ПРВИ КОЛОКВИЈУМ ИЗ ИНЖЕЊЕРСКИХ ОПТИМИЗАЦИОНИХ АЛГОРИТАМА

6. новембар 2020.

Напомене. Колоквијум траје 120 минута. Писати искључиво хемијском оловком. Дозвољена је употреба овога листа папира и рачунара. Коначне одговоре уписати у одговарајуће кућице, уцртати у дијаграме или заокружити понуђене одговоре. Кодове програма коришћених за решавање питања архивирати преко сајта предмета. Решења питања признају се само уколико садрже извођење, образложење или уколико постоји архивиран одговарајући код. Попунити податке о кандидату у следећој таблици. Колоквијум носи 20 поена.

	ПОДАЦИ О КАНДИДАТУ	ПИТАЊЕ			Укупно		
Индекс (година/број)	Презиме и име	1.	2.	3.	4.	5.	
/							
,							

Дат је скуп од 14 различитих кондензатора чије капацитивности у pF припадају следећем скупу $C_{\rm [pF]} = \{68, 82, 100, 120, 150, 180, 220, 270, 330, 390, 470, 560, 680, 820\}$. Кондензаторе је потребно поделити у групе тако да еквивалентна капацитивност редне везе свих кондензатора у групи буде што је могуће ближа капацитивности $C_{\rm t} = 50\,{\rm pF}$.

Еквивалентна капацитивност, $C_{\rm e}$, редне везе D кондензатора дата је изразом $\frac{1}{C_{\rm e}} = \sum_{k=1}^{D} \frac{1}{C_k}$. Сви кондензатори морају да

се искористе. Сваки кондензатор може да припада само једној групи. Број могућих група за поделу је од један (када сви кондензатори припадају истој групи) до четрнаест (када је сваки кондензатор у посебној групи). Редослед кондензатора у једној групи није битан. Такође, није битан редослед група у једној подели на групе.

Запис решења овог проблема је низ са ограниченим растом $\mathbf{x}=(x_1,x_2,...x_N)$, где је $x_1=0$, $0 \le x_{k+1} \le 1+\max(x_1,x_2,...x_k)$, $1 < k \le N$ и N=|C|=14. Вредност x_k означава да кондензатор чија се капацитивност налази на k-том месту у датом скупу C припада групи x_k+1 . На пример, решење чији је запис $\mathbf{x}=(0,0,1,1,1,2,2,2,3,3,4,4,5,6)$ означава да је прва група кондензатора $G_{1[pF]}=\{68,82\}$, друга група $G_{2[pF]}=\{100,120,150\}$, трећа група $G_{3[pF]}=\{180,220,270\}$, четврта група $G_{4[pF]}=\{330,390\}$, пета група $G_{6[pF]}=\{470,560\}$, шеста група $G_{6[pF]}=\{680\}$ и седма група $G_{7[pF]}=\{820\}$.

Оптимизациона функција рачуна се према формули $f(\mathbf{x}) = \max\left\{\left|C_{\mathrm{e}}(G_1) - C_{\mathrm{t}}\right|, \left|C_{\mathrm{e}}(G_2) - C_{\mathrm{t}}\right|, ... \left|C_{\mathrm{e}}(G_m) - C_{\mathrm{t}}\right|\right\}$ где је m укупан број група, $C_{\mathrm{e}}(G_p)$ је еквивалентна капацитивност редне везе свих кондензатора из групе G_p и p=1,2,...m. Тражи се минимум наведене оптимизационе функције.

The second of th
1. Израчунати потребан број позива оптимизационе функције за систематску (потпуну) претрагу оптимизационог простора наведеног проблема. Образложити начин на који је одређен потребан број позива.
2. Навести норму која одговара датој оптимизационој функцији. Образложити одговор.
3. Израчунати оптимизациону функцију, $f(\mathbf{x}_0)$, за решење $\mathbf{x}_0 = (0,0,1,1,2,1,2,0,3,3,4,0,1,4)$.

4. Написати код за систематску (потпуну) претрагу оптимизационог простора задатог проблема и помоћу тог кода одредити и записати (у простору испод) минималну вредност оптимизационе функције.
одредити и записати (у простору испод) минималну вредност оптимизационе функције.
5. Коришћењем претходно написаног програма одредити решење, или сва решења уколико их има више, задатог
оптимизационог проблема. Свако пронађено решење представити у облику $\mathbf{x} = (x_1, x_2, x_{14})$, као што је наведено у
поставци задатка.

ОДГОВОРИ НА ПИТАЊА СА ПРВОГ КОЛОКВИЈУМА ИЗ ИНЖЕЊЕРСКИХ ОПТИМИЗАЦИОНИХ АЛГОРИТАМА ОДРЖАНОГ 6. НОВЕМБРА 2020. ГОДИНЕ

Расподела поена по питањима је означена у заградама.

- **1.** Проблем се своди на претрагу по свим могућим партицијама скупа C који има N = |C| = 14 елемената. Стога је број позива оптимизационе функције потребан за систематску (потпуну) претрагу оптимизационог простора $B_{14} = 190\ 899\ 322$. (3)
- **2.** Изабраној оптимизационој функцији одговара норма L_{∞} , тј. максимум норма. (2)

3.
$$f(\mathbf{x}_0) = \frac{32090}{129} \text{ pF} \approx 248,7596899224806 \text{ pF}$$
. (3)

4.
$$f_{\text{min}} = \frac{2079}{1339} \text{ pF} \approx 1,552651170485561 \text{ pF}$$
. (4)

5. Постоје три решења (2) \mathbf{x}_{gk} , k = 1,2,3 задатог оптимизационог проблема за која је $f(\mathbf{x}_{gk}) = f_{\min}$. Та решења су:

```
(2) \mathbf{x}_{g1} = (0, 1, 2, 2, 3, 1, 3, 3, 3, 0, 0, 1, 3, 2),
```

$$(2)$$
 \mathbf{x}_{g2} = $(0,1,2,3,3,1,2,2,3,0,0,1,3,2)$ и

(2)
$$\mathbf{x}_{\alpha\beta} = (0, 1, 2, 3, 3, 1, 3, 2, 2, 0, 0, 1, 2, 2)$$
.

Тим решењима одговарају следеће групе кондензатора.

```
\mathbf{x}_{\mathrm{gl}} \rightarrow \ G_{\mathrm{1[pF]}} = \{68,\!390,\!470\} \; , \; G_{\mathrm{2[pF]}} = \{82,\!180,\!560\} \; , \; G_{\mathrm{3[pF]}} = \{100,\!120,\!820\} \; \; \text{if} \; \; G_{\mathrm{4[pF]}} = \{150,\!220,\!270,\!330,\!680\} \; .
```

$$\mathbf{x}_{\mathrm{g2}} \rightarrow \ G_{1[\mathrm{pF}]} = \{68,390,470\} \ , \ G_{2[\mathrm{pF}]} = \{82,180,560\} \ , \ G_{3[\mathrm{pF}]} = \{100,220,270,820\} \ \text{и} \ G_{4[\mathrm{pF}]} = \{120,150,330,680\} \ .$$

$$\mathbf{x}_{\mathrm{g3}} \rightarrow \ G_{1[\mathrm{pF}]} = \{68,\!390,\!470\} \; , \; G_{2[\mathrm{pF}]} = \{82,\!180,\!560\} \; , \; G_{3[\mathrm{pF}]} = \{100,\!270,\!330,\!680,\!820\} \; \; \text{if} \; \; G_{4[\mathrm{pF}]} = \{120,\!150,\!220\} \; . \\$$

- РЕЗУЛТАТИ КОЛОКВИЈУМА БИЋЕ ОБЈАВЉЕНИ ДО 9. НОВЕМБРА У 21 ЧАС, НА САЈТУ ПРЕДМЕТА.
- УВИД У ЗАДАТКЕ, У ЛАБОРАТОРИЈИ 64, ЈЕ 10. НОВЕМБРА ОД 11:15 ДО 12:00 ЧАСОВА.