TECHNICAL UNIVERSITY OF BERLIN

Faculty II - Mathematics and Natural Sciences

Institute of Mathematics

Dr. D. Peschka, A. Selahi

Numerical Mathematics II for Engineers

Homework Assignment 4 Submitted on November 18th, 2019

by Group 5		
Kagan Atci	338131	Physical Engineering, M.Sc.
Navneet Singh	380443	Scientific Computing, M.Sc.
Riccardo Parise	412524	Scientific Computing, M.Sc.
Daniel V. Herrmannsdoerfer	412543	Scientific Computing, M.Sc.

Exercise 1

Considered is the Laplace operator $Lu = -\Delta$ in $\Omega = (0, L)^2$ and $u \in C^4(\bar{\Omega})$.

a) Let $\underline{x} = [x_1, x_2]^T \in \Omega_h$. Applying the Laplace operator in the form of finite difference on $u(\underline{x})$ takes place by differentiating $u(\underline{x})$ with respect to x_1 and x_2 one at a time. The D^-D^+ stencil is employed as the 2nd order finite difference operator with one neighbor on either side at the distance h.

$$\frac{\partial^2 u}{\partial x_1^2} = D^- D^+ u(x_1, \cdot) = \frac{u(x_1 + h, x_2) - 2u(x_1, x_2) + u(x_1 - h, x_2)}{h^2} + \mathcal{O}(h^2)$$

$$\frac{\partial^2 u}{\partial x_2^2} = D^- D^+ u(\cdot, x_2) = \frac{u(x_1, x_2 + h) - 2u(x_1, x_2) + u(x_1, x_2 - h)}{h^2} + \mathcal{O}(h^2)$$
(2)

With remainders neglected in Equations (1) and (2), the Laplace operator can be approximated by adding both equations

$$\Delta u \approx \frac{u(x_1 + h, x_2) + u(x_1, x_2 + h) - 4u(x_1, x_2) + u(x_1 - h, x_2) + u(x_1, x_2 - h)}{h^2}.$$
(3)

Since u is a four times continuously differentiable function in Ω and the remainder is $\mathcal{O}(h^2)$, it holds $||f_h - L_h R_h u||_h \in \mathcal{O}(h^2)$ as $h \to 0$, where f_h is the right hand side of the BVP, L_h the finite difference matrix and R_h the restriction operator within

Numerical Mathematics II for Engineers

H dei	Hence, Equation (3), also called as the 5-point stencil, is considered as a 2nd r consistent approximation of Δu .
	a04ex01Laplace.png

Exercise 2

a)

Assignment 4

b)

Exercise 3

- **a**)
- **b**)
- **c**)
- d)