Семинар 8-9. **Тесты единичного корня.** Моделирование с помощью ARIMA.

План

- 1. Тесты единичного корня: DF, KPSS, PP.
- 2. Запись ARIMA-моделей.
- 3. Методология Бокса-Дженкинса.
- **4.** Моделирование на основе ARIMA.

Часть 1. Тесты единичного корня. Расширенный тест Дики-Фуллера

- 1. В чем суть теста Дики-Фуллера? В чем суть расширенного теста Дики-Фуллера? Какое количество лагов необходимо включать? К каким последствиям это приведет?
- 2. Как проверить наличие второго единичного корня?
- 3. Какие тесты единичного корня еще Вы знаете?

Задача 1. Для некоторого временного ряда y_t (T=100) получена следующая модель коэффициентов): $\Delta \hat{y}_{t} = 2.95 - 0.18 y_{t-1}$ (1,147) (0,069) $\mathcal{F}_{t} = 0.03$ $\mathcal{F}_{t} = 0.03$ $\mathcal{F}_{t} = 0.03$ $\mathcal{F}_{t} = 0.03$ (в скобках стандартные ошибки коэффициентов):

На уровне значимости 5% сформулировать и проверить гипотезу единичного корня.

Односторонние критические значения статистики Дики-Фуллера (Магнус)

 $y_t = b_1 y_{t-1} + \varepsilon_{1t},$

(11.48)

(11.49)

 $y_t = a_2 + b_2 y_{t-1} + \varepsilon_{2t},$

 $y_t = a_2 + b_3 y_{t-1} + c_3 t + \varepsilon_{3t}$ (11.50)

mode	HP ON	
	Marker	7(1)
bolog	Warren ontro	ا ا

Доверительный уровень	Размер выборки				
	25	50	100	∞	
AF	{ модель (1	1.48)			
0.010	-2.66	-2.62	-2.60	-2.58	
0.025	-2.26	-2.25	-2.24	-2.23	
0.050	-1.95	-1.95	-1.95	-1.95	
AR модел	ть с конста	нтой (11.49	9)		
0.010	-3.75	-3.58	-3.51	-3.43	
0.025	-3.33	-3.22	-3.17	-3.12	
0.050	-3.00	-2.93	-2.89	-2.86	
AR модель с к	AR модель с константой и трендом (11.50)				
0.010	-4.38	-4.15	-4.04	-3.96	
0.025	-3.95	-3.80	-3.69	-3.66	
0.050	-3.60	-3.50	-3.45	-3.41	

Источник: (Fuller, 1976).

Задача 2. Для некоторого временного ряда y_t (T=500) получена следующая тестовая регрессия:

-3.440	-2.870	-2.570
Value	Value	Value
	polated Dickey-Ful 5% Critical	10% Critical
Dickey-Fuller tes	t for unit root	Number of ob

P>|t| [95% Conf. Interval] D. x1 Std. Err. -1.00511 . 0449404 0.000 -1.093407 -. 9168135 -.0038383 .0459519 -.0941223 . 0864457 _cons

Родионова Л.А. Майнор «Прикладной статистический анализ» Временные ряды и их практическое применение

рг им (2-0.01) получена следующая $\sqrt{\chi} = -0.004 - \sqrt{0.005} \times t - 1$ (0.0448) $\sqrt{0.005} = -3.44$ $\sqrt{0.0049} = -3.43$

На уровне значимости 1% проверить гипотезу единичного корня.

Работа в Gretl.

Задача 3. Даны случайные процессы у1, у2, у3, у4, у21.

Файл: **DF.dta** откройте в Gretl

Исследуйте поведение сгенерированных процессов.

1.1. сформулируйте и проверьте гипотезу о наличие единичного корня. Запишите тестируемую регрессию в критерии Дики-Фуллера для у1.

- используйте расширенный тест Дики-Фуллера. Какое количество лагов необходимо добавить? Сделайте вывод: как меняется DF-статистика при добавлении дополнительных лагов и выводы относительно наличия единичного корня?

	DF	Тренд	DF(1)	DF(2)	DF(3)	DF(4)
y1	- 8 (3) 5	- 9,04	- 6ر <i>ک</i>	-5,96		
			,			

Замечание. Не забывайте включать достаточное количество лагов в ADF-тест (в Gretl рассчитывается автоматически). Правило Шверта: $p_{\text{max}} = \left[12 \left(\frac{T}{100}\right)^{1/4}\right]$

Schwert G.W. Effects of Model Specification on Tests for Unit Roots in Macroeconomic Data // Journal of Monetary Economics. 1987. Vol. 20. P. 73–105.

Schwert. Test for Unit Roots: A Monte Carlo Investigation, JBES, 1989.

3.2. Разностно-стационарные ряды. Исследуйте у2 и у21. Используйте тест Дики-Фуллера для первой разности изучаемых процессов (в случае необходимости). Сделайте вывод о порядке **интегрируемости** процессов (после какой разности процесс стал стационарным).

Процесс	Уровни	Первая	Вторая	Порядок
		разность	разность	интегрируемости
y2				
y21				

3.3. **Тренд-стационарный ряд.** Исследуйте у3, предположив наличие в процессах детерминированного тренда, проведите тест Дики-Фуллера. Сделайте вывод.

```
Расширенный тест Дики-Фуллера для v3
Расширенный тест Дики-Фуллера для у2
testing down from 10 lags, criterion Kpur. Akauke testing down from 10 lags, criterion Kpur. Akauke
                                                     объем выборки 90
объем выборки 99
                                                     нулевая гипотеза единичного корня: а = 1
нулевая гипотеза единичного корня: а = 1
                                                      тест с константой
 тест с константой
                                                     включая 9 лага(-ов) для (1-L) у3 модель: (1-L) у = b0 + (a-1) *у(-1) + ... + e
 включая 0 лага (-ов) для (1-L) v2
 модель: (1-L)y = b0 + (a-1)*y(-1) + e
                                                     оценка для (a-1): -0,00680597 тестовая статистика: tau_c(1) = -0,751946
  оценка для (а - 1): -0,0180801
  тестовая статистика: tau_c(1) = -1,18331
  Р-значение 0,6793
                                                      асимпт. р-значение 0,8317
 коэф. автокорреляции 1-го порядка для е: 0,072 коэф. автокорреляции 1-го порядка для е: -0,019
                                                       лаг для разностей: F(9, 79) = 8,806 [0,0000]
 с константой и трендом
  включая 0 лага(-ов) для (1-L)у2
                                                       с константой и трендом
 модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e
                                                      включая 0 лага(-ов) для (1-L)у3
                                                      модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e оценка для (a-1): -0,938652
  оценка для (а - 1): -0,0210462
  тестовая статистика: tau_ct(1) = -0,571397
  Р-значение 0,9783
                                                       тестовая статистика: tau_ct(1) = -9,03891
  коэф. автокорреляции 1-го порядка для е: 0,074 Р-значение 4,08е-011
                                                       коэф. автокорреляции 1-го порядка для е: -0,003
```

3.4. **Альтернативные тесты единичного корня.** Проведите PP- и KPSS-тесты для у1, сравните результаты.

- Какие тесты единичного корня Вы знаете? Проведите PP- и KPSS-тесты для у1,

сравните результаты.

	DF	РР-тест	KPSS-тест
y1	Распиренный теот Дики-Фуллера для у1 testing down from 10 lags, criterion Крит. Акаике объем выборки 99 нулевая гипотеза единичного корня: $a=1$ теот с константой включая 0 лага(-ов) для $(1-L)$ у1 модель: $(1-L)$ у = b0 + $(a-1)$ *у (-1) + е оценка для $(a-1)$: -0 , 93032 теотовая станисина: tau $_{-}$ (1) = -8, 99047 Р-значение 4, 283e-009 коэф. автокорреляции 1-го порядка для е: -0,006 с константой и трендом включая 0 лага(-ов) для $(1-L)$ у1 модель: $(1-L)$ у = b0 + b1*t + $(a-1)$ *у (-1) + е оценка для $(a-1)$: $-$ 0,38852 теотовая статислика: tau ct (1) = -9,03891 Р-значение 4,081e-011 коэф. автокорреляции 1-го порядка для е: -0,003	Phillips-Perron unit-root test for y1, Bartlett bandwidth 3: Z_t = -8,97733 (p-value = 0,0000) Test regression (OLS, dependent variable y1, T = 99):	<pre>KPSS тест для y1 T = 100 Параметр для усечения лагов = 4 Тестовая статистика = 0,266432</pre>
y2			

Тесты елиничного корня

тесты единичного корня						
Тесты единичного	R	Stata	Gretl			
корня						
Тест Дики-Фуллера	adf.test(y)	dfuller y	Menu path: /Variable/Unit root			
для у	adf.test(y, k=5)	dfuller y, trend regress lags(2)	tests/Augmented Dickey-Fuller test			
Тест KPSS для у	kpss.test(y)	kpss y	<u>Р</u> асширенный тест Дики-Фуллера (ADF-тест)			
		kpss y, notrend auto	ADF- <u>G</u> LS тест			
Тест Филипса-	pp.test(y)	pperron y	<u>К</u> PSS тест			
Перрона для у		pperron y, regress	<u>L</u> evin-Lin-Chu test			
Тест Эндрюса-		zandrews y	<u>Ч</u> астичное интегрирование			
Зивота		zandrews y, lagmethod(BIC) graph	Phillips-Perron test			
Silbora		Zanore ws j, ragine mod (Bre) graph	HEGY			

3.5. Тесты единичного корня с учетом структурного сдвига. Проведите тесты единичного корня для у1,у4, в предположении наличия структурного сдвига (Gretl: Kapetanios' (2005) unit root test). Сделайте выводы.

Kapetanios, G. (2005). Unit-root testing against the alternative hypothesis of up to m structural breaks. Journal of Time Series Analysis, 26(1), 123-133.

H0: DS H1: TS

The test controls for up to 5 level and/or trend breaks under the *alternative hypothesis* of trend stationarity.

Рекомендуется по результатам теста делать сводную таблицу:

BP	Тест	Нулевая	Статистика	р-значение	Вывод
		гипотеза	критерия		
у	DF(с трендом/без)				
	РР(с трендом/без)				
	KPSS(с трендом/без)				
Δy	DF(с трендом/без)				
	РР(с трендом/без)				
	KPSS(с трендом/без)				

Домашнее задание (ТДЗ) 8. Тесты единичного корня

По данным Всемирного банка выберите 3 показателя за 20-60 лет (опишите какие показатели были взяты для анализа, за какой период).

Файл: WB_Russia.xls (закладка Data)

Источник: https://data.worldbank.org/country/russian-federation?locale=ru

! можно взять свои данные по другой стране.

1. Опишите выбранные показатели.

•	
показатель	
страна	
период	

Постройте графики выбранных показателей. Сделайте вывод о стационарности рядов, исходя из построенных графиков.

2. Проведите тесты единичного корня (ADF, PP, KPSS) и их модификации. Сравните результаты и сделайте вывод по результатам тестирования. Для *одного* из показателей результаты представьте в виде сводной таблицы.

BP	Тест	Нулевая	Статистика	р-значение	Вывод
		гипотеза	критерия		
У	DF(с трендом/без)				
	РР(с трендом/без)				
	KPSS(с трендом/без)				
Δy	DF(с трендом/без)				
	РР(с трендом/без)				
	KPSS(с трендом/без)				

По двум другим рядам приведите основные выводы.

3. Сделайте вывод о стационарности рядов и степени интегрируемости (d=?). Являются ли ряды тренд-стационарным или разностно-стационарным?

Ряд	Стационарность
У1	
У2	
У3	

4. Для одного из показателей проведите тест единичного корня (любой) с *учетом структурного сдвига*. Какая нулевая/альтернативная гипотеза. Сделайте вывод по результатам тестирования.

Часть 2. Анализ временных рядов с помощью ARIMA (Gretl).

Методология Бокса-Дженкинса.

- 1. В чем суть методологии Бокса-Дженкинса?
- 2. Какие этапы содержит?

ARIMA-модели. Основные виды моделей:

Модель авторегрессии	ARMA(1,0)=AR(1) ARIMA(1,0,0)	$y_t = \beta_0 + \beta_I y_{t-I} + \varepsilon_t$ или (1- $\beta_1 L$) $y_t = \beta_0 + \varepsilon_t$
Модель скользящего среднего	ARMA(0,1)=MA(1) ARIMA(0,0,1)	$y_t = \theta_0 + \varepsilon_t + \theta_I \varepsilon_{t-I}$ или $y_t = \theta_0 + (1 + \theta_1 L) \varepsilon_t$
Модель авторегрессии – скользящего среднего	ARMA(1,1) ARIMA(1,0,1)	$y_t = \theta_0 + \beta_1 y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}$ или $(1 - \beta_1 L) y_t = \theta_0 + (1 + \theta_1 L) \varepsilon_t$
модель авторегрессии – интегрированного скользящего среднего	ARIMA(1,1,1)	$\Delta y_t = \theta_0 + \beta_I \Delta y_{t-I} + \varepsilon_t + \theta_I \varepsilon_{t-I}$ или (1- $\beta_1 L$) $\Delta y_t = \theta_0 + (1 + \theta_1 L) \varepsilon_t$

Методология Бокса-Дженкинса.

- 1. Идентификация модели.
 - Получение стационарного ряда.
 - Подбор процесса ARMA к BP (выбор параметров ARIMA(p=?, d=?, q=?)).
- 2. Оценивание модели и проверка адекватности модели.
- 3. Прогнозирование.

Задание 2.1. Запись ARIMA-моделей. Запишите модели в виде через лаговый оператор, ответ поясните

ARIMA(1,1,1)

ARIMA(2,1,1)

ARIMA(1,2,2)

ARIMA(3,0,0)

Задание 2.2. Анализ младенческой смертности

Файл: млад смерт РМУБ.xls

Данные: младенческая смертность в России за период 1960-2017 гг.

Источник данных: Демоскоп http://www.demoscope.ru/weekly/pril.php

Требуется подобрать соответствующую модель ARIMA для описания динамики *младенческой смертности*, оценить ее параметры и построить прогноз.

Важным показателем смертности и одновременно качества жизни является коэффициент младенческой смертности - число умерших в возрасте до 1 года в расчете на 1000 родившихся живыми. В отличие от общего коэффициента смертности, то поднимавшегося, то снижавшегося на протяжении двух последних десятилетий, коэффициент младенческой смертности довольно устойчиво снижался (рис). Наблюдавшиеся повышения значения коэффициента младенческой смертности были связаны в основном с улучшением качества учета и постепенным переходом на международный стандарт в определении живорождения - в 1993 году (на 11%)[12] и в 2012 году (на 17%)[13]. Дополнительное расширение критериев живорождения в 2013 году не привело к повышению показателей младенческой смертности. Число детей, умерших в возрасте до 1 года, быстро снижалось в 1960-е годы за счет сокращения и рождаемости, и смертности, но в 1972-1976 годах стало расти (отчасти за счет улучшения учета родившихся). С конца 1980-х годов число умерших в возрасте до 1 года неуклонно сокращалось, снизившись с 48,5 тысячи в 1987 году до 13,2 тысячи человек в 2011 году. В 2012 году число зарегистрированных смертей в возрасте до 1 года в связи с расширением критериев живорождения увеличилось до 16,3 тысячи человек, что на 24% больше, чем за 2011 год. Значение коэффициента младенческой смертности возросло до 8,6% против 7,4% за 2011 год.

http://www.demoscope.ru/weekly/2018/0761/barom05.php

1. Перенесите данные в в Gretl.

Этап 1. Идентификация модели

2. **Анализ графика.** Постройте график временного ряда младенческой смертности в России. Опишите динамику, сделайте вывод о стационарности ряда.

Анализ графика. Что необходимо заметить на графике?

- наличие тренда, его характер (убывающий/возрастающий), вид (линейный/квадратичный);
- наличие сезонности;
- наличие структурных сдвигов;
- провести предварительный анализ стационарности ряда.
- 3. **Стационарность.** Проверим ряд на стационарность (анализ АСF и тест Дики-Фуллера). Сформулируйте и проверьте нулевую гипотезу в критерии Дики-Фуллера.

Тости отничного мория			
Тесты единичного корня			
H ₀ «процесс нестационарный/хара:	ктеристическое уравнение	процесса	содержит
единичный корень»			
Тест	Статистика критерия		
Тест Дики-Фуллера (ADF-test)			
Тест Филипса-Перрона (PP-test)			

- Постройте коррелограмму (график автокорреляционной и частной автокорреляционной функции). Сделайте вывод о стационарности ряда.
- Проведите тесты единичного корня (ADF, PP, KPSS) для ряда в уровнях и ряда первой разности (при необходимости). Сравните результаты и сделайте вывод о стационарности ряда и степени интегрируемости (d=?). Является ли ряд тренд-стационарным или разностно-стационарным?
- 4. **Порядок интегрируемости ряда.** Переходим к первым разностям и заново тестируем ряд на стационарность.

Вывод: после взятия первой разности процесс стал стационарным, d=1, ARIMA(p=?, d=1, q=?)).

Замечание. Можно использовать для сравнения критические значения DF-распределения Односторонние критические значения статистики Дики-Фуллера (Магнус)

$$y_t = b_1 y_{t-1} + \varepsilon_{1t},$$
(11.48)

$$y_t = a_2 + b_2 y_{t-1} + \varepsilon_{2t},$$
(11.49)

$$y_t = a_2 + b_3 y_{t-1} + c_3 t + \varepsilon_{3t}$$
(11.50)

Доверительный уровень	Размер выборки			
	25	50	100	∞
AR модель (11.48)				
0.010	-2.66	-2.62	-2.60	-2.58
0.025	-2.26	-2.25	-2.24	-2.23
0.050	-1.95	-1.95	-1.95	-1.95
AR модел	ть с конста	нтой (11.49	9)	
0.010	-3.75	-3.58	-3.51	-3.43
0.025	-3.33	-3.22	-3.17	-3.12
0.050	-3.00	-2.93	-2.89	-2.86
AR модель с к	онстантой	и трендом	(11.50)	
0.010	-4.38	-4.15	-4.04	-3.96
0.025	-3.95	-3.80	-3.69	-3.66
0.050	-3.60	-3.50	-3.45	-3.41

Источник: (Fuller, 1976).

5. Выбор параметров ARIMA(p=?, d=1, q=?). Анализ АСГ/РАСГ

После определения степени интегрируемости ряда, перейдем к оцениванию параметров модели ARIMA(p, d, q). Какие предположения относительно порядков p и q можно сделать на основании графиков ACF и PACF?

Вывод: ACF – убывает, PACF – имеет пик на лаге $1 \rightarrow AR(1) \rightarrow p=1, q=0 \rightarrow ARIMA(p=1, d=1, q=0) \rightarrow ARIMA(1, 1, 0)$

Повеление ACF и PACF ARMA-молелей

Вид модели	ACF	PACF
ARMA(1,0)=AR(1)	Экспоненциально убывает	Пик на лаге 1
ARMA(2,0)=AR(2)	Убывает	Пик на лаге 1,2
ARMA(0,1)=MA(1)	Пик на лаге 1	Экспоненциально убывает
ARMA(0,2)=MA(2)	Пик на лаге 1,2	Убывает
ARMA(1,1)	Убывает	Убывает

Замечание. АСF –автокорреляционная функция процесса; РАСF - частная автокорреляционная функция процесса.

Этап 2. Оценивание модели.

4. Оцените и сравните несколько моделей **ARIMA**

- **ARIMA** (1, 1, 0) $(1-\alpha_1 L)\Delta y_t = const + \varepsilon_t$

Модель 5: ARIMA, использованы наблюдения 1961-2017 (T = 57) Оценено при помощи фильтра Кальмана (Kalman) (точный метод МП) Зависимая переменная: (1-L) v2

Стандартные ошибки рассчитаны на основе Гессиана

	Коэффициент	Ст. ошибка	z	Р-значени	ie .
const phi_1	-0,535970 -0,0200474	0,136881 0,142516	-3,916 -0,1407	9,02e-05 0,8881	***
Среднее зав. Среднее инно Лог. правдол Крит. Шварца	ваций -0 одобие -8	,001079 Ст. 3,80900 Кри	откл. зав. откл. инно: г. Акаике г. Хеннана-	ваций	1,062280 1,052735 173,6180 176,0000
	Действ. ча	сть Мним. ча	сть Модуль	Частота	1
AR Корень 1	-49,881	7 0,0000	49,8817	0,5000)

Как правильно записать модель?

Запись ARIMA(1,1,0) модели
$$(1-\alpha_1 L)\Delta y_t = const + \epsilon_t$$
 Уравнение: $\sigma = ..., AIC = ..., BIC = ...$

Что можно сказать о качестве модели?

- -запишите модель и ее статистические свойства.
- проверьте выполнение предпосылок **ARIMA** (стационарность и обратимость)
- -Оцените модели ARMA(p, q), (p, q<=2). Выберете лучшую модель с точки зрения информационных критериев Акаике и Шварца.

модели ARIMA	Ошибка модели	AIC	BIC
1. ARIMA(1,1,0)			
2. ARIMA(0,1,1)			
3. ARIMA(1,1,1)			
4. ARIMA(1,0,0)+лин.тренд			
5. ARIMA(2,1,1)			

Информационный критерий	Формула расчета
Критерий Акаике (AIC) [Akaike (1973)]	$AIC(p,q) = \ln \hat{\sigma}^2 + 2\frac{p+q}{T}$
Критерий Шварца (BIC) [Schwarz (1978)]	$BIC(p,q) = \ln \hat{\sigma}^2 + \ln T \frac{(p+q)}{T}$
Критерий Хеннана – Куинна (HQIC) [Hannan, Quinn (1979)]	$HQIC = \ln \hat{\sigma}^2 + \frac{2\ln(\ln T)}{T}(p+q)$

Лучшая модель соответствует минимальному значению критериев Акаике и Шварца.

Этап 3. Диагностика моделей.

- -Выберете из полученных моделей 2 с наименьшими значениями информационных критериев.
- -Оцените адекватность построенных моделей на основе *анализа остатков*. *Анализ автокорреляций*. Постройте графики ACF/PACF остатков. Какими свойствами должен обладать ряд остатков?

Тесты на автокорреляцию H_0 : $\rho_1 = = \rho_k = 0$ («автокорреляция до лага k отсутствует»)		
Тест	Статистика критерия	
Тест Бройша-Годфри (Breusch-Godfrey); (не проводится для ARIMA)		
Тест Льюинга-Бокса (Ljung-Box)		

Нормальность.

Нулевая гипотеза - нормальное распределение: Хи-квадрат(2) = 8,289 р-значение 0,01585

Альтернативные тесты на нормальность остатков в Gretl.

- 1. Сохраняете остатки модели
- 2. Используете тесты: Переменные -Тесты на нормальное распределение

Тест на нормальное распределение uhat1:

```
Тест Дурника-Хансена (Doornik-Hansen) = 8,28896, p-значение 0,0158517

Тест Шапиро-Уилка (Shapiro-Wilk W) = 0,957794, p-значение 0,0448994

Тест Лиллифорса (Lilliefors) = 0,104789, p-значение ~= 0,12

Тест Жака-Бера (Jarque-Bera) = 4,95901, p-значение 0,0837846
```

Опишите и сравните построенные модели. Выберите наилучшую. Ответ обоснуйте.

модели ARIMA	Стационарность,	Ошибка	Анализ остатков	Наилучшая
	обратимость	модели,	(автокорреляция,	модель
	модели	инф.критерии	нормальность)	
1. ARIMA(1,1,0)				
2. ARIMA(0,1,1)				
3. ARIMA(1,1,1)				
4. ARIMA(1,0,0)+лин.тренд				
5. ARIMA(2,1,1)				

Этап 4. Прогнозирование.

По (наилучшей) модели строим прогноз, график и доверительный интервал.

$$\begin{split} \hat{y}_{T+1} &= E\{y_{T+1} \mid y_1....y_T\} = E\{\alpha_0 + \alpha_1 y_T + \varepsilon_{T+1} \mid y_1....y_T\} = \alpha_0 + \alpha_1 y_T \\ \hat{y}_{T=2019} &= \alpha_0 + \alpha_1 y_{T=2018} = ... \end{split}$$

- Изобразите в одной системе координат исходные данные и предсказанные значения по модели, рассчитайте прогнозы.

		предопавание	or. ommond	Jos Moncharces	
2017	6,0	5,5			
2018		5,5	1,05	3,4 -	7,5
2019		4,9	1,47	2,0 -	7,8
2020		4,4	1,80	0,9 -	7,9
2021		3,8	2,07	-0,2 -	7,9
2022		3,3	2,32	-1,2 -	7,9

- характеристики качества прогноза

Статистика для оценки прогноза

Средняя ошибка (ME)	-0,0010785
Корень из средней квадратичной ошибки (RMSE)	1,0528
Средняя абсолютная ошибка (МАЕ)	0,75233
Средняя процентная ошибка (МРЕ)	0,25703
Средняя абсолютная процентная ошибка (МАРЕ)	4,1475
U-статистика Тейла (Theil's U)	0.91019

Качество прогноза. Рассмотрим основные характеристики качества предсказания модели. Чем меньше значения этих характеристик, тем выше качество прогноза у полученной модели.

Характеристики точности прогноза в модели			
Характеристика	Формула вычисления	Единицы измерения	
Средняя квадратичная ошибка	$RMSE = \sqrt{\frac{\sum_{t=1}^{n} (\hat{y}_t - y_t)^2}{n}}$	Зависит от единиц измерения показателя	
Средняя абсолютная процентная ошибка	$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left \frac{\hat{y}_t - y_t}{y_t} \right \cdot 100\%$	%	
Средняя процентная ошибка	MPE = $\frac{1}{n} \sum_{t=1}^{n} \frac{y_{t} - \hat{y}_{t}}{y_{t}} \cdot 100\%$	%	

Статистика для оценки прогноза

 Средняя ошибка (МЕ)
 -0,0010785

 Корень из средней квадратичной ошибки (RMSE)
 1,0528

 Средняя абсолютная ошибка (МАЕ)
 0,75233

 Средняя процентная ошибка (МРЕ)
 0,25703

 Средняя абсолютная процентная ошибка (МАРЕ)
 4,1475

 U-статистика Тейла (Theil's U)
 0,91019

Сделайте общий вывод о качестве полученной модели.

Самостоятельная работа (на занятии)

Данные: младенческая смертность в Украине/Молдове/Белоруссии за период 1960-2017 гг. Проведите аналогичный анализ в Gretl. Подберите подходящую модель ARIMA (оцените и сравните ARIMA(1,1,1),ARIMA(1,1,0),ARIMA(0,1,1), обоснуйте выбор модели и опишите полученную Проверьте адекватность модель. модели И постройте прогноз на 6 лет (точечная И интервальная оценка).

Домашнее задание (ТДЗ) 9. ARIMA (самоконтроль)

По данным Всемирного банка выберите один показатель за 40-60 лет (опишите какой показатель был взят для анализа, за какой период).

Файл: WB_Russia.xls (закладка Data)

Источник: https://data.worldbank.org/country/russian-federation?locale=ru

!Можно взять свои данные

Задание. Требуется подобрать соответствующую модель ARIMA для описания динамики *выбранного показателя*, оценить ее параметры и построить прогноз на основании полученной модели.

1. Опишите выбранные показатели.

показатель	
страна	
период	

Постройте графики выбранных показателей. Сделайте вывод о стационарности рядов, исходя из построенных графиков.

2. Проведите тесты единичного корня (ADF, PP, KPSS) и их модификации. Сравните результаты и сделайте вывод по результатам тестирования. Результаты представьте в виде сводной таблицы.

BP	Тест	Нулевая	Статистика	р-значение	Вывод
		гипотеза	критерия		
y	DF(с трендом/без)				
	РР(с трендом/без)				
	KPSS(с трендом/без)				
Δy	DF(с трендом/без)				
	РР(с трендом/без)				
	KPSS(с трендом/без)				

Сделайте вывод о стационарности ряда и степени интегрируемости (d=?). Является ли ряд тренд-стационарным или разностно-стационарным?

- 3. На основании ACF/PACF сделайте предположения о порядке ARIMA(p,d,q). Ответ обоснуйте.
- 4. Оцените и сравните несколько ARIMA(p,d,q)-моделей: ARIMA(1,1,0), ARIMA(0,1,1), ARIMA(1,1,1) и «своя модель» (обоснованная в п.3). Запишите модели в математической форме через лаговый оператор. Проверьте выполнение предпосылок ARIMA-моделей (стационарность, обратимость). Сравните модели между собой по статистическим свойствам (значимость коэффициентов, ошибка модели, информационные критерии).
- 5. Проверьте адекватность моделей на основе анализа остатков (автокорреляция, нормальность)). Оцените прогностические свойства полученных моделей (характеристики RMSE, MPE, MAPE). Опишите и сравните построенные модели в виде сводной таблицы. Выберите наилучшую. Ответ обоснуйте.

модели	Ошибка	Стационарность,	Анализ остатков	Качество прогноза
ARIMA	модели,	обратимость	(автокорреляция,	
	инф.критерии	процесса	нормальность)	
1. ARIMA()				
уравнение				
2. ARIMA()				
уравнение				
3. ARIMA()				
уравнение				

4. «Своя модель»		

6. Постройте прогноз на 6 шагов вперед (точечная и интервальная оценка) по наилучшей модели. В отчете приведите графики (наблюдаемые+предсказанные значения). Сделайте вывод, как изменится показатель.