

Team: Abracadata
Ishmeet Kaur(03677735)
Mustika Rizki Fitriyanti(03667399)

Introduction about the Data

1. Introduction about the Data

Aim: Classify the network traces in the test set as normal or anomalous with the help of a highly imbalanced training dataset.

Problem Type:Binary Classification

Dataset

- Training Set: 56041 (only 41 entries were labelled as 1)
- Test Set: 82332

Number of Features: 43 (+ attack category)

Data Preprocessing and Data Analysis

2.1 Data Preprocessing

2.1 Data Preprocessing

2.2 Handling Imbalanced Data

2.2 Why?

2.2 Imbalance Data Approaches

- ★ Entire Dataset(No modification):
- ★ Manual Random UnderSampling
- ★ Sampling Techniques using imbalanced-learn package
- ★ Anomaly Detection(One Class Learning)
- ★ Class Weights
- ★ Increased Metrics for Evaluation

Example of Oversampling approach:

SMOTE

- Random minority over-sampling with replacement
- □ SVM SMOTE Support Vectors SMOTE

Example of Undersampling approaches:

Tomek Link

Condensed Nearest Neighbor

- → Random Undersampling
- → Tomek Links
- → CNN(Condensed Nearest Neighbours)
- → OSS(One Sided Selection)
- → Under-sampling with Cluster Centroids
- Near miss methods
- → Neighbourhood Cleaning Rule.

Ensemble Sampling approaches:

Balance Cascade

Easy Ensemble

Anomaly Detection and Weighting:

- One Class SVM for Anomaly Detection.
- Class Weighting:
 - SVC and SGD Classifier
 - Random Forest Classifier
 - Extra Tree Classifier
 - Decision Tree
- Logistic Regression
 - **Adaboost Classifier**

Set the class_weight in the classifier in

- 1. "Auto"
- 2. Set Manually, ex: {0:.1, 1:.9}

3. Feature Engineering

3.1 Feature Engineering

The features importances were analysed using simple brute force analysis and Gradient Boosting Classifier.

3.2 Dimensionality Reduction by PCA

- All the features were tried initially with and without sampling along with normalization .
- The reduced features by dimensionality reduction of PCA were also tried but did not give any good results.

4.

Creation and Evaluation of the Models

- Naive Bayes Classifier
- Decision Tree Classifier
- K- nearest Neighbors
- Random Forest
- Logistic Regression
- AdaboostClassifier
- Support Vector Machine

- SGD
- Adagrad
- One Class SVM
- Gradient Boosting Classifier
- Extra Trees Classifier
- OneVs RestClassifier

4.1 Accuracy Score

4.2 Kaggle Score

Method	Public Score
Extra Trees + Undersampling	0.84612
Extra Trees + Undersampling + Manual Weights	0.79649

5. Learning

- Third party packages like lightning (for Adagrad Classifier) and Imbalanced -learn(for intelligent sampling) highly increased the accuracy.
- Accuracy (unlike previous challenges) standalone could not give an estimate of the better model.
- Ensemble Models (Bagging and Boosting) improved the accuracy.
- One Class SVM -high complexity ,SGD was used which is highly sensitive to learning rate alpha.(normalized dataset)
- Adagrad kept the learning rate constant, lead to overfitting

Thank you for your attention