OŠ BATA BULIĆ

RADNA SVESKA ZA 6. RAZRED

9. maj 2020.

Verica Mihajlović Vićentijević Nastavnica matematike vericavicent@gmail.com

Sadržaj

1	Četv	vorougao 1
	1.1	Uglovi četvorougla
		1.1.1 Podsetnik
		1.1.2 Zadaci
	1.2	Trapez
		1.2.1 Podsetnik
		1.2.2 Zadaci
	1.3	Srednja linija trougla i srednja linija trapeza
		1.3.1 Podsetnik
		1.3.2 Zadaci
	1.4	Konstrukcija trapeza
		1.4.1 Zadaci
	1.5	Deltoid
		1.5.1 Podsetnik
		1.5.2 Zadaci
2	Jedi	načine
		2.0.1 Zadaci
3	Nei	ednačine
	···	3.0.1 Zadaci
4	Koo	ordinatni sistem
•	1100	4.0.1 Podsetnik
		4.0.2 Zadaci
	4.1	Prikaz zavisnosti među veličinama
	7.1	4.1.1 Podsetnik
		4.1.2 Zadaci
	4.2	Direktna proporcionalnost
	7.2	4.2.1 Podsetnik
		4.2.2 Zadaci
	4.3	Obrnuta proporcionalnost
	1.0	4.3.1 Podsetnik
		4.3.2 Zadaci
	4.4	Primene proporcionalnosti
	7.7	4.4.1 Zadaci
		T.T.1 ZWUWO1

1 Četvorougao

1.1 Uglovi četvorougla

1.1.1 Podsetnik

• Zbir unutrašnjih uglova u četvorouglu je 360°.

1.1.2 Zadaci

- 1. Dopuni date rečenice:
 - a) Svaki četvorougao ima _____ dijagonale.
 - b) U svakom četvorouglu zbir unutrašnjih uglova je _____
 - c) U svakom četvorouglu zbir spoljašnjih uglova je _____.
- 2. Proveri da li dati uglovi mogu biti unutrašnji uglovi konveksnog četvorougla:
 - a) $79^{\circ}, 85^{\circ}, 42^{\circ}, 154^{\circ}$
 - b) $60^{\circ}, 99^{\circ}, 31^{\circ}, 119^{\circ}$
 - c) 55°30′, 88°, 78°30′, 138°
- 3. Nacrtati četvorougao koji ima
 - a) dva prava ugla
 - b) tri prava ugla
- 4. Izračunati nepoznati unutrašnji ugao četvorougla ako je:
 - a) $\alpha = 72^{\circ}, \beta = 103^{\circ}, \gamma = 45^{\circ}$
 - b) $\alpha = 86^{\circ}20', \beta = 79^{\circ}30', \gamma = 106^{\circ}10'$

1.2 Trapez

1.2.1 Podsetnik

• Pravougli trapez ima 2 prava ugla.

Slika 1: Pravougli trapez

• **Jednakokraki** trapez ima jednake 2 stranice (one koje nisu paralelne)i naspram jednakih stranica jednaki su i uglovi.

Slika 2: Jednakokraki trapez

1.2.2 Zadaci

- 1. Odredi sve uglove **pravouglog** trapeza ako je jedan njegov ugao:
 - a) 29°
 - b) 144°20′
- 2. Odredi sve uglove **jednakokrakog** trapeza ako je zbir dva ugla :
 - a) 82°
 - b) 262°10′
- 3. Odrediti sve uglove u jednakokrakom trapezu:
 - a) Rešeni primer:

Slika 3: Jednakokraki trapez ($\alpha = 130^{\circ}$)

Na osnovu slike 3 vidimo da su uglovi na dužoj osnovici (α) jednaki. Takođe, uglovi na kraćoj osnovici (β) su jednaki, pa na osnovu toga zaključujemo da je na slici dat jednakokraki trapez. Da bi rešili zadatak potrebno je da iskoristimo sledeće tri činjenice koje znamo i imamo:

• Trapez je **jednakokraki**

- \bullet Zbir uglova u četvorouglu (pa samim tim i u trapezu) je 360°
- $\beta = 130^{\circ}$ (zadato u zadatku)

Tada važi:

$$\alpha + \alpha + \beta + \beta = 360^{\circ}$$

$$\alpha + \alpha + 130^{\circ} + 130^{\circ} = 360^{\circ}$$

$$2\alpha + 260^{\circ} = 360^{\circ}$$

$$2\alpha = 360^{\circ} - 260^{\circ}$$

$$2\alpha = 100^{\circ}$$

$$\alpha = \frac{100^{\circ}}{2}$$

$$\alpha = 50^{\circ}$$

Rešenje je $\alpha=50^{\circ}.$ Postoji i drugi način da se reši zadatak. Naime iskoristimo sledeću činjenicu:

• Uglovi na kracima su suplementni (njihov zbir je 180°)

Na osnovu toga imamo:

$$\alpha + \beta = 180^{\circ}$$

$$\alpha + 130^{\circ} = 180^{\circ}$$

$$\alpha = 180^{\circ} - 130^{\circ}$$

$$\alpha = 50^{\circ}$$

b) $\alpha = 69^{\circ}$ (Slika 4):

Slika 4: Trapez

- 4. Odrediti sve uglove u pravouglom trapezu:
 - a) Rešeni primer:

Slika 5: Pravougli trapez ($\gamma=118^\circ)$

Na slici 5 vidimo dva prava ugla pa zaključujemo da se radi o pravouglom trapezu. Imamo sledeće tri činjenice:

- Trapez je **pravougli**, pa ima dva prava ugla ($\alpha=90^\circ, \delta=90^\circ)$
- Zbir uglova u četvorouglu (pa samim tim i u trapezu) je 360° ($\alpha+\beta+\gamma+\delta=360^\circ$)
- $\gamma = 118^{\circ}$ (zadato u zadatku)

Tada važi:

$$\alpha + \beta + \gamma + \delta = 360^{\circ}$$
$$90^{\circ} + \beta + \gamma + 90^{\circ} = 360^{\circ}$$

$$\beta + \gamma + 180^{\circ} = 360^{\circ}$$
$$\beta + \gamma = 360^{\circ} - 180^{\circ}$$
$$\beta + \gamma = 180^{\circ}$$

Formula $\beta + \gamma = 180^{\circ}$ je opšteg tipa i uvek važi za pravougli trapez. Ovu formulu možemo da dobijemo i iz činjenice da su uglovi na kracima suplementni. Kada još dodatno uvrstimo vrednost $\gamma = 118^{\circ}$ koja nam zadata u zadatku, dobijamo sledeće:

$$\beta + 118^{\circ} = 180^{\circ}$$
$$\beta = 180^{\circ} - 118^{\circ}$$
$$\beta = 62^{\circ}$$

Rešenje je $\beta = 62^{\circ}$.

b) $\beta = 59^{\circ}$ (Slika 6):

Slika 6: Trapez

1.3 Srednja linija trougla i srednja linija trapeza

1.3.1 Podsetnik

- Srednja linija trougla spaja središta dveju stranica, paralelna je naspramnoj stranici i jednaka polovini naspramne stranice.
- $a_1 = \frac{1}{2}a; b_1 = \frac{1}{2}b; c_1 = \frac{1}{2}c$
- Srednja linija trapeza je duž čiji su krajevi središta krakova trapeza i paralelna je osnovicama.
- $m = \frac{1}{2}(a+b)$

1.3.2 Zadaci

- 1. Odredi srednje linije trougla ABC ako je a = 5.2cm, b = 6.6cm, c = 9.2cm
- 2. Odredi srednju liniju trapeza ako su osnovice $a=12cm,\,b=8.6cm$
- 3. Odredi nepoznatu osnovicu trapeza ako je:
 - a) Rešen primer: m = 7.5cm, a = 12cm

$$m = \frac{a+b}{2}$$

$$7.5 = \frac{12+b}{2}$$

$$12+b=2\cdot 7.5$$

$$12+b=15$$

$$b=15-12$$

$$b=3cm$$

b) m = 6cm, b = 4.5cm

1.4 Konstrukcija trapeza

1.4.1 Zadaci

- 1. Konstruiši trapez ABCD ako je: AB = 9cm, BC = 4cm, AC = 6cm, BD = 7cm
- 2. Konstruiši trapez ABCD ako je: BC = 5cm, CD = 4cm, $\delta = 120^{\circ}$, AD = 4.5cm

1.5 Deltoid

1.5.1 Podsetnik

- Deltoid je četvorougao koji ima dva para jednakih susednih stranica.
- Dijagonale su međusobno normalne (seku se pod uglom od 90°).
- Duža dijagonala polovi kraću dijagonalu.

1.5.2 Zadaci

- 1. Koliko najvše deltoid može imati
 - a) Oštrih uglova
 - b) Tupih uglova
- 2. Odredi ostale uglove deltoida ABCD AB = AD, CB = CD ako je:

Slika 7: Deltoid

- a) Uglovi između jednakih stranica 64°, 78°
- b) Uglovi $\angle BAD=52^{\circ},\,\angle ABC=123^{\circ}$
- 3. Naspramni uglovi deltoida su 64° i 114°. Izračunaj druga dva ugla.

2 Jednačine

2.0.1 Zadaci

$$1. \ -3\frac{1}{4} - x = -2\frac{3}{8}$$

$$2. -2, 4 - x = -0, 6$$

3.
$$x \cdot (-1\frac{1}{4}) = 3, 6$$

4.
$$x: (-3\frac{1}{9}) = -4,8$$

3 Nejednačine

3.0.1 Zadaci

1.
$$-3\frac{7}{8} + x < -2\frac{1}{4}$$

- 2. $-3,58-x \le 5,27$
- 3. $x \cdot 3\frac{4}{7} > -3\frac{3}{4}$
- 4. $x:(-0,3) \ge -2\frac{1}{7}$
- 5. $1,5x-2\frac{1}{4} < 2,5$

4 Koordinatni sistem

4.0.1 Podsetnik

- Ravan u kojoj su izabrane dve uzajamno normalne brojevne ose za zajedničkom početnom tačkom naziva se koordinatna ravan.
- Normalne brojevne ose nazivaju se koordinatne ose.
- Tačka O je koordinatni početak.
- Kordinatne ose X i Y koje se redom nazivaju apscisna i ordinatna osa, određuju pravougli Dekartov koordinatni sistem.

4.0.2 Zadaci

- 1. Nacrtaj koordinatni sistem i u njemu označi tačke A(-2,-5) i $M(2,3\frac{1}{2})$.
- 2. Odredi simetričnu tačku tački A(-2,-5) u odnosu na y osu i odredi simetričnu tačku tački $M(2,3\frac{1}{2})$ u odnosu na x osu.
- 3. Odredi dužinu duži MN ako je M(2,-1) a N(2,3).
- 4. Odredi središe duži AB ako je A(4, -3) a B(0, 3).

4.1 Prikaz zavisnosti među veličinama

4.1.1 Podsetnik

Zavisnost dveju veličina prikazuje se grafički u koordinatnom sistemu.

4.1.2 Zadaci

- 1. Kada se upisao u prvi razred, Miša je bio visok 132 cm. Na početku svakog sledećeg razreda u osnovnoj školi imao je sistematski pregled. Tom prilikom je merio i visinu. Zabeleženo je u njegovom kartonu redom: 136 cm, 141 cm, 146 cm, 152 cm, 160 cm, 170 cm i 182 cm. Nacrtaj odgovarajući grafikon. Na apscisi označi razred, a na ordinati visine, a zatim odgovori na sledeća pitanja:
 - a) Za vreme zimskog raspusta u šestom razredu Miša je bio u košarkaškom kampu. Koliko je tada bio visok.
 - b) Koje je godišnje doba bilo kada je Miša dostigao tačno metar i po visine?

4.2 Direktna proporcionalnost

4.2.1 Podsetnik

Reč direktno predstavlja prevod reči direction koja se najčešće prevodi kao pravac
pa je to pravo značenje koje ima u kontekstu proporcije i to kao tvrđenje da zavisne
promenljive se menjaju u istom pravcu. Preciznije, obe se povećavaju ili se
obe smanjuju.

4.2.2 Zadaci

- 1. Znamo da je obim jednakostraničnog trougla stranice x cm jednak $3 \cdot x$ cm. Ako obim označimo sa y onda je $y = 3 \cdot x$.

 Izračunaj obime jednakotraničnih trouglova stranica 1 cm, 2 cm, 3 cm i 4 cm. Na osnovu toga nacrtati odgovarajući grafikon.
- 2. Pešak se kreće ravnomernom brzinom, tako da za sat pređe tri i po kilometra. Nacrtaj grafikon koji predstavlja kretanje ovog pešaka za tri sata pešačenja. Zatim, koristeći se grafikonom odredi:
 - a) Za koje vreme pešak pređe 5 km?
 - b) Koliki deo puta ovaj čovek prepešači za dva i po sata?

4.3 Obrnuta proporcionalnost

4.3.1 Podsetnik

• Zavisno promenljive veličnine, od kojih se jedna povećava, a druga istovremeno smanjuje isti broj puta, jesu obrnuto proporcionalne.

4.3.2 Zadaci

- 1. Pun bazen se isprazni za sedam i po sati, ako uključe dve pumpe. Nacrtaj grafikon koji pokazuje kako se menja vreme za koje se bazen isprazni (u sati), zavisno od broja uključenih pumpi.
- 2. Olja pripremi knjigu za štampu radeći šest dana po tri sata dnevno. Nacrtaj grafikon koji pokazuje zavisnost broja sata i dnevnog rada (u sati) od broja radnih dana (x dana). Sa grafikona pročitaj koliko sati dnevno treba da radi Olja, ako želi da posao bude gotov za osam dana.

4.4 Primene proporcionalnosti

4.4.1 Zadaci

1. Branka je kupila osam i po kilograma voća za 578 dinara. Koliko će kilograma istog voća kupiti Maca za 425 dinara.

- 2. Kanal za postavljanje vodovodnih cevi u dogovorenom roku prokopalo je 9 radnika, radeći svakog dana po osam sati. Za koliko bi sati skratili radni dan da je taj posao radilo 12 radnika.
- 3. Jedna karta je nacrtana u razmeri 1:75000. Na njoj je nacrtan most
. Na karti dužina mosta 2,5cm kolika je stvarna dužina mosta.