# 11. Nonlinear equations with one variable

- definition and examples
- bisection method
- Newton's method
- secant method

# **Definition and examples**

x is a zero (or root) of a function f if f(x) = 0

#### examples

- $f(x) = e^x$  has no zeros
- $f(x) = e^x e^{-x}$  has one zero
- $f(x) = e^x e^{-x} 3x$  has three zeros
- $f(x) = \cos x$  has infinitely many zeros

cf., one linear equation in one variable ax = b

- a unique solution if  $a \neq 0$
- no solution if a=0,  $b\neq 0$
- ullet any  $x \in \mathbf{R}$  is a solution if a = b = 0

# **Example:** nonlinear static circuit



operating point satisfies

$$g(x) - \frac{E - x}{R} = 0$$

- ullet one nonlinear equation in one variable x
- three solutions

## Characteristics of algorithms for nonlinear equations

### how f is described

- user provides subroutine to compute f(x) (and possibly f'(x)) at x
- called 'black box' or 'oracle' model for describing f
- $\bullet$  evaluating f and f' can be expensive (e.g., require a circuit simulation)

### limitations of algorithms

- there exist no algorithms that are guaranteed to find all solutions
- most algorithms find at most one solution
- ullet need prior information from the user: e.g., an interval that contains a zero, or a point near a solution

### methods for solving nonlinear equations are iterative

- generate a sequence of points  $x^{(k)}$ ,  $k=0,1,2,\ldots$  that converge to a solution;  $x^{(k)}$  is called the kth iterate;  $x^{(0)}$  is the  $starting\ point$
- ullet computing  $x^{(k+1)}$  from  $x^{(k)}$  is called one *iteration* of the algorithm
- ullet each iteration typically requires one evaluation of f (or f and f') at  $x^{(k)}$
- ullet algorithms need a stopping criterion, e.g., terminate if

$$|f(x^{(k)})| \le \text{specified tolerance}$$

- speed of the algorithm depends on:
  - the cost of evaluating f(x) (and possibly, f'(x))
  - the number of iterations

# **Analyzing speed of convergence**

suppose  $x^{(k)} \to x^*$  with  $f(x^*) = 0$ ; how fast does  $x^{(k)}$  go to  $x^*$ ?

**error** after k iterations:

- absolute error:  $|x^{(k)} x^{\star}|$
- relative error:  $|x^{(k)} x^{\star}|/|x^{\star}|$  (defined if  $x^{\star} \neq 0$ )
- number of correct digits:

$$\left[ -\log_{10} \left( \frac{|x^{(k)} - x^{\star}|}{|x^{\star}|} \right) \right]$$

(defined if  $x^* \neq 0$  and  $|x^{(k)} - x^*|/|x^*| \leq 1$ )

rates of convergence of a sequence  $x^{(k)}$  with limit  $x^{\star}$ 

ullet linear convergence: there exists a  $c\in(0,1)$  such that

$$|x^{(k+1)} - x^{\star}| \le c |x^{(k)} - x^{\star}|$$
 for sufficiently large  $k$ 

ullet R-linear convergence: there exists  $c\in(0,1)$ , M>0 such that

$$|x^{(k)} - x^{\star}| \le Mc^k$$
 for sufficiently large  $k$ 

ullet quadratic convergence: there exists a c>0 s.t.

$$|x^{(k+1)} - x^{\star}| \le c |x^{(k)} - x^{\star}|^2$$
 for sufficiently large  $k$ 

• superlinear convergence: there exists a sequence  $c_k$  with  $c_k \to 0$  s.t.

$$|x^{(k+1)} - x^{\star}| \le c_k |x^{(k)} - x^{\star}|$$
 for sufficiently large  $k$ 

## interpretation (if $x^* \neq 0$ ): let

$$r^{(k)} = -\log_{10}(\frac{|x^{(k)} - x^{\star}|}{|x^{\star}|})$$

(i.e.,  $r^{(k)} \approx$  the number of correct digits at iteration k)

ullet linear convergence: we gain roughly  $-\log_{10}c$  correct digits per step

$$r^{(k+1)} \ge r^{(k)} - \log_{10} c$$

• quadratic convergence: for k sufficiently large, number of correct digits roughly doubles in one step

$$r^{(k+1)} \ge -\log(c|x^{\star}|) + 2r^{(k)}$$

ullet superlinear convergence: number of correct digits gained per step increases with k

$$r^{(k+1)} - r^{(k)} \to \infty$$

## examples (with $x^* = 1$ )

•  $x^{(k)} = 1 + 0.5^k$  converges linearly (with c = 1/2):

$$\frac{|x^{(k+1)} - 1|}{|x^{(k)} - 1|} = \frac{2^k}{2^{k+1}} = \frac{1}{2}$$

•  $x^{(k)} = 1 + 0.5^{2^k}$  converges quadratically (with c = 1)

$$\frac{|x^{(k+1)} - 1|}{|x^{(k)} - 1|^2} = \frac{(2^{2^k})^2}{2^{2^{k+1}}} = 1$$

•  $x^{(k)} = 1 + (1/(k+1))^k$  converges superlinearly

$$\frac{|x^{(k+1)} - 1|}{|x^{(k)} - 1|} = \frac{(k+1)^k}{(k+2)^{k+1}} \to 0$$

| k  | $1 + 0.5^k$       | $1 + 0.5^{2^k}$   | $1 + (1/(k+1)^k)$ |
|----|-------------------|-------------------|-------------------|
| 0  | 2.000000000000000 | 1.500000000000000 | 2.000000000000000 |
| 1  | 1.500000000000000 | 1.250000000000000 | 1.500000000000000 |
| 2  | 1.250000000000000 | 1.06250000000000  | 1.11111111111111  |
| 3  | 1.125000000000000 | 1.00390625000000  | 1.015625000000000 |
| 4  | 1.06250000000000  | 1.00001525878906  | 1.00160000000000  |
| 5  | 1.03125000000000  | 1.00000000023283  | 1.00012860082305  |
| 6  | 1.01562500000000  | 1.000000000000000 | 1.00000849985975  |
| 7  | 1.00781250000000  | 1.000000000000000 | 1.00000047683716  |
| 8  | 1.00390625000000  | 1.000000000000000 | 1.00000002323057  |
| 9  | 1.00195313125000  | 1.000000000000000 | 1.00000000100000  |
| 10 | 1.00097656250000  | 1.000000000000000 | 1.00000000003855  |

- ullet sequence 1: we gain roughly  $-\log_{10}(c)=0.3$  correct digits per step
- sequence 2: number of correct digits roughly doubles at each step
- sequence 3: number of correct digits gained per step increases slowly (from 0.5 initially to 2 near the end)

## **Bisection method**

 $f: \mathbf{R} \to \mathbf{R}$ , continuous



if f(l)f(u) < 0, then the interval [l,u] contains at least one zero



given l, u with l < u and f(l)f(u) < 0; a required tolerance  $\epsilon > 0$  repeat

- 1. x := (l + u)/2.
- 2. Compute f(x).
- 3. if f(x) = 0, return x.
- 4. if f(x)f(l) < 0, u := x, else, l := x.

 $\text{until } u-l \leq \epsilon$ 

## one function evaluation per iteration

#### convergence rate

•  $u^{(k)} - l^{(k)}$  measures our uncertainty in localizing a zero  $x^*$ :

$$|x^{(k)} - x^{\star}| \le u^{(k)} - l^{(k)}$$

uncertainty is halved at each iteration:

$$u^{(k)} - l^{(k)} = \left(\frac{1}{2}\right)^k (u^{(0)} - l^{(0)})$$

$$|x^{(k)} - x^*| \le \left(\frac{1}{2}\right)^k (u^{(0)} - l^{(0)})$$

i.e., R-linear convergence with c=1/2,  $M=u^{(0)}-l^{(0)}$ 

• number of iterations required for  $u^{(k)} - l^{(k)} \le \epsilon$ :

$$\log_2 \frac{u^{(0)} - l^{(0)}}{\epsilon}$$

**example:**  $f(x) = e^{x} - e^{-x}$ 

• unique zero  $x^* = 0$ 

ullet start bisection method with l=-1, u=21



### Newton's method

 $f: \mathbf{R} \to \mathbf{R}$ , differentiable

given initial x, required tolerance  $\epsilon>0$  repeat

- 1. Compute f(x) and f'(x).
- 2. if  $|f(x)| \leq \epsilon$ , return x.
- 3. x := x f(x)/f'(x).

until maximum number of iterations is exceeded.

- ullet each iteration requires one evaluation of f and f'
- there exist other (more sophisticated) stopping criteria
- we assume  $f'(x^{(k)}) \neq 0$ , all k

interpretation (with notation  $x = x^{(k)}$ ,  $x^+ = x^{(k+1)}$ )



ullet make affine approximation of f around x using Taylor series expansion:

$$f_{\text{aff}}(y) = f(x) + f'(x)(y - x)$$

ullet solve the linearized equation  $f_{\mathrm{aff}}(y)=0$  and take the solution y as  $x^+$ :

$$x^+ = x - f(x)/f'(x)$$

# **Examples**

•  $f(x) = e^x - e^{-x}$ , start at  $x^{(0)} = 10$ 



asymptotic convergence is much faster than bisection method

• 
$$f(x) = e^x - e^{-x} - 3x$$



- start at  $x^{(0)}=-1$ : converges to x=-1.62
- start at  $x^{(0)}=-0.8$ : converges to x=1.62
- start at  $x^{(0)} = -0.7$ : converges to x = 0

converges to a different solution depending on the starting point

• 
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 (unique root at  $x = 0$ )

- start at  $x^{(0)} = 0.9$ :

$$x^{(1)} = -5.7 \cdot 10^{-1}$$

$$x^{(2)} = 1.3 \cdot 10^{-1}$$

$$x^{(3)} = -1.6 \cdot 10^{-3}$$

$$x^{(4)} = 2.5 \cdot 10^{-9}$$

$$x^{(5)} = -3.0 \cdot 10^{-17}$$



converges very rapidly

- start at  $x^{(0)} = 1.1$ :

$$x^{(1)} = -1.1 \ 10^{0}, \qquad x^{(2)} = 1.2 \ 10^{0}, \qquad x^{(3)} = -1.7 \ 10^{0},$$
  
 $x^{(4)} = 5.7 \ 10^{0}, \qquad x^{(5)} = -2.3 \ 10^{4}$ 

does not converge

#### conclusion

- Newton's method works very well if we start near a solution
- it may not work at all if we start too far from a solution
- if there are multiple solutions, it may converge to a different solution depending on the starting point; it does not necessarily converge to the solution closest to the starting point

### Secant method

 $f: \mathbf{R} \to \mathbf{R}$ , continuous

given two initial points x,  $x_{\mathrm{prev}}$ , required tolerance  $\epsilon>0$  repeat

- 1. Compute f(x)
- 2. if  $|f(x)| \leq \epsilon$ , return x.
- 3.  $g := (f(x) f(x_{\text{prev}}))/(x x_{\text{prev}}).$
- 4.  $x_{\text{prev}} := x$ .
- 5. x := x f(x)/g.

until maximum number of iterations is exceeded.

- first iteration requires two evaluations of f (at x and  $x_{\text{prev}}$ )
- ullet subsequent iterations require one evaluation (at x)
- ullet we assume  $g \neq 0$

interpretation (with notation:  $x = x^{(k)}$ ,  $x^+ = x^{(k+1)}$ ,  $x_{\text{prev}} = x_{\text{prev}}^{(k)}$ )



• affine approximation  $f_{\rm aff}$  with  $f_{\rm aff}(x) = f(x)$ ,  $f_{\rm aff}(x_{\rm prev}) = f(x_{\rm prev})$ :

$$f_{\text{aff}}(y) = f(x) + g(y - x)$$
 with  $g = \frac{f(x) - f(x_{\text{prev}})}{x - x_{\text{prev}}}$ 

• solve linear equation  $f_{\rm aff}(y)=0$  and take the solution as new iterate  $x^+$ :

$$x^+ = x - f(x)/g$$

## **Examples**

•  $f(x) = e^x - e^{-x}$ , start at  $x^{(0)} = 10$ ,  $x_{\text{prev}}^{(0)} = 11$ 



fast asymptotic convergence, but slower than Newton method

• other examples: secant method works well if we start near a solution; may not converge otherwise

## Convergence of Newton and secant methods

**Newton method**: if  $f'(x^*) \neq 0$  and  $x^{(0)}$  is sufficiently close to  $x^*$ , then Newton's method converges and there exists a c > 0 such that

$$|x^{(k+1)} - x^*| \le c |x^{(k)} - x^*|^2$$

*i.e.*, quadratic convergence

**secant method:** if  $f'(x^*) \neq 0$  and  $x^{(0)}$  is sufficiently close to  $x^*$ , then the secant method converges and there exists a c>0 such that

$$|x^{(k+1)} - x^*| \le c |x^{(k)} - x^*|^r$$

where 
$$r = (1 + \sqrt{5})/2 \approx 1.6$$

*i.e.*, superlinear convergence

# **Summary**

#### bisection method

- does not require derivatives
- user must provide initial interval [l, u] with f(l)f(u) < 0
- R-linear convergence

#### Newton's method

- requires derivatives
- user must provide starting point near a solution
- quadratic convergence

#### secant method

- does not require derivatives
- user must provide two starting points near a solution
- superlinear convergence