CMIP6 Model Documentation

Institute: IPSL

Model: IPSL-CM6A-LR Atmosphere

Doc. Generated: 2018-10-04

Doc. Seeded From: cmip5:ipsl-cm5a-lr

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key	Properties 1
	1.1	Key Properties
	1.2	Resolution
	1.3	Timestepping
	1.4	Orography
	1.5	Tuning Applied
2	Grie	1 5
	2.1	Grid
	2.2	Discretisation
	2.3	Horizontal
	2.4	Vertical
3	Dyn	namical Core
	3.1	Dynamical Core
	3.2	Top Boundary
	3.3	Lateral Boundary
	3.4	Diffusion Horizontal
	3.5	Advection
	3.6	Tracers
	3.7	Momentum
4	Rad	iation 14
_	4.1	Radiation
	4.2	Shortwave Radiation
	4.3	Shortwave GHG
	4.4	Shortwave Cloud Ice
	4.5	Shortwave Cloud Liquid
	4.6	Shortwave Cloud Inhomogeneity
	4.7	Shortwave Aerosols
	4.8	Shortwave Gases
	4.9	Longwave Radiation
		Longwave GHG
		Longwave Cloud Ice
		Longwave Cloud Liquid
		Longwave Cloud Inhomogeneity
		Longwave Aerosols
		Longwave Gases
5	Tur	bulence Convection 29
_	5.1	Turbulence Convection
	5.2	Boundary Layer Turbulence
	5.3	Deep Convection
	5.4	Shallow Convection 31

6	Mic	crophysics Precipitation
	6.1	Microphysics Precipitation
	6.2	Large Scale Precipitation
	6.3	Large Scale Cloud Microphysics
7	Clo	ud Scheme
	7.1	Cloud Scheme
	7.2	Optical Cloud Properties
	7.3	Sub Grid Scale Water Distribution
	7.4	Sub Grid Scale Ice Distribution
8	Obs	servation Simulation
	8.1	Observation Simulation
	8.2	Isscp Attributes
	8.3	Cosp Attributes
	8.4	Radar Inputs
	8.5	Lidar Inputs
9	Gra	avity Waves
	9.1	Gravity Waves
	9.2	Orographic Gravity Waves
	9.3	Non Orographic Gravity Waves
10) Nat	tural Forcing
		Natural Forcing
		Solar Pathways
		Solar Constant
		Orbital Parameters
		Insolation Ozone
		Volcanoes Treatment

1 Key Properties

Atmosphere key properties

1.1 Key Properties

Atmosphere key properties

1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPERATED list:

1.1.3 Overview *

Overview of atmos model.

1.1.4 Model Family *

 $Type\ of\ atmospheric\ model.$

\boxtimes	AGCM - Atmospheric General Circulation Model
	ARCM - Atmospheric Regional Climate Model
	Other - please specify:

1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

\boxtimes	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
\boxtimes	Hydrostatic
	Quasi-hydrostatic
	Other - please specify:

1.2 Resolution

Characteristics of the model resolution

1.2.1 Overview

Overview of characteristics of the model resolution in atmos model.

Enter TEXT:

1.2.2 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

Enter TEXT:

1.2.3 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

Enter TEXT:

1.2.4 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Enter TEXT:

1.2.5 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

Enter INTEGER value:

1.2.6 High Top *

True

Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top above the stratopause.

Select	either	TRUE	\mathbf{or}	FALSE:

1.3 Timestepping

Characteristics of the atmosphere model time stepping

☐ False

1.3.1 Overview

Overview of characteristics of the atmosphere model time stepping in atmos model.

Enter TEXT:

1.3.2 Timestep Dynamics *

 ${\it Timestep \ for \ the \ dynamics \ in \ seconds}$

180

1.3.3 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

Enter INTEGER value:

1.3.4 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

Orography 1.4

Characteristics of the model orography

1.4.1 Overview

 $Overview\ of\ characteristics\ of\ the\ model\ orography\ in\ atmos\ model.$

Enter TEXT:

Line	I IEXI.
1.4.2	Type *
Type of o	prographic representation.
	Fixed: present day
	Fixed: modified - Provide details of modification below
	Other - please specify:
	Modified graphy type is modified describe the adaptation.
Selec	et MULTIPLE options:
	Related to ice sheets
	Related to tectonics
	Modified mean

Modified variance if taken into account in model (cf gravity waves)

1.4.4 Time-varying

Describe any time varying orographic change

Other - please specify:

Enter TEXT:

1.5 Tuning Applied

 $Tuning\ methodology\ for\ atmospheric\ component$

1.5.1 Overview

 $Overview\ of\ tuning\ methodology\ for\ atmospheric\ component\ in\ atmos\ model.$

Enter TEXT:

1.5.2 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.3 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPERATED list:

1.5.4 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

1.5.5 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPERATED list:

2 Grid

 $Atmosphere\ grid$

2.1 Grid

 $Atmosphere\ grid$

2.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Overview

Overview of grid in atmos model.

Enter TEXT:

2.2 Discretisation

 $Atmosphere\ grid\ discretisation$

2.2.1 Overview

Overview of atmosphere grid discretisation in atmos model.

Enter TEXT:

2.2.2 Overview *

Overview description of grid discretisation in the atmosphere

Enter TEXT:

2.3 Horizontal

Atmosphere discretisation in the horizontal

2.3.1 Scheme Type *

Horizontal discretisation type

	Spectral
\boxtimes	Fixed grid
П	Other - please specify

	Scheme Method * al discretisation method
	Finite elements
\boxtimes	Finite volumes
	Finite difference
	Centered finite difference
2.3.3	Scheme Order *
Horizont	al discretisation function order
Sele	ct SINGLE option:
	Second
	Third
	Fourth
	Other - please specify:
2.3.4	Horizontal Pole
Horizont	al discretisation pole singularity treatment
\boxtimes	Filter
	Pole rotation
	Artificial island
	Other - please specify:
2.3.5 <i>Horizont</i>	Grid Type * al grid type
Sele	ct SINGLE option:
	Gaussian
	Latitude-Longitude
	Cubed-Sphere
	Icosahedral
	Other - please specify:

2.4 Vertical

Atmosphere discretisation in the vertical

2.4.1	Coordinate	Type	*
-------	------------	------	---

 $Type\ of\ vertical\ coordinate\ system$

Select MULTIPLE options:			
	Isobaric - Vertical coordinate on pressure levels		
	Sigma - Allows vertical coordinate to follow model terrain		
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above		
	Hybrid pressure		
	Vertically lagrangian		
	Other - please specify:		

3 Dynamical Core

Characteristics of the dynamical core

3.	1	\mathbf{D}	ynamical	Core
$oldsymbol{\cdot}$	_	\mathbf{L}	y mamma	\sim 01 \sim

Characteristics of the dynamical core

3.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

3.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:		
3.1.3	Timestepping Type *	
Timester	oping framework type	
	Adams-Bashforth	
	Explicit	
	Implicit	
	Semi-implicit	
\boxtimes	Leap frog	
	Multi-step	
	Runge Kutta fifth order	
	Runge Kutta second order	
	Runge Kutta third order	
	Other - please specify:	

3.1.4 Prognostic Variables *

 $List\ of\ the\ model\ prognostic\ variables$ Surface pressure

Wind components

Divergence/curl

Temperature

 \boxtimes Potential temperature

	Total water
	Water vapour
	Water liquid
	Water ice
\boxtimes	Total water moments
	Clouds
	Radiation
	Other - please specify:
	Cop Boundary boundary layer at the top of the model
3.2.1	Overview
Overview	of type of boundary layer at the top of the model in atmos model.
Enter	TEXT:
	Top Boundary Condition * dary condition
\boxtimes	Sponge layer
	Radiation boundary condition
	Other - please specify:
3.2.3	Top Heat *
Top bound	dary heat treatment
Enter	TEXT:
3.2.4	Top Wind *
Top bound	dary wind treatment
Enter	TEXT:
3.3 I	ateral Boundary
$Type \ of$	lateral boundary condition (if the model is a regional model)
3.3.1	Overview
Overview	of type of lateral boundary condition (if the model is a regional model) in atmos model.
Enter	· TEXT:

3.3.2 Condition
Type of lateral boundary condition
Select SINGLE option:
Sponge layer
Radiation boundary condition
Other - please specify:
3.4 Diffusion Horizontal
Horizontal diffusion scheme
3.4.1 Overview
Overview of horizontal diffusion scheme in atmos mode
Enter TEXT:
3.4.2 Scheme Name
Horizontal diffusion scheme name
3.4.3 Scheme Method *
Horizontal diffusion scheme method
☑ Iterated Laplacian
Bi-harmonic
Other - please specify:
3.5 Advection
Dynamical core advection
3.5.1 Overview
$Overview\ of\ dynamical\ core\ advection\ in\ atmos\ model.$
Enter TEXT:
3.6 Tracers
Tracer advection scheme
3.6.1 Scheme Name
Tracer advection scheme name
Heun

\boxtimes	Roe and VanLeer
	Roe and Superbee
	Prather
	UTOPIA
	Other - please specify:
3.6.2	Scheme Characteristics *
Tracer adv	vection scheme characteristics
	Eulerian
	Modified Euler
	Lagrangian
	Semi-Lagrangian
	Cubic semi-Lagrangian
	Quintic semi-Lagrangian
	Mass-conserving
\boxtimes	Finite volume
	Flux-corrected
	Linear
	Quadratic
	Quartic
	Other - please specify:
3.6.3	Conserved Quantities *
Tracer adv	vection scheme conserved quantities
	Dry mass
	Tracer mass
	Other - please specify:
3.6.4	Conservation Method *
Tracer adv	vection scheme conservation method
Select	SINGLE option:
	Conservation fixer

	Priestley algorithm
	Other - please specify:
0 7 1	of .
	Momentum
Moment	tum advection scheme
3.7.1	Scheme Name
Momentu	m advection schemes name
Selec	et SINGLE option:
	VanLeer
	Janjic
	SUPG (Streamline Upwind Petrov-Galerkin)
	Other - please specify:
3.7.2	Scheme Characteristics *
Momentu	m advection scheme characteristics
	2nd order
	4th order
	Cell-centred
\boxtimes	Staggered grid
	Semi-staggered grid
	Other - please specify:
3.7.3	Scheme Staggering Type *
Momentu	m advection scheme staggering type
	Arakawa B-grid
\boxtimes	Arakawa C-grid
	Arakawa D-grid
	Arakawa E-grid
	Other - please specify:

3.7.4	Conserved Quantities *
Moment	um advection scheme conserved quantities
	Angular momentum
	Horizontal momentum
\boxtimes	Enstrophy
	Mass
	Total energy
	Vorticity
	Other - please specify:
3.7.5	Conservation Method *
Moment	um advection scheme conservation method
Sele	ect SINGLE option:
	Conservation fixer
	Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Enter TEXT:

4.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ atmosphere\ radiation\ process\ in\ atmos\ model.$

Enter TEXT:

4.1.3 Aerosols *

Aerosols whose radiative effect is taken into account in the atmosphere model

\boxtimes	Sulphate
	Nitrate
\boxtimes	Sea salt
\boxtimes	Dust
	Ice
	Organic
\boxtimes	BC - Black carbon / soot
	SOA - Secondary organic aerosols
\boxtimes	POM - Particulate organic matter
	Polar stratospheric ice
	NAT - Nitric acid trihydrate
	NAD - Nitric acid dihydrate
	STS - Supercooled ternary solution aerosol particle
	Other - please specify:

4.2 Shortwave Radiation

Properties of the shortwave radiation scheme

4.2.1 Overview	
Overview of properties of the shortwave radiation scheme in atmos model.	
Enter TEXT:	
4.2.2 Overview *	
Overview description of shortwave radiation in the atmosphere	
Enter TEXT:	
4.2.3 Name	
Commonly used name for the shortwave radiation scheme	
Enter TEXT:	
4.2.4 Spectral Integration *	
Shortwave radiation scheme spectral integration	
₩ide-band model	
Correlated-k	
Exponential sum fitting	
Other - please specify:	
4.2.5 Transport Calculation *	
Shortwave radiation transport calculation methods	
Select MULTIPLE options:	
☐ Two-stream	
Layer interaction	
Bulk - Highly parameterised methods that use bulk expressions	
\square Adaptive - Exploits spatial and temporal correlations in optical characteristics	
Multi-stream	
Other - please specify:	
4.2.6 Spectral Intervals *	

 $Shortwave\ radiation\ scheme\ number\ of\ spectral\ intervals$

 $\mathbf{2}$

Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1 Overview

 $Overview\ of\ representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme\ in\ atmos\ model.$

Enter TEXT:

4.3.2 Greenhouse Gas Complexity *

Complexity of greenhouse gases whose shortwave radiative effects are taken into account in the atmosphere model

Select MULTIPLE options:		
	CO2 - Carbon Dioxide	
	CH4 - Methane	
	N2O - Nitrous Oxide	
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11	
equivalen	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration	
concentra	${ m HFC}$ -134a eq - Summarize the radiative effect of other fluorinated gases with a ${ m HFC}$ -134a equivalence tion	
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons	
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs	
	O3	
	H2O	
	Other - please specify:	
4.3.3 ODS Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model		
Selec	et MULTIPLE options:	
	CFC-12 - CFC	
	CFC-11 - CFC	
	CFC-113 - CFC	
	CFC-114 - CFC	
	CFC-115 - CFC	
	HCFC-22 - HCFC	
	HCFC-141b - HCFC	
	HCFC-142b - HCFC	

	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
4.0.4	
	Other Flourinated Gases
	a a b a b
Selec	et MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC

	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.4	Shortwave Cloud Ice
Shortwa	we radiative properties of ice crystals in clouds
4.4.1	Overview
Overview	of shortwave radiative properties of ice crystals in clouds in atmos model.
Ente	r TEXT:
4.4.2	General Interactions *
General s	shortwave radiative interactions with cloud ice crystals
Selec	et MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:
4.4.0	
	Physical Representation * representation of cloud ice crystals in the shortwave radiation scheme
	et MULTIPLE options:
	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters:
typically	hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area eres
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective envetal radius

	Other - please specify:
	Optical Methods *
	ethods applicable to cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.5 S	Shortwave Cloud Liquid
Shortwa	ve radiative properties of liquid droplets in clouds
4.5.1	Overview
	of shortwave radiative properties of liquid droplets in clouds in atmos model.
	r TEXT:
4.5.2	General Interactions *
$General\ s$	hortwave radiative interactions with cloud liquid droplets
Selec	t MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:
4.5.3	Physical Representation *
Physical r	representation of cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:

4.5.4	Optical Methods *
Optical 1	methods applicable to cloud liquid droplets in the shortwave radiation scheme
Sele	ect MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.6	Shortwave Cloud Inhomogeneity
Cloud i	inhomogeneity in the shortwave radiation scheme
4.6.1	Overview
Overviev	w of cloud inhomogeneity in the shortwave radiation scheme in atmos model.
Ente	er TEXT:
4.6.2	Cloud Inhomogeneity *
Method	for taking into account horizontal cloud inhomogeneity
Sele	ect SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
4.7	Shortwave Aerosols
Shortw	ave radiative properties of aerosols
4.7.1	Overview
Overviev	w of shortwave radiative properties of aerosols in atmos model.
Ente	er TEXT:
4.7.2	General Interactions *
General	shortwave radiative interactions with aerosols
Sele	ect MULTIPLE options:
	Scattering
	Emission/absorption

Other - please specify:

Physical representation of aerosols in the shortwave radiation scheme		
Selec	et MULTIPLE options:	
	Number concentration	
	Effective radii	
	Size distribution	
	Asymmetry	
	Aspect ratio	
	Mixing state - For shortwave radiative interaction	
	Other - please specify:	
4.7.4	Optical Methods *	
Optical n	nethods applicable to aerosols in the shortwave radiation scheme	
Selec	et MULTIPLE options:	
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	
4.8	Shortwave Gases	
Shortwa	we radiative properties of gases	
4.8.1	Overview	
Overview	$of\ shortwave\ radiative\ properties\ of\ gases\ in\ atmos\ model.$	
Ente	r TEXT:	
4.8.2	General Interactions *	
General s	shortwave radiative interactions with gases	
Selec	t MULTIPLE options:	
	Scattering	
	Emission/absorption	
	Other - please specify:	

4.7.3 Physical Representation *

4.9 Longwave Radiation

 $Properties \ of \ the \ longwave \ radiation \ scheme$

4.9.1 Overview

 $Overview\ of\ properties\ of\ the\ longwave\ radiation\ scheme\ in\ atmos\ model.$

Enter TEXT:

4.9.2 Overview *

 $Overview\ description\ of\ longwave\ radiation\ in\ the\ atmosphere$

Enter TEXT:

4.9.3 Name

Commonly used name for the longwave radiation scheme.

Enter TEXT:

4.9.4 Spectral Integration *

 $Longwave\ radiation\ scheme\ spectral\ integration$

\bowtie	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:

4.9.5 Transport Calculation *

 $Longwave\ radiation\ transport\ calculation\ methods$

-3	· · · · · · · · · · · · · · · · · · ·
	Two-stream
\boxtimes	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:

4.9.6 Spectral Intervals *

 $Longwave\ radiation\ scheme\ number\ of\ spectral\ intervals$

6

4.10 Longwave GHG

Representation of greenhouse gases in the longwave radiation scheme

4.10.1 Overview

 $Overview\ of\ representation\ of\ greenhouse\ gases\ in\ the\ longwave\ radiation\ scheme\ in\ atmos\ model.$

Enter TEXT:

4.10.2 Greenhouse Gas Complexity *

Complexity of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model

Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
equivalenc	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
	Other - please specify:
-	ODS
model	pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
	pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere t MULTIPLE options:
Selec	t MULTIPLE options:
Selec	t MULTIPLE options: CFC-12 - CFC
Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC
Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC
Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC
Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC

	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
4.10.4	Other Flourinated Gases
Other flor	urinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model
Selec	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC

	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.11	Longwave Cloud Ice
Longway	ve radiative properties of ice crystals in clouds
4.11.1	Overview
Overview	of longwave radiative properties of ice crystals in clouds in atmos model.
Ente	r TEXT:
4.11.2	General Interactions *
General l	ongwave radiative interactions with cloud ice crystals
Selec	et MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:
4.11.3	Physical Reprenstation *
	representation of cloud ice crystals in the longwave radiation scheme
Selec	et MULTIPLE options:
typically 1	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area eres
	Ice water path - Integrated ice water path through the cloud kg m-2
	Crystal asymmetry
	Crystal aspect ratio
	Effective envetal radius

	Other - please specify:
4.11.4 Optical m	Optical Methods * ethods applicable to cloud ice crystals in the longwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.12	Longwave Cloud Liquid
Longway	ve radiative properties of liquid droplets in clouds
4.12.1	Overview
Overview	of longwave radiative properties of liquid droplets in clouds in atmos model.
Enter	TEXT:
4.12.2	
T.12.2	General Interactions *
	General Interactions * ongwave radiative interactions with cloud liquid droplets
General le	
General le	ongwave radiative interactions with cloud liquid droplets
General le	ongwave radiative interactions with cloud liquid droplets t MULTIPLE options:
General le	ongwave radiative interactions with cloud liquid droplets t MULTIPLE options: Scattering
General le	t MULTIPLE options: Scattering Emission/absorption Other - please specify:
Selection Selection A.12.3	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation *
Selection Select	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the longwave radiation scheme
Selection Select	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the longwave radiation scheme t MULTIPLE options:
Selection Select	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the longwave radiation scheme t MULTIPLE options: Cloud droplet number concentration - CDNC
Selection Select	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the longwave radiation scheme t MULTIPLE options: Cloud droplet number concentration - CDNC Effective cloud droplet radii
Selection Select	t MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the longwave radiation scheme t MULTIPLE options: Cloud droplet number concentration - CDNC

4.12.4	Optical Methods *
Optical m	aethods applicable to cloud liquid droplets in the longwave radiation scheme
Selec	et MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.13	Longwave Cloud Inhomogeneity
Cloud in	nhomogeneity in the longwave radiation scheme
4.13.1	Overview
Overview	of cloud inhomogeneity in the longwave radiation scheme in atmos model.
Ente	r TEXT:
4.13.2	Cloud Inhomogeneity *
Method fo	or taking into account horizontal cloud inhomogeneity
Selec	et SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
4.14	Longwave Aerosols
Longway	ve radiative properties of aerosols
4.14.1	Overview
Overview	of longwave radiative properties of aerosols in atmos model.
Ente	r TEXT:
4.14.2	General Interactions *
$General\ l$	ongwave radiative interactions with aerosols
Selec	t MULTIPLE options:
	Scattering
	Emission/absorption

Other - please specify:

$Physical\ representation\ of\ aerosols\ in\ the\ longwave\ radiation\ scheme$		
Select MULTIPLE options:		
	Number concentration	
	Effective radii	
	Size distribution	
	Asymmetry	
	Aspect ratio	
	Mixing state - For shortwave radiative interaction	
	Other - please specify:	
4.14.4	Optical Methods *	
Optical m	ethods applicable to aerosols in the longwave radiation scheme	
Selec	t MULTIPLE options:	
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	
4.15	Longwave Gases	
Longway	ve radiative properties of gases	
4.15.1	Overview	
Overview	of longwave radiative properties of gases in atmos model.	
Enter	r TEXT:	
4.15.2	General Interactions *	
General le	ongwave radiative interactions with gases	
Selec	t MULTIPLE options:	
	Scattering	
	Emission/absorption	
	Other - please specify:	

4.14.3 Physical Representation *

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Name

Commonly used name for the turbulence convection in atmos model.

Enter TEXT:

5.1.2 Overview

 $Overview\ of\ atmosphere\ convective\ turbulence\ and\ clouds\ in\ atmos\ model.$

Enter TEXT:

5.2 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1 Overview

Overview of properties of the boundary layer turbulence scheme in atmos model.

Enter TEXT:

5.2.2 Scheme Name

Boundary layer turbulence scheme name

Sele	ct SINGLE option:
	Mellor-Yamada
	Holtslag-Boville
	EDMF - Combined Eddy Diffusivity Mass-Flux
	Other - please specify:
5.2.3	Scheme Type *
Boundar	y layer turbulence scheme type
	TKE prognostic
\boxtimes	TKE diagnostic
	TKE coupled with water
	Vertical profile of Kz
	Non-local diffusion

	Monin-Obukhov similarity
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land
	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.4	Closure Order *
Boundar	y layer turbulence scheme closure order
Ent	er INTEGER value:
5.2.5	Counter Gradient *
Uses bou	andary layer turbulence scheme counter gradient
\boxtimes	True
5.3	Deep Convection
	Deep Convection ties of the deep convection scheme
	-
Proper 5.3.1	ties of the deep convection scheme
Propert 5.3.1 Overview	Overview
Propert 5.3.1 Overview	Overview of properties of the deep convection scheme in atmos model.
Propers 5.3.1 Overvies Ent 5.3.2	Overview of properties of the deep convection scheme in atmos model. er TEXT:
Propers 5.3.1 Overvies Ent 5.3.2	Overview of properties of the deep convection scheme in atmos model. er TEXT: Scheme Name
Propers 5.3.1 Overview Ent 5.3.2 Deep cos	Overview of properties of the deep convection scheme in atmos model. er TEXT: Scheme Name nvection scheme name
Propers 5.3.1 Overview Ent 5.3.2 Deep cos	Overview of properties of the deep convection scheme in atmos model. TEXT: Scheme Name nvection scheme name Scheme Type *
Property 5.3.1 Overview Ent 5.3.2 Deep con 5.3.3 Deep con	Overview of properties of the deep convection scheme in atmos model. er TEXT: Scheme Name nvection scheme name Scheme Type * nvection scheme type
Propers 5.3.1 Overview Ent 5.3.2 Deep com 5.3.3 Deep com	Overview of properties of the deep convection scheme in atmos model. er TEXT: Scheme Name nvection scheme name Scheme Type * nvection scheme type Mass-flux

5.3.4	Scheme Method "
Deep con	vection scheme method
\boxtimes	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics
sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-
	$\label{thm:thm:thm:mass} {\it TKE/CIN}\ \ {\it based}\ \ -\ \ {\it TKE-Convective}\ \ {\it Inhibition:}\ \ {\it Based}\ \ {\it on}\ \ {\it the}\ \ {\it quasi-equilibrium}\ \ {\it of}\ \ {\it the}\ \ {\it boundary}\ \ {\it layer}$
	Other - please specify:
5.3.5	Processes *
Physical	processes taken into account in the parameterisation of deep convection
\boxtimes	Vertical momentum transport
\boxtimes	Convective momentum transport
\boxtimes	Entrainment
\boxtimes	Detrainment
\boxtimes	Penetrative convection
\boxtimes	Updrafts
	Downdrafts
\boxtimes	Radiative effect of anvils
	Re-evaporation of convective precipitation
	Other - please specify:
5.3.6	Microphysics
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of l rometeor and water vapor from u pdrafts
Selec	et MULTIPLE options:
	Tuning parameter based
	Single moment
	Two moment
	Other - please specify:

5.4 Shallow Convection

 $Properties \ of \ the \ shallow \ convection \ scheme$

5.4.1	Overview	
Overview of properties of the shallow convection scheme in atmos model.		
Enter TEXT:		
5.4.2	Scheme Name	
Shallow convection scheme name		
Enter TEXT:		
5.4.3	Scheme Type *	
Shallow convection scheme type		
Select MULTIPLE options:		
	Mass-flux	
	Cumulus-capped boundary layer	
	Other - please specify:	
5.4.4	Scheme Method *	
Shallow convection scheme method		
\boxtimes	Same as deep (unified)	
	Included in boundary layer turbulence	
	$Separate\ diagnosis\ -\ Deep\ and\ Shallow\ convection\ schemes\ use\ different\ thermodynamic\ closure\ criteria$	
	Other - please specify:	
5.4.5 Processes *		
Physical processes taken into account in the parameterisation of shallow convection		
Select MULTIPLE options:		
	Convective momentum transport	
	Entrainment	
	Detrainment	
	Penetrative convection	
	Re-evaporation of convective precipitation	

Other - please specify:

Microphysics scheme for shallow convection		
Select MULTIPLE options:		
	Tuning parameter based	
	Single moment	
	Two moment	

Other - please specify:

5.4.6 Microphysics

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.2 Overview

 $Overview\ of\ large\ scale\ cloud\ microphysics\ and\ precipitation\ in\ atmos\ model.$

Enter TEXT:

6.2 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1 Overview

Overview of properties of the large scale precipitation scheme in atmos model.

Enter TEXT:

6.2.2 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

6.2.3 Hydrometeors *

Precipitating hydrometeors taken into account in the large scale precipitation scheme

\bowtie	Liquid rain
\boxtimes	Snow
	Hail
	Graupel
	Other - please specify:

6.3 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1 Overview

Overview of properties of the large scale cloud microphysics scheme in atmos model.

Enter TEXT:

6.3.2 Scheme Name

 $Commonly\ used\ name\ of\ the\ microphysics\ parameterisation\ scheme\ used\ for\ large\ scale\ clouds.$

6.3.3	Processes *
Large sc	ale cloud microphysics processes
\boxtimes	Mixed phase
\boxtimes	Cloud droplets
\boxtimes	Cloud ice
	Ice nucleation
\boxtimes	Water vapour deposition
	Effect of raindrops
	Effect of snow
	Effect of graupel
	Other - please specify:

7 Cloud Scheme

 $Characteristics\ of\ the\ cloud\ scheme$

7.1 Cloud Scheme
Characteristics of the cloud scheme
7.1.1 Name
Commonly used name for the cloud scheme in atmos model.
Enter TEXT:
7.1.2 Overview
Overview of characteristics of the cloud scheme in atmos model.
Enter TEXT:
7.1.3 Scheme Type *
Describes the $type(s)$ of cloud scheme: prognostic, diagnostic, other.
Select MULTIPLE options:
☐ Prognostic
☐ Diagnostic
Other - please specify:
7.1.4 Uses Separate Treatment *
Description for when different cloud schemes are used for different types of clouds e.g. convective, stratiform and boundary layer)
7.1.5 Processes *
Processes included in the cloud scheme
Entrainment
Detrainment
Bulk cloud
Other - please specify:
7.1.6 Prognostic Variables

 ${\it List the prognostic variables used by the cloud scheme, if applicable.}$

Select MULTIPLE options: $\begin{tabular}{ll} \hline & Cloud amount \\ \hline \end{tabular}$

	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.7	Atmos Coupling
Atmosph	nere components that are linked to the cloud scheme
Sele	ect MULTIPLE options:
	Atmosphere_radiation
	Atmosphere_microphysics_precipitation
	$Atmosphere_turbulence_convection$
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
7.2	Optical Cloud Properties
	cloud properties
7.2.1	Overview
Overviev	w of optical cloud properties in atmos model.
Ente	er TEXT:
7.2.2	Cloud Overlap Method
Method	for taking into account overlapping of cloud layers
Sele	ect SINGLE option:
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
	Other - please specify:

7.2.3 Cloud Inhomogeneity

Method for taking into account cloud inhomogeneity

Enter TEXT:

7.3 Sub Grid Scale Water Distribution

Sub-grid scale water distribution

7.3.1 Overview

Overview of sub-grid scale water distribution in atmos model.

Enter TEXT:

7.3.2	Type	*
	- <i>J</i> F	

 $Sub\mbox{-}grid\ scale\ water\ distribution\ type$

☐ Prognostic

Diagnostic

7.3.3 Function Name *

 $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ name$

7.3.4 Function Order *

Sub-grid scale water distribution function type

2

7.3.5 Convection Coupling *

Sub-grid scale water distribution coupling with convection

Coupled with deep

Coupled with shallow

Not coupled with convection

7.4 Sub Grid Scale Ice Distribution

Sub-grid scale ice distribution

7.4.1 Overview

Overview of sub-grid scale ice distribution in atmos model.

Enter TEXT:

7.4.2	Type *	
Sub- $grid$	scale ice distribution type	
Sele	ct SINGLE option:	
	Prognostic	
	Diagnostic	
7.4.3	Function Name *	
Sub- $grid$	$scale\ ice\ distribution\ function\ name$	
Ente	er TEXT:	
7.4.4	Function Order *	
Sub- $grid$	$scale\ ice\ distribution\ function\ type$	
Enter INTEGER value:		
7.4.5	Convection Coupling *	
Sub- $grid$	$scale\ ice\ distribution\ coupling\ with\ convection$	
Sele	ct MULTIPLE options:	
	Coupled with deep	
	Coupled with shallow	
	Not coupled with convection	

8 Observation Simulation

Characteristics of observation simulation

8.1 Observation Simulation

 $Characteristics\ of\ observation\ simulation$

8.1.1 Name

Commonly used name for the observation simulation in atmos model.

 ${f Enter\ TEXT}:$

8.1.2 Overview

 $Overview\ of\ characteristics\ of\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.2 Isscp Attributes

ISSCP Characteristics

8.2.1 Overview

Overview of issep characteristics in atmos model.

Enter TEXT:

8.2.2 Top Height Estimation Method

 $Cloud\ simulator\ ISSCP\ top\ height\ estimation\ method\ Uo$

	No adjustment
\boxtimes	IR brightness
\boxtimes	Visible optical depth
	Other - please specify:

8.2.3 Top Height Direction

 $Cloud\ simulator\ ISSCP\ top\ height\ direction$

\bowtie	Lowest altitude level
	Highest altitude level
	Other - please specify:

8.3 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1 Overview
$Overview\ of\ cfmip\ observational\ simulator\ package\ attributes\ in\ atmos\ model.$
Enter TEXT:
8.3.2 Run Configuration
Cloud simulator COSP run configuration
⊠ Inline
Offline
Other - please specify:
8.3.3 Number Of Grid Points
Cloud simulator COSP number of grid points
9026
8.3.4 Number Of Sub Columns
Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variabilit
20
8.3.5 Number Of Levels
Cloud simulator COSP number of levels
39
8.4 Radar Inputs
Characteristics of the cloud radar simulator
8.4.1 Overview
Overview of characteristics of the cloud radar simulator in atmos model.
Enter TEXT:
8.4.2 Frequency
Cloud simulator radar frequency (Hz)
94.0
8.4.3 Type

 $Cloud\ simulator\ radar\ type$

Surface

Space borne

Other - please specify:

 \boxtimes

8.4.4	Gas Absorption
Cloud si	mulator radar uses gas absorption
\boxtimes	True
8.4.5	Effective Radius
Cloud si	mulator radar uses effective radius
\boxtimes	True
8.5	Lidar Inputs
Charac	teristics of the cloud lidar simulator
8.5.1	Overview
Overviev	w of characteristics of the cloud lidar simulator in atmos model.
Ente	er TEXT:
8.5.2	Ice Types
Cloud si	mulator lidar ice type
\boxtimes	Ice spheres
	Ice non-spherical
	Other - please specify:
8.5.3	Overlap
Cloud si	mulator lidar overlap
\boxtimes	Max
	Random
	Other - please specify:

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1 Gravity Waves

 $Characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources$

9.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.2 Overview

Overview of characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources in atmos model.

Enter TEXT:

9.1.3	Sponge	Laver	*
0.1.0	~Pomge	- 4,501	

Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.

Sele	ct SINGLE option:
	Rayleigh friction
	Diffusive sponge layer
	Other - please specify:
9.1.4	Background *
Backgroup	und wave distribution
Sele	ct SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify:
9.1.5	Subgrid Scale Orography *
Subgrid s	scale orography effects taken into account.
\boxtimes	Effect on drag
\boxtimes	Effect on lifting
	Enhanced topography - To enhance the generation of long waves in the atmosphere

Other - please specify:
9.2 Orographic Gravity Waves
Gravity waves generated due to the presence of orography
9.2.1 Overview
Overview of gravity waves generated due to the presence of orography in atmos model.
Enter TEXT:
9.2.2 Name
Commonly used name for the orographic gravity wave scheme
Enter TEXT:
9.2.3 Source Mechanisms *
Orographic gravity wave source mechanisms
Linear mountain waves
Hydraulic jump
Envelope orography
Low level flow blocking
Statistical sub-grid scale variance
Other - please specify:
9.2.4 Calculation Method *
Orographic gravity wave calculation method
Non-linear calculation
More than two cardinal directions
Other - please specify:
9.2.5 Propagation Scheme *
Orographic gravity wave propogation scheme
☐ Linear theory
Non-linear theory
☐ Includes boundary layer ducting
Other - please specify:

9.2.6	Dissipation Scheme *
Orograpi	hic gravity wave dissipation scheme
\boxtimes	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
0.0	
	Non Orographic Gravity Waves
Gravity	waves generated by non-orographic processes.
9.3.1	Overview
Overview	w of gravity waves generated by non-orographic processes. in atmos model.
Ent	er TEXT:
9.3.2	Name
Commo	nly used name for the non-orographic gravity wave scheme
Ent	er TEXT:
9.3.3	Source Mechanisms *
Non-oro	graphic gravity wave source mechanisms
	Convection
	Precipitation
\boxtimes	Background spectrum
	Other - please specify:
9.3.4	Calculation Method *
	graphic gravity wave calculation method
\boxtimes	Spatially dependent
	Temporally dependent
<u></u>	Tomportung dependent
9.3.5	Propagation Scheme *
Non-oro	graphic gravity wave propogation scheme
	Linear theory

\bowtie	Non-linear theory
	Other - please specify:
9.3.6	Dissipation Scheme *
Non-oro	graphic gravity wave dissipation scheme
	Total wave
	Single wave
\boxtimes	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:

10 Natural Forcing

Natural forcing: solar and volcanic.

10.1 Natural Forcing

Natural forcing: solar and volcanic.

10.1.1 Name

Commonly used name for the natural forcing in atmos model.

Enter TEXT:

10.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1 Overview

Overview of pathways for solar forcing of the atmosphere in atmos model.

Enter TEXT:

10.2.2 Pathways *

Pathways for the solar forcing of the atmosphere model domain

Select MULTIPLE options:

	SW radiation - Shortwave solar spectral irradiance.
	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly pro-
tons) and	the magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper
atmospher	re, leading to significant changes of the chemical composition

l	Cosmic rays -	- Cosmic rays a	e the main	n source o	f ionization i	in the	troposphere	and lower	stratosphere

Other - please specify:

10.3 Solar Constant

 $Solar\ constant\ and\ top\ of\ atmosphere\ insolation\ characteristics$

10.3.1 Overview

Overview of solar constant and top of atmosphere insolation characteristics in atmos model.

Enter TEXT:

10.3.2	Type *
Time ada	ptation of the solar constant.
\boxtimes	Fixed
	Transient
10.3.3	Fixed Value
	r constant is fixed, enter the value of the solar constant (W m-2).
1366.	0896
10.3.4	Transient Characteristics
Solar cons	stant transient characteristics (W m-2)
Enter	TEXT:
10.4	Orbital Parameters
Orbital p	parameters and top of atmosphere insolation characteristics
10.4.1	Overview
Overview	of orbital parameters and top of atmosphere insolation characteristics in atmos model.
Enter	· TEXT:
10.4.2	Type *
Type of or	rbital parameter
\boxtimes	Fixed
	Transient
10.4.3	Fixed Reference Date
	date for fixed orbital parameters (yyyy)
2000	
10.4.4	Transient Method
Description	on of transient orbital parameters
Enter	TEXT:
10.4.5	Computation Method
Method us	sed for computing orbital parameters.
\boxtimes	Berger 1978
	Laskar 2004
	Other - please specify:

10.5 Insolation Ozone
Impact of solar insolation on stratospheric ozone
10.5.1 Overview
Overview of impact of solar insolation on stratospheric ozone in atmos model.
Enter TEXT:
10.5.2 Solar Ozone Impact *
Does top of atmosphere insolation impact on stratospheric ozone?
☐ False
10.6 Volcanoes Treatment
Characteristics and treatment of volcanic forcing in the atmosphere
10.6.1 Overview
$Overview\ of\ characteristics\ and\ treatment\ of\ volcanic\ forcing\ in\ the\ atmosphere\ in\ atmos\ model$
Enter TEXT:
10.6.2 Volcanoes Characteristics *
Description of how the volcanic forcing is taken into account in the atmosphere.
Enter TEXT:

10.6.3 Volcanoes Implementation *
How volcanic effects are modeled in the atmosphere.

Other - please specify:

High frequency solar constant anomaly Stratospheric aerosols optical thickness