Experimental Physics

Julian Avila May 9, 2025

Universidad Distrital Francisco José de Caldas

Outline

- 1. Introduction
- 2. The Role of Instruments
- 3. From Artisans to Scientists
- 4. Reflections on Experience and Theory
- 5. Conclusion
- 6. References

Introduction

Experimental Physics: A Historical Perspective

In 1923, Felix Auerbach claimed that:

X-rays are not a natural phenomenon... they were invented by Röntgen.

This provocative view highlights the artificial character of experiments:

- · Experiments create, not just observe.
- Knowledge arises from human-made phenomena.

Experimental Physics: A Historical Perspective

In 1923, Felix Auerbach claimed that:

X-rays are not a natural phenomenon... they were invented by Röntgen.

This provocative view highlights the artificial character of experiments:

- · Experiments create, not just observe
- Knowledge arises from human-made phenomena.

Experimental Physics: A Historical Perspective

In 1923, Felix Auerbach claimed that:

X-rays are not a natural phenomenon... they were invented by Röntgen.

This provocative view highlights the artificial character of experiments:

- · Experiments create, not just observe.
- · Knowledge arises from human-made phenomena.

From Observation to Intervention

Since the 17th century, scholars debated:

- Is experiment a valid path to knowledge?
- Can making replace observing?

The experimentalist emerged to bridge theory and practice.

From Observation to Intervention

Since the 17th century, scholars debated:

- Is experiment a valid path to knowledge?
- · Can making replace observing?

The experimentalist emerged to bridge theory and practice.

From Observation to Intervention

Since the 17th century, scholars debated:

- Is experiment a valid path to knowledge?
- · Can making replace observing?

The experimentalist emerged to bridge theory and practice.

Christian Wolff's Third Man (1764)

Wolff called for a new figure:

A third man who unites science and art.

- · Rejected by both theorists and artisans
- Compared to a bat: neither bird nor quadruped

Christian Wolff's Third Man (1764)

Wolff called for a new figure:

A third man who unites science and art.

- Rejected by both theorists and artisans
- Compared to a bat: neither bird nor quadruped.

Christian Wolff's Third Man (1764)

Wolff called for a new figure:

A third man who unites science and art.

- · Rejected by both theorists and artisans.
- · Compared to a bat: neither bird nor quadruped.

Experimental Physics Enters Academia

18th–19th centuries: Experimentalists faced epistemic tension.

- Is experimental knowledge real science?
- Is manual manipulation compatible with scholarly traditions?

Over time, head and hand work gained legitimacy in science.

Experimental Physics Enters Academia

18th–19th centuries: Experimentalists faced epistemic tension.

- Is experimental knowledge real science?
- Is manual manipulation compatible with scholarly traditions?

Over time, head and hand work gained legitimacy in science.

Experimental Physics Enters Academia

18th–19th centuries: Experimentalists faced epistemic tension.

- Is experimental knowledge real science?
- Is manual manipulation compatible with scholarly traditions?

Over time, head and hand work gained legitimacy in science.

The Role of Instruments

Instruments as Extensions of the Senses

New fields like electricity relied on instruments.

- · Vacuum tubes modeled auroras.
- Volta's battery revealed microphysical phenomena.

Devices created phenomena that otherwise could not be observed.

Instruments as Extensions of the Senses

New fields like electricity relied on instruments.

- · Vacuum tubes modeled auroras.
- · Volta's battery revealed microphysical phenomena.

Devices created phenomena that otherwise could not be observed.

Instruments as Extensions of the Senses

New fields like electricity relied on instruments.

- · Vacuum tubes modeled auroras.
- · Volta's battery revealed microphysical phenomena.

Devices created phenomena that otherwise could not be observed.

Controversies of Artificial Experience

Artificial labs led to debates:

- Is knowledge from artificial settings valid?
- · What is the scope of lab-based insights?

State and industrial support helped labs enter universities

Controversies of Artificial Experience

Artificial labs led to debates:

- Is knowledge from artificial settings valid?
- What is the scope of lab-based insights?

State and industrial support helped labs enter universities

Controversies of Artificial Experience

Artificial labs led to debates:

- Is knowledge from artificial settings valid?
- What is the scope of lab-based insights?

State and industrial support helped labs enter universities.

From Artisans to Scientists

Merging Traditions: The Handwerksgelehrte

Late 19th century: experimentalists joined academia.

- "Scholars of the crafts"
- Lab knowledge gained equal status to textual knowledge

This marked the birth of modern experimental science.

Merging Traditions: The Handwerksgelehrte

Late 19th century: experimentalists joined academia.

- · "Scholars of the crafts"
- · Lab knowledge gained equal status to textual knowledge

This marked the birth of modern experimental science.

Merging Traditions: The Handwerksgelehrte

Late 19th century: experimentalists joined academia.

- · "Scholars of the crafts"
- · Lab knowledge gained equal status to textual knowledge

This marked the birth of modern experimental science.

New Teaching and New Methodologies

Experimental chairs were created in universities.

- Helmholtz and Maxwell promoted sensory experience
- Physics teaching emphasized tools and hands-on work
 Facts must be felt, not learned from description. Maxwe

New Teaching and New Methodologies

Experimental chairs were created in universities.

- Helmholtz and Maxwell promoted sensory experience
- Physics teaching emphasized tools and hands-on work
 Facts must be felt, not learned from description. Maxwel

New Teaching and New Methodologies

Experimental chairs were created in universities.

- Helmholtz and Maxwell promoted sensory experience
- Physics teaching emphasized tools and hands-on work
 Facts must be felt, not learned from description. Maxwell

Theory

Reflections on Experience and

Philosophical Reflections

Debates persisted over theory vs. experience. Joseph Dietzgen (1869): Even the lowest art of experiment is connected to theory.

Philosophical Reflections

Debates persisted over theory vs. experience. Joseph Dietzgen (1869): Even the lowest art of experiment is connected to theory.

Materialist and idealist views of knowledge needed mediation.

Philosophical Reflections

Debates persisted over theory vs. experience. Joseph Dietzgen (1869): Even the lowest art of experiment is connected to theory.

Materialist and idealist views of knowledge needed mediation.

The Artificial as Method

By 1900, physics was seen as a technical science.

- It created artificial phenomena.
- It required intentional acts.

Otto Wiener: Instruments extend human senses

The Artificial as Method

By 1900, physics was seen as a technical science.

- It created artificial phenomena.
- It required intentional acts.

Otto Wiener: Instruments extend human senses

The Artificial as Method

By 1900, physics was seen as a technical science.

- It created artificial phenomena.
- It required intentional acts.

Otto Wiener: Instruments extend human senses.

Condensed Experience

Auerbach: theory builds from experience.

- Not a test of theory, but its foundation
- Like a dynamo: small experience sparks large knowledge

Abstract structures must always check back with reality

Condensed Experience

Auerbach: theory builds from experience.

- · Not a test of theory, but its foundation.
- · Like a dynamo: small experience sparks large knowledge.

Abstract structures must always check back with reality.

Condensed Experience

Auerbach: theory builds from experience.

- · Not a test of theory, but its foundation.
- · Like a dynamo: small experience sparks large knowledge.

Abstract structures must always check back with reality.

Theoretical Extremes

Some theorists reversed the relation:

If the world contradicts theory, the world must be wrong.

Theory and experience became increasingly specialized

Theoretical Extremes

Some theorists reversed the relation:

If the world contradicts theory, the world must be wrong.

Theory and experience became increasingly specialized

Theoretical Extremes

Some theorists reversed the relation:

If the world contradicts theory, the world must be wrong.

Theory and experience became increasingly specialized.

Conclusion

Conclusion: An Epistemological Shift

By the 20th century, experiment became central to science.

- Instruments enabled new phenomena.
- Sensuous experience gained epistemic legitimacy.

Experimental physics unified knowing and doing.

Conclusion: An Epistemological Shift

By the 20th century, experiment became central to science.

- · Instruments enabled new phenomena.
- · Sensuous experience gained epistemic legitimacy.

Experimental physics unified knowing and doing.

Conclusion: An Epistemological Shift

By the 20th century, experiment became central to science.

- · Instruments enabled new phenomena.
- · Sensuous experience gained epistemic legitimacy.

Experimental physics unified knowing and doing.

References

References i

References

[1] H. Otto Sibum. **"What Kind of Science Is Experimental Physics?"** In: *Science* 306.5693 (Oct. 2004), pp. 60–61. ISSN: 1095-9203. DOI: 10.1126/science.1093598.

Thank you!

Ouestions or comments?