Lecture 19

Dara Rahmati

Next Reference Book:

STM32 Arm Programming for Embedded Systems
Using C Language with STM32 Nucleo
, M.A.Mazidi et al.

http://www.microdigitaled.com/

RISC Architecture in ARM

- Three ways available to microprocessor designers to increase the processing power of the CPU
 - Increase the clock frequency of the chip
 - Drawback: the higher the frequency, the more power and heat dissipation, notably increase has limitation
 - Use Harvard architecture
 - Increasing the number of buses to bring more information to CPU
 - Change the internal architecture of the CPU and use RISC architecture

Features of RISC

- RISC processors have a fixed instruction size vs. CISC 1,2, 5 bytes
 - Makes the task of the instruction decoder in CISC very difficult because the size of the incoming instruction is never known
- Large number of registers
 - Avoids the need for a large stack to store parameters
- RISC processors have a small instruction set
 - It makes the job of Assembly language programmers much more tedious and difficult compared to CISC
 - Used more commonly in high-level language environments such as the C programming language rather than Assembly

Features of RISC cont.

- One cycle execution
 - The most important characteristic of the RISC processor is that more than 99% of instructions are executed in only one clock cycle
- RISC processors usually have separate buses for data and code (Harvard architecture)
 - 1. a set of data buses for carrying data (operands) in and out of the CPU,
 - 2. a set of address buses for accessing the data,
 - 3. a set of buses to carry the opcodes,
 - 4. a set of address buses to access the opcodes

Features of RISC cont.

- RISC instructions, hardwire Implementation (Small set of instructions) vs. CISC microcode
 - Hardwiring of RISC instructions takes no more than 10% of the transistors
 - 40–60% of transistors in many CISC processors
- RISC uses load/store architecture
 - In CISC microprocessors, data can be manipulated while it is still in memory, "ADD Memory, Reg" Mem-> CPU->Mem
 - The whole process would be stalled, preventing other instructions from proceeding in the pipeline
 - In RISC, instructions can only load from external memory into registers or store registers into external memory
 - The arithmetic and logic operations are between the GPRs registers
 - There is no "ADD R1, RAM-Loc" instruction in ARM

C Standard Data types

ANCI C (ISO C89) Data Types (Minimum Required Size)

Data type	Size	Range
char	1 byte	-128 to 127
unsigned char	1 byte	0 to 255
short int	2 bytes	-32,768 to 32,767
unsigned int	2 bytes	0 to 65,535
long	4 bytes	-2,147,483,648 to 2,147,483,647
unsigned long	4 bytes	0 to 4,294,967,295
long long	8 bytes	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
unsigned long long	8 bytes	0 to 18,446,744,073,709,551,615

ANSI C (ISO C89) integer data types and their ranges

Various Bit-width for Types

	ANCI C Min Size	DEC Alpha Processor	Some Cray Compilers	Common in many processors
Char	8	8	8	8
Short (int)	16	16	64	16
Int	16	32	64	32
Long	32	64	64	32
Long long	64	-	-	64

C Data types for Embedded systems

ISO C99 Data Types

Data type	Size	Range	
int8_t	1 byte	-128 to 127	
uint8_t	1 byte	0 to 255	
int16_t	2 bytes	-32,768 to 32,767	
uint16_t	2 bytes	0 to 65,535	
int32_t	4 bytes	-2,147,483,648 to 2,147,483,647	
uint32_t	4 bytes	0 to 4,294,967,295	
int64_t	8 bytes	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807	
uint64_t	8 bytes	0 to 18,446,744,073,709,551,615	

ISO C99 integer data types and their ranges

Bit-wise Operations in C

- logical operators AND (&&), OR (||), and NOT (!)
- bitwise operators AND (&), OR (|), EX-OR (^), inverter (~)

```
int main(void)
{
    unsigned char temp;
    temp = 0x35 & 0x0F; /* ANDing : 0x35 & 0x0F = 0x05 */
    temp = 0x04 | 0x68; /* ORing : 0x04 | 0x68 = 0x6C */
    temp = 0x54 ^ 0x78; /* XORing : 0x54 | 0x78 = 0x2C */
    temp = ~0x55; /* Inverting : ~0x55 = 0xAA */
    while (1);
    return 0;
}
```

Bit-wise shift operation in C

Operation	Symbol	Format of Shift Operation
Shift Right	>>	data >> number of bit-positions to be shifted right
Shift Left	<<	data << number of bit-positions to be shifted left

ARM I/O Programming

- In microcontrollers, we use the general purpose input output (GPIO) pins to interface with LED, seven segment LED, switch (SW), LCD, keypad, and so on
- This is important since the vast majority of embedded products have some kind of I/O
- This sets the stage for understanding of peripheral I/O addresses and how they are accessed and used in ARM processors

STMicroelectronics STM32F401RE ARM Cortex-M4 Microcontroller

SCI: Serial comm. interface

POR: Power on reset

PWM: Pulse width modulation HSCMP: High speed comparator CRC: Cyclic redundancy check GPIO: General purpose I/O PLL: Phase locked loop FLL: Freq. locked loop OSC: Oscillator OTG: On the go

SPI: Serial peripheral interface (synchronous)

I2C: I-squared-C, sync. master/slave packet serial interface

PIT: Programmable interval timer LPTPM: Timer PWM module SWD: Serial wire debug

COP watchdog: Computer operating properly watchdog

STM32F401RE ARM Cortex-M4 Microcontroller

STM32F401xD STM32F401xE

ARM® Cortex®-M4 32b MCU+FPU, 105 DMIPS, 512KB Flash/96KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces

Datasheet - production data

Features

- Core: ARM[®] 32-bit Cortex[®]-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 84 MHz, memory protection unit, 105 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions
- Memories
 - up to 512 Kbytes of Flash memory
 - up to 96 Kbytes of SRAM
- · Clock, reset and supply management
 - 1.7 V to 3.6 V application supply and I/Os
 - POR, PDR, PVD and BOR
 - 4-to-26 MHz crystal oscillator
 - Internal 16 MHz factory-trimmed RC
 - 32 kHz oscillator for RTC with calibration
 - Internal 32 kHz RC with calibration
- Power consumption
 - Run: 146 µA/MHz (peripheral off)
 - Stop (Flash in Stop mode, fast wakeup time): 42 μA Typ @ 25C; 65 μA max @25 °C
 - Stop (Flash in Deep power down mode, fast wakeup time): down to 10 μA @ 25 °C; 30 μA max @25 °C
 - Standby: 2.4 μA @25 °C / 1.7 V without RTC; 12 μA @85 °C @1.7 V
 - V_{BAT} supply for RTC: 1 μA @25 °C

- Debug mode
 - Serial wire debug (SWD) & JTAG interfaces
 - Cortex[®]-M4 Embedded Trace Macrocell™
- Up to 81 I/O ports with interrupt capability
 - Up to 78 fast I/Os up to 42 MHz
 - All I/O ports are 5 V-tolerant
- Up to 12 communication interfaces
 - Up to 3 x I²C interfaces (SMBus/PMBus)
 - Up to 3 USARTs (2 x 10.5 Mbit/s, 1 x 5.25 Mbit/s), ISO 7816 interface, LIN, IrDA, modem control)
 - Up to 4 SPIs (up to 42Mbit/s at f_{CPU} = 84 MHz), SPI2 and SPI3 with muxed full-duplex I²S to achieve audio class accuracy via internal audio PLL or external clock
 - SDIO interface
 - Advanced connectivity: USB 2.0 full-speed device/host/OTG controller with on-chip PHY
- CRC calculation unit
- 96-bit unique ID
- RTC: subsecond accuracy, hardware calendar

Continue ...

STM32F401RE ARM Cortex-M4 Microcontroller

- 1×12-bit, 2.4 MSPS A/D converter: up to 16 channels
- General-purpose DMA: 16-stream DMA controllers with FIFOs and burst support
- Up to 11 timers: up to six 16-bit, two 32-bit timers up to 84 MHz, each with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input, two watchdog timers (independent and window) and a SysTick timer

 All packages (WLCSP49, LQFP64/100, UFQFPN48, UFBGA100) are ECOPACK[®]2

Table 1. Device summary

Reference	Part number
STM32F401xD	STM32F401CD, STM32F401RD, STM32F401VD
STM32F401xE	STM32F401CE, STM32F401RE, STM32F401VE

January 2015 DocID025644 Rev 3 1/135

This is information on a product in full production.

www.st.com

STM32 Nucleo-64 development board with STM32F401RE MCU

STM32 Nucleo-64 development board with STM32F401RE MCU

End