1 Эволюционная система уравнений Навье-Стокса

1.1 Понятие слабого решения

Пусть Ω — ограниченная область в пространстве R^n , где n=2,3, с достаточно гладкой границей $\partial\Omega$. Рассмотрим начально-краевую задачу для системы уравнений Навье-Стокса

$$\frac{\partial v}{\partial t} + \sum_{i=1}^{n} v_i \frac{\partial v}{\partial x_i} - \nu \Delta v + \nabla p = f; \tag{1}$$

$$\operatorname{div} v = 0; \tag{2}$$

$$v|_{t=0} = v_0; (3)$$

$$v|_{(0,T)\times\partial\Omega} = 0. (4)$$

Здесь $v = (v_1(t,x),...,v_n(t,x))$ — вектор-функция скорости движения частицы жидкости, p = p(t,x) — функция давления, f = f(t,x) — вектор-функция плотности внешних сил, $\nu > 0$ — коэффициент вязкости. $\Delta v = (\Delta v_1,...,\Delta v_n), \ \Delta v_i = \frac{\partial^2 v_i}{\partial x_1^2} + ... + \frac{\partial^2 v_i}{\partial x_n^2}; \ {\rm div} \ v = \frac{\partial v}{\partial x_1} + ... + \frac{\partial v}{\partial x_n}; \ \nabla p = (\frac{\partial p}{\partial x_1},...,\frac{\partial p}{\partial x_n}).$

Сформулируем определение сильного решения рассматриваемой задачи (1)-(4). Для этого введем необходимые функциональные пространства:

 $L_p(\Omega)$ — где $1\leqslant p<\infty$, множество измеримых функций, суммируемых с p-ой степенью,

 $W_p^m(\Omega)$ — где $m\geqslant 1,\; p\geqslant 1,\;$ пространство Соболева, состоящее из функции, которые со своими обобщенными частными производными до порядка m включительно принадлежат пространству $L_p(\Omega),$

 $C_0^\infty(\Omega)$ — пространство бесконечно дифференцируемых функций на Ω со значениями в $R^n(n=2,3)$ и с компактным носителем, содержащимся в Ω

 ν — множество $v \in C_0^{\infty}(\Omega)$, таких что divv = 0;

H — замыкание ν по норме пространства $L_2(\Omega)$;

V — замыкание ν по норме пространства $W_1^1(\Omega)$;

 $L_p(a,b;X)$ — мы обозначим банаховы пространства непрерывных, слабо непрерывных и суммируемых с p-ой степенью функций на [a,b] со значениями в банаховом пространстве X,

Будем обозначать E^* сопряженное пространство к пространству E.

 $< f, \varphi >$ - обозначим действие функционала f из $V^{-\alpha}$ на элемент φ из $V^{\alpha},\,\alpha\geqslant 0$

Пусть f и v_0 — заданные функции, где $f \in L_2(0,T;L_2(\Omega))$ и $v_0 \in V$.

Определение 1.1. Сильным решением начально-краевой задачи (1)-(4) называется пара функций $v \in L_2(0,T;L_2(\Omega))$ и $p \in L_2(0,T;L_2(\Omega))$, удовлетворяющих следующим условиям:

- 1. обобщенные частные производные функций, содержащихся в равенствах (1)-(2), принадлежат пространству $L_2(0,T;L_2(\Omega))$;
- 2. при подстановке функций уравнения (1)-(2) обращаются в равенства в пространстве $L_2(0,T;L_2(\Omega));$
- 3. функция v удовлетворяет начальному условию (3) и граничному условию (4).

Введем понятие слабого решения. Для этого пусть v и p — сильное решение задач (1)-(4).

Пусть (v,p) — сильное решение задачи (1)-(4). Чтобы обеспечить понимание определения слабого решения, мы временно предположим, что v=v(t,x) и p=p(t,x) являются, фактически, гладкими решениями задачи. Сопоставим функции v отображение $v:[0,T]\to W_2^1(\Omega)$, определенное по формуле

$$[v(t)](x) = v(t,x), t \in [0,T], x \in \Omega.$$

Другими словами, v рассматривается не как функции переменных t и x, а как функция переменной t, определенная на отрезке [0,T] и принимающая значения в функциональном пространстве $W_2^1(\Omega)$.

Аналогично определим $p:[0,T]\to L_2(\Omega)$ по формуле

$$[p(t)](x) = p(t, x), t \in [0, T], x \in \Omega$$

и функцию $f:[0,T]\to L_2(\Omega)$ по формуле

$$[f(t)](x) = f(t, x), t \in [0, T], x \in \Omega.$$

Умножая равенство (1) при фиксированных значениях $t \in [0,T]$ на функцию $\varphi(x) \in V$ скалярно в $L_2(\Omega)$, получим

$$\int\limits_{\Omega} \frac{\partial v}{\partial t} \varphi dx + \sum_{i=1}^{n} \int\limits_{\Omega} v_i \frac{\partial v}{\partial x_i} \varphi dx -$$

$$-\nu \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial^{2} v_{j}}{\partial x_{i}^{2}} \varphi_{j} dx + \sum_{i=1}^{n} \int_{\Omega} \frac{\partial p}{\partial x_{i}} \varphi_{i} dx = \int_{\Omega} f \varphi dx.$$

Выполним преобразования слагаемых, связанные с интегрированием по частям¹,

$$-\nu \int_{\Omega} \sum_{i=1}^{n} \frac{\partial^{2} v_{j}}{\partial x_{i}^{2}} \varphi_{j} dx = \nu \int_{\Omega} \sum_{i,j=1}^{n} \frac{\partial v_{j}}{\partial x_{i}} \frac{\partial \varphi_{j}}{\partial x_{i}} = \nu \int_{\Omega} \nabla v : \nabla \varphi dx;$$

Здесь символ «:» обозначает покомпонентное матричное произведение, т. е. для $C=(c_{ij}), D=(d_{ij}), i,j=1,...,m,$ имеем $C:D=\sum\limits_{i,j=1}^m c_{i,j}d_{i,j}$

$$\sum_{i=1}^{n} \int_{\Omega} \frac{\partial p}{\partial x_{i}} \varphi_{i} dx = -\sum_{i=1}^{n} \int_{\Omega} p \frac{\partial \varphi_{i}}{\partial x_{i}} dx = \int_{\Omega} p \operatorname{div} \varphi dx = 0;$$

$$\sum_{i=1}^{n} \int_{\Omega} v_{i} \frac{\partial v}{\partial x_{i}} \varphi dx = -\sum_{i=1}^{n} \int_{\Omega} v \frac{\partial}{\partial x_{i}} (v_{i}\varphi) dx =$$

$$= -\sum_{i=1}^{n} \int_{\Omega} v \frac{\partial v_{i}}{\partial x_{i}} \varphi dx - \sum_{i=1}^{n} \int_{\Omega} v v_{i} \frac{\partial \varphi}{\partial x_{i}} dx =$$

$$= -\int_{\Omega} v \varphi \operatorname{div} v dx - \sum_{i=1}^{n} \int_{\Omega} v_{i} v \frac{\partial \varphi}{\partial x_{i}} dx = -\sum_{i=1}^{n} \int_{\Omega} v_{i} v \frac{\partial \varphi}{\partial x_{i}} dx;$$

¹Метод интегрирования по частям. Пусть функции $\varphi(x)$ и v(x) дифференцируемы на интервале I. Если одна из функций $\varphi(x)v'(x)$ или $\varphi'(x)v(x)$ имеет первообразную на интервале I, то на этом интервале имеет первообразную и другая функция, причем справедливо равенство $\int \varphi(x)v'(x)dx = \varphi(x)v(x) - \int \varphi'(x)v(x)dx$

и приходим к равенству

$$\frac{d}{dt} \int_{\Omega} v\varphi dx - \sum_{i=1}^{n} \int_{\Omega} v_{i}v \frac{\partial \varphi}{\partial x_{i}} dx + v \int_{\Omega} \nabla v : \nabla \varphi dx = \int_{\Omega} f\varphi dx. \tag{5}$$

Заметим, что равенство (5) может выполняться и при более слабых требованиях на функцию v(t,x). Покажем, что достаточно предполагать, что $v \in L_2(0,T;V)$ для того, чтобы каждый интеграл, входящий в равенство (5), имел смысл.

В силу теоремы вложений Соболева² вложение $W_2^1(\Omega) \subset L_4(\Omega)$ непрерывно при $n \leqslant 4$. Поэтому, так как $V \subset W_2^1(\Omega)$, то $v_i(t,x)v(t,x) \in L_2(\Omega)$ и $v_i(t,x)v(t,x)\frac{\partial \varphi}{\partial x_i} \in L_1(\Omega)$ при каждом фиксированном значении t. Следовательно, интеграл $\sum_{i=1}^n \int_{\Omega} v_i v \times \frac{\partial \varphi}{\partial x_i} dx$ определен.

Кроме того, это слагаемое определяет линейный непрерывный функционал на V. Обозначим этот функционал через K(v):

$$\langle K(v), \varphi \rangle = \sum_{i=1}^{n} \int_{\Omega} v_i v \frac{\partial \varphi}{\partial x_i} dx.$$

Отметим, что $\int_{\Omega} v \varphi dx \in L_2(0,T)$ и производная в выражении $\frac{d}{dt} \int_{\Omega} v \varphi dx$ понимается в смысле распределений на интервале (0,T). Поэтому равенство (5) выполняется в смысле распределений. Все слагаемые равенства, исключая первое, принадлежат пространству $L_1(0,T)$, поэтому $\frac{d}{dt} \int_{\Omega} v \varphi dx \in L_1(0,T)$ и равенство (5) выполняется для почти всех значений $t \in (0,T)$.

Подводя итог рассуждениям, приходим к следующему определению слабого решения.

Определение 1.2. Пусть $f \in L_2(0,T;L_2(\Omega))$ и $v_0 \in H$. Слабым решением задачи (1)-(4) называется функция $v \in L_2(0,T;V)$, удовлетворяющая для

²Тут будет теорема вложений Соболева :)

 $\mathit{всеx}\ \varphi \in V\ \mathit{u}\ \mathit{для}\ \mathit{noчmu}\ \mathit{всеx}\ \mathit{значений}\ t \in (0,T)$

$$\frac{d}{dt} \int_{\Omega} v\varphi dx - \sum_{i=1}^{n} \int_{\Omega} v_{i}v \frac{\partial \varphi}{\partial x_{i}} dx + v \int_{\Omega} \nabla v : \nabla \varphi dx = \int_{\Omega} f\varphi dx \tag{6}$$

и условию

$$v(0) = v_0. (7)$$

Выше показано, что равенство (6) корректно для $v \in L_2(0,T;V)$ и если (v,p) сильное решение задачи (1)-(4), то v является слабым решением. Поэтому задачу о поиске сильных решений заменим задачей об исследовании слабых решений.

Заметим, однако, что для функции $v \in L_2(0,T;V)$ условие (7) не имеет смысла, так как не определено значение функции v(t) в каждой точке $t \in (0,T)$. Покажем, что функция v(t), удовлетворяющая равенству (6), является непрерывной на [0,T] со значениями в V^* и слабо непрерывной со значениями в H. Поэтому равенство (7) имеет смысл и определение слабого решения корректно.

Преобразуем равенство (6). Скалярное произведение $(v(t),\varphi)_{L_2(\Omega)}$ определяет линейный непрерывный функционал на H, а следовательно, элемент из H^* . Учитывая отождествление $H \equiv H^*$ и цепочку вложений $V \subset H \subset H^* \subset V^*$, элемент v(t) можно рассматривать как функционал на V, действие которого на функцию $\varphi \in V$ определяется равенством $\langle v(t), \varphi \rangle = (v(t), \varphi)_{L_2(\Omega)}$. Тогда можно считать, что функция v(t) на [0, T] принимает значения в V^* и

$$\frac{d}{dt} \int_{\Omega} v\varphi dx = \frac{d}{dt} \langle v(t), \varphi \rangle.$$

С учетом введенных обозначений равенство (6) можно записать в виде

$$\frac{d}{dt}\langle v(t), \varphi \rangle - \nu \langle \Delta v(t), \varphi \rangle - \langle K(v(t)), \varphi \rangle = \langle f(t), \varphi \rangle,$$

где $\Delta: V \to V^*$, обозначает оператор Лапласа, действующий по правилу

 $\langle \Delta v(t), \varphi \rangle = -\int\limits_{\Omega} \nabla v : \nabla \varphi dx$. Или можно (6) переписать в виде:

$$\frac{d}{dt}\langle v(t), \varphi \rangle = \langle \nu \Delta v(t) + K(v(t)) + f(t), \varphi \rangle. \tag{8}$$

Исследуем свойства операторов, входящих в правую часть равенства.

Лемма 1.1.

1. Оператор Δ : $L_2(0,T;V) \rightarrow L_2(0,T;V^*)$ линейный и непрерывный, причем

$$\|\Delta v\|_{L_2(0,T;V^*)} = \|v\|_{L_2(0,T;V)}, \ \forall v \in L_2(0,T;V^*).$$
(9)

2. Оператор $K: L_2(0,T;V) \to L_1(0,T;V^*)$ непрерывен и справедлива оценка

$$||K(v)||_{L_1(0,T;V^*)} \le C_1 ||v||_{L_2(0,T;V)}^2, \ \forall v \in L_2(0,T;V^*),$$
 (10)

для некоторой константы C_1 .

Доказательство.

(ТУТ НАЧИНАЕТСЯ ДИЧЬ! СМОТРИ ВО ВСЕ 4 ГЛАЗА) Покажем, что оператор $\Delta:V\to V^*$ линейный. (НаДо СдЕлАтЬ)

Заметим, что оператор $\Delta:V \to V^*$ определяет изометрию пространства. Действительно:

$$\begin{split} \|\Delta v\|_{V^*} &= \sup_{\varphi} \frac{|\langle \Delta v, \varphi \rangle|}{\|\varphi\|_{V}} = \sup_{\varphi} \frac{|\int\limits_{\Omega} \nabla v : \nabla \varphi dx|}{\|\varphi\|_{V}} \leq \sup_{\varphi} \frac{\|\nabla v\|_{L_2(\Omega)} \|\nabla \varphi\|_{L_2(\Omega)}}{\|\varphi\|_{V}} \leq \\ &\leq \sup_{\varphi} \frac{\|v\|_{V} \|\varphi\|_{V}}{\|\varphi\|_{V}} = \|v\|_{V} \end{split}$$

то есть $\|\Delta v\|_{V^*} \leq \|v\|_V$. С другой стороны, положим $\varphi = v$. $|\langle \Delta v, v \rangle| = |\int\limits_{\Omega} \nabla v : \nabla v dx| = \|v\|_V^2$. Применим неравенство Коши-Буняковского $\|v\|_V^2 = ||v||_V^2$

 $|\langle \Delta v, v \rangle| \leq \|\Delta v\|_{V^*} \|v\|_V$. Сократив на $\|v\|_V$, получим $\|\Delta v\|_{V^*} \geq \|v\|_V$. Следовательно получаем $\|\Delta v\|_{V^*} = \|v\|_V$. Заметим, что линейный ограниченный оператор - непрерывен. Отсюда для $v \in L_2(0,T;V)$ имеем $\|\Delta v\|_{V^*} = \|v(t)\|_V$ для почти всех $t \in [0,T]$. Так как $\|v(t)\|_V \in L_2(0,T)$, то $\|\Delta v(t)\|_{V^*} \in L_2(0,T)$. Следовательно, $\Delta v \in L_2(0,T;V^*)$ и справедливо равенство (9). Таким образом, линейный оператор Δ определяет изометрию пространств $L_2(0,T;V)$ и $L_2(0,T;V^*)$.

2) По определению оператора K

$$\langle K(v), \varphi \rangle = \sum_{i,j=1}^{n} \int_{\Omega} v_i v_j \frac{\partial \varphi_j}{\partial x_i} dx.$$

По утверждению леммы $\nu \Delta v \in L_2(0,T;V^*), K(v) \in L_1(0,T;V^*),$ поэтому $\Delta v(t) + K(v(t)) + f(t) \in L_1(0,T;VV^*).$ Тогда из равенства (8) и теоремы 4.6 следует

- 1. что функция v(t) имеет суммируемую производную v'(t);
- 2. в силу равенства (4.3)

$$\frac{d}{dt}\langle v(t), u \rangle = \langle v'(t), u \rangle$$

3. равенство (5.8) можно записать в виде

$$v'(t) = \Delta v(t) + K(v(t)) + f(t)$$

Подводя итог рассуждений, отметим, что так как $v'(t) \in L_1(0,T;V^*)$, то $v \in W_{2,1}cX_0 = V$, $X_1 = V^*$. Поэтому в силу леммы 4.5 функция v(t) непрерывна на отрезке [0,T] со значениями в V^* . Кроме того, по лемме 4.6 эта функция слабо непрерывна со значениями в H. Поэтому начальное условие (7) имеет смысл.

Переформулируем понятие слабого решения

Определение 1.3. Пусть $n \leq 4$, $f \in L_2(0,T;(L_2(\Omega))^n)$ и $v^0 \in H$. Слабым (вариационным) решением задачи (1)-(4) называется функция $v \in L_2(0,T;V)$ такая, что $v^0 \in L_1(0,T;V^*)$, равенство

$$v'(t) - \Delta v(t) - K(v(t)) = f(t) \tag{11}$$

выполняется для почти всех значений $t \in (0,T)$ и

$$v(0) = v^0 \tag{12}$$

1.2 О единственности слабого и полного слабого решений в случае n=2

В этом разделе мы рассмотрим вопрос о единственности слабого и полного слабого решений краевой задачи (1)-(4) для эволюционной системы уравнений Навье-Стокса. Будем показано, что в случае $\Omega \subset R^2$ слабое и полное слабое решение краевой задачи единственно. Однако для размерности n>2 аналогичное утверждение неверно. Примером, показывающим, что слабое решение задачи не единственно, служит результат о бифуркации решений, содержащийся, например, в [22, гл. II, §4, п.4.4].

Сформулируем и докажем утверждение о единственности слабого решения в случае n=2, следуя [22, гл.III, §3, теорема 3.2].

Теорема 1.1. Пусть Ω ограниченная область в R^2 с локально липшицевой границей. Тогда слабое решение v и полное слабое решение (v,p) (при условии $(p)\Omega=0$) задачи (1)-(4) единственно. Кроме того, функция v непрерывна на отрезке [0,T] со значениями в H u

$$v(t) \to v_0 \ e \ H \ npu \ t \to \infty.$$
 (13)

Доказательство. Достаточно установить единственность слабого решения v, так как компонента p полного слабого решения определяется компонентой v из равенства (5.34) единственным образом.

Пусть v — решение задачи (5.31), (5.32). Покажем, что $v \in W$, т.е.

 $v' \in L_2(0,T;V^*)$. Воспользуемся оценкой

$$||K_{\varepsilon}(v)||_{(H^{-1}(\Omega))^n} \le c_0 ||v||_{(L_4(\Omega))^n}^2,$$

полученной при выводе неравенства (3.10), в случае n=2 и $\varepsilon=0$. Применяя неравенство О.А. Ладыженской (1.7), получим для любого $t\in[0,T]$

$$\sup_{v \in V} \langle K(v), \frac{u}{\|v\|} \rangle \le c_0 2^{1/2} \left(\int_{\Omega} v(t)^2 dt \right)^{1/2} \cdot \int_{\Omega} \sum_{i=1}^{n=3} \frac{\partial v^2}{\partial x_i} dt$$

Отсюда, возводя обе части неравенства в квадрат и интегрируя по t на отрезке [0,T], приходим к оценке

$$\int_0^T \sup(\langle K(v), \frac{u}{\|v\|} \rangle)^2 dt \le 2c_0 \int_0^T (\int_{\Omega} v(t)^2) \cdot \int_{\Omega} \sum_{i=1}^{n=3} \frac{\partial v^2}{\partial x_i} dt \le$$

$$\leq 2c_0 \max_{t \in [0,T]} \int_{\Omega} v(t)^2 dt \cdot \int_0^T \int_{\Omega} \sum_{i=1}^{n=3} \frac{\partial v^2}{\partial x_i} dt$$

Следовательно,

$$\left(\int_{0}^{T} \sup(\langle K(v), \frac{u}{\|v\|} \rangle)^{2} dt\right)^{1/2} \le c_{0} 2^{1/2} \max_{t \in [0, T]} \int_{\Omega} v(t)^{2} dt \cdot \int_{0}^{T} v(t)^{2} dt$$

Из представления $v' = \Delta v(t) + K(v(t)) + f(t)$ очевидно, что $v' \in L_2(0,T;V^*)$ и $v \in W$. Воспользовавшись вложением $W \subset C([0,T],H)$, получаем $v \in C([0,T],H)$ и заключение (13) теоремы.

Покажем теперь единственность слабого решения. Предположим, что u и v – слабые решения задачи (5.31), (5.32). Подставим эти решения в уравнение (5.31) и рассмотрим разность полученных равенств. Для разности w=v-u получим равенство

$$w' - \Delta w(t) - K(v(t)) + K(u(t)) = 0$$

Применим функционалы, стоящие в равенстве, к функции w(t)

$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} w(t, x) w(t, x) dt + v(w(t, x), w(t, x)) =$$

$$= \int_{\Omega} \frac{\partial v_i}{\partial t} \cdot v(t, x) \frac{\partial w(t, x)}{\partial x_i} dx - \int_{\Omega} \frac{\partial u_i}{\partial t} v(t, x) \cdot \frac{\partial w(t, x)}{\partial x_i} dx$$
(14)

Оценим правую часть полученного равенства.

$$\int_{\Omega} \frac{\partial v_{i}}{\partial t} v(t, x) \frac{\partial w(t, x)}{\partial x_{i}} dx - \int_{\Omega} \frac{\partial u_{i}}{\partial t} v(t, x) \frac{\partial w(t, x)}{\partial x_{i}} dx =$$

$$= \int_{\Omega} \frac{\partial v_{i}}{\partial t} v(t, x) \frac{\partial w(t, x)}{\partial x_{i}} dx - \int_{\Omega} \frac{\partial u_{i}}{\partial t} v(t, x) \frac{\partial w(t, x)}{\partial x_{i}} dx +$$

$$+ \int_{\Omega} \frac{\partial u_{i}}{\partial t} v(t, x) \frac{\partial w(t, x)}{\partial x_{i}} dx - \int_{\Omega} \frac{\partial u_{i}}{\partial t} v(t, x) \frac{\partial w(t, x)}{\partial x_{i}} dx =$$

$$= \int_{\Omega} \frac{\partial w_{i}(t, x)}{\partial t} \cdot v(t, x) \frac{\partial w(t, x)}{\partial x_{i}} - \int_{\Omega} \frac{\partial u_{i}}{\partial t} w(t, x) \cdot \frac{\partial w_{i}(t, x)}{\partial x_{i}} dx$$

Используем интегрирование по частям для вычисления первого интеграла

$$\int_{\Omega} \frac{\partial w_i(t,x)}{\partial t} v(t,x) \cdot w(t,x) = -\int_{\Omega} \frac{\partial w_i(t,x)}{\partial t} \cdot \frac{\partial v(t,x)}{\partial x_i} w(t,x) dx$$

так как $\partial_i w_i(t,x) = \text{div } w(t,x) = 0$. Используем интегрирование по частям для вычисления второго из интегралов

$$\int_{\Omega} \frac{\partial u_i}{\partial t} w(t, x) \frac{\partial w(t, x)}{\partial x_i} dx = \sum_{i=0}^{n=2} \int_{\Omega} \frac{\partial u_i}{\partial t} \cdot \frac{1}{2} \cdot \frac{\partial |w|^2(t, x)}{\partial x_i} dx =$$

$$= -\frac{1}{2} \int_{\Omega} \sum_{i=1}^{n=2} \frac{\partial^2 u_i(t, x)}{\partial t \partial x_i} \cdot |w|^2(t, x) dx = 0$$

так как $\sum_{i=1}^2 \partial_i u_i(t,x) = {
m div}\ u(t,x) = 0$ Отсюда и из равенства (14) получим

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}w(t,x)w(t,x)dx + v(w(t,x)w(t,x)) =$$

$$= -\int_{\Omega} \frac{\partial w_i(t,x)}{\partial t} \cdot \frac{\partial v(t,x)}{\partial x_i} w(t,x) dx$$

ИЛИ

$$\frac{1}{2}\frac{d}{dt}\|w(t)\|_{H}^{2} + v\|w(t)\|_{H}^{2} = \left| \int_{\Omega} w_{i}(t,x) \cdot \partial_{i}v(t,x)w(t,x)dx \right|$$
(15)

Оценим правую часть неравенства, используя неравенства Шварца,

$$\left| \int_{\Omega} w_i(t,x) \cdot \partial_i v(t,x) w(t,x) dx \right| = \left| \int_{\Omega} w_i(t,x) \cdot \partial_j(t,x) w_j(t,x) dx \right| \le$$

$$\left(\int_{\Omega} |w_i(t,x)|^2 |w_j(t,x)|^2 dx \right)^{1/2} \cdot \left(\int_{\Omega} |\partial_i v_j(t,x)|^2 dx \right)^{1/2} \le$$

$$\left(\int_{\Omega} |w_i(t,x)|^4 dx \right)^{1/4} \left(\int_{\Omega} |w_j(t,x)|^4 dx \right)^{1/4} \cdot \left(\int_{\Omega} |\partial_i v_j(t,x)|^2 dx \right)^{1/2}$$

$$\left| \int_{\Omega} w_i(t,x) \cdot \partial_i v(t,x) w(t,x) dx \right| \le$$

$$\le \|w_i(t)\|_{L_4(\Omega)} \cdot \|w_j(t)\|_{L_4(\Omega)} \cdot \|\partial_i v_j(t)\|_{L_2(\Omega)}$$

Учитывая, что запись, содержащая повторяющиеся индексы, предполагает суммирование по этим индексам, получаем

$$\left| \int_{\Omega} w_i(t,x) \cdot \partial_i v(t,x) w(t,x) dx \right| \leq \|w(t)\|_{(L_4(\Omega))^n}^2 \cdot \|v(t)\|_V$$

Применим неравенство О.А. Ладыженской и далее неравенство Коши

$$a\cdot b=arepsilon a^2+rac{b^2}{4arepsilon}carepsilon=rac{v}{2^{1/2}},$$
 получим

$$\left| \int_{\Omega} w_i(t,x) \cdot \partial_i v(t,x) w(t,x) dx \right| \le$$

$$\leq 2^{1/2} \|w(t)\|_{(L_2(\Omega))^n} \cdot \|w(t)\|_V \cdot \|v(t)\|_V \leq$$

$$\leq v \|w(t)\|_V^2 + \frac{1}{2^{3/2}v} \|v(t)\|_{(L_2(\Omega))^n}^2 \cdot \|w(t)\|_V^2$$

Подставляя полученное соотношение в неравенство (15), получаем

$$\frac{1}{2} \frac{d}{dt} \|w(t)\|_H^2 \le \frac{1}{2^{3/2} v} \|w(t)\|_H^2 \cdot \|v(t)\|_V$$

Тогда из неравенство Гронуолла-Беллмана [1, теорема 26 глава IV, с.188] следует

$$||w(t)||_H^2 \le ||w(0)||_H^2 \exp\left(\int_0^t \frac{1}{2^{1/2}v} \cdot ||v(s)||_V ds\right)$$

Поскольку w(0) = v(0) - u(0) = 0, то из полученного выше неравенства приходим к выводу, что w(t) = 0 для всех $t \in [0, T]$. Следовательно, v = u и слабое и полное слабое решение задачи (1)-(4) единственно.