

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA INFORMÁTICA REDES DE COMPUTADORES I

Detecção de Erros - CRC

Grupo Docente:

- Eng°. Felizardo Munguambe (Ms.C)
- Eng°. Délcio Chadreca (Ms.C)

Tópicos da Aula

- ► Introdução;
- ► Função de Detecção de erros;
- ► CRC;
- ► Algoritmo de Cálculo;
- Polinómios geradores mais usados; e
- ► Conclusão;

Introdução

A camada de ligação de dados, é responsável por pegar nos pacotes de dados recebidos da camada de Rede e os transformar em quadros que irão trafegar pela rede. Esta camada adiciona informações como:

- Endereço da placa de rede de origem;
- Endereço da placa de rede de destino;
- Dados de controle;
- Dados; e
- CRC;

• (...)

Endereço	Endereço	Informação	Dados	CRC
de destino	de origem	de controle		

Na figura, nós vemos um exemplo hipotético de um pacote de dados.

Função de Detecção de erros

Conforme foi introduzido anteriormente, encapsulamento da trama/quadro inclui um campo de detecção de erros designado CRC (Cyclical Redundancy Check) ou FCS (Frame Check Sequence). Sempre que é criada uma trama, é adicionado é adicionado um código de detecção de erros ao cabeçalho. Quando a trama é recebida, o receptor aplica o código de detecção de erros à trama para verificar se ocorreram erros durante a transmissão. O processo é aplicado ao longo da ligação em todas as redes.

CRC (Cyclical Redundancy Check)

A placa de rede, ao colocar um pacote de dados no cabo de rede, faz uma conta denominada CRC (*Cyclical Redundancy Check*). Essa conta consiste em somar todos os *bytes* presentes no pacote de dados e enviar o resultado dentro do próprio pacote. A placa de rede do dispositivo receptor irá refazer os cálculos e verificar se o resultado calculado corresponde ao valor enviado pelo dispositivo transmissor.

cont.

Se os valores forem iguais, significa que o pacote chegou íntegro ao seu destino. Caso contrário, significa que houve algo de errado na transmissão (uma interferência no cabo, por exemplo) e os dados recebidos são diferentes dos originalmente enviados, ou seja, os dados chegaram corrompidos ao destino. Nesse caso, o dispositivo receptor pede ao transmissor uma retransmissão do pacote defeituoso.

Cálculo de CRC

O cálculo do CRC é subdividido em duas etapas:

- Cálculo antes do envio dos dados (Pelo Transmissor); e
- Cálculo de confirmação na recepção de dados (Pelo Receptor);

Este método de detecção de erros adiciona *bits* de detecção de erros sobre o cabeçalho do quadro.

O CRC interpreta dados como um polinómio, por exemplo, os dados 10110 são representados pelo polinómio $x^4+x^2+x^1$. (Repare que os pesos dos bits a 1 são 4, 2 e 1, usados como potências dos polinómios)

Os Dados (quadro) a serem transmitidos são n bits.

• Polinómio de **n** termos, xⁿ⁻¹ até x⁰

- D(x) é a função que representa a sequência de *bits* de dados que o emissor pretende enviar para o receptor.
- G(x), representa um padrão de bits conhecido pelo emissor e pelo receptor dos dados. É fundamental para o cálculo do CRC.
- R(x), representa a sequência de bits que deve ser anexada sobre os dados entes do envio. A função R(x) representa o código CRC.
- T(x), função que representa a mensagem com o CRC incorporado.

Algoritmo de Cálculo

Passo 01: Multiplicar a função D(x) por x^r.

- Onde: x^r , representa o termo de maior expoente do gerador (da função G(x))
- $\mathbf{D}'(\mathbf{x}) = \mathbf{D}(\mathbf{x}) * \mathbf{x}^{\mathrm{r}}$.

Passo 02: Dividir $\mathbf{D}'(\mathbf{x})$ por $\mathbf{G}(\mathbf{x})$.

Passo 03: Encontrar o CRC ($\mathbf{R}(\mathbf{x})$), $\mathbf{R}(\mathbf{x})$ é o resto da divisão (Divisão do passo anterior);

Passo 04: Compor T(x): T(x) é resultante da anexação de R(x) sobre a mensagem G(x).

Nota A: Se \mathbf{n} , representa o número de bits de G(x), isto é, do gerador, então, então R(x) dene possuir $\mathbf{n-1}$ bits.

Exemplo

Existem fundamentalmente dois modos de implementar o algoritmo de resolução apresentado anteriormente.

- Modo A: Uso de códigos polinomiais;
- Modo B: Uso de números binários;

Exercício: O emissor deseja envia um quadro com a seguinte sequência de *bits*: **1101011011**. Calcule o Código CRC e determine a sequêcia de *bits* que será enviada sabendo que o Código gerador é **10011**.

Resolução (Cálculos no Emissor)

Dados:

Quadro: 1101011011, logo $D(x) = x^9 + x^8 + x^6 + x^4 + x^3 + x^1 + x^0 = x^9 + x^8 + x^6 + x^4 + x^3 + x + 1$.

Gerador: 10011. $G(x) = x^4 + x + 1$.

 $x^r = x^4$.

Resolução:

Passo 01: D'(x) = $D(x)*x^r = (x^9 + x^8 + x^6 + x^4 + x^3 + x + 1)*(x^4) = x^{13} + x^{12} + x^{10} + x^8 + x^7 + x^5 + x^4 \text{ ou } (11010110110000)$

Passo 02:

Ou, pelo Modo B.

X	\mathbf{y}	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

Nota: Ao invés de fazer a subtração entre os números, usa-se a operação de OR exclusico

Passo 03:

 $R(x) = x^3 + x^2 + x$; em binário: **1110.**

Passo 04: T(x) = D(x)R(x). = $x^{13}+x^{12}+x^{10}+x^8+x^7+x^5+x^4+x^3+x^2+x$ (110101111110)

Cálculo no Receptor

Depois do cálculo do CRC, cujos bits foram **1110**, o emissor envia os *bits* de dados juntamente com os *bits* de CRC.

O receptor utiliza os *bits* enviados [T(x)=1101011111110] e divide-os pelo gerador [G(x)].

• Se o resultado da operação de divisão tiver resto zero [R(x)=0], significa que os dados foram enviados sem erros. Caso contrário, houve algum erro durante a transmissão dos dados.

$$x^{13}+x^{12}+x^{10}+x^8+x^7+x^5+x^4+x^3+x^2+x$$
 x^4+x+1

Polinómios geradores mais usados

$$\mathbf{CRC-12} - \mathbf{x}^{12} + \mathbf{x}^{11} + \mathbf{x}^3 + \mathbf{x}^2 + \mathbf{x} + 1$$

$$\mathbf{CRC-16} - \mathbf{x}^{16} + \mathbf{x}^{15} + \mathbf{x}^{2} + 1$$

$$\mathbf{CRC\text{-}CCITT} - x^{16} + x^{15} + x^{5} + 1$$

$$\mathbf{CRC}$$
-32 $-x^{32}+x^{26}+x^{23}+x^2+x^{22}+x^{16}+x^{12}+x^2+x^{16}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^3+x^2+x^2+x^{11}+x^{10}+$

Outros métodos de detecção de erros

Fora o CRC, existem outros métodos usados na camada de Enlace de dados que são usados para detectar erros, nomeadamente:

- Cálculo de Paridade;
- Calculo de Paridade Bidimensional;
- Soma de verificação (checksum);

Conclusão

Actualmente, a maioria das soluções de comunicação retiraram o processo de verificação de erros no nível de ligação de dados e passaram a verificar os erros apenas no destino final. Quer isso dizer que a responsabilidade da detecção de erros passa para as camadas de erro e aplicação. O objectivo é aplicar o processo apenas uma vez, reduzindo o tempo de processamento para a detecção de erros ao longo de toda a rede. Esta opção deve-se a maior fiabilidade das redes actuais.

Exercícios

- 1. Diga de que forma o CRC é implementado (via Hardware ou Software).
- 2. Encontre o código CRC para os seguintes casos, e confirme o calculo com base na verificação no receptor.
 - a) Quadro: 111100101 e Gerador: 101101;
 - b) Trama: 1010111011 e Gerador: 10011; (Pelo Modo B)
 - c) $D(x)=x^8+x^5+x^2+x+1$, $G(x)=x^3+x^2+1$; (Pelo Modo B)

Bibliografia consultada

- →Barrett, D., & King, T. (2010). *Redes de Computadores*. Rio de Janeiro: LTC Livros Técnicos e Científicos Editora.
- →Boavida, F., Bernardes, M., & Vapi, P. (2011). *Administração de Redes de Informáticas*. Lisboa: FCA Editora de Informática, LDA.
- →Leon-Garcia, A., & Widjaja, I. (2001). *Communication Networkd Fundamental Concepts and Key Architectures*. The McGraw-Hill Campanies.
- →Peterson, L. L., & Davie, B. S. (2011). *Computer Networks: a systems approach*. San Francisco: Morgan Kufmann.
- → Tanenbaum, A. S., & Wetherall, D. J. (2011). *Computer Networks* . Boston,: Pearson Education, Inc.,.
- →Torres, G. (2001). Redes de Compotadores Curso Completo. Axcel Books do Brasil Editora.
- →Véstias, M. (2009). *Redes Cisco Para profissionais*. Lisboa: FCA Editora de Informática, LDA.

OBRIGADO!!!