```
Big M or Two-phose Simplex (Pick one)
   Converge, how to Write dual-problem
  (6.7, 6.10) + 6.5, 6.3, 6.2?
                                                              OCT. 25/17
                                                              Linear Prag.
MIOTERM ~ 6.10 (Solutions to be posted)
Assignment 7 not due (Practice only)
                        \begin{cases} \text{M:nw} \\ \text{s.t.} \quad \text{Aty} = \mathbb{C}^{\tau} \\ \text{y} \geq \emptyset \end{cases}
Max 2 = 6 *
 s.t. A × ≤ lb
    × ≥ Ø
   Your Your CIEN Bonzi Amen
  weak: Z(x) = W(y) = y'16
    \max Z(x) \leq \min(y)
                                              1) Big M or Two-phose
   Z(**) = \omega(y*)
C_{x}^{*} = (y_{*})^{T} b = C_{8}B^{-1} b
Z + (CBB-1N-C~) × = CBB-11
   * + B" N * = B" b
(4x) = CBB-1
\omega(g^*) = (g^*)^{\dagger}b = C_B B^{-1}b = Z(x^*)
Z = C* + Os;
 a_{i}x_{i} + a_{i}x_{2} + ... + a_{i}x_{n} + a_{i} = b_{i}
 a_{s_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
a_{s_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
a_{s_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
```

OCT. 23/17

November 1st - Midterm 2

$$Z - C_B X_B - C_N X_N = 0$$
 $B X_B + N X_N = b$
 $X_B \ge 0$, $X_N \ge 0$
 $Z + (C_B B'N - C_N) X_N = C_B B' b$
 $X_N + B' N X_N = B'' b$
 $X_N \ge 0$, $X_N \ge 0$

$$Cx_{1} 30 \rightarrow 43 \text{ and } 0x_{2} \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} \rightarrow \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$$

$$\bar{C}x_{1} = C_{8}B^{-1} \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} - 43$$

$$= \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} - 43 = 7 > 0$$

$$Cx_{1} 30 \rightarrow 43 \text{ and } 0x_{1} \begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix}$$

$$\bar{C}x_{1} = C_{8}B^{-1} \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} - 43$$

$$= \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} - 43$$

$$= \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} - 43$$

$$= \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} - 43$$

$$= \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} - 43$$

$$= \begin{bmatrix} 7 & 7 \\ 1 & 1 \end{bmatrix}$$

	L - J	
	x,	X 4
Opt:mal	5	-5
	-2	3
	-2	2
	1.25	-0.5
B"(1 x4	$ = \begin{bmatrix} 1 & 2 & 8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} $	$= \begin{bmatrix} 3 \\ 2 \\ -0.5 \end{bmatrix}$

ex. Max
$$Z = X_1 + 4X_2$$
 (Pg. 274)
 $X_1 + 2X_2 \le 6$ (Pg. 274)
 $2X_1 + X_2 \le 8$
BV = $\{X_2, 5_2\}$ $X_1, Y_2 \ge 0$
 $0Z = C_8 \times_8 + C_1 \times_1$
 $0Z = C_8 \times_8 + C_1 \times_1$

Section	6.5	_				
	1	}	Mox Z			
Min W_		X, 30	¥, ≥ C		Xn 20	r
4.20	9.	a.	aız		ain	٤ b.
9220	9:	az.	azz	• • •	azn	4 ps
:	1	:	:		:	:
9m 20	5~	Q3.	Q32		032	₹ pw
		≥ C,	≥<,		200	

$$\begin{array}{lll}
\text{Max } z &= & \text{Cx} & \text{min } \omega &= & \text{Ib}^{T} \omega \\
\text{Ax } &\neq & \text{Ib} & & & & \text{AT} & \omega &= & \text{C}^{T} \\
\text{X } &\geq & & & & & & & & & & & \\
\text{C } &= & & & & & & & & & \\
\text{C } &= & & & & & & & & \\
\text{C } &= & & & & & & & & \\
\text{C } &= & & & & & & & \\
\text{C } &= & & & & & & & \\
\text{C } &= & & & & & & & \\
\text{C } &= & & & & & & \\
\text{C } &= & & & & & & \\
\text{D } &= & & & & & & \\
\text{D } &= & & & & & \\
\text{M } &= & & & & & \\
\text{Aman} &= & & & \\
\text{Aman} &= & & & & \\
\text{Aman} &= & & \\
\text{Aman} &= & & & \\
\text{Aman}$$

Max
$$z = 2x_1 + 2x_2$$

 $x_1 + x_2 = 2$
 $-x_1 - x_2 = -2$
 $(x_1, x_2 = 0)$ $-2x_1 + x_2 = -3$
 $x - x_2 = 1$

$\omega = 2y, -2y_z - 3y_s + y_s$				
9, - 92 - 293 +94	22			
9 92 + 93 - 94	≥ (
9, 19, 19, 9, 9, 20				

m:n

	x, 2 0	¥2 ≥ Ø	
9.	. 1	1	≟ 2
9,	-1	-1	4 - 2
93	- 2	t	≟ -3
9.	t	- (≟ l
	≥ 2	21	

Set y,' , y, - y, y,' = -y;

min
$$\omega = 29.^{\circ} + 3y_{2}^{\circ} + 9u$$

 $y_{1}^{\circ} + 2y_{2}^{\circ} + 9 \ge 2$
 $y_{2}^{\circ} - y_{2}^{\circ} - y_{3}^{\circ} \ge 1$
 $y_{2}^{\circ} = 0$ $y_{3}^{\circ} \ge 0$