<u>Utilisation du Laplacien pour</u> <u>le filtrage du dataset.</u>

1. Contexte

Dans notre situation, nous avons un jeu de données de radios pulmonaires, et nous souhaiterions filtrer ledit jeu de données afin de se défausser des image floues ou de mauvaises qualités.

Nous utiliserons pour cela la variance de l'opéateur Laplacien, dont le fonctionnement est le suivant :

• Fondements Mathématiques :

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Figure 2: The Laplacian kernel (LK)

L'idée est de faire une convolution matricielle entre LK et la matrice X de l'image (X doit être au format grayscale, ce qui est notre cas), ce qui approxime le gradient (soit une matrice combinant l'ensemble des dérivées partielles de chaque point) et de prendre la variance du résultat. Si cette variance tombe en-dessous d'un certain seuil « *threshold* », l'image est considérée comme floutée.

En effet, à travers LK on calcule la dérivée 2^{nde} de l'image

(dérivée discrète, de par la nature des pixels, donc on applique deux fois $\lim_{k\to 0} (f(n+k)-f(n))/k)$,

ce qui permet de mettre en exergue les variations d'intensité lumineuses au sein de l'image, et donc, les images d'avantage porteuses d'information. Donc à partir de là, deux cas de figure :

 $_$ la variance est relativement élevée, donc la dérivée $1^{\rm ère}$ varie beaucoup, donc l'image possède beaucoup de parties informationnelles ;

 $_$ la variance est relativement faible, donc la dérivée $1^{\rm \`ere}$ varie peu, donc l'image possède peu de parties informationnelles.

De par la nature de cette méthode, le seuil *threshold* choisi pour la technique du Laplacien dépendra de l'environnement choisi.

N.B : le filtre de Shobël peut également être utilisé pour détecter la significativité d'une matrice. On utilisera dans ce cas non pas une mais deux matrices, dont on prend la racine carré de la somme élevée au carré pour approximer le gradient (et le reste fonctionne comme l'opérateur Laplacien).

Code Python

En pratique, plutôt que de recréer l'opérateur Laplacien «à la main», on utilisera la librairie *opencv* via cv2.Laplacian(gray, cv2.CV_64F), où *gray* repésente notre image, et *cv2.CV_64F* représente la profondeur *ddepth* (on demande d'enregistrer les pixels comme nombre flottants sur 64 bits, étant donné que le Lapla va effectuer l'équivalent matriciel des dérivées secondes).

2. Statistiques du Laplacien

On étudiera tout d'abord les statistiques de la variance du Laplacien sans poser de seuil de présélection :

	index	COVID	Normal	Lung_Opacity	Viral Pneumonia
0		101,038			
		8266400	119,6851	125,67878173722	106,70079208378
	mean	57	1830232	8	7
1		76,1288	111,7625		
		3062411	1872324	103,68651129642	100,75754893979
	median	55	2	5	9
2		,	66,7680		
		9723388	0750569	78,188438345471	48,930626644141
	std	7	6	7	9
3		,	27,7968		
				22,144093081394	10,570326991897
	min	83	12	4	7
4		,	654,698		
		6870221	_	557,95466581132	295,87550223217
	max	8	35	5	2

Distribution de la colonne : COVID\images

On se rend compte d'au moins deux choses ici :

- La moyenne de la variance pour chaque catégorie est de l'ordre de 100 et quelques, et le plus petit écart-type est d'un peu moins de 50 pour Vir_Pneum. On choisira donc un seuil de : threshold = 100 50 = 50.
- La répartition de la variance est assez dispersée, mais toutes les catégories mise à part Vir_Pneum souffrent d'un déséquilibre de la moyenne de leur variance laplacienne de 20 au-dessus de leur médiane, ce qui indique la présence d'outliers.

Après application du Laplacien, on obtient les statistiques suivantes :

	index			Lung Opacity	Viral Pneumonia
0			121,506	5 – 1	
		8608812	2932912	137,384556373	
	mean	55	24	187	113,964496101606
1		95,2103	111,7682		
		2247060	3569905		103,78696549264
	median	09	4	78	3
2			64,5395		
		8364674	2456191	79,9229636401	
	std	74	77	64	42,892246781204
3			50,0292		
					50,601843708209
_	min	33	42	54	2
4		,	654,698		
				•	295,87550223217
_	max	8	35	263	2
5	Images_ava	2010	10100	6010	10.45
C	nt	3616	10192	6012	1345
6	Images_aprè	2750	00.46	E 4.4E	1200
7	S	2758		5445	1209
/		•	88,7558	00 500000754	00 000 475026 421
	0/ gardá		8697017	•	89,888475836431
	% gardé	53	27	491	2

On se rend compte que :

- Les statistiques des différents échantillons se sont quasiment toutes rapprochées les unes des autres, uniformisant statistiquement un peu plus les différentes classes, mis à part pour l'écart-type de Vir_Pneum. dû à une moins grande amplitude de ses outliers. Néanmoins, en lui supprimant ses images de mauvaise qualité, nous avons rapprocher sa distribution de celle des autres classes.
- Nous avons conservé entre 76% et 90% du jeu d'origine, ce qui est bien pour ne pas accroître le déséquilibre de classes.

Nous resterons donc sur notre seuil **threshold = 50.**

3. Comparaison des métriques

Pour évaluer l'impact de l'utilisation du Laplacien sur notre jeu de données, nous utiliserons un CNN convolutif simple (d'abord sur des **échantillons de 100 images/catégorie**) : MobileNet. Nous regarderons le rapport de classification dudit modèle sur le dataset de base et sur le dataset reformaté, en faisant attention spécifiquement à l'*accuracy* (exactitude de notre modèle) et au *recall* (rappel de notre modèle), que nous privilégierons au score de précision.

En effet, puisque l'objectif est la détection de maladies pulmonaires dans un but de prévention, nous préfererons avoir des erreurs de type I (faux positifs) que des erreurs de type II (faux négatifs). En d'autres termes, il vaut mieux avoir des personnes saines diagnostiquées malades que des personnes malades diagnostiquées saines (quitte à produire des examens médicaux pour confirmer la pathologie).

<u>Attention</u>: l'utilisation de MobileNet ne présume rien de définitif dans le projet, et n'est utile que pour anticiper l'impact de l'utilisation du Laplacien sur notre modèle final. Une comparaison des modèles et une sélection des hyperparamètres optimaux seront nécessaires a posteriori.

Métriques sur le dataset de base (n=100) :

Accuracy: 0.6625	;			
Recall: 0.6625				
Classification R	eport:			
	precision	recall	f1-score	support
COVID	0.90	0.45	0.60	20
Lung_Opacity	0.58	0.90	0.71	20
Normal	0.64	0.35	0.45	20
Viral_Pneumonia	0.68	0.95	0.79	20
accuracy			0.66	80
macro avg	0.70	0.66	0.64	80
weighted avg	0.70	0.66	0.64	80
PS C:\Users\ambr	o\Desktop\Pi	rojet Meti	er\Code_pro	ojet> 🛚

Métriques sur le dataset reformaté (n=100;t=50) :

_			<u> </u>	<u> </u>			
Accuracy: 0.6750							
Recall: 0.6750							
Classification R	leport:						
	precision	recall	f1-score	support			
COVID	0.58	0.75	0.65	20			
Lung_Opacity	0.65	0.75	0.70	20			
Normal	0.80	0.20	0.32	20			
Viral_Pneumonia	0.77	1.00	0.87	20			
accuracy			0.68	80			
macro avg	0.70	0.68	0.63	80			
weighted avg	0.70	0.68	0.63	80			
PS C:\Users\ambr	o\Desktop\Pr	ojet Meti	er\Code_pro	ojet>			
accuracy macro avg weighted avg	0.70 0.70	0.68 0.68	0.68 0.63 0.63	80 80 80			

Nous observons une *accuracy* et un *recall légèrement* plus élevés sur le dataset filtré que sur le dataset original, mais la taille de l'échantillon (400 images = 2% du dataset) étant relativement faible et les germes (*seeds*) aléatoires non-fixés, nous décidons de fixer ces derniers, et de passer à des échantillons de **1000 images/catégorie** (= 20% du dataset) afin d'obtenir des résultats plus significatifs.

• Métriques sur le dataset de base (n=1000;random.seed=1234) :

	iom.sccu 12					
Accuracy: 0.8688	3					
Recall: 0.8687						
Classification R	Report:					
	precision	recall	f1-score	support		
COVID	0.84	0.90	0.87	200		
Lung_Opacity	0.90	0.83	0.87	200		
Normal	0.84	0.76	0.80	200		
Viral_Pneumonia	0.89	0.98	0.94	200		
accuracy			0.87	800		
macro avg	0.87	0.87	0.87	800		
weighted avg	0.87	0.87	0.87	800		
PS C:\Users\ambro\Desktop\Projet Metier\Code_projet>						

• Métriques sur le dataset filtré (n=1000;t=50;random.seed=1234) :

(11 1000)t 5	-)		, -			
Accuracy: 0.8562						
Recall: 0.8562						
Classification R	leport:					
	precision	recall	f1-score	support		
COVID	0.80	0.89	0.84	200		
Lung_Opacity	0.88	0.79	0.83	200		
Normal	0.83	0.77	0.80	200		
Viral Pneumonia	0.92	0.98	0.95	200		
_						
accuracy			0.86	800		
macro avg	0.86	0.86	0.85	800		
weighted avg	0.86	0.86	0.85	800		
PS C:\Users\ambr	PS C:\Users\ambro\Desktop\Projet Metier\Code_projet>					

On se rend compte que le seuil de 50 pour la variance du Laplacien a fait décroître les performances du modèle. On essayera donc des valeurs inférieures.

• Métriques sur le dataset filtré (n=1000;t=45;random.seed=1234) :

Accuracy: 0.8350						
Recall: 0.8350						
Classification R	eport:					
	precision	recall	f1-score	support		
COME	0.70	0.07	0.00	200		
COVID	0.70	0.93	0.80	200		
Lung_Opacity	0.93	0.69	0.80	200		
Normal	0.90	0.72	0.80	200		
Viral_Pneumonia	0.89	0.99	0.94	200		
accuracy			0.8 3	800		
macro avg	0.85	0.83	0.83	800		
weighted avg	0.85	0.8 3	0.83	800		
PS C:\Users\ambro\Desktop\Projet Metier\Code_projet>						

Métriques sur le dataset filtré (n=1000;t=40;random.seed=1234) :

Accuracy: 0.8773						
Recall: 0.8775						
Classification R	Report:					
	precision	recall	f1-score	support		
COVID	0.95	0.78	0.85	200		
Lung_Opacity	0.75	0.96	0.84	200		
Normal	0.89	0.78	0.83	200		
Viral_Pneumonia	0.97	0.99	0.98	199		
accuracy			0.88	799		
macro avg	0.89	0.88	0.88	799		
weighted avg	0.89	0.88	0.88	799		
PS C:\Users\ambro\Desktop\Projet Metier\Code_projet> [

On constate une amélioration par rapport au dataset non-filtré. Essayons d'abaisser encore le seuil de présélection afin de voir si nous pouvons encore améliorer les métriques.

• Métriques sur le dataset filtré (n=1000;t=35;random.seed=1234) :

Accuracy: 0.8725 Recall: 0.8725					
Classification R	eport:				
	precision	recall	f1-score	support	
COVID	0.90	0.82	0.86	200	
Lung Opacity	0.85	0.87	0.86	200	
Normal	0.84	0.81	0.82	200	
Viral_Pneumonia	0.90	0.99	0.94	200	
accuracy			0.87	800	
macro avg	0.87	0.87	0.87	800	
weighted avg	0.87	0.87	0.87	800	
PS C:\Users\ambro\Desktop\Projet Metier\Code_projet>					

• Métriques sur le dataset filtré (n=1000;t=30;random.seed=1234) :

Accuracy: 0.8788	3					
Recall: 0.8788						
Classification F	Report:					
	precision	recall	f1-score	support		
COVID	0.93	0.79	0.86	200		
Lung_Opacity	0.86	0.86	0.86	200		
Normal	0.81	0.88	0.84	200		
Viral_Pneumonia	0.93	0.98	0.95	200		
accuracy			0.88	800		
macro avg	0.88	0.88	0.88	800		
weighted avg	0.88	0.88	0.88	800		
PS C:\Users\ambro\Desktop\Projet Metier\Code_projet> []						

C'est dont avec un seuil t=30 que nous observons la meilleure amélioration des métriques de notre modèle, et c'est donc celui que nous conseillons de conserver pour la suite du projet.

Statistiques du rééchantillonage :

	index	COVID	Normal	Lung_Opacity	Viral Pneumonia
0		111,6479	109,257	126,902976680	108,05346422806
		8390842	9702925	817	4
	mean	5	26		
1		88,9701	89,2117	104,283534698	101,13591553373
		8435606	6023803	101	1
	median	84	45		
2		82,5185	69,0179	78,5594713994	44,970932050338
		4583932	4118186	762	3
	std	67	82		
3		30,0310	30,1648	31,1569259568	30,160057810897
		4136222	1343848	49	3
	min	26	28		
4		1085,68	715,070	665,142920877	295,87550223217
		6870221	4188692	263	2
	max	8	75		
5	Images_	3616	10192	6012	1345
	avant				
6	Images_	3217	10142	5996	1298
	après				
7		88,9657	99,5094	99,7338656021	96,505576208178
		0796460	1915227	291	4
	% gardé	18	63		

4. Suggestions d'intégration et conclusion

Nous avons constaté, grâce au filtrage du jeu de données via l'opérateur différentiel Laplacien, une amélioration des métriques que nous cherchons à optimiser dans un contexte de détection de pathologies (à savoir l'*accuracy* et le *recall*), et ce pour seulement une faible réduction du dataset original (entre 11% et moins de 1%), et ce, en utilisant un CNN «naïf» sans aucun travail effectué pour l'optimiser à nos données

Cela présume que nous pourrions obtenir un gain de performances bien plus grand en couplant le filtrage par Laplacien à d'autres méthodes dans les phases de preprocessing et de modélisation, notamment :

- Autoencoder,
- PCA avec EigenImages,
- Suppression des doublons,
- Méthodes d'Oversampling et d'UnderSampling,
- Optimisation des hyperparamètres (GridSearchCV, BayesSearchCV),
- etc.