2-HISOB GRAFIK ISHI 2-EPYUR TOPSHIRIQNING SHARTI

- 1) SA va BC to'gri chiziqlar orasidagi masofa proektsiya tekisliklarini almashtirish usuli bilan topish.
- 2) SABS ikki yoqli burchakning proektsiya tekisliklarini almashtirish usuli bilan topilsin.
- 3) ABS uchburchakni xaqiqiy kattaligini uning frantali yoki gorizontali atrofida almashtirish yordamida aniqlash.

Uslubiy ko'rsatmaning I–ilovasidan har bir talaba o'ziga tegishli variant bo'yicha *S*, *A*, *B*, *C* nuqtaning proeksialarini koordinatalarini ko'chirib oladi. *ABC* uchburchak tekisligi va *D* nuqtaning preaksiyalarini koordinatalari bo'yicha *M I:I* masshtabda formatga 3 marta qaytirilib chiziladi (7 – shakl).

Koordinatalari bo'yicha nuqtaning epyurini chizishga misol: Berilgan – S(30; 50; 55).

Demak, S nuqtaning absitsasi $X_S=30$, ordinatasi $Y_S=50$, applikatasai $Z_S=55$. Epyurni hosil qilish uchun X, Y, Z koordinata o'qlari o'tkaziladi. Koordinata boshi O dan O0 ustida O0 masofa o'lchanadi, u o'qi ustida O0 masofa o'lchanadi va o'qlarga perependikulyarlar o'tkazilib, kesishgan nuqtalari O0 nuqtaning proektsiyalari bo'ladi (6—shakl). Shu tarzda O0 nuqtalarning proektsiyalari ham aniqlanadi. Masalaning shartiga binoan O0 nuqtalar birlashtirilib O0 nuqtalar birlashtirilib O1 va O2 nuqtalar birlashtirilib O3 va O4 va O5 nuqtalar birlashtirilib O5 nuqtalar birlashtirilib O6 nuqtalar birlashtirilib O7 nuqtalar birlashtirilib O8 nuqtalar birlashtirilib O8 nuqtalar birlashtirilib O9 nuqtalar birlashtirilib

7-shakl

PROEKSIYALARNI QAYTA TUZISH USULLARI

Chizma geometriyada metrik va pozitsion masalalarni yechishni soddalashtirish maqsadida proeksiyalarni qayta tuzishning turli usullaridan foydalaniladi. Proeksiyalarni bunday qayta tuzishlar masalani minimal grafik vositalar yordamida yechish imkoniyatini yaratadi.

Proeksiyalarni qayta tuzish usullarining mazmuni quyidagilardan iborat:

- birinchi holatda proeksiyalar tekisliklarining vaziyati oʻzgarmagan holda, berilgan obʻyektga nisbatan xususiy vaziyatdagi yangi proeksiya tekisliklari sitemasi kiritiladi.
- ikkinchi holatda esa, berilgan ob'yektlarning vaziyati proeksiya tekisliklariga nisbatan xususiy vaziyatga kelgunga qadar o'zgartiriladi.

Birinchi holatda proeksiyani qayta tuzish usuli *proeksiya tekisliklarini almashtirish usuli* deyiladi, ikkinchisi holatda esa *aylantirish usuli* deyiladi.

Yuqorida keltirilgan usullarning har biriga to'xtalib o'tamiz.

Proeksiya tekisliklarini almashtirish usuli

Proeksiya tekisliklarini almashtirish usulining mazmuni quyidagilardan iborat: berilgan nuqta, toʻgʻri chiziq, tekislik yoki shakllarning fazoviy holati oʻzgarmaydi, Π_1 , Π_2 proeksiyalar tekisliklari Π_1 bilan, Π_2 bilan yoki oʻzaro oʻzaro perpendikulyar sistema hosil qiluvchi yangi Π_4 , Π_5 va xokazo proeksiyalar tekisliklari bilan almashtiriladi.

Almashtirilayotgan tekisliklar shunday tanlab olinishi kerakki, hosil boʻlgan yangi sistemada berilgan geometrik shakllar xususiy vaziyatlardan birini egallashi kerak.

8-shaklda A nuqtaning $\frac{\Pi_2}{\Pi_1}$ tekisliklar sistemasidagi proeksiyalari berilgan.

Proeksiya tekisliklaridan birini, masalan Π_2 frontal proeksiyalar tekisligini Π_4 proeksiyalar tekisligi bilan almashtirib, unda A nuqtaning yangi frontal proeksiyasini yasaymiz.

A nuqtanining Π_1 gorizontal proeksiyalar tekisligidagi proeksiyasi oʻzgarmaydi, jumladan uning z koordinatasi har ikki sistema uchun umumiydir. Demak, A nuqtaning $\frac{\Pi_4}{\Pi_1}$ proeksiya tekisliklari sistemasidagi A_4 proeksiyasidan x_{14} proeksiyalar oʻqigacha

bo'lgan masofa, o'sha nuqtaning $\frac{\Pi_2}{\Pi_1}$ proeksiya tekisliklari sistemasidagi A_2 frontal proeksiyasidan x_{12} o'qigacha bo'lgan masofaga teng, ya'ni $A_4A_{14}=A_2A_{12}$.

 A_1 nuqtadan yangi x_{14} oʻqigacha boʻlgan masofani ixtiyoriy boʻlishi va Π_4 tekislikni A nuqtaning istalgan tomonidan olinishi mumkin. A nuqtaning (istalgan tomonidan) epyurini yasash uchun, Π_4 tekislikni x_{14} oʻqi atrofida aylantirib Π_1 tekislikka jipslashtiriladi, natijada, A nuqtaning gorizontal A_1 proeksiyasi va yangi frontal A_4 proeksiyasi x_{14} oʻqqa perpendikulyar bir toʻgʻri chiziqda yotadi (8, b-shakl).

Proeksiya tekisliklarini shu tarzda ketma-ket bir necha marta almashtirish mumkin.

Quyidagi misollarda tajribada koʻp uchraydigan toʻrtta masalani koʻrib chiqiladi. Umumiy vaziyatdagi toʻgʻri chiziq kesmasining haqiqiy uzunligini proeksiya

tekisliklarini almashtirish usuli bilan aniqlash 9-shaklda koʻrsatilgan.

Buning uchun Π_2 frontal proeksiyalar tekisligi berilgan AB kesmaga parallel boʻlgan yangi Π_4 tekislik) bilan almashtiriladi. Bunda Π_1 gorizontal proeksiyalar tekisligi bilan yangi Π_4 tekislik hosil qilgan x_{14} proeksiyalar oʻqi AB toʻgʻri chiziqning A_1B_1 gorizontal proeksiyasiga parallel boʻladi $(A_1B_1||x_{14})$.

 A_2 va B_2 nuqtalardan x_{12} oʻqigacha boʻlgan masofalar mos ravishda x_{14} oʻqidan oʻlchab qoʻyilganda yangi Π_4 proeksiyalar tekisligida A_4B_4 aniqlanadi. A_4B_4 berilgan kesmaning haqiqiy uzunligiga teng boʻladi. Undan tashqari, A_4B_4 kesma bilan x_{14} oʻq orasidagi α burchak AB kesmaning Π_1 gorizontal proeksiyalar tekisligiga nisbatan qiyalik burchagini bildiradi.

Umumiy vaziyatdagi toʻgʻri chiziq kesmasini proeksiyalovchi vaziyatga keltirish. 9-shaklda AB toʻgʻri chiziq kesmasining proeksiyasi birinchi marta yangi $\frac{\Pi_1}{\Pi_4}$ proeksiya tekisliklari sistemasidagi Π_4 proeksiyalar tekisligiga parallel vaziyatga keltirilgan. AB toʻgʻri chiziq kesmasini unga perpendikulyar boʻlgan $(A_4B_4 \perp x_{45})$ Π_5 proeksiyalar tekisligidagi proeksiyasi $(A_5 \equiv B_5)$ nuqta boʻladi.

Umumiy vaziyatdagi tekislikni proeksiyalovchi vaziyatga keltirish. Masalaning yechish oldingi masalaning yechimiga asoslanadi. 10-shaklda $\Pi_1 \perp \Pi_2$ tekisliklar sistemasida umumiy vaziyatdagi $\triangle ABC$ tekisligi berilgan. $\triangle ABC$ tekislikda bosh chiziqlaridan birini, masalan, tekislikning gorizontali $A1(A_11_1,A_21_2)$ chizib olinadi.

yangi Π_4 tekislik \triangle ABC tekislikning gorizontaliga perpendikulyar (A₁1₁ \perp x₁₄) vaziyatda tanlanadi va mos ravishda Π_1 proeksiyalar tekisligiga perpendikulyar boʻladi.

Proeksiyalovchi vaziyatda joylashgan tekislikning haqiqiy kattaligini aniqlash (10-shakl, b). Masalani yechish uchun Π_2 frontal proeksiyalar tekisligiga perpendikulyar va ABCD(A₁B₁C₁D₁, A₂B₂C₂D₂) toʻrtburchak tekisligiga parallel boʻlgan Π_4 tekislikni kiritish yoʻli bilan amalga oshiriladi, ya'ni, x₁₄ || A₂B₂C₂D₂.

A₄B₄C₄D₄ proeksiya toʻrtburchakning haqiqiy kattaligi hisoblanadi.

Aylantirish usuli

Aylantirish usulida geometrik shakl proeksiya tekisliklariga nisbatan Π_1 yoki Π_2 tekislikka perpendikulyar oʻq atrofida aylantiriladi, natijada, proeksiya tekisliklari qoʻzgʻalmaydi, geometrik shakl esa proeksiya tekisliklaridan birortasiga nisbatan xususiy vaziyatni ishgʻol etadi.

11, a-shaklda A nuqtani Π_1 tekislikka perpendikulyar boʻlgan i oʻqi atrofida R radius bilan aylantirishning yaqqol tasviri berilgan. Bunday holda, A nuqta i oʻqi atrofida Π_1 tekislikka parallel boʻlgan Σ harakat tekisligida aylana boʻylab harakat qiladi. Nuqtaning gorizontal proeksiyasi aylana, frontal proeksiyasi x ga parallel boʻlgan Σ_{Π_2} toʻgʻri chiziq boʻylab harakatlanadi. Uning epyuri 11, b-shaklda koʻrsatilgan.

 $A(A_1,A_2)$ nuqtani i oʻqi atrofida aylantirish natijasida u ma'lum burchakka buriladi va, masalan, $A'(A'_1,A'_2)$ vaziyatni egallaydi.

Aylantirish usuli bilan umumiy vaziyatdagi toʻgʻri chiziqni proeksiya tekisliklaridan biriga parallel vaziyatga keltirish

Agar toʻgʻri chiziq Π_1 yoki Π_2 tekislikka parallel boʻlsa, uning bitta proeksiyasi x oʻqiga parallel boʻlib joylashadi. Masalan, umumiy vaziyatdagi a toʻgʻri chiziqni Π_2 tekislikka parallel vaziyatga keltirish uchun uning frontal a_1 proeksiyasini x oʻqiga parallel vaziyatga kelguncha aylantiriladi.

12-shakl

12-shaklda koʻrsatilganidek, *a* toʻgʻri chiziqni frontal proeksiyalar tekisligiga nisbatan parallel vaziyatga keltirishni quyidagicha amalga oshirish lozim:

- 1. a to 'g'ri chiziqqa tegishli $A(A_1,A_2)$ va $B(B_1,B_2)$ nuqtalarni tanlab olamiz: $A \in a \land B \in a$.
- 2. a to 'g'ri chiziqning $B(B_1,B_2)$ nuqtasidan $i(i_1,i_2)\perp \Pi_I$ aylantirish o'qini o'tkazamiz.
- 3. a toʻgʻri chiziqning aylantirish oʻqi i atrofida aylantirilganda, A nuqta $R_I = A_I B_I$ radius bilan aylana boʻyicha harakatlanib A'_I vaziyatni egallaydi, B_I nuqta esa i oʻqida yotgani uchun qoʻzgʻalmas boʻladi.
- 4. A nuqta A' vaziyatni ishgʻol etganda, AB toʻgʻri chiziq Π_2 tekislikka parallel vaziyatga keladi, chunki uning $B_1A'_1$ gorizontal proeksiyasi x oʻqiga paralleldir.
 - 5. a to 'g'ri chiziqning Π_1 tekisligi bilan hosil qilgan burchagi α ga teng.

Yuqoridagi yasashlardan soʻng a toʻgʻri chiziqning haqiqiy uzunligi topiladi ($B_2A'_2=AB$).

a toʻgʻri chiziqni Π_1 tekislikka parallel vaziyatga keltirish uchun, aylantirish i(i₁,i₂) oʻqini Π_2 tekislikka perpendikulyar qilib olinadi.

Umumiy vaziyatda berilgan *ABC* tekislikni xususiy (proeksiyalovchi) vaziyatga keltirish

13-shaklda koʻrsatilganidek, umumiy vaziyatdagi ABC tekislikni proeksiyalovchi vaziyatiga keltirish uchun uning bosh chiziqlaridan biri proeksiyalovchi vaziyatga keltirilishi zarur boʻladi. Buni quyidagicha bajarish mumkin:

ABC tekislikni Π_2 tekislikka proeksiyalovchi vaziyatga keltirish uchun, ABC ning C uchidan C1(C₁1₁, C₂1₂) gorizontalni oʻtkaziladi va uni C(C₁C₂) nuqtadan oʻtgan i(i₁,i₂) oʻqi atrofida α burchakka aylantiriladi.

Natijada, ABC tekislikning C1 gorizontali Ox oʻqiga perpendikulyar holga keladi. Uning ketidan CA va CB tomonlarini ham α burchakka aylantiriladi.

13-shakl

ABC uchburchakning $A_1B_1C_1$ gorizontal proeksiyasi yangi $A^1_1B^1_1C^1_1$ vaziyatga koʻchib, frontal proeksiyalovchi vaziyatga kelishi natijasida uning frontal proeksiyasi toʻgʻri chiziq boʻladi. $A^1_2C^1_2B^1_2$ toʻgʻri chiziq va gorizontal chiziq orasidagi ϕ burchak ABC tekislikning Π_1 gorizontal proeksiyalar tekisligi orasidagi burchakni ifodalaydi.

Tekislikning haqiqiy kattaligini proeksiya tekisliklariga perpendikulyar oʻq atrofida aylantirish usuli bilan aniqlash

Umumiy vaziyatda berilgan *ABC* tekislikni proeksiya tekisliklaridan biriga parallel vaziyatga keltirish ikki bosqichda amalga oshiriladi.

Birinchi marta aylantirilganda, tekislik proeksiyalovchi holatga keladi (ushbu masalani yuqorida koʻrib oʻtdik).

14-shaklda proeksiyalovchi holatga keltirilgan 13-shakldagi $AB^1C^1(A_1B^1_1C^1_1, A_2C^1_2B^1_2)$ uchburchak tekisligini ajratib olinib, ikkinchi marta aylantirilganda tekislik proeksiya tekisliklaridan birortasiga parallel holatga keltiriladi.

ABC uchburchakning A_2 nuqtasini aylantirish markazi qilib, C_2 va B_2 nuqtalardan aylanalar chizamiz, bu aylanalar Ox oʻqiga parallel chiziq bilan kesishib $A_2C^l{}_2B^l{}_2$ nuqtalarda Π_I tekislikka parallel boʻlgan ABC uchburchakning frontal proeksiyasini beradi. Uchburchakning frontal proeksiyasi boʻyicha uning gorizontal $A_1B^1{}_1C^1{}_1$ proeksiyasi yasaladi. $A_1B^1{}_1C^1{}_1$ uchburchak ABC uchburchakning haqiqiy kattaligiga teng boʻladi.

Tekislikning bosh

chiziqlardan biri atrofida

aylantirish

Tekislikning haqiqiy kattaligini uning gorizontal yoki frontal chizigʻi atrofida aylantirish yoʻli bilan ham aniqlash mumkin.

i gorizontal chizigʻi atrofida A nuqtani OA=R radius bilan aylantirish natijasida (15-shakl, a), OA toʻgʻri chiziq OA_I vaziyatga, ya'ni Π_I tekislikka parallel vaziyatga koʻchadi.

Bu yerda i – aylantirish oʻqi, R - aylantirish radiusi, O – aylanish markazi, Σ – A nuqtaning harakat tekisligi (odatda, proeksiyalovchi) deyiladi.

Xuddi shunday qilib, C nuqtani ham gorizontal atrofida aylantirib C_I vaziyatga keltirish mumkin (15-shakl, a da C nuqta koʻrsatilmagan).

Ushbu masalani epyurda bajarilishini koʻrib chiqamiz (15-shakl, b):

- 1. ABC uchburchakning B_1I_1 gorizontalini qurib, unga A_1 va C_1 nuqtalardan perpendikulyarlar tushiramiz. Tushirilgan perpendikulyarlar mos ravishda A va C nuqtalarning harakat tekisliklarini belgilaydi.
- 2. Toʻgʻri burchakli uch burchak usulidan foydalanib AO toʻgʻri chiziq kesmasining haqiqiy kattaligi aniqlanadi. A_0O_1 aylanish radiusi hisoblanadi.
- 3. Aylantirish markazi O_1 nuqtadan O_1A_0 =R radiusi bilan yoy chiziladi. Bu yoy A_1 dan B_11_1 ga tushirilgan perpendikulyar bilan kesishib A^1_1 nuqtani beradi.

4. Topilgan A^1_1 nuqta bilan 1_1 nuqtani toʻgʻri chiziq orqali tutashtirsak, va uni davom ettirib C_1 dan tushirilgan perpendikulyar bilan kesishtirsak, C^1_1 nuqta hosil boʻladi. Aniqlangan A^1_1 , B^1_1 , C^1_1 nuqtalar tutashtiriladi. Natijada, topilgan $A^1_1B^1_1C^1_1$ uchburchak Π_1 ga parallel va uning xaqiqiy kattaligiga teng boʻladi. Shu bilan birga, toʻgʻri burchakli $O_1A_1A_0$ uchburchakning α burchagi ABC uchburchakning Π_1 tekislik bilan hosil qilgan ikkiyoqli burchakka teng boʻladi.

Tekislik izlaridan biri atrofida aylantirish (jipslashtirish) usuli

Tekislikning gorizontal yoki frontal atrofida aylantirish xususiy holi – tekislikni
oʻz izlaridan biri atrofida aylantirishdir.
Buning uchun quyidagi berilgan tekislikning izlaridan biri masalan gorizontal
izi atrofida aylantirishni 16-shakldagi chizma asosida koʻrib chiqilgan:
\Box tekislikning frontal \Box_{H2} iziga tegishli boʻlgan $A(A_1,A_2)$ nuqta tanlab olinadi
Nuqtaning gorizontal proeksiyalovchi harakat tekisligi $\Delta(\Delta_{\Pi I}, \Delta_{\Pi 2})$ \square tekislikning $\square_{\Pi I}$
gorizontal iziga perpendikulyar qilib oʻtkaziladi.
A_2 nuqtani $\Box_X A_2$ ga teng radius bilan aylantiriladi va u Δ_{II1} bilan kesishib A'
vaziyatga keladi. A^I_I nuqta bilan \square_X ni tutashtirsak \square'_{p2} kelib chiqadi.
Natijada, \square tekislik Π_1 tekislik bilan jipslashgan $\square_{\Pi_1}\square_X\square'_{\Pi_2}$ vaziyatni ishgʻol
etadi. Bunda tekislikning gorizontal $\Box \pi_1$ izi qoʻzgʻalmas, frontal izi tekislikdagi boshqa
nuqtalar bilan birga Π_1 ga jipslashadi. Tekislikning A nuqtasidan oʻtgan gorizontal h
(h_1,h_2) tekislik bilan birga aylanib Π_1 tekislikka jipslashadi. Tekislik gorizontalining \square_{Π_2}
ga paralleligi Π_I bilan jipslashganda ham saqlanadi: $(h'_I \Box \Pi_I)$.
Ushbu masalani $A(A_1A_2)$ nuqtani aylantirish radiusi OA ning haqiqiy uzunligini

Ushbu masalani $A(A_1A_2)$ nuqtani aylantirish radiusi OA ning haqiqiy uzunligini aniqlash yoʻli bilan topilsa ham boʻladi. Buning uchun toʻgʻri burchakli $O_1A_1A_0$ uchburchak yasaladi. Uning bitta kateti $(A_1A_0=A_1A_2)$ boʻlsa, ikkinchi kateti O_1A_1 aylantirish radiusini gorizontal proeksiyasidir. Shuningdek, uchburchakning gipotenuzasi $(O_1A_0=R)$ A nuqtaning aylantirish radiusiga tengdir. Aylantirish markazi O dan R radiusga teng A_0 nuqtadan aylana chiziladi va $\Delta \Pi_1$ izi bilan A'_1 nuqtada kesishadi. Bu aylana \Box_x markazda chizilgan $\Box_x A_2=R$ radiusli aylana bilan A'_1 nuqtada uchrashadi. Bu usulning qulay tomoni shundan iboratki, agar tekislikda yotgan tekis shaklning bitta proeksiyasi berilgan boʻlsa, uning haqiqiy kattaligini aniqlashda birgina proeksiyasi yetarlidir.

17—shaklda topshiriqning A—3 formatda bajarilishiga namuna keltirilgan. Chizma avvalo ingichka chizig`larda bajarilib, o`qituvchi tekshirgandan so`ng M. TM qalamlarda chiziq turlariga rioya qilgan holda qoralab chiqiladi.

16-shakl

17-shakl