

1/16

Figure 1A
**Binding of the mab A76-A/C7 (type GD-1) to a MUC1
 30-mer depending on the glycosylation to the PDTR motif**

Figure 1B
**Binding pattern of mab against MUC1 of the epitope with GaINAc:
 VU-3C6 (type GD-2), VU-4H5 (type iGD), HMFG-1 (type GI)**

2/16

BEST AVAILABLE COPY

Figure 2

3/16

Figure 3A

Binding of the mab A76-A/C7 to glycosylated MUC1 peptides of different length (1-5 tandem repeats)
(glycosylated with Tn to PDTR motif)

BEST AVAILABLE COPY

4/16

Figure 3B

Binding of the mab Mc5 to glycosylated MUC1 peptides of different length
(1-5 tandem repeats)
(glycosylated with Tn to PDTR motif)

REST AVAILABLE COPY

5/16

Figure 4

Binding of the mab VU-4H5 to glycosylated MUC1 peptides of different length (1-5 tandem repeats)
(glycosylated with Tn to PDTR motif)

BEST AVAILABLE COPY

6/16

Figure 5A

- 1) ZR-75-1 cells before accumulation with A76-A/C7 and cloning

- 2) ZR-75-1 cells after accumulation with A76-A/C7 and cloning (ZR-75-1-sub)

BEST AVAILABLE COPY

7/16

Figure 5 B

A09822087

8/16

Figure 5C (1)

A. Expression vector

B. Sequenz of the human muc1 cDNA, which were cloned into the expression vector. The primers which were used for the amplification of the cDNA from ZR-75-1 cDNA are marked in green.

GAATTCCCTG GCTGCTTGA TCTGTTCTGC CCCCTCCCCA CCCA
 1 CTTAAGGGAC CGACGAACCT AGACAAGACG GGGGAGGGGT GGGTAAAGTG
 +10 +20 +30 +40
 ~~GGGGGAGGGGGCA~~ CCCAGTCTCC TTCTTCCTG CTGCTGCTCC
 51 GTGGTGGTAC TGTGGCCCGT GGGTCAGAGG AAAGAAGGAC GACGACGAGG
 +10 +20 +30 +40
 ~~TGATGAGGAA~~ AGGAGACTTC GGCTACCCAG AGAACGTTCAAG TGCCCAGCTC
 101 TCACAGTGTCT TACAGTTGTT ACAGGTTCTG GTCATGCAAG CTCTACCCCA
 ~~GGGGGAGAAA~~ AGGAGACTTC GGCTACCCAG AGAACGTTCAAG TGCCCAGCTC
 151 CCACCTCTTT TCCTCTGAAG CCGATGGGT TCTTCAAGTC ACGGGTCGAG
 +10 +20 +30 +40
 ~~TACTGAGAAG~~ AATGCTGTGA GTATGACCAG CAGCGTACTC TCCAGCCACA
 201 ATGACTCTTC TTACGACACT CATACTGGTC GTCGCATGAG AGGTGGTGT
 +10 +20 +30 +40
 ~~GCCCCGGTTC~~ AGGCTCCCTC ACCACTCAGG GACAGGATGT CACTCTGGCC
 251 CGGGGCAAG TCCGAGGAGG TGGTGAGTCC CTGTCCTACA GTGAGACCGG
 +10 +20 +30 +40
 ~~CCGGGCCACGG~~ AACCAAGCTTC AGGTTCAGCT GCCACCTGGG GACAGGATGT
 301 GGGGGTGC TTGGTCGAAG TCCAAGTCGA CGGTGGACCC CTGTCCTACA
 +10 +20 +30 +40
 ~~CACCTCGGT~~ CCAGTCACCA GGCCAGCCCT GGGCTCCACC ACCCCGCCAG
 351 GTGGAGCCAG GGTCACTGGT CCGGTCGGGA CCCGAGGTGG TGGGGCGGTG
 +10 +20 +30 +40
 ~~CCCCACGATGT~~ CACCTCAGCC CCGGACAAACA AGCCAGCCCC GGGCTCCACC
 401 GGGTGCTACA GTGGAGTCGG GGCCTGTTGT TCGGTGGGG CCCGAGGTGG
 +10 +20 +30 +40
 ~~GCCCCCCCAG~~ CCCACGGTGT CACCTCGGCC CCGGACACCA GGGCGCCCCC
 451 CGGGGGGGTC GGGTGCCACA GTGGAGCCGG GGCCTGTTGT CCGGCGGGGG
 +10 +20 +30 +40
 ~~GGGCTCCACC~~ GCCCCCCCAG CCCACGGTGT CACCTCGGCC CCGGACACCA
 501 CCCGAGGTGG CGGGGGGGTC GGGTGCCACA GTGGAGCCGG GGCCTGTTGT
 +10 +20 +30 +40
 ~~GGCCGCCCCC~~ GGGCTCCACC GGGCCCGCAG CCCACGGTGT CACCTCGGCC
 551 CGGGCGGGGG CCCGAGGTGG CGGGGGCGTC GGGTGCCACA GTGGAGCCGG

BEST AVAILABLE COPY

9/16
Figure 5C (2)

	+10	+20	+30	+40
	CCGGACACCA	GGCCGGCCCC	GGGCTCCACC	GCCCCCCCAG
601	*****	*****	*****	*****
	GGCCTGTGGT	CCGGCCGGGG	CCCGAGGTGG	CGGGGGGTC
	*****	*****	*****	*****
	CACCTCGGCC	CCGGACAACA	GGCCCGCCTT	GGCGTCCACC
651	*****	*****	*****	*****
	GTGGAGCCGG	GGCCTGTGGT	CCGGGCGGAA	CCCGAGGTGG
	*****	*****	*****	*****
	TCCACAATGT	CACCTCGGCC	TCAGGCTCTG	CATCAGGCTC
701	*****	*****	*****	*****
	AGGTGTTACA	GTGGAGCCGG	AGTCCGAGAC	GTAGTCCGAG
	*****	*****	*****	*****
	CTGGTGACACA	ACGGCACCTC	TGCCAGGGCT	ACCACAACCC
751	*****	*****	*****	*****
	GACCACGTGT	TGCCGTGGAG	ACGGTCCCGA	TGGTGTGGG
	*****	*****	*****	*****
	GAGCACTCCA	TTCTCAATT	CCAGGCCACCA	CTCTGATACT
801	*****	*****	*****	*****
	CTCGTGAGGT	AAGAGTTAAC	GGTCGGTGGT	GAGACTATGA
	*****	*****	*****	*****
	TTGCCAGCCA	TAGCACCAAG	ACTGATGCCA	GTAGCACTCA
851	*****	*****	*****	*****
	AACGGTCGGT	ATCGTGGTTC	TGACTACGGT	CATCGTGAGT
	*****	*****	*****	*****
	GTACCTCTC	TCACCTCCTC	CAATCACAGC	ACTTCTCCCC
901	*****	*****	*****	*****
	CATGGAGGAG	AGTGGAGGAG	GTTAGTGTG	TGAAGAGGGG
	*****	*****	*****	*****
	+10	+20	+30	+40
	TGGGGTCTCT	TTCTTTTCC	TGTCTTTCA	CATTCAAAC
951	*****	*****	*****	*****
	ACCCCCAGAGA	AAGAAAAAAGG	ACAGAAAAGT	GTAAAGTTTG
	*****	*****	*****	*****
	+10	+20	+30	+40
	ATTCCCTCTCT	GGAAAGATCCC	AGCACCGACT	ACTACCAAGA
1001	*****	*****	*****	*****
	TAAGGAGAGA	CCTCTAGGG	TCGTGGCTGA	TGATGGTTCT
	*****	*****	*****	*****
	+10	+20	+30	+40
	GACATTCTCG	AAATGTTTT	GCAGATTAT	AAACAAAGGGG
1051	*****	*****	*****	*****
	CTGTAAAGAC	TTTACAAAAA	CGTCTAAATA	TTTGTCCCC
	*****	*****	*****	*****
	+10	+20	+30	+40
	CCTCTCCAAT	ATTAAGTTCA	GGCCAGGATC	TGTGGTGGTA
1101	*****	*****	*****	*****
	GGAGAGGTAA	TAATTCAAGT	CCGGTCCTAG	ACACCACCAT
	*****	*****	*****	*****
	+10	+20	+30	+40
	TGGCCTCCG	AGAAGGTACC	ATCAATGTCC	ACGACGTGGA
1151	*****	*****	*****	*****
	ACCGGAAGGC	TCTTCCATGG	TAGTTACAGG	TGCTGCCACT
	*****	*****	*****	*****
	+10	+20	+30	+40
	AATCAGTATA	AAACCGGAAGC	AGCCTCTCGA	TATAACCTGA
1201	*****	*****	*****	*****
	TTAGTCATAT	TTTGCCTTCG	TCGGAGAGCT	ATATTGGACT
	*****	*****	*****	*****
	+10	+20	+30	+40
	CGTCAGCGTG	AGTGATGTGC	CATTTCCCTT	CTCTGCCAG
1251	*****	*****	*****	*****
	GCAGTCGCAC	TCACTACACG	GTAAAGGAAA	GAGACGGGTC
	*****	*****	*****	*****

12367

10/16
Figure 5C (3)

	+10	+20	+30	+40	
	GGGTGCCAGG	CTGGGGCATC	GCGCTGCTGG	TGCTGGTCTG	TGTTCTGGTT
1301	*****	*****	*****	*****	*****
	CCCACGGTCC	GACCCCGTAG	CGCGACGACC	ACGACCAGAC	ACAAGACCAA
	+10	+20	+30	+40	
	GCGCTGGCCA	TTGTCTATCT	CATTGCCTTG	GCTGTCCTGTC	AGTGCCGCCG
1351	*****	*****	*****	*****	*****
	CGCGACCGGT	AACAGATAGA	GTAAACGGAAC	CGACAGACAG	TCACGGCGGC
	+10	+20	+30	+40	
	AAAGAACTAC	GGGCAGCTGG	ACATCTTCC	AGCCCCGGAT	ACCTACCATC
1401	*****	*****	*****	*****	*****
	TTTCTTGATG	CCCGTCGACC	TGTAGAAAGG	TCGGGGCCCTA	TGGATGGTAG
	+10	+20	+30	+40	
	CTATGAGCGA	GTACCCCCACC	TACCACACCC	ATGGGCGCTA	TGTGCCCCCT
1451	*****	*****	*****	*****	*****
	GATACTCGCT	CATGGGGTGG	ATGGTGTGGG	TACCCGCGAT	ACACGGGGGA
	+10	+20	+30	+40	
	AGCAGTACCG	ATCGTAGCCC	CTATGAGAAG	GTTTCTGCAG	GTAATGGTGG
1501	*****	*****	*****	*****	*****
	TCGTCATGGC	TAGCATCGGG	GATACTCTTC	CAAAGACGTC	CATTACCACC
	+10	+20	+30	+40	
	CAGCAGCCTC	TCTTACACAA	ACCCAGCAGT	GGCAGCCACT	TCTGCCAACT
1551	*****	*****	*****	*****	*****
	GTCGTCGGAG	AGAAATGTGTT	TGGGTCGTCA	CCGTCGGTGA	AGACGGTTGA
	+10	+20	+30	+40	
	TGTAGGGGCA	CGTCGCCCTC	TGAGCTGAGT	GGCCAGCCAG	TGCCATTCCA
1601	-----	-----	-----	-----	-----
	ACATCCCCGT	<u>GGGGGGGAGTC</u>	<u>CTCCATTCA</u>	CGGTGGTC	ACGGTAAGGT
	+10	+20	+30	+40	
	CTCCACTCA	GGCTCTCTGG	GCCAGTCCTC	CTGGGAGCCC	CCACCACAAAC
1651	-----	-----	-----	-----	-----
	GAGGTGAGTC	CCGAGAGACC	CGGTCAAGGAG	GACCCCTCGGG	GGTGGTGTG
	+10	+20	+30	+40	
	ACTTCCCAGG	CATGGAATT	C		
1701	-----	-----	-----	-----	-----
	TGAAGGGTCC	GTACCTTAAG	G		

BEST AVAILABLE COPY

11/16

Figure 5D (1)**A. Rec site vector****Features of the stably transfected host cells:**

- Integration of the recombination site in connection with the *lacZ* antibiotic1 resistance fusion gene
- Resistance against the antibiotic1, expression of the *lacZ* gene (β -galactosidase activity)
- The transfectants differ with respect to the strength of the expression of the fusion gene (chromosomal positioning effect) depending on the integration site of the recombination site and of the fusion gene in the chromosome. Detection by β -galactosidase activities differing in strength.

12/16/97

Figure D (2).

- A. Integration of the muc1 cDNA via the rec site into the ZR-75-1 genome

BEST AVAILABLE COPY

Recombinase
Expression vector

+

Muc1 expression vector with recombination site (rec site)

↓
Product of the
site-specific
recombination

13/16

Figure D (3)

Features of the stably transfected host cells:

- Resistance against antibiotic 2
- Sensitivity to antibiotic 1, β -galactosidase inactive
- High expression of the recombinant muc1 gene due to the strong promoter and the chromosomal positioning effect

14/16

Figure 5E

BSM - bovine submaxillary mucin 1
MUC1 - Mucin 1 from cell supernatants

BEST AVAILABLE COPY

15/16

Figure 5F

16/16

Figure 6

BEST AVAILABLE COPY

	% SR
MCF7	8,86
LS147T	7,58
T2 + MUC1	3,18
T2 + HIV	4,37