

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

Roteiro

- o Revisão
 - Simplificação de Expressões Booleanas por Mapa de Karnaugh de 5 e 6 variáveis
 - Simplificação de Expressões Booleanas por Mapa de Karnaugh com condições irrelevantes
- o Circuitos Combinacionais
 - o Projetos de Circuitos Combinacionais

Revisão

 Simplificação de Expressões Booleanas por Mapa de Karnaugh de 5 e 6 variáveis

Mapa de Karnaugh para 5 variáveis

TV para 5 variáveis

A	В	С	D	Ε	5
0	0	0	0	0	S ₁
0	0	0	0	1	5 ₂
0	0	0	1	0	S ₃
0	0	0	1	1	54
0	0	1	0	0	S ₅
0	0	1	0	1	5 ₆

•

1	1	0	1	1	S ₂₈
1	1	1	0	0	S ₂₉
1	1	1	0	1	5 ₃₀
1	1	1	1	0	S ₃₁
1	1	1	1	1	5 ₃₂

2⁵=32 Combinações

Mapa de Karnaugh para 5 variáveis

			Ī		
	ī	5	t		
В	S ₁	S ₂	S ₄	S ₃	C
D	S ₅	S ₆	S ₈	S ₇	C
0	S ₁₃	S ₁₄	S ₁₆	S ₁₅	
В	S ₉	S ₁₀	S ₁₂	S ₁₁	C
	E	E		Ē	

Exemplos de Agrupamentos

Mapa de Karnaugh para 5 variáveis

Exemplos de Agrupamentos

Mapa de Karnaugh para 6 variáveis

TV para 6 variáveis

TV para 6 variáveis

A	В	С	D	Ε	F	5
0	0	0	0	0	0	S ₁
0	0	0	0	0	1	5 ₂
0	0	0	0	1	0	5 ₃
0	0	0	0	1	1	54
0	0	0	1	0	0	S ₅
0	0	0	1	0	1	5 ₆
		_	_			

A	В	C	D	Ε	F	5
1	0	0	0	0	0	S ₃₃
1	0	0	0	0	1	S ₃₄
1	0	0	0	1	0	S ₃₅
1	0	0	0	1	1	S ₃₆
1	0	0	1	0	0	S ₃₇
1	0	0	1	0	1	S ₃₈

•

26=64 Combinações

0	1	1	0	1	1	S ₂₈
0	1	1	1	0	0	S ₂₉
0	1	1	1	0	1	5 ₃₀
0	1	1	1	1	0	S ₃₁
0	1	1	1	1	1	5 ₃₂

1	1	1	0	1	1	S ₆₀
1	1	1	1	0	0	S ₆₁
1	1	1	1	0	1	S ₆₂
1	1	1	1	1	0	S ₆₃
1	1	1	1	1	1	S ₆₄

Mapa de Karnaugh para 6 variáveis

Mapas de Karnaugh com Condições Irrelevantes

Mapa de Karnaugh com condições irrelevantes

- Condição Irrelevante: para determinadas combinações de entradas, a saída pode assumir o valor 0 ou 1 indiferentemente
- Para se utilizar a condição irrelevante no mapa de Karnaugh, deve-se adotar o valor que possibilite o maior agrupamento

A	В	C	5
0	0	0	X
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Se escolhermos X=0, obtemos um agrupamento menor Expressão Simplificada a partir do MK $S=\overline{A}B+\overline{A}C$

Mapa de Karnaugh com condições irrelevantes

- Condição Irrelevante: para determinadas combinações de entradas, a saída pode assumir o valor 0 ou 1 indiferentemente
- Para se utilizar a condição irrelevante no mapa de Karnaugh, deve-se adotar o valor que possibilite o maior agrupamento

A	В	С	S
0	0	0	X
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

	_	Ē	3	E	3	_
-	A	X	1	1	1-	$Q_1 = \overline{A}$
•	A	0	0	0	0	
		C	(C	

Se escolhermos X=1 \Rightarrow obtemos um agrupamento maior Expressão Simplificada a partir do MK $S=\overline{A}$

Uso eficiente dos Mapas de Karnaugh

- 1. Assinalar primeiro os termos que não têm possibilidade de serem combinados com nenhum outro
- 2. Agrupar primeiro os termos que só tem uma única possibilidade de agrupamento com outro termo (fazer isso primeiro para os pares, depois quádruplas, oitavas, etc.)
- 3. Encerrados esses procedimentos, então pode-se agrupar os termos restantes, lembrando que é melhor obter o menor número de agrupamentos possível

Exemplos

Aula de Hoje

Circuitos Combinacionais

Circuitos Combinacionais

Circuitos Digitais: a) Circuitos Combinacionais

b) Circuitos Sequenciais

Circuito Combinacional:

Circuito cuja saída depende apenas das combinações atuais das entradas. Não possui memória.

-Exemplos: -Portas Lógicas
-Somadores
-Decodificadores

Processo para Projeto de Circuitos Combinacionais

Receita de bolo

- 1. Descrição do problema a ser resolvido.
- 2. Descrição das condições para resolver o problema.
- 3. Estabelecer convenções de nomenclatura para as variáveis que descrevem o problema.
- 4. Montar a Tabela Verdade que descreve o problema usando a nomenclatura estabelecida em 3.
- 5. Simplificar as expressões da Tabela Verdade.
- 6. Desenhar o Circuito Simplificado

Exemplo de Projeto de Circuitos Combinacionais

Modernizando o Romi-Isetta

Considere que você trabalha na ONG PNM (Petroleum Never More). Você faz parte da equipe de projeto que tenta ressuscitar o primeiro veículo brasileiro, o Romi-Isetta. Ele foi produzido de 1956 a 1961 pela empresa Máquinas Agrícolas Romi de Santa Bárbara d'Oeste, em São Paulo. O carro tinha chassi construído com tubos de aço e um potente motor BMW de 4 tempos, com 1 cilindro de 0,3 litro e incríveis 13 cv, que levava um mortal à emocionante velocidade máxima de 85 Km/h, com aceleração de 0 a 60 Km/h em apenas 60s. Com 2,285m de comprimento, 1,38m de largura e 1,34m de altura e consumo de 25 Km/l, o projeto do Romi-Isetta é ainda muito atual para as necessidades urbanas de hoje em dia.

Para revitalizar o Romi-Isetta, sua equipe deve desenvolver um projeto para atender itens de segurança para o carro.

O carro tem um assento ejetável. Para algumas combinações de situações de pânico o circuito controlador aciona a ejeção do banco. As situações de pânico são informadas ao circuito por meio de sensores que indicam: inundação do veículo (A), fogo (B), colisão (C), falha dos freios (D), botão de sequestro (E) acionado pelo motorista. Essas variáveis em nível lógico 1 indicam que o respectivo sensor foi acionado. Qualquer uma das seguintes combinações de sensores ativados faz o circuito acionar a ejeção:

- o falha dos freios;
- o colisão e botão de sequestro;
- o colisão e inundação;
- o colisão e fogo;
- o inundação e botão de sequestro.

Projete o circuito de controle de acionamento da ejeção usando os nomes das variáveis do texto.

Variáveis:

- (A) Inundação do veículo;
- (B) Fogo;
- (C) Colisão;
- (D) Falha dos freios;
- (E) Botão de sequestro.

Variáveis em nível lógico 1 indicam sensor acionado.

Condições do Problema:

Qualquer uma das combinações faz o circuito acionar a ejeção:

- o falha dos freios (D);
- o colisão (C) e botão de sequestro (E);
- o colisão (C) e inundação (A);
- o colisão (C) e fogo (B);
- o inundação (A) e botão de sequestro (E).

Tabela Verdade do Circuito

Α	В	С	D	Ε	5
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	1
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	0	1	0
0	1	0	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	1	0	1
0	1	1	1	1	1

Α	В	С	D	Ε	5
1	0	0	0	0	0
1	0	0	0	1	1
1	0	0	1	0	1
1	0	0	1	1	1
1	0	1	0	0	1
1	0	1	0	1	1
1	0	1	1	0	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

Mapa de Karnaugh do Circuito

			_			
_	D		t	_		
В	0	0	1	1	C	_
R	0	1	1	1	C	-
В	1	1	1	1		
	0	0	1	1	C	
'	E	Ε		E	-	

	D		D		
B	0	1	1	1	<u>c</u>
	1	1	1	1	С
В	1	1	1	1	
	0	1	1	1	C
·	E	Ε		E	-

Mapa de Karnaugh do Circuito

Mapa de Karnaugh do Circuito

Desenho do Circuito

S=D+AE+AC+CE+BC

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

Projeto 1:

Mudando de categoria!

Suponha que você trabalha na Mercedes-Benz e faz parte da equipe de projeto do SLR McLaren. O carro custa a simplória quantia de US\$ 1,2 milhão, é construído com estrutura de fibra de carbono e tem um pequeno motor V12 Biturbo de 6.0 litros com míseros 626 cv de potência, que leva um mortal do tédio à emoção em infinitos 4s.

Projetos de Circuitos Combinacionais

Projeto 1:

O carro tem 2 sensores de colisão frontal (A e B) que detectam quando ocorre colisão no lado do motorista e do passageiro, respectivamente. Há também 2 sensores de presença (C e D) sob os bancos que detectam se há presença do motorista e do passageiro, respectivamente. Quando ocorre uma colisão, o circuito de segurança recebe as informações desses sensores. Se ocorrer uma colisão com a presença do motorista ou do passageiro, então o circuito dispara o respectivo air bag. Sua parte no projeto do SLR McLaren consiste em projetar esse circuito de segurança. Obs. Use os nomes das variáveis já definidas entre parênteses. Considere nível lógico 1 para indicar colisão, em A e B, e para indicar presença de motorista e passageiro, em C e D.

Projetos de Circuitos Combinacionais

Α	В	С	٥	S _{MOT}	SPAS
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	1	1

Projetos de Circuitos Combinacionais

Α	В	С	D	S _{MOT}	SPAS
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	1	1

Projetos de Circuitos Combinacionais

Α	В	С	٥	S _{MOT}	SPAS
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	1	1

Projetos de Circuitos Combinacionais

Α	В	С	۵	S _{MOT}	SPAS
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	1	1

		•	•		
	C			C	
_	0	0	0	0	В
Ā	0	1	1	0	В
A	0	1	1	0	
	0	1	1	0	В
'	D	D		D	

Projetos de Circuitos Combinacionais

Α	В	С	Δ	S _{MOT}	SPAS
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	1	1

Projetos de Circuitos Combinacionais

		-			
A	В	С	٥	S _{MOT}	SPAS
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	1	1

Projetos de Circuitos Combinacionais

Desenho do Circuito

Projetos de Circuitos Combinacionais

Projeto 2:

- Projete um circuito para controlar uma bomba que enche uma caixa d'água (caixa 2) no alto de um edifício a partir de outra caixa (caixa 1) usada como reservatório, colocada no térreo. O circuito, através de sensores convenientemente dispostos nas caixas, deve atuar na bomba e numa eletroválvula (que permite abastecer a caixa 1) ligada à canalização de entrada. Faça o diagrama de portas lógicas do circuito e simplifique se possível.

Caixa 2

Circuito Lógico

Caixa 1

Projetos de Circuitos Combinacionais

Projeto 2:

Convenções:

- -Presença de água nos sensores A,B,C=1
- -Bomba ligada Bo=1
- -Eletroválvula ligada Ev=1
- -Considere que seja possível A=0,B=0,C=1

Projetos de Circuitos Combinacionais

Projeto 2:

Situações:

- Caixa 1 vazia ⇒ A=0,B=0
 Caixa 2 vazia ⇒ C=0
 ⇒ Liga Ev=1, Não liga Bo=0
- Caixa 1 vazia ⇒ A=0,B=0
 Caixa 2 cheia ⇒ C=1
 ⇒ Liga Ev=1, Não liga Bo=0
- Caixa 1 nem cheia nem vazia ⇒ A=0,B=1
 Caixa 2 vazia ⇒ C=0
 ⇒ Liga Ev=1, Liga Bo=1

Projetos de Circuitos Combinacionais

Projeto 2:

Caixa 1

Projetos de Circuitos Combinacionais

Projeto 2:

Situações:

- 7. Caixa 1 cheia ⇒ A=1,B=1
 Caixa 2 vazia ⇒ C=0
 ⇒ Não liga Ev=0, Liga Bo=1
- 8. Caixa 1 cheia ⇒ A=1,B=1
 Caixa 2 cheia ⇒ C=1 ⇒
 Não liga Ev=0, Não liga Bo=0

Projetos de Circuitos Combinacionais

Projeto 2:

A	В	С	Во	Ev
0	0	0	0	1
0	0	1	0	1
0	1	0	1	1
0	1	1	0	1
1	0	0	X	X
1	0	1	X	X
1	1	0	1	0
1	1	1	0	0

Expressão simplificada para controle da Bomba

Bo=BC

Projetos de Circuitos Combinacionais

Projeto 2:

A	В	С	Во	Ev
0	0	0	0	1
0	0	1	0	1
0	1	0	1	1
0	1	1	0	1
1	0	0	X	X
1	0	1	X	X
1	1	0	1	0
1	1	1	0	0

Expressão simplificada para controle da Eletroválvula $Ev=\overline{A}$

Projetos de Circuitos Combinacionais

Projeto 2:

Circuito da Fletroválvula

Ev=Ā

Circuito da Bomba

Projetos de Circuitos Combinacionais

Projeto 3:

- Projete um circuito de controle de alarme para proteger um carro. Dois sensores (A e B) são usados para monitorar a abertura e fechamento das portas direita e esquerda. Uma chave (C) é usada para ativar e desativar o alarme (AL). O alarme será disparado somente se estiver ativado. Faça o diagrama de portas lógicas do circuito e simplifique se possível.

Projetos de Circuitos Combinacionais

Projeto 3:

Convenções:

Porta aberta = 1

Alarme acionado = 1

Alarme disparado = 1

A	В	С	AL
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Projetos de Circuitos Combinacionais

Projeto 3:

Projetos de Circuitos Combinacionais

Projeto 4:

- Quatro grandes tanques em uma indústria química contêm diferentes líquidos que estão sendo aquecidos. Sensores de nível de líquido são utilizados para detectar se o nível do tanque A ou do tanque B sobe acima de um nível predeterminado. Sensores de temperatura existentes nos tanques C e D detectam se a temperatura de um desses tanques cai abaixo de um determinado limite. Suponha que as saídas dos sensores de nível de líquido A e B estarão em "BAIXO" quando o nível for satisfatório e estarão em "ALTO" quando o nível for muito alto. Além disso, as saídas dos sensores de temperatura C e D estarão em "BAIXO" quando a temperatura for satisfatória e estarão em "ALTO" quando a temperatura for muito baixa. Projete um circuito que detecte quando o nível no tanque A ou B estiver muito alto, ao mesmo tempo em que a temperatura em um dos tanques C ou D estiver muito baixa. Faça o diagrama de portas lógicas do circuito e simplifique se possível.

Projetos de Circuitos Combinacionais

Projeto 4:

Α	В	С	D	5
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Condições de Controle: A=1 ou B=1 E C=1 ou D=1

S=AC+AD+BC+BD

Projetos de Circuitos Combinacionais

Projeto 4:

Simplificando a expressão por Álgebra de Boole

$$S=A(C+D)+B(C+D)$$

$$S=(A+B)(C+D)$$

Condições de Controle: A=1 ou B=1 E C=1 ou D=1

Circuito de Controle

Projetos de Circuitos Combinacionais

<u>Projeto 5:</u>

- Projete um circuito para controlar o Sistema de Intercomunicação do prédio da Reitoria da UEM (Universidade Estadual de Morangueira). O sistema deve obedecer a uma ordem de prioridades:
 - 1º Reitor
 - 2º Vice-Reitor
 - 3º Assessor para Assuntos Aleatórios
 - 4º Secretária
- Caso ocorram duas ou mais chamadas simultaneamente, somente uma chamada será atendida, a de maior prioridade. Faça o diagrama de portas lógicas do circuito e simplifique se possível.

Projetos de Circuitos Combinacionais

Projeto 5:

1° RE

2° VR

3º A5

4° SE

Convenções:

-Presença de Chamada = 1

-Ausência de Chamada = 0

-Saídas: S_{RE} , S_{VR} , S_{AS} , S_{SE}

-Chamada liberada \Rightarrow S=1

-Chamada bloqueada \Rightarrow S=0

Projetos de Circuitos Combinacionais

Projeto 5:

RE	VR	AS	SE	S _{RE}	S _{VR}	S _{AS}	S _{SE}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Sem chamadas

Libera chamada da Secretária

Libera chamada do Assessor

Libera chamada do Vice-Reitor

Libera chamada do Reitor

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

Projeto 5:

Circuito de Controle

Projetos de Circuitos Combinacionais

<u>Projeto 6:</u>

- Uma indústria possui 4 máquinas de alta potência, podendo ser ligadas, no máximo, duas delas simultaneamente. Projete um circuito lógico para efetuar este controle, respeitando a prioridade de funcionamento da máquina 1 sobre a máquina 2, da 2 sobre a 3 e da 3 sobre a 4, ou seja, quando duas ou mais máquinas forem acionadas simultaneamente, as duas de maior prioridade serão ligadas. Faça o diagrama de portas lógicas do circuito e simplifique se possível.

Projetos de Circuitos Combinacionais

Projeto 6:

Nomenclatura das Entrada:

Máquina $1 = M_1$

Máquina $2 = M_2$

Máquina $3 = M_3$

Máquina $4 = M_4$

Convenções:

- -Máquina Ligada = 1
- -Máquina Desligada = 0

Projetos de Circuitos Combinacionais

M ₁	M ₂	M ₃	M ₄	S ₁	S ₂	S ₃	S ₄
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	1
1	0	1	0	1	0	1	0
1	0	1	1	1	0	1	0
1	1	0	0	1	1	0	0
1	1	0	1	1	1	0	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	0	0

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

$$S_3 = \overline{M_1} \cdot M_3 + \overline{M_2} \cdot M_3$$

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

Projetos de Circuitos Combinacionais

Projeto 7:

- Uma fábrica necessita de uma sirene para indicar o fim do expediente. Esta sirene deve ser tocada em uma das seguintes condições:
- a) Já passa das 5 horas e todas as máquinas estão desligadas.
- b) É sexta-feira, a produção do dia foi atingida e todas as máquinas estão desligadas.

Projete um circuito para controlar a sirene.

Projetos de Circuitos Combinacionais

Projeto 7:

Nomenclatura das Entrada:

Mais de 5 horas \Rightarrow A

Máquinas desligadas ⇒ B

Sexta-feira $\Rightarrow C$

Produção atingida \Rightarrow D

Convenções:

- -Mais de 5 horas \Rightarrow A=1
- -Máquinas desligadas ⇒ B=1
- -Sexta-feira \Rightarrow C=1
- -Produção atingida ⇒ D=1

Projetos de Circuitos Combinacionais

Projeto 7:

Α	В	С	D	5
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

S=B.C.D+A.B

Projetos de Circuitos Combinacionais

Projeto 7:

Circuito de Controle

A B C D

S=B.C.D+A.B

Resumo da Aula de Hoje

Tópicos mais importantes:

o Projetos de Circuitos Combinacionais

