Data Analytics I| **Assignment 4**

Author: Prateek Pandey

ID: 2022201035

October 30, 2023

Contents

- There are very less samples in the above dataset, How do you deal with that?
 - The dataset I'm working with contains a limited number of samples. In order to preprocess this data, I transformed textual labels into a one-hot encoding format. This conversion resulted in a sparse matrix with numerous columns, reflecting the categorical values as binary features.
 - Additionally, I standardized the numeric columns to follow a standard normal distribution. This scaling process ensures that all numerical features contribute uniformly to the analysis, preparing them for further processing.
 - Due to the high dimensionality caused by the sparsity from one-hot encoding, I employed Principal Component Analysis (PCA). PCA allowed me to address both the sparsity and the high number of dimensions. By reducing the dimensionality, I was able to obtain a denser representation of the data, condensing it down to 7 columns, while still retaining crucial information.
 - Thus only relevant data remained
 - While Evaluating Model we used Stratified K-Fold Cross Validation, It maximizes the use of the available data by iteratively using it for both training and validation, reducing the variance in model performance evaluation and providing a more reliable estimate of how the model will perform on unseen data.

```
[26] from sklearn.model_selection import StratifiedKFold
   X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=17)
   skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=17)
   lst_accu_stratified = []

for train_index, test_index in skf.split(X, Y):
        x_train_fold, x_test_fold = X[train_index], X[test_index]
        y_train_fold, y_test_fold = Y[train_index], Y[test_index]
        ovr=oneysone(x_train_fold,y_train_fold)
        ovr.fit()
        y_pred=ovr.predict(x_test_fold)
        lst_accu_stratified.append(accuracy_score(y_pred, y_test_fold))
```

```
[26] from sklearn.model_selection import StratifiedKFold
   X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=17)
   skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=17)
   lst_accu_stratified = []

for train_index, test_index in skf.split(X, Y):
        x_train_fold, x_test_fold = X[train_index], X[test_index]
        y_train_fold, y_test_fold = Y[train_index], Y[test_index]
        ovr=OneVsOne(x_train_fold,y_train_fold)
        ovr.fit()
        y_pred=ovr.predict(x_test_fold)
        lst_accu_stratified.append(accuracy_score(y_pred, y_test_fold))
```

- Plot the confusion matrix, and include the precision, recall, f1-score metrics in the report .
 - o One Vs All
 - Precision Recall Accuracy

	precision	recall	f1-score	support
0 1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	27 17 34
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	78 78 78

■ Confusion Matrix

o One vs One

■ Precision Recall Accuracy

	precision	recall	f1-score	support
0 1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	27 17 34
accuracy macro avg	1.00	1.00	1.00	78 78
weighted avg	1.00	1.00	1.00	78

■ Confusion Matrix

- Compare the results obtained for one-vs-one and one-vs-all(which according to you performs better for the above dataset)
 - o One Vs One

One Vs Rest

Since both the models are showing 1.0 accuracy at a split of 0.7-0.3 both the models are accurate

Random Forest

• Predicted vs Actual Labels

```
[{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Chinstrap penguin (Pygoscelis antarctica)',
 'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
 'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Chinstrap penguin (Pygoscelis antarctica)',
  'predicted': 'Chinstrap penguin (Pygoscelis antarctica)'},
{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Chinstrap penguin (Pygoscelis antarctica)',
  'predicted': 'Chinstrap penguin (Pygoscelis antarctica)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
 'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Chinstrap penguin (Pygoscelis antarctica)'
 'predicted': 'Chinstrap penguin (Pygoscelis antarctica)'},
{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Adelie Penguin (Pygoscelis adeliae)',
  'predicted': 'Adelie Penguin (Pygoscelis adeliae)'},
{'actual': 'Gentoo penguin (Pygoscelis papua)',
  'predicted': 'Gentoo penguin (Pygoscelis papua)'},
```

	precision	recall	f1-score	support
Adelie Penguin (Pygoscelis adeliae) Chinstrap penguin (Pygoscelis antarctica) Gentoo penguin (Pygoscelis papua)	1.00 0.82 1.00	0.89 1.00 1.00	0.94 0.90 1.00	18 9 25
accuracy macro avg weighted avg	0.94 0.97	0.96 0.96	0.96 0.95 0.96	52 52 52

• Accuracy Score over no. of trees 1-201 at interval of 10

Confusion Matrix

