

Chess & Reinforcement Learning

Guillaume Pelat

November 12th, 2021

Content

- Anatomy of a Chess Program
- Related Work
- Motivation and Goal
- Network Structure
- Move Matching
- Reinforcement by self-play
- Tree Search Enhancements
- Results
- Future Work

Anatomy of a Chess Program: Evaluation

How favorable is a position?

- Piece Value;
- Piece-Square table;
- Mobility (number of legal moves);
- Stage of the game...

Usual piece values

Millions of parameters that need to be designed, tuned and combined.

Very hard without expert knowledge!

Anatomy of a Chess Program: Search

Alpha-Beta: an optimized Minimax

Depends on move ordering!

number of leaves with depth n and b = 40

depth n	b ⁿ	b[n/2] + b[n/2] - 1
0	1	1
1	40	40
2	1,600	79
3	64,000	1,639
4	2,560,000	3,199
5	102,400,000	65,569
6	4,096,000,000	127,999
7	163,840,000,000	2,623,999
8	6,553,600,000,000	5,119,999

From https://www.chessprogramming.org/Alpha-Beta

Anatomy of a Chess Program: Search

Monte-Carlo Tree Search

Need a good policy for simulation!

Related Work: DeepChess

DeepChess: End-to-End Deep Neural Network for Automatic Learning in Chess Eli David, Nathan S. Nethanyahu, Lior Wolf - 2016

- « DeepChess is the first end-to-end machine learning-based method that results in a grandmaster-level chess playing performance »
- Learns to find the most favorable position out of two
- Uses modified version of Alpha-Beta

Problem: can be improved by Network Distillation, but the search is very slow.

DeepChess' Architecture

Related Work: AlphaZero

Mastering Chess and Shogi by Self-Play with a General Rinforcement Learning Algorithm David Silver et al. - 2017

- First model trained entirely through self-play.
- ➤ Beat Stockfish after 4 hours of training (on 5000 TPUs)
- Network Architecture is generalized to Go and Shogi, feature representation without game-specific knowledge

AlphaZero vs. Stockfish

From https://deepmind.com/blog/article/alphazero-shedding-new-lightgrand-games-chess-shogi-and-go

Related Work: Maia

Aligning Superhuman Al with Human Behavior: Chess as a Model System

Reid McIlroy-Young, Siddharta Sen, John Kleinberg, Ashton Anderson - 2020

AlphaZero's architecture, but with supervised learning.

- Aims at mimicking human players at a given Elo; also trained to predict mistakes.
- Can be tuned to a particular player with up to 65% accuracy

From https://maiachess.com/

Motivation and goals

Most engines before AlphaZero only train an evaluation function.

Can we obtain a good engine by only learning a policy?

Using reinforcement learning takes a very long time.

Leela Chess Zero took 3 years to replicate AlphaZero's results.

On the opposite, supervised learning requires huge databases.

Maia needs 12 million games per target level.

Goals

- Mix supervised and reinforcement learning to accelerate training.
- The obtained network should be able to serve as a training partner for a human player.

Network Structure: Features

41 8x8 feature planes:

- 3 last positions using each 13 planes
- Two planes for color and number of moves played

Position description: one plane per piece type and color (6x2), one for free squares

Free squares plane

Black queen plane

Network Structure: Architecture

Base network:

- A 1x1 convolution for feature extraction
- 2. 3 residual blocks with 3x3 convolutions

Two slightly different heads for Move Matching and Self-Play.

- The residual tower is only trained through supervised learning.
- Self-Play focuses on extracting the best move

Architecture for Move Matching (left) and Self-Play(right)
Left: 6,5m weights / Right: 20m weights

Move Matching

We want to train the residual tower to extract a representation for move selection.

- > Task: replicate the moves of human players with above 2200 points on Lichess (top 1%).
- Used to test different architectures and feature representation.

During training, the loss is computed only on legal moves, not all moves.

> We do not penalize rarely occuring moves like promotions

Move Matching Results

Accuracy of different architectures (trained on 900k positions)

Method	Accuracy	
Dense layers	0,24	
Model	0,38	
Convolution Layers	0,34	
Model + Loss on all	0,36	
Maia	0,35	

Move-matching performance depending on the stage of the game

Self-Play: Ensure Exploration

Idea: use output of the network to choose the next move.

However, irrelevant moves tend to accumulate.

Hence, only the 3-4 best moves are considered.

But we can use the database!

- 1. Select a game from the database.
- 2. Cut the last k moves and start self-play from this position.
 - Ensure that played positions happen in "real" games;
 - We can use the first moves as additional training examples;
 - We know the theoretical winner!

Self-Play: Rewards

		Reward for player	
Supposed Winner	Actual Result		
		1	ignored
		0	1
		1	0
		ignored	1
	Draw	1/n	1
	Draw	1	1/n

Tree Search Enhancements

Idea: network output can be used to improve Alpha-Beta search.

- Improve search speed by move ordering
 - > up to x10 speed compared to normal

Tree Search Enhancements

Idea: network output can be used to improve Alpha-Beta search.

- Improve search speed by move ordering
 - > up to x10 speed compared to normal
- Probability search instead of depth search
 - Limit search to nodes with a high occurrence probability
 - Goes deeper with a similar amount of visited nodes

From Giraffe: Using deep reinforcement learning to play chess, 2015

Tree Search Enhancements

Idea: network output can be used to improve Alpha-Beta search.

- Improve search speed by move ordering
 - up to x10 speed compared to normal
- Probability search instead of depth search
 - Limit search to nodes with a high occurrence probability
 - > Goes deeper with a similar amount of visited nodes

Pure Monte-Carlo search: simulate n games for each possible move

From Giraffe: Using deep reinforcement learning to play chess, 2015

Results

The network quickly learns how to shorten a game.

Number of aborted games (length > 300 moves) relative to number of training games

- Winrate over 100 games against différents versions:
 - ➤ Up to +220 Elo with MCTS 40!

. = /i)	AB	Base
AB search	-	32
Base	68	70
Prob search	73.5	57

-8	Base
MCTS 3	71
MCTS 5	76
MCTS 10	77
MCTS 40	78

Future Work

Implement a time control strategy.

- Using searches (except MCTS) takes a very long time
- Using the bare model or MCTS with a small parameter is very fast, and very unhuman

Train the network using the results of MCTS searches

- Can aggregate many moves in a single step
- ➤ How would it fare in terms of training speed?

Thank you for your attention!

