Coq, Chapar, and Coq Again

Hengfeng Wei

ICS, NJU

April 28, 2019

The Coq Proof Assistant

"Software Foundations"

Chapar: Certified Causally Consistent Distributed Key-Value Stores

Mohsen Lesani Christian J. Bell Adam Chlipala

Massachusetts Institute of Technology, USA
{lesani, cjbell, adamc}@mit.edu

Chapar@POPL'2016

Chapar: Certified Causally Consistent Distributed Key-Value Stores

Mohsen Lesani Christian J. Bell Adam Chlipala

Massachusetts Institute of Technology, USA
{lesani, cjbell, adamc}@mit.edu

Chapar@POPL'2016

"A framework for modular verification of causal consistency for replicated key-value store implementations and their client programs."

I: KV Store Implementation

 $\begin{array}{c} {\rm Causally} \\ {\rm Content} \end{array}$

I: KV Store Implementation

Causal Consistency

 COS_A : Abstract Causal Operational Semantics

I: KV Store Implementation

Definition (Causally Content)

A client program is causally content if it avoids assertion failures when executed with COS_A .

Definition (Causally Content)

A client program is causally content if it avoids assertion failures when executed with COS_A .

Definition (Causally Consistent)

A KV store impl. is causally consistent if it satisfies COS_A .

Definition (Causally Content)

A client program is causally content if it avoids assertion failures when executed with COS_A .

Definition (Causally Consistent)

A KV store impl. is causally consistent if it satisfies COS_A .

 \mathbb{P} : get, put $COS_{\mathcal{A}}$: get, put, update \mathbb{I} :

get, put, guard, update

$0 \rightarrow$	Alice
$put(Pic, \bigcirc);$	□ uploads a new photo
put(Post,	> announces it to her friends Bob
$post \leftarrow get(Post);$	⊳ checks Alice's post
$photo \leftarrow get(Pic);$	b then loads her photo

Program 1 (p_1) : Uploading a photo and posting a status	
$0 \rightarrow put(Pic, \bigcirc);$	Alice
put(Post,	> announces it to her friends
$1 \rightarrow post \leftarrow get(Post);$	Bob ⊳ checks Alice's post
$photo \leftarrow get(Pic);$ assert(post =	b then loads her photo

 $assert(post \neq \bot \implies photo \neq \bot)$

 $COS_{\mathcal{A}}$: Abstract Causal Operational Semantics

 $COS_{\mathcal{A}} :$ Abstract Causal Operational Semantics

Abstract:

without referring to the details of specific implementations; do not involving message passing.

 $COS_{\mathcal{A}} \colon \mathbf{Abstract}$ Causal Operational Semantics

Abstract:

without referring to the details of specific implementations; do not involving message passing.

Operational:

labelled transition system executable (like TLA+)

 $COS_{\mathcal{A}} \colon \mathbf{Abstract}$ Causal Operational Semantics

Abstract:

without referring to the details of specific implementations; do not involving message passing.

Operational:

labelled transition system executable (like TLA+)

Causal:

explicitly track/maintain happens-before dependencies

$$\begin{aligned} & \text{PUT} \\ & u' = u + + [(k, v, d)] \quad a' = a[n \mapsto a(n) + 1] \\ & \underline{m' = m[k \mapsto (v, n, |u'|, \emptyset)]} \quad d' = d \cup \{(n, |u'|)\} \\ & W_{\mathcal{A}}[n \mapsto (put(k, v); s, d, u, a, m)] \\ & W_{\mathcal{A}}[n \mapsto (put(k, v); s, d, u, a, m)] \\ & W_{\mathcal{A}}[n \mapsto (s, d', u', a', m')] \end{aligned}$$

$$& W_{\mathcal{A}}[n \mapsto (s, d', u', a', m')]$$

$$& \frac{d' = \begin{cases} d \cup \{(n'', c'')\} \cup d'' & \text{if } n'' \neq n_0 \\ d & \text{otherwise} \end{cases}}{W_{\mathcal{A}}[n \mapsto (x \leftarrow get(k); s, d, u, a, m)]} \\ & \frac{n'', c'', n \models get(k) : v}{W_{\mathcal{A}}[n \mapsto (s[x : = v], d', u, a, m)]} \end{aligned}$$

$$& UPDATE \\ & a_1(n_2) < |u_2| \quad u_2[a_1(n_2)] = (k, v, d) \\ & \bigwedge_{(n,c) \in d} c \leq a_1(n) \quad a'_1 = a_1[n_2 \mapsto a_1(n_2) + 1] \\ & m'_1 = m_1[k \mapsto (v, n_2, a'_1(n_2), d)] \\ \hline & W_{\mathcal{A}}[n_1 \mapsto (s_1, d_1, u_1, a_1, m_1)][n_2 \mapsto (s_2, d_2, u_2, a_2, m_2)] \\ & \frac{n_2, a'_1(n_2), n_1 \triangleright update(k, v)}{W_{\mathcal{A}}[n_1 \mapsto (s_1, d_1, u_1, a'_1, m'_1)][n_2 \mapsto (s_2, d_2, u_2, a_2, m_2)]} \end{aligned}$$

ASSERTFAIL

$$C[n \mapsto (\mathit{assertfail}, d, u, a, m)] \xrightarrow{\mathit{assertfail}}_{\mathcal{A}} C[n \mapsto (\mathit{skip}, d, u, a, m)]$$

c:C Clock

 Clock

c: C $a: A = N \rightarrow C$

Applied

c : C

Clock

 $a: A = N \rightarrow C$

Applied

 $d: D = \mathcal{P}(N \times C)$

Dependencies

c : C

 $a:A=N\to C$

 $d: D = \mathcal{P}(N \times C)$

 $u : U = (K \times V \times D)^*$

Clock

Applied

Dependencies

Updates

c:C Clock

 $a:A=N\to C$ Applied

 $d: D = \mathcal{P}(N \times C)$ Dependencies

 $u: U = (K \times V \times D)^*$ Updates

 $m: M = K \to (V \times N \times C \times D)$ Store

