Rozwiązanie równań różniczkowych przez separację zmiennych

W ruchu jednostajnym prostoliniowym prędkość punktu materialnego v jest stała. Jeżeli ruch odbywa się wzdłuż osi x to możemy napisać:

$$v = \dot{x} = \frac{dx(t)}{dt} = v_0. \quad (1)$$

Wyrażenie

$$\frac{dx(t)}{dt} = v_0 \tag{2}$$

jest przykładem równania różniczkowego zwyczajnego pierwszego rzędu (ang. first order ordinary differential equation ODE). Rozwiązaniem takiego równania jest funkcja x(t), której pochodna ma stałą wartość równą v_0 . Nietrudno zauważyć, że takich rozwiązań jest nieskończenie wiele:

$$x(t) = v_0 t + C, \qquad (3)$$

gdzie C jest stałą. Stała C jest położeniem cząstki w chwili t=0: x(0)=C i najczęściej oznaczana jest jako x_0 . W terminologii równań różniczkowych x_0 nazywamy warunkiem początkowym. Ostatnie równanie możemy więc zapisać w postaci dobrze znanej z kursu fizyki:

$$x(t) = v_0 t + x_0.$$
 (4)

Równanie (4) opisuje położenie punktu materialnego podczas ruchu jednostajnie prostoliniowego. Odgadnięcie rozwiązania równania różniczkowego i weryfikacja intuicji poprzez obliczenie pochodnej nie jest niczym nagannym. Równanie (1) można rozwiązać (scałkować) w prosty sposób. Zacznijmy od rozdzielenia zmiennych:

$$dx = v_0 dt, \qquad (5)$$

a następnie scałkujmy obie strony tego równania:

$$\int dx = \int v_0 dt.$$
 (6)

Po scałkowaniu otrzymujemy:

$$x+C_1=v_0t+C_2.$$
 (7)

Rzecz jasna wystarczy zdefiniować $C = C_1 - C_2$ aby otrzymać rozwiązanie w postaci (3).

Sposób zapisu w Wolfram Alpha równania różniczkowego (1) z warunkiem początkowym x_0 ilustruje poniższy zrzut ekranu:

Zwróć uwagę, na przycisk Step-by step solution. Po jego naciśnięciu zobaczysz:

Rozwiążmy teraz bardziej skomplikowane równanie różniczkowe:

$$\frac{dx}{dt} = -x. (8)$$

Ponownie rozdzielamy zmienne

$$\frac{dx}{x} = -x dt \tag{9}$$

i całkujemy obie strony równania:

$$\int \frac{dx}{x} = -\int dt.$$
 (11)

Po scałkowaniu otrzymujemy:

$$\ln(x) = C - t \,, \tag{12}$$

a stąd po prostych przekształceniach otrzymujemy:

$$x(t) = e^{C-t} = e^{C} e^{-t}$$
. (13)

Jeżeli w chwili początkowej t=0 punkt materialny znajdował się w x_0 to z powyższego równania wynika, że $x_0=e^C$. Tak więc ostatecznie otrzymujemy:

$$x(t) = x_0 e^{-t}$$
. (14)

Do rozwiązania równania różniczkowego możemy też użyć WolframAlpha:

otrzymując:

Differential equation solution:

$$x(t) = C e^{-t}$$

Step-by-step solution

Zwróć uwagę, że jako warunek początkowy użyłem C. Z niezrozumiałych powodów nie można użyć x_0 .

Geometryczna interpretacja własności równań różniczkowych

Rozważmy rówanie różniczkowe pierwszego rzędu w następującej postaci: $\dot{x}=f(x)$. Wyobraźmy sobie strumień wody, który płynie wzdłuż osi x z prędkością, która zależy od położenia. Na przykład $\dot{x}=\sin(x)$ (rysunek poniżej).

Strumień płynie w prawo kiedy $\dot{x}>0$, w lewo kiedy $\dot{x}<0$. Strzałki na powyższym rysunku pokazują kierunek przepływu a ich długości są zwykle proporcjonalne do modułu prędkości. Strzałki obrazują pole wektorowe na osi x opisane funkcją f(x). Wszystkie punkty, dla których $\dot{x}=0$ nazywamy punktami stałymi (ang. fixed points). Jeżeli umieścimy cząstkę w punkcie stałym to w idealnym matematycznym świecie pozostanie ona nieruchoma. Na powyższym rysunku zaobserwujesz dwa rodzaje punktów stałych:

- stabilne (oznaczone czarnymi kółkami) nazywamy je też atraktorami bowiem strumień płynie w ich kierunku;
- niestabilne (puste kółka) , które po angielsku nazywane są repellers.

Możemy zrozumieć zachowanie się układu opisanego równaniem różniczkowym obserwując po prostu jak czątka umieszczona w danym punkcie jest niesiona przez strumień pola wektorowego.

Numeryczne rozwiązywanie równań różniczkowych

Analityczne rozwiązanie równania różniczkowego nie zawsze jest możliwe. W takich przypadkach musimy użyć metod numerycznych, za pomocą których uzyskamy przyblizone rozwiązanie. Rozważmy równanie różniczkowe $\dot{x}=f(x)$ z warunkiem początkowym $x(t_0)=x_0$ w chwili $t=t_0$ (w praktyce najczęściej $t_0=0$). Wykorzystajmy wizualizację własności równania za pomocą pola wektorowego. Punkt materialny, który w chwili początkowej znajdował się w x_0 jest unoszony przez "strumień". W chwili początkowej prędkość punktu wynosi $f(x_0)$. Po krótkiej chwili Δt przemieści się on o $f(x_0)\Delta t$ ponieważ w ruchu jednostajnym przebyta droga to po prostu prędkość pomnożona przez czas ruchu. Oczywiście założenie, że ruch odbywa się ze stałą prędkością, jest przybliżeniem tym lepszym, im krótszy jest przedział czasu Δt . Tak wiec:

$$x(t_0 + \Delta t) \approx x_1 = x_0 + f(x_0) \Delta t. \tag{15}$$

W nowym położeniu x_1 prędkość wynosi $f(x_1)$ zatem po upływie czasu Δt punkt materialny znajdzie się w $x_2=x_1+f(x_1)\Delta t$. Kolejne iteracje możemy zapisać w następującej postaci:

$$x_{n+1} = x_n + f(x_n) \Delta t. \tag{16}$$

Jest to najprostszy sposób numerycznego całkowania równania różniczkowego i nazywa się **metodą Eulera**. Sprowadza się on do obliczenia przybliżonych wartości x_n dla czasów $t_n = \Delta t \, n, n = 0, 1, ...$

Powyższy rysunek ilustruje metodę Eulera. Puste kółka to wartości dokładne, czarne kółka to wartości przybliżone obliczone metodą Eulera.

Rozważmy równanie różniczkowe (8), którego rozwiązaniem dla warunku początkowego $x_0=1$ dla $t_0=0$ jest $x(t)=e^{-t}$. Zastosujmy metodę Eulera dla $\Delta t=0.5$:

$$x_1 = x_0 + f(x_0) \Delta t = 1 - 1 \times 0.5 = 0.5$$

$$x_2 = x_2 + f(x_1) \Delta t = 0.5 - 0.5 \times 0.5 = 0.25.$$

Po wykonaniu dwóch kroków całkowania o długości $\Delta t = 0.5$ wartość $x_2 = 0.5$ jest przybliżonym rozwiązaniem x(t) dla t = 1.0, czyli x(1).