The Lucas Numbers

The Lucas numbers are closely related to the Fibonacci numbers and satisfy the same recursion relation $L_{n+1} = L_n + L_{n-1}$, but with starting values $L_1 = 1$ and $L_2 = 3$. The Lucas numbers are an example of a generalized Fibonacci sequence that satisfies $f_{n+1} = f_n + f_{n-1}$, with starting values $f_1 = p$ and $f_2 = q$.

(a) Using mathematical induction, prove that $f_{n+2} = F_n p + F_{n+1} q$.

Let F_n , f_n denote the *n*th Fibonacci number.

$$f_{n+2} = F_n p + F_{n+1} q$$
, where $f_1 = p$ and $f_2 = q$.

Proof

From the initial definition of Fibonacci numbers, we have:

$$F_0 = 0$$
, $F_1 = 1$, $F_2 = 1$, $F_3 = 3$

Proof by induction:

For all $n \in N$, let P(n) be the proposition:

$$f_{n+2} = F_n p + F_{n+1} q$$

Basis for the Induction

P(0) is the case:

$$f_{0+2} = F_0 p + F_{0+1} q = 0 + (1)q = q = f_2$$

P(1) is the case:

$$f_{1+2} = F_1 p + F_2 q = p + q = f_3$$

Induction Hypothesis

We need to show that, if P(k) is true, where k > 1, then it follows that P(k + 1) is true.

So the induction hypothesis is:

$$f_{k+2} = F_k p + F_{k+1} q$$

 $f_{k+3} = F_{k+1} p + F_{k+2} q$

We need to show:

$$f_{k+3} = F_{k+1}p + F_{k+2}q$$

Induction Step

$$f_{k = 3} f_{k+1} + f_{k+2}$$

$$= (F_{k-1} p + F_{k} q) + (F_{k} p + F_{k+1} q)$$

$$= (F_{k-1} + F_{k}) p + (F_{k+1} + F_{k}) q$$

$$= F_{k+1} p + F_{k+2} q$$

So P(k+1) and the results follows by the Principle of Induction.

(b) Form a table containing the first 12 Fibonacci and Lucas numbers that can be referred to in the next two problems.

n	F_n	L_n
0	0	0
1	1	1
2	1	3
3	2	4
4	3	7
5	5	11
6	8	18
7	13	29
8	21	47
9	34	76
10	55	123
11	89	199
12	144	322

(c) Prove that
$$L_n = F_{n-1} + F_{n+1}$$
.

From the result in (a):

$$L_n = F_{n-1}(L_1) + F_n(L_2)$$

$$= F_{n-1}(1) + F_n(3)$$

$$= 2 F_{n-1} + (F_{n-1} + F_{n-2})$$

$$= F_{n-1} + (F_{n-1} + F_n)$$

$$= F_{n-1} + F_{n+1}$$

(d) Prove that $F_n = \frac{1}{5} (L_{n-1} + L_{n+1})$.

$$\frac{1}{5} (L_{n-1} + L_{(n+1)}) = \frac{1}{5} ((F_{n-2} + F_n) + (F_n + F_{n+2}))$$

$$= \frac{1}{5} (F_{n-2} + 2F_n + F_n + F_{n+1})$$

$$= \frac{1}{5} (F_{n-2} + 3F_n + F_n + F_{n+1})$$

$$= F_n$$