CS150A Quiz09

FD Properties
'd like some properties for my functional dependencies please.
2. 1) Select all the FD's that follow from Armstrong's Axioms * Hint: there's at least one Check all that apply.
if $X \rightarrow Y$ and $Z \rightarrow W$, then $XZ \rightarrow YW$
if $X \to Y$ and $WY \to Z$, then $WX \to Z$
if $X \to YZ$, then $X \to Y$ and $X \to Z$
if $XZ \rightarrow YZ$, then $X \rightarrow Y$
if $X \to Y$ and $W \to Y$, then $X \to W$
FD Example
We have a relation R(A, B, C, D, E). We are told that the set of functional dependencies is F = {E \rightarrow BC, A \rightarrow B, C \rightarrow D, AD \rightarrow C}.
Find the attribute closures for each of the attributes. If the attribute closure for X was WXZ, you would fill in "WXZ" without quotes in the answer box.
We will be grading with a script so *please submit your answers in alphabetical order* and without any whitespace.
3. 2) A+: *
4. 3) B+: *

5. 4) C+: *
6. 5) D+: *
7. 6) E+: *
8. 7) Select the attribute set(s) that are keys for relation R * Hint: there's at least one Check all that apply.
☐ E ☐ ABC ☐ BCD ☐ ACE
9. 8) The attribute closure of (AD)+ is equivalent to the attribute closure of (AC)+. * By equivalent we mean the intersection is equivalent to the union of both closure sets. Mark only one oval.
True False
10. 9) Is relation R already in Boyce-Codd Normal Form (BCNF)? * Mark only one oval. Yes
No
Normalization
BCNF stands for Boyce-Codd Normal Form. For this question, assume the decomposition is performed using the algorithm described in lecture.
11. 10) Decomposing a relation into BCNF will always guarantee a dependency preserving decomposition. * Mark only one oval.
True
False

•	Decomposing a relation into BCNF will always guarantee a lossless decomposition. * conly one oval.
	True
	False
set o	Relation R(A, B, C, D, E) is decomposed into R(A, C, D) and R(A, B, C, E) with the of functional dependencies $F = \{BC \rightarrow A, C \rightarrow D\}$. Is this decomposition lossless? It the decomposition might not follow the BCNF algorithm discussed in class. It conly one oval.
	Yes
) No