Probability integral transformation

Let X have continuous cumulative distribution function $F_X(x)$ and define a random variable Y as $Y = F_X(X)$. Then Y is uniformly distributed on (0,1), that is, $P(Y \le y) = y$, 0 < y < 1.

Proof: We know,

$$F_Y(y) = P(Y \le y)$$
= $P(F_X(X) \le y)$
= $P(X \le F_X^{-1}(y))$
= $P(X \le F_X^{-1}(F_X(x)))$
= $P(X \le x)$
= y

* If F_X is monotonic, then F_X^{-1} is well defined by

$$F_X^{-1}(y) = x \Leftrightarrow F_X(x) = y.$$

Example: Consider X is a continuous random variable with PDF and CDF is defined as follows:

$$f_X(x, \alpha, \lambda) = \alpha \lambda x^{\alpha - 1} e^{-\lambda x^{\alpha}}, \quad x > 0, \quad \alpha, \lambda > 0,$$

 $F_X(x, \alpha, \lambda) = 1 - e^{-\lambda x^{\alpha}}.$

This is Weibull distribution with shape parameter α and scale parameter λ , respectively.

Let $u \sim U(0,1)$, then to generate the sample for x, we first define as

$$F_X(x) = u \implies 1 - e^{-\lambda x^{\alpha}} = u \implies x = \left[-\frac{1}{\lambda} \ln(1 - u) \right]^{1/\alpha}$$