Evaluation of Data-Intensive Accelerated Functions in Computational Storage Devices

Jiong Liu
Advisor: Charalampos Mainas, Atsushi Koshiba
Chair of Distributed Systems and Operating Systems
https://dse.in.tum.de/

Motivation

- **CPU resources:** limited and precise
- Computational storage devices: suitable and near data
- Idea: unload data-intensive tasks to computational storage devices

Current Issues

- Rare appropriate abstraction
- Hardware knowledge necessary -> difficult and long learning curve

Introduction

Add an abstraction between user and device

System design goals:

- High level
- Performance

System target:

Xilinx Zynq UltraScale+ MPSoC

ZCU106 Evaluation Board

Outline

- Introduction
- Background
 - Vitis
- Design
- Implementation
- Evaluation

Vitis

- Unified Platform for Xilinx Devices
- shares a similar design- and workflow

Vitis Accelerated Library

- sample code for different areas
- Security & Data Compression

(https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html)

Outline

- Introduction
- Background
- Design
 - System Overview
 - Design Details
- Implementation
- Evaluation

System overview

L4 Application Global Distribution & High Level API Software Data Block processing & Communication \rightarrow Modification L₃ Host with Hardware L₂ Kernel Hardware Executable Unit & Wrapper Hardware Hardware Function Unit L1 Component

Design detail: Data Compression Library

Outline

- Introduction
- Background
- Design
- Implementation
- Evaluation

Vitis Execution Model

o. Buffers allocation and virtual mapping

Vitis Execution Model

o. Buffers allocation and virtual mapping

Vitis Execution Model

1. Migration of data to hardware

Vitis Execution Model

2. Kernel execution

Vitis Execution Model

3. Migration of data back from hardware

Outline

- Motivation
- Background
- Design
- Implementation
- Evaluation

Evaluation

- Test setup:
 - Intel Xeon Gold 6238R CPU (2.20 GHz, 24 cores)
 - Target Board not available -> Xilinx Alevo U50
- Benchmarks:
 - Security: OpenSSL
 - Data Compression: Linux Utility

Evaluation: Security Library

Evaluation: Security Library

↑29%

Evaluation: Security Library

Summary

- Some hardware-accelerated data-intensive functions are ported
- high level abstraction
- acceptable performance, sometimes better

Future Work:

Evaluation on the target board is still necessary

Try it out!

https://github.com/Ljiong201108/bsc-project.git

Backup

Design details: Security Library

L₃ Host

- Execution of hardware encryption and decryption
- Interaction with hardware

L4 Application

- Initialization of current data block processing
- post-processing

Design details: Data Compression Library(L3 Host)

Data Block Analyzer(only for decompression)

- Analyse the given data block
- Delete the meta-data

Kernel Executor

 Executes the hardware compression / decompression

Evaluation: Security Library Overview

- AES
- 4 GiB & 32 GiB

Evaluation: Security Library (Block dependent)

Evaluation: Security Library (Block dependent)

Evaluation: Security Library (Block dependent)

Evaluation: Security Library (Block Independent)

Evaluation: Security Library (Block Independent)

Evaluation: Data Compression Library Overview

- Gzip & Lz4 & Snappy & Zstd
- 1 GiB to 32 GiB

Zstd: Further Investigation

- 99% FPGA time
- Hardware optimization necessary

Implementation

- Software part follows the design guideline
- Security: straight-forward single thread
- Data Compression: multi-threading -> synchronization
- **Key Point:** Interaction with Hardware follows Vitis Execution Model

Vitis Communication

Vitis Compilation

