Project 1 Analysis

September 11, 2015

Turns out I was plotting my exact solution wrong... This took me a while to realize. Figure 1.

I know $CFL = \nu = 1$ is the limit of stability for these schemes. I tried with CFL = 1.05 and all the schemes start to blow up!

Now, I found it was weird that Lax-Wendroff, Upwind and Lax-Friedrichs gave exactly the same results, so I looked at the TE for these schemes. I didn't derive the Truncation Error for Leap Frog or McCormack.

1 Truncation Error

Performing a Taylor expansion on the Upwind, Lax-Friedrichs and Lax-Wendroff schemes leads to the truncation error. Moreover, replacing time derivatives with spatial derivatives allows us to notice the artificial dissipation and dispersion introduced by these schemes – dissipation in the case of Upwind and Lax-Friedrichs, dispersion in Lax-Wendroff.

If we rearrange such that the dissipation/dispersion terms are functions of ν , we can notice that these terms vanish for $\nu = 1$. This explains why Upwind, Lax-Friedrichs, Lax-Wendroff have the same profile for $\nu = 1$.

Moreover, in the case that $\nu > 1$, the dissipation is negative, i.e. the dissipation turns into an amplification. As for dispersion, the artificial dispersive term is this:

$$\frac{A\Delta x^2}{6}(\nu^2 - 1)u_{xxx}\tag{1}$$

which is negative for $\nu < 1$ and becomes positive for $\nu > 1$. I'm not sure what this physically means, but it clearly makes the solution unstable.

Thus, for $\nu = 1$, the linear advection equation is supposedly solved exactly as only the higher order derivative terms are left. However, this is only true for low enough Δt and Δx , especially in this case where exact solution is almost discontinuous. So, do we recover the exact solution for low Δt , Δx ?

2 Lowering $\Delta t, \Delta x$

Consequently, I also tried decreasing both Δt and Δx , but such that I keep $\nu = 1$. In this case, I do recover the exact solution. See Figure 2.

3 Leap Frog and McCormack?

I re-checked my code for Leap Frog and McCormack multiple times, but I believe it to be correct since the results for a $\nu=0.25$, as in Figure 3, make sense for these two schemes. However, doing a Taylor expansion of the Leap frog scheme gives me:

$$(u_t + Au_x) = \frac{A\Delta x^2}{6} (\nu^2 - 1)u_{xxx} + \dots$$
 (2)

which is the same dispersive term as in Lax-Wendroff, so I'm puzzled.

Figure 1: High Δt

Figure 2: Low Δt . Results for Lax* and Upwind are exact.

Figure 3: Lower $\nu.$ Results for Leap Frog and McCormack are realistic.