Análise Dimensional

Transporte de Calor e Massa

Professor: Adriano Possebon Rosa

Departamento de Engenharia Mecânica Faculdade de Tecnologia Universidade de Brasília

Sumário

- Introdução
- 2 Dimensões e Unidades
- 3 Homogeneidade Dimensional
- Adimensionalização das Equações
- 5 Análise Dimensional e Similaridade
- 6 Variáveis Repetidas e Pi de Buckingham

Importância:

- simplificação de problemas;
- identificação de grupos adimensionais;
- redução no número de variáveis;
- escalonamento e modelagem;
- planejamento de experimentos;
- generalização de resultados;
- desenvolvimento de correlações empíricas;
- auxílio na solução de problemas que não possuem solução analítica.

Parte do princípio de homogeneidade dimensional. Não resolve o problema, mas indica quais são os parâmetros ou grupos de parâmetros que governam o problema.

Prototype car

Model car

Wind tunnel test section

Diagrama de Moody.

$$Re = rac{
ho V D}{\mu}$$
 $h_P = f rac{L}{D} rac{V^2}{2g}$

Sumário

- Dimensões e Unidades

- Análise Dimensional e Similaridade

Transp. de Calor e Massa

7 / 54

Dimensão: medida de uma quantidade física (sem valores numéricos.

Unidade: forma de atribuir um número a uma dimensão.

Dimensões primárias ou fundamentais: massa, comprimento, tempo, temperatura, corrente elétrica, quantidade de luz e quantidade de matéria

Todas as dimensões não primárias podem ser formadas por alguma combinação das sete dimensões primárias.

TABLE 7-1 Primary dimensions and their associated primary SI and English units Dimension Symbol* SI Unit **English Unit** Mass kg (kilogram) Ibm (pound-mass) m Length m (meter) ft (foot) Time[†] s (second) s (second) Temperature K (kelvin) R (rankine) Electric current A (ampere) A (ampere) Amount of light cd (candela) cd (candela) Amount of matter Ν mol (mole) mol (mole)

Dimensões de força:

$$\left\{\mathsf{força}\right\} = \left\{\mathsf{Massa} \cdot \frac{\mathsf{Comprimento}}{\mathsf{Tempo}^2}\right\} = \left\{m \cdot \frac{L}{t^2}\right\}$$

Dimensões de energia:

$$\begin{aligned} \{\mathsf{energia}\} &= \{\mathsf{Força} \cdot \mathsf{Comprimento}\} = \left\{\mathsf{Massa} \cdot \frac{\mathsf{Comprimento}^2}{\mathsf{Tempo}^2}\right\} = \\ &= \left\{m \cdot \frac{L^2}{t^2}\right\} \end{aligned}$$

As chaves {} indicam que estamos falando das dimensões.

Sumário

- Introdução
- Dimensões e Unidades
- Homogeneidade Dimensional
- 4 Adimensionalização das Equações
- 5 Análise Dimensional e Similaridade
- 6 Variáveis Repetidas e Pi de Buckingham

Não é possível somar maçãs e laranjas.

Mais formal:

Todo termo aditivo de uma equação deve ter as mesmas dimensões.

Exemplo.

Equação da energia para um objeto se deslocando:

$$\Delta E = \Delta E_c + \Delta E_p$$

$$\Delta E_c = \frac{1}{2} m \left(V_2^2 - V_1^2 \right) \qquad \Delta E_p = mg \left(z_2 - z_1 \right)$$

$$\{\Delta E\} = \{ \mathsf{Energia} \} = \{ \mathsf{Força} \cdot \mathsf{Comprimento} \} = \left\{ m \frac{L^2}{t^2} \right\}$$

$$\{\Delta E_c\} = \left\{ \mathsf{Massa} \cdot \frac{\mathsf{Comprimento}^2}{\mathsf{Tempo}^2} \right\} = \left\{ m \frac{L^2}{t^2} \right\}$$

$$\{\Delta E_p\} = \left\{ \mathsf{Massa} \cdot \mathsf{Comprimento} \cdot \frac{\mathsf{Comprimento}}{\mathsf{Tempo}^2} \right\} = \left\{ m \frac{L^2}{t^2} \right\}$$

Atenção: m representa massa do objeto quando é variável, dimensão de massa quando é dimensão e metro quando é unidade.

Exemplo.

Equação de Bernoulli.

$$P + \frac{1}{2}\rho V^2 + \rho gz = C$$
$$\frac{P}{\rho} + \frac{1}{2}V^2 + gz = C$$
$$\frac{P}{\rho g} + \frac{1}{2}\frac{V^2}{g} + z = C$$

Verifique se cada termo tem as mesmas dimensões. Note que a constante ${\cal C}$ muda de acordo com a forma da equação.

Se em algum estágio de uma análise tivermos dois termos aditivos de uma mesma equação com **dimensões diferentes**, isso é uma indicação clara de que cometemos um erro em algum estágio anterior da análise.

Além das dimensões, as unidades também devem ser homogêneas.

Por isso, é recomendado escrever **todas as unidades** quando se executam cálculos matemáticos, para evitar esses erros.

Sumário

- Introdução
- 2 Dimensões e Unidades
- Homogeneidade Dimensional
- Adimensionalização das Equações
- 5 Análise Dimensional e Similaridade
- Variáveis Repetidas e Pi de Buckingham

Transp. de Calor e Massa

Todo termo de uma equação tem a mesma dimensão.

Se dividirmos os termos da equação por variáveis e constantes que resultam na mesma dimensão dos termos, teremos uma **equação adimensional**.

Os termos de uma equação adimensional não têm dimensão.

Exemplo.

Elevação z de um objeto que cai pela ação da gravidade. Posição inicial é z_0 e velocidade inicial é w_0 .

$$\frac{d^2z}{dt^2} = -g$$

$$z = z_0 + w_0 t - \frac{1}{2}gt^2 \tag{1}$$

Para adimensionalizar essa equação, temos que selecionar **parâmetros de escala**, que são propriedades ou valores importantes para o problema. Neste exemplo temos 3 constantes dimensionais disponíveis: g, z_0 e w_0 .

As nossas variáveis são z e t.

Dimensões:

$$\{z\} = \{L\}$$
 $\{t\} = \{t\}$ $\{z_0\} = \{L\}$ $\{w_0\} = \{L/t\}$ $\{g\} = \{L/t^2\}$

Divida a equação 1 por z_0 :

$$\frac{z}{z_0} = 1 + \frac{w_0}{z_0}t - \frac{1}{2}\frac{gt^2}{z_0}$$

Essa equação é adimensional agora. Todos os termos têm dimensão $1.\,$

Podemos definir variáveis adimensionais.

Primeira variável adimensional:

$$z^* = \frac{z}{z_0}$$

Segunda variável adimensional:

$$t^* = \frac{w_0}{z_0}t$$

Podemos reescrever a equação como

$$z^* = 1 + t^* - \frac{1}{2} \frac{g}{z_0} t^2 =$$

Mas

$$\frac{1}{2}\frac{g}{z_0}t^2 = \frac{1}{2}\frac{g}{z_0}\frac{z_0^2}{w_0^2}\frac{w_0^2}{z_0^2}t^2 = \frac{1}{2}\frac{gz_0}{w_0^2}t^{*2}$$

Definindo o número de Froude como

$$Fr = \frac{w_0}{\sqrt{gz_0}}$$

Temos

$$z^* = 1 + t^* - \frac{1}{2Fr^2}t^{*2}$$

A nossa equação adimensional é dada por

$$z^* = 1 + t^* - \frac{1}{2Fr^2}t^{*2} \tag{2}$$

O número Fr (número de Froude) é o **parâmetro adimensional que** governa essa equação.

Compare as duas equações.

Dimensional:

$$z = z_0 + w_0 t - \frac{1}{2} g t^2$$

Adimensional:

$$z^* = 1 + t^* - \frac{1}{2Fr^2}t^{*2}$$
$$Fr = \frac{w_0}{\sqrt{gz_0}}$$

As duas representam o mesmo problema, e passam a mesma informação. No entanto, a equação dimensional possui 2 variáveis e 3 parâmetros, enquanto a equação adimensional possui 2 variáveis e 1 parâmetro.

Problema dimensional.

Problema adimensional. (Calcule os valores de Fr).

Vantagens:

- as relações entre os parâmetros-chave do problema são identificadas;
- o número de parâmetros em uma equação adimensional é menor do que o número de parâmetros no espaço original. Isso leva a uma redução nos custos dos experimentos;
- é possível generalizar ou universalizar os resultados encontrados (extrapolar).

Sumário

- Introdução
- Dimensões e Unidades
- Homogeneidade Dimensional
- Adimensionalização das Equações
- Análise Dimensional e Similaridade
- 6 Variáveis Repetidas e Pi de Buckingham

Transp. de Calor e Massa

Para economizar tempo e dinheiro, testes e experimentos podem ser executados em um **modelo** em escala geométrica, em vez de em um **protótipo** em escala real.

Para que haja uma correspondência entre os resultados do modelo e do protótipo, é necessário que haja **similaridade** entre as duas situações.

Similaridade refere-se à condição em que dois sistemas (ou modelos) diferentes podem ser comparados de maneira direta, porque compartilham propriedades dimensionais e dinâmicas equivalentes.

3 tipos de similaridade: geométrica, cinemática e dinâmica.

Similaridade geométrica: ocorre quando as formas dos dois sistemas são geometricamente semelhantes, isto é, todas as dimensões correspondentes são proporcionais. Isso significa que as relações entre comprimentos nos dois sistemas são constantes.

Similaridade cinemática: significa que a velocidade em determinado ponto do escoamento do modelo deve ser proporcional (por um fator de escala constante) à velocidade no ponto correspondente no escoamento do protótipo.

Similaridade dinâmica: é atingida quando todas as forças de escoamento do modelo são proporcionais, por um fator constante, às forças correspondentes de escoamento do protótipo. É equivalente a uma escala de força.

Em um campo de escoamento geral, a **similaridade completa** entre um modelo e um protótipo é atingida apenas quando há similaridade geométrica, cinemática e dinâmica.

A mais restritiva e difícil de atingir é a similaridade dinâmica.

A similaridade cinemática é uma condição necessária, mas insuficiente para a similaridade dinâmica.

Como garantir a similaridade completa?

Vamos chamar os parâmetros adimensionais do problema em estudo de Π_i .

 Π_1 é o parâmetro dependente. Esse parâmetro geralmente pode ser escrito como uma função dos parâmetros independentes Π_2,Π_3,\cdots,Π_k :

$$\Pi_1 = f(\Pi_2, \Pi_3, \cdots, \Pi_k)$$

k é o número total de parâmetros.

Para garantir a similaridade completa entre o modelo e o protótipo, cada Π independente do modelo deve ser idêntico ao do protótipo, ou seja,

$$\Pi_{2,m} = \Pi_{2,p} \qquad \Pi_{3,m} = \Pi_{3,p} \qquad \cdots \qquad \Pi_{k,m} = \Pi_{k,p}$$

Como os parâmetros independentes são iguais, o parâmetro dependente será igual no modelo e no protótipo também:

$$\Pi_{1,m} = \Pi_{1,p}$$

Para garantir a similaridade completa, o modelo e o protótipo devem ser geometricamente similares e todos os grupos Π independentes devem coincidir no modelo e no protótipo.

Exemplo.

Força de arrasto em um automóvel.

$$\Pi_1 = \frac{F_D}{\rho V^2 L^2}$$

$$\Pi_2 = \frac{\rho V L}{\mu}$$

$$\Pi_1 = f(\Pi_2)$$

 Π_2 é o número de Reynolds, Re, o parâmetro adimensional mais conhecido e útil de toda a mecânica dos fluidos.

A análise dimensional e a similaridade nos mostram que o que interessa são os parâmetros adimensionais, e não os dimensionais (densidade, viscosidade, velocidade, etc.).

Por isso, é possível estudar um modelo em um fluido diferente, desde que haja similaridade.

Por exemplo, é possível testar um modelo de submarino em um túnel de vento.

Sumário

- Introdução
- Dimensões e Unidades
- Homogeneidade Dimensional
- 4 Adimensionalização das Equações
- 5 Análise Dimensional e Similaridade
- 6 Variáveis Repetidas e Pi de Buckingham

O método das variáveis repetidas é uma técnica usada para formar números adimensionais a partir de um conjunto de variáveis que descrevem um fenômeno físico.

O objetivo é reduzir o número de variáveis independentes em uma equação dimensional, facilitando a análise e a modelagem de sistemas físicos.

O método das variáveis repetidas consiste em 6 passos.

- 1) Liste os parâmetros do problema e conte seu número total, n.
- 2) Liste as dimensões primárias de cada um dos n parâmetros.
- 3) Defina j como o número de dimensões primárias. De acordo com o **teorema Pi de Buckingham,** k, o número esperado de parâmetros adimensionais Π , é dado por

$$k = n - j$$

- 4) Escolha j parâmetros repetidos.
- **5)** Construa k parâmetros adimensionais Π e manipule-os conforme o necessário.
- 6) Escreva a relação funcional final e verifique os seus cálculos.

Se a análise não der certo, volte ao passo 3 e faça j = j - 1.

Exemplo.

Vamos aplicar este método no problema de um objeto de deslocando na vertical.

Passo 1. Listar os parâmetros.

Neste problema, temos 5 parâmetros:

$$z$$
 t w_0 z_0 g

z é o parâmetro dependente. Os outros são parâmetros independentes. Ou seja, temos a seguinte relação:

$$z = f(t, w_0, z_0, g)$$

Como temos 5 parâmetros, n=5.

Passo 2. Listar as dimensões.

$$\{z\} = \{L\}$$
$$\{t\} = \{t\}$$
$$\{w_0\} = \{Lt^{-1}\}$$
$$\{z_0\} = \{L\}$$
$$\{g\} = \{Lt^{-2}\}$$

Temos duas dimensões neste problema, comprimento (L) e tempo (t).

Portanto, i = 2.

Passo 3. Calcular o número k de parâmetros adimensionais.

Neste problema, n = 5 e j = 2.

Então:

$$k = n - j = 5 - 2 = 3$$

Teremos 5 parâmetros adimensionais: Π_1 , Π_2 , Π_3 , Π_4 e Π_5 .

Passo 4. Escolher j parâmetros repetidos.

Precisamos escolher 2 parâmetros que serão utilizados para criar os grupos adimensionais. Esta pode ser a etapa mais difícil.

Dicas: nunca escolha a variável dependente; os parâmetros não devem formar um grupo adimensional; os parâmetros selecionados devem representar todas as dimensões primárias do problema; nunca escolha parâmetros que já são adimensionais; nunca escolha parâmetros com as mesmas dimensões; sempre que possível, escolha constantes; escolha parâmetros simples.

De acordo com essas dicas, vamos escolher

 w_0 e z_0

como parâmetros repetidos.

Passo 5. Construir os parâmetros adimensionais.

Agora vamos combinar os parâmetros repetidos $(w_0 e z_0)$ com os outros parâmetros (z, t e g) para formar os 3 grupos adimensionais.

Começamos sempre pelo parâmetro dependente, z.

$$\Pi_1 = z w_0^{a_1} z_0^{b_1}$$

 a_1 e b_1 são coeficientes que precisamos determinar para deixar essa combinação adimensional.

Em termos de dimensões temos:

$$\{\Pi_1\} = \{L^1 L^{a_1} t^{-a_1} L^{b_1}\} = \{L^0 t^0\}$$

Resulta: $a_1 = 0$ e $b_1 = -1$.

Dessa forma:

$$\Pi_1 = \frac{z}{z_0}$$

Temos o Π_1 . Agora vamos para o Π_2 .

$$\Pi_2 = t w_0^{a_2} z_0^{b_2}$$

$$\{\Pi_2\} = \{t^1 L^{a_2} t^{-a_2} L^{b_2}\} = \{L^0 t^0\}$$

Resulta $a_2 = 1$ e $b_2 = -1$.

Assim:

$$\Pi_2 = \frac{w_0 t}{z_0}$$

Para o Π_3 :

$$\Pi_3 = gw_0^{a_3}z_0^{b_3}$$
 $\{\Pi_2\} = \{L^1t^{-2}L^{a_3}t^{-a_3}L^{b_3}\} = \{L^0t^0\}$ $a_3 = -2$ e $b_3 = 1$ $\Pi_3 = \frac{gz_0}{w_2^2}$

Como Π_3 é parâmetro adimensional, podemos fazer algumas operações para deixá-lo de acordo com parâmetros já usados na literatura. Vamos redefinir nosso Π_3 .

$$\Pi_3 = \left(\frac{gz_0}{w_0^2}\right)^{-1/2} = \frac{w_0}{\sqrt{gz_0}}$$

Assim, nossos 3 parâmetros adimensionais são

$$\Pi_1 = \frac{z}{z_0}$$

$$\Pi_2 = \frac{w_0 t}{z_0}$$

$$\Pi_3 = \frac{w_0}{\sqrt{g z_0}}$$

Passo 6. Escrever a relação funcional final e verificar os cálculos.

Relação funcional:

$$\Pi_1 = f(\Pi_2, \Pi_3)$$

$$\frac{z}{z_0} = f\left(\frac{w_0 t}{z_0}, \frac{w_0}{\sqrt{g z_0}}\right)$$

$$z^* = f(t^*, Fr)$$

O método das variáveis repetidas não pode prever a forma matemática exata da relação funcional, mas o método prevê os grupos adimensionais importantes do problema.

Exemplo 1. Considere o escoamento de um fluido incompressível de densidade ρ e viscosidade μ através de uma longa seção horizontal de um tubo circular de diâmetro D. V é a velocidade média na seção transversal do tubo, que pela conservação de massa permanece constante ao longo do tubo. Para um tubo muito longo, o escoamento eventualmente se torna hidrodinamicamente totalmente desenvolvido. o que significa que o perfil de velocidade também permanece uniforme ao longo do tubo. Devido às forças de atrito entre o fluido e a parede do tubo, existe uma tensão de cisalhamento τ_w na parede interna do tubo, como esboçado. A tensão de cisalhamento também é constante ao longo do tubo na região totalmente desenvolvida. Assumimos uma altura média de rugosidade ϵ constante ao longo da parede interna do tubo. De fato, o único parâmetro que não é constante ao longo do tubo é a pressão, que deve diminuir (linearmente) ao longo do tubo para "empurrar" o fluido através do tubo e superar o atrito. Desenvolva uma relação adimensional entre a tensão de cisalhamento τ_w e os outros parâmetros do problema.

Passo 1. Listar os parâmetros.

$$\tau_w = f(V, \epsilon, \rho, \mu, D)$$

 $n = 6$

Passo 2. Listar as dimensões.

$$\{\tau_w\} = \{m^1L^{-1}t^{-2}\}$$

$$\{V\} = \{L^1t^{-1}\}$$

$$\{\epsilon\} = \{L^1\}$$

$$\{\rho\} = \{m^1L^{-3}\}$$

$$\{\mu\} = \{m^1L^{-1}t^{-1}\}$$

$$\{D\} = \{L^1\}$$

$$j = 3$$

Passo 3. Calcular o número k de parâmetros adimensionais.

$$k = n - j = 3$$

Passo 4. Escolher j parâmetros repetidos. V , D e ρ .

Passo 5. Construir os parâmetros adimensionais.

$$\Pi_1 = 8 \frac{\tau_w}{\rho V^2}$$

$$\Pi_2 = \frac{\rho V D}{\mu}$$

$$\Pi_3 = \frac{\epsilon}{D}$$

Passo 6. Escrever a relação funcional.

$$\Pi_1 = f(\Pi_2, \Pi_3)$$

$$8\frac{\tau_w}{\rho V^2} = f\left(\frac{\rho VD}{\mu}, \frac{\epsilon}{D}\right)$$

 Π_1 é chamado de fator de atrito f. Π_2 é o número de Reynolds Re. Assim:

$$f = f\left(Re, \frac{\epsilon}{D}\right)$$

Este resultado se aplica a escoamentos laminares e turbulentos.

Note a importância da análise dimensional: o valor de τ_w depende, na verdade, de apenas 2 parâmetros, e não de 5.