# 산학연계 프로젝트

(사용자 인식을 통한 지능화 built-in 에어컨 SW 개발)

스마트응용기술Lab

DA 현장실습생

사공훈

# 목차

#### □ 목차

- 프로젝트 소개
- 시나리오 구상
- Object Detection (Yolov7)
- 카메라 해상도 설정
- Object Tracking (SORT)

- 개선 방안
- 실험 및 Data 추출
- 보완점 (3D Pose Estimation)
- 결론 및 한계

# 프로젝트 목표

#### □ 목표

- 사용자 상태 인식을 통한 지능화 built-in 에어컨 SW 개발

#### □ 세부 목표

- 1) 사람 유/무 및 사람의 수, 위치(tracking), 사용자 상태(운동 중, 수면 중) 확인
  - 2) 확인된 정보를 이용해 전원 ON/OFF, 풍향, 온도 등 자동 조절



## **Process flow**

## □Process flow

1. Object Detection



2. Tracking

3. 3D Pose Estimation



사람 유/무, 수



위치,속도

이용자 상태

## **Object Detection (YOLOv7)**







# 카메라 해상도



#### □ 카메라 해상도

카메라 해상도(pixel) : 카메라상에서의 사람 너비(pixel) = 카메라에 담긴 실제 길이(m) : 실제 사람 나

(m)

# 카메라 해상도

#### □ 카메라 해상도

카메라 해상도 ≥ 사람 너비에 요구되는 최소(pixel)\*카메라에 담긴 실제 길이 실제 사람 너비(m)

-가로 7m 세로 7m 높이 2.2m의 방

-distance = 2.2m ~ 10.14m

-사람의 길이 : 어깨너비 40cm로 측정

-Detection 가능한 최소 픽셀 수 : 대략 15px(YOLOv7, overhead view 기준)

-FOV = 120



26~42 Pixel



12~21 Pixel



6~10 Pixel

## 카메라 해상도

#### □ 카메라 해상도

-Distance에 따라 285~1317 pixel 해상도의 카메라 필요 (SD ~ FHD)

| 해상도 종류                             | 가로픽셀 | 세로픽셀 | 픽셀수 (가로X세로) | 화소     |
|------------------------------------|------|------|-------------|--------|
| <b>SD</b><br>Standard Definition   | 720  | 480  | 345,600     | 30만화소  |
| <b>HD</b><br>High Definition       | 1280 | 720  | 921,600     | 100만화소 |
| <b>FHD</b><br>Full High Definition | 1920 | 1080 | 2,073,600   | 200만화소 |

## **SORT(Simple Online and Realtime Tracking)**



| Table 2. Performance of the proposed approach on MOT benchmark sequences [6]. |        |                 |                             |      |              |                |       |       |        |                   |
|-------------------------------------------------------------------------------|--------|-----------------|-----------------------------|------|--------------|----------------|-------|-------|--------|-------------------|
| Method                                                                        | Type   | $MOTA \uparrow$ | $\mathbf{MOTP}\!\!\uparrow$ | FAF↓ | $MT\uparrow$ | $ML\downarrow$ | FP↓   | FN↓   | ID sw↓ | Frag $\downarrow$ |
| TBD [20]                                                                      | Batch  | 15.9            | 70.9                        | 2.6% | 6.4%         | 47.9%          | 14943 | 34777 | 1939   | 1963              |
| ALEXTRAC [5]                                                                  | Batch  | 17.0            | 71.2                        | 1.6% | 3.9%         | 52.4%          | 9233  | 39933 | 1859   | 1872              |
| DP_NMS [23]                                                                   | Batch  | 14.5            | 70.8                        | 2.3% | 6.0% •       | 40.8%          | 13171 | 34814 | 4537   | 3090              |
| SMOT [1]                                                                      | Batch  | 18.2            | 71.2                        | 1.5% | 2.8%         | 54.8%          | 8780  | 40310 | 1148   | 2132              |
| NOMT [11]                                                                     | Batch  | 33.7            | 71.9                        | 1.3% | 12.2%        | 44.0%          | 7762  | 32547 | 442    | 823               |
| RMOT [4]                                                                      | Online | 18.6            | 69.6                        | 2.2% | 5.3%         | 53.3%          | 12473 | 36835 | 684    | 1282              |
| TC_ODAL [17]                                                                  | Online | 15.1            | 70.5                        | 2.2% | 3.2%         | 55.8%          | 12970 | 38538 | 637    | 1716              |
| TDAM [18]                                                                     | Online | 33.0            | 72.8                        | 1.7% | 13.3%        | 39.1%          | 10064 | 30617 | 464    | 1506              |
| MDP [12]                                                                      | Online | 30.3            | 71.3                        | 1.7% | 13.0%        | 38.4%          | 9717  | 32422 | 680    | 1500              |
| SORT (Proposed)                                                               | Online | 33.4            | 72.1                        | 1.3% | 11.7%        | 30.9%          | 7318  | 32615 | 1001   | 1764              |

#### **□** SORT

- 객체의 속도를 추정하여 다음 프레임 위치를 예측하여 tracking하는

## 방식

- 적은 연산, 높은 정확도로 복수의 object detection 가능

## **YOLOv7 + SORT**



#### ☐ YOLO v7 + SORT

- object 별로 indexing, tracking 가능
- 1FPS. 속도 측면에서 최적화 과정 추가 필요 (실시간 > 30FPS)

## **Yolov7-tiny + SORT per 10 frame**



- ☐ Yolov7-tiny + SORT per 10 frame
  - 10 frame씩 끊어서 할 경우, tracking 정확도를 유지하면서 real time processing 가능

# 개선할 점





#### □ 개선할 점

- 1. 고정된 물체 Detect 하지 않기 (마네킹, 인물사진, 그림 등)
- 2. 보다 높은 정확도의 모델(Yolov7)을 적용하기 위한 속도 향상

## **Yolov7-tiny + SORT with Background Subtraction**



- **☐** Yolov7-tiny + SORT with Background Subtraction
- Background Subtraction 결과를 input으로 수행
- 고정된 물체를 detect하는 문제는 해결되었으나 속도는 거의 변화 없음
- 이미지를 잘라냄으로써 오히려 detection 정확도가 떨어지는 문제 발생

# 실험 결과(FHD, 8frame\_cut)



# 실험 결과 (FHD)



# 실험 및 Data 추출

#### □ 추출한 Data

- 1) 사람 유/무 및 사람의 수 : YOLO로 detection 된 사람 수 추출
- 2) 위치 확인(tracking) : SORT로 개인별 위치 tracking
- 3) 사용자의 상태 : 위치 변화로 부터 속도 계산.

Active(~3m/s), Steady(1~3m/s), Still(0~1m/s) 의 3단계로 구분

## 개선 방향 (3D Pose Estimation)







#### **□** 3D pose estimation

- 사람의 pose를 통해 상태 확인 -> 사람의 골격, 부피 및 수면중, 운동

중 등등

### 3D Pose Estimation(MediaPipe)







#### ☐ 3D pose estimation

- 사람의 pose를 통해 상태 확인 -> 사람의 골격, 부피 및 수면중, 운동중 등등

# 결론 및 한계



1. 사람 유/무 -> ON/OFF



2. 사람 수 -> 온도 Control



3. 이동속도 -> 온도 control



4. 이용자 상태 -> 온도 , 풍향control

**Sleeping** 



# 결론 및 한계

- □ 사용자의 상태 구체화 (3D Pose Estimation)
- □ CPU 성능에 따른 현실 적용 가능성
- □ IR 센서 필요 (for Night Vision)

# 감사합니다

