INE5607 – Organização e Arquitetura de Computadores

Abstrações, Tecnologias e Organização do Software e do Hardware

Aula 2: Componentes de um computador

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

Sumário

- Componentes de um computador
- Processador
- Memória e armazenamento
- Entrada e saída
- Considerações finais

COMPONENTES DE UM COMPUTADOR

Saída

Entrada e Saída

Entrada

Figura 1.5 do livro *Computer Organization and Design 4th ed.*INE5607 - Prof. Laércio Lima Pilla

Figura 1.7 do livro *Computer Organization and Design 4th ed.*INE5607 - Prof. Laércio Lima Pilla

- Funções básicas
 - Entrada de dados
 - -Saída de dados
 - Armazenamento de dados
 - Processamento de dados
- Componentes básicos

- Funções básicas
 - Entrada de dados
 - -Saída de dados
 - Armazenamento de dados
 - Processamento de dados
- Componentes básicos

Organização básica

Figura 1.4 do livro Computer Organization and Design 4th ed.

- Interligação
 - Barramento

- Interligação
 - Barramento

- Interligação
 - Barramento

Desktop 4th
Generation Intel
Core Processor
Family

Figure 1. Platform block diagram http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-desktop-vol-1-datasheet

PROCESSADOR

- Alguns tipos:
 - -GPP: General purpose processor
 - -GPU: Graphics processing unit
 - DSP: Digital signal processor
 - -etc...
- Valor agregado do computador

 Onde está o processador dentro de um iPad?

 Onde está o processador dentro de um iPad?

 Onde está o processador dentro de um iPad?

Onde está o processador dentro de um

iPad?

ARM

– não fabrica chips, vende propriedade

intelectual

-Clientes:

Intel

Samsung

Texas Instruments

Nvidia

Qualcomm

ARM Core sales		
Year	Billion Units	
2012	8,7	
2011	7,9	
2010	6,1	
2009	3,9	
2008	4,0	
2007	2,9	
2006	2,4	
2005	1,662	
2004	1,272	
2003	0,782	
2002	0,456	
2001	0,420	
2000	0,367	

- Exemplo: Qualcomm Snapdragon 810
 - CPU: Quad-core ARM[®] Cortex[™] A57 e quad-core A53 com suporte a 64 bits
 - -GPU: Qualcomm[®] Adreno[™] 430 GPU
 - DSP: Hexagon™ V56 DSP

Tópico recente

- Exemplo
 - -AMD Barcelona

Figura 1.9 do livro Computer Organization and Design 4th ed.

- Segue as instruções de um programa
 - Exemplos: adição, testes, sinalização para E/S, etc.
- Dois componentes principais:
 - Datapath
 - Realiza operações sobre os dados
 - -Controle
 - Informa ao datapath, memória e dispositivos de I/O o que deve ser feito em função das instruções do programa

- Processador como datapath e controle
 - Visão lógica simplificada
- Abstrações
 - Principio básico da informática/computação
 - Possibilitam usar o hardware sem se preocupar
 - Exemplo
 - ISA: Instruction Set Architecture
 - Inclui tudo que um programador precisa saber para gerar um binário que funcione
 - Intel x86-64, ARMv7-A

 Cada processador fala a sua própria língua

Arquitetura (ISA)	Implementações	
MIPS 32	BRCM 5000, MIPS 74K	
ARMv7-A	Cortex-A8, Cortex-A9	
X86-32 (IA-32)	Pentium 4, Pentium M	
IA-64	Itanium, Itanium2	
X86-64	Core2 Duo, Core2 Quad,Opteron 2356, Atom	

MEMÓRIA E ARMAZENAMENTO

- Memória armazena dados
 - Identificados por endereços
 - Endereços apontam para palavras
 - Palavras possuem múltiplos bytes
 - 4 bytes para 32 bits, 8 bytes para 64 bits
 - Palavras são agrupadas em blocos
 - Importante para quando tratarmos de caches!

Hierarquia de memória

Computer Memory Hierarchy

Máquinas de 24 sockets

Máquinas de 24 sockets

Machine (744GB) Group0 (62GB) NUMANode P#0 (31GB) Socket P#0 L3 (20MB) L2 (256KB) L1d (32KB) L1i (32KB) Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 PU P#0 PU P#1 PU P#2 PU P#3 PU P#4 PU P#5 PU P#6 PU P#7

Memória volátil

- Armazena programas e dados quando estão em execução
- -Memória RAM (DRAM)
 - Dynamic random-access memory
- Memória primária ou memória principal

DRAM

- Random-access
 - Dados podem ser lidos sem sequência
- Dynamic
 - Dados em capacitores
 - Precisam de *refresh*

Memória não-volátil

- Armazena programas e dados também enquanto não estão em execução
 - HD, discos óticos (CD e DVD) e flash
- Memória secundária
- Normalmente magnético ou ótico
 - Mais recentemente: de estado sólido (flash)

Hard Drive Disk: HD ou HDD

SRAM x DRAM x Flash X HD

Tecnologia	Tempo de acesso padrão	\$ por GiB em 2012
Memória SRAM	0,5-2,5 ns (10 ⁻⁹ s)	\$500-\$1000
Memória DRAM	50-70 ns (10 ⁻⁸ s)	\$10-\$20
Memória Flash	5.000-50.000 ns (10 ^{-5;-6} s)	\$0,75-\$1,00
Disco magnético	5.000.000-20.000.000 ns (10 ^{-2;-3} s)	\$0,05-\$0,10

- Problema de memórias Flash:

• "Estragam" após um certo número de escritas (100.000 a 1.000.000)

Custo/ Gbyte
 (Computer Magazine Jan/2011)

ENTRADA E SAÍDA

Dispositivos de entrada

- Alimentam o computador com informações externas
- Exemplos: teclado, mouse, microfone, webcam, placa de rede...
- Grande variedade em termos de tecnologia e velocidade de acesso
- Dispositivos com velocidades de acesso diferentes geralmente usam diferentes barramentos

Dispositivos de saída

- Disponibilizam informações resultantes do processamento
- Exemplos: monitor, impressora, alto-falante,
 placa de rede...
- Grande variedade em termos de tecnologia e velocidade de acesso
- Dispositivos com velocidades de acesso diferentes geralmente usam diferentes barramentos

• Variedade:

Dispositivo	Tipo	Parceiro	Taxa (Mbit/sec)
			0,0001
			0,0038
			0,2640
			3,0000
			3,2000
			0,2640
			8,0000
			3,2000
			800 – 8000
			0,128 – 6
			100 - 1000
			11 – 54
			80 – 220
			5 – 120
			32 – 200
			800 - 3000

Figura 6.2 do livro Computer Organization and Design 4th ed.

• Variedade:

Dispositivo	Tipo	Parceiro	Taxa (Mbit/sec)
	Entrada	Humano	0,0001
	Entrada	Humano	0,0038
	Entrada	Humano	0,2640
	Entrada	Máquina	3,0000
	Entrada	Humano	3,2000
	Saída	Humano	0,2640
	Saída	Humano	8,0000
	Saída	Humano	3,2000
	Saída	Humano	800 – 8000
	E/S	Máquina	0,128 – 6
	E/S	Máquina	100 – 1000
	E/S	Máquina	11 – 54
	Armazenamento	Máquina	80 – 220
	Armazenamento	Máquina	5 – 120
	Armazenamento	Máquina	32 – 200
	Armazenamento	Máquina	800 - 3000

Figura 6.2 do livro Computer Organization and Design 4th ed.

• Variedade:

Dispositivo	Tipo	Parceiro	Taxa (Mbit/sec)
Teclado	Entrada	Humano	0,0001
Mouse	Entrada	Humano	0,0038
Entrada de voz	Entrada	Humano	0,2640
Entrada de som	Entrada	Máquina	3,0000
Scanner	Entrada	Humano	3,2000
Saída de voz	Saída	Humano	0,2640
Saída de som	Saída	Humano	8,0000
Impressora a laser	Saída	Humano	3,2000
Tela	Saída	Humano	800 – 8000
Modem de telefone	E/S	Máquina	0,128 – 6
Rede/LAN	E/S	Máquina	100 - 1000
Rede/Wireless	E/S	Máquina	11 – 54
Disco óptico	Armazenamento	Máquina	80 – 220
Fita magnética	Armazenamento	Máquina	5 – 120
Memória flash	Armazenamento	Máquina	32 – 200
Disco magnético	Armazenamento	Máquina	800 - 3000

Figura 6.2 do livro Computer Organization and Design 4th ed.

Exemplo de E/S:

- Redes
 - Presentes em praticamente todos computadores atuais
 - Conexão entre diferentes computadores visando:
 - Comunicação
 - Compartilhamento de recursos
 - Acesso não-local
 - Variam em tamanho e desempenho

Exemplo de E/S:

- Redes
 - Ethernet: Local Area Networks (LAN)
 - Até 1000m
 - Até 10Mbps ou 1Gbps
 - Interconectadas "usando switches"
 - Wireless Networks: WiFi, Bluetooth
 - Têm se tornado onipresentes
 - -1 Mbit/s a 100 Mbits/s

• Exemplo de E/S:

– Redes

Exemplo de E/S:

– Redes

CONSIDERAÇÕES FINAIS

Considerações finais

- Componentes de computadores
 - Processador(es)
 - Memória
 - Entrada e saída

Considerações finais

- Moodle
 - -Três exercícios para a próxima aula
- Próxima aula
 - Semicondutores e processo de fabricação

INE5607 – Organização e Arquitetura de Computadores

Abstrações, Tecnologias e Organização do Software e do Hardware

Aula 2: Componentes de um computador

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

