

<110> FRESNO ESCUDERO, Manuel
IÑIGUEZ PENA, Miguel Angel

<120> NUCLEIC ACIDS, VECTORS, AND CELL LINES
COMPRISING A CYCLOOXYGENASE 2 (COX-2) PROMOTER AND METHODS
OF SCREENING FOR COX-2 INHIBITORS

<130> 34909-PCT-USA 069277.0108

<150> ES P9901557
<151> 1999-07-12

<160> 5

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 1
gggggatccg gattctaaca tggcttctaa ccc

33

<210> 2
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 2
gggagatctg gtaggcttg ctgtctgagg

30

<210> 3
<211> 1979
<212> DNA
<213> Artificial Sequence

<220>
<223> Human cyclooxygenase 2 promoter cloning fragment

<221> primer_bind
<222> (46)...(70)
<223> Oligonucleotide No 1

<221> primer_bind
<222> (1925)...(1947)
<223> Oligonucleotide No 1

<400> 3

gaattcagga ttgtaatgta aaattttagt actctctcac agtatggatt ctaacatggc 60
ttctaaccctt aactaacatt agtagctcta actataaaact tcaaattca gtagatgcaa 120
cctactcctt taaaatgaaa cagaagattt ggaaattt attatcaaaa agaaaatgt 180
ccacgctctt agttgaaatt tcatgtttaa ttccatgcaa taaataggag tgccataat 240
ggaatgtga aatatgacta gaggaggaga aaggcttcctt agatgagatg gaattttgt 300
catccgtgtc tcatgtttaa tcagatgtgt acactaagca aaacagttaa aaaaaaaacc 360
tccaagttagt tctcttattt attttttctt tataagactt ctacaattt agtacctgg 420
tgttagttta ttccagggttt tatgctgtca ttccctgtt atgctttagga ctttaggacat 480
aactgaattt tctattttcc acttcttttc tgggtgtgt gtatatatat atgtatatat 540
acacacacac atatacatat atatattttt agtatctcac cctcacatgc tcctccctga 600
gcactaccca tgatagatgt taaaacaaaag caaagatgaa attccaactg ttaaaatctc 660
ccttccatct aattaattcc tcatccaact atgttccaaa acgagaatag aaaattagcc 720
ccaataagcc caggcaactg aaaagtaat gctatgttgc actttgtatcc atggcacaaa 780
ctcataatct tggaaaatgtt gacagaaaag acaaaaagagt gaactttaaa actcgatattt 840
attttaccatg tatctccatg gaagggttagt taacccaaaat aatccacgca tcagggagag 900
aaatgcctta aggcatatgtt tttggacatt tagcgtccctt gcaattctg gccatcgccg 960
cttccttgc tccatcagaag gcaggaaactt ttatattgtt gaccgttggat gctcacatta 1020
actatttaca gggtaactgc tttaggaccatg tattatgagg aggatttacc ttcccgcct 1080
ctcttccaa gaaacaagga ggggggtgaag gtacggagaa cagtatttct tctgttgaaa 1140
gcaacttagc tacaagata aattacagct atgtacactg aaggtagcta ttccattcca 1200
caaaaataaga gtttttaaa aagctatgta tgtatgtcctt gcatatagag cagatataca 1260
gcctttaag cgtcgtcact aaaacataaa acatgtcagc ctgtttaac ctactcgcc 1320
ccagtctgtc ccgacgtgac ttccctcgacc ctctaaagac gtacagacca gacacggcg 1380
cgccggcgaaa agagggattt ccctgcggcc ccggacctca gggccgtca gattccttgg 1440
gagggaaatccaa agtgcgttcc ttccctcccc cgttatccca tccaaaggcga tcagttccaga 1500
actggctctc ggaaggcgctc gggcaaaagac tgcgaagaag aaaagacatc tggcgaaac 1560
ctgtcgccctt gggggcggtgg aactcgggga ggagagggag ggatcagaca ggagagtggg 1620
gactacccccc tctgcgttccaa aattggggca gcttccttggg ttccgattt tctcatttcc 1680
gtgggtaaaaa aaccctgccc ccaccgggt tacgcaattt ttttaagggg agaggaggaa 1740
aaaatttgcg gggggatcga aaaggcgaaa agaaaacagtc atttcgatcc atgggtttgg 1800
ttttcgtctt tataaaaaagg aaggttctctt cggttagcga ccaattgtca tacgacttgc 1860
agtgagcgctc aggacacatc ccaggaactc ctcagcagcg cctccttcag ctccacagcc 1920
agacgccctc agacagcaaa gcctacccccc cgccggcgcc cctgcccggcc gctgcgtatg 1979

<210> 4

<211> 70

<212> DNA

<213> Artificial Sequence

<220>

<223> Cloning fragment where sequences of 5' and 3' ends
are shown in detail and the internal sequences are
represented by Ns.

<221> promoter

<222> (34)...(40)

<223> Shorthand representation of sequence from
nucleotide 25 to nucleotide 882 of SEQ ID. NO:5

<400> 4

gggggatccg gattctaaca tggcttctaa cccnnnnnnn cctcagacag caaaggctac 60
cagatctccc 70

<210> 5

<211> 1902

<212> DNA

<213> Human

<400> 5

ggattctaac atggcttcta acccaaacta acatttagtag ctctaactat aaacttcaaa 60
tttcagtaga tgcaacctac tcctttaaaa tgaaacagaa gattgaaatt attaaattat 120
caaaaagaaa atgatccacg ctcttagttg aaatttcatg taagattcca tgcaataaat 180
aggagtgcga taaatggaat gatgaardat gactagagga ggagaaaggc ttcccttagatg 240
agatggaatt ttagtcatcc gtgtctcatg aagaatcaga tgtgtacact aagcaaaaca 300
gttaaaaaaaaaaa aaacctccaa gtgagtcct tatttatttt tttcttataa gacttctaca 360
aattgaggta cctgggttag ttttatttca ggtttatgc tgcattttc ctgtaatgct 420
aaggacttag gacataactg aattttctat tttccacttc tttctgggtg tgtgtgtata 480
tatatatgtat tatatacaca cacacatata catatatata tttttagtat ctcaccctca 540
catgctcctc cctgagcact acccatgata gatgttaaac aaaagcaaag atgaaattcc 600
aactgttaaa atctcccttc catctaatta attcctcatc caactatgtt ccaaaacgag 660
aatagaaaat tagccccaaat aagcccgaggc aactgaaaag taaatgctat gttgtacttt 720
gatccatggc cacaactcat aatcttgaa aagtggacag aaaagacaaa agagtgaact 780
ttaaaactcg aatttatttt accagtatct cctatgaagg gctagtaacc aaaataatcc 840
acgcatcagg gagagaaatg ccttaaggca tacgtttgg acattnagcg tccctgcaaa 900
ttctggccat cgccgcttcc tttgtccatc agaaggcagg aaactttata ttgggtgaccc 960
gtggagctca cattaaactat ttacagggtt actgcttagg accagtatta tgaggaggat 1020
ttacctttcc cgccctcttt tccaaagaaac aaggaggggg tgaaggtacg gagaacagta 1080
tttcttctgt tgaaagcaac ttagctacaa agataaaatata cagctatgtt cactgaaggt 1140
agctatttca ttccacaaaa taagagttt taaaaagct atgtatgtat gtcctgcata 1200
tagagcagat atacagccta ttaagcgtcg tcactaaaac ataaaacatg tcagccttcc 1260
ttaaccttac tcgccccagt ctgtcccgac gtgacttcct cgaccctcta aagacgtaca 1320
gaccagacac ggcggcggcg gcgggagagg ggattccctg cgccccccgga cctcagggcc 1380
gctcagattc ctggagagga agccaagtgt ccttctgccc tcccccggtt tcccatccaa 1440
ggcgatcagt ccagaactgg ctctcgaaag cgctcggcga aagactgcga agaagaaaag 1500
acatctggcg gaaacctgtg cgccctgggc ggtgaaactc gggaggaga gggaggatc 1560

agacaggaga gtggggacta ccccccctgc tcccaaattg gggcagcttc ctgggtttcc 1620
gattttctca tttccgtggg taaaaaaccc tgccccacc gggcttacgc aatttttta 1680
, aggggagagg agggaaaaat ttgtgggggg tacgaaaagg cgaaaaagaaa cagtcatttc 1740
gtcacatggg cttggtttc agtcttataa aaaggaaggt tctctcggtt agcgaccaat 1800
tgtcatacga cttgcagtga gcgtcaggag cacgtccagg aactcctcag cagcgcctcc 1860
ttcagctcca cagccagacg ccctcagaca gcaaagccta cc 1902