### Definition: Inverse Matrix

Let A be an  $n \times n$  matrix. If there exists a matrix B such that  $AB = I_n$  and  $BA = I_n$ , then we say A is **invertible**, and the matrix B is called the **inverse** of A, denoted by  $A^{-1}$ .

#### Theorem

If a matrix is invertible, then there is only one possible inverse of A.

1. Let 
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
.

Let 
$$A = \begin{bmatrix} 5 & 6 \end{bmatrix}$$
.

(a) Verify that  $A^{-1} = \begin{bmatrix} -3 & 2 \\ \frac{5}{2} & \frac{-3}{2} \end{bmatrix}$  by showing  $AA^{-1} = I_2 = A^{-1}A$ .

$$AA^{-1} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$-9 + 10 = 1, 6 + (-\frac{12}{2}) = 0$$

$$A^{-1}A = \begin{bmatrix} -3 & 2 \\ 5/2 & -3/2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$-9 + 10 = 1$$

**(b)** Use the fact that 
$$A^{-1}A = I_2$$
 to solve  $\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$ .

$$\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5/2 \end{bmatrix} \begin{bmatrix} 3/2 \\ 3/2 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5/2 \\ 3/2 \end{bmatrix}$$

**2.** Let 
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, and assume that  $ad - bc \neq 0$ . Verify that  $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .

2. Let 
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, and assume that  $ad - bc \neq 0$ . Verify that  $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .

$$B \cdot A = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} da - bc & db - bd \\ -ca + ac & -cb + ad \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

# Theorem: Formula for $A^{-1}$ when A is $2 \times 2$

Let  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ . Define det A = ad - bc, which is called the **determinant** of A. \* The special number

\*1. If det 
$$A \neq 0$$
, then  $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .

**2.** If det A = 0, then A is *not* invertible, i.e.  $A^{-1}$  does not exist.



#### **Theorem**

Let A be an  $n \times n$  matrix. Then A is invertible if and only if its RREF is  $I_n$ . Further, when A is invertible, any sequence of row operations that transforms A to  $I_n$  will also transform  $I_n$  to  $A^{-1}$ .

# Theorem: Algorithm for finding $A^{-1}$ when A is $n \times n$

Let A be an  $n \times n$  matrix. Row reduce the augmented matrix  $[A \mid I_n]$  to RREF.

- If the RREF of  $[A \mid I_n]$  is  $[I_n \mid B]$ , then A is invertible, and  $B = A^{-1}$ .
- If the RREF of  $[A \mid I_n]$  is  $[\mathbf{not} \ I_n \mid B]$ , then A is not invertible.
- **3.** Find the inverse of A, if it exists.



(b) 
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$
  $\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix}$   $\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix}$   $\begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix}$   $\begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{bmatrix}$ 

