# A Finite Element-Volume Method for the Serre Equations

Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

November 1, 2018

Motivation

- Motivation
- Method

- Motivation
- Method
- Results

Results 00000000 000000000

Motivation

#### Ocean Wave Hazards

▶ Tsunamis

Motivation

#### Sulawesi 2018 Tsunami



Figure: Sulawesi Tsunami (Indonesia, 2018).

Motivation

#### Ocean Wave Hazards

- Tsunamis
- Storm Surges

Motivation

## Storm Surge of Hurricane Florence and Michael



(a) Florence (U.S.A, 2018)



(b) Michael (U.S.A, 2018)

## Two Dimensional Scenario



## Navier-Stokes



## Model Simplification: Serre Equations



## Assumptions

| Quantity                     | Serre Equations                                                              |
|------------------------------|------------------------------------------------------------------------------|
| Particle: $\tilde{v}(x,z,t)$ | $u\frac{\partial b}{\partial x} - (h - \alpha)\frac{\partial b}{\partial x}$ |
| Particle: $\tilde{p}(x,z,t)$ | $g\rho\alpha + \rho\alpha\Psi + \frac{1}{2}\rho\alpha(2h-\alpha)\Phi$        |

where

$$\alpha(x,z,t)=(h(x,t)+b(x))-z$$

and

$$\Psi = \frac{\partial b}{\partial x} \left( \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

## **Equations**

Mass: 
$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

Momentum: 
$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left( u^2 h + \frac{gh^2}{2} + \frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right)$$

$$+\frac{\partial b}{\partial x}\left(gh+h\Psi+\frac{h^2}{2}\Phi\right)=0.$$

$$\Psi = \frac{\partial b}{\partial x} \left( \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

#### Method

▶ When  $\Phi = \Psi = 0$  we have the Shallow Water Wave Equations

#### Method

- When  $\Phi = \Psi = 0$  we have the Shallow Water Wave Equations
- Demonstrated utility of Finite Volume Methods for these equations (ANUGA)

#### Method

- When  $\Phi = \Psi = 0$  we have the Shallow Water Wave Equations
- Demonstrated utility of Finite Volume Methods for these equations (ANUGA)

Goal: Adapt Finite Volume Methods for the Serre Equations

 Results 00000000 000000000

Finite Volume Method

#### Finite Volume Method

Conservation law form

#### Finite Volume Method

- Conservation law form
- ► Finite volume update

 Results 00000000 000000000

Finite Volume Method

#### Finite Volume Method

Conservation law form

#### Conservation Law Form

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left[ f\left(q, \frac{\partial q}{\partial x}, \frac{\partial^2 q}{\partial x^2}, \dots, \frac{\partial^n q}{\partial x^n}\right) \right] + s\left(q, \frac{\partial q}{\partial x}, \frac{\partial^2 q}{\partial x^2}, \dots, \frac{\partial^n q}{\partial x^n}\right) = 0$$

## **Equations**

Mass: 
$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

Momentum: 
$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left( u^2 h + \frac{gh^2}{2} + \frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right)$$

$$+\frac{\partial b}{\partial x}\left(gh+h\Psi+\frac{h^2}{2}\Phi\right)=0.$$

$$\Psi = \frac{\partial b}{\partial x} \left( \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

## **Equations**

Mass: 
$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

Momentum: 
$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left( u^2h + \frac{gh^2}{2} + \frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right)$$

$$+\frac{\partial b}{\partial x}\left(gh+h\Psi+\frac{h^2}{2}\Phi\right)=0.$$

$$\Psi = \frac{\partial b}{\partial x} \left( \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

#### Conservation Law Form

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left( uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[ \frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right)$$
$$+ \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} = 0.$$

#### Conservation Law Form

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial \mathbf{G}}{\partial t} + \frac{\partial}{\partial x} \left( u\mathbf{G} + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[ \frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right) + \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} = 0.$$

with

$$G = hu \left( 1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[ \frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left( \frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

#### Finite Volume Method

- Conservation law form
- ► Finite volume update

#### Conservation Law Form

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left[ f\left(q, \frac{\partial q}{\partial x}, \frac{\partial^2 q}{\partial x^2}, \dots, \frac{\partial^n q}{\partial x^n}\right) \right] + s\left(q, \frac{\partial q}{\partial x}, \frac{\partial^2 q}{\partial x^2}, \dots, \frac{\partial^n q}{\partial x^n}\right) = 0$$

#### Finite Volume Method



## Discretisation



Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

## Update



Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

#### Finite Volume Method



## Require velocity to calculate flux

However to calculate the flux and source terms we require u

## Require velocity to calculate flux

However to calculate the flux and source terms we require u

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left( uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[ \frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right)$$
$$+ \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} = 0.$$

#### Method



Reconstruction

#### Reconstruction

▶ Determines spatial order of accuracy



Results 00000000 000000000

Reconstruction

#### Reconstruction

Determines spatial order of accuracy

Goal: Second-order accuracy



Reconstruction

# Reconstruction Spaces

| Quantity | Number of           | Reconstructed |
|----------|---------------------|---------------|
|          | spatial derivatives | functions     |

## Reconstruction Spaces

| Quantity | Number of           | Reconstructed                            |  |  |
|----------|---------------------|------------------------------------------|--|--|
|          | spatial derivatives | functions                                |  |  |
| h        | zero                | linear over cell, discontinuous at edges |  |  |
| G        | zero                | linear over cell, discontinuous at edges |  |  |
|          |                     |                                          |  |  |

$$\hat{h}, \hat{G}$$



## Reconstruction Spaces

| Quantity | Number of           | Reconstructed                            |  |
|----------|---------------------|------------------------------------------|--|
|          | spatial derivatives | functions                                |  |
| h        | zero                | linear over cell, discontinuous at edges |  |
| G        | zero                | linear over cell, discontinuous at edges |  |
| и        | one                 | quadratic over cell, continuous at edges |  |





## Reconstruction Spaces

| Quantity | Number of           | Reconstructed                            |  |
|----------|---------------------|------------------------------------------|--|
|          | spatial derivatives | functions                                |  |
| h        | zero                | linear over cell, discontinuous at edges |  |
| G        | zero                | linear over cell, discontinuous at edges |  |
| и        | one                 | quadratic over cell, continuous at edges |  |
| b        | two                 | cubic over cell, continuous at edges     |  |

ĥ



Calculation of Velocity

### Finite Element Calculation of Velocity

Finite Element Method to solve:

$$G = hu \left( 1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[ \frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left( \frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

for u given h, G and b

Calculation of Velocity

### Finite Element Calculation of Velocity

Finite Element Method to solve:

$$G = hu \left( 1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[ \frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left( \frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

for u given h, G and b

Solves the weak form replacing all quantities with their reconstructions  $\hat{h}$ ,  $\hat{G}$  and  $\hat{b}$  to get  $\hat{u}$ 

Calculation of Velocity

#### Method



#### **Validation**

► Analytic Solution

#### Validation

- ► Analytic Solution
- ► Experimental Results

#### **Validation**

► Analytic Solution

## Soliton Example



## Soliton Equations

$$h(x,t) = a_0 + a_1 \operatorname{sech} (\kappa (x - ct)),$$

$$u(x,t) = c \left(1 - \frac{a_0}{h(x,t)}\right),$$
  
$$b(x) = 0$$

## Soliton Equations

$$h(x,t) = a_0 + a_1 \operatorname{sech} (\kappa (x - ct)),$$

$$u(x,t)=c\left(1-\frac{a_0}{h(x,t)}\right),\,$$

$$b(x)=0$$

$$\kappa = \frac{\sqrt{3a_1}}{2a_0\sqrt{(a_0 + a_1)}},$$

$$c=\sqrt{g(a_0+a_1)}.$$

### Numerical Solution $a_0 = 1$ , $a_1 = 0.7$



### Convergence



#### Conservation



#### Validation

- ► Analytic Solution
- Experimental Results

Results 0000000 •00000000

Experimental Comparison

## Synolakis Experiment



#### **Numerical Solution**



### Comparison t = 30s



### Comparison t = 40s



### Comparison t = 50s



#### Comparison t = 60s



### Comparison t = 70s





Results 00000000 00000000

Experimental Comparison

# Thanks!