Lecture 22: Spectral clustering, EM algorithm

Nisha Chandramoorthy

November 14, 2023

Lloyd's algorithm

▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.

Lloyd's algorithm

- ▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- ▶ Given centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$, assign each point x_i to the closest center. That is,

$$C_j = \{x_i : j \in \operatorname{argmin}_I \|x_i - \mu_I\|\}.$$

Lloyd's algorithm

- ▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- ▶ Given centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$, assign each point x_i to the closest center. That is,

$$C_j = \{x_i : j \in \operatorname{argmin}_I ||x_i - \mu_I||\}.$$

▶ Given clusters C_1, \ldots, C_k , update centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ as

$$\mu_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i.$$

k-means algorithm (Lloyd's algorithm)

► Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \|x_i - \mu(C_j)\|^2.$$

k-means algorithm (Lloyd's algorithm)

Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \|x_i - \mu(C_j)\|^2.$$

here, $\mu(C_j) = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i = \operatorname{argmin}_{\mu \in \mathbb{R}^d} \sum_{x_i \in C_j} \|x_i - \mu\|^2$ is the mean of the points in cluster C_j .

k-means algorithm (Lloyd's algorithm)

Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} ||x_i - \mu(C_j)||^2.$$

- here, $\mu(C_j) = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i = \operatorname{argmin}_{\mu \in \mathbb{R}^d} \sum_{x_i \in C_j} \|x_i \mu\|^2$ is the mean of the points in cluster C_j .
- Lloyd's algorithm is a heuristic. It is not guaranteed to converge to the global optimum or even a local minimum.

Lloyd's algorithm properties

k-means algorithm is sensitive to initialization of the centers.

Lloyd's algorithm properties

- k-means algorithm is sensitive to initialization of the centers.
- Complexity: O(mdk) per iteration, where m is the number of points, d is the dimension, and k is the number of clusters.

k-means failure modes

Source: sklearn's toy examples

k-means failure modes contd

Source: sklearn's toy examples

▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.
- W is a weighted adjacency matrix of a graph.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.
- W is a weighted adjacency matrix of a graph.
- ► ERM problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \sum_{x_l \notin C_j} w_{il}$. Graph min-cut problem.

RatioCut problem: spectral clustering solution

▶ RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_j \in C_j} \sum_{x_j \notin C_j} w_{ij}}{|C_i|}$.

RatioCut problem: spectral clustering solution

- ► RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_j \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_i|}$.
- Normalization by $|C_i|$ penalizes small clusters.

RatioCut problem: spectral clustering solution

- ► RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_j \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_i|}$.
- Normalization by $|C_i|$ penalizes small clusters.

▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1i/\sqrt{|C_j|}$ if $x_i \in C_j$ and 0 otherwise.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1i/\sqrt{|C_j|}$ if $x_i \in C_j$ and 0 otherwise.
- \blacktriangleright h_i (ith column of H) is nonzero at row j if x_j is in cluster i.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1i/\sqrt{|C_j|}$ if $x_i \in C_j$ and 0 otherwise.
- \blacktriangleright h_i (*i*th column of H) is nonzero at row j if x_j is in cluster i.
- H has orthonormal columns.

► Choose weighting, such as, $w_{ij} = \exp(-\|x_i - x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ▶ Graph laplacian: L = D W.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ▶ Graph laplacian: L = D W.
- Detects local structure / clusters in data.

Lemma proof: RatioCut objective and graph laplacian connection

▶ RatioCut objective(C_1, \dots, C_k)

$$:= \sum_{j=1}^k \frac{\sum_{x_i \in C_j} \sum_{x_l \notin C_j} \mathbf{w}_{il}}{|C_j|}.$$

Lemma proof: RatioCut objective and graph laplacian connection

▶ RatioCut objective(C_1, \dots, C_k)

$$:= \sum_{j=1}^k \frac{\sum_{x_i \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_j|}.$$

▶ Need to show equal to $Tr(H^TLH)$.

▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i - y_j||^2$.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$ where U is the matrix of eigenvectors of L.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$ where U is the matrix of eigenvectors of L.
- ► For any vector v, $v^{\top}Lv = (1/2) \sum_{i,j=1}^{m} w_{ij}(v_i v_j)^2$.

- ► Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$: where U is the matrix of eigenvectors of L.
- ► For any vector v, $v^{\top}Lv = (1/2) \sum_{i,j=1}^{m} w_{ij}(v_i v_j)^2$.
- L is positive semi-definite.

Bottom *n* eigenvectors

Rayleigh quotient optimality

Bottom *n* eigenvectors

- Rayleigh quotient optimality
- Another interpretation: top n eigenvectors of L^{\dagger} . L_{ij}^{\dagger} represents expected time for random walk $i \rightarrow j \rightarrow i$.

Bottom *n* eigenvectors

- Rayleigh quotient optimality
- Another interpretation: top n eigenvectors of L^{\dagger} . L_{ij}^{\dagger} represents expected time for random walk $i \rightarrow j \rightarrow i$.
- ► Kernel PCA with $K = L^{\dagger}$ is equivalent to Laplacian eigenmaps.

Combining dimension reduction and k-means

Spectral clustering algorithm uses Laplacian eigenmaps on m-dimensional data.

Combining dimension reduction and k-means

- Spectral clustering algorithm uses Laplacian eigenmaps on m-dimensional data.
- Uses v_i , $i = 1, 2, \dots, k$ eigenvectors of L corresponding to the k smallest eigenvalues.

Combining dimension reduction and k-means

- Spectral clustering algorithm uses Laplacian eigenmaps on m-dimensional data.
- Uses v_i , $i = 1, 2, \dots, k$ eigenvectors of L corresponding to the k smallest eigenvalues.
- Perform k-means on rows of v_i to obtain clusters

Gaussian mixtures

Suppose we want to cluster data that is generated from a mixture of Gaussians.

Gaussian mixtures

- Suppose we want to cluster data that is generated from a mixture of Gaussians.

Gaussian mixtures

- Suppose we want to cluster data that is generated from a mixture of Gaussians.
- $ightharpoonup x_i \sim \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j).$
- Frequentist view: there is a true (unknown) parameter $\theta = (\pi_1, \ldots, \pi_k, \mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k)$ that generated the data.

► Clustering objective: maximize log likelihood of the data.

- ► Clustering objective: maximize log likelihood of the data.
- $\blacktriangleright \ \ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j).$

- Clustering objective: maximize log likelihood of the data.
- $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}).$

- ► Clustering objective: maximize log likelihood of the data.
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{i=1}^{k} \pi_{i} \mathcal{N}(\mu_{i}, \Sigma_{i}).$
- $\blacktriangleright \hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}).$
- ▶ More generally, $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} q_{\theta}(z_j) p_{\theta}(x_i|z_j)$.

- Clustering objective: maximize log likelihood of the data.
- $\ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j).$
- $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}).$
- ▶ More generally, $\hat{R}_{S}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} q_{\theta}(z_{j}) p_{\theta}(x_{i}|z_{j})$.
- The joint distribution $p_{\theta}(x, z) = q_{\theta}(z)p_{\theta}(x|z)$ is parametrized by θ .

- Clustering objective: maximize log likelihood of the data.
- $\ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j).$
- $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_{j} \mathcal{N}(\mu_{j}, \Sigma_{j}).$
- ► More generally, $\hat{R}_{\mathcal{S}}(\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} q_{\theta}(z_j) p_{\theta}(x_i|z_j)$.
- The joint distribution $p_{\theta}(x, z) = q_{\theta}(z)p_{\theta}(x|z)$ is parametrized by θ .
- Z is a latent variable, e.g., Z is the cluster assignment of X.

Maximizing log likelihood

Distribution *q* of the latent variable is unknown.

Maximizing log likelihood

- Distribution q of the latent variable is unknown.
- Thus, we want to solve:

$$\max_{\theta} \max_{q} \sum_{i=1}^{m} \log \sum_{j=1}^{k} q_{\theta}(z_{j}) p_{\theta}(x_{i}|z_{j}). \tag{1}$$

▶ Lemma: For fixed θ , optimal $q_{\theta} \equiv p_{\theta}(X|Z)$ is the posterior distribution of Z given X.

Fix some x and θ .

- Fix some x and θ .
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x, z_{j}) = \log \sum_{j=1}^{k} q_{\theta}(z_{j}) \frac{p_{\theta}(x, z_{j})}{q_{\theta}(z_{j})}.$

- Fix some x and θ .
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x, z_{j}) = \log \sum_{j=1}^{k} q_{\theta}(z_{j}) \frac{p_{\theta}(x, z_{j})}{q_{\theta}(z_{j})}.$
- Use Jensen's inequality: $E \log Z \le \log EZ$ for any random variable Z.

- Fix some x and θ .
- $\ell(x, \theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x, z_{j}) = \log \sum_{j=1}^{k} q_{\theta}(z_{j}) \frac{p_{\theta}(x, z_{j})}{q_{\theta}(z_{j})}.$
- ▶ Use Jensen's inequality: $E \log Z \leq \log EZ$ for any random variable Z.
- ► Thus, $\ell(x, \theta) \geqslant \sum_{j=1}^{k} q_{\theta}(z_j) \log \frac{p_{\theta}(x, z_j)}{q_{\theta}(z_j)}$.

- Fix some x and θ .
- ▶ $l(x, θ) = \log p_θ(x) = \log \sum_{j=1}^k p_θ(x, z_j) = \log \sum_{j=1}^k q_θ(z_j) \frac{p_θ(x, z_j)}{q_θ(z_j)}.$
- Use Jensen's inequality: $E \log Z \le \log EZ$ for any random variable Z.
- ► Thus, $\ell(x, \theta) \geqslant \sum_{j=1}^{k} q_{\theta}(z_j) \log \frac{p_{\theta}(x, z_j)}{q_{\theta}(z_j)}$.
- ▶ This holds for any probability distribution q_{θ} .

- Fix some x and θ .
- $\ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x,z_j) = \log \sum_{j=1}^{k} q_{\theta}(z_j) \frac{p_{\theta}(x,z_j)}{q_{\theta}(z_j)}.$
- Use Jensen's inequality: $E \log Z \le \log EZ$ for any random variable Z.
- ► Thus, $\ell(x, \theta) \geqslant \sum_{j=1}^{k} q_{\theta}(z_j) \log \frac{p_{\theta}(x, z_j)}{q_{\theta}(z_j)}$.
- ▶ This holds for any probability distribution q_{θ} .
- ► ELBO $(q, \theta) = \sum_{j=1}^{k} q(z_j) \log \frac{p_{\theta}(x, z_j)}{q(z_j)}$.

- Fix some x and θ .
- $\ell(x,\theta) = \log p_{\theta}(x) = \log \sum_{j=1}^{k} p_{\theta}(x,z_j) = \log \sum_{j=1}^{k} q_{\theta}(z_j) \frac{p_{\theta}(x,z_j)}{q_{\theta}(z_j)}.$
- Use Jensen's inequality: $E \log Z \le \log EZ$ for any random variable Z.
- ► Thus, $\ell(x, \theta) \geqslant \sum_{j=1}^{k} q_{\theta}(z_j) \log \frac{p_{\theta}(x, z_j)}{q_{\theta}(z_i)}$.
- ▶ This holds for any probability distribution q_{θ} .
- ► ELBO $(q, \theta) = \sum_{j=1}^{k} q(z_j) \log \frac{p_{\theta}(x, z_j)}{q(z_j)}$.
- ▶ Thus, we have shown, $\ell(x, \theta) \ge \mathsf{ELBO}(q, \theta)$ for any q.

► ELBO $(q, \theta) = -D_{KL}(q(z)||p_{\theta}(z|x)) + \log p_{\theta}(x)$.

- ► ELBO $(q, \theta) = -D_{KL}(q(z)||p_{\theta}(z|x)) + \log p_{\theta}(x)$.
- ▶ When $q(z) = p_{\theta}(z|x)$, ELBO $(q, \theta) = \log p_{\theta}(x)$.

- $\blacktriangleright \mathsf{ELBO}(q,\theta) = -D_{\mathsf{KL}}(q(z)||p_{\theta}(z|x)) + \log p_{\theta}(x).$
- ▶ When $q(z) = p_{\theta}(z|x)$, ELBO $(q, \theta) = \log p_{\theta}(x)$.
- ▶ ELBO($p_{\theta}(Z|X)$, θ) = $\sum_{j=1}^{k} p_{\theta}(z_j|x) \log \frac{p_{\theta}(z_j|x)p_{\theta}(x)}{p_{\theta}(z_j|x)}$.

- $\blacktriangleright \mathsf{ELBO}(q,\theta) = -D_{\mathsf{KL}}(q(z)||p_{\theta}(z|x)) + \log p_{\theta}(x).$
- ▶ When $q(z) = p_{\theta}(z|x)$, ELBO $(q, \theta) = \log p_{\theta}(x)$.
- ► ELBO($p_{\theta}(Z|X)$, θ) = $\sum_{j=1}^{k} p_{\theta}(z_j|x) \log \frac{p_{\theta}(z_j|x)p_{\theta}(x)}{p_{\theta}(z_j|x)}$.
- ► ELBO($p_{\theta}(Z|X)$, θ) = $\sum_{i=1}^{k} p_{\theta}(z_i|x) \log p_{\theta}(x) = \log p_{\theta}(x)$.

Expectation Maximization (EM) algorithm

lteratively maximize ELBO(q, θ) w.r.t. q and θ .

Expectation Maximization (EM) algorithm

- lteratively maximize ELBO(q, θ) w.r.t. q and θ .
- ► E step: Fix θ and maximize ELBO(q, θ) w.r.t. q. That is, set $q = p_{\theta}(Z|X)$.

Expectation Maximization (EM) algorithm

- lteratively maximize ELBO(q, θ) w.r.t. q and θ .
- ▶ E step: Fix θ and maximize ELBO (q, θ) w.r.t. q. That is, set $q = p_{\theta}(Z|X)$.
- ▶ M step: Fix q and maximize ELBO(q, θ) w.r.t. θ .

EM algorithm

▶ E step: $q_{t+1}(Z|X) = p_{\theta_t}(Z|X)$.

EM algorithm

- ▶ E step: $q_{t+1}(Z|X) = p_{\theta_t}(Z|X)$.
- ▶ M step: $\theta_{t+1} = \operatorname{argmax}_{\theta} \mathsf{ELBO}(q_{t+1}, \theta)$.

EM algorithm

- ▶ E step: $q_{t+1}(Z|X) = p_{\theta_t}(Z|X)$.
- ▶ M step: $\theta_{t+1} = \operatorname{argmax}_{\theta} \mathsf{ELBO}(q_{t+1}, \theta)$.
- ► Repeat until convergence.

EM algorithm properties

- ► EM algorithm decreases $\hat{R}_{S}(\theta) = \sum_{i=1}^{m} \ell(x_i, \theta)$ at each iteration.
- $\ell(x, \theta_{t+1}) = \text{ELBO}(q_{t+2}, \theta_{t+1}) \geqslant \text{ELBO}(q_{t+1}, \theta_{t+1}) \geqslant \\ \text{ELBO}(q_{t+1}, \theta_t) = \ell(x, \theta_t).$

 $ightharpoonup x_i \sim \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j)$. Take $\Sigma_i = I$ for simplicity.

- ▶ $x_i \sim \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j)$. Take $\Sigma_i = I$ for simplicity.
- ► That is, $\theta = (\pi_1, \ldots, \pi_k, \mu_1, \ldots, \mu_k)$.

- $ightharpoonup x_i \sim \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, \Sigma_j)$. Take $\Sigma_i = I$ for simplicity.
- ► That is, $\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k)$.

- $ightharpoonup x_i \sim \sum_{i=1}^k \pi_i \mathcal{N}(\mu_i, \Sigma_i)$. Take $\Sigma_i = I$ for simplicity.
- ► That is, $\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k)$.
- ▶ E step: $q_{t+1}(z|x) = p_{\theta_t}(z|x) = \frac{p_{\theta_t}(x|z)p_{\theta_t}(z)}{p_{\theta_t}(x)}$.

- \times $x_i \sim \sum_{i=1}^k \pi_i \mathcal{N}(\mu_i, \Sigma_i)$. Take $\Sigma_i = I$ for simplicity.
- ► That is, $\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k)$.
- $\blacktriangleright \text{ E step: } q_{t+1}(z|x) = p_{\theta_t}(z|x) = \frac{p_{\theta_t}(x|z)p_{\theta_t}(z)}{p_{\theta_t}(x)}.$
- ► M step: $\theta_{t+1} = \operatorname{argmax}_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{k} q_{t+1}(z_j|x_i) \log \frac{p_{\theta}(x_i, z_j)}{q_{t+1}(z_j|x_i)}$.

- \times $x_i \sim \sum_{i=1}^k \pi_i \mathcal{N}(\mu_i, \Sigma_i)$. Take $\Sigma_i = I$ for simplicity.
- ► That is, $\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k)$.
- $\blacktriangleright \text{ E step: } q_{t+1}(z|x) = p_{\theta_t}(z|x) = \frac{p_{\theta_t}(x|z)p_{\theta_t}(z)}{p_{\theta_t}(x)}.$
- ▶ M step: $\theta_{t+1} = \operatorname{argmax}_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{k} q_{t+1}(z_j|x_i) \log \frac{p_{\theta}(x_i, z_j)}{q_{t+1}(z_j|x_i)}$.
- $\mu_{j,t+1} = \sum_{i=1}^m q_{t+1}(z_j|x_i)x_i.$

- \blacktriangleright $x_i \sim \sum_{i=1}^k \pi_i \mathcal{N}(\mu_i, \Sigma_i)$. Take $\Sigma_i = I$ for simplicity.
- ► That is, $\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k)$.
- ▶ E step: $q_{t+1}(z|x) = p_{\theta_t}(z|x) = \frac{p_{\theta_t}(x|z)p_{\theta_t}(z)}{p_{\theta_t}(x)}$.
- ► M step: $\theta_{t+1} = \operatorname{argmax}_{\theta} \sum_{i=1}^{m} \sum_{j=1}^{k} q_{t+1}(z_j|x_i) \log \frac{p_{\theta}(x_i, z_j)}{q_{t+1}(z_j|x_i)}$.
- $\mu_{j,t+1} = \sum_{i=1}^m q_{t+1}(z_j|x_i)x_i.$
- $\pi_{j,t+1} = \frac{1}{m} \sum_{i=1}^{m} q_{t+1}(z_j|x_i)/Z_{j,t+1}.$

VAE revisited

- Hard to compute q_t in general. VAE solves this problem differently.
- $ho_{\theta}(x|z) = \mathcal{N}(f_{\theta}(z), \sigma^2 I)$. (Decoder: f_{θ})
- $q_{\Phi}(z|x) = \mathcal{N}(\mu_{\Phi}(x), \Sigma_{\Phi}(x))$. (Encoder: $\mu_{\Phi}, \Sigma_{\Phi}$)