CORRECTION

Confinement et atmosphère

Sur 10 points Thème « Science, climat et société »

1.

A l'échelle globale de la Terre, les émissions de CO₂ de 2000 à 2020 ont augmentés. Les premiers mois de l'année 2020, les émissions de CO₂ ont diminués. Ont peux faire l'hypothèse que le confinement (moins de transport, baisse de l'activité industrielle) du au Covid-19 est à l'origine de cette diminution.

2. Les deux réservoirs de carbone les plus importants sont la lithosphère et l'hydrosphère.

Les flux de carbone entre ces deux réservoirs sont constitués par les précipitations de CaCO₃.

3. Flux de nature anthropique (Fait par un être humain) sur ce cycle :

- > Fabrication du ciment
- Combustions
- Déforestation

4.

Bilan de la quantité de carbone l'atmosphère : Flux entrant : respiration 79,4 + déforestation 1,1+respiration oxydation 120+ fabrication du ciment et combustion 7,8+ volcanisme 0,1 = 208,4 Gt_c.

Flux sortant : photosynthèse 123 + absorption par océan 80 + altercation des calcaires et silicates 0.3 = 203.3 Gt_c.

Différence entre Flux entrant et Flux sortant : 208,4-203,3=5,1Gt_c.

Il y a une augmentation de $5,1Gt_c$ de carbone dans l'atmosphère.

Ainsi, la quantité de carbone augmente avec le temps dans l'atmosphère.

5.

Une ressource non renouvelable ou épuisable lorsque sa vitesse de destruction est supérieure à sa vitesse de création.

Un combustible fossile met des millions d'années à se former et seulement quelques centaines d'années pour épuiser les ressources.

C'est pourquoi on qualifie un combustible fossile de ressource non renouvelable.

6.

Calculons le nombre de moles dans un kilogramme d'essence <u>Données</u>: Une mole d'octane C₈H₁₈ a une masse de 114,0 g.

1 mole d'octane	114,0 g
x moles d'essence	1 kg = 1000 g

$$x = \frac{1000 \times 1}{114,0}$$

$$x = 8,77 \text{ moles d'essence}$$

Sachant qu'une mole d'essence produit huit moles de CO₂, Calculons le nombre de moles de CO₂ produit par un kilogramme d'essence.

1 mole d'octane	8 moles de CO ₂
8,77 moles d'essence	y moles de CO ₂

$$y = \frac{8,77 \times 8}{1}$$
$$y = 70,16 \text{ moles de } CO_2$$

Calculons la masse de CO_2 produite par un kilogramme d'essence :

Données: Une mole de CO₂ a une masse de 44,0 g.

1 mole de CO ₂	44,0 g
$70,16$ moles de CO_2	m
70,16×44,0	
$m = {1}$	

$$m = 3087 \text{ g de } CO_2$$

 $m \approx 3.1 \text{ kg de } CO_2$

Ainsi, un kilogramme d'essence produit une masse de CO₂ d'environ 3,1 kg.

7.

1kg d'essence	$3,1 \text{ kg de CO}_2$
2,8. 10 ⁹ kg d'essence	X

$$x = \frac{2,8.10^9 \times 3,1}{1}$$
$$x = 8.68.10^9 \text{ kg}$$

Une quantité de 2,8. 10^9 kg d'essence correspondant à la consommation mondiale journalière sans crise sanitaire produit une masse de CO_2 de $8,68.\ 10^9$ kg.

8.a-

Graphiquement pour le mois d'avril 2020 la masse à la consommation mondiale journalière sans crise sanitaire produit une masse de CO_2 de $83.\,10^9~{\rm kg}$

La masse lue sur le graphique est enivrons 10 fois supérieure à celle calculée à la question 7.

8.b-

La différence constatée peut s'expliquer par les hypothèses suivantes :

- \triangleright A la question 7 on calcul la production de CO_2 produite à cause de la consommation d'essence. Graphiquement, il s'agit de la production de CO_2 due à la consommation de toutes les énergies fossiles (pas que l'essence).
- La production mondiale de est due aussi à d'autres ressources que l'essence comme le gaz, charbon, pétrole...