MA108, Spring 2018, Tutorial 1 Solutions

- 1. Solve the following initial value problems.
 - (a) $xy' + (1 + x \cot x)y = 0$, y(0) = 2.

Ans. The IVP CANNOT BE SOLVED for the initial value prescribed at $x_0 = 0$.

(b) $y' - \frac{2x}{1+x^2}y = 0$, y(0) = 2.

Ans. $y(x) = 2(1+x^2)$.

(c) $xy' + 2y = 8x^2$, y(1) = 3.

Ans. $y(x) = 2x^2 + \frac{1}{x^2}, \quad x \in (0, \infty).$

- 2. Find the general solution for the following equations.
 - (a) $(x-2)(x-1)y' (4x-3)y = (x-2)^3$.

Ans. $y(x) = \frac{-(x-2)^3}{2(x-1)} + C\frac{(x-2)^5}{(x-1)}$, where C is an arbitrary constant.

(b) $x^2y' + 3xy = e^x$.

Ans. $y(x) = \frac{e^x}{x^2} + \frac{C - e^x}{x^3}$, where C is an arbitrary constant.

- **3.** In each of the following problems, determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist.
 - (a) $y' + (\tan x)y = \sin x$, $y(\pi) = 0$.

Ans. $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.

(b) $(4-x^2)y' + 2xy = 3x^2$, y(1) = -3.

Ans. (-2,2).

- 4. Let xy' 2y = -1.
 - (a) Find the general solutions $y_1(x)$ and $y_2(x)$ of the ODE on the intervals $(-\infty, 0)$ and $(0, \infty)$ respectively.
 - (b) Show that $\lim_{x\to 0^-} y_1(x) = \lim_{x\to 0^+} y_2(x)$. This defines a continuous function y(x) on $(-\infty,\infty)$. Show that y(x) is differentiable on \mathbb{R} and satisfies the ODE.
 - (c) Conclude that the IVP xy' 2y = -1, y(0) = 1/2 has infinitely many solutions on \mathbb{R} .

(d) If $x_0 > 0$ and y_0 is arbitrary, then the initial value problem xy' - 2y = -1, $y(x_0) = y_0$ has a unique solution on $(0,\infty)$ by uniqueness theorem for linear ODEs. Show that this IVP has infinitely many solutions on \mathbb{R} . Why does this not contradict the existence and uniqueness theorem for linear ODEs?

Ans.
$$y_1(x) = \frac{1}{2} + C_1 x^2$$
 on $(-\infty, 0)$ and $y_2(x) = \frac{1}{2} + C_2 x^2$ on $(0, \infty)$.

- 1. Solve the following.
 - (a) $y(1+x^3)y'=x^2$.

Ans. $y^2 = \frac{1}{3} \ln |1 + x^3| + C$, where C is an arbitrary constant.

(b) $y' = (\cos^2 x)(\cos^2 2y)$. Ans. $\tan(2y) = x + \frac{\sin 2x}{2} + C$, where C is an arbitrary constant.

(c) $(1+x^2)y'=x^2$

Ans. $\frac{x^3}{3} - \frac{y^3}{3} - y = C$, where C is an arbitrary constant.

- 2. Show that the following equations are homogeneous of the form y'=q(y/x). Solve them.
 - (a) $\frac{dy}{dx} = \frac{x+3y}{x-y}$.

Ans. $(x^2 + y^2)e^{\frac{2x}{x+y}} - Cx = 0$, where C is an arbitrary constant.

(b) $(x^2 + 3xy + y^2)dx - x^2dy = 0$. **Ans.** $xe^{\frac{x}{x+y}} = C$, where C is an arbitrary constant.

(c) $y' = \frac{x^3 + y^3}{xy^2}$, y(1) = 3.

Ans. $y(x) = x(3 \ln x + 27)^{1/3}, \quad x \in (0, \infty).$

- **3.** Solve the following Bernoulli ODEs.
 - (a) $x^2y' + 2xy y^3 = 0$. x > 0.

Ans. $y(x) = \frac{1}{x^2} \left(\frac{2}{5x^5} + C\right)^{-\frac{1}{2}}$, where C is an arbitrary constant.

(b) $y' = \epsilon y - \sigma y^3$, $\epsilon > 0, \sigma > 0$.

Ans. $y(x) = e^{\epsilon x} \left(\frac{\sigma}{\epsilon} e^{2\epsilon x} + C\right)^{-\frac{1}{2}}$, where C is an arbitrary constant.

(c) $x^2y' + 2y = 2e^{\frac{1}{x}}y^{\frac{1}{2}}$.

Ans. $y(x) = e^{\frac{2}{x}} \left(C - \frac{1}{x}\right)^2$, where C is an arbitrary constant.

(d) $xy' + y = x^4y^4$, y(1) = 1/2.

Ans. $y(x) = \frac{1}{x}(C-2x)^{-\frac{1}{2}}$, where C is an arbitrary constant.

- 4. Following may not be separable but can be made separable by substitution.
 - (a) $y' = \frac{-6x+y-3}{2x-y-1}$. **Ans.**

$$X = C\left(\frac{Y^2}{X^2} - \frac{Y}{X} - 6\right)^{-\frac{1}{2}} e^{\frac{3}{2^{3/2}} \tan^{-1}\left(\frac{2Y - X}{2^{3/2}X}\right)},$$

where C is an arbitrary constant, X = x - 1, Y = y - 3.

(b)
$$y' = \frac{-x+3y-14}{x+y-2}$$
.

$$X = C\left(\frac{X}{Y - X}\right)e^{\frac{2X}{Y - X}},$$

where C is an arbitrary constant, X = x - 8, Y = y + 2.

(c)
$$xyy' = 3x^6 + 6y^2$$
.

Ans. $y(x) = x^6 \left(\frac{-1}{3x^6} + C\right)^{\frac{1}{2}}$, where C is an arbitrary constant.

(d)
$$x(\ln x)^2 y' = -4(\ln x)^2 + y \ln x + y^2$$
.

Ans. $y(x) = C_1 \left(\ln \left(\frac{1}{\ln x} + a \right) \right)^{-1} \ln x + C_2 \left(4 \ln \left(\frac{1}{\ln x} \right) + b \right) \ln x$, where C_1, C_2, a, b are arbitrary constants.

- **5.** Determine if the following equations are exact. If exact, then solve them.
 - (a) $(3y\cos x + 4xe^x + 2x^2e^x) dx + (3\sin x + 3) dy = 0.$

Ans. $\phi(x,y) = d$, that is, $3y(\sin x + 1) = d$, for an arbitrary constant d.

(b)
$$(\frac{1}{x} + 2x)dx + (\frac{1}{y} + 2y)dy = 0.$$

Ans. $\phi(x,y) = \ln xy + x^2 + y^2 + C$, where C is an arbitrary constant.

(c) $(y \sin xy + xy^2 \cos xy)dx + (x \sin xy + xy^2 \cos xy)dy = 0$.

Ans. NOT exact.

(d) $(ye^{xy}\cos 2x - 2e^{xy}\sin 2x + 2x)dx + (xe^{xy}\cos 2x - 3)dy = 0.$

Ans. NOT exact.

(e) $\frac{x}{(x^2+y^2)^{3/2}}dx + \frac{y}{(x^2+y^2)^{3/2}}dy = 0.$ **Ans.** $\phi(x,y) = \frac{-1}{\sqrt{x^2+y^2}} + C$, where C is an arbitrary constant.

6. Find all M such that $M(x,y) dx + 2xy \sin x \cos y dy = 0$ is exact.

Ans. $M(x,y) = 2(\sin x + x \cos x)(y \sin y + \cos y) + G(x)$, where G(y) is any continuous function of x.

7. Find all N such that $(\ln xy + 2y \sin x)dx + N(x,y)dy = 0$ is exact.

Ans. $N(x,y) = \frac{x}{y} - 1 - 2\cos x + h(y)$, where h(y) is any continuous function of y.