3 pages 1

```
Source | Model | Option | Model_Option | Help on fd methods | Archived Tests
```

fd_psor

Input parameters:

- SpaceStepNumber N
- \bullet TimeStepNumber M
- Theta $\frac{1}{2} \le \theta \le 1$
- Omega $1 \le \omega \le 2$
- Epsilon

Output parameters:

- Price
- Delta

The PSOR(Projected Successive OverRelaxation) method has been introduced by Cryer in [1].

```
/*Memory Allocation*/
```

```
/*Time Step*/
```

Define the time step $k = \frac{T}{N}$.

/*Space localisation*/

Define the integration domain D = [-l, l] using the probabilistic estimate there.

/*Space Step*/

Define the space step $h = \frac{2l}{M}$.

3 pages 2

/*Peclet Condition*/

If $|r - \delta|/\sigma^2$ is not small, then a more stable finite difference approximation is used. cf there.

/*Lhs factor of theta scheme*/

Initialize the matrix M^h issued from the discretization of the operator A in the case of Dirichlet Boundary conditions. cf there.

/*Rhs factor of theta scheme*/

Initialize the matrix N issued from the θ -scheme method in the cases of Dirichlet Boundary conditions. there

/*Terminal value*/

After a logarithmic transformation, put the value of the payoff into a vector P which will be used to save the option value.

/*Finite difference Cycle*/

At any time step, described by the loop in the variable i, we have to solve the linear complementarity problem cf. there.

```
/*Init Rhs*/
Compute NP and save the result in the vector Rhs.
/*PSOR cycle*/
```

We solve the linear complementarity problem using the PSOR method, cf. there, which consists in constructing a convergent sequence z^p whose limit is z.

Variable *loops* stands for the exponent p.cf there.

- **Step 0** choose a relaxation parameter *omega* and a precision *epsilon*.
- **Step 1** compute the vector z^p using the variable y and save it in the vector P. Fill the variable error with the difference $|z^{p+1}-z^p|$.
- Step 3 indicates the end of the loop by stopping the algorithm when error > epsilon or the number of iteration is too large.

```
/*Price*/
/*Delta*/
/*Memory Desallocation*/
```

3 pages

References

[1] C.W.CRYER. The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control, 9:385–392, 1971. ${f 1}$