

3节/4节电池串联用电池保护IC

S-8254系列

S-8254 系列内置高精度电压检测电路和延迟电路,是用于 3 节或 4 节串联锂离子/锂聚合物可充电电池保护的 IC。 通过 SEL 端子的切换,可用来保护 3 节或 4 节串联电池。

■ 特点

(1) 针对各节电池的高精度电压检测功能

・过充电检测电压n (n = 1 ~ 4) 3.9 ~ 4.4 V (进阶单位为50 mV) 精度 \pm 25 mV ・过充电解除电压n (n = 1 ~ 4) 3.8 ~ 4.4 V $^{\star 1}$ 精度 \pm 50 mV ・过放电检测电压n (n = 1 ~ 4) 2.0 ~ 3.0 V (进阶单位为100 mV) 精度 \pm 80 mV ・过放电解除电压n (n = 1 ~ 4) 2.0 ~ 3.4 V $^{\star 2}$ 精度 \pm 100 mV

(2) 3段过电流检测功能

・过电流检测电压10.05 ~ 0.30 V (进阶单位为50 mV)精度± 25 mV・过电流检测电压20.5 V精度± 100 mV・过电流检测电压3VC1 - 1.2 V精度± 300 mV

- (3) 通过外接电容可设置过充电检测延迟时间、过放电检测延迟时间和过电流检测延迟时间1 (过电流检测延迟时间2、过电流检测延迟时间3在内部被固定)
- (4) 通过SEL端子可以实现3节串联用/4节串联用的切换
- (5) 通过控制端子可以控制充放电

(6) 采用高耐压元件 绝对最大额定值 26 V

(7) 宽工作电压范围 2~24 V

(8) 宽工作温度范围 - 40~+85°C

(9) 低消耗电流

• 工作时 30 μA 最大值 (+ 25 °C)

・休眠时 0.1 µA 最大值 (+ 25 °C)

(10) 无铅产品

- *1. 过充电滞后电压n (n = 1 ~ 4)为0 V或者在0.1 V ~ 0.4 V的范围内以50 mV为进阶单位来选择 (过充电滞后电压=过充电检测电压-过充电解除电压)
- *2. 过放电滞后电压n (n = 1 ~ 4) 为0 V或者在0.2 V ~ 0.7 V的范围内以100 mV为进阶单位来选择 (过放电滞后电压=过放电解除电压-过放电检测电压)

■ 用途

- 锂离子可充电电池组
- 锂聚合物可充电电池组

■ 封装

封装名	图面号码				
	封装图面	卷带图面	带卷图面		
16-Pin TSSOP	FT016-A	FT016-A	FT016-A		

■ 框图

图1

■ 产品型号的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅"2. 产品名目录"。

2. 产品名目录

表1

立日久/陌日	过充电检测电压	过充电解除电压	过放电检测电压	过放电解除电压	过电流检测电压1	向0 V电池
产品名 / 项目	[V _{CU}]	[V _{Cι}]	$[V_{DL}]$	[V _{DU}]	[V _{IOV1}]	充电功能
S-8254AAAFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	$2.00 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.30 ± 0.025 V	可能
S-8254AABFT-TB-G	4.250 ± 0.025 V	4.250 ± 0.025 V	2.00 ± 0.080 V	2.70 ± 0.100 V	0.30 ± 0.025 V	可能
S-8254AAEFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	$2.00 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.20 ± 0.025 V	可能
S-8254AAFFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	$2.40 \pm 0.080 \text{ V}$	3.00 ± 0.100 V	0.20 ± 0.025 V	可能
S-8254AAGFT-TB-G	4.275 ± 0.025 V	4.075 ± 0.050 V	$2.30 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.13 ± 0.025 V	可能
S-8254AAHFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	$2.40 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.10 ± 0.025 V	可能
S-8254AAIFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	$2.40 \pm 0.080 \text{ V}$	3.00 ± 0.100 V	$0.30 \pm 0.025 \text{ V}$	可能
S-8254AAJFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	2.40 ± 0.080 V	$3.00 \pm 0.100 \text{ V}$	0.15 ± 0.025 V	可能
S-8254AAKFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	$2.70 \pm 0.080 \text{ V}$	3.00 ± 0.100 V	0.20 ± 0.025 V	可能
S-8254AALFT-TB-G	4.300 ± 0.025 V	4.150 ± 0.050 V	$2.40 \pm 0.080 \text{ V}$	$3.00 \pm 0.100 \text{ V}$	0.20 ± 0.025 V	可能
S-8254AAMFT-TB-G	4.200 ± 0.025 V	4.100 ± 0.050 V	$2.50 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.30 ± 0.025 V	可能
S-8254AANFT-TB-G	4.250 ± 0.025 V	4.150 ± 0.050 V	$2.50 \pm 0.080 \text{ V}$	3.00 ± 0.100 V	0.10 ± 0.025 V	可能
S-8254AAOFT-TB-G	4.300 ± 0.025 V	$4.080 \pm 0.050 \text{ V}$	$2.50 \pm 0.080 \ V$	3.00 ± 0.100 V	0.10 ± 0.025 V	可能
S-8254AAPFT-TB-G	4.280 ± 0.025 V	$4.130 \pm 0.050 \text{ V}$	$3.00 \pm 0.080 \text{ V}$	3.00 ± 0.080 V	0.15 ± 0.025 V	可能
S-8254AAQFT-TB-G	3.900 ± 0.025 V	$3.800 \pm 0.050 \text{ V}$	$2.30 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.30 ± 0.025 V	可能
S-8254AARFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	$2.80 \pm 0.080 \text{ V}$	3.00 ± 0.100 V	0.20 ± 0.025 V	可能
S-8254AASFT-TB-G	4.290 ± 0.025 V	4.090 ± 0.050 V	$2.30 \pm 0.080 \ V$	3.00 ± 0.100 V	0.075 ± 0.025 V	可能
S-8254AATFT-TB-G	4.200 ± 0.025 V	4.200 ± 0.025 V	$2.00 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.30 ± 0.025 V	可能
S-8254AAUFT-TB-G	4.350 ± 0.025 V	4.150 ± 0.050 V	$2.40 \pm 0.080 \text{ V}$	3.00 ± 0.100 V	0.20 ± 0.025 V	禁止
S-8254AAVFT-TB-G	4.250 ± 0.025 V	4.150 ± 0.050 V	$2.70 \pm 0.080 \text{ V}$	3.00 ± 0.100 V	0.20 ± 0.025 V	可能
S-8254AAWFT-TB-G	4.250 ± 0.025 V	4.100 ± 0.050 V	$3.00 \pm 0.080 \text{ V}$	3.20 ± 0.100 V	0.10 ± 0.025 V	禁止

备注 需要上述检测电压值以外的产品时,请与本公司的营业部门咨询。

■ 引脚排列图

表2

引脚号	符号	描述
1	COP	充电控制用FET门极连接端子 (N沟道开路漏极输出)
2	VMP	VC1 - VMP间的电压检测端子 (过电流3检测端子)
3	DOP	放电控制用FET门极连接端子 (CMOS输出)
4	VINI	VSS - VINI间的电压检测端子 (过电流1、2检测端子)
5	CDT	过放电检测延迟、过电流检测1延迟用的电容连接端子
6	CCT	过充电检测延迟用的电容连接端子
7	VSS	负电源输入端子、电池4的负电压连接端子
8	NC ^{*1}	无连接
9	NC ^{*1}	无连接
10	SEL	3节串联/4节串联的切换端子
		VSS电位: 3节串联, VDD电位: 4节串联
11	CTL	充电用FET以及放电用FET的控制端子
12	VC4	电池3的负电压、电池4的正电压连接端子
13	VC3	电池2的负电压、电池3的正电压连接端子
14	VC2	电池1的负电压、电池2的正电压连接端子
15	VC1	电池1的正电压连接端子
16	VDD	正电源输入端子、电池1的正电压连接端子

^{*1.} NC表示从电气的角度而言处于开路状态。 所以,与VDD以及VSS连接均无问题。

■ 绝对最大额定值

表3

(除特殊注明以外: Ta = 25 °C)

项目	记号	适用端子	绝对最大额定值	单位
VDD - VSS间输入电压	V_{DS}		$V_{SS} - 0.3 \sim V_{SS} + 26$	V
输入端子电压	VIN	VC1, VC2, VC3, VC4, CTL, SEL, CCT, CDT, VINI	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
VMP输入端子电压	V_{VMP}	VMP	$V_{SS}-0.3\sim V_{SS}+26$	V
DOP输出端子电压	V_{DOP}	DOP	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
COP输出端子电压	V_{COP}	COP	$V_{SS} - 0.3 \sim V_{SS} + 26$	V
容许功耗	P_{D}		400	mW
工作周围温度	Topr		− 40 ~ + 85	°C
保存温度	Tstg		− 40 ~ + 125	°C

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品 劣化等物理性损伤。

■ 电气特性

表4 (1/2)

(除特殊注明以外: Ta = 25 °C)

				(130, 197	21.7-2.77.27.7		
记号	条件		最小值	典型值	最大值	单位	测定 电路
				-			
V _{CUn}	3.9~4.4 V, 可调整		V _{CUn} - 0.025	V _{CUn}	V _{CUn} + 0.025	V	2
V_{CLn}	3.8~4.4 V, 可调整	V _{CL} ≠V _{CU} 时	V _{CLn} - 0.05	V _{CLn}	V _{CLn} + 0.05	V	
		V _{CL} = V _{CU} 时	V _{CLn} - 0.025	V_{CLn}	+ 0.025	V	
V _{DLn}	- 2.0~3.0 V,可调整		V _{DLn} - 0.08	V_{DLn}	+ 0.08	V	
V_{DUn}	2.0~3.4 V, 可调整	V _{DL} ≠V _{DU} 时	V _{DUn} - 0.10	V_{DUn}	+ 0.10	٧	
		V _{DL} = V _{DU} 时	V _{DUn} - 0.08	V_{DUn}	V _{DUn} + 0.08	V	
V _{IOV1}	0.05~0.3 V, 可调整		V _{IOV1} - 0.025	V _{IOV1}	V _{IOV1} + 0.025	V	
V_{10V2}			0.4	0.5	0.6	V	
V _{IOV3}			V _{C1} – 1.5	V _{C1} - 1.2	V _{C1} - 0.9	V	
T _{COF1}	Ta = 0 ~ 50°C		- 1.0	0	1.0	mV /°C]
			- 0.5	0	0.5	mV /°C	
t _{cu}	CCT端子电容 = 0.1 p	ıF	0.5	1.0	1.5	s	3
t _{DL}	CDT端子电容 = 0.1 p	ıF	50	100	150	ms	
t _{IOV1}	CDT端子电容 = 0.1 p	ıF	5	10	15	ms	
t _{IOV2}			0.4	1	1.6	ms	
t _{IOV3}	FET门极电容 = 2000	pF	100	300	600	μs	
[向0 V电池充电功能]							
V _{0CHA}	向0 V电池充电功能「	可能」	_	0.8	1.5	V	4
Voinh	向0 V电池充电功能「禁止」		0.4	0.7	1.1	V	
,							
R _{VMD}		***	0.5	1	1.5	MΩ	5
R _{VMS}	_		450	900	1800	kΩ	
	V _{CUn} V _{CLn} V _{DLn} V _{DUn} V _{IOV1} V _{IOV2} V _{IOV3} T _{COE2} t _{CU} t _{DL} t _{IOV1} t _{IOV2} t _{IOV3} V _{OCHA} V _{OCHA} V _{OINH}	V _{CUn} 3.9 ~ 4.4 V, 可调整 V _{CLn} 3.8 ~ 4.4 V, 可调整 V _{DLn} 2.0 ~ 3.0 V, 可调整 V _{DUn} 2.0 ~ 3.4 V, 可调整 V _{IOV1} 0.05 ~ 0.3 V, 可调整 V _{IOV2} — V _{IOV3} — T _{COE1} Ta = 0 ~ 50°C T _{COE2} Ta = 0 ~ 50°C t _{CU} CCT端子电容 = 0.1 k _I t _{IOV1} CDT端子电容 = 0.1 k _I t _{IOV2} — t _{IOV3} FET门极电容 = 2000 V _{OCHA} 向0 V电池充电功能「 V _{OINH} 向0 V电池充电功能「 R _{VMD} —	V _{CUn} 3.9 ~ 4.4 V, 可调整	V _{CUn} 3.9 ~ 4.4 V, 可调整	記号 条件 最小値 典型値	記号 条件 最小値 典型値 最大値	V _{CUn} 3.9 ~ 4.4 V,可调整 V _{Cun} − 0.025 V _{Cun} + 0.025 V V _{CLn} 3.8 ~ 4.4 V,可调整 V _{CL} ≠ V _{Cu} pt − 0.05 V _{CLn} + 0.05 V V _{DLn} 2.0 ~ 3.0 V,可调整 V _{DLn} − 0.025 V _{DLn} + 0.025 V V _{Dun} 2.0 ~ 3.4 V,可调整 V _{DL} ≠ V _D pt D − 0.10 V _D pun + 0.10 <

表4 (2/2)

(除特殊注明以外: Ta=25°C)

				(।জন্ম	外注明以	71. Tu-	200,
项目	记号	条件	最小值	典型值	最大值	单位	测定 电路
[输入电压]							
VDD - VSS间工作电压	V _{DSOP}	DOP, COP输出电压确定	2		24	V	2
CTLn输入电压"H"	V _{CTLH}	_	V _{DD} × 0.8			V	
CTLn输入电压"L"	V _{CTLL}	_			V _{DD} × 0.2	٧	
SEL输入电压"H"	V _{SELH}	_	V _{DD} × 0.8			V	
SEL输入电压"L"	V _{SELL}	-			V _{DD} × 0.2	V	
 [输入电流]							
工作时消耗电流	I _{OPE}	V1 = V2 = V3 = V4 = 3.5 V		12	30	μA	1
休眠时消耗电流	I _{PDN}	V1 = V2 = V3 = V4 = 1.5 V	_		0.1	μΑ	
VC1端子电流	I _{VC1}	V1 = V2 = V3 = V4 = 3.5 V		1.5	3	μΑ	5
VC2端子电流	I _{VC2}	V1 = V2 = V3 = V4 = 3.5 V	- 0.3	0	0.3	μΑ	
VC3端子电流	I _{VC3}	V1 = V2 = V3 = V4 = 3.5 V	- 0.3	0	0.3	μA	
VC4端子电流	I _{VC4}	V1 = V2 = V3 = V4 = 3.5 V	- 0.3	0	0.3	μΑ	
CTL端子电流"H"	I _{CTLH}	V1 = V2 = V3 = V4 = 3.5 V, $V_{CTL} = V_{DD}$			0.1	μA	
CTL端子电流"L"	I _{CTLL}	V1 = V2 = V3 = V4 = 3.5 V, V _{CTL} = V _{SS}	- 0.4	- 0.2		μА	
SEL端子电流"H"	I _{SELH}	V1 = V2 = V3 = V4 = 3.5 V, V _{SEL} = V _{DD}	_		0.1	μА	
SEL端子电流"L"	I _{SELL}	V1 = V2 = V3 = V4 = 3.5 V, V _{SEL} = V _{SS}	- 0.1			μА	
COP端子泄漏电流	Ісон	V _{COP} = 24 V			0.1	μA	5
COP端子吸收电流	I _{COL}	$V_{COP} = V_{SS} + 0.5 V$	10			μA]
DOP端子源极电流	I _{DOH}	$V_{DOP} = V_{DD} - 0.5 V$	10			μA	_
DOP端子吸收电流	I _{DOL}	$V_{DOP} = V_{SS} + 0.5 \text{ V}$	10			μA	

^{*1.} 电压温度系数1表示为过充电检测电压。

^{*2.} 电压温度系数2表示为过电流检测电压1。

4. 向0 V电池充电开始充电器电压(向0 V电池充电功能「可能」的产品)、向0 V电池充电禁止电池电压 (向0 V电池充电功能「禁止」的产品)

(测定电路4)

针对0 V电池,可以通过充电功能的选择,向0 V充电开始充电器电压或者向0 V充电禁止电池电压的一方适用于各类产品。

4.1 向0 V电池充电开始充电器电压 (V_{0CHA}) (向0 V电池充电功能「可能」的产品)

向0 V充电开始充电器电压的情况下,在V1 = V2 = V3 = V4 = 0 V、 V_{VMP} = V_{0CHA} 最大值时,COP端子的电压比 V_{0CHA} 最大值-1 V小。

4.2 向0 V电池充电禁止电池电压 (VoINH)(向0 V电池充电功能「禁止」的产品)

向0 V充电禁止电池电压的情况下,在V1 = V2 = V3 = V4 = V_{OINH} 最小值、 V_{VMP} = 24 V时,COP端子的电压比 V_{VMP} – 1 V高。

5. VMP-VDD间电阻、VMP-VSS间电阻、VC1端子电流、VC2端子电流、VC3端子电流、VC4端子电流、 CTL端子电流"H"、CTL端子电流"L"、SEL端子电流"H"、SEL端子电流"L"、COP端子泄漏电流、 COP端子吸收电流、DOP端子源极电流、DOP端子吸收电流

(测定电路 5)

 $\text{在V}_{\text{VMP}} = \text{V}_{\text{SEL}} = \text{V}_{\text{DD}}$ 、 $\text{V}_{\text{INI}} = \text{V}_{\text{CTL}} = \text{V}_{\text{SS}}$ 、V1 = V2 = V3 = V4 = 3.5 V、其他为"开"的前提下(以下记载为初始状态)。

5.1 VMP-VDD间电阻 (R_{VDM})

VMP-VDD间电阻 (R_{VDM})是从初始状态开始,利用V_{VMP} = V_{SS}时的VMP端子的电流 (I_{VDM}),可以从R_{VDM} = V_{DD} / I_{VDM}计算出。

5.2 VMP-VSS间电阻 (R_{VSM})

VMP-VSS间电阻 (R_{VSM})是从初始状态开始,利用在V1 = V2 = V3 = V4 = 1.8 V时的VMP端子的电流 (I_{VSM}),可以从 R_{VSM} = V_{DD} / I_{VSM} 计算出。

5.3 VC1端子电流 (I_{VC1})、VC2端子电流 (I_{VC2})、VC3端子电流 (I_{VC3})、VC4端子电流 (I_{VC4})

在初始状态下,流经VC1端子的电流为VC1端子电流(I_{VC1}),流经VC2端子的电流为VC2端子电流(I_{VC2}),流经VC3端子的电流为VC3端子电流(I_{VC3}),流经VC4端子的电流为VC4端子电流(I_{VC4})。

5.4 CTL端子电流"H" (Ictle)、CTL端子电流"L" (Ictle)

在初始状态下,流经CTL端子的电流为CTL端子电流"L" (I_{CTLL}),之后,在V_{CTL} = V_{DD}时流经CTL端子的电流为CTL端子电流"H" (I_{CTLH})。

5.5 SEL端子电流"L"、 SEL端子电流"L" (Isell)

在初始状态下,流经SEL端子的电流为SEL端子电流"H" (I_{SELH}),之后,在V_{SEL} = V_{SS}时流经SEL端子的电流为SEL端子电流"L" (I_{SELL})。

图5 测定电路3

图6 测定电路4

图7 测定电路5

5.6 COP端子吸收电流 (IcoL)、COP端子泄漏电流 (IcoH)

从初始状态开始,在 $V_{COP} = V_{SS} + 0.5 \text{ V时,流经COP端子的电流为COP端子吸收电流} (I_{COL})。之后,在 V1 = V2 = V3 = V4 = 6 V、V_{COP} = V_{DD}$ 时流经COP端子的电流为COP端子泄漏电流 (I_{COH})。

5.7 DOP端子吸收电流 (IDOL) 、DOP端子源极电流 (IDOH)

从初始状态开始,在 V_{DOP} = V_{SS} + 0.5 V时,流经DOP端子的电流为DOP端子吸收电流(I_{DOL})。之后,在 V_{VMP} = V_{DD} - 2 V、 V_{DOP} = V_{DD} - 0.5 V时流经DOP端子的电流为DOP端子源极电流(I_{DOH})。

图3 测定电路1

图4 测定电路2

■ 工作说明

备注 请参照"■ 电池保护IC的连接例"。

1. 通常状态

全部的电池电压在 V_{DLn} 与 V_{CUn} 之间,比放电电流的电流值低 (VINI端子电压比 V_{IOV3} 、 V_{IOV2} 低,并且VMP端子电压比 V_{IOV3} 高) 的情况下,充电用FET以及放电用FET变为ON。

2. 过充电状态

某个电池的电压比 V_{CUn} 高,这种状态保持在 t_{CU} 以上的情况下,COP端子变为高阻抗。COP端子通过外接电阻上拉为EB+的缘故,充电用FET变为OFF,而停止充电。这种状态称为过充电状态。过充电状态在满足下述的2个条件的一方的情况下被解除。

- (1) 全部的电池的电压在VcLn以下时
- (2) 全部的电池电压在V_{CUn}以下,并且VMP端子电压在39/40 × V_{DD}以下时(负载被连接,通过充电用FET的本体二极管开始放电)

3. 过放电状态

某个电池的电压比V_{DLn}低,这种状态保持在t_{DL}以上的情况下,DOP端子的电压变为V_{DD}电位,放电用FET变为OFF,而停止充电。这种状态称为过放电状态。变为过放电状态后,S-8254系列转移为休眠状态。

4. 休眠状态

变为过放电状态,停止了放电,由于IC内部的RVMS电阻VMP端子被下拉至 V_{SS} , VMP端子电压变为 V_{DD} /2以下时,S-8254系列进入休眠状态。在休眠状态下S-8254系列的几乎全部的电路停止工作,消耗电流变为 I_{PDN} 以下。各个输出端子变为如下的状态。

- (1) COP端子: Hi-Z
- (2) DOP端子: V_{DD}

休眠状态在满足下述的条件时被解除。

(1) VMP端子电压变为VDD / 2以上时。

过放电状态的解除有以下2种条件。

- (1) 如果VMP端子电压在V_{DD}/2以上且低于V_{DD},当所有的电池电压在V_{Dun}以上时,过放电状态将被解除。
- (2) 如果连接充电器,过放电滞后电压将被解除,当所有的电池电压在V_{DLn}以上时,过放电状态将被解除。

5. 过电流状态

S-8254系列备有3种过电流检测电位(V_{IOV1} 、 V_{IOV2} 以及 V_{IOV3})以及各电位所对应的过电流检测延迟时间(t_{IOV1} 、 t_{IOV2} 以及 t_{IOV3})。放电电流比一定值大(V_{SS} 和 V_{INI} 的电压差比 V_{IOV1} 大)的情况下,这种状态保持在 t_{IOV1} 以上时, S-8254系列进入过电流状态。在过电流状态,DOP端子的电压变为 V_{DD} 电位,放电用FET变为OFF,而停止放电。另外,COP端子变为高阻抗,由于EB+端子的电位被上拉,导致充电用FET变为OFF。VMP端子通过内部电阻RVMD被上拉至 V_{DD} 。针对过电流检测电位2(V_{IOV2})以及过电流检测延迟时间(t_{IOV2})的工作与针对 V_{IOV1} 以及 t_{IOV1} 的工作是相同的。

在过电流状态,通过IC内部的RVMD电阻VMP端子被上拉至V_{DD}。过电流状态在满足下述的条件时被解除。

(1) 通过连接充电器或者开路负载 (30 MΩ以上), VMP端子电压在V_{IOV3}以上时

6. 向0 V电池充电功能

有关自我放电电池 (0 V电池) 的充电, S-8254系列可以从2个功能中选择其中一个。

- (1) 允许向0 V电池的充电 (可以向0 V电池充电)。 充电器电压比V_{OCHA}高的情况下,0 V电池被充电。
- (2) 禁止向0 V电池的充电 (不可以向0 V电池充电)。 电池电压在V_{OINH}以下的情况下,不进行充电。

注意 VDD端子的电压比V_{DSOP}的最小值低的情况下,不能保证S-8254系列的工作。

7. 延迟时间的设置

过充电检测延迟时间(t_{CU})可以通过连接在CCT端子的外接电容来设置。过放电检测延迟时间(t_{DL}) 以及过电流检测延迟时间1 (t_{IOV1}) 可以通过连接在CDT端子的外接电容来设置。各延迟时间由下述的公式来计算出来。过电流检测延迟时间2以及3 (t_{IOV2} , t_{IOV3})在内部被固定。

最小值 典型值 最大值

$t_{CU}[s] = (5.00,$	10.0,	15.0) × C _{CCT} [μF]
$t_{DL}[s] = (0.50,$	1.00,	1.50	$) \times C_{CDT}[\mu F]$
$t_{10V/1}$ [s] = (0.05,	0.10.	0.15	$) \times C_{CDT}[\mu F]$

8. 有关CTL端子

S-8254系列备有控制端子。CTL端子是用于控制COP端子以及DOP端子的输出电压而准备的。CTL端子优先用于电池保护电路。

表5 通过CTL端子可设置的状态

CTL端子	COP端子	DOP端子
High	Hi-Z	V_{DD}
Open	Hi-Z	V_{DD}
Low	通常状态*1	通常状态*1

^{*1.} 状态由电压检测电路来控制。

注意 由于外接滤波器R_{vss}、C_{vss}的存在,当电源突变时,如果CTL端子的低输入电位与IC的VSS电位 产生了电位差,有可能导致IC错误工作,务请注意。

2.6 CTL输入电压"H" (V_{CTLH})、CTL输入电压"L" (V_{CTLL})

从初始状态开始缓慢提升CTL端子的电压,COP端子以及DOP端子的电压变为"H"时CTL端子的电压即为CTL输入H电压 (V_{CTLH})。之后,缓慢降低CTL端子的电压,COP端子以及DOP端子的电压变为"L"时CTL端子的电压即为CTL输入L电压 (V_{CTLL})。

2.7 SEL输入电压"H" (V_{SELH})、SEL输入电压"L" (V_{SELL})

从初始状态开始设置V4 = 0V,确认DOP端子为"H"。之后,缓慢降低SEL端子的电压,DOP端子的电压变为"L"时SEL端子的电压即为SEL输入L电压(V_{SELL})。之后,缓慢提升SEL端子的电压,DOP端子的电压变为"H"时SEL端子的电压即为SEL输入H电压(V_{SELH})。

3. 过充电检测延迟时间、过放电检测延迟时间、过电流检测延迟时间1、过电流检测延迟时间2、过电流检测延迟时间3

(测定电路 3)

 $E(V_{VMP} = V_{DD}, V_{INI} = V_{SS}, V1 = V2 = V3 = V4 = 3.5 V$ 的前提下,请确认COP端子以及DOP端子为"L"(以下记载为初始状态)。

3.1 过充电检测延迟时间 (tcu)

过充电检测延迟时间 (t_{cu}) 是从初始状态开始,使V1的电压在瞬间变化为4.5 V之后,COP端子的电压从"L"变为"H"为止的时间。

3.2 过放电检测延迟时间 (t_{DL})

过放电检测延迟时间(t_{DL})是从初始状态开始,使V1的电压在瞬间变化为1.5 V之后,DOP端子的电压从"L"变为"H"为止的时间。

3.3 过电流检测延迟时间1 (t_{IOV1})

过电流检测延迟时间1 (t_{IOV1}) 是从初始状态开始,使VINI端子的电压在瞬间变化为0.4 V之后,DOP端子的电压从"L"变为"H"为止的时间。

3.4 过电流检测延迟时间2 (t_{lOV2})

过电流检测延迟时间2 (t_{IOV2}) 是从初始状态开始,使VINI端子的电压在瞬间变化为V_{IOV2}最大值+ 0.2 V 之后,DOP端子的电压从"L"变为"H"为止的时间。

3.5 过电流检测延迟时间3 (t_{IOV3})

过电流检测延迟时间3 (t_{IOV3}) 是从初始状态开始,使VMP端子的电压在瞬间变化为V_{IOV3}最小值-0.2 V之后,DOP端子的电压从"L"变为"H"为止的时间。

9. 有关SEL端子

S-8254系列备有控制端子。SEL端子是用于控制3节或者4节保护的切换而准备的。SEL端子在Low的情况下、由于V4节的过放电检测被禁止,即使V4节为短路,过放电检测也可使用于3节保护。SEL端子优先用于电池保护电路。SEL端子请务必使用在High或者是Low电位。

表6 通过SEL端子可设置的状态

7CO 1021	COLEMN 1 11 X ELIT IVIO
SEL端子	状态
High	4节保护
Open	未定
Low	3节保护

■ 时序图

1. 过充电检测、过放电检测

*1. ①:通常状态 ②:过充电状态

③: 过放电状态

备注 假设为在定电流时的充电。V_{EB+}表示为充电器的开路电压。

图8

*1. ①:通常状态 ②:过充电状态

备注 假设为在定电流时的充电。V_{EB+}表示为充电器的开路电压。

图9

■ 电池保护IC的连接例

1. 3节串联

图10

2. 4节串联

图11

	71	. 11,270 HB 11 2 22		
No.	记号	典型值	范围	单位
1	R _{VC1}	1*1	0 ~ 1	kΩ
2	R _{VC2}	1*1	0 ~ 1	kΩ
3	R _{VC3}	1*1	0 ~ 1	kΩ
4	R _{VC4}	1*1	0 ~ 1	kΩ
5	R _{DOP}	5.1	2 ~ 10	kΩ
6	R _{COP}	1	0.1 ~ 1	ΜΩ
7	R _{VMP}	5.1	1 ~ 10	kΩ
8	R _{CTL}	0	0 ~ 100	kΩ
9	R _{VINI}	1	0 ~ 100	kΩ
10	R _{SEL}	0	0 ~ 100	kΩ
11	R _{SENSE} .	-	0 ~	mΩ
12	R _{vss}	51 ^{*1}	10 ~ 51	Ω
13	C _{VC1}	0.1*1	0 ~ 0.33	μF
14	C _{VC2}	0.1*1	0 ~ 0.33	μF
15	C _{VC3}	0.1*1	0 ~ 0.33	μF
16	C _{VC4}	0.1*1	0 ~ 0.33	μF
17	Ссст	0.1	0.01 ~	μF
18	Ссрт	0.1	0.07 ~	μF
19	C _{VSS}	2.2 ^{*1}	2.2 ~ 10	μF
1. 请将讨滤器	参数设为R _{ves} ×	$C_{VSS} \ge 51 \mu F \bullet \Omega$, R_V	$_{\text{VC1}} \times C_{\text{VC1}} = R_{\text{VC2}}$	$\times C_{VC2} = R_{VC}$

表7 外接元器件参数

- *1. 请将过滤器参数设为R_{VSS} × C_{VSS} ≥ 51 μF•Ω, R_{VC1} × C_{VC1} = R_{VC2} × C_{VC2} = R_{VC3} × C_{VC3} = R_{VC4} × C_{VC4} = R_{VSS} × C_{VSS}。
- 注意1. 上述连接例的参数有可能不经预告而作更改。
 - 2. VDD-VSS间的滤波器参数推荐为112 μF•Ω左右。
 - 例 $C_{VSS} \times R_{VSS} = 2.2 \mu F \times 51 \Omega = 112 \mu F \cdot \Omega$

在设定VDD-VSS间的滤波器参数时,请通过实际的应用电路对瞬态电源变动以及过电流保护功能予以充分实测。如需要将VDD-VSS间的滤波器参数设定在 $112\,\mu F \cdot \Omega$ 范围外时,请向本公司的营业部门咨询。

3. 对上述连接例以外的电路未作动作确认,且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

■ 注意事项

- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- 电池的连接顺序并无特别要求,连接电池时有可能发生不能放电的情况。在这种情况下,应把VMP端子与VDD端子短路连接,或者连接充电器就可以恢复到通常状态。
- 过充电电池和过放电电池混杂在一起的情况下变为过充电状态与过放电状态,都不可能进行充电和 放电。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据(典型数据)

1. 消耗电流

2. 过充电检测/解除电压、过放电检测/解除电压、过电流检测电压以及各延迟时间

2. 3 V_{DU} - Ta

2.60

-40 -25

25 Ta [°C] 50

精工电子有限公司

75 85

2. 6 V_{IOV1} - Ta

2. 7 $V_{IOV2} - V_{DD}$

2. 8 V_{IOV2} - Ta

2. 9 $t_{IOV3} - V_{DD}$

2. 10 t_{IOV3} - Ta

2. 11 t_{CU} - C_{CT}

2. 12 t_{cu} - Ta

2. 13 t_{DL} - C_{DT}

2. 14 t_{DL} - Ta

2. 15 t_{IOV1} - C_{DT}

2. 16 t_{IOV1} - Ta

2. 17 t_{IOV2} - Ta

2. 18 t_{IOV3} - Ta

3. COP/DOP端子

3. 1 I_{COH} - V_{COP}

3. 3 IDOH - VDOP

3. 4 I_{DOL} - V_{DOP}

No. FT016-A-P-SD-1.1

TITLE	TSSOP16-A-PKG Dimensions	
No.	FT016-A-P-SD-1.1	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

No. FT016-A-C-SD-1.1

TITLE	TSSOP16-A-Carrier Tape		
No.	FT016-A-C-SD-1.1		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

Enlarged drawing in the central part

No. FT016-A-R-SD-1.1

TITLE	TSSOP16-A- Reel		
No.	FT016-A-R-SD-1.1		
SCALE		QTY.	2,000
UNIT	mm		
Seiko Instruments Inc.			

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。