<u>Crystal Structure Of Beta Site App Cleaving Enzyme (Bace) And Methods Of UseThereof</u>

Related Applications

This application claims priority to U.S. Provisional Patent Application Serial Number 60/398,681 filed July 26, 2002, and corresponds to International Patent Application number (Attorney docket number AHB/CP6162168) filed July 25, 2003.

All documents cited in this text, and all documents cited or referenced in documents cited in this text, and any manufacturer's instructions or catalogues for any products cited or mentioned in this text or in any document hereby incorporated into this text, are hereby incorporated herein by reference. Documents incorporated by reference into this text or any teachings therein may be used in the practice of this invention. Documents incorporated by reference into this text are not admitted to be prior art. Furthermore, authors or inventors on documents incorporated by reference into this text are not to be considered to be "another" or "others" as to the present inventive entity and *vice versa*, especially where one or more authors or inventors on documents incorporated by reference into this text are an inventor or inventors named in the present inventive entity.

Field of the Invention

The present invention relates to the mutant BACE proteins, recombinant BACE proteins, processes for crystallizing BACE and in particular to its crystal structure and to the uses of this structure in drug discovery.

Background to the Invention

Alzheimer's disease

15

20

25

Alzheimer's disease (AD) is estimated to afflict more than 20 million people worldwide and is believed to be the most common form of dementia. Alzheimer's disease is a progressive dementia in which massive deposits of aggregated protein breakdown products – amyloid plaques and neurofibrillary tangles accumulate in the brain. The amyloid plaques are thought to be responsible for the mental decline seen in Alzheimer's patients.

A β or amyloid- β -protein is the major constituent of the plaques which are characteristic of Alzheimer's disease (De Strooper et al, 1999). A β is a 39-42 residue peptide formed by the specific cleavage of a class I transmembrane protein called APP, or amyloid precursor protein. A β -secretase activity cleaves this protein between residues Met671 and Asp672 (numbering of 770aa isoform of APP) to form the N-terminus of A β . A second cleavage of the peptide is associated with β -secretase to form the C-terminus of the A β peptide.

Beta Site APP Cleaving Enzyme (BACE) and Alzheimer's Disease

20

25

30

Several groups have identified and isolated aspartate proteases that have β-secretase activity (Hussain et al., 1999; Lin et. al, 2000; Yan et. al, 1999; Sinha et. al., 1999 and Vassar et. al., 1999). β-secretase is also known in the literature as Asp2 (Yan et. al, 1999), Beta site APP Cleaving Enzyme (BACE or BACE1) (Vassar et. al., 1999) or memapsin-2 (Lin et al., 2000). BACE was identified using a number of experimental approaches such as EST database analysis (Hussain et al. 1999); expression cloning (Vassar et al. 1999); identification of human homologs from public databases of predicted *C. elegans* proteins (Yan et al. 1999) and finally utilizing an inhibitor to purify the protein from human brain (Sinha et al. 1999). Thus, five groups employing three different experimental approaches led to the identification of the same enzyme, making a strong case that BACE is a β-secretase. Mention is also made of the patent literature: WO96/40885, EP871720, U.S. Patents Nos. 5,942,400 and 5,744,346, EP855444, US 6,319,689, WO99/64587, WO99/31236, EP1037977, WO00/17369, WO01/23533, WO0047618, WO00/58479, WO00/69262, WO01/00663, WO01/00665, US 6,313,268.

BACE is a membrane bound type 1 protein that is synthesized as a partially active proenzyme, and is abundantly expressed in brain tissue. It is thought to represent the major β -secretase activity, and is considered to be the rate-limiting step in the production of $A\beta$. It is thus of special interest in the pathology of Alzheimer's disease, and in the development of drugs as a treatment for Alzheimer's disease.

BACE was found to be a pepsin-like aspartyl proteinase, the mature enzyme consisting of the N-terminal catalytic domain, a transmembrane domain, and a small cytoplasmic domain. BACE has an optimum activity at pH 4.0-5.0 (Vassar et al, 1999) and is inhibited weakly by standard pepsin inhibitors such as pepstatin. It has been shown that the catalytic domain

minus the transmembrane and cytoplasmic domain has activity against substrate peptides (Lin et al, 2000). Consequently, this soluble catalytic domain is suitable for crystallization studies and a crystal structure of this will give a representative structure of the BACE active site for the design of inhibitor molecules.

The likelihood of developing Alzheimer's disease increases with age, and as the aging population of the developed world increases, this disease becomes a greater and greater problem. In addition to this, there is a familial link to Alzheimer's disease and consequently any individuals possessing the double mutation of APP known as the Swedish mutation (in which the mutated APP forms a considerably improved substrate for BACE) have a much greater chance of developing AD, and also of developing it at an early age (see also US 6,245,964 and US 5,877,399 pertaining to transgenic rodents comprising APP-Swedish). Consequently there is a strong case for developing a compound that can be used in a prophylactic fashion for these individuals.

Hence, drugs that reduce or block BACE activity would reduce Aβ levels and levels of fragments of Aβ in the brain or elsewhere where Aβ or fragments thereof deposit and thus slow the formation of amyloid plaques and the progression of AD or other maladies involving deposition of Aβ or fragments thereof (Yankner, 1996; De Strooper and Konig, 1999). BACE is therefore an important candidate for the development of drugs as a treatment against Alzheimer's disease and/or against such other maladies.

The therapeutic potential of inhibiting the deposition of Aβ has motivated many groups to isolate and characterize secretase enzymes and to identify their potential inhibitors (*see*, e.g., WO01/23533 A2, EP0855444, WO00/17369, WO00/58479, WO00/47618, WO00/77030, WO01/00665, WO01/00663, WO01/29563, WO02/25276, US5,942,400, US6,245,884, US6,221,667, US6,211,235, WO02/02505, WO02/02506, WO02/02512, WO02/02518, WO02/02520, WO02/14264).

The gene encoding APP is found on chromosome 21, which is also the chromosome found as an extra copy in Downs syndrome. Downs syndrome patients tend to acquire Alzheimers disease at an early age, with almost all those over 40 years of age showing Alzheimers-type pathology (Oyama et al., 1994). This is thought to be due to the extra copy of the APP gene found in these patients, which leads to overexpression of APP and therefore to increased

30

levels of APP\$ causing the high prevalence of Alzheimers disease seen in this population. Thus inhibitors of BACE could be useful in reducing Alzheimers-type pathology in Down's syndrome patients.

It would therefore be useful to inhibit the deposition of Aβ and portions thereof by inhibiting BACE through inhibitors designed from the BACE structure as provided herein. The determination of the three-dimensional structure of BACE provides a basis for the design of new and specific ligands for BACE. For example, knowing the three-dimensional structure of BACE, computer modelling programs may be used to design different molecules expected to interact with possible or confirmed binding cavities or other structural or functional features of BACE or structure-based design approaches may used such as those described in Blundell *et al* (Nature Reviews, Drug Discovery, Vol 1, pg 45-54, 2002).

Ideally it would be desirable to have an abundant supply of this enzyme in homogenous form. It would also be preferable to solve the structure of a form of BACE with an unoccupied active site. This could be used to soak in small molecule inhibitors of the enzyme and to investigate their binding modes. We describe here the high yielding production of BACE from bacterial cells in homogenous form, and the generation of protein suitable for crystallisation and structure determination of BACE in Apo form

Protein Crystallisation

5

10

15

30

It is well known in the art of protein chemistry that crystallising a protein is an uncertain and difficult process without any clear expectation of success. It is now evident that protein crystallization is the main hurdle in protein structure determination. For this reason, protein crystallization has become a research subject in and of itself, and is not simply an extension of the protein crystallographer's laboratory. There are many references, which describe the difficulties associated with growing protein crystals (Kierzek AM. and Zielenkiewicz P. (2001) Biophysical Chemistry 91 1-20 Models of protein crystal growth; Wiencek JM (1999) Annu Rev Biomed Eng 1 505-534 New Strategies for crystal growth).

The reasons why it is commonly held that crystallization of protein molecules from solution is the major obstacle in the process of determining protein structures are many; proteins are complex molecules, and the delicate balance involving specific and non-specific

interactions with other protein molecules and small molecules in solution, is difficult to predict.

5

.10

15

20

25

30

Each protein crystallizes under a unique set of conditions, which cannot be predicted in advance. Simply supersaturating the protein to bring it out of solution will not work, the result would, in most cases, be an amorphous precipitate. Many precipitating agents are used, common ones are different salts, and polyethylene glycols, but others are known. In addition, additives such as metals and detergents can be added to modulate the behaviour of the protein in solution. Many kits are available (e.g., from Hampton Research), which attempt to cover as many parameters in crystallization space as possible, but in many cases these are just a starting point to optimize crystalline precipitates and crystals which are unsuitable for diffraction analysis. Successful crystallization is aided by knowledge of the proteins behaviour in terms of solubility, dependence on metal ions for correct folding or activity, interactions with other molecules and any other information that is available. Even so, crystallization of proteins is often regarded as a time-consuming process, whereby subsequent experiments build on observations of past trials.

In cases where protein crystals are obtained, these are not necessarily always suitable for diffraction analysis; they may be limited in resolution, and it may subsequently be difficult to improve them to the point at which they will diffract to the resolution required for analysis. Limited resolution in a crystal can be due to several things. It may be due to intrinsic mobility of the protein within the crystal; this can be difficult to overcome, even with other crystal forms. It may be due to high solvent content within the crystal, which consequently results in weak scattering. Alternatively, it could be due to defects within the crystal lattice, which means that the diffracted x-rays will not be completely in phase from unit to unit within the lattice. Any one of these or a combination of these could mean that the crystals are not suitable for structure determination.

Some proteins never crystallize, and after a reasonable attempt it is necessary to examine the protein itself and consider whether it is possible to make individual domains, different N or C-terminal truncations, or point mutations. It is often hard to predict how a protein could be re-engineered in such a manner as to improve crystallisability. Sometimes the inclusion of a ligand in the crystallisation mixture is essential for the production suitable crystals. Our

understanding of crystallisation mechanisms is still incomplete and the factors of protein structure, which are involved in crystallisation, are not well known.

BACE Production for Crystallisation

10

15

20

25

Beta secretase (BACE) is an integral membrane protein containing a signal sequence, a propeptide, a catalytic aspartyl protease domain, a transmembrane region and a C-terminal cytoplasmic region. During transit through the endoplasmic reticulum, Golgi apparatus and trans Golgi network the pro-peptide is cleaved by a furin-like protease (Bennett et al 2000, Creemers et al 2001) and N-glycosylation is added and matured (Haniu et al 2000). The protein contains 4 potential N-linked glycosylation sites, all of which are used (Bennett et al, 2000).

Certain active recombinant BACEs - different from those of the herein invention - have been produced using heterologous expression systems for mammalian cells (Vassar et al, 1999, Hussain et al, 1999), insect cells (Mallender et al, 2001) and bacterial cells (Lin et al 2000). Preferred constructs for crystallisation would be soluble and lack glycosylation: the former can be achieved by C-terminal truncation of the protein to remove the transmembrane and cytoplasmic regions; while glycosylation could be removed either by use of a deglycosylating agent such as PNGase F, by expression of the protein in bacteria or by mutation of the glycosylation sites.

The protein used for BACE crystallisation by Hong et al (2000) was produced in bacteria and was truncated at the C-terminus. Their protein was produced as insoluble inclusion bodies and required refolding to give soluble, active protein. Refolding of BACE is made more complex by the presence of 3 disulphide bonds in the native protease domain, which require careful control of redox conditions to form during *in-vitro* refolding. The protein produced by Hong et al was a mixture of products and was crystallised with inhibitor bound (see WO 01/00663, WO 01/00665, and US 6,545,127).

Mention is also made of WO 02/25276, which describes the crystallisation of BACE produced in mammalian cells. The protein produced also was a mixture of protein species and was also crystallized with an inhibitor bound.

Mention is also made of WO03/012089, which describes the crystallisation of BACE produced from insect cells. The co-ordinates of BACE with an inhibitor bound are provided.

Summary of the Invention

In general aspects, the present invention is concerned with the provision of a new, high resolution, apo, crystal form of BACE and the use of this structure in identifying or obtaining agent compounds (especially inhibitors of BACE) for modulating BACE activity, and in preferred embodiments identifying or obtaining actual agent compounds/inhibitors. Crystal structure information presented herein is useful in designing potential inhibitors and modelling them or their potential interaction with the BACE binding cavity. Potential inhibitors may be brought into contact with BACE to test for ability to interact with the BACE binding cavity. Actual inhibitors may be identified from among potential inhibitors synthesized following design and model work performed *in silico*. An inhibitor identified using the present invention may be formulated into a composition, for instance a composition comprising a pharmaceutically acceptable excipient, and may be used in the manufacture of a medicament for use in a method of treatment.

Thus, according to a first aspect of the present invention there is provided a mutant BACE protein, which protein lacks one or more proteolytic cleavage sites recognized by clostripain (or another protease which recognizes the same cleavage site as clostripain). In particular, the protein is a BACE protein, which comprises the sequence set out in residues 45 to 455 of SEQ ID NO:2 (43 to 453 SwissProt P56817), or a fragment thereof comprising residues corresponding to 58 to 398 of SEQ ID NO:2, modified by the following changes: (a) substitution or deletion of at least one residue which is a proteolytic cleavage site recognised by clostripain; and (b) optionally the replacement of from 1 to 30 other amino acids by an equivalent or fewer number of amino acids. It will be understood that when the BACE protein comprises a fragment as defined above, the fragment will comprise at least feature (a) and optionally feature (b).

20

25

30

The modification is such that the BACE protein preferably retains at least one proteolytic cleavage site recognised by clostripain so that it may be cleaved to provide homogeneous location at which cleavage occurs.

According to a second aspect of the present invention there is provided a mutant BACE protein which is truncated at the N-terminal up to and including R42, R45, G55, R56 or R57. In a preferred aspect, when the protein is truncated up and including R56 the residue at position 57 is not arginine. It may for example be lysine.

In a third aspect the invention provides a mutant BACE protein selected from: (a) SEQ ID 6; (b) SEQ ID 8; (c) SEQ ID 10; (d) SEQ ID 12; (e) SEQ ID 14; (f) SEQ ID 16; (g) SEQ ID 18; (h) SEQ ID 19; (i) SEQ ID 20; (j) SEQ ID 21.

In another aspect, the invention contemplates a nucleic acid (e.g. DNA or RNA) sequence encoding the BACE protein of the invention, as well as the complementary nucleic acid sequence counterpart.

10

15

20

25

The nucleic acids of the invention may be isolated, or may be present in the context of a vector or host cell. Thus, in another aspect, the invention contemplates a vector comprising the nucleic acid of the invention.

The nature of the vector of the invention is not critical to the invention. Any suitable vector may be used, including expression vectors, plasmid, virus, bacteriophage, transposon, minichromosome, liposome or mechanical carrier.

The expression vectors of the invention are DNA constructs suitable for expressing DNA which encodes the desired peptide and which may include: (a) a regulatory element (e.g. a promoter, operator, activator, repressor and/or enhancer), (b) a structural or coding sequence which is transcribed into mRNA and (c) appropriate transcription, translation, initiation and termination sequences. They may also contain sequence encoding any of various tags (e.g. to facilitate subsequent purification of the expressed protein, such as affinity (e.g. His tags).

Particularly preferred are vectors which comprise an expression element or elements operably linked to the DNA of the invention to provide for expression thereof at suitable levels. Any of a wide variety of expression elements may be used, and the expression element or elements may for example be selected from promoters, enhancers, ribosome binding sites, operators and activating sequences. Such expression elements may comprise an enhancer, and for example may be regulatable, for example being inducible (via the addition of an inducer).

The vector may further comprise a positive selectable marker and/or a negative selectable marker. The use of a positive selectable marker facilitates the selection and/or identification of cells containing the vector.

In another aspect, the invention contemplates a host cell comprising the vector of the invention. The nucleic acid of the invention may be introduced into the host cell by any of a large number of convenient methods, including calcium phosphate transfection, DEAE-Dextran mediated transfection, electroporation or any other method known in the art.

Any suitable host cell may be used, including prokaryotic host cells (such as *Escherichia coli*, *Streptomyces* spp. and *Bacillus subtilis*) and eukaryotic host cells. Suitable eukaryotic host cells include insect cells (e.g. using the baculovirus expression system), mammalian cells, fungal (e.g. yeast) cells and plant cells. Preferred mammalian cells are animal cells such as CHO, COS, C 127, 3T3, HeLa, HEK 293, NIH 3T3, BHK and Bowes melanoma (particularly preferred being CHO-K1, COS7, Y1 adrenal and carcinoma cells).

10

15

Cell-free translation systems can also be used to produce the peptides of the invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989).

Prokaryotic host cells are preferred in circumstances where the BACE protein is required in an unglycosylated state.

According to another aspect of the invention there is provided a process for producing the BACE protein of the invention comprising the steps of: (a) culturing the host cell of the invention under conditions suitable for expression of the BACE protein; and optionally (b) isolating the expressed recombinant BACE protein.

In a further aspect the invention provides a method of making BACE protein which comprises proteolytically cleaving a BACE protein which lacks one of more proteolytic cleavage sites as described above, the cleavage desirably occurring at (and including) one of position 42, 45, 55, 56 or 57, preferably 42, 56 or 57. Clostripain, or another protease which recognises the same cleavage site as clostripain, may be used.

Thus the resulting BACE protein of this aspect of invention will be a protein whose N-terminal corresponds to 45, 48, 58, 59 or 60 of SEQ ID NO:2, and whose C-terminal region extends to and includes at least 398 of SEQ ID NO:2. Preferably the C-terminal region terminates at a residue between a point corresponding to and including 398 up to and including 455. This BACE protein may additionally comprise a C-terminal tag, such as a tag comprising from 5 to 15 residues, such as a his tag or the like.

In another aspect of the invention there is provided a process for producing refolded recombinant BACE protein comprising the steps of: (a) solubilising the recombinant BACE; (b) diluting the solubilised BACE into an aqueous buffer containing sulfobetaine (for example at a concentration of 10 to 50 mM, for example 10 mM); and (c) maintaining the diluted solution at low temperature (for example, 3 to 6°C) and at high pH (e.g. 9 to 10.5) for at least 2 weeks (typically 3 weeks, more typically 4 weeks).

10

15

20

In another aspect the invention provides a process for producing a crystal of BACE comprising the step of growing the crystal by vapour diffusion using a reservoir buffer that contains 18-26 % PEG 5000 MME (for example, 20-24 % PEG 5000 MME, e.g. 20-22.5 % PEG 5000 MME), 180-220 mM (e.g. 200 mM) ammonium iodide and 180-22- mM (e.g. 200 mM) tri-sodium citrate (pH 6.4-6.6). In a further aspect the reservoir buffer may additionally comprise from 0 to 5% (v/v) glycerol, for example 2.5% v/v.

In another aspect the invention provides various BACE crystals, including a crystal of BACE having a hexagonal space group P6₁22 (and optionally having unit cell dimensions of a=b=103.2 Å, c=169.1 Å, α = β =60°, γ =120°, and a unit cell variability of 5% in all dimensions); a crystal of BACE having a resolution better than 3 Å (for example, better than 2.5 Å, e.g. better than 1.8 Å), and a crystal of BACE comprising a structure defined by all or a portion of the co-ordinates of Table 1.

In another aspect the invention provides a three-dimensional representation of BACE or of a portion of BACE, which representation comprises all or a portion of the coordinates of Table 1. The representation is preferably a BACE model.

The invention also contemplates a three-dimensional representation of a compound which fits the BACE model of the invention.

The invention also contemplates a computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing a BACE model; (b) providing a molecular structure to be fitted to said BACE model; and (c) fitting the molecular structure to the BACE model to produce a compound model.

5

10

15

20

25

In another aspect the invention provides a computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing the structure of a BACE as defined by the coordinates of Table 1; (b) providing a molecular structure to be fitted to said BACE structure; and (c) fitting the molecular structure to the BACE structure of Table 1.

In another aspect the invention provides a computer-based method for the analysis of molecular structures which comprises: (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 ("selected coordinates"); (b) providing the structure of a molecular structure to be fitted to the selected coordinates; and (c) fitting the structure to the selected coordinates of the BACE structure.

In another aspect the invention provides a computer-based method of rational drug design comprising comprising: (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 ("selected coordinates"); (b) providing the structures of a plurality of molecular fragments; (c) fitting the structure of each of the molecular fragments to the selected coordinates; and (d) assembling the molecular fragments into a single molecule to form a candidate modulator molecule.

In another aspect the invention provides a method for identifying a candidate modulator (e.g. candidate inhibitor) of BACE comprising the steps of: (a) employing a three-dimensional structure of BACE, at least one sub-domain thereof, or a plurality of atoms thereof, to characterise at least one BACE binding cavity, the three-dimensional structure being defined by atomic coordinate data according to Table 1; and (b) identifying the candidate modulator by designing or selecting a compound for interaction with the binding cavity.

In another aspect the invention provides a method for identifying an agent compound (e.g. an inhibitor) which modulates BACE activity, comprising the steps of: (a) employing three-dimensional atomic coordinate data according to Table 1 to characterise at least one (e.g. a plurality of) BACE binding site(s); (b) providing the structure of a candidate agent compound; (c) fitting the candidate agent compound to the binding sites; and (d) selecting the candidate agent compound.

In another aspect the invention provides a method of assessing the ability of a candidate modulator to interact with BACE which comprises the steps of: (a) obtaining or synthesising said candidate modulator; (b) forming a crystallized complex of BACE and said candidate modulator; and (c) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said candidate modulator to interact with BACE.

10

15

20

25

In another aspect the invention provides a method for determining the structure of a compound bound to BACE, said method comprising: (a) mixing BACE with the compound to form a BACE-compound complex; (b) crystallizing the BACE-compound complex; and (c) determining the structure of said BACE-compound(s) complex by reference to the data of Table 1.

In another aspect the invention provides a method for determining the structure of a compound bound to BACE, said method comprising: (a) providing a crystal of BACE; (b) soaking the crystal with one or more compound(s) to form a complex; and (c) determining the structure of the complex by employing the data of Table 1.

In another aspect the invention provides a method of determining the three dimensional structure of a BACE homologue or analogue of unknown structure, the method comprising the steps of: (a) aligning a representation of an amino acid sequence of the BACE homologue or analogue with the amino acid sequence of the BACE of Table 1 to match homologous regions of the amino acid sequences; (b) modelling the structure of the matched homologous regions of said target BACE of unknown structure on the corresponding regions of the BACE structure as defined by Table 1; and (c) determining a conformation for the BACE homologue or analogue which substantially preserves the structure of said matched homologous regions.

In another aspect the invention provides a method of providing data for generating structures and/or performing rational drug design for BACE, BACE homologues or analogues, complexes of BACE with a potential modulator, or complexes of BACE homologues or analogues with potential modulators, the method comprising: (i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE, at least one sub-domain of the three-dimensional structure of BACE, or the coordinates of a plurality of atoms of BACE; (b) structure factor data for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE homologue or analogue generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and (ii) receiving said computer-readable data from said remote device.

In another aspect the invention provides a computer system containing one or more of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE or at least selected coordinates thereof; (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a target BACE protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; or (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

In another aspect the invention provides a computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data are defined by all or a portion of the structure coordinates of BACE of Table 1, or a homologue of BACE, wherein said homologue comprises backbone atoms that have a root mean square deviation from the Cα or backbone atoms (nitrogen-carbon_α-carbon) of Table 1 of less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å and most preferably less than 0.5 Å when superimposed on the coordinates provided in Table 1 for the residue backbone atoms.

In another aspect the invention provides a computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion (e.g. selected coordinates as defined herein) of the structural coordinates for BACE according to Table 1; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.

In another aspect the invention provides a computer readable medium with at least one of:

(a) atomic coordinate data according to Table 1 recorded thereon, said data defining the three-dimensional structure of BACE, or at least selected coordinates thereof; (b) structure factor data for BACE recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a BACE-ligand complex or a BACE homologue or analogue generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

10

15

20

25

30

In another aspect the invention provides a method for determining the structure of a protein, which method comprises; providing the co-ordinates of Table 1, and either (a) positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein or (b) assigning NMR spectra Peaks of said protein by manipulating the coordinates of Table 1.

In another aspect the invention contemplates BACE modulator molecules, medicaments, pharmaceutical compositions and drugs obtainable by, or obtained by, the processes and methods of the invention, and to methods of therapy (e.g. the treatment of Alzheimer's disease) using such products.

It is to be understood that, except where explicitly stated otherwise, references herein to "BACE protein" or "BACE peptide", "mutant BACE protein" or "mutant BACE peptide" and to "BACE protein" or "BACE peptide", as well as references to any of the foregoing

which are further defined *inter alia* by reference to one or more specific amino acid sequences, are intended to cover BACE homologues, allelic forms, species variants, derivatives and muteins thereof (as defined below).

Thus, references to mutant BACE proteins having particular amino acid sequences may optionally be interpreted to cover the corresponding homologues, allelic forms, species variants, derivatives and muteins (as defined below) of that particular BACE amino acid sequence.

5

10

15

25

Definitions

Where used herein and unless specifically indicated otherwise, the following terms are intended to have the following meanings in addition to any broader (or narrower) meanings the terms might enjoy in the art:

The term "isolated" is used herein to indicate that the isolated moiety (e.g. peptide or nucleic acid) exists in a physical milieu distinct from that in which it occurs in nature. For example, the isolated peptide may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs. The absolute level of purity is not critical, and those skilled in the art can readily determine appropriate levels of purity according to the use to which the peptide is to be put. The term "isolating" when used a step in a process is to be interpreted accordingly.

In many circumstances, the isolated moiety will form part of a composition (for example a more or less crude extract containing many other molecules and substances), buffer system, matrix or excipient, which may for example contain other components (including proteins, such as albumin).

In other circumstances, the isolated moiety may be purified to essential homogeneity, for example as determined by PAGE or column chromatography (for example HPLC or mass spectrometry). In preferred embodiments, the isolated peptide or nucleic acid of the invention is essentially the sole peptide or nucleic acid in a given composition.

The proteins and nucleic acids of the invention need not be isolated in the sense defined above, however. For example, more or less crude culture supernatants (e.g. "spent"

medium) may contain sufficient concentrations of the proteins or nucleic acids of the invention for use in several applications. Preferably, such supernatants are fractionated and/or extracted, but in many circumstances they may be used without pretreatment. They are preferably derived from spent media used to culture the host cells of the invention (for example, the bacterial sources described infra). The supernatants are preferably sterile. They may be treated in various ways, for example by concentration, filtration, centrifugation, spray drying, dialysis and/or lyophilisation. Conveniently, the culture supernatants are simply centrifuged to remove cells/cell debris and filtered.

The term "pharmaceutical composition" is used herein to define a solid or liquid composition in a form, concentration and level of purity suitable for administration to a patient (e.g. a human or animal patient) upon which administration it can elicit the desired physiological changes.

10

15

The term "recombinant" as applied to the proteins of the invention is used herein to define a protein that has been produced by that body of techniques collectively known as "recombinant DNA technology" (for example, using the nucleic acid, vectors and or host cells described herein).

The term "synthetic" as applied to the peptides of the invention is used herein to define a peptide that has been chemically synthesised *in vitro* (for example by any of the commercially available solid-phase peptide-synthesis systems).

As used herein in relation to the vectors of the invention, the term "operably linked" refers to a condition in which portions of a linear nucleic acid sequence are capable of influencing the activity of other portions of the same linear nucleic acid sequence. For example, DNA for a signal peptide (secretory leader) is operably linked to DNA for a polypeptide if it is expressed as a precursor which participates in the secretion of the polypeptide; a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned in the correct reading-frame so as to permit translation.

By "apo-structure" we mean the three-dimensional structure of the protein that contains no ligand, e.g. substrate or product or cofactor or inhibitor i.e. the active site of the protein is empty.

In the following by "binding site" or "binding cavity" we mean a site (such as an atom, a functional group of an amino acid residue or a plurality of such atoms and/or groups) in a BACE binding cavity, which may bind to an agent compound such as a candidate inhibitor. Depending on the particular molecule in the cavity, sites may exhibit attractive or repulsive binding interactions, brought about by charge, steric considerations and the like.

Binding sites are sites within a macromolecule, or on its surface, at which ligands can bind. Examples are the catalytic or active site of an enzyme (the site on an enzyme at which the amino acid residues involved in catalysing the enzymatic reaction are located), allosteric binding sites (ligand binding sites distinct from the catalytic site, but which can modulate enzymatic activity upon ligand binding), cofactor binding sites (sites involved in binding/co-ordinating cofactors e.g. metal ions), or substrate binding sites (the ligand binding sites on a protein at which the substrates for the enzymatic reaction bind). There are also sites of protein-protein interaction.

10

15

In the following by "active site" we mean a site (such as an atom, a functional group of an amino acid residue or a plurality of such atoms and/or groups) in a BACE binding cavity, which is involved in catalysis.

- By "fitting", is meant determining by automatic, or semi-automatic means, interactions between one or more atoms of a candidate molecule and at least one atom of a BACE structure of the invention, and calculating the extent to which such interactions are stable. Interactions include attraction and repulsion, brought about by charge, steric considerations and the like. Various computer-based methods for fitting are described further herein.
- By "root mean square deviation" we mean the square root of the arithmetic mean of the squares of the deviations from the mean.

By a "computer system" we mean the hardware means, software means and data storage means used to analyse atomic coordinate data. The minimum hardware means of the computer-based systems of the present invention typically comprises a central processing unit (CPU), input means, output means and data storage means. Desirably a monitor is provided to visualise structure data. The data storage means may be RAM or means for accessing computer readable media of the invention. Examples of such systems are microcomputer workstations available from Silicon Graphics Incorporated and Sun Microsystems running Unix based, Windows NT or IBM OS/2 operating systems.

By "computer readable media" we mean any medium or media, which can be read and accessed directly by a computer e.g. so that the media is suitable for use in the above-mentioned computer system. Such media include, but are not limited to: magnetic storage media such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

10

The term "homologue" is used herein in two distinct senses. It is used *sensu stricto* to define proteins that share a common ancestor. In this sense it covers orthologues (species variants which have diverged in different organisms following a speciation event) and paralogues (variants which have diverged within the same organism after a gene duplication event). Thus, there is a direct evolutionary relationship between such homologues and this may be reflected in structural and/or functional similarities. For example, orthologues may perform the same role in each organism in which they are found, while paralogues may perform functionally related (but distinct) roles within the same organism.

- The term is also used herein *sensu lato* to define proteins which are to some extent structurally similar (i.e. not necessarily evolutionary related and/or structurally and functionally equivalent). In this sense, homology is recognised on the basis of purely structural criteria by the presence of amino acid sequence identities and/or conservative amino acid changes and/or similar secondary, tertiary or quaternary structures.
- The term "analogue" is used herein to define proteins with similar functions and/or structures and which are not necessarily evolutionary related. Protein analogues which share function but which have no or little structural similarities are likely to have arisen by convergent evolution. Conversely, protein analogues which share structural similarities but which exhibit few or no functional similarities are likely to have arisen by divergent evolution. Protein analogues may be identified, for example, by screening a library of

proteins to detect those with similar function(s) but different physical properties, or by screening for proteins which share structural features but not necessarily any functions (e.g., by immunological screening).

The term "equivalent" is used herein to define those protein analogues which exhibit substantially the same function(s) and which share at least some structural features (e.g. functional domains), but which have not evolved from a common ancestor. Such equivalents are typically synthetic proteins (see below) and may be generated, for example, by identifying sequences of functional importance (e.g. by identifying conserved or canonical sequences, functional domains or by mutagenesis followed by functional assay), selecting an amino acid sequence on that basis and then synthesising a peptide based on the selected amino acid sequence. Such synthesis can be achieved by any of many different methods known in the art, including solid phase peptide synthesis (to generate synthetic peptides) and the assembly (and subsequent cloning) of oligonucleotides. Some synthetic protein analogues may be chimaeras (see below), and such equivalents can be designed and assembled for example by concatenation of two or more different structural and/or functional peptide domains from different proteins using recombinant DNA techniques (see below).

10

15

20

30

The BACE protein homologues of the invention therefore include proteins and peptides having at least 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% sequence identity with the reference protein, and include truncated forms of the BACE proteins of the invention. Such truncates are preferably at least 25%, 35%, 50% or 75% of the length of the corresponding specifically exemplified proteins and may have at least 60% sequence identity (more preferably, at least 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% sequence identity) with that specifically exemplified protein.

Particularly preferred homologues are truncates that contain a segment preferably comprising at least 8, 15, 20 or 30 contiguous amino acids that share at least 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% sequence identity with that specifically exemplified protein.

A "conservative amino acid change" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g. lysine, arginine and histidine), acidic side chains (e.g. aspartic acid and glutamic acid), non-charged polar side chains (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine and cysteine), non-polar side chains (e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine and tryptophan), beta-branched side chains (e.g. threonine, valine and isoleucine), and aromatic side chains (e.g. tyrosine, phenylalanine, tryptophan and histidine).

Thus, references herein to proteins and peptides that are to some defined extent "identical" (or which share a defined extent of "identity") with a reference protein or peptide may also optionally be interpreted to include proteins and peptides in which conservative amino acid changes are disregarded so that the original amino acid and its changed counterpart are regarded as identical for the purposes of sequence comparisons.

The term "allelic form" is used herein to define a naturally-occurring alternative forms of the sequence present in the BACE protein which reflect naturally-occurring differences in the BACE gene pool. Preferably, allelic variants of the proteins of the invention have at least 60% sequence identity (more preferably, at least 75%, 80%, 85%, 90% or 95% sequence identity) with the corresponding specifically exemplified BACE protein, where sequence identity is determined by comparing the nucleotide sequences of the polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

15

20

The term "species variant" (or orthologue) is used herein to define the corresponding protein from a different organism. Thus, species variants share a direct evolutionary relationship.

The term "derivative" as applied herein to the BACE proteins of the invention is used to define proteins which are modified versions of the specifically exemplified proteins of the invention. Such derivatives may include fusion proteins, in which the proteins of the invention have been fused to one or more different proteins, peptides or amino acid tags (for example an antibody or a protein domain conferring a biochemical activity, to act as a label, or to facilitate purification). Particularly preferred are derivatives in which the peptides are

modified by a polyHis (6xHis) tag to facilitate purification of the peptide derivative on Ni²⁺ agarose beads.

The derivatives may also be products of synthetic processes that use a peptide of the invention as a starting material or reactant.

The term "mutein" is used herein to define proteins that are mutant forms of the BACE proteins of the invention, i.e. proteins in which one or more amino acids have been added, altered, deleted, replaced, inserted or substituted. Thus, the terms "BACE mutein" and "mutant BACE protein" are used interchangeably herein. The muteins/mutant BACE proteins of the invention therefore include fragments, truncates and fusion proteins and peptides (e.g. comprising fused immunoglobulin, receptor, tag, label or enzyme moieties).

The muteins of the invention therefore include truncated forms of the BACE proteins of the invention. Such truncates are preferably least 25%, 35%, 50% or 75% of the length of the corresponding specifically exemplified BACE protein and may have at least 60% sequence identity (more preferably, at least 75%, 80%, 85%, 90% or 95% sequence identity) with that specifically exemplified protein.

Particularly preferred are truncates that contain a segment preferably comprising at least 8, 15, 20 or 30 contiguous amino acids that share at least 75%, 80%, 85%, 90% or 95% sequence identity with that specifically exemplified protein.

15

20

25

For the purposes of the present invention, sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. In particular, sequence identity may be determined using any of a number of mathematical algorithms. A nonlimiting example of a mathematical algorithm used for comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877.

Another example of a mathematical algorithm used for comparison of sequences is the algorithm of Myers and Miller (1988) CABÍOS 4: 11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid

sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444-2448.

Preferred for use according to the present invention is the WU-BLAST (Washington University BLAST) version 2.0 software. WU-BLAST version 2.0 executable programs for several UNIX platforms can be downloaded from ftp://blast. wustl. edu/blast/executables. This program is based on WU-BLAST version 1.4, which in turn is based on the public domain NCBI-BLAST version 1.4 (Altschul and Gish, 1996, Local alignment statistics, Doolittle ed., Methods in Enzymology 266: 460-480; Altschul et al., 1990, Basic local alignment search tool, Journal of Molecular Biology 215: 403-410; Gish and States, 1993, Identification of protein coding regions by database similarity search, Nature Genetics 3: 266-272; Karlin and Altschul, 1993, Applications and statistics for multiple high-scoring segments in molecular sequences, Proc. Natl. Acad. Sci. USA 90: 5873-5877; all of which are incorporated by reference herein).

In all search programs in the suite the gapped alignment routines are integral to the database search itself. Gapping can be turned off if desired. The default penalty (Q) for a gap of length one is Q=9 for proteins and BLASTP, and Q=10 for BLASTN, but may be changed to any integer. The default per-residue penalty for extending a gap (R) is R=2 for proteins and BLASTP, and R=10 for BLASTN, but may be changed to any integer. Any combination of values for Q and R can be used in order to align sequences so as to maximize overlap and identity while minimizing sequence gaps. The default amino acid comparison matrix is BLOSUM62, but other amino acid comparison matrices such as PAM can be utilized.

25

20

The muteins of the invention also include peptides in which mutations have been introduced which effectively promote or impair one or more activities of the protein, for example mutations which promote or impair the function of a receptor, a recognition sequence or an effector binding site.

30

Muteins may be produced by any convenient method. Conveniently, site-directed

mutagenesis with mutagenic oligonucleotides may be employed using a double stranded template (pBluescript KS II construct containing nucleic acid encoding the BACE protein), (e.g. ChameleonTM or QuikChangeTM - StratageneTM) or cassette mutagenesis methods my be employed. After verifying each mutant derivative by sequencing, the mutated gene is excised and inserted into a suitable vector so that the modified protein can be overexpressed and purified.

Brief Description of the Drawings

Table 1, provides the coordinates of the BACE structure. The numbering of the residues used in this Table (see Section (D) below) correspond to the numbering of used by Hong *et al, ibid.* Elsewhere – unless indicated to the contrary – in the specification the numbering of the SwissProt database entry P56817 is used. Residue 1 of Table 1 corresponds to 62 of SwissProt P56817, and residue 385 corresponds to 446 of SwissProt P56817. In the sequence listing below, the SwissProt P56817 residues 14-453 are shown as 16-455 of SEQ ID NO:2.

Figure 1 represents the packing arrangements of the BACE monomers within the P6₁22 crystal lattice.

Figure 2 shows the superposition of BACE in complex with OM99-2 (1FKN), in black, with BACE, of the invention, in the absence of ligand (grey). The position of OM99-2 is defined by a stick representation of the inhibitor.

Detailed Description of the Invention

A. Construct design

20

BACE protease is expressed, at high levels, as insoluble inclusion bodies in bacterial cells. To prepare functional protein appropriate for enzyme assay and structural studies these inclusion bodies are solubilised using denaturants and the slow removal of these denaturants results in the formation of the correct tertiary structure. In addition BACE is expressed as a pro-sequence and requires activation by a protease before it is fully functional.

One of the problems of the techniques described in the art (Tang et al) for isolation of BACE from inclusion bodies is the generation of a mixture of products from the

uncontrolled cleavage process. Choppa et al describe the isolation of BACE from mammalian cells and the subsequent cleavage with protease, which also gives a mixture of protein species. Thus there is a need in the art for a method of generating active BACE as a homogenous species.

A further problem with the prior art techniques is the low yield of crystallisable material obtained. The inventors surprisingly found that the present invention results in a high yield from bacterial cells, in particular *E. coli*.

The inventors utilized clostripain as an activating protease to perform this cleavage in a controlled manner but this produced multiple species of BACE, as determined by mass spectrometry. In order to obtain a uniform homogenous protein after activation, a number of different constructs were produced. These constructs focused on the mutation of two of the clostripain cleavage sites (R56 and R57).

10

15

20

25

The sequences of the invention were designed to achieve a single cleavage point upon activation by clostripain, as activation of wild type sequence in this way resulted in a non-crystallisable protein with heterogeneous N termini.

The BACE constructs of the invention contain successful modifications of the BACE sequence to allow generation of homogeneous protein product from the use of clostripain. The sequence of the invention contains substitution for another amino acid residue or deletion of the arginine 56 and/or arginine 57 (numbering based on wild type full length sequence, SWISS_PROT P56817). In a preferred aspect of the invention this is a conserved substitution. Conservative amino acid substitutions are well known in the art, and include substitutions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the amino acid residues involved. For example, positively charged amino acids include lysine and arginine and histidine. In a preferred aspect the mutation introduced is substitution of arginine to lysine at position 56 and/or 57, more preferably 56 and 57. This results in, as oppose to the wild type, the production of a single species of activated protein upon limited digest with clostripain. Clostripain cleavage occurs at a single site and is thus specific and generates a single species in minutes.

The advantage of these mutations is that they allow the controlled cleavage at arginine residue 42 and hence provides a single N-terminus.

This controlled cleavage thus provides a means to produce a substantially homogeneous composition of a BACE protein of the invention. By substantially homogeneous, it is meant that at least 95%, preferably at least 98% and more preferably at least 99% of the BACE protein in the composition has the same N-terminus. The N-terminus may be selected from residues 43 (i.e. by cleavage at 42), 46, 56, 57 or 58, preferably from 43, 56, 57 or 58, more preferably 43, 56 or 57.

These mutations can be introduced onto any sequence of BACE by site-directed mutagenesis techniques, to facilitate the generation of homogeneous material for structural or activity studies. Thus proteins of the invention are BACE proteins with residues 56 and/or 57 either mutated or deleted. Proteins of the invention also include BACE mutants described below in section (C).

The invention is exemplified by several constructs (SEQ ID 5-18). These were built based on the wild type sequence (BACE WT, SEQ ID 2) where R56 and/or R57 were mutated to K or deleted. These were BACE WT R56KR57K (SEQ ID 6), BACE WT R57K (SEQ ID 8), BACE WT R57del (SEQ ID 10). This was also performed on the BACE construct BACE N->Q to give BACE N->Q R56KR57K (SEQ ID 12), BACE N->Q R57K (SEQ ID 16), BACE N->Q R57del (SEQ ID 18). The BACE N->Q construct contains 4 additional mutations of asparagines to glutamine and a C-terminal His tag as well as the arginine mutations. BACE N->Q without the His tag was mutated at 56 and 57 to give BACE N->Q R56K R57K no His (SEQ ID 14).

20

25

SEQ ID 19 is the activated from of SEQ ID 6, SEQ ID 21 the activated form of SEQ ID 12 and SEQ ID 20 the activated form of SEQ ID 14, i.e. the form in which the protein is crystallized.

The three BACE constructs BACE WT R56KR57K, BACE N->Q R56KR57K, and BACE N->Q R56KR57K no His gave higher expression levels.

Thus the invention concerns any BACE proteins with one or more of: a mutation at 56, and mutation at 57, or a deletion at 56 or a deletion at 57, but preferably 56 and 57 mutated, and

crystals thereof i.e. any BACE protein comprising residues 56-396 of BACE (based on numbering of SwissProt P56817) and containing these mutations.

B. Refolding protocol

5

10

15

20

25

30

The protein was expressed in *E. coli* as inclusion bodies, as outlined above. In an improvement of existing techniques BACE isolated from inclusion bodies was refolded by the use of high pH, a sulfobetaine refolding agent, and a longer duration at high pH. This refolding protocol increased the yield of refolded protein obtained and also gave high and reproducible yields of refolded BACE suitable for crystallisation.

The use of high pH in refolding (Burton et el, 1989) and of sulfobetaines as solubilising molecules in folding experiments (Goldberg *et al*, 1996) has previously been described. Here we describe the use of a combination of these technologies to give an unprecedented high yield of BACE. In addition to this combination of high pH and sulfobetaine, in another deviation from existing protocols for refolding BACE, the pH is maintained at high pH for at least 2 weeks. This is in comparison to the method of Tang *et al*, where BACE is solubilised at high pH and then the pH lowered before protein recovery at least 2-3 weeks later, preferably 3-4 weeks later.

Another aspect of the invention therefore concerns a novel method of producing soluble BACE proteins of the invention, utilizing a refolding protocol comprising the combined techniques of high pH buffer and the use of sulfobetaine, and also maintaining this high pH over at least two weeks.

More specifically, a method for producing refolded recombinant BACE comprising refolding the BACE under conditions which denature and then slowly renature the enzyme into a soluble form wherein: (a) the BACE is solubilised using a chaotrope such as urea or guanidine at 8-10M (typically 8 M urea solution) including one or more reducing agents at a pH of greater than 8.0 e.g. pH 9.0-10.5; (b) the BACE is then diluted into an aqueous buffer, like 20 mM-Tris, pH 9.0, containing sulfobetaine, preferably 10 mM sulfobetaine, where the sulfobetaine is preferably NDSB256 (3-(benzyldimethylammonio) propanesulfonate); (c) the solution is maintained at low temperature, e.g. 3-6 °C typically 4 °C, and at high pH, typically approximately pH 9.0, for at least 2 weeks (typically 3 weeks, more typically 4 weeks) before proceeding with purification.

C. Protein Crystals.

15

Described herein is a crystal of BACE having a hexagonal space group P6₁22, and unit cell dimensions a=b=103.2 Å, c=169.1 Å, α = β =60°, γ =120°. Unit cell variability of 5% may be observed in all dimensions. Such crystals contain one copy of BACE in the asymmetric unit.

Such a crystal may be obtained using the methods described in the accompanying examples.

The crystal may be of the BACE protein of SEQ ID 19 although as explained earlier any homologue, allelic form, species variant, derivative or mutein (as hereinbefore defined) may be used. Thus, it will be understood by those of skill in the art that some variation to the primary amino acid sequence may be made without significant alteration to the resulting crystal structure. Such minor variations include the replacement of one or more amino acids, for example from 1 to 30, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids by an equivalent or fewer number of amino acids.

The methodology used to provide a BACE crystal illustrated herein may be used generally to provide a human BACE apo crystal resolvable at a resolution of at least 3 Å.

The invention thus further provides an apo BACE crystal having a resolution better than, i.e. numerically lower than, 2.5 Å.

The invention also provides a BACE crystal having a resolution better than, i.e. numerically lower than, 1.8 Å.

The invention also provides apo crystals of BACE resolvable to at least 2.5 Å capable of being soaked with compound(s) to form co-complex structures.

The proteins may be wild-type proteins or variants thereof, which are modified to promote crystal formation, for example by N-terminal truncations and/or deletion of loop regions, which prevent crystal formation.

The methods described herein may be used to make a BACE protein crystal, particularly of a BACE protein of SEQ ID 19-21, which method comprises growing a crystal by vapour diffusion using a reservoir buffer that contains 18-26 % PEG 5000 MME, preferably 20-24

% PEG 5000 MME, more preferably 20-22.5 % PEG 5000 MME, with 180-220 mM (e.g. 200 mM) ammonium iodide and 180-220 mM (e.g. 200 mM) tri-sodium citrate (pH 6.4-6.6). In a preferred embodiment, this reservoir buffer may also contain from 0 to 5% glycerol, e.g. about 2.5% glycerol. The growing of the crystal is by vapour diffusion and is performed by placing an aliquot of the protein solution on a cover slip as a hanging drop above a well containing the reservoir buffer. The concentration of the protein solution used was approximately 7 mg/ml.

Other crystals of the invention include crystals which have selected coordinates of the binding pocket, wherein the amino acid residues associated with those selected coordinates are located in a protein framework which holds these amino acids in a relative spatial configuration corresponding to the spatial configuration of those amino acids in Table 1. By "corresponding to", it is meant within an r.m.s.d. of less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å and most preferably less than 0.5 Å from the $C\alpha$ or backbone atoms of Table 1, preferably the $C\alpha$ atoms.

Crystals of the invention also include crystals of BACE mutants (muteins). In addition, BACE mutants may be crystallized in co-complex with known BACE substrates or inhibitors or novel compounds.

15

As explained herein, a mutant BACE (or BACE mutein) is a BACE protein characterized by
the replacement or deletion of at least one amino acid from the wild type BACE. Such a
mutant may be prepared for example by site-specific mutagenesis, or incorporation of
natural or unnatural amino acids.

As explained herein, the present invention therefore contemplates BACE mutants (or muteins) as hereinbefore defined.

For example, the BACE mutants may define a polypeptide which is obtained by replacing at least one amino acid residue in a native or synthetic BACE with a different amino acid residue and/or by adding and/or deleting amino acid residues within the native polypeptide or at the N- and/or C-terminus of a polypeptide corresponding to BACE, and which has substantially the same three-dimensional structure as BACE from which it is derived. By

having substantially the same three-dimensional structure is meant having a set of atomic structure co-ordinates that have a root mean square deviation (r.m.s.d.) of less than or equal to about 2.0 Å (preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å and most preferably less than 0.5 Å) when superimposed with the atomic structure co-ordinates of the BACE from which the mutant is derived when at least about 50% to 100% of the C_{α} atoms of the BACE are included in the superposition. A mutant may have, but need not have, enzymatic or catalytic activity.

To produce homologues or mutants, amino acids present in the said protein can be replaced by other amino acids having similar properties, for example hydrophobicity, hydrophobic moment, antigenicity, propensity to form or break α -helical or β -sheet structures, and so. Substitutional variants of a protein are those in which at least one amino acid in the protein sequence has been removed and a different residue inserted in its place. Amino acid substitutions are typically of single residues but may be clustered depending on functional constraints e.g. at a crystal contact. Preferably amino acid substitutions will comprise conservative amino acid substitutions. Insertional amino acid variants are those in which one or more amino acids are introduced. This can be amino-terminal and/or carboxy-terminal fusion as well as intrasequence. Examples of amino-terminal and/or carboxy-terminal fusions are affinity tags, MBP tag, and epitope tags.

:10

25

Deletional variants are those in which one or more amino acids are removed. This can be amino-terminal and/or carboxy-terminal, or in an internal region (for example a loop region), for example to remove or shorten that region.

Amino acid substitutions, deletions and additions that do not significantly interfere with the three-dimensional structure of the BACE will depend, in part, on the region of the BACE where the substitution, addition or deletion occurs. In highly variable regions of the molecule, non-conservative substitutions as well as conservative substitutions may be tolerated without significantly disrupting the three-dimensional structure of the molecule. In highly conserved regions, or regions containing significant secondary structure, conservative amino acid substitutions are preferred.

As explained earlier, conservative amino acid substitutions are well known in the art, and include substitutions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the amino acid residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine; phenylalanine, tyrosine. Other conservative amino acid substitutions are well known in the art.

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a BACE binding pocket or catalytic residue in order to provide convenient cloning sites in the cDNA encoding the polypeptide, to aid in purification of the polypeptide, to modify compound binding etc. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of BACE will be apparent to those having skills in the art.

It should be noted that the mutants (BACE muteins) contemplated herein need not exhibit enzymatic activity. Indeed, amino acid substitutions, additions or deletions that interfere with the catalytic activity of the BACE but which do not significantly alter the three-dimensional structure of the catalytic region are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure co-ordinates obtained there from, can be used to identify compounds that bind to the protein.

The crystallization of such mutants and the determination of the three-dimensional structures by X-ray crystallography relies on the ability of the mutant proteins to yield crystals that diffract at high resolution. The mutant protein could then be used to obtain information on compound binding through the determination of mutant protein/ligand complex structures, which may be characterized using the BACE crystal structure of Table 1.

25

30

The mutations can be introduced by site-directed mutagenesis e.g. using a Stratagene QuikChangeTM Site-Directed Mutagenesis Kit or cassette mutagenesis methods (see e.g. Ausubel et al., eds., *Current Protocols in Molecular Biology*, John Wiley & Sons, Inc., New

York, and Sambrook et al., *Molecular Cloning: a Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989)).

To the extent that the present invention relates to BACE-ligand complexes and mutant, homologue, allelic form, species variant, derivative, mutein and analogue proteins of BACE, crystals of such proteins may be formed. The skilled person would recognize that the conditions provided herein for crystallising BACE may be used to form such crystals. Alternatively, the skilled person would use the conditions as a basis for identifying modified conditions for forming the crystals.

Thus the aspects of the invention relating to crystals of BACE, may be extended to crystals of mutant/mutein, homologue, allelic form, species variant or derivative (as defined herein).

D. Crystal Coordinates

25

In a further aspect, the invention also provides an apo crystal structure of BACE having the three dimensional atomic coordinates of Table 1. An advantageous feature of the structure defined by the atomic coordinates is that it has a high resolution of about 1.75 Å. A further advantageous aspect is the provision of an apo structure of BACE, which contains no ligand bound, unlike those previously described in the art. This is particularly advantageous as ligands can then be easily soaked into the crystal to provide co-complex data without the need for removal of any ligand already present, and without the need for time-consuming co-crystallisation experiments.

The BACE structure set out in Table 1 is a monomer structure. This is the first time that a monomer has been observed crystallographically for this protein.

Table 1 gives atomic coordinate data for BACE. In Table 1 the third column denotes the atom type, the fourth the residue type, the fifth the chain identification, the sixth the residue number (the atom numbering as described in Hong *et al*, 2000) the seventh, eighth and ninth columns are the X, Y, Z coordinates respectively of the atom in question, the tenth column the occupancy of the atom, the eleventh the temperature factor of the atom, the twelfth the chain identification, and the last, thirteenth column, the atom type.

Each of the tables is presented in an internally consistent format. For example, in Table 1 the coordinates of the atoms of each amino acid residue are listed such that the backbone

nitrogen atom is first, followed by the C-alpha backbone carbon atom, designated CA, followed by the carbon and oxygen of the protein backbone and finally side chain residues (designated according to one standard convention). Alternative file formats (e.g. such as a format consistent with that of the EBI Macromolecular Structure Database (Hinxton, UK)) which may include a different ordering of these atoms, or a different designation of the sidechain residues, may be used or preferred by others of skill in the art. However it will be apparent that the use of a different file format to present or manipulate the coordinates of the Tables is within the scope of the present invention.

The coordinates of Table 1 provide a measure of atomic location in Ångstroms, to 3 decimal places. The coordinates are a relative set of positions that define a shape in three dimensions, but the skilled person would understand that an entirely different set of coordinates having a different origin and/or axes could define a similar or identical shape. Furthermore, the skilled person would understand that varying the relative atomic positions of the atoms of the structure so that the root mean square deviation of the residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues) is less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å and most preferably less than 0.5 Å when superimposed on the coordinates provided in Table 1 for the Cα atoms or residue backbone atoms, will generally result in a structure which is substantially the same as the structure of Table 1 in terms of both its structural characteristics and usefulness for structure-based analysis of BACE-interactivity molecular structures.

.10

15

20

Likewise the skilled person would understand that changing the number and/or positions of the water molecules and/or substrate molecules of Table 1 will not generally affect the usefulness of the structure for structure-based analysis of BACE-interacting structure. Thus for the purposes described herein as being aspects of the present invention, it is within the scope of the invention if: the Table 1 coordinates are transposed to a different origin and/or axes; the relative atomic positions of the atoms of the structure are varied so that the root mean square deviation of residue backbone atoms is less than 2.0 Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.72 Å, and most preferably less than 0.5 Å when superimposed on the

coordinates provided in Table 1 for the $C\alpha$ or residue backbone atoms; and/or the number and/or positions of water molecules and/or substrate molecules is varied.

Reference herein to the coordinate data of Table 1 and the like thus includes the coordinate data in which one or more individual values of the Table are varied in this way unless specified explicitly to the contrary. In a preferred aspect, reference herein to the coordinates of Table 1 or parts thereof (e.g. selected coordinates) should be taken to include coordinates having a root mean square deviation of less than 0.72 Å, and preferably less than 0.5 Å, from the $C\alpha$ atoms of Table 1 or corresponding parts thereof.

By "root mean square deviation" we mean the square root of the arithmetic mean of the squares of the deviations from the mean.

Protein structure similarity is routinely expressed and measured by the root mean square deviation (r.m.s.d.), which measures the difference in positioning in space between two sets of atoms. The r.m.s.d. measures distance between equivalent atoms after their optimal superposition. The r.m.s.d. can be calculated over all atoms, over residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues), main chain atoms only (i.e. the nitrogen-carbon-oxygen-carbon backbone atoms of the protein amino acid residues), side chain atoms only or more usually over C-alpha atoms only. For the purposes of this invention, the r.m.s.d. can be calculated over any of these, using any of the methods outlined below.

- Methods of comparing protein structures are discussed in Methods of Enzymology, vol 115, pg 397-420. The necessary least-squares algebra to calculate r.m.s.d. has been given by Rossman and Argos (J. Biol. Chem., vol 250, pp7525 (1975)) although faster methods have been described by Kabsch (Acta Crystallogr., Section A, A92, 922 (1976); Acta Cryst. A34, 827-828 (1978)), Hendrickson (Acta Crystallogr., Section A, A35, 158 (1979) and
- 25 McLachan (J. Mol. Biol., vol 128, pp49 (1979). Some algorithms use an iterative procedure in which the one molecule is moved relative to the other, such as that described by Ferro and Hermans (Ferro and Hermans, Acta Crystallographic, A33, 345-347 (1977)). Other methods e.g. Kabsch's algorithm locate the best fit directly.

It is usual to consider C-alpha atoms and the rmsd can then be calculated using programs such as LSQKAB (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, *Acta Crystallographica*, D50, (1994), 760-763), MNYFIT (part of a collection of programs called COMPOSER, Sutcliffe, M.J., Haneef, I., Carney, D. and Blundell, T.L. (1987) Protein Engineering, 1, 377-384), MAPS (Lu, G. An Approach for Multiple Alignment of Protein Structures (1998, in manuscript)), QUANTA (Jones et al., Acta Crystallography A47 (1991), 110-119 and commercially available from Accelerys, San Diego, CA), Insight (commercially available from Accelerys, San Diego, CA), Sybyl® (commercially available from Tripos, Inc., St Louis), O (Jones et al., *Acta Crystallographica*, A47, (1991), 110-119), and other coordinate fitting programs.

10

15

20

30

In, for example the programs LSQKAB and O, the user can define the residues in the two proteins that are to be paired for the purpose of the calculation. Alternatively, the pairing of residues can be determined by generating a sequence alignment of the two proteins, programs for sequence alignment are discussed in more detail in Section G. The atomic coordinates can then be superimposed according to this alignment and an r.m.s.d. value calculated. The program Sequoia (C.M. Bruns, I. Hubatsch, M. Ridderström, B. Mannervik, and J.A. Tainer (1999) Human Glutathione Transferase A4-4 Crystal Structures and Mutagenesis Reveal the Basis of High Catalytic Efficiency with Toxic Lipid Peroxidation Products, *Journal of Molecular Biology* 288(3): 427-439) performs the alignment of homologous protein sequences, and the superposition of homologous protein atomic coordinates. Once aligned, the r.m.s.d. can be calculated using programs detailed above. For sequence identical, or highly identical, the structural alignment of proteins can be done manually or automatically as outlined above. Another approach would be to generate a superposition of protein atomic coordinates without considering the sequence.

It is more normal when comparing significantly different sets of coordinates to calculate the r.m.s.d. value over C-alpha atoms only. It is particularly useful when analysing side chain movement to calculate the r.m.s.d. over all atoms and this can be done using LSQKAB and other programs.

Varying the atomic positions of the atoms of the structure by up to about 0.5 Å in a concerted way, preferably up to about 0.3 Å in any direction will result in a structure which

is substantially the same as the structure of Table 1 in terms of both its structural characteristics and utility e.g. for molecular structure-based analysis.

Also, modifications in the BACE crystal structure due to e.g. mutations, additions, substitutions, and/or deletions of amino acid residues (including the deletion of one or more BACE protomers) could account for variations in the BACE atomic coordinates. However, atomic coordinate data of BACE modified so that a ligand that bound to one or more binding sites of BACE would be expected to bind to the corresponding binding sites of the modified BACE are, for the purposes described herein as being aspects of the present invention, also within the scope of the invention. Reference herein to the coordinates of Table 1 thus includes the coordinates modified in this way. Preferably, the modified coordinate data define at least one BACE binding cavity.

Those of skill in the art will appreciate that in many applications of the invention, it is not necessary to utilise all the coordinates of Table 1, but merely a portion of them. The term portion is intended to define a sub-set of the coordinates, which may or may not represent contiguous amino acid residues in the BACE structure. For example, as described below, in methods of modelling candidate compounds with BACE, selected coordinates of BACE may be used, for example at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 atoms of the BACE structure. Likewise, the other applications of the invention described herein, including homology modelling and structure solution, and data storage and computer assisted manipulation of the coordinates, may also utilise all or a portion of the coordinates of Table 1.

E. Homology Modelling

.10

15

20

25

The invention also provides a means for homology modelling of other proteins (referred to below as target BACE proteins). By "homology modelling", it is meant the prediction of related BACE structures based either on X-ray crystallographic data or computer-assisted *de novo* prediction of structure, based upon manipulation of the coordinate data of Table 1.

"Homology modelling" extends to target BACE proteins, which are analogues or homologues of the BACE protein whose structure has been determined in the accompanying examples. It also extends to BACE protein mutants of BACE protein itself.

The term "homologous regions" describes amino acid residues in two sequences that are identical or have similar (e.g. aliphatic, aromatic, polar, negatively charged, or positively charged) side-chain chemical groups. Identical and similar residues in homologous regions are sometimes described as being respectively "invariant" and "conserved" by those skilled in the art.

In general, the method involves comparing the amino acid sequences of the BACE protein of Table 1 with a target BACE protein by aligning the amino acid sequences (Dunbrack et al., Folding and Design, 2, (1997), 27-42). Amino acids in the sequences are then compared and groups of amino acids that are homologous (conveniently referred to as "corresponding regions") are grouped together. This method detects conserved regions of the polypeptides and accounts for amino acid insertions or deletions.

Homology between amino acid sequences can be determined using commercially available algorithms. The programs *BLAST*, *gapped BLAST*, *BLASTN*, *PSI-BLAST* and *BLAST* 2 sequences (provided by the National Center for Biotechnology Information) are widely used in the art for this purpose, and can align homologous regions of two amino acid sequences. These may be used with default parameters to determine the degree of homology between the amino acid sequence of the Table 1 protein and other target BACE proteins, which are to be modeled.

-15

20

25

Analogues are defined as proteins with similar three-dimensional structures and/or functions with little evidence of a common ancestor at a sequence level.

Homologues are defined as proteins with evidence of a common ancestor, i.e. likely to be the result of evolutionary divergence and are divided into remote, medium and close subdivisions based on the degree (usually expressed as a percentage) of sequence identity.

A homologue is defined here as a protein with at least 15% sequence identity or which has at least one functional domain, which is characteristic of BACE.

There are two types of homologue: orthologues and paralogues. Orthologues are defined as homologous genes in different organisms, i.e. the genes share a common ancestor coincident with the speciation event that generated them. Paralogues are defined as

homologous genes in the same organism derived from a gene/chromosome/ genome duplication, i.e. the common ancestor of the genes occurred since the last speciation event.

The homologues could also be mutants as described in section (C).

Once the amino acid sequences of the polypeptides with known and unknown structures are aligned, the structures of the conserved amino acids in a computer representation of the polypeptide with known structure are transferred to the corresponding amino acids of the polypeptide whose structure is unknown. For example, a tyrosine in the amino acid sequence of known structure may be replaced by a phenylalanine, the corresponding homologous amino acid in the amino acid sequence of unknown structure.

The structures of amino acids located in non-conserved regions may be assigned manually by using standard peptide geometries or by molecular simulation techniques, such as molecular dynamics. The final step in the process is accomplished by refining the entire structure using molecular dynamics and/or energy minimization.

Homology modelling as such is a technique that is well known to those skilled in the art (see e.g. Greer, *Science*, Vol. 228, (1985), 1055, and Blundell *et al.*, *Eur. J. Biochem*, Vol. 172, (1988), 513). The techniques described in these references, as well as other homology modelling techniques, generally available in the art, may be used in performing the present invention.

Thus the invention provides a method of homology modelling comprising the steps of: (a) aligning a representation of an amino acid sequence of a target BACE protein of unknown three-dimensional structure with the amino acid sequence of the BACE of Table 1 to match homologous regions of the amino acid sequences; (b) modelling the structure of the matched homologous regions of said target BACE of unknown structure on the corresponding regions of the BACE structure as defined by Table 1; and (c) determining a conformation (e.g. so that favorable interactions are formed within the target BACE of unknown structure and/or so that a low energy conformation is formed) for said target BACE of unknown structure which substantially preserves the structure of said matched homologous regions.

Preferably one or all of steps (a) to (c) are performed by computer modelling.

20

The aspects of the invention described herein which utilise the BACE structuré *in silico* may be equally applied to homologue models of BACE obtained by the above aspect of the invention, and this application forms a further aspect of the present invention. Thus having determined a conformation of a BACE by the method described above, such a conformation may be used in a computer-based method of rational drug design as described herein.

The absence of a ligand from our structure is particularly advantageous for modelling of other proteins as this structure reveals the native structure of the protein unaffected by conformational changes upon ligand binding.

F. Structure Solution

15

The structure of the human BACE can also be used to solve the crystal structure of other target BACE proteins including other crystal forms of BACE, mutants, and co-complexes of BACE, where X-ray diffraction data or NMR spectroscopic data of these target BACE proteins has been generated and requires interpretation in order to provide a structure.

In the case of BACE, this protein may crystallize in more than one crystal form. The structure coordinates of BACE, or portions thereof, as provided by this invention are particularly useful to solve the structure of those other crystal forms of BACE. They may also be used to solve the structure of BACE mutants, BACE co-complexes, or of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of BACE.

In the case of other target BACE proteins, particularly the BACE proteins referred to in Section C above, the present invention allows the structures of such targets to be obtained more readily where raw X-ray diffraction data is generated.

Thus, where X-ray crystallographic or NMR spectroscopic data is provided for target BACE-ligand complex, or a BACE homologue or analogue of unknown three-dimensional structure, the structure of BACE, as defined by Table 1, may be used to interpret that data to provide a likely structure for the other BACE by techniques which are well known in the art, e.g. phasing in the case of X-ray crystallography and assisting peak assignments in NMR spectra.

One method that may be employed for these purposes is molecular replacement. In this method, the unknown crystal structure, whether it is another crystal form of BACE, a BACE mutant, or a BACE co-complex, or the crystal of a target BACE protein with amino acid sequence homology to any functional domain of BACE, may be determined using the BACE structure coordinates of this invention as provided herein. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information *ab initio*.

Examples of computer programs known in the art for performing molecular replacement are CNX (Brunger A.T.; Adams P.D.; Rice L.M., Current Opinion in Structural Biology, Volume 8, Issue 5, October 1998, Pages 606-611 (also commercially available from

Volume 8, Issue 5, October 1998, Pages 606-611 (also commercially available from Accelerys San Diego, CA) or AMORE (Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157-163).

Thus, in a further aspect of the invention provides a method for determining the structure of a protein, which method comprises; providing the co-ordinates of Table 1, and either (a) positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein or (b) assigning NMR spectra Peaks of said protein by manipulating the coordinates of Table 1.

In a preferred aspect of this invention the co-ordinates are used to solve the structure of target BACE particularly homologues of BACE for example aspartic proteases such as BACE2 or cathepsin E (69% and 37% similarity, respectively).

G. Computer Systems

15

20

25

In another aspect, the present invention provides systems, particularly a computer system, the systems containing either (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE or at least selected coordinates thereof; (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a target BACE protein generated by interpreting X-ray crystallographic data or

NMR data by reference to the data of Table 1; or (e) structure factor data derivable from the atomic coordinate data of (c) or (d).

For example the computer system may comprise: (i) a computer-readable data storage medium comprising data storage material encoded with the computer-readable data; (ii) a working memory for storing instructions for processing said computer-readable data; and (iii) a central-processing unit coupled to said working memory and to said computer-readable data storage medium for processing said computer-readable data and thereby generating structures and/or performing rational drug design. The computer system may further comprise a display coupled to said central-processing unit for displaying said structures.

5

-10

25

The invention also provides such systems containing atomic coordinate data of target BACE proteins wherein such data has been generated according to the methods of the invention described herein based on the starting data provided by Table 1.

Such data is useful for a number of purposes, including the generation of structures to analyze the mechanisms of action of BACE proteins and/or to perform rational drug design of compounds which interact with BACE, such as compounds which are inhibitors of BACE.

In another aspect, the invention provides a computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data are defined by all or a portion (e.g. selected coordinates as defined herein) of the structure coordinates of BACE of Table 1, or a homologue of BACE, wherein said homologue comprises backbone atoms that have a root mean square deviation from the $C\alpha$ or backbone atoms (nitrogen-carbon_{α}-carbon) of Table 1 of less than 2 Å, such as not more than 1.5Å, preferably less than 1.5 Å, more preferably less than 1.0 Å, even more preferably less than 0.74 Å, even more preferably less than 0.75 Å.

The invention also provides a computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion (e.g. selected coordinates as defined herein) of the structural coordinates for BACE according to Table 1; which, when combined with a second set of

machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can détermine at least a portion of the structure coordinates corresponding to the second set of machine readable data.

- In a further aspect, the present invention provides computer readable media with with at least one of: (a) atomic coordinate data according to Table 1 recorded thereon, said data defining the three-dimensional structure of BACE, or at least selected coordinates thereof; (b) structure factor data for BACE recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a BACE-ligand complex or a BACE homologue or analogue generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- By providing such computer readable media, the atomic coordinate data can be routinely accessed to model BACE or selected coordinates thereof. For example, RASMOL (Sayle et al., *TIBS*, Vol. 20, (1995), 374) is a publicly available computer software package which allows access and analysis of atomic coordinate data for structure determination and/or rational drug design.
- On the other hand, structure factor data, which are derivable from atomic coordinate data (see e.g. Blundell et al., in *Protein Crystallography*, Academic Press, New York, London and San Francisco, (1976)), are particularly useful for calculating e.g. difference Fourier electron density maps.
- A further aspect of the invention provides a method of providing data for generating structures and/or performing rational drug design for BACE, BACE homologues or analogues, complexes of BACE with a potential modulator, or complexes of BACE homologues or analogues with potential modulators, the method comprising:
 - (i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, said data

defining the three-dimensional structure of BACE, at least one sub-domain of the three-dimensional structure of BACE, or the coordinates of a plurality of atoms of BACE; (b) structure factor data for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE homologue or analogue generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and (ii) receiving said computer-readable data from said remote device.

Thus the remote device may comprise e.g. a computer system or computer readable media of one of the previous aspects of the invention. The device may be in a different country or jurisdiction from where the computer-readable data is received. The communication may be via the internet, intranet, e-mail etc. Typically the communication will be electronic in nature, but some or all of the communication pathway may be optical, for example, over optical fibres. Additionally, the communication may be through radio signals or satellite transmissions.

H. Uses of the Crystals of the Invention

20

The crystal structures obtained according to the present invention (including the structure of Table 1 as well the structures of target BACE proteins obtained in accordance with the methods described herein), may be used in several ways for drug design.

By identifying conditions under which high quality crystals of apo-BACE can be produced (i.e. crystals which can diffract X-rays for the determination of atomic coordinates to a resolution of better than 2.5 Å), the present invention facilitates the identification of modulators of BACE activity.

The invention is particularly suitable for the design, screening, development and optimization of BACE inhibitor components. It is thus a preferred aspect of the invention that modulators are inhibitors.

In a further aspect, the invention provides a method for determining the structure of a compound bound to BACE, said method comprising: (a) providing a crystal of BACE

according to the invention; (b) soaking the crystal with said compounds; and (c) determining the structure of said BACE compound complex by employing the data of Table 1.

Alternatively, the BACE and compound may be co-crystallized. Thus the invention provides a method for determining the structure of a compound bound to BACE, said method comprising; mixing the protein with the compound(s), crystallizing the protein-compound(s) complex; and determining the structure of said BACE-compound(s) complex by reference to the data of Table 1.

5

10

15

20

A mixture of compounds may be soaked or co-crystallized with the crystal, wherein only one or some of the compounds may be expected to bind to the BACE. As well as the structure of the complex, the identity of the complexing compound(s) is/are then determined.

In either case, substrate or a substrate analogue thereof may optionally be present.

The method may comprise the further steps of: (a) obtaining or synthesising said candidate modulator; (b) forming a complex of BACE and said candidate modulator; and (c) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said candidate modulator to interact with BACE.

The analysis of such structures may employ (i) X-ray crystallographic diffraction data from the complex and (ii) a three-dimensional structure of BACE, or at least selected coordinates thereof, to generate a difference Fourier electron density map of the complex, the three-dimensional structure being defined by atomic coordinate data according to Table 1. The difference Fourier electron density map may then be analyzed, to identify the binding mode of the modulator.

Therefore, such complexes can be crystallized and analyzed using X-ray diffraction methods, e.g. according to the approach described by Greer et al., *J. of Medicinal Chemistry*, Vol. 37, (1994), 1035-1054, and difference Fourier electron density maps can be calculated based on X-ray diffraction patterns of soaked crystals of BACE or co-crystallized BACE and the solved structure of uncomplexed BACE. These maps can then be analyzed

e.g. to determine whether and where a particular compound binds to BACE and/or changes the conformation of BACE.

Electron density maps can be calculated using programs such as those from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, *Acta Crystallographica*, D50, (1994), 760-763.). For map visualization and model building programs such as "O" (Jones et al., *Acta Crystallographica*, A47, (1991), 110-119) or "QUANTA" (1994, San Diego, CA: Molecular Simulations can be used.

The crystal structures of a series of complexes may then be solved by molecular replacement and compared with that of the BACE of Table 1. Potential sites for modification within the various binding sites of the enzyme may thus be identified. This information provides an additional tool for determining the most efficient binding interactions, for example, increased hydrophobic interactions, between BACE and a chemical entity or compound.

All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined against 1.5 to 3.5 Å resolution X-ray data to an R value of about 0.30 or less using computer software, such as CNX (Brunger et al., *Current Opinion in Structural Biology*, Vol. 8, Issue 5, October 1998, 606-611, and commercially available from Accelerys, San Diego, CA), X-PLOR (Yale University, ©1992, distributed by Accelerys), as described by Blundell et al., (1976) and Methods in Enzymology, vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985).

This information may thus be used to optimize known classes of BACE substrates or inhibitors, and more importantly, to design and synthesize novel classes of BACE inhibitors.

Analysing the complex by X-ray crystallography will determine the ability of the candidate compound to interact with BACE. Analysis of the co-complexes of BACE may involve e.g. phasing, molecular replacement or calculating a Fourier difference map of the complex as discussed above. However, with the high resolutions obtainable with the crystal, it can also be possible to determine the ability of the candidate modulator to interact with BACE

merely by comparing the intensities and/or positions of X-ray diffraction spots from the complex with e.g. diffraction spots of uncomplexed BACE or a previously identified BACE-ligand complex. Thus the step of analysing the complex may involve analysing the intensities and/or positions of X-ray diffraction spots from the complex to determine the ability of the candidate modulator to interact with BACE.

Having obtained and characterized a modulator compound according to the invention, the invention further provides a method for modulating the activity of BACE which method comprises: (a) providing BACE under conditions where, in the absence of modulator, the BACE is able to synthesize amyloid β -peptide from amyloid precursor protein (APP); (b) providing a modulator compound; and (c) determining the extent to which the activity of BACE is altered by the presence of said compound.

I. Structure-based Drug Design

15

Determination of the three-dimensional structure of BACE provides important information about the binding sites of BACE, particularly when comparisons are made with similar enzymes. This information may then be used for rational design of BACE inhibitors, e.g. by computational techniques which identify possible binding ligands for the binding sites, by enabling linked-fragment approaches to drug design, and by enabling the identification and location of bound ligands using X-ray crystallographic analysis. These techniques are discussed in more detail below.

Greer et al. (1994) describes an iterative approach to ligand design based on repeated sequences of computer modelling, protein-ligand complex formation and X-ray crystallographic or NMR spectroscopic analysis. Thus novel thymidylate synthase inhibitor series were designed de novo by Greer et al., and BACE inhibitors may also be designed in the this way. More specifically, using e.g. GRID on the solved 3D structure of BACE, a ligand (e.g. a potential inhibitor) for BACE may be designed that complements the functionalities of the BACE binding sites. The ligand can then be synthesised, formed into a complex with BACE, and the complex then analysed by X-ray crystallography to identify the actual position of the bound ligand. The structure and/or functional groups of the ligand can then be adjusted, if necessary, in view of the results of the X-ray analysis, and the synthesis and analysis sequence repeated until an optimised ligand is obtained. Related

approaches to structure-based drug design are also discussed in Bohacek et al., Medicinal Research Reviews, Vol.16, (1996), 3-50.

Linked-fragment approaches to drug design also require accurate information on the atomic coordinates of target receptors. The basic idea behind these approaches is to determine (computationally or experimentally) the binding locations of plural ligands to a target molecule, and then construct a molecular scaffold to connect the ligands together in such a way that their relative binding positions are preserved. The ligands may be provided computationally and modelled in a computer system, or provided in an experimental setting, wherein crystals according to the invention are provided and a plurality of ligands soaked separately or in mixed pools into the crystal prior to X-ray analysis and determination of their location.

10

15

20

25

30

The binding site of two or more ligands are determined and may be connected to form a potential lead compound that can be further refined using e.g. the iterative technique of *Greer* et al. For a virtual linked-fragment approach see Verlinde et al., *J. of Computer-Aided Molecular Design*, 6, (1992), 131-147, and for NMR and X-ray approaches see Shuker et al., *Science*, 274, (1996), 1531-1534 and Stout et al., *Structure*, 6, (1998), 839-848. The use of these approaches to design BACE inhibitors is made possible by the determination of the BACE structure.

Many of the techniques and approaches to structure-based drug design described above rely at some stage on X-ray analysis to identify the binding position of a ligand in a ligand-protein complex. A common way of doing this is to perform X-ray crystallography on the complex, produce a difference Fourier electron density map, and associate a particular pattern of electron density with the ligand. However, in order to produce the map (as explained e.g. by Blundell *et al.* (1976)) it is necessary to know beforehand the protein 3D structure (or at least the protein structure factors). Therefore, determination of the BACE structure also allows difference Fourier electron density maps of BACE-ligand complexes to be produced, which can greatly assist the process of rational drug design.

The provision of the crystal structures of the invention will also allow the development of compounds which interact with the binding pocket regions of BACE (for example to act as inhibitors of a BACE) based on a fragment linking or fragment growing approach.

For example, the binding of one or more molecular fragments can be determined in the protein binding pocket by X-ray crystallography. Molecular fragments are typically compounds with a molecular weight between 100 and 200 Da (Carr et al, 2002). This can then provide a starting point for medicinal chemistry to optimize the interactions using a structure-based approach. The fragments can be combined onto a template or used as the starting point for 'growing out' an inhibitor into other pockets of the protein (Blundell et al, 2002). The fragments can be positioned in the binding pocket of BACE and then 'grown' to fill the space available, exploring the electrostatic, van der Waals or hydrogen-bonding interactions that are involved in molecular recognition. The potency of the original weakly binding fragment thus can be rapidly improved using iterative structure-based chemical synthesis.

10

20

25

At one or more stages in the fragment growing approach, the compound may be synthesized and tested in a biological system for its activity. This can be used to guide the further growing out of the fragment.

Where two fragment-binding regions are identified, a linked fragment approach may be based upon attempting to link the two fragments directly, or growing one or both fragments in the manner described above in order to obtain a larger, linked structure, which may have the desired properties.

The previous aspects of the invention relate also to fragment linking or fragment growing approaches to rational drug design. Thus the step of providing the structure of a candidate modulator molecule in the previous aspects may be performed by providing the structures of a plurality of molecular fragments and linking the molecular fragments to form a candidate modulator molecule. Furthermore the step of fitting the structure of the candidate modulator molecule in the previous aspects may be performed by fitting the structure of each of the molecular fragments (before or after the molecular fragments are linked together).

For example, the computer-based method of rational drug design may comprise:

(a) providing the coordinates of at least two atoms of the BACE of Table 1; (b) providing the structures of a plurality of molecular fragments; (c) fitting the structure of each of the

molecular fragments to the selected coordinates of the BACE; and (d) assembling the molecular fragments into a single molecule to form a candidate modulator molecule.

In practice, it will be desirable to model a sufficient number of atoms of the BACE as defined by the coordinates of Table 1, which represent a binding pocket. Thus, in this embodiment of the invention, there will preferably be provided the coordinates of at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 preferably at least 500 selected atoms of the BACE structure.

A further aspect of the invention provides a compound having a chemical structure selected using the method of any one of the previous aspects, said compound being an inhibitor of BACE.

J. Uses of the Coordinates of the Invention in in silico analysis and design

10

15

20

25

30

Although the invention will facilitate the determination of actual crystal structures comprising BACE and a compound, which modulates BACE, current computational techniques provide a powerful alternative to the need to generate such crystals and generate and analyze diffraction data. Accordingly, a particularly preferred aspect of the invention relates to *in silico* methods directed to the analysis and development of compounds, which interact, with BACE structures of the present invention.

The approaches to structure-based drug design described below all require initial identification of possible compounds for interaction with target bio-molecule (in this case BACE). Sometimes these compounds are known e.g. from the research literature. However, when they are not, or when novel compounds are wanted, a first stage of the drug design program may involve computer-based *in silico* screening of compound databases (such as the Cambridge Structural Database) with the aim of identifying compounds which interact with the binding site or sites of the target bio-molecule. Screening selection criteria may be based on pharmacokinetic properties such as metabolic stability and toxicity. However, determination of the BACE structure allows the architecture and chemical nature of each BACE binding site to be identified, which in turn allows the geometric and functional constraints of a descriptor for the potential inhibitor to be derived. The descriptor is, therefore, a type of virtual 3-D pharmacophore, which can also be used as selection criteria or filter for database screening.

Thus as a result of the determination of the BACE three-dimensional structure, more purely computational techniques for rational drug design may also be used to design BACE inhibitors (for an overview of these techniques see e.g. Walters et al (*Drug Discovery Today*, Vol.3, No.4, (1998), 160-178; Abagyan, R.; Totrov, M. *Curr. Opin. Chem. Biol.* **2001**, *5*, 375-382). For example, automated ligand-receptor docking programs (discussed e.g. by Jones et al. in *Current Opinion in Biotechnology*, Vol.6, (1995), 652-656 and Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. *Proteins* **2002**, *47*, 409-443), which require accurate information on the atomic coordinates of target receptors may be used to design potential BACE inhibitors.

The aspects of the invention described herein which utilize the BACE structure *in silico* may be equally applied to both the BACE structure of Table 1 and the models of target BACE proteins obtained by other aspects of the invention. Thus having determined a conformation of a BACE by the method described above, such a conformation may be used in a computer-based method of rational drug design as described herein. In addition the availability of the structure of the BACE will allow the generation of highly predictive pharmacophore models for virtual library screening or compound design.

Accordingly, the invention provides a computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing the structure of a BACE of the invention of Table 1; (b) providing a molecular structure to be fitted to said BACE structure; and (c) fitting the molecular structure to the BACE structure of Table 1.

20

25

30

In an alternative aspect, the method of the invention may utilize the coordinates of atoms of interest of BACE, which are in the vicinity of a putative molecular structure binding region, for example within 10-25 Å of the catalytic regions or within 5-10 Å of a compound bound, in order to model the pocket in which the structure binds. These coordinates may be used to define a space, which is then analyzed "in silico". Thus the invention provides a computer-based method for the analysis of molecular structures which comprises: (a) providing the coordinates of at least two atoms of a BACE structure of the invention ("selected coordinates"); (b) providing the structure of a molecular structure to be fitted to said coordinates; and (c) fitting the structure to the selected coordinates of the BACE.

In practice, it will be desirable to model a sufficient number of atoms of the BACE as defined by the coordinates of Table 1, which represent a binding pocket. Thus, in this embodiment of the invention, there will preferably be provided the coordinates of at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 and preferably 500 selected atoms of the BACE structure.

In order to provide a three-dimensional structure of compounds to be fitted to a BACE structure of the invention, the compound structure may be modelled in three dimensions using commercially available software for this purpose or, if its crystal structure is available, the coordinates of the structure may be used to provide a representation of the compound for fitting to a BACE structure of the invention.

10

15

20

25

30

The step of providing the structure of a candidate modulator molecule may involve selecting the compound by computationally screening a database of compounds for interaction with the binding cavity or cavities. For example, a 3-D descriptor for the potential modulator may be derived, the descriptor including geometric and functional constraints derived from the architecture and chemical nature of the binding cavity or cavities. The descriptor may then be used to interrogate the compound database, a potential modulator being a compound that has a good match to the features of the descriptor. In effect, the descriptor is a type of virtual pharmacophore.

In any event, the determination of the three-dimensional structure of BACE provides a basis for the design of new and specific ligands for BACE. For example, knowing the three-dimensional structure of BACE, computer modelling programs may be used to design different molecules expected to interact with possible or confirmed binding cavities or other structural or functional features of BACE. Examples of this are discussed in Schneider, G.; Bohm, H. J. *Drug Discov. Today* **2002**, *7*, 64-70.

More specifically, the interaction of a compound with BACE can be examined through the use of computer modelling using a docking program such as GOLD (Jones et al., *J. Mol. Biol.*, 245, 43-53 (1995), Jones et al., *J. Mol. Biol.*, 267, 727-748 (1997)), GRAMM (Vakser, I.A., *Proteins*, Suppl., 1:226-230 (1997)), DOCK (Kuntz et al, *J.Mol.Biol.* 1982, 161, 269-288, Makino et al, *J. Comput. Chem.* 1997, 18, 1812-1825), AUTODOCK (Goodsell et al, *Proteins* 1990, 8, 195-202, Morris et al, *J. Comput. Chem.* 1998, 19, 1639-

- 1662.), FlexX, (Rarey et al, *J.Mol.Biol.* 1996, 261, 470-489) or ICM (Abagyan et al, *J.Comput.Chem.* 1994, 15, 488-506). This procedure can include computer fitting of compounds to BACE to ascertain how well the shape and the chemical structure of the compound will bind to the BACE.
- Also computer-assisted, manual examination of the binding site structure of BACE may be performed. The use of programs such as GRID (Goodford, *J. Med. Chem.*, 28, (1985), 849-857) a program that determines probable interaction sites between molecules with various functional groups and an enzyme surface may also be used to analyse the binding cavity or cavities to predict partial structures of inhibiting compounds.
- 10 Computer programs can be employed to estimate the attraction, repulsion, and steric hindrance of the two binding partners (i.e. the BACE and a candidiate modulator).

 Generally the tighter the fit, the fewer the steric hindrances, and the greater the attractive forces, the more potent the potential modulator since these properties are consistent with a tighter binding constant. Furthermore, the more specificity in the design of a potential drug, the more likely it is that the drug will not interact with other proteins as well. This will tend to minimise potential side-effects due to unwanted interactions with other proteins.
 - In another aspect, the present invention provides a method for identifying an agent compound (e.g. an inhibitor) which modulates BACE activity, comprising the steps of: (a) employing three-dimensional atomic coordinate data according to Table 1 to characterise at least one BACE binding site and preferably a plurality of BACE binding sites; (b) providing the structure of a candidate agent compound; (c) fitting the candidate agent compound to the binding sites; and (d) selecting the candidate agent compound.

20

- Preferably sufficient binding sites are characterised to define a BACE binding cavity or cavities.
- A plurality (for example two, three or four) of (typically spaced) BACE binding sites may be characterised and a plurality of respective compounds designed or selected. The agent compound may then be formed by linking the respective compounds into a larger compound which preferably maintains the relative positions and orientations of the respective

compounds at the binding sites. The larger compound may be formed as a real molecule or by computer modelling.

In one embodiment a plurality of candidate agent compounds are screened or interrogated for interaction with the binding sites. In one example, step (b) involves providing the structures of the candidate agent compounds, each of which is then fitted in step (c) to computationally screen a database of compounds (such as the Cambridge Structural Database) for interaction with the binding sites, i.e. the candidate agent compound may be selected by computationally screening a database of compounds for interaction with the binding sites (see Martin, *J. Med. Chem.*, vol 35, 2145-2154 (1992)). In another example, a 3-D descriptor for the agent compound is derived, the descriptor including e.g. geometric and functional constraints derived from the architecture and chemical nature of the binding cavity or cavities. The descriptor may then be used to interrogate the compound database, the identified agent compound being the compound which matches with the features of the descriptor. In effect, the descriptor is a type of virtual pharmacophore.

In a related aspect, the present invention provides a method for identifying a candidate modulator (e.g. potential inhibitor) of BACE comprising the steps of: (a) employing a three-dimensional structure of BACE, at least one sub-domain thereof, or a plurality of atoms thereof, to characterise at least one BACE binding cavity, the three-dimensional structure being defined by atomic coordinate data according to Table 1; and (b) identifying the candidate modulator by designing or selecting a compound for interaction with the binding cavity.

Detailed structural information can then be obtained about the binding of the compound to BACE, and in the light of this information adjustments can be made to the structure or functionality of the compound, e.g. to improve its interaction with BACE. The above steps may be repeated and re-repeated as necessary.

K. Compound selection

5

10

20

25

In another aspect, in place of *in silico* methods, high throughput screening of compounds to select compounds with binding activity may be undertaken, and those compounds which show binding activity may be selected as possible candidate modulators, and further

crystallized with BACE (e.g. by co-crystallization or by soaking) for X-ray analysis. The resulting X-ray structure may be compared with that of Table 1 for a variety of purposes.

L. Compounds of the invention

10

15

20

25

Having designed or selected possible binding candidate modulators (e.g. by *in silico* analysis, "wet" chemical methods, X-ray analysis etc.) by determining those which have favourable fitting properties (e.g. strong attraction between candidate and BACE), these can then be screened for activity.

Consequently all the methods of compound design and identification outlined above can optionally include the step of: (a) obtaining or synthesising the candidate modulator; and (b) contacting the candidate modulator with BACE to determine the ability of the candidate modulator to interact with BACE.

More preferably, in the latter step the candidate modulator is contacted with BACE under conditions to determine its function.

For example, in the contacting step above the candidate modulator is contacted with BACE in the presence of a substrate, and typically a buffer, to determine the ability of said candidate modulator to inhibit BACE. The substrate may be e.g. APP. So, for example, an assay mixture for BACE may be produced which comprises the candidate modulator, substrate and buffer.

Detailed structural information can be obtained about the binding of the candidate modulator to BACE, and in the light of this information adjustments can be made to the structure or functionality of the candidate modulator, e.g. to improve binding to the binding cavity or cavities. The above steps may be repeated and re-repeated as necessary.

Following identification of such compounds, it may be manufactured and/or used in the preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals.

Thus, the present invention extends in various aspects not only to a compound as provided by the invention, but also a pharmaceutical composition, medicament, drug or other composition comprising such a compound e.g. for treatment (which may include preventative treatment) of disease; a method comprising administration of such a composition to a patient, e.g. for treatment of disease; use of such an inhibitor in the manufacture of a composition for administration, e.g. for treatment of disease; and a method of making a pharmaceutical composition comprising admixing such an inhibitor with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

Thus a further aspect of the present invention provides a method for preparing a medicament, pharmaceutical composition or drug, the method comprising:

. 10

.15

20

25

(a) identifying a BACE modulator molecule (which may thus be termed a lead compound) by a method of any one of the other aspects of the invention disclosed herein; (b) optimising the structure of the modulator molecule; and (c) preparing a medicament, pharmaceutical composition or drug containing the optimised modulator molecule.

The above-described processes of the invention may be iterated in that the modified compound may itself be the basis for further compound design.

By "optimising the structure" we mean e.g. adding molecular scaffolding, adding or varying functional groups, or connecting the molecule with other molecules (e.g. using a fragment linking approach) such that the chemical structure of the modulator molecule is changed while its original modulating functionality is maintained or enhanced. Such optimisation is regularly undertaken during drug development programmes to e.g. enhance potency, promote pharmacological acceptability, increase chemical stability etc. of lead compounds.

Modification will be those conventional in the art known to the skilled medicinal chemist, and will include, for example, substitutions or removal of groups containing residues which interact with the amino acid side chain groups of a BACE structure of the invention. For example, the replacements may include the addition or removal of groups in order to decrease or increase the charge of a group in a test compound, the replacement of a charge group with a group of the opposite charge, or the replacement of a hydrophobic group with a hydrophilic group or vice versa. It will be understood that these are only examples of the type of substitutions considered by medicinal chemists in the development of new pharmaceutical compounds and other modifications may be made, depending upon the nature of the starting compound and its activity.

Compositions may be formulated for any suitable route and means of administration. Pharmaceutically acceptable carriers or diluents include those used in formulations suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.

For solid compositions, conventional non-toxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, cellulose, cellulose derivatives, starch, magnesium stearate, sodium saccharin, talcum, glucose, sucrose, magnesium carbonate, and the like may be used. Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc, an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline aqueous dextrose, glycerol, ethanol, and the like, to thereby form a solution or suspension. If desired, the pharmaceutical composition to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, sorbitan monolaurate, triethanolamine oleate, etc. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pennsylvania, 15th Edition, 1975.

15

20

25

Compositions may be used, e.g. for treatment (which may include preventative treatment) of a disease such as Alzheimer's disease or Alzheimer's-type pathology in Downs syndrome. Thus the invention provides a method comprising administration of such a composition to a patient, e.g. for treatment of a disease such as Alzheimer's disease; use of such an agent compound in the manufacture of a composition for administration, e.g. for treatment of a disease such as Alzheimer's disease; and a method of making a pharmaceutical composition comprising admixing such an agent compound with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

Exemplification

The invention will now be described with reference to specific Examples. These are merely exemplary and for illustrative purposes only: they are not intended to be limiting in any way to the scope of the invention described. These examples constitute the best mode currently contemplated for practicing the invention.

BACE protease was expressed at high levels in bacterial cells as insoluble inclusion bodies. To prepare functional protein for enzyme assay and structural studies these inclusion bodies were solublised using denaturants; the slow removal of these denaturants allowed the formation of the correct tertiary structure. In the method described here, BACE was expressed as a pro-sequence and required activation by a protease before becoming fully functional. Clostripain was used as an activating protease but produced multiple species of BACE as determined by mass spectrometry. In order to obtain a uniform homogenous protein after activation by clostripain, a number of different constructs were produced. These constructs focused on the mutation of two undesireable clostripain cleavage sites (following residues R56 and R57).

Cloning of BACE WT and BACE N->Q

10

15

20

The full-length DNA coding sequence of BACE was cloned from human cerebellum and human dorsal root ganglion (DRG) cDNA by PCR using oligonucleotide primers based on the published BACE sequence (EMBL accession no. AF190725). The full-length template sequence was obtained by PCR amplification using the following primers: hBACE-sp1 and -ap1 were used for primary amplification, hBACE-sp2 and -ap2 for nested PCR.

The primers were as follows:

10

15

20

25

hBACE-sp1	5'-AGCTCCCTCTCGAGAAGCCACC-3' (SEQ ID NO: 22)
hBACE-ap1	5'-CCACAGGTGCCATCTGTGTCTCC-3' (SEQ ID NO: 23)
hBACE-sp2	5'-CACCAGCACCACCCAGACTTGG-3' (SEQ ID NO: 24)
hBACE-ap2	5'-AACCACGGAGGTGTGGTCCAGG-3' (SEQ ID NO: 25)

A cDNA construct encoding a modified BACE form was made as follows. A partial BACE cDNA fragment was amplified using the full-length BACE clone as a template with primers hBACE_EC(Bam-M-14)_FOR (5' - CGG GAT CCA TGG CGG GAG TGC TGC CTG CC - 3') and hBACE_EC(Bam-453)_REV (5' - CGG GAT CCT TAT GAC TCA TCT GTC TGT GGA ATG TTG TAG C - 3'). The resulting 1342 bp PCR fragment was subcloned in vector pCR2.1-TOPO using the TOPO TA cloning® kit (Invitrogen) according to the manufacturer's instructions. The inserts of several resulting clones were fully sequenced and a clone containing no PCR mistakes was selected. The insert of this clone was excised from the pCR2.1-TOPO construct using the *Bam*HI restriction endonuclease and subcloned to vector pET11a (Novagen) linearized with *Bam*HI. The BACE coding sequence (BACE WT, SEQ ID 1) in the resulting clones was confirmed by sequence analysis and the resulting correct construct was named M-T7-RGSM(BACE14-453)/pET11a.

Plasmid M-T7-RGSM(BACE14-453)/pET11a encodes a 455 amino acid residue protein named BACE WT containing a T7 epitope tag encoded by the pET11a vector sequence (AA 1 to 11), a linker sequence (AA 12-15; RGSM) and the partial BACE amino acid sequence from residue 14 to 453 (AA 16 to 455)(numbering based on SEQ ID 2). The calculated molecular mass of the resulting protein is 50.2 kDa.

The insert from construct Plasmid M-T7-RGSM(BACE14-453)/pET11a was amplified by PCR to incorporate a His₆ tag (CAT CAC CAT CAC CAC) just upstream of the stop codon and *Bam*H1 site. Following cloning of this amplified fragment back into the original expression vector, the asparagine residues at positions -153, -172, -223 and -354 (numbers refer to the database BACE sequence BACE HUMAN, P56817 in Swissprot) were mutated

to glutamine (AAC to CAA) using the QuikchangeTM mutagenesis system (Stratagene, used according to the manufacturers instructions), to generate BACE N->Q (SEQ ID 3).

Introduction of Activation Site Mutations

10

BACE WT and BACE N->Q, described above, were mutated using the Quickchange[™] site directed mutagenesis protocol (Stratagene). Two complimentary oligonucleotides were designed which spanned the site of the mutation and which incorporated the amino acids changes to be made. These oligonucleotides were then used as primers in a PCR reaction producing each of the strands of the plasmid with the mutation present; the parental plasmid is digested with the methylation sensitive restriction endonuclease *Dpn*I and then transformed into competent *E.coli* cells.

Primers were applicable for the mutation of both BACE WT and BACE N->Q due to their high sequence homology. Seven constructs were produced; these are detailed below with the oligonucleotide sequence used to make the constructs.

- 1) BACE WT mutating arginine 56 to lysine and arginine 57 to lysine (SEQ ID 5)
- 5' CCCGAGGAGCCCGGCAAGAAGGGCAGCTTTGTGGAGATG 3' (SEQ ID NO:26)
 - 5' CATCTCCACAAAGCTGCCCTTCTTGCCGGGCTCCTCGGG 3' (SEQ ID NO: 27)
 - 2) BACE WT mutating arginine 57 to lysine (SEQ ID 7)
- 5' CCCGAGGAGCCCGGCCGGAAGGGCAGCTTTGTGGAGATGG 3' (SEQ ID NO: 28)
 - 5' CCATCTCCACAAAGCTGCCCTTCCGGCCGGGCTCCTCGGG 3' (SEQ ID NO: 29)
 - 3) BACE WT deleting arginine 57 (SEQ ID 9)
- 25 5' CCCGAGGAGCCCGGCAGGGGCAGCTTTGTGGAGATGGTGGAC 3' (SEQ ID NO: 30)

- 5' GTCCACCATCTCCACAAAGCTGCCCCTGCCGGGCTCCTCGGG 3' (SEQ ID NO: 31)
- 4) BACE N->Q mutating arginine 56 to lysine and arginine 57 to lysine (SEQ ID 11)
- 5' CCCGAGGAGCCCGGCAAGAAGGGCAGCTTTGTGGAGATG 3' (SEQ ID NO:
- 5 32)
 - $5°-CATCTCCACAAAGCTGCCCTTCTTGCCGGGCTCCTCGGG-3°(SEQ\ ID\ NO:$
 - 33)
 - 5) BACE N->Q mutating arginine 57 to lysine (SEQ ID 15)
 - 5' CCCGAGGAGCCCGGCCGGAAGGGCAGCTTTGTGGAGATGG 3' (SEQ ID
- 10 NO: 34)
 - 5' CCATCTCCACAAAGCTGCCCTTCCGGCCGGGCTCCTCGGG 3' (SEQ ID NO:35)
 - 6) BACE N->Q deleting arginine 57 (SEQ ID 17)
 - 5' CCCGAGGAGCCCGGCAGGGGCAGCTTTGTGGAGATGGTGGAC 3' (SEQ ID NO: 36)
 - 5' GTCCACCATCTCCACAAAGCTGCCCCTGCCGGGCTCCTCGGG 3' (SEQ ID NO: 37)
 - 7) BACE N->Q mutating arginine 56 to lysine and arginine 57 to lysine and removing the C terminal poly histidine tag (SEQ ID 13)
- 20 5' CCCGAGGAGCCCGGCAAGAAGGGCAGCTTTGTGGAGATG 3' (SEQ ID NO: 38)
 - 5' CATCTCCACAAAGCTGCCCTTCTTGCCGGGCTCCTCGGG 3' (SEQ ID NO: 39)
 - 5' CCACAGACAGATGAGTCATGACACCATCATCACCACTAAG 3' (SEQ ID NO:

25 40)

5' - CTTAGTGGTGATGATGGTGTCATGACTCATCTGTCTGTGG - 3' (SEQ ID NO: 41)

After transformation of the plasmid the protein coding region was checked by DNA sequencing.

5 Protein production (1)

Plasmid constructs were transformed into BLR(DE3) as follows: 1-2 μ l DNA was added into 25ul BLR(DE3) competent cells. Cells were then heat shocked at 42°C for 45secs, followed by incubation for 30mins at 4°C. The sample was placed on ice for 2-3 mins before addition of 125-250ul HOC medium and left for 60 mins at 37°C. Cells were plated out onto agar containing carbenicillin & incubated at 37°C for 16h. Transformations were stored at 4°C. Transformed cells could be used up to after 8 weeks storage.

Colonies were inoculated in 100 ml LB broth with 1mM carbenicillin, and shaken for 16h at 25°C. 12 ml of this culture was added to 1 L of the same medium in baffle flasks. The typical total culture volume was 12, 20 or 24 L. Cells were induced by addition of 1mM IPTG at approximately OD₆₀₀ 1.0. Cells were harvested 3 to 4 hours after induction by centrifugation for 7 min at 16 000 g. Cell pellets were resuspended in 1 litre TN buffer (150mM NaCl, 50mM Tris, pH 7.5) before addition of 10 mg lysozyme per litre of bacterial culture. The suspension was left for 20 mins under vigorous stirring then frozen at -70°C.

The lysates were thawed & adjusted to 1 mM MgCl2 and 20 μl 10 mg/ml DNAse, incubated 30-60 mins at 20°C, then 0.1 % Triton X-100 was added. Inclusion body washes were performed in 11 wash steps, spun down at 13,000-16,000 g for 20mins at room temperature then resuspended by sonication in TNT buffer (TN buffer + 0.1% Triton 100). The washing step with TNT was repeated at least three times (up to seven times) until an almost homogenous dark cream precipitate was obtained. At this stage the pellet was washed twice with TN buffer. The typical yield for a 12 L culture of BACE WT constructs was 4.5 g washed inclusion body material.

Protein Refolding (1)

Each g of inclusion bodies was solubilised with 22.5 ml of 8 M urea, 50 mM Tris, 0.1 M beta-mercaptoethanol, 10 mM DTT, 1 mM EDTA. After 2 to 3 hours under gentle stirring, this was spun at 48 400 g for 25mins. This was then diluted 1 in 10 in 8 M Urea, 0.2 mM oxidized glutathione, 1.0 mM reduced glutathione. This is the starting solution for refolding

Refolding was accomplished by dilution into 20 volumes 20 mM Tris, 10 mM NDSB256 (3-(benzyldimethylammonio)propanesulfonate). The addition was achieved by slowly dripping from a burette into a strongly stirred solution. Addition was carried out at room temperature.

The pH was adjusted to approximately 9 using 13.5 ml 1 N HCl per 5 litre of refolding mix either immediately after dilution or 16 h after dilution. This was left at 4°C for 2-3 weeks. The refolding mix was then adjusted to pH 8.2 16h before concentrating. In instances where a longer incubation was applied it appeared that yields were slightly better. No precipitation was seen when attempting to refold BACE, even in totally unsuccessful conditions.

15 Constructs BACE WT R57K, BACE WT R57DEL, BACE N->Q R57K, and BACE R57DEL refolded with lower yields.

Protein Purification of BACE from refolding step (1)

The refolded protein sample was concentrated by ultrafiltration using two parallel Vivaflow 200 cells (MWCO 30Kda), fed by a single pump. The concentration factor was not more than 200 times: if exceeded, precipitation occurred.

Concentrated refolded BACE was loaded and eluted on a 1.75 L Sephacryl 300 column run at a flow of 0.2 cm-1/min in 0.4 M Urea, 20 mM Tris, 10 mM HCl. Typical loading volume was 2% bed volume. From reconcentrated material three peaks are observed, the first one near the void volume (large aggregates), which merges into a second peak of aggregated inactive material. The third peak (elutes at approx 40% of column volume) constitutes active BACE. For BACE WT constructs, the active fraction elutes at approximately 800ml.

Activation by Clostripain (1)

20

25

Clostripain (Cp; EC 3.4.22.8, from Worthington or Sigma C7403) was activated before use by solubilising the freeze dried material to 1.25 mg/ml in: 20 mM Calcium Acetate, 8 mM

DTT, 100 mM Tris, pH 8 at 1.25 mg/ml 4 °C for at least 1h. The preparation was then stable at 4 °C for up to four weeks.

The third peak (typically 100 ml at an average of 0.3 mg ml) from Sephacryl 300 elution was treated with activated Cp, (1/100 dilution) for between 30-90mins at room temperature.

Activation of BACE WT R56KR57K, BACE N->Q R56KR57K & BACE N->Q R56KR57K no His by clostripain was performed as described above except that prior to activation the solution was concentrated ten fold using Vivaspin 20 ml 30 KDa MWCO.

The reaction was stopped by loading onto a Mono Q HR5-5 column equilibrated in 0.4 M Urea, 20 mM Tris, 10 mM HCl, 1 mM EDTA followed by washing using the same buffer. The protein was eluted with a 0 to 1 M NaCl gradient over 10 column volumes. A typical final yield of active soluble BACE WT R56KR57K is 1-2 mg of protein per litre of culture grown. The eluted protein was characterised and used in crystallisation assays.

Protein Production (2)

10

· 15

20

25

BLR (DE3) competent cells were transformed as described earlier and plated onto agar containing ampicillin (Amp). A colony was picked into 250ml LB + 100ug/ml Amp and grown overnight @ 37^{0} C, 185rpm. Following overnight growth (OD₆₀₀ varied between 2.0-2.5) 10ml of this culture was used to inoculate 1L of fresh LB+100 μ g/ml Amp in a 2L baffled flask. Routinely 24L of fresh LB+Amp would be inoculated from the overnight growth. Following inoculation, the 24L prep would be grown at 37^{0} C, 185rpm until an OD₆₀₀ = 1.0 was obtained. Protein expression was induced by the addition of IPTG to a final concentration of 1mM. Cultures were incubated for a further 3 hours (at 37^{0} C, 185rpm) before harvesting by centrifugation at 8000 rpm for 10 mins (JLA 8.1000). Cell pellets could be stored at -80^{0} C or processed immediately.

All following protein production procedures were performed at room temperature unless stated otherwise. Cell pellet was re-suspended in 500ml of TN buffer (TN buffer – 150mM NaCl, 50mM Tris, pH7.5). 240mg of egg lysozyme (10mg/L of bacterial culture) was added to the re-suspended pellet. The suspension was left stirring for 20mins. Following this, 100ul of DNase 1 (10mg/ml stock) was added to the suspension and this was left stirring for 20mins. This lysate was clarified by centrifugation at 8000rpm for 20mins (JLA8.1000).

The supernatant was discarded and the pellet was re-suspended in 100ml TNT buffer (TNT buffer – 150mM NaCl, 50mM Tris, pH7.5, 0.1% Triton X-100). Effort was made to break up any lumps present in the pellet so that a homogenous re-suspension was obtained. Following this, the re-suspension was sonicated for 2 mins (20 sec pulses). 400ml of TNT buffer was added to bring the volume of the suspension up to ~500mls. This was centrifuged for 20mins at 8000rpm and the supernatant discarded. The re-suspension in TNT buffer and sonication steps, as described above, were repeated twice. Following these three TNT washes, the pellet was re-suspended in 100ml of TN buffer and sonicated for 2 mins (20 second pulses). The suspension was centrifuged for 20 mins at 8000rpm. This wash in TN buffer was repeated once. Approximately 12-15g of inclusion bodies was obtained from the 24L of culture.

Protein Refolding (2)

15

20

The inclusion body preparation was solubilised by addition of 100mls of solubilisation buffer (Sol. Buffer – 8M urea, 50mM Tris, 0.1M beta-mercaptoethanol, 10mM DTT, 1mM EDTA). Effort was made to break up the inclusion body pellet using a pipette/spatula. The solution was left stirring gently overnight. The suspension was centrifuged for 30 mins at 25,000rpm (JA25). The supernatant (~100mls) was diluted by the addition of 900mls of 8M urea, 0.2mM oxidised glutathione, 1.0mM reduced glutathione.

The 1L of solubilised inclusion bodies as prepared above were refolded by a further 20x dilution. A 250ml aliquot of solubilised inclusion body prep was added drop-wise to 4.75L of refolding buffer (**Refolding buffer** – 20mM Tris, 10mM NDSB256 (3- (benzyldimethylammonio)propanesulfonate). The 4.75L of refolding buffer was stirred vigorously (not foaming) and the 250mls of inclusion body prep was added using a peristaltic pump. Care was taken to add the 250mls at a fast drop rather than a continuous pour. The remaining 750mls of inclusion body prep was diluted in the same way (250mls into 4.75L of refolding buffer). The four 5L vessels were placed at 4°C overnight.

Following overnight incubation at 4°C, the pH of each 5L vessel was adjusted to pH9.0 by addition of conc HCl. The vessels were then placed back at 4°C and left for 3 weeks.

Protein Purification of BACE from Refolding Step (2)

Two parallel Vivaflow 200 cells (MWCO 30Kda) fed by a single peristaltic pump were used. Each 5L of refolding mix was concentrated to ~50mls. Over concentrating leads to precipitation and should be avoided. The concentration of 5L of refolding mix took ~2 hours. The 50mls of concentrated refolding mix was centrifuged for 25 mins, at 25,000rpm. The supernatant was then ready for gel filtration using a Sephacryl S-300 column (100x3.5). This method is limited by the volume of concentrated refolding mix than can be loaded onto the gel filtration column (50mls) per run. Sephacryl S-300 column was equilibrated with 0.4M urea, 20mM Tris, 10mM HCl (at a flow rate of 4ml/min). 50ml of sample can be loaded per run. The column was run at a flow rate of 4ml/min. SDS PAGE analysis of peaks 1,2 and 3 showed the presence of BACE (50Kda band) however activity assay of all three peaks showed only active BACE in peak 3. Fractions from Peak 3 were pooled and kept on ice.

Activation by Clostripain (2)

10

20

15 Clostripain (Sigma C7403) was prepared by dissolving protein to a final concentration of 1.25mg/ml in 20mM Calcium acetate, 8mM DTT, 100mM Tris pH 8.0. The clostripain was activated by incubating on ice for 1 hour prior to use.

Pooled fractions from peak 3 (~100ml at 0.2mg/ml) were activated by the addition of 1/100 dilution of 1.25mg/ml clostripain. The reaction was incubated at 37°C in a water bath for 90 minutes. The reaction was stopped by addition of 1mM EDTA and placed on ice. **Note**: With each fresh batch of Sigma Clostripain, a time trial was performed on a small amount of BACE to verify the length of incubation needed at 37°C. The length of incubation varied from 30-90 mins. Analysis by SDS PAGE clearly showed the appearance of the lower molecular weight activated species (~47Kda) from the larger inactivated species (~50Kda).

A Mono Q 5/5 ion exchange column was pre-equilibrated in 0.4M urea, 20mM Tris, 10mM HCl. The activated BACE (~50mls at ~0.2mg/ml) was loaded onto the Mono Q column at a flow rate of 1.0ml/min. Activated BACE was purified by applying a linear salt gradient (0.4M urea, 20mM Tris, 10mM HCl, 1.0M NaCl) over 20 column volumes. Following analysis by SDS PAGE and subsequent activity assay, fractions corresponding to activated

BACE were pooled and buffer exchanged into crystallisation buffer (20mM Tris, pH8.2, 150mM NaCl, 1mM DTT).

Protein Purification of BACE from Refolding Step (3)

By using method 3 in conjunction with the S-200 INDEX gel filtration column, all 20L of refolding mix could be processed in one go.

A Sartocon filtration cassette (MWCO 30Kda) was used in conjunction with a Watson Marlow 623S high speed pump. This assembly was set up as described in the manufactures operation manual. The 20L of refolding mix was concentrated down to ~500mls in less than 1 hour. Due to the dead volume in the assembly tubing, the volume could not be reduced further. At this stage the 500mls of concentrated refolding mix was filtered using a 0.2um filter. The filtered sample was then ready for gel filtration using an S-200 INDEX gel filtration column (100x10.0). A S-200 INDEX column pre-equilibrated in 0.4M urea, 20mm Tris, 10mM HCl was used. The column run was at a flow rate of 10mls/min.

SDS analysis of peaks 1,2 and 3 showed that BACE was present in all fractions. Activity assay showed that only peak 3 contain some BACE activity. Fractions from peak 3 were pooled (~250mls at 0.1mg/ml).

Prior to clostripain activation, the BACE sample was concentrated using a Resource Q ion exchange column. A 6/1 Resource Q column was pre-equilibrated in 0.4M urea, 20mM Tris, 10mM HCl. The Bace sample was loaded onto the column at 7ml/min. BACE was eluted off the column using a linear salt gradient (0.4M urea, 20mM Tris, 10mM HCl, 1M NaCl) over 5 column volumes. This step has the effect of dramatically reducing the sample volume size. Prior to clostripain activation, the protein sample is diluted with 0.4M urea, 20mM Tris, 10mM HCl to reduce the salt concentration to enable further purification using Mono Q. A dilution factor of 5:1 has been used successfully.

This is then followed by Clostripain Activation and Mono Q purification as outlined above.

Protein Characterization

10

15

20

The quality of the final preparation was evaluated by:

(a) <u>SDS polyacrylamide gel electrophoresis</u>, performed using commercial gels (Novagen) followed by Coomassie Brilliant Blue staining according to the manufacturer's instructions. The purity as estimated by scanning a digital image of a gel was estimated to be at least 95%.

5 (b) Mass Spectroscopy: The eluted peak(s) were analysed using ESI-TOF-MS. Mass spectroscopy was performed using a Bruker "BioTOF" electrospray time of flight instrument. Samples were either diluted by a factor of 1000 straight from storage buffer into methanol/water/formic acid (50:48:2 v/v/v), or subjected to reverse phase HPLC separation using a C4 column. Calibration was achieved using Bombesin and angiotensin I using the 2+ and 1+ charged states. Data were acquired between 200 and 2000m/z range and were subsequently processed using Bruker's X-mass program. Mass accuracy was typically below 1 in 10 000.

MS Analysis of BACE WT R56KR57K (SEQ ID NO: 6)

Full-length protein: MASMTGGQQMGRGSMAGVLPAHGT...

15 Predicted mass of full-length protein: 50147

Cleavage position:

MASMTGGQQMGR ↓ GSMAGVLPAHGT...

Predicted mass of BACE protein: 48911. This is the first intermediate fragment and is obtained very quickly and can be obtained as a stable fragment at lower enzyme concentration.

Cleavage position:

20

25

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLR↓
LPRETDEEP...

Predicted mass of BACE protein: 45781. This is the final fragment obtained in the conditions described above. Observed ES-MS spectra of this fragment deconvolutes to a parent mass of 45783. The fragment typically elutes as a single peak from the Mono Q 5.5.

Mass Spec Analysis of BACE N->Q R56KR57K (SEQ ID NO: 12)

Predicted mass of full-length protein:

50895

Cleavage position:

 $MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLR\downarrow$

5 LPRETDEEP....

Predicted mass of BACE protein: 46660.65. This is the final fragment obtained in the conditions described above. Observed ES-MS spectra of this fragment deconvolutes to a parent mass of 46655. The fragment typically elutes as two peaks from the Mono Q 5.5, the first corresponding to the desired fragment.

10 Mass Spec Analysis of BACE N->Q R56KR57K no His (SEQ ID NO: 14)

Predicted mass of full-length protein: .

50072.73

Cleavage position:

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLR↓LPRETDEEP...

Predicted mass of BACE protein: 45837.80. This is the first intermediate fragment, obtained rapidly between 30-60 minutes post activation and is suitable for crystallisation. Observed ES-MS spectra of this fragment deconvolutes to a parent mass of 45838.30. Typically elutes as 2 peaks from the Mono Q 5.5, the first peak corresponding to the desired fragment.

20 Cleavage position:

25

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEE PGK \downarrow KGSFVEMV...

Predicted fragment mass: 44230.11. Further digestion beyond 60 minutes promotes the formation of the above fragment, not suitable for crystallisation. Observed ES-MS spectra of this fragment deconvolutes to a parent mass of 44228.03. This typically elutes as peak 2 from the Mono Q 5.5.

Method for Determining Activity of BACE

A fluorimetric assay was used to measure the activity of the refolded proteins. Activity of the BACE enzyme was measured using the fluorescent peptide R-E(EDANS)-E-V-N-L-*D-A-E-F-K(DABCYL)-R-OH (Bachem) as substrate. Assays were carried out in 96-well black, flat-bottomed Cliniplates in a final assay volume of 100ul. The reaction rate was monitored at room temperature on a Fluoroskan Ascent plate reader with excitation and emission wavelengths of 355nm and 530nm respectively.

To determine the pH profile for the enzyme 8 nM BACE was incubated with 10 μ M substrate in 50 mM sodium acetate (pH 3.5-5.5) or MES (pH 5.5-6.5) buffers at varying pHs and 5 % DMSO.

For kinetic characterization of the enzyme 8 nM BACE enzyme was incubated with varying concentrations of the substrate $(2.5-80~\mu\text{M})$ in 50 mM sodium acetate, pH 5, 5 % DMSO and the reaction monitored as described above. Kinetic parameters were determined by the standard Michaelis-Menten equation, using Prizm (GraphPad) software. 1mM OM 99 completely inhibits activity.

Protein Crystallisation

10

15

20

The sample of BACE was buffer exchanged into 20 mM Tris.HCl pH8.2, 150 mM NaCl, 1 mM DTT and concentrated down to approximately 7 mg/ml as determined by its theoretical extinction coefficient. Prior to crystallisation, the sample was spun at 55,000 rpm for 30 min using a Beckman benchtop ultracentrifuge. DMSO was added to a final concentration of 3 % (v/v).

Crystals of BACE from BACE WT R56KR57K, BACE N->Q R56KR57K & BACE N->Q R56KR57K no His were obtained by the hanging-vapour diffusion method at 20 °C using 1.5 µl of protein and an equivalent volume of reservoir solution. The reservoir solution contained 20-24 % PEG 5000 MME, 180-220 mM (e.g. 200 mM) ammonium iodide, 180-220 mM (e.g. 200 mM) tri-sodium citrate (pH 6.4-6.6). In an alternative, the reservoir solution may additionally contain 2.5% v/v glycerol.

Diffraction quality single crystals of BACE WT R56KR57K were obtained by the hanging-vapour diffusion method at 20 °C using 1.5 µl of protein and an equivalent volume of

reservoir solution. The reservoir solution contained 20-22.5 % PEG 5000 MME, 180-220 mM (e.g. 200 mM) ammonium iodide, 180-220 mM (e.g. 200 mM) tri-sodium citrate (pH 6.4-6.6).

Crystals appear within the first week and grow to maximum dimensions within 14 days. The crystals were hexagonal rods with approximate dimensions of $0.2 \times 0.05 \times 0.05$ mm. They belonged to the hexagonal space group P6₁22 with cell parameters a = b = 103.2 Å, c = 169.1 Å and accommodate one enzyme molecule per asymmetric unit, and a solvent content of 66 %.

Inhibitor Soaking

BACE inhibitors were dissolved in DMSO to a concentration of 500 mM and then diluted 1 in 10 in a harvesting solution composed of 220 mM ammonium iodide, 220 mM sodium cacodylate pH 6.4 and 22% PEG 5K MME or 100-200 mM sodium citrate pH 5.0, 200 mM ammonium iodide and 30% PEG 5K MME. Apo-BACE protein crystals were transferred into the harvesting solution for a period of up to 24 hours prior to being dipped in cryoprotectant (20% PEG 5000 MME, 200 mM ammonium iodide, 200 mM sodium cacodylate pH 6.4 and 20% (v/v) glycerol or 200 mM sodium citrate pH 5.0, 200 mM ammonium iodide, 30% PEG 5K MME and 20% (v/v) glycerol) containing the inhibitor and frozen in liquid nitrogen.

Data Collection & Processing

The structure of apo-BACE was solved from BACE WT R56KR57K to 1.75 Å resolution using the method of molecular replacement. Prior to data collection, crystals were exposed, briefly, to cryoprotectant, described previously, before flash freezing. Data was collected at 100 °K on beamline ID14-1 at the European Synchrotron Radiation Facility using an ADSC Quantum4 CCD detector, with a wavelength of 0.934Å and processed using MOSFLM (Leslie, A. G. W. (1992). In *Joint CCP4 and EESF-EACMB Newsletter on Protein Crystallography*, vol. 26, Warrington, Daresbury Laboratory). The dataset was scaled using SCALA (CCP4 – Collaborative Computational Project 4. (1994) The CCP4 Suite: Programs for Protein Crystallography. *Acta Crystallographica* D50, 760-763) and the intensities converted to structure factor amplitudes with TRUNCATE (Evans, P. R. (1997). Scaling of MAD data. In *Recent Advances in Phasing* (ed. K. S. Wilson, G. Davies, A. W. Ashton and

S. Bailey), pp. 97-102. Council for the Central Laboratory of the Research Councils Daresbury Laboratory, Daresbury, UK), from the CCP4 suite of programs (CCP4 – Collaborative Computational Project 4. (1994) The CCP4 Suite: Programs for Protein Crystallography. *Acta Crystallographica* D50, 760-763). Statistics for the processing are shown in Table 2.

TABLE 2: Data collection statistics for apo-BACE.

Resolution	1.75 Å
Mosaicity	0.34°
Completeness	95.9 %
Multiplicity	6.3
Rmerge	0.097

Structure Determination and Refinement

10

15

20

The structure of apo-BACE was solved by molecular replacement using the program EPMR (Kissinger CR, Gehlhaar DK, Fogel DB, Acta Crystallogr D Biol Crystallogr, 1999,vol 55 (Pt 2), 484-91). Initially, it was impossible to know whether the correct space group was P6₁22 or P6₅22, therefore molecular replacement attempts were performed against both. Default parameters and a resolution range of 15–4Å were used in conjunction with the A chain of 1FKN (Hong et al, 2000) as the search model. A solution was found for P6₁22 with an Rfactor of 0.458 and a correlation coefficient of 0.543. In an attempt to reduce model bias, the molecular replacement solution was used as the starting point for ARP/wARP (Morris RJ, Perrakis A, Lamzin VS, Acta Crystallogr D Biol Crystallogr, 2002,vol 58,(Pt 6 No 2), 968-75) to perform automated backbone tracing using warpNtrace and side chain building via the Side_dock procedure. This produced a discontinuous model composed of 244 out of 385 residues spanning 12 amino acid chains. Cycles of structural refinement with REFMAC5 (Murshudov, G. N., Vagin, A. A. and Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallographica*, 1997 D53, 240-255) were alternated with manual rebuilding of the

model using QUANTA (Jones et al., Acta Crystallography A47 (1991), 110-119 and commercially available from Accelerys, San Diego, CA). The model was extended to 329 residues with chain breaks between 156-170, 255-280 and 311-325. CNX (Brunger et al., *Current Opinion in Structural Biology*, Vol. 8, Issue 5, October 1998, 606-611, and commercially available from Accelerys, San Diego, CA) composite omit maps were generated to allow further building of the structure and finally water molecules added using DenInt (Astex internal software library). Refinement statistics are shown in Table 3.

TABLE 3: Final refinement statistics for apo-BACE

Rwork	0.251
Rfree	0.284
RMS bond deviation from ideality	0.011
RMS bond angle deviation from ideality	1.30
Average Bfactor for structure	32.99

This data indicates that the final structure is of good quality; the Rfactors indicating that the refined model has a good agreement with the experimental data. The RMS deviations from ideality indicate that the geometry of the model is good.

Description of the Apo Structure of BACE

10

The structure of BACE we present here has been solved in the absence of substrate or inhibitor. This is the first time that such a structure has been described. The solution of this structure has been possible as we have, for the first time, crystallized BACE without compound in a form suitable for diffracting X-rays, and hence allowed the determination of the apo structure of BACE. Under our conditions it crystallizes in space group P6₁22 with a monomer in the asymmetric unit. This is a novel crystal form of BACE.

The protein chain has been traced in the electron density from residue Phe47p to Ala157, and then from Ala168 to Asn385. There is no indication as to the position of residues 158 to

167 in the electron density map. In addition to the protein atoms, the model contains 3 iodine atoms and 285 water molecules in its present state of refinement.

5

.10

15

20

25

30

The majority of the residues in this form of BACE are well defined, the exceptions being some exposed residues. Parts of the protein surface are exposed to solvent, as a consequence of the molecular packing within the crystal lattice (Figure 1). Residues 255-259, 271-277 and 310 to 317 are exposed and have high B-factors relative to the body of the protein. In addition, residues 304 to 309 pack against an exposed loop and are poorly ordered with high b-factors. There are three disulphide bonds in BACE, two of these are well defined in the electron density, the third, between Cys269 and Cys319 has high temperature factors. This is probably a consequence of its proximity to exposed parts of the protein.

BACE as it has been solved in this form, is a compact globular protein, which is formed by two domains; domain 1 being comprised of residues 47p-146 and domain 2 of residues (146-385)(numbering from Hong *et al*, 2000). The active site lies between these two domains, and contains the two conserved aspartic acid residues, Asp32 and Asp228, which define the active sites of aspartic proteinases. In our structure, a single water molecule is coordinated between these two residues.

The overall fold of the protein is similar to that of 1FKN (Hong et al, 2000), with a few minor, but potentially significant changes. Residues 158-166 are ordered in the structure of BACE in the presence of OM99-2 (in the P2₁ form), and consist of a loop plus a short helix. In the P6₁22 unliganded form, these residues cannot be seen, and are assumed to be mobile. This may be a consequence of the crystal packing arrangement in this form. Residues 69-75 have a different arrangement in the crystal form described here, to their arrangement in the crystal structure of the OM99-2 complex. The residues are displaced upward relative to the active site in the structure without OM99-2. The two molecules can be superposed over all residues using the program MAPS (MAPS-Multiple Alignment of Proteins Structures Version 0.2, Sep-7-1999, Guoguang, Lund University, Sweden and Lu, G. An Approach for Multiple Alignment of Protein Structures (1998, in manuscript) to give an r.m.s.d. of 0.74 Å. This results in close alignment of the N-terminal residue prior to residue 69 and subsequent to 75. In contrast the CA atoms of residue 71 are displaced by 3.3 Å, those of residue 72 by 4.3 Å, and those of residue 73 by 6.0 Å. (Figure 2) The reason for this difference is postulated to be the interaction of OM99-2 backbone residues with the protein

residues, in an arrangement analogous to a beta sheet. This interaction pulls the loop down over the substrate in the active site, and locks it in position. In the absence of substrate, or peptidic inhibitor, the loop moves back up again.

In addition to these local changes in structure, on binding of inhibitor, there appears to be a slight shift in the domain positions relative to each other, resulting in an average difference in position in the C-terminal domain CA atoms of about 2.0 Å, when the molecules are superposed using the N-terminal CA atoms.

The symmetry of the P6₁22 crystal system has resulted in a packing arrangement which brings part of a symmetry related molecule very close to the active site entrance of BACE. Gln73 from a symmetry related molecule lies very close to the entrance to the active site of BACE in this crystal form, and overlaps with the position occupied by P4 Glu in OM99-2. However, this does not interfere with the usefulness of this crystal system to soak in inhibitors, as we have shown that these crystals can be used to soak BACE inhibitors into the active site.

Incorporation by Reference

The entire contents of all patents, published patent applications and other references cited herein are hereby expressly incorporated herein in their entireties by reference. Particular reference is made to the references listed below:

Bennett BD, Denis P, Haniu M, Teplow DB, Kahn S, Louis JC, Citron M, Vassar R., J Biol. Chem. 2000; 275(48):37712-7.

Blundell TL, Jhoti H, Abell C, Nature Reviews Drug Discovery, 1, 45 – 54, 2002.

Blundell, TL and Johnson, LN, in *Protein Crystallography*, Academic Press, New York, London and San Francisco, (1976)

Burton SJ, Quirk AV, Wood PC, European Journal of Biochemistry, 179, 379-87, 1989.

25 Carr, R; Jhoti, H; Drug Discov. Today, 2002, 7(9), 522-527

10

15

20

Choppa R, Svenson K, Annis B, Akopian T, Bard J, Stahl M, Somers W; PCT International Publication Number WO 02/25276, (28 March 2002).

Collaborative Computing Project N., 1994 Acta Crystallogr. D. 50 760-763.

Creemers JW, Ines Dominguez D, Plets E, Serneels L, Taylor NA, Multhaup G, Craessaerts K, Annaert W, De Strooper B., J Biol. Chem. (2001) 276(6), 4211-7

De Strooper, B. and Konig. G., 1999, Nature 402, 471-472.

Ghosh AK., Shin D., Downs D., Koelsch G., Lin X., Ernolieff J. and Tang J. (2000) J. Am. Chem. Soc. 122 3522-3523.

Goldberg ME, Expert-Bezançon N, Vuillard L, Rabilloud T, Folding & Design, 1, 21-27, 1996.

Greer J, Erickson JW, Baldwin JJ, Varney MD, *J. of Medicinal Chemistry*, Vol. 37, (1994), 1035-1054,

Haniu M, Denis P, Young Y, Mendiaz EA, Fuller J, Hui JO, Bennett BD, Kahn S, Ross S, Burgess T, Katta V, Rogers G, Vassar R, Citron M., J Biol. Chem. (2000), 275(28), 21099-106.

Hong L., Koelsch G., Lin X., Wu S., Terzyan S., Ghosh AK., Zhang XC. and Tang J. (2000) SCIENCE 290 150-153.

Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G., Mol. Cell Neurosci. (1999)14(6):419-27

Lin X., Koelsch G., Wu S., Downs D., Dashti A.. and Tang J. (2000) PNAS 97 1456-1460.

Mallender WD, Yager D, Onstead L, Nichols MR, Eckman C, Sambamurti K, Kopcho LM, Marcinkeviciene J, Copeland RA, Rosenberry TL., Mol Pharmacol, (2001) Mar;59(3), 619-26

Navaza J., 1994 Acta Crystallogr. A. 50 157

10

15

Pflugrath, JW. (1999) Acta Crystallogr. D. 55 1718-1725

Sinha S., Anderson JP., Barbour R., Basi GS., Caccavello R., Davis D., Doan M., Dovey HF., Frigon N., Hong J., Jacobson-Croak K., Jewett N., Keim P., Knops J., Lieberburg I., Power M., Tan H., Tatsuno G., Tung J., Schenk D., Seubert P., Suomensaari SM., Wand S., Walker D., Zhoa J., McConlogue L. and Varghese J. (1999) NATURE 402 537-540

Tang J, Lin X, Koelsch G; PCT International Publication Number WO 01/00663, (04 January 2001).

Vassar R., Bennett, BD., Babu-Khan S., Kahn S., Mendiaz, EA., Denis P., Teplow DB., Ross S., Amarante P., Loeloff R., Luo Y., Fisher S., Fuller J., Edenson S., Lile J., Jorosinski MA., Biere AL., Curran E., Burgess T., Louis J-C., Collins F., Treaner J., Rogers G. and Citron M. (1999) SCIENCE 286 735-741

Yan R., Bienkowski MJ., Shuck ME., Miao H., Tory MC., Pauley AM., Brashier JR., Stratman NC., Mathews WR., Buhl AE., Carter DB., Tomasselli AG., Parodi LA., Heinrikson RL. and Gurney, ME. (1999) Nature, 402 533-537.

Yankner BA., Nature Medicine, (1996) 2(8), 850-2

10

15

20

<u>Equivalents</u>

The foregoing description details presently preferred embodiments of the present invention which are therefore to be considered in all respects as illustrative and not restrictive. Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, many equivalents, modifications and variations to the specific embodiments of the invention described specifically herein. Such equivalents, modifications and variations are intended to be (or are) encompassed in the scope of the following paragraphs:

1. A mutant BACE protein, which protein lacks one or more proteolytic cleavage sites recognized by clostripain (or another protease which recognizes the same cleavage site as clostripain).

- 2. The protein of paragraph 1 wherein BACE residues R56 and/or R57 (based on numbering of SwissProt P56817) are mutated or deleted.
- 3. The protein of paragraph 2 wherein R56 or R57 are mutated by the substitution of arginine for lysine.
- 4. The protein of paragraph 2 wherein R56 and R57 are mutated by the substitution of arginine for lysine.
- 5. The protein of any one of the preceding paragraphs which comprises BACE residues 56 to 396 (based on numbering of SwissProt P56817).
- 6. A mutant BACE protein (for example, a mutant BACE protein as defined in any one of the preceding paragraphs) which is truncated at the N-terminal up to and including R42, R45, G55, R56 or R57.
- 7. The protein of any one of paragraphs 1 to 6 truncated at the C-terminal such that at least residues 454 et seq. are absent.
- 8. The protein of paragraph 7 truncated at the C-terminal such that at least residues 447 et seq. are absent.
- 9. The protein of any one of the preceding paragraphs wherein the asparagine residues at positions 153, 172, 223 and 354 are mutated to glutamine residues.
- 10. The protein of any one of the preceding paragraphs which is un- or deglycolsylated.
- 11. A mutant BACE protein selected from: (a) SEQ ID 6; (b) SEQ ID 8; (c) SEQ ID 10;(d) SEQ ID 12; (e) SEQ ID 14; (f) SEQ ID 16; (g) SEQ ID 18; (h) SEQ ID 19; (i) SEQ ID 20; (j) SEQ ID 21.
- 12. Nucleic acid encoding the protein of any one of the preceding paragraphs.
- 13. A vector comprising the nucleic acid of paragraph 12.
- 14. A host cell comprising the vector of paragraph 13.

- 15. A process for producing the protein of any one of paragraphs 1 to 11 comprising the steps of: (a) culturing the host cell of paragraph 14 under conditions suitable for expression of the protein; and optionally (b) isolating the expressed recombinant BACE protein.
- 16. A process for producing refolded recombinant BACE comprising the steps of: (a) solubilising the recombinant BACE; (b) diluting the solubilised BACE into an aqueous buffer containing sulfobetaine (for example at a concentration of 10 to 50 mM); and (c) maintaining the diluted solution at low temperature (for example, 3 to 6°C) and at high pH (e.g. 9 to 10.5) for at least 2 weeks.
- 17. The process of paragraph 16 wherein the recombinant BACE is produced according to the process of paragraph 15.
- 18. Refolded recombinant BACE produced by, or obtainable by, the process of paragraph 16 or paragraph 17.
- 19. A process for producing a crystal of BACE comprising the step of refolding recombinant BACE protein according to the process of paragraph 16 or paragraph 17.
- 20. A process for producing a crystal of BACE comprising the step of growing the crystal by vapour diffusion using a reservoir buffer that contains 18-26 % PEG 5000 MME (for example, 20-24 % PEG 5000 MME, e.g. 20-22.5 % PEG 5000 MME), 180-220 mM (e.g. 200 mM) ammonium iodide and 180-22- mM (e.g. 200 mM) trisodium citrate (pH 6.4-6.6).
- 21. The process of paragraph 20 wherein the BACE is recombinant and the process further comprises the preliminary step of refolding the recombinant BACE according to the process of paragraph 16 or paragraph 17.
- 22. The process of any one of paragraphs 18 to 20 further comprising the step of activating the BACE by clostripain digestion.
- 23. The process of paragraph 21 wherein the BACE is as defined in any one of paragraphs 1 to 10.

- 24. A crystal of BACE produced by, or obtainable by, the process of any one of paragraphs 18 to 22.
- 25. A crystal of BACE having a hexagonal space group P6₁22.
- 26. The crystal of paragraph 25 having unit cell dimensions of a=b=103.2 Å, c=169.1 Å, $\alpha=\beta=60^{\circ}$, $\gamma=120^{\circ}$, and a unit cell variability of 5% in all dimensions.
- 27. The crystal of paragraph 25 or paragraph 26 which contains one copy of BACE in the asymmetric unit.
- 28. A crystal of BACE (e.g. a crystal according to any one of paragraphs 24 to 27) having a resolution better than 3 Å.
- 29. The crystal of paragraph 28 having a resolution better than 2.5 Å.
- 30. The crystal of paragraph 29 having a resolution better than 1.8 Å.
- 31. A crystal of BACE (e.g. a crystal according to any one of paragraphs 24 to 30) comprising a structure defined by all or a portion of the co-ordinates of Table 1.
- 32. The crystal of paragraph 31 comprising a structure defined by a portion of the coordinates of Table 1 which coordinates relate to: (a) the BACE catalytic domain; and/or (b) a BACE active site; and/or (c) a BACE binding cavity; and/or (d) selected amino acid residues of a BACE binding cavity located in a protein framework which holds the selected amino acids in a relative spatial configuration which corresponds to the spatial configuration of those amino acids in Table 1; and/or (d) a BACE binding site.
- 33. The crystal of paragraph 32 wherein the portion of the coordinates of Table 1 comprise (or consist essentially of) those relating to residues SER71, GLY72, LEU91, ASP93, GLY95, SER96, VAL130, PRO131, TYR132, THR133, GLN134, ILE171, ILE179, ILE187, ALA188, ARG189, PRO190, TRP258, TYR259, ASP284, LYS285, ASP289, GLY291, THR292, THR293, ASN294, ARG296 and ARG368 (based on the numbering of SwissProt P56817).

- 34. The crystal of paragraph 33 wherein the portion of the coordinates of Table 1 comprise (or consist essentially of) those relating to residues LYS70, SER71, GLY72, GLN73, GLY74, TYR75, LEU91, VAL92, ASP93, THR94, GLY95, SER96, SER97, ASN98, TYR129, VAL130, PRO131, TYR132, THR133, GLN134, GLY135, LYS136, TRP137, LYS168, PHE169, PHE170, ILE171, ASN172, SER174, TRP176, GLY178, ILE179, LEU180, GLY181, ALA183, TYR184, ALA185, GLU186, ILE187, ALA188, ARG189, PRO190, ASP191, ASP192, ARG256, TRP258, TYR259, TYR283, ASP284, LYS285, SER286, ILE287, VAL288, ASP289, SER290, GLY291, THR292, THR293, ASN294, LEU295, ARG296, GLY325, GLU326, ARG368, VAL370, LYS382, PHE383, ALA384, ILE385, SER386, GLN387, SER388, SER389, THR390, GLY391, THR392, VAL393, GLY395, ALA396 and ILE447 (based on the numbering of SwissProt P56817).
- 35. The crystal of any one of paragraphs 24 to 34 which is capable of being soaked with compound(s) to form co-complex structures.
- 36. The crystal of any one of paragraphs 24 to 35 which is soaked with one or more compound(s) to form co-complex structures.
- 37. The crystal of any one of paragraphs 24 to 36 wherein the BACE is co-crystallized with one or more compound(s) to form co-crystallized structures.
- 38. The crystal of any one of paragraphs 24 to 35 which is an apo crystal.
- 39. The crystal of any one of paragraphs 24 to 38 wherein the BACE is a wild-type BACE.
- 40. The crystal of paragraph 39 wherein the BACE is a human BACE.
- 41. The crystal of paragraph 40 wherein the BACE is a homologue of a human BACE.
- 42. The crystal of paragraph 41 wherein the homologue is an orthologue or a paralogue of a human BACE.

- 43. The crystal of any one of paragraphs 24 to 38 wherein the BACE is a mutant and/or recombinant BACE.
- 44. The crystal of paragraph 43 wherein the BACE: (a) lacks the BACE transmembrane and/or cytoplasmic domain(s); and/or (b) lacks one or more glycolsylation sites; and/or (c) comprises one or more peptide tags (for example a his tag); and/or (d) lacks one or more protease cleavage site(s); and/or (e) is truncated at the N-terminus; and/or (f) is truncated at the C-terminus; and/or (f) lacks the BACE pro-sequence.
- 45. The crystal of paragraph 44 wherein the BACE mutant lacks one or more clostripain cleavage sites.
- 46. The crystal of paragraph 45 wherein BACE residues R56 and/or R57 (based on numbering of SwissProt P56817) are mutated or deleted.
- 47. The crystal of paragraph 46 wherein R56 or R57 are mutated by the substitution of arginine for lysine.
- 48. The crystal of paragraph 46 wherein R56 and R57 are mutated by the substitution of arginine for lysine.
- 49. The crystal of any one of paragraphs 43 to 48 wherein the BACE mutant is truncated at the N-terminal up to and including R42.
- 50. The crystal of any one of paragraphs 43 to 49 wherein the BACE mutant is truncated at the C-terminal such that at least residues 396 et seq. are absent.
- 51. The crystal of paragraph 50 wherein the BACE mutant is truncated at the C-terminal such that at least residues 387 et seq. are absent.
- 52. The crystal of any one of paragraphs 43 to 51 wherein the asparagine residues at positions 153, 172, 223 and 354 of the BACE mutant are mutated to glutamine residues.
- 53. The crystal of any one of paragraphs 24 to 52 wherein the BACE is un- or deglycolsylated.

- 54. The crystal of paragraph 43 wherein the BACE mutant is selected from: (a) SEQ ID 19; (b) SEQ ID 20; (c) SEQ ID 21.
- 55. The process of any one of paragraphs 19 to 23 wherein the process produces a crystal of BACE as defined in any one of paragraphs 24 to 54.
- 56. A three-dimensional representation of BACE or of a portion of BACE, which representation comprises all or a portion of the coordinates of Table 1.
- 57. The three-dimensional representation of paragraph 56 which is a model constructed from all or a portion of the coordinates of Table 1.
- 58. The model of paragraph 57 wherein the portion of BACE is a BACE binding cavity and the portion of the coordinates of Table 1 comprise those of atoms defining a binding site within the binding cavity (for example, wherein the coordinates are as defined in paragraph 33 or paragraph 34).
- 59. A three-dimensional representation of a compound which fits the model of paragraph 57 or paragraph 58.
- 60. The three-dimensional representation of paragraph 59 which is a model of the compound.
- 61. The model of paragraph 60 wherein the compound is a pharmacophore.
- 62. The model of any one of paragraphs 57, 58, 60 or 61 which is: (a) a wire-frame model; (b) a chicken-wire model; (c) a ball-and-stick model; (d) a space-filling model; (e) a stick-model; (f) a ribbon model; (g) a snake model; (h) an arrow and cylinder model; (i) an electron density map; (j) a molecular surface model.
- 63. The model of any one of paragraphs 57, 58, 60, 61 or 62 which is in physical form.
- 64. The model of any one of paragraphs 57, 58, 60, 61 or 62 which is in electronic form.
- 65. The model of paragraph 64 which comprises a graphical image display on a computer screen.

- A computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing a BACE model as defined in paragraph 57, 58 or 62 to 65; (b) providing a molecular structure to be fitted to said BACE model; and (c) fitting the molecular structure to the BACE model to produce a compound model as defined in paragraph 60, 61 or 62 to 65.
- A computer-based method for the analysis of the interaction of a molecular structure with a BACE structure of the invention, which comprises: (a) providing the structure of a BACE as defined by the coordinates of Table 1; (b) providing a molecular structure to be fitted to said BACE structure; and (c) fitting the molecular structure to the BACE structure of Table 1.
- 68. A computer-based method for the analysis of molecular structures which comprises:

 (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 ("selected coordinates"); (b) providing the structure of a molecular structure to be fitted to the selected coordinates; and (c) fitting the structure to the selected coordinates of the BACE structure.
- 69. The method of paragraph 68 wherein the selected coordinates represent a binding pocket.
- 70. The method of paragraph 68 or paragraph 69 wherein the selected coordinates are of at least 5, 10, 50 or 100 atoms.
- 71. The method of paragraph 69 or paragraph 70 wherein the selected coordinates are as defined in paragraph 33 or paragraph 34.
- 72. A computer-based method of rational drug design comprising the method of any one of paragraphs 66 to 71.
- 73. A computer-based method of rational drug design comprising comprising: (a) providing the coordinates of at least two atoms of a BACE structure as defined in Table 1 ("selected coordinates"); (b) providing the structures of a plurality of molecular fragments; (c) fitting the structure of each of the molecular fragments to

- the selected coordinates; and (d) assembling the molecular fragments into a single molecule to form a candidate modulator molecule.
- 74. A method for identifying a candidate modulator (e.g. candidate inhibitor) of BACE comprising the steps of: (a) employing a three-dimensional structure of BACE, at least one sub-domain thereof, or a plurality of atoms thereof, to characterise at least one BACE binding cavity, the three-dimensional structure being defined by atomic coordinate data according to Table 1; and (b) identifying the candidate modulator by designing or selecting a compound for interaction with the binding cavity.
- 75. The method of paragraph 74 wherein the three-dimensional structure of BACE is a model as defined in paragraph 57 or paragraph 58.
- A method for identifying an agent compound (e.g. an inhibitor) which modulates BACE activity, comprising the steps of: (a) employing three-dimensional atomic coordinate data according to Table 1 to characterise at least one (e.g. a plurality of) BACE binding site(s); (b) providing the structure of a candidate agent compound; (c) fitting the candidate agent compound to the binding sites; and (d) selecting the candidate agent compound.
- 77. The method of paragraph 76 wherein in step (a) the three-dimensional atomic coordinate data are employed to create a model as defined in paragraph 57, 58 or 62 to 65.
- 78. The method of any one of paragraphs 73 to 77 further comprising the step of: (a) obtaining or synthesising the candidate agent or modulator; and (b) contacting the candidate modulator with BACE to determine the ability of the candidate modulator to interact with BACE.
- 79. A method of assessing the ability of a candidate modulator to interact with BACE which comprises the steps of: (a) obtaining or synthesising said candidate modulator; (b) forming a crystallized complex of BACE and said candidate modulator; and (c) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said candidate modulator to interact with BACE.

- 80. A method for determining the structure of a compound bound to BACE, said method comprising: (a) mixing BACE with the compound to form a BACE-compound complex; (b) crystallizing the BACE-compound complex; and (c) determining the structure of said BACE-compound(s) complex by reference to the data of Table 1.
- 81. A method for determining the structure of a compound bound to BACE, said method comprising: (a) providing a crystal of BACE; (b) soaking the crystal with one or more compound(s) to form a complex; and (c) determining the structure of the complex by employing the data of Table 1.
- 82. A method of determining the three dimensional structure of a BACE homologue or analogue of unknown structure, the method comprising the steps of: (a) aligning a representation of an amino acid sequence of the BACE homologue or analogue with the amino acid sequence of the BACE of Table 1 to match homologous regions of the amino acid sequences; (b) modelling the structure of the matched homologous regions of said target BACE of unknown structure on the corresponding regions of the BACE structure as defined by Table 1; and (c) determining a conformation for the BACE homologue or analogue which substantially preserves the structure of said matched homologous regions.
- 83. The method of paragraph 82 wherein steps (a) and/or (b) and/or (c) are performed by computer modelling.
- A method of providing data for generating structures and/or performing rational drug design for BACE, BACE homologues or analogues, complexes of BACE with a potential modulator, or complexes of BACE homologues or analogues with potential modulators, the method comprising: (i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE, at least one sub-domain of the three-dimensional structure of BACE, or the coordinates of a plurality of atoms of BACE; (b) structure factor data for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE homologue or analogue generated by homology modelling of the target based on the data of Table 1; (d)

atomic coordinate data of a protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d); and (ii) receiving said computer-readable data from said remote device.

- A computer system containing one or more of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of BACE or at least selected coordinates thereof; (b) structure factor data (where a structure factor comprises the amplitude and phase of the diffracted wave) for BACE, said structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a target BACE protein generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; or (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- 86. The computer system of paragraph 85 comprising: (i) a computer-readable data storage medium comprising data storage material encoded with the computer-readable data; (ii) a working memory for storing instructions for processing said computer-readable data; and (iii) a central-processing unit coupled to said working memory and to said computer-readable data storage medium for processing said computer-readable data and thereby generating structures and/or performing rational drug design.
- 87. The computer system of paragraph 86 further comprising a display coupled to said central-processing unit for displaying said structures.
- 88. A computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data are defined by all or a portion of the structure coordinates of BACE of Table 1, or a homologue of BACE, wherein said homologue comprises backbone atoms that have a root mean square deviation from the backbone atoms (nitrogen-carbon_α-carbon) of Table 1 of not more than 1.5Å.

- 89. A computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion (e.g. selected coordinates as defined herein) of the structural coordinates for BACE according to Table 1; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.
- 90. A computer readable medium with at least one of: (a) atomic coordinate data according to Table 1 recorded thereon, said data defining the three-dimensional structure of BACE, or at least selected coordinates thereof; (b) structure factor data for BACE recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1; (c) atomic coordinate data of a target BACE protein generated by homology modelling of the target based on the data of Table 1; (d) atomic coordinate data of a BACE-ligand complex or a BACE homologue or analogue generated by interpreting X-ray crystallographic data or NMR data by reference to the data of Table 1; and (e) structure factor data derivable from the atomic coordinate data of (c) or (d).
- 91. A method for determining the structure of a protein, which method comprises; providing the co-ordinates of Table 1, and either (a) positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein or (b) assigning NMR spectra Peaks of said protein by manipulating the coordinates of Table 1.
- 92. A process for producing a medicament, pharmaceutical composition or drug, the process comprising: (a) identifying a BACE modulator molecule according to the method as defined in any one of paragraphs 73 to 79; (b) optimising the structure of the modulator molecule; and (c) preparing a medicament, pharmaceutical composition or drug containing the optimised modulator molecule.

- 93. A medicament, pharmaceutical composition or drug produced by, or obtainable by, the process of paragraph 92.
- 94. A compound identified, produced or obtainable by the process or method of any one of paragraphs 73 to 79.
- 95. A pharmaceutical composition, medicament, drug or other composition comprising the compound of paragraph 94.
- 96. The medicament, pharmaceutical composition or drug of paragraph 93, compound of paragraph 94 or composition of paragraph 95 for use in medicine, for example for use in therapy or prophylaxis.
- 97. The medicament, pharmaceutical composition, drug or composition of paragraph 96 wherein the therapy or prophylaxis comprises inhibiting BACE or the production of $A\beta$ or fragments thereof or the treatment of Alzheimer's disease.
- 98. A method of inhibiting BACE or the production of Aβ or fragments thereof or treating Alzheimer's disease comprising administering the medicament, pharmaceutical composition, drug or composition of paragraph 96 to the patient.
- 99. The method of paragraph 84, wherein the computer readable data is transmitted form the remove device.
- 100. The method of paragraph 99, wherein the data is transmitted electronically or optically.

TABLE 1

ATOM	1	N	PHE	Α	47p	65.730	61.598	-17.857	1.00	56.68		Α	N
ATOM	2	CA	PHE	Α	4.7p	66.426	61.383	-16.552	1.00	54.16		Α	C
ATOM	3	C	PHE	Α	47p	67.801	60.738	-16.734	1.00	54.30		Α	C
MOTA	4	0	PHE	Α	47p	68.258	59.983	-15.869	1.00	52.46		Α	0
MOTA	5	CB			47p	65.566		-15.635		54.61		Α	С
ATOM	6	CG			47p			-15.429		54.65		Α	С
ATOM	7		PHE			63.110		-16.186		56.27		Α	C
MOTA	8		PHE			63.887		-14.463		55.01		A	C
ATOM	9		PHE		_	61.812		-15.995		57.39		A	C
ATOM	10		PHE		_	62.596		-14.266		56.06		A	С
ATOM	11	CZ			47p	61.556		-15.035 -17.845		56.47		A	C
ATOM ATOM	12 13	N CA			48p	68.468 69.737		-17.845		54.26 54.45		A A	N C
ATOM	14	C			48p 48p	70.910		-17.276		53.21		A	C
ATOM	15	o			48p	71.847		-17.128		56.35		A	Ö
ATOM	16	СВ			48p.	70.156		-19.662		57.43		A	Ċ
ATOM	17		VAL		-	69.222		-20.636		58.42		Α	Č
ATOM	18		VAL		_	70.204		-19.944		57.43		Α	C
ATOM	19	N	GLU		ì	70.860		-16.668		49.17		Α	N
ATOM	20	CA	GLU	A	1	71.845	62.329	-15.674	1.00	46.84		Α	С
ATOM	21	С	GLU	Α	1	71.857	61.373	-14.479	1.00	42.66		Α	C
MOTA	22	0	GLU	A	1	72.901	61.125	-13.891	1.00	45.10		Α	0
ATOM	23	CB	GLU		1	71.532		-15.171		48.32		Α	С
AŢOM	24	CG	GLU		1	70.180		-14.545		50.15		Α	C
ATOM	25	CD	GLU		1	68.942		-15.351		51.10		Α	, C
MOTA	26		GLU		1	68.516		-16.178		51.29		A	0
ATOM	27		GLU		1	68.395		-15.155		51.61		A	0
ATOM	28	N	MET		2	70.685		-14.125 -12.942		37.18 32.72		A	N.
ATOM ATOM	29 30	CA C	MET MET		2	70.525 70.875		-13.154		29.50		A A	C
ATOM	31	0	MET		2	71.014		-12.183		29.19		A	0
ATOM	32	СВ	MET		. 2	69.099		-12.415		30.14		A	C
ATOM	33.	CG	MET		2	68.733		-12.005		34.84		Α	C
ATOM	34	SD	MET	Α	2	67.103		-11.322		36.26		Α	S
MOTA	35	CE	MET	Α	2	66.607	63.243	-12.134	1.00	40.05		Α	C
MOTA	36	N.	VAL	Α	ġ.	71.008	58.079	-14.396	1.00	28.21		Α	N
MOTA	37	CA	VAL		3	71.291	56.669	-14.611		29.18		Α	C
MOTA	38	С	VAL		3	72.690		-14.085		27.28		Α	C
ATOM	39	0	VAL		. 3	73.622		-14.298		28.33		A	Ó
ATOM	40	CB	VAL		3	71.137 71.649		-16.094		32.19		A A	C
ATOM ATOM	41 42		VAL VAL		3 3	69.667		-16.299 -16.525		30.92 32.71		Α	C
ATOM	43	N	ASP		4	72.803		-13.359		28.19		A	N
ATOM	44	CA	ASP		4	74.066		-12.825		29.50		A	C
ATOM	45	C .	ASP	Α	4	74.600	55.632	-11.703	1.00	27.86		Α	С
ATOM	46	0	ASP	Α	4	75.797	55.682	-11.454	1.00	28.77		A.	0
ATOM	47	CB	ASP	À	. 4	75.107	54.575	-13.940	1.00	32.06		Α	С
MOTA	48	CG	ASP		4	76.254		-13.553		37.52		Α	C
MOTA	49		ASP		4	76.029		-12.945		38.24		Α	0
ATOM	50		ASP		4	77.438		-13.829		45.15		Α	0
MOTA	51	N	ASN		5	73.694	56.308			24.98	,	A	N
ATOM	52 53	CA C	ASN ASN		5 5	74.062 74.270	57.172	-9.876 -8.544		18.95 22.40		A	C C
ATOM ATOM	54	0	ASN		5	74.564	57.045	-7.515		21.31		A A	0
ATOM	55	СВ	ASN		5	73.064	58.329	-9.718		21.03		A	C
ATOM	56	CG	ASN		5	71.677	57.870	-9.366		16.73		A	Č
ATOM	57		ASN		5	71.424	56.673	-9.325		19.74		Α	0
MOŢA	58	ND2	ASN	Α	5	70.801	58.808	-9.035	1.00	21.06		Α	N
MOTA	59	N	LEU		6	74.099	55.098	-8.562		15.94		Α	N
MOTA	60	CA	LEU		6	74.323	54.236	-7.397		16.57		Α	С
ATOM	61	C	LEU		6	75.531	53.321	-7.510		21.72		A	С
ATOM	62	0	LEU		6	75.855	52.780	-8.581		21.55		A	0
ATOM	63 64	CB CG	LEU		6	73.109	53.352	-7.078 -6.866		18.17		A	Ċ
ATOM ATOM	65		LEU LEU		6 6	71.707 70.695	53.957 52.916	-6.521		19.32 17.46	•	A A	C C
ATOM	66		LEU		6	71.748	54.997	-5.797		21.42		A	C
ATOM	67	N	ARG		7	76.173	53.126	-6.364		21.10		A	N
MOTA	68	CA	ARG		7	77.333	52.266	-6.230		23.84		Α	С
ATOM	69	С.	ARG		7	77,237	51.485	-4.939	1.00	25.78		Α	С
ATOM	70	0	ARG		7	76.424	51.808	-4.059		21.54		A	0
ATOM	71	CB	ARG	A	7	78.610	53.103	-6.226	1.00	26.25		Α	, C
													4

MOTA	72	CG	ARG	Α	7		78.992	53.658	-7.583	1.00 3	0.55		Α	C
MOTA	73	CD	ARG	Α	7		80.135	54.652	-7.549	1.00 3			Α	С
MOTA	74	NE	ARG		7		80.063	55.407	-8.932	0.00 4			Ą	N
MOTA	75	CZ	ARG		7		80.997	56.306	-9.222	0,00 4			A	C
ATOM	76 77		ARG ARG		7 7		80.991 81.937	56.911 56.601	-10.402 -8.335	0.00 4	2.93		A A	N N
ATOM ATOM	78	NH2 N	GLY		8		78.091	50.479	-4.799	1.00 2			A	N
ATOM	79	CA	GLY		8		78.086	49.663	-3.598	1.00 2			Α	C.
ATOM	80	C	GLY		8		79.032	48.490	-3.639	1.00 3			Α	c
ATOM	81	0	GLY		8		79.790	48.325	-4.591	1.00 3	3.68		Α	0
ATOM	82	N	LYS	A	9		78.986	47.685	-2.587	1.00 3	4.88		Α	N
ATOM	83	CA	ĻYS		9		79.643	46.390	-2.578	1.00 3			Α	C
ATOM	84	C	LYS		9		78.625	45.337	-2.169	1.00 3			A	. C
ATOM	85	0	LYS		9		77.771	45.576	-1.316	1.00 3			A	0
ATOM	86	CB	LYS		9 9	·	80.861	46.396 47.324	-1.649 -2.120	1.00 3			A A	C C
ATOM ATOM	87 88	CG CD	LYS		9		81.975 83.346	46.635	-2.120	1.00 5	-		A	C
ATOM	. 89	CE	LYS		9.		84.382	47.543	-2.887	1.00 5			A	c
ATOM	90	NZ	LYS		9		85.408	48.085	-1.943	1.00 5			Α	N
ATOM	91	N	SER		10		78.708	44.172	-2.805	1.00 3			Α	N
ATOM	92	CA	SER	А	10		77.807	43.063	-2.525	1.00 3	9.77		A	C
MOTA	93	C	SER	Α	10		77.658	42.852	-1.026	1.00 3			Α	С
ATOM	94	0	SER		10		78.658		-0.316	1.00 3			Α	0
ATOM	95	CB	SER		10		78.336	41.776	-3.172		1.88		A	. Ç
ATOM	96	OG	SER		10		77.485	40.680	-2.879 -0.556	1.00 4			A A	O N
ATOM ATOM	97 98	N CA	GLY		11 11		76.410 76.097	42.857 42.627	0.843	1.00 3			A	N C
ATOM:	99	C	GLY		11		76.076	43.859	1.738	1.00 3			A	c
ATOM	100	ō	GLY		11		75.631	43.757	2.886	1.00 3			Α	ō
ATOM	101	N	GLN		12		76.519	45.005	1.213	1.00 3			Α	N
ATOM	102	CA	GLN	Α	12		76.732	46.234	1.999	1.00 3	5.64		Α	C
ATOM	103	С	GLN	Α	12		75.861	47.409	1.536	1.00 3			Α	C
MOTA	10.4	0	GLN		12		76.148	48.558	1.881	1.00 3			Α	0
MOTA	105	CB	GLN		12		78.196	46.693	1.913	1.00 3			A	C
ATOM	106	CG	GLN		12		79.230	45.703	2.437	1.00 4			A A	C
ATOM ATOM	107 108	CD	GLN GLN		12 12		80.653 81.562	46.267 45.623	2.465 2.984	1.004 1.004			A	C O
ATOM	109		GLN		12		80.846	47.450	1.904	1.00 5			A	N
ATOM	110	N	GLY		13		74.824	47.132	0.749	1.00 3			Α	N
ATOM	111	CA	GLY		13		73.887	48.163	0.331	1.00 2			Α	· С
ATOM	1,12	c ·	GLY	Α	13		74.366	49.021	-0.820	1.00 2	5.65		Α	C ·
ATOM	113	0	GLY	A	13		75.491	48.904	-1.289	1.00 2	6.10		Ą	0
MOTA	114	N	TYR		14		73.477	49.892	-1.275	1.00 1			A	N
MOTA	115	CA	TYR		14		73.738	50.794	-2.395	1.00 1			Α	C.C
ATOM	116	C 0	TYR		14 14		73.722 72.851	52.218 52.561	-1.880 -1.072	1.00 1			A A	0
ATOM ATOM	117 118	СВ	TYR		14		72.635	50.663	-3.446	1.00 1			A	C
ATOM	119	CG	TYR		14		72.651	49.339	-4.162	1.00 2			A	. c
ATOM	120		TYR		14		72.134	48.194	-3.574	1.00 2			Α	C
ATOM	121		TYR		14		73.201	49.239	-5.434	1.00 2	1.04		Α	C
MOTA	122	CE1	TYR	Α	14		72.164	46.981	-4.246	1.00 2	0.87		A	C
ATOM	123		TYR		14		73.233	48.043	-6.101	1.00 2			Α	C
MOTA	124	CZ	TYR		14		72.723	46.935	-5.522	1.00 2			A	C
ATOM	125	OH	TYR		14		72.758 74.636	45.757	-6.229	1.00 2			A	O N
ATOM ATOM	126 127	N ÇA	TYR TYR		15 15		74.030	53.044 54.431	-2.387 -1.976	1.001			A A	C.
ATOM	128	Ċ.	TYR		15		74.734	55.415	-3.133	1.00 1			A	Ç
ATOM	129	ŏ	TYR		15		75.171	55.108	-4.243	1.00 1			Α	Õ
ATOM	130	CB	TYR		15		75.951	54.666	-1.064	1.00 1			A	Ċ
ATOM	131	CG	TYR	A	15		77.308	54.342	-1.685	1.00 1	5.58		A	Ç
ATOM	132	CD1	TYR	Α	15		77.966	55.246	-2.501	1.00 1	9.48		Α	C
ATOM	133		TYR		15		77.919	53.139	-1.411	1.00 1			Α	· C
ATOM	134		TYR		15		79.201	54.956	-3.034	1.00 2			Α	. C
ATOM	135		TYR		15		79.165	52.838	-1.926 -2.739	1.00 2			A A	C
ATOM ATOM	136	CZ OH	TYR		15 15		79.787 81.006	53.734 53.396	-2.739	1.00 2			A A	C .
ATOM	137 138	Ŋ	TYR VAL		16		74.279	56.620	-3.255	1.00 2			A	N
ATOM	139	CA	VAL		16		74.197	57.728	-3.760	1.00 1			A	·C
ATOM	140	C	VAL		16		75.077	58.862	-3.212	1.00 2			A	Ċ
ATOM	141	O	VAL		16		75.165	59.056	-1.995	1.00 2			A	0
ATOM	142	CB	VAL		16		72.715	58.201	-3.936	1.00 1			A	C
ATOM	143		VAĻ		16		72.177	58.911	-2.680	1.00 1		,	A	C
ATOM	144		VAL		16		72.554	59.101	-5.172	1.00 2		-	A	Ç
ATOM	145	N	GLU	А	17		75.715	59.608	-4.101	1.00 2	0.07		Α	N

MOTA	146	CA	GLU	Α	17	76.401	60.838	-3.706	1.00	22.44		Α	C
ATOM	147	C	GLU	Α	17	75.398	61.943	-3.372	1.00	22.83		Α	C
ATOM	148	0	GLU	Α	17	74.419	62.145	-4.091	1.00	20.94		Α	0
ATOM	149	СВ	GLU		17	`77.360	61.298	-4.810		23.72		Α	č
MOTA	150	CG	GLU		17	78.246	62.482	-4.416		28.53		A	C
MOTA	151	CD	GLU		17	79.065	63.024	-5.580		36.53		Α	С
ATOM	152	QE1	GLU	Α	17	78.95 <i>6</i>	64.228	-5.878	1.00	39.02		Α	0
AŢOM	153	OE2	GLU	Α	17	79.820	62.249	-6.201	1.00	41.99		Α	0
ATOM	154	N	MET	Α	18	75.616	62.632	-2.249	1.00	18.64		Α	N
ATOM	155	CA	MET		18	74.824	63.788	-1.849		18.78		Ä	C
ATOM	156	C	MET		18	75.744	64.904	-1.365		24.24		Α	Č
ATOM	157	0	MET		18	76.919	64.671	-1.079		23.12		A	0
ATOM	158	CB	MET		18	73.866	63.427	-0.717		20.09		Α	С
ATOM	159	CG	MET	Ą	18	72.884	62.284	-1.064	1.00	17.91		Α	C ·
ATOM	160	SD	MET	A	18	71.685	61.911	0.240	1.00	20.92		Α	S
ATOM	161	CE	MET	Α	18	70.491	63.197	-0.005	1.00	21.35		Α	C
ATOM	162	N	THR		19	75.229	66.121	-1.313	1.00	24.86		Α	N
ATOM	163	CA	THR		19	75.966	67.206	-0.661		26.57		A	C
								0.443				A.	c
ATOM	164	C	THR		19	75.122	67.794			24.45			
ATOM	165	0	THR		19	73.904	67.861	0.341		23.60		Α	0
ATOM	166	CB	THR	Α	19	76.392	68.292	-1.665	1.00	28.59		`A	C
ATOM	167	OG1	THR	Α	19	75.236	68.833	-2.311	1.00	32.78		Α	0
ATOM	168	CG2	THR	Α	19	77.235	67.712	-2.775	1.00	28.11		A	. C
MOTA	169	N	VAL	Α	20	75.775	68.213	1.531	1.00	25.61	. 10	Α	N
ATOM	170	CA	VAL		20	75.078	68.836	2.643		22.00		Α	C
ATOM	171	C	VAL		20	75.826	70.130	2.995		21.90		A	c
										23.44			
ATOM	172		. VAL		20	77.040	70.183	2.841				Α.	0
MOTA	173	CB	VAL		20	75 011	67.902	3.848		25.28		A	С
MOTA	174		VAL		20	74.361	68.579	5.033	1.00	30.83		Α	C
ATOM	175	CG2	VAL	Α	20	74.245	66.611	3.495	1.00	25.14		Α	C
ATOM	176	N	GLY	Α.	21	75.077	71.146	3.422	1.00	25.14		Α	N
ATOM	177	CA	GLY	Α	21	75.623	72.434	3.837	1.00	27.79		A	C
ATOM	178	C	GLY	Α	21	76.015	73.417	2.752	1.00	26.88		Α	С
ATOM	179	ō	GLY		21	75.906	73.137	1.551		27.40		Α	ō
		N	SER		22	76.466	74.594	3.202		28.28		A	N
ATOM	180												
ATOM	181	CA	SER		22	76.976	75.657	2.330		29.16		Α	Ċ.
ATOM	182	С	SER		22	78.298	76.173	2.919		28.62		A	Ç
ATOM	183	0	SER	Ą	22	78.308	76.639	4.049	1.00	29.95		Α	0
ATOM	184	CB	SER	Α	22	75.983	76.815	2.238	1.00	29.69		Α	C
ATOM	185	OG	SER	Α	22	74.675	76.366	1.925	1.00	29.77		Α	0
ATOM	:186	N	PRO	Α	23	79.407	76.052	2.198	1.00	28.22		Α	N
ATOM	187	CA	PRO		23	79.461	75.401	0.884		30.78		Α	C
ATOM	188	C	PRO		23	79.227	73.886	0.976		29.87		Α	C
ATOM /	189		PRO		`23	79.338	73.300	2.063		25.45		Α	Ö
MOTA	190	CB	PRO		23	80.875	75.693	0.407		31.63		A	C
ATOM	191	CG	PRO		23	81.664	75.968	1.651		29.94		Α	С
ATOM	192	CD	PRO	Α	23.	80.727	76.545	2.629	1.00	33.02	•	Α	C
MOTA	193	Ŋ	PRO	Α	24	78.894	73.258	-0.145	1.00	30.31		Α	N
ATOM	194	ĊA	PRO	Α	24	78.559	71.821	-0.139	1.00	26.63		Α	C
ATOM	195	. C	PRO	Α	24	79.673	70.857	0.304	1.00	25.38		Α	С
ATOM	196	0	PRO	A	24	80.807	70.925	-0.155	1.00	25.17		Α	0
ATOM	197	CB	PRO		24	78.141	71.536	-1.593		28.22	-	Α.	. C
ATOM	198	.CG	PRO		24	78.576	72.715	-2.410		32.40		Α	Ċ
ATOM	199	CD.	PRO		24	78.778	73.874	-1.484		33.13		A	c
ATOM .	200	N	GLN		25	79.292	69.920	1.169		24.26		A	N
ATOM .	201	CA	GLN		25	80.144	68.839	1.620		23.05		A _.	C
ATOM	202	C	GLN		25	79.617	67.576	0.992		19.90		Α	Ç
ATOM	203	0	GLN	Α	.25	78.470	67.220	1.220	1.00	20.87		Α	0
ATOM	204	CB	GĻN	Α	25	80.075	68.728	3.127	1.00	20.92		Α	C,
ATOM	205	CG	GLN	Α	25	80.581	69.995	3.817	1.00	25.92		Α	Ç
ATOM	206	CD	GLN		25	80.491	69.911	5.317		24.91		Α	Ċ
ATOM	207		GLN		25	80.742	68.850	5.894		21.17		Α	Ō
ATÓM	208		GLN		25	80.153	71.021	5.957		26.06		A	N
ATOM	209	N	THR		26	80.439	66.926	0.187		23.72		A	N
MOTA	210	CA	THR		26	80.041	65.699	-0.495		23:00		Α	: C
ATOM	211	С	THR		26	80.141	64.498	0.435		22.59		Α	C
MOTA	212	0	THR		26	81.151	64.310	1.103		23.44		Α	, O
MOTA	213	CB	THR	Α	26	80.943	65.456	-1.685	1.00	24.91		Α	` C
AŢOM	214	OG1	THR	Α	26	80.891	66.588	-2.566	1.00	31.54		Α	0 -
ATOM	215		THR		26	80.428	64.292	-2.537		25.28		Α	С
ATOM -	216	N	LEU		27	79.107	63.666	0.430		19.15		Α.	N
ATOM	217	CA	LEU		27	79.093	62.431	1.198		18.03		Α	C
ATOM	218	C	LEU		27	78.394	61.329	0.375		22.50		Α	: C
					27						•		.0
MOTA	219	Ò	LEU	n	21	77.511	01.030	-0.415	1.00	25.14		Α	.0

ATOM	220	CB	LEU	Α	27		78.310	62.637	2.488	1.00	18.41		Α	٠.	С
MOTA	221	CG	LEU		27		78.805	63.740	3.447	1.00	23.17		Α		C
MOTA	222	CD1	LEU	Α	27		77.737	64.155	4.429	1.00	28.47		Α		C
MOTA	223		LEU		27		80.040	63.300	4.174		22.35		Α		С
ATOM	224	N	ASN		28		78.804	60.075	0.562		19.63		A		N
ATOM	225	CA	ASN		28		78.097	58.926	-0.013		18.44		A		С
ATOM	226	C	ASN		28		.77.098	58.404	0.985 2.122		17.41		A A		C 0
ATOM ATOM	227 228	O CB	ASN ASN		28 28		77.467 79.059	58.130 57.817	-0.346		15.99 17.43		A		C
ATOM	229	CG	AŞN		28		79.868	58.114	-1.556		22.09		A		C
ATOM	230		ASN		28		79.407	58.837	-2.434		21.00		A		ō
ATOM	231		ASN		28		81.084	57.573	-1.622		22.09		Α	•	N
MOTA	232	N	ILE	Α	29		75.848	58.222	0.566	1.00	13.33		Α		N
ATOM	233	ÇA	ILE	Α	29		74.741	57.964	1.501	1.00	15.06		Α		С
MOTA	234	C.	ILE		29		73.969	56.724	1.072		15.98		Α		С
MOTA	235	0	ILE		29		73.495	56.628	-0.071		16.00		A		0
ATOM	236	CB	ΙĻΕ		29		73.777	59.164	1.569		17.19		A		C
MOTA	237		ILE		29		74.533	60.443	1.960		16.84		A A		C C
ATOM ATOM	238 239		ILE		29 29		72.625 75.147	58.876 60.409	2.579 3.359		15.77 18.72		A		c ·
ATOM	240	И	LEU		30		73.829	55.787	1.997		15.17		A		N
ATOM	241	CÁ	LEU		30		73.110	54.541	1.743		16.63		A		C
ATOM	242	C	LEU		30		71.623	54.825	1.455		17.89		Α,		Ç
MOTA	243	0	LEU		30		71.000	55.542	2.186	1.00	17.80		Α		0
MOTA	244	CB ·	LEU	Α	30		73.251	53.629	2.964	1.00	14.92		Α		С
MOTA	245	CG	LEU	A	30		72.441	52.335	2.947	1.00	24.85		А		C ·
ATOM	246		LEU		30		73.456	51.336	1.962		19.90		Α		Ċ
ATOM	247		LEU		30		72.418	51.625	4.210		19.96		A	•	С
ATOM .	248	N	VAL		31		71.059	54.224	0.405		15.67		Α		N
ATOM ·	249	CA	VAL		31 22		69.656	54.390	0.066		17.96 18.65		A		C
ATOM	250	C	VAL VAL		31.		68.865	53.269 52.060	0.715 0.440		21.01		A A		Ċ Ċ
ATOM ATOM	251 252	O CB	VAL		31 31		69.101 69.461	54.358	-1.471		21.10		A		Ċ
ATOM	253		VAL		31		67.991	54.309	-1.806		23.22		Α		C
ATOM	254		VAL		31		70.102	55.554	-2.073		19.69		Α		C
A'TOM	255	N	ASP		32		67.936	53.656	1.591		18.25		Α		N
MOTA	256	CA	ASP	Α	32		67.221	52.712	2.456	1.00	20.14		Α		C
ATOM	257	Ç	ASP	Α	32 .		65.712	52.942	2.457	1.00	18.89		Α	*	C
ATOM	258	0	ASP		32	٠.	65.217	53.839	3.144		18.73		А		0
ATOM	259	CB	ASP		32		67.748	52.832	3.905		20.81	٠.	A		,C
MOTA	260	CG	ASP		32		67.163	51747	4.850		27.29		A		С
ATOM	261		ASP		32		66.652	50.729	4.345		28.02		A A		0
ATOM ATOM	262 263	N OD2	ASP THR		32 33		67.178 64.947	51.817 52.108	6.113 1.735		29.94 15.71		A		O N
ATOM ·	264	CA	THR		33		63.500	52.284	1.753		16.65		A		C
ATOM	265	C	THR		33		62.839	51.643	2.958		18.62		Α		Ċ
ATOM	266	o	THR		33 .		61.627	51.707	3.086		19:27		Α		0
ATOM	·267	CB ·	THR	A·	33		62.855	51.726	0.459	1.00	17.78		Α		С
ATOM	268	OĢI	THR	Α	33		63.088	50.330	0.395	1.00	17.76		Α		0
ATOM	269		THR		33		63.526	52.289	-0.756		20.47		Α		C
ATOM	270	N	GLY		34		63.645	51.078	3.854		19.46		A		N
ATOM	271	CA	GLY		34		63.137	50.457	5.065		22.82		A A		C C
ATOM ATOM	272 273	C O	GLY GLY		34 34		63.251 63.033	51.314 50.830	6.315 7.434		24.98 24.60		A		0
ATOM	274	N.	SER		35		63.601	52.578	6.130		18 89		A		N
ATOM	275	CA	SER		35		63.672	53.543	7.231		21.21		Α.		Ċ
ATOM	276	C	SER		35		63.376.	54.978	6.749		18.57		Α		С
ATOM	277	0	SER		35		63.245	55.229	5.535		21.32		Α		0
ATOM	278	CB	SER	Α	35		65.045	53.420	7.880	1.00	21.69		Α		C
ATOM	279	OG	SER	Α	35		66.063	53.982	7,078		20.28		Α		0
MOTA	280	N	SER		36		63.253	55.940	7.678		18.30		Α		N
ATOM	281	CA	SER		36		62.727	57.267	7.347		20.36		A		C
ATOM	282	C	SER		36′		63.545	58.455	7.889		21.41		A		C
ATOM	283	O CB	SER		36		63.101	59.594	7.809		19.92		A		0
ATOM	284	CB	SER		36 36		61.267	57.375 56.344	7.824 7.230		25.82 25.30		A A		С 0
ATOM ATOM	285 286	OG N	SER ASN		36 37		60.485 64.748	58.181	8.396		19.59		A		И
ATOM	287	CA	ASN		37		65.676	59.222	8.853		20.44		A		C
ATOM	288	C	ASN		37		66.852	59.444	7.907		17.40		A		C
ATOM	289	ō	ASN		37		67.426	58.484	7.386		17.40		A		ō
ATOM	290	СВ	ASN		37		66.262	58.847	10.225		19.75		A.		C
ATOM	291	CG	ASN		37		65.330	59.162	11.365	1.00	25.09		Α		С
MOTA	292		ASN		37		65.323	60.288	11.888		26.01		A		0
MOTA	293	ND2	ASN	A	37		64.555	58.177	11.776	1.00	21.61		A		N

ATOM	294	N	PHE A	38	67.217	60.704	7.697	1.00 18.60		Α	N
							7.013				
MOTA	295	CA	PHE A	38	68.450	61.064		1.00 17.76		Α	C
ATOM	296	C	PHE A	38	69.494	61.330	8.089	1.00 17.46		Α	С
MOTA	297	0	PHE A	38	69.356	62.288	8.837	1.00 18.26		A	0
MOTA	298	CB	PHE A	38	68.236	62.307	6.143	1.00 17.46		Α	C
ATOM	299	CG	PHE A	38	69.466	62.776	5.366	1.00 18.60		Α	C
ATOM	300	CDI	PHE A	38	70.391	61.896	4.828	1.00 17:37		Α	С
ATOM	301	CD2	PHE A	38	69.657	64.124	5.127	1.00 24.93		A	С
ATOM	302	CE1	PHE A	38	71.488	62.350	4.104	1.00 19.65		Α	C
			PHE A	38	 70.747	64.586	4.384	1.00 19.49		Α	Ç
ATOM	303										
MOTA	304	CZ	PHE A	38	71, 669	63.701	3.881	1.00 23.24	-	Α	С
MOTA	305	N	ALA A	39	70.467	60.430	8.224	1.00 18.71		Α	N
						60.508				A	C
ATOM	306	CA	ALA A	39	71.480		9.272	1.00 18.80			
MOTA	307	C	ALA A	39	72.866	60.348	8.667	1.00 20.90		Α	C
MOTA	308	0	ALA A	39	73.104	59.439	7.862	1.00 20.32		Α	0
					71.225		10.334	1.00 17.93		A	č
ATOM	309	CB	ALA A	39		59.457					
MOTA	310	N	VAL A	40	73.792	61.223	9.058	1.00 19.20		Α	N
ATOM	311	CA	VAL A	40	75.145	61.189	8.526	1.00 18.03		Α	C
							9.640	1.00 18.42		A	C
MOTA	312	C	VAL A		76.193	61.242					
MOTA	313	O	VAL A	40	76.027	61.985	10.580	1.00 15.83		Α	0
MOTA	314	CB	VAL A	40	75.398	62.372	7.587	1.00 19.32		Α	С
			VAL A	40	74.430	62.354	6.382	1.00 24.72		Α	С
MOTA	315										
ATOM	316	CG2	VAL A	40	75.304	63.711	8.319	1.00 25.33		Α	C
ATOM	317	N	GLY A	41	77.272	60.490	9.488	1.00 18.41		Α	N
		CA	GLY A	41	78.444		. 10.354	1.00 13.03		Α	Ċ
ATOM	318				-						
MOTA	319	Ç	GLY A	41	78.921	62.049	10.463	1.00 16.57		Α	C.
ATOM .	320	0	GLY A	41	78.986	62.780	9.486	1.00 16.35	1	Α	0
				42	79.186	62.482	11.688	1.00 18.46		Α	N
ATOM	321	N	ALA A								
MOTA	322	CA	ALA A	42	79.513	63.880	11.952	1.00 16.09		Α	С
MOTA	323	С	ALA A	42	80.745	63.987	12.843	1.00 21.94		Α	Ç
	-	Ō	ALA A			65.059	13.334	1.00 21.99		Α	Ó
MOTA	324			42	81.068		•				
ATOM	325	CB	ALA A	42	78.326	64.558	12.613	1.00 19.21		Α	С
MOTA	326	N	ALA A	43	81.444	62.873	12.985	1.00 17.43		Α	N
		CA	ALA A	43	82.584	62.752	13.899	1.00 19.03		Α	C
MOTA	327										
MOTA	. 328	С	ALA A	43	83.590	61.822	13.222	1.00 22.11	-	A	C
MOTA	329	0	ALA A	43	83.186	60.977	12.414	1.00 18.84		. A	Ò
		CB	ALA A	43	82.131	62.185	15.216	1.00 20.66		Α	С
MOTA	.330							**			
ATOM	331	N	PRO A	44	84.880	61.964	13.530	1.00 21.75		A	N
ATOM	332	CA	PRO A	44	85.928	161.128	12.903	1.00 22.99		Α	C
		C.				59.692		1.00 21.03		Α	C
ATOM	333		PRO A	44	86.039		13.422				
ATOM	334	0	PRO A	44	87.044	59.283	13.989	1.00 22.42		Α	0
MOTA	335	CB	PRO A	44	87.204	61.930	13.173	1.00 23.97		Α	С
			PRO A		86.923	62.655	14.467	1.00 21.28		Α	С
MOTA	336	ÇG		44							
ATOM	337	CD	PRO A	44	85.466	63.000	14.406	1.00 22.65		Ą	C
MOTA	338	N	HIS A	45	85.004	58.904	13.175	1.00 19.15		Α	N
ATOM	339	CA	HIS A	45		57.491	13.493	1.00 19.87		A	· C
-											
MOTA	340	C	HIS A	45	86.074	56.884	12.559	1.00 23.49		Α	C
ATOM	341	0	HIS A	45	86.161	57.279	11.408	1.00 18.76		Α	0
ATOM	342	CB	HIS A	45	83.600	56.898	13.231	1.00 20.18		Α	C
ATOM	343	CG	HIS A	45	83.499	55.426	13.491	1.00 20.56		Α	C
ATOM	344	ND1	HIS A	45	82.921	54.900	14.628	1.00 27.21		Α	N
ATOM	345		HIS A	45	83.911	54.369	12.753	1.00 20.97		Α	C
							14.577	1.00 20.15		Α	Č
MOTA	346	CEI	HIS A	45	82.989	53.579	14.5//	1.00 20.13		А	C
ATOM	347	NE2	HIS A	45	83.572	53.234	13.443	1.00 26.79		. A	N
ATOM	348	N	PRO A	46	86.900	55.958	13.039	1.00 23.59		Α	N
							12.221	1.00 26.27		Α	С
MOTA	349	CA	PRO A		87.999	55.418					
MOTA	350	С	PRO A	46	87.618	54.722	10.881	1.00 23.39		Α	С
MOTA	351	0	PRO A	46	88.449	54.679	9.975	1.00 27.08		Α	0
ATOM	352	СВ	PRO A	46	88.677	54.416	13.175	1.00 24.42		A	C
MOTA	353	CG	PRO A	46	87.621	54.034	14.147	1.00 27.39		Α	С
ATOM	354	CD	PRO A	46	86.863	55.335	14.378	1.00 25.05		Α	С
			PHE A	47	86.410	54.192	10.783	1.00 25.26		A	N
ATOM	355										
ATOM	356	CA	PHE A	47	85.924	53.538	9.560	1.00 25.03		Α	С
MOTA	357	С	PHE A	47	85.523	54.517	8.446	1.00 22.84		Α	С
								1.00 25.36		A	Ō
ATOM	358	0	PHE A		85.309	54.084	7.325				
ATOM	35 9	CB	PHE A	47	84.678	52.671	9.832	1.00 27.84		Α	C
ATOM	. 360	CG	PHE A	47	84.888	51.503	10.769	1.00 32.30		Α	Ç
								1.00 32.30		A	Ċ
ATOM	361		PHE A	47	86.141	51.176	11.282				
ATOM	362	CD2	PHE A	47	83.794	50.722	11.134	1.00\35.59		Α	′ C
ATOM	363	CEI	PHE A	47	86.297	50.098	12.133	1.00 32.80		Α) C
										A	Č
ATOM	364		PHE A		83.945	49.635	12.004	1.00 36.20			
ATOM	365	ÇZ	PHE A	47	85.19 7	49.326	12.489	1.00 37.31		Α	C
ATOM	366	N	LEU A	48	85.377	55.804	8.761	1.00 19.13		Α	N
MOTA	36 7	CA	LEU A	48	84.818	56.789	7.835	1.00 18.71		Α	C

ATOM	368	C	LEU	Α	48	85.829	57.499	6.963	1.00	22.04		A	Ç
ATOM	369	0	LEU	Α	48	86.798	58.086	7.451	1.00	22.43		Α	0
ATOM	370	CB	LEU		48	84.019	57.848	8.602		17.69		Α	C
							57.361						
MOTA	371	ÇG	ĻĒŲ		48	82.797		9.367		14.97		Α	C
ATOM	372	CD1	LEU	Α	48	82.068	58.567	9.926	1.00	18.29		Α	C
ATOM	373	CD2	LEU	Α	48	81.839	56.567	8.517	1.00	19.80		Α	C
ATOM	374	N	HIS	А	49	85.553	57.517	5.666	1.00	19.90		Α	N
					49	86.310	58.348	4.715		23.16		A	C
MOTA	375	CA	HIS										
ATOM	376	C	HIS	Α	49	86.115	59.862	4.903	1.00	23.74		Α	С
ATOM	377	0	HIS	Α	49	87.033	60.658	4.676	1.00	24:96		Α	0
ATOM	378	CB	HIS	Α	49	85.901	58.027	3.277	1.00	24.78		Α	С
ATOM	379	CG	HIS		49	86.253	56.648	2.822		18.81		Α	C
ATOM	380		HIS		49	87.368	56.386	2.054		23.64		Α	N
ATOM	381	CD2	HIS	Α	49	85.623	55.463	2.989	1.00	17.53		Α	C
ATOM	382	CE1	HIS	А	49	87.408	55.095	1.779	1.00	20.49		А	C
ATOM	383	NE2	HIS	A	49	86.361	54.512	2.331	1.00	25.00		Α	N
			ARG		50	84.900	60.274	5.255		23.13		A	N
MOTA	384	N											
ATOM	385	CA	ARG	Α	50	84.603	61.682	5.496		24.92		Α	С
ATOM	386	Ç	ARG	Α	50	83.387	61.768	6.398	1.00	22.50		Α	C
MOTA	387	0	ARG	Α	50	82.761	60.763	6.692	1.00	20.11		Α	0
MOTA	388	CB	ARG		50	84.335	62.435	4.200		31.00		Α	С
, MOTA	389	CG	ARG		50	84.028	61.549	3.065	•	30.52		Α	С
ATOM	390	CD	ARG	Α	50	83.871	62.231	1.758	1.00	33.45		Α	C
ATOM	391	NE	ARG	Α	50	83.103	61.374	0.862	1.00	35.30		Α	N
ATOM	392	CZ	ARG		50	82.912	61.613	-0.430	1 00	41.98		Α	C
													N
MOTA	393		ARG		50	83.440	62.692	-1.000		41.62		Α	
ATOM	394	NH2	ARG	Α	50-	82.188	60.765	-1.159	1.00	41.63		Α	N
ATOM	395	N	TYR	Α	51	83.097	62.978	6.868	1.00	19.69		Α	N
ATOM	396	CA	TYR	Α	51	81.968	63.193	7.727	1.00	19.01		Α	C
ATOM	397	C	TYR		51	81.513	64.641	7.644		17.45		Α	C
ATOM	398	0	TYR		51	82.257	65.509	7.198		19.82		Α	0
ATOM	399	CB	TYR	A,	51	82.305	62.792	9.175	1.00	17.00		Α	C
ATOM	400	CG	TYR	Α	51	83.594	63.414	9.694	1.00	19.81		Α	C,
ATOM	401		TYR		51	84.807	62.799	9.494	1.00	22.49		Α	С
												A	c
ATOM	402	CD2	TYR		51	83 574	64.625	10.391		27.51			
ATOM	403	CE1	TYR	Α	51	85.996	63.363	9.962	1.00	29.01		Α	C
ATOM	404	CE2	TYR	Α	51	84.755	65.198	10.853	1.00	22.34	1	Α	С
ATOM	405	CZ	TYR	Α	51	85.959	64.561	10.639	1.00	26.38		Α .	C
	406	OH	TYR		51	87.153	65.103	11.102		27.75	•	Α	0
ATOM								0.7					
MOTA	407	N	TYR		52	80.267	64.861	8.039		16.76		Α	N
ATOM	408	CA	TYR	Α	52	79.630	66.167	8.044	1.00	15.41		Α	C
ATOM	409	С	TYR	Α	52 ·	80.251	67.057	9.094	1.00	18.19		Α	С
ATOM	410	ō	TYR		52	80.252	66.703	10.268		18.86		Α	0
						-							
MOTA	411	CB	TYR		52	78.163	65.968	8.360		16.96		Α	Ċ
MOTA	412	CG	TYR	Α	52	77.241	67.158	8.365	1.00	17.78		Α	Ç
MOTA	413	CD1	TYR	Α	52	77.491	68.311	7.617	1.00	19.54		Α	C
ATOM	414	CD2	TYR		52	76.057	67.095	9.075	1.00	20.48		Α	С
					52	76.608	69.378	7.664		17.41		Α	Č
ATOM	415		TYR										
ATOM	416	CE2	TYR	Α	25.	75.160	68.137	9.089		21.75		Α	C
ATOM	417	\mathbf{cz}	TYR	Α	52	75.443	69.280	8.373	1.00	20.07		Α	C
ATOM	418	OH	TYR	Α	[`] 52	74.507	70.291	8.424	1.00	24.27		Α	0
ATOM	419	N	GLN		53	80.748	68.214	8.671		21.06		Α	N
													C
ATOM	420	CA	GLN		53	81.372	69.186	9.580		22.83		A	
ATOM	421	С	GLN	Α	53	80.474	70.420	9.662		18.33		Α	С
ATOM ·	422	Ο.	GLN	A	53	80.601	71.340	8.878	1.00	23.76		Α	0
MOTA	423	CB	GLN	Α	53	82.779	69.535	9.079	1.00	22.30		Α	C
ATOM	424	CG	GLN		53	83.750	68.353	9.108		24.84		Α	Ċ
MOTA	425	CD	GLN		53	85.187	68.690	8.695		31.20		Α .	C
MOTA	426	OE1	GLN	Α	53 .	85.490	68.915	7.504	1.00	32.31		Α	0
ATOM	427 -	NE2	GLN	Α	53	86.080	68.696	9.671	1.00	27.07		Α	N
ATOM	428	N	ARG		54	79.537	70.385	10.597		20.86		Α	N
								10.758		21.52		A	C
ATOM	429	CA	ARG		54	78.545	71.442						
MOTA	430	С	ARG	А	54	79.164	72.827	10.939	1.00	25.15		A.	С
ATOM	431	0	ARG	Α	54	78.568	73.828	10.536	1.00	26.20		Α	0
ATOM	432	CB	ARG		54	77.629	71.138	11.918		21.46		Α	C
ATOM	433	CG	ARG		54	76.652	69.995	11.655		22.36		A	Č
ATOM	434	CD	ARG		54	75.989	69.437	12.869		24.51		A	C
ATOM	435	NE	ARG	Α	54 _\	76.919	68.779	13.780		20.24		Α	N
ATOM	436	CZ	ARG	Α	54	76.609	68.376	14.997	1.00	23.34		Α	С
ATOM	437		ARG		54	75.389	68.574	15.485		26.99		Α	N
	438		ARG		54	77.534	67.786	15.739		21.22		A	N
MOŢA													
ATOM .	439	N	GLN		55	80.362	72.880	11.523		25.18		A	И
MOTA	440	CA	GLN	Α	55	81.055	74.153	11.741	1.00	25.49		Α	С
ATOM	441	C	GLN	Α	55	81.403	74.886	10.453	1.00	27.22		Α	С
								•					

ATOM	442	0	GLN	Α	55	81.623	76.106	10.471	1.00	31.96	Α	0
ATOM	443	CB	GLN		55	82.342	73.951	12.586	1.00	25.44	Α	С
ATOM	444	CG	GLN		55	83.508	73.285	11.866		26.87	Α	C
ATOM	445	CD	GLN		55	83.607	71.787	12.100		22.47	A	C
ATOM	446		GLN		55	84.649	71.186	11.858		28.14	A	Ō
	447		GLN		55	82.531	71.192	12.526		19.06	A	N
ATOM					-	81.478	74.148	9.347		26.29	A	N
ATOM	448	N	LEU		56							
ATOM	449	ÇA	LEU		56	81.846	74.711	8.055		26.09	A	C
MOTA	450	С	LEU		56	80.646	75.193	7.224		28.01	A	C
ATOM	451	0	LEU		56	80.835	75.716	6.131		30.64	A	0
MOTA	452	CB	LEU		56	82.667	73.703	7.251		28.42	Ą	C
MOTA	453	CG	LEU	Α	56	83.966	73.147	7.849		29.81	Α	С
ATOM	454	CD1	LEU	Α	56	84.685	72.309	6.814	1.00	33.56	Α	C
ATOM	455	CD2	LEU	Α	56	84.896	74.243	8.364	1.00	28.02	Α	C
ATOM	456	N	SER	Α	57	79.432	75.055	7.760	1.00	27.95	Α	Ŋ
ATOM	457	CA	SER		57	78.199	75.322	7.009	1.00	27.26	Α	C
MOTA	458	С	SER		57	77.432	76.528	7.548	1.00	26.45	Α	С
ATOM	459	ō	SER		57	76.970	76.523	8.701		27.40.	Α	Ō
ATOM	460	СВ	SER		57	77.287	74.086	7.037		27.30	Α	Č
		OG	SER		57	76.004	74.353	6.482		24.82	Α	Ö
ATOM	461									31.30	A	N .
ATOM	462	N	SER		58	77.250	77.541	6.704				
MOTA	463	· CA	SER		58	76.540	78.753	7.112		33.18	A	C
ATOM	464	C	SER		58	75.049	78.502	7.294		33.96	A	C
ATOM	465	0	SER		58	74.367	79.198	8.059		31.39	Α	Ò
ATOM	466	CB	SER		58	76.761	79.879	6.097		35.14	Α	С
ATOM	467	OG	SER	Α	58 .	76.449	79.481	4.769	1.00	35.98	Α	0
ATOM	468	N	THR	Α	59	74.552	77.473	6.608	1.00	31.44	Α	N
ATOM	469	CA	THR	Α	59	73.128	77.222	6.528	1.00	28.82	Α	Ç
ATOM	470	C	THR	Α	59	72.637	76.209	7.545	1.00	27.75	Α	C
ATOM	471	0	THR	Α	59	71.431	75.989	7.648	1.00	26.38	Α	0
ATOM	472	CB	THR		59	72.745	76.825	5.079		30.74	Α	C
ATOM	473		THR		59	73.712	75.937	4.512		26.79	Α	0
ATOM	474		THR		59	72.851	78.040	4.175		31.50	Α	Ċ
		N N			60	73.559	75.630	8.325		25.76	A	N
ATOM	475		TYR									
ATOM	476	CA	TYR		60	73.204	74.716	9.405		27.01	A	C
ATOM	477	С	TYR		60	72.359	75.391	10.487		30.17	Α	Ć
MOTA	478	0	TYR		60 .	72.671	76.504	10.908		32.85	A	0
AŢOM	479	CB	TYR		60	74.475	74.108	10.024		29.24	Α	С
ATOM	480	CG	TYR		60	74.208	73.401	11.319		32.58	Α	C
MOTA	481	CD1	TYR	Α	60	73.616	72.137	11.341		33.45	Α	С
ATOM	482	CD2	TYR	Α	60	74.507	74.016	12.539	1.00	35.22	Α	C
ATOM	483	CE1	TYR	Α	60	73.344	71.495	12.545	1.00	34.91	Ą	C
ATOM	484	CE2	TYR	Α	60	74.242	73.384	13.741	1.00	35.99	A	С
ATOM	485	CZ	TYR	Α	60	73.661	72.128	13.739	1.00	36.24	Α	C
ATOM	486	OH	TYR	Α	60	73.406	71.510	14.936	1.00	40.70	Α	0
ATOM	487	N	ARG		61	71.302	74.710	10.934	1.00	29.78	Α	N
ATOM	488	CA	ARG		61	70.489	75.137	12.074		32.29	A	C
ATOM	489	C	ARG		61	70.289	73.992	13.056		35.05	Α	Ċ
ATOM	490	ō	ARG		61	69.781	72.931	12.695		33.45	A	ō
	491	СВ	ARG		61	69.113	75.638	11.635		34.98	A	č
ATOM			ARG		61	69.146	76.790	10.663		33.55	A	C
ATOM	492	CG				-	77.209	10.187		39.45	A	C
ATOM	493	CD	ARG		61	67.756						N
ATOM	494	NE	ARG		61	67.802	78.053	8.991		43.50	A	
MOTA	495	CZ	ARG		61	66.737	78.400	8.267		43.32	A	C
ATOM	496		ARG		61	65.517	77.969	8.591		43.64	Α	N
ATOM	497		ARG		61	66.896	79.173	7.201		43.55	A	N
MOTA	498	N	ASP		62	70.681	74.222	14.302		32.81	Α	N
MOTA	499	CA	ASP	Α	62	70.488	73.277	15.385		34.32	Α	C
MOTA	500	С	ASP	Α	62	69.019	73.222	15.812	1.00	35.83	Α	С
ATOM	501	0	ASP	Α	62	68.368	74.257	15.972	1.00	37.43	Α	0
ATOM	502	CB	ASP	Α	62	71.385	73.703	16.561	1.00	36.21	Α	С
ATOM	503	CĢ	ASP		62	71,724	72.567	17.509	1.00	37.73	Α	С
ATOM	504		ASP		62	71.078	71.513	17.462		39.38	Α	0
ATOM	505		ASP		62	72.632	72.654	18.366		38.06	Α	0
ATOM	506	N	LEU		63	68.504	72.009	16.000		32.04	Α	N
ATOM	507	CA	LEU		63	67.151	71.799	16.496		33.21	Α	C
	508	CA	LEU		63	67.155	71.733	18.003		31.37	A	C
ATOM			LEU			66.108	71.580	18.621		33.62	 A	0
ATOM	509	O			63							
ATOM	510	CB	LEU		63	66.489	70.603	15.793		32.30	. A	C
ATOM	511	CG	LEU		63	65.919	70.957	14.417		37.47	A	C
ATOM	512		LEU		63	65.566	69.688	13.604		37.52	A	C
MOTA	513		LEU		63	64.696	71.880	14.549		37.36	A	Ċ
ATOM	514	N	ARG		64	68.345	71.460	18.580		34.84	A	N
ATOM	515	CA	ARG	Α	64	68.514	71.279	20.012	1.00	34.85	Α	C

ATOM	516	С	ARG	Α 6	54	67.687	70.109	20.516	1.00	37.89		A	С
ATOM	517	0	ARG		54	66.925	70.220	21.474	1.00	37.04		Α	0
ATOM	518	CB	ARG .		54	68.180	72.583	20.753		37.97		Α	С
ATOM	519	CG	ARG		54	68.865	73.821	20.152		37.97		A	C
ATOM	520	CD	ARG .		54	68.726	75.089	21.000		41.38		A	C
ATOM ATOM	521 522	NE CZ	ARG A		54 54	69.447 69.722	74.699 75.629	22,367 23.275		47.96 49.03		A A	N C
ATOM	523		ARG		54	69.491	76.907	23.009		49.64		A	N
ATOM	524		ARG		54	70.226	75.281	24.451		49.89		Α	N
ATOM	525	N	LYS		55	67.844	68.973	19.843		34.71		Α	N
ATOM	526	CA	LYS	Α 6	55	67,212	/67.732	20.266	1.00	35.06		Α	C
MOTA	527	C	LYS		55	68.076	66.577	19.771		30.42		Α	Ç
ATOM	528	0	LYS .		55	68.655	66.665	18.695		31.69		A	0
ATOM	529	CB CG	LYS .		55 	65.801	67.642	19.676		39.80 43.42		A A	.c
ATOM ATOM	530 531	CD	LYS :		55 · 55	64.967 63.513	66.448 66.564	20.138 19.672		47.97		A	C
ATOM	532	CE	LYS .		55	62.653	65.440	20.263		50.01		A	C
ATOM	533	NZ	LYS		55	61.233	65.463	19.797		51.34		A	N
ATOM	534	N	GLY .		56	68.190	65.522	20.565		31.22		Α	N
MOTA	535	CA	GLY .	Α. 6	56	68.910	64.339	20.149	1.00	31.55		Α	C
ATOM	536	C	GLY .		56	67.996	63.249	19.616		32.06		Α	C
ATOM	537	0	GLY .		56	66.772	63.399	19.632		33.71		A	0
ATOM	538	N	VAL		57 57	68.617 67.927	62.153	19.163		30.61		A A	N C
ATOM ATOM	539 540	CA C	VAL .		57 57	68.756	60.946 59.693	18.675 18.978		32.04 32.39	•	A	C
ATOM	541	0	VAL		57	69.982	59.724	18.870		29.49		A	Ö
ATOM	542	СВ	VAL		57	67.663	61.024	17.158		34.97		Α	Ċ.
ATOM	543		VAL .		57	66.568	61.988	16.878		40.45		Α	C
MOTA	544	CG2	VAL .	Α 6	57	68.912	61.440	16.387		36.19		A	Ċ
MOTA	545	N	TYR .		58	68.108	58.602	19.384		32.50		A	N
ATOM	546	CA	TYR .		58	68.817	57.361	19.709		36.46		A	C
ATOM	547	С	TYR .		58	68.113	56.190	19.062		34.88		A	C
MOTA	548 549	O CB	TYR .		58 58	66.962 68.902	55.916 57.148	19.383 21.229		36.97 36.07		A A	C
ATOM	550	CG	TYR .		58	69.801	55.993	21.670		41.81		Α	C
ATOM	551		TYR .		58	69.460	54.665	21.395		43.38		Α	Ċ
ATOM	552		TYR .		58	70.981	56.226	22.379	1.00	44.20		Α	Ç
ATOM	553	CE1	TYR .	Α 6	58	70.274	53.605	21.798	1.00	43.39		Α	C.
MOTA	554		TYR .		58	71.805	55.167	22.789		44.55		Α	С
ATOM	555	CZ	TYR .		58	71.444	53.863	22.492		45.41		A	C
ATOM	556 557	OH	TYR A		58 59	72.242 68.826	52.807 55.477	22.897 18.196		47.48		A A	Ň
ATOM ATOM	558	N CA	VAL		59 59	68.249	54.404	17.376		34.57		A	C
ATOM	559	C	VAL .		59	68.922	53.080	17.716		34.34		A	č
MOTA	560	0	VAL .		59	69.996	52.793	17.192		28.53		Α	0
ATOM	561	CB	VAL .	Α 6	59	68.440	54.691	15.866	1.00	35.13		Α	C
ATOM	562		VAL .		59	67.944	53.526	15.002		38.45		Α	C
ATOM	563	•	VAL ,		59	67.754	56.000	15.484		36.74	٠,	A	C
ATOM	564	N	PRO .		70 · 70	68.319	52.269	18.588		39.88		A A	N C
ATOM ATOM	565 566	CA C	PRO .		70 70	68.846 68.577	50.922 50.028	18.830 17.629		43.50 47.11		A	C
ATOM	567	ō	PRO .		70	67.551	50.175	16.960		41.77		Α	Õ
MOTA	568	CB	PRO .		70	68.097	50.428	20.077		44.42		A	C.
MOTA	569	CG	PRO .	A :	70	67.031	51.423	20.368	1,00	43.58		Α	С
MOTA	570	CD	PRO .		70 .	67.125	52.554	19.397		42.11		Α	Ç
ATOM	571	N	TYR .		71	69.527	49.140	17.367		51.98		A	N
ATOM	572	CA	TYR .		71	69.474	48.179	16.276 16.908		56.73 58.39		A A	C C
MOTA MOTA	573 574	C O	TYR .		71 71	69.683 69.428	46.796 46.618	18.105		57.75		A	0
MOTA	575	СВ	TYR .		71	70.558	48.519	15.229		57.66		A	Č
ATOM	576	CĢ	TYR .		71 ·	70.091	49.405	14.090		59.91		A	č
MOTA	577		TYR .		71	70.760	50.591	13.779		60.36		Α	C
MOTA	578		TYR .		71	68.995	49.049	13.304		61.59	•	Α	С
MOTA	579		TYR .		71	70.334	51.408	12.725		60.84		A	C:
ATOM	580		TYR .		71	68.568	49.857	12.249		62.07		Α,	Ç
ATOM	581	CZ	TYR .		71	69.241	51.035	11.966		63.27		A. A	. C
ATOM ATOM	582 583	И	TYR .		71 72	68.818 70.147	51.840 45.832	10.924 16.114		61.01		·A	Ŋ
MOTA	584	CA	THR .		72	70.319	44.444	16.556		60.90		A	C
MOTA	585	C	THR .		72	71.093	44.294	17.877		59.74		A	Č
ATOM	586	O	THR .		72	70.491	44.060	18.931		58.04		Α	0
MOTA	587	CB	THR .		72	70.993	43.609	15.431		62.06		Α	C ·
ATOM	588		THR .		72	72.170	44.276	14.951		61.28		A	0
ATOM	589	CG2	THR .	А 🤅	72 .	70.090	43.514	14.196	1.00	63.15		Α	С.

ATOM	590	N	GLN	Δ	73	72.418	44.402	17.800	1 00	57.85		A	N
ATOM	591	CA	GLN		73	73.287	44.461	18.971		57.41		A	C
ATOM	592	C	GLN		73	74.155	45.726	18.850		54.83		A	C
ATOM	593	0	GLN		73	75.303	45.747	19.299		57.07		A	0
ATOM	594	СВ	GLN		73	74.153		19.060		58.83		A	C
					73	73.865	42.294	20.273					
ATOM	595	CG	GLN							60.65		A	С
ATOM	596	CD	GLN		73	74.720	42.630	21.504		63.27		A	С
ATOM	597		GLN		73	75.959	42.582	21.450		61.11		A	0
ATOM	598		GLN		73	74.058	42.943	22.619		61.34		Α	N
MOTA	599	N	GLY		74	73.591	46.763	18.223		48.16	-	A	N
ATOM	600	CA	GLY		74	74.262	48.041	18.020		42.89		Α	C
MOTA	601	C	GLY		74	73.290	49.214	18.016	1.00	38.35		Α	С
MOTA	602	0	GLY	Α	74	72.224	49.115	18.625	1.00	39.09		Α	0
ATOM	603	N	LYS	Α	75	73.656	50.320	17.360	1.00	32.71		Α	N
ATOM	604	CA	LYS	Α	75	72.844	51.554	17.362	1.00	31.39		А	C
MOTA	605	C	LYS	Α	75	73.525	52.762	16.664	1.00	24.85		Α	C
ATOM	606	0	LYS	A	75	74.685	52.698	16.338	1.00	21.55		A	0
MOTA	607	CB	LYS	Α	75	72.483	51.946	18.800	1.00	34.61		Α	C.
MOTA	608	CG	LYS	Α	75	73.667	52.144	19.731	1.00	39.32		Α	C
ATOM	609	CD	LYS	Α	75	74.545	53.318	19.299	1.00	39.96		Α	С
MOTA	610	CE	LYS	Α	75	75.034	54.144	20.451	1.00	40.91		A	С
ATOM	611	NZ	LYS		75	74.297	55.407	20.464		45.34		Α	N
ATOM	612	N	TRP		76	72.782	53.843	16.434		22.44		Α	N
ATOM	613	CA	TRP		76	73.372	55.173	16.224		25.02		Α	C
ATOM	614	Ċ	TRP		76 ·	72.594	56.201	17.012		23.16		A	Ċ
ATOM	615	0	TRP		76	71.429	56.007	17.353		21.34		A	ō
ATOM	616	CB	TRP		76	73.512	55.570	14.732		24.36		A	Ċ
ATOM	617	CG	TRP		76 .	72.243	55.752	13.957		25.79		A	C
	618		TRP		76	71.643		13.136		26.34		A	C
ATOM			TRP			71.424	54.833 56.932			21.29			C
MOTA	619				76 '			13.896 12.595				A	
MOTA	620		TRP		76	70.491	55.364			27.23		A	N
ATOM	621		TRP		76	70.348		13.030		25.91		A	C
ATOM	622		TRP		76	71.497	58.202	14.479		24.01		A	Ç
MOTA	623		TRP		76	69.349	57.595	12.752		26.87		A	C
ATOM	624		TRP		76 .	70.512	59.124	14.202		26.34		A	C -
MOTA	625		TRP		76	69.448	58.818	13.345		25.94		Α	C
ATOM	626	N	GLU		7,7	73.291	57.271	17.354		22.20		A	N
MOTA	627	CA	ĠĽŪ		77	72.753	58.327	18.164		24.84		Α	C
MOTA	628	C	GLU	Α	77	73.255	59.632	17.575	1.00	22.78		Α	С
MOTA	629	0	GLU	Α	77	74.386	59.723	17.089	1.00	19.61		A ·	0
MOTA	630	CB	GLU	Α	77	73.214	58.140	19.621	1.00	28.88		Α	С
MOTA	631	CG ·	GLU	Α	77	72.959	59.331	20.529	1.00	35.35		Α	С
ATOM	632	CD	GLU	Α	77	73.323	59.057	21.980	0.50	36.38		Α	C .
MOTA	633	OE1	GLU	Á	77 .	74.397	58.470	22.222	0.50	42.18		A ·	0
MOTA	634	OE2	GLU	Α	77`	72.536	59.431	22.878	0.50	39.02		Α	0
ATOM -	635	N	GLY	Α	78	72.418	60.651	17.573	1.00	24.09		A	N
MOTA	636	CA.	GLY	Α	78	72.811	61.883	16.933	1.00	25.68		Α	C
ATOM	637	C	GLY	Α	78	72.160	63.134	17.453	1.00	25.43		A	С
MOTA	638	0	GLY	Α	78	71.328	63.116	18.350	1.00	27.93		Α	0
ATOM .	639	N	GLU		79	72.579	64.234	16.861	1.00			A	N
ATOM	640	CA	GLU		79	72.078	65.542	17.187		23.88		Α	С
ATOM	641	С	GLU		79	71.283	65.981	15.979		22.32		A	Ç
ATOM	642	ō	GLU		79	71.800	65.979	14.875		26.62		A	Ö
ATOM	643	CB	GLU		79	73.255	66.487	17.457		23.99		Α	C
ATOM	644	ÇG	GLU		79	74.109	66.052	18.641		29.60		A	C
ATOM	645	CD	GLU		79	75.420	66.826	18.790		33.85		A	Ċ
ATOM	646		GLU		79	76.205	66.467	19.685		34.63		A	ō
ATOM	647		GLU		79	75.670	67.782	18.030		37.21		A	Ö
			LEU				-66.338	16.180		22.69		A	N
ATOM	648	Ņ			80								
ATOM	649	CA	LEU		80	69.184	66.809	15.075				A	C
ATOM	650	C	LEU		80	69.419	68.267	14.685				A	C
.ATOM	651	0	LEU		80	69.596	69.139	15.528				A	0
ATOM	652	CB	LEU		80	67.704	66.617	15.403		26.07		A	C
MOTA	.653	CG	LEU		80	67.233	65.168	15.432		31.35		A	C
MOTA	654		ΓΕÜ		80	65.863	65.082	16.077		28.71		A	Ç.
ATOM	655		LĖU		80	67.212	64.609	14.015		32.32		A	C
MOTA	656	N	GLY		81	69.390	68.525	13.383		23.46		Α	N
ATOM	657	CĄ	GLY		81	69.500	69.861	12.822		22.46		Α	C
MOTA	658	C	GLY		81	68.854	69.916	11.448		26.63		Α	C.
ATOM	659	0	GLY		, 81	68.308	68.927	11,002	1.00	22.44		Α	Ο.
ATOM .	660	N	THR	Α	82	68,884	71.065	10.787	1.00	26.31		A .	N.
MOTA	661	ĊA	THR		82	68.530	71.138	9.369	1.00	28.52		Α:	C
MOTA	662	С	THR	Α	82	69.634	71.813	8.631	1.00	25.22		A.	С
ATOM	663	0	THR	Α	82	70.436	72.529	9.225	1.00	27.82		Α	0

ATOM	664	CB	THR	Α	82	67.190	71.888	9.127	1.00	29.47		Α	C ·
MOTA	665	OG1	THR	Α	82	67.310	73.253	9.554	1.00	27.90		Α	0
ATOM	666	CG2	THR		82	Ģ6.069	71.306	9.972		30.70		Α	C
ATOM	667	N	ASP		83	69.704	71.567	7.326		24.75		A	Ŋ
ATOM	668	CA	ASP		83	70.679	72.180	6.447		22.11		A	C
ATOM	669	C	ASP		83	70.241	71.993	5,009		24.09		A	C
ATOM	670	0	ASP		83	69.261 72.075	71.285 71.559	4.741 6.652		26.17 24.10		A A	O C
ATOM ATOM	671 672	CB CG	ASP ASP		83 83	73.213	72.542	6.376		26.19		A	C
ATOM	673		ASP		83	73.067	73.513	5.580		27.95		Α	ŏ
ATOM	674		ASP		83	74.328	72.409	6.924		25.64		A	ō
ATOM	675	N	LEU		84	70.973	72.591	4.081		26.89		Α	N
ATOM	676	CA	LEU	Α	84.	70.641	72.502	2.658	1.00	27.35		Α	C
ATOM	677	С	LEU	Α	84	71.224	7,1.225	2.078		28.51		Α	C
ATOM	678	0	LEU	А	84	72.398	70.936	2.266		25.25	-	A	0
ATOM	679	CB	LEU		84	71.193	73.717	1.915		29.63		A	C
ATOM	680	CG	LEU		84	70.550	75.047	2.345		31.38		A	c c
ATOM	681		LEU		84 84	71.025 69.027	76.228 74.949	,1.501 2.301		30.45 30.98		A A	C :
ATOM ATOM	682 683	N N	LEU VAL		85	70.392	70.465	1.373		25.49		A	N
ATOM	684	CA	VAL		85	70.790	69.203	0.768		28.08		A	C
ATOM	685	C ·	VAL		85	70.523	69.177	-0.737		27.65		Α	Č
ATOM	686	0	VAL		95	69.511	69.686	-1.213	1.00	27.43		A	0
ATOM	687	CB	VAL	Α	85	70.063	68.028	1.439	1.00	27.18		A	С
MOTA	688		VAL		85	70.564	66 696	0.875		27.97		Α	С
ATOM	689		VAL		8,5	70.273	68.084	2.950		29.93		Α	C
ATOM	690	N	SER		86	71.451	68.587	-1.472		28.67		A	Ņ
ATOM	691	CA	SER		86	71.331	68.409	-2.913		30.97		A	C
ATOM	692	C	SER SER		86 86	71.823 72.512	67.015 66.354	-3.293 -2.509		31.51 25.69		A A	C O
ATOM ATOM	693 694	O CB	SER		86	72.312	69.485	-3.642		33.70	5.	A	C
ATOM	695	OG	SER		86	71.607	69.737	-4.930		42.01		Α	ő
ATOM	696	N	ILE		87	71.459	66.563	-4.494		24.97		A	N
ATOM	697	CA	ILE		87	71.895	65.277	-5.006		25.75		Α	С
ATOM	698	C	ILE	Α	87	72.489	65.559	-6.384	1.00	29.06		A	. Ç
MOTA	699	0	ILE	Α	87	71.737	65.734	-7.354	1.00	27.25		Α	0
MOTA	700	СŖ	ILE		87 .	70.713	64.275			25.77		Α	. C
MOTA	7.01		ILE		87 -	70.062	64.090	-3.729		26.43		Α.	C
ATOM	702		ILE		87	71.187	62.939	-5.631		23.43		A	C
ATOM	703		ILE		87	68.758	63.332	-3,747		29.21		A A	C N
ATOM	704 705	N CA	PRO PRO		88 88	73.817 74.531	66.013	-6.453 -7.689		29.18 30.76		A	C
ATOM ATOM	706	CA	PRO		88	74.063	65.286	-8.956		32.20		A.	Ċ
ATOM	707	ō	PRO		88	73.924	65.938	-9.987		33.45		A	o.
MOTA	708	CB	PRO		88	75.971	65.632	-7.358		31.55		Α	C
MOTA	7.09	CG	PRO	Α	88	76.067	65.895	-5.896	1,00	30.46		A	С
MOTA	710	CD	PRO	A	88	74.762	65.455	-5.339		28.40		Α	С
ATOM	711	N	HIS		89	73.857	63.972	-8.872		27.36		Α.	. N
ATOM	712	CA	HIS		89	73.332	63.162	-9.978		28.26		A	.C
ATOM	713	C	HIS		89	71.871	62.815	-9.715.		29.29	•	A A	C
ATOM ATOM	714 715	O CB	HIS HIS		89 89	71.449 74.173	61.661	-9.847 -10.160		28.17		A	C.
ATOM	716	CG	HIS		89	75.632	62.184	-10.362		38.05		A	Ċ.
ATOM	717		HIS		89	76.120		-11.478		41.06		Α	N
ATOM	718		HIS		89	76.708	61.905	-9.588		38.74		Α	C
MOTA	719	CE1	HIS	Α	89	77.435	62.933	-11.384	1.00	40.63		Α	C
MOTA	720	NE2	HIS	Α	89	77.817		-10.248		41.19		Α	N
MOTA	721	N	GLY		90	71.120	63.846	-9.334		32.50		Α	N
MOTA	722	CA	GLY		90	69.696	63.769	-9.051		31.86		Α	C ·
ATOM	723	C .	GLY		90	69.005	64.963	-9.686 -10.644		30.26 31.12		A A	C 0
ATOM ATOM	724 725	O N	GLY PRO		90 91	69.524 67.861	65.382	-9.158		32.37		A	N
ATOM	726	CA	PRO		91	67.175	66.565	-9.691		34.88		A	Ċ.
ATOM	727	C	PRO		91	67.987	67.835	-9.410		39.91		Α	C
ATOM	728	ō	PRO		91	68.764	67.852	-8.458		38.58		A	ō
ATOM ,	729	CB	PRO		91	65.837	66.579	-8.937		35.23		A	C
MOTA	730	CG	PRO		91	66.049	65.738	-7.711		34.49		Α	С
MOTA	731	CD	PRO		91 .	67.164	64.807	-7.994		33.82		Α	C;
MOTA	732	N	ASN		92	67.809		-10.238		43.06		Α	N
MOTA	733	·CA	ASN		92	68.496		-10.086		45.05		A	. C
ATOM	734	C	ASN		92	67.841	71.060	-9.034				A	C
MOTA	735 736	O CB	AŞN		92	67.368 68.546	72.156	-9.337 -11 441		44.08		Α Δ	O C
ATOM ATOM	736 737	CB CG	ASN ASN		92 92	68.546 69.438		-11.441 -11.431		47.21 50.71		A A	C
12 T OL1	, , ,	~	7 2 U 14	4.3	- 2	02.400	, , , , , ,		1.00	20.11			_

ATOM	738	OD1	ASN A	92	70.604	72.003	-11.044	1.00 52.68	Α	0
ATOM	739	ND2	ASN A	92	68.895	73.217	-11.863	1.00 52.24	Α	N
ATOM	740	N	VAL A	93	67.830	70.592	-7.789	1.00 41.78	Α	N
MOTA	741	CA·	VAL A	93	67.205	71.310	-6.691	1.00 36.70	Α	С
ATOM	742	C	VAL A	93	68.043	71.217	-5.428	1.00 35.54	Α	C
ATOM	743	0	VAL A	93	68.907	70.353	-5.304	1.00 36.77	Α	Ō
ATOM	744	CB	VAL A	93	65.794	70.772	-6.374	1.00 38.91	A	Ċ
MOTA	745		VAL A	93	64.868	70.960	-7.573	1.00 37.74	A	C
ATOM	746		VAL A	93	65.848	69.310	-5.921	1.00 37.34	A	Ç
ATOM	747	И .	THR A	94	67.772	72.139	-4.513	1.00 33.85	A	N
ATOM	748	CA	THR A	94	68.320	72.119	-3.178	1.00 35.85	A A	C C
ATOM	749	C	THR A	94	67.170	72.293	-2.216 -2.443	1.00 36.41 1.00 38.29	A	0
ATOM	750	O CB	THR A	94 94	66.283 69.327	73.119 73.252	-3.009	1.00 37.46	A	C
ATOM ATOM	751 752	CB OC1	THR A	94	70.459	73.232	-3.855	1.00 37.10	A	0.
ATOM	753		THR A		69.910		-1.599	1.00 39.22	A	Ċ
ATOM	754	N	VAL A	95	67.162	71.515	-1.143	1.00 32.79	Α	N
ATOM	755	CA	VAL A	95	66.110	71.652	-0.155	1.00 32.68	A	C
ATOM	756	С	VAL A	95	66.660	71.686	1.261	1.00 30.49	Α	C
ATOM	757	0	VAL A	95	67.762	71.240	1.499	1.00 31.56	Α	0
MOTA	758	CB	VAL A	95	65.071	70.544	-0.291	1.00 36.55	Α	C _.
MOTA	759	CG1	VAL A	95	64.479	70.568	-1.709	1.00 38.67	Α	C.
ATOM	760	CG2	VAL A	95	65.663	69.183	0.025	1.00 33.09	A	С
MOTA	761	N	ARG A		65.883	72 244	2.181	1.00 30.99	A	N
ATOM	762	CA	ARG A	96	66.212		3.597	1.00 29.56	. A	C
ATOM	763	C	ARG A	96	65.620	70.957	4.208	1.00 28.73	A	Ċ
ATOM	764	0	ARG A	96	64.402	70.809	4.302	1.00 30.19	A A	o C
MOTA	765	CB	ARG A	96	65.686 65.976	73.459		1.00 33.02	A	C
ATOM ATOM	766 767	CG T	ARG A	96 96	65.954		6.457	1.00 38.14		. C
ATOM	768	NE	ARG A		67.041	75.677	5.929	1.00 37.92	A	N
ATOM	769	CZ	ARG A	96	68.265	75.747	6.442	1.00 37.97	Α	C
ATOM	770		ARG A	96	68.600	75.050	7.524	1.00 38.44	Α	N
ATOM	771		ARG A	96	69.160		5.846	1.00 33.62	Α	N
ATOM	772	N	ALA A	97	66.503	70.048	4.606	1.00 24.74	A	N
ATOM	773	CA	ALA A	97	66.126	68.764	5.167	1.00 27.21	Α	Ċ
ATOM	774	C	ALA A	97	66.541	68.668	6.614	1.00 22.38	Α	.C
ATOM	775	0	AľÝ Y		67.523	69.278	7.026	1.00 23.68	Α	0 .
ATOM	776	CB	ALA A		66.801		4.380	1.00 24.80	A	C
MOTA	777	N	ASN A		65.796		7.378	1.00.21.67	A	N
MOTA	778	CA	ASN A		66.281		8.644	1.00 22.81	A	С
ATOM	779	C	ASN A		67.502			1.00 25.29 1.00 21.43	A A	С 0
MOTA	780	O CB	ASN A		67.538 65.184		7.451 9.351	1.00 21.43	A,	c
ATOM ATOM	781 782	CG	ASN A		64.033		9.805	1.00 23.57	A	C
ATOM	783		ASN A	98	64.257		10.448	1.00 28.77	Α	Ö
ATOM	784		ASN A		62.801		9.469	1.00 29.01	A	N
ATOM	785	N.	ILE A		68.517		9.255	1.00 23.47	Α	Ŋ
ATOM	786	CA	ILE A		69.693		9.240	1.00 21.95	Α	Ċ
ATOM	787	c,	ILE A	99	70.048	65.437	10.685	1.00 19.63	Α	С
MOTA	788	0	ILE A	99	70.186	66.339	11.529	1.00 24.71	Α	0
ATOM	789	- CB	ILE A		70.902	66.475	8.586	1.00 22.78	Α	Ċ
MOTA	790	CG1	ILE A		70.571		7.184	1.00 19.57	A	C
ATOM	791		ILE A		72.076		8.527	1.00 25.77	A	C
ATOM	792		ILE A		71.663		6.568	1.00 26.04	A	C
MOTA	793	N	ALA A		70.167		10.968	1.00 17.47	A A	N C
MOTA	794	CA	ALA A		70.721 72.245		12.223	1.00 17.42 1.00 21.54	A	C
MOTA MOTA	795 796	C O	ALA A		72.742		11.325	1.00 21.34	A.	Ô
ATOM	797	CB	ALA A		70.116		12.607	1.00 21.16	A	Č
MOTA	798	N ·	ALA A		72.981		12.804	1.00 18.65	A	N
ATOM	799	CA	ALA A		74.436		12.819	1.00 19.52	Α	Ç
ATOM	800	C	ALA A		74.849		13.813	1.00 19.24	Α	Ċ
ATOM	801	Õ	ALA A		74.595		15.017	1.00 22.30	Α	0
MOTA	802	CB	ALA A		75.052		13.163	1.00 21.40	A	C
MOTA	803	N	ILE A	102	75.398	62.150	13.311	1.00 15.90	Α	N
MOTA	804	ÇA	ILE A		75.660		14.129	1.00 17.94	Α	C
MOTA	805	С	ILE A		76.952		14.892	1.00 19.52	A	C
MOTA	806	0	ILE A		77.978		14.288	1.00 19.99	A	0
MOTA	807	CB	ILE A		75.842		13.277	1.00 15.21	A	C
MOTA	808		ILE A		74.554		12.505	1.00 16.99	A	C
ATOM	809		ILE A		76.224		14.178	1.00 18.39	A A	C C
MOTA	810	N CDI	ILE A		74.673		11.472 16.212	1.00 19.74 1.00 21.46	A A	N
ATOM	811	IN .	THR A	103	. /0.000	01.140	10.212	1.00 21.40	^	14

ATOM	812	CA	THR A	103		77.982	61.450	17.114	1.00	25.21		Α	С
ATOM	813	C	THR A	103		78.451	60.245	17.925	1.00	26.42		Α	C
ATOM	814	0	THR A	103	,	79.504	60.296	18.556	1.00	27.83		A	0
MOTA	815	CB	THR A	103		77.556	62.579	18.073	1.00	24.52		Α	С
MOTA	816	OG1	THR A	103		76.344	62.216	18.746	1.00	26.84		A,	0
MOTA	817	CG2	THR A	103		77.183	63.831	17.317	1.00	25.79		Α	C
MOTA	818	N	GLU A			77.668	59.168	17.934	1.00			A	N
ATOM	819	CA	GLU A			78.061	57.917	18.576°	1.00			Α	C
ATOM	820	Ċ	GLU A			77.351	56.767	17.877	1.00			Α	С
ATOM	821	0	GLU A			76.208	56.921	17.465	1.00			Α	0
ATOM	822	CB	GLU A			77.725	57.928	20.088	1.00			Α	Ċ
ATOM	823	CG	GLU A			78.291	56.737	20.854	1.00			A	C
ATOM	824	CD	GLU A			77.964	56.726	22.350	1.00			A	c
ATOM	825		GLU A			77.594	57.785	22.928	1.00			A	ō
ATOM	826		GLU A			78.089	55.637	22.961	1.00			A	Ō
ATOM	827	N	SER A			78.043	55.649	17.693	1.00			Α	N
ATOM	828	CA	SER A			77.446	54.481	17.026	1.00			Α	C
ATOM	829	C	SER A			78.126	53.167	17.421	1.00			A	Č
ATOM	830	ō	SER A			79.260	53.151	17.929	1.00			A	ō
ATOM	831	СВ	SER A			77.440	54.676	15.490		18.17	-	A	č
ATOM	832	OG	SER A			78.758	54.663	15.012	1.00			A	ō
ATOM	833	N	ASP A			77.400	52.072	17.214	1.00			Α	N
ATOM	834	CA	ASP A			77.913	50.733	17.411		24.69		A	C
ATOM	835	C.	ASP A			77.315	49.839	16.312	1.00			A	Č
ATOM	836	ō	ASP A	-		76.094	49.837	16.093	1.00			A	ō
ATOM	837	СВ	ASP A			77.556	50.196	18.792	1.00	-		A	C
MOTA	838	CG	ASP A			77.998	48.751	18.973		30.82		A	Ċ
ATOM	839		ASP A			79.136	48.520	19.419	0.50			A	Ö
MOTA	840		ASP A			77.279	47.781	18.668	0.50			A	ŏ
ATOM	841	N N	LYS A			78.190	49.123	15.618		25.54		A	N
ATOM	842		LYS A			77.820	48.161	14.572		22.36		A	C
	843	C	LYS P			76.966	48.753	13.446		25.69		A	Ċ
ATOM ATOM	844	0	LYS P			76.176	48.054	12.825		22.57		A	Ö
ATOM	845	СВ	LYS A			77.139	46.935	15.195	1.00			A	C
	846	CG	LYS A			78.066	46.130	16.101	1.00			A	C
ATOM		CD	LYS A			77.314	45.034	16.835		33.50		A	Ċ.
ATOM .	847	CE	LYS F			78.004	44.328	17899		31.63		A	C
ATOM	848	NZ				79.348	43.882			31.79		A	N.
ATOM	849		LYS P			77.151	50.043	17.435 13.187		22.67		A	N.
ATOM	850	N						•	1.00			A	C
ATOM	851	CA	PHE A			76.412	50.770	12.161		19.92		A	C
ATOM	852	C	PHE P			77.306 77.016	50.946	10.954 9.875		21.69		A	0
MOTA	853	O	PHE A			75.946	50.416					A	
ATOM	854	CB	PHE A				52.125	12.691		19.57			Ċ
ATOM	855	CG	PHE A			75.153	52.921	11.701		20.66		A A	
ATOM	856		PHE A			73.870	52.520	11.338		25.16		A	C C
ATOM	857		PHE A			75.688 73.139	54.053	11.107		22.61 25.50		A	C
ATOM	858		PHE A				53.250	10.405					C
ATOM	859		PHE P			74.963	54.790 54.381	10.190		22.84		A	
ATOM	860	CZ	PHE A			73.677	-	9.832 11.129		26.62		A A	Ç N
ATOM	861	N CA	PHE A			78.401 79.372	51.682 51.887	10.044		20.35	* *	A .	C
ATOM.	862	CA	PHE A			80.123	50.581	9.813		19.74		A /	C.
MOTA	863	C O	PHE P			80.361	49.824	10.769		24.70		A	Ö
ATOM	864		PHE A				53.065	10.765		19.85		A	
ATOM	865	CB CG	PHE F			80.325 79.617	54.398	10.348		16.19		A	Ċ Ċ
ATOM .	866		PHE A			78.862	54.897	9.435		22.18		A	C
ATOM	867		PHE A			79.726	55.162	11.633		22.10		A	C
MOTA	868					78.197	56.107	9.532		21.10		A	C
ATOM	869		PHE F			79.066	56.377	11.728		21.10		A	C
ATOM	870		PHE A				56.841			22.40			
ATOM	871	CZ	PHE A			78.284		10.663		24.38		A	C
ATOM	872	N	ILE A			80.460	50.285	8.556		23.73		A N	N
ATOM	873	CA	ILE A			81.176	49.060	8.204 7.863				A A	C
ATOM	874	С	ILE A			82.627	49.382			25.17		Α.	С
ATOM	875	0	ILE A			82.917	50.295	7.077		21.65		A	0
ATOM	876	CB.	ILE A			80.510	48.364	6.998		23.43		A N	Ċ
ATOM	877		ILE A			79,073	47.944	7.330		26.13		A	С
ATOM	878		ILE A			81.354	47.171	6.511		27.63		A	C
ATOM	879		ILE A			78.262	47.542	6.104		29.01		A	C
ATOM	880	N .	ASN A			83.535	48.616	8.453		24.01		A	N
ATOM	881	CA	ASN A			84.958	48.786	8.213		25.66		A	C
ATOM	882	C	ASN A			85.302	48.367	6.782		21.62		A	C
ATOM	883	0	ASN A			85.122	47.210	6.395		24.50		A	0
ATOM	884	CB	ASN A			85.762	47.950	9.219		26.77		A	C
MOTA	885	CG	ASN A	TIT		87.239	48.324	9.252	1.00	30.39		Α	С.

MOTA	886	OD1	ASN	Α	111	87.614	49.478	9.012	1.00 29.7	6	Α	0
ATOM	887	NĎ3	ASN	Α	111	88.081	47.348	9.588	1.00 28.9	8	À	N
ATOM	888	N	GLY	Α	112	85.815	49.310	6.008	1.00 21.5	3	Α	N
ATOM	889	CA	GLY	Α	112	86.127	49.082	4.604	1.00 26.8		Α	С
ATOM	890	С	GLY	Α	112	85.073	49.602	3.630	1.00 27.5	54	Α	C
ATOM	891	Ο.	ĢLY	Α	112	85.274	49.562	2.419	1.00 26.8	17	Α	0
ATOM	892	N	SER	Α	113	83.950	50.086	4.145	1.00 28,1	.6	Α	N
ATOM	893	CA	SER	Α	113	82.869	50.607	3.301	1,00 23.2	9	Α	C.
ATOM	894	C	SER	Α	113	83,152	52.034	2.864	1.00 22.8	8	Α	C
ATOM	895	0	SER	Α	113	83.981	52.730	3.462	1.00 22.2	23	Α	0
ATOM	896	CB	SER	Α	113	81.537	50.544	4.053	1.00 26.7	7	Α	С
ATOM	897	OG	SER	Α	113	81.450	51.622	4.968	1.00 32.4	6	Α	0
ATOM	898	N	ASN	Α	114	82.451	52.469	1.818	1.00 19.8	13	Α	- N
ATOM	899	CA	ASN	Α	114	82.632	53.785	1.195	1.00 20.7	0	Α	C
ATOM	900	C ·	ASN	Α	114	81.400	54.686	1.349	1.00 17.9	4	Α	С
ATOM	901	0	ASN	Α	114	81.228	55.627	0.596	1.00 20.0	8	Α	0
ATOM	902	CB	ASN	A	114	82.973	53.574	-0.303	1.00 20.5	54	Α	С
ATOM	903	CG	ASN	Α	114	83.533	54.827	-1.004	1.00 26.0	9	Α	С
ATOM	904	OD1	ASN	A	114	83.189	55.100	-2.165	1.00 29.3	37	Α	0
ATOM	905	ND2	ASN	A	114	84.441	55.540	-0.348	1.00 22.1	.8	Α	N
ATOM	906	N	TRP	Α	115	80.558	54.414	2.354	1.00 16.8		Α	N
ATOM	907	CA	TRP	A	115	79.453	55.295	2.658	1.00 16.4	6	Α	C
ATOM	908	C ·	TRP	Α	115	79.548	55.772	4.100	1.00 18.1	.2	A	C
ATOM .	909	0	TRP	Α	115	80.184	55.126	4.943	1.00 20.6	55	Α	Ó
ATOM	910	CB	TRP	Α	115	78.093	54.631	2.393	1.00 18.6	0	Α	C
ATOM	911	CG	TRP	Α	115	77.869	53.335	3.061	1.00 18.8	31	Α	C
MOTA	912	CD1	TRP	Α	115	78.058	52.098	2.520	1.00 27.0	2	Α	C
ATOM	913	CD2	TRP	A	115	77.372	53.109	4.403	1.00 19.8	15	Α	C
ATOM	914	NE1	TRP	Α	115	77.734	51.123	3.434	1.00 28.0	7	Α	N
ATOM	915	CE2	TRP	Α	115	77.311	51.716	4.597	1.00 28.0	4	Α	C
MOTA	916	CE3	TRP	Α	115	76.983	53.943	5.453	1.00 21.3	16	Α	C
ATOM	917	CZ2	TRP	Α	115	76.877	51.142	5.799	1.00 27.3	30	Α	С
ATOM	918	CZ3	TRP	Α	115	76.544	53.371	6.643	1.00 22.4	9	Α	C
ATOM	919	CH2	TRP	Α	115	76.510	51.996	6.808	1.00 24.6	6	Α	C
ATOM	920	N	GLU	Α	116	78.910	56.905	4.345	1.00 18.0	19	Α	N
ATOM	921	CA	GLU			79.049	57.666	5.584	1.00 18.3	37.	Α	C
ATOM	922	С	GLU			77.726	58.110	6.220	1.00 21.3	19	Α	С
ATOM	923	0	GLU			77.719	58.866	7.185	1.00 19.6	9	Α	0
ATOM	924	CB	GLU			79.891	58.924	5.282	1.00 21.0	9	Α	C
ATOM	925	CG	GLU			81.298	58.664	4.834	1.00 30.5	57	Α	С
ATOM	926	CD	GLU	Α	116	81.495	58.683	3.331	1.00 19.1	.2	Α	С
ATOM	927	OE1	GLU	Α	116	80.945	59.571	2.609	1.00 25.4	7.	A	0
ATOM	928	OE2	GLU	Α	116	82.237	57.811	2.889	1.00 30.7	8	A	0
ATOM	929	N	GLY	Α	117	76.601	57.670	5.680	1.00 15.4	8	Α	N
ATOM	930	CA	·GLY	Α	117	75.302	58.008	6.218	1.00 14.9	5	Α	C
ATOM	931	C	GLY	Α	117	74.221	57.194	5.523	1.00 17.2	22	Α	C
ATOM	932	0	GLY	Α	117	74.517	56.329	4.686	1.00 15.7	19	Α	0
ATOM	933	N ·	ILE	Α	118	72.980	57.475	5.888	1.00 18.2	20	Α	N
ATOM	934	CA	ILE	Α	118	71.810	56.721	5.455	1.00 12.8	15	Α	С
ATOM	935	C	ILE	Α	118	70.668	57.692	5.108	1.00 15.4	5	A	С
ATOM	936	0	ILE	A	118	70.426	58.691	5.805	1.00 15.4	9	Α	0
ATOM	937	CB	ILE	Α	118	71.401	55.687	6.518	1.00 16.4	9	Α	C
ATOM	938	CG1	ILE	A	118	70.260	54.788	6.018	1.00 20.6	0	Α	C
ATOM	939	CG2	ILE	Α	118	70.977	56.368	7.820	1.00 18.5	54	Α	С
ATOM	940	CD1	ILE	Α	118	69.959	53.672	6.975	1.00 22.4	9	Α	C
MOTA	941	N	LEU.	Α	119	69.973	57.386	4.012	1.00 16.5	51	Α	N
ATOM	942	CA	LĘŲ	A	119	68.850	58.180	3.520	1.00 17.3	4	Α	C
ATOM	943	C	LĘŪ	Α	119	67.605	57.332	3.631	1.00 17.5	57	Α	C
ATOM	944	0	LEU	Α	119	67.370	56.426	2.823	1.00 17.0	7	Α	0
ATOM	945	CB	LEU	Α	119	69.061	58.614	2.073	1.00 16.1	.2	Α	C
ATOM	946	CG	LEU	Α	119	67.954	59.469	1.461	1.00 20.5	0	Α	C
MOTA	947	CD1	LEU	Α	119	67.744	60.734	2.237	1.00 21.5	51	Α	С
ATOM	948	CD2	LEU	Α	119	68.286	59.797	0.034	1.00 22.0	0	A	C
ATOM	949	N	GLY	Α	120	66.817	57.600	4.659	1.00 15.2	6	A	N
ATOM	950	CA	GLY	Α	120	65.590	56.864	4.892	1.00 16.1	.7	Α	С
ATOM	951	C	GLY	A	120	64.506	57.419	3.975	1.00 16.0	13	Α	C
ATOM	952	0	GLY			64.131	58.593	4.102	1.00 20.1	.4	Α	0
ATOM	953	N	LEU	Α	121	64.011	56.582	3.064	1.00 15.9	8	Α	N
ATOM	954	CA	LEU	Α	121	63.037	57.010	2.038	1.00 16.9	3	Α	C
ATOM	955	С	LEU	A	121	61.586	56.616	2.330	1.00 18.7	1	Α	C
MOTA	956	0	LEU	Α	121	60.683	56.874	1.530	1.00 20.2	16	Α	0
MOTA	957	CB	LEU			63.460	56.449	0.682	1.00 16.3		Α	Ć
ATOM	958	CG	LEU			64.699	57.128	0.084	1.00 18.1		Α	·C
ATOM	959	CD1	LEU	A	121	65.208	56.418	-1.167	1.00 17.7	4	Α	C

\$^t. \$5

MOTA	960	CD2	LEU	Α	121		64.505	58.626	-0.230	1.00	19.83		Α	С
ATOM	961	N	ALA	Α	122		61.377	55.931	3.440	1.00	17.96		Α	N
MOTA	962	CA	ALA				60.037	55.568	3.916		19.62		Α	С
		C	ALA				59.307	56.740	4.589		24.01		Α	Ċ
ATOM	963								4.476		24.71		A	Ö
ATOM	964	0	ALA				59.734							
ATOM	965	CB	ALA				60.130	54.361	4.829		20.17		A	C
ATOM	966	N	TYR	Α	123		58.185	56.447	5.256		23.30		Α	N
MOTA	967	CA	TYR	Α	123		57.265	57.473	5.703	1.00	25.93		Α	С
ATOM	968	C	TYR	Α	123		57.492	57.894	7.163	1.00	23.41		Α	С
ATOM	969	0	TYR	Α	123		58.146	57.192	7.931	1.00	25.28		A	0
ATOM	970	СВ	TYR				55.836	56.968	5,559	1.00	25.54		Α	C
	971	CG.	TYR				55.441	56.697	4.129		24.32		A	С
MOTA									3.310		25.79		A	Č
ATOM	972		TYR				55.015	57.724						
ATOM	973	CD2					55.491	55.421	3.609		26.50		A	Ç
ATOM	974		TYR				54.622	57.486	1.998		28.42		Α	C
MOTA	975	CE2	TYR	Α	123		55.120	55.171	.2.293		27.28		Α	C
MOTA	976	CZ	TYR	Α	123		54.678	56.195	1.501	1.00	25.25		Α	С
ATOM	977	OH	TYR	Α	123		54.315	55.950	0.184	1.00	26.89		Α	0
ATOM	978	N	ALA	Α	124	;	56.879	59.014	7.519	1.00	29.24		A	N
ATOM	979	CA	ALA				57.082	59.664	8.820		30.24		Α	C
	980	Ċ.	ALA				56.708	58.812	10.018		35.27		Α.	Ċ
MOTA									11.091		33.99		A.	ō
ATOM	981	0	ALA				57.302	58.953						
ATOM	982	СВ	ALA				56.356	60.972	8.858		31.62		A	C
ATOM	983	N	GLU	Α	125		55.754	57.903	9.834		34.28		\mathbf{A}_{\cdot}	N
MOTA	984	CA	GLU	Α	125		55.295	57.003	10.894	1.00	37.92		Α	C
MOTA	.985	С	GLU	Α	125		56.415	56.274	11.647	1.00	37.65		Α	C
ATOM	986	0	GLU				56.299	56.030	12.853	1.00	38.82		Α	0
ATOM	987	СВ	GLU				54.330	55.968	10.293	1.00	40.24		Α	C
ATOM	988	CG	GLU				53.444	55.252	11.295		45.50		Α	C
			GLU					55.962	11.496		52.07		A	Ċ
ATOM	989	CD .					52.121		- 4					Ö
MOTA	990		GLU				52.131	57.123	11.977		54.94		A	
MOTA	991	OE2	GLU	Α	125		51.075	55.364	11.163		57.37		Α	Ó
MOTA	992	N	ILE	Α	126		57.491	55.918	10.941	1.00	31.63		Α	N
ATOM	993	CA	ILE	Α	126		58.585	55.155	11.525	1.00	28.26		Α	С
ATOM	994	С			126	•	59.866	55.991	11.687	1.00	26.21		Α	C
ATOM	995	ō			126		60.920	55.440	11.948		28.24		Α .	0
MOTA	996	CB			126		58.878	53.883	10.690		31.52		Α	C
						,		,	9.234		28.75		Α	. C
ATOM	997		ILE				59.197	54.235						
MOTA	998		ILE				57.699	52.908	10.764		31.40		A	C .
MOTA	999	CD1	ΙĻΕ	Α	126		59.677	53.053	8.429		29.82		Α	С
MOTA	1000	N	ALA	Α	127		59.751	57.298	11.493	1.00	26.38		Α	N
ATOM	1001	CA	ALA	Α	127		60.844	58.222	11.762	1.00	28.14		Α	C
ATOM	1002	C	ALA	Α	127		61.072	58.286	13.267	1.00	30.57		Α	. C
ATOM	1003	ο.	ALA				60.139	58.129	14.056	1.00	27.34		A	. 0
ATOM	1004	СB	ALA				60.516	59.588	11.228		26.20		Α	Ç
					128		62.323	58.479	13.650		32.29		Α	Ŋ
ATOM	1005	N						-						c
MOTA	1006	CA	ARG				62.686	58.711	15.042		32.33		A	
MOTA	1007	C.			128		63.110	60.172	15.214		32.76		A	C
ATOM	1008	0	ARG	Α	128		63.673	60.773	14.288		28.12		A ·	0
ATOM	1009.	CB	ARG	Α	128		63.775	57.748	15.468	1.00	33.84		Α .	C
MOTA	1010	CG	ARG	Α	128		63.268	56.329	15.638	1.00	39.19		Α	C.
ATOM	1011	CD	ARG	Α	128		64.006	55.302	14.843	1.00	43.32		Α	C
ATOM	1012	NE	ARG	Α	128		63.338	54.007	14.915	1.00	49.88		Α	N
ATOM	1013	CZ			128		63.811	52.881	14.384	-	49.47		Α	С
ATOM			ARG				63.115	51.757	14.508		52.74		A	N
	1014													
ATOM	1015		ARG				64.968	52.865	13.731		50.48		A,	N
MOTA	1016	N.			129		62.816	60.791	16.364		31.47		Α	N
ATOM	1017	CA	PRO	A	129		62.218	60.159	17.553		34.71		Α	С
MOTA	1018	C.	PRO	Α	129		60.705	59.942	17.479	1.00	34.15		Α	C
MOTA	1019	0	PRO	Α	129		60.172	59.122	18.229	1.00	37.59	-	Α	0
ATOM	1020	СВ			129		62.498	61.176	18.670		32.03		Α	С
ATOM	1021	CG			129		62.887	62.461	18.005		33.32		Α	Ċ
					129		63.036	62.232	16.548		34.13		Α	Č
ATOM	1022	CD											A	N
ATOM	1023	N			130		60.031	60.701	16.626		34.80			
MOŢA	1024	CA			130		58.604	60.519	16.390		38.13		A	C
MOTA	1025	С	ASP	Α	130		58.234	60.967			36.50		Α	С
MOTA	1026	0	ASP	Α	130		59.075	61.471	14.227	1.00	36.70		A	0
MOTA	1027	CB			130		57.779	61.280	17.450	1.00	39.51		Α	. C
ATOM	1028	CG			130		58.154	62.756	17.558		44.22		Α	С
ATOM	1029		ASP				58.795	63.139	18.571		51.20		Α	0
			ASP				57.839	63.614	16.705		44.98		A	Ö
ATOM	1030										38.18		A	N
ATOM	1031	N			131		56.963	60.814	14.623					
MOTA	1032	CA			131		56.511	61.090	13.261		38.88		A	С
MOTA	1033	Ç	ASP	A	131		56.397	62.569	12.911	1.00	36.53		Α	С

		,										
ATOM	1034	0	ASP	Α	131		55.943	62.905	11.827	1.00 35.45	Α	0
ATOM	1035	CB	ASP	A	131		55.191	60.346	12.950	1.00.39.38	Α	C
ATOM	1036	CG	ASP	Α	131		54.010	60.844	13.771	1.00 41.70	Α.	С
MOTA .	1037	OD1	ASP	Α	131		54.067	61.976	14.296	1.00 42.89	Α	0
MOTA	1038	OD2	ASP				52.970	60.165	13.935	1.00 42.85	Α	0
ATOM '	1039	N			132		56.801	63.462	13.815	1.00 37.22	Α	N
ATOM	1040	CA			132		56.825	64.891	13.495	1.00 34.53	Α	C
ATOM	1041	С			132		58.138	65.313	12.811	1.00 32.93	A	C
ATOM	1042	0			132		58.242	66.415	12.301	1.00 31.50	A	0
ATOM	1043	CB			132		56.569	65.733	14.753	1.00 36.86	A	C
MOTA	1044	OG.			132		57.784	66.236	15.282	1.00 41.97	A	0
MOTA	1045	N			133		59.142	64.442	12.800	1.00 33.79	A	N
MOTA	1046	CA			133		60.371	64.730	12.053	1.00 32.04	A	C
ATOM	1047	C			133		60.174	64.308	10.601	1.00 30.10	A A	Ċ
ATOM ATOM	1048 1049	O CB			133 133		60.179 61.586	63.117 64.035	10.279 12.652	1.00 31.31 1.00 30.30	A.	C
ATOM	1050	CG			133		62.901	64.622	12.116	1.00 30.30	A	c
ATOM	1051		LEU				63.289	65.900	12.891	1.00 30.64	A	C
ATOM	1052		LEU				64.000	63.606	12.180	1.00 26.23	A	C
ATOM	1053	N			134		60.028	65.294	9.734	1.00 32.24	A	N
ATOM	1054	CA			134		59.630	65.044	8.362	1.00 30.89	A	Ċ
ATOM	1055	C			134		60.812	64.398	7.611	1.00 30.52	Α	C
ATOM	1056	0			134		61.938	64.919	7.650	1.00 27.23	Α	0
ATOM	1057	CB .			134		59.088	66.332	7.709	1.00 -35.75	Α	C
ATOM	1058	CG	GLU	Α	134		59.723	66.804	6.414	1.00 41.00	A	С
MOTA	1059	CD			134		59.016	68.022	5.819	1.00 43.25	Α	С
ATOM	1060	OE1	GLU	Α	134		59.719	68.930	5.302	1.00 45.72	Α	0
MOTA	1061	OE2	GLU	Α	134		57.763	68.096	5.869	1.00 48.16	A	0
MOTA	1062	N	PRO	Α	135		60.566	63.249	6.975	1.00 25.18	Α	N
MOTA	1063	CA	PRO	Α	135		61.581	62.606	6.119	1.00 24.30	A	C
ATOM .	1064	С			135		62.039	63.453	4.958	1.00 19.94	Α	С
MOTA	1065	0			135		61.337	64.319	4.481	1.00, 23.86	Α	0
MOTA	1066	CB			135		60.847	61.379	5.579	1.00 22.83	Α΄	C
MOTA	1067	CG			135		59.796	61.109	6.573	1.00 25.70	A	C
ATOM	1068	CD			135		59.328	62.450	7.020	1.00 24.61	A	C
MOTA	1069	N			136		63.243	63.160		1.00 19.75	A	N
ATOM	.1070	CA			136	,	63.850	63.848	3.367	1.00 20.77	A	C
ATOM -	1071		PHE				62.945	64.000	2.166	1.00 25.10	A	C
ATOM	1072	0			136		62.798	65.099	1.632	1.00 23.63	A	0
ATOM	1073	CB			136		65.094	63.106	2.886	1.00 21.20	A A	C C
ATOM	1074	CG	PHE		136		65.704 66.414	63.716	1.669 1.758	1.00 19.23 1.00 26.30	A	C
ATOM ATOM	1075 1076		PHE				65.522	63.144	0.421	1.00 23.32	A	C
ATOM	1077		PHE				66.962	65.494	0.626	1.00 25.62	A	Ċ
ATOM	1078		PHE				66.078	63.727	-0.719	1.00 23.61	A	č
ATOM	1079		PHE				66.787	64.903	-0.615	1.00 29.48	Α	Č
ATOM	1080	N			137		62.402	62.886	1.694	1.00 21.94	Α	
ATOM	1081	CA	,		137		61.655	62.903	0.444	1.00 20.25	Α	C
MOTA	1082	С			137		60.396	63.749	0.582	1.00 21.90	A ·	C
MOTA	1083	0	PHE	Α	137		59.966	64.370	-0.379	1.00 24.14	Α	0
MOTA	1084	CB	PHE	Α	137		61.271	61.509	-0.026	1.00 18.67	Α	C
MOTA	1085	CG	PHE	Α	137		61.039	61.440	-1.491	1.00 20.54	Α	C .
MOTA	1086	CDI	PHE	Α	137		62.099	61.302	-2.361	1.00 23.22	Α	C
MOTA	1087		PHE				59.757	61.511	-2.003	1.00 22.93	A .	C
MOTA	1088		PHE				61.900	61.241	-3.721	1.00 27.68	Α	C
ATOM	1089		PHE				59.551	61.462	-3.374	1.00 20.33	Ā	C
MOTA	1090	CZ			137		60.616	61.334	-4.232	1.00 22.33	A	Ç
MOTA	1091		ASP			-7	59.814	63.750	1.775	1.00 22.45	A	N
MOTA	1092	CA			138		58.649	64.582	2.081	1.00 25.79	A	C
ATOM .	1093	Ċ			138		59.020	66.055	1.966	1.00 27.43	A.	C
ATOM	1094	0			138		58.296	66.825	1.326	1.00 30.80	A	0
ATOM	1095	CB			138		58.124	64.309	3.479	1.00 27.52	Α.	·C
ATOM	1096	CG OD1	ASP		138		57.419 56.177	62.982 63.001	3.596 3.674	1.00 33.12 1.00 41.90	A A	C -
ATOM ATOM	1097 1098		ASP				58.004	61.870	3.644	1.00 41.90	A	0
ATOM	1098	N N			139		60.141	66.452	2.573	1.00 35.84	A	. N
ATOM	1100	CA			139		60.662	67.825	2.393	1.00 25.82	A	C
ATOM	.1101	C			139		60.957	68.169	0.940	1.00 26.23	A	c
ATOM	1102	Ö			139		60.719	69.293	0.496	1.00 28.87	·A	ō
ATOM	1102	СВ			139	. ,	61.951	68.049	3.204	1.00 21.06	A	C
ATOM	1104	OG			139	,	61.769	67.663	4.541	1.00 25.91	A	ō
ATOM	1105	N			140		61.493	67.212	0.188	1.00 24.71	Α	N
ATOM	1106	CA			140		61.816		-1.209	1.00 24.32	Α	С
ATOM	1107	C			140		60.547	67.732	-2.019	1.00 26.78	Α	C

ATOM	1108	0	LEU	А	140	60.555	68.649	-2.851	1.00	28.93		Α	0
MOTA	1109	CB	LEU	Α	140	62.555	66.253	-1.819	1.00	25.33		Ą	C
MOTA	1110	. CĢ	ĻĘŲ	Α	140	62.797	66.212	-3.332	1.00	27.48		Α	C
MOTA	1111	CD1	LEU	Α	140	63.903	67.142	-3.762	1.00	30.78		Α	C
ATOM	1112	CD2	LEU	Α	140	63.124	64.795	-3.764	1.00	32.40		Α	Ç
ATOM	1113	N	VAL	Α	141	59.482	66.964	-1.774	1.00	27.82		Α	N
ATOM	1114	CA	VAL			58.236	67.121	-2.539	1.00	27.51	•	Α	C.
ATOM	1115	C	VAL			57.548	68.440	-2.159		33.11		A	C
ATOM	1116	ō	VAL			57.054	69.159	-3.024		34.42		А	0
ATOM	1117	СВ	VAL			57.268	65.953	-2.319		30.35		Α	C
ATOM	1118		VAL			55.923	66.224	-2.980		31.75		Α	Ċ
ATOM	1119		VAL			57.849	64.666	-2.885		30.79		Α	C
ATOM	1120	N.	LYS			57.541	68.747	-0.868		32.37		Α	N
ATOM	1121	CA	LYS			56.876	69.931	-0.338		37.06		A	C
MOTA	1122	C	LYS			57.527	71.211	-0.828		34.32		Α	Ċ
ATOM	1123	0	LYS			56.826	72.191	-1.091		35.77		Ą	Ö
MOTA	1124	СВ	LYS			56.876	69.897	1.187		37.65		A	č
ATOM	1125	CG	LYS			56.135	71.055	1.850		44.63		A	Ċ
ATOM	1126	CD	LYS			55,689	70.702	3.264		46.28		Α	Ċ
ATOM	1123	CE	LYS			54.644	71.684	3.779		49.93		Α	Ċ
	1128	NΖ	LYS			54.400	71.364	5.250		45.29		A	N
MOTA			GLN			58.848	71.196	-0.999		30.71		A	N
ATOM	1129	N	GLN			59.602	72.415	-1.260		32.98		A	C
MOTA	1130	CA								31.39		A	Ċ
MOTA	1131	С	GLN			59.948	72.655	-2.726			٠		
ATOM	1132	0	GLN			60.393	73.754	-3.071		35.65		A	0
MOTA		· CB	GLN			60.900	72.429	-0.443		29.67		A	C
MOTA	1134	CG			143 '	60.712	72.505	1.045		29.86		A	C
MOTA	1135	CD	GLN			62.033	72.359	1.785		22.99		A	C
MOTA	1136		GLN			62.072	71.774	2.871		32,.84		A	0
MOTA	1137		GLN			63.100	72.879	1.202		24.10		Α.	N
ATOM	1138	N			144	59.767	71.650	-3 588		30.44		A	N
ATOM	1139	CA ·	THR			60.095	71.786	-5.011		31.63		Α	, C
ATOM	1140	C Ž	THR			58.950	71.268	-5.887		32.37		Α.	C
ATOM	1141	0			144.	57.910	70.882	-5.368		35.67		A	0
ATOM	1142	CB	THR			61.405	71.032	-5.365		35.08		A	C
ATOM	1143		THR		,	61.169	69.613	-5.395		34.32		A	0
ATOM	1144		THR			62.458	71.221	-4.298		34.68		Α	С
ATOM	1145	,N			145.	59.165	71.247	-7.203		36.14		Α	Ň
ATOM	1146	CA			145	58.193	70.682	-8.155		39.38		Α	C
MOTA	1147	C	HIS			58.512	69.232	-8.562		37.43		Α	C
MOTA	1148	О	HIS			57.961	68.715	-9.544		33.33		Α	0
MOTA	1149	CB	HIS			58.097	71.563	-9.409		43.05		Α	С
MOTA	1150	ÇG	HIS			57.493	72.910	-9.154		47.15		Α	C
MOTA	1151	· ND1				56.200	73.072	-8.703		50.46		Α	N
MOTA	1152		HIS			58.006	74.157	-9.284		49.69		Α	C
ATOM	1153	CE1	НĮS	Α	145	55.941	74.361	-8.570	,	51.63		Α	С
MOTA	1154	NE2	HIS				75.041	-8.913		51.86		Α	N
MOTA	1155	N	VAL	Α	146	59.379	68.565	-7.798		33.76		Α	N
MOTA	1156	CA	VAL	Α	146	59:705	67.163	-8.059		29.14		Α	С
MOTA	1157	C	VAL	Α	146	58.472	66.301	-7.774	1.00	22.43		Ą	C
MOTA	1158	0	.VAL	Α	146	57.885	66.398	-6.697		24.83		Α	0
MOTA	1159	CB	VAL	Α	146	60.921	66.695	-7.206	1.00	27.14		Α	С
MOTA	1160	CG1	VAL	A	146	61.151	65.185	-7.339		27.28		Α	C
ATOM	1161	CG2	VAL	Α	146	62.178	67.468	-7.626		26.85		Α	Ċ
ATOM	1162	N	PRO	Α	147	58.045	65.483	8.744		26.48		Α	- N
ATOM	1163	CA	PRO	Α	147	56.864	64.637	-8.557	1.00	26.08		Α	С
MOTA	1164	C	PRO	Α	147	57.049	63.662	-7.403	1.00	22.97		Α	C
MOTA	1165	0	PRO	Α	147	58.185	63.217	-7.166	1.00	27.41		Α	0
ATOM	1166	CB	PRO	Α	147	56.749	63.885	-9.882	1.00	25.30		Α	С
MOTA	1167	CG	PRO	Α	147	57.462	64.717	-10.865	1.00	27.21		Α	С
MOTA	1168	CD	PRO	Α	147	58.636	65.310	-10.089	1.00	25.24		Α	C
ATOM	1169	N			148	55.963	63.339	-6.711	1.00	21.69		Α	Й
ATOM	1170	CA-	ASN			56.014	62.466	-5.551	1.00	21.05		Α	Ç
ATOM	1171	С			148	56.167	60.969	-5.908	1.00	21.77		Α	Ċ
ATOM	1172	0			148	55.305	60.152	~5.607	1.00	21.62		Α	0
ATOM	1173	CB			148	54.797	62.717	-4.670	1.00	23.86		Α	С
ATOM	1174	CG			148	54.878	62.024	-3.338		22.10	١.	Α	C
ATOM	1175		ASN			55.967	61.652	-2.885		20.69		Α	0
ATOM	1176		ASN			53.716	61.795	-2.710		25.43		Α	N
ATOM	1177	N			149	57.291	60.629	-6.524		20.43		Α	N
ATOM	1178	CA			149	57.666	59.252	-6,775		22.50		A	C
ATOM	1179	С			149	59.152	59.110	-7.020		21.20		Α	C
ATOM	1180	ō			149	59.838	60.073	-7.389		19.54		Α	0
ATOM	1181	ĊВ			149	56.859	58.654	-7.927		25.03		A	C

ATOM	1182	CG	LEU	А	149	57.349	58.789	-9.346	1.00	28.60		Α	C
MOTA	1183		LEU			56.502		-10.267		30.70		Α	C
MOTA	1184		LEU			57.237	60,237	-9.725		30.68		A	C
MOTA	1185	N CA	PHE			.59.678 61.044	57.919 57.586	-6.745 -7.149		18.27 18.21		A A	N C
ATOM ATOM	1186 1187	C	PHE			61.116	56.104	-7.566		17.26		A	C
MOTA	1188	Ö	PHE			60.229	55.324	-7.235		17.41		A	Ö
ATOM	1189	СВ	PHE			62.054	57.925	-6.045		16.20		A	C
MOTA	1190	CG	PHE	Α	150	61.904	57.072	-4.808	1.00	15.43		Α	С
MOTA	1191		PHE			61.042	57.450	-3.805		18.11		Α	С
MOTA	1192		PHE			62.614	55.885	-4.681		17.12		A	C
MOTA	1193	•	PHE			60.883	56.655 55.092	-2.694 -3.564		16.60 16.66		A A	C
ATOM ATOM	1194 1195	CEZ	PHE			62.477 61.588	55.468	-2.576		18.98		A	C
ATOM	1196	N	SER			62.143	55.741	-8.320		15.58		A	N
MOTA	1197	CA	SER			62.353	54.360	-8.764	1.00	13.42		Α	С
MOTA	1198	С	SER	A	151	63.779	53.904	-8.612		15.43		Α	Ç
ATOM	1199	0	SER			64.717	54.708	-8.638		17.96		A	0 .
MOTA	1200	CB	SER			61.880		-10.200		18.86		A A	С 0
ATOM ATOM	1201 1202	og N	SER			62.440 63.932	52.603	-11.021 -8.401		19.88 15.64		A	N
ATOM	1202	CA	LEU			65.213	51.992	-8.105		16.25		A	c
ATOM	1204	C	LEU			65.456	50.817	-9.015		17.29		Α	C
ATOM	1205	0	LEU	A	152	64.596	49.925	-9.143	1.00	17.99		Α	0
MOTA	1206	CB	LEU			65.248	51.493	-6.650		16.35		A	C
ATOM	1207	CG	LEU			65.317	52.590	-5.590		18.65		A	C
ATOM	1208 1209		LEU			65.177 66.585	51.994 53.418	-4.208 -5.725		19.71 19.60		A A	C C
ATOM ATOM	1210	Ņ N			153	66.618	50.820	-9.646		19.70		A	N
MOTA	1211	CA	GLN			67.115		-10.419		19.09		A	·C
MOTA	1212	С			153	68.422	49.296	-9.747	1.00	17.61		Α	C
ATOM	. 1213	0	GLN	Α	153	69.438	49.964	-9.921		22.26		Α	Ó
MOTA	1214	CB			153	67.368		-11.883		23.44.		A	C
ATOM	1215	CG.	GLN			67.771		-12.721		24.58		A A	C C
ATOM ATOM	1216 1217	CD OF1	GLN		153	68.573 69.610		-13.957 -13.895		26.89: 32.38		A	0
ATOM	1217		GLN			68.116		-15.089		27.76		Α.	N
ATOM	1219	N			154		48.247	-8.941		17.74		Α	N
ATOM	1220	CA	LEU	A	154	69.618	47.726	-8.329	1.00	21.30		Α	Ç
MOTA	1221	C			154	70.186	46.576	-9.166		28.90		A	C
ATOM	1222	0			154	69.479	45.609	-9.464		29.97		A A	O C
MOTA MOTA	1223 1224	CB CG			154 154	69.339 68.556	47.276 48.277	-6.898 -6.046		21.73 22.21		A	C
ATOM	1225		LEU			68.239	47.712	-4.686		25.89		Α	Č
ATOM	1226		LEU			69.266	49.619	-5.888	1.00	22.60		Α	C
ATOM	1227	N	CYS	A	155	71.461	46.678	-9.537		32.67		A	N
ATOM	1228	CA			155	72.096		-10.442		36.54		A	Ç
MOTA	1229	C			155	73.103	44.805	-9.720		41.47		A A	c
MOTA MOTA	$1230 \\ 1231$	O CB			155 155	72.719 72.744	43.815	-9.116 -11.616		43.64 36.93		A	Ć
ATOM	1232	SG			155	71.580		-12.528		37.02		A	ŝ
ATOM	1233	N			156	74.389	45.122	-9.802		49.66		Α	N
MOTA	1234	CA	GLY	A	156	75.416	44.312	-9.170			•	Α	С
MOTA	1235	С			156	75.784	43.035	-9.897		54.64		A	С
ATOM	1236	0			156	75.586	41.937			55.03		A	0
MOTA MOTA	1237 1238	N CA			157 157	76.323 76.935		-11.106 -11.872		58.96 59.70		A A	N C
ATOM	1239	C			157	76.142		-11.808		61.26		A	c
ATOM	1240	ō			157	76.543		-11.131		63.37		A	Ō
ATOM .	1241	CB	ALA	Α	157	78.377	41.881	-11.396	1.00	61.07		Α	С
ATOM	1242	N			168	81.887	41.703	-5.577		52.10		Α	N
ATOM	1243	CA			168	82.673	42.857	-6.011		51.66		A	
ATOM	1244	С			168	81.807	44.132	-6.026		49.66		A	C
ATOM ATOM	1245 1246	O CB			168 168	80.833 83.302	44.234 42.585	-5.270 -7.389		47.62 52.14		A A	C
ATOM	1246	N			169	82.169	45.100	-6.865		48.50		A	Ŋ
ATOM	1248	CA			169	81.455	46.373	-6.933		47.11		Α	C
ATOM	1249	C			169	80.128	46.241	-7.693		45.49		Α	Ç
ATOM	1250	0			169	80.102	45.793	-8.833		42.21		A	0
ATOM	1251	CB			169	82.336	47.432	-7.596		48.06		A	С
ATOM.	1252	OG N			169 170 ·	81.625 79.036	48.637 46.648	-7.812 -7.048		53.03 40.36		Ă Ā	O N
MOTA MOTA	1253 1254	N CA			170	77.714	46.662	-7.675		36.88		A	C
ATOM	1255	C			170	77.329	48.074	-8.121		33.45		A	Ċ
• • •	1				-								

ATOM	1256	0	VAL	A	170		77.980	49.050	-7.751	1.00	27.09		Α	0
ATOM	1257	CB	VAL				76.636	46.100	-6.714		35.68		Α	C
ATOM	1258		VAL				76.978	44.662	-6.301		38.27		A	C
AŢOM ATOM	1259 1260	N	VAL GLY				76.471 76.256	46.986	-5.476 -8.905		36.83		A A	C N
ATOM	1261	CA			171		75.760	49.457	-9.360		28.27		A	C
MOTA	1262	C.	GLY				74.250	49.511	-9.521		23.99		A	Ċ
ATOM	1263	0	GLY				73.567	48.502	-9.456		30.07		Α	0
ATOM	1264	N	GLY	Α	172		73.748	50.704	-9.785	1.00	22.93		A	N
ATOM	1265	CA	GLY	A	172		72.321	50.912	-9.960	1.00	24.79		Α	C
ATOM	1266	С	GLY				71.921		-10.318		21.72		Α	C
ATOM	1267	0	GLY				72.755		-10.586		20.97		Α	0
ATOM	1268	Ŋ			173		70.615		-10.323		20.55		A	N
ATOM	1269	CA C	SER		173		70.056 68.934	54.169	-10.618 -9.642		19.75 17.92		A A	. C
ATOM ATOM	1270 1271	0			173		68.098	53.318	-9.396		19.13		A	0
ATOM	1271	CB			173		69.490		-12.045		20.34		A	C
ATOM	1273	OG			173		70.498		-13.025		23.31		A	ō
ATOM	1274	N	MET				68.935	55.371	-9.085		19.22		Α	N
ATOM	1275	CA	MET	A	174		67.794	55.904	-8.368	1.00	19.42		Α	C.
MOTA	1276	C	MET	-			67.284	57.099	-9.164		20.07		Α	C
AŢOM	1277	0	MET				67.936	58.150			18.63		A	0
ATOM	1278	CB ·	MET				68.156	56.332	-6.953		19.01		A	C
ATOM	1279	CG SD	MET				66.982 67.349	56.914 57.388	-6.230 -4.532		22.45		A A	C S
ATOM ATOM	1280 1281	CE	MET		174 ·		68.659	58.440	-4.532 -4.766		27.89		A	C
ATOM	1282	N			175		66.135	56.904	-9.818		21.08		A	N
ATOM	1283	CA			175		65.469		-10.548		16.99		A	C
ATOM	1284	С			175		64.484	58.690	-9.642	1.00	16.84		Α .	С
ATOM	1285	0	ILE	A	175		63.468	58.119	-9.242	1.00	19.54		Α	0
MOTA	1286	CB .	ILE	Α	175		64.740		-11.800	1.00	22.71		Α	С
ATOM	1287		IĻE				65.645		-12.632		21.64		Α	С
ATOM	1288		ILE				64.160		-12.633		22.47		A	C
ATOM	1289		İŢĒ				66.942		-13.192		21.34		A	C
ATOM	1290	N .			176 176		64.820		-9.276		22.11	٠.	A A	N C
ATOM ATOM	1291 1292	CA C			176		64.012 63.045	60.750 61.581	-8.396 -9.230		22.51 23.28		A	C
ATOM	1293	0			176		63.464				27.99		A.	Ö
ATOM	1294	CB			176		64.908	61.703	-7.567		24.59		Α.	Č
ATOM	1295		ILE				65.914	60.917	-6.718		27.72		Α	C
ATOM	1296	CG2	IĻĘ	Α	176		64.059	62.601	-6.699	1.00	26.83		Α	C
ATOM	1297	CD1	ILE	A	176		65.274	60.104	-5.618	1.00	30.97		Α	C,
ATOM	1298	N			177		61.762	61.359	-9.003		23.04		Α	N
ATOM	1299	CA	GLY				60.711	62.169	-9.578		23.58		A	С
ATOM	1300 1301	C			177	٠.	60.114		-10.810		27.69		A A	C
ATOM ATOM	1301	O N	GLY GLY				59.224 60.561		-11.428 -11.160		29.57 24.14		A	O. N
ATOM	1302	CA	GLY				60.023		-12.342		26.72		A	C
ATOM	1304	C	GLY			-	60.460		-12.586		27.37		A	Ċ
ATOM	1305	0			178		61.017		-11.712		24.67		Α	0
ATOM	1306	N	ILE	Α	179		60.153	57.861	-13.800	1.00	24.35		Α	N
ATOM	1307	CA	ILE	A	179		60.475		-14.300		28.10	*	Α	C
ATOM	1308	C			179		61.277		-15.591		30.00	N	A	C
ATOM	1309	0			179		61.031		-16.367		29.66		A	0
ATOM	1310	CB CC1			179		59.174		-14.552 -13.314		28.71 31.09		A	C.
ATOM ATOM	1311 1312		ILE				58.240 59.480		-13.314		32.54		A A	C
ATOM	1313		ILE				56.941		-13.456		35.50		A	Ç.
ATOM	1314	N			180		62.241		-15.795		29.78		A	Ŋ
ATOM	1315	CA			180		63.094		-16.983		32.20		Α	C
ATOM	1316	С			180		62.895		-17.703	1.00	30.45		A	C
ATOM	1317	0	ASP	A	180		63.345		-17.240	1.00	27.79		Α	Ò
MOTA	1318	CB			180		64.566		-16.576		31.37		A	C
ATOM	1319	CG			180	٠.	65.488		-17.759		37.38		Α	C
ATOM	1320		ASP				65.155		-18.868		40.09		Α	0
ATOM	1321		ASP				66.577		-17.670		37.04		У. В	0
ATOM	1322	N CA			181		62.235		-18.856 -19.592		34.60 34.97		A A	C N
ATOM ATOM	1323 1324	CA	HIS		181		61.829 62.986		-19.592		35.24		A	Ç
ATOM .	1325	0			181		62.825		-20.323		34.58		A	Ö
ATOM	1326	СВ	HIS				60.868		-20.721		38.80		A	Ċ
ATOM	1327	CG			181		59.662		-20.233		38.66		Α	C
ATOM	1328		HIS				58.846		-19.234	0.50	38.35		A	N
MOTA	1329	CD2	HIS	A	181		59.158	55.649	-20.580	0.50	40.41		A	′ C

ATOM	1330	CE1	HIS	Α	181	57.880	54.828	-18.998	0.50	40.15	A	C
ATOM.	1331	,	HIS			58.045		-19.803		40.15	A	N
ATOM	1332	N			182	64.167		-20.244		33.98	A	N
ATOM	1333	CA			182	65.369		-20.589		34.19	A	C C
ATOM ATOM	1334 1335	С 0			182 182	65.834 66.638		-19.484 -19.736		31.16 29.95	A A	0
ATOM	1336	СВ			182	66.507		-20.966		36.56	A	C
ATOM	1337	OG			182	66.853		-19.886		39.80	A	Ö
ATOM	1338	N	LEU			65.318		-18.261		28.19	A	N
ATOM	1339	CA	LEU			65.719	50.607	-17.156	1.00	26.88	A	С
ATOM	1340	C	LEU	Α	183	64.920		-17.012	1.00	26.28	Α	С
ATOM	1341	0			183	65.267		-16.178		21.62	Α	. 0
MOTA	1342	CB			183	65.646		-15.838		26.71	A	С
MOTA	1343	CG			183	66.557		-15.805		30.09	A	С
MOTA	1344		LEU			66.413		-14.479		28.34	A A	C C
ATOM ATOM	1345 1346	N			184	67.997 63.865		-16.027 -17.822		26.39	A	N
ATOM	1347	CA			184	63.038		-17.710		22.78	Α	Ç
ATOM	1348	C			184	62.486		-19.040		22.69	A.	č
MOTA	1349	0	TYR	Α	184	62.380	48.227	-19.990	1.00	23.92	Α	0
ATOM	1350	CB	TYR	A	184	61.856	48.135	-16.742	1.00	22.73	Α	С
MOTA	1351	CG			184	60.726		-17.193		20.79	Α	С
MOTA	1352		TYR			59.540		-17.735		21.72	A	Ç
MOTA	1353		TYR			60.812		-17.035		23.49	A	C
ATOM	1354	-	TYR			58.500		-18.123 -17.395		23.85	A A	, C Ċ
ATOM ATOM	1355 1356	CZ	TYR		184	59.776 58.616		-17.949		23.96	A	. C
ATOM	·· 1357	OH			184	57.603		-18.306		27.89	A	Ö
ATOM	1358	N			185	62.082		-19.048		26.60	Α	N
ATOM	1359	CA			185	61.397		-20.194		23.12	A	С
MOTA	1360	C	THR	Α	185	60.012	45.120	-19.777	1.00	26.64	Α	С
ATOM	1361	0	THR	Α	185	59.754	44.849	-18.608		24.65	Α	0
ATOM	1362	CB			185	62.215		-20.801		25.79	Α	C
MOTA	1363		THR			62.261		-19.906		28.94	Α	0
ATOM	1364		THR			63.702		-20.980		32.36	A	C
ATOM	1365	N			186	59.127		-20.762 -20.489		30.22	A	N,
ATOM ATOM	1366 1367	C	GLY		186	57.765 57.019		-19.805		24.17	A A	C
ATOM	1368	0			186	57.380		-19.927		29.37	A	0
ATOM	1369	N			187	55.952		-19.102		23.81	A	N
ATOM	1370	CA		-	187	55.062		-18.488		21.71	À	С
ATOM	1371	C	SER	Α	187	55.311	46.342	-16.996	1.00	19.66	À	С
ATOM	1372	0	SER	A	187	55.732		-16.426		20.42	Α	0
MOTA	1373	CB			187	53.601		-18.750		23.20	A	C
MOTA	1374	OG			187	52.695		-18.000		25.16	A	Ó
ATOM	1375	N CA	-		188	55.046		-16.390 -14.928		18.89	A A	N C
ATOM ATOM	1376 1377	CA C			188 188	54.965 53.629		-14.466		17.77 19.39	A	C
ATOM	1378	ō			188	52.601		-15.082		21.63	Α	Õ
ATOM	1379	CB			188	55.067		-14.470		18.74	A	Č
ATOM	1380	CG			188	56.433	49.736	-14.522	1.00	18.45	Α	C
ATOM	1381	CD1	LEU	Α	188	56.311	51.222	-14.556	1,00	20.69	Α	С
MOTA	1382		LEU			57.295		-13.305		19.48	Α	С
MOTA	1383	N			189	53.670		-13.384		13.99	A	N
ATOM	1384	CA			189	52.524		-12.633		15.66	A	C
ATOM	1385 1386	C			189	52.595 53.650		-11.245 -10.633		16.26 17.41	A A	C 0
ATOM ATOM	1387	O CB			189 189	52.542		-12.516		15.88	A	C
ATOM	1388	CG			189	52.121		-13.817		18.59	Α	C
ATOM	1389		TRP			52.916		-14.898		21.85	A	č
ATOM	1390		TRP			50.800		-14.200		18.24	Α	С
ATOM	1391		TRP			52.189		-15.919	1.00	23.05	Α	Ŋ
MOŢA	1392		TRP			50.885		-15.522		19.78	Α	C
ATOM	1393		TRP			49.552		-13.570		15.96	Α	G
ATOM	1394		TRP			49.777		-16.224		20.18	Α	C
MOTA	1395		TRP			48.436		-14.274		17.80	A	C
ATOM	1396		TRP			48.570		-15.590		16.72	A	C
ATOM	1397	N CA			190 190	51.467 51.425	46.920	-10.739 -9.453		14.59 14.85	A A	· N
ATOM .	1398 1399	CA			190	50.631	46.901	-9.453 -8.353		17.95	A	C
ATOM	1400	0.			190	49.564	46.289	-8.586		13.30	A	. 0
ATOM	1401	СВ			190	50.864	49.021	-9.636		13.88	Α	Č
ATOM	1402	CG			190	51.635	49.973	-10.515		15.59	A	C
ATOM	1403	CD1	TYR			52.573	50.842	-9.977		15.38	A	С

MOTA	1404	CD2	TYR	Α	190	51.339	50.092	-11.866	1.00 17.42		Α	C
MOTA	1405	CE1	TYR	Α	190	53.237	51.770	-10.760	1.00 17.56	;	Α	Ċ
ATOM	1406	CE2	TYR	Α	190	52.018	51.038	-12.685	1.00 14.93		A	C
ATOM	1407	CZ	TYR	Α	190	52.954	51.873	-12.107	1.00 18.74		Α	C
ATOM	1408	ОН	TYR	Α	190	53.638	52.785	-12.865	1.00 17.23		Α	Ó
ATOM	1409	N	THR			51.182	46.980	-7.139	1.00 16.74		Α	N
MOTA	1410	CA	THR			50.568	46.429	-5.953	1.00 15.64		Α	C
ATOM	1411	С	THR			50.304	47.626	-5.008	1.00 17.89		Α	C
ATOM	1412	0	THR			51.106	48.544	-4.975			Α	0
ATOM	1413	CB	THR			51.520	45.392	-5.357	1.00 16.95		Α	Ċ
ATOM	1414		THR			50.861	44.672	-4.325	1.00 19.32		A	ō
ATOM	1415		THR			52.768	46.057	-4.680	1.00 16.37		Α	č
ATOM	1416	N	PRO			49.168	47.686	-4.309	1.00 20.12		A	N
ATOM	1417	CA	PRO			48.944	48.801	-3.365	1.00 21.23		A	C
MOTA	1418	·C	PRO			49.911	48.871	-2.178	1.00 17.60		A	C
ATOM	1419	Ö	PRO			50.370	47.856	-1.643	1.00 24.36		A	Ö
ATOM	1420	CB	PRO			47.504	48.585	-2.876	1.00 21.11		A	C
		CG	PRO	-		46.881	47.748	-3.955	1.00 22.26		A	c
ATOM	1421	CD	PRO			47.980	46.828	-4.424	1.00 22.20		A	C
ATOM	1422						50.099	-1.797				
ATOM	1423	N	ILE			50.235			1.00 21.72		A	N
MOTA	1424	CA	ILE			50.881	50.339	-0.515	1.00 22.71		Α	C
ATOM	1425	c	ILE			49.758	50.230	0.508	1.00 23.63		A	C
ATOM	1426	0			193	48.881	51.079	0.568	1.00 29.68		A	0
ATOM	1427	CB			193	51.550	51.713	-0.453	1.00 24.36		A	C
ATOM	1428		ΙĻΕ			52.730	51.781	-1.438	1.00 24.14		A	C
ATOM	1429		ILE			52.036	51.993	0.987	1.00 24.12		A	C
MOTA	1430		ILE			53.313	53.171	-1.629	1.00 22.49		Α	C
ATOM	1431	N	ARG			49.764	49.145	1.257	1.00.29.07		Α	N
MOTA	1432	CA	ARG			48.696	48.887	2.199	1.00 32.57		Α	C
ATOM	1433	С	ARG			48.547	50.005	3.219	1.00 33.92		Α	С
MOTA	1434	0 -	ARG	Α	194	47.446	50.517	3.435	1.00 36.50		Α	0
ATOM	1435	CB	ARG	Α	194	48.940	47.592	2.930	1,00 31.65	5	Α	C
MOTA	1436	CG	ARG	Α	194	47.768	47.245	3.797	1.00 32.32	!	A	С
ATOM	1437	CD	ARG	A	194	48.031	46.137	4.719	1.00 34.05	,	·A	C
ATOM	1438	NE	ARĠ	Α	194	46.832	45.833	5.482	1.00 37.69	١.	Α	N
ATOM.	1439	CZ	ARG	Α	194	46.774	44.914	6.424	1.00 43.49)	Α	C
ATOM	1440	NH1	ARG	Α	194	47.853	44.211	6.726	1.00 45.66	;	Α	N.
ATOM `	1441	NH2	ARG	Α	194	45.636	44.700	7.079	1.00 44.35		Α	N
ATOM	1442	N	ARG		•	49.668	50.353	3.839	1.00 35.28		Α	N
ATOM	1443	CA			195	49.740	51.436	4.817	1.00 35.11		Α	С
ATOM	1444	С	ARG		-	51.059	52.190	4.631	1.00 32.34		Α	C.
ATOM	1445	0	ARG			52.089	51.576	4.401	1.00 28.84		Α	0
ATOM	1446	CB			195	49.683	50.857	6.226	1.00 35.59		Α	C
ATOM	1447	CG			195	49.645	51.910	7.339	1.00 40.30		Α	C
ATOM	1448	CD	ARG			48.907	51.460	8.591	1.00 43.51		Α	č
ATOM	1449	NE	ARG			49.734	50.619	9.458	1.00 44.69		A	N
ATOM	1450	CZ	ARG			50.582	51.069	10.387	1.00 46.19		Α	C
ATOM	1451		ARG			50.753	52.371	10.585	1.00 46.87		Α	N
ATOM	1452		ARG			51.274	50.201	11.124	1.00 46.12		Α	N
ATOM	1453	N			196	51.016	53.508	4.766	1.00 33.16		A	N
ATOM	1454	CA	GLU			52.167	54.353	4.500	1.00 34.04		A	Ċ
ATOM	1455	C			196	52.963	54.554	5.774	1.00 31.83		A	c
		0				52.790	55.566	6.460	1.00 31.83		A	0
ATOM ATOM	1456	CB	GLU GLU			51.728	55.699	3.953	1.00 33.74		A	, c
	1457	CG	GLU			50.986	55.643	2.624	1.00 33.34		A	C
ATOM	1458	CD			196	50.230	56.927	2.341	1.00 38.79		A	C
ATOM	1459					49.199	56.927				A	0.
MOTA	1460		GLU					3.009	1.00 47.60			
ATOM	1461		GLU			50.661	57.688	1.450	1.00 42.51		A A	O N
ATOM	1462	N			197	53.805	53.567	6.075	1.00 29.99			N
ATOM	1463	CA			197	54.773	53.629	7.184	1.00 32.01		A	C
ATOM	1464	C			197	56.104		6.668	1.00 29.04		A	C
MOTA	1465	0			197	56.938	53.829	6.210	1.00 30.54		A	0
MOTA	1466	CB			.197	54.229	52.970	8.474	1.00 31.92		A	C
ATOM	1467	CG			197	53.800	51.538	8.412	1.00 36.08		A	C
ATOM	1468		TRP			53.091	50.926	7.418	1.00 36.38		A	C
ATOM	1469		TRP			54.023	50.532	9.414	1.00 40.65		Α	C
MOTA	1470		TRP			52.887	49.605	7.726	1.00 40.70		Α	N
ATOM	1471		TRP			53.446	49.337	8.948	1.00 41.77		Α	C
ATOM	1472		TRP			54.672	50.518	10.658	1.00 41.22		Α	С
ATOM	1473	CZ2	TRP	A	197	53.486	48.146	9.680	1.00 43.13		Α	C
MOTA	1474	CZ3	TRP	Α	197	54.720	49.337	11.381	1.00 40.93		A	С
ATOM	1475	CH2	TRP	Α	197	54.129	48.166	10.891	1.00 42.69) · ·	Α	C
ATOM	1476	N			198	56.303	51.746	6.699	1.00 24.59)	Α	N
ATOM	1477	CA			198	57.184	51.077	5.740	1.00 25.69		Α	C

ATOM	1478	C	TYR	Α	198	56.456	51.094	4.391	1.00 22.71		Α	С
			TYR			55.317	51.519	4.305	1.00 25.15		À	0
ATOM	1479	0										
MOTA	1480	CB	TYR	А	198	57.455	49.620	6.110	1.00 28.07		A	C
MOTA	1481	ÇG	TYR	Α	198	58.137	49.394	7.453	1.00 32.69)	Α	С
MOTA	1482	CD1	TYR	Α	198	59.514	49.273	7.541	1.00 36.04		Α	C
ATOM	1483	, CD3	TYR	А	198	57.393	49.289	8.627	1.00 35.45	;	Α	·C
	and a		TYR			60.146	49.054	8.769	1.00 35.82		Α	С
ATOM	1484											
MOTA	1485	CE2	TYR	Α	198	58.015	49.079	9.865	1.00 36.80		Ą	С
ATOM	1486	CZ	TYR	Α	198	59.385	48.962	9.927	1.00 38.75	<u> </u>	Α	C
ATOM	1487	OH	TYR	Α	198	60.007	48.744	11.143	1.00 38.83		Α	0
ATOM	1488	N	TYR			57.142	50.654	3.347	1.00 21.11		Α	N
											Α	C
ATOM	1489	CA	TYR			56.497	50.364	2.048	1.00 21.41			
MOTA	1490	C	TYR	Α	199	55.866	48.991	2.152	1.00 18.46		Α	С
MOTA	1491	0 '	TYR	Α	199	56.471	47.969	1.784	1.00 18.42	2	Α	Ó
MOTA	1492	CB	TYR	A	199	57.521	50.484	0.914	1.00 21.15	5	Α	Ċ
ATOM	1493	CG	TYR			57.861	51.927	0.640	1.00 18.33		A٠	С
									•			
MOTA	1494		TYR			56.965	52.770	-0.020	1.00 17.27		A	С
ATOM	1495	CD2	TYR	Α	199	59.078	52.478	1.059	1.00 17.06	5	Α	С
ATOM	`1496	CE1	TYR	Α	199	57.275	54.106	-0.239	1.00 18.14	ŀ	Α	C
ATOM	1497		TYR			59.394	53.799	0.816	1.00 14.53	l.	Ä	С
						58.510	54.608	0.178	1.00 17.63		Α	. c
ATOM	1498	CZ	TYR									
ATOM	1499	ОН	TYR			58.822	55.911	-0.024	1.00 17.71		Α	0
MOTA	1500	N	GLU	Α	200	54.664	48.979	2.742	1.00 21.57	,	Α	N
MOTA	1501	CA	GLU	Α	200	54.004	47.722	3.098	1.00 22.73	7	Α	С
ATOM	1502		GLU			53.206	47.182	1.904	1.00 16.75	5	Α	С
			GLU			52.457	47.916	1.322	1.00 24.39		Α	ō
ATOM	1503	0										
ATOM	1504	CB	GLU			53.030	47.909	4.260	1.00 24.90		Α	C
ATOM	1505	CG	GLU	Α	200	52.680	46.604	4.946	1.00 27.85	5	A	Ċ
ATOM	1506	CD	GLU	Α	200	51.514	46.716	5.919	1.00 28.16	5	Α	C
ATOM	1507		GLU			51.081	47.840	6.278	1.00 35.16	5	Α	0
						50.987	45.649	6.300	1.00 34.56		A	ō
MOTA	1508		GLU					•				
MOTA	1509	Ņ	VAL	А	201	53.386	45.920	1.596	1.00 22.87	,	Α	N
MOTA	1510	CA	VAL	Α	201	52.595	45.240	0.554	1.00 21.15	5	Α	С
ATOM	1511	C	VAL	Α	201	52.057	43.892	1.045	1.00 26.73	7	Α	С
ATOM	1512	ō	VAL			52.462	43.402	2.103	1.00 26.68		Α	0
												Ċ
- ATOM	1513		VAL			53.455	44.997	-0.684	1.00 22.52		A	
ATOM	1514	CG1	VAL	Ą	201	54.012	46.314	+1.198	1.00 22.34		Α	С
ATOM	1515	CG2	VAL	Α	201	54.593	43.991	-0.400	1.00 23.70)	Α	C
ATOM	: 1516	N	ILE	Α	202	51.187	43.262	0.248	1.00 20.43	L	Α	N
-		CA	ILE			50.579	41.984	0.632	1.00 24.08		Α	C
MOTA	1517											
MOTA	1518	С	ILE			50.901	40.908	-0.404	1.00 23.18		Α	C
ATOM	1519	0	ILE	А	202	50.569	41.064	-1.572	1.00 21.92	2	Α	0
ATOM	1520	CB	IĹE	Α	202	49.041	42.119	0.801	1.00 24.93	Ĺ	Α	Ç
ATOM	1521	CG1	ILE	Α	202	48.697	43.058	1.967	1.00 28.9	7 .	Α .	. C
			ILE			48.410	40.742	1.042	1.00 26.59		A	C
ATOM	1522											
ATOM	. 1523	CDI	ILE			47.237	43.384	2.081	1.00 28.39		Α	C ·
ATOM	1524	И .	ILE	Α	203	51.552	39.836	0.037	1.00 20.58	3	Α	. N
ATOM	1525	CA	ILE	Α	203	51.806	38.642	-0.749	1.00 23.00	5	Α	Ç
ATOM	1526	С	ILE	Α	203	50.600	37.712	-0.588	1.00 23.74	1	Α	C
	1527		ILE			50.113	37.480	0.521	1.00 25.10		Α	. 0
MOTA												
MOTA	1528	CB			203	53.097	37.940	-0.293	1.00 24.14		A	C
ATOM	1529				203	54.310	38.807	-0.656	1.00 25.32		Α	С
ATOM	1530	CG2	ILE	Α	203	53.196	36.561	-0.924	1.00 23.23	L	А	C
ATOM	1531	CD1	IĻE	Α	203	55.655	38.280	-0.193	1.00 30.24	1	Α	Ç
ATOM	1532	N			204	50.065	37.249	-1.705	1.00 24.79		Α	N
								-1.685	1.00 22.84			
ATOM	1533	CA	VAL			48.827	36.465				Α	C
ATOM	1534	Ç	VAL			49.050	34.992	-2.011	1.00 27.1		A	C
ATOM	1535	0	VAL	Α	204	48.192	34.158	-1.721	1.00 28.5		A _.	0
ATOM	1536	CB	VAL	Α	204	47.764	37.091	-2.640	1.00 21.80)	Α	C
ATOM	1537		VAL			47.505	38.524	-2.253	1.00 20.60)	Α	C
						48.210	36.970	² ·4.075	1.00 24.5		A	. c
ATOM	1538		VAL									
MOTA	1539	N			205	50.191	34.678	-2.612	1.00 24.48		Α	N
MOTA	1540	CA	ARG	Α	205	50.540	33.330	-3.018	1.00 27.3		Α	С
ATOM	1541	С	ARG	Α	205	52.049	33.204	-3.207	1.00 32.98	3	Α	C
ATOM	1542	ō			205	52.755	34.167	-3.563	1.00 24.1		A	0
					205		32.977	-4.325	1.00 30.3		A	, c.
ATOM	1543	CB				49.815						
MOTA	1544	CG			205	49.857	31.540	-4.763	1.00 33.4		Α	C
MOTA	1545	· CD	ARG	Α	205	49.122	31.314	-6.095	1.00 36.40)	Α	С
ATOM	1546	NE	ARG	Α	205	49.502	30.060	-6.747	1.00 40.60	5	Α	N
ATOM	1547	CZ			205	48.730	28.978	-6.838	1.00 44.9		Α	С
			ARG			47.510	28.961	-6.312	1.00 49.5		A	N
ATOM	1548											
MOTA	1549		ARG			49.185	27.893	-7.457	1.00 48 8		Α	N
ATOM	1550	N .	VAĻ	Α	206	52.548	32.004	-2.961	1.00 31.9		Α	N
ATOM	1551	CA	VAL	Α	206	53.955	31.713	-3.133	1.00 31.0) .	Α	Ç

ATOM	1552	С	VAL	Α	206	54.077	30.348	-3.747	1.00	36.19		Α		С
ATOM	1553	0	VAL	Α	206	53.523	29.380	-3.227	1.00	37.64		A		0
ATOM	1554	CB			206	54.727	31.762	-1.786		34.34		A		Ċ
ATOM	1555		VAL			56.208	31.653	-2.026		38.60		Α		C
ATOM	1556		VAL			54.407	33.029	-1.020		34.28		A		C
ATOM	1557	N			207	54.746	30.296	-4.889		35.57		A		N.
ATOM ATOM	1558	CA C			207 207	55.129 56.630	29.059 28.880	-5.525 -5.382		40.01		A A		Ċ Ċ
ATOM	1559 1560	0			207	57.371		-5.263		43.14		A		0
ATOM	1561	СВ			207	54.766	29.102	-7,007		41.74		A		C
ATOM	1562	CG			207	53.270	29.123	-7.274		41.66		·A		C
ATOM	1563	CD			207	52.934	29.348	-8.733		41.56	٠.	Α		С
ATOM	1564	OE1	GLU	A	207	53.854	29.540	-9.548	1.00	40.42		Α		0
MOTA	1565	OE2	GLU			51.733	29.347	-9.071		47.50		Α		0
ATOM	1566	N			208	57.063	27.620	-5.371		44.90		Α		N
ATOM	1567	CA .			208	58.462	27.260	-5.592		48.28		A		C
MOTA	1568 1569	C .			208 208	58.488 57.926	26.248 25.155	-6.737 -6.628		50.10		A		C
AŢOM ATOM	1570	CB .			208	59.106	25.155	-6.629 j-4.312		48.21		Ą A		O C
ATOM	1571		ILE			59.185	27.770	-3.227		50.92		A		C
ATOM	1572		ILE			60.499	26.179	-4.607		50.10		A		c
ATOM	1573		ILE			59.221	27.225	-1.835		52.20		A		Ċ
ATOM	1574	N	ASN	Α	209	59.102	26.647	-7.846	1.00	51.40		Α		N
ATOM	1575	CA			209	59.111	25.882	-9.091	1.00	56.38		Α		С
MOTA	1576	С			209	57.756	25.851	-9.827		56.68				C
ATOM	1577	0			209	57.689		-10.982		55.91		Α		0
ATOM	1578	CB			209	59.636	24.456	-8.847		58.04		A		C
MOTA	1579 1580	CG	ASN		209	60.332		-10.064 -10.316		60.28		Α.		C
ATOM ATOM	1581		ASN			61.025		-10.316		65.04		·A		O N
ATOM	1582	N			.210	56.696	26.338	-9.181		56.56		A		N.
ATOM	1583	CA			210	55.345	26.202	-9.699		56.62		Α		C
ATOM	1584	C			210	54.374	25.584	-8.708		57.30		A		c
ATOM	1585	0	GLY	Α	210	53.169	25.564	-8.959	1.00	5,8.65		Α	. '	0
ATOM	1586	N	GLN	Α	211	54.885	25.094	-7.582	1.00	56.04		Α	:	N
ATOM .	1587	CA			211	54.071	24.409	-6.589		56.19	-	Α		C
ATOM	1588	C			211	53.873	25.311	-5.383		55.79		Α		C
ATOM	1589	.0			211	54.839	25.720	-4.748		51.74		A		0
ATOM ATOM	1590 1591	CB CG			211 211	54.761 54.940	23.112 22.113	-6.168 -7.308		58.40		A A		Ċ
ATOM	1592		GLN			55.915	20.988	-6.973		64.24		A		C
ATOM	1593		GLN			56.594	20.463			64.43		A		Ö
	1594		GLN			55.983	20.614	-5.694		66.64		Α		N
MOTA	1595	N	ASP	Α	212	52.628	25.626	-5.048	1.00	54.01		Α	١.	N
MOTA	1596	CA	ASP	Α	212	52.407	26.569	-3.959	1.00	56.91		Α		C
ATOM	1597	C			212	52.447	25.914	-2.575		57.30		Α		C
ATOM	1598	0			212	52.369	24.693	-2.454		55.10		Α		0.
MOTA	1599	CB			212	51.157	27.428	-4.209		56.98		A		C
ATOM ATOM	1600 1601	CG OD1	ASP		212	49.890 49.566	26.788 25.680	-3.737		57.67		A		C
ATOM	1602		ASP			49.139	27.347	-4.212 -2.909		.57.46 59.70		A A		0
ATOM	1603	N			213	52.623	26.738	-1.545		58.77	•	A		N
ATOM	1604	CA	,		213	52.860	26.263	-0.176		60.89		A		С
ATOM	1605	С			213	51.546	26.024	0.566		61.05		. A		С
ATOM	1606	0	LEU	Α	213	51.518	25.356	1.596	1.00	58.81		Α	(0 -
ATOM	1607	CB	LEU			53.725	27.270	0.598		61.26		Α.		Ç
MOTA	1608	CG			213	55.223	27.312			62.51		Α		C
ATOM	1609		LEU			55.490	27.170	-1.234		62.99		A		C
ATOM	1610		LEU			55.857	28.602	0.793		63.51		Α.		C
ATOM ATOM	1611 1612	N CA			214 214	50.470 49.107	26.602 26.273	0.039 0.441		62.93 65.41		A A		N C
ATOM	1613	CA			214	48.812	26.553	1.915		64.81		A		C
ATOM	1614	0			214	47.985	25.872	2.523		66.72		A		0
ATOM	1615	СВ	LYS			48.781	24.808	0.083		66.77		A		c
ATOM	1616	CG			214	47.364	24.625	-0.469		69.56		Α		Ç
ATOM	1617	CD			214	46.931	23.158	-0.553		70.85		Α		Ċ
MOTA	1618	CE	LYS	A	214	45.423	23.023	-0.346		70.83		A		С
MOTA	1619	NZ	LYS			44.873	21.747	-0.879		72.20		Α		N
ATOM	1620	N	MET			49.465	27.568	2.480		62.76		Α		N
ATOM	1621	CA	MET			49.187	27.959	3.862		61.10		Α		C
ATOM	1622	C	MET			48.402	29.267	3.925		57.64		A		C
ATOM ATOM	1623 1624	O CB	MET MET			48.495	30.102 28.035	3.024 4.701		57.95 62.37		A A		O C
ATOM	1625	.CG	MET			51.555	28.957	4.190		63.11		A		C
· * · ·							/	4.200					,	-

-						,								
ATOM	1626	ŚD	MET	Α	215		53.067	28.833	5.203	1.00	62.67		A ·	ş
MOTA	1627	CE	MET	Α	215		54.211	28.376	3.978	1.00	62.72		Α	C
MOŢA	1628	N	ASP	Α	216		47.599	29.420	4.976	-	53.34		Α	N
MOTA '	1629	CA	ASP				46.873	30.660	5.220		52.79		A	C
ATOM	1630	Ċ	ASP				47.755	31.819	4.770		51.45		A	C
ATOM	1631	O	ASP				48.861 46.517	32.008 30.792	5.283 6.705		45.58 53.42		A	0
ATOM ATOM	1632 1633	CB CG	ASP ASP				45.523	31, 911	6.981		55.05		A A	C C
ATOM	1634		ASP				45.109	32.639	6.045		53.37		A	0
ATOM	1635		ASP				45.096	32.134	8.132		59.33		A	Ö
ATOM	1636	N	CYS				47.285	32.567	3.779		49.19		Α	N
ATOM	1637	ÇA	CYS	Α	217		48.119	33.601	3.172	1.00	49.39		Α	C
ATOM	1638	Ç	CYS	A	217		48.345	34.770	4.144	1.00	48.78		A	C
MOTA	1639	0	CYS				49.274	35.554	3.966	1.00	49.38		Α	0
MOTA	1640	CB	-		217		47.515	34.072	1.843		46.23		Α	C
ATOM	1641	SG			217		45.917	34.862	2.016		48.31		A	S
ATOM	1642 1643	N CA	LYS				47.489	34.869 35.792	5.166 6.291		48.17 46.87		A A	N C
ATOM	1644	C C	LYS				49.055	35.646	6.937		44.90		A	C
ATOM	1645	ō	LYS				49.632	36.624	7.446		37.36		A	Ö
ATOM	1646	СВ	LYS				46.585	35.551	7.345		48.51		Α	Ċ
ATOM	1647	CG	LYS	Α	218		46.222	36.772	8.167	1.00	52.96	-	Α	С
MOTA	1648	CD	LYS	A	218		44.760	36 731	8.616	1.00	54.70	•	Α	Ċ
ATOM	1649	CE			218		44.287	38.081	9.134		56.36		Α	C
MOTA	1650	NZ			218		42.812	38.224	8.965		58.19		Α	N
ATOM	1651	N			219		49.579	34.425	6.899		41.30		A	N
ATOM	1652	CA			219		50.894	34.118	7.460		41.57		A A	· C
ATOM	1653 1654	C O	GLU		219		52.043 53.112	34.739 35.003	6.674 7.245		41.40		A	C
ATOM	1655	CB			219		51.129	32.603	7.526		42.52		A	č
ATOM	1656	CG	•		219		50.072	31.806	8.284		43.99		A	č
ATOM	1657	CD	, ,		219		50.103	32.015	9.793		49.15		Α	Ċ
MOTA	1658	OE1	GLU	Α	219		49.422	31.235	10.503	1.00	49.54	•	Α.	0
MOTA	1659	OE2	GLU	Α	219		50.786	32.950	10.276	1.00	47.89		Α	O
ATOM	1660	N			.220		51.851	34.902			35.85		Α	N
MOTA	1661	CA			220		52.867	35.487	4.479		35.18		A	C
ATOM	1662	Ċ			220		53.164	36.913	4.830		28.13		A	C
ATOM	1663	O.			220		54:185	37.465	4.445		34.25		A A	. O
ATOM ATOM	1664 1665	CB CG			220 220		52.413 52.256	35.452 34.069	3.004 2.389		36.98 37.36		A	C
ATOM	1666		TYR				51.233	33.809	1.478		37.78		A	C
ATOM	1667		TYR				53.132	33.026	2.702		40.58		A	č
ATOM	1668		TYR				51.093	32.557	0.894		38.43		Α	Ċ
ATOM	1669	CE2	TYR	A	220		52.996	31.775	2.136	1.00	40.55		Α	Č
ATOM	1670	CZ	TYR	A	220		51.962	31.539	1.233		41.11		Α	C
ATOM	1671	OH			220		51.819	30.299	0.656		42.27		Α	Q
MOTA	1672	N			221		52.230	37.542	5.520	-	33.23		A	N
ATOM	1673	CA			221		52.322	38.933	5.865		35.09		A	C
MOTA MOTA	1674 1675	C O			221 221		52.201 51.682	39.102 40.126	7.363 7.831		31.87 33.51		A A	C O
ATOM	1676	CB '	ASN				51.002	39.649	5.143		36.43		A	Ċ
ATOM	1677	ĊĠ	ASN				51.102	39.213	3.695		37.85	,!	A	Ċ
ATOM	1678	•	ASN				50.157		3.300		33.97		Α	o o
ATOM	1679	ND2	ASN	Α	221		52.119	39.561	2.910	1.00	28.28		Α	N.
MOTA	1680	N			222		52.668	38,088	8.091		39.46		A	N
MOTA	1681	CA					52.401	37.971	9.525		42.38		A	C
ATOM	1682	C			222		53.237	39.004	10.244		43.57		A	C
ATOM	1683	Ó.			222		54.475	38.894	10.348		33.19		A	0
ATOM ATOM	1684 1685	CB CG			222 222		52.673 52.591	36.559 36.428	10.071 11.592		45.87 48.19		A A	C C
ATOM	1686		TYR				51.870	37.337	12.382		51.26		A	C
ATOM	1687		TYR				53.241	35.392	12.236		51.18		A	Ç
MOTA	1688		TYR				51.815	37.204	13.774		52.32		Α	Ċ
ATOM	1689		TYR				53.192	35.245	13.616		52.66	i,	A	C
MOTA	1690	CZ			222		52.481	36.154	14.381	1.00	54.09		A	C
ATOM	1691	OH			222		52.436	36.004	15.751		56.15		A	О
ATOM	1692	N			223		52.486	39.968	10.768		46.73		A	N
ATOM	1693	CA			223		52.934	41.294	11.099		47.06		A	C
ATOM	1694	C			223		52.865	42.194	9.864		43.47		A	C
MOTA	1695	O CB	ASP		223		52.008 54.339	43.088 41.289	9.777 11.693		45.70		A A	o C
MOTA MOTA	1696 1697	CG			223		54.663	41.289	12.348		48.82		A	C
ATOM	1698		ASP				54.041	42.879	13.392		56.19		, A	Ö
ATOM	1699		ASP				55.483	43.386	11.871		54.79		Α	ō
										_				

ATOM	1700	N	LYS A	224	53.745	41.920	8,908	1.00 43.9	0	Α	N
MOTA	1701	CA	LYS A			42.889	7.872	1.00 43.5		A,	C
MOTA	1702	C	LYS A		54.720	42.221	6.651	1.00 38.6		A	C
ATOM ATOM	1703	O CB	LYS A		55.321 55.234	41.177 43.791	6.749 8.425	1.00 37.3		A A	0
ATOM	1704 1705	СG	LYS A		54.814	45.182	8.824	1.00 44.8		Α	C
ATOM	1706	ĆD	LYS A		56.030	46.109	8.874	1.00 50.9		A	Ċ
ATOM	1707	CE	LYS A		56.970	45.783	10.029	1.00 52.4		A	c
MOTA	1708	NZ	LYS A	224	58.303	45.329	9.550	1.00 53.7	4 .	Α.	N
ATOM	1709	N	SER A		54.605	42.855	5.487	1.00 34.6	7	Α	N
MOTA	1710	CA	SER A		55.428	42.463	4.347	1.00 29.3		Α	C
ATOM	1711	С	SER A		.55.923	43.766	3.727	1.00 23.1		Α	. C
MOTA MOTA	1712 1713	O CB	SER A SER A		55.109 54.634	44.637 41.642	3.491 3.319	1.00 24.2	•	A A	O C
ATOM	1714	OG	SER A		54.443	40.303	3.737	1.00 33.3		A	Ö
ATOM	1715	N	ILE A		57.235	43.914	3.514	1.00 24.6		A	Ŋ
MOTA	1716	CA	ILE A	226	57.814	45.209	3.080	1.00 24.7		Α	С
MOTA	1717	С	ILE A	226	58.879	45.132	1.973	1.00 20.5	0 ,	Α	C
MOTA	1718	0	ILE A		59.568	44.138	1.762	1.00 22.1		· A	0
ATOM	1719	CB	ILE A		58.378	46.052	4.318	1.00 26.9		Α	C.
ATOM	1720 1721		ILE A		59.715 57.350	45.495 46.153	4.804 5.417	1.00 29.9		A	c
ATOM ATOM	1722		ILE A		60.392	46.347	5.417	1.00 29.8 1.00 30.6		A A	C C
ATOM	1723	N	VAL A		59.046	46.229	1.249	1.00 21.7		A	, M
ATOM	1724	ÇA	VAL A		60.073		0.221	1.00 20.7		Α	C
MOTA	1725	C.	VAL A	227	61.187	47.177	0.820	1.00 22.6	8	. A	C
MOTA	1726	0	VAL A		60.949	48.339	1.114	1.00 25.6		A	О
ATOM	1727	CB	VAL A		59:486	46.982	-1.036	1.00 22.0		Α	C
ATOM	1728		VAL A		60.466 58.172	46.919 46.322	-2.217	1.00 22.4		A	C
ATOM TOM	1729 1730	N	VAL A		- 4	46.522	-1.385 1.025			A A	C.
ATOM	1731	CA	ASP A		63.488	47.250	1.750	1.00 26.6		A	C
ATOM	1732	C	ASP A		64.859	47.181	1.053	1.00 25.6		A	Č
MOTA	1733	0	ASP A	228	65.552	46.160	1.089	1.00 28.1	4	Α	0
MOTA	1734	CB	ASP A		63 610		3.151	1.00 30.8		Α	C-
ATOM	1735	CG	ASP A	->	64.507	47.435	4.073	1.00 36.1		A	C
MOTA	1736		ASP A		65.240	48.316	3.575	1.00 32.6		Α	0
ATOM ATOM	1737 1738	N	ASP A SER A		64.544 65.273	47.261 48.283	5.315 0.448	1.00 43.1		A A	O N
ATOM	1739	CA	SER A		66.534	48.352	-0.261	1.00 20.4		A	C
ATOM		C	SER A			48.269	0.668	1.00 20.0		Α	Č
ATOM	1741	0	SER A	229	68.848	47.998	0.202	1.00 20.1		Α	0
MOTA	1742	CB	SER A				-1.084	1.00 19.7		, A	C.
ATOM	1743	OĢ	SER A			50.793	-0.239	1.00 20 0		A	0
ATOM ATOM	1744 1745	N CA	GLY A			48.539	1.955	1.00 24.0		A	N
ATOM	1746	C	GLY A		69.016	48.429	2.928 3.270	1.00 30.2		A	C.
ATOM	1747	ō	GLY A		70.179	46.641	3.517	1.00 37.2		A	Ò
ATOM	1748	N	THR A		67.998	46.129		1.00 35.7		A	'N
ATOM	1749	CA	THR A	231	68.157	44.736	3.700	1.00 36.1	9	· A	С
ATOM	1750	С	THR A		68.647	43.943	2.502	1.00 36.1		Α	C
ATOM	1751	O	THR A		68.125	44.098	1.392	1.00 36.8		A	0
MOTA MOTA	1752 1753	CB OG1	THR A		66.811	44.203 44.988	4.216 5.333	1.00 36.0 1.00 41.3		A A	C
ATOM	1754		THR A		66.931	42.806	4.770	1.00 41.3		A	C.
ATOM	1755	N	THR A		69.676	43.117	2.701	1.00 34.9		A	N
ATOM	1756	CA	THR A	,	70.213	42.299	1.624	1.00 31.7		A	C
ATOM	1757	C	THR A		69.299	41.111	1.311	1.00 35.1		Α	C.
ATOM	1758	0	THR A		69.149		0.150	1.00 34.9		Α	0
ATOM	1759	CB	THR A		71.612	41.737	1.968	1.00 36.4		A	C
ATOM ATOM	1760 1761		THR A		72.502 72.274	42.796	2.338	1.00 33.0		A	Ó
ATOM	1762		ASN A		68.735	41.136 40.502	0.735 2.352	1.00 36.2		A A	С И
ATOM	1763	CA	ASN A		68.029	39.230	2.211	1.00 30.1		A	C
MOTA	1764	C	ASN A		66.520	39.365	2.052	1.00 40.2		Α	Ċ
ATOM	1765	О	ASN A		65.922	40.416	2.327	1.00 39.7	6	Α	0
MOTA	1766	ĊВ	ASN A		68.307	38.323	3.420	1.00 43.4		Α	C
MOTA	1767	CG	ASN A		69.767	37.864	3.503	1.00 44.4		A	C
ATOM ATOM	1768 1769		ASN'A ASN A		70.293 70.409	37.678	4.593	1.00 53.3		A	O N
ATOM	1770	ND2	LEU A		65.927	37.667 38.259	2.360 1.613	1.00 47.2		A A	N N
ATOM	1771	CA	LEU A		64.497	38.025	1.667	1.00 35.4		A	C
ATOM	1772	C	LEU A		64.178	37.466	3.035	1.00 31.2		A	c
MOTA	1773	Ó	LEU A		64.504	36,342	3.319	1.00 35.5		A	o

ATOM	1774	СВ	LEU	А	234		64.119	37.022	0.562	1.00	41.31		Α	Ċ
ATOM	1775	CG	LEU				62.727	36.992	-0.082		42.04		Α	Ċ
ATOM	1776		LEU				62.447	35.596	-0.613		45.40		A	C
ATOM	1777		LEU				61.630	37.429.	0.851					
											42.45		A	C
ATOM	1778	N .	ARG				63.564	38.263	3.906		39.51		A	Ŋ
MOTA	1779	CA	ARG				63.200	37.811	5.254		37.00		A	C
MOTA	1780	C	ARG				61.737	37.315	5.290		38.00		Α	, c
MOTA	1781	Ο.	ARG				60.863	37.918	4.699		31.41		Α	0
ATOM	1782	CB	ARG				63.434	38.930	6.278	1.00	40.50		Α	С
ATOM	1783	CG	ARĢ	Α	235		64.843	39.557	6.210	1.00	43.67		Α	C
MOTA	1784	CD	ARG	Α	235		65.208	40.478	7.378	1.00	46.74		Α	C
MOTA	1785	NE	ARG	À	235		65.177	39.774	8.659	1.00	49.76		Α	. N
MOTA	1786	CZ	ARG	Α	235		64.729	40.272	9.823	1.00	52.94		Α	C
ATOM	1787	NHI	ARG	Α	235		64.272	41.522	9.918	1.00	51.18		Α	N
MOTA	1788	NH2	ARG	Α	235		64.743	39.503	10.914	1.00	51.36		·A	N
MOTA	1789	N	LEU	Α	236		61.473	36.226	6.008	1.00	37.36		Α	N
ATOM /	1790	CA	LEU	Α	236		60.156	35.571	5.992	1.00	37.98		Α	С
ATOM	1791	С	LEU				59.691	35.254	7.408		39.27		Α	С
MOTA	1792	0	LEU				60.503	34.847	8.230		37.29		Α	ō
ATOM	1793		LEU				60.238	34.271	5.210		37.66		A	ç
ATOM	1794	CG	LEU				60.689	34.363	3.745		36.72		Α	Ç
ATOM	17.95		LEU				60.713	32.994	3.135		34.34		A	c
ATOM.	1796		LEU				59.784	35.269	2.922		37.91		A	C
ATOM	1797	N .	PRO				58.399	35.408	7.719					И
ATOM '											37.12		A	
	1798	CA	PRO				57.939	35.039	9.061		35.72		A	C _.
MOTA	1799	C ·	PRO				58.324	33.600	9.304		36.04		Α	C
ATOM	1800	0			237	Ψ,	58.364	32.870	8.326		31.43		Α	0
ATOM	1801	CB	PRO				56.425	35.222	8.985		36.23		A	. С
MOTA	1802	CG	. PRO				56.243	36.263	7.917		36,72		A	Ç
MOTA	1803	CD	PRO				57.297	35.918	6.887		37.44		Α	Ç
MOTA	1804		LYS				58.647	33.213	10.538		34.49		Α	N
ATOM	1805		LYS				59.098	31.839	10.805		34.56		Α	C
MOTA	1806	C	LYS				58.322	30.780	10.051		32.78		Α	C
ATOM		.0					58.908	29.860	9.452		32.03		Α	.0
ATOM	1808	CB	LYS				58 881	31.433	12.243		34.24		Α	c
ATOM	1809	CG	LYS				59.299	32.363	13.281		30.75		Α	С
MOTA	1810	CD.			238		58.868		14.539	1.00	5.80		A	C
ATOM	1811	CE	LYS				57.493	31.846	14.975		27.32	• .	Α	С
ATOM	1812	NZ	LYS				57.007	31.123	16.239		32.55		Α	N
ATOM	1813	N	LYS				56.998	30.879	10.142	•	28.36		A	N
ATOM	1814	CA	LYS				56.149	29.747	9.735		37.49		Α	C
ATOM	1815	C	LYS				56.292	29.508	8.233		35.49		Α	C
ATOM	1816	0	LYS				56.310	28.360	7.762		30.89		A	0
ATOM	1817	CB	LYS				54.675		10.108		39.29		Α	C.
ATOM	1818	CG	LYS				54.110	28.997	11.108		46.03		Α	С
ATOM	1819		LYS				52.700		11.566		48.69		Α	C
ATOM	1820	CĒ	LYS				51.634	28.404	11.117		50.81	-	Ą	С
MOTA	1821	NZ	LYS		i		50.243		11.463		49.91		Α	Ŋ
ATOM	1822	N			240		56.411	30.614	7.497		32.65		A	N
ATOM.	1823	CA	VAL				56.599	30.569	6.057		32.95		Α	, C
ATOM	1824	C .	VAL				58.018	30.172	5.684	,	28.03		Α	С
ATOM	1825	0 -	VAL				58.201	29.484	4.704		26.73		Α	0
ATOM	1826	CB	VAL				56.323	31.928	5.390		28.86		A	C
MOTA	1827		VAL				56.411	31.801					Ά	С
ATOM	1828		VAL		**		54.963	32.517	5.818		33.40		A٠	C,
ATOM	1829	N	PHE				59.019	30.655	6.430		31.69	•	Α	N
ATOM	1830		PHE				60.402	30.267	6.159		34.11		Α	C
ATOM	1831	С	PHE				60.559	28.745	6.338		32.98		A	C
ATOM	1832	0	PHE				61.100	28.029	5.470		29.40		Α	0
ATOM	1833	CB	PHE				61.360	30.997			35.69		A	C
ATOM	1834	CG	PHE				62.748	30.459	7.057		39.37		A	С
ATOM	1835		PHE				63.601	30.785	6.012		42.58		Α	С
ATOM	1836		PHE				63.197	29.583	8.047		42.39		A	С
ATOM	1837		PHE				64.895	30.272	5.968		43.06		A	С
ATOM	1838		PHE				64.479	29.073	8.007		38.87		A	С
MOTA	1839	.CZ	PHE				65.329	29.419	6.964		43.23		Α	
ATOM	1840	N	GLU				60.075	28.249	7.468		32.78		Α	Ŋ
ATOM	1841	CA	GLU				60.011	26.800	7.696	1.00			Α	, C
MOTA	1842	C	GLU				59.505	26.025	6.487		33,79		Α	C
MOTA	1843	O.	GLU				60.160	25.083	6.053		35.48	•	A	0
MOTA	1844	CB	GLU				59.123	26.473	8.899		37.43		Α	- C
ATOM	1845	CG	GLU				59.830	26.686	10.217		43.87		Α	С
ATOM	1846	CD	GLU				60.878	25.635	10.508		45.01		Α	С
ATOM	1847	OE1	GLU	Α	242.		61.759	25.906	11.358	1.00	45.07		Α	O.

										-		
ATOM	1848	OE2	GLU	Α	242	60.818	24.545	9.888	1.00 52.08		A	0
ATOM	1849	N	ALA			58.358	26.437	5.942	1.00 34.61		Α	N
						57.752	25.723	4.804	1.00 36.67			
ATOM	1850	CA	AĻA								A	C
ATOM	1851	C	ALA			58.531	25.984	3.523	1.00 35.54		Α	C-
MOTA	1852	Ò	ALA	Α	243	58.735	25.093	2.706	1.00 30.69		Α	0
MOTA	1853	СB	ALA	Α	243	56.307	26.138	4.615	1.00 36.74		Α	C
ATOM	1854	N	ALA	Α	244	58.961	27.231	3.375	1.00 36.29		Α	N
ATOM	1855	CA	ALA			59.717	27.682	2.224	1.00 36.28		Α	Ċ
									•			
ATOM	1856	C ,	ALA			60.970	26.841	2.063	1.00 36.59		Α	C
ATOM	1857	Ó	ALA	Α	244	61.133	26.184	1.058	1.00 35.35		Α	0
MOTA	1858	CB.	ALA	Α.	244	60.073	29.142	2.383	1.00 34.54		Α	C
ATOM	1859	Ν.	VAL	Α	245	61.853	26.884	3.064	1.00 38.90		Α	N
ATOM	1860	CA	VAL	Α	245	63.002	25.982	3.143	1.00 42.56		Α	C
ATOM	1861	C	VAL			62.658	24.500	2.899	1.00 40.13		Α	Ċ
MOTA	1862	0	VAL			63.341	23.835	2.114	1.00 40.38		A	. 0
ATOM	1863	СВ	VAL			63.742	26.130	4.515	1.00 43.37		Α	Ċ
MOTA	1864	CG1	VAL	Α	245	64.651	24.918	4.821	1.00 47.23		Α	С
MOTA	1865	CG2	VAL	Α	245	64.541	27.420	4.534	1.00 44.13		Α	С
ATOM	1866	N	LYS			61.627	23.974	3.556	1.00 39.54		Α	N
ATOM	1867	CA	LYS			61.270	22.556	3.352	1.00 44.44		A	C
ATOM	1868	Ç.	LYS			61.172	22.215	1.859			Α	C
ATOM	1869	0	LYS			61.745	21.233	1.407	1.00 40.51		Α	0
ATOM	1870	CB	LYS	Α	246	59.965	22.180	4.068	1.00 46 80		Α	Ç
ATOM	1871	CG	LYS	Α	246	59.575	20.695	3.924	1.00 50.38		Α	С
ATOM	1872	CD	LYS			58.263	20.380	4.653	1.00 52.29		Α	C
ATOM	1873	CE	LYS			57.530	19.182	4.042	1.00 54.52		Α	C
						58.452						
ATOM	1874	NZ	LYS				18.072	3.656	1.00 53.80		Α.	N
ATOM	1875	N	SER			60.473	23.051	1.097	1.00 44.68		Α	N
MOTA	1876	CA	SER	Α	247	60.282	22.809	-0.337	1.00 45.24		Α	C ·
ATOM .	1877	С	SER	Α	247	61.505	23.062	-1.226	1.00 43.18		Α	C
ATOM	1878	0'.	SER	Α	247	61.653	22.423	-2,258	1.00 38.59		Α	. 0
ATOM	1879	CB	SER			59.126	23.654	-0.869	1.00 45.97		Α	C
			SER			59.035		-2.266	1.00 42.87			Ö
MOTA	1880	OG					23.478				A.	
ATOM	1881	N .	ILE			62.345	24.027	-0.861	1.00 47.83		Α	N
ATOM	1882	CA	ILE	Α	248	63.534	24.348	-1.658	1.00 50.81		A	C
ATOM	1883	С	ILE	Ά	248	64.570	23.241	-1.475	1.00 52.35		Α	, C
ATOM .	1884	0	ILE	Α	248	65.200	22.787	-2.440	1.00 48.20		A	0
ATOM	1885	CB	ILE			64.116	25.716	-1.260	1.00 51.35		Α	C
ATOM	1886		ILE			63.101	26.823	-1.548	1.00 50.95		Α	Ċ
									, ,			
ATOM	1887		ILE			65.428	25.983	-2.015	1.00 51.10	٠.	A	C
ATOM .	1888		ILE	_		63.447	28.154	-0.913	1.00 51.52	•	A	C
ATOM	1889	Ν .	LYS	Α	249	64.725	22.814.	-0.227	1.00 53.72		Α	N
ATOM	1890	CA	LYS	Α	249	65.451	21.585	0.108	1.00 59.31	100	Α	C
ATOM	1891	C,	LYS	Α	249	65.021	20.377	-0.745	1.00 61.00		Α	C
ATOM .	1892	0	LYS			65.871	19.634	-1.233	1.00 58.84		Α	0
ATOM	1893	СВ	LYS			65.260	21.257	1.598	1.00 61.17	1.	A	č
ATOM	1894	CG	LYS			66.419	20.522	2.240	1.00 63.43		Α	C ,
MOTA	1895	CD	LYS			66.187	20.317	3,740	1.00 65.86		Α	C (
ATOM	1896	CE	LYS	Ą	249	66.299	21.620	4.530	1.00 67.19		Α	С
MOTA	1897	NZ	LYS	Α	249	66.791	21.417	. 5.929	1.00 68.30		Α	N
ATOM	1898	N	ALA	Α	250	63.711	20.207	-0.942	1.00 63.51		Α.	N
ATOM	1899	CA	ALA			63.160	19.006	-1.589	1.00 66.01		Α	C
ATOM	1900	C.	ALA			63.564	18.839	-3.059	1.00 67.43		À	. C
ATOM			ALA									
	1901	0 .				64.214	17.861	-3.408	1.00 67.59		Α	0 .,
ATOM	1902	СВ	ALA			61.635	18.974	-1.455	1.00 65.47		Α	С
MOTA	1903	N	ALA			63.185	19.783	-3.917	1.00 69.93		Α	N
MOTA	1904	CA:	ALA	A	251	63.539	19.694	-5.342	1.00 70.60		A	C
ATOM	1905	C	ALA	À	251	64.985	20.123	-5.633	1.00 70.50	:.	Α	С
MOTA	1906	Ο.	ALA	Α	251	65.364	20.268	-6.794	1.00 69.29		Α	0
ATOM ·	1907	CB	ALA			62.547	20.488.	-6.212	1.00 70.96		A	, Č
ATOM	1908	N	SER			65.778	20.338	-4.582	1.00 70.95		A	
												N
MOTA	1909	CA.	SER.			67.213	20.562	-4.718	1.00 72.23		Α	C
ATOM	1910	C .	SER			68.016	19.483	-3.985	1.00 .73.46		Α	C
MOTA	1911	0	SER	Α	252	69.189	19.680	-3.661	1.00 71.37		Α	Q
ATOM	1912	CB ·				67.582	21.951	-4.189	1.00 72.68	-	A	Ċ
ATOM	1913	OG	SER			67.505	21.999	-2.775	1.00 73.18		A	Ö.
ATOM	1914	N	SER			67.389	18.332	-3.756	1.00 75.44		A	
												N
ATOM	1915	CA	SER			68.011	17.239	-3.011	1.00 77.44		A	C.
ATOM	1916	C	SER			69.079	16.491	-3.819	1.00′ 79.67		A	С
MOTA	1917	0			253 .	69.783	15.645	-3.263	1.00 79.72		A	Ο.
MOTA	1918	CB	SER	А	253	66.944	16.250	-2.532	1.00 77.46		A	C
ATOM	1919	OG	SER			66.037	16.870	-1.637	1.00.76.30	-	Α	0 :
ATOM	1920	N	THR	-		69.196	16.799	-5.116	1.00 81.88		A	N
		CA										
ATOM	1921	ĊΝ	THR	м	494	70.232	16.215	-5.983	1.00 83.80		Α	С

													•	
	1922	C			254		71.624	16.245	-5.334		85.34		A	C
MOTA	1923	O			254		72.423 70.270	15.330 16.936	-5.538 -7.360		85.86		. A A	O C
MOTA MOTA	1924 1925	CB	THR		254		68:992	16.851			83.52 83.21		· A	o
MOTA	1926		THR				71.205	16.228	-8.342		83.62		A	C
MOTA	1927	N			255		71.909	17.296	-4.565		86.72		Α	Ŋ
ATOM	1928	CA			255		73.121	17.354	-3.746		87.75		Α	С
ATOM	1929	C	GLŲ	Α	255		72.785	17.714	-2.302	1.00	88.51		Α	·C
ATOM	1930	Ö.			255		72.017	18.643	-2.048	1.00	89.05	,	Α	0
MOTA	1931	CB	GĽŲ				74.103	18.379	-4.307		87.94		. A	C
ATOM	1932	CG	GLU				74.553	18.101	-5.731		88.21		A	C
ATOM	1933	CD	GLU				75.403	19.222	-6.297		88.85) A	C
ATOM	1934		GLU GLU				76.162	19.847	-5.521		88.18	٠.	A	0
ATOM ATOM	1935 1936	N			256		75.308 73.367	19.478 16.973	-7.518 -1.361		89.16 89.37		A A	O N
ATOM	1937	CA	LYS				73.181	17.233	0.066		89.70		A	Ċ
ATOM	1938	C			256		74.060	18.406	0.515		89.43		A	č
ATOM	1939	0 -			256			18.519	0.090		90.96		· A	ō
MOTA	1940	СŖ	LYS	Α	256		73.524	15.976	0.878	1.00	89.79		A	C.
MOTA	1941	CG	LYS	А	256		73.344	16.118	2.390	1.00	89.80		Α	C
ATOM	1942	CD			256	•	73.488	14.778	3.106	1.00	89.76		Α	· C
ATOM	1943	CE	LYS				74.916	14.250	3.037		89.66		Α	C
MOTA	1944	NZ			256		75.135	13.099	3.955		89.59		Α	N
ATOM	1945	N			257		73.509	19.278	1.359		88.33		A	N
ATOM	1946	CA			257		74.277	20.358			87.80		A	C
ATOM	1947	Ċ			257		73.957 72.901	20.434	3.486		85.90		A A	C
ATOM ATOM	1948 1949	O CB			257 257		73.977	19.963 21.698	3.916 1.307		84.62 88.75		A	0
ATOM	1950	CG			257		74.158	21.672	-0.188		90.18	٠	, A	c c
MOTA	1951		PHE				73.128	22.071	-1.035		90.73		A	Ċ
ATOM	1952		PHE				75.358	21.243	-0.747		90.65		А	. c
ATOM	1953				257		73.295	22.043	-2.417		91.50		A	C
ATOM	1954	CE2	PHE	Α	257		75.530	21.208	-2.125	1.00	91.35		Α	C
MOTA	1955	CZ	PHE	Α	257	1.	74.499	21.611	-2.961	1.00	91.69		Α	C
ATOM	1956	N	PRO	A	258		74.857	21.019	4.282	1.00	84.41		Α	Ŋ
ATOM	1957	CA	PRO	Α	258		74.671	21.079	5.743	1.00	83.94	•	Α	C
MOTA	1958	C			258	•	73.334	21.697	6.182		83.10		Α	С,
MOTA	1959	0			258		72.764	22.519	5.459		82.64		Α	0
ATOM	1960	CB			258		75.840	21.957	6.218		83.97		Ą	C
ATOM	1961	CG			258		76.862	21.878	5.141		84.54		A	, C
ATOM ATOM	1962 1963	CD N			258 259		76.116 72.852	21.664 21.302	3.861 7.360		84.44		A A	. C
ATOM	1964	CA			259		71.608	21.847	7.916		79.36		A	C
ATOM	1965	C			259		71.767	23.327	8.300		76.80		. A	c
ATOM	1966	ō			259		70.804	24.097	8.228		75.77		A	ō
ATOM	1967	CB			259	٠.	71.140	21.025	9.133	1.00	80.43		Α	С
ATOM	1968	CG			259	,	69.749	20.420	8.947	1.00	81.62		Α	С
MOTA	1969	OD1	ASP	Α	259		69.433	19.944	7.832	1.00	81.91		Α	0
MOTA	1970		ASP				68.906	20.364	9.870		82.81		A	0
ATOM	1971	N			260		72.981	23.716	8.694		72.15		Ά	N
ATOM	1972	CA			260		.73.280	25.095	9.051		68.23		A	C
ATOM	1973 1974	Ċ Ċ			260		73.394 73.306	26:055	7.873 8.055		65.01		A A	C O
ATOM	1975	N			260 261		73.601	27.266 25.529	6.670		62.06		A	N
	1976	CA			261		73.582	26.350	5.456		59.12		A	c
ATOM	1977	C	PHE				72.247	27.101	5.311		57.30		A	č
ATOM	1978	Ö			261		72.217	28.296	5.013		47.15		Α	Ō
ATOM	1979	CB			261		73.833	25.475	4.222		59.54		Α	C
ATOM	1980	CG	PHE	Α	261		73.504	26.148	2.920	1.00	58.56		Α	C
ATOM	1981		PHE				74.289	27.187	2.447		57.89		A	C
MOTA	1982		PHE				72.415	25.741	2.169		58.88		Α	С
ATOM	1983		PHE			-	73.996	27.807	1.259		56.77		Α	C
MOTA	1984		PHE				72.118	26.359	0.972		58.83		A	C
ATOM	1985	CZ			261		72.912	27.393	0.516		58.32	٠.	Α.	
ATOM	1986	N			262		71.151.	26.389	5.557		56.79	-	A	N
ATOM	1987	CA C	TRP				69.813	26.949	5.396		58.03		Α	Ç
ATOM	1988 1989	0			262 262		69.475 68.525	27.995 28.760	6.467 6.296		58.02 57.45		A A	, C
ATOM	1990	СВ			262		68.759	25.832	5.406		59.10		A	· C
MOTA	1991	CG			262		69.026	24.721	4.432		60.40		A	C
MOTA	1992		TRP				69.372	23.430	4.730		61.96		A	c
MOTA	1993		TRP			1	68.974	24.800	3.003		61.91		A	Ċ
MOTA	1994		TRP				69.535		3.574		60.97		Α	N
ATOM	1995	CE2	TRP	A	262		69.298	23.520	2.498	1.00	61.58		Α	C

MOTA	1996		TRP				68.688	25.824	2.092	1.00 62			Α	C
MOTA	1997		TRP				69.343	23.240	1.132	1.00 62			Ά	C
MOTA	1998		TRP				68.729	25.543	0.731	1.00 63			Α	C
ATOM	1999		TRP				69.057	24.260	0.267	1.00 63			Α	Ċ
ATOM	2000	N			263		70.236		7.563	1.00 56			Α	N
ATOM	2001	CA			263		70.040	29.026	8.626	1.00 57			Α	С
ATOM	2002	C			263		71.038	30.204	8.576	1.00 55			Α	С
MOTA	2003	0			263		71.084	31.020	9.501	1.00 51			Α	0
MOTA	2004	CB			263		70.102	28.355	10.010	1.00 58			Α	C
MOTA	2005	CG			263		68.913	27.494	10.470	1.00 61			Α	С
MOTA	2006		LEU				67.569	28.209	10.298	1.00 62			A	C
ATOM	2007		LEU				68.900	26.160	9.759	1.00 61.			Α	C
MOTA	5008	N			264		71.821	30.300	7.501	1.00 54			A·	N
ATOM	2009	CA			264		72.793	31.378	7.352	1.00 55			A	C
AŢOM	2010	Č			264		73.964	31.272	8.318				Ą	C
ATOM	2011	0			264		74.657	32.259	8.582	1.00 52			Α	Ó
MOTA	2012	N			265		74.180	30.057	8.822	1.00 52			A	N
ATOM	2013	CA			265		75.202	29.749.	9.818	1.00 52.			A	C
ATOM	2014	Ċ			265		76.498	29.185	9.216	1.00 51			A	C
ATOM	2015	0	GLU				77.521	29.092	9.902	1.00 50			A	0
ATOM	2016	CB			265		74.620	28.757	10.823	1.00 53			A	C
ATOM	2017	CG			265		73.484	29.351	11.651	1.00 56			A	C
MOTA	2018	CD			265		72.811	28.342	12.572	1.00 59.			A	Ç
ATOM	2019		GLU GLU				73.053	27.121	12.415	1.00 62.			Ą	Ö
ATOM ATOM	2020 2021	N NEZ			266		72.029	28.777	13.451	1.00 58			A	0
ATOM	2021	CA			266		76.444 77.650	28.781	7.951 7.197	1.00 48.			A	N
ATOM	2022	CA			266			28.438		1.00 50.			A	C
ATOM	2023	0			266		77.436 76.300	28.743 28.790	5.726 5.262				A A	C
ATOM	2025	CB			266		77.919	26.750	7.385	1.00.48.			A A	. O
ATOM	2026	CG			266		79.152	26.489		0.00 20.			A	C
MOTA	2027		GLN				79.377	25.016	6.849	0.00 20.			A	. c
ATOM	2028		GLN				79.286	24.174	5.970	0.00 20			A	Ö
MOTA	2029		GLN				79.677	24.718	8.129	0.00 20.			A.	N
ATOM	2030	N			267		78.523	28.947	4.988	1.00 52			Α	N
ATOM	2031	CA .	LEU				78.414	29.197	3.555	1.00 55.			A	Ĉ
ATOM	2032	C			267		78,794	27.955	2.759	1.00 55.			A	c.
ATOM	2033	ŏ			267		79.623	27.161	3.189	1.00,55			A	. Ģ
ATOM	2034	CB-			267		79.228	30.427	3.117	1.00 57.			A	Č.
ATOM	2035	CG ·			267		80.592	30.763	3.719	1.00 59.			Α	C
ATOM	2036		LEU				81.667	29.797		1.00 61.			A	Ç.
ATOM	2037		LEU				80.966	32.199	3.379	1.00 59.			Α	Ċ
ATOM ·	2038	N			268		78.141	27.778	1.614	1.00 59.			Α	N
ATOM	2039	CA	VAL	Α	268		78.394	26.635	0.734	1.00 63.			Α	C.
ATOM	2040	C .	VAL	Α	268	•	79.437	27.028	-0.317	1.00 65.	28 .		A	C
ATOM	2041	0	VAL	Α	268		79.581	28.206	-0.628	1.00 65.	73	•	Α	°O.
ATOM	2042	СB	VAL	Α	268		77.072	26.103	0.084	1.00 63.	60.		A	C.
MOTA	2043	CG1	VAL	Α	268		76.461	27.114	-0.900	1.00 64.	14		Α.	C
ATOM	2044	CG2	VAL	A	268		77.302	24.759	-0.593	1.00 63.	65		Α	C
ATOM	2045	N	CÁR	A	269.		80.182	26.050	-0.830	1.00 67.	59		Α	N
MOTA	2046	CA			269		81.255	26.315	-1.794	1.00 70.	85		Α	C
MOTA	2047	C			269		81,288	25.302	-2.943	1.00 71.	91		A	C
ATOM	2048	0			269		81.068		-2.740	1.00 70.			Α	0
ATOM	2049	CB	CYS		2		82.618	26.330	-1.086	1.00 71.			Α	С
ATOM	2050	SG.			269		82.804	27.634	0.160	1.00 73.			Α	S
ATOM	2051	N			270		81.560	25.804	-4.147	1.00 73.		-	A	N
ATOM	2052	CA			270		81.768	24.975	-5.335	1.00 74.			A	C
ATOM .	2053	Ç			270		83.036	25.412	-6.065	1.00 75.			A	C
ATOM	2054	0.	TRP				83.455	26.563	-5.952	1.00 74.			Α	0
ATOM	2055	CB			270		80.584	25,108	-6.289	1.00 75.			A	C
ATOM	2056	CG	TRP				79.330	24.451	-5.812	1.00 74.			A	C
ATOM	2057	CDI	TRP	A	270		79.034	23.118	-5.848	1.00 74.			A	C
ATOM	2058	CDZ	TKL	A	270		78.191	25.099	-5.239	1.00 74.			Ą	C
ATOM	2059 2060	/CE2	TRP				77.781	22.898	-5.329	1.00 74.			A	N
ATOM		!					77.241	24.098	-4.946	1.00 74.			A	C
ATOM ATOM	2061 2062		TRP TRP				77.875	26.431	-4.939 -4.373	1.00 73.			A	C
ATOM	2062		TRP				76.000 76.649	24.386 26.715	-4.372 -4.371	1.00 74.			A	C
ATOM	2063		TRP				75.727	25.696	-4.371 -4.088	1.00 73.			A n	C
MOTA	2065	N N	GLN				83.633	24.497	-4.088 -6.827	1.00 73. 1.00 77.			A A	C N
ATOM	2065	CA	GLN				84.835	24.497	-7.603	1.00 77.			A A	C N
ATOM	2067	C	GLN				84.559	25.956	-8.579	1.00 78.			A	C
ATOM	2068	. 0	GLN				83.424	26.136	-9.025	1.00 79.			A	o
ATOM	2069	CB	GLN				85.233	23.565	-8.378	1.00 78.			A	c
					-					· · · · · ·				Ÿ

ATOM	2070	ÇG	GLN	Α	271		85.694	22.427	-7.461	0.00	20.00		Α	Ç
ATOM ·	2071	CD	GLN	Α	271		86.108	21.239	-8.297	0.00	20.00		Α	Ċ
ATOM	2072	OE1	GLN	Α	271		86.517	20.197	-7.812	0.00	20.00		Α	0
ATOM	2073	NE2	GĻN	A	271		85.995	21.443	-9.624	0.00	20.00		Α	N
MOTA	2074	N	ALA				85.596	26.733	-8.891		81.27		A.	N
MOTA	2075	CA	ALA				85.467	27.927	-9.736		82.23		Α	C
ATOM	2076	C	ALA				84.604		-10.989		82.74		A	C.
ATOM	2077	0	ALA				85.006		-11.926	•	82.97		A	0
MOTA	2078	CB	ALA				86.850		-10.131		82.17		A·	, Ċ
ATOM	2079	N			273		83.408	-	-10.977		83.80		A	N
ATOM ATOM	2080 2081	Ċ A	GLY GLY				82.523 81.761		-12.132 -12.373		84.66 84.93		A A	C
ATOM	2082	0	GLY				81.383		-13.511		86.15		A.	0 -
ATOM	2083	N	THR				81.509		-11.305		84.63		A	N .
ATOM	2084	CA	THR				80.861		-11.396		84.75		A	C
ATOM .	2085	C	THR				79.570		-10.581		84.35		Α	Č
ATOM	2086	0	THR				79.158		-10.064		82.91		A	Ö.
MOTA	2087	CB	THR	Α	274		81.812	23.828	-10.895		85.61		Α,	C
MOTA	2088	OG1	THR	Α	274		82.135	24.043	-9.514	1.00	85.37		Α	0
MOTA	2089	CG2	THR	А	274		83.162	23.879	-11.618	1.00	86.24		Α	С
MOTA	2090	N	THR			,	78.929		-10.480	1.00	84.51		Α	N
MOTA	2091	CA	THR				77.719	26.213	-9.688	-	85.22		,A	С
MOŢA	2092	C	THR				76.535		-10.451		84.97		Α	C ·
ATOM	2093	0	THR				76.311	-	-11.614		83.74		Α	0
MOTA	2094	CB	THR				77.450	27.690	-9.370		85.63	:	Α	C
MOTA MOTA	2095		THR THR				78.649	28,313	-8.889		87.20		A	0
ATOM	2096 2097	N.	,		276		76.472 75.790	.27.827 24.718	-8.210 -9.808		86.40 84.86		A A	C
ATOM	2098	CA	PRO				74.591		-10.420		84.84		A A	N C
ATOM	2099		PRO				. 73.386	•	-10.330		84.60		Α.	Ċ
ATOM	2100	0			276		72.759	25.213	-9.270		83.40		A	ō
MOTA	2101	CB	PRO				74.363		-9.599	,	85.26		A	č
ATOM	. 2102	ÇĢ	PRO				74.945		, -8:247		84.89		Α	Ċ.
ATOM .	2103	CD	PRO	Ą	276		76.033	24.178	-8.456	1.00	84.87		Α	С.
MOTA	2104	N	TRP	Ą	277		73.084	25.757	-11.441	1.00	83.87		Α	. N
MOTA	2105	CA	TRP	Α	277		71.945	26.671	-11.512	1.00	82.59		Α	C ·
ATOM	2106	C	TRP				70.645	-	-11.259		78.91		A	С
MOTA	2107	0 .	TRP				69.868		-10.361		76.37		Α	0
ATOM ·	2108	CB.	TRP				71.852		-12.903		84.62		Α	С
ATOM	2109	CG	TRP				72.863		-13.258		86.23		A	C
ATOM	2110		TRP				73.299	•	-14.520		86.71		A	С
ATOM ATOM	2111 2112		TRP TRP				73.518 74.186		-12.371 -14.473		86.55 86.87		Α	C N
ATOM	2112		TRP				74.180		-13.171		87.19		A A	C
ATOM	2114		TRP				73.503		-10.982		86.48		A	C.
ATOM	2115		TRP				75.129		-12.632		87.46	٠.	A	c .
ATOM	2116		TRP				74.291		-10.449		86.65		A	C
ATOM	2117	CH2	TRP	A	277		75.092	31.392	-11.273	1.00	87.15		Α	C
ATOM	2118	N	ASN	A	278		70.450	24.864	-12.052	1.00	75.16		Α	N
ATOM	2119	CA	ASN	,			69.149	24.232	-12.228	1.00	71.96		Α	C
ATOM	2120	С	ASN				68.678		-11.094		68.53		Α	C
ATOM	2121	0	ASN				67.516		-11.057		65.41		· A	0
MOTA	2122	CB	ASN				69.145		-13.544		71.99		Α	C
ATOM ATOM	2123 2124	CG	AŞN AŞN				69.124 68.090		-14.749 -15.397		73.02 75.67		A.	C
ATOM	2125		ASN				70.261		-15.043		71.03		A A	O N
ATOM	2126	N N	ILE				69.567		-10.164		67.52		A	N
ATOM	2127	CA	ILE				69.188	22.191	-9.006		66.60		A	Ċ
ATOM	2128	C	İLE				68.277	22.978	-8.046	-	63.12		A	c
ATOM .	2129	0.			279		67.509	22.382	-7.293		61.43		Α	ō
ATOM	2130	CB	ILE	Α	279		70.451	21.673	-8.266	1.00	69.14		Α	C
ATOM	2131	CG1	ILE	A	279		71.311	20.801	-9.196	1.00	70.33		Α	C
MOTA	2132		ILE				70.069	20.890	-7,004	1.00	70.79		Α	Ċ
ATOM	2133		İLE			,	70.601	19.582	-9.773		71.75		Α .	C
ATOM	2134	N	PHE			•	68.364	24.310	-8,089		58.16		A.	N
ATOM	2135	CA	PHE				67.577	25.184	-7.215		54.73		Α	C
ATOM	2136	C	PHE				66.327	25.723	-7.929		48.44		A	C
ATOM	2137	0	PHE				66.404	26.160	-9.065		42.63		A	0
ATOM	2138	CB	PHE				68.440	26.352	-6.737		54.07		A	C
ATOM	2139	CG	PHE PHE				69.641 70.860	25.934 25.735	-5.950 -6.583		56.01		A	C.
ATOM ATOM	2140 _. 2141		PHE				69.554	25.741	-6.582 -4.578		56.28 56.86		A A	C
ATOM	2142		PHE				71.975	25.351	-5.861		58.79		A	C
ATOM	2143		PHE			•	70.663	25.351	-3.846		58.48		A	c .
	. 3													

									,				
ATOM	2144	CZ	PHE	A	280	71.880	25.158	-4.487	1.00	58.24		Α	C
MOTA	2145	И.	PRO	A	281	65.183	25.713	-7.253		46.45		Α	N
ATOM	2146	CA	PRO			63.933	26.153	÷7.873		45.34		Α	C
ATOM	2147	C	PRO			63.830	27.670	-7.930 -7.209	_	46.32		A	- C
ATOM ATOM	2148 2149	O CB	PRO			64.540 62.875	28.377 25.625	-6.911		44.85 47.02		A A	C
ATOM	2150	CG	PRO			63.552	25.707	-5.574		48.68		A	C
MOTA	2151	CD	PRO			64.985	25.312	-51845		47.62		Α	Č
ATOM	2152	N	VAL			62.942	28.158	-8.783	1.00	44.02		Α	N
MOTA	2153	CA	VAL	Α	282	62.594	29.567	-8.785	1.00	44.12		Α	C
ATOM	2154	C			282 .	61.625	29.811	-7.650		44.35		Α	С
ATOM	2155		VAL			60.976	28.886	-7.174		43.30		Α	0
ATOM	2156	CB	VAL			61.977		-10.119		44.10		A	C
ATOM ATOM	2157 2158		VAL VAL			62.930 60.621		-11.259 -10.368		40.34 48.29		A A	C
ATOM	2159	N .	ILE			61.555	31.048	-7.186		40.14		A	Ŋ
ATOM	2160	CA	ILE			60.502	31.421	-6.273		42.52		A	C
ATOM	2161	С	ILE	A	283	59.656	32.479	-6.970	1.00	39.13		A	C
ATOM	2162	Ο.	ILE	A	283	60.171	33.297	7 , 743	1.00	35.09		A	0
MOTA	2163	CB	ILE	•		61.043	31.847	-4.878		43.69		A	С
MOTA	2164		ILE			59.925	32.432	-4.023		46.75		A	С
ATOM ATOM	2165		ILE			62.174 60.216	32.818 32.406	-4.984 -2.547		47.57 47.98		A A	C C
ATOM	2166 2167	N	SER			58.350	32.359	-6.758		35.81		A .	N
ATOM	2168	CA				57.354	33.282	-7.292		33.91		A	Ċ
ATOM	2169	C ·	SER			56.555	33.814	-6.121		32.23		Α	C
ATOM	2170	0	SER	A	284	56.080	33.051	-5.274	1.00	31.03		Α	0
ATOM	2171	CB	SER			56.457	32.574	-8.313		31.65		Α	.C
ATOM	2172	OG	SER			57.075	32.546	-9.585	,	35.60		Α	0
ATOM	2173 2174	N	LEU			56.455	35.137	-6.028 -5.069		25.42 24.59		A	И С
ATOM ATOM	2174	CA C	LEU			55.588 54.478	35.760 36.397	-5.890				A A	C
ATOM .	2176	0 .	LEU			54.770	37.108	-6.839		19.53	7	A	Ö
ATOM	2177		LEU			56.348	36.799	-4.263		27.87		Α	ç
ATOM		CG				57.674	36.297	-3.682		27.04		Α,	C
ATOM	2179		LEU			58.356	37.456			31.32		Α	C
MOTA	2180		LEU				35.159	-2.702		29.67		Ą	Ç
ATOM	2181	N		•	286	53.233		-5.587		22,23,		Α.	N
ATOM ATOM	2182 2183	CA C	TYR TYR			52.112 51.807	36.768 37.909	-6.196 -5.280		22.87		A A	C Ç
ATOM	2184	Ò	TYR			51.686	37.712	-4.069		23.12		A	. 0
ATOM	2185	CB	TYR			50.871	35.898	-6.336	-	18.84		A	č
ATOM	2186	CG	TYR			50.989	34.755	-7.339		20.36		Α	C
ATOM	2187	CD1	TYR	A	286	51.857	33.691	-7.125	1.00	27.97		Α	С
ATOM	2188		TYR			50.168		8.477		22.74		A	C
MOTA	2189		TYR			51.937	32.641	-8.024		28.14	•	A	C
MOTA MOTA	2190 2191	CE2	TYR			50.243 51.125	33.661 32.630	-9.393 -9.148		19.26 24.29		A A	· C
ATOM	2192	OH	TYR			51.123		-10.033		23.89		A	Ö
ATOM	2193	N	LEU			51.672	39.113	-5.849		17.57		A	N
ATOM	2194	CA	LEU	A	287	51.327	40.293	-5.084	1.00	18.37		Α	C
MOTA	2195	C	LEU	A	287	49.902	40.714	-5.367	1.00	19.30		Α	C
MOTA	2196	0	LEU			49.413	40.525	-6.486		17.31		A	0
ATOM	2197	CB	LEU			52.291	41.429	-5.435		16.99		A	C
ATOM.	2198 2199	CG CD1	LEU			53.759 54.689	41.076	-5.143 -5.672		19.76 21.23		A A	C C
ATOM	2200		LEU			53.943	40.852	-3.653		27.06		A	č
ATOM	2201	N	MET			49.250	41.310	-4.369		17.49		Α	N
ATOM	2202	CA	MET			47.906	41.869	-4.524	1.00	14.88		Α	C
MOTA	2203	С	MET			47.938	42.861	-5.688	1.00	17.43		Α	C·
MOTA	2204	0	MET			48.833	43.675	-5.798		16.72		Α	0
ATOM	2205	СB	MET			47.471	42.597	-3.242		19.44		A	. C
ATOM	2206	CG	MET MET			46.150	43.315	-3.360		21.18		A	c s
ATOM ATOM	2207 2208	SD CE	MET			45.656 45.045	44.123	-1.787 -0.930		27.75 26.84		A A	C
ATOM	2209	Ŋ	GLY			46.961	42.792	-6.574		15.66		Ą	N
ATOM.	2210	CA	GLY			46.942	43.753	-7.664		17.02		A	C
ATOM	2211	C			289	46.143	45.000	-7.381		16.69		À	Ç
ATOM	2212	0	$GL_{\dot{I}}Y$			45.655		-6.267		16.95		Α	0
ATOM	2213	N	GLU			45.922	45.786	-8.425		16.66		A	N
ATOM	2214	CA	GLU			45.190	47.057	-8.298 -8.251		17.93		A A	C
ATOM ATOM	2215 2216	Ċ	GLU			43.656	46.888 47.782	-8.251 -7.800		18.47 20.92		A A	C O
ATOM	2217	СВ	GLU			45.541	47.958	-9.465		21.26		A	c
	_												-

ATOM	2218	CG	GLU	А	290	47.003	48.349	-9.525	1.00	21.77		Α		С
ATOM	2219	CD	GLU			47.243		-10.450		21.06		A		Ċ
ATOM	2220		GLU			47.442		-11.696		22.85		Α		o
ATOM	2221	OE2			290 .	47.229	50.657	-9.934		23.70		A		ō
ATOM	2222	N	VAL			43.175	45.765	-8.763		19.67		Α		N
ATOM	2223	CA	VAL			41.752	45.506	-8.963		19.72		Α		C
ATOM	2224	C	VAL			41.323	44.329	-8.092		18.87		Α		Č
		0	VAL			42.084	43.384	-7.867		18.96		A		0
ATOM	2225									20.83		A		C
ATOM	2226	CB	VAL			41.488		-10.467						
ATOM	2227		VAL			40.050		-10.722		24.34		Α		C
ATOM	2228		VAL			41.848		-11.311		20.67		Α		C.
MOTA	2229	N	THR			40.088	44.379	-7.592		19.56		A		N.
MOTA	2230	CA	THR			39.548	43.301	-6.774		20.18		A		C
MOTA	2231	С	THR			39.725	41.949	-7.445		20.54		A		C
MOTA	2232	0	THR			39.429	41.803	-8.610		17.81		Α		Ó
MOTA	2233	CB	THR	Α	292	38.068	43.581	-6.524		23.16		Ą		С
ATOM	2234	OG1	THR	Α	292	37.967	44.736	-5.684		26.50		Α		0 -
ATOM	2235	CG2	THR	A.	292	37.402	42,452	-5.738	1.00	25.56		Α		С
MOTA	2236	N	ASN	Α	293	40.209	40.975	-6.689	1.00	18.34		A		N
MOTA	2237	CA	ASN	Α	293	40.397	39.597	-7.126	1.00	19.39		A		C
ATOM	2238	C.	ASN	A	293	41.474	39.420	-8.218	1.00	20.71		Α		С
ATOM	2239	0	ASN	A	293	41.536	38.375	-8.822	1.00	19.32		Α		0
MOTA	2240	CB	ASN	Α	293	39.066	38.968	-7.579	1.00	18.84		A	ŀ	С
ATOM	2241	CG	ASN	A	293	38.142	38.594	-6.414	1.00	23.11		Α	b.	С
ATOM .	2242	QD1	ASN			38.573	38.422	-5.267	1.00	24.46		Α		0
MOTA	2243	ND2	ASN	Α	293	36.863	38.438	-6.724	1.00	24.82		Α		N
ATOM	2244	N	GLN			42.338	40.424	-8.416		20.83	•	Α		N
ATOM	2245	CA	GLN			43.381	40.392	-9.443		16.07	• 1	A		С
ATOM	2246	C	GLN			44.748	40.529	-8.794		18.30		Α		С
ATOM	2247	ō	GLN			44.968	41.445	-8.011		19.08		Α		0
ATOM	2248	СВ	GLN			43.178		-10.438		16.09	,	Α		Ċ
ATOM	2249	CG	GLN			44.307		-11.435		14.15		Α		Č
MOTA	2250	CD	GLN			45.315		-10.969		15.00		A		č
ATOM	2251		GLN			44.928		-10.501		17.11	•	Α		ō
					•			-11.111		12.44		Ā		N
ATOM	2252		GLN			46.599								N
MOTA	2253	N	SER	•		45.645	39.617	-9.146		17.25		A	••	
MOTA	2254	CA	SER			47.016	39,617	-8.650		17.43				C
MOTA	2255	C			295 .	47.979	39.581	-9.840		18.06		A		C
MOTA	2256	0 .	SER			47.556		-10.992		16.54		A		0
ATOM	2257	CB			295	47.247	38.420	-7.738		16.97		Α		C
ATOM	2258	OG	SER			47.161	37.211	-8.475		17.63		Α		0
ATOM	2259	N			296	49.279	39.722	-9.563		13.70		Α		N
MOŢA	2260	CA			296	50.326	39.457			16.16		A		C
ATOM	2261	C.	PHE			51.456	38.721	-9.823		17.11		A		C.
ATOM	2262	0			296	51.463	38.654	-8.612		14.83		Α		0
ATOM	2263	CB			296	50.833	40.734			16.09		Α		С
ATOM	2264	CG			296	51.510	41.703	-10.290		13.78		Α		С
MOTA	2265		PHE			50.757	42.537	-9.504		12.99		A	-	C
ATOM	2266	CD2	PHE			52.888	41.759	-10.202	1.00	16.17		Α		C
ATOM	2267	CE1	PHE	Α	296	51.359	43.451	-8.653	1.00	15.39		Α		С
MOTA	2268	CE2	PHE'	Α	296	53.502	42.693	-9.339	1.00	12.59		Α		С
ATOM	2269	CZ	PHE	Α	296	52.718	43.519	-8.580	1.00	15.93		Α		С
ATOM .	2270	N	ARG	Α	297	52.388	38.150	-10.564	1.00	18.57		Α.		N
MOTA	2271	CA	ARG	A	297	53.501	37.470	-9.908	1.00	21.97		Α		C
ATOM	2272	C	ARG	Α	297	54.830	37.955	-10.429	1.00	19.76		A		С
ATOM	2273	0	ARG	Α	297	54.990	38.238	-11.612	1.00	20.21		Α		O.
MOTA	2274	CB	ARG	Α	297	53.391	35.959	-10.045	1.00	27.12		Α		С
ATOM	2275	CG	ARG			53.915	35.442	-11.323	1.00	25.39		Α		С
ATOM	2276	CD			297	53.887		-11.434	1.00	28.85		Α		C
ATOM	2277	NE			297	54.152		-12.810		28.07		Α		N
ATOM	2278	CZ			297	53.625		-13.435		29.23		Α		С
ATOM	2279		ARG			52.808		-12.800		29.79		Α		N
ATOM	2280		ARG			53.942		-14.708		33.36		À		N
ATOM	2281	N			298	55.769	38.034	-9.501		22.62		A		N.
ATOM	2282	ĊA	ILE			57.171	38.264	-9.776		22.52	•	A		C
ATOM	2283	C			298	57.171	36.968	-9.461	,	20.35		A		ć
							36.268			24.62		A		0
ATOM	2284	O			298	57.616		-8.498 -8.963	,					
ATOM	2285	CB			298	57.700	39.494			20.28		A		C
ATOM	2286		ILE			57.778	39.216	-7.453		21.96		A		C
ATOM	2287		ILE			56.838	40.708	-9.257		20.40		Ą		C
MOTA	2288		·ILE			- 58.375	40.390			19.78		A		C
ATOM	2289	N			299	58.900		-10.297		27.12		A		И
ATOM	2290	CA			299	59.621		-10.271		27.28		ŀΑ		C
MOTA	2291	С	THR	Α	299	61.114	35.702	-10.229	1.00	26.61		Α		C

MOTA	2292	0	THR	Α	299		61.614	36.337	-11.139	1.00	28.84		Α	0
MOTA	2293	CB	THR				59.291	34.640	-11.560	1.00	27.03		Α	С
ATOM	2294	OG1	THR	A	299		57.902	34.287	-11.572	1.00	32.46		Α	., O
ATOM	2295		THR				60.001		-11.620		28.77		Α	C
MOTA	2296	N			300		61.803	35.268	-9.175		31.26		Α	Ŋ
MOTA	2297	CA			300		63.270	35.393	-9.098		33.70		A	C
MOTA	2298	Ċ			300		63.938	34.033	-9.195		39.02		Α	C
ATOM	2299	0			300	-	63.273	32.989	-9.287		37.86		A	0
MOTA	2300				300		63.729	36.107	-7.793		35.95		A	C
ATOM	2301		ILE			,	63.443	35.258	-6.566		37.33		A	. C
ATOM	2302 2303		ILE		7		63.049 64.152	37.457 35.715	-7.639 -5.318		35.67 39.22		A A	C C
ATOM ATOM	2303	N	LEU		301		65.265	34.067	-9.161		39.05		A	N
ATOM	2305	CA			301		66.093	32.901	-9.421		37.54		A	C
ATOM	2306	C			301		67.013	32.602	-8.255		38.40		Α	· C
ATOM	2307	ō	LEU			•	67.182	33.428	-7.371		36.53		A	ō
ATOM .	2308	CB			301		66.933		-10.664		36.30		Α	C
ATOM	2309	CG	LEU	A	301		66.126	33.447	-11.937	1.00	34.74		Α	Ç
ATOM	2310	CD1	LEU	Α	301		67.030	33.935	-13.022	1.00	32.47		A	C
MOŢA	2311	CD2	LEU	Ą	301		65.387	32.196	-12.430	1.00	39.84		Α	C
MOTA	2312	N	PRO	A	302		67.619	31.420	-8.264	1.00	39.73		Α	N
MOTA	2313	CA			302		68.706	31.113	-7.335		41.84		Ą	С
MOTA	2314	C			302		69.828	32.157	-7.387		41.87		Α	C
ATOM	2315		PRO				70.427	32.420	-6.356		45.40		A	0
MOTA	2316	CB			302		69.208	29.759	-7.834		41.99		A	С
MOTA	2317	CG			302		68.031	29.157 30.285	-8.495		42.63		Ą	C C
ATOM ATOM	2318 2319	CD N			302. 303		67.321 70.094	32.759	-9.150 -8.546		40.17		A A	
• ~	. 2320	CA			303		71.197	33.721	-8.659		41.56	÷	A	. c
ATOM	2321	C			303		70.933		-7.824		43.24		A	Č
ATOM	2322	ō			303		71.837		-7.598		38.56		A	· ŏ
ATOM	2323	CB			303		71.523		-10.119		44.66		A	Ċ
MOTA	2324	CG			303		70.564	33.666	-11.201	1.00	47.40		Α	Ċ
MOTA	2325	CD	GLN	A	303		70.716	32.201	-11.545	1.00	50.63		Α	c
ATOM	2326	OE1	GLN	A	303		69.911	31.372	-11.120	1.00	55.64		A	O
MOTA	2327	NE2	GLN				71.742	31.877	-12.332	1.00	51.86		Α	N
MOTA	2328	N	GLN	Α	304		69.689	35.145	-7.382	1.00	41.50		Α	N
MOTA	5359.	CA			304		69.273	36.282	-6.589		46.43		Α	C
ATOM	2330	C			304		69.293	35.906	-5.100		47.20		A	. C
ATOM	2331	0			304		69.738	36.705	-4.270		45.43		Ą	0
ATOM.	2332	CB			304		67.871	36.735	-7.046		49.88		Α.	C
ATOM ATOM	2333 2334	CG			304 304		67.862 68.273	37.811 37.315	-8.157 -9.548		51.33 54.63		A ·	C
ATOM	2335		GLN				67.918		-10.556		54.99		A	Ö
ATOM	2336		GLN				69.031	36.224	-9.607		57.60		Α	N
ATOM	2337	N			305		68.838	34.694	-4.760		47.73		Α	N
ATOM	2338	CA			305		68.895	34.241	-3.364		51.85		Α	С
MOTA	2339	. C	TYR	Α	305/		70.132	33.385	-3.029	1.00	53.38		Α	C
MOTA	2340	0	TYR	A	305		70.267	32.911	-1.903	1.00	53.57		Α	0
MOTA	2341	.CB			305		67.573	33.577	-2.910		52.81		A	C
MOTA	2342	CG			305		67.247	32.202	-3.471		53.16		Α	C.
ATOM	2343		TYR				67.828	31.052	-2.943		52.42		Α	С.
ATOM	2344		TYR				66.309	32.053	-4.494		52.93		Α	C
ATOM ATOM	2345 2346	CE1					67.515 65.985	29.789	-3.446 -5.002		53.23		A A	C
ATOM	2347	CZ	TYR		305		66.592	30.796 29.669	-4.474		53.91 53.62		A	C C
ATOM	2348	OH			305		66.272	28.425			53.84		A	0
ATOM	2349	N			306		71.033	33.228	-3.997		55.03	100	A	N
ATOM	2350				306		72.355	32.633	-3.777		61.56		A	C
ATOM	2351		LEU				73.390	33.700	-4.150		63.69		A	Ċ
ATOM	2352	Ο.			306		73.663	33.946	-5.332		64.04		Α	0
ATOM	2353	CB	LEU	Α	306		72.559	31.361	-4.610	1.00	62.70		Α	,C
ATOM	2354	CG	ĻEU	Α	306		72.418	29.992	-3.934	1.00	65.11	٠	Α	C
ATOM	2355		LEU				71.256	29.932	-2.950		65.92		A	Ċ.
ATOM	2356		LĖU				72.262	28.920	-5.001		65.99		Α	С
ATOM	2357	N			307		73.965	34.321	-3.126		67.42		A	N
ATOM	2358	CA			307		74.753	35.546	-3.285		.69.54		A	C
ATOM	2359	C			307		76.226	35.241	-3.045		70.36		A	C
ATOM	2360	.O	,		307 .		76.568	34.726	-1.981		69.95		Α	0
ATOM ATOM	2361 2362	CB CG	ARG		307		73.942	36.631 36.126	-2,302 -0.885		70.52 71.76		A A	C ·
ATOM	2363	CD			307		73.347	37.158	0.060		71.76		A	0
ATOM	2364	NE			307		74.308	37.604	1.064		71.58		A	N
ATOM	2365	CZ			307		75.160	38.609	0.900	-	72.31		A	c

ATOM 2366 NHI ARG A 307															
ATOM 2366 N PRO A 308 77.095 35.520 -4.022 1.00 72.145 A ATOM 2370 C PRO A 308 79.011 36.173 -2.576 1.00 73.28 A ATOM 2371 C PRO A 308 79.111 35.997 -5.069 1.00 73.28 A ATOM 2372 C PRO A 308 79.144 35.997 -5.609 1.00 72.26 A ATOM 2374 CD PRO A 308 76.775 35.937 -5.400 1.00 71.33 A ATOM 2376 C VAL 309 80.635 36.415 -0.942 1.00 77.51 A ATOM 2378 C VAL 309 80.653 36.815 -0.977 1.00 79.39 A ATOM 2381 C VAL 309 80.653 36.651 -0.977 1.00	MOTA	2366	NH1	ARG	Α	307		75.184	39.300	-0.239	1.00	72.16		Α	Ν.
NTOM 2396 CA PRO A 308 78.544 35.396 -3.809 1.00 72.19 A A A A A A A A A	ATOM	2367	NH2	ARG	A	307		75.998	38.930	1.882	1.00	72.17,		Α	N
ATOM 2370 C PRO A 308 79 .011 36 .173 -2 .576 1 .00 73 .28 A A A A A A A A A	MOTA	2368	N	PRO	A	308		77.095	35.520	-4.022	1.00	71.45		A	N
NTOM 2371 O PRO A 308 78.712 37.352 2.461 1.00 73.54 A A A A A A A A A	MOTA	2369	CA	PŖO	Ά	308	`	t		-3.809	1.00	72.19		Α	Ċ
ATOM 2372 CB PRO A 308 79.144 35.999 5.699 1.00 72.26 A ATOM 2373 CG PRO A 308 76.775 35.937 5.400 1.00 71.35 A ATOM 2375 N VALA 3099 80.253 36.151 -0.472: 1.00 77.51 A ATOM 2376 CV VALA 3.099 80.253 36.151 -0.472: 1.00 77.51 A ATOM 2376 CV VALA 3.099 80.253 36.151 -0.472: 1.00 77.51 A ATOM 2378 O VALA 3.099 81.604 36.759 -0.842 1.00 79.98 A ATOM 2379 CB VALA 3.099 81.604 36.759 -0.842 1.00 79.98 A ATOM 2379 CB VALA 3.099 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VALA 3.099 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VALA 3.099 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VALA 3.099 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VALA 3.099 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VALA 3.09 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VALA 3.09 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VALA 3.09 81.099 37.940 1.1953 1.00 83.03 A ATOM 2380 CGI VALA 3.10 83.980 37.940 1.1953 1.00 86.11 A ATOM 2380 CGI VALA 3.10 83.980 37.940 1.1953 1.00 86.11 A ATOM 2380 CGI VALA 3.10 83.937 41.076 -0.997 1.00 86.20 A ATOM 2380 CGI VALA 3.10 83.131 39.882 -0.488 1.00 85.41 A ATOM 2380 CGI VALA 3.10 83.131 39.882 -0.488 1.00 85.47 A ATOM 2380 CGI VALA 3.10 83.131 39.882 -0.488 1.00 85.47 A ATOM 2380 CGI VALA 3.10 83.130 42.368 -1.053 1.00 87.05 A ATOM 2390 CGI VALA 3.10 83.130 42.368 -1.053 1.00 87.05 A ATOM 2390 CGI VALA 3.10 83.130 42.368 -1.053 1.00 87.05 A ATOM 2390 CGI VALA 3.10 83.130 42.368 -1.053 1.00 87.05 A ATOM 2390 CGI VALA 3.10 83.130 42.368 -1.053 1.00 87.05 A ATOM 2392 CA ASP A 311 86.240 37.175 -1.390 1.00 86.94 A ATOM 2392 CA ASP A 311 86.240 37.175 -1.390 1.00 87.05 A ATOM 2392 CA ASP A 311 86.240 37.175 -1.390 1.00 87.73 A ATOM 2392 CA ASP A 311 86.240 37.175 -1.390 1.00 87.73 A ATOM 2395 CG ASP A 311 86.240 37.175 -1.390 1.00 87.73 A ATOM 2395 CG ASP A 311 88.643 3.390 37.99 1.00 87.05 A ATOM 2395 CG ASP A 311 88.643 3.390 37.99 1.00 88.64 A ATOM 2398 COZ VALA 3.12 86.295 35.3022 1.00 87.73 A ATOM 2399 CG ASP A 311 88.643 3.3065 -1.00 88.64 A ATOM 2400 CG VALA 3.12 86.295 35.3022 1.00 87.5	MOŢA		С										•	Α	C
ATOM 2373 CG PRO A 308 78.083 35.844 6.123 1.00 71.35 A ATOM 2375 N VAL A 309 79.698 35.500 1.656 1.00 75.03 A ATOM 2376 CA VAL A 309 80.253 36.151 0.472 1.00 77.51 A ATOM 2377 C VAL A 309 80.253 36.151 0.472 1.00 77.51 A ATOM 2377 C VAL A 309 81.604 36.759 0.842 1.00 79.98 A ATOM 2378 C VAL A 309 81.604 36.759 0.842 1.00 79.98 A ATOM 2380 CGL VAL A 309 80.412 35.162 0.708 1.00 77.15 A ATOM 2380 CGL VAL A 309 80.412 35.162 0.708 1.00 77.15 A ATOM 2381 CGL VAL A 309 80.412 35.162 0.708 1.00 77.15 A ATOM 2382 CGL VAL A 309 80.412 35.162 0.708 1.00 76.88 A A ATOM 2382 CGL VAL A 309 80.412 35.162 0.708 1.00 76.88 A A ATOM 2382 CGL VAL A 309 80.412 37.77 38.833 -1.562 1.00 84.93 A A A A A A A A A															. 0
ATOM 2376 C PRO A 308 76.775 35.937 -5.400 1.00 71.33 A A A A A A A A A A A A A A A A A A						7		'						•	C
ATOM 2375 N VALL A 399 79,698 35,500 -1,656 1,00 75,03 A ATOM 2376 C VALL A 309 81,604 36,759 -0.842 1,00 79,98 A ATOM 2378 C VALL A 309 81,604 36,759 -0.842 1,00 79,39 A ATOM 2380 CUALL A 309 81,614 36,051 -0.877 1,00 79,39 A ATOM 2381 CG CUALL A 309 31,00 36,05 -1.18 1.00 76,55 A ATOM 2382 C GIJU A 310 83,182 31,11 1.522 1.00 84,11 A ATOM 2385 C GIJU A 310 83,151 94,21 -1,953 1.00 85,17 A ATOM 2386 CG GIJU A 310 83,153 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C</td>															C
ATOM 2376 CA VALA 3 309 80.253 36.151 - 0.472 1.00 77.51 A ATOM 2377 C VALA 3 309 81.604 36.759 .0.842 1.00 79.98 A ATOM 2379 CB VALA 3 309 82.613 36.051 - 0.877 1.00 79.39 A ATOM 2380 CGI VALA 3 309 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VALA 3 309 81.097 35.838 1.896 1.00 76.95 A ATOM 2381 CGI VALA 3 309 81.097 35.838 1.896 1.00 76.95 A ATOM 2382 N GLU A 3 10 81.596 38.065 -1.130 1.00 83.03 A ATOM 2382 N GLU A 3 10 83.980 37.940 -1.953 1.00 86.11 A ATOM 2382 C GLU A 3 10 83.982 37.110 -2.864 1.00 85.97 A ATOM 2386 CB GLU A 3 10 83.982 37.110 -2.864 1.00 85.97 A ATOM 2386 CB GLU A 3 10 83.937 41.076 -0.997 1.00 86.20 A ATOM 2387 CB GLU A 3 10 83.937 41.076 -0.997 1.00 86.20 A ATOM 2387 CB GLU A 3 10 83.937 41.076 -0.997 1.00 86.20 A ATOM 2389 OBE GLU A 3 10 82.756 42.794 -2.166 1.00 86.88 A ATOM 2389 OBE GLU A 3 10 82.756 42.794 -2.166 1.00 86.88 A ATOM 2393 C ASP A 3 11 85.130 38.129 -1.304 1.00 86.94 A ATOM 2393 C ASP A 3 11 85.130 38.129 -1.304 1.00 86.94 A ATOM 2393 C ASP A 3 11 86.260 36.411 -0.071 1.00 86.94 A ATOM 2395 CB ASP A 3 11 87.580 37.899 1.00 86.10 87.73 A ATOM 2395 CB ASP A 3 11 87.580 37.899 1.616 1.00 87.73 A ATOM 2395 CB ASP A 3 11 87.580 37.899 1.616 1.00 87.73 A ATOM 2399 CG GASP A 3 11 87.580 37.899 1.616 1.00 88.09 A ATOM 2399 N VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2399 N VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2399 N VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2399 N VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2399 N VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2390 N VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2390 N VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2390 N VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2400 C VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2400 C VALA A 3 12 86.995 35.302 -0.043 1.00 88.63 A ATOM 2400 C VALA A 3 13 89.240 33.995 0.044 1.00 88.69 A ATOM 2400 C VALA A 3 13 89.240 33.995 0.048 1.00 87.73 A ATOM 2400 C VALA A 3 13 89.240 33.995 0.048 1.00 88.64 A ATOM 2400 C VALA A 3 13 8													ι		С
ATOM 2377 C VALA 3 309 81.604 36.759 -0.842 1.00 79.98 A ATOM 2378 C VALA 3 309 80.412 35.162 0.708 1.00 77.15 A ATOM 2380 CGI VALA 3 309 80.412 35.162 0.708 1.00 76.95 A ATOM 2381 CG2 VALA 3 309 79.056 34.605 1.118 1.00 76.88 A ATOM 2382 N GLIJ A 310 82.777 38.833 -1.852 1.00 84.93 A ATOM 2383 C A GLIJ A 310 82.777 38.833 -1.562 1.00 84.93 A ATOM 2383 C A GLIJ A 310 83.980 37.940 -1.953 1.00 86.11 A ATOM 2385 C GLIJ A 310 83.980 37.940 -1.953 1.00 86.11 A ATOM 2385 C GLIJ A 310 83.862 37.110 -2.864 1.00 85.97 A ATOM 2386 C GLIJ A 310 83.862 37.110 -2.864 1.00 85.97 A ATOM 2386 C GLIJ A 310 83.862 37.110 -2.864 1.00 85.97 A ATOM 2388 C GLIJ A 310 83.980 37.940 -1.953 1.00 86.11 A ATOM 2388 C GLIJ A 310 82.937 41.056 -0.997 1.00 86.20 A ATOM 2389 C GLIJ A 310 82.937 42.962 0.018 1.00 87.05 A ATOM 2390 OEE GLIJ A 310 82.873 42.962 0.018 1.00 87.05 A ATOM 2390 OEE GLIJ A 310 82.873 42.962 0.018 1.00 87.05 A ATOM 2393 C ASP A 311 86.230 37.175 -1.390 1.00 86.94 A ATOM 2393 C ASP A 311 86.220 37.175 -1.390 1.00 87.73 A ATOM 2395 C ASP A 311 86.220 37.175 -1.390 1.00 87.73 A ATOM 2395 C ASP A 311 87.502 39.029 -2.619 1.00 89.53 A ATOM 2395 C ASP A 311 87.502 39.029 -2.619 1.00 89.53 A ATOM 2399 OE ASP A 311 87.502 39.029 -2.619 1.00 89.53 A ATOM 2399 OE ASP A 311 87.502 39.029 -2.619 1.00 89.53 A ATOM 2399 N VALA 312 86.995 35.020 -0.031 1.00 88.63 A ATOM 2390 N VALA 312 86.995 35.020 -0.031 1.00 88.64 A ATOM 2400 CA VALA 3.312 87.233 34.566 1.201 1.00 88.63 A ATOM 2400 CA VALA 3.312 87.233 34.566 1.201 1.00 88.66 A ATOM 2402 O VALA 3.312 87.940 33.985 0.444 1.00.88.89 A ATOM 2406 CG VALA 3.312 87.940 33.985 0.444 1.00.88.89 A ATOM 2406 CG VALA 3.312 87.940 33.985 0.444 1.00.88.89 A ATOM 2406 CG VALA 3.312 87.940 33.985 0.444 1.00.88.89 A ATOM 2406 CG VALA 3.312 87.940 33.985 0.444 1.00.88.89 A ATOM 2406 CG VALA 3.312 87.940 33.985 0.444 1.00.88.89 A ATOM 2406 CG VALA 3.313 97.869 33.913 1.00 88.67 A ATOM 2406 CG VALA 3.312 87.940 33.985 0.444 1.00 88.60 A ATOM 2402 C VALA 3.312 87.940 33.985 0.444 1.00 88.89 A ATOM															N
ATOM 2378 O VAL A 309 82.613 36.051 -0.877 1.00 79.39 A ATOM 2379 CB VAL A 309 81.097 35.838 1.896 1.00 76.95 A ATOM 2380 CGI VAL A 309 81.097 35.838 1.896 1.00 76.95 A ATOM 2381 CG2.VAL A 309 81.097 35.838 1.896 1.00 76.95 A ATOM 2382 N GUI A 310 81.596 38.065 -1.130 1.00 83.03 A ATOM 2383 CA GUI A 310 82.777 38.836 -1.562 1.00 84.93 A ATOM 2385 C GUI A 310 83.960 37.340 -1.953 1.00 86.11 A ATOM 2385 C GUI A 310 83.960 37.340 -1.953 1.00 86.11 A ATOM 2385 C GUI A 310 83.980 37.340 -1.953 1.00 85.41 A ATOM 2385 C GUI A 310 83.981 37.340 -1.953 1.00 85.41 A ATOM 2385 C GUI A 310 83.981 37.340 -1.953 1.00 85.41 A ATOM 2387 C GUI A 310 83.981 37.340 -1.953 1.00 85.41 A ATOM 2387 C GUI A 310 83.981 37.340 -1.953 1.00 87.05 A ATOM 2387 C GUI A 310 83.931 34.076 -0.997 1.00 86.20 A ATOM 2387 C GUI A 310 82.756 42.794 -2.166 1.00 87.95 A ATOM 2389 OBI GUI A 310 82.756 42.794 -2.166 1.00 87.95 A ATOM 2391 O ASP A 311 85.130 38.129 -1.304 1.00 87.99 A ATOM 2391 C A ASP A 311 85.203 37.175 -1.390 1.00 87.73 A ATOM 2391 C A ASP A 311 86.230 37.175 -1.390 1.00 87.73 A ATOM 2393 C ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2394 O ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2395 CG ASP A 311 86.260 36.411 -0.071 1.00 88.03 A ATOM 2395 CG ASP A 311 86.457 39.002 -2.0043 1.00 87.73 A ATOM 2395 CG ASP A 311 86.457 39.002 -2.0043 1.00 87.73 A ATOM 2395 CG ASP A 311 86.457 39.002 -2.0043 1.00 87.73 A ATOM 2390 CC GLU A 310 88.6457 39.002 -2.0043 1.00 87.73 A ATOM 2390 CC GLU A 312 88.940 33.956 -2.848 1.00 90.31 A ATOM 2406 C A VAL A 312 88.940 33.288 1.291 1.00 88.64 A ATOM 2406 C A VAL A 312 88.940 33.288 1.291 1.00 88.64 A ATOM 2406 C A VAL A 313 89.406 33.289 0.90 1.00 87.73 A ATOM 2406 C A VAL A 313 89.406 33.289 0.90 1.00 88.64 A ATOM 2406 C A VAL A 313 89.406 33.289 0.90 1.00 88.64 A ATOM 2406 C A VAL A 313 89.406 33.289 1.00 90 1.00 88.75 A ATOM 2416 CG VAL A 313 89.406 33.289 0.90 1.00 88.60 A ATOM 241															C C
ATOM 2399 CB VAL A 309															0
ATOM 2380 CGI VAL A 309															C
ATOM 2381 CC2 VAL A 309 79.056 34.605 1.118 1.00 76.88 A A ATOM 2382 N GUI A 310 82.777 38.833 -1.562 1.00 84.93 A A ATOM 2385 C GUI A 310 83.980 37.940 -1.953 1.00 86.11 A A ATOM 2385 C GUI A 310 83.980 37.940 -1.953 1.00 86.11 A A ATOM 2385 C GUI A 310 83.981 37.340 -1.952 1.00 85.97 A A ATOM 2386 CB GUI A 310 83.982 -0.488 1.00 85.97 A A ATOM 2386 CD GUI A 310 83.937 41.076 -0.997 1.00 85.20 A A ATOM 2388 CD GUI A 310 83.937 41.076 -0.997 1.00 85.20 A A ATOM 2389 OBI GUI A 310 83.937 41.076 -0.997 1.00 85.20 A A ATOM 2389 OBI GUI A 310 82.756 42.794 -2.166 1.00 86.88 A A ATOM 2390 OBE GUI A 310 82.873 42.962 0.018 1.00 87.93 A ATOM 2393 OBE GUI A 310 82.873 42.962 0.018 1.00 87.93 A ATOM 2393 C A SP A 311 86.230 37.175 -1.390 1.00 86.94 A A ATOM 2393 C A SP A 311 86.240 37.175 -1.390 1.00 87.93 A ATOM 2391 C A SP A 311 86.260 36.411 -0.071 1.00 88.09 A A ATOM 2395 CB ASP A 311 85.626 36.411 -0.071 1.00 88.09 A A ATOM 2394 O ASP A 311 85.626 36.411 -0.071 1.00 88.09 A A ATOM 2395 CB ASP A 311 85.650 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 87.580 37.879 1.616 1.00 88.63 A ATOM 2396 CG ASP A 311 87.580 37.879 1.616 1.00 88.63 A ATOM 2395 CD ASP A 311 86.595 35.302 -0.094 1.00 88.63 A ATOM 2395 DU ASP A 311 86.495 35.302 -0.094 1.00 88.63 A ATOM 2398 DU ZASP A 311 86.497 33.866 -2.848 1.00 90.31 A ATOM 2400 CA VAL A 312 88.403 33.956 -2.848 1.00 90.31 A ATOM 2400 CA VAL A 312 88.403 33.955 0.414 1.00 88.63 A ATOM 2401 CC VAL A 312 88.403 33.955 0.414 1.00 88.64 A ATOM 2401 CC VAL A 312 88.403 33.955 0.414 1.00 88.89 A ATOM 2402 CO VAL A 312 88.403 33.955 0.414 1.00 88.80 A ATOM 2405 CG VAL A 312 88.403 33.955 0.414 1.00 88.80 A ATOM 2405 CG VAL A 312 89.403 33.955 0.414 1.00 88.80 A ATOM 2407 CG A ALA A 313 99.649 34.372 2.916 1.00 88.57 A ATOM 2407 CG A ALA A 313 99.649 34.372 2.916 1.00 88.57 A ATOM 2407 CG A ALA A 313 99.649 34.372 2.916 1.00 88.57 A ATOM 2407 CG VAL A 312 89.403 33.955 0.414 1.00 88.80 A ATOM 2407 CG VAL A 312 89.406 33.945 0.414 1.00 88.80 A ATOM 2407 CG VAL A 313 99.666 2.860 4.96															C
ATOM 2382 N GIJI A 310 81.596 38.065 -1.130 1.00 83.03 A A ATOM 2386 C GIJU A 310 83.980 37.940 -1.953 1.00 86.11 A A ATOM 2385 O GLU A 310 83.980 37.940 -1.953 1.00 85.41 A A ATOM 2386 CB GLU A 310 83.862 37.110 -2.864 1.00 85.41 A A ATOM 2386 CB GLU A 310 83.913 139.882 -0.488 1.00 85.41 A A ATOM 2387 CG GLU A 310 83.937 41.076 -0.997 1.00 86.20 A ATOM 2387 CG GLU A 310 83.937 41.076 -0.997 1.00 85.21 A A ATOM 2387 CB GLU A 310 82.756 42.794 -2.166 1.00 87.05 A ATOM 2389 OEI GLU A 310 82.756 42.794 -2.166 1.00 87.05 A ATOM 2389 OEI GLU A 310 82.756 42.794 -2.166 1.00 86.88 A ATOM 2390 OEZ GLU A 310 82.756 42.794 -2.166 1.00 86.88 A ATOM 2391 N ASP A 311 85.130 38.129 -1.304 1.00 86.94 A ATOM 2391 CA ASP A 311 86.230 37.175 -1.309 1.00 87.73 A ATOM 2393 C A ASP A 311 86.230 37.175 -1.309 1.00 87.73 A ATOM 2393 C A ASP A 311 86.240 37.879 -1.616 1.00 88.69 A ATOM 2395 CG ASP A 311 86.240 37.879 -1.616 1.00 88.63 A ATOM 2395 CG ASP A 311 87.502 39.029 -2.619 1.00 88.63 A ATOM 2398 OD 2 ASP A 311 86.451 39.099 -1.616 1.00 88.63 A ATOM 2398 OD 2 ASP A 311 86.457 39.566 -2.848 1.00 90.31 A ATOM 2399 N VAL A 312 86.955 35.302 -0.043 1.00 88.62 A ATOM 2400 CA VAL A 312 86.295 35.302 -0.043 1.00 88.24 A ATOM 2400 CA VAL A 312 86.295 35.302 -0.043 1.00 88.24 A ATOM 2402 O VAL A 312 86.497 33.489 0.890 0.890 1.00 88.24 A ATOM 2402 O VAL A 312 86.497 33.489 0.890 0.890 1.00 88.64 A ATOM 2402 C VAL A 312 86.497 33.489 0.890 0.890 1.00 87.55 A ATOM 2402 C VAL A 312 86.497 33.489 0.890 0.890 1.00 87.55 A ATOM 2402 C VAL A 312 86.497 33.489 0.890 0.890 1.00 87.55 A ATOM 2402 C VAL A 312 86.497 33.499 0.890 0.890 1.00 87.55 A ATOM 2402 C VAL A 312 86.497 33.499 0.890 0.890 1.00 87.55 A ATOM 2402 C VAL A 312 86.497 33.499 0.890 0.890 1.00 87.55 A ATOM 2402 C VAL A 313 89.240 33.895 0.441 1.00 88.64 A ATOM 2411 N THR A 314 90.656 30.625 3.735 1.00 87.55 A ATOM 2412 C C B ALA A 313 90.965 35.166 4.176 1.00 88.57 A ATOM 2412 C C B ALA A 313 90.966 30.261 3.556 0.241 1.00 88.57 A ATOM 2412 C C B ALA A 313 90.965 35.166 4.176 1.00															Č
ATOM 2383 CA GLU A 310 82.777 38.833 -1.562 1.00 84.93 A A ATOM 2386 C GLU A 310 83.980 37.940 -1.953 1.00 86.11 A A ATOM 2386 CB GLU A 310 83.980 37.310 -2.864 1.00 85.97 A A ATOM 2386 CB GLU A 310 83.913 37.810 -0.488 1.00 85.97 A A ATOM 2386 CB GLU A 310 83.913 41.076 -0.997 1.00 86.20 A A ATOM 2386 CD GLU A 310 83.937 41.076 -0.997 1.00 86.20 A A ATOM 2388 CD GLU A 310 83.937 41.076 -0.997 1.00 86.20 A A ATOM 2380 CD GLU A 310 83.937 41.076 -0.997 1.00 86.20 A A ATOM 2390 DEZ GLU A 310 82.756 42.794 -2.166 1.00 86.88 A ATOM 2391 N ASP A 311 85.130 38.129 -1.304 1.00 86.94 A ATOM 2392 CA ASP A 311 86.230 37.175 -1.390 1.00 87.73 A ATOM 2393 C ASP A 311 86.260 36.411 -0.071 1.00 88.09 A ATOM 2395 CB ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 87.590 37.879 -1.616 1.00 88.63 A ATOM 2395 CD ASP A 311 87.590 37.879 -1.616 1.00 88.63 A ATOM 2396 CG ASP A 311 87.590 37.879 -1.616 1.00 88.63 A ATOM 2396 CD ASP A 311 87.590 37.879 -1.616 1.00 88.63 A ATOM 2395 DOZ ASP A 311 88.5433 39.666 -2.848 1.00 90.31 A ATOM 2399 N VAL A 312 86.959 35.302 -0.043 1.00 90.95 A ATOM 2400 CA VAL A 312 86.959 35.302 -0.043 1.00 90.95 A ATOM 2400 CA VAL A 312 86.457 39.356 -3.222 1.00 90.95 A ATOM 2400 CA VAL A 312 88.733 34.351 1.00 88.26 A ATOM 2401 C VAL A 312 88.733 3.895 0.444 1.00 88.80 A ATOM 2402 O VAL A 312 88.7403 39.395 0.444 1.00 88.80 A ATOM 2402 O VAL A 312 88.7403 39.356 -3.221 1.00 90.955 A ATOM 2402 O VAL A 312 88.7403 39.356 0.281 1.00 88.60 A ATOM 2402 O VAL A 312 88.9440 33.288 1.271 1.00 88.57 A ATOM 2406 CA VAL A 312 88.940 33.289 0.90 1.00 88.60 A ATOM 2401 C VAL A 312 88.940 33.289 0.90 1.00 88.60 A ATOM 2402 O VAL A 312 88.940 33.289 0.90 1.00 88.60 A ATOM 2402 O VAL A 312 88.940 33.289 0.90 1.00 88.60 A ATOM 2402 O VAL A 312 88.940 33.289 1.00 91 0.00 87.35 A ATOM 2402 C VAL A 313 91.138 32.925 3.000 1.00 88.57 A ATOM 2402 C VAL A 313 91.38 92.818 34.999 31.00 88.60 A ATOM 2402 C VAL A 313 91.00 89.23 3.499 0.90 1.00 88.57 A ATOM 2		-											•		N
ATOM 2386 C GLU A 310 83.980 37.940 -1.953 1.00 86.11 A A ATOM 2385 O GLU A 310 83.862 37.110 -2.664 1.00 85.97 A A ATOM 2387 CC GLU A 310 83.937 41.076 -0.997 1.00 86.20 A A ATOM 2387 CC GLU A 310 83.937 41.076 -0.997 1.00 86.20 A A ATOM 2389 CB GLU A 310 82.756 42.794 -2.166 1.00 87.05 A A ATOM 2389 OBE GLU A 310 82.756 42.794 -2.166 1.00 87.95 A A ATOM 2389 OBE GLU A 310 82.756 42.794 -2.166 1.00 87.99 A A ATOM 2399 OBE GLU A 310 82.756 42.794 -2.166 1.00 87.99 A A ATOM 2391 N ASP A 311 86.230 37.175 -1.390 1.00 87.93 A ATOM 2391 N ASP A 311 86.230 37.175 -1.390 1.00 87.93 A ATOM 2391 C A SP A 311 86.230 36.127 -1.304 1.00 86.94 A A ATOM 2391 C A SP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2395 CD ASP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2398 ODZ ASP A 311 86.457 39.356 -3.222 1.00 90.95 A ATOM 2399 N VAL A 312 86.995 39.686 -2.248 1.00 90.31 A ATOM 2399 N VAL A 312 86.995 35.302 -0.043 1.00 88.24 A ATOM 2400 CA VAL A 312 87.233 34.565 1.201 1.00 88.66 A ATOM 2400 CA VAL A 312 88.731 34.311 1.376 1.00 88.66 A ATOM 2400 CA VAL A 312 88.731 34.311 1.376 1.00 88.66 A ATOM 2404 CCI VAL A 312 88.731 34.311 1.376 1.00 88.69 A ATOM 2404 CCI VAL A 312 88.731 34.311 1.376 1.00 88.57 A ATOM 2405 CC VAL A 312 89.400 33.985 0.414 1.00 88.89 A ATOM 2404 CCI VAL A 312 89.404 33.985 0.414 1.00 88.89 A ATOM 2404 CCI VAL A 312 89.404 33.985 0.414 1.00 88.89 A ATOM 2404 CCI VAL A 312 89.404 33.985 0.414 1.00 88.60 A ATOM 2407 CA ALA 313 90.649 34.475 2.508 1.00 87.55 A ATOM 2407 CA ALA 313 90.649 34.475 2.508 1.00 87.55 A ATOM 2407 CA ALA 313 90.649 34.475 2.508 1.00 87.57 A ATOM 2407 CA ALA 313 90.649 34.475 2.508 1.00 87.57 A ATOM 2407 CA ALA 313 90.669 30.409 1.00 87.53 A ATOM 2407 CA ALA 313 90.669 30.409 1.00 87.53 A ATOM 2407 CA ALA 313 90.669 30.409 1.00 87.53 A ATOM 2408 CC ALA 313 90.969 30.409 1.00 87.53 A ATOM 2408 CC ALA A 313 90.969															C
ATOM 2385 O GLU A 310 83.862 37.110 -2.864 1.00 85.97 A ATOM 2386 CB GLU A 310 83.131 39.882 -0.488 1.00 85.41 A A ATOM 2388 CD GLU A 310 83.937 41.076 -0.997 1.00 86.20 A A ATOM 2389 OEI GLU A 310 82.786 42.794 -2.166 1.00 86.88 A A ATOM 2390 OEI GLU A 310 82.873 42.962 0.018 1.00 87.05 A ATOM 2391 N ASP A 311 85.120 38.129 -1.304 1.00 86.94 A ATOM 2392 CA ASP A 311 86.230 37.175 -1.394 1.00 86.94 A ATOM 2392 CA ASP A 311 86.230 37.175 -1.394 1.00 88.09 A ATOM 2392 CA ASP A 311 86.230 37.175 -1.390 1.00 87.73 A ATOM 2395 CB ASP A 311 86.260 37.875 -1.590 1.00 87.73 A ATOM 2395 CB ASP A 311 85.150 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 OD2 ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 OD2 ASP A 311 86.457 39.356 -3.222 1.00 90.95 A ATOM 2398 OD2 ASP A 312 86.955 35.302 -0.043 1.00 88.53 A ATOM 2398 OD2 ASP A 312 86.955 35.302 -0.043 1.00 88.24 A ATOM 2401 C VAL A 312 88.723 34.555 1.201 1.00 88.26 A ATOM 2401 C VAL A 312 88.723 34.555 1.201 1.00 88.26 A ATOM 2401 C VAL A 312 88.723 34.355 1.201 1.00 88.26 A ATOM 2402 C VAL A 312 88.4949 33.495 1.201 1.00 88.60 A ATOM 2404 CGI VAL A 312 88.4949 33.495 1.201 1.00 88.26 A ATOM 2405 CG VAL A 312 88.4949 33.495 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 88.9440 33.285 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 86.995 33.495 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 86.995 33.495 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 86.995 33.495 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 86.995 33.495 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 86.905 33.495 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 86.905 33.495 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 86.905 33.495 1.201 1.00 88.57 A ATOM 2405 CG VAL A 312 86.905 33.495 1.201 1.00 88.57 A ATOM 2411 C CB ALA A 313 90.965 35.166 1.00 80.905 A ATOM 2411 C CB ALA A 313 90.965 35.166 1.00 80.905 A ATOM 2411 C CB ALA A 313 90.965 35.166 1.00 80.905 A ATOM 2412 C C CB ALA A 313 90.965 35.166 1.00 80.905 A ATOM 2412 C C															C
ATOM 2387 CG GLU A 310 83.937 41.076 -0.997 1.00 86.20 A ATOM 2389 OEI GLU A 310 82.875 42.794 -2.166 1.00 86.88 A ATOM 2390 OEZ GLU A 310 82.873 42.962 0.018 1.00 87.99 A ATOM 2391 N ASP A 311 85.120 37.175 -1.394 1.00 86.94 A ATOM 2392 CA SP A 311 86.230 37.175 -1.394 1.00 87.99 A ATOM 2392 CA SP A 311 86.230 37.175 -1.394 1.00 87.99 A ATOM 2392 CA SP A 311 86.230 37.175 -1.390 1.00 87.73 A ATOM 2395 CB ASP A 311 86.250 37.879 -1.616 1.00 88.69 A ATOM 2395 CB ASP A 311 86.260 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2395 CD ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2395 OUZ ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2395 NU AL A 312 86.495 35.302 -0.043 1.00 88.24 A ATOM 2400 CA VAL A 312 86.295 35.302 -0.043 1.00 88.24 A ATOM 2400 CA VAL A 312 86.497 33.4555 1.201 1.00 88.26 A ATOM 2401 C VAL A 312 86.497 33.4555 1.201 1.00 88.26 A ATOM 2402 C VAL A 312 88.4737 34.311 1.376 1.00 88.89 A ATOM 2403 CB VAL A 312 88.499 33.4855 0.414 1.00 88.89 A ATOM 2403 CB VAL A 312 88.499 33.4859 0.890 1.00 87.55 A ATOM 2404 CCI VAL A 312 88.499 33.4859 0.890 1.00 87.55 A ATOM 2406 CC VAL A 312 88.497 33.288 1.271 1.00 88.56 A ATOM 2407 CA ALA A 313 89.218 34.475 2.608 1.00 88.84 A ATOM 2407 CA ALA A 313 89.218 34.475 2.608 1.00 88.89 A ATOM 2407 CA ALA A 313 99.649 33.489 0.890 1.00 87.55 A ATOM 2407 CA ALA A 313 99.649 34.372 2.508 1.00 88.57 A ATOM 2407 CA ALA A 313 99.649 34.372 2.508 1.00 88.57 A ATOM 2407 CA ALA A 313 99.649 30.499 0.890 1.00 87.55 A ATOM 2407 CA ALA A 313 99.659 35.166 1.00 88.57 A ATOM 2410 CB ALA A 313 99.659 35.166 1.00 88.57 A ATOM 2410 CB ALA A 313 99.555 35.166 1.00 88.57 A ATOM 2410 CB ALA A 313 99.555 35.166 1.00 88.57 A ATOM 2410 CB ALA A 313 99.955 35.166 1.00 88.57 A ATOM 2411 N THR A 314 90.556 29.692 2.581 1.00 87.53 A ATOM 2412 CC ERA 315 89.600 30.289 1.00 87.53 A ATOM 2412 CC ERA 315 89.600 30.289 1.00 87.53 A ATO			0					83.862	37.110	-2.864	1.00	85.97	·	Α	0
ATOM 2388 CD GLU A 310 83.130 42.368 -1.053 1.00 87.05 A ATOM 2399 OBI GLU A 310 82.756 42.794 -2.166 1.00 86.88 A ATOM 2391 N ASP A 311 85.130 38.129 -1.304 1.00 86.98 A ATOM 2391 N ASP A 311 85.130 38.129 -1.304 1.00 86.94 A ATOM 2393 CA ASP A 311 86.230 37.175 -1.390 1.00 86.94 A ATOM 2393 C A ASP A 311 86.230 36.117 -0.071 1.00 88.09 A ATOM 2393 C A ASP A 311 86.230 36.411 -0.071 1.00 88.09 A ATOM 2393 C A ASP A 311 87.500 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.502 39.029 -2.619 1.00 87.73 A ATOM 2395 CG ASP A 311 87.502 39.029 -2.619 1.00 89.53 A ATOM 2395 CD ASP A 311 87.502 39.066 -2.488 1.00 90.31 A ATOM 2395 CD ASP A 311 86.457 39.3566 -3.222 1.00 90.95 A ATOM 2398 OV ASP A 311 86.457 39.3566 -3.222 1.00 90.95 A ATOM 2400 CA VAL A 312 88.737 34.311 1.376 1.00 88.26 A ATOM 2400 CA VAL A 312 88.737 34.311 1.376 1.00 88.26 A ATOM 2401 C VAL A 312 88.737 34.311 1.376 1.00 88.26 A ATOM 2401 C VAL A 312 88.407 33.288 1.201 1.00 88.89 A ATOM 2402 O VAL A 312 88.407 33.288 1.201 1.00 88.50 A ATOM 2404 CGI VAL A 312 88.494 33.495 0.490 1.00 87.95 A ATOM 2404 CGI VAL A 312 88.09 34.475 0.992 1.00 87.95 A ATOM 2405 CG2 VAL A 312 88.093 32.485 0.992 1.00 87.95 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.992 1.00 87.95 A ATOM 2406 CGI VAL A 312 87.009 32.145 0.992 1.00 87.95 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.992 1.00 87.95 A ATOM 2405 CG2 VAL A 313 90.649 34.475 2.608 1.00 88.57 A ATOM 2405 CG2 VAL A 313 90.649 34.475 2.608 1.00 88.57 A ATOM 2405 CG2 VAL A 313 90.649 34.475 2.608 1.00 88.57 A ATOM 2405 CG VAL A 313 90.649 34.475 2.608 1.00 88.57 A ATOM 2405 CG VAL A 313 90.649 34.475 2.608 1.00 86.56 A ATOM 2410 CB ALA A 313 90.649 34.475 2.608 1.00 87.55 A ATOM 2410 CB ALA A 313 90.649 34.475 2.608 1.00 86.57 A ATOM 2410 CB ALA A 313 90.665 2.9692 2.581 1.00 87.53 A ATOM 2410 CB ALA A 313 90.665 2.9692 2.581 1.00 87.53 A ATOM 2410 CB ALA A 313 90.666 2.9699 9.00 8.05 3.78 A ATOM 2410 CB ALA A 313 90.666 2.9699 9.00 8.674 A ATOM 2420 CC SER A 315 89.660 2.9699 9.00 8.675 A ATOM 2421 CB ER A 315	ATOM	2386	CB	GLU	Α	310.		83.131	39.882	-0.488	1.00	85.41		A·	C
ATOM 2399 OEI GLU A 310 82.875 42.794 -2.166 1.00 86.88 A ATOM 2390 OE2 GLU A 310 82.873 42.962 0.018 1.00 87.97 A ATOM 2391 N ASP A 311 85.130 38.129 -1.304 1.00 86.94 A ATOM 2392 CA ASP A 311 86.280 37.175 -1.390 1.00 87.73 A ATOM 2393 C ASP A 311 86.280 37.175 -1.390 1.00 87.73 A ATOM 2394 O ASP A 311 86.280 37.475 -1.390 1.00 87.73 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2396 CG ASP A 311 87.502 39.029 -2.619 1.00 89.53 A ATOM 2399 ODZ ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2397 ODL ASP A 311 86.457 39.356 -3.222 1.00 90.95 A ATOM 2399 N VAL A 312 86.995 35.302 -0.043 1.00 88.24 A ATOM 2401 C VAL A 312 88.695 35.302 -0.043 1.00 88.24 A ATOM 2401 C VAL A 312 88.493 33.4555 1.201 1.00 88.60 A ATOM 2402 C VAL A 312 88.497 33.495 0.414 1.00 88.60 A ATOM 2403 CB VAL A 312 88.497 33.495 0.414 1.00 88.60 A ATOM 2403 CB VAL A 312 88.497 33.499 0.880 1.00 87.95 A ATOM 2406 N ALA 313 89.218 37.495 0.392 1.00 87.55 A ATOM 2406 N ALA 313 89.218 37.495 0.392 1.00 87.55 A ATOM 2406 N ALA 313 89.218 37.495 0.392 1.00 87.55 A ATOM 2408 C CA VAL A 313 89.218 34.475 2.608 1.00 88.84 A ATOM 2408 C CA ALA 313 90.649 34.372 2.916 1.00 88.87 A ATOM 2408 C CALA 313 99.489 34.372 2.916 1.00 88.57 A ATOM 2408 C ALA 313 99.218 34.475 2.608 1.00 88.87 A ATOM 2408 C ALA 313 99.218 34.475 2.608 1.00 87.75 A ATOM 2408 C ALA 313 99.218 34.475 2.608 1.00 88.87 A ATOM 2408 C ALA 313 99.218 34.475 2.608 1.00 88.87 A ATOM 2416 CB ALA 313 99.218 34.475 2.608 1.00 88.67 A ATOM 2416 CB ALA 313 99.218 34.475 2.608 1.00 88.67 A ATOM 2416 CB ALA 313 99.218 34.475 2.608 1.00 88.67 A ATOM 2416 CB ALA 313 99.218 34.475 2.608 1.00 88.67 A ATOM 2416 CB ALA 313 99.218 34.475 2.608 1.00 88.67 A ATOM 2416 CB ALA 313 99.218 34.275 2.916 1.00 88.67 A ATOM 2416 CB ALA 313 99.218 34.275 2.608 1.00 88.67 A ATOM 2417 CCC THR A 314 99.256 32.229 3.379 1.00 87.13 A ATOM 2420 C C SER A 315 89.666 29.699 -2.238 1.00 86.	MOTA	2387	CG	GLU	Α	310		83.937	41.076	-0.997	1.00	86.20		Α	C
ATOM 2390 OE2 GLU A 310 82.873 42.962 0.018 1.00 87.99 A ATOM 2391 N ASP A 311 85.130 38.129 -1.304 1.00 86.94 A ATOM 2392 CA ASP A 311 86.230 37.175 -1.390 1.00 87.73 A ATOM 2393 C ASP A 311 86.260 36.411 -0.071 1.00 88.09 A ATOM 2394 O ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2396 CG ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2397 ODI ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 ODZ ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2397 ODI ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2399 N VAL A 312 86.995 35.302 -0.043 1.00 88.24 A ATOM 2400 CA VAL A 312 88.733 34.565 1.201 1.00 88.26 A ATOM 2401 C VAL A 312 88.447 34.311 1.376 1.00 88.60 A ATOM 2402 O VAL A 312 88.440 33.985 0.414 1.00 88.89 A ATOM 2402 CG VAL A 312 88.440 33.985 0.414 1.00 88.89 A ATOM 2405 CG2 VAL A 312 88.497 33.495 0.890 1.00 87.55 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.392 1.00 87.59 A ATOM 2406 CG1 VAL A 312 87.909 32.145 0.392 1.00 87.59 A ATOM 2407 CA ALA 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2407 CA ALA 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2407 CA ALA 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2407 CA ALA 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2407 CA ALA 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2407 CA ALA 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2407 CA ALA 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2410 CB ALA 313 90.669 34.372 2.916 1.00 88.57 A ATOM 2410 CB ALA 313 90.669 34.372 2.916 1.00 88.57 A ATOM 2410 CB ALA 313 90.669 34.372 2.916 1.00 88.57 A ATOM 2410 CB ALA 313 90.669 34.377 2.916 1.00 88.57 A ATOM 2410 CB ALA 313 90.669 34.372 2.916 1.00 86.53 A ATOM 2410 CB ALA 313 90.669 34.372 2.916 1.00 86.57 A ATOM 2410 CB ALA 313 90.669 34.372 2.916 1.00 86.57 A ATOM 2410 CB ALA 313 90.669 34.372 2.916 1.00 86.57 A ATOM 2410 CB ALA 313 90.669 34.91 30.91 30.90 30	MOTA	2388	CD	GĽŲ	A	310		83.130	42.368	-1.053	1.00	87.05		Α	C
ATOM 2391 N ASP A 311 85.130 38.129 -1.304 1.00 86.94 A ATOM 2392 CA ASP A 311 86.230 37.175 -1.390 1.00 87.73 A ATOM 2393 C ASP A 311 86.230 37.175 -1.390 1.00 87.73 A ATOM 2393 C ASP A 311 86.615 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2396 CG ASP A 311 87.502 39.029 -2.619 1.00 89.53 A ATOM 2399 ODZ ASP A 311 88.643 39.686 -2.848 1.00 90.31 A ATOM 2399 N VAL A 312 86.955 35.302 -0.043 1.00 88.24 A ATOM 2401 C VAL A 312 86.955 35.302 -0.043 1.00 88.24 A ATOM 2401 C VAL A 312 88.733 34.565 1.201 1.00 88.60 A ATOM 2401 C VAL A 312 88.433 34.565 1.201 1.00 88.60 A ATOM 2402 O VAL A 312 88.494 33.485 1.201 1.00 88.60 A ATOM 2403 CB VAL A 312 88.494 33.485 1.201 1.00 88.60 A ATOM 2403 CB VAL A 312 88.494 33.485 1.201 1.00 88.60 A ATOM 2403 CB VAL A 312 88.494 33.485 1.201 1.00 88.65 A ATOM 2404 CG1 VAL A 312 87.023 32.88 1.271 1.00 87.35 A ATOM 2404 CG1 VAL A 312 87.093 32.88 1.271 1.00 87.35 A ATOM 2406 C ALA A 313 90.649 32.445 0.392 1.00 87.35 A ATOM 2406 C A ALA A 313 90.649 34.372 2.916 1.00 88.84 A ATOM 2407 CA ALA A 313 90.649 34.372 2.916 1.00 88.87 A ATOM 2406 C ALA A 313 90.649 34.372 2.916 1.00 88.87 A ATOM 2407 CA ALA A 313 90.183 32.925 3.070 1.00 88.37 A ATOM 2408 C ALA A 313 90.564 34.75 2.668 1.00 88.18 A ATOM 2407 CA ALA A 313 90.565 35.166 1.106 88.18 A ATOM 2410 CB ALA A 313 90.955 35.166 1.106 88.18 A ATOM 2410 CB ALA A 313 90.955 35.166 1.100 88.05 A ATOM 2411 N THR A 314 90.576 30.625 3.735 1.00 87.78 A ATOM 2416 CG1 THR A 314 90.055 29.692 2.551 1.00 87.53 A ATOM 2416 CG1 THR A 314 90.057 29.692 2.551 1.00 87.53 A ATOM 2416 CG1 THR A 314 90.059 28.474 2.768 1.00 86.64 A ATOM 2417 CG2 THR A 314 90.059 28.474 2.768 1.00 86.64 A ATOM 2417 CG2 THR A 314 90.059 28.474 2.768 1.00 86.64 A ATOM 2416 CG1 THR A 314 90.059 28.474 2.768 1.00 86.64 A ATOM 2417 CG2 THR A 314 90.059 28.474 2.768 1.00 86.672 A ATOM 2426 C GIN A 316 89.660 29.609 -2.238 1.00 86.672 A ATOM 2427 C GIN A 316 89.660 29.609	ATOM	2389	OE1	GLU	Α	310					1.00	86,88			. 0
ATOM 2392 CA ASP A 311 86.230 37.175 -1.390 1.00 87.73 A ATOM 2393 C ASP A 311 85.626 36.411 -0.071 1.00 88.09 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2396 CG ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2397 ODI ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 ODZ ASP A 311 88.645 39.029 -2.619 1.00 89.53 A ATOM 2398 ODZ ASP A 311 88.657 39.356 -3.222 1.00 90.95 A ATOM 2399 N VAL A 312 86.995 35.302 -0.043 1.00 88.24 A ATOM 2400 CA VAL A 312 88.737 34.311 1.376 1.00 88.66 A ATOM 2400 CA VAL A 312 88.737 34.311 1.00 88.60 A ATOM 2402 O VAL A 312 88.497 34.311 1.376 1.00 88.89 A ATOM 2402 CO VAL A 312 88.4949 33.489 0.890 1.00 87.35 A ATOM 2404 CGI VAL A 312 88.4949 33.489 0.890 1.00 87.35 A ATOM 2404 CGI VAL A 312 88.4949 33.489 0.890 1.00 87.59 A ATOM 2404 CGI VAL A 312 84.949 33.489 0.890 1.00 87.55 A ATOM 2406 N ALA 313 89.218 84.446 3.372 2.916 1.00 88.57 A ATOM 2407 CA ALA 313 99.138 89.245 34.475 2.608 1.00 88.57 A ATOM 2408 C ALA 313 99.138 89.245 34.475 2.608 1.00 88.57 A ATOM 2409 C ALA 313 99.138 34.475 2.608 1.00 88.57 A ATOM 2409 C ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2407 CA ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2407 CA ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2407 CA ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2407 CA ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 2.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 2.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 2.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.665 31.666 4.176 1.00 88.18 A ATOM 2410 CB ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.138 32.925 3.070 1.00 88.57 A ATOM 2410 CB ALA 313 99.065 35.666 4.100 80.57 A ATOM 2410 CB ALA 313 99.065 35.666 4.100 80.57 A ATOM															. 0
ATOM 2393 C ASP A 311 86.260 36.411 -0.071 1.00 88.09 A ATOM 2395 CB ASP A 311 85.615 36.817 0.992 1.00 87.73 A ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2396 CG ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 OD2 ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 OD2 ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 OD2 ASP A 311 86.457 39.356 -3.222 1.00 90.95 A ATOM 2399 N VAL A 312 87.233 34.555 1.201 1.00 88.24 A ATOM 2400 CA VAL A 312 87.233 34.555 1.201 1.00 88.26 A ATOM 2401 C VAL A 312 88.737 34.311 1.376 1.00 88.60 A ATOM 2402 O VAL A 312 88.737 34.311 1.376 1.00 88.60 A ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2404 CG1 VAL A 312 87.009 32.145 0.392 1.00 87.35 A ATOM 2406 N ALA A 313 89.218 34.475 2.608 1.00 87.35 A ATOM 2406 N ALA A 313 99.218 34.475 2.608 1.00 88.37 A ATOM 2408 C ALA A 313 99.249 33.489 0.890 1.00 87.35 A ATOM 2408 C ALA A 313 99.649 34.372 2.916 1.00 88.57 A ATOM 2409 O ALA A 313 99.649 34.372 2.916 1.00 88.57 A ATOM 2409 C ALA A 313 99.649 34.372 2.916 1.00 88.57 A ATOM 2409 C ALA A 313 99.65 35.166 4.176 1.00 88.37 A ATOM 2401 CB ALA A 313 90.965 35.166 4.176 1.00 88.18 A ATOM 2410 CB ALA A 314 90.236 32.029 3.478 1.00 87.55 A ATOM 2412 CA THR A 314 90.516 29.692 2.581 1.00 88.75 A ATOM 2412 CA THR A 314 90.516 29.692 2.581 1.00 87.78 A ATOM 2416 OBT ATR A 314 90.516 29.692 2.581 1.00 87.78 A ATOM 2416 OBT ATR A 314 90.615 29.692 2.581 1.00 87.78 A ATOM 2416 OBT ATR A 314 90.615 29.692 2.581 1.00 87.78 A ATOM 2416 OBT ATR A 314 90.615 29.692 2.581 1.00 87.78 A ATOM 2416 OBT ATR A 314 90.615 29.692 2.581 1.00 87.53 A ATOM 2416 OBT ATR A 314 90.615 29.692 2.581 1.00 87.53 A ATOM 2416 OBT ATR A 314 90.616 29.694 30.392 1.00 87.13 A ATOM 2416 OBT ATR A 314 90.616 29.694 30.392 1.00 87.55 A ATOM 2420 C SER A 315 89.906 30.292 1.00 8.507 A ATOM 2421 CA SER A 315 89.906 30.292 1.00 8.507 A ATOM 2422 CB SER A 315 89.606 30.262 1.393 1.00 87.13 A ATOM 2423 CB SER A 315 89.606 30.26															N
ATOM 2394 O ASP A 311 85.615 36.817 0.902 1.00 87.73 A ATOM 2395 CB ASP A 311 87.502 39.029 -2.619 1.00 88.63 A ATOM 2396 CG ASP A 311 87.502 39.029 -2.619 1.00 88.53 A ATOM 2398 OD2 ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 OD2 ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2399 N VAL A 312 86.995 35.302 -0.043 1.00 88.24 A ATOM 2400 CA VAL A 312 88.723 34.565 1.201 1.00 88.26 A ATOM 2401 C VAL A 312 88.737 34.311 1.376 1.00 88.60 A ATOM 2401 C VAL A 312 88.737 34.311 1.376 1.00 88.60 A ATOM 2402 O VAL A 312 88.440 33.985 0.414 1.00 88.89 A ATOM 2403 CB VAL A 312 88.440 33.985 0.414 1.00 88.89 A ATOM 2404 CG1 VAL A 312 88.4949 33.489 0.890 1.00 87.35 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.392 1.00 87.55 A ATOM 2406 N ALA A 313 89.218 34.475 2.608 1.00 88.84 A ATOM 2407 CA ALA A 313 89.218 34.475 2.608 1.00 88.84 A ATOM 2409 C ALA A 313 89.218 34.475 2.608 1.00 88.84 A ATOM 2409 C ALA A 313 92.311 32.633 2.816 1.00 88.87 A ATOM 2409 C ALA A 313 92.311 32.633 2.816 1.00 88.87 A ATOM 2409 C ALA A 313 92.311 32.633 2.816 1.00 88.18 A ATOM 2409 C ALA A 313 92.311 32.633 2.816 1.00 88.18 A ATOM 2410 CB ALA A 313 92.311 32.633 2.816 1.00 88.18 A ATOM 2410 CB ALA A 314 90.565 35.166 4.176 1.00 88.37 A ATOM 2410 CB ALA A 314 90.565 35.166 4.176 1.00 88.37 A ATOM 2411 N THR A 314 90.565 35.166 4.176 1.00 88.78 A ATOM 2411 N THR A 314 90.565 30.625 3.735 1.00 87.53 A ATOM 2412 CA THR A 314 90.565 29.692 2.581 1.00 87.78 A ATOM 2417 CG2 THR A 314 90.561 30.799 6.276 1.00 86.98 A ATOM 2417 CG2 THR A 314 90.651 30.799 6.276 1.00 86.98 A ATOM 2417 CG2 THR A 314 90.651 30.799 6.276 1.00 86.59 A ATOM 2417 CG2 THR A 314 90.651 30.799 6.276 1.00 86.59 A ATOM 2417 CG2 THR A 314 90.651 30.799 6.276 1.00 86.59 A ATOM 2420 C SER A 315 89.606 30.269 9.1099 1.00 87.51 A ATOM 2421 CG SER A 315 89.668 30.261 -3.551 1.00 87.71 A ATOM 2422 CB SER A 315 89.668 30.261 -3.551 1.00 86.53 A ATOM 2422 CB SER A 315 89.668 30.261 -3.551 1.00 85.71 A ATOM 2423 CG GLN A 316 89.666 29.609 -2.238 1.00 86.57 A ATOM 2423 CG GLN A 316 8															, C
ATOM 2395 CB ASP A 311 87.580 37.879 -1.616 1.00 88.63 A ATOM 2396 CG ASP A 311 87.502 39.029 -2.619 1.00 89.53 A ATOM 2397 OD1 ASP A 311 88.543 39.686 -2.848 1.00 90.31 A ATOM 2398 OD2 ASP A 311 86.457 39.356 -3.222 1.00 90.95 A ATOM 2399 N VAL A 312 86.959 35.302 -0.043 1.00 88.24 A ATOM 2400 CA VAL A 312 88.737 34.311 1.376 1.00 88.26 A ATOM 2401 C VAL A 312 89.440 33.985 0.414 1.00 88.826 A ATOM 2402 O VAL A 312 89.440 33.985 0.414 1.00 88.89 A ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.392 1.00 87.59 A ATOM 2406 N ALA A 313 99.218 34.475 2.608 1.00 88.84 A ATOM 2407 CA ALA A 313 99.649 34.372 2.916 1.00 88.57 A ATOM 2408 C ALA A 313 99.18 32.925 3.070 1.00 88.37 A ATOM 2408 C ALA A 313 99.18 32.925 3.070 1.00 88.37 A ATOM 2410 CB ALA A 313 99.18 32.925 3.070 1.00 88.37 A ATOM 2410 CB ALA A 313 99.595 35.166 4.176 1.00 88.37 A ATOM 2410 CB ALA A 313 99.595 35.166 4.176 1.00 88.37 A ATOM 2410 CB ALA A 313 99.595 35.166 4.176 1.00 88.18 A ATOM 2410 CB ALA A 313 99.595 35.166 4.176 1.00 88.18 A ATOM 2410 CB ALA A 314 90.557 30.625 3.735 1.00 87.53 A ATOM 2411 N THR A 314 90.557 30.625 3.735 1.00 87.53 A ATOM 2412 CA THR A 314 90.557 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.556 30.625 3.735 1.00 87.53 A ATOM 2416 OGI THR A 314 89.9165 29.692 2.581 1.00 86.46 A ATOM 2417 CG2 THR A 314 90.615 29.692 2.581 1.00 86.46 A ATOM 2420 C SER A 315 89.946 30.262 1.393 1.00 87.19 A ATOM 2421 CA SER A 315 89.946 30.262 1.393 1.00 87.19 A ATOM 2421 CA SER A 315 89.946 30.262 1.393 1.00 87.19 A ATOM 2421 CA SER A 315 89.946 30.262 1.393 1.00 87.19 A ATOM 2421 CA SER A 315 89.946 30.262 1.393 1.00 87.19 A ATOM 2421 CA SER A 315 89.946 30.262 1.393 1.00 87.19 A ATOM 2422 CB SER A 315 89.606 30.262 1.393 1.00 87.19 A ATOM 2423 OG SER A 315 89.606 30.262 1.393 1.00 87.19 A ATOM 2424 N GLN A 316 89.666 29.689 -2.288 1.00 86.57 A ATOM 2425 CG GLN A 316 89.666 30.661 -3.551 1.00 85.61 A ATOM 2426 C GLN A 316 89.666															С
ATOM 2396 CG ASP A 311 87.502 39.029 2-6.619 1.00 89.53 A ATOM 2397 ODI ASP A 311 88.543 39.686 -2.848 1.00 90.95 A ATOM 2398 ODZ ASP A 311 88.543 39.686 -2.848 1.00 90.95 A ATOM 2399 N VAL A 312 86.995 35.302 -0.043 1.00 88.24 A ATOM 2401 C VAL A 312 88.737 34.311 1.376 1.00 88.26 A ATOM 2402 O VAL A 312 88.737 34.311 1.376 1.00 88.60 A ATOM 2403 CB VAL A 312 88.407 33.288 0.414 1.00 88.60 A ATOM 2403 CB VAL A 312 88.407 33.238 1.271 1.00 87.95 A ATOM 2404 CGI VAL A 312 84.949 33.489 0.890 1.00 87.95 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.392 1.00 87.95 A ATOM 2406 N ALA A 313 89.218 34.475 2.608 1.00 88.84 A ATOM 2407 CA ALA A 313 89.218 34.475 2.608 1.00 88.57 A ATOM 2408 C ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2409 O ALA A 313 90.649 34.372 2.916 1.00 88.37 A ATOM 2401 CB ALA A 313 90.955 35.166 4.176 1.00 88.37 A ATOM 2410 CB ALA A 313 90.955 35.166 4.176 1.00 88.05 A ATOM 2410 CB ALA A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2411 N THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2414 O THR A 314 90.651 29.692 2.581 1.00 87.67 A ATOM 2415 CB THR A 314 90.651 30.625 3.735 1.00 87.67 A ATOM 2416 OGI THR A 314 90.651 30.48 5.079 1.00 87.53 A ATOM 2417 CG2 THR A 314 90.651 30.48 5.079 1.00 87.53 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.67 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.67 A ATOM 2418 N SER A 315 89.966 30.289 -1.099 1.00 85.61 A ATOM 2420 C SER A 315 89.666 30.289 -1.099 1.00 85.61 A ATOM 2421 C SER A 315 89.666 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.661 28.971 0.268 1.00 85.47 A ATOM 2423 CG GLN A 316 89.666 30.289 -1.099 1.00 85.61 A ATOM 2424 N GLN A 316 89.666 30.289 -1.099 1.00 85.61 A ATOM 2427 C GLN A 316 89.666 30.289 -1.099 1.00 85.61 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2427 C GLN A 316 91.021 30.062 -4.242 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.292 1.00 85.53 A ATOM 2430 CD GLN A 316 91.0															0
ATOM 2397 ODL ASP A 311										-					C
ATOM 2398 OD2 ASP A 311 86.457 39.356 -3.222 1.00 90.95 A ATOM 2400 CA VAL A 312 86.995 35.302 -0.043 1.00 88.26 A ATOM 2401 C VAL A 312 87.233 34.565 1.201 1.00 88.26 A ATOM 2401 C VAL A 312 88.737 34.311 1.376 1.00 88.26 A ATOM 2402 O VAL A 312 88.737 34.311 1.376 1.00 88.26 A ATOM 2403 CB VAL A 312 88.407 33.285 0.414 1.00 88.80 A ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2404 CGI VAL A 312 84.949 33.489 0.890 1.00 87.95 A ATOM 2406 N ALA A 313 89.218 34.475 2.508 1.00 87.55 A ATOM 2406 CC VAL A 312 87.009 32.145 0.392 1.00 87.55 A ATOM 2406 N ALA A 313 89.218 34.475 2.508 1.00 88.64 A ATOM 2407 CA ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2409 O ALA A 313 91.138 32.925 3.070 1.00 88.57 A ATOM 2409 C ALA A 313 92.311 32.633 2.816 1.00 88.18 A ATOM 2401 CB ALA A 313 90.965 35.166 4.176 1.00 88.18 A ATOM 2410 CB ALA A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2411 N THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.87 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.87 A ATOM 2414 O THR A 314 90.059 28.474 2.768 1.00 87.87 A ATOM 2418 N SER A 315 89.941 30.148 5.079 1.00 87.13 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2410 C SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.966 29.609 -2.238 1.00 86.63 A ATOM 2421 CO SER A 315 89.666 29.609 -2.238 1.00 84.67 A ATOM 2422 CB SER A 315 88.665 29.684 -5.660 1.00 85.61 A ATOM 2424 N GLN A 316 88.552 29.737 -4.435 1.00 87.53 A ATOM 2426 C GLN A 316 88.656 29.684 -5.660 1.00 85.61 A ATOM 2427 O GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2428 CB GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2429 CG GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2421 CA SER A 315 88.656 29.684 -5.660 1.00 85.61 A ATOM 2422 CG SER A 315 88.666 29.680 -2.238 1.00 84.67 A ATOM 2423 CG GLN A 316 91.929 33.262 -3.946 1.00 85.53 A ATOM 2424 CA SER A 315 88.666 29															C
ATOM 2399 N VAL A 312 86.995 35.302 -0.043 1.00 88.24 A ATOM 2401 C VAL A 312 87.233 34.565 1.201 1.00 88.26 A ATOM 2401 C VAL A 312 88.737 34.311 1.376 1.00 88.60 A ATOM 2402 O VAL A 312 88.737 34.311 1.376 1.00 88.60 A ATOM 2402 O VAL A 312 88.440 33.985 0.414 1.00 88.69 A ATOM 2404 CGI VAL A 312 86.407 33.238 1.271 1.00 87.35 A ATOM 2405 CG2 VAL A 312 86.407 33.238 1.271 1.00 87.35 A ATOM 2406 N ALA A 313 89.218 34.475 2.608 1.00 87.35 A ATOM 2407 CA ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2408 C ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2409 O ALA A 313 91.138 32.925 3.070 1.00 88.37 A ATOM 2409 O ALA A 313 90.655 35.166 4.176 1.00 88.37 A ATOM 2410 CB ALA A 313 90.965 35.166 4.176 1.00 88.37 A ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.557 30.625 3.755 1.00 87.53 A ATOM 2410 O THR A 314 90.059 28.474 2.768 1.00 87.53 A ATOM 2416 OGI THR A 314 89.913 30.148 5.079 1.00 87.19 A ATOM 2416 OGI THR A 314 89.913 30.148 5.079 1.00 87.19 A ATOM 2416 CG SER A 315 89.946 30.262 1.393 1.00 87.19 A ATOM 2417 CG2 THR A 314 89.91 30.148 5.079 1.00 86.46 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 86.46 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 86.46 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 86.43 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 86.67 A ATOM 2420 C SER A 315 89.806 30.261 -3.551 1.00 86.43 A ATOM 2421 CB SER A 315 89.966 29.609 -2.238 1.00 84.67 A ATOM 2422 CB SER A 315 88.660 29.609 -2.238 1.00 84.67 A ATOM 2423 OG SER A 315 88.660 29.609 -2.238 1.00 84.67 A ATOM 2424 N GLN A 316 89.668 30.261 -3.551 1.00 85.17 A ATOM 2427 C GLN A 316 89.668 30.261 -3.551 1.00 85.51 A ATOM 2428 CB GLN A 316 89.668 30.261 -3.551 1.00 85.53 A ATOM 2429 CG GLN A 316 89.668 30.261 -3.551 1.00 85.53 A ATOM 2420 CB SER A 315 88.650 29.684 -5.660 1.00 86.43 A ATOM 2430 CD GLN A 316 89.668 30.261 -3.551 1.00 85.53 A ATOM 2431 CB CLN A 316 91.921 30.062 -4.242 1.00 83.88 A ATOM 2432 CB CB A 316 89.666															0
ATOM 2401 C VAL A 312 887.233 34.565 1.201 1.00 88.26 A ATOM 2402 O VAL A 312 887.37 34.311 1.376 1.00 88.60 A ATOM 2402 O VAL A 312 89.440 33.288 1.271 1.00 88.69 A ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.392 1.00 87.59 A ATOM 2406 C N. ALA A 313 89.218 34.475 2.608 1.00 87.59 A ATOM 2407 CA ALA A 313 99.218 34.475 2.608 1.00 88.84 A ATOM 2407 CA ALA A 313 99.218 34.475 2.608 1.00 88.87 A ATOM 2408 C ALA A 313 99.31 32.633 2.816 1.00 88.18 A ATOM 2409 O ALA A 313 91.138 32.925 3.070 1.00 88.37 A ATOM 2410 CB ALA A 313 90.635 35.166 4.176 1.00 88.18 A ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 89.941 30.148 5.079 1.00 87.78 A ATOM 2414 O THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2415 CB THR A 314 88.581 30.591 5.184 1.00 87.19 A ATOM 2419 CA SER A 315 89.966 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.866 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.866 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.866 30.289 -1.099 1.00 86.43 A ATOM 2421 C G GLN A 316 89.666 29.609 -2.238 1.00 86.53 A ATOM 2422 CB SER A 315 89.866 30.289 -1.099 1.00 85.61 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 86.53 A ATOM 2422 CB SER A 315 89.866 30.289 -1.099 1.00 85.61 A ATOM 2424 N GLN A 316 89.668 30.289 -1.099 1.00 85.61 A ATOM 2424 C G GLN A 316 89.668 30.289 -1.099 1.00 85.61 A ATOM 2424 C G GLN A 316 89.668 30.289 -1.099 1.00 85.61 A ATOM 2424 C G GLN A 316 89.668 30.289 -1.099 1.00 85.61 A ATOM 2424 C G GLN A 316 89.668 30.289 -1.099 1.00 85.61 A ATOM 2424 C G GLN A 316 89.668 30.289 -1.099 1.00 85.61 A ATOM 2424 C G GLN A 316 89.668 30.289 -1.099 1.00 85.61 A ATOM 2425 CA GLN A 316 89.668 30.289 -1.099 1.00 85.61 A ATOM 2426 C G GLN A 316 89.668 30.289 -1.099 1.00 85.53 A ATOM 2427 C G GLN A 316 89.668 30.289 -1.099 1.00 85.51 A ATOM 2428 C G GLN A 316 91.329 33.2844 -5.660 1.00 86.72 A ATOM 2431 OEI GLN A 316 91.329 33.286 -4.221 1.00 85.53 A ATOM 2432															N
ATOM 2401 C VAL A 312 88.737 34.311 1.376 1.00 88.60 A ATOM 2402 O VAL A 312 89.440 33.985 0.414 1.00 88.89 A ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.392 1.00 87.35 A ATOM 2406 N ALA A 313 89.218 34.475 2.608 1.00 87.35 A ATOM 2406 N ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2408 C ALA A 313 91.138 32.925 3.070 1.00 88.37 A ATOM 2409 O ALA A 313 92.311 32.633 2.816 1.00 88.16 A ATOM 2410 CB ALA A 313 90.965 35.166 4.176 1.00 88.37 A ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.87 A ATOM 2414 O THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2417 CG2 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2421 O SER A 315 89.660 29.484 0.194 1.00 86.43 A ATOM 2421 O SER A 315 89.666 29.699 -2.238 1.00 86.72 A ATOM 2421 O SER A 315 89.666 29.699 -2.238 1.00 86.73 A ATOM 2421 O SER A 315 89.666 29.699 -2.238 1.00 86.46 A ATOM 2421 O SER A 315 89.666 29.699 -2.238 1.00 86.73 A ATOM 2422 CB SER A 315 89.666 29.699 -2.238 1.00 86.43 A ATOM 2421 O SER A 315 89.666 29.699 -2.238 1.00 86.72 A ATOM 2422 CB SER A 315 89.666 29.699 -2.238 1.00 86.72 A ATOM 2422 CB SER A 315 89.666 29.699 -2.248 1.00 86.46 A ATOM 2423 OG SER A 315 89.666 29.699 -2.248 1.00 86.46 A ATOM 2424 N GLN A 316 89.666 29.699 -2.248 1.00 86.46 A ATOM 2422 CB SER A 315 89.666 29.699 -2.248 1.00 86.46 A ATOM 2423 OG SER A 315 89.666 29.699 -2.248 1.00 86.467 A ATOM 2424 N GLN A 316 89.666 29.699 -2.248 1.00 86.467 A ATOM 2424 N GLN A 316 89.666 29.699 -2.248 1.00 86.467 A ATOM 2427 O GLN A 316 89.666 29.699 -2.248 1.00 86.467 A ATOM 2428 CB GLN A 316 91.921 30.062 -4.422 1.00 85.53 A ATOM 2428 CB GLN A 316 91.921 30.925 -4.402 1.00 85.53 A ATOM 2430 N ASP A 317 85.25									•						C
ATOM 2402 C VAL A 312 89.440 33.985 0.414 1.00 88.89 A ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2404 CGI VAL A 312 84.949 33.238 1.271 1.00 87.55 A ATOM 2406 N ALA A 313 89.218 34.475 2.608 1.00 87.59 A ATOM 2406 N ALA A 313 99.649 34.475 2.608 1.00 88.87 A ATOM 2407 CA ALA A 313 99.649 34.475 2.608 1.00 88.87 A ATOM 2409 O ALA A 313 91.138 32.925 3.070 1.00 88.37 A ATOM 2409 O ALA A 313 92.311 32.633 2.816 1.00 88.87 A ATOM 2409 O ALA A 313 90.649 34.475 2.608 1.00 88.37 A ATOM 2409 O ALA A 313 90.659 35.166 4.176 1.00 88.37 A ATOM 2410 CB ALA A 313 90.653 31.664 1.76 1.00 88.37 A ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.5576 30.625 3.735 1.00 87.78 A ATOM 2413 C THR A 314 90.055 28.474 2.768 1.00 87.87 A ATOM 2413 C THR A 314 90.055 28.474 2.768 1.00 87.87 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.87 A ATOM 2416 OGI THR A 314 89.941 30.148 5.079 1.00 87.87 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.87 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.87 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.87 A ATOM 2421 O SER A 315 89.946 30.262 1.393 1.00 87.87 A ATOM 2421 O SER A 315 89.946 30.262 1.393 1.00 87.87 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.053 27.650 -0.240 1.00 86.43 A ATOM 2422 CB SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2422 CB SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2422 CB SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2422 CB SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2422 CB SER A 315 88.053 27.650 -0.240 1.00 86.73 A ATOM 2422 CB SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2424 CB SEN A 316 89.866 29.609 -2.238 1.00 84.67 A ATOM 2427 O GLN A 316 89.866 29.609 -2.238 1.00 84.67 A ATOM 2428 CB GLN A 316 89.866 29.609 -2.238 1.00 84.57 A ATOM 2428 CB GLN A 316 99.302 32						-4	•				**				Č
ATOM 2403 CB VAL A 312 86.407 33.238 1.271 1.00 87.95 A ATOM 2405 CG2 VAL A 312 84.949 33.489 0.890 1.00 87.59 A ATOM 2405 CG2 VAL A 312 87.009 32.145 0.392 1.00 87.59 A ATOM 2406 N ALA A 313 89.218 34.475 2.608 1.00 88.84 A ATOM 2407 CA ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2408 C ALA A 313 91.138 32.925 3.070 1.00 88.37 A ATOM 2409 O ALA A 313 92.311 32.633 2.816 1.00 88.18 A ATOM 2410 CB ALA A 313 90.965 35.166 4.176 1.00 88.37 A ATOM 2411 N THR A 314 90.565 35.166 4.176 1.00 88.37 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2414 O THR A 314 90.059 28.474 2.768 1.00 87.19 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2417 CG2 THR A 314 89.963 30.262 1.393 1.00 87.13 A ATOM 2418 N SER A 315 89.816 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.816 30.262 1.393 1.00 87.13 A ATOM 2421 O SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2421 O SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2421 O SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2420 C SER A 315 89.610 29.484 0.194 1.00 86.72 A ATOM 2421 O SER A 315 89.610 29.484 0.194 1.00 85.17 A ATOM 2422 CB SER A 315 89.666 30.289 -1.099 1.00 85.61 A ATOM 2423 OG SER A 315 88.656 29.609 -2.238 1.00 84.67 A ATOM 2424 N GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2425 CA GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2427 O GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2428 CB GLN A 316 91.229 33.02 -4.402 1.00 85.53 A ATOM 2429 CG GLN A 316 91.229 33.02 -4.402 1.00 85.53 A ATOM 2429 CG GLN A 316 91.229 33.02 -4.402 1.00 85.53 A ATOM 2420 CD SER A 315 89.668 30.261 -3.551 1.00 83.71 A ATOM 2421 O SEN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2423 CD GLN A 316 91.229 3.302 32.444 -4.259 1.00 85.53 A ATOM 2424 CD GLN A 316 91.229 3.302 32.444 -4.259 1.00 85.53 A ATOM 2430 CD GLN A 316 91.229 3.302 32.444 -4.259 1.00 85.53 A ATOM 2431 CBI									•		1.				. 0
ATOM 2405 CG1 VAL A 312 84.949 33.489 0.890 1.00 87.35 A ATOM 2406 N ALA A 313 87.009 32.145 0.392 1.00 87.59 A ATOM 2406 N ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2407 CA ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2408 C ALA A 313 91.138 32.925 3.070 1.00 88.37 A ATOM 2409 O ALA A 313 92.311 32.633 2.816 1.00 88.18 A ATOM 2410 CB ALA A 313 90.965 35.166 4.176 1.00 88.37 A ATOM 2411 N THR A 314 90.256 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.576 30.625 3.735 1.00 87.578 A ATOM 2414 O THR A 314 89.941 30.148 5.079 1.00 87.78 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2421 O SER A 315 89.616 29.609 -2.238 1.00 85.17 A ATOM 2422 CB SER A 315 89.666 29.609 -2.238 1.00 86.75 A ATOM 2423 OG SER A 315 89.666 29.609 -2.238 1.00 86.75 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 86.77 A ATOM 2426 C GLN A 316 89.666 29.609 -2.238 1.00 86.77 A ATOM 2427 O GLN A 316 88.550 29.684 -5.660 1.00 86.53 A ATOM 2428 CB GLN A 316 89.666 29.609 -2.238 1.00 86.77 A ATOM 2429 CG GLN A 316 88.550 29.684 -5.660 1.00 86.57 A ATOM 2429 CG GLN A 316 88.550 29.684 -5.660 1.00 85.51 A ATOM 2421 CC GLN A 316 88.550 29.684 -5.660 1.00 85.53 A ATOM 2422 CB SER A 315 89.666 29.609 -2.238 1.00 84.67 A ATOM 2423 CC GLN A 316 88.550 29.684 -5.660 1.00 85.53 A ATOM 2424 N GLN A 316 88.550 29.684 -5.660 1.00 85.53 A ATOM 2425 CA GLN A 316 91.921 30.062 -4.242 1.00 83.88 A ATOM 2426 C GLN A 316 91.921 30.062 -4.242 1.00 85.87 A ATOM 2427 O GLN A 316 91.921 30.062 -4.242 1.00 85.67 A ATOM 2433 N ASP A 317 85.550 30.958 -4.659 1.00 85.53 A ATOM 2433 C R SP A 317 85.550 30.958 -4.659 1.00 80.52 A ATOM 2436 C ASP A 317 85.550 30.958 -4.659 1.00 81.10 A													•		C
ATOM 2406 N ALA A 313														Α	C
ATOM 2407 CA ALA A 313 90.649 34.372 2.916 1.00 88.57 A ATOM 2408 C ALA A 313 91.138 32.925 3.070 1.00 88.37 A ATOM 2409 O ALA A 313 92.311 32.633 2.816 1.00 88.37 A ATOM 2410 CB ALA A 313 90.965 35.166 4.176 1.00 88.37 A ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.87 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.87 A ATOM 2416 OGI THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2417 CG2 THR A 314 89.941 30.591 5.184 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.661 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.666 29.609 -2.238 1.00 84.67 A ATOM 2424 N GLN A 316 88.658 30.261 -3.551 1.00 86.72 A ATOM 2424 O GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 88.658 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2427 O GLN A 316 88.656 29.699 -2.238 1.00 84.67 A ATOM 2429 CG GLN A 316 88.656 29.699 -2.238 1.00 84.67 A ATOM 2429 CG GLN A 316 88.656 29.699 -2.238 1.00 84.67 A ATOM 2429 CG GLN A 316 88.556 29.694 -5.660 1.00 83.71 A ATOM 2429 CG GLN A 316 88.556 29.694 -5.600 1.00 83.71 A ATOM 2429 CG GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2429 CG GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2429 CG GLN A 316 91.921 30.062 -4.242 1.00 83.88 A ATOM 2430 CD GLN A 316 91.921 32.399 -4.402 1.00 85.54 A ATOM 2432 NE2 GLN A 316 91.921 30.962 -4.242 1.00 83.88 A ATOM 2432 NE2 GLN A 316 91.921 30.962 -4.242 1.00 83.88 A ATOM 2432 NE2 GLN A 316 91.921 30.962 -4.242 1.00 85.54 A ATOM 2432 NE2 GLN A 316 91.921 30.962 -4.242 1.00 83.88 A ATOM 2432 NE2 GLN A 316 91.921 30.962 -4.242 1.00 85.54 A ATOM 2432 NE2 GLN A 316 91.929 33.262 -3.946 1.00 86.70 A ATOM 2432 CB	ATOM	2405	CG2	VAL	Α	312		87.009	32.145	0.392	1.00	87:59	. :	A	Ç
ATOM 2408 C ALA A 313 91.138 32.925 3.070 1.00 88.37 A ATOM 2409 O ALA A 313 92.311 32.633 2.816 1.00 88.18 A ATOM 2410 CB ALA A 313 90.965 35.166 4.176 1.00 88.05 A ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2413 C THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OGI THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2417 CG2 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.866 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 88.661 28.971 0.268 1.00 86.53 A ATOM 2422 CB SER A 315 88.661 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.53 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.666 29.609 -2.238 1.00 83.71 A ATOM 2426 C GLN A 316 89.666 29.609 -2.238 1.00 83.71 A ATOM 2426 C GLN A 316 89.668 30.261 -3.551 1.00 84.67 A ATOM 2429 CG GLN A 316 89.668 30.261 -3.551 1.00 83.13 A ATOM 2429 CG GLN A 316 89.668 29.609 -2.238 1.00 84.67 A ATOM 2426 C GLN A 316 89.668 29.609 -2.238 1.00 84.67 A ATOM 2426 C GLN A 316 89.668 29.609 -2.238 1.00 84.67 A ATOM 2426 C GLN A 316 89.668 30.261 -3.551 1.00 84.67 A ATOM 2427 O GLN A 316 89.668 30.261 -3.551 1.00 84.67 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.921 30.962 -3.946 1.00 86.70 A ATOM 2432 NE2 GLN A 316 91.921 32.399 -4.402 1.00 85.53 A ATOM 2432 NE2 GLN A 316 91.921 32.399 -4.402 1.00 85.53 A ATOM 2432 NE2 GLN A 316 91.921 30.062 -4.242 1.00 85.54 A ATOM 2432 NE2 GLN A 316 91.921 30.062 -4.242 1.00 85.54 A ATOM 2432 NE2 GLN A 316 91.929 33.262 -3.946 1.00 85.57 A ATOM 2432 NE2 GLN A 316 91.929 33.925 -4.402 1.00 85.57 A ATOM 2432 NE2 GLN A 316 91.929 33.02 32.444 -4.259 1.00 85.57 A ATOM 243	ATOM	2406	Ν.	ALA	Α	313		89.218	34.475	2.608	1.00	88.84		Α	N
ATOM 2410 CB ALA A 313 92.311 32.633 2.816 1.00 88.18 A ATOM 2411 N THR A 314 90.965 35.166 4.176 1.00 88.37 A ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2413 C THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2414 O THR A 314 90.059 28.474 2.768 1.00 87.87 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 90.631 30.799 6.276 1.00 86.46 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 89.806 30.289 -1.009 1.00 86.46 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2426 C GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2427 O GLN A 316 88.559 29.737 -4.435 1.00 82.54 A ATOM 2428 CB GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2429 CG GLN A 316 88.559 29.737 -4.435 1.00 82.54 A ATOM 2428 CB GLN A 316 91.921 30.062 -4.242 1.00 83.88 A ATOM 2428 CB GLN A 316 91.921 30.062 -4.242 1.00 83.88 A ATOM 2430 CD GLN A 316 91.229 33.262 -3.946 1.00 86.70 A ATOM 2431 OEI GLN A 316 91.229 33.262 -3.946 1.00 85.53 A ATOM 2432 NE2 GLN A 316 91.229 33.262 -3.946 1.00 85.57 A ATOM 2433 N ASP A 317 85.150 29.855 -4.659 1.00 85.53 A ATOM 2434 CA ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2437 CB ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.250 30.958 -4.121 1.00 81.61 A	ATOM	2407	CA	ALA	Α	313	· •	90.649	34.372	2.916	1.00	88.57		A	С
ATOM 2410 CB ALA A 313 90.965 35.166 4.176 1.00 88.37 A ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2414 O THR A 314 90.059 28.474 2.768 1.00 87.87 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2417 CG2 THR A 314 90.631 30.799 6.276 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2424 N GLN A 316 89.668 30.261 -3.551 1.00 86.72 A ATOM 2424 N GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2425 CA GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.656 29.694 -5.660 1.00 83.13 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.921 30.062 -4.242 1.00 83.88 A ATOM 2428 CB GLN A 316 91.921 30.062 -4.242 1.00 85.47 A ATOM 2429 CG GLN A 316 91.921 32.399 -4.402 1.00 85.53 A ATOM 2428 CB GLN A 316 91.921 32.399 -4.402 1.00 85.53 A ATOM 2429 CG GLN A 316 91.921 32.399 -4.402 1.00 85.47 A ATOM 2430 CD GLN A 316 91.921 32.399 -4.402 1.00 85.53 A ATOM 2431 OEI GLN A 316 91.921 32.399 -4.402 1.00 85.53 A ATOM 2432 NE2 GLN A 316 91.921 32.399 -4.402 1.00 85.53 A ATOM 2433 N ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2434 CA ASP A 317 85.250 30.958 -4.259 1.00 79.03 A ATOM 2435 C ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2438 CB ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2438 CB ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2438 CB ASP A 317 85.250 30.958 -4.121 1.00 79.27 A															С
ATOM 2411 N THR A 314 90.236 32.029 3.478 1.00 88.05 A ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2414 O THR A 314 90.059 28.474 2.768 1.00 87.78 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2417 CG2 THR A 314 90.631 30.799 6.276 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2424 N GLN A 316 88.656 29.609 -2.238 1.00 84.67 A ATOM 2424 C G GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2427 O GLN A 316 88.552 29.737 -4.435 1.00 82.54 A ATOM 2428 CB GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2429 CG GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2429 CG GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2429 CG GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2429 CG GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.921 30.062 -4.242 1.00 83.88 A ATOM 2431 OEI GLN A 316 91.921 30.062 -4.242 1.00 85.53 A ATOM 2432 NE2 GLN A 316 91.921 30.062 -4.242 1.00 83.88 A ATOM 2433 N ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2434 CA ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2438 CG ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2438 CG ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2438 CG ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2438 CG ASP A 317 85.250 30.958 -4.121 1.00 79.27 A															
ATOM 2412 CA THR A 314 90.576 30.625 3.735 1.00 87.53 A ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2414 O THR A 314 90.059 28.474 2.768 1.00 87.87 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2417 CG2 THR A 314 90.631 30.799 6.276 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2423 OG SER A 315 88.666 29.609 -2.238 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 86.72 A ATOM 2425 CA GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2426 C GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2428 CB GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2428 CB GLN A 316 91.420 31.209 -5.162 1.00 85.47 A ATOM 2430 CD GLN A 316 91.981 32.399 -4.402 1.00 85.57 A ATOM 2431 OE1 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2434 CA ASP A 317 85.550 30.958 -4.121 1.00 79.27 A ATOM 2438 CG ASP A 317 85.696 27.619 -3.683 1.00 81.61 A												· .			Ç
ATOM 2413 C THR A 314 90.165 29.692 2.581 1.00 87.78 A ATOM 2414 O THR A 314 90.059 28.474 2.768 1.00 87.87 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2417 CG2 THR A 314 90.631 30.799 6.276 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.806 30.282 1.393 1.00 87.13 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.806 30.289 -1.099 1.00 85.61 A ATOM 2423 OG SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2426 C GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.559 29.737 -4.435 1.00 82.54 A ATOM 2429 CG GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2429 CG GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2430 CD GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2431 OE1 GLN A 316 91.29 33.262 -3.946 1.00 86.70 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2435 C ASP A 317 85.696 27.619 -3.683 1.00 81.61 A															И
ATOM 2414 O THR A 314 90.059 28.474 2.768 1.00 87.87 A ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2417 CG2 THR A 314 90.631 30.799 6.276 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.653 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2426 C GLN A 316 88.559 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2431 OE1 GLN A 316 91.29 33.262 -3.946 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 85.696 27.619 -3.683 1.00 81.51 A ATOM 2435 C ASP A 317 85.696 27.619 -3.683 1.00 81.51 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.61 A	(C
ATOM 2415 CB THR A 314 89.941 30.148 5.079 1.00 87.19 A ATOM 2416 OG1 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2417 CG2 THR A 314 90.631 30.799 6.276 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 90.082 31.491 -1.061 1.00 85.61 A ATOM 2422 CB SER A 315 88.063 27.650 -0.240 1.00 85.61 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2426 C GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 84.53 A ATOM 2430 CD GLN A 316 91.921 33.262 -3.946 1.00 86.70 A ATOM 2431 OE1 GLN A 316 91.29 33.262 -3.946 1.00 85.53 A ATOM 2432 NE2 GLN A 316 91.29 33.262 -3.946 1.00 85.53 A ATOM 2433 N ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.61 A							-								C O
ATOM 2416 OG1 THR A 314 88.581 30.591 5.184 1.00 86.46 A ATOM 2417 CG2 THR A 314 90.631 30.799 6.276 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.806 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 90.082 31.491 -1.061 1.00 85.17 A ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2426 C GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2427 O GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2428 CB GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2420 CG GLN A 316 91.021 30.062 -4.242 1.00 84.53 A ATOM 2430 CD GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2431 OE1 GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2432 NE2 GLN A 316 91.29 33.262 -3.946 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.590 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.61 A															· C
ATOM 2417 CG2 THR A 314 90.631 30.799 6.276 1.00 86.98 A ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 90.082 31.491 -1.061 1.00 85.17 A ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2430 CD GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2431 OE1 GLN A 316 91.420 32.399 -4.402 1.00 85.47 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 80.52 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.550 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 85.696 27.619 -3.683 1.00 81.61							1.								Ö
ATOM 2418 N SER A 315 89.946 30.262 1.393 1.00 87.13 A ATOM 2419 CA SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.529 29.737 -4.35 1.00 83.71 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.420 31.209 -5.162 1.00 85.47 A ATOM 2431 OEI GLN A 316 91.921 32.399 -4.402 1.00 85.47 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 85.53 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A															Č
ATOM 2419 CA SER A 315 89.610 29.484 0.194 1.00 86.43 A ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 90.082 31.491 -1.061 1.00 85.17 A ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.666 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.981 32.399 -5.162 1.00 84.53 A ATOM 2430 CD GLN A 316 91.981 32.399 -4.402 1.00 86.70 A ATOM 2431 OE1 GLN A 316 91.981 32.399 -4.402 1.00 85.53 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2435 C ASP A 317 85.696 27.619 -3.683 1.00 81.50 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 85.696 27.619 -3.683 1.00 81.10 A									•						N
ATOM 2420 C SER A 315 89.806 30.289 -1.099 1.00 85.61 A ATOM 2421 O SER A 315 90.082 31.491 -1.061 1.00 85.17 A ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2430 CD GLN A 316 91.420 31.209 -5.162 1.00 85.47 A ATOM 2431 OE1 GLN A 316 91.921 33.262 -3.946 1.00 85.53 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.696 27.619 -3.683 1.00 81.61 A															C
ATOM 2422 CB SER A 315 88.161 28.971 0.268 1.00 86.53 A ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13, A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2430 CD GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2431 OEI GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2432 NE2 GLN A 316 91.981 32.399 -4.402 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 85.53 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.550 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61											1,00	85.61	•		С
ATOM 2423 OG SER A 315 88.053 27.650 -0.240 1.00 86.72 A ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13, A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2430 CD GLN A 316 91.420 31.209 -5.162 1.00 85.47 A ATOM 2431 OEI GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2431 OEI GLN A 316 91.921 33.262 -3.946 1.00 86.70 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.550 30.958 -4.659 1.00 79.03 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61	MOTA	2421	0	SER	Α	315		90.082	31.491	-1.061.	1.00	85.17		Α	0
ATOM 2424 N GLN A 316 89.666 29.609 -2.238 1.00 84.67 A ATOM 2425 CA GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.981 32.399 -5.162 1.00 84.53 A ATOM 2430 CD GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2431 OEI GLN A 316 91.981 32.399 -4.402 1.00 86.70 A ATOM 2432 NE2 GLN A 316 91.229 33.262 -3.946 1.00 86.70 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.466 1.00 80.52 A ATOM 2435 C ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A	MOTA	2422	ĊВ	SER	Α	315		88.161	28.971	0.268	1.00	86.53		Α	С
ATOM 2425 CA GLN A 316 89.668 30.261 -3.551 1.00 83.71 A ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13, A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2430 CD GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2431 OEI GLN A 316 91.229 33.262 -3.946 1.00 86.70 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.550 29.855 -4.659 1.00 79.03 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 85.696 27.619 -3.683 1.00 81.10 A	MOTA	2423	OG						27.650	-0.240				A	Ò
ATOM 2426 C GLN A 316 88.529 29.737 -4.435 1.00 82.54 A ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13, A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2430 CD GLN A 316 91.420 31.209 -5.162 1.00 85.47 A ATOM 2431 OE1 GLN A 316 91.229 33.262 -3.946 1.00 85.47 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.590 30.958 -4.121 1.00 79.03 A ATOM 2436 O ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A	ATOM	2424	N								1.00	84.67			N
ATOM 2427 O GLN A 316 88.656 29.684 -5.660 1.00 83.13 A ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2430 CD GLN A 316 91.420 31.209 -5.162 1.00 85.47 A ATOM 2431 OE1 GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2432 NE2 GLN A 316 91.229 33.262 -3.946 1.00 86.70 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.550 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61															Ċ
ATOM 2428 CB GLN A 316 91.021 30.062 -4.242 1.00 83.88 A ATOM 2429 CG GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2430 CD GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2431 OEI GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2432 NE2 GLN A 316 91.229 33.262 -3.946 1.00 86.70 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.550 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61						•									Ċ
ATOM 2429 CG GLN A 316 91.420 31.209 -5.162 1.00 84.53 A ATOM 2430 CD GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2431 OE1 GLN A 316 91.229 33.262 -3.946 1.00 86.70 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61										,					0
ATOM 2430 CD GLN A 316 91.981 32.399 -4.402 1.00 85.47 A ATOM 2431 OE1 GLN A 316 91.229 33.262 -3.946 1.00 86.70 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61															С
ATOM 2431 OE1 GLN A 316 91.229 33.262 -3.946 1.00 86.70 A ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61															· C
ATOM 2432 NE2 GLN A 316 93.302 32.444 -4.259 1.00 85.53 A ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61 A							£ .								C
ATOM 2433 N ASP A 317 87.413 29.374 -3.800 1.00 81.34 A ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61 A															И Ò
ATOM 2434 CA ASP A 317 86.250 28.806 -4.486 1.00 80.52 A ATOM 2435 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61 A															N
ATOM 2435 C ASP A 317 85.150 29.855 -4.659 1.00 79.03 A ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61 A									•						· C
ATOM 2436 O ASP A 317 85.250 30.958 -4.121 1.00 79.27 A ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61 A										and the second second					C
ATOM 2437 CB ASP A 317 85.696 27.619 -3.683 1.00 81.10 A ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61 A										-			_		ŏ
ATOM 2438 CG ASP A 317 86.445 26.327 -3.945 1.00 81.61 A							٠.								Ċ
															C,
			OD1					85.860	25.251		1.00	82.22			0

											-		
ATOM	2440	OD2	ASP	Α	317	87,616	26.284	-4.381	1.00	83.59		Α	0
ATOM	2441	N	ASP			84.113	29.504	-5.421		77.10		Α	N
ATOM	2442	CA	ASP		2	82.894	30.315	-5.525		76.86		Α	С
ATOM	2443	C	ASP			81.909	29.982	-4.398		75.04		A	C
ATOM	2444	0	ASP			81.025	29.137	-4.565		76.20		Α	ō
ATOM	2445	CB			318	82.212	30.093	-6.880		76.77		A	č
•	2446	CG	ASP			83.043	30.590	-8.044		77.69		A	ç
ATOM			ASP				30.781	-7.874	1.00	•		A	Ö
ATOM	2447					84.270						A	Ö
ATOM	2448		ASP			82.550	30.811	-9:170		77.17			
ATOM ·	2449	N	CYS			82.065	30.653	-3.259	•	73.01		A	N
ATOM	2450	CA	CYS			81.211	30.428	-2.094		71.05		Α	C
ATOM	2451	С	CYS			80.044	31.414	-2.062		68.67		Α	C
MOTA	2452	0	CYS			80.235	32.611	-2.258		66.66		Α	0
ATOM	2453	CB	CYS	А	319	82.026	30.554	-0.803	1.00	71.92		A.	С
ATOM	2454	SG	CYS	Α	319	83.414	29.394	-0.686	1.00	74.09		Α	S
ATOM	2455	N	TYR	Α	320	78.839	30.899	-1.832	1.00	66.44		Α	N
ATOM	2456	CA	TYR	Α	320	77.645	31.728	-1.691	1.00	64.22		Α	С
ATOM	2457	С	TYR	Α	320	77.013	31.498	-0.320	1.00	62.66		Α	С.
MOTA	2458	0	TYR	Α	320	77.332	30.523	0.365	.1.00	61.41		Α	0
ATOM	2459	СВ	TYR			76.611	31.384	-2.764		64.24		Α	C
MOTA	2460	CG	TYR			77.108	31.323	-4.198		64.74		A	C
ATOM	2461		TYR			77.957	30.302	-4.632		64.73		A	C
ATOM	2462		TYR			76.682	32.260	-5.139		64.78		A	č
			TYR					-5.961		64.57		A	E
MOTA	2463				•	78.390	30.239						
ATOM	2464		TYR			77,106	32.202	-6.465		64.30	~	A	Ċ
ATOM	2465	CZ	TYR			77.957	31.193	-6.871		64.35		A	C
MOTA	2466	OН	TYR			78.374	31.146	-8.185		62.89		Α	0
MOTA	2467	N	LYS			76.111	32.392			59.11		Α	N
ATOM	2468	CA	LYS			75.320	32.189	1.286	1.00	58.36		Α	· C
ATOM	2469	, C	LYS	А	321	73.816	32.265	0.996	1.00	55.24		Α	C
MOTA	2470	0.	LYS	Α	321	73.353	33.065	0.181	1.00	47.87		Α	0
ATOM	2471	CB	LYS	Α	321	75.747	33.160	2.398	1.00	59.88	:	Α	· C
ATOM	2472	CG.	LYS	Α	321	74.853	34.371	2.629	1.00	62.72		Α	C
ATOM	2473	CD	LYS	Α	321	75.277	35.120	3.888	1.00	64.37		Α	Ç
ATOM	2474	CE	LYS			74.699.	34.483	5.145	1.00	64.91		Α	C
ATOM	2475	NZ	LYS			74.999	35.289	6.363		66.23		A	N
ATOM	2476	N			322	73.062	31.401	1.664		51.88		A	N
MOTA	2477	CA			322	71.619	31.397	1.531		49.73		À	Ċ
MOTA	2478		PHE		•	71.087	32.737	2.019		49.06		A	C
			PHE							45.51		A	Ö
ATOM	2479	0 .				71.346	33.148	3.154					C
ATOM	2480	CB	PHE			70.999	30.235	2.321		49.10		A	
ATOM	2481	CG			322	69.573	29.925	1.935		44.63		A	C
ATOM	2482				322 .	68.563	29.921	2.894		45.73		A	C
MOTA	2483		PHE			69.248	29.629	0.623		39.25		A	С.
ATOM	2484		PHE		_	67.252	29.634	,		44.70		Α	C.
ATOM	2485		PHE			67.950	29.351	0.261		41.50		Α	C.
MOTA	2486	CZ	PHE	A	322	66.947	29.353	1.218	1.00	42.07		Α	, C
MOTA	2487	N	ALA	A	323	70.339	33.399	1.142	1.00	47.94		· A	N
MOTA	2488	CA	ALA	Α	323	69.901	34.771	1.336	1.00	46.61		Α	С
ATOM	2489	C ·	ALA	Α	323	68.426	34.839	1.712	1.00	44.07		Α	C
ATOM	2490	0	ALA	Α	323 .	67.809	35.887	1.548	1.00	33.93		Α	0
ATOM	2491	. CB	ALA	Α	323	70.133	35.564	0.054	1.00	49.38		Α	C
ATOM	2492	N	ILE	Α	324:	67.853	33.725	2.169	1.00	37,73		Α	N
ATOM	2493	CA	ILE	Α	324	66.520	33.746	2.739	1.00	38.21		Α	. С
ATOM	2494	C			324	66.643	33.442	4.214		34.73		Α	C
ATOM	2495	0			324	67.442	32.611	4.619		36.43		A-	0
ATOM	2496	CB			324	65.577	32.736	2.038		38.89		A	C
MOTA	2497		ILE			65.714	32,862	0.518		38.34	•	Α	Č
ATOM	2498		ILE			64.126	32.960	2.495		40.76		A	č
										41.65		A	· C
ATOM	2499		ILE			64.684	32.110	-0.277					
ATOM	2500	N	-		325	65.840	34.112	5.020		32.69		A	N
MOTA	2501	CA			325	66.013	34.031	6.460		38.71		A	C
MOTA	2502	C			325	64.722	34.407	7.139		39.64		Α	` C
ATOM	2503	0			325	63.792	34.883	6.509		40.29		A	0
ATOM	2504	CB			325	67.150	34.953	6.925		40.03		A	C
MOTA	2505	OG			325	66.788	36.327	6.838		38.81		A	0
ATOM	2506	N	GLN	A	326	64.677	34.221	8.440	1.00	38.99		Α	N
ATOM	2507	CA	GLN	Α	326	63.414	34.244	9.134	1.00	39.09		Α	С
ATOM	2508	С	GLN	Α	326	63.294.	35.561	9.885	1.00	36.76		A	C
ATOM	2509	0			326	64.259	36.297	10.004		39.83		A	0
ATOM	2510	CB			326	63.287	33.011	10.037		41.88		A	C
ATOM	2511	CG			326	64.481	32.024	9.957		45.10		A	С
ATOM	2512	CD			326	64.374	30.817	10.892		50.52		A	Ċ
ATOM	2513		GLN			65.393	30.286	11.322		51.97		A	ŏ
				•	1.1.					···			•

•						•						(
MOTA	2514	NE2	GLN	Α	326	63.151	30.388	11.202	1.00	51.73		Α	N
MOTA	2515	N			327	62.108	35.878	10.374	1.00	30.92		Α	N
MOTA	2516	CA	SER	Α	327	61.904	37.188	10.988	1.00	35.17		Α	C
ATOM	2517	c ·	SER	Α	327	60.788	37.140	11.993	1.00	36.09		A	Ç
MOTA	2518	ο `	SER			59.978	36.208	12.018		38.75		Α	Ö
ATOM	2519	CB	SER			61.578	38.259	9.921		35.42		Α	С
ATOM	2520	OG			327	60.882	39.380	10.482	1.00	33.54		Α	0
ATOM	2521	N	SER			60.723	38.174	12.808		31.04		Α	N
ATOM	2522	CA			328	59.597	38.328		-	37.93		A	C
ATOM	2523	C	SER			58.868	39.654	13.520		39.07		A	Ċ.
ATOM	2524	ō	SER			57.960	39.967	14.296	-	43.35		A	o.
ATOM	2525	CB	SER			60.086	38.167	15.123		41.74		A	Ċ
ATOM	2526	OG	SER			60.967	39.227	15.485	•	45.41		A	ō
ATOM	2527	Ŋ	THR			59.257	40.409	12.492		37.31		A	Ŋ
ATOM	2528		THR			58.675	41.715	12.186		40.83		A	C
ATOM	2529	C			329	58.020	41.703	10.797		39.53		A	C
ATOM	2530	ō	THR			57.814	42.771	10.218		37.06		A	o
ATOM	2531	ĊВ	THR			59.770	42.814	12.193		42.95		A	ċ
ATOM .	2532		THR			60.831	42.455	11.287		41.26		A	0.
ATOM	2533		THR			60.441	42.933	13.558		44.90	-	A	c .
ATOM	2534	N	GLY			57.724	40.510	10.270		37.04		A	N
ATOM	2535	CA	GLY			57.032	40.358	8.988					C
ATOM	2536	C				57.032	39.930	7.836		35.68		A _.	
		0	GLY GLY				-	8.047		34.85		A	C
ATOM ATOM	2537					59.067	39.526			32.50		A	0
	2538	Ņ.	THR			57.398	39.974	6.605		33.39		A	N
ATOM	2539	CA	THR			58.207	39.709	5.419		28.89		A	C
MOTA	2540		THR			58.979	40.971	4.998		27.79	•	A	Č.
ATOM	2541	O ·	THR			58.496	42.086	5.175		33.40		A	0
ATOM	2542	CB	THR			57.320	39.267	4.249	-	30.99		, A	Ć
ATOM	2543		THR			56.695	38.020	4.561		30.88		A	0
ATOM	2544		THR			58.157	38.989	2.983		33.73		A	Ç
ATOM	2545	И	VAL			60.177	40.764	4.470		22.23		A	N
ATOM	2546	CĄ	VAL			61.065	41.847	3.989		27.82		Α	C
MOTA	2547		VAL			61.630	41.466	2.632		24.10		Α	,C
ATOM	2548	0 .	VAL			62.394	40.540	2.501		26.31		Α	0
MOTA	2549	CB	VAL			62.274	42.139	4.935		28.52		Α	С
MOTA	2550		VAL			63.138	43.293	4.367		32.83		, A	C
ATOM	2551		VAL			61,801	42.468	6.329		30.87		Ą	C
ATOM	2552	N .	MET			61.242	42.199	1.591		29.37		A	N
MOTA	2553	ÇA	MEŢ			61.760	41.968	0.251		23.35		Α	С
-	2554	C	MET			63.012	42.813	-0.015		26.09		Α	С
	2555	0			333	62.920	43.935	-0.512		22.66		Α	0
MOTA.	2556	CB	MET		•	60.687	42.296	-0.804		26.84		Ą	C
ATOM	2557	CG	MET		-	59:550	41.295	-0.855	1.00	28.90		A	С
ATOM	2558	ŞD	MET			58.086	41.883	-1.807		33.93		Α	S '
MOTA	2559	CE	MET			58.640	41.701	-3.325		30.83		A	С
MOTA	2560	N	GLY			64.179	42.265	0.294		26.44		Α	N
ATOM	2561	CA	GLY			65.428	43.015	0.190	1.00	28.29		Α	C
ATOM	2562	С	GLY			66.044	43.002	-1.185		28.85		Α	C
MOTA	2563	0.	GLY			65.370	42.791	-2.185	1.00	28.04		Α	0
ATOM	2564	N	AĻA			67.350	43.220	-1.243	1.00	29.46		A	N
ATOM	2565	CA	ALA			68.097	43.214	-2.489		28.30		Α	C
MOTA	2566	C	ALA			67.939	41.952	-3.330	1.00	31.11		Α	Ç
ATOM	2567	0	ALA			68.001	42.021	-4.563	1.00	29.82		Α	0
ATOM	2568	CB	ALA			69.578	43.470	-2,206	1.00	34.20	-	Α	C
ATOM:	2569		VAL			67.738	40.805	-2.671	1.00	31.66		Α	N
ATOM	2570	CA	VΑĻ	Ą	336	67.506	39.532	-3.349	1.00	35.42		Α	C
ATOM	2571	Ċ	VAL	А	336	66.412	39.733	~4.393	1.00	32.46		Α	С
ATOM	2572	0	VAL	A	336	66.626	39.464	-5.574	1.00	36.08		Α	0
ATOM	2573	CB	VAL	Α	336	67.096	38.405	-2.341	1.00	38.14		Α	C
ATOM	2574	CG1	VAL	Α	336	66.466	37.196	-3.057	1.00	41.63		A	C
ATOM	2575	CG2	VAL	A	336	68.294	37.960	-1.518	1.00	42.38		Α	C
ATOM .	2576	N	ILE	Α	337 ` :	65.271	40.248	-3.944	1.00	32.57		Α	N
MOTA	2577	CA	ILE	Α	337	64.130	40.507	-4.832	1.00	31.81		A	\mathbf{C}^{\perp}
MOTA	2578	C.	ILE	Α	337	64.389	41.687	-5.760	1.00	29.91		Α	С
ATOM	2579	0	ĮLΕ			64.231	41.592	-6.969		27.22		A	Ō
ATOM	2580	CB	ILE	Α	337	62.835	40.731	-4.005		34.05	•	A	С
ATOM	2581		ILE			62.466	39.472	-3.216		37.53		A	C
ATOM	2582		ILE			61.668	41.174	-4.903		34.31		Α	C
ATOM	2583		ILE			61.814	38.383	-4.043		39.14		A	c
ATOM	2584	N	MET			64.813	42.816	-5.202		28.42		A	N
ATOM	2585	CA	MET			64.909	44.038	-5.998		27.14	,	A	C
ATOM	2586	C	MET			65.914	43.969	-7.154		28.91		A	C
ATOM	2587	0	MET			65.753	44.650	-8.166		28.30		Α	0

ATOM	2588	CB	MET A	338		65.195	45.214	-5.067	1.00	25.93		Α	C
ATOM	2589	CG	MET A	338		64.083	45.457	-4.082	1.00	27.03		Α	C
ATOM	2590	SD	MET A	338		64.367	46.907	-3.076	1.00	25.07		Α	s
ATOM	2591	CE	MET A			64.174	48.235	-4.312		20.81		Α	Ċ
ATOM	2592	N	GLU A	339		66.954	43.142	-7.040		29.81		Α	N
MOTA	2593	CA	GLU I			67.909	43.018	-8.142		32.30		A	C
ATOM	2594	С	GLÙ A			67.318	42.371	-9.403		30.06		Α	Ċ
ATOM	2595	ō	GLU A			67.874		-10.488		33.61		A	ŏ
ATOM	2596	ĊВ	GLU- A			69.174	42.269	-7.704		33.90		A	č
ATOM	2597	CG	GLU A			70.197	43.177	-7.027		38.40		Α	Ċ
ATOM	2598	CD.	GLU /			71.139	42.424	-6.107		42.07		A	c
ATOM	2599		GLU A			71.439	41.242	-6.391		39.96		A	0
ATOM	2600		GLU A			71.570	43.015	-5.095		43.98		A	0
MOTA		N						-9.259		30.73			
	2601	CA	GLY F				41,687					A	И
ATOM	2602 2603	C	GLY A			65.475 64.626		-10.411 -11.162		29.00		A	Ć
ATOM										25.72		A	C
ATOM	2604	0	GLY A			64.289		-12.331		25.52	*	A	0
ATOM	2605	N	PHE A		. (64.278		-10.509		21.32		A	N
ATOM	2606	CA	PHE A			63.243		-11.017		17.05		A	C
	2607	C	PHE A			63.561		-10.971		19.54		A	C
ATOM	2608	0	PHE I			64.379		-10.174		20.37		A.	. 0
MOTA	2609	CB	PHE A			61.961		-10.222		18.19		A	.C
ATOM	2610	CG	PHE A			61.630		-10.137		20.96		Α	C
ATOM	2611		PHE I			61.108		-11.237		22.17		A	C
ATOM	2612		PHE A			61.910	41.717			23.21		Α	С
MOTA	2613		PHE A		. •	60.853		-11.160		17.74		Α	C
MOTA	2614		PHE A			61.650	40.351	-8.939		23.34		Α	C
MOTA	2615	cz	PHE A			61.134	39.705	-10.012	1.00	24.23		Α	C
ATOM	2616	N	TYR A	342		62.952	46.413	-11.875	1.00	17.67		Α	N
ATOM	2617	CA	TYR A	342		62.820	47.837	-11.702	1.00	17.52		Α	C
ATOM	2618	C	TYR A	342		61.608	48.077	-10.810	1.00	22.25		Α	C
ATOM	2619	0	TYR A	342		60.494	47.620	-11.100	1.00	19.30	, .	Α	0
ATOM	2620	CB	TYR A	342		62.656	48.485	-13.040	1.00	17.92		Α	C
ATOM	2621	CG	TYR A	342		62.654	49.980	-13.067	1.00	18.37		Α	C
ATOM	2622	CD1	TYR A	342		63.668	50.730	-12.467	1.00	19.68		Α	C
ATOM :	2623	CD2	TYR A	342		61.681	50.654	-13.765	1.00	23.05		Α	С
ATOM	2624	CE1	TYR A	342		63.684	52.115	-12.562	1.00	22.84		Α	C
ATOM	2625	CE2	TYR A	342		61.693		-13.868	1.00	22.40		Α	C
ATOM	2626	CZ.	TYR A	342		62.693	52.750	-13.264	1.00	22.81		Α	C
ATOM	2627	OH	TYR A	342		62.667		-13.385		26.20		Α	, O.
ATOM	2628	N	VAL A	343		61.840	48.777	-9.705		15.05		A	N
ATOM	2629	CA	VAL A			60.827	49.008	-8.688		17.53	1.		C
ATOM	2630	Ç	VAL A			60.510	50.494			14.20		Α	Ċ
ATOM	2631	Ó	VAL A			61.378	51.334	-8.376		15.91		A	Ö.
ATOM	2632		VAL A			61.259	48.442	-7.305		15.41		Α	Ċ
ATOM	2633		VAL A			60.123		-6.267		18.03		A	Č
ATOM	2634		VAL A			61.704	47.022	-7.473		18.07		A	c
ATOM	2635	N	VAL A			59.231	50.791	-8.767		11.66		Α	N
ATOM	2636	CA	VAL A			58.682	52.123			12.22		A	C
ATOM	2637	С	VAL A			57.903	52.401	-7.510		13.35		A	Ċ
ATOM	2638	ō	VAL A			56.875	51.802	-7.235		16.24		A	ő
ATOM	2639	CB	VAL A			57,774		-10.027		15.89		A	Ċ
ATOM	2640		VAL A			57.159		-10.035		18,74		A	Ċ
ATOM	2641		VAL A			58.587		-11.280		18.50		A	C
ATOM	2642	N	PHE A			58.418	53.322	-6.713		16.40		Α	N
	2643	CA	PHE F			57.771	53.763	-5.483		15.06		A	Ċ
ATOM	2644	C.	PHE A			56.833	54.934	-5.754		15.39		A	C
ATOM	2645	ō	PHE A		_	57.192	56.113	-5.655		17.43		A	0
ATOM	2646	СВ	PHE A	-	•	58.846	54.062	-4.416		17.40		Α	C
ATOM ·	2647	CG	PHE A			59.670	52.855	-4.040		15.11		A	C
ATOM	2648	,	PHE A			60.702	52.386	-4.863					
										13.07		A	Ċ
`ATOM ATOM	2649		PHE P			59.402	52.153	-2.882		13.71		A	C
	2650					61.446	51.242	-4.510		15.84		A	. C
ATOM	2651		PHE A			60.169	51.040	-2.507		11.40		A	. C
MOTA	2652	CZ	PHE A			61.186	50.581	-3.327		15.67		A	С
ATOM	2653	N	ASP F			55.633	54.601	-6.206		16.44		A	N
MOTA	2654	CA	ASP A			54.671	55.593	-6.672		15.35		A	C .
ATOM	2655	C	ASP A	-		53.855	56.101	-5.495		16.03		A	С
ATOM	2656	0	ASP A			52.711	55.700			19.50		A٠	Ò
ATOM	2657	CB	ASP A			53.800	54.986	-7.778		18.03		Α	Ċ
MOTA	2658	CG	ASP A			52.872	55.995	-8.420		25.99		A	C
ATOM	2659		ASP A			52.844	57.166	-7.967		28.56		Α	0
ATOM	2660		ASP F			52.120	55.680	-9.382		23.57		A	Ó
ATOM	2661	N	ARG A	347		54.491	56.978	-4.725	1.00	17.55		À	N

MOTA	2662	CA .	ARG	Α	347	53.908	57.497	-3.499	1.00	21.29		A :	C
ATOM	2663	С			347	52.632	58.294	-3.785		18.95		Α	C
ATOM	2664	0	ARG			51.701	58.266	-2.991		22.26		A	0
ATOM	2665	CB	ARG			54.932	58.369	-2.765		19.24		A .	C
ATOM ATOM	2666 2667	CG CD	ARG			56.184 57.359	57.635 58.594	-2.282		22.31 23.46		A A	C
ATOM	2668	NE			347	57.009	59.652	-1.092		23.40		A	N
ATOM	2669	CZ			347	57.403	59.691	0.183		30.72		A	· C
ATOM	2670		ARG			57.031	60.700	0.959		32.59		A	N
ATOM	2671		ARG			58.174	58.745	0.696		27.96		'A	N
ATOM	2672	N	ALA	A	348	52.590	58.959	-4.936	1.00	21.83		A	N
ATOM	2673	CA	ALA			51.439	59.780	-5.327		24.64			/ C
ATOM	2674	C			348	50.148	58.953	-5.399		28.25		A	C
ATOM ATOM	2675 2676	O	ALA		348	49.056		-5.028		24.96		A	O C .
ATOM	2677	CB N			349	51.721 50.282	60.425 57.724	-6.668 -5.896		24.31 25.65		A A	N.
ATOM	2678	CA	ARG			49.151	56.806	-6.029		25.84		A	Ċ,
ATOM	2679	С			349	49.168	55.627	-5.077		25.58		A	C
ATOM	2680	0	ARG	A	349	48.460	54.653	-5.319	1.00	25.28		A	. 0
ATOM	2681	CB	ARG	A	349	49.100	56.276	-7.459	1.00	29.93		A	Ç
ATOM	2682	CG	ARG			49.176	57.344	-8.488		33.60		A	С
MOTA	2683	CD			349	48.502	57.000	-9.775		36.74		A	C
ATOM ATOM	2684 2685	NE CZ			349 349	48.827 48.278		-10.763 -10.814		42.71		A A	N C
ATOM	2686		ARG			47.316	59.227 59.600	-9.964		46.44		A.	N
ATOM	2687		ARG			48.686		-11.751		50.26		Α.	
ATOM	2688		LYS			49.954	55.721	-3.989		23.32		A	N
ATOM	2689		LYS	A	350	50.022	54.700	-2.945		24.27		A	C
ATOM	2690	Ċ			350	 50.163	53.310	-3.549	1.00	19.69		Α	С
ATOM	2691	0			350	49.374	52.429	-3.260		20.60		A	0.
ATOM	2692	CB			350	48.757	54.704	-2.079		28.78		A	C
ATOM	2693		LYS			48.522	55.929	-1.231		34.60		A	C
ATOM ATOM	2694 2695	CE	LYS		350	47.436	55.639 54.361	-0.141 0.695		37.26 36.46		A A	C
ATOM	2696		LYS			46.822	54.210	1.887		40.30		A	N
ATOM		N			351	51.147	53.140	-4.420		19.35		Α	N
ATOM	2698 .	CA	ARG			51.371	51.855	-5.063		17.19		Α	Ç
MOTA	2699	C	ARG	A	351	52.842	51.641	-5.383	1.00	15.48		· A	. C
MOTA	2700	0			351	53.609	52.576	-5.490		17.66		A	0
ATOM	2701	ĊB			351	50.501	51.758	-6.328		15.07		A'	Ċ
ATOM ATOM	2702 2703	CD	ARG ARG			50.851 49.837	52.687 52.667	-7.388 -8.565		17.01 17.81		A A.	c c
ATOM	2704	NE	ARG			50.304	53.485	-9.674		17.24		A.	Ŋ
ATOM	2705	CZ			351	49.711		-10:862		23.21		A	Ĉ
ATOM	2706		ARG			48.651		-11.095		21.30		A	N
ATOM	2707	ŅH2	ARG			50.213	54.312	-11.831	1.00	24.26		A	N
ATOM	2708	N			352	53.240	50.376	-5.500		17.16		A	N
ATOM	2709		ILE			54.581.		-5.928		16.38		A	C.
ATOM ATOM	2710 2711	C C			352 352	54.510 53.800	49.221 48.234	-7.208 -7.277		15.28 15.77		A A	C,
ATOM	2712	СВ			352	55.303	49.167	-4.857		17.10		·A	č
ATOM	2713		ILE			55.387	49.937	-3.540		24.67		A	Ċ.
MOTA	2714	CG2	ILE	A	352	56.740	48.790	-5.322	1.00	17.46		Α	C
ATOM	2715		ILE			55.844		-2.381		28.46	200	A	Ç
ATOM	2716	N			353	55.291	49.633	-8.199		14.93	-	A	N _.
MOTA	2717	CA C			353	55.345	48.949 48.090	-9.481 -9.631		14.98		Α	C
ATOM ATOM	2718 2719	0	GLY		353	56.559 57.649	48.466	-9.185		15.46 14.60		A A	0
ATOM	2720	N			354	56,385		-10.290		15.06		A	N
ATOM	2721		PHE			57.469		-10.577		14.45		Α	C.
MOTA	2722	С			354	57.482		-12.064		15.57		Α	С
ATOM	2723	0	PHE	A	354	56.431		-12.685		17.67		Α	0
ATOM	2724				354	57.285	44.716	-9.860		16.68		Α	C
ATOM	2725	CG			354	57.443	44.793	-8.362		16.38		A	C
MOTA	2726		PHE			56.371	45.164	-7.563		16.54		A	C
ATOM ATOM	2727 2728		PHE PHE			58.640	44.430	-7.756 -6.177		19.54 20.88		Ā	C
ATOM	2729				354	56.490 58.771	45.231 44.487	-6.177 -6.362		19.27		A A	C
ATOM	2730	CZ			354	57.684	44.906	-5.571		15.66		A	c
ATOM	2731	N			355	58.684		-12.606		18.28		A	N
ATOM	2732	CA			355	58.922		-13.999		16.49		Α	С
ATOM	2733	С	ALA			60.245		-14.081		19.90		Α	C
ATOM	2734	0	ALA			61.106		-13.211		21.15		Α	0
ATOM	2735	CB	ALA	Α	355	58.922	46.569	-14.878	1.00	17.48		Α	С.

	ATOM	2736	N	VAL	А	356	60.399	43.827 -15.120	1.00	20.94	A	N
	ATOM	2737	CA	VAL			61.650	43.107 -15.305		21.72	Α	C
	ATOM	2738	Ç.	VAL			62.776	44.111 -15.553		19.54	A	C
	ATOM	2739	Ö	VAL			62.672	44.989 -16.402		21.35	A	0
	ATOM	2740	CB	VAL			61.562	42.087 -16.473		19.47	A	C
	MOTA	2741		VAL			62.936	41.435 -16.724		20.92	A	C
	MOTA	2742		VAL			60.517	41.025 -16.174		23.31	A	С
	ATOM	2743	N	SER	Α	357	63.853	43.982 -14.793	1.00	24.48	A ·	N
	MOTA	2744	CA	SER	Α	357	64.963	44.919 -14.883	1.00	26.30	A	C
	ATOM	2745	С	SER	Α	357	65.767	44.633 -16.142	1.00	26.78	Α	С
	MOTA	2746	0	SER			66.071	43.481 -16.420	1.00	30.47	Α	0
	ATOM	2747	СВ	SER			65.896	44.775 -13.676		25.63	A	C
	ATOM	2748	OG	SER			67.009	45.645 -13.815		30.40	A	o
	ATOM	2749	N	ALA	-		66.128	45.682 -16.867		32.11	A	N
	ATOM	2750	CA	ALA			67.012	45.567 -18.029		36.75	A	C
	ATOM	2751	С	ALA	Α	358.	68.445	45.147 -17.666		38.55	A	С
	ATOM	2752	0	ALA.	A	358	69.233	44.838 -18.560	1.00	42.49	Α	0
	ATOM	2753-	CB	ALA	Α	358	67.025	46.881 -18.802	1.00	37.17	A	C
	ATOM	2754	N	CYS	A	359	68.782	45.129 -16.374	1.00	39.61	Α	N
	ATOM	2755		CYS			70.124	44.742 -15.920		41.87	Α	С
		2756	C	CYS			70.169	43.490 -15.049		42.74	A	С
	MOTA	2757		CYS			71.241	43.132 -14.550		45.60	A	ō
		2758						45.913 -15.175		41.64	A.	Ç.
٠	ATOM		CB	CYS			70.801	-				
	ATOM	2759	SG	CYS			70.275	46.154 -13.447		42.44	A	S
	ATOM	2760	N :			360	69.040	42.811 -14.847		42.50	A	N
	MOTA	2761	CA ·	HIS	Α	360	69.071	41.569 -14.081	1.00	43.24	A	С
	MOTA	2762	С	HIS	Α	360	69.903	40.538 -14.848	1.00	44.08	A	C
	ATOM	2763	0	HIS	Α	360	69.932	40.545 -16.089	1.00	37.43	Α	0
	ATOM	2764	CB	HIS	Α	360	67.665	41.037 -13.772	1.00	43.88	Α	С
	ATOM	2765	CG	HIS			67,018	40.307 -14.909		42.46	Α	C
	ATOM	2766		HIS			66.587	40.941 -16.054		43.80	A	N
		2767						·				
	ATOM			HIS			66.711	38.997 -15.067		43.40	A	Ċ
	ATOM	2768		HIS			66.053	40.053 -16.876		42.29	Α	C
	ATOM	2769	NE2	HIS	A,	360	66.107	38.867 -16.295		40.67	A	N
	ATOM	2770	N	VAL	A	361	70.604	39.688 -14.108	1.00	46.31	Α .	N
	ATOM	2771	CA	VAL	Α	361	71.444	38.671 -14.736	1.00	53.46	Α	C
	ATOM	2772	C	VAL	Α	361	70.569	37.519 -15.208	1.00	55.15	Α	C
	MOTA	2773	0 .	VAL	A	361	69.788	36.965 -14.433	1.00	55.26	Α	0
	ATOM	2774	СВ			361		38.144 -13.812		55.33	Α	С
	ATOM	2775		VAL				39.146 -13.769		58.02	A	C
	ATOM	2776		VAL				37.824 -12.392		57.18	A	Ċ
	ATOM	2777	N	HIS			70.687	37.191 -16.491		58.23	A	N
	ATOM	2778	CA	HIS			69.957	36.071 -17.078		61.27	A	Ç
	ATOM	2779	,C .	HIS			70.886	35.268 -17.991		63.90	A	C
	ATOM	2780.	Q	HIS	Α	362	72.106	35.470 -17.978	1.00	63.06	Ą	0
	ATOM	2781	CB	HIS	Α	362	68.707	36.570 -17.820	1.00	61.80	Α	C
	ATOM	2782	CĢ	HIS	Ą	362	68.987	37.603 -18.869	1.00	64.30	Α.	C,
	MOTA	2783	ND1	HIS	À	362	69.075	38.949 -18.582	1.00	65.54	Α	N
	MOTA	2784		HIS			69.176	37.491 -20.206		66.55	A	C
	ATOM	2785		HIS			69.318	39.621 -19.694		66.26	A	G.
		2786						38.760 -20.694			A	N
	ATOM			HIS			69.384			67.04		
	ATOM	2787	N	ASP			70.311	34.348 -18.765		66.38	A	N
	ATOM	2788	CA	ASP			71.086	33.477 -19.645		68.15	Α	C
	ATOM	2789	С	ASP			70.180 _.	32.971 -20.779		69.51	A .	C
	ATOM .	2790	0 .	ASP	Α	363	69.558	33.787 -21.466	1.00	68.87	A	Ó
	ATOM .	2791	CB	ASP	Α	363	71.711	32.343 -18.820	1.00	67.85	A	C
	ATOM .	2792	CG	ASP	Α	363	70.722	31.702 -17.869	1.00	67.03	Α	C
	ATOM	2793		ASP		•	71.157	31.015 -16.923		67.42	Α	0
	ATOM.	2794		ASP			69.490	31.839 -17.981		67.25	A	Ō
	ATOM	2795	N	GLU			70.111	31.651 -20.981		71.44	A	N
		,										
	MOTA	2796	CA	GLU			69.186	31.037 -21.944		71.30.	A	Ċ
	•	2797	Ç	GLU			68.223	30.026 -21.289		69.20	A	C
	ATOM	2798	0	GLU			67.280	29.569 -21.938		70.14	Α.	0
	ATOM	2799	ĊВ	GLU	Ā	364	69.980	30.351 -23.069	1.00	73.26	A.	C
	MOTA	2800 -	CG	GLU	A	364	69.968	31.097 -24.399	1.00	74.89	A	C.
	ATOM	2801	CD	GLU		,	70.651	32.451 -24.320		76.70	A	C
	ATOM	2802		GLU			71.868	32.494 -24.028		77.66	A	O
	ATOM	2803		ĢĽU			69.969	33.476 -24.549		79.09	A	o
	ATOM		N	PHE			68.455	29.685 -20.017		66.67	A	N
	ATOM	2805		PHE			67.630	28.704 -19.299		64.31	A	C
	MOŢA	2806,		PHE			66.403	29.347 -18.633		61.08	A	С
	ATOM	2807	0			365	65.266	29.082 -19.026		62.40	A	0
	ATOM	2808	CB	PHE.	Α	365	68.464	27.959 -18.245	1.00	65.86	A	C
	MOTA	2809	CG	PHE	Α	365	69.365	26.886 -18.819	1.00	67.96	A	С

							.1				:			
ATOM	2810	CD1	PHE	Α	365		70.557	27.227	-19.461	1.00	68.71		Α	C
ATOM	2811	CD2	PHE .	Α	365		69.029		-18.705		68.02		Ą	С
MOTA	2812.		PHE .				71.395		-19.989		68.45		Α	Ċ
MOTA	2813		PHE .				69.860		-19.232		68.28		A	C
ATOM	2814	CZ	PHE .				71.045		-19.874		68.33 54.06		A	C N
MOTA MOTA	2815 2816	N CA	ARG .				66 636 65 544		-17.624 -16.874		49.84		A	Ċ
ATOM	2817	C	ARG				65.747		-16.729		48.18		A	C
ATOM	2818	.0	ARG .				66.867		-16.857		47.96		A	ō
ATOM	2819	CB	ARG .				65.424	-	-15.490		47.56		Α	C
ATOM	2820	CG	ARG .	Α	366		65.240	28.655	-15.525	1.00	43.64		Α	C
MOTA	2821	CD	ARG :	A	366		64:974		-14.174	1.00	38.98		Α	C
MOTA	2822	NE	ARG .			٠.	66.159		-13.327		41.26		Α	N
MOTA	2823	CZ	ARG				66.242		-12.147		36.86		A	С
MOTA	2824		ARG		,		65.203		-11.644		42.11		A	N
ATOM	2825 2826	Nnz N	ARG .				67.375 64.654		-11.471 -16.446		36.33 46.71		A A	N N
ATOM	2827	CA	THR				64.675		-16.397		46.92		A	C
ATOM		C	THR				63.746		-15.331				Α	Ċ
MOŢA	2829	0	THR .				62.744		-14.973		42.54		Α	0
ATOM	2830	CB	THR .	A	367		64.306	35.019	-17.783	1.00	46.57		Α	C
MOTA	2831		THR				65.143		-18.774	1.00	49.10		Α	0
MOTA	2832		THR				64.628		-17.902		48.33		A	С
ATOM	2833	N	ALA .				64.105		-14.819		43.12		A	Ŋ
ATOM	2834	CA	ALA				63,206		-13.962		37.88		A	C
ATOM ATOM	2835 2836	C -	ALA ALA				61.990 62.091		-14.772 -15.946		31.67		A A	C O
ATOM	2837	CB	ALA .				63.920	•	-13.359		37.36		A	C
ATOM	2838	N	ALA				60.827		-14.133		30.27		A	N
ATOM ·	2839		ALA				59.608		-14.828		25.65		Α	C.
MOTA	2840	Ċ	ALA	Α	369		58.590	38.454	-13.917	1.00	18.85		Α	$C_{:}$
MOTA	2841	0	ALA				58.574	38.264	-12.707	1.00	26.84	:	Α,	0
MOTA	2842	CB	ALA				58.988		-15.484		26,18		Α	C
MOTA	2843	N	VAL		-		57.772		-14.543		21.79		A	N
ATOM	2844	CA	VAL.				56.623		-13.921		22.63		A	C
ATOM ATOM	2845 2846	C 0	VAL			:	55.460 55.491		-14.864 -16.007		23.34		A A	Ċ O
ATOM	2847	CB	VAL				56.806		-13.783		24.21		A	C
ATOM	2848		VAL				55.606		-13.069		20.64		A	c
ATOM	2849		VAL				58.091		-13.021		24.95		A	Ċ
MOTA	2850	N	GLŲ				54.435		-14.367		23.45		. A	N
ATOM	2851	CA	GLU	Ą	371		53.364	38.364	-15.208	1.00	26.07		Α	C
MOTA	2852	С	ĢĻU				52.005		-14.556		21.52		A	C
ATOM	2853	0	GLU				51.886		-13.346		22.32		A.	0
ATOM	2854	CB	GLU .		1		53.593		-15.452		29.04		A	C
ATOM	2855 2856	CG CD	GLU				55.383		-16.508 -16.373		37.79 42.98		A A	C C
ATOM	2857		GLU				55.957		-17.389		47.96		A	0
ATOM	2858		GLU				55.428		-15.271		46.63		A	Ō
ATOM	2859	N	GLY				50,997		-15.375		23.24	*. '	Α	N
ATOM	2860	CA	GLY				49.629	38.995	-14.902	1.00	20.28		Α	Ç
MOTA	2861	С	GLY				48.652		-16.060		21.84	•	A	C.
ATOM	2862	0	GLY .				49.087		-17.231		23.46		A	0
ATOM	2863	N	PRO				47.355		-15.790		20.69		`A	N
ATOM ATOM	2864 2865	.CA	PRO PRO				46.738		-14.455 -14.050		18.48 19.08		A A	C
ATOM	2866	o	PRO			٠.			-14.906		22.98		A	õ
ATOM	2867	СВ	PRO				45.466		-14.607		20.66		Α.	č
ATOM	2868	CG	PRO				45.050	39.692	-16.023		22.14		Α	C
ATOM	2869	CD	PRO			."	46.328	39.516	-16.811		21.78		Α	_ C
MOTA	2870	N	PHE				46,385		-12.742		15.75		Â.	, M
ATOM	2871	CA	PHE .				45.882		-12.195		16.86		Ą	C
ATOM	2872	C	PHE				44.622		-11.376		21.99		A	C
ATOM .	2873	O CB	PHE				44.370 46.973		-10.943 -11.360		19.16		A A	0
ATOM ATOM	2874 2875	CB.	PHE PHE				48.148		-11.360		16.65 19.99		A A	C C
ATOM	2876		PHE				48.097		-12.170		23.38		Á	Ċ,
ATOM	2877		PHE				49.294		-12.221		22.80		A	c ·
ATOM	2878				374		49.189		-13.711		27.21		A	C
MOTA	2879		PHE				50.385		-12.980	1.00	22.14		A	C
ATOM	2880	CZ	PHE				50.341		-13.722		25.11		Α	· C
MOTA	2881	N	VAL		-		43.822		-11.207		21.84		A	N
ATOM	2882	CA	VAL				42.614		-10.407	-	22.25		A	C
ATOM	2883	С	VAL	A	375		42.948	34.876	-9.049	1.00	20.48		Α	С

								-						
ATOM	2884	0	VAL	Α	375		43.281	33.695	-8.943	1.00	24.24		Α	0
ATOM	2885	CB	VAL	Α	375		41.439	34.656	-11.016	1.00	24.98		Α	. C
ATOM	2886		VAL				40.206		-10.119		22.92		A	C
MOTA	2887		VAL				41.117		-12.404		23.43		A	C
ATOM	2888	N CA			376		42.881		-8.023 -6.637		22.65 22.10		A A	С
MOTA MOTA	2889 2890	CA	THR THR				43.104 42.027		-5.737	•	17.23		A	c
ATOM	2891	Ö	THR				41.856		-5.647		20.58		Α	. 0
ATOM	2892	CB	THR				44.490		-6.137		23.66		A	c ·
ATOM	2893		THR			T	45.515		-7.080		25.31		Α	0
ATOM	2894	CG2	THR	Α	376		44.873	35.046	-4.844	1.00	26.58		Ą	Ċ
ATOM	2895	N	LEU				41.265		-5.080		22.23		Α	N
MOTA	2896	CĄ			377		40.199		-4.205		23.50		A	C.
ATOM	2897	C .	LEU				40.708		-2.776				A	. C
ATOM ATOM	2898 2899	O CB	LEU LEU				41.710		-2.401 -4.217		28.12 26.48		A A	O C
ATOM	2900	CG			377		38.541	•	-5.622		29.26		A	C
ATOM	2901		LEU				37.314				30.60		A	Č
ATOM	2902		LEU				38.247				29.52		Α	C
ATOM	2903	N	ASP	Α	378		39.981	36.441	-2.014	1.00	29.13.		A	N
MOTA	2904	ÇA	ASP	Α	378		40.177		-0.574	1.00	35.27		Α	С
MOTA	2905	C	ASP				41.540				33.60		A	C
ATOM	2906	0	ASP				42.134		0.760		36.99		A	0
ATOM		· CB	ASP				40.002 38.627		0.196		33.08		A A	C C
ATOM ATOM	2908 2909	ÇĢ OD1	ASP ASP				37.654		0.070 -0.049		36.04		A	0
ATOM	2910		ASP				38.441		0.097		41.39		A	Ö
ATOM	2911	N	MET				42.026				34.47		Α	N
ATOM	2912	CA			379		43.349		-0.933		33.96		Α	C
ATOM	2913	C	MET	Α	379		43.396	39.613	0.270	1.00	34.59		Α	Ċ
ATOM	2914		MET				44.449		0.871		37.56		Α	Ο.
ATOM	2915	CB			379		43.782				30.92		A	Ç
ATOM	2916	CG	MET				44.041				28.94	• 1	A	G.
ATOM	2917	SD CE			379		44.749	-			26.10		A A	S
ATOM ATOM	2918 2919	N	MET		380		43.486		-5.207 0.615		25.48 41.66	•	A	N
ATOM	2920	CA			380		42.182	,	1.805		46.13		A	· Ĉ
ATOM	2921	C			380	,	42.498		3.080	-	47.68		Α	Č.
ATOM ·	2922	0			380		43.208		3.957	1.00	50.01		A	0
ATOM	2923	CB	GLU	A	380		40.803	41.741	1.927	1.00	.48.86		À	C
ATOM	2924	CG			380		40.743				51.99		A	C
ATOM	2925	CD			380		40.851				55.58		Α	C
MOTA	2926		GLU				40.498				56.65		A	0 ·
ATOM ·	2927 2928	N	GLU		381		41.282		-0.524 3.169		57.63 46.10		A A	N O
ATOM	2929	CA	ASP				42.296		4.309	•	46.90		A	C
ATOM	2930	C			381		43.774				44.71		A	Č
MOTA	2931	0			381		44.167				45.68		Α	0
ATOM	2932	CB	ASP				41.448	36.911	4.254		45.21	٠,	A	С
ATOM	2933	CĢ			381		40.052		-		50.29		A	C
ATOM	2934		ASP				39.485		4.881	• *	50.63		A	0
ATOM	2935		ASP				39.440		3.030	,	:50.70		A	0
ATOM ATOM	2936 2937	N CA	CYS		382		44.587		•	1.00	42.15		A A	N C
ATOM .	2938	C.			382		46.693				41.50		A	c
ATOM	2939	0			382		47.808		4.855		43.47		A	ō
ATOM	2940	CB	CYS	Α	382		46.669		2.137	1.00	41.83		Α	С
ATOM	2941	SG	CYS	A	382		45.985	36.643	1.026	1.00	38.22		A	S
ATOM	2942	N			383		45.999		4.645		43.76		Α	N
MOTA	2943	CA			383		46.521				47.67		Α	C,
ATOM	2944	C			383		46.200		6.939		51.51		A	C
ATOM	2945 2946	O N			383	4	45.034		7.329		52.22		A	O
ATOM ATOM	2946 2947	N CA			384 384		47.239				55.14 57.40		A A	· N C
ATOM	2947	CA			384		46.613				58.55		- A	C C
ATOM	2949	ō			384		47.216		9.687		56.79		A	0.
ATOM	2950	CB			384		48.414				57.72		Α	č
ATOM.	2951	CG			384		48.357				60.49		Α	С
MOTA	2952		TYR				47.657				61.73			С
ATOM		CD2					48.994				62.68		A	Ċ
ATOM	2954		TYR				47.597				61.50		A	C
ATOM ATOM	2955 2956	CE2	TYR		384 384		48.941				62.87		A A	C C
ATOM	2956	OH			384		48.242		15.548		62.60 62.41		A A	0
21 Old	ادره	011	111	^	J 9 4 .		10.100		13.340	1.00	JE . 11		A	U

MOTA	2958	N	ASN	Α	385		45.540	42.359	10.666	1.00	60.14		Α	И
ATOM	2959	CA	ASN	Α	385		45.049	43.478	11.471	1.00	62.13		Α	. С
MOTA	2960	C	ASN	Α	385		45.450	43.295	12.938	1.00	63.14		Α	C
ATOM	2961	10CT	ASN	Α	385		46.043	44.168	13.582		64.31		Α	0 .
ATOM	2962	CB	ASN				43.524	43.592	11.362		62.36		A	C
MOTA	2963	CG	ASN				43.037	43.666	9.918		63.95		A	Ċ
ATOM	2964		ASN				42.654	42.654	9.326		64.71		A	ō
ATOM	2965		ASN				43.043	44.866	9.351		63.38		A	N
MOTA	2966	20CT					45.193	42.257	13.550		63.30		Α	0
ATOM	2967	0	НОН		1		79.629	68.206	12.595		19.21		W	Ö
ATOM	2968	0	нон		2		49.015		-12.447		16.55		W	Ö
ATOM	2969	Ö	нон		3		85.976	52.179	5.603		21.59		W	. 0
ATOM	2970	Ö	НОН		4		80.248	66.497	15.419		25.04		W	70
MOTA	2971	Ö	НОН		5		75:516	59.444	-7.006		20.45		W	0
MOTA	2972	Ö	НОН		6		64.679	60.731	5.508		20.43		W	Ö
ATOM		o	HOH		7		52.200		-0.615		36.49		W	Ö
ATOM	2973	o						57.481	-18.355		30.59		W	
	2974		HOH				52.125							0
ATOM	2975	0	HOH		9		66.983	62.454	10.671		21.40		W	0
MOTA	2976	0	HOH		10		44.515		-12.767		22.53		W	. 0
ATOM	2977	0	HOH		11		80.173	73.603	4.481		33.04		W	0
MOTA	2978	0.	HOH		12		47.807		-13.972		20.13		W	0
MOTA	2979	0	HOH		13		80.860	50.315	0.203		26.62		W	0
ATOM	2980	0	HOH		14		55.473	70.139	-4.604		53.88		W	0
MOTA	2981	0	HOH		15		74.472	71.225	-0.260		39.12		W	0
ATOM	2982	0	нон		16		40.544		3.509		31.61		W	0
MOTA	2983	0	HOH		17		80.450	59.844	12.764		26.37		W	0
ATOM	2984	0.	HOH		18		66.075	77.514	3.855	-	38.59		W	0
ATOM	2985	0	HOH		19		85.138	68.322			27.81		W	0
MOTA	2986	0	HOH		20		87.998	70.949	7.571		53.38		W	0
ATOM	2987	0	HOH		21		87.495	66.754	13.176		21.08	•	W	0
MOTA	2988	0	HOH		22		49.756	30.124	-1.047		45.82		W	0
MOTA	2989	0	HOH		23		49.361	33.536	13.751		66.10		W	0
MOTA	2990	.0	HOH		24		67.788	54.838	10.862		28.51		W	0
ATOM	2991	0	HOH	W	25		50.160	45.140		. 1.00	27.20	•	W	O .
MOTA	2992	0	HOH		26		82.766	67.175	5.119	1.00	34.54	-	W	0
MOTA	2993	0	HOH	W	27		45.592	32.973	-7.823	1.00	33.43		W	Ó.
ATOM	2994	Ο,	HOH	W	28		81.090	55.720	18.331	1.00	22.44	-	W	0
MOTA	2995	0	HOH	W	29		43.057	33.861	0.341	1.00	80.20		W	·. O
MOTA	2996	0	HOH	W	30		61.780	27.615	13.286	1.00	58.09		W	Ο.
ATOM	2997	Ò	HOH	W	31		50.466	45.953	8.884	1.00	40.45		· W	.0
MOTA	2998	0	HOH	W	32		83.327	58.106	0.741	1.00	25.84		W ·	0
MOTA	2999	0	HOH	W	33	•	81.327	48.709	18.206	1.00	36.23		W	0
ATOM	3000	0	HOH	W	34		72.944	38.241	4.000	1.00	50.15	-	W	Ó
ATOM	3001	0	HOH	W	35		48.453	40.727	-19.960	1.00	41.17		W	0
MOTA	3002	0	HOH	W	36		66.664	48.548	5.951	1.00	33.26		W	0
ATOM	3003	0	HOH	W	37		58.083	43.778	-17.062	1.00	24.83		W	Q
MOTA	3004	0	HOH	W	38		55.799	60.814	5.110	1.00	39.72		W	. 0
MOTA	3005	0	HOH	W	39		79.293	52.119	13.860	1.00	21.39		W	0
MOTA	3006	0	HOH	W	40		77.511	45.900	20.280	1.00	50.24		W	0
ATOM	3007	0	HOH	W	41		50.802	43.439	-20.117	1.00	42.67		W	0 .
ATOM	3008	0	HOH	W	42		66.106	19.960	-9.172	1.00	47.01		W	0
ATOM	3009	0	HOH	W	43		63.894	58.910	-19.204	1.00	76.51	•	W	. 0
ATOM	3010	0	HOH	W	44		76.257	41.684	15.651	1.00	62.92		W	Ö
ATOM	3011	0	HOH	W	45		54.819	50.279	-18.015	1.00	21.51		W	0 .
ATOM	3012	Ó	HOH	W	46		65.401	64.403	6.138	1.00	24.60		W	0
MOTA	3013	0	HOH		47		53.853	55.150	-11.636	1.00	29.65		W	0
ATOM ·	3014	0	HOH	W	48		68.908	67.519	-5.703	1.00	33.79		W	0
MOTA	3015		НОН		49		79.968	52.673	6.743		26.80		W	. 0
ATOM	3016	0	HOH	W	50		48.181	44.979	-10.637	1.00	17.31		W	0
MOTA	3017	0	HOH		51		53.488	60.669	-0.029		31.52		W	O.
ATOM	3018	. 0	HOH		52		62.724	61.887	9.306		24.34		W	Ö
ATOM	3019	0	НОН		53		64.870	59.282	19.837		40.43		W	Ō
ATOM	3020	0	нон		54		67.034	55.997	8.478		18.91		W	ō
ATOM ·	3021	0	НОН		55		81.783	69.009	13.884		24.02		W	ŏ
ATOM	3022	Ö	нон		56		62.338	60.129	2.848		20.26		W	ō
ATOM	3023	ŏ	нон		57		59.948	49.626	3.509		20.58		W	ŏ
ATOM	3024	ō	нон		58		74.315	61.973	-6.807		24.90	.: "	W	ŏ.
ATOM	3025	ŏ	нон		59		72.754	44.483	0.023		30.57		W	ő
ATOM	3026	ō	нон		60		85.756	65.674	6.462		34.66		W	Ö.
ATOM	3027	Ö.	НОН		61		65.197	62.897	8.395		24.15		W	0
ATOM	3028	ó	НОН		62		83.185	55.955	4.621		21.13		W	ő
ATOM	3029	ŏ	нон		63		68.666	31.435	6.797		32.75		W	ő
ATOM	3030	ō	нон		64		70.959	50.115	-0.021		24.74		W	0
ATOM	3031	o	нон		65		70.634	69.168	18.081		35.02		W	. 0
		-			33				10.001	00	93.02		••	0

ATOM	3032	0	НОН		66 .		83.133	65.815	2.329		28.15		W	Ó
ATOM	3033	0	HOH		67		81.369	47.920			41.54		W	0
MOTA	3034	0	HOH		68		87.299	59.567	9.845		38.69		W	0
ATOM	3035	Ó	HOH		69		41.854	32.167 64.125	-5,319		34.05		W	0
ATOM	3036	0	НОН НОН		70 71		87.742 72.460	68.092	6.529 12.019		68.19 27.07		W	0
MOTA MOTA	3037 3038	0	НОН		72		65.274	42.384	-19.635		61.51		W	Ō
ATOM	3039	0	HOH		73		85.768	65.313	2.708	1.00	45.28		W	0
ATOM	3040	0	НОН		74		62.071	26.325	-12.323	1.00	30.75		W	0.
ATOM	3041	Ö	HOH		75		53.548	58.246	7.753	1.00	35.77		W	.0
ATOM	3042	ō	НОН		76		48.415	35.384	-17.283		49.88		W	ŏ
MOTA	3043	ō	. нон		77	*	63.389	66.452	6.071		24.26		W	ō
ATOM	3044	0	НОН		78		82.811	58.045	-3.976		49.01		W	0
· MOTA	3045	0	HOH		79		73.849	44.456	-1.977		46.53		W	- 0
ATOM	3046	Ò	нон	W	80		45.102	52.297	-10.384	1.00	27.65		W	0
MOTA	3047	0	HOH	W	81		65.497	47.590	-7.949	1.00	22.50		W	0
ATOM -	. 3048	0	HOH	W	82		60.385	50.571	-20.969	1.00	35.94		W	0
MOTA	3049	Ó	HOH	W	83		73.977	51.153	-13.532	1.00	42.34		M	0
MOTA	3050	0	НОН	W	84		73.807	75.017	-0.696		45.17		W	0
MOTA	3051	0	HOH		85		89.302	56.875	9.021		36.01		W	0
MOTA	3052	0	HOH		86		59.573	59.896	2.947		37.55		W	0
MOTA	3053	0	HOH		87		69.343	40.980	6.123		33.99		W	0
MOTA	3054	0	нон		88		52.716	58.960	-10.022		38.62		W	0
MOTA	3055	0	HOH		89		71.368	68 265	20.363		40.93		W	0
ATOM	3056	0	HOH		90		58.025 79.324	24.259 57.854	10.874		64.35		W	0
MOTA	3057 3058	0.	HOH		91 92		52.049	42.888	-5.249 4.777	1.00	28.34		W	0
MOTA MOTA	3058	0	НОН		93		58.572	51.240	-21.845		39.18		W	0
ATOM	3060	0	НОН		94		58.399	59.801	-15.372		34.06		· W	0
MOTA	3061	.0	нон		95		51.199	63.163	-3.700		34.26		w ·	ő
ATOM	3062	o	НОН		96			42.093	5.333		63.63		W	ő
ATOM	3063	ō	НОН		97		62.377	69.523	12.319		37.67		W	Ö
ATOM	3064	Ö	НОН		98		57.972	57.007	14.799	•	35.19		W	ō
ATOM	3065	0	HOH		99 -		62.896		-11.943		76.49		W	0
MOTA	3066	0	HOH	W	100		77.078	56.466	-5.817		21.61		W	0
ATOM	3067	0 .	HÒH	W	101		58.723	72.174	10.770	1.00	45.78		W	Ó
ATOM	3068	0	HOH	W	102		82.563	53.786	6.291	1.00	28.84		M	0
ATOM	3069	0	HOH				59.353	71.034	3.910	1.00	33.97		W	. 0
ATOM	3070	0	HOH		104		64.748	30.333	-21.491		39.71		W	, 0
ATOM	3071	0	HOH		105		74.634	59.328	-12.866		40.33		W	0
MOTA	3072	Ο.	HOH		106		55.438		-19.877		35.74		W	0
MOTA	3073	0	НОН				77.532	77,780	-0.830		47.95		W	0
ATOM	3074	0.	HOH				65.148		-11.545		51.49		W	_
ATOM	3075 3076	O O	HOH				57.778 55.086	41.274 59:049	-18.333 16.334		41.55 47:49		W ·	. 0
ATOM ATOM	3075	0	HOH				81.228	50.049	13.406		68.55		W	0
ATOM	3078	ŏ	нон				39.213	39.599	-0.284		54.99		W	Ö
ATOM	3079	ŏ			113 .		58.054	38.933	-17.692		30.12		W	ō
ATOM	3080	ō	НОН				46.682		-7.093		27.96	.*	W	ō
ATOM	3081	0	HOH				56.111	63.217	-0.389		31.05		W	0
AŢOM	3082	Ó	нон	W	116		83.364	67.774	0.538	1.00	32.16		W	0
MOTA	3083	0	HOH	W	117		48.343	27.854	7.458	1.00	45.35		W	0
ATOM	3084	0	HOH	W	118		62.036	71.098	6.922	1.00	37.49		. M	0
ATOM	3085	0	HOH			_	50.470	55.859	8.484		50.28		M	0
ATOM	3086	.0	НОН				59.219		-21.628				W	.0
ATOM	3087	0			121	٠.	70.795	46.171	0.982		42.89		W	Ó
ATOM	3088	0	нон				67.725	50.769	8.365		44.67		W	Ö.
ATOM	3089	0	HOH				62.717		-10.878		52.07		W	0
MOTA MOTA	3090 3091	0	НОН НОН			•	60.253 40.595	41.500	-20.165 -7.729		31.75 24.22		W	0
ATOM	3091	0	НОН				60.544		-18.077		33.87		W	Ó
ATOM	3093	0	НОН			1.	65.662		, 21.772		33.55		W	o
ATOM	3094	ŏ	нон				65.944		-19.969		51.23		W	ő
ATOM	3095	ŏ.	нон				61.793	76.127	1.749		56.51		W	ő
MOTA	3096	Ö	нон				85.302	59.460	0.012		36.81		W	ő
ATOM	3097	ŏ	нон	•			51.594	64.021	-6.048		58.01		W	ő
ATOM	3098	ŏ	нон				54.042	66.667	-6.161		63.77		W	ŏ
MOTA	3099	o	нон				62.332	75.297	4.414		55.75		W	ŏ
ATOM	3100	O	нон				50.042		-20:292		73.57		· W	Ō
ATOM	3101	0	НОН				79.366	53.491	-11.459		45.91		W	0
MOTA	3102	O	HOH				62.077		-20.403		50.99		W	O.
MOTA	3103	0			137		70.534	49.754	8.111		67.69		W	0
MOTA	3104	0	нон				78.803	66.881	19.280				W.	Ò
ATOM	3105	·O	нон	W	139		83,041	34.659	-5.519	1.00	42.03		W	0

				-			·		
ATOM	3106	0	HOH W 140	77.602	56.674	-9.068	1.00 43.32	· W	0
MOTA	3107	0	HOH W 141	80.073	75.620	15.238	1.00 30.64	W	0
ATOM ·	3108	0	HOH W 142	80.099	63.907	-8.340	1.00 39.92	W	Ō
ATOM	3109	0	HOH W 143	56.033		-6.044	1.00 52.71	W	О
ATOM	3110	0	HOH W 144	53.413	63.896	-8.009	1.00 35.96	W	0
MOTA	3111	0	HOH W 145	89.147	64.107	9.192	1.00 45.54	W	0
ATOM		. 0	HOH W 146	37.356	37.399	-3.003 -7.695	1.00 37.40	W	0
ATOM ATOM	3113 3114	.0	HOH W 147 HOH W 148	71.841 65.710	68.945 25.459	1.815	1.00 67.24 1.00 68.03	W W	0
ATOM	3115	ō	HOH W 149	54.563	32.460	14.878	1.00 45.89	w ·	. 0
ATOM	3116	ō	HOH W 150	69.771	32.591		1.00 38.39	w	ō
ATOM	3117	0	HOH W 151	40.372	41.672	-3.643	1.00 35.36	W	ō
MOTA	3118	0	HOH W 152	67.233	45.846	-10.950	1.00 26.82	W	0
ATOM	3119	0	HOH W 153	38.766	47.051	-8.023	1.00 28.56	W	0
MOTA	3120	0	HOH W 154	81.319	69.504	-2.622	1.00 45.91	W	0
ATOM	3121	0	HOH W 155	53.761		-15.833	1.00 38.29	W	0
ATOM	3122	0	HOH W 156	56.342	73.135	-5.405	1.00 68.20	W	0
ATOM ATOM	,3123	0	HOH W 157 HOH W 158	53.773 79.692	72.306 66.676	-0.902 -5.072	1.00 67.09 1.00 50.12	- W	· 0
ATOM	3124 3125	0	HOH W 159	73.032	38.089	-7.677	1.00 45.17	W	. 0
ATOM	3126	ŏ	HOH W 160	46.657	52.288	-3.310	1.00 36.02	W	0
MOTA	3127	ō	HOH W 161	68.327.	19.772	-0.212	1.00 70.84	W	ŏ
ATOM	3128	0	HOH W 162	57.706	29.223	-8.479	1.00 39.36	W	· 0
ATOM	3129	0	HOH W 163	80.380	78.795	5.802	1.00 56.31	W	0
MOTA	3130	Ö	HOH W 164	56.675	59.728	-19.716	1.00 51.35	W	0
ATOM	3131	0	HOH W 165	72.021	78.865	10.056	1.00 57.63	W	0
ATOM	3132	0	HOH W 166	61.187	22.723	11.672	1.00 52.43	W	0
ATOM	3133	0	HOH W 167	52.637	65.982	-3.596	1.00 43.55	W	0
ATOM ATOM	3134 3135	0	НОН W 168 НОН W 169	77.094 82.297	59.049	-11.764 -5.408	1.00 53.68 1.00 56.75	M	0
ATOM	3136	0	HOH W 170	44.896	54.140	-2.621	1.00 36.75	w	0
ATOM	3137	ŏ	HOH W 171		48.265	9.068	1.00 31.34	w	Ö
ATOM	3138	0	HOH W 172	62.322	26.608		1.00 73.50	W	ō
ATOM	3139	0	HOH W.173	70.503	79.530	7.957	1.00 46.42	W	0
ATOM	3140	0	HOH W 174	78.756	79.738	3.636	1.00 57.59	W	0
MOTA	3141	0	HOH W 175	. 63 . 567	48.079	7.690	1.00 56.49	W	0
ATOM	3142	0	HOH W 176	73.105	50.182	8.251	1.00 62.98	W	Ó
ATOM	3143	0.	HOH W 177	74.155	72.309	-2.546	1.00 63.14	. W	. 0
ATOM ATOM	3144 3145	0	HOH W 178 HOH W 179	77.404	74.588	10.615 -10.561	1.00 38.50	W	. 0
ATOM	3145	Ö	HOH W 180	53.494	69.486	-10.501	1.00 40.86 1.00 61.27	W W	0
ATOM	3147	o	HOH W 181	44.408	43.630		1.00 63.55	w	Ö
ATOM	3148	o	HOH W 182	45.148	46.355	9.428	1.00 58.76	W	Ö
ATOM	3149	0	HOH W 183	78.021	49.570	-0.246	1.00 32.19	W	0
MOTA	3150	0	HOH W 184	81.804	50.829	-2.607	1.00 38.10	W	0
ATOM	3151	o	HOH W 185	88.410	73.240	7.564	1.00 56.30	W	0
ATOM	3152	O.	HOH W 186	61.080	66.476	15.948	1.00 68.96	W	0
ATOM	3153	0	-HOH W 187	45.110	31.905		1.00 67.43	W	o .
MOTA	3154 3155	0	HOH W 188 HOH W 189	49.200 71.187	55.926 76.958	12.964 15.269	1.00 72.28 1.00 39.87	W W	0
ATOM	3156	Ö	HOH W 190	73.886	47.482	4.081		W	0
MOTA	3157	ŏ	HOH W 191	69.355		-15.162	1.00 61.52	 W	o
ATOM	3158	0	HOH W 192	82.777	65.787	-8.682	1.00 62.77	W	0
ATOM	3159	0	HOH W 193	39.736	46.583	7.480	1.00 62.23	W	0
ATOM	3160	0	HOH W 194	52.055	40.044	-22.266	1.00 55.63	W	0
ATOM	3161	.0	HOH W 195	71.314		-16.556	1.00 49.70	W	0
ATOM	3162	0	HOH W 196	61.950		-19.713	1.00 70.81	W	0
ATOM	3163	0	HOH W 197	84.051	69.275	5.460	1.00 48.64	W	0
ATOM ATOM	3164 3165	0	HOH W 198 HOH W 199	76.032 73.266	60.681 44.918	20.880 4.326	1.00 69.12 1.00 68.75	W	0
ATOM	3166	ő	HOH W 200	82.129	50.468	-5.451	1.00 59.02	w	Ö
ATOM	3167	ō	HOH W 201	83.221	72.917	3.600	1.00 40.04	W	ŏ.
ATOM	3168	ō	HOH W 202	59.652	75.257	4.275	1.00 57.30	W	ō
ATOM	3169	ò	HOH W 203	78.123	47.635	22.706	1.00 45.73	W	ō
ATOM	3170	0	HOH W 204	77.637	76.375	11.568	1.00 43.51	W	٧O
MOTA	3171	0	HOH W 205	58.555	48.938	13.305	1.00 48.92	W	0
ATOM	3172	0	HOH W 206	57.638	66.927	18.153	1.00 50.79	W	0
MOTA	3173	0	HOH W 207	58.312	43.498	7.697	1.00 33.77	W	0
ATOM	3174	0	HOH W 208	44.538	28.297	3.536	1.00 55.65	. W	0
ATOM	3175 3176	0	HOH W 209 HOH W 210	59.595 57.084	53.833 - 51.317	19.308 14.707	1.00 58.04 1.00 51.78	W	0
ATOM	3176 3177	0	HOH W 210	49.436	21.830	-1.938	1.00 51,78	. W	0
ATOM	3178	0	HOH W 212	60.734	77.657	4.018	1.00 73.34	W	0
ATOM	3179	o	HOH W 213	79.123	83.308	3.898	1.00 63.20	w	ő

ATOM	3180	0	HOH W	214		57.523	61.921	-13.519	1.00	37.25		W	0
ATOM	3181	0	HOH W	215		71.168	43.072	5.167	1.00	41.82		W	0
ATOM	3182	0	HOH W	216		76.653	84.242	3.301	1.00	78.23		W	0
ATOM	3183	0	HOH W	217		42.382	40.135	17.622	1.00	61.51		W	Ò
MOTA	3184	0	HÒH M	218		78.733	69.517	-5.343	1.00	61.81		W	0
ATOM .	3185	0	HOH W	219		62.986	22.749	-4.555	1.00	42.82		W	0
ATOM		O	HOH W			60.743	44.247	9.220		48.58		W	0
ATOM	3187	0	HOH M			57.413	29.275	-13.554		41.77		W	0
ATOM	3188	. 0	HOH W			71.784	39.808	-3.358		49.72		W	0
ATOM	3189	0	HOH W			74.571		-13.618		53.93		W	0
ATOM	3190	0	HOH W			71.261		-13.741		41.48		W	o
ATOM	3191	0	HOH W			78.559	79.217	0.998		50.39		W	0
ATOM	3192	0	HOH W			68.431	42.241	17.534		51.33		W	0
MOTA MOTA	3193 3194	0	HOH W			74.858 79.307	56.378 60.745	23.475 22.219		62.51		W	0
ATOM	3194	.0	HOH W			60.314	68.573	10.249		29.74		W	0
ATOM	3196	ō	HOH W			61.602	71.621	-9.518		51.81		W	0
ATOM	3197	ŏ	HOH W			49.899	42.585	7.057		35.46		W	0
ATOM	3198	ō	HOH W			46.590	57.769	2.535		69.32		W	ŏ
ATOM	3199	Ō	HOH W			45.044	34.173	-1.541		50.34		W	ō
ATOM	3200	0	HOH W			71.447		-18.182		58.66		W	. 0
MOTA	3201	0	HOH W			73.000	-	-18.003		45.06		W	Ö
ATOM	3202	O	HOH W	236		43.370	55.663	-1.011	1.00	61.60		W	Ö
ATOM	3203	0	HOH W	237	•	74.007	57.458	-17.330	1.00	59.05		W	0
MOTA	3204	0	HOH W	238	-	.78.277	52.906	-16.612	1.00	65.63		W	0
MOTA	3205	0	HOH W	239		77.796	59.191	-8.755	1.00	45.94	٠,	W	0
ATOM	3206	0	HOH W			84.436	60.164	-3.135	1.00	53.03		W	0
MOTA	3207	Ò	HOH W			65.112	49.259	9.447		,53 .21 .	٠.	W	0
MOTA	3208	0	HOH M			63.207	51.425	10.118		42.58		W	0
MOTA	3209	0	HOH W			89.242	51.621	10.559		37.79.		W	.0
ATOM	3210	0	HOH W			88 861		-1.500		63.56		W	0
ATOM ATOM	3211	0	HOH W			80.840	77.800	12.517		43.88		W	0
MOTA	3212 3213	0	HOH W			77.216 69.579	83.653 67.222	0.754 23.238		66.92		W	0
ATOM	3213	0.	HOH W			75.887	51.320	21.816		72.66		W	. 0
ATOM	3215	0	HOH W			68.191	78.916	4.291	*	52.82		W	0
ATOM	3216	ŏ	HOH W			82.004	63.181	21.579		30.60		W	. 0
ATOM	3217	Ö	HOH W			76.390	67.886	21.910		51.17		W.	ő
ATOM	3218	0	HOH W			53.503		17.416		72.58		W	ō
ATOM	3219	0	HOH W		•	60.509	46.370	-23.693		62.40		W	Ō
ATOM	3220	.0	HOH W	254		53.842	.41.622	-18.205		43.31		W	O
MOTA	3221	0	HOH W	255		48.037	45.876	-0.170	1.00	42.34		W	Ō
MOTA	3222	0	HOH M	256		44.592	45.050	2.573	1.00	46.37		W	0
ATOM	3223	0	HOH W	257		40.130	44.608	4.624	1.00	61.11		W	. 0
MOTA	3224	0	HOH W			69.355	. 47.143	5.898		60.82		W	0
ATOM	3225	0	HOH W			34.957	32.570	1.397		47.77		W	0
ATOM	3226	0	HOH W			61.555	31.492	-14.640		63.05		W	0
ATOM	3227	0	HOH W			43.862	53.451	-5.566		71.67		W	. 0
ATOM	3228	0	HOH W			84.234	48.309			54.03		W	, 0,
ATOM ATOM	3229 3230	0	HOH W			87.932 82.425	51.816 63.456	-3.215 -6.283		57.80 62.42		W	. 0
ATOM	3231	ŏ	HOH W			80.271	28.172	9.463		40.70		W	. 0
ATOM	3232	ŏ	HOH W			73.963	30.020	4.302		26.30		W	ő
MOTA	3233	0	HOH W			83.112	71.680	1.066		51.04		W	ō
ATOM		٠ ٥	HOH W		•	63.047	54.124	10.355		50.34		W	o
MOŢA	3235	Ö	HOH W			83.682	62.329			42.75		W.	0
ATOM	. 3236	0	HOH W	270		61.547	73.522	-7,931	1.00	47.36		W	0
ATOM	3237	0	HOH M	271		60.577	53.517	13.966	1.00	53.55		W	0
MOTA	3238	0	HOH W	272		54.580	71.014	-6.905	1.00	46.69		W	Q
MOTA	3239	0	HOH W			77.926	39.031	-0.508		49.59		W	0
ATOM	3240	0	HOH W		-	69.669	49.137			45.33		W	0
ATOM	3241	0	HOH W			44.777	49.840			44.62		W	0
ATOM	3242	0	HOH W			48.453	54.600	5.308		39.43		W	0
ATOM	3243		HOH W			51.764	32.262	13.155		71.42		W	0
ATOM ATOM	3244	0.	HOH W			60.951	29.296	11.161	1.00			W	0
ATOM	3245 3246	0	HOH W			68.206 87.567	23 452	8.777 -10.981	1.00	50.70		W	0
ATOM	3247	ŏ	HOH W			81.650		-15.233		46.79		W	o
ATOM	3248	ō	HOH W			83.121		-15.678		59.22		·W	Ö
ATOM	3249	ō	HOH M			81.854		-13.384		44.68		W	Ö
ATOM	3250	0	HOH W			43.424	43.922	-5.261		38.18		. W	Ö
MOTA	3251	0	HOH W			80.484	32.987	-6.395		39.87		W	0
ATOM	3252	Ţ	IOD J		**	80.243	57.842	15.501		23.63		J.	I
ATOM	3253	1	IOD J	2		81.546	50.334	15.785		35.87		J	ľ

ATOM 3254 I IOD J 3 51.528 57.888 -13.233 0.50 56.82 J I END

Sequence Listings

SEQ ID 1: shows the DNA sequence coding for the BACE protein, BACE WT.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCACGGCACCCAGCACGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCGCCCC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGCTTCCCCCTCAACCAGTCTGAAGTGCTGGCCTCTGTCGGAGGAGCATGATCATTGGA GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGCCAAGCAGCACCACCCCTTGG ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGÇTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAA

SEQ ID 2: shows the deduced amino acid sequence for BACE WT.

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRRGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDES

SEQ ID 3: shows the DNA sequence coding for the BACE protein, BACE N->Q.

AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC
CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGTGCTGGCAAGCAGCACCACCCCTTGG
AACATTTTCCCAGTCATCTCACCTAATGGGTGAGGTTACCCAGCAGTCCTTCCGC
ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC
GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC
ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC
GCTTGCCATGTGCACGATGAGTTCAGGACGGCGGTGGAAGGCCCTTTTGTCACCTTG
GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCACCATCACCATCACC

SEQ ID 4: shows the deduced amino acid sequence for BACE N->Q.

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRRGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDESHHHHHH

SEQ ID 5: shows the DNA sequence coding for the BACE WT R56KR57K.

ATGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCACGGCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCGCCCC ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA GGGGAGCTGGCACCTGGTAAGCATCCCCCATGGCCCCAACGTCÁCTGTGCGTGCC AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGCACCCCCTTGG ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAA

SEQ ID 6: shows the deduced amino acid sequence for BACE WT R56KR57K

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGKKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDES

SEQ ID 7: shows the DNA sequence coding for the BACE WT R57K.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCACGGCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCCCCCC CTGGGGCTGCGCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAAGGGC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCCCCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGCCGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAA

SEQ ID 8: shows the deduced amino acid sequence for BACE WT R57K.

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDES

SEQ ID 9: shows the DNA sequence coding for the BACE WT R57DEL.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCACGGCACCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCCCCC CTGGGGCTGCCCCGGGAGACCGACGAGAGCCCGAGGAGCCCGGCAGGGGCAGC TTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATG ACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTT GCAGTGGGTGCCCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGC ACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGG ATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATC TCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCTGGC ATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGGTAT TATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAG GAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAG AAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCT GATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGCAAGCAGCACCACCCCTTGGAAC ACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGAC
TGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATCATG
GAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGCGCT
TGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTGGAC
ATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAA

SEO ID 10: shows the deduced amino acid sequence for BACE WT R57del.

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRGSFVEMVDNLRGKSGQ GYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVS IPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGFP LNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNL RLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLRP VEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDC GYNIPQTDES

SEQ ID 11: shows the DNA sequence coding for the BACE N->Q R56KR57K.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT GCCACGGCACCCAGCACGCATCCGGCTGCCCCTGCGCAGCGCCTGGGGGGCCCCCC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC TTTGCAGTGGGTGCTGCCCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCCAGGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGCACCACCCCTTGG AACATTTTCCCAGTCATCTCACTCTACCTAATGGGTGAGGTTACCCAGCAGTCCTTCCGC ATÇAÇCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGCCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGTGAGTCACATCACCATCATCAC CACTAA

SEQ ID 12: shows the deduced amino acid sequence for BACE N->Q R56KR57K

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGKKGSFVEMVDNLRGKSG QGYYVEMTVG\$PPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDESHHHHHH

SEQ ID 13: shows the DNA sequence coding for the BACE N->Q R56KR57K no His.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGGCGGGAGTGCTGCCT

GCCACGGCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCGCCCC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC ${\tt TTTGCAGTGGGTGCTGCCCCCCACCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCC}$ AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCCAGGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGCACCACCCCTTGG AACATTTTCCCAGTCATCTCACTCTACCTAATGGGTGAGGTTACCCAGCAGTCCTTCCGC ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGCCAGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCATAG

SEQ ID 14: shows the deduced amino acid sequence for BACE N->Q R56KR57K no His

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGKKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDES

SEQ ID 15: shows the DNA sequence coding for the BACE N->Q R57K.

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCATGCCGGGAGTGCTGCCT GCCCACGGCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGGCCCCC CTGGGGCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAAGGGC AGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAG ATGACCGTGGGCAGCCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAAC AGCACATACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAA AACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCCAGGGCTCCAACTGGGAAGGC GACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCT GGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGG TATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGC AAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCC AAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTC CCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGCACCACCCCTTGG AACATTTTCCCAGTCATCTCACTCTACCTAATGGGTGAGGTTACCCAGCAGTCCTTCCGC ATCACCATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGAC GACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATC ATGGAGGGETTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGC GCTTGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTG GACATGGAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCACATCACCATCATCAC

CACTAA

SEQ ID 16: shows the deduced amino acid sequence for BACE N->Q R57K

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRKGSFVEMVDNLRGKSG QGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLV SIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGF PLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTN LRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLR PVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMED CGYNIPQTDESHHHHHH

SEQ ID 17: shows the DNA sequence coding for the BACE N->Q R57DEL.

GCACGCATCCGCTGCCCCTGCGCAGCGGCCTGGGGGCCCCCCTGGGGCTGCGGCTGCCCCGGGAGACCG ACGAAGAGCCCGAGGAGCCCGGCAGGGGCAGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAG GGCTACTACGTGGAGATGACCGTGGGCAGCCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAA CTTTGCAGTGGGTGCTGCCCCCACCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACATACCGGG ACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGCAAGTGGGAAGGGGAGCTGGGCACCGACCTGGTAAGC ATCCCCCATGGCCCCCAGGTCACTGTGCGTGCCAACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCCA GGGCTCCAACTGGGAAGGCATCCTGGGGCTGGCCTATGCTGAGATTGCCAGGCCTGACGACTCCCTGGAGCCTT ${\tt TCTTTGACTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCTGGCTTCCCCC}$ $\tt CTCCAGCAGTCTGAAGTGCTGGCCTCTGTCGGAGGGAGCATGATCATTGGAGGTATCGACCACTCGCTGTACAC$ AGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTATGAGGTGATCATTGTGCGGGTGGAGATCAATG GACAGGATCTGAAAATGGACTGCAAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTT CGTTTGCCCAGGAGAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGA TGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGCACCCCCTTGGAACATTTTCCCAGTCATCT CACTCTACCTAATGGGTGAGGTTACCCAGCAGTCCTTCCGCATCACCATCCTTCCGCAGCAATACCTGCGGCCA GTGGAAGATGTGGCCACGTCCCAAGACGACTGTTACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTAT GGGAGCTGTTATCATGGAGGGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGCG $\tt CTTGCCATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTGGACATGGAAGACTGT$ GGCTACAACATTCCACAGACAGATGAGTCACATCACCATCATCACCACTAA

SEQ ID 18: shows the deduced amino acid sequence for BACE N->Q R57del

MASMTGGQQMGRGSMAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPEEPGRGSFVEMVDNLRGKSGQ
GYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVS
IPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGFP
LQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNL
RLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTQQSFRITILPQQYLRP
VEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDC
GYNIPQTDESHHHHHH

SEQ ID 19: shows the amino acid sequence of BACE WT R56KR57K crystallised.

LPRETDEEPEEPGKKGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQ LSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPHGPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARP DDSLEPFFDSLVKQTHVPNLFSLQLCGAGFPLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVII VRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPW NIFPVISLYLMGEVTNQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKR IGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQTDES

SEQ ID 20: shows the amino acid sequence of BACE N->Q R56KR57K no His as crystallised.

LPRETDEEPEEPKKGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQ LSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARP DDSLEPFFDSLVKQTHVPNLFSLQLCGAGFPLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVII VRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPW NIFPVISLYLMGEVTQQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKR IGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQTDES

SEQ ID 21: shows the amino acid sequence of BACE N->Q R56KR57K crystallised. LPRETDEEPEEPGKKGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFLHRYYQRQ LSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPHGPQVTVRANIAAITESDKFFIQGSNWEGILGLAYAEIARP DDSLEPFFDSLVKQTHVPNLFSLQLCGAGFPLQQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVII VRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPW NIFPVISLYLMGEVTQQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVVFDRARKR IGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQTDESHHHHHHH