Probability and Statistics: MA6.101

Homework 7

Topics Covered: Moment Generating Functions and Stochastic Simulation

Q1: Let X_1, X_2, \ldots, X_n be n i.i.d exponential random variables with parameter λ . Let $Z_{\min} = \min(X_1, X_2, \ldots, X_n)$ and $Z_{\max} = \max(X_1, X_2, \ldots, X_n)$.

Generate Z_{\min} and Z_{\max} .

Q2: Let X be a discrete random variable with the following moment-generating function:

$$M(t) = \frac{1}{10}e^{t} + \frac{2}{10}e^{2t} + \frac{3}{10}e^{3t} + \frac{4}{10}e^{4t}$$

for all t.

Determine the p.m.f of X.

Q3: Let X and Y be two independent random variables with respective moment generating functions

$$m_X(t) = \frac{1}{1 - 5t}$$
, if $t < \frac{1}{5}$, $m_Y(t) = \frac{1}{(1 - 5t)^2}$, if $t < \frac{1}{5}$.

Find $\mathbb{E}[(X+Y)^2]$.

- Q4: True or False? If $X \sim \text{Exp}(\lambda_x)$ and $Y \sim \text{Exp}(\lambda_y)$, then $X + Y \sim \text{Exp}(\lambda_x + \lambda_y)$. Justify your answer.
- Q5: Given an integral $I = \int_0^{2\pi} f(x) dx$, solve the following:
 - (a) Write the Monte Carlo Estimate, assuming X_i 's are sampled uniformly over the domain.
 - (b) Write the Monte Carlo Estimate, assuming X_i 's are sampled according to some PDF $g(X_i)$.
 - (c) Prove that the Monte Carlo Estimates from the previous questions compute the right answer on average.
- Q6: Let $X \sim Gamma(\alpha, \beta)$. Find the MGF of X and its region of convergence. **Note:** The pdf of $Gamma(\alpha, \beta)$ is given by $f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$ for $x \geq 0$ and $\Gamma(z) = \int_0^{\infty} t^{z-1}e^{-t}dt$.

1