Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р32111 К работе допущен

Студент Назирджанов Некруз Работа

Преподаватель Крылов Василий Александрович выполнена Отчет

принят

Температурная зависимость электрического сопротивления металла и полупроводника

1. Цель работы:

Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75 ∘ С. По результатам измерений вычислить температурный коэффициент сопротивления металла и ширину запрещённой зоны проводника.

2. Задачи, решаемые при выполнении работы:

 Изучение температурной зависимости электрического сопротивления металла и полупроводника

3. Объект исследования:

- Металлический образец
- Полупроводниковый образец

4. Метод экспериментального исследования:

• Изменение сопротивления путём повышения температуры.

5. Рабочие формулы и исходные данные:

$$\alpha_{ij} = \frac{R_i - R_j}{R_j \cdot t_i - R_i \cdot t_j} \qquad E_{g_{ij}} = 2k \frac{\ln R_i - \ln R_j}{\frac{1}{T_i} - \frac{1}{T_j}} = 2k \frac{T_i T_j}{T_j - T_i} \ln \left(\frac{R_i}{R_j}\right). \quad \mathbf{R} = \frac{\mathbf{U}}{\mathbf{I}}$$

$$k = 1,380649 \cdot 10^{-23}$$
 Дж/К $\approx 8,61733 \cdot 10^{-5}$ эВ/К,

6. Измерительные приборы:

o. Homophi onbible hiphoopsii					
Nº	Название	Цена деления	Диапазон	Погрешность	
1	Вольтметр	0,001 B	От 0 до 2В	0,0005 B	
2	Амперметр	1 мкА	От 0 до 2000	0,5 мкА	
			мкА		
3	Электрический	1K	От 290 до 390К	0,5 K	
	термометр				

8. Результаты прямых измерений и их обработка: Полупроводниковый образец:

Nº	T, K	І, мкА	U, B	R, Ом	In R	10 ³ 1
						\overline{T} , \overline{K}
1	293	1068	0,949	888,58	6,79	3,41
2	298	1173	0,866	738,28	6,60	3,36
3	303	1280	0,785	613,28	6,42	3,3
4	308	1385	0,726	524,19	6,26	3,25
5	313	1500	0,62	413,33	6,02	3,19
6	318	1601	0,544	339,79	5,83	3,15
7	323	1720	0,47	273,26	5,61	3,10
_						

6	318	1601	0,544	339,79	5,83	3,15	
7	323	1720	0,47	273,26	5,61	3,10	
8	328	1790	0,423	236,31	5,47	3,05	
9	333	1900	0,352	185,26	5,22	3,00	
10	338	1978	0,303	153,19	5,03	2,96	

Сопротивление вычислили по формуле: $R = \frac{u}{I}$

Металлический образец:

Nº	T, K	I, мкA	U, B	R, Om	t, °C
1	355	1064	1,421	1335,53	82
2	350	1076	1,411	1311,34	77
3	345	1092	1,409	1290,29	72
4	340	1100	1,405	1277,27	67
5	335	1106	1,391	1257,69	62
6	330	1118	1,382	1236,14	57
7	325	1127	1,364	1210,29	52
8	320	1138	1,358	1193,32	47
9	315	1146	1,349	1177,14	42
10	310	1154	1,335	1156,85	37
11	305	1165	1,327	1139,06	32
12	300	1173	1,319	1124,47	27

Температура по цельсию считалась по формуле: t = T - 273

9. Результаты прямых измерений и их обработка:

По формуле
$$lpha_{ij} = rac{R_i - R_j}{R_i \cdot t_i - R_i \cdot t_j}$$
 вычислим для каждой пары:

i	j	a_{ij}, K^{-1}		
1	7	0,0042		
2	8	0,0039		
3	9	0,0037		
4	10	0,0040		
5	11	0,0039		
6 12		0,0036		

$$\langle a \rangle = 0.0039 \ K^{-1}$$

По формуле
$$E_{g_{ij}}=2krac{\ln R_i-\ln R_j}{rac{1}{T_i}-rac{1}{T_j}}$$
 вычислим для каждой пары:

i	j	$E_{g_{ij}}\cdot 10^{-19}$, Дж
1	7	0,989
2	8	0,989 1,056
3	9	1,047
4	10	1,178
5	11	1,159

$$\langle E_g
angle = 1,086 \cdot 10^{-19}$$
 Дж $= 0,7$ эВ

10. Расчёт погрешностей измерений:

Т.к температура измерялась напрямую, то её погрешность $\Delta t = 0.5$ °C Погрешность температурного коэффициента а:

$$\begin{split} & \Delta a \\ &= \sqrt{(\frac{R_j t_i - R_j t_j}{(R_j t_i - R_i t_j)^2} \cdot \Delta R_i)^2 + (\frac{R_i t_j - R_i t_i}{(R_j t_i - R_i t_j)^2} \cdot \Delta R_j)^2 + (\frac{R_j (R_j - R_i)}{(R_j t_i - R_i t_j)^2} \cdot \Delta t)^2 + (\frac{R_i (R_i - R_j)}{(R_j t_i - R_i t_j)^2} \cdot \Delta t)^2} \\ &= 0,00013 \ K^{-1} \\ & \varepsilon = \frac{0,00013}{0,0039} \cdot 100\% = 3,2\% \end{split}$$

Погрешность ширины запрещённой зоны Е:

$$\begin{split} & \Delta E \\ & = \sqrt{ \left(2k \cdot \ln \left(\frac{R_i}{R_j} \right) \cdot \left(\frac{T_2^2}{\left(T_j - T_i \right)^2} \right) \cdot \Delta T_j \right)^2 + \left(2k \cdot \ln \left(\frac{R_i}{R_j} \right) \cdot \left(\frac{T_i^2}{\left(T_j - T_i \right)^2} \right) \cdot \Delta T_i \right)^2 + \left(2k \cdot \frac{1}{R_i} \cdot \left(\frac{T_i T_j}{T_j - T_i} \right) \cdot \Delta R_i \right)^2} \\ & \quad + (2k \cdot \frac{1}{R_j} \cdot \left(\frac{T_i T_j}{T_j - T_i} \right) \cdot \Delta R_j)^2 \\ & = 4.42 \cdot 10^{-21} \text{ Дж} \\ & \varepsilon = \frac{4.42 \cdot 10^{-21}}{1.086 \cdot 10^{-19}} \cdot 100\% = 4.07\% \end{split}$$

11. Графики:

12. Окончательные результаты:

 $a = (0.0039 \pm 0.00013) K^{-1}$

 $E_g = (1,086 \pm 0,0442) \cdot 10^{-19}$ Дж

Графики, представленные выше

13. Выводы и анализ результатов работы:

В результате проделанной работы были проведены многократные прямые и косвенные измерения, по ходу которых были рассчитаны ширина запрещённой зоны E для полупроводникового образца, а также температурный коэффициент α для металлического образца. Были рассчитаны их абсолютные и относительные погрешности. Судя по полученному температурному коэффициенту, предполагается, что данный металл - серебро. Ширина запрещённой зоны полупроводника совпадает с антимонидом галия и германия.

Рассматривая же графики, можно сделать вывод о том, что два соотношения близки к линейному (оценка была проведена при помощи сетки).

Замеры для 3.05

	Maryngsicanol Herryz P32111					
V= 1	Τ, κ	1 I, we A	1 u,13 (kau	Ine	1 103, 1/2
1	2 93 6	1068 A	0,949			
	2974	1173 A	0,866			
	303	1280	0,785			
	208	13.85	0,726			
	313	1500	0,62			
	318	1601	0544			
	323	7420	0440			
	328	7790	0,423			
	3.33	1900	0,352			
	338	1948	0,303			
	1343					
2	358	1054 1046	1,424			
	350	1046	1,408			
	345	1092	1,395			
	340	1100	1,382			
	335	1100	1364			
	330	1106	1352			
	325	1118	1,345			
	320	1124	1,338			
	315	1138	1,327			
	310	1148	7,377			
	305	1154	1,308			
	300 295	1185	1,298			
	295				1	
						3
						X 1/10.