Logic Inference

Previous Lecture

- Laws of logic
- Expressions for implication, biconditional, exclusive or
- Valid and invalid arguments
- Logic inference

General Definition of Inference

The general form of an argument in symbolic form is

- The argument is valid if whenever each of the premises is true the conclusion is also true
- The argument is valid if and only if the following compound statement is a tautology

$$(p_1 \land p_2 \land p_3 \land ... \land p_n) \rightarrow q$$

Rules of Inference

Verifying if a complicated statement is a tautology is nearly impossible, even for computer. Fortunately, general arguments can be replaced with small collection of simple ones, rules of inference.

Modus ponens

$$\frac{b}{b} \rightarrow d$$

"If you have a current password, then you can log onto the network.

You have a current password.

Therefore, you can log onto the network."

Rule of Syllogism

 $\begin{array}{c}
 p \rightarrow q \\
 q \rightarrow r \\
 \vdots p \rightarrow r
\end{array}$

The corresponding tautology $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

"If you send me an e-mail, then I'll finish writing the program. If I finish writing the program, then I'll go to sleep early."

- p 'you will send me an e-mail'
- q 'I will finish writing the program'
- r 'I will go to sleep early'

"Therefore, if you send me an e-mail, then I'll go to sleep early"

Modus Tollens

• The corresponding tautology $((p \rightarrow q) \land \neg q) \rightarrow \neg p$

"If today is Friday, then tomorrow I'll go skiing".

"I will not go skiing tomorrow".

p - 'today is Friday'

q - 'I will go skiing tomorrow'

"Therefore, today is not Friday"

Rule of Disjunctive Syllogism

• p ∨ q <u>¬p</u> ∴ q

• The corresponding tautology $((p \lor q) \land \neg p) \rightarrow q$

"I'll go skiing this weekend.

I will not go skiing on Saturday."

- p 'I will go skiing on Saturday'
- q 'I will go skiing on Sunday'

"Therefore, I will go skiing on Sunday"

Rule for Proof by Cases

 $\begin{array}{c}
 p \to r \\
 q \to r \\
\hline
 \therefore (p \lor q) \to r
\end{array}$

• The corresponding tautology $((p \rightarrow r) \land (q \rightarrow r)) \rightarrow ((p \lor q) \rightarrow r)$

"If today is Saturday, then I'll go skiing.

If today is Sunday, then I'll go skiing.

- p 'today is Saturday'
- q 'today is Sunday'
- r `l'll go skiing'

"Therefore, if today is Saturday or Sunday, then I will go skiing"

Rules of Contradiction, Simplification, and Amplification

Rule of Contradiction

Reductio ad Absurdum

Rule of Simplification

$$\frac{p \land q}{...p}$$
 The corresponding tautology $(p \land q) \rightarrow p$

Rule of Amplification

$$\frac{p}{\therefore p \vee q}$$
 The corresponding tautology $p \to (p \vee q)$

Logic Inference

The goal of an argument is to infer the required conclusion from given premises

 Formally, an argument is a sequence of statements, each of which is either a premises, or obtained from preceding statements by means of a rule of inference

Example

- Premises:
- "It is not sunny this afternoon and it is colder than yesterday.
 - We will go swimming only if it is sunny.
 - If we do not go swimming, then we will take a canoe trip.
 - If we take a canoe trip, then we will be home by sunset."
- Conclusion: "We will be home by sunset."
- Notation:
 p it is sunny this afternoon
 - q it is colder than yesterday s we will take a canoe trip
 - r we will go swimming t we will be home by sunset
- Premises: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, and $s \rightarrow t$
- Conclusion: t

Example (cntd)

• We have $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, and $s \rightarrow t$

Step	Reason
1	n ro maio o
1. ¬p ∧ q	premise
2. ¬p	simplification
3. $r \rightarrow p$	premise
4. ⊸r	modus tollens
5. $\neg r \rightarrow s$	premise
6. s	modus ponens
7. $s \rightarrow t$	premise
8. t	modus ponens

Logic Puzzles

A prisoner must choose between two rooms each of which contains either a lady, or a tiger. If he chooses a room with a lady, he marries her, if he chooses a room with a tiger, he gets eaten by the tiger. The rooms have signs on them:

at least one of these rooms contains a lady

a tiger is in the other room

It is known that either both signs are true or both are false

Logic Puzzles (cntd)

- **Notation:**
 - p the first room contains a lady
 - q the second room contains a lady

Premises:

$$(p \lor q) \rightarrow \neg p,$$

 $\neg p \rightarrow (p \lor q)$

$$\neg p \rightarrow (p \lor q)$$

Logic Puzzles (cntd)

Argument

 $(p \lor q) \rightarrow \neg p,$ $\neg p \rightarrow (p \lor q)$

- 1. $\neg p \rightarrow (p \lor q)$ premise
- 2. $p \lor p \lor q$ expression for implication
- 3. $p \lor q$ idempotent law
- 4. $(p \lor q) \rightarrow \neg p$ premise
- 5. ¬p modus ponens
- 6. q rule of disjunctive syllogism to 3 and 5

Conjunctive Normal Form

 A literal is a primitive statement (propositional variable) or its negation

A clause is a disjunction of one or more literals

$$p \lor q$$
, $p \lor \neg q \lor r$, $\neg q$, $\neg s \lor s \lor \neg r \lor \neg q$

A statement is said to be a Conjunctive Normal Form (CNF) if it is a conjunction of clauses

$$p \wedge (p \vee \neg q) \wedge (\neg r \vee \neg p)$$

$$p \wedge q \wedge (\neg r \vee \neg p)$$

$$(\neg r \vee q) \wedge (p \vee \neg q \vee \neg s \vee r) \wedge (\neg r \vee \neg p)$$

$$\neg r$$

CNF Theorem

Theorem

Every statement is logically equivalent to a certain CNF.

Proof (sketch)

Let Φ be a (compound) statement.

- Step 1. Express all logic connectives in Φ through negation, conjunction, and disjunction. Let Ψ be the obtained statement.
- Step 2. Using DeMorgan's laws move all the negations in Ψ to individual primitive statements. Let Θ denote the updated statement
- Step 3. Using distributive laws transform Θ into a CNF.

Example

Find a CNF logically equivalent to $(p \rightarrow q) \rightarrow r$

Step 1.
$$\neg(\neg p \lor q) \lor r$$

Step 2.
$$(p \land \neg q) \lor r$$

Step 3.
$$(p \lor r) \land (\neg q \lor r)$$

Rule of Resolution

- The corresponding tautology $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$
 - "Jasmine is skiing or it is not snowing.

 It is snowing or Bart is playing hockey."
 - p 'it is snowing'
 - q 'Jasmine is skiing'
 - r 'Bart is playing hockey'

"Therefore, Jasmine is skiing or Bart is playing hockey"

Computerized Logic Inference

- Convert the premises into CNF
- Convert the negation of the conclusion into CNF
- Consider the collection consisting of all the clauses that occur in the obtained CNFs
- Use the rule of resolution to obtain the empty clause (\varnothing). If it is possible, then the argument is valid. Otherwise, it is not.

Why empty clause?

The only way to produce the empty clause is to apply the resolution rule to a pair of clauses of the form p and $\neg p$. Therefore, the collection of clauses is contradictory. In other words, for any choice of truth values for the primitive statements, if premises are true, the conclusion cannot be false.

Example

- A lady and a tiger
- Premises: $\neg p \rightarrow (p \lor q), (p \lor q) \rightarrow \neg p$
- Negation of the conclusion: ¬q
- Clauses:

$$\neg p, p \lor q, \neg q$$

Argument:

 $p \lor q$ premise \varnothing resolvent

¬q premise

p resolvent

¬p premise

Homework

Exercises from the Book:

No. 5, 9a (page 84-85)

- Prove that resolution is a valid rule of inference
- Same arrangements as in the `A lady or a tiger' problem. This time if a lady is in Room I, then the sign on it is true, but if a tiger is in it, then the sign is false. If a lady is in Room II, then the sign on it is false, and if a tiger is in it, then the sign is true. Signs are

both rooms contain ladies

both rooms contain ladies