F. Podciągi

Dostępna pamięć: 128 MB

Dany jest ciąg A liczb naturalnych dodatnich, niekoniecznie różnych. Z tego ciągu usuwamy jeden spójny podciąg. Możemy w ten sposób otrzymać różne ciągi; ich zbiór oznaczmy przez $\mathcal{R}(A)$. Można też usunąć pusty ciąg, czyli $A \in \mathcal{R}(A)$. Teraz dla dowolnego ciągu B liczb naturalnych dodatnich zdefiniujmy NRP(B) jako długość najdłuższego spójnego podciągu B, który jest (ściśle) rosnący. Twoim zadaniem jest znalezienie takiego ciągu B w zbiorze $\mathcal{R}(A)$, dla którego wartość NRP(B) jest największa.

Przykładowo dla ciągu A=(5,3,4,9,2,8,6,7,1), najlepszym rozwiązaniem jest usunięcie spójnego podciągu (9,2,8). Otrzymujemy wtedy ciąg (5,3,4,6,7,1), w którym najdłuższy podciąg rosnący (3,4,6,7) ma długość równą 4.

Uwaga: W tym zadaniu zabronione jest używanie tych konstrukcji STL-a, których nazwy zawierają: set, map, heap, priority_queue, lower_bound, upper_bound lub binary_search. Niedozwolone jest też wykorzystanie gotowych odpowiedników tych konstrukcji w innych językach programowania.

Specyfikacja danych wejściowych

W pierwszym wierszu danych wejściowych znajduje się liczba naturalna $1 \leqslant T \leqslant 10$, będąca liczbą różnych ciągów. W kolejnych $2 \cdot T$ wierszach znajduje się opis T ciągów A_1, A_2, \ldots, A_T , po dwa wiersze na każdy ciąg:

- 1. Pierwszy wiersz opisu ciągu A_i zawiera liczbę naturalną $1 \le n_i \le 2 \cdot 10^6$ będąca długością ciągu A_i .
- 2. Drugi wiersz opisu ciągu A_i zawiera n_i liczb naturalnych dodatnich, oddzielonych pojedynczymi spacjami, nie większych niż 10^9 , będących kolejnymi wyrazami ciągu A_i .

Specyfikacja danych wyjściowych

Twój program powinien wypisać T wierszy, po jednym dla każdego ciągu A_i . W i-tym wierszu powinna znaleźć się jedna liczba naturalna dodatnia równa $\max_{B \in \mathcal{R}(A_i)} \text{NRP}(B)$.

Przykład A

Wejście:	Wyjście:
1	4
9	
5 3 4 9 2 8 6 7 1	

Przykład B

Wejście:	Wyjście:
1	6
7	
1 2 3 10 4 5 6	

Przykład C

Wejście:	Wyjście:
2	1
3	1
3 3 3	
4	
4 3 2 1	