Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

Foundations of Computing Science (CS60005)

Autumn Semester, 2021-2022

Venue: Online

(1)

Test - 1 [Marks: 30] Date: 08-Sep-2021 (Wednesday), 8:15am – 9:30am

[Instructions: There are FOUR questions. Answer ALL questions. Be brief and precise.]

- **Q1.** You are about to leave for university classes in the morning and discover you do not have your glasses. You know that the following six statements are true:
 - F_1 : If my glasses are on the kitchen table, then I saw them at breakfast.
 - F_2 : I was reading the newspaper in the living room or I was reading the newspaper in the kitchen.
 - F_3 : If I was reading the newspaper in the living room, then my glasses are on the coffee table.
 - F_4 : I did not see my glasses at breakfast.
 - F_5 : If I was reading my book in bed, then my glasses are on the bed table.
 - F_6 : If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.

You task is to derive the answer to the following question logically – "Where are the glasses?"

Please frame logical arguments to formally deduce (applying logical inferencing) the answer to the above question. Present your solution as indicated in the following parts.

- (a) Write all the propositions (that you have used) with English statements (meaning).
- (b) Build suitable propositional logic formula to encode each of the six statements $F_1 F_6$ given above. **(3)**
- (c) Use logical inferencing rules (or resolution-refutation principle) to completely derive the answer and conclude where do you find the glasses. **(3)**

Solution:

- (a) We may use the following propositions.
 - p: My glasses are on the kitchen table.
 - q: I saw my glasses at breakfast.
 - r: I was reading the newspaper in the living room.
 - s: I was reading the newspaper in the kitchen.
- t: My glasses are on the coffee table.
- u: I was reading my book in bed.
- v: My glasses are on the bed table.
- (b) The proposition logic encodings are as follows.

$$F_1: p \to q$$

$$F_2: r \vee s$$

$$F_3: r \to t$$

$$F_A: \neg a$$

$$F_5: u \to v$$

$$F_6: s \to p$$

(c) The logical deduction procedure is given in the following.

$$F_1: p \to q$$

$$F_A: \neg a$$

 $G_1: \neg p$

$$C_{-}$$
: $\neg n$

$$C_{+}:=n$$

$$G_2: \neg s$$

 $F_2: r \vee s$

$$F_3: r \to t$$

$$q$$
 Q_1 . q

$$G_2: \neg s$$

$$G_3: r$$

$$\therefore G: t$$

 $G_3: r$

Conclusion: The glasses are on the coffee table.

Q2. Consider the following statements.

 F_1 : Tony and Mike are members of the Alpine club.

 F_2 : Every member of the Alpine club is either a skier, or a mountain climber, or both.

 F_3 : No mountain climber likes rain.

 F_4 : All skier likes snow.

 F_5 : Mike dislikes whatever Tony likes and likes whatever Tony dislikes.

 F_6 : Tony likes rain and snow.

Your tasks are to do the following:

- (a) Write all the predicates (that you have used) with English statements (meaning). (1)
- (b) Encode the above *six* statements $F_1 F_6$ in predicate (first-order) logic. (3)
- (c) Use resolution-refutation principle (logical deduction procedure) to prove that,
 G: "There is a member in the Alpine club who is a mountain climber, but not skier."

 (4)

Solution:

(a) We may use the following predicates.

```
member(x): x is a member of the Alpine club. climber(x): x is a mountain climber. skier(x): x is a skier. likes(x,y): x likes y.
```

(b) The predicate (first-order) logic encodings are as follows.

```
F_{1}: member(Tony) \land member(Mike) \qquad F_{5}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \\ F_{2}: \forall x \Big[ member(x) \rightarrow (skier(x) \lor climber(x)) \Big] \qquad \land (\neg likes(Tony, x) \rightarrow likes(Mike, x)) \Big] \\ F_{3}: \forall x \Big[ climber(x) \rightarrow \neg like(x, Rain) \Big] \qquad F_{6}: likes(Tony, Rain) \land likes(Tony, Snow) \\ F_{6}: likes(Tony, Rain) \land likes(Tony, Snow) \\ F_{7}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x \Big[ (likes(Tony, x) \rightarrow \neg likes(Mike, x)) \Big] \\ F_{8}: \forall x
```

(c) The goal statement can be encoded as follows.

```
G: \exists x \big[ member(x) \land climber(x) \land \neg skier(x) \big] \quad \Longrightarrow \quad \neg G: \forall x \big[ \neg member(x) \lor \neg climber(x) \lor skier(x) \big]
```

```
Now, (F_1 \wedge F_2 \wedge F_3 \wedge F_4 \wedge F_5 \wedge F_6 \to G) is valid \implies (F_1 \wedge F_2 \wedge F_3 \wedge F_4 \wedge F_5 \wedge F_6 \wedge \neg G) is unsatisfiable.
```

All the clauses formed from the above formula by eliminating \forall -quantifiers and *implications* are as follows.

```
C_{11}: member(Tony) \\ C_{12}: member(Mike) \\ C_{12}: member(Mike) \\ C_{2}: \neg member(x) \lor skier(x) \lor climber(x) \\ C_{3}: \neg climber(x) \lor \neg like(x, Rain) \\ C_{4}: \neg skier(x) \lor likes(x, Snow) \\ C_{51}: likes(Tony, x) \lor \neg likes(Mike, x) \\ C_{61}: likes(Tony, Rain) \\ C_{61}: likes(Tony, Snow) \\ C_{62}: likes(Tony, Snow) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \lor skier(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \\ C_{76}: \neg member(x) \\ C_{76}: \neg member(x) \lor \neg climber(x) \\ C_{76}: \neg memb
```

The resolution-refutation based deduction procedure is given in the following.

```
\neg member(x) \lor skier(x) \lor climber(x)
                                                                                      \neg likes(Tony, x) \lor \neg likes(Mike, x)
              \neg member(x) \lor \neg climber(x) \lor skier(x)
    C_{\neg G}:
                                                                                      likes(Tony, Snow)
                                                                            \therefore D_2: \neg likes(Mike, Snow)
   \therefore D_1 : \neg member(x) \lor skier(x)
 C_4:
          \neg skier(x) \lor likes(x, Snow)
                                                D_1: \neg member(x) \lor skier(x)
                                                                                                 C_{12}: member(Mike)
 D_2:
          \neg likes(Mike, Snow)
                                                D_3:
                                                         \neg skier(Mike)
                                                                                                  D_4: \neg member(Mike)
\therefore D_3: \neg skier(Mike)
                                               \therefore D_4: \neg member(Mike)
                                                                                                              (contradiction)
```

Q3. A partial order ρ on a set A is called a total order (or a linear order) if for any two different $a, b \in A$ either $a \rho b$ or $b \rho a$. Which of the following relations ρ , σ , τ on $\mathbb N$ (the set of natural numbers) are partial orders and/or total orders? – *Provide proper reasoning / justification*.

[Hint: For each of the relations, ρ , σ , τ on \mathbb{N} , first determine whether the relation is a partial order, and if so, then determine whether it is a total order.]

- (a) $a \rho b$ if and only if $a \le b + 1701$.
- (b) $a \sigma b$ if and only if a divides b, i.e. b = ax, for some $x \in \mathbb{N}$.
- (c) $a \tau b$ if and only if either u < v, or u = v and $x \le y$, where $a = 2^u x$ and $b = 2^v y$ with x and y odd. (3)

Solution:

(a) Note that, $1 \rho 2$ and $2 \rho 1$, but $1 \neq 2$, i.e., ρ is not antisymmetric.

Hence, ρ is not a partial order on \mathbb{N} . So, obviously it can never be a total order.

(b) We have $a \sigma a$ (obvious as $a \in \mathbb{N}$ divides itself), indicating τ is reflexive.

Let $a \sigma b$ and $b \sigma a$. This implies that b = ax (for some $x \in \mathbb{N}$) and a = by (for some $y \in \mathbb{N}$). This is only possible when x = y = 1, implying a = b, i.e., σ is antisymmetric.

If $a \sigma b$ and $b \sigma c$, we have b = ax and c = by (for some $x, y \in \mathbb{N}$). So, we get, c = by = (ax)y = az, where $z = xy \in \mathbb{N}$, implying $a \sigma c$, i.e., σ is transitive too. Therefore, σ is a partial order on \mathbb{N} .

But σ is not a total order on \mathbb{N} , since neither (2,3) nor (3,2) belongs to σ .

(c) We have $a \tau a$ (obvious), indicating τ is reflexive.

Let $a = 2^u x$ and $b = 2^v y$ (with x, y odd) satisfy $a \tau b$ and $b \tau a$. We cannot have u < v and $v \le u$ simultaneously. So u = v. But then $x \le y$ and $y \le x$, implying x = y, i.e., a = b. So τ is anti-symmetric.

Now suppose $a \tau b$ and $b \tau c$, where $a = 2^u x$, $b = 2^v y$ and $c = 2^w z$ with x, y, z odd. We have $u \le v$ and $v \le w$, i.e., $u \le w$. If u < w, then $a \tau c$. On the other hand, u = w implies u = v = w. But then $x \le y$ and $y \le z$, so that $x \le z$, i.e., $a \tau c$. So τ is a partial order on \mathbb{N} .

Finally, let $a = 2^u x$ and $b = 2^v y$ be two different integers. We then have either $u \neq v$ or $x \neq y$ (or both). If u < v, then $a \tau b$. If u > v, then $b \tau a$. If u = v, then $a \tau b$ or $b \tau a$ according as whether x < y or x > y. Thus, τ is a total order on \mathbb{N} .

04.	Prove or	disprove	the fol	llowing	with	proper	reasonin	g/	justification.

- (a) Let G be a multiplicative group in which $(ab)^{-1}=a^{-1}b^{-1}$ for all $a,b\in G$. Then, prove or disprove that G is Abelian. (2)
- (b) Let R be a ring. Two elements $a, b \in R$ are called associates, denoted $a \sim b$, if a = ub for some unit u of R. Then, prove or disprove that \sim is an equivalence relation on R.
- (c) Prove or disprove that the set of all finite subsets of \mathbb{N} (the set of natural numbers) is countable. (2)

Solution:

(a) Let $a, b \in G$. By the given property $(a^{-1}b^{-1})^{-1} = (a^{-1})^{-1}(b^{-1})^{-1} = ab$. Moreover, in any group $(a^{-1}b^{-1})^{-1} = (b^{-1})^{-1}(a^{-1})^{-1} = ba$. Thus ab = ba. Therefore, G is Abelian. [Proved]

(b) [**Reflexive**] $a = 1 \times a$ for all $a \in R$.

[Symmetric] Let a = ub for some unit u. Let $v \in R$ be the element with uv = vu = 1 in R. Then v is also a unit of R, and b = va.

[Transitive] Let a=ub and b=vc for some units u,v (i.e., $u^{-1},v^{-1}\in R$). Then a=(uv)c. Moreover, $(v^{-1}u^{-1})(uv)=v^{-1}(u^{-1}u)v=v^{-1}v=e$, i.e., uv is also a unit in R.

Therefore, \sim is an equivalence relation on R. [Proved]

Con

(c) Let A denote the set of all finite subsets of \mathbb{N} . We write A as the disjoint union $A = \bigcup_{n \in \mathbb{N}_0} A_n$, where A_n comprises subsets of \mathbb{N} of size n. $|A_0| = 1$. For $n \ge 1$ the set A_n can be identified with an (infinite) subset of \mathbb{N}^n and so is countable. Since A is the union of countably many finite or countable sets, it is countable. [Proved]