

Department of Information Technology

A.P. Shah Institute of Technology G.B.Road, Kasarvadavli, Thane(W), Mumbai-400615

UNIVERSITY OF MUMBAI Academic Year 2019-2020

A Project Report on Autonetics and Administration for IT Laboratories

Submitted in partial fulfillment of the degree of Bachelor of Engineering(Sem-8)

in

INFORMATION TECHNOLOGY

By

Karthikeyan (16104050) Uddhabendra Maity (16104062) Atharv Shetty (16104061)

Under the Guidance of Dr. Sameer Nanivadekar Prof. Vishal Badgujar

PRESENTATION FLOW

- Abstract
- Problem Definition
- Objective
- Introduction
- Literature Survey
- Project Timeline Chart
- Theory (Proposed work/Implementation/Diagrams etc.)
- Conclusion
- Future Scope
- References
- Publication

ABSTRACT

- ❖ Majority of IT labs in today's academic institutions face operational issues in the management of multiple systems simultaneously. The best example would be when a particular software needs to be installed in the labs, it becomes a tedious and time consuming process for the lab assistant to manually install the software in each and every system in the lab.
- ❖ Also in some cases where the students forget to shutdown their respective computers, it becomes the responsibility of the lab assistant to shutdown the PCs manually. These challenges cause lack of access control and inadequate security. Moreover, there is lot of work pressure which leads to sub-optimal work schedules. To keep track of access records of the systems, we would also be designing a web-based GUI which records and displays the access information of PCs too.

PROBLEM DEFINITION

- In current labs of university most of the administrative work is done manually which consumes lot of time and efforts.
- With the help of Ansible framework and a proper supporting GUI which can unleash and maximize the full potential of the servers, many of the current lab administrative problems can be resolved.

OBJECTIVES

- To Automate the Software installation process.
- To Automate the PC shutdowns.
- To regulate the user identity of every PC along with time in a digital format.
- To create a GUI for authorized & effortless execution of playbooks.
- To unleash the full potential of Ansible for IT automation.

INTRODUCTION

- As we are using a free and open-source platform for our purpose, many labs can be automated using the same architecture at a very feasible price.
- Ansible provides the automation of IT infrastructure which includes creation of virtual machine, installation of new softwares, Docker containers.
- We can configure our own cluster and make it up and running without any sort of human intervention. Ansible does its work like a professional if customized with proper facts and experience.
- Ansible works over SSH ensure that the target Machine or Server is accessible over SSH. It supports all type of SSH authentication.

LITERATURE SURVEY

Sr No.	1
Title/Author	M. Balliauw and X. Decoster, "Automated Delivery," in Pro NuGet, pp. 179–214, Springer, 2013
Method used	Automation using Network interface and scripting
Advantage	Effective Package Management
Disadvantage	 ➤ High Bandwidth Consumption ➤ Client-Server node Failure leads to catastrophic issues.
Extracted Methodology	Dependency Management

Sr No.	2
Title/Author	D. Palma and T. Spatzier "Topology and orchestration specification for cloud applications (TOSCA)," 2015
Method used	Management using Cloud Computing With cloud based applications.
Advantage	Does not mandate the use of any specific security mechanism or technology
Disadvantage	Expensive Infrastructure and maintenance for small Areas.
Extracted Methodology	Security considerations

Sr No.	3
Title/Author	Pavel MasekMartin ŠtůsekJan Krejčí "Unleashing Full Potential of Ansible Framework: University Labs Administration " 2018
Method used	Ansible Framework
Advantage	Supports a variety of frameworks
Disadvantage	Limited to the capabilites of the Ansible framework
Extracted Methodology	Effective usage of Playbook in remote management

Project Timeline Chart

PROPOSED ARCHITECTURE

TECHNOLOGY STACK

- Ansible tool is used in our project
- Ansible server is used for hosting the web application
- Database: MariaDB
- Nodes will be Linux, Ubuntu, Windows
- Front End: Semaphore, Python, HTML5

ACTIVITY DIAGRAM

Lab in-charge's perspective

ACTIVITY DIAGRAM

Student's perspective

USE CASE DIAGRAM

Figure 5 : Use Case

CLASS DIAGRAM

IMPLEMENTATION

. Sample playbook for installing the essential set of tools for networking in a college laboratory infrastructure:-

```
*networkingtools.yml
        Æ
                                                              Open ▼
2# Installing All Essential tools for networking for lab 313
  ( Faster Process )
 3 - hosts: client1
    become: yes
    become method: sudo
    tasks:
 7
    - name: Installing all essential Networking tools
9
      apt:
        name: "{{ item }}"
10
11
      with items:
12
        - nmap
13
        - iftop
14
        - vnstat
15
        - iptraf
16
        - hping3
17
        - dstat
18
        - bmon
19
        - tcpdump
        - wireshark
20
```

Ansible login GUI for LAB instructors

User Manager for Admins

Playbooks for different LABS

Inventory file

SSH access keys

Key Name	key	
Key Type	SSH Key	•
Public Key	ssh- <u>rsa</u>	
	AAAAB3NzaC1yc2EAAAADAQABAA	
	pMdWz+ycHle9nZHNUuND4MQ7E9	**********
	LlviRz+fkDAJbc0VY118K3u3syt7JLI	
	NxHL4LebatkHoBk9CEvgqW3hqcrl0	
	YaMrlyK2N6n3y0EzqsQljpDqNAXqV	
	ga3sobdcMdu7kH0DvLjyMPagzd8p	COMPOUN
	5WtOTggBTgvUCMxV4s2WdC5nnQl	
	orA+Dzntfz1L76DiV2tCicOr2UFhiYn:	
	LJ7ASPquEif1YMjB7NN9sL8P3X9V	,
	v+MO/xexbRbWDhpfkrO9jWVgZePz	
	Sdwf/sNB0BCM0VzPa3ll9uJ/BVz55 apsit@ansadm	PYXB
	S. H. L. L. H. L.	
	Public key is optional (unless you are u	
	SSH certificates) however you should	
	so you can identify your private key by	
	fingerprint. Private keys are not availab	ie.

Student Lab Utilization Record

Centralized monitoring of lab utilization logs

UserID wise Records

Sr No.	Username	Batch	Subject	Lab No.	Date and Time(yyyy-mmdd hh:mm:ss)
1	18101001	B1	ASL	317	2020-02-09 08:22:13
2	18101001	B1	AL	303	2019-09-28 13:59:48
3	18101001	B2	ASL	302	2019-09-22 14:19:36
4	18101001	В3	ASL	406	2019-09-22 14:18:43
5	18101001	В3	ASL	406	2019-09-22 14:17:22
6	18101001	B2	ASL	303	2019-09-22 14:10:06
7	18101001	B2	NDL	317	2019-09-22 14:07:59
8	18101001	B1	NDL	313	2019-09-22 14:06:20
9	18101001	B1	NDL	317	2019-09-22 14:04:53
10	18101001	B2	ISL	405	2019-10-29 16:18:19
11	18101001	B1	AL	303	2019-09-28 14:01:08
12	18101001	B1	AL	303	2019-09-28 14:07:00

CONCLUSION

The main motive of our work is to create a trustworthy, efficient and real-time system for administration of IT labs in universities. Now all the administrative tasks inside the lab can be executed at a very minimal time and effort with our system. The overall purpose was to minimize the efforts and ensure rapid deliveries of the needed softwares through automation. These objectives have been checked successfully and we hope to enhance the system furthermore and increase the advancements in our system. Thus we are making an effort to implement this system in the current university labs and modernize the IT labs methodically.

FUTURE SCOPE

Integration of IOT: We plan to integrate IOT interfaces in our system for controlling all the electrical appliances throughout the lab remotely.

Using Docker containers for easy deployment of applications in real time.

Enhancing centralized administration: Providing real time log generation to the system administrators for moderating the student's usage during exams or placements.

REFERENCES

- [1] Xavier Decoster and Maarten Balliauw"Automated Delivery in Pro Nuget" October 2016.
- [2] D.Palma and T.Spatzier. December 2016 "Topology and orchestration specification for cloud applications (TOSCA)" November 2013
- [3] Pavel MasekMartin and ŠtůsekJan Krejčí, "Unleashing Full Potential of ansible Framework: University Labs Administration" May 2018

PUBLICATION

Paper entitled "Autonetics and Administration for IT Laboratories" has been presented in "IEEE International Conference on Convergence to Digital World – Quo Vadis (ICCDW 2020)" by Karthikeyan Venkatachalam, Uddhabendra Maity, Atharv Shetty, Dr. Sameer Nanivadekar and Mr. Vishal Badgujar.