Chapitre 3 Énergie interne

I. Transfert thermique

Le transfert thermique s'effectue toujours de la zone chaude vers la zone froide.

$$\phi = \frac{E}{\Delta t} \tag{1}$$

 ϕ : Flux thermique en (W) E : Énergie thermique en (J) Δt : Durée du transfert en (h)

$$\phi = \frac{S \times (\theta_{chaud} - \theta_{froid})}{R_{th}}$$
 (2)

 ϕ : Flux thermique en (W) heta : Température de part et d'autre de la paroi $(^{\circ}C)$ S : Surface de la paroi (m^2) R_{th} : résistance thermique $(m^2.K.W^{-1})$

II. Résistance thermique R_{th} d'une paroi

1) Cas d'une paroi constitué d'un seul matériau

<u>Définition</u>: La résistance thermique R_{th} d'une paroi est sa capacité à s'opposer au passage du flux thermique. Plus la résistance thermique est grande, plus le matériau est isolant.

$$R_{th} = \frac{e}{\lambda} \tag{3}$$

 R_{th} : résistance thermique $(m^2.K.W^{-1})$ e : épaisseur de la paroi (m) λ : conductivité thermique du matériau la constituant $(W.K^{-1}.m^{-1})$

2) Cas d'une paroi constituée de plusieurs matériaux Pour une paroi composée de différents matériaux accolés, la résistance thermique de la paroi est égale à la somme des résistances thermiques de chaque couches de matériau qui la constitue.

$$R_{thtotale} = R_{thMur} + R_{thIsolant} + R_{thfinition} \tag{4}$$

 R_{th} à ateindre en $m^2.K.W^{-1}$ 10 6.7 6.7

III. Conductivité thermique $oldsymbol{\lambda}$ d'un matériau