

Cutting Boards

Chinese Version Russian Version

Alice gives Bob a board composed of $m \times n$ wooden squares and asks him to find the minimum cost of breaking the board back down into individual 1×1 pieces. To break the board down, Bob must make cuts along its horizontal and vertical lines.

To reduce the board to squares, x_{n-1} vertical cuts must be made at locations $x_1, x_2, \ldots, x_{n-2}, x_{n-1}$ and y_{m-1} horizontal cuts must be made at locations $y_1, y_2, \ldots, y_{m-2}, y_{m-1}$. Each cut along some x_i (or y_j) has a cost, c_{x_i} (or c_{y_i}). If a cut of cost c passes through n already-cut segments, the total cost of the cut is $n \times c$.

The cost of cutting the whole board down into 1×1 squares is the sum of the cost of each successive cut. Recall that the cost of a cut is multiplied by the number of already-cut segments it crosses through, so each cut is increasingly expensive.

Can you help Bob find the minimum cost?

Input Format

The first line contains a single integer, T, denoting the number of test cases. The subsequent 3T lines describe each test case in 3 lines.

For each test case, the first line has two positive space-separated integers, m and n, detailing the respective height (y) and width (x) of the board.

The second line has m-1 space-separated integers listing the cost, c_{y_j} , of cutting a segment of the board at each respective location from $y_1, y_2, \ldots, y_{m-2}, y_{m-1}$.

The third line has n-1 space-separated integers listing the cost, c_{x_i} , of cutting a segment of the board at each respective location from $x_1, x_2, \ldots, x_{n-2}, x_{n-1}$.

Note: If we were to superimpose the $m \times n$ board on a 2D graph, x_0 , x_n , y_0 , and y_n would all be edges of the board and thus not valid cut lines.

Constraints

$$egin{aligned} 1 \leq T \leq 20 \ 2 \leq m, n \leq 1000000 \ 0 \leq c_{x_i}, c_{y_i} \leq 10^9 \end{aligned}$$

Output Format

For each of the T test cases, find the minimum cost (MinimumCost) of cutting the board into 1×1 squares and print the value of MinimumCost % ($10^9 + 7$).

Sample Input

Input 00

```
1
2 2
2
1
```

Input 01

```
1
6 4
2 1 3 1 4
4 1 2
```

Sample Output

Output 00

4

Output 01

42

Explanation

Sample 00: We have a 2×2 board, with cut costs $c_{y_1}=2$ and $c_{x_1}=1$. Our first cut is horizontal at y_1 , because that is the line with the highest cost (2). Our second cut is vertical, at x_1 . Our first cut has a TotalCost of 2, because we are making a cut with cost $c_{y_1}=2$ across 1 segment (the uncut board). The second cut also has a TotalCost of 2, because we are making a cut of cost $c_{x_1}=1$ across 2 segments. Thus, our answer is $MinimumCost=((2\times 1)+(1\times 2))\%(10^9+7)=4$.

Sample 01: Our sequence of cuts is: y_5 , x_1 , y_3 , y_1 , x_3 , y_2 , y_4 and x_2 .

Cut 1: Horizontal with cost $c_{y_5}=4$ across 1 segment. $TotalCost=4\times 1=4$.

Cut 2: Vertical with cost $c_{x_1} = 4$ across 2 segments. $TotalCost = 4 \times 2 = 8$.

Cut 3: Horizontal with cost $c_{y_3}=3$ across 2 segments. TotalCost=3 imes2=6.

Cut 4: Horizontal with cost $c_{y_1}=2$ across 2 segments. TotalCost=2 imes2=4.

Cut 5: Vertical with cost $c_{x_3}=2$ across 4 segments. $TotalCost=2\times 4=8$.

Cut 6: Horizontal with cost $c_{y_2}=1$ across 3 segments. TotalCost=1 imes 3=3.

Cut 7: Horizontal with cost $c_{y_4}=1$ across 3 segments. $TotalCost=1\times 3=3$. Cut 8: Vertical with cost $c_{x_2}=1$ across 6 segments. $TotalCost=1\times 6=6$.

When we sum the TotalCast for all minimum cuts we get $4 \pm 8 \pm 6 \pm 4 \pm 8 \pm 3 \pm 3 \pm 6 = 4$

When we sum the TotalCost for all minimum cuts, we get 4+8+6+4+8+3+3+6=42. We then print the value of $42\%~(10^9+7)$.

Copyright © 2016 HackerRank All Rights Reserved

Submissions: 2431
Max Score: 60
Difficulty: Moderate

More

```
Current Buffer (saved locally, editable) \ \mathscr{V} \ \mathfrak{O}
                                                                                                Java 8
 1 import java.io.*;
 2 import java.util.*;
 3
 4 ▼ public class Solution {
 5
         public static void main(String[] args) {
 6 ₹
    /* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
 8
         }
 9
    }
                                                                                                                           Line: 1 Col: 1
                          ☐ Test against custom input
1 Upload Code as File
                                                                                                             Run Code
                                                                                                                           Submit Code
```

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Privacy Policy | Request a Feature