МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №7

по дисциплине «Основы профессиональной деятельности» Синтез команд БЭВМ

Вариант № 812

Выполнил:

Студент группы Р3107

Чусовлянов Максим Сергеевич

Принял:

Вербовой Александр Александров

Текст задания

Лабораторная работа №7

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

Введите номер варианта 812

- 1. МАДС М сложение с учетом переноса аккумулятора с ячейкой памяти с записью результата в ячейку памяти и установкой N/Z/V/C
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса 01F6₁₆

Исходный код синтезируемой команды

Адрес ячейки	новый код МК	Комментарий								
3D	81E0104002	if CR(12) = 1 then GOTO RESERVED E0 ; Команда 9 обрабатывается микрокомандой с адресом E0								
Цикл исполнения команды MADC (E0—E4)										
Е0	80E3011040	if PS(C) = 0 then GOTO E3 ; Флаг C не выставлен => перейти на E3 (из ADC)								
E1	0001E09411	AC + DR + 1 -> AC, N, Z, V, C ; Суммирование AC, DR, C в аккумулятор с установкой флагов (из ADC)								
E2	80E4101040	GOTO E4 ; перейти на E4 (из ADC)								
E3	0001E09011	AC + DR -> AC, N, Z, V, C ; Суммирование AC, DR в аккумулятор с установкой флагов (из ADD)								
E4	0200000000	DR -> MEM(AR) ; Запись результата в ячейку памяти								
E5	80C4101040	GOTO INT @ C4; Завершение цикла выполнения команды, переход к циклу прерываний								

Трассировка микропрограммы

MP	Содержимое памяти и регистров процессора после выборки и исполнения команды
до	
вы	

бор	MR	IP	CR	AR	DR	SP	BR	AC	NZVC	MP
ки МК										
IVIIX										
E0	80E3011040	1FD	91E1	1E1	0007	000	01FC	1234	0000	E3
E3	0001E09011	1FD	91E1	1E1	123B	000	01FC	1234	0000	E4
E4	0200000000	1FD	91E1	1E1	123B	000	01FC	1234	0000	E5
E5	80C4101040	1FD	91E1	1E1	123B	000	01FC	1234	0000	C4

Код программы проверки команды на языке ассемблера

```
test1_n1: WORD 0x1234
test1 n2: WORD 0x0007
test1_ans: WORD 0x0000
test2 n1: WORD 0x1717
test2 n2: WORD 0x1000
test2_ans: WORD 0x0000
test3_n1: WORD 0x7FFF
test3_n2: WORD 0x1234
test3 ans: WORD 0x0000
test3_of1: WORD 0x0000
test3 of2: WORD 0x0000
test1_res: WORD ?
test2_res: WORD ?
test3 res: WORD ?
ORG 0x1F6
start: CLA
      LD $test1 n1
      <u>ST</u> $test1 ans
      LD $test1_ans
```

```
BEQ test1_p
       JUMP test1_f
test1_p: LD #0x1
  <u>ST</u> $test1_res
  JUMP test_2
test1 f: CLA
  <u>ST</u> $test1 res
  JUMP test 2
test_2: LD $test2_n1
       ADD $test2_n2
       <u>ST</u> $test2_ans
       LD $test2_n1
       CMP $test2 n2
       BEQ test2_p
       JUMP test2_f
test2 f: CLA
  <u>ST</u> $test2 res
  JUMP test 3
test2_p: LD #0x1
  <u>ST</u> $test2 res
  JUMP test_3
test_3: LD $test3_n1
       <u>ST</u> $test3_ans
       BVC SKIP1
       LD $test3 of1
       <u>ST</u> $test3_of1
```

4

```
CLC
       LD $test3 n1
       BVC SKIP2
       LD $test3 of2
       <u>ST</u> $test3 of2
       SKIP2: NOP
       LD $test3 of1
       CMP $test3 of2
       BNE test3_p
       JUMP test3 f
test3 f:
             CLA
   <u>ST</u> $test3 res
   JUMP main
test3 p:
            LD #0x1
   <u>ST</u> $test3 res
   JUMP main
main:
      LD $test1 res
   AND $test2 res
   AND $test3 res
   CMP #0x1
   BEQ success
   LD #0xFF
            LD #0x1
success:
```

Описание тестовых программ

- 1. Первый тест проверяет команду MADC без CF: проверка на эквивалентность результату команды ADD тех же чисел. Результат теста в RES1 (0 ошибка, 1 тест пройден)
- 2. Второй тест проверяет результаты после ADD двух чисел + 1 с результатами MADC (с выставленным CF), они должны совпадать.
- 3. Третий тест рассматривает случай, когда AC = 0x7FFF, DR = 0x1234, C = 1. Проверка что V = 1 при MADC и V = 0 при (AC + DR) + 1.

Подготовка к проверке

- 2. Перенести микрокоманды в БЭВМ
- 3. Загрузить команды Assembler в БЭВМ
- 4. Заменить везде NOP на HLT.
- 5. ПРОВЕРИТ

Методика проверки программы

- 1. Открыть БЭВМ в формате dual "java -jar -Dmode=dual bcomp-ng.jar"
- 2. Ввести микрокоманды через консоль

```
ma
mw 80E3011040
mw 0001E09411
mw 80E4101040
mw 0001E09011
mw 0200000000
mw 80C4101040
```

- 3. Скомпилировать и запустить код на ассемблере
- 4. Удостоверится что после прогона всех тестов в аккумуляторе лежит 0x1 (0xff ошибка).
- 5. Для запуска отдельного теста: поставить HLT в нужном месте и вбить адрес метки теста в IR.

Вывод

После проделанной лабораторной работы, я узнал как синтезировать свою команду БЭВМ при помощи микропрограмм. Научился тестировать разработанные микропрограммы на крайние случаи.