- 1. Pomocí osciloskopu změřte špičkovou hodnotu napětí na svorkách sekundárního vinutí transformátoru a porovnejte ji s hodnotou naměřenou na střídavém rozsahu digitálního voltmetru.
- 2. Podle vlastní volby sledujte činnost jednocestného nebo dvoucestného usměrňovače s křemíkovými diodami **KY711**
 - (a) při maximální hodnotě zatěžovacího odporu $10\,\mathrm{k}\Omega$ sledujte závislost stejnosměrného napětí na filtrační kapacitě C v intervalu 0– $10~\mu\mathrm{F}$. Hodnotu usměrněného napětí při $C=10\,\mathrm{\mu}\mathrm{F}$ srovnejte se špičkovou hodnotou pulzního průběhu
 - (b) změřte závislost filtrační kapacity C, potřebné k tomu, aby střídavá složka usměrněného napětí tvořila $10\,\%$ špičkové hodnoty (tj. asi $1\,\mathrm{V}$), na odebíraném proudu. U jednocestného usměrňovače měřte do proudu $0.6\,\mathrm{mA}$, u dvoucestného do proudu $1\,\mathrm{mA}$
 - (c) naměřené závislosti zpracujte graficky. Do grafu uvádějícího závislost filtrační kapacity C na proudu vyneste také závislost časové konstanty $\tau = R_z C$ na proudu.