

Graham Avers Portfolio

Hybrid Rocket Motor Design and Testing

- Achieved 10 lbf thrust using HTPB fuel and GOX oxidizer within constraints, showcasing advanced engineering skills
- Applied regression rate, mass flow rate, O/F ratio, and thrust equations with NASA CEA to determine appropriate nozzle throat area to achieve desired performance.
- Demonstrated precise thrust, pressure, and flow rate control, with impressive correlation between predicted and experimental results

Gained invaluable practical experience, enhancing theoretical knowledge in rocket propulsion

Trajectory and Performance Optimization of Hypothetical GTO and LEO Mission

- Developed the AA1 rocket to deliver 5000 kg to GTO and 15,000 kg to LEO, supporting asteroid mining and satellite deployment missions.
- Executed complex mission sequences, including precise burns and coasts, leveraging Cape Canaveral's infrastructure and using STK for orbit creation, optimization, and targeting.
- Utilized RP-1 and LH2 fuels with strategic material choices to balance performance and cost, demonstrating robust engineering principles.

Stage 1		
Propellent Mixture Ratic	2.56	
Fuel Mass	66,527.08	kg
Fuel Density	0.81	kg/liter
Volume of Fuel	82,132.19	liters
Fuel Fill Volume %	95%	
Fuel Tank Volume	86,238.80	liters
Diameter	4	m
Side Length	8.20	m
Surface Area	102.99	m^2
Fuel Tank Thickness	0.005	m
Tank Metal Density	2710	kg/m^3
Tank Skin	1,398.17	kg
Stringer/Isogrid	349.54	kg (25%
Inter-Tank Structure	349.54	kg (25%
Fuel Tank Mass	2,097.25	kg
Oxidizer Mass	170,309.32	kg
Oxidizer Density	1.141	kg/liter
Volume of Oxidizer	149,263.21	liters
Fill Volume %	95%	
Oxidizer Tank Volume	156,726.37	liters
Diameter	4	m
Side Length	13.8052213	m
Surface Area	173.48	m^2
Oxidizer Tank Thickness	0.005	m
Tank Metal Density	2710	kg/m^3
Tank Skin	2,354.47	kg
Stringer/Isogrid	588.62	kg (25%
Inter-Tank Structure	588.62	kg (25%
Oxidizer Tank Mass	3,531.70	kg

Pre Design Analysis Tool

- Created Excel Spreadsheet for determining various orbital maneuver delta V requirements
- Launch Azimuth Calculations
- Burnout Impact Point Calculation
- Vehicle mass breakdown depending on delta V, payload mass, ISP, propellants used
- Available for download on my GitHub

Initial Conditions	Units	Case 1	Case 2	Case 3	Case 4
Altitude	km	140	50	80	110
Velocity	m/sec	4500	2200	2600	5000
Angle	deg	25	45	30	22
Downrange at Burnout	km	1000	60	120	300
		Results			
Horizontal Velocity	m/sec	4078.39	1555.63	2251.67	4635.92
Vertical Velocity	m/sec	1901.78	1555.63	1300.00	1873.03
Max Increase in Height	km	184.34	123.34	86.14	178.81
Time to Max Height	secs	193.86	158.58	132.52	190.93
Distance to Ground	km	324.34	173.34	166.14	288.81
Time to Ground	secs	257.15	187.99	184.04	242.65
Total Time burnout to Impact	secs	451.01	346.57	316.56	433.58
Horizontal Distance	km	1839.39	539.13	712.78	2010.06
Total DwnRng (Ls to Impact)	km	2839.39	599.13	832.78	2310.06
Vacuum Impact Velocity	m/sec	2523	1844	1805	2380
With Earth Curve Correction					
Height Error	km	160.0	7.0	13.6	105.5
Distance to Ground	secs	484.35	180.38	179.74	394.27
Time to Ground	secs	314.24	191.77	191.43	283.52
Total Time burnout to Impact	secs	508.10	350.35	323.95	474.45
Horizontal Distance	km	2072.236	545.0091	729.4192	2199.494
Total DwnRng (Ls to Impact)	km	3072.236	605.0091	849.4192	2499.494
Vacuum Impact Velocity	m/sec	3083	1881	1878	2781
Delta Descent Time	secs	57.09	3.78	7.39	40.86
Delta Down Range	km	232.85	5.88	16.64	189.43
Percent Down Range Change	%	8%	1%	2%	8%

	-	-										Pro	pellent Break	down	1		J.	Thrust To Weight	
Altitude	 Radius 	Gravity Const	t 6.6743E-11 g_0	9.81	4						Ox Ratio	Stage 2	Weight (kg)	Liters	Volume (m^3)		Stage 1		_
		mu	398600 j2	0.001082636	٥			Co-Apsidal Hohman		P		6 Lox	38,804,73			. — —	Needed	3,289,961,44	4 Newtor
	7	2 EarthMass	5.9722E+24 Earth Radius	6378	5			Initial Orbit Perigee Velocity	8.609	km/s		LH2	6,467.46			. ———	Engine Thrust	1,960,000.00	
Radius (km)	Altitude (km	am)				Velocities		Initial Orbit Apogee Velocity	7.354	km/s	6791	LF1Z	6,467.40	91,090.92	91.05			1,500,000.00	Newton
5801	413	SMA1	6296 km	Ener1	-31.65501906 km^2/sec			Initial Orbit Energy	-31.655	K^2/s^2							Engines Needed		4
6791	422	Ecc1	0.07862135	Per1	4971.738756 sec	7.35395309 km/s	Apopapsis Velocity	Initial Orbit Angular Momentum	49,941	1 K^2/s	949,000	56 Stage 1			4		Stage 2		
28.5		hOrb1	49940.6954 km^2/sec					Initial Orbit Period	82.86	min		Lox			149.26				Newton
50000			50000 km	Ener2	-3.986 km^2/sec			Final Orbit Perigee Velocity	2.823	km/s		Rp1	66,527.1	82,132.19	82.13		Engine Thrust	850,000.00	J Newton
50000			0	Per2	111266.9613 sec	2.82347304 km/s	Apopapsis Velocity	Final Orbit Apogee Velocity	2.823	km/s	50000 Tank Wall Thickness S1	S1 0.005	√5 m				Engines Needed		1
40		hOrb2	141173.652 km^2/sec		4			Final Orbit Energy		K^2/s^2	Tank Wall Thickness S2		.14 m	Al Density	2710 kg				_
5801		SMAT	27900.5 km		-7.143241161 km^2/sec			Final Orbit Angular Momentum				-					+		1
6791		hOrbT	64372.3092 km^2/sec	PerT	46379.83514 sec	1.28744618 km/s	Apopapsis Velocity	Final Orbit Period	1854.45					Tank '	Volume and Wei	⊿ight		,	1
50000		EccT	0.79208258		124 4	10 7010550 1 (-		Transfer Orbit Perigee Velocity	11.097	km/s		Radius	Diameter	Tank height 1	Total Height	Volume (m/	^3 Wall Thickness Vol	l Tank Mass (kg)	Ms/M
50000				ΔIncl1 ΔIncl2	1.34 deg 10.16 deg	13.7818659 km/s -2.40286015 km/s		Transfer Orbit Apogee Velocity Transfer Orbit Energy	1.287 -7.143	km/s K^2/s^2	Stage 2	Nauius	Diameter	Idin incigit			e for back pressure	Tally Mass (ME)	TV15/ 14.
				Δinci2	10.1b aeg	-2.40286015 km/s	Transfer Apogee	Transfer Orbit Energy Transfer Orbit Angular Momentum			LOx	2	4	0.10	4.175034853	+5% volume t 35.71		854.75	
				Time of Flight Evaluation	f Orbit 1			Transfer Orbit Angular Momentum Transfer Orbit Time of Flight	386.50	min			4						
				True Anomaly	220			Min Delta V Burn 1 SMA only	2.488	km/s	LH2	2	4	4.94	8.944557358	95.65			
				Eccentric Anomaly	3.891901727			Min Delta V w/ΔIncl1	2.498	km/s	Stage 1						Total	3,335.03	
				Time of Flight (min)	52.03318674			Min Delta V WyBillCT	1.536	km/s	LOx	2	4	9.81	13.80522131	156.73	3 0.87	3,531.70	J
				Time or right (inn)	52,0352557-4			Min Delta V w/ΔIncl2	1,573	km/s	RP-1	2	4	4.20	8.195999314	86.24	4 0.52	2,097.25	.5
								Total Delta V SMA only	4.024	km/s			1				Total	8,828.95	.5
																		Mass includes +50% for S	
								Total Delta V w/∆incl	4.071	km/s								1000	
	-		4					Circul	ular to Circular	Orbit									
				1111111111		. 1 111111								r			Mass a	and Height Breakdown Of	of Rock

Brayton Cycle Jet Engine

- Operated Brayton Cycle and analyzed compressor and turbine efficiency
- Utilized Pitot tube at system inlet and outlet to compute Mass flow rate, fluid speed specific Mach number and volumetric flow rate to create T-s and P-v diagrams for the cycle
- Data collection in LabVIEW

NASA Inertial Positioning System

- Designed, Created, and Tested a positioning system that required zero external communication and was flown to space.
- Created a payload with the ability to survive the harsh environment of space while staying below weight and size requirements.
- Created a MATLAB program to process and visualize data using the google elevation API with the MATLAB mapping toolbox.
- Performed thermal simulations and testing to ensure mission success.
- Asked to speak and present findings at one of NASA's research symposiums

Rocket Test Bench

- Created loadcell based test bench to measure thrust output of homemade solid rocket motors
- Used Arduino and MATLAB for data acquisition and post processing
- Measured thrust variation based off varying Nozzle diameters

A Finite Element Analysis of SpaceX Falcon 9 Grid Fins

- Determined total deformation of SpaceX's falcon 9 booster's grid fins during reentry
- Performed FEA using Abaqus
- Learned to seed high complexity geometry

More FEA

Printed using Abaqus/CAE on: Thu Feb 16 16:23:59 Mountain Standard Time 2023

Solidworks Surfacing Porject

• Created Xbox 360 controller using only surfacing techniques in Solidworks

Senior Design Project

- Worked on team that designed an assembly automation project for Kodak Alaris
- 13'x8'x5' footprint
- Utilized Vibratory bowl feeders, Custom 3 axis pneumatic gripper, stepper motors, and more to achieve complete mechanical assembly

Submarine Competition

- Created submarine to compete in school competition
- Placed 3rd
- Disqualified because we let our submarine flood and sink as our method of submergence

Custom Automation Projects With Complete Solution Robotics

- Unable to show most of work as it is proprietary / confidential
- Created custom automation solutions for multiple industries
- Created custom joint rolling robot utilizing a custom fluidized vat for appropriate coating of joints
- Large Scale Palletizing operations
- Programmed and utilized Fanuc robots
- Large scale SolidWorks assemblies
- Created parts and drawings to be sent to for fabrication

Thanks

grahamavers@gmail.com
+1 908 723 3514
+ + + + + https://www.linkedin.com/in/grahamavers/
+ + + + + + https://github.com/grahamavers

