

ECE 802, Electric Motor Control

Reference Frame Theory

Reference Frame Theory (Chapter 3)

Introduced by R.H. Park in 1929 to model synchronous machines

Three-Phase Transformation to the Arbitrary Reference Frame

$$f_{qd0s} = K_s f_{abcs}$$

$$f_{qd0s} = \begin{bmatrix} f_{qs} \\ f_{ds} \\ f_{0s} \end{bmatrix}$$
 $f_{abcs} = \begin{bmatrix} f_{as} \\ f_{bs} \\ f_{cs} \end{bmatrix}$

f = voltage, current, or flux linkage

q = q-axis (quadrature axis) a = a-phase d = d-axis (direct axis) b = b-phase

0 = zero sequence c = c-phase

The Reference Frame Transformation

$$K_{s} = \frac{2}{3} \begin{bmatrix} \cos(\theta) & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\ \sin(\theta) & \sin\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\theta = \int_0^t \omega(\varsigma) \, d\varsigma + \theta(0)$$

 ω = reference frame speed (rad/sec)

 θ = reference frame position (rad)

The Inverse Transformation

$$f_{abcs} = K_s^{-1} f_{qd0s}$$

$$K_s^{-1} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 1\\ \cos\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta - \frac{2\pi}{3}\right) & 1\\ \cos\left(\theta + \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) & 1 \end{bmatrix}$$

Example: Three-Phase Set of Voltages

$$v_{as} = \sqrt{2} V_s \cos(\theta_e + \phi_v)$$

$$v_{bs} = \sqrt{2} V_s \cos(\theta_e + \phi_v) - \frac{2\pi}{3}$$

$$v_{cs} = \sqrt{2} V_s \cos(\theta_e + \phi_v) + \frac{2\pi}{3}$$

$$\begin{array}{ll} \theta_e = \omega_e \, t & f & - \, \text{electric frequency (Hz)} \\ \omega_e = 2 \, \pi \, f & \omega_e & - \, \text{electric radian frequency (rad/sec)} \\ \theta_e & - \, \text{electrical position (rad)} \\ V_s & - \, \text{rms Voltage (V)} \\ \phi_v & - \, \text{phase shift (rad)} \end{array}$$

Transform to the Arbitrary Reference Frame

$$v_{qd0s} = K_s v_{abcs}$$

$$\begin{bmatrix} v_{qs} \\ v_{ds} \\ v_{0s} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos(\theta) & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\ \sin(\theta) & \sin\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) \end{bmatrix} \begin{bmatrix} \sqrt{2}V_s \cos\left(\theta_e + \phi_v\right) \\ \sqrt{2}V_s \cos\left(\theta_e + \phi_v - \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Voltages in Arbitrary Reference Frame

q-axis voltage

$$v_{qs} = \frac{2}{3}\sqrt{2}V_s \left[\cos(\theta)\cos(\theta_e + \phi_v) + \cos(\theta - \frac{2\pi}{3})\cos(\theta_e + \phi_v - \frac{2\pi}{3}) + \cos(\theta + \frac{2\pi}{3})\cos(\theta_e + \phi_v + \frac{2\pi}{3})\right]$$

using the identity,

$$\cos(x)\cos(y) + \cos(x - \frac{2\pi}{3})\cos(y - \frac{2\pi}{3}) + \cos(x + \frac{2\pi}{3})\cos(y + \frac{2\pi}{3}) = \frac{3}{2}\cos(x - y)$$

$$v_{qs} = \sqrt{2}V_s \cos(\theta - \theta_e - \phi_v)$$

d-axis voltage

$$v_{ds} = \frac{2}{3}\sqrt{2}V_s \left[\sin(\theta)\cos(\theta_e + \phi_v) + \sin(\theta - \frac{2\pi}{3})\cos(\theta_e + \phi_v - \frac{2\pi}{3}) + \sin(\theta + \frac{2\pi}{3})\cos(\theta_e + \phi_v + \frac{2\pi}{3}) \right]$$

using the identity,

$$\sin\left(x\right)\cos\left(y\right) + \sin\left(x - \frac{2\pi}{3}\right)\cos\left(y - \frac{2\pi}{3}\right) + \sin\left(x + \frac{2\pi}{3}\right)\cos\left(y + \frac{2\pi}{3}\right) = \frac{3}{2}\sin\left(x - y\right)$$

$$v_{ds} = \sqrt{2}V_s \sin(\theta - \theta_e - \phi_v)$$

zero sequence voltage

$$|v_{0s}| = \frac{1}{3} \sqrt{2} V_s \left[\cos \left(\theta_e + \phi_v \right) + \cos \left(\theta_e + \phi_v - \frac{2\pi}{3} \right) + \cos \left(\theta_e + \phi_v + \frac{2\pi}{3} \right) \right] = 0$$

Numerical Example

208 V, 3-phase, f = 60 Hz (208 V line-to-line rms)

$$V_s = \frac{208 \text{ V}}{\sqrt{3}} = 120 \text{ V}$$
 $\phi_v = 0$

1. Stationary reference frame $\theta = 0$

$$v_{qs}^{s} = \sqrt{2}V_{s}\cos\left(\theta_{e}\right)$$

$$v_{ds}^{s} = -\sqrt{2}V_{s}\sin\left(\theta_{e}\right)$$

2. Synchronous reference frame $\theta = \theta_{e}$

$$v_{qs}^e = \sqrt{2}V_s \cos(\phi_v) = \sqrt{2}V_s$$

$$v_{ds}^e = -\sqrt{2}V_s \sin(\phi_v) = 0$$

Axis Sketch with θ =0

d-axis

Axis Sketch with $\theta = \theta_e$

Axis Sketch with $\theta = \theta_e$ and $\phi_v = 30^\circ$

Commonly Used Reference Frames

Arbitrary	$\omega = \omega$		K_{s}
Stationary	$\omega = 0$	$\int_{qs}^{s}, f_{ds}^{s}, f_{0s}$	K_s^s
Synchronous	$\omega = \omega_e$	$f_{qs}^e, f_{ds}^e, f_{0s}$	K_s^e
Rotor	$\omega = \omega_r$	$f_{qs}^{r}, f_{ds}^{r}, f_{0s}$	K_s^r

compact notation

$$v_{qd0s} = K_s v_{abcs}$$

$$v_{qd0s}^e = K_s^e v_{abcs}$$

Notes: In all reference frames $f_{0s} = \frac{1}{3}(f_{as} + f_{bs} + f_{cs})$

The reference frame speed defines one reference frame. There are an infinite number since $\theta(0)$ can be set to any value.

Frame-to-Frame Transformation

$$f_{qd0s}^{x} = K_{s}^{x} f_{abcs}$$

$${}^{x}K^{y} = \begin{bmatrix} \cos(\theta_{y} - \theta_{x}) & \sin(\theta_{y} - \theta_{x}) & 0 \\ \sin(\theta_{y} - \theta_{x}) & \cos(\theta_{y} - \theta_{x}) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Real Power in the *q-d* Reference Frame

$$P_{in} = v_{as} i_{as} + v_{bs} i_{bs} + v_{cs} i_{cs} = \begin{bmatrix} v_{as} & v_{bs} & v_{cs} \end{bmatrix} \begin{bmatrix} i_{as} \\ i_{bs} \\ i_{cs} \end{bmatrix} = v_{abcs}^T i_{abcs}$$

$$P_{in} = \frac{3}{2} \left(v_{qs} i_{qs} + v_{ds} i_{ds} \right) + 3 v_{0s} i_{0s}$$

Reference Frame Transformation

Developed by R.H. Park in 1929 for analysis of synchronous machines.

Allows treatment of balanced three-phase ac systems as two-phase dc systems.

- This leads to application of classical control theory
- Also simplifies control equations of some systems

Transforming Circuit Elements: R-L Example

voltage equations

$$v_{as} = Ri_{as} + p\lambda_{as}$$

$$v_{bs} = Ri_{bs} + p\lambda_{bs}$$

$$v_{cs} = Ri_{cs} + p\lambda_{cs}$$

note:
$$p = \frac{d}{dt}$$

flux linkage equations

$$\lambda_{as} = Li_{as}$$

$$\lambda_{bs} = Li_{bs}$$

$$\lambda_{cs} = Li_{cs}$$

Transform Flux Linkage Equations

1. Compress equations

$$\lambda_{abcs} = Li_{abcs}$$

2. Transform equations

3. Expand equations

$$\lambda_{qs} = Li_{qs}$$

$$\lambda_{ds} = Li_{ds}$$

$$\lambda_{0s} = Li_{0s}$$

Transform Voltage Equations

1. Compress equations

$$v_{abcs} = Ri_{abcs} + p\lambda_{abcs}$$

2. Transform equations

$$p\{K_s^{-1}\} = \omega \begin{bmatrix} -\sin(\theta) & \cos(\theta) & 0\\ -\sin(\theta - \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) & 0\\ -\sin(\theta + \frac{2\pi}{3}) & \cos(\theta + \frac{2\pi}{3}) & 0 \end{bmatrix}$$

$$K_{s} p\{K_{s}^{-1}\} = \begin{bmatrix} 0 & \omega & 0 \\ -\omega & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$v_{qd0s} = Ri_{qd0s} + p\lambda_{qd0s} + \omega\lambda_{dqs}$$
 $\lambda_{dqs} = \begin{bmatrix} \lambda_{ds} \\ -\lambda_{qs} \\ 0 \end{bmatrix}$

3. Expand equations

$$v_{qs} = Ri_{qs} + p\lambda_{qs} + \omega\lambda_{ds}$$

$$v_{ds} = Ri_{ds} + p\lambda_{ds} - \omega\lambda_{qs}$$

$$v_{0s} = Ri_{0s} + p\lambda_{0s}$$

Equivalent Circuit

q-axis

d-axis

zero sequence

$$v_{qs} = Ri_{qs} + p\lambda_{qs} + \omega\lambda_{ds}$$

$$\lambda_{qs} = Li_{qs}$$

$$v_{ds} = Ri_{ds} + p\lambda_{ds} - \omega\lambda_{qs}$$

$$\lambda_{ds} = Li_{ds}$$

$$v_{0s} = Ri_{0s} + p\lambda_{0s}$$

$$\lambda_{0s} = Li_{0s}$$

R-L Example from Book Stationary Reference Frame

matches Figure 3.10-1

R-L Example from Book Synchronous Reference Frame

23

R-L Example from Book Varying Reference Frame

matches Figure 3.10-3

Coupled Inductors

voltage equations

$$v_{abcs} = Ri_{abcs} + p\lambda_{abcs}$$

$$v_{qd0s} = Ri_{qd0s} + p\lambda_{qd0s} + \omega\lambda_{dqs}$$

$$\lambda_{dqs} = \begin{bmatrix} \lambda_{ds} \\ -\lambda_{qs} \\ 0 \end{bmatrix}$$

Coupled Inductors

flux linkage equations

$$\begin{bmatrix} \lambda_{as} \\ \lambda_{bs} \\ \lambda_{cs} \end{bmatrix} = \begin{bmatrix} L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} & L_{ls} + L_{ms} \end{bmatrix} \begin{bmatrix} i_{as} \\ i_{bs} \\ i_{cs} \end{bmatrix}$$

$$K_{s}\mathbf{L}_{s}K_{s}^{-1} = \begin{bmatrix} L_{ls} + \frac{3}{2}L_{ms} & 0 & 0\\ 0 & L_{ls} + \frac{3}{2}L_{ms} & 0\\ 0 & 0 & L_{ls} \end{bmatrix}$$

expanded form

$$\lambda_{qs} = \left(L_{ls} + \frac{3}{2}L_{ms}\right)i_{qs}$$

$$\lambda_{ds} = \left(L_{ls} + \frac{3}{2}L_{ms}\right)i_{ds}$$

$$\lambda_{0s} = L_{ls}i_{0s}$$

Transformation of Circuit Elements

Balanced three-phase ac circuits transformed to two-phase dc circuits (neglecting the zero sequence and assuming analysis in the synchronous reference frame)

Flux linkage equations for inductive circuits were used for generality to other circuits; including electric machines

Coupling terms between the *q*- and *d*-axes result from the transformation. These will later be viewed as back-emf terms when observing electric machinery in the synchronous reference frame.

Balanced Steady-State Calculations

$$\theta_{e} = \int_{0}^{t} \omega_{e}(\varsigma) d\varsigma + \theta_{e}(0) \qquad \text{define} \quad \phi_{v} = \theta_{e}(0)$$

$$= \omega_{e}t + \phi_{v}$$

$$\theta = \int_{0}^{t} \omega(\varsigma) d\varsigma + \theta(0)$$

$$= \omega t + \theta(0)$$

Balanced Steady-State Voltages

$$v_{as} = \sqrt{2}V_s \cos(\omega_e t + \phi_v)$$

$$v_{bs} = \sqrt{2}V_s \cos(\omega_e t + \phi_v - \frac{2\pi}{3})$$

$$v_{cs} = \sqrt{2}V_s \cos(\omega_e t + \phi_v + \frac{2\pi}{3})$$

$$ilde{V_{as}} = V_s e^{j\phi_v} \longrightarrow ilde{V_{as}} = V_s \angle \phi_v$$
 $ilde{V_{bs}} = ilde{V_s} e^{-j\frac{2\pi}{3} + j\phi_v}$
 $ilde{V_{cs}} = ilde{V_s} e^{j\frac{2\pi}{3} + j\phi_v}$

Synchronous Reference Frame *q-d* Voltages

Synchronous: $\omega = \omega_e$ and $\theta(0) = 0$

$$V_{qs}^{e} = \sqrt{2}V_{s}\cos(\phi_{v})$$

$$V_{ds}^{e} = -\sqrt{2}V_{s}\sin\left(\phi_{v}\right)$$

note:
$$\sqrt{2} V_s = \sqrt{(V_{qs}^e)^2 + (V_{ds}^e)^2}$$

$$\phi_{v} = \tan^{-1} \left(\frac{-V_{ds}^{e}}{V_{qs}^{e}} \right)$$

R-L Circuit Example

 $R := 1 \cdot \Omega$

 $L := 10 \,\mathrm{mH}$

f := 60 Hz $V_S := 120 \text{ V}$ $\phi_V := 30 \text{ deg}$

load impedance

$$\boldsymbol{\omega}_e := 2 {\cdot} \boldsymbol{\pi} {\cdot} \boldsymbol{f}$$

$$Z := R + j \cdot \omega_e \cdot L$$

solution in a-b-c

$$V_{as} := V_s \cdot e^{j \cdot \varphi_V}$$

$$I_{as} := \frac{V_{as}}{Z}$$

Steady-State Calculation ($\omega = \omega_e$)

solution in q-d

$$V_{qse} := \sqrt{2} \cdot V_{s} \cdot cos(\phi_{v})$$

$$V_{dse} := -\sqrt{2} \cdot V_{s} \cdot \sin(\phi_{v})$$

steady-state equations

$$V_{qs}^e = RI_{qs}^e + \omega_e LI_{ds}^e$$

$$V_{ds}^{e} = RI_{ds}^{e} - \omega_{e}LI_{qs}^{e}$$

steady-state equations in matrix form

$$\begin{bmatrix} V_{qs}^e \\ V_{ds}^e \end{bmatrix} = \begin{bmatrix} R & \omega_e L \\ -\omega_e L & R \end{bmatrix} \begin{bmatrix} I_{qs}^e \\ I_{ds}^e \end{bmatrix}$$

solve for currents

$$\begin{bmatrix} I_{qs}^e \\ I_{ds}^e \end{bmatrix} = \frac{1}{R^2 + \omega_e^2 L^2} \begin{bmatrix} R & -\omega_e L \\ \omega_e L & R \end{bmatrix} \begin{bmatrix} V_{qs}^e \\ V_{ds}^e \end{bmatrix}$$

$$\begin{pmatrix} I_{qse} \\ I_{dse} \end{pmatrix} := \begin{pmatrix} R & \omega_e \cdot L \\ -\omega_e \cdot L & R \end{pmatrix}^{-1} \cdot \begin{pmatrix} V_{qse} \\ V_{dse} \end{pmatrix}$$

$$I_{s} := \frac{1}{\sqrt{2}} \cdot \sqrt{I_{qse}^{2} + I_{dse}^{2}}$$

$$\phi_i := atan \left(\frac{-I_{dse}}{I_{qse}} \right)$$

Voltage and Current Vectors

Steady-State *q-d* Calculations

In the synchronous reference frame, the *q-d* circuits are supplied from dc and the corresponding dc solution is steady-state (inductors treated as short-circuit, capacitors treated as open-circuit)

Can be used to analyze steady-state operation of electric machines

Equations can be linearized about the dc operating point for application of control theory

Active Filter Example

Active Filter Control

PSCAD Transformation Block

dq0 to abc:

$$\begin{bmatrix} \vec{\sigma} \\ b \\ c \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 1 \\ \cos\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta - \frac{2\pi}{3}\right) & 1 \\ \cos\left(\theta + \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) & 1 \end{bmatrix} \cdot \begin{bmatrix} d \\ q \\ 0 \end{bmatrix}$$

- q- and d-axis swapped as compared to the notation in Krause's book
- double-click to set reference frame angle, which may also be a variable

Active Filter Waveforms

Active Filter Example

Common in higher power applications where the main rectifier contains significant harmonics

Demonstrates an effective control method using the synchronous reference frame

Passive Filter Example

transform, then filter

filter, then transform

Is there a difference?

The Low-Pass Filter (LPF)

$$x \Rightarrow \boxed{\frac{G}{1 + sT}} - y$$

$$G = 1 \qquad T = \tau$$

time constant
$$\tau = \frac{1}{\omega_c}$$

cut-off frequency $\omega_c = 2\pi f_c$

transfer function

$$\frac{y}{x} = \frac{1}{\tau s + 1}$$

LPF gain

$$\left|\frac{y}{x}\right| = \frac{1}{\sqrt{\tau^2 \omega^2 + 1}} = \frac{1}{\sqrt{\left(\frac{f}{f_c}\right)^2 + 1}}$$

LPF phase delay

$$\angle y - \angle x = -\tan^{-1}(\tau \omega) = -\tan^{-1}\left(\frac{f}{f_c}\right)$$

Transform, Then Filter

filter output $\tilde{i}_{qd0r}^{\ e}$

$$\frac{\tilde{i}_{qd0r}^{e}}{i_{qd0r}^{e}} = \frac{1}{\tau s + 1}$$

$$\tilde{i}_{qd0r}^{e} + \tau p \tilde{i}_{qd0r}^{e} = i_{qd0r}^{e}$$

steady-state

$$\tilde{I}_{qd0r}^{e} = I_{qd0r}^{e}$$

Filter, Then Transform

$$\begin{split} & \frac{\tilde{i}_{abcr}}{i_{abcr}} = \frac{1}{\tau \, s + 1} \\ & \tilde{i}_{abcr} + \tau \, p \tilde{i}_{abcr} = i_{abcr} \\ & K_s^e \tilde{i}_{abcr} + K_s^e \tau \, p \tilde{i}_{abcr} = K_s^e i_{abcr} \\ & \downarrow \\ & \tilde{i}_{qd0r}^e + \tau \, K_s^e \, p \left\{ \left(K_s^e \right)^{-1} \tilde{i}_{qd0r}^e \right\} = i_{qd0r}^e \\ & \tilde{i}_{qd0r}^e + \tau \, K_s^e \, \left(K_s^e \right)^{-1} p \tilde{i}_{qd0r}^e + \tau \, K_s^e \, p \left\{ \left(K_s^e \right)^{-1} \right\} \tilde{i}_{qd0r}^e = i_{qd0r}^e \\ & \tilde{i}_{qd0r}^e + \tau \, p \tilde{i}_{qd0r}^e + \omega_e \tau \, \tilde{i}_{dqr}^e = i_{qd0r}^e \\ & \tilde{i}_{dqr}^e = \begin{bmatrix} \tilde{i}_{dr}^e \\ -\tilde{i}_{qr}^e \\ 0 \end{bmatrix} \end{split}$$

Filter, Then Transform (Steady-State)

steady-state

$$\tilde{I}_{qd0r}^{e} + \omega_{e} \tau \, \tilde{I}_{dqr}^{e} = I_{qd0r}^{e}$$

expand equations

$$\tilde{I}_{qr}^{e} + \omega_{e} \tau \tilde{I}_{dr}^{e} = I_{qr}^{e}$$

$$\tilde{I}_{dr}^{e} - \omega_{e} \tau \tilde{I}_{qr}^{e} = I_{dr}^{e}$$

in matrix form

$$\begin{bmatrix} 1 & \omega_e \tau \\ -\omega_e \tau & 1 \end{bmatrix} \begin{bmatrix} \tilde{I}_{qr}^e \\ \tilde{I}_{dr}^e \end{bmatrix} = \begin{bmatrix} I_{qr}^e \\ I_{dr}^e \end{bmatrix}$$

$$\begin{bmatrix} \tilde{I}_{qr}^{e} \\ \tilde{I}_{dr}^{e} \end{bmatrix} = \begin{bmatrix} 1 & \omega_{e}\tau \\ -\omega_{e}\tau & 1 \end{bmatrix}^{-1} \begin{bmatrix} I_{qr}^{e} \\ I_{dr}^{e} \end{bmatrix} = \frac{\begin{bmatrix} 1 & -\omega_{e}\tau \\ \omega_{e}\tau & 1 \end{bmatrix} \begin{bmatrix} I_{qr}^{e} \\ I_{dr}^{e} \end{bmatrix}}{1 + \omega_{e}^{2}\tau^{2}} \qquad \omega_{e}\tau = \frac{f}{f_{c}}$$

$$ilde{I}_{dqr}^{\ e} = egin{bmatrix} ilde{I}_{dr}^{\ e} \ - ilde{I}_{qr}^{\ e} \ 0 \end{bmatrix}$$

Note:

$$\omega_e \tau = \frac{f}{f_c}$$

Passive Filter Example

 $f := 60 \cdot Hz$

$$\omega_e := 2 \cdot \pi \cdot f$$

 $\tau := 10 \, ms$

$$\omega_c := \frac{1}{\tau}$$

$$f_c := \frac{\omega_c}{2 \cdot \pi}$$

transform, then filter (from PSCAD)

filter, then transform

$$\begin{pmatrix} I_{qsef} \\ I_{dsef} \end{pmatrix} := \begin{pmatrix} 1 & \omega_{e} \cdot \tau \\ -\omega_{e} \cdot \tau & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} I_{qse} \\ I_{dse} \end{pmatrix}$$

PSCAD Simulation

PSCAD Waveforms

Passive Filter Example

Illustrates the low-pass filter (LPF)

Shows difference between placing a passive filter before and after a transformation to the synchronous reference frame

For accurate steady-state numbers, the LPF must be placed after the transformation to the synchronous reference frame

Phase-Locked Loop (PLL) Example

The electrical angle can be observed by using the stationary reference frame voltages

$$\theta_e = \tan^{-1} \left(\frac{-v_{ds}^s}{v_{qs}^s} \right)$$

PLL Simulation

PLL Simulation Waveforms

PLL Example

PLL obtains electrical angle from processing the measured voltages (without a PI control loop)

Using this method, filtering of the line voltages may be required. The PLL angle can be adjusted to compensate for filter delay.