Aprendizaje Automático Segundo Cuatrimestre de 2016

Clasificadores: Naive Bayes, Vecinos Más Cercanos, SVM

Naive Bayes

Naive Bayes

Dada una nueva instancia con valores de atributos $a_1, a_2, ..., a_n$, su valor (o clase) más probable a posteriori v_{MAP} puede expresarse así:

Vecinos Más Cercanos

Aprendizaje Basado en Instancias

Vecino Más Cercano:

 Dada una nueva instancia, devolver la clase de la instancia más cercana en D.

Aprendizaje Basado en Instancias

k Vecinos Más Cercanos (kNN):

• Dada una nueva instancia, devolver la clase más frecuente entre las *k* instancias más cercanas en *D*.

Diagrama de Voronoi:

... ¿y si k=n?

Distance-Weighted kNN

Podríamos querer que los vecinos más cercanos tengan más influencia en la votación...

Cada vecino x_i aporta w_i votos (y no 1 como en kNN), donde

$$w_i = \frac{1}{d(x_q, x_i)^2}$$

 x_q es la instancia a clasificar, y $d(\cdot,\cdot)$ es la distancia entre dos instancias.

Quizá podemos usar *todas* las instancias en *D*, en lugar de sólo las *k* más cercanas.

kNN - Devolviendo Probabilidades

$$P(f(x_q) = y) = \sum_{x_j \in Vec(x_q, k, D)} I(f(x_j) = y) \cdot \frac{1}{k}$$

Para la nueva instancia: $P(rojo) = \frac{1}{4}$; $P(azul) = \frac{3}{4}$.

kNN - Devolviendo Probabilidades

$$P(f(x_q) = y) = \sum_{x_j \in Vec(x_q, k, D)} I(f(x_j) = y) \cdot \frac{1}{k}$$

kNN

Técnica simple que a veces permite aproximar conceptos muy complejos.

El entrenamiento es muy rápido. (¿Entrenamiento?)

La consulta es muy lenta. (AyED eficientes.)

El modelo (¿modelo?) ocupa mucho espacio en disco.

Para pensar: La distancia se calcula con todos los atributos. ¿Qué pasa si algunos son irrelevantes?

Margen M: Distancia de las instancias más cercanas a la línea de decisión (hiperplano).

Instancias más cercanas: "support vectors".

SVM: Busca maximizar M.

Problema de optimización.

Solución eficiente: programación cuadrática (QP).

¿Qué hacemos si las instancias no son linealmente separables?

Datos originales:

Un único atributo x₁. Instancias no linealmente separables.

Datos transformados:

"Kernel Trick"

- Transformación de vectores de atributos. Ej: $\Phi(x_1) = (x_1, x_1^2)$
- Expandir las transf's explícitamente suele ser muy costoso.
- Lo evitamos mediante kernels.
 - Truco de álgebra lineal que nos permite operar con múltiples atributos en forma implícita:

$$K(x, y) = \langle \Phi(x), \Phi(y) \rangle$$

- Si un algoritmo (ej. SVM) puede expresarse en términos de productos internos entre vectores, reemplazamos las apariciones de <x, y> por K(x, y).
- Así, ejecutamos SVM implícitamente en dimensiones superiores.

- Kernels más usados: lineal, polinomial, sigmoideo, RBF.
 - Souza, C. R. "Kernel Functions for Machine Learning Applications"

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

Fuente: G. James et al., "An Introduction to Statistical Learning with Applications in R", Springer, 6th edition, 2015.

- Complejidad computacional:
 - Entrenamiento costoso; consulta eficiente.
- ¿Espacio de hipótesis?
- ¿Sesgo inductivo?

⁽a) L. Bottou, C.J. Lin. "Support vector machine solvers." Large scale kernel machines, pp. 301-320, 2007.

SVM – Atributos Categóricos

EstadoCivil: {Soltero, Casado, Viudo, Divorciado, Otro}

EstadoCivil_Soltero: {0, 1}

EstadoCivil_Casado: {0, 1}

EstadoCivil_Viudo: {0, 1}

EstadoCivil_Divorciado: {0, 1}

EstadoCivil_Otro: {0, 1}

Palabras: BagOfWords

Palabras_hola: N

Palabras mundo: N

Palabras_la: N

Palabras_y: N

Palabras_cuando: N

• • •

SVM - Clases múltiples

Hasta ahora: clasificación binaria.

N clases:

- Para cada clase C_i , entrenar un SVM para discriminar C_i del resto (clasificación OVA: one-versus-all).
- Para una nueva instancia, correr los N clasificadores y retornar la clase con mayor margen (i.e., con mayor confianza).

Repaso

- Clasificadores:
 - Naive Bayes
 - K Vecinos más Cercanos (KNN)
 - Support Vector Machines (SVM)
- Próximo tema: Conjuntos de Clasificadores.