P1 Chapter 7: Algebraic Methods

Methods of Proof

Other Types of Proof

b. Proof by Exhaustion

This means breaking down the statement into all possible smaller cases, where we prove each individual case.

(This technique is sometimes known as 'case analysis')

Prove that $n^2 + n$ is even for all integers n.

7

c. Disproof by Counter-Example

While to prove a statement is true, we need to prove every possible case (potentially infinitely many!), we only need one example to disprove a statement.

This is known as a **counterexample**.

Disprove the statement:

" $n^2 - n + 41$ is prime for all integers n."

?

Other Types of Proof

b. Proof by Exhaustion

This means breaking down the statement into all possible smaller cases, where we prove each individual case.

(This technique is sometimes known as 'case analysis')

Prove that $n^2 + n$ is even for all integers n.

n is either even or odd.

If n is even:

$$n^2 + n = even \times even + even$$

= $even + even$
= $even$

If n is odd:

$$n^2 + n = odd \times odd + odd$$

= $odd + odd$
= $even$

 $\therefore n^2 + n$ is even for all integers n.

c. Disproof by Counter-Example

While to prove a statement is true, we need to prove every possible case (potentially infinitely many!), we only need one example to disprove a statement.

This is known as a **counterexample**.

Disprove the statement:

" $n^2 - n + 41$ is prime for all integers n."

If
$$n = 41$$
, then we have $41^2 - 41 + 41$
= 41^2

Which is not prime as it has a factor of 41. Thus the statement is not true.

Further Types of Proof

d. Proof by Induction

This proves a conjecture of an n-th term formulae given n=1 is known to be true.

These are only in Further Maths

c. Proof by Contradiction

The classic example is proving the square root of two is irrational.

Exercise 7.5

Pearson Pure Mathematics Year 1/AS Page 59

Homework Exercise

- 1 Prove that when n is an integer and $1 \le n \le 6$, then m = n + 2 is not divisible by 10.
- Hint 1 You can try each integer for $1 \le n \le 6$.
- 2 Prove that every odd integer between 2 and 26 is either prime or the product of two primes.
- 3 Prove that the sum of two consecutive square numbers between 12 to 82 is an odd number.
- 4 Prove that all cube numbers are either a multiple of 9 or 1 more or 1 less than a multiple of 9. (4 marks)
- 5 Find a counter-example to disprove each of the following statements:
 - a If n is a positive integer then $n^4 n$ is divisible by 4.
 - **b** Integers always have an even number of factors.
 - c $2n^2 6n + 1$ is positive for all values of n.
 - **d** $2n^2 2n 4$ is a multiple of 3 for all integer values of n.
- **6** A student is trying to prove that $x^3 + y^3 < (x + y)^3$.

The student writes:

$$(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

which is less than $x^3 + y^3$ since $3x^2y + 3xy^2 > 0$

- a Identify the error made in the proof.
- **b** Provide a counter-example to show that the statement is not true.

7 Prove that for all real values of x

$$(x+6)^2 \ge 2x+11$$
 (3 marks)

Problem-solving

For part **b** you need to write down suitable values of xand y and show that they do not satisfy the inequality.

(1 mark)

(2 marks)

Homework Exercise

8 Given that *a* is a positive real number, prove that:

$$a + \frac{1}{a} \ge 2$$

Watch out Remember to state how you use the condition that *a* is positive.

(2 marks)

9 a Prove that for any positive numbers p and q:

$$p + q > \sqrt{4pq}$$

(3 marks)

b Show, by means of a counter-example, that this inequality does not hold when p and q are both negative.
 (2 marks)

Problem-solving

Use jottings and work backwards to work out what expression to consider.

10 It is claimed that the following inequality is true for all negative numbers x and y:

$$x + y \ge \sqrt{x^2 + y^2}$$

The following proof is offered by a student:

$$x + y \ge \sqrt{x^2 + y^2}$$

$$(x + y)^2 \ge x^2 + y^2$$

$$x^2 + y^2 + 2xy \ge x^2 + y^2$$

$$2xy > 0 \text{ which is true because } x \text{ and } y \text{ are both negative, so } xy \text{ is positive.}$$

a Explain the error made by the student.

(2 marks)

b By use of a counter-example, verify that the inequality is not satisfied if both *x* and *y* are negative.

(1 mark)

c Prove that this inequality is true if x and y are both positive.

(2 marks)

Homework Answers

- 1 3, 4, 5, 6, 7 and 8 are not divisible by 10
- 2 3, 5, 7, 11, 13, 17, 19, 23 are prime numbers. 9, 15, 21, 25, are the product of two prime numbers.
- 3 $2^2 + 3^2 = \text{odd}$, $3^2 + 4^2 = \text{odd}$, $4^2 + 5^2 = \text{odd}$, $5^2 + 6^2 = \text{odd}$, $6^2 + 7^2 = \text{odd}$
- 4 $(3n)^3 = 27n^3 = 9n(3n^2)$ which is a multiple of 9 $(3n+1)^3 = 27n^3 + 27n^2 + 9n + 1 = 9n(3n^2 + 3n + 1) + 1$ which is one more than a multiple of 9 $(3n+2)^3 = 27n^3 + 54n^2 + 36n + 8 = 9n(3n^2 + 6n + 4) + 8$ which is one less than a multiple of 9
- 5 **a** For example, when n = 2, $2^4 2 = 14$, 14 is not divisible by 4.
 - b Any square number
 - **c** For example, when $n = \frac{1}{2}$
 - **d** For example, when n = 1
- 6 a Assuming that x and y are positive
 - **b** e.g. x = 0, y = 0
- 7 $(x + 5)^2 \ge 0$ for all real values of x, and $(x + 5)^2 + 2x + 11 = (x + 6)^2$, so $(x + 6)^2 \ge 2x + 11$
- 8 If $a^2 + 1 \ge 2a$ (a is positive, so multiplying both sides by a does not reverse the inequality), then $a^2 2a + 1 \ge 0$, and $(a 1)^2 \ge 0$, which we know is true.

9 **a**
$$(p+q)^2 = p^2 + 2pq + q^2 = (p+q)^2 + 4pq$$

 $(p-q)^2 \ge 0$ since it is a square, so $(p+q)^2 \ge 4pq$
 $p > 0, q > 0 \Rightarrow p+q > 0 \Rightarrow p+q \ge \sqrt{4pq}$

b e.g.
$$p = q = -1$$
: $p + q = -2$, $\sqrt{4pq} = 2$

10 a Starts by assuming the inequality is true: i.e. negative ≥ positive

b e.g.
$$x = y = -1$$
: $x + y = -2$, $\sqrt{x^2 + y^2} = \sqrt{2}$

c
$$(x + y)^2 = x^2 + 2xy + y^2 \ge x^2 + y^2$$
 since $x > 0$,
 $y > 0 \Rightarrow 2xy > 0$

As x + y > 0, can take square roots: $x + y \ge \sqrt{x^2 + y^2}$