	hw-3 $(2023/09/26)$	姓名:	学号:	
_ , ,	Show, using Proposition $\rightarrow r$) is logically equivalent			
(a) $((\neg(q \rightarrow p)) \rightarrow$	$((\neg q) \vee r))$			
		Recall that:		
Proposition 1.1	4: If \mathcal{B}_1 is a statement form a	arising from the stat	ement form \mathscr{A} by substituting the	he statement
form \mathcal{B} for one or mo	ore occurrences of the statem	nent form \mathscr{A} in \mathscr{A}_1 ,	and if \mathcal{B} is logically equivalent	to \mathscr{A} , then
\mathcal{B}_1 is logically equiva	lent to \mathcal{A}_1 .			
Proposition 1.1	17 (De Morgan's Laws): 1	Let $\mathscr{A}_1, \mathscr{A}_2, \cdots \mathscr{A}_n$ b	e any statement forms. Then:	
1. $(\bigvee_{i=1}^{n} (\neg \mathscr{A}_i))$ is	logically equivalent to $(\neg(\bigwedge)$	$_{i=1}^{n}\mathscr{A}_{i})).$		

2. $(\bigwedge_{i=1}^n (\neg \mathscr{A}_i))$ is logically equivalent to $(\neg(\bigvee_{i=1}^n \mathscr{A}_i))$.

Your answer: