

Реляционные базы данных: Резервное копирование.

Роман Гордиенко

Backend Developer, Factory5

План занятия

- 1. <u>Резервное копирование что это?</u>
- 2. Виды и типы резервного копирования
- 3. Восстановление данных
- 4. Резервное копирование PostgreSql
- 5. <u>Резервное копирование MySql</u>
- 6. Мониторинг состояния бэкапов
- 7. Итоги
- 8. Домашнее задание

Резервное копирование — что это?

Резервное копирование (backup)

Резервное копирование — процесс создания копии данных на носителе (жёстком диске, дискете и т. д.), предназначенном для восстановления данных в оригинальном или новом месте их расположения в случае их повреждения или разрушения.

Резервное копирование необходимо для возможности быстрого и недорогого восстановления БД в случае утери рабочей копии информации по какой-либо причине.

Виды и типы резервного копирования

Виды и типы резервного копирования

- Полное резервное копирование (Full backup);
- Инкрементные бэкапы (Incremental backup);
- Дифференциальный бэкап (differential backup);
- Холодное резервирование БД;
- Горячее резервирование БД;
- Репликация.

Полное резервное копирование (Full backup)

Данный метод создает полную копию набора исходных данных.

В данном случае копируется весь каталог с файлами БД либо создается образ диска или системы, где находится база.

Преимущества и недостатки полного резервного копирования

Преимущества:

- быстрое восстановление данных,
- простое управление,
- все данные содержаться в одной резервной копии.

Недостатки:

- требует много места для хранения резервных копий,
- высокая загрузка сети,
- длительное выполнение резервного копирования.

Инкрементные бэкапы (Incremental backup)

Инкрементное резервное копирование использует полную копию, как начальную точку.

Затем выполняется резервное копирование только блоков данных, которые были изменены с момента последнего резервного задания, с заданным периодом выполнения задания.

В зависимости от политики хранения резервных копий через определенный период создается новая полная копия для повторения цикла.

Преимущества и недостатки Incremental Backup

Преимущества:

- высокая скорость резервного копирования (копируются только блоки измененных данных),
- меньше места для хранения (по сравнению с полным),
- большее количество точек восстановления.

Преимущества и недостатки Incremental Backup

Недостатки:

- низкая скорость восстановления данных (необходимо восстановить как начальную полную копию, так и все последующие блоки);
- менее надежна (зависит от целостности всех блоков в цепочке).

Дифференциальный бэкап (differential backup)

Дифференциальный бэкап — это тип резервного копирования файлов, при котором копируются не все исходные файлы, а только новые и измененные с момента создания предыдущей полной копии.

Он является чем-то средним между полным резервным копированием и инкрементальным. Название этого типа произошло от английского слова **Differential backup** и является накопительным, т.е. каждая следующая копия содержит все новые/измененные файлы с момента создания предыдущей полной резервной копии.

Преимущества и недостатки дифференциального бэкапа

Преимущества:

- Относительно небольшой размер разностной резервной копии, по сравнению с полной;
- Скорость создания в разы выше, чем полного бэкапа;
- Для восстановления файлов потребуется последний созданный полный бэкап и последний дифференциальный.

Недостатки:

• Избыточность данных, так как дифференциальный бэкап является накопительным.

Холодное резервирование БД

Холодное резервное копирование выполняется на уровне операционной системы при остановленной базе данных — резервируются файлы, составляющие базу данных файлы данных, управляющие файлы, файл параметров.

Преимущества и недостатки холодного резервирования БД

Преимущества:

- быстрое восстановление данных,
- простое управление,
- все данные содержаться в одной резервной копии.

Преимущества и недостатки холодного резервирования БД

Недостатки:

- можно восстановить только то состояние базы данных, которое было в момент остановки;
- транзакции, сделанные после рестарта базы, в резервную копию не попадут;
- не у каждой базы данных есть технологическое окно, когда базу можно остановить.

Горячее резервирование БД

При горячем резервировании база данных включена и открыта для потребителей.

Копия базы данных приводится в согласованное состояние путем автоматического приложения к ней журналов резервирования по окончании копирования файлов данных.

Преимущества и недостатки горячего резервирования

Преимущества:

- База данных может использоваться во время резервного копирования;
- База данных может восстановиться до определенного момента времени;
- Высокая скорость восстановления;
- Почти все объекты базы данных могут быть восстановлены.

Преимущества и недостатки горячего резервирования

Недостатки:

- В момент начала копирования содержимое базы данных может не совпадать с содержимым файлов;
- Во время копирования содержимое базы может меняться;
- Поскольку запись данных в базу и чтение файлов БД никак не синхронизированы, программа резервного копирования может прочитать некорректную страницу, в которой половина будет от старой версии страницы, а другая половина – от новой.

Репликация

Идея репликации основана на том, что кроме «главного» сервера («Мастера») постоянно работают ведомые сервера («слейвы»), которые получают инкрементные бэкапы с мастера в режиме реального времени.

Восстановление данных

Восстановление данных

Восстановление данных — процесс восстановления базы данных до исходного состояния из имеющейся резервной копии.

В процессе обычно используются утилиты для восстановления, поставляемые в комплекте с СУБД.

Как правило, существует подробная документация, как проводить восстановление.

Резервное копирование и восстановление PostgreSQL

Peзервное копирование и восстановление PostgreSQL

- Выгрузка в SQL;
- Резервное копирование на уровне файлов;
- Непрерывное архивирование и восстановление.

Выгрузка в SQL

Идея, стоящая за этим методом, заключается в генерации текстового файла с командами SQL, которые при выполнении на сервере пересоздадут базу данных в том же самом состоянии, в котором она была на момент выгрузки.

SOL Dump

Резервное копирование на уровне файлов

Альтернативной стратегией резервного копирования является непосредственное копирование файлов, в которых Postgres хранит содержимое базы данных;

Непрерывное архивирование и восстановление

В процессе работы Postgres ведёт журнал предзаписи (WAL). В этот журнал записываются все изменения, вносимые в файлы данных.

Если происходит крах, целостность СУБД может быть восстановлена в результате «воспроизведения» записей, зафиксированных после последней контрольной точки.

Непрерывное архивирование и восстановление

Однако наличие журнала делает возможным использование третьей стратегии копирования баз данных: можно сочетать резервное копирование на уровне файловой системы с копированием файлов WAL.

Если потребуется восстановить данные, мы можем восстановить копию файлов, а затем воспроизвести журнал из скопированных файлов WAL, и таким образом привести систему в нужное состояние.

Резервное копирование и восстановление MySql

Pезервное копирование и восстановление MySql

- Копирование файлов базы;
- Копирование через текстовые файлы;
- Инкрементные бэкапы;
- Репликация.

Копирование файлов базы

Базу данных MySQL можно скопировать, если временно выключить MySQL-сервер и просто скопировать файлы из папки /var/lib/mysql/db/.

Если сервер не выключить, вероятна потеря и порча данных. Для больших нагруженных баз эта вероятность близка к 100%.

При первом запуске с «грязной» копией базы данных MySQLсервер начнет процесс проверки всей базы, который может затянуться на часы.

Копирование файлов базы

В большинстве «живых» проектов регулярное выключение сервера БД на длительное время неприемлемо. Для решения этой проблемы применяется трюк, основанный на снэпшотах файловой системы.

Общая схема действий такова:

- блокируются все таблицы,
- сбрасывается файловый кэш БД,
- делается снэпшот файловой системы,
- разблокируются таблицы.

Копирование файлов базы

Далее файлы спокойно копируются из снэпшота, который затем уничтожается. «Блокирующая» часть такого процесса занимает время порядка нескольких секунд, что уже терпимо.

В качестве расплаты на какое-то время, пока «жив» снэпшот, снижается производительность файловых операций, что в первую очередь бьет по скорости операций записи в базу.

Копирование через текстовые файлы

Для того, чтобы считать в бэкап данные из production-базы, не обязательно дергать файлы. Можно выбрать данные запросом и сохранить их в текстовый файл.

Для этого используется SQL-команда SELECT INTO OUTFILE и парная ей — LOAD DATA INFILE.

Копирование через текстовые файлы

Выгрузка производится построчно (можно отобрать для сохранения только нужные строки, как в обычном SELECT). Структура таблиц нигде не указывается — об этом должен заботиться программист. Он также должен позаботиться о включении команд SELECT INTO OUTFILE в транзакцию, если это необходимо для обеспечения целостности данных.

На практике SELECT INTO OUTFILE используется для частичного бэкапа очень больших таблиц, которые нельзя скопировать никаким другим образом.

Инкрементные бэкапы

Традиционно рекомендуют держать 10 бэкапов: по одному на каждый день недели, а также бэкапы двухнедельной, месячной и квартальной давности — это позволит достаточно глубоко откатиться в случае порчи каких-либо данных.

Храниться бэкапы должны точно *не на том же диске*, что и живая база, и не на том же сервере.

Инкрементные бэкапы

Эти требования могут стать проблемой для больших баз.

Частично решить эту проблему позволяют инкрементные бэкапы, когда полный бэкап делается, скажем, только по воскресеньям, а в остальные дни пишутся только данные, добавленные или измененные за прошедшие сутки.

Репликация

Реплика — это полная копия базы, но это **не резервная копия**!

Идея репликации основана на том, что кроме «главного» сервера («Мастера») постоянно работают ведомые сервера MySQL («слейвы»), которые получают инкрементные бэкапы с мастера в режиме реального времени..

Репликация

Таким образом, время отката уменьшается почти до сетевого лага. В случае краха Мастера можно оперативно назначить «новым Мастером» один из слейвов и перенаправить клиентов на него.

Кроме того, слейвы могут обрабатывать запросы на чтение данных (SELECT-ы); это можно использовать для выполнения каких-то расчетов или снижения нагрузки на мастера.

Мониторинг состояния бэкапов

Мониторинг состояния бэкапов

После создания любых типов бэкапов обязательно следить за их состоянием.

Важные аспекты, на которые следует обратить внимание:

- восстанавливаемость,
- целостность файлов и цепочки (в случае инкрементальных бэкапов),
- свободное место для хранения.

Удобным инструментом для такого мониторинга является Zabbix.

Итоги

Итоги

Сегодня мы:

- узнали, что такое резервное копирование БД;
- рассмотрели типы бэкапов, и что такое восстановление данных;
- ознакомились с резервным копированием в PostgreSql и MySql;
- узнали, на что обратить внимание при уже созданных бэкапах.

Домашнее задание

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте в чате мессенджера .
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Задавайте вопросы и пишите отзыв о лекции!

Роман Гордиенко