STAT 102B: Sample Exam I Questions

George Michailidis

1 Problems that require calculations

Problem 1:

Consider the function

$$f(x) = (x+2)^2.$$

Use Newton's algorithm to perform **one iteration** starting from $x_0 = 5$.

Problem 2:

Consider the lasso regression problem.

Write pseudo-code that implements the proximal gradient algorithm with a fixed step size η .

Be as detailed as possible.

Problem 3:

Consider a lasso regression problem with five predictors and regularization parameter $\lambda = 0.5$. At iteration k, the gradient update with step size $\eta = 0.5$ produces the following values for the regression coefficients.

$$\begin{bmatrix} 2.1 \\ -3.5 \\ 0.2 \\ 1.3 \\ -0.5 \end{bmatrix}$$

What would the value of the regression coefficients be at iteration k + 1?

Problem 4: Consider the function

$$f(x,y) = x^2 + y^2 + \log(x) + \exp(y).$$

Use Newton's algorithm to perform **one iteration** starting from $(x_0, y_0) = (1, 0)$.

Problem 5: Consider a test data set with the following responses $y = \{0, 1, 1, 0, 1, 1\}$.

A logistic regression model calculated the following predicted probabilities $\hat{y} = \{0.6, 0.9, 0.3, 0.2, 0.4, 0.75\}$. Calculate the confusion matrix if the threshold is set to t = 0.5.

How do your answers change if the threshold is set to t = 0.3.

2 Multiple choice Quiz Questions

Question 1: Which of the following best describes the ROC curve?
 A plot of precision vs. recall. A plot of true positive rate vs. false positive rate. A plot of sensitivity vs. specificity. A plot of true positives vs. false negatives.
Question 2: The Lasso regression is known for:
 Producing non-unique solutions. Selecting a subset of predictors. Being insensitive to regularization. Being equivalent to Ridge regression.
Question 3: What happens when the regularization parameter λ is very large in Ridge regression?
 The model overfits. The model becomes sparse. Regression coefficients shrink toward zero. AUC increases.
Question 4: The proximal gradient method is typically used when:
 The loss function is non-differentiable. The optimization problem has a composite structure, with one component being non-differentiable.

• 🔲 (Gradient descent is unstable.
• 🔲 1	The loss function is quadratic.
Question operator?	5: Which of the following is an example of a function with a simple proximal
• [] ℓ	1 norm.
• S	quared error loss.
• 🔲 E	Binary cross-entropy loss.
• [] ℓ	o norm.
Question	6: During k -fold cross-validation, test loss is calculated on:
•T	The entire data set.
• [(Only the training folds.
•	Only the test fold.
• A	an entirely separate validation set.
-	7: If validation loss starts increasing while training loss continues to demost likely indicates:
• 🔲 ٦	raining requires more epochs.
• T	The step size used in the optimization algorithm is too large.
•	Overfitting is occurring.
J 📗 •	Inderfitting is occurring.
Question	8: For the Lasso problem, the proximal operator corresponds to:
• 🔲 🗆	The identity operator.

• Soft thresholding.
• Hard thresholding.
• Projecting to a unit ball.
Question 9: Newton's algorithm for optimization uses which of the following in its update rule?
• Gradient only.
• Hessian only.
• Both gradient and Hessian.
• Neither gradient nor Hessian.
Question 10: A major computational challenge in implementing Newton's method is:
• Computing the gradient.
• Computing and inverting the Hessian matrix.
• Determining the step size.
• Computing the Hessian.
Question 11: When the Hessian is not positive definite, a common modification to Newton's algorithm is:
• To use gradient descent instead.
• To modify the Hessian to make it positive definite.
• To increase the step size.
• To use a different value for initialization.

Question 12: In the coordinate descent algorithm for linear regression, during each iteration:

• All regression coefficients are updated simultaneously.
• A single regression coefficient is updated while keeping others fixed.
• A random subset of regression coefficients is updated.
• All regression coefficients are updated, but in a specific order.
Question 13: Coordinate descent is most advantageous when:
• The dimension of the optimization problem is small.
• The optimization problem has multiple minima.
• The variables in the objective function have complex interactions.
• The optimization problem is high-dimensional and each coordinate-wise problem is easy to solve
Question 14: Newton's algorithm uses which second-order information?
• Gradient of the objective function only.
• Hessian matrix of the objective function.
• An identity matrix.
• Proximal operator.
Question 15: Which of the following is true about the AUC score?
• It is only used in regression problems.
• It can take negative values.
• A score closer to 1 indicates better classification.
• It measures calibration of predicted probabilities.

Question 16: The mathematical formulation of Lasso Regression adds which term to the ordinary least squares objective function?

Question 17: In the proximal gradient algorithm, the proximal operator $\operatorname{prox}_{t,g}(z)$ is defined as:

- $\bullet \qquad \arg\min_{x} g(x) + t \|x z\|_{2}^{2}$
- $\bullet \qquad \arg\min_{x} f(x) + t \|x z\|_{2}^{2}$

Question 18: Suppose that you have a data set comprising 1 million observations and 100,000 predictors that exhibit a high degree of multicollinearity. A computationally efficient algorithm to estimate the regression coefficients is:

- Gradient descent applied to the sum-of-squares errors loss function.
- Gradient descent applied to the sum-of-squares errors loss function augmented with a regularization term that penalizes the sum of squared regression coefficients.
- Newton's algorithm applied augmented with a regularization term that penalizes the sum of squared regression coefficients.
- Stochastic gradient descent applied augmented with a regularization term that penalizes the sum of squared regression coefficients.