Package 'resp'

October 16, 2017

Title	Creates	response	models	for	whole	datasets

Version 1.0.2

Description Given a data.frame and selecting fixed and random factors, returns a set of models that allow to select the significant effect of the fixed factors.

Depends R (>= 3.0.2)
Imports lme4, stats
Encoding UTF-8
Author Adrià Masip <adria@burgeon.cat>
Maintainer resp Team <webmaster@burgeon.cat>
License GPL (>= 2)

R topics documented:

esp-package	. 1
formula_from_vec	. 2
og.dataset	. 3
nod.check	. 3
nod.resp	. 4
name_range	. 5
orint.mresp	. 6

resp-package

Creates response models for whole datasets

Description

Given a data.frame and selecting fixed and random factors, returns a set of models that allow to select the significant effect of the fixed factors.

2 formula_from_vec

Details

The DESCRIPTION file: This package was not yet installed at build time.

```
Index: This package was not yet installed at build time.

~~ An overview of how to use the package, including the most important functions ~~
```

Author(s)

```
Adrià Masip <adria@burgeon.cat>
Maintainer: resp Team <webmaster@burgeon.cat>
```

References

~~ Literature or other references for background information ~~

See Also

```
~~ Optional links to other man pages, e.g. ~~ ~~ <pkg> ~~
```

Examples

```
^{\sim\sim} simple examples of the most important functions ^{\sim\sim}
```

```
formula_from_vec Formula string creation from vector elements
```

Description

Given a vector, create a unique string from the elements.

Usage

```
formula_from_vec(x, start='~', mid=' + ', end='', as_formula=FALSE)
```

Arguments

```
x vector to be transformed
start initial string, DEFAULT: '~ '
mid between-elements string, DEFAULT: ' + '
end final string, DEFAULT: ''
as_formula logical, return string as S formula, DEFAULT: FALSE
```

Value

Returns single string of concatenated elements

log.dataset 3

log.dataset

log-transform data.frame

Description

given a whole dataset in data.frame format, log-transform the values avoiding NAs and zeros, so no -Inf or NaN is created

Usage

```
log.dataset(data, columns = 1:dim(data)[2])
```

Arguments

data data.frame to be transformed

columns to be transformed, DEFAULT: whole data.frame

Value

Returns the same dataframe with log-transformed values

mod.check

check models to recover performance information

Description

After a mresp object is created, check for fixed factors significance and unvalidated results, mod.check can also be used to compare the performance of the created mixed models

Usage

```
mod.check(models,omit_NA=TRUE)
```

Arguments

models mresp object to be analyzed

omit_NA logical, compare data without NA values, DEFAULT: TRUE

Value

Returns the given mresp object with new check_out element inside each response variable

4 mod.resp

mod.resp Create response lmer models for a whole data.fram
--

Description

Given the fixed and random factors of a data.frame, creates a list of 5 mixed models for each response variable, so the best fit can be selected

Usage

```
mod.resp(data, fixed, random, r_group, exclude,
  omit_NA = TRUE, fixed_interaction = TRUE, check_models = TRUE)
```

Arguments

data	data.frame to be analyzed				
fixed	vector of column names to be used as fixed factors				
random	vector of column names to be used as random factors				
r_group	vector of column names to be used as random grouping factors				
exclude	vector of column names to be excluded from the response analysis				
omit_NA	logical, DEFAULT TRUE, avoid using NAs from data				
fixed_interaction					
	logical, DEFAULT TRUE, check interaction from fixed factors				
check_models	$\verb logical, DEFAULT TRUE , create \verb check_out table for each response variable $				
lmer_warnings					
	logical, DEFAULT FALSE, display lmer() construction warnings				

Value

Returns mresp object with a list of response variables sorted alphabetically, with 5 models each and a comparision between them (checkout)

```
resp_1 First response variable
resp_... Other response variables
resp_n Last response variable
```

References

```
lmer, stats
```

name_range 5

Examples

```
n <- 500L
tr <- c('T1','T2','T3')
sp <- c('S1','S2','S3')
gr <- c('A', 'B')
F1 <- c(); F2 <- c(); F3 <- c()
R1 <- c(); R2 <- c(); R3 <- c()
for (i in 1:n) {
 F1[i] \leftarrow tr[round(i/n*3,0)]
 F2[i] <- sp[round(runif(1L,1L,3L),0)]
 F3[i] \leftarrow gr[round(runif(1L, 1L, 2L), 0)]
 \texttt{R1[i]} \; \leftarrow \; \texttt{rnorm}(\texttt{1,10,2}) + \texttt{runif}(\texttt{1L}) + (\texttt{which}(\texttt{tr} == \texttt{F1[i]}) \star \texttt{3})
 R2[i] \leftarrow rnorm(1,10,2) + runif(1L) + (which(sp==F2[i])*10)
 R3[i] \leftarrow rnorm(1,600,20) + runif(1L) + (which(tr==F1[i]) *20)
table(F1,F2)
x <- data.frame(
    Treatment=F1,
    Specie=F2,
    Group=F3,
    Rand=runif(n),
    Heigth=R1,
     Diameter=R2,
     Number_leaves=R3,
     other=runif(n)
# rm(n,tr,sp,gr,F1,F2,F3)
a <- mod.resp(data = x, fixed = c('Treatment','Specie'), random='Rand',</pre>
                 r_group = c('Group'), exclude='other', lmer_warnings=TRUE,
                 choose_models=FALSE, check_models=FALSE)
print(a)
```

name_range

Numeric data categorization between user-given ranges

Description

Returns 'High', ['Mid[_n]'] or 'Low' based on range values for group limits

Usage

```
name_range(x, range)
```

Arguments

x numeric set to be transformed, must be vector or data.frame range limits of the groups to be created

6 print.mresp

Value

 $Returns \ {\tt vector} \ or \ {\tt data.frame} \ of \ transformed \ elements.$

print.mresp

Print method for mresp objects

Description

Prints a resume table of the relations between models based on logLikelihood ratio