Computabilità e Algoritmi 25 Gennaio 2016

Esercizio 1

Dimostrare che un insieme $A \subseteq \mathbb{N}$ è ricorsivo se e solo se A e \bar{A} sono r.e.

Esercizio 2

Definire una funzione $f: \mathbb{N} \to \mathbb{N}$ totale non calcolabile tale che f(x) = x per infiniti argomenti $x \in \mathbb{N}$ oppure dimostrare che una tale funzione non esiste.

Esercizio 3

Una funzione $f: \mathbb{N} \to \mathbb{N}$ è detta strettamente crescente se per ogni $y, z \in \text{dom}(f), y < z$ implica f(y) < f(z). Studiare la ricorsività dell'insieme $A = \{x \mid \varphi_x \text{ strettamente crescente}\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : x > 0 \land x/2 \notin E_x\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $x \in \mathbb{N}$ tale che $\varphi_x(y) = x + y$.