10. Central forces.

Central forces. Properties

(https://people.maths.bris.ac.uk/~marrk/Mech/15_16_CentralF_notes.pdf)

A central force is a force acting on a particle of mass *m* with the property that

the force is always directed from *m* toward, or away, from a fixed point O.

The particle is said to move in a *central force field*. The point O is referred to

as the centre of force.

Examples:

Gravitational force

Examples:

Sun-Earth system: gravity + perturbations

fo

Examples:

Coulomb force

The force on a charge due to another charge is proportional to the product of the charges and inversely proportional to the separation squared.

Elastic force(spring)

Attractive elastic force

$$\mathbf{F} = -k\mathbf{r} = \operatorname{grad}\left(-\frac{1}{2}kr^2 + \operatorname{const}\right), \quad k > 0;$$

Repulsive elastic force

$$\mathbf{F} = k\mathbf{r}, k > 0$$

Elastic forces

Consider *O* the center of the force \vec{F} acting on the material point M(m) which has the position vector $\vec{r} = \overrightarrow{OM}$.

Let be

$$\overrightarrow{\rho} = \frac{\overrightarrow{r}}{r} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|}$$

the versor of \vec{r} . Thus, we have

$$\overrightarrow{F} = F \overrightarrow{\rho} = F \frac{\overrightarrow{r}}{r}$$
 (10.1)

where F is the algebraic value of \vec{F} .

If F > 0 than \vec{F} is repulsive. Otherwise, if F < 0 than \vec{F} is attractive.

Using the moment of momentum theorem

$$\frac{d\overrightarrow{K}_0}{dt} = \overrightarrow{M}_0(\overrightarrow{F}) = \overrightarrow{r} \times \overrightarrow{F} = 0$$

one obtain the area first integral:

$$\begin{vmatrix} \frac{d}{dt}(\overrightarrow{r} \times m\overrightarrow{v}) = 0 \Rightarrow \overrightarrow{r} \times \overrightarrow{v} = \overrightarrow{c} = \overrightarrow{r}_0 \times \overrightarrow{v}_0 \\ \overrightarrow{r}(t_0) = \overrightarrow{r}_0, \ \overrightarrow{v}(t_0) = \overrightarrow{v}_0. \end{aligned}$$
(10.2)

The areal velocity of *M is*:

$$\frac{d\overrightarrow{A}}{dt} = \frac{1}{2}(\overrightarrow{r} \times \overrightarrow{v}) = \overrightarrow{c}, \ \forall \ t \ge t_0,$$

and, thus, the areal velocity is constant.

Remember: Areal velocity (sector velocity, sectorial velocity) is the rate at which area is swept out by a particle as it moves along a curve.

From (10.2) and (10.3) we have:

In the motion under the action of the central force the moment of momentum and the areal velocity are constant vectors at any moment $t \ge t_0$.

We suppose:

From
$$\overrightarrow{c}=(c_1,c_2,c_3)\neq 0$$

$$\overrightarrow{r}\times\overrightarrow{v}=\overrightarrow{c}=\overrightarrow{r}_0\times\overrightarrow{v}_0 \text{ we have } \overrightarrow{r}\cdot\overrightarrow{c}=0 \text{ and then}$$

$$xc_1+yc_2+zc_3=0 \tag{10.4}$$

Thus, the motion takes place in a plane determined by $\vec{r_0}$ and \vec{v}_0 (actually the normal to the plane is $\vec{c}=(c_1,c_2,c_3)\neq 0$).

Next, let us consider the motion of the point M(m) in the plane Oxy and let be (r, θ) the polar coordinates of the point M.

We have

$$\overrightarrow{r} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x & y & 0 \\ \dot{x} & \dot{y} & 0 \end{vmatrix} = (x\dot{y} - y\dot{x})\overrightarrow{k} = r^2\dot{\theta}\overrightarrow{k}$$

But, $\overrightarrow{c} = \overrightarrow{r}_0 \times \overrightarrow{v}_0 = r_0^2 \dot{\theta}_0 \overrightarrow{k}$ and we obtain $(\overrightarrow{r}_0 \times \overrightarrow{v}_0 = \overrightarrow{c} = \overrightarrow{r} \times \overrightarrow{v})$:

$$r^2\dot{\theta} = c, \ \forall \ t \ge t_0. \tag{10.5}$$

Equation (10.5) is the *area integral (*because $\frac{1}{2} \int r^2(\theta) d\theta$ is the area swept by M)

We have

$$c = |\overrightarrow{r}_0 \times \overrightarrow{v}_0| = r_0 v_0 \sin \alpha$$

and it means that

$$c = r_0^2 \dot{\theta}_0 = r_0 v_0 \sin \alpha, \quad \alpha = (\widehat{r}_0, \widehat{v}_0). \tag{10.6}$$

Remark. If $\vec{c} = 0$ then the motion of the point *M* is rectilinear.

Next we suppose $\overrightarrow{c} = \overrightarrow{r}_0 \times \overrightarrow{v}_0 \neq 0$

Determination of motion in its plane

Consider the motion of the point M(m) in the plane Oxy and let be (r, θ) the polar coordinates of the point M. The differential equation of motion is given by

$$m\frac{d^2\overrightarrow{r}}{dt^2} = F\frac{\overrightarrow{r}}{r}, \quad \overrightarrow{r}(t_0) = \overrightarrow{r}_0, \quad \overrightarrow{v}(t_0) = \overrightarrow{v}_0$$
 (10.7)

Taking into account the acceleration form in polar coordinate

$$\overrightarrow{a} = \left(\ddot{r} - r\dot{\theta}^2, \frac{1}{r}\frac{d}{dt}(r^2\dot{\theta}) \right),$$

and projecting (10.7) on the polar coordinates versors we obtain:

$$\overrightarrow{e}_r: \begin{cases} m(\ddot{r} - r\dot{\theta}^2) = F \\ \overrightarrow{e}_\theta: \begin{cases} \frac{m}{r} \frac{d}{dt} (r^2 \dot{\theta}) = 0 \end{cases}$$
 (10.8)

From (10.8)₂ we obtain the area first integral

$$r^2\dot{\theta} = c, ag{10.9}$$

where

$$c = r_0^2 \dot{\theta}_0 = r_0 v_0 \sin \alpha, \quad \alpha = (\widehat{\overrightarrow{r}_0, \overrightarrow{v}_0}). \tag{10.10}$$

From (10.9) we have

$$r^{2}(\theta)d\theta = cdt \implies \int_{\theta_{0}}^{\theta_{1}} r^{2}(\theta)d\theta = c(t_{1} - t_{0})$$

And this means that the point *M* sweeps equal areas in equal intervals of time

(area law).

Thus, the motion of the material the point M under the action of a central force respect the area law and takes place in a plane (the plane motion) determined by the initial conditions.

Case I.
$$F = F(r, \theta, \dot{r}, \dot{\theta})$$
 (i.e. $\frac{\partial F}{\partial t} = 0$)

One eliminate time t from $(10.8)_1$ by using the area integral (10.9):

$$\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta}\dot{\theta} = \frac{c}{r^2}\frac{dr}{d\theta} = -c\frac{d}{d\theta}\left(\frac{1}{r}\right)$$

$$\ddot{r} = \frac{d}{dt} \left(-c \frac{d}{d\theta} \left(\frac{1}{r} \right) \right) = \frac{d}{d\theta} \left(-c \frac{d}{d\theta} \left(\frac{1}{r} \right) \right) \underbrace{\dot{\theta}}_{=\frac{c}{r^2}} = -\frac{c^2}{r^2} \frac{d^2}{d\theta^2} \left(\frac{1}{r} \right)$$

Thus, Equation (10.8)₁ becomes

$$-\frac{mc^2}{r^2} \left[\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} \right] = F\left(r, \theta, -c \frac{d}{d\theta} \left(\frac{1}{r} \right), \frac{c}{r^2} \right)$$
 (10.11)

When $F = F(r, \theta)$ (i.e. The force depends only by position) the equation is as the Binet's equation:

$$-\frac{mc^2}{r^2} \left[\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} \right] = F(r, \theta) \tag{10.12}$$

By solving eq. (10.12) one obtain the trajectory of the particle in polar coordinates. However, in order to solve (10.12) two initial conditions are necessary. From $\vec{r}(t_0) = \vec{r}_0$ and $\vec{v}(t_0) = \vec{v}_0$ we obtain:

$$r(\theta_0) = r_0, \quad \frac{d}{d\theta} \left(\frac{1}{r}\right) \Big|_{\substack{\theta = \theta_0 \\ (t = t_0)}} = -\frac{1}{r_0} \operatorname{ctg} \alpha.$$
 (10.13)

Jacques Philippe Marie Binet

(February 2, 1786 – May 12, 1856)

Indeed,

$$\frac{d}{d\theta} \left(\frac{1}{r} \right) \Big|_{\substack{\theta = \theta_0 \\ (t = t_0)}} = -\frac{1}{r_0^2} \frac{dr}{d\theta} \Big|_{t = t_0} = -\frac{1}{r_0^2} \frac{\dot{r}}{\dot{\theta}} \Big|_{t = t_0} = -\frac{1}{r_0^2} \frac{\dot{r}_0}{\dot{\theta}_0}$$

$$= -\frac{1}{r_0^2} \frac{pr_{\overrightarrow{r}_0} \overrightarrow{v}_0}{\frac{c}{r_0^2}} = -\frac{1}{c} v_0 \cos \alpha = -\frac{1}{r_0 v_0 \sin \alpha} v_0 \cos \alpha = -\frac{1}{r_0} \operatorname{ctg} \alpha,$$

Thus, we have
$$\frac{d}{d\theta} \left(\frac{1}{r} \right) \Big|_{\substack{\theta = \theta_0 \\ (t = t_0)}} = -\frac{1}{r_0} \operatorname{ctg} \alpha.$$

Solving (10.12) along with the initial conditions (10.13) one obtain the trajectory

$$r = r(\theta). \tag{10.14}$$

Next, using the area integral $r^2 \dot{\theta} = c$ we have $r^2(\theta)d\theta = cdt$ and we obtain:

$$c(t - t_0) = \int_{\theta_0}^{\theta} r^2(\theta) d\theta \tag{10.15}$$

and thus

$$\theta = \theta(t) \tag{10.16}$$

Now, using (10.14) and (10.16) we get r = r(t). In this moment the problem is solved and the motion's equations in polar coordinates are:

$$r = r(t), \quad \theta = \theta(t).$$
 (10.17)

Case II. F = F(r)

In this case it is possible to apply the general theorems of dynamics. First let us calcuate the elementary work:

$$\delta L = \overrightarrow{F} \cdot d\overrightarrow{r} = F(r) \frac{\overrightarrow{r}}{r} \cdot d\overrightarrow{r} = F(r) \cdot \frac{1}{2r} d(\underbrace{\overrightarrow{r} \cdot \overrightarrow{r}}_{=r^2}) = F(r) dr.$$

Thus, $\delta L = F(r)dr$ is an exact differential

$$\delta L = -dV$$
, $V := -\int F(r)dr$

and the kinetic energy theorem $dT = \delta L = -dV$ becomes

$$d\left(\frac{mv^{2}}{2}\right) = F dr \implies \frac{mv^{2}}{2} - \frac{mv_{0}^{2}}{2} = \int_{r_{0}}^{r} F(r) dr \quad (10.18)$$

Thus,

$$v^2 = \frac{2}{m} \int F(r)dr + h$$
Energy constant (10.19)

 $h = \frac{m}{2}v_0^2 + V(r_0)$

We take into account that:

$$\begin{vmatrix} v^2 = \dot{r}^2 + r^2 \dot{\theta}^2 \\ \dot{r} = -c \frac{d}{d\theta} \left(\frac{1}{r} \right) \end{vmatrix} \Rightarrow v^2 = c^2 \left\{ \left[\frac{d}{d\theta} \left(\frac{1}{r} \right) \right]^2 + \frac{1}{r^2} \right\}$$

$$\dot{\theta} = \frac{c}{r^2}$$
(10.20)

Thus, we have to solve

$$c^{2} \left\{ \left[\frac{d}{d\theta} \left(\frac{1}{r} \right) \right]^{2} + \frac{1}{r^{2}} \right\} = \frac{2}{m} \int F(r) dr + h \tag{10.21}$$

The energy constant can be calculated from

$$v_0^2 = \frac{2}{m} \int F(r) dr + h \tag{10.22}$$

Remark. It is also possible to use the Binet's equation for the case F=F(r).

Example 1.

A particle M(m) moves on a circle of radius b being attracted by a fixed point A of the circle. Find the attractive force and the velocity of the particle as functions of r, the distance between M and A.

Solution

Consider the equation of the circle

$$(x-b)^2 + y^2 = b^2$$

In polar coordinates we have

$$\begin{array}{ccc}
 & \xrightarrow{x} & \begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \Rightarrow (r \cos \theta - b)^2 + r^2 \sin^2 \theta = b^2
\end{array}$$

$$\Rightarrow r^2 + b^2 - 2rb\cos\theta = b^2 \Rightarrow r(r - 2b\cos\theta) = 0$$

$$r \neq 0 \text{ (punctul descrie cercul)}$$

$$\Rightarrow r = 2b\cos\theta$$

Consider the Binet's equation

$$-\frac{mc^2}{r^2} \left[\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} \right] = \pm F(r,\theta)$$
sign "+" for repulsive force sign "–" for attractive force

Next, in order to obtain the force, we calculate the left hand term of the equation in order to obtain the force.

$$r = 2b\cos\theta \implies \frac{d}{d\theta}\left(\frac{1}{r}\right) = \frac{d}{d\theta}\left(\frac{1}{2b\cos\theta}\right) = \frac{1}{2b}\frac{\sin\theta}{\cos^2\theta}$$

$$\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) = \frac{d}{d\theta} \left(\frac{1}{2b} \frac{\sin \theta}{\cos^2 \theta} \right) = \frac{1}{2b} \left[\frac{\cos \theta}{\cos^2 \theta} + \frac{2\sin^2 \theta}{\cos^3 \theta} \right] = \frac{1}{2b} \left(\frac{\cos^2 \theta + 2\sin^2 \theta}{\cos^3 \theta} \right)$$

$$F = \frac{mc^2}{r^2} \left[\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} \right] = \frac{mc^2}{r^2} \left[\frac{1}{2a} \frac{\cos^2 \theta + 2\sin^2 \theta}{\cos^3 \theta} + \frac{1}{r} \right]$$

$$= \frac{mc^2}{r^2} \left[\frac{1}{2a} \left(\frac{1}{\cos \theta} + \frac{2 - 2\cos^2 \theta}{\cos^3 \theta} \right) + \frac{1}{r} \right] = \frac{mc^2}{r^2} \left[\frac{1}{2a} \left(\frac{2}{\cos^3 \theta} - \frac{1}{\cos \theta} \right) + \frac{1}{r} \right]$$

$$= \frac{mc^2}{r^2} \left[\frac{1}{2a} \left(\frac{2}{r^3} - \frac{1}{\frac{r}{2a}} \right) + \frac{1}{r} \right] = \frac{mc^2}{r^2} \left[\frac{8a^2}{r^3} - \frac{1}{r} = \frac{1}{r} \right] = \frac{8mc^2a^2}{r^5}$$

$$\Rightarrow F = \frac{8mc^2a^2}{r^5}$$

$$v^2 = \dot{r}^2 + r^2\dot{\theta}^2 = c^2 \left[\left(\frac{d}{d\theta} \left(\frac{1}{r} \right) \right)^2 + \frac{1}{r^2} \right] = c^2 \left[\frac{1}{4b^2} \frac{1 - \cos^2 \theta}{\cos^4 \theta} + \frac{1}{r^2} \right]$$

$$= c^2 \left[\frac{1}{4b^2} \left(\frac{1}{r^4/(16b^4)} - \frac{1}{r^2/(4b^2)} \right) + \frac{1}{r^2} \right] = \frac{4b^2c^2}{r^4} \qquad \Rightarrow v = \frac{2bc}{r^2}$$

Example 2.

Find the motion of a particle M(m=1) that moves under the action of an attractive force $F(r) = \frac{1}{r^3}$. At the initial moment we have:

$$t = 0$$
: $\theta_0 = 0$, $r_0 = 2$, $v_0 = \frac{1}{2}$, $\alpha = (\widehat{r_0}, \widehat{v_0}) = \frac{\pi}{4}$

Solution

$$-\frac{mc^2}{r^2} \left(\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} \right) = -\frac{1}{r^3}$$

$$c = r_0 v_0 \sin \alpha = 2\frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$$

$$m = 1$$

$$\frac{1}{2} \left(\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} \right) = \frac{1}{r}$$

$$\Rightarrow \frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) - \frac{1}{r} = 0 \Rightarrow \frac{1}{r} = C_1 e^{\theta} + C_2 e^{-\theta}$$

$$r(0) = 2$$
 $\theta(0) = 0$
 $\Rightarrow \frac{1}{2} = C_1 + C_2$

$$\frac{d}{d\theta} \left(\frac{1}{r} \right) \Big|_{t=0} = -\frac{1}{r_0} \operatorname{ctg} \alpha = -\frac{1}{2}$$

$$\frac{d}{d\theta} \left(\frac{1}{r} \right) \Big|_{t=0} = C_1 - C_2$$

$$\theta(0) = 0$$

$$\Rightarrow \begin{cases} C_1 - C_2 = -\frac{1}{2} \\ C_1 + C_2 = \frac{1}{2} \end{cases} \Rightarrow 2C_1 = 0 \Rightarrow C_1 = 0$$

$$C_1 = 0 \Rightarrow C_2 = \frac{1}{2} \Rightarrow \frac{1}{r} = \frac{1}{2}e^{-\theta} \Rightarrow r = 2e^{\theta}$$
 (equation of the trajectory in polar coordinates, i.e. a

polar coordinates, i.e
$$r = ae^{b\theta}$$
 | logarithmic spiral)

Using the area law

$$r^2\dot{\theta}=c=\frac{\sqrt{2}}{2} \ \Rightarrow \ 4e^{2\theta}\dot{\theta}=\frac{\sqrt{2}}{2} \ \Rightarrow \ 4e^{2\theta}d\theta=\frac{\sqrt{2}}{2}dt$$

$$\Rightarrow \ 2d(e^{2\theta}) = \frac{\sqrt{2}}{2}dt \ \Rightarrow \ 2e^{2\theta}\Big|_0^\theta = \frac{\sqrt{2}}{2}t \ \Rightarrow \ e^{2\theta} - 1 = \frac{\sqrt{2}}{4}t$$

$$\Rightarrow \frac{r^2}{4} - 1 = \frac{\sqrt{2}}{2}t \Rightarrow r^2 = \sqrt{2}t + 4$$

$$\Rightarrow 2\theta = \ln\left(1 + \frac{\sqrt{2}}{4}t\right) \Rightarrow \begin{cases} \theta = \frac{1}{2}\ln\left(\frac{\sqrt{2}}{4}t + 1\right) \\ r = (\sqrt{2}t + 4)^{1/2} \end{cases}$$

One can use *matlab* for visualization

```
t=0:0.01:100;  r = (\operatorname{sqrt}(2) * t + 4) .^{(1/2)};  theta=(1/2) *log(sqrt(2)/4*t+1);  r = (\sqrt{2}t + 4)^{1/2}  polar(theta,r)
```

