

Humanoid Balancing and Its Benchmarking

Chengxu Zhou

Humanoid & Human Centred Mechatronics
Italian Institute of Technology

Motivation

How about our robots?

After Been Disturbed...

- What Balancing Capabilities?
 - Use its whole-body for balancing
 - Protect itself if a fall is inevitable
 - Recover to stable state

- How to Evaluate?
 - Measure the balancing performance
 - Compare between different HW/SW

Human Balancing Strategies

Fixed-support

$$\sum F_{com} = \sum F_{contact} \qquad \sum F_{com} > \sum F_{contact}$$

Change-in-support

$$\sum F_{com} > \sum F_{contact}$$

Compliant Stabilizer

$$\Delta x(i) = \frac{\Delta t}{K_d \Delta t + B_d} A(i) + \frac{B_d}{K_d \Delta t + B_d} \Delta x(i-1).$$

$$A(i) = -\frac{\tau_{\text{real}}^y(i) - \tau_d^y(i)}{z_c} + \frac{B_d \dot{\tau}_{\text{real}}^y(i)}{z_c K_s} + \frac{K_d \tau_{\text{real}}^y(i)}{z_c K_s}$$

Stiff robot: $K_s \to \infty$

Compliant Stabilizer

Integrated Stabilization

iit gait Pattern Generator


```
Input: Gait parameters: t_{\text{step}}, l_{sl}, l_{sw} and \theta_{\text{turn}}.
    Output: Discrete footsteps D = [d_x \ d_y]^T
 1 if command START then
         D^{(0)} \leftarrow \text{initial foot position}
 з else
        \boldsymbol{D}^{(0)} \leftarrow \text{current foot position}
 6 if command WALKING then
        for i \leftarrow 1 to n do
             \mathbf{D}^{(i)} \leftarrow \text{update}(l_{sl}, l_{sw}, \theta_{\text{turn}})
         end
 9
10 end
11 if command STOP then
        \operatorname{end}(\boldsymbol{D}) // add last step to make robo
13 end
14 return D
```


Stepping Strategy - During Standing

Stepping Strategy – During Walking

Whole body balancing using environment constraints

High level planner

Whole body balancing using environment constraints

Whole-body Inverse Kinematics/Dynamics

Formulated as a QP Problem

$$egin{aligned} \min_{oldsymbol{\mathcal{X}}} & rac{1}{2} \|oldsymbol{A}oldsymbol{\mathcal{X}} - oldsymbol{b}\|^2 \ & ext{s.t.} & Coldsymbol{\mathcal{X}} \lessgtr oldsymbol{c} \; , \ & oldsymbol{\mathcal{X}}_{ ext{lb}} \le oldsymbol{\mathcal{X}} \le oldsymbol{\mathcal{X}}_{ ext{ub}} \; , \end{aligned}$$

Cartesian Space Tasks

$$m{A}_{cart} = egin{bmatrix} m{J}_1^T & m{J}_2^T & \cdots & m{J}_m^T \end{bmatrix}^T & m{b}_{cart} = egin{bmatrix} \dot{x}_1^T & \dot{x}_2^T & \cdots & \dot{x}_m^T \end{bmatrix}^T$$

- Joint Space Tasks
 - Manipulability

$$A_{mani} = I$$

Direct Joint Tracking

$$A_{joint} = S$$

Collision Avoidance Constraints

$$\boldsymbol{C}_{collision}^{(i)} = \boldsymbol{n}^T (\boldsymbol{J}_{p1} - \boldsymbol{J}_{p2}),$$

Bound Constraints

$$\boldsymbol{\chi}_{\rm lb} = -\xi_{x} \frac{(x-x^{-})-x_{s}}{x_{i}-x_{s}}$$

$$\boldsymbol{b}_{mani}^{(i)} = \nabla f^{(i)}(\sqrt{\det(\boldsymbol{J}_{i}\boldsymbol{J}_{i}^{T})})$$

$$\boldsymbol{b}_{joint} = \dot{\boldsymbol{q}}_{des}$$

$$c_{collision}^{(i)} = \xi \frac{d - d_s}{d_i - d_s}$$

$$\mathcal{X}_{\mathrm{ub}} = \xi_{\chi} \frac{(x^{+} - x) - x_{S}}{x_{i} - x_{S}},$$

Applications of Whole-body Controller

After Been Disturbed...

- What Balancing Capabilities?
 - Use its whole-body for balancing
 - Protect itself if a fall is inevitable
 - Recover to stable state

- How to Evaluate?
 - Measure the balancing performance
 - Compare between different HW/SW

Humanoid resistance to push disturbances

Metrics: ?

Benchmarking Evaluation Criteria

Humanoid resistance to push disturbances

Metrics:

- Stability / Success measurement
 - Number/percentage of successful recoveries for each case
 - Balancing recovery classified with respect to the location in the body (three regions are considered)
 - Torso at the level of the shoulder,
 - pelvis area and,
 - along the arms
 - Different directions
 - Frontal, Back
 - and side

Humanoid resistance to push disturbances

Metrics:

- Efficiency / Recovery Effort
 - Control/Joint effort
 - Recovery time
 - Energy consumed / Mechanical work

Benchman hardware **Benchmarking/Comparison of different**

- Direct absolute comparison is not valid
- Normalization
 - Size
 - Dynamics
 - Support polygon
 -?

Full Body Push Recovery for Small Humanoid Robot **During Walking**

Seung-Joon Yi University of Pennsylvania

Humanoid resistance to push disturbances Normalized comparison of different hardware

Two stages model based normalization process

- Test Inputs
- System outputs/mechanic al quantities

Benchmarking Test Input Normalization Standard Specific System Normalized Hardware System Benchmarking Testing models

> **System Output** Normalization

Normalized Humanoid Resistance to Push

disturbance: Standard model

- Linear Inverted Pendulum Model (LIPM)
- Default homing pose

Basic constants

M: overall mass

lo: full leg length

g: gravitational acceleration

z₀: initial COM height

do: support polygon dimension

Tite Normalization of mechanical quantities

Quantity	Symbol	Dimension	Normalization by $l_0 = l_{leg}$ or z_0)				
Mass	m	M	$\hat{m} = \frac{m}{m_0}$				
Time	t	T	$\hat{t} = \frac{t}{\sqrt{l_0/g}}$				
Frequency	f	T^{-1}	$\hat{f} = \frac{f}{\sqrt{g/l_0}}$				
Length	l	L	$\hat{l} = \frac{l}{l_0}$				
Velocity	v	LT^{-1}	$\hat{v} = \frac{v}{\sqrt{gl_0}}$				
Acceleration	a	LT^{-2}	$\hat{a} = \frac{a}{g}$				
Linear Momentum	p	MLT^{-1}	$\hat{p} = \frac{p}{m_0 \sqrt{gl_0}}$				
Force	F	$\rm MLT^{-2}$	$\hat{F} = \frac{F}{m_0 g}$				
Torque	au	$\mathrm{ML}^{2}\mathrm{T}^{-2}$	$\hat{ au} = rac{ au}{m_0 g l_0}$				

Quantity	Symbol	Dimension	Normalization by l_0 $(l_0 = l_{leg} \text{ or } z_0)$
nertial	I	ML^2	$\hat{I} = \frac{I}{m_0 l_0^2}$
Angle	θ	(is already	dimensionless)
Angular Velocity	ω	T^{-1}	$\hat{\omega} = \frac{\omega}{\sqrt{g/l_0}}$
Angular Acceleration	$\dot{\omega}$	T^{-2}	$\hat{\omega} = \frac{\dot{\omega}}{g/l_0}$
Angular Momentum	L	$\mathrm{ML}^2\mathrm{T}^{-1}$	$\hat{L} = \frac{L}{m_0 g^{1/2} l_0^{3/2}}$
Energy	E	$ML^{-2}T^{-2}$	$\hat{E} = \frac{E}{m_0 g l_0}$
Power	P	$ML^{-2}T^{-3}$	$\hat{P} = \frac{P}{m_0 g^{3/2} l_0^{1/2}}$

$$\hat{L} = \frac{L}{m_0 g^{1/2} l_0^{3/2}}$$

$$D_{L_{imp}} = \alpha m_0 l_0 \sqrt{g l_0}$$

Normalized Humanoid Resistance to Push

disturbance: Standard model

Impulsive Disturbance

• We define the disturbance as a half sinusoidal impulsive force/torque $F_{\it imp}(t)$ acting on the robot during a certain period $t_{\it imp}$

$$\int_{0}^{t_{imp}} A_{imp} \sin(\frac{\pi t}{t_{imp}}) dt = \frac{2A_{imp}t_{imp}}{\pi}$$

Normal COMAN

Half foot length

Double foot length \

Walkman

Ang.Mom.: 9.08

Ang.Mom.: 4.34

Ang.Mom.: 18.76

Ang.Mom.: 76.7

Normalized performance of maximum resistance to push capability

TABLE II: Standing push HBT data of COMAN and Walkman. C_1 is the normal COMAN robot, C_2 is C_1 with stabilizer [6] enabled, C_3 is C_1 with CoM tracking controller enabled, C_4 and C_5 is C_1 with its half and double foot length, respectively. W_1 is the normal Walkman robot, W_2 , W_3 and W_4 is W_1 with its half, double foot length and the same α with C_4 , respectively.

100t length and the same α with C ₄ ,												
Quantity	Symbol	Human	C_{i}	C_2	C_{a}	C_4	C_{5}	C_6	W ₁	\mathbf{W}_{2}	W_3	W_4
Mass	m_0	70	30.9	←	\leftarrow	←	←	\leftarrow	123.375	\leftarrow	←	\leftarrow
CoM height	z_0	1	0.492	←	←	←	←	\leftarrow	0.952	←	\leftarrow	←
max. CP traveling distance	αz_0	0.15	0.1	←	←	←	0.05	0.2	0.16	0.08	0.32	0.097
max. CP traveling ratio	α	0.15	0.203	←	←	←	0.102	0.407	0.168	0.084	0.336	0.102
Time constant	T_c	0.319	0.224	←	←	←	←	←	0.312	←	←	←
Nominal ang. mom. (11)	$D_{L_{\mathrm{imp}}}$	32.887	6.788	←	←	←	3.394	13.576	60.330	30.165	120.660	36.462
Impact applied height	$l_{\it imp}^{\star}$		0.498	←	←	←	←	←	1.0712	←	←	←
Impact duration	$t_{\it imp}$		0.112	←	←	←	←	\leftarrow	0.156	←	\leftarrow	\leftarrow
Impact force amp.	$F_{\mbox{\tiny imp}}^{\star}$		256.324	246.465	273.823	308.082	124.157	529.909	741.499	351.854	1536.769	430.958
Equi. force at CoM	$F_{\it tmp}$		259.419	249.441	277.129	311.802	125.656	536.300	834.238	395.860	1728.972	484.858
Impact ang. mom. (4)	$L_{\it imp}$		9.099	8.749	9.720	10.936	4.407	18.810	78.733	37.384	163.281	45.789
Normalized ang. mom. to LIPM	$\hat{D}_{L_{imp}}$		1.340	1.289	1.432	1.611	1.299	1.386	1.305	1.239	1.353	1.256
Normalized ang. mom. to Human	$\hat{D}^{\scriptscriptstyle H}_{\scriptscriptstyle L_{\scriptscriptstyle {loop}}}$	1.0	0.277	0.266	0.296	0.333	0.134	0.572	2.394	1.134	4.965	1 27

Normalized performance of maximum resistance to push capability

x-axis: Normalized with Human data

y-axis: Normalized with simplified LIP model

Summary of preliminary results

- The distinct bigger size and heavier mass, Walkman
 - could withstand more than 8.5 times absolute angular momentum than
 COMAN
 - but it is slightly worse in normalized performance.
- Bigger foot size increase the robot's balancing capability either in terms of absolute or normalized performance.
- With the compliant stabilizer enabled, the robot's capability decreased.
- Using active balancing controller, the robot's capability increased.

iit Acknowledgement

Questions?

