П р и м е р. Доказать, что несобственный интеграл $\int\limits_0^\infty e^{-\alpha^2 x^2} dx$ сходится. Достаточно показать, что сходится $\int\limits_1^\infty e^{-\alpha^2 x^2} dx$, так как $\int\limits_0^\infty e^{-\alpha^2 x^2} dx = \int\limits_0^1 e^{-\alpha^2 x^2} dx + \int\limits_1^\infty e^{-\alpha^2 x^2} dx$. Сравним положительные функции $e^{-\alpha^2 x^2}$ и $\frac{1}{x^2}$ при достаточно больших значениях x. Согласно правилу Лопиталя $\lim\limits_{x\to\infty} \frac{e^{-\alpha^2 x^2}}{x^{-2}} = \lim\limits_{x\to\infty} \frac{x^2}{e^{\alpha^2 x^2}} = 0$, то есть, $e^{-\alpha^2 x^2} < \frac{1}{x^2}$ при больших x. А так как несобственный интеграл $\int\limits_1^\infty \frac{dx}{x^2}$ сходится, то согласно теореме сравнения сходится и несобственный интеграл $\int\limits_1^\infty e^{-\alpha^2 x^2} dx$.

Для неотрицательных на луче $(0,\infty)$ функций f(x) и g(x) легко показать, что если существует конечный предел $\lim_{x\to\infty}\frac{g(x)}{f(x)}=K(\neq 0)$, то несобственные интегралы $\int\limits_{\beta}^{\infty}f(x)dx$ и $\int\limits_{\beta}^{\infty}g(x)dx$ сходятся или расходятся одновременно. Действительно, взяв в определении предела $\varepsilon=\frac{K}{2}$, получим, что существует M>0 такое, что f(x)K/2< g(x)<3f(x)K/2 при x>M. Из первой теоремы сравнения следует теперь, что если $\int\limits_{\beta}^{\infty}f(x)dx$ сходится, а значит, сходится и $\frac{3K}{2}\int\limits_{\beta}^{\infty}f(x)dx$, то сходится и $\int\limits_{\beta}^{\infty}g(x)dx$, а если интеграл $\int\limits_{\beta}^{\infty}f(x)dx$ расходится, а значит, и расходится и $\frac{K}{2}\int\limits_{\beta}^{\infty}f(x)dx$, то расходится и $\int\limits_{\beta}^{\infty}g(x)dx$. Заменяя в рассуждениях K на 1/K, а g(x) на f(x), получим выводы

относительно сходимости $\int f(x)dx$ при сходимости или расходимости

$$\int_{\beta}^{\infty} g(x)dx.$$

Для несобственных интегралов 1-го рода от знакопеременных функций имеет смысл понятие **абсолютной сходимости**: если $\int_{\beta}^{+\infty} |f(x)| dx$ сходится, то сходится и $\int_{\beta}^{+\infty} f(x) dx$. В этом легко убедиться, рассматривая площади соответствующих криволинейных трапеций.

Возможна и условная сходимость: интеграл $\int_{\beta}^{+\infty} f(x) dx$ сходится, в то время как интеграл $\int_{\beta}^{+\infty} |f(x)| dx$ расходится. Для демонстрации примера нам понадобится специальный признак сходимости несобственного интеграла 1го рода, который приводится без доказательства: если функция f(x) монотонно убывает к 0 при стремлении x к бесконечности, то интегралы $\int_{\beta}^{+\infty} f(x) \sin mx dx$, $\int_{\beta}^{+\infty} f(x) \cos mx dx$

сходятся.

Пример. Рассмотрим интеграл $\int\limits_1^\infty \frac{\sin x}{x^\alpha} dx$. При $\alpha > 1$ данный интеграл сходится абсолютно, так как $|\frac{\sin x}{x^\alpha}| \le \frac{1}{x^\alpha}$ и интеграл $\int\limits_1^\infty \frac{dx}{x^\alpha}$ сходится. Пусть теперь $0 < \alpha \le 1$. Покажем, что $\int\limits_1^\infty \frac{|\sin x|}{x^\alpha} dx$ расходится. Действительно, $|\frac{\sin x}{x^\alpha}| \ge \frac{\sin^2 x}{x^\alpha} = \frac{1-\cos 2x}{2x^\alpha}$. Интеграл $\int\limits_1^\infty \frac{1}{2x^\alpha} dx$ при данных α расходится, а $\int\limits_1^\infty \frac{\cos 2x}{2x^\alpha} dx$ сходится по специальному признаку. Следовательно, $\int\limits_1^\infty \frac{|\sin x|}{x^\alpha} dx$ расходится, так как является пределом разности двух функций, у одной из которых предел бесконечен, а у другой конечен.

Очевидно, что интеграл $\int_{1}^{\infty} \frac{\sin x}{x^{\alpha}} dx$ сходится по специальному признаку. А значит, сходится условно.