Exam Corrections

1

Bob and Alice which to use Diffie-Hellman key exchange, using the prime number p=31 and base g=3. To simplify your work, here is a table of the powers of 3:

i	3^i
1	3
2	9
3	27
4	19
5	26
6	16
7	17
8	20
9	29
10	25
11	13
12	8
13	24
14	10
15	30
16	28
17	22
18	4
19	12
20	5
21	15
22	14
23	11
24	2
25	6
26	18

i	3^i
27	23
28	7
29	21
30	1

a

Alice chooses secret key a=7. What number A does she send to Bob?

```
\checkmark Answer \checkmark A=g^a\pmod{p} A=3^7=27
```

b

If Bob sends Alice the number B=13, what is their shared secret key K?

```
\checkmark Answer B=g^b \ K=B^a=g^{ab} \ 13=3^{11} \ K=3^{(11)(7)}=3^{77}=3^{17}=22
```

C

Of course, the numbers above are tiny. In a realistic setting, given data (p, g, A, B, K) what precisely is meant by the Diffie-Hellman Decision Problem?

```
\checkmark Answer You cannot guess g^a and g^b from g^{ab} when \pmod{p}
```

2

Bob and Alice agree to communicate using ElGamal Public Key Encryption. They agree on a prime p and a base g. Alice has private key a and public key $A = g^a \pmod p$.

a

Bob wants to send message m to Alice. He chooses a random number k. What ciphertext does he send to Alice?

$egin{aligned} & extstyle extstyle Answer \ & \langle c_1, c_2 angle \ & c_1 = g^k \ & c_2 = mA^k \end{aligned}$

b

When Alice receives the ciphertext from Bob, how does she decrypt it?

$$igwedge Answer \ A^k = g^{ka} = c_1^a \ m = c_2(A^k)^{-1} = c_2(c_1^a)^{-1} \ c_2(c_1^a)^{-1} = m$$

C

Can Eve successfully attack this system using the Known Plain-text Attack? Why or why not?

✓ Answer

No, because the nonce will be different for every message

3

The polynomial x^5+x^2+1 is irreducible over $\mathbb{F}_2.$ Let $\mathbb{F}_{32}=\mathbb{F}_2[X]/(X^5+X^2+1)$ with $\alpha=[X]$

Any element $\beta=a_4\alpha^4+a_3\alpha^3+a_2\alpha^2+a_1\alpha+a_0$ of the field can be represented by a binary string $a_4a_3a_2a_1a_0$. For example, α is represented by the string 00010.

a

If $\beta_1 = \alpha^4 + \alpha$ and $\beta_2 = \alpha^2 + \alpha + 1$, compute the binary string representing $\beta_1 \beta_2$.

Answer $\beta_1 \beta_2 = (\alpha^4 + \alpha)(\alpha^2 + \alpha + 1)$ $= \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha$ $= (\alpha + 1)(\alpha^2 + 1) + \alpha^4 + \alpha^3 + \alpha^2 + \alpha$

```
=lpha^3+lpha^2+lpha+1+lpha^4+lpha^3+lpha^2+lpha \ =lpha^4+1 \ 
ightarrow 10001
```

b

Compute the binary string representing α^{11} .

```
Answer
\alpha^{11}
= (a^5)^2 \alpha
= (\alpha^2 + 1)^2 \alpha
= (\alpha^4 + 1)\alpha
= \alpha^5 + \alpha
= \alpha^2 + \alpha + 1
\rightarrow 00111
```

C

Is the polynomial x^5+x^2+1 primitive? Briefly explain your answer.

✓ Answer

Yes, as in order for it to be non-primitive, it must be able to loop to 1 for some value n < 31 such that $\alpha^n = 1$.

This is impossible as 31 is prime and $lpha^{31}=1$

There cannot be an n that divises 31 where there is an integer b such that 31 = bn

4

What is the key idea underlying each of the following:

a

The Pohlig-Hellman Algorithm?

✓ Answer

With $y = g^x \pmod{p}$ given y, g, p to find x,

With $p_{1...}p_n$ as the factors of $\varphi(p)$

We may derive equations that solve for x in each $\pmod{p_i}$

We may then use the Chinese Remainder Theorem to reconstruct the original $x\pmod{\varphi(p)}$

b

The Pollard Rho Algorithm?

✓ Answer

In order to find factors of a large number N:

We are likely to find a factor for some large value N by computing its gcd with a series of numbers defined as the following:

For
$$i \in [1,2,\ldots]$$
 calculate $\gcd(2^{i!}-1,N)$

If this number is not 1, then you have found a factor of N

C

Entropy?

✓ Answer

For some variable X,

Entropy
$$H$$
 is defined as $H(X) = \sum\limits_{x \in X} -P(X=x) \log_2(P(X=x))$

This represents the number of bits of uncertainty per bit of input.

The more entropy a cryptosystem produces, the less likely someone is able to statistically analyze its encrypted secrets and derive the secret.