Module 1

Exercice 01 : On veut accélérer la circulation d'un fluide parfait dans une conduite de telle sorte que sa vitesse soit multipliée par 4. Pour cela, la conduite comporte un convergent caractérisé par l'angle α (schéma ci-contre).

- 1) Calculer la pression P_2 .
- 2) Calculer la vitesse V_1 et la pression P_1

On donne :
$$R_0 = 50cm$$
 et $\alpha = 15^\circ$, $P_0 = 1008$ Hpa; $\rho_0 = 1,225$ $Kg/m3$ et $V_0 = 82m/s$, $l_0 = 1m$, $l_1 = 1,5m$

Nous sommes dans le cas d'écoulement permanent et de fluide incompressible

Exercice 02:

La figure ci-contre représente un piston qui se déplace sans frottement dans un cylindre de section S_1 ; et de diamètre $d_1=4cm$ rempli d'un fluide parfait de masse volumique $\rho=1000~kg/m3$.

Le piston est poussé par une force F d'intensité 62,84N à une vitesse V_1 constante. Le fluide peut s'échapper vers l'extérieur par un cylindre de section S_2 et de diamètre $d_2 = 1cm$ à une vitesse V_2 et une pression $P_2 = P_{atm} = 1bar$.

- 1) Ecrire l'équation de continuité et déterminer l'expression de la vitesse V_1 ; en fonction de V_2
- 2) En appliquant l'équation de Bernoulli, déterminer l'expression de la vitesse d'écoulement V_2 en fonction $de\ P_1$, $P_{atm}\ et\ \rho$. On suppose que les cylindres sont dans une position horizontale $(Z_1=Z_2)$.
- 3) Déduire le débit volumique Q_v

Exercice 03:

De l'air stocké à 25° dans un réservoir sous pression se détend pour sortir dans l'air l'ambiant à -25°C. Quelle est la vitesse d'éjection en considérant que la détente est réversible ?

On donne
$$Cp = 1005J/Kg.K$$
, $Cv = 718J/Kg.K$, $\gamma = 1.4$

Exercice 4

Deux aéronefs évoluent à un niveau de vol caractérisé par les conditions atmosphériques suivantes :

Pression statique : 1003Hpa,Température statique :14.4°C

- masse volumique de l'air :1,215 Kg/m3.

Les pressions totales mesurées par les tubes de Pitot sont données ci-après :

Avion A: P_{t_A} = 1020 Hpa
Avion B: P_{t B} = 1290, Hpa

L'avion A vole à une vitesse de 105 kt, et l'avion B à 400 kt. On considère que l'air se comporte comme un gaz parfait avec $R = 287J kg^{-1}K^{-1}$. et $\gamma = 1.4$

- 1. En supposant un **écoulement incompressible**, calculez les vitesses V_{A_i} et V_{B_i} des deux avions à partir des pressions totales mesurées. Calculer les erreurs relatives sur les vitesses par rapport aux vitesses réelles.
- 2. En supposant un **écoulement compressible et isentropique**, calculez les vitesses V_{A_c} et V_{B_c} des deux avions à partir des pressions totales mesurées. Calculer les erreurs relatives sur les vitesses par rapport aux vitesses réelles.
- 3. Commentez

$$\left(\text{Notons que } \frac{P_i}{P_s} = \left(\frac{T_i}{T}\right)^{\frac{\gamma}{\gamma-1}}\right)$$

MODULE 2

Exercice 1: Fonctionnement d'une soufflerie subsonique

- 1. Quelle est la fonction principale de la soufflerie illustrée ?
 - A. Générer de l'énergie pour propulser un avion
 - B. Tester le comportement aérodynamique d'un modèle réduit
 - C. Mesurer la température de l'air ambiant
 - D. Refroidir le moteur d'un avion

Annoter la soufflerie illustrée ci-haut

Exercice 2:

Un avion a une aile trapézoïdal montée avec un dièdre positif comme indiquée dans la figure ci-dessous. Calculer :

- 1. La surface alaire;
- 2. L'allongement de l'aile;
- 3. Calculer la profondeur moyenne de l'aile

MODULE 3

Application 1

Un avion évolue à 3000 ft d'altitude. Déterminer, dans les conditions de l'atmosphère type (standard), les paramètres suivants auxquels l'avion est soumis :

- la température en °€;
- la pression (P) en utilisant deux méthodes différentes ;
- Quelle est l'erreur relative entre les deux valeurs de pression obtenues.

Le même avion évolue maintenant à 30,000 ft, toujours en considérant l'atmosphère type, déterminer la pression.

$$(R = 287I/Kg/K)$$

Application 1

Un avion de masse m=75 t et de charge alaire, ca=620 kg/m² et dont l'allongement est λ =9.

1. Calculez la surface de référence Sref de l'aile et son envergure B.

Le même avion évolue à une vitesse de croisière, Vc = 500kt et à une altitude de croisière, $H_c = 29000 \, ft$. calculez :

1. le coefficient de portance de cette aile en croisière.

2. le coefficient de portance au décollage avec masse maxi au décollage de 90 t et à la charge alaire correspondante si la vitesse au décollage est de 100 m/s. L'aérodrome se trouve au niveau de la mer.

Commentez.

Application 2

OPTMISATION PROFIL

Lors d'une conception d'un aéronef on désire minimiser la trainée, compte tenu des données suivantes :

Condition infini amont : $V_{\infty}=10~m/s,~\nu\approx 1.5.\,10^{-5}~m^2/s$ Surface alaire : $S=0.1m^2$

Configuration : $C_z = 0.4$

Donner les valeurs optimales de l'envergure B et de la corde pour atteindre l'objectif fixé.

On considérera un régime d'écoulement parfaitement laminaire autour de l'aile