Experiments in High-Frequency Trading: Market Stability and Resiliency

(Work in Progress)

Eric Aldrich Dan Friedman Kristian López Vargas

University of California, Santa Cruz

UCSD - May 2019

Research Plan

Research Plan

Research Plan

- Build and study a more realistic (complex) environment (e.g., fundamental not directly observed).
- New formats and market rules (e.g., IEX, Kyle-Lee flow market).
- § Further questions (order shredding, competition and fragmentation).
- 4 Experiment: more lab and public tournament.

Exogenous Processes

- There is a v(t) signal that is not publicly observed.
- v(t) follows a Poisson jump process (or...)
- Exogenous traders now arrive with limit orders around v(t) at random times at rates λ_a , λ_b for asks and bids.
- Limit prices for bids: $p_b = x_b + v(t)$
- Limit prices for asks: $p_a = x_a + v(t)$
- $x_b \sim G_b$ and $x_a \sim G_a$ (Gs independent of v(t))
- Note $F_b(p) = G_b(p-v)$ and $F_a(p) = G_a(p-v)$
- Time in force: T_b , T_a , for bids and asks, respectively.

Exogenous Processes

Instantaneous, expected exogenous demand and supply at time $t > max\{T_a, T_b\}$ and price p are:

$$D(p) = T_b \lambda_b \left(1 - F_b(p) \right). \tag{1}$$

$$S(p) = T_a \lambda_a F_a(p). \tag{2}$$

Clearing price p^* , satisfies:

$$\frac{T_a \lambda_a}{T_b \lambda_b} = \frac{1 - F_b(p^*)}{F_a(p^*)} \tag{3}$$

Exogenous Processes

If we define h as:

$$h(p|v) = \frac{1 - G_b(p - v)}{G_a(p - v)} \tag{4}$$

The clearing price is:

$$p^* = h^{-1} \left(\frac{\lambda_a T_a}{\lambda_b T_b} \right) \tag{5}$$

Therefore under some symmetry conditions (e.g., $T_b \lambda_b = T_a \lambda_a$ and $G_a(0) = 1 - G_b(0)$:

$$p^*(t) = v(t) \tag{6}$$

v(t) also generates an exogenous NBBO representing the rest of the market (BBE, BOE).

Trading Algorithms

Notation/definitions:

- The trading period [0, T]. Events indexed by t or τ .
- $x(t, \rho)$: signed volume at time t. Number of net buy and sell executions in recent times, via exponential average.
- z(t,d): order imbalance at time t. Stat for order book state
- $y_i(t)$: trader i's **inventory** position.
- *BB*(*t*): Best bid at the main exchange.
- BO(t): Best offer at the main exchange.
- BB_F(t): Best bid at the external exchange(s).
- BO_F(t): Best offer at the external exchange(s).
- S: price tick.

Trading Algorithms

Calculating signed volume:

Piece-wise constant over time. Remains constant until there is an update at an execution time.

Experiment Interface for Lab

For the CDA, it is defined recursively:

- At time = 0, $x(0, \rho) = 0$.
- Suppose last update occurred at t and there is an execution at time $t + \tau$.
- Then:

$$x(t+ au,
ho)=e^{-
ho au}x(t,
ho)+I_S$$

where:

$$I_S = \begin{cases} 1 & \text{if execution at } BO \\ -1 & \text{if execution at } BB \end{cases}$$

Trading Algorithms

Algorithms follow a simple rule that reacts to stats in the external market (public signals) and to competitors behavior in the main market.

x(t) is the leading indicator of price increase.

$$\widetilde{Bid}_{i}(t) = w \left[BB_{E}(t) + b_{x}x_{E}(t) \right] + w' \left[BB_{-i}(t) + b_{x}x(t) \right] - b_{y}y(t)$$

$$\widehat{Ask}_{i}(t) = w \left[BO_{E}(t) + b_{x}x_{E}(t) \right] + w' \left[BO_{-i}(t) + b_{x}x(t) \right] - b_{y}y(t)$$
 where w'=1-w.

Traders' Strategy Space

Trading strategies:

- Out
- 2 Manual trader
- 3 Algorithmic: Traders adjust:
 - b_x sensitivity to leading indicators of price movement
 - b_v sensitivity to own inventory
 - w weight given to external exchange signals

Technology strategies (latencies):

- Slow (high latency)
- Fast (low latency)
- (or continuous)

Interface

Video

New Market Formats

- 1 Investors' Exchange
 - Order delay
 - Quote protection (pegging to NBBO)
- 2 Kyle-Lee flow
 - Submit flow orders
 - Can be sniped, but for negligible amounts.

Research Plan