RETAIL SALES ANALYSIS

PREPARED BY PANKAJ YADAV

SQL Project

TABLE OF CONTENTS

1 INTRODUCTION

2 OBJECTIVES

4 CONCLUSION

PROJECT STRUCTURE

INTRODUCTION

This project is designed to demonstrate SQL skills and techniques typically used by data analysts to explore, clean, and analyze retail sales data. The project involves setting up a retail sales database, performing exploratory data analysis (EDA), and answering specific business questions through SQL queries.

OBJECTIVES

- 1. Set up a retail sales database: Create and populate a retail sales database with the provided sales data.
- 2. **Data Cleaning:** Identify and remove any records with missing or null values.
- 3. **Exploratory Data Analysis (EDA):** Perform basic exploratory data analysis to understand the dataset.
- 4. **Business Analysis:** Use SQL to answer specific business questions and derive insights from the sales data.

PROJECT STRUCTURE

- 1. Database Setup
- 2. Data Exploration & Cleaning
- 3. Data Analysis & Findings
- 4. Findings

DATABASE AND TABLE CREATION

```
CREATE DATABASE p1_retail_db;
CREATE TABLE retail_sales
  transactions_id INT PRIMARY KEY,
  sale_date DATE,
  sale_time TIME,
  customer_id INT,
  gender VARCHAR(10),
  age INT,
  category VARCHAR(35),
  quantity INT,
  price_per_unit FLOAT,
  cogs FLOAT,
  total_sale FLOAT
```

Count of:

Total number of records:

SELECT COUNT(*) FROM retail_sales;

Unique customers:

SELECT COUNT(DISTINCT customer_id) FROM retail_sales;

Unique product categories:

SELECT DISTINCT category FROM retail_sales;

Null Value Check:

```
SELECT * FROM retail_sales
WHERE
```

sale_date IS NULL OR sale_time IS NULL OR customer_id IS NULL OR gender IS NULL OR age IS NULL OR category IS NULL OR quantity IS NULL OR price_per_unit IS NULL OR cogs IS NULL;

Deleting Null Value:

```
DELETE FROM retail_sales
WHERE
   sale_date IS NULL OR sale_time IS NULL OR customer_id IS
NULL OR
   gender IS NULL OR age IS NULL OR category IS NULL OR
   quantity IS NULL OR price_per_unit IS NULL OR cogs IS
NULL;
```

1. Write a SQL query to retrieve all columns for sales made on '2022-11-05:

```
SELECT *
FROM retail_sales
WHERE sale_date = '2022-11-05';
```

2. Write a SQL query to retrieve all transactions where the category is 'Clothing' and the quantity sold is more than 4 in the month of Nov-2022:

```
SELECT *
FROM retail_sales
WHERE

category = 'Clothing' AND YEAR(sale_date) = '2022'
AND MONTH(sale_date) = '11' AND quantity >= 4;
```

3. Write a SQL query to calculate the total sales (total_sale) for each category.:

SELECT category, SUM(total_sale) AS Total_sales
FROM retail_sales
GROUP BY category;

4. Write a SQL query to find the average age of customers who purchased items from the 'Beauty' category.:

SELECT round(AVG(age), 2) AS Avg_age_of_customers FROM retail_sales WHERE category = 'Beauty';

5. Write a SQL query to find all transactions where the total_sale is greater than 1000.:

```
SELECT * FROM retail_sales
WHERE total_sale > 1000;
```

6. Write a SQL query to find the total number of transactions (transaction_id) made by each gender in each category.

```
SELECT category, gender, COUNT(transactions_id) A
Num_of_transactions
FROM retail_sales
CPOUR BY category gender
```

GROUP BY category, gender ORDER BY category;

7. Write a SQL query to calculate the average sale for each month. Find out best selling month in each year.

WHERE rnk = 1;

```
WITH CTE AS(
SELECT year(sale_date) AS Year, month(sale_date) AS
Month, ROUND(AVG(total_sale), 2) AS Avg_sale,
RANK () OVER(PARTITION BY year(sale_date) ORDER BY
AVG(total_sale) DESC) AS rnk
FROM retail_sales
GROUP BY month(sale_date), year(sale_date)
         SELECT Year, Month
         FROM CTE
```

8. Write a SQL query to find the top 5 customers based on the highest total sales.

```
SELECT customer_id, SUM(total_sale) AS Total_sales
FROM retail_sales
GROUP BY customer_id
ORDER BY Total_sales DESC
LIMIT 5;
```

9. Write a SQL query to find the number of unique customers who purchased items from each category.

```
SELECT category, COUNT(DISTINCT customer_id)

AS Num_of_unique_customers

FROM retail_sales

GROUP BY category;
```

10. Write a SQL query to create each shift and number of orders (Example Morning <12, Afternoon Between 12 & 17, Evening >17).

```
WITH CTE AS(
SELECT *,
 CASE
 WHEN sale_time < '12:00:00' THEN 'Morning'
 WHEN sale_time BETWEEN '12:00:00' AND '17:00:00' THEN 'Afternoon'
 WHEN sale_time > '17:00:00' THEN 'Evening'
 END AS shift
FROM retail sales
           SELECT shift, COUNT(transactions_id) AS Num_of_orders
           FROM CTE
           GROUP BY shift
```

Findings:

- **Customer Demographics:** The dataset includes customers from various age groups, with sales distributed across different categories such as Clothing and Beauty.
- **High-Value Transactions:** Several transactions had a total sale amount greater than 1000, indicating premium purchases.
- Sales Trends: Monthly analysis shows variations in sales, helping identify peak seasons.
- **Customer Insights:** The analysis identifies the top-spending customers and the most popular product categories.

Conclusion:

This project covering database setup, data cleaning, exploratory data analysis, and business-driven SQL queries. The findings from this project can help drive business decisions by understanding sales patterns, customer behavior, and product performance.

THANK YOU!