Project Euler #226: A Scoop of Blancmange

This problem is a programming version of Problem 226 from projecteuler.net

For any real number x, define d(x) as the distance from x to its nearest integer. Let $r,s\geq 2$ be positive integers and consider the function $f_{r,s}$ defined on the real inteval [0,1] by:

$$f_{r,s}(x) = \sum_{n \geq 0} rac{d(r^n x)}{s^n}$$

For example, when r=s=2 we get the blancmange function shown bellow

Given a polynomial $P = \sum_{i=0}^m a_i X^i$, where a_i are integers. Let

$$I=\int_0^1 f_{r,s}(x)P(x)dx$$

It can be proved that I is a rational number, therefore we can write it as $I=\frac{p}{q}$ where p and q are integers. In addition, the constraints on the inputs guarantee that q is not divisible by the prime number 1004535809. In this case, find $p \cdot q^{-1}$ modulo 1004535809 (q^{-1} is the the inverse of q modulo 1004535809).

Input Format

The first line of each test file contains three space-separated integers r, s and m. The next line contains m+1 space-separated integers a_0,\ldots,a_m .

Constraints

- $2 \le r, s \le 10^9$.
- $0 \le m \le 2 \cdot 10^5$.
- $s \cdot r^i 1$ is not divisible by 1004535809 for all $0 \leq i \leq m+1$.
- $0 \le a_i \le 10^9$.
- $a_m > 0$.

Output Format

Print your answer in one line.

Sample Input 0

```
2 2 0
1
```

Sample Output 0

502267905

Explanation 0

The graph of $f_{2,2}$ is shown in the statement.

$$I=\int_0^1 f_{2,2}(x) dx = rac{1}{2}$$
, hence $I=1\cdot 2^{-1}=502267905\mod 1004535809$.

Sample Input 1

```
2 3 0
1
```

Sample Output 1

627834881

Explanation 1

Below is the graph of $f_{2,3}$

$$I=\int_0^1 f_{2,3}(x) dx = rac{3}{8}$$
, hence $I=3\cdot 8^{-1}=3\cdot 878968833=627834881\mod 1004535809$.

Sample Input 2

2 2 1 0 1

Sample Output 2

753401857

Explanation 2

The following is the graph of $x o x f_{2,2}(x)$

$$I=\int_0^1 x f_{2,2}(x) dx = rac{1}{4}$$
, hence $I=1\cdot 4^{-1}=753401857\mod 1004535809$.

Sample Input 3

42 57 5 490 480 625 34 405 968

Sample Output 3

617014829