1.产品介绍

PaddlePi-K210是百度和嘉楠联合推出一款深度开发套件,该套件包含了,AiStudio模型训练、应用开发、模型部署等整套解决方案。可用于深度学习相关的场景教学,以及工业、农业深度学习相关场景的应用,如人脸检测、病虫害监控和工业质检。本教程将介绍如何上手并使用PaddlePi-K210开发套件进行应用开发。

1.1 硬件介绍

PaddlePi-K210是基于嘉楠科技AI芯片-勘智K210打造的一款深度学习开发套件,该芯片具有如下特点:

1、双核RISC-V 64位处理器

高达600MHZ的主频:轻松应对各种业务场景及计算任务

硬件浮点指令加速:两个核心均支持双精度指令加速,可使简单的渲染高达105fps

双核64位处理器:一个计算核,一个应用核,使开发者开发复杂应用场景时资源不再捉襟见肘

芯片功耗小于300mW, 典型应用场景功耗小于1w

2、端测常见图像任务的神经网络推理

图像分类:可达到最快240fps的分类卷积神经网络,达到这样的性能功耗仅0.3w

图像检测: QVGA的网络输入下,80分类的模型帧率可达到35fps

传统算法加速:不仅可以加速卷积神经网络的推理,并且可以对传统图像算法基于卷积的算子进行有效的加速

3、硬件组成

PaddlePi-K210主板、DVP 200W摄像头、LCDc触摸显示屏和调试器板

开发板板载摄像头接口,LCD触摸屏接口,拓展接口,wifi,32MB flash,wifi 用户可自行通过拓展接口中的TX、RX、BOOT和RST管脚下载程序,也可以使用配套的调试器进行下载。

1) 主板结构尺寸

2)接口功能介绍

外部LED接口

J1接口各管脚功能如下表:

标号	功能	说明	备注
1	LED2	接外部指示灯	电流小于100mA
2	LED3	接外部指示灯	电流小于100mA
3	LED1	接外部红外补光灯	电流<=1A
4	GND	地	
5	5V	电源输出	

其中4号和5号管脚对外输出5V电源。3号管脚设计为外接红外补光灯用,也可做其他驱动用,注意电流不要超过1A。1号和2号管脚设计为驱动两路独立的指示灯用,也可做其他驱动使用,注意电流不要超过100mA。

IR-CUT接口

J2接口设计为与IR-CUT摄像头对接,驱动IR-CUT使用。不推荐做其他功能使用。

拓展接口(所有IO管脚电平为3.3V)

J3为拓展接口,其各引脚功能如图所示。在电源输入管脚处使用5V输入,板子即可上电正常工作。

标号	类型	说明	备注
1	I/O	输入输出引脚24	
2	I/O	JTAG_TCK	
3	I/O	输入输出引脚25	
4	I/O	JTAG_TDI	
5	I/O	输入输出引脚26	
6	I/O	JTAG_TMS	
7	I/O	输入输出引脚27	
8	I/O	JTAG_TDO	
9	I/O	输入输出引脚28	
10	I/O	UARTHS_RX	
11	I/O	输入输出引脚29	
12	I/O	UARTHS_TX	
13	I/O	输入输出引脚30	
14	I/O	воот	
15	I/O	输入输出引脚31	
16		RESET	
17	I/O	输入输出引脚32	
18	POWER	GND	
19	I/O	输入输出引脚33	
20	POWER	3.3V	电源输出
21	I/O	输入输出引脚34	
22	POWER	GND	
23	I/O	输入输出引脚35	
24	POWER	5V	电源输入

注: 单独使用22和24两个管脚供电时,注意检查电源顺序,禁止反接,否则会烧毁供电电路。

1.2 软件介绍

百度大脑Al Studio(训练模型在PaddlePi-K210运行)

AI Studio是针对AI开发者的在线一体化开发平台.该平台集成了AI教程,深度学习样例工程,各领域经典数据集,强大的云端算力资源及存储资源,从而解决开发者在AI学习过程中的一系列难题,例如样例代码难以直接应用,高质量的数据集不易获得,以及本地环境难以使用大体量数据集进行模型训练等等.

百度Al Studio平台已经为使用者预置了Python语言环境,以及百度PaddlePaddle深度学习开发框架.

同时该平台还提供了PaddlePi-K210开发套件官方项目,开发者只需要复制相应的项目,重新训练,即可获取模型。您也可以修改成自己的数据集,进行训练,以适配您的应用场景。 AI Studio基本使用可以参考:<u>AI Studio</u>

PaddlePi-K210工具链

我们提供了PaddlePi-K210开发所需要的 SDK、交叉编译工具、调试工具、IDE,并且提供了 AI 加速器部分所需要的模型转换器(Model Compiler)。详细可以访问 https://kendryte.com/downloads/

操作系统: FreeRTOS或裸机

支持网络模型: Mobilenet、TinyYOLO (after pruned)

2. 基本使用

2.1 训练模型

AI Studio平台针对PaddlePi-K210提供了mobilenet分类 和 tiny yolo目标检测的官方示例。 分别是PaddlePi-mobilenet 和 PaddlePi_tiny-yolo,只需要fork过来就行,无需自行搭建网

2.1.1 fork AI Studio平台官方项目PaddlePi-mobilenet训练模型

以下"PaddlePi-mobilenet"为例进行讲解,该示例训练一个花的5分类网络,可以根据自己的需求替换数据集。

- 1、打开百度AI Studio官网https://aistudio.baidu.com/aistudio/#/index
- 2、点击顶部菜单:项目->百度Al学习项目->查看更多, 搜索"PaddlePi-mobilenet",点击打开后,fork项目(也可以直接点击<u>PaddlePi-mobilenet</u>进入)。填入项目名称和项目描述。
- 3、运行项目,可以选择CPU或GPU模型
- 4、开始训练模型,按顺序运行cell即可
- 1)、运行cell,解压数据集

```
# 解压花朵数据集
!cd data/data2815 && unzip -q flower_photos.zip
```

2)、运行cell,解压预训练模型参数

```
# 解压预训练模型参数
!cd data/data6592 && unzip -q MobileNetV2_pretrained.zip
```

3)、运行cell,预处理数据,将其转化为标准格式。同时将数据拆分成两份,以便训练和计算预估准确率。

```
# 预处理数据,将其转化为标准格式。同时将数据拆分成两份,以便训练和计算预估准确率
import codecs
import os
import random
import shutil
from PIL import Image

train_ratio = 4 / 5
...
省略
...
train_file.close()
eval_file.close()
```

4)、运行cell,构建网络并训练模型

```
# -*- coding: UTF-8 -*-
"""
训练常用视觉基础网络,用于分类任务
需要将训练图片,类别文件 label_list.txt 放置在同一个文件夹下
程序会先读取 train.txt 文件获取类别数和图片数量
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
...
省略
...
if __name__ == '__main__':
    init_log_config()
    init_train_parameters()
    train()
```

日志提示如下,表示训练完成。选择CPU训练,可能需要几个小时 [line:635] - INFO: end training [line:649] - INFO: training till last epcho, end training

5)、运行cell,评估模型

```
from __future__ import absolute_import
{\tt from} \ \_\_{\tt future} \_\_ \ {\tt import} \ {\tt division}
from __future__ import print_function
import os
import numpy as np
import random
{\tt import\ time}
import codecs
import sys
import functools
import math
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.param_attr import ParamAttr
from PIL import Image, ImageEnhance
省略
if __name__ == '__main__':
    eval all()
```

使用测试数据评估效果, 运行输出 total eval count:750 cost time:65.95 sec predict accuracy:0.84

6)、模型转换(普通的模型并不能很好地运行在开发板等特定硬件上,为了在特定硬件上部署,需要借助一些工具.)首先先拉取并解压模型转换工具:

```
!mkdir /home/aistudio/work/ncc
!wget "https://platform.bj.bcebos.com/sdk%2Fncc-linux-x86_64.tar.gz" -O ncc-linux-x86_64.tar.gz
!tar -zxvf ncc-linux-x86_64.tar.gz -C /home/aistudio/work/ncc
```

7)、进行模型压缩. 我们需要进行量化。为了保证量化后的精度, 需要使用训练图片调整模型。拷贝评估图片到/home/aistudio/work/images

```
!mkdir /home/aistudio/work/images

import os
import shutil
filenames = os.listdir("/home/aistudio/data/data2815/evalImageSet/")

index = 0
for i in range(1, len(filenames), 7):
    srcFile = os.path.join("/home/aistudio/data/data2815/evalImageSet/", filenames[index])
    targetFile = os.path.join("/home/aistudio/work/images",filenames[index])
    shutil.copyfile(srcFile,targetFile)
    index += 7
```

8)、进行模型转换,把训练好的模型转换成PaddlePi-K210可以运行的模型

```
!/home/aistudio/work/ncc/ncc -i paddle -o k210model -p /dev/ttyUSB0 --postprocess nltol --dataset work/images/ freeze-model mobilenet.kmod el
```

日志显示如下,表示已经运行完成 KPU memory usage: 2097152 B Main memory usage: 250880 B

```
nncase is a cross-platform neural network optimization toolkit for fast inference. github

ncc -i <input format> -o <output format> [--dataset <dataset path>] [--postprocess <dataset postprocess>] [--weights-bits <weights quant
```

Parameter	value	description		
-i	paddle	input formatmodel Paddle model		
-0	k210model	ouput format .kmode1 K210 model (Only supported in inference mode)		
dataset	eg:work/images/	eval images path, required when the output format is k210model or inference.		
postproces	Oto1	normalize images to [0, 1]		
postproces	n1to1	normalize images to [-1, 1]		
weights-bits	8	8bit quantization [0, 255]		
weights-bits	16	16bit quantization [0, 65535]		
float-fc		Use float fullyconnected kernels.		
channelwise-output		Use channelwise quantization for output layers.		

Supported layers

layer	parameters
Conv2d	kernel={3x3,1x1} stride={1,2} padding=same *
DepthwiseConv2d	kernel={3x3,1x1} stride={1,2} padding=same *
FullyConnected	
Add	
MaxPool2d	
AveragePool2d	
GlobalAveragePool2d	
BatchNormalization	
BiasAdd	
Relu	
Relu6	
LeakyRelu	
Concatenation	
L2Normalization	
Sigmoid	
Softmax	
Flatten	
ResizeNearestNeighbor	

2.1.2 fork AI Studio平台官方项目PaddlePi_tiny-yolo训练模型

以下"PaddlePitiny-yolo"为例进行讲解,该示例是训练一个螺丝螺母目标检测的网络,可以根据自己的需求替换数据集。

- 1、打开百度AI Studio官网https://aistudio.baidu.com/aistudio/#/index
- 2、点击顶部菜单:项目->百度Al学习项目->查看更多, 搜索"PaddlePitiny-yolo",点击打开后,fork项目(也可以点击<u>PaddlePi_tiny-yolo</u>进入)。填入项目名称和项目描述。
- 3、运行项目,可以选择CPU或GPU模型
- 4、开始训练模型,按顺序运行cell即可
- 1)、运行cell,解压数据集
- 2)、将数据处理成需要的格式:
- * label_list.txt 每一行一个类别, 类别编号 类别名字
- * train.txt 每一行一个样本,图片路径[{"bbox":{"left":0, "top": 0, "width":0, "height":0}, "label": 1}...]
- * trainImageSet/xxx.jpg 训练图片
- * eval.txt 格式同 train.txt
- * evalImageSet/xxx.jpg 验证图片
- 3) 配置tiny yolo模型的参数
- 4) 搭建tiny yolo网络

- 5) 训练网络
- 6) 模型转换

2.2 编译和烧录程序

将AI Studio上训练的模型下载,拷贝到示例代码中进行编译并烧录程序。(关于PaddlePi-K210开发环境的搭建,请参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》)。

2.2.1 PaddlePi-mobilenet编译和烧录程序

window环境

交叉编译环境和SDK 参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》

- 1) 下载示例程序<u>baidu_flower</u>示例(该程序为一个花的五分类程序,把Al Studio上训练的模型替换就行),解压到kendryte-standalone-sdk的src目录下
- 2) 下载在AI Studio上训练模型mobilenet.kmodel到baidu_flower/src目录下
- 3) 在kendryte-standalone-sdk(下载release下的最新版本)目录新建build文件夹。如: D:\Documents\kendryte-standalone-sdk\build
- 4) 编译

```
#打开cmd进入build目录
```

 $\verb"cd D: \verb"Documents" \verb"kendryte-standalone-sdk" \verb"build"$

cmake .. -DPROJ=baidu_flower -G "MinGW Makefiles"

make

编译完成在build目录生成baidu-flower.bin

5) 烧录程序

K-flash.exe安装参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》

开发板插上Type-C, 上电进入ISP模式。运行K-flash.exe, 如下图所示: 自动识别 COM 号及设置波特率,选择 Device 和 baidu-flower.bin, 点击 Flash 开始下载。

6) 运行测试

烧录完成后重启,使用图片进行测试(可以使用Alstudio里面的数据集图片进行测试)

ubuntu环境

交叉编译环境和SDK 参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》

- 1) 下载示例程序<u>baidu_flower</u>示例(该程序为一个花的五分类程序,把Al Studio上训练的模型替换就行),解压到kendryte-standalone-sdk的src目录下。
- 如: /home/tienfeek/Documents/kendryte/kendryte-standalone-sdk-develop/src/baiduflower
- 2) 下载在AI Studio上训练模型mobilenet.kmodel到baiduflower/src/目录下,如:/home/tienfeek/Documents/kendryte/kendryte-standalone-sdk-

develop/src/baidu_flower/src/mobilenet.kmodel

- 3) 在kendryte-standalone-sdk(下载release下的最新版本)目录新建build文件夹。如:/home/tienfeek/Documents/kendryte/kendryte-standalone-sdk/build
- 4) 编译

#打开terminal进入build目录

cd /home/tienfeek/Documents/kendryte/kendryte-standalone-sdk/build

 $\verb|cmake| ... - \verb|DPROJ=| baidu_flower| - \verb|DTOOLCHAIN=| opt/kendryte-toolchain| bin|$

make

编译完成在build目录生成baidu-flower.bin

5) 烧录应户

kflash.py安装脚本参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》 用Type-C线连接PaddlePi-K210 和开发电脑。执行如下命令将baidu-flower.bin 烧录到PaddlePi-K210开 发板。

#进入到kflash.py所在目录

 $\verb|sudo| python3| kflash.py -p /dev/ttyUSB0 -B KD233| /home/tienfeek/Documents/kendryte/kendryte-standalone-sdk-develop/build/baidu_flower.bin| flower.bin| flowe$

6)运行测试

烧录完成后重启,使用图片进行测试(可以使用Alstudio里面的数据集图片进行测试)

2.2.2 PaddlePi_tiny-yolo编译和烧录程序

window环境

交叉编译环境和SDK 参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》

- 1) 下载示例程序<u>baidu_screw</u>示例(该程序是个螺丝螺母目标检测,把AI Studio上训练的模型替换就行),解压到kendryte-standalone-sdk的src目录下
- 2) 下载在AI Studio上训练模型mobilenet.kmodel到baidu_screw/src目录下
- 3) 在kendryte-standalone-sdk(下载release下的最新版本)目录新建build文件夹。如: D:\Documents\kendryte-standalone-sdk\build
- 4) 编译

#打开cmd进入build目录

cd D:\Documents\kendryte-standalone-sdk\build

cmake .. -DPROJ= baidu_screw -G "MinGW Makefiles"

make

编译完成在build目录生成baidu_screw.bin

5) 烧录程序

K-flash.exe安装参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》

开发板插上Type-C,上电进入ISP模式。运行K-flash.exe,如下图所示: 自动识别 COM 号及设置波特率,选择 Device 和 baidu-screw.bin,点击 Flash 开始下载。6) 运行测试

烧录完成后重启,使用图片进行测试(可以使用Alstudio里面的数据集图片进行测试)

ubuntu环境

交叉编译环境和SDK 参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》

- 1) 下载示例程序<u>baidu_screw</u>示例(该程序是个螺丝螺母目标检测,把AI Studio上训练的模型替换就行),解压到kendryte-standalone-sdk的src目录下。
- 如: /home/tienfeek/Documents/kendryte/kendryte-standalone-sdk-develop/src/baidu*screw*
- 2) 下载在AI Studio上训练模型mobilenet.kmodel到baiduscrew/src/目录下,如:/home/tienfeek/Documents/kendryte/kendryte-standalone-sdk-develop/src/baidu_screw/src/tiny-volo kmodel
- 3) 在kendryte-standalone-sdk(下载release下的最新版本)目录新建build文件夹。如:/home/tienfeek/Documents/kendryte/kendryte-standalone-sdk/build
- 4) 编译

#打开terminal进入build目录

cd /home/tienfeek/Documents/kendryte/kendryte-standalone-sdk/build cmake .. -DPROJ= baidu_screw -DTOOLCHAIN=/opt/kendryte-toolchain/bin

编译完成在build目录生成baidu_screw.bin

5) 烧录应用

kflash.py安装脚本参考文档《PaddlePi-K210命令行开发环境搭建指南.PDF》 用Type-C线连接PaddlePi-K210 和开发电脑。执行如下命令将baidu-screw.bin 烧录到PaddlePi-K210开发板。

#进入到kflash.py所在目录

 $\verb|sudo| python3| kflash.py -p /dev/ttyUSB0 -B KD233| home/tienfeek/Documents/kendryte/kendryte-standalone-sdk-develop/build/baidu_screw.bin| | baidu_screw.bin| | b$

6) 运行测试

烧录完成后重启,使用图片进行测试(可以使用Alstudio里面的数据集图片进行测试)