OMNICOMM

Датчик уровня топлива Omnicomm LLS-AF 4

Руководство пользователя Omnicomm Configurator 6 12.10.2018

Содержание

- 3 Общая информация
- 4 Технические характеристики
- 6 Подготовка
- 6 Подготовка бака
- 8 Подготовка датчика
- 8 Настройка
- 9 Калибровка «Пустой/Полный»
- 10 Настройка датчика
- 11 Установка и подключение
- 12 Тарирование
- 14 Пломбирование
- 16 Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS-AF 4

Датчик уровня топлива Omnicomm LLS-AF 4

Общая информация

Руководство пользователя приведено для датчиков уровня топлива Omnicomm LLS-AF 4.

Omnicomm LLS-AF 4 – датчик уровня топлива с аналоговым и частотным интерфейсами.

При проведении монтажа необходимо соблюдать технику безопасности и требования нормативной документации для данного вида работ.

Минимально допустимая длина измерительной части 150 мм.

Диэлектрическая проницаемость измеряемой среды должна быть постоянной. Несоблюдение данного требования приводит к увеличению погрешности измерения.

Технические характеристики

Технические характеристики

Характеристика	Значение	
Напряжение питания, В	7 – 45	
Потребляемая мощность, Вт	Типовая – 0,6 Максимальная – 0,9 при КЗ на аналоговом выходе – 1,6	
Аналоговый выход:		
Диапазон выходных напряжений, В	020	
Максимальное выходное напряжение, В	520	
Минимальное выходное напряжение, В	015	
Разрядность цифро-аналогового преобразования, бит	12	
Сопротивление нагрузки на аналоговый выход, Ом	Не менее 2000	
Пульсации выходного сигнала, %	Не более 0,15	
Частотный выход:		
Модуляция выходного сигнала	Частотно-импульсная	
Диапазон выходных частот, Гц	302000	
Максимальная частота выходного сигнала, Гц	1002000	

Технические характеристики

Характеристика	Значение
Минимальная частота выходного сигнала, Гц	301900
Максимальный ток нагрузки на частотном выходе в режиме «открытый коллектор», мА Сопротивление внутренней «подтяжки» к плюсу напряжения питания, Ом	300
	1500
Общие сведения:	
Диапазон измерения, мм	0700, 1000, 1500
Основная приведённая погрешность измерений уровня, %	±1
Температура окружающей среды, °С	От минус 40 до плюс 80
Предельные температуры, °C	Минус 60 и плюс 85
Относительная влажность при температуре 25 °C (без конденсации влаги), %	От 5 до 95
Атмосферное давление, кПа	От 84 до 107
Предельная относительная влажность при температуре 25 °C (без конденсации влаги), %	100
Степень защиты корпуса	IP69k
Режим работы	Продолжительный
Размер внутреннего фильтра	От 0 до 30

Подготовка

Характеристика	Значение
Период измерения, с	1
Габаритные размеры, см	78×74×(24+длина измерительной части)
Масса, кг	Не более 2
Средний срок службы, лет	8

Подготовка

Подготовка бака

- 1. Выберите место установки датчика с учетом следующих требований:
- Место установки должно быть максимально приближено к геометрическому центру бака и являться самым глубоким местом в баке:

- Установленный датчик не должен касаться ребер жесткости и дополнительного оборудования внутри бака
- Установка двух датчиков в один топливный бак позволяет значительно уменьшить зависимость уровня топлива от угла наклона ТС:

Вид сверху

- 2. Для соблюдения техники безопасности произведите выпаривание бака
- 3. Просверлите центральное отверстие биметаллической коронкой ø35 мм
- 4. Просверлите четыре крепежных отверстия согласно схеме:

Диаметр крепежных отверстий выбирается в зависимости от материала бака:

- Ø 4 мм для металлического бака с толщиной стенок более 3 мм (нарезать резьбу М5)
- Ø 7 мм для пластикового и металлического бака со стенками до 3 мм (под заклепки)
- Ø 4 мм для пластикового бака более 3 мм

Подготовка датчика

- 1. Измерьте глубину бака. Отрежьте измерительную часть датчика таким образом, чтобы ее длина была на 20 мм меньше глубины бака. Линия среза должна быть перпендикулярна продольной оси датчика
- Заполните маслобензостойким токонепроводящим герметиком изолирующий колпачок, входящий в комплект поставки, на 1/4 – 1/5 от объема.
 Рекомендуемые герметики: PERMATEX™ MotoSeal® Black, ABRO™ Black, ABRO™ Red
- 3. Наденьте изолирующий колпачок на центральный стержень датчика Omnicomm LLS-AF 4

Настройка

Подключите датчик к ПК согласно схеме:

Запустите программу Omnicomm Configurator на ПК.

Настройка

Omnicomm Configurator (PC):

Значение уровня топлива отображается без учета фильтрации.

Калибровка «Пустой/Полный»

Настройку производите в том топливе, с которым данный датчик будет работать.

- 1. Залейте топливо в мерную ёмкость
- 2. Погрузите датчик в топливо на всю длину измерительной части
- 3. Дождитесь появления зеленого индикатора «Стабилен». Нажмите кнопку «Полный», будет зафиксировано значение, соответствующее полному баку
- 4. Выньте датчик из емкости и дайте топливу стечь из измерительной части в течение 1 минуты. Нажмите кнопку «Пустой», будет зафиксировано значение, соответствующее пустому баку
- 5. Нажмите кнопку «Записать в устройство»

Настройка датчика

Во вкладке «Настройки» в разделе «Настраиваемые параметры»:

«Фильтрация» – установите параметры фильтрации выходного сигнала:

- «Нет» фильтрация не производится. Используется в случаях, когда фильтрация осуществляется внешним устройством
- «Минимальная» фильтрация используется в случаях установки изделия в стационарных топливохранилищах и малоподвижной технике
- «Средняя» фильтрация используется в случаях работы ТС в нормальных дорожных условиях
- «Максимальная» фильтрация используется в случаях работы ТС в тяжелых дорожных условиях

«Режим тяжелых условий эксплуатации» – включите при необходимости дополнительной фильтрации значений измерения, учитывающей сложные условия работы.

«Тип сигнала» – выберите «Аналоговый» или «Частотный».

Для аналогового сигнала:

- «Макс. знач. напряжения (5 ... 20) В» установите максимальное значение напряжения. Значение по умолчанию 5 В
- «Мин. знач. напряжения (0 ... 15) В» установите минимальное значение напряжения. Значение по умолчанию 0 В

Для частотного сигнала:

- «Макс. знач. частоты (100 до 2000) Гц» установите максимальное значение частоты. При подключении к терминалам Omnicomm от 100 до 1053 Гц. Значение по умолчанию 2000 Гц
- «Мин. знач. частоты (30 до 1900) Гц» установите минимальное значение частоты. Значение по умолчанию 30 Гц
- «Подтяжка». В случае если к входу внешнего устройства, по описанию производителя, подключается сигнал напряжения, выберите «Вкл». Если подключается сигнал типа «сухой контакт» или «транзисторный n-p-n ключ», выберите «Выкл»

Установка и подключение

- 1. Наденьте на измерительную часть датчика прокладку для места крепления, входящую в комплект поставки
- 2. Установите датчик Omnicomm LLS-AF 4 в бак и закрепите:
- при креплении заклепками используйте клепальщик
- при креплении болтами предварительно наденьте пломбу (на один болт), шайбу и гровер
- при креплении на пластиковые баки с толщиной стенок более 3 мм используйте саморезы и пломбу (на один саморез), входящие в комплект поставки
- 3. Подключите датчик к внешнему устройству согласно схеме:

Название сигнала	Цвет провода
Аналогово-частотный выход	Зеленый

Тарирование

Название сигнала	Цвет провода
Плюс питания	Коричневый
Общий аналогового сигнала	Зелено-белый
Общий (минус) питания	Белый

- 4. Подключите держатель предохранителя к проводу питания датчика (коричневый провод) в непосредственной близости к цепи питания TC
- 5. Установите предохранитель в держатель предохранителя
- 6. При необходимости произведите пломбирование болта (самореза) и разъема

Тарирование

Тарирование топливного бака необходимо для установки соответствия цифрового кода, выдаваемого датчиком Omnicomm LLS-AF 4, и объема топлива в конкретном топливном баке.

Тарирование топливного бака представляет собой заправку топлива в бак – от пустого до полного, с определенным шагом заправки, и фиксацию показаний датчика в тарировочной таблице.

Имеется возможность тарировки емкости методом слива.

Тарировка емкости с одним датчиком:

- 1. Опустошите топливный бак
- 2. Подключите датчик к ПК согласно схеме в разделе Настройка
- 3. Запустите программу Omnicomm Configurator на ПК. Выберите режим работы «Тарирование ёмкости»

Тарирование

Omnicomm Configurator (PC):

Экспорт тарировочной таблицы

Импорт тарировочной таблицы

График тарировочной таблицы

Очистка таблицы

Начало / продолжение / завершение тарировки

В случае если столбец показаний датчика не отображается, нажмите кнопку «Добавить датчик». Выберите тип датчика. Укажите сетевой адрес, установленный в датчике при настройке.

4. Установите шаг пролива в литрах

Если геометрия бака не линейна и / или имеет расширения или сужения - для повышения точности, на таких участках баков рекомендуется делать тарировку с меньшим шагом, используя мерные ёмкости меньшего дозирования (большего разрешения).

- 5. Нажмите кнопку «Начать/продолжить тарировку»
- 6. Залейте объем топлива, равный шагу пролива

Заправку производите мерной емкостью или под контролем расходомера жидкости с заданным шагом. Емкость должна иметь метрологическую поверку.

- 7. Нажмите «Добавить строку»
- В столбце «Литры» отобразится объем заправки согласно установленному шагу

Пломбирование

пролива.

- В столбце «Датчик» отобразится значение, соответствующее объему заправки.
- 8. Нажмите «Добавить строку»
- 9. Повторите выполнение пунктов 6, 7 и 8 согласно количеству контрольных точек. Рекомендуемое минимальное количество контрольных точек 20
- 10. Нажмите кнопку «Закончить тарировку»
- 11. Сохраните тарировочную таблицу в файл тарировки (.ctb), файл Omnicomm Online (.xml), в Терминал или в Индикатор, нажав кнопку «Экспорт»

Тарирование емкости с несколькими датчиками Omnicomm LLS-AF 4 производится для каждого датчика отдельно. Для импорта в Omnicomm Online профиля TC с несколькими тарировочными таблицами:

- 1. Проведите тарировку каждого датчика
- 2. Экспортируйте тарировочные таблицы в файл Omnicomm Online (xml) для каждого датчика по отдельности При экспорте указывайте различные номера датчиков Omnicomm LLS-AF 4, начиная с 1. Возможные варианты: от 1 до 4
- 3. Импортируйте тарировочные таблицы в терминал. Убедитесь, что в настройках терминала в разделе «Датчики уровня топлива», установлено нужное количество датчиков и выбран тип датчиков «LLS-AF»
- 4. Экспортируйте профиль ТС из терминала
- 5. Импортируйте профиль TC в Omnicomm Online

Пломбирование

Для датчиков Omnicomm LLS-AF 4 предусмотрено пломбирование болта или самореза и разъема:

Пломбирование

- 1. Установите болт или саморез через отверстие в пломбе
- 2. Защелкните крышку пломбы
- 3. Внесите в акт номера пломбы и крышки

Установите пломбу-стяжку на разъем:

- 1. Соедините разъем Omnicomm LLS-AF 4 и разъем монтажного кабеля до характерного щелчка
- 2. Проденьте гибкий элемент пломбы через разъемы
- 3. Проденьте гибкий элемент пломбы в отверстие корпуса пломбы
- 4. Затяните соединение
- 5. Отрежьте выступающий участок гибкого элемента пломбы

Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS-AF 4

Nº	Наименование	Количество
1	Коронка биметаллическая ø35 мм	1 шт.
2	Хвостовик к коронке	1 шт.
3	Сверло по металлу ø7 мм или ø4 мм	1 шт.
4	Ножовка по металлу	1 шт.
5	Ключ гаечный на 8 мм	1 шт.
6	Метчик M5 с держателем	1 шт.
7	Пломба-защёлка на болт/саморез	1 шт.
8	Персональный компьютер	1 шт.
9	Программа Omnicomm Configurator	1 шт.
10	Устройство настройки Omnicomm UNU-USB (или УНУ)	1 шт.
11	Блок питания постоянного напряжения 10 – 15 B, 0.5 A (только при использовании УНУ)	1 шт.
12	Мерная ёмкость	1 шт.
13	Топливо	

Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS-AF 4

Nο	Наименование	Количество
14	Емкость для тарировки	1 шт.
15	Пломба стяжка для разъёма Molex	1 шт.

OMNICOMM

info@omnicomm.ru www.omnicomm.ru