Introduction

Memory Map, Topic 2, Topic 3

Exercise class 1

Presenter:
Jürgen Mattheis

In cooperation with:
Pascal Walter

Based on the lecture of: Marco Zimmerling

November 8, 2022

University of Freiburg, Chair for Embedded Systems

Gliederung

About this exercise class

Task 1 - Memory map

Task 2 - Communication

Task 3 - Interrupt and Polling

Bonus

About this exercise class

Jürgen Mattheis University of Freiburg

About this exercise class

- based on the new lecture by Prof. Zimmerling
- ▶ the exercise class gets recorded and streamed online and is also hold in presence
- in rotation with the other tutor Pascal
- ► feedback for me: https://forms.gle/f3YN8EFrZ1vsfPoC6
- ▶ today a little preview of the exercises that await you
- Solving the exercises not directly necessary for the Studienleistung, important for exam ⇒ by passing the exam you're also going to get your Studienleistung

Jürgen Mattheis University of Freiburg

Jürgen Mattheis University of Freiburg

Task 1.1

 \triangleright 0x5FFF_FFFF - 0x4000_0000 + 1 = 0x2000_0000

 $2x2000_{-}0000 = 2 \cdot 16^{7} = 2 \cdot (2^{4})^{7} = 2 \cdot 2^{4 \cdot 7} = 2^{1+28} = 2^{29}$

Figure 6-1. Device Memory Zones

Task 1.1

Solution b:

0xFFFF_FFFF 0xE000_0000	Debug/Trace Peripherals
0xDFFF_FFFF 0xC000 0000	Unused
0xA000_0000	Unused
0x9FFF_FFFF 0x8000_0000	Unused
0x7FFF_FFFF 0x6000_0000	Unused
0x5FFF_FFFF 0x4000_0000	Peripherals
0x3FFF_FFFF	SRAM
0x1FFF_FFFF	Code

6.3.3.1 Peripheral Region

The 1MB region from 0x4000_0000 to 0x400F_FFFF|s dedicated to the system and application control peripherals of the device. On the MSP432P40Tix MCUs, a total of 128KB of this region is dedicated for peripherals, while the rest is reserved. Table 6-1 lists the peripheral allocation within this 1284 KB space. Note that all peripherals may not be available in all devices of the family (details in the REMARKS column). If a peripheral is listed as N/A for a particular device, treat the corresponding address space as research.

ADDRESS RANGE	PERIPHERAL	TABLE	REMARKS		
0x4000_2800 to 0x4000_2BFF	eUSCI_B2	Table 6-12	16-bit peripheral		
0x4000_2C00 to 0x4000_2FFF	eUSCI_B3	Table 6-13	16-bit peripheral		
0x4000_3000 to 0x4000_33FF	REF_A	Table 6-14	16-bit peripheral		
0x4000_3400 to 0x4000_37FF	COMP_E0	Table 6-15	16-bit peripheral		
0x4000_3800 to 0x4000_3BFF	COMP_E1	Table 6-16	16-bit peripheral		
0x4000_3C00 to 0x4000_3FFF	AES256	Table 6-17	16-bit peripheral		
0x4000_4000 to 0x4000_43FF	CRC32	Table 6-18	16-bit peripheral		
0x4000_4400 to 0x4000_47FF	RTC_C	Table 6-19	16-bit peripheral		
0x4000_4800 to 0x4000_4BFF	WDT_A	Table 6-20	16-bit peripheral		
0x4000_4C00 to 0x4000_4FFF	Port Module	Table 6-21	16-bit peripheral		
0x4000 5000 to 0x4000 53FF	Port Mapping Controller	Table 6-22	16-bit peripheral		

Figure 6-1, Device Memory Zones Figure 6-4. Peripheral Zone Memory Map

- $> 0 \times 4000 \text{_}4FFF 0 \times 4000 \text{_}4C00 + 1 = 0 \times 0400$
- $0x0400 = 4 \cdot 16^2 = 2^2 \cdot (2^4)^2 = 2^2 \cdot 2^{(4 \cdot 2)} = 2^{2+8} = 2^{10}$

Task 1.2

Figure 1: SRAM-cell array

Jürgen Mattheis University of Freiburg

Task 1.2

- u row select bits and w column select bits
- we need:
 - \triangleright 2^(u+w) memory cells
 - one u-bit decoder
 - ightharpoonup one 2^w -to-1 multiplexer
 - ► 2^w sense amplifiers

Jürgen Mattheis University of Freiburg

Task 2 - Communication

Task 2

Solution a:

- \triangleright Baudrate of 115200 $\frac{bits}{s}$
- We require 16 clock periods to sample 1bit
- Required clock frequency = $115200 \frac{bits}{s} \cdot \frac{16}{bits} = 1.8432 MHz$

Jürgen Mattheis University of Freiburg

Task 3 - Interrupt and Polling

Jürgen Mattheis Introduction University of Freiburg

Task 3 - Interrupts and Polling

Task 3

Solution a:

- Computation time C for the event: $\frac{100}{48\cdot10^6Hz} = 2.0833\mu s$
- The maximum response time in the worst case is P + C. This time should not exceed our deadline of $10\mu s$
- ► Therefore, we have $P + 2.0833\mu s \le 10\mu s \iff P \le 7.9167\mu s$
- Since our polling period may not be shorter than the computation time we obtain $P \ge 2.0833\mu s$. Therefore, our range is $P \in [2.0833\mu s, 7.9167\mu s]$

Solution a:

Task 3

Jürgen Mattheis Introduction University of Freiburg

Bonus

Bonus I

Hexadecimal System

Example:
$$\underline{beef}_{16} = 11 \cdot 16^3 + 14 \cdot 16^2 + 14 \cdot 16^1 + 15 \cdot 16^0$$

= $11 \cdot 4096 + 14 \cdot 256 + 14 \cdot 16 + 15$
= 48879

► all Bin and Hex assigned:

0	1	2	3	4	5	6	7	8	9
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001
A	В	C	D	E	F				
A 	B 	C 	D 	E 	F 				

Jürgen Mattheis University of Freiburg

Bonus II

Hexadecimal System

ightharpoonup Hex \Rightarrow Bin:

D 4 F 6 6 E 1101 0100 1111 0110 0110 1110

ightharpoonup Bin \Rightarrow Hex:

1101 0100 1111 0110 0110 1110 D 4 F 6 6 E

Bonus III

Hexadecimal System

► Derivation:

▶ idea: shifting a number works in hexadecimal system $1a_{16} \cdot 10_{16}^2 = 1a00$ decimal system $17 \cdot 10^2 = 1700$ and binary system $11_2 \cdot 10_2^2 = 1100_2$ quite similar.

Jürgen Mattheis University of Freiburg 18 / 20

Bonus IV

Hexadecimal System

but beacuse $16 = 2^4$ the hexadecimal and binary system are particulary easy to convert into each other.

Jürgen Mattheis University of Freiburg

Bonus

Quiz question

- ▶ How many bits / digits will a hex number with 5 digits have in binary system?
 - □ 10
 - 15
 - 20
 - 16

Bonus

Quiz question

- ▶ How many bits / digits will a hex number with 5 digits have in binary system?
 - □ 10
 - 15
 - **2**0
 - 16
- example: 0xa_aaaa = 0b1010_1010_1010_1010_1010
- ightharpoonup the binary number has 4 times as many bits because $16=2^4$