

Madiba Hudson-Quansah

CONTENTS

CHAPTER 1	Paths and Curves	PAGE 2
1.1	Parametrizations	2
1.2	Velocity, Acceleration, Speed and Arc Length	3

Chapter 1

Paths and Curves

Describing curves in \mathbb{R}^n space, formally does not involve a defining equation which is intuitive in \mathbb{R}^2 and \mathbb{R}^3 but rather by how it it swept out like the trace of a skywriter. Thus the characteristics of a curve are not only given by its length, but also by the tracer's velocity and acceleration.

1.1 Parametrizations

Definition 1.1.1: Path

Let *I* be an interval of real numbers, typically I = [a, b], (a, b) or \mathbb{R} . A continuous function $\alpha : I \to \mathbb{R}^n$, is called a **path**. As *t* varies over *I*, α (*t*) traces out a **curve**, *C*, i.e.

$$C = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \alpha(t) \; \exists t \in I \}$$

This is also called the **image** of α , we then say that α **parametrizes** the curve C. We often refer to the input variable t as the **time** and $\alpha(t)$ as the **position** of a moving object at time t.

A path is a vector valued function of one variable, i.e. t. For each t in I, $\alpha(t)$ is a point in \mathbb{R}^n , so can be written $\alpha(t) = (x_1(t), x_2(t), \dots x_n(t))$, where each of the n coordinates is a real number that depends on t.

Example 1.1.1 (Circles in \mathbb{R}^2)

I.e. $x^2 + y^2 = a^2$, where a is the radius of the circle. This can be rewritten:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$

To parametrize a circle we use the identity $\cos^2 t + \sin^2 t = 1$, and let $\frac{x}{a} = \cos(t)$ and $\frac{y}{a} = \sin(t)$, or $x = a\cos(t)$ and $y = a\sin(t)$, Thus we have the parametrization:

$$\alpha(t) = (a\cos(t), a\sin(t)), a > 0, t \in \mathbb{R}$$

Example 1.1.2 (Graphs of y = f(x))

Consider the curve described by $y = \sin(x)$ in \mathbb{R}^2 , where $0 \le x \le \pi$, it consists of points of the form $(x, \sin(x))$, where x varies over the interval $[0, \pi]$. x can be used as a parameter, thus we can write the parametrization as:

$$\alpha(x) = (x, \sin(x))$$

1.2 Velocity, Acceleration, Speed and Arc Length

Definition 1.2.1: Derivative of a path

Given a path $\alpha: I \to \mathbb{R}^n$, the **derivative** of α is defined by

$$\alpha'(t) = \lim_{h \to 0} \frac{\alpha(t+h) - \alpha(t)}{h}$$

$$= \lim_{h \to -0} \left(\frac{1}{h} \left((x_1(t+h), x_2(t+h), \dots, x_n(t+h)) - (x_1(t), x_2(t), \dots, x_n(t)) \right) \right)$$

$$= \lim_{h \to 0} \left(\frac{x_1(t+h) - x_1(t)}{h}, \frac{x_2(t+h) - x_2(t)}{h}, \dots, \frac{x_n(t+h) - x_n(t)}{h} \right)$$

$$= (x_1'(t), x_2'(t), \dots, x_n'(t))$$

Provided the limit exists. The derivative is also called the **velocity** ($\mathbf{v}(t)$) of α . And thus α'' is the **acceleration** ($\mathbf{a}(t)$) of α .

For some time t_0 , and for any time t, let s(t) be the distance travelled by the path from $\alpha(t_0)$ to $\alpha(t)$, s(t) is called the **arclength** function and the magnitude of it's derivative is the speed.

Definition 1.2.2: Speed

If $\alpha: I \to \mathbb{R}^n$ is a differentiable path, then its speed, denoted by v(t), is defined:

$$v\left(t\right) = \left\|\mathbf{v}\left(t\right)\right\|$$

Where v(t) is a scalar quantity.

Definition 1.2.3: Arclength

The arclength from t = a to t = b is defined to be

$$s(t) = \int_{a}^{b} v(t) dt = \int_{a}^{b} \|\mathbf{v}(t)\| dt$$