Введение

"Уравнения математической физики"

Скопинцев Артур Маркович

Окурсе

Основные главы:

- Уравнения 1го порядка: линейные и квазилинейные. Классификация уравнений 2го порядка
- Волновое уравнение: начальная и начально-краевая задача
- Метод Фурье
- Функции Грина, применение интегральных преобразований
- Обобщенные решения
- Гиперболические системы уравнений 1го порядка

Численное решение задач мат. физики

Численные методы являются основным средством для построения моделей интересующих нас процессов, но:

- Необходима верификация с аналитическими моделями
- Необходима валидация на эксперименте
- Построение высокоскоростной и высокоточной модели для мультифизичной задачи высокой размерности обычно очень сложно или вовсе невозможно

Аналитическое решение задач мат. физики

Единой теории для всех видов уравнений нет. Существуют методы для относительно простых линейных уравнений 1го и 2го порядков.

Основные методы:

- Сведение к более простому уравнению или системе уравнений (например, к ОДУ или к алгебраическому)
 - Метод характеристик: уравнения и системы 1го порядка, гиперболические уравнения
- Метод Фурье (разделение переменных): линейные уравнения с геометрической симметрией
- Интегральные преобразования
- Метод функций Грина
- Вариационные методы: сведение к задаче минимизации

3.1-3. Domain: $0 \le x \le a$, $0 \le y \le b$. First boundary value problem for the Laplace equation.

A rectangle is considered. Boundary conditions are prescribed:

$$w = f_1(y)$$
 at $x = 0$, $w = f_2(y)$ at $x = a$, $w = f_3(x)$ at $y = 0$, $w = f_4(x)$ at $y = b$.

Solution:

$$\begin{split} w(x,y) &= \sum_{n=1}^{\infty} A_n \sinh\left[\frac{n\pi}{b}(a-x)\right] \sin\left(\frac{n\pi}{b}y\right) + \sum_{n=1}^{\infty} B_n \sinh\left(\frac{n\pi}{b}x\right) \sin\left(\frac{n\pi}{b}y\right) \\ &+ \sum_{n=1}^{\infty} C_n \sin\left(\frac{n\pi}{a}x\right) \sinh\left[\frac{n\pi}{a}(b-y)\right] + \sum_{n=1}^{\infty} D_n \sin\left(\frac{n\pi}{a}x\right) \sinh\left(\frac{n\pi}{a}y\right), \end{split}$$

where the coefficients A_n , B_n , C_n , and D_n are expressed as

$$A_n = \frac{2}{\lambda_n} \int_0^b f_1(\xi) \sin\left(\frac{n\pi\xi}{b}\right) d\xi, \quad B_n = \frac{2}{\lambda_n} \int_0^b f_2(\xi) \sin\left(\frac{n\pi\xi}{b}\right) d\xi, \quad \lambda_n = b \sinh\left(\frac{n\pi a}{b}\right),$$

$$C_n = \frac{2}{\mu_n} \int_0^a f_3(\xi) \sin\left(\frac{n\pi\xi}{a}\right) d\xi, \quad D_n = \frac{2}{\mu_n} \int_0^a f_4(\xi) \sin\left(\frac{n\pi\xi}{a}\right) d\xi, \quad \mu_n = a \sinh\left(\frac{n\pi b}{a}\right).$$

Литература

- 1. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1977.
- 2. Фарлоу С. Уравнения с частными производными для научных работников и инженеров. М.: Мир, 1985.
- 3. Абашеева Н. Л., Михайлова Т. Ю. Семинары по методам математической физики. Новосибирск: НГУ, 2012.
- 4. Комеч А.И. Практическое решение уравнений математической физики. Москва: МГУ, 1993

Уравнения 1 порядка

"Уравнения математической физики"

Скопинцев Артур Маркович

Основные понятия

• Определение. Дифференциальным уравнением с частными производными (ДУЧП) называется уравнение

$$F(x; u; \frac{\partial u}{\partial x_1}; \dots, \frac{\partial u}{\partial x_n}; \frac{\partial^2 u}{\partial x_1^2}; \dots; \frac{\partial^m u}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}) = 0$$
 (1)

где F - произвольная функция многих переменных, $x=(x_1,x_2,...x_n)$ - действительный вектор из n-мерного евклидова пространства, $u(x)=u(x_1,x_2,...x_n)$ - неизвестная функция, $k_1+k_2+..+k_n=m$.

- Определение. Порядком ДУЧП называется порядок старшей входящей в него производной.
- Определение. Размерностью ДУЧП называется количество входящих в него независимых переменных.

- Определение. Функция $u(x)=u(x_1,x_2,...x_n)$, удовлетворяющая уравнению (1) в некоторой области точек $(x_1,x_2,...x_n)$ называется решением или интегралом ДУЧП.
- Определение. Общим решением (общим интегралом) ДУЧП (1) называется решение, зависящее от произвольной функции.

Количество произвольных функций в общем решении равно m, а количество переменных каждой функции равно (n-1). Чтобы выделить частное решение, надо задать дополнительные (начальные и граничные) условия. Уравнение вместе с условиями называется задачей.

• Определение. ДУЧП (1) называется линейным, если F- линейная функция от u и ее производных.

 $\hat{L}u=b$, где \hat{L} - линейный оператор

Для линейных ДУЧП сумма любых двух решений тоже является решением (принцип суперпозиции).

• Определение. ДУЧП (1) называется однородным, если произведение αu тоже является решением для любого α , отличного от нуля.

Линейное однородное ДУЧП имеет вид $\hat{L}u=0$ (b=0)

ДУЧП первого порядка.

Линейные однородные уравнения.

• Определение. Линейное однородное дифференциальное уравнение с частными производными первого порядка:

$$L_{v}[u] = v_{1}(x)\frac{\partial u}{\partial x_{1}} + \dots + v_{n}(x)\frac{\partial u}{\partial x_{n}} = 0$$
(2.1)

• Определение. Уравнением характеристик называется система ОДУ

$$\dot{x} = v(x)$$
 $\left\{ \frac{dx}{d\tau} = v(x) \text{ или } \frac{dx_1}{v_1(x)} = \frac{dx_2}{v_2(x)} = \dots = \frac{dx_n}{v_n(x)} \right\}$ (2.2)

где т- искусственно введенный параметр.

- Система (2.2) имеет *n-1* первых интегралов, не зависящих от τ : $\varphi_1(x) = const$, $\varphi_2(x) = const$, ..., $\varphi_{n-1}(x) = const$.
- Все множество первых интегралов называют полным интегралом.
- Кривые, на которых постоянны $\varphi_i(x)$, называются характеристиками.
- Общее решение (общий интеграл) (2.1)

$$u(x) = g(\varphi_1(x), \varphi_2(x), ..., \varphi_{n-1}(x)),$$
 (2.3)

где g — произвольная гладкая функция.

• Пример. Решить: yu_x - xu_y =0 Уравнение характеристик: $\frac{dx}{y} = \frac{dy}{-x} \longrightarrow x^2 + y^2 = C \longrightarrow \varphi_1(x,y) = x^2 + y^2$ Общее решение: $u(x,y) = g(\varphi_1(x,y)) = g(x^2 + y^2)$ Если g(z) = z, то $u(x,y) = g(\varphi_1(x,y)) = \varphi_1(x,y) = x^2 + y^2$ (параболоид вращения) Если $g(z) = z^{1/2}$, то $u(x,y) = g(\varphi_1(x,y)) = (x^2 + y^2)^{0.5}$ (конус)

Линейные неоднородные уравнения.

• Определение. Уравнение вида

$$L_{\nu}[u] = b(x) \tag{2.4}$$

называется линейным неоднородным дифференциальным уравнением с частными производными первого порядка.

В уравнении (2.4) фактически написано что если мы двигаемся по характеристикам x(t), то u(x(t)) меняется с известной скоростью b(x(t)), следовательно, система на характеристики дополняется соотношением:

$$\dot{x} = v(x)$$
 $\left\{ \frac{dx_1}{v_1(x)} = \frac{dx_2}{v_2(x)} = \dots = \frac{dx_n}{v_n(x)} = \frac{du}{b(x)} \right\}$ (2.5)

Общее решение:

$$u(x)=g(\varphi_{1}(x), \varphi_{2}(x), ..., \varphi_{n-1}(x))+\int_{\tau_{0}}^{\tau}b(x(t))dt$$

Задача Коши.

Задачей Коши для уравнения (2.1) называется задача о нахождении решения u(x) этого уравнения, удовлетворяющего начальному условию:

•
$$u \mid_{S} = f(x)$$
 - начальное условие (2.6)

• Определение. Говорят, что кривая трансверсальна поверхности S, если она пересекает поверхность под ненулевым углом.

• Теорема. Решение задачи Коши (2.1) и (2.6) в окрестности точки x_0 , принадлежащей S, существует и единственно, если проходящая через точку x_0 характеристика трансверсальна поверхности S.

Квазилинейные уравнения.

Определение. Уравнение вида

$$L_{v(u)}[u] = v_1(x, u) \frac{\partial u}{\partial x_1} + \dots + v_n(x, u) \frac{\partial u}{\partial x_n} = b(x, u)$$
 (2.7)

называется квазилинейным дифференциальным уравнением с частными производными первого порядка.

Уравнение характеристик:

$$\dot{x} = v(x, u) , \quad \dot{u} = b(x, u) \tag{2.8}$$

Общее решение:

$$G(\varphi_1(x, u), \varphi_2(x, u), ..., \varphi_n(x, u))=0$$

Характеристики в линейных и квазилинейных уравнениях

Теорема 1.

Любое решение уравнения (1) является первым интегралом системы (2). И обратно, любой первый интеграл системы (2) является решением уравнения (1).

Теорема 2.

Любое решение уравнения (1) имеет вид

$$u = F(\varphi_1, \dots, \varphi_{n-1}), \tag{3}$$

где F — произвольная гладкая функция от n — 1 переменной.

Теорема 3.

Задача Коши имеет единственное решение в окрестности любой нехарактеристической точки.

Теорема 1.

Если u_1 , u_2 — решения (1), то $v = u_1 - u_2$ является решением соответствующего однородного уравнения (3.1).

Отсюда

$$u_{\text{O.p.H.}} = u_{\text{O.p.o.}} + u_{\text{Ч.р.H.}},$$
 (2)

где $u_{\text{O.р.н.}}$ — общее решение неоднородного уравнения,

 $u_{\rm O.p.o.}$ — общее решение однородного уравнения,

 $u_{\rm {H.p.H.}}$ — частное решение неоднородного уравнения.

Классификация уравнений 2 порядка

"Уравнения математической физики"

Скопинцев Артур Маркович

Рассмотрим квазилинейное уравнение второго порядка

$$a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(x,y)u_{yy} + F(x,y,u,u_x,u_y) = 0, (1)$$

где a, b, c, F — заданные вещественные функции. Задача — с помощью невырожденного преобразования переменных

$$\xi = \xi(x, y),$$

$$\eta = \eta(x, y)$$

упростить уравнение (1).

Частные производные пересчитываются по формулам

$$\begin{split} u_{x} &= u_{\xi}\xi_{x} + u_{\eta}\eta_{x}, \\ u_{y} &= u_{\xi}\xi_{y} + u_{\eta}\eta_{y}, \\ u_{xx} &= u_{\xi\xi}\xi_{x}^{2} + 2u_{\xi\eta}\xi_{x}\eta_{x} + u_{\eta\eta}\eta_{x}^{2} + u_{\xi}\xi_{xx} + u_{\eta}\eta_{xx}, \\ u_{xy} &= u_{\xi\xi}\xi_{x}\xi_{y} + u_{\xi\eta}(\xi_{x}\eta_{y} + \xi_{y}\eta_{x}) + u_{\eta\eta}\eta_{x}\eta_{y} + u_{\xi}\xi_{xy} + u_{\eta\eta}\eta_{xy}, \\ u_{yy} &= u_{\xi\xi}\xi_{y}^{2} + 2u_{\xi\eta}\xi_{y}\eta_{y} + u_{\eta\eta}\eta_{y}^{2} + u_{\xi}\xi_{yy} + u_{\eta\eta}\eta_{yy}, \end{split}$$

В результате получаем уравнение

$$\tilde{a}u_{\xi\xi} + 2\tilde{b}u_{\xi\eta} + \tilde{c}u_{\eta\eta} + \tilde{F}(\xi, \eta, u, u_{\xi}, u_{\eta}) = 0, \tag{2}$$

где

$$\tilde{a} = a\xi_x^2 + 2b\xi_x\xi_y + c\xi_y^2,$$

 $\tilde{b} = a\xi_x\eta_x + b(\xi_x\eta_y + \xi_y\eta_x) + c\xi_y\eta_y,$
 $\tilde{c} = a\eta_x^2 + 2b\eta_x\eta_y + c\eta_y^2.$

Определение.

Уравнение

$$a\varphi_x^2 + 2b\varphi_x\varphi_y + c\varphi_y^2 = 0 (3)$$

называется характеристическим для уравнения (1). Кривая γ , заданная уравнением $\varphi(x,y) = \mathrm{const}$, называется характеристикой для уравнения (1), если вектор нормали (φ_x, φ_y) удовлетворяет характеристическому уравнению.

Характеристическому уравнению соответствует квадратичная форма

$$\Phi(\lambda,\mu) = a\lambda^2 + 2b\lambda\mu + c\mu^2$$

и квадратное уравнение (при $a \neq 0$, случай a = 0 рассматривается аналогично):

$$ak^2 + 2bk + c = 0. (4)$$

Дискриминант этого уравнения $D = 4(b^2 - ac)$

Определение.

Уравнение (1) называется уравнением

- *гиперболического типа*, если D > 0 (квадратичная форма Ф знакопеременна);
- <u>эллиптического типа</u>, если D < 0 (квадратичная форма Ф знакоопределена);
- параболического типа, если D = 0 (квадратичная форма Ф вырождена).

Заметим, что

$$\tilde{D}=4(\tilde{b}^2-\tilde{a}\tilde{c})=4(b^2-ac)(\xi_x\eta_y-\xi_y\eta_x)^2=D\bigg(\frac{D(\xi,\eta)}{D(x,y)}\bigg)^2.$$

Примеры.

Уравнение Лапласа

$$\Delta u = 0$$

является уравнением эллиптического типа.

Волновое уравнение

$$u_{tt} = a^2 \Delta u$$

является уравнением гиперболического типа.

Уравнение теплопроводности

$$u_t = a^2 \Delta u$$

является уравнением параболического типа.