## Optimization

### Why Optimization?

- Optimization is important in many businesses to find the best set of decisions for a particular performance.
   For example...
- Optimize operational efficiency: capital, personnel, equipment, vehicles, facilities.
- Create measurable return on investment: Optimize costs, earnings and service.
- There are applications of optimization in most industries including: manufacturing, transportation, logistics, financial services, utilities, energy, telecommunications, government, defense and retail.

# What is optimization in the mathematical sciences?

 Optimizing a function is finding the maximum (or minimum) a function can take.

# What is optimization in the mathematical sciences?

- Optimizing a function is finding the maximum (or minimum) a function can take.
- Goal is find out what values of the "decision variables" (or input variables) optimize this function



# What is optimization in the mathematical sciences?

In example below, the x-variable is the "decision variable" and the y is the function we are trying to optimize...



The maximum occurs when the decision or "input" variable is 4 (the optimal value of the "output" is 20).

#### Minimize a function

Minimum occurs at "input" of 6 and "output" at this value is 20.



#### **Terminology**

- The "input" variables are the variables in which we can change to optimize a function. These variables are referred to as the decision variables.
- The objective function is the function in which we are trying to optimize (either maximize or minimize).
   This function is a function of the decision variables.
   We are trying to find the best values of the decision variables that optimize this function.
- The constraints are functions of the decision variables that define the constraints of the problem.
- Parameters are values inherent in the problem that we are not able to control

#### Optimization layout

- Decision variables:  $x_1, x_2, ... x_k$
- Objective function:

$$\sum a_i x_i = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_k x_k$$

 $a_1, a_2, \dots a_k$  are the coefficients in the objective function

Constraints:

$$\Sigma b_{1i}x_i \le c_1$$

$$\Sigma b_{2i}x_i \ge c_2$$

$$\Sigma b_{3i}x_i = c_3$$

 $b_{ji}$  are the constraint coefficients;  $c_1, c_2, \ldots$  are parameters defined in the model

#### Outputs from an optimization

- No optimization exists
- More than one solution exists
- There exists one unique solution to the problem

# 4 main types of optimization problems

- Linear programming objective function and constraints are linear (LP)
- Integer linear programming objective function and constraints are linear, but decision variables MUST be integers (ILP)
- Mixed integer linear programming same as ILP with only some decision variables restricted to integers
- Non-linear programming objective function and constraints are continuous, but not all are linear

#### Linear Programming

- The feasible region is the region defined by the constraints (need to find the optimal solution to the objective function over this region)
- One of the easiest solutions for solving a linear programming problem is the Simplex method
  - Strategy is to move along the edges of the feasible region until the optimal value of the objective function is found

#### Example

• Find maximum of  $2x_1 + 3x_2$ 

#### Constraints:

$$0 \le x_1 \le 3$$

$$0 \le x_2 \le 3$$

## Feasible Region?



## Feasible Region?



### Feasible Region?



#### Example of Simplex algorithm

MAXIMIZE: I5C + 24D

#### **CONSTRAINTS:**

$$3C + 5D \le 2400$$

$$3C + 2D \leq 1500$$

$$D \leq 300$$

#### Feasible region



#### Feasible region



#### Simplex method



#### Simplex method



### 4 types of linear programming

- Allocation model (goal is to maximize objective function; constraints are stated in terms of less than)
- Covering model (goal is to minimize objective function; constraints are stated in terms of greater than)
- Blending model
- Network model (will come later)

#### Example

 Veerman Furniture Company makes chairs, desks and tables with the following information

|                  | Hours per unit |       |        |             |
|------------------|----------------|-------|--------|-------------|
| Department       | Chairs         | Desks | Tables | Hours Avail |
| Fabrication      | 4              | 6     | 2      | 1850        |
| Assembly         | 3              | 5     | 7      | 2400        |
| Shipping         | 3              | 2     | 4      | 1500        |
| Demand potential | 360            | 300   | 100    |             |
| Profit           | \$15           | \$24  | \$18   |             |

Want to maximize profit

#### Example:

- Objective function:
  - MAXIMIZE: 15C + 24D + 18T
- Constraints:
  - Fabri:  $4C + 6D + 2T \le 1850$
  - Assem: 3C + 5D + 7T < 2400</li>
  - Shipp:  $3C + 2D + 4T \le 1500$
  - C < 360</li>
  - D < 300
  - T ≤ 100
  - (Implicit:  $C \ge 0$ ,  $D \ge 0$ ,  $T \ge 0$ )

#### SAS Code

```
proc optmodel;
/* declare variables */
var Chairs>=0, Desks>=0, Tables>=0;
/* maximize objective function (profit) */
max Profit = 15*Chairs + 24*Desks + 18*Tables:
/* subject to constraints */
con Assembly: 3*Chairs + 5*Desks +7*Tables<=2400;
con Shipping: 3*Chairs + 2*Desks + 4*Tables<=1500;
con Fabrication: 4*Chairs+6*Desks+2*Tables<=1850;
con DemandC: Chairs <= 360:
con DemandD: Desks<=300;
con DemandT:Tables<= 100;
solve with lp;
/* display solution */
print Chairs Desks Tables;
quit;
```



#### The SAS System

#### The OPTMODEL Procedure

| Problem Summa           | гу           |
|-------------------------|--------------|
| Objective Sense         | Maximization |
| Objective Function      | Profit       |
| Objective Type          | Linear       |
| Number of Variables     | 3            |
| Bounded Above           | 0            |
| Bounded Below           | 3            |
| Bounded Below and Above | 0            |
| Free                    | 0            |
| Fixed                   | 0            |
| Number of Constraints   | 6            |
| Linear LE (<=)          | 6            |

## Output cont

| Linear EQ (=)           | 0  |
|-------------------------|----|
| Linear GE (>=)          | 0  |
| Linear Range            | 0  |
|                         |    |
| Constraint Coefficients | 12 |

| Performance Information |                |  |
|-------------------------|----------------|--|
| <b>Execution Mode</b>   | Single-Machine |  |
| Number of Threads       | 1              |  |

#### The OPTMODEL Procedure

| Solution Sur         | nmary        |
|----------------------|--------------|
| Solver               | LP           |
| Algorithm            | Cual Simplex |
| Objective Function   | Profit       |
| Solution Status      | Optimal      |
| Objective Value      | 8400         |
| Primal Infeasibility | 0            |
| Dual Infeasibility   | 0            |
| Bound Infeasibility  | 0            |
| Iterations           | 2            |
| Presolve Time        | 0.00         |
| Solution Time        | 0.00         |

| Chairs | Desks | Tables |
|--------|-------|--------|
| 0      | 275   | 100    |

#### In R

```
###Need to install package lpSolve
library(lpSolve)
###Coefficients for the objective function
f.obj=c(15,24,18)
### Constraints equations added as a matrix
f.con=matrix(c(4,6,2,3,5,7,3,2,4,1,0,0,0,1,0,0,0,1),nrow=6,byrow=T)
#### Need to let R know direction of the constraints (nrows in R
should equal # of inequalities/equalities)
f.dir=c("<=","<=","<=","<=","<=")
###Parameter values for constraints
f.rhs = c(1850,2400,1500,360,300,100)
### The call to optimize the function
lp.model=lp ("max", f.obj, f.con, f.dir, f.rhs,compute.sens = 1)
####Get status of convergence
lp.model$status
f.names=c('Chairs','Desks','Tables') ##In case you want to make pretty
names(lp.model$solution)=f.names ## making it pretty
lp.model$solution ## Getting the solution
Ip.model$objval ### Getting the value of the objective function
```

## R output

```
Ip.model$status
[I] 0
Ip.model$solution
Chairs Desks Tables
0 275 I00
Ip.model$objval
[I] 8400
```

#### Gurobi in R

```
library(gurobi)
library(prioritizr)
###Need to put everything in a list (similar to R code above)
model <- list()
model$obj <- c(15,24,18) ##objective function coefficients
model$modelsense <- "max" ###is it a max or min problem
model$rhs <- c(1850,2400,1500,360,300,100) ###parameters
model$sense <- c("<=","<=","<=","<=","<=") ### constraints inequalities
model$vtype <- "C" ##### C means continuous
#### matrix of constraint coefficients
modelA = -matrix(c(4,6,2,3,5,7,3,2,4,1,0,0,0,1,0,0,0,1),nrow=6,byrow=T)
#### Now run it
result <- gurobi(model, list())
print(result$status)
f.names=c('Chairs','Desks','Tables')
names(result$x)=f.names
print(result$x)
print(result$objval)
```

#### Output from Gurobi (R)

```
print(result$status)
[1] "OPTIMAL"
> f.names=c('Chairs','Desks','Tables')
> names(result$x)=f.names
> print(result$x)
Chairs Desks Tables 0 275 100
> print(result$objval) [1] 8400
```