

EV-Action: Electromyography-Vision Multi-Modal Action Dataset

Lichen Wang wanglichenxj@gmail.com

Bin Sun sun.bi@northeastern.edu

Joseph Robinson robinson.jo@northeastern.edu

Taotao Jing scottjingtt@gmail.com

Yun Fu yunfu@ece.neu.edu

SMILE Lab
Electrical & Computer Engineering
Northeastern University

Introduction

EV-Action Dataset:

A large-scale multi-model human action dataset

Motivation:

- Different modalities contain extra action/motion information
- Non-visual modalities could provide more complementary and comprehensive information for deep understanding of human actions
- Electromyography (EMG) signal [1] is non-visual. It has strong connections with actions, and it has not been well-explored for human action analysis

What is EMG?

What is EMG?

Electrical activity signal in human muscles

Modalities:

Visual:

- RGB
- Depth

Skeleton:

- Depth-based
- Tracking-based

EMG signal

Concept of EMG signal [1,2]

Devices

Data collection devices:

- 5 modalities (RGB, depth, 2 skeleton, EMG)
- Three kinds of devices for data collection
- Specific designed data collection center

Modalities	Sensors	Resolution	Frame rate
RGB		1920x1080	30
Depth	Kinect-V2 ^[1]	512x424	30
Skeleton-1		-	30
Skeleton-2	Vicon-T40s ^[2]	2336x1728	100
EMG	Delsys-Trigno ^[3]	-	1000

Configurations of data collection devices

Vicon Camera for motion/skeleton capturing [2]

Kinect Sensors [1]

Wireless EMG sensor [3]

Configurations of action collection devices

^[1] https://developer.microsoft.com/en-us/windows/kinect/

^[2] https://www.vicon.com/

^[3] https://delsys.com/trigno/

Sensor placement scheme

Vicon optical marker:

- Standard scheme [1]
 - Full-body model (plug-in gait)

EMG sensor position:

High amplitude & low noise [2]

- Middle of left & right forearms
- Middle of left & right shank

Kinect:

Kinect 26 joints skeleton

EMG and Vicon marker placement scheme

Data collection center

Space:

Standard lab environment

Devices:

- 8 Vicon high speed cameras
- 4 EMG sensors
- 1 Kinect V2 sensors

RGB frame sample collected from Kinect

Setup of action collection center

Action list

Action selection:

Categories:

Daily and common human actions for general analysis purpose

Two types:

- Single person: clear, no occlusion
- Person object: with common objects, have occlusions

10 for each type, 20 actions in total.

Single Person Actions	Person-Object Actions	
Walking	Answering phone	
Boxing	Checking watch	
Waving hands	Standing up	
Clapping hands	Sitting down	
Jumping	Grabbing bag	
Bending over	Throwing ball	
Turning around	Drinking water	
Kicking	Tying shoes	
Raising hand	Reading book	
Falling	Moving table	

Selected action lists

Collected dataset

Summary:

- Synchronized multi-view time-serious data
- 7000 samples from 70 subjects

Туре	Number	
Subjects	70	
Actions	20	
Repeat	5	
Total samples	7000	

Dataset action numbers

Frames of the EV-Action datasets with 5 modals

Dataset analysis

Quantitative analysis:

 High speed & precisions skeleton tracking performance by Vicon system

Statistical analysis:

- Action length distribution
- Length variance for each action

Vicon skeleton tracking results

Length variance for different actions

EMG signal analysis

Unique discoveries from EMG signal

- Left/right amplitude differences across different actions
- Prior active of EMG compared with visual signals
- Lower body activity even in pure upper body actions

EMG signal analysis across different actions and different locations

EMG-based classification

An effective framework

- Sliding window in timeline
- Fast Fourier Transform (FFT)
- LSTM feature extractor + neural network classifier

Methods	Dimension Reduction		
Methods	(None)	LDA	PCA
Random Forest	33.72	16.81	35.12
KNN	22.16	13.55	26.18
SVM	23.74	16.12	25.65
FFT-LSTM (Ours)	44.13	-	-

EMG-based classification performance

We proposed a basic framework for EMG-based classification

Multi-view classification baselines

Single-view models:

- RGB
- Depth
- Skeleton
- EMG

Multi-view models:

Skeleton + EMG

		Single-Person Person-Object	Person-Object	
		Walk Box Wave Hand Clap Hands Jump Bend Tum Around Kick Raise Hand Fall Down Ans. Phone Check Watch Stand Up Sit Down Grab Bag Throw Ball	Tie Shoes Read Book Move Table	ACC
RGB	TSN [52] LRCN [12] VLAD [16]	56.1 94.1 25.3 83.9 88.5 94.3 68.3 95.6 9 5.1 86.2 69.5 37.6 87.0 54.3 86.9 75.7 56. 44.2 84.0 19.8 69.4 71.6 78.0 57.9 82.1 90.0 71.3 55.6 28.5 72.1 43.4 72.0 62.5 46. 47.5 91.8 21.6 75.9 78.3 85.3 63.3 89.7 98.4 77.9 60.7 31.1 78.8 47.5 78.7 68.3 50.	.8 70.2 85.4 44.2	74.7 62.4 68.2
Dep	WDMM [2] WHDMM [53]	44.3 76.3 11.4 31.4 36.5 43.7 17.2 47.4 72.7 36.2 27.9 12.3 45.1 16.8 27.2 48.2 23. 78.5 84.5 62.7 64.7 66.1 12.3 17.2 72.3 67.9 20.1 12.5 11.7 61.1 10.1 16.7 22.5 17.		35.1 40.2
SK-K	TCN[39] TSRNN [44] STGCN [56]	91.2 82.0 71.4 86.0 92.2 91.7 87.6 93.0 89.2 92.6 57.5 76.0 92.9 87.8 66.8 70.5 95. 90.0 85.0 70.6 81.0 91.0 90.5 86.6 91.8 86.6 91.4 90.6 83.5 71.0 83.5 91.6 91.1 87.1 92.4 88.7 92.0 56.7 75.1 91.7 86.8 66.0 69.7 93. 57.1 75.6 92.3 87.3 66.4 70.1 94.	.8 75.1 65.1 85.4	82.6 81.5 82.1
SK-V	TCN [39] TSRNN [44] STGCN[56]	82.1 77.2 67.2 87.2 83.8 83.3 80.1 84.4 81.4 84.0 36.0 50.9 64.3 60.3 43.4 46.4 66. 83.0 77.2 67.1 77.4 82.1 84.4 80.5 84.9 79.9 84.1 57.7 53.2 45.2 53.2 58.4 58.0 55.5 58.9 56.5 59.6 36.4 48.2 58.7 55.6 42.3 44.6 60.	.1 54.1 64.1 64.3	64.1 67.5 50.7
EMG	LSTM-FFT	72.3 51.6 35.1 54.8 90.6 40.0 30.3 36.6 11.9 72.8 51.2 56.5 16.1 41.6 17.3 48.4 45.	.7 31.4 46.2 33.0	44.1
SK-K-E	TCN-RMS TCN-FFT	91.1 83.0 73.4 88.0 93.2 94.7 87.8 91.0 91.4 95.6 60.5 79.8 91.9 88.8 70.8 72.5 94. 92.0 83.7 72.1 85.7 94.0 93.5 87.3 94.8 91.0 94.4 60.6 78.5 91.3 89.6 70.1 71.9 94.		83.6 84.0
SK-V-E	TCN-RMS TCN-FFT	86.7 80.7 70.3 87.9 87.1 84.5 83.6 85.1 82.1 83.6 82.2 77.5 67.3 87.3 83.8 83.4 80.5 84.7 81.7 84.5 63.5 51.6 64.4 60.3 45.4 46.0 65. 37.0 51.4 64.5 60.0 43.5 47.4 64.		69.1 66.8

Single-modal and Multi-modal baselines

Future work

EMG exploration

Effective EMG data processing & classification

Latent correlation

- EMG and Skeleton
- EMG and visual (RGB & depth)

Multi-view/modal learning

More areas

- Motion understanding
- Computer vision
- Biomechanics
- Interdisciplinary areas

Thank you!

Please contact: wanglichenxj@gmail.com for questions.

SMILE Lab
Electrical & Computer Engineering
Northeastern University