

HiVG: Hierarchical Multimodal Fine-grained Modulation for Visual Grounding

Paper ID: 2398 Posterboard: P161 Linhui Xiao^{1,2,3}, Xiaoshan Yang^{1,2,3}, Fang Peng^{1,2,3}, Yaowei Wang², Changsheng Xu^{1,2,3*}

¹MAIS, Institute of Automation, Chinese Academy of Sciences

² Pengcheng Laboratory

³ School of Artificial Intelligence, University of Chinese Academy of Sciences

E-mail: xiaolinhui16@mails.ucas.ac.cn, Github: https://github.com/linhuixiao/HiVG

MOTIVATION

Visual grounding, which aims to ground a visual region via natural language. Existing works utilized uni-modal pre-trained models to transfer visual or linguistic knowledge separately while ignoring the multimodal corresponding information. Motivated by recent advancements in contrastive language-image pre-training and low-rank adaptation (LoRA) methods, we aim to solve the grounding task based on multimodal pre-training. However, there exists significant task gaps between pre-training and grounding. Therefore, in this paper, we propose a concise and efficient hierarchical multimodal fine-grained modulation framework, namely **HiVG**.

Fig.1 Data granularity gaps between pre-training and grounding.

Fig.2 Visual attentions and grounding results of CLIP and the proposed HiVG.

METHODS

Fig.3 The HiVG framework architecture.

HiVG consists of a multi-layer adaptive cross-modal bridge (MACB, Fig.4) and a hierarchical multimodal low-rank adaptation (HiLoRA, Fig.5) paradigm.

Fig.4 The multi-layer adaptive cross-modal bridge (MACB).

Fig.5 Our proposed HiLoRA and vanilla LoRA.

(1) The MACB (Fig.4) can address the inconsistency between visual features and those required for grounding and establish a connection between multi-level visual and text features.

* $f^{nl} = \operatorname{conset}[*f^{1} * f^{2}] = *f^{n}] \otimes W$

$$*f_{l}^{i} = w_{l}^{i} \odot f_{l}^{i} + f_{l}^{i}$$
 $*f_{l}^{ml} = \text{concat}[*f_{l}^{1}, *f_{l}^{2}, \cdots, *f_{l}^{n}] \otimes W_{proj}$

(2) The HiLoRA (Fig.5) prevents the accumulation of perceptual errors by adapting the cross-modal features from shallow to deep layers in a hierarchical manner.

Vanilla LoRA: $h = W_0 x + \Delta W x = W_0 x + BAx$ $HiLoRA: \qquad h_j^l = \begin{cases} W_0^l x^l, & when \ l > j \cdot L/G, \\ W_0^l x^l + \sum_{k=\lceil l \cdot G/L \rceil}^j B_k^l A_k^l x^l, & when \ l \leq j \cdot L/G \end{cases}$

HiLoRA with MACB:

$$\text{When } l > j \cdot L/G : \qquad h_j^l = \begin{cases} W_0^l f_v^{l-1}, & \text{when } l \notin C, \\ W_0^l (f_v^{l-1} + f_v^{sa}), & \text{when } l \in C \end{cases}$$

$$\text{While in } l \leq j \cdot L/G : \qquad h_j^l = \begin{cases} W_0^l f_v^{l-1} + \sum_{k=\lceil l \cdot G/L \rceil}^j B_k^l A_k^l f_v^{l-1}, & \text{when } l \notin C, \\ W_0^l (f_v^{l-1} + f_v^{sa}) + \sum_{k=\lceil l \cdot G/L \rceil}^j B_k^l A_k^l (f_v^{l-1} + f_v^{sa}), & \text{when } l \in C. \end{cases}$$

(3) Training objectives.

$$\mathcal{L}_{BOX} = \lambda_{l_1} \mathcal{L}_{smooth-l1} (\hat{\mathcal{B}}, \mathcal{B}) + \lambda_{qiou} \mathcal{L}_{giou} (\hat{\mathcal{B}}, \mathcal{B}) \qquad \mathcal{L}_{total} = \mathcal{L}_{BOX} + \mathcal{L}_{CLC} + \mathcal{L}_{RTCC}$$

RESULTS

Experimental results on five datasets demonstrate the effectiveness of our approach and showcase the significant grounding capabilities as well as promising energy efficiency advantages.

Tab.1 Comparison HiVG with latest SoTA methods on RefCOCO/+/g etc..

26.1		Visual	Language	Multi-	RefCOCO			RefCOCO+			RefCOCOg		ReferIt	Flickr
Methods	Venue	Backbone	Backbone	task	val	testA	testB	val	testA	testB	val	test	test	test
Fine-tuning w. uni	-modal pre-tra	ined close-set de	tector and la	nguage n	nodel: (tı	raditiona	ıl setting	<u>;</u>)						
TransVG [9]	ICCV'21	RN101+DETR	BERT-B	X	81.02	82.72	78.35	64.82	70.70	56.94	68.67	67.73	70.73	79.10
SeqTR [79]	ECCV'22	DN53	BiGRU	X	81.23	85.00	76.08	68.82	75.37	58.78	71.35	71.58	69.66	81.23
RefTR* [27]	NeurIPS'21	RN101+DETR	BERT-B	✓	82.23	85.59	76.57	71.58	75.96	62.16	69.41	69.40	71.42	78.66
Word2Pix [77]	TNNLS'22	RN101+DETR	BERT-B	×	81.20	84.39	78.12	69.74	76.11	61.24	70.81	71.34	_	_
QRNet [72]	CVPR'22	Swin-S[40]	BERT-B	×	84.01	85.85	82.34	72.94	76.17	63.81	71.89	73.03	74.61	81.95
VG-LAW [56]	CVPR'23	ViT-Det [29]	BERT-B	×	86.06	88.56	82.87	75.74	80.32	66.69	75.31	75.95	76.60	_
TransVG++[10]	TPAMI'23	ViT-Det [29]	BERT-B	X	86.28	88.37	80.97	75.39	80.45	66.28	76.18	76.30	74.70	81.49
Fine-tuning w. visi	on-language se	elf-supervised pr	e-trained mo	odel:				1						1
CLIP-VG [64]	TMM'23	CLIP-B	CLIP-B	×	84.29	87.76	78.43	69.55	77.33	57.62	73.18	72.54	70.89	81.99
JMRI [80]	TIM'23	CLIP-B	CLIP-B	X	82.97	87.30	74.62	71.17	79.82	57.01	71.96	72.04	68.23	79.90
Dynamic-MDETR	TPAMI'23	CLIP-B	CLIP-B	×	85.97	88.82	80.12	74.83	81.70	63.44	74.14	74.49	70.37	81.89
HiVG (ours)	ACM MM'24	CLIP-B	CLIP-B	×	87.32	89.86	83.27	78.06	83.81	68.11	78.29	78.79	75.22	82.11
HiVG-L (ours)	ACM MM'24	CLIP-L	CLIP-L	×	88.14	91.09	83.71	80.10	86.77	70.53	80.78	80.25	76.23	82.16
Fine-tuning w. box		nixed open-set o	letection pre	-trained 1	model / r	nulti-tas	sk mix-sı	upervise	d pre-tra	ined mo	del:			1
MDETR [†] [20]	ICCV'21	RN101+DETR	RoBERT-B	X	86.75	89.58	81.41	79.52	84.09	70.62	81.64	80.89	_	83.80
YORO [†] [16]	ECCV'22	ViLT [24]	BERT-B	×	82.90	85.60	77.40	73.50	78.60	64.90	73.40	74.30	71.90	_
DQ-DETR [†] [33]	AAAI'23	RN101+DETR	BERT-B	×	88.63	91.04	83.51	81.66	86.15	73.21	82.76	83.44	_	_
Grounding-DINO [†]	Arxiv'23	Swin-T	BERT-B	×	89.19	91.86	85.99	81.09	87.40	74.71	84.15	84.94	_	_
UniTAB [†] [70]	ECCV'22	RN101+DETR	RoBERT-B	✓	86.32	88.84	80.61	78.70	83.22	69.48	79.96	79.97	_	79.38
OFA-B [†] [61]	ICML'22	OFA-B	OFA-B	✓	88.48	90.67	83.30	81.39	87.15	74.29	82.29	82.31	_	_
OFA-L [†] [61]	ICML'22	OFA-L	OFA-L	✓	90.05	92.93	85.26	85.80	89.87	79.22	85.89	86.55	_	_
HiVG [†] (ours)	ACM MM'24	CLIP-B	CLIP-B	×	90.56	92.55	87.23	83.08	89.21	76.68	84.52	85.62	77.75	82.08
HiVG-L [†] (ours)	ACM MM'24	CLIP-L	CLIP-L	X	90.77	92.94	88.03	86.78	89.91	78.02	86.61	86.60	78.16	82.63

FPS (Follow YORO)

Length of Referring Expression

epoch

Fig.6 Visualization comparing HiVG (base) with other SoTA models.

Fig.7 Qualitative results of our HiVG.

CONCLUSION

HiVG effectively implements fine-grained adaptation of the pre-trained model in the complex grounding task. It is a concise and efficient end-to-end framework. Our exploration in hierarchical cross-modal features offer new insights for the future grounding research.