

Sciences physiques

Classe: 4ème Math

Série: RLC Forcé (2)

Nom du prof : Mr HADJ SALAH WAJIH

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

www.takiacademy.com

73.832.000

Taki Academy www.taklacademy.com

On associe en série un condensateur de capacité C, une bobine d'inductance L et un résistor de résistance $R=50\,\Omega$. L'ensemble est alimenté par un générateur de tension alternative de fréquence N variable : $u(t)=U\sqrt{2}\sin(2\pi Nt)$ avec U=6V. voir figure 1.

- **1-** Quelles sont les tensions visualisées sur les voies 1et 2 de l'oscilloscope ?
- **2-** Pour une valeur N₁=50Hz de N, les trois voltmètres de la figure ci-contre indiquent la même valeur et on obtient les oscillogrammes suivants :

- a- Laquelle des deux courbes représente u(t)?
- **b-** Calculer le déphasage $\Delta \varphi$ entre les deux tensions
- **c** En déduire $\varphi_u \varphi_i$. Dire si le circuit est capacitif ou inductif.
- **d-** Exprimer C et L en fonction de R et N_1 et calculer leurs valeurs.
- e- Faire, à l'échelle 1cm représente 2V, la construction de Fresnel relative à ce circuit.
- **f** Etablir les expressions de i(t) et de $u_{AD}(t)$.
- **3-** Pour une autre valeur N₂ de N les deux courbes deviennent en quadrature de phase.
- **a-** Montrer que le circuit est en état de résonance d'intensité.

- **b-** Calculer N₂, U_c et U_{AD}.
- **c-** Montrer que la tension efficace aux bornes du condensateur peut se mettre sous la forme Uc = Q.U où Q est une constante dont on donnera l'expression.

Un circuit électrique comporte les éléments suivants associés en série:

- un générateur de basses fréquences GBF délivrant une tension sinusoïdale $u(t)=U_m$ $\sin(\omega t)$ avec U_m , est constante et ω variable.
- un condensateur de capacité C= 4,5 μF.
- un résistor de résistance $R=200\Omega$.
- une bobine d'inductance L et de résistance négligeable.
- un voltmètre branché aux bornes de l'ensemble {bobine, condensateur}
- I- Pour une pulsation $\omega = \omega_1 = 1614 \text{ rad.s}^{-1}$, un oscilloscope bicourbe convenablement branché, permet de visualiser u(t) sur la voie Y_1 et une tension $u_X(t)$ sur la voie Y_2 ($u_X(t)$ peut être soit $u_R(t)$ soit $u_C(t)$) voir figure 3

$$U_{am}$$
= 3,44V
 U_{bm} = 10V

Physique

- 1- Vérifier que le déphasage $|\Delta \varphi| = \frac{5\pi}{6}$ rad.
- **2-** Montrer que $u_X(t)$ ne peut pas être $u_R(t)$. Faire alors le schéma du montage et les branchements à l'oscilloscope permettant de visualiser u(t) et $u_X(t)$.
- 3- Montrer que la courbe (b) représente u(t).
- 4- Montrer que $\varphi_u \varphi_i = \frac{\pi}{3}$ et dire si le circuit est inductif ou capacitif.

5-

- **a-** Faire la construction de Fresnel correspondante.
- **b** Déduire l'expression de I_m et $tg(\varphi_u \varphi_i)$.
- 6- Déterminer la valeur de l'inductance L de la bobine.
- II- On modifie la pulsation ω . Pour une autre pulsation $\omega = \omega_2$, le voltmètre indique une tension nulle.
- 1- Montrer que l'oscillateur est en état de résonance d'intensité.
- **2-** Déterminer alors le déphasage $\Delta \varphi = \varphi_u \varphi_{uc}$
- 3- Calculer le coefficient Q de surtension.

