Database Systems - Homework 3 - Functional Dependencies & Normal Forms

Yosef Goren & Yonatan Kahalani

June 22, 2023

Contents

1		2
	1.1	2
	1.2	2
	1.3	2
	1.4	2
	1.5	3
2	Scheme Analysis	3
	2.1	3
	2.2	3
	2.3	3
	2.4	4
3	Scheme Analysis	4
	3.1	4
	3.2	5
	3.3	5
	3.4	5
4	Vatiations on Armstrong's Axioms	6
	4.1	6
	4.2	6
5	MongoDB	6
	5.1	6
	5.2	6
	5.3	7

1

1.1

X is not in BCNF.

Proof.

From transitivity and reflexivity, $CG \rightarrow H$.

Note CG is not a superkey in R_3 since D is not implied by any FD since it only appears as the left operand.

Thus $CG \to D$ is not satisfied and $R_3 \notin BCNF \Rightarrow X \notin BCNF$.

1.2

No.

Proof.

- *e* only appears as the right operand.
- \bullet e is not prime.
- Any properkey does not contain e.
- c is not a superkey in R_2 .
- $c \to e$ violates the properties of 3NF.

1.3

By running the algorithm seen in class we get to:

A	В	С	D	E	Н	G		A	В	С	D	E	Н	G
	b	c	d						b	c	d	e		
		c		е	h		$\Longrightarrow_{C \to E}$			c		e	h	
		c	d		h	g				c	d	e	h	g

And thus no more steps can be deduces and via the correctness of the algorithm - the decomposition does not preserve information.

1.4

Let

$$R := \{(a_1, b, c, d, e, g_1, a_1), (a_2, b, c, d, e, g_2, a_2)\}$$

Note that $R \models F$, additionally $(a_2, b, c, d, e, g_1, a_2) \in R_1 \bowtie R_2 \bowtie R_3$, thus the decomposition does not preserve information.

1.5

First we apply the confusing algorithm seen in the tutorial:

- $Z_F := \{A, H\}$
- On inspecting R_1 : $\{A, H\} \cup (\{A, H\} \cap \{A, H\} \cap \{B, C, D\})^+ \cap \{B, C, D\}) = \{A, H\}$
- On inspecting R_2 : $B \notin R_2 \Rightarrow B \notin Z_F$
- On inspecting R_3 : $B \notin R_3 \Rightarrow B \notin Z_F$

Thus $B \notin Z_F \Rightarrow$ Dependencies are not preserved.

2 Scheme Analysis

2.1

The keys:

• $K_1 := EG$.

By applying the algorithm we see:

Note that A can be derrived from BCDEG by the FD $G \to ABCD$ and the Decomposition property.

By applying the algorithm for finding keys 3 more times, we get rid of BCD. And we are left with EG.

Note that $E \not\to G$ and $G \not\to E$ - hence K_1 is a proper-key.

• $K_2 := ABCD$.

By the rule $BD \to G$ we get rid of G, and by the rule $AC \to D$ we get rid of D.

Thus we are left with K_2 while not more attributes can be removed - so by the correctness of the algorithm - K_2 is a proper-key.

2.2

2.3

The claim is correct.

Proof.

Let $K := A_{i_1} A_{i_2} ... A_{i_k}$ s.t. K is the left operand in f, and so $\forall j \in \{1...k\} : i_j \in \{1...n\}$.

Now we show that K is a super-key: Let $j \in \{1...n\} : A_j \notin K$. A_j must be the right operand of f, Thus by Decomposition be can derive that $K \to A_j$. Thus $K^+ = R$.

Thus F satisfies the BCNF property and from a theorem from the lectures, this sufficient to show that $(R, F) \in BCNF$.

2.4

The claim is incorrect.

Example.

Let
$$F := A_1 \rightarrow A_2 A_3$$
.

Each A_i appears exactly once. But by the definition of a minimal cover - on the right side of each operand in the cover - there must be exactly one attribute.

3 Scheme Analysis

3.1

The key is K := ADEG.

Now we show for each attribute in R that it can be derrived from K.

• *H*:

- $-G \to H \text{ (from } F)$
- $-K \rightarrow KH$ (Augmentation)
- $-KH \rightarrow H$ (Reflexivity)
- $-K \rightarrow H$ (Transitivity)

• *B*:

- $-G \rightarrow B \text{ (from } F)$
- $-K \rightarrow KB$ (Augmentation)
- $-KB \rightarrow B$ (Reflexivity)
- $-K \rightarrow B$ (Transitivity)

• C:

- $-E \to CH \text{ (from } F)$
- $-CH \rightarrow C$ (Reflexivity)
- $-E \to C \text{ (from } F)$
- $-K \rightarrow KC$ (Augmentation)
- $-KC \rightarrow C$ (Reflexivity)
- $-K \to C$ (Transitivity)

3.2

1. The claim is correct. Proof.

- (a) $B \to G$ (from F)
- (b) $BG \to G$ (Augmentation)
- (c) $BG \to E \text{ (from } F)$
- (d) $G \to H$ (from F)
- (e) $BG \to BH$ (Augmentation)
- (f) $BH \to H$ (Reflexivity)
- (g) $BG \to H$ (e, f, Transitivity)
- (h) $BH \to EGH$ (b,c,g, Union)
- 2. The claim is incorrect.

Example.

Let $R := \{(a_1, b_1, c_1, d_1, e_1, g_1, h_1), (a_2, b_2, c_1, d_1, e_2, g_2, h_1)\}$. Note that $R \models F$, while $R \not\models (CH \rightarrow AE)$ thus, from the soundness theorem - we can deduce there is no proof.

3.3

A	В	С	D	Е	G	H				A	В	С	D	E	G	Н									
a	b				g]_	→ -	~	a	b				g										
	b	c		e] _	$\Longrightarrow_{B\to G}$			$\longrightarrow B \rightarrow G$		$\longrightarrow B \rightarrow G$		$\longrightarrow B \rightarrow$		$\longrightarrow B \rightarrow G$		$\neg B \rightarrow G$	b	c		e	g	
			d	e		h							d	e		h									
					A	В	С	D	Е	G	H														
	`					b			g		٦_	→ _													
$\Longrightarrow_{BG\to E}$						b	c e			g		7	\Rightarrow_{E-1}	CH											
								d	е		h														
A	В	С	D	Е	G	Н]			A	В	С	D	E	G	Н									
a	b	c		е	g	h	1_	$\Longrightarrow_{C \to D}$		a	b	С	d	е	g	h									
	b	c		е	g	h] —				b	С	d	е	g	h									
		\mathbf{c}	d	е		h						c	d	е		h									

3.4

	X_2	X_3
BCNF	1	Х
3NF	1	Х

Both X's can be demostrated by $C \to D$.

4 Vatiations on Armstrong's Axioms

4.1

Yes. Since this system has less of freedom than the armstrong system, any proof generated by the reduced system is also a proof in the armstrong system. In particular - our system is satisfied by the correctness of the armstrong system.

4.2

No.

For example, let $F := \{A \to B, A \to C\}.$

Lemma 1 In our reduced axiom system - regarding F, for any rule $X \to Y$: The number of attributes in the right operand is never larger than the number of attributes in the left operand. We denote this as $|X| \ge |Y|$.

Lemma Proof.

By induction on the number of lines in a formal proof the rule.

Base: By reflexivity or FD from F.

Step: Reflexivity or FD like in the Base case. Transitivity:

We have already shown $W \to Y$, and that $Z \to W$. We now show $Z \to Y$. From the induction hypothesis - $|W| \ge |Y| \wedge |Z| \ge |W|$ Thus $|Z| \ge |Y|$.

Due to the lemma, in the reduced system, $A \to BC$ cannot be implied by F. While union is provable in the armstrong system (which means $A \to BC$ can be implied by F in the armstring system).

5 MongoDB

5.1

```
db.s.distinct("university", {seniority_year: 2023})
```

5.2

```
staff_member_name: "$staff_member_name",
        staff_member_id: "$staff_member_id"
   }
 }
])
5.3
db.s.aggregate([
   $group: {
    _id: {
     university: "$university",
     estimated_retirement_year: "$estimated_retirement_year"
   total_current_salary: { $sum: "$salary" },
    total_retirement_salary: { $sum: "$estimated_retirement_salary" }
   }
 },
  {
    $group: {
    _id: "$_id.university",
   retirement_years: {
      estimated_retirement_year: "$_id.estimated_retirement_year",
      salary_delta: { $subtract: ["$total_current_salary", "$total_retirement_salary"] }
      }
   }
   }
 }
])
```