

$$\sigma_{\alpha} = \frac{\sigma_{\nu} + \sigma_{h}}{2} + \frac{\sigma_{\nu} - \sigma_{h}}{2} \cos(2\alpha)$$
$$\tau_{\alpha} = \frac{\sigma_{\nu} - \sigma_{h}}{2} \sin(2\alpha)$$

$$\sigma_{\alpha} = \frac{\sigma_y + \sigma_x}{2} + \frac{\sigma_y - \sigma_x}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha$$

$$\tau_{\alpha} = \frac{\sigma_y - \sigma_x}{2} \sin 2\alpha - \tau_{xy} \cos 2\alpha$$

Determination of the yield limit from the measured shear stresses

Yield locus and flow properties

- slope angle of the linearized yield locus, φ_{lin}
- effective angle of internal friction, φ_e (slope of the effective yield locus)
- angle of internal friction at steady-state flow, φ_{sf}
- bulk density, ρ_b

