Matemática Discreta 2

Tercer examen curso 2003

Febrero 2004

N° Examen =

Apellidos Nombre C.I.

- 1) a) Probar que n(2n + 1)(7n +1) es divisible por 6 para todo n natural
 - b) Por \$ 5 se compraron 100 unidades de diferentes frutas. Sus precios son los siguientes: Sandía = 50 centésimos; Manzana = 10 cent.; Ciruela = 1 cent. ¿ Cuánta fruta de cada clase fue comprada?
 - c) Hallar el resto de dividir $8381^{529} * 237^{421}$ entre 11

Nota: Para b) se pide desarrollar un método de resolución. No se dará puntaje a resoluciones del tipo probar todos los casos posibles.

- **2)** Sea G un grupo tal que: $\forall x, y \in G$ vale $(xy)^k = x^k y^k$ para 3 enteros k consecutivos. Probar que G es abeliano
- 3) a) Probar que N = { e , (1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3) } es subgrupo de A_4 (permutaciones pares de S_4)
 - b) Hallar las clases laterales derechas e izquierdas de N en A_4
 - c) Probar que N es normal en A_4
 - d) Hallar la tabla del producto en A_4 / N
- 4) Sea A un anillo.
 - a) Probar que M = $\{x \in A / x + x = z\}$ es un ideal de A
 - b) Hallar M para el anillo $Z_4 \times Z_8$
 - c) Listar el anillo cociente $Z_4 \times Z_8$ / M . ¿ Cuántos elementos tiene ?
 - d) Hallar las tablas de la suma y del producto en $Z_4 \times Z_8$ / M
- 5) Sea la función booleana de 3 variables f definida como : f(x,y,z) = 1 si $x = \overline{y}$ o $y = \overline{z}$; f(x,y,z) = 0 en otro caso. Hallar la f.n.d y la f.n.c de f

Puntajes: 1) 31: a) 10 b) 11 c) 10

2) 14

3) 19: a) 4 b) 6 c) 5 d) 4

4) 24: a) 6 b) 6 c) 6 d) 6

5) 12