

Natural-Language Analogies

Oren Sultan

Yonatan Bitton

NAACL 2024

Dafna Shahaf

Background and Motivation

Analogies in Human Cognition

- Analogy-making in human cognition and AI.
- Analogies play an important role across many areas.

A cork is stuck inside an empty wine bottle.

A Baby is stuck inside the birth canal

Existing Analogy Resources

- Surprisingly, few analogy resources exist today.
- We believe this lack of data hinders progress in computational analogy.
- Most resources focus on **word-analogies** (man:king is like woman:queen).
- Sentence-level analogies. Jiayang et al. (2023)- dataset of 24K story pairs.
- Full paragraph-level analogies. Stories from cognitive-psychology.

The Structure Mapping Theory (SMT), (Gentner, 1983)

Approach

ParallelPARC (Parallel Paragraph Creator) Pipeline

Our ProPara-Logy Generated Dataset

Base	Target	Similar Relations			
<u>Title</u> : How does a solar panel work?	<u>Title</u> : How does photosynthesis occur?	(solar energy, powers, electric current)			
Domain : Engineering	Domain : Natural Science	(sunlight, powers, chemical reactions)			
Paragraph: solar energy powers an	Paragraph : Photosynthesis occurs				
electric current within a solar panel.	when sunlight powers chemical	(photovoltaic cells, convert, energy)			
The photovoltaic cells within the	reactions within the chloroplasts of a	(chloroplasts, tranform, energy)			
panel convert the energy from the	plant. The chloroplasts are able to				
sun into electricity. The electrical	transform the energy from the sunlight	(electrical wires, spread, power)			
wires then spread this power	into usable energy for the plant . This	(plants, distribute, nutrients)			
throughout the panel. The electric	energy is then used to produce				
current is then used to power	nutrients for the plant, which are then				
whatever the panel is connected to.	distributed throughout the plant.				

1. Analogy Candidates Generation

- Goal: to generate analogy candidates from diverse scientific domains.
- How? We employed GPT-3— high-quality results at a very reasonable cost.
- (1): GPT tends to repeat itself. (2): GPT creates analogies of similar topics.
- (1): Seed GPT with B instead of asking it to generate both B and T.
- (2): Broad target domains: Eng., Natural, Social, and Biomedical Science.
- Using a single prompt for the task X
- Using two separate prompts V
 - Finding an analogous subject, and similar relations.
- Generating a paragraph in natural language (given subject, and relations).
- We include **Similar relations**, in addition to paragraphs, subjects & domains.
- In total: 4,288 candidates.

2. Human Annotation Task

- We now annotate a small portion of the **candidates data**.
- **Goal**: to estimate % of analogies & use the annotated data to train models.
- Given two paragraphs (B, T), corresponding subjects, domains & similar relations. The task: to decide whether the paragraphs are analogous and the similar relations are correct.
 - YES (close / far) analogy.
 - NO "for further inspection" (dissimilar relations, misinformation, cyclic vs. non-cyclic process, other)

3. Automatic Filtering and Labeling

- We use part of our annotated data as few-shot examples for our **filtering** model.
 - o Inputs: two paragraphs, their subjects, similar relations.
 - Label: how many workers labeled it as an analogy (0-3).
- Goals:
 - To identify the most probable analogous candidates to show our annotators.
 - o Potentially replace the human-in-the-loop and achieve a **fully automated pipeline**.

4. Human Validation

- We show annotators both the **most likely analogous candidates** (as predicted by the model), but also the least likely candidates.
- 3 annotators per sample. **Strict setting**: positive if all **3** agree it is an analogy.
- We randomly gave annotators small batches to label until **310** positives.
- Annotators' agreement is **78.6%**, where random chance is **25%**.

<u>Filtering models' predictions vs. workers' majority vote</u>

- Accuracy of **85.1%**, f1-score of **83.4%**.
- 79.5% precision, predicting high likelihood of an analogy (> 30%)

5. Distractors Generation (Challenging Negatives)

- Motivation: In addition to the the analogies, our aim is to create negatives.
- Formulation. Let B and T be two analogous paragraphs. We create distractor T' that keeps first-order relations of T, but changes the higher-order relations – i.e., relations between first-order relations (e.g., cause and effect, or temporal dependencies). **How?** To create T', we find two dependent events in T such that one must precede the other, and switch their order.
- **Generation.** GPT-4 with two separate prompts:
 - Finding & Replacing two dependent events (one-shot).
 - Writing a coherent T' (few-shot).
- Evaluation.
 - GPT4 **89%** accuray.
 - We create distractors for both gold and silver sets.

How do bats use echolocation?	How do submarines use sonar					
Natural Sciences)	(Engineering)					
Bats use echolocation to navigate and	Submarines use sonar technology t					
and food. They emit high frequency	detect objects in the water.					
ound waves that bounce off of objects	They emit sound waves, which					
n their environment.	travel through the water and bounc					
The bats then receive the echoes and in-	off the objects.					
erpret the information to locate their	The sound waves are then receive					
orey and navigate their surroundings.	back as an echo. Submarines in					
Submarines interpret the echo to deter-	terpret the echo to determine th					

mine the distance and size of the object. distance and size of the object

Target (Distractor): nr? How do submarines use sonar? (Engineering) | Submarines interpret the echo to determine the distance and size of ch the object. After interpreting the echo, they emit sound waves, which travel through the water and bounce $\operatorname{red} || \operatorname{off}$ the objects. These sound waves are then received back as an echo the Finally, submarines use sonar tech

nology to detect objects in the water

Evaluating Humans and LLMs on ProPara-Logy Benchmark

Binary Classification Task. To decide whether the processes are analogous. The target paragraph could be:

- Analogy (positive) / Random (simple negative) / Distractor (challenging negative) Multiple Choice Task. Given a base paragraph B, along with 4 candidate paragraphs, the task is to identify the paragraph that is most analogous to B. **Setups:**
 - Basic: includes one analogous paragraph and 3 random paragraphs.
- Advanced: includes challenging distractors.

Research Questions:

- **RQ1:** What is the performance of humans and models?
 - Humans achieve better performance than models (~13% gap on both tasks)!
 - GPT4 achieves the best accuracy out of the models!
- **RQ2:** Is the automatically-generated "silver set" (without human validation) useful for training models?
- The training of FlanT5-small on the silver-set significantly improved its Performance!
- **RQ3:** Can the distractors fool humans and models?

The challenging distractors confuse LLMs, but not humans!

Binary Classification Task						Multiple Choice Task					
Row	Settings	Method	Overall	Per Target Type			Row	Settings	Method	Basic	Advanced
				Positives (50%) Negatives (50%)		ves (50%)		———		————	Auvanceu ————
				Analogy	Random	Distractor	1		Random Guess	25	25
1		Random Guess	50	50	50	50	2.		GPT4	95.5	83.2
2		GPT4	79.5	95.2	92.9	34.8	2				
3		ChatGPT	68.2	53.5	96.8	69.0	3		ChatGPT	74.2	59
4	Zero-shot	Gemini Pro	73.9	79.7	100	36.1	4		Gemini Pro	87.4	62.6
5		FlanT5-XXL	61.1	28.1	100	88.4		Zero-shot			
6		FlanT5-XL	59.7	25.1	100	88.4	3		FlanT5-XXL	87.4	75.2
7		FlanT5-small	49.3	0	97.4	100	6		FlanT5-XL	68.4	55.5
8		Humans	79	58	100	100	7		FlanT5-small	32.9	32.9
9		GPT4 (in-context)	78	86.5	98.1	40.7			Tail I J-Sillall	34.7	34.7
10	Guided	FlanT5-small (fine-tune)	74.4	87.1	96.1	27.1	0	C: 1- 1	II	100	06
11		Lumans	02.5	05	100	80	ð	Guided	Humans	100	96

We hope researchers will use the pipeline in domains where analogies have shown promise, and that this work will inspire more NLP work on analogies, leading to new tasks and benchmarks!