STRUKTUR DATA GRAPH TEORI

UNIVERSITAS PENDIDIKAN INDONESIA

BAGAIMANA MEREPRESENTASIKAN STRUKTUR BERIKUT?

BAGAIMANA MEREPRESENTASIKAN STRUKTUR BERIKUT?

CONTOH-CONTOH APLIKASI GRAF

- Peta (jaringan jalan dan hubungan antar kota)
- Jaringan komputer
- Jaringan persahabatan (facebook, dll)
- Peta migrasi populasi hewan
- dst

GRAPH

Suatu graph mengandung 2 himpunan, yaitu:

- Himpunan V yang elemennya disebut simpul (atau vertex atau point atau node atau titik).
- Himpunan E yang merupakan pasangan tak urut dari simpul. Anggotanya disebut ruas (*edge*, *rusuk* atau *sisi*).

Graph dengan definisi tersebut di atas ditulis dengan notasi :

GRAPH

- Contoh: suatu graph G(E,V) dengan elemen-elemen sbb:
 - V mengandung 4 simpul : A, B, C, D
 - E mengandung 5 ruas :

$$e1 = (A,B)$$
 $e2 = (B,C)$ $e3 = (A,D)$
 $e4 = (C,D)$ $e5 = (B,D)$

Dua buah simpul **u** dan **v** disebut berdampingan jika terdapat ruas (u,v).

GRAPH

Secara geometris, graph G(E,V) digambarkan sbb:

$$V = \{A,B,C,D\}$$

 $E = \{e \mid ,e2,e3,e4,e5\} = \{(A,B),(B,C),(A,D),(C,D),(B,D)\}$

ISTILAH-ISTILAH DALAM GRAPH

- Banyaknya simpul/vertex disebut : order
- Banyaknya ruas/edge disebut : **size** atau **ukuran** graph
- **Self-loop** atau **gelung** adalah ruas yang kedua titik ujungnya merupakan satu simpul yang sama.
- **Ruas berganda** atau **ruas sejajar** adalah dua ruas yang mempunyai titik-titik ujung yang sama atau berujung pada dua simpul yang sama.

ISTILAH-ISTILAH DALAM GRAPGH

e2 adalah sebuah self-loop (gelung)

e5 dan e6 merupakan ruas berganda (ruas sejajar)

ISTILAH-ISTILAH DALAM GRAPH

- Simple Graph (graph sederhana) adalah graph yang tidak mengandung ruas sejajar.
- Suatu graph G'(E',V') merupakan **subgraph** dari G(E,V) jika :
 - E' himpunan bagian dari E, dan
 - V' himpunan bagian dari V

GRAPH BERLABEL

- Graph G disebut graph berlabel jika ruas dan atau simpulnya dikaitkan dengan suatu besaran tertentu.
- Khususnya, jika setiap ruas e dari G dikaitkan dengan suatu bilangan non-negatif d(e), maka d(e) disebut **bobot** atau **panjang** dari ruas e.

GRAPH BERLABEL/BERNILAI

Contoh: simpul menyatakan kota, label pada ruas d(e) menyatakan jarak antar kota.

ISTILAH-ISTILAH GRAPH

- **Derajat simpul**, ditulis d(v), adalah banyaknya ruas yang menghubungi simpul tersebut.
- Simpul ganjil adalah simpul yang berderajat ganjil. Simpul genap adalah simpul yang berderajat genap.
- Jika terdapat self-loop maka self-loop dihitung 2 kali untuk derajat simpul.
- Derajat graph adalah jumlah seluruh derajat simpul.

Derajat graph =
$$d(v_1)+d(V_2)+...+d(v_n)$$

Derajat graph juga sama dengan dua kali jumlah ruas (size).

Derajat graph = $2 \times \text{size}$;

ISTILAH-ISTILAH GRAPH

Simpul E disebut **simpul bergantung/akhir**, yaitu
simpul berderajat I.
Simpul F disebut **simpul terpencil**, yaitu simpul
yang berderajat 0.

- d(A) = 2, d(B) = 5, d(C) = 3, d(D) = 3, d(E) = 1, d(F) = 0
- Derajat graph = 2+5+3+3+1+0 = 14
- Size graph = $7 \square$ Derajat graph = $2 \times 7 = 14$

Walk adalah barisan simpul dan ruas secara bergantian.

$$v_1, e_1, v_2, e_2, v_3, e_3, \dots, e_{n-1}, v_n$$

- Banyaknya ruas dalam suatu walk disebut panjang walk.
- Walk dapat ditulis singkat dengan hanya menuliskan deretan ruasnya saja atau deretan simpulnya saja.

$$e_1, e_2, e_3,, e_{n-1}$$
 atau $v_1, v_2, v_3, ..., v_n$

v₁ disebut simpul awal, v_n disebut simpul akhir.

Contoh:

dari Jakarta ke Bandung.

Sebut lengkap:

Jakarta –Tol bekasi – Bekasi – Tol Cikampek – Cikarang – Tol Purwakarta – Purwakarta –Tol Padalarang – Tol Bandung – Bandung

Sebut hanya nama Kota:

Jakarta –Bekasi – Cikarang – Padalarang - Bandung

Sebut hanya nama jalan:

Tol Bekasi – Tol Cikampek- Tol Purwakarta- Tol Padalarang- Tol Bandung

- **Walk** disebut tertutup jika $v_1 = v_n$.
 - Dalam hal lain, walk disebut terbuka menghubungi v_1 dan v_n .
- Trail adalah walk yang semua ruasnya berbeda.
- **Path** adalah walk yang semua simpulnya berbeda.
- **Cycle** atau **sirkuit** adalah trail tertutup dengan derajat setiap simpulnya = 2.
- Cycle yang panjangnya k disebut k-cycle.
- Path yang panjangnya k disebut k-path.

connected graph: tiap simpul terhubung dengan simpul lain

Graph yang tidak mengandung cycle disebut acyclic.

Contoh graph acyclic adalah struktur tree.

ISTILAH GRAPH KETERHUBUNGAN

Suatu graph G disebut terhubung (connected) jika untuk setiap 2 simpul dari graph terdapat jalur yang menghubungkan 2 simpul tersebut.

ISTILAH-ISTILAH GRAPH

- Jarak antara 2 simpul adalah panjang jalur terpendek antara kedua simpul tersebut.
- Diameter suatu graph terhubung G adalah maksimum jarak antara simpul-simpul
 G.

MATRIKS PENYAJIAN GRAPH

Dua cara penyajian graph, yaitu:

- 1. Matriks Ruas, menyimpan informasi pasangan vertex yang membangun ruas
- 2. Matriks Adjacency
- 3. Matriks Incidence

Matriks ruas

1	2		
1	3		
1	4		
1	5		
2	3		
3	4		
2 3 3	2 3 4 5 3 4 5 5		
4	5		
	200		

Atau secara pasangan {(1,2),(1,3),(1,4), (1,5),(2,3),(3,4),(3,5),(4,5)}

MATRIKS ADJACENCY

Matriks adjacency dari Graph G adalah matriks berukuran ($N \times N$), yg bersifat:

$$a_{ij} =$$

$$\begin{bmatrix}
I & bila ada ruas (V_i, V_j) \\
0 & dalam hal lain.
\end{bmatrix}$$

Jika terdapat ruas sejajar maka jumlah ruas sejajar yg ditulis.

MATRIKS INCIDENCE

■ Matriks incidence dari Graph G tanpa self-loop adalah:

Matriks incidence:

atau 1 1 1 2 3 3 4 2 3 4 5 5

Matriks adjacency:

v1 v2 v3 v4 v5

	_				-
v1	0	1	1	1	1
v2 v3 v4	1	0	1	0	0
v3	1	1	0	1	1
v4	1	0	1	0	1
ν5	1	0	1	1	0

Matriks incidence:

e1 e2 e3 e4 e5 e6 e7 e8

	_							_
v1 v2 v3 v4 v5	1	1	0	1	1	0	0	0
v2	1	0	1	0	0	0	0	0
v3	0	1	1	0	0	1	1	0
v4	0	0	0	1	0	1	0	1
v5	0	0	0	0	0	1	0	1
	I							

GRAPH REPRESENTATION: ADJACENCY MATRIX

- Adjacency Matrix: n-by-n matrix dimana A[u,v] = I jika (u,v) adalah sebuah edge (terhubung)
- Setiap edge direpresentasikan dua kali, misal (u,v) dan (v,u)
- Kebutuhan space adalah n²

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1		0	1	0	1	1
4	0	1	0	1	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

GRAPH REPRESENTATION: ADJACENCY LIST

- Adjacency List: Array of list dengan index berupa node
- Setiap edge direpresentasikan dua kali, misal (u,v) dan (v,u)
- Kebutuhan space adalah m+n

GRAPH BERARAH (*DIGRAPH***)**

- Suatu graph berarah (directed graph, disingkat digraph) terdiri atas 2 himpunan :
 - Himpunan V, anggotanya disebut simpul.
 - Himpunan A, merupakan himpunan pasangan terurut, yang disebut ruas berarah atau arkus
 - Graph berarah seperti di atas ditulis D(V,A).
- Ruas pada graph berarah merupakan tanda panah yang menunjukkan arah ruas.
- Sebuah arkus a=(u,v) digambarkan sebagai garis yang dilengkapi dengan tanda panah mengarah dari simpul u ke simpul v. Simpul u disebut titik pangkal, sedangkan simpul v disebut terminal dari arkus.

Di graph ini memiliki himpunan V dan A sbb:

$$V = \{1,2,3,4\}$$

$$A = \{(1,4),(2,1),(2,1),(2,2),(2,3),(2,4),(4,3)\}$$

- 1					*
	1	0	0	0	
	1	0	0	0	
	0	2	0	1	
	1 0 0	0	1	0	
				-	•

IMPLEMENTASI GRAPH

IMPLEMENTASI GRAPH

SELESAI