CS202 – System Software

Dr. Manish Khare

Lecture 7

Let us consider the DFA shown in Figure. From the DFA, the acceptable strings can be derived.

- Strings accepted by the above DFA: {0, 00, 11, 010, 101,}
- Strings not accepted by the above DFA: {1, 011, 111,}

Consider the finite state machine whose transition function δ is given by following Table in the form of a transition table. Here, $Q = \{q_0, q_1, q_2, q_3\}$, $\sum = \{0,1\}$, $F = \{q_0\}$. Give the entire sequence of states for the input string 110001.

State	Input	
	0	1
$\rightarrow \widehat{(q_0)}$	q_2	q_{\parallel}
$\overset{\circ}{q}$	$oldsymbol{q}_3$	q_0
q_2	$q_{\scriptscriptstyle 0}$	q_3
q_3	q_1	q_2

$$\delta(q_0, 110101) = \delta(q_1, 10101)$$

$$= \delta(q_0, 0101)$$

$$= \delta(q_2, 101)$$

$$= \delta(q_3, 01)$$

$$= \delta(q_1, 1)$$

$$= \delta(q_0, \Lambda)$$

$$= q_0$$

Hence,

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_0 \xrightarrow{0} q_2 \xrightarrow{1} q_3 \xrightarrow{0} q_1 \xrightarrow{1} q_0$$

The symbol \downarrow indicates that the current input symbol is being processed by the machine.

Construction of DFA

- We can construct DFA of two types of problems
 - Construction of DFA for languages consisting of strings ending with a particular substring
 - Construction of DFA for languages consisting of strings starting with a particular substring

Type – 1

Construction of DFA for languages consisting of strings ending with a particular substring

Step-01:

- Determine the minimum number of states required in the DFA.
- Draw those states.
- Use the following rule to determine the minimum number of states-
 - Calculate the length of substring.
 - All strings ending with 'n' length substring will always require minimum (n+1) states in the DFA.

Step-02:

Decide the strings for which DFA will be constructed.

Step-03:

Construct a DFA for the strings decided in Step-02.

≻ Step-04:

- Send all the left possible combinations to the starting state.
- Do not send the left possible combinations over the dead state.

Praw a DFA for the language accepting strings ending with '01' over input alphabets $\Sigma = \{0, 1\}$

Regular expression for the given language = (0 + 1)*01

Step-01:

- All strings of the language ends with substring "01".
- So, length of substring = 2.
- \triangleright Thus, Minimum number of states required in the DFA = 2 + 1 = 3.
- It suggests that minimized DFA will have 3 states.

Step-02:

- > We will construct DFA for the following strings-
 - **0**1
 - **001**
 - **0101**

- Step 3 and 4
- The required DFA is-

Praw a DFA for the language accepting strings ending with 'abb' over input alphabets $\Sigma = \{a, b\}$

 \triangleright Regular expression for the given language = (a + b)*abb

Type-2

Step-01:

- Determine the minimum number of states required in the DFA.
- Draw those states.

- Use the following rule to determine the minimum number of states-
 - Calculate the length of substring.
 - All strings starting with 'n' length substring will always require minimum (n+2) states in the DFA.

Step-02:

Decide the strings for which DFA will be constructed.

Step-03:

Construct a DFA for the strings decided in Step-02.

Step-04:

- Send all the left possible combinations to the dead state.
- Do not send the left possible combinations over the starting state.

Praw a DFA for the language accepting strings starting with 'ab' over input alphabets $\Sigma = \{a, b\}$

 \triangleright Regular expression for the given language = ab(a + b)*

Step-01:

- All strings of the language starts with substring "ab".
- So, length of substring = 2.
- Thus, Minimum number of states required in the DFA = 2 + 2 = 4.
- It suggests that minimized DFA will have 4 states.

Step-02:

- We will construct DFA for the following strings-
- ab
- aba
- abab

Step-03 and 4:

The required DFA is-

Praw a DFA for the language accepting strings starting with 'a' over input alphabets $\Sigma = \{a, b\}$

 \triangleright Regular expression for the given language = $a(a + b)^*$

Minimization of DFA

Step-01:

 Eliminate all the dead states and inaccessible states from the given DFA (if any).

Dead State

• All those non-final states which transit to itself for all input symbols in \sum are called as dead states.

Inaccessible State

 All those states which can never be reached from the initial state are called as inaccessible states.

Step-02:

- Draw a state transition table for the given DFA.
- Transition table shows the transition of all states on all input symbols in Σ .

Step-03:

- Now, start applying equivalence theorem.
 - Take a counter variable k and initialize it with value 0.
 - Divide Q (set of states) into two sets such that one set contains all the non-final states and other set contains all the final states.
 - This partition is called P_0 .

Step-04:

- Increment k by 1.
- Find P_k by partitioning the different sets of P_{k-1} .
- In each set of P_{k-1} , consider all the possible pair of states within each set and if the two states are distinguishable, partition the set into different sets in P_k .

- Two states q_1 and q_2 are distinguishable in partition P_k for any input symbol 'a',
- \triangleright if δ (q₁, a) and δ (q₂, a) are in different sets in partition P_{k-1}.

Step-05:

- Repeat step-04 until no change in partition occurs.
- In other words, when you find $P_k = P_{k-1}$, stop.

Step-06:

- All those states which belong to the same set are equivalent.
- The equivalent states are merged to form a single state in the minimal DFA.

Number of states in Minimal DFA = Number of sets in P_k

Minimize the given DFA-

Step-01:

• The given DFA contains no dead states and inaccessible states.

Step-02:

Draw a state transition table-

States	a	b
→q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	*q4
*q4	q1	q2

Step-03:

- Now using Equivalence Theorem, we have-
 - $P_0 = \{ q_0, q_1, q_2, q_3 \} \{ q_4 \}$
 - $P_1 = \{ q_0, q_1, q_2 \} \{ q_3 \} \{ q_4 \}$
 - $P_2 = \{ q_0, q_2 \} \{ q_1 \} \{ q_3 \} \{ q_4 \}$
 - $P_3 = \{ q_0, q_2 \} \{ q_1 \} \{ q_3 \} \{ q_4 \}$

- \triangleright Since $P_3 = P_2$, so we stop.
- From P_3 , we infer that states q_0 and q_2 are equivalent and can be merged together.

So, Our minimal DFA is-

Minimize the given DFA-

Our Minimal DFA is:

DFA to Regular Expression

Step-01:

- For DFA to regular expression, first we need to check that, the initial state of the DFA must not have any incoming edge.
- If there exists any incoming edge to the initial state, then create a new initial state having no incoming edge to it.

> Example

Step-02:

- There must be exist only one final state in the DFA.
- If there exists multiple final states in the DFA, then convert all the final states into non-final states and create a new single final state.

Example

Step-03:

- The final state of the DFA must not have any outgoing edge.
- If there exists any outgoing edge from the final state, then create a new final state having no outgoing edge from it.

Example

Step-04:

- Eliminate all the intermediate states one by one.
- These states may be eliminated in any order.
- In the end,
 - Only an initial state going to the final state will be left.
 - The cost of this transition is the required regular expression.

NOTE

This method can be applied to any finite automata.

(NFA, ∈-NFA, DFA etc)

State Elimination Method

Find regular expression for the following DFA-

Step-01:

- Initial state A has an incoming edge.
- So, we create a new initial state q_i .

The resulting DFA is-

Step-02:

- Final state B has an outgoing edge.
- So, we create a new final state q_f
- The resulting DFA is-

Step-03:

- Now, we start eliminating the intermediate states.
 - First, let us eliminate state A.
 - There is a path going from state q_i to state B via state A.
 - So, after eliminating state A, we put a direct path from state q_i to state B having cost \in .0 = 0
 - There is a loop on state B using state A.
 - So, after eliminating state A, we put a direct loop on state B having cost 1.0 = 10.
- Eliminating state A, we get-

Step-04:

- Now, let us eliminate state B.
 - There is a path going from state q_i to state q_f via state B.
 - So, after eliminating state B, we put a direct path from state q_i to state q_f having cost $0.(10)^*. \in = 0(10)^*$
- Eliminating state B, we get-

- So, Now from here
 - Regular Expression = 0(10)*

Find regular expression for the following DFA-

Regular Expression = a(b+c+d)