申山大学 移动信息工程**学**院

卡尔曼滤波器

王泽贤

2016年6月23日

简介

- ▶ 问题 为什么需要卡尔曼滤波器
- ▶ 什么是卡尔曼滤波器
- ▶ 卡尔曼滤波器原理
- ▶ 卡尔曼滤波器应用

动力学方程

$$s = vt + \frac{1}{2}at^2$$

动力学方程

$$s = vt + \frac{1}{2}at^2$$

完美!!!

动力学方程

$$s = vt + \frac{1}{2}at^2$$

完美!!!

不规则运动

不规则运动

什么是卡尔曼滤波器

- ▶ 递归数据处理算法
- ▶ 对于给定测量集合能够生成最有的估计

什么是卡尔曼滤波器

- ▶ 递归数据处理算法
- ▶ 对于给定测量集合能够生成最有的估计

递归

不需要存储之前所有测量数据,也不需要在每个时间步重新处理所 有数据

什么是卡尔曼滤波器

- ▶ 递归数据处理算法
- ▶ 对于给定测量集合能够生成最有的估计

递归

不需要存储之前所有测量数据,也不需要在每个时间步重新处理所 有数据

最优

- ▶ 对于非线性系统最优是有限制的
- ▶ 对于线性系统和高斯白噪声,卡尔曼滤波器是基于前面测量的 最优估计

实例讲解

状态向量

动力学系统中可以用物体的位置信息 p 和速度 v 来表示其状态

$$x_k = \begin{bmatrix} p_k \\ v_k \end{bmatrix}$$

协方差矩阵

$$P_k = \begin{bmatrix} \Sigma_{pp} & \Sigma_{pv} \\ \Sigma_{vp} & \Sigma_{vv} \end{bmatrix}$$

实例讲解

基本动力学方程

$$p_k = p_{k-1} + \Delta t v_{k-1} \tag{1}$$

$$v_k = v_{k-1} \tag{2}$$

矩阵表示

$$x_k = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} x_{k-1} = F_k x_{k-1} \tag{3}$$

实例讲解预测

随机变量协方差

$$cov(x) = \Sigma \tag{4}$$

$$cov(Ax) = A\Sigma A^{T}$$
 (5)

更新后的状态变量以及协方差矩阵如下所示:

$$x_k = F_k x_{k-1} \tag{6}$$

$$P_k = F_k P_{k-1} F_k^T \tag{7}$$

卡尔曼变量和参数

变量	定义	- 变量	定义
x_n	n 时刻的状态 -	文里	是又
\mathcal{L}_n		$Q_{\omega,n}$	动态噪声 ω_n 协方差矩阵
y_n	n 时刻的观测值	$\omega_{\omega,n}$	
0		$A_{n+1,n}$	n 到 $n+1$ 时刻状态转移矩阵
B_n	n 时刻测量矩阵	. /	
		$\hat{x}_{n n-1}$	给定 $y_1, y_2, \ldots, y_{n-1}$ 状态估计
G_n	n 时刻的卡尔曼增益	٠.	
	n 时刻的新息过程	$\hat{x}_{n n}$	给定 y_1, y_2, \ldots, y_n 状态估计
a_n	11 的列的制总处性	R_n	n 时刻新息过程协方差矩阵
$P_{n n-1}$	预测误差协方差	n_n	作的列制态过性例分差处件
* n n-1		$Q_{v,n}$	测量噪声 v_n 协方差矩阵
$P_{n n}$	滤波误差协方差	v,n	

参考

- [1] https://zh.wikipedia.org/wiki/卡尔曼滤波
- [2] http://chunqiu.blog.ustc.edu.cn/?p=223
- [3] http://xiahouzuoxin.github.io/notes/html/Kalman 滤波器从 原理到实现.html

