The group G is isomorphic to the group labelled by [72, 3] in the Small Groups library. Ordinary character table of $G \cong Q8 : C9$:

	1a - 4a	a = 2a	9a	18a	9b	18b	3a	12a	6a	9c	18c	9d	18 <i>d</i>	3b	12b	6b	9e	18e	9f	18 <i>f</i>
χ_1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1 1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	1	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	1	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)
χ_3	1 1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^2$
χ_4	1 1	1	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(9)^{7}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^{5}$	$E(9)^4$	$E(9)^4$	E(3)	E(3)	E(3)	$E(9)^{2}$	$E(9)^{2}$	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$
χ_5	1 1	1	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	$E(9)^{2}$	E(3)	E(3)	E(3)	$E(9)^4$	$E(9)^4$	$E(9)^{5}$	$E(9)^{5}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(9)^{7}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$
χ_6	1 1	1	$E(9)^{7}$	$E(9)^{7}$	$E(9)^{5}$	$E(9)^{5}$	E(3)	E(3)	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(9)^4$	$E(9)^4$	$E(9)^{2}$	$E(9)^2$
χ_7	1 1	1	$E(9)^{5}$	$E(9)^{5}$	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(9)^{2}$	$E(9)^{2}$	$E(9)^{7}$	$E(9)^{7}$	E(3)	E(3)	E(3)	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	$E(9)^4$	$E(9)^4$
χ_8	1 1	1	$E(9)^4$	$E(9)^4$	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	E(3)	E(3)	E(3)	$E(9)^{7}$	$E(9)^{7}$	$E(9)^{2}$	$E(9)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	$E(9)^5$
χ_9	1 1	1	$E(9)^{2}$	$E(9)^{2}$	$E(9)^{4}$	$E(9)^4$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$	$-E(9)^2 - E(9)^5$	$-E(9)^4 - E(9)^7$	$-E(9)^4 - E(9)^7$	E(3)	E(3)	E(3)	$E(9)^{5}$	$E(9)^{5}$	$E(9)^{7}$	$E(9)^{7}$
χ_{10}	2 0	-2	-1	1	-1	1	2	0	-2	-1	1	-1	1	2	0	-2	-1	1	-1	1
χ_{11}	2 0	-2	$-E(3)^2$	$E(3)^{2}$	-E(3)	E(3)	2	0	-2	$-E(3)^2$	$E(3)^{2}$	-E(3)	E(3)	2	0	-2	$-E(3)^2$	$E(3)^{2}$	-E(3)	E(3)
χ_{12}	2 0	-2	-E(3)	E(3)	$-E(3)^2$	$E(3)^{2}$	2	0	-2	-E(3)	E(3)	$-E(3)^2$	$E(3)^{2}$	2	0	-2	-E(3)	E(3)	$-E(3)^2$	$E(3)^2$
χ_{13}	2 0	-2	$-E(9)^5$	$E(9)^{5}$	$E(9)^4 + E(9)^7$	$-E(9)^4 - E(9)^7$	$2 * E(3)^2$	0	$-2*E(3)^2$	$-E(9)^2$	$E(9)^{2}$	$-E(9)^{7}$	$E(9)^{7}$	2 * E(3)	0	-2 * E(3)	$E(9)^2 + E(9)^5$	$-E(9)^2 - E(9)^5$	$-E(9)^4$	$E(9)^4$
χ_{14}	2 0	-2	$-E(9)^4$	$E(9)^4$	$E(9)^2 + E(9)^5$	$-E(9)^2 - E(9)^5$	2 * E(3)	0	-2 * E(3)	$-E(9)^{7}$	$E(9)^{7}$	$-E(9)^2$	$E(9)^{2}$	$2 * E(3)^2$	0	$-2*E(3)^2$	$E(9)^4 + E(9)^7$	$-E(9)^4 - E(9)^7$	$-E(9)^5$	$E(9)^5$
χ_{15}	2 0	-2	$-E(9)^2$	$E(9)^{2}$	$-E(9)^4$	$E(9)^4$	$2 * E(3)^2$	0	$-2*E(3)^2$	$E(9)^2 + E(9)^5$	$-E(9)^2 - E(9)^5$	$E(9)^4 + E(9)^7$	$-E(9)^4 - E(9)^7$	2 * E(3)	0	-2 * E(3)	$-E(9)^5$	$E(9)^{5}$	$-E(9)^{7}$	$E(9)^{7}$
χ_{16}	2 0	-2	$E(9)^4 + E(9)^7$	$-E(9)^4 - E(9)^7$	$-E(9)^2$	$E(9)^{2}$	2 * E(3)	0	-2 * E(3)	$-E(9)^4$	$E(9)^4$	$-E(9)^5$	$E(9)^{5}$	$2 * E(3)^2$	0	$-2*E(3)^2$	$-E(9)^{7}$	$E(9)^{7}$	$E(9)^2 + E(9)^5$	$-E(9)^2 - E(9)^5$
χ_{17}	2 0	-2	$E(9)^2 + E(9)^5$	$-E(9)^2 - E(9)^5$	$-E(9)^{7}$	$E(9)^{7}$	$2 * E(3)^2$	0	$-2*E(3)^2$	$-E(9)^5$	$E(9)^{5}$	$-E(9)^4$	$E(9)^4$	2 * E(3)	0	-2 * E(3)	$-E(9)^2$	$E(9)^{2}$	$E(9)^4 + E(9)^7$	$-E(9)^4 - E(9)^7$
χ_{18}	2 0	-2	$-E(9)^{7}$	$E(9)^{7}$	$-E(9)^5$	$E(9)^{5}$	2 * E(3)	0	-2*E(3)	$E(9)^4 + E(9)^7$	$-E(9)^4 - E(9)^7$	$E(9)^2 + E(9)^5$	$-E(9)^2 - E(9)^5$	$2*E(3)^2$	0	$-2*E(3)^2$	$-E(9)^4$	$E(9)^4$	$-E(9)^2$	$E(9)^2$
χ_{19}	3 -	1 3	0	0	0	0	3	-1	3	0	0	0	0	3	-1	3	0	0	0	0
χ_{20}	3 -	1 3	0	0	0	0	$3 * E(3)^2$	$-E(3)^2$	$3 * E(3)^2$	0	0	0	0	3 * E(3)	-E(3)	3 * E(3)	0	0	0	0
χ_{21}	3 –	1 3	0	0	0	0	3 * E(3)	-E(3)	3 * E(3)	0	0	0	0	$3 * E(3)^2$	$-E(3)^2$	$3*E(3)^2$	0	0	0	0

Trivial source character table of $G \cong O8$: C9 at p = 3:

Invite bounce character table of $a = a_0$. Or at $p = a_0$.							
Normalisers N_i		N_1			N_2		N_3
p-subgroups of G up to conjugacy in G		P_1			P_2		P_3
Representatives $n_j \in N_i$	1 <i>a</i>	4a	2a	1a	4a	2a	1a 2a
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}}$		0	-18	0	0	0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$		9	9	0	0	0	0 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	-3	9	0	0	0	0 0
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 $	3	-1	3	3	-1	3	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$		3	3	3	3	3	0 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	0	-6	6	0	-6	0 0
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}}$		0	-4	4	0	-4	1 -1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1	1	1	1	1	1	1 1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,7,4)(2,8,5)(3,9,6)]) \cong C3$

 $P_3 = Group([(1,7,4)(2,8,5)(3,9,6),(1,6,2,7,3,8,4,9,5)(11,12,14)(15,16,17)]) \cong C9$

 $N_1 = Group([(1,6,2,7,3,8,4,9,5)(11,12,14)(15,16,17),(1,7,4)(2,8,5)(3,9,6),(10,11,13,15)(12,17,16,14),(10,12,13,16)(11,14,15,17),(10,13)(11,15)(12,16)(14,17)]) \cong \mathbb{Q}8:\mathbb{C}9$ $N_2 = Group([(1,6,2,7,3,8,4,9,5)(11,12,14)(15,16,17),(1,7,4)(2,8,5)(3,9,6),(10,11,13,15)(12,17,16,14),(10,12,13,16)(11,14,15,17),(10,13)(11,15)(12,16)(14,17)]) \cong \mathbf{Q8} : \mathbf{C9}$

 $N_3 = Group([(1, 9, 8, 7, 6, 5, 4, 3, 2)(11, 12, 14)(15, 16, 17), (10, 13)(11, 15)(12, 16)(14, 17), (1, 7, 4)(2, 8, 5)(3, 9, 6)]) \cong C18$