Berechnungen und Logik Hausaufgabenserie 10

Henri Heyden, Nike Pulow

stu240825, stu239549

HA 1

Vorberechnung:

Um beide Beweise etwas kürzer zu machen, führen wir eine Resolution durch von Φ , da wir in a) und b) genau die gleichen Schritte nochmal sonst machen würden nur mit noch eingefügten Formeln.

Voraussetzung	$\{X_0\}$	1
Voraussetzung	$\{\neg X_0, X_1\}$	2
Resolution mit X_0 aus 1 und 2	$\{X_1\}$	3
Voraussetzung	$\{\neg X_1, X_3\}$	4
Resolution mit X_1 aus 3 und 4	$\{X_3\}$	5
Voraussetzung	$\{\neg X_2, X_4\}$	6
Voraussetzung	$\{\neg X_4, X_3\}$	7
Resolution mit X_4 aus 6 und 7	$\{\neg X_2, X_3\}$	8
Voraussetzung	$\{\neg X_4, X_2\}$	9
Resolution mit X_2 aus 8 und 9	$\{\neg X_4, X_3\}$	10

Es bleibt nur noch die Klauselmenge $\{\{X_3\}, \{\neg X_4, X_3\}\}$. Beobachte: $\bigwedge \bigvee \{\{X_3\}, \{\neg X_4, X_3\}\} \models \exists \bigwedge \bigvee \{\{X_3\}\}$ aufgrund der Konjunktion.

a)

Wir wenden alle Resolutionsschritte und die Umformung zuletzt auf $\Phi \cup \{\neg X_3\}$ an, und erhalten $\bigwedge \bigvee \{\{X_3\}, \{\neg X_3\}\} \vDash \bot$. Nach Lemma ist $\Phi \vDash X_3$ gezeigt.

b)

Wir wenden alle Resolutionsschritte und die Umformung zuletzt auf $\Phi \cup \{\neg X_4\}$ an, und erhalten $\bigwedge \bigvee \{\{X_3\}, \{\neg X_4\}\}$ also $X_3 \wedge X_4$.

Da keine Resolutionsschritte mehr anwendbar sind

und offenbar nicht $X_3 \land \neg X_4 \vDash \bot$ gilt (Siehe Belegung $\beta := \{X_3 \mapsto 1, X_4 \mapsto 0\}$), können wir nicht schlussfolgern $\Phi \vDash X_4$, jedoch da das Resolutionskalkül vollständig ist, können wir $\Phi \vDash X_4$ ausschließen.

HA 2

a)

 t_1 ist S-Term, hier werden alle Formalismen für die Signatur S eingehalten.

 t_2 ist nicht S-Term, wir haben \doteq so definiert, dass links und rechts S-Terme stehen, was auch stimmt, jedoch ergibt dieser entstehende Baum eine S-Formel, kein S-Term.

 t_3 ist nicht S-Term, wir schreiben Variablen hier klein und nicht groß, also ist X_0 nicht UnterS-term.

 t_4 ist nicht S-Term, da T Relation ist, Relationen dürfen nicht in S-Termen vorkommen.

b)

 φ_1 ist nicht S-Formel, da T(c) Formel ist und nicht S-Term.

 φ_2 ist nicht S-Formel, da rechts von " \doteq " kein S-Term steht.

 φ_3 ist nicht S-Formel, da die Variable x_0 nicht S-Formel ist.

 φ_4 ist nicht S-Formel, da links von dem Junktor " \wedge " ein S-Term steht und nicht eine S-Formel.

HA 3

i = 0

Definiere für die Struktur A_0 das Universum $A_0 := \{\text{in, out, 1, 2, 3}\}.$

Definiere $E := \{(in, 2), (2, 3), (3, out), (3, 1), (1, 2)\}.$

Dann gilt $E \subseteq A_0^2$, des Weiteren hat jede Konstante aus S ein Komplement in A_0 . Somit ist A_0 S-Struktur und A_0 modelliert den Graph G_0 .

i = 1

Definiere für die Struktur A_1 das Universum $A_1 := \{\text{in, out, 1, 2, 3, 4, 5}\}.$ Definiere $E := \{(\text{in, 2}), (2, 3), (3, 4), (4, 2), (4, 5), (5, 4), (1, 2), (1, 5), (5, \text{out)}\}.$ Dann gilt $E \subseteq A_1^2$, des Weiteren hat jede Konstante aus S ein Komplement in A_1 . Somit ist A_1 S-Struktur und A_1 modelliert den Graph G_1 .

i = 2

Definiere für die Struktur A_2 das Universum $A_2 := \{in, out, ..., 1, 2, 3\}$. Definiere $E := \{(in, 1), (1, out), (1, 2), (2, 3), (3, ...), (1, 1), (2, 2), (3, 3)\}.$ Dann gilt $E \subseteq A_2^2$, des Weiteren hat jede Konstante aus S ein Komplement in A_2 . Somit ist A_2 S-Struktur und A_2 modelliert den Graph G_2 .

HA 4

i = 1

Für $\llbracket \varphi \rrbracket_{\beta}^{\mathcal{A}_{1,0}} = 0$ definiere $\mathcal{A}_{1,0}$ wie folgt:

Das Universum $A = \mathbb{N}_0$, die Konstante $c^{A_{1,0}} = 0$, die Funktion $f^{A_{1,0}}(x) = x \cdot c$, für alle $x \in A$, sowie die Relation $R^{A_{1,0}} = \langle$.

Für $[\![\varphi]\!]_{\beta}^{\mathcal{A}_{1,1}} = 1$ definiere $\mathcal{A}_{1,1}$ wie folgt: Das Universum $A = \mathbb{N}_0$, die Konstante $c^{\mathcal{A}_{1,1}} = 1$, die Funktion $f^{\mathcal{A}_{1,1}}(x) = x + c$, für alle $x \in A$ sowie die Relation $R^{A_{1,1}} = <$.

i = 2

Für $\llbracket \varphi \rrbracket_{\beta}^{\mathcal{A}_{2,0}} = 0$ definiere $\mathcal{A}_{2,0}$ wie folgt:

Das Universum $A = \{1, 2\}$, die Konstante $c^{A_{2,0}} = 1$, die Funktion $f^{A_{2,0}}(x) = 1$, für alle $x \in A$, sowie die Relation $R^{A_{2,0}} = -1$.

Für $\llbracket \varphi \rrbracket_{\beta}^{\mathcal{A}_{2,1}} = 1$ definiere $\mathcal{A}_{2,1}$ wie folgt:

Das Universum $A = \{1\}$, die Konstante $c^{A_{2,1}} = 0$, die Funktion $f^{A_{2,1}}(x) = 1$, für alle $x \in A$, sowie die Relation $R^{A_{2,1}} = =$.