Solution to HW3

3.5 (a)
$$c \approx 1/30$$
 since $1 \approx \sum_{x=0}^{3} c(x^2 + 4) \approx 30c$.

(b)
$$e = 1/10$$
 since

$$1 = \sum_{x=0}^{2} e \binom{2}{x} \binom{3}{3-x} = e \left[\binom{2}{0} \binom{3}{3} + \binom{2}{1} \binom{3}{2} + \binom{2}{2} \binom{3}{1} \right] = 10e.$$

3.25 Let T be the total value of the three coins. Let D and N stand for a dime and nickel, respectively. Since we are selecting without replacement, the sample space containing elements for which t=20,25, and 30 cents corresponding to the selecting of 2 nickels and 1 dime, 1 nickel and 2 dimes, and 3 dimes. Therefore, $P(T=20) = \frac{\binom{2}{3}\binom{4}{1}}{\binom{6}{3}} = \frac{1}{5}$,

$$P(T=25) = \frac{\binom{2}{3}\binom{4}{2}}{\binom{6}{3}} = \frac{3}{5},$$

$$P(T=30) = \frac{\binom{4}{3}}{\binom{2}{3}} = \frac{1}{5},$$

 $P(T=30) = \frac{\binom{4}{3}}{\binom{5}{3}} = \frac{1}{5},$ and the probability distribution in tabular form is

$$\begin{array}{c|cccc} t & 20 & 25 & 30 \\ \hline P(T=t) & 1/5 & 3/5 & 1/5 \end{array}$$

As a probability histogram

3.30 (a)
$$1 = k \int_{-1}^{1} (3 - x^2) dx = k \left(3x - \frac{x^3}{3} \right) \Big|_{-1}^{1} = \frac{16}{3}k$$
. So, $k = \frac{3}{16}$.

(b) For
$$-1 \le x < 1$$
, $F(x) = \frac{3}{16} \int_{-1}^{x} (3 - t^2) dt = (3t - \frac{1}{3}t^3)\Big|_{-1}^{x} = \frac{1}{2} + \frac{9}{16}x - \frac{x^3}{16}$.
So, $P\left(X < \frac{1}{2}\right) = \frac{1}{2} - \left(\frac{9}{16}\right)\left(\frac{1}{2}\right) - \frac{1}{16}\left(\frac{1}{2}\right)^3 = \frac{99}{128}$.
(c) $P(|X| < 0.8) = P(X < -0.8) + P(X > 0.8) = F(-0.8) + 1 - F(0.8)$

$$= 1 + \left(\frac{1}{2} - \frac{9}{16}0.8 + \frac{1}{16}0.8^3\right) - \left(\frac{1}{2} + \frac{9}{16}0.8 - \frac{1}{16}0.8^3\right) = 0.164$$
.

(c)
$$P(|X| < 0.8) = P(X < -0.8) + P(X > 0.8) = F(-0.8) + 1 - F(0.8)$$

= $1 + (\frac{1}{2} - \frac{9}{16}0.8 + \frac{1}{16}0.8^3) - (\frac{1}{2} + \frac{9}{16}0.8 - \frac{1}{16}0.8^3) = 0.164.$

4.3
$$\mu \approx E(X) \approx (20)(1/5) + (25)(3/5) + (30)(1/5) \approx 25$$
 cents.

4.7 Expected gain =
$$E(X) = (4000)(0.3) + (-1000)(0.7) = $500$$
.

4.12
$$E(X) = \int_0^1 2x(1-x) dx = 1/3$$
. So, $(1/3)(\$5,000) = \$1,667.67$.

4.17 The probability density function is,

$$\begin{array}{c|ccccc} x & -3 & 6 & 9 \\ \hline f(x) & 1/6 & 1/2 & 1/3 \\ \hline g(x) & 25 & 169 & 361 \\ \end{array}$$

$$\mu_{g(X)} = E[(2X+1)^2] = (25)(1/6) + (169)(1/2) + (361)(1/3) = 209.$$

4.34
$$\mu = (-2)(0.3) + (3)(0.2) + (5)(0.5) = 2.5$$
 and $E(X^2) = (-2)^2(0.3) + (3)^2(0.2) + (5)^2(0.5) = 15.5$.
So, $\sigma^2 = E(X^2) - \mu^2 = 9.25$ and $\sigma = 3.041$.

- 4.49 E(X) = (0)(0.41) + (1)(0.37) + (2)(0.16) + (3)(0.05) + (4)(0.01) = 0.88and $E(X^2) = (0)^3(0.41) + (1)^2(0.37) + (2)^2(0.16) + (3)^2(0.05) + (4)^2(0.01) = 1.62$. So, $Var(X) = 1.62 - 0.88^2 = 0.8456$ and $\sigma = \sqrt{0.8456} = 0.9196$.
- 4.50 $E(X) = 2 \int_0^1 x(1-x) dx = 2 \left(\frac{x^2}{2} \frac{x^3}{3}\right) \Big|_0^1 = \frac{1}{3}$ and $E(X^2) = 2 \int_0^1 x^2(1-x) dx = 2 \left(\frac{x^3}{3} \frac{x^4}{3}\right) \Big|_0^1 = \frac{1}{6}$. Hence, $Var(X) = \frac{1}{6} \left(\frac{1}{3}\right)^2 = \frac{1}{18}$, and $\sigma = \sqrt{1/18} = 0.2357$.
- 4.57 E(X) = (-3)(1/6) + (6)(1/2) + (9)(1/3) = 11/2, $E(X^2) = (-3)^2(1/6) + (6)^2(1/2) + (9)^2(1/3) = 93/2.$ So, $E[(2X+1)^2] = 4E(X^2) + 4E(X) + 1 = (4)(93/2) + (4)(11/2) + 1 = 209.$

Homework problems from the textbook:

 $3.5, \ 3.25, \ 3.30, \ 4.3, \ 4.7, \ 4.12, \ 4.17, \ 4.34, \ 4.49, \ 4.50, \ 4.57$ Extra problems:

Problem 1

Suppose the probability model for the random variable X is given as

x	100	200	300	400	500
$\Pr(X=x)$	0.1	0.2	0.3	0.2	?

Table 1: Probability Model for random variable X.

a) In the table above, there is a missing value for Pr(X = 500). So what is it? $O \cdot 2$

b) What is
$$Pr(100 < X < 300)$$
? = $Pr(X = 200) = 0.9$

(g) What is
$$SD(X)$$
? = $\sqrt{Var(X)}$ = $\sqrt{15600}$ = 124.9

Gel f) What is
$$E(X)$$
? = 320
below $\begin{cases} f(X) = 320 \\ f(X) = 15600 \end{cases} = 124.9$
table $\begin{cases} f(X) = 320 \\ f(X) = 15600 \end{cases} = 124.9$
 $\begin{cases} f(X) = 320 \\ f(X) = 15600 \end{cases} = 124.9$
 $\begin{cases} f(X) = 320 \\ f(X) = 15600 \end{cases} = 124.9$

i) What is E(-2X + 3), SD(-2X + 3) and Var(-2X + 3)?

$$\mathbb{E}(-2x+3) = -2\mathbb{E}(x) + 3 = -2(320) + 3 = -637$$

 $SD(-2x+3) = |-2|SD(x) = 2418$
 $Var(-2x+3) = (-2)^2 var(x) = 62,400$

×	100	200	300	400	500	Sun
þ(x)	۰ ۱	.2	' 3	- 2_	(2)	1.0
x þ(X)	10	40	90	80	[00	320
x2 þ(x)	1000	8,000	3	32,000	20'000	118,000

Problem 2

You draw a card from a standard deck of 52 cards. If you get a red card, you win nothing. If you got a spade, you win \$5. For any club, you win \$10 plus an extra \$20 for the ace of clubs.

- a) Create a probability model for the amount you win at this game.
- b) Find the expected amount you'll win in 1 game. And also the standard deviation.
- c) Find the expected amount you'll win in 100 independent games. And also the standard deviation.

			(a)			
Card type	wing	#Cards	- / 400	W	þ (W)	
Red	0	26			1/2 =	
Spade	5	13		5	1/4 =	• 25
otherclub	10	12		10	3/13 =	, 23077
Ace of club	30	1		30	1/52 =	. 01923
	AUS	52			ì	

(b)
$$E[W] = 0 + \frac{5}{4} + \frac{30}{13} + \frac{30}{52} = \frac{215}{52} = 4.13$$

 $E[W] = 0 + \frac{25}{4} + \frac{300}{13} + \frac{900}{52} = \frac{2425}{52} = 46.6346$
 $Vor(W) = 46.6346 - 4.13^2 = 29.5777$
 $SD(W) = \sqrt{29.5777} = 5.44$

(c)
$$\mathbb{E}[W_1 + W_2 + \cdots + W_{100}] = 100 \mathbb{E}[W] = 413.46$$

 $SD(W_1 + W_2 + \cdots + W_{100}) = \sqrt{100} SD(W) = 54.39$

Problem 3

The amount of time, in hours, that a computer functions before breaking down is a continuous random variable with probability density function given by

$$f(x) = \begin{cases} \lambda e^{-x/100} & x \ge 0\\ 0 & x < 0 \end{cases}$$

- a) Calculate λ .
- b) What is the probability that a computer will function between 50 and 150 hours before breaking down?
- c) What is the probability that a computer will function less than 100 hours before breaking down?

a)
$$1 = \int_{0}^{\infty} Ae^{-x/100} dx = 100 \text{ A} \int_{0}^{\infty} e^{-y} dy = 100 \text{ A}$$

$$\Rightarrow \lambda = \frac{1}{100} = 0.01$$
b) $P_{r}(50 < x < 150) = \int_{0}^{150} 0.01 e^{-0.01x} dx$

$$= \int_{0.5}^{\infty} e^{-y} dy = -e^{-y} \int_{0.5}^{1.5} e^{-0.5} dx$$

$$= -e^{-1.5} + e^{-0.5} = -.223130 = .3834$$

$$+ .606530$$
c) $P_{r}(x < 100) = \int_{0}^{100} 0.01 e^{-0.01x} dx$

$$= \int_{0}^{\infty} e^{-y} dy = 1 - e^{-1} = 1.0 \text{ G}$$

$$= \int_{0}^{\infty} e^{-y} dy = 1 - e^{-1} = 1.0 \text{ G}$$

$$= 0.6321206$$

Problem 4

The density function of a continuous random variable X is given by

$$f(x) = \begin{cases} a + bx^{2}, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$
1. If $E(X) = 3/5$, find a and b .
$$\int = \int (a + bx^{2}) dx = a + \frac{b}{3}$$

$$\text{Solve} \begin{cases} \frac{3}{5} = \int x(a + bx^{2}) dx = \frac{a}{2} + \frac{b}{4} \\ \frac{3}{5} = 0 \end{cases} = 0$$
2. Let $g(x) = \frac{1}{1+2x^{2}}$. Calculate $E[g(X)]$.
$$\text{Outhouse} \begin{cases} \frac{3}{5} + \frac{b}{5}x \\ 1 + 2x^{2} \end{cases} dx = \frac{3}{5} \quad \int dx = \frac{3}{5}$$

$$\text{Outhouse} \begin{cases} \frac{3}{5} + \frac{b}{5}x \\ 1 + 2x^{2} \end{cases} dx = \frac{3}{5} \quad \int dx = \frac{3}{5}$$

3. What is the probability X is greater than 0.5, i.e. Pr(X > 0.5)

$$R(X>0.5) = \int_{0.5}^{1} \left(\frac{3}{5} + \frac{6}{5}X^{2}\right) dx$$

$$= \frac{3}{5} \cdot \frac{1}{2} + \frac{6}{5} \cdot \frac{1^{3} - 0.5^{3}}{3}$$

$$= \frac{3}{10} + \frac{2}{5} \cdot \frac{7}{8} = \frac{13}{20} = 0.65$$