CS540 Machine learning Lecture 11 Decision theory, model selection

Outline

- Summary so far
- Loss functions
- Bayesian decision theory
- ROC curves
- Bayesian model selection
- Frequentist decision theory
- Frequentist model selection

Models vs algorithms

P(x|theta) scalar x

Prior	Posterior	Algorithm
None	MLE	Exact §??
Beta	Beta	Exact §??
None	MLE	Exact §??
Gauss	Gauss	Exact §??
NIG	NIG	Exact
None	MLE	EM § ??
NA	NA	NA § ??
NA	NA	NA § ??
	None Beta None Gauss NIG None NA	None MLE Beta None MLE Gauss Gauss NIG NIG None MLE NA NA

P(x|theta) vector x

Likelihood	Prior	Posterior	Algorithm
MVN	None	MLE	Exact §??
MVN	MVN	MVN	Exact
MVN	MVNIW	MVNIW	Exact
Multinomial	None	MLE	Exact §??
Multinomial	Dirichlet	Dirichlet	Exact §??
Dirichlet	NA	NA	NA § ??
Wishart	NA	NA	NA § ??

P(x,y|theta)

Likelihood	Prior	Posterior	Algorithm
GaussClassif	None	MLE	Exact §??
GaussClassif	MVNIW	MVNIW	Exact
NB binary	None	MLE	Exact §??
NB binary	Beta	Beta	Exact §??
NB Gauss	None	MLE	Exact §??
NB Gauss	NIG	NIG	Exact §??

P(y|x,theta)

Likelihood	Prior	Posterior	Algorithm
Linear regression	None	MLE	QR § ??, SVD § ??, LMS
Linear regression	L2	MAP	QR § ?? , SVD § ??
Linear regression	<u>L1</u>	MAP	QP §??, CoordDesc §??,
Linear regression	MVN	MVN	QR/Cholesky §??
Linear regression	MVNIG	MVNIG	-
Logistic regression	None	MLE	IRLS §??, perceptron §?
Logistic regression	L2	MAP	Newton §??, BoundOpt §
Logistic regression	<u>L1</u>	MAP	BoundOpt §??
Logistic regression	MVN	LaplaceApprox	Newton §??
GP regression	MVN	MVN	Exact
GP classin cation	MVN	LaplaceApprox	-

From beliefs to actions

- We have discussed how to compute p(y|x), where y
 represents the unknown state of nature (eg. does the
 patient have lung cancer, breast cancer or no cancer),
 and x are some observable features (eg., symptoms)
- We now discuss: what action a should we take (eg. surgery or no surgery) given our beliefs?

•

Loss functions

Define a loss function $L(\theta,a)$, θ =true (unknown) state of nature, a = action

	Surgery	No surgery
No cancer	20	0
Lung cancer	10	50
Breast cancer	10	60

Asymmetric costs

0-1 loss

$$egin{array}{c|ccccc} & \hat{y} = 1 & \hat{y} = 0 \ \hline y = 1 & 0 & L_{FN} \ y = 0 & L_{FP} & 0 \ \hline \end{array}$$

Hypothesis tests

Utility = negative loss

$$H_0 ext{ true } 0 ext{ } L_I \ H_1 ext{ true } L_{II} ext{ } 0$$

More loss functions

- Regression $L(y, \hat{y}) = (y \hat{y})^2$
- Parameter estimation

$$L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$$

Density estimation

$$L_{KL}(p,q) = \sum_{j} p(j) \log \frac{p(j)}{q(j)}$$

$$L(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) = KL(p(\cdot|\boldsymbol{\theta})||p(\cdot|\hat{\boldsymbol{\theta}})) = \int p(y|\boldsymbol{\theta}) \log \frac{p(y|\boldsymbol{\theta})}{p(y|\hat{\boldsymbol{\theta}})} dy$$

Robust loss functions

- Squared error (L2) is sensitive to outliers
- It is common to use L1 instead.
- In general, Lp loss is defined as

$$L_p(y, \hat{y}) = |y - \hat{y}|^p$$

Outline

- Loss functions
- Bayesian decision theory
- Bayesian model selection
- Frequentist decision theory
- Frequentist model selection

Optimal policy

Minimize posterior expected loss

$$\rho(\mathbf{a}|\mathbf{x},\pi) \stackrel{\text{def}}{=} E_{\boldsymbol{\theta}|\pi,\mathbf{X}}[L(\boldsymbol{\theta},\mathbf{a})] = \int_{\Theta} L(\boldsymbol{\theta},\mathbf{a})p(\boldsymbol{\theta}|\mathbf{x})d\theta$$

Bayes estimator

$$\delta^{\pi}(\mathbf{x}) = \arg\min_{\mathbf{a} \in \mathcal{A}}
ho(\mathbf{a}|\mathbf{x}, oldsymbol{\pi})$$

L2 loss

Optimal action is posterior expected mean

$$L(\theta, a) = (\theta - a)^{2}$$

$$\rho(a|\mathbf{x}) = E_{\theta|\mathbf{x}}[(\theta - a)^{2}] = E[\theta^{2}|\mathbf{x}] - 2aE[\theta|\mathbf{x}] + a^{2}$$

$$\frac{\partial}{\partial a}\rho(a|\mathbf{x}) = -2E[\theta|\mathbf{x}] + 2a = 0$$

$$a = E[\theta|\mathbf{x}] = \int \theta p(\theta|\mathbf{x})d\theta$$

$$\hat{y}(\mathbf{x}, \mathcal{D}) = E[y|\mathbf{x}, \mathcal{D}]$$

Minimizing robust loss functions

- For L2 loss, mean p(y|x)
- For L1 loss, median p(y|x)
- For L0 loss, mode p(y|x)

0-1 loss

Optimal action is most probable class

$$L(\theta, a) = 1 - \delta_{\theta}(a)$$

$$\rho(a|\mathbf{x}) = \int p(\theta|\mathbf{x})d\theta - \int p(\theta|\mathbf{x})\delta_{\theta}(a)d\theta$$

$$= 1 - p(a|\mathbf{x})$$

$$a^{*}(\mathbf{x}) = \arg\max_{a \in \mathcal{A}} p(a|\mathbf{x})$$

$$\hat{y}(\mathbf{x}, \mathcal{D}) = \arg\max_{y \in 1:C} p(y|\mathbf{x}, \mathcal{D})$$

Binary classification problems

- Let Y=1 be 'positive' (eg cancer present) and Y=2 be 'negative' (eg cancer absent).
- The loss/ cost matrix has 4 numbers:

	$state \mathcal{Y}$		
		1	2
action \hat{y}	1	True positive λ_{11}	False positive λ_{12}
	2	False negative λ_{21}	True negative λ_{22}

Optimal strategy for binary classification

We should pick class/ label/ action 1 if

$$\begin{array}{rcl} \rho(\alpha_2|\mathbf{x}) &>& \rho(\alpha_1|\mathbf{x}) \\ \lambda_{21}p(Y=1|\mathbf{x}) + \lambda_{22}p(Y=2|\mathbf{x}) &>& \lambda_{11}p(Y=1|\mathbf{x}) + \lambda_{12}p(Y=2|\mathbf{x}) \\ (\lambda_{21}-\lambda_{11})p(Y=1|\mathbf{x}) &>& (\lambda_{12}-\lambda_{22})p(Y=2|\mathbf{x}) \\ \frac{p(Y=1|\mathbf{x})}{p(Y=2|\mathbf{x})} &>& \frac{\lambda_{12}-\lambda_{22}}{\lambda_{21}-\lambda_{11}} \\ \text{where we have assumed } \lambda_{21} \text{ (FN)} > \lambda_{11} \text{ (TP)} \end{array}$$

• As we vary our loss function, we simply change the optimal threshold θ on the decision rule

$$\delta(x) = 1 \text{ iff } \frac{p(Y=1|x)}{p(Y=2|x)} > \theta$$

Definitions

• Declare x_n to be a positive if $p(y=1|x_n)>\theta$, otherwise declare it to be negative (y=2)

$$\hat{y}_n = 1 \iff p(y = 1|x_n) > \theta$$

Define the number of true positives as

$$TP = \sum_{n} I(\hat{y}_n = 1 \land y_n = 1)$$

• Similarly for FP, TN, FN – all functions of θ

Performance measures

		Tr	uth	
		1	0	\sum
Estimate	1	TP	FP	$\hat{P} = TP + FP$
Estimate	0	FN	TN	$\hat{N} = FN + TN$
	\sum	P = TP + FN	N = FP + TN	n = TP + FP + FN + TN

		y = 1	y = 0	
\hat{y} =	= 1	TP/\hat{P} =precision=PPV	FP/\hat{P} =FDP	- - Normalize along rows P(y yhat)
\hat{y} =	= 0	FN/\hat{N}	TN/\hat{N} =NPV	- Normalize along rows r (ypyriat)

Normalize along cols P(yhat|y)

	y = 1	y = 0
$\hat{y} = 1$	TP/P=TPR=sensitivity=recall	FP/N=FPR
$\hat{y} = 0$	FN/P=FNR	TN/N =TNR=speci $_{ eal}$ ty

ROC curves

 The optimal threshold for a binary detection problem depends on the loss function

$$\delta(x) = 1 \iff \frac{p(Y=1|\mathbf{x})}{p(Y=2|\mathbf{x})} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

- Low threshold will give rise to many false positives (Y=1) and high threshold to many false negatives.
- A receive operating characteristic (ROC) curves plots the true positive rate vs false positive rate as

we vary θ

Reducing ROC curve to 1 number

- EER- Equal error rate (precision=specificity)
- AUC Area under curve

Precision-recall curves

- Useful when notion of "negative" (and hence FPR) is not defined
- Used to evaluate retrieval engines
- Recall = of those that exist, how many did you find?
- Precision = of those that you found, how many correct?
- F-score is geometric mean $F = \frac{2}{1/P + 1/R} = \frac{2PR}{R + P}$

Reject option

• Suppose we can choose between incurring loss λ_s if we make a misclassification (label substitution) error and loss λ_r if we declare the action "don't know"

$$\lambda(\alpha_i|Y=j) = \begin{cases} 0 & \text{if } i=j \text{ and } i,j \in \{1,\dots,C\} \\ \lambda_r & \text{if } i=C+1 \\ \lambda_s & \text{otherwise} \end{cases}$$

• In HW5, you will show that the optimal action is to pick "don't know" if the most probable class is below a threshold $1-\lambda_r/\lambda_s$

Discriminant functions

 The optimal strategy π(x) partitions X into decision regions R_i, defined by discriminant functions g_i(x)

$$\pi(x) = \arg \max_{i} g_i(x)$$
$$R_i = \{x : g_i(x) = \max_{k} g_k(x)\}$$

In general

$$g_i(x) = -R(a=i|x)$$

But for 0-1 loss we have

$$g_{i}(x) = p(Y = i|x)$$

$$= \log p(Y = i|x)$$

$$= \log p(x|Y = i) + \log p(Y = i)$$

Class prior merely shifts decision boundary by a constant

reject

Binary discriminant functions

 In the 2 class case, we define the discriminant in terms of the log-odds ratio

$$g(x) = g_1(x) - g_2(x)$$

= $\log p(Y = 1|x) - \log p(Y = 2|x)$
= $\log \frac{p(Y = 1|x)}{p(Y = 2|x)}$

Outline

- Loss functions
- Bayesian decision theory
- Bayesian model selection
- Frequentist decision theory
- Frequentist model selection

Bayesian model selection

0-1 loss

$$L(m, \hat{m}) = I(m \neq \hat{m})$$

 $m^* = \arg \max_{m \in \mathcal{M}} p(m|\mathcal{D})$

KL loss

$$L(p_*, m) = KL(p_*(y|\mathbf{x}), p(y|m, \mathbf{x}, \mathcal{D}))$$

$$\rho(m|\mathbf{x}) = EKL(p_*, p_m) = E[p_* \log p_* - p_* \log p_m]$$

$$\bar{p} = Ep_* = \sum_{m \in m} p_m p(m|\mathcal{D})$$

$$m^* = \arg\min_{m \in \mathcal{M}} KL(\bar{p}, p_m)$$

Posterior over models

Key quantity

$$p(m|\mathcal{D}) = \frac{p(\mathcal{D}|m)p(m)}{\sum_{m' \in \mathcal{M}} p(\mathcal{D}|m')p(m')}$$

Marginal / integrated likelihood

$$p(\mathcal{D}|m) = \int p(\mathcal{D}|m, \boldsymbol{\theta}) p(\boldsymbol{\theta}|m) d\boldsymbol{\theta}$$

Example: is the coin biased?

Model M0: theta= 0.5

$$p(\mathcal{D}|m_0) = \frac{1}{2}^n$$

 Model M1: theta could be any value in [0,1] (includes 0.5 but with negligible probability)

$$p(\mathcal{D}|m_1) = \int p(\mathcal{D}|\theta)p(\theta)d\theta$$

$$= \int [\prod_{i=1}^n \mathrm{Ber}(x_i|\theta)]\mathrm{Beta}(\theta|\alpha_0,\alpha_1)d\theta$$

Computing the marginal likelihood

• For the Beta-Bernoulli model, we know the posterior is Beta($\theta | \alpha_1', \alpha_0'$) so

$$p(\theta|\mathcal{D}) = \frac{p(\theta)p(\mathcal{D}|\theta)}{p(\mathcal{D})}$$

$$= \frac{1}{p(\mathcal{D})} \left[\frac{1}{B(\alpha_1, \alpha_0)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_0 - 1} \right] \left[\theta^{N_1} (1 - \theta)^{N_0} \right]$$

$$= \frac{1}{p(\mathcal{D})} \frac{1}{B(\alpha_1, \alpha_0)} \left[\theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_0 - 1} \theta^{N_1} (1 - \theta)^{N_0} \right]$$

$$= \frac{1}{B(\alpha'_1, \alpha'_0)} \left[\theta^{\alpha'_1 - 1} (1 - \theta)^{\alpha'_0 - 1} \right]$$

$$\frac{1}{p(\mathcal{D})} \frac{1}{B(\alpha_1, \alpha_0)} = \frac{1}{B(\alpha'_1, \alpha'_0)}$$

$$p(\mathcal{D}) = \frac{B(\alpha'_1, \alpha'_0)}{B(\alpha_1, \alpha_0)}$$

ML for Dirichlet-multinomial model

Normalization constant is

$$Z_{Dir}(\boldsymbol{\alpha}) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{K} \alpha_i)}$$

Hence marg lik is

$$p(\mathcal{D}) = \frac{Z_{Dir}(\mathbf{N} + \boldsymbol{\alpha})}{Z_{Dir}(\boldsymbol{\alpha})} = \frac{\Gamma(\sum_{k} \alpha_{k})}{\Gamma(N + \sum_{k} \alpha_{k})} \prod_{k} \frac{\Gamma(N_{k} + \alpha_{k})}{\Gamma(\alpha_{k})}$$

ML for biased coin

• P(D|M_1) for $\alpha_0 = \alpha_1 = 1$

If nheads = 2 or 3, M1 is less likely than M0

Bayes factors

$$BF(M_{i}, M_{j}) = \frac{p(\mathcal{D}|M_{i})}{p(\mathcal{D}|M_{j})} = \frac{p(M_{i}|\mathcal{D})}{p(M_{j}|\mathcal{D})} / \frac{p(M_{i})}{p(M_{j})}$$

$$BF(M_{1}, M_{0}) = \frac{B(\alpha_{1} + N_{1}, \alpha_{0} + N_{0})}{B(\alpha_{1}, \alpha_{0})} \frac{1}{0.5^{N}}$$

Polynomial regression

Bayesian Ockham's razor

 Marginal likelihood automatically penalizes complex models due to sum-to-one constraint

BIC

- Computing the marginal likelihood is hard unless we have conjugate priors.
- One popular approach is to make a Laplace approx to the posterior and then approximate the log normalizer

$$p(\mathcal{D}) \approx p(\mathcal{D}|\hat{\boldsymbol{\theta}}_{map})p(\hat{\boldsymbol{\theta}}_{map})(2\pi)^{d/2}|\mathbf{C}|^{\frac{1}{2}}$$
 $\mathbf{C} = -\mathbf{H}^{-1}$
 $|\mathbf{H}| \approx n^{\mathsf{dof}}$
 $\log p(\mathcal{D}) \approx \log p(\mathcal{D}|\hat{\boldsymbol{\theta}}_{MLE}) - \frac{1}{2}\mathsf{dof}\log n$

BIC vs CV for ridge

 Define dof in terms of singular values

$$df(\lambda) = \sum_{j=1}^{d} \frac{d_j^2}{d_j^2 + \lambda}$$

Outline

- Loss functions
- Bayesian decision theory
- Bayesian model selection
- Frequentist decision theory
- Frequentist model selection

Frequentist decision theory

Risk function

$$R(\boldsymbol{\theta}, \delta) = E_{\mathbf{x}|\boldsymbol{\theta}} L(\boldsymbol{\theta}, \delta(\mathbf{x})) = \int_{\mathcal{X}} L(\boldsymbol{\theta}, \delta(\mathbf{x})) p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}$$

Example: L2 loss

$$MSE = E_{\mathcal{D}|\theta_0}(\hat{\theta}(\mathcal{D}) - \theta_0)^2$$

 Assumes that true parameter θ₀ is known, and averages over data

Bias/variance tradeoff

$$\begin{split} MSE &= E(\hat{\theta}(\mathcal{D}) - \theta_0)^2 \\ &= E(\hat{\theta}(\mathcal{D}) - \overline{\theta} + \overline{\theta} - \theta_0)^2 \\ &= E(\hat{\theta}(\mathcal{D}) - \overline{\theta})^2 + 2(\overline{\theta} - \theta_0)E(\hat{\theta}(\mathcal{D}) - \overline{\theta}) + (\overline{\theta} - \theta_0)^2 \\ &= E(\hat{\theta}(\mathcal{D}) - \overline{\theta})^2 + (\overline{\theta} - \theta_0)^2 \\ &= \operatorname{Var}(\hat{\theta}) + \operatorname{bias}^2(\hat{\theta}) \end{split}$$

$$\begin{aligned} & \text{bias}^2 & \approx & \frac{1}{n} \sum_{i=1}^n (\overline{y}(\mathbf{x}_i) - f_{true}(\mathbf{x}_i))^2 \\ & \text{var} & \approx & \frac{1}{n} \sum_{i=1}^n \left[\frac{1}{S} \sum_{s=1}^S (y^s(\mathbf{x}_i) - \overline{y}(\mathbf{x}_i))^2 \right] \end{aligned}$$

Average over S training sets drawn from true dist.

Bias/variance tradeoff

 $\lambda = e^{-2.5}$: high variance, low bias

Bias/ variance tradeoff

Empirical risk minimization

Risk for function approximation

$$R(\boldsymbol{\pi}, \hat{f}(\cdot)) = E_{(\mathbf{X}, y) \sim \boldsymbol{\pi}} L(y, \hat{f}(\mathbf{x})) = \int p(y, \mathbf{x} | \boldsymbol{\pi}) L(y, \hat{f}(\mathbf{x})) d\mathbf{x} d\mathbf{x} d\mathbf{x} d\mathbf{x}$$

$$\hat{R}(\hat{f}(\cdot), \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(\mathbf{x}_i))$$

 To avoid overly optimistic estimate, can use bootstrap resampling or cross validation

Risk functions for parameter estimation

 Risk function depends on unknown theta

$$R(\boldsymbol{\theta}, \delta) = E_{\mathbf{x}|\boldsymbol{\theta}} L(\boldsymbol{\theta}, \delta(\mathbf{x})) = \int_{\mathcal{X}} L(\boldsymbol{\theta}, \delta(\mathbf{x})) p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}$$
$$X_i \sim \text{Ber}(\boldsymbol{\theta}), L(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) = (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^2$$

Summarizing risk functions

Risk function

$$R(\boldsymbol{\theta}, \delta) = E_{\mathbf{x}|\boldsymbol{\theta}} L(\boldsymbol{\theta}, \delta(\mathbf{x})) = \int_{\mathcal{X}} L(\boldsymbol{\theta}, \delta(\mathbf{x})) p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}$$

Minimax risk – very pessimistic

$$R^{max}(\delta) = \max_{\theta \in \Theta} R(\theta, \delta)$$

Bayes risk – requires a prior over theta

$$R^{\pi}(\delta) = E_{\theta|\pi}R(\theta, \delta) = \int_{\Theta} R(\theta, \delta)\pi(\theta)d\theta$$

Bayes risk vs n

$$X_i \sim \mathsf{Ber}(\theta), L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2, \pi(\theta) = U$$

Bayes meets frequentist

To minimize the Bayes risk, minimize the posterior expected loss

$$R^{\pi}(\delta) = \int_{\Theta} \left[\int_{\mathcal{X}} L(\theta, \delta(\mathbf{x})) p(\mathbf{x}|\theta) d\mathbf{x} \right] \pi(\theta) d\theta$$

$$= \int_{\mathcal{X}} \int_{\Theta} L(\theta, \delta(\mathbf{x})) p(\mathbf{x}|\theta) \pi(\theta) d\theta d\mathbf{x}$$

$$= \int_{\mathcal{X}} \left[\int_{\Theta} L(\theta, \delta(\mathbf{x})) p(\theta|\mathbf{x}) d\theta \right] p(\mathbf{x}) d\mathbf{x}$$

$$= \int_{\mathcal{X}} \rho(\delta(\mathbf{x})|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

To minimize the integral, minimize $\rho(\delta(x)|x)$) for each x.

Bayesian estimators have good frequentist properties.

Outline

- Loss functions
- Bayesian decision theory
- Bayesian model selection
- Frequentist decision theory
- Frequentist model selection

Frequentist model selection

- 0-1 loss: classical hypothesis testing, not covered in this class (similar to, but more complex than, Bayesian case)
- Predictive loss: minimize empirical risk, or CV/ bootstrap approximation thereof

$$\hat{R}(m) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, m(\mathbf{x}_i))$$