Assignment 11 Exercises: 11.1-11.6

Exercise 11.1a Prove there exist $a, b \in \mathbb{Q}$ such that $a^b \in \mathbb{Q}$.

Proof. Fix
$$a = 1$$
, $b = 2$. Then $a^b = 1^2 \in \mathbb{Q}$.

Exercise 11.1b Prove there exist $a, b \in \mathbb{Q}$ such that $a^b \in \mathbb{R} - \mathbb{Q}$.

Solution. Fix a=2, $b=\frac{1}{2}$. Then $a^b=2^{\frac{1}{2}}=\sqrt{2}$, which we have previously proved to be irrational.

Exercise 11.1c Prove there exist $a, b \in \mathbb{R} - \mathbb{Q}$ such that $a^b \in \mathbb{R} - \mathbb{Q}$.

Proof. Let $a, b \in \mathbb{R} - \mathbb{Q}$. There are two cases.

Case 1: $\sqrt{2}^{s}qrt2$ is irrational.

Then $a, b = \sqrt{2}$, so we are done.

Case 2: $\sqrt{2}^{\sqrt{2}}$ is rational.

Then $\sqrt{2}^{\sqrt{2}}\sqrt{2}$ is irrational.

$$(\sqrt{2}^{\sqrt{2}})\sqrt{2} = \sqrt{2}^{\sqrt{2}+1}$$

So let $a = \sqrt{2}, b = \sqrt{2} + 1$. We are done.

Exercise 11.1d Prove there exist $a \in \mathbb{Q}$ and $b \in \mathbb{R} - \mathbb{Q}$ such that $a^b \in \mathbb{Q}$.

Proof. Fix
$$a = 1, b = \sqrt{2}$$
. So $a^b = 1^{\sqrt{2}} = 1 \in \mathbb{Q}$.

Exercise 11.1e Prove there exist $a \in \mathbb{Q}$ and $b \in \mathbb{R} - \mathbb{Q}$ such that $a^b \in \mathbb{R} - \mathbb{Q}$

Proof. Fix $a \in \mathbb{Q}$, $b \in \mathbb{R} - \mathbb{Q}$. There are two cases.

Case 1: $2^{\frac{1}{\sqrt{2}}}$ is irrational.

Then let $a=2, b=\frac{1}{\sqrt{2}}$. We are done.

Case 2: $2^{\frac{1}{\sqrt{2}}}$ is rational.

Then let
$$a = 2^{\frac{1}{\sqrt{2}}}, b = \frac{1}{\sqrt{2}}$$
. So $2^{\frac{1}{\sqrt{2}}} = 2^{\frac{1}{2}} = \sqrt{2}$, which is irrational.

Exercise 11.1f Prove there exist $a \in \mathbb{R} - \mathbb{Q}$ and $b \in \mathbb{Q}$ such that $a^b \in \mathbb{Q}$.

Proof. Fix
$$a = \frac{1}{\sqrt{2}}, b = 2$$
, so $a^b = (\frac{1}{\sqrt{2}})^2 = \frac{1}{2} \in \mathbb{Q}$.

Exercise 11.1g Prove there exist $a \in \mathbb{R} - \mathbb{Q}$ and $b \in \mathbb{Q}$ such that $a^b \in \mathbb{R} - \mathbb{Q}$.

Proof. Fix $a = \frac{1}{\sqrt{2}}, b = 1$, so $a^b = (\frac{1}{\sqrt{2}})^1 = \frac{1}{\sqrt{2}} \in \mathbb{R} - \mathbb{Q}$.

Exercise 11.2a Let n be an integer larger than $\frac{1}{y-x}$. We then have $ny - nx = n(y-x) < \frac{1}{y-x}(y-x) = 1$. Explain why this proves that there is an integer strictly between nx and ny.

Proof. Since $n, x, y \in \mathbb{Z}$, and n(y - x) < 1, this means that $y - x \in \mathbb{Z}$.

Hence, ny < nx + 1. Let $z \in \mathbb{Z}$ be the largest integer smaller than nx. Then, $z < nx \le z + 1 < nx + 1 < ny$. Hence, $z \in (nx, ny)$. So we are done.

Exercise 11.2b Let m be an integer between nx and ny. Show $\frac{m}{n} \in \mathbb{Q}$ is in the interval (x,y).

Proof. Let $m \in \mathbb{Z}$, nx < m < ny. Then $x < \frac{m}{n} < y$. So we are done.

Exercise 11.3 Prove or disprove: Given $x \in \mathbb{Q}$ and $y \in \mathbb{R} - \mathbb{Q}$, then $xy \in \mathbb{R} - \mathbb{Q}$.

Proof. Assume, by way of contradiction, that $x \in \mathbb{Q}$ and $y \in \mathbb{R} - \mathbb{Q}$ and $xy \in \mathbb{Q}$.

Thus, $x = \frac{p}{q}, xy = \frac{r}{s}$ for some $p, r \in \mathbb{Z}$ and $q, s \in \mathbb{N}$.

Note that $p \neq 0$.

Then $y = \frac{q}{p} \frac{p}{q} y = \frac{q}{p} x y = \frac{qr}{ps}$, but this is a contradiction, since $\frac{qr}{ps} \in \mathbb{Q}$ but $y \in \mathbb{R} - \mathbb{Q}$. So we are done.

Exercise 11.4 Prove or disprove: Let $s \in \mathbb{Z}$. If 6s - 3 is odd, then s is odd.

Proof. Assume, by way of the contrapositive that s is even, so s = 2k for some $k \in \mathbb{Z}$.

Thus, 6s - 3 = 6(2k) - 3 = 12k - 3 = 12k - 4 + 1 = 2(6k - 2) + 1, which is odd. this violates the contrapositive property for truthfulness.

So this statement is disproved.

Exercise 11.5 Prove or disprove: There exists an integer x such that $x^2 + x$ is odd.

Proof. Let x be an arbitrary integer. There are two cases.

Case 1: Suppose x is odd.

Thus, x = 2k + 1 for some $k \in \mathbb{Z}$.

 $x^2 + x = (2k+1)^2 + (2k+1) = 4k^2 + 4k + 1 + 2k + 1 = 4k^2 + 6K + 2 = 2(2k^2 + 3k + 1),$ which is even.

Case 2: Suppose x is even.

Thus, x = 2k for some $k \in \mathbb{Z}$.

 $x^{2} + x = (2k)^{2} + 2k = 4k^{2} + 2k + 2(2k^{2} + k)$, which is even.

Thus, in all cases, $x^2 + x$ is even for any integer x.

Exercise 11.6 Prove or disprove: Given any positive rational number a, there is an irrational number $x \in (0, a)$.

Proof. Let $a \in \mathbb{Q}, a > 0$.

Assume $\frac{1}{\sqrt{2}}$ is irrational.

Since 1 < 2, $\sqrt{1} < \sqrt{2}$. Thus, $\frac{1}{\sqrt{1}} = 1 > \frac{1}{\sqrt{2}}$. $0 < a\frac{1}{\sqrt{2}} < a$. Since a rational number multiplied by an irrational number is always irrational, and since $\frac{1}{\sqrt{2}} < 1$, we are done.