

TP et Cours n°3 : .net – Les concepts importants

SERVICES RÉSEAUX

Hélène CHASSAGNE

Frédéric CHASSAGNE helene.chassagne@orange.fr frederic.chassagne@atosorigin.com

Système de fichiers

- API du gestion des fichiers
 - System.IO
- But : Stockage physique des données
- Endroits de stockage
 - Disque dur
 - Registre
 - IsolatedStorage

Plan du cours

- Système de fichiers
- Sérialisation
- Cryptographie

- Sauvegarde sur le disque dur
 - Api utilisée : System.IO
 - Classes utiles à la manipulation de fichiers
 - Directory
 - File
 - DirectoryInfo
 - FileInfo
 - Path

Système de fichiers

- Sauvegarde sur le disque dur
 - Manipulation de flux
 - FileStream()
 - StreamReader()
 - StreamWriter()
 - MemoryStream()

٠ ..

5

Système de fichiers

- Le registre
 - Composé de 4 branches
 - Branches notables
 - CurrentUser
 - LocalMachine
- API utilisée :
 - Microsoft.Win₃₂
- Classe : RegistryKey

6

Système de fichiers Exemple public static string GetClientKey(string key)

{
 RegistryKey regKey;
 string value = "";

if (true) regKey = Registry.LocalMachine.OpenSubKey(@"Software\DELTA MU
 Conseil\OPTI MU Client", false);
 else regKey = Registry.CurrentUser.OpenSubKey(@"Software\DELTA MU Conseil\OPTI
 MU Client", false);

if (regKey!= null) value = (string)regKey.GetValue(key);

return value;

Système de fichiers

- System.IO.IsolatedStorage
- IsolatedStorageFile
- IsolatedStorageFileStream

Documents and Settings

III Administrateur

II

Système de fichiers

Exemple

IsolatedStorageFile storageFile = null; IsolatedStorageFileStream storageFileStream = null;

storageFile = IsolatedStorageFile.GetStore(IsolatedStorageScope.Roaming | IsolatedStorageScope.User | IsolatedStorageScope.Assembly | IsolatedStorageScope.Domain, null, null);

 $for each (string file Path in storage File. Get File Names (System. IO. Path. Combine (MY_BITMAP_FOLDER, MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_FOLDER, MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_FOLDER, MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_FOLDER, MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_FOLDER, MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_FOLDER, MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_FOLDER, MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_E) and the storage File System (System. IO. Path. Combine (MY_BITMAP_E) and the storage (MY_BITMAP_$

storageFileStream = new IsolatedStorageFileStream(filePath, System.IO.FileMode.Open, System.IO.FileAccess.Read, System.IO.FileShare.ReadWrite, storageFile);

... Traitement ...

Système de fichiers

- ◆ Avantages de l'IsolatedStorage
 - Full accès à l'espace disque
 - Transparent pour l'utilisateur
 - Aucun path à renseigner
- Inconvénients
 - Nécessite une gestion manuelle de l'effacement
 - Ou une gestion via installation msi

Plan du cours

- Système de fichiers
- → Sérialisation
- Cryptographie

Sérialisation

- Sérialisation = Conversion d'un objet sous une forme transportable
- ◆ Désérialisation = Conversion d'un flux de données en objet
- 3 grands types de sérialisation
 - Binaire
 - SOAP
 - XML

12

Sérialisation

- Avantages sérialisation binaire
 - Complète
 - Orientée métier (format non lisible)
- Avantages sérialisation SOAP
 - Complète
 - Orientée données (format lisible)
- Avantages sérialisation XML
 - Restrictive
 - Orientée Configuration (format lisible)

12

Sérialisation

- Principe
 - Marquer la classe comme [Serializable] (convention en XML)
 - Gérer les accesseurs
 - Implémenter une méthode de Load()
 - Implémenter une méthode de Save()

15

Sérialisation

Comparaisons

	XML	SOAP	Binaire
"Human readable"	oui	oui	non
Sérialisation de types non standards	non	oui	oui
Sérialisation des éléments privés	non	oui	oui
Sérialisation des champs	non	oui	oui
Sérialisation des propriétés	oui	non	non

Sérialisation

- Sérialisation binaire
 - using System.Runtime.Serialization.Formatters.Binary;
- Accesseurs

Sauvegarde

FileStream mFile = new FileStream(@"c:\easyBin.net", FileMode.Create);

BinaryFormatter mS = new BinaryFormatter(); mS.Serialize(mFile, _lesHommes); mFile.Close(); Chargement

FileStream mFile = new
FileStream(@"c:\easyBin.net", FileMode.Open);
BinaryFormatter mS = new
BinaryFormatter();
_lesHommes =
(Hommes)mS.Deserialize(mFile):

mFile.Close():

17

Sérialisation

- Sérialisation XML
 - using System.Xml.Serialization;
- Accesseurs

Sauvegarde

StreamWriterstream = new StreamWriter(@"c:\easyXML.net");

XmlSerializerserializer = new XmlSerializer(typeof(Hommes)); serializer.Serialize(stream,_lesHommes); stream.Close(); Chargement

XmlSerializer deserializer = new XmlSerializer(typeof(Hommes)); StreamReader stream = new StreamReader(@"c:\easyXML.net");

_lesHommes = (Hommes)deserializer.Deserialize(stream); stream.Close();

19

Sérialisation

- Sérialisation SOAP
 - using System.Runtime.Serialization.Formatters.Soap;
- Accesseurs

Sauvegarde

FileStream mFile = new
FileStream(@"c:\easySoap.net",
FileMode.Create);

SoapFormatter mS = new SoapFormatter (); mS.Serialize(mFile, _lesHommes); mFile.Close(); Chargement

FileStream mFile = new FileStream(@"c:\easySoap.net", FileMode.Open);

SoapFormatter mS = new SoapFormatter

_lesHommes = (Hommes)mS.Deserialize(mFile); mFile.Close();

18

Sérialisation

- ◆ Sérialisation XML
 - Marquer la classe comme [Serializable] (convention)
 - Exclure les attributs non souhaités avec [XmllqnoreAttribute]
- Restrictions
 - Nécessite un constructeur par défaut.
 - Sérialise seulement les propriétés/champs publiques non « readonly »

Plan du cours

- Système de fichiers
- Sérialisation
- →Cryptographie

21

Cryptographie

- 2 fonctionnalités
 - Hashage des données
 - Cryptage des données
 - Symétrique
 - Asymétrique
- But du hashage = Masquer les données
- But du cryptage = Sécuriser les données

22

Cryptographie

- Algorithmes de Hashage
 - SHA 1, 256, 384, 512
 - MD5
- Classe de base : HashAlgorithm
- 1 bon hash = 1 hash salé
- Salage = Additionner 1 paramètre unique à la donnée a hasher pour rendre le hash unique

3

Cryptographie

- API utilisée pour le hashage
 - using System. Security. Cryptography;
- Exemple

private string TestHash(string TextToHash, HashAlgorithm hash) {
 byte[] bytValue;
 byte[] bytHash;
 bytValue = System.Text.Encoding.UTF8.GetBytes(TextToHash);
 bytHash = hash.ComputeHash(bytValue);
 hash.Clear();
 return (Convert.ToBase64String(bytHash));

Cryptographie

- Appel depuis le code
 TestHash("MaChaineaHasher", new SHA1CryptoServiceProvider());
- ◆ Intérêt
 - Indépendance entre le choix de l'algorithme et l'implémentation
 - Découplage entre Couche Métier et Présentation

25

Cryptographie

- API utilisée pour le cryptage
 - using System. Security. Cryptography;
- Exemple Initialisation

 $\label{eq:continuous} TripleDESCryptoServiceProvider d = new TripleDESCryptoServiceProvider(); \\ d.IV = d.GenerateIV (); \\ d.Key = d.GenerateKey(); \\$

Stockage: System.Security.SecureString

27

Cryptographie

- Algorithmes de cryptage symétrique
 - D.E.S
 - Triple D.E.S
 - Classe de base
 - SymmetricAlgorithm
- Algorithmes de cryptage asymétrique
 - RSA
 - Classe de base
 - AsymmetricAlgorithm

2

Cryptographie

Exemple – cryptage

```
public string Encrypt(string original, SymmetricAlgorithmsa)
{
    ICryptoTransformct; MemoryStream ms; CryptoStream cs; byte[] byt;
    ct = sa.CreateEncryptor(sa.Key, sa.IV);
    byt = Encoding.UTF8.GetBytes(original);

    ms = new MemoryStream();
    cs = new CryptoStream(ms, ct, CryptoStreamMode.Write);
    cs.Write(byt, o, byt.Length);
    cs.FlushFinalBlock();
    cs.Close();

return Convert.ToBase64String(ms.ToArray());
```


Cryptographie

• Exemple - décryptage

```
public string Decrypt(string crypte, SymmetricAlgorithmsa) {
    ICryptoTransform ct; MemoryStream ms; CryptoStream cs; byte[] byt;
    ct = sa.CreateDecryptor(sa.Key, sa.IV);
    byt = Convert.FromBase64String(crypte);

    ms = new MemoryStream();
    cs = new CryptoStream(ms, ct, CryptoStreamMode.Write);
    cs.Write(byt, o, byt.Length);
    cs.FlushFinalBlock();
    cs.Close();

    return Encoding.UTF8.GetString(ms.ToArray());
}
```

29

Cryptographie

• Appel depuis le code

 $\label{thm:continuous} TripleDESCryptoServiceProvider d = new TripleDESCryptoServiceProvider(); \\ d.GenerateIV(); \\ d.GenerateKey(); \\ string res = Decrypt(Encrypt("toto", d), d); \\$

- ◆ Intérêt
 - Indépendance entre le choix de l'algorithme et l'implémentation
 - Découplage entre Couche Métier et Présentation