Calculus II

1 Vectors

 $\mathbb R$ represents the set of real numbers.

 \mathbb{R}^2 represents a 2 dimensional real plane.

Normally elements of $\mathbb R$ are known as scalers.

- \cdot add (or subtract) two vectors
- \cdot if $c \in \mathbb{R}$ and $v \in \mathbb{R}^2$, $c\vec{v}$

1.1 Dot Product

$$u = (u_1, u_2)$$
 and $v = (v_1, v_2)$

$$u.v = u_1.v_1 + u_2.v_2$$

Theorem

$$u.v = |u||v|\cos(\theta)$$

where θ is the angle between \vec{u} and \vec{v} and |u| is the length of vector \vec{u}

Proof:

$$w^2 = u^2 + v^2 - 2|u||v|\cos(\theta)\dots(1)$$

$$\vec{w} = \vec{v} - \vec{u}$$

$$w = (v_1 - u_1, v_2 - u_2)$$

$$w^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2$$

$$w^2 = v_1^2 - 2v_1u_1 + u_1^2 + v_2^2 - 2v_2u_2 + u_2^2$$

$$w^2 = v^2 + u^2 - 2v_1u_1 - 2v_2u_2 \dots (2)$$

$$\text{now, as } (1) = (2)$$

$$u^2 + v^2 - 2|u||v|\cos(\theta) = v^2 + u^2 - 2v_1u_1 - 2v_2u_2$$

$$|u||v|\cos(\theta) = v_1u_1 + v_2u_2$$

$$|u||v|\cos(\theta) = \vec{u}.\vec{v}$$

Hence proved.

Extending the above theorem to \mathbb{R}^n : Consider $\vec{u}=(u_1,u_2,\ldots,u_n), \vec{v}=(v_1,v_2,\ldots,v_n)\in\mathbb{R}$

$$\vec{u}.\vec{v} = u_1v_1 + u_2v_2 + \dots + u_nv_n$$

1.2 Unit Vectors

If $\vec{v} \in \mathbb{R}^2$ is a vector. then,

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

1.3 Projections

If \vec{u} and \vec{v} are vectors in \mathbb{R}^2 and θ is the angle between them:

let \vec{w} be the projection of \vec{u} on \vec{v}

$$\begin{split} \vec{w} &= |u| \cos(\theta) \hat{v} \\ \vec{w} &= \frac{|u| \cos(\theta) |v| \vec{v}}{|v|^2} \\ \vec{w} &= \frac{\vec{u}.\vec{v}}{|\vec{v}|^2} \vec{v} \end{split}$$

1.4 Cross Product

Consider the vectors, u, v. Then the cross-product of u and v is defined as:

$$u \times v = |u||v|\sin(\theta)\hat{n}$$

where \hat{n} is the unit vector perpendicular to the plane containing u and v, and also $(\vec{u}, \vec{v}, \hat{n})$ form a right handed system.

Properties of Cross Product:

- $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$
- $(r\vec{u}) \times (s\vec{v}) = rs\vec{u} \times \vec{v}$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$

 \vec{u} and \vec{v} can also be represented as:

$$\vec{u} = u_1\hat{i} + u_2\hat{j} + u_3\hat{k}$$

$$\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$$

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2)\hat{i} + (u_3v_1 - u_1v_3)\hat{i} + (u_1v_2 - u_2v_1)\hat{k}$$

$$ec{u} imes ec{v} = egin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \end{pmatrix}$$

the above formula is only symbolic and meant to represent a cross product.

2 Multi-Variable Calculus

let $r: \mathbb{R} \to \mathbb{R}^3$ be a function. (It could be to any \mathbb{R}^n) for $t \in \mathbb{R}$, r(t) is a vector in \mathbb{R}^3

$$r(t) = f(t)\hat{\imath} + g(t)\hat{\jmath} + h(t)\hat{k}$$

2.1 Continuity

r is continuous at a if:

$$\lim_{t \to a} r(t) = r(a)$$

i.e. $\forall \epsilon > 0, \exists \delta > 0$ such that $|t-a| < \delta \implies |r(t)-r(a)| < \epsilon$ or, if f, g and h are continuous at a, r is continuous at a.

2.2 Differentiability

let $r: \mathbb{R} \to \mathbb{R}^3$ be a function. (We are taking \mathbb{R}^3 here, but it could be any \mathbb{R}^n) the derivative of r at a is defined as:

$$r'(a) = \lim_{t \to a} \frac{r(t) - r(a)}{t - a}$$

if

$$r(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$$

$$r'(t) = f'(t)\hat{i} + g'(t)\hat{j} + h'(t)\hat{k}$$

2.3 Integration

let $f:[a,b]\to\mathbb{R}$ be a function.

the integral of f from a to b is defined as:

$$\int_a^b f(x)dx = \text{Area under the curve } y = f(x) \text{ from } x = a \text{ to } x = b$$

Anti-derivative let $f:[a,b] \to \mathbb{R}$ be a function.

$$\int f(t)dt = F(t) + c$$

such that F'(t) = f(t) and c is an arbitrary constant

Fundamental Theorem of Calculus $\text{let } f:[a,b]\to\mathbb{R} \text{ be a function and } F$ be its anti-derivative.

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

2.3.1 Extending to a Vector Valued Function

Consider a function $r: \mathbb{R} \to \mathbb{R}^3$ (we are taking \mathbb{R}^3 as an example, it could be any \mathbb{R}^n)

$$\begin{split} r(t) &= f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k} \\ \int_a^b r(t)dt &= \int_a^b f(t)dt\hat{i} + \int_a^b g(t)dt\hat{j} + \int_a^b h(t)dt\hat{k} \end{split}$$

Anti-derivative

$$\int r(t)dt = \left(\int f(t)dt + c_1\right)\hat{i} + \left(\int g(t)dt + c_2\right)\hat{j} + \left(\int h(t)dt + c_3\right)\hat{k}$$
$$\int r(t)dt = R(t) + C$$

where R'(t) = r(t) and C is an arbitrary constant vector.

$$R(t) = F(t)\hat{i} + G(t)\hat{j} + H(t)\hat{k}$$

where F'(t) = f(t), G'(t) = g(t) and H'(t) = h(t)

2.3.2 Length of a Curve

let $r:[a,b]\to\mathbb{R}^3$ be a function. (As usual, we are taking \mathbb{R}^3 , but it can be any \mathbb{R}^n)

the length of the curve l from a to b is defined as:

$$l = \int_{a}^{b} |r'(t)| dt$$

3 Multi-Variable Functions

let $f:D\to\mathbb{R}$ be a function. Let $D\subseteq\mathbb{R}^n.$ Then f is called a Multi Variable Function

Eg:

$$f(x,y) = \frac{1}{x^2 + y^2}$$

Domain of f is $\mathbb{R}^2 - \{(0,0)\}$

3.1 Limits

let $f:D\to\mathbb{R}$ be a function. and $D\subseteq\mathbb{R}^2$. (we are taking \mathbb{R}^2 but it can be extended to any \mathbb{R}^n)

$$\lim_{(x,y)\to(x_1,y_1)} f(x,y) = L$$

if $\forall \epsilon > 0, \exists \delta > 0$ such that $|(x,y) - (x_1,y_1)| < \delta \implies |f(x,y) - L| < \epsilon$

Eg:

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$

$$\lim_{(x,y)\to(0,0)} \frac{x(x-y)}{\sqrt{x}-\sqrt{y}}$$

$$\lim_{(x,y)\to(0,0)} x(\sqrt{x} + \sqrt{y})$$

$$\therefore \lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = 0$$

Eg:

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2}$$

this limit does not exist.

3.2 Derivatives

The usual definition of derivatives can't be extended to multi-variable functions. Eg:

$$f(x,y) = x$$
$$f'(x) = \lim_{(x,y)\to(x_1,y_1)} \frac{f(x,y) - f(x_1,y_1)}{|(x,y) - (x_1,y_1)|}$$

if we keep y constant, Then the above limit becomes:

$$f'(x, y_0) = \lim_{(x, y_0) \to (x_1, y_0)} \frac{x - x_1}{|x - x_1|}$$

which does not exist.

Hence, we define partial derivatives.

let $f: D \to \mathbb{R}$ be a function. and $D \subseteq \mathbb{R}^2$. (we are taking \mathbb{R}^2 but it can be extended to any \mathbb{R}^n)

the partial derivative of f with respect to x at (x_0, y_0) is defined as:

$$\frac{\partial f}{\partial x}\Big|_{(x_0,y_0)} = \frac{f(x,y) - f(x_0,y_0)}{x - x_0}$$

Example

$$f(x,y) = \begin{cases} 0, xy = 0\\ 1, xy \neq 0 \end{cases}$$

The above function seems to be continuous if we approach (0,0) along the x or y axes. But if we approach it along any other line passing through the origin, the limit doesn't exist. Therefore, f(x,y) is not continuous at (0,0).

But the partial derivatives wrt x and y still exist:

$$\frac{\partial f}{\partial x}|_{(0,0)} = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 0$$

$$\frac{\partial f}{\partial y}\Big|(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = 0$$

3.2.1 Chain Rule

If w = f(x, y) is differentiable and x = x(t) and y = y(t) are differentiable functions of t, then the derivative of w with respect to t is given by:

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Now, this can be extended to n variable function $w = \psi(a, b, c, ...)$ by:

$$\frac{dw}{dt} = \frac{\partial \psi}{\partial a} \frac{da}{dt} + \frac{\partial \psi}{\partial b} \frac{db}{dt} + \frac{\partial \psi}{\partial c} \frac{dc}{dt} + \dots$$

3.3 Differentiability

Let $f: \mathbb{R}^2 \to \mathbb{R}$ is said to be differentiable at (x_0, y_0) if Δz satisfies the following equation of the form:

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

in which both $\epsilon_1, \epsilon_2 \to 0$ as both $\Delta x, \Delta y \to 0$

3.3.1 Directional Derivative

Let f(x, y) be a function in 2 variables and $\vec{u} = u_1 \hat{i} + u_2 \hat{j}$ be a vector in \mathbb{R}^2 . The directional derivative of f along u at $P_0(x_0, y_0)$:

$$(D_u f)_{P_0} = \lim_{t \to 0} \frac{f(x_0 + tu_1, y_0 + tu_2) + f(x_0, y_0)}{t}$$

(The denominator should be t|u| but we don't take it at such for some unknown reason)

Taking the same example as before: if $(u_1, u_2) \neq (0, 0)$

$$(D_u f)_{(0,0)} = \lim_{t \to 0} \frac{f(tu_1, tu_2) - f(0,0)}{t}$$
$$= \lim_{t \to 0} = \frac{1}{t}$$

But this limit doesn't exist.

Another method to evaluate the directional derivative is by using gradients: let $u=u_1\hat{i}+u_2\hat{j}$

$$(D_u f)_{P_0} = \left(\frac{\partial f}{\partial x}\right)_{P_0} \frac{dx}{ds} + \left(\frac{\partial f}{\partial y}\right)_{P_0} \frac{dy}{ds}$$

now, $\frac{dx}{ds} = u_1$ and $\frac{dy}{ds} = u_2$

$$(D_u f)_{P_0} = \left(\frac{\partial f}{\partial x}\right)_{P_0} u_1 + \left(\frac{\partial f}{\partial y}\right)_{P_0} u_2$$
$$(D_u f)_{P_0} = (\nabla f)_{P_0} \cdot u$$

3.3.2 Gradients

The gradient vector of a function f(x,y) at a point P_0 is given by:

$$\nabla_{P_0} f = \frac{\partial f}{\partial x} \Big|_{P_0} \hat{i} + \frac{\partial f}{\partial y} \Big|_{P_0} \hat{j}$$

Note: This formula can be extended to any \mathbb{R}^n . Though the geometric meaning may not remain the same.

Also, at every point P_0 , the gradient vector is perpendicular to the tangent plane to that curve at that point P_0 .

4 Tangent Planes and Normal Lines

The Tangent Plane at the point $P_0(x_0, y_0, z_0)$ on the level surface f(x, y, z) = c of a differentiable function f is the plane through P_0 and perpendicular to $\nabla_{P_0} f$. The Normal Line of f at the point P_0 is the line through P_0 is the line parallel to $\nabla_{P_0} f$ and passing through P_0 .

4.0.1 Estimation of change in a specific direction

let f be a function of 2 or more variables and u be a unit vector. Then the change in f in the direction of u is given by:

$$df = (\nabla_{P_0} f \cdot u) ds$$

where ds is the small change in the direction of u.

5 Extreme Values and Saddle Points

Local Minima: In 2D, $f(x_0, y_0)$ is a local minima if $f(x_0, y_0) \le f(x, y)$ for all (x, y) in some open disk centered at (x_0, y_0)

Local Maxima: In 2D, $f(x_0, y_0)$ is a local maxima if $f(x_0, y_0) \ge f(x, y)$ for all (x, y) in some open disk centered at (x_0, y_0)

Geometrically, local minima are valleys bottoms, and local maxima are peaks.

5.1 First Derivative Test

If $P_0(x_0, y_0)$ is a local extremum in the domain of f, and f is differentiable at P_0 , and if the first partial derivatives of f exist at P_0 , then:

$$\frac{\partial f}{\partial x} = 0 \qquad \qquad \frac{\partial f}{\partial y} = 0$$

A point where both the partial derivatives are zero is called a critical point.

5.2 Saddle Points

A differentiable function f(x, y) has a saddle point at $P_0(x_0, y_0)$ if f has a critical point P_0 if in every open disk centered at P_0 there are domain points (x, y) such that $f(x, y) > f(x_0, y_0)$ and $f(x, y) < f(x_0, y_0)$

5.3 Second Derivative Test

Let f(x, y) be a function of 2 variables and $P_0(x_0, y_0)$ be a critical point of f. If the second partial derivatives of f exist and are continuous in some open disk centered at P_0 , then:

- f has a local minima at P_0 , if $f_{xx}f_{yy} f_{xy}^2 > 0$ and $f_{xx} > 0$ at point P_0
- f has a local maxima at P_0 , if $f_{xx}f_{yy} f_{xy}^2 > 0$ and $f_{xx} < 0$ at point P_0
- f has a saddle point at P_0 , if $f_{xx}f_{yy} f_{xy}^2 < 0$ at point P_0

6 Lagrange Multipliers

When we need to find the extremum points of a function whose domain is constrained to a particular subset of a plane

The method of Lagrange Multipliers is as follows:

The local extremum values of f(x, y, z) whose variables are subject to a constraint g(x, y, z) = 0 are found to be on the surface g(x, y, z) = 0 and following the following differential equation:

$$\nabla f = \lambda \nabla g$$

7 Integration

We will consider \mathbb{R}^2 for now, but the same can be extended to \mathbb{R}^n Consider the rectangle $R:[a,b]\times[c,d]=\{(x,y)\mid x\in[a,b],y\in[c,d]\}$ in \mathbb{R}^2 . Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be a function.

The analogue of the Riemann Sum for a function of 2 variables is given by: Take a partition of the rectangle R into partitions:

$$P = \{a = x_0 < x_1 < \dots < x_{n-1} < x_n = b\}$$

$$Q = \{c = y_0 < y_1 < \dots < y_{m-1} < y_m = d\}$$

$$P \times Q = \{(x_i, y_j), i = \{1, 2, \dots, n\}, j = \{1, 2, \dots, m\}\}$$

The Riemann Sum is given by:

$$S = \sum_{\alpha=1}^{\eta} f(p_{\alpha}) \Delta A_{\alpha}$$

If the above summation converges to a Real Number as $n, m \to \infty$, regardless of the choice made in forming the Riemann sum, then the function f is Riemann Integrable over R.

Note: When the function f is continuous in R, then the Riemann sum will always converge.

Theorem If $f:[a,b]\times [c,d]\to \mathbb{R}$ is continuous, then:

$$\int_a^b \left(\int_c^d f(x,y) dy \right) dx = \iint_R f(x,y) dA = \int_c^d \left(\int_a^b f(x,y) dx \right) dy$$

7.1 Geometric Interpretation

for a function $f:[a,b]\times [c,d]\to \mathbb{R}$, the integral of f over the rectangle R is the volume of the solid bounded by the surface z=f(x,y) and the rectangle R.

