Lab. 2: Chapter 3, R and distributional theory

R and distributions.

Objectives:

- Learn discrete distributions
- Calculate probabilities and create samples
- Make plots of various kinds using the base and ggplot2 packages

Output:

- Make an Rmd document for this lab
- At the conclusion render into the 3 file types
- Upload the 4 files to the server.

Tasks:

- 1. The Binomial distribution. Throw a coin "n" times and the number of successes is "x". Where p = probability of a success
 - a. Write the formula for p(X = x | n, p) using Latex
 - b. Using the answer to the above write your own r function dmybin() to calculate p(X = x|n,p) record this in Rmd
 - c. Now calculate p(X = 4|n = 10, p = 0.5) using your function
 - d. Use the built in R function dbinom() to calculate the same probability.
 - e. What if we wish to calculate the cumulative probability $p(X \le x | n, p)$, we would need to sum individual probabilities. Make a function called pmybin() that would do the job.
 - f. Use the function to calculate $p(X \le 5|n = 10, p = 0.5)$
 - g. Use the built in R function pbinom() to do the same and see whether the answers are the same.
 - h. Make the following plot, where n=10,p=0.5 except put your name on the title:

2. Learn how to use the four basic distributional functions

dstem, pstem, rstem, qstem

- a. Suppose that $X \sim Pois(\lambda)$. Use R and the above function types to answer the following.
 - i. Find $P(X = 4 | \lambda = 3)$
 - ii. Find $P(X \le 4 | \lambda = 3)$
 - iii. Find $P(X > 4 | \lambda = 3)$
 - iv. Find x so that $P(X \le x | \lambda = 3) = 0.9997077$
 - v. Create a sample of size 100 from a Poisson distribution that has parameter $\lambda = 3$. Store in an object.
 - vi. Make a second sample of size 100 from a Poisson that has parameter $\lambda=6$, store in an object
- b. Make boxplots of the random samples you made above.
 - i. We will make a data frame of the data. Call the first group "Fst" and the second group "Snd". All data in the first group have to have "Fst" associated with them etc.
 - ii. See Laboratory2.R for some exemplar code using ggplot
- c. Make violin plots of the same using ggplot