Statistical Methods in AI (CS7.403)

Lecture-6: k-Nearest Neighbours and Regression revisited, Clustering (k-means)

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

How to choose k in k-NN?

Rule of thumb: $k < \sqrt{n}$, where n is the number of training examples

Properties and Issues with k-NN

- Non-parametric
- 'Lazy' learner
- Simple baseline (after 0-effort baselines)
- GOOD
 - No training
 - Learns highly non-linear decision boundaries
- BAD
 - Need to keep all training points around
 - Curse of dimensionality! (suggested #dims < 20)

Improving the k-NN Classifier

Faster, Leaner, Meaner

Weighted k-NN

- Helps in case of class skew
- Helps in case of even k (breaking ties)

Weighted k-NN

- If there is a tie in majority labels, one can do weighted voting
 - Samples are weighted by inverse of distance to the point p

- e.g.,
$$w_i = \frac{1}{1 + d(p, x_i)}$$

- Example:
 - Blue:
 - Distance: 1
 - Weight: 0.5
 - Orange:
 - Distances: 1.5, 1.6
 - Weight: 0.4 + 0.38 = 0.78
 - Red:
 - Distances: 1.1, 1.3
 - Weight: 0.48 + 0.43 = 0.91
- Label(p) = Red

Data Reduction: Condensed NN

- Given a training set X, and the condensed set U ={},
 - 1. Choose an x whose nearest prototype in U has a different label than x.
 - 2. Move x from X to U
 - 3. Repeat until no more prototypes are added to U.
- Use U instead of X for classification.

Nearest Mean Classifier

Represent each class by a single prototype; Its Mean

Fast / Approximate Nearest Neighbor

- Quick search for NN with possible errors
- KD Tree
 - Binary spacepartitioning trees with
 axis-parallel splits.
 Each node is a
 hyperplane

Nearest Neighbor with KD Trees

Examine nearby points first: Explore the branch of the tree that is closest to the query point first.

Fast / Approximate Nearest Neighbor

- Quick search for NN with possible errors
- KD Tree
 - Binary space-partitioning trees with axis-parallel splits.
 Each node is a hyperplane
- Ball Tree
 - Samples are grouped by spheres. Each node has a specific center and radius.
 Partitioning is based on perdimension spread.

scikit-learn Usage

>>> from sklearn.neighbors import NearestNeighbors
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)

The documentation contains lot of useful details and explanations https://scikit-learn.org/stable/modules/neighbors.html

>>> distances, indices = nbrs.kneighbors(X)

Some use cases for k-NN

Decent performance when lots of data

0123456789

- Yann LeCunn MNIST Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: d = 784
 - 60,000 training samples
 - 10,000 test samples
- Nearest neighbour is competitive

Test Error R	Test Error Rate (%)		
Linear classifier (1-layer NN)	12.0		
K-nearest-neighbors, Euclidean	5.0		
K-nearest-neighbors, Euclidean, deskewed	2.4		
K-NN, Tangent Distance, 16x16	1.1		
K-NN, shape context matching	0.67		
1000 RBF + linear classifier	3.6		
SVM deg 4 polynomial	1.1		
2-layer NN, 300 hidden units	4.7		
2-layer NN, 300 HU, [deskewing]	1.6		
LeNet-5, [distortions]	0.8		
Boosted LeNet-4, [distortions]	0.7		

Some use cases for k-NN

 Problem: Where (e.g., which country or GPS location) was this picture taken?

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single image. CVPR'08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]

Some use cases for k-NN

- Problem: Where (eg, which country or GPS location) was this picture taken?
 - Get 6M images from Flickr with gps info (dense sampling across world)
 - Represent each image with meaningful features
 - Do kNN (large k better, they use k = 120)!

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single image. CVPR'08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]

GeoGuessr

WHO WOULD WIN?

graphics of one education and an artist

IM2GPS: estimating geographic information from a single image

People Junes Hays Alexet Efres

https://www.youtube.com/watch?v=0p5Eb4OSZCs

ACL 2023 (#1 NLP conference)

"Low-Resource" Text Classification: A Parameter-Free Classification Method with Compressors

Zhiying Jiang^{1,2}, Matthew Y.R. Yang¹, Mikhail Tsirlin¹, Raphael Tang¹, Yiqin Dai² and Jimmy Lin¹

¹ University of Waterloo ² AFAIK

Intuition

s1. The sun sets over the calm ocean s2. A peaceful evening as the sun sets over the sea s3. Jazz music fills the air as the sun rises in the morning

word	s1	52	s3		
the	2	2	3		
Sun	1	1	1		
sets	1	1	0		
over	1	1	0		
calm	1	0	0		
ocean	1	0	0		
a	0	1	0		
peaceful	0	1	0		
evening	0	1	0		
as	0	1	1		
sea	0	1	0		
jazz	0	0	1		
music	0	0	1		
fills	0	0	1		
air	0	0	1		
rises	0	0	1		
morning	0	0	1		

Common words/phrases b/w s1 and 2 that LZ77 will compress

```
1 compress t using gzip
2 for each sample s in the training dataset:
   2.1 compress s using gzip
   2.2 compute distance between gzip(s) and gzip(t)
3 find k-nearest neighbours for t based on distances computed in 2.2
4 pick the majority class as the target label from the k neighbours
```

To classify a sample t:

To classify a sample t:

- 1 compress t using gzip
- 2 for each sample s in the training dataset:
 - 2.1 compress s using gzip
 - 2.2 compute distance between gzip(s) and gzip(t)
- 3 find k-nearest neighbours for t based on distances computed in 2.2
- 4 pick the majority class as the target label from the \boldsymbol{k} neighbours

Gzip compression + kNN method for text classification

```
| import grip
import numpy as np
| for (x1. ) in test set:
                                                 For each compressed
    Cx1 = len(gzip.compress(x1.encode()))
                                                 test set record
    distance_from_x1 = []
    for (x2, _) in training_set:
      Cx2 = len(gzip.compress(x2.encode())
      x1x2 = " ".join([x1, x2])
                                                 Join with compressed
      Cx1x2 = len(gzip.compress(x1x2.
                                            training record & compute
      encode())
                                                 distance between
      ncd = (Cx1x2 - min(Cx1, Cx2)) / max(
                                                 compressed test record
     Cx1, Cx2)
                                                 and concatenated
      distance_from_x1.append(ncd)
                                                 train+test record
   sorted_idx = np.argsort(np.array(
      distance_from_x1))
top_k_class = training_set[sorted_idx
     f:k1, 11
                                                 kNN majority
  predict_class = max(set(top_k_class),
                                           vote (get most frequent)
     key=top_k_class.count)
                                                 class among top k
 Listing 1: Python Code for Text Classification with gzip.
                                                 neighbors
```

To classify a sample t:

- 1 compress t using gzip
- 2 for each sample s in the training dataset:
 - 2.1 compress s using gzip
 - 2.2 compute distance between gzip(s) and gzip(t)
- 3 find k-nearest neighbours for t based on distances computed in 2.2
- 4 pick the majority class as the target label from the ${\bf k}$ neighbours

Gzip compression + kNN method for text classification

```
| Import gzin
I import numpy as np
| for (x1, _) in test_set:
                                                 For each compressed
    Cx1 = len(gzip.compress(x1.encode()))
                                                  test set record
    distance_from_x1 = []
    for (x2, _) in training_set:
      Cx2 = len(gzip.compress(x2.encode())
      x1x2 = " '.join([x1, x2])
                                                  Join with compressed
      Cx1x2 = len(gzip.compress(x1x2.
                                            training record & compute
      encode())
                                                  distance between
      ncd = (Cx1x2 - min(Cx1, Cx2)) / max(
                                                  compressed test record
     Cx1, Cx2)
                                                  and concatenated
      distance_from_x1.append(ncd)
                                                  train+test record
   sorted_idx = np.argsort(np.array(
      distance_from_x1))
top_k_class = training_set[sorted_idx
     f:kl. 11
                                                  kNN majority
   predict_class = max(set(top_k_class),
                                            vote (get most frequent)
      key=top_k_class.count)
                                                 class among top k
 Listing 1: Python Code for Text Classification with gzip.
                                                  neighbors
```

Classification accuracy across different test datasets (higher is better)

Proposed azip method

Red: outperformed by azio method

Model	Pre-training	Training	AGNews.	DBpedia	YahooAnswers	20News	Ohsumed	R8	R52
TFIDF+LR	×	1	0.898	0.982	0.715	0.827	0.549	0.949	0.874
LSTM	×	1	0.861	0.985	0.708	0:657	0.411	0.937	0.855
Bi-LSTM+Attn	×	/	0.917	0.986	0.732	0.667	0.481	0.943	0.885
HAN	×	1	0.896	0.986	0.745	0.646	0.462	0.960	0.914
charCNN	×	1	0.914	0.986	0.712	0,401	0.269	0,923	0.724
textCNN	*	/	0.817	0.981	0.728	0.751	0.570	0.951	0.895
RCNN	×	1	0.912	0.984	0.702	0.716	0.472	0.810	0.773
VDCNN	×	/	0.913	0.987	0.734	0,491	0.237	0,858	0.750
fastText	×	1	0.911	0.978	0.702	0.690	0.218	0.827	0.571
BERT	/	1	0.944	0.992	0.768	0.868	0.741	0.982	0.960
W2V	-	×	0.892	0.961	0.689	0,460	0.284	0.930	0.856
SentBERT	/	×	0.940	0.937	0.782	0.778	0.719	0.947	0.910
TextLength	×	×	0.275	0,093	0.105	0.053	0.090	0.455	0.362
gzip (ours)	×	×	0.937	0.970	0.638	0.685	0.521	0.954	0.896

Complex problems have simple, easy to understand, wrong answers.

Erik Spiekermann

👔 Lucas Beyer @giffmana - Jul 18

Looks like the gzip paper I was enthusiastic about over-estimated its scores because of a bug in the code: it did top-2 knn instead of k=2.

We should remember this as (yet another) a strong case for testing in ml code.

I still like that it put a new idea in my toolbox. twitter.com/amilios/status...

Should be much better known that it is. Makes explicit that compression == learning, up to and including that axioms in a logical system are compressed information, and the rules of inference are the "decompression" algorithm.

A very unique textbook "Information theory, inference and learning algorithms" by Sir MacKay combining Information Theory with Machine Learning.

Nicely written!

Book PDF freely available at:
finference.org.uk/itila/book.html

David J. C. MacKay

Information Theory, Inference, and Learning Algorithms

Related topics

Overfitting vs. model complexity

We talk of **overfitting** when decreasing E_{in} leads to increasing E_{out}

Major source of failure for machine learning systems

Overfitting leads to bad generalization

A model can exhibit bad generalization even if it does not overfit

Overfitting in k-NN

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

Overfitting

Regularization in k-NN

- Choosing an optimal distance measure and k
- Weighted k-NN → smooths the decision boundary
- Feature Scaling

 avoids overfitting due to over-reliance on few features
- Dimensionality reduction

Polynomial Regression

- Polynomial of degree k
- Most general case -- includes interaction terms (degree of terms up to k)

Regularization

 $h(\cdot)$ is some function that represents our model

More generally, instead of minimizing the in-sample error E_{in} (i.e. the cost function $J(\theta)$), minimize the **augmented error:** For simplicity, suppose $J(\theta)$ as squared error function

$$E_{aug}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y(i) - h(\boldsymbol{\varphi}(i); \boldsymbol{\theta}))^{2} + \lambda \cdot \sum_{j=0}^{d-1} (\theta_{j})^{2}$$

- The term $\Omega = \sum_{j=0}^{d-1} (\theta_j)^2$ is called **regularizer**
- The term λ (regularization hyper-parameter) weights the importance of minimizing $J(\theta)$, with respect to minimizing Ω

Choice of the regularizer

There are many choices of possible regularizers. The most used ones are:

- L_2 regularizer: also called **Ridge** regression $\Omega(\theta) = \sum_{j=0}^{d-1} (\theta_j)^2 = \theta^T \theta = \|\theta\|_2^2$
- L_1 regularizer: also called Lasso regression $\Omega(\theta) = \sum_{j=0}^{d-1} |\theta_j| = \|\theta\|_1$
- Elastic-net regularizer: $\Omega(\boldsymbol{\theta}) = \sum_{j=0}^{d-1} \beta(\theta_j)^2 + (1-\beta) \sum_{j=0}^{d-1} |\theta_j|$

The different regularizers behaves differently:

- The ridge penalty tends to shrink all coefficients to a lower value
- The lasso penalty tends to set more coefficients exactly to zero
- The elastic-net penalty is a compromise between ridge and lasso, with the β value controlling the two contributions

L2 Regularization aka weight decay

$$J_{ ext{reg}}(\mathbf{w}) = J(\mathbf{w}) + rac{\lambda}{2} \sum_{j=1}^p w_j^2$$

$$w_j^{(t+1)} = w_j^{(t)} - \eta rac{\partial J(\mathbf{w})}{\partial w_i}$$

Behavior of regularizers – a visual handwavy explanation

$$\mathcal{R} = \sum_{\cdot} w_i^2$$

L1 regularization

$$\mathcal{R} = \sum_{i} |w_i|$$

Extending Linear Regression to More Complex Models

- The inputs X for linear regression can be:
 - Original quantitative inputs
 - Transformation of quantitative inputs
 - · e.g. log, exp, square root, square, etc.
 - Polynomial transformation
 - example: $y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3$
 - Basis expansions
 - Dummy coding of categorical inputs
 - Interactions between variables
 - example: $x_3 = x_1 \cdot x_2$

This allows use of linear regression techniques to fit non-linear datasets.

Linear Basis Function Models

· Generally,

$$h_{m{ heta}}(m{x}) = \sum_{j=0}^d heta_j \phi_j(m{x})$$

- Typically, $\phi_0({m x})=1$ so that $\, heta_0\,$ acts as a bias
- In the simplest case, we use linear basis functions :

$$\phi_j(\boldsymbol{x}) = x_j$$

Linear Basis Function Models

Polynomial basis functions:

$$\phi_j(x) = x^j$$

 These are global; a small change in x affects all basis functions

- Sensitive to even minor changes in x → Overfitting
- Unpredictable behavior near input data boundaries → affects extrapolation
- Highly local variations, piecewise functions (e.g. sin + poly) cannot be captured well
- Generally suited when data is limited, or extrapolation is not required

Linear Basis Function Models

Polynomial basis functions:

$$\phi_j(x) = x^j$$

 These are global; a small change in x affects all basis functions

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}_{0.75}^{-1}$$

- These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).

 $f(x_j) = y_j \Leftrightarrow \sum_i a_i \varphi(\|x_j - x_i\|) = y_i$ Gaussian: $\varphi(r) = \exp(-\frac{r^2}{2s^2})$. $\varphi(r) = -r$

Radial basis functions interpolation: $f(x) \stackrel{\text{def.}}{=} \sum_{i} a_{i} \varphi(||x - x_{i}||)$

Custom Regularizers

- Weights
 - Sum to 1 (Lagrange Multiplier, Projected Gradient)
 - Lie in [0,1] (Penalty, Clipping, Projected)

OLS and TLS

Homo/Heteroscedasticity

