Travaux Dirigés de Chimie

CHARLES TUCHENDLER

MPSI 4 – Lycée Saint-Louis

Année 2019/2020

Table des matières

$\Gamma D \ N^{\circ} \ 2$	ÉVOLUTION TEMPORELLE D'UN SYSTÈME EN RÉACTION	1
Exercice nº 1 - Loi	de Van't Hoff	1
Exercice n° 2 - Cin	étique formelle d'une réaction d'ordre trois	1
Exercice n° 3 - Loi	de vitesse et ordres partiels	1
Exercice n° 4 - Mé	thode des vitesse initiales (1)	2
Exercice n° 5 - Mé	thode des vitesses initiales (2)	2
Exercice n° 6 - Mé	thode des temps de demi-réaction	2
Exercice n° 7 - Mé	thode intégrale	3
Exercice n° 8 - Déc	composition du pentaoxyde de diazote	3

TD N° 2

ÉVOLUTION TEMPORELLE D'UN SYSTÈME EN RÉACTION

Exercice nº 1 - Loi de Van't Hoff

- 1. Rappeler la loi de Van't Hoff.
- 2. Donner l'expression de la vitesse des réactions suivantes obéissant à la loi de Van't Hoff :
 - (a) $H_2S + O = HS + OH$
 - (b) $C_2H_4 + HBr = C_2H_5Br$
 - (c) $HO^- + H^+ = H_2O$
 - (d) $2 CH_3 = C_2 H_6$

Exercice n° 2 - Cinétique formelle d'une réaction d'ordre trois

Considérons une réaction irréversible d'ordre trois obéissant à la loi de Van't Hoff du type :

$$A+2B=\dots$$

Etablir l'expression de la concentration en A en fonction du temps dans les deux cas suivants :

- $[A]_0 = a, [B]_0 = 2a$
- $[A]_0 = a$, $[B]_0 = b$ avec $b \gg a$.

Exercice n° 3 - Loi de vitesse et ordres partiels

1. La vitesse de la réaction : A + B = C s'écrit : $v(t) = k[A]^2[B]^{1/2}$. Si les concentrations en A et B sont toutes divisées par un facteur 8 par quel facteur sera divisée la vitesse?

Deux substances incolores A et B réagissent pour donnée une substance colorée C. On suppose que la réaction admet un ordre. Soit t la durée nécessaire à l'obtention d'une teinte de même intensité à partir de différentes concentrations de A et de B. On a recueilli les données suivantes :

t	t (s)	$[A]_0 \text{ (mol.L}^{-1})$	$[B]_0 \text{ (mol.L}^{-1})$
	44	0,05	0,05
	22	0,05	0,10
	44	0,10	0,05

2. Déterminer les ordres partiels pour chaque réactif et donner la loi de vitesse de cette réaction.

Exercice n° 4 - Méthode des vitesse initiales (1)

Pour la réaction en solution aqueuse :

$$\operatorname{Fe}^{3+} + \operatorname{I}^{-} \longrightarrow \operatorname{Fe}^{2+} + \frac{1}{2}\operatorname{I}_{2}$$

on a réalisé deux séries d'expérience à 25°C.

1. On mesure la vitesse initiale v_0 de la réaction avec une valeur constante de $\left[I^-\right]_0 = 3,45 \text{ mmol.L}^{-1}$ et des valeurs variables de $\left[\text{Fe}^{3+}\right]_0$:

$\left[\mathrm{Fe}^{3+}\right]_0 (\mathrm{mmol.L}^{-1})$	1,42	7,51	17,31	24,21
$v_0 \; (\mu \text{mol.L}^{-1}.\text{s}^{-1})$	0,15	0,79	1,82	$2,\!54$

Déterminer l'ordre partiel par rapport à Fe^{3+} .

2. Cette fois-ci $\left[\mathrm{Fe^{3+}}\right]_0 = 1,42 \; \mathrm{mmol.L^{-1}}$ est maintenue et c'est $\left[\mathrm{I^-}\right]_0$ qui varie :

$\left[\mathrm{I}^{-}\right]_{0} \left(\mathrm{mmol.L}^{-1}\right)$	3,45	8,31	11,82	14,11
$v_0 \; (\mu \text{mol.L}^{-1}.\text{s}^{-1})$	0,15	0,87	1,75	2,52

Déterminer l'ordre partiel par rapport à I^- .

3. En déduire la loi de vitesse initiale et calculer la valeur de la constate de vitesse.

Exercice n° 5 - Méthode des vitesses initiales (2)

En présence d'un initiateur I, un alcool secondaire RCH(OH)R s'oxyde en phase liquide selon le bilan suivant :

$$RCH(OH)R + O_2 = RCOR + H_2O_2$$

On notera que "R" désigne un groupe alkyle. L'étude expérimentale est effectuée à 100 °C en mesurant la vitesse initiale de la réaction v_0 pour différentes concentrations en réactifs et en initiateur I.

- 1. On observe expérimentalement que la vitesse initiale v_0 de la réaction ne varie pas avec la pression en dioxygène. Que peut-on en conclure?
- 2. La vitesse v_0 dépend de la concentration en initiateur. Pour une première série d'expériences, on donne $P(O_2) = 400 \text{ mmHg}$; $[\text{RCH}(\text{OH})\text{R}]_0 = 10 \text{ mol.L}^{-1}$.

$[I]_0 \text{ (mol.L}^{-1})$		0,030	0,060	0,090
$v_0 \; (\mu \text{mol.L}^{-1}.\text{s}^{-1})$	40,4	57,1	80,8	99,0

Déterminer l'ordre initial de la réaction par rapport à l'initiateur I.

3. Pour la même pression en dioxygène et $[I]_0 = 0,03 \text{ mol.L}^{-1}$, la vitesse v_0 dépend de la concentration en alcool :

$[RCH(OH)R]_0 \text{ (mol.L}^{-1})$	2	4	6	8	10
$v_0 \; (\mu \text{mol.L}^{-1}.\text{s}^{-1})$	11,5	22,8	34,5	45,6	57,1

Déterminer l'ordre initial de la réaction par rapport à l'alcool.

4. Déduire de ce dernier résultat et de la question 2 la valeur de la constante globale de vitesse.

Exercice n° 6 - Méthode des temps de demi-réaction

Soit la réaction d'oxydoréduction ayant pour équation :

$$2Fe^{3+} + Sn^{2+} = 2Fe^{2+} + Sn^{4+}$$

La loi de vitesse est de la forme :

$$v(t) = \frac{d\left[\operatorname{Sn}^{4+}\right]}{dt} = k\left[\operatorname{Fe}^{3+}\right]^{\alpha} \left[\operatorname{Sn}^{2+}\right]^{\beta}$$

- 1. On opère avec un large excès d'ions fer (III). On constate alors que le temps de demi-réaction concernant la disparition des ions étain (II) est indépendant de leur concentration initiale. Quelle est la valeur de β ? Justifier.
- 2. On réalise des mélanges stoechiométriques à partir de différentes concentrations C_0 en ions fer (III). On constate que le temps de demi-réaction dépend de C_0 .
 - (a) Etablir une relation liant $t_{1/2}$, C_0 et α .
 - (b) Déterminer α , sachant que $t_{1/2}$ est divisé par quatre lorsque C_0 est multiplié par 2.

Exercice n° 7 - Méthode intégrale

On étudie la cinétique de la réaction d'hydrolyse :

$$RCl + 2H_2O = ROH + H_3O^+ + Cl^-$$

où R représente un groupe organique quelconque. On suppose que la réaction admet un ordre. On réalise une solution de RCl, de concentration C_0 , dans un mélange eau-alcool à 25°C. On effectue, à divers instants t, des prélèvements de $V_a = 5 \text{ cm}^3$ et l'on dose les ions $\mathrm{H_3O^+}$ formés par de la soude de concentration $C_b = 1, 25.10^{-2} \text{ mol.L}^{-1}$. Soit V le volume de soude nécessaire pour atteindre l'équivalence. On trouve pour $C_0 = 0,076 \text{ mol.L}^{-1}$:

t (h)	4,0	12,0	29,5	48,5
$V (\rm cm^3)$	3,75	10,0	18,9	$24,\!25$

Déterminer la loi de vitesse de cette réaction et calculer la valeur de la constante de vitesse à 25°C.

Exercice n° 8 - Décomposition du pentaoxyde de diazote

Le pentaoxy de de diazote $\mathrm{N}_2\mathrm{O}_5$ se décompose en phase gazeus e selon la réaction :

$$N_2O_5(g) = 2NO_2(g) + \frac{1}{2}O_2(g)$$

- 1. On introduit dans un réacteur fermé N_2O_5 . Soient P_0 la pression initiale, P la pression totale à un instant quelconque et α le coefficient de dissociation (ou taux de conversion) de N_2O_5 .
 - (a) Exprimer P en fonction de P_0 et α .
 - (b) Montrer que l'on peut connaître à chaque instant la pression partielle de N_2O_5 dans le réacteur par mesure de la pression totale P connaissant P_0 .
- 2. Si on porte $\ln P_{\rm N_2O_5}$ en fonction du temps t, on obtient une droite.
 - (a) Quel est l'ordre de la réaction? Justifier votre réponse.
 - (b) Etablir la loi cinétique P = f(t) et donner l'allure de la courbe correspondante.

 $Donn\acute{e}es: R=8,314~\mathrm{J.K^{-1}.mol^{-1}}.$