Trabalho em Grupo (Opcional) -Campo Elétrico

Fundamentos de Física 3

Aluno 1: Pedro Henrique Passos Rocha Aluno 2: Catterina Vittorazzi Salvador Aluno 3: João Pedro Teixeira Pontual

1. Use o software Wolfram Mathematica para calcular a integral que resulta na expressão do campo

elétrico $\vec{E}(\rho, \theta, z)$, para uma linha de cargas infinita, com densidade linear constante λ_0 é:

(*Faça o gráfico do campo vetorial no plano $(\rho, \theta) *$)

```
VectorPlot[\{Ex[\rho, \theta], Ey[\rho, \theta]\}, \{\rho, 0.01, 10\}, \{\theta, 0, 2\pi\},
gráfico vetorial
 VectorScale → Small, VectorStyle → Arrowheads [0.015],
                   pequeno estilo de vetor
escala de vetor
 PlotLabel \rightarrow "Campo Vetorial de E(\rho, \theta) no Plano (\rho, \theta)"]
                                              I número E
etiqueta de gráfico
```


(*Defina a componente z do campo elétrico*) $Ez[\rho_{-}, \theta_{-}, z_{-}] = 0$; (*Para uma linha de carga infinita, o campo elétrico não depende de z*)

(*Faça o gráfico do campo vetorial no espaço 3D*)

VectorPlot3D[$\{Ex[\rho, \theta], Ey[\rho, \theta], Ez[\rho, \theta, z]\},$

gráfico vetorial 3D

 $\{\rho, 0.01, 10\}, \{\theta, 0, 2\pi\}, \{z, -10, 10\},$ VectorScale → Small, VectorStyle → Arrowheads [0.015], pequeno estilo de vetor ponta da seta

PlotLabel \rightarrow "Campo Vetorial de E(ρ , θ , z) no Espaço 3D"] Letiqueta de gráfico número E derivada Campo Vetorial de $E(\rho, \theta, z)$ no Espaço 3D

2. Use o software Wolfram Mathematica para calcular a integral na expressão do campo elétrico Ē, sobre um ponto z arbitrário do eixo do anel carregado (usualmente eixo z) com uma densidade de cargas linear constante :

E (z) =
$$\frac{1}{4 \pi \epsilon 0} \times \frac{Qz}{(z^2 + R^2)^{\frac{3}{2}}}$$

Onde Q é carga elétrica total do anel e R é o raio do anel . Use o software Wolfram Mathematica para fazer gráfico de:

- a) $E(z)^*z$;
- b) $E(z, R)^*(z, R)$

Dica : considere no gráfico $(4 \pi \epsilon 0)$ igual a 1, além de Q também igual a 1 (e R igual a 1 na letra (a)).

Integrate
$$\left[\frac{1}{4\pi * \varepsilon \theta} \times \frac{Q * z}{\left(z^2 + R^2\right)^{\frac{3}{2}}}, z\right]$$

Plot $\left[\frac{z}{\left(z^2 + 1\right)^{\frac{3}{2}}}, \{z, 1, 10\}\right]$

Plot 3D $\left[\frac{z}{\left(z^2 + R^2\right)^{\frac{3}{2}}}, \{z, 1, 10\}, \{R, 1, 10\}\right]$

Out[*]= $-\frac{Q}{4\pi\sqrt{R^2+z^2}} \in \Theta$

