Modeling Movie Success from Collaboration Networks Using Graph Neural Networks

David Corcoran Gentry Lamb Adam Stein

Agenda

- Research Topic
- Research Objectives
- Dataset Overview
- Methods
- Results
- Conclusions

Research Topic

Explore how the structure of professional collaboration networks (actors, directors, producers) affects the success of movies at the box office.

Hypothesis - The network structure of a movie's team is a strong predictor of its commercial and critical performance.

Approach

- Nodes: Actors, Directors, Producers
- > Edges: Collaborations
- Use Graph Neural Networks to predictBox Office performance
- Network analysis allows us to model this relational structure and uncover hidden patterns.

Research Objectives

Build a Movie Collaboration Graph

Model Success Using GNNs and Other ML Models

Extract and Evaluate Network-Based Features

Analyze Patterns
Behind Predictions

- Nodes: Actors, Directors, Producers
- Edges: Collaboration edges between cast/crew who worked on the same film
- Include metadata such as genre, year, studio, and success outcome (revenue/ratings)

- Define prediction targets:
- Box office success (e.g., high/mid/low revenue tier)
- Critical acclaim (e.g., ratings score buckets or award nominations)
- Train GNNs on collaboration subgraphs to classify movie outcomes

- Hand-crafted metrics:
 - Node-level: Degree,betweenness, PageRank
 - Graph-level: Clustering coefficient, modularity
- Learnable features:
 - GNN node embeddings
 - Edge strength (e.g., frequency of past collaboration)

- Use explainability tools to identify important nodes/edges
- Cluster movies by graph structure to discover common success motifs
- Compare successful and unsuccessful teams on key metrics

Dataset Overview

Data Sources

TMDB API:

 Queried through 18 genres to collect 19 base features

OMDB API:

Iterated through movie
 IDs already collected
 from TMDB to obtain 8
 additional features

Data Cleaning

Raw Data:

- 7333 movies
- 28 movie attributes

Processed Data:

- Converted data types, dealt with duplicate titles, dropped unnecessary rows
- 6940 movies
- 34 movies attributes

Target Variables

Financial Success

Box Office Revenue

Critical Success

Ratings

Methods - Network Construction

Movie Similarity Network

Crew Collaboration Network (15 movie sample): nodes = people; edges = worked on same movie

nodes = movies; edges = shared collaborators

Methods - Centrality Measures

- Using crew collaboration network calculated node centrality measures to capture influence of collaborators
- Centrality Metrics Added:
 - > Degree Centrality: extent of a contributor's collaborations
 - Closeness Centrality: how near a contributor is to others in the network
 - Betweenness Centrality: a measure of how often a contributor connects otherwise separate groups
- Integration into Film Dataset:
 - > For each movie, aggregated collaborators' scores
 - Mean and Maximum values calculated

Methods - Regression

♦ Two target variables:

- Revenue_Normalized (standardized box office performance)
- Average_Rating (mean of critic and audience ratings)

Modeling setup:

- > 80/20 train-test split
- Ordinary Least Squares (OLS) via LinearRegression in scikit-learn
- ➤ Evaluated with MSE, RMSE, MAE, and R²

Incorporated network features:

- Added Degree, Closeness, and Betweenness Centrality (mean & max per film)
- Centrality measures derived from cast & crew collaboration networks

Methods - Classification

Two binary targets:

- Success_Financial (e.g., ROI > 1 = success)
- Success_Critical (e.g., top rating quartile = success)

♦ Feature sets:

- Baseline model: traditional film features (e.g., budget, genre, runtime)
- > Extended model: added network centrality metrics (Degree, Closeness, Betweenness)

♦ Modeling setup:

- Logistic Regression for interpretability and binary classification suitability
- > Stratified 80/20 train-test split to maintain class balance
- Accuracy, Precision, Recall, F1-score for evaluation

Methods - GNN

Graph Convolutional Network (GCN) vs Graph Attention Network (GAT)

Target Variables

Revenue (Normalized):

Standardized reported box office performance

 Financial success indicator

Average Rating: Mean of critic and audience ratings

Critical success indicator

Modeling Setup

Created labels by dividing the dataset into quantiles based on target values

- * Revenue: 4 labels
- * Rating: 3 labels

80/10/10 train/validation/test dataset split

Model Selection

Hyperparameter Tuning:

Explored combinations of

- Learning rate
- Hidden dimensions
- Weight decay
- Optimizer
- Dropout

Selection Criteria: Model configuration with lowest validation loss

Results - Regression

Target	Model Specification	MSE	RMSE	MAE	R ²
Revenue_Normalized	Baseline	0.5421	0.7363	0.4761	0.4513
Revenue_Normalized	With Centrality (All)	0.4853	0.6967	0.4639	0.5088
Revenue_Normalized	With Centrality (Max Only)	0.4811	0.6936	0.4573	0.5130
Average_Rating	Baseline	1.8077	1.3445	1.0871	0.0476
Average_Rating	With Centrality (All)	1.7052	1.3058	1.0599	0.1016
Average_Rating	With Centrality (Max Only)	1.6857	1.2983	1.0522	0.1119

Key Takeaways:

- Network features help explain financial performance
- Limited utility for predicting critical reception

Results - Classification

Target	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Success_Critical	0.76	0.55	0.21	0.30	0.71
Success_Financial	0.76	0.77	0.95	0.85	0.71
Success_Critical	0.76	0.56	0.21	0.31	0.74
Success_Financial	0.75	0.78	0.90	0.83	0.71

Key Takeaways:

- Adding centrality measures yielded modest improvements
- Persistent challenge of detecting critically successful films
- Difficulty predicting critical acclaim compared to financial outcomes, even with network features

Results - GCN (Rating)

Final Model Configuration

Hidden Layer Size	
Learning Rate	0.01
Weight Decay	0.001
Dropout Rate	0.2
Optimizer	Adam

Best Validation Loss: 0.9928

Test Accuracy: 46.75%

Results - GAT (Rating)

Final Model Configuration

Hidden Layer Size	[128]
Learning Rate	0.01
Weight Decay	0.001
Dropout Rate	0.2
Optimizer	Adam

Best Validation Loss: 0.9445

Test Accuracy: 53.25%

Results - GCN (Revenue)

Final Model Configuration

Hidden Layer Size	-
Learning Rate	0.01
Weight Decay	0.001
Dropout Rate	0.1
Optimizer	Adam

Best Validation Loss: 0.8937

Test Accuracy: 63.61%

Results - GAT (Revenue)

Final Model Configuration

Hidden Layer Size	
Learning Rate	0.01
Weight Decay	0.001
Dropout Rate	0.1
Optimizer	Adam

Best Validation Loss: 0.7249

Test Accuracy: 70.41%

Results - GNN Overview

Classification Target	Model Type	Validation Loss	Accuracy
Rating	GCN	0.9928	46.75%
Rating	GAT	0.9445	53.25%
Revenue	GCN	0.8937	63.61%
Revenue	GAT	0.7249	70.41%

GAT outperforms GCN for both tasks

Limitations

- 1. Lack of Temporal Dynamics: A static graph cannot model trends, career trajectories, or shifts in genre popularity, which may be key predictors of success
- 2. **Arbitrary Buckets:** Classes might not reflect meaningful distinctions (6.9 vs 7.0 rating)
- 3. **Edge Weight Quality:** Edge weights may oversimplify complex relationships (hard to encode the importance or influence of each collaborator properly)

Future Directions

- 1. Include Sentiment or Review Aggregates:
 Incorporate NLP-based sentiment analysis of critic or
 audience reviews as features to better model
 audience perception
- 2. Regression Instead of Classification Using GNNs: Move from bucketing revenue into classes to predicting continuous revenue or ROI
- 3. **Apply to Other Forms of Media:** Expand the dataset to include other formats, such as TV shows, video games, etc

References

- Borsboom, D., Deserno, M. K., Rhemtulla, M., et al. (2021). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1, 58.
- Chaudhary, S., Giri, S., & Gautam, B. (2025). Analyzing social networks of actors in movies and TV shows. In International Conference on Applied Algorithms. Cham: Springer Nature Switzerland.
- Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J., Jin, D., He, X., & Li, Y. (2023). A survey of graph neural networks for recommender systems: Challenges, methods, and directions. ACM Transactions on Recommender Systems, 1(1), Article 1.
- Mondal, P., Das, A., Mishra, S., & Debnath, N. C. (2023). Graph convolutional neural network for multimodal movie recommendation. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (SAC '23). ACM.
- Nesmaoui, R., Louhichi, M., & Lazaar, M. (2023). A collaborative filtering movies recommendation system based on graph neural network. Procedia Computer Science, 220, 456–461.
- ❖ Vitelli, M. (2015). Predicting box office revenue for movies. Stanford Network Analysis Project.
- ♦ Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440–442.
- Yang, H., Li, J., & Jahng, S. (2024). The application of knowledge graph convolutional network-based film and television interaction under artificial intelligence. IEEE Access.
- Zhang, Z., Meng, Y., & Xiao, D. (2024). Prediction techniques of movie box office using neural networks and emotional mining. Scientific Reports, 14, 21209.
- The Movie Database (TMDB), www.themoviedb.org/?language=en-US. Accessed 4 Aug. 2025.
- * "OMDb API." OMDb API The Open Movie Database, www.omdbapi.com/. Accessed 4 Aug. 2025.

Questions

