Grade received 90% Latest Submission Grade 90% To pass 80% or higher

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the  $s^{th}$  word in the  $r^{th}$  training example?

- - $\bigcirc \quad x^{< r > (s)}$
  - $\bigcirc$   $r^{< s > (r)}$
  - x .

  - $\bigcap_{x}(s) < r >$

1 / 1 point





## (√) Correct

(represented by the brackets).

We index into the  $r^{th}$  row first to get to the  $r^{th}$  training example (represented by parentheses), then the  $s^{th}$  column to get to the  $s^{th}$  word





True

Expand

## **⊗** Incorrect

It is appropriate when the input sequence and the output sequence have the same length or size.



| Image classification (input an image and output a label)                                                       |
|----------------------------------------------------------------------------------------------------------------|
| Music genre recognition                                                                                        |
| ✓ Correct  This is an example of many-to-one architecture.                                                     |
| Language recognition from speech (input an audio clip and output a label indicating the language being spoken) |
| ✓ Correct  This is an example of many-to-one architecture.                                                     |
| Speech recognition (input an audio clip and output a transcript)                                               |



✓ CorrectGreat, you got all the right answers.







True/False: In this sample sentence, step t uses the probabilities output by the RNN to randomly sample a chosen word for that time-step. Then it passes this selected word to the next time-step.

| $\bigcirc$ | False |
|------------|-------|
|            |       |

True

∠<sup>7</sup> Expand

## **⊘** Correct

Step t uses the probabilities output by the RNN to randomly sample a chosen word for that time-step. Then it passes this selected word to the next time-step.

1/1 point



False

True

∠ Expand

## ✓ Correct

If  $\Gamma$ u $\approx$ 0 for a timestep, the gradient can propagate back through that timestep without much decay. For the signal to backpropagate without vanishing, we need  $c^{< t>}$  to be highly dependent on  $c^{< t-1>}$ .

GRU

LSTM

 $\tilde{c}^{<t>} = \tanh(W_c[\Gamma_r * c^{<t-1>}, x^{<t>}] + b_c)$ 

 $a^{<t>} = c^{<t>}$ 

 $\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$ 

 $c^{<t>} = \Gamma_u * \tilde{c}^{<t>} + (1 - \Gamma_u) * c^{<t-1>}$ 

 $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$ 

 $\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$   $\Gamma_f = \sigma(W[a^{< t-1>}, x^{< t>}] + b_f)$ 

 $\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$ 

 $a^{< t>} = \Gamma_o * c^{< t>}$ 

 $\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$ 

 $\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$ 

 $c^{<t>} = \Gamma_u * \tilde{c}^{<t>} + \Gamma_f * c^{<t-1>}$ 

O True

False

∠ Expand

**⊘** Correct

Instead of using  $\Gamma$ u to compute 1 -  $\Gamma$ u, LSTM uses 2 gates ( $\Gamma$ u and  $\Gamma$ f) to compute the final value of the hidden state. So,  $\Gamma$ f is used instead of 1 -  $\Gamma$ u.

10. Your mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as  $x^{<1>}, \ldots, x^{<365>}$ . You've also collected data on your mood, which you represent as  $y^{<1>}, \ldots, y^{<365>}$ . You'd like to build a model to map from  $x \rightarrow y$ . Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- Unidirectional RNN, because the value of  $y^{< t>}$  depends only on  $x^{< t>}$ , and not other days' weather.
- Our Unidirectional RNN, because the value of  $y^{< t>}$  depends only on  $x^{< 1>}, \dots, x^{< t>}$ , but not on  $x^{< 1>}, \dots, x^{< 365>}$ .
- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.

