Problem set 8

Daniel Arone

November 23, 2021

Exercises

Exercise 8.1. Let $(C^i, \partial^i)_{i \in I}$ be a family of chain complexes. Show that

$$H_n\left(\bigoplus_{i\in I}C^i\right)\cong\bigoplus_{i\in I}H_n(C^i).$$

Solution

Notice that by the definitions, the functions ∂ are defined by the components, so we have

$$\operatorname{im} \partial = \bigoplus_{i \in I} \operatorname{im} \partial^i \quad \text{and} \quad \ker \partial = \bigoplus_{i \in I} \ker \partial^i.$$

Therefore

$$H_n\left(\bigoplus_{i\in I}C^i\right)=\ker\partial_n/\operatorname{im}\partial_{n+1}=\bigoplus_{i\in I}(\ker\partial_n^i/\operatorname{im}\partial_{n+1}^i)=\bigoplus_{i\in I}H_n^i.$$

Exercise 8.2. Let X be a topological space.

- (1) If f is a (not necessarily closed) path in X, prove that f is homologous to $-f^{-1}$.
- (2) Let a, b, c be (not necessarily closed) paths in X, such that a * b * c is defined, and a closed path. Prove that in $H_1(X)$,

$$[a*b*c]_H = [a]_H + [b]_H + [c]_H.$$

Solution

(1) I am not sure what homologous means when f and $-f^{-1}$ aren't in $Z_1(X)$. We prove however that $f-(-f^{-1}) \in B_1(X)$, because I assume that that is what is wanted. Let $\sigma_f: \Delta^2 \to X$ be the 2-simplex defined by $\sigma_f(x, y, z) = f(y)$. Notice that

$$\partial \sigma_f = \sigma_f \circ d^0 - \sigma_f \circ d^1 + \sigma_f \circ d^2 = \sigma_f(0, x, y) - \sigma_f(x, 0, y) + \sigma_f(x, y, 0)$$

But $\sigma_f(0, x, y)$ is just f and f(x, y, 0) is just f^{-1} and $\sigma_f(x, 0, y)$ is just the constant 1-simplex at f(0). But every constant 1-simplex is the image of the constant 2-simplex at that point, so we can subtract f(0) from it, and still stay in $B_1(x)$.

(1) We prove that

$$[a*b*c]_H - [a]_H - [b]_H - c_{\lceil}H] \in B_1(X).$$

Let $\sigma_{abc}: \Delta^2 \to X$ be the 2-chain which maps into the degenerate triangle with sides a, a*b*c, and b*c. Let $\sigma_{bc}: \Delta^2 \to X$ map into the degenerate triangle with sides b, bc, and c. Notice that

$$\partial \sigma_{abc} = [a]_H - [a * b * c]_H + [b * c]_H,$$

and

$$\partial \sigma_{bc} = [b]_H - [b * c]_H + [c]_H.$$

So $\partial(-\sigma_{abc}-\sigma_{bc})=[a*b*c]_H-[a]_H-[b]_H-[c]_H$, so they are homologous. \square

Exercise 8.3. Show that if X is a deformation retract of Y, then $H_n(X) \cong H_n(Y)$ for all $n \geq 0$.

Solution

Is this not trivial because deformation retracts are homotopies, and homology is homotopy equivalent? Is there something which I have misunderstood?

Exercise 8.4. Compute the singular homology groups of the topologist's sine curve

$$X = \{(x, \sin\frac{1}{x}) | 0 < x \ge 1\} \cup \{(0, 0)\}.$$

Solution

Notice that the path-components of X are $X_0 = \{(x, \sin \frac{1}{x}) | 0 < x \le 1\}$ and $X_1 = (0,0)$, so we have

$$H_n(X) = H_n(X_0) \oplus H_n(X_1).$$

Because X_1 is a singleton set we have $H_0(X_1) = \mathbb{Z}$, and $H_n(X_1) = 0$ for positive n. Notice that function $(x, \sin \frac{1}{x}) \mapsto x$ is continuous, and has a continuous inverse $x \mapsto (x, \sin \frac{1}{x})$ so X_0 is homeomorphic to the half-open interval (0, 1]. But the homology groups of the half-open interval are just 0, except when n = 0, when it is \mathbb{Z} . So we have $H_0(X) = \mathbb{Z}^2$, and $H_n(X) = 0$ for positive n.

Exercise 8.5. Show that for the subspace $\mathbb{Q} \subset \mathbb{R}$, the relative homology group $H_1(\mathbb{R}, \mathbb{Q})$ is free abelian, and find a basis.

Solution

The relative homology group being free abelian can be done with the long exact sequence in relative singular homology, but I don't know how to prove that it has a basis $\mathbb{Q} \setminus \{x_0\}$ for some $x_0 \in \mathbb{Q}$.