

SEQUENCE LISTING

5

<110> INDENA S.p.A.

10 <120> p185 ^{neu} ENCODING DNA AND THERAPEUTICAL USES THEREOF

15 <130> 7118M

20 <160> 42

25 <170> PatentIn version 3.1

30 <210> 1
<211> 92235 <212> DNA
<213> human/rat

35	<400> 1	
	ccggggccgga gcccgaatga tcatcatgga gctggcgccc tgggtgccgtt gggggttcct	60
40	ccttcgccttc ctgcggcccg gaatcgccgg ttacacctatac atctcagcat ggccggacag	120
	cctgcctgac ctcagcgtct tccagaacct gcaagtaatc cggggacgaa ttctgcacaa	180
	tggcgccctac tcgctgaccc tgcaagggtt gggcatcagc tggctggggc tgcgtcact	240
45	gagggaaactg ggcagtggac tggccctcat ccaccataac acccacctct gtttcgtgca	300
	cacggtgccc tgggaccaggc tcttcggaa cccgcaccaa gctctgtcc acactgcca	360
50	ccggccagag gacgagtgtg tggcgaggg cctggcctgc caccagctgt gcggccgagg	420
	gcactgttgg ggtccagggc ccaccaggatgttgtcaactgc agccagttcc ttccggggca	480
	ggagtgcgtg gaggaatgcc gagtactgca ggggtcccc agggagtatg tgaatgccag	540
55	gcactgtttg ccgtgccacc ctgagtgtaa gccccagaat ggctcagtga cctgtttgg	600
	accggaggct gaccaggatgtg tggcctgtgc ccactataag gaccctccct tctgcgtggc	660
60	ccgctgcccc agcggtgtga aacctgaccc ttcctacatg cccatctgga agtttccaga	720
	tgaggagggc gcatgccaggc cttgccccat caactgcacc cactcctgtg tggacctgga	780

tgacaagggc tgccccggc agcagagagc cagccctctg acgtccatcg tctctgcggt 840
ggttggcatt ctgctggtcg tggtcttggg ggtggtcttt gggatcctca tcaagcgacg 900
5 gcagcagaag atccggaagt aa 922

<210> 2

10 <211> 2083

<212> DNA

15 <213> human/rat

<400> 2

20 ccggggccgga gccgcaatga tcatcatgga gctggcggcc tgggccgct gggggttcct 60
cctcgccctc ctgccccccg gaatcgccgg cacccaagtg tgtaccggca cagacatgaa 120
gttgcggctc cctgccagtc ctgagaccca cctggacatg ctccgccacc tgtaccaggg 180
25 ctgtcaggta gtgcaggga acttggagct tacctacgtg cctgccaatg ccagcctctc 240
attcctgcag gacatccagg aagttcaggg ttacatgctc atcgctcaca accaggtgaa 300
30 gcgcgtccca ctgcaaaggc tgcgcatcgt gagagggacc cagcttttgg aggacaagta 360
tgccctggct gtgctagaca accgagatcc tcaggacaat gtcggccct ccaccccagg 420
cagaacccca gaggggctgc gggagctgca gttcgaagt ctcacagaga tcctgaaggg 480
35 aggagtttg atccgtggga accctcagct ctgctaccag gacatggttt tgtggaagga 540
cgtcttccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttccgggc 600
40 ctgtccacct tgtgcccccg cctgcaaaga caatcactgt tgggttgaga gtccggaaaga 660
ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggccggct 720
gcccactgac tgctgccatg agcagtgtgc cgccaggctgc acgggccccca agcattctga 780
45 ctgcctggcc tgccctcaact tcaatcatag tggtatctgt gagctgcact gcccagccct 840
cgtcacccatc aacacagaca cctttgagtc catgcacaac cctgagggtc gctacacccct 900
50 tggtgccagc tgcggtgacca cctgccccta caactacctg tctacggaag tgggatcctg 960
cactctggtg tgtccccca ataaccaaga ggtcacagct gaggacggaa cacagcggt 1020
tgagaaatgc agcaagccct gtgctcgagt gtgctatggt ctgggcatgg agcaccttcg 1080
55 agggggcgagg gccatcacca gtgacaatgt ccaggagttt gatggctgca agaagatctt 1140
tgggagcctg gcattttgc cggagagctt tggatgggac ccctccctcg gcattgctcc 1200
60 gctgaggcct gagcagctcc aagtgttcga aaccctggag gagatcacag gttacctata 1260
catctcagca tggccggaca gcctgcctga cctcagcgtc ttccagaacc tgcaagtaat 1320

ccggggacga attctgcaca atggcgcta ctcgctgacc ctgcaaggc tggcatcg 1380
ctggctggg ctgcgtcac tgagggact gggcagtgg ctggccctca tccaccataa 1440
5 caccacccctc tgttcgtgc acacggtgcc ctgggaccag ctcttcgga acccgacca 1500
agctctgctc cacactgcca accggccaga ggacgagtgt gtggcgagg gcctggctg 1560
10 ccaccagctg tgccccgag ggcactgctg gggtccaggg cccacccagt gtgtcaactg 1620
cagccagttc cttcggggcc aggagtgcgt ggaggaatgc cgagtactgc aggggctccc 1680
cagggagttat gtgaatgcca ggcactgttt gccgtgccac cctgagtgtc agccccagaa 1740
15 tggctcagtg acctgtttt gaccggaggc tgaccagtgt gtggctgtg cccactataa 1800
ggaccctccc ttctgcgtgg cccgctgccc cagcggtgtg aaacctgacc tctcctacat 1860
20 gccccatctgg aagtttccag atgaggaggg cgcatgccag cttgccccca tcaactgcac 1920
ccactcctgt gtggacctgg atgacaaggg ctgccccgcc gagcagagag ccagccctct 1980
gacgtccatc gtctctgcgg tggttggcat tctgctggc gtggcttgg gggtggtctt 2040
25 tgggatccctc atcaagcgac ggcagcagaa gatccggaag taa 2083

<210> 3

30 <211> 1939

<212> DNA

35 <213> human/rat

<400> 3
ccggggccgga gccgcaatga tcatcatgga gctggcgcc tggtgccgt gggggttcct 60
40 cctcgccctc ctgccccccg gaatcgccgc tagcctgtcc ttccctgcagg atatccagga 120
ggtgcagggc tacgtgctca tcgctcacaa ccaagtgagg caggtcccac tgcagaggct 180
45 gcggattgtg cgaggcaccc agctcttga ggacaactat gccctggccg tgctagacaa 240
tggagacccg ctgaacaata ccaccctgt cacaggggcc tcccaggag gcctgcggga 300
gctgcagctt cgaaggcctca cagagatctt gaaaggaggg gtcttgatcc agcggAACCC 360
50 ccagctctgc taccaggaca cgattttgtg gaaggacatc ttccacaaga acaaccagct 420
ggctctcaca ctgatagaca ccaaccgctc tcgggcctgc caccctgtt ctccgatgtg 480
55 taagggtctcc cgctgctggg gagagagtgc tgaggattgt cagagctga cgcgactgt 540
ctgtgcccgt ggctgtgccc gctgcaaggg gccactgccc actgactgct gccatgagca 600
gtgtgctgcc ggctgcacgg gccccaaagca ctctgactgc ctggcctgcc tccactcaa 660
60 ccacagtggc atctgtgagc tgcactgccc agccctggc acctacaaca cagacacgtt 720
tgagtccatg cccaatcccg agggccggta tacattcggc gccagctgtg tgactgcctg 780

	tccctacaac taccttcta cggacgtggg atcctgcacc ctcgtctgcc ccctgcacaa	840
	ccaagaggta acagcagagg atggaacaca gcggtgttag aagtgcagca agccctgtgc	900
5	ccgagtgtgc tatggctgg gcatggagca cttgcagag gtgagggcag ttaccagtgc	960
	caatatccag gagtttgctg gctgcaagaa gatcttggg agcctggcat ttctgcccga	1020
10	gagctttgat ggggacccag cctccaacac tgccccgctc cagccagagc agctccaagt	1080
	gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct	1140
	gcctgacctc agcgcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg	1200
15	cgcctactcg ctgaccctgc aagggctggg catcagctgg ctggggctgc gctcaactgag	1260
	ggaactgggc agtggactgg ccctcatcca ccataacacc cacctctgct tcgtgcacac	1320
20	ggtgccctgg gaccagctct ttccgaaaccc gcaccaagct ctgctccaca ctgccaaccg	1380
	gccagaggac gagttgtgtgg gcgagggcct ggcctgcccac cagctgtgcg cccgaggcga	1440
	ctgctgggtt ccagggccca cccagtgtgt caactgcagc cagttccctc ggggcccagga	1500
25	gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca	1560
	ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgaccc tttttggacc	1620
30	ggaggctgac cagtgtgtgg cctgtgcccac ctataaggac cctccctct gcgtggcccg	1680
	ctgccccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga	1740
	ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga	1800
35	caagggctgc cccgcccagc agagagccag ccctctgacg tccatcgct ctgcgggtgt	1860
	tggcattctg ctggcgtgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca	1920
40	gcagaagatc cgaaagtaa .	1939
	<210> 4	
45	<211> 1699	
	<212> DNA	
	<213> human/rat	
50	<400> 4	
	ccggggccgga gcccgaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct	60
	cctcgccctc ctgccccccg gaatcgccgc tagcggaggg gtcttgatec agcgaaaccc	120
55	ccagctctgc taccaggaca cgattttgtg gaaggacatc ttccacaaga acaaccagct	180
	ggctctcaca ctgatagaca ccaaccgctc tcgggctgc caccctgtt ctccgatgtg	240
60	taagggctcc cgctgtgtgg gagagagttc tgaggattgt cagagcctga cgcgactgt	300
	ctgtgcccgt ggctgtgccc gctgcaaggg gccactgccc actgactgct gccatgagca	360

	gtgtgctgcc ggctgcacgg gccccaaagca ctctgactgc ctggcctgcc tccacttcaa	420
	ccacagtggc atctgtgagc tgcactgccc agccctggtc acctacaaca cagacacgtt	480
5	tgagtccatg cccaatcccg agggccoggta tacattcggc gccagctgtg tgactgcctg	540
	tccctacaac tacctttcta cggacgtggg atcctgcacc ctcgtctgcc ccctgcacaa	600
10	ccaagaggtg acagcagagg atggaacaca gcgggtgtgag aagtgcagca agccctgtgc	660
	ccgagtgtgc tatggctcgg gcatggagca cttgcgagag gtgagggcag ttaccagtgc	720
	caatatccag gagtttgctg gctgcaagaa gatctttggg agcctggcat ttctgcccga	780
15	gagctttgat ggggacccag cctccaacac tgccccgctc cagccagagc agctccaagt	840
	gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct	900
20	gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg	960
	cgcctactcg ctgaccctgc aagggctggg catcagctgg ctggggctgc gctcactgag	1020
	ggaactgggc agtggactgg ccctcatcca ccataacacc cacctctgct tcgtgcacac	1080
25	ggtgccctgg gaccagctct ttccgaaaccc gcaccaagct ctgctccaca ctgccaacccg	1140
	gccagaggac gagtgtgtgg gcgagggcct gcctgcac cagctgtgcg cccgagggca	1200
30	ctgctggggt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggcccagga	1260
	gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca	1320
	ctgtttgccc tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc	1380
35	ggaggctgac cagtgtgtgg cctgtgcccc ctataaggac cctcccttct gcgtggcccg	1440
	ctgccccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga	1500
40	ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga	1560
	caagggctgc cccgcccagc agagagccag ccctctgacg tccatgtct ctgcgggtgt	1620
	tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca	1680
45	gcagaagatc cgaaagtaa	1699

<210> 5

50 <211> 1459

<212> DNA

55 <213> human/rat

<400> 5

	ccgggccccga gccgcaatga tcatcatgga gctggcgccc tggtgccgct gggggttcct	60
	cctcgccctc ctgcccccccg gaatcgccgc tagcctgccc actgactgct gccatgagca	120
60	gtgtgctgcc ggctgcacgg gccccaaagca ctctgactgc ctggcctgcc tccacttcaa	180

	ccacagtggc atctgtgagc tgcactgccc agccctggtc acctacaaca cagacacgtt	240
	tgagtcctatg cccaatccccg agggccggta tacattcgcc gccagctgtg tgactgcctg	300
5	tccctacaac tacctttcta cggacgtggg atcctgcacc ctgcgtctgcc ccctgcacaa	360
	ccaagaggtg acagcagagg atggaacaca gcgggtgtgag aagtgcagca agccctgtgc	420
10	ccgagtgtgc tatggtctgg gcatggagca cttgcgagag gtgagggcag ttaccagtgc	480
	caatatccag gagtttgctg gctgcaagaa gatctttggg agcctggcat ttctgcccga	540
	gagcttgat ggggacccag cctccaacac tgccccgctc cagccagagc agctccaagt	600
15	gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct	660
	gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg	720
20	cgcctactcg ctgaccctgc aagggtctgg catcagctgg ctggggctgc gctcactgag	780
	ggaactgggc agtggactgg ccctcatcca ccataacacc cacctctgtt tcgtgcacac	840
	ggtgccttgg gaccagctct ttggaaaccc gcaccaagct ctgctccaca ctgccaaccg	900
25	gccagaggac gagtgtgtgg gcggggcct gcctgcccac cagctgtgcg cccgaggcga	960
	ctgctgggtt ccagggccca cccagtggtt caactgcagc cagttccctc ggggcccagga	1020
30	gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca	1080
	ctgtttggcg tgccaccctg agtgtcagcc ccagaatggc tcagtgcacct gttttggacc	1140
	ggaggctgac cagtgtgtgg cctgtgcccac ctataaggac cctcccttct gcgtggcccg	1200
35	ctgccccagc ggtgtgaaac ctgacccttc ctacatgccc atctggaaat ttccagatga	1260
	ggagggcgca tgccagcctt gccccatcaa ctgcacccac ttctgtgtgg acctggatga	1320
40	caagggtctgc cccgcccggc agagagccag ccctctgacg tccatcgct ctgcgggtgt	1380
	tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca	1440
	gcagaagatc cgaaagataa	1459
45	<210> 6	
	<211> 1219	
50	<212> DNA	
	<213> human/rat	
55	<400> 6	
	ccggggccgga gcccgaatga tcatcatgga gctggcgccc tgggtccgc gggggttccct	60
60	cctcgccctc ctgcccccccg gaatcgccgc tagctgcacc ctgcgtctgcc ccctgcacaa	120
	ccaagaggtg acagcagagg atggaacaca gcgggtgtgag aagtgcagca agccctgtgc	180

	ccgagtgtgc tatggtctgg gcatggagca cttgcgagag gtgagggcag ttaccagtgc	240
	caatatccag gagtttgctg gctgcaagaa gatctttggg agcctggcat ttctgccgga	300
5	gagctttagat ggggacccag cctccaacac tgccccgctc cagccagagc agctccaagt	360
	gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct	420
10	gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg	480
	cgcctactcg ctgaccctgc aagggtctgg catcagctgg ctggggctgc gctcaactgag	540
	ggaactgggc agtggactgg ccctcatcca ccataacacc cacctctgct tcgtgcacac	600
15	ggtgccctgg gaccagctct ttccgaaaccc gcaccaagct ctgctccaca ctgccaaccg	660
	gccagaggac gagtgtgtgg gcgagggcct ggccctgccac cagctgtgcg cccgaggcga	720
20	ctgctgggtt ccagggccca cccagtggtt caactgcagc cagttcccttc ggggcccagga	780
	gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca	840
	ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgaccc ttttggacc	900
25	ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctccctct gcgtggcccg	960
	ctgccccagc ggtgtgaaac ctgacccttc ctacatgccc atctggaagt ttccagatga	1020
30	ggagggcgca tgccagcattt gccccatcaa ctgcacccac tcctgtgtgg acctggatga	1080
	caagggctgc cccgcccagc agagagccag ccctctgacg tccatcgct ctgogggtgtt	1140
	tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca	1200
35	gcagaagatc cgaaagtaa	1219

<210> 7

40 <211> 979

<212> DNA

45 <213> human/rat

	<400> 7 ccggggccgga gcccgaatga tcatcatgga gctggcgccc tggtgccgct gggggtttcct	60
50	cctcgccctc ctgccccccg gaatcgccgc tagcccgctc cagccagagc agctccaagt	120
	gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct	180
55	gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg	240
	cgcctactcg ctgaccctgc aagggtctgg catcagctgg ctggggctgc gctcaactgag	300
60	ggaactgggc agtggactgg ccctcatcca ccataacacc cacctctgct tcgtgcacac	360
	ggtgccctgg gaccagctct ttccgaaaccc gcaccaagct ctgctccaca ctgccaaccg	420

gccagaggac gagtgtgtgg gcgaggcccct gcctgccac cagctgtgcg ccggaggca 480
ctgctgggtt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggcccagga 540
5 gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 600
ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 660
10 ggaggctgac cagtgtgtgg cctgtgcccataaggac cctcccttct gcgtggcccg 720
ctgccccagc ggtgtgaaac ctgacccctc ctacatgccc atctggaagt ttccagatga 780
ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 840
15 caaggctgc cccgcccagc agagagccag ccctctgacg tccatcgtct ctgcgggtggt 900
tggcattctg ctggtcgtgg tcttgggggtt ggtctttggg atcctcatca agcgacggca 960
20 gcagaagatc cgaaagtaa 979

<210> 8
25 <211> 739
<212> DNA
<213> human/rat

30 <400> 8
ccggcccgga gccgcaatga tcatcatgga gctggccggcc tgggtccgct gggggttccct 60
35 cctcgccctc ctgcccccccg gaatcgccggc tagcaacacc cacctctgct tcgtgcacac 120
ggtgccttgg gaccagctct ttcggAACCC gcaccaagct ctgctccaca ctgccaaccg 180
40 gccagaggac gagtgtgtgg gcgaggcccct gcctgccac cagctgtgcg ccggaggca 240
ctgctgggtt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggcccagga 300
gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 360
45 ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 420
ggaggctgac cagtgtgtgg cctgtgcccataaggac cctcccttct gcgtggcccg 480
50 ctgccccagc ggtgtgaaac ctgacccctc ctacatgccc atctggaagt ttccagatga 540
ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 600
caaggctgc cccgcccagc agagagccag ccctctgacg tccatcgtct ctgcgggtggt 660
55 tggcattctg ctggtcgtgg tcttgggggtt ggtctttggg atcctcatca agcgacggca 720
gcagaagatc cgaaagtaa 739

60 <210> 9
<211> 499

<212> DNA

<213> human/rat

5

<400> 9
ccgggcccga gcccgaatga tcatcatgga gctggcgccc tggtgccgct gggggttcct 60
10 cctcgccctc ctgccccccg gaatcgccgc tagccccagg gagtatgtga atgccaggca
ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgaccc tttttggacc 120
15 ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctcccttct gcgtggcccg 180
ctgccccagc ggtgtgaaac ctgacccctc ctacatgccc atctggaagt ttccagatga 240
ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 300
20 caagggtgc cccgcccggc agagagccag ccctctgacg tccatcgct ctgcgggtgtt 360
tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca
25 gcagaagatc cgaaagtaa 499

<210> 10

<211> 2086

30 <212> DNA

<213> human/rat

35

<400> 10
ccgggcccga gcccgaatga tcatcatgga gctggcgccc tggtgccgct gggggttcct 60
40 cctcgccctc ctgccccccg gaatcgccgg cacccaagtg tgtaccggca cagacatgaa
gttgcggctc cctgccagtc ctgagaccca cctggacatg ctccgccacc tgtaccaggg 120
ctgtcaggtt gtgcagggca acttggagct tacctacgtg cctgccaatg ccagcgctag 180
45 cctgtccctc ctgcaggata tccaggaggt gcagggctac gtgctcatcg ctcacaacca
agtgaggcag gtcccactgc agaggctgca gattgtgcga ggcacccagc tctttgagga 240
50 caactatgcc ctggccgtgc tagacaatgg agacccgctg aacaatacca cccctgtcac
aggggcctcc ccaggaggcc tgccggagct gcagcttcga agcctcacag agatcttcaa 300
aggaggggtc ttgatccagc ggaacccca gctctgctac caggacacga ttttgtggaa 360
55 ggacatcttc cacaagaaca accagctggc tctcacactg atagacacca accgctctcg
ggcctgccac ccctgttctc cgatgtgtaa gggctccgc tgctggggag agagttctga 420
60 ggattgtcag agcctgacgc gcactgtctg tgccgggtggc tggccggct gcaagggcc 480
actgcccact gactgctgcc atgagcagtg tgctgcccggc tgcacggcc ccaagcactc 540
actgcccact gactgctgcc atgagcagtg tgctgcccggc tgcacggcc ccaagcactc 600
actgcccact gactgctgcc atgagcagtg tgctgcccggc tgcacggcc ccaagcactc 660
actgcccact gactgctgcc atgagcagtg tgctgcccggc tgcacggcc ccaagcactc 720
actgcccact gactgctgcc atgagcagtg tgctgcccggc tgcacggcc ccaagcactc 780

10

tgactgcctg gcctgcctcc acttcaaccca cagtggcatc tgtgagctgc actgcccagc 840
cctggtcacc tacaacacag acacgttga gtccatgccc aatcccagg gccggtatac 900
5 attcggcgcc agctgtgtga ctgcctgtcc ctacaactac ctttctacgg acgtggatc
ctgcaccctc gtctgcccc tgcacaaccca agaggtgaca gcagaggatg gaacacagcg 1020
gtgtgagaag tgcagcaagc cctgtgccc agtgtgctat ggtctggca tggagcactt 1080
10 gcgagaggtg agggcagttt ccagtgc当地 tatccaggag tttgctggct gcaagaagat 1140
ctttggagc ctggcatttc tgccggagag ctttgc当地 gaccaggcct ccaacactgc 1200
15 cccgctccag ccagagcagc tccaagtgtt tgagactctg gaagagatca caggttacct
atacatotca gcatggccgg acagcctgcc tgacctcagc gtctccaga acctgcaagt 1320
aatccgggaa cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctggcat 1380
20 cagctggctg gggctgc当地 cactgaggaa actggcagtg ggactggccc tcatccacca 1440
taacacccac ctctgcttcg tgcacacggc gccc当地ggac cagctttc ggaaccogca 1500
25 ccaagctctg ctccacactg ccaaccggcc agaggacgag tgtgtggcg agggcctggc 1560
ctgccaccag ctgtgc当地 gaggcactg ctggggtcca gggcccaccc agtgtgtcaa 1620
ctgcagccag ttccctc当地 ggccaggatg cgtggaggaa tgccgagtg tgcaggggct 1680
30 ccccaggag tatgtgaatg ccaggcactg tttgccgtgc caccctgagtg tcagccccca 1740
gaatggctca gtgacctgtt ttggaccggc ggctgaccag tgtgtggct gtgcccacta 1800
35 taaggaccct cccttctgcg tggcccgctg ccccagcggt gtgaaacctg acctctccta 1860
catgcccatc tggaaagtttc cagatgagga gggcgc当地 cagccttgcc ccatcaactg 1920
40 cacccactcc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980
tctgacgtcc atcgctctg cggtggtgg cattctgctg gtcgtggct tgggggtgg 2040
ctttggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086
45 <210> 11
<211> 2086
50 <212> DNA
<213> human/rat
55 <400> 11
60 60 ccgggccc当地 gccgcaatga tcatcatggc gctggccggc tggtgccgct gggggttcct
cctcgccctc ctgccccccgg gaatcgccggc cacccaaatg tgcgtggca cagacatgaa 120

gttgcggctc cctgccagtc ctgagaccca cctggacatg ctccgccacc tgtaccaggg 180
ctgtcaggta gtgcagggca acttggagct tacctacgtg cctgccaatg ccagcctctc 240
5 attcctgcag gacatccagg aagttcaggg ttacatgctc atcgctcaca accaggtgaa 300
gcgcgtcccc ctgcaaaggc tgccatcggt gagagggacc cagcttttg aggacaagta 360
tgccctggct gtgctagaca accgagatcc tcaggacaat gtcggcgct ccacccagg 420
10 cagaacccca gaggggctgc gggagctgca gttcgaagt ctcacagaga tccatggctag 480
cgagggggtc ttgatccagc ggaacccca gctctgtac caggacacga ttttgtggaa 540
15 ggacatcttc cacaagaaca accagctggc tctcacactg atagacacca accgctctcg 600
ggcctgccac cccgtttctc cgatgtgtaa gggctccgc tgctggggag agagttctga 660
20 ggattgtcag agcctgacgc gcactgtctg tgccgggtggc tgtgcccgt gcaaggggcc 720
actgcccact gactgctgcc atgagcagtg tgctgccggc tgacacggcc ccaagcactc 780
tgactgcctg gcctgcctcc acttcaacca cagtggcatc tgtgagctgc actgcccagc 840
25 cctggtcacc tacaacacag acacgttga gtccatgccc aatcccgagg gccggtatac 900
attcggcgcc agctgtgtga ctgcctgtcc ctacaactac ctttctacgg acgtggatc 960
30 ctgcaccctc gtctgcccc tgcacaacca agaggtgaca gcagaggatg gaacacagcg 1020
gtgtgagaag tgcaagcagc cctgtgccc agtgtgctat ggtctggca tggagcactt 1080
gcgagaggtg agggcagttt ccagtgc当地 tatccaggag tttgtggct gcaagaagat 1140
35 ctttggagc ctggcatttc tgccggagag ctttgcgtgg gacccagcct ccaacactgc 1200
cccgctccag ccagagcagc tccaaatgtt tgagactctg gaagagatca caggttacct 1260
40 atacatctca gcatggccgg acagcctgcc tgacctcagc gtctccaga acctgcaagt 1320
aatccgggaa cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctggcat 1380
cagctggctg gggctgc当地 cactgaggaa actggcagtg ggactggccc tcatccacca 1440
45 taacacccac ctctgc当地 tgcacacggc gcccgtggc cagcttttc ggaacccgca 1500
ccaaagctctg ctccacactg ccaacccggc agaggacgag tgtgtggcg agggcctggc 1560
50 ctgccaccag ctgtgc当地 gggcactg ctgggtcca gggccaccc agtgtgtcaa 1620
ctgcagccag ttccctcgcc gccaggagtg cgtggaggaa tgccgagttac tgcagggct 1680
ccccagggag tatgtgaatg ccaggcactg tttgc当地 caccctgagtg tgcagccca 1740
55 gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggct gtgcccacta 1800
taaggaccct cccttctgcg tggcccgctg ccccagcggt gtgaaacctg acctctcccta 1860
60 catgcccactc tggaaagtttc cagatgagga gggcgcatgc cagccttgcc ccatcaactg 1920
caccctactcc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980

tctgacgtcc atcgctctg cggtggttgg cattctgctg gtcgtggct tgggggtgg 2040
ctttgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086

5 <210> 12

<211> 2086

10 <212> DNA

<213> human/rat

15 <400> 12
ccgggcggga gcccgaatga tcatacatgga gctggcggcc tggtgccgct gggggttcct 60
cctcgccctc ctgccccccg gaatcgcggg cacccaagtg tgtaccggca cagacatgaa 120
20 gttgcggctc cctgccagtc ctgagaccca cctggacatg ctccgcccacc tgtaccagg 180
ctgtcaggta gtgcaggga acttggagct tacctacgtg cctgccaatg ccagcctctc 240
25 attcctgcag gacatccagg aagttcaggg ttacatgctc atcgctcaca accaggtgaa 300
gcgcgtccca ctgcaaaggc tgcgcatcgt gagagggacc cagcttttgg 360
tgccctggct gtgctagaca accgagatcc tcaggacaat gtcgcccct ccacccagg 420
30 cagaacccca gaggggctgc gggagctgca gcttcgaagt ctcacagaga tcctgaaggg 480
aggagtttg atccgtggga accctcagct ctgctaccag gacatggttt tgtggaagga 540
35 cgtttccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttccgggc 600
ctgtccacct tggccccccg cctgcaaaga caatcactgt tgggtgaga gtccggaaga 660
ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggcgctag 720
40 cctgcccact gactgctgcc atgagcagtg tgctggccgac tgcacgggcc ccaagcactc 780
tgactgcctg gcctgcctcc acttcaacca cagtggcatc tgtgagctgc actgcccagc 840
45 cctggtcacc tacaacacag acacgttga gtccatgccc aatccgagg gccggataac 900
attcggcgcc agctgtgtga ctgcctgtcc ctacaactac ctttctacgg acgtggatc 960
ctgcaccctc gtctggccccc tgcacaacca agaggtgaca gcagaggatg gaacacagcg 1020
50 gtgtgagaag tgcagcaagc cctgtgccc agtgtgctat ggtctggca tggagcactt 1080
gcgagaggtg agggcagtta ccagtgc当地 tatccaggag tttgctggct gcaagaagat 1140
55 ctttgggagc ctggcatttc tgccggagag ctttgc当地 gacccagcct ccaacactgc 1200
cccgctccag ccagagcagc tccaaatgtt tgagactctg gaagagatca caggttaccc 1260
atacatctca gcatggccgg acagcctgcc tgacctcagc gtctccaga acctgcaagt 1320
60 aatccgggga cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctggcat 1380
cagctggctg gggctgc当地 cactgaggaa actggcagtt ggactggccc tcatccacca 1440

taacaccac ctctgcttcg tgcacacggc gccctggac cagctttc ggaacccgca 1500
 ccaagctctg ctccacactg ccaaccggcc agaggacgag tgtgtggcg agggcctggc 1560
 5 ctgccaccag ctgtgcgccc gagggcactg ctgggtcca gggcccaccc agtgtgtcaa 1620
 ctgcagccag ttccctcggg gccaggagtg cgtggaggaa tgccgagtac tgcagggct 1680
 10 ccccaggag tatgtaatg ccaggcactg tttgccgtgc caccctgagt gtcagcccc 1740
 gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggcct gtgcccacta 1800
 taaggacct ccctctgctg tggcccgctg ccccagcggt gtgaaacctg acctctcccta 1860
 15 catgcccattc tggaaagtttc cagatgagga gggcgcatgc cagccttgcc ccatcaactg 1920
 cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980
 20 tctgacgtcc atcgctctg cggtggttgg cattctgctg gtcgtggct tgggggttgt 2040
 ctgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086

25 <210> 13

<211> 2086

<212> DNA

30 <213> human/rat

35 <400> 13
 ccggccgga gccgcaatga tcatcatgga gctggccggc tggtgccgct gggggttcct 60
 cctcgccctc ctgcccccccg gaatcgccggg caccaagtg tgtaccggca cagacatgaa 120
 40 gttgcggctc cctgccagtc ctgagaccca cctggacatg ctccgccacc tgtaccagg 180
 ctgtcaggta gtgcagggca acttggagct tacctacgtg cctgccaatg ccagcctctc 240
 attcctgcag gacatccagg aagttcaggg ttacatgctc atcgctcaca accaggtgaa 300
 45 gcgctccca ctgcaaaggc tgcgcatcgt gagagggacc cagcttttgc aggacaagta 360
 tgccctggct gtgctagaca accgagatcc tcaggacaat gtcgcccgcct ccacccagg 420
 50 cagaacccca gaggggctgc gggagctgca gttcgaagt ctcacagaga tcctgaaggg 480
 aggagtttg atccgtggga accctcagct ctgctaccag gacatggttt tgtggaagga 540
 cgtctccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttccgggc 600
 55 ctgtccaccc tggcccccgg cctgcaaaga caatcactgt tgggtgaga gtccggaaaga 660
 ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggccggct 720
 60 gcccactgac tgctgccatg agcagtgtgc cgccaggctgc acggggccca agcattctga 780
 ctgcctggcc tgcctccact tcaatcatag tggtatctgt gagctgcact gcccagccct 840

cgtcacctac aacacagaca ccttgagtc catgcacaac cctgagggtc gctacacctt 900
tggtgccagc tgcgtgacca cctgcccta caactacctg tctacggaag tggagctag 960
5 ctgcaccctc gtctgcccc tgcacaacca agaggtgaca gcagaggatg gaacacagcg 1020
gtgtgagaag tgcagcaago cctgtgccc agtgtgctat ggtctggca tggagcactt 1080
10 gcgagaggtg agggcagtta ccagtccaa tatccaggag tttgctggct gcaagaagat 1140
ctttgggagc ctggcatttc tgccggagag ctttcatggg gaccagcct ccaacactgc 1200
cccgctccag ccagagcago tccaagtgtt tgagactctg gaagagatca caggttacct 1260
15 atacatctca gcatggccgg acagcctgcc tgacctcagc gtcttccaga acctgcaagt 1320
aatccgggga cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctggcat 1380
20 cagctggctg gggctgcgct cactgaggga actggcagt ggactggccc tcatccacca 1440
taacaccac ctctgcttcg tgcacacggt gccctggac cagctttc ggaacccgca 1500
ccaagctctg ctccacactg ccaaccggcc agaggacgag tgtgtggcg agggcctggc 1560
25 ctgccaccag ctgtgcgccc gagggcactg ctgggtcca gggcccaccc agtgtgtcaa 1620
ctgcagccag ttccctcggg gccaggagtg cgtggaggaa tgccaggtac tgcagggct 1680
30 ccccagggag tatgtaatg ccaggcactg tttgccgtgc caccctgagt gtcagccca 1740
gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggct gtgccacta 1800
taaggaccc ctctctgcg tggccctgt ccccagcggt gtgaaacctg acctctccta 1860
35 catgccatc tggaaagttc cagatgagga gggcgcatgc cagccttgcc ccatcaactg 1920
cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980
40 tctgacgtcc atcgctctg cggtggttgg cattctgctg gtcgtggct tgggggttgt 2040
ctttggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086

45 <210> 14
<211> 2086
<212> DNA
50 <213> human/rat

55 <400> 14
ccgggcggga gcccgaatga tcatcatgga gctggcgccc tggtgccgct gggggttcct 60
cctcgccctc ctgccccccg gaatcgcccc caccaagtg tgtaccggca cagacatgaa 120
60 gttgcggctc cctgccagtc ctgagaccca cctggacatg ctccgccacc tgtaccagg 180
ctgtcaggta gtgcaggca acttggagct tacctacgtg cctgccaatg ccagcctctc 240

15

	atccctgcag gacatccagg aagttcaggg ttacatgctc atcgctcaca accaggtcaa	300
	gcgcgccca ctgcaaaggc tgcgcatcg t gaggaggacc cagctttt g aggacaagta	360
5	tgcctggct gtgctagaca accgagatcc tcaggacaat gtcggccct ccaccccagg	420
	cagaaccca gaggggctgc gggagctgca gcttcgaagt ctcacagaga tcctgaaggg	480
10	aggagtttg atccgtggga accctcagct ctgctaccag gacatggtt tgtgaaagga	540
	cgtctccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttcccggc	600
	ctgtccacct tgtgcccccg cctgcaaaga caatcactgt tgggtgaga gtccggaaga	660
15	ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggccggct	720
	gcccaactgac tgctgccatg agcagtgtgc cgcaaggctgc acggggccca agcattctga	780
20	ctgcctggcc tgcctccact tcaatcatag tggtatctgt gagctgcaact gcccagccct	840
	cgtcacctac aacacagaca ccttgagtc catgcacaac cctgagggtc gctacacctt	900
	tggtgccagc tgcgtgacca cctgccccta caactacctg tctacggaag tgggatcctg	960
25	cactctggtg tgtccccga ataaccaaga ggtcacagct gaggacggaa cacagcgttg	1020
	tgagaaatgc agcaagccct gtgctcgagt gtgctatggt ctggcatgg agcacccctcg	1080
30	aggggcgagg gccatcacca gtgacaatgt ccaggagttt gatggctgca agaagatctt	1140
	tgggagcctg gcattttgc cggagagctt t gatggggac ccctccctcg gcattgctag	1200
	cccgctccag ccagagcagc tccaagtgtt tgagactctg gaagagatca caggttacct	1260
35	atacatctca gcatggccgg acagcctgcc tgacctcagc gtcttccaga acctgcaagt	1320
	aatccgggga cgaattctgc acaatggcgc ctactcgctg accotgcaag ggctggcat	1380
40	cagctggctg gggctgcgct cactgaggga actggcagt ggactggccc tcatccacca	1440
	taacacccac ctctgcttcg tgcacacggt gcccctggac cagcttttc ggaacccgca	1500
	ccaagctctg ctccacactg ccaaccggcc agaggacgag tgtgtggcg agggcctggc	1560
45	ctgccaccag ctgtgcgccc gagggcactg ctggggtcca gggcccaccc agtgtgtcaa	1620
	ctgcagccag ttccctcggg gccaggagtg cgtggaggaa tgccgagtac tgcagggct	1680
50	ccccagggag tatgtaatgc ccaggcactg tttgccgtc caccctgagt gtcagccca	1740
	gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggct gtgcccacta	1800
	taaggaccct cccttctgctg tggcccgctg ccccagcggt gtgaaacctg acctctccta	1860
55	catgcccatc tggaaagttt cagatgagga gggcgcatgc cagccttgcc ccatcaactg	1920
	cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc	1980
60	tctgacgtcc atcgctctg cggtggttgg cattctgctg gtcgtggct tgggggtgg	2040
	ctttggatc ctcataaaggc gacggcagca gaagatccgg aagtaa	2086

<210> 15

<211> 71

5 <212> DNA

<213> human/rat

10

<400> 15

ccggaagtaa ataatcgacg ttcaaataat cgacgttcaa ataatcgacg ttcaaataat 60

cgacgttcaa t

71

15 <210> 16

<211> 71

20 <212> DNA

<213> human/rat

25 <400> 16

ctagattgaa cgtcgattat ttgaacgtcg attatttgaa cgtcgattat ttgaacgtcg 60

attatttact t

71

30 <210> 17

<211> 71

35 <212> DNA

<213> human/rat

40

<400> 17

ccggaagtaa ataatagacg ttcaaataat agagcttcaa ataatagacg ttcaaataat 60

agagcttcaa t

71

45

<210> 18

<211> 71

50 <212> DNA

<213> human/rat

55

<400> 18

60 ctagattgaa gctctattat ttgaagctct attatttgaa gctctattat ttgaagctct 60
attatttact t 71

<210> 19
<211> 27
5 <212> DNA
<213> human/rat

10 <400> 19
ctaggaagct tggtaactt gcttagct 27

15 <210> 20
<211> 27
<212> DNA
20 <213> human/rat

25 <400> 20
agcttagctag caagttaaac aagcttc 27

30 <210> 21
<211> 68
<212> DNA
35 <213> human/rat

40 <400> 21
ctagataatc gacgttcaaa taatcgacgt tcaaataatc gacgttcaaa taatcgacgt 60
tcaaggttt 68

45 <210> 22
<211> 64
<212> DNA
50 <213> human/rat

55 <400> 22
aaaccttgaac gtcgattatt tgaacgtcga ttatggAAC gtcgattatt tgaacgtcga 60
ttat 64

60 <210> 23
60 <211> 68

<212> DNA

<213> human/rat

5

<400> 23

ctagataata gagcttcaaa taatagagct tcaaataata gagcttcaaa taatagagct 60

10 tcaagttt

68

<210> 24

15 <211> 64

<212> DNA

20 <213> human/rat

<400> 24

aaacttgaag ctctattatt tgaagctcta ttatgttaag ctctattatt tgaagctcta 60

25 ttat

64

<210> 25

30 <211> 20

<212> DNA

35 <213> human/rat

40 <400> 25

taatacgtact cactataggg

20

<210> 26

45 <211> 32

<212> DNA

50 <213> human/rat

<400> 26

55 ggccgggtac ccgcgattcc ggggggcagg ag

32

<210> 27

60 <211> 35

<212> DNA
<213> human/rat
5
<400> 27
ccggctagct agcctgtcct tcctgcagga tatcc 35
10 <210> 28
<211> 35
15 <212> DNA

<213> human/rat
20
<400> 28
ccggctagct agcggagggg tcttgatcca gcgga 35
25 <210> 29
<211> 35
30 <212> DNA
<213> human/rat

35 <400> 29
ccggctagct agcctgcccc ctgactgctg ccatg 35
40 <210> 30
<211> 35
45 <212> DNA
<213> human/rat

50 <400> 30
ccggctagct agctgcaccc tcgtctgccc cctgc 35
55 <210> 31
<211> 35
<212> DNA
60 <213> human/rat

<400> 31
ccggctagct agcccgctcc agccagagca gctcc 35

5 <210> 32

<211> 35

10 <212> DNA

<213> human/rat

15 <400> 32
ccggctagct agcaaacaccc acctctgctt cgtgc 35

20 <210> 33

<211> 35

<212> DNA

25 <213> human/rat

30 <400> 33
ccggctagct agccccaggg agtatgtgaa tgcca 35

<210> 34

35 <211> 20

<212> DNA

40 <213> human/rat

<400> 34

45 tagaaggcac agtcgaggct 20

<210> 35

50 <211> 43

<212> DNA

55 <213> human/rat

<400> 35

60 ccggctagct agccgcgatt ccggggggca ggagggcagag gag 43

<210> 36

<211> 69

5 <212> DNA

<213> human/rat

10

<400> 36

ctagggcatca tcatcatcat cataatggtc ataccggtga acaaaaactc atctcagaag 60

aggatctgg

69

15

<210> 37

<211> 69

20 <212> DNA

<213> human/rat

25

<400> 37

ctagccagat cctcttctga gatgagttt tggcacccgg tatgaccatt atgatgatga 60

30 tggatgatgc

69

<210> 38

35 <211> 35

<212> DNA

<213> human/rat

40

<400> 38

ccggctagct agcgctggca ttggcaggca cgtag

35

45

<210> 39

50 <211> 35

<212> DNA

<213> human/rat

55

<400> 39

ccggctagct agccaggatac tctgtgagac ttca

35

60 <210> 40

<211> 35

<212> DNA

5 <213> human/rat

<400> 40

ccggctagct agcgcccttg caccgggcac aacca

35

10

<210> 41

<211> 35

15

<212> DNA

<213> human/rat

20

<400> 41

ccggctagct agctcccact tccgtagaca ggtag

35

25

<210> 42

<211> 35

30

<212> DNA

<213> human/rat

35

<400> 42

ccggctagct agcaatgccg gaggaggggt cccca

35