Smart Buildings

Progetto 2021-2022

Ferdinando Muraca & Carlo Vincenzo Stanzione

Indice

- 1. Introduzione
- 2. Glossario
 - 2.1. Dizionario dei dati
 - 2.1.1. Dizionario delle entità
- 2.1.2 Dizionario delle relazioni
- 3. Diagramma ER
 - 3.1. Sezione topologia
 - 3.1.1. Indicazioni generali
 - 3.1.2. Modello gestionale per la topologia piani e vani
 - 3.1.3. Modello gestionale per la topologia elementi strutturali
 - 3.2. Sezione progetti edilizi
 - 3.2.1. Indicazioni generali
 - 3.2.2. Stadi di avanzamento e lavori
 - 3.2.3. Personale
 - 3.3. Sezione materiali
 - 3.3.1. Indicazioni generali
 - 3.3.2. Generalizzazione materiali
 - 3.4. Sezione calamità e danni
 - 3.4.1. Indicazioni generali
 - 3.4.2. Gestione danni

3.5. Sezione sensori

- 3.5.1. Indicazioni generali
- 3.5.2. Generalizzazione sensori
- 3.5.3. Generalizzazione registrazioni
- 3.5.4. Modello stato di un edificio

4. Analisi ristrutturale diagramma ER

- 4.1. Generalizzazioni
 - 4.1.1. Personale
 - 4.1.2. Materiale
 - 4.1.3. Sensore
 - 4.1.4. Registrazione
- 4.2. Attributi multivalore
 - 4.2.1. Coordinate (X, Y, Z)
 - 4.2.2. Coordinate (latitudine, longitudine)
 - 4.2.3. Dimensioni
 - 4.2.4. Soglia e valori
 - 4.2.5. Stato
- 4.3. Partizionamento delle entità
 - 4.3.1. Edificio
 - 4.3.2. Danno
- 5. Analisi computazionale delle operazioni e scelte implementative

5.1. Tavola dei volumi

- 5.1.1. Sezione topologia
- 5.1.2. Sezione progetti edilizi
- 5.1.3. Sezione materiali
- 5.1.4. Sezione calamità e danni
- 5.1.5. Sezione sensori

5.2. Individuazione di operazioni sui dati e analisi delle prestazioni

- 5.2.1. Classifica aziende fornitrici per tipo di elemento strutturale
- 5.2.2. Report progettuale
- 5.2.3. Suggerimento assegnamento lavoratori
- 5.2.4. Valutazione stato di un edificio
- 5.2.5. Installazione nuovo sensore
- 5.2.6. Classifica punti critici di un edificio
- 5.2.7. Calcolo della gravità di una calamità
- 5.2.8. Calcolo dei coefficienti di rischio di un'area geografica

5.3. Ridondanze

- 5.3.1. CostoLavoratori e CostoMateriali
- 5.3.2. Alert (e Trigger)
- 5.3.3. Stato

6. Traduzione nel modello logico

- 6.1. Traduzione
- 6.2. Vincoli
 - 6.2.1. Check
 - 6.2.2. Vincoli di integrità referenziale
- 6.3. Trigger e Stored Functions
 - 6.3.1. Alert
 - 6.3.2. Penale ritardi
- 7. Analisi dipendenze funzionali e normalizzazione
- 8. Area analytics
 - 8.1. Consigli di intervento
 - 8.2. Stima dei danni
- 9. Note di struttura e popolamento
 - 9.1. Note di struttura
 - 9.2. Note di popolamento

1. Introduzione

La Base di Dati che si vuole progettare ha lo scopo di memorizzare i dati relativi a Smart Buildings, un sistema gestionale utilizzato da una ditta che agisce nel campo dell'edilizia costruendo, ristrutturando e monitorando gli edifici.

Questi ultimi sono il polo centrale delle informazioni e a partire da essi si articolano:

- i dati relativi ai progetti edilizi che li hanno modificati, con tutti i dettagli relativi ai lavori effettuati;
- i dati relativi alla topologia delle strutture;
- i dati qualitativi e quantitativi dei materiali che compongono le strutture;
- i dati sulla posizione delle strutture in relazione a possibili eventi calamitosi, anch'essi salvati per una valutazione dell'impatto;
- i dati sui sensori installati dalla ditta in punti strategici, come ad esempio in prossimità dei danni (memorizzati anch'essi) causati dalle calamità sopracitate.

La Base di Dati potrà così contribuire a una gestione non solo statica del sistema della ditta, ma anche dinamica, attraverso funzionalità di analytics e modelli previsionali che potranno fungere da sistema di supporto alle decisioni (DSS).

Al fine di rendere più comprensibile la struttura del progetto si è attuata una suddivisione in cinque sezioni tematiche, coerenti rispetto a un'organizzazione concettuale delle informazioni, alle quali è stato assegnato un colore rappresentativo:

- Sezione topologia
- Sezione progetti edilizi
- Sezioni materiali
- Sezione calamità e danni
- Sezione sensori

2. Glossario

Per una migliore comprensione del significato delle entità e relazioni dell'ER non ristrutturato, segue qui un glossario contenente, per ogni entità, nome, breve descrizione, eventuali sinonimi nel testo e collegamenti con le altre entità.

Termine	Descrizione	Sinoni	Collegamenti
		mi	
Edificio	Entità principale del sistema Smart Buildings, che rappresenta ogni immobile gestito dalla ditta.	Locale, Abitazione, Fabbricato	Piano, AreaGeografica, Progetto
Piano	Sezione orizzontale a una determinata altezza dal suolo dell'edificio, rappresentante un piano in cui sono presenti uno o più vani.	Livello	Edificio, Vano, VerticePiano
Vano	Porzione del piano dedicata ad una o più specifiche funzioni.	Camere	Piano, Funzione, Lotto, VerticeVano, Danno, ElementoStrutturale, Sensore
VerticePiano	Coordinata che descrive uno dei vertici del piano all'interno del modello descritto nella topologia (Vedere 3.1).	Estremo del piano	Piano
VerticeVano	Coordinata che descrive uno dei vertici del vano all'interno del modello descritto nella topologia (Vedere 3.1).	Estremo del vano	Vano
Funzione	Funzione espletata da un vano, ovvero ciò per cui si utilizza quella camera.	Scopo	Vano
ElementoStrutturale	Particella elementare della sezione topografica, costituita da uno specifico materiale (descritto attraverso le sue relazioni),		Vano, Lotto, Lavoro

	che occupa uno spazio ben preciso all'interno del vano, secondo il modello descritto nella topologia		
	(Vedere 3.1).		
Lotto	Carico di materiali fornito da un'azienda alla ditta di costruzioni, utilizzato nei lavori per agire sugli elementi strutturali degli edifici.	Carico	ElementoStrutturale, Materiale, Lavoro
Materiale	Tipologia di materiale di cui è fatto un lotto, descritto nelle sue caratteristiche quantitative e qualitative.		Intonaco, Mattone, Piastrella, Pietra, AltroMateriale, Lotto
Intonaco	Strato protettivo della muratura.	Malta	Materiale
Mattone	Materiale realizzato a partire da elementi base e con possibile alveolatura (trama dei fori).		Materiale
Piastrella	Materiale di rivestimento delle pavimentazioni con una forma e un disegno specifico; nella sua disposizione può presentare una distanza, chiamata fuga.		Materiale
Pietra	Materiale utilizzato per ricoprire o costituire le mura; non ha una forma standard e si adatta a diverse disposizioni.		Materiale
AltroMateriale	Materiale generico non previsto nei casi precedenti, caratterizzato da dimensioni, forma e elementi di costituzione.		Materiale
Progetto	Piano di intervento su un edificio, come ad esempio la costruzione o la manutenzione, composto	Progetto edilizio, piano	Stadio di avanzamento, Edificio

	da un numero di lavori		
	gestiti in stadi di avanzamento.		
StadioAvanzamento	Fase temporale di un progetto edilizio in cui vengono svolti e terminati alcuni lavori; essa corrisponde ad un costo che oltre ad includere la somma dei costi dei materiali utilizzati e dei salari del personale, include anche possibili penali per ritardi rispetto ai termini temporali prefissati.	Fase	Progetto edilizio, Lavoro, Responsabile
Lavoro	Intervento specifico volto a costruire, riparare, ricostruire, modificare elementi strutturali dell'edificio con lo scopo di aumentarne la sicurezza e/o rispondere ad esigenze del cliente.	Intervento	Stadio di avanzamento, Lotto, Turno, ElementoStrutturale
Personale	Insieme delle figure professionali che è coinvolto nei progetti edilizi.	Gruppo di lavoratori	Lavoratore, Capocantiere, Responsabile
Lavoratore	Lavoratore dipendente che può essere di una determinata tipologia in base alle sue competenze.	Dipendente, operaio	Personale, Capo cantiere, Turno
Capocantiere	Supervisore delle attività di un gruppo di lavoratori.		Personale, Lavoratore, Turno
Responsabile	Figura incaricata per gestire gli aspetti tecnici e professionali riguardanti la sicurezza nei cantieri.	Responsabile dei lavori	Personale, Stadio di avanzamento
Turno	Un turno è un orario settimanale a cui ognuno dei lavoratori è soggetto e che stabilisce quando	Turni di lavoro	Capo cantiere, Lavoro, Lavoratore

	ognuno dei lavoratori		
	prenderà parte alle attività.		
AreaGeografica	Area geografica caratterizzata da un nome, da un centro e da un raggio di copertura.	Collocazione geografica, zona	Edificio, Rischio, Calamità
Rischio	Probabilità che in una certa area geografica si verifichi un evento calamitoso (tra una serie di tipologie di eventi previsti) con una certa gravità di effetti.	Pericolo	Area geografica
Danno	Deterioramento di una determinata natura e dimensione localizzato in un vano di un edificio.	Deteriorame nto	Calamità, Vano
Calamità	Evento calamitoso caratterizzato da un epicentro, un raggio di copertura e da una gravità, dipendente dai danni generati.	Evento calamitoso, disastro	Danno, Area geografica
Sensore	Dispositivo capace di rilevare determinate sollecitazioni, applicato anche ai danni per monitorarne lo stato da un punto di vista fisico nel tempo.	Sensori degli edifici, Sensori per il monitoraggio	Registrazione, Sensore1D, Sensore2D, Sensore3D
Sensore1D	Sensore che registra valori scalari e possiede una soglia di pericolo.	Sensore scalare, Sensore unidimension ale	Sensore
Sensore2D	Sensore che registra valori bidimensionali e possiede due soglie di pericolo.	Sensore bidimensiona le	Sensore
Sensore3D	Sensore che registra valori tridimensionali e possiede tre soglie di pericolo.	Sensore tridimension ale	Sensore
Registrazione	Registrazione della misura acquisita da un sensore	Dati dei sensori,	Sensore, Registrazione1D, Registrazione2D, Registrazione3D

	effettuata con cadenza periodica.	Valori misurati	
Registrazione1D	Una registrazione 1D è un evento di registrazione di un sensore dello stesso tipo.	Registrazion e scalare	Registrazione
Registrazione2D	Una registrazione 2D è un evento di registrazione di un sensore dello stesso tipo.	Registrazion e bidimensiona le	Registrazione
Registrazione3D	Una registrazione 3D è un evento di registrazione di un sensore dello stesso tipo.	Registrazion e tridimension ale	Registrazione

2.1. Dizionario dei dati

2.1.1. Dizionario delle entità

La descrizione delle entità è presentata subito sopra, nel glossario.

Entità	Attributi	Identificatore
Edificio	VulnerabilitàSismica, VulnerabilitàIdreologica, VulnerabilitàStrutturale, VulnerabilitàTermica, Latitudine, Longitudine, CodiceEdifcio	CodiceEdificio
Piano	AltezzaPavimento, Forma, CodiceEdificio	CodiceEdificio
Vano	Fuga, LarghezzaMax, LunghezzaMax, AltezzaMax, TipoSoffitto, CodiceVano	CodiceVano
VerticePiano	Cardinalità, X, Y, CodiceEdificio	CodiceEdificio
VerticeVano	Cardinalità, X, Y, CodiceVano	CodiceVano
Funzione	NomeFunzione	NomeFunzione
ElementoStrutturale	X, Y, Z, Lunghezza, Larghezza, Altezza, Tipo, Orientazione, CodiceVano	CodiceVano, X, Y, Z
Lotto	NomeFornitore, DataAcquisto, Costo, CodiceLotto	CodiceLotto
Materiale	Nome, CodiceLotto, Materiale	CodiceLotto
Intonaco	CodiceLotto	CodiceLotto
Mattone	Forma, Alveolatura, Lunghezza, Altezza, Larghezza, CodiceLotto	CodiceLotto
Piastrella	Forma, Disegno, DimLato,	CodiceLotto

	Altezza, CodiceLotto	
Pietra	SupMedia, PesoMedio, Disposizione, AltezzaMedia, CodiceLotto	CodiceLotto
AltroMateriale	Forma, SupMedia, AltezzaMedia, CodiceLotto	CodiceLotto
Progetto	DataPresentazione DataApprovazione, DataInizio, StimaDataFine, Tipologia, CodiceProgetto	CodiceProgetto
StadioAvanzamento	DataInizio, DataFine, StimaDataFine, CodiceProgetto	CodiceProgetto
Lavoro	Nome, CostoLavoratori, CostoMateriali, CodiceLavoro	CodiceLavoro
Personale	CodFiscale	CodFiscale
Lavoratore	StipendioOrario, Tipologia, CodFiscale	CodFiscale
Capocantiere	StipendioGiornaliero, MaxLavoratori, CodFiscale	CodFiscale
Responsabile	StipendioGiornaliero, CodFiscale	CodFiscale
Turno	Oralnizio, OraFine,	Oralnizio, OraFine,
	Giornolnizio, GiornoFine	Giornolnizio, GiornoFine
AreaGeografica	Raggio Latitudine, Longitudine, NomeArea	NomeArea
Rischio	Coefficiente, Tipo, Data, NomeArea	NomeArea, Tipo, Data
Danno	Lunghezza, Larghezza, Altezza, X, Y, Z, CodiceDanno	CodiceDanno
Calamità	Data, Tipo, LivelloGravità, Latitudine, Longitudine, Raggio, CodiceCalamità	CodiceCalamità
Sensore	Tipo, DataInstallazione, X, Y, Z, CodiceSensore	CodiceSensore

Sensore1D	Soglia, SogliaInferiore, CodiceSensore	CodiceSensore
Sensore2D	X, Y, CodiceSensore	CodiceSensore
Sensore3D	X, Y, Z, CodiceSensore	CodiceSensore
Registrazione	CodiceSensore, Timestamp	CodiceSensore, Timestamp
Registrazione1D	Valore, Timestamp, CodiceSensore	CodiceSensore, Timestamp
Registrazione2D	X, Y, Timestamp, CodiceSensore	Timestamp, CodiceSensore
Registrazione3D	X, Y, Z, Timestamp, CodiceSensore	Timestamp, CodiceSensore

2.1.2. Dizionario delle relazioni

Relazione	Descrizion	Attribut	Cardinalità
	e		
SuddivisioneP	Ogni edificio è costituito da piani, che ne scandiscono la struttura.		Edificio (1, N), Piano (1, 1)
SuddivisioneV	Ogni piano è costituito da vani.		Piano (1, N), Vano (1, 1)
MappaturaP	Ogni piano presenta dei vertici, che ne delimitano il perimetro.		Piano (1, N), VerticePiano (1, 1)
MappaturaV	Ogni vano presenta dei vertici, che ne delimitano il perimetro.		Vano (1, N), VerticeVano (1, 1)
PresenzaEl	In ogni vano, possono essere presenti (o no) diversi elementi strutturali, al fine di abbellire o rendere funzionale l'abitazione.		Vano (1, N), ElementoStruttural e (1, 1)
Destinazione	Ogni vano è destinato a delle funzioni, che stabiliscono quale sarà il suo effettivo utilizzo.		Vano (1, N), Funzione (1, N)
Composizione	Ogni lotto è costituito da una quantità determinata di un materiale.		Lotto (1, 1), Materiale (1, 1)
Pianificazione	Ogni progetto è suddivisibile in stadi d'avanzamento, che identificano i		Progetto (1, N), StadioAvanzamento (1, 1)

	progressi rispetto al totale.		
Completamento	Ogni stadio d'avanzamento è suddiviso in diversi lavori.		StadioAvanzamento (1, N), Lavoro (1, 1)
Svolgimento	Ogni lavoro richiede un numero di lavoratori, che a loro volta hanno dei turni.	Ore	Lavoro (1, N), Turno (0, N)
Gestione	Ogni stadio d'avanzamento è gestito da responsabili, che si occupano della gestione e del corretto esito dello stadio d'avanzamento.		StadioAvanzamento (1, N), Responsabile (1, N)
AssegnamentoCap o	Ogni capo ha un suo turno proprio, da cui dipende quello dei lavoratori a sé sottoposti.		Turno (1, N), Capocantiere (1, N)
Monitoraggio	Ogni lavoratore deve avere un capocantiere, che ne coordini il lavoro.		Lavoratore (1, 1), Capocantiere (1, N)
PresenzaRi	Ogni area geografica è soggetta a rischi, dipendenti dalla posizione, dal meteo e da variabili esterne.		Rischio (1, 1), AreaGeografica (1, N)
Posizione	Ogni edificio è collocato in un'area geografica, da cui eredita i rischi.		AreaGeografica (0, N), Edificio (1, 1)
Avvenimento	Le calamità possono avvenire in ogni area geografica.		AreaGeografica (0, N), Calamità (1, N)

Causa	Ogni danno è causato da una calamità.		Calamità (0, N), Danno (1, 1)
Record	Ogni sensore registra, ogni 15 minuti, dei dati, che vengono opportunamente registrati.		Registrazione (1, 1), Sensore (0, N)
Appartenenza	Ogni edificio presenta uno o più progetti.		Edificio (1, N), Progetto (1, 1)
Locazione	Ogni sensore ha una posizione specifica all'interno del vano.		Sensore (1, 1), Vano (0, N)
Fornitura	Un lavoro potrebbe necessitare di uno o più lotti di materiale per poter essere portato a termine.	Quantità	Lavoro (0, N), Lotto (0, N)
Locazione	Ogni danno è locato in un vano, che ovviamente potrebbe anche non presentarne.		Vano (0, N), Danno (1, 1)
Ristrutturazione	Un lavoro di ristrutturazione, se presente, è in relazione con un elemento strutturale, che viene modificato.		ElementoStruttural e (0, 1), Lavoro (0, 1)
Utilizzo	Ogni elemento strutturale è costituito da uno o più lotti di materiale.	Quantità	Lotto (0, N), ElementoStruttural e (1, N)

3. Diagramma ER

3.1. Sezione topologia

3.1.1. Indicazioni generali

La sezione topologia nasce a partire dall'entità Edificio, che entrerà in relazione anche con altre sezioni dello schema ER, come spiegato nell'introduzione.

Edificio. Codice Edificio è un identificatore auto incrementale dell'edificio.

Edificio. Coordinate è un attributo multivalore che rappresenta la posizione dell'edificio e servirà successivamente nella sezione 3.4.

Edificio. Tipologia è un varchar che rappresenta la tipologia di abitazione.

Edificio. Stato è un attributo multivalore calcolato con la logica spiegata nel punto 3.5.4.

Un Edificio è suddiviso in più piani che ovviamente differiscono esclusivamente per la loro altezza, Piano. Altezza Pavimento.

Piano. Forma è un varchar che fornisce la forma del piano.

3.1.2. Modello gestionale per la topologia - piani e vani

Per gestire una grande quantità di dati differenti con la massima precisione, ma al contempo senza appesantire eccessivamente il database con dettagli trascurabili, si è deciso di applicare una soluzione omogenea per la gestione della topologia degli edifici.

In base alle specifiche di progetto, risultava necessario salvare la pianta di ogni piano degli edifici. Per questa prima richiesta, si è semplicemente schematizzato in un diagramma le coordinate dei suoi vertici, con la loro corretta cardinalità. Qualunque sia la forma della pianta, attraverso questo metodo sarà possibile mappare tutte le informazioni necessarie.

La seconda applicazione del modello, invece, riguarda i vani: infatti, anche di essi sono salvate le coordinate e la cardinalità. L'altezza dei vani (dunque la coordinata z) è gestita attraverso un attributo di altezza massima.

Tutte le coordinate, distanze e dimensioni sono memorizzate in metri attraverso dei float.

Modello

ER relativo

Vano.CodiceVano è un identificatore intero auto incrementale.

Vano. Fuga rappresenta la dimensione della fuga della pavimentazione presente in quel vano, nel caso in cui sia assente il valore è NULL. Vano. Tipo Soffitto rappresenta la forma del soffitto (ad esempio regolare, triangolare, ecc.).

Nome. Funzione indica la/e funzione/i assunta/e dal vano.

3.1.3. Modello gestionale per la topologia - elementi strutturali

La terza applicazione del modello completa il quadro inserendo tutti gli elementi strutturali (porte, portefinestre, finestre, aperture di altro tipo, mura, pavimenti) in maniera uniforme, tracciati in modo inequivocabile ed estremamente preciso, consentendo inoltre un notevole risparmio rispetto ad un approccio eterogeneo; infatti, con questa euristica si ricavano anche i volumi dei materiali presenti negli edifici, rendendo possibile calcolare quantità e prezzi in modo preciso ed efficiente.

A differenza dei due casi precedenti presentati nel paragrafo 3.1.2, però, la coordinata z e la dimensione dell'altezza sono gestite in modo difforme. Infatti, come esplicitato sulle specifiche del documento progettuale, e a differenza delle piante, le finestre, porte finestre, ed altri accessi possono essere ricondotti ad una forma rettangolare, rendendo possibile una memorizzazione di questo tipo:

- Coordinate dell'asse: X, Y, Z;
- Dimensioni: Lunghezza, Larghezza, Altezza;
- Orientazione: Angolo in gradi.

È importante collocare questo sistema all'interno del precedente attraverso degli opportuni riferimenti.

Modello singolo elemento

Modello finale

ER relativo

ElementoStrutturale. Tipo è un varchar che rappresenta la funzione dell'elemento descritto (Es. Muro portante, finestra - vetro, finestra - base inferiore, portafinestra - supporto laterale sinistro, ecc.).

Il Lotto fa parte della sezione materiali trattata in 3.3, ma si ricollega agli elementi strutturali, in quanto fornisce la tipologia del materiale utilizzato, rendendo il modello ancora più accurato e consentendo ulteriori operazioni di analisi e monitoraggio.

3.2. Sezione progetti edilizi

3.2.1. Indicazioni generali

I progetti edilizi si collegano all'entità Edificio in modo tale che per ogni edificio ci possono essere N progetti, poiché possono avvenire interventi di tipo diverso, come la costruzione o manutenzione.

Progetto.Codice è un intero auto incrementale.

Gli altri attributi di Progetto sono date che rappresentano le fasi differenti che lo coinvolgono.

3.2.2. Stadi di avanzamento e lavori

Un progetto edilizio si articola in più stadi di avanzamento, che a loro volta sono composti da più lavori eseguiti in turni di lavoro ben definiti.

Il costo di un lavoro ha un prezzo che deriva dalla fornitura dei materiali del lotto e dallo stipendio del personale (Vedere 3.2.3). Tuttavia, possono essere applicate penali al costo dello stadio nel caso in cui i tempi non siano rispettati.

StadioAvanzamento.Datalnizio, DataFine e StimaDataFine sono date rappresentanti l'andamento dello stadio, con DataFine che può essere NULL in caso di progetti previsti per il futuro.

Lavoro. Codice Lavoro è un attributo auto incrementale.

Lavoro. Nome è un varchar che indica che tipo di intervento si sta facendo.

Svolgimento.ore è un intero che rappresenta le ore utilizzate per svolgere un determinato lavoro in quel turno.

3.2.3. Personale

I tre ruoli distinti nella logica del sistema Smart Buildings sono i lavoratori, i capocantiere e i responsabili degli stadi di avanzamento. Abbiamo dunque utilizzato una generalizzazione "Personale" di tipo esclusivo e totale, che includesse proprio queste tre entità.

Tra i capocantiere e i lavoratori c'è una relazione Monitoraggio caratterizzata da una data di inizio e una data di fine, che sarà poi utile a calcolare il numero di lavoratori monitorati contemporaneamente, per far sì che non superino il numero MaxLavoratori di quel capo.

Infine, ci sono due relazioni di gestione dei turni dei capi e dei lavoratori; per gli ultimi grazie alla relazione ternaria è possibile individuare quali lavori sono svolti nel contesto di un turno.

Turno. Datalnizio e DataFine sono date.

Personale.CodFiscale è un varchar di 16 caratteri che rappresenta il codice fiscale. Personale.StipendioOrario è un float che servirà a calcolare il costo totale per ogni elemento del personale per ogni Turno, che a sua volta convergerà nei lavori assieme ai costi del materiale.

Lavoratore. Tipologia è un varchar che rappresenta la professione del singolo lavoratore dipendente nel cantiere.

Capocantiere. Max Lavoratori è un intero che rappresenta il massimo numero di lavoratori contestuali per capocantiere.

3.3. Sezione materiali

3.3.1. Indicazioni generali

Un Lotto di materiali si collega al resto del diagramma ER attraverso la fornitura ai lavori dei progetti edilizi e attraverso l'utilizzo negli edifici stessi, descritti nella topologia. Si nota come un Lotto può non essere presente in alcun Lavoro; nel caso in cui si stia agendo su un edificio preesistente infatti sarà necessario mappare tutti gli elementi strutturali.

Lotto.CodiceLotto è un intero auto incrementale.

Lotto.NomeFornitore è un varchar che contiene il nome dell'azienda fornitrice.

Lotto.DataAcquisto è una data che rappresenta la data di acquisto dal fornitore.

Lotto. Costo è un float che rappresenta il rapporto tra il prezzo e la quantità per quel determinato lotto.

Utilizzo. Quantita è un float da 0 a 1 che rappresenta la percentuale di un determinato lotto utilizzata in un elemento strutturale.

3.3.2. Generalizzazione materiali

Per rappresentare la gran varietà dei materiali gestiti da Smart Buildings e dare spazio a possibili materiali "personalizzati", abbiamo creato la generalizzazione Materiale con chiave esterna a Lotto.

Essa è una generalizzazione totale ed esclusiva; la scelta di non lasciare materiali generici nel genitore è dovuta ad attributi necessari quali Forma, Materiale e SupMedia presenti in AltroMateriale ma non in tutti gli altri figli.

Materiale. Nome rappresenta il nome commerciale del materiale.

Materiale.Materiale rappresenta il materiale specifico che compone ogni occorrenza dell'entità.

Mattone. Forma è un varchar che rappresenta la forma del mattone.

Mattone. Alveolatura è un varchar che rappresenta la trama di fori interni del mattone; se è NULL, il mattone è pieno.

Mattone. Dimensioni è un attributo multivalore che rappresenta le tre dimensioni del mattone.

Piastrella. Forma è un varchar che rappresenta la forma della piastrella.

Piastrella. Disegno è un varchar che rappresenta il disegno stampato sulla piastrella, se è NULL la piastrella non presenta alcun disegno.

Piastrella. Dimensioni è un attributo multivalore composto dalla dimensione del lato di ogni piastrella (poiché è un poligono regolare) e l'altezza.

Pietra.SupMedia è un float che rappresenta la superficie media della pietra.

Pietra. Altezza Media è un float che rappresenta l'altezza media della pietra.

Pietra. Peso Medio è un float che rappresenta il peso medio delle pietre.

Pietra. Disposizione è un varchar che rappresenta la disposizione delle pietre nel momento in cui sono piazzate (orizzontale, verticale, ecc.).

AltroMateriale.Forma è un varchar che rappresenta la forma del materiale; nel caso in cui sia un materiale omogeneo, l'attributo è NULL.

AltroMateriale.SupMedia è un float che rappresenta la superficie media del materiale; nel caso in cui sia un materiale omogeneo, l'attributo è NULL.

AltroMateriale.AltezzaMedia è un float che rappresenta l'altezza media del materiale; nel caso in cui sia un materiale omogeneo, l'attributo è NULL.

3.4. Sezione calamità e danni

3.4.1. Indicazioni generali

Nella sezione calamità e danni l'entità Edificio è collegata a un'area geografica caratterizzata da uno o più rischi di tipologia diversa, in cui possono avvenire più calamità, di gravità variabile in base alla distanza dal loro epicentro.

È stato dunque necessario creare un modello che descrivesse con precisione le relazioni tra quest'ultime dal punto di vista spaziale; un modello condiviso e semplice da utilizzare.

Da qui la decisione di memorizzare le coordinate attraverso la latitudine e la longitudine, un mezzo inequivocabile ed efficiente per stabilire la posizione degli elementi. Per stabilirne l'estensione invece si utilizza un raggio; ovviamente per gli edifici, già descritti in dimensione nella loro topologia, questo attributo è assente.

Modello

ER relativo

Rischio. Coefficiente è un float che varia in base agli eventi relativi a calamità ed edifici che avvengono nell'area geografica.

Rischio. Tipo è un varchar che esprime la natura del rischio.

Rischio. Data è una data che permette di individuare temporalmente la presenza di un rischio in un'area geografica, generando uno storico per ogni tipo di rischio.

AreaGeografica. Nome è un varchar che individua l'area geografica.

AreaGeografica.Raggio è un intero che rappresenta il raggio di copertura dell'area.

AreaGeografica.Coordinate è un attributo multivalore che individua il centro della circonferenza di raggio AreaGeografica.Raggio.

Calamità. Data è un timestamp che rappresenta l'istante in cui è iniziato l'evento calamitoso.

Calamità. Tipo è un varchar che rappresenta la natura della calamità.

Calamità.LivelloGravità è un intero che rappresenta la gravità dell'evento calamitoso secondo questo modello:

Gravità	Effetti
1	Non avvertita dalle persone. Totale assenza di danni alle strutture.
2	Avvertita da poche persone. Totale assenza o presenza minima di danni lievi alle strutture.
3	Avvertita dalle persone vicino all'epicentro e da alcune nell'area di copertura. Presenza di danni di entità lieve nei pressi* dell'epicentro.
4	Avvertita da quasi tutte le persone nell'area di copertura. Presenza di danni di entità lieve-media nei pressi dell'epicentro e occasionalmente presenza di danni lievi nel resto della zona.
5	Avvertita da tutte le persone nell'area di copertura. Presenza di danni di entità media nei pressi dell'epicentro e presenza di danni minori in tutta la zona di copertura.
6	Avvertita da tutte le persone nell'area di copertura. Possibili vittime. Presenza di danni gravi presso l'epicentro, presenza di danni di entità lieve-media in tutto il resto della zona.
7	Avvertita da tutte le persone nell'area di copertura. Vittime nell'ordine delle decine. Presenza di danni molto gravi presso l'epicentro, presenza di danni di entità medio-grave nel resto della zona.
8	Avvertita da tutte le persone nell'area di copertura. Vittime nell'ordine delle centinaia. Presenza di danni irreparabili presso l'epicentro, con probabile distruzione completa delle strutture. Presenza di danni gravi nel resto della zona.
9	Avvertita da tutte le persone nell'area di copertura. Vittime nell'ordine delle centinaia/migliaia. Presenza di danni irreparabili presso l'epicentro, con distruzione completa delle strutture. Presenza di danni gravi o molto gravi nel resto della zona.
10	Avvertita da tutte le persone nell'area di copertura. Vittime dall'ordine delle migliaia in poi. Totale distruzione delle strutture nella zona.

^{*}per pressi si intende un'area spazzata dal 20% del raggio complessivo. Ai fini del calcolo della gravità saranno considerate le aree tra lo 0% e il 20%, il 20% e il 50%, e il 50% e il 100%.

Calamità. Raggio è un intero che rappresenta il raggio di copertura della calamità.

Calamità. Coordinate è un attributo multivalore che individua il centro della circonferenza di raggio Calamità. Raggio.

3.4.2. Gestione danni

Per la gestione dei danni è stato applicato un sistema analogo a quello degli elementi strutturali presenti nei vani degli edifici.

Danno.CodiceDanno è un intero auto incrementale che funge da identificatore del danno.

Danno.Dimensioni è un attributo multivalore che rappresenta le dimensioni del danno nel modello spiegato in 3.1.

Danno. Coordinate è un attributo multivalore che rappresenta la posizione del danno nel modello spiegato in 3.1.

Danno. Entità è un intero che permette di valutare la gravità del danno secondo questo modello, che si basa sulla sicurezza e sui costi:

Entità	Stato
-1	Danno riparato. D'ora in poi non saranno più registrati cambiamenti.
1	Nessuna minaccia alla sicurezza. Costo di riparazione pari o inferiore al 10% del costo di realizzazione.
2	
2	Nessuna minaccia alla sicurezza. Costo di riparazione pari o inferiore al 20% del costo di realizzazione.
3	Lieve minaccia alla sicurezza e/o costo di riparazione pari o inferiore al 30% del costo di realizzazione.
4	Lieve minaccia alla sicurezza e/o costo di riparazione pari o inferiore al 40% del costo di realizzazione.
5	Media minaccia alla sicurezza e/o costo di riparazione pari o inferiore al 50% del costo di realizzazione.
6	Media minaccia alla sicurezza e/o costo di riparazione pari o inferiore al 70% del costo di realizzazione.
7	Media-grave minaccia alla sicurezza e/o costo di riparazione pari o inferiore al 100% del costo di realizzazione.
8	Grave minaccia alla sicurezza e/o costo di riparazione pari o superiore al 100% del costo di realizzazione.
9	Gravissima minaccia alla sicurezza.

Danno.Tipo è un varchar che specifica la natura del danno.

3.5. Sezione sensori

I sensori rappresentano il cuore pulsante del sistema Smart Buildings, infatti, grazie alle loro registrazioni è possibile eseguire importanti valutazioni strutturali e monitorare al meglio ogni avvenimento relativo a tutti gli edifici monitorati.

3.5.1. Indicazioni generali

I sensori, proprio come i danni, si collegano al vano nella logica del modello spiegato in 3.1.

Sensore.CodiceSensore è un intero auto incrementale.

Sensore. Tipo è un varchar che rappresenta il tipo di sensore (temperatura, precipitazioni, ecc.).

Sensore. DataInstallazione è una data che rappresenta il giorno di installazione del sensore.

Sensore.Coordinate è un attributo multivalore che rappresenta la posizione del sensore nel Vano.

3.5.2. Generalizzazione sensori

La generalizzazione sensori è risultata necessaria in quanto ogni sensore può essere scalare(1D), 2D o 3D nelle sue registrazioni. Essa è esclusiva e totale.

Gli attributi Soglia indicano il valore minimo che può essere assunto da una registrazione che fa scattare l'alert.

3.5.3. Generalizzazione registrazioni

Le registrazioni raccolgono i valori dei sensori ogni 15 minuti; come per i sensori, la generalizzazione serve a differenziare le registrazioni in base alle dimensioni.

Si nota che la relazione tra Sensore e Registrazione non esclude la possibilità che un sensore non abbia ancora effettuato registrazioni.

Registrazione. Timestamp è appunto il timestamp correlato a quella registrazione, ed è parte della chiave assieme all'id del Sensore.

Registrazione1D.Valore, così come gli attributi multivalore Registrazione2D.Valori e Registrazione3D.Valori rappresentano attraverso uno o più float i valori registrati dai sensori.

3.5.4. Modello stato di un edificio

Poiché lo stato di un edificio dipende totalmente dalla sezione sensori, è stato scelto di approfondire qui la sua computazione.

Possedendo i dati dei sensori degli edifici, è possibile calcolare in modo deterministico uno stato multivalore della struttura in termini di vulnerabilità sotto diversi punti di vista.

Lo stato è aggiornato ogni giorno con un evento.

SC = Scostamento medio dal margine

NumSensAlert = Numero sensori che coinvolgono gli alert

NumSensTotali = Numero sensori dello stesso tipo degli alert totali

LastAlert = Alert della giornata di un sensore

TempEst = Sensore di temperatura esterna

TempInt = Sensore di temperatura interna

UmiEst = Sensore di umidità esterna

Umilnt = Sensore di umidità interna

Pos = Sensore di posizione

Prec = Sensore di precipitazione

Acc2D = Accelerometro 2D

Gir2D = Giroscopio 2D

Acc3D = Accelerometro 3D

Gir3D = Giroscopio 3D

La **vulnerabilità sismica** è calcolata in questo modo:

$$(SCLastAlertPos + SCLastAlertAcc2D + SCLastAlertGir2D + SCLastAlertAcc3D +) \\ (SCLastAlertGir3D) \times \frac{NumSensAlert}{NumSensTotali}$$

La vulnerabilità idrogeologica è calcolata in questo modo:

(SCLastAlertPos + SCLastAlertUmiEst + SCLastAlertUmiInt + SCLastAlertPrec +)

^{*}Le parentesi sono continue ma l'editor non permetteva altrimenti

$$(SCLastAlertAcc2D + SCLastAlertAcc3D) \times \frac{NumSensAlert}{NumSensTotali}$$

La vulnerabilità termica è calcolata in questo modo:

(SCLastAlertUmiEst + SCLastAlertUmiInt + SCLastAlertTempEst + SCLastAlertTempInt)

 $\times \frac{NumSensAlert}{NumSensTotali}$

La **vulnerabilità strutturale** è calcolata in questo modo:

(SCLastAlertPos + SCLastAlertUmiEst + SCLastAlertUmiInt + SCLastAlertGir2D +)

 $(SCLastAlertGir3D + SCLastAlertTempEst + SCLastAlertTempInt) \times \frac{NumSensAlert}{NumSensTotali}$

Tutte le vulnerabilità forniscono, dunque, un float da 0 a 1.

4. Analisi ristrutturale diagramma ER

4.1. Generalizzazioni

4.1.1. Personale

La generalizzazione Personale ha tre figlie: Lavoratore, Capocantiere e Responsabile. Poiché tutte e tre le entità fanno parte di relazioni differenti e hanno in comune solamente l'attributo del genitore, è stata applicata la soluzione di accorpare la generalizzazione nelle entità figlie.

Prima

Dopo

4.1.2. Materiale

Anche per la generalizzazione Materiale è stata applicata una soluzione di accorpamento del genitore nelle figlie, perché ogni materiale ha attributi ben precisi con accessi separati, che rendono impossibile l'accorpamento al genitore. Inoltre, poiché la generalizzazione è totale gli accessi avvengono solo nelle figlie. Pertanto, non risulta sensato neanche inserire delle relazioni al genitore.

Prima

Dopo

4.1.3. Sensore

Poiché ogni sensore ha un valore di soglia di dimensioni differenti, per la generalizzazione Sensore è stato deciso di applicare la soluzione di accorpare il genitore alle figlie. Infatti, non sarebbe stato corretto accorpare le figlie al genitore in quanto ci sarebbe stato un enorme numero di NULL per i sensori con meno di tre dimensioni, e al contempo poiché Sensore è una generalizzazione totale non si potevano applicare relazioni tra il genitore e le figlie.

Prima

Dopo

4.1.4. Registrazione

Come per Sensore, anche Registrazione è stata accorpata alle figlie; possedendo la stessa logica, infatti, la soluzione è praticamente analoga. Da notare che in questo modo è stato possibile creare relazioni dirette tra sensori e registrazioni che hanno le stesse dimensioni, risultando in un sistema più efficiente.

Prima

Dopo

4.2. Attributi multivalore

4.2.1. Coordinate (X, Y, Z)

Tutti gli attributi multivalore che rappresentano le coordinate (x, y, z) sono stati scorporati in questo modo:

2D

3D

4.2.2. Coordinate (latitudine, longitudine)

Tutti gli attributi multivalore che rappresentano le coordinate (latitudine, longitudine) sono stati scorporati in questo modo:

4.2.3. Dimensioni

Tutti gli attributi multivalore che rappresentano le dimensioni sono stati scorporati in questo modo:

Lunghezza, Larghezza e Altezza

DimLato e Altezza

4.2.4. Soglia e valori

Tutti gli attributi multivalore che rappresentano le soglie e i valori sono stati scorporati in questo modo:

2D

3D

4.2.5. Stato

L'attributo multivalore rappresentante lo stato è stato reso un'entità, con le varie vulnerabilità come attributi:

4.3. Partizionamento delle entità

4.3.1. Edificio

Edificio presenta due componenti, a cui generalmente non si accede in modo contestuale:

- o Edificio, contenente le informazioni spaziali riguardo all'abitazione
- O Stato, contenente le informazioni riguardanti le vulnerabilità dell'edificio.

4.3.2. Danno

Danno presenta due componenti, a cui generalmente non si accede in modo contestuale:

- Danno, contenente le informazioni riguardanti la registrazione del danno, con le sue caratteristiche
- O Riferimento, contenente le informazioni spaziali del danno e la sua estensione.

5. Analisi computazionale delle operazioni e scelte implementative

5.1. Tavola dei volumi

5.1.1. Sezione topologia

Concetto	Тіро	Volume	Calcolo del volume	Note
Edificio	Entità	100		Numero di edifici gestiti da un'azienda (considerando che un'abitazione rimane gestita dall'azienda anche dopo la costruzione).
Condizione	Relazione	100	1 × 100	Un edificio ha 1 stato.
Stato	Entità	100	1 × 100	Ogni edificio ha uno stato ben definito.
SuddivisioneP	Relazione	400	4 × 100	Un edificio è costituito da N piani.
Piano	Entità	400	4 × 100	Ogni abitazione è costituita in media da quattro piani, considerati palazzi e case da un piano solo.
MappaturaP	Relazione	1600	4 × 400	Ogni piano possiede N vertici.
VerticePiano	Entità	1600	4 × 400	In media il numero di vertici per piano sono 4, poiché la maggior parte delle abitazioni ha pianta quadrangolare.
SuddivisioneV	Relazione	2000	5 × 400	Ogni piano è costituito da N Vani.
Vano (1)	Entità	2000	5 × 400	In media i vani sono 5 per piano, poiché serve considerare gli appartamenti che hanno più vani ma 1 solo piano, e altri tipi di abitazioni che possiedono meno vani ma più piani; abbiamo stimato che 5 sia un buon compromesso.
MappaturaV	Relazione	8000	4 × 2000	Ogni vano possiede N vertici.

VerticeVano	Entità	8000	4 × 2000	In media il numero di vertici per piano sono 4, poiché la maggior parte delle stanze ha pianta quadrangolare.
PresenzaEl	Relazione	24000	(1 + 1 + 2 + 4 + 4) × 2000	Ogni vano presenta N elementi strutturali.
ElementoStru tturale	Entità	24000	(1 + 1 + 2 + 4 + 4) × 2000	In media ogni vano presenta: una porta, una pavimentazione, due finestre, quattro mura e quattro intonaci.
Destinazione	Relazione	3000	1.5 × 2000	Si suppone un vano abbia da una a tre funzioni, ma che molto plausibilmente se ne avrà una per vano.
Funzione (2)	Entità	50		Si suppone esistano circa 50 diverse funzioni per un vano (2).

⁽¹⁾ https://www.coffeenews.it/come-vengono-calcolati-i-vani-catastali-di-un-appartamento/

5.1.2. Sezione progetti edilizi

Concetto	Тіро	Volume	Calcolo del volume	Note
Appartenenza	Relazione	200	(1+1) × 100	Ogni edificio può avere N progetti.
Progetto	Entità	200	(1+1) × 100	Numero di progetti avviati dalla ditta, ipotizzando in media 1 di costruzione e 1 di manutenzione per edificio.
Pianificazione	Relazione	1000	5 × 200	Ogni progetto può avere N stadi di avanzamento.
StadioAvanzame nto	Entità	1000	5 × 200	Numero di stadi di avanzamento che compongono un progetto, si suppone siano indicativamente cinque a progetto.
Gestione	Relazione	2000	2 × 1000	Si suppone ci siano in media due responsabili per ogni stadio d'avanzamento.
Responsabile	Entità	20	40 ÷ 2	Si suppone di sia un responsabile ogni due capocantiere.

⁽²⁾ https://it.wikipedia.org/wiki/Stanza_(architettura)

Completamento	Relazione	7000	7 × 1000	Ogni stadio d'avanzamento è costituito da N lavori.
Lavoro	Entità	7000	7 × 1000	Si suppone ogni stadio d'avanzamento sia composto da circa sette lavori e si dice completato se ognuno dei lavori che lo compone è portato a termine.
Ristrutturazione	Relazione	6300	0.9 × 7000	In media il 90% dei lavori ha coinvolto un elemento strutturale. Dunque, 0.9 × 7000.
Svolgimento	Relazione	2,800,00	2 × 3.5 × 1000 × 400	Ogni lavoratore afferisce in media a due turni, poiché la maggior parte ha un turno classico ma tutti quelli che hanno un turno differente potrebbero potenzialmente avere N turni. Quindi attraverso una stima due turni a lavoratore. Ogni lavoratore durante uno stadio di avanzamento effettua in media 3.5 lavori, ovvero la metà dei lavori totali, ultimati entro la fine dello stadio.
Lavoratore	Entità	400		Si presuppone che i progetti attivi (e non solamente passati, quindi in quel caso avviene solo il monitoraggio) siano 20, e si suppone che in media ci siano 20 lavoratori per progetto.
Turno	Entità	15	1 × 2 + 2 × 2 + 3 × 2 + 3	Il conto dei turni è stato eseguito basandosi sulla settimana classica (lunedì-venerdì) moltiplicata per l'orario classico (9-17) o per quello pomeridiano-serale (14-22)
AssegnamentoC apo	Relazione	80	40 × 2	Ogni capocantiere ha in media due turni.
Capocantiere	Entità	40	400 ÷ 10	In media ogni capocantiere è assegnato a dieci lavoratori, dipendentemente dalla sua esperienza.

Monitoraggio	Relazione	400	40 × 10	Ogni capocantiere monitora N
				lavoratori, in media 10.

5.1.3. Sezione materiali

Concetto	Tipo	Volume	Calcolo del volume	Note
Fornitura	Relazione	35000	5 × 7000	In media ci sono 5 lotti per ogni
				lavoro.
Lotto	Entità	7000	200 × (35 ×	In media ci sono 35 lavori per
			5 – 4/5(35 ×	progetto (e ci sono 200
			5))	progetti). Poiché in media ci sono
				5 lotti per lavoro e si suppone
				che i 4/5 dei lotti vengano
				riutilizzati in altri lavori, il
				numero di lotti totali è pari a
				7000.
Utilizzo	Relazione	48000	2 × 24000	In media ogni elemento
				strutturale è composto da
				materiali di due lotti diversi.
Comp1	Relazione	1000		*
Intonaco	Entità	1000		*
Comp2	Relazione	2000		*
Mattone	Entità	2000		*
Comp3	Relazione	1500		*
Piastrella	Entità	1500		*
Comp4	Relazione	1000		*
Pietra	Entità	1000		*
Comp5	Relazione	1500		*
AltroMateria le	Entità	1500		*

^{*} La distribuzione dei materiali è supposta in base ai materiali genericamente più utilizzati nell'edificazione e ristrutturazione di edifici.

5.1.4. Sezione calamità e danni

Concetto	Тіро	Volum e	Calcolo del volume	Note
Posizione	Relazione	100		Ogni area è costituita da N edifici.
AreaGeografica	Entità	10		Si suppone di fare riferimento alle 10 province della Regione Toscana.
PresenzaRi	Relazione	30	3 × 10	Ogni area ha N rischi.
Rischio	Entità	30	3 × 10	Poiché ci sono 6 rischi al massimo per ogni area, supponiamo una media di 3 rischi per area.
Avvenimento	Relazione	120	60 × 2	Poiché i terremoti coinvolgono tutte le aree (o quasi) in quanto stiamo considerando la Toscana, mentre i disastri idrogeologici o altro riguardano solo singole aree, la media ipotizzata è di due aree per calamità.
Calamità	Entità	60	6 × 10	In media, in periodi di 10 anni in Toscana, si presentano circa 10 terremoti di un certo rilievo. Per le altre calamità si considera abbiano o un numero esiguo di accadimenti (eruzioni) o un numero più elevato (frane e alluvioni). In media, pertanto, si raggiunge un quantitativo di 60.
Causa	Relazione	12000	60 × 20 × 20 × 0.5	Ogni calamità causa N danni.
Danno	Entità	12000	60 × 20 × 20 × 0.5	Un'area geografica ha in media 10 edifici ed una calamità colpisce in media 2

Condiziona	Polozione	12000	12000 × 1	aree. Dunque, ogni calamità colpisce in media 20 edifici. Ogni edificio ha in media 20 vani. Supponendo una gravità medio-bassa per ogni calamità (in media), parte dei vani riceve più danni mentre altri, in edifici più lontani, non ne subiscono. Dunque, si è supposto 0.5 danni in media per vano.
CondizioneD	Relazione	12000	12000 × 1	Ogni danno ha 1 riferimento.
Riferimento	Entità	12000	12000 × 1	Ogni danno ha un riferimento spaziale.
Locazione	Relazione	12000	60 × 20 × 20 × 0.5	Ogni vano presenta N danni.

5.1.5. Sezione sensori

Concetto	Tipo	Volume	Calcolo del volume	Note
LocazioneS1D	Relazione	6000	(1 ÷ 3) × 12000 + (2 + 2 + 1) × 400	Un vano presenta N sensori.
Sensore1D	Entità	6000	(1 ÷ 3) × 12000 + (2 + 2 + 1) × 400	1/3 del totale dei danni più 2 sensori di umidità più 2 sensori di temperatura più 1 di precipitazione per piano.
Limitazione	Relazione	800	2 × 400	Un sensore di temperatura presenta 1 SogliaInferiore.
SogliaInferiore	Entità	800	2 × 400	Due sensori di temperatura per ogni piano.
LocazioneS2D	Relazione	4800	(1 ÷ 3) × 12000 + 2 × 400	Un vano presenta N sensori.

Sensore2D	Entità	4800	(1 ÷ 3) × 12000 + 2 × 400	1/3 del totale dei danni più un giroscopio e un
				accelerometro biassiale.
LocazioneS3D	Relazione	4800	$(1 \div 3) \times 12000 + 2$	Un vano presenta N
			× 400	sensori.
Sensore3D	Entità	4800	$(1 \div 3) \times 12000 + 2$	1/3 del totale dei danni
			× 400	più un giroscopio e un
				accelerometro
				triassiale.
Record1D	Relazione	576000	6000 × (24 × 4)	Un sensore registra N
				record.
Registrazione1D	Entità	576000	6000 × (24 × 4)	Registrazioni dei
				sensori scalari in una
				giornata di attività,
				considerando una
				cadenza di
				campionamento di 15 minuti.
Record2D	Relazione	460800	4800 × (24 × 4)	Un sensore registra N
110001 425	reduzione	100000	(21 ** 1)	record.
Registrazione2D	Entità	460800	4800 × (24 × 4)	Registrazioni dei
				sensori bidimensionali
				in una giornata di
				attività, considerando
				una cadenza di
				campionamento di 15
B 12D	D 1 .	440000	1000 (0.4 1)	minuti.
Record3D	Relazione	460800	4800 × (24 × 4)	Un sensore registra N record.
Registrazione3D	Entità	460800	4800 × (24 × 4)	Registrazioni dei
				sensori tridimensionali
				in una giornata di
				attività, considerando
				una cadenza di
				campionamento di 15
				minuti.

5.2. Individuazione di operazioni sui dati e analisi delle prestazioni

Questo paragrafo rappresenta otto operazioni interessanti svolte sulla base di dati, con conseguente valutazione degli accessi ed eventuale valutazione dell'inserimento di ridondanze.

5.2.1. Operazione 1: Classifica aziende fornitrici per tipo di elemento strutturale

Descrizione: All'interno del contesto di Smart Buildings potrà risultare utile, per fini commerciali, avere una lista con i tipi di elementi strutturali e le aziende fornitrici corrispondenti che avranno contribuito di più alla loro realizzazione, tramite i lotti; in caso di pari merito, verranno restituite entrambe.

Input:

o **-**

Output:

Classifica aziende fornitrici

Frequenza: 1 volta al mese

Porzione ER interessata:

Porzione tavola dei volumi interessata:

Concetto	Тіро	Volume
ElementoStrutturale	Entità	24000
Utilizzo	Relazione	48000
Lotto	Entità	7000

Tavola accessi:

	Concetto	Tipo	N. op.	Тіро ор.	Descrizione
1	ElementoStru	Entità	24000	lettura	Accessi a tutta la
	tturale				tabella per le
					chiavi di
					ElementoStruttu
					rale.
2	Utilizzo	Relazione	48000	lettura	Accessi a tutta la
					relazione per le
					chiavi di Lotto.
3	Lotto	Entità	7000	lettura	Accessi a tutta
					l'entità per
					l'attributo
					NomeFornitore.

79000 operazioni elementari

5.2.2. Operazione 2: Report progettuale

Descrizione: Un'operazione interessante per l'utente è conoscere un breve report del progetto su cui si sta lavorando / è stato commissionato senza dover calcolare manualmente tempo e costo di ogni singolo lavoro che compone il progetto e senza fare ricerche sulla posizione dell'edificio che verrà costruito / restaurato.

Input: CodiceProgetto

Output: Costo (Progetto), Tempo, CodiceEdificio, AreaGeografica

Frequenza: 2 volte a settimana

Porzione ER interessata:

Porzione tavola dei volumi interessata:

Concetto	Tipo	Volume
Progetto	Entità	200
Pianificazione	Relazione	1000
StadioAvanzamento	Entità	1000
Gestione	Relazione	2000
Responsabile	Entità	20
Completamento	Relazione	7000
Svolgimento	Relazione	2,800,000
Lavoratore	Entità	400
Capocantiere	Entità	40
Monitoraggio	Relazione	400
Fornitura	Relazione	35000
Lotto	Entità	7000
Appartenenza	Relazione	200
Edificio	Entità	100
Posizione	Relazione	100
AreaGeografica	Entità	10

Tavola accessi:

	Concetto	Tipo	N. op.	Tipo op.	Descrizione
1	Progetto	Entità	1	lettura	1 lettura agli
					attributi non
					chiave di
					Progetto.
2	Pianificazione	Relazione	5	lettura	5 accessi per
					ottenere le
					chiavi di
					StadioAvanzam
					ento.
3	StadioAvanzamento	Entità	5	lettura	5 accessi agli
					attributi non
					chiave di
					StadioAvanzam
					ento.
4	Gestione	Relazione	10	lettura	10 accessi agli
					attributi per
					ottenere gli
					attributi chiave
	D 1.0				di Responsabile.
5	Responsabile	Entità	2	lettura	2 accessi per
					trovare gli
					attributi non
					chiave di
					Responsabile.
6	Completamento	Relazione	35	lettura	35 accessi per
					ottenere gli
					attributi chiave
7	Cli	D.I.	700		di Lavoro.
7	Svolgimento	Relazione	700	lettura	700 accessi per
					ottenere gli attributi chiave
					di Lavoratore.
8	Lavoratore	Entità	20	lettura	20 accessi per
	Lavoracore	Literea		loccui a	trovare gli
					attributi non
					chiave di
					Lavoratore.
9	Monitoraggio	Relazione	20	lettura	20 accessi per
					ottenere gli

					attributi chiave
					Capocantiere.
10	Capocantiere	Entità	2	lettura	2 accessi per
					trovare gli
					attributi non
					chiave di
					Capocantiere.
11	Fornitura	Relazione	175	lettura	175 accessi per
					ottenere gli
					attributi chiave
					di Lotto.
12	Lotto	Entità	35	lettura	35 accessi per
					trovare gli
					attributi non
					chiave di Lotto.
13	Appartenenza	Relazione	1	lettura	1 accesso per
					ottenere gli
					attributi chiave
					di Edificio.
14	Posizione	Relazione	1	lettura	1 accesso per
					ottenere gli
					attributi chiave
					di
					AreaGeografica.

1012 operazioni elementari.

Note: Costo non è presente come attributo di Lavoro, ma considerata la frequenza dell'operazione di valutazione del costo di ogni lavoro potrebbe essere aggiunto come ridondanza.

5.2.3. Operazione 3: Suggerimento assegnamento lavoratori

Descrizione: Un'operazione essenziale per l'automatizzazione dello Smart Building, lato lavoratori, è sicuramente l'assegnamento automatizzato del lavoratore ad un capocantiere, dipendente dal turno scelto dallo stesso. Infatti, è necessario che la gestione del monitoraggio sia quanto più bilanciata possibile, per evitare di avere capocantiere con un

numero molto alto di lavoratori rispettivamente a MaxLavoratori e che, proporzionalmente, le aggiunte avvengano sempre ai soggetti che più necessitano nuovi soggetti nella loro squadra.

Input: Svolgimento(CodFiscale)

Output: Relazione lavoratore-capocantiere in monitoraggio

Frequenza: 2 volte al mese

Porzione ER interessata:

Porzione tavola dei volumi interessata:

Concetto	Tipo	Volume
Svolgimento	Relazione	2,800,000
Capocantiere	Entità	40
AssegnamentoCapo	Relazione	80
Monitoraggio	Relazione	400
Lavoratore	Entità	400

Tavola accessi:

	Concetto	Tipo	N. op.	Tipo op.	Descrizione
1	Capocantiere	Entità	40	lettura	40 lettura per
					ottenere gli
					attributi non
					chiave di
					Capocantiere.
2	Assegnamento	Relazione	80	lettura	1 lettura agli
	Саро				attributi per
					ottenere la
					chiave di
					Turno.
3	Monitoraggio	Relazione	400	lettura	400 accessi
					per ottenere
					parte della
					chiave di
					Svolgimento.
4	Svolgimento	Relazione	186667	lettura	186667
					accessi per
					ottenere la
					chiave di
					Svolgimento.
5	Lavoratore	Entità	1	scrittura	1 accesso in
					scrittura per
					scrivere sugli
					attributi di
					Lavoratore.

187189 operazioni elementari

5.2.4. Operazione 4: Valutazione stato di un edificio

Descrizione: Considerati gli innumerevoli dati ottenuti dai sensori, è necessario conoscere giornalmente lo stato dell'edificio, per poter gestire al meglio situazioni di criticità e sapere immediatamente dove intervenire, anche grazie a ConsigliDiIntervento.

Input:

o CodiceEdificio

Output: Stato

Frequenza: 1 volte al giorno

Porzione ER interessata:

Porzione tavola dei volumi interessata:

Concetto	Tipo	Volume
Condizione	Relazione	100
Stato	Entità	100
SuddivisioneP	Relazione	400
SuddivisioneV	Relazione	2000
LocazioneS1D	Relazione	6000
Sensore1D	Entità	6000
SogliaInferiore	Entità	800
LocazioneS2D	Relazione	4800
Sensore2D	Entità	4800
LocazioneS3D	Relazione	4800
Sensore3D	Entità	4800
Record1D	Relazione	576000
Registrazione1D	Entità	576000
Record2D	Relazione	460800
Registrazione2D	Entità	460800
Record3D	Relazione	460800
Registrazione3D	Entità	460800

Tavola accessi:

	Concetto	Tipo	N. op.	Тіро ор.	Descrizione
1	SuddivisioneP	Relazione	4	lettura	4 letture per
					leggere le chiavi
					di Piano.
2	SuddivisioneV	Relazione	20	lettura	20 letture per
					leggere la chiave
					di Vano.
3	LocazioneS1D	Relazione	60	lettura	60 letture per
					leggere la chiave
					di Sensore1D.
4	Sensore1D	Entità	60	lettura	60 letture per
					leggere gli
					attributi non
					chiave di
					Sensore1D.

5	SogliaInferiore	Entità	8	lettura	8 letture per
					leggere gli
					attributi di
					SogliaInferiore.
6	LocazioneS2D	Relazione	48	lettura	48 letture per
					leggere la chiave
					di Sensore2D.
7	Sensore2D	Entità	48	lettura	48 letture per
					leggere gli
					attributi non
					chiave di
					Sensore2D.
8	LocazioneS3D	Relazione	48	lettura	48 letture per
					leggere la chiave
					di Sensore3D.
9	Sensore3D	Entità	48	lettura	48 letture per
					leggere gli
					attributi non
					chiave di
					Sensore3D.
10	Record1D	Relazione	5760	lettura	5760 letture per
					leggere la chiave
					di
					Registrazione1D.
11	Registrazione1D	Entità	5760	lettura	5760 letture per
					leggere gli
					attributi non
					chiave di
					Registrazione1D.
12	Record2D	Relazione	4608	lettura	4608 letture per
					leggere la chiave
					di
					Registrazione2D.
13	Registrazione2D	Entità	4608	lettura	4608 letture per
					leggere gli
					attributi non
					chiave di
					Registrazione2D.
14	Record3D	Relazione	4608	lettura	4608 letture per
					leggere la chiave

					di Registrazione3D.
15	Registrazione3D	Entità	4608	lettura	4608 letture per leggere gli attributi non chiave di Registrazione3D.
16	Condizione	Relazione	1	scrittura	1 scrittura per scrivere la nuova relazione tra Stato ed Edificio.
17	Stato	Entità	1	scrittura	1 scrittura per scrivere sugli attributi di Stato.

30300 operazioni elementari

Note: Stato e Alert(Trigger) non è presente come attributo di Edificio, ma considerata la frequenza dell'operazione di valutazione del costo di ogni edificio potrebbero essere aggiunti come ridondanza.

5.2.5. Operazione 5: Installazione nuovo sensore

Descrizione: Una delle operazioni più frequenti all'interno del sistema Smart Building è l'inserimento di nuovi sensori all'interno delle abitazioni.

Gli inserimenti possono essere di tre tipi:

- o Inserimento di nuovi sensori in un edificio già sensorizzato
- o Inserimento di un set di sensori in un edificio che non ne presenta
- o Inserimento in seguito ad un danno nell'edificio

In tutti i casi è necessario trovare la posizione migliore per l'inserimento, preferendo punti non coperti da altri sensori dello stesso tipo, se presenti, e nel caso di sensori inseriti in seguito a danni, scegliendo i punti che presentano danni evidenti da poter misurare.

Input:

- o Tipo
- o Dimensioni
- CodiceSensore
- CodiceVano
- o CodiceDanno (in caso di sensori inseriti sui danni)

Output:

- o Relazione sensore-locazione
- o X, (Y, Z) del sensore

Frequenza: 2 volte al giorno

Porzione ER interessata:

Porzione tavola dei volumi interessata:

Concetto	Tipo	Volume
Vano	Entità	2000
MappaturaV	Relazione	8000
VerticeVano	Entità	8000
Locazione	Relazione	12000
Danno	Entità	12000
CondizioneD	Relazione	12000
Riferimento	Entità	12000
LocazioneS1D	Relazione	6000

Sensore1D	Entità	6000
Limitazione	Relazione	800
SogliaInferiore	Entità	800
LocazioneS2D	Relazione	4800
Sensore2D	Entità	4800
LocazioneS3D	Relazione	4800
Sensore3D	Entità	4800

Caso senza danni

Tavola accessi:

	Concetto	Tipo	N. op.	Tipo op.	Descrizione
1	MappaturaV	Relazione	4	lettura	4 letture per
					leggere la
					chiave di
					VerticeVano.
2	VerticeVano	Entità	4	lettura	4 letture per
					leggere gli
					attributi non
					chiave di
					VerticeVano.
3.1	LocazioneS1D	Relazione	3	lettura	3 letture per
					leggere la
					chiave di
					Sensore1D.
4.1	Sensore1D	Entità	3*	lettura	3 letture per
					leggere gli
					attributi non
					chiave di
					Sensore1D.
3.2	LocazioneS2D	Relazione	2.4	lettura	2.4 letture per
					leggere la
					chiave di
					Sensore2D.
4.2	Sensore2D	Entità	2.4**	lettura	2.4 letture per
					leggere gli
					attributi non

					chiave di
					Sensore2D.
3.3	LocazioneS3D	Relazione	2.4	lettura	2.4 letture per
					leggere la
					chiave di
					Sensore3D.
4.3	Sensore3D	Entità	2.4**	lettura	2.4 letture per
					leggere gli
					attributi non
					chiave di
					Sensore3D.
5.1	LocazioneS1D	Relazione	1	scrittura	1 scrittura per
					scrivere la
					chiave di
					Sensore1D.
6.1	Sensore1D	Entità	1	scrittura	1 scrittura per
					scrivere sugli
					attributi di
					Sensore1D.
7.1.1	Limitazione	Relazione	1	scrittura	1 scrittura per
					scrivere la
					chiave di
					SogliaInferiore.
7.1.1	SogliaInferiore	Entità	1	scrittura	1 scrittura per
					scrivere sugli
					attributi di
					SogliaInferiore.
5.2	LocazioneS2D	Relazione	1	scrittura	1 scrittura per
					scrivere la
					chiave di
					Sensore2D.
6.2	Sensore2D	Entità	1	scrittura	1 scrittura per
					scrivere sugli
					attributi di
					Sensore2D.
5.3	LocazioneS3D	Relazione	1	scrittura	1 scrittura per
					scrivere la
					chiave di
					Sensore3D.
6.3	Sensore3D	Entità	1	scrittura	1 scrittura per
					scrivere sugli

		attributi di
		Sensore3D.

18 operazioni elementari se il sensore è 1D, 22 nel caso di sensore di temperatura, oppure 16.8 se 2D o 3D perché ogni tipo di sensore (come dimensioni) è un'entità separata

Note:

* 1 sensore per vano (5 per piano) e 2 per i 2 danni (12000/2000 = 6) e poi questi 6 divisi per i 3 tipi di sensori quindi 2.

$$2 + 1 = 3$$

** 0.4 sensori per vano (2 per piano, 2/5) e 2 per i 2 danni (12000/2000 = 6) e poi questi 6 divisi per i 3 tipi di sensori quindi 2.

$$2 + 0.4 = 2.4$$

Caso con danni

Tavola accessi:

	Concetto	Tipo	N. op.	Tipo op.	Descrizione
1	Riferimento	Entità	1	lettura	1 lettura per
					leggere gli
					attributi non
					chiave di
					Riferimento.
2.1	LocazioneS1D	Relazione	1	scrittura	1 scrittura per
					scrivere la
					chiave di
					Sensore1D.
3.1	Sensore1D	Entità	1	scrittura	1 scrittura per
					scrivere sugli
					attributi di
					Sensore1D.
4.1.1	Limitazione	Relazione	1	scrittura	1 scrittura per
					scrivere la
					chiave di
					SogliaInferiore
5.1.1	SogliaInferiore	Entità	1	scrittura	1 scrittura per
					scrivere sugli
					attributi di

					SogliaInferiore
2.2	LocazioneS2D	Relazione	1	scrittura	1 scrittura per scrivere la chiave di Sensore2D.
3.2	Sensore2D	Entità	1	scrittura	1 scrittura per scrivere sugli attributi di Sensore2D.
2.3	LocazioneS3D	Relazione	1	scrittura	1 scrittura per scrivere la chiave di Sensore3D.
3.3	Sensore3D	Entità	1	scrittura	1 scrittura per scrivere sugli attributi di Sensore3D.

5 o 11(nel caso di sensore di temperatura) operazioni elementari (poiché si scrive su uno dei tre sensori)

5.2.6. Operazione 6: Classifica punti critici di un edificio

Descrizione: Gli edifici monitorati da sensori possono essere adoperati per restituire delle classifiche dinamiche dei punti critici in un edificio, ovvero dei punti che in seguito ad un alert hanno registrato il maggiore scostamento rispetto al valore di soglia e/o che presentano già danni di una certa entità che, potenzialmente, potranno peggiorare col tempo.

Input: Edificio

Output: Classifica dei punti più a rischio di danni

Frequenza: 1 volta al mese

Porzione ER interessata:

Porzione tavola dei volumi interessata:

SuddivisioneP	Relazione	400
SuddivisioneV	Relazione	2000
LocazioneS1D	Relazione	6000
LocazioneS2D	Entità	4800
LocazioneS3D	Relazione	4800
Locazione	Relazione	12000
Danno	Entità	12000
Riferimento	Entità	12000

Tavola accessi:

	Concetto	Tipo	N. op.	Тіро ор.	Descrizione
1	SuddivisioneP	Relazione	4	lettura	4 letture per
					leggere la
					chiave di
					Piano.
2	SuddivisioneV	Relazione	20	lettura	20 letture per
					leggere la
					chiave di
					Vano.

3	LocazioneS1	Relazione	60	lettura	60 letture per leggere la
					chiave di Sensore1D.
4	Locazione\$2	Relazione	48	lettura	48 letture per
	D	Relazione		lectura	leggere la
					chiave di
					Sensore2D.
5	LocazioneS3	Relazione	48	lettura	48 letture per
	D				leggere la
					chiave di
					Sensore3D.
6	Trigger1D	Relazione	57.60	lettura	57.60 letture
					per leggere la
					chiave di
					Alert1D.
7	Trigger2D	Relazione	46.08	lettura	46.08 letture
					per leggere la
					chiave di
					Alert2D.
8	Trigger3D	Relazione	46.08	lettura	46.08 letture
					per leggere la
					chiave di
					Alert3D.
9	Alert1D	Entità	57.60	lettura	57.60 letture
					per leggere gli
					attributi non
					chiave di
1.0			11.22		Alert1D.
10	Alert2D	Entità	46.08	lettura	46.08 letture
					per leggere gli
					attributi non
					chiave di
11	Alama2D	Γε:εΣ	46.00	1.44	Alert2D.
11	Alert3D	Entità	46.08	lettura	46.08 letture
					per leggere gli
					attributi non
					chiave di Alert3D.
12	Locazione	Relazione	120	lottura	120 letture
14	Locazione	Relazione	120	lettura	
					per leggere la chiave di
					Danno.
					Dailio.

13	Danno	Entità	120*	lettura	120 letture
					per leggere gli
					attributi non
					chiave di
					Danno.
14	Riferimento	Entità	120	lettura	120 letture
					per leggere gli
					attributi non
					chiave di
					Riferimento.

839.52 operazioni elementari (utilizzando la ridondanza Alert, precedentemente calcolata)

Note:

5.2.7. Operazione 7: Calcolo della gravità di una calamità

Descrizione: In seguito ad una qualunque calamità, può essere utile tramutarla in un valore scalare che possa rappresentare quanto grave essa sia stata, e che possa facilitare nella previsione dei danni strutturali causati dipendentemente dalla distanza dell'epicentro della calamità.

Input: CodiceCalamità

Output: Valore Gravità Calamità

Frequenza: 1 volta ogni 2 mesi

^{*} Ogni edificio ha in media 6 danni per vano, dunque 120 danni.

Porzione ER interessata:

Porzione tavola dei volumi interessata:

Concetto	Тіро	Volume
Calamità	Entità	60
Causa	Relazione	12000
Danno	Entità	12000
Locazione	Relazione	12000
Edificio	Entità	100
SuddivisioneV	Relazione	2000

Tavola accessi:

	Concetto	Tipo	N. op.	Tipo op.	Descrizione
1	Causa	Relazione	200	lettura	200 letture
					per leggere la
					chiave di
					Danno.
2	Danno	Entità	200	lettura	200 letture
					per leggere gli
					attributi non
					chiave di
					Danno.
3	Locazione	Relazione	200	lettura	200 letture
					per leggere la
					chiave di
					Vano.
4	SuddivisioneV	Relazione	400	lettura	100 letture
					per leggere la
					chiave di
					Edificio.
5	Edificio	Entità	20	lettura	20 letture per
					leggere gli
					attributi non
					chiave di
					Edificio.
6	Calamità	Entità	1	scrittura	1 scrittura
					sugli attributi
					di Calamità.

1022 operazioni elementari

5.2.8. Operazione 8: Calcolo dei coefficienti di rischio di un'area geografica

Descrizione: Data un'area geografica, è importante stabilire il coefficiente di rischio della stessa, considerando che esso varia in seguito non solo ad eventi calamitosi, ma anche in seguito all'inserimento di elementi artificiali: ad esempio un'area dissestata se venisse sovrappopolata potrebbe aumentare il proprio coefficiente di rischio.

In questa operazione consideriamo l'incremento del coefficiente di rischio in seguito ad eventi calamitosi o all'inserimento di nuovi edifici.

Input: CodiceEdificio/Calamità

Output: Coefficiente di rischio

Frequenza: 1 volta a settimana

Porzione ER interessata:

Porzione tavola dei volumi interessata:

Concetto	Tipo	Volume
Posizione	Relazione	100
PresenzaRi	Relazione	30
Rischio	Entità	30
Avvenimento	Relazione	120

Caso aggiornamento per inserimento edificio

Tavola accessi:

	Concetto	Tipo	N. op.	Tipo op.	Descrizione
1	Posizione	Relazione	1	lettura	1 lettura per
					ottenere la

					chiave di AreaGeografica.
2	PresenzaRi	Relazione	3	lettura	3 letture per
					ottenere la
					chiave di
					Rischio.
3	Rischio	Entità	3	lettura	3 letture per
					ottenere gli
					attributi non
					chiave di
					Rischio.
4	Rischio	Entità	3	scrittura	3 scritture sugli
					attributi di
					Rischio.

13 operazioni elementari

Caso aggiornamento per calamità

	Concetto	Tipo	N. op.	Тіро ор.	Descrizione
1	Avvenimento	Relazione	2	lettura	2 letture per
					ottenere la
					chiave di
					AreaGeografic
					a.
2	PresenzaRi	Relazione	6	lettura	3 letture per
					ottenere la
					chiave di
					Rischio.
3	Rischio	Entità	6	lettura	6 letture per
					ottenere gli
					attributi non
					chiave di
					Rischio.
4	Rischio	Entità	6	scrittura	6 scritture
					sugli attributi
					di Rischio.

26 operazioni elementari

5.3. Ridondanze

5.3.1. CostoLavoratori e CostoMateriali

CostoLavoratori e CostoMateriali sono attributi di lavoro, che possono essere utilizzati per semplificare l'accesso al costo delle singole entità che formano lo StadioAvanzamento e il Progetto, ma da valutare a livello di ridondanza.

$$\circ$$
 $T = 5.2.2.$

o
$$f^T \approx 0.29$$

$$o o^T = 1012$$

$$\begin{array}{ll}
\circ & f^T \approx 0.29 \\
\circ & o^T = 1012 \\
\circ & n^T = o^T \cdot f^T = 293.48 \approx 293
\end{array}$$

Per valutare la convenienza della ridondanza calcoliamo ora i nuovi valori:

$$o \quad o_{RID}^T = 95$$

$$\begin{array}{ll} \circ & o_{RID}^T = \ 95 \\ \circ & n_{RID}^T = o_{RID}^T \cdot f^T = \ 27.55 \approx 28 \end{array}$$

Concetto	Tipo	N. op.	Note
Progetto	Entità	1	lettura
Pianificazione	Relazione	5	lettura
StadioAvanzamento	Entità	5	lettura
Gestione	Relazione	10	lettura
Responsabile	Entità	2	lettura
Completamento	Relazione	35	lettura
Lavoro	Entità	35	lettura
Appartenenza	Relazione	1	lettura
Posizione	Relazione	1	lettura

A questo punto:

CostoLavoratori

$$\circ \quad \Delta = n^T - n_{RID}^T = 265$$

o $g^A \approx 0.29$, l'aggiornamento avviene due volte a settimana.

$$\circ$$
 $o^A = 777$

$$\circ \quad n^A = g^A \cdot o^A \approx 225$$

Concetto	Tipo	N. op.	Note
Svolgimento	Relazione	700	lettura
Lavoratore	Entità	20	lettura
Monitoraggio	Relazione	20	lettura
Capocantiere	Entità	2	lettura
Lavoro	Entità	35	scrittura

CostoMateriale

$$\circ \quad \Delta = n^T - n_{RID}^T = 265$$

o $g^A \approx 0$, il calcolo è una tantum per ogni lavoro, pertanto possiamo assumere venga ripetuta 0 volte al giorno

$$\circ \quad o^A = 245$$

$$\circ \quad n^A = g^A \cdot o^A = 0$$

Concetto	Tipo	N. op.	Note
Fornitura	Relazione	175	lettura
Lotto	Entità	35	lettura
Lavoro	Entità	35	scrittura

 $n^A < \Delta \rightarrow 225 < 265$, la ridondanza è, pertanto, conveniente.

5.3.2. Alert (e Trigger)

Alert (e Trigger) sono un insieme di tre entità (e tre relazioni) ridondanti, ottenuti dall'operazione 5.2.4., utili per scremare abbondantemente le registrazioni, riducendole solamente a quelle che superano il valore di soglia.

L'attributo ridondante è Scostamento, che coerentemente con la sezione a cui appartiene, è suddiviso in base alle dimensioni del sensore che ha effettuato la registrazione corrispondente.

$$\circ$$
 $T = 5.2.4.$

$$\circ$$
 $f^T = 2$

$$\circ o^T = 30300$$

$$o \quad n^T = o^T \cdot f^T = 60600$$

Per valutare la convenienza della ridondanza calcoliamo ora i nuovi valori:

$$\circ \quad o_{RID}^T \approx 648$$

$$\begin{array}{ll} \circ & o_{RID}^T \approx 648 \\ \circ & n_{RID}^T = o_{RID}^T \cdot f^T = 1296 \end{array}$$

Concetto	Tipo	N. op.	Note
SuddivisioneP	Relazione	4	lettura
SuddivisioneV	Relazione	20	lettura
LocazioneS1D	Relazione	60	lettura
Sensore1D	Entità	60	lettura
SogliaInferiore	Entità	8	lettura
LocazioneS2D	Relazione	48	lettura
Sensore2D	Entità	48	lettura
LocazioneS3D	Relazione	48	lettura
Sensore3D	Entità	48	lettura

Trigger1D	Entità	57.60	lettura
Alert1D	Relazione	57.60	lettura
Trigger2D	Entità	46.08	lettura
Alert2D	Relazione	46.08	lettura
Trigger3D	Entità	46.08	lettura
Alert3D	Entità	46.08	lettura
Condizione	Relazione	1	scrittura
Stato	Entità	1	scrittura

A questo punto:

$$\circ \quad \Delta = n^T - n_{RID}^T = 59304$$

 \circ $g^A \approx 150$, ogni giorno vengono eseguite 156 * 24 * 4 = 14976 registrazioni, e, considerando che solo l'1% causa alert, allora giornalmente vengono eseguite circa 150 scritture per edificio.

$$\circ \quad o^A = 7 o 8$$

$$n^A = g^A \cdot o^A = 1050 \ o \ 1200$$

Concetto	Tipo	N. op.	Note
Sensore1D/2D/3D	Entità	1	lettura
SogliaInferiore	Entità	1	lettura
Record1D/2D/3D	Relazione	1	lettura
Registrazione1D/2D/3D	Entità	1	lettura
Trigger1D/2D/3D	Relazione	1	scrittura
Alert1D/2D/3D	Entità	1	scrittura

 $n^A < \Delta \rightarrow 1000 \, o \, 1200 < 59304$, la ridondanza è, pertanto, conveniente.

5.3.3. Stato

Stato è l'attributo di progetto ottenuto dall'operazione 5.2.4., che vorremmo inserire come ridondanza per facilitare l'operazione di lettura che avviene una volta al giorno.

I dati che già conosciamo sono:

$$\circ$$
 $T = 5.2.4.$

$$\circ \quad f^T = \, 2$$

$$o o^T = 30300$$

$$\circ \quad n^T = o^T \cdot f^T = 60600$$

Per valutare la convenienza della ridondanza calcoliamo ora i nuovi valori:

$$\begin{array}{ll} \circ & o_{RID}^T = \ 1 \\ \circ & n_{RID}^T = \ o_{RID}^T \cdot \ f^T = \ 2 \end{array}$$

Concetto	Tipo	N. op.	Note
Progetto	Entità	1	Una singola lettura
			dell'attributo
			relativo allo Stato

A questo punto:

$$\begin{array}{ll} \circ & \Delta = n^T - n_{RID}^T = 60598 \\ \circ & g^A = 1 \end{array}$$

$$\circ$$
 $g^A = 1$

 $\circ \quad o^A = \, 30302$, il costo di una lettura senza ridondanza più la scrittura del nuovo attributo (la ridondanza viene calcolata giornalmente by scratch)

$$n^{A} = g^{A} \cdot o^{A} = 30302$$

 $n^A < \Delta \rightarrow 30302 < 60598$, la ridondanza è, pertanto, conveniente.

6.Traduzione nel modello logico

In questo paragrafo si provvede a spiegare e mostrare la traduzione dall'ER ristrutturato al modello logico; oltre alla parte meccanica relativa all'algoritmo sono spiegati e illustrati anche i vincoli e i trigger.

6.1. Traduzione

Nome	Traduzione	Note
Edificio	Edificio(CodiceEdificio , Tipologia, Latitudine, Longitudine, NomeArea)	
Stato	Stato(CodiceEdificio , VulnSismica, VulnIdrogeologica, VulnStrutturale, VulnTermica)	Il nome degli attributi è stato accorciato per praticità.
Piano	Piano(AltezzaPavimento, CodiceEdificio, Forma)	
Vano	Vano(CodiceVano , Fuga, LunghezzaMax, LarghezzaMax, AltezzaMax, TipoSoffitto, AltezzaPavimento, CodiceEdificio)	
VerticePiano	VertPiano(Cardinalita, AltezzaPavimento, CodiceEdificio, X, Y)	Il nome della relazione è stato accorciato per praticità.
VerticeVano	VertVano(Cardinalita , CodiceVano , X, Y)	Il nome della relazione è stato accorciato per praticità.
Destinazione	Destinazione(NomeFunzione, CodiceVano)	
Funzione	Funzione(NomeFunzione)	
ElementoStrutturale	EleStrutt(X , Y , Z , CodiceVano , CodiceLavoro, Tipo, Orientazione, Lunghezza, Larghezza, Altezza)	Il nome della relazione è stato accorciato per praticità.
Utilizzo	Utilizzo(X, Y, Z, CodiceVano, CodiceLotto, Quantita)	
Lotto	Lotto(CodiceLotto , NomeFornitore, DataAcquisto, Costo)	
Intonaco	Intonaco(CodiceLotto , Nome, Materiale)	

Mattone	Mattone(CodiceLotto , Nome, Forma,	
riactorie	Materiale, Alveolatura, Lunghezza,	
	Larghezza, Altezza)	
Piastrella	Piastrella(CodiceLotto , Nome, Forma,	
i iasti ella	Disegno, Materiale, DimLato, Altezza)	
Pietra	Pietra(CodiceLotto , Nome, Materiale,	
i ieti a	SupMedia, AltezzaMedia, PesoMedio,	
	Disposizione)	
AltroMateriale	AltroMat(CodiceLotto , Nome, Forma,	II nome della relazione è
Aiti Of later late	Materiale, SupMedia, AltezzaMedia)	stato accorciato per
	raceriale, capriledia, racezzar redia,	praticità.
Progetto	Progetto(CodiceProgetto,	pracieita.
Progetto	DataPresentazione, DataInizio,	
	DataApprovazione, DataFine,	
	StimaDataFine, Tipologia,	
	CodiceEdificio)	
StadioAvanzamento	StadioAva(DataInizio ,	II nome della relazione è
	CodiceProgetto, StimaDataFine,	stato accorciato per
	DataFine)	praticità.
Lavoro	Lavoro(CodiceLavoro , Nome,	practica.
Lavoro	CostoLavoratori, CostoMateriali,	
	Datalnizio, CodiceProgetto)	
Fornitura	Fornitura(CodiceLavoro ,	
Torricara	CodiceLotto, Quantita)	
Lavoratore	Lavoratore(CodFiscale ,	
Lavoracore	StipendioOrario, Tipologia,	
	CodFiscaleCapocantiere)	
Svolgimento	Svolgimento(CodiceLavoro,	
5 v 5 18 11 10 11 10 1	Giornolnizio, GiornoFine,	
	Oralnizio, OraFine, CodFiscale,	
	Ore)	
Turno	Turno(Giornolnizio, GiornoFine,	
	Oralnizio, OraFine)	
Capocantiere	Capocantiere(CodFiscale,	
,	StipendioGiornaliero, MaxLavoratori)	
AssegnamentoCapo	AsseCapo(CodFiscale, Giornolnizio,	Il nome della relazione è
	GiornoFine, OraInizio, OraFine)	stato accorciato per
	,	praticità.
Responsabile	Responsabile(CodFiscale,	
<u> </u>	StipendioGiornaliero)	
Gestione	Gestione(CodFiscale, DataInizio,	
	CodiceProgetto)	

AreaGeografica	AreaGeo(NomeArea , Raggio, Latitudine, Longitudine)	Il nome della relazione è stato accorciato per praticità.
Rischio	Rischio(Tipo , Data , NomeArea , Coefficiente)	
Avvenimento	Avvenimento(NomeArea, CodiceCalamita)	
Calamità	Calamita(CodiceCalamita , Data, Tipo, LivelloGravita, Latitudine, Longitudine, Raggio)	
Danno	Danno(CodiceDanno , Entita, Tipo, CodiceVano, CodiceCalamita)	
Riferimento	Riferimento(CodiceDanno , Lunghezza, Larghezza, Altezza, X, Y, Z)	
Sensore1D	Sensore1D(CodiceSensore , X, Y, Z, Soglia, Tipo, DataInstallazione, CodiceVano)	
SogliaInferiore	SogliaInferiore(CodiceSensore , ValoreInf)	
Sensore2D	Sensore2D(CodiceSensore , X, Y, Z, SogliaX, SogliaY, Tipo, DataInstallazione, CodiceVano)	
Sensore3D	Sensore3D(CodiceSensore , X, Y, Z, SogliaX, SogliaY, SogliaZ, Tipo, DataInstallazione, CodiceVano)	
Registrazione1D	Registrazione1D(CodiceSensore, Timestamp, Valore)	
Registrazione2D	Registrazione2D(CodiceSensore, Timestamp, ValoreX, ValoreY)	
Registrazione3D	Registrazione3D(CodiceSensore , Timestamp , ValoreX, ValoreY, ValoreZ)	
Alert1D	Alert1D(CodiceSensore, Timestamp, Scostamento)	
Alert2D	Alert2D(CodiceSensore, Timestamp, ScostamentoX, ScostamentoY)	
Alert3D	Alert3D(CodiceSensore, Timestamp, ScostamentoX, ScostamentoY, ScostamentoZ)	

6.2. Vincoli

6.2.1. Check

Nome	Check
Edificio	 Latitudine between –90 and 90
	 Longitudine between –180 and 180
Stato	 VulnSismica between 0 and 1
	 VulnIdrogeologica between 0 and 1
	 VulnStrutturale between 0 and 1
	 VulnTermica between 0 and 1
Piano	-
Vano	LunghezzaMax > 0
	LarghezzaMax > 0
	AltezzaMax >0
VertPiano	-
VertVano	-
Destinazione	-
Funzione	-
EleStrutt	 Orientazione between 0 and 360
	Lunghezza > 0
	Larghezza > 0
	- Altezza > 0
Utilizzo	Quantita > 0
Lotto	□ Costo > 0
Intonaco	-
Mattone	Lunghezza > 0
	Larghezza > 0
	- Altezza > 0
Piastrella	DimLato > 0
	- Altezza > 0
Pietra	SupMedia > 0
	 AltezzaMedia > 0
	PesoMedio > 0
AltroMat	SupMedia > 0
	 AltezzaMedia > 0
Progetto	 DataFine > DataInizio
-	 StimaDataFine > DataInizio
	 DataPresentazione <= DataApprovazione
	 DataPresentazione < DataInizio

StadioAva	 DataFine > DataInizio
JLAUIUAVA	 StimaDataFine > DataInizio
Lavoro	-
Fornitura	□ Costo > 0
Torricara	Quantità > 0
Lavoratore	 StipendioOrario >= 6 (almeno 6 euro/ora)
Svolgimento	 GiornoFine > GiornoInizio
	 OraFine > OraInizio
	Ore > 1
Turno	 GiornoFine > GiornoInizio
	 OraFine > OraInizio
	 Giornolnizio between 1 and 7
	 GiornoFine between 1 and 7
Capocantiere	 StipendioGiornaliero >= 48
AsseCapo	-
Responsabile	 StipendioGiornaliero >= 48
Gestione	-
AreaGeo	Raggio > 0
	 Latitudine between –90 and 90
	 Longitudine between –180 and 180
Rischio	 Coefficiente between 0 and 1
Avvenimento	-
Calamita	 LivelloGravita between 1 and 10
	 Latitudine between –90 and 90
	 Longitudine between –180 and 180
	Raggio > 0
Danno	 Entita between –1 and 9 (Non 0)
Riferimento	Lunghezza > 0
	Larghezza > 0
	Altezza > 0
Sensore1D	□ Soglia > 0
SogliaInferiore	-
Sensore2D	□ SogliaX > 0
	SogliaY > 0
Sensore3D	SogliaX > 0
	SogliaY > 0
	•
	□ SogliaZ > 0
Registrazione1D Registrazione2D	•

Registrazione3D	-
Alert1D	-
Alert2D	-
Alert3D	-

6.2.2. Vincoli di integrità referenziale

- Edificio.NomeArea ← AreaGeografica.NomeArea
- Stato.CodiceEdificio ← Edificio.CodiceEdificio
- Piano.CodiceEdificio ← Edificio.CodiceEdificio
- Vano.CodiceEdificio, Vano.AltezzaPavimento ← Piano.CodiceEdificio, Piano.AltezzaPavimento
- VertPiano.CodiceEdificio, VertPiano.AltezzaPavimento =
 Piano.CodiceEdificio, Piano.AltezzaPavimento
- VertVano.CodiceVano ← Vano.CodiceVano
- Destinazione.CodiceVano ← Vano.CodiceVano
- Destinazione.NomeFunzione ← Funzione.NomeFunzione
- EleStrutt.CodiceVano ← Vano.CodiceVano
- EleStrutt.CodiceLavoro ← Vano.CodiceLavoro
- Utilizzo.X, Utilizzo.Y, Utilizzo.Z, Utilizzo.CodiceVano ← EleStrutt.X, EleStrutt.Y, EleStrutt.Z, EleStrutt.CodiceVano
- Utilizzo.CodiceLotto

 Lotto.CodiceLotto
- Intonaco.CodiceLotto ← Lotto.CodiceLotto
- Mattone.CodiceLotto ← Lotto.CodiceLotto
- Piastrella.CodiceLotto ← Lotto.CodiceLotto
- Pietra.CodiceLotto ← Lotto.CodiceLotto
- AltroMat.CodiceLotto ← Lotto.CodiceLotto
- Progetto.CodiceEdificio ← Edificio.CodiceEdificio
- StadioAva.CodiceProgetto ← Progetto.CodiceProgetto
- Lavoro. **DataInizio**, Lavoro. **CodiceProgetto** ← StadioAva. **DataInizio**, StadioAva. **CodiceProgetto**
- Fornitura.CodiceLavoro

 Eavoro.CodiceLavoro
- Fornitura.CodiceLotto ← Lotto.CodiceLotto
- Lavoratore.CodFiscaleCapocantiere ← Capocantiere.CodFiscale
- Svolgimento.CodiceLavoro

 Lavoro.CodiceLavoro
- Svolgimento.Giornolnizio, Svolgimento.GiornoFine, Svolgimento.Oralnizio,
 Svolgimento.OraFine ← Turno.Giornolnizio, Turno.GiornoFine,
 Turno.Oralnizio, Turno.OraFine
- Svolgimento.CodFiscale

 Lavoratore.CodFiscale

- AsseCapo.CodFiscale

 Capocantiere.CodFiscale
- AsseCapo.Giornolnizio, AsseCapo.GiornoFine, AsseCapo.Oralnizio, AsseCapo.OraFine ← Turno.Giornolnizio, Turno.GiornoFine, Turno.Oralnizio, Turno.OraFine
- Gestione.CodFiscale ← Responsabile.CodFiscale
- Gestione.CodiceProgetto, Gestione.DataInizio ← StadioAva.CodiceProgetto,
 StadioAva.DataInizio
- Rischio.NomeArea ← AreaGeo.NomeArea
- Avvenimento.NomeArea ← AreaGeo.NomeArea
- Avvenimento.CodiceCalamita ← Calamita.CodiceCalamita
- Danno.CodiceVano ← Vano.CodiceVano
- Danno.CodiceCalamita ← Calamita.CodiceCalamita
- Riferimento.CodiceDanno ← Danno.CodiceDanno
- Sensore1D.CodiceVano ← Vano.CodiceVano
- SogliaInferiore.CodiceSensore

 Sensore1D.CodiceSensore
- Sensore2D.CodiceVano ← Vano.CodiceVano
- Sensore3D.CodiceVano ← Vano.CodiceVano
- Registrazione1D.CodiceSensore ← Sensore1D.CodiceSensore
- Registrazione2D.CodiceSensore

 Sensore2D.CodiceSensore
- Registrazione3D.CodiceSensore

 Sensore3D.CodiceSensore
- Alert1D.Timestamp, Alert1D.CodiceSensore ← Registrazione1D.Timestamp, Registrazione1D.CodiceSensore
- Alert2D.Timestamp, Alert2D.CodiceSensore ← Registrazione2D.Timestamp, Registrazione2D.CodiceSensore
- Alert3D.Timestamp, Alert3D.CodiceSensore ← Registrazione3D.Timestamp, Registrazione3D.CodiceSensore

6.3. Trigger e Stored Functions

6.3.1. Alert

Nel momento in cui una registrazione supera una delle sue soglie, un trigger provvede a salvarla come alert; questo per ogni tipo di sensore (in base alle dimensioni).

Alert (1D, 2D, 3D) è una ridondanza, atta a limitare il numero di accesso alle registrazioni, che sono costituite da un numero molto elevato di tuple, alle sole che hanno superato il valore di soglia del sensore corrispondente.

6.3.2. Penale ritardi

Nel caso in cui la stima della fine di una fase di avanzamento non coincida con la fine effettiva di quei lavori, è applicata una penale pari al 70% della percentuale di ritardo rispetto alla durata dell'intera fase, moltiplicata per la somma del costo derivato (cioè il costo effettivo se venissero rispettati i tempi) di tutti i lavori relativi a quella fase.

Tutto ciò è possibile grazie ad una funzione che, ogni qualvolta ce ne sia necessità, calcola correttamente il costo dello stadio d'avanzamento, considerando anche l'eventuale ritardo.

7. Analisi dipendenze funzionali e normalizzazione

Per ogni relazione si procede con l'analisi delle dipendenze funzionali e all'eventuale normalizzazione in BCNF. *

*Nelle DF non corrette (ovvero non presenti) con il ";" si intenderanno due non-implicazioni separate, per questioni di praticità.

Esempio: A \neq B; C corrisponde a A \neq B e A \neq B

Sezione topologia

- Edificio (CodiceEdificio, Tipologia, Latitudine, Longitudine, NomeArea) BCNF

CodiceEdificio → Tipologia, Latitudine, Longitudine, NomeArea /

Latitudine, Longitudine → CodiceEdificio, Tipologia, NomeArea

- Stato(CodiceEdificio, VulnSismica, VulnIdrogeologica, VulnStrutturale, VulnTermica) **BCNF**

CodiceEdificio → VulnSismica, VulnIdrogeologica, VulnStrutturale, VulnTermica /

VulnStrutturale

CodiceEdificio; VulnSismica; VulnIdrogeologica; VulnTermica

VulnTermica ⇒ CodiceEdificio; VulnSismica; VulnIdrogeologica; VulnStrutturale

- Piano(AltezzaPavimento, CodiceEdificio, Forma) BCNF

AltezzaPavimento, CodiceEdificio → Forma /

- Vano (**CodiceVano**, Fuga, LunghezzaMax, LarghezzaMax, AltezzaMax, TipoSoffitto, AltezzaPavimento, CodiceEdificio) **BCNF**

CodiceVano → Fuga, LunghezzaMax, LarghezzaMax, AltezzaMax, TipoSoffitto, AltezzaPavimento, CodiceEdificio *P*

Fuga ⇒ CodiceVano; LunghezzaMax; LarghezzaMax; AltezzaMax; TipoSoffitto; AltezzaPavimento; CodiceEdificio

LunghezzaMax ≠ CodiceVano; Fuga; LarghezzaMax; AltezzaMax; TipoSoffitto; AltezzaPavimento; CodiceEdificio

LarghezzaMax ⇒ CodiceVano; Fuga; LunghezzaMax; AltezzaMax; TipoSoffitto; AltezzaPavimento: CodiceEdificio

AltezzaMax ⇒ CodiceVano; Fuga; LunghezzaMax; LarghezzaMax; TipoSoffitto; AltezzaPavimento; CodiceEdificio

TipoSoffitto ⇒ CodiceVano; Fuga; LunghezzaMax; LarghezzaMax; AltezzaMax; AltezzaMax; AltezzaPavimento; CodiceEdificio

AltezzaPavimento ⇒ CodiceVano; Fuga; LunghezzaMax; LarghezzaMax; AltezzaMax; TipoSoffitto; CodiceEdificio

CodiceEdificio ⇒ CodiceVano; Fuga; LunghezzaMax; LarghezzaMax; AltezzaMax; TipoSoffitto; AltezzaPavimento

- VertPiano(Cardinalita, AltezzaPavimento, CodiceEdificio, X, Y) BCNF

Cardinalita, AltezzaPavimento, CodiceEdificio → X, Y

CodiceEdificio ⇒ Cardinalita; AltezzaPavimento; X; Y

X ⇒ Cardinalita; AltezzaPavimento; CodiceEdificio; Y

Y ⇒ Cardinalita; AltezzaPavimento; CodiceEdificio; X

AltezzaPavimento, CodiceEdificio, X, Y → Cardinalita

- VertVano(Cardinalita, CodiceVano, X, Y) BCNF

Cardinalita, CodiceVano → X, Y /

X ⇒ Cardinalita; CodiceVano; Y

Y ⇒ Cardinalita; CodiceVano; X

CodiceVano, X, Y → Cardinalita

- Destinazione(NomeFunzione, CodiceVano) BCNF

NomeFunzione, CodiceVano → NomeFunzione, CodiceVano /

- Funzione(**NomeFunzione**) **BCNF**

NomeFunzione → NomeFunzione /

- EleStrutt(**X**, **Y**, **Z**, **CodiceVano**, Tipo, Orientazione, Lunghezza, Larghezza, Altezza, CodiceLavoro) **BCNF**

X, Y, Z, CodiceVano→ Tipo, Orientazione, Lunghezza, Larghezza, Altezza, CodiceLavoro

X ≠ Y; Z; CodiceVano; Tipo; Orientazione; Lunghezza; Larghezza; Altezza; CodiceLavoro

Y ⇒ X; Z; CodiceVano; Tipo; Orientazione; Lunghezza; Larghezza; Altezza; CodiceLavoro Z ⇒ X; Y; CodiceVano; Tipo; Orientazione; Lunghezza; Larghezza; Altezza; CodiceLavoro CodiceVano ⇒ X; Y; Z; Tipo; Orientazione; Lunghezza; Larghezza; Altezza; CodiceLavoro Tipo ⇒ X; Y; Z; CodiceVano; Orientazione; Lunghezza; Larghezza; Altezza; CodiceLavoro Orientazione ⇒ X; Y; Z; CodiceVano; Tipo; Lunghezza; Larghezza; Altezza; CodiceLavoro Lunghezza ⇒ X; Y; Z; CodiceVano; Tipo; Orientazione; Larghezza; Altezza; CodiceLavoro Larghezza ⇒ X; Y; Z; CodiceVano; Tipo; Orientazione; Lunghezza; Altezza; CodiceLavoro Altezza ⇒ X; Y; Z; CodiceVano; Tipo; Orientazione; Lunghezza; Larghezza; CodiceLavoro CodiceLavoro ⇒ X; Y; Z; CodiceVano; Tipo; Orientazione; Lunghezza; Larghezza; Altezza

Sezione materiali

- Utilizzo(X, Y, Z, CodiceVano, CodiceLotto, Quantita) BCNF

X, Y, Z, CodiceVano, CodiceLotto → Quantita 🥕

X ≠ Y; Z; CodiceVano; CodiceLotto; Quantita

Y ⇒ X; Z; CodiceVano; CodiceLotto; Quantita

 $Z \Rightarrow X$; Y; CodiceVano; CodiceLotto; Quantita

CodiceVano ⇒ X; Y; Z; CodiceLotto; Quantita

CodiceLotto ⇒ X; Y; Z; CodiceVano; Quantita

Quantita ⇒ X; Y; Z; CodiceVano; CodiceLotto

- Lotto(CodiceLotto, NomeFornitore, DataAcquisto, Costo) BCNF

CodiceLotto → NomeFornitore, DataAcquisto, Costo /

NomeFornitore

→ CodiceLotto; DataAcquisto; Costo

DataAcquisto

⇒ CodiceLotto; NomeFornitore; Costo

- Intonaco(CodiceLotto, Nome, Materiale) BCNF

CodiceLotto → Nome, Materiale /

Nome *⇒* CodiceLotto, Materiale

- Mattone(**CodiceLotto**, Nome, Forma, Materiale, Alveolatura, Lunghezza, Larghezza, Altezza) **BCNF**

CodiceLotto → Nome, Forma, Materiale, Alveolatura, Lunghezza, Larghezza, Altezza

Nome → CodiceLotto; Alveolatura; Lunghezza; Larghezza; Altezza

Forma → CodiceLotto; Nome; Materiale; Alveolatura; Lunghezza; Larghezza; Altezza

Materiale → CodiceLotto; Nome; Forma; Alveolatura; Lunghezza; Larghezza; Altezza

Alveolatura → CodiceLotto; Nome; Forma; Materiale; Lunghezza; Larghezza; Altezza

Lunghezza → CodiceLotto; Nome; Forma; Materiale; Alveolatura; Larghezza; Altezza

Larghezza → CodiceLotto; Nome; Forma; Materiale; Alveolatura; Lunghezza; Altezza

Altezza → CodiceLotto; Nome; Forma; Materiale; Alveolatura; Lunghezza; Larghezza

- Piastrella(**CodiceLotto**, Nome, Forma, Disegno, Materiale, DimLato, Altezza) BCNF CodiceLotto → Nome, Forma, Disegno, Materiale, DimLato, Altezza *P*

Nome

⇒ CodiceLotto; DimLato; Altezza

- Pietra(**CodiceLotto**, Nome, SupMedia, AltezzaMedia, PesoMedio, Disposizione, Materiale) **BCNF**

CodiceLotto → Nome, SupMedia, AltezzaMedia, PesoMedio, Disposizione, Materiale

Nome → CodiceLotto; Supmedia; AltezzaMedia; PesoMedio; Disposizione; Materiale

SupMedia → CodiceLotto; Nome; AltezzaMedia; PesoMedio; Disposizione; Materiale

AltezzaMedia → CodiceLotto; Nome; Supmedia; PesoMedio; Disposizione; Materiale

PesoMedio → CodiceLotto; Nome; Supmedia; AltezzaMedia; Disposizione; Materiale

Disposizione → CodiceLotto; Nome; Supmedia; AltezzaMedia; PesoMedio; Materiale

Materiale → CodiceLotto; Nome; Supmedia; AltezzaMedia; PesoMedio; Disposizione

- AltroMat(**CodiceLotto**, Nome, Forma, Materiale, SupMedia, AltezzaMedia) BCNF
CodiceLotto → Nome, Forma, Materiale, SupMedia, AltezzaMedia →

Nome ⇒ CodiceLotto; SupMedia; AltezzaMedia

Sezione progetti edilizi

- Progetto (**CodiceProgetto**, DataPresentazione, DataInizio, DataApprovazione, DataFine, StimaDataFine, Tipologia, CodiceEdificio) **BCNF**

CodiceProgetto → DataPresentazione, DataInizio, DataApprovazione, DataFine, StimaDataFine, CodiceEdificio, Tipologia *P*

DataFine

→ CodiceProgetto; DataPresentazione; DataInizio; DataApprovazione; StimaDataFine; Tipologia; CodiceEdificio

DataInizio, DataFine, CodiceEdificio, Tipologia → CodiceProgetto, DataPresentazione, DataApprovazione, StimaDataFine

- StadioAva(DataInizio, CodiceProgetto, StimaDataFine, DataFine) BCNF

DataInizio, CodiceProgetto → StimaDataFine, DataFine /

StimaDataFine

⇒ DataInizio; CodiceProgetto; DataFine

DataFine

⇒ DataInizio; CodiceProgetto; StimaDataFine

- Lavoro(**CodiceLavoro**, Nome, CostoLavoratori, CostoMateriali, Datalnizio, CodiceProgetto) **BCNF**

CodiceLavoro → Nome, CostoLavoratori, CostoMateriali, Datalnizio, CodiceProgetto

Nome → CodiceLavoro; CostoLavoratori; CostoMateriali; Datalnizio; CodiceProgetto

CostoLavoratori → CodiceLavoro; CostoMateriali; Nome; Datalnizio; CodiceProgetto

CostoMateriali → CodiceLavoro; CostoLavoratori; Nome; Datalnizio; CodiceProgetto

Datalnizio → CodiceLavoro; Nome; CostoLavoratori; CostoMateriali; CodiceProgetto

CodiceProgetto → CodiceLavoro; Nome; CostoLavoratori; CostoMateriali; Datalnizio

- Fornitura (CodiceLavoro, CodiceLotto, Quantita) BCNF

CodiceLavoro, CodiceLotto → Quantita /

- Lavoratore(CodFiscale, StipendioOrario, Tipologia, CodFiscaleCapocantiere) BCNF

CodFiscale → StipendioOrario, Tipologia, CodFiscaleCapocantiere /

- Svolgimento(CodiceLavoro, Giornolnizio, GiornoFine, Oralnizio, OraFine, CodFiscale, Ore) BCNF

CodiceLavoro, Giornolnizio, GiornoFine, Oralnizio, OraFine, CodFiscale → Ore CodiceLavoro ⇒ Giornolnizio; GiornoFine; Oralnizio; OraFine; CodFiscale; Ore Giornolnizio ⇒ CodiceLavoro; GiornoFine; Oralnizio; OraFine; CodFiscale; Ore GiornoFine ⇒ CodiceLavoro; Giornolnizio; Oralnizio; OraFine; CodFiscale; Ore Oralnizio ⇒ CodiceLavoro; Giornolnizio; GiornoFine; OraFine; CodFiscale; Ore OraFine ⇒ CodiceLavoro; Giornolnizio; GiornoFine; Oralnizio; CodFiscale; Ore CodFiscale ⇒ CodiceLavoro; Giornolnizio; GiornoFine; Oralnizio; OraFine; Ore Ore ⇒ CodiceLavoro; Giornolnizio; GiornoFine; Oralnizio; OraFine; CodFiscale

- Turno(Giornolnizio, GiornoFine, Oralnizio, OraFine) BCNF

Giornolnizio, GiornoFine, Oralnizio, OraFine → Giornolnizio, GiornoFine, Oralnizio, OraFine →

- Capocantiere(CodFiscale, StipendioOrario, MaxLavoratori) BCNF

CodFiscale → StipendioOrario, MaxLavoratori /

- AsseCapo(CodFiscale, Giornolnizio, GiornoFine, Oralnizio, OraFine) BCNF

CodFiscale, Giornolnizio, GiornoFine, Oralnizio, OraFine → CodFiscale, Giornolnizio, GiornoFine, Oralnizio, OraFine *P*

OraFine

→ CodFiscale; Giornolnizio; GiornoFine; Oralnizio

- Responsabile(CodFiscale, StipendioOrario) BCNF

CodFiscale → StipendioOrario /

- Gestione(CodFiscale, DataInizio, CodiceProgetto) BCNF

CodFiscale, DataInizio, CodiceProgetto → CodFiscale, DataInizio, CodiceProgetto *P*

CodFiscale ⇒ DataInizio; CodiceProgetto

Sezione calamità e danni

- AreaGeo(NomeArea, Raggio, Latitudine, Longitudine) BCNF

NomeArea → Raggio, Latitudine, Longitudine /

Raggio

⇒ NomeArea; Latitudine; Longitudine

Latitudine

⇒ NomeArea; Raggio; Longitudine

Longitudine

⇒ NomeArea; Raggio; Latitudine

Latitudine, Longitudine → NomeArea, Raggio

- Rischio(Tipo, Data, NomeArea, Coefficiente) BCNF

Tipo, Data, NomeArea → Coefficiente /

Tipo

⇒ Data; NomeArea; Coefficiente

Data

⇒ Tipo; NomeArea; Coefficiente

NomeArea ⇒ Tipo; Data; Coefficiente

- Avvenimento (NomeArea, CodiceCalamita) BCNF

NomeArea, CodiceCalamita → NomeArea, CodiceCalamita /

NomeArea

⇒ CodiceCalamita

- Calamita(**CodiceCalamita**, Data, Tipo, LivelloGravita, Latitudine, Longitudine, Raggio) **BCNF**

CodiceCalamita → Data, Tipo, LivelloGravita, Latitudine, Longitudine, Raggio /

Data ≠ CodiceCalamita; Tipo; LivelloGravita; Latitudine; Longitudine; Raggio

Tipo

CodiceCalamita; Data; LivelloGravita; Latitudine; Longitudine; Raggio LivelloGravita

CodiceCalamita; Data; Tipo; Latitudine; Longitudine; Raggio Latitudine

CodiceCalamita; Data; Tipo; LivelloGravita; Longitudine; Raggio Longitudine

CodiceCalamita; Data; Tipo; LivelloGravita; Latitudine; Raggio Data, Tipo, Latitudine, Longitudine

CodiceCalamita, LivelloGravita, Raggio

Raggio

CodiceCalamita; Data; Tipo; LivelloGravita; Latitudine; Longitudine

- Danno(CodiceDanno, Entita, Tipo) BCNF

CodiceDanno → Entita, Tipo /

- Riferimento (CodiceDanno, Lunghezza, Larghezza, Altezza, X, Y, Z) BCNF

CodiceDanno → Lunghezza; Larghezza; Altezza; X; Y; Z

X ⇒ CodiceDanno; Lunghezza; Larghezza; Altezza; Y; Z

Y ⇒ CodiceDanno; Lunghezza; Larghezza; X; Z

Z ⇒ CodiceDanno; Lunghezza; Larghezza; Altezza; X; Y

Sezione sensori

- Sensore1D(CodiceSensore, X, Y, Z, Soglia, Tipo, DataInstallazione, CodiceVano) BCNF

- SogliaInferiore(CodiceSensore, ValoreInf) BCNF

CodiceSensore → ValoreInf /

ValoreInf

⇒ CodiceSensore

- Sensore2D(**CodiceSensore**, X, Y, Z, SogliaX, SogliaY, Tipo, DataInstallazione, CodiceVano) **BCNF**

CodiceSensore → X, Y, Z, SogliaX, SogliaY, Tipo, DataInstallazione, CodiceVano X ⇒ CodiceSensore; Y; Z; SogliaX; SogliaY; Tipo; DataInstallazione; CodiceVano Y ⇒ CodiceSensore; X; Z; SogliaX; SogliaY; Tipo; DataInstallazione; CodiceVano Z ⇒ CodiceSensore; X; Y; SogliaX; SogliaY; Tipo; DataInstallazione; CodiceVano SogliaX ⇒ CodiceSensore; X; Y; Z; SogliaY; Tipo; DataInstallazione; CodiceVano SogliaY ⇒ CodiceSensore; X; Y; Z; SogliaX; Tipo; DataInstallazione; CodiceVano Tipo ⇒ CodiceSensore; X; Y; Z; SogliaX; SogliaY; DataInstallazione; CodiceVano DataInstallazione ⇒ CodiceSensore; X; Y; Z; SogliaX; SogliaY; Tipo; CodiceVano CodiceVano ⇒ CodiceSensore; X; Y; Z; SogliaX; SogliaY; Tipo; DataInstallazione X, Y, Z, Tipo, CodiceVano → CodiceSensore, SogliaX, SogliaY, DataInstallazione - Sensore3D(**CodiceSensore**, X, Y, Z, SogliaX, SogliaY, SogliaZ, Tipo, DataInstallazione, CodiceVano) **BCNF**

CodiceSensore → X, Y, Z, SogliaX, SogliaY, SogliaZ, Tipo, DataInstallazione, CodiceVano

X

CodiceSensore; Y; Z; SogliaX; SogliaY; SogliaZ; Tipo; DataInstallazione; CodiceVano Y

CodiceSensore; X; Z; SogliaX; SogliaY; SogliaZ; Tipo; DataInstallazione; CodiceVano Z

CodiceSensore; X; Y; SogliaX; SogliaY; SogliaZ; Tipo; DataInstallazione; CodiceVano SogliaX

CodiceSensore; X; Y; Z; SogliaY; SogliaZ; Tipo; DataInstallazione; CodiceVano SogliaY

CodiceSensore; X; Y; Z; SogliaX; SogliaZ; Tipo; DataInstallazione; CodiceVano SogliaZ

CodiceSensore; X; Y; Z; SogliaX; SogliaY; Tipo; DataInstallazione; CodiceVano Tipo

CodiceSensore; X; Y; Z; SogliaX; SogliaY; SogliaZ; DataInstallazione; CodiceVano DataInstallazione

CodiceSensore; X; Y; Z; SogliaX; SogliaY; SogliaY; SogliaZ; Tipo; CodiceVano CodiceVano

CodiceVano

CodiceSensore; X; Y; Z; SogliaX; SogliaY; SogliaZ; Tipo; DataInstallazione

X, Y, Z, Tipo, CodiceVano

CodiceSensore, SogliaX, SogliaY, SogliaZ, DataInstallazione

- Registrazione1D(CodiceSensore, Timestamp, Valore) BCNF

CodiceSensore, Timestamp → Valore /

CodiceSensore *⇒* Timestamp; Valore

- Registrazione2D(CodiceSensore, Timestamp, ValoreX, ValoreY) BCNF

CodiceSensore, Timestamp → ValoreX, ValoreY /

ValoreX ≠ CodiceSensore; Timestamp; ValoreY

ValoreY ⇒ CodiceSensore; Timestamp; ValoreX

- Registrazione3D(CodiceSensore, Timestamp, ValoreX, ValoreY, ValoreZ) BCNF

CodiceSensore, Timestamp → ValoreX, ValoreY, ValoreZ /

CodiceSensore ≠ Timestamp; ValoreX; ValoreY; ValoreZ

ValoreX ⇒ CodiceSensore; Timestamp; ValoreY; ValoreZ

ValoreY ≠ CodiceSensore; Timestamp; ValoreX; ValoreZ

ValoreZ ⇒ CodiceSensore; Timestamp; ValoreX; ValoreY

- Alert1D(CodiceSensore, Timestamp, Scostamento) BCNF

CodiceSensore, Timestamp → Scostamento /

CodiceSensore *⇒* Timestamp; Scostamento

- Alert2D(CodiceSensore, Timestamp, ScostamentoX, ScostamentoY) BCNF

CodiceSensore, Timestamp → ScostamentoX, ScostamentoY /

CodiceSensore *⇒* Timestamp; ScostamentoX; ScostamentoY

ScostamentoX ≠ CodiceSensore; Timestamp; ScostamentoY

- Alert3D(**CodiceSensore**, **Timestamp**, ScostamentoX, ScostamentoY, ScostamentoZ) **BCNF**

CodiceSensore, Timestamp → ScostamentoX, ScostamentoY, ScostamentoZ /

CodiceSensore ≠ Timestamp; ScostamentoX; ScostamentoY; ScostamentoZ

Scostamento $X \Rightarrow$ CodiceSensore; Timestamp; ScostamentoY; ScostamentoZ

ScostamentoY ⇒ CodiceSensore; Timestamp; ScostamentoX; ScostamentoZ

 $ScostamentoZ \not\Rightarrow CodiceSensore; Timestamp; ScostamentoX; ScostamentoY$

Le relazioni mantenute in terza forma normale (3NF) presentano ridondanze, pertanto, non risulta conveniente una loro conversione in BCNF.

8. Area analytics

8.1. Consigli di intervento

Questa funzionalità DSS permette di ricevere in modo dinamico consigli sugli interventi da effettuare sugli edifici, indicando anche un "fattore di urgenza" che rappresenta la convenienza, in termini di sicurezza e di eventuali costi, di quel determinato intervento. La procedura prende in input un edificio e restituisce la classifica degli interventi da effettuare (in ordine decrescente rispetto al fattore).

Spiegazione tecnica

Per realizzare questa funzione, è stato necessario creare quattro tabelle temporanee di appoggio.

La prima tabella si chiama AlertDanni e raccoglie, analogamente all'operazione di classifica punti critici (5.2.6), i punti interessati da alert e danni. A differenza dell'operazione, però, in questo caso è effettuata una media settimanale degli alert per ogni punto, poiché la prima dà un risultato istantaneo mentre l'analytic deve fare un'analisi più ampia. Per ogni punto è salvato anche il tipo di danno/sensore dando priorità al tipo di danno.

X	Y	Z	CodiceVano	Tipo	Scostamento	EntitaDanno
2.2	0.3	0	8	Crepa	NULL	4
3.6	9.8	0.8	1	Crepa	0.646667	4
3.9	0.1	1	0	Crepa	NULL	2
5	11	0	10	Precipitazione	0.755	NULL
7	11.5	1.5	10	Temperatura	0.0128572	NULL
7.4	2	1.5	7	Temperatura	0.0135714	NULL
8	10	2	3	Umidita	0.38	NULL
8	10.1	1	3	Precipitazione	0.59	NULL
8	11.2	0.55	10	Crepa	0.269999	3
8.4	9.8	1.3	3	Crepa	0.2	3
10	5.5	1.5	11	Temperatura	0.483571	NULL

A questo punto si è proceduto a trovare tutti i rischi che coinvolgono l'area in cui si trova l'edificio. Valorizzando i coefficienti dei rischi presenti (6 al massimo), è stato possibile creare la seconda tabella.

AlertDanniInfluenzati infatti contiene gli stessi punti della tabella precedente, ma con una colonna in più (e due in meno, Scostamento e GravitaDanno): FattoreUrgenza.

X	Y	Z	CodiceVano	Tipo	FattoreUrgenza
2.2	0.3	0	8	Crepa	0.566518
3.6	9.8	0.8	1	Crepa	0.573055
3.9	0.1	1	0	Crepa	0.547832
5	11	0	10	Precipitazione	0.59158
7	11.5	1.5	10	Temperatura	0.409817
7.4	2	1.5	7	Temperatura	0.410113
8	10	2	3	Umidita	0.524433
8	10.1	1	3	Precipitazione	0.566319
8	11.2	0.55	10	Crepa	0.555314
8.4	9.8	1.3	3	Crepa	0.552142
10	5.5	1.5	11	Temperatura	0.546672

Questo fattore è calcolato a partire dalla media tra lo Scostamento e la GravitaDanno diviso 9 (o uno dei due valori quando l'altro è assente) ed è incrementato attraverso i valori dei rischi che coinvolgono quei punti (filtrando attraverso il tipo), con una legge utilizzata anche per altre sezioni della Basi di Dati:

$$1 - e^{-x}$$

Si nota che questa funzione tende a 1 ma non lo tocca mai, risultando perfetta per la gestione di coefficienti che spaziano tra 0 e 1.

Dopo questa operazione si procede con l'identificare tutti gli elementi strutturali che afferiscono ai punti coinvolti, attraverso l'intersezione contemplata nel modello della topologia. I dati così ottenuti sono inseriti nella tabella ElementiStrutturaliCoinvolti.

X	Y	Z	CodiceVano	Nome	FattoreUrgenza
4	0.4	0	0	Muro	0.547832
4	0.4	0	8	Muro	0.566518
4	5.5	0	0	Muro	0.547832
4.5	10	0	10	Balcone	0.573447
8	10	0	3	Muro	0.545376
10	5.5	0	11	Muro	0.546672
15	5.5	0	12	Muro	0.580934

A questo punto è facile ottenere il risultato finale attraverso un ulteriore tabella, Consigli. Essa contiene una stringa che rappresenta il consiglio (Es. Ristruttura la finestra nel vano 102 alle coordinate 2,3,4), l'Urgenza dell'intervento, calcolata attraverso la media delle urgenze che coinvolgono quell'elemento strutturale, e il CodiceVano.

Consiglio	Urgenza	CodiceVano	UrgenzaMediaVano
Ristruttura l'elemento di tipo Muro nel vano numero 12 alle coordinate 15, 5.5, 0	0.580934	12	0.580933690071106
Ristruttura l'elemento di tipo Balcone nel vano numero 10 alle coordinate 4.5, 10, 0	0.573447	10	0.5734469890594482
Ristruttura l'elemento di tipo Muro nel vano numero 8 alle coordinate 4, 0.4, 0	0.566518	8	0.5665183067321777
Ristruttura l'elemento di tipo Muro nel vano numero 0 alle coordinate 4, 0.4, 0	0.547832	0	0.5478317141532898
Ristruttura l'elemento di tipo Muro nel vano numero 0 alle coordinate 4, 5.5, 0	0.547832	0	0.5478317141532898
Ristruttura l'elemento di tipo Muro nel vano numero 11 alle coordinate 10, 5.5, 0	0.546672	11	0.5466716289520264
Ristruttura l'elemento di tipo Muro nel vano numero 3 alle coordinate 8, 10, 0	0.545376	3	0.5453761219978333

Questa tabella permette infine, attraverso una semplice funzione aggregata su partition, di ottenere la media dell'urgenza di intervento per ogni vano.

Punti di forza e debolezze

La funzione permette di individuare con estrema precisione ogni elemento strutturale da riparare o rinforzare all'interno dell'edificio. Le operazioni non sono molto pesanti poiché la struttura a tabelle temporanee permette di lavorare su un insieme di dati sempre più piccolo e aumentare notevolmente l'efficienza.

Tuttavia, l'elevata specificità dei rischi non ha permesso l'implementazione di un sistema dinamico e scalabile.

Infatti, si è supposto che i rischi fossero di sei tipi differenti, ma ovviamente sono molti di più e probabilmente nemmeno discernibili nettamente in modo qualitativo; inoltre avrebbero dovuto incidere su un'infinita gamma di sensori e danni differenti. Lo stesso discorso vale infatti per i tipi di danni e di sensori; il sistema si limita a valutare solo i più noti e diffusi, nel calcolo dell'urgenza.

8.2. Stima dei danni

Nel sistema Smart Buildings è importante avere il massimo controllo dello stato degli edifici, anche in relazione a plausibili eventi futuri.

Questa analytic si occupa proprio di ciò, verificare lo stato degli edifici in seguito ad un possibile terremoto futuro, in relazione ai danni già presenti sulla struttura e coerentemente con una situazione reale.

https://www.agi.it/cronaca/terremoto_richter_e_mercalli_misurazioni_a_confronto-1206347/news/2016-10-30/, https://www.latraccia.net/il-rischio-sismico-in-veneto/.

Spiegazione tecnica

Per realizzare questa funzione, è stato necessario utilizzare quasi integralmente l'operazione 5.2.6., infatti la tabella ausiliaria RankPunti, risulta un'ottima tabella di partenza per l'inserimento di nuovi attributi utili al risultato finale.

Prima di tutto è necessario controllare quali edifici siano nel raggio d'azione del terremoto (dato come input), attraverso un cursore che scorre tutti gli edifici. Grazie alla funzione precedentemente costruita, se la distanza è minore del raggio d'azione allora l'edificio viene inserito in una nuova tabella contenente il codice dell'edificio e la distanza dall'epicentro, necessaria per le computazioni successive.

Successivamente, attraverso una procedura, si esegue tutto il corpo principale dell'Analytic.

Innanzitutto, si dichiara un cursore per EdificiColpiti, utile a popolare una nuova tabella, relativa ai danni subiti dal terremoto e non solo. Interessante è il calcolo dei danni (fonte), che utilizza la formula per il calcolo della magnitudo per restituire un valore (magnitudo Richter), considerando separatamente i punti già danneggiati e quelli riparati/intatti, al fine di poter calcolare differentemente i danni causati dal terremoto; questo verrà percepito come di magnitudo maggiore (almeno dal punto di vista dei danni) se insisterà su un punto già danneggiato precedentemente.

Si completano i record da restituire con una breve descrizione dei danni subiti, per fare in modo che anche gli utenti che non conoscono la scala Richter possano capire la situazione della loro abitazione.

X	Y	Z	CodiceVano	DannoRichter	Stato
-1	-1	-1	2	4.43581	Danni lievi
-1	-1	-1	5	4.43581	Danni lievi
-1	-1	-1	7	4.43581	Danni lievi
-1	-1	-1	9	4.43581	Danni lievi
-1	-1	-1	11	4.43581	Danni lievi
2.2	0.3	0	8	4.94581	Danni lievi
3.2	0	1	0	4.26581	Danni lievi

Parte dell'output relativo ai danni sugli edifici precedenti

Punti di forza e debolezze

La funzione per il calcolo dei danni che scaturiscono da un terremoto è molto precisa, considerando una diminuzione della magnitudo del terremoto che diminuisce coerentemente con la distanza dall'epicentro, ma la funzione che associa i nuovi danni ai precedenti non lo è allo stesso modo, fornendo solamente una stima indicativa dello stato di edifici con componenti già danneggiati.

L'analytic risulta, comunque, efficiente perché si presume che sia molto raro avere degli edifici in stato di forte danneggiamento, per cui basta, in genere, considerare quasi solamente la gravità del terremoto.

9. Note di struttura e popolamento

9.1. Note sulla struttura

- Il modello della gravità delle calamità è ispirato alla scala Mercalli e alla TIS (Tsunami Intensity Scale).
- Il modello utilizzato per gestire le coordinate permette una facile implementazione in client di mappe (In particolare, è stato effettuato un test con un framework Javascript noto come <u>Bootleaf</u>).

9.2. Note sul popolamento

Unità di misura utilizzate:

 \circ Superficie: m^2 ,

 \circ Dimensione: m,

o Raggio: km,

 \circ Peso: kg.

Per i sensori:

 \circ Temperatura: $^{\circ}C$

o Umidità: %

o Precipitazioni: mm

O Accelerazione: $\frac{m}{s^2}$

o Giroscopio: $\frac{rad}{s}$

- Per popolare la tipologia dei lavoratori sono state utilizzate le professioni dell'Atlante Nazionale del Lavoro.
- Le aree geografiche sono costituite dalle <u>dieci province toscane</u>.
- Il rischio sismico delle aree è stato calcolato anche facendo riferimento alla mappa di pericolosità sismica del territorio nazionale.
- Il resto dei rischi è stato calcolato facendo riferimento alle caratteristiche tipiche del territorio.

- Quasi tutte le calamità aggiunte sono accadute realmente, con le stesse proprietà descritte. In particolare, i terremoti sono presi da questa fonte.
- I vani di uno dei piani degli edifici inseriti sono ispirati all'appartamento della sitcom "The Big Bang Theory".

Per il popolamento delle registrazioni è stato creato uno script in Python che sfrutta le librerie SQLAlchemy e Numpy; in particolare si occupa di inserire valori distribuiti condizionalmente (ovvero solo l'1% oltre la soglia) ma al contempo variabili in quanto casuali. Una distribuzione probabilistica dei valori casuali.

```
metadata = 80.Metalota()

metadata = 80.Metalota()

metadata = 100.Metalota()

metadata()

me
```

- Le registrazioni di accelerometri e giroscopi sono state ispirate da questa fonte.
- Lahar è il dio del bestiame nella mitologia sumera. Insieme alla sorella Ashnan, dea del grano, è creato in modo che gli dèi Anunnaki possano avere nutrimento e vestiti.