Modelo para el Análisis de la Demanda de Energía (MAED-2)

Manual del Usuario

COMPUTER MANUAL SERIES No. 18/S

Modelo para el Análisis de la Demanda de Energía (MAED-2)

Manual del Usuario

La Sección del OIEA que elaboró esta publicación fue:

Sección de Estudios Económicos y Planificación International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria

MODELO PARA EL ANÁLISIS DE LA DEMANDA DE ENERGÍA (MAED-2) OIEA, VIENA, 2007 IAEA/CMS/18/S

© OIEA, 2007

Impreso por el OIEA en Austria Julio de 2007

PRÓLOGO

El OIEA ha estado apoyando a sus Estados Miembros en el área de la planeación energética para el desarrollo sostenible. El desarrollo y distribución de metodologías apropiadas y sus códigos de computación constituyen parte importante en este apoyo. Este manual fue elaborado para facilitar el uso del modelo MAED: Modelo para el Análisis de la Demanda de Energía.

La metodología del modelo MAED fue desarrollada originalmente por B. Chateau y B. Lapillonne del Institute Economique et Juridique de l'Energie (IEJE) de la Universidad de Grenoble, Francia, y fue presentado como el modelo MEDEE. Desde entonces el modelo MEDEE ha evolucionado y se ha adaptado para ajustarse a la modelación de diversos sistemas de demanda de energía. Por ejemplo, B. Lapillonne desarrolló el MEDEE-2 cuando el Instituto Internacional para el Análisis de Sistemas Aplicados (IIASA, Laxenburg, Austria) necesitó realizar estudios de demanda de energía a escala mundial.

El OIEA adoptó el modelo MEDEE-2 y le incorporó modificaciones importantes para hacerlo más apropiado para su aplicación en países en vía de desarrollo, llamándolo modelo MAED. La primera versión del modelo MAED fue diseñada para el sistema DOS, y posteriormente se convirtió al sistema Windows.

Este manual presenta la última versión del modelo MAED. El rasgo distintivo de esta versión es su flexibilidad para representar la estructura del consumo de energía. El modelo ahora permite la representación específica del patrón de consumo de energía del país usando la metodología del MAED. El usuario puede desagregar el consumo de energía de acuerdo a sus necesidades y/o a la disponibilidad de datos en su país. Como tal, el MAED se ha convertido en una poderosa herramienta para modelar con amplitud diversos patrones de consumo de energía. Este manual presenta el modelo en detalle y sirve de guía para su aplicación.

Los oficiales del OIEA responsables de esta publicación son A.I. Jalal, e I.A. Concha Perdomo, del Departamento de Energía Nuclear.

NOTA EDITORIAL La presente traducción no ha sido hecha por el Organismo Internacional de Energía Atómica. La versión auténtica de este material es el texto redactado en idioma inglés y distribuido por el OIEA o en nombre del OIEA por personas debidamente autorizadas. El OIEA no ofrece garantía ni asume responsabilidad alguna respecto de la precisión, calidad o autenticidad de la traducción y su publicación, y no acepta ninguna responsabilidad por daños o pérdidas, directos o indirectos, que se puedan producir, o de cualquier manera ocasionar, como consecuencia de su uso.

INDICE

1	INTRO	ODUCCIÓN	1
	1.1	Información general	1
	1.1	Breve descripción del modelo MAED.	
	1.3	Organización del modelo MAED	
	1.5	Organización del modelo MALD	3
2		RIPCIÓN GENERAL DEL MÓDULO-1 DEL MAED ANÁLISIS DE LA	
	DEMA	NDA DE ENERGÍA	6
	2.1	Introducción	6
	2.2	Cálculos de la demanda de energía.	
		2.2.1 Sector industria	
		2.2.2. Sector transporte	
		2.2.3 Sector servicios	
		2.2.4 Sector residencial	
	2.3	Capacidades máximas del programa MAED_D	
3	FIECL	JCIÓN DEL MÓDULO 1 DEL MAED	17
3	LILCC	CION BLE MODULO I BEL MALD	1 /
	3.1	Introducción	17
	3.2	Descripción de las hojas de cálculo del Módulo 1 del MAED	18
	3.3	Ejecución del programa MAED_D	
		3.3.1 Cuestiones preliminares	23
		3.3.2 Introducción de los datos de entrada y revisión progresiva de	
		los resultados del modelo	24
		3.3.3 Hoja de cálculo "Defs"	24
		3.3.4 Hoja de cálculo "Demogr-D" (Tabla 1)	37
		3.3.5 Hoja de cálculo "GDP-D" (Tabla 2)	
		3.3.6 Hojas de cálculo para el sector industria (Tablas 3 a 9)	39
		3.3.7 Hojas de cálculo para el sector transporte (Tablas 10 a 13)	
		3.3.8 Hojas de cálculo del sector Residencial (Tablas 14 a la 16)	58
		3.3.9 Hojas de cálculo para el sector Servicios (Tablas 17 a 19)	63
		3.3.10 Hojas de cálculo que muestran los resultados finales	
		del Modelo MAED_D (Tablas 20 y 21)	66
4	VARIA	ABLES DE ENTRADA Y CALCULADAS DEL MÓDULO 1 DEL MAED.	71
	4.1	Introducción	71
	4.2	Variables de entrada	
	4.3	Variables calculadas	
5	ECUA	CIONES PRINCIPALES USADAS EN EL MÓDULO 1 DEL MAED	. 124
	5.1	Introducción	124
	5.1	Unidades de energía	
	5.3	Cálculos demográficos	
	5.4	Cálculos macroeconómicos	
	5.5	Cálculos de la demanda de energía.	
	5.5	5.5.1 Sector industria	
		C.C.1 DOVIOI IIIUUUIIU	. 140

	5.5.2	Sector transporte	147
	5.5.3		
	5.5.4	Sector servicio	164
	5.5.5	Grandes totales de demanda de energía final para el país	167
6	DESCRIPCIÓ	ON GENERAL DEL MAED MODULO 2 CÁLCULOS DE LA	
	DEMANDA 1	DE POTENCIA ELÉCTRICA HORARIA	169
	6.1 Intro	ducción	169
	6.2 Desc	ripción de las hojas de cálculo Excel del Módulo 2 del MAED	170
7	EJECUCIÓN	DEL MÓDULO 2 DEL MAED	183
	7.1 Intro	ducción	183
	7.2 Ejecu	ución del programa MAED_El	184
8	FUNDAMEN	TOS TEÓRICOS DEL MODULO 2 DEL MAED	194
REF	FERENCIAS		199
COI	LABORADORI	ES EN LA ESCRITURA Y REVISIÓN	201

1 INTRODUCCIÓN

1.1 Información general

El Organismo Internacional de Energía Atómica (OIEA) apoya a sus Estados Miembros en la ejecución de estudios de planeación eléctrica y energética. Los objetivos principales de estos estudios son en general, la evaluación de estrategias alternativas de desarrollo del sector eléctrico y energético para satisfacer la demanda futura de electricidad y de energía en un país dado (o región del mundo) y en particular, una estimación del papel que puede jugar la energía nuclear en la satisfacción de la demanda. Con esta finalidad, el OIEA ha desarrollado un conjunto de modelos energéticos que ofrecen un marco sistemático para el análisis de diferentes temas que tocan las decisiones energéticas y que abarcan aspectos económicos. técnicos, sociales y ambientales. Entre estos modelos, el programa WASP (Wien Automatic System Planning package) y la metodología en la que se basa, fue el primer modelo desarrollado e introducido por el OIEA [1-6]. El programa WASP está diseñado para hallar la política de expansión de la generación económicamente óptima para un sistema eléctrico bajo ciertas restricciones que especifica el usuario. Aunque ha sido utilizado ampliamente, el WASP solo maneja una parte del espectro completo de análisis que se requiere para realizar un estudio integral de energía. Dentro del conjunto de herramientas desarrolladas por el OIEA para completar el espectro, se encuentran: el Modelo para el Análisis de la Demanda de Energía (MAED), el Programa de Evaluación de Potencia y Energía (ENPEP), el Modelo para Sistemas de Suministro de Energía y sus impactos ambientales generales (MESSAGE), el Modelo para el Análisis Financiero de los Planes de Expansión del Sector Eléctrico (FINPLAN), y la Metodología Simplificada para la Estimación de los Impactos de la Generación de electricidad (SIMPACTS). Este manual describe el modelo MAED.

La aproximación general a la metodología del MAED fue desarrollada originalmente por Messrs. B. Chateau y B. Lapillonne (MEDEE: Modèle d'Evolution de la Demande d'Energie, Ref. 7) del Institut Economique et Juridique de l'Energie (IEJE), de la Universidad de Grenoble, Francia. De hecho, el MAED está estrechamente relacionado con una versión simplificada de esta metodología, conocida como MEDEE-2 [8, 9], que fue adaptada por B. Lapillonne ante las necesidades planteadas por el Instituto Internacional para el Análisis de Sistemas Aplicados (IIASA, Laxenburg, Austria) para realizar estudios de evaluación de la demanda de energía a escala mundial. Aun cuando se respetó la estructura general del MEDEE-2, el OIEA introdujo modificaciones importantes cuando desarrolló el MAED. Estas conciernen a: los parámetros que requieren ser especificados como datos de entrada; las ecuaciones usadas para el cálculo de la demanda de energía en algunos sectores; y la salida producida por el programa.

Más importante aún, el MAED incluye algunos módulos adicionales que se pueden usar para convertir, primero, la demanda total anual de electricidad en el consumo horario de electricidad expresado en términos de la carga impuesta al sistema de generación eléctrica en cada hora del año y segundo, la llamada curva de duración de carga del sistema, que es solo una representación conveniente de la carga durante el análisis de la expansión del sistema. Los módulos adicionales mencionados anteriormente fueron desarrollados con base en programas de cómputo y metodologías bien establecidas. Al respecto, el módulo que calcula la carga eléctrica horaria está basado en una metodología desarrollada por Electricité de France (EDF), y el módulo usado para calcular las curvas de duración de carga se basa en el programa DURAT que fue desarrollado originalmente para la Comisión Económica para América Latina y el Caribe (CEPAL).

La primera versión del modelo MAED fue desarrollada para sistemas DOS, y se distribuyó en más de 40 países [12]. En años recientes la mayoría de los usuarios ha cambiado a computadoras con sistema Windows y están más familiarizados con sus aplicaciones. Por esta razón, el programa MAED fue convertido a una aplicación en EXCEL, que no solo permite trabajar en un ambiente más familiar y conveniente sino también hace que la formulación del modelo sea completamente transparente.

Las primeras versiones del modelo MAED, tanto en DOS como se EXCEL, fueron construidas sobre una estructura predefinida tanto para los sectores económicos, como para las actividades de consumo de energía de uso final. Existían 6 sectores, llamados Agricultura, Construcción, Minería, Manufacturero, Servicios y Energía, para los cuales la demanda de energía se calculaba más bien a un nivel agregado. Sin embargo, el sector Manufacturero estaba dividido en 4 subsectores. La demanda de energía para el sector transporte estaba desagregada en las categorías de transporte de carga y de pasajeros pero los modos de transporte y el combustible usado en las mismas eran limitados y predefinidos. Existía una posibilidad para representar varios tipos de viviendas pero estaban agrupadas a nivel de país/región. El sector Servicios también se representaba de forma agregada.

Esta estructura predefinida traía dificultades para la modelación de los patrones de consumo de energía en muchos países en vía de desarrollo. Por ejemplo, el sector Agricultura incluye una combinación de varios tipos de actividades económicas como el cultivo, la ganadería, la pesca y la silvicultura. Cada uno de estos subsectores tiene diferentes patrones de consumo de energía e intensidades energéticas. Para muchos países era un problema calcular la demanda de energía del sector agricultura usando un promedio de las diferentes intensidades energéticas. De igual manera, el patrón de consumo de energía y las intensidades energéticas en las viviendas varía de una región a otra dentro de un país en vía de desarrollo. También era un problema el cálculo de la demanda de energía para las viviendas agregándolas por regiones.

Superando estas dificultades, la nueva versión del MAED le permite al usuario extender la estructura predefinida de demanda de energía según las necesidades y/o disponibilidad de datos. Esta versión ofrece un marco de flexibilidad para desagregar la demanda de energía en cada uno de los seis sectores económicos. Además, la demanda de energía en el sector residencial ahora se puede desagregar en los grupos Rurales y Urbanos y en varias categorías de uso final en cada grupo de viviendas. El sector Servicios tiene algunas categorías de uso final adicionales; igualmente se agregaron modos y combustibles adicionales para el sector transporte. En éste nuevo marco flexible, los usuarios:

- pueden definir hasta diez subsectores en cada uno de sectores principales de la economía, es decir, desde el sector Agricultura al sector Servicios mencionados arriba,
- pueden definir hasta quince modos de transporte para cada transporte de pasajeros interurbano y urbano predefinido y el transporte de carga,
- pueden especificar hasta ocho combustibles y pueden asignarlos a cada modo de transporte como sea apropiado,
- pueden definir hasta diez tipos de viviendas en cada uno de los dos grupos del sector Residencial, es decir Rural y Urbano.

El modelo calcula la demanda de energía a nivel de subsector y de actividad.

El objetivo principal de este manual es documentar los aspectos técnicos del modelo MAED y los supuestos importantes que están detrás del marco teórico de modelamiento que se

propone. Esto ayudará a los usuarios a entender los resultados del modelo y a darse cuenta de las limitaciones del análisis que se puede realizar usando sus resultados. Además, el Manual proporciona una guía para modelar una estructura específica para un país/región, y para usar el programa en la proyección de las necesidades futuras de energía.

1.2 Breve descripción del modelo MAED

El modelo MAED evalúa la demanda futura de energía con base en escenarios de desarrollo socio-económico, tecnológico y demográfico a mediano y largo plazo. El modelo relaciona sistemáticamente la demanda de energía específica para producir varios bienes y servicios identificados en el modelo, con los factores tecnológicos, económicos y sociales correspondientes que afectan esta demanda. La demanda de energía se desagrega en un gran número de categorías de uso final; cada una corresponde a un servicio dado o a la producción de cierto bien. La naturaleza y el nivel de la demanda de bienes y servicios son una función de varios factores determinantes, en los que se incluyen el crecimiento de la población, el número de habitantes por vivienda, el número de equipos electrodomésticos usados en la hogares, la movilidad de la población y las preferencias de modos de transporte, las prioridades nacionales para el desarrollo de ciertas industrias o sectores económicos, la evolución de la eficiencia de ciertos tipos de equipamiento, la penetración de nuevas tecnologías o formas de energía en el mercado, etc. Las tendencias futuras que se esperan para estos factores determinantes, que en su conjunto constituyen los "escenarios", se introducen de manera exógena.

La comprensión de estos factores determinantes permite evaluar varias categorías de demanda de energía para cada sector económico considerado. La demanda total de energía para cada categoría de uso final se agrega en cuatro sectores principales "consumidores de energía": Industria (que incluye Agricultura, Construcción, Minería y Manufacturero), Transporte, Servicios y Residencial. El modelo proporciona un sistema de contabilidad sistemático para evaluar el efecto que tendría en la demanda de energía un cambio en la economía o en los estándares de vida de la población.

El punto de partida para usar el modelo MAED es la construcción del patrón de consumo de energía del año base dentro del modelo. Esto requiere la recopilación y conciliación de los datos necesarios de las diferentes fuentes, deducir y calcular varios parámetros de entrada y ajustarlos para reproducir el balance energético en el año base. Este proceso ayuda a ajustar el modelo a la situación específica del país.

El paso siguiente es desarrollar los escenarios específicos para la situación y objetivos futuros del país. Los escenarios pueden ser subdivididos en dos subescenarios:

- uno relativo al sistema socio-económico describiendo las características fundamentales de la evolución económica y social del país;
- el segundo relativo a los factores tecnológicos que afectan el cálculo de la demanda, por ejemplo, la eficiencia y el potencial de penetración en el mercado de cada forma de energía disponible.

La clave para obtener escenarios creíbles y útiles está en la consistencia interna de los supuestos, especialmente para la evolución tecnológica, económica y social. Se necesita una buena comprensión de la interacción dinámica entre las diferentes fuerzas motrices o factores determinantes de la demanda. La salida del modelo, o sea la demanda futura de energía, es solo un reflejo de los supuestos introducidos en el escenario. La evaluación de la salida y la

modificación de los supuestos iniciales constituyen el proceso básico del cual se derivan resultados razonables.

El modelo se centra exclusivamente en la demanda de energía, y más específicamente en la demanda de los servicios energéticos que se especifican. Cuando varias formas de energía, es decir electricidad, combustibles fósiles, etc., están compitiendo por una categoría de uso final de demanda de energía dada, ésta demanda se calcula primero en términos de energía útil y después se convierte a energía final, teniendo en cuenta la penetración en el mercado y la eficiencia de cada fuente de energía que compite, que se especifican como parámetros de entrada en los escenarios. Los usos de energía no sustituible como el combustible motor para los vehículos, o la electricidad para usos específicos (electrólisis, iluminación, etc.) se calculan directamente en términos de energía final.

Por consiguiente la demanda de combustibles fósiles no se separa en términos de carbón, gas o petróleo, debido a que este suministro de energía depende principalmente de las posibilidades tecnológicas del suministro y los precios relativos de estos combustibles, aspectos que están fuera del alcance del análisis del modelo. No obstante, se estima la sustitución de combustibles fósiles por nuevas formas de energías alternativas (es decir, solar, calefacción centralizada, etc.), debido a que, en el futuro, éstas formas de energía pueden introducir importantes cambios estructurales en la demanda de energía. Dado que estas sustituciones serán determinadas fundamentalmente por decisiones políticas, se deben tener en cuenta durante la fase de formulación y escritura de los escenarios.

Se da atención especial al cálculo de la demanda de electricidad, que se realiza no solo anualmente como las otras formas de energía, sino también en base horaria que a su vez, pueden servir como datos de entrada para análisis posteriores del sistema de generación usando el modelo WASP. Estos cálculos específicamente determinan la carga eléctrica impuesta al sistema de generación, que le permitirá al WASP seleccionar las tecnologías de generación apropiadas para satisfacer la variación de la demanda dentro de un año o una temporada.

Los cálculos de la curva horaria se realizan usando varios "coeficientes de modulación" que correlacionan los cambios en el consumo de electricidad horaria con respecto al consumo promedio. En la determinación de la carga eléctrica horaria, diaria y semanal a partir de la demanda de electricidad total anual del sector, el modelo tiene en cuenta:

- (a) La tendencia de la tasa de crecimiento promedio anual de la demanda de electricidad;
- (b) Los cambios en el consumo de electricidad por temporada (esta variación debe ser reflejada sobre bases mensuales o semanales, en dependencia de la información disponible);
- (c) Los cambios en el consumo de electricidad debido al tipo de día que esta siendo considerado (es decir, días laborales, fines de semana, feriados especiales, etc.);
- (d) La variación horaria en el consumo de electricidad durante el tipo de día considerado.

Figura 1.1. Entradas y salidas principales del MAED.

1.3 Organización del modelo MAED

El programa MAED se suministra en dos libros de trabajo EXCEL (archivos): MAED_D y MAED_EL. El libro de trabajo MAED_D contiene varias hojas de cálculo dedicadas a los diferentes sectores, subsectores y actividades de uso final incluidos en el modelo. Estas hojas de cálculo también sirven para entrar los datos y ver los resultados. Este libro de trabajo es el Módulo 1 (Cálculo de la demanda de Energía) del modelo MAED, que procesa la información que describe el escenario de desarrollo económico, tecnológico y social y calcula la demanda de energía total para los años deseados. La apertura de esta demanda por las formas de energía y por los sectores de la economía considerados, también se entrega como parte de los resultados del análisis.

El segundo libro de trabajo (MAED_EL) es el Módulo 2 (Demanda Horaria de Potencia eléctrica) del modelo MAED. Este módulo usa la demanda total anual de electricidad por cada sector (calculada en el MAED_D) para determinar la demanda total de electricidad para cada hora del año o, en otras palabras, la curva de electricidad horaria, que se impone al sistema de generación que se está considerando. Este libro de trabajo también contiene varias hojas de cálculo para proporcionar datos de entrada adicionales, ejecutar el módulo y examinar los resultados. Ambos libros de trabajo tienen varias macros desarrolladas en Microsoft Visual Basic para realizar ciertas funciones y ejecutar los cálculos, que serán explicadas en los capítulos siguientes.

2 DESCRIPCIÓN GENERAL DEL MÓDULO-1 DEL MAED ANÁLISIS DE LA DEMANDA DE ENERGÍA

2.1 Introducción

El Módulo 1 del modelo MAED (MAED_D) es un modelo de simulación diseñado para la evaluación de la demanda de energía de un país o una región del mundo, a mediano y largo plazo. El MAED pertenece a la familia de los modelos MEDEE, que se basan en el enfoque de escenario. En el enfoque del MAED/MEDEE un "escenario" debe ser visto como una descripción consistente de un posible patrón de desarrollo de un país en el largo plazo, caracterizado fundamentalmente en términos de la visión de largo plazo de la política socioeconómica gubernamental. Siguiendo ese enfoque el planificador puede hacer supuestos acerca de la evolución posible del patrón de desarrollo social, económico y tecnológico de un país que se puede anticipar en el largo plazo a partir de las tendencias actuales y los objetivos gubernamentales. La consistencia del escenario es una consideración muy importante de la metodología para garantizar el logro de resultados sólidos. Tal consistencia tiene que ser ejercida por el planificador mientras formula los posibles escenarios de desarrollo.

En resumen la metodología del MAED D incluye la siguiente secuencia de operaciones:

- (1) desagregación de la demanda de energía total del país o región en un gran número de categorías de uso final de una manera coherente;
- (2) identificación de los parámetros sociales, económicos y tecnológicos que afectan a cada categoría de uso final de la demanda de energía;
- (3) establecimiento en términos matemáticos de las relaciones entre la demanda de energía y los factores que la afectan;
- (4) escritura de escenarios (consistentes) de desarrollo social, económico y tecnológico para un país dado;
- (5) evaluación de la demanda de energía resultante de cada escenario; y finalmente
- (6) selección el patrón más probable de desarrollo para el país entre todos los posibles escenarios propuestos.

Debe notarse que en el modelo, la demanda de energía de los consumidores finales es (en la medida que sea posible) siempre es calculada en términos del servicio realizado (energía "útil") en oposición a la cantidad de energía suministrada (energía "final"). Esta diferenciación entre la demanda de energía expresada en términos de energía útil y final permite un mejor estudio de la sustitución entre formas de energías disponibles, así como una valoración de la evolución de las mejoras tecnológicas en el equipamiento y electrodomésticos utilizados por los consumidores finales.

Objetivos de la metodología

El modelo MAED D ha sido diseñado para reflejar:

(a) Los cambios estructurales en la demanda de energía de un país en el mediano y largo plazo. Se reflejan mediante un análisis detallado de las características sociales, económicas y tecnológicas del país dado. Este enfoque toma en cuenta especialmente la evolución de las necesidades sociales de la población, tales como la demanda de calefacción, iluminación, transporte, aire acondicionado, y ello como una función de la distribución de la población en áreas urbanas y rurales; las políticas industriales del

país (desarrollo acentuado en cierto tipo de industrias); y las políticas concernientes al transporte, vivienda, etc., así como también el desarrollo tecnológico;

(b) la evolución de los mercados potenciales de cada forma de energía final: electricidad, combustibles fósiles (carbón, gas, petróleo), solar, etc.

En el modelo la sustitución entre formas de energías disponibles no se calcula automáticamente a partir de la evolución del precio para cada forma de energía y sus correspondientes coeficientes de elasticidad, sino de un análisis hecho durante la formulación de los posibles escenarios de desarrollo. Este hecho pudiera ser considerado como un inconveniente del MAED; sin embargo se debe tener presente que en el contexto económico actual, caracterizado por cambios continuos de los precios de la energía, los economistas no disponen de ninguna técnica comprobada, que les permita cuantificar el efecto de las variaciones de los precios sobre la demanda de energía. Además, las divergencias considerables entre los resultados suministrados por varios estudios sobre la elasticidad de los precios de la demanda han demostrado que la manera tradicional de concebir la elasticidad de la demanda ya no es satisfactoria.

Debido a las razones antes mencionadas, el MAED_D no calcula directamente la evolución de la demanda de energía a partir de la evolución de los precios de la energía. Por ejemplo, la demanda de gasolina no se calcula a partir de un precio hipotético; este precio simplemente se tiene en cuenta implícitamente cuando se escriben los escenarios y sirve como una referencia para modelar la evolución futura de los parámetros involucrados, tales como la razón de tenencia de auto, distancia promedio recorrida por auto cada año, etc. En este caso, el MAED_D simplemente calcula la demanda para los combustibles motor (gasolina, diesel, etc.) como una función de los parámetros socioeconómicos definidos en el escenario: número de automóviles, distancia promedio recorrida por auto, etc. En otras palabras, el precio de los combustibles no se tienen en cuenta explícitamente; los precios simplemente afectan el nivel en el cual los diseñadores de los escenarios sitúan los parámetros socioeconómicos.

2.2 Cálculos de la demanda de energía

La demanda de energía es calculada por el modelo MAED_D como una función de un posible escenario de desarrollo. Este escenario abarca dos tipos de elementos (ver la Figura 2.1):

- el primero está relacionado con el sistema socioeconómico y describe las características fundamentales de la evolución social y económica del país;
- el segundo está relacionado con los factores tecnológicos, que deben tenerse en cuenta durante el cálculo de la demanda de energía, por ejemplo, la eficiencia de cada forma de energía disponible y su penetración en los mercados potenciales.

El MAED_D calcula la demanda de energía total para cada categoría de uso final, agregando los sectores económicos dentro de cuatro sectores "consumidores de energía" fundamentales: Industria (que incluye Agricultura, Construcción, Minería y Manufacturero), Transporte, Residencial y Servicio. Al mismo tiempo, provee una manera sistemática de cálculo para evaluar el efecto sobre la demanda de energía de cualquier cambio de naturaleza económica o en el nivel de vida de la población.

Cuando varias formas de energía, es decir, electricidad, combustibles fósiles, etc., están compitiendo por una categoría de uso final de la demanda de energía, ésta demanda se calcula primero en términos de energía útil y después se convierte en energía final, teniendo en cuenta

la penetración en el mercado y la eficiencia de cada fuente de energía disponible; los dos factores se especifican como parámetros del escenario.

En el modelo, la demanda de los combustibles fósiles, no se separa en términos de carbón, gas o petróleo, porque esto depende de manera importante de las opciones de suministro y del precio relativo de dichos combustibles, aspectos que están fuera del alcance del análisis que se realiza con el MAED. No obstante, la sustitución de combustibles fósiles por "nuevas" formas de energía disponibles (es decir, solar, calefacción centralizada, etc.) si se estima, debido a la importancia de los cambios estructurales en la demanda de energía, que esas formas de energía pueden producir en el futuro. Ya que esas sustituciones serán determinadas esencialmente por decisiones políticas, igualmente se deben tener en cuenta en la etapa de la formulación de los escenarios.

El uso de las energías no sustituibles tales como combustible motor para autos, electricidad para usos específicos (electrólisis, alumbrado, etc.) se calculan directamente en términos de energía final.

Para cada categoría de uso final, la demanda de energía (útil o final) está relacionada con un conjunto determinante de factores socioeconómicos y tecnológicos (parámetros macroeconómicos, cantidades físicas, etc.) cuya evolución en el tiempo determinarán las proyecciones de la demanda de energía.

En el MAED_D desde el punto de vista macroeconómico, se consideran seis sectores económicos: Agricultura, Construcción, Minería, Manufacturero, Servicios (incluye Transporte) y Energía. Los sectores Agricultura, Construcción, Minería, Manufacturero y Servicios pueden ser subdivididos en hasta diez subsectores permitiendo la agrupación de ramas económicas con intensidades energéticas similares. El sector Energía es usado solo para describir la formación del PIB (Producto Interno Bruto). Los consumos propios empleados para la conversión a formas de energía final y las pérdidas en los centros de transformación, no son considerados por el modelo MAED_D, que lidia solamente con la proyección de la demanda de energía de los consumidores finales (energía final y útil).

La evolución de la estructura de formación del PIB es una de las fuerzas motrices de mayor importancia en el modelo. La estructura de formación del PIB, expresada en términos de la contribución del valor agregado al PIB por cada sector, se especifica directamente como parte del escenario. Así mismo, también se especifican directamente como elementos del escenario los porcentajes del valor agregado por cada subsector en el valor agregado total por cada sector económico fundamental.

Como se mencionó anteriormente, la demanda de energía, se calcula por separado para los cuatros sectores agregados mayores: Industria, Transporte, Servicio y Residencial. El cálculo de la demanda de energía de cada uno de esos sectores se realiza de una manera similar. De acuerdo con este procedimiento, la demanda para cada categoría de uso final de energía, es definida por uno o varios parámetros socioeconómicos y tecnológicos, cuyos valores se ingresan como parte de los escenarios.

2.2.1 Sector industria

En este sector agregado se incluyen los siguientes sectores económicos: Agricultura, Construcción, Minería y las Industrias Manufactureras. Cada sector principal, puede ser subdividido en un máximo de diez subsectores definidos por el usuario. La apertura libre de

los sectores en subsectores permite una gran flexibilidad para reflejar el patrón estructural de la industria de un país en particular.

En general, la demanda de energía de cada subsector económico es definida por el nivel de actividad económica del subsector evaluado en término de su valor agregado y la intensidad energética de cada forma de energía. El nivel de actividad económica de cada subsector económico se obtiene a partir de los datos del PIB total y de su estructura, que son especificados por el usuario como datos de entrada.

Para cada sector la demanda de energía se calcula por separado en tres categorías de uso final: electricidad para usos específicos (alumbrado, motores, electrólisis, etc.); usos térmicos (calefacción, calentamiento de agua, generación de vapor, hornos y calor directo) y combustible motor. El coque utilizado en la producción de acero y las necesidades de materia prima para la industria petroquímica se calculan de forma independiente.

De las categorías de uso final de las demandas de energía consideradas, los combustibles motor y la electricidad para usos específicos son formas no sustituibles. Por otra parte, existe la posibilidad de sustitución en los usos térmicos, en particular para el desplazamiento de los combustibles fósiles (principalmente el petróleo y derivados), especialmente en la Industria Manufacturera, debido al alto grado de concentración de éstas actividades. Como los procesos en Agricultura, Construcción y Minería son generalmente mucho más descentralizados, las oportunidades de sustitución de los combustibles fósiles en esos sectores son relativamente pequeñas.

En algunas situaciones particulares, dichas oportunidades de sustitución pueden ser bastante grandes como para tenerlas en consideración y el modelo MAED lo permite.

Para analizar el proceso de sustitución, la demanda de energía térmica en el sector Manufacturero se divide en tres tipos de procesos térmicos: calefacción y calentamiento de agua; generación de vapor; y hornos y calor directo. Para cada subsector Manufacturero, los parámetros del escenario deben especificar las divisiones de los usos térmicos dentro de estos procesos térmicos.

Figura 2.1. Esquema de la metodología empleada para proyectar la demanda de energía útil y final en el Módulo 1 del MAED.

Las intensidades energéticas (es decir, el consumo de combustible motor, electricidad y energía térmica por unidad de valor agregado) de cada subsector se deben introducir como parámetros del escenario debido al hecho de que son características de cada país y dependen

del equipamiento usado. Las intensidades se especifican en términos de energía final por unidad de valor agregado para formas no substituibles (es decir, electricidad y combustible motor) y para formas substituibles (usos térmicos) en términos de energía útil por unidad de valor agregado.

La demanda de energía térmica (para formas de energía sustituibles) se convierte de energía útil a final a través de los parámetros del escenario relacionados con la penetración en el mercado potencial y la eficiencia de cada forma de energía disponible. Por ejemplo, para tener en cuenta la evolución del papel jugado por las nuevas formas de energía, como la solar, se deben introducir como parámetros del escenario tanto su porcentaje de penetración en el mercado como la eficiencia de los equipos de uso final (relativa al uso de electricidad con tecnologías convencionales)

La Tabla 2.1 resume las actividades económicas agrupadas en el sector Industrial, así como, varias categorías de uso final de energía y formas de energías consideradas.

Tabla 2.1 actividades, usos de energías y formas de energías disponibles consideradas por el sector Industria en el MAED D.

I. Actividades

- Agricultura
- Construcción
- Minería
- Manufacturero

II. Usos de energía

- Usos específicos de la electricidad (iluminación, fuerza motriz, electrólisis, etc.)
- Combustible motor
- Usos térmicos*: -calefacción y agua caliente
 - -generación de vapor
 - -hornos y calor directo
- •Tratamiento especial: -uso del coque para la producción de acero
 - -requerimiento de materia prima para la industria
 - petroquímica

Como ya se explicó, la demanda para los combustibles fósiles no se divide en términos de carbón, petróleo y gas debido a que el modelo no toma en cuenta los problemas de suministro asociados a esos combustibles.

^{*}Nota: esta división se aplica sólo al sector Manufacturero. En los sectores Agricultura, Construcción y Minería, los usos son calculados de forma global en el nivel de cada sector.

III. Formas de energía disponibles por categoría de uso final

	Agric	Agricultura		Conetr	Construcción		Minería			Indust	ria Man	Industria Manufacturera	1	
Formas de energía	Agus	ultula			uccion		INTITICITY	5				Usos térmicos	nicos	
	SEL	SEL MP	TU	SEL	MP	Γ	SET	MP	TU	SEL	MP	HM/S	SG	F/DH
Combustibles fósiles (carbón, gas, petróleo)			×			×			×			X	×	×
Electricidad	×		×	×		×	×		×	×		×	×	
Combustible motor		×			×			×			×			
Calor directo												×	×	
Cogeneración												×	×	
Solar térmica			×			×			×			×	×	
Combustibles tradicionales			×			×			×			×	×	×
Biomasa moderna			×			×			×			×	×	X

Abreviaturas: SEL: uso específico de la electricidad MP: fuerza motriz TU: usos térmicos S/WH: calefacción/ calentamiento de agua

SG: generación de vapor F/DH: horno/calor directo

2.2.2. Sector transporte

La demanda de energía de este sector es calculada directamente en términos de la energía final como una función de la demanda total para el transporte de pasajeros (pasajeros-kilómetros) y de carga (toneladas-kilómetros), la apertura de esta demanda por modos competitivos (auto, ómnibus, avión, camión, tren, etc.), las necesidades específicas de energía y los factores de carga de cada modo. Para el transporte de pasajeros, se realiza distinción para el transporte urbano (dentro de la ciudad) y entre ciudades (interurbano).

En la tabla 2.2 se muestran los tipos y modos de transporte considerados.

La demanda total para el Transporte se calcula de forma independiente para carga y pasajeros de acuerdo a factores macroeconómicos y al estilo de vida. En el caso del transporte de carga, la demanda se calcula como una función de la contribución al PIB (t-km/UM¹) de los subsectores de Agricultura, Construcción, Minería, Manufacturero y Servicios y del sector Energía.

Tabla 2.2. Tipos y modos de transporte considerado para el sector transporte en el MAED_D.

Tipo de transporte	Número máximo de modos de transporte	Número máximo de combustibles usado
Pasajero (nivel nacional) Dentro de la ciudad Entre ciudades	15 5 tipos de autos 10 modos públicos	8 8
Carga (nivel nacional)	15	8
Internacional, militar y otros	1 (tipo de transporte agregado)	1 (tipo de combustible agregado- combustible motor)

Por otra parte, la demanda para el transporte de pasajeros se determina a partir de la población total, la población que vive en grandes ciudades y la distancia promedio entre ciudades y dentro de las ciudades recorrida por persona. Esta última se considera una variable de escenario, ya que depende del ingreso personal disponible, del costo del viaje y también de los hábitos del consumidor. Otras variables de escenario para el transporte de pasajeros entre ciudades son: la tenencia de auto y la distancia promedio conducida por auto por año.

Siguiendo el mismo objetivo de flexibilidad del sector Industrial, se permiten hasta 15 modos de transporte para el transporte de carga y de pasajeros dentro de la ciudad. Para el transporte de pasajeros entre ciudades se permiten hasta 5 tipos de autos (usando diferentes tipos de combustibles) y 10 tipos de modos públicos (usando diferentes tipos de combustibles y factores de cargas). Cada modo de transporte se caracteriza por su consumo específico de combustible (intensidad energética). Además, se permiten 8 combustibles diferentes en el sector transporte. Cuatro de ellos son fijos: electricidad, carbón, diesel y gasolina y otros cuatro se dejan a elección del usuario.

En el futuro puede esperarse mejoras sustanciales en el consumo específico de combustible de varios modos de transporte. Tales mejoras generalmente se deducen de las tendencias pasadas.

Los factores de carga por modo de transporte son altamente dependientes de la política de transporte del país y por lo tanto se deben especificar como parámetros en los escenarios.

-

¹ UM: unidad monetaria.

Además de los tipos de transporte mencionados arriba, el consumo de energía (combustible motor) del transporte internacional y militar se calcula como función del PIB total.

2.2.3 Sector servicios

Los parámetros del escenario y las ecuaciones que caracterizan el consumo de energía en el sector Servicios están relacionas con el nivel económico de actividad de este sector (valor agregado subsectorial) y la fuerza laboral del sector.

Las categorías de uso final utilizadas en el sector Servicios son: calefacción, otros usos térmicos (esencialmente calentamiento de agua y cocción), aire acondicionado, usos específicos de la electricidad (fuerza motriz para pequeños motores, computadoras, alumbrado, etc.) y combustible motor. Un resumen de las categorías de uso final y las formas de energía consideradas en el sector Servicios se muestra en la Tabla 2.3.

El consumo de energía para calefacción y aire acondicionado se calcula sobre la base de los requerimientos específicos de enfriamiento y calentamiento de espacios (kWh/m²/año), mientras que para otros usos térmicos, usos específicos de la electricidad y combustible motor se calcula en función del valor agregado y la intensidad energética en el subsector dentro del sector Servicios.

Cuando la demanda de una categoría de uso final dada puede ser suministrada por varias formas de energía (calefacción, otros usos térmicos y aire acondicionado), ésta se calcula en términos de energía útil. La demanda de energía final se calcula a partir de la penetración en el mercado potencial y de la eficiencia de cada forma de energía (relativa a la electricidad para el mismo uso) que se contemplan en el escenario.

Tabla 2.3 Categoría de uso final y formas disponibles de energía consideradas en el sector Servicios en el MAED_D.

Formas de energía		Categorí	a de uso	final	
	SH	OTU	AC	AP	MP
Combustibles tradicionales	X	X			
Biomasa moderna	X	X			
Electricidad	X	X	X	X	
Calor directo	X	X			
Solar térmica	X(1)	X(1)			
Combustibles fósiles (petróleo, gas, carbón)	X	X	X		
Combustible motor (gasolina, diesel, etc.)					X

⁽¹⁾ sólo para pequeños edificios.

Abreviaturas: SH: calefacción OTU: otros usos térmicos AC: aire acondicionado AP: electrodomésticos MP: fuerza motriz

2.2.4 Sector residencial

Aunque la demanda de energía se calcula de manera similar en los sectores Residencial y Servicios, los cálculos se realizan de manera independiente, debido a que los parámetros del escenario y las ecuaciones que caracterizan su consumo de energía no son las mismas: en el sector Residencial el factor determinante es de naturaleza demográfica (población, número de casas, etc.), mientras que el sector Servicios está determinada por el nivel económico de la actividad del sector.

En la Tabla 2.4 se muestra un resumen por categoría de uso final y formas de energía disponibles en el sector Residencial. Las categorías de uso de energía consideradas en el sector Residencial son: calefacción, calentamiento de agua, aire acondicionado y equipos domésticos secundarios (refrigeradores, luminarias, lavadoras, etc.).

Los cálculos para este sector se realizan teniendo en cuenta las condiciones de vida de la población, es decir, el lugar de residencia (cálculos separados para zonas urbanas y rurales), y el tipo de residencia (se pueden definir hasta 10 tipos diferentes de viviendas en ambas zonas). Esto permite una mejor representación de las necesidades propias del individuo, de su estilo de vida y así como una definición más apropiada de los mercados potenciales para las formas disponibles de energía final.

Cuando la demanda de una categoría de uso final dada puede ser proporcionada por varias formas de energía (calefacción, calentamiento de agua, cocción y aire acondicionado), esta se calcula en términos de la energía útil y no de la energía final. La demanda de energía final es entonces calculada a partir de la penetración en el mercado potencial y la eficiencia de cada forma de energía (relativa a la electricidad para el mismo uso).

El consumo de energía para equipos domésticos secundarios se calcula de forma independiente para las viviendas electrificadas, para las cuales se asume el uso de equipos electrodomésticos, y para las viviendas no electrificadas para las que se considera el uso de equipos domésticos alternativos que usan combustibles fósiles (alumbrado con queroseno, refrigeradores de gas natural, etc.).

Tabla 2.4. Categorías de uso final de energía y formas de energía disponibles en el sector Residencial del MAED D.

Formas de energía		Catego	oría de us	o final	
	SH	WH	CK	AC	AP
Combustibles tradicionales	X	X	X		
Biomasa moderna	X	X	X		
Electricidad	X	X	X	X	X
Calor directo	X	X			
Solar térmica	X	X	X		
Combustibles fósiles (petróleo, gas, carbón)	X	X	X	X	X

Abreviaturas: SH: calefacción WH: calentamiento de agua CK: cocción

AC: aire acondicionado AP: electrodomésticos

2.3 Capacidades máximas del programa MAED D

Algunas referencias sobre las capacidades máximas del programa MAED_D fueron hechas en las secciones previas describiendo el cálculo de la demanda de energía para cada sector del modelo. La Tabla 2.5 resume esta información para todo el programa.

Tabla 2.5. Capacidades máximas del programa MAED_D

Parámetro	Máximo permitido
Años de referencia	15
Subsectores en los sectores Agricultura, Construcción, Minería,	10
Manufacturero y Servicios	
Modos de transporte de carga	15
Tipos de autos para el transporte de pasajeros entre ciudades	5
Modos públicos para el transporte de pasajeros entre ciudades	10
Modos de transporte de pasajeros dentro de la ciudad	15
Combustibles usados en el sector transporte	8
De estos:	
Fijos: electricidad, carbón, diesel y gasolina	4
Combustibles especificados por el usuario	4
Tipos de viviendas urbanas	10
Tipos de viviendas rurales	10

3 EJECUCIÓN DEL MÓDULO 1 DEL MAED

3.1 Introducción

El modelo MAED opera bajo el programa Microsoft Excel y puede ser instalado rápidamente en una computadora personal que opere en Windows 95, 98, 2000 o ambiente XP, copiando los archivos MAED_D y MAED_EL desde el CD-ROM o desde los disquetes a cualquier directorio seleccionado (ejemplo, c:/programs/maed) en la computadora del usuario. Como se señaló anteriormente, el MAED_D (Módulo 1) está diseñado para calcular y proyectar la demanda de energía final, mientras el propósito del MAED_EL (Módulo 2) es realizar los cálculos de demanda de electricidad horaria y trabajar las curvas de duración de carga para períodos específicos del año. Esta sección proporciona una visión general (panorámica) de las hojas de cálculo asociadas al libro de trabajo MAED_D y describe la ejecución de este Módulo. Los aspectos correspondientes al Módulo 2 son abordados en el Capítulo 7.

Tabla 3.1. Lista de las hojas de cálculo correspondientes al archivo Excel MAED D

Hoja de	Nombre de la Hoja	Contenido de la hoja de cálculo
cálculo No.	de cálculo	
i	MAED-WS	Título de la página del Libro de trabajo
ii	Notes	Código de colores establecido
iii	Descr	Portada (Descripción del estudio y del escenario)
iv	TOC	Tabla de contenido
V	Defs	Definición del sistema de energía
vi	Demogr-D	Datos Demográficos
vii	GDP-D	Formación del PIB
viii	EnInt-D	Intensidades energéticas para el sector Industrial (Agricultura, Construcción, Minería y Manufacturero)
ix	UsEne-D	Cálculo de la demanda de energía útil para el sector Industrial (Agricultura, Construcción, Minería y Manufacturero)
X	ACMFac-D	Eficiencias y penetraciones de la energía térmica en los sectores Agricultura, Construcción y Minería
xi	FIN_ACM	Cálculo de demanda de energía final para los sectores Agricultura, Construcción y Minería
xii	ManFac1-D	Demanda de energía térmica útil por usos finales en el sector Manufacturero
xiii	ManFac2-D	Eficiencias y penetraciones de la energía térmica en el sector Manufacturero
xiv	FIN_Ind-D	Cálculos de la demanda de energía final para el sector Manufacturero
XV	FrTrp-D	Cálculos de la demanda de energía final para el subsector Transporte de carga
xvi	PassIntra-D	Cálculos de la demanda de energía final para el subsector Transporte de pasajeros en las ciudades (urbano)

Tabla 3.1. Lista de las hojas de cálculo correspondientes al archivo Excel MAED D

(Continuación)

xvii	PassInter-D	Cálculos de la demanda de energía final el subsector Transporte de pasajeros entre ciudades
xviii	Fin_Trp-D	Cálculos de la demanda de energía final para el sector Transporte
xix	US_HH_Ur-D	Cálculos de demanda de energía útil para el subsector Residencial Urbano
XX	US_HH_Rr-D	Cálculos de demanda de energía útil para el subsector Residencial Rural
xxi	FIN_HH-D	Cálculos de demanda de energía final para el sector Residencial
xxii	US_SS-D	Cálculo de la demanda de energía útil para el sector Servicios
xxiii	SS Fac-D	Penetraciones y eficiencias para el sector Servicios
xxiv	FIN_SS-D	Cálculo de la demanda de energía final para el sector Servicios
XXV	Final-D	Demanda total de energía final por forma de energía y por sector (en la unidad de energía definida en la celda E50)
xxvi	Final Results (User Units)	Demanda total de energía final por forma de energía y por sector (en la unidad de energía definidaen la celda L50)
xxvii	Convs	Tabla de factores de conversión de unidades de energía

3.2 Descripción de las hojas de cálculo del Módulo 1 del MAED

El archivo Excel MAED D consiste en 27 hojas de cálculo tal y como se muestra en la Tabla 3.1. De éstas, 22 sirven como hojas de cálculo para entrar datos y/o realizar los cálculos del modelo, mientras las otras proporcionan alguna información general (ejemplo la portada, los códigos de los colores, los factores de conversión, etc., usados en varias hojas de cálculo). Las subrutinas en Microsoft Visual Basic fueron desarrolladas en el ambiente de Microsoft Excel para generar automáticamente las ecuaciones y tablas del modelo. A continuación se muestra una breve descripción de varias hojas de cálculo.

(a) Hoja de cálculo "MAED-WS"

Esta hoja de cálculo contiene la página de presentación del archivo MAED D como se muestra en la Figura 3.1

Figura 3.1. Imagen de la hoja de cálculo "MAED-WS".

(b) Hoja de cálculo "Notes"

Una Imagen de la hoja de cálculo "Notes" presenta en la Figura 3.2. Esta hoja de cálculo contiene información sobre los códigos de los colores usados en varias hojas de cálculo para distinguir el tipo de información contenida en varias celdas, cuáles son los datos que pueden ser introducidos/cambiados en varias hojas y para indicar si las celdas están bloqueadas o no:

- Azul claro y azul: Definición de nombres (columnas A de cada hoja de cálculo) y unidades (columna B de cada hoja de cálculo) de las variables del modelo y los años de referencia para los cálculos de la demanda de energía. Estas celdas están bloqueadas.
- Naranja y beige: Datos calculados. Las celdas respectivas están bloqueadas.
- Blanco: Datos de entrada. Las únicas celdas en que el usuario puede introducir o cambiar datos de entrada.
- Rojo: Valor no valido, celda bloqueada.
- Malva: Error, celda bloqueada.
- Negro: Celda no usada en la hoja de cálculo Defs.

Figura 3.2. Imagen de la hoja de cálculo "Notes" en el MAED D.

(c) Hoja de cálculo "Descr"

Como varias de las hojas de cálculo del MAED_D no tienen un título de identificación para cada escenario dentro del estudio, esta hoja de cálculo pretende ser la portada para la salida asociada a un estudio particular. El usuario puede incluir aquí el nombre, la descripción y el autor(es) del proyecto (caso de estudio), así como el nombre, descripción y fecha de un escenario específico. La Figura 3.3 muestra una imagen de esta hoja de cálculo.

Descripción del Proyecto/Escenario:	
Nombre del proyecto:	Demostración del Modelo MAED
Breve descripción del proyecto:	
Autor(es):	Organismo Internacional de Energía Atómica
	Departamento de Energía Nuclear
	Sección de Planificación y Estudios Económicos
Nombre del escenario:	Caso de ejemplo del MAED_D
Número del escenario:	
Breve descripción del escenario:	Los datos usados en este ejemplo corresponden a un
	escenario hipotético para un país hipotético.
	Los mismos tienen únicamente un propósito ilustrativo y necesitan ser
	reemplazados, por el usuario del modelo, con los datos reales del país
	para el escenario en estudio.
Fecha:	Diciembre 2004

Figura 3.3 Imagen de la hoja de cálculo "Descr" en el MAED_D.

(d) Hoja de cálculo "TOC"

Como se muestra en la Figura 3.4, esta hoja de cálculo contiene la tabla de contenido del libro de trabajo MAED_D. Al pulsar los botones disponibles, el usuario puede acceder a las hojas de cálculo correspondientes.

Cada una de las hojas de cálculo incluidas en el MAED_D tiene un botón en la hoja "TOC"; al pulsar el mismo uno puede ir directamente a la tabla de contenido.

		Hojas de datos	Num, Tabla
1	Notas	Notes	
2	Descripción	Descr	
3	Definiciones	Defs	
4	Demografia	Demogr-D	1
5	Formación del PIB	GDP-D	2
6	Intensidades energéticas	EnInt-D	3
7	Demanda de Energía Útil en el sector Industria	UsEne-D	4
8	Factores para los sectores Agricultura, Construcción y Minería	ACMFac-D	5
9	Demanda de Energía Final en la Agricultura, Construcción y Minería	FIN_ACM	6
10	Factores para la Demanda de Energía Térmica Útil en el sector Manufacto	ManFac1-D	7
11	Factores para el sector Manufacturero	ManFac2-D	8
12	Demanda de Energía Final en la Industria	FIN_Ind-D	9
13	Transporte de carga	FrTrp-D	10
14	Transporte de pasajeros en las ciudades	PassIntra-D	11
15	Transporte de pasajeros entre las ciudades	PassInter-D	12
16	Demanda de Energía Final en el sector Transporte	FIN_Trp-D	13
17	Demanda de Energía Útil en el sector Residencial Urbano	US_HH_Ur-D	14
18	Demanda de Energía Útil en el sector Residencial Rural	US_HH_Rr-D	15
19	Demanda de Energía Final en el sector Residencial	FIN_HH-D	16
20	Demanda de Energía Útil en el sector Servicios	US_SS-D	17
21	Factores para el sector Servicios	SS_Fac-D	18
22	Demanda de Energía Final en el sector Servicios	FIN_SS-D	19
23	Demanda Total de Energía Final	Final-D	20
24	Demanda Total de Energía Final (unidades definidas por el usuario)	Final_User-D	21
25	Factores de conversión	Convs	

Figura 3.4. Imagen de la hoja de cálculo "TOC" en el MAED D.

(e) Hoja de cálculo "Defs"

Esta hoja de cálculo contiene la información que define el sistema de energía objeto de estudio y el horizonte de proyección del estudio, es decir (ver la Figura 3.8):

- Número y lista de los años de referencia del estudio;
- Año base (uno de los años de referencia);
- Número y nombres de los subsectores para los sectores Agricultura, Construcción, Minería, Manufacturero y Servicios;
- Número de modos de transporte de carga, de pasajeros entre ciudades y dentro de las ciudades;
- Nombre y combustible utilizado para cada modo de transporte;
- Nombres y códigos numéricos de los combustibles usados en el sector Transporte;
- Unidades físicas para las intensidades energéticas asociadas a cada combustible y los factores para convertir estas unidades físicas a kWh;
- Número de tipos, y los tipos de viviendas en áreas rurales y urbanas;
- Unidad monetaria (UM) seleccionada para el estudio y las unidades aplicables a todas las variables del modelo.

Una descripción detallada de esta hoja de cálculo será dada en una sub-sección posterior.

(f) Entrada de datos y manejo de las hojas de cálculo

Las 21 hojas de cálculo listadas bajos los números vi-xxvi en la Tabla 3.1, sirven como hojas de cálculo de datos para introducir los datos de entrada al modelo, realizar los cálculos y mostrar los resultados del modelo. Cada hoja de cálculo contiene una o más tablas de datos. Una Imagen de una tabla típica tomada de la hoja de cálculo "US SS-D" se muestra en la Figura 3.5. Como se puede apreciar, en la primera columna de cada tabla aparecen breves descripciones de varios parámetros tanto de entrada como calculados, mientras que en la segunda columna se muestran las unidades de medida correspondientes. El resto de las columnas son para introducir/cambiar los datos de entrada correspondientes a los diferentes años de referencia o para registrar los resultados de los cálculos realizados por el modelo. En correspondencia con el código de colores mostrado en la hoja de cálculo "Notes" (Ver Figura 3.2), las celdas que contienen la descripción del parámetro, las unidades de medidas y los años de referencia del estudio, son de color azul y están bloqueadas; aquellas que contienen los datos de entrada son de color blanco; y aquellas que contiene los valores de parámetros calculados por el modelo son de color naranja y están bloqueadas. Mayores detalles sobre la definición o el papel de un parámetro en particular aparecen en los capítulos 4 (Tablas 4.1 y 4.2) y 5 de este manual.

Tabla 17-1 Datos básicos para la demanda de energía útil en el sector Servicios

		,					
Item	Unidad	2000	2005	2010	2015	2020	2025
Fuerza laboral en el sect. Serv.	[%]	45.000	46.000	47.000	48.000	49.000	50.000
Área de piso por empleado	[m ² /cap]	8.000	8.400	8.800	9.200	9.600	10.000
Fuerza laboral en el sect. Serv.	[mill cap]	1.689	2.059	2.536	3.139	3.888	4.800
Área de piso del sect. Serv	[mill m ²]	13.512	17.300	22.320	28.878	37.320	48.001

Figura 3.5. Imagen de una tabla típica en las hojas de cálculo de datos del MAED D.

Los datos registrados en este momento en las Tablas 1-21 del archivo MAED_D, que abarcan las 21 hojas de cálculo corresponden a un escenario hipotético (caso de demostración) para un

país hipotético. Estos datos son solo para ilustrar el modelo y no deben ser considerados como valores típicos de referencia.

En la esquina derecha arriba de cada hoja de datos se encuentra un botón llamado "TOC". Al pulsar este botón el usuario se traslada a la Hoja de cálculo "TOC" en la que aparece la tabla de contenido. De la misma forma, el usuario puede regresar a la hoja de datos en que estaba, pulsando en la hoja de cálculo "TOC" el botón con el nombre de la hoja de datos correspondiente.

(g) Hoja de cálculo "Convs"

Esta hoja de cálculo proporciona un conjunto de factores que son útiles para convertir de una unidad de energía a otra, por ejemplo de tep a kWh o viceversa. La Figura 3.6 muestra la imagen de una parte de esta hoja.

Factores de conversión:			nombre: = MJ_CFG					TOO		
	a>	ejemplo: 1MJ		9.48E-01	CFG			TOC		
de	CFG	MJ	TCE	cub m	btu	toe	boe	kWh	kwyr	kcal
CFG	1	1.055	3.6E-05	0.028317	1000	2.52E-05	0.000185	0.293056	3.35E-05	251.982421
MJ	0.9478673	1	3.41E-05	0.026841	947.8673	2.39E-05	0.000175	0.277778	3.17E-05	238.845897
TCE	27779.716	29307.6	1	786.6339	27779716	0.7	5.131	8141	0.929338	7000000
cubm	35.314667	37.25697	0.001271	1	35314.67	0.00089	0.006523	10.34916	0.001181	8898.67522
btu	0.001	0.001055	3.6E-08	2.83E-05	1	2.52E-08	1.85E-07	0.000293	3.35E-08	0.25198242
toe	39685.308	<u>41868</u>	1.428571	1123.763	39685308	1	<u>7.33</u>	11630	1.327626	10000000
boe	5414.0939	5711.869	0.194894	153.3101	5414094	0.136426	1	1586.63	0.181122	1364256.48
kWh	3.4123223	3.6	0.000123	0.096626	3412.322	8.6E-05	0.00063	1	0.000114	859.845228
kwyr	29891.943	31536	1.076035	846.4456	29891943	0.753224	5.521135	8760	1	7532244.2
kcal	0.0039685	0.004187	1.43E-07	0.000112	3.968531	1E-07	7.33E-07	0.001163	1.33E-07	1

Figura 3.6. Imagen de una parte de la hoja de cálculo "Convs".

3.3 Ejecución del programa MAED D

Los pasos principales en la ejecución del programa MAED D son:

- (i) Preparación de los datos de entrada necesarios para cada año de referencia seleccionado en el modelo. Estos años pueden ser (a) un conjunto de años históricos, incluyendo algunos años recientes o (b) el año base más un conjunto de años futuros para los cuales se desea proyectar la demanda de energía o (c) una combinación de los dos conjuntos anteriores.
- (ii) Introducción de los datos de entrada en las diferentes hojas de cálculo del módulo MAED D.
- (iii) Chequeo de los resultados del modelo mediante la revisión de los valores de las variables calculadas en las diferentes hojas de cálculo del MAED_D, así como la información detallada agrupada en las hojas "Final-D" y "Final results (User unit)".
- (iv) Repetición de la corrida del modelo después de mejorar los datos de entrada, si es necesario.

La opción (a) del paso (i) que involucra el uso del MAED_D para reproducir la evolución histórica de la demanda de energía en un cierto período, se propone fundamentalmente con el

objetivo de la validación y depuración de los datos. Sin embargo, la implementación de esta opción no es a menudo factible en vista de las dificultades experimentadas en la recogida de datos históricos y también debido a restricciones de tiempo. Generalmente, el método alternativo empleado para la fase de validación y depuración de datos es usar el MAED_D para reconstruir el patrón de consumo de energía del año base y ajustarlo, tan cerca como sea posible, a la información desagregada disponible.

Este patrón se construye ajustando apropiadamente los valores de aquellos parámetros de entrada al modelo para los cuales no existe la información real.

Es necesario enfatizar aquí que el año base debe escogerse tan cercano como sea posible al año real en el que se realiza el estudio; debe ser un año normal (es decir no deben observarse cambios abruptos en el uso de energía o en el crecimiento económico para este año, por ejemplo debido a algún desastre natural); y la disponibilidad de los datos para este año no debe representar un problema serio comparado con años cercanos. El usuario debe tener mucho cuidado en la selección del año base ya que es crucial para el estudio, puesto que todos los requerimientos futuros de energía son calculados por el programa basándose en la estructura de energía establecida para este año y en los cambios de los parámetros del escenarios de un año a otro.

3.3.1 Cuestiones preliminares

Antes de proceder con el análisis de un nuevo escenario, copie el archivo MAED_D en una nueva carpeta y continúe el trabajo siguiente relacionado con este escenario solo en esta nueva carpeta.

Fije el nivel de seguridad del programa Excel en Medio (Herramientas/Macro/Seguridad/Medio)². Con esta selección, cuando el archivo MAED_D se abra, un cuadro de diálogo aparecerá en la pantalla (ver Figura 3.7) preguntándole al usuario si pueden ser habilitadas las macros de Microsoft Visual Basic presentes en el libro de trabajo. Pulse el botón "Si" o el botón "Habilitar macros" ya que las macros suministradas en las hojas de cálculo son necesarias para el adecuado funcionamiento del programa.

El programa MAED_D incluye varias formas internas de chequear la consistencia de los datos de entrada. Por ejemplo, si el usuario trata de exceder las capacidades máximas del modelo, un mensaje de advertencia aparecerá en la pantalla de su equipo. A veces, una celda correspondiente a una variable calculada puede estar coloreada en rojo (error de acuerdo al código de colores establecido), alertando al usuario de que alguna de las variables a partir de las cuales se calcula este parámetro, tiene un valor inapropiado (por ejemplo, un porcentaje fuera del intervalo 0-100). No obstante el usuario debe cuidar por si mismo de la consistencia general de los datos de entrada y de los resultados del modelo.

⁻

² Para el nivel de seguridad bajo la computadora no está protegida de las macros potencialmente peligrosas, mientras que para el nivel de seguridad alto las macros del programa MAED_D podrían ser inhabilitadas automáticamente.

Figura 3.7. Imagen del cuadro de diálogo solicitando habilitar las macros.

3.3.2 Introducción de los datos de entrada y revisión progresiva de los resultados del modelo

El MAED_D tiene alrededor de 250 parámetros de entrada cuyos nombres simbólicos, definiciones y unidades están descritos en la Tabla 4.1. Se requiere que el usuario recolecte y compile los datos de entrada correspondientes a estos parámetros, para cada año de referencia seleccionado, e introduzca los mismos en las hojas de datos apropiadas en el archivo MAED_D. Sin embargo, antes de suministrar estos datos al modelo, el usuario debe introducir la descripción del escenario en la hoja de cálculo "Descr" y en la hoja "Defs" debe ajustar el modelo según la estructura de la economía y el patrón de consumo de energía y electricidad del país/región para el que se realiza el estudio.

3.3.3 Hoja de cálculo "Defs"

Como se mencionó en la sección 3.2 (c), esta hoja de cálculo contiene varios campos, que pueden ser modificados por el usuario para definir las condiciones específicas de un estudio en particular. Los campos con fondo de color blanco son para que el usuario introduzca/modifique los datos de entrada (Figura 3.8)

Las categorías de datos de entrada que se muestran a continuación se definen en esta hoja de cálculo:

Años de referencia para el estudio:

- Numero de años de referencia (celda B6)
- Lista secuencial de los años del modelo para los cuales se proyectará la demanda de energía (celdas B8:P8)
- Año base (uno de los años de referencia) en la celda B7. El año más reciente para el cual todos los datos de población, economía y energía está disponibles.

Los años de referencia incluyen al menos un año histórico (llamado año base) y varios años futuros para los cuales se proyectará la demanda de energía. Es preferible que el usuario incluya más de un año histórico; en cuyo caso el año histórico más reciente será el año base. El programa da el color gris de fondo para todos los campos correspondientes a los años históricos.

Para empezar, en el archivo 'demo" el programa muestra "No. de años Ref." como 6 y el año 2000 como el año base y el mismo como primer año de referencia (es decir, solo un año

histórico). En la fila 8, el programa muestra 5 campos con fondo de color blanco para que el usuario introduzca los años de proyección. Para agregar dos años históricos más, el usuario debe introducir en la celda correspondiente al "No. Años Ref." el número 8. Si el año 2002 es año histórico más reciente, entonces el usuario debe introducir el en la celda B7, 2002 como año base y comenzar los años de referencia del año 2000 en adelante desde la celda B8.

Estructura del sector económico:

- Número de subsectores para el sector Agricultura (celda B19)
- Nombres de los subsectores del sector Agricultura (celdas B20:B29)
- Número de subsectores para el sector de la Construcción (celda C19)
- Nombres de los subsectores del sector de la Construcción (celdas C20:C29)
- Número de subsectores para el sector Minería (celda D19)
- Nombres de los subsectores del sector Minería (celdas D20:D29)
- Número de subsectores para el sector Manufacturero (celda E19)
- Nombres de los subsectores del sector Manufacturero (celdas E20:E29)
- Número de subsectores para el sector Servicios (celda F19)
- Nombres de los subsectores del sector Servicios (celdas F20:F29)

El sector Energía no está dividido en subsectores. Es usado solo para describir la formación del PIB. La demanda de energía de éste sector se usa para convertir una forma de energía en otra, por ejemplo en la industria de refinación de petróleo. Ya que estas son o bien consumos propios o pérdidas en la conversión, el modelo MAED no las considera en la proyección de la demanda.

Para los otros sectores el usuario puede cambiar el número de subsectores y definir sus nombres en las celdas apropiadas.

Estructura del sector Transporte:

- Número de modos de transporte de carga (celda J17)
- Nombre de los modos de transporte de carga (celda I19:I33)
- Códigos de combustibles para las modos de transporte de carga (celdas J19:J33)
- Número de modos de transporte de pasajeros entre ciudades (celda L17)
- Nombre de los modos de transporte de pasajeros entre ciudades: avión, como modo público (celda K19), 5 tipos de autos (celdas K20:K24) y otros 9 tipos de modos públicos (celdas K25:K33)
- Códigos de los combustibles para los modos de transporte de pasajeros entre ciudades (celdas L19:L33)
- Número de modos de transporte de pasajeros dentro de la ciudad (celda N17)
- Nombre de los modos de transporte de pasajeros dentro de la ciudad (celda M19:M33)
- Códigos de combustible para los modos de transporte de pasajeros dentro de la ciudad (celdas N19:N33)

Para los subsectores de transporte de carga y transporte de pasajeros dentro de la ciudad el usuario puede cambiar el número de modos de transporte y entonces definir sus nombres y el combustible para cada modo en las celdas mencionadas arriba.

Para el transporte de pasajeros entre ciudades, el programa diferencia entre modos de transporte públicos y privados. Después del primer modo predefinido que es el "Avión", le

siguen 5 celdas reservadas para definir los modos de transporte privados. Estas celdas tienen un color verde de fondo. El programa asume que existe al menos un modo privado de transporte de pasajeros y por lo tanto debe llenarse con un código diferente de cero; inicialmente, los siguientes 4 campos deben estar con un cero como código. Cuando el usuario introduce un número mayor que 2 en el campo "Núm. Modos", el programa salta estas celdas verdes para ir a la primera celda donde se definen los modos de transporte públicos.

Sin embargo, si existe más de un modo privado de transporte de pasajeros, el usuario debe introducir el código del combustible para este modo en el primer campo de fondo verde disponible y su nombre en el campo adyacente. Para borrar alguno de los modos, el usuario debe primero poner en el código de combustible "0" y borrar el nombre del modo. De esta manera, el usuario puede continuar introduciendo hasta 4 modos privados adicionales y el número necesario de modos públicos incrementando el "Núm. Modo". Una vez introducidos los modos privados, el programa se posiciona en la celda para los modos públicos. Cuando no se tiene información sobre transporte de pasajeros en Avión, o no se desea modelar esta demanda, se debe introducir 0 en código del combustible para que el programa lo ignore.

Tipos de combustibles usados en el sector Transporte completo:

- Nombre de los combustibles (celda J38:J45); los primeros cuatro combustibles: electricidad, carbón, diesel y gasolina están fijos; el usuario puede adicionar hasta 4 nuevos combustibles propios del país.
- Unidades físicas para las intensidades energéticas asociadas a cada combustible usado para el transporte de carga (celdas L38:L45). Por ejemplo, kilogramo de carbón equivalente para el carbón, litro para el diesel, la gasolina, combustible motor, alcohol, etc.
- Factores de conversión para llevar las unidades físicas (kgce, litro, etc.) a kWh cuando el combustible es usado para transporte de carga (celdas M38:M45)

El usuario puede modificar solo la unidad física de energía (numerador) pero no el denominador (100 tkm para el transporte de carga, y 100 km y 1000 asiento-km para transporte de pasajeros) de la intensidad energética del uso del combustible respectivo, debido a que estos son inherentes a las ecuaciones del modelo. Después de modificar la unidad física, el factor de conversión correspondiente para llevar de la unidad física respectiva (kgce, litro, etc.) a kWh también debe ser cambiado.

En el caso "demostración" los factores de conversión fueron calculados mediante expresiones que usan el valor calórico (kcal/kg) y la densidad (kg/litro) de varios combustible motor incluidos en la hoja de cálculo "Convs". El usuario puede ajustar el contenido de estas celdas en la hoja de cálculo "Convs" de acuerdo a las características de los combustibles empleados en el país bajo estudio y utilizar la misma expresión o incorporar directamente el factor de conversión apropiado.

Estructura de sector Residencial:

- Número de tipos de viviendas urbanas (celda B35)
- Tipos de viviendas urbanas (celda B37:B46)
- Número de tipos de viviendas rurales (celda D35)
- Tipos de viviendas rurales (celda D37:D46)

El usuario puede cambiar el número de tipos de viviendas urbanas/rurales y definir sus nombres en las celdas correspondientes.

Unidades de las variables del modelo y factores de conversión:

- Nombre simbólico de la unidad monetaria seleccionada para el estudio (US\$, EUR, moneda local etc.) en la celda A50.
- Unidad para el PIB (celda B50); unidad por defecto: mil millones US\$.
- Unidad para la población y el número de viviendas (celda C50); valor por defecto: millón.
- Unidad de energía (definida en la celda E50, por defecto: GWa) que es la unidad en que los resultados de la demanda de energía serán mostrados en la Tablas 4, 6-7, 9-17, 19 y 20 del MAED_D. Como la unidad de energía para los cálculos internos del modelo es TWh, el factor de conversión de TWh a esta unidad debe ser indicado en la celda N50, como un número o como una fórmula usando el factor de conversión apropiado de la hoja de cálculo "Convs".
- La unidad de energía definida por el usuario (celda L50). Tal y como se explicó anteriormente, los resultados de la demanda de energía se muestran en varias tablas del MAED_D en la unidad de energía establecida por defecto en el modelo. Si el usuario desea recibir los resultados en otra unidad de energía, debe establecer la misma en la celda L50, y los resultados de la demanda de energía en esta unidad se mostrarán en la hoja de cálculo "Final results (user unit)". El factor de conversión para llevar de la unidad de energía por defecto a la unidad establecida por el usuario debe ser indicado en la celda M50, como un número o como una fórmula usando el factor de conversión apropiado de la hoja de cálculo "Convs".

En la fila 50 de la hoja de cálculo "Defs" aparecen también otras unidades aplicables a varias variables del modelo que se muestran en la columna B de la tablas de la 1 a la 20. Algunas de ellas deben ser consistentes con la unidad monetaria definida por el usuario. Por tanto, si el usuario modifica la unida monetaria establecida por defecto (US\$) a otra unidad (por ejemplo, EUR) algunas de estas unidades deben ser modificada también (por ejemplo, la unidad para intensidad energética debe ser cambiada de kWh/US\$ a kWh/EUR).

Los cambios en la magnitud de las diferentes unidades deben realizarse con precaución ya que algunos de los cocientes por defecto forman parte de las ecuaciones del modelo. Varios ejemplos de esto se muestran a continuación:

- El cociente entre el PIB (magnitud por defecto: mil millones) y la población (magnitud por defecto: millones) las cifras deben ser 1000.
- Las intensidades energéticas para el transporte de carga (celdas L38:L45) son expresadas en unidades físicas (kgce, litros, etc.) por 100 t-km. El usuario puede cambiar la unidad física de energía (numerador) y el factor de conversión correspondiente a kWh (celdas M38:M45) pero no el denominador (100 t-km).
- Las partes fundamentales de la intensidad energética para el transporte de pasajeros son expresadas en unidades físicas de energía (litros, kgce, etc.) por 100 km, La única excepción es el combustible para los aviones para los cuales la intensidad energética se expresa en alguna unidad física por 1000 asiento-km. De nuevo, el usuario puede cambiar las unidades físicas (numerador) y el factor de conversión correspondiente a kWh (celdas O38:O45) pero no el denominador (100 km y 1000 asiento-km).

Al inicio de la hoja de cálculo "Defs" (Figura 3.8) aparecen 3 botones con las siguientes funciones respectivas:

Botón "Construir la estructura del modelo": reconstruye automáticamente la estructura del modelo después de cada modificación en los datos relevantes de la hoja de cálculo "Defs": número de años de referencia; número de subsectores del sector Agricultura, Construcción, Minería, Manufacturero o Servicios; número de modos de transporte o combustible usado en el sector Transporte; número de tipos de viviendas urbanas o rurales.

Botón "**Ajustar ancho de las columnas**": ajusta el ancho de la columna de acuerdo a la magnitud de los números de cada columna;

Botón "Eliminar los datos de entrada"; borra todos los datos de entrada del caso.

Figura 3.8 Instantánea de la hoja de cálculo "Defs" en el MAED_D.

Después de cambiar cualquier parámetro en la hoja de cálculo "Defs" el usuario debe pulsar el botón "Construir la estructura del modelo". Al realizar esta acción se muestra el siguiente mensaje:

Si se pulsa el botón **Cancelar**, se detiene la reconstrucción de la estructura del modelo y el control es devuelto a la hoja de cálculo "Defs".

Si el usuario pulsa el botón **Aceptar**, se reestructurarán las tablas en las hojas afectadas por los cambios mencionados y las ecuaciones respectivas serán recalculadas según los nuevos valores de los parámetros modificados: número de años de referencia, el número de subsectores económicos o de energía, los modos de transporte o los tipos de viviendas.

Algunos cambios afectarán sólo a un número pequeño de sectores y de parámetros del modelo; otros afectarán la mayoría de los sectores. El usuario puede estar interesado en mantener el volumen máximo de datos útiles antiguos para los parámetros y sectores inalterados o en borrar todos los datos anteriores para los sectores/subsectores modificados y mantener sólo un volumen mínimo de datos antiguos para los parámetros inalterados en los sectores/subsectores no modificados. Para hacer esto el usuario debe responder Sí o No al mensaje siguiente:

Si la respuesta es **Si**, los datos anteriores válidos se mantienen como se muestra en la Tabla 3.2 para los cambios más frecuentes. Si la respuesta es **No**, todos los datos de entrada antiguos para los sectores modificados son eliminados.

Al finalizar este procedimiento todas las tablas de Excel estarán automáticamente reconfiguradas y la demanda de energía será recalculada teniendo en cuenta los últimos datos de entrada suministrados.

Si para algunos datos de entrada o variables calculadas el ancho de la columna no es lo suficientemente largo y el programa muestra el símbolo ##### en las celdas respectivas, el usuario debe pulsar el botón "Ajustar ancho de las columnas" para alargar las columnas respectivas y obtener las cifras reales de estas celdas.

El botón "Eliminar los datos de entrada" será usado para borrar todos los datos de entrada de un caso existente.

Los datos de entrada de esta hoja de cálculo son chequeados internamente y si algunos de los datos están fuera de las capacidades del modelo o no siguen las restricciones del modelo entonces se mostrarán mensajes de error o advertencia.

Ξ	
\supset	
2	
ಡ	
gram	
Ŗ	
덛)
Ö	•
\sim	
\equiv	7
bia en el prog	
Ü	
a)	
<u>.</u> घ	
4	
Ξ	
ਕੁ	
ético cambi	
္က	
.2	
ét	
þí)
G	
ü	
$^{\prime}$	
Ó	
.2	
В	
Ó	
a econ	
္က	
ĕ	
ਕ	
Ã	
G	
ŝ	
. 53	
0	
0	
\mathbf{z}	
뭂	
Ħ	
O	
ς.	
20	
·Ĕ	
9	
nte	
anterior" cuando el si	
a ante	
ura ante	
ctura ante	
uctura ante	
tructura	
estructura ante	
estructura ante	
de estructura ante	
s de estructura ante	
los de estructura ante	
idos de estructura ante	
álidos de estructura ante	
válidos de estructura ante	
s válidos de estructura ante	
tos válidos de estructura ante	
latos válidos de estructura ante	
datos válidos de estructura ante	
os datos válidos de estructura ante	
los datos válidos de es	
er los datos válidos de estructura ante	
los datos válidos de es	
"Mantener los datos válidos de es	
"Mantener los datos válidos de es	
"Mantener los datos válidos de es	
los datos válidos de es	
"Mantener los datos válidos de es	_
"Mantener los datos válidos de es	_
Opción "Mantener los datos válidos de es	
"Mantener los datos válidos de es	
Opción "Mantener los datos válidos de es	
Opción "Mantener los datos válidos de es	
Opción "Mantener los datos válidos de es	
Opción "Mantener los datos válidos de es	
Opción "Mantener los datos válidos de es	

No.	Cambio de datos	Que hace el MAED_D en cada caso:	
		Borra	Conserva
-	Modificar el número de subsectores en el sector AGR	- VA por subsector de AGR (Tabla 2/ Hoja GDP-D) - IE por subsector de AGR (Tabla 3/ Hoja EnInt-D) - Penetraciones para AGR (Tabla 5-1) - Coeficientes para AGR en la Tabla 10-1 (FT)	 Todos los datos de demografía, MAN, PT dentro y entre ciudades, HH y SER VA por subsectores para el resto de los sectores (Tabla 2/ Hoja GDP-D) Eficiencias promedio para ACM (Tablas 5-5 a 5-7) IE para otros sectores: CON, MIN, MAN (Tabla 3/ Hoja EnInt-D) Penetraciones para CON (Tabla 5-2) y MIN (Tabla 5-3) Estructura por modos del FT (Tabla 10-3) IE para FT (Tabla 10-4)
2	Modificar el número de subsectores en el sector CON	Similar a AGR	Similar a AGR
3	Modificar el número de subsectores en el sector MIN	Similar a AGR	Similar a AGR
4	Modificar el número de subsectores en el sector MAN	 - VA por subsector de MAN (Tabla 2/ Hoja GDP-D) - IE por subsector de MAN (Tabla 3/Hoja EnInt-D) - Estructura de energía térmica útil en los subsectores de MAN por categorías de procesos térmicos (Tabla 7) - Penetraciones para MAN (Tabla 8-1) - Coeficientes para MAN en la Tabla 10-1 (FT) 	 - Todos los datos de demografía, ACM, PT dentro y entre ciudades, HH y SER - VA por subsectores para el resto de los sectores (Tabla 2/Hoja GDP-D) - Eficiencias para MAN (Tabla 8-2) - Estructura por modos del FT (Tabla 10-3) - IE para FT (Tabla 10-4)

Tabla 3.2. Opción "Mantener los datos válidos de estructura anterior" cuando el sistema económico/energético cambia en el programa MAED_D (Continuación)

No.	Cambio de datos	Que hace el MAED_D en cada caso:	
		Borra	Conserva
2	Modificar el número de subsectores en el sector SER	- VA por subsector de SER (Tabla 2/ Hoja GDP-D) - Coeficientes para SER en Tabla 10-1 (FT) - IE para SER (Tablas 17-4 a 17-6) - Penetraciones en Otros usos térmicos en SER (Tabla 18-2)	 Todos los datos de demografía, ACM, MAN, PT dentro y entre ciudades y HH VA por subsectores para el resto de los sectores (Tabla 2/ Hoja GDP-D) Estructura por modos del FT (Tabla 10-3) IE para FT (Tabla 10-4) datos básicos para SER (Tabla 17-1) Factores para SER (Tabla 17-2) Penetraciones y eficiencias para SER, excepto las penetraciones en Otros usos térmicos (Tablas 18-1, 18-3, 18-4) y 18-5)
9	Modificar el número de modos de FT o el código del combustible para un modo de FT	- Estructura por modos del FT (Tabla 10-3) - El para FT (Tabla 10-4)	 - Todos los datos de demografía, PIB, ACM, MAN, PT dentro y entre ciudades, HH y SER - Datos de la generación de la carga-kilómetros (Tabla 10-1)
7	Modificar el número de modos de PT entre ciudades. El mismo número de tipos de auto (solo cambia el número de modos de transporte público).	-LF por modos de PT públicos entre ciudades (Tabla 12-3) - Estructura por modos del PT público entre ciudades (Tabla 12-7) - IE por modos de PT públicos entre ciudades (Tabla 12-9)	- Todos los datos de demografía, PIB, ACM, MAN, FT y PT dentro de las ciudades, HH y SER - Datos generales del PT entre ciudades (Tablas 12-1 y 12-2) -LF por tipos de autos en el PT entre ciudades (Tabla 12-3) - Estructura por tipos de autos en el PT entre ciudades (Tabla 12-5) - IE por tipos de autos en el PT entre ciudades (Tabla 12-5)

Tabla 3.2. Opción "Mantener los datos válidos de estructura anterior" cuando el sistema económico/energético cambia en el programa MAED_D (Continuación)

No.	Cambio de datos	Que hace el MAED_D en cada caso:	
		Borra	Conserva
∞	Cambiar el número de modos de PT entre ciudades y el número de tipos de autos. El mismo número de modos de transporte público	-LF por tipos de autos en PT entre ciudades (Tabla 12-3) - Estructura por tipos de autos en el PT entre ciudades (Tabla 12-5) - IE por tipos de autos en el PT entre ciudades (Tabla 12-9)	- Todos los datos de demografía, PIB, ACM, MAN, FT y PT dentro de las ciudades, HH y SER - Datos generales del PT entre ciudades (Tablas 12-1 y 12-2) -LF por tipos de autos en el PT entre ciudades (Tabla 12-3) - Estructura por modos del PT público entre ciudades (Tabla 12-7) - IE por modos de PT públicos entre ciudades (Tabla 12-7)
6	Modificar el número de tipos de autos y el número de modos de transporte público (caso 9 = caso 7 + caso 8)	- LF para todos los modos de PT entre ciudades (Tabla 12-3) - Estructura por tipos de autos en el PT entre ciudades (Tabla 12-5) - Estructura por modos del PT público entre ciudades (Tabla 12-7) - IE para todos los modos de PT públicos entre ciudades (Tabla 12-7)	- Todos los datos de demografía, PIB, ACM, MAN, FT y PT dentro de las ciudades, HH y SER - Datos generales del PT entre ciudades (Tablas 12-1 y 12-2)
10	Modificar el código de combustible de un tipo de auto en PT entre ciudades.(idem borrar/mantener que para el caso 8)	-LF por tipos de autos en PT entre ciudades (Tabla 12-3) - Estructura por tipos de autos en el PT entre ciudades (Tabla 12-5) - IE por tipos de autos en el PT entre ciudades (Tabla 12-9)	- Todos los datos de demografía, PIB, ACM, MAN, FT y PT dentro de las ciudades, HH y SER - Datos generales del PT entre ciudades (Tablas 12-1 y 12-2) - LF por modos de PT público entre ciudades (Tabla 12-3) - Estructura por modos del PT público entre ciudades (Tabla 12-7) - IE por modos de PT públicos entre ciudades (Tabla 12-7)

Tabla 3.2. Opción "Mantener los datos válidos de estructura anterior" cuando el sistema económico/energético cambia en el programa MAED_D (Continuación)

No.	Cambio de datos	Que hace el MAED_D en cada caso:	
		Borra	Conserva
	Modificar el código de combustible de un modo de PT entre ciudades .(idem borrar/mantener que para el caso 7)	-LF por modos de PT públicos entre ciudades (Tabla 12-3) - Estructura por modos del PT público entre ciudades (Tabla 12-7) - IE por modos de PT públicos entre ciudades (Tabla 12-9)	- Todos los datos de demografía, PIB, ACM, MAN, FT y PT dentro de las ciudades, HH y SER - Datos generales del PT entre ciudades (Tablas 12-1 y 12-2) -LF por tipos de autos en el PT entre ciudades (Tabla 12-3) - Estructura por tipos de autos en el PT entre ciudades (Tabla 12-5) - LE por tipos de autos en el PT entre ciudades (Tabla 12-5)
12	Modificar el número de modos de PT dentro de la ciudad o el código de combustible de un modo de PT dentro de la ciudad	-LF para los modos de PT dentro de la ciudad (Tabla 11-2) - Estructura por modos de PT dentro de la ciudad (Tabla 11-3) - IE para los modos de PT dentro de la ciudad (Tabla 11-5)	- Todos los datos de demografía, PIB, ACM, MAN, FT y PT entre ciudades, HH y SER - datos generales del PT dentro de la ciudad (Tablas 11-1)

Tabla 3.2. Opción "Mantener los datos válidos de estructura anterior" cuando el sistema económico/energético cambia en el programa MAED_D (Continuación)

No.	No. Cambio de datos	Que hace el MAED_D en cada caso:	
		Borra	Conserva
13	Modificar el número de tipos de HH urbano	- Todos los factores de las viviendas para SH y AC (Tabla 14-2) - Penetración para la SH (Tabla 14-5)	- Todos los datos de demografía, PIB, ACM, MAN, FT & PT, HH rural y SER - Datos básicos para HH urbano (Tabla 14-1) - Todos los factores de la vivienda para CK, HW y AP (Tabla 14-3) - Todas las eficiencias para HH urbano (Tablas 14-6, 14-8, 14-10 y 14-12) - Penetraciones en HW (Tabla 14-7), CK (Tabla 14-9) y AC (Tabla 14-11)
14	Modificar el número de tipos de HH rural	Similar al HH urbano	Similar al HH urbano

Abreviaturas:

ACM: Agricultura, Construcción y Minería PT: Transporte de pasajeros IE: Intensidad Energética CK: Cocción HW: Calentamiento de agua FT: Transporte de carga VA: Valor agregado MIN: Minería PIB: Producto Interno Bruto AC: Aire acondicionado CON: Construcción SH: Calefacción SER: Servicio MAN: Manufacturero LF: Factor de Carga AP: Equipamiento AGR: Agricultura HH: Residencial

3.3.4 Hoja de cálculo "Demogr-D" (Tabla 1)

Esta hoja se usa para manejar los datos demográficos: población y viviendas, áreas pobladas y fuerza laboral. Tiene 7 parámetros de entrada y 5 parámetros calculados (ver Figura 3.9). Los datos contenidos en esta hoja se requieren para calcular los valores de los parámetros calculados en otras hojas distribuidas a lo largo del libro de trabajo MAED_D. Antes de incorporar un nuevo conjunto de datos de entrada en las celdas de fondo blanco de esta hoja, los datos existentes correspondientes al Caso de Demostración pueden ser borrados, ya sea usando el botón "Eliminar los datos de entrada" de la hoja "Defs", o fila por fila o una celda en un momento dado, a consideración del usuario.

Tabla 1 Demografía

Item	Unidad	2000	2005	2010	2015	2020	2025
Población*	[millón]	19.150	21.666	24.275	26.934	29.591	32.194
Tasa de crec. Pob.*	[%p.a.]	na**	2.500	2.300	2.100	1.900	1.700
Pob. Urbana	[%]	41.500	42.000	43.000	44.000	45.000	45.000
habitantes/casa	[cap]	6.000	5.900	5.700	5.400	5.000	4.500
Viviendas	[millón]	1.325	1.542	1.831	2.195	2.663	3.219
Pob. Rural	[%]	58.500	58.000	57.000	56.000	55.000	55.000
habitantes/casa	[cap]	7.000	6.800	6.600	6.300	5.900	5.400
Viviendas	[millón]	1.600	1.848	2.097	2.394	2.759	3.279
Fuerza laboral pot.	[%]	49.000	49.200	49.400	49.550	49.650	49.700
Fuerza laboral trab.	[%]	40.000	42.000	45.000	49.000	54.000	60.000
Fuerza laboral activa	[millón]	3.753	4.477	5.396	6.539	7.934	9.600
Porc. Pob. en grandes ciudades	[%]	22.000	23.000	24.000	25.000	26.000	27.000
Pob. en grandes ciudades	[millón]	4.213	4.983	5.826	6.733	7.694	8.692

^{*}una de las series debe ser definida, la otra se calcula a partir de ésta:

C4*(1+D5/100)^(D3-C3) (Población)

Figura 3.9. Imagen de la tabla 1 de la hoja "Demogr-D".

El usuario puede utilizar fórmulas para incorporar los datos de entrada en las diferentes filas del modelo. Pero esto debe realizarse con cuidado teniendo en cuenta las particularidades de cada parámetro de entrada. Por ejemplo: veamos los parámetros población (nombre de la variable PO) y tasa de crecimiento de la población (nombre la variable: POGR) las cuales se muestran en la Figura 3.9. En este caso, tal y como se explica en la nota al pie de la tabla, solo una de las series de tiempo debe ser introducida numéricamente y la otra es calculada usando la fórmula pertinente de las dos expresiones mostradas en las celdas A18 y A19. Note que, independientemente de si se está usando la fórmula en la fila 4 o 5, el valor de PO para el primer año de referencia del modelo no puede ser calculado usando la fórmula. El valor de la población para este año tiene que ser dado numéricamente. Esto no sucede para todos los parámetros de entrada, solo deseamos enfatizar con este ejemplo, la necesidad de ser cuidadoso a la hora de incorporar los datos de un parámetro de entrada mediante una fórmula.

Si el usuario desea usar la misma fórmula en una fila en particular que ha sido usada en el Caso Demostración, no es necesario eliminar el contenido de esta fila y re-incorporar la misma fórmula de nuevo en el momento de suministrar los datos de entrada. Sin embargo, si desea usar una fórmula diferente en esa fila o incorporar los datos numéricamente, el contenido de la fila puede ser eliminado junto con aquellas filas que solo tiene datos numéricos, antes de comenzar la entrada de nuevos datos.

⁽⁽D4/C4)^(1/(D3-C3))-1)*100 (Tasa de crecimiento de la población)

^{**} na - no aplicable

En la Tabla 1 del Caso de Demostración (Figura 3.9), los datos de entrada para la variable POGR han sido suministrados numéricamente, mientras para la variable PO se han calculado mediante la fórmula.

Una vez que el proceso de entrada de datos está completo, todas las celdas correspondientes a las variables calculadas en la tabla mostrarán los valores encontrados para esas variables. En esta etapa el usuario debe chequear cuidadosamente si estos valores parecen razonables; si no lo son, es necesario chequear los datos de entrada correspondientes y hacer los arreglos/ajustes necesarios. El programa MAED_D realiza algunos chequeos internos de los datos de entrada y las variables calculadas y suministra algunos mensajes de error/alerta pero éstos no son exhaustivos. Es necesario que el usuario realice chequeos adicionales de las diferentes variables.

Muchos de los aspectos tratados hasta el momento relacionados con la incorporación de los datos de entrada y la revisión de los valores de las variables calculadas son aplicables a otras hojas de datos del MAED D.

3.3.5 Hoja de cálculo "GDP-D" (Tabla 2)

Esta hoja permite introducir la formación de Producto Interno Bruto (PIB) y las expectativas de su crecimiento. Consiste en un máximo de 9 tablas numeradas como Tablas 2-1 hasta la Tabla 2-9.

La primera tabla, Tabla 2-1 (ver figura 3.10), es esencialmente una tabla de entrada donde se insertan para el nuevo escenario, los datos relacionados con el PIB (o la tasa de crecimiento del PIB) y la estructura de la formación del mismo. Los parámetros en las filas 8 (PIB/cap) y 14 (participación del sector Energía en la formación del PIB) son parámetros calculados y por tanto, las celdas correspondientes son de color naranja y están protegidas. El parámetro "Energía" (que representa la participación del sector Energía en la formación del PIB), el cual aparece en la fila 14, es un parámetro de entrada (definido por la variable: PYEN en la Sección 4, Tabla 4.1) que representa el balance de la participación en la formación del PIB después que la contribución del resto de los sectores (Agricultura, Construcción, Minería, Manufacturero y Servicio). Este parámetro es tratado por el programa como un "remanente" y sus valores son calculados automáticamente. Por esta razón la fila 14 es de color naranja y está protegida.

Como en la hoja de cálculo anterior, dos parámetros de entrada en esta tabla, el PIB y su tasa de crecimiento del PIB, pueden ser relacionados a través de una formula. En este caso el usuario debe suministrar la serie de datos solo para uno de los parámetros y el programa calcula el otro automáticamente.

Las Tablas 2-2 a 2-6 son propuestas para incluir la estructura de la formación del valor agregado por los subsectores de los sectores principales Agricultura, Construcción, Minería, Manufacturero y Servicio. Ellas tienen un número variable de filas dependiendo del número de subsectores del sector principal. Si el sector principal no esta desagregado en subsectores, la tabla correspondiente desaparece ya que la contribución del sector principal al valor agregado fue dada en la Tabla 2-1. Si el sector principal tiene al menos dos subsectores, las filas finales de estas tablas son calculadas como remanentes, tal y como se explicó para la tabla de la contribución de los sectores al valor agregado del PIB. El usuario puede encontrarse en situaciones similares en otras hojas de datos del MAED D.

La tabla 2-7 incluye datos sobre varias variables que representan el valor monetario para el valor agregado por sector y subsector, calculado con base en la información sobre el PIB total y su estructura porcentual por sectores y subsectores suministrada en las tablas anteriores. La fila final de esta tabla muestra los valores calculados del PIB total, los cuales como comprobación, debe ser idéntica a los datos de entrada suministrados/calculados en la Tabla 2-1 (fila 6). Estos datos, junto con los datos de la Tabla 2-1 son usados por el programa para la obtención de muchas variables calculadas en otras hojas del MAED D.

La Tabla 2-8 muestra los valores monetarios per cápita calculados para el PIB total y el PIB por sector para los sectores principales Agricultura, Construcción, Minería, Manufacturero, Servicios y Energía.

La tabla final de esta hoja de cálculo (Tabla 2-9) muestra la tasa de crecimiento para el valor agregado por sector y subsector así como para el PIB total y el PIB per cápita. Estas tasas de crecimiento se muestran solo para el segundo año de referencia en adelante, el primer año sirve solo como referencia para calcular la tasa de crecimiento para el segundo año. En la Figura 3.11 se ven las Tablas 2-7, 2-8 y 2-9.

3.3.6 Hojas de cálculo para el sector Industria (Tablas 3 a 9)

En el MAED_D 7 hojas, llamadas "EnInt-D", "UsEne-D", "ACMFac-D", "FIN_ACM", "ManFac1-D", "ManFac2-D" y "FIN_Ind-D", se emplean para abarcar el análisis de la demanda de energía del sector Industria, que es un sector compuesto y comprende 4 grandes sectores económicos: Agricultura, Construcción, Minería y Manufacturero. El término "ACM" se emplea en estas hojas y también en el manual para referirse a la combinación de los sectores Agricultura, Construcción y Minería.

(a) Hoja de cálculo "EnInt-D" (Tabla 3)

La hoja de cálculo "EnInt-D" cubre la tabla 3 de del Módulo 1 del MAED. Esta abarca tres sub-tablas, propuestas para la entrada de datos sobre las intensidades energéticas de los sectores Agricultura, Construcción, Minería y Manufacturero con respecto a: combustible motor (Tabla 3-1), usos específicos de la electricidad (Tabla 3-2) y usos térmicos (Tabla 3-3). Las intensidades energéticas se expresan en términos de energía final por unidad monetaria para los combustible motor y los usos específicos de la electricidad y en términos de energía útil por unidad monetaria para los usos térmicos. Estos datos se suministran a nivel de subsectores y el modelo calcula las intensidades energéticas promediadas y ponderadas al nivel del sector principal. La Figura 3.12 muestra una Imagen de la Tabla 3-1 de esta hoja.

Formación del PIB

Tabla 2-1 PIB total y estructura del PIB por los principales sectores económicos

İtem	Unidad	2000	2005	2010	2015	2020	2025
PIB*	[mil millones US\$]	33.550	42.819	54.131	67.780	84.063	103.263
Tasa de crec. del PIB*	[%]	na	5.000	4.800	4.600	4.400	4.200
PIB/cap	US\$	1752.0	1976.3	2229.9	2516.6	2840.8	3207.6
Agricultura	[%]	24.500	23.500	21.500	19.400	17.400	15.500
Construcción	[%]	2.300	2.300	2.300	2.300	2.300	2.200
Minería	[%]	5.500	5.300	5.100	4.800	4.300	3.800
Manufactura	[%]	13.000	14.000	15.200	16.100	16.800	16.900
Servicios	[%]	49.000	49.000	50.000	51.800	54.200	57.300
Energía	[%]	5.700	5.900	5.900	5.600	5.000	4.300

^{*}una de las series debe ser definida, la otra se calcula a partir de ésta: C6*(1+D7/100)^(D5-C5) (PIB) ((D6/C6)^(1/(D5-C5))-1)*100 (Tasa de crecimiento del PIB)

Item	Unidad	2000	2005	2010	2015	2020	2025
Cultivos	[%]	55.000	53.000	50.500	48.000	46.000	44.000
Ganadería	[%]	25.000	26.500	28.000	29.500	30.500	32.000
Silvicultura	[%]	15.500	15.000	15.000	15.000	15.000	15.000
Pesca	[%]	4.500	5.500	6.500	7.500	8.500	9.000
Tabla 2-3 Distribución del	PIB por subsecto	res de la (Construc	ción			
İtem	Unidad	2000	2005	2010	2015	2020	2025
Edificaciones	[%]	20.000	21.000	22.000	23.000	24.000	25.000
Infraestructura	[%]	80.000	79.000	78.000	77.000	76.000	75.000
Tabla 2-4 Distribución del	PIB por subsecto	res de la l	Minería				
İtem	Unidad	2000	2005	2010	2015	2020	2025
Metales	[%]	35.000	35.000	35.000	35.000	35.000	35.000
No metales	[%]	40.000	40.000	40.000	40.000	40.000	40.000
Otros	[%]	25.000	25.000	25.000	25.000	25.000	25.000
Tabla 2-5 Distribución del	PIB por subsecto	res de la l	Manufact	ura			
Item	Unidad	2000	2005	2010	2015	2020	2025
Materiales Básicos	[%]	25.000	24.000	23.000	22.000	21.000	20.000
Maquinarias y equipos	[%]	10.000	13.000	16.000	19.000	21.000	23.000
No duraderos	[%]	60.000	58.000	56.000	54.000	53.000	52.000
Misceláneas	[%]	5.000	5.000	5.000	5.000	5.000	5.000
Tabla 2-6 Distribución del	PIB por subsecto	res de la S	Servicios				
İtem	Unidad	2000	2005	2010	2015	2020	2025
Comercio y Turismo	[%]	13.000	15.000	16.500	18.000	19.000	19.500
Administración Pública	[%]	32.500	33.000	33.500	34.000	34.500	35.000
Financias y Negocios	[%]	6.000	6.500	7.000	7.500	8.100	9.000
Servicios Personales y otros	[%]	48,500	45.500	43,000	40.500	38.400	36.500

Figura 3.10. Imagen de las Tabla 2-1 a 2-6 (datos de entrada) de la hoja GDP-D.

Tabla 2-7 PIB por sectores/subsectores (valores absolutos)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Agricultura	[mil millones US\$]	8.220	10.063	11.638	13.149	14.627	16.006
Cultivos	[mil millones US\$]	4.521	5.333	5.877	6.312	6.728	7.043
Ganadería	[mil millones US\$]	2.055	2.667	3.259	3.879	4.461	5.122
Silvicultura	[mil millones US\$]	1.274	1.509	1.746	1.972	2.194	2.401
Pesca	[mil millones US\$]	0.370	0.553	0.756	0.986	1.243	1.441
Construcción	[mil millones US\$]	0.772	0.985	1.245	1.559	1.933	2.272
Edificaciones	[mil millones US\$]	0.154	0.207	0.274	0.359	0.464	0.568
Infraestructura	[mil millones US\$]	0.617	0.778	0.971	1.200	1.469	1.704
Minería	[mil millones US\$]	1.845	2.269	2.761	3.253	3.615	3.924
Metales	[mil millones US\$]	0.646	0.794		1.139	1.265	1.373
No metales	[mil millones US\$]	0.738	0.908	1.104	1.301	1.446	1.570
Otros	[mil millones US\$]	0.461	0.567	0.690	0.813	0.904	0.981
Manufactura	[mil millones US\$]	4.362	5.995	8.228	10.913	14.123	17.451
Materiales Básicos	[mil millones US\$]	1.090	1.439	1.892	2.401	2.966	3.490
Maquinarias y equipos	[mil millones US\$]	0.436	0.779	1.316	2.073	2.966	4.014
No duraderos	[mil millones US\$]	2.617	3.477	4.608	5.893	7.485	9.075
Misceláneas	[mil millones US\$]	0.218	0.300	0.411	0.546	0.706	0.873
Servicios	[mil millones US\$]	16.440	20.981	27.065	35.110	45.562	59.170
Comercio y Turismo	[mil millones US\$]	2.137	3.147	4.466	6.320	8.657	11.538
Administración Pública	[mil millones US\$]	5.343	6.924	9.067	11.937	15.719	20.709
Financias y Negocios	[mil millones US\$]	0.986	1.364	1.895	2.633	3.691	5.325
Servicios Personales y otros	[mil millones US\$]	7.973	9.547	11.638	14.220	17.496	21.597
Energía	[mil millones US\$]	1.912	2.526	3.194	3.796	4.203	4.440
PIB total	[mil millones US\$]	33.550	42.819	54.131	67.780	84.063	103.263

Tabla 2-8 PIB por sectores (per cápita):

Item	Unidad	2000	2005	2010	2015	2020	2025
PIB/cap	US\$	1751.958	1976.291	2229.868	2516.569	2840.799	3207.556
Agricultura	US\$	429.230	464.428	479.422	488.214	494.299	497.171
Construcción	US\$	40.295	45.455	51.287	57.881	65.338	70.566
Minería	US\$	96.358	104.743	113.723	120.795	122.154	121.887
Manufactura	US\$	227.755	276.681	338.940	405.168	477.254	542.077
Servicios	US\$	858.460	968.383	1114.934	1303.583	1539.713	1837.930
Energía	US\$	99.862	116.601	131.562	140.928	142.040	137.925

Tabla 2-9 PIB por sectores/subsectores (tasas de crecimiento):

İtem	Unidad	2000	2005	2010	2015	2020	2025
Agricultura	[%]		4.129	2.952	2.472	2.153	1.818
Cultivos	[%]		3.360	1.962	1.437	1.287	0.917
Ganadería	[%]		5.349	4.092	3.547	2.836	2.800
Silvicultura	[%]		3.448	2.952	2.472	2.153	1.818
Pesca	[%]		8.393	6.450	5.447	4.742	2.989
Construcción	[%]		5.000	4.800	4.600	4.400	3.278
Edificaciones	[%]		6.030	5.780	5.534	5.292	4.124
Infraestructura	[%]		4.736	4.533	4.330	4.127	3.005
Minería	[%]		4.225	3.997	3.339	2.128	1.655
Metales	[%]		4.225	3.997	3.339	2.128	1.655
No metales	[%]		4.225	3.997	3.339	2.128	1.655
Otros	[%]		4.225	3.997	3.339	2.128	1.655
Manufactura	[%]		6.568	6.538	5.810	5.292	4.324
Materiales Básicos	[%]		5.701	5.635	4.874	4.317	3.311
Maquinarias y equipos	[%]		12.309	11.055	9.510	7.421	6.239
No duraderos	[%]		5.848	5.793	5.044	4.900	3.927
Misceláneas	[%]		6.568	6.538	5.810	5.292	4.324
Servicios	[%]		5.000	5.224	5.343	5.350	5.366
Comercio y Turismo	[%]		8.049	7.249	7.192	6.495	5.914
Administración Pública	[%]		5.321	5.541	5.655	5.658	5.669
Financias y Negocios	[%]		6.694	6.796	6.806	6.984	7.609
Servicios Personales y otros	[%]		3.668	4.042	4.088	4.234	4.302
Energía	[%]		5.727	4.800	3.514	2.060	1.104
PIB total	[%]		5.000	4.800	4.600	4.400	4.200
PIB/cap	[%]		2.439	2.444	2.449	2.453	2.458

Figura 3.11. Imagen de las Tabla 2.7 a 2-9 (datos calculados) de la Hoja GDP-D.

Intensidades energéticas en la Industria

Tabla 3-1 Intensidades energéticas de Combustibles motor

İtem	Unidad	2000	2005	2010	2015	2020	2025
Agricultura	[kWh/US\$]	0.972	0.872	0.798	0.725	0.668	0.611
Cultivos	[kWh/US\$]	1.500	1.400	1.350	1.300	1.250	1.200
Ganadería	[kWh/US\$]	0.000	0.000	0.000	0.000	0.000	0.000
Silvicultura	[kWh/US\$]	0.800	0.700	0.600	0.500	0.450	0.400
Pesca	[kWh/US\$]	0.500	0.450	0.400	0.350	0.300	0.250
Construcción	[kWh/US\$]	0.580	0.574	0.568	0.562	0.556	0.550
Edificaciones	[kWh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100
Infraestructura	[kWh/US\$]	0.700	0.700	0.700	0.700	0.700	0.700
Minería	[kWh/US\$]	0.210	0.210	0.210	0.210	0.210	0.210
Metales	[kWh/US\$]	0.300	0.300	0.300	0.300	0.300	0.300
No metales	[kWh/US\$]	0.200	0.200	0.200	0.200	0.200	0.200
Otros	[kWh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100
Manufactura	[kWh/US\$]	0.122	0.121	0.120	0.119	0.119	0.118
Materiales Básicos	[kWh/US\$]	0.150	0.150	0.150	0.150	0.150	0.150
Maquinarias y equipos	[kWh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100
No duraderos	[kWh/US\$]	0.120	0.120	0.120	0.120	0.120	0.120
Misceláneas	[kWh/US\$]	0.050	0.050	0.050	0.050	0.050	0.050

Figura 3.12. Imagen de la Tabla 3-1 de la hoja EnInt-D

(b) Hoja de cálculo "UsEne-D" (Tabla 4)

Esta hoja contiene los datos calculados por el modelo sobre la demanda de energía útil para: combustible motor (Tabla 4-1), usos específicos de la electricidad (Tabla 4-2) y usos térmicos (Tabla 4-3) en los sectores Agricultura, Construcción, Minería y Manufacturero. La Tabla 4-4 resume la demanda de energía útil de todo el sector Industria. La Figura 3.13 muestra una Imagen de la Tabla 4-1.

Debe mencionarse que la demanda de energía para el combustible motor y los usos específicos de electricidad, de hecho, se calcula directamente en términos de energía final ya que no se permiten sustituciones para estos usos de energía y sectores en particular. El único uso energético para el cual la demanda de energía se calcula en término de energía útil es el térmico. Para convertir la demanda de energía útil para los usos térmicos en los sectores Agricultura, Construcción, Minería y Manufacturero en energía final, es necesario información adicional sobre las penetraciones en el mercado de los diferentes portadores de energía y sobre las eficiencias de sus usos finales. Los datos respectivos se suministrán en las hojas de cálculo siguientes.

Demanda total de energía útil en la Industria

Tabla 4-1 Demanda de energía útil para los combustibles motor

İtem	Unidad	2000	2005	2010	2015	2020	2025
Agricultura	GWa	0.912	1.001	1.060	1.089	1.115	1.115
Cultivos	GWa	0.774	0.852	0.906	0.937	0.960	0.965
Ganadería	GWa	0.000	0.000	0.000	0.000	0.000	0.000
Silvicultura	GWa	0.116	0.121	0.120	0.113	0.113	0.110
Pesca	GWa	0.021	0.028	0.035	0.039	0.043	0.041
Construcción	GWa	0.051	0.065	0.081	0.100	0.123	0.143
Edificaciones	GWa	0.002	0.002	0.003	0.004	0.005	0.006
Infraestructura	GWa	0.049	0.062	0.078	0.096	0.117	0.136
Minería	GWa	0.044	0.054	0.066	0.078	0.087	0.094
Metales	GWa	0.022	0.027	0.033	0.039	0.043	0.047
No metales	GWa	0.017	0.021	0.025	0.030	0.033	0.036
Otros	GWa	0.005	0.006	0.008	0.009	0.010	0.011
Manufactura	GWa	0.061	0.083	0.113	0.149	0.191	0.235
Materiales Básicos	GWa	0.019	0.025	0.032	0.041	0.051	0.060
Maquinarias y equipos	GWa	0.005	0.009	0.015	0.024	0.034	0.046
No duraderos	GWa	0.036	0.048	0.063	0.081	0.103	0.124
Misceláneas	GWa	0.001	0.002	0.002	0.003	0.004	0.005
Total	GWa	1.068	1.203	1.320	1.415	1.516	1.587

Figura 3.13. Imagen de la Tabla 4-1 de la hoja "UsEne-D".

(c) Hoja de cálculo "ACMFac-D" (Tabla 5)

Las tablas 5-1 a 5-3 se utilizan para suministrar los datos sobre la penetración de diferentes portadores energéticos (combustibles tradicionales, biomasa moderna, electricidad, solar térmica y combustibles fósiles) en los mercados de energía térmica útil de los sectores Agricultura, Construcción y Minería (vea Figura 3.14). La Tabla 5-4 proporciona los valores calculados por el modelo de la penetración promedio ponderada en el mercado para los 5 portadores energéticos antes mencionados en la energía térmica útil de ACM. (Para más detalles sobre éstos y otros cálculos realizados por el MAED_D, el usuario debe consultar la Sección 5 de este manual). La penetración promedio ponderada tiene solo un papel informativo ya que cuando se convierte la demanda de energía útil en la demanda de energía térmica final se usan las penetraciones específicas que aparecen en las tablas 5-1 al 5-3.

Las tres tablas siguientes se usan para indicar la eficiencia promedio de los combustibles tradicionales (Tabla 5-5), biomasa moderna (Tabla 5-6) y combustibles fósiles (Tabla 5-7) cuando son empleadas en usos térmicos en los sectores Agricultura, Construcción y Minería (ver Figura 3.15). Debe mencionarse que todas las eficiencias en el modelo MAED_D están expresadas en términos relativos a la eficiencia de la electricidad para el mismo uso final.

Penetración de portadores energéticos en la energía térmica útil de la Agricultura, Construcción y Minería

Tabla 5-1 Penetración de portadores energéticos en la energía térmica útil de la Agricultura

Agricultura	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[%]	12.00	11.00	10.00	9.00	8.00	7.00
Biomasas modernas	[%]	2.00	4.50	7.00	9.50	12.00	15.00
Electricidad	[%]	1.00	2.00	3.50	5.00	6.50	8.00
Solar	[%]	0.00	1.00	2.00	3.00	4.00	5.00
Combustibles fósiles	[%]	85.00	81.50	77.50	73.50	69.50	65.00

Tabla 5-2 Penetración de portadores energéticos en la energía térmica útil de la Construcción

Construcción	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[%]	5.00	4.50	4.00	3.50	3.00	2.00
Biomasas modernas	[%]	1.00	1.50	2.00	3.00	4.00	5.00
Electricidad	[%]	0.00	0.00	0.00	0.00	0.00	0.00
Solar	[%]	0.00	0.00	0.00	0.00	0.00	0.00
Combustibles fósiles	[%]	94.00	94.00	94.00	93.50	93.00	93.00

Tabla 5-3 Penetración de portadores energéticos en la energía térmica útil de la Minería

Minería	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[%]	5.00	4.50	4.00	3.50	3.00	2.00
Biomasas modernas	[%]	1.00	1.50	2.00	3.00	4.00	5.00
Electricidad	[%]	0.00	0.00	0.00	0.00	0.00	0.00
Solar	[%]	0.00	0.00	0.00	0.00	0.00	0.00
Combustibles fósiles	[%]	94.00	94.00	94.00	93.50	93.00	93.00

Figura 3.14. Imagen de las tablas 5-1 a 5-3 (penetraciones) de la hoja "ACMFac-D".

Tabla 5-5 Eficiencia promedio de los combustibles tradicionales en los usos térmicos en la Agricultura, Construcción y Minería

ítem	Unidad	2000	2005	2010	2015	2020	2025
Agricultura	[%]	25.00	27.00	29.00	31.00	33.00	35.00
Construcción	[%]	30.00	32.00	34.00	38.00	38.00	40.00
Minería	[%]	30.00	32.00	34.00	36.00	38.00	40.00

Tabla 5-6 Eficiencia promedio de las biomasas modernas en los usos térmicos en la Agricultura, Construcción y Minería

item	Unidad	2000	2005	2010	2015	2020	2025
Agricultura	[%]	30.00	32.00	34.00	38.00	38.00	40.00
Construcción	[%]	33.00	33.50	34.00	36.00	38.00	40.00
Minería	[%]	33.00	33.50	34.00	36.00	38.00	40.00

Tabla 5-7 Eficiencia promedio de los combustibles fósiles en los usos térmicos en la Agricultura, Construcción y Minería

ítem	Unidad	2000	2005	2010	2015	2020	2025
Agricultura	[%]	40.00	42.00	44.00	46.00	48.00	50.00
Construcción	[%]	40.00	42.00	44.00	46.00	48.00	50.00
Minería	[%]	40.00	42.00	44.00	46.00	48.00	50.00

Figura 3.15. Imagen de las tablas 5-5 a 5-7 (eficiencias) de la hoja "ACMFac-D".

(d) Hoja de cálculo "FIN-ACM-D" (Tabla 6)

Esta hoja contiene los datos calculados por el modelo relativos a la demanda de energía final para diferentes portadores energéticos (combustibles tradicionales, Biomasa Moderna, electricidad, solar térmica, combustible fósil y combustible motor) en los sectores: Agricultura (Tablas 6-1 a 6-3), Construcción (Tablas 6-4 a 6-6), Minería (Tablas 6-7 a 6-9) y ACM agregado (Tablas 6-10 a 6-12). Para cada sector la demanda de energía final de cada portador energético se expresa (i) en términos absolutos (unidad por defecto: GWa), (ii) como parte de la demanda total de energía final del sector (%) y (iii) como intensidad energética (kWh/UM). La Figura 3.16 muestra el contenido de las Tablas 6-1 a 6-3 relacionado con la demanda de energía final en el sector Agricultura.

Demanda de energía final en la Agricultura, Construcción y Minería

Tabla 6-1 Demanda total de energía final en la Agricultura (absoluta)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	GWa	0.037	0.038	0.037	0.034	0.030	0.026
Biomasas modernas	GWa	0.005	0.013	0.022	0.029	0.039	0.049
Electricidad	GWa	0.090	0.115	0.137	0.158	0.181	0.203
Solar	GWa	0.000	0.001	0.002	0.003	0.005	0.007
Combustibles fósiles	GWa	0.165	0.182	0.186	0.186	0.180	0.171
combustibles motor	GWa	0.912	1.001	1.060	1.089	1.115	1.115
Total AGR	GWa	1.210	1.350	1.444	1.499	1.551	1.573

Tabla 6-2 Demanda total de energía final en la Agricultura (estructura)

Îtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[%]	3.089	2.829	2.529	2.253	1.946	1.677
Biomasas modernas	[%]	0.429	0.977	1.510	1.940	2.535	3.145
Electricidad	[%]	7.470	8.481	9.494	10.551	11.647	12.938
Solar	[%]	0.000	0.069	0.147	0.233	0.321	0.419
Combustibles fósiles	[%]	13.677	13.475	12.916	12.401	11.624	10.903
Combustibles motor	[%]	75.335	74.169	73.406	72.621	71.926	70.917

Tabla 6-3 Demanda total de energía final por valor agregado en la Agricultura

				<u> </u>			
Îtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[kWh/US\$]	0.040	0.033	0.027	0.023	0.018	0.014
Biomasas modernas	[kWh/US\$]	0.006	0.011	0.016	0.019	0.024	0.027
Electricidad	[kWh/US\$]	0.096	0.100	0.103	0.105	0.108	0.111
Solar	[kWh/US\$]	0.000	0.001	0.002	0.002	0.003	0.004
Combustibles fósiles	[kWh/US\$]	0.176	0.158	0.140	0.124	0.108	0.094
Combustibles motor	[kWh/US\$]	0.972	0.872	0.798	0.725	0.668	0.611
Total AGR	[kWh/US\$]	1.290	1.175	1.087	0.999	0.929	0.861

Figura 3.16. Imagen de las Tablas 6-1 a 6-3 (Agricultura) de la hoja "FIN-ACM".

(e) Hoja de cálculo"ManFac1-D" (Tabla 7)

Esta hoja contiene tanto datos de entrada como datos calculados por el modelo. Los datos de entrada requeridos se refieren a la participación de los diferentes procesos térmicos (generación de vapor, hornos/calor directo, calefacción y calentamiento de agua) en la demanda de energía térmica útil para cada subsector del sector Manufacturero (Figura 3.17).

El modelo calcula la demanda de energía útil para la generación de vapor, hornos/calor directo, calentamiento de agua y calefacción para los subsectores del sector Manufacturero y para todo el sector, lo que se muestra en las sub- tablas siguientes de la hoja (Figura 3.18). El número de sub-tablas depende del número de subsectores definidos para el sector Manufacturero.

(f) Hoja de cálculo "ManFac2-D" (Tabla 8)

En la tabla 8-1 de esta hoja el usuario introduce las penetraciones de los diferentes portadores energéticos (electricidad, bombas térmicas, calefacción centralizada, cogeneración, solar térmica, combustibles tradicionales y biomasa moderna) en sus respectivos mercados de calor (generación de vapor, hornos/calor directo, calentamiento de agua, calefacción) relacionado con la demanda de energía térmica útil del sector Manufacturero. Dada su naturaleza, algunos portadores energéticos (bombas térmicas, calefacción centralizada, cogeneración, solar

térmica) no son aplicables en el mercado de hornos/calor directo. El modelo pone el mismo dato de penetración en un formato sistemático (tabla 8-5) y calcula las penetraciones agregadas de cada forma de energía en la demanda de energía térmica útil para el sector Manufacturero (Tabla 8-3).

La Tabla 8-2 contiene los datos de entrada correspondientes a las eficiencias de los portadores energéticos cuando son utilizados para usos térmicos en el sector Manufacturero y otros factores como: el coeficiente de rendimiento de las bombas térmicas (COP), participación de la energía solar, relación calor/electricidad de los sistemas de cogeneración, participación de la biomasa en la cogeneración (ver sección 4, Tabla 4-1 para la definición de estas variables). Las tres últimas filas de esta tabla muestran los valores calculados de las eficiencias promedios de los tres tipos de combustibles (combustibles fósiles, combustibles tradicionales y biomasa moderna) usados para suministrar energía térmica útil en la industria manufacturera (Ver Figura 3.19).

La Tabla 8-4 incluye los coeficientes de las ecuaciones empleadas para proyectar las cantidades de producción de acero y los requerimientos de materia prima para la industria petroquímica, los cuales se muestran en las dos últimas filas de la tabla. También incluye otros parámetros de entrada que son usados para calcular la demanda de coque para la producción de acero en hornos no eléctricos (vea Figura 3.20).

Estructura de la dem	anda de energía	térmica útil	en la Manuf	actura
Tabla 7-1				

Tabla 7-1									
Materiales Básicos	Unidad	2000	2005	2010	2015	2020	2025		
Generación de vapor	[%]	15.000	15.000	15.000	15.000	15.000	15.000		
Hornos/Calor directo	[%]	80.000	80.000	80.000	80.000	80.000	80.000		
Calefacción y Cal. Agua	[%]	5.000	5.000	5.000	5.000	5.000	5.000		
Tabla 7-2									
Maquinarias y equipos	Unidad	2000	2005	2010	2015	2020	2025		
Generación de vapor	[%]	15.000	15.000	15.000	15.000	15.000	15.000		
Hornos/Calor directo	[%]	70.000	70.000	70.000	70.000	70.000	70.000		
Calefacción y Cal. Agua	[%]	15.000	15.000	15.000	15.000	15.000	15.000		
Tabla 7-3									
No duraderos	Unidad	2000	2005	2010	2015	2020	2025		
Generación de vapor	[%]	70.000	70.000	70.000	70.000	70.000	70.000		
Hornos/Calor directo	[%]	15.000	15.000	15.000	15.000	15.000	15.000		
Calefacción y Cal. Agua	[%]	15.000	15.000	15.000	15.000	15.000	15.000		
Tabla 7-4									
Misceláneas	Unidad	2000	2005	2010	2015	2020	2025		
Generación de vapor	[%]	20.000	20.000	20.000	20.000	20.000	20.000		
Hornos/Calor directo	[%]	60.000	60.000	60.000	60.000	60.000	60.000		
Calefacción y Cal. Agua	[%]	20.000	20.000	20.000	20.000	20.000	20.000		

Figura 3.17. Imagen de las tablas de datos de entrada de la hoja "ManFac1-D".

Demanda de energía útil en el sector Manufactura

Tabla 7-5

Materiales Básicos	Unidad	2000	2005	2010	2015	2020	2025
Generación de vapor	GWa	0.075	0.094	0.117	0.140	0.163	0.179
Hornos/Calor directo	GWa	0.398	0.499	0.622	0.745	0.867	0.956
Calefacción y Cal. agua	GWa	0.025	0.031	0.039	0.047	0.054	0.060
Total	GWa	0.498	0.624	0.778	0.932	1.083	1.195
Tabla 7-6							
Maquinarias y equipos	Unidad	2000	2005	2010	2015	2020	2025
Generación de vapor	GWa	0.002	0.003	0.005	0.007	0.010	0.012
Hornos/Calor directo	GWa	0.008	0.014	0.022	0.033	0.045	0.058
Calefacción y Cal. agua	GWa	0.002	0.003	0.005	0.007	0.010	0.012
Total	GWa	0.012	0.020	0.032	0.047	0.064	0.082
Tabla 7-7							
No duraderos	Unidad	2000	2005	2010	2015	2020	2025
Generación de vapor	GWa	0.418	0.472	0.515	0.565	0.598	0.653
Hornos/Calor directo	GWa	0.090	0.101	0.110	0.121	0.128	0.140
Calefacción y Cal. agua	GWa	0.090	0.101	0.110	0.121	0.128	0.140
Total	GWa	0.597	0.675	0.736	0.807	0.854	0.932
Tabla 7-8							
Misceláneas	Unidad	2000	2005	2010	2015	2020	2025
Generación de vapor	GWa	0.001	0.001	0.001	0.002	0.002	0.002
Hornos/Calor directo	GWa	0.002	0.003	0.004	0.005	0.006	0.007
Calefacción y Cal. agua	GWa	0.001	0.001	0.001	0.002	0.002	0.002
Total	GWa	0.004	0.005	0.007	0.008	0.010	0.011
Tabla 7-9							
Total MAN	Unidad	2000	2005	2010	2015	2020	2025
Generación de vapor	GWa	0.495	0.570	0.638	0.714	0.772	0.846
Hornos/Calor directo	GWa	0.499	0.617	0.759	0.905	1.046	1.160
Calefacción y Cal. agua	GWa	0.117	0.136	0.155	0.176	0.194	0.214
Total MAN	GWa	1.111	1.324	1.552	1.794	2.012	2.221

Figura 3.18. Imagen de las tablas calculadas de la hoja "ManFac1-D".

Tabla 8-1 Penetración de los portadores energéticos en la demanda de energía térmica útil in la Manufactura

Portadores energéticos	Unidad	2000	2005	2010	2015	2020	2025
Electricidad, gen. vapor	[%]	2.000	2.000	2.000	2.000	2.000	2.000
Electricidad, hornos/calor dir.	[%]	7.000	8.000	9.000	10.000	12.000	14.000
Electricidad, calef./cal. agua	[%]	2.000	3.000	4.000	6.000	8.000	10.000
De los cuales:							
Bombas térmicas, gen. vapor	[%]	0.000	0.000	0.000	0.000	0.000	0.000
Bombas térmicas, calef./cal. agua	[%]	20.000	30.000	40.000	50.000	65.000	80.000
Calor distribuido, gen. vapor	[%]	10.000	11.000	12.000	13.000	14.500	16.000
Calor distribuido, Calef./Cal. agua	[%]	12.000	13.000	14.000	15.000	16.000	17.000
Cogeneración, gen. vapor	[%]	14.000	15.000	16.000	17.000	18.000	19.000
Cogeneración, Calef./Cal. agua	[%]	9.000	10.000	11.000	12.000	13.000	14.000
Solar, gen. vapor	[%]	0.000	0.000	0.000	0.000	0.000	0.000
Solar, Calef./Cal. agua	[%]	1.000	2.000	3.000	4.000	5.000	6.000
Comb. trad., generación de vapor	[%]	5.000	4.500	4.000	3.500	3.000	2.000
Comb. trad., hornos/calor directo	[%]	3.000	2.600	2.200	1.800	1.400	1.000
Comb. trad., calef./cal. agua	[%]	5.000	4.500	4.000	3.500	3.000	2.000
Biom. mod., generación de vapor	[%]	2.000	3.000	4.000	6.000	8.000	10.000
Bio. Mod., hornos/calor directo	[%]	2.000	3.000	4.000	6.000	8.000	10.000
Bio. Mod., calef./cal. agua	[%]	2.000	3.000	4.000	6.000	8.000	10.000

Tabla 8-2 Eficiencias, razones, etc.

Factores	Unidad	2000	2005	2010	2015	2020	2025
COP de las bombas térmicas	[razón]	2.500	3.000	3.500	4.000	4.500	5.000
Participación de la energía solar	[%]	40.000	40.000	40.000	40.000	40.000	40.000
Eficiencia de la cogeneración	[%]	70.000	72.000	74.000	76.000	78.000	80.000
Relación calor/electricidad	[razón]	3.000	3.000	3.000	3.000	3.000	3.000
Part. de la biomasa en la cogen.	[%]	4.000	6.000	8.000	10.000	12.500	15.000
Efic. comb. fós., gen. vapor	[%]	70.000	71.000	72.000	73.000	74.000	75.000
Efic. comb. fós., hornos/calor dir.	[%]	60.000	61.000	62.000	63.000	64.000	65.000
Efic. comb. fós., calef./cal. agua	[%]	60.000	61.000	62.000	63.000	64.000	65.000
Efic. comb. trad., gen. vapor	[%]	30.000	32.000	34.000	36.000	38.000	40.000
Efic. comb. trad., hornos/calor dir.	[%]	30.000	32.000	34.000	36.000	38.000	40.000
Efic. comb. trad., calef./cal. agua	[%]	25.000	27.000	29.000	31.000	33.000	35.000
Efic. bio. mod., gen. vapor	[%]	40.000	42.000	44.000	46.000	48.000	50.000
Efic. bio. mod., hornos/calor dir.	[%]	40.000	42.000	44.000	46.000	48.000	50.000
Efic. bio. mod., calef./cal. agua	[%]	35.000	37.000	39.000	41.000	43.000	45.000
Efic. Comb. fós., promedio	[%]	63.535	64.364	65.154	65.996	66.837	67.792
Eff. Comb. trad., promedio	[%]	29.249	31.257	33.264	35.260	37.247	39.268
Eff. Bio. mod., promedio	[%]	39.407	41.423	43.442	45.455	47.468	49.470

Figura 3.19. Imagen de las Tablas 8-1 y 8-2 de la hoja "ManFac2 D".

Tabla 8-4 Factores para la producción de lingotes de hierro y materias primas:

Factores	Unidad	2000	2005	2010	2015	2020	2025
Producción de acero (constante)	[Mt]	-1.460	-1.460	-1.460	-1.460	-1.460	-1.460
Producción de acero (variable)	[Mt/VAMan(1)]	1.910	1.910	1.910	1.910	1.910	1.910
Acero en hornos no eléctricos	[%]	100.000	90.000	80.000	70.000	60.000	50.000
Consumo esp. de lingotes de hierro	[%]	80.000	80.000	80.000	80.000	80.000	80.000
Uso de coque	[kg/ton]	750.000	540.000	530.000	520.000	510.000	500.000
Prod. de materia prima (constante)	[Mt]	0.010	0.010	0.010	0.010	0.010	0.010
prod. de materia prima (variable)	[Mt/VAMan(1)]	0.600	0.600	0.600	0.600	0.600	0.600
Producción de acero	[Mt]	0.623	1.288	2.155	3.125	4.205	5.206
Producción de materia prima	[Mt]	0.664	0.873	1.145	1.450	1.789	2.104

Figura 3.20. Imagen de la Tabla 8-4 de la Hoja "ManFac2-D".

(h) Hoja de cálculo "FIN_Ind-D" (Tabla 9)

Esta hoja incluye los datos calculados por el modelo de la demanda final de energía para los diferentes portadores energéticos (combustibles tradicionales, Biomasa Moderna, electricidad, calefacción centralizada, solar térmica, combustibles fósiles, combustible motor, coque y materias primas) en el sector Manufacturero (Tablas 9-1 a 9-3) como se muestra en la Figura 3.21 y para todo el sector Industria agregado (Tablas 9-4 a 9-6) que se ilustra en la Figura 3.22. Para cada sector la demanda de energía final por cada portador energético se expresa (i)

en términos absolutos (unidad por defecto: GWa), (ii) como parte de la demanda de energía final total del sector (%) y (iii) como intensidad energética (kWh/UM).

Demanda de energía final en la Manufactura

Tabla 9-1 Demanda total de energía final en la Manufactura (absoluta)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Comb. tradicionales	GWa	0.156	0.153	0.146	0.135	0.117	0.084
Biomasas modernas	GWa	0.062	0.107	0.160	0.262	0.374	0.497
Electricidad	GWa	0.380	0.519	0.711	0.944	1.234	1.492
Calor distribuido	GWa	0.064	0.080	0.098	0.119	0.143	0.172
Solar	GWa	0.000	0.001	0.002	0.003	0.004	0.005
Comb. Fósiles	GWa	1.488	1.711	1.940	2.133	2.250	2.332
Comb. Motor	GWa	0.061	0.083	0.113	0.149	0.191	0.235
Coque	GWa	0.347	0.465	0.679	0.846	0.957	0.968
Materia prima	GWa	0.882	1.159	1.521	1.926	2.376	2.794
Total MAN	GWa	3.440	4.280	5.369	6.516	7.646	8.578

Tabla 9-2 Demanda total de energía final en la Manufactura (estructura)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Comb. tradicionales	[%]	4.531	3.576	2.712	2.064	1.532	0.974
Biomasas modernas	[%]	1.816	2.497	2.982	4.019	4.894	5.790
Electricidad	[%]	11.055	12.130	13.242	14.485	16.140	17.398
Calor distribuido	[%]	1.849	1.879	1.831	1.830	1.870	2.003
Solar	[%]	0.014	0.025	0.035	0.043	0.051	0.060
Comb. Fósiles	[%]	43.243	39.992	36.124	32.743	29.429	27.185
Comb. Motor	[%]	1.766	1.936	2.103	2.281	2.501	2.738
Coque	[%]	10.092	10.874	12.649	12.981	12.511	11.282
Materia prima	[%]	25.634	27.090	28.322	29.554	31.072	32.568

Tabla 9-3 Demanda total de energía final por valor agregado en la Manufaci

					<u> </u>		
İtem	Unidad	2000	2005	2010	2015	2020	2025
Comb. tradicionales	[kWh/US\$]	0.313	0.224	0.155	0.108	0.073	0.042
Biomasas modernas	[kWh/US\$]	0.126	0.156	0.170	0.210	0.232	0.249
Electricidad	[kWh/US\$]	0.764	0.759	0.757	0.758	0.765	0.749
Calor distribuido	[kWh/US\$]	0.128	0.118	0.105	0.096	0.089	0.086
Solar	[kWh/US\$]	0.001	0.002	0.002	0.002	0.002	0.003
Comb. Fósiles	[kWh/US\$]	2.988	2.501	2.065	1.713	1.396	1.170
Comb. Motor	[kWh/US\$]	0.122	0.121	0.120	0.119	0.119	0.118
Coque	[kWh/US\$]	0.697	0.680	0.723	0.679	0.593	0.486
Materia prima	[kWh/US\$]	1.771	1.694	1.619	1.546	1.474	1.402
Total MAN	[kWh/US\$]	6.909	6.254	5.717	5.231	4.743	4.306

Figura 3.21. Imagen de las Tablas 9-1 a 9-3 de la Hoja "FIN Ind-D"

Demanda de energía final en la Industria

Tabla 9-4 Demanda total de energía final en la Industria (absoluta)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Comb. tradicionales	GWa	0.197	0.195	0.187	0.173	0.151	0.113
Biomasas modernas	GWa	0.068	0.121	0.184	0.295	0.419	0.554
Electricidad	GWa	0.494	0.662	0.882	1.143	1.460	1.746
Calor distribuido	GWa	0.064	0.080	0.098	0.119	0.143	0.172
Solar	GWa	0.000	0.002	0.004	0.006	0.009	0.012
Comb. Fósiles	GWa	1.710	1.961	2.206	2.411	2.532	2.613
Comb. Motor	GWa	1.068	1.203	1.320	1.415	1.516	1.587
Coque	GWa	0.347	0.465	0.679	0.846	0.957	0.968
Materia prima	GWa	0.882	1.159	1.521	1.926	2.376	2.794
Total IND	GWa	4.830	5.850	7.081	8.333	9.563	10.557

Tabla 9-5 Demanda total de energía final en la Industria (estructura)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Comb. tradicionales	[%]	4.085	3.341	2.634	2.071	1.584	1.069
Biomasas modernas	[%]	1.416	2.075	2.600	3.536	4.381	5.243
Electricidad	[%]	10.218	11.312	12.463	13.712	15.271	16.537
Calor distribuido	[%]	1.317	1.375	1.389	1.431	1.495	1.628
Solar	[%]	0.010	0.035	0.056	0.076	0.093	0.111
Comb. Fósiles	[%]	35.407	33.523	31.154	28.933	26.476	24.750
Comb. Motor	[%]	22.104	20.567	18.637	16.983	15.853	15.033
Coque	[%]	7.188	7.955	9.592	10.150	10.003	9.167
Materia prima	[%]	18.257	19.817	21.476	23.108	24.844	26.462

Tabla 9-6 Demanda total de energía final por valor agregado en la Industria

					<u> </u>		
İtem	Unidad	2000	2005	2010	2015	2020	2025
Comb. tradicionales	[kWh/US\$]	0.114	0.089	0.068	0.052	0.039	0.025
Biomasas modernas	[kWh/US\$]	0.039	0.055	0.068	0.089	0.107	0.122
Electricidad	[kWh/US\$]	0.284	0.300	0.324	0.347	0.373	0.386
Calor distribuido	[kWh/US\$]	0.037	0.036	0.036	0.036	0.037	0.038
Solar	[kWh/US\$]	0.000	0.001	0.001	0.002	0.002	0.003
Comb. Fósiles	[kWh/US\$]	0.986	0.890	0.810	0.731	0.647	0.577
Comb. Motor	[kWh/US\$]	0.615	0.546	0.484	0.429	0.387	0.351
Coque	[kWh/US\$]	0.200	0.211	0.249	0.257	0.244	0.214
Materia prima	[kWh/US\$]	0.508	0.526	0.558	0.584	0.607	0.617
Total IND	[kWh/US\$]	2.784	2.654	2.598	2.528	2.442	2.332

Figura 3.22. Imagen de las Tablas 9-4 a 9-6 de la Hoja "FIN Ind--D".

3.3.7 Hojas de cálculo para el sector transporte (Tablas 10 a 13)

Para el análisis de la demanda de energía del sector Transporte se emplean cuatro hojas de cálculo: "FrTrp-D", elaborada para suministrar los datos de entrada relacionados con el transporte de carga y además para mostrar los resultados de los cálculos del modelo para este subsector; "PassIntra-D", que tiene el mismo propósito pero para el subsector transporte de pasajeros dentro de la ciudad (urbano); "PassInter-D" para el subsector de transporte de pasajeros entre ciudades; y "FIN_Trp-D", que resume los resultados del análisis de la demanda de energía para todo el sector Transporte.

(a) Hoja de cálculo "FrTrp-D" (Tabla 10)

Como se ilustra en la Figura 3.23, los requerimientos de información para esta hoja incluye los coeficientes de varios términos de la formula adoptada para el cálculo de la actividad de transporte de carga total (Tabla 10-1); la estructura por modos del transporte de carga (Tabla 10-3); y las intensidades energéticas (en unidades físicas) de los respectivos modos de transporte de carga (Tabla 10-4).

Transporte de carga

Tabla 10-1 Generación de la carga-kilómetros

İtem	Unidad	2000	2005	2010	2015	2020	2025
Cultivos	[tkm/US\$]	0.816	0.816	0.816	0.816	0.816	0.816
Ganadería	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000
Silvicultura	[tkm/US\$]	0.816	0.816	0.816	0.816	0.816	0.816
Pesca	[tkm/US\$]	0.816	0.816	0.816	0.816	0.816	0.816
Edificaciones	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000
Infraestructura	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000
Metales	[tkm/US\$]	0.800	0.800	0.800	0.800	0.800	0.800
No metales	[tkm/US\$]	0.800	0.800	0.800	0.800	0.800	0.800
Otros	[tkm/US\$]	0.800	0.800	0.800	0.800	0.800	0.800
Materiales Básicos	[tkm/US\$]	1.500	1.500	1.500	1.500	1.500	1.500
Maquinaria y equipo	[tkm/US\$]	0.500	0.500	0.500	0.500	0.500	0.500
No duraderos	[tkm/US\$]	0.800	0.800	0.800	0.800	0.800	0.800
Misceláneas	[tkm/US\$]	1.000	1.000	1.000	1.000	1.000	1.000
Comercio y Turismo	[tkm/US\$]	0.500	0.500	0.500	0.500	0.500	0.500
Administración Pública	[tkm/US\$]	0.500	0.500	0.500	0.500	0.500	0.500
Financias y Negocios	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000
Servicios Personales y otros	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000
Energía	[tkm/US\$]	0.400	0.400	0.400	0.400	0.400	0.400
Valor base	[10^9 tkm]	43.800	43.800	43.800	43.800	43.800	43.800

Tabla 10-2 Carga-kilómetros total

Îtem	Unidad	2000	2005	2010	2015	2020	2025
Carga-km	[10^9 tkm]	58.977	63.326	68.484	74.512	81.482	89.095

Tabla 10-3 Estructura por modos del transporte de carga

Îtem	Unidad	2000	2005	2010	2015	2020	2025
Camiones - locales	[%]	20.000	21.000	22.000	23.000	24.000	25.000
Camiones - largas distancias	[%]	25.000	24.000	23.000	22.000	21.000	20.000
Tren - Diesel	[%]	30.000	28.000	26.000	24.000	22.000	20.000
Tren - electricidad	[%]	10.000	12.000	14.000	16.000	18.000	20.000
Tren - vapor	[%]	5.000	4.000	3.000	2.000	1.000	0.000
Cabotaje	[%]	3.000	3.200	3.400	3.600	3.800	4.000
Oleoductos (diesel)	[%]	4.000	4.400	4.800	5.200	5.600	6.000
Óleoductos (electricidad)	[%]	3.000	3.400	3.800	4.200	4.600	5.000

Tabla 10-4 Intensidades energéticas del transporte de carga (unidades físicas)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Camiones - locales	[l/100tkm]	11.500	11.500	11.400	11.300	11.200	11.100
Camiones - largas distancias	[l/100tkm]	9.250	9.250	9.200	9.100	9.000	8.900
Tren - Diesel	[l/100tkm]	2.310	2.300	2.290	2.280	2.270	2.260
Tren - electricidad	[kWh/100tkm]	6.500	6.500	6.400	6.300	6.200	6.100
Tren - vapor	[kgce/100tkm]	13.150	13.150	13.150	13.150	13.150	13.150
Cabotaje	[l/100tkm]	2.300	2.300	2.290	2.280	2.270	2.250
Óleoductos (diesel)	[l/100tkm]	0.800	0.800	0.800	0.800	0.800	0.800
Óleoductos (electricidad)	[kWh/100tkm]	6.050	6.050	6.050	6.050	6.050	6.050

Figura 3.23. Imagen de las Tablas de entrada de datos de la Hoja "FrTrp-D".

Los modos de transporte de carga son los especificados por el usuario en la hoja de cálculo "Defs". Los datos calculados por el modelo y almacenados en esta hoja comprende la actividad de transporte de carga total, expresada en 10⁹ ton-kilómetros (tabla 10-2); las intensidades energéticas de los modos de transporte de carga expresadas en una unidad de energía común – kWh/100t-km (Tabla 10-5); y el consumo de energía del subsector de transporte de carga tanto por modo de transporte (Tabla 10-6), como por tipo de combustible (Tabla 10-7) y por grupos de combustible: electricidad, carbón y combustible motor (Tabla 10-8). El tamaño de la Tabla 10 depende del número de subsectores seleccionados por el usuario para los sectores Agricultura, Construcción, Minería, Manufacturero y Servicios, del número de modos de transporte de carga y del número de combustibles usados por los mismos. La Figura 3.24 muestra una Imagen de las tablas de datos calculados de esta hoja.

Tabla 10-5 Intensidades energéticas en el transporte de carga (unidades energéticas)

Item	Unidad	2000	2005	2010	2015	2020	2025
Camiones - locales	[kWh/100tkm]	115.154	115.154	114.153	113.152	112.150	111.149
Camiones - largas distancias	[kWh/100tkm]	92.624	92.624	92.124	91.122	90.121	89.120
Tren - Diesel	[kWh/100tkm]	23.131	23.031	22.931	22.831	22.730	22.630
Tren - electricidad	[kWh/100tkm]	6.500	6.500	6.400	6.300	6.200	6.100
Tren - vapor	[kWh/100tkm]	107.054	107.054	107.054	107.054	107.054	107.054
Cabotaje	[kWh/100tkm]	23.031	23.031	22.931	22.831	22.730	22.530
Oleoductos (diesel)	[kWh/100tkm]	8.011	8.011	8.011	8.011	8.011	8.011
Óleoductos (electricidad)	[kWh/100tkm]	6.050	6.050	6.050	6.050	6.050	6.050

Tabla 10-6 Consumo energético en el transporte de carga (por modos)

ltem	Unidad	2000	2005	2010	2015	2020	2025
Camiones - locales	GWa	1.551	1.748	1.963	2.214	2.504	2.826
Camiones - largas distancias	GWa	1.559	1.607	1.656	1.705	1.760	1.813
Tren - Diesel	GWa	0.467	0.466	0.466	0.466	0.465	0.460
Tren - electricidad	GWa	0.044	0.056	0.070	0.086	0.104	0.124
Tren - vapor	GWa	0.360	0.310	0.251	0.182	0.100	0.000
Cabotaje	GWa	0.047	0.053	0.061	0.070	0.080	0.092
Oleoductos (diesel)	GWa	0.022	0.025	0.030	0.035	0.042	0.049
Oleoductos (electricidad)	GWa	0.012	0.015	0.018	0.022	0.026	0.031
Total	GWa	4.061	4.281	4.516	4.780	5.080	5.395

Tabla 10-7 Consumo energético en el transporte de carga (por combustibles)

Item	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.056	0.071	0.088	0.107	0.130	0.155
Carbón	GWa	0.360	0.310	0.251	0.182	0.100	0.000
Diesel	GWa	3.645	3.900	4.177	4.490	4.851	5.240
Total	GWa	4.061	4.281	4.516	4.780	5.080	5.395

Tabla 10-8 Consumo energético en el transporte de carga (por grupos de combustibles)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.056	0.071	0.088	0.107	0.130	0.155
Carbón	GWa	0.360	0.310	0.251	0.182	0.100	0.000
Combustibles motor	GWa	3.645	3.900	4.177	4.490	4.851	5.240
Total	GWa	4.061	4.281	4.516	4.780	5.080	5.395

Figura 3.24. Imagen de las tablas de datos calculados de la Hoja "FrTrp-D".

(b) Hoja de cálculo "PassIntra-D" (Tabla 11)

Los datos de entrada requeridos en esta hoja abarcan los viajes de pasajeros dentro de la ciudad (urbano). El primer dato de entrada es la distancia recorrida dentro de la ciudad por persona diariamente (Tabla 11-1), que unido al dato de la población que vive en las grandes ciudades (de la hoja "Demogr-D"), se usa para calcular las actividad de transporte urbano, expresado en 10⁹ pasajeros-kilómetros (Tabla 11-4). El otro dato de entrada incluye los factores de carga (Tabla 11-2) de los modos de transporte urbano de pasajeros, seleccionados

por el usuario en la hoja "Defs", la estructura por modos de la actividad de transporte urbano (Tabla 11-3) y las intensidades energéticas (en unidades físicas) de varios modos de transporte urbano (Tabla 11-5). Los datos calculados por el modelo para el transporte urbano y almacenados en esta hoja, incluye los niveles de actividad de transporte (10⁹ pasajeros-km) por diferentes modos de transporte (Tabla 11-4); las intensidades energéticas de estos modos expresadas en kWh/p-km (Tabla 11-6); y el consumo de energía correspondiente al subsector del transporte urbano de pasajeros por modo (Tabla 11-7), por tipo de combustible (Tabla 11-8) y por de grupo de combustible: electricidad y combustible motor (Tabla 11-9). El tamaño de la Tabla 11 depende del número de modos de transporte urbano de pasajeros seleccionado por el usuario en la hoja "Defs" y del número de combustibles usados por estos modos de transporte. La Figura 3-25 muestra una Imagen de las tablas de entrada de datos de esta hoja mientras que los datos calculados se presentan en la Figura 3.26.

Transporte de pasajeros dentro de la ciudad

Tabla 11-1 Distancia recorrida

İtem	Unidad	2000	2005	2010	2015	2020	2025
Dist. dentro de la ciudad	km/prsn/día	3.300	3.500	4.000	4.500	5.000	6.000

Tabla 11-2 Factores de carga

14514 11 2 14616166 4							
İtem	Unidad	2000	2005	2010	2015	2020	2025
Auto - gasolina	[prsn/Auto - gasolina]	2.000	2.000	2.000	2.000	2.000	2.000
Auto - diesel	[prsn/Auto - diesel]	2.000	2.000	2.000	2.000	2.000	2.000
Auto - alcohol	[prsn/Auto - alcohol]	2.000	2.000	2.000	2.000	2.000	2.000
Auto - GLP	[prsn/Auto - GLP]	2.000	2.000	2.000	2.000	2.000	2.000
Auto - electricidad	[prsn/Auto - electricidad]	2.000	2.000	2.000	2.000	2.000	2.000
Ómnibus - diesel	[prsn/Ómnibus - diesel]	60.000	60.000	55.000	50.000	45.000	40.000
Ómnibus - GNC	[prsn/Ómnibus - GNC]	60.000	58.000	55.000	50.000	45.000	40.000
Metro - electricidad	[prsn/Metro - electricidad]	500.000	480.000	460.000	440.000	420.000	400.000
Tranvía - electricidad	prsn/Tranvía - electricidad	100.000	96.000	92.000	88.000	84.000	80.000
Trolebús - electricidad	prsn/Trolebús - electricida	60.000	58.000	55.000	50.000	45.000	40.000

Tabla 11-3 Estructura por modos del transporte de pasajeros dentro de la ciudad

Auto - diesel [%] 1.000 1.500 2.000 3.000 4.000 5.000 Auto - alcohol [%] 0.000 0.000 1.000 2.000 3.000 5.000 Auto - GLP [%] 1.000 2.000 3.000 4.000 5.000 6.000 Auto - electricidad [%] 0.000 0.000 0.000 1.000 2.000 4.000 Omnibus - diesel [%] 75.000 75.000 70.000 60.000 50.000 4.000 Omnibus - GNC [%] 1.000 2.000 3.000 4.000 5.000 Metro - electricidad [%] 0.000 0.000 3.000 6.000 10.000 Tranvía - electricidad [%] 0.000 0.000 3.000 5.000 7.000 10.000	Item	Unidad	2000	2005	2010	2015	2020	2025
Auto - alcohol [%] 0.000 0.000 1.000 2.000 3.000 5.000 Auto - GLP [%] 1.000 2.000 3.000 4.000 5.000 6.000 Auto - electricidad [%] 0.000 0.000 0.000 1.000 2.000 4.000 Ömnibus - diesel [%] 75.000 75.000 70.000 60.000 50.000 40.000 Ömnibus - GNC [%] 1.000 2.000 3.000 4.000 5.000 Metro - electricidad [%] 0.000 0.000 3.000 6.000 10.000 Tranvía - electricidad [%] 0.000 0.000 3.000 5.000 7.000 10.000	Auto - gasolina	[%]	6.000	6.500	7.000	8.000	9.000	10.000
Auto - GLP [%] 1.000 2.000 3.000 4.000 5.000 6.000 Auto - electricidad [%] 0.000 0.000 0.000 1.000 2.000 4.000 Ömnibus - diesel [%] 75.000 75.000 70.000 60.000 50.000 40.000 Ömnibus - GNC [%] 1.000 2.000 3.000 4.000 5.000 Metro - electricidad [%] 0.000 0.000 3.000 6.000 10.000 Tranvía - electricidad [%] 0.000 0.000 3.000 5.000 7.000 10.000	Auto - diesel	[%]	1.000	1.500	2.000	3.000	4.000	5.000
Auto - electricidad [%] 0.000 0.000 0.000 1.000 2.000 4.000 Ömnibus - diesel [%] 75.000 75.000 70.000 60.000 50.000 40.000 Ömnibus - GNC [%] 1.000 2.000 3.000 4.000 5.000 Metro - electricidad [%] 0.000 0.000 3.000 6.000 10.000 Tranvía - electricidad [%] 0.000 0.000 3.000 5.000 7.000 10.000	Auto - alcohol	[%]	0.000	0.000	1.000	2.000	3.000	5.000
Ömnibus - diesel [%] 75.000 75.000 70.000 60.000 50.000 40.000 Ömnibus - GNC [%] 1.000 2.000 3.000 4.000 5.000 5.000 Metro - electricidad [%] 0.000 0.000 3.000 6.000 10.000 Tranvía - electricidad [%] 0.000 0.000 3.000 5.000 7.000 10.000	Auto - GLP	[%]	1.000	2.000	3.000	4.000	5.000	6.000
Ömnibus - GNC [%] 1.000 2.000 3.000 4.000 5.000 5.000 Metro - electricidad [%] 0.000 0.000 0.000 3.000 6.000 10.000 Tranvía - electricidad [%] 0.000 0.000 3.000 5.000 7.000 10.000	Auto - electricidad	[%]	0.000	0.000	0.000	1.000	2.000	4.000
Metro - electricidad [%] 0.000 0.000 3.000 6.000 10.000 Tranvía - electricidad [%] 0.000 0.000 3.000 5.000 7.000 10.000	Ómnibus - diesel	[%]	75.000	75.000	70.000	60.000	50.000	40.000
Tranvía - electricidad [%] 0.000 0.000 3.000 5.000 7.000 10.000	Ómnibus - GNC	[%]	1.000	2.000	3.000	4.000	5.000	5.000
	Metro - electricidad	[%]	0.000	0.000	0.000	3.000	6.000	10.000
Trolebús - electricidad [%] 16,000 13,000 11,000 10,000 9,000 5,000	Tranvía - electricidad	[%]	0.000	0.000	3.000	5.000	7.000	10.000
10.000 10.000 10.000 0.000 0.000	Trolebús - electricidad	[%]	16.000	13.000	11.000	10.000	9.000	5.000

Tabla 11-5 Intensidades energéticas del Transporte de pasajeros dentro de la ciudad (unidades físicas)

	o onorgonous ust mui			,			(4
Item	Unidad	2000	2005	2010	2015	2020	2025
Auto - gasolina	[l/100km]	11.000	10.900	10.800	10.700	10.600	10.500
Auto - diesel	[l/100km]	10.000	9.900	9.800	9.700	9.600	9.500
Auto - alcohol	[l/100km]	16.000	15.900	15.800	15.700	15.600	15.500
Auto - GLP	[l/100km]	14.000	13.900	13.800	13.700	13.600	13.500
Auto - electricidad	[kWh/100km]	30.000	29.800	29.600	29.400	29.200	29.000
Ómnibus - diesel	[l/100km]	35.000	34.800	34.600	34.400	34.200	34.000
Ómnibus - GNC	[l/100km]	45.000	44.700	44.400	44.100	43.800	43.500
Metro - electricidad	[kWh/100km]	800.000	790.000	780.000	770.000	760.000	750.000
Tranvía - electricidad	[kWh/100km]	500.000	495.000	490.000	485.000	480.000	475.000
Trolebús - electricidad	[kWh/100km]	300.000	295.000	290.000	285.000	280.000	275.000

Figura 3.25. Imagen de las tablas de datos de entrada de la Hoja "PassIntra-D".

Tabla 11-6 Intensidades energéticas del Transporte de pasajeros dentro de la ciudad (unidades energéticas)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Auto - gasolina	[kWh/pkm]	0.515	0.511	0.506	0.501	0.497	0.492
Auto - diesel	[kWh/pkm]	0.501	0.496	0.491	0.486	0.481	0.476
Auto - alcohol	[kWh/pkm]	0.491	0.488	0.485	0.482	0.479	0.476
Auto - GLP	[kWh/pkm]	0.488	0.485	0.481	0.478	0.474	0.471
Auto - electricidad	[kWh/pkm]	0.150	0.149	0.148	0.147	0.146	0.145
Ómnibus - diesel	[kWh/pkm]	0.058	0.058	0.063	0.069	0.076	0.085
Ómnibus - GNC	[kWh/pkm]	0.040	0.041	0.043	0.046	0.051	0.057
Metro - electricidad	[kWh/pkm]	0.016	0.016	0.017	0.018	0.018	0.019
Tranvía - electricidad	[kWh/pkm]	0.050	0.052	0.053	0.055	0.057	0.059
Trolebús - electricidad	[kWh/pkm]	0.050	0.051	0.053	0.057	0.062	0.069

Tabla 11-7 Consumo de energía del Transporte de pasajeros dentro de la ciudad (por modo)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Auto - gasolina	GWa	0.018	0.024	0.034	0.051	0.072	0.107
Auto - diesel	GWa	0.003	0.005	0.010	0.018	0.031	0.052
Auto - alcohol	GWa	0.000	0.000	0.005	0.012	0.023	0.052
Auto - GLP	GWa	0.003	0.007	0.014	0.024	0.038	0.061
Auto - electricidad	GWa	0.000	0.000	0.000	0.002	0.005	0.013
Ómnibus - diesel	GWa	0.025	0.032	0.043	0.052	0.061	0.074
Ómnibus - GNC	GWa	0.000	0.001	0.001	0.002	0.004	0.006
Metro - electricidad	GWa	0.000	0.000	0.000	0.001	0.002	0.004
Tranvía - electricidad	GWa	0.000	0.000	0.002	0.003	0.006	0.013
Trolebús - electricidad	GWa	0.005	0.005	0.006	0.007	0.009	0.007
Total	GWa	0.054	0.074	0.114	0.173	0.250	0.389

Tabla 11-8 Consumo de energía el Transporte de pasajeros dentro de la ciudad (por combustibles)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.005	0.005	0.007	0.013	0.022	0.037
Diesel	GWa	0.028	0.037	0.052	0.071	0.092	0.126
Gasolina	GWa	0.018	0.024	0.034	0.051	0.072	0.107
GLP	GWa	0.003	0.007	0.014	0.024	0.038	0.061
GNC	GWa	0.000	0.001	0.001	0.002	0.004	0.006
Alcohol	GWa	0.000	0.000	0.005	0.012	0.023	0.052
Total	GWa	0.054	0.074	0.114	0.173	0.250	0.389

Tabla 11-9 Consumo de energía en el Transporte de pasajeros dentro de la ciudad (por grupo de combustibles)

Item	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.005	0.005	0.007	0.013	0.022	0.037
Carbón (na)	GWa	0.000	0.000	0.000	0.000	0.000	0.000
Combustibles motor	GWa	0.049	0.069	0.107	0.160	0.229	0.352
Total	GWa	0.054	0.074	0.114	0.173	0.250	0.389

Figura 3.26. Imagen de las tablas de datos calculados de la Hoja "PassIntra-D".

(c) Hoja "PassInter-D" (Tabla 12)

Esta hoja cubre los viajes de pasajeros entre ciudades así como la movilización internacional y militar. El primer dato de entrada en la distancia entre ciudades recorrida por persona al año (Tabla 12-1), lo cual unido al dato de la población total (en la hoja "Demogr-D"), se usa para calcular nivel de actividad del transporte entre ciudades (10⁹ pasajeros-kilómetros). Seguidamente se introducen, la razón de tenencia de autos (relación entre población y el número total de autos) y la distancia promedio recorrida por auto al año (Tabla 12-2). Basado en esta información el modelo calcula la actividad de transporte entre ciudades realizada con autos; la actividad de transporte de pasajeros entre ciudades restante se asume que es realizada con modos de transporte público (Tabla 12-4). Los otros datos de entrada para este subsector se refieren a los factores de carga de los modos de transporte entre ciudades (Tabla 12-3), estructura (%) por tipos de autos de la actividad de transporte entre ciudades realizada con autos (Tabla 12-5), estructura por modos transporte público de pasajeros entre ciudades (Tabla 12-7), y las intensidades energéticas de varios modos de transporte, expresado en unidades naturales (Tabla 12-9).

Los datos adicionales calculados por el modelo para el transporte entre ciudades y almacenada en esta hoja incluye los niveles de actividad de transporte (10⁹ pasajero-km) por tipo de auto (tabla 12-6) y por tipo de modo público (Tabla 12-8); las intensidades energéticas de estos modos expresadas en kWh/p-km (Tabla 12-10); y el consumo de energía del transporte de

pasajeros entre ciudades por modo (Tabla 12-11), por tipo de combustible (Tabla 12-12) y por grupo de combustible: electricidad, carbón y combustible motor (Tabla 12-13).

Con relación a la movilización internacional y militar, el usuario debe introducir en esta hoja los valores de dos coeficientes de entrada que relacionan el consumo correspondiente de combustible motor y el PIB total. El modelo entonces calcula directamente el consumo de energía de este tipo de actividad y almacena este valor (Tabla 12-14).

Al final esta hoja proporciona los resultados encontrados por el modelo para los subsectores de transporte de pasajeros (urbano y entre ciudades), internacional y militar (Tabla 12-15), ofreciendo la demanda de energía final total para estas actividades, estructurada por grupo de combustibles: electricidad, carbón y combustible motor.

El tamaño de la Tabla 12 depende del número de modos de transporte de pasajeros entre ciudades seleccionado por el usuario en la hoja "Defs" y del número del combustibles usados. Una Imagen de las tablas de datos de entrada de esta hoja se muestra en la Figura 3.27 mientras que las tablas con los datos calculados por el modelo se muestran en la Figura 3.28.

Transporte de pasajeros entre ciudades

Tabla 12-1 Distancia recorrida

İtem	Unidad	2000	2005	2010	2015	2020	2025	
Dist. entre ciudades	[km/prsn/año]	1500.000	1700.000	2000.000	2400.000	2900.000	3300.000	
Total	[10^9 pkm]	28.725	36.833	48.551	64.641	85.815	106.239	

Tabla 12-2 Factores para el transporte de pasajeros entre ciudades por autos

Item	Unidad	2000	2005	2010	2015	2020	2025
Tenencia de autos	[personas/auto]	50.000	45.000	40.000	35.000	30.000	20.000
Autos-kilómetros	[km/auto/año]	5000.000	5500.000	6000.000	6500.000	7000.000	8000.000

Tabla 12-3 Factores de carga

Item	Unidad	2000	2005	2010	2015	2020	2025
Avión	[%ocupado]	70.000	70.000	70.000	70.000	70.000	70.000
Autos	[prsn/auto]	3.000	3.000	3.000	3.000	3.000	3.000
Ómnibus - grande	[prsn/Ómnibus - grande]	45.000	43.000	40.000	37.000	35.000	35.000
Ómnibus - pequeño	[prsn/Ómnibus - pequeño]	15.000	15.000	15.000	15.000	15.000	15.000
Tren - diesel	[prsn/Tren - diesel]	500.000	500.000	500.000	500.000	500.000	500.000
Tren - electricidad	[prsn/Tren - electricidad]	800.000	800.000	800.000	800.000	800.000	800.000
Tren - vapor	[prsn/Tren - vapor]	200.000	200.000	200.000	200.000	200.000	200.000

Tabla 12-5 Estructura por tipos de autos del transporte de pasajeros entre las ciudades

İtem	Unidad	2000	2005	2010	2015	2020	2025
Auto - gasolina	[%]	60.000	60.000	58.000	56.000	53.000	50.000
Auto - diesel	[%]	40.000	40.000	40.000	40.000	40.000	40.000
Auto - alcohol	[%]	0.000	0.000	2.000	4.000	7.000	10.000

Tabla 12-7 Estructura del transporte público de pasajeros entre las ciudades por modos de transporte

İtem	Unidad	2000	2005	2010	2015	2020	2025
Avión	[%]	5.000	6.000	7.000	8.000	9.000	10.000
Ómnibus - grande	[%]	35.000	34.000	33.000	32.000	31.000	31.000
Ómnibus - pequeño	[%]	30.000	31.000	32.000	33.000	34.000	34.000
Tren - diesel	[%]	15.000	13.000	11.000	9.000	8.000	7.000
Tren - electricidad	[%]	10.000	12.000	14.000	16.000	17.000	18.000
Tren - vapor	[%]	5.000	4.000	3.000	2.000	1.000	0.000

Tabla 12-9 Intensidades energéticas del transporte de pasajeros entre las ciudades (unidades físicas)

Item	Unidad	2000	2005	2010	2015	2020	2025
Avión	[I/1000asientokm]	87.500	85.000	82.500	82.000	77.500	75.000
Auto - gasolina	[l/100km]	9.500	8.000	8.000	8.000	8.000	8.000
Auto - diesel	[l/100km]	9.000	7.000	7.000	7.000	7.000	7.000
Auto - alcohol	[l/100km]	11.000	11.000	11.000	11.000	11.000	11.000
Ómnibus - grande	[l/100km]	30.000	30.000	30.000	30.000	30.000	30.000
Ómnibus - pequeño	[l/100km]	25.000	25.000	25.000	25.000	25.000	25.000
Tren - diesel	[l/100km]	250.000	250.000	250.000	250.000	250.000	250.000
Tren - electricidad	[kWh/100km]	650.000	650.000	650.000	650.000	650.000	650.000
Tren - vapor	[kgce/100km]	1315.000	1315.000	1315.000	1315.000	1315.000	1315.000

Tabla 12-14 Consumo de energía en el Transporte internacional y militar

İtem	Unidad	2000	2005	2010	2015	2020	2025
Constante	GWa	0.010	0.010	0.010	0.010	0.010	0.010
Variable	[kWh/US\$]	0.030	0.030	0.030	0.030	0.030	0.030
Total	GWa	0.125	0.157	0.195	0.242	0.298	0.364

Figura 3.27. Imagen de las tablas de datos de entrada de la Hoja "PassInter-D".

Transporte de pasajeros entre ciudades

Tabla 12-4 Estructura por modos del transporte de pasajeros entre las ciudades

ltem	Unidad	2000	2005	2010	2015	2020	2025
Autos	[10^9 pkm]	5.745	7.944	10.924	15.006	20.714	38.632
Público	[10^9 pkm]	22.980	28.889	37.627	49.635	65.101	67.607

Tabla 12-6 Transporte de pasajeros entre las ciudades por tipos de autos

İtem	Unidad	2000	2005	2010	2015	2020	2025
Auto - gasolina	[10^9 pkm]	3.447	4.767	6.336	8.403	10.978	19.316
Auto - diesel	[10^9 pkm]	2.298	3.178	4.370	6.002	8.286	15.453
Auto - alcohol	[10^9 pkm]	0.000	0.000	0.218	0.600	1.450	3.863

Tabla 12-8 Transporte público de pasajeros entre las ciudades por modos de transporte

Item	Unidad	2000	2005	2010	2015	2020	2025
Avión	[10^9 pkm]	1.149	1.733	2.634	3.971	5.859	6.761
Ómnibus - grande	[10^9 pkm]	8.043	9.822	12.417	15.883	20.181	20.958
Ómnibus - pequeño	[10^9 pkm]	6.894	8.955	12.041	16.379	22.134	22.986
Tren - diesel	[10^9 pkm]	3.447	3.756	4.139	4.467	5.208	4.732
Tren - electricidad	[10^9 pkm]	2.298	3.467	5.268	7.942	11.067	12.169
Tren - vapor	[10^9 pkm]	1.149	1.156	1.129	0.993	0.651	0.000

Tabla 12-10 Intensidades energéticas del transporte de pasajeros entre las ciudades (unidades energéticas)

ltem	Unidad	2000	2005	2010	2015	2020	2025
Avión	[kWh/pkm]	1.094	1.063	1.032	1.025	0.969	0.938
Auto - gasolina	[kWh/pkm]	0.297	0.250	0.250	0.250	0.250	0.250
Auto - diesel	[kWh/pkm]	0.300	0.234	0.234	0.234	0.234	0.234
Auto - alcohol	[kWh/pkm]	0.225	0.225	0.225	0.225	0.225	0.225
Ómnibus - grande	[kWh/pkm]	0.067	0.070	0.075	0.081	0.086	0.086
Ómnibus - pequeño	[kWh/pkm]	0.167	0.167	0.167	0.167	0.167	0.167
Tren - diesel	[kWh/pkm]	0.050	0.050	0.050	0.050	0.050	0.050
Tren - electricidad	[kWh/pkm]	0.008	0.008	0.008	0.008	0.008	0.008
Tren - vapor	[kWh/pkm]	0.535	0.535	0.535	0.535	0.535	0.535

Tabla 12-11 Consumo energético del transporte de pasaieros entre las ciudades (por modos)

abla 12-11 Consumo energenco dei nansporte de pasajeros entre las ciduades (por modos)											
Item	Unidad	2000	2005	2010	2015	2020	2025				
Avión	GWa	0.144	0.210	0.310	0.465	0.648	0.724				
Auto - gasolina	GWa	0.117	0.136	0.181	0.240	0.313	0.551				
Auto - diesel	GWa	0.079	0.085	0.117	0.160	0.221	0.412				
Auto - alcohol	GWa	0.000	0.000	0.006	0.015	0.037	0.099				
Ómnibus - grande	GWa	0.061	0.078	0.106	0.147	0.198	0.205				
Ómnibus - pequeño	GWa	0.131	0.171	0.229	0.312	0.422	0.438				
Tren - diesel	GWa	0.020	0.021	0.024	0.026	0.030	0.027				
Tren - electricidad	GWa	0.002	0.003	0.005	0.007	0.010	0.011				
Tren - vapor	GWa	0.070	0.071	0.069	0.061	0.040	0.000				
Total	GWa	0.624	0.775	1.046	1.433	1.919	2.468				

Tabla 12-12 Consumo energético del transporte de pasajeros entre las ciudades (por combustibles)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.002	0.003	0.005	0.007	0.010	0.011
Carbón	GWa	0.070	0.071	0.069	0.061	0.040	0.000
Diesel	GWa	0.291	0.355	0.476	0.645	0.870	1.082
Gasolina	GWa	0.117	0.136	0.181	0.240	0.313	0.551
Combustible de aviación	GWa	0.144	0.210	0.310	0.465	0.648	0.724
Alcohol	GWa	0.000	0.000	0.006	0.015	0.037	0.099
Total	GWa	0.624	0.775	1.046	1.433	1.919	2.468

Tabla 12-13 Consumo energético del transporte de pasajeros entre las ciudades (por grupos de combustibles)

ltem	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.002	0.003	0.005	0.007	0.010	0.011
Carbón	GWa	0.070	0.071	0.069	0.061	0.040	0.000
Combustibles motor	GWa	0.551	0.701	0.973	1.365	1.869	2.456
Total	GWa	0.624	0.775	1.046	1.433	1.919	2.468

Tabla 12-15 Consumo de energía del Transporte entre , dentro de , internacional y militar (por grupos de comb)

Item	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.007	0.008	0.012	0.021	0.032	0.048
Carbón	GWa	0.070	0.071	0.069	0.061	0.040	0.000
Combustibles motor	GWa	0.726	0.927	1.275	1.767	2.395	3.172
Total	GWa	0.803	1.005	1.356	1.848	2.467	3.220

Figura 3.28. Imagen de las tablas de datos calculados de la Hoja "PassInter-D".

(d) Hoja "FIN Trp-D" (Tabla 13)

Finalmente, la hoja "FIN_Trp-D" resume los resultados de todas las actividades de transporte y proporciona información sobre (i) demanda de energía final total del sector Transporte por tipo de combustible (Tabla 13-1), por grupo de combustible: electricidad, carbón y combustible motor (Tabla 13-3) y por subsector: carga, pasajeros urbano, pasajeros entre ciudades, e internacional y militar (Tabla 13-5), (ii) porcentaje de participación de cada tipo

de combustible (Tabla 13-2), de cada grupo de combustible (Tabla 13-4) y de cada subsector (Tabla 13-6) en la demanda de energía del sector Transporte. La Figura 3.29 muestra el contenido de la hoja "FIN Trp-D" en su totalidad.

Demanda de energía final en el sector Transporte

Tabla 13-1 Demanda de energía final en el sector Transporte (por combustibles)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.063	0.079	0.100	0.128	0.162	0.203
Carbón	GWa	0.431	0.380	0.320	0.243	0.139	0.000
Diesel	GWa	3.964	4.292	4.705	5.206	5.813	6.448
Gasolina	GWa	0.135	0.160	0.215	0.290	0.385	0.658
Combustible de aviación	GWa	0.144	0.210	0.310	0.465	0.648	0.724
GLP	GWa	0.003	0.007	0.014	0.024	0.038	0.061
GNC	GWa	0.000	0.001	0.001	0.002	0.004	0.006
Alcohol	GWa	0.000	0.000	0.010	0.028	0.060	0.151
Comb. motor Milit&Intern.	GWa	0.125	0.157	0.195	0.242	0.298	0.364
Total	GWa	4.864	5.286	5.872	6.628	7.548	8.615

Tabla 13-2 Estructura de los combustibles en el sector Transporte

Item	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	[%]	1.290	1.500	1.705	1.930	2.143	2.359
Carbón	[%]	8.853	7.191	5.451	3.663	1.846	0.000
Diesel	[%]	81.507	81.195	80.136	78.545	77.021	74.846
Gasolina	[%]	2.769	3.028	3.663	4.380	5.098	7.636
Combustible de aviación	[%]	2.951	3.978	5.282	7.012	8.588	8.401
GLP	[%]	0.058	0.133	0.239	0.364	0.503	0.712
GNC	[%]	0.005	0.011	0.021	0.035	0.054	0.072
Alcohol	[%]	0.000	0.000	0.176	0.416	0.799	1.753
Comb. motor Milit&Intern.	[%]	2.568	2.963	3.327	3.653	3.947	4.221

Tabla 13-3 Demanda de energía final en el sector Transporte (por grupos de combustibles)

İtem	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	0.063	0.079	0.100	0.128	0.162	0.203
Carbón	GWa	0.431	0.380	0.320	0.243	0.139	0.000
Combustible motor	GWa	4.370	4.827	5.452	6.257	7.246	8.412
Total	GWa	4.864	5.286	5.872	6.628	7.548	8.615

Tabla 13-4 Estructura de los grupos de combustibles en el sector Transporte

Item	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	[%]	1.290	1.500	1.705	1.930	2.143	2.359
Carbón	[%]	8.853	7.191	5.451	3.663	1.846	0.000
Combustible motor	[%]	89.857	91.309	92.845	94.407	96.010	97.641

Tabla 13-5 Demanda de energía final en el sector Transporte (por subsectores)

						\ <u> </u>	
İtem	Unidad	2000	2005	2010	2015	2020	2025
Carga	GWa	4.061	4.281	4.516	4.780	5.080	5.395
Pas_entre ciudades	GWa	0.054	0.074	0.114	0.173	0.250	0.389
Pas_dentro de la ciudad	GWa	0.624	0.775	1.046	1.433	1.919	2.468
Internacional & militar	GWa	0.125	0.157	0.195	0.242	0.298	0.364
Total	GWa	4.864	5.286	5.872	6.628	7.548	8.615

Tabla 13-6 Estructura de la demanda de energía final por subsectores del transporte

Îtem	Unidad	2000	2005	2010	2015	2020	2025
Carga	[%]	83.500	80.979	76.912	72.118	67.313	62.620
Pas_entre ciudades	[%]	1.108	1.393	1.940	2.611	3.318	4.514
Pas_dentro de la ciudad	[%]	12.824	14.665	17.821	21.618	25.422	28.645
Internacional & militar	[%]	2.568	2.963	3.327	3.653	3.947	4.221

Figura 3.29. Imagen de la Hoja "FIN Trp-D".

3.3.8 Hojas de cálculo del sector Residencial (Tablas 14 a la 16)

El análisis de la demanda de energía del sector Residencial se realiza a través de 3 hojas de cálculo: "US_HH_Ur-D", creada para incorporar los datos de entrada para las viviendas urbanas y para mostrar además los resultados calculados por el modelo para la demanda de energía útil de este subsector; "US_:HH_Rr-D", que tiene el mismo propósito pero para las viviendas rurales; y "FIN_HH-D", que resume los resultados del análisis de la demanda de energía para todo el sector Residencial. Como ya se mencionó en la sección 2, las categorías de usos de la energía consideradas en el sector Residencial son: calefacción, calentamiento de agua, cocción, aire acondicionado y equipos domésticos secundarios (refrigeradores, luminarias, lavadoras, etc.). La demanda de energía para el calentamiento de agua, la cocción y los equipos domésticos secundarios se calcula con base en los consumos específicos de energía promediados para todas las viviendas del subsector (urbano o rural) mientras que para la calefacción y el aire acondicionado la demanda de energía se calcula aparte para cada tipo de vivienda definido por el usuario en la hoja "Defs" en cada subsector.

(a) Hoja de cálculo "US_HH_Ur-D" (Tabla 14)

En el procedimiento del cálculo, primero se toma el número de viviendas urbanas de la hoja "Demogr-D" que fue calculado con base en los datos de entrada relacionados con el porcentaje de población urbana y el tamaño de los hogares urbanos. Posteriormente, se requiere que el usuario suministre los siguientes datos generales que tienen impacto sobre la demanda de energía para la calefacción en las viviendas urbanas (Tabla 14-1):

- Fracción (%) de viviendas urbanas que requieren calefacción;
- Grados-días (°C días) para las viviendas urbanas (Ver Sección 4, Tabla 4.1 para la definición de esta variable);

La tabla 14-2 incluye datos de entrada referentes a la calefacción y aire acondicionado por tipo de vivienda, esto es:

- Fracción (%) de viviendas urbanas por tipo (relativo al número total de viviendas urbanas que requieren calefacción);
- Tamaño promedio (m²) de las viviendas por tipo;
- Tasa de pérdida de calor específico (Wh/m²/°C/h) por tipo de vivienda;
- Porcentaje (%) de viviendas urbanas con aire acondicionado, por tipo (relativo al número total de viviendas urbanas del mismo tipo);
- Requerimientos de enfriamiento específico (kWh/viv/año) por tipo de vivienda.

La Tabla 14-3 contiene los consumos de energía específicos promedio y otros factores requeridos para el cálculo de la demanda de energía útil en cocción, calentamiento de agua y equipos domésticos secundarios, tales como:

- Consumo de energía útil específico anual para la cocción por viviendas urbanas (kWh/cap/año);
- Consumo de electricidad final específico por viviendas urbanas electrificadas y por año (kWh/viv/año) para los efectos electrodomésticos (otros usos finales diferentes de calefacción, agua caliente, cocción y aire acondicionado);
- Porcentaje (%) de viviendas urbanas electrificadas (penetración de la electricidad para equipos domésticos);

 Consumo específico de combustibles fósiles por viviendas urbanas y por año (kWh/viv/año, energía final), para los equipos domésticos no eléctricos (otros usos finales diferentes de calefacción, agua caliente, cocción y aire acondicionado), fundamentalmente iluminación en zonas rurales, además de los refrigeradores no eléctricos, etc.

Las tablas de datos anteriores para el caso de demostración se muestran en la Figura 3.30.

Demanda de energía útil en el sector Residencial Urbano

Tabla 14-1 Datos básicos para la demanda de energía útil en el sector Residencial Urbano

ltem	Unidad	2000	2005	2010	2015	2020	2025
Viviendas	[millón]	1.325	1.542	1.831	2.195	2.663	3.219
Por ciento de viviendas que requieren calefacción	[%]	100.000	100.000	100.000	100.000	100.000	100.000
Grados-días	[días°C]	1500.000	1500.000	1500.000	1500.000	1500.000	1500.000

Tabla 14-2 Factores de la vivienda para la calefacción y el aire acondicionado, Residencial Urbano

Item	Unidad	2000	2005	2010	2015	2020	2025
Por ciento de: Apartamentos	[%]	30.000	30.000	30.000	30.000	30.000	30.000
Por ciento de: Casas	[%]	13.000	14.000	16.000	18.000	19.000	20.000
Por ciento de: Viviendas con calefacción	[%]	45.000	43.000	40.000	37.000	34.000	33.000
Por ciento de: Viviendas sin calefacción	[%]	8.000	8.000	8.000	8.000	8.000	8.000
Por ciento de: Villas	[%]	4.000	5.000	6.000	7.000	9.000	9.000
Tamaño de la viviendaApartamentos	[m2]	80.000	80.000	80.000	80.000	80.000	80.000
Tamaño de la viviendaCasas	[m2]	120.000	120.000	120.000	120.000	120.000	120.000
Tamaño de la viviendaViviendas con calefacción	[m2]	60.000	60.000	60.000	60.000	60.000	60.000
Tamaño de la viviendaViviendas sin calefacción	[m2]	50.000	50.000	50.000	50.000	50.000	50.000
Tamaño de la viviendaVillas	[m2]	200.000	200.000	200.000	200.000	200.000	200.000
Área con calefApartamentos	[%]	100.000	100.000	100.000	100.000	100.000	100.000
Área con calefCasas	[%]	80.000	80.000	80.000	80.000	80.000	80.000
Área con calefViviendas con calefacción	[%]	40.000	40.000	40.000	40.000	40.000	40.000
Área con calefViviendas sin calefacción	[%]	0.000	0.000	0.000	0.000	0.000	0.000
Área con calefVillas	[%]	80.000	80.000	80.000	80.000	80.000	80.000
Pérd. CalorApartamentos	[Wh/m2/°C/h]	4.000	4.000	4.000	4.000	4.000	4.000
Pérd. CalorCasas	[Wh/m2/°C/h]	4.500	4.500	4.500	4.500	4.500	4.500
Pérd. CalorViviendas con calefacción	[Wh/m2/°C/h]	3.500	3.500	3.500	3.500	3.500	3.500
Pérd. CalorViviendas sin calefacción	[Wh/m2/°C/h]	3.500	3.500	3.500	3.500	3.500	3.500
Pérd. CalorVillas	[Wh/m2/°C/h]	4.500	4.500	4.500	4.500	4.500	4.500
Viv. con aire acondApartamentos	[%]	5.000	7.000	9.000	11.000	13.000	15.000
Viv. con aire acondCasas	[%]	7.000	8.000	9.000	11.000	13.000	15.000
Viv. con aire acondViviendas con calefacción	[%]	5.000	5.500	6.000	6.500	7.000	8.000
Viv. con aire acondViviendas sin calefacción	[%]	0.000	0.000	0.000	0.000	0.000	0.000
Viv. con aire acondVillas	[%]	100.000	100.000	100.000	100.000	100.000	100.000
Req. esp. ACApartamentos	[kWh/viv/año]		2500.000				
Req. esp. ACCasas	[kWh/viv/año]		3500.000				
Req. esp. ACViviendas con calefacción	[kWh/viv/año]	2000.000	2000.000	2000.000	2000.000	2000.000	2000.000
Req. esp. ACViviendas sin calefacción	[kWh/viv/año]	0.000	0.000		0.000	0.000	0.000
Req. esp. ACVillas	[kWh/viv/año]	6000.000	6000.000	6000.000	6000.000	6000.000	6000.000

Tabla 14-3 Factores de la vivienda para la cocción, el calentamiento de agua y el equipamiento, sector Residencial Urbano

ltem	Unidad	2000	2005	2010	2015	2020	2025
Cocción	[kWh/viv/año]	930.000	915.000	900.000	850.000	800.000	750.000
Viviendas con agua caliente	[%]	40.000	45.000	50.000	55.000	60.000	70.000
Agua caliente per cápita	[kWh/cap/año]	350.000	400.000	450.000	500.000	600.000	700.000
Consumo de electricidad en equipamiento	[kWh/viv/año]	900.000	1100.000	1300.000	1500.000	1750.000	2000.000
Penetración de la electricidad	[%]	85.000	90.000	95.000	98.000	100.000	100.000
Combustibles fósiles para la iluminación	[kWh/viv/año]	100.000	100.000	100.000	100.000	100.000	100.000

Figura 3.30. Imagen de las Tablas 14-1 a 14-3 de la Hoja "US HH Ur-D".

Basada en la información anterior, la demanda de energía útil para todas las categorías de uso final: calefacción, calentamiento de agua, cocción, aire acondicionado, y equipos domésticos secundarios (eléctricos y no eléctricos) se calcula (Tabla 14-4) como se muestra en la Figura 3.31.

Tabla 14-4 Cálculo de la demanda de energía útil, sector Residencial Urbano

ltem	Unidad	2000	2005	2010	2015	2020	2025
Calefacción	GWa	1.191	1.449	1.821	2.302	2.971	3.637
Calentamiento de agua	GWa	0.127	0.187	0.268	0.372	0.547	0.810
Cocción	GWa	0.141	0.161	0.188	0.213	0.243	0.276
Aire acondicionado	GWa	0.054	0.077	0.110	0.155	0.235	0.298
Electricidad para equipamiento	GWa	0.116	0.174	0.258	0.368	0.532	0.735
Combustibles fósiles para la iluminación	GWa	0.002	0.002	0.001	0.001	0.000	0.000
Total	GWa	1.630	2.050	2.646	3.411	4.528	5.756

Figura 3.31. Imagen de la Tabla 14-4 de la Hoja "US HH Ur-D".

Table 14-4 Cálculo do la	domanda do onorgía útil	sector Residencial Urbano
Tabla 14-4 Calculo de la	i demanda de enerdia din.	Sector Residencial Orbano

Item	Unidad	2000	2005	2010	2015	2020	2025
Calefacción	GWa	1.191	1.449	1.821	2.302	2.971	3.637
Calentamiento de agua	GWa	0.127	0.187	0.268	0.372	0.547	0.810
Cocción	GWa	0.141	0.161	0.188	0.213	0.243	0.276
Aire acondicionado	GWa	0.054	0.077	0.110	0.155	0.235	0.298
Electricidad para equipamiento	GWa	0.116	0.174	0.258	0.368	0.532	0.735
Combustibles fósiles para la iluminación	GWa	0.002	0.002	0.001	0.001	0.000	0.000
Total	GWa	1.630	2.050	2.646	3.411	4.528	5.756

Tabla 14-5 Penetración de las formas energéticas para la calefacción, Residencial Urbano

ltem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[%]	5.000	4.500	4.000	3.000	2.000	1.000
Biomasas modernas	[%]	2.000	2.500	3.000	3.500	4.000	5.000
Electricidad	[%]	5.000	6.000	7.000	8.000	9.000	10.000
(de esto: bomba térmica)	[%]	1.000	2.000	3.000	4.000	5.000	6.000
Calefacción centralizada	[%]	0.000	0.000	0.000	3.000	5.000	8.000
Solar térmica	[%]	0.000	0.000	0.000	1.000	2.000	4.000
Combustibles fósiles	[%]	88.0	87.0	86.0	81.5	78.0	72.0

Tabla 14-6 Eficiencias y otros factores para calefacción, Residencial Urbano

Item	Unidad	2000	2005	2010	2015	2020	2025
Eficiencia de los combustibles tradicionales	[%]	15.000	16.000	17.000	18.000	19.000	20.000
Eficiencia de las biomasas modernas	[%]	25.000	26.000	27.000	28.000	29.000	30.000
Eficiencia de los combustibles fósiles	[%]	60.000	61.000	62.000	63.000	64.000	65.000
COP de las bombas térmicas	[razón]	2.500	2.750	3.000	3.500	4.000	4.500
Participación de la solar térmica	[%]	40.000	40.000	40.000	40.000	40.000	40.000

Tabla 14-7 Penetración de las formas energéticas en el calentamiento de agua, Residencial Urbano

<u> </u>										
ltem	Unidad	2000	2005	2010	2015	2020	2025			
Combustibles tradicionales	[%]	5.000	4.500	4.000	3.000	2.000	1.000			
Biomasas modernas	[%]	2.000	2.500	3.000	3.500	4.000	5.000			
Electricidad	[%]	5.000	6.000	7.000	8.000	9.000	10.000			
(de esto: bomba térmica)	[%]	1.000	2.000	3.000	4.000	5.000	6.000			
Calefacción centralizada	[%]	0.000	0.000	0.000	3.000	5.000	8.000			
Solar térmica	[%]	0.000	0.000	0.000	1.000	2.000	4.000			
Combustibles fósiles	[%]	88.0	87.0	86.0	81.5	78.0	72.0			

Tabla 14-8 Eficiencias y otros factores para el calentamiento de agua, Residencial Urbano

ltem	Unidad	2000	2005	2010	2015	2020	2025
Eficiencia de los combustibles tradicionales	[%]	15.000	16.000	17.000	18.000	19.000	20.000
Eficiencia de las biomasas modernas	[%]	25.000	26.000	27.000	28.000	29.000	30.000
Eficiencia de los combustibles fósiles	[%]	60.000	61.000	62.000	63.000	64.000	65.000
COP de las bombas térmicas	[razón]	2.500	2.750	3.000	3.500	4.000	4.500
Participación de la solar térmica	[%]	40.000	40.000	40.000	40.000	40.000	40.000

Tabla 14-9 Penetración de las formas energéticas en la cocción, Residencial Urbano

İtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[%]	10.000	9.000	8.000	7.000	5.000	3.000
Biomasas modernas	[%]	5.000	6.000	7.000	8.000	9.000	10.000
Electricidad	[%]	5.000	6.000	7.000	8.000	9.000	10.000
Solar térmica	[%]	0.000	0.000	0.000	1.000	2.000	3.000
Combustibles fósiles	[%]	80.0	79.0	78.0	76.0	75.0	74.0

Tabla 14-10 Eficiencias y otros factores para la cocción, Residencial Urbano

	,						
ltem	Unidad	2000	2005	2010	2015	2020	2025
Eficiencia de los combustibles tradicionales	[%]	12.000	12.500	13.000	13.500	14.000	14.000
Eficiencia de las biomasas modernas	[%]	20.000	21.000	22.000	23.000	24.000	25.000
Eficiencia de los combustibles fósiles	[%]	50.000	51.000	52.000	53.000	54.000	55.000
Participación de la solar térmica	[%]	40.000	40.000	40.000	40.000	40.000	40.000

Tabla 14-11 Penetración por tecnología en el acodicionamiento de aire, Residencial Urbano

İtem	Unidad	2000	2005	2010	2015	2020	2025
Eléctricas	[%]	95.000	93.000	90.000	87.000	84.000	80.000
No eléctricas	[%]	5.00	7.00	10.00	13.00	16.00	20.00

Tabla 14-12 Eficiencias de los aires acondicionados, Residencial Urbano

Item	Unidad	2000	2005	2010	2015	2020	2025
COP de los aires acondicionados eléctricos	[razón]	2.500	2.600	2.700	2.800	2.900	3.000
COP de los aires acondicionados no eléctricos	[razón]	2.500	2.600	2.700	2.800	2.900	3.000

Figura 3.32. Imagen de las Tablas de datos de entrada de la Hoja "US HH Ur-D".

Las otras tablas de esta hoja están diseñadas para permitir la introducción de los siguientes datos de entrada (Figura 3.32):

- penetración de diferentes portadores energéticos (combustibles tradicionales, Biomasa Moderna, electricidad, bombas de calor, solar térmica y combustibles fósiles) en el mercado de la calefacción (Tabla 14-5), calentamiento de agua (Tabla 14-7), cocción (Tabla 14-9) y aire acondicionado (Tabla 14-11) del subsector Residencial urbano;
- datos tales como eficiencias y coeficientes de rendimiento (COP) de diferentes portadores energéticos cuando son usados para las aplicaciones antes mencionadas en el subsector Residencial urbano: calefacción (Tabla 14-6), calentamiento de agua (Tabla 14-8), cocción (Tabla 14-10) y aire acondicionado (Tabla 14-12). El usuario debe consultar la Sección 4, tablas 4-1 y 4-2. para encontrar una definición detallada de estas variables

Los datos de entrada mencionados anteriormente así como los datos calculados sobre la demanda de energía útil, que se almacenan en esta hoja se utilizan en la hoja "FIN_HH-D" para calcular la demanda de energía final de sector Residencial.

(b) Hoja de cálculo "US HH Rr-D" (Tabla 15)

Esta hoja tiene las mismas funciones que la anterior (US_HH_Ur-D) pero es relativa a las viviendas rurales.

(c) Hoja de cálculo "FIN HH-D" (Tabla 16)

La hoja "FIN_HH-D" convierte la demanda de energía útil, calculada previamente, en demanda de energía final por tipo de uso final (calefacción, calentamiento de agua, cocción, aire acondicionado y equipos domésticos) y por energético (combustibles tradicionales, Biomasa Moderna, electricidad, calefacción centralizada, solar térmica y combustibles fósiles), para viviendas urbanas (Tablas 16-1 a 16-6), viviendas rurales (Tablas 16-7 a 16-12), y la suma de los resultados de ambos subsectores como demanda de energía final de todo el sector Residencial (Tablas 16-13 a 16-18). La Figura 3.33 ilustra los resultados de energía final para el subsector Residencial urbano.

Demanda de energía final en el sector Residencial Urbano

Tabla 16-1 Residencial Urbano, calefacción

Item	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	GWa	0.397	0.408	0.428	0.384	0.313	0.182
Biomasas modernas	GWa	0.095	0.139	0.202	0.288	0.410	0.606
Electricidad	GWa	0.059	0.086	0.125	0.179	0.257	0.347
Calefacción centralizada	GWa	0.000	0.000	0.000	0.069	0.149	0.291
Solar térmica	GWa	0.000	0.000	0.000	0.009	0.024	0.058
Combustibles fósiles	GWa	1.746	2.067	2.525	3.000	3.676	4.163
Total	GWa	2.298	2.699	3.281	3.928	4.829	5.647

Tabla 16-2 Residencial Urbano, calentamiento de agua

Item	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	GWa	0.042	0.053	0.063	0.062	0.058	0.041
Biomasas modernas	GWa	0.010	0.018	0.030	0.047	0.075	0.135
Electricidad	GWa	0.006	0.011	0.018	0.029	0.047	0.077
Calefacción centralizada	GWa	0.000	0.000	0.000	0.011	0.027	0.065
Solar térmica	GWa	0.000	0.000	0.000	0.001	0.004	0.013
Combustibles fósiles	GWa	0.186	0.267	0.372	0.485	0.677	0.928
Total	GWa	0.245	0.348	0.483	0.635	0.889	1.258

Tabla 16-3 Residencial Urbano, cocción

İtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	GWa	0.117	0.116	0.116	0.110	0.087	0.059
Biomasas modernas	GWa	0.035	0.046	0.060	0.074	0.091	0.110
Electricidad	GWa	0.007	0.010	0.013	0.017	0.022	0.028
Solar térmica	GWa	0.000	0.000	0.000	0.001	0.002	0.003
Combustibles fósiles	GWa	0.225	0.250	0.282	0.308	0.343	0.380
Total	GWa	0.384	0.421	0.471	0.510	0.545	0.580

Tabla 16-4 Residencial Urbano, aire acondicionado

Item	Unidad	2000	2005	2010	2015	2020	2025
Eléctrico	GWa	0.020	0.028	0.037	0.048	0.068	0.079
No eléctrico	GWa	0.001	0.002	0.004	0.007	0.013	0.020
Total	GWa	0.021	0.030	0.041	0.055	0.081	0.099

Tabla 16-5 Residencial Urbano, equipamiento

İtem	Unidad	2000	2005	2010	2015	2020	2025
Electricidad para equipamiento	GWa	0.116	0.174	0.258	0.368	0.532	0.735
Comb. fósiles para iluminación	GWa	0.002	0.002	0.001	0.001	0.000	0.000
Total	GWa	0.118	0.176	0.259	0.369	0.532	0.735

Tabla 16-6 Demanda total de energía final en el sector Residencial Urbano

İtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	GWa	0.556	0.576	0.607	0.556	0.457	0.281
Biomasas modernas	GWa	0.141	0.203	0.292	0.408	0.576	0.852
Electricidad	GWa	0.209	0.309	0.451	0.641	0.927	1.266
Calefacción centralizada	GWa	0.000	0.000	0.000	0.080	0.176	0.356
Solar térmica	GWa	0.000	0.000	0.000	0.012	0.030	0.074
Combustibles fósiles	GWa	2.161	2.587	3.185	3.800	4.710	5.491
Total	GWa	3.067	3.675	4.535	5.498	6.876	8.320

Figura 3.33. Imagen de las Tablas 16-1 a 16-6 de la Hoja "FIN HH-D"

3.3.9 Hojas de cálculo para el sector Servicios (Tablas 17 a 19)

El análisis de la demanda de energía del sector Servicios se realiza con tres hojas de cálculo: "US SS-D", creada para incorporar aquellos datos de entrada que le permiten al modelo calcular la demanda de energía útil para calefacción, aire acondicionado, combustible motor, usos específicos de la electricidad y otros usos térmicos (excluyendo calefacción); "SS Fac-D", sirve para incorporar la penetración de los diferentes portadores energéticos en los mercados de energía útil del sector (calefacción, otros usos térmicos y aire acondicionado); y "FIN SS-D", que convierte la demanda de energía útil calculada previamente en demanda de energía final por tipo de uso final (usos térmicos, aire acondicionado y usos específicos de la electricidad) y por tipo de portador energético (combustibles tradicionales, Biomasa Moderna, electricidad, calefacción centralizada, solar térmica, combustibles fósiles y combustible motor). Como ya se mencionó en la Sección 2, las categorías de uso de la energía consideradas en el sector Servicios son: calefacción, aire acondicionado, combustible motor, usos específicos de la electricidad y otros usos térmicos (calentamiento de agua y cocción). La demanda de energía para calefacción y aire acondicionado se calcula con base en los requerimientos específicos de calefacción y aire acondicionado (kWh/m²/año), mientras que la demanda de energía para el combustible motor, los usos específicos de electricidad y otros usos térmicos (calentamiento de agua y cocción) se calculan mediante el valor agregado y la intensidad energética a nivel del subsector Servicios.

(a) Hoja de cálculo "US_SS-D" (Tabla 17)

Los datos de entrada requeridos en esta hoja son los siguientes (ver Figura 3.34):

- participación (%) del sector Servicios en la fuerza laboral total y área de piso promedio por empleado (m²/cap) en la Tabla 17-1;
- porcentaje (%) del área de piso que requiere calefacción y porcentaje de área (%) que realmente tiene calefacción; requerimientos específicos de calefacción (kWh/m²/año), porcentaje (%) de área de piso con aire acondicionado y requerimiento específicos de aire acondicionado (kWh/m²/año) en la Tabla 17-2;
- intensidades energéticas para el combustible motor (Tabla 17-4), usos específicos de electricidad (Tabla 17-5) y otros usos térmicos, excepto calefacción (Tabla 17-6).

Los datos calculados por el modelo son:

- fuerza laboral (millones de empleados) y área de piso (millones de m²) en el sector Servicios (Tabla 17-1);
- demanda de energía útil para calefacción y aire acondicionado (Tabla 17-3), combustible motor (Tabla 17-7), usos específicos de la electricidad (Tabla 17-8), y otros usos térmicos (Tabla 17-9);
- Demanda de energía útil total para todo el sector Servicios (Tabla 17-10).

La Figura 3.35 muestra los datos calculados por el modelo, incluidos en la Tabla 17-3 y las Tablas 17-7 a 17-10.

Tabla 17-1 Datos básicos para la demanda de energía útil en el sector Servicios

Item	Unidad	2000	2005	2010	2015	2020	2025
Fuerza laboral en el sect. Serv.	[%]	45.000	46.000	47.000	48.000	49.000	50.000
Área de piso por empleado	[m ² /cap]	8.000	8.400	8.800	9.200	9.600	10.000
Fuerza laboral en el sect. Serv.	[mill cap]	1.689	2.059	2.536	3.139	3.888	4.800
Área de piso del sect. Serv	[mill m ²]	13.512	17.300	22.320	28.878	37.320	48.001

Tabla 17-2 Factores para la calefacción y el aire acondicionado

Item	Unidad	2000	2005	2010	2015	2020	2025
Por ciento de área que requiere calefacción	[%]	100.000	100.000	100.000	100.000	100.000	100.000
Área que realmente tiene calefacción	[%]	50.000	55.000	60.000	65.000	70.000	75.000
Requerimientos específicos de calefacción	[kWh/m²/a]	60.000	58.000	56.000	54.000	52.000	50.000
Area de piso con aire acondicionado	[%]	10.000	15.000	20.000	25.000	30.000	40.000
Requer. específicos de aire acondicionado	[kWh/m²/a]	50.000	50.000	50.000	50.000	50.000	50.000

Intensidades energéticas para otros usos finales diferentes a la calefacción y el aire acondicionado Tabla 17-4 Intensidades energéticas de los combustibles motor

ltem	Unidad	2000	2005	2010	2015	2020	2025
Servicios	[kWh/US\$]	0.169	0.175	0.180	0.184	0.187	0.189
Comercio y Turismo	[kWh/US\$]	0.400	0.400	0.400	0.400	0.400	0.400
Administración Pública	[kWh/US\$]	0.200	0.200	0.200	0.200	0.200	0.200
Financias y Negocios	[kWh/US\$]	0.050	0.050	0.050	0.050	0.050	0.050
Servicios Personales y otros	[kWh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100

Tabla 17-5 Intensidades energéticas de los usos específicos de la electricidad

İtem	Unidad	2000	2005	2010	2015	2020	2025
Servicios	[kWh/US\$]	1.086	1.086	1.085	1.085	1.085	1.086
Comercio y Turismo	[kWh/US\$]	1.070	1.070	1.070	1.070	1.070	1.070
Administración Pública	[kWh/US\$]	1.050	1.050	1.050	1.050	1.050	1.050
Financias y Negocios	[kWh/US\$]	1.200	1.200	1.200	1.200	1.200	1.200
Servicios Personales y otros	[kWh/US\$]	1.100	1.100	1.100	1.100	1.100	1.100

Tabla 17-6 Intensidades energéticas de los otros usos térmicos

Item	Unidad	2000	2005	2010	2015	2020	2025
Servicios	[kWh/US\$]	0.123	0.127	0.130	0.132	0.134	0.135
Comercio y Turismo	[kWh/US\$]	0.300	0.300	0.300	0.300	0.300	0.300
Administración Pública	[kWh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100
Financias y Negocios	[kWh/US\$]	0.050	0.050	0.050	0.050	0.050	0.050
Servicios Personales y otros	[kWh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100

Figura 3.34. Imagen de las Tablas de datos de entrada de la Hoja "US SS-D".

(b) Hoja de cálculo "SS Fac-D" (Tabla 18)

En esta hoja el usuario debe suministrar los siguientes datos de entrada:

- penetración de los diferentes portadores energéticos en el mercado para la calefacción (combustibles tradicionales, biomasa moderna, electricidad, bombas térmicas, calefacción centralizada, solar térmica y combustibles fósiles) (Tabla 18-1);
- penetración de los diferentes portadores energéticos en el mercado de otros usos térmicos: calentamiento de agua y cocción (Tabla 18-2);
- eficiencias de varios combustibles, coeficiente de rendimiento de las bombas térmicas y otros factores relativos a todos los usos térmicos (calefacción, calentamiento de agua y cocción) en el sector Servicio (Tabla 18-3);
- penetración del equipamiento eléctrico y no eléctrico en el mercado de aire acondicionado (Tabla 18-4);
- coeficientes de rendimiento del equipamiento de aire acondicionado eléctrico y no eléctrico (Tabla 18-5).

Una Imagen de esta hoja se muestra en la Figura 3.36.

Tabla 17-3 Demanda de energía útil para la calefacción y el aire acondicionado

Item	Unidad	2000	2005	2010	2015	2020	2025
Área total con calefacción	[mill m ²]	6.756	9.515	13.392	18.771	26.124	36.001
Calefacción	GWa	0.046	0.063	0.086	0.116	0.155	0.205
Aire acondicionado	GWa	0.008	0.015	0.025	0.041	0.064	0.110

Demanda de energía útil de los usos finales diferentes a la calefacción y el aire acondicionado Tabla 17-7 Demanda de energía útil de los combustibles motor

Table 17-7 Demande de energia del de l	oo oombast		J.C.				
Item	Unidad	2000	2005	2010	2015	2020	20
Servicios	GWa	0.316	0.419	0.555	0.738	0.975	1
Comercio y Turismo	GWa	0.098	0.144	0.204	0.289	0.395	0
Administración Pública	GWa	0.122	0.158	0.207	0.273	0.359	0
Financias y Nancias	CWA	0.006	0.000	0.011	0.015	0.024	Λ

Tabla 17-8 Demanda de energía útil de los usos específicos de electricidad

Item	Unidad	2000	2005	2010	2015	2020	2025
Servicios	GWa	2.038	2.600	3.353	4.349	5.644	7.333
Comercio y Turismo	GWa	0.261	0.384	0.545	0.772	1.057	1.409
Administración Pública	GWa	0.640	0.830	1.087	1.431	1.884	2.482
Financias y Negocios	GWa	0.135	0.187	0.260	0.361	0.506	0.729
Servicios Personales y otros	GWa	1.001	1.199	1.461	1.786	2.197	2.712

Tabla 17-9 Demanda de energía útil de los otros usos térmicos

Servicios Personales y otros

Item	Unidad	2000	2005	2010	2015	2020	2025
Servicios	GWa	0.231	0.304	0.400	0.530	0.697	0.908
Comercio y Turismo	GWa	0.073	0.108	0.153	0.216	0.296	0.395
Administración Pública	GWa	0.061	0.079	0.104	0.136	0.179	0.236
Financias y Negocios	GWa	0.006	0.008	0.011	0.015	0.021	0.030
Servicios Personales y otros	GWa	0.091	0.109	0.133	0.162	0.200	0.247

Tabla 17-10 Demanda total de energía útil del sector Servicios

İtem	Unidad	2000	2005	2010	2015	2020	2025
Calefacción	GWa	0.046	0.063	0.086	0.116	0.155	0.205
Aire condicionado	GWa	0.008	0.015	0.025	0.041	0.064	0.110
Combustibles motor	GWa	0.316	0.419	0.555	0.738	0.975	1.277
Usos específicos de electricidad	GWa	2.038	2.600	3.353	4.349	5.644	7.333
Otros usos térmicos	GWa	0.231	0.304	0.400	0.530	0.697	0.908
Total	GWa	2.639	3.400	4.419	5.775	7.535	9.833

Figura 3.35. Imagen de las Tablas de datos calculados de la Hoja "US_SS-D".

Penetración de los portadores energéticos en la demanda de energía útil y eficiencias del sector Servicios

Tabla 18-1 Penetración de las formas energéticas para la calefacción

ltem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[%]	25.000	23.000	21.000	19.000	17.000	15.000
Biomasas modernas	[%]	2.000	3.000	4.000	6.000	8.000	10.000
Electricidad	[%]	8.000	10.000	12.000	14.000	16.000	18.000
(de esto: bomba térmica)	[%]	10.000	12.000	14.000	16.000	18.000	20.000
Calor distribuido	[%]	0.000	0.000	5.000	7.000	10.000	12.000
Solar térmica	[%]	0.000	1.000	3.000	5.000	7.000	9.000
Combustibles fósiles	[%]	65.00	63.00	55.00	49.00	42.00	36.00

Tabla 18-2 Penetración de las formas energéticas para otros usos térmicos

İtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[%]	25.000	23.000	21.000	19.000	17.000	15.000
Biomasas modernas	[%]	2.000	3.000	4.000	6.000	8.000	10.000
Electricidad	[%]	8.000	10.000	12.000	14.000	16.000	18.000
Calor distribuido	[%]	0.000	0.000	5.000	7.000	10.000	12.000
Solar térmica	[%]	0.000	1.000	3.000	5.000	7.000	9.000
Combustibles fósiles	[%]	65.00	63.00	55.00	49.00	42.00	36.00

Tabla 18-3 Eficiencias y otros factores de los usos térmicos

İtem	Unidad	2000	2005	2010	2015	2020	2025
Eficiencia de los combustibles tradicionales	[%]	15.000	16.000	17.000	18.000	19.000	20.000
Eficiencia de las biomasas modernas	[%]	25.000	26.000	27.000	28.000	29.000	30.000
Eficiencia de los combustibles fósiles	[%]	60.000	61.000	62.000	63.000	64.000	65.000
COP de las bombas térmicas	[razón]	2.500	2.750	3.000	3.500	4.000	4.500
Por ciento de edificios de poca altura	[%]	70.000	65.000	60.000	55.000	50.000	50.000
Participación de la solar térmica	[%]	40.000	40.000	40.000	40.000	40.000	40.000

Tabla 18-4 Penetración de las formas energéticas para los aires acondicionados

İtem	Unidad	2000	2005	2010	2015	2020	2025
Eléctrico	[%]	90.000	86.000	82.000	78.000	74.000	70.000
No eléctrico	[%]	10.00	14.00	18.00	22.00	26.00	30.00

Tabla 18-5 Eficiencias de los aires acondicionados

İtem	Unidad	2000	2005	2010	2015	2020	2025
COP de los aires acondicionados eléctricos	[razón]	2.500	2.600	2.700	2.800	2.900	3.000
COP de los aires acondicionados no eléctricos	[razón]	2.500	2.600	2.700	2.800	2.900	3.000

Figura 3.36. Imagen de la Hoja "SS Fac-D".

(c) Hoja de cálculo "FIN SS-D" (Tabla 19)

Esta hoja calcula y muestra la demanda de energía final del sector Servicios por usos finales: usos térmicos, aire acondicionado y usos específicos de la electricidad, y por formas de energía: combustibles tradicionales, Biomasa Moderna, electricidad, calefacción centralizada, solar térmica, combustibles fósiles y combustible motor (Figura 3.37).

Demanda de energía final en el sector Servicios

Tabla 19-1 Demanda de energía final para usos térmicos

Item	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	GWa	0.462	0.527	0.600	0.682	0.762	0.835
Biomasas modernas	GWa	0.022	0.042	0.072	0.138	0.235	0.371
Electricidad	GWa	0.022	0.036	0.057	0.089	0.133	0.195
Calor distribuido	GWa	0.000	0.000	0.024	0.045	0.085	0.134
Solar térmica	GWa	0.000	0.001	0.003	0.007	0.012	0.020
Combustibles fósiles	GWa	0.300	0.381	0.439	0.519	0.587	0.663
Total	GWa	0.806	0.987	1.196	1.480	1.814	2.219

Tabla 19-2 Demanda de energía final para aire acondicionado

İtem	Unidad	2000	2005	2010	2015	2020	2025
Eléctrico	GWa	0.003	0.005	0.008	0.011	0.016	0.026
No eléctrico	GWa	0.000	0.001	0.002	0.003	0.006	0.011
Total	GWa	0.003	0.006	0.009	0.015	0.022	0.037

Tabla 19-3 Demanda de energía final para usos específicos de electricidad

Item	Unidad	2000	2005	2010	2015	2020	2025
Electricidad	GWa	2.038	2.600	3.353	4.349	5.644	7.333

Tabla 19-4 Demanda de energía final en el sector Servicios (por forma energétic

İtem	Unidad	2000	2005	2010	2015	2020	2025				
Combustibles tradicionales	GWa	0.462	0.527	0.600	0.682	0.762	0.835				
Biomasas modernas	GWa	0.022	0.042	0.072	0.138	0.235	0.371				
Electricidad	GWa	2.062	2.641	3.418	4.449	5.793	7.553				
Calor distribuido	GWa	0.000	0.000	0.024	0.045	0.085	0.134				
Solar térmica	GWa	0.000	0.001	0.003	0.007	0.012	0.020				
Combustibles fósiles	GWa	0.301	0.382	0.441	0.522	0.593	0.674				
Combustibles motor	GWa	0.316	0.419	0.555	0.738	0.975	1.277				
Total	GWa	3.163	4.012	5.114	6.582	8.455	10.865				

Figura 3.37. Imagen de la Hoja "FIN SS-D"

3.3.10 Hojas de cálculo que muestran los resultados finales del Modelo MAED_D (Tablas 20 y 21)

Los resultados finales del análisis de la demanda de energía para todo el sistema estudiado se muestran en las unidades especificadas por el usuario en las celdas E50 y L50 de la hoja "Defs".

(a) Hoja de cálculo "Finla-D" (Tabla 20)

Esta hoja calcula y almacena el conjunto final de resultados del análisis de la demanda de energía final elaborado por el MAED_D en la unidad de energía definida por el usuario en la

celda E50 de la Hoja "Defs" (por defecto: GWa). La misma consiste en 12 tablas. La primera tabla (Tabla 20-1) muestra la demanda de energía final total y su estructura por formas de energía (combustibles tradicionales, Biomasa Moderna, electricidad, calefacción centralizada, solar térmica, combustibles fósiles, coque, carbón y materias primas). La tabla siguiente (Tabla 20-2) muestra los valores de la demanda de energía final per cápita (MWh/cap) y la demanda de energía final por unidad monetaria de PIB (kWh/US\$). La tercera tabla (Tabla 20-3) reporta los valores de la demanda de energía final total por sectores. Los sectores considerados aquí son: Industria, que se desagrega después en Manufacturero y ACM (Agricultura, Construcción y Minería), Transporte (desagregado posteriormente en los subsectores carga y pasajeros), Residencial y Servicios. La demanda de energía final de cada una de las nueve formas de energía contenidas en la Tabla 20-1 se desagrega en las Tabla 20-4 a 20-12 por cada uno de los sectores mencionados en la Tabla 20-3. La Figura 3.38 ilustra el contenido de las Tablas 20-1 a 20-4. Las Tablas 20-5 a la 20-12 son similares a la 20-4 pero relativas a otras formas de energía.

Demanda total de energía final

Tabla 20-1 Demanda de energía final por formas energéticas

İtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	GWa	7.927	8.009	8.010	7.927	7.792	6.809
Biomasas modernas	GWa	0.307	0.557	0.922	1.441	2.118	3.062
Electricidad	GWa	2.868	3.760	4.959	6.531	8.588	11.140
Calor distribuido	GWa	0.064	0.080	0.123	0.245	0.404	0.661
Solar térmica	GWa	0.000	0.003	0.008	0.027	0.055	0.112
Combustibles fósiles	GWa	5.236	6.240	7.398	8.592	10.057	11.811
Combustibles motor	GWa	5.754	6.449	7.326	8.411	9.737	11.275
Coque y carbón	GWa	0.778	0.846	0.999	1.089	1.096	0.968
Materia prima	GWa	0.882	1.159	1.521	1.926	2.376	2.794
Total	GWa	23.816	27.102	31.265	36.187	42.223	48.633

Tabla 20-2 Demanda de energía final per cápita y por PIB

Îtem	Unidad	2000	2005	2010	2015	2020	2025
Demanda final per cápita	[MWh/cap]	10.895	10.958	11.282	11.769	12.499	13.233
Demanda final por PIB	[kWh/US\$]	6.218	5.545	5.060	4.677	4.400	4.126

Tabla 20-3 Demanda de energía final por sectores

abia 20 0 Domanaa ab onorgia miar por obotoroo												
İtem	Unidad	2000	2005	2010	2015	2020	2025					
Industria	GWa	4.830	5.850	7.081	8.333	9.563	10.557					
Manufactura	GWa	3.440	4.280	5.369	6.516	7.646	8.578					
ACM	GWa	1.390	1.571	1.712	1.818	1.917	1.979					
Transporte	GWa	4.864	5.286	5.872	6.628	7.548	8.615					
Transp. Carga	GWa	4.061	4.281	4.516	4.780	5.080	5.395					
Transp. Pasajeros	GWa	0.803	1.005	1.356	1.848	2.467	3.220					
Residencial	GWa	10.959	11.954	13.199	14.643	16.658	18.596					
Servicios	GWa	3.163	4.012	5.114	6.582	8.455	10.865					
Total	GWa	23.816	27.102	31.265	36.187	42.223	48.633					

Tabla 20-4 Combustibles tradicionales por sectores

İtem	Unidad	2000	2005	2010	2015	2020	2025
Industria	GWa	0.197	0.195	0.187	0.173	0.151	0.113
Manufactura	GWa	0.156	0.153	0.146	0.135	0.117	0.084
ACM	GWa	0.041	0.042	0.041	0.038	0.034	0.029
Transporte	GWa	0.000	0.000	0.000	0.000	0.000	0.000
Transp. Carga	GWa	0.000	0.000	0.000	0.000	0.000	0.000
Transp. Pasajeros	GWa	0.000	0.000	0.000	0.000	0.000	0.000
Residencial	GWa	7.268	7.287	7.224	7.072	6.879	5.860
Servicios	GWa	0.462	0.527	0.600	0.682	0.762	0.835
Total	GWa	7.927	8.009	8.010	7.927	7.792	6.809

Figura 3.38. Imagen de las Tablas 20-1 a 20-4 de la Hoja "Final-D".

(b) Hoja de cálculo "Final Results (User Unit)" (Tabla 21)

Esta hoja convierte los resultados finales que aparecen en la hoja "Final-D" de la unidad de energía definida en la celda E50 a la unidad de energía seleccionada por el usuario en la celda L50 de la hoja "Defs". Esta hoja tiene la misma estructura que la hoja "Final-D" (Figura 3.39).

Demanda total de energía final (Unidades del usuario)

Tabla 21-1 Demanda de energía final por formas energéticas

İtem	Unidad	2000	2005	2010	2015	2020	2025
Combustibles tradicionales	[Mtoe]	5.971	6.033	6.033	5.970	5.869	5.129
Biomasas modernas	[Mtoe]	0.232	0.419	0.694	1.085	1.595	2.307
Electricidad	[Mtoe]	2.160	2.832	3.735	4.919	6.469	8.391
Calor distribuido	[Mtoe]	0.048	0.061	0.092	0.184	0.304	0.498
Solar térmica	[Mtoe]	0.000	0.002	0.006	0.020	0.041	0.085
Combustibles fósiles	[Mtoe]	3.944	4.700	5.572	6.472	7.575	8.896
Combustibles motor	[Mtoe]	4.334	4.857	5.518	6.335	7.334	8.493
Coque y carbón	[Mtoe]	0.586	0.637	0.753	0.820	0.825	0.729
Materia prima	[Mtoe]	0.664	0.873	1.145	1.450	1.789	2.104
Total	[Mtoe]	17.939	20.414	23.550	27.257	31.804	36.631

Tabla 21-2 Demanda de energía final per cápita y por PIB

Îtem	Unidad	2000	2005	2010	2015	2020	2025
Demanda final per cápita	[MWh/cap]	10.895	10.958	11.282	11.769	12.499	13.233
Demanda final por PIB	[kWh/US\$]	6.218	5.545	5.060	4.677	4.400	4.126

Tabla 21-3 Demanda de energía final por sectores

İtem	Unidad	2000	2005	2010	2015	2020	2025
Industria	[Mtoe]	3.638	4.406	5.334	6.277	7.203	7.952
Manufactura	[Mtoe]	2.591	3.223	4.044	4.908	5.759	6.461
ACM	[Mtoe]	1.047	1.183	1.289	1.369	1.444	1.491
Transporte	[Mtoe]	3.663	3.982	4.423	4.992	5.685	6.489
Transp. Carga	[Mtoe]	3.059	3.224	3.402	3.600	3.827	4.063
Transp. Pasajeros	[Mtoe]	0.604	0.757	1.021	1.392	1.858	2.426
Residencial	[Mtoe]	8.255	9.004	9.942	11.030	12.547	14.007
Servicios	[Mtoe]	2.383	3.022	3.852	4.958	6.369	8.184
Total	[Mtoe]	17.939	20.414	23.550	27.257	31.804	36.631

Tabla 21-4 Combustibles tradicionales por sectores

İtem	Unidad	2000	2005	2010	2015	2020	2025
Industria	[Mtoe]	0.149	0.147	0.140	0.130	0.114	0.085
Manufactura	[Mtoe]	0.117	0.115	0.110	0.101	0.088	0.063
ACM	[Mtoe]	0.031	0.032	0.031	0.029	0.026	0.022
Transporte	[Mtoe]	0.000	0.000	0.000	0.000	0.000	0.000
Transp. Carga	[Mtoe]	0.000	0.000	0.000	0.000	0.000	0.000
Transp. Pasajeros	[Mtoe]	0.000	0.000	0.000	0.000	0.000	0.000
Residencial	[Mtoe]	5.474	5.488	5.441	5.327	5.181	4.414
Servicios	[Mtoe]	0.348	0.397	0.452	0.513	0.574	0.629
Total	[Mtoe]	5.971	6.033	6.033	5.970	5.869	5.129

Figura 3.39. Imagen de las Tablas 21-1 a 21-4 de la Hoja "Final Results (User units)".

Una vez finalizado el análisis de un escenario en particular mediante la aplicación del MAED_D, el usuario debe revisar cuidadosamente todo el conjunto de resultados una vez más, además de revisar los resultados particulares contenidos en cada una de las hojas de cálculo que el usuario ha ido realizando a través del ejercicio. Durante la reconstrucción del patrón de consumo de energía del año base con el modelo el usuario debe comparar, después de cada corrida del programa, el consumo de energía final calculado por el MAED_D por cada forma de energía y por sector con el consumo de energía final reflejado en el balance de energía del país o región en ese año. Si persisten diferencias, es necesario ajustar los datos de entrada y realizar corridas adicionales del programa.

Si un estudio cuidadoso de la información obtenida y su comparación con información de otros escenarios del mismo caso (si están disponibles) saca ala luz algunas debilidades en cualquier parte de los resultados, el usuario debe revisar ambos cuidadosamente, los datos de entrada correspondientes y los supuestos relevantes del escenario, hacer los cambios necesarios y debe ejecutar el modelo MAED_D nuevamente. Este proceso de repetición debe continuarse hasta que el usuario se sienta satisfecho con los resultados del escenario bajo investigación.

4 VARIABLES DE ENTRADA Y CALCULADAS DEL MÓDULO 1 DEL MAED

4.1 Introducción

Para ser capaz de manejar un modelo matemático apropiadamente y apreciar plenamente el significado de sus resultados, uno necesita saber: (i) las definiciones exactas de sus parámetros de entrada y salida (las variables), y (ii) la manera en que cada parámetro de salida se obtiene a partir de los datos de entrada suministrados por el usuario. Esta Sección proporciona la información sobre el primero de los dos aspectos anteriores acerca del Módulo 1 del modelo MAED; el segundo aspecto es tratado en la Sección 5.

4.2 Variables de entrada

La tabla 4.1 contiene una lista de variables de entrada del MAED_D, junto con sus definiciones. También incluye algunas variables para las cuales los valores de entrada no requieren ser introducidos por el usuario; el modelo encuentra estos valores cerrando el balance después de restar del valor total los valores de ciertas variables de entrada (por favor consultar la sección 3.3.2.3). A cada variable del MAED_D se le asigna un nombre simbólico. La primera columna de la tabla tiene una lista de nombres simbólicos de las variables de entrada; la segunda contiene sus definiciones; la tercera columna las unidades de medida correspondientes; y la última, comentarios adicionales para esclarecer, en caso que se requiera, el significado de alguna variable en particular.

Las variables en la Tabla 4.1 están ordenadas en 6 grupos diferentes: Demografía, Formación del PIB, Industria, Transporte, Residencial y Servicios. Algunos de los grupos se dividen en dos o más subgrupos, para facilitar al usuario la localización de un parámetro de interés en particular dentro de la tabla. Por ejemplo, los parámetros correspondientes al grupo Transporte se dividieron en tres subgrupos: (i) transporte de carga, (ii) trasporte de pasajeros entre ciudades, (iii) el transporte de pasajeros dentro de la ciudad (urbano). Se muestra también la correspondencia de cada grupo/subgrupo en la tabla 4.1 con los parámetros de entrada introducidos en varias tablas de las hojas de EXCEL del MAED D.

4.3 Variables calculadas

La tabla 4.2 proporciona información acerca de las variables calculadas/salida del MAED_D. De las variables que se muestran en esta tabla, todas excepto 13 aparecen en varias tablas contenidas en las hojas de EXCEL del MAED_D. Las 13 variables adicionales son variables internas, es decir, que solo aparecen en algunos pasos intermedios de los cálculos descritos en la Sección 5 pero sus valores no se encuentran disponibles en las hojas del MAED_D; estas variables están subrayadas en la Tabla 4.2 así como en la Sección 5, para facilitar su identificación.

En contraste con la Tabla 4.1, la Tabla 4.2 tiene solo tres columnas: la primera columna proporciona los nombres simbólicos de las variables derivadas; la segunda sus unidades de medida, mientras que la tercera suministra notas explicativas para definir esas variables.

Las variables de la tabla 4.2 se ordenaron en grupos y subgrupos de acuerdo a su correspondencia con los parámetros derivados incluidos en varias tablas de las hojas del MAED-D. Debe notarse que la unidad indicada en esta tabla para las variables que representan valores de energía es GWa, que corresponde a la unidad de energía por defecto del modelo. Sin embargo, como se dijo en las Secciones 3.3.2.1 y 5.2, el usuario puede

obtener los resultados del modelo en alguna otra unidad de energía suministrando el nombre de esa unidad y su factor de conversión correspondiente en la en la hoja "Defs" del MAED_D.

UNIDAD | COMENTARIO Tabla 4.1a Lista y definición de las variables de entrada del módulo MAED D del modelo MAED. Máx. 10 Máx. 15 Máx. 15 Máx. 15 Máx. 10 Máx. 10 Máx. 10 Máx. 8 Máx. 10 Máx. 10 Máx. 10 Máx. 25 Máx. 5 Número de tipos de autos para el transporte de pasajeros entre ciudades. Número de modos del transporte de pasajeros entre ciudades. Años de referencia para el caso de estudio. I=1,....,NRY Número de combustibles usados en el sector Transporte. Número de modos del transporte de pasajeros urbanos. Número de años de referencia para el caso de estudio. Número de subsectores del sector Manufacturero. Número de subsectores del sector Construcción. Número de subsectores del sector Agricultura. Número de subsectores del sector Servicio. Número de subsectores del sector Minería. Número de modos del transporte de carga. Número de tipos de viviendas urbanas. Número de tipos de viviendas rurales. (ver hoja de cálculo "Defs" del MAED_D.xls) VARIABLE DEFINICIÓN **DEFINICIONES:** NSMAN NSMIN NSCON **NSAGR** NSSER NCTIT NMFT NMUT NMIT NUDT NRDT RY(I) NRY NTF

Tabla 4.1b Lista y definición de las variables de entrada de Demografía. **DEMOGRAFÍA**:

(ver hoia de cálculo "Demogr-D" del MAED. D

(ver hoja de c	(ver hoja de calculo "Demogr- D " del MAED D .		
PO	Población total.	millones de personas	Puede ser calculado por el programa, si se suministra la tasa de crecimiento anual.
POGR	Tasa de crecimiento anual promedio de la población entre los años previo y actual del modelo.	% p.a.	Puede ser calculado por el programa, si se suministra la población total.
PURB	Porcentaje de la población urbana.	%	De acuerdo con la definición de N.U.
САРИН	Tamaño promedio de las viviendas en las zonas urbanas.	personas/vivienda	El término vivienda se utilizó en el sentido "personas que viven juntas en una vivienda".
CAPRH	Tamaño promedio de las viviendas en las zonas rurales.	personas/vivienda	El término vivienda se utilizó en el sentido "personas que viven juntas en una vivienda".
PLF	Porcentaje de población de 15-64 años de la población total (fuerza laboral potencial).	%	
PARTLF	Porcentaje de fuerza laboral potencial trabajando.	%	
POPLC	Porcentaje de la población que vive en grandes ciudades.	%	Variable utilizada para determinar el mercado potencial aproximado para transportaciones masivas dentro de la ciudad.

Tabla 4.1c Lista y definición de las variables de entrada de la Formación del PIB FORMACIÓN DEL PIB: (ver hoia de cálculo "GDP-D" del MAED D.xls)

YGR Tasa de crecumiento annal promedio del PIB entre les años previo y y acual del cesta variables debe ser 100. Por 10 tanto, as suministan datos de entrada solo para las cinco primeras, mientras. PYAGR Distribución de la formación del PIB por tipo de actividad económica. PYAGR Distribución del valor agregado del sector Agricultura (AGR) por PVACQ(1) Distribución del valor agregado del sector Construcción (CON) por Subsectores. 1=1,,NSACM (CON) por Subsectores. 1=1,,NSACM (CON) por Subsectores. 1=1,,NSACM (CON) por Subsectores. 1=1,,NSACM (CON) por Subsectores. 1=1,,NSACM (CON) por Subsectores (NSCON) Distribución del valor agregado del sector Mineria (MIN) por Subsectores (NSCON). Intentras que el programa calcula la participación del valor agregado del sector Mineria (MIN) por Subsectores (NSCON). Intentras que el programa calcula la participación del valor agregado del sector Mineria (MIN) por Subsectores (NSCON). Intentras que el programa calcula la participación del valor agregado del sector Mineria (MIN) por Subsectores (NSCON). Intentras que el programa calcula la participación del valor agregado del sector Mineria (MIN) por Subsectores (NSCON). Intentras que el programa calcula la participación del difumo como el remanente. 1=1,,NSCON (Manufacturero (MAN) por Subsectores (NSCON). Intentras que el programa calcula la participación del difumo como el remanente. 1=1,,NSCON (Manufacturero (MAN) por Subsectores (NSCON). Intentras que el programa calcula la participación del difumo como el remanente. 1=1,,NSCON (Manufacturero (MAN) por Subsectores (NSCON). Intentras que el programa calcula la participación del difumo como el remanente. 1=1,,NSCON (Manufacturero (MAN) por Subsectores (NSCON). Intentras que el programa calcula la participación del difumo como el remanente. 1=1,,NSCON (Manufacturero (MAN) por Subsectores (NSCON). Intentras que el programa calcula la participación del difumo como el remanente. 1=1,,NSCON (Manufacturero (MAN) por subsectores (NSCON). In	(ver hoja de	(ver hoja de cálculo "GDP-D" del MAED D.xIs)		
Trisa de crecimiento annal promedio del PIB entre los años previo y % p.a. Distribución del valor agregado del sector Mineria (MIN) por subsectores. H=1,,NSMAN (CON) Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. H=1,,NSMAN (MIC) Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. H=1,,NSMAN (NAM) Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. H=1,,NSMAN (NAM) Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. H=1,,NSMAN (NAM) Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. H=1,,NSMAN (NAM) Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. H=1,,NSMAN (NAM) Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. H=1,,NSMAN (NAM) Distribución del valor agregado del sector Servicio (SER) por suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100. Por lo tanto, suministra de cestas variables debe ser 100	Ā	PIB total.	Mil millones	UM representa la unidad monetaria del año base.
Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Manufacturero (MAN) por Distribución del valor agregado del sector Servicio (SER) por Distribución del valor agregado del sector Servicio (SER) por Suministran datos de entrada solo para los primeros subsectores. I=1,,NSMAN Distribución del valor agregado del sector Manufacturero (MAN) por Suministran datos de entrada solo para los primeros subsectores puberco suministran datos de entrada solo para los primeros subsectores procesor de la sector Servicio (SER) por Suministran datos de entrada solo para los primeros subsectores procesor de la sector Servicio (SER) por Suministran datos de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para los primeros subsectores procesor de entrada solo para l	YGR	Tasa de crecimiento anual promedio del PIB entre los años previo y actual del modelo.	% p.a.	
Distribución del valor agregado del sector Agricultura (AGR) por subsectores. I=1,,NSAGR Distribución del valor agregado del sector Construcción (CON) por subsectores. I=1,,NSCON Distribución del valor agregado del sector Mineria (MIN) por subsectores. I=1,,NSMAN Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. I=1,,NSMAN Distribución del valor agregado del sector Servicio (SER) por lo tanto, suministran de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMIN-1) mientras que el programa calcula la participación diltimo como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMIN-1) mientras que el programa calcula la participación diltimo como el remanente. Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. I=1,,NSMAN Distribución del valor agregado del sector Servicio (SER) por suministran datos de entrada solo para los primeros subsecto (NSMIN-1) mientras que el programa calcula la participación difinimo como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMAN-1), mientras que el programa calcula la participación difinimo como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMAN-1), mientras que el programa calcula la participación difinimo como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMAN-1), mientras que el programa calcula la participación difinimo como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMAN-1), mientras que el programa calcula la participación difinimo como el remanente el programa calcula la participación difinimo como el rem	PYAGR PYCON PYMIN PYMAN PYSER PYEN	Distribución de la formación del PIB por tipo de actividad económica. Los sectores considerados son: Agricultura (AGR), Construcción (CON), Minería (MIN), Manufacturero (MAN), Servicios (SER) y Energía (EN).	%	La suma de estas variables debe ser 100. Por lo tanto, se suministran datos de entrada solo para las cinco primeras, mientras que el porcentaje de la última (PYEN) es calculada por el programa como el remanente.
Distribución del valor agregado del sector Construcción (CON) por subsectores. =1,,NSCON Por Suministran detos de entrada solo para los primeros subsecto (NSCON-I), mientras que el programa calcula la participación ultimo como el remanente. Example Por Suministran detos de entrada solo para los primeros subsectores I=1,,NSMIN Por suministran datos de entrada solo para los primeros subsectores I=1,,NSMAN Por suministran datos de entrada solo para los primeros subsectores I=1,,NSMAN Por suministran datos de entrada solo para los primeros subsecto (NSMAN-I), mientras que el programa calcula la participación ultimo como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMAN-I), mientras que el programa calcula la participación ultimo como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMAN-I), mientras que el programa calcula la participación ultimo como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSSER-I), mientras que el programa calcula la participación ultimo como el remanente.	PVAAG(I)	Distribución del valor agregado del sector Agricultura (AGR) por subsectores. I=1,,NSAGR	%	La suma de estas variables debe ser 100. Por lo tanto, se suministran datos de entrada solo para los primeros subsectores (NSAGR-1), mientras que el programa calcula la participación del último como el remanente.
Distribución del valor agregado del sector Minería (MIN) por suministran datos de entrada solo para los primeros subsecto (NSMIN-1) mientras que el programa calcula la participación último como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSMAN-1), mientras que el programa calcula la participación último como el remanente. Distribución del valor agregado del sector Servicio (SER) por Suministran datos de entrada solo para los primeros subsecto (NSMAN-1), mientras que el programa calcula la participación último como el remanente. La suma de estas variables debe ser 100. Por lo tanto, suministran datos de entrada solo para los primeros subsecto (NSSER) por Suministran datos de entrada solo para los primeros subsecto (NSSER-1), mientras que el programa calcula la participación último como el remanente.	PVACO(I)	Distribución del valor agregado del sector Construcción (CON) por subsectores. I=1,,NSCON	%	suma de estas variables debe ser 100. Por lo tanto, unistran datos de entrada solo para los primeros subsecto (CON-1), mientras que el programa calcula la participación mo como el remanente.
Distribución del valor agregado del sector Manufacturero (MAN) por subsectores. I=1,,NSMAN Distribución del valor agregado del sector Servicio (SER) por subsectores. I=1,,NSSER Distribución del valor agregado del sector Servicio (SER) por subsectores. I=1,,NSSER	PVAMI(I)	Distribución del valor agregado del sector Minería (MIN) por subsectores. I=1,,NSMIN	%	La suma de estas variables debe ser 100. Por lo tanto, se suministran datos de entrada solo para los primeros subsectores (NSMIN-1) mientras que el programa calcula la participación del último como el remanente.
Distribución del valor agregado del sector Servicio (SER) por subsectores. I=1,,NSSER Subsectores. I=1,,NSSER (NSSER-1), mientras que el programa calcula la participación último como el remanente	PVAMA(I)		%	La suma de estas variables debe ser 100. Por lo tanto, se suministran datos de entrada solo para los primeros subsectores (NSMAN-1), mientras que el programa calcula la participación del último como el remanente.
	PVASE(I)	del valor agregado del sector I=1,,NSSER		La suma de estas variables debe ser 100. Por lo tanto, se suministran datos de entrada solo para los primeros subsectores (NSSER-1), mientras que el programa calcula la participación del último como el remanente

Tabla 4.1 d Lista y definición de las variables de entrada de las intensidades energéticas en la Industria

INDUSTRIA:			
INTENSIDADES I (ver hoja de cálculo	INTENSIDADES ENERGÉTICAS EN LA INDUSTRIA (AGRICULTURA, CONSTRUCCIÓN, MINERÍA Y MANUFACTURERO); (ver hoja de cálculo "Enint-D" del MAED_D.xls)	NERÍA Y MA	NUFACTURERO):
EI.MF.AG(I)	Consumo específico de combustible motor por unidad monetaria de valor agregado (intensidad energética) del subsectorr I del sector Agricultura. I=1,,NSAGR	kWh/UM	Expresado en términos de energía final por unidad monetaria UM.
EI.MF.CO(I)	fico de combustible motor por unidad monetaria de valor sidad energética) del subsector I del sector Construcción.	kWh/UM	Expresado en términos de energía final por unidad monetaria UM.
EI.MF.MI(I)	fico de combustible motor por unidad monetaria de valor isidad energética) del subsector I del sector Minería.	kWh/UM	Expresado en términos de energía final por unidad monetaria UM.
EI.MF.MA(I)	ífico de combustible motor por unidad monetaria de valor sidad energética) del subsector I del sector Manufacturero.	kWh/UM	Expresado en términos de energía final por unidad monetaria UM.
EI.ELS.AG(I)	co de electricidad (para usos específicos) por unidad monetaria o (intensidad energética) del subsector I del sector Agricultura.	kWh/UM	Expresado en términos de energía final por unidad monetaria UM.
EI.ELS.CO(I)	ico de electricidad (para usos específicos) por unidad monetaria o (intensidad energética) del subsector I del sector Construcción.	kWh/UM	Expresado en términos de energía final por unidad monetaria UM.
EI.ELS.MI(I)	ico de electricidad (para usos específicos) por unidad monetaria do (intensidad energética) del subsector I del sector Minería.	kWh/UM	Expresado en términos de energía final por unidad monetaria UM.
EI.ELS.MA(I)	fico de electricidad (para usos específicos) por unidad monetaria gado (intensidad energética) del subsector I del sector =1,,NSMAN	kWh/UM	Expresado en términos de energía final por unidad monetaria UM.
EI.TU.AG(I)	til para usos térmicos por unidad monetaria del gética) del subsector I del sector Agricultura.	kWh/UM	
EI.TU.CO(I)	Consumo específico de energía útil para usos térmicos por unidad monetaria del valor agregado (intensidad energética) del subsector I del sector Construcción. I=1,,NSCON	kWh/MU	

(continuacion)		
en la Industria	kWh/MU	kWh/MU
Tabla 4.1 d Lista y definición de las variables de entrada de las intensidades energeticas en la industria (continuación	Consumo específico de energía útil para usos térmicos por unidad monetaria del kWh/MU valor agregado (intensidad energética) del subsector I del sector Minería. I=1,,NSMIN	Consumo específico de energía útil para usos térmicos por unidad monetaria del kWh/MU valor agregado (intensidad energética) del subsector I del sector Manufacturero. I=1,,NSMAN
labla 4.1 d Lista	EI.TU.MI(I)	EI.TU.MA(I)

Tabla 4.1e Lista y definición de las variables de entrada de la penetración de los portadores energéticos dentro de la demanda de energía térmica útil de la Agricultura, Construcción y Minería (ACM).

util de la Aglicultu	util de la Agricultula, Consunccion y Milleria (ACM).		
PENETRACION DE	LOS PÓRTADORES ENERGETICOS DENTRO DE LA	DEMAN	PENETRACION DE LOS PORTADORES ENERGETICOS DENTRO DE LA DEMANDA DE ENERGIA TERMICA UTIL DE LA AGRICULTURA,
CONSTRUCCIÓN Y MINERÍA (ACM):	: MINERÍA (ACM):		
(ver tablas 5-1 a la 5-3	(ver tablas 5-1 a la 5-3 en la hoja "ACMFac-D" del MAED_D.xls)		
TFPAGR	Penetración del portador energético I dentro del mercado de	%	La suma de la penetración de los portadores energéticos por cada
MBPAGR	demanda de energia termica util dei sector economico J.		sector debe ser 100. Por 10 tanto, se summistran datos de entrada solo para los primeros cuatro portadores energéticos, mientras que la
	Portadores energéticos:		penetración para el último (Combustibles fósiles) es calculada por el
ELPAGR SSPAGR	(I=1) Combustibles tradicionales (TF)		programa como el remanente.
	(I=3) Electricidad (EL)		
FFPAGR	(I=4) Solar térmica (SS) (I=5) Combustibles fósiles (FF)		
TFPCON			
MBPCON	Sectores: (J=1) Agricultura (AGR)		
ELPCON	(J=2) Construcción (CON)		
SSPCON	(vittat) (c_c)		
FFPCON			
TFPMIN			
MBPMIN			
ELPMIN			
SSPMIN			
FFPMIN			

Tabla 4.1f Lista y definición de la las variables de entrada de las eficiencias de los combustibles en la Agricultura, la Construcción y la Minería (ACM).

EFICIENCIAS PROMEDIO DEL COMBUSTIBLE PARA USC (ver tablas 5-5 a la 5-7 en la hoja "ACMFac-D" del MAED_D.xls)	EFICIENCIAS PROMEDIO DEL COMBUSTIBLE PARA USOS TÉRMICOS EN LA AGRICULTURA, CONSTRUCCIÓN Y MINERÍA (ACM): (ver tablas 5-5 a la 5-7 en la hoja "ACMFac-D" del MAED_D.xls)	TURA, CONSTRUCCIÓN Y MINERÍA (ACM):
TFEAGR	Efficiencia promedio del uso del combustible I para	%
TFECON	procesos térmicos en el sector económico J, relativo a la eficiencia de la electricidad.	
MBEAGR	Combustibles: (I=1) Combustibles tradicionales (TF)	
MBECON	(I=2) Biomasa moderna (MB)	
MBEMIN	(I=3) Combustibles fósiles (FF)	
	Sectores: (J=1) Agricultura (AGR)	
FFEAGR	(J=2) Construcción (CON)	
FFECON	(J=3) Minería (MIN)	
FFEMIN		

	itacturera.
	ergia termica util en la Manı
	en
	TET
	nca
	tern
•	ergia
-	nda de energ
_	e la dema
_	<u> </u>
-	s de Is
	ntajes
	ဥ
-	d sol
-	\overline{c}
-	trada (
	s de entrac
	es de
-	ap
•	vari
-	e las
	nd
	013
	ΞĪ
-	det
	a V
•	151
-	<u>행</u>
,	4. I
-	ola
E	T T

PORCENTAJE DE LA DEMANDA DE I (ver hoja "ManFacl-D" del MAED_D.xls)	PORCENTAJE DE LA DEMANDA DE ENERGÍA TÉRMICA ÚTIL EN EL SECTOR MANUFACTURERO: (ver hoja "Manfac1-D" del MAED_D.xls)	NUFACTU	RERO:
PUSIND (I,J)	Porcentaje de la categoría J de los procesos térmicos en la demanda de energía térmica útil del subsector I del sector Manufacturero. I=1,,NSMAN; Procesos térmicos: (J=1) Generación de vapor (STM)	%	La suma de los porcentajes para el mismo subsector debe ser 100. Por lo tanto, se suministran datos de entrada solo para las dos primeras categorías de procesos; mientras que la participación de la última categoría de proceso
	(J=2) Hornos/calor directo (FUK) (J=3) Calefacción/calentamiento de agua (SWH)		(Calefaccion/calentamiento de agua) es calculada por el programa como el remanente.
PENETRACIÓN DE I (Ver Tabla 8-1 en la hoja	PENETRACIÓN DE LOS PORTADORES ENERGÉTICOS DENTRO DE LA DEMANDA DE ENERGÍA TÉRMICA ÚTIL DE LA MANUFACTURERA: (Ver Tabla 8-1 en la hoja de cálculo "ManFac2-D" del MAED_D.xls)	OA DE ENE	RGÍA TÉRMICA ÚTIL DE LA MANUFACTURERA:
ELP.STM.MAN ELP.STM.MAN ELP.FUR.MAN ELP.SWH.MAN	Penetración de la electricidad dentro del mercado J de la demanda de energía térmica útil en la industria Manufacturera. Procesos térmicos: (J=1) Generación de vapor (STM) (J=2) Hornos/calor directo (FUR) (J=3) Calefacción/calentamiento de agua (SWH)	%	Incluye la contribución de la bomba térmica para la generación de vapor y la calefacción/calentamiento de agua
HPP.STM.MAN HPP.SWH.MAN	Contribución de las bombas térmicas para la generación de vapor, el uso en la calefacción y en el calentamiento de agua en las industrias manufactureras.	%	Como fracción de la penetración de la electricidad en los respectivos mercados.
DHP.STM.MAN DHP.SWH.MAN	Penetración de la calefacción centralizada para la generación de vapor y el uso en la calefacción y en el calentamiento de agua en las industrias manufactureras.	%	
CGP.SWH.MAN	Porcentaje de demanda en el sector Manufacturero para vapor, calefacción y calentamiento de agua que es suministrado por combustibles fósiles y biomasa moderna, pero con cogeneración de electricidad.	%	
SSP.STM.MAN SSP.SWH.MAN	Penetración solar para la generación de electricidad, calefacción y calentamiento de agua en el sector Manufacturero.	%	
TFPMAN(J) TFP.STM.MAN TFP.FUR.MAN TFP.SWH.MAN	Penetración de los combustibles tradicionales en varios mercados de demanda de energía térmica útil en las industrias Manufactureras. Procesos térmicos: (J=1) Generación de vapor (STM) (J=2) Hornos/calor directo (FUR) (J=3) Calefacción/calentamiento de agua (SWH)	%	

Tabla 4.1g Lista y definición de las variables de entrada de los porcentajes de la demanda de la energía térmica útil en la Manufacturera. (continuación)

Penetración de la biomasa moderna en la demanda de energía térmica útil en las industrias manufactureras. Procesos térmicos: (J=1) Generación de vapor (STM) (J=2) Hornos/calor directo (FUR) (J=3) Calefacción/calentamiento de agua (SWH)	
MBPMAN(J) MBP.STM.MAN MBP.FUR.MAN MBP.SWH.MAN	

Tabla 4.1h Lista y definición de las variables de entrada de las eficiencias y otras razones para la demanda de la energía térmica útil en la Manufactura.

	Ciredia () deire () de (direntale ()) de de General	1 / / / / / / / / / / / / / / / / / / /	
(ver tabla 8-2 en la hoja de cálcul	EFICIENCIAS Y OTRAS KAZONES PARA LA DEMANDA DE LA ENEKGIA LERMICA UTIL EN LA MANUFACTURERA: (ver tabla 8-2 en la hoja de cálculo "ManFac2-D" del MAED_D.xls)	A UTIL EN L	A MANUFACTUKEKA:
HPEMAN	Coeficiente de rendimiento de las bombas térmicas (eléctrica) en las industrias Manufactureras.	razón	Energía térmica extraída por unidad de entrada de energía eléctrica.
FIDS	Porcentaje aproximado de la demanda de energía térmica útil de las industrias manufactureras que puede ser suministrado por instalaciones solares.	%	Nota: (100 – FIDS) determina los requerimientos de respaldo.
EFFCOG	Eficiencia del sistema de cogeneración.	%	producción (Calor + electricidad) / contenido calórico del combustible usado
HELRAT	Razón calor/electricidad en la producción de sistemas de	razón	kWh vapor / kWh electricidad.
MBSCOG	Porcentaje de las Biomasa Moderna en el combustible usado en el sistema de cogeneración (combustibles y Biomasa Moderna).	%	
FFEMAN(J) FFE.STM.MAN FFE.FUR.MAN FFE.SWH.MAN	Eficiencia promedio del uso del combustible fósil para el proceso térmico J en las industrias manufactureras, relativo a la eficiencia de electricidad. Procesos térmicos: (J=1) generación de vapor (STM) (J=2) Hornos/calor directo (FUR) (J=3) Calefacción/calentamiento de agua (SWH)	%	
TFEMAN(J) TFE.STM.MAN TFE.FUR.MAN TFE.SWH.MAN	Eficiencia promedio del uso del combustible tradicional para el proceso térmico J en las industrias manufactureras, relativo a la eficiencia de la electricidad. Procesos térmicos: (J=1) generación de vapor (STM) (J=2) Hornos/calor directo (FUR) (J=3) Calefacción/calentamiento de agua (SWH)	%	

Tabla 4.1h Lista y definición de las variables de entrada de las eficiencias y otras razones para la demanda de la energía térmica útil en la Manufactura (continuación)

MBEMAN(J)	Eficiencia promedio del uso de la biomasa moderna para el proceso	0%
MBE.STM.MAN	térmico J en las industrias manufactureras, relativo a la eficiencia de	
MBE.FUR.MAN	la electricidad.	
MBE.SWH.MAN	Procesos térmicos: (J=1) Generación de vapor (STM)	
	(J=2) Hornos/calor directo (FUR)	
	(J=3) Calefacción/calentamiento de agua(SWH)	

	g
	☱
	teria prin
	=
•	2
	ō
•	ਙ
	Ξ
	ð
-	no de
	0
	⇉
	S
	õ
	ပ
	acero y consu
	2
	ē
	ဒ္ဓ
	<u>e</u>
-	in de acero y consur
	ū
•	\circ
•	\mathbf{z}
	೨
-	ನ
	ŏ
	producci
	`~
-	<u>9</u>
_	ള
	ð
-	ಕ
	ġ
	豆
	\mathbf{c}
	O
-	ರ
	S
-	₹
-	ಕ
•	I
	Ş
	S
	ಹ
-	<u></u>
-	5
	U
	ō
•	ပ
•	Ξ
٤	e E
_	ട്ട
	<u>ر</u>
	<u>~</u>
	ij
•	$\Gamma_{\rm S}$
۲	
	Ξ
	4.11
	<u>ب</u>
-	픋
-	ಸ
	_

PRODUCCIÓN DE AC (ver tabla 8-4 en la hoja	PRODUCCIÓN DE ACERO Y CONSUMO DE MATERIA PRIMA: (ver tabla 8-4 en la hoja "ManFac2-D" del MAED_D.xls)	,	
CPST(1) CPST(2)	Constantes usadas para proyectar la cantidad de producción de voracero.	Ver comentario	Primera constante expresada en millones de toneladas de acero; la segunda en toneladas de acero por miles UM de valor agregado por el primer subsector Manufacturero. Para la búsqueda de la consistencia, la industria del acero debe ser considerada, desde el punto de vista del consumo de energía y del valor agregado en el primer subsector de Manufacturero.
BOF	Porcentaje de acero producido en hornos no eléctricos.		Para la búsqueda de la consistencia, los requerimientos eléctricos para el acero fundido eléctricamente deben estar reflejados en la intensidad energética para usos específicos del primer subsector de Manufacturero.
IRONST	Consumo específico de lingotes de hierro en trabajos no eléctricos de la fundición del acero.		Toneladas de lingotes de hierros por toneladas de acero producido no eléctricamente; se asume que el residuo es chatarra.
EICOK	Entrada de coque en los hornos de fundición por unidad de lingotes de hierro producido.	kg/t	
CFEED(1) CFEED(2)	Constantes usadas para proyectar los requerimientos de materia ver prima de la industria petroquímica.	ver comentario	Primera constante expresada en millones de toneladas de materia prima; la segunda en toneladas de materia prima por miles UM del valor agregado por el primer subsector de Manufacturero. Para la búsqueda de la consistencia, debe ser considerada la industria petroquímica desde el punto de vista del consumo de energía y del valor agregado en el primer subsector de Manufacturero.

æ.
þ
ä
e ca
e de
-
or
Sp
Ï
a del transpor
5
Ō
g
ğ
nt
le ent
ğ
S
Ť
ਬ
ari
S VE
as
\overline{a}
n de las variables
ú
lefinición
Ξ
lefin
ф
a y d
ta
is
$\overline{}$
la 4.
둼
Tabla
Η

TRASPORTE:

TRANSPORTE DE CARGA: (ver hojas 'FrTrp-D" y 'Defs"	TRANSPORTE DE CARGA: (ver hojas "FrTrp-D" y "Defs" en el MAED_D.xls)	
CTKFT(I)	Coeficientes de términos variables en la ecuación usada para la proyección del transporte de carga total. I = 1, 2, 3,,NS	NS = NSAGR + NSCON + NSMIN + NSMAN + NSSER + 1 tkm = ton-kilómetro
CKFT	Término constante en la ecuación usada para la proyección del 10º tkm transporte de carga total.	
SFTM(I)	Porcentaje del modo de Transporte I en la demanda total para el % transporte de carga. I=1,,NMFT	La suma de los porcentajes debe ser 100. Por lo tanto, los datos de entrada son suministrados solo para los primeros modos de Transporte (NMFT-1), mientras que el porcentaje del último modo es calculado por el programa como el remanente.
EIFTM(I)	Intensidad energética (consumo de energía específico) del modo de Transporte de carga I. I=1,,NMFT comentario	Medida en las unidades físicas indicadas por el usuario en la hoja "Defs". El usuario puede elegir solo el numerador de la unidad de intensidad energética, por ejemplo: litro de combustible motor, kgce de carbón etc. El denominador (100 tkm) está establecido en las ecuaciones del modelo.
FCFT(I)	Código de combustible del modo I de Transporte de carga. I=1,,NMFT	Códigos numéricos desde 1 hasta 8, cómo se definió en las celdas K38 ÷ K45 de la hoja "Defs". El mismo código numérico puede aplicarse para varios modos de transporte de carga.
CFFT(I)	Factor de conversión de la unidad física definida por el usuario para el consumo de combustible específico a kWh/100tkm de un modo de Transporte de carga usando el combustible I. I=1,,NTF	Especificado por el usuario en las celdas M38 ÷ M45 de la hoja "Defs".

Tabla 4.1k Lista y definición de las variables de entrada del transporte urbano de pasajeros.

TRANSPORTE URBANO DE PASAJEROS:

(ver hoja de cálculo "PassIntra-D" y "Defs" del MAED D.xls)

(vei noja de caicu	(vel hola de calculo fassinha-D y Dels del maed D.Ms)		
DO	Distancia promedio viajada en zonas urbanas por persona por día.	km/pers./día	Se aplica solo a los habitantes de grandes ciudades.
LFUTM(I)	Factor de carga promedio del modo de Transporte urbana de pasajeros I. I=1,,NMUT	persona/modo de Transporte	
SUTM(I)	Porcentaje del modo de Transporte I en la demanda total para el transporte urbana de pasajeros. I=1,,NMUT	%	La suma de cada parte debe ser 100. Por lo tanto, los datos de entrada solo son suministrados para los primeros modos de Transporte (NMUT-1), mientras que el porcentaje del último es
EIUTM(I)	Intensidad energética (consumo de energía específico) del modo de Transporte I en viajes urbano. I=1,NMUT	Ver comentario	calculado por el programa como el remanente. Medida en unidades fisicas indicadas por el usuario en la hoja "Defs". El usuario puede seleccionar solo el numerador de la unidad de intensidad energética, por ejemplo: litro de combustible motor, etc. El denominador (100 km) está definido por las
FCUT(I)	Código del combustible del modo de Transporte urbano I. I=1,,NMUT		ecuaciones del modelo. Códigos numéricos desde 1 hasta 8, definidos en las celdas K38 + K45 de la hoja "Defs". El mismo código puede aplicarse para varios modos de Transporte urbana. El carbón no es un combustible válido para el transporte urbana.
CFPT(I)	Factor de conversión de la unidad física definida por el usuario para el consumo específico de combustible a kWh/pkm de un modo de Transporte de pasajero usando el combustible I. I=1,,NTF		Especificado por el usuario en las celdas O38 ÷ O45 de la hoja "Defs".

Tabla 4.1 l Lista y definición de las variables de entrada del transporte de pasajeros entre ciudades. TRANSPORTE DE PASAJEROS ENTRE CIUDADES: (ver hojas "PassInter-D" y "Defs" del MAED_D.xls)

(vei iiojas i assi.	(ver ho) as a fassiliter-D y Deta (ver ho) as $D = D = D = D$		
DI	Distancia promedio viajada entre ciudades por pasajero por año.	km/pers./año	Aplicado a la población total.
CO DIC	Inverso de la razón de la tenencia de autos Distancia promedio conducida entre ciudades por carro por año.	personas/auto km/auto/año	Relación entre población y el número total de autos. Nota: la suposición sobre DIC, junto con el promedio de la distancia recorrida en el transporte en zonas urbanas así como lo
			que se tuvo en cuenta en los supuestosde PO, POPLC, DU, porcentaje de autos en el transporte urbana de pasajeros y el factor de carga de autos en viajes urbanos promedio, debe coincidir con la distancia promedio total conducida por auto por año. Para aviones la unidad es "% de asientos ocupados".
LFITM(I)	Factor de carga promedio del modo de Transporte entre ciudades I. I=1,NMIT LFITM(I) = LFCIT para I = 2, 3, 4, 5 y 6 (autos)	personas/modo de transporte (vea comentario)	Se asume que los diferentes tipos de autos tienen el mismo factor de carga promedio (LFCIT) en el viaje entre ciudades.
SITC(I)	Porcentaje del tipo de auto I en el transporte de pasajeros entre ciudades por auto. I=1,,NCTIT	%	La suma de cada parte debe ser 100. Por lo tanto, los datos de entrada son suministrados solo para los primeros tipos de autos (NCTIT-1), mientras que para el último es calculada por el programa como el remanente.
SITM(I)	Porcentaje del modo de transporte público I en el transporte de pasajeros entre ciudades realizada por modos públicos (excluyendo el transporte en autos). I=1,,NMIT-NCTIT	%	La suma de esos porcentajes debe ser 100. Por lo tanto, los datos de entrada son suministrados solo para los primeros modos de Transporte (NMIT–NCTIT-1), mientras que para el último es calculada por el programa como el remanente.
EIITM(I)	Intensidad energética (consumo específico de energía) del modo de Transporte I en el transporte entre ciudades. I=1,,NMIT	Ver comentario	Medida en unidades físicas definidas por el usuario en la hoja Defs. El usuario puedelegir solo el numerador de la unidad de intensidad energética, por ejemplo: litro de combustible motor, kgce del carbón, etc. El denominador (1000 asiento-km para aviones y 100 km para otros modos) es definido en las ecuaciones del modelo

Tabla 4.11 Lista y definición de las variables de entrada de las Transporte de pasaieros entre ciudades (continuación)

ייטור וויו אוסא ו	tagna in the first of a continue of the first of the firs	
FCIT(I)	Código de combustible del modo de Transporte entre ciudades I. I=1,, NMIT	Códigos numéricos desde 1 hasta 8, definidos en las celdas K38 ÷ K45 de la hoja "Defs". El mismo código puede ser aplicado a varios modos de Transporte entre ciudades.
CMFMIS(1) CMFMIS(2	Constantes usadas para proyectar la demanda total de Ver combustible motor para el transporte internacional y militar (misceláneas).	Primera constante expresada en la unidad de energía definida por el usuario en la celda E50 de la hoja "Defs"; la segunda en kWh/UM del PIB.

Tabla 4.1m Lista y definición de las variables de entrada del sector Residencial Urbano **SECTOR RESIDENCIAL:**

RESIDENCIAL URBANO:	URBANO:		
(ver hoja "US_L	(ver hoja "US_HH_Ur-D" del MAED_D.xls)		
UDWSH	Fracción de viviendas urbanas en áreas donde se requiere	%	Relativo al número total de viviendas urbanas.
	calefacción.		
UDD	Grados-días para las viviendas urbanas.	grados-días	La definición utilizada aquí es: (a) basada en grados Celsius con
			un umbral de 18 °C; (b) basado en la temperatura promedio mensual; y (c) promedio por regiones (ponderado por la
1)MCII		/0	población urbana) que requieren calefacción.
UDW(I)	Fraccion de Viviendas urbanas por upos. 1=1,, NOD1	0%	Relativo al numero total de viviendas urbanas situadas en las áreas donde se requiere calefacción.
			La suma de esas fracciones debe ser 100. Por lo tanto, se suministran datos de entrada solo para los primeros (NUDT-1)
			tipos de viviendas, mientras que el porcentaje del último tipo es calculado por el programa como el remanente.
UDWS(I	Tamaño promedio de las viviendas urbanas por tipo. I=1,, NUDT	m²/vivienda	Medido en términos de área de piso.
UAREAH(I)	Fracción del área de piso que actualmente tiene calefacción en	%	Relativo al tamaño promedio de las viviendas UDWS(I).
	las zonas urbanas, por tipo de vivienda. I=1,, NUDT		
UK(I)	Tasa de pérdida de calor específico por tipo de vivienda	Ver comentario	$Wh / m^2 / grado Celsius / hora$
	urbana. I=1,, NUDT	è	
UDWAC(I)	Porcentaje de viviendas urbanas con aire acondicionado, por tino de vivienda 1=1 NIIDT	%	Relativo al número total de viviendas urbanas del respectivo fino
UACDW(I)	ecífico por tipo de vivienda	kWh/vivienda/año	
CKUDW	Consumo de energía específico para cocción en viviendas	kWh/vivienda/año	
WHMUII	Dorcentaje de viviendas urbanas con instalación de agua	%	Relativo al mímero total de viviendas urhanas
	caliente.)	
UHWCAP	Consumo de energía específico para el calentamiento de agua	kWh/pers./año	
	por personas en las viviendas urbanas (energía útil).		

$\widehat{}$	
ĺÓ	
ac	١.
nn	ŀ
nti	ľ
20	L
extstyle e	
n	
.pg	
3	
<u> </u>	
inc	ľ
lel sector Residencial urban	
es	
\simeq	ľ
to	١
ec	ľ
i S	
a de	
tra	
en	
es de entrada	
SS	
Ř	
ria	
Va	١,
e las variable	ŀ
e l	
y definición de las variables de e	
<u>1</u>	ľ
ιic	ŀ
ĬĮ.	
qe	
ı y	i
iste	ŀ
I	l
1m	ŀ
4	١
la	l
aþ	ľ

ELAPUDW	ELAPUDW Consumo de electricidad específico (energía final) por viviendas kWh/vivienda/año Referido a las	kWh/vivienda/año	Referido a las viviendas en localidades urbanas electrificadas.
			(vea variable ELPU).
ELPU	Penetración de la electricidad para equipos domésticos en las viviendas urbanas	%	Esta variable puede ser interpretada como la fracción del total de viviendas urbanas que están electrificadas (es decir, tasa de electrificación de residencias urbanas)
FFLTUDW	Consumo específico de combustibles fósiles (energía final) por vivienda urbana para iluminación y equipos domésticos no eléctricos (otros usos finales diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado).	kWh/vivienda/año	Referido a las viviendas en localidades urbanas no electrificadas (ver variable ELPU) y para usos finales como: iluminación con combustibles fósiles, gas natural para refrigeradores, etc.
TFP.UH.SH MBP.UH.SH ELP.UH.SH HPP.UH.SH DHP.UH.SH SSP.UH.SH FFP.UH.SH	Penetración de varias formas de energía para calefacción (SH) en las viviendas urbanas (UH): Formas de energía: (1) Combustibles tradicionales (TF) (2) Biomasa moderna (MB) (3) Electricidad, convencional (EL) (4) Bombas térmicas (HP) (5) Calefacción centralizada (DH) (6) Solar térmica (SS) (7) Combustibles fósiles (FF)	%	La contribución de las bombas térmicas a la calefacción con electricidad (HPP.UH.SH) es una fracción de la penetración de la electricidad en el mercado respectivo. La suma de las penetraciones de las formas de energía (excluyendo las bombas térmicas) debe ser 100. Por lo tanto, se suministran datos de entrada solo para las primeras (n-1) formas de energía, mientras que la penetración para la última (combustibles fósiles) es calculada por el programa como el remanente.
TFE.UH.SH MBE.UH.SH FFE.UH.SH	Eficiencia del uso de varios combustibles, relativo al uso de electricidad, para calefacción (SH) en viviendas urbanas (UH): Combustibles: (1) Combustibles tradicionales (TF) (2) Biomasa moderna (MB) (3) Combustibles fósiles (FF)	%	
НРЕ.UH.SH	Coeficiente de rendimiento (COP) de las bombas térmicas (eléctricas) para la calefacción (SH) en viviendas urbanas (UH).	razón (ver comentario)	Energía térmica extraída /entrada de energía eléctrica.
FDS.UH.SH	Porcentaje aproximado de la demanda calefacción (SH) en viviendas urbanas (UH) que puede ser suministrada con instalaciones solares.	%	El resto de la demanda tendrá que ser suministrada por un sistema de respaldo.

Tabla 4.1m Lista y definición de las variables de entrada del sector Residencial urbano (Continuación)

La contribución de las bombas térmicas al calentamiento del agua con electricidad (HPP.UH.HW) es una fracción de la penetración de la electricidad en el mercado respectivo. La suma de las penetraciones de las formas de energía (excluyendo las bombas térmicas) debe ser 100. Por lo tanto, los datos de entrada son suministrados solo para las primeras (n-1) formas de energía, mientras que la penetración para la última (combustibles fósiles) es calculada por el programa como el remanente.		Energía térmica extraída / entrada de energía eléctrica.	El resto de la demanda tendrá que ser suministrada por un sistema de respaldo.	La suma de las penetraciones de las formas de energía debe ser 100. Por lo tanto, los datos de entrada son suministrados solo para las primeras (n-1) formas de energía, mientras que la penetración para la última (combustibles fósiles) es calculada por el programa como el remanente.
La contribu con electride la electride la electrica la suma (excluyend datos de electridormas de (combustibu remanente.			El res de res	La su 100. 1 las pr para 1 como
%	%	Razón (Ver comentario)	%	%
Penetración de varias formas de energía para el calentamiento de agua (HW) en viviendas urbanas (UH): Formas de energía (1) Combustibles tradicionales (TF) (2) Biomasa moderna (MB) (3) Electricidad, convencional (EL) (4) Bombas térmicas (HP) (5) Calefacción distribuida (DH) (6) Solar térmica (SS) (7) Combustibles fósiles (FF)	Eficiencia del uso de varios combustibles, relativo al uso de electricidad, para calentamiento de agua (HW) en viviendas urbanas (UH): Combustibles: (1) Combustibles tradicionales (TF) (2) Biomasa moderna (MB) (3) Combustibles fósiles (FF)	Coeficiente de rendimiento (COP) de las bombas térmicas (eléctricas) para calentamiento de agua (HW) en viviendas urbanas	Porcentaje aproximado de la demanda de calentamiento de agua (HW) en viviendas urbanas (UH) que puede ser suministrada con instalaciones solares.	Penetración de varias formas de energía en la cocción (CK) en viviendas urbanas (UH): Formas de energía: (1) Combustibles tradicionales (TF) (2) Biomasa moderna (MB) (3) Electricidad, convencional (EL) (4) Solar térmica (SS) (5) Combustibles fósiles (FF)
TFP.UH.HW MBP.UH.HW ELP.UH.HW HPP.UH.HW DHP.UH.HW SSP.UH.HW	TFE.UH.HW MBE.UH.HW FFE.UH.HW	НРЕ. U.Н.НW	FDS.UH.HW	TFP.UH.CK MBP.UH.CK ELP.UH.CK SSP.UH.CK FFP.UH.CK

El resto de la demanda tendrá que ser suministrada por un Se asume que el resto de la demanda de aire acondicionado es suministrada con equipos no eléctricos (combustible fósil) Energía térmica extraída / entrada de energía eléctrica. Energía térmica extraída / entrada de energía. sistema de respaldo. Tabla 4.1m Lista y definición de las variables de entrada del sector Residencial urbano (Continuación) [FFP.UH.AC]. comentario) comentario) razón (ver razón (Ver % % % Porcentaje de la demanda de aire acondicionado (AC) de viviendas urbanas (UH) que puede ser suministrada con Coeficiente de rendimiento (COP) del aire acondicionado eléctrico Porcentaje aproximado de la demanda de cocción (CK) en Coeficiente de rendimiento (COP) de aire acondicionado no Eficiencia del uso de varios combustibles, relativo al uso de viviendas urbanas (UH) que puede ser suministrada con electricidad, para cocción (CK) en viviendas urbanas (UH): Combustibles: (1) Combustibles tradicionales (TF) (2) Biomasa moderna (MB)(3) Combustibles fósiles (FF) eléctrico (AC) en viviendas urbanas (UH). (AC) en viviendas urbanas (UH). instalaciones solares. electricidad TFE.UH.CK MBE.UH.CK ELE.UH.AC FDS.UH.CK ELP.UH.AC FFE.UH.CK FFE. UH. AC

ıra
\mathbb{Z}
7
.3
ĭ
g
. <u>:</u>
ě
\simeq
or
ct
ĕ
lel s
Ę
ಜ
entrada
ľa
nt
O
de e1
S
<u>6</u>
4
13
5
>
as
de la
ŏ
П
10
<u>2</u>
Ξ.
ef
ŏ
a v d
ta
IS.
\Box
.ln
$\overline{}$
abla 4
<u>-</u>
3
Ë

KUKAL HOUSEHOLDS: (ver hoja de cálculo "US_HI	KUKAL HOUSEHOLDS: (ver hoja de cálculo "US_HH_Rr-D" del MAED_D.xls)		
RDWSH	Fracción de viviendas rurales en zonas que requieren	%	Relativo al número total de viviendas rurales.
RDD	Grados-días para viviendas rurales.	Grado-día	La definición utilizada aquí es: (a) basada en grados Celsius con un umbral de 18 °C; (b) basado en la temperatura promedio mensual; y (c) promedio por regiones (ponderado por la población rural) que requieren calefacción.
RDW(I)	Fracción de viviendas rurales por tipo. I=1,,NRDT	%	Relativo al número total de viviendas rurales situadas en las áreas donde se requiere calefacción. La suma de esas fracciones debe ser 100. Por lo tanto, se suministran datos de entrada solo para los primeros (NUDT-1) tipos de viviendas, mientras que el porcentaje del último tipo es
RDWS(I)	Tamaño promedio de las viviendas rurales por tipo. I=1NRDT	m²/vivienda	calculado por el programa como el remanente. Medido en términos de área de piso.
RAREAH(I)	Fracción de área de piso que es calentada en las viviendas unrales nor tino de vivienda	%	Relativo al tamaño promedio de la vivienda RDWS(I).
RK(I)	cífico por tipo de vivienda.	Ver comentario	Wh / m² / grados Celcius / hora
RDWAC(I)	Porcentaje de viviendas rurales con aire acondicionado, por tino de vivienda 1=1 NRDT	%	Relativo al número total de viviendas rurales del tipo respectivo.
RACDW(I)	pecífico por tipo de vivienda	kWh/vivienda/año	
CKRDW	específico para cocción en viviendas energía útil).	kWh/vivienda/año	
RDWHW	Porcentaje de viviendas rurales con instalación de agua caliente.	%	Relativo al número total de viviendas rurales.
RHWCAP	o de energía específico para calentamiento de agua por en viviendas rurales (energía útil).	kWh/persona/año	
ELAPRDW	energía final) por éctricos (usos finales ento de agua, aire	kWh/vivienda/año	Referido a las viviendas en localidades rurales electrificadas (ver variable ELPR).
	accitationact).		

ción)	
tinua	
Con	
\leq	
ıral	
Ξ	
al	
nci	
qe	
eSi.	۱
\mathbb{Z}	
or	
ij	
se	
del	
la	
g	
nt	
0	
qe	
es	
bl	
ïа	
Va]	
S	
15	
qe	
'n	
<u>.</u>	
n.	
efi	
ģ	
a V	
St	ŀ
Γ	١
\ln	l
4	l
ġ,	١
ab]	١
Ξ	l
	L

ELPR	SLPR Penetración de la electricidad para equipos domésticos en % Esta variable J	%	Esta variable puede ser interpretada como la fracción del número
	viviendas rurales.		total de viviendas rurales que están electrificadas (es decir, la tasa de electrificación de viviendas rurales).
FFLTRDW	Consumo de combustible fósil específico (energía final) por vivienda rural para iluminación y equipos domésticos no eléctricos (usos finales diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado).	kWh/vivienda/año	Referido a las viviendas en localidades rurales no electrificadas (vea variable ELPR) y a usos finales como: iluminación con combustibles fósiles, refrigeradores usando gas natural, etc.
TFP.RH.SH MBP.RH.SH ELP.RH.SH HPP.RH.SH DHP.RH.SH SSP.RH.SH FFP.RH.SH	Penetración de varias formas de energía dentro de la calefacción (SH) en viviendas rurales (RH): Formas de energías: (1) Combustibles tradicionales (TF) (2) Biomasa Moderna (MB) (3) Electricidad, convencional (EL) (4) Calefacción centralizada (HP) (5) Calor directo (DH) (6) Solar térmica (SS) (7) Combustibles fósiles (FF)	%	La contribución de las bombas térmicas para calefacción con electricidad (HPP.RH.SH) es una fracción de la penetración de la electricidad en el mercado respectivo. La suma de las penetraciones de las formas de energía (excluyendo las bombas térmicas) debe ser 100. Por lo tanto, se suministran datos de entrada solo para las primeras (n-1) formas de energía, mientras que la penetración para la última (combustibles fósiles) es calculada por el programa como el remanente.
TFE.RH.SH MBE.RH.SH FFE.RH.SH	Eficiencia del uso de varios combustibles, relativo al uso de electricidad, para calefacción (SH) en viviendas rurales (RH): Combustibles: (1) Combustibles tradicionales (TF) (2) Biomasa moderna (MB) (3) Combustibles fósiles (FF)	%	
НРЕ.RH.SH	Coeficiente de rendimiento (COP) de bombas térmicas (eléctricas) para la calefacción (SH) en viviendas rurales (RH).	Razón (vea comentario)	Energía térmica extraída / entrada de energía eléctrica.
FDS.RH.SH	Porcentaje aproximado de la demanda de calefacción (SH) en viviendas rurales (RH) que puede ser suministrada con instalaciones solares.	%	El resto de la demanda tendrá que ser suministrada por un sistema de respaldo.

Tabla 4.1n Lista y definición de las variables de entrada del sector Residencial Rural (Continuación)

Se asume que el resto de la demanda de aire acondicionado es suministrada con equipos no eléctricos (combustible fósil) El resto de la demanda tendrá que ser suministrada por un sistema de respaldo. Energía térmica extraída / entrada de energía eléctrica. Energía térmica extraída / entrada de energía. Tabla 4.1n Lista y definición de las variables de entrada del sector Residencial Rural (Continuación) [FFP.RH.AC]. razón (Ver comentario) razón (ver comentario) % % Coeficiente de rendimiento (COP) del aire acondicionado eléctrico Coeficiente de rendimiento (COP) del aire acondicionado no Porcentaje de la demanda de aire acondicionado (AC) de viviendas rurales (RH) que puede ser suministrado con Porcentaje aproximado de la demanda para cocción (CK) en viviendas rurales (RH) que puede ser suministrado con eléctrico (AC) en viviendas rurales (RH). (AC) en viviendas rurales (RH). instalaciones solares. electricidad. FDS.RH.CK ELP.RH.AC ELE.RH.AC FFE.RH.AC

Tabla 4.10 Lista y definición de las variables de entrada del sector Servicios SECTOR SERVICIO:

PLSER AREAL ARSH Calet AREAH Porc calet SSHR Rean	Porcentaje del sector Servicios en la fuerza laboral activa total.	%	
J H			
н	Área de piso promedio por empleado en el sector Servicios.	m²/empleado	
н	Porcentaje del área de piso del sector Servicios que requiere calefacción.	%	Relativo al área de piso total en el sector Servicios.
	Porcentaje del área de piso del sector Servicios que requiere calefacción que tiene calefacción.	%	Relativo al área de piso en el sector Servicios que requiere calefacción.
	Requerimientos específicos de calefacción de las edificaciones del sector Servicios (energía útil).	kWh/m²/año	
AREAAC Porc	Porcentaje del área de piso del sector Servicios con aire acondicionado.	%	Relativo al área total de piso en el sector Servicios.
SACR Requ	Requerimientos específicos para refrigeración en el sector Servicios (energía útil).	kWh/m²/año	
EI.MF.SE(I) Inter	Intensidad energética del uso de combustible motor en el subsector I del sector Servicios (energía final). I=1,,NSSER	kWh/UM	
EI.ELS.SE(I) Inter	Intensidad energética del uso específico de electricidad en el subsector I del sector Servicios (energía final). I=1,,NSSER	kWh/UM	
EI.OTU.SE(I) Inter	Intensidad energética de otros usos térmicos (excepto calefacción) en el subsector I del sector Servicios (energía útil). I=1,NSSER	kWh/UM	
TFP.SER.SH MBP.SER.SH en el ELP.SER.SH <i>Forn</i>	Penetración de varias formas de energía en la calefacción (SH) en el sector Servicios: Formas de energía: (1) Combustibles tradicionales (TF)	%	La contribución de las bombas térmicas para calefacción con electricidad (HPP.SER.SH) es una fracción de la penetración de la electricidad en el mercado respectivo.
	 (2) Biomasa moderna (MB) (3) Electricidad, convencional (EL) (4) Bombas térmicas (HP) (5) Calefacción centralizada (DH) (6) Solar térmica (SS) (7) Combustibles fósiles (FF) 		La suma de las penetraciones de las formas de energía (excluyendo las bombas térmicas) debe ser 100. Por lo tanto, se suministran datos de entrada solo para las primeras (n-1) formas de energía, mientras que la penetración para la última (combustibles fósiles) es calculada por el programa como el remanente.

1	$\widehat{\Box}$
	⊇
·	\bar{z}
	g
	☲
•	3
	5
(ر
`	$\overline{}$
•	∺
•	≓
	Ę
7	2
•	_
	ೞ
	ဗ္ဗ
	Š
-	Ð
-	ŏ
_	ಡ
	ಜ
	☱
	등
	ŏ
-	Ö
	3
-	ž
-	ਕ
•	Ξ
	⋛
	\mathbf{z}
-	
_	ച്ച
	ر ر
	5
•	\overline{z}
•	Ξ
خ	Ķ
-	ಕ
	>
	ಡ
	S
	5
	0
7	⁻:
7	4
_	<u> </u>
-	g
E	_

TFP.SER.OTU MBP.SER.OTU ELP.SER.OTU	R.OTU Penetración de varias formas de energías dentro de otros usos La La La Remicos (OTU) en el sector Servicios (excepto calefacción): 100 R.OTU Formas de energía: (1) Combustibles tradicionales (TF)	%	La suma de las penetraciones de las formas de energía debe ser 100. Por lo tanto, los datos de entrada son suministrados solo para las primeras (n-1) formas de energía mientras que la penetración
DHP.SER.OTU SSP.SER.OTU FFP.SER.OTU	(3) Electricidad, convencional (EL) (4) Calefacción centralizada (DH) (5) Solar térmica (SS) (6) Combustibles fósiles (FF)		para la última (combustibles fósiles) es calculada por el programa como el remanente.
TFE.SER.TU MBE.SER.TU FFE.SER.TU	Eficiencia del uso de varios combustibles, relativo al uso de electricidad, para usos térmicos (TU) en el sector Servicios: Combustibles: (1) Combustibles tradicionales (TF) (2) Biomasa moderna (MB) (3) Combustibles fósiles (FF)	%	Los usos térmicos (TU) incluyen: calefacción (SH) y otros usos térmicos (OTU).
HPE.SER.SH	Coeficiente de rendimiento (COP) de las bombas térmicas (eléctricas) en la calefacción (SH) en el sector Servicios.	relación (ver comentario)	Energía térmica extraída / entrada de energía eléctrica.
PLB FDS.SER.TU	Porcentaje de edificaciones de poca altura en el área de piso total de sector Servicios. Porcentaje aproximado de la demanda de usos térmicos (TU)	% %	Generalmente, se consideran edificaciones de poca altura aquellos que tienen hasta 3 pisos. Los usos térmicos (TU) incluyen: calefacción (SH) y otros usos
	en el sector Servicios que puede ser suministrada con instalaciones solares.		térmicos (OTU). El resto de la demanda tendrá que ser suministrada con un sistema de respaldo.
ELP.SER.AC	Porcentaje de la demanda de aires acondicionados (AC) que puede ser suministrada con electricidad.	%	Se asume que el resto de la demanda para aire acondicionado es suministrada por equipos no eléctricos (combustible fósil) [FFP.SER.AC].
ELE.SER.AC	Coeficiente de rendimiento (COP) del aire acondicionado eléctrico en el sector Servicios.	relación (ver comentario)	Energía térmica extraída / entrada de la energía eléctrica.
FFE.SER.AC	Coeficiente de rendimiento (COP) de aire acondicionado no eléctrico en el sector Servicios.	relación (ver comentario)	Energía térmica extraída / entrada de energía.

Tabla 4.2a Lista y definición de las variables calculadas de Demografía (Nota: Las variables que son usadas para los cálculos en la sección 5 pero que no se muestran en las tablas de las hojas de EXCEL del MAED_D, han sido subrayadas para identificarlas fácilmente).

VARIABLE	UNIDAD	EXPLICACIÓN
INCR	años	Período de tiempo entre el actual y los últimos años previos al
		modelo
DEMOGRAFÍA:		
(ver hoja de cálcul		_
UHH	10 ⁶ viviendas	Número de viviendas urbanas
PRUR	%	Porcentaje de la población rural
RHH	10 ⁶ viviendas	Número de viviendas rurales
ALF	10 ⁶ personas	Fuerza de trabajo activa
POLC	10 ⁶ personas	Población total que habita en ciudades grandes (donde es posible el transporte masivo).

Tabla 4.2b Lista y definición de la Formación del PIB

FORMACIÓN DEL PIB:		
(ver hoja GDP-D d		
YAGR	10 ⁹ UM	Contribución al PIB, sector Agricultura.
YAG(I)	10 ⁹ UM	Contribución al PIB, Subsector I del sector Agricultura. I = 1,,NSAGR
YCON	10 ⁹ UM	Contribución del PIB, Sector Construcción.
YCO(I)	10 ⁹ UM	Contribución al PIB, subsector I del sector Construcción. I = 1,,NSCON
YMIN	10 ⁹ UM	Contribución al PIB, sector Minería.
YMI(I)	10 ⁹ UM	Contribución al PIB, subsector I del sector Minería. I = 1,,NSMIN
YMAN	10 ⁹ UM	Contribución al PIB, sector Manufacturero.
YMA(I)	10 ⁹ UM	Contribución al PIB, subsector I del sector Manufacturero. I = 1,,NSMAN
YSER	10 ⁹ UM	Contribución del PIB, sector Servicios.
YSE(I)	10 ⁹ UM	Contribución al PIB, subsector I del sector Servicios. I=1,,NSSER
YEN	$10^9 \mathrm{UM}$	Contribución al PIB, sector Energía (electricidad/gas/agua).
Y.CAP	UM/cap	PIB total per cápita.
YAGR.CAP	UM/cap	Contribución al PIB per cápita, Sector Agricultura.
YCON.CAP	UM/cap	Contribución al PIB per cápita, sector Construcción.
YMIN.CAP	UM/cap	Contribución al PIB per cápita, Sector Minería.
YMAN.CAP	UM/cap	Contribución al PIB per cápita, sector Manufacturero
YSER.CAP	UM/cap	Contribución al PIB per cápita, sector Servicios.

Tabla 4.2b Lista y definición de la formación del PIB (Continuación)

		on de la formación del PIB (Continuación)
YEN.CAP	UM/cap	Contribución al PIB per cápita, sector Energía.
W. CD. CD	0./	
YAGR.GR	%	Tasa de crecimiento del PIB, sector Agricultura.
YAG.GR(I)	%	Tasa de crecimiento del PIB, subsector I del sector Agricultura.
1710.01(1)	70	I=1,,NSAGR
YCON.GR	%	Tasa de crecimiento del PIB, sector Construcción.
WGO GD(I)	0./	
YCO.GR(I)	%	Tasa de crecimiento del PIB, subsector I del sector Construcción. I=1,,NSCON
YMIN.GR	%	Tasa de crecimiento del PIB, sector Minería.
Tivili (, Git	, •	1404 40 4100111101110 401 1 12, 500001 1 211101141
YMI.GR(I)	%	Tasa de crecimiento del PIB, subsector I del sector Minería.
AD CANAGE	0.4	I=1,,NSMIN
YMAN.GR	%	Tasa de crecimiento del PIB, sector Manufacturero.
YMA.GR(I)	%	Tasa de crecimiento del PIB, subsector I del sector Manufacturero.
11111111111(1)	, •	I=1,,NSMAN
YSER.GR	%	Tasa de crecimiento del PIB, sector Servicios.
VCE CD(I)	0./	
YSE.GR(I)	%	Tasa de crecimiento del PIB, subsector I del sector Servicios. I=1,,NSSER
YEN.GR	%	Tasa de crecimiento del PIB, sector Energía.
		·
Y.GR	%	Tasa de crecimiento del PIB.
Y.CAP.GR	%	Taca da aragimiento del DID nor gónito
I.CAP.GR	70	Tasa de crecimiento del PIB per cápita.

Tabla 4.2c. Lista y definición de las variables calculadas de la intensidad energética en la

Industria. INDUSTRIA:		
INTENSIDADES ENERGÉTICAS EN LA INDUSTRIA (AGRICULTURA, CONSTRUCCIÓN, MINERÍA Y MANUFACTURERO): (ver hoja "EnInt-D" del MAED_D.xls)		
EI.MF.AGR	kWh/UM	Consumo específico de combustible motor por unidad monetaria del valor agregado (intensidad energética) del sector Agricultura.
EI.MF.CON	kWh/UM	Consumo específico de combustible motor por unidad monetaria del valor agregado (intensidad energética) del sector Construcción.
EI.MF.MIN	kWh/UM	Consumo específico de combustible motor por unidad monetaria del valor agregado (intensidad energética) del sector Minería.
EI.MF.MAN	kWh/UM	Consumo específico de combustible motor por unidad monetaria del valor agregado (intensidad energética) del sector Manufacturero.
EI.ELS.AGR	kWh/UM	Consumo específico de electricidad (para usos específicos) por unidad monetaria del valor agregado (intensidad energética) del sector
EI.ELS.CON	kWh/UM	Agricultura. Consumo específico de electricidad (para usos específicos) por unidad monetaria del valor agregado (intensidad energética) del sector
EI.ELS.MIN	kWh/UM	Construcción. Consumo específico de electricidad (para usos específicos) por unidad monetaria del valor agregado (intensidad energética) del sector Minería.
EI.ELS.MAN	kWh/UM	Consumo específico de electricidad (para usos específicos) por unidad monetaria del valor agregado (intensidad energética) del sector
EI.TU.AGR	kWh/UM	Manufacturero. Demanda específica de energía útil para usos térmicos por unidad monetaria del valor agregado (intensidad energética) del sector
EI.TU.CON	kWh/UM	Agricultura. Demanda específica de energía útil para usos térmicos por unidad monetaria del valor agregado (intensidad energética) del sector
EI.TU.MIN	kWh/UM	Construcción. Demanda específica de energía útil para usos térmicos por unidad monetaria del valor agregado (intensidad energética) del sector Minería.
EI.TU.MAN	kWh/UM	Demanda específica de energía útil para usos térmicos por unidad monetaria del valor agregado (intensidad energética) del sector

Manufacturero.

Tabla 4.2d Lista y definición de las variables calculadas de la demanda de energía útil en la Industria (Agricultura, Construcción, Minería y Manufacturero)

Industria (Agricultura, Construcción, Minería y Manufacturero)				
DEMANDA DE ENERGÍA ÚTIL EN LA INDUSTRIA (AGRICULTURA,				
CONSTRUCCIÓ	N, MINERÍ	A Y MANUFACTURERO):		
(ver hoja "UsEne-	D" del MAEI	O_D.xls)		
US.MF.AGR	GWa	Demanda de energía útil para combustible motor, sector Agricultura.		
US.MF.AG(I)	GWa	Demanda de energía útil para combustible motor, subsector I del		
		sector Agricultura. I=1,,NSAGR		
US.MF.CON	GWa	Demanda de energía útil para combustible motor, sector Construcción.		
US.MF.CO(I)	GWa	Demanda de energía útil para combustible motor, Subsector I del		
HC ME MD I	CW	sector Construcción. I=1,,NSCON		
US.MF.MIN	GWa	Demanda de energía útil para combustible motor, sector Minería.		
LIC ME MI(I)	CW-			
US.MF.MI(I)	GWa	Demanda de energía útil para combustible motor, subsector I del sector Minería. I=1,,NSMIN		
US.MF.MAN	GWa	Demanda de energía útil para combustible motor, sector		
US.MIT.MAIN	Gwa	Manufacturero.		
US.MF.MA(I)	GWa	ivialidiacturero.		
OB.WII .WIM(I)	G W a	Demanda de energía útil para combustible motor, subsector I del		
US.MF.IND	GWa	sector Manufacturero. I=1,,NSMAN		
		Demanda de energía útil para combustible motor, sector agregado		
US.ELS.AGR	GWa	Industria.		
		Demanda de energía útil para la electricidad (usos específicos), sector		
US.ELS.AG(I)	GWa	Agricultura.		
		Demanda de energía útil para la electricidad (usos específicos),		
US.ELS.CON	GWa	subsector I del sector Agricultura. I=1,,NSAGR		
		Demanda de energía útil para la electricidad (usos específicos), sector		
US.ELS.CO(I)	GWa	Construcción.		
		Demanda de energía útil para la electricidad (usos específicos),		
US.ELS.MIN	GWa	subsector I del sector Construcción. I=1,,NSCON		
HC FL C M(I)	CW	Demanda de energía útil para la electricidad (usos específicos), sector		
US.ELS.MI(I)	GWa	Minería.		
US.ELS.MAN	GWa	Demanda de energía útil para la electricidad (usos específicos),		
US.ELS.IVIAIN	Gwa	subsector I del sector Minería. I=1,,NSMIN Demanda de energía útil para la electricidad (usos específicos), sector		
US.ELS.MA(I)	GWa	Manufacturero.		
Ob.LLb.MA(1)	Gwa	Demanda de energía útil para la electricidad (usos específicos),		
US.ELS.IND	GWa	subsector I del sector Manufacturero. I= 1,NSMAN		
55.225.1112	5 ,, ,	Demanda de energía útil para la electricidad (usos específicos), sector		
US.TU.AGR	GWa	agregado Industria.		
		Demanda de energía útil para usos térmicos, sector Agricultura.		
US.TU.AG(I)	GWa			
		Demanda de energía útil para usos térmicos, subsector I del sector		
US.TU.CON	GWa	Agricultura. I=1,,NSAGR		
		Demanda de energía útil para usos térmicos, sector Construcción.		
US.TU.CO(I)	GWa			
		Demanda de energía útil para usos térmicos, subsector I del sector		
		Construcción. I=1,,NSCON		

DEMANDA DE ENERGÍA ÚTIL EN LA INDUSTRIA (AGRICULTURA, CONSTRUCCIÓN, **MINERÍA Y MANUFACTURERO):** (ver hoja "UsEne-D" del MAED_D.xls) US.TU.MIN GWa Demanda de energía útil para usos térmicos, sector Minería. US.TU.MI(I) GWa Demanda de energía útil para usos térmicos, subsector I del sector Minería. I=1,....,NSMIN GWa Demanda de energía útil para usos térmicos, sectores Agricultura + US.TU.ACM Construcción + Minería. US.TU.MAN GWa Demanda de energía útil para usos térmicos, sector Manufacturero. US.TU.MA(I) GWa Demanda de energía útil para usos térmicos, subsector I del sector Manufacturero. I=1,....,NSMAN US.TU.IND GWa Demanda de energía útil para usos térmicos, sector agregado Industria.

Tabla 4.2e Lista y definición de las variables calculadas de la demanda de energía útil y final.

PENETRACIÓN DE LOS PORTADORES ENERGÉTICOS EN LA ENERGÍA TÉRMICA ÚTIL EN

PENETRACIÓN DE LOS PORTADORES ENERGÉTICOS EN LA ENERGÍA TÉRMICA ÚTIL EN			
LA AGRICULTURA, CONSTRUCCIÓN Y MINERÍA (ACM):			
(ver tabla 5-4	en la hoja "A	ACMFac-D" del MAED_D.xls)	
TFPACM	%	Penetración promedio ponderada de los combustibles tradicionales en el mercado	
		de demanda de energía térmica útil de ACM	
MBPACM	%	Penetración promedio ponderada de la biomasa moderna en el mercado de la	
		demanda de energía térmica útil de ACM	
ELPACM	%	Penetración promedio ponderada de la electricidad en el mercado de la demanda	
CCDACM	0/	de la energía térmica útil de ACM	
SSPACM	%	Penetración promedio ponderada de sistemas solares en el mercado de demanda de la energía térmica útil de ACM	
FFPACM	%	Penetración promedio ponderada de los combustibles fósiles en el mercado de	
TTTACW	/0	demanda de la energía térmica útil de ACM	
DEMANDA	DE ENERG	TÍA FINAL EN LOS SECTORES AGRICULTURA, CONSTRUCCIÓN Y	
		N_ACM" del MAED_D.xls)	
TFAGR	GWa	Demanda de combustible tradicional, sector Agricultura.	
MBAGR	GWa	Demanda de biomasa moderna, sector Agricultura.	
ELHAGR	GWa	Demanda de electricidad para usos térmicos, sector Agricultura.	
ELAGR	GWa	Demanda de electricidad total, sector Agricultura.	
SSAGR	GWa	Demanda de energía térmica útil reemplazada por sistemas solares térmicos, sector Agricultura.	
FFAGR	GWa	Demanda de combustible fósil, sector Agricultura.	
MFAGR	GWa	Demanda de combustible motor, sector Agricultura.	
FINAGR	GWa	Demanda de energía final, sector Agricultura.	
TFAGR.S	%	Porcentaje de los combustibles tradicionales en la demanda de energía final, sector Agricultura.	
MBAGR.S	%	Porcentaje de la biomasa moderna en la demanda de energía final, sector Agricultura.	
ELAGR.S	%	Porcentaje de la electricidad en la demanda de energía final, sector Agricultura.	
SSAGR.S	%	Porcentaje de solar térmica en la demanda de energía final, sector Agricultura.	
FFAGR.S	%	Porcentaje de combustibles fósiles en la demanda de energía final, sector	
MFAGR.S	%	Agricultura. Porcentaje de combustible motor en la demanda de energía final, sector	
EI.TF.AGR	kWh/MU	Agricultura. Demanda de combustible tradicional por valor agregado (intensidad energética),	
EI.MB.AGR	kWh/MU	sector Agricultura. Demanda de biomasa moderna por valor agregado (intensidad energética), sector Agricultura.	
EI.EL.AGR	kWh/MU	Demanda de electricidad por valor agregado (intensidad energética), sector	
EI.SS.AGR	kWh/MU	Agricultura. Demanda de solar térmica por valor agregado (intensidad energética), sector	
EI.FF.AGR	kWh/MU	Agricultura. Demanda de combustible fósil por valor agregado (intensidad energética), sector Agricultura.	
·		Continú	

Tabla 4.2e Lista y definición de las variables calculadas de la demanda de energía útil y final (Continuación)

final (Conti	nuación)	
EI.F.AGR	kWh/MU	Demanda de combustible motor por valor agregado (intensidad energética),
EI.FIN.AGR	kWh/MU	sector Agricultura. Demanda final de energía por valor agregado (intensidad energética), sector Agricultura.
TFCON	GWa	Demanda de combustible tradicional, sector Construcción.
MBCON	GWa	Demanda de biomasa moderna, sector Construcción.
ELHCON	GWa	Demanda de electricidad para usos térmicos, sector Construcción.
ELCON	GWa	Demanda de electricidad, sector Construcción.
SSCON	GWa	Demanda de energía térmica útil reemplazada por sistemas solares térmicos, sector Construcción.
FFCON	GWa	Demanda de combustible fósil, sector Construcción.
MFCON	GWa	Demanda de combustible motor, sector Construcción.
FINCON	GWa	Demanda de energía final, sector Construcción.
TFCON.S	%	Porcentaje de combustibles tradicionales en la demanda de energía final, sector Construcción.
MBCON.S	%	Porcentaje de la biomasa moderna en la demanda de energía final, sector Construcción.
ELCON.S	%	Porcentaje de electricidad en la demanda de energía final, sector Construcción.
SSCON.S	%	Porcentaje de solar térmica en la demanda de energía final, sector Construcción.
FFCON.S	%	Porcentaje de combustibles fósiles en la demanda de energía final, sector Construcción.
MFCON.S	%	Porcentaje de los combustible motor en la demanda final de energía, sector Construcción.
EI.TF.CON	kWh/MU	Demanda de combustible tradicional por valor agregado (intensidad energética), sector Construcción.
EI.MB.CON	kWh/MU	Demanda de biomasa moderna por valor agregado (intensidad energética), sector Construcción.
EI.EL.CON	kWh/MU	Demanda de electricidad por valor agregado (intensidad energética), sector Construcción.
EI.SS.CON	kWh/MU	Demanda solar térmica por valor agregado (intensidad energética), sector Construcción.
EI.FF.CON	kWh/MU	Demanda de combustible fósil por valor agregado (intensidad energética), sector Construcción.
EI.MF.CON	kWh/MU	Demanda de combustible motor por valor agregado (intensidad energética), sector Construcción.
EI.FIN.CON	kWh/MU	Demanda de energía final por valor agregado (intensidad energética), sector Construcción.
TFMIN	GWa	Demanda de combustible tradicional, sector Minería.
MBMIN	GWa	Demanda de biomasa moderna, sector Minería.

Tabla 4.2e Lista y definición de las variables calculadas de la demanda de energía útil y final (Continuación)

final (Contin		
ELHMIN	GWa	Demanda de electricidad para usos térmicos, sector Minería.
ELMIN	GWa	Demanda de electricidad, sector Minería.
SSMIN	GWa	Demanda de energía térmica útil reemplazada por sistemas solares térmicos, sector Minería.
FFMIN	GWa	Demanda de combustible fósil, sector Minería.
MFMIN	GWa	Demanda de combustible motor, sector Minería.
FINMIN	GWa	Demanda de energía final, sector Minería.
TFMIN.S	%	Porcentaje de combustibles tradicionales en la demanda de energía final, Sector Minería.
MBMIN.S	%	Porcentaje de biomasa moderna en la demanda de energía final, sector Minería.
ELMIN.S	%	Porcentaje de electricidad en la demanda de energía final, sector Minería.
SSMIN.S	%	Porcentaje de solar térmica en la demanda de energía final, sector Minería.
FFMIN.S	%	Porcentaje de combustibles fósiles en la demanda de energía final, sector Minería.
MFMIN.S	%	Porcentaje de combustible motor en la demanda de energía final, sector Minería.
EI.TF.MIN	kWh/MU	Demanda de combustible tradicional por valor agregado (intensidad energética), sector Minería.
EI.MB.MIN	kWh/MU	Demanda de biomasa moderna por valor agregado (intensidad energética), sector Minería.
EI.EL.MIN	kWh/MU	Demanda de electricidad por valor agregado (intensidad energética), sector Minería.
EI.SS.MIN	kWh/MU	Demanda solar térmica por valor agregado (intensidad energética), sector Minería.
EI.FF.MIN	kWh/MU	Demanda de combustible fósil por valor agregado (intensidad energética), sector Minería.
EI.MF.MIN	kWh/MU	Demanda de combustible motor por valor agregado (intensidad energética), sector Minería.
EI.FIN.MIN	kWh/MU	Demanda de energía final por valor agregado (intensidad energética), sector Minería.
TFACM	GWa	Demanda de combustible tradicional, sector Agricultura +Construcción + Minería.
MBACM	GWa	Demanda de biomasa moderna, sector Agricultura + Construcción + Minería.
ELSACM	GWa	Demanda de electricidad para usos específicos, sector Agricultura +Construcción + Minería.

Tabla 4.2e Lista y definición de las variables calculadas de la demanda de energía útil y final (Continuación)

(Continuación)			
ELHACM	GWa	Demanda de electricidad para usos térmicos, sectores Agricultura +	
ELACM	CWo	Construcción + Minería.	
ELACM	GWa	Demanda de electricidad total, sectores Agricultura + Construcción + Minería.	
SSACM	GWa	Demanda de energía térmica útil reemplazada por sistemas solares	
BBHCIVI	G W a	térmicos, sectores Agricultura + Construcción + Minería.	
FFACM	GWa	Demanda de combustible fósil, sectores Agricultura + Construcción +	
		Minería.	
MFACM	GWa	Demanda de combustible motor, sectores Agricultura + Construcción +	
		Minería.	
FINACM	GWa	Demanda de energía final, sectores Agricultura + Construcción +	
TEL CLE	0./	Minería.	
TFACM.S	%	Porcentaje de combustibles tradicionales en la demanda de energía final,	
		sectores Agricultura + Construcción + Minería.	
MBACM.S	%	Porcentaje de la biomasa moderna en la demanda de energía final,	
WID/ CIVI.S	70	sectores Agricultura + Construcción + Minería.	
		Constitution 1.8.1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
ELACM.S	%	Porcentaje de electricidad en la demanda de energía final, sectores	
		Agricultura + Construcción + Minería.	
SSACM.S	%	Porcentaje de solar térmica en la demanda de energía final, sectores	
		Agricultura + Construcción + Minería.	
FFACM.S	%	Porcentaje de combustibles fósiles en la demanda de energía final,	
1171CIVI.S	70	sectores Agricultura + Construcción + Minería.	
MFACM.S	%	Porcentaje de combustible motor en la demanda de energía final, sectores	
		Agricultura + Construcción + Minería.	
	1 7771 /5 75 6		
EI.TF.ACM	kWh/UM	Demanda de combustible tradicional por valor agregado (intensidad	
		energética), sectores Agricultura + Construcción + Minería.	
EI.MB.ACM	kWh/UM	Demanda de biomasa moderna por valor agregado (intensidad	
DI.I.I.B.I. TOTAL	R VV II/ C IVI	energética), sectores Agricultura + Construcción + Minería.	
		<i>[</i>	
EI.EL.ACM	kWh/UM	Demanda de electricidad por valor añadido (intensidad energética),	
		sectores Agricultura + Construcción + Minería.	
FLCC ACM	1 7771 /5 75 6		
EI.SS.ACM	kWh/UM	Demanda solar térmica por valor agregado (intensidad energética),	
		sectores Agricultura + Construcción + Minería.	
EI.FF.ACM	kWh/UM	Demanda de combustible fósil por valor agregado (intensidad energética),	
	11 // 11/ 01/1	sectores Agricultura + Construcción + Minería.	
EI.MF.ACM	kWh/UM	Demanda de combustible motor por valor agregado (intensidad	
		energética), sectores Agricultura + Construcción + Minería.	
ELEINI ACM	1371/137		
EI.FIN.ACM	kWh/UM	Demanda de energía final por valor agregado o (intensidad energética),	
		sectores Agricultura + Construcción + Minería.	

Tabla 4.2f Lista y definición de variables calculadas de la demanda de energía térmica útil en el sector Manufacturero.

DEMANDA DE ENERGÍA TÉRMICA ÚTIL EN EL SECTOR MANUFACTURERO:					
	(ver hoja "ManFac1-D" del MAED_D.xls)				
USMAN(I,J)	GWa	Demanda de energía térmica útil del subsector I del sector Manufacturero para la categoría de demanda J.			
		I=1,,NSMAN;			
		Categorías de demanda: (J = 1) Generación de vapor (STM) (J = 2) Hornos/calor directo (FUR) (J = 3) Calefacción/calentamiento de agua (SWH)			
USMA(I)	GWa	Demanda de energía térmica útil del subsector I del sector Manufacturero. I=1,,NSMAN			
USMAN(1)	GWa	Demanda de energía térmica útil del sector Manufacturero para la generación de vapor (STM).			
US.STM.MAN		generation de vapor (61111).			
USMAN(2)	GWa	Demanda de energía térmica útil del sector Manufacturero para Hornos/calor directo (FUR).			
US.FUR.MAN		Tromos, valor anotto (1 014).			
USMAN(3)	GWa	Demanda de energía térmica útil del sector Manufacturero para Calefacción/calentamiento de agua (SWH).			
US.SWH.MAN					
USMAN(4)	GWa	Demanda de energía térmica útil total del sector Manufacturero.			
PENETRACIÓN SECTOR MANU (ver la hoja "Manl	JFACTURER(
PMEL(J)	%	Porcentaje de electricidad (convencional) en USMAN(J).			
		Categorías de demanda: (J = 1) Generación de calor (STM) (J = 2) Hornos/calor directo (FUR) (J = 3) Calefacción/calentamiento de agua (SWH)			
PMEL(4)	%	Penetración promedio ponderada de la electricidad (convencional) en el mercado de demanda de energía térmica útil de las Industrias Manufactureras.			
PMHP(J)	%	Porcentaje de electricidad (bomba térmica) en USMAN(J).			
		Categorías de demanda: (J = 1) Generación de vapor (STM) (J = 2) Hornos/calor directo (FUR) (J = 3) Calefacción/calentamiento de agua (SWH)			
		Continú			

Tabla 4.2f Lista y definición de las variables calculadas de la demanda de energía térmica útil en el sector Manufacturero (Continuación)

		(Continuacion)
PMHP(4)	%	Penetración promedio ponderada de la electricidad (bomba térmica) en el mercado de demanda de energía térmica útil de la Industria
DMDH/I)	0/	Manufacturera.
PMDH(J)	%	Porcentaje de la calefacción centralizada en USMAN(J).
		Categorías de la demanda: (J = 1) Generación de vapor (STM)
		(J = 2) Hornos/calor directo (FUR)
		(J = 3) Calefacción/calentamiento de agua (SWH)
PMDH(4)	%	Penetración promedio ponderada de la calefacción centralizada dentro del
		mercado de la demanda de energía térmica útil de las industrias de
		Manufactureros.
PMSS(J)	%	Porcentaje de sistemas solares en USMAN(J).
		Categorías de la demanda: : (J = 1) Generación de vapor (STM)
		(J = 2) Hornos/calor directo (FUR)
		(J = 3) Calefacción/calentamiento de agua (SWH)
PMSS(4)	%	Penetración promedio ponderada de los sistemas solares en el mercado de
		la demanda de energía térmica útil de las Industrias Manufactureras.
PMCG(J)	%	Porcentaje de la cogeneración in situ en USMAN(J).
		Categorías de la demanda: $(J = 1)$ Generación de vapor (STM)
		(J = 2) Hornos/calor directo (FUR)
		(J = 3) Calefacción/calentamiento de agua (SWH)
PMCG(4)	%	Penetración promedio ponderada de la cogeneración in situ dentro del
		mercado de la demanda de energía térmica útil de las Industrias
		Manufactureras.
PMTF(J)	%	Porcentaje de los combustibles tradicionales en USMAN(J).
		Categorías de la demanda: : (J = 1) Generación de vapor (STM)
		(J = 2) Hornos/calor directo (FUR)
		J = 3) Calefacción/calentamiento de agua (SWH)
PMTF(4)	%	Penetración promedio ponderada de los combustibles tradicionales dentro
		del mercado de la demanda de energía térmica útil de las Industrias
		Manufactureras.
PMMB(J)	%	Porcentaje de la biomasa moderna en USMAN(J).
		Categorías de la demanda: (J = 1) Generación de vapor (STM)
		(J = 2) Hornos/calor directo (FUR)
		(J = 3) Calefacción/calentamiento de agua (SWH)

Tabla 4.2f Lista y definición de las variables calculadas de la demanda de energía térmica útil en el sector Manufacturero (Continuación)

PMMB(4)	%	Penetración promedio ponderada de la biomasa moderna dentro del mercado de la demanda de energía térmica útil de las Industrias Manufactureras.
PMFF(J)	%	Porcentaje de combustibles fósiles en USMAN(J).
		Categorías de la demanda: : (J = 1) Generación de vapor (STM) (J = 2) Hornos/calor directo (FUR) (J = 3) Calefacción/calentamiento de agua (SWH)
PMFF(4)	%	Penetración promedio ponderada de los combustibles fósiles dentro del mercado de la demanda de energía térmica útil de las Industrias Manufactureras.
FFEMAN(4)	%	Eficiencia promedio del uso de los combustibles fósiles en los procesos térmicos en el sector Manufacturero, relativa a la eficiencia de la electricidad.
TFEMAN(4)	%	Eficiencia promedio del uso de combustible tradicional en los procesos térmicos en el sector Manufacturero, relativo a la eficiencia de la electricidad.
MBEMAN(4)	%	Eficiencia promedio del uso de la biomasa moderna en procesos térmicos del sector Manufacturero, relativa a la eficiencia de la electricidad.
PSTEEL	10 ⁶ tons	Producción total de acero.
PFEED	10 ⁶ tons	Consumo total de material prima (es decir, uso de fuentes de energía como materia prima)

Tabla 4.2g Lista y definición de las variables calculadas de la demanda de energía final en la Manufacturero

DEMANDA DE ENERGÍA FINAL EN EL SECTOR MANUFACTURERO			
(ver Tablas 9-1 a la 9-3 en la hoja "FIN Ind-D" del MAED D.xls			
TFMAN	GWa	Uso térmico de combustibles tradicionales en el sector Manufacturero.	
COGSTH	GWa	Demanda de energía térmica útil en el sector Manufacturero que es	
COGSTII	G wa	suministrada con la cogeneración de electricidad.	
MBMAN	GWa	Uso térmico de la biomasa moderna en el sector Manufacturero.	
ELHMAN	GWa GWa	Uso térmico de la electricidad en el sector Manufacturero.	
ELSMAN	GWa GWa	Demanda de electricidad para usos específicos en el sector Manufacturero.	
ELMAN	GWa GWa	Demanda de la electricidad en el sector Manufacturero.	
DHMAN	GWa GWa	Demanda de la electricidad en el sector Manufacturero. Demanda de calefacción centralizada en el sector Manufacturero.	
SSMAN	GWa GWa	Demanda de eareraction centrarizada en el sector Mandiacturero. Demanda de energía térmica útil reemplazada por sistemas solares térmicos	
SSIVIAIN	Gwa	en el sector Manufacturero.	
FFMAN	GWa	Uso térmico de combustibles fósiles en el sector Manufacturero.	
MFMAN	GWa	Demanda de combustible motor en el sector Manufacturero.	
COKE	GWa	Demanda de coque para la producción de lingotes de hierro.	
FEED	GWa	Consumo total de material prima, expresado en las unidades de energía	
		interna del módulo.	
FINMAN	GWa	Demanda de energía final en el sector Manufacturero.	
TFMAN.S	%	Porcentaje de combustibles tradicionales en la energía final, sector	
		Manufacturero.	
MBMAN.S	%	Porcentaje de biomasa moderna en la energía final, sector Manufacturero.	
ELMAN.S	%	Porcentaje de la electricidad en la energía final, sector Manufacturero.	
DHMAN.S	%	Porcentaje de la calefacción centralizada en la energía final, sector	
		Manufacturero.	
SOLMAN.S	%	Porcentaje de la solar térmica en la energía final, sector Manufacturero.	
FFMAN.S	%	Porcentaje de los combustibles fósiles en la energía final, sector	
		Manufacturero.	
MFMAN.S	%	Porcentaje de combustible motor en la energía final, sector Manufacturero.	
COKEMAN.S	%	Porcentaje de coque en la energía final, sector Manufacturero.	
FEEDMAN.S	%	Porcentaje de materia prima en la energía final, sector Manufacturero.	
EI.TF.MAN	kWh/UM	Demanda de combustible tradicional por valor agregado, sector	
		Manufacturero.	
EI.MB.MAN	kWh/UM	Demanda de biomasa moderna por valor agregado, sector Manufacturero.	
EI.EL.MAN	kWh/UM	Demanda de electricidad por valor agregado, sector Manufacturero.	
EI.DH.MAN	kWh/UM	Demanda de calefacción centralizada por valor agregado, sector	
		Manufacturero.	
EI.SS.MAN	kWh/UM	Demanda de solar térmica por valor agregado, sector Manufacturero.	
EI.FF.MAN	kWh/UM	Demanda de combustible fósil por valor agregado, sector Manufacturero.	
EI.MF.MAN	kWh/UM	Demanda de combustible motor por valor agregado, sector Manufacturero.	
EI.COKE.MAN	kWh/UM	Demanda de coque por valor agregado, sector Manufacturero.	
EI.FEED.MAN	kWh/UM	Demanda de materia prima por valor agregado, sector Manufacturero.	
EI.FIN.MAN	kWh/UM	Demanda de energía final por valor agregado, sector Manufacturero.	

Tabla 4.2h Lista y definición de las variables calculadas de la demanda energía final en la Industria (Manufacturero + ACM)

DEMANDA DE ENERGÍA FINAL EN LA INDUSTRIA (MANUFACTURERO + ACM):			
(ver tablas 9-4 a la 9-6 en la hoja "FIN_Ind-D" del MAED_D.xls)			
TFIND	GWa	Uso térmico de combustibles tradicionales en la Industria.	
MBIND	GWa	Uso térmico de la biomasa moderna en la Industria.	
ELSIND	GWa	Demanda de electricidad para usos específicos, en la Industria.	
ELHIND	GWa	Demanda de electricidad para usos térmicos, sector Industria.	
ELIND	GWa	Demanda de electricidad en la Industria.	
DHIND	GWa	Demanda de calefacción centralizada en la Industria.	
SSIND	GWa	Demanda de energía térmica útil reemplazada por sistemas solares térmicos en la Industria.	
FFIND	GWa	Uso térmico de combustibles fósiles en la Industria.	
MFIND	GWa	Demanda de combustible motor en la Industria.	
FININD	GWa	Demanda de energía final en la Industria.	
TFIND.S	%	Porcentaje de combustibles tradicionales en la energía final, sector Industria.	
MBIND.S	%	Porcentaje de la biomasa moderna en la energía final, sector Industria.	
ELIND.S	%	Porcentaje de electricidad en la energía final, sector Industria.	
DHIND.S	%	Porcentaje de calefacción centralizada en la energía final, sector Industria.	
SSIND.S	%	Porcentaje de solar térmica en la energía final, sector Industria.	
FFIND.S	%	Porcentaje de combustible fósiles en la energía final, sector Industria.	
MFIND.S	%	Porcentaje de combustible motor en la energía final, sector Industria.	
COKEIND.S	%	Porcentaje de coque en la energía final, sector Industria.	
FEEDIND.S	%	Porcentaje de materia prima en la energía final, sector Industria.	
EI.TF.IND	kWh/MU	Demanda de combustible tradicional por valor agregado, sector Industria.	
EI.MB.IND	kWh/MU	Demanda de biomasa moderna por valor agregado, sector Industria.	
EI.EL.IND	kWh/MU	Demanda de electricidad por valor agregado, sector Industria.	
EI.DH.IND	kWh/MU	Demanda de calefacción centralizada por valor agregado, sector Industria.	
EI.SS.IND	kWh/MU	Demanda de solar térmica por valor agregado, sector Industria.	
EI.FF.IND	kWh/MU	Demanda de combustible fósil por valor agregado, sector Industria.	
EI.MF.IND	kWh/MU	Demanda de combustible motor por valor agregado, sector Industria.	
EI.COKE.IND	kWh/MU	Demanda de coque por valor agregado, sector Industria.	
EI.FEED.IND	kWh/MU	Demanda de materia prima por valor agregado, sector Industria.	
EI.FIN.IND	kWh/MU	Demanda de energía final por valor agregado, sector Industria.	

Tabla 4.2i Lista y definición de las variables calculadas del transporte de carga.

Tabla 4.21 Lista y definición de las variables calculadas del transporte de carga.				
TRANSPORTE:				
TRANSPORTE DE CARGA:				
	Trp-D" del MA			
TKFT	10 ⁹ tkm	Total de tonelada-kilómetros para el transporte de carga (nacional).		
TKFTM(I)	10 ⁹ tkm	Tonelada-kilómetros por modo de Transporte de carga. I=1,,NMFT		
FTMEI(I)	kWh/100tkm	Intensidad energética del modo de Transporte de carga I. I=1,,NMFT		
ECFTM(I)	GWa	Consumo de energía del modo de Transporte de carga I. I=1,,NMFT		
TELFT	GWa	Consumo total de electricidad del transporte de carga.		
TSCFT	GWa	Consumo total de carbón en el transporte de carga.		
TDIFT	GWa	Consumo total del diesel en el transporte de carga.		
TGAFT	GWa	Consumo total de la gasolina en el transporte de carga.		
TF5FT	GWa	Consumo total del combustible número 5 en el transporte de carga.		
TF6FT	GWa	Consumo total del combustible número 6 en el transporte de carga.		
TF7FT	GWa	Consumo total del combustible número 7 en el transporte de carga.		
TF8FT	GWa	Consumo total del combustible número 8 en el transporte de carga.		
ECFTF(I)	GWa	Consumo de energía en el transporte de carga por el combustible tipo I. I=1,,NTF		
TMFFT	GWa	Consumo total de combustible motor para el transporte de carga.		
TENFT	GWa	Consumo total de energía para el transporte de carga.		

Tabla 4.2j Lista y definición de las variables calculadas del transporte urbano de pasajeros.

_ 1 avia 7.2j Li	1 aoia 4.21 Lista y definición de las variables calculadas del transporte dibano de pasajeros.			
TRANSPORTE DE PASAJEROS URBANOS:				
(ver hoja "PassIntra-D" del MAED_D.xls)				
PKU	10 ⁹ pkm	Total de pasajeros-kilómetros, tráfico urbano.		
PKUTM(I)	10 ⁹ tkm	Pasajeros-kilómetros por modo de transporte urbano. I=1,,NMUT		
UTMEI(I)	kWh/pkm	Intensidad energética del modo de transporte urbano I. I=1,,NMUT		
ECUTM(I)	GWa	Consumo de energía del modo de transporte urbano I. I=1,,NMUT		
TELUT	GWa	Consumo total de electricidad, tráfico urbano de pasajero.		
TDIUT	GWa	Consumo total de diesel, tráfico urbano de pasajero.		
TGAUT	GWa	Consumo total de gasolina, tráfico urbano de pasajero.		
TF5UT	GWa	Consumo total del combustible número 5, tráfico urbano de pasajero.		
TF6UT	GWa	Consumo total del combustible número 6, tráfico urbano de pasajero.		
TF7UT	GWa	Consumo total del combustible número 7, tráfico urbano de pasajero.		
TF8UT	GWa	Consumo total del combustible número 8, tráfico urbano de pasajero.		
ECUTF(I)	GWa	Consumo de energía en el transporte urbana por tipo de combustible I. I=1,,NTF		
TMFUT	GWa	Consumo total de combustible motor, tráfico urbano de pasajero.		
TENUT	GWa	Consumo total de energía, tráfico urbano de pasajero.		

Tabla 4.2k Lista y definición de la variables calculadas del transporte de pasajeros entre ciudades.

	udades.		
TRANSPORTE DE PASAJEROS ENTRE CIUDADES: (ver hoja "PassInter-D" del MAED_D.xls)			
PKI	10 ⁹ pkm	Total de pasajeros-kilómetros, tráfico entre ciudades	
PKIC	10 ⁹ pkm	Pasajeros-kilómetros por auto, tráfico entre ciudades.	
PKIP	10 ⁹ pkm	Pasajeros-kilómetros por transporte público, tráfico entre ciudades.	
PKICT(I)	10 ⁹ pkm	Pasajeros-kilómetros por tipo de auto I, tráfico entre ciudades I=1,,NCTIT	
PKIPM(I)	10 ⁹ pkm	Pasajeros-kilómetros por modo de transporte público I, tráfico entre ciudades I=1,,(NMIT-NCTIT)	
ITMEI(I)	kWh/pkm	Intensidad energética del modo de transporte entre ciudades I. I=1,,NMIT	
ECITM(I)	GWa	Consumo de energía del modo de transporte entre ciudades I. I=1,,NMIT	
TELIT	GWa	Consumo total de electricidad, Transporte de pasajeros entre ciudades.	
TSCIT	GWa	Consumo total de carbón, transporte de pasajeros entre ciudades.	
TDIIT	GWa	Consumo total de diesel, Transporte de pasajeros entre ciudades.	
TGAIT	GWa	Consumo total de gasolina, Transporte de pasajeros entre ciudades.	
TF5IT	GWa	Consumo total del combustible número 5, transporte de pasajeros entre ciudades.	
TF6IT	GWa	Consumo total del combustible número 6, transporte de pasajeros entre	
TF7IT	GWa	ciudades. Consumo total del combustible número 7, transporte de pasajeros entre ciudades.	
TF8IT	GWa	Consumo total del combustible número 8, transporte de pasajeros entre ciudades.	
ECITF(I)	GWa	Consumo energético en el transporte entre ciudades por tipo de combustible I. I=1,,NFT	
TMFIT	GWa	Consumo total de combustible motor, Transporte de pasajeros entre ciudades. Consumo total de energía, Transporte de pasajeros entre ciudades.	
TENIT	GWa	Consumo de combustible, Transporte internacional y militar (misceláneas).	
TMFMIS	GWa	, , ,	
TELPT	GWa	Consumo total de electricidad para el transporte de pasajeros.	
TSCPT	GWa	Consumo total de carbón para el transporte de pasajeros.	
TMFPT	GWa	Consumo total de combustible motor para el transporte de pasajeros (incluyendo nacional e internacional).	
TENPT	GWa	Consumo total de energía para el transporte de pasajeros.	

Tabla 4.21 Lista y definición de las variables calculadas de la demanda de energía final en el transporte.

DEMANDA D	E ENERGÍA	FINAL EN EL SECTOR TRANSPORTE:
(ver hoja FIN		
TELTR	GWa	Consumo total de electricidad para el transporte.
TSCTR	GWa	Consumo total de carbón para la electricidad.
TDITR	GWa	Consumo total de diesel para la Transporte
TGATR	GWa	Consumo total de gasolina para el transporte.
TF5TR	GWa	Consumo total de combustible no. 5 para el transporte.
TF6TR	GWa	Consumo total de combustible no. 6 para el transporte.
TF7TR	GWa	Consumo total de combustible no. 7 para el transporte.
TF8TR	GWa	Consumo total de combustible no. 8 para el transporte.
ECTRF(I)	GWa	Consumo total de energía para el transporte, por combustible tipo I (incluyendo transporte internacional y militar). I=1,,(NTF+1)
FINTR	GWa	Consumo de energía final para el transporte.
ECTRF.S(I)	%	Porcentaje del combustible tipo I (incluyendo transporte internacional y militar) en el consumo de energía final para el transporte. I=1,,(NTF+1)
TMFTR	GWa	Consumo total de combustible motor para el transporte.
TELTR.S	%	Porcentaje de electricidad en el consumo total de energía final para el transporte.
TSCTR.S	%	Porcentaje de carbón en el consumo total de energía final para el transporte.
TMFTR.S	%	Porcentaje de combustible motor en el consumo total de energía final para el transporte.
TENFT.S	%	Porcentaje de consumo de energía para transporte de carga en el consumo total de energía final para el transporte.
TENUT.S	%	Porcentaje de consumo de energía para transporte de pasajero urbano en el consumo total de energía final para el transporte.
TENIT.S	%	Porcentaje de consumo de energía para transporte de pasajeros entre ciudades en el consumo total de energía final para el transporte.
TMFMIS.S	%	Porcentaje de consumo de energía para transporte internacional y nacional en el consumo total de energía final para el transporte.

Tabla 4.2m Lista y definición de variables calculadas de la demanda de energía útil en el sector Residencial urbano.

	sector Residencial urbano.			
SECTOR RESIDENCIAL:				
DEMANDA DE ENERGÍA ÚTIL EN EL SECTOR RESIDENCIAL URBANO: (ver hoja "US_HH_Ur-D" del MAED_D.xls)				
TUDW	10 ⁶ viv	Existencia total de viviendas (se asume que es igual al número de viviendas urbanas).		
SHUHT(I)	GWa	Demanda de energía útil para calefacción en viviendas urbanas de tipo I. I=1,,NUDT		
SHUH	GWa	Demanda de energía útil para calefacción, viviendas urbanas.		
HWUH	GWa	Demanda de energía útil para calentamiento de agua, viviendas urbanas.		
CKUH	GWa	Demanda de energía útil para cocción, viviendas urbanas.		
ACUHT(I)	GWa	Demanda de energía útil para aire acondicionado en viviendas de tipo I. I=1,,NUDT		
ACUH	GWa	Demanda de energía útil para aire acondicionado, viviendas urbanas.		
ELAPUH	GWa	Consumo de electricidad para usos específicos en viviendas urbanas electrificadas (es decir, para otros propósitos además de calefacción y calentamiento de agua, cocción y aire acondicionado).		
FFLTUH	GWa	Consumo de combustible fósil para la iluminación y equipos no eléctricos (por ejemplo, refrigeradores que usan gas natural) en viviendas urbanas no electrificadas.		
USUH	GWa	Demanda total de energía útil en viviendas urbanas.		
		A EN EL SECTOR RESIDENCIAL RURAL: el MAED D.xls)		
TRDW	10 ⁶ viv	Existencia total de viviendas rurales (se asume que es igual al número de viviendas rurales).		
SHRHT(I)	GWa	Demanda de energía útil para calefacción en viviendas rurales del tipo I. I=1,,NRDT		
SHRH	GWa	Demanda de energía para calefacción, viviendas rurales.		
HWRH	GWa	Demanda de energía útil para calentamiento de agua, viviendas rurales.		
CKRH	GWa	Demanda de energía útil para cocción, viviendas rurales.		
ACRHT(I)	GWa	Demanda de energía útil para aire acondicionado en viviendas rurales del tipo I. I=1,,NRDT		
ACRH	GWa	Demanda de energía útil para aire acondicionado, viviendas rurales.		
ELAPRH	GWa	Consumo de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos diferentes a la calefacción y calentamiento de agua, cocción y aire acondicionado).		
FFLTRH	GWa	Consumo de combustible fósil para iluminación y equipos no eléctricos (por ejemplo, refrigeradores que usan gas natural) en viviendas rurales no electrificadas.		
USRH	GWa	Demanda total de energía útil en viviendas rurales.		

Tabla 4.2n Lista y definición de las variables calculadas de la demanda de energía final en el sector Residencial urbano.

sector Reside			
DEMANDA DE ENERGÍA FINAL EN EL SECTOR RESIDENCIAL URBANO: (ver tablas 16.1 ÷ 16.6 en la hoja "FIN HH-D" del MAED D.xls			
TF.UH.SH	÷ 16.6 en 1	Demanda de combustible tradicional para calefacción en viviendas urbanas.	
MB.UH.SH	GWa GWa	Demanda de biomasa moderna para calefacción en viviendas urbanas.	
EL.UH.SH	GWa GWa	_	
		Demanda de electricidad para calefacción en viviendas urbanas.	
DH.UH.SH	GWa	Demanda de calefacción centralizada para calefacción en viviendas urbanas.	
SS.UH.SH	GWa	Demanda solar térmica para calefacción en viviendas urbanas.	
FF.UH.SH	GWa	Demanda de combustible fósil para calefacción en viviendas urbanas.	
FIN.UH.SH	GWa	Demanda de energía final para calefacción en viviendas urbanas.	
TF.UH.HW	GWa	Demanda de combustible tradicional para calentamiento de agua en viviendas urbanas.	
MB.UH.HW	GWa	Demanda de biomasa moderna para calentamiento de agua en viviendas urbanas.	
EL.UH.HW	GWa	Demanda de electricidad para calentamiento de agua en viviendas urbanas.	
DH.UH.HW	GWa	Demanda de calefacción distribuida para calentamiento de agua en viviendas urbanas.	
SS.UH.HW	GWa	Demanda solar térmica para calentamiento de agua en viviendas urbanas.	
FF.UH.HW	GWa	Demanda de combustible fósil para calentamiento de agua en viviendas urbanas.	
FIN.UH.HW	GWa	Demanda de energía final para calentamiento de agua en viviendas urbanas.	
TF.UH.CK	GWa	Demanda de combustible tradicional para la cocción en viviendas urbanas.	
MB.UH.CK	GWa	Demanda de biomasa moderna para la cocción en viviendas urbanas.	
EL.UH.CK	GWa	Demanda de electricidad para la cocción en viviendas urbanas.	
SS.UH.CK	GWa	Demanda solar térmica para la cocción en viviendas urbanas.	
FF.UH.CK	GWa	Demanda de combustible fósil para la cocción en viviendas urbanas.	
FIN.UH.CK	GWa	Demanda de energía final para la cocción en viviendas urbanas.	
EL.UH.AC	GWa	Demanda de electricidad para aire acondicionado en viviendas urbanas.	
FF.UH.AC	GWa	Demanda de combustible fósil para aire acondicionado en viviendas urbanas.	
FIN.UH.AC	GWa	Demanda de energía final para aire acondicionado en viviendas urbanas.	
EL.UH.AP	GWa	Demanda de electricidad para usos específicos en viviendas urbanas electrificadas (es decir, para otros propósitos a parte de la calefacción y el calentamiento de agua, cocción y aire acondicionado).	
FF.UH.AP	GWa	Demanda de combustible fósil para iluminación y equipos no eléctricos (por ejemplo, los refrigeradores que usan gas natural) en las viviendas urbanas no electrificadas.	
FIN.UH.AP	GWa	Demanda de energía final para equipos domésticos e iluminación en viviendas urbanas.	
TFUH	GWa	Demanda de combustible tradicional en viviendas urbanas.	
MBUH	GWa	Demanda de biomasa moderna en viviendas urbanas.	
ELUH	GWa	Demanda de electricidad en viviendas urbanas.	
DHUH	GWa	Demanda de calefacción centralizada en viviendas urbanas.	
SSUH	GWa	Demanda solar térmica en viviendas urbanas.	
FFUH	GWa	Demanda de combustible fósil en viviendas urbanas.	
FINUH	GWa	Demanda de energía final en viviendas urbanas.	

Tabla 4.20 Lista y definición de las variables calculada de la demanda de energía final en el sector Residencial rural.

DEMANDA DE ENERGÍA FINAL EN EL SECTOR RESIDENCIAL RURAL: (ver Tablas 16.7 + 16.12 en la hoja "FIN HH-D" del MAED_D.xls) TF.RH.SH GWa Demanda de combustible tradicional para calefacción en viviendas rurales. MB.RH.SH GWa Demanda de combustible tradicional para calefacción en viviendas rurales. DH.RH.SH GWa Demanda de calefacción centralizada para calefacción en viviendas rurales. SS.RH.SH GWa Demanda de combustible fosil para calefacción en viviendas rurales. FF.RH.SH GWa Demanda de combustible fosil para calefacción en viviendas rurales. DEMANDA DE ENERGÍA FINAL EN EL RH.SH GWa Demanda de combustible fosil para calefacción en viviendas rurales. DEMANDA DE ENERGÍA FINAL EN EL RH.SH GWa Demanda de combustible fosil para calefacción en viviendas rurales. DEMANDA DE ENERGÍA FINAL EN EL RH.SH GWa Demanda de combustible fosil para calefacción en viviendas rurales. DEMANDA DE LA RH.SH GWa Demanda de biomasa moderna para calentamiento de agua en viviendas rurales. DEMANDA DE LA RH.HW GWa Demanda de combustible fosil para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de combustible fosil para calentamiento de agua en viviendas rurales. FIN.R	Sector Residencial rural.		
TF.RH.SH GWa MB.RH.SH GWa Demanda de combustible tradicional para calefacción en viviendas rurales. Demanda de biomasa moderna para calefacción en viviendas rurales. Demanda de electricidad para calefacción en viviendas rurales. Demanda de calefacción centralizada para calefacción en viviendas rurales. Demanda de calefacción centralizada para calefacción en viviendas rurales. Demanda de calefacción centralizada para calefacción en viviendas rurales. Demanda de combustible fósil para calefacción en viviendas rurales. Demanda de combustible fósil para calefacción en viviendas rurales. Demanda de combustible fosil para calefacción en viviendas rurales. Demanda de combustible tradicional para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.CK GWa Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de combustible fós			
MB.RH.SH GWa Demanda de biomasa moderna para calefacción en viviendas rurales. DH.RH.SH GWa Demanda de electricidad para calefacción en viviendas rurales. SS.RH.SH GWa Demanda de calefacción centralizada para calefacción en viviendas rurales. FF.RH.SH GWa Demanda de combustible fósil para calefacción en viviendas rurales. FIN.RH.SH GWa Demanda de combustible fósil para calefacción en viviendas rurales. TF.RH.HW GWa Demanda de combustible tradicional para calentamiento de agua en viviendas rurales. MB.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. FF.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.CK GWa Demanda de combustible tradicional para cocción en viviendas rurales. FERH.CK GWa Demanda de electricidad para cocción en viviendas rurales. Demanda de co	_ `		·
EL.RH.SH DH.RH.SH SS.RH.SH FF.RH.SH GWa SS.RH.SH FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH FF.RH.HW GWa Demanda de combustible fösil para calefacción en viviendas rurales. Demanda de combustible tradicional para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para calentamiento de agua en viviendas rurales.MB.RH.HWGWaDemanda de biomasa moderna para calentamiento de agua en viviendas rurales.EL.RH.HW DH.RH.HWGWaDemanda de electricidad para calentamiento de agua en viviendas rurales.SS.RH.HWGWaDemanda de calefacción centralizada para calentamiento de agua en viviendas rurales.SS.RH.HWGWaDemanda de solar térmica para calentamiento de agua en viviendas rurales.FF.RH.HWGWaDemanda de combustible fósil para calentamiento de agua en viviendas rurales.FIN.RH.HWGWaDemanda de combustible tradicional para cocción en viviendas rurales.FIN.RH.CK GWaGWaDemanda de electricidad para cocción en viviendas rurales.Demanda de electricidad para cocción en viviendas rurales.Demanda de electricidad para cocción en viviendas rurales.Demanda de combustible fósil para cocción en viviendas rurales.Demanda de electricidad para aire acondicionado en viviendas rurales.FF.RH.ACGWaDemanda de electricidad para aire acondicionado en viviendas rurales.Demanda de electricidad para aire acondicionado en viviendas rurales.Demanda de electricidad para aire acondicionado en viviendas rurales.Demanda de electricidad para usos especificos en viviendas rurales. <td></td> <td></td> <td>-</td>			-
DH.RH.SH SS.RH.SH GWa FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH GWa FF.RH.HW GWa Demanda de combustible fósil para calefacción en viviendas rurales. Demanda de combustible tradicional para calentamiento de agua en viviendas rurales. Demanda de biomasa moderna para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa FF.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. Demanda de combustible fósil para calentamiento de agua en viviendas rurales. Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible fósil para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de de energía final para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía fin			•
SS.RH.SH FF.RH.SH GWa FF.RH.SH GWa FF.RH.SH GWa FIN.RH.SH GWa TF.RH.HW GWa Demanda de combustible fósil para calefacción en viviendas rurales. Demanda de combustible tradicional para calentamiento de agua en viviendas rurales. Demanda de biomasa moderna para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa FF.RH.CK GWa BEL.RH.CK GWa SS.RH.CK GWa FF.RH.CK GWa FF.RH.CK GWa FF.RH.CK GWa FF.RH.CK GWa FF.RH.CK GWa FF.RH.CK GWa FF.RH.CK GWa FF.RH.CK GWa FF.RH.CK GWa FF.RH.CC GWa F			-
FF.RH.SH FIN.RH.SH FIN.RH.SH GWa TF.RH.HW GWa Demanda de energía final para calefacción en viviendas rurales. Demanda de combustible tradicional para calentamiento de agua en viviendas rurales. MB.RH.HW GWa Demanda de biomasa moderna para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. Demanda de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. FF.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FF.RH.HW GWa Demanda de energía final para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía f			•
FIN.RH.SH TF.RH.HW GWa Demanda de energía final para calefacción en viviendas rurales. MB.RH.HW GWa Demanda de biomasa moderna para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. Demanda de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de energía final para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible fósil para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de biomasa moderna para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en v			*
TF.RH.HW GWa Demanda de combustible tradicional para calentamiento de agua en viviendas rurales. Demanda de biomasa moderna para calentamiento de agua en viviendas rurales. DH.RH.HW GWa DH.RH.HW GWa DEMANDA de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa FF.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. Demanda de combustible fósil para calentamiento de agua en viviendas rurales. Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para acocción en viviendas rurales. Demanda de energía final para acocción en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de combustible fósil para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de combustible fósil para aire acondicionados en viviendas rurales. Demanda de combustible fósil para aire acondicionados en viviendas rurales.			•
rurales. MB.RH.HW GWa Demanda de biomasa moderna para calentamiento de agua en viviendas rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. DH.RH.HW GWa Demanda de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. FF.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de energía final para calentamiento de agua en viviendas rurales. FIR.RH.CK GWa Demanda de combustible tradicional para cocción en viviendas rurales. EL.RH.CK GWa Demanda de electricidad para cocción en viviendas rurales. FF.RH.CK GWa Demanda de electricidad para cocción en viviendas rurales. FF.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. EL.RH.AC GWa Demanda de electricidad para cocción en viviendas rurales. FF.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. FF.RH.AC GWa Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. FF.RH.AC GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales.			
rurales. EL.RH.HW GWa Demanda de electricidad para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. FF.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de biomasa moderna para cocción en viviendas rurales. EL.RH.CK GWa Demanda de electricidad para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. FF.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	11°.X11.11W	Uwa	<u> </u>
DH.RH.HW GWa Demanda de calefacción centralizada para calentamiento de agua en viviendas rurales. SS.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de biomasa moderna para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. SS.RH.CK GWa Demanda de electricidad para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. FIN.RH.CK GWa Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. EL.RH.AC GWa Demanda de energía final para aire acondicionado en viviendas rurales. FF.RH.AC GWa Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. FIN.RH.AC GWa Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. FIN.RH.AC GWa Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondiciona	MB.RH.HW	GWa	<u> </u>
rurales. SS.RH.HW FF.RH.HW GWa Demanda de solar térmica para calentamiento de agua en viviendas rurales. Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de biomasa moderna para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. SS.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. FF.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. EL.RH.AC GWa Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. EL.RH.AC GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de combustible fósil para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales.	EL.RH.HW	GWa	Demanda de electricidad para calentamiento de agua en viviendas rurales.
FF.RH.HW GWa Demanda de combustible fósil para calentamiento de agua en viviendas rurales. FIN.RH.HW GWa TF.RH.CK GWa MB.RH.CK GWa EL.RH.CK GWa Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de biomasa moderna para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. FF.RH.CK GWa FF.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. FF.RH.AC GWa FF.RH.AC GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. GWa Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales.	DH.RH.HW	GWa	
rurales. FIN.RH.HW GWa TF.RH.CK GWa Demanda de energía final para calentamiento de agua en viviendas rurales. Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de biomasa moderna para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. SS.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. FF.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. FF.RH.AC GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. FIN.RH.AC GWa Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. EL.RH.AP GWa Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	SS.RH.HW	GWa	Demanda de solar térmica para calentamiento de agua en viviendas rurales.
TF.RH.CK MB.RH.CK GWa Demanda de combustible tradicional para cocción en viviendas rurales. Demanda de biomasa moderna para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. SS.RH.CK GWa Demanda de electricidad para cocción en viviendas rurales. FF.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. Demanda de combustible fósil para aire acondicionado en viviendas rurales. GWa Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. GWa Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	FF.RH.HW	GWa	
MB.RH.CK EL.RH.CK GWa Demanda de biomasa moderna para cocción en viviendas rurales. Demanda de electricidad para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. Demanda de combustible fósil para aire acondicionado en viviendas rurales. FIN.RH.AC GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	FIN.RH.HW	GWa	Demanda de energía final para calentamiento de agua en viviendas rurales.
EL.RH.CK SS.RH.CK GWa Demanda de electricidad para cocción en viviendas rurales. Demanda solar térmica para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. Demanda de combustible fósil para aire acondicionado en viviendas rurales. FIN.RH.AC GWa Demanda de energía final para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	TF.RH.CK	GWa	Demanda de combustible tradicional para cocción en viviendas rurales.
SS.RH.CK FF.RH.CK GWa Demanda solar térmica para cocción en viviendas rurales. Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. EL.RH.AC GWa Demanda de electricidad para aire acondicionado en viviendas rurales. FF.RH.AC GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. FIN.RH.AC GWa Demanda de energía final para aire acondicionados en viviendas rurales. EL.RH.AP GWa Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	MB.RH.CK	GWa	Demanda de biomasa moderna para cocción en viviendas rurales.
FF.RH.CK FIN.RH.CK GWa Demanda de combustible fósil para cocción en viviendas rurales. Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. FIN.RH.AC GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. GWa Demanda de energía final para aire acondicionados en viviendas rurales. GWa Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	EL.RH.CK	GWa	Demanda de electricidad para cocción en viviendas rurales.
FIN.RH.CK EL.RH.AC FF.RH.AC GWa Demanda de energía final para cocción en viviendas rurales. Demanda de electricidad para aire acondicionado en viviendas rurales. FIN.RH.AC GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. EL.RH.AP GWa Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	SS.RH.CK	GWa	Demanda solar térmica para cocción en viviendas rurales.
EL.RH.AC FF.RH.AC GWa Demanda de electricidad para aire acondicionado en viviendas rurales. Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. EL.RH.AP GWa Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	FF.RH.CK	GWa	Demanda de combustible fósil para cocción en viviendas rurales.
FF.RH.AC FIN.RH.AC EL.RH.AP GWa Demanda de combustible fósil para aire acondicionado en viviendas rurales. Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	FIN.RH.CK	GWa	Demanda de energía final para cocción en viviendas rurales.
FIN.RH.AC EL.RH.AP GWa Demanda de energía final para aire acondicionados en viviendas rurales. Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	EL.RH.AC	GWa	Demanda de electricidad para aire acondicionado en viviendas rurales.
EL.RH.AP GWa Demanda de electricidad para usos específicos en viviendas rurales electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	FF.RH.AC	GWa	Demanda de combustible fósil para aire acondicionado en viviendas rurales.
electrificadas (es decir, para otros propósitos a parte de la calefacción y calentamiento de agua, cocción y aire acondicionado). FF.RH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas rurales no electrificadas.	FIN.RH.AC	GWa	Demanda de energía final para aire acondicionados en viviendas rurales.
viviendas rurales no electrificadas.	EL.RH.AP	GWa	electrificadas (es decir, para otros propósitos a parte de la calefacción y
	FF.RH.AP	GWa	
FIN.RH.AP GWa Demanda de energía final para equipos domésticos e iluminación en viviendas rurales.	FIN.RH.AP	GWa	
TFRH GWa Demanda de combustible tradicional en viviendas rurales.	TFRH	GWa	Demanda de combustible tradicional en viviendas rurales.
MBRH GWa Demanda de biomasa moderna en viviendas rurales.			Demanda de biomasa moderna en viviendas rurales.
ELRH GWa Demanda de electricidad en viviendas rurales.			Demanda de electricidad en viviendas rurales.
DHRH GWa Demanda solar térmica en viviendas rurales.			Demanda solar térmica en viviendas rurales.
SSRH GWa Demanda solar térmica en viviendas rurales.			Demanda solar térmica en viviendas rurales.
FFRH GWa Demanda de combustible fósil en viviendas rurales.			Demanda de combustible fósil en viviendas rurales.
FINRH GWa Demanda de energía final en viviendas rurales.			Demanda de energía final en viviendas rurales.

Tabla 4.2p Lista y definición de las variables calculadas de la demanda de energía final en el sector Residencial.

TF.HH.SH GWa Demanda de combustible tradicional para calefacción en el sector Residencial.	sector Residencial.			
TF.HH.SH GWa Demanda de combustible tradicional para calefacción en el sector Residencial. Demanda de biomasa moderna para calefacción en el sector Residencial. Demanda de electricidad para calefacción en el sector Residencial. Demanda de electricidad para calefacción en el sector Residencial. Demanda de calefacción centralizada para calefacción en el sector Residencial. Demanda de combustible fósil para calefacción en el sector Residencial. Demanda de combustible fósil para calefacción en el sector Residencial. Demanda de combustible fósil para calefacción en el sector Residencial. Demanda de combustible fósil para calefacción en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de biomasa moderna para calentamiento de agua en el sector Residencial. Demanda de calefacción centralizada para calentamiento de agua en el sector Residencial. SE.HH.HW GWa Demanda de electricidad para calentamiento de agua en el sector Residencial. Demanda de calefacción centralizada para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para aira acondicionado en el sector Residencial. Demanda de combustible fósil para aira acondicionado en el sector Residencial. Demanda de celectricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y cal	DEMANDA DE ENERGÍA FINAL EN EL SECTOR RESIDENCIAL:			
B.H.H.SH GWa Demanda de biomasa moderna para calefacción en el sector Residencial. Demanda de electricidad para calefacción en el sector Residencial. Demanda de calefacción centralizada para calefacción en el sector Residencial. Demanda de solar térmica para calefacción en el sector Residencial. Demanda de solar térmica para calefacción en el sector Residencial. Demanda de combustible fósil para calefacción en el sector Residencial. Demanda de combustible fósil para calefacción en el sector Residencial. Demanda de combustible tradicional para calentamiento de agua en el sector Residencial. MB.HH.HW GWa Demanda de combustible tradicional para calentamiento de agua en el sector Residencial. Demanda de electricidad para calentamiento de agua en el sector Residencial. Demanda de electricidad para calentamiento de agua en el sector Residencial. S.S.HH.HW GWa Demanda de calefacción centralizada para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. FIN.HH.HW GWa Demanda de combustible fósil para calentamiento de agua en el sector Residencial. FIN.HH.CK GWa Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de electricidad para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de electricidad para la cocción en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado) Demanda de combustible fósil para iluminación y equipos no				
DEL.HH.SH GWa Demanda de electricidad para calefacción en el sector Residencial. Demanda de calefacción en el sector Residencial. Demanda de solar térmica para calefacción en el sector Residencial. Energia final para calefacción en el sector Residencial. Demanda de combustible fósil para calefacción en el sector Residencial. Energia final para calefacción en el sector Residencial. Demanda de combustible fósil para calefacción en el sector Residencial. Demanda de combustible fosil para calentamiento de agua en el sector Residencial. Demanda de biomasa moderna para calentamiento de agua en el sector Residencial. Demanda de calefacción entralizada para calentamiento de agua en el sector Residencial. Demanda de calefacción centralizada para calentamiento de agua en el sector Residencial. Demanda de solar térmica para calentamiento de agua en el sector Residencial. Demanda de solar térmica para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible tradicional para la cocción en el sector Residencial. Demanda de combustible tradicional para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para al cocción en el sector Residencial. Demanda de combustible fósil para al cocción en el sector Residencial. Demanda			1	
DEMINISH SS.HILSH GWa SS.HILSH GWa FF.HILSH GWa FF.HILSH GWa FF.HILSH GWa TF.HILSH GWa TF.HILSH GWa TF.HILSH GWa TF.HILSH GWa TF.HILSH GWa TF.HILSH GWa TF.HILSH GWa TF.HILSH GWa TF.HILLSH GWa TF.HILLSH GWa TF.HILLSH GWa TF.HILLSH GWa TF.HILLSH GWa TF.HILLSH GWa TF.HILLSH GWa TF.HILLSH GWa TF.HILLSH GWa TF.HILLSH GWa Demanda de combustible fósil para calefacción en el sector Residencial. Demanda de combustible tradicional para calentamiento de agua en el sector Residencial. Demanda de biomasa moderna para calentamiento de agua en el sector Residencial. Demanda de solar térmica para calentamiento de agua en el sector Residencial. Demanda de solar térmica para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible fosil para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. Demanda de combustible tradicional para la cocción en el sector Residencial. Demanda de solar térmica para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros profósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FE.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de combustible tradicional e			•	
SS.HH.SH FF.HH.SH GWa FF.HH.SH GWa FIN.HH.SH GWa FIN.HH.SH GWa FIN.HH.SH GWa FIN.HH.SH GWa Demanda de combustible fösil para calefacción en el sector Residencial. Energía final para calefacción en el sector Residencial. Demanda de combustible tradicional para calentamiento de agua en el sector Residencial. MB.HH.HW GWa Demanda de biomasa moderna para calentamiento de agua en el sector Residencial. Demanda de electricidad para calentamiento de agua en el sector Residencial. Demanda de calefacción centralizada para calentamiento de agua en el sector Residencial. SS.HH.HW GWa Demanda de solar térmica para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. FIN.HH.HW GWa Demanda de combustible fósil para calentamiento de agua en el sector Residencial. FIN.HH.CK GWa Demanda de combustible tradicional para la cocción en el sector Residencial. Demanda de biomasa moderna para la cocción en el sector Residencial. Demanda de biomasa moderna para la cocción en el sector Residencial. Demanda de combustible tradicional para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de electricidad para la cocción en el sector Residencial. Demanda de energía final para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de energía final para la cocción en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). Demanda de combustibl			-	
FF.HH.SH FIN.HH.SH GWa FIN.HH.SH GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa			•	
FIN.HH.SH TF.HH.HW GWa Demanda de combustible tradicional para calentamiento de agua en el sector Residencial. Demanda de biomasa moderna para calentamiento de agua en el sector Residencial. EL.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa TF.HH.HW GWa FF.HH.HW GWa FF.HH.CK GWa BH.H.CK GWa SS.HH.CK GWa SS.HH.CK GWa FF.HH.CK GWa Demanda de energía final para la cocción en el sector Residencial. Demanda de energía final para la cocción en el sector Residencial. Demanda de energía final para la cocción en el sector Residencial. Demanda de energía final para la cocción en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propòsitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de electricidad para usos específicos en viviendas no electrificadas. Demanda de energía fin			•	
TF.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa DH.HH.HW GWa FF.HH.HW GWa TF.HH.HW GWa TF.HH.CK GWa HH.HCK GWa EL.HH.CK GWa SS.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa EL.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa EL.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa EL.HH.AC EL.HH.AC GW	1		•	
Residencial				
Residencial. Demanda de electricidad para calentamiento de agua en el sector Residencial. SS.HH.HW GWa Demanda de solar térmica para calentamiento de agua en el sector Residencial. FIN.HH.HW GWa TF.HH.HW GWa TF.HH.CK GWa MB.HH.CK GWa EL.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa EL.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CR GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa Demanda de energía final para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible fósil gubatituible) en el sector Residencial. Demanda de combustible fósil (substituible) en e	IF.HH.HW		Residencial.	
DH.HH.HW GWa Demanda de calefacción centralizada para calentamiento de agua en el sector Residencial. SS.HH.HW GWa Demanda de solar térmica para calentamiento de agua en el sector Residencial. FIN.HH.HW GWa Demanda de combustible fósil para calentamiento de agua en el sector Residencial. FIN.HH.HW GWa Demanda de combustible tradicional para la cocción en el sector Residencial. BEL.HH.CK GWa BEL.HH.CK GWa SS.HH.CK GWa SS.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa EL.HH.AC GWa EL.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa EL.HH.AC GWa FF.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa EL.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible fósil para iluminación en el sector Residencial. Demanda de combustible fósil para iluminación en el sector Residencial. Demanda de combustible fósil par	MB.HH.HW	GWa	· · · · · · · · · · · · · · · · · · ·	
Residencial. Demanda de solar térmica para calentamiento de agua en el sector Residencial. Demanda de combustible fósil para calentamiento de agua en el sector Residencial. FIN.HH.HW GWa TF.HH.CK GWa BEL.HH.CK GWa EL.HH.CK GWa SS.HH.CK GWa EL.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa Bemanda de electricidad para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa FF.HH.AP GWa FF.HH.AP GWa FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible fósil para iluminación en el sector Residencial. Demanda de combustible fósil para iluminación en el sector Residencial. Demanda de combustible fósil para iluminación en el sector Residencial. Demanda de combustible fósil para iluminación en el sector Residencial. Demanda de combustible fósil para iluminación en el sector Residencial. Demanda de combustible fósil para il	EL.HH.HW	GWa	Demanda de electricidad para calentamiento de agua en el sector Residencial.	
FF.HH.HW GWa Demanda de combustible fósil para calentamiento de agua en el sector Residencial. FIN.HH.HW GWa Demanda de energía final para calentamiento de agua en el sector Residencial. Demanda de combustible tradicional para la cocción en el sector Residencial. Demanda de electricidad para la cocción en el sector Residencial. Demanda de solar térmica para la cocción en el sector Residencial. Demanda de solar térmica para la cocción en el sector Residencial. FF.HH.CK GWa Demanda de solar térmica para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. FIN.HH.CK GWa Demanda de energía final para la cocción en el sector Residencial. FF.HH.AC GWa Demanda de energía final para la cocción en el sector Residencial. FF.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. FF.HH.AP GWa Demanda de energía final para aire acondicionado en el sector Residencial. FF.HH.AP GWa Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial.	DH.HH.HW	GWa		
Residencial. FIN.HH.HW GWa TF.HH.CK GWa MB.HH.CK GWa BL.HH.CK GWa SS.HH.CK GWa SS.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa SS.HH.CK GWa SS.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.CK GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa GWa FF.HH.AC GWa GWa GWa GWa GWa GWa FF.HH.AC GWa GWa GWa GWa GWa FF.HH.AC GWa GWa GWa GWa GWa FF.HH.AC GWa GWa GWa GWa GWa GWa GWa GW	SS.HH.HW	GWa	Demanda de solar térmica para calentamiento de agua en el sector Residencial.	
TF.HH.CK GWa Demanda de combustible tradicional para la cocción en el sector Residencial. BH.CK GWa Demanda de biomasa moderna para la cocción en el sector Residencial. BELHH.CK GWa Demanda de electricidad para la cocción en el sector Residencial. SS.HH.CK GWa Demanda de solar térmica para la cocción en el sector Residencial. FF.HH.CK GWa Demanda de combustible fósil para la cocción en el sector Residencial. FIN.HH.CK GWa Demanda de energía final para la cocción en el sector Residencial. FF.HH.AC GWa Demanda de electricidad para aire acondicionado en el sector Residencial. FF.HH.AC GWa Demanda de combustible fósil para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. FF.HH.AP GWa Demanda de energía final para aire acondicionado en el sector Residencial. FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	FF.HH.HW	GWa		
MB.HH.CK EL.HH.CK GWa Demanda de biomasa moderna para la cocción en el sector Residencial. SS.HH.CK GWa Demanda de electricidad para la cocción en el sector Residencial. FF.HH.CK GWa Demanda de solar térmica para la cocción en el sector Residencial. FF.HH.CK GWa Demanda de combustible fósil para la cocción en el sector Residencial. EL.HH.AC GWa Demanda de electricidad para la cocción en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	FIN.HH.HW	GWa	Demanda de energía final para calentamiento de agua en el sector Residencial.	
EL.HH.CK SS.HH.CK GWa Demanda de electricidad para la cocción en el sector Residencial. FF.HH.CK GWa Demanda de solar térmica para la cocción en el sector Residencial. Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de energía final para la cocción en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. FIN.HH.AP GWa Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	TF.HH.CK	GWa	Demanda de combustible tradicional para la cocción en el sector Residencial.	
SS.HH.CK FF.HH.CK GWa FF.HH.CK GWa FIN.HH.CK GWa FIN.HH.CK GWa EL.HH.AC GWa EL.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa FF.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	МВ.НН.СК	GWa	•	
FF.HH.CK FIN.HH.CK GWa Demanda de combustible fósil para la cocción en el sector Residencial. Demanda de energía final para la cocción en el sector Residencial. Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de combustible fósil para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	EL.HH.CK	GWa	•	
FIN.HH.CK GWa Demanda de energía final para la cocción en el sector Residencial. FELHH.AC GWa Demanda de electricidad para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de combustible fósil para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. EL.HH.AP GWa Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. TFHH GWa Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	SS.HH.CK	GWa	-	
EL.HH.AC GWa Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. GWa Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	FF.HH.CK	GWa	Demanda de combustible fósil para la cocción en el sector Residencial.	
EL.HH.AC GWa Demanda de electricidad para aire acondicionado en el sector Residencial. Demanda de combustible fósil para aire acondicionado en el sector Residencial. FIN.HH.AC GWa Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. GWa Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	FIN.HH.CK	GWa	Demanda de energía final para la cocción en el sector Residencial.	
Residencial. FIN.HH.AC EL.HH.AP GWa Demanda de energía final para aire acondicionado en el sector Residencial. Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. TFHH GWa Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	EL.HH.AC	GWa		
EL.HH.AP GWa Demanda de electricidad para usos específicos en viviendas electrificadas (es decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. TFHH GWa Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. SSHH GWa Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	FF.HH.AC	GWa		
decir para otros propósitos diferentes a calefacción y calentamiento de agua, cocción y aire acondicionado). FF.HH.AP GWa Demanda de combustible fósil para iluminación y equipos no eléctricos en viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. TFHH GWa Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	FIN.HH.AC	GWa	Demanda de energía final para aire acondicionado en el sector Residencial.	
viviendas no electrificadas. FIN.HH.AP GWa Demanda de energía final para equipos domésticos e iluminación en el sector Residencial. TFHH GWa Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. DHHH GWa Demanda de calefacción centralizada en el sector Residencial. SHH GWa Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	EL.HH.AP	GWa	decir para otros propósitos diferentes a calefacción y calentamiento de agua,	
Residencial. TFHH GWa Demanda de combustible tradicional en el sector Residencial. Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. DHHH GWa Demanda de calefacción centralizada en el sector Residencial. SSHH GWa Demanda de solar térmica en el sector Residencial. FFHH GWa Demanda de combustible fósil (substituible) en el sector Residencial.	FF.HH.AP	GWa		
MBHH GWa Demanda de biomasa moderna en el sector Residencial. DHHH GWa Demanda de electricidad en el sector Residencial. DHHH GWa Demanda de calefacción centralizada en el sector Residencial. SSHH GWa Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.	FIN.HH.AP	GWa		
MBHH GWa ELHH GWa Demanda de biomasa moderna en el sector Residencial. Demanda de electricidad en el sector Residencial. DHHH GWa Demanda de calefacción centralizada en el sector Residencial. GWa GWa Demanda de solar térmica en el sector Residencial. GWa FFHH GWa Demanda de combustible fósil (substituible) en el sector Residencial.	TFHH	GWa	Demanda de combustible tradicional en el sector Residencial.	
ELHH DHHH GWa Demanda de electricidad en el sector Residencial. Demanda de calefacción centralizada en el sector Residencial. GWa GWa Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.			Demanda de biomasa moderna en el sector Residencial.	
DHHH SSHH GWa GWa FFHH GWa Demanda de calefacción centralizada en el sector Residencial. Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.			Demanda de electricidad en el sector Residencial.	
SSHH GWa GWa Demanda de solar térmica en el sector Residencial. Demanda de combustible fósil (substituible) en el sector Residencial.			Demanda de calefacción centralizada en el sector Residencial.	
FFHH GWa Demanda de combustible fósil (substituible) en el sector Residencial.			Demanda de solar térmica en el sector Residencial.	
			Demanda de combustible fósil (substituible) en el sector Residencial.	
THAT UWA I THE WALL TO SEE THE TOTAL	FINHH	GWa	Demanda de energía final en el sector Residencial.	

Tabla 4.2q Lista y definición de variables calculadas de la demanda de energía útil en el sector Servicios.

SECTOR SERVICIOS:			
DEMANDA DE ENERGÍA ÚTIL EN SERVICIOS: (ver hoja "US SS-D" del MAED D.xls)			
	10 ⁶ empl	_ ,	
LSER	10° empi	Número de empleos en el sector Servicios.	
TAREA	$10^6 \mathrm{m}^2$	Área total de piso del sector Servicios.	
TARSH	$10^6 \mathrm{m}^2$	Área total de piso del sector Servicios donde se requiere calefacción.	
US.SH.SER	GWa	Demanda de energía útil para calefacción en el sector Servicios.	
US.AC.SER	GWa	Demanda de energía útil para aire acondicionado en el sector Servicios.	
EI.MF.SER	kWh/UM	Intensidad energética del uso del combustible motor en el sector Servicios.	
EI.ELS.SER	kWh/UM	Intensidad energética del uso específico de la electricidad en el sector Servicios.	
EI.OTU.SER	kWh/MU	Intensidad energética de otros uso térmicos (excepto calefacción) en el sector Servicios.	
US.MF.SE(I)	GWa	Demanda de energía para combustible motor en el subsector I del sector Servicios. I=1,,NSSER	
US.MF.SER	GWa	Demanda de energía para combustible motor en el sector Servicios.	
MFSER			
US.ELS.SE(I)	GWa	Demanda de electricidad para usos específicos en el subsector I del sector Servicios. I=1,,NSSER	
US.ELS.SER	GWa	Demanda de electricidad para usos específicos en el sector Servicios.	
ELSSER			
US.OTU.SE(I)	GWa	Demanda de energía útil para otros usos térmicos (excepto calefacción) en el subsector I del sector Servicios. I=1,,NSSER	
US.OTU.SER	GWa	Demanda de energía útil para otros usos térmicos (excepto calefacción) en el sector Servicios.	
US.SER	GWa	Demanda total de energía útil en el sector Servicios.	

Tabla 4.2r Lista y definición de las variables calculadas de la demanda de energía final en el sector Servicios.

DEMANDA DE		OTAL EN EL SECTOR SERVICIO:
(ver hoja "FIN_S		
TF.TU.SER	GWa	Demanda de combustible tradicional para usos térmicos en el sector Servicios.
MB.TU.SER	GWa	Demanda de biomasa moderna para usos térmicos en el sector Servicios.
EL.TU.SER	GWa	Demanda de la electricidad para usos térmicos en el sector Servicios.
DH.TU.SER	GWa	Demanda de calefacción centralizada para usos térmicos en el sector Servicio.
SS.TU.SER	GWa	Demanda solar térmica para usos térmicos en el sector Servicios.
FF.TU.SER	GWa	Demanda de combustible fósil para usos térmicos en el sector Servicios.
FIN.TU.SER	GWa	Demanda de energía final para usos térmicos en el sector Servicios.
EL.AC.SER	GWa	Demanda de electricidad para aire acondicionado en el sector Servicios.
FF.AC.SER	GWa	Demanda de combustible fósil para aire acondicionado en el sector Servicios.
FIN.AC.SER	GWa	Demanda de energía final para aire acondicionado en el sector Servicios.
TFSER	GWa	Demanda de combustible tradicional en el sector Servicios.
MBSER	GWa	Demanda de biomasa moderna en el sector Servicios.
ELSER	GWa	Demanda de electricidad en el sector Servicios.
DHSER	GWa	Demanda de calefacción centralizada en el sector Servicios.
SSSER	GWa	Demanda solar térmica en el sector Servicios.
FFSER	GWa	Demanda de combustible fósil (substituible) en el sector Servicios.
FINSER	GWa	Demanda de energía final en el sector Servicios.

Tabla 4.2 s Lista y definición de las variables calculadas de la demanda de energía final total

para el país/región.

DEMANDA DE ENERGÍA FINAL TOTAL PARA EL PAÍS/REGIÓN: (ver hoja de cálculo "FINAL-D" del MAED_D.xls)		
(ver noja de cal	culo "FINAL	-D" del MAED_D.xis)
TF	GWa	Total global, uso térmico de combustibles tradicionales.
MB	GWa	Total global, uso térmico de biomasa moderna.
ELTU	GWa	Total global, uso térmico de electricidad.
ELNTU	GWa	Total global, uso no térmico de electricidad.
ELEC	GWa	Total global, demanda de electricidad.
DH	GWa	Total global, demanda de calefacción centralizada.
SS	GWa	Total global, demanda de energía solar.
FF	GWa	Total global, uso térmico de combustibles fósiles.
MF	GWa	Total global, demanda de combustible motor.
COALSP	GWa	Total global, usos específicos de carbón.
TFEED	GWa	Total global, demanda de material prima.
FINEN	GWa	Total global, demanda final de energía.
FINEN.CAP	MWh/cap	Demanda de energía final total per cápita.
EI.FIN.GDP	kWh/MU	Intensidad energética del uso de la energía final (es decir, consumo de energía final por unidad monetaria de PIB).

5 ECUACIONES PRINCIPALES USADAS EN EL MÓDULO 1 DEL MAED

5.1 Introducción

Esta sección del manual proporciona la secuencia lógica de los cálculos realizados por el módulo MAED_D.xls. Algunas de las ecuaciones son triviales pero pueden ayudar a esclarecer cómo varios parámetros del escenario influyen en los resultados, e igualmente ayudan a comprender el módulo MAED D.

En la descripción que da a continuación, las variables de entrada están escritas en negrilla para facilitar su distinción de las variables calculadas por el programa. Además, un parámetro calculado subrayado indica que este valor no aparece explícitamente en la Tablas del MAED_D.xls. Con el objetivo de mantener esta descripción tan compacta como sea posible, las definiciones de varias variables dadas en la Sección 4 del manual no se repiten, por lo general, después de la ecuación correspondiente. Por otro lado, se piensa que en la mayoría de los casos, el significado de las variables a menudo se aclara por el contexto, como se ilustra en algunos ejemplos.

5.2 Unidades de energía

Como las intensidades energéticas para varios usos de energía en los sectores Agricultura, Construcción, Minería, Manufacturero y Servicios se expresan en kWh/UM, el consumo de energía específico en el sector Residencial se expresa en kWh/viv/año o kWh/cap/año y en el sector Servicios en kWh/m²/año, la unidad de energía interna real del MAED D es Terawatthora (TWh=10⁹ kWh). Todas las ecuaciones del modelo incluyen también un factor de conversión de TWh a la unidad de energía definida por el usuario en la celda E50 de la hoja "Defs". Como tal, el consumo de energía /demanda puede también expresarse en esta unidad en todas las hojas del modelo. El factor de conversión correspondiente (CF1) de TWh a la unidad definida en la celda E50 debe ser indicado en la celda N50 de la hoja "Defs". Los totales de la demanda de energía final para un país/región en estudio, expresado en esa unidad se muestran en la hoja "Final-D". Pata tener estos totales convertidos a otra unidad de energía deseada por el usuario (Mtce, Mtep, Pj, etc.) la nueva unidad de energía debe ser definida por el usuario en la celda L50 y el factor de conversión correspondiente de la unidad de energía de la celda E50 a la nueva unidad debe aparecer en la celda M50. La demanda de energía expresada en esta última unidad se muestra en la hoja "Final Results (user Units)". Con este propósito se suministra un conjunto amplio de factores de conversión en la hoja "Convs" del archivo MAED D.xls.

5.3 Cálculos demográficos

En el MAED_D.xls (ver hoja "Demogr-D") la evolución de la población como una función de tiempo se define externamente como un parámetro del escenario. Esto puede realizarse de dos formas: se especificar el tamaño de la población PO para cada año de estudio o, alternativamente, se puede dar la cifra de la población para el primer año de referencia y suministrar valores de la tasa de crecimiento promedio anual de la población, POGR (en % por año), entre todos los años sucesivos del modelo. En el primer caso, el MAED_D calcula la tasa de crecimiento de la población, POGR y, en el segundo caso calcula PO, a través de las ecuaciones:

Donde: **PO** y **PO(-1)** representan el tamaño de la población en el año actual y en el año anterior respectivamente, **POGR** es la tasa de crecimiento de la población entre dos años del modelo, y

INCR es el número de años entre el año actual y el año anterior del modelo.

Otros parámetros demográficos, como son el porcentaje de población urbana (PURB), el tamaño promedio de las viviendas en áreas urbanas (CAPUH) y en áreas rurales (CAPRH), el porcentaje de la población con edad entre 15 y 64 años de la población total (fuerza laboral potencial, PLF), porcentaje de la fuerza laboral potencial que está trabajando realmente (PARTLF) y la fracción de la población total que vive en grandes ciudades (POPLC) también son definidos exógenamente en el modelo. A partir de éstos se derivan los siguientes parámetros que se usan en los cálculos de la demanda de energía de los sectores Transporte, Residencial y Servicios:

- Número de viviendas urbanas (10⁶)

UHH =
$$PO * (PURB / 100) / CAPUH$$

- Porcentaje de población rural (%)

PRUR =
$$100 - PURB$$

- Número de viviendas rurales (10⁶)

RHH =
$$PO * (1 - PURB / 100) / CAPRH$$

- Población en grandes ciudades (10⁶)

POLC =
$$PO * (POPLC / 100)$$

- Fuerza laboral activa total (10⁶)

ALF =
$$PO * (PLF / 100) * (PARTLF / 100)$$

5.4 Cálculos macroeconómicos

Al igual que la evolución de la población, el crecimiento del PIB (Producto Interno Bruto, Y) también se define exógenamente como un parámetro del escenario y se expresa de manera similar en dos formas, en términos de los valores de Y (en unidad monetaria constante del año base o de otro año de referencia) para cada año del modelo o entregando el valor del PIB solo para el primer año de referencia junto a los valores de la tasa de crecimiento promedio anual del PIB, YGR (% por año) entre todos los años sucesivos del modelo. El MAED_D.xls (ver hoja de trabajo "GDP-D"), calcula YGR para el primer caso y Y en el segundo, según las siguientes relaciones:

YGR = {
$$(Y/Y(-1))^{(1/INCR)} - 1$$
 } * 100
y
$$Y = Y(-1) * (1 + (YGR/100))^{INCR}$$

Donde: Y y Y(-1) representa los valores del PIB en el año actual y en el año anterior más cercano respectivamente, y YGR es la tasa de crecimiento del PIB entre los dos años del modelo. Nuevamente, INCR representa el número de años entre el año actual y el año anterior más cercano.

Los cambios en la composición estructural del PIB por sectores principales, así como los cambios estructurales del valor agregado de cada sector por cada uno de sus subsectores, durante el período de estudio, también los define externamente el usuario como parte del escenario. A partir de los parámetros de entrada de este escenario el módulo calcula, para cada año, primero la formación del PIB por sectores económicos y después el valor agregado por cada subsector, de la siguiente manera:

Formación del PIB (Y) por sector económico y subsector (10⁹ unidades monetarias, UM):

YAGR	= Y * (PYAGR / 100)	(AGRicultura)
YCON	= Y * (PYCON / 100)	(CONstrucción)
YMIN	= Y * (PYMIN / 100)	(MINería)
YMAN	= Y * (PYMAN / 100)	(Manufacturero)
YSER	= Y * (PYSER / 100)	(SERvicio)
YEN	= Y * (PYEN / 100)	(ENergía)

Donde: **PYAGR, PYCON, PYMIN, PYMAN, PYSER** y **PYEN** representan la participación en % de cada sector económico en la formación del PIB, como se relaciona en la hoja de cálculo "GDP-D".

Los valores agregados (VA) de los subsectores de Agricultura, Construcción, Minería, Manufacturero y Servicios son:

YAG(I) = YAGR * (PVAAG(I) / 100)	I=1,,NSAGR (AGRicultura)
YCO(I) = YCON * (PVACO(I) / 100)	I=1,,NSCON (CONstrucción)
YMI(I) = YMIN * (PVAMI(I) / 100)	I=1,,NSMIN (MINería)
YMA(I) = YMAN * (PVAMA(I) / 100)	I=1,,NSMAN (Manufacturero)
YSE(I) = YSER * (PVASE(I) / 100)	I=1,,NSSER (SERvicio)

Donde: PVAAG(I), PVACO(I), PVAMI(I), PVAMA(I) y PVASE(I) constituyen la participación en % de cada subsector I en el valor agregado del sector económico principal respectivo (como se establece en la hoja "GDP-D"), y NSAGR, NSCON, NSMIN, NSMAN y NSSER representan el número de subsectores en cada uno de los sectores económicos principales.

PIB total per capita (UM/CAP):

Y.CAP = Y / PO * 1000

Valor agregado del sector económico per cápita (UM/CAP):

YAGR.CAP	=	YAGR / PO * 1000	(AGRicultura)
YCON.CAP	=	YCON / PO * 1000	(CONstrucción)
YMIN.CAP	=	YMIN / PO * 1000	(MINería)
YMAN.CAP	=	YMAN / PO * 1000	(Manufacturero)
YSER.CAP	=	YSER / PO * 1000	(SERvicio)
YEN.CAP	=	YEN / PO * 1000	(ENergía)

<u>Tasas de crecimiento del valor agregado del sector/subsector, PIB Total y PIB per cápita (%):</u>

Las ecuaciones anteriores son similares a las descritas previamente para las variables **POGR** y **YGR**.

5.5 Cálculos de la demanda de energía

5.5.1 Sector industria

(a) Intensidades energéticas promedio en Agricultura, Construcción, Minería y Manufacturero (ver hoja de trabajo "EnInt-D" del MAED D.xls)

Intensidades energéticas de uso de combustible motor (MF):

EI.MF.AGR =
$$\sum_{I=1}^{NSAGR} (EI.MF.AG(I) * PVAAG(I))/100$$
 (AGRicultura)

EI.MF.CON =
$$\sum_{I=1}^{NSCON} (EI.MF.CO(I) * PVACO(I))/100$$
 (CONstrucción)

EI.MF.MIN =
$$\sum_{I=1}^{NSMIN} (EI.MF.MI(I) * PVAMI(I))/100$$
 (MINería)

EI.MF.MAN =
$$\sum_{I=1}^{NSMAN} (EI.MF.MA(I) * PVAMA(I))/100$$
 (Manufacturero)

Intensidades energéticas de usos específicos de electricidad (ELS):

EI.ELS.AGR =
$$\sum_{I=1}^{NSAGR} (EI.ELS.AG(I) * PVAAG(I))/100$$
 (AGRicultura)

EI.ELS.CON =
$$\sum_{I=1}^{NSCON} (EI.ELS.CO(I) * PVACO(I))/100$$
 (CONstrucción)

EI.ELS.MIN =
$$\sum_{I=1}^{NSMIN} (EI.ELS.MI(I) * PVAMI(I)) / 100$$
 (MINería)

EI.ELS.MAN =
$$\sum_{I=1}^{NSMAN} (EI.ELS.MA(I)*PVAMA(I))/100$$
 (Manufacturero)

Intensidades energéticas de usos térmicos (TU):

EI.TU.AGR =
$$\sum_{I=1}^{NSAGR} (EI.TU.AG(I)*PVAAG(I))/100$$
 (AGRicultura)

EI.TU.CON =
$$\sum_{I=1}^{NSCON} (EI.TU.CO(I) * PVACO(I))/100$$
 (CONstrucción)

EI.TU.MIN =
$$\sum_{I=1}^{NSMIN} (EI.TU.MI(I) * PVAMI(I))/100$$
 (MINería)

EI.TU.MAN =
$$\sum_{I=1}^{NSMAN} (EI.TU.MA(I) * PVAMA(I))/100$$
 (Manufacturero)

(b) Demanda de energía de Agricultura, Construcción y Minería (ACM)

La demanda de combustible motor y para usos específicos de la electricidad (tales como iluminación, fuerza motriz y electrólisis) se calcula directamente en término de energía final. Sin embargo, la demanda de energía térmica primero se calcula en término de energía útil y luego se convierte a energía final sobre la base de los supuestos del escenario respecto a la penetración de las fuentes de energía disponibles (combustibles tradicionales, biomasa moderna, electricidad, solar térmica y combustibles fósiles) en este mercado y sus eficiencias (relativas al uso de la electricidad con tecnologías convencionales).

(b.1) Demanda de energía para combustible motor, electricidad (usos específicos) y usos térmicos (ver hojas de trabajo "UsEne-D" y "FIN_ACM" del MAED_D.xls)

Demanda de energía final para combustible motor (MF):

$$US.MF.AG(I) = EI.MF.AG(I)*YAG(I)*CF1 I=1,...,NSAGR (AGR subsector I)$$

MFAGR = US.MF.AGR
=
$$\sum_{I=1}^{NSAGR}$$
 US.MF.AG(I) (AGR)
= $\sum_{I=1}^{NSAGR}$ (EI.MF.AG(I)*YAG(I))*CF1

$$US.MF.CO(I) = EI.MF.CO(I)*YCO(I)*CF1 I=1,....,NSCON (CON subsector I)$$

MFCON = US.MF.CON
=
$$\sum_{I=1}^{NSCON}$$
 US.MF.CO(I) (CON)
= $\sum_{I=1}^{NSCON}$ (EI.MF.CO(I)*YCO(I))*CF1

MFMIN = US.MF.MIN
=
$$\sum_{I=1}^{NSMIN}$$
 US.MF.MI(I) (MIN)
= $\sum_{I=1}^{NSMIN}$ (EI.MF.MI(I)*YMI(I))*CF1

$$MFACM = MFAGR + MFCON + MFMIN$$
 (ACM)

Demanda final para Usos Específicos de electricidad (ELS):

ELSAGR = US.ELS.AGR
=
$$\sum_{I=1}^{NSAGR}$$
 US.ELS.AG(I) (AGR)
= $\sum_{I=1}^{NSAGR}$ (EI.ELS.AG(I)*YAG(I))*CF1

$$US.ELS.CO(I) = \textbf{EI.ELS.CO(I)}*YCO(I)*CF1 \qquad I=1,....,NSCON$$
(CON subsector I)

ELSCON = US.ELS.CON
=
$$\sum_{I=1}^{NSCON}$$
 US.ELS.CO(I) (CON)
= $\sum_{I=1}^{NSCON}$ (EI.ELS.CO(I)*YCO(I))*CF1

ELSMIN = US.ELS.MIN
=
$$\sum_{I=1}^{NSMIN}$$
 US.ELS.MI(I) (MIN)
= $\sum_{I=1}^{NSMIN}$ (EI.ELS.MI(I)*YMI(I))*CF1

$$ELSACM = ELSAGR + ELSCON + ELSMIN$$
 (ACM)

Demanda de energía útil para Usos Térmicos (TU):

TUAGR =
$$\sum_{I=1}^{NSAGR} US.TU.AG(I)$$
=
$$\sum_{I=1}^{NSAGR} (EI.TU.AG(I) * YAG(I)) * CF1$$
(AGR)

$$US.TU.CO(I) = EI.TU.CO(I)*YCO(I)*CF1 I=1,....,NSCON (CON subsector I)$$

TUCON =
$$\sum_{I=1}^{NSCON} \text{US.TU.CO(I)}$$

$$= \sum_{I=1}^{NSCON} (\text{EI.TU.CO(I)}* \text{YCO(I)})* \text{CF1}$$

$$\text{US.TU.MI(I)} = \text{EI.TU.MI(I)}* \text{YMI(I)}* \text{CF1}$$

$$= \sum_{I=1}^{NSMIN} \text{US.TU.MI(I)}$$

$$= \sum_{I=1}^{NSMIN} \text{US.TU.MI(I)}$$

$$= \sum_{I=1}^{NSMIN} (\text{EI.TU.MI(I)}* \text{YMI(I)})* \text{CF1}$$

$$(CON)$$

$$= \sum_{I=1}^{NSMIN} (\text{MIN)} \text{Importance of the properties of the pro$$

$$US.TU.ACM = US.TU.AGR + US.TU.CON + US.TU.MIN$$
 (ACM)

En las ecuaciones anteriores, **CF1** es el factor para convertir de TWh, que es la unidad de energía interna del modelo, a la unidad de energía definida en la celda E50 de la hoja de trabajo "Defs".

(b.2) Penetración promedio de las formas de energía disponibles en la energía térmica útil para ACM (%): (ver Tabla 5-4 de la hoja de trabajo "ACMFac-D" en MAED D.xls)

En las tablas 5-1 a 5-3 de la hoja "ACMFac-D" se introduce la penetración de diferentes portadores energéticos (combustibles tradicionales, Biomasa Moderna, electricidad, solar y combustibles fósiles) dentro del mercado de demanda de energía térmica útil de cada sector (Agricultura, Construcción y Minería). Basado en las penetraciones relativas en estos sectores y en la participación de cada sector en el mercado total o en la demanda de energía térmica útil de los tres sectores, la penetración promedio ponderada de cada portador energético en el mercado (Tabla 5-4) se calcula como sigue:

Combustibles tradicionales (TF):

Biomasa moderna (MB):

```
MBPACM = MBPAGR * EI.TU.AGR * YAGR

+ MBPCON * EI.TU.CON * YCON

+ MBPMIN * EI.TU.MIN * YMIN

/ (EI.TU.AGR * YAGR + EI.TU.COM * YCON

+ EI.TU.MIN * YMIN)

= (MBPAGR * US.TU.AGR + MBPCON * US.TU.CON

+ MBPMIN * US.TU.MIN)/US.TU.ACM
```

Electricidad (EL-convencional):

Sistemas Solar térmico (SS):

```
SSPACM = SSPAGR * EI.TU.AGR * YAGR

+ SSPCON * EI.TU.CON * YCON

+ SSPMIN * EI.TU.MIN * YMIN

/ (EI.TU.AGR * YAGR + EI.TU.COM * YCON

+ EI.TU.MIN * YMIN)

= (SSPAGR * US.TU.AGR + SSPCON * US.TU.CON

+ SSPMIN * US.TU.MIN)/US.TU.ACM
```

Combustibles Fósiles (FF):

```
FFPACM = FFPAGR * EI.TU.AGR * YAGR

+ FFPCON * EI.TU.CON * YCON

+ FFPMIN * EI.TU.MIN * YMIN

/ (EI.TU.AGR * YAGR + EI.TU.COM * YCON

+ EI.TU.MIN * YMIN)

= (FFPAGR * US.TU.AGR + FFPCON * US.TU.CON

+ FFPMIN * US.TU.MIN)/US.TU.ACM
```

(b.3) Conversión de la demanda de energía útil para usos térmicos a demanda de energía final en ACM (ver hoja "FIN ACM" en el MAED D.xls)

Agricultura (AGR):

TFAGR = US.TU.AGR * (TFPAGR/100)/(TFEAGR/100) (combustibles tradicionales)

MBAGR = US.TU.AGR * (MBPAGR/100)/(MBEAGR/100) (biomasa moderna)

ELHAGR = US.TU.AGR * (ELPAGR/100) (electricidad para usos térmicos)

SSAGR = US.TU.AGR*(SSPAGR/100) (solar térmica)

FFAGR = US.TU.AGR*(FFPAGR/100)/(FFEAGR/100) (Combustibles

fósiles)

Construcción (CON):

TFCON = US.TU.CON * (TFPCON/100)/(TFECON/100) (Combustibles tradicionales)

MBCON = US.TU.CON * (MBPCON/100)/(MBECON/100) (biomasa moderna)

ELHCON = US.TU.CON * (ELPCON/100) (electricidad para usos térmicos)

SSCON = US.TU.CON*(SSPCON/100) (solar térmica)

FFCON = US.TU.CON*(FFPCON/100)/(FFECON/100) (Combustibles

fósiles)

Minería (MIN):

TFMIN = US.TU.MIN*(TFPMIN/100)/(TFEMIN/100) (Combustibles tradicionales)

MBMIN = US.TU.MIN * (MBPMIN / 100) / (MBEMIN / 100) (biomasa moderna)

ELHMIN = US.TU.CON * (ELPMIN / 100) (electricidad para usos térmicos)

SSMIN = US.TU.MIN*(SSPMIN/100) (solar térmica)

FFMIN = US.TU.MIN * (FFPMIN/100)/(FFEMIN/100) (Combustibles fósiles)

(b.4) Demanda de energía final de la Agricultura (AGR)

(ver hoja "FIN ACM" en el MAED D.xls)

ELAGR = ELSAGR + ELHAGR (electricidad, total)

FINAGR = MFAGR + ELAGR + TFAGR + MBAGR + SSAGR + FFAGR (energía final total) Participación de las formas de energía en la demanda total de energía final de la Agricultura (%):

TFAGR.S	=	TFAGR/FINAGR*100	(Combustibles tradicionales)
MBAGR.S	=	MBAGR/FINAGR*100	(biomasa moderna)
ELAGR.S	=	ELAGR/FINAGR*100	(electricidad)
SSAGR.S	=	SSAGR/FINAGR*100	(solar térmica)
FFAGR.S	=	FFAGR/FINAGR*100	(Combustibles fósiles)
MFAGR.S	=	MFAGR/FINAGR*100	(combustible motor)

<u>Demanda de energía final por valor agregado (intensidad energética) en la Agricultura (kWh/UM):</u>

EL.TF.AGR = (TFAGR / YAGR) / CF1	(Combustibles tradicionales)
EL.MB.AGR = (MBAGR / YAGR) / CF1	(biomasa moderna)
EL.EL.AGR = (ELAGR / YAGR) / CF1	(electricidad)
EL.SS.AGR = (SSAGR / YAGR) / CF1	(solar térmica)
EL.FF.AGR = (FFAGR / YAGR) / CF1	(Combustibles fósiles)
EL.MF.AGR = (MFAGR / YAGR) / CF1	(combustible motor)
EL.FIN.AGR = (FINAGR / YAGR) / CF1	(energía final total)

(b.5) Demanda de energía final de la Construcción (CON)

(ver hoja "FIN_ACM" en el MAED_D.xls)

ELCON	=	ELSCON + ELHCON	(electricidad, total)
FINCON	=	MFCON + ELCON + TFCON + MBCON	(an anala final tatal)
		+ SSCON + FFCON	(energía final total)

Participación de las formas de energía en la demanda total de energía final de la Construcción (%):

TFCON.S	=	TFCON/FINCON*100	(Combustibles
			tradicionales)
MBCON.S	=	MBCON/FINCON*100	(biomasa moderna)
ELCON.S	=	ELCON/FINCON*100	(electricidad)
SSCON.S	=	SSCON/FINCON*100	(solar térmica)

FFCON.S = FFCON/FINCON*100(Combustibles fósiles) MFCON.S = MFCON/FINCON*100(combustible motor) Demanda de energía final por valor agregado (intensidad energética) en la Construcción (kWh/MU): EL.TF.CON = (TFCON / YCON) / CF1(Combustibles tradicionales) EL.MB.CON = (MBCON / YCON) / CF1(biomasa moderna) EL.EL.CON = (ELCON / YCON) / CF1(electricidad) EL.SS.CON = (SSCON / YCON) / CF1(solar térmica) EL.FF.CON = (FFCON / YCON) / CF1(Combustibles fósiles) EL.MF.CON = (MFCON / YCON) / CF1(combustible motor) EL.FIN.CON = (FINCON/YCON)/CF1(energía final total) (b.6) Demanda de energía final de la Minería (MIN) (ver hoja FIN ACM" en el MAED D.xls) ELMIN = ELSMIN + ELHMIN(electricidad, total) FINMIN = MFMIN + ELMIN + TFMIN + MBMIN(energía final total) + SSMIN + FFMIN Participación de las formas de energía en la demanda total de energía final de la Minería (%): TFMIN.S = TFMIN/FINMIN*100(Combustibles tradicionales) MBMIN.S = MBMIN/FINMIN*100(biomasa moderna) ELMIN.S = ELMIN/FINMIN*100 (electricidad) SSMIN.S = SSMIN/FINMIN*100(solar térmica) FFMIN.S = FFMIN/FINMIN*100(Combustibles fósiles) MFMIN.S = MFMIN/FINMIN*100(combustible motor) Demanda de energía final por valor agregado (intensidad energética) en la Minería (kWh/MU): EL.TF.MIN = (TFMIN / YMIN) / CF1(Combustibles tradicionales) EL.MB.MIN = (MBMIN / YMIN) / CF1(biomasa moderna)

EL.EL.MIN = (ELMIN / YMIN) / CF1

(electricidad))

EL.SS.MIN = (SSMIN / YMIN) / CF1 (solar térmica)

EL.FF.MIN = (FFMIN / YMIN) / CF1 (Combustibles fósiles)

EL.MF.MIN = (MFMIN / YMIN) / CF1 (combustible motor)

EL.FIN.MIN = (FINMIN / YMIN) / CF1 (energía final total)

(b.7) Demanda de energía final de Agricultura, Construcción y Minería (ACM) (ver hoja "FIN ACM" en el MAED D.xls)

Demanda Total de energía final por forma de energía

TFACM = TFAGR + TFCON + TFMIN(Combustibles tradicionales) MBACM = MBAGR + MBCON + MBMIN(biomasa moderna) ELSACM = ELSAGR + ELSCON + ELSMIN(electricidad parar uso específico) ELHACM = ELHAGR + ELHCON + ELHMIN(electricidad para uso térmico) ELACM = ELAGR + ELCON + ELMIN(electricidad, total) SSACM = SSAGR + SSCON + SSMIN(solar térmica) FFACM = FFAGR + FFCON + FFMIN(Combustibles fósiles) MFACM = MFAGR + MFCON + MFMIN(combustible motor)

FINACM = MFACM + ELACM + TFACM + MBACM + SSACM + FFACM

= FINAGR + FINCON + FINMIN (energía final total)

Participación de las formas de Energía en la demanda total de energía final de ACM (%):

TFACM.S = TFACM/FINACM*100 (Combustibles tradicionales)

MBACM.S = MBACM/FINACM*100 (biomasa moderna)

ELACM.S = ELACM/FINACM*100 (electricidad)

SSACM.S = SSACM/FINACM*100 (solar térmica)

FFACM.S = FFACM/FINACM*100 (Combustibles fósiles)

MFACM.S = MFACM/FINACM*100 (combustible motor)

Demanda de energía final por valor agregado (intensidad energética) en ACM (kWh/MU):

EL.TF.ACM = (TFACM / YACM) / CF1 (Combustibles tradicionales)

EL.MB.ACM = (MBACM / YACM) / CF1 (biomasa moderna)

EL.EL.ACM = (ELACM / YACM) / CF1 (electricidad)

EL.SS.ACM = (SSACM / YACM) / CF1 (solar térmica)

EL.FF.ACM = (FFACM / YACM) / CF1 (Combustibles fósiles)

EL.MF.ACM = (MFACM / YACM) / CF1 (combustible motor)

EL.FIN.ACM = (FINACM / YACM) / CF1 (energía final total)

(c) Demanda de energía de Manufacturero (MAN)

La demanda de energía del sector Manufacturero se calcula de forma similar a los sectores ACM: la demanda para el combustible motor y para usos específicos de la electricidad (tales como iluminación, fuerza motriz y electrólisis) es calculada directamente en términos de energía final. La demanda para energía térmica primero se calculada en términos de energía útil y luego se convierte en energía final teniendo en cuenta los supuestos del escenario sobre la penetración de las fuentes de energía alternativas en este mercado de demanda y sus eficiencias relativas al uso de la electricidad con tecnologías convencionales: combustibles tradicionales, biomasa moderna, electricidad (convencional y bombas térmicas), calefacción centralizada, cogeneración, solar térmica y combustibles fósiles.

(c.1) Demanda de energía final para combustible motor, electricidad (usos específicos) y demanda de energía útil para usos térmicos

(ver hojas "UsEne-D" y "FIN Ind-D" del MAED D.xls)

Subsector Manufacturero I:

Sector Manufacturero:

$$MFMAN = US.MF.MAN$$

$$= \sum_{I=1}^{NSMAN} US.MF.MA(I)$$

$$= \sum_{I=1}^{NSMAN} (EI.MF.MA(I)*YMA(I))*CF1$$

ELSMAN = US.ELS.MAN
=
$$\sum_{I=1}^{NSMAN}$$
 US.ELS.MA(I)
= $\sum_{I=1}^{NSMAN}$ (ELS)

US.TU.MAN =
$$\sum_{I=1}^{NSMAN} US.TU.MA(I)$$
=
$$\sum_{I=1}^{NSMAN} (EI.TU.MA(I)*YMA(I))*CF1$$
(TU)

Para convertir la demanda de energía térmica útil del sector Manufacturero en energía final hay que tener en cuenta los supuestos definidos en el escenario sobre la penetración de fuentes de energía disponibles en sus mercados potenciales respectivos y sus eficiencias. Estos mercados potenciales son definidos ampliamente por tres procesos térmicos (categorías de demanda), es decir:

- Generación de vapor;
- Hornos/calor directo (excluyendo electrólisis y la reducción del mineral ferroso mediante el coque los cuales son considerados como usos específicos);
- Calefacción y calentamiento de agua

Demanda de energía térmica útil (US) por subsector y por tipo de uso: (ver hoja "ManFac1-D" del MAED D.xls)

$$USMAN(I,1) = EI.TU.MA(I)*YMA(I)*(PUSIND(I,1)/100)*CF1 (para el subsector I; \\ = US.TU.MA(I)*(PUSIND(I,1)/100)*CF1 (generación de vapor)$$

$$USMAN(I,2) = EI.TU.MA(I)*YMA(I)*(PUSIND(I,2)/100)*CF1$$

$$= US.TU.MA(I)*(PUSIND(I,2)/100)*CF1$$
 (hornos/calor directo)

$$USMAN(I,3) = EI.TU.MA(I)*YMA(I)*(PUSIND(I,3)/100)*CF1$$

$$= US.TU.MA(I)*(PUSIND(I,3)/100)*CF1$$
 (calefacción/calentamiento de agua)

o, en general

$$USMAN(I,J) = EI.TU.MA(I)*YMA(I)*(PUSIND(I,J)/100)*CF1$$
$$= US.TU.MA(I)*(PUSIND(I,J)/100)*CF1$$

Donde: Subsectores de Manufacturero: I=1,....,NSMAN, y

Procesos Térmicos: (J=1) Generación de vapor (STM)

(J=2) Hornos/ calor directo (FUR)

(J=3) calefacción/calentamiento agua (SWH)

En las ecuaciones anteriores, CF1 es el factor de conversión de TWh a la unidad de energía definida en la celda E50 de la hoja "Defs".

Demanda de energía térmica útil (US) en la Manufactura por tipo de aplicación: (ver hoja "ManFac1-D" del MAED D.xls)

US.STM.MAN = USMAN(1)
=
$$\sum_{I=1}^{NSMAN}$$
 USMAN(I,1) (generación de vapor)
US.FUR.MAN = USMAN(2)
= $\sum_{I=1}^{NSMAN}$ USMAN(I,2) (hornos/calor directo)
US.SWH.MAN = USMAN(3)
= $\sum_{I=1}^{NSMAN}$ USMAN(I,3) (calefacción/calentamiento agua)

Demanda de energía térmica útil (US) por subsector Manufacturero:

$$USMA(I) = USMAN(I,1) + USMAN(I,2) + USMAN(I,3)$$
 $I=1,...,NSMAN$

Demanda total de energía térmica útil en la Manufacturera:

$$USMAN(4) = US.STM.MAN + US.FUR.MAN + US.SWH.MAN$$

$$= \sum_{I=1}^{3} USMAN(I)$$

$$= \sum_{I=1}^{NSMAN} USMA(I)$$

+ PMEL(3) * USMAN(3) / USMAN(4)

(c.2) Penetración en el mercado (PM) de las formas de energía disponibles (%) (ver Tablas 8-5 and 8-3 en la hoja "ManFac2-D" del MAED D.xls)

Electricidad (EL-convencional):

Electricidad (HP-bombas térmicas):

$$PMHP(4) = (PMHP(1)*USMAN(1) + PMHP(2)*USMAN(2) + PMHP(3)*USMAN(3))/USMAN(4)$$
 (térmica útil total)

Calefacción centralizada (DH):

$$PMDH(1) = DHP.STM.MAN$$
 (generación de vapor)

$$PMDH(2) = 0$$
 (hornos/calor directo)

$$PMDH(4) = (PMDH(1)*USMAN(1) + PMDH(2)*USMAN(2) + PMDH(3)*USMAN(3))/USMAN(4)$$
 (térmica útil total)

Sistemas térmicos solares (SS):

$$PMSS(1) = SSP.STM.MAN*(FIDS/100)$$
 (generación de vapor)

$$PMSS(2) = 0$$
 (hornos/calor directo)

$$PMSS(4) = (PMSS(1)*USMAN(1) + PMSS(2)*USMAN(2) + PMSS(3)*USMAN(3))/USMAN(4)$$
 (térmica útil total)

Cogeneración (dentro de las plantas industriales) contrario a la cogeneración en plantas térmicas centrales (CG):

$$PMCG(1) = CGP.STM.MAN$$
 (generación de vapor)

$$PMCG(2) = 0$$
 (hornos/calor directo)

$$PMCG(4) = (PMCG(1)*USMAN(1) + PMCG(2)*USMAN(2) + PMCG(3)*USMAN(3))/USMAN(4)$$
 (térmica útil total)

Combustibles Tradicionales (TF):

$$PMTF(1) = TFPMAN(1)$$
 (generación de vapor)

$$PMTF(2) = TFPMAN(2)$$
 (horno/calor directo)

$$PMTF(4) = (PMTF(1)*USMAN(1) + PMTF(2)*USMAN(2) + PMTF(3)*USMAN(3)/USMAN(4)$$
 (térmica útil total)

Biomasa Moderna (MB):

$$PMMB(1) = MBPMAN(1)$$
 (generación de vapor)

$$PMMB(2) = MBPMAN(2)$$
 (horno/calor directo)

$$PMMB(4) = (PMMB(1)*USMAN(1) + PMMB(2)*USMAN(2) + PMMB(3)*USMAN(3))/USMAN(4)$$
(térmica útil total)

Combustibles fósiles (FF) (restantes):

$$PMFF(1) = 100 - (PMEL(1) + PMHP(1) + PMDH(1) + PMSS(1) + PMCG(1) + PMTF(1) + PMMB(1))$$
 (generación de vapor)

$$PMFF(2) = 100 - (PMEL(2) + PMHP(2) + PMDH(2) + PMSS(2) + PMCG(2) + PMTF(2) + PMMB(2))$$
 (hornos/calor directo)

$$PMFF(4) = (PMFF(1)*USMAN(1) + PMFF(2)*USMAN(2) + PMFF(3)*USMAN(3))/USMAN(4)$$
 (térmica útil total)

(c.3) Eficiencias promedio de los combustibles fósiles, combustibles tradicionales y Biomasa Moderna para procesos térmicos (%, relativo a la electricidad): (ver Tabla 8-2 en la hoja "Man Fac2-D del MAED D.xls)

Combustibles Fósiles (FF):

<u>Combustibles Tradicionales (TF):</u>

si

$$PMTF(4) = 0$$

entonces

$$TFEMAN(4) = (TFEMAN(1) + TFEMAN(2) + TFEMAN(3))/3$$

de lo contrario

Biomasa Moderna (MB):

si

PMMB(4) = 0

entonces

$$MBEMAN(4) = (MBEMAN(1) + MBEMAN(2) + MBEMAN(3))/3$$

de lo contrario

(c.4) Conversión de energía térmica útil en demanda de energía final (ver hoja "FIN_Ind-D" del MAED_D.xls)

Cogeneración (CG):

$$COGSTH = USMAN(4)*(PMCG(4)/100)$$

Biomasa Moderna (MB):

$$MBMAN = USMAN(4)*PMMB(4)/MBEMAN(4)+COGSTH$$
$$*(1+1/HELRAT)/(EFFCOG/100)*(MBSCOG/100)$$

Combustibles fósiles (FF):

Electricidad para usos térmicos (ELH):

ELHMAN =
$$USMAN(4)*(PMEL(4) + PMPH(4) / HPEMAN)/100$$

- $COGSTH/HELRAT$

Combustibles tradicionales (TF):

$$TFMAN = USMAN(4) * PMTF(4) / TFEMAN(4)$$

Calefacción centralizada (DH):

$$DHMAN = USMAN(4)*(PMDH(4)/100)$$

Sistemas térmicos solares (SS):

$$SSMAN = USMAN(4)*(PMSS(4)/100)$$

(c.5) Uso de coque para la producción de lingotes de hierro:

(ver Tabla8-4 en la hoja "Man Fac2-D" del MAED D.xls)

$$PSTEEL = CPST(1) + CPST(2) * YMA(1)$$

COKE =
$$PSTEEL*(BOF/100)*(IRONST/100)$$

*(EICOK/1000)*CF2*CF1

Donde: CF2 es el factor para convertir de Mtce a TWh, y CF1 es el factor para convertir los TWh a la unidad de energía definida en la celda E50 de la hoja "Defs".

(c.6) Requerimientos de materia prima:

(ver Tabla 8-4 en la hoja "Man Fac2-D" del MAED D.xls)

```
PFEED = CFEED(1) + CFEED(2) * YMA(1)
```

COKE = PFEED*CF3*CF1

Donde: CF3 es el factor para convertir de Mtoe a TWh, y CF1 es el factor para convertir de TWh a la unidad de energía definida en la celda E50 de la hoja "Defs".

Nota: Como el número de subsectores en el sector Manufacturero es una variable definida por el usuario que puede variar entre 1 y 10, la producción de acero y los requerimientos de materias primas para la industria petroquímica son calculados en el modelo como muna función de valor agregado del primer subsector definido en el Sector Manufacturero. Por consiguiente, si el sector Manufacturero es desagregado en varios subsectores, para que sea consistente la industria de fabricación del acero y la industria petroquímica deben ser consideradas, tanto desde el punto de vista del consumo de energía como para el valor agregado, en el primer subsector Manufacturero.

(c.7) Demanda de energía final en la Manufacturero:

(ver hoja "FIN_Ind-D" del MAED_D.xls)

Demanda total de energía final por forma de energía

Además de las demandas de energía final para los combustibles tradicionales (TFMAN), las Biomasa Moderna (MBMAN), calefacción centralizada (DHMAN), solar (SSMAN), combustibles fósiles (FFMAN), combustible motor (MFMAN), coque (COKE) y materias primas (FEED) calculadas anteriormente, también se determinan la demanda total de energía final de electricidad y la demanda de energía final para todo el sector Manufacturero:

```
ELMAN = ELSMAN + ELHMAN

= ELSMAN + USMAN(4) * (PMEL(4) + PMHP(4)

/HPEMAN)/100 - {USMAN(4) *

(PMCG(4)/100}/HELRAT (electricidad)
```

Participación de las formas de energía en la demanda total de energía final de Manufacturera (%):

TFMAN.S	= TFMAN / FINMAN*100	(combustibles tradicionales)
MBMAN.S	= MBMAN / FINMAN*100	(Biomasa Moderna)
ELMAN.S	= ELMAN / FINMAN * 100	(electricidad)
DHMAN.S	= DHMAN / FINMAN*100	(calefacción centralizada)
SSMAN.S	= SSMAN / FINMAN*100	(solar térmica)

FFMAN.S = FFMAN / FINMAN*100 (combustibles fósiles)

MFMAN.S = MFMAN / FINMAN*100 (combustible motor)

COKEMAN.S = COKE / FINMAN*100 (coque)

FEEDMAN.S = FEED / FINMAN*100 (materias primas)

Demanda de energía final por valor agregado (intensidad energética) en la Manufacturera (kWh/MU):

EI.TF.MAN = (FMAN / YMAN) / CF1 (combustibles

tradicionales)

EI.MB.MAN = (MBMAN / YMAN) / CF1 (Biomasa Moderna)

EI.EL.MAN = (ELMAN / YMAN) / CF1 (electricidad)

EI.DH.MAN = (DHMAN / YMAN) / CF1 (calefacción

centralizada)

EI.SS.MAN = (SSMAN / YMAN) / CF1 (solar térmica)

EI.FF.MAN = (FFMAN / YMAN) / CF1 (combustibles fósiles)

EI.MF.MAN = (MFMAN / YMAN) / CF1 (combustible motor)

EI.COKE.MAN = (COKE / YMAN) / CF1 (coque)

EI.FEED.MAN = (FEED / YMAN) / CF1 (materias primas)

EI.FIN.MAN = (FINMAN / YMAN) / CF1 (energía final total)

(d) Totales del sector Industria

(ver hojas "US Ene-D" y "FIN Ind-D" del MAED D.xls)

Demanda total de energía final por formas de energía

TFIND = TFACM + TFMAN (combustibles tradicionales)

MBIND = MBACM + MBMAN (Biomasa Moderna)

ELSIND = ELSACM + ELSMAN (electricidad para usos específicos)

ELHIND = ELHACM + ELHMAN (electricidad para usos térmicos)

ELIND = ELACM + ELMAN

= ELSIND + ELHIND (electricidad, total)

DHIND = DHMAN (calefacción centralizada)

SSIND = SSACM + SSMAN (solar térmica)

FFIND = FFACM + FFMAN (combustibles fósiles)

MFIND = MFACM + MFMAN (combustible motor)

FINFIND =
$$TFIND + MBIND + ELIND + DHMAN$$

+ $SSIND + FFIND + MFIND + COKE + FEED$ (energía final total)

Participación de las formas de energía en la demanda total de energía final del sector Industria (%):

TFIND.S	= TFIND / FININD*100	(combustibles tradicionales)
MBIND.S	= MBIND / FININD*100	(Biomasa Moderna)
ELIND.S	= ELIND / FININD*100	(electricidad)
DHIND.S	= DHIND / FININD*100	(calefacción centralizada)
SSIND.S	= SSIND / FININD*100	(solar térmica)
FFIND.S	= FFIND / FININD*100	(combustibles fósiles)
MFIND.S	= MFIND / FININD*100	(combustible motor)
COKEIND.S	= COKE / FININD*100	(coque)
FEEDIND.S	= FEEDIND / FININD*100	(materias primas)

Demanda de energía final por valor agregado (intensidad energética) en la Industria (kWh/MU):

5.5.2 Sector transporte

(a) Transporte de carga (FT):

(ver hoja "FrTrp-D" del MAED D.xls)

Toneladas-kilómetros total (10⁹ t-km):

$$TKFT = CKFT + \sum_{I=1}^{NSAGR} (CTKFT(I) * YAG(I))$$

$$+ \sum_{I=1}^{NSCON} (CTKFT(NSAGR + I) * YCO(I))$$

$$+ \sum_{I=1}^{NSMIN} (CTKFT(NSAGR + NSCON + I) * YMI(I))$$

$$+ \sum_{I=1}^{NSMAN} (CTKFT(NSAGR + NSCON + NSMIN + I) * YMA(I))$$

$$+ \sum_{I=1}^{NSSER} (CTKFT(NSAGR + NSCON + NSMIN + NSMAN + I) * YSE(I))$$

$$+ CTKFT(NSAGR + NSCON + NSMIN + NSMAN + NSSER + I) * YEN$$

Distribución por modo de Transporte (109 t-km):

$$TKFTM(I) = TKFT * (SFTM(I)/100)$$
 $I=1,...,NMFT$

Intensidad energética en unidades de kWh/100 ton-kilómetros:

Cada modo de Transporte de carga tiene asignado un código numérico del combustible y un consumo de energía específico (intensidad energética) expresada en una unidad física elegida por el usuario. Cada combustible tiene asignado un factor para convertir la unidad física en la que está expresada la intensidad energética a kWh por 100 ton-kilómetros. La siguiente ecuación realiza esta conversión para el modo de Transporte de carga I, tendiendo en cuenta el combustible utilizado por cada modo de Transporte.

$$FTMEI(I) = EIFTM(I)*CFFT(FCFT(I))$$
 $I=1,...,NMFT$

Consumo de energía por modo:

$$ECFTM(I) = TKFTM(I)*FTMEI(I)/100*CF1$$

$$= TKFT*(SFTM(I)/100)*FTMEI(I)/100*CF1$$

$$I=1,....,NMFT$$

Donde: **CF1** es el factor para convertir de TWh la unidad de energía definida en la celda E50 de la hoja "Defs".

Consumo de energía por combustible

Sumando solo los modos de Transporte de carga (FT) que utilizan electricidad:

$$ECFTF(1) = TELFT$$

$$= \sum_{I=1:(FCFT(I)=1)}^{NMFT} ECFTM(I)$$

Sumando solo los modos FT que utilizan carbón para vapor:

$$ECFTF(2) = TSCFT$$

$$= \sum_{I=1;(FCFT(I)=2)}^{NMFT} ECFTM(I)$$

Sumando solo los modos FT que utilizan diesel:

$$ECFTF(3) = TDIFT$$

$$= \sum_{I=1; (FCFT(I)=3)}^{NMFT} ECFTM(I)$$

Sumando solo los modos de FT que utilizan gasolina:

$$ECFTF(4) = TGAFT$$

$$= \sum_{I=1;(FCFT(I)=4)}^{NMFT} ECFTM(I)$$

Sumando solo los modos de FT que utilizan combustible no. 5:

$$ECFTF(5) = TF5FT$$

$$= \sum_{I=1:(FCFT(I)=5)}^{NMFT} ECFTM(I)$$

Sumando solo los modos de FT que utilizan combustible no. 6:

$$ECFTF(6) = TF6FT$$

$$= \sum_{I=1; (FCFT(I)=6)}^{NMFT} ECFTM(I)$$

Sumando solo los modos de FT que utilizan combustible no. 7:

$$ECFTF(7) = TF7FT$$

$$= \sum_{I=1;(FCFT(I)=7)}^{NMFT} ECFTM(I)$$

Sumando solo los modos de FT que utilizan combustible no. 8:

$$ECFTF(8) = TF8FT$$

$$= \sum_{I=1:(FCFT(I)=8)}^{NMFT} ECFTM(I)$$

o, en general (consumo de energía total de los modos FT usando combustible no. J):

$$ECFTF(J) = \sum_{I=1;(FCFT(I)=J)}^{NMFT} ECFTM(I)$$

$$J=1,...,NTF$$

$$TMFFT = TDIFT + TGAFT + TF5FT + TF6FT + TF7FT + TF8FT$$

$$= \sum_{J=3}^{NTF} ECFTF(J)$$
(combustible motor total)

Demanda total de energía final del subsector Transporte de carga:

TENFT =
$$\sum_{I=1}^{NMFT} \text{ECFTM}(I)$$
=
$$\sum_{J=1}^{NFT} \text{ECFTF}(J)$$
=
$$\text{TELFT} + \text{TSCFT} + \text{TMFFT}$$

(b) Transporte de pasajeros

(b.1) Pasajero, urbano (o dentro de la ciudad)

(ver hoja "PassIntra-D" del MAED D.xls)

Pasajeros-kilómetros total, tráfico urbano (dentro de la ciudad) (10⁹ p-km):

PKU =
$$(\mathbf{DU} * 365) * (\mathbf{POLC}/1000)$$

= $(\mathbf{DU} * 365) * (\mathbf{POPLC}/100) * (\mathbf{PO}/1000)$ (demanda de transporte urbano)

Distribución por medio de Transporte (10⁹ p-km):

$$PKUTM(I) = PKU * (SUTM(I)/100) I=1,...,NMUT$$

<u>Intensidad energética en unidades de kWh/pasajero-kilómetro</u>:

Cada modo de transporte urbano de pasajeros, tiene asignado un código numérico del combustible y un consumo de energía específico (intensidad energética) expresado en una unidad física (elegida por el usuario) por 100 kilómetros. Cada combustible tiene asignado un factor para convertir la unidad física en la que está expresada la intensidad energética a kWh por pasajero-kilómetros. La siguiente ecuación realiza esta conversión para el modo de Transporte urbano I, tendiendo en cuenta el combustible utilizado por cada modo de Transporte.

$$UTMEI(I) = EIUTM(I)*CFPT(FCUT(I))/100/LFUTM(I)$$
 $I=1,....,NMUT$

Consumo de energía por modo:

$$ECUTM(I) = PKUTM(I)*UTMEI(I)*CF1$$
 $I=1,....,NMUT$

Donde: **CF1** es el factor para convertir de TWh la unidad de energía definida en la celda E50 de la hoja "Defs".

Consumo de energía por combustible

Sumando solo los modos PT urbanos que utilizan electricidad:

$$ECUTF(1) = TELUT$$

$$= \sum_{I=1; (FCUT(I)=1)}^{NMUT} ECUTM(I)$$

El carbón no es un combustible válido para el transporte urbano de pasajeros en el modelo MAED D:

$$ECUTF(2) = TSCUT$$

= 0

Sumando solo los modos PT urbanos que utilizan diesel:

ECUTF(3) = TDIUT
=
$$\sum_{I=1; (FCUT(I)=3)}^{NMUT}$$
 ECUTM(I)

Sumando solo los modos PT urbanos que utilizan gasolina:

$$ECUTF(4) = TGAUT$$

$$= \sum_{I=1; (FCUT(I)=4)}^{NMUT} ECUTM(I)$$

Sumando solo los modos PT urbanos que utilizan el combustible no. 5:

$$ECUTF(5) = TF5UT$$

$$= \sum_{I=1; (FCUT(I)=5)}^{NMUT} ECUTM(I)$$

Sumando solo los modos PT urbanos que utilizan el combustible no. 6:

$$ECUTF(6) = TF6UT$$

$$= \sum_{I=1; (FCUT(I)=6)}^{NMUT} ECUTM(I)$$

Sumando solo los modos PT urbanos que utilizan el combustible no. 7:

$$ECUTF(7) = TF7UT$$

$$= \sum_{I=1:(FCUT(I)=7)}^{NMUT} ECUTM(I)$$

Sumando solo los modos PT urbanos que utilizan el combustible no. 8:

$$ECUTF(8) = TF8UT$$

$$= \sum_{I=1: (FCUT(I)=8)}^{NMUT} ECUTM(I)$$

o, en general (consumo de energía total de los modos de Transporte urbano que usan el combustible no. J)

$$ECUTF(J) = \sum_{I=1:(FCUT(I)=J)}^{NMUT} ECUTM(I)$$

$$J=1,....,NTF$$

$$TMFUT = TDIUT + TGAUT + TF5UT + TF6UT + TF7UT + TF8UT$$

$$= \sum_{J=3}^{NTF} ECUTF(J)$$
(combustible motor total)

Demanda total de energía final del subsector Transporte urbano (dentro de la ciudad):

TENUT =
$$\sum_{I=1}^{NMUT} ECUTM(I)$$
=
$$\sum_{J=1}^{NFT} ECUTF(J)$$
= TELUT + TMFUT

(b.2) Pasajeros, entre ciudades

(ver hoja "PassInter-D" del MAED D.xls)

Pasajero-kilómetro total, tráfico entre ciudades (10⁹ p-km):

$$PKI = PO * DI / 1000$$

Fuera del cual:

$$PKIC = (PO/CO)*DIC*LFCIT/1000 (por auto)$$

$$PKIP = PKI-PKIC (por modos públicos)$$

Distribución por tipo de auto (10⁹ p-km):

$$PKICT(I) = PKIC*(SITC(I)/100)$$
 $I=1,...,NCTIT$

Distribución por modo de Transporte público (10⁹ p-km):

$$PKIPM(I) = PKIP*(SITM(I)/100)$$
 $I=1,...,NMIT-NCTIT$

Intensidad energética en unidades de kWh/pasajero-kilómetro:

Cada modo de transporte de pasajeros entre ciudades, tiene asignado un código numérico del combustible y un consumo de energía específico (intensidad energética) expresado en una unidad física (elegida por el usuario) por 100 kilómetros (excepto para los aviones, para los cuales la intensidad energética se expresa en unidades físicas por 1000 asiento-kilómetros). Cada combustible tiene asignado un factor para convertir la unidad física en la que está expresada la intensidad energética a kWh por pasajero-kilómetros. La siguiente ecuación realiza esta conversión para el modo de transporte entre ciudades I, tendiendo en cuenta el combustible utilizado y el factor de carga de cada modo de Transporte.

$$\begin{split} \text{ITMEI}(I) &= \text{EIITM}(1)/1000*\text{CFPT}(\text{FCIT}(1))/(\text{LFITM}(1)/100) & \text{(aviones)} \\ \\ \text{ITMEI}(I) &= \text{EIITM}(I)/1000*\text{CFPT}(\text{FCIT}(I))/\text{LFITM}(I) & \text{I=2,...,NMIT} \\ & \text{(otros modos)} \end{split}$$

Consumo de energía por modo:

$$ECITM(I) = PKITM(I)*ITMEI(I)*CF1$$
 $I=1,...,NMIT$

Donde: **CF1** es el factor para convertir de TWh la unidad de energía definida en la celda E50 de la hoja "Defs".

Consumo de energía por combustible

Sumando solo los modos PT entre ciudades que utilizan electricidad:

$$ECITF(1) = TELIT$$

$$= \sum_{I=1:(FCIT(I)=1)}^{NMIT} ECUTM(I)$$

Sumando solo los modos PT entre ciudades que utilizan carbón para vapor:

$$ECITF(2) = TSCIT$$

$$= \sum_{I=1; (FCIT(I)=2)}^{NMIT} ECUTM(I)$$

Sumando solo los modos PT entre ciudades que utilizan diesel:

$$ECITF(3) = TDIIT$$

$$= \sum_{I=1; (FCIT(I)=3)}^{NMIT} ECUTM(I)$$

Sumando solo los modos PT entre ciudades que utilizan gasolina:

ECITF4 = TGAIT
=
$$\sum_{I=1;(FCIT(I)=4)}^{NMIT}$$
ECUTM(I)

Sumando solo los modos PT entre ciudades que utilizan el combustible no. 5:

$$ECITF(5) = TF5IT$$

$$= \sum_{I=1:(FCIT(I)=5)}^{NMIT} ECUTM(I)$$

Sumando solo los modos PT entre ciudades que utilizan el combustible no. 6:

$$ECITF(6) = TF6IT$$

$$= \sum_{I=1;(FCIT(I)=6)}^{NMIT} ECUTM(I)$$

Sumando solo los modos PT entre ciudades que utilizan el combustible no. 7

$$ECITF(7) = TF7IT$$

$$= \sum_{I=1; (FCIT(I)=7)}^{NMIT} ECUTM(I)$$

Sumando solo los modos PT entre ciudades que utilizan el combustible no. 8:

$$ECITF(8) = TF8IT$$

$$= \sum_{I=1;(FCIT(I)=8)}^{NMIT} ECUTM(I)$$

o, en general (consumo de energía total de los modos PT entre ciudades usando el combustible no. J):

$$ECITF(J) = \sum_{I=1;(FCIT(I)=J)}^{NMUT} ECITM(I)$$

$$J=1,....,NTF$$

$$TMFIT = TDIIT + TGAIT + TF5IT + TF6IT + TF7IT + TF8IT$$

$$= \sum_{J=3}^{NTF} ECITF(J)$$
(combustible motor total)

Demanda total de energía final del subsector Transporte de pasajeros entre ciudades:

TENIT =
$$\sum_{I=1}^{NMIT} ECITM(I)$$
=
$$\sum_{J=1}^{NFT} ECITF(J)$$
=
$$TELIT + TMFIT$$

(b.3) Transporte internacional y militar (Miscelánea), demanda de combustible motor

TMFMIS =
$$CMFMIS(1) + CMFMIS(2) * Y * CF1$$

Donde: **CF1** es el factor para convertir de TWh la unidad de energía definida en la celda E50 de la hoja "Defs".

(b.4) Totales del transporte de pasajeros (incluyendo internacional y militar)

$$TELPT = TELUT + TELIT$$
 (electricidad)

(c) Totales del sector transporte

Demanda de energía final por combustible:

Nota: El carbón no es válido para el transporte urbano de pasajeros en el modelo MAED D

$$ECTRF(3) = TDITR$$

= $TDIFT + TDIUT + TDIIT$ (diesel)

$$ECTRF(4) = TGATR$$

$$= TGAFT + TGAUT + TGAIT$$
(gasolina)

$$ECTRF(5) = TF5TR$$

= TF5FT + TF5UT + TF5IT

(combustible no. 5)

ECTRF(6) = TF6TR

= TF6FT + TF6UT + TF6IT

(combustible no. 6)

ECTRF(7) = TF7TR

= TF7FT + TF7UT + TF7IT

(combustible no. 7)

ECTRF(8) = TF8TR

= TF8FT + TF8UT + TF8IT

(combustible no. 8)

o, en general:

$$ECTRF(J) = ECFTF(J) + ECUTF(J) + ECITF(J)$$

 $J=1,\ldots,NTF$

Combustible motor para el transporte internacional y militar:

ECTRF(NTF+1) = TMFMIS

$$FINTR = \sum_{I=1}^{NTF+1} ECTRF(J)$$

(energía total final)

Participación de los combustibles en los totales del sector Transporte (%):

$$ECTRF.S(J) = ECTRF(J)/FINTR *100$$

J=1,....,**NTF**+1

Demanda de energía final por grupo de combustible:

La demanda de electricidad (TELTR) y carbón (TSCTR) son aquellas previamente calculadas, mientras la demanda total para los combustible motor es:

$$TMFTR = \sum_{J=3}^{NTF+1} ECTRF(J)$$

Participación de los grupos de combustibles en los totales del sector Transporte (%):

$$TELTR.S = TELTR/FINTR*100$$

(electricidad)

TSCTR.S = TSCTR / FINTR * 100

(carbón)

TMFTR.S = TMFTR / FINTR * 100

(combustible motor)

Participación de los subsectores en los totales del sector Transporte (%):

$$TENFT.S = TENFT/FINTR*100$$

(carga)

TNUT.S = TNUT/FINTR *100 (pasajero, urbano)

TENIT.S = TENIT/FINTR *100 (pasajero, entre ciudades)

TMFMIS.S = TMFMIS/FINTR *100 (internacional y militar)

5.5.3 Sector residencial

(a) Residencial urbano

(a.1) Número total de viviendas urbanas (10⁶)

Se asume que el número total de viviendas urbanas es igual al número de viviendas urbanas calculado en el epígrafe 5.3 (Cálculos demográficos).

$$TUDW = UHH$$
$$= PO*(PURB/100)/CAPUH$$

(a.2) Demanda de energía útil para diferentes categorías de uso final

(ver Tabla 14.4 en la hoja "US HH Ur-D" del MAED D.xls)

Calefacción (SH):

SHUH =
$$\sum_{I=1}^{NUDT}$$
 SHUHT(I) (viviendas urbanas total)

Calentamiento de agua (HW):

$$HWUH = TUDW * CAPUH * (UDWHW/100) * UHWCAP * (CF1/1000)$$

Cocción (CK):

$$CKUH = TUDW * CKUDW * (CF1/1000)$$

Aire acondicionado (AC):

ACUHT(I) =
$$TUDW * \{(UDW(I)/100) * (UDWAC(I)/100)$$

 $*UACDW(I)\} * (CF1/1000)$ I=1,....,NUDT (vivienda urbana tipo I)

$$ACUH = \sum_{I=1}^{NUDT} ACUHT(I)$$
 (viviendas urbanas total)

Usos específicos de electricidad (equipos domésticos) – energía final (AP):

$$ELAPUH = TUDW * (ELPU/100) * ELAPUDW * (CF1/100)$$

Combustibles fósiles para iluminación en viviendas no electrificadas –energía final (LT):

$$FFLTUH = TUDW * (1 - ELPU/100) * FFLTUDW * (CF1/100)$$

Subtotal, Residencial Urbano:

En las ecuaciones anteriores, **CF1** es el factor para convertir de TWh a la unidad de energía definida en la celda E50 de la hoja "Defs".

(a.3) Conversión de la energía útil a demanda de energía final en el subsector Residencial Urbano

(ver Tablas 16.1 a 16.6 en la hoja "FIN HH-D" del MAED D.xls)

Calefacción (SH):

```
TF.UH.SH = SHUH*(TFP.UH.SH/100)/(TFE.UH.SH/100)
                                                         (combustibles
                                                         tradicionales)
MB.UH.SH = SHUH * (MBP.UH.SH/100)/(MBE.UH.SH/100)
                                                         (biomasa moderna)
EL.UH.SH = SHUH*(ELP.UH.SH/100)*(1-(MBE.UH.SH/100))
             *(1-1/HPE.UH.SH))
                                                         (electricidad)
DH.UH.SH = SHUH*(DHP.UH.SH/100)
                                                         (calefacción
                                                         centralizada)
SS.UH.SH = SHUH * (SSP.UH.SH/100)/(FDS.UH.SH/100)
                                                         (solar térmica)
FF.UH.SH = SHUH * \{(FFP.UH.SH/100) + (SSP.UH.SH/100)\}
             *(1-FDS.UH.SH)}/(FFE.UH.SH/100)
                                                         (combustibles
                                                         fósiles)
FIN.UH.SH = TF.UH.SH + MB.UH.SH + EL.UH.SH + DH.UH.SH
             +SS.UH.SH + FF.UH.SH
                                                         (total)
```

Calentamiento de agua (HW):

DH.UH.HW = HWUH*(**DHP.UH.HW**/100) (calefacción centralizada)

SS.UH.HW = HWUH*(SSP.UH.HW/100)*(FDS.UH.HW/100) (solar térmica)

 $FF.UH.HW = HWUH * \{(FFP.UH.HW/100) + (SSP.UH.HW/100)\}$

*(1-FDS.UH.HW/100)}/(FFE.UH.HW/100) (combustible fósil)

FIN.UH.HW = TF.UH.HW + MB.UH.HW + EL.UH.HW

+ DH.UH.HW + SS.UH.HW + FF.UH.HW (total)

Cocción (CK):

TF.UH.CK = CKUH * (TFP.UH.CK/100)/(TFE.UH.CK/100) (combustible

tradicional)

MB.UH.CK = CKUH * (MBP.UH.CK/100)/(MBE.UH.CK/100) (biomasa moderna)

EL.UH.CK = CKUH*(ELP.UH.CK/100) (electricidad)

SS.UH.CK = CKUH * (SSP.UH.CK/100) * (FDS.UH.CK/100) (solar térmica)

 $FF.UH.CK = CKUH * \{(FFP.UH.CK/100) + (SSP.UH.CK/100)\}$

*(1 - FDS.UH.CK/100)}/(FFE.UH.CK/100) (combustible fósil)

FIN.UH.CK = TF.UH.CK + MB.UH.CK + EL.UH.CK

+ SS.UH.HW + FF.UH.HW (total)

Aire acondicionado (AC):

EL.UH.AC = ACUH*(ELP.UH.AC/100)/ELE.UH.AC (electricidad)

FF.UH.AC = ACUH*(FFP.UH.AC/100)/FFE.UH.AC (combustible fósil)

FIN.UH.AC = EL.UH.AC + FF.UH.AC (total)

Equipos domésticos e iluminación:

EL.UH.AP = ELAPUH (electricidad)

FF.UH.AP = FFLTUH (combustible fósil)

FIN.UH.AC = EL.UH.AP + FF.UH.LT (total)

(a.4) Energía final total en Residencial Urbano

TFUH = TF.UH.SH + TF.UH.HW + TF.UH.CK (combustible tradicional)

MBUH = MB.UH.SH + MB.UH.HW + MB.UH.CK (biomasa moderna)

ELUH = EL.UH.SH + EL.UH.HW + EL.UH.CK + EL.UH.AC + ELAPUH (electricidad) DHUH = DH.UH.SH + DH.UH.HW (calefacción centralizada)

SSUH = SS.UH.SH + SS.UH.HW + SS.UH.CK (solar térmica)

FFUH = FF.UH.SH + FF.UH.HW + FF.UH.CK + FF.UH.AC + FFLTUH (combustible fósil)

FINUH = TFUH + MBUH + ELUH + DHUH + SSUH + FFUH (total)

(b) Residencial Rural

(b.1) Número Total de viviendas rurales (10⁶)

Se asume que el número total de viviendas rurales es igual al número de viviendas rurales calculado en el epígrafe 5.3 (Cálculos demográficos).

$$TRDW = RHH$$

= $PO*(PRUR/100)/CAPRH$

(b.2) Demanda de energía útil para diferentes categorías de uso final

(ver tabla 15.en la hoja "US_HH_Rr-D" del MAED_D.xls)

Calefacción (SH):

$$SHRH = \sum_{I=1}^{NRDT} SHRHT(I)$$
 (viviendas rurales total)

Calentamiento de agua (HW):

$$HWRH = TRDW * CAPRH * (RDWHW/100) * RHWCAP * (CF1/1000)$$

Cocción (CK):

$$CKRH = TRDW * CKRDW * (CF1/1000)$$

Aire acondicionado (AC):

$$ACRHT(I) = TRDW * \{(RDW(I)/100) * (RDWAC(I)/100)$$

$$*RACDW(I)\} * (CF1/1000)$$

$$I=1,....,NRDT$$
(vivienda rural tipo I)

$$ACRH = \sum_{I=1}^{NRDT} ACRHT(I)$$
 (vivienda rural total)

Usos específicos de electricidad (equipos domésticos) – energía final (AP):

$$ELAPRH = TRDW * (ELPR/100) * ELAPRDW * (CF1/1000)$$

Combustibles fósiles para iluminación en viviendas no electrificadas -energía final (LT):

$$FFLTRH = TRDW * (1 - ELPR/100) * FFLTRDW * (CF1/1000)$$

Subtotal, Residencial Rural:

En las ecuaciones anteriores, **CF1** es el factor para convertir de TWh a la unidad de energía definida en la celda E50 de la hoja "Defs".

(b.3) Conversión de energía útil a demanda de energía final en el Residencial Rural (ver Tablas 16.7 a 16.12 en la hoja "FIN HH-D" del MAED D.xls)

Calefacción (SH):

Calentamiento de agua (HW):

```
EL.RH.HW = HWRH*(ELP.RH.HW/100)
              *(1-(HPP.RH.HW/100)*(1-1/HPE.RH.HW))
                                                         (electricidad)
DH.RH.HW = HWRH*(DHP.RH.HW/100)
                                                     (calefacción centralizada)
SS.RH.HW = HWRH*(SSP.RH.HW/100)*(FDS.RH.HW/100) (solar térmica)
FF.RH.HW = HWRH * \{(FFP.RH.HW/100) + (SSP.RH.HW/100)\}
              *(1 – FDS.RH.HW / 100)} /(FFE.RH.HW / 100))
                                                         (combustible fósil)
FIN.RH.HW = TF.RH.HW + MB.RH.HW + EL.RH.HW + DH.RH.HW
              +SS.RH.HW + FF.RH.HW
                                                         (total)
Cocción (CK):
TF.RH.CK = CKUH*(TFP.RH.CK/100)/(TFE.RH.CK/100)
                                                         (combustible
                                                         tradicional)
MB.RH.CK = CKUH*(MBP.RH.CK/100)/(MBE.RH.CK/100)
                                                         (biomasa moderna)
EL.RH.CK = CKUH*(ELP.RH.CK/100)
                                                         (electricidad)
SS.RH.CK = CKUH*(SSP.RH.CK/100)*(FDS.RH.CK/100)
                                                         (solar térmica)
FF.RH.CK = CKUH * \{(FFP.RH.CK/100) + (SSP.RH.CK/100)\}
            *(1-FDS.RH.CK/100)}/(FFE.RH.CK/100))
                                                         (combustible fósil)
FIN.RH.CK = TF.RH.CK + MB.RH.CK + EL.RH.CK + DH.RH.CK
              + SS.RH.CK + FF.RH.CK
                                                         (total)
Aire acondicionado (AC):
EL.RH.AC = ACRH*(ELP.RH.AC/100)/ELE.RH.AC
                                                         (electricidad)
FF.RH.AC = ACRH*(FFP.RH.AC/100)/FFE.RH.AC
                                                         (electricidad)
FIN.RH.AC = EL.RH.AC + FF.RH.AC
                                                         (total)
Equipos domésticos e iluminación:
EL.RH.AP = ELAPRH
                                                         (electricidad)
FF.RH.AP = FFLTRH
                                                      (combustibles fósiles)
```

FIN.RH.AP = EL.RH.AP + FF.RH.AP

(total)

(b.4) Energía final total en el Residencial Rural

TFRH = TF.RH.SH + TF.RH.HW + TF.RH.CK (combustible tradicional)

MBRH = MB.RH.SH + MB.RH.HW + MB.RH.CK (biomasa moderna)

ELRH = EL.RH.SH + EL.RH.HW + EL.RH.CK

+ EL.RH.AC + ELAPRH (electricidad)

DHRH = DH.RH.SH + DH.RH.HW (calefacción centralizada)

SSRH = SS.RH.SH + SS.RH.HW + SS.RH.CK (solar térmica)

FFRH = FF.RH.SH + FF.RH.HW + FF.RH.CK

+ FF.RH.AC+FFLTRH (combustibles fósiles)

FINRH = SFRH + MBRH + ELRH + DHRH + SSRH + FFRH (energia final total)

(c) Demanda de energía final del sector Residencial (urbano + rural)

(ver Tablas 16.13 a 16.18 en la hoja "FIN_HH-D" del MAED_D.xls)

Calefacción (SH):

TF.HH.SH = TF.UH.SH + TF.RH.SH (combustible tradicional)

MB.HH.SH = MB.UH.SH + MB.RH.SH (biomasa moderna)

EL.HH.SH = EL.UH.SH + EL.RH.SH (electricidad)

DH.HH.SH = DH.UH.SH + DH.RH.SH (calefacción centralizada)

SS.HH.SH = SS.UH.SH + SS.RH.SH (solar térmica)

FF.HH.SH = FF.UH.SH + FF.RH.SH (combustibles fósiles)

FIN.HH.SH = TF.HH.SH + MB.HH.SH + EL.HH.SH + DH.HH.SH

+SS.HH.SH+FF.HH.SH

= FIN.UH.SH + FIN.RH.SH (energía final total)

Calentamiento de agua (HW):

TF.HH.HW = TF.UH.HW + TF.RH.HW (combustible tradicional)

MB.HH.HW = MB.UH.HW + MB.RH.HW (biomasa moderna)

EL.HH.HW = EL.UH.HW + EL.RH.HW (electricidad)

DH.HH.HW = DH.UH.HW + DH.RH.HW (calefacción centralizada)

SS.HH.HW = SS.UH.HW + SS.RH.HW (solar térmica)

FF.HH.HW = FF.UH.HW + FF.RH.HW (combustibles fósiles)

FIN.HH.HW = TF.HH.HW + MB.HH.HW + EL.HH.HW + DH.HH.HW

+ SS.HH.HW + FF.HH.HW

= FIN.UH.HW + FIN.RH.HW (energía final total)

Cocción (CK):

TF.HH.CK = TF.UH.CK + TF.RH.CK (combustible tradicional)

MB.HH.CK = MB.UH.CK + MB.RH.CK (biomasa moderna)

EL.HH.CK = EL.UH.CK + EL.RH.CK (electricidad)

SS.HH.CK = SS.UH.CK + SS.RH.CK (solar térmica)

FF.HH.CK = FF.UH.CK + FF.RH.CK (combustibles fósiles)

FIN.HH.CK = TF.HH.HW + MB.HH.CK + EL.HH.CK

+ SS.HH.CK + FF.HH.CK

= FIN.UH.CK + FIN.RH.CK (energía final total)

Aire acondicionado (AC):

EL.HH.AC = EL.UH.AC + EL.RH.AC (electricidad)

FF.HH.AC = FF.UH.AC + FF.RH.AC (combustibles fósiles)

FIN.HH.AC = EL.HH.AC+FF.HH.AC

= FIN.UH.AC+FIN.RH.AC (energía final total)

Equipos domésticos e iluminación

EL.HH.AP = EL.UH.AP + EL.RH.AP (electricidad)

FF.HH.AP = FF.UH.LT + FF.RH.LT (combustibles fósiles)

FIN.HH.AP = EL.HH.AP + FF.HH.AP

= FIN.UH.AP+FIN.RH.AP (energía final total)

Energía final total en el sector Residencial

TFHH = TF.HH.SH + TF.HH.HW + TF.HH.CK

= TFUH + TFRH (combustible tradicional)

MBHH = MB.HH.SH + MB.HH.HW + MB.HH.CK

= MBUH + MBRH (biomasa moderna)

ELHH = EL.HH.SH + EL.HH.HW + EL.HH.CK

= ELUH + ELRH (electricidad)

DHHH = DH.HH.SH + DH.HH.HW

= DHUH + DHRH (calefacción centralizada)

SSHH = SS.HH.SH + SS.HH.HW + SS.HH.CK

= SSUH + SSRH (solar térmica)

FFHH = FF.HH.SH + FF.HH.HW + FF.HH.CK

+ FF.HH.AC+FFLTHH

= FFUH + FFRH (combustibles fósiles)

FINHH = TFHH + MBHH + ELHH + DHHH + SSHH + FFHH

= FINUH + FINRH (energía final total)

5.5.4 Sector servicio

(a) Fuerza laboral en el sector Servicio (10^6) y área de piso (10^6 m²) (ver Tabla 17-1 de la hoja "US SS-D" del MAED D.xls)

LSER = ALF*(PLSER/100) (fuerza laboral)

TAREA = LSER * AREAL (área de piso)

(b) Demanda energía útil para diferentes categorías de uso final (ver Tablas 17-3, 17-7 a 17-10 de la hoja "US SS-D" del MAED D.xls)

Calefacción (SH):

TARSH = TAREA*(ARSH/100)*(AREAH/100) (área de piso donde se requiere SH)

US.SH.SER = TARSH*SSHR*(CF1/1000)

Aire acondicionado (AC):

US.AC.SER = TAREA*(AREAAC/100)*SACR*(CF1/1000)

Combustible motor (MF):

$$US.MF.SE(I) = EI.MF.SE(I) * YSE(I) * CF1$$
 I=1,....,NSSER (subsector I)

MFSER = US.MF.SER
=
$$\sum_{I=1}^{NSSER}$$
 US.MF.SE(I)
= $\sum_{I=1}^{NSSER}$ (sector completo)

Electricidad para usos específicos (ELS):

$$US.ELS.SE(I) = EI.ELS.SE(I)*YSE(I)*CF1 I=1,....,NSSER (subsector I)$$

ELSSER = US.ELS.SER
=
$$\sum_{I=1}^{NSSER}$$
 US.ELS.SE(I)
= $\sum_{I=1}^{NSSER}$ (EI.ELS.SE(I) * YSE(I)) * CF1 (sector completo)

Otros usos térmicos (OTU):

$$US.OTU.SE(I) = EI.OTU.SE(I) * YSE(I) * CF1$$

$$I=1,....,NSSER$$
 (subsector I)

US.OTU.SER =
$$\sum_{I=1}^{NSSER} \text{US.OTU.SE(I)}$$
=
$$\sum_{I=1}^{NSSER} (\text{EI.OTU.SE(I)} * \text{YSE(I)}) * \text{CF1}$$
 (sector completo)

Energía útil total:

En las ecuaciones anteriores, **CF1** es el factor para convertir de TWh a la unidad de energía definida en la celda E50 de la hoja "Defs".

(c) Conversión de energía térmica útil a demanda de energía final

Calefacción y otros usos térmicos:

TF.SER.TU =
$$\{US.SH.SER * (TFP.SER.SH/100) + US.OTU.SER * (TFP.SER.OUT/100)\}/(TFE.SER.TU/100)$$
 (combustibles tradicionales)

```
MB.SER.TU = {US.SH.SER * (MBP.SER.SH/100) + US.OTU.SER}
              *(MBP.SER.OUT/100)}/(MBE.SER.TU/100) (biomasa moderna)
EL.SER.TU = US.SH.SER*(ELP.SER.SH/100)
             *{1-(HHP.SER.SH/100)*(1-(1/HPE.SER.SH))}
                                                           (electricidad)
             + US.OTU.SER * (ELP.SER.OTU/100)
DH.SER.TU = US.SH.SER *(DHP.SER.SH/100)+ US.OTU.SER
              *(DHP.SER.OUT/100)
                                                           (calefacción
                                                           centralizada)
SS.SER.TU = {US.SH.SER * (SSP.SER.SH/100) + US.OTU.SER}
              *(SSP.SER.OUT/100)}
              *(FDS.SER.TU/100)*(PLB/100)
                                                           (solar térmica)
FF.SER.TU = US.SH.SER * \{(FFP.SER.SH/100)\}
              +(SSP.SER.SH/100)*(1-(FDS.SER.TU/100))
              *(PLB/100)}/(FFE.SER.TU/100)
              + US.OTU.SER * { (FFP.SER.OTU/100)
              +(SSP.SER.OTU/100)*(1-(FDS.SER.TU/100))
              *(PLB/100)}/(FFE.SER.TU/100)
                                                         (combustibles fósiles)
FIN.SER.TU = TF.SER.TU + MB.SER.TU + EL.SER.TU
              + DH.SER.TU + SS.SER.TU + FF.SER.TU
                                                           (total)
Aire acondicionado:
EL.SER.AC = US.AC.SER*(ELP.SER.AC/100)/ELE.SER.AC
                                                           (electricidad)
FF.SER.AC = US.AC.SER * (FFP.SER.AC/100)/FFE.SER.AC
                                                           (combustibles
                                                           fósiles)
FIN.SER.AC = EL.SER.AC + FF.SER.AC
                                                           (total)
(d) Energía final total en el sector Servicio
TFSER = TF.SER.TU
                                                           (combustibles
                                                           tradicionales)
MBSER = MB.SER.TU
                                                           (biomasa moderna)
ELSER = ELSSER + EL.SER.TU + EL.SER.AC
                                                           (electricidad)
DHSER = DH.SER.TU
                                                     (calefacción centralizada)
```

SSSER = SS.SER.TU(solar térmica) (combustibles fósiles) FFSER = FF.SER.TUFINSER = MFSER + TFSER + MBSER + ELSER

5.5.5 Grandes totales de demanda de energía final para el país

+ DHSER + SSSER + FFSER

Una vez completados los cálculos de demanda de energía final por sectores, el programa procede a calcular la demanda total para el país como la suma de las demandas sectoriales. Los resultados de estos cálculos, expresados en la unidad de energía definida en la celda E50 de la hoja "Defs", se muestran en la hoja "Final-D" del MAED D.xls.

(total)

Demanda por formas de energía:

TF = TFIND + TFHH + TFSER(combustibles tradicionales) MB = MBIND + MBHH + MBSER(biomasa moderna) ELTU = ELHFIND + EL.HH.SH + EL.HH.HW+ EL.HH.CK + EL.SER.TU (electricidad para usos térmicos) ELNTU = ELSIND+TELTR+EL.HH.AC+ELAPHH + ELSSER + EL.SER.AC (electricidad para usos no térmicos) ELEC = ELND + TELTR + ELHH + ELSER+ ELTU + ELNTU (electricidad total) DH = DHIND + DHHH + DHSER(calefacción centralizada) SS = SSIND + SSHH + SSSER(solar térmica) FF = FFIND + FFHH + FFSER(combustibles fósiles)

MF = MFIND + TMFTR + MFSER(combustible motor)

(carbón, específico) Coalsp = COKE + TSCTR

TFEED = FEED(materia prima)

FINEN = TF + MB + ELEC + DH + SS + FF + MF + COALSP+ FIND + TMFTR + MFSER (energía final total)

Energía final per cápita (MWh/cap):

FINEN.CAP = (FINEN/PO)/CF1

Intensidad energética final, es decir energía final por unidad monetaria de PIB (kWh/UM):

FI.FIN.GDP = (FINEN/Y)/CF1

donde : *CF1* es el factor para convertir de TWh a la unidad de energía definida en la celda E50 de la hoja "Defs".

El programa realiza varias agregaciones individuales de la demanda de energía por formas de energía y por sectores con el objetivo de presentar las tablas de salida con los resultados de la corrida. Como estas agregaciones no requieren de nuevos cálculos, no se presentan aquí.

Para convertir los totales de la demanda de energía final del país de la unidad de energía definida en la celda E50 de la hoja "Defs" a otra unidad de energía, el usuario tiene que indicar la nueva unidad y el factor de conversión correspondiente en las celdas L50 y M50 de la hoja "Defs". Los totales de demanda final de energía de la hoja "Final-D", convertidos a la nueva unidad de energía, se mostrarán en la hoja "Final Results (User Unit)".

6 DESCRIPCIÓN GENERAL DEL MAED MODULO 2 CÁLCULOS DE LA DEMANDA DE POTENCIA ELÉCTRICA HORARIA

6.1 Introducción

El segundo módulo del MAED fue desarrollado para convertir la demanda de electricidad anual de cada sector económico (considerado para la proyección de la demanda en el Modulo 1) en la demanda de electricidad horaria para todo el año. Para el cálculo de la demanda de la electricidad horaria, el Módulo considera cuatro sectores económicos: Industrial, Transporte, Residencial y Servicios y hasta seis clientes en cada uno de estos sectores.

Se utilizan varios factores de modulación para calcular la demanda horaria a partir de la demanda de electricidad anual. Estos factores caracterizan los cambios en el consumo de electricidad con respecto al consumo de electricidad promedio durante un año, semana o día. El módulo convierte la demanda total de electricidad anual de un sector en la carga de electricidad del sector en una hora dada, día y semana del año, teniendo en cuenta los siguientes aspectos:

- (i) La tendencia de la tasa de crecimiento promedio de la demanda de electricidad durante el año;
- (ii) Los cambios en el nivel de consumo de electricidad perteneciente a varias estaciones del año (esta variación se refleja en una base semanal en el Módulo);
- (iii) Los cambios en el nivel de consumo de electricidad propios del tipo de día que se está considerando (es decir, días de trabajo, fines de semana, días feriados, etc.);
- (iv) La variación horaria del consumo de electricidad durante un tipo de día en particular.

La tendencia de la tasa de crecimiento promedio de la demanda de electricidad ya es conocida de los resultados del Módulo 1. La variación de la carga de electricidad de un sector dado por hora, día y semana es caracterizada por tres conjuntos de coeficientes de modulación, que están definidos para las 24 horas del día, por tipo de días en una semana y por cada semana en el año. El producto de todos esos coeficientes, junto con los coeficientes para la tasa de crecimiento promedio de la demanda de electricidad, multiplicado por la demanda de electricidad promedio de un sector en particular resulta en la carga eléctrica de ese sector en una hora específica. Conocer todos estos coeficientes para un año determinado nos permite calcular la carga de electricidad horaria cronológica para las 8760 horas de ese año.

Se repiten cálculos similares para cada sector de la economía (Industria, Transporte, Residencial y Servicios) y las cargas para la misma hora en todos los sectores se agregan para producir el valor de la carga horaria total impuesta sobre el sistema eléctrico en el año. La representación gráfica de esas cargas horarias en orden decreciente produce la bien conocida curva de duración de carga horaria para el sistema eléctrico.

Los coeficientes de modulación utilizados en los cálculos se obtienen a partir del análisis estadístico de la operación histórica del sistema eléctrico bajo estudio.

Esta sección del manual describe varias hojas de cálculo del archivo del libro de trabajo de Microsoft Excel <**MAED_El.xls**> diseñado para realizar los cálculos del Módulo 2 del MAED, el procedimiento para la ejecución de este Módulo y el enfoque teórico utilizado.

6.2 Descripción de las hojas de cálculo Excel del Módulo 2 del MAED

Para preparar los datos de entrada, realizar el cálculo de la carga horaria y presentar los resultados del Módulo 2 del modelo MAED, se ha diseñado un archivo separado que se llama <MAED_El.xls> y debe colocarse en el mismo directorio donde está el archivo para el módulo 1, <MAED D.xls>.

El libro de trabajo contiene 20 hojas de cálculo. Algunas de estas hojas suministran información general relativa a la terminología y los códigos de los colores usados en las hojas, mientras las otras hojas son usadas para preparar los datos de entrada y mostrar los resultados del modelo en forma numérica y gráfica. Se han utilizado subrutinas de Microsoft Visual Basic en el ambiente de Microsoft Excel para la validación de los datos de entrada, realización de los cálculos y la presentación de los resultados del modelo. Los nombres de las hojas de cálculo incluidas en el libro de trabajo <MAED El.xls> se muestran en la Tabla 6.1.

Tabla 6.1: Listado de las hojas de cálculo en el archivo de Microsoft Excel <MAED El.xls>

1	Contenido de la baja de cálculo
	Contenido de la hoja de cálculo
_	Título de la página del Libro de trabajo
Notes	Código de colores establecido
Descr	Breve descripción del módulo
TOC	Tabla de contenido
Calendar	Calendario de los años de referencia
FinEle	Demanda de electricidad final
SecEle	Demanda de electricidad secundaria
Ldfac(1)	Coeficientes de modulación de la carga para Industria
Ldfac(2)	Coeficientes de modulación de la carga para Transporte
Ldfac(3)	Coeficientes de modulación de la carga para Residencial
Ldfac(4)	Coeficientes de modulación de la carga para Servicios
Check	Chequeo de la exactitud de los coeficientes de modulación
LDC	Curvas de duración de carga en forma numérica
LDC-G	Curvas de duración de carga en forma gráfica
ChrtLdc	Datos de carga cronológicos
SvFac(1)	Guarda los coeficientes de modulación de carga para Industria
SvFac(2)	Guarda los coeficientes de modulación de carga para Transporte
SvFac(3)	Guarda los coeficientes de modulación de carga para Residencial
SvFac(4)	Guarda los coeficientes de modulación de carga para Servicios
temp	Datos almacenados temporalmente durante la ejecución del programa
	Nombre de la Hoja MAED_EL Notes Descr TOC Calendar FinEle SecEle Ldfac(1) Ldfac(2) Ldfac(3) Ldfac(4) Check LDC LDC-G ChrtLdc SvFac(1) SvFac(2) SvFac(3) SvFac(4)

A continuación se muestra la descripción de cada una de estas hojas de cálculo.

(i) Hoja de cálculo "MAED_EL"

Esta es la hoja de presentación, que contiene el título del libro de trabajo. La Figura 6.1 muestra una Imagen de esta hoja.

Figura 6.1. Imagen de la Hoja "MAED EL".

(ii) Hoja de cálculo "Notes"

Esta hoja contiene explicaciones sobre el significado de cada uno de los colores empleados en varias hojas y algunos comentarios generales sobre la entrada de datos. La Figura 6.2 muestra una Imagen de esta hoja.

Figura 6.2. Imagen de la hoja de cálculo "Notes".

(iii) Hoja de cálculo "Descr"

Esta hoja suministra la descripción general del escenario de proyección de la demanda de electricidad e información adicional sobre el libro de trabajo. Una Imagen de esta hoja se muestra en la Figura 6.3.

Descripción:		TOC
País/Región: Número del escenario: Nombre del escenario: Breve descripción del escen Nombre del proyecto:	Demostración del Modelo MAED Caso de ejemplo del MAED_D Los datos usados en este ejemplo corresponden a un Demostración del Modelo MAED	0
Propósito: Autor: Fecha inicial: Notas del diseño:	OIEA Basado en la versión revisada del documento Modelo para el Análisis de la Demanda de Energía (MAED) del OIEA	0
Fecha del último cambio: Descripción del cambio: Descripción y Notas:	Modificado a partir de las correcciones recomendadas por Sr. Arshad Khan y el Sr. A.I. Jalal cambios incorporados por irej	0

Figura 6.3 Imagen de la hoja de cálculo "Descr".

(iv) Hoja de cálculo "TOC"

En esta hoja se muestra la tabla de contenido del libro de trabajo. Una instantánea de esta hoja se muestra en la Figura 6.4. El usuario puede moverse hacia las diferentes hojas pulsando los botones respectivos disponibles en esta hoja. La mayoría de las hojas tienen a su vez, un botón TOC que al pulsarlo permite regresar a la hoja "TOC".

Figura 6.4. Imagen de la hoja de cálculo "TOC".

(v) Hoja de cálculo "Calendar"

Esta hoja contiene información relativa a los días feriados oficiales, la duración de las estaciones (invierno, primavera, verano, otoño) en términos de sus fechas inicial y final se

usarán en el estudio, si existe, las fechas inicial y final de la temporada especial durante cada año y las definiciones de los días normales y típicos de la semana. Las Figuras 6.5, 6.6 y 6.7 muestran imágenes de diferentes partes de esta hoja.

Días festivos y feriados					
Año	Descripción	cada semana	días inde	pendiente	
2000	libre	Dom	01-ene		
	especial				
2005	libre	Dom	01-ene		
	especial	0			
2010	libre	Dom	01-ene		
	especial	0			
2015	libre	Dom	01-ene		
	especial	0			
2020	libre	Dom	01-ene		
	especial	0			
2025	libre	Dom	01-ene		
	especial	0			
	libre	Dom	01-ene		
_	especial	0			
	libre	Dom			
	especial	0			
	libre	Dom			
	especial	0			
	libre	Dom			
	especial	0			
	libre	Dom			
	especial	0			
	libre	Dom			
	especial	0			
	libre 	Dom			
	especial	0			

Figura 6.5. Definición de los días festivos y feriados en la hoja "Calendar".

Temporadas (día de inicio): Máximo 4 temporadas				das			
temporada 📗	2005	2007	2010	2015	2020	2025	2030
invierno	01-ene	01-ene	01-ene	01-ene	01-ene	01-ene	01-en
primavera	21-mar	21-mar	21-mar	21-mar	21-mar	21-mar	21-ma
verano	01-jun	01-jun	01-jun	01-jun	01-jun	01-jun	01-jur
otoño	01-oct	01-oct	01-oct	01-oct	01-oct	01-oct	01-oc
	31-dic	31-dic	31-dic	31-dic	31-dic	31-dic	31-dic
Tompor	ada sansa	sialı (Ona	vional)				
rempore	ada espec	лаг. (Орс	ioriai)				
temporada	2005	2007	2010	2015	2020	2025	2030
inicio							
final							

Figura 6.6. Duración de las diferentes estaciones y las fechas de inicio y final en la hoja "Calendar".

Días:							
Definición	n de los día	s normales	de la se	mana:			
	1	2	3	4	5	6	7
Todos	Sab	Dom	Lun	Mar	Mie	Jue	Vie
Definición	n de los día	s típicos de	la sema	ana			
	1	2	3	4	5	6	7
reducidos	Sab	Dom	DTr				

Figura 6.7. Definición de días normales y típicos de la semana en la hoja de cálculo "Calendar".

(vi) Hoja de cálculo "FinEle"

Esta hoja contiene la demanda de electricidad total y por sectores, junto con la estructura sectorial y las tasas de crecimiento calculadas en el Módulo1 del MAED (archivo de Microsoft Excel <maed_d.xls>). Para el año base se asigna la misma tasa de crecimiento del primer período (2000-2005 en este caso) ya que el MAED-D calcula la tasa media de crecimiento anual. También se incluyen las tasas de crecimiento para los años futuros. La Figura 6.8 muestra la demanda final sectorial y total durante el período de estudio.

Tabla 1: Demanda de electricidad para el escenario Caso de ejemplo del MAED_D

Tabla 1a: Consumo final de electricidad:

	unidad	2000	2005	2010	2015	2020	2025
Industria	GWa	0.49	0.66	0.88	1.14	1.46	1.75
Transporte	GWa	0.06	0.08	0.10	0.13	0.16	0.20
Residencial	GWa	0.25	0.38	0.56	0.81	1.17	1.64
Servicios	GWa	2.06	2.64	3.42	4.45	5.79	7.55
Total	GWa	2.87	3.76	4.96	6.53	8.59	11.14

Figura 6.8. Demanda de electricidad total y sectorial en la hoja de cálculo "FinEle".

Las figuras 6.9 y 6.10 muestran secciones de esta hoja en las que aparecen la estructura y las tasas de crecimiento de los diferentes clientes en el sector Industria. Tablas similares también se presentan en la hoja para los sectores Transporte, Residencial y Servicios. Al final de la hoja, se muestra la demanda de electricidad agregada para los cuatro sectores. Esta sección de la hoja se muestra en la Figura 6.11

Tabla 1a1a: Estructura de los clientes de la Industria:

	unidad	2000	2005	2010	2015	2020	2025
ind1	%	50.00	50.00	50.00	50.00	50.00	50.00
ind2	%	20.00	20.00	20.00	20.00	20.00	20.00
ind3	%	30.00	30.00	30.00	30.00	30.00	30.00
	%	0.00	0.00	0.00	0.00	0.00	0.00
	%	0.00	0.00	0.00	0.00	0.00	0.00
	%	0.00	0.00	0.00	0.00	0.00	0.00
Total	%	100.00	100.00	100.00	100.00	100.00	100.00

Figura 6.9. Porcentaje de los clientes industriales en la hoja "FinEle".

Tabla 1a1b: Tasas de crecimiento de los clientes de la Industria:

	unidad	2000	2005	2010	2015	2020	2025
ind1	[%p.a.]	6.04	6.04	5.92	5.30	5.03	3.64
ind2	[%p.a.]	6.04	6.04	5.92	5.30	5.03	3.64
ind3	[%p.a.]	6.04	6.04	5.92	5.30	5.03	3.64
	[%p.a.]	0.00	0.00	0.00	0.00	0.00	0.00
	[%p.a.]	0.00	0.00	0.00	0.00	0.00	0.00
	[%p.a.]	0.00	0.00	0.00	0.00	0.00	0.00
Total	[%p.a.]	6.04	6.04	5.92	5.30	5.03	3.64

Figura 6.10. Tasas de crecimiento de los clientes industriales en la hoja "FinEle".

Tabla 1b: Tasas de crecimiento totales:

_	unidad	2000	2005	2010	2015	2020	2025
Ind+Trp	[%p.a.]	9.31	5.90	5.80	5.28	5.01	3.74
Res+Servicios	[%p.a.]	9.50	5.41	5.60	5.70	5.72	5.66
Total	[%p.a.]	9.32	5.53	5.65	5.60	5.56	5.23

Figura 6.11. Tasas de crecimiento sectoriales totales en la hoja "FinEle".

(vii) Hoja de cálculo "SecEle"

Esta hoja contiene los datos de entrada sobre las pérdidas de transmisión totales a nivel de sistema, las pérdidas de distribución sectoriales sobre una base anual durante el período de estudio y algunos detalles sobre las cargas pico. La sección de la hoja que incluye estos datos se muestra en la Figura 6.12. Esta información se utiliza para ajustar la carga pico si los resultados no concuerdan con los valores reales históricos en el país. Al final de la hoja se reportan los requerimientos de electricidad, incluyendo las pérdidas de transmisión y distribución, como requerimientos de electricidad secundarios, tal como se presenta en la Figura 6.13.

Tabla 2: Demanda de electricidad secundaria para el escenario Caso de ejemplo del MAED_D

Tabla 2a: Pérdidas de transmisión:

	unidad	2000	2005	2010	2015	2020	2025	
transmpérd	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00

Tabla 2b1: Pérdidas de distribución:

	unidad	2000	2005	2010	2015	2020	2025	
Industria	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Transporte	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Residencial	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Servicios	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00

Tabla 2b2: Mayor demanda pico

	unidad	2000	2005	2010	2015	2020	2025	
multiplicador	[%]							
adición	[MW]							
duración	[h]							

Figura 6.12. Pérdidas de transmisión y distribución e información sobre la carga pico en la hoja "SecEle".

Tabla 2c1: Requerimientos de electricidad secundaria de la red [GWa]:

	unidad	2000	2005	2010	2015	2020	2025
Industria	GWa	0.44	0.59	0.78	1.01	1.29	1.55
Transporte	GWa	0.06	0.07	0.09	0.11	0.14	0.18
Residencial	GWa	0.14	0.22	0.33	0.48	0.69	0.96
Servicios	GWa	1.37	1.90	2.46	3.20	4.17	5.44
Total	GWa	2.00	2.78	3.66	4.81	6.30	8.13

Tabla 2c1: Requerimientos de electricidad secundaria de la red [GWh]:

_	unidad	2000	2005	2010	2015	2020	2025
Industria	GWh	3843	5139	6852	8873	11371	13556
Transporte	GWh	489	616	777	993	1260	1578
Residencial	GWh	1212	1943	2869	4173	6050	8424
Servicios	GWh	12044	16662	21566	28070	36651	47655
Total	GWh	17588	24360	32065	42109	55331	71213

Figura 6.13. Requerimientos de electricidad incluyendo las pérdidas de transmisión y distribución en la Hoja "SecEle".

(viii) Hoja de cálculo "LdFac(1)"

Esta hoja contiene los datos de entrada de los coeficientes de modulación de la carga diarios, horarios y por temporada (estación y temporada especial si existe), para el sector Industrial. La información puede suministrarse para cada cliente (6 como máximo) y para diferentes años de referencia considerados durante el periodo de estudio. En principio, los datos se suministran para el año base y se pueden modificar para los años futuros dentro del periodo de estudio si el usuario así lo desea.

La Figura 6.14 muestra una parte de los coeficientes por temporada y de los coeficientes diarios; igualmente se muestran los botones de control previstos para modificar datos de os diferentes años, copiarlos, graficarlos y normalizarlos. Las celdas de la hoja marcadas con bordes en negrilla son los coeficientes diarios del primer día del mes como se muestra en los cuadros de comentarios de esta Figura. En esta parte de la hoja se presentan varios botones de control para mostrar estos datos en forma gráfica, para eliminar los gráficos y para normalizar los datos. El botón "Check" está hecho para validar los datos de entrada. Si los datos para cierto año no son válidos, el color de la celda que muestra la suma de la columna o la fila se cambia a "Rojo" indicando un mensaje de advertencia al usuario.

En próximo capítulo se explicaran cada uno de los botones de manejo de datos con más detalle.

Figura 6.14. Coeficientes anuales y semanales en la hoja "LdFac(1)".

La Figura 6.15 muestra la porción de la hoja con la información relativa a la fecha y hora en que se salvaron por última vez los datos para un año en particular. Esta información es muy útil para mantener el registro del progreso en la entrada de datos cuando se realiza por pasos.

Año	Guardado	última vez
2000	Guardado	24/01/2007 15:02
2005	Guardado	24/01/2007 15:02
2010	Guardado	24/01/2007 15:02
2015	Guardado	24/01/2007 15:02
2020	Guardado	24/01/2007 15:02
2025	Guardado	24/01/2007 15:03

Figura 6.15. Fecha y hora de los datos guardados en la Hoja "LdFac(1)".

La Figura 6.16 muestra una parte de los datos de entrada de la variación horaria de la carga durante cada una de los días de la semana y para todas temporadas. Estos datos son suministrados para el año base y pueden ser modificados para los años futuros del período de estudio si así se desea.

Figura 6.16. Coeficientes horarios para el sector industrial en la hoja "LdFac(1)".

Finalmente, al final de la hoja de cálculo se suministra el código de colores usado en las diferentes hojas, como se muestra a continuación.

Figura 6.17. Códigos de los colores en la hoja "LdFac(1)".

(ix) Hoja de cálculo "LdFac(2)"

Esta hoja contiene la misma información que la hoja "LdFac(1)" pero para el sector Transporte.

(x) Hoja de cálculo "LdFac(3)"

Esta hoja contiene la misma información que la hoja "LdFac(1)" pero para el sector Residencial.

(xi) Hoja de cálculo "LdFac(4)"

Esta hoja contiene la misma información que la hoja "LdFac(1)" pero para el sector Servicios.

(xii) Hoja de cálculo "Check"

La información dada en esta hoja de cálculo es útil para localizar la ubicación del error en los coeficientes de modulación de la carga si su suma no es correcta. Buscando en esta hoja, uno puede localizar los errores si hay alguno en los datos de entrada para los coeficientes de carga, como se muestra en la Figura 6.18.

Figura 6.18. Errores en la suma de los coeficientes de carga horaria, diaria y semanal en la hoja "Check".

(xiii) Hoja de cálculo "LDC"

En esta hoja de cálculo se muestran: La carga pico por temporada y anual (MW), los requerimientos de electricidad (GWh), los factores de carga (%) y el número de horas así como los datos numéricos para las curvas de duración de carga de las cuatro estaciones. En la Figura 6.19 se muestra parte de esta hoja en la que están presentes la carga pico y los requerimientos de electricidad calculados por el modelo. La Figura 6.20 muestra la sección de la hoja en que se dan los datos numéricos para la curva de duración de carga por temporada.

Tabla 7: Curva de	dura	ción de d	arg	a ord	enada (T	otal) (Ca	so de ejer
Calcular		Exporta	r Fichero de salida:		C:\loadwasp1.		
	Resu		,				
չusar la ta 2000	asa de c	recimiento?: total		/ierno	primavera	verano	otoño
Demanda máxima (MW):		4449,096		427.531	2468.520		4449.096
Rel. con el pico anual		1.000		0.546	0.555	0.600	1.000
Energía (GWh):		17598.154	3	767.029	3242.844	5990.245	4598.036
Factor de carga (%):		45.03		79.82	76.02	76.60	47.32
Número de horas:		8784		1944	1728	2928	2184
Dif. con la demanda anual:		9.865					
% Dif. con la demanda anual:		0.1					

Figura 6.19. Carga pico, requerimientos de electricidad y factor de carga en la hoja "LDC".

lel MAED_D):			Gráfico	тос	
ja 'check' par	a normalizar lo	s coeficientes	Borrar d	es	
Curva de ca	ırga:				
temporada	ítem	datos			
invierno	longitud	0	0.00102881	0.00205761	0.00308642
	energía	1	1	0.99611813	0.99011959
primavera	longitud	0	0.0005787	0.00115741	0.00173611
	energía	1	1	0.98879739	0.97712455
verano	longitud	0	0.00102459	0.00204918	0.00273224
	energía	1	1	0.99583267	0.98780469
otoño	longitud	0	0.00045788	0.0018315	0.00228938
	energía	1	1	0.99132272	0.9721097

Figura 6.20. Valores de carga y duración para la curva de duración de carga anual en la hoja "LDC".

(xiv) Hoja de cálculo "LDC-G"

Esta hoja muestra las curvas de duración de carga anual y por temporada en forma gráfica para los diferentes años considerados en el estudio. La Figura 6.21 muestra una parte de esta hoja que contienen las curvas de duración de carga para todos los años incluidos en el estudio.

Figura 6.21. Gráficos de las curvas de duración de carga en la hoja "LDC-G".

(xv) Hoja de cálculo "ChrLdc"

Esta hoja contiene los datos de la carga cronológica para cada hora para todos los años considerados en el período de estudio. La Figura 6.22 muestra una sección de esta hoja.

2000	2005	2010	2015	2020	2025
1.774071378	2.58059023	3.65912775	6.20132979	5.86614747	11.1396562
1.693970292	2.46408532	3.54352231	5.96697024	5.65893405	10.7387308
1.625565032	2.36459242	3.44479911	5.76683293	5.4819794	10.3963506
1.609427297	2.34112875	3.42152398	5.71963765	5.44025366	10.3156132
1.643953431	2.39136263	3.47138272	5.82069334	5.52960906	10.4884933
1.70371669	2.47830811	3.55767206	5.99559816	5.68426067	10.7877095
1.848383955	2.68876039	3.76652289	6.41894963	6.05858484	11.5119511
1.949641459	2.83606811	3.91271183	6.71527814	6.32059732	12.0188905
1.987399277	2.89100621	3.96723782	6.82579505	6.41831816	12.2079561
1.940413658	2.82267068	3.89943383	6.68833458	6.29678137	11.9727991
1.948378091	2.83426933	3.91095212	6.71166977	6.31741753	12.0127203
1.917504012	2.78937018	3.86640528	6.62135427	6.23756557	11.8582157
1.961024014	2.85269129	3.92924982	6.74873392	6.35019617	12.0761289
1.914961588	2.7856973	3.86277753	6.61397288	6.23104619	11.84559

Figura 6.22. Datos cronológicos de carga en la hoja "ChrLdc".

(xvi) Hoja de cálculo "SvFac(1)"

Los datos para los coeficientes de carga horario, diario y por temporadas para el sector industrial son guardados en esta hoja. El programa lee los datos de esta hoja con el objetivo de mostrar los datos para un año específico en la hoja "LdFac(1)" según lo solicite en usuario. La Figura 6.23 muestra una parte de esta hoja.

	1.0003817	0.97627389	0.9943227	1.00682981	1.01942877
1	1.03412344	0.97627389	0.9943227	1.00682981	1.01942877
1	1.05072209	0.99228999	0.99848426	0.99397797	1.00100116
	0.9601658	0.9999857	1.10881871	1.00457394	0.93768576
1	1.01678715	0.96326209	0.99135904	0.9953109	1.00493484
1	1.00326866	0.99093155	1.00953344	0.99423366	0.9969697
1	1.00688718	0.94147867	1.03408624	1.02809268	1.03634766
C	0.96050129	0.97036573	1.01524181	1.01822269	1.01763629
1	1.00604731	0.95694241	1.02313988	1.025108	1.0085352
1	1.01583049	0.95111053	1.00695404	1.00734398	1.02253562
C	0.98421443	0.97860316	0.98951028	0.97158076	0.99903949
1	1.03036623	0.97860316	0.98951028	0.97158076	0.99903949
1	1.03019657	0.97534807	1.00582374	1.01244131	1.01294792
().87511119	1.01269579	0.98453714	0.96546312	0.98003176
C	0.94568572	0.95669924	0.99930807	0.98262306	1.01008094

Figura 6.23. Datos para los coeficientes guardados en la hoja "SvFac(1)".

(xvii) Hoja de cálculo "SvFac(2)"

Esta hoja contiene la misma información que la de la hoja "SvFac(1)" pero para el sector Transporte.

(xvii) Hoja de cálculo "SvFac(3)"

Esta hoja contiene la misma información que la de la hoja "SvFac(1)" pero para el sector Residencial.

(xvii) Hoja de cálculo "SvFac(4)"

Esta hoja contiene la misma información que la de la hoja "SvFac(1)" pero para el sector Servicios.

(xx) Hoja de cálculo "temp"

Esta hoja es usada por el programa para almacenar temporalmente algunos datos durante la ejecución del programa. La información contenida en esta hoja puede eliminarse para disminuir el tamaño (en cerca de 1.5 MB) del archivo "MAED El.xls".

7 EJECUCIÓN DEL MÓDULO 2 DEL MAED

7.1 Introducción

Antes de ejecutar el Módulo 2 del MAED, es necesario configurar apropiadamente la computadora:

- cambiando el formato de fecha como se explica en la Figura 7.1;
- fijando el nivel de seguridad del programa Excel a medio (Herramientas/Macro/Seguridad/Medio).

Con este nivel de seguridad, cuando el usuario abre el archivo del libro de trabajo de Microsoft Excel <**MAED_El.xls**>, aparece un **cuadro de diálogo** en la pantalla preguntándole al usuario si permite las Macros en el libro de trabajo o no (vea Figura 7.2). El usuario debe presionar el botón **Habilitar Macros** disponible en el libro de trabajo. Esto es necesario para permitir el uso de varias subrutinas de Microsoft Visual Basic existentes en el libro de trabajo, que activan varios botones y realizan varias funciones por ejemplo: Transferir el control de una hoja a la otra, calcular las curvas de duración de carga, chequear la validez de los datos de entrada, etc.

Antes de empezar a trabajar con el MAED, es necesario cambiar el formato para la fecha usado por los programas de Microsoft Windows tal y como se describe a continuación.

Para Microsoft Windows 95 v 98

- 1. Abrir el cuadro de diálogo de **Propiedades de Configuración Regional** presionando el botón **Inicio**, apuntando a **Configuraciones**, presionando doble clic en el **Panel de Control** y presionando **Configuraciones Regionales**.
- 2. En la etiqueta Fecha seleccionar "aaaa-MM-dd" del listado para Formato de fecha corta.
- 3. Presionar el botón aceptar para cerrar el cuadro de diálogo Propiedades de las Configuraciones Regionales.

Para Microsoft Windows 2000 y Windows XP

- 1. Abra las opciones de Configuración regional y de idioma en el Panel de Control.
- 2. En las etiqueta Opciones Regionales, bajo Estándares y Formatos, presione Personalizar.
- 3. En la etiqueta Fecha, seleccione "aaaa-MM-dd" del listado para Formato de fecha corta.
- 4. Presione el botón aceptar para cerrar el cuadro de dialogo Personalizar la configuración regional.
- 5. Presione el botón aceptar para cerrar el cuadro de diálogo Configuración regional y de idioma.

Figura 7.1. Cambio del formato de fecha antes de utilizar el MAED.

Figura 7.2. Cuadro de diálogo de Microsoft Excel solicitando habilitar las Macros.

También puede aparecer otro cuadro de diálogo durante la apertura del archivo Excel preguntando al usuario si actualiza los vínculos automáticos de este archivo con otros archivos (vea Figura 7.3). La respuesta a esta pregunta depende de que versión del programa MAED esté siendo utilizada para el análisis de la demanda de energía. Si las demandas de energía por sectores usadas en el MAED_El fueron estimadas con la versión I del programa MAED_D, distribuida antes de Diciembre de 2004 y la cual está vinculada automáticamente al programa MAED_El, la primera vez que un usuario abra el archivo <MAED_El.xls>, tiene necesariamente que presionar el botón **Actualizar** para importar los datos necesarios desde el Módulo 1 del MAED incluido en el archivo <MAED_D.xls>. Sin embargo, una vez que los datos hayan sido importados de este archivo, ya no es necesario presionar el botón **Actualizar**, a menos que el usuario haya realizado cambios en el archivo<MAED_D.xls>.

Figura 7.3. Cuadro de diálogo de Microsoft Excel para actualizar la información vinculada automáticamente desde otros libros de trabajos.

7.2 Ejecución del programa MAED El

Como se describió en el Capitulo 6, el Módulo 2 del MAED está diseñado para generar la demanda de carga horaria para un sistema eléctrico basado en:

- (i) La demanda eléctrica anual calculada usando el Módulo 1 del MAED o cualquier otra metodología;
- (ii) Crecimiento de la carga durante el año debido al incremento de la demanda de electricidad;
- (iii) Coeficientes de variación de la carga por temporada;
- (iv) Variación de la carga diaria por tipo de día, y
- (v) Variación de la carga horaria durante el día para todos los tipos de días.

Por lo tanto, estas cinco categorías de datos de entrada se requieren para la ejecución del Módulo 2.

Los principales pasos en la ejecución de este módulo son:

- (i) Preparación de los datos de entrada necesarios;
- (ii) Entrada y validación de los datos requeridos en las diferentes hojas de cálculos descritas en la sección anterior;
- (iii) Ejecutar el programa Módulo 2; y
- (iv) Chequear los resultados del modelo.

El usuario puede repetir los pasos del (ii) al (iv) tantas veces como sea necesario hasta estar satisfecho con los resultados del modelo. A continuación describiremos esos pasos de forma detallada.

Paso I: Preparación de los datos de entrada necesarios

El primer paso es recopilar la información requerida para ejecutar el modelo. Parte de ella está basada en el Módulo 1, mientras que la información relacionada con la variación de la carga de electricidad por temporadas (semanalmente), diaria (por tipo de día) y horaria en varios sectores y subsectores de la economía se obtiene usando datos históricos. En el Apéndice C de la Referencia 12, se exponen los detalles para la preparación de esos parámetros con base en estadísticas históricas.

Si el Módulo 1 del MAED fue utilizado para calcular las proyecciones de la demanda de electricidad, entonces la demanda de electricidad anual del sector (GWh) y la tasa de crecimiento anual estarán disponibles desde allí y no se requiere que el usuario suministre esa información; de lo contrario se necesita reunir esta información generada con otro estudio similar de demanda. Se necesita, además, la participación de los diferentes clientes dentro de cada sector, tanto para el año base como para los años de proyección considerados en el estudio.

Paso II: Entrada de datos las hojas de cálculo

Los datos requeridos para el Módulo 2 se introducen en varias hojas de cálculos como se describió en las secciones previas de éste Manual. Como regla general, el usuario necesita ingresarar los datos en las celdas con el fondo blanco. Todos los parámetros de entrada requeridos en las diferentes hojas de cálculo se describen a continuación.

I. Hoja "Descr"

"Descr" es la primera hoja en la que requiere datos del usuario. En ésta, el usuario suministra información general relacionada con el escenario de demanda de electricidad, por ejemplo: nombre del país/región, número y nombre del escenario, nombre del autor y fecha, etc.

II. Hoja "Calendario"

En esta hoja, se introduce la información relacionada con los días calendario. El usuario suministra los días feriados especiales y normales durante cada uno de los años considerados en el período de estudio. Esta información se da para los días feriados semanales, y para los días festivos que ocurren en ocasionales especiales.

En la siguiente sección de la hoja de cálculo, se introducen las fechas de comienzo de las diferentes temporadas para cada año. El modelo considera cuatro temporadas típicas: invierno, primavera, verano y otoño. La temporada que comienza al final del año y continúa al inicio del año siguiente puede tener dos fechas de comienzo para el año de referencia del modelo, una el 1º de enero y la segunda al inicio de la temporada al final del año. Por consiguiente, el usuario tiene que definir la fecha de inicio para cinco temporadas. Al final de esta Tabla, también se introduce la última fecha del año, es decir, el 31 de diciembre.

En la próxima sección de la hoja se definen, para cada año de referencia en el período de estudio, las fechas de comienzo y final de una temporada especial (si existe). Una temporada especial pudiera ser "el Rabadán" en los países Musulmanes, la Navidad en otros países o cualquier otro período especial del año que tiene diferentes patrones de consumo de electricidad.

Al final de la hoja, el usuario tiene que proveer la secuencia de los nombres de los días de la semana en una semana típica (por ejemplo, de Lunes a Domingo en Europa y de Sábado a Viernes para los países Islámicos) y los días típicos que se van a considerar para la variación de la carga horaria por ejemplo en Europa, Miércoles, como un día de trabajo corriente, Sábado y Domingo como feriados.

III. Hoja "FinEle"

Los datos que el usuario debe suministrar en esta hoja corresponden a la participación de diferentes clientes en diferentes sectores de la economía. Como máximo, seis clientes se pueden definir por cada sector y la suma de los porcentajes de todos los clientes en cada sector debe ser igual a 100 % en todos los sectores. En el caso de ejemplo, se consideran cuatro sectores de la economía (Industria, Transporte, Residencial y Servicios) tres clientes en el sector Industrial y un cliente en cada uno de los demás sectores. Sin embargo, el usuario puede cambiar los nombres de estos sectores así como los nombres y números de los clientes a ser considerados en cada sector.

Definición de clientes

Se debe notar que el número de clientes que se define en la hoja "**FinEle**" es muy importante y los datos de entrada requeridos y los cálculos hechos por el modelo dependen en gran medida de ésta información. El número de nombres no vacíos de clientes en un sector particular determina el número de clientes presentes en el sector y en adelante, todos los cálculos se harán sólo para esos clientes. Un segundo punto importante a tener en cuenta respecto a los datos de los clientes es que todos los clientes en el sector deben ser definidos en filas consecutivas comenzando por la primera fila debajo de la fila correspondiente a los años de ese sector. Por ejemplo, si se definen tres clientes como se muestra en la Figura 7.4, el modelo considerará sólo los clientes definidos en las dos primeras filas e ignorará al tercer cliente "**ind3**" para los cálculos posteriores.

	unidad	2000	2005	2010	2015	2020	2025
ind1	%	50.00	50.00	50.00	50.00	50.00	50.00
ind2	%	20.00	20.00	20.00	20.00	20.00	20.00
	%	0.00	0.00	0.00	0.00	0.00	0.00
ind3	%	30.00	30.00	30.00	30.00	30.00	30.00
	%	0.00	0.00	0.00	0.00	0.00	0.00
	%	0.00	0.00	0.00	0.00	0.00	0.00
Total	%	100.00	100.00	100.00	100.00	100.00	100.00

Figura 7.4 Definición de clientes en la hoja "FinEle".

IV. Hoja "SecEle"

Ésta requiere información de las pérdidas de transmisión del sistema eléctrico y las pérdidas de distribución para cada sector considerado en el estudio. Estos datos se requieren para cada año de referencia del estudio. Además de eso, se puede introducir alguna información relacionada con el ajuste de la demanda pico en caso de que la calculada por el modelo no se ajuste con el valor real experimentado por el sistema eléctrico. El usuario puede usar un "multiplicador" o valores de "adición" y "duración" para ajustar la demanda pico.

V. Hoja "LdFac(1)"

Esta hoja requiere datos de entradas extensivos para los coeficientes de variación de carga semanal, diario y horario. La información es subdividida dentro de un número de Tablas (3a al 3g), para que facilitar su manejo por parte del usuario.

La Tabla 3a requiere información de los coeficientes de carga por temporada (semanal) y diario (tipo de día) para varios años de referencia en el período de estudio. Las primeras columnas tienen los coeficientes de la variación de carga semanal para cada año. En total, se necesitan 53 coeficientes por año. La primera y la última semana pueden tener menos de siete días, debido a los días diferentes de la semana del 1º de enero. La suma de todos los coeficientes debe ser igual a 53.

En la sección del lado derecho de la Tabla 3a, el usuario tiene que introducir los coeficientes de la variación de la carga por tipo de día durante una semana. Estos coeficientes se necesitan para los siete días de la semana y para todas las semanas del año (53 semanas, debido a lo explicado anteriormente). En la primera fila se muestran los nombres de los días de la semana. La suma de los coeficientes para cada semana, dados en la última columna, debe ser igual a 7.

La Tabla 3b contiene la información de los coeficientes de variación de carga horaria para el cliente 1 en el sector Industrial. Estos coeficientes se definen para las 24 horas de cada día de la semana (7 en total) y para cada temporada (las cuatro temporadas y la especial). La suma de los coeficientes horarios en cada día debe ser igual a 24. Información similar para el resto de los clientes del sector Industrial se dan desde la Tabla 3c a la 3g. El usuario tiene que entregar los datos todos los clientes que definió "FinEle", Tabla 1a1a.

La descripción de varios botones de control y las áreas que pueden ser doblemente pulsadas en la hoja "LdFac(1)" se muestran en la Figuras 7.5, 7.6 y 7.7.

Figura 7.5. Ilustración de varias opciones de doble clic en la sección de coeficientes por temporada de la Tabla 3a en la hoja "LdFac(1)".

Figura 7.6. Ilustración de varios botones y opciones de doble-clic disponibles en la sección de coeficiente diario de la Tabla 3^a en la hoja "LdFac(1)".

Visualizar/Editar datos para un año en particular

El usuario puede recuperar los coeficientes por temporada, diarios y horarios para un año particular de la hoja SavFac (?) respectiva presionando el botón "Mostrar" (y seleccionando el año en la lista desplegada) como se muestra en la Figura 7.6 o haciendo doble clic en el año respectivo en la fila con los nombres en la sección de los coeficientes de variación por temporada como se muestra en la Figura 7.5.

Guardar los datos para un año en particular

Los datos del año escogido se pueden guardar en la hoja "SavFac(?)" presionando el botón Guardar como se muestra en la Figura 7.6. A la derecha de la Tabla 3a se encuentra una tabla pequeña que muestra la fecha y la hora en que los datos fueron guardados para cada año de referencia en el periodo de estudio como se mostró en la Figura 6.15 en la sección anterior.

Muestra de datos en forma gráfica

El usuario puede mostrar los coeficientes por temporadas, diarios y horarios en forma gráfica haciendo doble clic en la celda "Sh" en la fila o columna respectiva como se ilustra en las Figuras 7.5, 7.6 y 7.7. Una vez que se haya visualizado el gráfico para los coeficientes semanales, diarios u horarios, el color de la celda "Cl" respectiva cambia a rojo. Esto significa que se puede cerrar la ventana del gráfico mostrado haciendo doble clic en la celda de color rojo "Cl".

Cierre del gráfico de Windows

El gráfico de Windows puede cerrarse haciendo doble clic en la celda "Cl" como se ilustra en las Figuras 7.5, 7.6 y 7.7.

NOTA: Se recomienda enfáticamente establecer en la ventana del Excel el zoom en 100%, para evitar problemas durante las funciones de mostrar y cerrar los gráficos.

Chequeo de la validez de los datos de los coeficientes

Presione el botón "Chequear" para verificar que la suma de los coeficientes por temporada, diarios y horarios sea igual a 53, 7 y 24 respectivamente. Los mensajes de error resultantes serán almacenados en la hoja "check".

Normalización de los coeficientes

Cualquier conjunto de coeficientes semanales, diarios u horarios se pueden normalizar haciendo doble clic en la celda "N" respectiva localizada en la columna o fila correspondiente. El significado de la normalización de los coeficientes es ajustar los valores de los coeficientes para hacer su suma igual a 53 en el caso de los coeficientes por temporada, 7 para los diarios y 24 para los horarios.

Nota: Los botones "Sh", "Cl" y "N" para los coeficientes **por temporadas** se encuentran en la primeras filas de la Tabla 3a, para los coeficientes de variación diaria se localizan en la

parte derecha de la Tabla 3a y para los coeficientes horarios en las filas finales de la Tabla 3b. El código de colores que se usa se encuentra al final de la hoja de cálculo (Fila 270).

VI. Hoja "LdFac(2)"

Esta hoja muestra la misma información que la hoja "LdFac(1)" pero para el sector Transporte.

Tabla 3b: Coeficientes diarios para Industria ,ind1 2015 invierno primavera Sab Dom DTr Sab Dom DTr hora 0 0 0 0 00.00 0.93 1.01 1.01 0.00 0.00 0.00 0.00 0.93 1.01 1.01 0.00 0.00 01.00 0.96 0.96 0.00 0.00 0.00 0.00 0.96 0.96 0.00 0.890.890.00 02.00 0.86 0.92 0.92 0.00 0.00 0.00 0.00 0.86 0.92 0.92 0.00 0.00 0.00 03.00 0.85 0.93 0.91 0.00 0.00 0.00 0.00 0.85 0.93 0.91 0.00 0.00 0.00 04.00 0.86 0.96 0.94 0.00 0.00 0.00 0.00 0.86 0.96 0.94 0.00 0.00 0.00 05.00 0.90 0.96 0.96 0.00 0.00 0.00 0.00 0.90 0.96 0.960.00 0.00 0.00 06.00 0.97 0.98 0.97 0.00 0.00 0.00 0.98 0.97 0.00 0.00 0.00 0.00 0.97 0.00 07.00 1.03 1.02 0.99 0.00 0.00 0.00 1.03 1.02 0.99 0.00 0.00 08.00 0.99 0.00 0.00 0.99 1.05 0.99 0.00 0.00 1.05 0.99 0.00 0.00 09.00 1.02 1.00 0.96 0.00 0.00 0.00 0.00 1.02 1.00 0.96 0.00 0.00 0.00 10.00 1.02 0.95 0.990.99 0.00 0.00 0.00 0.00 1.02 0.950.00 0.00 0.00 11.00 1.01 0.98 0.97 0.00 0.00 0.00 1.01 0.98 0.97 0.00 0.00 0.00 0.00 12.00 1.03 0.99 0.98 0.00 0.00 0.00 0.00 1.03 0.99 0.98 0.00 0.00 0.00 13.00 0.99 1.01 0.99 1.00 0.00 0.00 0.00 0.00 1.01 1.00 0.00 0.00 0.00 14.00 1.01 1.00 1.02 0.00 0.00 0.00 0.00 1.01 1.00 1.02 0.00 0.00 0.00 15.00 1.02 1.00 1.02 0.00 0.00 0.00 0.00 1.02 1.00 1.02 0.00 0.00 0.00 16.00 1.06 0.98 1.01 0.00 0.00 0.00 0.00 1.06 0.98 1.01 0.00 0.00 0.00 17.00 1.13 1.04 1.05 0.00 0.00 0.00 0.00 1.13 1.04 1.05 0.00 0.00 0.00 1.06 18.00 1.11 1.06 1.07 0.00 0.00 0.00 0.00 1.11 1.07 0.00 0.00 0.00 19.00 1.05 0.00 0.00 0.00 1.07 1.05 0.00 0.00 0.00 1.11 1.07 0.00 1.11 20.00 1.07 1.06 1.06 0.00 0.00 0.00 0.00 1.06 1.06 0.00 0.00 0.00 1.07 21.00 1.04 1.06 1.06 0.00 0.00 0.00 0.00 1.04 1.06 1.06 0.00 0.00 0.00 22.00 1.02 1.05 1.06 0.00 0.00 0.00 0.00 1.02 1.05 1.06 0.00 0.00 0.00 0.00 0.00 1.00 23.00 0.99 1.00 1.06 0.00 0.00 0.99 1.06 0.00 0.00 0.00 Total 24.0 24.0 24.0 24.0 24.0 24.0 Sh Sh Sh Sh Sh Sh Sh Sh Sh Sh Sh Sh Sh CI CI CI CI CI CL CI CI CI. CI. CI CI Ν Ν Ν Ν Ν Ν N> Ν Ν Ν Ν Ν Doble clic para mostrar el Doble clic para cerrar el Doble clic para norma lizar gráfico de los coeficientes gráfico de los coeficientes los coeficientes horarios en horarios en esta columna horarios en esta columna esta columna

Figura 7.7. Ilustración de varias opciones de doble clic habilitadas en los coeficientes horarios de la Tabla 3b en la hoja "LdFac(1)".

VII. Hoja "LdFac(3)"

Esta contiene la misma información dada en la hoja "LdFac(1)" pero para el sector Residencial.

VIII. Hoja "Ldfac(4)"

Esta contiene la misma información dada en la hoja "LdFac(1)" pero para el sector Servicios.

Después de completar los datos de entrada para los coeficientes por temporadas, diarios y horarios para todos los sectores, el usuario puede presionar el botón "Chequear" en cada una de estas hojas de cálculo y verificar cualquier mensaje de error en la hoja "check". En caso de que exista algún mensaje de error, el usuario puede modificar el respectivo conjunto de coeficientes en las hojas "LdFac(?)" de acuerdo con el mensaje de error.

Paso-III: Ejecución del Módulo 2

Una vez que los coeficientes estén corregidos y sean completamente satisfactorios, el usuario puede dirigirse a la hoja "LCD" para realizar los cálculos. Presionando el botón "Calcular", el usuario puede iniciar el proceso para calcular las cargas horarias resultantes en el sistema para cada año del estudio. Los resultados de esos cálculos son guardados/actualizados en las hojas "LDC", "ChrLDC" y "temp". Este paso toma más tiempo, ya que se realizan cálculos extensos en el fondo. Sin embargo, durante la ejecución del modelo se visualizan algunos mensajes acerca del estado de la corrida del programa en un momento determinado.

En la Tabla 7.1 se presenta una descripción breve de de los botones disponibles en varias hojas del archivo <**MAED-el.xls**> del Módulo 2 del MAED.

Paso-IV: Comprobación de los resultados del Modelo

Después de completada la ejecución del programa del Módulo 2 del MAED, los resultados del modelo se presentan en las hojas "LDC", "LDC-G" y "ChrLDC". Las descripciones de esas hojas de cálculo ya se analizaron en secciones previas del manual. Las características de la carga para cada temporada así como para todo el sistema se encuentran en la misma hoja ("LDC") para cada año considerado en el estudio. Los datos de las curvas de duración de carga respectivas también se muestran para las cuatro temporadas consideradas en cada año. Estos datos son requeridos por el módulo LOADSY del modelo WASP (Wien Automatic System Planning Package) desarrollado por el OIEA para la planificación de la expansión del sector eléctrico. Sin embargo, esos datos no son útiles, si el usuario decide utilizar el número de periodos en un año de otra manera que los periodos en el WASP. En ese caso, el usuario necesitará usar los datos de cargas cronológicos almacenados por el modelo en la hoja "ChrLDC" y generar los datos LOADSY por él mismo. Las curvas de duración anual y por temporadas en forma gráfica son almacenadas en la hoja "LDC-G". Los valores de carga cronológicos así como las curvas de duración de cargas generadas por el modelo se pueden comparar con los datos reales para el año base y el usuario debe tratar de explicar cualquier discrepancia, si se encontró, entre los valores. Si el resultado no está acorde a las expectativas del usuario, deberá chequear de nuevo los datos de entrada y es posible que necesite repetir los pasos II al IV.

Tabla 7.1 Descripción de los botones disponibles en varias hojas del archivo **MAED-el.xls** del Módulo 2 del MAED.

Botón	Hoja/(s)	Descripción
TOC	Todas las hojas excepto MAED_EL, check, ChrLDC, SvFac(1), SvFac(2), SvFac(3), SvFac(4), y temp	Para moverse a la hoja "TOC".
Notes	TOC	Para moverse a la hoja "Notes".
Descr	TOC	Para moverse a la hoja "Descr".
FinEle	TOC	Para moverse a la hoja "FinEle".
SecEle	TOC	Para moverse a la hoja "SecEle".
LdFac(1)	TOC	Para moverse a la hoja "LdFac(1)".
LdFac(2)	TOC	Para moverse a la hoja "LdFac(2)".
LdFac(3)	TOC	Para moverse a la hoja "LdFac(3)".
LdFac(4)	TOC	Para moverse a la hoja "LdFac(4)".
LDC	TOC	Para moverse a la hoja "LDC".
LDC-G	TOC	Para moverse a la hoja "LDC-G" que contiene los gráficos para las curvas de duración de carga.
LDC(2)	TOC	Para moverse a la hoja " temp".
Chequear	LdFac(1), LdFac(2), LdFac(3), LdFac(4)	Verificar la suma de los coeficientes por temporada, diarios y horarios. El resultado es mostrado en la hoja "check".
mostrar	LdFac(1), LdFac(2), LdFac(3), LdFac(4)	Para recuperar los coeficientes por temporada, diarios y horarios para un año particular de la hoja "SvFac(?)" respectiva.
guardar	LdFac(1), LdFac(2), LdFac(3), LdFac(4)	Para guardar los coeficientes por temporada, diarios y horarios para un año particular de la hoja "SvFac(?)" respectiva.
Calcular	LDC	Para empezar el proceso de cálculo de las cargas horarias resultantes del sistema para cada año considerado en el estudio. Los resultados de estos cálculos son guardados/actualizados en las hojas "LDC", "ChrLDC" y "temp".
Exportar	LDC	Para exportar la carga pico anual, las relaciones de las cargas picos del período y los datos de las curvas de duración de carga para las cuatro temporadas consideradas por el MAED al archivo de datos especificado

		por el usuario usando el botón del archivo de salida. El formato de este archivo está en correspondencia con lo requerido por el módulo LOADSY del modelo WASP del OIEA para la planeación de la expansión del sistema eléctrico.
Fichero de salida:	LDC	Para especificar/seleccionar el archivo de salida a utilizar para exportar los resultados del MAED como se explicó en la descripción del botón EXPORTAR.
Gráfico	LDC	Para mover a la hoja "LDC-G" que contiene los gráficos para las curvas de duración de las cargas.
Borrar datos temporales	LDC	Para borrar la información de la hoja "temp" para disminuir el tamaño del archivo "MAED_El.xls" del libro de trabajo.
Datos	LDC-G	Para moverse a la hoja "LDC" que contiene los datos numéricos de las curvas de duración de carga.

8 FUNDAMENTOS TEÓRICOS DEL MODULO 2 DEL MAED

Como se expuso anteriormente, el objetivo principal de Módulo 2 del MAED es convertir la demanda de electricidad anual total de cada uno de los cuatro sectores considerados en el modelo (Industria, Transporte, Residencial y Servicios) en la demanda de electricidad de estos sectores hora por hora. En esta sección se muestra el enfoque metodológico generalizado que se emplea en el Módulo 2.

La demanda de electricidad anual de un sector consumidor es convertida en la potencia eléctrica requerida por este sector a una hora dada de un cierto día y semana del año correspondiente, teniendo en cuenta los siguientes factores:

- (i) La tendencia de la tasa de crecimiento promedio de la demanda en el año;
- (ii) La variación del consumo de electricidad debido al impacto de la temporada (expresada en términos de semestres, trimestres, meses, semanas);
- (iii) El impacto del tipo de día considerado en el consumo de electricidad (si es un día laborable, fin de semana, etc.);
- (iv) La variación en el consumo de energía debido al período del día considerado (si es en la mañana, hora de almuerzo, por la tarde, etc.).

Cada uno de estos factores es representado por un cierto coeficiente que en un sentido "modula" la potencia eléctrica requerida por el sector (por esta razón, son llamados coeficientes de modulación de la carga). Cada coeficiente puede ser visto como la variación del consumo de electricidad del sector con respecto al consumo "estándar" del sector, que es representado por el consumo en un día laborable equivalente.

El propósito general de la metodología consiste en calcular la potencia eléctrica requerida por un sector consumidor desde la red a la hora h en un día j de una semana número i, a partir de la potencia requerida por este mismo sector a la misma hora de un día laborable equivalente promedio. Para estos cálculos se utiliza la siguiente metodología:

Identificación del calendario

En el modelo MAED, el año es dividido en cuatro temporadas y un período festivo especial, el cual puede tener un patrón de consumo de electricidad diferente de estas cuatro temporadas. El usuario define la fecha del primer día de cada temporada, para cada año de referencia considerado en el período de estudio, con el fin de identificar las diferentes temporadas durante el año. De forma similar, se definen las fechas de inicio y final del período festivo especial. El usuario también especifica la secuencia de días semanales (por ejemplo, de lunes a domingo en Europa y de sábado a viernes para los países Islámicos) y los días típicos para la variación de la curva de carga horaria (por ejemplo, días laborables, sábados y domingos en Europa).

Consideración de la tasa de crecimiento de la demanda de electricidad durante el año: Coeficiente T(i)

Para llegar a un día estándar, la primera corrección a realizar corresponde a la tendencia general del crecimiento del consumo de electricidad durante el año. Esta tendencia se representa por un "deflactor" que se calcula sobre una base semanal (con un total de 52 valores en el año), de manera que el deflactor del consumo de electricidad bruto (es decir, el coeficiente de tendencia de crecimiento) para la semana "i" es:

$$T(i) = \left[1 + \frac{GROWTH}{100}\right]^{\left(\frac{i-26}{52}\right)}$$

Donde GROWTH es la tasa de crecimiento anual promedio de la demanda de electricidad del sector que se está trabajando entre el año último previo y el año actual. La tasa de crecimeitno es definida por el usuario (para el primer año) o calculada por el programa a partir de la información leída del Módulo 1 del MAED archivo <math del material del MAED archivo material del material

Coeficientes por temporadas: K(i)

Con el objetivo de tener en cuenta el impacto de la temporada sobre el consumo de electricidad de un sector, se utiliza el "deflactor de temporada". Para el período de tiempo "i" (ya sea un semestre, un trimestre, un mes, una semana, etc.), K(i) representa el peso promedio de este período en el consumo de electricidad total para el año.

Consecuentemente, la suma de los valores K(i) en todo el año debe ser igual al número total de períodos en los cuales fue dividido el año. (Nota: La subdivisión del año en temporadas para preparar los datos de entrada de un caso de estudio dado dependerá de la disponibilidad de datos para el país que está siendo estudiado. Además, los coeficientes K(i) deben reflejar los cambios en la demanda debido solo a los efectos de la temporada, es decir al calcular los valores de K(i) el efecto de la tendencia de crecimiento debe ser eliminado primero. La sección C.4 de la Referencia 12 describe como los coeficientes de modulación se pueden calcular a partir del conocimiento de la curva de carga eléctrica cronológica de un sector dado).

En el Módulo 2 del MAED, se ha seleccionado la semana como la unidad de tiempo elemental para representar estas variaciones por temporadas y, por tanto, 53 coeficientes K(i) deben ser suministrados como datos de entrada para cada año de referencia del período de estudio, teniendo presente que al menos una de la primera y la última semana no será una semana completa. Si el usuario no desea cambiar estos coeficientes para un año futuro, puede repetir los mismos coeficientes del año anterior. Por eso, el único cálculo que realiza el programa para estos coeficientes es el control:

$$\sum_{i=1}^{53} K(i) = 53$$

Si la SUMA no es igual a 53, la celda que contiene la suma de los coeficientes se torna de color rojo mostrando un mensaje de advertencia al usuario.

Coeficientes de ponderación diarios: P(i, id)

Este tipo de coeficientes refleja las fluctuaciones del consumo de electricidad debido al tipo de día que esta siendo considerado, es decir día laborable, sábado, domingo, etc. Puesto que el objetivo general del ejercicio es comparar el consumo de electricidad de cada unidad de tiempo con el consumo en día laborable equivalente, el peso relativo de un día laborable se selecciona igual a 1, y el resto de los tipos de día son ponderados en comparación con su consumo con relación al del día laborable, por ejemplo un sábado puede ser asumido como 0.8 de un día laborable, un domingo como 0.7, etc.

En general estos coeficientes fluctúan en todo el año de acuerdo al período de tiempo considerado (en el MAED, la semana, como se explicó en la sub-sección precedente) por tanto ellos son representados más adecuadamente como P (i, id), {i = 1, 53} e {id = 1, 7}. Nuevamente, estos coeficientes deben ser dados como datos de entrada para cada año de referencia del período de estudio. Si el usuario no desea cambiar estos coeficientes para un año futuro, puede repetir los mismos coeficientes del año anterior.

Coeficientes horarios: LCS(h, id)

El objetivo del coeficiente horario es ponderar el consumo de energía para las 24 horas del día. Para cada hora "h" de un día se dará un coeficiente de acuerdo al nivel de consumo en esa hora, de forma tal que la suma de los coeficientes para el día sea igual a 24.

En general, estos coeficientes dependen del período de tiempo del año y de los días típicos para la variación de la carga horaria que está siendo considerada. Al inicio de esta sección fueron definidos los días típicos para la variación de la carga horaria. Ellos pueden ser algunos días en particular de la semana (por ejemplo, Miércoles, como un día laborable típico, Sábado y Domingo). Acerca de la variación de acuerdo al periodo de tiempo en el año, en el programa se puede hacer una diferenciación entre el consumo en cada una de las cuatro temporadas así como para el período festivo especial. Varios tipos de clientes o consumidores con diferentes características de carga diaria también pueden distinguirse para el sector considerado.

Cada cliente tipo -ic- (en el MAED, el usuario puede definir hasta 6 clientes para cada sector) tiene un peso en cada tipo de día -id- (en este caso -id- puede ser menor que 7, dependiendo de cuantos días típicos son considerados para reflejar la variación de la curva horaria) y para cada temporada -is- (las cuatro temporadas y el período festivo especial consideradas en el MAED) que es igual a -LCONT_{is}- así como la variación horaria de la demanda de electricidad -LCOEF(h,ic,id)- que se da como dato de entrada. Consecuentemente, a partir de estos datos el programa calcula los coeficientes horarios agregados LCS_{is} del sector para cada temporada -is- a partir de:

$$LCS_{is}(h,id) = \sum_{ic=1}^{6} LCONT_{is}(ic,id) * LCOEF_{is}(h,ic,id)$$

Antes de llevar a cabo los cálculos anteriores, el programa realiza los siguientes chequeos para todas las temporadas -is-:

$$\sum_{ic=1}^{6} LCONT_{is}(ic,id) = 100$$

v

$$\sum_{h=1}^{24} LCOEF_{is}(h, ic, id) = 24$$

y si éstos no se cumplen, se muestra un mensaje de advertencia en la hoja respectiva mediante el cambio a color rojo de la celda que contiene la suma de los coeficientes para un tipo de día en particular. Los valores LCONT y LCOEF deben ser dados como datos de entrada para

cada año de referencia del período de estudio. Si el usuario no desea cambiar estos coeficientes para un año futuro, puede repetir los mismos coeficientes del año anterior.

Número de días laborables equivalentes en un año

Teniendo identificados todos los coeficientes arriba mencionados, el número total de días laborables equivalentes para el año y sector actual es:

$$N = \sum_{m=1}^{NODAYT} P(i, id) * K(i) * T(i)$$

donde NODAYT es el número total de días en el año, -id- representa el tipo de día e -i- el número de semana para el día de calendario m.

De este modo, el consumo de energía del sector en días laborables promedio equivalente:

$$EWDS = ENERGY / N$$

Donde **ENERGY** es el consumo de electricidad anual del sector que se considera en el año actual del modelo, estimado con el Módulo 1 del MAED.

Determinación de la demanda de potencia horaria promedio del sector

El consumo de electricidad total del sector actual para el día calendario -m- del año actual es dado por:

$$E(m) = EWDS * K(i) * T(i) * P(i,id)$$
 donde -id- es el tipo de día.

La demanda de potencia eléctrica del sector -it- en la hora -h- del día -m- es calculada como:

$$PV_{is}(it, h, m) = E(m) * LCS_{is}(h, id) / 24$$

Finalmente, la demanda de electricidad anual total del sector es:

$$ESUM(it) = \sum_{m=1}^{NODAYT} E(m)$$

Determinación de la demanda de potencia horaria promedio (o carga eléctrica) impuesta al sistema de generación del país

La metodología descrita anteriormente es aplicada a cada uno de los cuatro sectores considerados en el programa, es decir Industria, Transporte, Residencial y Servicios. Una vez que toda la demanda anual total sectorial y las curvas horarias han sido determinadas, el programa calcula la demanda anual total del sistema de generación eléctrica (ET) y la tasa de crecimiento (GROWAV) de esta demanda para el año actual de la forma siguiente:

$$ET = \sum_{i=1}^{4} ESUM(it)$$

$$GROWAV = \sum_{it=1}^{4} ESUM(it)*GROWTH(it)/ET$$

La carga eléctrica total impuesta al sistema de generación en la hora –h- se obtiene simplemente al adicionar la carga de cada sector para la misma hora, es decir:

$$PT_{is}(h,m) = \sum_{it=1}^{4} PV_{is}(it,ih,m)$$

REFERENCIAS

- [1] Jenkins, R. and Joy, D., Wien Automatic System Planning Package (WASP): An Electric Expansion Utility Optimal Generation Expansion Planning Computer Code, Oak Ridge National Laboratory, Rep. ORNL-4925, USA (1974).
- [2] Market Survey for Nuclear Power in Developing Countries: General report, IAEA, Vienna, Austria (1973).
- [3] Market Survey for Nuclear Power in Developing Countries, 1974 Edition, IAEA, Vienna, Austria (1974).
- [4] WASP-III Version for IBM-PC (ADB Version), IAEA Internal Document, Vienna, Austria, 1987.
- [5] Wien Automatic System Planning (WASP) Package A Computer Code for Power Generating System Expansion Planning, Version WASP-III Plus User's manual, Volume I: Chapters 1–11, Volume II: Appendices, IAEA Computer Manual Series No. 8, Vienna, Austria (1995).
- [6] Wien Automatic System Planning (WASP) Package A Computer Code for Power Generating System Expansion Planning, Version WASP-IV User's Manual, IAEA Computer Manual Series No. 16, Vienna, Austria (2001).
- [7] Chateau, B. and Lapillonne, B., La prévision à long terme de la demande d'énergie: Essai de renouvellement des méthodes, Thèse de 3e cycle, Institut Economique et Juridique de l'Energie, Université de Grenoble, France (1977).
- [8] Lapillonne, B., MEDEE-2: A Model for Long Term Energy Demand Evaluation, RR-78–17, IIASA, Laxenburg, Austria (1978).
- [9] Hoelzl, A., A Computer Program for Energy Demand Analysis by the MEDEE Approach: Documentation of the MEDEE-2 Version used in IIASA'a Energy Systems Program (1980).
- [10] Energy Systems Program Group of IIASA (BK-81-203, 1981), (W. Haefele, Program Leader), Energy in a Finite World (Vol. 2), A Global Systems Analysis, Ballinger, Cambridge, Massachusetts, USA.
- [11] Etude Nucleo-énergétique pour l'Algérie Etude réalisée conjointement par la Societé Nationale de l'Electricité et du Gaz de l'Algérie et l'Agence Internationale de l'Energie Atomique, Vienne, Austria (1984).
- [12] Model for Analysis of the Energy Demand (MAED), Users' Manual for Version MAED-1, IAEA-TECDOC-386, Vienna, Austria (1986).
- [13] MAED-1 Version for IBM-PC, IAEA Internal Document, Vienna, Austria (1988).
- [14] Energy and Power Evaluation Program (ENPEP), Documentation and User's Manual, ANL/EES-TM-317, Argonne National Laboratory, USA (1987).
- [15] Energy and Electricity Planning Study for Jordan up to the Year 2010, IAEATECDOC-439, Vienna, Austria (1987).
- [16] Energy and Nuclear Power Planning Study for Thailand, IAEA-TECDOC-518, Vienna, Austria (1989).
- [17] Experience with WASP and MAED among IAEA member States Participating in the Regional Co-operative Agreement (RCA) in Asia and the Pacific Region (Proceedings of a RCA Workshop, Kuala Lumpur, 5–9 December 1988, IAEA-TECDOC-528, Vienna, Austria (1989).
- [18] Experience in Energy and Electricity Supply and demand Planning with Emphasis on MAED and WASP among Member States of Europe, Middle East and North Africa (Proceedings of a Workshop, Nicosia, Cyprus, 11–15 December 1989, IAEATECDOC-607, Vienna, Austria (1991).
- [19] Energy and Nuclear Power Planning Study for Romania (Covering the Period 1989–2010), IAEA-TECDOC-820, Vienna, Austria (1995).

- [20] Energy and Nuclear Power Planning Using the IAEA's ENPEP Computer Package, IAEA-TECDOC-963, Vienna, Austria (1997).
- [21] Energy and Nuclear Power Planning Study for Pakistan (Covering the Period 1993–2023), IAEA-TECDOC-1030, Vienna, Austria (1998).
- [22] Energy and Nuclear Power Planning Study for Armenia, IAEA-TECDOC-1404, Vienna, Austria (2004).
- [23] Energy Supply Options for Lithuania, IAEA-TECDOC-1408, Vienna, Austria (2004).

COLABORADORES EN LA ESCRITURA Y REVISIÓN

Alkhatib, A. Comisión de Energía Atómica de Siria, Damasco, Republica Árabe Siria

Bui, T.D. Organismo Internacional de Energía Atómica, Viena

Concha, I. A. Organismo Internacional de Energía Atómica, Viena

Gritsevskyi, A. Organismo Internacional de Energía Atómica, Viena

Jalal, A.I. Organismo Internacional de Energía Atómica, Viena,

Khan, A.M. Centro de Estudios del Impacto del Cambio Global, Islamabad, Pakistán

Kizhakkekara, J. Organismo Internacional de Energía Atómica, Viena

Latif, M. Comisión de Energía Atómica del Pakistán, Islamabad, Pakistán

Molina, P.E. Organismo Internacional de Energía Atómica, Viena

Naqvi, F. Comisión de Energía Atómica del Pakistán, Islamabad, Pakistán

Pérez, D. CubaEnergia, La Habana, Cuba

Strubegger, M. Instituto Internacional para el Análisis de Sistemas Aplicados (IIASA),

Laxenburg, Austria

Valcereanu, G. Organismo Internacional de Energía Atómica, Viena

