

Aniket Lachyankar & Satwik Kamarthi CS7150 - Professor David Bau December 5, 2022

#### Table of Contents

01

#### Introduction

Our motivation of project as well as project goals



#### Data

Overview of dataset and preprocessing steps



#### **Model Selection**

Models we chose to research and implement



#### Results & Future Work

Performance analysis and possible next steps to improve performance.



#### Our motivation

- An Image is Worth 16x16 Words: Transformers For Image Recognition At Scale
- Cervical Spinal Fractures domain
- Quick detection is essential to prevent neurological deterioration and paralysis after trauma



### Project **Qoal**

Understand the performance of top models in the medical imaging domain by comparing a ResNet model and Vision Transformer model and evaluate how well they can handle a CT scan classification task.





#### Data overview

- The dataset we are using comes from RSNA 2022 Cervical Spine Fracture Detection Kaggle competition.
- Dataset comprised of Cervical Spine CT scans taken from 12 sites around the world by the Radiological Society of North America (RSNA)
- Training Data
  - 2000 patients
    - 300-600 digital imaging files (.dcm) representing axial scans of fractures
  - Distribution of fractures
  - Fractured Vertebrae count





#### Data **Preprocessing**

- After meeting with a medical professional, we were advised that a better view to detect spinal fractures with our model may be the sagittal view (from the side).
- Since original dataset has all the images in axial view (top-down), we needed to convert all the axial images to sagittal images.
- Using methods adapted from pydicom library documentation:
  - Accessing DICOM image metadata
  - Create 3D array filled with original images from file
  - Manipulate & transform array to get the sagittal aspect and view from 3D array
- From 300-600 axial images we generated 25 sagittal images per patient in training set, and 100 sagittal images per patient in test set.
  - ➤ Total ~16K Train And Validation Images
  - Sample mainly from the middle of each scan as that is where the majority of each vertebrae can be seen.







#### ResNet

- Huggingface implementation
- Microsoft pre-trained weight checkpoint
- ResNet-50
  - Balance between performance and training time

```
Laver (type:depth-idx)
ResNetForImageClassification
                                                                  [1, 1000]
-ResNetModel: 1-1
                                                                  [1, 2048, 1, 1]
     -ResNetEmbeddings: 2-1
                                                                  [1, 64, 56, 56]
          ResNetConvLayer: 3-1
                                                                   [1, 64, 112, 112]
                                                                                             9,536
     ResNetEncoder: 2-2
                                                                                             (recursive)
          └ModuleList: 3-4
                                                                                             (recursive)
     -ResNetEmbeddings: 2-3
                                                                                             (recursive)
          └MaxPool2d: 3-3
                                                                  [1, 64, 56, 56]
     ResNetEncoder: 2-4
                                                                  [1, 2048, 7, 7]
          └ModuleList: 3-4
                                                                                             (recursive)
     -AdaptiveAvgPool2d: 2-5
                                                                  [1, 2048, 1, 1]
-Seguential: 1-2
                                                                  [1, 1000]
     Flatten: 2-6
                                                                  [1, 2048]
     Linear: 2-7
                                                                  f1. 10001
Total params: 25,557,032
Trainable params: 25,557,032
Non-trainable params: 0
Total mult-adds (G): 4.09
Input size (MB): 0.60
Forward/backward pass size (MB): 177.83
Params size (MB): 102.23
Estimated Total Size (MB): 280.66
```

#### ResNet cont.

- Model hyperparameters inspired by PyTorch blogpost
- Small batch sizeGPU memory size
- Ability to increase with given compute resources
- Because we have different number of labels, we use BCELoss for multilabel output
  - Use Sigmoid on each output class rather than softmax for all classes

| Hyperparameter/Optimizer    | Value                                |
|-----------------------------|--------------------------------------|
| Loss Function               | Binary Cross Entropy                 |
| Learning Rate               | 0.5                                  |
| Learning Rate Sceduler      | Cosine Annealing                     |
| Learning Rate Warmup Epochs | 5                                    |
| Learning Rate Warmup Method | linear                               |
| Learning Rate Warmup Decay  | 0.01                                 |
| Batch Size                  | 24                                   |
| Optimizer                   | SGD (Stochastic Gradient<br>Descent) |
| SGD Momentum                | 0.9                                  |
| Weight Decay                | 2e-05                                |
| Epochs                      | 100                                  |

#### Vision Transformers

- Huggingface implementation
- Google and Huggingface pre-trained weight checkpoint
  - Avoid vanilla model
  - Trained on ImageNet-21k
- Stages and parameter sizes of model for 1 input image on right

```
Laver (type:depth-idx)
ViTForImageClassification
                                                         [1, 1000]
-ViTModel: 1-1
                                                         [1, 197, 768]
     └─ViTEmbeddings: 2-1
                                                                                   152,064
                                                         [1, 197, 768]
          └─ViTPatchEmbeddings: 3-1
                                                         [1, 196, 768]
                                                                                    590,592
          □Dropout: 3-2
                                                         [1, 197, 768]
     └ViTEncoder: 2-2
                                                         [1, 197, 768]
          └ModuleList: 3-3
                                                                                   85,054,464
     LayerNorm: 2-3
                                                                                   1,536
                                                         [1, 197, 768]
                                                                                   769,000
 -Linear: 1-2
                                                         [1, 1000]
Total params: 86,567,656
Trainable params: 86,567,656
Non-trainable params: 0
Total mult-adds (M): 201.58
Input size (MB): 0.60
Forward/backward pass size (MB): 162.19
Params size (MB): 345.66
Estimated Total Size (MB): 508.46
```

#### Vision Transformers cont.

- Adjust input images to (3,384, 384)
  - No models for images of size 512
- Similar to ResNet, we use BCELoss for calculating gradient and Sigmoid activation on output layer.

| Hyperparameter/Optimizer | Value                |
|--------------------------|----------------------|
| Loss Function            | Binary Cross Entropy |
| Learning Rate            | 3e-05                |
| Batch Size               | 12                   |
| Optimizer                | Adam                 |
| Adam Betas               | (0.9, 0.999)         |
| Adam Epsilon             | 1e-08                |
| Epochs                   | 10                   |
| Learning Rate Sceduler   | Linear               |

# 04 Results & Future Work

#### ViT Results



- We see that the model converges on training data after approximately 10 epochs.
  - Jagged validation loss suggests that the model may be overfitting.







**Epoch Validation Loss** 

7.5

10.0 12.5 15.0 17.5

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.0

- Similar convergence after 10 epochs.
  - Seems like less overfitting based on validation loss.

#### Results Contd.

- Next, we tested the best trained model (lowest validation loss) on a test holdout set
  - 301 Sagittal Samples, all labeled with a C1 fracture.
- ResNet did not predict and correct samples.
  - Either dataset was not large enough, or we overfit the model on the training dataset
- ViT predicted 5 correct predictions out of 301 samples in the test set:
  - Low performance suggests overfitting in this case as well based on the loss graphs we see previously.

#### Results Contd.

Below are the test samples that ViT correctly predicted with the C1 fracture label.











#### Analysis

#### A few takeaways from this project:

- Dataset selection/preprocessing is EXTREMELY important
  - Choices made regarding selecting data for training were the bulk of the project.
  - In our case, the used dataset size may have been too small for the complexity of the task.
  - A key task of our data preprocessing was selecting slices from the scan, which we
    did arbitrarily. Because of this and the nature of the labels, we cannot guarantee
    that
- Pre-Trained models may not contain trained parameters that work best for a domain vastly different from the pretraining.
  - Repurposed models that are usually for single label prediction didnt necessarily work well for complex multilabel prediction.

#### **Future Work**

- Improve input data
  - One major problem with the dataset provided is that we have no way of guaranteeing whether all the slices in a scan contain the fracture that is in the label.
  - Dataset came with bounding boxes for axial slices, maybe possible to use these for sagittal slices.
- Utilize models that can handle sequential data.
  - If we can pass all the slices of the scan as part of a single sequence of inputs, the model may have a better chance at analyzing multiple slices.

## QUESTIONS?