PROJECT TITLE IN CAPITAL LETTERS

A Project Report Submitted for the Course

MA498 Project I

by

Type your name

(Roll No. *******)

to the

DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI GUWAHATI - 781039, INDIA

November 2016

CERTIFICATE

This is to certify that the work contained in this project report entitled

Title of the project report submitted by Name of the Student (Roll No.:

xxxxxxxxx) to the Department of Mathematics, Indian Institute of Tech-

nology Guwahati towards partial requirement of Bachelor of Technology in

Mathematics and Computing has been carried out by him/her under my su-

pervision.

It is also certified that this report is a survey work based on the references

in the bibliography.

OR

It is also certified that, along with literature survey, a few new results are es-

tablished/computational implementations have been carried out/simulation

studies have been carried out/empirical analysis has been done by the stu-

dent under the project.

Turnitin Similarity: __ %

Guwahati - 781 039

November 2016

(Dr./Prof. Name of the Supervisor)

Project Supervisor

ii

ABSTRACT

The main aim of the project \dots

Contents

Li	st of	Figures	\mathbf{v}
Li	${f st}$ of	Tables	vi
1	Intr	roduction	1
	1.1	Section-1 Name	1
	1.2	Section-2 Name	2
		1.2.1 Subsection name	2
2	Cha	apter-2 Name	3
	2.1	Section-1 Name	3
	2.2	Section-2 Name	3
		2.2.1 Subsection name	3
Ri	ihlios	vranhv	5

List of Figures

List of Tables

Chapter 1

Introduction

Introductory lines...

1.1 Section-1 Name

Some text here ...

Definition 1.1.1. Some definition....

Theorem 1.1.2. Some theorem......

Proof. Proof is as follows....

Corollary 1.1.3. A corollary to the theorem is....

Remark 1.1.4. Some remark......

You may have to type many equations inside the text. The equation can be typed as below.

$$f(x) = \frac{x^2 - 5x + 2}{e^x - 2} = \frac{y^5 - 3}{e^x - 2}$$
 (1.1)

This can be referred as (1.1) and so on.....

You may have to type a set of equations. For this you may proceed as given below.

$$f(x) = e^{1+2(x-a)} + \dots$$

= $\log(x+a) + \sin(x+y) + \dots$ (1.2)

You may have to cite the articles. You may do so as [4] and so on..... Note that you have already created the 'bib.bib' file and included the entry with the above name. Only then you can cite it as above.

1.2 Section-2 Name

Definition 1.2.1. Some definition....

Remark 1.2.2. Some remark......

1.2.1 Subsection name

Theorem 1.2.3. Some theorem......

The figure will be displayed here.

Figure 1.1: The correlation coefficient as a function of ρ

Chapter 2

Chapter-2 Name

Introductory lines...

2.1 Section-1 Name

Definition 2.1.1. Some definition....

Remark 2.1.2. Some remark......

Theorem 2.1.3. Some theorem......

Proof. Proof is as follows....

2.2 Section-2 Name

Definition 2.2.1. Some definition....

Remark 2.2.2. Some remark......

2.2.1 Subsection name

Theorem 2.2.3. Some theorem......

Proof. Proof is as follows.... \Box

Bibliography

- [1] K. Andrews and B. Rajiv. On some applications of eigenvalues of toeplitz matrices. *Journal of Mathematical Analysis and Applications*, 56(2):237–239, 2007.
- [2] C. C. Chang. Algebraic analysis of many valued logics. *Transactions of American Mathematical Society*, 88:467–490, 1958.
- [3] Brunella Gerla. Automata over MV-algebras. In *ISMVL '04: Proceedings* of the 34th International Symposium on Multiple-Valued Logic, pages 49–54, Washington, DC, USA, 2004. IEEE Computer Society.
- [4] G.H. Golub and C.F. Van Loan. *Matrix Computations*. Second Edition. The John Kopkins University Press, 1989.