PROXIMITY MEASURES

Dr. Umarani Jayaraman Assistant Professor

Introduction

- Euclidean Distance
 - To compute the distance between two points

Why do we need distance measure?

- Pattern Recognition
 - Recognizing similar patterns
 - Pattern is representation of an object with features/attributes
 - It is an important aspect of visual perception
- □ How does pattern recognition work?

Testing samples

Training samples

Motivation for distance measure

- □ How does pattern recognition work?
 - Pattern is represented using features
 - □ Feature vector: collection of features
- Features
 - Distance between the eyes
 - Width of the nose
 - Length of jaw line
 - Structure of the cheek

Compute the distance between these vectors to find similarity

 X_3

 X_{Δ}

 X_5

 y_{A}

Motivation for distance measure

- Why do we need distance measures?
 - To compare patterns during the task of pattern recognition
 - Many other applications

d-dimensional feature representation

 Feature vectors of dimensionality d representing two patterns

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_d \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ y_d \end{bmatrix}$$

- Representation of features of multiple objects
 - Consider database of N patterns/objects
 - Each pattern represented using feature vector of dimensionality d
 - So all the patterns can be collectively represented as a matrix D of size dx N

d-dimensional feature representation

Database contains N objects

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{1N} \\ x_{21} & x_{22} & x_{23} & x_{2N} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ x_{d1} & x_{d2} & x_{d3} & x_{dN} \\ \end{bmatrix}$$

Test Sample

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ yd \end{bmatrix}_{dx}$$

L_p Norm

$$L_p(X,Y) = \left(\sum_{i=1}^d (|x_i - y_i|)^p\right)^{\frac{1}{p}}$$

- □ Where $p=1,2,...,\infty$ and d is the dimension
- \square Depending on the value of p, we get different distance measures.
 - L₁: Manhattan (city block distance)
 - \square L₂: Euclidean
 - \square L_{∞}: Max (chess board distance)
 - \square L_{-\infty}: Min
- This is also called as Minkowski Norm

Distance Measures

	(x,y+1)	
(x-1,y)	(x,y)	(x+1,y)
	(x,y-1)	

4-neighbourhood

(x-1,y+1)	(x,y+1)	(x+1,y+1)
(x-1,y)	(x,y) (x+1,)	
(x-1,y-1)	(x,y-1)	(x+1,y-1)

8-neighbourhood

Distance Measures

		(i, j + 2) (0,2)		
	(i-1,j+1) $(-1,1)$	(i, j + 1) (0,1)	(i+1,j+1) (1,1)	
(i-2,j) $(-2,0)$	(i-1,j) $(-1,0)$	$(i,j) \\ (0,0)$	(i+1,j) $(1,0)$	(i+2,j) $(2,0)$
	(i-1, j-1) (-1, -1)	(i, j - 1) (0, -1)	(i+1, j-1) (1,-1)	
		(i, j-2) (0, -2)		

L_1 Norm/ Manhattan Distance

- \square When p=1, in $\mathsf{L_p}$ norm we get the $\mathsf{L_1}$ norm
- It is also called as
 - Manhattan distance
 - City block distance.
 - Taxi-cab distance
- □ This can be written as:

$$D(X,Y) = (\sum_{i=1}^{a} |x_i - y_i|)$$

L1 norm called as City Block Distance/ taxi-cab distance: Based on 4-connectivity

L_2 Norm/Euclidean Distance

- $\hfill\Box$ When p=2 , in ${\rm L_p}$ norm, we get ${\rm L_2}$ norm
- □ It is also called as
 - Euclidean distance

$$D(X,Y) = \left(\sum_{i=1}^{d} |x_i - y_i|^2\right)^{\frac{1}{2}}$$

L_{∞} norm called as Chessboard Distance: Based on 8-connectivity

L_{∞} Norm and $L_{-\infty}$ Norm

 \square The L_{∞} norm is : It is also called as Chybyshev Distance

$$D(X,Y) = \max\left(\sum_{i=1}^{d} |x_i - y_i|\right)$$

 \square The $L_{-\infty}$ norm is:

$$D(X,Y) = min\left(\sum_{i=1}^{d} |x_i - y_i|\right)$$

Taxicab or city block distance vs Euclidean Distance

An illustration comparing the taxicab metric to the Euclidean metric on the plane: According to the taxicab metric the red, yellow, and blue paths have the same length which is 12. According to the Euclidean metric, the green path has length $6\sqrt{2} \approx 8.49$, and is the unique shortest path.

Distance Measures

- A distance measure is used to find the similarity between pattern representations.
- The distance function could be metric or nonmetric.

Properties of a Metric Distance

- A metric is a measure for which the following properties hold:
 - Non-negativity: D $(X,Y) \ge 0$, $\forall X, Y$
 - □ Identity: D(X,Y) = 0 if $(X = Y), \forall X, Y$
 - \square Symmetry: $D(X,Y) = D(Y,X) \forall X,Y$
 - Triangular Inequality: $D(X,Z) \le D(X,Y) + D(Y,Z) \ \forall X,Y,Z$

where D(X,Y) gives the distance between X and Y.

ls L_p norm a metric?

- \square Is L_p norm a metric?
 - Yes, $\forall 1 \leq p \leq \infty$
 - No, if p < 1</p>
- When p<1, it does not satisfy the triangular inequality

- Example:
 - the distance between (0,0) and (1,1) is $2^{1/p} > 2$, but the point (0,1) is at a distance 1 from both of these points.
 - Since this violates the triangle inequality for p<1,
 Minkowski distance is not a metric distance for p<1

Summary- Metric Similarity Function

- Motivation
- \square Minkowski Norm/ L_p Norm
- Properties of Metric
- Euclidean

Summary

• Euclidean Distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

City Block (Manhattan)
 Distance:

$$D_4(p, q) = |x-s| + |y-t|$$

Chess Board (max) Distance:

$$D_s(p, q) = max(|x-s|, |y-t|)$$

		2			
	2	1	2		
2	1	0	1	2	City
	2	1	2		City Block
		2			

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Chessboard Block

THANK YOU

Source-Histogram distance

https://stats.stackexchange.com/questions/7400/ how-to-assess-the-similarity-of-two-histograms

 https://mpatacchiola.github.io/blog/2016/11/1
 2/the-simplest-classifier-histogramintersection.html