Poster

Award

Stony Brook University

Smart Structures and Soft Electronics Lab

Decoding Silent Speech Cues from Muscular Biopotential Signals for Efficient Human-Robot Collaborations

Penghao Dong¹, Sibo Tian², Si Chen¹, Yizong Li¹, Su Li¹, Minghui Zheng², Shanshan Yao^{1*} ¹ Department of Mechanical Engineering, Stony Brook University, ² Department of Mechanical Engineering, Texas A&M University

Background

Figures from references [1-2]

- · Facial Electromyogram (EMG) signals exhibit a strong correlation with the contents and speaker characteristics of silent speech.
- Unobtrusive silent speech interfaces for human-robot collaborations are in demand.

Project Goal (b) Silent speech interface (g) Hand tracking interface Give III Take tools or components (f) Robot arm operations (e) Keyword classification (d) Speaker classification

- Develop EMG-based silent speech interfaces and algorithms for speaker recognition and speech content recognition.
- Integrate the silent speech interface into a human-robot collaboration platform for assembling/disassembling processes.[3]

Sensor Fabrication

Sensing electrode

Silent Speech Interface

 The transparent electrode array is connected to the data acquisition board.

Algorithms for Signal Processing

 The temporal convolutional network is used for classifications of speakers and speech contents.

Wilson Amplitude

Zero Crossing

Ch 1 Ch 2

Ch1 Ch2

Applications

Human-robot Collaboration:

 Demonstrations illustrating applications of the developed silent speech interface for human-robot collaboration in assembling/disassembling computers.

Conclusion and Future Study

- This work presents an unobtrusive silent speech interface and its applications in human-robot collaboration.
- Looking forward, there is a need for phoneme-level silent speech recognition algorithms.

Acknowledgement

 The authors acknowledge NSF for financial support to this project through awards ECCS-2238363 and ECCS-2335863.

References

[1] Wang, S. et al. ACS Appl. Mater. Interfaces 17, 20735 (2021). [2] Gervasi, R. et al. Int. J. Adv. Manuf. Technol. 108, 841 (2020).

Publications

[3] Dong, P. et al. Decoding Silent Speech Cues from Muscular Biopotential Signals Towards Efficient Human-Robot Collaborations, Adv. Mater. Tech. 2400990 (2024)