國立虎尾科技大學機械設計工程系 113 學年度機械工程實驗(三):熱流力實驗

實驗報告

實驗六:真空抽氣性能實驗

41023210 鄭翊均

41023222 陳奕倫

41023242 廖旭宏

41023252 鄭煜橙

41023255 徐佑寧

一、實驗目的

1. 評估真空泵的抽氣性能

- 測試真空泵的抽氣速率及極限壓力。
- 驗證真空泵的工作效率是否達到設計要求。
- 分析泵的性能在不同壓力範圍或抽下的表現。

2. 測試真空系統的密封性能

- 評估真空系統的密封性,確定是否存在漏氣現象。
- 分析系統中各元件的密封質量對真空度的影響。

3. 研究氣體流動特性

- 探討氣體在真空系統中不同壓力範圍下的流動機制,如 黏性流、過渡流和分子流。
- 理解氣體流動與抽氣速率之間的關係
- 二、儀器與設備
- 三、1. 自製真空系統乙套
- 四、 2. 水氣 Trap 乙個
- 五、 3. 計時器乙個
- 六、 4. 水盤乙個
- 七、 5. 吸水紙數張
- 八、 6. 精密天平乙台

三、實驗原理

1. 真空的概念

真空是指系統內的壓力低於大氣壓力的狀態,分為低真空、高真空和超高真空。

透過真空幫浦移除系統中的氣體,達到所需的真空度。

2. 抽真空過程的基本原理

真空幫浦利用機械或物理的方式抽除氣體,使系統壓力逐漸下 降。 在抽真空過程中,壓力隨時間呈指數下降,依賴於系統的體積、 幫浦的抽氣速率以及氣體導流特性。

3. 壓力變化模型

抽真空過程中的壓力變化可以表示為:

$$P(t) = P_0 e^{-\frac{S}{V}t}$$

其中:

- P(t): 時間 t 時的壓力
- P₀: 初始壓力
- S: 幫浦的抽氣速率
- V: 系統的體積

4. 漏氣檢測

真空系統中可能存在微小漏氣,影響真空性能。

使用壓力觀察法和酒精測試法檢測系統的密封性。

5. 壓力測量

壓力分為穩態壓力和暫態壓力:

穩態壓力:系統達到穩定時的最低壓力。

暫態壓力:抽真空過程中壓力隨時間的變化。

使用真空計測量不同開度下的壓力變化,分析壓力曲線。

6. 等效氣導 (Conductance)

系統中管路的氣體導通性影響抽氣效率,等效氣導可用公式計算, 表示管路對氣體流動的限制程度。

直 列	並 列	
	C ₁	
C ₁ C ₂ C ₃	C ₂	
(a)	(b)	
$\frac{1}{C_{2}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}$	$C_{TP}=C_1+C_2+C_3$	

表1-7·1 粘性流,分子流の円管コンダクタンス:長さ1(m),直径 真空氣導(conductance) | 本性 (m), 平均圧力 (Pa), 20℃の空気について

粘 性 流	分 子 流		
Pd>0.8 (Pa·m)	Pd<0.02 (Pa·m)		
[Pd>0.6 (Torr·cm)]	[Pd<0.015 (Torr·cm)]		
の領域で気体分子の平均自由	の領域で気体分子の平均自由		
行程が管径はに比べて小さく	行程が管径 dに比べて大きく 気体分子は他の分子とぶつか		
気体分子同士が衝突しあい流			
れに影響を与える.	らずほとんど管壁にだけ衝突		
	しながら流れる.		
$C = 1349 \frac{d^4}{l} \overline{P} \left(\text{m}^3 \cdot \text{s}^{-1} \right)$	$C = 121 \frac{d^3}{l} (\text{m}^3 \cdot \text{s}^{-1})$		

過渡流(transitional flow)

$$C = 121 \frac{d^3}{l} J(\bar{p}d)$$

$$J(\bar{p}d) = \frac{1 + 201 (\bar{p}d) + 2647 (\bar{p}d)^2}{1 + 236 (\bar{p}d)}$$

四、實驗步驟

1. 真空系統組裝:

- (1)以擦拭紙沾酒精將所有 0-ring 及封合面清潔乾淨。
- (2)依照示意圖與實體圖將所有 KF25 接頭包括 0-ring 鎖緊,完成 真空系統組裝。

2. 簡易測漏方法:

- (1)開啟真空幫浦,並注意真空計之讀值,若壓力一直無法下降, 則立刻關閉真空幫浦電源。
- (2)檢查各個接頭有無確實鎖好,必要時拆開接頭重新鎖緊。
- (3)當真空幫浦能順暢運作後,觀察真空計之讀值能一直往下降, 表示抽真空功能正常。
- (4)關閉真空幫浦電源準備進行後續實驗。

3. 真空壓力量測:

- (1)將真空幫浦進氣口位置之 NW25 Angle valve 開口調整為 1/4。 注意 Vent valve 是否確實關緊。
- (2)準備好可以計時之計時器,啟動真空幫浦,每5秒紀錄真空計 之壓力讀數與時間,總計錄時間為10分鐘。
- (3)重複(2)之動作,直到讀數不再變化為止。記錄下最後壓力讀數,此為終極壓力。

- (4)將真空幫浦關閉,接著打開 Vent valve 讓體內外壓力達到平 衡為止。此時真空計讀數應為 latm 左右。
- (5)調整 NW25 Angle valve 開口調整為其他開口,並重複上述步 驟進行實驗。注意 Vent valve 是否確實關緊。
- (6)完成後關閉真空幫浦,接著打開 Vent valve 讓體內外壓力達 到平衡為止。

五、實驗數據

(Pumping 前 10min 之壓力降・以每 5sec 記錄。 ブ笋)。

-		•	
Dn	DODING	da	TITE .
\mathbf{r}	mping	uo	w⊪.÷
	b 9		

Pumping down:	,		二 重)。		
Valve 1/4 open∘	φ	Valve 1/2 open∘	ρ	Valve full open-	₽.
時間 (t)。	真空度 (P)	時間 (t)。	真空度 (P)	時間 (t)。	真空度 (P)-
Sec₽	Torr₽	sec₽	Torr₽	sec₽	Torr₽
5₽	₽3	5₽	9.9	5₽	9.8
10₽	P	10₽	8.6	10₽	8.3
ę	φ	15₽	7.8	15₽	7.2
42	₽	200	7.6	20₽	6.9
42	₽	250	7.2	250	6.3
ę.	e)	30₽	6.8	30₽	6.1
ę.	₽ ³	35₽	6.7	35-	5.8
ę.	Đ.	40₽	6.6	40₽	5.3
600₽	φ	600₽	φ	600₽	e ²

