Covid transportation problem

Dati:

P= {1,..., n} porzioni di viaggio

per ogni porzione di viaggio i: (o_i, d_i, s_i, a_i, p_i

o_i= fermata di inizio

d_i= fermata di fine

s_i= istante di inizio

a = istante di fine

p_i= numero di passeggeri da trasportare

t[x,y] = tempo di viaggio a vuoto da x a y

Compatibilità

due porzioni di viaggio i e j sono compatibili se: $a_i + t[d_i, o_j] \le s_j$

Decisioni:

quali porzioni di viaggio servire assegnare le porzioni di viaggio da servire agli autobus

Vincoli:

i viaggi assegnati a uno stesso autobus devono essere compatibili

Obiettivo:

Dati k autobus, massimizzare il numero di passeggeri serviti Studiare come varia il valore della funzione obiettivo al variare di k Nel file excel considerare solo la tabella "portion of trips" e la tabella "tempi di percorrenza a vuoto.

Per formulare il problema può essere d'aiuto ricorrere a un grafo in cui vi sono due nodi speciali che rappresentano il deposito a inizio e a fine giornata, e un nodo per ogni porzione di viaggio. Gli archi rappresentano la compatibilità delle porzioni di viaggio.

Un cammino su questo grafo rappresenta una assegnazione di viaggi a un autobus.