112	
Hw2 Thursday, February 6, 2025 7:21 PM	
(a) The reward function represents the expected revord received	
from executing an action from a given state.	
The chate action for the control for the	
The state-action function Q is similar, but represents	
the experted reward from Starting at a given state,	
and taking an action, and continuing with a greedy policy	
with respect to Q. SO, Q represent expected total reward	
	Ų
throughout a process, and the remaind function only represent the reward for one step.	7
anc neman ton Chic 24.56.	
0) $Q(5,a) = A(5,a) + y \leq T(5' s,a) V(5')$	
2	
bl bz even b3	
Touth John	
$a) S = \{b_1, b_2, b_3\}$	

A =	
Tvoll,	0 P 1-P , untair 0 0 1
A(5	$(+2) = \begin{cases} +2 & \text{if } a = \text{reset and } S = \emptyset_{Z} \\ -1 & \text{if } a = \text{veset and } S = \emptyset_{Z} \end{cases}$ $(+2) = \begin{cases} -1 & \text{if } a = \text{veset and } S = \emptyset_{Z} \\ +2 & \text{veset } \emptyset_{Z} \end{cases}$
	b, b2 assuming P=0.5 For this problem b3
U"(5)=h	$ \mathcal{J} = \begin{cases} $
(U"(b,) = ($O + \left(\ell \cdot U^{\sigma}(b_1) + (1-\ell) U^{\sigma}(b_3) \right)$ $- + \sqrt{11} \mathcal{L}^{\sigma}(b_1) - + (1-\ell) U^{\sigma}(b_3)$

$U''(b_1) = Z + \chi(U''(b_1)) \rightarrow U''(b_3) = -1 + \chi(U''(b_1)) \rightarrow U''(b_3) = -1 + \chi(U''(b_1))$	
$b_{1} = (\ell (2 + 8b_{1}) + \ell (-1 + 8b_{1})) \cdot 8$ $b_{2} = (2 \ell + 8\ell b_{1} + 8b_{1} - 1 + \ell - 8\ell b_{1}) \cdot 8$	
$b_{1} = 70 \times 48^{2} 0 + 8^{2} 0 - 8 + 08 - 8^{2} 0 0$ $b_{1} - 8^{2} b_{1} = 708 - 8 + 08$	
$b_1 = \frac{3 p \times - x}{1 - x^2} \xrightarrow{x = 0.05} b_1 = 4.872$ $U''(b_1) = 4.872$	
Play in -4 $U(b_2) = 6.63$ $U''(b_3) = 3.63$	
Check that these values satisfy N*(s)= max (h(s,a)+85 T(s' s,a) N*(s'))	
$ y_1 \rightarrow voll: 0 + 0.95(0.5(6.63) + 0.5[3.63)) = 4.874 \}_{Max} = 4.874$ $ veset: 0 + 0.95(4.872) = 1ess Man 4.874 $	
b_ Toll: 0 + 6.95 (3.63) = less Man 3.63) Max = 6.63 Max = 6.63	

ρź	$3 \rightarrow \text{voll}: 0 + 0.95(3.63) = \text{less Mon 3.63} $ $\text{max} = 3.63$
	Vesct: -1 + 0.99(4.827) = 3.63
A	Ill of these values are the same, except for s. This optimal
\	value is very close though, hully resulting from a rounding
	error. So, the policy of cost is optimal
()	I WILL USE the same policy as (b) because in the case
	of all evens, voward will be minimized by vegeatedly reaching its and
	resetting. Similarly, with all odd volls reward will be maxmized by
	resetting only on bz, with tz reward. I am alle to compute
	bounds by using the expression found earlier for No (bi) and
	varying the Probability (P) term.
	308-8
	$U^{\alpha}(b) = \frac{3 p x - x}{1 - x^2}$, where $p = 0$ simulates all-even rolls, and
	9=1 simulates all-odd rolls.
	$U^{\pi}(b_{i}) _{\substack{0=0\\ y=0.95}} = -9.744$
	$\mathcal{U}''(b) _{\varrho=1} = 19.457$ $3=0.95$
	χ= 0.9 \$
	SO, discounted score - 9.744 & U(bi) < 19.487

