- 1. Величины (x_t) независимы и равновероятно принимают значения 0 или 1. Определим процесс $y_t = x_t/(1+x_{t-1})$.
 - а) Является ли процесс (y_t) стационарным?

Винни Пух обладает большим количеством наблюдений за (y_t) и оценивает модель вида $y_t = \alpha + u_t + \beta u_{t-1}$ методом максимального правдоподобия. Винни ошибочно предполагает, что величины $u_t \sim \mathcal{N}(0; \sigma^2)$ и независимы.

- б) Какое примерно $\hat{\beta}$ получит Винни-Пух?
- 2. Величины X_1, X_2, X_3 независимы и равномерны на [0;1]. Определим пару величин $L=\min\{X_1, X_2\}$ и $R=\min\{X_1, X_2, X_3\}$.
 - а) Постройте копулу величин L и R.
 - б) Нарисуйте любую линию уровня этой копулы.
- 3. Стационарный в сильном смысле белый шум (u_t) описывается GARCH(1,0) моделью: $u_t = \nu_t \sigma_t$, $\nu_t \sim \mathcal{N}(0;1), \, \sigma_t^2 = 3 + 0.5 \sigma_{t-1}^2$. Помимо уравнений предполагают, что ν_t не зависит от $u_{t-1}, \, \nu_{t-1}, \, u_{t-2}, \, \nu_{t-2}, \, \dots$
 - а) Найдите безусловную дисперсию u_t .
 - б) Известно, что $\sigma_{100}=2$. Постройте 95%-е предиктивные интервалы для u_{101} и u_{102} .
- 4. Найдите DTW-расстояние между рядами x=(0,1,0) и y=(1,2,3,0). В качестве отличия двух отдельных наблюдений используйте $(x_i-y_j)^2$.
- 5. Рассмотрим байесовскую скалярную авторегрессию, $y_t = \beta y_{t-1} + u_t$ с фиксированным неслучайными $y_0 = 0$. Для упрощения будем считать, что распределение белого шума (u_t) полностью известно, $u_t \sim \mathcal{N}(0;1)$.

Априорно исследователь верит, что $\beta \sim \mathcal{N}(0;4)$.

Найдите апостериорное распределение β , если есть всего два наблюдения, $y_1=1,\,y_2=2.$

6. Перепишите стационарный ARMA(1,1) процесс (a_t) с уравнением $a_t=0.3a_t+u_t+0.5u_{t-1}$, где (u_t) — белый шум, в виде модели пространства состояний

$$\begin{cases} x_t = Fx_{t-1} + v_t \\ y_t = Gx_t + w_t, \end{cases}$$

где величины x_0 , (v_1, w_1) , (v_2, w_2) , ... некоррелированы.

Нужно явно выписать, как устроен векторы x_t и y_t , матрицы F и G, как связаны шумы v_t и w_t с исходным шумом u_t .