• Depletion Load:

- $ightharpoonup M_2$ is depletion mode, having negative V_{TN0} (denoted by V_{TD0})
- \triangleright With V_o , V_{TD2} changes
- \triangleright Maximum V_o desired = V_{DD}
- This is also the maximum back bias of M₂

Circuit Schematic

- $> M_2$ has GS short $\Rightarrow V_{GS2} = 0$
- Fiven with $V_o = V_{SB2}(max) = V_{DD}$, V_{TD2} should remain negative with a cushion of at least 100 mV
 - $\Rightarrow V_{TD2}$ with $V_{SB2} = V_{DD}$ should be -100 mV
 - $\Rightarrow V_{TD0}$ should be chosen based on this
- \triangleright Now, $V_{DS2}(min) = V_{DD} V_o(max) = 0$
- \triangleright Under this condition, $V_{GS2} V_{TD2} = \Delta V_2 = 100$
 - $\Rightarrow M_2$ is in the linear region (since $V_{DS2} < \Delta V_2$)

- This has to be lived with, and slight distortion would appear at the output as $V_o \rightarrow V_{DD}$
- For best biasing, $V_{0Q} = V_{DD}/2$ \Rightarrow Fixes the DC operating point
- \triangleright Before doing ac analysis, let's investigate M_2 :

ac Midband Equivalent of M₂

Simplified Equivalent

- > Thus, the *complete equivalent*:
- > By inspection:

$$A_{v} = \frac{v_{o}}{v_{i}} = -g_{m1} (r_{01} || R_{eff})$$

$$= -\frac{g_{m1}}{g_{mb2} + g_{01} + g_{02}}$$

$$v_{i}$$

$$v_{gs1}$$

$$v_{gs1}$$

$$v_{gs1}$$

➤ Now, in general,

Complete Equivalent

$$g_{mb2} >> (g_{01} + g_{02})$$

$$\Rightarrow A_{v} \approx -\frac{g_{m1}}{g_{mb2}} = -\frac{g_{m1}}{\chi_{2}g_{m2}} = -\frac{1}{\chi_{2}} \sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}}$$

$$\chi_2 = \frac{\gamma}{2\sqrt{2\phi_F + V_{DD}/2}} < 1$$

- ⇒ *Improvement* as compared to previous stage
- Now, if M_2 can be put in its *separate island*, then S_2 and B_2 can be connected together

$$\Rightarrow v_{sb2} = 0 \Rightarrow g_{mb2}v_{sb2} = 0$$

$$\Rightarrow A_{v} = -\frac{g_{m1}}{g_{01} + g_{02}}$$

 Can be very large (a magnitude greater than 100 is possible)

- $ightharpoonup R_0 = (g_{mb2} + g_{01} + g_{02})^{-1}$ (with body effect)
- $ightharpoonup R_0 = (g_{01} + g_{02})^{-1}$ (without body effect)
- \triangleright The latter case produces very high R_0
- Thus, this circuit produces *much superior performance* as compared to the *saturated enhancement load*, in terms of:
 - Rail-to-rail swing
 - With island technology:
 - \bullet Very large A_v and R_0
 - Without island technogy:
 - \bigstar Moderate A_v and R_θ

- Complementary PMOS Load:
 - ➤ Also known as *CMOS Gain Stage*
 - CMOS (Complementary MOS: Having both NMOS and PMOS in the circuit)
 - The Ultimate: Much superior performance and outclasses all other gain stages
 - > Widely used
 - \rightarrow High A_v and R_0
 - Easy to bias and easy to operate
 - > Design also extremely simple
 - > Doesn't produce any anomalies

 r_{02} r_{02} r_{02} r_{02} r_{02} r_{02} r_{01} r_{01} r_{01}

Circuit Schematic

ac Midband Equivalent

- \succ M_1 body connected to ground, M_2 - M_3 bodies connected to V_{DD}
 - No body effect problem for any of the devices (biggest advantage of this circuit)