ABREGE DESCRIPTIF

Composition cosmétique contenant un polymère et une huile fluorée

L'invention se rapporte à une composition physiologiquement acceptable, notamment cosmétique, contenant au moins une phase grasse liquide comprenant au moins une huile fluorée, la phase grasse liquide étant structurée par au moins un polymère de masse moléculaire moyenne en poids inférieure à 1 000 000, notamment allant de 1000 à 30 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) des chaînes grasses pendantes et/ou terminales éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable. Cette composition se présente notamment sous forme d'un stick de rouge à lèvres, dont l'application conduit à un dépôt brillant, non collant, de bonne tenue dans le temps et sans transfert, remarquable.

25

30

35

La présente invention se rapporte à une composition de soin et/ou de traitement et/ou de maquillage de la peau, y compris du cuir chevelu, et/ou des lèvres des êtres humains, contenant une phase grasse liquide renfermant une huile fluorée, structurée par un polymère particulier. Cette composition se présente notamment sous forme d'un stick de maquillage et plus spécialement de rouge à lèvres, dont l'application conduit à un dépôt brillant, non collant et sans transfert, remarquable.

Dans les produits cosmétiques ou dermatologiques, il est courant de trouver une phase grasse liquide structurée, à savoir gélifiée et/ou rigidifiée; ceci est notamment le cas dans les compositions solides comme les déodorants, les baumes et les rouges à lèvres, les produits anti-cerne et les fonds de teint coulés. Cette structuration est obtenue à l'aide de cires et/ou de charges.

La structuration de la phase grasse liquide permet en particulier de limiter son exsudation des compositions solides notamment dans les régions chaudes et humides et, en plus, de limiter, après dépôt sur la peau ou les lèvres, la migration de cette phase dans les rides et ridules, ce qui est particulièrement recherché pour un rouge à lèvres. En effet, une migration importante de la phase grasse liquide, en particulier lorsqu'elle est chargée de matières colorantes, conduit à un effet inesthétique autour des lèvres et des yeux, accentuant particulièrement les rides et les ndules. Cette migration est souvent citée par les femmes comme un défaut majeur des rouges à lèvres classiques.

Malheureusement, Les cires et charges utilisées classiquement pour la structuration ont tendance à matifier la composition, ce qui n'est pas toujours souhaitable en particulier pour un rouge à lèvres ; en effet, les femmes sont toujours à la recherche d'un rouge à lèvres sous forme d'un bâton déposant un film de plus en plus brillant.

La brillance est liée pour l'essentiel à la nature de la phase grasse liquide. Ainsi, il est possible de diminuer le taux de cires et de charges de la composition pour augmenter la brillance d'un rouge à lèvres mais alors, la migration de la phase grasse liquide augmente. Autrement dit, les taux de cires et de charges nécessaires à la réalisation d'un stick de dureté convenable et n'exsudant pas à température ambiante sont un frein à la brillance du dépôt.

Le demandeur a trouvé que la perte de brillance d'un stick contenant des cires était liée à la structure cristalline anisotrope de ces composés.

De plus, la majorité des compositions de maquillage ou de soin, lorsqu'elles sont appliquées sur la peau, les cils ou les lèvres, présentent l'inconvénient de transférer, c'est-à-dire de se déposer au moins en partie, en laissant des traces,

sur certains supports avec lesquels elles peuvent être mises en contact, et notamment un verre, une tasse, une cigarette, un vêtement ou la peau. Il s'ensuit une persistance médiocre du film appliqué, nécessitant de renouveler régulièrement l'application de la composition notamment de fond de teint ou de rouge à lèvres. Or à ce jour, les utilisateurs souhaitent embellir leur visage, y compris les lèvres, et leur corps en y passant le moins de temps possible. Par ailleurs, l'apparition de ces traces inacceptables notamment sur les cols de chemisier peut écarter certaines femmes de l'utilisation de ce type de maquillage.

Depuis plusieurs années, les cosméticiens se sont donc intéressés aux compositions de rouge à lèvres et plus récemment aux compositions de fond de teint "sans transfert". Ainsi, la société Shiseido a envisagé dans sa demande de brevet JP-A-61-65809 des compositions de rouge à lèvres "sans transfert" contenant une résine siloxysilicate (à réseau tridimensionnel), une huile de silicone volatile à chaîne silicone cyclique et des charges pulvérulentes. De même la société Noevier à décrit dans le document JP-A-62-61911 des compositions de rouge à lèvres, d'eye-liner, de fonds de teint "sans transfert" comportant une ou plusieurs silicones volatiles associées à une ou plusieurs cires hydrocarbonées.

Ces compositions, bien que présentant des propriétés de "sans transfert" améliorées ont l'inconvénient de laisser sur les lèvres, après évaporation des huiles de silicone, un film qui devient inconfortable au cours du temps (sensation de dessèchement et de tiraillement), écartant un certain nombre de femmes de ce type de rouge à lèvres. En outre, le film déposé est mat.

Dans la demande EP-A-0749746 de la société L'oréal, il est décrit des compositions de rouges à lèvres contenant une dispersion de particules de polymère stabilisées en surface par un stabilisant polymérique. Ces compositions ont l'inconvénient de ne pouvoir contenir qu'une faible proportion d'huiles polaires connues pour apporter de la brillance au film déposé, dans des compositions classiques. En particulier, la présence d'une proportion importante d'huiles polaires (au moins 5 %) entraînent une floculation des particules et donc une instabilité dans le temps des compositions.

Il subsiste donc le besoin d'une composition ne présentant pas les inconvénients ci-dessus, et ayant notamment des propriétés de "sans transfert" remarquables, même lors d'une pression ou d'un frottement prononcé, de bonne tenue dans le temps, en particulier de la couleur, un aspect brillant, non collant et ne desséchant pas la peau ou les lèvres sur lesquelles elle est appliquée, aussi bien lors de l'application qu'au cours du temps. De plus, cette composition est stable dans le temps, facile à fabriquer et l'introduction de pigments se fait aisément.

25

30

35

40

L'invention a justement pour objet une composition de soin et/ou de maquillage et/ou de traitement de la peau et/ou des lèvres du visage et/ou des phanères permettant de remédier aux inconvénients mentionnés ci-dessus.

De façon surprenante, le demandeur a trouvé que l'utilisation de polymères particuliers associés à une huile fluorée permettait l'obtention d'un stick dont l'application sur les lèvres conduisait à un film ayant des propriétés cosmétiques remarquables. En particulier, le film est brillant, souple, confortable, "sans transfert" et non collant. En outre, le film présente une bonne homogénéité. De plus, la composition est stable dans le temps et n'exsude pas à température ambiante (25°C) et pression atmosphérique (760 mm de Hg).

Par ailleurs, lorsque l'huile fluorée est une huile fluorée siliconée, cette dernière présente une compatibilité élevée avec les huiles de silicones non fluorées : il est alors possible d'incorporer une quantité plus élevée d'huile de silicone dans la composition, favorisant encore la tenue du rouge à lèvres.

Par stable, on entend une composition qui n'exsude pas à température ambiante (25°C) et pression atmosphérique (760 mm de Hg) pendant au moins 2 moins, voire jusqu'à 9 mois.

L'invention s'applique non seulement aux produits de maquillage des lèvres, comme les rouges à lèvres, les brillants à lèvres et les crayons à lèvres mais aussi aux produits de soin et/ou de traitement de la peau, y compris du cuir chevelu, et des lèvres comme les produits de soin du visage, du corps ou des lèvres, notamment en stick de protection solaire, aux produits de maquillage de la peau, aussi bien du visage que du corps humain, comme les fonds de teints éventuellement coulés en stick ou en coupelle, les produits anti-cerne, les fards à paupières et à joues, les produits de tatouage éphémère, aux produits d'hygiène corporelle comme les déodorants notamment en stick, les shampooings et aprèsshampooings et aux produits de maquillage des yeux comme les eye-liners, les crayons et les mascaras plus spécialement sous forme de pain, ainsi qu'aux produits de soin et de maquillage des phanères, en particulier des fibres kératiniques comme les cheveux et les sourcils.

De façon plus précise, l'invention a pour objet une composition structurée contenant au moins une phase grasse liquide comprenant au moins une huile fluorée, la phase grasse liquide étant structurée par au moins un polymère structurant de masse moléculaire moyenne en poids inférieure ou égale à 1 000 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) éventuellement au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de

35

40

30

15

20

carbone et étant liées à ces motifs hydrocarbonés, la phase grasse liquide et le polymère structurant formant un milieu physiologiquement acceptable.

Avantageusement, la composition de l'invention est exempte de résine de silicone à motifs siloxysilicate ou de silice triméthylée, afin de préserver les propriétés de confort de la composition.

La composition de l'invention peut se présenter sous forme de pâte, de solide, de crème plus ou moins visqueuse. Elle peut être une émulsion simple huile-dans-eau ou eau-dans-huile, une émulsion multiple, un gel anhydre rigide ou souple. En particulier, la phase grasse liquide de la composition est une phase continue ou externe. La composition se présente notamment sous forme coulée en stick ou en coupelle et plus spécialement sous forme d'un gel rigide anhydre notamment de stick anhydre. En particulier, elle se présente sous forme d'un gel rigide translucide ou transparent (en l'absence de pigments), la phase grasse liquide formant la phase continue.

Par "phase grasse liquide", au sens de l'invention, on entend une phase grasse liquide à température ambiante (25°C) et pression atmosphérique (760 mm de Hg), composée d'un ou plusieurs corps gras liquides à température ambiante, appelés aussi huiles, généralement compatibles entre eux.

La structuration de la phase grasse est modulable selon la nature du polymère structurant à hétéroatome utilisé, et peut être telle que l'on obtienne une structure rigide sous forme d'un bâton ou d'un stick. Ces bâtons lorsqu'ils sont colorés permettent, après application, d'obtenir un dépôt brillant, homogène en couleur, ne migrant pas, ne transférant pas en particulier sur un support appliqué au contact du film, après évaporation du solvant volatil et de bonne tenue notamment de la couleur dans le temps.

De préférence, la composition de l'invention est une composition pour les lèvres et mieux une composition de rouge à lèvres, notamment en stick ou en bâton.

Le polymère structurant de la composition de l'invention est un solide non déformable à température ambiante (25°C) et pression atmosphérique (760 mm de Hg). Il est insoluble dans l'eau ou phase aqueuse ; il est capable de structurer la composition sans l'opacifier. En particulier, le polymère structurant ne cristallise pas et la structuration de la phase grasse liquide est due à des interactions hydrogène entre deux molécules de polymère et/ou entre les molécules du polymère et les molécules de la phase grasse liquide. De préférence, le polymère structurant n'a pas de groupe ionique.

30

35

40

25

10

15

Par "chaînes fonctionnalisées" au sens de l'invention, on entend une chaîne alkyle comportant un ou plusieurs groupes fonctionnels ou réactifs notamment choisis parmi les groupes amides, hydroxyle, éther, oxyalkylène ou polyoxyalkylène, halogène, dont les groupes fluorés ou perfluorés, ester, siloxane, polysiloxane. En outre, les atomes d'hydrogène d'une ou plusieurs chaînes grasses peuvent être substituées au moins partiellement par des atomes de fluor.

Selon l'invention, ces chaînes peuvent être liées directement au squelette polymérique ou via une fonction ester ou un groupement perfluoré.

Par "polymère", on entend au sens de l'invention un composé ayant au moins 2 motifs de répétition, et de préférence au moins 3 motifs de répétition, qui sont identiques.

15

20

25

30

35

Par "motifs de répétition hydrocarbonés", on entend au sens de l'invention un motif comportant de 2 à 80 atomes de carbone, et de préférence de 2 à 60 atomes de carbone, portant des atomes d'hydrogène et éventuellement des atomes d'oxygène, qui peut être linéaire, ramifié ou cyclique, saturé ou insaturé. Ces motifs comprennent, en outre, chacun de un à plusieurs hétéroatomes avantageusement non pendants et se trouvant dans le squelette polymérique. Ces hétéroatomes sont choisis parmi les atomes d'azote, de soufre, de phosphore et leurs associations, associés éventuellement à un ou plusieurs atomes d'oxygène. De préférence, les motifs comportent au moins un atome d'azote en particulier non pendant. Ces motifs comportent, en outre, avantageusement, un groupe carbonyle.

Les motifs à hétéroatome sont en particulier des motifs amide formant un squelette du type polyamide, des motifs carbamate et/ou urée formant un squelette polyuréthane, polyurée et/ou polyurée-uréthane. De préférence, ces motifs sont des motifs amide. Avantageusement, les chaînes pendantes sont liées directement à l'un au moins des hétéroatomes du squelette polymérique. Selon un mode de réalisation, le premier polymère comprend un squelette polyamide. En outre, les chaînes terminales sont liées au squelette polymérique, via un groupe de liaison qui peut être un groupe éther, amine, urée, uréthane, thioether, thioester, thiourée, thiouréthane ou une liaison simple.

Entre, les motifs hydrocarbonés, le polymère peut comprendre des motifs siliconés ou des motifs oxyalkylénés.

40

En outre, le polymère de la composition de l'invention comprend avantageusement un nombre total de chaînes grasses qui représente de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses, et mieux de 50 à 95 %. La nature et la proportion des motifs à hétéroatome est fonction de la nature de la phase grasse liquide et est en particulier similaire à la nature (polaire ou non) de la phase grasse liquide. Ainsi, plus les motifs à hétéroatome sont polaires et en proportion élevée dans le polymère, ce qui correspond à la présence de plusieurs hétéroatomes, plus le polymère a de l'affinité avec les huiles polaires. En revanche, plus les motifs à hétéroatome sont peu polaires voire apolaires ou en proportion faible, plus le polymère a de l'affinité avec les huiles apolaires.

L'invention a aussi pour objet une composition structurée contenant au moins une phase grasse liquide comprenant au moins une huile fluorée, la phase grasse liquide étant structurée par au moins un polyamide de masse moléculaire moyenne en poids inférieure à 1 000 000, comportant a) un squelette polymérique, ayant des motifs répétitifs amide, et b) éventuellement au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs amide, la phase grasse liquide et le polyamide formant un milieu physiologiquement acceptable.

De préférence, les chaînes grasses pendantes sont liées à l'un au moins des atomes d'azote des motifs amide du polymère.

En particulier, les chaînes grasses de ce polyamide représentent de 40 à 98 % du nombre total des motifs amide et des chaînes grasses, et mieux de 50 à 95 %.

Avantageusement, le polymère structurant et en particulier le polyamide, de la composition selon l'invention présente une masse moléculaire moyenne en poids inférieure à 1 000 000 et mieux à 500 000. De préférence, cette masse moléculaire est inférieure ou égale à 100 000 (notamment allant de 1000 à 100 000), en particulier inférieure ou égale à 50 000 (notamment allant de 1000 à 50 000), et plus particulièrement allant de 1000 à 30 000, de préférence de 2000 à 20 000, et mieux de 2000 à 10 000.

Comme polymères structurant préférés utilisables dans l'invention, on peut citer les polyamides ramifiés par des chaînes grasses pendantes et/ou des chaînes grasses terminales contenant de 6 à 120 atomes de carbone, en particulier ayant de 12 à 120 atomes de carbone et notamment de 12 à 68 atomes de carbone, les chaînes grasses terminales étant liées au squelette polyamide par des groupes de liaison notamment ester.

Ces polymères sont de préférence des polymères résultant d'une polycondensation ntre un diacide carboxylique à au moins 32 atomes de carbone (ayant notamment de 32 à 44 atomes de carbone) avec une diamine ayant au moins 2 atomes de carbone (notamment de 2 à 36 atomes de carbone).

40

35

15

20

25

35

40

45

Le diacide est de préférence un dimère d'acide gras ayant au moins 16 atomes de carbone comme l'acide oléique, linoléique ou linolénique. La diamine est de préférence l'éthylène diamine, l'hexylène diamine, l'hexaméthylène diamine. Pour les polymères comportant un ou 2 groupements d'acide carboxylique terminaux, il est avantageux de les estérifier par un monoalcool ayant au moins 4 atomes de carbone, de préférence de 10 à 36 atomes de carbone et mieux de 12 à 24 et encore mieux de 16 à 24, par exemple 18 atomes de carbone.

Ces polymères sont plus spécialement ceux décrits dans le document US-A-5783657 de la société Union Camp. Chacun de ces polymères satisfait notamment à la formule (I) suivante :

dans laquelle n désigne un nombre entier de motifs amide tel que le nombre de groupes ester représente de 10 % à 50 % du nombre total des groupes ester et amide ; R^1 est à chaque occurrence indépendamment un groupe alkyle ou alcényle ayant au moins 4 atomes de carbone par exemple de 4 à 24 atornes de carbone; R^2 représente à chaque occurrence indépendamment un groupe hydrocarboné en C_4 à C_{42} à condition que 50 % des groupes R^2 représentent un groupe hydrocarboné en C_{30} à C_{42} ; R^3 représente à chaque occurrence indépendamment un groupe organique pourvu d'au moins 2 atomes de carbone, d'atomes d'hydrogène et optionnellement d'un ou plusieurs atomes d'oxygène ou d'azote ; et R^4 représente à chaque occurrence indépendamment un atome d'hydrogène, un groupe alkyle en C_1 à C_{10} ou une liaison directe à R^3 ou à un autre R^4 de sorte que l'atome d'azote auquel sont liés à la fois R^3 et R^4 fasse partie d'une structure hétérocyclique définie par R^4 -N- R^3 , avec au moins 50 % des R^4 représentant un atome d'hydrogène.

En particulier, les groupes ester de la formule (I), qui font partie des chaînes grasses terminales et/ou pendantes au sens de l'invention, représentent de 15 à 40 % du nombre total des groupes ester et amide et mieux de 20 à 35 %. De plus, n représente avantageusement un nombre entier allant de 1 à 10 par exemple, de 1 à 5 et mieux supérieur à 2. De préférence, R¹ est un groupe alkyle en C₁2 à C₂2 et de préférence en C₁6 à C₂2. Avantageusement, R² peut être un groupe hydrocarboné (alkylène) en C₁0 à C₄2. De préférence, 50 % au moins et mieux 75 % des R² sont des groupes ayant de 30 à 42 atomes de carbone. Les autres R² sont des groupes hydrogénés en C₄ à C₁9 et même en C₄ à C₁2. De préférence, R³ représente un groupe hydrocarboné en C₂ à C₃6 ou un groupe polyoxyalkyléné et R⁴ représente un atome d'hydrogène. De préférence, R³ représente un groupe hydrocarboné en C₂ à C₁2.

Les groupes hydrocarbonés peuvent être des groupes linéaires, cycliques ou ramifiés, saturés ou insaturés. Par ailleurs, les groupes alkyle et alkényle peuvent être des groupes linéaires ou ramifiés.

Selon l'invention, la structuration de la phase grasse liquide est obtenue à l'aide d'un ou plusieurs polymères de formule (I). En général, les polymères de formule (I) se présentent sous forme de mélanges de polymères, ces mélanges pouvant en outre contenir un produit de synthèse correspondant à un composé de formule I) où n vaut 0, c'est-à-dire un diester.

A titre d'exemple de polymères structurant utilisables dans la composition selon l'invention, on peut citer les produits commerciaux fabriqués ou vendus par la société Arizona Chemical sous les noms Uniclear 80 et Uniclear 100. Ils sont vendus respectivement sous forme de gel à 80 % (en matière active) dans une huile minérale et à 100 % (en matière active). Ils ont un point de ramollissement de 88 à 94°C. Ces produits commerciaux sont un mélange de copolymère d'un diacide en C₃₆ condensé sur l'éthylène diamine, de masse moléculaire moyenne d'environ 6000. Les groupes ester terminaux résultent de l'estérification des terminaisons d'acide restantes par l'alcool cétylique, stéarylique ou leurs mélanges (appelé aussi alcool cétylstéarylique).

Comme polymère structurant utilisable dans l'invention, on peut encore citer les résines polyamides résultant de la condensation d'un acide di-carboxylique aliphatique et d'un diamine (incluant les composés ayant plus de 2 groupes carbonyle et 2 groupes amine), les groupes carbonyle et amine de motifs unitaires adjacents étant condensés par une liaison amide. Ces résines polyamides sont notamment celles commercialisées sous la marque Versamid® par les sociétés General Mills, Inc. et Henkel Corp. (Versamid 930, 744 ou 1655) ou par la société Olin Mathieson Chemical Corp., sous la marque Onamid® notamment Onamid S ou C. Ces résines ont une masse moléculaire moyenne en poids allant de 6000 à 9000. Pour plus d'information sur ces polyamides, on peut se référer aux documents US-A-3645705 et US-A-3148125. Plus spécialement, on utilise les Versamid® 930 ou 744.

On peut aussi utiles les polyamides fabriqués ou vendus par la société Arizona Chemical sous les références Uni-Rez® (2658, 2931, 2970, 2621, 2613, 2624, 2665, 1554, 2623, 2662) et le produit vendu sous la référence Macromelt 6212 de la société Henkel. Pour plus d'information sur ces polyamides, on peut se référer au document US-A-5500209.

Il est aussi possible d'utiliser des résines de polyamides issues de légumes comme celles décrites dans les brevets US-A-5783657 et US-A-5998570.

35

40

5

10

15

20

25

15

25

30

35

Les polymères structurant de la composition de l'invention ont avantageusement une température de ramollissement supérieure à 65°C et mieux supérieure à 70°C et pouvant aller jusqu'à 190°C. De préférence, il présente une température de ramollissement inférieur à 150°C, par exemple allant de 70 à 140°C et mieux allant de 80 à 130°C et mieux encore de 80 à 105°C. Ces polymères sont en particulier des polymères non cireux. Le bas point de fusion des polymères structurant de l'invention facilite leur mise en œuvre et limite la dégradation de la phase grasse liquide, contrairement à des polymères ou composés de point de ramollissement plus élevé.

De préférence, les polymères de la composition selon l'invention sont ceux répondant à la formule (I). Ces polymères présentent du fait de leur (s) chaîne (s) grasse (s), une bonne solubilité dans les huiles et donc conduisent à des compositions macroscopiquement homogènes même avec un taux élevé (au moins 25%) de polymère, contrairement à des polymères exempts de chaîne grasse.

Dans toute la description, les valeurs de température de ramollissement ou de fusion peuvent être déterminées par la méthode D.S.C ("Differential Scanning Calorimetry"); la température de ramollissement ou de fusion correspond alors au pic de fusion et la montée en température est de 5 ou 10°C/min.

On entend par huile fluorée tout corps gras liquide à température ambiante et pression atmosphérique contenant au moins un atome de fluor. L'huile fluorée peut notamment être une huile fluorée volatile. Elle a de préférence une densité supérieure à environ 1, par exemple supérieure à environ 1,1, notamment supérieure à environ 1,2. Elle peut avoir une pression de vapeur saturante, à 25°C, au moins égale à 50 Pa, par exemple supérieure à 2000 Pa, de préférence supérieure à 4000 Pa.

Avantageusement, l'huile fluorée peut avoir un point d'ébullition (à pression ambiante soit 760 mm de Hg ou 10⁵ Pa) être compris entre 20 et 75°C et de préférence entre 25 et 65°C.

Comme huile fluorée, on peut utiliser dans l'invention :

i) les composés fluorosiliconés de formule (II) :

dans laquelle:

5

10

15

- R représente un groupement divalent alkyle linéaire ou ramifié, ayant 1 à 6 atomes de carbone, de préférence un groupement divalent, méthyle, éthyle, propyle ou butyle,
- Rf représente un radical fluoroalkyle, notamment un radical perfluoroalkyle, ayant 1 à 9 atomes de carbone, de préférence 1 à 4 atomes de carbone en particulier de formule –(CF₂)_q-CF₃ avec q entier allant de 0 à 8 et mieux de 0 à 4,
- R₁ représente, indépendamment l'un de l'autre, un radical alkyle en C1-C20, un radical hydroxyle, un radical phényle,
- m est choisi de 0 à 150, de préférence de 20 à 100, et
- n est choisi de 1 à 300, de préférence de 1 à 100.

De préférence, les groupements R₁ sont identiques et représentent un radical méthyle.

Dans un mode de réalisation particulièrement préféré, le composé fluorosiliconé utilisé selon l'invention a la formule suivante (III) :

20

avec

- R représentant un groupement divalent, méthyle, éthyle, propyle ou butyle
- m étant choisi de 0 à 80, et
- n étant choisi de 1 à 30.

25

De tels composés sont notamment ceux commercialisés par la société Shin Etsu sous les dénominations 'X22-819', 'X22-820', 'X22-821' et 'X22-822' ou encore 'FL-100'.

Carana rocanion

ľIJ

20

25

ii) les composés perfluorocycloalkyles de formule (IV) suivante :

$$(CF_2)_n$$
 $\left[CF-(CF_2)_p-F\right]_m$ (IV)

dans laquelle n est égal à 4 ou 5, m est égal à 1 ou 2, et p est égal à 1, 2 ou 3; sous réserve que lorsque m = 2, les groupements ne sont pas nécessairement en alpha l'un par rapport à l'autre.

Parmi les composés de formule (IV), on peut notamment citer le perfluorométhylcyclopentane et le perfluorodiméthylcyclohexane, vendus respectivement sous les dénominations de "FLUTEC PC1[®]" de pression de vapeur de 368 mbar et "FLUTEC PC3[®]" par la Société BNFL FLUOROCHEMICALS Ltd, ainsi que le perfluorodiméthylcyclobutane ;

iii) les composés fluoroalkyles ou hétérofluoroalkyles répondant à la formule (V) suivante :

$$CH_3$$
- $(CH_2)_n$ - $[Z]_t$ - X - CF_3 (V)

dans laquelle t est 0 ou 1; n est 0, 1, 2 ou 3; X est un radical perfluoroalkyle divalent, linéaire ou ramifié, ayant de 2 à 5 atomes de carbone, et Z représente O, S, ou NR, R étant hydrogène, un radical – $(CH_2)_n$ - CH_3 ou – $(CF_2)_m$ - CF_3 , m étant 2, 3, 4 ou 5.

Parmi les composés fluoroalkyles ou hétérofluoroalkyles de formule (V) on peut notamment citer les perfluropolyéthers tels que le méthoxynonafluorobutane vendu sous la dénomination de "MSX 4518®", "HFE-7100®" par la Société 3M et l'éthoxynonafluorobutane vendu sous la dénomination de "HFE-7200®" par la Société 3M.

iv) les composés perfluoroalcanes répondant à la formule (VI) suivante : CF₃-(CF₂)_n-CF₃ (VI)

30 dans iaquelle n est 2 à 6.

Parmi les composés perfluoroalcanes de formule (VI) on peut notamment citer le dodécafluoropentane et le tétradécafluorodexane.

v) les dérivés de perfluomorpholine répondant à la formule (VII) suivante :

35

dans laquelle R représente un radical perfluoroalkyle en C1-C4.

20

25

30

35

Parmi les dérivés de perfluoromorpholine de formule (VII), on peut notamment citer la 4-trifluorométhyl perfluoromorpholine et la 4-pentafluoroéthyl perfluoromorpholine.

vi) les perfluoropolyéthers répondant aux formules (VIII) et (IX) suivantes :

10 dans laquelle n est 7 à 30 ; et

$$CF_3$$
 CF_3
 CF_3
 CF_2
 CF_2
 CF_2
 CF_3
 CF_3

le rapport m/p étant de 20 à 40, et le poids moléculaire allant de 500 à 20000. Parmi ces perfluoropolyéthers de formules (VIII) et (IX), on peut respectivement citer celui vendu sous la dénomination de "Fluortress LM36[®]" par la Société DUPONT, et ceux vendus sous la dénomination générale de "FOMBLIN" par la Société MONTEFLUOS par exemple FOMBLIN HC R®.

On peut également utiliser les perfluoropolyéthers cités dans la demande EP-A-641194 dont le contenu est incorporé, à titre de référence, dans la présente demande.

vii) les composés fluoro-siliconés répondant à la formule (X) suivante :

$$CF_{3} - (CF_{2})_{\overline{k}} - (CH_{2})_{\overline{i}} - O - N - (CH_{2})_{\overline{p}} - Si - O - Si(R_{2})_{\overline{j}}_{2}$$
 (X)

dans laquelle k est 1 à 17, l est 1 à 18, p est 1 à 6, et R₁ représente un atome d'hydrogène ou un radical alkyle en C₁-C₆; R₂ représente un radical alkyle en C₁-C₆ ou le radical -OSi(R₃)₃, et R₃ représente un radical alkyle en C₁-C₄.

Parmi les composés répondant à la formule (IV), on peut notamment citer :

- le N-(-2-F-octyl-éthyloxycarbonyl)-3-aminopropyl bis(triméthylsiloxy)méthylsilane,
- le N-(-2-F-hexyl-éthyloxycarbonyl)-3-aminopropyl bis(triméthylsiloxy)méthylsilane,
- le N-(-2-F-butyl-éthyloxycarbonyl)-3-aminopropyl bis(triméthylsiloxy)méthylsilane,

- le N-(-2-F-octyl-éthyloxycarbonyl)-3-aminopropyl tris(triméthylsiloxy)silane,
- le N-(-2-F-hexyl-éthyloxycarbonyl)-3-aminopropyl tris(triméthylsiloxy)silane, et
- le N-(-2-F-butyl-éthyloxycarbonyl)-3-aminopropyl tris(triméthylsiloxy)silane.
- viii) les alkylsilicones fluorées répondant à l'une des formules (XI) et/ou (XII) 5 suivantes:

$$R_{2} = S_{1} = O = \begin{bmatrix} R'_{1} \\ S_{1} \\ C_{1} \end{bmatrix} = \begin{bmatrix} R'_{1} \\ S_{1} \\ C_{2} \\ R_{5} \end{bmatrix} = \begin{bmatrix} R'_{1} \\ S_{1} \\ R_{3} \\ R_{1} \end{bmatrix} = \begin{bmatrix} R'_{1} \\ S_{1} \\ R_{1} \end{bmatrix} = \begin{bmatrix} R_{1} \\ R_{1} \\ R_{1} \end{bmatrix}$$
(XI)

dans laquelle R₁ et R'₁ représentent indépendamment un radical alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone ou un radical phényle,

R₂ représente R₁, -OH, ou -(CH₂)_f-R_F, f étant un nombre entier allant de 0 à 10, 10 R3 représente un radical alkyle, linéaire ou ramifié, ayant de 6 à 22 atomes de carbone,

RF représente un radical de formule -(CF2)q-CF3, q étant un nombre entier allant

m et n représentent un nombre entier allant de 1 à 50, et 15 p représente un nombre entier allant de 0 à 2000,

$$R'_{F}(CH_{2})_{2} = Si - O - Si - O - Si - R_{4}$$

$$R'_{4} = R_{4} - R_{5} - R_{5}$$

$$R'_{4} = R_{4} - R_{5}$$

$$R'_{5} = R_{5}$$

dans laquelle:

30

R4 représente un radical alkyle, linéaire ou ramiflé, ayant de 1 à 6 atomes de carbone, ou un radical phényle, 20

R5 représente un radical alkyle, linéaire ou ramifié, ayant de 6 à 22 atomes de carbone, ou un radical phényle,

R'F représente un radical de formule -(CF2)s-CF3, s étant un nombre entier allant de 0 à 15, et

t représente un nombre entier allant de 1 à 2000. 25

> Selon un mode de réalisation particulier des compositions cosmétiques selon l'invention l'alkylsilicone fluorée répond à la formule (XI) dans laquelle :

R₁, R'₁ et R₂ représentent le radical méthyle,

R₃ représente un radical alkyle linéaire ayant de 6 à 22 atomes de carbone,

m t n sont des nombres entiers allant de 1 à 20, et

q st un nombre entier allant de 0 à 3 (exemple 1, 2 ou 3).

25

30

40

Selon un autre mode de réalisation des compositions selon l'invention l'alkylsilicone fluorée répond à la formule (XII) dans laquelle : R_{Δ} représente le radical méthyle,

- R₅ représente un radical alkyle linéaire, ayant de 6 à 22 atomes de carbone, et s représente un nombre entier allant de 1 à 13 (exemple 1, 2 ou 3). Les alkylsilicones fluorées telles que définies ci-dessus sont des composés connus qui ont été décrits notamment dans le brevet US-5,473,038.
- On peut également utiliser comme huiles fluorées les fluorohydrocarbures cités dans la demande EP-A-609132 dont le contenu est incorporé à titre de référence dans la présente demande.

De préférence, l'huile fluorée est une silicone fluorée. Cette huile est notamment un composé de formule II ou XI et mieux de formule III ou de formule XI avec $R_1 = R_1 = R_2 = méthyle$, m et n sont des nombres de 1 à 20 et q un nombre de 0 à 3 ou encore un perfluropolyéther de formule (V).

L'huile fluorée peut être présente dans la composition selon l'invention en une teneur allant de 0,1 % à 50 % en poids, par rapport au poids total de la composition, de préférence allant de 1 % à 30 % en poids, et mieux allant de 3 % à 15 % en poids.

Avantageusement, le polymère peut être associé à au moins un composé amphiphile liquide et non volatile à température ambiante, de valeur de balance hydrophile/lipophile (HLB) inférieure à 12 et notamment allant de 1 à 8 et de préférence de 1 à 5. Selon l'invention, on peut utiliser un ou plusieurs composés amphiphiles. Ces composés amphiphiles ont pour but de renforcer les propriétés structurantes du polymère à hétéroatome, de faciliter la mise en œuvre du polymère et d'améliorer la capacité à déposer du stick.

Selon l'invention, la composition peut avoir une dureté allant de 20 à 2 000 gf en particulier de 20 à 1 500 gf et mieux de 20 à 900 gf, par exemple de 50 à 600 gf ou encore mieux de 150 à 450 gf. Cette dureté peut être mesurée selon une méthode de pénétration d'une sonde dans ladite composition et en particulier à l'aide d'un analyseur de texture (par exempleTA-XT2i de chez Rhéo) équipé d'un cylindre en ébonite de 5 mm de haut et 8 mm de diamètre. La mesure de dureté est effectuée à 20°C au centre de 5 échantillons de la dite composition. Le cylindre est introduit dans chaque échantillon de composition à une pré-vitesse de 2mm/s, le déplacement total étant de 1 mm. La valeur relevée de la dureté est celle du pic maximum. L'erreur de mesure est de +/- 50 gf.

30

La dureté peut aussi être mesurée par la méthode dite du fil à couper le beurre, qui consiste à couper un bâton de rouge à lèvres de 8,1 mm et à mesurer la dureté à 20°C, au moyen d'un dynamomètre DFGHS 2 de la société Indelco-Chatillon se déplaçant à une vitesse de 100mm/minute. Elle est exprimée comme la force de cisaillement (exprimée en gramme force) nécessaire pour couper un stick dans ces conditions. Selon cette méthode la dureté d'une composition en stick selon l'invention va de 30 à 300 gf, et mieux de 30 à 250 gf, notamment de 30 à 180 gf, de préférence de 30 à 150 gf et par exemple de 30 à 120 gf.

- La dureté de la composition selon l'invention est telle que la composition est autoportée et peut se déliter aisément pour former un dépôt satisfaisant sur la peau et/ou les lèvres et/ou les phanères. En outre, avec cette dureté, la composition de l'invention résiste bien aux chocs.
- 15 Selon l'invention, la composition sous forme de stick a le comportement d'un solide élastique déformable et souple, conférant à l'application une douceur élastique remarquable. Les compositions en stick de l'art antérieur n'ont pas cette propriété d'élasticité et de souplesse.
- Le ou les composés amphiphiles utilisables dans la composition de l'invention comprennent une partie lipophile liée à une partie polaire, la partie lipophile comportant une chaîne carbonée ayant au moins 8 atomes de carbone notamment, de 18 à 32 atomes de carbone et mieux de 18 à 28 atomes de carbone. De préférence, la partie polaire de ce ou ces composés amphiphiles est le reste d'un composé choisi parmi les alcools et les polyols ayant de 1 à 12 25 groupements hydroxyle, les polyoxyalkylènes comportant au moins 2 motifs oxyalkylénés et ayant de 0 à 20 motifs oxypropylénés et/ou de 0 à 20 motifs oxyéthylénés. En particulier, le composé amphiphile est un ester choisi parmi les hydro-xystéarates, les oléates, les iso-stéarates du glycérol, du sorbitan ou du méthylglucose ou encore les alcools gras ramifiés en C_{12} à C_{26} comme l'octyldodécanol et leurs mélanges. Parmi ces esters, on préfère les monoesters et les mélanges de mono- et de di-esters.

Le taux d'huile fluorée, celui du polymère à hétéroatome, et éventuellement celui du composé amphiphile sont choisis selon la dureté de gel désirée et en fonction de l'application particulière envisagée. Les quantités respectives de polymère et éventuellement de composé amphiphile doivent être telles qu'elles permettent l'obtention d'un stick délitable. En pratique, la quantité de polymère représente de 0,5 à 80 % du poids total de la composition et mieux de 5 à 40 %. La quantité de composé amphiphile représente en pratique de 0,1 % à 35 % du poids total de la composition et mieux de 1 % à 15 %, s'il est présent.

La phase grasse liquide de la composition selon l'invention peut comprendre une huil additionnelle, différente de l'huile fluorée décrite précédemment (l'huile additionnelle est donc une huile non fluorée). En particulier, l'huile additionnelle peut être une huile volatile ou une huile non volatile.

5

10

15

20

25

35

40

Avantageusement, la phase grasse liquide de la composition contient plus de 30 % par exemple, plus de 40 % d'huile(s) liquide(s) ayant un groupement similaire à celui des motifs à hétéroatome et mieux de 50 à 100 %. En particulier, la phase grasse liquide structurée par un squelette de type polyamide contient une quantité majoritaire, à savoir supérieure à 30 % voire 40 % du poids total de la phase grasse liquide et mieux de 50 à 100 %, d'huile ou mélange d'huiles liquides apolaires, et plus spécialement d'huile(s) hydrocarbonée(s). Par huile hydrocarbonée, on entend au sens de l'invention, une huile comportant essentiellement des atomes de carbone et d'hydrogène avec éventuellement un ou plusieurs groupes hydroxyle, ester ou éther.

Pour une phase grasse liquide structurée par un polymère comportant un squelette en partie siliconée, cette phase grasse contient de préférence plus de 30 % par exemple plus de 40% du poids total de la phase grasse liquide et mieux de 50 à 100 %, d'huile ou mélange d'huiles liquides siliconées, par rapport au poids total de la phase grasse liquide. En particulier, ces huiles siliconées sont des huiles fluoro-siliconées.

Pour une phase grasse liquide structurée par un polymère apolaire du type hydrocarboné, cette phase grasse contient avantageusement plus de 30 % en poids, par exemple plus de 40 % en poids et mieux de 50 à 100 %, d'huile ou mélange d'huiles apolaires liquides, notamment hydrocarbonées, par rapport au poids total de la phase grasse liquide.

30 En particulier, les huiles polaires additionnelles de l'invention sont :

- les huiles végétales hydrocarbonées à forte teneur en triglycérides constitués d'esters d'acides gras et de glycérol dont les acides gras peuvent avoir des longueurs de chaînes variées de C₄ à C₂₄, ces dernières pouvant être linéaires ou ramifiées, saturées ou insaturées ; ces huiles sont notamment les huiles de germe de blé, de mais, de tournesol, de karité, de ricin, d'amandes douces, de macadamia, d'abricot, de soja, de coton, de luzerne, de pavot, de potimarron, de sésame, de courge, de colza, d'avocat, de noisette, de pépins de raisin ou de cassis, d'onagre, de millet, d'orge, de quinoa, d'olive, de seigle, de carthame, de bancoulier, de passiflore, de rosier muscat ; ou encore les triglycérides des acides caprylique/caprique comme ceux vendus par la société Stearineries Dubois ou ceux vendus sous les dénominations Miglyol 810, 812 et 818 par la société Dynamit Nobel ;

- les huiles de synthèse ou esters de synthèse de formule R_5COOR_6 dans laquelle R_5 représente le reste d'un acide gras linéaire ou ramifié comportant de 1 à 40 atomes de carbone et R_6 représente une chaîne hydrocarbonée notamment ramifiée contenant de 1 à 40 atomes de carbone à condition que $R_5 + R_6$ soit \geq 10, comme par exemple l'huile de Purcellin (octanoate de cétostéaryle), l'isononanoate d'isononyle, le benzoate d'alcool en C_{12} à C_{15} , le myristate d'isopropyle, le palmitate d'éthyl 2-hexyle, l'isostéarate d'isostéarate, des octanoates, décanoates ou ricinoléates d'alcools ou de polyalcools ; les esters hydroxylés comme le lactate d'isostéaryle, le malate de di-isostéaryle ; et les esters du pentaérythritol ;
- les éthers de synthèse ayant de 10 à 40 atomes de carbone ;
- les alcools gras en C₈ à C₂₆ comme l'alcool oléique ;
- les acides gras en C₈ à C₂₆ comme l'acide oléïque, linoléïque ou linolénique ;
- leurs mélanges.

20

25

30

10

Les huiles additionnelles apolaires selon l'invention sont en particulier les huiles siliconées telles que les polydiméthylsiloxanes (PDMS) volatils ou non, linéaires ou cycliques, liquides à température ambiante (25°C); les polydiméthylsiloxanes comportant des groupements alkyle, alcoxy ou phényle, pendant et/ou en bout de chaîne siliconée, groupements ayant de 2 à 24 atomes de carbone; les silicones phénylées comme les phényl triméthicones, les phényl diméthicones, les phényl triméthylsiloxy diphénylsiloxanes, des diphényl diméthicones, les diphényl méthyldiphényl trisiloxanes, les 2-phényléthyl triméthylsiloxysilicates; les hydrocarbures linéaires ou ramifiés d'origine synthétique ou minérale comme les hulles de paraffine, volatiles (isoparaffines ou isododécane) ou non volatiles, et ses dérivés, la vaseline, la lanoline liquide, les polydécènes, le polyisobutène hydrogéné tel que le Parléam, le squalane; et leurs mélanges.

De préférence, les huiles additionnelles sont des huiles apolaires et plus spécialement une huile ou un mélange d'huiles du type hydrocarboné d'origine minérale ou synthétique, choisies en particulier parmi les hydrocarbures notamment les alcanes comme l'huile de parléam, les isoparaffines comme l'isododécane et le squalane et leurs mélanges. Avantageusement, ces huiles sont assoclées à une ou plusieurs huiles de silicones phénylées.

35

De préférence, la phase grasse liquide contient, au moins une huile additionnelle non volatile choisie en particulier parmi les huiles hydrocarbonées d'origine minérale, végétale ou synthétique, les esters ou éthers de synthèse, les huiles de silicone et leurs mélanges.

40

La phase grass liquide totale représente, en pratique, de 5 à 99 % du poids total de la composition, de préférence de 10 à 80 % et mieux de 20 à 75 %.

15

20

30

35

La phase grasse liquide de la composition selon l'invention contient, en outre, au moins une huile additionnelle volatile, différente des huiles fluorées décrites précédemment, à savoir une ou plusieurs huiles volatiles appelées aussi solvants volatils.

Par "sotvant ou huile volatil", on entend au sens de l'invention tout milieu non aqueux susceptible de s'évaporer au contact de la peau ou des lèvres en moins d'une heure, à température ambiante et pression atmosphérique. Le ou les solvants volatils de l'invention sont des solvants organiques et notamment des huiles cosmétiques volatiles, liquides à température ambiante, ayant une pression de vapeur non nulle, à température ambiante et pression atmosphérique, allant en particulier de 10⁻³ à 300 mm de Hg (0,13 Pa à 40.000 Pa) et de préférence supérieur à 0,03 mm de Hg (4 Pa) et par exemple supérieure à 0,3 mm de Hg (40 Pa).

Selon l'invention, ces solvants ou huiles volatils facilitent, notamment, l'application de la composition sur la peau, les lèvres ou les phanères. Ces solvants ou huiles peuvent être des solvants hydrocarbonés, des solvants siliconés comportant éventuellement des groupements alkyle ou alkoxy pendants ou en bout de chaîne siliconée ou un mélange de ces solvants. De préférence, ces solvants ne sont pas des alcools à au moins 7 atomes de carbone.

Comme solvant ou huile volatil utilisable dans l'invention, on peut citer les huiles de silicones linéaires ou cycliques ayant une viscosité à température ambiante inférieure à 8 cSt et ayant notamment de 2 à 7 atomes de silicium, ces silicones comportant éventuellement des groupes alkyle ou alkoxy ayant de 1 à 10 atomes de carbone. Comme huile de silicone volatile utilisable dans l'invention, on peut notamment l'octaméthyl cyclotétrasiloxane, décaméthyl l'heptaméthyl cyclopentasiloxane. le dodécaméthyl cyclohexasiloxane, l'heptaméthyloctyl trisiloxane, hexyltrisiloxane, I'hexaméthyl disiloxane, l'octaméthyl trisiloxane, le décaméthyl tétrasiloxane, dodécaméthyl pentasiloxane et leurs mélanges.

Comme autre solvant ou huile volatil utilisable dans l'invention, on peut citer les huiles volatiles hydrocarbonées ayant de 8 à 16 atomes de carbone et leurs mélanges et notamment les alcanes ramifiés en C₈-C₁₆ comme les iso-alcanes (appelées aussi isoparaffines) en C₈-C₁₆, l'isododécane, l'isodécane, l'isohexadécane et par exemple les huiles vendues sous les noms commerciaux d'Isopars' ou de Permetyls, les esters ramifiés en C₈-C₁₆ comme le néopentanoate d'iso-hexyle et leurs mélanges. De préférence, le solvant volatil est choisi parmi les huiles volatiles hydrocarbonées ayant de 8 à 16 atomes de carbone et leurs mélanges.

20

25

. 30

35

40

De préférence, on utilise l'isododécane (Permetyls 99 A), les isoparaffines en C_{8} - C_{16} (Isopars L, E, H), leurs mélanges, éventuellement associés au décaméthyl tétrasiloxane.

Les huiles additionnelles, notamment les huiles additionnelles volatiles, représentent notamment un taux massique de 5 à 97,5 % par rapport au poids total de la composition, de préférence de 10 à 75 % et mieux de 15 à 45 %. De façon générale, la quantité de solvant volatil est utilisée en une quantité suffisante pour obtenir des propriétés de sans transfert. Cette quantité sera adaptée par l'homme du métier en fonction de l'intensité des propriétés de sans transfert recherchée.

La composition de l'invention peut comprendre, en outre, tout additif usuellement utilisé dans le domaine concerné, choisi notamment parmi les matières colorantes, les antioxydants, les huiles essentielles, les conservateurs, les parfums, les charges, les cires, les produits pâteux ou visqueux à température amblante, les neutralisants, les polymères liposolubles ou dispersibles dans le milieu, les actifs cosmétiques ou dermatologiques ayant un effet bénéfique sur la peau, les lèvres et les phanères comme par exemple des émollients, des hydratants, des vitamines (A, C, D, E, F), des acides gras essentiels, des filtres solaires, les dispersants comme l'acide poly(12-hydroxystéarique), et leurs mélanges. Ces additifs peuvent être présents dans la composition à raison de 0 à 20% (notamment de 0,01 à 20 %) du poids total de la composition et mieux de 0,01 à 10%. Avantageusement, la composition contient au moins un actif cosmétique ou dermatologique.

La composition de l'invention peut, en outre contenir comme additif une phase aqueuse contenant de l'eau éventuellement épaissie ou gélifiée par un épaississant ou un gélifiant de phase aqueuse et éventuellement des composés miscibles à l'eau. L'eau peut représenter de 0,5 à 50 % et mieux de 1 à 30 %, du poids total de la composition.

Blen entendu l'homme du métier veillera à choisir les éventuels additifs complémentaires et/ou leur quantité de telle manière que les propriétés avantageuses de la composition selon l'invention ne soient pas ou substantiellement pas, altérées par l'adjonction envisagée.

La composition selon l'invention peut se présenter sous la forme d'une composition teintée ou non, dematologique ou de soin des matières kératiniques comme la peau, les lèvres et/ou les phanères, sous forme d'une composition de protection solaire ou d'hygiène corporelle notamment sous forme de produit déodorant ou démaquillant sous forme de stick. Elle peut notamment être utilisée comme base de soin pour la peau, les phanères ou les lèvres (baumes à l'vres,

protégeant les lèvres du froid et/ou du soleil et/ou du vent, crème de soin pour la peau, les ongles ou les cheveux).

La composition de l'invention peut également se présenter sous la forme d'un produit coloré de maquillage de la peau, en particulier un fond de teint, présentant éventuellement des propriétés de soin ou de traitement, un blush, un fard à joues ou à paupières, un produit anti-cerne, un eye-liner, un produit de maquillage du corps ; de maquillage des lèvres comme un rouge à lèvres, présentant éventuellement des propriétés de soin ou de traitement ; de maquillage des phanères comme les ongles, les cils en particulier sous forme d'un mascara pain, les sourcils et les cheveux notamment sous forme de crayon, ou de vernis à ongles gélifiés.

Bien entendu la composition de l'invention doit être cosmétiquement ou dermatologiquement acceptable, à savoir contenir un milieu physiologiquement acceptable non toxique et susceptible d'être appliquée sur la peau, les phanères ou les lèvres d'êtres humains. Par cosmétiquement acceptable, on entend au sens de l'invention une composition d'aspect, d'odeur, de toucher et de goût agréables.

Avantageusement, la composition contient au moins un actif cosmétique et/ou un actif dermatologique et/ou au moins une matière colorante. Grâce à l'association d'au moins un solvant volatil et d'au moins un polymère de masse moléculaire moyenne inférieure à 1 000 000 par exemple inférieure à 500 000 et mieux inférieure ou égale à 100 000, tels que défini précédemment, on obtient un piégeage des actifs et des matières colorantes présents dans la composition, permettant de les maintenir la où ils ont été appliqués, à savoir les lèvres, la peau ou les phanères comme les fibres kératiniques, après évaporation du ou des solvants volatils, et de limiter leur transfert ou redépôt sur un support différent de celui sur lequel ils ont été appliqués.

La matière colorante selon l'invention peut être choisie parmi les colorants lipophiles, les colorants hydrophiles, les pigments et les nacres (ou pigments nacrés) habituellement utilisés dans les compositions cosmétiques ou dermatologiques, et leurs mélanges. Cette matière colorante est généralement présente à raison de 0,01 à 50 % du poids total de la composition, de préférence de 0,5 à 40 % et mieux de 5 à 30 %, si elle est présente. Dans le cas d'une composition sous forme de poudre libre ou compactée, la quantité de matière colorante sous forme de particules solides non solubles dans le milieu (nacres et/ou pigments) peut aller jusqu'à 90 % du poids total de la composition.

Les colorants liposolubles sont par exemple le rouge Soudan, le DC Red 17, le DC Green 6, le β -carotène, l'huile de soja, le brun Soudan, le DC Yellow 11, le

20

10

15

20

15

20

25

30

35

DC Violet 2, le DC orange 5, le jaune quinoléine, le rocou. Ils peuvent représenter de 0,1 à 20 % du poids de la compositions et mieux de 0,1 à 6 %.

Les pigments peuvent être blancs ou colorés, minéraux et/ou organiques, enrobés ou non. On peut citer, parmi les pigments minéraux, le dioxyde de titane, éventuellement traité en surface, les oxydes de zirconium, de zinc ou de cérium, ainsi que les oxydes de fer ou de chrome, le violet de manganèse, le bleu outremer, l'hydrate de chrome et le bleu ferrique. Parmi les pigments organiques, on peut citer le noir de carbone, les pigments de type D & C, et les laques à base de carmin de cochenille, de baryum, strontium, calcium, aluminium. Les pigments peuvent représenter de 0,1 à 50 %, de préférence de 0,5 à 40 % et mieux de 2 à 30 % du poids total de la composition, s'ils sont présents.

Les pigments nacrés peuvent être choisis parmi les pigments nacrés blancs tels que le mica recouvert de titane ou d'oxychlorure de bismuth, les pigments nacrés colorés tels que le mica titane avec des oxydes de fer, le mica titane avec notamment du bleu ferrique ou de l'oxyde de chrome, le mica titane avec un pigment organique du type précité ainsi que les pigments nacrés à base d'oxychlorure de bismuth. Ils peuvent représenter de 0,1 à 20 % du poids total de la composition et mieux de 0,1 à 15 %, s'ils sont présents. Les pigments nacrés peuvent être ou non traités.

De préférence, la composition contient des pigments, nacrés ou non.

La composition peut éventuellement contenir une ou plusieurs cires pour améliorer la structuration sous forme de stick, bien que cette forme rigide puisse être obtenue en l'absence de cire. Une cire, au sens de la présente invention, est un composé gras lipophile, solide à température ambiante (25°C), à changement d'état solide/liquide réversible, ayant une température de fusion supérieure à 40°C et mieux supérieure à 45°C pouvant aller jusqu'à 200° C, et présentant à l'état solide une organisation cristalline anisotrope. La taille des cristaux est telle que les cristaux diffractent et/ou diffusent la lumière, conférant à la composition un aspect trouble, plus ou moins opaque. En portant la cire à sa température de fusion, il est possible de la rendre miscible aux huiles et de former un mélange homogène microscopiquement, mais en ramenant la température du mélange à la température ambiante, on obtient une recristallisation de la cire dans les huiles du mélange. C'est cette recristallisation dans le mélange qui est responsable de la diminution de la brillance dudit mélange. Aussi, avantageusement la composition contient peu ou pas de cire, et notamment moins de 5 % de cire.

Les cires, au sens de la demande, sont celles généralement utilisées dans les domaines cosmétique et dermatologique; elles sont notamment d'origine naturelle comme la cire d'abeilles, la cire de Carnauba, de Candellila,

25

30

35

40

d'Ouricoury, du Japon, de fibres de liège ou de canne à sucre, les cires de paraffine, de lignite, I s cires microcristallines, la cire de lanoline, la cire de Montan, les ozokérites, les huiles hydrogénées comme l'huile de jojoba hydrogénée, mais aussi d'origine synthétique comme les cires de polyéthylène issues de la polymérisation de l'éthylène, les cires obtenues par synthèse de Fischer-Tropsch, les esters d'acides gras et les glycérides concrets à 40°C et mieux à 45°C, les cires de silicone comme les alkyle, alcoxy et/ou esters de poly(di)méthylsiloxane solide à 40°C et mieux à 45°C.

Avantageusement, la composition de l'invention contient, en outre, au moins un polymère liposoluble ou dispersible dans le milieu présentant notamment un poids moléculaire moyen de 500 à 1 000 000 et mieux de 5 000 à 15 000. Ce ou ces polymères liposolubles contribuent notamment à augmenter la viscosité et/ou améliorer la tenue du film. Ces polymères liposolubles présentent avantageusement une température de ramollissement au plus égale à 30° C.

A titre d'exemple de polymères liposolubles utilisables dans l'invention, on peut citer : les polyalkylènes, notamment le polybutène, les poly(méth)acrylates, les alkylcelluloses avec un radical alkyl linéaire ou ramifié, saturé ou non en C₁ à C₈ comme l'éthylcellulose et la propylcellulose, les polymères siliconés compatibles avec la phase grasse ainsi que les copolymères de la vinylpyrrolidone (VP) et leurs mélanges.

De préférence, on utilise les copolymères de la vinylpyrrolidone, les copolymères d'alcène en C₂ à C₃₀ et mieux en C₃ à C₂₂, et leurs associations. A titre d'exemple de copolymère de VP utilisable dans l'invention, on peut citer le copolymère de VP/acétate vinyle, VP/méthacrylate d'éthyle, la polyvinylpyrrolidone (PVP) butylée, VP/méthacrylate d'éthyle/acide méthacrylique, VP/eicosène, VP/hexadécène, VP/triacontène, VP/styrène, VP/acide acrylique/méthacrylate de lauryle.

De façon préférentielle, non seulement pour les propriétés de tenue mais aussi de toucher et de consistance du film, on utilise le copolymère PVP/hexadécène ayant un poids moléculaire moyen de 7000 à 7500 ou encore le PVP/eicosène ayant un poids moléculaire moyen de 8000 à 9000.

Les polymères liposolubles ou dispersibles de la composition de l'invention sont avantageusement utilisés dans une quantité de 0,01 % à 20 % (en matière active) du poids total de la composition et mieux de 1 % à 10 %, s'ils sont présents.

La composition selon l'invention contient, en outre, avantageusement au moins un composé gras pâteux à température ambiante. Par « corps gras pâteux » au

25

30

35

sens de l'invention, on entend des corps gras ayant un point de fusion allant de 20 à 55 °C, de préférence 25 à 45°C et mieux de 25 à 40°C, et/ou une viscosité à 40 °C allant de 0,1 à 40 Pa.s (1 à 400 poises), de préférence 0,5 à 25 Pa.s, mesurée au Contraves TV ou Rhéomat 180, équipé d'un mobile tournant à 240 min⁻¹ pour une alimentation en courant à 60 Hz ou à 200 min⁻¹ pour une alimentation en courant à 50 Hz. L'homme du métier peut choisir le mobile permettant de mesurer la viscosité, parmi les mobiles MS-r3 et MS-r4, sur la base de ses connaissances générales, de manière à pouvoir réaliser la mesure du composé pâteux testé.

Selon l'invention, on utilise un ou plusieurs corps gras pâteux. De préférence, ces corps gras sont des composés hydrocarbonés, éventuellement de type polymérique; ils peuvent également être choisis parmi les composés siliconés et/ou fluorés; il peut aussi se présenter sous forme d'un mélange de composés hydrocarbonés et/ou siliconés et/ou fluorés. Dans le cas d'un mélange de différents corps gras pâteux, on utilise de préférence les composés pâteux hydrocarbonés en proportion majoritaire.

Parmi les composés pâteux susceptibles d'être utilisés dans la composition selon l'invention, on peut citer les lanolines et les dérivés de lanoline comme les lanolines acétylées ou les lanolines oxypropylènées, ayant une viscosité de 18 à 21 Pa.s, de préférence 19 à 20,5 Pa.s, et/ou un point de fusion de 30 à 55°C et mieux de 30 à 40°C et leurs mélanges. On peut également utiliser des esters d'acides ou d'alcools gras, notamment ceux ayant 20 à 65 atomes de carbone (point de fusion de l'ordre de 20 à 35°C et/ou viscosité à 40 °C allant de 0,1 à 40 Pa.s) comme le citrate de tri-isostéaryle ou de cétyle ; le propionate d'arachidyle ; le polylaurate de vinyle ; les esters du cholestérol comme les triglycérides d'origine végétale tels que les huiles végétales hydrogénées, les polyesters visqueux comme l'acide poly(12-hydroxystéarique) et leurs mélanges. Comme triglycérides d'origine végétale, on peut utiliser les dérivés d'huile de ricin hydrogénée, tels que le « THIXINR » de Rheox.

On peut aussi citer les corps gras pâteux siliconés tels que les polydiméthylsiloxanes (PDMS) ayant des chaînes pendantes du type alkyle ou alcoxy ayant de 8 à 24 atomes de carbone, et un point de fusion de 20-55°C et mieux de 25 à 40°C, comme les stearyl dimethicones notamment ceux vendus par la société Dow Coming sous les noms commerciaux de DC2503 et DC25514, et leurs mélanges.

Le ou les corps gras pâteux peuvent être présents à raison de 0,1 à 60% en poids, par rapport au poids total de la composition, de préférence à raison de 1-45% en poids et encore plus préférentiellement à raison de 2-30% en poids, dans la composition, s'ils sont présents.

15

30

35

40

La composition selon l'invention peut être fabriquée par les procédés connus, généralement utilisés dans le domaine cosmétique ou dermatologique. Elle peut être fabriquée par le procédé qui consiste à chauffer le polymère au moins à sa température de ramollissement, à y ajouter le ou les composés amphiphiles, les huiles non volatiles dont les huiles fluorées non volatiles, les matières colorantes et les additifs puis à mélanger le tout jusqu'à l'obtention d'une solution claire, transparente. On ajoute alors, au mélange obtenu, après abaissement de la température le ou les solvants volatils. Le mélange homogène obtenu peut alors être coulé dans un moule approprié comme un moule de rouge à lèvres ou directement dans les articles de conditionnement (boîtier ou coupelle notamment).

L'invention a encore pour objet une composition de rouge à lèvres en stick contenant au moins une phase grasse liquide continue comprenant au moins une huile fluorée, la phase grasse liquide étant structurée par au moins un polymère non cireux conférant à la composition l'aspect d'un solide déformable, élastique, de dureté allant de 30 à 300 gf (mesurée selon la méthode du fil à couper le beurre décrite précédemment), en l'absence de cire.

Avantageusement cette composition de rouge à lèvres en stick contient un additif choisi parmi les composés gras pâteux à température ambiante, les polymères liposolubles et leurs mélanges, tels que définis précédemment. Le polymère non cireux est de préférence un polymère dont le squelette comporte des motifs hydrocarbonés à hétéroatome, tel que défini précédemment, ayant notamment une masse moléculaire inférieure à 100 000.

L'invention a encore pour objet un procédé cosmétique de soin, de maquillage ou de traitement des matières kératiniques des êtres humains et notamment de la peau, des lèvres et des phanères, comprenant l'application sur les matières kératiniques de la composition notamment cosmétique telle que définie ci-dessus.

L'invention a aussi pour objet l'utilisation de l'association d'au moins une phase grasse liquide contenant une huile fluorée et d'au moins un polymère de masse moléculaire moyenne en poids inférieure ou égale à 1 000 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) éventuellement au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs hydrocarbonés, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, pour diminuer le transfert et/ou le dépôt de traces d'un film de ladite composition, appliqué sur les matières kératiniques, sur un support mis au contact dudit film et/ou augmenter la tenue dudit film et/ou obtenir un film non collant. Ce film est, en outre, brillant et/ou

15

40

confortable. Cette association contient avantageusement une huile additionnelle volatile.

Selon un mode particulier de réalisation de l'invention, la composition est sous forme bi-produit et plus spécialement de stick bi-produit. Chaque produit peut être appliqué séparément sur les matières kératiniques et notamment la peau ou les lèvres ou bien l'un après l'autre afin de former un soin ou maquillage bi-couche, avec des propriétés adaptées au choix de l'utilisatrice. Ainsi, on peut obtenir en monocouche un film notamment de maquillage, brillant, confortable ou un film non collant sans transfert ou en bi-couche, un film de bonne tenue dans le temps, brillant, non collant et confortable.

L'invention est illustrée plus en détail dans les exemples suivants. Les quantités sont données en pourcentage massique.

Exemple 1	: Rouge	à lèvres
-----------	---------	----------

	Exemple 1 : Rouge à lèvres		
	Phase A		
	. Uniclear 100	18	%
	. silicone fluorée (X22819 de Shin Etsu)	5	%
20	. Huile de ricin	2	%
	. Iso-paraffine hydrogénée	4	%
	. Isononanoate d'isononyle	4	%
	. Phényl triméthylsiloxy trisiloxane	8	%
	. Copolymère vinylpyrrolidone / 1-eicosène	2	%
25			
	Phase B		
	. Pigments (oxyde de fer)	10	%
•	. Iso-paraffine hydrogénée	5	%
	. Lanoline liquide	5	%
30	. Acide poly(12-hydroxystéarique)	2	%
	(Solsperse 21 000 de Avecia)		
	Phase C		
	. Isododécane	25	%
35	. Décaméthyl tétrasiloxane	10	%

La phase pigmentaire (B) est broyée à l'aide d'un broyeur tri-cylindre et introduite dans la phase huileuse A préalablement chauffée à 100°C jusqu'à homogénéisation complète du mélange. On ajoute ensuite la phase volatile C dans le mélange précédant ramené à 85°C. L'ensemble est laissé en contact pendant 10 min puis coulé dans des moules de rouge à lèvres. On obtient alors un stick bi-produit. En effet, les sticks obtenus présentent deux parties : une extrémité supérieure colorée brillante qui dépose un film coloré brillant sur les lèvres et un extrémité inférieure qui dépose sur les lèvres un film non collant et sans transfert. De plus, le stick n'exsude pas à température ambiante (25°C) p ndant au moins 2 mois.

On peut effectuer ainsi avec le même stick et au choix de l'utilisatrice, 3 types de maquillage différents: un maquillage sans transfert monocouche, un maquillage brillant monocouche ou un maquillage bi-couche. La couche de base, en contact avec les lèvres, est en particulier la couche non collante sans transfert, et la couche supérieure, appliquée sur la couche de base est la couche brillante. On peut aussi inverser l'ordre des deux couches. Le maquillage final obtenu est de bonne tenue, confortable, non collant et brillant.

Exemple 2 : Rouge à lèvres Phase A

15	. Uniclear 100	18	%
	. Huile de ricin		
	. Iso-paraffine hydrogénée	8	%
	. Isononanoate d'isononyle	5	%
	Phényl triméthylollesses de la	5	%
20	Phényl triméthylsiloxy trisiloxane	8	%
20	. Copolymère vinylpyrrolidone / 1-eicosène	2	%
	Phase B		
	. Pigments (oxyde de fer)	10	%
	. Iso-paraffine hydrogénée	5	
25	. Lanoline liquide	_	%
	. Acide poly(12-hydroxystéarique)	5	%
	(Solsperse 21 000 de Avecia)	· 2	%
	Phase C		
30	. Nonafluorométhoxybutane	_	9/
	. Isododécane	5	%
	. Décaméthyl tétrasiloxane	22	%
		5	%

La phase pigmentaire (B) est broyée à l'aide d'un broyeur tri-cylindre et introduite dans la phase huileuse A préalablement chauffée à 100°C jusqu'à homogénéisation complète du mélange. On ajoute ensuite la phase volatile C dans le mélange précédant ramené à 85°C. L'ensemble est laissé en contact pendant 10 min puis coulé dans des moules de rouge à lèvres.

On obtient encore un stick bi-produit, avec une xtrémité supérieure colorée brillante et une extrémité inférieure non collante et sans transfert. On peut alors effectuer 3 types de maquillage en monocouche ou bi-couche. De plus le stick bi-produit n'exsude pas à température ambiante pendant au moins 2 mois.

	Exemple 3 : Rouge à lèvres Phase A		
5	. Uniclear 100 . silicone fluorée (X22819 de Shin Etsu)	18 5	% %
	Phase B		
	. Pigments (oxyde de fer). Acide poly(12-hydroxystéarique)	. 10	%
10	(Solsperse 21 000 de Avecia)	1,3 %	
	Phase C		
	. Parléam	13,8	%

. Isononanoate d'isononyle

Le rouge à lèvres est préparé comme aux exemples 1 et 2.

On obtient, ici, des sticks mono-produit qui déposent un film brillant, non collant et non-transfert. Les sticks n'exsudent pas à température ambiante pendant au moins 2 mois.

qsp 100 %

35

40

REVENDICATIONS

- 1. Composition structurée contenant au moins une phase grasse liquide comprenant au moins une huile fluorée, la phase grasse liquide étant structurée par au moins un polymère de masse moléculaire moyenne en poids inférieure ou égale à 1 000 000, comportant a) un squelette polymérique, ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) éventuellement au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs hydrocarbonés, la phase grasse liquide et le polymère formant un milieu physiologiquement acceptable.
- Composition selon la revendication 1 ou 2, caractérisée par le fait que la masse molaire moyenne du premier polymère est inférieure ou égale à 500 000 et mieux inférieure ou égale à 100 000.
 - Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les motifs à hétéroatome du polymère comportent un atome d'azote.
 - 4. Composition selon l'une des revendications précédentes, caractérisée par le fait que les motifs à hétéroatome sont des groupes amides.
- 5. Composition selon l'une des revendications précédentes, caractérisée par le fait que les chaînes grasses représentent de 40 à 98 % du nombre total des motifs à hétéroatome et des chaînes grasses.
- Composition selon l'une des revendications précédentes, caractérisée par le fait que les chaînes grasses représentent de 50 à 95 % du nombre total des motifs à hétéroatome et des chaînes grasses.
 - 7. Composition selon l'une des revendications précédentes, caractérisée par le fait que les chaînes grasses pendantes sont liées directement à l'un au moins desdits hétéroatomes.
 - 8. Composition structurée contenant au moins une phase grasse liquide comprenant au moins une huile fluorée, la phase grasse liquide étant structurée par au moins un polyamide de masse moléculaire moyenne en poids inférieure ou égale à 1 000 000, comportant a) un squelette polymérique, ayant des motifs répétitifs amide, et b) éventuellement au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs amide, la phase grasse liquide et le polyamide formant un milieu physiologiquement acceptable.

25

30

35

40

- 9. Composition selon la revendication 8, caractérisée en ce que la masse molaire moyenne du polymère est inférieure ou égale à 500 000 et mieux inférieure ou égale à 100 000.
- 10. Composition selon la revendication précédente, caractérisée en ce que les chaînes grasses représentent de 40 à 98 % du nombre total des motifs amide et des chaînes grasses.
- 10 11. Composition selon l'une des revendications 8 à 10, caractérisée par le fait que les chaînes grasses représentent de 50 à 95 % du nombre total des motifs amide et des chaînes grasses.
- 12. Composition selon l'une des revendications 8 à 11, caractérisée par le fait que les chaînes grasses pendantes sont liées directement à l'un au moins des atomes d'azote des motifs amide.
 - 13. Composition selon l'une des revendications précédentes, caractérisée par le fait que la masse molaire moyenne en poids va de 1 000 à 30 000, et mieux de 2 000 à 10 000.
 - 14. Composition selon l'une des revendications précédentes, caractérisée par le fait que les chaînes grasses terminales sont liées au squelette par des groupes de liaison
 - 15. Composition selon la revendication 14, caractérisée par le fait que les groupes de liaison sont des groupes ester.
 - 16. Composition selon l'une des revendications précédentes, caractérisée par le fait que les chaînes grasses ont de 12 à 68 atomes de carbone.
 - 17. Composition selon l'une des revendications précédentes, caractérisée par le fait que le polymère est choisi parmi les polymères de formule (I) suivante et leurs mélanges :

dans laquelle n désigne un nombre de motifs amide tel que le nombre de groupes ester représente de 10 % à 50 % du nombre total des groupes ester et amide ; R¹ st à chaque occurrence indépendamment un groupe alkyle ou alcényle ayant

au moins 4 atomes de carbone; R^2 représente à chaque occurrence indépendamment un groupe hydrocarboné en C_4 à C_{42} à condition que 50 % des groupes R^2 représentent un groupe hydrocarboné en C_{30} à C_{42} ; R^3 représente à chaque occurrence indépendamment un groupe organique pourvus d'au moins 2 atomes de carbone, d'atomes d'hydrogène et optionnellement d'un ou plusieurs atomes d'oxygène ou d'azote ; et R^4 représente à chaque occurrence indépendamment un atome d'hydrogène, un groupe alkyle en C_1 à C_{10} ou une liaison directe à R^3 ou un autre R^4 de sorte que l'atome d'azote auquel sont liés à la fois R^3 et R^4 fasse partie d'une structure hétérocyclique définie par R^4 -N- R^3 , avec au moins 50 % des R^4 représentant un atome d'hydrogène.

- 18. Composition selon la revendication précédente, caractérisée par le fait que R^1 est un groupe alkyle en C_{12} à C_{22} .
- 15 19. Composition selon l'une des revendications 17 ou 18, caractérisée par le fait que R² sont des groupes ayant de 30 à 42 atomes de carbone.
 - 20. Composition selon l'une des revendications précédentes, caractérisée par le fait que le polymère représente de 0,5 à 80 % du poids total de la composition et mieux de 5 à 40 %.
 - 21. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est un composé fluorosiliconé de formule (II) :

25 dans laquelle :

- R représente un groupement divalent alkyle linéaire ou ramifié, ayant 1 à 6 atomes de carbone, de préférence un groupement divalent méthyle, éthyle, propyle ou butyle.
- 30 Rf représente un radical fluoroalkyle, notamment un radical perfluoroalkyle, ayant 1 à 9 atomes de carbone, de préférence 1 à 4 atomes de carbone,
 - R_1 représente, indépendamment l'un de l'autre, un radical alkyle en C1-C20, un radical hydroxyle, un radical phényle,
 - m est choisi de 0 à 150, de préférence de 20 à 100, et
 - n est choisi de 1 à 300, de préférence de 1 à 100.

20

- 22. Composition selon la revendication 21, caractérisée par le fait que les groupements R₁ sont identiques et représentent un radical méthyle.
- 23. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est un composé fluorosiliconé de formule suivante (III) :

avec

- R représentant un groupement divalent, méthyle, éthyle, propyle ou butyle
- m étant choisi de 0 à 80, et
- n étant choisi de 1 à 30.
- 24. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est choisi parmi les perfluorocycloalkyles de formule (IV) suivante :

$$(CF_2)_n$$
 $[CF-(CF_2)_p-F]_m$ (IV)

dans laquelle n est égal à 4 ou 5, m est égal à 1 ou 2, et p est égal à 1, 2 ou 3; sous réserve que lorsque m = 2, les groupements ne sont pas nécessairement en alpha l'un par rapport à l'autre.

- 25. Composition selon la revendication 24, caractérisée par le fait que l'huile fluorée est choisie parmi le perfluorométhylcyclopentane, le perfluorodiméthylcyclobutane.
- 26. Composition selon l'une quelconque des revendications précédentes,
 caractérisée par le fait que l'huile fluorée est choisie parmi les composés fluoroalkyles ou hétérofluoroalkyles répondant à la formule (V) suivante :

$$CH_3$$
- $(CH_2)_n$ - $[Z]_t$ -X- CF_3 (V)

dans laquelle t est 0 ou 1; n est 0, 1, 2 ou 3; X est un radical perfluoroalkyle divalent, linéaire ou ramifié, ayant de 2 à 5 atomes de carbone, et Z représente

35

10

O, S, ou NR, R étant hydrogène, un radical –(CH₂)_n-CH₃ ou –(CF₂)_m-CF₃, m étant 2, 3, 4 ou 5.

- 27. Composition selon la revendication 26, caractérisée par le fait que l'huile fluorée est choisie parmi le méthoxynonafluorobutane et l'éthoxynonafluorobutane.
- 28. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est choisie parmi les composés perfluoroalcanes répondant à la formule (VI) suivante :

dans laquelle n est 2 à 6.

- 29. Composition selon la revendication 28, caractérisée par le fait que l'huile fluorée est choisie parmi le dodécafluoropentane et le tétradécafluorodexane.
 - 30. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est choisie parmi les dérivés de perfluomorpholine répondant à la formule (VII) suivante :

dans laquelle R représente un radical perfluoroalkyle en C1-C4.

- 31. Composition selon la revendication 30, caractérisée par le fait que l'huile fluorée est choisie parmi la 4-trifluorométhyl perfluoromorpholine et la 4-pentafluoroéthyl perfluoromorpholine.
 - 32. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est choisie parmi les perfluoropolyéthers répondant aux formules (VIII) et (IX) suivantes :

$$CF_3$$
 $F = CF - CF_2 - O = \frac{1}{\ln C} CF_3$ (VIII)

dans laquelle n est 7 à 30 ; et

5

le rapport m/p étant de 20 à 40, et le poids moléculaire allant de 500 à 20000.

33. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est choisie parmi les composés fluorosiliconés répondant à la formule (X) suivante :

$$CF_{3} - (CF_{2})_{k} - (CH_{2})_{l} - O - N - (CH_{2})_{p} - Si - O - Si(R_{2})_{3}$$

$$R_{1} - R_{2}$$

$$(X)$$

dans laquelle k est 1 à 17, l est 1 à 18, p est 1 à 6, et R₁ représente un atome d'hydrogène ou un radical alkyle en C₁-C₆; R₂ représente un radical alkyle en C₁-C₆ ou le radical -OSi(R₃)₃, et R₃ représente un radical alkyle en C₁-C₄.

34. Composition selon la revendication 33, caractérisée par le fait que l'huile fluorée est choisie parmi :

- le N-(-2-F-octyl-éthyloxycarbonyl)-3-aminopropyl bis(triméthylsiloxy)méthylsilane,

 le N-(-2-F-hexyl-éthyloxycarbonyl)-3-aminopropyl bis(triméthylsiloxy)méthylsilane,

 le N-(-2-F-butyl-éthyloxycarbonyl)-3-aminopropyl bis(triméthylsiloxy)méthylsilane,

20 - le N-(-2-F-octyl-éthyloxycarbonyl)-3-aminopropyl tris(triméthylsiloxy)silane,

- le N-(-2-F-hexyl-éthyloxycarbonyl)-3-aminopropyl tris(triméthylsiloxy)silane,

- le N-(-2-F-butyl-éthyloxycarbonyl)-3-aminopropyl tris(triméthylsiloxy)silane.

35. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est choisie parmi les alkylsilicones fluorées répondant à la formule (XI) suivante :

$$R_{2} \xrightarrow{Si} O \xrightarrow{\begin{cases} R'_{1} \\ Si \\ C(H_{2})_{2} \end{cases}} M \xrightarrow{\begin{cases} R'_{1} \\ R_{3} \end{cases}} M \xrightarrow{\begin{cases} R'_{1} \\ R_{1} \end{cases}} M \xrightarrow{$$

dans laquelle R₁ et R'₁ représentent indépendamment un radical alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone ou un radical phényle, R₂ représente R₁, -OH, ou -(CH₂)_f-R_F, f étant un nombre entier allant de 0 à 10, R₃ représente un radical alkyle, linéaire ou ramifié, ayant de 6 à 22 atomes de carbone,

RF représente un radical de formule - $(CF_2)_q$ - CF_3 , q étant un nombre entier allant de 0 à 10,

m et n représentent un nombre entier allant de 1 à 50, et p représente un nombre entier allant de 0 à 2000.

36. Composition selon la revendication 35, caractérisée par le fait que R_1 , R_1' t R_2 représentent l' radical méthyle, R_3 représente un radical alkyle linéaire ayant de 6 à 22 atomes de carbone, m et n sont des nombres entiers allant de 1 à 20, et q est un nombre entier allant de 0 à 3.

37. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est choisie parmi les alkylsilicones fluorées répondant à la formule (XII) suivante :

$$R'_{F}(CH_{2})_{2} \xrightarrow{R_{4}} O \xrightarrow{R_{4}} I_{R_{4}} R_{5} \qquad (XII)$$

dans laquelle:

 ${\rm R_4}$ représente un radical alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone, ou un radical phényle,

15 R₅ représente un radical alkyle, linéaire ou ramifié, ayant de 6 à 22 atomes de carbone, ou un radical phényle,

 R'_F représente un radical de formule - $(CF_2)_S$ - CF_3 , s étant un nombre entier allant de 0 à 15, et

t représente un nombre entier allant de 1 à 2000.

20

5

10

38. Composition selon la revendication précédente, caractérisée par le fait que R_4 représente le radical méthyle, R_5 représente un radical alkyle linéaire, ayant de 6 à 22 atomes de carbone, et s représente un nombre entier allant de 1 à 13.

- 39. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'huile fluorée est présente en une teneur allant de 0,1 % à 50 % en poids, par rapport au poids total de la composition, et de préférence allant de 1 % à 30 % en poids, et mieux de 3 % à 15 % en poids.
- 40. Composition selon l'une des revendications précédentes, caractérisée par le fait qu'elle comprend une huile additionnelle, différente de ladite huile fluorée.
 - 41. Composition selon l'une des revendications précédentes, caractérisée par le fait qu'elle contient, en outre, au moins une huile additionnelle volatile.

35

42. Composition selon la revendication41, caractérisée par le fait que l'huile additionnelle volatile est choisie parmi les huiles volatiles hydrocarbonées ayant de 8 à 16 atomes de carbone et leurs mélanges.

30

- 43. Composition selon la revendication 41 ou 42, caractérisée par le fait que l'huile additionnelle volatile est choisie parmi les alcanes ramifiés en C_8 - C_{16} , les esters ramifiés en C_8 - C_{16} et leurs mélanges.
- 44. Composition selon l'une des revendications 39 à 42, caractérisée par le fait que le l'huile additionnelle volatile est choisie parmi les isoparaffines en C₈-C₁₆, l'isododécane et leurs mélanges.
- 45. Composition selon l'une des revendications précédentes, caractérisée par le fait que la phase grasse liquide contient, en outre, au moins une huile additionnelle non volatile, différente de la dite huile fluorée.
 - 46. Composition selon l'une des revendications précédentes, caractérisée par le fait que la phase grasse liquide contient, en outre, au moins une huile additionnelle non volatile choisie parmi les huiles hydrocarbonées d'origine minérale, végétale ou synthétique, les esters ou éthers de synthèse, les huiles de silicone et leurs mélanges.
- 47. Composition selon l'une des revendications 40 à 46, caractérisée par le fait que l'huile additionnelle, volatile ou non volatile, représente un taux massique de 5 à 97,5 %, de préférence de 10 à 75 % et mieux de 15 à 45 %.
 - 48. Composition selon l'une des revendications précédentes, caractérisée par le fait que la phase grasse liquide contient au moins 30 % du poids total de la phase grasse liquide d'huile apolaire et mieux de 50 à 100 % du poids total de la phase grasse liquide.
- 49. Composition selon l'une des revendications précédentes, caractérisée par le fait que la phase grasse liquide représente de 5 à 99 % du poids total de la composition et mieux de 20 à 75 %.
 - 50. Composition selon l'une des revendications précédentes, caractérisée par le fait qu'elle constitue une composition de soin et/ou de traitement et/ou de maquillage des matières kératiniques.
 - 51. Composition selon l'une des revendications précédentes, caractérisée par le fait qu'elle contient, en outre, au moins une matière colorante.
- 52. Composition selon la revendication 51, caractérisée par le fait que la matière
 colorante est choisie parmi les colorants lipophiles, les colorants hydrophiles, les pigments, les nacres et leurs mélanges.

- 53. Composition selon la revendication 51 ou 52, caractérisée par le fait que la matière colorante est présente à raison de 0,01 à 50 % du poids total de la composition, de préférence de 5 à 30 %.
- 5 54. Composition selon l'une des revendications précédentes, caractérisée par le fait qu'elle contient au moins un additif choisi parmi l'eau, les antioxydants, les huiles essentielles, les conservateurs, les parfums, les charges, les cires, les composés gras pâteux à température ambiante, les neutralisants, les polymères liposolubles ou dispersibles dans le milieu, les actifs cosmétiques ou dermatologiques, les dispersants, et leurs mélanges.
 - 55. Composition selon l'une des revendications précédentes, caractérisée par le fait qu'elle contient au moins un polymère liposoluble ou dispersible dans le milieu choisi parmi les copolymères de la vinylpyrrolidone, les copolymères d'alcène en C₃ à C₂₂ et leurs associations.
 - 56. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle se présente sous forme d'un gel rigide, et notamment de stick anhydre.
- 57. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle se présente sous forme de mascara, d'eye-liner, de fond de teint, de rouge à lèvres, de blush, de produit déodorant ou démaquillant, de produit de maquillage du corps, de fard à paupières ou à joues, de produit anti-ceme, de shampoing, d'après shampoing, de protection solaire, de produit de soin du visage ou du corps, de vemis à ongles.
 - 58. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle se présente sous forme d'un stick de dureté allant de 30 à 300 gf.
- 59. Composition de rouge à lèvres en stick contenant au moins une phase grasse continue liquide comprenant au moins une huile fluorée, la phase grasse liquide étant structurée par au moins un polymère non cireux conférant à la composition l'aspect d'un solide déformable élastique de dureté allant de 30 à 300 gf, en l'absence de cire.
 - 60. Composition selon la revendication 59, caractérisée en ce qu'elle comprend en outre au moins un additif choisì parmi les composés gras pâteux à température ambiante, les polymères liposolubles et leurs mélanges.
- 61. Procédé cosmétique de soin, de maquillage ou de traitement des matières kératiniques des êtres humains, comprenant l'application sur les matières kératiniques d'une composition cosmétique conforme à l'une des revendications précédentes.

- 62. Utilisation d'une phase grasse liquide contenant une huile fluorée et d'au moins un polymère de masse moléculaire moyenne en poids inférieure ou égale à 1 000 000, comportant a) un squelette polymérique ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et b) éventuellement au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs hydrocarbonés, dans une composition cosmétique ou pour la fabrication d'une composition physiologiquement acceptable, pour diminuer le transfert et/ou le dépôt de traces d'un film de ladite contact dudit film, et/ou augmenter la tenue dudit film, et/ou obtenir un film non collant.
- 63. Utilisation selon la revendication précédente, caractérisée en ce que le polymère est un polyamide comportant des groupements terminaux à groupe ester comportant une chaîne hydrocarbonée ayant de 10 à 42 atomes de carbone.
- 20 64. Composition selon l'une des revendications 1 à 59, caractérisée en ce qu'elle est sous forme "bi-produit".