Math 185 — UCB, Fall 2016 — William Guss Problem Set 3, due October 4th

(30.7) Prove that |exp(-2z)| < 1 if and only if Re(z) > 0.

Proof. Let z = x + iy. It follows that |exp(-2z)| < 1 if and only if $|e^{-2x}e^{-i2y}| = |e^{-2x}||e^{-i2y}| < 1$ if and only if $|e^{-i2y}| < \frac{1}{e^{-2x}} = e^{2x}$. The LHS is equivalent to $|\cos(-2y) + i\sin(-2y)|$ and for every $y|e^{-i2y}| = 1$ so $1 < e^{2x}$ if and only if 0 < 2x.

(30.11) Describe the behaviour of e^z as $x \to -\infty$ and $y \to \infty$.

Proof. In the first case $e^z = e^x e^{iy}$ gives that $|e^z| \to 0$ since $e^x \to 0$ as $x \to -\infty$. Therefore the function $e^z \to 0$ in the limit w.r.t x.

In the second case, we fix x and observe that $e^z = e^x e^{iy}$ parameterizes a circle of radius e^x by angle w.r.t y. Therefore, increasing y only results in movement along the disk in the counter clockwise direction. Therefore e^z does not converge since $y \mod 2\pi$ is an equivalence class of infiniteley many elements $y + n2\pi$, $n \in \mathbb{N}$.

However if the limits are achieved simultaneously then $|e^z| \to 0$ implies that $e^z \to 0$ regardless of the angle of approach¹.

(30.12) Write $Re(e^{1/z})$ in terms of x and y. Why is this function harmonic on every domain that does not contain the origin.

Proof. Again let z = x + iy. Then $e^{1/z} = e^{z^{-1}}$. First $1/z = \overline{z}/|z|^2$. Therefore $e^{z^{-1}} = \exp(x/|z|^2)(\cos(-y/|z|^2) + i\sin(-y/|z|^2))$ So the real part is

$$Re(f) = exp\left(\frac{x}{|z|^2}\right)\cos\left(\frac{y}{|z|^2}\right)$$

Then $Re(f)_{xx}$ is given by

$$(0.1) \qquad \frac{\partial^2}{\partial x^2} exp\left(\frac{x}{|z|^2}\right) \cos\left(\frac{y}{|z|^2}\right) = \frac{\partial}{\partial x} \left[\left(\cos\left(\frac{y}{|z|^2}\right) - \sin\left(\frac{y}{|z|^2}\right)\right) exp\left(\frac{x}{|z|^2}\right) \frac{\partial}{\partial x} \frac{x}{|z|^2} \right]$$

$$(0.2) \qquad \frac{\partial^2}{\partial y^2} exp\left(\frac{x}{|z|^2}\right) \cos\left(\frac{y}{|z|^2}\right) = \frac{\partial}{\partial y} \left[\left(\cos\left(\frac{y}{|z|^2}\right) - \sin\left(\frac{y}{|z|^2}\right)\right) exp\left(\frac{x}{|z|^2}\right) \frac{\partial}{\partial y} \frac{y}{|z|^2} \right]$$

The first equation gives a product rule with a symetric derivative on $(\partial/\partial x)x/|z|^2$ and $(\partial/\partial y)y/|z|^2$ and the antisymmetry on differentiation of trigonometric functions gives that the second derivatives in x and y are equal, so Re(f) is harmonic as long as $x \neq 0$ and $y \neq 0$ since 1/|z| is not defined. \square

(33.3) Show $Log(i^3) \neq 3Log(i)$.

Proof. Recall that $Log(z) = \log |i^3| + i(\Theta + 2n\pi)$ where n = 0 and $\Theta = Arg(i^3)$. Computation gives $i^3 = -i$ so $Arg(i^3) = Arg(-i) = -\pi/2$. Therefore $\log |-i| = \log 1 = 0$ Therefore $Log(i^3) = -i\pi/2$. However, $Log(i) = 0 + i\Theta = 0 + i\pi/2 \neq -3i\pi/2$.

¹Imagine a marble spiruling down a funnel.

(33.4) Show that $log(i^2) \neq 2log(i)$ when the branch

$$\log z = \log r + i\theta \qquad \left(r > 0, \ \frac{3\pi}{4} < \theta < \frac{11\pi}{4}\right).$$

Proof. In this case $\log i$, $\log i^2$ has real part 0. Then for the imaginary part. $i^2 = -1$ so $\Theta = -\pi \equiv \pi \in \mathcal{B}_{\Theta}$ so $\log(i^2) = \pi$ and then $Arg(i) = \pi/2 \equiv 5\pi/2$. And so $5\pi/2 \neq 4\pi/2$ so the logarithms are not equal.

(33.7) Show that a branch (Sec. 33)

$$\log z = \log r + i\theta$$
 $(r?0, \alpha < \theta < \alpha + 2\pi)$

of the logarithmic function can be written

$$\log z = 1/2\log(x^2 + y^2) + i\tan^{-1}\left(\frac{x}{y}\right)$$

in rectangular coordinates. Then, using the theorem in Sec 23, show that a the given branch is analytic in its domain of definition and that $\frac{d}{dz} \log z = \frac{1}{z}$.

Proof. For the first assertion let z = x + iy then $\tan^{-1}\left(\frac{x}{y}\right) = arg(z)$ on the partial branch, by the definition of $\tan \theta = o/a$ for a triangle where o is the height and a is the base/ Therefore $\tan^{-1}(x/y) + n2\pi \in [a, a + 2\pi]$. Next r = |z|. So for a real number |z|, it follows that $\ln(|z|^2)^{1/2} = 1/2 \ln|z|^2 = \ln(x^2 + y^2)$.

To show analycity, we compute the partial derivatives as follows. First $u=1/2\ln(x^2+y^2)$ so $u_x=\frac{x}{(x^2+y^2)}$. Recalling elementary calculus we have that $v_y=\frac{1}{x(1+y^2/x^2)}=\frac{x}{x^2(1+y^2)}=\frac{x}{x^2+y^2}$. Therefore $u_x=u_y$, and the partial derivatives are continuous in the domain (as long as $x=y\neq 0$). Next $v_x=-\frac{y}{x^2(1+y^2/x^2)}=\frac{-y}{x^2+y^2}$, and $u_y=\frac{y^2}{x^2+y^2}$ so the Cauchy riemann equations are sovled and log is analytic on its branch.

(33.12) Show that

$$Re[\log(z-1)] = \frac{1}{2}\ln[(x-1)^2 + y^2] \qquad (z \neq 1).$$

Proof. If z = x + iy then as long as $z - 1 \neq 0$ then $x = y \neq 0$ and application of the previous formula (33.7) proven gives $Re[\log(z-1)] = \frac{1}{2}\ln[(x-1)^2 + y^2]$. When $z \neq 1$ this function is the real part of the analytic function in (33.7) and so it is a harmonic function which satisfies Laplace's equation as in Theorem 27.

(34.1) Show that for any two nonzero complex numbers z_1 and z_2

$$Log(z_1z_2) = Log(z_1) + Log(z_2) + 2N\pi i$$

where N has one of the values $0, \pm 1$.

Proof. The principle logarithm is defined on the branch of angles by the principle argument. Application of the definition gives $\log(z_1z_2) = \ln|z_1z_2| + iarg(z_1z_2) = \ln|z_1| + iarg(z_1z_2) = \ln|z_1| + iarg(z_1) + arg(z_1) + arg(z_2) = \log(z_1) + \log(z_2)$. Now on the principle branch, the real part is stable, but the imaginary part of the log product must be reduced modulo 2π . Since at most $\pi < \theta_1 + \theta_2 3\pi$

the principle modulo reduces the sum by 2π . The reverse holds for the lower bound, increasing by 2π so as to fit the 2π modulo range of the principle argument.

Therefore $N=\pm 1$, and if the sume of the principle angles is in the principle branch N=0. Thus

$$Log(z_1z_2) = Log(z_1) + Log(z_2) + 2N\pi i$$

and this completes the proof.

(34.5) Let z denote any nonzero complex number, writeen $z = re^{i\Theta}$, $(-\pi < \Theta < \pi)$, and let n denote any fixed positive integer $(n=1,2,\ldots)$. Show that all of the values of $\log(z^{1/n})$ are given by the equation

$$\log(z^{1/n}) = \frac{1}{n} \ln r + i \frac{\Theta + 2(pn+k)\pi}{n}$$

Proof. First recall from a previous exercise if z = x + y

$$\log z = 1/2\ln(x^2 + y^2) + i(\Theta \mod \mathcal{B}_m)$$

If $w=z^{1/n}$ then $w=|z|^{1/n}e^{\frac{i\Theta}{n}}$. Then $|w|^2=(|z|^{1/n})^2=\sqrt[n]{|z|^2}$ so $Re(\log w)=\frac{1}{2n}\ln(x^2+y^2)=\frac{1}{n}\ln r$. Since there are n solutions to w we get that the principle argument of each forms a set $Argw=\frac{1}{n}\ln r$. $\{\Theta/n + 2k\pi/n \mid k \in \mathbb{Z}_n\}$ using eulers formula on the polar form of z. Clearly $-\pi < \Theta/n + 2k\pi/n < \pi$ so now each branch of the logarithm will be identified by moving the principle by 2π . Thus argw = $\{\Theta/n + 2k\pi/n + \rho 2\pi \mid k \in \mathbb{Z}_n, \rho \in \mathbb{Z}\}$ gives

$$\log(z^{1/n}) = \frac{1}{n} \ln r + i \frac{\Theta + 2(pn+k)\pi}{n}, \qquad ; \quad p \in \mathbb{Z}, k \in \mathbb{Z}_n$$

(38.2) (a) With the aid of expression (4), Sec 37. show that

$$exp(iz_1)exp(iz_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2 + i(\sin z_1 \cos z_2 + \cos z_1 \sin z_2)$$

Proof. Recall that $e^{iz} = \cos z + i \sin z$. Then $e^{iz_1}e^{iz_2} = (\cos z_1 + i \sin z_1)(\cos z_2 + i \sin z_2)$. Expanding this relation we get $e^{iz_1}e^{iz_2} = \cos z_1\cos z_2 + i^2\sin z_1\sin z_2 + i(\cos z_1\sin z_2 + \cos z_2\sin z_1)$ which gives the statement of the exercise.

(b) Using the results in part (a) and the fact that

$$\sin(z_1 + z_2) = \frac{1}{2i} \left[e^{i(z_1 + z_2)} - e^{-i(z_1 + z_2)} \right] = \frac{1}{2i} \left(e^{iz_1} e^{iz_2} - e^{-iz_1} e^{-iz_2} \right)$$

to obtain the identity

$$\sin(z+z_2) = \sin z \cos z_2 + \cos z \sin z_2.$$

Proof. Observe the following algebra.

$$\sin(z + z_2) = \frac{1}{2i} \left(e^{iz} e^{iz_2} - e^{-iz} e^{-iz_2} \right)$$

$$= \frac{1}{2i} (\cos z \cos z_2 - \sin z \sin z_2 + i(\sin z \cos z_2 + \cos z \sin z_2)$$

$$- (\cos(-z) \cos(-z_2) - \sin(-z) \sin(-z_2) + i(\sin(-z) \cos(-z_2) + \cos(-z) \sin(-z_2))))$$

$$= \frac{1}{2i} \cos z \cos z_2 - \sin z \sin z_2 + i(\sin z \cos z_2 + \cos z \sin z_2$$

$$- (\cos(z) \cos(z_2) - \sin(z) \sin(z_2) - i(\sin(z) \cos(z_2) + \cos(z) \sin(z_2))))$$

$$= \frac{2i}{2i} (\sin(z) \cos(z_2) + \cos(z) \sin(z_2))$$

$$= \sin(z) \cos(z_2) + \cos(z) \sin(z_2)$$

(38.3) Show that $\cos(z_1 + z_2) = \cos z_2 \cos z_2 - \sin z_1 \sin z_2$.

Proof. From the previous exercise we differentiate the expression

$$d/dz\sin(z+z_2) = \cos(z+z_2) = d/dz\sin(z)\cos(z_2) + \cos(z) + \sin(z_2)$$

So it follows immediately that $\cos(z_1 + z_2) = \cos z_2 \cos z_2 - \sin z_1 \sin z_2$.

(39.2) Prove that $\sinh 2z = 2 \sinh z \cosh z$.

Proof. We do the following algebra

$$\sinh 2z = \frac{(e^z - e^{-z})}{2} = \frac{(e^z e^z + e^z e^{-z} - e^z e^{-z} e^{-z})}{2} = 2\frac{(e^z - e^{-z})}{2}\frac{(e^z + e^{-z})}{2}$$

Observe the right side is $\sinh 2z = 2 \cosh z \sinh z$ and the algebra is if and only if.

(40.3) Solve $\cos z = \sqrt{2}$ for z.

Proof. Using the formula, we have that

$$\cos^{-1}(z) = -i\log\left[z + i(1-z^2)^{1/2}\right].$$

Then $\cos^{-1}(\sqrt{2})$, it follows that $-i\log\left[\sqrt{2}+i(1-2)^{1/2}\right]$. Then we have all solutions are $-i\log\left[\sqrt{2}\pm i\right]$. Therefore $\cos^{-1}=-i\left[\frac{1}{2}\ln 3\pm i(\tan\left(\frac{1}{\sqrt{2}}\right)+2k\pi)\right]=\pm\tan\left(\frac{1}{\sqrt{2}}\right)+2k\pi-i\frac{\ln 3}{2}$.