Introduction to computational population genetics

A brief tutorial on msprime

- Brief introduction to coalescent simulation
- Basic usage of *msprime*
- Extensions to standard coalescent

- Brief introduction to coalescent simulation
- Basic usage of msprime
- Extensions to standard coalescent

What is population genetics about?

Population genetics

From Wikipedia, the free encyclopedia

Population genetics is a subfield of genetics that deals with genetic differences within and between populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure.^[1]

https://en.wikipedia.org/wiki/Population_genetics

Genetic variation data in population(s)

Knowledge about population history

Population size change, natural selection, migration, population divergence, admixture, etc.

A brief introduction to coalescent theory

 $T_i \sim \mathrm{Geo}\left(inom{i}{2}/2N
ight)$ Notes from Graham Coop

Single locus coalescent

Notes from Graham Coop

Reading history from genealogy/mutation

Constant size: fewer singleton mutations

Exponential growth: more singleton mutations

Hein et al, 2004

Coalescent with recombination

- Brief introduction to coalescent simulation
- Basic usage of msprime
- Extensions to standard coalescent

msprime documentation

Check the full tutorial at this link: https://tskit.dev/msprime/docs/stable/intro.html

- Brief introduction to coalescent simulation
- Basic usage of msprime
- Extensions to standard coalescent

Demography models

