

Mecânica e Ondas

Entrega 13/10 - Quinta-feira - em mãos para a professora

Nome:	 Turma:	

Importante:

- > Este trabalho é OPCIONAL
- Somente serão aceitos os trabalhos que usarem como Fonte o livro indicado: Fundamentos de Física – Mecânica, Halliday - Vol 1 (e-book 10^a ed. OU livro Físico Fundamentos de Física – Mecânica, Halliday - Vol 1 (qualquer edição))
- ➤ Vale até 4,0 na nota da P2 (dependerá da qualidade/autoria do trabalho)
- > O trabalho deverá ser entregue na aula do dia 13/10 e deverá ser **manuscrito** (não aceito trabalhos digitalizados)
- 1) Faça um resumo do Capítulo 7 Energia Cinética e Trabalho, com as principais informações das seguintes seções:
 - a) seção 7-1 Energia Cinética
 - b) seção 7-2 Trabalho e Energia Cinética
 - c) seção 7-3 Trabalho Realizado Pela Força Gravitacional
 - d) seção 7-4 Trabalho Realizado Por Uma Força Elástica
- 2) Faça um resumo do Capítulo 8 Energia Potencial e Conservação da Energia, com as principais informações das seguintes seções:
 - a) seção 8-1 Energia Potencial
 - b) seção 8-2 Conservação da Energia Mecânica
 - c) seção 8-4 Trabalho Realizado por uma Força Externa sobre um Sistema
 - d) seção 8-5 Conservação da Energia
- 3) Ao resolver o problema abaixo você deverá EXPLICAR, passo a passo, a sua resolução. Qual a teoria envolvida e o porquê de usar as relações/leis em cada situação. Todos os cálculos deverão ser demonstrados e as unidades corretas deverão ser indicadas.

Problema: Em um brinquedo de um parque de diversões um carrinho de massa 300kg passa sobre os trilhos, no ponto A, com uma velocidade de $\overrightarrow{v_A}$, de acordo com a figura. Neste brinquedo, a velocidade do carrinho é nula no ponto de maior elevação. As elevações são $y_B = 32 \, m, y_C = 7,0 \, m \, e \, y_D = 14 \, m$. Use $g = 9,8m/s^2$.

- a) Desconsiderando a existência de forças dissipativas, determine o menor valor da velocidade no ponto A, para que o carrinho possa atingir o ponto D.
- b) Considerando que, devido a existência de forças dissipativas, ocorra uma perda de 30% da energia mecânica (transferida ao sistema em forma de energia térmica) do ponto A até o ponto B, determine o menor valor da velocidade no ponto A, para que o carrinho possa atingir o ponto B.

c) No caso da letra b qual o valor da variação da energia térmica? Esse valor é positivo ou negativo? Justifique.