Software Engineering Practices Curse 2024-25 UAB

Document:

S.R.S. Template

(version 4.0)

(Date: 2024-12-06)

History of revisions

Date	Version	Description	Author
17/11/2024	1.0	System requirements	Albert Árboles
03/12/2024	2.0	Class diagrams	Albert Árboles
05/12/2024	3.0	Activity diagrams	Nil Díaz
06/12/2024	4.0	Sequence diagrams	Nil Díaz

About this document

Aquest document descriu l'anàlisi i l'especificació dels requisits per a l'aplicació SeniorLife. Inclou els següents apartats:

- Requisits no funcionals: Es detallen aspectes de rendiment, seguretat i accessibilitat del sistema per garantir una experiència fiable i amigable per a l'usuari.
- Requisits funcionals: Es defineixen les funcionalitats clau de l'aplicació des de la perspectiva dels diferents usuaris (p. ex., persones grans, personal mèdic i familiars).
- Requisits en conflicte: S'analitzen possibles conflictes entre les necessitats de diferents actors i les seves implicacions.
- Requisits dependents: S'identifiquen les dependències entre requisits que poden afectar la seqüència d'implementació o el disseny del sistema.
- Diagrames: Activitat, seqüència i classes.

Table of contents

Document Template

1.System requirements	5
1.1.User requirements	5
1.2.Requirements list	5
1.3.System requirements description	6
1.3.1 Requisits funcionals	6
1.4 Requisits en conflicte	7
1.5 Requisits dependents	7
2.Diagrames	8
2.1 Diagrames d'activitat	9
2.1.2 Seguiment	10
2.1.3 Videoconferència	11
2.1.4 Programar cita mèdica	12
2.2 Diagrama de seqüència	13
2.2.1 Seguiment	13
2.2.2 Videoconferència	14
2.2.3 Programar cita médica	15
2.2.4 Funcionament xarxa social	16
2.3 Diagrama de classes	17
2.3.1 Diagrama estructura estàtica (pregunta 8):	17
2.3.2 Diagrama gestió constants (pregunta 9):	20

1.System requirements

Aquesta secció llista els requisits funcionals i no funcionals del sistema. A continuació, es presenta una descripció completa de cadascun dels requisits del sistema.

1.1.User requirements

A continuació es presenta la llista de requisits recollits dels usuaris:

- **-Requisit 1:** Com a usuari, vull poder comunicar-me amb familiars i amics mitjançant missatges, fotos i videotrucades per tal de mantenir-me connectat i reduir la soledat.
- **-Requisit 2:** Com a usuari, vull rebre notificacions sobre la meva medicació programada per tal de recordar-me de prendre les dosis correctes i millorar la meva salut.
- **-Requisit 3:** Com a personal mèdic, vull poder monitoritzar remotament les constants vitals dels meus pacients per tal de detectar anomalies a temps i oferir atenció preventiva.
- -Requisit 4: Com a familiar, vull configurar alertes personalitzades per a paràmetres de salut del meu pare/mare per tal de ser avisat en situacions crítiques i garantir la seva seguretat.

1.2.Requirements list

La següent taula resumeix els requisits funcionals i no funcionals del sistema:

Function Requirements	Non-Functional Requirements	
F001 - Comunicació social: Permet	NF001 - Rendiment: Temps de	
enviar missatges, fotos i	resposta inferior a 10 segons per les	
videotrucades.	accions principals.	
F002 - Recordatori de medicació:	NF002 - Seguretat: Protecció de les	
Notifica sobre medicació programada.	dades mèdiques i personals dels	
	usuaris, complint amb les normatives	
	de privacitat aplicables.	
F003 - Monitorització mèdica:	NF003 - Accessibilitat: Compliment	
Permet monitoritzar constants vitals.	de WCAG 2.1.	
F004 - Alertes mèdiques: Configura		
notificacions d'alertes		
personalitzades.		

1.3. System requirements description

A continuació es presenta una descripció detallada dels requisits del sistema:

1.3.1 Requisits funcionals

F001 - Comunicació social

- Descripció: Permet als usuaris comunicar-se amb familiars i amics mitjançant missatges, fotos i videotrucades.
- o **Objectiu:** Fomentar les relacions socials.
- Benefici: Reduir la soledat.

• F002 - Recordatori de medicació

- Descripció: Genera notificacions sobre medicació programada per assegurar que els usuaris no oblidin cap dosi.
- o **Objectiu:** Millorar la salut dels usuaris.
- o Benefici: Reduir errors en la medicació.

F003 - Monitorització mèdica

- Descripció: Proporciona accés remot a les constants vitals dels usuaris per a personal mèdic.
- o **Objectiu:** Detectar anomalies de salut a temps.
- Benefici: Facilitar una atenció preventiva.

• F004 - Alertes mèdiques

- Descripció: Permet als familiars configurar alertes personalitzades en funció de paràmetres de salut.
- o **Objectiu:** Millorar la supervisió i garantir la seguretat dels usuaris.
- Benefici: Donar tranquil·litat als familiars.

1.3.2 Requisits no funcionals

NF001 - Rendiment

- Descripció: L'aplicació ha de permetre que les accions principals es completin en menys de 10 segons per garantir una experiència d'usuari senzilla i ràpida.
- Stakeholders: Usuaris finals (persones grans), familiars, personal mèdic.

NF002 - Seguretat

- Descripció: L'aplicació ha de garantir la protecció de les dades mèdiques i personals dels usuaris, complint amb les normatives de privacitat aplicables. Les dades sensibles han de ser accessibles només per usuaris autoritzats.
- Stakeholders: Usuaris finals, personal mèdic, administradors del sistema.

NF003 - Accessibilitat

Descripció: L'aplicació ha de complir amb els estàndards WCAG
2.1 per garantir l'accés de persones amb diversitat funcional.

 Stakeholders: Usuaris finals amb diversitat funcional, familiars, ONG.

1.4 Requisits en conflicte

Conflicte 1

- Requisit 1: L'aplicació ha de permetre als familiars i metges accedir a les dades de salut dels usuaris per monitoritzar la seva condició.
- Requisit 2: Els usuaris han de tenir la possibilitat de limitar o desactivar l'accés a les seves dades per salvaguardar la seva privacitat.
- Raó del conflicte: Si els usuaris desactiven l'accés a les dades, els familiars o personal mèdic poden perdre informació crítica per a la supervisió de salut, dificultant així la gestió proactiva de situacions d'emergència.

Conflicte 2

- Requisit 1: L'aplicació ha de complir amb els estàndards WCAG per garantir accessibilitat.
- Requisit 2: L'aplicació ha de ser fàcil d'utilitzar i requerir un temps mínim d'aprenentatge.
- Raó del conflicte: Implementar totes les mesures d'accessibilitat pot complicar el disseny i fer-lo menys intuïtiu, contravenint l'objectiu de facilitar l'ús ràpid i senzill.

1.5 Requisits dependents

Dependència 1

- Requisit A: La funcionalitat de monitoratge de constants vitals requereix que els usuaris es registrin amb un perfil mèdic verificat.
- Requisit B: La funcionalitat de configuració de notificacions d'alerta mèdica depèn d'aquest registre mèdic.
- **Relació:** El requisit B és un subconjunt del requisit A, ja que la configuració de notificacions depèn del registre mèdic inicial. Sense aquest registre, les notificacions no es poden personalitzar ni activar.
- Raó de la dependència: El registre mèdic proporciona les dades necessàries per a la configuració i validació de les notificacions.

2.Diagrames

En aquesta secció es mostraran els diferents diagrames que permeten modelar i entendre el funcionament del sistema SeniorLife. Concretament, es presenten tres tipus de diagrames UML:

Diagrames de classes: Permeten modelar l'estructura estàtica del sistema, representant les diferents entitats, les seves relacions, atributs i comportaments.

Diagrames de seqüència: S'utilitzen per descriure la dinàmica del sistema, representant el flux de missatges i interaccions entre objectes en un cas d'ús concret.

Diagrames d'activitat: Serveixen per modelar els processos i fluxos de treball, representant les accions i decisions que es prenen dins del sistema.

Aquests diagrames ofereixen una visió completa i estructurada del sistema, cobrint tant els aspectes estàtics com dinàmics, i permeten entendre millor la interacció entre els diferents components.

2.1 Diagrames d'activitat

2.1.1 Perfil mèdic

2.1.2 Seguiment

2.1.3 Videoconferència

2.1.4 Programar cita mèdica

2.2 Diagrama de seqüència

2.2.1 Seguiment

2.2.2 Videoconferència

2.2.3 Programar cita médica

2.2.4 Funcionament xarxa social

2.3 Diagrama de classes

2.3.1 Diagrama estructura estàtica (pregunta 8):

Explicació del Diagrama UML

Aquest diagrama UML representa l'estructura estàtica del sistema SeniorLife, modelant les entitats principals, els seus atributs i les relacions entre elles, seguint els requisits proporcionats a l'enunciat. Es destaca la gestió d'usuaris, xarxes socials i visites mèdiques, amb una clara separació de rols dins del sistema i atributs adequadament modelats.

Descripció de les classes principals

1. Classe Usuari

Atributs:

id (PK): Identificador únic de l'usuari.

dataRegistre: Data en què l'usuari es va registrar al sistema.

Relacions:

Un usuari pot estar associat a una o més xarxes socials (1..*). Pot tenir zero o més visites mèdiques (0..*).

2. Classe XarxaSocial

Atributs:

id (PK): Identificador únic de la xarxa social.

titol: Nom o títol de la xarxa social.

dataCreacio: Data de creació de la xarxa.

numPersones: Nombre directe de persones associades a la xarxa social.

Relacions:

Una xarxa social pot estar formada per diverses persones (0..*).

Cada xarxa pot ser associada a múltiples usuaris a través de la classe intermediària UsuariXarxaSocial.

3. Classe Persona

Atributs:

id (PK): Identificador únic de la persona.

nom: Nom complet de la persona.

DNI (PK): Identificador privat que protegeix les dades sensibles.

tel: Llista de números de telèfon (pot ser buida, 0..*).

Relacions:

La classe Persona és una classe base de la qual deriven subclasses especialitzades: Familiar, Amic i PersonalSanitari.

4. Subclasses de Persona

Familiar

Atributs:

grauParentiu: Grau de parentiu amb l'usuari.

genere: Gènere del familiar (privat).

adreça: Adreça (privat).

dataNaixement: Data de naixement.

Amic

Atributs:

adreça: Adreça de contacte. genere: Gènere de l'amic.

dataNaixement: Data de naixement.

hobbies: Llista de hobbies que poden coincidir amb els interessos de l'usuari.

PersonalSanitari

Atributs:

hospital: Nom de l'hospital o clínica associada. tel: Obligatori tenir almenys un telèfon (1..*).

tipus: Tipus de professional sanitari ("Metge" o "Infermer"). numCol·legiat: Número de col·legiat (opcional per a metges).

especialitat: Especialitat mèdica (opcional per a metges).

assistenciaDomicili: Indica si l'infermer realitza assistència domiciliària

(opcional).

5. Classe Visita

Atributs:

usuarild: Identificador de l'usari

peronalSanitarild: Identificador del personal sanitari

data: Data de la visita.

hora: Hora de la visita.

tipus: Tipus de visita ("Presencial" o "Virtual").

prescripcio: Detall opcional de prescripcions mèdiques.

Relacions:

Cada visita està associada a un usuari (1) i a un professional sanitari (1).

6. Classes Intermediàries

UsuariXarxaSocial

Funció:

Gestiona la relació entre els usuaris i les xarxes socials.

Atributs:

usuarild i xarxaSocialld (PKs compostes): Identifiquen la relació única.

dataUnio: Data en què l'usuari es va unir a la xarxa.

PersonaXarxaSocial

Funció:

Defineix la relació entre una persona i una xarxa social.

Atributs:

personald i xarxaSocialld (PKs compostes): Identifiquen la pertinença a una

dataUnio: Data d'entrada de la persona a la xarxa.

Relacions entre classes

Usuari i XarxaSocial: Un usuari pot estar associat a múltiples xarxes socials, però cada xarxa pot tenir diverses persones de diferents rols.

Persona i XarxaSocial: Les persones poden formar part de xarxes socials segons el seu rol (familiar, amic o professional sanitari).

Usuari i Visita: Un usuari pot tenir múltiples visites mèdiques.

Visita i PersonalSanitari: Cada visita està vinculada a un únic professional sanitari.

Especificacions addicionals

- -Format de Dates: Les dates es modelen segons el format requerit (dia i any com a enters, mesos abreujats i zona horària).
- -Privacitat: Els atributs sensibles com DNI, adreça i data de naixement són privats i només accessibles a través de mètodes específics.

-Atributs opcionals: Alguns atributs, com assistenciaDomicili o numCol·legiat, són específics per a determinats rols dins del sistema.

2.3.2 Diagrama gestió constants (pregunta 9):

Explicació del Diagrama UML

Aquest diagrama UML representa el model de domini per gestionar les constants vitals dels usuaris i les alertes generades a partir de les seves mesures, d'acord amb els requisits proporcionats. El disseny s'ha fet seguint les bones 20ógica20ues de modularitat, escalabilitat i traçabilitat de dades. A més, inclou relacions explícites i algunes inferides, justificades per la 20ógica del sistema.

Descripció de les classes principals

1. Classe Usuari

Atributs:

id [PK]: Identificador únic de l'usuari.

Relacions:

Cada usuari pot tenir un o més dispositius IoT assignats (1..*). Cada usuari pot generar alertes a través de les mesures monitoritzades.

DispositiuloT

Atributs:

nom: Nom del dispositiu IoT.

numSerie [PK]: Número de sèrie únic del dispositiu.

potencia: Potència del dispositiu.

freqMostreig: Freqüència de mostreig del dispositiu. idUsuari: Identificador de l'usuari al qual està associat.

Relacions:

Cada dispositiu està vinculat a un o més constants vitals que monitoritza (1..*).

3. Classe ConstantVital

Atributs:

Id [PK]: Identificador únic de la constant vital.

nom: Nom de la constant vital.

unitats: Unitats de mesura (ex.: mmHg, bpm).

numSerieDis: Número de sèrie del dispositiu IoT que monitoritza aquesta

constant.

Relacions:

Cada constant vital pot tenir zero o més mesures registrades (0..*). Cada constant vital pot tenir zero o més llindars associats (0..*).

4. Classe Mesura

Atributs:

idCons: Identificador de la constant vital associada. dataHora: Data i hora en què s'ha pres la mesura.

valor: Un o més valors mesurats (1..*). unitats: Unitats dels valors mesurats.

Relacions:

Cada mesura està vinculada a una única constant vital (1).

5. Classe Llindar

Atributs:

IdConstant [PK]: Identificador de la constant vital associada. IdAlerta [PK]: Identificador de l'alerta generada pel llindar.

nom: Nom del llindar.

nivellMinim: Valor mínim acceptable. nivellMaxim: Valor màxim acceptable. unitats: Unitats dels valors del llindar.

Relacions:

Cada llindar pot generar una o més alertes quan es superen els límits (0..*).

6. Classe Alerta (Classe base)

Atributs:

id [PK]: Identificador únic de l'alerta.

idUsuari: Identificador de l'usuari afectat per l'alerta. nivellRisc: Nivell de risc de l'alerta (Alt, Mitjà, Baix). telefon: Telèfon de contacte associat a l'alerta.

Relacions:

És la classe base per a tres subclasses que representen diferents tipus d'alertes: AlertaUrgencia, AlertaMedic i AlertaCuidador.

Subclasses d'Alerta

AlertaUrgencia:

Atributs:

codiHistoriaClinica: Identificador de la història clínica de l'usuari. necessitaAmbulancia: Indica si és necessària una ambulància.

Relacions:

Aquest tipus d'alerta sempre té nivell de risc "Alt".

AlertaMedic:

Atributs:

clauAccesTemporal: Clau temporal vàlida durant 24 hores per accedir a les dades de l'usuari.

missatge: Missatge descriptiu associat a l'alerta.

AlertaCuidador:

Atributs:

missatge: Instruccions específiques per al cuidador.

Relacions entre classes

Usuari i DispositiuloT: Cada usuari pot tenir un o més dispositius IoT assignats (1..*). Els dispositius IoT estan encarregats de monitoritzar constants vitals associades a l'usuari.

DispositiuloT i ConstantVital: Cada dispositiu pot monitoritzar una o més constants vitals (1..*).

ConstantVital i Mesura: Cada constant vital pot tenir diverses mesures associades (0..*).

ConstantVital i Llindar: Cada constant vital pot tenir diversos llindars associats (0..*).

Llindar i Alerta: Quan una mesura supera un llindar, es genera una alerta específica (0..*).

Especificacions addicionals

-Relació entre Alerta i Usuari

La relació directa entre Alerta i Usuari es justifica per:

Traçabilitat:

Permet saber a quin usuari correspon cada alerta per accions com notificar serveis mèdics o cuidadors.

Notificació:

Les alertes inclouen informació necessària per accedir a les dades de l'usuari, com el codi de la història clínica o claus d'accés temporals.

Estructura del sistema:

Els dispositius IoT i constants vitals estan assignats a un usuari específic. Aquesta lògica implica una connexió directa entre Alerta i Usuari.

-Alternativa: Relació indirecta

Sense la relació directa, caldria traçar connexions a través de DispositiuloT i ConstantVital, complicant la gestió i l'accés a les dades.