Lecturer: Tongyang, scribed by Shuo Zhou

Date: December 20, 2023

Lecture 20

Quantum Computational Complexity

- PSPACE
- NP, co-NP
- QMA

1 More Complexity Classes

 $L \in PSPACE$: L can be decided by poly-space deterministic classical algorithm.

 $L \in \text{EXP}$: L can be decided by an exponential-time deterministic classical algorithm.

 $PSPACE \subseteq EXP.$

 $L \in PSPACE$ means L can be solved in p(n) space $2^{p(n)}$.

 $BQP \subseteq EXP$: We can simulate a quantum circuit in exponential time by explicit linear algebra.

Theorem. BQP \subseteq PSPACE.

Proof. Assume that the quantum algorithm is $U_tU_{t-1}\dots U_2U_1|0^n\rangle$, t=poly(n).

Considering $\sum_{x \in \{0,1\}^n} |x\rangle \langle x| = I_N$, we can do

$$\langle 0^n | U_t U_{t-1} \dots U_2 U_1 | 0^n \rangle = \sum_{x_1, x_2, \dots x_{t-1} \text{all } n \text{-bit strings}} \langle 0^n | U_t | x_{t-1} \rangle \langle x_{t-1} | U_{t-1} | x_{t-2} \rangle \dots \langle x_1 | U_1 | 0^n \rangle.$$

Each of these terms can be computed in poly-time for a given x_1, \ldots, x_{t-1} ($\langle x_i | U_i | x_{i-1} \rangle$ gives the element in the $(x_i)^{th}$ row and $(x_{i-1})^{th}$ column of U_i).

The sum of these values can be computed in polynomial space: maintain a register at the beginning, and cumulatively add all values.

As a summary:

NP: Non-deterministic Polynomial

We say $L \in NP$ if \exists poly-time classical, deterministic algorithm

A(x,y) such that for any $x \in \{0,1\}^n$

 $x \in L \Rightarrow \exists$ storing y s.t. A(x,y) accepts

(y is a efficient verifier)

 $x \notin L \Rightarrow \exists$ storing y s.t. A(x, y) rejects

For example: 3-SAT: Instances are 3-CNFs (conjunctive normal forms), such as

$$\varphi = (x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_5 \vee x_7 \vee \overline{x}_3) \wedge \cdots$$

3-SAT \in NP: For any $\varphi \in L$, the y is a satisfiable assignment and its correctness can be verified in linear time.

In fact 3-SAT is NP-complete (Cook-Levin Theorem)

If 3-SAT can be solved in polynomial time (i.e. $\exists P$), then P = NP.

More on efficiently verifiable problems?

1.1 Asymmetry of NP, we only need to have short proof for yes instance.

Definition. Given a decision problem X. It's complement \overline{X} is the same problem with yes and no answers reversed.

For example: Prime $X = \{2, 3, 5, 7, 11, 13, ...\}$

 $\overline{X} = \{0, 1, 4, 6, 8, 9, 10, 12 \ldots\}$

co-NP: Complement of decision problems in NP.

Intuitively: For a problem $X \in NP$, for yes instance there is an efficient certificate;

For a problem $X \in \text{co-NP}$, for no instance there is an efficient disqualifier.

Fundamental question: Does NP = co-NP?

Common opinion: No.

Theorem. If $NP \neq co-NP$

Observation. $P \subseteq NP \cap \text{co-NP}$? Mixed opinions.

Fact. Consider the FACTOR problem: Given two positive integers x and y. Does x have a nontrivial factor y?

We have $FACTOR \in NP \cap co-NP$.

Proof. FACTOR \in NP: Certificate A factor p of x such that $2 \le q \le y$.

FACTOR \in co-NP: Disqualifier: The prime factorization of x, where each prime factor > y.

For example: x = 1001, y = 6 give $1001 = 7 \times 11 \times 13$.

Determining whether a number is prime $\in P$ (AKS primarity test)

On the other hand, currently it is not known whether $FACTOR \in P$.

1.2 Probabilistic Versions

$$\begin{array}{c} P \xrightarrow{\operatorname{probabilistic}} BPP \xrightarrow{\operatorname{quantum}} BQP \\ NP \xrightarrow{\operatorname{probabilistic}} MA \xrightarrow{\operatorname{quantum}} QMA \end{array}$$

MA represents Merlin-Arthur here.

Formally, we say that a language $L \in MA$ if \exists poly-time randomized algorithm A(x, y) (where y is the witness from Merlin) such that for all $x \in \{0, 1\}^*$:

 $x \in L \Rightarrow \exists$ string y, such that A(x,y) accepts with probability $\geq \frac{2}{3}$.

 $x \notin L \Rightarrow \forall \text{ string } y, A(x,y) \text{ accepts with probability } \leq \frac{1}{3}.$

QMA: Same as MA, but the algorithm A takes polynomial quantum gates, and the proof is a quantum state: $A(x,y) \longrightarrow A(x,|\psi\rangle$).

Consider the k-local Hamiltonian systems.

Instance: Hermitian operators $H = \sum_{j} H_{j}$ where each H_{j} acts non-trivially on at most k out of n qubits.

Let λ be the smallest eigenvalue of H. (Since H is Hermitian, λ must be real).

Given thresholds a < b with $b - a \ge \frac{1}{\text{poly}(n)}$.

Problem. Determine whether $\lambda \leq a$ or $\lambda \geq b$, under the promise that one of them is true.

k-SAT is a special case where all H_i is diagonal.

For example: Clause $x_1 \vee \overline{x}_2 \vee x_3 \longleftrightarrow 3$ -local term $|00\rangle \langle 00|$.

Eigenvalue of $|x_1 \dots x_n\rangle$ in H = # of violated constraints.

In addition k-local Hamiltonian \in QMA.

Witness: Ground state $|\psi\rangle$.

Verification: Perform phase estimation on e^{-iHt} (for an appropriate t) for state $|\psi\rangle$. \Rightarrow given an estimate of λt .

In addition, e^{-iHt} can be efficiently implemented by Hamiltonian simulation. Therefore, this gives a polynomial-time algorithm under the given promise of H.

In fact, k-local Hamiltonian is QMA-complete. $(k \ge 2)$

Idea: Clock construction (Kitaev).