Relatório parcial

Estudo do comportamento dinâmico de uma partícula esférica em um levitador acústico (Processo: 2021/04640-0)

Aluno: Gabriel Tetsuo Haga

Orientador: Marco Aurélio Brizzotti Andrade São Paulo

10 de janeiro de 2022

Lista de ilustrações

Figura 1 –	Esfera de isopor levitando pelo campo acústico produzido por uma	
	malha de transdutores ultrassônico	3
Figura 2 –	Pistão plano representado em um eixo de coordenadas tridimensional .	5
Figura 3 –	Modulação das fases para a geração dos três tipos de técnicas de levitação	9
Figura 4 –	Representação da vista superior do arranjo dos transdutores	10
Figura 5 –	Representação da vista frontal do arranjo dos transdutores	11
Figura 6 –	Visão geral do arranjo experimental	13
Figura 7 –	Ilustração do movimento do microfone	14
Figura 8 –	Comparação entre o campo acústico experimental (a) e o campo simu-	
	lado (b) no plano xy situdo em $z = 40 \ mm$	15
Figura 9 –	Comparação entre o campo acústico experimental (a) e o campo simu-	
	lado (b) no plano xz situado em $y=0$ mm	15
Figura 10 –	Campo do potencial de Gor'kov no plano xy em $z=40mm$ (a) e no	
	plano $xz \text{ em } y = 0mm \text{ (b)} \dots \dots \dots \dots \dots \dots$	16

Sumário

1	RESUMO	1
1.1	Resumo do plano inicial	1
1.2	Resumo das atividade realizada no período vigente	1
1.3	Resumo das atividades a serem realizadas no próximo período	1
2	INTRODUÇÃO	2
3	TEORIA	4
3.1	Teoria acústica linear	4
3.1.1	Radiação emitida por fonte pontual	4
3.1.2	Radiação de campo distante emitida por um pistão circular plano	5
3.2	Força de radiação acústica	6
3.2.1	Equação de Gor'kov	6
3.2.2	Teoria Acústica Cinética	7
3.3	Força de arrasto	8
3.4	Twin trap	8
4	METODOLOGIA	10
4.1	Malha de transdutores	10
4.2	Modelo Teórico Computacional	11
4.2.1	Hipóteses	11
4.2.2	Desenvolvimento do Modelo Teórico Computacional	11
4.3	Medições experimentais	13
4.3.1	Arranjo experimental	13
4.3.2	Descrição do experimento	14
5	RESULTADOS	15
5.1	Campo de pressão	15
5.2	Potencial de Gor'kov	16
	REFERÊNCIAS	18
Α	CÓDIGOS DO MODELO TEÓRICO	19
A.1	Função para calcular a pressão complexa total	19
A.1.1	Função para calcular o termo r	19
A.1.2	Função para calcular o o termo theta	20
A.1.3	Função para calcular o termo Pax	20

A.1.4	Função para calcular o termo v	20
A.1.5	Função para calcular o termo H	20
A.1.6	Função para calcular a pressão complexa causada por um transdutor	20
A.2	Função para calcular o potencial de Gor'kov	20
A.2.1	Função para calcular a velocidade do fluido causada pela propagação do som	20
A.3	Rotina para gerar o campo de pressão e o campo de potencial de	
	Gor'kov no corte do plano xy	21
A .4	Rotina para gerar o campo de pressão e o campo de potencial de	
	Gor'kov no corte do plano xz	23

1 Resumo

1.1 Resumo do plano inicial

Este projeto tem como objetivo principal a modelagem e simulação do comportamento de um objeto em sistemas de levitação acústica baseados em arrays (malhas) de transdutores ultrassônico de baixa potência. Para tal, é necessário o estudo das teorias relacionadas a levitação acústica, como a teoria acústica linear e teorias para calcular a força de radiação acústica. Também é necessário a simulação do campo acústico gerado por malhas de transdutores. Além disso, o projeto tem como objetivos secundários o desenvolvimento de códigos em Matlab para o controle das malhas para movimentar objetos bidimensionalmente e tridimensionalmente, a medição do campo acústico e a utilização de uma câmera de alta velocidade para filmar o comportamento dinâmico do corpo levitado.

1.2 Resumo das atividade realizada no período vigente

Para essa primeira parte, foi feito um estudo sobre a teoria acústica linear através do livro do Kinsler [1] e do artigo de Andrade et al. [2]. Também estudou-se duas teorias relacionadas à força de radiação acústica. A primeira define o potencial de Gor'kov, como é explicada no artigo de Andrade et al. [2]. A segunda é denominda de teoria acústica cinética, o artigo de Abdelaziz e Grier [3] explica essa forma de calcular a força de radiação acústica. Após isso foram desenvolvidos rotinas em Matlab para simulação do campo acústico. Por fim foram feitos experimentos para a medição desse campo acústico através de um microfone calibrado acoplado em um manipulador cartesiano tridimensional para comparação com o campo teórico simulado.

1.3 Resumo das atividades a serem realizadas no próximo período

As atividades realizadas no período vigente estão de acordo com o planejado. Assim, as atividades para o próximo período são:

- Estudo de teorias relacionadas à modelagem dinâmica;
- Implementação de modelos numéricos para simulação do comportamento dinâmico de um corpo esférico em um levitador acústico;
- Medição experimental do comportamento de um corpo esférico em um levitador acústico através de uma câmera de alta velocidade.

2 Introdução

A levitação acústica é um campo de estudo antigo. Contudo essa área foi pouco explorada e só recentemente voltou a ser desenvolvida pelo seu potencial de aplicação em áreas farmacêuticas e cirúrgicas, como a manipulação de fármacos para diminuição de impurezas ou na retirada de cálculos renais. Por isso seu estudo mostra grande valor para o desenvolvimento científico. Este projeto visa o estudo e simulação computacional da levitação acústica.

Nessa primeira parte do projeto, houve a leitura do livro do Kinsler [1] que explica as condições para a validade da teoria acústica linear e descreve a radiação acústica produzida por alguns tipos de fontes. Além disso, também foi estudado a equação que define o potencial de Gor'kov, detalhada no artigo de Andrade et al. [2], com ela é possível calcular a força de radiação acústica que um campo acústico gera em um corpo. Outra forma de calcular essa força é através da teoria acústica cinética, desenvolvida como uma analogia com a fotocinética no artigo de Abdelaziz e Grier [3]. O artigo de Marzo et al. [4] define três técnicas para levitação acústica, o Twin trap, Vortex trap e o Bottle trap, no caso, focou-se no estudo da primeira técnica. Por último, estudou-se o cálculo da força de arrasto, utilizou-se como base o artigo de Zehnter et al. [5].

A partir dessas teorias, desenvolveu-se um código em *Matlab* para simular o campo acústico e o campo do potencial de Gor'kov produzido por uma malha de transdutores. Para tal foram aplicadas certas hipóteses para simplificar o problema. Por último, foram realizados experimentos para medir o campo acústico dessa malha. Assim, foi possível a comparação entre o teórico e o experimental, como é mostrada no capítulo 5.

Antes da realização dos experimentos de medição de campo acústico, foram feitas alguns testes com os equipamentos com a finalidade de entender o funcionamento destes, ou seja, esses testes não são detalhados nesse relatório, mas considerou-se que um dos testes é interessante para visualizar a levitação acústica. A figura abaixo mostra esse teste:

Figura 1 — Esfera de isopor levitando pelo campo acústico produzido por uma malha de transdutores ultrassônico

3 Teoria

3.1 Teoria acústica linear

Para introduzir essa teoria primeiro é preciso fazer algumas hipóteses. A primeira assume que fluido permanece em repouso $\vec{u}_0 = \vec{0}$ se não houver onda atravessando ele. As outras hipóteses assumem que a pressão p_0 e a densidade ρ_0 dos elementos do fluido são constantes quando o fluido está em repouso.

Ao propagar uma onda, a velocidade \vec{u} a pressão p e a densidade ρ dos elementos do fluido não serão mais constantes. Contudo, a teoria acústica linear trabalha com ondas de baixa amplitude. Isso implica que a velocidade, pressão e densidade apresentam pequenas variações em relação ao fluido em repouso.

Assim, são feitas manipulações algébricas na equações de continuidade e de conservação do momento linear, utilizando as hipóteses apresentadas anteriormente. E chega-se na seguinte equação, chamada de equação de onda linear:

$$\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}.$$
 (3.1)

Essa equação, na qual se baseia a teoria acústica linear, descreve a propagação de ondas acústicas de pequenas amplitudes em meio fluido. Note que é uma equação de onda, na qual a constante c representa a velocidade do som nesse meio. Uma das grandes vantagens da utilizar essa teoria, é a sua linearidade, ou seja, propriedades como a superposição de ondas são válidas nessa teoria.

3.1.1 Radiação emitida por fonte pontual

Uma fonte pontual emite ondas esféricas . Para esse tipo de onda convém utilizar coordenadas esféricas, considerando a posição da fonte, que é o centro da onda, como a origem do sistema de coordenadas. Além disso, pela simetria do problema é possível perceber que a pressão só é função da distância à origem r. Assim a equação 3.1 reescrita para coordenadas polares e para pressão como função só de r:

$$\frac{\partial^2 p}{\partial r^2} + \frac{2}{r} \frac{\partial p}{\partial r} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}.$$
 (3.2)

Essa equação diferencial possui uma solução harmônica que é a mais importante e

utilizada. A solução harmônica é mostrada a seguir:

$$\mathbf{p}(r,t) = \frac{\mathbf{A}}{r}e^{j(\omega t - kr)},\tag{3.3}$$

onde k é o número de onda e \mathbf{A} é a amplitude complexa da onda. Note que a amplitude da onda cai com a distância ao centro da onda. Isso ocorre para respeitar a conservação de energia. Além disso percebe-se que o centro da onda é um ponto de singularidade.

A partir do campo de pressão é possível calcular o potencial de velocidade, dado pela seguinte expressão:

$$\mathbf{\Phi} = \frac{-\mathbf{p}}{j\omega\rho_0}.\tag{3.4}$$

Por conseguinte é possível calcular a velocidade do fluido, como é mostrado na equação abaixo:

$$\vec{\mathbf{u}} = \vec{\nabla} \mathbf{\Phi} = \left(1 - \frac{j}{kr}\right) \frac{\mathbf{p}}{\rho_0 c} \hat{r}. \tag{3.5}$$

3.1.2 Radiação de campo distante emitida por um pistão circular plano

Um tipo de pistão muito estudado é o pistão circular plano, já que a maioria dos emissores sonoros podem ser aproximados por esse tipo de pistão. Na figura 2, mostra-se uma representação gráfica desse tipo de pistão:

Figura 2 – Pistão plano representado em um eixo de coordenadas tridimensional

Esse pistão funciona a partir da oscilação da sua posição na direção z. Para calcular a função $\mathbf{p}(r,\theta,t)$, admite-se a hipótese de campo distante. Nela trabalha-se com $r\gg a$. Além disso, divide-se o pistão em vários emissores pontuais, já que é conhecido o campo de pressão gerado por esse tipo de emissor. Assim, é feita uma integral dupla dessa função para obter o campo de pressão gerado pelo pistão. Isso só é possível por trabalharmos com

a teoria acústica linear, pois as funções e equações diferenciais que regem o fenômeno são lineares, assim é válida o princípio da superposição. A função para a pressão obtida é:

$$\mathbf{p}(r,\theta,t) = \frac{j}{2}\rho_0 c U_0 \frac{a}{r} ka \left[\frac{2J_1(ka\sin\theta)}{ka\sin\theta} \right] e^{j(\omega t - kr)}, \tag{3.6}$$

onde $J_1(x)$ é a função de Bessel de ordem um.

Além disso, a equação (3.4) também é válida para esse caso. Assim, é possível calcular a velocidade do fluido, já que $\vec{\mathbf{u}} = \vec{\nabla} \boldsymbol{\Phi}$ por definição.

3.2 Força de radiação acústica

Necessita-se de calcular a força de radiação acústica F_{rad} no intuito de analisar e de simular o comportamento de um corpo submetido à radiação acústica. Assim nas duas subseções seguintes, mostra-se duas formas de calcular essa força dado o campo de pressão e de velocidades.

3.2.1 Equação de Gor'kov

Um dos métodos mais conhecidos é o criado por Gor'kov, como é mostrado no artigo de Andrade et al. [2]. Contudo, ele é restrito às esferas pequenas, para isso o raio da esfera R deve ser muito menor que o comprimento de onda sonora λ . Além disso, esse método considera somente a parcela conservativa da força de radiação acústica. Assim, pode-se definir uma energia potencial a essa força, chamada de potencial de Gor'kov, dado pela expressão:

$$U = 2\pi R^3 \left[\frac{f_1}{3\rho_0 c_0^2} \left\langle p^2 \right\rangle - \frac{f_2 \rho_0}{2} \left\langle \vec{u} \cdot \vec{u} \right\rangle \right], \tag{3.7}$$

sendo que $\langle b \rangle$ é a média temporal da grandeza b e os fatores f_1 e f_2 são calculados da seguinte forma:

$$\begin{cases} f_1 = 1 - \frac{\rho_0 c_0^2}{\rho_p c_p^2} \\ f_2 = 2 \left(\frac{\rho_p - \rho_0}{2\rho_p + \rho_0} \right), \end{cases}$$

onde ρ_p é a massa específica da esfera e c_p é a velocidade de propagação do som no material da esfera. Em geral, trabalha-se com o ar que, normalmente, tem a massa específica muito menor que o material da esfera, logo $f_1 \approx 1$ e $f_2 \approx 1$.

Com o potencial de Gor'kov é possível calcular a força de radiação que será dado por:

$$\vec{F}_{rad} = -\nabla U. \tag{3.8}$$

Perceba como o potencial de Gor'kov facilita bastante o cálculo da força de radiação acústica. Por esse motivo é uma das formas mais utilizadas para isso. Vale ressaltar que para obter a equação (3.7), desconsidera-se a parcela não conservativa da força, o que gera um erro nos cálculos da força. Contudo, esse erro é muito pequeno para as condições utilizadas. Assim, o ganho de eficiência nos cálculos da força de radiação acústica trazidas por esse método, em geral, superam essa inexatidão do método.

3.2.2 Teoria Acústica Cinética

Outra forma de se calcular a força de radiação acústica é utilizando a denominada Teoria Acústica Cinética (*Acoustokinetics*, em inglês), desenvolvida por Abdelaziz e Grier [3]. Ela foi feita através de uma analogia com a Fotocinética. Assim, antes de estudar a Teoria Acústica Cinética, é interessante entender do que se trata a Teoria Fotocinética.

A Fotocinética estuda as forças ópticas, estas são forças advindas da interação da luz com a matéria. Isso ocorre pelo comportamento de onda eletromagnética que a luz possui, assim ela induz dipolos elétricos na matéria. Esse dipolos induzidos sofrem uma força de Lorentz, cuja média temporal $F_e(r)$ pode ser calculada através da seguinte equação:

$$F_e(r) = \frac{1}{2} Re \left\{ \alpha_e \sum_{j=1}^3 E_j(r) \nabla E_j^*(r) \right\},$$
 (3.9)

onde E_j é a j-ésima componente do campo elétrico complexo e α_e é polarizabilidade de dipolo complexo do material.

A analogia feita, utiliza dipolos e quadripolos. A força de radiação acústica F(r) sofrida por uma pequena partícula em um campo acústico harmônico é expressa pela seguinte equação:

$$F(r) = \frac{1}{2} Re \left\{ \alpha_a p(r) \nabla p^*(r) + \beta_a k^{-2} (\nabla p(r) \cdot \nabla) \nabla p^*(r) \right\}, \tag{3.10}$$

onde p é a pressão complexa do campo acústico, α_a e β_a são coeficientes análogos às polarizabilidades de dipolo e quadripolo, respectivamente e k é o número de onda do campo acústico.

Essa equação apresenta uma maior acurácia por considerar parte do termo não conservativa da força de radiação acústica. Apesar disso, o cálculo da força se torna mais difícil em relação a Equação de Gor'kov.

3.3 Força de arrasto

Para a simulação dinâmica, também é necessário modelar a força de arrasto sobre um corpo esférico. Assim utiliza-se a seguinte equação retirada do artigo de Zehnter *et al.* [5]:

$$F_d(\vec{v}) = \begin{cases} -\frac{1}{2}C_d\pi a^2 \rho_0 ||\vec{v}||\vec{v}, & Re > 0, \\ \vec{0}, & Re = 0, \end{cases}$$
(3.11)

onde \vec{v} é a velocidade relativa do corpo com o ar, a é o raio do corpo esférico, Re é o número de Reynolds e C_d é coeficiente de arrasto. O coeficiente de arrasto, nesse caso, pode ser calculado como $C_d = \frac{24}{Re} \sqrt{1 + \frac{3}{16} Re}$

Percebe-se que a força de arrasto depende da velocidade relativa do corpo com o ar, contudo como a velocidade do ar causada pelas ondas sonoras tem pequena amplitude e uma média temporal nula, pode-se desprezá-la.

3.4 Twin trap

Uma das técnicas para levitação acústica desenvolvidade por Marzo *et al.* [4] é o *Twin trap.* Nessa técnica, uma malha de transdutores gera um campo de pressões o qual possui um ponto focal. Esse ponto focal possui um potencial de mínimo Gor'kov, ou seja, os corpos tendem a ficarem aprisionados nesse ponto.

A técnica do $Twin\ trap$ tem maior utilidade para situações na qual necessita-se de elevadas forças no eixo x, lembrando que utiliza-se a convenção de eixos definida na figura 2. O corpo fica aprisionado no ponto focal no eixo x pelos gradientes da amplitude de pressão, já os outros eixos são restringidos pelos gradientes de velocidade.

Para a geração desse ponto focal calcula-se a fase de cada transdutor tal que as ondas cheguem nesse ponto em fase, isso geraria um ponto de máxima pressão. E depois adiciona-se π nas fase de uma das metades da malha de transdutores. A imagem 3 ilustra isso:

Figura 3 – Modulação das fases para a geração dos três tipos de técnicas de levitação Imagem retirada da ref. [4]

A figura 3 mostra as modulações para três técnicas diferentes de levitação acústicas: $Twin\ trap,\ Vortex\ trap$ e $Bottle\ trap$. É possível observar nessa figura quais são as fases de cada transdutor para o caso estudado. Além disso os outros dois casos também criam um ponto focal na qual o corpo fica aprisionado, contudo no $Vortex\ trap$, há a transferência de momento angular orbital para o corpo e o $Bottle\ trap$ tem como principal aplicação a levitação de corpos de grande massas em arranjos que a força peso é aplicada na direção de propagação (eixo z).

4 Metodologia

Após os estudos das teorias relacionadas à levitação acústica, principalmente, aquelas que tangem a técnica do *Twin trap*, aplicou-se a teoria para a previsão do campo de pressões para um determinado arranjo de transdutores. Após, foram feitas medições experimentais desse campo para comparação do modelo teórico com o real.

4.1 Malha de transdutores

O arranjo dos transdutores sonoros de baixa potência é uma malha quadrada e plana 8x8, ou seja, ela é composta por 64 transdutores de 40 Hz e diâmetro de 9.8 mm igualmente espaçadas. Abaixo é mostrada duas representações do arranjo dos transdutores:

Figura 4 – Representação da vista superior do arranjo dos transdutores

Figura 5 – Representação da vista frontal do arranjo dos transdutores

Note que os transdutores são anexadas em uma placa de circuito impresso, utilizada para transmitir os sinais vindos do computador. Assim, é possível controlar as fases dos transdutores para aplicar a técnica do *Twin trap*.

4.2 Modelo Teórico Computacional

4.2.1 Hipóteses

Para criar um modelo teórico, é necessário adotar algumas hipóteses simplificadoras. A seguir são listadas essas hipóteses:

- A temperatura ambiente é constante e igual a $25 \, {}^{\circ}C$;
- A velocidade de equilíbrio do ar $\vec{u_0}$ é constante e nula;
- A pressão de equilíbrio do ar p_0 é constante e igual a 93.5 kPa;
- A densidade de equilíbrio do ar ρ_0 é constante e igual a 1.1839 kg/m^3 ;
- Todos os transdutores são idealmente iguais, emitem um som de 40~Hz e são considerados pistões circulares planos de raio a = 4.9~mm;
- Considera-se que trabalha-se em distâncias grandes o suficientes para a equação de campo distante ser válida;

4.2.2 Desenvolvimento do Modelo Teórico Computacional

Com as hipóteses estabelecidas, foi possível aplicar as teorias, vistas anteriormente, em um modelo para simular a malha de transdutores, descrito na seção anterior, assim obtendo uma previsão do campo de pressões.

Primeiramente, definiu-se os eixos de coordenadas que descrevem a posição espacial dos objetos. O centro da malha de transdutores é origem, o eixo z é convencionado na

direção perpendicular da malha e os eixos x e y são definidos conforme mostrado nas figuras 4 e 5.

Com os eixos de coordenadas definidos, posicionou-se os transdutores e definiu-se um corte no plano xy em z=40~mm tal que -30~mm < x < 30~mm e -30~mm < y < 30~mm e um outro corte no plano xz em y=0~mm tal que -30~mm < x < 30~mm e 10~mm < z < 70~mm. Nesses cortes foram calculados as amplitudes das pressões e os potenciais de Gor'kov.

Para calcular a amplitude de pressão em um dado ponto contido em algum dos cortes, utilizou-se o princípio da superposição, válida na Teoria Acústica Linear. Assim, era possível determinar a pressão complexa que cada transdutor causava no ponto em questão, utilizando a equação (3.6) e somá-las, obtendo a pressão complexa total. A partir dessa pressão complexa total, é possível determinar a amplitude, já que esta é o módulo da pressão complexa.

Para o potencial de Gor'kov, é necessário definir o raio da esfera a ser levitada, no caso, utilizou-se um raio de R=0.75~mm. Necessita-se também, determinar $\langle p^2 \rangle$ e $\langle \vec{u}.\vec{u} \rangle$ para utilizar a equação (3.7). Como \mathbf{p} é uma função proporcional a $e^{j\omega t}$ pode-se dizer que p é uma função proporcional a $\cos(\omega t)$, logo a média temporal $\langle p^2 \rangle$ será a metade do quadrado da amplitude de p, ou seja:

$$\langle p^2 \rangle = \frac{1}{2} |\mathbf{p}|^2.$$

O cálculo de $\langle \vec{u}.\vec{u}\rangle$ pode ser feito a partir da equação (3.4) e da definição $\vec{\mathbf{u}} = \vec{\nabla} \mathbf{\Phi}$. Para calcular numericamente o gradiente de $\mathbf{\Phi}(x,y,z)$, utiliza-se a seguinte equação:

$$\begin{split} \vec{\nabla} \Phi(x,y,z) &= \frac{\Phi(x+h,y,z) - \Phi(x-h,y,z)}{2h} \vec{i} \\ &+ \frac{\Phi(x,y+h,z) - \Phi(x,y-h,z)}{2h} \vec{j} \\ &+ \frac{\Phi(x,y,z+h) - \Phi(x,y,z-h)}{2h} \vec{k}, \end{split}$$

sendo h a discretização espacial definida, em geral, escolhe-se valores pequenos para h a fim de obter uma maior precisão. Além disso, utilizando-se um pensamento análogo ao do caso anterior, pode-se dizer que:

$$\langle \vec{u}.\vec{u}\rangle = \frac{1}{2}(|\vec{\mathbf{u}}|.|\vec{\mathbf{u}}|). \tag{4.1}$$

Com essas equações foram possíveis determinar o potencial de Gor'kov em um dado ponto dos cortes definidos anteriormente. Vale notar que $\vec{\bf u}$ é um vetor cujo as componentes são complexos, logo $|\vec{\bf u}|$ é um vetor com as componentes sendo os módulos dos respectivas componentes complexas do vetor $\vec{\bf u}$

Por fim foram feitos códigos e funções na linguagem *Matlab* para gerar os campos de pressão e os potenciais de Gor'kov dos cortes. Esse códigos são mostrados no apêndice A. Com eles, foi possível construir gráficos do campo de pressão e do potencial de Gor'kov, como será mostrado no capítulo de resultados.

4.3 Medições experimentais

Após a simulação para prever o campo acústico, foram feitas medições desse campo para comparação dos resultados. Para tal, foi necessário fazer um arranjo experimental. Assim foram feitas medições nos mesmos cortes delimitados na seção 4.2.2.

4.3.1 Arranjo experimental

O arranjo utilizado para a realização das medições é mostrado a seguir:

Figura 6 – Visão geral do arranjo experimental

As setas representam o fluxo de informação. O computador envia sinais para o controle do motor e para a malha de transdutor, assim os transdutores gera o campo de pressão. O controle do motor serve para comandar o movimentos realizados pelo manipulador cartesiano tridimensional, que é formada por três estágios lineares um para cada movimento em um dos eixos (x, y ou z). Esse manipulador cartesiano serve para

posicionar o microfone, com isso é possível fazer uma varredura em um plano como é desejado.

O microfone capta as ondas sonoras e envia sinais elétricos para um amplificador de instrumentação que aumenta a tensão desses sinais. Por fim, os sinais são medidos pelo osciloscópio que encaminha as medições para o computador.

4.3.2 Descrição do experimento

Foi montado o arranjo experimental, mostrado na subseção 4.3.1, e programou-se um código no computador para controlar o funcionamento da malha dos transdutores. Também foi feito uma rotina para variar a posição do microfone, utilizando o manipulador cartesiano, de forma a fazer uma varredura nos planos xy e xz. O movimento realizado pelo microfone é ilustrado a seguir:

Figura 7 – Ilustração do movimento do microfone

Além disso, a mesma rotina tinha como outro objetivo salvar o valor eficaz da tensão do sinal medido pelo osciloscópio junto da sua posição espacial.

Após as medições, os valores foram convertidos para pressão. Para tal foi utilizado a relação entre o valor de pico de tensão V_p e o valor eficaz da tensão V_{ef} :

$$V_{ef} = \frac{V_p}{\sqrt{2}},$$

também foi utilizado o valor de conversão de tensão para pressão do amplificador de instrumentação, esse valor é ajustável no próprio amplificador. Necessita-se também de um fator de correção, dado pelo fabricante do microfone, pela medição ser feita em campo livre. Com esse tratamento de dados, obteve-se o campo de pressão.

5 Resultados

O ponto focal foi definido em $x_f=0$ mm, $y_f=0$ mm e $z_f=40mm$. Para esse foco foi feito a simulação e as medições experimentais. Os resultados são mostrados e analisadas nas próximas seções.

5.1 Campo de pressão

Os resultados obtidos para o campo de pressão teórico e experimental são expostos abaixo:

Figura 8 – Comparação entre o campo acústico experimental (a) e o campo simulado (b) no plano xy situdo em $z=40\ mm$.

Figura 9 – Comparação entre o campo acústico experimental (a) e o campo simulado (b) no plano xz situado em $y=0\ mm$.

O primeiro ponto a ser analisado é a semelhança dos resultados teóricos e experimentais, principalmente, na distribuição de pressão. Os dois possuem uma região cilíndrica com alta amplitude de pressão, descritas por Marzo em seu artigo [4] como duas regiões com formato de "dedo". Assim, os resultados se mostram coerentes com a teoria por trás do $Twin\ trap$. Vale ressaltar que essas regiões de alta pressão são responsáveis por fazer o corpo ficar aprisionado no eixo x.

Apesar da amplitude máxima do campo experimental ser relativamente maior, com um erro relativo ao valor experimental em torno de 13%, como o erro relativo é menor que 15%, pode-se considerar que o valor teórico está próximo o suficiente do experimental. A comparação nas regiões de baixa amplitude de pressão não é feita, já que ao se trabalhar com valores pequenos o erro relativo se torna muito sensível a pequenas diferenças.

Além disso, percebe-se também pelas figura 8a e 9a que o campo acústico experimental é assimétrico em relação ao plano yz, diferentemente do campo acústico teórico. A causa principal dessa diferença é a diferença entre os transdutores sonoros utilizados, ou seja, eles não são iguais como foi assumido. Assim, surge uma assimetria na malha dos transdutores o que gera essa assimetria no campo resultante.

5.2 Potencial de Gor'kov

O modelo teórico também consegue prever o campo do potencial de Gor'kov que é mostrado na figura a seguir:

Figura 10 – Campo do potencial de Gor'kov no plano xy em z=40mm (a) e no plano xz em y=0mm (b)

Ao observar as figuras 10a e 10b, percebe-se que a posição de menor potencial é o ponto focal (0;0;40) mm. O que está de acordo com o esperado, já que esse ponto de mínimo potencial de Gor'kov seria o ponto de equilíbrio, na qual o corpo tenderia a ficar.

Para saber a posição exata é necessário somar a energia potencial gravitacional, em geral, esta desloca o ponto de equilíbrio para baixo no eixo z.

Além disso, é possível perceber que a posição no eixo z tem maior liberdade de movimentação, pois sua região de baixo potencial de Gor'kov é maior nessa direção, como mostra a figura 10b. Também é possível apontar a simetria dos gráficos em relação ao plano yz, igual ao campo de pressão teórico.

Referências

- [1] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, "Fundamentals of Acoustics," 2000.
- [2] M. A. Andrade, N. Pérez, and J. C. Adamowski, "Review of Progress in Acoustic Levitation," *Brazilian Journal of Physics*, vol. 48, no. 2, pp. 190–213, 2018.
- [3] M. A. Abdelaziz and D. G. Grier, "Acoustokinetics: Crafting force landscapes from sound waves," *Physical Review Research*, vol. 2, no. 1, p. 013172, feb 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevResearch.2.013172
- [4] A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B. Long, and S. Subramanian, "Holographic acoustic elements for manipulation of levitated objects," *Nature Communications*, vol. 6, no. May, pp. 1–7, 2015. [Online]. Available: http://dx.doi.org/10.1038/ncomms9661
- [5] S. Zehnter, M. A. Andrade, and C. Ament, "Acoustic levitation of a Mie sphere using a 2D transducer array," *Journal of Applied Physics*, vol. 129, no. 13, 2021.

A Códigos do modelo teórico

A.1 Função para calcular a pressão complexa total

```
1 % FUNCOES
2 function p_total = Calc_pressao(x, y, z, transdutor)
      x_t = transdutor.posx;
      y_t = transdutor.posy;
      z_t = transdutor.posz;
6
      A = transdutor.A;
7
      normal_v = transdutor.normal;
      omega = transdutor.omega;
9
      a = transdutor.a;
      k = transdutor.k;
10
      phase v = transdutor.phase;
      n1 = length(x_t);
12
      s = size(x);
13
      r = zeros([s, n1]) + 0j;
14
      theta = zeros([s, n1])+0j;
15
      Pax = zeros([s, n1]) + 0j;
16
      v = zeros([s, n1]) + 0j;
17
      H = zeros([s, n1]) + 0j;
18
      p = zeros([s, n1]) + 0j;
19
      t1 = 0;
20
      for i = 1:n1
21
22
           r(:,:,i) = calc_r(x_t(i), y_t(i), z_t(i), x, y, z);
23
           theta(:,:,i) = calc_th(x_t(i), y_t(i), z_t(i), x, y, z, normal_v, r)
24
      (:,:,i));
           Pax(:,:,i) = calc_Pax(A, r(:,:,i));
25
           v(:,:,i) = calc_v(k, a, theta(:,:,i));
26
          H(:,:,i) = calc_H(v(:,:,i));
27
           p(:,:,i) = calc_p(Pax(:,:,i), H(:,:,i), omega, k, t1, r(:,:,i),
28
      phase_v(i));
      end
29
      p\_total = sum(p,3);
31 end
```

A.1.1 Função para calcular o termo r

```
function [r] = calc_r(x0,y0,z0,x,y,z)

r=sqrt((x-x0).^2 + (y-y0).^2 + (z-z0).^2);

a end
```

A.1.2 Função para calcular o o termo theta

A.1.3 Função para calcular o termo Pax

```
1 function [Pax] = calc_Pax(A, r)
2    Pax = A./r;
3 end
```

A.1.4 Função para calcular o termo v

```
1 function [v] = calc_v(k, a, theta)
2     v = k*a*sin(theta)+1e-12;
3 end
```

A.1.5 Função para calcular o termo H

```
1 function [H] = calc_H(v)
2          H = 2*besselj(1,v)./v;
3 end
```

A.1.6 Função para calcular a pressão complexa causada por um transdutor

A.2 Função para calcular o potencial de Gor'kov

```
1 function [U] = Calc_Gorkov(x, y, z, transdutor)
2
      R = transdutor.R;
      rho0 = transdutor.rho0;
3
      c = transdutor.c;
4
      p_{total} = 0 + 0 * j;
5
6
7
      p_total = Calc_pressao(x, y, z, transdutor);
8
      [vx, vy, vz] = Calc\_vel(x, y, z, transdutor);
9
      m_p = 1/2*abs(p_total).^2;
      m_v = 1/2*(vx.*conj(vx) + vy.*conj(vy) + vz.*conj(vz));
10
      U = 2*pi*R^3*(m_p/(3*rho0*c^2) - rho0/2*(m_v));
11
12 end
```

A.2.1 Função para calcular a velocidade do fluido causada pela propagação do som

```
function [vx, vy, vz] = Calc_vel(x, y, z, transdutor)
disc = transdutor.disc;
rho0 = transdutor.rho0;

mega = transdutor.omega;
vx = -(Calc_pressao(x+disc/2, y, z, transdutor)-Calc_pressao(x-disc/2, y, z, transdutor))/(j*omega*rho0*disc);
vy = -(Calc_pressao(x, y+disc/2, z, transdutor)-Calc_pressao(x, y-disc/2, z, transdutor))/(j*omega*rho0*disc);
vz = -(Calc_pressao(x, y, z+disc/2, transdutor)-Calc_pressao(x, y, z-disc/2, transdutor))/(j*omega*rho0*disc);
end
```

A.3 Rotina para gerar o campo de pressão e o campo de potencial de Gor'kov no corte do plano xy

```
1 % Parâmetros de entrada
2 clear all
3 close all
4 clc
5 % Do transdutor
6 transdutor.freq = 4e4; %frequencia [Hz]
7 transdutor.c = 340; % velocidade do som [m/s]
8 transdutor. A = 2*.462; %Amplitude [Pa], .462 valor experimental.
9 transdutor.rho0 = 1.225; %Massa específica do ar [kg/m^3]
10 transdutor.lambda = transdutor.c/transdutor.freq; %Comprimento de onda [m]
11 transdutor.omega = 2*pi*transdutor.freq; %frequência angular [rad/s]
12 transdutor.k = transdutor.omega/transdutor.c; %número de onda [1/m]
13 transdutor.a = 4.9e-3; %raio do pistão circular [m]
14 transdutor. disc = 5e−4; %Discretização [m]
15 disc = transdutor.disc;
[x,y] = \text{meshgrid}(-30e-3:disc:30e-3,-30e-3:disc:30.5e-3);
17 % Posição e direção dos transdutores
[x0_v, y0_v] = meshgrid
      (-10.16*3.5:10.16:10.16*3.5, -10.16*3.5:10.16:10.16*3.5);
19 x0_v = 1e-3*reshape(x0_v, [64, 1]);
y0_v = 1e-3*reshape(y0_v, [64, 1]);
21 \ z0_v = zeros(64,1);
22 \text{ transdutor.posx} = x0_v;
23 transdutor.posy = y0_v;
24 \text{ transdutor.posz} = z0_v;
26 \text{ transdutor.normal} = [0 \ 0 \ 1];
27 transdutor.foco = [0; 0; 40e-3]; %posição focal [m]
28 % Da esfera
29 bolinha.rho = 30; %Densidade da bolinha [kg/m^3]
30 bolinha.R = 0.75e-3; %Raio da esfera [m]
```

```
31 pos_i = [0; 0; 0.040]; %Posição inicial da bolinha [m]
32 v_i = [0; 0; 0]; \%Velocidade inicial da bolinha [m/s]
33 % Da simulação dinâmica
34 h = 1e−4; %Discretização do tempo (passo de integração)
35 \text{ ti} = 0;
36 tf = 0; %Tempo final
37 t_v = ti:h:tf;
38 transdutor.R = bolinha.R;
39 % Variáveis calculadas
40 dist = \operatorname{sqrt}((x0_v-\operatorname{transdutor}.\operatorname{foco}(1)).^2 + (y0_v-\operatorname{transdutor}.\operatorname{foco}(2)).^2 + (y0_v-\operatorname{transdutor}.\operatorname{foco}(2)).^2
       z0\_v-transdutor.foco(3)).^2;
41 phase_v = 2*pi*dist/transdutor.lambda;
42 f = find(x0_v>0);
43 phase_v(f) = phase_v(f)+pi;
44 transdutor.phase = phase_v;
45
46 clear dist phase_v f x0_v y0_v z0_v
47
48 %Calculo campo de pressao e potencial de Gorkov
50 P = Calc\_pressao(x, y, 40e-3, transdutor);
51 U = Calc_Gorkov(x, y, 40e-3, transdutor);
52 figure (1)
surf(x*1e3, y*1e3, abs(P));
54 colormap(jet);
55 shading interp;
56 view (2);
57 a = colorbar;
58 ylabel(a, 'Pressão acústica [Pa]');
59 xlabel ('Eixo x [mm]');
60 x \lim ([-30e - 3, 30e - 3] * 1e3);
61 ylim ([-30e-3, 30e-3]*1e3);
62 ylabel ('Eixo y [mm]');
63
64 figure (2)
65 surf(x*1e3, y*1e3, U);
66 colormap(jet);
67 shading interp;
68 \operatorname{view}(2);
69 a = colorbar;
70 ylabel(a, 'Potencial de Gor'', kov [J]');
71 xlabel ('Eixo x [mm]');
72 \times \lim ([-30e - 3, 30e - 3] * 1e3);
73 ylim ([-30e-3, 30e-3]*1e3);
74 ylabel ('Eixo y [mm]');
```

A.4 Rotina para gerar o campo de pressão e o campo de potencial de Gor'kov no corte do plano xz

```
1 %% Parâmetros de entrada
 2 clear all
 3 clc
 4 % Do transdutor
 5 transdutor.freq = 4e4; %frequencia [Hz]
 6 transdutor.c = 340; % velocidade do som [m/s]
 7 transdutor. A = 2*.462; %Amplitude [Pa], .462 valor experimental.
 8 transdutor.rho0 = 1.1839; %Massa específica do ar [kg/m^3]
 9 transdutor.lambda = transdutor.c/transdutor.freq; %Comprimento de onda [m]
10 transdutor.omega = 2*pi*transdutor.freq; %frequência angular [rad/s]
11 transdutor.k = transdutor.omega/transdutor.c; %número de onda [1/m]
12 transdutor.a = 4.9e-3; %raio do pistão circular [m]
13 transdutor. disc = 5e−4; %Discretização [m]
14 disc = transdutor.disc;
[x,z] = \text{meshgrid}(-30e-3:disc:30e-3,10e-3:disc:71.5e-3);
16 % Posição e direção dos transdutores
[x0_v, y0_v] = meshgrid
             (-10.16*3.5:10.16:10.16*3.5, -10.16*3.5:10.16:10.16*3.5);
x0_v = 1e-3*reshape(x0_v, [64, 1]);
19 y0_v = 1e-3*reshape(y0_v, [64, 1]);
20 \ z0_v = zeros(64,1);
21 \text{ transdutor.posx} = x0 \text{ v};
22 \text{ transdutor.posy} = y0_v;
23 \text{ transdutor.posz} = z0_v;
25 \text{ transdutor.normal} = [0 \ 0 \ 1];
26 transdutor.foco = [0; 0; 40e-3]; \%posição focal [m]
27 % Da esfera
28 bolinha.rho = 30; %Densidade da bolinha [kg/m^3]
29 bolinha.R = 0.75e-3; %Raio da esfera [m]
30 pos_i = [0; 0; 0.040]; %Posição inicial da bolinha [m]
31 v i = [0; 0; 0]; %Velocidade inicial da bolinha [m/s]
32 % Da simulação dinâmica
33 h = 1e−4; %Discretização do tempo (passo de integração)
34 \text{ ti} = 0;
35 tf = 0; %Tempo final
36 t_v = ti:h:tf;
37 transdutor.R = bolinha.R;
38 % Variáveis calculadas
39 dist = \operatorname{sqrt}((x0_v-transdutor.foco(1)).^2 + (y0_v-transdutor.foco(2)).^2 + (y0_v-trans
            z0\_v-transdutor.foco(3)).^2;
40 phase_v = 2*pi*dist/transdutor.lambda;
41 f = find(x0_v>0);
42 phase_v(f) = phase_v(f)+pi;
```

```
43 transdutor.phase = phase_v;
  clear dist phase_v f x0_v y0_v z0_v
45
46
47 %Calculo campo de pressao e potencial de Gorkov
49 P = Calc\_pressao(x, 0, z, transdutor);
50 U = Calc\_Gorkov(x, 0, z, transdutor);
51 figure (1)
surf(x*1e3, z*1e3, abs(P));
53 colormap(jet);
54 shading interp;
55 view (2);
56 a = colorbar;
57 ylabel(a, 'Pressão acústica [Pa]');
58 xlabel('Eixo x [mm]');
sin ([-30e-3,30e-3]*1e3);
90 \text{ ylim} ([10e-3, 71e-3]*1e3);
61 ylabel ('Eixo z [mm]');
63 figure (2)
64 \text{ surf}(x*1e3, z*1e3, U*1e12);
65 colormap(jet);
66 shading interp;
67 view (2);
68 a = colorbar;
69 ylabel(a, 'Potencial de Gor', 'kov [pJ]');
70 xlabel('Eixo x [mm]');
71 x \lim ([-30e -3, 30e -3] * 1e3);
72 ylim ([10e-3, 71e-3]*1e3);
73 ylabel ('Eixo z [mm]');
```