Computable Linear Orderings

Wu Guohua

Nanyang Technological University

Sendai Logic School - 2013

Spectra

Let R be a relation on a computable structure \mathcal{A} , we look at another computable structure $\hat{\mathcal{A}}$ isomorphic to \mathcal{A} and the image of R under the isomorphism, say \hat{R} .

Spectra

Let R be a relation on a computable structure \mathcal{A} , we look at another computable structure $\hat{\mathcal{A}}$ isomorphic to \mathcal{A} and the image of R under the isomorphism, say \hat{R} .

The spectrum of R is the collection of Turing degrees (perhaps others) of such \hat{R} s.

Let $\mathcal L$ be a linear ordering. The Successivity Relation, $Succ(\mathcal L)$, is defined as it should be.

Let $\mathcal L$ be a linear ordering. The Successivity Relation, $Succ(\mathcal L)$, is defined as it should be.

Theorem: Dzgoev-Goncharov, Remmel

A computable linear ordering is computably categorical if and only if it has only finitely many successivities.

Let $\mathcal L$ be a linear ordering. The Successivity Relation, $Succ(\mathcal L)$, is defined as it should be.

Theorem: Dzgoev-Goncharov, Remmel

A computable linear ordering is computably categorical if and only if it has only finitely many successivities.

We consider the spectrum of the relation *Succ* of computable linear orderings.

Let $\mathcal L$ be a linear ordering. The Successivity Relation, $Succ(\mathcal L)$, is defined as it should be.

Theorem: Dzgoev-Goncharov, Remmel

A computable linear ordering is computably categorical if and only if it has only finitely many successivities.

We consider the spectrum of the relation *Succ* of computable linear orderings.

▶ $Succ(\mathcal{L})$ is co-r.e., so it has c.e. degree.

Let $\mathcal L$ be a linear ordering. The Successivity Relation, $Succ(\mathcal L)$, is defined as it should be.

Theorem: Dzgoev-Goncharov, Remmel

A computable linear ordering is computably categorical if and only if it has only finitely many successivities.

We consider the spectrum of the relation *Succ* of computable linear orderings.

▶ $Succ(\mathcal{L})$ is co-r.e., so it has c.e. degree.

Question: Does there exist a computable linear ordering with infinite successivities such that Succ is intrisically incomplete (i.e. the spectrum of Succ does not contain 0')?

The answer is "yes" for wtt-degrees.

No for Turing degrees

Theorem: DLW

For any computable linear ordering with infinite successivities, \mathcal{A} , there is an isomorphic copy \mathcal{B} such that $K \leq_{\mathcal{T}} Succ(\mathcal{B})$ (i.e. $Succ(\mathcal{B})$ has Turing degree $\mathbf{0}'$).

No for Turing degrees

Theorem: DLW

For any computable linear ordering with infinite successivities, \mathcal{A} , there is an isomorphic copy \mathcal{B} such that $K \leq_{\mathcal{T}} Succ(\mathcal{B})$ (i.e. $Succ(\mathcal{B})$ has Turing degree $\mathbf{0}'$).

- ▶ At each stage s, between A_s and B_s , we only have a partial mapping.
- The final isomorphism can be read off from the true path of the construction tree.

Question: How about the spectrum of the in-between relation T?

Question: How about the spectrum of the in-between relation T?

Thanks!