Paper Name (Author, Year)	Area	Technique	Algorithms	Results	Limitations	Reference	Team Members
"A Comprehensive Survey on Sentiment Analysis" (Chandan, 2025)	Survey	Literature Survey	-	Field overview	May lack latest 2025 Q3 - Q4 results	Chandan, M. K., & Mandal, S. (2025). <i>A</i> comprehensive survey on sentiment analysis: Framework, techniques, and applications. Computer Science Review, 58, Article 100777. https://doi.org/10.1016/j.cosrev.2025.100777	
"Sentiment Analysis in Voice, Speech, and Audio: A Comprehensive Review" (GRENZE, 2024)	Survey	Feature / Detection Review	Overview	Latest methods	Broad, depth varible	Bapat, M. M., Patil, C. H., & Mali, S. M. (2025, January). Sentiment analysis in voice, speech, and audio: A comprehensive review of feature extraction and detection techniques. Grenze International Journal of Engineering and Technology.	Jeluxshan Prajeevan Fathima
"REAL TIME VOICE REVIEW BASED AUDIO SENTIMENT ANALYSIS" (IRJMETS, 2024)	System	CNN, LSTM	CNN, LSTM	Real - time high accuracy	May lack multi - language scope	Ashwitha, S., & Anbumani, P. (2024, August). Real time voice review based audio sentiment analysis system using multi perceptron model for e-commerce. International Research Journal of Modernization in Engineering Technology and Science, 6(8). https://doi.org/10.56726/IRJMETS60883	
"Voice Based Hybrid Sentiment Analysis on Movie Reviews" (IJRASET, 2025)	Application	Hybrid (acoustic + text)	SVM, Naïve Bayes, BERT, LSTM	Hybrid system, imrpoved accuracy	Focused on English	Venkateswari, G., Srinija, Y., Sasikala, P., Deepika, T. H., & Sirisha, P. (2025, April 24). Voice based hybrid sentiment analysis on movie reviews. <i>International Journal for Research in Applied Science & Engineering Technology</i> (IJRASET), 13(4), 2321–9653. https://doi.org/10.22214/ijraset.2025.69606	
"An Enhanced Speech Emotion Recognition Using Vision Transformer" (Akinpelu et al., 2024)	Model	Vision Transformer	ViT, MLP head	98% TESS, 91% EMO - DB	Focus on SER, not sentiment	Akinpelu, S., Viriri, S., & Adegun, A. (2024). An speech emotion recognition using vision tra <i>Scientific Reports,</i> 14, 13126. https://doi.org/10.1038/s41598-024-63	nsformer.
"A Comparison Between Convolutional and Transformer Approaches" (Iyer et al., 2022)	Model Comparision	CNN, Wav2Vec2	AlexNet, Wav2Vec2- XLSR	Wav2Vec2- high accuracy	Benchmarked on English datasets	Iyer, S., Glackin, C., Cannings, N., Veneziano, V., & Sun, Y. (2022, July). A comparison between convolutional and transformer architectures for speech emotion recognition. In <i>Proceedings of the 2022 International Joint Conference on</i>	

						Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/IJCNN55064.2022.9891882
"Speech Emotion Recognition with Hybrid CNN-LSTM" (Mudiyanselage et al., 2025)	Application	Hybrid CNN - LSTM	CNN, LSTM	Hybrid superior for SER	Study on specific tasks	Kumari, H. M. L. S., Kumari, H. M. N. S., & Nawarathne, U. M. M. P. K. (2025). Speech emotion recognition with hybrid CNN-LSTM and transformers models: Evaluating the hybrid model using Grad-CAM. International Journal of Robotics & Computer Engineering
"Speech emotion recognition with light weight deep neural ensemble"	Benchmarking	CNN, Bi - LSTM	CNN, Bi - LSTM	High accuracy with small	Possibly limited language	Chowdhury, J. H., Ramanna, S., & Kotecha, K. (2025). Speech emotion recognition with light weight deep neural ensemble model using hand-crafted features. <i>Scientific Reports, 15,</i>
(Chowdhury et al., 2025)				models	coverage	Article 11824. https://doi.org/10.1038/s41598-025-95734-z
"Top 7 Methods for Audio Sentiment Analysis" (2025)	Review / Guide	MFCC, CM - BERT, Prosodic	DNN, RNN, LSTM, CM - BERT	Method overview	Not primary research	Arslan, E. (2025, July 25). Top 7 methods for audio sentiment analysis. <i>Exploratorium</i> . Retrieved September 26, 2025