Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 919 621 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

- (43) Date of publication: 02.06.1999 Bulletin 1999/22
- (21) Application number: 97908525.5
- (22) Date of filing: 27.03.1997

- (51) Int. Cl.⁶: **C12N 15/54**, C12P 21/02, C12N 9/12, C12N 1/21
- (86) International application number: PCT/JP97/01050
- (87) International publication number: WO 98/03663 (29.01.1998 Gazette 1998/04)
- (84) Designated Contracting States:
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
- (30) Priority: 24.07.1996 US 685625 27.09.1996 JP 256747/96
- (71) Applicant: CHUGAI SEIYAKU KABUSHIKI KAISHA Tokyo 115 (JP)
- (72) Inventors:
 - MATSUMOTO, Kunihiro Nagoya-shi, Aichi 464 (JP)
 - IRIE, Kenji Nagoya-shi, Alchi 466 (JP)
- (74) Representative: HOFFMANN EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)

(54) HUMAN TAKI DNA ENCODING THE SAME

(57) A TGF-β-activated kinase comprising an amino acid sequence from Met at position 1 to Ser at position 579 in the amino acid sequence as set forth set forth in SEQ ID NO: 5, and DNA encoding the kinase.

Description

Technical Field

[0001] The present invention relates to a kinase (transforming growth factor-β (TGF-β) activated kinase 1; TAK1) carrying the signal transduction system of the TGF-β family, said kinase being activated by TGF-β, a method for producing the kinase, and a human gene encoding the kinase. TAK1, also referred to as the activator of MAPK kinase (AMK-1), is an enzyme that is activated by TGF-β and BMP (bone morphogenetic protein) and that phosphorylates and thereby activates the MAPK kinase.

Background Art

[0002] Receptors of the TGF-β superfamily contain Ser/Thr kinase in the intracellular domain and are divided into type I that has a repeated sequence of Gly and Ser (GS box) at the amino-terminal end near the transmembrane domain and type II that does not have the GS box. It is believed, in the case of TGF-β, that it forms a complex with the type I receptor after a ligand has bound to the type II receptor, in which a constitutively phosphorylated kinase of the type II receptor phosphorylates the vicinity of GS box of the type I receptor, thereby activating the type I receptor so that a signal from the above ligand is transmitted into the cell. However, little is known about signaling molecules downstream of this receptor.

[0003] For a eukaryotic budding yeast <u>Saccharomyces cereviceae</u>, it is known, as a signal transduction cascade in which an extracellular mating pheromone causes conjugation, that the mating pheromone activates a G-protein, which in turn activates a MAPKK kinase (MAPKKK) (Ste11), and the activated MAPKKK phosphorylates and activates a MAPK kinase (MAPKK), and then the thus activated MAPKK (Ste7) phosphorylates and activates a MAP kinase (mitogen-activated protein kinase; MAPK), and finally the MAPK activates FUS1 protein to initiate cell conjugation.

5 [0004] As such a MAPKKK, TAK1 (TGF-β activated kinase 1) derived from mouse has been known so far (K. Yamaguchi et al., Science (1995) 270, 2008-2011).

Disclosure of Invention

[0005] The present invention intends to provide a novel factor in the signaling system of the receptor of mammalian TGF-β said factor being located downstream of said receptor and being involved in said signaling system; gene encoding said factor; and a method for producing said factor.

[0006] In efforts to solve the above problems, the applicants of the present invention have succeeded in inserting a human-derived cDNA into a yeast Saccharomyces cereviceae that is deficient in MAPKKK activity (Ssk2/Ssk22, Sho1) in the signal transduction cascade of the above mating pheromone, screening for cDNAs that can complement the activity-deficient MAPKKK, and cloning cDNAs that can complement the activity-deficient MAPKKK, and thereby have accomplished the present invention.

[0007] Thus, the present invention provides a polypeptide having a kinase activity that is activated by transforming growth factor (TGF)-β, said polypeptide comprising an amino acid sequence from Ser at position 23 to Ser at position 579 set forth in SEQ ID NO: 5.

[0008] The present invention also provides a polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Met at position 1 to Ser at position 579 set forth in SEQ ID NO: 5. [0009] The present invention also provides DNA encoding a polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Ser at position 23 to Ser at position 579 set forth in SEQ ID NO: 5.

[0010] The present invention also provides DNA encoding a polypeptide having a kinase activity that is activated by TGF-β, said DNA comprising a nucleic acid sequence from T at position 249 to A at position 1919 set forth in SEQ ID NO: 5.

[0011] The present invention also provides DNA encoding a polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Met at position 1 to Ser at position 579 set forth in SEQ ID NO: 5.

[0012] The present invention also provides DNA encoding a polypeptide having a kinase activity that is activated by .TGF-β, said DNA comprising a nucleic acid sequence from A at position 183 to A at position 1919 set forth in SEQ ID NO: 5.

[0013] The present invention also provides a vector comprising any of the above-mentioned DNAs, a host cell transformed with a vector comprising any of the above-mentioned DNAs, and a method for producing a polypeptide having a kinase activity that is activated by TGF-β, which method comprises culturing a host cell transformed with a vector comprising any of the above-mentioned DNAs and then recovering a product from the culture.

[0014] The present invention also provides a polypeptide having a kinase activity that is activated by TGF-β, said polypeptide being produced by the above method, and a kinase that is activated by TGF-β, said kinase comprising an amino acid sequence from Ser at position 23 to Ser at position 579 set forth in SEQ ID NO: 5.

[0015] The present invention also provides a fusion protein of the above polypeptide, protein and another protein.

Brief Explanation of the Drawings

[0016]

10

15

20

25

30

Fig. 1 shows a yeast expression vector pNV11.

Fig. 2 is a graph showing the effects of TGF-β addition on the expression of various TAK1 genes evaluated using a luciferase gene as a reporter gene.

Fig. 3 is a graph showing the effects of TGF-β and BMP-4 on the activity of a TAK1 gene in MC3T3-E1 cells as measured by an immunoprecipitation method and a coupled kinase method.

Fig. 4 is a graph showing the effects of various concentrations of TGF- β or BMP-4 on TAK1 kinase activity in the cells transfected with the HA-TAK1 gene. TAK1 Δ N shows a result when the cells transfected with the TAK1 Δ N gene were not stimulated by either TGF- β or BMP-4.

Fig. 5 shows a comparison of the base sequence of DNA encoding mouse TAK1 and that of DNA encoding human TAK1.

Fig. 6 shows a comparison of the base sequence of DNA encoding mouse TAK1 and that of DNA encoding human TAK1

Fig. 7 shows a comparison of the base sequence of DNA encoding mouse TAK1 and that of DNA encoding human TAK1.

Fig. 8 shows a comparison of the base sequence of DNA encoding mouse TAK1 and that of DNA encoding human TAK1.

Fig. 9 shows a comparison of the base sequence of DNA encoding mouse TAK1 and that of DNA encoding human TAK1.

Fig. 10 shows a comparison of the amino acid sequence of mouse TAK1 and that of human TAK1.

Fig. 11 shows a comparison of the amino acid sequence of mouse TAK1 and that of human TAK1.

Embodiment for Carrying out the Invention

[0017] In accordance with the present invention, the cloning of the desired gene can be detected by inserting, for example, an expression vector comprising a mammalian cDNA into a yeast that is deficient in the MAPKKK activity and that has a readily detectable reporter gene at the terminal of the cascade, ant then by expressing said reporter gene to detect the introduction of cDNA that complements the deficient MAPKKK activity. Moreover, another yeast can be used that is deficient in Ssk2/Ssk22 and Sho1 activity and that functions, for example, in a high osmotic pressure-signaling system.

[0018] As such a detection system, there can be used a MAPK route that transmits a signal of the mating pheromone in <u>Saccharomyces cereviceae</u> (I. Herskowitz, Cell, Vol. 80, 187 (1995); D.E. Lein et al., Curr. Opin. Cell Biol. Vol. 7, 197 (1995); J. Schulz et al., Curr. Opin. Gene Dev., Vol. 5, 31 (1995)). The normal signal transduction cascade in this system consists of Ste11 kinase, Ste7 kinase, and Fus3/Kss1 kinase, which correspond to MAPKKK, MAPKK, and MAPK, respectively. Ste11, Ste7, and Fus3/Kss1 sequentially act to thereby transmit signals to the transcription factor Ste12, which Ste12 in turn activates the transcription of a mating-specific gene such as FUS1.

[0019] With respect to the screening of cDNA, there can be used a cascade that has a functional mutation of Ste7 (STE7^{P368}) and a deficiency mutation of Ste11 (Ste11 Δ) in the above cascade (K. Irie et al., Science Vol. 265, 1716 (1994)). In this system, it has been confirmed that a mammalian Raf or an activated type of MEKK (Faf Δ N or MEKK Δ N, respectively) complements the deficiency of Ste11 activity in a Ste7^{P368}-dependent manner, when it is monitored by a histidine phenotype (His) imparted by the reporter gene FUS1p::HIS3 corresponding to the mating route. Thus, by introducing the subject cDNA into a yeast having the above mutated cascade and by detecting the histidine phenotype, cDNA that can complement Ste11 Δ (MAKKK deficiency) can be selected.

[0020] As the subject cDNA, there can be used a cDNA library of any mammalian origin. For example, a cDNA expression library from a mouse cell line such as the mouse cell line BAF-B03. This cDNA library can be obtained by cloning cDNA corresponding to poly (A)-RNA from a mouse IL-3-dependent pro-β cell line BAF-B03 under the control of TDH3 promoter of a yeast expression vector pNV11. Another example of the subject cDNA library to be used is a human cell line such as a cDNA expression library from a human cell line Jurkat.

[0021] One positive clone was obtained by screening the above cDNA library using the above screening system. The base sequence of cDNA of this clone and the amino acid sequence encoded by the cDNA correspond to the nucleotide

numbers 223 to 1893 and the amino acid numbers 23 to 579 of SEQ ID NO: 1.

[0022] cDNA libraries from a human cell line can be screened by the above screening system. Alternatively, cDNA libraries from a human cell line can be screened using a mouse cDNA as a probe in the manner described above.

[0023] The cDNA of another positive clone and the amino acid sequence encoded by the cDNA correspond to the nucleotides 249 to 1919 and the amino acids 23 to 579 set forth in SEQ ID NO: 5.

[0024] In order to obtain a longer cDNA (full-length cDNA), the above cDNA libraries were screened using said cDNA as a probe to thereby obtain multiple positive clones. These clones had a 5'-extension of approximately 230 bp to said cDNA, cDNA that contains this 5'-extension was designated as TAK1 cDNA and cDNA that was cloned first and that does not contain this 5'-extension was designated as TAK1 \(\Delta\)NO. The nucleotide sequence of TAK1 cDNA is shown in 1 to 2443 of SEQ ID NO: 1, and the amino acid sequence encoded by the cDNA is shown in the amino acid numbers 1 to 579 of SEQ ID NO: 1. The protein or the polypeptide represented by the amino acid sequence is designated as TAK1 protein or polypeptide. In contrast, the protein or the polypeptide represented by the amino acid sequence encoded by TAK1 \(\Delta\)N CDNA is designated as TAK1 \(\Delta\)N protein or polypeptide. Furthermore, the nucleotide sequence of human TAK1 cDNA is represented by the nucleotides 1 to 2656 and the amino acid sequence encoded by it is represented by the amino acids 1 to 579 of SEQ ID NO: 5.

[0025] The primary sequence of the TAK1 protein suggests that this protein has a protein kinase catalysis domain at the N-terminal end and a C-terminal domain of about 300 amino acid residues. This catalysis domain contains a consensus sequence corresponding to the protein kinase subdomains I to XI (S.K. Hanks et al., Science 241, 42 (1988)). This catalysis domain has an about 30% identity with the amino acid in the Raf-1 (T.I. Bonner et al., Nucleic Acids Res. Vol. 14, 1009 (1986)) and MEKK (C.A. Langer-Carter et al., Science Vol. 260, 315 (1993)). The sequence of the 300 amino acid residues at the C-terminal following the above catalysis domain does not have a conspicuous homology with other proteins.

[0026] TAK1 Δ N cDNA deficient in the codons of 22 amino acids at the N-terminal which has been introduced into a yeast having a ste11 Δ mutation can complement the ste11 Δ mutation (MAPKKK deficiency), but the full-length TAK1 cDNA introduced into a ste11 Δ mutant does not complement the ste11 Δ mutation. It is believed, therefore, that TAK1 kinase is activated by the removal of 22 the amino acids in the N-terminal.

[0027] Thus, the present invention provides DNA encoding a polypeptide comprising an amino acid sequence from Met at position 1 to Ser at position 579 set forth in SEQ ID NO: 5. This DNA includes, as a typical example, DNA encoding a polypeptide comprising an amino acid sequence from the amino acid Ser at position 23 to the amino acid Ser at position 579, and DNA encoding a polypeptide comprising an amino acid sequence from an amino acid Glu at position 30 to an amino acid Asp at position 295. However, the DNA of the present invention is not limited to the above DNAs and may also include DNA encoding a polypeptide comprising an amino acid sequence from any of the amino acids from Met at position 1 to Glu at position 30 to the amino acid Asp at position 295.

[0028] Because it is believed that even from DNA encoding a polypeptide having an extended N-terminal, an active enzyme could be obtained by processing of the polypeptide after expression, and that it will have a similar kinase activity even without regions other than the kinase at the C-terminal.

[0029] The present invention also provides polypeptides or proteins, especially polypeptides or proteins retaining the TAK1 activity, having the amino acid sequences corresponding to the nucleotide sequences of various DNAs mentioned above. As a more specific example, the present invention relates to polypeptides or proteins expressed by introducing various DNAs mentioned above as they are inserted into, for example a vector, especially an expression vector, into host cells such as animal cells or microorganism cells.

[0030] Typically, the polypeptide or the protein of the present invention has an amino acid sequence from any of an amino acid from Met at position 1 (inclusive) to Ser at position 23 (inclusive) to the amino acid Ser at position 579 of SEQ ID NO: 5.

[0031] The present invention also provides a fusion protein of the above polypeptide or protein and another protein. Anther protein that is fused with a polypeptide or a protein having the TAK1 activity may be chosen as appropriate in addition to hemagglutinin mentioned in examples. DNA encoding a fusion protein of a polypeptide or a protein having the TAK1 activity with another protein can be constructed and expressed by the method set forth in Example 4.

[0032] As mentioned earlier, cDNA encoding human TAK1 can be obtained using cDNA encoding mouse TAK1; Examples 5 and 6 describe the isolation of cDNA encoding human TAK1.

[0033] The various DNAs of the present invention mentioned above can be cloned from an animal cell as, for example, cDNA by the method set forth in Example 2. Mutated or modified DNA as compared to the original cDNA can be prepared using the original cDNA as a template in a conventional method such as PCR amplification and site-specific mutagenesis.

[0034] The polypeptides or proteins of the present invention can be obtained by expressing the corresponding DNA in a suitable host cell. As the host cell in this case, there may be used cultured cells of higher eukaryotic cells such as human, monkey, mouse, hamster, and frog cells, for example THP-1 cells, MC3T3-E1 cells, XTC cells, MvILu cells, CHO cells, and COS cells; cultured cells of lower eukaryotic cells including, for example, fungi such as the fungi of

genus <u>Aspergillus</u> such as <u>Aspergillus niger</u>; or yeasts including, for example, the yeasts of genus <u>Saccharomyces</u> such as <u>Saccharomyces</u> cereviceae, and the like. As the host cell, furthermore, prokaryotic cells including, for example, bacteria such as <u>Escherichia coli</u> may be used.

[0035] When the desired DNA is to be expressed in these hosts, an expression-regulating sequence such as a suitable promoter is used depending on the host. In the expression in animal cells, for example, a plasmid containing each of promoters such as pCDM8, pSV, and pEP is used, and in yeast hosts, a plasmid such as pNV11 is used, and in Escherichia coli, a plasmid such as pGEMEX and pUEX is used.

[0036] Transformed hosts nay be cultured in a conventional method. The polypeptides or proteins of the present invention can be produced using a transgenic animal (Glaser, V., SPECTRUM Biotechnology Applications, 1993) and an insect such as silkworm (Maeda, S. et al., Nature (1985) 315, 592-594) as a host. Recovery and/or purification of polypeptides and proteins thus produced may be accomplished by a commonly used method for enzyme purification such as centrifugation, filtration, gel filtration chromatography, and affinity chromatography.

[0037] Kinases activated by TGF- β that carries the signal transduction system of the TGF- β family of the present invention are useful for use in the search of drugs that inhibit or promote signaling of TGF- β and its superfamily known to be involved in various diseases.

Examples

20

[0038] The present invention will now be explained in further details with reference to the following examples.

Example 1. Construction of cDNA library

[0039] cDNA was synthesized from poly(A)-RNA from a mouse IL-3-dependent cell line BAf-BO3 according to a conventional method and was then inserted into a yeast expression vector pNV11 (Ninomiya-Tsuji, J. et al., Proc. Natl. Acad. Sci. U.S.A. 88, 9006-9010 (1991)) shown in Fig. 1 under the control of the TDH3 promoter to construct a cDNA library.

Example 2. Screening of cDNA library

[0040] A cDNA library prepared in Example 1 was screened using <u>Saccharomyces cereviceae</u> SY1984-P (his3 Δ ste11 Δ , FUS1p::HIS3, STE7P368). In this yeast, Ste11 has been mutated and the activity is deficient in the signal transduction system of mating pheromone, and the FUS1 upstream activation sequence has been ligated to the HIS3 open reading frame to form a reporter gene. The yeast strain is deficient in the original his3 and thus it can grow only when exogenous histidine is present in the culture medium or when the mutation-derived deficiency in the Ste11 activity has been complemented.

[0041] S. cerevisiae SY1984-P was transformed with various plasmids. The plasmids used were YCplac22 (vector), pRS314PGKMEKKCT (expresses MEKKΔN (K.J. Blumer et al., Proc. Natl. Acad. Sci. U.S.A. Vol. 91, 4925 (1994) that lacks the N-terminal domain downstream of the PGK1 promoter), and pADU-RafΔN (expresses RafΔN (K.Irie et al., Science Vol. 265 1716 (1994) that lacks the N-terminal domain downstream of the ADH1 promoter). These transformants were plated onto a SC-His plate that lacks histidine and were incubated at 30°C. As a result, the yeast that was transformed with the YCplac22 vector did not grow but the yeast transformed with pRS314PGKMEKKCT or pADU-RafΔN did. This confirmed that the screening system is effective.

[0042] Then the above screening system yeast strain YS1984-P was transformed with the cDNA library constructed in Example 1 and then was screened on an SC-His plate to obtain one positive clone pNV11-HU11. The cDNA of this clone was designated as TAK1ΔN cDNA. The nucleotide sequence of this cDNA was determined by the dideoxy nucleotide chain termination method. The nucleotide sequence corresponds to the sequence of nucleotides 223 to 1893 set forth in SEQ ID NO: 1 and the amino acid sequence encoded by it corresponds to Ser at position 579 of the amino acid sequence set forth in SEQ ID NO: 1.

[0043] Then, in order to clone the full-length cDNA, the above TAK1 Δ N cDNA was radiolabeled and used as a probe to further screen the cDNA library obtained in Example 1. Thus, multiple positive clones were obtained. The cDNA of this clone was subcloned into the EcoRI site of pBS vector (manufactured by Stratagene) to obtain pGS-TAK1-5'. This clone was a full-length clone containing the initiation codon ATG. The cDNA was designated as TAK1 cDNA. The nucleotide sequence thereof is shown set forth in SEQ ID NO: 1. The full-length amino acid sequence of Met at position 1 to Ser at position 579 has been encoded in nucleotides 1 to 2443 in the above sequence.

Example 3. Tissue distribution of TAK1 gene

[0044] Total RNA was extracted from various tissues of mice and was subjected to Northern blotting using the above

radiolabeled TAK1 cDNA as a probe to find that RNA that hybridizes with TAK1 cDNA was expressed in all the tissues or organs tested (spleen, thymus, lung, heart, liver and brain). It was present at high levels in the spleen, thymus, and brain, and at low levels in the lung, heart, and the liver.

5 Example 4. Properties of TAK1 kinase

[0045] In order to study the functions of the kinase activated by TGF-β in mammalian cells, TAK1 cDNA and TAK1ΔN cDNA were inserted into a mammalian expression vector pEF (H. Shibuya et al., Nature Vol. 357, 700 (1992)) under the control of the human elongation factor (EF) promoter to obtain expression plasmids pEF-TAK1 and pEF-TAK1ΔN. The expression plasmids pEF-TAK1 and pEF-TAK1ΔN contain a full-length TAK1 coding sequence and TAK1ΔN coding sequence, respectively, under the control of the EF promoter.

[0046] Thus, 2.3 kb of Xhol fragment of pNV11-HU11 was inserted into a Xhol gap of pBS to obtain pBS-TAK1ΔN. pEF-MSS1 (H. Shibuya et al., Nature Vol. 357, 700 (1992)) was cleaved with EcoRI and Xbal, into which were introduced a synthetic EcoRI-Xhol linker (sense strand: 5'-AATTCGCCACCATGGC-3') (SEQ ID NO: 2); antisense strand: 5'-TCGAGCCATGGTGGCG-3') (SEQ ID NO: 3) (containing the initiation codon ATG), and an Xhol-HindIII fragment and a HindIII-Xbal fragment from pBS-TAK1ΔN to construct pEF-TAK1ΔN. pBS was cleaved with EcoRI and Xhol, into which were inserted an EcoRI-SacI fragment from pBS-TAK1Δ-5' and a SacI-Xhol fragment from pBS-TAK1ΔN to obtain pBS-TAK1 containing the full-length cDNA of TAK1 (TAK1 cDNA). pEF-MSS1 was cleaved with EcoRI and Sall, into which was inserted an EcoRI-SacI fragment from pBS-TAK1 to construct pEF-TAK1.

[0047] E. coli having the plasmid pEF-TAK1 has been internationally deposited under the provisions of the Budapest Treaty as Escherichia coli MC1061/P3 (pEF-TAK1) and E. coli having the plasmid pEF-TAK1\(\Delta\)N as Escherichia coli MC1061/P3 (pEF-TAK1\(\Delta\)N) on September 29, 1995 with the National Institute of Bioscience and Human Technology, the Agency of Industrial Science and Technology, of 1-3, Higashi 1-chome, Tsukuba city, Ibalaki pref., Japan, as FERM BP-5246 and FERM BP-5245, respectively.

25 [0048] The TAK1 gene contained in the plasmid pEF-TAK1 can be excised using an appropriate restriction enzyme such as EcoRI and BamHI.

[0049] A study of the effects of TAK1 on the induction of gene expression by various ligands has revealed that TAK1 has an effect on gene induction by TGF-β. An initial cellular response to TGF-β induces an elevation in the mRNA level of plasminogen activator inhibitor 1 (PAI-1) (M.R. Keeton et al., J. Biol. Chem. Vol. 266, 23048 (1991)).

[0050] In order to study the effects of TAK1 on TGF-β response, TGF-β reporter plasmid p800neoLUC containing a luciferase gene regulated by the PAI-1 promoter induced by TGF-β (M. Abe et al., Analyt. Biochem., Vol. 216, 276 (1994)) was transiently transfected to MvILu lung epithelial cells by the calcium phosphate method (H. Shibuya et al., Nature Vol. 357, 700 (1992)). In this method of measurement, the luciferase activity induced by TGF-β can be measured by the transfection of p800neoLUC onto the MvILu lung epithelial cells. The MvILu cells transiently transfected by p800neoLUC responded to TGF-β with a 4- to 5-fold enhanced reporter gene activity. This result is shown in the vector section of Fig. 2.

[0051] The previously constructed TAK1 or TAK1 Δ N expression plasmid was transiently transfected into MvILu cells. Expression of TAK1 slightly enhanced the expression of TGF- β -derived genes and TAK1 Δ N constitutively activated the expression of the PAI-1 gene (the section of TAK1 Δ N of Fig. 2). The level of constitutive expression of a reporter gene by TAK1 Δ N is equal to that in a transfectant treated with TGF- β . Thus, the activated TAK1 (i.e. TAK1 Δ N) can transfer signals in the absence of TGF- β . Furthermore, when TGF- β was added to a TAK1 Δ N transfectant, the expression of the PAI-1 gene was further enhanced.

[0052] In Fig. 2, the open bars represent a case in which no induction of TGF-β was conducted, and the shaded bars represent a case in which the induction of TGF-β was conducted. In the above experiment, cells after transfection were cultured for 20 hours in the presence or absence of human TGF-β1 (30 ng/ml) to prepare an extract from the cells, and luciferase was measured as described in H. Shibuya et al., Mol. Cell. Biol. Vol. 14, 5812 (1994). In the graph of Fig. 2, relative luciferase activities of cells transformed by a vector (containing no TAK1 gene) are shown with the luciferase activity in the absence of TGF-β1 induction being set as 1. The results of bar graphs represent the mean of results of triplicate runs per experiment.

[0053] In order to confirm that the above results are mediated by the kinase activity of TAK1, a catalytically inactive TAK1ΔN-K63W was constructed. This was carried out by site-directed mutagenesis using PCR. In this vector, lysine at position 63 in the ATP binding site has been replaced with tryptophan. The mutation is expected to inactivate the kinase activity and signaling activity of TAK1ΔN. When TAK1ΔN-K63W is co-transfected with p800neoLUC, the ability of constitutively stimulating the expression of the PAI-1 gene was lost (Fig. 2). These results suggest that the kinase activity of TAK1ΔN is required for the TGF-β-independent expression of PAI-1 gene. Furthermore, a kinase-negative TAK1ΔN caused the partial reduction of TGF-β-induced expression. These results suggest that TAK1 may act as a mediator of a TGF-β-mediated route of signal transduction.

[0054] In order to obtain direct evidence that TAK1 functions in the TGF-β-mediated route of signal transduction, it

was determined whether the treatment of cells with TGF-β could activate the kinase activity of TAK1. For the identification of an appropriate foreign substrate, an in vitro kinase reaction was conducted for TAK1 that was immunoprecipitated from yeast cells expressing TAK1 labeled with a hemagglutinin (HA) epitope (TAK1-HA) (a DNA sequence encoding an epitope recognized by anti-HA monoclonal antibody 12CA5 was ligated by PCR reaction to the 3'-terminal frame of DNA encoding TAK1).

[0055] The results of the immune complex kinase determination indicate that the activated form of TAK1 can phosphorylate and activate the XMEK2/SEK1 subfamily of MAPKK (B.M. Yasher et al., Nature Vol. 372, 794 (1994)). On the other hand, the phosphorylation of the original MAPKK-MEK1 (E. Nishida et al., Trends Biochem. Sci., 128 (1993); K.J. Blumer et al., ibid Vol. 19, 286 (1994); R.J. Davis, ibid Vol. 19, 470 (1990); C.L. Marchall, Cell, Vol. 80, 179 (1995)), histone and myelin basic protein was not detected. Thus, TAK1 kinase activity can be measured for its ability of activating

[0056] Constructs for the expression of HA epitope-labeled TAK1 (HA-TAK1) were made in the following manner. A synthetic oligonucleotide encoding an HA epitope Tyr-Pro-Tyr-Asp-Val-Pro-Asp-Tyr-Ala (SEQ ID NO: 4) that is recognized by a monoclonal antibody 12CA5 was cloned into a Sall site (+3 position from the ATG codon) and an EcoRI site of pBS-TAK1 to construct pBS-HA-TAK1. pEF-MSS1 was cleaved with EcoRI and Sall, to which was inserted an EcoRI-Xhol fragment from pBS-HA-TAK1 to construct pEF-HA-TAK1.

[0057] In order to construct pBS-HA-TAK1 Δ N, pNV11-HU11 was digested with XhoI and HindIII. The fragment obtained was isolated and inserted into a HincII-HindIII site of pBS-HA-TAK1. pEF-MSS1 was deaved with EcoRI and Sall, into which was inserted a PstI-XhoI fragment from pBS-HA-TAK1 Δ H to construct pBS-HA-TAK1 Δ N. Both of these constructs have two copies of the N-terminal HA epitope expressed from the EF promoter.

[0058] These constructs pEF-HA-TAK1 or pEF-HA-TAK1ΔH were transiently transfected to the MC3T3-E1 mouse osteoblast (S. Ohta et al., FEBS Lett. Vol. 314, 356 (1992)). After stimulation by TGF-β1, the expressed HA-TAK1 was isolated by immunoprecipitation, and its activity was measured by the coupled kinase assay (S. Matsuda et al., J. Biol. Chem. Vol. 270, 12969 (1995)).

[0059] Thus, the transfected cells were treated with TGF-β1 (20 ng/ml) or BMP-4 (100 ng/ml) for 0 minute (untreated) to 30 minutes. The cells were scraped into a buffer solution (S. Matsuda et al., J. Biol. Chem. Vol. 270, 12781 (1995); T. Moriguchi et al., J. Biol. Chem. Vol. 270, 12969 (1995)), and the cellular extract was centrifuged at 15,000 x g for 10 minutes. The supernatant thus obtained was subjected to immunoprecipitation by anti-HA antibody. Thus, 300 μl aliquots of the above supernatant were mixed with 20 μl of antibody or 20 μl of protein A Sepharose, and the immune complex was washed twice with PBS, which was then used for kinase measurement (S. Matsuda et al., J. Biol. Chem. Vol. 270, 12781 (1995); T. Moriguchi et al., J. Biol. Chem. Vol. 270, 12969 (1995)).

[0060] Activity was expressed as an incremental multiple relative to the HA-TAK1 activity of non-stimulated cells. The activity of immunoprecipitated TAK1 was measured by its ability of activating recombinant XMEX2/SEK1 (S. Matsuda et al., J. Biol. Chem. Vol. 270, 12781 (1995); T. Moriguchi et al., J. Biol. Chem. Vol. 270, 12781 (1995)).

[0061] It has already been confirmed that HA-TAK1 does not directly phosphorylate KN-p38/MPK2. In accordance with the immunoblotting of each immunoprecipitate by anti-HA antibody, almost identical amounts of HA-TAK1 were recovered at each point of immunoprecipitation.

[0062] The result of the above experiment indicated that TAK1 kinase activity started to rise within five minutes after stimulation by TGF-β, reached a peak at 10 minutes, and returned to an almost baseline level within 30 minutes (Fig. 3). Moreover, TGF-β1 stimulated TAK1 kinase activity in a dose-dependent manner (Fig. 4). Then, it was determined whether TAK1 could be activated by BMP, a member of the TGF-β superfamily (A.H. Reddi et al., Curr. Opin. Genet. Dev. Vol. 4, 737 (1994)), or epithelial growht factor (EGF). Interestingly, BMP-4 also activated TAK1 kinase in a time-and dose-dependent manner (Fig. 4).

[0063] On the other hand, the activation of TAK1 was not observed in the cells treated with EGF. It is believed that the lack of TAK1 induction by EGF is not because MC3T3-E1 cells do not respond to EGF but because EGF signals are not mediated by TAK1. This is also apparent from the fact that EGF induces the expression of fos in MC3T3-E1 cells. Taken together, these data indicate that TAK1 is activated by the TGF-β superfamily.

[0064] TAK1ΔN can activate the expression of PAI-1 gene independently of TGF-β (Fig. 2), which suggests that TAK1ΔN protein has an enhanced kinase activity even in the absence of TGF-β treatment in the cell. In order to study this possibility, TAK1ΔN labeled with the HA epitope (HA-TAK1ΔN) (see above) was transiently transfected to MC3T3-E1 cells, and the activity of TAK1ΔN was determined by the immunocomplex kinase measurement. Thus, MC3T3-E1 cells were transfected by pEF-HA-TAK1ΔN, and from the transfected cells HA-TAK1ΔN was immunoprecipitated as described above and its activity was measured.

[0065] All the data are expressed as an incremental multiple from the HA-TAK1 activity of non-stimulated cells.

[0066] As shown in Fig. 4, TAK1\(\Delta\)N protein has a considerably higher inherent kinase activity supporting the hypothesis that the TAK1\(\Delta\)N lacking the 22 amino acid residues at the N-terminal are constitutively active.

Example 5. Construction of cDNA library

[0067] From human T-cell cell line Jurkat cells, poly(A)RNA was prepared and cDNA was synthesized in a conventional method. This was inserted into a yeast expression vector pNV7 (Ninomiya-Tsuji, J. et al., Proc. Natl. Acad. Sci. U.S.A. 88, 9006-9010 (1991)) downstream of TDH3 promoter to construct a cDNA library.

Example 6, Screening of cDNA library

[0068] A mutant Saccharomyces cereviceae lacking the activity of Ssk2/Ssk22 and Sho1 that act in the signal transduction system of high osmotic pressure stress can grow in the YEPD medium (Yeast extract 10 g/l, tryptone 20 g/l, glucose 20 g/l), but not in a medium with 1M sorbitol added thereto (T. Maeda et al., Science, 269, 554 (1995)). Therefore, by introducing cDNA into this mutant followed by screening, a cDNA that can complement the deficient Ssk2/Ssk22 activity can be isolated.

[0069] In fact, a Saccharomyces cereviceae strain deficient in the Ssk2/Ssk22 and Sho1 activity described in the above reference (ssk2Δ, ssk22Δ, sho1Δ) was transformed with pNV11-HU11 (mouse TAK1ΔN) obtained in Example 2. The transformant was plated to the YEPD plate containing 1M sorbitol and was incubated at 30°C for 30 minutes. As a result, the yeast transformed with pNV11-HU11 grew even under a high osmotic pressure stress. This confirmed that the screening system is effective.

[0070] Then, this Saccharomyces cereviceae strain (ssk2A, ssk22A, sho1A) was transformed with the cDNA library constructed in Example 5, and was screened under a high osmotic pressure stress (incubated at 30°C in a YEPD medium containing 1M sorbitol). As a result, one positive clone pNV7-hTAK1 was obtained. cDNA contained in this clone was amplified using the PRISM Dye Terminator Cycle Sequencing kit (manufactured by Perkin Elmer) and the base sequence thereof was determined. The base sequence and the corresponding amino acid sequence were as set forth in SEQ ID NO: 5. The base sequence of this cDNA had a 92% homology with that of mouse TAK1, and the amino acid sequence encoded by the cDNA had a 99% homology with that of mouse TAK1. Comparisons of the base sequence of mouse TAK1 and human TAK1 are shown in Fig. 5 through Fig. 9, and those of the amino acid sequence are shown in Fig. 10 and Fig. 11.

[0071] Human TAK1 cDNA was subcloned into pUC19 that had been digested with Sall to obtain a plasmid phTAK1 containing the full-length cDNA of human TAK1. E. coli having the plasmid phTAK1 was internationally designated as Escherichia coli JM109 (phTAK1) under the provisions of the Budapest Treaty on July 19, 1996 with the National Institute of Bioscience and Human Technology, the Agency of Industrial Science and Technology, of 1-3, Higashi 1-chome, Tsukuba city, Ibalaki pref., Japan, as FERM BP-5598.

Deposit of microorganisms

[0072] The following microorganisms were deposited with the Patent Microorganism Depository in the National Institute of Bioscience and Human Technology, the Agency of Industrial Science and Technology, of 1-3, Higashi 1-chome, Tsukuba city, Ibalaki pref., Japan, and were assigned the following accession numbers:

Organism: Escherichia coli MC1061/P3 (pEF-TAK1)

Date deposited: September 28, 1995 Accession number: FERM BP-5246

Organism: Escherichia coli MC1061/P3 (pEF-TAK1AN)

Date deposited: Septerber 28, 1995 Accession number: FERM BP-5245

Organism: Escherichia coli JM109 (phTAK1)

Date deposited: July 19, 1996 Accession number: FERM BP-5598

55

50

35

40 .

SEQUENCE LISTINGS

5	SEQ ID NO): 1	· -			-
	Sequence	Length:	2443			
10	Sequence	Type: Nuc	cleic acid			
	Strandedn	ness: Sin	gle			
15	Topology:	Linear	•		·	·
	Molecular	Type: cl	ONA			
	Sequence					,
20	GAATTCGGC	CA CGAGGAGGA	G CCGAAGCCG	GACTCGGCGG	TGGCCCGGGT CG	GTCCCGCG 60
	CCACGGAGG	ce cceeeceec	G GGCTGCGGG	CTCCGGGCTG	AAGGGCGCTG CG	CGAGCCGG 120
25	AGGGCGGG	ce ceeccccc	G GGCGCCGCGG	GGGATC ATG	TCG ACA GCC T	CCC GCC 174
				Met	Ser Thr Ala S	er Ala
				1		5
30					ATG ATC GAA G	
	Ala Ser S	Ser Ser Ser	Ser Ser Ser	Ala Ser Glu	Met Ile Glu A	la Pro
35		10		15	20	
					AAG GAG ATC G	
40	Ser Gln V			Ile Asp Tyr	Lys Glu Ile G	lu Val
		25	30		35	
					GTT TGC AAA G	
45		al val Gly		Phe Gly Val	Val Cys Lys A	.la Lys
	40	CA AAA CAT (45 CTC CCT ATT	444 C4C 4M4	50	10T 040 266
50					GAA AGT GAG T	
	55	rra nas web	60		Glu Ser Glu S	er Glu 70
	J.J			65		70

	AGG	AAG	GCT	TTC	ATT	GTG	GAG	CTC	CGG	CAG	TTG	TCG	CGT	GTG	AAC	CAT	414
5.	Arg	Lys	Ala	Phe	Ile	Val	G1u	Leu	Arg	Gln	Leu	Ser	Arg	Val	Asn	His	
•					75					80					85		
	CCT	AAC	ATT	GTC	AAG	TTG	TAC	GGA	GCC	TGC	CTG	AAT	CCA	GTA	TGT	CTT	462
10	Pro	Asn	Ile	Val	Lys	Leu	Tyr	Gly	Ala	Cys	Leu	Asn	Pro	Val	Cys	Leu	
				90					95					100			
15	GTG	ATG	GAA	TAT	GCA	GAG	GGG	GGC	TCA	TTG	TAT	AAT	GTG	CTG	CAT	GGT	510
15	Val	Met	Glu	Tyr	Ala	Glu	Gly	Gly	Ser	Leu	Tyr	Asn	Val	Leu	His	Gly	
	-		105					110					115			•	
20	GCT	GAA	CCA	TTG	CCT	TAC	TAC	ACT	GCT	GCT	CAT	GCC	ATG	AGC	TGG	TGT	558
	Ala	Glu	Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	
		120					125					130					
?5	TTA	CAG	TGT	TCC	CAA	GGA	GTG	GCT	TAC	CTG	CAC	AGC	ATG	CAG	ccc	AAA	606
	Leu	Gln	Cys	Ser	Gln	Gly	Val	Ala	Tyr	Leu	His	Ser	Met	Gln	Pro	Lys	
30	135					140					145					150	
	GCG	CTG	ATT	CAC	AGG	GAC	CTC	AAG	CCT	CCA	AAC	TTG	CTG	CTG	GTT	GCA	654
	Ala	Leu	Ile	His	Arg	Asp	Leu	Lys	Pro	Pro	Asn	Leu	Leu	Leu	Val	Ala	
35					155					160					165		
	GGA	GGG	ACA	GTT	CTA	AAA	ATC	TGC	GAT	TTT	GGT	ACA	GCT	TGT	GAC	ATC	702
4 0	Gly	Gly	Thr	Val	Leu	Lys	Ile	Cys	Asp	Phe	Gly	Thr	Ala	Cys	Asp	Ile	
				170					175					180			
	CAA	ACA	CAC	ATG	ACC	AAT	AAT	AAA	GGG	AGT	GCT	GCT	TGG	ATG	GCG	CCT	750
4 5	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	Ser	Ala	Ala	Trp	Met	Ala	Pro	
			185					190					195				
	GAA	GTG	TTT	GAA	GGT	AGC	TAA	TAC	AGT	GAA	AAG	TGT	GAT	GTC	TTC	AGC	798
50	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu	Lys	Cys	Asp	Val	Phe	Ser	
		200					205					210					

	TGG	GGT	ATT	ATC	CTC	TGG	GAA	GTG	ATA	ACA	CGC	CGG	AAA	ccc	TTC	GAT	846
<i>5</i>	Trp	Gly	Ile	Ile	Leu	Trp	Glu	Val	Ile	Thr	Arg	Arg	Lys	Pro	Phe	Asp	
	215					220					225					230	
	GAG	ATC	GGT	GGC	CCA	GCT	TTC	AGA	ATC	ATG	TGG	GCT	GTT	CAT	AAT	GGC	894
10	Glu	Ile	G1y	G1y	Pro	Ala	Phe	Arg	Ile	Met	Trp	Ala	Val	His	Asn	Gly	
					235					240					245		
	ACT	CGA	CCA	CCA	CTG	ATC	AAA	AAT	TTA	CCT	AAG	ССС	ATT	GAG	AGC	TTG	942
15	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu	Pro	Lys	Pro	Ile	Glu	Ser	Leu ,	
				250					255					260			
20	ATG	ACA	CGC	TGT	TGG	TCT	AAG	GAC	CCA	TCT	CAG	CGC	ССТ	TCA	ATG	GAG	990
	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	Pro	Ser	Gln	Arg	Pro	Ser	Met	Glu	
			265					270					275				
25	GAA	ATT	GTG	AAA	ATA	ATG	ACT	CAC	TTG	ATG	CGG	TAC	TTC	CCA	GGA	GCG	1038
	Glu	Ile	Val	Lys	Ile	Met	Thr	His	Leu	Met	Arg	Tyr	Phe	Pro	G1y	Ala	
<i>30</i>		280					285					290					
	GAT	GAG	CCA	TTA	CAG	TAT	CCT	TGT	CAG	TAC	TCT	GAT	GAA	GGG	CAG	AGC	1086
	Asp	Glu	Pro	Leu	Gln	Tyr	Pro	Cys	G1n	Tyr	Ser	Asp	Glu	Gly	Gln	Ser	
35	295					300					305					310	
	AAC	TCA	GCC	ACC	AGC	ACA	GGC	TCG	TTC	ATG	GAC	ATT	GCT	TCT	ACA	AAT	1134
40	Asn	Ser	Ala	Thr	Ser	Thr	Gly	Ser	Phe	Met	Asp	Ile	Ala	Ser	Thr	Asn	
					315					320					325		
	ACC	AGT	AAT	AAA	AGT	GAC	ACA	AAT	ATG	GAA	CAG	GTT	ССТ	GCC	ACA	AAC	1182
45	Thr	Ser	Asn	Lys	Ser	Asp	Thr	Asn	Met	Glu	Gln	Val	Pro	Ala	Thr	Asn	
				330					335					340			
	GAC	ACT	ATT	AAA	CGC	TTG	GAG	TCA	AAA	CTG	TTG	AAA	AAC	CAG	GCA	AAG	1230
50	Asp	Thr	Ile	Lys	Arg	Leu	Glu	Ser	Lys	Leu	Leu	Lys	Asn	Gln	Ala	Lys	
			345					350					355				

	CAA	CAG	AGT	GAA	TCT	GGA	CGC	CTG	AGC	TTG	GGA	GCC	TCT	CGT	GGG	AGC	1278	
_	Gln	Gln	Ser	Glu	Ser	Gly	Arg	Leu	Ser	Leu	Gly	Ala	Ser	Arg	Gly	Ser		
5		360					365		-			370			•			
	AGT	GTG	GAG	AGC	TTG	ccc	ссс	ACT	TCC	GAG	GGC	AAG	AGG	ATG	AGT	GCT	1326	
10	Ser	Val	Glu	Ser	Leu	Pro	Pro	Thr	Ser	Glu	Gly	Lys	Arg	Met	Ser	Ala		
	375					380					385					390		
	GAC	ATG	TCT	GAA	ATA	GAA	GCC	AGG	ATC	GTG	GCG	ACT	GCA	GGT	AAC	GGG	1374	
15	Авр	Met	Ser	Glu	Ile	Glu	Ala	Arg	Ile	Val	Ala	Thr	Ala	Gly	Asn	Gly		
					395					400					405			
20	CAA	CCA	AGG	CGT	AGA	TCC	ATC	CAA	GAC	TTG	ACT	GTT	ACT	GGG	ACA	GAA	1422	
	Gln	Pro	Arg	Arg	Arg	Ser	Ile	Gln	Asp	Leu	Thr	Val	Thr	Gly	Thr	Glu		
				410					415					420				
25	CCT	GGT	CAG	GTG	AGC	AGC	CGG	TCA	TCC	AGC	CCT	AGT	GTC	AGA	ATG	ATC	1470	
	Pro	Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	Ser	Pro	Ser	Val	Arg	Met	Ile		
20			425				•	430					435					
30	ACT	ACC	TCA	GGA	CCA	ACC	TCA	GAG	AAG	CCA	GCT	CGC	AGT	CAC	CCA	TGG	1518	
	Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	Pro	Ala	Arg	Ser	His	Pro	Trp		
35		440					445					450						
	ACC	CCT	GAT	GAT	TCC	ACA	GAC	ACC	AAT	GGC	TCA	GAT	AAC	TCC	ATC	CCA	1566	
	Thr	Pro	Asp	Asp	Ser	Thr	Asp	Thr	Asn	Gly	Ser	Asp	Asn	Ser	Ile	Pro		
40	455					460	,				465					470		
	ATG	GCG	TAT	CTT	ACA	CTG	GAT	CAC	CAG	CTA	CAG	CCT	CTA	GCG	CCG	TGC	1614	
45	Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	Leu	Gln	Pro	Leu	Ala	Pro	Cys		
					475					480					485			
	CCA	AAC	TCC	AAA	GAA	TCC	ATG	GCA	GTG	TTC	GAA	CAG	CAC	TGT	AAA	ATG	1662	
50	Pro	Asn	Ser		Glu	Ser	Met	Ala	Val	Phe	Glu	Gln	His	Cys	Lys	Met		
				490					1.05					SOO				

	GCA CAG GAG TAT ATG AAA GTT CAA ACC GAA ATC GCA TTG TTA CTA CAG 1710)
5	Ala Gln Glu Tyr Met Lys Val Gln Thr Glu Ile Ala Leu Leu Gln	
3	505 510 515	
	AGA AAG CAA GAA CTA GTT GCA GAA TTG GAC CAG GAT GAA AAG GAC CAG 1758	3
10	Arg Lys Gln Glu Leu Val Ala Glu Leu Asp Gln Asp Glu Lys Asp Gln	
	520 525 530	
	CAA AAT ACA TCT CGT CTG GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA 1806	j
15	Gln Asn Thr Ser Arg Leu Val Gln Glu His Lys Lys Leu Leu Asp Glu	
	535 540 545 550	
20	AAC AAA AGC CTT TCT ACT TAT TAC CAG CAA TGC AAA AAA CAA CTA GAG 1854	j
	Asn Lys Ser Leu Ser Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu	
	555 560 565	
25	GTC ATC AGA AGC CAA CAG CAG AAA CGA CAA GGC ACT TCA TGATTCTCTG 1903	ı
	Val Ile Arg Ser Gln Gln Gln Lys Arg Gln Gly Thr Ser	
00	570 575	
30	GGACCGTTAC GTTTTAAAAT ATGCAAAGAC CTTTTTTTAA GAGAAGACAA ACCATTATAA 1963	
	CAGTTCATGA GTGTTAGCTT TTTGGCGTGT TCTGAATGCC AAATGCCTCT CTTTGCTGCA 2023	
35	TTTGTTATGT CAGTTACCTT TCTTCTTATG GTGGATATAA AATCCACTGT CGTGTTGCAG 2083	
	CAGATGATGG CACCTGTGGC TTGGGAAGGC GAGSGTGCTC AGCTTCAGGG GCACATGAAG 2143	
	TGAACCTGGC TGTATGTGCA TGCTCCTGGA GTGAGCTACC TAACAGGAGG GGGTAGCACA 2203	
40	CTGGCTACTG TGTGCAGGCA TCATCCTTTC TCTGTAGTAA AAGGTGGGAC CTCAAGAATT 2263	
	TTCTTCAAAG TGCTCATCTC AAAAATCTGA TTTTTTTCCC AGTAGATGGT ATGCTCCAAT 2323	
45	GTAAAGACAG AGTATTAAAA TAACTTGTGG TACATTACAG AGGGACAGAA TGTTGAGGCT 2384	
	GAGTTCAAAG ACAGGGTTTG TGCCAACACA TCCTGGCTTT AGAGCACAAT GGATCTCGAG 2443	
•	SEQ ID NO: 2	
50	Sequence Length: 16	
	Sequence Type: Nucleic acid	

Strandedness: Single

55

-	Topology: Linear	
<i>5</i>	Molecular Type: Synthetic DNA	
	Sequence	
10	AATTCGCCAC CATGGC	16
	SEQ ID NO: 3	
	Sequence Length: 16	
15	Sequence Type: Nucleic acid	
	Strandedness: Single	
20	Topology: Linear	
	Molecular Type: Synthetic DNA	
	Sequence	
25	TCGAGCCATG GTGGCG	16
	SEQ ID NO: 4	
30	Sequence Length: 27	
30	Sequence Type: Amino acid	
	Topology: Linear	
35	Molecular Type: Peptide	
	Sequence	
	Tyr Pro Tyr Asp Val Pro Asp Tyr Ala	
40	1 5	
	SEQ ID NO: 5	
45	Sequence Length: 2656	
	Sequence Type: Nucleic acid	
	Strandedness: Single	
50	Topology: Linear	
	Molecular Type: cDNA	

Sequence

	GTC	GAGA	ATCC	ATTO	STGCT	CT A	AAAGA	CGGC	T GT	GGCC	GCTG	CCI	CTAC	ccc	CGCC	ACGGA	60
5	CGC	CGGG	TAG	TAG	SACTG	CG C	CGGC	CCAC	G CT	GAGG	GTCG	GTC	CGGA	GGC	GGGT	eeece	120
	GGG	TCTC	ACC	CGGA	TTGT	CC G	GGTG	GCAC	C GT	тссс	GGCC	CCA	CCGG	GCG	cccc	GAGGGA	180
10	TC	ATG	TCT	ACA	GCC	TCT	GCC	GCC	TCC	TCC	TCC	TCC	TCG	тст	TCG	GCC	227
		Met	Ser	Thr	Ala	Ser	Ala	Ala	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ala	
15		1				5					10					15	
15	GGT	GAG	ATG	ATC	GAA	GCC	сст	тсс	CAG	GTC	CTC	AAC	TTT	GAA	GAG	ATC	275
	Gly	Glu	Met	Ile	Glu	Ala	Pro	Ser	Gln	Val	Leu	Asn	Phe	Glu	Glu	Ile	
20					20					25					30		
	GAC	TAC	AAG	GAG	ATC	GAG	GTG	GAA	GAG	GTT	GTT	GGA	AGA	GGA	GCC	TTT	323
25	Asp	Tyr	Lys	Glu	Ile	Glu	Val	Glu	Glu	Val	Val	Gly	Arg	Gly	Ala	Phe	
				3.5	i				40					45			
	GGA	GTT	GTT	TGC	AAA	GCT	AAG	TGG	AGA	GCA	AAA	GAT	GTT	GCT	ATT	AAA	371
30	Gly	Val	Val	Cys	Lys	Ala	Lys	Trp	Arg	Ala	Lys	Asp	Val	Ala	Ile	Lys	
			50					55					60				
35	CAA	ATA	GAA	AGT	GAA	TCT	GAG	AGG	AAA	GCG	TTT	ATT	GTA	GAG	CTT	CGG	419
	Gln	Ile	G1u	Ser	Glu	Ser	G1u	Arg	Lys	Ala	Phe	Ile	Val	Glu	Leu	Arg	
		65					70					75					
40					GTG												467
	Gln	Leu	Ser	Arg	Val	Asn	His	Pro	Asn	Ile	Val	Lys	Leu	Tyr	G1y	Ala	
45	80					85					90					95	
					GTG												515
	Cys	Leu	Asn	Pro	Val	Cys	Leu	Val	Met	Glu	Tyr	Ala	Glu	Gly	Gly	Ser	
50					100					105					110		

	TTA	TAT	AAT	GTG	CTG	CAT	GGT	GCT	GAA	CCA	TTG	CCA	TAT	TAT	ACT	GCT	563
_	Leu	Tyr	Asn	V al	Leu	His	Gly	Ala	Glu	Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	
5	-			115					120			-	-	125			
	GCC	CAC	GCA	ATG	AGT	TGG	TGT	TTA	CAG	TGT	TCC	CAA	GGA	GTG	GCT	TAT	611
10	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	Gln	Cys	Ser	Gln	Gly	Val	Ala	Tyr	
			130					135					140				
	СТТ	CAC	AGC	ATG	CAA	ccc	AAA	GCG	CTA	ATT	CAC	AGG	GAC	CTG	AAA	CCA	659
15	Leu	His	Ser	Met	Gln	Pro	Lys	Ala	Leu	Ile	His	Arg	Asp	Leu	Lys	Pro	
		145					150					155					
20	CCA	AAC	TTA	CTG	CTG	GTT	GCA	GGG	GGG	ACA	GTT	CTA	AAA	ATT	TGT	GAT	707
	Pro	Asn	Leu	Leu	Leu	Val	Ala	Gly	Gly	Thr	Val	Leu	Lys	Ile	Cys	Asp	
	160					165					170					175	
25	TTT	GGT	ACA	GCC	TGT	GAC	ATT	CAG	ACA	CAC	ATG	ACC	AAT	AAC	AAG	GGG	755
	Phe	Gly	Thr	Ala	Cys	Asp	Ile	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	
					180					185					190		
30 .	AGT	GCT	GCT	TGG	ATG	GCA	CCT	GAA	GTT	TTT	GAA	GGT	AGT	AAT	TAC	AGT	803
	Ser	Ala	Ala	Trp	Met	Ala	Pro	G1u	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	
35				195					200					205			
	GAA	AAA	TGT	GAC	GTC	TTC	AGC	TGG	GGT	ATT	ATT	CTT	TGG	GAA	GTG	ATA	851
	Glu	Lys	Cys	Asp	Val	Phe	Ser	Trp	G1y	Ile	Ile	Leu	Trp	Glu	Val	Ile	
40			210					215					220				
	ACG	CGT	CGG	AAA	CCC	TTT	GAT	GAG	ATT	GGT	GGC	CCA	GCT	TTC	CGA	ATC	899
45	Thr	Arg	Arg	Lys	Pro	Phe	Asp	G1u	Ile	Gly	Gly	Pro	Ala	Phe	Arg	Ile	
40		225					230					235					
	ATG	TGG	GCT	GTT	CAT	AAT	GGT	ACT	CGA	CCA	CCA	CTG	ATA	AAA	TAA	TTA	947
50	Met	Trp	Ala	Val	His	Asn	Gly	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu	
	240	•				245					250					255	

	CCT	AAG	ссс	ATT	GAG	AGC	CTG	ATG	ACT	CGT	TGT	TGG	TCT	AAA	GAT	CCT	995
_	Pro	Lys	Pro	Ile	Glu	Ser	Leu	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	Pro	
· 5			-		260	= :	=			265	= :		-	-	270		-
	TCC	CAG	CGC	ССТ	TCA	ATG	GAG	GAA	ATT	GTG	AAA	ATA	ATG	ACT	CAC	TTG	1043
10	Ser	Gln	Arg	Pro	Ser	Me t	Glu	Glu	Ile	Va1	Lys	Ile	Met	Thr	His	Leu	
				275					280					285			
	ATG	CGG	TAC	TTT	CCA	GGA	GCA	GAT	GAG	CCA	TTA	CAG	TAT	CCT	TGT	CAG	1091
15	Met	Arg	Tyr	Phe	Pro	G1y	Ala	Asp	Glu	Pro	Leu	Gln	Tyr	Pro	Cys	Gĺn	
			290					295					300				
20	TAT	TCA	GAT	GAA	GGA	CAG	AGC	AAC	TCT	GCC	ACC	AGT	ACA	GGC	TCA	TTC	1139
	Tyr	Ser	Asp	Glu	Gly	Gln	Ser	Asn	Ser	Ala	Thr	Ser	Thr	Gly	Ser	Phe	
		305					310					315					
25	ATG	GAC	ATT	GCT	TCT	ACA	AAT	ACG	AGT	AAC	AAA	AGT	GAC	ACT	AAT	ATG	1187
	Met	Asp	Ile	Ala	Ser	Thr	Asn	Thr	Ser	Asn	Lys	Ser	Asp	Thr	Asn	Met	
30	320					325					330					335	
30	GAG	CAA	GTT	ССТ	GCC	ACA	AAT	GAT	ACT	ATT	AAG	CGC	TTA	GAA	TCA	AAA	1235
	Glu	Gln	Val	Pro	Ala	Thr	Asn	Asp	Thr	Ile	Lys	Arg	Leu	Glu	Ser	Lys	
35					340					345					350		
	TTG	T T G	AAA	AAT	CAG	GCA	AAG	CAA	CAG	AGT	GAA	TCT	GGA	CGT	TTA	AGC	1283
	Leu	Leu	Lys	Asn	Gln	Ala	Lys	Gln	Gln	Ser	Glu	Ser	Gly	Arg	Leu	Ser	
40				355					360					365			
	TTG	GGA	GCC	TCC	CAT	GGG	AGC	AGT	GTG	GAG	AGC	TTG	ccc	CCA	ACC	TCT	1331
45	Leu	Gly	Ala	Ser	His	Gly	Ser	Ser	Val	Glu	Ser	Leu	Pro	Pro	Thr	Ser	
			370					375					380		,		
	GAG	GGC	AAG	AGG	ATG	AGT	GCT	GAC	ATG	TCT	GAA	ATA	GAA	GCT	AGG	ATC	1379
50	Glu	G1y	Lys	Arg	Met	Ser	Ala	Asp	Met	Ser	Glu	Ile	G1u	A1a	Arg	Ile	
		385					390					395					

	GCC	GCA	ACC	ACA	GGC	AAC	GGA	CAG	CCA	AGA	CGT	AGA	TCC	ATC	CAA	GAC	1427
<i>-</i>	Ala	Ala	Thr	Thr	Gly	Asn	Gly	Gln	Pro	Arg	Arg	Arg	Ser	Ile	Gln	Asp	
5	400					405				•	410		-			415	
	TTG	ACT	GTA	ACT	GGA	ACA	GAA	CCT	GGT	CAG	GTG	AGC	AGT	AGG	TCA	TCC	1475
10	Leu	Thr	Va1	Thr	Gly	Thr	Glu	Pro	Gly	Gln	Va1	Ser	Ser	Arg	Ser	Ser	
					420					425					430		
	AGT	ссс	AGT	GTC	AGA	ATG	ATT	ACT	ACC	TCA	GGA	CCA	ACC	TCA	GAA	AAG	1523
15	Ser	Pro	Ser	Val	Arg	Met	Ile	Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	
				435					440					445			
20	CCA	ACT	CGA	AGT	CAT	CCA	TGG	ACC	CCT	GAT	GAT	TCC	ACA	GAT	ACC	AAT	1571
	Pro	Thr	Arg	Ser	His	Pro	Trp	Thr	Pro	Asp	Asp	Ser	Thr	Asp	Thr	Asn	
			450					455					460				
25	GGA	TCA	GAT	AAC	TCC	ATC	CCA	ATG	GCT	TAT	CTT	ACA	CTG	GAT	CAC	CAA	1619
,	Gly	Ser	Asp	Asn	Ser	Ile	Pro	Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	
30		465					470					475					
30	CTA	CAG	CCT	CTA	GCA	CCG	TGC	CCA	AAC	TCC	AAA	GAA	TCT	ATG	GCA	GTG	1667
	Leu	Gln	Pro	Leu	Ala	Pro	Cys	Pro	Asn	Ser	Lys	G1u	Ser	Met	Ala	Val	
35	480					485					490					495	
	TTT	GAA	CAG	CAT	TGT	AAA	ATG	GCA	CAA	GAA	TAT	ATG	AAA	GTT	CAA	ACA	1715
	Phe	Glu	Gln	His	Cys	Lys	Met	Ala	Gln	Glu	Tyr	Met	Lys	Val	Gln	Thr	
40					500					505					510		
	GAA	ATT	GCA	TTG	TTA	TTA	CAG	AGA	AAG	CAA	GAA	CTA	GTT	GCA	GAA	CTG	1763
45	Glu	Ile	Ala	Leu	Leu	Leu	Gln	Arg	Lys	Gln	G1u	Leu	Val	Ala	Glu	Leu	
				515					520					525		•	
	GAC	CAG	GAT	GAA	AAG	GAC	CAG	CAA	AAT	ACA	TCT	CGC	CTG	GTA	CAG	GAA	1811
50	Asp	Gln	Asp	Glu	Lys	Asp	Gln	Gln	Asn	Thr	Ser	Arg	Leu	Val	Gln	Glu	
			530					535					540				

	CAT	AAA	AAG	CTT	TTA	GAT	GAA	AAC	AAA	AGC	CTT	TCT	ACT	TAC	TAC	CAG	1859
5	His	Lys	Lys	Leu	Leu	Asp	Glu	Asn	Lys	Ser	Leu	Ser	Thr	Tyr	Tyr	Gl'n	
		545					550					555					
	CAA	TGC	AAA	AAA	CAA	CTA	GAG	GTC	ATC	AGA	AGT	CAG	CAG	CAG	AAA	CGA	1907
10	Gln	Cys	Lys	Lys	Gln	Leu	Glu	Val	Ile	Arg	Ser	Gln	Gln	Gln	Lys	Arg	
	560					565					570					575	
15	CAA	GGC	ACT	TCA	TGAT	TCTC	TG G	GACC	GTTA	C AT	TTTC	CAAA	ATO	CAA	AGAA		1959
	G1n	Gly	Thr	Ser													
20	AGAC	TTTI	TTT 1	AATTI	LGGA.A	A GG	AAAA	CCTT	ATA	ATGA	CGA	TTCA	TGAG	TG :	TAGO	TTTTT	2019
	GGCG	TGTI	CT C	SAATG	CCAA	C TG	CCTA	TATT	TGC	TGCA	TTT	TTTT	CATI	GT :	TATI	TTCCT	2079
	TTTC	TCAT	GG 1	rggac	CATAC	TA A	ATTT	CTGT	TTC	ATTG	CAT	AACA	TGGT	'AG (CATCT	GTGAC	2139
<i>2</i> 5	TTGA	ATGA	GC A	GCAC	TTTG	C AA	CTTC	AAAA	CAG	ATGC	AGT	GAAC	TGTG	GC 1	T GTA T	ATGCA	2199
	TGCI	CATI	GT G	TGAA	GGCI	A GC	CTAA	CAGA	ACA	.GGAG	GTA	TCAA	ACTA	GC 1	CCTA	TGTGC	2259
30	AAAC	AGCG	TC C	TTTA	TTTC	A TA	TTAG	AGGT	GGA	ACCT	CAA	GAAT	GACT	TT A	TTCT	TGTAT	2319
	CTCA	TCTC	AA A	ATAT	TAAT	A AT	TTTT	TTCC	CAA	AAGA	TGG	TATA	TACC	AA C	TTAA	AGACA	2379
	GGGT	'ATTA	A AT	ATTT	'AGAG	T GA	TTGG	TGGT	ATA	TTAC	GGA	AATA	.CGGA	AC C	ATTT.	GGGAT	2439
35	AGTT	CCGT	'GT A	AGGG	CTTT	G AT	GCCA	GCAT	ССТ	TGGA	TCA	GTAC	TGAA	CT C	AGTT	CCATC	2499
	CGTA	AAAT	'AT G	AAAT	.GGTA	A GT	GGCA	GCTG	CTC	TATT	TAA	TGAA	AGCA	GT 1	TTAC	CGGAT	2559
40	TTTG	TTAG	AC T	'AAAA'	TTTG	A TT	GTGA	TACA	TTG	AACA	AAA	TGGA	ACTC	AT 1	TTTT	TTAAG	2619
	GAGT	AAAG	AT T	TTCT	TTAG	A GC	ACAA	TGGA	TCT	CGAC							2656

SEQUENCE LISTING

5	<110>	Chugai Seiyaku Kabushiki Kaisha	-
	<120>	Human TAKI and DNA encoding the same	
10	<130>	D901/PCT	
	<140>	PCT/JP97/01050	
	<141>	1997-03-27	
15	<150>	US 08/685,625	
		JP 8-256747	
20	<151>	1996-07-24	
		1996-09-27	
25	<160>	7	
	<210>	1	
	<211>	2443	
30	<212>	DNA	
	<213>	Human	
35	<223>	Nucleotide Sequence of TAKI cDNA	
	<400>	1	
	gaattcgg	gca cgaggaggag ccgaagccgg gactcggcgg tggcccgggt cggtcccgcg	60
40	ccacggag	gcg ccgggcggcg ggctgcgggg ctccgggctg aagggcgctg cgcgagccgg	120
	agggcggg	gcg cggcccccg ggcgccgcgg gggatc atg tcg aca gcc tcc gcc	174
45		Met Ser Thr Ala Ser Ala	
		1 5	
	gcc to	ng too too too tog tot tot goo agt gag atg atc gaa gog cog	222
50	Ala Se	er Ser Ser Ser Ser Ala Ser Glu Met Ile Glu Ala Pro	
		10 15 20	

															•		
	tcg	g cag	gto	ctg	aac	ttc	gaa	gag	ato	gac	tac	day	gag	ato	gag	gug	270
_	Ser	Gln	Val	Leu	Asn	Phe	Glu	Glu	Ile	Asp	Tyr	Lys	G1u	Ile	e Glu	val	
5			25	i				30			-		3.5	;			
	gaa	gag	gtt	gtc	gga	aga	gga	gct	ttt	gga	gta	gtt	tgc	aaa	gct	aag	318
10	Glu	Glu	Val	Val	Gly	Arg	Gly	Ala	Phe	G1 y	Val	Va 1	Cys	Lys	Ala	Lys	
		40					45					50					
	tgg	aga	gca	aaa	gat	gtc	gct	att	aaa	cag	ata	gaa	agt	gag	tct	gag	366
15		Arg															
	55					60					65					70	
20	agg	aag	gct	ttc	att	gtg	gag	ctc	cgg	cag	ttg	tcg	cgt	gtg	aac	cat	414
20		Lys														e.	
					75					80					85		
25	cct	aac	att	gtc	aag	ttg	tac	gga	gcc	tgc	ctg	aat	cca	gta	tgt	ctt	462
		Asn															
				90					95					100	•		
30 .	gtg	atg	gaa	tat	gca	gag	ggg	ggc	tca	ttg	tat	aat	ete		cat	eet	510
		Met															
<i>35</i>			105	•			•	110			-,-		115			U _,	
	gct	gaa	cca	ttg	cct	tac	tac	act	gct	ect	cat	PCC		яос	too	tat	558
		G1u															330
40		120				-,-	125					130		561	11.0	0,5	
	tta	cag	tøt	tcc	caa	002		act	tac	cta	636		2+4				606
		Gln															606
45	135	01	0,3		01	140	Val	Ala	ıyı	Leu	145	ser	mec	GIN	PIO		
		cto		cac	200		. • •		+							150	
50		ctg															654
	WIG	Leu	TIE	HIS		asp	Leu	∟ys	rro		ASN	Leu	Leu	Leu		Ala	•
					155					160					165		

	gga	ggg	aca	gtt	cta	aaa	atc	tgc	gat	ttt	ggt	аса	gct	tgt	gac	atc	702
-	G1y	G1y	Thr	Val	Leu	Lys	Ile	Cys	Asp	Phe	G1y	Thr	Ala	Cys	Asp	Ile	-
•		-		170					175					180			
	caa	aca	CAC	atg	acc	aat	aat	aaa	ggg	agt	gct	gct	tgg	atg	gcg	cct	750
10	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	Ser	Ala	Ala	Trp	Met	Ala	Pro	
			185					190					195				
	gaa	gtg	ttt	gaa	ggt	agc	aat	tac	agt	gaa	aag	tgt	gat	gtc	ttc	agc	798
15	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu	Lys	Cys	Asp	Val	Phe	Ser	
		200					205					210					
20	tgg	ggt	att	atc	ctc	tgg	gaa	gtg	ata	aca	cgc	cgg	aaa	ccc	ttc	gat	846
	Trp	Gly	Ile	Ile	Leu	Trp	Glu	Val	I,le	Thr	Arg	Arg	Lys	Pro	Phe	Asp	
	215					220					225					230	
25	gag	atc	ggt	ggc	cca	gct	ttc	aga	atc	atg	tgg	gct	gtt	cat	aat	ggc	894
	Glu	Ile	Gly	Gly	Pro	Ala	Phe	Arg	Ile	Met	Trp	Ala	Val	His	Asn	Gly	
					235					240					245		
30 ·	act	cga	cca	cca	ctg	atc	aaa	aat	tta	cct	aag	ссс	att	gag	agc	ttg	942
	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu	Pro	Lys	Pro	Ile	G1u	Ser	Leu	
35				250					255					260			
	atg	aca	cgc	tgt	tgg	tct	aag	gac	cca	tct	cag	cgc	cct	tca	atg	gag	990
	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	Pro	Ser	Gln	Arg	Pro	Ser	Met	Glu	
40			265					270					275				
	gaa	att	gtg	aaa	ata	atg	act	cac	ttg	atg	cgg	tac	ttc	cca	gga	gcg	1038
45	Glu	Ile	Val	Lys	Ile	Met	Thr	His	Leu	Met	Arg	Tyr	Phe	Pro	Gly	Ala	
		280					285					290					
·	gat	gag	cca	tta	cag	tat	cct	tgt	cag	tac	tct	gat	gaa	ggg	cag	agc	1086
50	Asp	Glu	Pro	Leu	Gln	Tyr	Pro	Cys	Gln	Tyr	Ser	Asp	Glu	Gly	Gln	Ser	
	295					300					305					310	

aac	tca	a gcc	acc	ago	aca	ggo	: tcg	ito	ate	g gao	ati	t gct	tc1	t aca	aat	1134
Asr	Ser	Ala	Thr	Ser	Thr	· G13	Ser	Phe	Met	. Asp	Ile	e Ala	Sei	The	Asn	
	•			315					320)				325	,	
acc	agt	aat	aaa	agt	gac	aca	aat	atg	gaa	cag	gtt	cct	gcc	aca	aac	1182
Thr	Ser	Asn	Lys	Ser	Asp	Thr	Asn	Met	Glu	Gln	Va1	Pro	Ala	Thr	Asn	Ť
			330					335					340	•		
gac	act	att	aaa	cgc	ttg	gag	tca	aaa	ctg	ttg	aaa	аас	cag	gca	aag	1230
Asp	Thr	Ile	Lys	Arg	Leu	Glu	Ser	Lys	Leu	Leu	Lys	Asn	Gln	Ala	Lys	
		345					350					355				
caa	cag	agt	gaa	tct	gga	cgc	ctg	agc	ttg	gga	gcc	tct	cgt	ggg	agc	1278
Gln	Gln	Ser	G1u	Ser	Gly	Arg	Leu	Ser	Leu	Gly	Ala	Ser	Arg	Gly	, Ser	
	360					365					370					
agt	gtg	gag	agc	ttg	ccc	ccc	act	tcc	gag	ggc	aag	agg	atg	agt	gct	1326
Ser	Val	G1u	Ser	Leu	Pro	Pro	Thr	Ser	Glu	Gly	Lys	Arg	Met	Ser	Ala	
375					380					385					390	
gac	atg	tct	gaa	ata	gaa	gcc	agg	atc	gtg	gcg	act	gca	ggt	aac	ggg	1374
Asp	Met	Ser	Glu	Ile	Glu	Ala	Arg	Ile	Val	Ala	Thr	Ala	Gly	Asn	Gly	
				395					400					405		
caa	cca	agg	cgt	aga	tcc	atc	caa	gac	ttg	act	gtt	act	ggg	aca	gaa	1422
Gln	Pro	Arg	Arg	Arg	Ser	Ile	Gln	Asp	Leu	Thr	Val	Thr	Gly	Thr	Glu	٠
			410					415					420			
cct	ggt	cag	gtg	agc	agc	cgg	tca	tcc	agc	cct	agt	gtc	aga	atg	atc	1470
Pro	Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	Ser	Pro	Ser	Val	Arg	Met	Ile	
		425					430					435				
																1518
Thr	Thr	Ser	Gly :	Pro '	Thr	Ser	Glu :	Lys	Pro	Ala	Arg	Ser	His	Pro	Trp	
	440					445					450					
	Asr accommonder gace Asp caa Gln caa Gln cct Pro	Asn Ser acc agt Thr Ser gac act Asp Thr caa cag Gln Gln 360 agt gtg Ser Val 375 gac atg Asp Met caa cca Gln Pro cct ggt Pro Gly act acc	Asn Ser Ala acc agt aat Thr Ser Asn gac act att Asp Thr Ile 345 caa cag agt Gln Gln Ser 360 agt gtg gag Ser Val Glu 375 gac atg tct Asp Met Ser caa cca agg Gln Pro Arg cct ggt cag Pro Gly Gln 425 act acc tca Thr Thr Ser	Asn Ser Ala Thr acc agt aat aaa Thr Ser Asn Lys	Asn Ser Ala Thr Ser 315 acc agt aat aaa agt Thr Ser Asn Lys Ser 330 gac act att aaa cgc Asp Thr Ile Lys Arg 345 caa cag agt gaa tct Gin Gin Ser Giu Ser 360 agt gtg gag agc ttg Ser Val Giu Ser Leu 375 gac atg tct gaa ata Asp Met Ser Giu Ile 395 caa cca agg cgt aga Gin Pro Arg Arg Arg 410 cct ggt cag gtg agc Pro Giy Gin Val Ser 425 act acc tca gga cca Thr Thr Ser Giy Pro Sin Ser Giy Pro Sin Ser Giu Pro Ser Giu Pro Ser Giu For Ser Giu Ser 425	Asn Ser Ala Thr Ser Through Ser Ala Thr Ser Asn	Asn Ser Ala Thr Ser Thr Gly 315 acc agt aat aaa agt gac aca Thr Ser Asn Lys Ser Asp Thr 330 gac act att aaa cgc ttg gag Asp Thr Ile Lys Arg Leu Glu 345 caa cag agt gaa tct gga cgc Gln Gln Ser Glu Ser Gly Arg 360	Asn Ser Ala Thr Ser Thr Gly Ser 315 acc agt aat aaa agt gac aca aat Thr Ser Asn Lys Ser Asp Thr Asn 330 gac act att aaa cgc ttg gag tca Asp Thr Ile Lys Arg Leu Glu Ser 345 caa cag agt gaa tct gga cgc ctg Gln Gln Ser Glu Ser Gly Arg Leu 360 agt gtg gag agc ttg ccc ccc act Ser Val Glu Ser Leu Pro Pro Thr 375 gac atg tct gaa ata gaa gcc agg Asp Met Ser Glu Ile Glu Ala Arg 395 caa cca agg cgt aga tcc atc caa Gln Pro Arg Arg Arg Ser Ile Gln 410 cct ggt cag gtg agc agc cgg tca Pro Gly Gln Val Ser Ser Arg Ser 425 act acc tca gga cca acc tca gag. Thr Thr Ser Gly Pro Thr Ser Glu I	Asn Ser Ala Thr Ser Thr Gly Ser Phenomena	Asn Ser Ala Thr Ser Thr Gly Ser Phe Met acc agt aat aaa agt gac aca aat atg gag Thr Ser Asn Lys Ser Asp Thr Asn Met Glu gac act att aaa cgc ttg gag tca aaa ctg Asp Thr Ile Lys Arg Leu Glu Ser Lys Leu Asp Thr Ile Lys Arg Leu Glu Ser Lys Leu Gln Gln Ser Glu Ser Gly Arg Leu Ser Leu 360 365 365 380 365 agg Ser Leu Ser Gly Arg Leu Ser Glu Ser Glu Arg Leu Pro Thr Ser Glu Arg Arg Ile Val Val Arg Ile V	Asn Ser Ala Thr Ser Thr Gly Ser Phe Met Asp 315	Asn Ser Ala Thr Ser Thr Gly Ser Phe Met Asp Ile	Asn Ser Ala Thr Ser Thr Gly Ser Phe Met Asp Ile Ala 315 320 acc agt aat aaa agt gac aca aat atg gaa cag gtt cct Thr Ser Asn Lys Ser Asp Thr Asn Met Glu Gln Val Pro 330 335 gac act att aaa cgc ttg gag tca aaa ctg ttg aaa aac Asp Thr Ile Lys Arg Leu Glu Ser Lys Leu Leu Lys Asn 345 350 355 caa cag agt gaa tct gga cgc ctg agc ttg gga gcc tct Gln Gln Ser Glu Ser Gly Arg Leu Ser Leu Gly Ala Ser 360 365 370 agt gtg gag agc ttg ccc ccc act tcc gag ggc aag agg Ser Val Glu Ser Leu Pro Pro Thr Ser Glu Gly Lys Arg 375 gac atg tct gaa ata gaa gcc agg atc gtg gcg act gca Asp Met Ser Glu Ile Glu Ala Arg Ile Val Ala Thr Ala 395 400 caa cca agg cgt aga tcc atc caa gac ttg act gtc act Gln Pro Arg Arg Arg Ser Ile Gln Asp Leu Thr Val Thr 410 415 cct ggt cag gtg agc cgc acc cta gag aag cca gct cgc agt Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Ala Arg Ser Ile Gly Lys Pro Ala Arg Ser Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Ala Arg Ser Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Ala Arg Ser Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Ala Arg Ser	Asn Ser Ala Thr Ser Thr Gly Ser Phe Met Asp Ile Ala Ser 315 320 acc agt aat aaa agt gac aca aat atg gaa cag gtt cct gcc Thr Ser Asn Lys Ser Asp Thr Asn Met Glu Gln Val Pro Ala 330 335 346 gac act att aaa cgc ttg gag tca aaa ctg ttg aaa aac cag Asp Thr Ile Lys Arg Leu Glu Ser Lys Leu Leu Lys Asn Gln 345 350 355 caa cag agt gaa tct gga cgc ctg agc ttg gga gcc tct cgt Gln Gln Ser Glu Ser Gly Arg Leu Ser Leu Gly Ala Ser Arg 360 365 370 agt gtg gag agc ttg ccc ccc act tcc gag ggc aag agg atg ser Val Glu Ser Leu Pro Pro Thr Ser Glu Gly Lys Arg Met 375 380 385 gac atg tct gaa ata gaa gcc agg atc gtg gcg act gca ggt Asp Met Ser Glu Ile Glu Ala Arg Ile Val Ala Thr Ala Gly 395 400 caa cca agg cgt aga tcc atc cac gac ttg act gtt act ggg Gln Pro Arg Arg Arg Ser Ile Gln Asp Leu Thr Val Thr Gly 410 415 420 cct ggt cag gtg agc cac acc tca gag aag cca gct aga cac Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Ala Arg Ser His Acc acc tca gga cac gct aga cac tca gag aag cca gct acc acc tca gag cca acc tca gag aag cca gct cac tca gag aag cca gct aga cac Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Ala Arg Ser His	Asn Ser Ala Thr Ser Thr Gly Ser Phe Met Asp Ile Ala Ser Thr Gly Ser Phe Met Asp Ile Ala Ser Thr 315 320 325 acc agt aat aaa agt gac aca aat atg gaa cag gtt cct gcc aca Thr Ser Asn Lys Ser Asp Thr Asn Met Glu Gln Val Pro Ala Thr 330 330 335 340 gac act att aaa cgc ttg gag tca aaa ctg ttg aaa aac cag gca Asp Thr Ile Lys Arg Leu Glu Ser Lys Leu Leu Lys Asn Gln Ala 345 355 350 355 355 360 caa cag agt gaa tct gga cgc ctg agc ttg gga gcc tct cgt ggg Glu Gln Ser Glu Ser Gly Arg Leu Ser Leu Gly Ala Ser Arg Gly 360 365 370 360 365 370 360 365 370 385 385 385 385 385 385 385 385 385 385	acc agt aat aaa agt gac aca aat atg gaa cag gtt cct gcc aca aac Thr Ser Asn Lys Ser Asp Thr Asn Met Glu Gln Val Pro Ala Thr Asn 330 335 340 gac act att aaa cgc ttg gag tca aaa ctg ttg aaa aac cag gca aag Asp Thr Ile Lys Arg Leu Glu Ser Lys Leu Leu Lys Asn Gln Ala Lys 345 350 355 caa cag agt gaa tct gga cgc ctg agc ttg gga gcc tct cgt ggg agc Gln Gln Ser Glu Ser Gly Arg Leu Ser Leu Gly Ala Ser Arg Gly Ser 360 365 370 agt gtg gag agc ttg ccc ccc act tcc gag ggc aag agg atg agt gct Ser Val Glu Ser Leu Pro Pro Thr Ser Glu Gly Lys Arg Met Ser Ala 375 380 385 390 gac atg tct gaa ata gaa gcc agg atc gtg gcg act gca ggt aac ggg Asp Met Ser Glu Ile Glu Ala Arg Ile Val Ala Thr Ala Gly Asn Gly 395 400 405 caa cca agg cgt aga tcc atc caa gac ttg act gtt act ggg aca gaa Gln Pro Arg Arg Arg Ser Ile Gln Asp Leu Thr Val Thr Gly Thr Glu 410 415 420 cct ggt cag gtg agc ca acc tca gag aag cca gct cgc agt cac cca tgg Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Ala Arg Ser His Pro Trp

	acc cct	gat ga	t tcc ac	a gac a	cc aat gg	c tca ga	t aac to	atc cca	1566
_	Thr Pro	Asp As	p Ser Th	r Asp Ti	nr Asn Gl	y Ser As _l	Asn Sei	r Ile Pro	
5 -	455		46			465		470	
	atg gcg	tat ct	t aca ct	g gat ca	cag ct.	a cag cct	cta gcg	ccg tgc	1614
10	Met Ala	Tyr Let	ı Thr Lev	ı Asp Hi	is Gln Le	u Gln Pro	Leu Ala	Pro Cys	
			475		480	0		485	
	cca aac	tcc aaa	a gaa too	atg go	a gtg tt	gaa cag	cac tgt	aaa atg	1662
15	Pro Asn	Ser Lys	Glu Ser	Met Al	a Val Phe	e Glu Gln	His Cys	Lys Met	
		490)		495		500		
20	gca cag	gag tat	atg aaa	gtt ca	a acc gaa	atc gca	ttg tta	cta cag	1710
	Ala Gln	Glu Tyr	Met Lys	Val Gl	n Thr Glu	lle Ala	Leu Leu	Leu Gln	
		505		51	0		515		
25	aga aag	caa gaa	cta gtt	gca ga	a ttg gad	cag gat	gaa aag	gac cag	1758
	Arg Lys	Gln Glu	Leu Val	Ala Gl	u Leu Asp	Gln Asp	Glu Lys	Asp Gln	
30	520			525		530			
	caa aat	aca tct	cgt ctg	gta ca	g gaa cat	aaa aag	ctt tta	gat gaa	1806
	Gln Asn	Thr Ser	Arg Leu	Val Gl	n Glu His	Lys Lys	Leu Leu	Asp Glu	
35	535		540			545		550	
					cag caa				1854
40	Asn Lys	Ser Leu	Ser Thr	Tyr Ty	r Gln Gln	Cys Lys	Lys Gln	Leu Glu	
			555		560			565	
					a cga caa			tctctg	1903
45	Val Ile		Gln Gln	Gln Lys	Arg Gln	Gly Thr	Ser		
		570			575				
								ccattataa	
50								tttgctgca	
	tttgttat	gt cagtt	acctt to	ttcttat	g gtggata	ataa aato	cactgt c	gtgttgcag	2083

	cagat	gatgg cacctgtgg	c ttgggaaggc	gagsgtgctc	agottcaggg	gcacatgaag	2143
_	tgaac	ctggc tgtatgtgc	a tgctcctgga	gtgagctacc	taacaggagg	gggtagcaca	2203
5	ctggc	tactg tgtgcaggc	a tcatcctttc	tctgtagtaa	aaggtgggac	ctcaagaatt	2263
	ttcttc	caaag tgctcatct	c aaaaatctga	ttttttccc	agtagatggt	atgctccaat	2323
10	gtaaag	gacag agtattaaa	a taacttgtgg	tacattacag	agggacagaa	tgttgaggct	2384
	gagtto	caaag acagggttt	g tgccaacaca	tcctggcttt	agagcacaat	ggatctcgag	2443
	<210>	2					
15	<211>	16					
	<212>	DNA					
20	<213>	Artificial	Sequence				
20	<220>					•	
	<221>	•					
25	<222>						
	<223>	Linker					
	<400>	2					
30	aattcg	ccac catggc			•		16
	<210>	3					
35	<211>	16					
	<212>	DNA					
	<213>	Artificial	Sequence				
40	<220>						
	<221>						
45	<222>						
	<223>	Linker					
	<400>	3					
50	tcgagco	catg gtggcg					16
	<210>	4					

	<211> 9	
	<212> PRT	
5	<213> Artificial	
	<220>	
10	<221>	
	<223> Epitope Sequence	
	<400> 4	
15	Tyr Pro Tyr Asp Val Pro Asp Tyr Ala	
	1 5	
20	<210> 5	
	<211> 2656	
	<212> DNA	
25	<213> Human	
	<220>	
30	<221>	
	<223> Nucleotide Sequence of TAKI cDNA	
	<400> 5	
35	gtogagator attgtgotot aaagaoggot gtggoogotg cototacooc ogcoaoggat	60
	cgccgggtag taggactgcg cggctccagg ctgagggtcg gtccggaggc gggtgggcgc 13	20
40	gggtctcacc cggattgtcc gggtggcacc gttcccggcc ccaccgggcg ccgcgaggga . 18	30
	to atg tot aca god tot god god too too too too tog tot tog god 22	27
	Met Ser Thr Ala Ser Ala Ala Ser Ser Ser Ser Ser Ser Ala	
45	1 5 10 15	
	ggt gag atg atc gaa gcc cct tcc cag gtc ctc aac ttt gaa gag atc 27	75
50	Gly Glu Met Ile Glu Ala Pro Ser Gln Val Leu Asn Phe Glu Glu Ile	
	20 25 30	

	ga	c ta	ac aa	ag ga	g at	c ga	g gt	g ga	a ga	g gt	t gt	t gg	a ag	a gg	a gc	c ttt	32:
	As	рТ	yr L3	s Gl	u Il	e Gl	u Va	l Gl	u G1	u Va	1 Va	1 G1	y Ar	g G1	y A1	a Phe	!
<i>5</i>				3	5	-			4	0				4.	5		
	gg	a gt	t gt	t tg	c aa	a gci	t aag	g tg	gag	a gc	а аа	a ga	t gti	t gci	t at	t aaa	371
10	G1	y Va	l Va	1 Cy	s Ly	s Ala	a Lys	Tr	Ar	g Al	a Ly	s Asj	p Val	L Ala	a 11e	≥ Lys	
			5	0				5.5	5				60)			
	са	a at	a ga	a ag	t gaa	a tct	gag	agg	, aa	a gc	g tt	t atı	t gta	gag	g ctt	cgg	419
15	G1:	n II	e Gl	u Se	r Glu	ı Ser	Glu	Arg	Lys	s Ala	a Phe	e Ile	val	Glu	Leu	Arg	
		6	5				70					75	5				
20	cag	g tt	a tc	c cgt	gtg	g aac	cat	cct	aat	att	gta	aag	ctt	tat	gga	gcc	467
	Glr	ı Le	u Se	r Arg	g Val	. Asn	His	Pro	Ąsn	Ile	Val	Lys	Leu	Tyr	Gly	Ala	
	80)				85					90)				95	
<i>2</i> 5	tgo	tt	g aat	сса	gtg	tgt	ctt	gtg	atg	gaa	tat	gct	gaa	ggg	ggc	tct	515
	Cys	Le	ı Asr	Pro	Val	Cys	Leu	Val	Met	Glu	Tyr	Ala	Glu	Gly	Gly	Ser	
30					100					105					110		
						cat											563
	Leu	Туг	Asn	Val	Leu	His	Gly	Ala	Glu	Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	
35				115					120					125			
						tgg											611
40	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	Gln	Cys	Ser	Gln	Gly	Val	Ala	Tyr	
			130					135					140				
						ccc											659
45	Leu		Ser	Met	Gln	Pro	Lys .	Ala	Leu	Ile	His	Arg	Asp	Leu	Lys	Pro	
		145					150					15,5					
50						gtt											707
		Asn	Leu	Leu		Val .	Ala (Gly	Gly	Thr	Val	Leu	Lys	Ile	Cys .	Asp	
	160					165					170					175	

	ttt	ggt	aca	gcc	tgt	gac	att	cag	aca	cac	atg	acc	aat	aac	aag	888	755
	Phe	G1y	Thr	Ala	Cys	Asp	Ile	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	
5					180					185					190		
	agt	gct	gct	tgg	atg	gca	cct	gaa	gtt	ttt	gaa	ggt	agt	aat	tac	agt	803
10	Ser	Ala	Ala	7rp	Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	
				195					200					205			
	gaa	aaa	tgt	gac	gtc	ttc	agc	tgg	ggt	att	att	ctt	tgg	gaa	gtg	ata	851
15	Glu	Lys	Cys	Asp	Val	Phe	Ser	Trp	Gly	Ile	Ile	Leu	Trp	Glu	Val	Ile	
			210					215					220				
20	acg	cgt	cgg	aaa	ccc	ttt	gat	gag	att	ggt	ggc	cca	gct	ttc	cga	atc	899
	Thr	Arg	Arg	Lys	Pro	Phe	Asp	Glu	<u>Į</u> le	Gly	Gly	Pro	Ala	Phe	Arg	Île	
		225					230					235					
25	atg	tgg	gct	gtt	cat	aat	ggt	act	cga	cca	cca	ctg	ata	aaa	aat	tta	947
	Met	Trp	Ala	Val	His	Asn	Gly	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu	
	240					245					250					255	
30	cct	aag	ccc	att	gag	agc	ctg	atg	act	cgt	tgt	tgg	tct	aaa	gat	cct	995
	Pro	Lys	Pro	Ile	Glu	Ser	Leu	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	Pro	
35					260					265					270		
	tcc	cag	cgc	cct	tca	atg	gag	gaa	att	gtg	aaa	ata	atg	act	cac	ttg	1043
	Ser	Gln	Arg	Pro	Ser	Met	G1u	Glu	Ile	Val	Lys	Ile	Met	Thr	His	Leu	
40				275					280					285			
										cca							1091
45	Met	Arg	Tyr	Phe	Pro	Gly	Ala	Asp	G1u	Pro	Leu	Gln	Tyr	Pro	Cys	Gln	
			290					295					300				
										gcc							1139
50	Tyr	Ser	Asp	G1u	Gly	Gln	Ser	Asn	Ser	Ala	Thr	Ser	Thr	Gly	Ser	Phe	
		305					310					315					

	atg	gao	att	gct	tct	aca	aat	acg	agt	aac	aaa	agt	gac	act	aat	atg	1187
5	Met	Asp	Ile	Ala	Ser	Thr	Asn	Thr	Ser	Asr	Lys	Ser	Asp	Thr	Asn	Met	
•	320					325					330)				335	
	gag	caa	gtt	cct	. gcc	aca	aat	gat	act	att	aag	cgc	tta	gaa	tca	aaa	1235
10	Glu	Gln	Val	Pro	Ala	Thr	Asn	Asp	Thr	Ile	Lys	Arg	Leu	Glu	Ser	Lys	
					340					345	i				350		
15	ttg	ttg	aaa	aat	cag	gca	aag	caa	cag	agt	gaa	tct	gga	cgt	tta	agc	1283
15	Leu	Leu	Lys	Asn	Gln	Ala	Lys	Gln	Gln	Ser	Glu	Ser	Gly	Arg	Leu	Ser	
				355					360					365			
20	ttg	gga	gcc	tcc	cat	ggg	agc	agt	gtg	gag	agc	ttg	ccc	сса	acc	tct	1331
	Leu	Gly	Ala	Ser	His	Gly	Ser	Ser	V _, a1	Glu	Ser	Leu	Pro	Pro	Thr	Ser	
			370					375					380				
25	gag	ggc	aag	agg	atg	agt	gct	gac	atg	tct	gaa	ata	gaa	gct	agg	atc	1379
	Glu	Gly	Lys	Arg	Met	Ser	Ala	Asp	Met	Ser	Glu	Ile	Glu	Ala	Arg	Ile	
30		385					390					395					
	gcc	gca	acc	aca	ggc	aac	gga	cag	cca	aga	cgt	aga	tcc	atc	caa	gac	1427
	Ala	Ala	Thr	Thr	Gly	Asn	Gly	Gln	Pro	Arg	Arg	Arg	Ser	Ile	Gln	Asp	
35	400					405					410					415	
						aca											1475
40	Leu	Thr	Val	Thr	Gly	Thr	Glu	Pro	Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	
					420					425					430		
						atg											1523
45	Ser	Pro	Ser	Val	Arg	Met	Ile	Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	
				435					440					445			
50	cca																1571
50	Pro	Thr		Ser	His	Pro	Trp	Thr	Pro	Asp	Asp	Ser	Thr .	Asp	Thr	Asn	
			450					455					460				

	gga	tca	gat	aac	tcc	atc	cca	atg	gct	tat	ctt	aca	ctg	gat	cac	caa	1619
_	Gly	Ser	Asp	Asn	Ser	Ile	Pro	Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	
5		465					470					475			-		
	cta	cag	cct	cta	gca	ccg	tgc	cca	aac	tcc	aaa	gaa	tct	atg	gca	gtg	1667
10	Leu	Gln	Pro	Leu	Ala	Pro	Cys	Pro	Asn	Ser	Lys	Glu	Ser	Met	Ala	Val	
	480					485					490					495	
	ttt	gaa	cag	cat	tgt	aaa	atg	gca	caa	gaa	tat	atg	aaa	gtt	caa	aca	1715
15	Phe	Glu	Gln	His	Cys	Lys	Met	Ala	Gln	Glu	Tyr	Met	Lys	Val	Gln	Thr	٠
					500					505					510		
20	gaa	att	gca	ttg	tta	tta	cag	aga	aag	caa	gaa	cta	gtt	gca	gaa	ctg	1763
	Glu	Ile	Ala	Leu	Leu	Leu	Gln	Arg	Lys	Gln	Glu	Leu	Val	Ala	Glu	Leu	
				515					520					525			
25	gac	cag	gat	gaa	aag	gac	cag	caa	aat	aca	tct	cgc	ctg	gta	cag	gaa	1811
	Asp	G1n	Asp	Glu	Lys	Asp	Gln	Gln	Asn	Thr	Ser	Arg	Leu	Val	Gln	Glu	
20			530					535					540				
30	cat	aaa	aag	ctt	tta	gat	gaa	aac	aaa	agc	ctt	tct	act	tac	tac	cag	1859
	His	Lys	Lys	Leu	Leu	Asp	Glu	Asn	Lys	Ser	Leu	Ser	Thr	Tyr	Tyr	Gln	
35		545					550					555					
	caa	•															1907
	Gln	Cys	Lys	Lys	Gln	Leu	G1u	Val	Ile	Arg	Ser	Gln	Gln	G1n	Lys	Arg	
40	560					565					570					575	
	caa				tgat	tctc	tg g	gacc	gtta	c at	tttg	aaat	atg	caaa	gaa	•	1959
45	Gln																
																tttt	
																ttcct	
50																gtgac	
	ttga	atga	gc a	gcac	tttg	c aa	cttc	aaaa	cag	atgc	agt	gaac	tgtg	gc t	gtat	atgca	2199

	tgctcattgt	gtgaaggcta g	cctaacaga a	acaggaggta t	caaactagc	tgctatgtgc	2259
	aaacagcgtc	cattttttca t	attagaggt g	ggaacctcaa g	aatgacttt	attcttgtat	2319
5	ctcatctcaa	aatattaata a	itttttttcc c	aaaagatgg t	atataccaa į	gttaaagaca	2379
	gggtattata	aatttagagt g	attggtggt a	atattacgga a	atacggaac (ctttagggat	2439
10	agttccgtgt	aagggctttg a	tgccagcat o	cttggatca g	tactgaact o	cagttccatc	2499
	cgtaaaatat	gtaaaggtaa g	tggcagctg o	tctatttaa t	gaaagcagt (ttaccggat	2559
	tttgttagac	taaaatttga t	tgtgataca t	tgaacaaaa t	ggaactcat (ttttttaag	2619
15	gagtaaagat	tttctttaga g	cacaatgga t	ctcgac			2656
	<210> 6						
20	<211> 579						
	<212> PRT					*	
25	<213> Huma	an					
25	<223> Amin	no acid Seg	uence of	TAKI			
	<400> 6						
30	Met Ser Thi	r Ala Ser Ala	Ala Ser Se	er Ser Ser S	er Ser Ser	Ala Ser	
	1	5		10		15	
35	Glu Met Ile	e Glu Ala Pro	Ser Gln Va	ıl Leu Asn P	he Glu Glu	Ile Asp	
		20	. 2	25	30		
	Tyr Lys Glu	ı Ile Glu Val	Glu Glu Va	ıl Val Gly A	rg Gly Ala	Phe Gly	
40	35	5	40		45		
	Val Val Cys	Lys Ala Lys	Trp Arg Al	a Lys Asp V	al Ala Ile	Lys Gln	
45	50		55		60		
	Ile Glu Ser	Glu Ser Glu	Arg Lys Al	a Phe Ile V	al Glu Leu	Arg Gln	
	65	70		75		80	
50	Leu Ser Arg	g Val Asn His	Pro Asn Il	e Val Lys L	eu Tyr Gly	Ala Cys	
		85		90		95	

	Leu	ı Ası	n Pro	Va:	l Cys	Let	ı Val	Met	Glu	ту ту	. Ala	a Glu	1 G1	y G1	, Se	r Leu
5				100)				105	5				110)	
	Tyr	Asr	Val	Lei	ı His	Gly	7 Ala	Glu	Pro	Leu	Pro	Туг	Ty	r Thi	Ala	Ala
			115	i				120)				125	5		
10	His	Ala	Met	Ser	Trp	Cys	Leu	G1n	Cys	Ser	Gln	Gly	Va]	Ala	Tyr	Leu
		130	•				135					140	ı			
15	His	Ser	Met	G1n	Pro	Lys	Ala	Leu	Ile	His	Arg	Asp	Lev	Lys	Pro	Pro
	145					150					155					160
	Asn	Leu	Leu	Leu	Va1	Ala	Gly	Gly	Thr	Val	Leu	Lys	Ile	Cys	Asp	Phe
20					165					170					175	
	Gly	Thr	Ala	Cys	Asp	Ile	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	G1y	Ser
<i>25</i>				180					185					190		
	Ala	Ala	Trp	Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu
			195					200					205			
30	Lys	Cys	Asp	Val	Phe	Ser	Trp	Gly	Ile	Ile	Leu	Trp	Glu	Val	Ile	Thr
		210					215					220				
35	Arg	Arg	Lys	Pro	Phe	Asp	Glu	Ile	Gly	Gly	Pro	Ala	Phe	Arg	Ile	Met
	225					230					235					240
	Trp	Ala	Val	His	Asn	G1y	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu	Pro
40					245					250					255	
	Lys	Pro	Ile	Glu	Ser	Leu	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	Pro	Ser
45				260					265					270		
	Gln	Arg	Pro	Ser	Met	Glu	Glu	Ile	Val	Lys	Ile	Met	Thr	His	Leu	Met
			275					280					285			
50	Arg	Tyr	Phe	Pro	Gly	Ala	Asp	Glu	Pro	Leu	Gln	Tyr	Pro	Cys	Gln	Tyr
		290					295					300				

	Se	r As	p G1	u Gl	y Gli	n Se	r Ası	ı Se	r Ala	a Th	r Se	r Th	r G1;	y Se	r Ph	e Met
	30	5				31	0				31	5				320
5	As	p Il	e Al	a Se	r Thi	r Ası	n Thi	Sei	r Asr	ı Lys	Se	c As _l	Th:	r Ası	n Me	t Glu
					325	5				330)				335	5
10	G1r	n Val	l Pro	o Ala	Thr	Ası	ı Asp	Thr	: Ile	Lys	Arg	, Le	ı Glu	ı Ser	Lys	Leu
				340)				345	i				350	•	
15	Let	Lys	s Asr	ı Glr	Ala	Lys	Gln	Gln	Ser	Glu	Ser	Gly	Arg	, Leu	Ser	Leu
,,,			355	5				360	+				365	,		
	Gly	Ala	Ser	Arg	Gly	Ser	Ser	Val	Glu	Ser	Leu	Pro	Pro	Thr	Ser	G1u
20		370)				375					380				
	Gly	Lys	Arg	Met	Ser	Ala	Asp	Met	Ser	G1u	Ile	Glu	Ala	Arg	Ile	, Val
25	385					390					395					400
	Ala	Thr	Ala	Gly	Asn	Gly	Gln	Pro	Arg	Arg	Arg	Ser	Ile	Gln	Asp	Leu
					405					410					415	
30	Thr	Val	Thr	Gly	Thr	Glu	Pro	Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	Ser
				420					425					430		
35	Pro	Ser	Val	Arg	Met	Ile	Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	Pro
-			435					440					445		•	
	Ala	Arg	Ser	His	Pro	Trp	Thr	Pro	Asp	Asp	Ser	Thr	Asp	Thr	Asn	Gly
40		450					455					460				
	Ser	Asp	Asn	Ser	Ile	Pro	Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	Leu
45	465					470					475					480
	Gln	Pro	Leu	Ala	Pro	Cys	Pro	Asn	Ser	Lys	Glu	Ser	Met	Ala	Val	Phe
					485					490					495	
50	Glu	Gln	His	Cys	Lys	Met	Ala	Gln	Glu	Tyr	Met	Lys	Val	Gln	Thr	Glu
				500					505					510		

	Ile Ala Leu Leu Gln Arg Lys Gln Glu Leu Val Ala Glu Leu	Asp
.5	515 520 <u>525</u>	_
	Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu Val Gln Glu	His
10	530 535 540	
	Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser Thr Tyr Tyr Gln	Gln
	545 550 555	560
15	Cys Lys Lys Gln Leu Glu Val Ile Arg Ser Gln Gln Gln Lys Arg	Gln
	565 570 575	
	Gly Thr Ser	
20	<210> 7	_
	<211> 579	,
05	<212> PRT	
25	<213> Human	
	<223> Amino acid Sequence of TAKI	
30	<400> 7	
	Met Ser Thr Ala Ser Ala Ala Ser Ser Ser Ser Ser Ser Ala (31y
	1 5 10 15	
35	Glu Met Ile Glu Ala Pro Ser Gln Val Leu Asn Phe Glu Glu Ile A	Asp
	20 25 30	
40	Tyr Lys Glu Ile Glu Val Glu Val Val Gly Arg Gly Ala Phe G	;ly
	35 40 45	
	Val Val Cys Lys Ala Lys Trp Arg Ala Lys Asp Val Ala Ile Lys G	;1n
45	50 55 60	
	Ile Glu Ser Glu Ser Glu Arg Lys Ala Phe Ile Val Glu Leu Arg G	
50		80
55	Leu Ser Arg Val Asn His Pro Asn Ile Val Lys Leu Tyr Gly Ala C	ys
	85 90 95	

	Le	u As	n Pr	o Va	1 Cy:	s Lei	ı Va	l Me	t Gl	u Ty:	r Ala	a Gl	u G1	y G1	y Se	r Lei
_				10	0				10	5				11	0	
5	Ту	r As	n Va	l Le	u His	s G13	7 Al	a Gl	u Pr	o Leu	ı Pro	ту	r Ty	r Th	r Al	a Ala
			11	5				12	0				12.	5		
10	Hi	s Al	a Me	t Se	r Trp	Cys	Le	ı Glı	n Cy	s Sei	Gln	Gly	v Va	l Ala	а Ту	r Leu
		13	0				13	5				140)			
	His	s Se	r Me	t Glr	n Pro	Lys	Ala	i Lei	1 Ile	His	Arg	Asp	Lei	ı Lys	Pro	Pro
15	145	5				150					155					160
	Asr	Le	u Lei	ı Lev	ı Val	Ala	Gly	Gly	The	Val	Leu	Lys	Ile	Cys	Asp	Phe
20					165					170					175	5
	Gly	Th	r Ala	Cys	Asp	Ile	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	Ser
25				180					185	ı				190		
	Ala	A1a	Trp	Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu
			195					200					205			
<i>30</i>	Lys	Cys	Asp	Val	Phe	Ser	Trp	Gly	Ile	Ile	Leu	Trp	Glu	Val	Ile	Thr
		210)				215					220				
<i>35</i>	Arg	Arg	Lys	Pro	Phe	Asp	Glu	Ile	Gly	Gly	Pro	Ala	Phe	Arg	Ile	Met
•	22 5					230					235					240
	Trp	Ala	Val	His	Asn	Gly	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu	Pro
40					245					250					255	
	Lys	Pro	Ile	Glu	Ser	Leu	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	Pro	Ser
45				260					265					270		
	Gln	Arg	Pro	Ser	Met	Glu	Glu	Ile	Val	Lys	Ile	Met	Thr	His	Leu	Met
			275					280					285			
50	Arg	Tyr	Phe	Pro	Gly	Ala .	Asp	Glu	Pro	Leu	Gln	Tyr	Pro	Cys	Gln	Tyr
,		290					295					300				

	Sei	r As	p Gl	u Gl	y Gl	n Se	r As:	n Se	r Al	a Tn	r Se	r Th	r Gl	y Se	r Ph	e Me
5	305	5				31	o				31	5				32
	Asp	11	e Ala	a Se	Th	r Ası	1 Th	r Se	r Asi	n Ly	s Se	r As	p Th	r As	n Me	t Glı
					325	5				33	0				33	5
10	Gln	Va.	1 Pro	Ala	Thi	Asr	As _ī	Thi	r I16	e Ly	s Ar	g Le	u Gli	ı Se	r Ly:	s Lei
				340)				345	5				350	כ	
45	Leu	Ly	s Asr	Glr	Ala	Lys	Glr	Glr	ı Ser	Glu	ı Sei	r G1	y Arg	, Le	ı Sei	r Leu
15			355	i				360)				365	•		
	Gly	Ala	a Ser	His	Gly	Ser	Ser	Val	Glu	Ser	Let	Pro	Pro	Thr	Ser	Glu
20		370)				375					380)			
	Gly	Lys	Arg	Met	Ser	Ala	Asp	Met	Ser	Glu	Ile	Glu	. Ala	Arg	; Ile	Ala
	385					390					395	i				400
25	Ala	Thr	Thr	Gly	Asn	Gly	Gln	Pro	Arg	Arg	Arg	Ser	Ile	Gln	Asp	Leu
					405					410					415	
30	Thr	Val	Thr	Gly	Thr	Glu	Pro	Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	Ser
				420					425					430		
	Pro	Ser	Val	Arg	Met	Ile	Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	Pro
35			435					440					445			
	Thr	Arg	Ser	His	Pro	Trp	Thr	Pro	Asp	Asp	Ser	Thr	Asp	Thr	Asn	Gly
10		450				,	455					460				
		Asp	Asn	Ser	Ile	Pro	Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	Leu
	465					470					475					480
15	Gln	Pro	Leu	Ala	Pro	Cys	Pro	Asn	Ser	Lys	Glu	Ser	Met	Ala	Va1	Phe
					485					490					495	
50	Glu	Gln			Lys	Met	Ala	Gln	Glu	Tyr	Met	Lys	Val	Gln	Thr	Glu
				500					505					510		

Ile Ala Leu Leu Cln Arg Lys Gin GTu Leo Val Ala Glu Leu Asp 515 520 525 Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu Val Gln Glu His 530 535 540 10 Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser Thr Tyr Tyr Gln Gln 545 550 555 560 Cys Lys Lys Gln Leu Glu Val Ile Arg Ser Gln Gln Gln Lys Arg Gln 15 565 570 575 Gly Thr Ser

20

Claims

25

- A polypeptide having a kinase activity that is activated by transforming growth factor (TGF)-β, said polypeptide comprising an amino acid sequence from Ser at position 23 to Ser at position 579 set forth in SEQ ID NO: 5.
- A polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Met at position 1 to Ser at position 579 set forth in SEQ ID NO: 5.
 - 3. DNA encoding a polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Ser at position 23 to Ser at position 579 set forth in SEQ ID NO: 5.
- 35 4. DNA according to claim 3 having a nucleotide sequence from T at position 249 to A at position 1919 set forth in SEQ ID NO: 5.
 - 5. DNA encoding a polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Met at position 1 to Ser at position 579 set forth in SEQ ID NO: 5.
 - 6. DNA according to claim 5 having a nucleotide sequence from A at position 183 to A at position 1919 set forth in SEQ ID NO: 5.
 - 7. A vector comprising DNA according to any of claims 3 to 6.

5

- 8. A host cell transformed with a vector comprising DNA according to any of claims 3 to 6.
- 9. A method for producing a polypeptide having a kinase activity that is activated by TGF-β, which method comprises culturing a host cell transformed with a vector comprising DNA according to any of claims 3 to 6 and then recovering the product from the culture.
- 10. A polypeptide having a kinase activity that is activated by TGF-β, said polypeptide being produced by the method according to claim 9.
- 55 11. A kinase that is activated by TGF-β, said kinase comprising an amino acid sequence from Ser at position 23 to Ser at position 579 set forth in SEQ ID NO: 5.
 - 12. A fusion protein of a protein according to any of claims 1, 2, 10, and 11, and another protein.

Fig.2

__ CONTROL

TGF β30ng/ml ADDED

Fig.3

Fig.4

Fig.5

1 * ATGTCTACAGCCICTGCGCCTCCTCCTCCTCGTCTTCGGCCGGTGAGATGATCGAA **** ******************************	1" ATGTCGACAGCCTCGCCGCCTCGTCCTCCTCGTCTTCTGCCAGTGAGATGAACGAA	61 'GCCCCTTCCCAGGTCCTCAACTTTGAAGAGATCGACTACAAGGAGATCGAGGTGGAAGAG ** ** ** ** ****** **** **** ***	61" GCGCCGTCGCAGGTCCTGAACTTCGAAGAGATCGACTACAAGGAGATCGAGGTGGAAGAG	. GITGTTGGAAGAGGAGCCTTTGGAGTTGTTTGCAAAGCTAAGTGGAGAGCAAAAGATGTT ***** ********* ******* ****** ********	." GTTGTCGGAAGAGGAGCTTTTGGAGTAGTTTGCAAAGCTAAGTGGAGAGCAAAAGATGTC	181' GCTATTAAACAAATAGAAAGTGAATCTGAGAGAAAGCGTTTATTGTAGAGCTTCGGCAG	_	.' TTATCCCGTGTGAACCATCCTAATATTGTAAAGCTTTATGGAGCCTGCTTGAATCCAGTG	241" TTGTCGCGTGTGAACCATCCTAACATTGTCAAGTTGTACGGAGCCTGCCT	' TGTCTTGTGAATATGCTGAAGGGGGCTCTTTATATATGTGCTGCTGCATGCTGCTGAA
-		61	61	121	121"	181	181"	241'	241	301'

301" TGTCTTGTGATGGAATATGCAGAGGGGGCCTCATTGTATAATGTGCTGCATGGTGCTGAA

F.a.6

361'	CCATTGCCATATTATACTGCTGCCCACGCAATGAGTTGGTGTTTACAGTGTTCCCAAGGA
361"	~
421'	GTGGCTTATCTTCACAGCATGCAACCCAAAGCGCTAATTCACAGGGACCTGAAACCACCA ****** ** ** ** ** ** ***
421"	421" GTGGCTTACCTGCACAGCATGCAGCCCCAAAGCGCTGATTCACAGGGACCTCAAGCCTCCA
481	AACTTACTGCTGGTTGCAGGGGGGGACAGTTCTAAAATTTTGTGATTTTTGGTACAGCCTGT
481"	
541	GACATTCAGACACATGACCAATAACAAGGGGAGTGCTGCTTGGATGGCACCTGAAGTT **** ** ************** ** ** ********
541"	GACATCCAAACACACATGACCAATAATAAAGGGAGTGCTGCTTGGATGGCGCCTGAAGTG
601	TITGAAGGTAGTAATTACAGTGAAAATGTGACGTCTTCAGCTGGGGTATTATTCTTTGG ********* ****** ********* ***** ******
601"	-

Fig.7

961" GACATIGCTICIACAAATACCAGTAATAAAAGTGACACAAATATGGAACAGGTICCTGCC	961"
GACATTGCTTCTACAAATACGAGTAACAAAAGTGACACTAATATGGAGCAAGTTCCTGCC	961
CCTTGTCAGTACTCTGATGAAGGGCAGAGCAACTCAGCCACCAGCACAGGCTCGTTCATG	901"
CCTTGTCAGTATTCAGATGAAGGACAGCAACTCTGCCACCAGTACAGGCTCATTCAT	901
841" GTGAAATAATGACTCACTIGATGCGGTACTTCCCAGGAGCGGATGAGCCATTACAGTAT	841"
GIGAAAATAATGACTCACTTGATGCGGTACTTTCCAGGAGCAGATGAGCCATTACAGTAT	841
AGCTTGATGACACGCTGTTGGTCTAAGGACCCATCTCAGCGCCCTTCAATGGAGGAAATT	781"
AGCCTGAIGACTCGTTGTTGGTCTAAAGATCCTTCCCAGCGCCCTTCAATGGAGGAAATT	781'
TGGGCTGTTCATAATGGCACTCGACCACTGATCAAAAATTTACCTAAGCCCATTGAG	721"
TGGGCTGTTCATAATGGTACTCGACCACCACTGATAAAAAATTTACCTAAGCCCATTGAG	721'
GAAGTGATAACACGCCGGAAACCCTTCGATGAGATCGGTGGCCCAGCTTTCAGAATCATG	661"
GAAGTGATAACGCGTCGGAAACCCTTTGATGAGATTGGTGGCCCAGCTTTCCGAATCATG	661 '

F. 0.8

1021	ACAAATGATACTATTAAGCGCTTAGAATCAAAATTGTTGAAAAATCAGGCAAAGCAACAG
1021"	•
1081'	
1081"	
1141'	
1141"	•
1201'	GCAACCACAGGCAACGACAGCCAAGACGTAGATCCATCCA
1201"	1201" GCGACTGCAGGTAACGGGCAACCAAGGCGTAGATCCATCC
1261'	ACAGAACCTGGTCAGGTGAGCAGTAGGTCATCCAGTCCCAGTGTCAGAATGATTACTACCACTACCAGAACAA**********
1261"	. •
1321'	TCAGGACCAACCTCAGAAAAGCCAACTCGAAGTCATCCATGGACCCCTGATGATTCCACA
1321"	1321" TCAGGACCAACCTCAGAGAAGCCAGCTCGCAGTCACCCCATGGACCCCTGATGATTCCACA

Fig.9

1381" GACACCAATGGCTCAGATAACTCCAATGGCGTATCTTACACTGGATCACCAGCTA 1441' CAGCCTCTAGCACCGTGCCCAAACTCCAAGAATCTATGGCAGTGTTTGAACAGCATTGT **********************************
--

Fig.10

- - -	1 'MSTASAASSSSSSAGEMIEAPSQVLNFEEIDYKEIEVEEVVGRGAFGVVCKAKWRAKDV ************************************
19	AIKQIESESERKAFIVELRQLSRVNHPNIVKLYGACLNPVCLVMEYAEGGSLYNVLHGAE ************************************
61"	
121'	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC
121"	121" PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC
181	DIQTHMINNKGSAAWMAPEVFEGSNYSEKCDVFSWGIILWEVITRRKPFDEIGGPAFRIM ************************************
181"	_
241'	WAVHNGTRPPLIKNLPKPIESLMTRCWSKDPSQRPSMEEIVKIMTHLMRYFPGADEPLQY ************************************

241" WAVHNGTRPPLIKNLPKPIESLMTRCWSKDPSQRPSMEEIVKIMTHLMRYFPGADEPLQY

.:....

F. O. H

301	PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTNMEQVPATNDTIKRLESKLLKNQAKQQ **********************************
301"	
361	SESGRLSLGASHGSSVESLPPTSEGKRMSADMSEIEARIAATTGNGQPRRRSIQDLTVTG
361"	-
421'	TEPGQVSSRSSSPSVRMITTSGPTSEKPTRSHPWTPDDSTDTNGSDNSIPMAYLTLDHQL ************************************
421"	TEPGOVSSRSSSPSVRMITTSGPTSEKPARSHPWTPDDSTDTNGSDNSIPMAYLTLDHQL
481'	QPLAPCPNSKESMAVFEQHCKMAQEYMKVQTEIALLLQRKQELVAELDQDEKDQQNTSRL ************************************
481"	QPLAPCPNSKESMAVFEQHCKMAQEYMKVQTEIALLLQRKQELVAELDQDEKDQQNTSRL
541'	VQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQKRQGTS ************************************
541"	VQEHKKLLDENKSLSTXYQQCKKQLEVIRSQQQKRQGTS

INTERNATIONAL SEARCH REPORT International application No. PCT/JP97/01050 CLASSIFICATION OF SUBJECT MATTER Int. C16 C12N15/54, C12P21/02, C12N9/12, C12N1/21 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int. C16 C12N15/54, C12P21/02, C12N9/12, C12N1/21 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE, BIOSIS, WPI/WPI,L C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category* Relevant to claim No. Science 270 1995 K. Yamaguchi et al. 1 - 12 "Identification of a member of the MAPKKK Family as a potential mediator of TGF-B signal transduction" p. 2008-2011 Hyuga Saito and others "New Molecular Genetics ٧ 12 for Bio-Science (in Japanese) " (Nankodo) 1987 p. 235-236 Cell 80 1995 C.J. Marshall "Specificity of 1 - 12 Α receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation" p. 179-185 Science 265 1994 J.F. Smothers et al. 1 - 12"Stimulatory effects of yeast and mammalian 14-3-3 proteins on the raf protein kinase" p. 1716-1719 Science 241 1988 Steven K. Hanks et al. "The 1 - 12 protein kinase family: conserved features and X Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" cartier document but published on or after the international filing date "I." document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report June 24, 1997 (24. 06. 97) July 8, 1997 (08. 07. 97) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/01050

			P97/01030
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	passages	Relevant to claim No
	deduced phylogeny of the catalytic domain p. 42-52	ıs"	
	Nature 324 1986 Randall K. Saiki et al. "Analysis of enzymatically amplified B-gland HLA-DQq DNA with allete-specific oligonucleotide probes" p. 163-166	obin	1 - 12
	•		
		į	
-			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

SUPPLEMENTARY EUROPEAN SEARCH REPORT

Application Number EP 97 90 8525

	DOCUMENTS CONSIDER	tion where appropriate.	Relevant	CLASSIFICATION OF THE
Т	Citation of document with indica of relevant passages SAKURAI, H. ET AL.: Kinase 1 Stimulates Ni by an NF-kappaB-Induction of the second of t	TGF-beta-Activated F-kappaB Activation ing chanism" YSICAL RESEARCH 8-02-13), pages	Relevant to claim	C12N15/54 C12P21/02 C12N9/12 C12N1/21
	r page 545, column 1, line 14 * * page 546, column 1, line 11 * * page 547; figure 14	line 60 - column 2,		TECHNICAL FIELDS SEARCHED (Int.Cl.6) C12N C12P
	The supplementary search reporest of claims valid and available	t has been based on the last at the start of the search. Date of completion of the sear	th .	Examiner
_ ا	Place of search	22 February 20		Fuchs, U
夏 人	BERLIN CATEGORY OF CITED DOCUMENTS particularly relevant if taken alone particularly relevant if combined with anot document of the same category technological background	T : theory or print is an artist pate after the fair b. document c. document c. document c. document c.	inciple underlying nt document, but ig date lited in the applic ited for other rea	g the invention published on, or cation

CLAIMS

1. A polypeptide having a kinase activity that is activated by transforming growth factor (TGF)-β, said polypeptide comprising an amino acid sequence from Ser at position 23 to Ser at position 579 set forth in SEQ ID NO: 5.

5

10

15

20

25

- 2. A polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Met at position to Ser at position forth in SEQ ID NO: 5)
- 3. DNA encoding a polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Ser at position 23 to Ser at position 579 set forth in SEQ ID NO: 5,
- 4. DNA according to claim 3 having a nucleotide sequence from T at position 249 to A at position 1919 set forth in SEQ ID NO: 5.
- 5. DNA encoding a polypeptide having a kinase activity that is activated by TGF-β, said polypeptide comprising an amino acid sequence from Met at position 1 to Ser at position 579 set forth in SEQ ID NO: 5
- 6. DNA according to claim 5 having a nucleotide sequence from A at position (183) to A at position (1919) set forth in SEQ ID NO: 5.
- 7. A vector comprising DNA according to any of claims 3 to 6.
- A host cell transformed with a vector comprising DNA according to any of claims 3 to 6.
- 9. A method for producing a polypeptide having a kinase activity that is activated by TGF-β, which method comprises culturing a host cell transformed with a vector comprising DNA according to any of claims 3 to 6 and then recovering the product from the culture.
- 10. A polypeptide having a kinase activity that is activated by TGF-β, said polypeptide being produced by the method according to claim 9.
 - 11. A kinase that is activated by $TGF-\beta$, said

- 32 -

kinase comprising an amino acid sequence from Ser at position 30 to Ser at position 79 set forth in SEO ID NO: 5)

12. A fusion protein of a protein according to any of claims 1, 2, 10, and 11, and another protein.

ABSTRACT

A TGF-β-activated kinase comprising an amino acid sequence from Met at position 1 to Ser at position 579 in the amino acid sequence as set forth set forth in SEQ ID NO: 5, and DNA encoding the kinase.