Vector Fields

David Robinson

Vector Field

A vector field \mathbf{F} in \mathbb{R}^2 is an assignment of a two-dimensional vector $\mathbf{F}(x,y)$ to each point (x,y) of a subset D of \mathbb{R}^2 . The subset D is the domain of the vector field.

$$\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$$

A vector field \mathbf{F} in \mathbb{R}^3 is an assignment of a three-dimensional vector $\mathbf{F}(x,y,z)$ to each point (x,y,z) of a subset D of \mathbb{R}^3 . The subset D is the domain of the vector field.

$$\mathbf{F}(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$$

In a **radial field**, all vectors either point directly toward or directly away from the origin. In a **rotational field**, the vector at point (x, y) is tangent to a circle with radius $r = \sqrt{x^2 + y^2}$.

Gradient Fields

A vector field **F** in \mathbb{R}^2 or \mathbb{R}^3 is a **gradient field**, also called a conservative field, if there exists a scalar function f such that $\nabla f = F$.

Uniqueness of Potential Functions

Let **F** be a conservative vector field on an open and connected domain and let f and g be functions such that $\nabla f = \mathbf{F}$ and $\nabla g = \mathbf{G}$. Then, there is a constant C such that f = g + C.

The Cross-Partial Property of Conservative Vector Fields

Let \mathbf{F} be a vector field in two or three dimensions such that the component functions of \mathbf{F} have continuous first-order partial derivatives on the domain of \mathbf{F} .

If $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ is a conservative vector field in \mathbb{R}^2 , then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

If $\mathbf{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ is a conservative vector field in \mathbb{R}^3 , then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} \qquad \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$$

1