Data and formulae

The following data and formulae will appear on page 2 in Papers 1, 2 and 4.

Data

acceleration of free fall	$g = 9.81 \mathrm{m s^{-2}}$
speed of light in free space	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
elementary charge	$e = 1.60 \times 10^{-19} C$
unified atomic mass unit	$1u = 1.66 \times 10^{-27} \text{kg}$
rest mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
rest mass of electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$ $(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{m F^{-1}})$
Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$
Stefan-Boltzmann constant	$\sigma = 5.67 \times 10^{-8} \mathrm{W m^{-2} K^{-4}}$

Formulae

uniformly accelerated motion
$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

$$v^2 = u^2 + 2as$$

 $\Delta p = \rho g \Delta h$ hydrostatic pressure

 $F = \rho g V$ upthrust

 $f_{o} = \frac{f_{s} V}{V \pm V_{s}}$ Doppler effect for sound waves

I = Anvqelectric current

 $R = R_1 + R_2 + \dots$ resistors in series

 $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$ resistors in parallel

 $\phi = -\frac{GM}{r}$

The following formulae will appear on page 3 in Paper 4.

gravitational potential

gravitational potential energy
$$E_{\rm P} = -\frac{GMm}{r}$$

pressure of an ideal gas
$$p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$$

simple harmonic motion
$$a = -\omega^2 x$$

velocity of particle in s.h.m.
$$v = v_0 \cos \omega t$$

$$v = \pm \omega \sqrt{(x_0^2 - x^2)}$$

electric potential
$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

electrical potential energy
$$E_{\rm P} = \frac{{\rm Q}q}{4\pi\varepsilon_0 r}$$

capacitors in series
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

capacitors in parallel
$$C = C_1 + C_2 + ...$$

discharge of a capacitor
$$x = x_0 e^{-\frac{t}{RC}}$$

Hall voltage
$$V_{\rm H} = \frac{BI}{ntq}$$

alternating current/voltage
$$x = x_0 \sin \omega t$$

radioactive decay
$$x = x_0 e^{-\lambda t}$$

decay constant
$$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$$

intensity reflection coefficient
$$\frac{I_{R}}{I_{0}} = \frac{(Z_{1} - Z_{2})^{2}}{(Z_{1} + Z_{2})^{2}}$$

Stefan–Boltzmann law
$$L = 4\pi\sigma r^2 T^4$$

Doppler redshift
$$\frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{V}{G}$$