ΜΙΧΑΛΙΤΣΗΣ ΑΛΚΙΒΙΑΔΗΣ ΠΑΝΑΓΙΩΤΗΣ

AM: 03118868 70 EEAMHNO

3Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ»

Άσκηση 1

1.

ЕПОХН	yk-ΕΙΣΟΔΟ	y(k)	f(x(k))- ΕΞΟΔΟ	ΔΙΟΡΘΩΣΗ	ВАРН
1	(1,0,-1,4)	1	1+0+1-4=-3→0	(0.2,0,-0.2,0.8)	(1.2,1,-1.2,-0.2)
1	(1,4,0,-1)	0	1.2+4+0+0.2=5.4→1	(-0.2,-0.8,0,0.2)	(1,0.2,-1.2,0)
1	(1,2,2,-1)	1	1+0.4-2.4+0=-1→0	(0.2,0.4,0.4,-0.2)	(1.2,0.6,-0.8,-0.2)
1	(1,3,-1,0)	0	1+0.6-1.2+0=0.4→1	(-0.2,-0.6,0.2,0)	(1,0,-0.6,-0.2)
1	(1,-2,1,-3)	1	0.8+0.8+1.4+0=3→1	-	(1,0,-0.6,-0.2)
1	(1,0,-2,-1)	0	0.8+0-2.8+0=-2→0	(-0.2,0,0.4,0.2)	(0.8,0,-0.2,0)
2	(1,0,-1,4)	1	0.8+0+0.2+0.8=1.8→1	-	(0.8,0,-0.2,0)
2	(1,4,0,-1)	0	0.8-0+0-0.2=-0.6→1	(-0.2,-0.8,0,0.2)	(0.6,-0.8,-0.2,0.2)
2	(1,2,2,-1)	1	0.6-1.6-0.4-0.2=-1.6→0	(0.2,0.4,0.4,-0.2)	(0.8,-0.4,0.2,0)
2	(1,3,-1,0)	0	0.8-1.2-0.2+0=-0.6→0	-	(0.8,-0.4,0.2,0)
2	(1,-2,1,-3)	1	0.8+0.8+0.2+0=1.8→1	-	(0.8,-0.4,0.2,0)
2	(1,0,-2,-1)	0	0.8+0-0.4=0.4→1	(-0.2,0,0.4,0.2)	(0.6,-0.4,0.6,0.2)
3	(1,0,-1,4)	1	0.6+0-0.6+0.8=0.8→1	-	(0.6,-0.4,0.6,0.2)
3	(1,4,0,-1)	0	0	-	(0.6,-0.4,0.6,0.2)
3	(1,2,2,-1)	1	1	-	(0.6,-0.4,0.6,0.2)
3	(1,3,-1,0)	0	0	-	(0.6,-0.4,0.6,0.2)
3	(1,-2,1,-3)	1	1	-	(0.6,-0.4,0.6,0.2)
3	(1,0,-2,-1)	0	0	-	(0.6,-0.4,0.6,0.2)

2. (-1,2,2) 0.6+0.4+1.2+0.4=2.6>0→1 Κλάση Β

Άσκηση 2

(-1,2,2)
d = sqrt[(ya-xa)^2+(yb-xb)^2+(yc-xc)^2]
(0,-1,4)EB
$$\rightarrow$$
 sqrt(1 + 9 + 4) = sqrt(14)= 3.74
(4,0,-1)EA \rightarrow sqrt(25 + 4 + 9) = sqrt(38) = 6.16
(2,2,-1)EB \rightarrow sqrt(9 + 0 + 9) = sqrt(18) = 4.24
(3,-1,0)EA \rightarrow sqrt(16 + 9 + 4) = sqrt(29) = 5.39
(-2,1,-3)EB \rightarrow sqrt(1 + 1 + 25) = sqrt(27) = 5.2
(0,-2,-1)EA \rightarrow sqrt(1 + 16 + 9) = sqrt(26) = 5.1
KNN(K=1) \rightarrow (0,-1,4) \rightarrow Kλάση B
 \rightarrow (2,2,-1) \rightarrow Kλάση B
 \rightarrow (0,-2,-1) \rightarrow Kλάση A

Και στις δυο περιπτώσεις θα έχουμε ταξινόμηση στην Κλάση Β.

```
Άσκηση 3
1.
51% ΑΝΔΡΕΣ
49% ΓΥΝΑΙΚΕΣ
\rightarrowP(Ενήλικας = Άντρας) = 0.51
2.
P(Ai|B) = P(Ai)*P(B|Ai)/P(B)
9.5% Άνδρες + Καπνιστές
1.7% Γυναίκες + Καπνιστές
Ρ(Καπνιστής | Άνδρας) =
Ρ(Άνδρας | Καπνιστής) * Ρ(Καπνιστής)/ Ρ(Άνδρας)
όπου
P(Kαπνιστής | Άνδρας) = 0.095
P(\Delta v \delta \rho \alpha \varsigma) = 0.51
P(K\alpha \pi v i \sigma \tau \dot{\eta} \varsigma) = P(K\alpha \pi v i \sigma \tau \dot{\eta} \varsigma) A v \delta \rho \alpha \varsigma) + P(K\alpha \pi v i \sigma \tau \dot{\eta} \varsigma)
\Gamma UV\alpha (\kappa\alpha) *P(\Gamma UV\alpha (\kappa\alpha) = 0.095*0.51 + 0.017*0.49 = 0,05678
```

 \rightarrow P(Άνδρας | Καπνιστής) = 0.51*0.095/0.05678 = 0.8533

 \rightarrow P(Άνδρας | Καπνιστής) = 85.33%

Άσκηση 4

A1 = 0.2/x1 + 1/x2 + 0.8/x3 //Ασαφές Σύνολο A2 = 1/y1 + 0.09/y2 //Ασαφές Σύνολο B = 0.7/z1 + 1/z2 //Ασαφές Σύνολο

Av X είναι A1 και Y είναι σχετικά A2 \rightarrow Z είναι B //Ασαφής Κανόνας \rightarrow εφόσον Y είναι σχετικά A2 \rightarrow A2 = 1/y1 + sqrt(0.09)/y2 \rightarrow A2 = 1/y1 + 0.3/y2

A12 = Jmin(A1,A2) = 0.2/x1,y1 + 0.2/x1,y2 + 1/x2,y1 + 0.3/x2,y2 + 0.8/x3,y1 + 0.3/x3,y2

AB = Jmin(A12,B) = 0.2/x1,y1,z1 + 0.2/x1,y2,z1 + 0.7/x2,y1,z1 + 0.3/x2,y2,z1 + 0.7/x3,y1,z1 + 0.3/x3,y2,z1+0.2/x1,y1,z2 + 0.2/x1,y2,z2 + 1/x2,y1,z2 + 0.3/x2,y2,z2 + 0.8/x3,y1,z2 + 0.3/x3,y2,z2

Τιμές εισόδου : $X: \chi 2, Y: y1 \rightarrow X$ ρησιμοποιούμε μόνο $1/x2, y1 \rightarrow$

AB = Jmin(A12,B) = 0.7/x2,y1,z1 + 1/x2,y1,z2

Στην έξοδο θα έχουμε: 0.7/z1 +1/z2