Package 'selection.index'

September 19, 2023

Type Package

Title Analysis of Selection Index in Plant Breeding

Version 1.2.0

Maintainer Zankrut Goyani <zankrut20@gmail.com>

Description The aim of most plant breeding programmes is simultaneous improvement of several characters. An objective method involving simultaneous selection for several attributes then becomes necessary. It has been recognised that most rapid improvements in the economic value is expected from selection applied simultaneously to all the characters which determine the economic value of a plant, and appropriate assigned weights to each character according to their economic importance, heritability and correlations between characters. So the selection for economic value is a complex matter. If the component characters are combined together into an index in such a way that when selection is applied to the index, as if index is the character to be improved, most rapid improvement of economic value is expected. Such an index was first proposed by Smith (1937 <doi:10.1111/j.1469-1809.1936.tb02143.x>) based on the Fisher's (1936 <doi:10.1111/j.1469-1809.1936.tb02137.x>) "discriminant function" Dabholkar (1999 <https://books.google.co.in/books?id=mlFtumAXQ0oC&lpg=PA4&ots=Xgxp1qLuxS&dq=elements%20of% 20biometrical%20genetics&lr&pg=PP1#v=onepage&q&f=false>). In this package selection index is calculated based on the Smith (1937) selection index method.

License GPL (>= 3) Encoding UTF-8 LazyData true RoxygenNote 7.2.3 Depends R (>= 2.10)

Imports utils

URL https://github.com/zankrut20/selection.index

BugReports https://github.com/zankrut20/selection.index/issues

Suggests rmarkdown, markdown, knitr, testthat (>= 3.0.0)

VignetteBuilder knitr **Config/testthat/edition** 3 2 comb.indices

NeedsCompilation no

Author Zankrut Goyani [aut, cre, cph]

Repository CRAN

Date/Publication 2023-09-19 12:40:04 UTC

R topics documented:

	comb.indices .																																2
	gen.advance																																3
	gen.varcov																																3
	meanPerformand	ce .																															4
	phen.varcov																																5
	rcomb.indices .																																5
	seldata																																6
	weight																																7
	weight.mat																																7
Index																																	8
comb	indices.		Co	tru	cti	on	ı oj	f se	ele	ct	ioi	n i	nd	lice	es	bα	ıse	ed	or	ı n	un	nb	er	oj	– f c	ha	ra	cte	er	gr	ю	шр-	

Description

Construction of selection indices based on number of character grouping

Usage

```
comb.indices(ncomb, pmat, gmat, wmat, wcol = 1, GAY)
```

Arguments

ncomb	Number of Characters/Traits group
pmat	Phenotypic Variance-Covariance Matrix
gmat	Genotypic Variance-Covariance Matrix
wmat	Weight Matrix
wcol	Weight column number incase more than one weights, by default its 1
GAY	Genetic Advance of comparative Character/Trait i.e. Yield (Optional argument)

Value

Data frame of all possible selection indices

gen.advance 3

Examples

```
gmat<- gen.varcov(seldata[,3:9], seldata[,2], seldata[,1])
pmat<- phen.varcov(seldata[,3:9], seldata[,2], seldata[,1])
wmat<- weight.mat(weight)
comb.indices(ncomb = 1, pmat = pmat, gmat = gmat, wmat = wmat, wcol = 1, GAY = 1.075)</pre>
```

gen.advance

Genetic Advance for PRE

Description

Genetic Advance for PRE

Usage

```
gen.advance(phen_mat, gen_mat, weight_mat)
```

Arguments

phen_mat phenotypic matrix value of desired characters
gen_mat genotypic matrix value of desired characters
weight_mat weight matrix value of desired characters

Value

Genetic advance of character or character combinations

Examples

```
gmat<- gen.varcov(seldata[,3:9], seldata[,2], seldata[,1])
pmat<- phen.varcov(seldata[,3:9], seldata[,2], seldata[,1])
gen.advance(phen_mat = pmat[1,1], gen_mat = gmat[1,1], weight_mat = weight[1,2])</pre>
```

gen.varcov

Genotypic Variance-Covariance Analysis

Description

Genotypic Variance-Covariance Analysis

Usage

```
gen.varcov(data, genotypes, replication)
```

4 meanPerformance

Arguments

data traits to be analyzed

genotypes vector containing genotypes/treatments

replication vector containing replication

Value

A Genotypic Variance-Covariance Matrix

Examples

```
\verb|gen.varcov(data=seldata[,3:9]|, \verb|genotypes=seldata$treat, replication=seldata$rep)|
```

meanPerformance

Mean performance of phenotypic data

Description

Mean performance of phenotypic data

Usage

```
meanPerformance(data, genotypes, replications)
```

Arguments

data for analysis
genotypes genotypes vector
replications replication vector

Value

Dataframe of mean performance analysis

Examples

```
meanPerformance(data = seldata[, 3:9], genotypes = seldata[, 2], replications = seldata[, 1])
```

phen.varcov 5

phen.varcov Phenotypic Variance-Covariance Analysis	
---	--

Description

Phenotypic Variance-Covariance Analysis

Usage

```
phen.varcov(data, genotypes, replication)
```

Arguments

data traits to be analyzed

genotypes vector containing genotypes/treatments

replication vector containing replication

Value

A Phenotypic Variance-Covariance Matrix

Examples

```
phen.varcov(data=seldata[,3:9], genotypes=seldata$treat,replication=seldata$rep)
```

rcomb.indices	Remove trait or trait combination from possible trait combinations of
	possible Trait combinations

Description

Remove trait or trait combination from possible trait combinations of possible Trait combinations

Usage

```
rcomb.indices(ncomb, i, pmat, gmat, wmat, wcol = 1, GAY)
```

Arguments

ncomb	Number of character combination
i	remove trait or trait combination
pmat	Phenotypic Variance Covariance Matrix
gmat	Genotypic Variance Covariance Matrix
wmat	Weight Matrix
wcol	Respective weight column number of Weight Matrix
GAY	Genetic Advance/Genetic Gain of base selection index

6 seldata

Value

Data frame of possible selection indices with per cent relative efficiency and ranking

Examples

```
gmat<- gen.varcov(seldata[,3:9], seldata[,2], seldata[,1])
pmat<- phen.varcov(seldata[,3:9], seldata[,2], seldata[,1])
rcomb.indices(ncomb = 2, i = 1, pmat = pmat, gmat = gmat, wmat = weight[,2:3], wcol = 1)</pre>
```

seldata

Selection Index DataSet

Description

A dataset containing the data of three replications and 48 progenies with 7 different traits.

Usage

```
data(seldata)
```

Format

A data frame with 75 rows and 9 columns

Details

- rep. Replications
- treat. Treatments/Genotypes
- sypp. Seed Yield per Plant
- dtf. Days to 50
- rpp. Racemes per Plant
- ppr. Pods per Raceme
- ppp. Pods per Plant
- spp. Seeds per Pod
- pw. Pods Weight

weight 7

weight

Weight dataset

Description

A dataset containing the data of 2 different weights namely euqal weight and broad sense heritability

Usage

```
data(weight)
```

Format

A data frame with 7 rows and 3 columns

Details

- EW. Equal Weight
- h2. Broad Sense Heritability

weight.mat

Convert dataframe to matrix

Description

Convert dataframe to matrix

Usage

```
weight.mat(data)
```

Arguments

data

dataframe of weight

Value

A matrix

Examples

```
weight.mat(data = weight)
```

Index

```
comb.indices, 2
gen.advance, 3
gen.varcov, 3
meanPerformance, 4
phen.varcov, 5
rcomb.indices, 5
seldata, 6
weight, 7
weight.mat, 7
```