

• • •

KMMI 2021 Eksplorasi dan Visualisasi Data

Pertemuan 13:

EDA pada Real World Data

Outline

- Jenis distribusi data
- Identifikasi distribusi dan pola data
- Interpretasi distribusi dan pola data

Distribusi Data

- Sebuah langkah yang penting dalam EDA adalah memahami distribusi data
- Ringkasnya, distribusi data adalah sebuah pemetaan terhadap data dimana tiap poin pada data tersebut berada dalam area atau region tertentu
- Untuk memvisualisasikan distribusi data, boxplot, histogram, dan density plot sering digunakan
- Selain itu, terdapat angka skewness dan kurtosis untuk mengukur kecondongan data secara numerik

Box and Whisker Plot / Box Plot

- Sebuah plot yang dapat merepresentasikan nilai minimum, Q1, median, Q3, dan maximum suatu atribut dalam data numerik.
- Sebuah boxplot dapat memberikan gambaran distribusi data
- Terdapat 3 elemen:
 - Box: A rectangular box with a solid horizontal line in bold.
 - Whiskers: A pair of vertical dotted lines, with solid horizontal end lines which are called notches.
 - Extremities: Unfilled circles or bubbles located above or below the whiskers.

Komponen Box Plot

- Garis tebal didalam box dapat diinterpretasikan sebagai Median
- 2 garis pada luar box dapat diinterpretasikan sebagai Quartil 1 dan Quartil 3
- Sedangkan 2 garis diujung whisker merupakan nilai minimum dan maksimum
- Besarnya ukuran box, merepresentasikan centrality atau kedekatan sebuah data terhadap titik tengahnya
- Sedangkan titik bulat di luar whisker merepresentasikan data yang tidak terjangkau oleh 1.5 kali dari Inter Quartile Range, atau disebut outlier.

Boxplot untuk 2 atau lebih Atribut

Histogram

- Selain Boxplot, Histogram atau Bar Chart juga dapat merepresentasikan distribusi data
- Mudah untuk melihat kecondongan data dan apakah data tersebut memenuhi distribusi normal (more on this later..)

Histogram + Density Plot

- Untuk melihat distribusi kontinu
- Dapat mendeteksi skewness secara visual (serta centrality tendency)

Mengukur Kesimetrisan Data dengan Skewness dan Kurtosis

- Histogram dan Boxplot menunjukkan secara visual karakteristik sebuah atribut
- Serta menunjukkan bagaimana data tersebar
- Skewness adalah sebuah pengukuran yang menunjukkan ke-tidak-simetrisan suatu variabel numerik
- Sebuah variabel dengan skewness = 0 berarti data tersebut terdistribusi secara simetris

$$skewness = \frac{\frac{1}{n} \sum_{i} (x_i - \bar{x})^3}{\left(\frac{1}{n} \sum_{i} (x_i - \bar{x})^2\right)^{\frac{3}{2}}},$$

Skewness

- Menggunakan skewness() pada R, kita dapat melihat nilai skewness dari sebuah variabel dalam data
- Jika nilai skewness positif, berarti variabel tersebut disebut rightskewed. Sedangkan jika nilainya negatif, berarti left-skewed

Kurtosis

- Disebut juga keruncingan suatu variabel atau kepuncakan dari sebuah distribusi variabel
- Dalam distribusi normal (Gaussian) ni kurtosis adalah 3.
- Jika nilai kurtosis kurang dari 3 disebu Platikurtik
- >3 disebut Leptokurtik
- = 3 disebut Mesokurtik

Jenis distribusi data

- Data yang dikumpulkan berdasarkan hasil observasi maupun bacaan otomatis sensor memiliki distribusi
- Distribusi ini melambangkan sebaran dan karakteristik dari suatu atribut dalam data tersebut
- Distribusi data dibagi dalam 2 bagian:
 - Distribusi Diskrit, untuk data yang bersifat kategorik
 - Distribusi Kontinyu, untuk data yang bersifat kontinyu / real number

Distribusi Data Diskrit

- Ada banyak jenis distribusi data diskrit, namun distribusi ini yang sering ditemui dalam real world data:
 - Distribusi Binomial
 - Distribusi Hypergeometric
 - Distribusi Poisson
- Bentuk visualisasi untuk jenis-jenis distribusi tersebut adalah

Distribusi Binomial

- Distribusi binomial memiliki kemungkinan 2 kesimpulan dalam 1 kali observasi.
- Karakteristik distribusi binomial adalah:
 - Jumlah percobaan harus ditentukan untuk setiap observasi.
 - Setiap percobaan hanya memiliki 2 kesimpulan, gagal atau sukses
 - Probabilitas keberhasilan untuk tiap percobaan harus sama
 - Setiap percobaan bersifat independen terhadap percobaan lainnya (tidak terpengaruh outcome)

Distribusi Hipergeometrik

- Dalam distribusi binomial diasumsikan bahwa peluang suatu kejadian tetap atau konstan atau antar-kejadian independen.
- Dalam dunia nyata, jarang terjadi hal demikian. Nilai setiap kejadian mungkin berbeda atau tidak konstan.

Distribusi dengan probabilitas berbeda adalah Distribusi

Hipergeometrik.

Distribusi Poisson

- Dalam distribusi Binomial, jumlah percobaan yang dilakukan cenderung kecil
- Poisson menemukan bahwa jika jumlah percobaan diatas 50, distribusi Binomial tidak efektif lagi
- Distribusi Poisson dipakai untuk menentukan peluang suatu kejadian yang jarang terjadi, tetapi mengenai populasi yang luas atau area yang luas dan juga berhubungan dengan waktu.

$$P(X) = \frac{\lambda^x e^{-\lambda}}{X!}$$

λ adalah rata rata kejadian sukses di periode yang ditentukan

X adalah jumlah kejadian sukses di periode tersebut

Asumsi dan Karakteristik Distribusi Poisson

Asumsi:

- Probabilitas kesuksesan dalam waktu singkat akan sama dengan probabilitas kesuksesan dalam waktu lama
- Probabilitas kesuksesan dalam satu waktu sama dengan nol sebanding dengan durasi yang mengecil
- Sebuah kejadian sukses tidak mempengaruhi kejadian sukses lainnya

Karakteristik:

- Kejadian bersifat independen (tidak mempengaruhi satu sama lain)
- Sebuah kejadian dapat terjadi beberapa kali dalam suatu periode yang ditentukan
- Dua kejadian tidak dapat muncul secara bersamaan
- Rata rata sebuah kejadian akan terjadi selalu konstan

Contoh Penggunaan Distribusi Poisson

 Dalam World Cup, suatu klub dalam setiap pertandingan rata rata menghasilkan 2.5 gol, dengan distribusi Poisson, hal tersebut dapat divisualisasikan sebagai berikut

Distribusi Data Kontinyu

- Distribusi peluang kontinu adalah variabel acak / hasil observasi yang dapat memperoleh semua nilai pada skala kontinu / (bilangan real)
- Tipe distribusi kontinyu:
 - Distribusi Normal (Gaussian)
 - Distribusi Eksponensial
- Visualisasi untuk jenis-jenis distribusi tersebut adalah

Normal (Gaussian) Distribution

Exponential Distribution

Distribusi Normal (Gaussian)

- Distribusi normal sangat sering sekali digunakan dan ditemukan dalam real world
- Proses umum dalam kehidupan seringkali dapat direpresentasikan dengan distribusi normal, sebagai contoh:
 - Distribusi jumlah pendapatan penduduk
 - Rata rata berat badan penduduk
 - Rata rata nilai mahasiswa
- Notasi matematis untuk distribusi ini adalah

$$_{ extsf{P(x)}}=rac{1}{\sigma\sqrt{2\pi}}\,e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Karakteristik Distribusi Normal

- Dalam sebuah density plot, sebuah data dikatakan memiliki distribusi normal jika:
 - Kurvanya berbentuk garis lengkung yang halus dan berbentuk seperti Lonceng (Bell Shaped)
 - Simetris terhadap rata rata (mean)
 - Kedua ekor/ ujungnya semakin mendekati sumbunya tetapi tidak pernah memotong
 - Mean, modus, dan mediannya sama

Normal (Gaussian) Distribution

Distribusi Eksponensial

- Distribusi eksponensial memiliki dimensi waktu, sama seperti Poisson
- Seringkali digunakan untuk Survival Analysis, contoh: Masa hidup AC, masa hidup laptop, dsb.
- Sebuah variabel dikatakan memiliki distribusi eksponensial jika

Exponential Distribution

$$f(x;\lambda) = \left\{egin{array}{ll} \lambda e^{-\lambda x} & x\geqslant 0, \ 0 & x<0. \end{array}
ight.$$

Tugas

- Membuat plot: histogram dan boxplot dari data berikut;
 - a) data oecd_le (package socviz): atribut life expectancy at birth, di negara USA
 - b) data oecd_le (package socviz): atribut life expectancy at birth, di negara Belgium
 - c) data oecd_le (package socviz): atribut life expectancy at birth, di negara Canada
- Menyimpulkan distribusi dan/atau pola data dari plot tersebut
- Laporkan dalam bentuk laporan praktikum dengan menyertakan langkah langkah pengerjaan berupa narasi dan screenshot R serta hasil analisis dari setiap langkah.
- Tugas dikerjakan berkelompok.
- Tugas dikumpulkan paling lambat pukul 23.59 WIB di LMS.
- Beri nama file tugas: Tugas 13_Kelompok XX. (Contoh: Tugas 13_Kelompok 01)

Terima Kasih

