Definitions and synopsis. Let \mathcal{H}_n be a Hilbert space of vectors ψ that is spanned by a preferred basis that is given as an orthonormal set of n-factor tensor products (in physical terms, such a basis is variously called an n-particle, n-spin, or n-qudit basis). Allow the component vectors of the *n*-factor product to have various dimensions (in physical terms, allow the individual particles to carry various quantum numbers). Let S be any linear Hilbert operator that when given in the *n*-factor basis acts solely upon one particle (for example, *S* may raise or lower single-particle *quantum numbers) and associate to* S *the bilinear symbol function* $s_{\mathcal{H}}: \mathcal{H} \to \mathbb{C}$ *that is given by* $s_{\mathcal{H}}(\bar{\psi},\psi) = \langle \bar{\psi} | S | \psi \rangle$. Similarly, let H be any general linear Hilbert operator (for example, H may be a multi-particle Hamiltonian) and associate to H the bilinear symbol function $h_{\mathcal{H}}(\bar{\psi}, \psi) = \langle \bar{\psi} | \mathsf{H} | \psi \rangle$. Let \mathcal{K}_1 be the subset of vectors in \mathcal{H}_n that are n-factor products in the n-particle basis (algebraic geometers call \mathcal{K}_1 an n-factor Segre variety). Then by definition the rank-r Kronecker join \mathcal{K}_r is the immersed join of r copies of \mathcal{K}_1 (algebraic geometers call \mathcal{K}_r an (r-1)'th secant variety). Thus from the initial (non-entangled) state-space \mathcal{K}_1 there arises a rank-indexed stratification of Kronecker joins $K_1 \subseteq K_2 \subseteq ... \subseteq K_r \subseteq ... \subseteq K_\infty = H_n$ (in physical terms, the rank r is a measure of quantum entanglement). Finally, let $\omega_{\mathfrak{H}}$ be \mathcal{H}_n 's canonical (Kählerian) symplectic form, let $\iota_r \colon \mathcal{K}_r \hookrightarrow \mathcal{H}_n$ be K_r 's inclusion map, and let ι_r^* be the pullback induced by ι_r . In summary, immersed in any n-particle Hilbert space \mathcal{H}_n is a geometrically and algebraically natural stratification of Kronecker joins \mathcal{K}_r , that in physical terms is a rank-indexed classical-to-quantum succession of state-spaces $\mathcal{K}_1, \mathcal{K}_2, \dots, \mathcal{K}_r, \dots$, each of which supports the natural pullback $\iota_r^* : (\omega_{\mathcal{H}}, s_{\mathcal{H}}, h_{\mathcal{H}}) \to (\omega_{\mathcal{K}}, s_{\mathcal{K}}, h_{\mathcal{K}})$ of the symplectic forms and symbol functions that specify Hamiltonian dynamical flows.

Theorem 1 (QUANTUM PULLBACK THEOREM). For all n-particle Hilbert spaces \mathcal{H}_n , at all points of all ranks of \mathcal{H}_n 's natural stratification of Kronecker joins \mathcal{K}_r , this diagram commutes:

