Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Zykina Maria Гр. 320207

Вариант 4

Часть I. Планирование адресного пространства IPv6

Задание 1.1: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:4d61:7269:6100:0/104

Задание 1.2: разбить сеть из п.1.1 на 4 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней полсетей

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	2001:db8:0:4eef:4d61:7269:6100:0/106
Префикс $N_{\text{C,PëPS}}$	2001:db8:0:4eef:4d61:7269:61c0:0/106

Часть II. Планирование адресного пространства IPv4

X0 = целая часть (N*16)/256+10 = целая часть (4*16)/256+10 = 10

X1 = остаток от деления (N*16)/256 = остаток от деления (4*16)/256 = 64

Дано: Сеть 10.64.0.0/12

Задание 2.1.1: разбить сеть на 32 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	64	U	U
Адрес сети	00001010	01000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 1 бит из 2-го октета.

3. Итого, получается, что сеть 10.64.0.0/12 мы разбили на 32 подсети, в каждой из которых по 32766 узлов, указываем первые 5 подсетей:

	10	64	0	0
Адрес сети дв.с	00001010	01000000	00000000	00000000
Маска дв.с	11111111	11111111	10000000	00000000
	255	255	128	0

200	200	120
$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.64.0.0/	17
Λ дрес первого узла N_1	10.64.0.1	
Адрес последнего узла N_1	10.64.127.2	254
Широковещательный адрес N_1	10.64.127.2	255
Адрес сети $N_2/$ Префикс N_2	10.64.128.0	0/17
Адрес первого узла N_2	10.64.128.1	1
${ m A}$ дрес последнего узла N_2	10.64.255.2	254
Широковещательный адрес N_2	10.64.255.5	255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	10.65.0.0/	17
Λ дрес первого узла N_3	10.65.0.1	
Адрес последнего узла N_3	10.65.127.5	254
Широковещательный адрес N_3	10.65.127.2	255
$oxed{A}$ дрес сети $N_4/$ Префикс N_4	10.65.128.0	0/17
Λ дрес первого узла N_4	10.65.128.3	1
Адрес последнего узла N_4	10.65.255.2	254
Широковещательный адрес N_4	10.65.255.2	255
$oxed{A}$ дрес сети $N_5/$ Префикс N_5	10.66.0.0/	17
Λ дрес первого узла N_5	10.66.0.1	
Адрес последнего узла N_5	10.66.127.254	
Широковещательный адрес N_5	10.66.127.2	255

Дано: Сеть 10.64.0.0/12

Задание 2.1.2: разбить сеть на 20 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(20\leqslant 2^5=32)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 1 бит из 2-го октета (получается, что сеть можно разбить на 32 подсетей: $2^5=32$; оставшиеся 15 бит идут под узлы: $2^{15}-2=32766$ в каждой подсети).

3. Указываем первую и последнюю подсети:

Адрес сети $N_1/$ Префикс N_1	10.64.0.0/17
Адрес первого узла N_1	10.64.0.1
Адрес последнего узла N_1	10.64.127.254
Широковещательный адрес N_1	10.64.127.255

Λ дрес сети $N_2/$ Префикс N_2	10.73.128.0/17
Λ дрес первого узла N_2	10.73.128.1
Адрес последнего узла N_2	10.73.255.254
Широковещательный адрес N_2	10.73.255.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 64 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	64	0	0
Адрес сети	00001010	01000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=6, т.к. $2^6-2=62$. Т.е. нужно выбрать такую маску, которря выделит ровно 6 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{14}=32768$ подсетей по 62 узла(68) в каждой.

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	$\boxed{10.79.254.192/26}$
Адрес первого узла N_1	10.79.254.193
Адрес последнего узла N_1	10.79.254.254
Широковещательный адрес N_1	10.79.254.255
$oxed{A}$ дрес сети $N_2/$ Префикс N_2	$\fbox{10.79.255.0/26}$
Адрес первого узла N_2	10.79.255.1
Адрес последнего узла N_2	10.79.255.62
Широковещательный адрес N_2	10.79.255.63
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	$\fbox{10.79.255.64/26}$
Адрес первого узла N_3	10.79.255.65
Адрес последнего узла N_3	10.79.255.126
Широковещательный адрес N_3	10.79.255.127

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	$oxed{10.79.255.128/26}$
Адрес первого узла N_4	10.79.255.129
Адрес последнего узла N_4	10.79.255.190
Широковещательный адрес N_4	10.79.255.191
Адрес сети $N_5/$ Префикс N_5	$\fbox{10.79.255.192/26}$
Адрес первого узла N_5	10.79.255.193
Адрес последнего узла N_5	10.79.255.254
Широковещательный адрес N_5	10.79.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 25 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	64	0	0
Адрес сети	00001010	01000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=5, т.к. $2^5-2=30 \geqslant 25$.

	10	64	U	U
Адрес сети дв.с	00001010	01000000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11100000
	255	255	255	224

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	10.64.0.0/27
Адрес первого узла N_1	10.64.0.1
Адрес последнего узла N_1	10.64.0.30
Широковещательный адрес N_1	10.64.0.31

Адрес сети $N_2/$ Префикс N_2	$\fbox{10.79.255.224/27}$
Адрес первого узла N_2	10.79.255.225
Адрес последнего узла N_2	10.79.255.254
Широковещательный адрес N_2	10.79.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 16 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	64	0	0
Адрес сети	00001010	01000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=5, т.к. $2^5-2=30$.

	10	64	0	0
Адрес сети дв.с	00001010	01000000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11100000
	255	255	255	224

3. Указываем последние 5 подсетей:

$oxed{A}$ дрес сети $N_1/$ Префикс N_1	10.79.255.96/27
${ m A}$ дрес первого узла N_1	10.79.255.97
Адрес последнего узла N_1	10.79.255.126
Широковещательный адрес N_1	10.79.255.127
Адрес сети $N_2/$ Префикс N_2	10.79.255.128/27
Адрес первого узла N_2	10.79.255.129
Адрес последнего узла N_2	10.79.255.158
Широковещательный адрес N_2	10.79.255.159

$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	$ \boxed{ 10.79.255.160/27 } $
Адрес первого узла N_3	10.79.255.161
Адрес последнего узла N_3	10.79.255.190
Широковещательный адрес N_3	10.79.255.191
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	$\fbox{ 10.79.255.192/27}$
Адрес первого узла N_4	10.79.255.193
Адрес последнего узла N_4	10.79.255.222
Широковещательный адрес N_4	10.79.255.223
$oxedsymbol{\Lambda}$ дрес сети $N_5/$ Префикс N_5	$\fbox{ 10.79.255.224/27}$
Адрес первого узла N_5	10.79.255.225
Адрес последнего узла N_5	10.79.255.254
Широковещательный адрес N_5	10.79.255.255