

Introduction to COMP26120: Video I Welcome

Louise A. Dennis

COMP26120

Why?

Louise Dennis

Tom Carroll

The Team

Lucas Cordeiro

Bernardo Magri

Sorting and searching Algorithms

Graph Algorithms

Computational Complexity

Topics

Data Structures

General Algorithmic Techniques

Linear Programming

Tractability and NP-completeness

Number Theoretic Algorithms

By the end of the course you will be able to...

- Analyse problems to identify and implement the most appropriate algorithmic solution.
- Define standard notions of asymptotic complexity and use these to reason about the complexity of algorithms
- Use pseudocode to represent algorithms and informally reason about their correctness
- Recall the definitions and representations of basic data structures and the complexity of the operations on them
- Explain, using examples of real-world applications, standard algorithmic problems coming from sorting and searching on different data structures, operations on graphs, and number theory
- Identify from a set of taught algorithms, which algorithm should apply in a given situation, explain how it should be applied, and compare the solution to possible alternatives
- Explain the algorithmic techniques such as divide-and-conquer, dynamic programming, greedy algorithms, and linear programming, discuss when they are appropriate, and apply them to solve problems
- Recall and explain the notions of tractability and NP-completeness, with a particular focus on classical NP-complete problems, and apply these to demonstrate NP-completeness of new problems

Typical Teaching Activities in a COMP26120 Week

What	How	Why	
Motivating and explaining material	Short (10-15 minute) videos, sometimes directed reading	Good to place concept in context and highlight key ideas	
Additional material to consolidate ideas	Pointers to linked material e.g., the textbook or videos	Reinforcement of key ideas, provision of wider context, adding depth	
Demonstrating how to do things	Short videos, Showing the proceed explanatory handouts just the outcomes		
Weekly Synchronous session	In person in lecture theatre and uploaded later as podcasts	A chance to ask questions, and reflect on the material	

The University of Manchester

Typical Feedback Activities in a COMP26120 Week

What	How	Why	
Formative quizzes	Blackboard quizzes with immediate feedback and no marks	to shock and dayalan	
Worksheets or lab work	Worksheets are pen and paper, labs are programming exercises		
Summative lab coursework	Programming exercises, backed up with a Blackboard quiz and a report		
Discussion Forms	Piazza (available via Blackboard)	An asynchronous way to ask questions	
Drop-in Sessions	GTAs & Staff available to answer questions and give feedback	An opportunity to access individual help and feedback on exercises	

This Week

What	What is it?	
Introduction to the Course	This video! Introduces the team and some organisational stuff.	
What is an Algorithm? What is a Data Structure?	Two videos taking a high-level look at what we mean by an algorithm and a data structure and what we'll be covering in the course	
An Example Problem	A series of four videos presenting an example problem and showing worked examples of three different approaches to solving it	
Directed Reading and Viewing	Not much reading this week, though there are also some optional videos to watch that place the course in more context	
Analysing Algorithms Worksheet	Your task is to repeat the process from the example problem videos for two new problems	
Synchronous Session	In our first face-to-face session you will meet the staff in person, we'll remind you about organisational matters.	

Worksheets and Labs

What	Title	Subject Matter	Due
Worksheet I	Analysing Algorithms	Designing and analysing algorithms	3rd Oct
Worksheet 2	Introducing Complexity Analysis	Applying methods for determining the complexity of simple programs	10th Oct
Lab I	Spellchecking I	Implementing linear and binary search and some sorting algorithms	17th Oct
Worksheet 3	Complexity of Recursive Programs	Applying methods for determining the complexity of recursive programs	28th Oct
Lab 2	Spellchecking 2	Exploring the complexity of sorting algorithms and some amortisation arguments	I4th Nov
Lab 3	Spellchecking 3	Using data structures (trees and hash maps) to speed up searching	9th Dec
Lab 4	Priority Queues	Comparing different implementations of priority queues	19th Dec

Have Fun!