MATH5836: Data and Machine Learning

Week 0: Basics of Probability Theory

Sarat Moka UNSW, Sydney

Key topics

- Random Variables
- Expectation, Variance, and Standard Deviation
- Confidence Intervals
- Divergences and Entropies
- Computations for Multivariate Normal Distributions

Reference:

- Introduction to Probability by Joseph K. Blitzstein & Jessica Hwang [click here for a pdf copy]
- Appendix B of *Mathematical Engineering of Deep Learning* by Liquet, Moka, and Nazarathy: Freely available at https://deeplearningmath.org/

0.2.1 Random Variables

Set Theory Basics

- Sample Space (Ω) : The set of all possible outcomes of an experiment.
- Event: A subset of Ω (e.g., $A \subseteq \Omega$).
- σ -Algebra (\mathcal{F}): A collection of events closed under complements, countable unions, and intersections.
- Random Variable: A function $X : \Omega \to \mathbb{R}$ is a random variable if $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$.

Discrete Random Variables

- **Definition**: X takes countable values (e.g., integers), denote them by $\mathscr{X} \subset \mathbb{R}$.
- Probability Mass Function (PMF): $p_X(x) = P(X = x)$ for $x \in \mathcal{X}$.
- Examples:
 - Bernoulli: $p_X(1) = p$, $p_X(0) = 1 p$.
 - Binomial: $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Continuous Random Variables

- **Definition**: X takes uncountably infinite values (e.g., real numbers).
- Probability Density Function (PDF): $f_X(x)$ satisfies

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, dx$$

- Examples:
 - Uniform: $f_X(x) = \frac{1}{b-a}$ for $x \in [a, b]$.
 - Normal: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}.$

Cumulative Distribution Function (CDF)

- **Definition**: $F_X(x) = P(X \le x)$, for any random variable X (discrete or continuous).
- Properties:
 - Non-decreasing: $F_X(x) \leq F_X(x')$ for all $x \leq x'$.

- Right-continuous: $\lim_{y\downarrow x} F_X(y) = F_X(x)$, $y\downarrow x$ denotes that y approaches x from the right (i.e., $y\to x^+$).
- $-\lim_{x\to-\infty} F_X(x) = 0$ and $\lim_{x\to\infty} F_X(x) = 1$.
- For discrete X: $F_X(x) = \sum_{k \le x} p_X(k)$.
- For continuous X: $F_X(x) = \int_{-\infty}^x f_X(t) dt$.

Expectation

- Definition:
 - Discrete: $\mathbb{E}[X] = \sum_{x} x \cdot p_X(x)$.
 - Continuous: $\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- Linearity: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$.
- Law of the Unconscious Statistician (LOTUS): For any function $g: \mathbb{R} \to \mathbb{R}$,
 - Discrete: $\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$.
 - Continuous: $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$.

Variance and Standard Deviation

- Variance: $Var(X) = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$.
- Standard Deviation: $\sigma_X = \sqrt{\operatorname{Var}(X)}$.
- Properties:
 - $\operatorname{Var}(aX + b) = a^{2}\operatorname{Var}(X).$
 - $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y).$

Sample Mean and Sample Variance Estimators

- Sample Mean: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - Unbiased: $\mathbb{E}[\bar{X}_n] = \mu$.
- Sample Variance: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$.
 - Unbiased: $\mathbb{E}[S_n^2] = \sigma^2$.

Confidence Interval (CI)

- **Definition**: An interval estimate for a parameter (e.g., μ) with a confidence level (1α) .
- For μ (Known σ): CI is given by

$$\bar{X}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = \left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),$$

where $z_{\alpha/2}$ is the $(1 - \alpha/2)$ quantile of $\mathcal{N}(0, 1)$.

• For μ (Unknown σ): CI is given by

$$\bar{X}_n \pm t_{\alpha/2,n-1} \frac{S_n}{\sqrt{n}} := \left(\bar{X}_n - t_{\alpha/2,n-1} \frac{S_n}{\sqrt{n}}, \ \bar{X}_n + t_{\alpha/2,n-1} \frac{S_n}{\sqrt{n}}\right),$$

where $t_{\alpha/2,n-1}$ is the quantile of the t-distribution with n-1 degrees of freedom.

0.2.2 Divergences and Entropies

KL-Divergence for Discrete Distributions

• **Definition**: For discrete distributions p(x) and q(x) with supports \mathcal{X}_p and \mathcal{X}_q :

$$D_{\mathrm{KL}}(p \parallel q) = \sum_{x \in \mathcal{X}_p} p(x) \log \frac{p(x)}{q(x)}.$$
 (0.1)

- If $\mathcal{X}_p \nsubseteq \mathcal{X}_q$, $D_{\mathrm{KL}}(p \parallel q) = +\infty$.
- Decomposition:

$$D_{KL}(p \| q) = H(p,q) - H(p),$$

where:

- Cross Entropy:

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log q(x). \tag{0.2}$$

- Entropy:

$$H(p) = -\sum_{x \in \mathcal{X}} p(x) \log p(x). \tag{0.3}$$

- Binary Case:
 - Entropy: $H(p) = -(p_1 \log p_1 + (1 p_1) \log(1 p_1)).$
 - Cross Entropy: $H(p,q) = -(p_1 \log q_1 + (1-p_1) \log(1-q_1)).$
- Properties:
 - $-D_{\mathrm{KL}}(p \parallel q) \geq 0$ with equality iff p = q.
 - Asymmetric: In general, $D_{KL}(p \parallel q) \neq D_{KL}(q \parallel p)$.

KL-Divergence for Continuous Distributions

• **Definition**: For continuous densities p(x) and q(x):

$$D_{\mathrm{KL}}(p \parallel q) = \int_{\mathcal{X}_p} p(x) \log \frac{p(x)}{q(x)} dx. \tag{0.4}$$

Jensen-Shannon Divergence

• **Definition**: Symmetric divergence for p(x) and q(x) with supports \mathcal{X}_p and \mathcal{X}_q :

$$JSD(p \parallel q) = \frac{1}{2} \left(D_{KL}(p \parallel m) + D_{KL}(q \parallel m) \right), \qquad (0.5)$$

where $m(x) = \frac{1}{2}(p(x) + q(x)).$

 $-\sqrt{\mathrm{JSD}(p\parallel q)}$ is a valid metric.

0.2.3 Computations for Multivariate Normal Distributions

Multivariate Normal Density

• **PDF**: For $x \in \mathbb{R}^m$ with mean μ and covariance Σ :

$$\mathcal{N}(x; \mu, \Sigma) = \frac{1}{(\det \Sigma)^{1/2} (2\pi)^{m/2}} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}.$$

• Log-Density:

$$\log \mathcal{N}(x; \mu, \Sigma) = -\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu) - \frac{m}{2} \log(2\pi) - \frac{1}{2} \log(\det \Sigma). \tag{0.6}$$

KL-Divergence for Multivariate Normals

• General Case: For $\mathcal{N}_{\mu_1,\Sigma_1}$ and $\mathcal{N}_{\mu_2,\Sigma_2}$:

$$D_{\mathrm{KL}}(\mathcal{N}_{\mu_{1},\Sigma_{1}} \parallel \mathcal{N}_{\mu_{2},\Sigma_{2}}) = \frac{1}{2} \left((\mu_{1} - \mu_{2})^{\top} \Sigma_{2}^{-1} (\mu_{1} - \mu_{2}) - m + \mathrm{tr}(\Sigma_{2}^{-1} \Sigma_{1}) + \log \frac{\det \Sigma_{2}}{\det \Sigma_{1}} \right). \tag{0.7}$$

- Special Cases:
 - For $\Sigma_2 = \sigma_2^2 I$:

$$D_{\mathrm{KL}}(\mathcal{N}_{\mu_1,\Sigma_1} \parallel \mathcal{N}_{\mu_2,\sigma_2^2 I}) = \frac{1}{2\sigma_2^2} \|\mu_1 - \mu_2\|^2 + \frac{\mathrm{tr}(\Sigma_1)}{2\sigma_2^2} - \frac{m}{2} + \frac{m \log \sigma_2^2}{2} - \frac{\log \det \Sigma_1}{2}. \quad (0.8)$$

– For standard normal ($\mu_2 = 0, \Sigma_2 = I$):

$$D_{\mathrm{KL}}(\mathcal{N}_{\mu_1, \Sigma_1} \parallel \mathcal{N}_{0,I}) = \frac{1}{2} \|\mu_1\|^2 + \frac{\mathrm{tr}(\Sigma_1)}{2} - \frac{m}{2} - \frac{\log \det \Sigma_1}{2}.$$
 (0.9)