INVERSA de una MATRIZ como PRODUCTO de MATRICES ELEMENTALES

Una matriz A es invertible, existe A-1, si, y solo si, A es el producto de k matrices elementales E_i

Se demuestra que si

$$E_k E_{k-1} ... E_2 E_1 A = I$$
 y $AE_k E_{k-1} ... E_2 E_1 = I$

entonces $A = E_1^{-1}E_2^{-1} ... E_{k-1}^{-1} E_k^{-1}$ y por lo tanto $A^{-1} = E_k E_{k-1} ... E_2 E_1$

MATRIZ ELEMENTAL (ME) es una matriz nxn que se obtiene al realizar una única OE/fila sobre la matriz identidad I n×n.

TIPOS:

- 1) P_{ij} se obtiene aplicando a la matriz I la OE/fila: $Fi \leftrightarrow Fj$
- 2) $E_i(\alpha)$ se obtiene aplicando a I la OE/fila: $Fi \leftarrow \alpha$ $Fi(\alpha \neq 0)$
- 3) $E_{ii}(\beta)$ se obtiene aplicando a I la OE/fila: $Fi \leftarrow Fi + \beta Fj$

PRODUCTO EA: Sea A (mxn) y E (mxm) ME, la matriz EA es la misma que se obtiene si aplicamos a A la misma OE/ fila que se le aplica a I para obtener E

Si $E_k E_{k-1} \dots E_2 E_1 A = B$, se dice que B es equivalente por filas a A. Se representa $A = E_1 B$.

RESULTADOS: Toda matriz A escalonada / reducida es equivalente por filas a A.

El número de 1's principales de la forma reducida es el rango de la matriz

PRODUCTO AE: Sea A (mxn) y E (mxm) ME entonces $AE_k E_{k-1} ... E_2 E_1 = I$

Si $E_k...E_1$ A $Ec_1...Ec_m$ = B se dice que A es equivalente a B: A = B. Si A = $_F$ B \rightarrow A = B, pero no viceversa

Si B = I, y $E_k E_{k-1} \dots E_2 E_1 A = I$ y $AE_k E_{k-1} \dots E_2 E_1 = I$, entonces $A = E_1^{-1}E_2^{-1} \dots E_{k-1}^{-1}E_k^{-1}$ ya que toda matriz elemental Ei es invertible

1⁰ inversa de Fi ↔ Fj : Fi ↔ Fj

$$P_{ij}^{(-1)} = P_{ij}$$
 ya que $P_{ij}P_{ij} = I$

2º Inversa de Fi
$$\leftarrow \alpha$$
 Fi $(\alpha \neq 0)$: Fi \leftarrow (1/ α) Fi $(\alpha \neq 0)$

$$E_i(\alpha)^{(-1)} = E_i(1/\alpha)$$
 ya que $E_i(\alpha) E_i(1/\alpha) = I$

$$3^{\circ}$$
 Inversa de Fi \leftarrow Fi + β Fj : Fi \leftarrow Fi + $(-\beta)$ Fj

$$E_{ij}(\beta)^{(-1)} = E_{ij}(-\beta)$$
 ya que $E_{ij}(\beta) E_{ij}(-\beta) = I$

Como las ME son invertibles:

$$A = E_1^{-1}E_2^{-1} \dots E_{k-1}^{-1}E_k^{-1} \longrightarrow \mathbf{E_1} \mathbf{A} = \mathbf{E_1}\mathbf{E_1}^{-1}\mathbf{E_2}^{-1} \dots \mathbf{E_k}^{-1} \longrightarrow \mathbf{E_2} \mathbf{E_1} \mathbf{A} = \mathbf{E_2}\mathbf{E_2}^{-1} \dots \mathbf{E_k}^{-1}$$

$$\rightarrow$$
 E_k E_{k-1} ... E₂ E₁A = I \rightarrow E_k E_{k-1} ... E₂ E₁ A A⁻¹ = IA⁻¹ \rightarrow A⁻¹ = E_k E_{k-1} ... E₂ E₁

TEOREMA FUNDAMENTAL DE LAS MATRICES INVERTIBLES

Sea A matriz nxn

- 1º.- A es invertible
- 2º.- El sistema Ax=b es Compatible determinado, para todo b.
- 3º.- El sistema Ax=0 tiene solamente la solución trivial.
- 4°.- rango(A)=n
- 5°.- A se transforma en I mediante operaciones elementales
- 6º.- A es producto de matrices elementales.

Factorización LU de la matriz A

Para resolver Ax = b, se descompone A = LU y se resuelven Ux = y, Ly = b

L: matriz (mxm) triangular inferior invertible.

U: matriz triangular superior (mxn) (es una escalonada de A)

Como L es invertible ⇒ Ly = b es SCD- La solución se calcula por sustitución progresiva.

Ux = y se calcula por sustitución regresiva

Obtención de las matrices L, U

- 1ª forma: a partir de las ME que han transformado A en una escalonada de A.
- 2ª forma: obtener L y U en cada paso de escalonar A.
- 3ª forma: a partir de la definición de L y U

M1 2016-17