Basic Research Methods: eye tracking tutorial

MagdaLena Matyjek

10/01/2020

Hands-on exercise

Task:

- a passive-viewing task
- ► Three conditions: positive, negative and neutral pictures from IAPS (International Affective Picture System)
- ▶ 3000 ms presentation, 500 ms ITI
- ▶ 30 x each condition (no repeating items)
- ► time: ~5 min

Sample:

▶ you!

Procedure

- 1. Positioning
- 2. Calibration (+ re-calibration)
- 3. Data collection
- 4. Data pre-processing
- 5. Data visualisation
- 6. Data interpretation

Hands-on time!

Now we collect data from volunteers. Meanwhile, form groups of 5-10 people and prepare the experimental design and predictions by considering the following points:

1. Experimental design:

- conditions (3: pos, neg, neu)
- no of repetitions of stimuli
- sample size + statistical power
- type of statistical analysis

2. Research questions / hypotheses

- backward reasoning: what could be the research question asked in this study?
- hypotheses and predictions: based on what you already know about eye tracking, pupillometry, and processing of emotional and neutral images in humans, propose your hypotheses and predictions for our results.

Raw data

show the first 4 rows head(rd,4)

```
##
                   timestamp
                                               time
## 1
                         MSG 2020-01-07 10:17:43.26 1061923
  2 2020-01-07 10:17:43.023
                                         1061923567
  3 2020-01-07 10:17:43.040
                                         1061923584
  4 2020-01-07 10:17:43.056
                                         1061923600
##
               state
                                  rawy avgx
                         rawx
```

avgy ## 1 start_recording NANA NANA ## 2 7 1063.299 719.7043 1036.940 699.1066 26

3 7 1040.149 710.0520 1037.394 698.9050 2 ## 4 7 1051.085 682.4178 1038.015 699.0016 2 Lrawy Lavgx Lavgy Lpsize Lpupilx Lpupily ## NA ## 1 NA NA NΑ NΑ NΑ

2 757.5413 1050.300 710.9240 24.6516 0.3618 0.5723 108 ## 3 739.2700 1050.397 712.3792 24.8139 0.3617 0.5719 103

0.3614

0.5715 10

4 715.2422 1050.301 712.5284 24.4666

Structured raw data

5 31.6633

```
# show selected columns
data <- rd[,c(1,3:5,13,20)]
# ...and the first 5 rows
head(data,5)</pre>
```

```
##
                                          fix
                   timestamp
                                                  rawx
## 1 2020-01-07 10:17:43.259 start recording
                                                     NA
## 2 2020-01-07 10:17:43.023
                                         True 1063.299 719.
## 3 2020-01-07 10:17:43.039
                                         True 1040.149 710.0
## 4 2020-01-07 10:17:43.055
                                         True 1051.085 682.4
## 5 2020-01-07 10:17:43.072
                                         True 1130.159 803.0
##
      Rpsize
## 1
          NA
## 2 27.8472
## 3 26.6744
## 4 27.4394
```

Pre-processing

Steps of pre-processing. . .

Pre-processed data

code

 $t_{\tt ms}$

17 1111 4.377 24.50600

##

##	1	1111	4.361	24.52612	NEG	1	baseline	-0.061
##	2	1111	4.362	24.52464	NEG	1	baseline	-0.063
##	3	1111	4.363	24.52319	NEG	1	baseline	-0.064
##	4	1111	4.364	24.52176	NEG	1	baseline	-0.066
##	5	1111	4.365	24.52036	NEG	1	baseline	-0.067
##	6	1111	4.366	24.51898	NEG	1	baseline	-0.068
##	7	1111	4.367	24.51763	NEG	1	baseline	-0.070
##	8	1111	4.368	24.51632	NEG	1	baseline	-0.071
##	9	1111	4.369	24.51503	NEG	1	baseline	-0.072
##	10	1111	4.370	24.51377	NEG	1	baseline	-0.074
##	11	1111	4.371	24.51255	NEG	1	baseline	-0.075
##	12	1111	4 372	24 51137	NEC	1	hagalina	-0 076

sample cond trial_no segmentName size_fo

baseline -0.0818

12 1111 4.372 24.51137 NEG

13 1111 4.373 24.51022 NEG

baseline -0.077

14 1111 4.374 24.50911 NEG baseline -0.0786

15 1111 4.375 24.50803 NEG baseline -0.079

16 1111 4.376 24.50700 NEG baseline -0.0808

NF.G

Basic descriptives

```
Sample size:
## [1] 1
Mean, max, and min (relative to baseline):
## [1] 0.53
## [1] 4.35
## [1] -3.15
Question: What do negative values mean?
```

Aggregate data

For plotting:

For stats:

Question: What is data aggregation?

For plotting, we need the time course, but for statistics we have to aggregate the data over conditions and a time window. Here we will use 1 - 3 secs.

Question: Why won't we use the data < 1 sec?

```
data_P_av_trials <- aggregate(list(data$size_fdb),by=list(colnames(data_P_av_trials) <- c("cond","t","trial","size")

data_P_av <- aggregate(list(data$size_fdb),by=list(data$concolnames(data_P_av) <- c("cond","t","size")</pre>
```

data_av_trials <- aggregate(list(data2\$size_fdb),by=list(data2\$size_fdb),

data2 <- data[data\$t fdb >= 1 & data\$t fdb <= 3,]</pre>

Plotting the data - visual inspection

Let's plot the averaged data over participants for each condition (the grey bands are the 95% confidence intervals):

```
## Warning: package 'ggplot2' was built under R version 3.
```

$geom_smooth()$ using method = gam' and formula $y \sim s$

