$mod 5 \Rightarrow 5 states$ 21.5 Q2) 607 - output States: · x 1.5 = 0 [0] [1] = 1 · x1.5 [2] • x % 5 = 2[3] = 3 · x/5 [4] = 9 · x1.5

Test with x = 7 to observe the patterns

The graph will grow forever (because it is modular/cyclical), it we write enough terms we can observe the pattern:

STATE DIAGRAM

STATE TRANSITION TABLE (Symbolic)

Reset	Present State	Input	Next State	Dutput
1 1	[0]	0	[0]	1
(1) 0 (2)	[0]	1	[1]	0
	[1]	0	[2]	0
0 1 0	[1]	1	[3]	0
	[2]	0	[4]	0
(3) 0 (4)	[2]	1	[0]	1
	[3]	0	[1]	0
	[3]	1	(2)	0
	[4]	0	[3]	0
	[4]	1	[4]	0

Encoded State Transition Table

		Present State		Next State	
		Q2 Q1 Q0	Input	(Q2 Q1 Q0)+	Output
C	5	0 0 0	0	000	1
[0]	1	000	1	001	0
[1]	{	0 0 1	O	010	0
-,,	L	001	1	0 1 1	0
[2]	{	010	0	100	0
	(0 1 0	1	0 0 0	1
[3]	{	0 1 1	0	0 0 1	0
	L	0 11	1	010	0
[4]	{	100	0	0 11	0
	L	100	l	100	0

Make K-maps

	\ Q	2 Q1 Q0				
1) K-Map for Q2	In	000	001	010	011	100
	Ō	0	0	1	0	0
	1	0	0	0	0	1

1) $\overline{\operatorname{In}} \cdot \overline{\operatorname{Q}}_{0} \cdot \overline{\operatorname{In}} \cdot \operatorname{Q}_{1} \cdot \overline{\operatorname{In}} \cdot \overline{\operatorname{Q}}_{2} \equiv \overline{\operatorname{In}} \cdot \overline{\operatorname{Q}}_{0} \cdot \operatorname{Q}_{1} \cdot \overline{\operatorname{Q}}_{2}$

2) In · Qo · Q1 · Q2

 $F_1 = \overline{I}_n \cdot \overline{Q}_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2 + \overline{I}_n \cdot \overline{Q}_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2$

\ Q2 Q1 Q0

2) K-Map for Q1+

In \	000	001	010	DII	100	
0	0	1	0	0	1	
1	0	1	0	1	0	

1) $\overline{I_n} \cdot \overline{Q_2} \cdot \overline{Q_1} \cdot Q_0 + \overline{I_n} \cdot Q_2 \cdot \overline{Q_1} \cdot \overline{Q_0}$

2) $I_n \cdot \overline{Q}_2 \cdot \overline{Q}_1 \cdot Q_0 + I_n \cdot \overline{Q}_2 \cdot Q_1 \cdot Q_2$

 $F_1 = \overline{I_n} \left(\overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \right) + \overline{I_n} \left(\overline{Q_1} \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_2} \right)$

2)	K-1704	P	0+	
71	K-1104	for	Wo	

Q2 Q1 Q0

In \	000	001	010	011	100
D	0	0	0	I	D
1	1	1)	0	0	0

1)
$$\overline{I}_{n} \cdot \overline{Q}_{L} \cdot Q_{1} \cdot Q_{0} + \overline{I}_{n} \cdot Q_{2} \cdot \overline{Q}_{1} \cdot \overline{Q}_{0} = \overline{I}_{n} \cdot (\overline{Q}_{2} \cdot Q_{1} \cdot Q_{0} + Q_{2} \cdot \overline{Q}_{1} \cdot \overline{Q}_{0})$$
2) $\overline{I}_{n} \cdot \overline{Q}_{2} \cdot \overline{Q}_{1} \cdot \overline{Q}_{0} + \overline{I}_{n} \cdot Q_{2} \cdot \overline{Q}_{1} \cdot \overline{Q}_{0} = \overline{I}_{n} \cdot (\overline{Q}_{2} \cdot \overline{Q}_{1} \cdot \overline{Q}_{0} + \overline{Q}_{2} \cdot \overline{Q}_{1} \cdot \overline{Q}_{0})$

$$F_0 = \overline{In}(\overline{Q_2} \cdot Q_1 \cdot Q_0 + \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0}) + \overline{In}(\overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0})$$

Now that we have our 3 functions we can make our circuit

$$= \overline{I_n} \left(\overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \right) + \overline{I_n} \left(\overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \right) \sqrt{\overline{Q_0}}$$

$$\overline{F_{Q_{1}^{+}}} = \overline{I_{n}} \left(\overline{Q_{2}} \cdot \overline{Q_{1}} \cdot Q_{0} + Q_{2} \cdot \overline{Q_{2}} \cdot \overline{Q_{0}} \right) + \overline{I_{n}} \left(\overline{Q_{2}} \cdot \overline{Q_{1}} \cdot Q_{0} + \overline{Q_{2}} \cdot Q_{1} \cdot Q_{0} \right) \checkmark$$

$$F_{Q_2^+} = \overline{I_n} \left(\overline{Q}_2 \cdot Q_1 \cdot \overline{Q}_0 \right) + \overline{I_n} \left(\overline{Q}_2 \cdot \overline{Q}_1 \cdot \overline{Q}_0 \right)$$

5 states means we need 3 flip flops
$$(2^3 = 6)$$

Find my circuit inside file Q2. circ inside my assignment folder

CIVETTAN