

利用MATLAB分析连续信号与系统

- ◆ X(s)部分分式展开的MATLAB实现
- ◆ H(s)零极点与系统特性的MATLAB计算

X(s)部分分式展开的MATLAB实现

$$X(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

$$= k_1 + k_2 s + \dots + k_m s^m + \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n}$$

[r,p,k]=residue(num, den)

num,den分别为X(s)分子多项式和分母多项式的系数向量。 $r_1 r_2,...,r_n$ 为部分分式的系数, $p_1 p_2,...,p_n$ 为极点,若X(s)为真分式,则 $k_1,k_2,...,k_m$ 为零。

[例] 利用部分分式展开法求X(s)的反变换。

$$X(s) = \frac{s+2}{s^3 + 4s^2 + 3s}$$

format rat %将结果数据以分数的形式输出 num=[1 2]; den=[1 4 3 0]; [r,p,k]=residue(num, den)

运行结果为
$$r = -1/6, -1/2, 2/3$$
 $p = -3, -1, 0$ $k = []$

故
$$X(s)$$
可展开为 $X(s) = \frac{-1/6}{s+3} + \frac{-1/2}{s+1} + \frac{2/3}{s}$
 $x(t) = \mathcal{L}^{-1}[X(s)] = -\frac{1}{6}e^{-3t}u(t) - \frac{1}{2}e^{-t}u(t) + \frac{2}{3}u(t)$

[例] 利用部分分式展开法求X(s)的反变换。

$$X(s) = \frac{2s^3 + 3s^2 + 5}{(s+1)(s^2 + s + 2)}$$

```
num=[2 3 0 5];
den=conv([1 1],[1 1 2]);
%将因子相乘的形式转换成多项式的形式
[r,p,k]=residue(num,den)
magr=abs(r) %求r的模
angr=angle(r) %求r的相角
```


[例] 利用部分分式展开法求X(s)的反变换。

$$X(s) = \frac{2s^3 + 3s^2 + 5}{(s+1)(s^2 + s + 2)}$$

运行结果为

- r = -2.0000 + 1.1339i, -2.0000 1.1339i, 3.0000
- p = -0.5000 + 1.3229i, -0.5000 1.3229i, -1.0000
- k=2
- magr = 2.2991, 2.2991, 3.0000
- \bullet angr = 2.6258, -2.6258, 0

故
$$X(s)$$
可展开为
$$X(s) = 2 + \frac{2.2991e^{j2.6258}}{s + 0.5 - j1.3229} + \frac{2.2991e^{-j2.6258}}{s + 0.5 + j1.3229} + \frac{3}{s + 1}$$

$$x(t) = 2\delta(t) + 1.1495e^{-0.5t}\cos(1.3229t + 2.6258)u(t) + 3e^{-t}u(t)$$

H(s)零极点与系统特性的MATLAB计算

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

H(s)零极点分布图可用pzmap函数画出,调用形式为

pzmap(sys)

num,den分别为H(s)分子多项式和分母多项式的系数向量。pzmap函数画出sys所描述系统的零极点图。

[例] 画出连续系统 $H(s) = \frac{1}{s^3 + 2s^2 + 2s + 1}$ 的零极点分布图,

求其冲激响应h(t)和频率响应 $H(j\omega)$,并判断系统是否稳定。 num=[1]; den=[1 2 2 1]; sys=tf(num.den):

sys=tf(num,den); figure(1); pzmap(sys); t=0:0.02:10: h=impulse(num,den,t); figure(2); plot(t,h) title('Impulse Respone') w=0:0.01:10:H=freqs(num,den,w); figure(3); plot(w,abs(H)) xlabel('Frequency \omega') title('Magnitude Respone')

[例] 画出连续系统 $H(s) = \frac{1}{s^3 + 2s^2 + 2s + 1}$ 的零极点分布图,

求其冲激响应h(t)和频率响应 $H(j\omega)$,并判断系统是否稳定。

系统稳定

运行结果

[例] 讨论系统函数H(s)的零点和极点取不同值时,该系统的冲激响应h(t)和幅度响应 $|H(j\omega)|$ 。

```
%以一阶系统为例
p1=input('p1=');
num=[1];
den=[1-p1];
sys=tf(num,den);
figure(1); pzmap(sys);
t=0: 0.0001: 0.005;
h=impulse(num,den,t);
figure(2); plot(t,h)
w=0:0.1:1000*2*pi;
H=freqs(num,den, w);
figure(3); plot(w/2/pi, abs(H));
xlabel('Hz')
```


无零点; 单极点p1=-400π

1000Hz

无零点; 单极点p1=-600π

0.2

1000Hz

无零点; 单极点p1=-800π

0.2

1000Hz

极点数值减小

零点 z_1 =0; 单极点 p_1 = -800π

增加一个在原点的零点

零点z₁=0; 单极点p₁= -1000π

1000Hz

零点z₁=0; 单极点p₁=-1200π

1000Hz

零点 z_1 =0; 共轭极点 p_1 ≈ $-40\pi+j600\pi$, p_2 ≈ $-40\pi-j600\pi$

零点 z_1 =0; 共轭极点 $p_1 \approx -40\pi + j800\pi$, $p_2 \approx -40\pi - j800\pi$

零点 z_1 =0; 共轭极点 $p_1 \approx -40\pi + j1000\pi$, $p_2 \approx -40\pi - j1000\pi$

零点 z_1 =j1000 π , z_2 =-j1000 π ; 极点 $p_1 \approx -40\pi + j1000\pi$, $p_2 \approx -40\pi - j1000\pi$

零点 z_1 =j800 π , z_2 =-j800 π ; 极点 $p_1 \approx -40\pi + j800\pi$, $p_2 \approx -40\pi - j800\pi$

零点 z_1 = $j600\pi$, z_2 = $-j600\pi$; 极点 $p_1 \approx -40\pi + j600\pi$, $p_2 \approx -40\pi - j600\pi$

利用MATLAB分析连续信号与系统

谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事、同行、朋友的交流,难以一一注明出处,特此说明并表示感谢!