Hackathon IA CONFORMIT

Mathis Certenais, Luke Abougit, Erwan Dufour

Introduction

Brainstorming

- 1- Nettoyer les données
- 2- Détection par descripteur
- 3- Apprentissage pour classification et détection

État de l'art

Regarder les projets similaires existant (Morphologie, techno. à utiliser)

Base de données

Set d'images de la datasheet

Construire des descripteurs pour la détection des symboles

Base de données

Suppression caractères et liaisons

Faciliter la détection des symboles

Set initial

Set après suppression caractères (librairie pytesseract pour reconnaissance caractères)

Set après suppression liaisons (méthode OpenCV TemplateMatching)

Base de données

Suppression caractères et liaisons

Opérateur Morphologique appliqué aux images

Erosion

- Détruit les composants
- Epure l'image par la suppression des lignes
- Meilleur visibles lors des passages par fenêtre

CNN

Encadrement de la recherche - Méthode Felzenszwalb superpixel

- Couleur
- Texture
- Taille
- Forme
- Meta (combinaison linéaire des 4 autres)

CNN Réseau CNN - NMS

MobileNetV2 - Rajout couches


```
# load the MobileNetV2 network, ensuring the head FC layer sets are
# left off
baseModel = MobileNetV2(weights="imagenet", include top=False,
   "input tensor=Input(shape=(224, 224, 3)))
# construct the head of the model that will be placed on top of the
# the base model
headModel = baseModel.output
headModel = AveragePooling2D(pool size=(7, 7))(headModel)
headModel = Flatten(name="flatten")(headModel)
headModel = Dense(128, activation="relu")(headModel)
headModel = Dropout(0.3)(headModel)
headModel = Dense(2, activation="softmax")(headModel)
# place the head FC model on top of the base model (this will become
# the actual model we will train)
model = Model(inputs=baseModel.input, outputs=headModel)
# loop over all layers in the base model and freeze them so they will
# *not* be updated during the first training process
for layer in baseModel.layers:
   *layer.trainable = False
```

CNN Réseau CNN - NMS

NMS - Non-Maxima Suppression

HOG

Histogramme des orientations de gradient : Descripteur

Descripteur

- Invariant par rotation
- Reconnaître les pattern des familles

HOG

Histogramme des orientations de gradient : Detection

Détection par les patch HOG & Felzenwalb

HOG

Histogramme des orientations de gradient : Detection

Détection par les patch HOG & Felzenwalb

Démonstration