$Stormtroop3rs[C]\ ICPC\ Team\ Notebook\ 2019$

Sumário

1	Tem ₁	plate	
2		Macros 1 erical algorithms 2 Triângulo de Pascal 2 GCD-LCM 2 Bezout Theorem 2 Teorema Chinês dos Restos 2 Crivo de Eratóstenes 2 Divisores de N 2 Funções com Números Primos (Crivo, Fatoração, PHI, etc) 3 Exponenciação Modular Rápida 3 Exponenciação de Matriz 3 Brent Cycle Detection 4 Romberg's method - Calcula Integral (UFS2010) 4 Pollard's rho algorithm (UFS2010) 4 Miller-Rabin's algorithm (UFS2010) 4 Quantidade de dígitos de N! na base B 4 Quantiade de zeros a direita de N! na base B 5 Baby Step Giant Step 5 Primos num intervalo 5	2 2 2 2 3 3 3 1 1 1 1 1 5 5
	2.18	FFT	ó
3	Geor 3.1	netria 2D Geometria 2D Library	-
4	Políg 4.1 4.2 4.3	gonos 2D 8 Polígono 2D Library 8 Convex Hull 9 Minimum Enclosing Circle 10	3
5	Geor 5.1	netria 3D	
6	Grafe 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.20 6.21 6.22 6.23 6.24	dfs 14 bfs 14 Topological Sort (Bfs) 14 Tarjan (Scc) 15 Kosaraju (Scc) 15 Dijkstra 15 Floyd-Warshall 16 Bellman-Ford 16 Vértices de Articulação e Pontes 16 LCA 17 LCA (Sparse Table) 17 Maximum Bipartite Matching 18 Hopcroft Karp - Maximum Bipartite Matching (UNIFEI) 18 Network Flow (lento) 19 Network Flow - Dinic 19 Min Cost Max Flow 20 Min Cost Max Flow (Stefano) 20 2-Sat 21 Tree Isomorphism 22 Stoer Wagner-Minimum Cut (UNIFEI) 23 Stable Marriage (UNIFEI) 23 Stable Marriage (UNIFEI) 24 Hungarian Max Bipartite Matching with Cost (UNIFEI) 24 Blossom 26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7	Estru 7.1 7.2	BIT	7

	7.3	Sparse Table	28			
	7.4	RMQ	28			
	7.5	Seg Tree com Lazy	28			
	7.6	Union-Find	29			
	7.7	Treap	29			
	7.8	Seg Tree 2D	30			
	7.9	Polyce	31			
	7.10		32			
8	Strings 33					
_	8.1	·O	33			
	8.2		33			
	8.3		35			
	8.4		35			
	8.5	Rolling Hash	36			
	8.6		36			
	8.7	Minimum Lexicographic Rotation	36			
	8.8		36			
	8.9	Autômato de Sufixos	37			
	8.10		38			
9	PD	2	8			
9	9.1	-	10 38			
	$9.1 \\ 9.2$		38 38			
	9.3		38 39			
	9.4		39 39			
	$9.4 \\ 9.5$	Kadane 1D	10			
	9.6		10 10			
	9.7		10 10			
	9.8		10 10			
	3.0	Edit Distance	ŧυ			
10	Sorti	ing 4	0			
	10.1		10			
	10.2	Quick Sort	11			
11			1			
	11.1	Calendário	11			

1 Template

1.1 Macros

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i=(a); i<(b); i++)
#define pb push_back
#define mp make_pair
#define debug(x) cout<<__LINE__<<": "<<#x<<" = "<<x<<endl;
#define debug2(x, y) cout<<__LINE__<<": "<<#x<<" = "<<x<<\
                                     " "<<#y<<" = "<<y<<endl;
#define all(c) (c).begin(), (c).end()
#define F first
#define S second
#define UNIQUE(c) \
    sort(all(c)); \
    (c).resize(unique(all(c))-c.begin());
#define PI 3.1415926535897932384626433832795028841971
typedef long long 11;
typedef pair<int, int> ii;
```

```
typedef vector<int> vi;

const int INF = 0x3f3f3f3f3f;
const double EPS = 1e-9;

inline int cmp(double x, double y = 0, double tol = EPS) {
   return ((x <= y+tol) ? (x+tol < y) ? -1:0:1);
}</pre>
```

2 Numerical algorithms

2.1 Triângulo de Pascal

```
// Calcula os numeros binomiais (N,K) = N!/(K!(N-K)!). (N,K)
// representa o numero de maneiras de criar um subconjunto de tamanho
// K dado um conjunto de tamanho N. A ordem dos elementos nao
// importa.
const int MAXN = 50;
long long C[MAXN][MAXN];
void calc_pascal() {
 memset(C, 0, sizeof(C));
  for (int i = 0; i < MAXN; ++i) {</pre>
   C[i][0] = C[i][i] = 1;
   for (int j = 1; j < i; ++j)
      C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
// Pascal triangle elements:
C(33, 16) = 1.166.803.110 [int limit] C(34, 17) =
   2.333.606.220 [unsigned int limit] C(66, 33) =
        7.219.428.434.016.265.740 [int64_t limit] C(67, 33) =
            14.226.520.737.620.288.370 [uint64_t limit]
    // Fatorial
    12 ! = 479.001.600 [(unsigned)int limit] 20 ! =
        2.432.902.008.176.640.000 [(unsigned)int64_t limit]
```

2.2 GCD-LCM

```
// Calcula o maior divisor comum entre A e B
ll A, B;
cin >> A >> B;
cout << __gcd(A, B);

// Calcula o menor multiplo comum entre A e B
ll lcm(ll A, ll B) {
   if (A and B) return abs(A)/__gcd(A, B)*abs(B);
   else return abs(A | B);
}</pre>
```

2.3 Bezout Theorem

```
// Determina a solucao da equacao a*x+b*y = \gcd(a, b), onde a e b sao // dois numeros naturais. Como chamar: \gcd(a, b), Retorna: a tupla // \{\gcd(a, b), x, y\}. Determina tambem o Inverso Modular. struct Triple \{
```

```
ll d, x, y;
Triple(ll q, ll w, ll e) : d(q), x(w), y(e) {}
};
Triple egcd(ll a, ll b) {
   if (!b) return Triple(a, 1, 0);
   Triple q = egcd(b, a % b);
   return Triple(q.d, q.y, q.x - a / b * q.y);
}
// Retorna o inverso modular de A modulo N
// O inverso modular de um numero A em relacao a N eh um numero X tal
// que (A*X) %N = 1
ll invMod(ll a, ll n) {
   Triple t = egcd(a, n);
   if (t.d > 1) return 0;
   return (t.x % n + n) % n;
}
```

2.4 Teorema Chinês dos Restos

```
// crt() retorna um X tal que X = a[i] (mod m[i]). Exemplo: Para a[]
// = {1, 2, 3} e m[] = {5, 6, 7} .: X = 206. Requer: Bezout Theorem
// para calcular o inverso modular
#define MAXN 1000
int n;

ll a[MAXN], m[MAXN];

ll crt() {
    ll M = 1, X = 0;
    for (int i = 0; i < n; ++i) M *= m[i];
    for (int i = 0; i < n; ++i)
        x += a[i] * invMod(M / m[i], m[i]) * (M / m[i]);
    return (((x % M) + M) % M);
}</pre>
```

2.5 Crivo de Eratóstenes

```
bitset<10000005> bs;
vector<int> primos;
void crivo(ll limite = 10000000LL) { // calcula primos ate limite
   primos.clear();
   bs.set();
   bs[0] = bs[1] = 0;
   for (ll i = 2; i <= limite; i++)
        if (bs[i]) {
        for (ll j = i * i; j <= limite; j += i) bs[j] = 0;
        primos.push_back(i);
      }
}
bool isPrime(ll N, ll limite) {
   if (N <= limite) return bs[N];
   for (int i = 0; i < (int)primos.size(); i++)
        if (N % primos[i] == 0) return false;
   return true;
}</pre>
```

2.6 Divisores de N

```
// Retorna todos os divisores naturais de N em O(sqrt(N)).
vector<ll> divisores(ll N) {
  vector<ll> divisors;
  for (ll div = 1, k; div * div <= N; ++div) {
    if (N % div == 0) {
      divisors.push_back(div);
      k = N / div;
      if (k != div) divisors.push_back(k);
    }
  }
  // caso precise ordenado
  sort(divisors.begin(), divisors.end());
  return divisors;
}</pre>
```

2.7 Funções com Números Primos (Crivo, Fatoração, PHI, etc)

```
// Encontra os fatores primos de N .: N = p1^e1 * ... *pi^ei
// factors armazena em first o fator primo e em segundo seu expoente
map<int, int> factors;
void primeFactors(ll N) {
  factors.clear();
  while (N \% 2 == 0) + factors[2], N >>= 1;
  for (11 PF = 3; PF * PF <= N; PF += 2) {</pre>
   while (N % PF == 0) N /= PF, factors[PF]++;
  if (N > 1) factors [N] = 1;
// Funcoess derivadas dos numeros primos
void NumberTheorv(ll N) {
 primeFactors(N);
 map<int, int>::iterator f; // iterador
                     // Totiente ou Euler-Phi de N
 ll Totient = N;
  // Totient(N) = qtos naturais x, tal que x < N && qcd(x, N) == 1
  ll numDiv = 1; // Quantidade de divisores de N
  ll sumDiv = 1; // Soma dos divisores de N
  11 sumPF = 0; // Soma dos fatores primos de N (trivial)
  11 numDiffPF = factors.size(); // qtde de fatores distintos
  for (f = factors.begin(); f != factors.end(); f++) {
   11 PF = f->first, power = f->second;
   Totient -= Totient / PF;
   numDiv \star = (power + 1);
   sumDiv *= ((11)pow((double)PF, power + 1.0) - 1) / (PF - 1);
   sumPF += PF;
  printf("Totiente/Euler-Phi de N = %lld\n", Totient);
 printf("qt de divisores de N = %lld\n", numDiv);
  printf("soma dos divisores de N = %lld\n", sumDiv);
  printf("qt de fatores primos distintos = %lld\n", numDiffPF);
  printf("soma dos fatores primos = %lld\n", sumPF);
// Calcula Euler Phi para cada valor do intervalo [1, N]
#define MM 1000010
int phi[MM];
```

```
void crivo_euler_phi(int N) {
   for (int i = 1; i <= N; i++) phi[i] = i;
   for (int i = 2; i <= N; i++)
      if (phi[i] == i) {
        for (int k = i; k <= N; k += i) phi[k] = (phi[k] / i) * (i - 1);
      }
}

// Qtde de fatores primos distintos de cada valor do range [2, MAX_N]
#define MAX_N 100000000
int NDPF[MAX_N]; //
void NumDiffPrimeFactors() {
   memset(NDPF, 0, sizeof NDPF);
   for (int i = 2; i < MAX_N; i++)
      if (NDPF[i] == 0)
        for (int j = i; j < MAX_N; j += i) NDPF[j]++;
}

int main() { return 0; }</pre>
```

2.8 Exponenciação Modular Rápida

```
// Calcula (B^P)%MOD em O(logP). Calcula o inverso modular de b(modulo
// mod) se mod for primo. Basta fazer invB = fastpow(b, mod-2, mod)
ll fastpow(ll b, ll p, ll mod) {
    ll ret = 1;
    for (ll pot = b; p > 0; p >>= 1, pot = (pot * pot) % mod)
        if (p & 1) ret = (ret * pot) % mod;
    return ret;
}
```

2.9 Exponenciação de Matriz

```
// Calcula exponenciacao de matrizes de forma eficiente. fastExp()
// calcula M[][] ^ n, e armazena o resultado em ans[][]. Eh util
// para resolver recorrencias lineares do tipo
// F(n) = M * F(n-1) => F(n) = (M^n) * F[0]
const int M = 2;
11 \mod = 1e9 + 7;
int sz = 2;
11 mat[M][M], ans[M][M], tmp[M][M];
// multiplica as matrizes a[][] e b[][] e armazena em a[][] o
void mult(ll a[][M], ll b[][M]) {
  rep(i, 0, sz) rep(j, 0, sz) {
   tmp[i][j] = 0;
   rep(k, 0, sz) tmp[i][j] += a[i][k] * b[k][j];
   tmp[i][j] %= mod;
  memcpy(a, tmp, sizeof tmp);
// calcula mat ^ n
void fastExp(ll ans[][M], ll n) {
  // inicializar mat, neste caso a matriz para calculo de fibonacci
 mat[0][0] = mat[0][1] = mat[1][0] = 1;
 mat[1][1] = 0;
```

```
// matriz identidade
rep(i, 0, sz) rep(j, 0, sz) ans[i][j] = (i == j);
while (n) {
   if (n & 1) mult(ans, mat);
   n >>= 1;
   mult(mat, mat);
}
// n-\'esino termo de fibonacci
// cout << ans[1][0]*fib(1) + ans[1][1] * fib(0) << "\n";
}</pre>
```

2.10 Brent Cycle Detection

```
// Dado uma sequencia formada por uma funcao f(.) e uma semente x0.
// f(x0), f(f(x0)), ..., f(f(...f(x0))), ela pode ser ciclica. Este
// algoritmo retorna o tamanho do ciclo e o valor xi que o inicia.
ii brent cycle(int x) {
  int p = 1, length = 1, t = x, start = 0;
  int h = f(x);
  while (t != h)
    if (p == length) {
      t = h;
     p *= 2;
      length = 0;
    h = f(h);
    ++length;
  t = h = x;
  for (int i = length; i != 0; --i) h = f(h);
  while (t != h) {
   t = f(t);
   h = f(h);
    ++start;
  return ii(start, length);
```

2.11 Romberg's method - Calcula Integral (UFS2010)

```
// Calcula a integral de f[a, b]
typedef long double ld;

ld f(double x) {
    // return f(x)
}

ld romberg(ld a, ld b) {
    ld R[16][16], div = (b - a) / 2;
    R[0][0] = div * (f(a) + f(b));
    for (int n = 1; n <= 15; n++, div /= 2) {
        R[n][0] = R[n - 1][0] / 2;
        for (ld sample = a + div; sample < b; sample += 2 * div)
            R[n][0] += div * f(a + sample);
}

for (int m = 1; m <= 15; m++)
    for (int n = m; n <= 15; n++)
        R[n][m] = R[n][m - 1] +</pre>
```

```
1 / (pow(4, m) - 1) * (R[n][m - 1] - R[n - 1][m - 1]);
return R[15][15];
}
```

2.12 Pollard's rho algorithm (UFS2010)

```
// Retorna um fator primo de N, util para fatorizacao quando N for
    grande.

ll pollard_r, pollard_n;

ll f(ll val) {return (val*val+pollard_r) %pollard_n; }

ll myabs(ll a) {return a >= 0 ? a:-a; }

ll pollard(ll n) {
    srand(unsigned(time(0)));
    pollard_n = n;
    long long d = 1;
    do {
        d = 1;
        pollard_r = rand() %n;
        long long x = 2, y = 2;
        while(d == 1)
            x = f(x), y = f(f(y)), d = __gcd(myabs(x-y), n);
    } while(d == n);
    return d;
}
```

2.13 Miller-Rabin's algorithm (UFS2010)

```
// Teste probabilistico de primalidade
bool miller rabin(ll n, ll base) {
  if (n <= 1) return false;</pre>
  if (n % 2 == 0) return n == 2;
 11 s = 0, d = n - 1;
  while (d \% 2 == 0) d /= 2, ++s;
  11 base_d = fastpow(base, d, n);
  if (base_d == 1) return true;
  11 base_2r = base_d;
  for (ll i = 0; i < s; ++i) {</pre>
    if (base_2r == 1) return false;
    if (base_2r == n - 1) return true;
    base_2r = base_2r * base_2r % n;
  return false;
bool isprime(ll n) {
  if (n == 2 || n == 7 || n == 61) return true;
  return miller_rabin(n, 2) && miller_rabin(n, 7) &&
         miller_rabin(n, 61);
```

2.14 Quantidade de dígitos de N! na base B

```
int NumOfDigitsInFactorial(int N, int B) {
  double logFatN = 0;
  for (int i = 1; i <= N; i++)
    logFatN += log((double)i);
  int nd = floor(logFatN / log((double)B)) + 1;</pre>
```

```
return nd;
```

2.15 Quantiade de zeros a direita de N! na base B

```
// Determina o numero de zeros a direita do fatorial de N na base B
// Ideia: Se a base for B for 10, e fatorarmos N! em fatores primos
// teremos algo como N! = 2^a * 3^b * 5^c \dots, como cada par de primos
// 2 e 5 formam 10 que tem um zero, a quantidade seria min(a, c).
int NumOfTrailingZeros(int N, int B) {
 int nfact = fatora(B);
 int zeros = INF;
 // para cada fator de B. aux representa gtas vezes
  // fator[i]^expoente[i] aparece na representacao de N!
 for (int i = 0; i < nfact; i++) {</pre>
   int soma = 0;
   int NN = N;
   while (NN) {
     soma += NN / fator[i];
     NN /= fator[i];
   int aux = soma / expoente[i];
   zeros = min(zeros, aux);
 return zeros;
```

2.16 Baby Step Giant Step

```
// Determinar o menor E tal que B^E = N (mod P), -1 se for impossivel.
// Requer: Bezout Theorem para calcular o inverso modular
ll bsgs(ll b, ll n, ll p) {
    if (n == 1) return 0;
    map<ll, int> table;
    ll m = sqrt(p) + 1, pot = 1, pot2 = 1;
    for (int j = 0; j < m; ++j) {
        if (pot == n) return j;
        table[(n * invMod(pot, p)) % p] = j;
        pot = (pot * b) % p;
    }
    for (int i = 0; i < m; ++i) {
        if (table.find(pot2) != table.end()) return i * m + table[pot2];
        pot2 = (pot * pot2) % p;
    }
    return -1;
}</pre>
```

2.17 Primos num intervalo

```
// Encontra os primos no intervalo [n,m]
vector<int> ret;
void primesBetween(int n, int m) {
  ret.clear();
  vector<int> primes(m - n + 1);
  for (int i = 0; i < m - n + 1; ++i) primes[i] = 0;
  for (int p = 2; p * p <= m; ++p) {</pre>
```

```
int less = (n / p) * p;
  for (int j = less; j <= m; j += p)
    if (j != p && j >= n) primes[j - n] = 1;
}
for (int i = 0; i < m - n + 1; ++i) {
  if (primes[i] == 0 && n + i != 1) {
    ret.push_back(n + i);
  }
}</pre>
```

2.18 FFT

```
typedef complex<double> comp;
const int MAX N = 1 \ll 20;
int rev[MAX N];
comp roots [MAX_N];
void preCalc(int N, int BASE) {
  for (int i = 1; i < N; ++i)
    rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (BASE - 1));
  int NN = N \gg 1;
  roots[NN] = comp(1, 0);
  roots[NN + 1] = comp(cos(2 * PI / N), sin(2 * PI / N));
  for (int i = 2; i < NN; ++i)</pre>
    roots[NN + i] = roots[NN + i - 1] * roots[NN + 1];
  for (int i = NN - 1; i > 0; --i) roots[i] = roots[2 * i];
void fft(vector<comp> &a, bool invert) {
  int N = a.size();
  if (invert) rep(i, 0, N) a[i] = conj(a[i]);
  rep(i, 0, N) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
  for (int k = 1; k < N; k *= 2) {
    for (int i = 0; i < N; i += 2 * k) {
      rep(j, 0, k) {
        comp B = a[i + j + k] * roots[k + j];
        a[i + j + k] = a[i + j] - B;
        a[i + j] = a[i + j] + B;
  if (invert) rep(i, 0, a.size()) a[i] /= N;
vector<comp> multiply_real(vector<comp> a, vector<comp> b,
                           vector<comp> c) {
  int n = a.size();
  int m = b.size();
  int base = 0, N = 1;
  while (N < n + m - 1) base++, N <<= 1;
  preCalc(N, base);
  a.resize(N, comp(0, 0));
 c.resize(N);
  rep(i, 0, b.size()) a[i] = comp(real(a[i]), real(b[i]));
  fft(a, 0);
  rep(i, 0, N) {
```

```
int j = (N - i) & (N - 1);
  c[i] = (a[i] * a[i] - conj(a[j] * a[j])) * comp(0, -0.25);
}
fft(c, 1);
return c;
}
```

3 Geometria 2D

3.1 Geometria 2D Library

```
const double EPS = 1e-9;
inline int cmp( double x, double v = 0, double tol = EPS) {
  return ( (x \le y + tol) ? (x + tol < y) ? -1 : 0 : 1);
struct point{
  double x, v;
  point (double x=0, double y=0): x(x), y(y) {}
  point operator + (point q) { return point(x+q.x, y+q.y);}
  point operator - (point q) { return point(x-q.x, y-q.y);}
  point operator * (double t) { return point(x*t, y*t); }
  point operator / (double t) { return point (x/t, y/t); }
  int cmp(point q) const{
   if(int t = ::cmp(x, q.x)) return t;
   return ::cmp(y, q.y);
  bool operator == (point q) const{return cmp(q) == 0;};
 bool operator != (point q) const{return cmp(q) != 0;};
 bool operator < (point q) const{return cmp(q) < 0;};</pre>
ostream & operator << (ostream & os, const point &p) {
  os << "(" << p.x << ", " << p.y << ")";
#define vec(a, b) (b-a)
typedef vector<point> polygon;
double cross (point a, point b) {
  return a.x*b.y - a.y*b.x;
double dot(point a, point b) {
  return a.x*b.x + a.y*b.y;
double collinear (point a, point b, point c) {
  return cmp(cross(b - a, c - a)) == 0;
// retorna 1 se R esta a esquerda do vetor P->Q, -1 se estiver a
    direita. O se P, Q e R forem colineares
int ccw(point p, point q, point r) {
  return cmp(cross(q - p, r - p));
// Rotaciona um ponto em relacao a origem em 90 graus sentido
    anti-horario
point RotateCCW90(point p) { return point(-p.y, p.x); }
// Rotaciona um ponto em relacao a origem em 90 graus sentido horario
point RotateCW90(point p) { return point(p.y, -p.x); }
```

```
// Rotaciona um ponto P em A graus no sentido anti-horario em relacao
    a origem; Para rotacionar no sentido horario, basta A ser negativo
point RotateCCW(point p, double a) {
 a = (a/180.0) *acos(-1.0); // convertendo para radianos
 return point(p.x*cos(a)-p.y*sin(a), p.x*sin(a)+p.y*cos(a));
// Rotaciona P em A graus em relacao a Q.
point RotateCCW(point p, point q, double a) {
 return RotateCCW(p - q, a) + q;
// Tamanho ou norma de um vetor
double abs(point u) {
 return sqrt(dot(u,u));
// Projeta o vetor A sobre a direcao do vetor B
point project(point a, point b) {
 return b*(dot(a,b)/dot(b,b));
// Retorna a projecao do ponto P sobre reta definida por [A,B]
point projectPointLine(point p, point a, point b) {
 return p + project(p-a, b-a);
// Retorna o angulo que p faz com +x
double arg(point p) {
 return atan2(p.y, p.x);
// Retorna o angulo entre os vetores AB e AC
double arg(point b, point a, point c) {
 point u = b - a, v = c - a;
 return atan2(cross(u,v), dot(u,v));
///////Segmentos, Retas
// Determina se P esta entre o segmento fechado [A,B], inclusive
bool between(point p, point a, point b) {
 return collinear(p, a, b) && dot(a - p, b - p) <= 0;
/* Distancia de ponto P para reta que passa por [A,B]. Armazena em C
    (por ref) o ponto projecao de P na reta. */
double distancePointLine(point p, point a, point b, point& c){
 c = projectPointLine(p, a, b);
 return fabs(cross(p - a, b - a)/abs(a - b); // or abs(p-c);
/* Distancia de ponto P ao segmento [A,B]. Armazena em C (por ref) o
    ponto de projecao de P em [A,B]. Se este ponto estiver fora do
    segmento, eh retornado o mais proximo. */
double distancePointSeg(point p, point a, point b, point& c) {
 if ((b-a) * (p-a) <= 0) { c = a; return abs(a-p); }</pre>
 if ((a-b)*(p-b) \le 0) { c = b; return abs(b-p); }
 c = projectPointLine(p,a,b);
 return fabs(cross(p - a, b - a)/abs(a - b); // or abs(p-c);
// Determina se os segmentos [A, B] e [C, D] se tocam
bool seg_intersect(point a, point b, point c, point d) {
```

```
int d1, d2, d3, d4;
  d1 = ccw(c, a, d);
                     d^2 = ccw(c, b, d);
 d3 = ccw(a, c, b);
                     d4 = ccw(a, d, b);
 if (d1*d2 == -1 \&\& d3*d4 == -1) return true;
 if (d1 == 0 && between(c, a, d)) return true;
 if (d2 == 0 && between(c, b, d)) return true;
 if (d3 == 0 && between(a, c, b)) return true;
 if (d4 == 0 && between(a, d, b)) return true;
 return false;
/* Encontra a intersecção das retas (p-q) e (r-s) assumindo que
    existe apenas 1 intereccao. Se for entre segmentos, verificar se
    interseptam primeiro. */
point line_intersect(point p, point q, point r, point s){
 point a = q - p, b = s - r, c = point(cross(p, q), cross(r, s));
  double x = cross(point(a.x, b.x),c);
 double y = cross(point(a.y, b.y),c);
 return point(x, v) / cross(a,b);
// determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(point a, point b, point c, point d) { // Nao testado
 return fabs(cross(b - a, c - d)) < EPS;</pre>
bool LinesCollinear(point a, point b, point c, point d) { // Nao
 return LinesParallel(a, b, c, d)
   && fabs(cross(a - b, a - c)) < EPS
   && fabs(cross(c - d, c - a)) < EPS;
// Triangulos
bool pointInTriangle(point p, point a, point b, point c){
 //TODO
// Heron's formula - area do triangulo(a,b,c) -1 se nao existe
double area_heron(double a, double b, double c) {
 if (a < b) swap(a, b);
 if (a < c) swap(a, c);
 if (b < c) swap(b, c);
 if (a > b+c) return -1;
 return sqrt((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c))/16.0);
// Circulos
bool pointInCircle(point p, point c, double radius) {
 // Todo
/*Dado dois pontos (A, B) de uma circunferencia e seu raio R, eh
    possivel obter seus possiveis centros (C1 e C2). Para obter o
```

```
outro centro, basta inverter os paramentros */
bool circle2PtsRad(point a, point b, double r, point &c) {
 point aux = a - b;
  double d = dot(aux, aux);
 double det = r * r/d - 0.25;
 if (det < 0.0) return false;</pre>
 double h = sqrt(det);
 c.x = (a.x + b.x) * 0.5 + (a.y - b.y) * h;
 c.v = (a.v + b.v) * 0.5 + (b.x - a.x) * h;
  return true;
// Menor distancia entre dois pontos numa esfera de raio r
// lat = [-90,90]; long = [-180,180]
double spherical_distance(double lt1, double lo1, double lt2, double
    lo2, double r) {
  double pi = acos(-1);
  double a = pi*(lt1/180.0), b = pi*(lt2/180.0);
  double c = pi*((lo2-lo1)/180.0);
  return r*acos(sin(a)*sin(b) + cos(a)*cos(b)*cos(c));
// Planos
// Distancia entre (x, y, z) e plano ax+by+cz=d
double distancePointPlane(double x, double y, double z, double a,
    double b, double c, double d) {
  return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
//***[Inicio] Funcoes que usam numeros complexos para pontos***
typedef complex<double> cxpt;
struct circle {
  cxpt c; double r;
  circle(cxpt c, double r) : c(c),r(r){}
  circle(){}
double cross(const cxpt &a, const cxpt &b) {
  return imag(coni(a) *b);
double dot(const cxpt &a, const cxpt &b) {
  return real(conj(a)*b);
// Area da interseccao de dois circulos
double circ inter area(circle &a, circle &b) {
  double d = abs(b.c-a.c);
  if (d <= (b.r - a.r)) return a.r*a.r*M PI;</pre>
  if (d <= (a.r - b.r)) return b.r*b.r*M_PI;</pre>
  if (d >= a.r + b.r) return 0;
  double A = acos((a.r*a.r+d*d-b.r*b.r)/(2*a.r*d));
  double B = a\cos((b.r*b.r+d*d-a.r*a.r)/(2*b.r*d));
  return a.r*a.r*(A-0.5*sin(2*A))+b.r*b.r*(B-0.5*sin(2*B));
// Pontos de interseccao de dois circulos
// Intersects two circles and intersection points are in 'inter'
```

```
// -1-> outside, 0-> inside, 1-> tangent, 2-> 2 intersections
int circ_circ_inter(circle &a, circle &b, vector<cxpt> &inter) {
  double d2 = norm(b.c-a.c), rS = a.r+b.r, rD = a.r-b.r;
  if (d2 > rS*rS) return -1;
  if (d2 < rD*rD) return 0;</pre>
  double ca = 0.5*(1 + rS*rD/d2);
  cxpt z = cxpt(ca, sqrt((a.r*a.r/d2)-ca*ca));
  inter.push_back(a.c + (b.c-a.c)*z);
  if(abs(z.imag())>EPS)
   inter.push_back(a.c + (b.c-a.c)*conj(z));
  return inter.size();
// Line-circle intersection
// Intersects (infinite) line a-b with circle c
// Intersection points are in 'inter'
// 0 -> no intersection, 1 -> tangent, 2 -> two intersections
int line_circ_inter(cxpt a, cxpt b, circle c, vector<cxpt> &inter){
   c.c -= a; b -= a;
   cxpt m = b*real(c.c/b);
   double d2 = norm(m-c.c);
   if (d2 > c.r*c.r) return 0;
   double l = sqrt((c.r*c.r-d2)/norm(b));
   inter.push back(a + m + 1*b);
   if (abs(1)>EPS)
        inter.push_back(a + m - 1*b);
   return inter.size();
//***[FIM] Funcoes que usam numeros complexos para pontos***
```

4 Polígonos 2D

4.1 Polígono 2D Library

```
/*Poligono eh representado como um array de pontos T[i] sao os
    vertices do poligono. Existe uma aresta que conecta T[i] com
    T[i+1], e T[size-1] com T[0]. Logo assume-se que T[0] != T[size-1]
Poligono simples: Aquele em que as arestas nao se interceptam.
    Convexo: O angulo interno de T[i] com T[i-1] e T[i+1] \le 180.
    Concavo: Existe algum i que nao satisfaz a condicao anterior*/
/* Retorna a area com sinal de um poligono T. Se area > 0, T esta
    listado na ordem CCW */
double signedArea(const polygon& T) {
 double area = 0;
 int n = T.size();
 if (n < 3) return 0;
 rep(i, 0, n)
   area += cross(T[i],T[(i+1)%n]);
 return (area/2.0);
/* Retorna a area de um poligono T. (pode ser concavo ou convexo) em
double poly_area(const polygon& T) {
 return fabs(signedArea(T));
```

```
/* Retorna a centroide de um poligono T em O(N) */
point centroide(const polygon &T) {
 int n = T.size();
  double sgnArea = signedArea(T);
 point c = point(0,0);
  rep(i, 0, n) {
   int k = (i+1) %n;
   c = c + (T[i]+T[k]) * cross(T[i], T[k]);
  c = c / (sgnArea * 6.0);
  return c:
/* Retorna o perimetro do poligono T. (pode n funcionar como esperado
    se o poligono for uma linha reta (caso degenerado)) */
double poly_perimeter(polygon& T) {
  double perimeter = 0;
  int n = T.size();
  if (n < 3) return 0;
  rep(i, 0, n)
    perimeter += abs(T[i] - T[(i+1)%n]);
  return perimeter;
// tests whether or not a given polygon (in CW or CCW order) is simple
bool isSimple(const polygon &p) { // nao testado
  for (int i = 0; i < p.size(); i++) {</pre>
    for (int k = i+1; k < p.size(); k++) {</pre>
      int j = (i+1) % p.size();
      int l = (k+1) % p.size();
      if (i == 1 || j == k) continue;
      if (seg_intersect(p[i], p[j], p[k], p[l]))
        return false:
  return true:
//Retorna True se T for convexo. O(N)
bool isConvex(polygon& T) {
  int n = T.size();
  if (n < 3) return false;</pre>
  int giro = 0;
  rep(i, 0, n){ // encontra um giro valido
    int t = ccw(T[i],T[(i+1)%n],T[(i+2)%n]);
   if (t != 0) giro = t;
  if (giro == 0) return false; //todos pontos sao colineares
  rep(i, 0, n) {
   int t = ccw(T[i], T[(i+1)%n], T[(i+2)%n]);
    if (t != 0 && t != giro) return false;
  return true;
// Determina se P pertence a T, funciona para convexo ou concavo
// -1 borda, 0 fora, 1 dentro. O(N)
int in_poly(point p, polygon& T) {
```

```
double a = 0; int N = T.size();
  rep(i, 0, N) {
    if (between(p, T[i], T[(i+1)%N])) return -1;
    a += arg(T[i], p, T[(i+1)%N]);
  return cmp(a) != 0;
//determina se P pertence a B, funciona APENAS para convexo
bool PointInConvexPolygon(point P, const polygon &B) {
  int ini = 1, fim = B.size()-2, mid, pos = -1;
  int giro = -1; // sentido horario
  while(ini<=fim){</pre>
    mid = (ini+fim)/2;
    int aux = ccw(B[0], B[mid], P);
    if (aux == giro) {
      pos = mid;
      ini = mid+1;
    }else{
      fim = mid-1;
  if(pos == -1) return false;
  if ( ccw(B[0], B[pos], P)!=qiro*-1 &&
      ccw(B[0], B[pos+1], P)!=giro &&
      ccw(B[pos], B[pos+1], P)==giro) // giro // 0 na borda
    return true;
  return false;
// Determina o poligono interseccao de P e Q
// P e O devem estar orientados anti-horario.
polygon poly_intersect(polygon& P, polygon& Q) {
 int m = Q.size(), n = P.size();
 int a = 0, b = 0, aa = 0, ba = 0, inflag = 0;
  polygon R;
  while ((aa<n || ba<m) && aa<2*n && ba<2*m){</pre>
    point p1 = P[a], p2 = P[(a+1) n], q1 = Q[b], q2 = Q[(b+1) m];
    point A = p_2 - p_1, B = q_2 - q_1;
    int cross=cmp(cross(A, B)), ha=ccw(p2, q2, p1),
        hb=ccw(q_2, p_2, q_1);
    if (cross==0 && ccw(p1, q1, p2)==0 && cmp(dot(A,B))<0){
      if (between(q1, p1, p2)) R.push_back(q1);
      if (between(q2, p1, p2)) R.push_back(q2);
      if (between(p1, q1, q2)) R.push_back(p1);
      if (between (p2, q1, q2)) R.push back (p2);
      if (R.size() < 2) return polygon();</pre>
      inflag = 1; break;
    else if (cross!=0 && seg_intersect(p1, p2, q1, q2)){
      if (inflag == 0) aa = ba = 0;
      R.push_back(line_intersect(p1, p2, q1, q2));
      inflag = (hb > 0) ? 1:-1;
    if (cross==0 && hb<0 && ha<0) return R;</pre>
    bool t = cross==0 && hb==0 && ha==0;
    if (t?(inflag==1):(cross>=0)?(ha<=0):(hb>0)){
      if (inflag == -1) R.push_back(q2);
      ba++; b++; b %= m;
    else {
```

```
if (inflag == 1) R.push_back(p2);
    aa++; a++; a %= n;
}
if (inflag == 0) {
    if (in_poly(P[0], Q)) return P;
    if (in_poly(Q[0], P)) return Q;
}
R.erase(unique(all(R)), R.end());
if (R.size() > 1 && R.front() == R.back()) R.pop_back();
return R;
}
```

4.2 Convex Hull

```
/*Encontra o convex hull de um conjunto de pontos.
pivot: Ponto base para a criacao do convex hull;
radial lt(): Ordena os pontos em sentido anti-horario (ccw).
Input: Conjunto de pontos 2D;
Output: Conjunto de pontos do convex hull, no sentido anti-horario;
(1) Se for preciso manter pontos colineares na borda do convex hull,
    essa parte evita que eles sejam removidos;
point pivot;
bool radial_lt(point a, point b) {
 int R = ccw(pivot, a, b);
 if (R == 0) // sao colineares
   return (pivot-a) * (pivot-a) < (pivot-b) * (pivot-b);</pre>
    return (R == 1); // 1 se A esta a direita de (pivot->B)
vector<point> convexhull(vector<point> &T) {
  // Se for necessario remover pontos duplicadados
  sort(T.begin(), T.end()); //ordena por x e por v
  T.resize( unique( T.begin(), T.end() ) - T.begin() );
  int tam = 0, n = T.size();
 vector<point> U; // convex hull
  int idx = min element(T.begin(), T.end() ) - T.begin();
  //nesse caso, pivot = ponto com menor x, depois menor y
  pivot = T[idx];
  swap(T[0], T[idx]);
  sort(++T.begin(), T.end(), radial_lt);
  /*(1)*/int k; for(k=n-2; k>=0 && ccw(T[0],T[n-1],T[k])==0; k--);
  reverse((k+1)+all(T)); /*(1)*/
  // troque <= por < para manter pontos colineares na borda
  for(int i = 0; i < T.size(); i++){</pre>
    while (tam > 1 \&\& ccw(U[tam-2], U[tam-1], T[i]) \le 0)
     U.pop_back(), tam--;
   U.pb(T[i]); tam++;
  return U:
```

4.3 Minimum Enclosing Circle

```
//Finds a circle of the minimum area enclosing a 2D point set.
typedef pair<point, double> circle; // {ponto, raio}
bool in_circle(circle C, point p) { // ponto dentro de circulo?
  return cmp(abs(p-C.first), C.second) <= 0;</pre>
// menor circulo que engloba o triangulo (P,Q,R)
point circumcenter(point p, point q, point r) {
  point a = p-r, b = q-r, c, ret;
  c = point(dot(a,p+r), dot(b,q+r)) * 0.5;
  ret=point(cross(c, point(a.y, b.y)), cross(point(a.x, b.x),c)) /
  return ret;
circle spanning_circle(const vector<point>& T) {
  int n = T.size();
  random_shuffle(all(T));
  circle C(point(), -INF);
  rep(i, 0, n) if(!in_circle(C, T[i])){
   C = circle(T[i], 0);
    rep(j, 0, i) if (!in_circle(C, T[j])){
      C = circle((T[i]+T[j])/2, abs(T[i]-T[j])/2);
      rep(k, 0, j) if (!in_circle(C, T[k])){
        point 0 = circumcenter(T[i], T[j], T[k]);
        C = circle(O, abs(O-T[k]));
  return C;
```

5 Geometria 3D

5.1 Geometria 3D Library

```
#define LINE 0
#define SEGMENT 1
#define RAY 2
int sqn(double x) {
 return (x > EPS) - (x < -EPS);
#define vec(ini, fim) (fim - ini)
struct PT{
 double x, y, z;
 PT () \{x = y = z = 0; \}
 PT (double x, double y, double z):x(x), y(y), z(z) {}
 PT operator + (PT q) {return PT(x+q.x,y+q.y,z+q.z);}
 PT operator - (PT q) {return PT(x-q.x,y-q.y,z-q.z);}
 PT operator * (double d) { return PT(x*d, y*d, z*d); }
  PT operator / (double d) { return PT(x/d, y/d, z/d); }
  double dist2() const {
   return x*x+y*y+z*z;
  double dist() const{
   return sqrt(dist2());
```

```
bool operator == (const PT& a) const{
    return fabs(x - a.x) < EPS && fabs(y - a.y) < EPS && fabs(z -
        a.z) < EPS;
};
double dot (PT A, PT B) {
  return A.x*B.x + A.v*B.v + A.z*B.z;
PT cross(PT A, PT B) {
  return PT (A.y*B.z-A.z*B.y, A.z*B.x-A.x*B.z, A.x*B.y-A.y*B.x );
bool collinear (PT A, PT B, PT C) {
  return sqn(cross(B - A, C - A)) == 0;
inline double det (double a, double b, double c, double d) {
  return a*d - b*c:
inline double det (double a11, double a12, double a13, double a21,
    double a22, double a23, double a31, double a32, double a33) {
  return a11*det(a22,a23,a32,a33) - a12*det(a21,a23,a31,a33) +
      a13*det(a21,a22,a31,a32);
inline double det (const PT& a, const PT& b, const PT& c) {
  return det (a.x,a.y,a.z,b.x,b.y,b.z,c.x,c.y,c.z);
// tamanho do vetor A
double norma (PT A) {
  return sqrt (dot (A, A));
// distancia^2 de (a->b)
double distSq(PT a, PT b) {
 return dot(a-b, a-b);
// Projeta vetor A sobre o vetor B
PT project(PT A, PT B) { return B * dot(A, B) / dot(B, B); }
// Verifica se existe interseccao de segmentos
// (assumir que [A,B] e [C,D] sao coplanares)
bool seg_intersect (PT A, PT B, PT C, PT D) {
  return cmp(dot(cross(A-B, C-B), cross(A-B, D-B))) <= 0 &&
    cmp(dot(cross(C-D, A-D), cross(C-D, B-D))) \le 0;
// square distance between point and line, ray or segment
double ptLineDistSq(PT s1, PT s2, PT p, int type) {
  double pd2 = distSq(s1, s2);
  PT r;
  if(pd2 == 0)
    r = s1:
  else
    double u = dot(p-s1, s2-s1) / pd2;
    r = s1 + (s2 - s1) *u;
```

```
if(type != LINE && u < 0.0)
     r = s1;
   if(type == SEGMENT \&\& u > 1.0)
     r = s2;
 return distSq(r, p);
// Distancia de ponto P ao segmento [A,B]
double dist_point_seg(PT P, PT A, PT B) {
 PT PP = A + project (P-A, B-A);
 if (cmp(norma(A-PP) + norma(PP-B), norma(A-B)) == 0)
   return norma(P-PP);//distance point-line!
  else
   return min(norma(P-A), norma(P-B));
// Distance between lines ab and cd. TODO: Test this
double lineLineDistance(PT a, PT b, PT c, PT d) {
 PT v1 = b-a;
 PT v^2 = d-c;
 PT cr = cross(v1, v2);
 if (dot(cr, cr) < EPS) {</pre>
   PT proj = v1*(dot(v1, c-a)/dot(v1, v1));
   return sqrt(dot(c-a-proj, c-a-proj));
 } else {
   PT n = cr/sqrt(dot(cr, cr));
   PT p = dot(n, c - a);
   return sqrt(dot(p, p));
// Menor distancia do segmento [A,B] ao segmento [C,D] (lento*)
#define dps dist_point_seg
double dist_seq_seq(PT A, PT B, PT C, PT D) {
 PT E = project (A-D, cross(B-A, D-C));
 // distance between lines!
 if (seg_intersect(A, B, C+E, D+E)) {
   return norma(E);
 }else {
   double dA = dps(A,C,D), dB = dps(B,C,D);
   double dC = dps(C, A, B), dD = dps(D, A, B);
   return min(min(dA, dB), min(dC, dD));
 }
// Menor distancia do segmento [A,B] ao segmento [C,D] (rapido*)
double dist seg seg2 (PT A, PT B, PT C, PT D) {
 PT u(B-A), v(D-C), w(A-C);
 double a = dot(u, u), b = dot(u, v);
  double c = dot(v, v), d = dot(u, w), e = dot(v, w);
  double DD = a*c - b*b;
  double sc, sN, sD = DD;
  double tc, tN, tD = DD;
  if (DD < EPS) {
   sN = 0, sD = 1, tN = e, tD = c;
  }else{
   sN = (b*e - c*d);
   tN = (a * e - b * d);
```

```
sN = 0, tN = e, tD = c;
    }else if(sN > sD) {
      sN = sD, tN = e+b, tD = c;
  if (tN < 0) {
   tN = 0;
   if (-d < 0) sN = 0;
   else if (-d > a) sN = sD;
   else
    sN = -d;
     sD = a;
  }else if(tN > tD) {
   tN = tD;
   if((-d + b) < 0) sN = 0;
   else if (-d + b > a) sN = sD;
     sN = -d + b;
     sD = a;
  }
  sc = fabs(sN) < EPS ? 0 : sN/sD;
 tc = fabs(tN) < EPS ? 0 : tN/tD;
 PT dP = w + (u*sc) - (v*tc);
 return norma(dP);
// Distancia de Ponto a Triangulo, dps = dist point seg
double dist_point_tri(PT P, PT A, PT B, PT C) {
 PT N = cross(B-A, C-A);
 PT PP = P - project(P-A, N);
 PT R1, R2, R3;
 R1 = cross(B-A, PP-A);
  R2 = cross(C-B, PP-B);
 R3 = cross(A-C, PP-C);
  if (cmp(dot(R1,R2))) >= 0 \&\& cmp(dot(R2,R3)) >= 0 \&\&
      cmp(dot(R3,R1))>=0) {
   return norma(P-PP);
  else {
    return min(dps(P,A,B), min(dps(P,B,C), dps(P,A,C)));
}
// compute a, b, c, d such that all points lie on ax + by + cz = d.
    TODO: test this
void planeFromPts(PT p1, PT p2, PT p3, double& a, double& b, double&
   c, double & d) {
 PT normal = cross(p2-p1, p3-p1);
 a = normal.x; b = normal.y; c = normal.z;
  d = -a*p1.x-b*p1.y-c*p1.z;
// project point onto plane. TODO: test this
PT ptPlaneProj(PT p, double a, double b, double c, double d) {
  double 1 = (a*p.x+b*p.y+c*p.z+d)/(a*a+b*b+c*c);
  return PT(p.x-a*l, p.y-b*l, p.z-c*l);
```

if (sN < 0) {

```
return cross(pt - p, v) == PT();
// distance from point p to plane aX + bY + cZ + d = 0
                                                                              };
double ptPlaneDist(PT p, double a, double b, double c, double d) {
                                                                              struct plane {
 return fabs(a*p.x + b*p.y + c*p.z + d) / sqrt(a*a + b*b + c*c);
                                                                                PT n;
                                                                                double d;
                                                                                plane() : d(0) {}
// distance between parallel planes aX + bY + cZ + d1 = 0 and
                                                                                plane (const PT &p1, const PT &p2,
// aX + bY + cZ + d2 = 0
                                                                                    const PT &p3) {
double planePlaneDist (double a, double b, double c, double d1, double
                                                                                  n = cross(p_2 - p_1, p_3 - p_1);
    d2) {
                                                                                  d = -dot(n, p1);
 return fabs (d1 - d2) / sqrt (a*a + b*b + c*c);
                                                                                  assert (side (p1) == 0);
                                                                                  assert (side (p^2) == 0);
                                                                                  assert(side(p3) == 0);
// Volume de Tetraedro
double signedTetrahedronVol(PT A, PT B, PT C, PT D) {
                                                                                int side (const PT &p) const {
  double A11 = A.x - B.x;
                                                                                  return sqn(dot(n, p) + d);
  double A12 = A.x - C.x;
 double A13 = A.x - D.x;
                                                                              };
 double A21 = A.y - B.y;
  double A22 = A.y - C.y;
                                                                              // interesecao de retas
  double A23 = A.y - D.y;
                                                                              int intersec (const line& 11, const line& 12, PT& res) {
                                                                                assert(!(1.v == PT()));
  double A31 = A.z - B.z;
  double A32 = A.z - C.z;
                                                                                assert(!(l2.v == PT()));
  double A33 = A.z - D.z;
                                                                                if (cross(l1.v, l2.v) == PT()){
  double det =
                                                                                  if (cross(11.v, 11.p - 12.p) == PT())
   A11*A22*A33 + A12*A23*A31 +
                                                                                    return 2; // same
   A13*A21*A32 - A11*A23*A32 -
                                                                                  return 0; // parallel
   A12*A21*A33 - A13*A22*A31;
 return det / 6;
                                                                                PT n = cross(l1.v, l2.v);
                                                                                PT p = 12.p - 11.p;
                                                                                if (sgn(dot(n,p)))
// Parameter is a vector of vectors of points - each interior vector
                                                                                  return 0; // skew
// represents the 3 points that make up 1 face, in any order.
                                                                                double t:
// Note: The polyhedron must be convex, with all faces given as
                                                                                if (sqn(n.x))
    triangles.
                                                                                  t = (p.y * 12.v.z - p.z * 12.v.y) / n.x;
double polyhedronVol(vector<vector<PT> > poly) {
                                                                                else if (sqn(n.v))
 int i, j;
                                                                                  t = (p.z * 12.v.x - p.x * 12.v.z) / n.y;
 PT cent (0, 0, 0);
                                                                                else if (sqn(n.z))
 for (i=0; i<poly.size(); i++)</pre>
                                                                                  t = (p.x * 12.v.y - p.y * 12.v.x) / n.z;
   for (j=0; j<3; j++)
                                                                                else
      cent=cent+poly[i][j];
                                                                                  assert (false);
  cent=cent*(1.0/(poly.size()*3));
                                                                                res = 11.p + 11.v * t;
  double v=0;
                                                                                assert(l1.on(res)); assert(l2.on(res));
  for (i=0; i<poly.size(); i++)</pre>
                                                                                return 1; // intersects
   v+=fabs(signedTetrahedronVol(cent,poly[i][0],poly[i][1],poly[i][2])); }
 return v;
                                                                              // distancia entre 2 retas
                                                                              double dist(const line& 11, const line& 12) {
                                                                                PT ret = 11.p - 12.p;
                                                                                ret = ret - 11.v * (dot(11.v, ret) / 11.v.dist2());
                                                                                PT tmp = 12.v - 11.v \star
// Outras implementacoes [Usa struct PT]
                                                                                  (dot(l1.v, l2.v) / l1.v.dist2());
                                                                                if (sqn(tmp.dist2()))
struct line{ // reta definida por um ponto p e direcao v
                                                                                  ret = ret - tmp * (dot(tmp,ret) / tmp.dist2());
                                                                                assert(fabs(dot(ret,l1.v)) < eps);</pre>
 PT p, v;
  line(){};
                                                                                assert(fabs(dot(ret,tmp)) < eps);</pre>
 line (const PT& p, const PT& v):p(p), v(v) {
                                                                                assert (fabs (dot (ret, 12.v)) < eps);
   assert(!(v == PT()));
                                                                                return ret.dist();
 bool on (const PT& pt) const {
```

```
// Retorna os dois pontos mais proximos entre 11 e 12
void closest(const line& l1,const line& l2,
    PT& p1,PT& p2) {
                                                                              // retorna reta da intersecao de dois planos
 if (cross(l1.v,l2.v) == PT()){
                                                                              int cross (const plane &p1, const plane &p2,
    p1 = 11.p;
                                                                                  line &res) {
    p2 = 12.p - 11.v *
                                                                                res.v = cross(p1.n, p2.n);
      (dot(l1.v, l2.p - l1.p) / l1.v.dist2());
                                                                                if (res.v == PT()) {
    return;
                                                                                  if ( (p1.n * (p1.d / p1.n.dist2())) ==
                                                                                      (p2.n * (p2.d / p2.n.dist2())))
 PT p = 12.p - 11.p;
                                                                                    return 2;
  double t1 = (
                                                                                  else
      dot(11.v,p) * 12.v.dist2() -
                                                                                    return 0:
      dot(11.v, 12.v) * dot(12.v, p)
       ) / cross(l1.v,l2.v).dist2();
                                                                                plane p3;
  double t2 = (
                                                                                p3.n = res.v;
                                                                                p3.d = 0;
      dot(12.v, 11.v) * dot(11.v, p) -
                                                                                bool ret = cross(p1, p2, p3, res.p);
      dot(12.v,p) * 11.v.dist2()
       ) / cross(l2.v,l1.v).dist2();
                                                                                assert (ret);
  p1 = 11.p + 11.v * t1;
                                                                                assert (p1.side(res.p) == 0);
 p2 = 12.p + 12.v * t2;
                                                                                assert (p2.side(res.p) == 0);
  assert (l1.on(p1));
                                                                                return 1:
  assert (12.on(p2));
                                                                              // testes
//retorna a intersecao de reta com plano [retorna 1 se intersecao for
                                                                              int main(){
int cross (const line &l, const plane &pl,
                                                                                  line 1;
    PT &res) {
                                                                                  1.p = PT(1, 1, 1);
  double d = dot(pl.n, l.v);
                                                                                  1.v = PT(1, 0, -1);
  if (sqn(d) == 0) {
                                                                                  plane p(PT(10, 11, 12), PT(9, 8, 7), PT(1, 3, 2));
    return (pl.side(l.p) == 0) ? 2 : 0;
                                                                                  assert(cross(l, p, res) == 1);
  double t = (-dot(pl.n, l.p) - pl.d) / d;
  res = l.p + l.v * t;
#ifdef DEBUG
                                                                                  plane p1 (PT (1, 2, 3), PT (4, 5, 6), PT (-1, 5, -4));
  assert (pl.side (res) == 0);
                                                                                  plane p2(PT(3, 2, 1), PT(6, 5, 4), PT(239, 17, -42));
                                                                                  line 1:
  return 1;
                                                                                  assert (cross (p1, p2, 1) == 1);
bool cross (const plane& plane& p2,
                                                                                  plane p1 (PT(1, 2, 3), PT(4, 5, 6), PT(-1, 5, -4));
    const plane& p3, PT& res) {
                                                                                  plane p2(PT(1, 2, 3), PT(7, 8, 9), PT(3, -1, 10));
  double d = det(p1.n, p2.n, p3.n);
                                                                                  line 1:
  if (sqn(d) == 0) {
                                                                                  assert (cross (p1, p2, 1) == 2);
    return false;
 PT px (p1.n.x, p2.n.x, p3.n.x);
                                                                                  plane p1 (PT(1, 2, 3), PT(4, 5, 6), PT(-1, 5, -4));
 PT py (p1.n.y, p2.n.y, p3.n.y);
                                                                                  plane p2 (PT(1, 2, 4), PT(4, 5, 7), PT(-1, 5, -3));
 PT pz (p1.n.z, p2.n.z, p3.n.z);
 PT p(-p1.d, -p2.d, -p3.d);
                                                                                  assert (cross (p1, p2, 1) == 0);
  res = PT(
      det(p,py,pz)/d,
      det(px,p,pz)/d
                                                                                line 11,12;
      det(px,py,p)/d
                                                                                while (l1.p.load())
   ):
#ifdef DEBUG
                                                                                  l1.v.load(); l1.v = l1.v - l1.p;
  assert (p1.side(res) == 0);
                                                                                  12.p.load();
  assert (p_2.side (res) == 0);
                                                                                  12.v.load(); 12.v = 12.v - 12.p;
  assert (p3.side (res) == 0);
                                                                                  if (l1.v == PT() || l2.v == PT()) continue;
#endif
                                                                                  int cnt = intersec(l1, l2, res);
  return true;
```

```
double d = dist(11,12);
if (fabs(d) < eps)
    assert(cnt >= 1);
else
    assert(cnt == 0);
PT p1,p2;
closest(11,12,p1,p2);
assert(fabs((p1-p2).dist() - d) < eps);
}
plane a(PT(1,0,0),PT(0,1,0),PT(0,0,1));
plane b(PT(-1,0,0),PT(0,-1,0),PT(0,0,-1));
line 1;
assert((cross(a,b,1))==0);
return 0;</pre>
```

6 Grafos

6.1 dfs

```
// dfs (exemplo: detectando ciclos)
// Complexidade O(V+E)
#define MAXV (112345)
int V, E; // #Vertices, #Arestas
vector<int> adj[MAXV];
bool ciclo = false;
int vis[MAXV];
void dfs(int u) {
    vis[u] = 1;
    for (auto v : adj[u]) {
        if (vis[v] == 1) ciclo = true;
        else if (vis[v] == 0) dfs(v);
    vis[u] = 2;
int main(){
    cin >> V >> E:
    // inicializando var. para o caso de teste
    for(int v = 0; v < V; v++) adj[v].clear();</pre>
    for(int i = 0; i < E; i++) {</pre>
        int u, v;
        cin >> u >> v;
        adj[u].push_back(v);
    // Exemplo ciclo (dfs)
    ciclo = false;
    memset(vis, 0, sizeof(vis));
    for(int v=0; v<V; v++) if(!vis[v]) dfs(v);</pre>
    cout << "Tem ciclo = " << ciclo << endl;</pre>
    return 0;
```

6.2 bfs

```
// bfs (exemplo: calculando distancias a partir da origem)
// Complexidade O(V+E)
#define INF 0x3f3f3f3f3f
#define MAXV (112345)
int V, E; // #Vertices, #Arestas
vector<int> adj[MAXV];
int dist[MAXV];
void bfs(int src){
    queue <int> Q;
    memset(dist, INF, sizeof(dist));
    dist[src] = 0;
    Q.push(src);
    while (!Q.empty()) {
       int u = 0.front();
        printf("Dist from %d to %d = %d\n", src, u, dist[u]);
        for (auto v : adj[u]) {
            if(dist[u] + 1 < dist[v]){
                dist[v] = dist[u] + 1;
                0.push(v);
int main(){
    cin >> V >> E;
    // inicializando var. para o caso de teste
    for (int v = 0; v < V; v++) adj[v].clear();
    for(int i = 0; i < E; i++) {
       int u, v;
        cin >> u >> v;
        adj[u].push_back(v);
    bfs(0);
    return 0;
```

6.3 Topological Sort (Bfs)

```
// Ordenacao topologia baseado em BFS. Ideia: Processar os vertices
// que nao tem aresta chegando neles. Apos processar, remover as
// arestas dele para seus vizinhos. Os vizinhos que nao tiverem mais
// arestas chegando sao inseridos na fila para serem processados
// depois.
#define MAXV 100001
vector<int> adj[MAXV];
vector<int> ordem;
void topo_sort(int N) {
   queue<int> q;
   // para mudar a ordem que os vertices sao processados pode-se se
   // usar uma priority_queue, outra estrutura para ordenar os vertices
   vector<int> in_degree(N, 0);
```

```
rep(i, 0, N) rep(j, 0, adj[i].size())
    in_degree[adj[i][j]]++;

rep(i, 0, N) if (in_degree[i] == 0) q.push(i);
while (!q.empty()) {
    int u = q.front();
    q.pop();
    ordem.push_back(u);
    rep(i, 0, adj[u].size()) {
        int v = adj[u][i];
        in_degree[v]--;
        if (in_degree[v] == 0) q.push(v);
    }
}
if (ordem.size() != N) {
    // grafo contem ciclos, nao eh um DAG
    }
}
int main() { return 0; }
```

6.4 Tarjan (Scc)

```
#define MAXV 100010
vector<int> adj[MAXV];
int dfs_num[MAXV], dfs_low[MAXV], vis[MAXV], SCC[MAXV];
int dfsCounter, numSCC:
vector<int> S; // global variables
void tarianSCC(int u) {
  dfs_low[u] = dfs_num[u] = dfsCounter++; // dfs_low[u] <= dfs_num[u]</pre>
  S.push_back(u); // stores u in a vector based on order of
                   // visitation
  vis[u] = 1;
  rep(i, 0, adj[u].size()) {
   int v = adj[u][i];
   if (dfs_num[v] == -1) tarjanSCC(v);
   if (vis[v]) // condition for update
      dfs low[u] = min(dfs low[u], dfs low[v]);
  if (dfs low[u] ==
      dfs num[u]) { // if this is a root (start) of an SCC
    while (true) {
      int v = S.back();
      S.pop_back();
      vis[v] = 0;
      SCC[v] = numSCC; // wich SCC this vertex belong
      if (u == v) break;
   numSCC++;
int main() {
  // read graph
  rep(i, 0, V) {
   dfs num[i] = -1;
   dfs_low[i] = vis[i] = 0;
   SCC[i] = -i;
```

```
dfsCounter = numSCC = 0;
rep(i, 0, V) if (dfs_num[i] == -1) tarjanSCC(i);
rep(i, 0, V) printf("vertice %d, componente %d\n", i, SCC[i]);
return 0;
```

6.5 Kosaraju (Scc)

```
// Encotra componentes conexos. Mesmo que Tarjan
#define MAXV 100000
#define DFS WHITE 0
vector<int> adj[2][MAXV]; // adj[0][] original, adj[1][] transposto
vector<int> S, dfs_num;
int N, numSCC, SCC[MAXV];
void Kosaraju(int u, int t, int comp) {
 dfs num[u] = 1:
  if (t == 1) SCC[u] = comp;
  for (int j = 0; j < (int)adj[t][u].size(); j++) {</pre>
    int v = adj[t][u][j];
    if (dfs_num[v] == DFS_WHITE) Kosaraju(v, t, comp);
  S.push_back(u);
void doit() { // chamar na main
  S.clear();
  dfs_num.assign(N, DFS_WHITE);
  for (int i = 0; i < N; i++)</pre>
    if (dfs num[i] == DFS WHITE) Kosaraju(i, 0, -1);
  numSCC = 0;
  dfs_num.assign(N, DFS_WHITE);
  for (int i = N - 1; i >= 0; i--)
    if (dfs_num[S[i]] == DFS_WHITE) {
      Kosaraju(S[i], 1, numSCC);
      numSCC++;
  printf("There are %d SCCs\n", numSCC);
```

6.6 Dijkstra

```
#define MAXV 100000
int dist[MAXV], pi[MAXV]; // dist from s and pointer to parent
vector<ii> adj[MAXV];
                        // edge = \{v, dist\}
int dijkstra(int s, int t, int n) {
  priority_queue<ii>> pq;
  memset(pi, -1, sizeof pi);
  memset (dist, INF, sizeof dist);
  pq.push(ii(dist[s] = 0, s));
  while (!pq.empty()) {
   ii top = pq.top();
   pq.pop();
   int u = top.second, d = -top.first;
   if (d != dist[u]) continue;
   if (u == t) break; // terminou antes
    rep(i, 0, (int)adj[u].size()) {
      int v = adj[u][i].F;
```

```
int cost = adj[u][i].S;
if (dist[v] > dist[u] + cost) {
    dist[v] = dist[u] + cost;
    pi[v] = u;
    pq.push(ii(-dist[v], v));
    }
}
return dist[t];
}
```

6.7 Floyd-Warshall

```
#define MAXV 401
int adj[MAXV][MAXV], path[MAXV][MAXV];
int n, m; // #vertices, #arestas
// adj[u][v] = custo de {U->V}
// path[u][v] = k .: K vem logo apos U no caminho ate V
void read_graph() {
  memset(adj, INF, sizeof adj); // para menor caminho
  rep(i, 0, n) adj[i][i] = 0; // para menor caminho
  int u, v, w;
  rep(i, 0, m) {
   cin >> u >> v >> w;
   adj[u][v] = w;
   path[u][v] = v;
void floyd() {
  rep(k, 0, n) rep(i, 0, n)
      rep(j, 0, n) if (adj[i][k] + adj[k][j] < adj[i][j]) {
   adj[i][j] = adj[i][k] + adj[k][j];
   path[i][j] = path[i][k];
vector<int> findPath(int s, int d) {
 vector<int> Path:
 Path.pb(s);
  while (s != d)
   s = path[s][d];
   Path.pb(s);
  return Path;
/*Aplicacoes:
1-Encontrar o fecho transitivo (saber se U conseque visitar V)
.: adj[u][v] = (adj[u][k] & adj[k][v]);
   (inicializar adj com 0)
2-Minimizar a maior aresta do caminho entre U e V
.: adj[u][v] = min(adj[u][v], max(adj[u][k], adj[k][v]));
   (inicializar adj com INF)
3-Maximizar a menor aresta do caminho entre U e V
.: adj[u][v] = max(adj[u][v], min(adj[u][k], adj[k][u]));
   (inicializar adj com -INF) */
```

6.8 Bellman-Ford

```
// Menor custo de uma origem para todos vertices em O(V^3).
// bellman() retorna FALSE se o grafo tem ciclo com custo negativo.
// dist[v] contem o menor custo da origem ate v.
#define MAXV 400
// Vertices indexados em 0.
int V, E; // #vertices, #arestas
vector<ii> adj[MAXV];
11 dist[MAXV];
bool bellman(int src) {
  rep(i, 0, V) dist[i] = INF;
  dist[src] = 0;
  rep(i, 0, V - 1) rep(u, 0, V) {
   rep(j, 0, adj[u].size()) {
     int v = adi[u][i].F, duv = adi[u][i].S;
      dist[v] = min(dist[v], dist[u] + duv);
  // verifica se tem ciclo com custo negativo
  rep(u, 0, V) rep(j, 0, adj[u].size()) {
    int v = adj[u][j].F, duv = adj[u][j].S;
   if (dist[v] > dist[u] + duv) return false;
  return true;
```

6.9 Vértices de Articulação e Pontes

```
#define MAXV 100001
vector<int> adj[MAXV];
int dfs_num[MAXV], dfs_low[MAXV], dfs_parent[MAXV];
int dfscounter, V, dfsRoot, rootChildren, ans;
int articulation[MAXV], articulations;
vector<ii> bridges;
void articulationPointAndBridge(int u) {
  dfs_low[u] = dfs_num[u] = dfscounter++;
  rep(i, 0, adj[u].size()) {
   int v = adj[u][i];
   if (dfs num[v] == -1) {
      dfs_parent[v] = u;
      if (u == dfsRoot) rootChildren++;
      articulationPointAndBridge(v);
      if (dfs_low[v] >= dfs_num[u]) articulation[u] = true;
      if (dfs_low[v] > dfs_num[u]) bridges.pb(mp(u, v));
      dfs_low[u] = min(dfs_low[u], dfs_low[v]);
    } else if (v != dfs_parent[u])
      dfs_low[u] = min(dfs_low[u], dfs_num[v]);
int main() {
  // read graph
```

```
dfscounter = 0;
rep(i, 0, V) {
 dfs low[i] = dfs parent[i] = articulation[i] = 0;
 dfs num[i] = -1;
articulations = 0;
bridges.clear();
rep(i, 0, V) if (dfs_num[i] == -1) {
 dfsRoot = i;
 rootChildren = 0;
 articulationPointAndBridge(i);
 articulation[dfsRoot] = (rootChildren > 1);
printf("#articulations = %d\n", articulations);
rep(i, 0, V) if (articulation[i]) printf("Vertex %d\n", i);
printf("#bridges = %d\n", bridges.size());
rep(i, 0, bridges.size())
    printf("Bridge %d<->%d\n", bridges[i].F, bridges[i].S);
return 0:
```

6.10 LCA

```
/*Lowest Common Ancestor (LCA) entre dois vertices A, B de uma arvore.
LCA(A,B) = ancestral mais proximo de A adj B. O codigo abaixo também
calcula a menor aresta do caminho entre A adi B. Para saber quantas
arestas tem entre A adj B basta fazer:
    level[A]+level[B]-2*level[lca(A,B)]
Pode-se modificar para retorna a
distancia entre A adj B. Como usar: (1) ler a arvore em adj[] adj W[],
chamar doit(raiz), passando a raiz da arvore. Indexar em 0 os vertices
(2) A funcao retorna o LCA adj a menor aresta entre A adj B.
#define MAXV 101000
                           // profundidade maxima 2^(maxl) > MAXV
const int max1 = 20:
int pai[MAXV][maxl + 1]; // pai[v][i] = pai de v subindo 2^i arestas
int dist[MAXV][maxl + 1]; // dist[v][i] = menor aresta de v subindo
                           // 2^i arestas
int level[MAXV];
                           // level[v] = #arestas de v ate a raiz
                                    // numero de vertices adj arestas
int N, M;
vector<pair<int, int> > adj[MAXV]; // {v,custo}
void dfs(int v, int p, int peso) {
  level[v] = level[p] + 1;
  pai[v][0] = p;
  dist[v][0] = peso; // aresta de v--pai[v]
  for (int i = 1; i <= maxl; i++) {</pre>
   pai[v][i] = pai[pai[v][i - 1]][i - 1]; // subindo 2^i arestas
   dist[v][i] = min(dist[v][i-1], dist[pai[v][i-1]][i-1]);
  rep(i, 0, adj[v].size()) {
   int viz = adj[v][i].F;
   int cost = adj[v][i].S;
   if (viz == p) continue;
   dfs(viz, v, cost);
```

```
void doit(int root) {
  level[root] = 0;
  for (int i = 0; i <= maxl; i++)</pre>
    pai[root][i] = root, dist[root][i] = INF;
  rep(i, 0, adj[root].size()) {
   int viz = adj[root][i].F;
    int cost = adj[root][i].S;
    dfs(viz, root, cost);
pair<int, int> lca(int a, int b) {
  int menor = INF; // valor da menor aresta do caminho a->b
  if (level[a] < level[b]) swap(a, b);</pre>
  for (int i = maxl; i >= 0; i--) {
    if (level[pai[a][i]] >= level[b]) {
      menor = min(menor, dist[a][i]);
      a = pai[a][i]:
  if (a != b) {
    for (int i = maxl; i >= 0; i--) {
      if (pai[a][i] != pai[b][i]) {
        menor = min(menor, min(dist[a][i], dist[b][i]));
        a = pai[a][i];
       b = pai[b][i];
    // ultimo salto
    menor = min(menor, min(dist[a][0], dist[b][0]));
    a = pai[a][0];
    b = pai[b][0];
  return make_pair(a, menor);
int main() { return 0; }
```

6.11 LCA (Sparse Table)

```
ii st[4*MAXN][LOGN];
void dfs(int u, int p) {
  level[u] = level[p] + 1;
  f[u] = num.size();
  num.pb(u);
  rep(i, 0, (int)adj[u].size()) {
    if(adj[u][i] == p) continue;
    dfs(adj[u][i], u);
   num.pb(u);
ii comb(ii left, ii right)
  return min(left, right);
void SparseTable() {
  rep(i, 0, num.size()) st[i][0] = make_pair(level[num[i]], num[i]);
  rep (k, 1, LOGN) for (int i = 0; (i + (1 << k) - 1) < num.size(); i++)
    st[i][k] = comb(st[i][k-1], st[i+(1<<(k-1))][k-1]);
int lca(int u, int v)
  int 1 = f[u];
  int r = f[v];
  int k = log_2(r - l + 1);
  return comb(st[l][k], st[r - (1 << k) + 1][k]).second;
```

6.12 Maximum Bipartite Matching

```
// Encontra o casamento bipartido maximo. Set de vertices X e Y.
// x = [0, X-1], y = [0, Y-1]. match[y] = x - contem quem esta casado
// com y. Teorema de Konig - Num grafo bipartido, o matching eh igual
// ao minimum vertex cover. Complexidade O(nm)
#define MAXV 1000
vector<int> adj[MAXV];
int match[MAXV], V, X, Y;
bool vis[MAXV];
int aug(int v) {
  if (vis[v]) return 0;
 vis[v] = true;
  rep(i, 0, adj[v].size()) {
   int r = adj[v][i];
    if (match[r] == -1 \mid \mid aug(match[r])) {
      match[r] = v; // augmenting path
      return 1;
  return 0:
int matching(int X, int Y) {
```

```
int V = X + Y;
rep(i, 0, V) match[i] = -1;
int mcbm = 0;
rep(i, 0, X) {
   rep(j, 0, X) vis[j] = false;
   mcbm += aug(i);
}
return mcbm;
}
int main() { return 0; }
```

6.13 Hopcroft Karp - Maximum Bipartite Matching (UNI-FEI)

```
/*Encontra o casamento bipartido maximo em O(sqrt(V)*E)
1) Chamar init(L,R) #vertices da esquerda, #vertices da direita
2) Usar addEdge(Li,Ri) para adicionar a aresta Li -> Ri
3) maxMatching() retorna o casamento maximo.
matching[Rj] -> armazena Li */
#define MAXN1 3010
#define MAXN2 3010
#define MAXM 6020
int n1, n2, edges, last[MAXN1], pre[MAXM], head[MAXM];
int matching[MAXN2], dist[MAXN1], Q[MAXN1];
bool used[MAXN1], vis[MAXN1];
void init(int L, int R) {
  n1 = L, n2 = R;
  edges = 0;
  fill(last, last + n1, -1);
void addEdge(int u, int v) {
  head[edges] = v;
  pre[edges] = last[u];
  last[u] = edges++;
void bfs() {
  fill(dist, dist + n1, -1);
  int sizeQ = 0;
  for (int u = 0; u < n1; ++u) {</pre>
    if (!used[u]) {
      Q[sizeQ++] = u;
      dist[u] = 0;
  for (int i = 0; i < sizeQ; i++) {</pre>
    int u1 = Q[i];
    for (int e = last[u1]; e >= 0; e = pre[e]) {
     int u2 = matching[head[e]];
     if (u2 >= 0 && dist[u2] < 0) {
        dist[u2] = dist[u1] + 1;
        Q[sizeQ++] = u2;
bool dfs(int u1) {
 vis[u1] = true;
```

```
for (int e = last[u1]; e >= 0; e = pre[e]) {
    int v = head[e];
   int u2 = matching[v];
   if (u2 < 0 \mid | !vis[u2] \&\& dist[u2] == dist[u1] + 1 \&\& dfs(u2)) {
      matching[v] = u1;
      used[u1] = true;
      return true;
  return false;
int maxMatching()
 fill(used, used + n1, false);
 fill (matching, matching + n^2, -1);
 for (int res = 0;;) {
   bfs();
   fill(vis, vis + n1, false);
   int f = 0;
   for (int u = 0; u < n1; ++u)
     if (!used[u] && dfs(u)) ++f;
   if (!f) return res;
   res += f;
```

6.14 Network Flow (lento)

```
// Ford-Fulkerson para fluxo maximo
#define MAXV 250
vector<int> edge[MAXV];
int cap[MAXV][MAXV];
bool vis[MAXV];
void init() {
 rep(i, 0, MAXV) edge[i].clear();
 memset(cap, 0, sizeof cap);
void add(int a, int b, int cap_ab, int cap_ba) {
  edge[a].pb(b), edge[b].pb(a);
  cap[a][b] += cap_ab, cap[b][a] += cap_ba;
int dfs(int src, int snk, int fl) {
 if (vis[src]) return 0;
  if (snk == src) return fl;
 vis[src] = 1;
  rep(i, 0, edge[src].size()) {
   int v = edge[src][i];
   int x = min(fl, cap[src][v]);
   if (x > 0) {
      x = dfs(v, snk, x);
      if (!x) continue;
      cap[src][v] = x;
     cap[v][src] += x;
      return x;
  return 0;
```

```
int flow(int src, int snk) {
  int ret = 0;
  while (42) {
    memset(vis, 0, sizeof vis);
    int delta = dfs(src, snk, 1 << 30);
    if (!delta) break;
    ret += delta;
  }
  return ret;
}</pre>
```

6.15 Network Flow - Dinic

```
// Dinic para fluxo maximo
// Grafo indexado em 1
// Inicializar maxN, maxE.
// Chamar init() com #nos, source e sink. Montar o grafo chamando
// add(a,b,c1,c2), sendo c1 cap. de a->b e c2 cap. de b->a
#define FOR(i, a, b) for (int i = a; i <= b; i++)
#define SET(c, v) memset(c, v, sizeof c)
const int maxN = 5000;
const int maxE = 70000;
const int inf = 1000000005;
int nnode, nedge, src, snk;
int Q[maxN], pro[maxN], fin[maxN], dist[maxN];
int flow[maxE], cap[maxE], to[maxE], prox[maxE];
void init(int _nnode, int _src, int _snk) {
  nnode = _nnode, nedge = 0, src = _src, snk = _snk;
 FOR(i, 1, nnode) fin[i] = -1;
void add(int a, int b, int c1, int c2) {
  to[nedge] = b, cap[nedge] = c1, flow[nedge] = 0,
  prox[nedge] = fin[a], fin[a] = nedge++;
  to [nedge] = a, cap [nedge] = c^2, flow [nedge] = 0,
  prox[nedge] = fin[b], fin[b] = nedge++;
bool bfs() {
  SET (dist, -1);
 dist[src] = 0;
  int st = 0, en = 0;
 Q[en++] = src;
  while (st < en)</pre>
    int u = Q[st++];
    for (int e = fin[u]; e >= 0; e = prox[e]) {
     int v = to[e];
      if (flow[e] < cap[e] && dist[v] == -1) {
       dist[v] = dist[u] + 1;
        O[en++] = v;
  return dist[snk] != -1;
int dfs(int u, int fl) {
```

```
if (u == snk) return fl;
  for (int& e = pro[u]; e >= 0; e = prox[e]) {
    int v = to[e];
    if (flow[e] < cap[e] && dist[v] == dist[u] + 1) {
      int x = dfs(v, min(cap[e] - flow[e], fl));
      if (x > 0) {
        flow[e] += x, flow[e ^1] -= x;
        return x;
  return 0;
ll dinic() {
 ll ret = 0:
  while (bfs()) {
    FOR(i, 1, nnode) pro[i] = fin[i];
    while (true) {
      int delta = dfs(src, inf);
     if (!delta) break;
      ret += delta;
  return ret;
```

6.16 Min Cost Max Flow

```
// Criar o grafo chamando MCMF q(V), onde q eh o grafo e V a qtde de
// vertices (indexado em 0). Chamar q.add(u,v,cap,cost) para add a
// aresta u->v, se for bidirecional, chamar tbm q.add(v,u,cap,cost)
struct MCMF {
  typedef int ctype;
  enum { MAXN = 550, INF = INT_MAX };
  struct Edge {
   int x, y;
   ctype cap, cost;
  };
  vector<Edge> E;
  vector<int> adj[MAXN];
  int N, prev[MAXN];
  ctype dist[MAXN], phi[MAXN];
  MCMF (int NN) : N(NN) {}
  void add(int x, int y, ctype cap, ctype cost) { // cost >= 0
    Edge e1 = \{x, y, cap, cost\}, e2 = \{y, x, 0, -cost\};
    adj[e1.x].push_back(E.size());
    E.push_back(e1);
    adj[e2.x].push_back(E.size());
    E.push_back(e2);
  void mcmf(int s, int t, ctype &flowVal, ctype &flowCost) {
    flowVal = flowCost = 0;
    memset(phi, 0, sizeof(phi));
    while (true) {
      for (x = 0; x < N; x++) \text{ prev}[x] = -1;
```

```
for (x = 0; x < N; x++) dist[x] = INF;
      dist[s] = prev[s] = 0;
      set<pair<ctype, int> > Q;
      Q.insert(make_pair(dist[s], s));
      while (!O.emptv()) {
       x = Q.begin() -> second;
        Q.erase(Q.begin());
        for (vector<int>::iterator it = adj[x].begin();
             it != adj[x].end(); it++) {
          const Edge &e = E[*it];
          if (e.cap <= 0) continue;</pre>
          ctype cc = e.cost + phi[x] - phi[e.y];
          if (dist[x] + cc < dist[e.y]) {</pre>
            Q.erase(make_pair(dist[e.y], e.y));
            dist[e.y] = dist[x] + cc;
            prev[e.y] = *it;
            Q.insert(make_pair(dist[e.y], e.y));
      if (prev[t] == -1) break;
      ctvpe z = INF;
      for (x = t; x != s; x = E[prev[x]].x)
       z = min(z, E[prev[x]].cap);
      for (x = t; x != s; x = E[prev[x]].x) {
       E[prev[x]].cap -= z;
        E[prev[x] ^ 1].cap += z;
      flowVal += z;
      flowCost += z * (dist[t] - phi[s] + phi[t]);
      for (x = 0; x < N; x++)
        if (prev[x] != -1) phi[x] += dist[x];
};
int main() { return 0; }
```

6.17 Min Cost Max Flow (Stefano)

```
#define MAX_V 2003
#define MAX_E 2 * 3003
// Inicializar MAX_V e MAX_E corretamente. Chamar init(_V) com a qtde
// de vertices (indexado em 0) mesmo que seja bidirecional. Adicionar
// as arestas duas vezes no main(). Complexiade (rapido)

typedef int cap_type;
typedef long long cost_type;
const cost_type inf = LLONG_MAX;

int V, E, pre[MAX_V], last[MAX_V], to[MAX_E], nex[MAX_E];
bool visited[MAX_V];
cap_type flowVal, cap[MAX_E];
cost_type flowCost, cost[MAX_E], dist[MAX_V], pot[MAX_V];

void init(int _V) {
   memset(last, -1, sizeof(last));
   V = _V;
```

```
E = 0;
void add_edge(int u, int v, cap_type _cap, cost_type _cost) {
 to[E] = v, cap[E] = _cap;
  cost[E] = cost, nex[E] = last[u];
  last[u] = E++;
 to[E] = u, cap[E] = 0;
 cost[E] = - cost, nex[E] = last[v];
 last[v] = E++;
// only if there is initial negative cycle
void BellmanFord(int s, int t) {
 bool stop = false;
  for (int i = 0; i < V; ++i) dist[i] = inf;</pre>
  dist[s] = 0;
  for (int i = 1; i <= V && !stop; ++i) {</pre>
    stop = true;
    for (int j = 0; j < E; ++j) {</pre>
      int u = to[j ^ 1], v = to[j];
      if (cap[j] > 0 && dist[u] != inf &&
          dist[u] + cost[j] < dist[v]) {
        stop = false;
        dist[v] = dist[u] + cost[j];
  for (int i = 0; i < V; ++i)</pre>
    if (dist[i] != inf) pot[i] = dist[i];
void mcmf(int s, int t) {
  flowVal = flowCost = 0;
  memset(pot, 0, sizeof(pot));
  BellmanFord(s, t);
  while (true) {
    memset (pre, -1, sizeof (pre));
    memset(visited, false, sizeof(visited));
    for (int i = 0; i < V; ++i) dist[i] = inf;</pre>
    priority_queue<pair<cost_type, int> > Q;
    0.push(make pair(0, s));
    dist[s] = pre[s] = 0;
    while (!Q.empty()) {
      int aux = Q.top().second;
      () qoq. 0
      if (visited[aux]) continue;
      visited[aux] = true;
      for (int e = last[aux]; e != -1; e = nex[e]) {
        if (cap[e] <= 0) continue;</pre>
        cost_type new_dist =
```

```
dist[aux] + cost[e] + pot[aux] - pot[to[e]];
        if (new_dist < dist[to[e]]) {</pre>
          dist[to[e]] = new_dist;
          pre[to[e]] = e;
          Q.push (make_pair(-new_dist, to[e]));
    }
    if (pre[t] == -1) break;
    cap_type f = cap[pre[t]];
    for (int i = t; i != s; i = to[pre[i] ^ 1])
      f = min(f, cap[pre[i]]);
    for (int i = t; i != s; i = to[pre[i] ^ 1]) {
      cap[pre[i]] -= f;
      cap[pre[i] ^ 1] += f;
    flowVal += f;
    flowCost += f * (dist[t] - pot[s] + pot[t]);
    for (int i = 0; i < V; ++i)</pre>
      if (pre[i] != -1) pot[i] += dist[i];
}
int main() { return 0; }
```

6.18 2-Sat

```
#define MAXV 100001
// 2-sat - Codigo do problema X-Mart
// vertices indexado em 1
vector<int> adj[2 * MAXV];
vector<int> radj[2 * MAXV];
int seen[2 * MAXV], comp[2 * MAXV], order[2 * MAXV], ncomp, norder;
int N; // #variaveis
int n; // #vertices
#define NOT(x) ((x <= N) ? (x + N) : (x - N))
#define quero 1
void add_edge(int a, int b, int opcao) {
 if (a > b) swap(a, b);
  if (b == 0) return;
  if (a == 0) {
   if (opcao == quero)
      adj[NOT(b)].pb(b);
      adj[b].pb(NOT(b));
  } else { // normal...
   if (opcao == quero) {
      adj[NOT(a)].pb(b);
      adj[NOT(b)].pb(a);
   } else {
      a = NOT(a);
      b = NOT(b);
      adi[NOT(a)].pb(b);
      adj[NOT(b)].pb(a);
```

```
void init() {
  rep(i, 0, n + 1) {
    adj[i].clear();
    radj[i].clear();
void dfs1(int u) {
  seen[u] = 1;
  rep(i, 0, adj[u].size()) if (!seen[adj[u][i]]) dfs1(adj[u][i]);
  order[norder++] = u;
void dfs2(int u)
  seen[u] = 1;
  rep(i, 0, radj[u].size()) if (!seen[radj[u][i]]) dfs2(radj[u][i]);
  comp[u] = ncomp;
void strongly_connected_components() {
  rep(v, 1, n + 1) rep(i, 0, (int)adj[v].size()) radj[adj[v][i]].pb(
      v);
  norder = 0;
  memset (seen, 0, sizeof seen);
  rep(v, 1, n + 1) if (!seen[v]) dfs1(v);
  ncomp = 0;
  memset (seen, 0, sizeof seen);
  for (int i = n - 1, u = order[n - 1]; i >= 0; u = order[--i])
    if (!seen[u]) {
      dfs2(u);
      ncomp++;
bool sat2() {
  strongly_connected_components();
  rep(i, 1, n + 1) if (comp[i] == comp[NOT(i)]) return false;
  return true;
int main() {
  int Clientes;
  while (cin >> Clientes >> N) {
    if (Clientes == 0 && N == 0) break;
    n = 2 * N;
    init();
    int u, v;
    rep(i, 0, Clientes) {
      scanf("%d %d", &u, &v);
      add_edge(u, v, quero);
      scanf("%d %d", &u, &v);
      add_edge(u, v, !quero);
    sat2() ? printf("yes\n") : printf("no\n");
  return 0;
```

6.19 Tree Isomorphism

```
// vertices, elas tem a mesma forma.
typedef vector<int> vi;
#define sz(a) (int)a.size()
#define fst first
#define snd second
struct tree {
  int n;
  vector<vi> adj;
  tree(int n) : n(n), adj(n) {}
  void add_edge(int src, int dst) {
    adj[src].pb(dst);
    adj[dst].pb(src);
  vi centers() {
    vi prev;
    int u = 0;
    for (int k = 0; k < 2; ++k) {
      queue<int> q;
      prev.assign(n, -1);
      q.push(prev[u] = u);
      while (!q.empty()) {
        u = q.front();
        q.pop();
        for (auto i : adj[u]) {
          if (prev[i] >= 0) continue;
          q.push(i);
          prev[i] = u;
    vi path = {u};
    while (u != prev[u]) path.pb(u = prev[u]);
    int m = sz(path);
    if (m % 2 == 0)
      return {path[m / 2 - 1], path[m / 2]};
    else
      return {path[m / 2]};
  vector<vi> layer;
  vi prev;
  int levelize(int r)
    prev.assign(n, -1);
    prev[r] = n;
    layer = \{\{r\}\};
    while (true)
      vi next;
      for (auto u : layer.back()) {
        for (int v : adj[u]) {
          if (prev[v] >= 0) continue;
          prev[v] = u;
          next.pb(v);
      if (next.empty()) break;
      layer.pb(next);
    return sz(layer);
};
```

```
bool isomorphic(tree S, int s, tree T, int t) {
  if (S.n != T.n) return false;
  if (S.levelize(s) != T.levelize(t)) return false;
  vector<vi> longcodeS(S.n + 1), longcodeT(T.n + 1);
  vi codeS(S.n), codeT(T.n);
  for (int h = S.layer.size() - 1; h >= 0; h--) {
    map<vi, int> bucket;
    for (int u : S.layer[h]) {
      sort(all(longcodeS[u]));
      bucket[longcodeS[u]] = 0;
    for (int u : T.layer[h]) {
      sort(all(longcodeT[u]));
      bucket[longcodeT[u]] = 0;
    int id = 0:
    for (auto &p : bucket) p.snd = id++;
    for (int u : S.layer[h]) {
      codeS[u] = bucket[longcodeS[u]];
      longcodeS[S.prev[u]].pb(codeS[u]);
    for (int u : T.layer[h]) {
      codeT[u] = bucket[longcodeT[u]];
      longcodeT[T.prev[u]].pb(codeT[u]);
  return codeS[s] == codeT[t];
bool isomorphic(tree S, tree T) {
  auto x = S.centers(), y = T.centers();
  if (sz(x) != sz(y)) return false;
  if (isomorphic(S, x[0], T, y[0])) return true;
  return sz(x) > 1 and isomorphic(S, x[1], T, y[0]);
int main() {
  int N, u, v;
  cin >> N;
 tree A(N + 2), B(N + 2);
  rep(i, 0, N - 1) {
   scanf("%d %d", &u, &v);
   u--, v--;
   A.add_edge(u, v);
  rep(i, 1, N)  {
   scanf("%d %d", &u, &v);
   u--, v--;
   B.add_edge(u, v);
  puts(isomorphic(A, B) ? "S" : "N");
```

6.20 Stoer Wagner-Minimum Cut (UNIFEI)

```
/*
Retorna o corte minimo do grafo
(Conjunto de arestas que caso seja removido, desconecta o grafo)
Input: n = #vertices, g[i][j] = custo da aresta (i->j)
Output: Retorna o corte minimo
```

```
Complexidade: O(N^3)
// Maximum number of vertices in the graph
#define NN 101
// Maximum edge weight (MAXW * NN * NN must fit into an int)
#define MAXW 110
// Adjacency matrix and some internal arrays
int g[NN][NN], v[NN], w[NN], na[NN], n;
bool a[NN];
int stoer_wagner() {
  // init the remaining vertex set
  for (int i = 0; i < n; i++) v[i] = i;</pre>
  // run Stoer-Wagner
  int best = MAXW * n * n;
  while (n > 1) {
    // initialize the set A and vertex weights
    a[v[0]] = true;
    for (int i = 1; i < n; i++) {</pre>
      a[v[i]] = false;
      na[i - 1] = i;
      w[i] = g[v[0]][v[i]];
    // add the other vertices
    int prev = v[0];
    for (int i = 1; i < n; i++) {</pre>
      // find the most tightly connected non-A vertex
      int zj = -1;
      for (int j = 1; j < n; j++)
       if (!a[v[j]] \&\& (zj < 0 || w[j] > w[zj])) zj = j;
      // add it to A
      a[v[zj]] = true;
      // last vertex?
      if (i == n - 1) {
        // remember the cut weight
       best = min(best, w[zj]);
        // merge prev and v[zj]
        for (int j = 0; j < n; j++)
          q[v[j]][prev] = q[prev][v[j]] += q[v[zj]][v[j]];
        v[zj] = v[--n];
       break;
      prev = v[zj];
      // update the weights of its neighbours
      for (int j = 1; j < n; j++)
        if (!a[v[j]]) w[j] += g[v[zj]][v[j]];
  return best;
int main() { return 0; }
```

6.21 Erdos Gallai (UNIFEI)

```
// Determina se existe um grafo tal que b[i] eh o grau do i-esimo // vertice. Vertices indexado em 1. Apenas armazenar em b[1...N] e // chamar EGL()
```

```
long long b[100005], n;
long long dmax, dmin, dsum, num_degs[100005];
bool basic_graphical_tests() { // Sort and perform some simple tests
                                 // on the sequence
  int p = n;
  memset(num_degs, 0, (n + 1) * sizeof(long long));
  dmax = dsum = n = 0;
  dmin = p;
  for (int d = 1; d <= p; d++) {
    if (b[d] < 0 || b[d] >= p)
      return false:
    else if (b[d] > 0) {
      if (dmax < b[d]) dmax = b[d];
      if (dmin > b[d]) dmin = b[d];
      dsum = dsum + b[d];
      n++;
      num_degs[b[d]]++;
  if (dsum % 2 | | dsum > n * (n - 1)) return false;
  return true;
bool EGL() {
  long long k, sum_deg, sum_nj, sum_jnj, run_size;
  if (!basic_graphical_tests()) return false;
  if (n == 0 \mid | 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1))
    return true;
  k = sum_deg = sum_nj = sum_jnj = 0;
  for (int dk = dmax; dk >= dmin; dk--) {
    if (dk < k + 1) return true;</pre>
    if (num_degs[dk] > 0) {
      run size = num degs[dk];
      if (dk < k + run_size) run_size = dk - k;</pre>
      sum_deg += run_size * dk;
      for (int v = 0; v < run_size; v++) {</pre>
        sum_n; += num_degs[k + v];
        sum_jnj += (k + v) * num_degs[k + v];
      k += run size;
      if (sum_deg > k * (n - 1) - k * sum_nj + sum_jnj) return false;
  return true;
```

6.22 Stable Marriage (UNIFEI)

```
/*Seja um conjunto de m homens e n mulheres, onde cada pessoa tem uma preferencia por outra de sexo oposto. O algoritmo produz o casamento estavel de cada homem com uma mulher. Estavel:

- Cada homem se casara com uma mulher diferente (n >= m)

- Dois casais H1M1 e H2M2 nao serao instaveis.

Dois casais H1M1 e H2M2 sao instaveis se:

- H1 prefere M2 ao inves de M1, e
```

```
- M1 prefere H2 ao inves de H1.
Ent.rada
(1) m = \#homens, n = \#mulheres
(2) R[x][y] = i, i: eh a ordem de preferencia do homem y pela mulher x
Obs.: Quanto maior o valor de i menor eh a preferencia do homem y pela
mulher x
(3) L[x][i] = y: A mulher y eh a i-esima preferencia do homem x
Obs.: 0 \le i \le n-1, quanto menor o valor de i maior en a preferencia
do homem x pela mulher y
Saida
L2R[i]: a mulher do homem i (sempre entre 0 e n-1)
R2L[j]: o homem da mulher j (-1 se a mulher for solteira)
Complexidade O(m^2)
#define MAXM 1000
#define MAXW 1000
int L[MAXM][MAXW];
int R[MAXW][MAXM];
int L2R[MAXM], R2L[MAXW];
int m, n;
int p[MAXM];
void stableMarriage() {
  static int p[MAXM];
  memset (R2L, -1, sizeof (R2L));
  memset(p, 0, sizeof(p));
  for (int i = 0; i < m; ++i) {</pre>
    int man = i;
    while (man >= 0) {
      int wom:
      while (42) {
       wom = L[man][p[man]++];
       if (R2L[wom] < 0 || R[wom][man] > R[wom][R2L[wom]]) break;
      int hubby = R2L[wom];
      R_2L[L_2R[man] = wom] = man;
      man = hubby;
int main() { return 0; }
```

6.23 Hungarian Max Bipartite Matching with Cost (UNI-FEI)

```
/*Encontra o casamento bipartido maximo/minimo com peso nas arestas
Criar o grafo:
Hungarian G(L, R, ehMaximo)
L = #vertices a esquerda
R = #vertices a direita
ehMaximo = variavel booleana que indica se eh casamento maximo ou
minimo

Adicionar arestas:
G.add_edge(x,y,peso)
x = vertice da esquerda no intervalo [0,L-1]
```

```
y = vertice da direita no intervalo [0, R-1]
peso = custo da aresta
obs: tomar cuidado com multiplas arestas.
Resultado:
match_value = soma dos pesos dos casamentos
pairs = quantidade de pares (x-y) casados
xy[x] = vertice \ y \ casado \ com \ x
yx[y] = vertice x casado com y
Complexidade do algoritmo: O(V^3)
Problemas resolvidos: SCITIES (SPOJ)
struct Hungarian {
  enum { MAXN = 150, INF = 0x3f3f3f3f3f };
  int cost[MAXN][MAXN];
  int xy[MAXN], yx[MAXN];
  bool S[MAXN], T[MAXN];
  int lx[MAXN], ly[MAXN], slack[MAXN], slackx[MAXN], prev[MAXN];
  int match_value, pairs;
  bool ehMaximo;
  int n;
  Hungarian(int L, int R, bool _ehMaximo = true) {
    n = max(L, R);
    ehMaximo = _ehMaximo;
    if (ehMaximo)
      memset(cost, 0, sizeof cost);
    else
      memset(cost, INF, sizeof cost);
  void add_edge(int x, int y, int peso)
    if (!ehMaximo) peso *= (-1);
    cost[x][y] = peso;
  int solve() {
    match_value = 0;
    pairs = 0;
    memset(xy, -1, sizeof(xy));
    memset(yx, -1, sizeof(yx));
    init_labels();
    augment();
    for (int x = 0; x < n; ++x) match_value += cost[x][xy[x]];
    return match_value;
  void init_labels() {
    memset(lx, 0, sizeof(lx));
    memset(ly, 0, sizeof(ly));
    for (int x = 0; x < n; ++x)
      for (int y = 0; y < n; ++y) lx[x] = max(lx[x], cost[x][y]);
  void augment() {
    if (pairs == n) return;
    int x, y, root;
    int q[MAXN], wr = 0, rd = 0;
    memset(S, false, sizeof(S));
```

```
memset(T, false, sizeof(T));
  memset(prev, -1, sizeof(prev));
  for (x = 0; x < n; ++x)
    if (xy[x] == -1) {
      q[wr++] = root = x;
      prev[x] = -2;
      S[x] = true;
      break;
  for (y = 0; y < n; ++y) {
    slack[y] = lx[root] + ly[y] - cost[root][y];
    slackx[y] = root;
  while (true) {
    while (rd < wr) {</pre>
      x = q[rd++];
      for (y = 0; y < n; ++y)
        if (cost[x][y] == lx[x] + ly[y] && !T[y]) {
          if (yx[y] == -1) break;
          T[y] = true;
          q[wr++] = yx[y];
          add(yx[y], x);
      if (y < n) break;</pre>
    if (y < n) break;</pre>
    update_labels();
    wr = rd = 0;
    for (y = 0; y < n; ++y)
      if (!T[y] && slack[y] == 0) {
        if (yx[y] == -1) {
          x = slackx[y];
          break;
        } else {
          T[y] = true;
          if (!S[yx[y]]) {
            q[wr++] = yx[y];
            add(yx[y], slackx[y]);
    if (y < n) break;</pre>
  if (y < n) {
    ++pairs;
    for (int cx = x, cy = y, ty; cx != -2; cx = prev[cx], cy = ty) {
     ty = xy[cx];
     yx[cy] = cx;
     xy[cx] = cy;
    augment();
void add(int x, int prevx) {
 S[x] = true;
  prev[x] = prevx;
  for (int y = 0; y < n; ++y)
    if (lx[x] + ly[y] - cost[x][y] < slack[y]) {
      slack[y] = lx[x] + ly[y] - cost[x][y];
      slackx[y] = x;
```

```
void update_labels() {
   int x, y, delta = INF;
    for (y = 0; y < n; ++y)
     if (!T[y]) delta = min(delta, slack[y]);
    for (x = 0; x < n; ++x)
      if (S[x]) lx[x] -= delta;
    for (y = 0; y < n; ++y)
     if (T[y]) ly[y] += delta;
    for (y = 0; y < n; ++y)
      if (!T[y]) slack[y] -= delta;
  int casouComX(int x) { return xy[x]; }
 int casouComY(int y) { return yx[y]; }
};
// O codigo abaixo resolve o problema scities (Spoj)
int main() {
 int casos;
 cin >> casos;
 while (casos--) {
   int L, R;
   cin >> L >> R;
   Hungarian G(L, R, true);
   int x, y, w, aux[L][R];
   memset(aux, 0, sizeof aux);
   while (scanf("%d %d %d", &x, &y, &w) != EOF) {
     if (x == 0 && y == 0 && w == 0) break;
      aux[x - 1][y - 1] += w;
    for (int x = 0; x < L; x++) {
     for (int y = 0; y < R; y++) {
       if (aux[x][y] != 0) {
         G.add_edge(x, y, aux[x][y]);
   printf("%d\n", G.solve());
 return 0;
```

6.24 Blossom

```
// Encontra o emparelhamento maximo em um grafo nao direcionado.
// Armazenar em n a quantidade de vertice e em mat[][] as adjacencias.
// edmond(n) retorna o emparelhamento maximo.
typedef vector<int> VI;
typedef vector<vector<int> > VVI;
int mat[205][205], n;
int lf[205];
VVI adj;
VI vis, inactive, match;
```

```
int N;
bool dfs(int x, VI &blossom) {
  if (inactive[x]) return false;
  int i, y;
  vis[x] = 0;
  for (i = adj[x].size() - 1; i >= 0; i--) {
    y = adj[x][i];
    if (inactive[y]) continue;
    if (vis[y] == -1) {
      vis[y] = 1;
      if (match[y] == -1 || dfs(match[y], blossom)) {
       match[y] = x;
       match[x] = y;
        return true;
    if (vis[y] == 0 \mid \mid blossom.size()) +
      blossom.push_back(y);
      blossom.push_back(x);
      if (blossom[0] == x) {
       match[x] = -1;
        return true;
      return false;
  return false;
bool augment() {
 VI blossom, mark;
  int i, j, k, s, x;
  for (i = 0; i < N; i++) {
    if (match[i] != -1) continue;
    blossom.clear();
    vis = VI(N + 1, -1);
    if (!dfs(i, blossom)) continue;
    s = blossom.size();
    if (s == 0) return true;
    mark = VI(N + 1, -1);
    for (j = 0; j < s - 1; j++) {
      for (k = adj[blossom[j]].size() - 1; k >= 0; k--)
        mark[adj[blossom[j]][k]] = j;
    for (j = 0; j < s - 1; j++) {
      mark[blossom[j]] = -1;
      inactive[blossom[j]] = 1;
    adj[N].clear();
    for (j = 0; j < N; j++) {
      if (mark[j] != -1) adj[N].pb(j), adj[j].pb(N);
    match[N] = -1;
    if (!augment()) return false;
    N--;
```

```
for (j = 0; j < N; j++) {
      if (mark[j] != -1) adj[j].pop_back();
    for (j = 0; j < s - 1; j++) {
      inactive[blossom[j]] = 0;
   x = match[N];
   if (x != -1) {
      if (mark[x] != -1) {
        j = mark[x];
        match[blossom[j]] = x;
        match[x] = blossom[j];
        if (j & 1)
         for (k = j + 1; k < s; k += 2) {
            match[blossom[k]] = blossom[k + 1];
            match[blossom[k + 1]] = blossom[k];
        else
          for (k = 0; k < j; k += 2) {
            match[blossom[k]] = blossom[k + 1];
            match[blossom[k + 1]] = blossom[k];
   return true;
  return false;
int edmond(int n) {
 int i, j, ret = 0;
 adj = VVI(2 * N + 1);
  for (i = 0; i < n; i++) {
   for (j = i + 1; j < n; j++) {
     if (mat[i][j]) {
        adj[i].pb(j);
        adj[j].pb(i);
 match = VI(2 * N + 1, -1);
  inactive = VI(2 * N + 1);
 while (augment()) ret++;
 return ret;
```

7 Estruturas de Dados

7.1 BIT

```
// Permite realizar operacoes de query e update em um vetor em O(logN)
// Obs: A[] deve ser indexado em 1, nao em 0.
#define MAXN 100001
11 ft[MAXN];
11 A[MAXN];
```

```
int N;
// ATUALIZA UM INDICE i, CONSULTA UM INTERVALO (i, j)
// update(i, valor) faz A[i] += valor em log(N)
void update(int i, ll valor) {
  for (; i <= N; i += i & -i) ft[i] += valor;</pre>
// query(i) retorna a soma A[1] + ... + A[i] em log(N)
11 query(int i) {
  11 \text{ sum} = 0;
  for (; i > 0; i -= i & -i) sum += ft[i];
  return sum;
// query(i,j) retorna a soma A[i] + A[i+1] + ... + A[j] em log(N)
1l query(int i, int j) { return query(j) - query(i - 1); }
// ATUALIZA UM INTERVALO (i,j), CONSULTA UM ELEMENTO i
// range_update(i,j,valor) faz A[k] += valor, para i <= k <= j em</pre>
// log(N) query(i): retorna o valor de A[i] em log(N)
void range_update(int i, int j, ll valor) {
  update(i, valor);
  update(j + 1, -valor);
int main() { return 0; }
```

7.2 BIT 2D

```
#define MAXL 3001
#define MAXC 3001
11 ft[MAXL][MAXC];
int L, C;
// update(x,y,v) incrementa v na posicao(x,y) .: M[x][y] += v em
// O(log(N))
void update(int x, int y, int v) {
  for (; x <= L; x += x & -x)
    for (int yy = y; yy <= C; yy += yy & -yy) ft[x][yy] += v;</pre>
// query(x,y) retorna o somatorio da submatriz definida por
// (1,1) \rightarrow (x,y) .: sum += M[i][j] para todo 1 <= i <= x e 1 <= j <= y,
// em O(log(N))
11 query(int x, int y) {
  if (x <= 0 || y <= 0) return 0;
  11 \text{ sum} = 0;
  for (; x > 0; x -= x \& -x)
    for (int yy = y; yy > 0; yy -= yy & -yy) sum += ft[x][yy];
  return sum;
// query(x1,y1,x2,y2) retorna o somatorio da submatriz definida por
// (x1,x1) -- (x2,y2) .: sum += M[i][j] para todo x1 <= i <= x2 e y1
// <= j <= y2, em O(log(N))
11 query(int x1, int y1, int x2, int y2) {
  return query (x2, y2) - query (x2, y1 - 1) - query (x1 - 1, y2) +
         query (x1 - 1, y1 - 1);
// A ideia de atualizar um intervalo (submatriz) e consultar um
```

```
// elemento (i, j) tambem sao validos
int main() { return 0; }
```

7.3 Sparse Table

```
Resolve problemas de consulta a intervalos (RSQ, RMQ etc) de um vetor
estatico, ou seja, os valores nao sofrem update.
Alterar a funcao comb() de acordo (min, max, soma etc)
Pre-processamento O(NlogN) e consulta em O(1).
N = tamanho do vetor a[]
a[] deve ser indexado em 0
const int MAXN = (1e6 + 1);
#define LOGN (21)
int st[MAXN][LOGN];
int N, a[MAXN];
int comb(int left, int right)
  return min(left, right);
void SparseTable() {
  rep (k, 0, LOGN) for (int i = 0; (i + (1 << k) - 1) < N; i++)
    st[i][k] = k ? comb(st[i][k-1], st[i + (1 << (k-1))][k - 1]) : a[i];
int query(int 1, int r) {
  int k = log_2(r - 1 + 1);
  return comb(st[l][k], st[r - (1<<k) + 1][k]);
```

7.4 RMQ

```
// Range Minimum Query: idx do menor elemento num intervalo de um
// array. Permite consultas e updates no array em O(logN). ATENCAO:
// Array A[] deve ser indexado em 0;
#define MAXN 500000
int A[MAXN], T[4 * MAXN];
int N; // #number of elements in A[]
int neutro = -1;
// combina o resultado de dois segmentos
int combine(int p1, int p2) {
 if (p1 == -1) return p2;
  if (p2 == -1) return p1;
 if (A[p1] \le A[p2])
   return p1;
  else
    return p2;
// chamar build() apos preencher o vetor A[]. O(N)
void build(int no = 1, int a = 0, int b = N - 1) {
  if (a == b) {
   T[no] = a;
  } else {
```

```
int m = (a + b) / 2;
    int esq = 2 * no;
    int dir = esq + 1;
    build(esq, a, m);
    build(dir, m + 1, b);
    T[no] = combine(T[esq], T[dir]);
// Modifica A[i] em O(logN), neste caso A[i] = v
void update(int i, int v, int no = 1, int a = 0, int b = N - 1) {
  if (a > i || b < i) return;</pre>
  if (a == i && b == i) {
   A[i] = v;
    T[no] = i; // desnecessario ;p
    return:
  int m = (a + b) / 2;
  int esq = 2 * no;
  int dir = esq + 1;
  update(i, v, esq, a, m);
  update(i, v, dir, m + 1, b);
  T[no] = combine(T[esq], T[dir]);
// Retorna o idx k do menor valor A[k] no intervalo [i, j] em O(logN)
int query(int i, int j, int no = 1, int a = 0, int b = N - 1) {
  if (a > j || b < i) return neutro;</pre>
  if (a >= i && b <= j) return T[no];</pre>
  int m = (a + b) / 2;
  int esq = 2 * no;
  int dir = esq + 1;
  int p1 = query(i, j, esq, a, m);
  int p2 = query(i, j, dir, m + 1, b);
  return combine(p1, p2);
int main() { return 0; }
```

7.5 Seg Tree com Lazy

```
// RSQ agora com queries e updates em intervalos. Precisa de Lazy
// Propagation. Array A[] deve ser indexado em 0. Nem sempre o array
// que sera modificado armazena apenas um valor. Nesse caso usamos
// struct para representar cada no.
#define MAXN 500000
ll A[MAXN], tree[4 * MAXN], lazy[4 * MAXN];
int N;
int neutro = 0;

// funcao que realiza o merge de um intervalo, pode ser *, -, min,
// max, etc...
int combine(int segEsq, int segDir) { return segEsq + segDir; }

void build(int no = 1, int a = 0, int b = N - 1) {
   if (a == b) {
        tree[no] = A[a];
        return;
   }
}
```

```
int m = (a + b) / 2;
  int esq = 2 * no;
  int dir = esq + 1;
 build(esq, a, m);
 build(dir, m + 1, b);
 tree[no] = combine(tree[esq], tree[dir]);
void propagate(int no, int a, int b) {
  if (lazy[no] != 0) {
    // esta parte depende do problema, neste caso queremos adicionar o
    // valor lazy[no] no intervalo [a,b], mas estamos atualizando
    // apenas o noh que representa este intervalo
    tree[no] += (b - a + 1) * lazy[no];
    if (a != b) {
      lazy[2 * no] += lazy[no];
      lazy[2 * no + 1] += lazy[no];
    lazy[no] = 0;
// update(i, j, v) faz A[k] += v, para i \le k \le j, em log(N)
void update(int i, int j, ll v, int no = 1, int a = 0,
            int b = N - 1) {
  if (lazy[no]) propagate(no, a, b);
  if (a > j || b < i) return;</pre>
  if (a >= i && b <= j) {
    lazy[no] += v; // atualiza apenas a flag da raiz da subarvore
   propagate(no, a, b);
    return;
  int m = (a + b) / 2;
  int esq = 2 * no;
  int dir = esq + 1;
  update(i, j, v, esq, a, m);
  update(i, j, v, dir, m + 1, b);
  tree[no] = combine(tree[esq], tree[dir]);
// query(i, j) retorna o somatorio A[i] + A[i+1] + ... + A[j]
11 query(int i, int j, int no = 1, int a = 0, int b = N - 1) {
  if (lazy[no]) propagate(no, a, b);
  if (a > j || b < i) return neutro;</pre>
  if (a >= i && b <= j) return tree[no];</pre>
  int m = (a + b) / 2;
  int esq = 2 * no;
  int dir = esq + 1;
  ll q1 = querv(i, j, esq. a, m);
 ll q^2 = query(i, j, dir, m + 1, b);
  return combine(q1, q2);
int main() { return 0; }
```

7.6 Union-Find

```
// Conjuntos Disjuntos. Inicialmente cada elemento en lider de seu // proprio conjunto. Operacoes de join(u,v) fazem com que os conjuntos // que u e v pertencem se unam. find(u) retorna o lider do conjunto
```

```
// que u esta contido.
#define MAXV 100000
int V, pai[MAXV], rnk[MAXV], size[MAXV];
void init() { rep(i, 0, V) pai[i] = i, rnk[i] = 0, size[i] = 1; }
int find(int v) {
  if (v != pai[v]) pai[v] = find(pai[v]);
  return pai[v];
void join(int u, int v) {
 u = find(u):
 v = find(v);
 if (u == v) return;
  if (rnk[u] < rnk[v]) swap(u, v);
  pai[v] = u; // add v no conjunto de u
  size[u] += size[v];
  if (rnk[u] == rnk[v]) rnk[u]++;
bool same_set(int u, int v) { return find(u) == find(v); }
int main() { return 0; }
```

7.7 Treap

```
typedef struct node {
  int prior, size;
  int val: // value stored in the array
            // whatever info you want to maintain in segtree for each
  int sum;
  int lazy; // whatever lazy update you want to do
  int rev;
  struct node *1, *r;
} node;
typedef node *pnode;
int sz(pnode t) { return t ? t->size : 0; }
void upd sz(pnode t) {
  if (t) t->size = sz(t->1) + 1 + sz(t->r);
void lazv(pnode t) {
  if (!t || t->lazy == -1) return;
 t->val = t->lazy; // operation of lazy
  t->sum = t->lazy * sz(t);
  if (t->1) t->1->lazy = t->lazy; // propagate lazy
  if (t->r) t->r->lazy = t->lazy;
  t \rightarrow lazy = -1;
void reset(pnode t) {
 if (t)
    t->sum = t->val: // no need to reset lazy coz when we call this
                       // lazy would itself be propagated
// combining two ranges of segtree
void combine(pnode &t, pnode l, pnode r) {
 if (!l || !r) return void(t = l ? l : r);
  t \rightarrow sum = 1 \rightarrow sum + r \rightarrow sum;
```

```
void operation(pnode t) { // operation of segtree
  if (!t) return;
  reset(t); // reset the value of current node assuming it now
             // represents a single element of the array
  lazv(t->1);
  lazy(t->r); // imp:propagate lazy before combining t->1,t->r;
  combine(t, t \rightarrow l, t);
  combine(t, t, t->r);
void push(pnode t) {
  if (!t || !t->rev) return;
  t->rev = false;
  swap(t->1, t->r);
  if (t->1) t->1->rev ^= true;
  if (t->r) t->r->rev ^= true;
void split(pnode t, pnode &1, pnode &r, int pos, int add = 0) {
  if (!t) return void(l = r = NULL);
 push(t);
  lazy(t);
  int curr pos = add + sz(t->1);
  if (curr_pos <= pos) // element at pos goes to left subtree(1)</pre>
    split(t->r, t->r, r, pos, curr_pos + 1), l = t;
  else
    split(t->1, 1, t->1, pos, add), r = t;
  upd_sz(t);
  operation(t);
// l->leftarray,r->rightarray,t->resulting array
void merge(pnode &t, pnode 1, pnode r) {
 push(1);
 push(r);
 lazy(1);
  lazy(r);
  if (!1 || !r)
   t = 1 ? 1 : r;
  else if (l->prior > r->prior)
    merge(1->r, 1->r, r), t=1;
  else
    merge(r->1, 1, r->1), t = r;
  upd_sz(t);
  operation(t);
pnode init(int val) {
  pnode ret = new node;
  ret->prior = rand();
  ret->size = 1;
  ret->val = val;
  ret->sum = val;
  ret -> lazy = -1;
  ret->rev = 0;
  ret->1 = NULL, ret->r = NULL;
  return ret;
int range_query(pnode t, int l, int r) { //[1,r]
 pnode L, mid, R;
  split(t, L, mid, l - 1);
  split(mid, t, R, r - 1); // note: r-1!!
  int ans = t->sum;
```

```
merge(mid, L, t);
  merge(t, mid, R);
  return ans;
void range_update(pnode t, int l, int r, int val) { //[1,r]
  pnode L, mid, R;
  split(t, L, mid, l - 1);
  split (mid, t, R, r - 1); // note: r-1!!
  t->lazv = val;
                            // lazy_update
  merge(mid, L, t);
  merge(t, mid, R);
void reverse(pnode t, int 1, int r) {
  pnode L, mid, R;
  split(t, L, mid, l - 1);
  split (mid, mid, R, r - 1);
  mid->rev ^= true;
 merge(t, L, mid);
  merge(t, t, R);
void output(pnode t) {
  if (!t) return;
  push(t);
  lazv(t);
  output (t->1);
  printf("%d ", t->val);
  output (t->r);
int valor(int val) { return val & 1 ? 0 : 1; }
int main() {
 int P, Q;
  while (scanf("%d %d", &P, &Q) != EOF) {
    pnode tree = NULL, T1 = NULL, T2 = NULL, T3 = NULL;
    int val;
    rep(i, 0, P) {
      scanf("%d", &val);
      split(tree, T1, T2, i);
     merge(T1, T1, init(valor(val)));
      merge(tree, T1, T2);
    while (Q--) {
```

7.8 Seg Tree 2D

```
struct node {
   int qt;
   int f1, f2, f3, f4;
};

node new_node() {
   node ret;
   ret.qt = ret.f1 = ret.f2 = ret.f3 = ret.f4 = 0;
   return ret;
}
```

```
vector<node> tree;
int cnt = 0:
bool inRange(int x1, int x2, int y1, int y2, int a1, int a2, int b1,
             int b2) {
 if (x2 < x1 \mid | y2 < y1) return false;
 if (x2 < a1 || x1 > a2) return false;
 if (y2 < b1 || y1 > b2) return false;
 return true;
void update(int no, int x1, int x2, int y1, int y2, int a1, int a2,
            int b1, int b2, int val) {
  if (no == cnt) tree[cnt++] = new_node();
 if (x1 >= a1 \&\& x2 <= a2 \&\& y1 >= b1 \&\& y2 <= b2) {
   tree[no].qt = val;
   return:
  int f1 = 0, f2 = 0, f3 = 0, f4 = 0;
  if (inRange(x1, (x1 + x2) / 2, y1, (y1 + y2) / 2, a1, a2, b1, b2)) {
   if (!tree[no].fl) tree[no].fl = cnt;
   update(tree[no].fl, x1, (x1 + x2) / 2, y1, (y1 + y2) / 2, a1, a2,
          b1, b2, val);
  if (inRange(x1, (x1 + x2) / 2, (y1 + y2) / 2 + 1, y2, a1, a2, b1,
             b_2)) {
   if (!tree[no].f2) tree[no].f2 = cnt;
   update(tree[no].f2, x1, (x1 + x2) / 2, (y1 + y2) / 2 + 1, y2, a1,
           a^{2}, b^{1}, b^{2}, val);
  if (inRange((x1 + x2) / 2 + 1, x2, y1, (y1 + y2) / 2, a1, a2, b1,
              b2)) {
   if (!tree[no].f3) tree[no].f3 = cnt;
   update(tree[no].f3, (x1 + x2) / 2 + 1, x2, y1, (y1 + y2) / 2, a1,
          a2, b1, b2, val);
  if (inRange((x1 + x2) / 2 + 1, x2, (y1 + y2) / 2 + 1, y2, a1, a2,
              b1, b2)) {
   if (!tree[no].f4) tree[no].f4 = cnt;
   update(tree[no].f4, (x1 + x2) / 2 + 1, x2, (y1 + y2) / 2 + 1, y2,
          a1, a2, b1, b2, val);
 if (tree[no].fl) f1 = tree[tree[no].fl].qt;
 if (tree[no].f2) f2 = tree[tree[no].f2].qt;
 if (tree[no].f3) f3 = tree[tree[no].f3].qt;
 if (tree[no].f4) f4 = tree[tree[no].f4].qt;
 tree[no].qt = f1 + f2 + f3 + f4;
int query(int no, int x1, int x2, int y1, int y2, int a1, int a2,
          int b1, int b2) {
 if (!inRange(x1, x2, y1, y2, a1, a2, b1, b2) || no \geq cnt ||
      tree[no].qt == 0)
   return 0:
  if (x1 >= a1 \&\& x2 <= a2 \&\& y1 >= b1 \&\& y2 <= b2)
   return tree[no].qt;
```

```
int f1 = 0, f2 = 0, f3 = 0, f4 = 0;
  if (tree[nol.f1)
   f1 = query(tree[no].f1, x1, (x1 + x2) / 2, y1, (y1 + y2) / 2, a1,
               a^2, b^1, b^2);
  if (tree[no].f2)
    f2 = query(tree[no].f2, x1, (x1 + x2) / 2, (y1 + y2) / 2 + 1, y2,
               a1, a2, b1, b2);
  if (tree[no].f3)
    f3 = query(tree[no].f3, (x1 + x2) / 2 + 1, x2, y1, (y1 + y2) / 2,
               a1, a2, b1, b2);
  if (tree[nol.f4)
    f4 = query(tree[no].f4, (x1 + x2) / 2 + 1, x2, (y1 + y2) / 2 + 1,
               y2, a1, a2, b1, b2);
  return f1 + f2 + f3 + f4;
void erase() {
 tree.clear();
  vector<node> xua:
  swap(tree, xua);
  tree.resize(1000010);
  cnt = 0;
int main() { return 0; }
```

7.9 Polyce

```
// https://codeforces.com/blog/entry/11080
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef tree <
             // tipo da variavel
  int,
  null type,
  less<int>, // funcao de comparacao(greater, less_equal,
 tree_order_statistics_node_update > ordered_set;
void newSet() {
  // fuciona como um set normal, mas ha 2 funcoes especiais: log(n)
 ordered set T:
  ordered_set ::iterator it;
 int k = *T.find_by_order(0); // retorna o K-esimo elemento sequndo
                               // a funcao de comparacao
  int kk = T.order_of_key(0); // retorna a posicao que um elemento
                               // encaixaria segundo a funcao de
                               // comparacao
#include <ext/rope>
using namespace __gnu_cxx;
```

```
void newVector() {
    // funciona como um vector, mas consegue algo a mais: (log(n))
    rope<int> v;
    rope<int>::iterator it;
    int l, r; // segmento
    rope<int> cur = v.substr(l, r-l+l); // copia um segmento do vector
    v.erase(l, r - l + l); // apaga um segmento
    v.insert(v.mutable_begin(), cur); // insere um segmento
    for (it = cur.mutable_begin(); it != cur.mutable_end(); it++)
        cout << *it << " "; // percorre ele
}
int main() { return 0; }</pre>
```

7.10 KD2

```
struct point {
  int x, y, z;
  point (int x = 0, int y = 0, int z = 0) : x(x), y(y), z(z) {}
 point operator-(point q) {
    return point (x - q.x, y - q.y, z - q.z);
  int operator*(point q) { return x * q.x + y * q.y + z * q.z; }
};
typedef vector<point> polygon;
priority_queue < double > vans;
int NN, CC, KK, DD;
struct KDTreeNode {
  point p;
  int level:
  KDTreeNode *below, *above;
  KDTreeNode (const point &q, int lev1) {
    p = q;
    level = levl;
    below = above = 0;
  ~KDTreeNode() { delete below, above; }
  int diff(const point &pt) {
    switch (level) {
      case 0:
        return pt.x - p.x;
      case 1:
        return pt.y - p.y;
      case 2:
        return pt.z - p.z;
    return 0:
  ll distSq(point &q) { return (p - q) * (p - q); }
  int rangeCount(point &pt, ll K) {
    int count = (distSq(pt) \le K * K) ? 1 : 0;
    if (count) vans.push(-sqrt(distSq(pt)));
    int d = diff(pt);
    if (~d <= K && above != 0) count += above->rangeCount(pt, K);
    if (d <= K && below != 0) count += below->rangeCount(pt, K);
    return count;
```

```
};
class KDTree {
public:
  polygon P;
  KDTreeNode *root;
  int dimention;
  KDTree() {}
  KDTree(polygon &poly, int D) {
    P = poly;
    dimention = D;
    root = 0;
    build();
  ~KDTree() { delete root; }
  // count the number of pairs that has a distance less than K
  ll countPairs(ll K) {
    11 \text{ count} = 0;
    rep(i, 0, P.size()) count += root->rangeCount(P[i], K) - 1;
    return count:
 protected:
  void build() {
    // random_shuffle(all(P));
    rep(i, 0, P.size()) \{ root = insert(root, P[i], -1); \}
  KDTreeNode *insert(KDTreeNode *t, const point &pt,
                     int parentLevel) {
    if (t == 0) {
      t = new KDTreeNode(pt, (parentLevel + 1) % dimention);
      return t;
    } else {
      int d = t->diff(pt);
      if (d <= 0)
        t->below = insert(t->below, pt, t->level);
        t->above = insert(t->above, pt, t->level);
    return t;
};
int main() {
 point e;
  e.z = 0;
  polygon p;
  set<ii>> st;
  while (scanf("%d %d %d %d", &NN, &CC, &KK, &DD) != EOF) {
    p.clear();
    KK = min(NN, KK);
    st.clear();
    rep(i, 0, NN) {
      scanf("%d %d", &e.x, &e.y);
      st.insert(mp(e.x, e.y));
      p.pb(e);
```

```
KDTree tree(p, 2);
  int ans = 0;
  rep(i, 0, CC) {
    scanf("%d %d", &e.x, &e.y);
    if (st.count(mp(e.x, e.y))) continue;
   ll at = 0;
    rep(i, 0, 30) {
     at = 11(1) << i;
     while (!vans.empty()) vans.pop();
     int aux = tree.root->rangeCount(e, at);
     if (aux >= KK) break;
    double sum = 0.0;
    rep(i, 0, KK) {
     sum += -vans.top();
     vans.pop();
    if (sum >= DD) ans++;
 printf("%d\n", ans);
return 0;
```

8 Strings

8.1 KMP

```
// obs: A funcao strstr (char* text, char* pattern) da biblioteca
// <cstring> implementa KMP (C-ANSI). A funcao retorna a primeira
// ocorrencia do padrao no texto, KMP retorna todas. nres -> O numero
// de ocorrencias do padrao no texto res[] -> posicoes das nres
// ocorrencias do padrao no texto Complexidade do algoritmo: O(n+m) */
#define MAXN 100001
int pi[MAXN], res[MAXN], nres;
void kmp(string text, string pattern) {
 nres = 0;
 pi[0] = -1;
 rep(i, 1, pattern.size()) {
   pi[i] = pi[i - 1];
   while (pi[i] >= 0 && pattern[pi[i] + 1] != pattern[i])
      pi[i] = pi[pi[i]];
   if (pattern[pi[i] + 1] == pattern[i]) ++pi[i];
  int k = -1; // k+1 eh o tamanho do match atual
  rep(i, 0, text.size()) {
   while (k \ge 0 \& \& pattern[k + 1] != text[i]) k = pi[k];
   if (pattern[k + 1] == text[i]) ++k;
   if (k + 1 == pattern.size()) {
      res[nres++] = i - k;
      k = pi[k];
```

8.2 Aho Corasick

```
const int cc = 26;
const int MAX = 100;
int cnt;
int sig[MAX][cc];
int term[MAX];
int T[MAX];
int v[MAX];
inline int C(char c) { return c - '0'; }
void add(string s, int id) {
  int x = 0;
  rep(i, 0, s.size()) {
    int c = C(s[i]);
    if (!siq[x][c]) {
     term[cnt] = 0;
      sig[x][c] = cnt++;
    x = sig[x][c];
  term[x] = 1;
  v[id] = x;
void aho() {
  queue<int> q;
  rep(i, 0, cc) {
    int x = siq[0][i];
    if (!x) continue;
    q.push(x);
    T[x] = 0;
  while (!q.empty()) {
    int u = q.front();
    q.pop();
    rep(i, 0, cc) {
      int x = siq[u][i];
      if (!x) continue;
      int v = T[u];
      while (v && !sig[v][i]) v = T[v];
      v = sig[v][i];
      T[x] = v;
      term[x] += term[v];
      q.push(x);
// Conta a quantidade de palavras de exatamente l caracteres que se
// pode formar com um determinado alfabeto, dado que algumas palavras
// sao "proibidas"
int mod = 1e9 + 7;
ll pd[100][MAX];
11 solve(int pos, int no) {
  if (pos == 0) return 1;
```

```
if (pd[pos][no] != -1) return pd[pos][no];
  ll ans = 0:
  rep(i, 0, cc) {
    int v = no;
    while (v && !sig[v][i]) v = T[v];
    v = siq[v][i];
   if (term[v]) continue;
    ans = (ans + solve(pos - 1, v)) % mod;
  return pd[pos][no] = ans;
void Qttd_de_Palavras() {
  while (1) {
    memset(sig, 0, sizeof sig);
    memset (pd, -1, sizeof pd);
    cnt = 1;
    int l = readInt();
    if (!1) break;
   int n = readInt();
    string pattern;
    rep(i, 0, n) {
     cin >> pattern;
      add(pattern, i);
    aho();
    ll ans = 0;
    rep(i, 1, 1 + 1) ans = (ans + solve(i, 0)) % mod;
    printf("%d\n", ans);
// Verifica quais padroes ocorreram em um texto
int alc[MAX];
void busca(string s) {
  int x = 0;
  rep(i, 0, s.size()) {
   int c = C(s[i]);
    while (x \&\& !siq[x][c]) x = T[x];
   x = siq[x][c];
   alc[x] = 1;
void Ol Ocorreu() {
  string pattern, text;
  while (getline(cin, text)) {
    if (text == "*") break;
    memset(sig, 0, sizeof sig);
    memset(alc, 0, sizeof alc);
    cnt = 1;
    int n;
    cin >> n;
    rep(i, 0, n) {
     cin >> pattern;
      add(pattern, i);
    aho();
    busca(text);
```

```
for (int i = cnt - 1; i >= 0; i--) {
      if (alc[i]) alc[T[i]] = 1;
    rep(i, 0, n) {
      int u = v[i];
      if (alc[u])
        printf("Ocorreu\n");
        printf("Nao ocorreu\n");
// Total de ocorrencias de cada padrao em uma string, mesmo com
// sufixos iquais
ll busca2(string s)
  11 x = 0, cont = 0;
  rep(i, 0, s.size()) {
    int c = C(s[i]):
    while (x \&\& !sig[x][c]) x = T[x];
    x = siq[x][c];
    cont += term[x];
  return cont;
void Onts vezes Ocorreu() {
  string text, pattern;
  while (cin >> text)
    if (text == "*") break;
    memset(sig, 0, sizeof sig);
    cnt = 1;
    int n = readInt();
    rep(i, 0, n) {
     cin >> pattern;
      add(pattern, i);
    aho();
    rep(i, 1, 10) debug(T[i]) cout << busca2(text) << endl;</pre>
// Encontra a primeira ocorrencia de cada padrao em uma string
void busca3(string s) {
  int x = 0;
  rep(i, 0, s.size()) {
    int c = C(s[i]);
    while (x \&\& !sig[x][c]) x = T[x];
    x = siq[x][c];
    if (!alc[x]) alc[x] = i + 1;
void Onde Ocorreu() {
  string pattern, text;
  int tam[1000];
  while (cin >> text) {
    if (text == "*") break;
    memset(sig, 0, sizeof sig);
    memset(alc, 0, sizeof alc);
    cnt = 1;
```

```
int n;
cin >> n;
rep(i, 0, n) {
  cin >> pattern;
  tam[i] = pattern.size();
  add(pattern, i);
aho();
busca3(text);
for (int i = cnt - 1; i >= 0; i--) {
  alc[T[i]] = min(alc[i], alc[T[i]]);
rep(i, 0, n) {
  int u = v[i];
  if (alc[u] != INF) {
    int k = alc[u] - tam[i] + 1;
    printf("De %d a %d\n", k, alc[u]);
    printf("Nao ocorreu\n");
```

8.3 Suffix Array

```
#define MAX 100010
#define MAX N 100010
char T[MAX_N];
int RA[MAX_N], tempRA[MAX_N];
int SA[MAX_N], tempSA[MAX_N];
int c[MAX_N];
int Phi[MAX_N], PLCP[MAX_N], LCP[MAX_N];
void countingSort(int k) {
  int i, sum, maxi = max((11)300, n);
  memset(c, 0, sizeof c);
  for (i = 0; i < n; i++) c[i + k < n ? RA[i + k] : 0]++;
  for (i = sum = 0; i < maxi; i++) {</pre>
    int t = c[i];
    c[i] = sum;
    sum += t;
  for (i = 0; i < n; i++)
   tempSA[c[SA[i] + k < n ? RA[SA[i] + k] : 0]++] = SA[i];
  for (i = 0; i < n; i++) SA[i] = tempSA[i];</pre>
void constructSA() {
  int i, k, r;
  for (i = 0; i < n; i++) RA[i] = T[i];</pre>
  for (i = 0; i < n; i++) SA[i] = i;
  for (k = 1; k < n; k <<= 1) {
    countingSort(k);
    countingSort(0);
    tempRA[SA[0]] = r = 0;
    for (i = 1; i < n; i++)</pre>
      tempRA[SA[i]] = (RA[SA[i]] == RA[SA[i-1]] &&
```

```
RA[SA[i] + k] == RA[SA[i - 1] + k])
                           : ++r;
    for (i = 0; i < n; i++) RA[i] = tempRA[i];</pre>
    if (RA[SA[n - 1]] == n - 1) break;
void computeLCP() {
  int i, L;
  Phi[SA[0]] = -1;
  for (i = 1; i < n; i++) Phi[SA[i]] = SA[i - 1];</pre>
  for (i = L = 0; i < n; i++) {
    if (Phi[i] == -1) {
      PLCP[i] = 0;
      continue;
    while (T[i + L] == T[Phi[i] + L]) L++;
    PLCP[i] = L:
    L = \max(L - 1, 0);
  for (i = 0; i < n; i++) {
    LCP[i] = PLCP[SA[i]];
int main() {
  // concatenar $ no final
```

8.4 Suffix Array (Gugu)

```
const int MAX = 100010;
int gap, tam, sa[MAX], pos[MAX], lcp[MAX], tmp[MAX];
bool sufixCmp(int i, int j) {
  if (pos[i] != pos[j]) return pos[i] < pos[j];</pre>
  i += gap, j += gap;
  return (i < tam && j < tam) ? pos[i] < pos[j] : i > j;
void buildSA(char s[]) {
  tam = strlen(s);
  for (int i = 0; i < tam; i++) sa[i] = i, pos[i] = s[i], tmp[i] = 0;
  for (gap = 1;; gap *= 2) {
    sort(sa, sa + tam, sufixCmp);
    tmp[0] = 0;
    for (int i = 0; i < tam - 1; i++)</pre>
      tmp[i + 1] = tmp[i] + sufixCmp(sa[i], sa[i + 1]);
    for (int i = 0; i < tam; i++) pos[sa[i]] = tmp[i];</pre>
    if (tmp[tam - 1] == tam - 1) break;
11 buildLCP(char s[]) {
  11 \text{ sum} = 0;
  for (int i = 0, k = 0; i < tam; i++) {</pre>
    if (pos[i] == tam - 1) continue;
    for (int j = sa[pos[i] + 1]; s[i + k] == s[j + k];) k++;
    lcp[pos[i] + 1] = k;
    sum += k;
    if (k > 0) k--;
```

```
return sum;
void PrintAll(char s[]) {
  printf("SA\ttam\tLCP\tSuffix\n");
  rep(i, 0, tam) printf(%2d\t%2d\t%3d\t, sa[i], tam - sa[i],
                        lcp[i], s + sa[i]);
ll num subs(ll m) { return (ll)tam * (tam + 1) / 2 - m; }
11 num_subsrn() {
 11 \text{ ret} = 0;
  rep(i, 1, tam) if (lcp[i] > lcp[i - 1]) ret += lcp[i] - lcp[i - 1];
 return ret:
void printans(char s[], int n) {
  int maior = 0, id = -1:
 rep(i, 0, tam) if (lcp[i] > n && lcp[i] > maior) maior = lcp[i],
  if (id == -1)
   printf("*");
  else
    rep(i, sa[id], sa[id] + maior) printf("%c", s[i]);
 printf("\n");
char s[MAX];
int main() {
  while (1) {
   scanf("%s", s);
   if (s[0] == '*') break;
   buildSA(s);
   11 m = buildLCP(s);
   PrintAll(s); // printa sa, lcp, suffixs
   // printf("%lld\n", num_subs(m)); //numero de substrings nao
    // repetidas printf("%lld\n", num_subsrn()); //numero de
        substrings
    // que se repete printans(s, 2); //maior substring de tamanho
    // ou iqual a n que se repete
```

8.5 Rolling Hash

```
// Permite encontrar um hash de uma substring de S. precompute O(n),
// my_hash O(1)
#define NN 1000006
const ll mod = le9 + 7;  // modulo do hash
const ll x = 33;  // num. primo > que o maior caracter de S.
ll H[NN], X[NN];
ll V(char c) { return c - 'A'; }
ll my_hash(int i, int j) {
    ll ret = H[j];
    if (!i) return ret;
    return ((ret - (H[i - 1] * X[j - i + 1]) % mod) + mod) % mod;
}
void precompute(string s) {
    X[0] = 1;
```

8.6 Longest Common Prefix with Hash

```
// Longest Commom Prefix between S[i..] and S[j..]
int lcp(int i, int j, int tam) {
  int lo = 0, hi = tam, ans;
  while (lo <= hi) {
    int mid = (lo + hi) / 2;
    if (my_hash(i, i + mid - 1) == my_hash(j, j + mid - 1)) {
      ans = mid;
      lo = mid + 1;
    } else
      hi = mid - 1;
  }
  return ans;
}</pre>
```

8.7 Minimum Lexicographic Rotation

8.8 Longest Palindrome (Manacher algorithm)

```
string preProcess(string s) {
  int n = s.length();
  if (n == 0) return "^$";

  string ret = "^";
  for (int i = 0; i < n; i++) ret += "#" + s.substr(i, 1);
  ret += "#$";
  return ret;
}

string longestPalindrome(string s) {
  L = C = s.size();
  string T = preProcess(s);
  int n = T.length();
  int *P = new int[n];
  int C = 0, R = 0;</pre>
```

```
for (int i = 1; i < n - 1; i++) {</pre>
  int i_mirror = 2 * C - i;
 P[i] = (R > i) ? min(R - i, P[i_mirror]) : 0;
 while (T[i + 1 + P[i]] == T[i - 1 - P[i]]) P[i]++;
 if (i + P[i] > R) {
   C = i;
    R = i + P[i];
int maxLen = 0;
int centerIndex = 0;
for (int i = 1; i < n - 1; i++) {
 if (!P[i]) continue;
 if (P[i] > maxLen) {
   maxLen = P[i];
    centerIndex = i;
delete[] P;
return s.substr((centerIndex - 1 - maxLen) / 2, maxLen);
```

8.9 Autômato de Sufixos

```
struct state {
  int len, link:
  int next[26];
};
const int MAXN = 200020;
state st[2 * MAXN]; // vetor que armazena os estados
int sz:
                    // contador do numero de estados
int last;
                    // numero do estado que corresponde ao texto todo
void sa init() {
  sz = 1;
 last = 0;
  st[0].len = 0;
 st[0].link = -1;
  rep(i, 0, 26) st[0].next[i] = 0;
  // limpa o mapeamento de transicoes
void sa_extend(int c, ll &ans) {
  int cur = sz++; // novo estado a ser criado
  st[cur].len = st[last].len + 1;
  rep(i, 0, 26) st[cur].next[i] = 0;
  int p; // variavel que itera sobre os estados terminais
  for (p = last; p != -1 \&\& !st[p].next[c]; p = st[p].link) {
   st[p].next[c] = cur;
  if (p == -1) { // nao ocorreu transicao c nos estados terminais
   st[cur].link = 0;
   ans += st[cur].len;
  } else { // ocorreu transicao c no estado p
    int q = st[p].next[c];
   if (st[p].len + 1 == st[q].len) {
      st[cur].link = q;
```

```
} else {
      int clone = sz++; // criacao do vertice clone de q
      st[clone].len = st[p].len + 1;
      rep(i, 0, 26) st[clone].next[i] = st[q].next[i];
      st[clone].link = st[q].link;
      for (; p != -1 && st[p].next[c] == q;
           p = st[p].link) { // atualizacao das transicoes c
        st[p].next[c] = clone;
      st[q].link = st[cur].link = clone;
    ans += st[cur].len - st[st[cur].link].len;
  // atualizacao do estado que corresponde ao texto
  last = cur;
bool busca_automato(int m, string p) {
  int i, pos = 0:
  for (i = 0; i < m; i++) {
    if (st[pos].next[p[i]] == 0) {
      return false;
    } else {
      pos = st[pos].next[p[i]];
  return true;
int maior_tamanho_em_comum(string s, string t) {
  ll nothing = 0;
  // Constroi o automato com o primeiro texto
  sa_init();
  for (int i = 0; i < (int)s.size(); i++)</pre>
    sa_extend(s[i] - 'a', nothing);
  int estado = 0, tamanho = 0, maior = 0;
  // Passando pelos caracteres do segundo texto
  for (int i = 0; i < (int)t.size(); ++i) {</pre>
    while (estado && !st[estado].next[t[i] - 'a']) {
      estado = st[estado].link;
      tamanho = st[estado].len;
    if (st[estado].next[t[i] - 'a']) {
      estado = st[estado].next[t[i] - 'a'];
      tamanho++;
    if (tamanho > maior) {
      maior = tamanho;
  return maior;
int main() {
  char s[MAXN];
  char p[MAXN];
  while (gets(s)) {
    sa_init();
    int tam = strlen(s);
    ll ans = 0:
    rep(i, 0, tam) { sa_extend(s[i] - 'a', ans); }
```

```
gets(p);
printf("%d\n", maior_tamanho_em_comum(s, p));
}
return 0;
}
```

8.10 Z Algorithm

```
// Algorithm produces an array Z where Z[i] is the length of the
// longest substring starting from S[i] which is also a prefix of S.
string s:
vector<int> z;
void Z() {
  int n = s.size(), L = 0, R = 0;
  z.assign(n, 0);
  for (int i = 1; i < n; i++) {</pre>
    if (i > R) {
      L = R = i;
      while (R < n \&\& s[R - L] == s[R]) R++;
      z[i] = R - L;
      R--;
    } else {
      int k = i - L;
      if (z[k] < R - i + 1)
        z[i] = z[k];
      else {
        while (R < n \&\& s[R - L] == s[R]) R++;
        z[i] = R - L;
        R--;
```

9 PD

9.1 Soma acumulada 2D

```
/*Retorna o somatorio dos elementos de uma submatriz em O(1).

* Submatriz definida por canto superior esquerdo (x1,y1) e canto

* inferior direito (x2,y2) .: x1 <= x2 && y1 <= y2 */

#define MAXN 3000

int N, M;

long long V[MAXN + 2][MAXN + 2]; // matriz da entrada

long long S[MAXN + 2][MAXN + 2]; // matriz com as somas acumuladas

// precomputa as somas em O(N*M)

void precal() {

rep(x, 0, N) rep(y, 0, M) {

S[x][y] = V[x][y];

if (x > 0) S[x][y] += S[x - 1][y];

if (y > 0) S[x][y] += S[x][y - 1];

if (x > 0 && (x > 0) S[x][y] -= S[x - 1][y - 1];
```

```
}
// retorna a soma da submatriz em O(1)
long long sum(int x1, int y1, int x2, int y2) {
  long long soma = S[x2][y2];
  if (x1 > 0) soma -= S[x1 - 1][y2];
  if (y1 > 0) soma -= S[x2][y1 - 1];
  if (x1 > 0 && y1 > 0) soma += S[x1 - 1][x1 - 1];
  return soma;
```

9.2 Knuth Optimization

```
int N, B, C, yep, save[MAXN][MAXN], sav[MAXN];
11 n[MAXN], mc[MAXN][MAXN], se[MAXN], sd[MAXN], pd[MAXN][MAXN];
ll solve(int i, int k) {
  if (i == N) return 0;
  if (k == 1) return pd[i][k] = mc[i][N - 1];
  if (pd[i][k] != -1) return pd[i][k];
  ll ret = LINF;
  int ini = i, fim = N - k + 1, best = -1;
  if (i && save[i - 1][k]) ini = save[i - 1][k];
  if (save[i][k-1]) fim = save[i][k-1] + 1;
  rep(l, ini, fim) {
    11 \text{ aux} = \text{solve}(1 + 1, k - 1) + mc[i][1];
    if (ret > aux) {
     best = 1;
      ret = aux;
  save[i][k] = best;
  return pd[i][k] = ret;
int main() {
  rep(i, 0, N) scanf("%lld", &n[i]);
  se[0] = n[0];
  rep(i, 1, N) se[i] = se[i - 1] + n[i];
  sd[N - 1] = n[N - 1];
  for (int i = N - 2; i \ge 0; i - -) sd[i] = sd[i + 1] + n[i];
  rep(i, 1, N) pd[0][i] = pd[0][i - 1] + se[i - 1];
  for (int i = N - 2; i >= 0; i--)
    pd[N-1][i] = pd[N-1][i+1] + sd[i+1];
  rep(i, 1, N) {
    rep(j, i + 1, N) pd[i][j] = pd[i - 1][j] - n[i - 1] * (j - i + 1);
  for (int i = N - 2; i >= 0; i--) {
    for (int j = i - 1; j >= 0; j--)
      pd[i][j] = pd[i + 1][j] - n[i + 1] * (i - j + 1);
  rep(i, 0, N) {
    if (pd[i][i + 1] < pd[i + 1][i])</pre>
      mc[i][i+1] = pd[i][i+1], save[i][i+1] = i+1;
```

```
else
    mc[i][i + 1] = pd[i + 1][i], save[i][i + 1] = i;
rep(j, i + 2, N) {
    int ini = save[i][j - 1];
    mc[i][j] = pd[i][ini] + pd[j][ini], save[i][j] = ini;
    rep(k, ini + 1, j + 1) {
        ll a = pd[i][k] + pd[j][k];
        if (mc[i][j] <= a) break;
        mc[i][j] = a;
        save[i][j] = k;
    }
}
rep(j, 0, N + 1) { pd[i][j] = -1, save[i][j] = 0; }

rep(j, 0, N + 1) pd[N][j] = -1, save[N][j] = 0;
solve();
return 0;</pre>
```

9.3 Convex Hull Trick

```
bool bad(int 11, int 12, int 13) {
  return (B[13] - B[11]) * (M[11] - M[12]) <</pre>
         (B[12] - B[11]) * (M[11] - M[13]);
void add(long long m, long long b) {
 M.push_back(m);
 B.push back(b);
  while (M.size() >= 3 &&
         bad(M.size() - 3, M.size() - 2, M.size() - 1)) {
   M.erase(M.end() - 2);
    B.erase(B.end() - 2);
  }
long long query(long long x) {
  if (pointer >= M.size()) pointer = M.size() - 1;
  while (pointer < M.size() - 1 &&
         M[pointer + 1] * x + B[pointer + 1] <
             M[pointer] * x + B[pointer])
    pointer++;
  return M[pointer] * x + B[pointer];
struct hux {
 int a, b, id;
bool my_sort(hux a, hux b) {
 return a.b != b.b ? a.b > b.b : a.a > b.a;
const ll LINF = 1LL << 52;</pre>
const double EPS = 1e-9;
const int MAXV = 100010;
double intersept(hux a, hux b) {
  return double(b.b - a.b) / (a.a - b.a);
```

```
vector<pair<double, double> > convex_hux(const vector<hux> &v) {
  int p = 0, n = v.size(), bestai = v[0].a;
  double cross = 0.0;
  pair<double, int> aux;
  priority_queue<pair<double, int> > pq;
  vector<pair<double, double> > ret(n + 1, mp(-1, -1));
  pq.push(mp(cross, p));
  ret[v[p].id].F = cross, ret[v[p].id].S = LINF;
  rep(i, 1, n) {
    aux = pq.top();
    cross = aux.F, p = aux.S;
    if (v[i].a <= bestai) continue;</pre>
    bestai = v[i].a;
    double new_cross = intersept(v[i], v[p]);
    while (new_cross <= cross + EPS) {</pre>
      ; () gog.pg
      ret[v[p].id] = mp(-1.0, -1.0);
      aux = pq.top();
      cross = aux.F, p = aux.S;
      new_cross = intersept(v[i], v[p]);
    pq.push(mp(new_cross, i));
    ret[v[p].id].S = new cross;
    ret[v[i].id].F = new_cross;
    ret[v[i].id].S = LINF;
  // rep(i, 0, n) cout << ret[i].F << " " << ret[i].S << "\n";
  return ret;
```

9.4 Longest Increasing Subsequence

```
// Maior subsequencia crescente
#define MAX_N 100
int vet[MAX_N], P[MAX_N], N;
void reconstruct_print(int end) {
  int x = end;
  stack-int> s;
  while (P[x] >= 0) {
    s.push(vet[x]);
    x = P[x];
  }
  printf("%d", vet[x]);
  while (!s.empty()) {
    printf(", %d", s.top());
    s.pop();
  }
}
int lis() {
```

```
int L[MAX_N], L_id[MAX_N];
int li = 0, lf = 0;  // lis ini, lis end
rep(i, 0, N) {
  int pos = lower_bound(L, L + li, vet[i]) - L;
  L[pos] = vet[i];
  L_id[pos] = i;
  P[i] = pos ? L_id[pos - 1] : -1;
  if (pos + 1 > li) {
    li = pos + 1;
    lf = i;
  }
}
reconstruct_print(lf);
return li;
```

9.5 Kadane 1D

```
// Encontra maior soma contigua positiva num vetor em O(N). {s,f}
// contem o intervalo de maior soma.
int KadanelD(int vet[], int N, int &s, int &f) {
   int ret = -INF, sum, saux;
   sum = s = f = saux = 0;
   rep(i, 0, N) {
      sum + vet[i];
   if (sum > ret) {
      ret = sum;
      s = saux;
      f = i;
   }
   if (sum < 0) {
      sum = 0;
      saux = i + 1;
   }
   return ret;
}</pre>
```

9.6 Kadane 2D

```
/*Maior soma de uma sub-matriz a partir de valores positivos.
 * [x1,y1] = upper - left, [x2,y2] = bottom - right */
int L, C, pd[MAX_L], mat[MAX_L][MAX_C];
int x1, y1, x2, y2;
int Kadane2D() {
  int ret = 0, aux;
  rep(left, 0, C)
    rep(i, 0, L) pd[i] = 0;
    rep(right, left, C) {
      rep(i, 0, L) pd[i] += mat[i][right];
      int sum = aux = 0;
      rep(i, 0, L) { // Kadane1D
       sum += pd[i];
       if (sum > ret)
         ret = sum, x1 = aux, y1 = left, x2 = i, y2 = right;
        if (sum < 0) sum = 0, aux = i + 1;
```

```
return ret;
```

9.7 Knapsack0-1

9.8 Edit Distance

```
//[IME] menor custo para transformar a em b, dado as operacoes de
//inserir, remover e substituir caracteres de a
int editDistance(string a, string b) {
  int cost, insertCost = 1, deletCost = 1;
  int m = a.size();
  int n = b.size();
  int d[m + 1][n + 1];
  for (int i = 0; i <= m; i++) d[i][0] = i * deletCost;</pre>
  for (int j = 0; j \le n; j++) d[0][j] = j * insertCost;
  for (int i = 1; i <= m; i++)</pre>
    for (int j = 1; j <= n; j++) {</pre>
      if (a[i - 1] == b[j - 1])
        cost = 0:
      else
        cost = substCost;
      d[i][i] =
          min(d[i-1][j] + deletCost,
              min(d[i][j-1] + insertCost, d[i-1][j-1] + cost));
  return d[m][n];
```

10 Sorting

10.1 Merge Sort com num de Inversoes

```
// Ordena arr aplicando mergesort e conta o numero de inversoes
void merge(int* arr, int size1, int size2, ll& inversions) {
  int temp[size1 + size2 + 2];
  int ptr1 = 0, ptr2 = 0;
```

```
while (ptr1 + ptr2 < size1 + size2) {
   if (ptr1 < size1 && arr[ptr1] <= arr[size1 + ptr2] ||
      ptr1 < size1 && ptr2 >= size2)
      temp[ptr1 + ptr2] = arr[ptr1++];

   if (ptr2 < size2 && arr[size1 + ptr2] < arr[ptr1] ||
      ptr2 < size2 && ptr1 >= size1) {
      temp[ptr1 + ptr2] = arr[size1 + ptr2++];
      inversions += size1 - ptr1;
    }
}

for (int i = 0; i < size1 + size2; i++) arr[i] = temp[i];
}

void mergeSort(int* arr, int size, ll& inversions) {
   if (size == 1) return;

int size1 = size / 2, size2 = size - size1;
   mergeSort(arr, size1, inversions);
   mergeSort(arr + size1, size2, inversions);
   merge(arr, size1, size2, inversions);
}</pre>
```

10.2 Quick Sort

```
// No main, chamar quicksort(array, 0, tam-1);
int partition(int s[], int l, int h) {
  int i, p, firsthigh;
 p = h;
 firsthigh = 1;
  for (i = 1; i < h; i++)</pre>
   if (s[i] < s[p]) {
      swap(s[i], s[firsthigh]);
      firsthigh++;
  swap(s[i], s[firsthigh]);
  return firsthigh;
void quicksort(int s[], int l, int h) {
  if ((h - 1) > 0) {
    p = partition(s, l, h);
    quicksort(s, l, p - 1);
    quicksort(s, p + 1, h);
```

11 Miscelânia

11.1 Calendário

```
// Routines for performing computations on dates. In these routines,
// months are expressed as integers from 1 to 12, days are expressed
// as integers from 1 to 31, and years are expressed as 4-digit
// integers.
string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu",
                      "Fri", "Sat", "Sun"};
// converts Gregorian date to integer (Julian day number)
int dateToInt(int m, int d, int y) {
 return 1461 * (y + 4800 + (m - 14) / 12) / 4 +
        367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
         3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 + d - 32075;
// converts integer (Julian day number) to Gregorian date:
// month/day/year
void intToDate(int jd, int &m, int &d, int &y) {
  int x, n, i, j;
  x = jd + 68569;
  n = 4 * x / 146097;
  x = (146097 * n + 3) / 4;
 i = (4000 * (x + 1)) / 1461001;
  x = 1461 * i / 4 - 31;
  j = 80 * x / 2447;
 d = x - 2447 * j / 80;
 x = j / 11;
 m = j + 2 - 12 * x;
 v = 100 * (n - 49) + i + x;
// converts integer (Julian day number) to day of week
string intToDay(int jd) { return dayOfWeek[jd % 7]; }
int main() {
  int jd = dateToInt(3, 24, 2004);
  int m, d, y;
  intToDate(jd, m, d, y);
  string day = intToDay(jd);
  // expected output:
       2453089
      3/24/2004
  cout << id << endl
       << m << "/" << d << "/" << y << endl
       << day << endl;
```