GRZEGORZ KARCH

Zadanie 1. Udowodnij, że zbiór funkcji ciągłych C([a,b]) z normą $\|u\|=\max_{x\in[a,b]}|u(x)|$ jest przestrzenią Banacha.

Zadanie 2. Niech $F: \mathbb{R}^n \mapsto \mathbb{R}^n$ będzie polem wektorowym klasy C^1 . Zaproponuj założenia na funkcję F, które gwarantują istnienie rozwiązań równania x = F(x).

Zadanie 3. Niech $(X, \|\cdot\|)$ będzie przestrzenią Banacha oraz niech $F: X \mapsto X$ będzie kontrakcją, tzn. istnieje k < 1 takie, że dla każdego $x, y \in X$ zachodzi

$$||F(x) - F(y)|| \le k||x - y||$$
.

Niech x' będzie rozwiązaniem równania x=F(x). Oznaczmy przez $\{x_n\}$ ciąg iteracji $x_{n+1}=F(x_n)$ rozpoczynający się od dowolnego $x_0\in X$. Udowodnij oszacowania:

- 1. $||x_{n+1} x'|| \le k||x_n x'||$ (szybkość zbieżności);
- 2. $||x_{n+1} x'|| \le \frac{k}{1-k} ||x_{n+1} x_n||$ (oszacowanie a posteriori);
- 3. $||x_{n+1} x'|| \le \frac{k^{n+1}}{1-k} ||x_1 x_0||$ (oszacowanie a priori).

Zadanie 4. Ustal, dla jakich wartości parametru $\lambda \in \mathbb{R}$ operator $F: C([a,b]) \to C([a,b])$ dany wzorem

$$F(u)(x) = x + \lambda \int_{a}^{b} \sin(u(y)) \, dy$$

jest kontrakcją.

Zadanie 5. Znajdź b>0 oraz domknięty podzbiór przestrzeni C([0,b]), na którym operator F dany wzorem

$$F(u)(x) = 1 + \int_0^x u^3(y) \, dy$$

jest kontrakcją.

Zadanie 6. Zaproponuj warunki, dla których równanie

$$u(x) = u_0(x) + \lambda \int_{\mathbb{R}} K(x, y) u(y) \, dy,$$

gdzie $u_0 \in L^p(\mathbb{R})$, ma jednoznaczne rozwiązanie $u(x) \in L^p(\mathbb{R})$.

Zadanie 7. Rozwiąż poprzednie zadanie nie korzystając z twierdzenia o kontrakcji. WSKAZÓWKA: Rezolwenta operatora liniowego jest zbiorem otwartym.

Zadanie 8. Niech $(X, \|\cdot\|)$ będzie przestrzenią Banacha oraz $B: X \times X \mapsto X$ będzie ograniczoną formą dwuliniową, tzn. istnieje $\eta>0$ taka, że dla każdych x_1, x_2 zachodzi oszacowanie

$$||B(x_1, x_2)|| \le \eta ||x_1|| ||x_2||$$
.

Udowodnij, że jeżeli $0<\varepsilon<\frac{1}{(4\eta)}$ oraz $y\in X$ spełnia $\|y\|<\varepsilon$, to równanie

$$x = y + B(x, x)$$

ma rozwiąznie w X spełniające $\|x\| \leqslant 2\varepsilon$. Jest to jedyne rozwiązanie w kuli $2\varepsilon B_X$. Pokaż, że rozwiązanie to zależy w sposób ciągły od y, tzn. jeżeli $\|\tilde{y}\| \leqslant \varepsilon$, $\tilde{x} = \tilde{y} + B(\tilde{x}, \tilde{x})$ oraz $\|\tilde{x}\| \leqslant 2\varepsilon$, to:

 $||x - \tilde{x}|| \leqslant \frac{1}{1 - 4n\varepsilon} ||y - \tilde{y}||.$

Zadanie 9. Zastosuj poprzednie zadanie do dowodu istnienia rozwiązań równania

$$u(x) = u_0(x) + \int_0^1 K(x, y)u^2(y) dy$$

gdzie $u_0 \in C([0,1])$ oraz $K \in C([0,1] \times [0,1]$ są dane.