Proofs of Theorems A

495

497

501

502

503

504

Theorem 1. Given a multi-view dataset \mathcal{D} , and let $\mathcal{S} \subset \mathcal{D}$ be a set of ψ sampled points. For each point $\mathbf{s}^v \in \mathcal{S}^v$, let $\theta(\mathbf{s}^v)$ denote the neighborhood generated by s^v , and $\mathcal{R}(s^v)$ denote the set of all normal instances from \mathcal{D} that within $\theta(\mathbf{s}^v)$ in view v. Then, for any two views v_1 and v_2 of \mathcal{D} , $\mathcal{R}(\mathbf{s}^{v_1})$ and $\mathcal{R}(\mathbf{s}^{v_2})$ contain essentially the same instances, i.e.,

$$\mathbb{E}[|\mathcal{R}(\mathbf{s}^{v_1})|] \simeq \mathbb{E}[|\mathcal{R}(\mathbf{s}^{v_2})|]$$

where $\mathbb{E}[|\cdot|]$ is the expected number of the set.

Proof. Since normal instances in multi-view data have largely similar neighborhood structures, for any normal instance $x \in \mathcal{D}$, it follows:

$$P(\mathbf{x}^{v_1} \in \theta[\mathbf{s}^{v_1}]) \simeq P(\mathbf{x}^{v_2} \in \theta[\mathbf{s}^{v_2}]).$$

Let $\mathcal{N} \subset \mathcal{D}$ denote the set of normal instances in \mathcal{D} . Then,

$$\mathbb{E}[|\mathcal{R}(\mathbf{s}^{v_1})|] = \sum_{\mathbf{x} \in \mathcal{N}} P(\mathbf{x}^{v_1} \in \theta[\mathbf{s}^{v_1}])$$

$$\simeq \sum_{\mathbf{x} \in \mathcal{N}} P(\mathbf{x}^{v_2} \in \theta[\mathbf{s}^{v_2}])$$

$$= \mathbb{E}[|\mathcal{R}(\mathbf{s}^{v_2})|]$$

This result proves the theorem. 498

> **Theorem 2.** Given two datasets \mathcal{D} and \mathcal{D}' with same number of points observed in view of v, where each point in \mathcal{D} and \mathcal{D}' belongs to a subspace $\mathcal{X} \subseteq \mathbb{R}^d$ and is drawn from probability distributions $\mathcal{P}_{\mathcal{D}}$ and $\mathcal{P}_{\mathcal{D}'}$ defined on \mathbb{R}^d , respectively. Both $\mathcal{P}_{\mathcal{D}}$ and $\mathcal{P}_{\mathcal{D}'}$ are strictly positive on \mathcal{X} . Let $\mathcal{E} \subset \mathcal{X}$ be a region such that for all $\mathbf{x} \in \mathcal{E}$, $\mathcal{P}_{\mathcal{D}}(\mathbf{x}) < \mathcal{P}_{\mathcal{D}'}(\mathbf{x})$, i.e., \mathcal{D} is sparser than \mathcal{D}' in \mathcal{E} . Given two randomly sampled sets $\mathcal{S} \subset \mathcal{D}$ and $\mathcal{S}' \subset \mathcal{D}'$, where $|\mathcal{S}| = |\mathcal{S}'| = \psi$. Assume that there exists a point $\mathbf{s} \in \{S \cap S'\}$. Then, for any $\mathbf{x} \in \mathcal{E}$, the k-nearest neighborhoods function f have the property that

$$P(f(\mathbf{x}; \mathbf{s}_i | \mathcal{S}) = 1) > P(f(\mathbf{x}; \mathbf{s}_i | \mathcal{S}') = 1),$$

where $f(\mathbf{x}; \mathbf{s}_i | \mathcal{S})$ denotes $f(\mathbf{x}^v; \mathbf{s}_i^v)$ based on the radius of \mathbf{s}_i^v 499 calculated through the sample set S^v . For simplicity, we omit 500 the requisite v in most notations.

Proof. Let $\theta[s]$ be the hypersphere centered at s, and y be a point in the ϵ -neighborhood of s, where ϵ is a small positive number such that $y \in \mathcal{E} \cap \theta[s]$. Accordingly,

$$P(f(\mathbf{x}; \mathbf{s}|\mathcal{S}) = 1)$$

$$= P(\mathbf{x} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S}) \times P(\mathbf{s} \in kNN(\mathbf{x}) \mid \mathcal{S})$$

$$= P(\mathbf{x} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S}) \times P(\mathbf{y} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S})$$

$$\times P(\mathbf{s} \in kNN(\mathbf{x}) \mid \mathcal{S})$$

$$= P(\mathbf{x}, \mathbf{y} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S}) \times P(\mathbf{s} \in kNN(\mathbf{x}) \mid \mathcal{S}). \quad (1)$$

Let $\ell_{\mathbf{x}\mathbf{y}}$ denote the Euclidean distance between points \mathbf{x} and y, and let $\mathcal{M}_{\mathcal{D}}(\mathbf{x};r)$ represent the cardinality of the set of points in \mathcal{D} within a radius r centered at \mathbf{x} . Given that $\mathcal{P}_{\mathcal{D}}(w) < \mathcal{P}_{\mathcal{D}'}(w)$ for all $w \in \mathcal{E}$, for any $\mathbf{x} \in \mathcal{E}$, it directly follows that

$$\mathcal{M}_{\mathcal{D}}(\mathbf{x}; \ell_{\mathbf{x}\mathbf{s}}) < \mathcal{M}_{\mathcal{D}'}(\mathbf{x}; \ell_{\mathbf{x}\mathbf{s}}).$$

Since S and S' are random samples from \mathcal{D} and \mathcal{D}' , respectively, the expected number of points from S within a radius $\ell_{\mathbf{x}\mathbf{s}}$ is given by

$$\mathbb{E}(\mathcal{M}_{\mathcal{S}}(\mathbf{x}; \ell_{\mathbf{xs}})) = \frac{|\mathcal{S}|}{|\mathcal{D}|} \mathcal{M}_{\mathcal{D}}(\mathbf{x}; \ell_{\mathbf{xs}}).$$

Consequently,

$$\mathbb{E}(\mathcal{M}_{\mathcal{S}}(\mathbf{x}; \ell_{\mathbf{x}\mathbf{s}})) < \mathbb{E}(\mathcal{M}_{\mathcal{S}'}(\mathbf{x}; \ell_{\mathbf{x}\mathbf{s}})).$$

Now, considering a positive integer k, the probability that s is among the k-nearest neighbors of x, conditioned on the sampled set S, can be expressed as:

$$P(\mathbf{s} \in kNN(\mathbf{x}) \mid \mathcal{S}) \propto \frac{k}{\mathbb{E}(\mathcal{M}_{\mathcal{S}}(\mathbf{x}; \ell_{\mathbf{x}\mathbf{s}}))}$$

Therefore, due to the inverse relationship, we have:

$$P(\mathbf{s} \in kNN(\mathbf{x}) \mid \mathcal{S}) > P(\mathbf{s} \in kNN(\mathbf{x}) \mid \mathcal{S}').$$
 (2)

505

506

507

508

509

510 511

513

515

516

517

518

519

520

521

Moreover, $\mathbf{x}, \mathbf{y} \in \theta[\mathbf{s}]$ if and only if the nearest neighbour of both x and y is s in \mathcal{S} . Let $\tilde{s} \in \mathcal{S}$ be the nearest neighbor of s. Then, $\ell_{s\tilde{s}} > \max(\ell_{xs}, \ell_{ys})$ holds for \tilde{s} the nearest neighbour of s in S. Moreover, the triangular inequality $\ell_{xs} + \ell_{vs} > \ell_{xy}$ holds because ℓ is a metric distance. Accord-

$$P(\mathbf{x}, \mathbf{y} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S} \subset \mathcal{D})$$

$$=P(\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{x}\mathbf{x}} > \ell_{\mathbf{y}\mathbf{s}}\} \land \{\ell_{\mathbf{y}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\}) +$$

$$P(\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{x}\mathbf{x}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\} \land \{\ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}} > \ell_{\mathbf{y}\mathbf{s}}\}) +$$

$$P(\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{y}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{s}}\} \land \{\ell_{\mathbf{x}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{x}\mathbf{s}}\}) +$$

$$P(\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{y}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{x}\mathbf{s}}\} \land \{\ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{x}\mathbf{s}}\}) +$$

$$P(\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{y}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\} \land \{\ell_{\mathbf{y}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\}) +$$

$$2P(\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{x}\mathbf{x}} > \ell_{\mathbf{y}\mathbf{y}}\} \land \{\ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\}) +$$

$$2P(\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{x}\mathbf{x}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\} \land \{\ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\}) +$$

$$(1)$$

subject to the nearest neighbour $s \in \mathcal{S}$ of both x and y. The last equality holds by the symmetry of ℓ_{xs} and ℓ_{ys} .

Given a hypersphere $v(c, \ell_{cs})$ centered at $c \in \mathcal{E}$ and having radius ℓ_{cs} equal to the distance from c to its nearest neighbour $s \in \mathcal{S}$, let $\mathcal{P}(u(c, \ell_{cs}))$ be the probability density of probability mass $u(c, \ell_{cs})$ in $v(c, \ell_{cs})$; $u(c, \ell_{cs}) =$ $\int_{v(c,\ell_{cs})} \mathcal{P}_D(\mathbf{x}) d\mathbf{x}$. Note that $u(c,\ell_{cs})$ is strictly monotonic to ℓ_{cs} if $v(c,\ell_{cs}) \cap \mathcal{X} \neq \emptyset$, since \mathcal{P}_D is strictly positive in \mathcal{X} . Then, the followings are derived.

$$\begin{split} &P\left(\left\{\ell_{\tilde{\mathbf{s}}\tilde{\mathbf{s}}} > \ell_{\mathbf{x}\mathbf{s}} > \ell_{\mathbf{y}\mathbf{s}}\right\} \wedge \left\{\ell_{\mathbf{y}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\right\}\right) \\ &= P\left(\ell_{\tilde{\mathbf{s}}\tilde{\mathbf{s}}} > \ell_{\mathbf{x}\mathbf{s}} > \ell_{\mathbf{y}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{y}}/2\right) \\ &= \int_{u(\mathbf{s},\ell_{\mathbf{x}\mathbf{y}}/2)}^{1} \mathcal{P}(u(\mathbf{s},\ell_{\tilde{\mathbf{s}}\tilde{\mathbf{s}}})) \int_{u(\mathbf{x},\ell_{\mathbf{x}\mathbf{y}}/2)}^{u(\mathbf{x},\ell_{\tilde{\mathbf{s}}\tilde{\mathbf{s}}})} \mathcal{P}(u(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}})) \times \\ &\int_{u(\mathbf{y},\ell_{\mathbf{x}\mathbf{y}}/2)}^{u(\mathbf{y},\ell_{\mathbf{x}\mathbf{s}})} \mathcal{P}(u(\mathbf{y},\ell_{\mathbf{y}\mathbf{s}})) \, du(\mathbf{y},\ell_{\mathbf{y}\mathbf{s}}) \, du(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}}) \, du(\mathbf{s},\ell_{\tilde{\mathbf{s}}\tilde{\mathbf{s}}}) \\ &\approx \int_{u(\mathbf{s},\ell_{\mathbf{x}\mathbf{y}}/2)}^{u(\mathbf{s},\ell_{\mathbf{s}\tilde{\mathbf{s}}})} \mathcal{P}(u(\mathbf{s},\ell_{\tilde{\mathbf{s}}\tilde{\mathbf{s}}})) \int_{u(\mathbf{x},\ell_{\mathbf{x}\mathbf{y}}/2)}^{u(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}})} \mathcal{P}(u(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}})) \times \\ &\int_{u(\mathbf{y},\ell_{\mathbf{x}\mathbf{y}}/2)}^{u(\mathbf{y},\ell_{\mathbf{x}\mathbf{s}})} \mathcal{P}(u(\mathbf{y},\ell_{\mathbf{y}\mathbf{s}})) \, du(\mathbf{y},\ell_{\mathbf{y}\mathbf{s}}) \, du(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}}) \, du(\mathbf{s},\ell_{\tilde{\mathbf{s}}\tilde{\mathbf{s}}}), \end{split}$$

$$\begin{split} &P\left(\left\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{s}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\right\} \wedge \left\{\ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}} > \ell_{\mathbf{y}\mathbf{s}}\right\}\right) \\ &= P\left(\left\{\ell_{\mathbf{s}\tilde{\mathbf{s}}} > \ell_{\mathbf{x}\mathbf{s}} > \ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}}\right\} \wedge \left\{\ell_{\mathbf{x}\mathbf{y}}/2\right) > \ell_{\mathbf{y}\mathbf{s}}\right\}\right) \\ &= \int_{u(\mathbf{s},\ell_{\mathbf{x}\mathbf{y}}/2)}^{1} \mathcal{P}(u(\mathbf{s},\ell_{\mathbf{s}\tilde{\mathbf{s}}})) \int_{0}^{u(\mathbf{y},\ell_{\mathbf{x}\mathbf{y}}/2)} \mathcal{P}(u(\mathbf{y},\ell_{\mathbf{y}\mathbf{s}})) \times \\ &\int_{u(\mathbf{x},\ell_{\mathbf{x}\mathbf{y}} - \ell_{\mathbf{y}\mathbf{s}})}^{u(\mathbf{x},\ell_{\mathbf{s}\tilde{\mathbf{s}}})} \mathcal{P}(u(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}})) \, du(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}}) \, du(\mathbf{y},\ell_{\mathbf{y}\mathbf{s}}) \, du(\mathbf{s},\ell_{\mathbf{s}\tilde{\mathbf{s}}}) \\ &\approx \int_{u(\mathbf{s},\ell_{\mathbf{x}\mathbf{y}}/2)}^{u(\mathbf{s},\ell_{\mathbf{s}\tilde{\mathbf{s}}})} \mathcal{P}(u(\mathbf{s},\ell_{\mathbf{s}\tilde{\mathbf{s}}})) \int_{0}^{u(\mathbf{y},\ell_{\mathbf{x}\mathbf{y}}/2)} \mathcal{P}(u(\mathbf{y},\ell_{\mathbf{y}\mathbf{s}})) \times \\ &\int_{u(\mathbf{x},\ell_{\mathbf{x}\mathbf{y}}/2)}^{u(\mathbf{x},\ell_{\mathbf{s}\tilde{\mathbf{s}}})} \mathcal{P}(u(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}})) \, du(\mathbf{x},\ell_{\mathbf{x}\mathbf{s}}) \, du(\mathbf{y},\ell_{\mathbf{y}\mathbf{s}}) \, du(\mathbf{s},\ell_{\mathbf{s}\tilde{\mathbf{s}}}), \end{split}$$

where $\ell_{\mathbf{s}\tilde{\mathbf{s}}} = \sup_{v(\mathbf{s},\ell_{\mathbf{s}\tilde{\mathbf{s}}})\subseteq\mathcal{E}}\ell_{\mathbf{s}\tilde{\mathbf{s}}}$. The approximate equality holds by the assumption in the theorem which implies that the integral from $u(\mathbf{s},\hat{\ell}_{\mathbf{s}\mathcal{E}})$ to 1 for $u(\mathbf{s},\ell_{\mathbf{s}\tilde{\mathbf{s}}})$ is negligible. The same argument applied to $P(\mathbf{x},\mathbf{y}\in\theta[\mathbf{s}']\mid\mathbf{s}'\in\mathcal{D}'\subset D')$ which derives the identical result.

[Fukunaga, 1990] provided the expressions of $\mathcal{P}(u(c, \ell_{cs}))$ and $\mathcal{P}(u(s, \ell_{s\tilde{s}}))$ as

$$\mathcal{P}(u(c, \ell_{c\mathbf{s}})) = \psi(1 - u(c, \ell_{c\mathbf{s}}))^{\psi - 1},$$

$$\mathcal{P}(u(\mathbf{s}, \ell_{\mathbf{s}\tilde{\mathbf{s}}})) = (\psi - 1)(1 - u(\mathbf{s}, \ell_{\mathbf{s}\tilde{\mathbf{s}}}))^{\psi - 2}.$$

With these expressions and the definition of $u(c, \ell_{cs})$, both $\mathcal{P}(u(c, \ell_{cs}))$ and $\mathcal{P}(u(s, \ell_{ss}))$ are lower if $\mathcal{P}_D(s)$ becomes higher. Accordingly,

$$P(\mathbf{x}, \mathbf{y} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S}) > P(\mathbf{x}, \tilde{\mathbf{s}} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S}').$$
 (3)

Thus, based on the equations (1), (2) and (3) the following inequality is derived.

$$P(f(\mathbf{x}; \mathbf{s}|\mathcal{S}) = 1)$$
> $P(\mathbf{x}, \tilde{\mathbf{s}} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S}') \times P(s \in kNN(\mathbf{x}) \mid \mathcal{S}')$
= $P(\mathbf{x} \in \theta[\mathbf{s}] \mid \mathbf{s} \in \mathcal{S}') \times P(s \in kNN(\mathbf{x}) \mid \mathcal{S}')$
= $P(f(\mathbf{x}; \mathbf{s}_i | \mathcal{S}') = 1)$.

This result proves the theorem.

References

[Fukunaga, 1990] Keinosuke Fukunaga. *Introduction to Statistical Pattern Recognition*. Academic Press, 1990.