Problem 1: (15 pts) Give the following definitions

- (a) (5 pts) Assume $f: D \to \mathbb{R}$, $x_0 \in D$ and x_0 is an accumulation point of D. Define what it means for f to be differentiable at x_0 .
- (b) (5 pts) Assume $f: D \to \mathbb{R}$, and $E \subset D$. Define what it means for f to be uniformly continuous on E.
- (c) (5 pts) Assume $f: D \to \mathbb{R}$, and $x_0 \in D$. Define what it means for f to be continuous at x_0 .

Problem 2: (10 pts) Give an example of an open cover of the set [1,5) that has no finite subcover.

Problem 3: (15 pts) State the following theorems:

- (a) (5pts) The Mean Value Theorem
- (b) (5pts) The Extreme Value Theorem
- (c) (5pts) The Intermediate Value Theorem

Problem 4: (12 pts) Prove that the equation $x^3 + 3x + 1 = 0$ has exactly one root in the interval [-2, 2].

Problem 5: (10 pts) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that the set $A = \{x \in \mathbb{R} \mid f(x) = 0\}$ is a closed subset of \mathbb{R} .

Problem 6: (10 pts) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0 \\ 0 & x = 0 \end{cases}$.

Show that f'(x) exists for all $x \in \mathbb{R}$, but the function $f' : \mathbb{R} \to \mathbb{R}$ is not continuous at 0.

Problem 7: (24 pts) Indicate by writing T or F whether each statement is true or false. Give no proofs.

- (1) Every uniformly continuous function is differentiable. (F)
- (2) If $f: J \to \mathbb{R}$ is defined by $f(n) = n^2$, then f is uniformly continuous. (T)
- (3) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $E \subset \mathbb{R}$ is open, then f(E) is open. (F)
- (4) If $f: \mathbb{R} \to \mathbb{R}$ is differentiable and f'(0) = 0, then f is not one-to-one. (F)
- (5) If $f:(2,3)\to\mathbb{R}$ is uniformly continuous, then $\lim_{x\to 2} f(x)$ exists. (T)
- (6) A union of any collection of closed sets of real numbers is a closed set. (F)
- (7) Let $f:[a,b]\to\mathbb{R}$ be continuous. Then the image of f is a closed interval. (T)
- (8) If a set is not open, it is closed. (F)

Addendum from Quiz 2. Prove that the curves $f(x) = 2x^3$ and $g(x) = 3x^2 - 2$ intersect on the interval [-1, 1]. Justify your answer.