func}_{\sigma}, \mathrm{const}_{\sigma})$, причём $\mathrm{rel}_{\sigma} \neq \emptyset$ и все элементы кортежа не пересекаются.

Каждому $R \in \mathrm{rel}_{\sigma}$ и каждому $f \in \mathrm{func}_{\sigma}$ поставлено в соответствие натуральное число, оно называется валентностью символа. Пишем $R^{(n)}, f^{(n)}$.

Определение 1.7.3: **Интерпретация** сигнатуры σ – пара $(\mathcal{M}, \mathcal{S})$, где

- \mathcal{M} структура $(M, \mathcal{R}, \mathcal{R}, \mathcal{F}, \mathcal{C})$
- $\mathcal{S}: \mathrm{rel}_\sigma \cup \mathrm{func}_\sigma \cup \mathrm{const}_\sigma \to \mathcal{R} \cup \mathcal{F} \cup \mathcal{C},$ причём
 - $\forall R^{(n)} \in \operatorname{rel}_{\sigma} : \mathcal{S}(R) \in \mathcal{R} \wedge \mathcal{S}(R) \subseteq M^n$
 - $\forall f^{(n)} \in \text{func}_{\sigma} : \mathcal{S}(f) \in \mathcal{F} \land \mathcal{S}(f) \in M^{M^n}$
 - $\forall c \in \text{const}_{\sigma} : \mathcal{S}(c) \in \mathcal{C}$

Определение 1.7.4: Пусть M_1 и M_2 – две Интерпретации сигнатуры σ .

Биекция $\alpha: M_1 \to M_2$ называется **изомофизмом этих интерпретаций**, если она сохраняет все функции и предикаты структуры.

Это означает, если P_1 и P_2 – два k-местных предиката в M_1 и M_2 , соответствующих одному предикатому символу сигнатуры, то

$$\forall a_1, ..., a_k \in M_1 : P_1(a_1, ..., a_k) = P_2(\alpha(a_1), ..., \alpha(a_k))$$

Аналогично для k-местных функций f_1 и f_2 соответствующих одному функциональному символу, то

$$\forall a_1,...,a_k \in M_1: \alpha(f_1(a_1,...,a_k)) = f_2(\alpha(a_1),...,\alpha(a_k))$$

Определение 1.7.5: Мы считаем, что задано счётное множество **индивидных** (предметных) переменных

$$\mathbf{var} = \{x_0, x_1, ..., x_n, ...\}$$

Определение 1.7.6: Правила построения множества **термов** $\operatorname{tm}_{\sigma}$ над сигнатурой σ :

- $x \in \text{var} \Rightarrow x \in \text{tm}_{\sigma}$
- $c \in \text{const}_{\sigma} \Rightarrow c \in \text{tm}_{\sigma}$
- $\bullet \ \ f^{(n)} \in \mathrm{func}_{\sigma} \Rightarrow \forall t_1,...,t_n \in \mathrm{tm}_{\sigma} : f(t_1,...,t_n) \in \mathrm{tm}_{\sigma}$

Определение 1.7.7: Правила построения множества формул fm_{σ} над сигнатурой σ (булевые операции и кванторы рассматриваются как формальные символы):

- $R^{(n)} \in \text{rel}_{\sigma} \Rightarrow \forall t_1, ..., t_n \in \text{tm}_{\sigma} : R(t_1, ..., t_n) \in \text{fm}_{\sigma}$
- $\varphi, \psi \in \operatorname{fm}_{\sigma} \Rightarrow \neg \varphi \in \operatorname{fm}_{\sigma}, \varphi \land \psi \in \operatorname{fm}_{\sigma}, \varphi \lor \psi \in \operatorname{fm}_{\sigma}, \varphi \to \psi \in \operatorname{fm}_{\sigma}$
- $\bullet \ \ x \in \mathrm{var}, \varphi \in \mathrm{fm}_\sigma \Rightarrow \forall x : \varphi \in \mathrm{fm}_\sigma, \exists x : \varphi \in \mathrm{fm}_\sigma$

Определение 1.7.8: Оценка переменных – это любая функция π : var \rightarrow M

Определение 1.7.9: Пусть $t \in \text{tm}_{\sigma}, \pi$ – оценка.

Тогда $[t]_{\mathcal{M}}(\pi) \in M$ – значение t в \mathcal{M} при оценке π , причём

- $x \in \text{var} \Rightarrow [x](\pi) = \pi(x)$
- $c \in \text{const}_{\sigma} \Rightarrow [c](\pi) = c^{\mathcal{M}}$
- $[f(t_1,...,t_n)](\pi) = f^{\mathcal{M}}([t_1](\pi),...,[t_n](\pi))$

Определение 1.7.10: Пусть $\varphi \in \text{fm}_{\sigma}, \pi$ – оценка.

Тогда $[\varphi]_{\mathcal{M}}(\pi) \in \{0,1\}$ – значение формулы φ в \mathcal{M} при оценке $\pi,$ причём

- $[R(t_1,...,t_n)](\pi) = 1 \Leftrightarrow ([t_1](\pi),...,[t_n](\pi)) \in R^{\mathcal{M}}$
- $[\varphi \to \psi](\pi) = 1 \Leftrightarrow [\varphi](\pi) \to [\psi](\pi)$
- $[\forall x:\varphi](\pi)=1 \Leftrightarrow \forall a\in M: [\varphi](\pi^a_x)=1$, где

$$\pi^a_x(y) = \left\{ egin{array}{l} a,y=x \\ \pi(y), \ \mathrm{else} \end{array} \right.$$

 $\pi^a_x(y) = \begin{cases} {}^{a,y=x} \\ \pi(y), \text{ else} \end{cases}$ • $[\exists x:\varphi](\pi) = 1 \Leftrightarrow \exists a \in M: [\varphi](\pi^a_x) = 1$

Определение 1.7.11: Определим функцию, возвращающую переменные формулы или терма.

Пусть $V: \operatorname{tm}_{\sigma} \cup \operatorname{fm}_{\sigma} \to \mathcal{P}(\operatorname{var})$, причём

- $x \in \text{var} \Rightarrow V(x) = \{x\}$
- $c \in \text{const}_{\sigma} \Rightarrow V(c) = \emptyset$
- $V(f(t_1,...,t_n)) = \bigcup_{i=1}^n V(t_i)$
- $V(R(t_1,...,t_n)) = \bigcup_{i=1}^n V(t_i)$
- $V(\varphi \wedge \psi) = V(\varphi) \cup V(\psi)$
- $V(\forall x : \varphi) = V(\varphi) \cup \{x\}$

Определение 1.7.12: Определим функцию, возвращающую свободные переменные формулы

Пусть $FV: \mathrm{fm}_{\sigma} \to \mathcal{P}(\mathrm{var})$, причём:

- $FV(R(t_1,...,t_n)) = V(R(t_1,...,t_n))$
- $FV(\varphi \lor \psi) = FV(\varphi) \cup FV(\psi)$
- $FV(\forall x : \varphi) = FV(\varphi) \setminus \{x\}$

Теорема 1.7.1: Значение терма $t \in \text{tm}_{\sigma}$ зависит лишь от значения оценки на V(t).

Значение формулы $\varphi \in \operatorname{fm}_{\sigma}$ зависит лишь от значения оценки на $FV(\varphi)$.

Определение 1.7.13: Пусть

- $\operatorname{fm}_{\sigma}(x_1, ..., x_n) \coloneqq \{ \varphi \in \operatorname{fm}_{\sigma} | FV(\varphi) \subseteq \{x_1, ..., x_n\} \}$
- $\operatorname{tm}_{\sigma}(x_1, ..., x_n) := \{ t \in \operatorname{tm}_{\sigma} | V(t) \subseteq \{x_1, ..., x_n\} \}$

Следствие 1.7.1.1: Переопределим значения термов и формул, независимо от оценки.

Пусть $t \in \operatorname{tm}_{\sigma}(x_1,...,x_n), \varphi \in \operatorname{fm}_{\sigma}(x_1,...,x_n)$:
• $[t]_{\mathcal{M}}(\vec{a}) \coloneqq [t]_{\mathcal{M}} \begin{pmatrix} \pi^{a_1 \dots a_n}_{x_1 \dots x_n} \end{pmatrix}$ • $[\varphi]_{\mathcal{M}}(\vec{a}) \coloneqq [\varphi]_{\mathcal{M}} \begin{pmatrix} \pi^{a_1 \dots a_n}_{x_1 \dots x_n} \end{pmatrix}$

Теорема 1.7.2 (Значение формулы при изоморфизме): Пусть $\mathcal{M}, \mathcal{N} - \sigma$ структуры и $\mathcal{M} \stackrel{\alpha}{\simeq} \mathcal{N}$. Пусть $t \in \operatorname{tm}_{\sigma}(\vec{x}), \varphi \in \operatorname{fm}_{\sigma}(\vec{x})$.

Тогла

- $\forall \vec{a} : [t]_{\mathcal{M}}(\vec{a}) = [t]_{\mathcal{N}}(\alpha \vec{a})$
- $\forall \vec{a} : [\varphi]_{\mathcal{M}}(\vec{a}) = [\varphi]_{\mathcal{N}}(\alpha \vec{a})$

Доказательство: Доказывается очевидной индукцией по построению термов и функций.

Определение 1.7.14: Отношение $X \subseteq M^n$ выразимо в σ -структуре $\mathcal{M} \Leftrightarrow \exists X \in \mathrm{fm}_{\sigma}(x_1, ..., x_n) : \varphi^{\mathcal{M}} = X$

Определение 1.7.15: Функция $f: M^n \to M$ выразима в σ -структуре $\mathcal{M} \Leftrightarrow \exists t \in \operatorname{tm}_{\sigma}(x_1, ..., x_n) : t^{\mathcal{M}} = f$

Определение 1.7.16: **Автоморфизмами** структуры \mathcal{M} называют множество

Aut
$$(\mathcal{M}) = \{ \alpha \mid \mathcal{M} \stackrel{\alpha}{\simeq} \mathcal{M} \}$$

1.8. Эквивалентность, общезначимость и выполнимость формул первого порядка. Приведение булевой комбинации к дизъюнктивной и конъюнктивной нормальным формам. Корректные подстановки. Приведение формулы к предваренной нормальной форме.

Определение 1.8.1: Формула, значение которой равно единице в любой интерпретации при любой оценке, называется **общезначимой**

Определение 1.8.2: Формула, для которой существует интерпретация и оценка такие, что значение этой формулы равно единице, называется **выполнимой**

Определение 1.8.3: Формулы φ и ψ называются эквивалентными ($\psi \equiv \varphi$), если общезначима формула $\varphi \Leftrightarrow \psi$.

Теорема 1.8.1 (О переименовании связанной переменной): Пусть $y \notin V(\varphi)$. Тогда

$$\forall x : \varphi \equiv \forall y : \varphi(y/x)$$

где выражение $\varphi(y/x)$ означает результат замены всех свободных вхождений x в формулу φ на y.

Замечание 1.8.1 (Построение ДНФ и КНФ):

- 1. Избавляемся от всех логических операций, содержащихся в формуле, выразив их через конъюнкцию, дизъюнкцию и отрицание.
- 2. Заменить знаки отрицания, относящиеся ко всему выражению, знаками отрицания, относящимся к отдельным высказываниям
- 3. Избавиться от двойного отрицания
- 4. Раскрываем скобки по дистрибутивности
- 5. Избавляемся от одинаковых литералов

Определение 1.8.4: Говорят, что формула φ предварённая или пренексная, если

$$\varphi \coloneqq Q_1 y_1 ... Q_n y_n \psi$$

где каждый Q_i есть некоторый квантор, а в формуле ψ кванторы отсутствуют вовсе

Теорема 1.8.2: Для всякой формулы φ найдётся предварённая формула φ' , такая, что $\varphi \equiv \varphi'$

Если φ атомарная, то она предварённая.

Если φ начинается с квантора, по по предположению индукции, заменяем формулу под этим квантором на эквивалентную предварённую.

Если φ начинается с отрицания, то по предположению индукции заменяем форумулу под отрицанием на эквивалентную предварённую. Затем проносим отрицание во внутрь, переменяя кванторы.

ДМ Гос (ИВТ: Матлог + ДС)

Если в $arphi$ главная связка бинарная, то по предположению индукц	ии, заме-
няем каждую из формул под этой связкой на эквивалентную предва	арённую
Затем переименоваем связанные переменные так, чтобы можно было	вынести
все кванторы наружу.	