বসায়ৰ

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

- $\lambda. \quad (i) \text{ Na} + O_2 \longrightarrow \text{Na}_2\text{O}$
 - (ii) $HNO_3 + Mg(OH)_2 \rightarrow$
 - (iii) FeSO₄ + NaOH \rightarrow

ঢাকা বোর্ড ২০২৪

- (ক) ফিটকিরির সংকেত লেখ।
- (খ) কর্পুর ঊর্ধ্বপাতিত পদার্থ ব্যাখ্যা কর।
- (গ) (i) নং সমীকরণটি রেডক্স বিক্রিয়া সশীকরণসহ ব্যাখ্যা কর।
- (ঘ) (ii) ও (iii) নং বিক্রিয়া একই ধরনের কিনা? সমীকরণ সম্পূর্ণকরণসহ ব্যাখ্যা কর।

১ নং প্রশ্নের উত্তর

- (ক) ফিটকিরির সংকেত : K₂SO₄. Al₂(SO₄)₃.24H₂O ।
- (খ) যে সকল পদার্থ তাপ প্রয়োগে কঠিন থেকে সরাসরি গ্যাসে পরিণত হয় তাদেরকে উর্ধ্বপাতিত পদার্থ বলা হয়। যেমন, কপূর উর্ধ্বপাতিত পদার্থ। কারণ কঠিন কপূরকে তাপ দিলে কোনোরূপ তরলে পরিণত না হয়ে সরাসরি গ্যাসীয় পদার্থে পরিণত হয়।
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটি-

$$4Na + O_2 \longrightarrow 2Na_2 + O_2$$

বিক্রিয়াটি রেডক্স বি<mark>ক্রি</mark>য়া। <mark>কার</mark>ণ এ বি<mark>ক্রি</mark>য়ায় ইলেক্ট্রনের আদান-প্রদান ঘটে। এক্ষেত্রে Na এর জারণ ঘটেছে এবং O₂ এর বিজারণ ঘটেছে।

জারণ বিক্রিয়া : $4Na - 4e \longrightarrow 4Na^+$

বিজারণ বিক্রিয়া : $O_2 + 4e \longrightarrow 2O^{2-}$

রেডক্স বিক্রিয়া : $4Na + O_2 \longrightarrow 2Na_2O$

যেহেতু (i) নং বিক্রিয়ায় জারণ-বিজারণ ঘটে কাজেই বিক্রিয়াটি একটি রেডক্স বিক্রিয়া।

(ঘ) উদ্দীপকের (ii) ও (iii) নং বিক্রিয়া একই ধরনের নয়। (ii) নং বিক্রিয়াটি প্রশমন বিক্রিয়া এবং (iii) নং বিক্রিয়া অধ্যক্ষেপণ বিক্রিয়া।

নিচে সমীকরণ সম্পূর্ণকরণসহ ব্যাখ্যা করা হলো-

উদ্দীপকের (ii) নং বিক্রিয়াটি পূর্ণ করে পাই,

$$2HNO_3 + Mg(OH)_2 \longrightarrow Mg(NO_3)_2 + 2H_2O$$
এসিড ক্ষার পানি

বিক্রিয়াটি প্রশমন বিক্রিয়া। <mark>কারণ এসিড ও ক্ষারের বিক্রিয়ায় লবণ ও</mark> পানি উৎপন্ন হয়।

আবার $FeSO_4$ ও NaOH একত্রে যোগ করলে অধ্যক্ষেপণ বিক্রিয়া ঘটবে। কারণ এক্ষেত্রে সবুজ বর্ণের $Fe(OH)_2$ এর অধ্যক্ষেপ পড়ে। আর যে বিক্রিয়ায় তরল বিক্রিয়ক পদার্থ বিক্রিয়া করে কঠিন উৎপাদে পরিণত হয় তাকে অধ্যক্ষেপণ বিক্রিয়া বলে।

বিক্রিয়া : $FeSO_4$ (aq) + $2NaOH(aq) \rightarrow Fe(OH)_2(s)$ + $Na_2SO_4(aq)$

সবুজ অধঃক্ষেপ

সুতরাং (iii) নং বিক্রিয়াটি অধ্যক্ষেপণ বিক্রিয়া। তাই দেখা যাচেছ উদ্দীপকের (ii) ও (iii) নং বিক্রিয়া দুটি একই ধরনের নয়।

$$\begin{array}{l} \text{3.} \quad 2Mg + O_2 \longrightarrow 2MgO \\ MgO + H_2SO_4 \longrightarrow \text{`A'} + H_2O \end{array}$$

(ক) অণু কাকে বলে?

- [রাজশাহী বোর্ড ২০২৪]
- (খ) Ca ও Ca^{2+} আয়নের মধ্যে কোনটি আকারে বড়? ব্যাখ্যা কর।
- (গ) 'A' যৌগের S এর জারণ সংখ্যা নির্ণয় কর।
- (ঘ) উদ্দীপকে সংঘটিত বিক্রিয়া দুটির মধ্যে একটি রেডক্স বিক্রিয়া হলেও অন্যটি নন-রেডক্স – বিশ্লেষণ কর।

২ নং প্রশ্নের উত্তর

- (ক) দুই বা দুইয়ের অধিক সংখ্যক পরমাণু পরস্পরের সাথে রাসায়নিক বন্ধন এর মাধ্যমে যুক্ত থাকলে তাকে অণু বলে।
- (খ) $Ca \ G \ Ca^{2^+}$ এর মধ্যে Ca এর আকার বড়। কারণ Ca পরমাণুতে 20টি প্রোটন ও 20টি ইলেকট্রন আছে কিন্তু Ca^{2^+} আয়নে 20টি প্রোটন ও 18টি ইলেকট্রন আছে। Ca^{2^+} আয়নের ক্ষেত্রে 20টি প্রোটন 18টি ইলেকট্রনকে খুব দৃঢ়ভাবে নিউক্লিয়াসের সাথে আবদ্ধ করে রাখে বলে Ca^{2^+} আয়নের আকার ছোট হয়। Ca এর ক্ষেত্রে 20টি প্রোটন 20টি ইলেকট্রনকে তুলনামূলক কম শক্তিতে আকৃষ্ট করে রাখে। এজন্য Ca এর আকার বড় হয়। অন্যভাবেও বলা যায়, ক্যাটায়নের আকার অপেক্ষা নিরপেক্ষ পরমাণুর আকার সাধারণত বড় হয়।
- (গ) উদ্দীপকের ২য় বিক্রিয়াটি-

$$MgO + H_2SO_4 \longrightarrow MgSO_4 + H_2O$$
(A)

ightarrow m A যৌগটি $m MgSO_4$ । ধরি $m MgSO_4$ যৌগে m S এর জারণ মান

Χl

তাহলে,
$$MgSO_4=0$$
বা, $+2+x+(-2\times 4)=0$
বা, $2+x-8=0$
বা, $x=+6$

এখানে,
 Mg এর জারণ মান $=+2$
 O এর জারণ মান $=-2$

সুতরাং, MgSO₄ যৌগে S এর জারণ মান + 6।

(ঘ) উদ্দীপকের বিক্রিয়া দুটির মধ্যে ১ম বিক্রিয়াটি রেডক্স বিক্রিয়া এবং ২য় বিক্রিয়াটি নন রেডক্স বিক্রিয়া। নিচে তা বিশ্লেষণ করা হলো— আমরা জানি, যে বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান ঘটে তাকে রেডক্স বিক্রিয়া বলে। ১ম বিক্রিয়ার ক্ষেত্রে Mg ধাতু 2টি ইলেকট্রন ত্যাগ করে Mg^{2+} আয়নে পরিণত হয়। ফলে Mg এর জারণ ঘটে। কিন্তু O_2 অণু 4টি ইলেকট্রন গ্রহণ করে O^{2-} আয়নে পরিণত হয়। এজন্য O_2 এর বিজারণ ঘটে।

সুতরাং, ১ম বিক্রিয়াটি রেডক্স বিক্রিয়া।

আবার, ২য় বিক্রিয়ার ক্ষেত্রে দেখা যাচ্ছে, এটি একটি প্রশমন বিক্রিয়া তথা নন-রেডক্স বিক্রিয়া।

$$^{-2}$$
 $^{-2}$ $^{-2}$ $^{+1}$ $^{-2}$ $^{+2}$ $^{-2}$ $^{+1}$ $^{-2}$ $^{-2}$ $^{+1}$ $^{-2}$ $^{-$

৭ম অধ্যায

বুসায়ৰ 📉

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

লব

দেখা যাচ্ছে, বিক্রিয়াটিতে জারণ সংখ্যার ব্রাস-বৃদ্ধি তথা কোনো পরিবর্তন ঘটেনি। তাই এটি নন-রেডক্স বিক্রিয়া। তাছাড়া প্রশমন বিক্রিয়া একটি নন-রেডক্স বিক্রিয়া।

[রাজশাহী বোর্ড ২০২৪]

- (ক) মৌলিক পদার্থ কাকে বলে?
- (খ) যোজনী ও জারণ সংখ্যার মধ্যে পার্থক্য লেখ।
- (গ) $\mathbf{A} \mathbf{A}$ এর বন্ধন শক্তি নির্ণয় কর।
- (ঘ) "কীভাবে বিক্রিয়াটির উৎপাদ বৃদ্ধি করা যায়?" লা–শাতেলিয়ে নীতির আলোকে বিশ্লেষণ কর।

৩ নং প্রশ্নের উত্তর

- (ক) যে পদার্থকে ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌল বা মৌলিক পদার্থ বলে।
- (খ) যোজনী ও জারণ সংখ্যার মধ্যে পার্থক্য নিমুরূপ-

যোজনী	জারণ সংখ্যা
১. যোজনী প্রকাশ করতে	১. অন্যদিকে জারণ সংখ্যা
ধনাত্মক বা ঋণাত্মক চিহ্নের	প্রকাশ করতে ধনাত্মক বা
প্রয়োজন হয় না।	ঋণাত্মক চিহ্নের প্রয়োজন হয়।
২. কোনো মৌলের যোজনী	২. অন্যদিকে নিরপেক্ষ পরমাণু
কখনো শূন্য হয় না।	বা মুক্ত মৌলের জারণ সংখ্যা
	সবসময় শূন্য (০) হয়।

(গ) উদ্দীপকের বিক্রিয়াটি-

$$A_2 + B_2 \rightleftharpoons 2AB$$
; $\Delta H = -111kJ$

আমরা জানি,

 $\Delta H=$ পুরাতন বন্ধন ভাঙার প্রয়োজনীয় শক্তি - নতুন বন্ধন গড়তে নির্গত শক্তি

বা ,
$$\Delta H = (A_2 + B_2) - (2AB)$$
 বা , $\Delta H = \{(A - B) - (B - B)\}$ বা , $-111 = (A - A) + 151 - (2 \times 349)$ বা , $(A - A) = -151 + 698 - 111$ $\therefore (A - A) = 436$ সুতরাং , $A - A$ এর বন্ধনশক্তি 436 kJ/mole

(ঘ) উদ্দীপকের বিক্রিয়াটি পুনরায় লিখে-

 $A_2 + B_2 \rightleftharpoons 2AB$; $\Delta H = -111kJ$

বিক্রিয়াটি একটি তাপোৎপাদী বিক্রিয়া। কীভাবে বিক্রিয়াটির উৎপাদ বৃদ্ধি করা যায় তা লা-শাতেলিয়ার নীতির আলোকে নিচে বিশ্লেষণ করা হলো- তাপমাত্রার প্রভাব : যেহেতু বিক্রিয়াটি একটি তাপোৎপাদী বিক্রিয়ায় তাই তুলনামূলক কম তাপে বিক্রিয়ার সাম্যাবস্থা বাম থেকে ডানদিকে গিয়ে উৎপাদের পরিমাণ বৃদ্ধি করে। অর্থাৎ কম তাপে A_2 ও B_2 পরক্ষার যুক্ত হয়ে অধিক উৎপাদ AB তৈরি করে।

চাপের প্রভাব : এ বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের মোল সংখ্যা সমান। এজন্য বিক্রিয়ার সাম্যাবস্থায় চাপের কোনো প্রভাব নেই।

ঘনমাত্রা প্রভাব : এ বিক্রিয়ায় বিক্রিয়কে কিছু পরিমাণ A_2 বা B_2 যোগ করলে বিক্রিয়কের ঘনমাত্রা বৃদ্ধি পাবে। ফলে বিক্রিয়ার সাম্যাবস্থা বাম থেকে ডানে গিয়ে উৎপাদ AB এর পরিমাণ বৃদ্ধি করে। আবার উৎপাদ AB উৎপন্ন হওয়ার সাথে সাথে বিক্রিয়ায় স্থান থেকে সরিয়ে নিতে হবে, নয়তো বিপরীত বিক্রিয়ার মাধ্যমে উৎপাদের পরিমাণ কমে যাবে।

- - (ক) ব্যাপন কাকে বলে?
 - (খ) সঞ্চারণশীল ইলেকট্রন বলতে কী বুঝায়?
 - (গ) উদ্দীপকের বিক্রিয়া থেকে ΔH এর মান হিসাব কর।
 - (ঘ) সাম্যাবস্থায় বিক্রিয়াটিতে চাপ ও ঘনমাত্রার প্রভাব বিশ্লেষণ কর।

৪ নং প্রশ্নের উত্তর

- (ক) ব্যাপন হলো কোনো মাধ্যমে কঠিন, তরল বা গ্যাসীয় বস্তুর স্বতঃস্কূর্ত ও সমভাবে পরিব্যাপ্ত হওয়ার প্রক্রিয়া।
- (খ) কোনো কোনো যৌগে দেখা যায় যে, বন্ধন গঠনে অংশ গ্রহণকারী ইলেকট্রনগুলো <mark>এ</mark>কটি বা দুটি পরমাণুতে আবন্ধ না থেকে সমগ্র অণুতে পরিভ্রমণরত থাকে, এদেরকে সঞ্চারণশীল ইলেকট্রন বলে। যেমন বেনজিন অণ্র সঞ্চারণশীল ইলেকট্রন।

চিত্ৰ : বেনজিন

(গ) উদ্দীপকের বিক্রিয়াটি-

$$CH \equiv CH + 2H_2(g) \longrightarrow CH_3 - CH_3$$
 আমরা জানি

 $\Delta H =$ পুরাতন কন্ধন ভাঙার শক্তি - নতুন বন্ধন গড়তে নির্গত শক্তি $= (CH \equiv CH + 2H_2) - (CH_3 - CH_3)$

$$= \{H - C \equiv C - H + 2(H - H)\} - \{H - C - C - H\}$$

$$= \{H - C \equiv C - H + 2(H - H)\} - \{H - C - C - H\}$$

$$= \{2(C - H) + I(C \equiv C) + 2(H - H)\} - \{6(C - H) + 1(C - C)\}$$

$$\Delta H = \{1(C \equiv C) + 2(H - H)\} - \{4(C - H) + I(C - C)\}$$

C)}
এখন, উদ্দীপক হতে বন্ধন শক্তির মানগুলো বসিয়ে পাই, $\Delta H = \{812 + (2 \times 436)\} - \{(4 \times 414) + (1 \times 344)\}$ = 1684 - 2000

বুসায়ৰ ৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

= -316

সুতরাং উদ্দীপকের বিক্রিয়ার ∆H মান 316 kJ mol⁻¹।

(ঘ) উদ্দীপক বিক্রিয়াটি প্রদত্ত,

$$CH \equiv CH(g) + 2H_2(g) \rightarrow CH_3 - CH_3(g); \Delta H = -316$$
 kJ mol⁻¹

বিক্রিয়াটি তাপোৎপাদী বিক্রিয়া। নিচে বিক্রিয়ার সাম্যাবস্থায় চাপ ও ঘনমাত্রার প্রভাব বিশ্লেষণ করা হলো-

- ১. চাপের প্রভাব : বিক্রিয়াটিতে বিক্রিয়কের মোল সংখ্যা 3 এবং উৎপাদের মোল সংখ্যা 1 অর্থাৎ বিক্রিয়াটি আয়তন ব্রাসের মাধ্যমে ঘটে। এজন্য অধিক চাপে বিক্রিয়ার সাম্যাবয়্থা বাম থেকে ডানদিকে অগ্রসর হয় এবং উৎপাদ CH3 — CH3 এর পরিমাণ বৃদ্ধি করে। চাপ কমালে বিক্রিয়ার সাম্যাবয়্থা ডান থেকে বামে সরে আসে এবং উৎপাদের পরিমাণ ব্রাস ঘটে।
- ২. ঘনমাত্রার প্রভাব : উদ্দীপকের বিক্রিয়ার সাম্যাবস্থায় কিছু $CH \equiv CH$ বা H_2 গ্যাস যোগ করলে বিক্রিয়কের ঘনমাত্রা বৃদ্ধি পায়। ফলে রাসায়নিক বিক্রিয়ার সাম্যাবস্থা বাম থেকে ডানে সরে গিয়ে উৎপাদ $CH_3 CH_3$ এর পরিমাণ বৃদ্ধি করে। আবার সাম্যাবস্থায় কিছু $CH \equiv CH$ বা H_2 গ্যাস সরিয়ে নিলে উৎপাদের হ্রাস ঘটে।
- \mathfrak{E} . (i) FeCl₃ + H₂S \longrightarrow FeCl₂ + HCl + S
 - (ii) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$; $\Delta H = -198kJ/mole$

[চট্টগ্রাম বোর্ড ২০২৪]

- (ক) রাসায়নিক সাম্যাবস্থা কাকে বলে?
- (খ) জারণ সংখ্যা ও যোজনী এক নয় ব্যাখ্যা কর।
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটিতে জারণ–বিজারণ যুগপৎ সংঘটিত হয় ব্যাখ্যা কর।
- (ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি থেকে উৎপাদন সর্বোচ্চ পাওয়ার ক্ষেত্রে লা−শাতেলিয়ে নীতির গুরুত্ব বিশ্লেষণ কর।

৫ নং প্রশ্নের উত্তর

- (ক) রাসায়নিক সাম্যাবস্থা হলো একটি গতিশীল অবস্থা, যে অবস্থায় কোনো উভমুখী বিক্রিয়ার সম্মুখমুখী বিক্রিয়ার হার পশ্চাৎমুখী বিক্রিয়ার হারের সমান হয়।
- (খ) যোজনী ও জারণ সংখ্যা এ<mark>ক নয়, এ</mark>র কারণ নিচে ব্যাখ্যা করা হলো
 - (i) কোনো মৌলের যোজনী হলো অপর মৌলের সাথে যুক্ত হওয়ার ক্ষমতা। যোজনীর কোনো ধনাত্মকতা বা ঋণাত্মকতা নেই। অপরদিকে কোনো যৌগে কোনো মৌলের জারণ সংখ্যা বলতে এমন একটি সংখ্যাকে বোঝায়, যা দ্বারা সংশ্লিষ্ট পরমাণুতে সৃষ্ট চার্জের প্রকৃতি ও সংখ্যামান উভয়ই প্রকাশ পায়। জারণ সংখ্যা ধনাত্মক ও ঋণাত্মক বা শূন্য হতে পারে।
 - (ii) মৌলের যোজনী সব সময় পূর্ণসংখ্যা। কিন্তু জারণ সংখ্যা ভগ্নাংশ হতে পারে।

সুতরাং, বলা যায়, জারণ সংখ্যা ও যোজনী একই বিষয় নয়।

(গ) উদ্দীপকের (i) নং বিক্রিয়াটি-

 $FeCl_3 + H_2S \longrightarrow FeCl_2 + HCl + S$

দর্শক আয়নবাদে বিক্রিয়াটি- $Fe^{3+}+S^{2-}\longrightarrow Fe^{2+}+S^0$

বিজারণ বিক্রিয়া : $2Fe^{3+} + 2e^{-} \longrightarrow 2Fe^{2+}$ (ইলেকট্রন গ্রহণ)

জারণ-বিজারণ বিক্রিয়া : $S^{2-} + 2Fe^{3+} \longrightarrow S + Fe^{2+}$

দর্শক আয়ন যোগে বিক্রিয়াটি-

 $2FeCl_3 + H_2S \longrightarrow FeCl_2 + HCl + S$

যেহেতু বিক্রিয়াটিতে S^{2-} আয়ন ইলেকট্রন ত্যাগ করে জারিত হয় এবং Fe^{3+} আয়ন ইলেকট্রন গ্রহণ করে বিজারিত হয়। অর্থাৎ বিক্রিয়াটি ইলেকট্রন স্থানান্তরের মাধ্যমে ঘটেছে।

সুতরাং, উদ্দীপকের (i) নং বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ সংঘটিত হয়।

- (ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি-
 - $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g); \Delta H = -198kJ/mole$ নিচে বিক্রিয়াটি থেকে সর্বোচ্চ উৎপাদ পাওয়ার ক্ষেত্রে লা-শাতেলিয়ার নীতির গুরুত্ব বিশেষণ করা হলো-
 - তাপমাত্রার প্রভাব : বিক্রিয়াটি তাপোৎপাদী অর্থাৎ এক্ষেত্রে তাপ নির্গত হয় । সুতরাং লা-শাতেলিয়ারের নীতি অনুয়ায়ী তাপমাত্রা কমালে সাম্যাবয়্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ SO₃-এর উৎপাদন বেড়ে যাবে ।
 - চাপের প্রভাব : বিক্রিয়াটিতে বিক্রিয়কের মোট মোল সংখ্যা (3)
 অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম। সুতরাং চাপ
 বাড়ালে লা শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবয়্থা বাম থেকে
 ডান দিকে সরে যাবে অর্থাৎ SO3 এর উৎপাদন বাড়বে।
 - ৩. প্রভাবকের প্রভাব : উদ্দীপকের বিক্রিয়ায় সর্বোচ্চ SO_3 পেতে প্রভাবক হিসাবে V_2O_5 ব্যবহার করা হয়।
 - 8. ঘনমাত্রার প্রভাব : বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়ার সংশ্লিষ্ট কোনো উপাদান যেমন- SO_2 বা O_2 যোগ করলে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ SO_3 এর উৎপাদন বৃদ্ধি পাবে।
- - (ii) $2NO_2(g) \rightleftharpoons N_2O_4(g)$

[সিলেট বোর্ড ২০২৪]

- (ক) রাসায়নিক সমীকরণ কাকে বলে?
- (খ) $0.01~{
 m M~HCl}$ দ্রবণ বলতে কী বোঝায়? ব্যাখ্যা কর।
- (গ) (i) নং বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়া ব্যাখ্যা কর।
- (ঘ) (ii) নং বিক্রিয়ার সাম্যাবস্থার উপর চাপ ও ঘনমাত্রার প্রভাব বিশ্লেষণ কর।

৬ নং প্রশ্নের উত্তর

- (ক) রাসায়নিক বিক্রিয়াকে সংক্ষেপে উপস্থাপন করার জন্য যে সমীকরণ ব্যবহার করা হয় সেই সমীকরণকে রাসায়নিক সমীকরণ বলে।
- (খ) $0.01~{
 m M}$ HCl দ্রবণ বলতে বুঝায়, নির্দিষ্ট তাপমাত্রায় $1~{
 m fe}$ টার HCl দ্রবণে $0.01~{
 m mol}$ HCl দ্রব আছে। অর্থাৎ নির্দিষ্ট তাপমাত্রায় কোনো দ্রবণের প্রতি লিটারে $0.01~{
 m cm}$ মোল দ্রব থাকলে সে দ্রবণকে সেন্টিমোলার দ্রবণ বলে।
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটি-

$$Ca^{0} + 2HNO_{3}^{-} \rightarrow Ca^{2+}(NO_{3}^{-})_{2} + H_{2}^{0}$$

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি-

 $2NO_2(g) \rightleftharpoons N_2O_4(g)$

বিক্রিয়াটি গ্যাসীয় উভমুখী এবং আয়তন ব্রাসের মাধ্যমে ঘটে। নিচে বিক্রিয়ার সাম্যাবস্থার উপর চাপ ও ঘনমাত্রার প্রভাব বিশ্লেষণ করা হলো—

- ১. চাপের প্রভাব : বিক্রিয়াটিতে বিক্রিয়কের মোল সংখ্যা 2 থেকে ব্রাস পেয়ে উৎপাদের মোল সংখ্যা । হয়েছে । অর্থাৎ বিক্রিয়াটি আয়তন ব্রাসের মাধ্যমে ঘটেছে । এজন্য বিক্রিয়ার সাম্যাবস্থায় অধিক চাপ প্রয়োগের ফলে সাম্যাবস্থা বাম থেকে ডানে গিয়ে উৎপাদ N_2O_4 এর পরিমাণ বৃদ্ধি করবে । কম চাপে বিক্রিয়ার সাম্যাবস্থা ডান থেকে বামে সরে আসে বলে উৎপাদের পরিমাণ ত্রাস পায় ।
- ২. ঘনমাত্রার প্রভাব : বিক্রিয়ার সাম্যাবস্থায় কিছু পরিমাণ NO2 যোগ করলে বিক্রিয়কের ঘনমাত্রা বেড়ে যায়। ফলে বিক্রিয়ার সাম্যাবস্থা বাম থেকে ভানে সরে গিয়ে উৎপাদ N2O4 এর পরিমাণ বৃদ্ধি করে। আবার বিক্রিয়াটি উভমুখী হওয়ায় উৎপাদ উৎপন্ন হওয়ার সাথে সাথে বিক্রিয়ান্থান থেকে সরিয়ে নিতে হবে নয়তো বিপরীত বিক্রিয়ার মাধ্যমে উৎপাদের পরিমাণ ব্রাস ঘটবে।
- (i) C₂H₆(g) + Cl₂(g) → C₂H₅Cl(g) + HCl(g) + 481
 kJ. [এখানে, C H = 414 kJ/mol, Cl C = 244 kJ/mol, H Cl = 431 kJ/mol]
 - (ii) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92 \text{ kJ/mol.}$ [দিনাজপুর বোর্ড ২০২৪]
 - (ক) সুপ্ত যোজনী কাকে বলে?
 - (খ) He কে গ্রুপ 2 এর রাখা হয় নি কেন? ব্যাখ্যা কর।
 - (গ) (i) নং বিক্রিয়ায় C-Cl এর বন্ধন শক্তি নির্ণয় কর।
 - ্ঘ্য (ii) নং বিক্রিয়াটির সাম্যাবস্থার উপর তাপ ও চাপের প্রভাব বিশ্লেষণ কর।

৭ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের সর্বোচ্চ যোজনী ও সক্রিয় যোজনীর পার্থক্যকে সুপ্ত যোজনী বলে।
- (খ) হিলিয়াম (He) এর ইলেকট্রন বিন্যাস $1s^2$ । অর্থাৎ হিলিয়ামের (He) সর্বশেষ কক্ষপথে 2টি ইলেকট্রন রয়েছে। তাই স্বাভাবিকভাবে

He এর অবস্থান পর্যায় সারণিতে দ্বিতীয় গ্রুপে মৃৎক্ষার ধাতুদের সাথে হওয়া উচিত। He এর সর্বশেষ কক্ষপথ ইলেকট্রন দ্বারা পূর্ণ থাকায় He গ্রুপ-2 এর মৌলসমূহের মত সক্রিয়তা, ধাতব বৈশিষ্ট্য প্রদর্শন করে না। সর্বোপরি, মৃৎক্ষার ধাতুদের সাথে ইলেকট্রন বিন্যাস ব্যতীত বৈশিষ্ট্যগত কোন মিল না থাকায় He কে গ্রুপ-2 এ না রেখে শূন্য (0) গ্রুপে রাখা হয়েছে।

(গ) উদ্দীপকের (i) নং বিক্রিয়া-

 $C_2H_6(g) + Cl_2(g) \longrightarrow C_2H_5Cl(g) + HCl(g) + 481 \text{ kJ}$ আমরা জানি ,

 $\Delta H = পুরাতন বন্ধন ভাঙতে শক্তি – নতুন বন্ধন গড়তে নির্গত শক্তিবা, <math>\Delta H = (C_2H_2 + Cl_2) - (C_2H_5Cl + HCl)$

ৰা,
$$\Delta H = \begin{pmatrix} H & H \\ H - C - C - H + CI - CI \\ H & H \end{pmatrix} - \begin{pmatrix} H & H \\ H - C - C - CI + H - CI \\ H & H \end{pmatrix} - \begin{pmatrix} H & H \\ H - C - C - CI + H - CI \\ H & H \end{pmatrix}$$
 ৰা, $\Delta H = \{6(C-H) + 1(C-C) + 1(CI-CI)\} - \{5(C-H) + 1(C-C) + 1(C-CI) + 1(H-CI)\}$ ৰা, $\Delta H = \{1(C-H) + 1(CI-CI)\} - \{1(C-CI) + 1(H-CI)\}$ ৰা, $-481 = (414 + 244) - \{(C-CI) + 431\}$

[উদ্দীপক হতে বন্ধন শক্তির মানগুলো বসিয়ে]

বা, (C - C1) = 708 kJ/mol

সুতরাং, (i) নং বিক্রিয়ার C-Cl এর কন্ধন শক্তি 708~kJ.mole ।

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি-

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92~kJ$ নিচে বিক্রিয়াটির সাম্যাবস্থায় তাপ ও চাপের প্রভাব ব্যাখ্যা করা হলো- তাপমাত্রার প্রভাব : বিক্রিয়াটিতে ΔH এর মান ঋণাত্মক হওয়ায় এটি একটি তাপোৎপাদী বিক্রিয়া অর্থাৎ এক্ষেত্রে তাপ নির্গত হয় । সুতরাং, তাপমাত্রা বাড়ালে লা-শাতেলিয়ার নীতি অনুযায়ী বিক্রিয়ার সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে । অর্থাৎ NH_3 -এর উৎপাদন ব্রাস পাবে । আবার, তাপমাত্রা কমালে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ NH_3 -এর উৎপাদন বেড়ে যাবে ।

চাপের প্রভাব : লা-শাতেলিয়ারের নীতি অনুসারে, যে সকল উভমুখী বিক্রিয়ায় বিক্রিয়ক ও উৎপাদ গ্যাসীয় এবং বিক্রিয়ায় আয়তনের পরিবর্তন ঘটে তাদের সাম্যাবস্থার উপর চাপের প্রভাব রয়েছে। বিক্রিয়াটিতে বিক্রিয়কের মোট মোল সংখ্যা (4) অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম। এক্ষেত্রে আয়তনের ব্রাসের মাধ্যমে বিক্রিয়াটি ঘটে। সুতরাং, চাপ বাড়ালে লা-শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে অর্থাৎ NH3-এর উৎপাদন বৃদ্ধি পাবে। আবার চাপ কমালে সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে অর্থাৎ NH3-এর উৎপাদন ব্রাস পাবে।

 $b. Na + H_2SO_4 \longrightarrow X + H_2$

মিয়মনসিংহ বোর্ড ২০২৪

- (ক) উভয়মুখী বিক্রিয়া কাকে বলে?
- (খ) "নাইট্রোজেনের আণবিক ভর 28" ব্যাখ্যা কর।
- (গ) উদ্দীপকের X যৌগে সালফারের জারণ মান নির্ণয় কর।

বসায়ৰ

৭ম অধ্যায

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

(ঘ) উদ্দীপকের বিক্রিয়াটিতে সমীকরণসহ বিশ্লেষণ কর – "জারণ | ৯. $3H_2(g) + X_2(g) \rightleftharpoons 2XH_3(g); \Delta H = ?$ ছাডা বিজারণ বিক্রিয়া সংঘটিত হয়নি"।

৮ নং প্রশ্নের উত্তর

- (ক) যে রাসায়নিক বিক্রিয়ায় বিক্রিয়ক পদার্থ বিক্রিয়া করে উৎপাদে পরিণত হয় আবার উৎপাদ পদার্থগুলো বিক্রিয়া করে পুনরায় বিক্রিয়ক পদার্থে পরিণত হয় সে বিক্রিয়াকে উভমখী বিক্রিয়া বলা হয়।
- (খ) জানা আছে. কোনো মৌলিক বা যৌগিক পদার্থের অণুতে যে পরমাণুগুলো থাকে তাদের আপেক্ষিক পারমাণবিক ভরকে নিজ নিজ পরমাণু সংখ্যা দিয়ে গুণ করে যোগ করলে প্রাপ্ত যোগফলই হলো ঐ অণুর আণবিক ভর। নাইট্রোজেনের আণবিক ভর 28 বলতে বুঝায়, নাইট্রোজেন এর পারমাণবিক ভর (14 × 2)। কেননা নাইট্রোজেন একটি দ্বি-পরমাণুক গ্যাস (N2)।

এজন্য নাইট্রোজেনের আণবিক ভর = $14 \times 2 = 28$ ।

(গ) উদ্দীপকের বিক্রিয়াটি পূর্ণ করে-

$$2Na + H_2SO_4 \longrightarrow Na_2SO_4 + H_2$$
(X)

সুতরাং, X হলো Na₂SO₄। ধরি Na₂SO₄ যৌগে S প্রমাণুর জারণ মান = X

তাহলে, এখানে. Na এর জারণ মান = \therefore Na₂SO₄ = 0 $(1 \times 2) + x + (-2 \times 4)$ বা, O এর জারণ মান = -= 0বা, 2 + x - 8 = 0:. x = +6

সুতরাং, Na_2SO_4 যৌগে সালফারের জারণমান +6।

(ঘ) উদ্দীপকের বিক্রি<mark>য়াটিতে জারণ ছাডা</mark> বিজারণ বিক্রিয়া সংঘটিত হয় নি। নিচে তা সমীকরণসহ বিশ্লেষণ করা হলো-বিক্রিয়াটি পুনরায় লিখে পাই

 $2Na + H_2SO_4 \rightarrow Na_2SO_4 + H_2$ দর্শক আয়ন ছাড়া বিক্রিয়াটি-

$$\begin{array}{c}
0 \\
Na + H^+ \longrightarrow Na^+ + H_2
\end{array}$$

দেখা যাচ্ছে, Na ধাতুর জারণ মান বিক্রিয়কে শূন্য (0) থেকে বৃদ্ধি পেয়ে উৎপাদ যৌগে +1 হয়েছে। তাই Na পরমাণুর জারণ ঘটেছে। অপরদিকে বিক্রিয়ক H^+ এর জারণমান +1 থেকে হ্রাস পেয়ে উৎপাদ H_2 অণুতে শুন্য (০) হয়েছে। অর্থাৎ H^+ এর জারণমান ব্রাস ঘটে বলে এর বিজারণ ঘটেছে। সুতরাং,

জারণ বিক্রিয়া : $2Na \rightarrow 2Na^+ + 2e$

বিজারণ বিক্রিয়া : $2H^+ + 2e \rightarrow H_2$

জারণ-বিজারণ : $2Na + 2H^+ \rightarrow 2Na^+ + H_2$

 \therefore দর্শক আয়ন যোগে, $2Na + H_2SO_4 \rightarrow Na_2SO_4 + H_2$ দেখা যাচেছ, Na ধাতু কর্তৃক ত্যাগ করা ইলেকট্রন H^+ আয়ন গ্রহণ ন করে বিজারিত হয়েছে। অর্থাৎ Na এর জারণ ছাড়া H^+ আয়নের বিজারণ সংঘটিত হয়নি।

-(8) -(8)	.077
বন্ধন	বন্ধন শক্তি kJ/mol
X - H	391
H - H	436
$X \equiv X$	946

[X প্রতীকী অর্থে ব্যবহৃত]

[ময়মনসিংহ বোর্ড ২০২৪]

- (ক) বিক্রিয়ার হার কাকে বলে?
- (খ) ইথাইন এবং বেনজিনের স্থুল সংকেত একই ব্যাখ্যা কর।
- (গ) উদ্দীপকের বিক্রিয়ায় ΔH এর মান নির্ণয় কর।
- (ঘ) উদ্দীপকের বিক্রিয়ায় লা-শাতেলিয়ার এর নীতির প্রয়োগ ঘটে কি? যুক্তিসহ বিশ্লেষণ কর।

৯ নং প্রশ্নের উত্তর

- (ক) একক সময়ে যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হয় তাকে বিক্রিয়ার হার বলে।
- (খ) স্থল সংকেত যৌগের অণুতে বিদ্যমান মৌলসমূহের প্রমাণুর সংখ্যার অনুপাত প্রকাশ করে। ফলে ভিন্ন আণবিক ভর বিশিষ্ট দুটি যৌগের স্থূল সংকেত এক হতে পারে। বেনজিনের আণবিক সংকেত C_6H_6 , আবার ইথাইন তথা অ্যাসিটিলিনের আণবিক সংকেত C_2H_2 । উভয়েরই প্রমাণ্র সংখ্যার অনুপাত C: H = 1: 1। ফলে উভয়েরই স্থূল সংকেত একই (CH) হয়।
- (গ) উদ্দীপকের বিক্রিয়াটি,

$$3H_2(g) + X_2(g) \rightleftharpoons 2X H_3(g)$$

আমরা জানি.

= পুরাতন বন্ধন ভাঙার প্রয়োজনীয় শক্তি — নতুন ΔH কন্ধন গড়তে নিৰ্গত শক্তি

$$= (3H2 + X2) - (2X H3)$$

$$= {3(H - H) + (X = X)} - {2 \times 3 \times (X - H)}$$

$$= {(3 \times 436) + 946} - (6 \times 391)$$

ি: উদ্দীপক হতে কখন শক্তির মানগুলো বসিয়ে পাই]

$$=2254-2346$$

$$= -92 \text{ kJ}$$

সুতরাং, উদ্দীপকের বিক্রিয়ার ΔH এর মান – 92 kJ।

(ঘ) উদ্দীপকের বিক্রিয়ার $\Delta H = -92 \; \mathrm{kJ}$ এবং $\mathrm{X} \equiv \mathrm{X}$ এর বন্ধন শক্তি $946~\mathrm{kJ/mol}$ হওয়ায় X_2 মৌলটি হলো N_2 । সুতরাং বিক্রিয়াটি হবে.

 $3H_2(g) + X_2(g) \rightleftharpoons 2XH_3(g); \Delta H = -92 \text{ kJ}$ বিক্রিয়াটির ক্ষেত্রে লা শাতেলিয়ার নীতির প্রয়োগ ঘটে। নিচে তা যুক্তিসহ বিশ্লেষণ করা হলো-

তাপমাত্রার প্রভাব: বিক্রিয়াটি তাপোৎপাদী অর্থাৎ এক্ষেত্রে তাপ নির্গত হয়। সুতরাং তাপমাত্রা বাড়ালে লা-শাতেলিয়ার নীতি অনুযায়ী বিক্রিয়ার সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে। অর্থাৎ ${
m NH_3}^-$ এর উৎপাদন হ্রাস পাবে। আবার, তাপমাত্রা কমালে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ NH_3^- এর উৎপাদন বেড়ে যাবে।

Prepared by: SAJJAD HOSSAIN

চাপের প্রভাব : বিক্রিয়াটিতে বিক্রিয়কের মোট মোল সংখ্যা (4) অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম । সুতরাং চাপ বাড়ালে লা শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে অর্থাৎ NH_3^- এর উৎপাদন বৃদ্ধি পাবে । আবার চাপ কমালে সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে অর্থাৎ NH_3^- -এর উৎপাদন ব্রাস পাবে ।

ঘনমাত্রার প্রভাব : বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়ার সংশ্লিষ্ট কোনো উপাদান যেমন- N_2 বা H_2 যোগ করলে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ NH_3 এর উৎপাদন বৃদ্ধি পাবে। আবার, বিক্রিয়ার সাম্যাবস্থায় NH_3 যোগ করলে সাম্যাবস্থা ডান থেকে বাম দিকে অগ্রসর হবে অর্থাৎ NH_3 এর উৎপাদন ব্রাস পাবে।

So. (i)
$$CO_2 + H_2O \rightarrow H_2CO_3$$

(ii) $N_2 + O_2 \rightarrow 2NO$

[ঢাকা বোর্ড ২০২৩]

- (ক) দহন বিক্রিয়া কাকে বলে?
- (খ) নিঃসরণ ও ব্যাপন দুটি ভিন্ন প্রক্রিয়া কেন?
- (গ) (i) নম্বও বিক্রি<mark>য়ায় উৎপাদের ক্ষেত্রে 'C'</mark> এর জারণ মান নির্ণয় করো।
- ্ঘ) (i) এবং (ii) নম্বর বিক্রিয়া দুইটির উভয়েই সংযোজন বিক্রিয়া হলেও কেবল একটি সংশ্লেষণ বিক্রিয়া যুক্তিসহ বিশ্লেষণ করে।

১০ নং প্রশ্নের উত্তর

- (ক) কোনো মৌল বা <mark>যৌগকে বা</mark>তাসের অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদান মৌলের অক্সাইডে পরিণত করার প্রক্রিয়াকে দহন বিক্রিয়া বলে।
- (খ) ব্যাপন ও নিঃস<mark>রণ</mark> দুটি ভিন্ন প্রক্রিয়া। কারণ-

ব্যাপন হলো সাধারণ বায়ুমণ্ডলীয় চাপে অণুসমূহের স্বতঃস্কূর্ত মন্থর প্রক্রিয়া। অন্যদিকে, নিঃসরণ হলো অধিক চাপের প্রভাবে গ্যাসীয় দ্রুত প্রক্রিয়া। আবার ব্যাপনের বেলায় আধারের ভিতরে ও বাইরে একই বায়ুচাপ থাকে। অন্যদিকে নিঃসরণের বেলায় আধারের ভিতরে অধিক চাপ এবং বাইরে কম চাপ বা ভ্যাকুয়াম অবস্থা থাকে। এ কারণেই বলা যায়, নিঃসরণ ও ব্যাপন দুটি ভিন্ন প্রক্রিয়া।

(গ) উদ্দীপকের (i) নং বিক্রিয়ার উৎপাদ H_2CO_3 ।

ধরি, H2CO3 এর C প্রমাণুর জারণ সংখ্যা x

তাহলে,
$$(+1 \times 2) + x + (-2 \times 3) = 0$$

বা,
$$2 + x - 6 = 0$$

বা,
$$x - 4 = 0$$

$$\therefore x = +4$$

সুতরাং, (i) নম্বর বিক্রিয়ার উৎপাদের ক্ষেত্রে C এর জারণ মান +

্ঘ) উদ্দীপকের (i) ও (ii) নম্বর বিক্রিয়া দুইটির উভয়ই সংযোজন বিক্রিয়া হলেও কেবল (ii) নং বিক্রিয়াটি সংশ্লেষণ বিক্রিয়া। নিচে তা বিশ্লেষণ করা হলো-

জানা আছে, দুই বা ততোধিক যৌগ বা মৌল পরস্পরের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন হওয়ার প্রক্রিয়ার নাম সংযোজন বিক্রিয়া। যেমন- উদ্দীপকের (i) নং বিক্রিয়ায় CO_2 ও H_2O যৌগদ্বয় পরস্পরের সাথে যুক্ত হয়ে H_2CO_3 যৌগ গঠন করেছে। আবার, উদ্দীপকের (ii) নং বিক্রিয়ায় N_2 ও O_2 পরস্পরের সাথে যুক্ত হয়ে NO যৌগ গঠন করেছে। অর্থাৎ বিক্রিয়া দুটি সংযোজন বিক্রিয়া। অপরদিকে, সংযোজন বিক্রিয়ায় দুই বা ততোধিক মৌলিক পদার্থ যুক্ত হয়ে নতুন যৌগ উৎপন্ন হলে তাকে সংশ্লেষণ বিক্রিয়া বলে। যেমন (ii) নং বিক্রিয়াটিতে বিক্রিয়ক N ও O উভয়ই মৌল হওয়ায় বিক্রিয়াটি সংশ্লেষণ বিক্রিয়া । কিন্তু উদ্দীপকের (i) নং বিক্রিয়াটিতে বিক্রিয়ক দুটি $(CO_2$ ও $H_2O)$ যৌগ হওয়ায় এটি সংশ্লেষণ বিক্রিয়া নয়।

সুতরাং, উদ্দীপকের বিক্রিয়া দুটি উভয়ই সংযোজন বিক্রিয়া হলেও কেবল একটি সংশ্লেষণ বিক্রিয়া।

- \$\\ \text{(i) N2(g) + O2(g)} \Rightharpoonup 2NO(g); \Delta H = +180 kJ
 - (ii) $2K + Cl_2 \rightleftharpoons 2KCl$

[ময়মনসিংহ বোর্ড ২০২৩]

- (ক) সমানু কী?
- (খ) ধাতব বন্ধন ব্যাখ্যা করো।
- (গ) উদ্দীপকের (ii) নং বিক্রিয়ায় ইলেকট্রন স্থানান্তর প্রক্রিয়া ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের (i) নং বিক্রিয়াটিতে সাম্যাবস্থায় তাপ, চাপ ও ঘন্মাত্রা<mark>র প্র</mark>ভাব বিশ্রেষণ করে।

১১ নং প্রশ্নের উত্তর

- (ক) <mark>যদি দুটি যৌগের</mark> আণবিক সংকেত একই থাকে কিন্তু গাঠনিক সংকেত ভি<mark>ন্ন হ</mark>য় তবে <mark>তা</mark>দেরকে পরস্পরের সমাণু বলা হয়।
- (খ) দুটি ধাতব পরমাণু কাছাকাছি এলে তাদের মধ্যে যে বন্ধন গঠিত হয় সেটাকে ধাতব বন্ধন বলে। অর্থাৎ এক খণ্ড ধাতুর মধ্যে পরমাণুসমূহ যে আকর্ষণের মাধ্যমে যুক্ত থাকে তাকেই ধাতব বন্ধন বলে। যেমন-তামার তার, লোহার তৈরি ছুরি, কাঁচি, দা কিংবা জানালার গ্রিল, অ্যালুমিনিযামের তৈরি জানালা, সোনার, অলংকার ইত্যাদিতে ধাতব কখন বিদ্যমান।
- (গ) উদ্দীপকের (ii) নং বিক্রিয়াটি-

$$\begin{array}{ccc}
0 & 0 & +1 & -1 \\
2K + Cl_2 &\rightleftharpoons 2KCl
\end{array}$$

বিক্রিয়াটি একটি জারণ-বিজারণ বিক্রিয়া। নিচে বিক্রিয়াটিতে ইলেকট্রন স্থানান্তর প্রক্রিয়া ব্যাখ্যা করা হলো-

যে বিক্রিয়ায কোনো বিক্রিয়ক ইলেকট্রন দান করে তাকে জারণ বিক্রিয়া বলে। এক্ষেত্রে K ধাতু 1টি ইলেকট্রন ত্যাগ করে K^+ আয়নে পরিণত হয়। তাই ধাতুর জারণ ঘটে।

$$K \longrightarrow K^+ + e^-$$
 (জারণ বিক্রিয়া)

আবার, যে বিক্রিয়ায় কোনো বিক্রিয়ক ইলেকট্রন গ্রহণ করে বিজারিত হয় তাকে বিজারণ বিক্রিয়া বলে। এক্ষেত্রে ${\rm Cl}_2$ অণু 2টি ইলেকট্রন গ্রহণ করে ${\rm Cl}^-$ আয়নে পরিণত হয়।

$$Cl_2 + 2e \longrightarrow 2Cl^-$$
 (বিজারণ বিক্রিয়া)

সুতরাং দেখা যাচ্ছে, উদ্দীপকের (ii) নং বিক্রিয়াটি ইলেকট্রন স্থানান্তরের মাধ্যমে ঘটে।

(ঘ) উদ্দীপকের (i) নং বিক্রিয়াটি-

৭ম অধ্যায়

N₂(g) + O₂(g) ⇌ 2NO(g); $\Delta H = +180 \text{ kJ}$ বিক্রিয়াটিতে সাম্যাবস্থায় ভাপ, চাপ ও ঘনমাত্রার প্রভাব নিচে বিশ্লেষণ করা হলো-

তাপের প্রভাব : এ বিক্রিয়ার ΔH মান ধনাত্মক হওয়ায় বিক্রিয়াটি তাপহারী বিক্রিয়া । লা-শাতেলিয়ার নীতি অনুসারে, এ বিক্রিয়ার সাম্যাবস্থায় তাপ প্রয়োগ করা হলে বিক্রিয়ার সাম্যা বামদিক থেকে ডানদিকে সরে যাবে অর্থাৎ N_2 ও O_2 বিক্রিয়া করে NO উৎপন্ন হবে । আবার সাম্যাবস্থায় তাপ ব্রাস করা হলে বিক্রিয়ার সাম্য ডানদিক থেকে বামদিকে সরে যাবে অর্থাৎ NO ভেঙে N_2 ও O_2 উৎপন্ন হবে । চাপের প্রভাব : প্রদন্ত বিক্রিয়ায় বিক্রিয়ক এর মোট মোল সংখ্যা 1+1=2 এবং উৎপাদের মোট মোল সংখ্যাও 1+1=1=2 এবং উৎপাদের মোট মোল সংখ্যাও 1+1=1=1 অর্থাৎ এ বিক্রিয়ায় মোলের পরিবর্তন হয় না । জানা আছে, যে সকল বিক্রিয়ায় গ্যাসীয় অণু সংখ্যার ব্রাস-বৃদ্ধি ঘটে না সে সকল বিক্রিয়াতে চাপের কোনো প্রভাব থাকে না । সুতরাং বলা যায় , এই বিক্রিয়ার সাম্যাবস্থায় চাপের কোনো প্রভাব নেই ।

ঘনমাত্রার প্রভাব : বিক্রিয়াটি গ্যাসীয় উভমুখী বিক্রিয়া । এ বিক্রিয়ায় বিক্রিয়কে কিছু পরিমাণ N_2 অথবা O_2 যোগ করলে বিক্রিয়কের ঘনমাত্রা বৃদ্ধি পাবে । ফলে বিক্রিয়ার সাম্যাবস্থা ডানদিকে সরে গিয়ে উৎপাদ NO এর পরিমাণ বৃদ্ধি করবে । আবার উৎপাদে কিছু পরিমাণ NO যোগ করলে বিক্রিয়ার সাম্যাবস্থা বামে সরে গিয়ে উৎপাদের পরিমাণ হ্রাস করবে ।

১২.
$$N_2(g) + 3H_2(g) \rightleftharpoons 2A(g); \Delta H = -92kJ$$
 রাজশাহী রোর্ড ২০২৩

- (ক) ইলেকট্রন আসক্তি কাকে বলে?
- (খ) একাধিক <mark>যৌগের স্থল সংকেত</mark> একই হতে পারে ব্যাখ্যা <mark>করো</mark>।
- (গ) $40g\ N_2$ প্রয়োজনীয় পরিমাণ H_2 এর সাথে বিক্রিয়া করে 47g 'A' উৎপন্ন হয়। উৎপাদের শতকরা পরিমাণ নির্ণয় করো।
- (ঘ) উদ্দীপকের বিক্রিয়ার সাম্যাবস্থার উপর তাপ ও চাপের প্রভাব বিশ্রেষণ করো।

১২ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের 1 mol চার্জ নিরপেক্ষ গ্যাসীয় বিচ্ছিন্ন পরমাণু 1 mol ইলেকট্রনের সাথে যুক্ত হয়ে একক ঋণাত্মক চার্জযুক্ত গ্যাসীয় আয়ন সৃষ্টি করতে যে পরিমাণ শক্তি নির্গত হয়, তাকে সেই মৌলের ইলেকট্রন আসক্তি বলে।
- (খ) যে সংকেত দ্বারা অণুতে বিদ্যমান প্রমাণুসমূহের ক্ষুদ্রতম পূর্ণ অনুপাত প্রকাশ করে তাকে ছুল সংকেত বলে। একই ছুল সংকেত একাধিক যৌগের হতে পারে। যেমন- বেনজিন ও অ্যাসিটিলিন উভয় যৌগের ছুল সংকেত CH। কিন্তু বেনজিনের আণবিক সংকেত C_6H_6 এবং অ্যাসিটিলিনের সংকেত C_2H_2 । এজন্য বলা যায়, একই ছুল সংকেত একাধিক যৌগের ক্ষেত্রে প্রযোজ্য।
- (গ) উদ্দীপকের বিক্রিয়াটি নিমুরূপ-

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

 $28 g \quad 3 \times 2 \quad 'A'$
 $= 6 g \quad 2(14+3)$
 $= 2 \times 17 = 34 g$

বিক্রিয়া হতে.

 $28~g~N_2$ বিক্রিয়ক হতে উৎপাদ উৎপন্ন করে $=34~g~NH_3$

- $\therefore \ 1 \ \mathrm{g} \ \mathrm{N}_2$ বিক্রিয়ক হতে উৎপাদ উৎপন্ন করে $= \frac{34}{28} \ \mathrm{g} \ \mathrm{NH}_3$
- $ightharpoonup 40~g~N_2$ বিক্রিয়ক হতে উৎপাদ উৎপন্ন করে $= \frac{34 imes 40}{28}~g$ NH 3

 $=48.57 \text{ g NH}_3$

প্রশ্নানুসারে, বিক্রিয়া সংঘটিত হওয়ার পর $47~g~NH_3(g)$ উৎপন্ন হয়। অতএব, উৎপাদের শতকরা পরিমাণ

বিক্রিয়া সংঘটিত হওয়ার পর প্রাপ্ত প্রকৃত উৎপাদের পরিমাণ

রাসায়নিক বিক্রিয়া সমীকরণ থেকে হিসাবকৃত উৎপাদের পরিমাণ

× 100

$$= \frac{47}{48.57} \times 100 = 96.76\%$$

সুতরাং, উদ্দীপকের বিক্রিয়ায় উৎপাদের শতকরা পরিমাণ 96.76%।

(ঘ) উদ্দীপক প্রদত্ত বিক্রিয়াটি পূর্ণ করে পাই-

 $N_2(g) + 3H_2(g) \rightleftharpoons 2A(g); \Delta H = -92kJ$

উপরিউক্ত বিক্রিয়াটি তাপোৎপাদী বিক্রিয়া, কেননা ΔH এর মান ঋণাত্মক। বিক্রিয়াটির সাম্যাবস্থায় তাপ ও চাপের প্রভাব নিম্নূরূপ-

তাপমাত্রার প্রভাব : বিক্রিয়াটি তাপোৎপাদী অর্থাৎ এক্ষেত্রে তাপ নির্গত হয় । সুতরাং তাপমাত্রা বাড়ালে লা-শাতেলিয়ার নীতি অনুযায়ী বিক্রিয়ার সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে । অর্থাৎ NH_3^- এর উৎপাদন ব্রাস পাবে । আবার , তাপমাত্রা কমালে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ NH_3^- এর উৎপাদন বেড়ে যাবে ।

চাপের প্রভাব : বিক্রিয়াটিতে বিক্রিয়কের মোট মোল সংখ্যা (4) অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম । সুতরাং চাপ বাড়ালে লা শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে অর্থাৎ NH_3^- এর উৎপাদন বৃদ্ধি পাবে । আবার চাপ কমালে সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে অর্থাৎ NH_3^- এর উৎপাদন হ্রাস পাবে ।

- ১৩. (i) $HgCl_2 + Hg \rightarrow Hg_2Cl_2$
 - (ii) $AlCl_3 + 3H_2O \rightarrow 'X' + 3HCl(aq)$
 - (iii) $CaCl_2 + 6H_2O \rightarrow 'Y'$

[রাজশাহী বোর্ড ২০২৩]

- (ক) অরবিটাল কাকে বলে?
- (খ) ফরমালিন একটি অ্যালডিহাইড ব্যাখ্যা করো।
- (গ) উদ্দীপকের (i) নং বিক্রিয়ায় জারণ-বিজারণ ঘটেছে ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের (ii) ও (iii) নং বিক্রিয়া ভিন্ন প্রকৃতির বিশ্লেষণ করো।

১৩ নং প্রশ্নের উত্তর

(ক) পরমাণুতে বিদ্যমান প্রতিটি প্রধান শক্তিন্তর কতকগুলো উপশক্তিন্তরে বিভক্ত থাকে যাদেরকে অরবিটাল বলে।

৭ম অধ্যায়

বসায়ৰ

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

(খ) ফরমালিন একটি অ্যালডিহাইড। কারণ জানা আছে, যে জৈব যৌগে অ্যালডিহাইড গ্রুপ (— CHO) বিদ্যমান সেসব যৌগ হচ্ছে অ্যালডিহাইড। ফরমালিন এর সংকেত হলো (HCHO), যা থেকে দেখা যাচ্ছে যে, অ্যালডিহাইড গ্রুপ (— CHO) উপস্থিত। আবার, ফরমালিন হলো ফরমালডিহাইড তথা মিথান্যাল এর 40% জলীয় দ্রবণ।

সুতরাং, ফরমালিন একটি অ্যালডিহাইড যৌগ।

(গ) উদ্দীপকের (i) নং বিক্রিয়াটিতে জারণ-বিজারণ ঘটেছে। নিয়ে তা দেখানো হলো-

প্রদত্ত বিক্রিয়াটি নিয়ে পাই.

$$Hg^{2+}Cl_2^- + Hg^0 \rightleftharpoons Hg^+_2Cl_2^-$$

জারণ-বিজারণের ইলেকট্রনীয় মতবাদ অনুসারে, যে বিক্রিয়ায় একই সাথে ইলেকট্রনের আদান-প্রদান ঘটে তাকে জারণ-বিজারণ বিক্রিয়া বলে। উদ্দীপকের (i) নং বিক্রিয়ায় বিজারক Hg একটি ইলেকট্রন ত্যাগ করে Hg^+ আয়নে পরিণত হয়। এটি জারণ প্রক্রিয়া। অপরদিকে জারক Hg^{2+} একটি ইলেকট্রন গ্রহণ করে Hg^+ আয়নে পরিণত হয়। এটি বিজারণ প্রক্রিয়া। আমরা জানি, ইলেকট্রন ত্যাগ হলো জারণ এবং ইলেকট্রন গ্রহণ হলো বিজারণ। এক্ষেত্রে বিজারক কর্তৃক যখনই ইলেকট্রন ত্যাগ হয় জারক কর্তৃক তখনই ইলেকট্রন গৃহীত হয় বলে জারণ-বিজারণ বিক্রিয়াটি যুগপৎ ঘটে।

 $Hg o Hg^+ + e^-$ [জারণ অর্ধবিক্রিয়া] $Hg^{2^+} + e^- o Hg^+$ [বিজারণ অর্ধবিক্রিয়া]

(ঘ) উদ্দীপকের (ii) ও (iii) নং বিক্রিয়ায় নিমুরূপ-

(ii) AlCl₃ +
$$3H_2O \longrightarrow Al(OH)_3 + 3HCl(aq)$$

(iii)
$$CaCl_2 + 6H_2O \longrightarrow CaCl_2.6H_2O$$
'Y'

বিক্রিয়া দুটির মধ্যে (ii) নং আর্দ্রবিশ্লেষণ ও অধ্যক্ষেপণ বিক্রিয়া এবং (ii) নং পানিযোজন বিক্রিয়া। অর্থাৎ (ii) ও (iii) নং বিক্রিয়ার ধরন ভিন্ন। নিচে তা বিশ্লেষণ করা হলো-

উদ্দীপকের (ii) নং বিক্রিয়াটি আর্দ্র-বিশ্লেষণ ও অধ্যক্ষেপণ বিক্রিয়া। কারণ, যে বিক্রিয়ায় উৎপন্ন যৌগ অধ্যক্ষেপ হিসেবে পাত্রের তলদেশে জমা হয় তাকে অধ্যক্ষেপণ বিক্রিয়া বলা হয়। উদ্দীপকের (ii) নং বিক্রিয়াটি নিম্নরূপ:

 $AlCl_3(s) + 3H_2O(l) \rightarrow Al(OH)_3(s) \downarrow + 3HCl(aq)$ বিক্রিয়াটি থেকে দেখা যায়, বিক্রিয়ার একটি উৎপাদ $Al(OH)_3$ অধঃক্ষিপ্ত হয়। অতএব, এটি একটি অধঃক্ষেপণ বিক্রিয়া।

আবার, যে বিক্রিয়ায় কোনো বিক্রিয়কের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ গঠন করে তাকে আর্দ্র বিশ্লেষণ বলা হয়।

এক্ষেত্রে, $AlCl_3$ এর ধনাত্মক প্রান্ত (Al^{3+}) পানির ঋণাত্মক অংশ (OH^-) আবার $AlCl_3$ এর ঋণাত্মক অংশ (Cl^-) পানির ধনাত্মক অংশ (H^+) এর সাথে যুক্ত হয়ে যথাক্রমে $Al(OH)_3$ ও HCl গঠন করে। তাই (ii) নং বিক্রিয়াটি আর্দ্র-বিশ্লেষণ ও অধ্যক্ষেপণ উভয়ই। অপরদিকে (iii) নং বিক্রিয়াটি পানিযোজন প্রকৃতির বিক্রিয়া। কারণ, আয়নিক যৌগের কেলাস গঠনের সময় এক বা একাধিক পানির অণুর

সাথে সংযুক্ত হলে তাকে পানিযোজন বিক্রিয়া বলে। (iii) নং বিক্রিয়ার ক্ষেত্রে $CaCl_2$ আয়নিক যৌগের সাথে 6 অণু H_2O যুক্ত হয়ে $CaCl_2.6H_2O$ কেলাস গঠন করে। তাই এ বিক্রিয়াটিকে পানিযোজন বিক্রিয়া বলে।

সুতরাং, দেখা যাচ্ছে যে, উদ্দীপকের iii ও ii নং তথা উভয় বিক্রিয়া পানির উপস্থিতিতে সংঘটিত হলেও একটি আর্দ্র-বিশ্লেষণ ও অধ্যক্ষেপণ বিক্রিয়া এবং অপরটি পানিযোজন বিক্রিয়া, অর্থাৎ ভিন্ন প্রকৃতির বিক্রিয়া।

- \$8. (i) $2K + Cl_2 \rightarrow 2A$
 - (ii) Mg(OH)₂ + H₂SO₄ → MgSO₄ + 2H₂O [দিনাজপুর বোর্ড ২০২৩]
 - (ক) অণু কাকে বলে?
 - (খ) সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয় ব্যাখ্যা করো।
 - (গ) উদ্দীপকের 'A' যৌগটির পানিতে দ্রবণীয়তা ব্যাখ্যা করো।
 - (ঘ) ইলেকট্রন আদান–প্রদানের ভিত্তিতে উদ্দীপকের i নং ও ii নং বিক্রিয়ার তুলনা করো।

১৪ নং প্রশ্নের উত্তর

- (ক) দুই বা দুইয়ের অধিক সংখ্যক পরমাণু পরস্পরের সাথে রাসায়নিক বন্ধন এর মাধ্যমে যুক্ত থাকলে তাকে অণু বলে।
- (খ) যে জারণ-বিজারণ বিক্রিয়ায় দুই বা ততোধিক রাসায়নিক পদার্থ পরস্পরের সাথে যুক্ত হয়ে একটিমাত্র উৎপাদ উৎপন্ন করে তাকে সংযোজন বিক্রিয়া বলে। যেমন :

$$2FeCl2 + Cl2 \longrightarrow 2FeCl3$$

 $N_2 + 3H_2 \longrightarrow 2NH_3$

আবার, যে সব সংযোজন বিক্রিয়ায় শুধু মৌলিক পদার্থ যুক্ত হয়ে যৌগ গঠন করে তাদেরকে সংশ্লেষণ বিক্রিয়া বলে। যেমন:

 $N_2 + 3H_2 \rightarrow NH_3$

সুতরাং বলা যায় যে, সকল সংশ্লেষণ বিক্রিয়া সংযোজন বিক্রিয়া কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয়।

(গ) উদ্দীপকের (i) নং বিক্রিয়া নিমুরূপ:

$$2K + Cl_2 \rightarrow KCl$$
(A)

সূতরাং, A যৌগটি KCl।

KCl একটি আয়নিক যৌগ। সাধারণত আয়নিক যৌগগুলো পানিতে দ্রবীভূত হয়। KCl আয়নিক যৌগকে পানিতে দ্রবীভূত করলে ধনাত্মক K^+ আয়ন ও ঋণাত্মক Cl^- আয়নে পরিণত হয়। ধনাত্মক K^+ আয়নকে ঘিরে পানির অণুর ঋণাত্মক অংশ অক্সিজেন থাকে এবং KCl এর ঋণাত্মক অংশ Cl^- আয়নকে ঘিরে পানির অণুর ধনাত্মক অংশ হাইড্রোজেন থাকে। এভাবে KCl অণুর ধনাত্মক ও ঋণাত্মক অংশ পানির অণু দ্বারা আকৃষ্ট হয়। ফলে ল্যাটিস শক্তি কমতে থাকে এবং হাইড্রোশেন শক্তি বাড়তে থাকে। ল্যাটিস অপেক্ষা হাইড্রেশন শক্তি বেশি হলেই KCl পানিতে দ্রবীভূত হবে।

৭ম অধ্যায

বুসায়ৰ

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

চিত্র : KCl এর পানিতে দ্রবণীয়তা হওয়ার কৌশল এভাবে KCl যৌগটি পানিতে দ্রবীভূত হয়।

(ঘ) উদ্দীপকের (i) নং বিক্রিয়া ও (ii) নং বিক্রিয়া নিম্নরূপ:

$$2K + Cl_2 \rightarrow 2KCl$$

 $Mg (OH)_2 + H_2SO_4 \rightarrow Mg SO_4 + 2H_2O$

বিক্রিয়া ২টির মধ্যে (i) নং বিক্রিয়ায় ইলেকট্রনের, আদান-প্রদান হলেও (ii) নং বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান হয় না। এর কারণ নিচে ব্যাখ্যা করা হলো:

জানা আছে, যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন ত্যাগ করে তাকে জারণ এবং যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন গ্রহণ করে, তাকে বিজারণ বিক্রিয়া বলে। উদ্দীপকের

(i) নং বিক্রিয়াটি-

$$2\overset{0}{K} + \overset{0}{C}l_2 \longrightarrow 2\overset{+1}{K}Cl^{-1}$$

উপরের বিক্রিয়া হতে দেখা <mark>যা</mark>য়, K পরমাণু 1টি ইলেক্ট্রন ত্যাগ করে K^+ আয়নে পরিণত হয়েছে অর্থাৎ K জারিত হয়েছে। সুতরাং এটি জারণ বিক্রিয়া। আবার, C1 পরমাণু 1টি ইলেক্ট্রন গ্রহণ করে C1 আয়নে পরিণত হয়েছে অর্থাৎ যে বিজারিত হয়েছে। সুতরাং এটি বিজারণ বিক্রিয়া।

 $K - e^- \rightarrow K^+$ [জারণ বিক্রিয়া]

 $C1 + e^- \rightarrow C1^-$ [বিজারণ বিক্রিয়া]

সুতরাং বিক্রিয়াটিতে ইলেক্ট্রনের আদান-প্রদান ঘটেছে। অপরদিকে, উদ্দীপকের (ii) নং বিক্রিয়ায় $Mg(OH)_2$, H_2SO_4 এর সাথে বিক্রিয়া করে $MgSO_4$ ও H_2O উৎপন্ন করে। উৎপন্ন $MgSO_4$ জলীয় দ্রবণে Mg^{2+} ও SO_4^{2-} আয়ন হিসেবে থাকে।

$$\stackrel{+2}{\text{Mg}} \stackrel{-1}{(\text{OH})_2} + \stackrel{+1}{\text{H}_2} \text{SO}_4^{2-} \rightarrow \text{Mg}^{2+} \text{SO}_4^{2-} + (\text{H}^+ + \text{OH}^-)$$

দেখা যাৰ্চ্ছে, বিক্রিয়াটিতে কোনো ইলেকট্রনের আদান-প্রদান ঘটে নি। সুতরাং, উদ্দীপকের (i) নং বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান ঘটলেও (ii) নং বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান ঘটে না।

১৫.
$$O_2(g) + N_2(g) \rightleftharpoons 2X(g); \Delta H = + 180 kJ$$
 [দিনাজপুর বোর্ড ২০২৩]

- (ক) আয়নিক বন্ধন কাকে বলে
- (খ) HCl একটি পোলার যৌগ ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'X' যৌগটির শতকরা সংযুতি নির্ণয় করো।
- (ঘ) উদ্দীপকের বিক্রিয়ায় তাপমাত্রা ও ঘনমাত্রার প্রভাব বিশ্লেষণ করো।

১৫ নং প্রশ্নের উত্তর

- (ক) ইলেকট্রন আদান-প্রদানের মাধ্যমে গঠিত ক্যাটায়ন ও অ্যানায়নসমূহ যে আকর্ষণ বল দ্বারা যৌগের অণুতে আবন্ধ থাকে তাকে আয়নিক বন্ধন বলে।
- (খ) হাইড্রোজেন (H) ও ক্লোরিন (Cl) এর মধ্যে সমযোজী বন্ধনের মাধ্যমে হাইড্রোজেন ক্লোরাইড (HCl) গঠিত হয়। সাধারণত সমযোজী যৌগ অপোলার হয়। কিন্তু H (2.1) ও Cl (3.0) এর তড়িৎ ঋণাত্মকতার পার্থক্য বেশি হওয়ায় যে বন্ধনজোড় ইলেকট্রনকে নিজের দিকে টেনে নেয়। ফলে আংশিক ধনাত্মক ও Cl আংশিক ঋণাত্মক চার্জে চার্জিত হয়। এভাবে সৃষ্ট আংশিক ধনাত্মক ও আংশিক ঋণাত্মক চার্জ্যভুক্ত যৌগ পোলার যৌগ। এ কারণে HCl যৌগটি পোলার।
- (গ) উদ্দীপকের বিক্রিয়াটি নিমুরূপ-

$$O_2(g) + N_2(g) \rightleftharpoons 2NO(g)$$
(X)

সুতরাং, X যৌগটি হলো নাইট্রিক অক্সাইড (NO)।

∴ NO এর আণবিক ভর = 14 + 16 = 30 সুতরাং যৌগটিতে-

N এর শতকরা সংযুক্তি
$$=$$
 $\frac{14}{30} \times 100$

O এর শতকরা সংযুক্তি =
$$\frac{16}{30} \times 100$$

সুতরাং, NO যৌগটিতে N = 46.67% ও O = 53.33%

(ঘ) উদ্দীপকের প্রদ<mark>ত্ত</mark> বিক্রিয়াটি নিয়ে পাই,

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$; $\Delta H = 180 \text{ kJ/mol}$ এ বিক্রিয়াটির সাম্যাবস্থায় তাপমাত্রা ও চাপের প্রভাব নিচে বিশ্লেষণ করা হলো-

তাপের প্রভাব : এ বিক্রিয়ার এম মান ধনাত্মক হওয়ায় বিক্রিয়াটি তাপহারী বিক্রিয়া। লা-শাতেলিয়ার নীতি অনুসারে, এ বিক্রিয়ার সাম্যাবস্থায় তাপ প্রয়োগ করা হলে বিক্রিয়ার সাম্যা বামদিক থেকে ডানদিকে সরে যাবে অর্থাৎ N_2 ও O_2 বিক্রিয়ার করে NO উৎপন্ন হবে। আবার সাম্যাবস্থায় তাপ ব্রাস করা হলে বিক্রিয়ার সাম্য ডানদিক থেকে বামদিকে সরে যাবে অর্থাৎ NO ভেঙে N_2 ও O_2 উৎপন্ন হবে। চাপের প্রভাব : প্রদত্ত বিক্রিয়ায় বিক্রিয় করে মোট মোল সংখ্যা (1+1)=2 এবং উৎপাদের মোট মোল সংখ্যাও 2 অর্থাৎ এ বিক্রিয়ায় মোলের পরিবর্তন হয় না। জানা আছে, য়ে সকল বিক্রিয়ায় গ্যাসীয় অণু সংখ্যার ব্রাস-বৃদ্ধি ঘটে না সে সকল বিক্রিয়ার সাম্যাবস্থায় চাপের কোনো প্রভাব থাকে না। সুতরাং বলা যায় , এই বিক্রিয়ার সাম্যাবস্থায় চাপের কোনো প্রভাব নেই।

১৬. $i.\ A$ একটি যৌগকে বিশ্লেষন করে নাইট্রোজেন 36.8%,অক্সিজেন 63.2%, পাওয়া গেল। যৌগটির আণবিক ভর 76।

ii.
$$SO_2 + O_2 \longrightarrow SO_3$$

iii.
$$H_2 + S \longrightarrow H_2S$$

[দিনাজপুর বোর্ড ২০২৩]

(ক) মোল কাকে বলে?

বসায়ৰ

৭ম অধ্যায়

বাসামূলিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

- (খ) নাইট্রোজেন এর যোজনী এবং যোজ্যতা ইলেকট্রন ভিন্ন ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'A' যৌগটির আণবিক সংকেত নির্ণয় করো।
- ্ঘ) ii নং ও iii নং বিক্রিয়ায় সালফার যৌগসমূহে সালফারের জারণ সংখ্যা বিশ্রেষণ করো।

১৬ নং প্রশ্নের উত্তর

- (ক) কোনো পদার্থের যে পরিমাণের মধ্যে 6.023×10^{23} টি পরমাণু, অণু বা আয়ন থাকে সেই পরিমাণকে ঐ পদার্থের মোল বলা হয়।
- (খ) নাইট্রোজেন পরমাণুর যোজনী ও যোজ্যতা ইলেকট্রন ভিন্ন। কারণ জানা আছে, যোজনী হলো কোনো মৌল অপর মৌলের সাথে যুক্ত হওয়ার ক্ষমতা। কিন্তু যোজ্যতা ইলেকট্রন হলো মৌলের বহিঃস্বস্তরের মোট ইলেকটন সংখ্যা।

N এর ইলেক্ট্রন বিন্যাস হচ্ছে, $N(7):1s^2\ 2s^2\ 2p_x^1\ 2p_y^1$ $2p_z^1$

N এর বহিঃস্থ স্তরে ৩টি অযুগা ইলেকট্রন রয়েছে।

ফলে নাইট্রোজেন মৌলটি একযোজী কোনো মৌলের তিনটি পরমাণুর সাথে যুক্ত হওয়ার ক্ষমতা রাখে। সংজ্ঞানুসারে, নাইট্রোজেনের যোজনী তিন। অপরদিকে নাইট্রোজেনের সর্বশেষ শক্তিস্তরে মোট 5টি ইলেকট্রন থাকায় এর যোজ্যতা ইলেকট্রন 5। সুতরাং, দেখা যাচ্ছে, N এর যোজনী 3 এবং যোজ্যতা ইলেকট্রন 5, যা ভিন্ন।

(গ) উদ্দীপকের (i) নং হতে, নাইট্রোজেন, (N) = 36.8% অক্সিজেন (O) = 63.2%

এখন, মৌলদ্বয়ে<mark>র শতকরা</mark> পরিমা<mark>ণ</mark>কে তাদের নিজ নিজ পারমাণবিক ভর দারা ভাগ করে পাই

$$N = \frac{36.8}{14} = 2.63;$$
 $O = \frac{63.2}{16} = 3.95$

প্রাপ্ত ভাগফলসমূ<mark>হকে তাদের মধ্যে ক্ষুদ্রতম ভাগফল দ্বারা ভাগ করে</mark> পাই

$$N = \frac{2.63}{2.63} = 1$$

$$O = \frac{3.95}{2.63} = 1.5$$

প্রাপ্ত ভাগফলসমূহকে পূর্ণসংখ্যা করার জন্য ভাগফলসমূহকে 2 দারা গুণ করে পাই,

$$N = 1 \times 2 = 2$$

$$O = 1.5 \times 2 = 3$$

অতএব, A যৌগটির স্থূল সংকেত = N_2 O_3 ধরি, A যৌগটির আণবিক সংকেত $(N_2O_3)_n$

অতএব, $n=rac{যৌগের আণবিক ভর}{স্কুল সংকেতের ভর [ে যৌগটির আণবিক ভর 76]$

$$= \frac{76}{(14 \times 2) + (16 \times 3)}$$
$$= \frac{76}{28 + 48} = \frac{76}{76} = 1$$

সুতরাং, A যৌগটির আণবিক সংকেত $(N_2O_3)_1 pprox N_2 \ O_3$ ।

্ঘ) উদ্দীপকের (ii) ও (iii) নং বিক্রিয়ায় সালফারের যৌগসমূহ হলো $SO_2,\,SO_3$ ও H_2S ।

যৌগসমূহে সালফারের জারণ সংখ্যা নির্ণয় করে বিশ্লেষণ করা হলো :

 \mathbf{SO}_2 যৌগে: ধরি, \mathbf{S} এর জারণ সংখ্যা $= \mathbf{X}$

তাহলে,
$$x + (-2 \times 2) = 0$$

সূতরাং SO_2 যৌগে S এর জারণ সংখ্যা = +4

 \mathbf{SO}_3 যৌগে : ধরি \mathbf{S} এর জারণ সংখ্যা $=\mathbf{X}$

তাহল,
$$x + (-2 \times 3) = 0$$

বা.
$$x - 6 = 0$$
 : $x = +6$

সূতরাং SO_3 যৌগে S এর জারণ সংখ্যা =+6

 $\mathbf{H_2S}$ যৌগে: ধরি, \mathbf{S} এর জারণ সংখ্যা $=\mathbf{X}$

তাহলে,
$$(+1 \times 2) + x = 0$$

— 2 অর্থাৎ ঋণাতাক জারণ সংখ্যা।

বা,
$$2 + x = 0$$

$$\therefore x = -2$$

সুতরাং H_2S যৌগে S এর জারণ সংখ্যা =-2 দেখা যাচ্ছে, SO_2 ও SO_3 যৌগে S এর জারণ সংখ্যা +4 ও +6 অর্থাৎ ধনাত্মক জারণ সংখ্যা । কিন্তু H_2S যৌগে S এর জারণ সংখ্যা

۱۹. i.

ii. $Mg + H_2SO_4 \rightarrow MgSO_4 + Y$

[কুমিল্লা বোর্ড ২০২৩]

- (ক) নিঃসরণ কাকে বলে?
- (খ) পরমাণু সা<mark>মগ্রিকভাবে চার্জ শূন্য কেন? ব্যাখ্যা করো।</mark>
- (গ) উদ্দীপকের (ii) নং বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎভাবে সংঘটিত হয় – ব্যাখ্যা করো।
- (ঘ) 'X' ও 'Y' গ্যাস দুটির মধ্যে কোনটি দ্রুত ছড়িয়ে পড়বে? গাণিতিকভাবে বিশ্লেষণ করো।

১৭ নং প্রশ্নের উত্তর

- (ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে সজোরে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- (খ) পরমাণু বিদ্যুৎ নিরপেক্ষ। এর কারণ হলো পরমাণুর কেন্দ্রে অবছিত নিউক্লিয়াসে প্রোটন ও নিউট্রনের মধ্যে প্রোটন ধনাত্মক চার্জযুক্ত এবং নিউট্রন চার্জবিহীন হয়। আবার, নিউক্লিয়াসের চারদিকে ইলেকট্রনসমূহ ঋণাত্মক আধানযুক্ত হয়। সাধারণত পরমাণুতে প্রোটন ও ইলেকট্রনের সংখ্যা সমান এবং তাদের চার্জের মান সমান ও বিপরীত প্রকৃতির হয়। তাই সামগ্রিকভাবে পরমাণুতে চার্জের পরিমাণ শূন্য হয়।
- (গ) উদ্দীপকে (ii) নং বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$Mg(s)$$
 + লঘু $H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$

এই বিক্রিয়ায় জারণ-বিজারণ যেভাবে ঘটে তা নিচে আলোচনা করা হলো:

বসায়ৰ

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

যে বিক্রিয়ায় বিক্রিয়ক অণুসমূহের প্রমাণুগুলোর মধ্যে এক বা একাধিক ইলেকট্রনের আদান-প্রদান ঘটে এবং পরমাণ বা আয়নের চার্জের ব্রাস- বৃদ্ধি ঘটে, তাকে জারণ-বিজারণ বিক্রিয়া বলে।

উপরিউক্ত বিক্রিয়ায় জিংক সালফিউরিক এসিডের সাথে বিক্রিয়া করে জিংক সালফেট ও হাইড্রোজেন উৎপন্ন করে।

এখানে. Mg বিজারক হিসেবে দুটি ইলেকট্রন ত্যাগ করে জারিত হয়েছে এবং জারক $m H_2SO_4$ এর হাইড্রোজেন এই দুটি ইলেকট্রন গ্রহণ করে বিজারিত হয়েছে।

অর্থাৎ,
$$Mg - 2e^- \rightarrow Mg^{2+}$$

$$2H^+ + 2e^- \rightarrow H_2$$

বিক্রিয়াটিতে একই সাথে জারক পদার্থ বিজারক থেকে ইলেকট্রন গ্রহণ করে বিজারিত হয়েছে এবং বিজারক পদার্থ ইলেকট্রন প্রদান করে জারিত হয়েছে। অর্থাৎ, ইলেক্ট্রনের আদান-প্রদান ঘটেছে। সূত্রাং, উদ্দীপকের (ji) নং বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎভাবে সংঘটিত হয়।

- (ঘ) উদ্দীপকের X হলো CO_2 এবং Y হলো H_2
 - (i) $CH_3COOH + Na_2CO_3 \rightarrow CH_3COONa + CO_2 +$ H₂O

(ii)
$$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$$

গ্রাহামের ব্যাপন সূত্রানুযায়ী যার <mark>আ</mark>ণবিক ভর কম সে দ্রুত ছড়িয়ে পড়বে।

$$\begin{split} \frac{r_{H2}}{r_{CO2}} &= \sqrt{\frac{M_{CO2}}{M_{H2}}} \\ &= \sqrt{\frac{44}{2}} \\ &= \sqrt{22} \times r_{CO2} \end{split}$$

এখানে.

 $f_{H2}=H_2$ এর ব্যাপন হার $r_{CO2} = CO_2$ এর ব্যাপন হার -হাইড্রোজেনের M_{H2} আণবিক ভর

 $M_{CO2} = CO_2$ এর আণবিক

সুতরাং, CO_2 এর তুলনায় H_2 দ্রুত ছড়িয়ে পড়বে।

كلا. (i) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$; $\Delta H = +57kJ/mole$

(ii) ^{12}Y , ^{13}Y , ^{14}Y

'Y' মৌলের আইসোটোপের শতকরা পরিমাণ যথাক্রমে 98.93%, 0.702% এবং 0.368% ৷

[কুমিল্লা বোর্ড ২০২৩]

- (ক) অরবিট কাকে বলে?
- (খ) C_2H_6 কে প্যারাফিন বলা হয় কেন?
- (গ) উদ্দীপকের 'Y' মৌলের গড় আপেক্ষিক পারমাণবিক ভর নির্ণয় করো।
- (ঘ) উদ্দীপকের বিক্রিয়াটির সাম্যবস্থায় তাপ ও চাপ এর প্রভাব আছে কী? বিশ্লেষণ করো।

১৮ নং প্রশ্নের উত্তর

- (ক) প্রমাণুর যে সকল স্থির কক্ষপথে ইলেক্ট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে আবর্তন করে তাদেরকে অরবিট বলে।
- (খ) C_2H_6 কে প্যারাফিন বলা হয়। কারণ C_2H_6 এর গাঠনিক সংকেত

C – H বন্ধন আছে যা একক বন্ধন হওয়ায় শক্তিশালী বন্ধন। ফলে C2H6 (ইথেন) তীব্র এসিড, ক্ষারক ও জারক বা বিজারক পদার্থের সাথে বিক্রিয়া করে না। এজন্য C_2H_6 রাসায়নিকভাবে নিষ্ক্রিয় হয়।

(গ) দৈওয়া আছে,
$$^{12}{
m Y}=98.93\%;$$
 $^{12}{
m Y}=0.702\%$ $^{14}{
m Y}=0.368\%$

সূতরাং Y মৌলের গড় আপেক্ষিক পারমাণবিক ভর,

$$\frac{(12 \times 98.93) + (13 \times 0.702) + (14 \times 0.368)}{100}$$

= 12.014

অতএব উদ্দীপাকের 'Y' মৌলের গড় আপেক্ষিক পারমাণবিক ভর 12.014 |

(ঘ) উদ্দীপকের বিক্রিয়াটি : $N_2O_4(g) \implies 2NO_2(g)$; $\Delta H =$ +57kJ/mole বিক্রিয়াটির উপর সাম্যাবস্থায় তাপ ও নিচে তা বিশ্রে-ষণ করা হলো-

<mark>তাপমাত্রার প্রভাব</mark> : বিক্রিয়াটি একটি তাপহারী বিক্রিয়া ়কারণ $\Delta {
m H}$ মান ধনাত্মক (+ 57 kJ/mole)। এজন্য বিক্রিয়াটির উপর তাপ যত প্রয়োগ কর<mark>া</mark> হবে N_2O_4 এর বিয়োজন তত বৃদ্ধি পাবে। ফলে বিক্রিয়ার সাম্যাবস্থা বাম থেকে ডানে গিয়ে উৎপাদ NO2 এর পরিমাণ বৃদ্ধি করে। বিপরীত ক্রমে বিক্রিয়ার সাম্যাবস্থায় তাপ কমালে N2O4 এর বিয়োজন হার কমে যায় এবং বিক্রিয়ার সাম্যাবস্থা বামে সরে গিয়ে উৎপাদের পরিমাণ হ্রাস ঘটায়।

চাপের প্রভাব: বিক্রিয়াটি গ্যাসীয় উভমুখী বিক্রিয়া এবং আয়তন বৃদ্ধির মাধ্যমে ঘটে। যার কারণে তুলনামূলক কম চাপে N_2O_4 এর বিয়োজন অধিক হয়। ফলে সাম্যের অবস্থা ডান দিকে সরে গিয়ে উৎপাদ NO_2 এর পরিমাণ বৃদ্ধি করে। অধিক চাপে N_2O_4 এর বিয়োজন হ্রাস ঘটে বলে অধিক চাপে এ বিক্রিয়ায় উৎপাদের পরিমাণ কমে যায়।

১৯.

সৃষ্ট আয়ন	আয়নে e⁻ সংখ্যা
X^{2+}	10
Y^{2-}	10
Z^3	2
	সৃষ্ট আয়ন X^{2+} Y^{2-} Z^3

[কুমিল্লা বোর্ড ২০২৩]

- (ক) পাতন কাকে বলে?
- (খ) Ar নিষ্ক্রিয় কেনো? ব্যাখ্যা করো।
- (গ) উদ্দীপকের 'Z' মৌলটির সর্ববহিঃস্থ শক্তিস্তরের ইলেকট্রনের কৌণিক ভরবেগ নির্ণয় করো।

৭ম অধ্যায়

বুসায়ৰ

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

(ঘ) উদ্দীপকের 'X' ও 'Y' দ্বারা সংঘটিত বিক্রিয়া কোন কোন বিক্রিয়ার প্রতিনিধিত্ব করে? বিশ্লেষণ করো।

১৯ নং প্রশ্নের উত্তর

- (ক) কোনো তরলকে তাপ প্রদানে বাষ্পে পরিণত করে তাকে পুনরায় শীতলীকরণের মাধ্যমে তরলে পরিণত করার পদ্ধতিকে পাতন বলে।
- খে) আগন (Ar) নিষ্ক্রিয় গ্যাস। কারণ, $_{18}Ar$ এর $(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6)$ সর্ববহিঃস্থ স্তরে ইলেকট্রন দারা অস্টক পূর্ণ থাকে, যা অত্যন্ত সুস্থিত। এ সুস্থিত ইলেকট্রন বিন্যাস ভাঙতে অনেক শক্তির প্রয়োজন। তাই Ar স্বাভাবিক অবস্থায় কোনো মৌলের সাথে যুক্ত হয় না। অর্থাৎ বহিঃস্থ ভরের সুবিন্যন্ত ইলেকট্রন বিন্যাসের কারণে Ar নিষ্ক্রিয় হয়।
- (গ) উদ্দীপকের 'Z' মৌলের স্বাভাবিক অবস্থায় ইলেকট্রন বিন্যাস $Z(3) = 1 \, {
 m s}^2 \, 2 \, {
 m s}^1$
 - ... Z এর সর্ববহিঃস্থ শক্তিন্তর হলো দ্বিতীয় শক্তিন্তর; যেখানে n=2, জানা আছে, ইলেকট্রনের কৌণিক ভরবেগ,

$$mvr = \frac{nh}{2\pi}$$

$$= \frac{2 \times 6.626 \times 10^{-34}}{2 \times 3.1416}$$

$$= 2.11 \times 10^{-34} \text{ m}^2$$
 kg/s

$$= 3.1416$$

$$= 3 \times 4 = 3 \times 4 = 4$$

$$= 6.626 \times 10^{-34} \text{ m}^2$$

$$= 6.626 \times 10^{-34} \text{ m}^2$$

সূতরাং, নির্ণেয় কৌণিক ভরবেগ $2.11 \times 10^{-34} \text{ m}^2 \text{ kg/s}$ ।

(ঘ) উদ্দীপকের তথ্য অনুযায়ী, X মৌলটি Mg(12) এবং Y মৌলটি O(8)। কেননা,

$$Mg(12) \rightarrow 1s^2 2s^2 2p^6 3s^2$$
 $Mg^{2+} \rightarrow 1s^2 2s^2 2p^6$
আবার, $O(8) \rightarrow 1s^2 2s^2 2p^4$
 $O^{2-} \rightarrow 1s^2 2s^2 2p^6$

এখন Mg ও O দ্বারা গঠিত <mark>যৌ</mark>গ MgO; যার দ্বারা সংঘটিত বিক্রিয়া সংযোজন , সংশ্লেষণ , দহন ও জারণ-বিজারণ বিক্রিয়ার প্রতিনিধিত্ব করে । নিচে তা বিশ্লেষণ করা হলো-

সংযোজন বিক্রিয়া : যে রাসায়নিক বিক্রিয়ায় কোনো যৌগ তার সরলতম উপাদানসমূহের প্রত্যক্ষ সংযোগে সৃষ্টি হয় তাকে সংযোজন বিক্রিয়া বলে। যেমন- Mg ও O পরক্ষারের সাথে বিক্রিয়া করে MgO উৎপন্ন করে। সুতরাং এটি একটি সংযোজন বিক্রিয়া।

সংশ্লেষণ বিক্রিয়া : যে সংযোজন বিক্রিয়ায় শুধু মৌলিক পদার্থে যুক্ত হয়ে যৌগ গঠন করে তাকে সংশ্লেষণ বিক্রিয়া বলা হয় । $Mg \circ O$ মৌলিক পদার্থদ্বয়ের সংযোগে MgO যৌগ উৎপন্ন হয় । সুতরাং এটি একটি সংশ্লেষণ বিক্রিয়া ।

$$egin{array}{ll} Mg & + O_2 \longrightarrow MgO \ \hbox{মৌল} & \hbox{মৌল} & \hbox{মৌগ} \end{array}$$

দহন বিক্রিয়া : কোনো মৌলকে বা যৌগকে বায়ুর অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদান মৌলের অক্সাইডে পরিণত করাকে দহন বিক্রিয়া বলে। যেমন- Mg মৌলকে বায়ুর অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদান অক্সাইড ${
m MgO}$ পরিণত করে। সুতরাং বিক্রিয়াটি একটি দহন বিক্রিয়া।

$$Mg + O_2 \longrightarrow MgO$$

অক্সিজেন

জারণ-বিজারণ বিক্রিয়া : জানা আছে, যে বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান ঘটে তাকে জারণ-বিজারণ বিক্রিয়া বলে । এক্ষেত্রে Mg দুটি ইলেকট্রন ত্যাগ করে Mg^{2+} ও অক্সিজেন দুটি ইলেকট্রন গ্রহণ করে O^{2-} আয়নে পরিণত হয় এবং MgO উৎপন্ন করে । সুতরাং এটি একটি জারণ-বিজারণ বিক্রিয়া ।

উপরের আলোচনা থেকে বলা যায়, Mg ও O_2 মৌল দ্বারা সংঘটিত বিক্রিয়া সংযোজন, সংশ্লেষণ, দহন ও জারণ-বিজারণ বিক্রিয়ার প্রতিনিধিত্ব করে।

- $20. (i) \text{ FeCl}_3 + \text{H}_2\text{S} \longrightarrow \text{FeCl}_2 + \text{HCl} + \text{S}$
 - (ii)

[চট্টগ্রাম বোর্ড ২০২৩]

- (ক) প্রশমন তাপ কাকে বলে?
- (খ) মৌমাছি<mark>র কা</mark>মড়ে ক্ষতস্থানে চুন লাগানো হয় কেন?
- (গ) উদ্দী<mark>পকের (i) নং বিক্রিয়াটি ইলেকট্রন স্থানান্তরের মাধ্যমে</mark> ব্যাখ্যা দাও।
- (ঘ) উদ্দীপকে (ii) নং এর বিক্রিয়াটি কোন কোন রাসায়নিক বিক্রিয়াকে সমর্থন করে. বিশ্লেষণ করো।

২০ নং প্রশ্নের উত্তর

- (ক) কক্ষ তাপমাত্রায় এসিড ও ক্ষারের বিক্রিয়ায় লবণ ও পানি উৎপন্ন করতে য়ে তাপের উদ্ভব হয় তাকে প্রশমন তাপ বলে।
- (খ) মৌমাছির কামড়ের ক্ষতস্থানে পোকার শরীর থেকে যে বিষ প্রবেশ করে তাতে অশ্লীয় উপাদান থাকে। মানুষ পোকার কামড়ের জ্বালাযন্ত্রণা নিবারণ করার জন্য ক্ষতস্থানে চুন ব্যবহার করে। কারণ, চুন ক্ষারকধর্মী পদার্থ। এটা অশ্লীয় উপাদানের সাথে প্রশমন বিক্রিয়া করে। তাই মৌমাছির কামড়ের ক্ষতস্থানে চুন লাগানো হয়।
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটি-

$$FeCl_3 + H_2S \longrightarrow FeCl_2 + HCl + S$$
দর্শক আয়নবাদে বিক্রিয়াটি $-Fe^{3+} + S^{2-} \longrightarrow Fe^{2+} + S^0$

জারণ বিক্রিয়া : $S^{2-} \longrightarrow S + 2e^-$ (ইলেকট্রন ত্যাগ)

বিজারণ বিক্রিয়া : $2Fe^{3+} + 2e^{-} \longrightarrow 2Fe^{2+}$ (ইলেকট্রন গ্রহণ)

জারণ-বিজারণ বিক্রিয়া : $S^{2-} + 2Fe^{3+} \longrightarrow S + Fe^{2+}$

দর্শক আয়ন যোগে বিক্রিয়াটি—

$$2FeCl_3 + H_2S \longrightarrow FeCl_2 + HCl + S$$

যেহেতু বিক্রিয়াটিতে S^{2-} আয়ন ইলেকট্রন ত্যাগ করে জারিত হয় এবং Fe^{3+} আয়ন ইলেকট্রন গ্রহণ করে বিজারিত হয়। কাজেই বিক্রিয়াটি ইলেকট্রন স্থানান্তরের মাধ্যমে ঘটেছে।

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি :

$$AlCl_3 + 3H_2O \rightarrow Al(OH)_3(s) \downarrow + 3HCl$$

Prepared by: SAJJAD HOSSAIN

এ বিক্রিয়াটি অধ্যক্ষেপণ ও পানি বিশ্লেষণ এ দুই ধরনের ভিন্ন বিক্রিয়া প্রদর্শন করে। নিচে তা সমীকরণসহ বিশ্লেষণ করা হলো-

যে বিক্রিয়ায় উৎপন্ন যৌগ অধঃক্ষেপ হিসেবে পাত্রের তলদেশে জমা হয় তাকে অধঃক্ষেপণ বিক্রিয়া বলা হয়।

উদ্দীপকের বিক্রিয়াটি থেকে দেখা যায়, বিক্রিয়ার একটি উৎপাদ $Al(OH)_3$ অধ্বংক্ষিপ্ত হয়। অতএব, এটি একটি অধ্বংক্ষেপণ বিক্রিয়া। আবার, যে বিক্রিয়ায় কোনো বিক্রিয়কের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ গঠন করে তাকে পানি বিশ্লেষণ বলা হয়।

বিক্রিয়া হতে দেখা যায়, $AlCl_3$ এর ধনাত্মক প্রান্ত (Al^{3+}) পানির ঋণাত্মক অংশ (OH^-) এবং $AlCl_3$ এর ঋণাত্মক অংশ (Cl^-) পানির ধনাত্মক অংশ (H^+) এর সাথে যুক্ত হয়ে যথাক্রমে $Al(OH)_3$ ও HCl গঠন করে।

Al
$$\boxed{\text{Cl}_3 - 3\text{H}}$$
 – OH \rightarrow Al(OH)₃ +3HCl

অর্থাৎ উদ্দীপকের (ii) নং বিক্রিয়াটি একটি পানি বিশ্লেষণ বিক্রিয়া। সুতরাং প্রদত্ত বিক্রিয়াটি অধ্যক্ষেপণ ও পানি বিশ্লেষণ এ দুই ধরনের রাসায়নিক বিক্রিয়াকে সমর্থন করে।

- ২১. নিচের বিক্রিয়াগুলো পূর্ণ করো
 - (i) $PbCl_2 + Cl_2 \rightarrow PbCl_4$
 - (ii) $2Na + Cl_2 \rightarrow 2NaCl$

[সিলেট বোর্ড ২০২৩]

- (ক) সুপ্ত যোজনী কাকে বলে?
- (খ) Cl₂ এবং 2Cl এর মধ্যে পার্থক্য লেখো।
- (গ) (i) নং বিক্রিয়ার সাহায্যে দেখাও যে, জারণ-বিজারণ একটি যুগপৎ ঘটনা।
- (ঘ) সকল সংশ্লেষণ বিক্রিয়াই সংযোজন বিক্রিয়া কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নং উদ্দীপকের (i) নং (ii) নং বিক্রিয়ার সাহায্যে বিশ্লেষণ করো।

২১ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের সর্বোচ্চ যোজনী ও সক্রিয় যোজনীর পার্থক্যকে সুপ্ত যোজনী বলে।
- (খ) Cl2 ও 2Cl এর মধ্যে পার্থক্য নিমুরূপ-

Cl ₂	2Cl		
Cl_2 হলো ক্লোরিন অণু।	2C1 হলো ক্লোরিনের দুটি		
	বিচ্ছিন্ন পরমাণু।		
দুটি Cl পরমাণু রাসায়নিক	2C1 কোনো রাসায়নিক		
বন্ধনের মাধ্যমে যুক্ত হয়ে Cl_2	বন্ধনের মাধ্যমে যুক্ত হয়ে অণু		
অণু গঠন করে।	গঠন করেনি।		

(গ) জারণ-বিজারণ একটি যুগপৎ ঘটনা। উদ্দীপকের (i) নং বিক্রিয়ার সাহায্যে নিচে তা দেখানো হলো-

জারণ-বিজারণের ইলেকট্রনীয় মতবাদ অনুসারে, যে বিক্রিয়ায় একই সাথে ইলেকট্রনের আদান-প্রদান ঘটে তাকে জারণ-বিজারণ বিক্রিয়া বলে। উদ্দীপকের (i) নং বিক্রিয়া নিম্নরূপ-

+4

বিক্রিয়াটিতে বিজারক $Ph\ 2$ টি ইলেকট্রন ত্যাগ করে $Pb\$ আয়নে পরিণত হয়। তাই এটি জারণ প্রক্রিয়া।

 $Pb^{2+} - 2e^- \rightarrow Pb^{4+}$ [জারণ বিক্রিয়া](i)

অপরদিকে, জারক Cl একটি ইলেকট্রন গ্রহণ করে Cl^- আয়নে পরিণত হয়। অর্থাৎ 2টি Cl দুটি ইলেকট্রন গ্রহণ করে $2Cl^-$ আয়নে পরিণত হয়। এটি একটি বিজারণ প্রক্রিয়া।

 $Cl_2 + 2e^- \longrightarrow 2Cl^-$ [বিজারণ প্রক্রিয়া](ii).

(i) ও (ii) নং যোগ করে পাই,

 $Pb^{2+} - 2e^- \rightarrow Pb^{4+}$ [জারণ]

 $Cl_2 + 2e^- \longrightarrow 2Cl^-$ [বিজারণ]

 \therefore Pb²⁺ + Cl₂ → Pb⁴⁺ + 2Cl⁻ [জারণ-বিজারণ]

অর্থাৎ, PbCl₂ + Cl₂ → PbCl₄

সুতরাং সামগ্রিকভাবে দেখা যায়, উল্লেখিত বিক্রিয়াটিতে জারণ-বিজারণ যগপৎ ঘটে।

(ঘ) সকল সংশ্লেষণ বিক্রিয়া সংযোজন বিক্রিয়া কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয়। উদ্দীপকের (i) ও (ii) নং বিক্রিয়ার সাহায্যে নিচে তা বিশ্লেষণ করা হলো-

জানা আছে, দুই বা ততোধিক যৌগ বা মৌল পরস্পরের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন হওয়ার প্রক্রিয়ার নাম সংযোজন বিক্রিয়া। যেমন- উদ্দীপকের (i) নং বিক্রিয়াতে PbCl₂ ও Cl₂ পরস্পরের সাথে যুক্ত হয়ে PbCl₄ যৌগ উৎপন্ন হয়েছে। আবার, উদ্দীপকের (ii) নং বিক্রিয়াতে Na ধাতু Cl₂ এর সাথে যুক্ত হয়ে NaCl গঠন করেছে।

বিক্রিয়া দুটি উভয়ই সংযোজন বিক্রিয়া। অপরদিকে সংযোজন বিক্রিয়ায় দুই বা ততোধিক মৌলিক পদার্থ যুক্ত হয়ে নতুন যৌগ উৎপন্ন হলে তাকে সংশ্লেষণ বিক্রিয়া বলে। যেমন- উদ্দীপকের (ii) নং বিক্রিয়াটিতে বিক্রিয়া । কিন্তু উদ্দীপকের (i)নং বিক্রিয়াটিতে বিক্রিয়া । কিন্তু উদ্দীপকের (i)নং বিক্রিয়াটিতে বিক্রিয়া । বিক্রিয়াটিতে বিক্রিয়া । বিক্রিয়াটিতে বিক্রিয়ান তাই এটি সংশ্লেষণ বিক্রিয়া নয়।

সুতরাং বলা যায় যে, সকল সংশ্লেষণ বিক্রিয়াই সংযোজন বিক্রিয়া কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয়।

- $\approx 2. (i) A(g) + 3B(g) \rightleftharpoons 2D(g); \Delta H = -x kJ/mol$
 - (ii) $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$

[এখানে, A,B এবং D প্রতীকী অর্থে ব্যবহৃত হয়েছে।]

[যশোর বোর্ড ২০২৩]

- (ক) উভয়মুখী বিক্রিয়া কাকে বলে?
- (খ) রাসায়নিক সাম্যাবস্থা একটি গতিশীল অবস্থা ব্যাখ্যা করো।
- (গ) (ii) নং বিক্রিয়া হতে দেখাও যে, জারণ বিজারণ যুগপৎ ঘটে।
- ্র্যি) নং বিক্রিয়ার সাম্যাবস্থার উপর তার ও চাপের প্রভাব বিশ্রেষণ করো।

২২ নং প্রশ্নের উত্তর

বসায়ৰ

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

- (ক) যে রাসায়নিক বিক্রিয়ায় বিক্রিয়ক পদার্থ বিক্রিয়া করে উৎপাদে পরিণত হয় আবার উৎপাদ পদার্থগুলো বিক্রিয়া করে, পুনরায় বিক্রিয়ক পদার্থে পরিণত হয় সে বিক্রিয়াকে উভমুখী বিক্রিয়া বলা হয়।
- (খ) উভমুখী বিক্রিয়ার সম্মুখমুখী বিক্রিয়ায় হার ও পশ্চাৎমুখী বিক্রিয়ার । হার সমান হলেই বিক্রিয়াটি সাম্যাবস্থায় উপনীত হয়। আপাতদৃষ্টিতে সাম্যাবস্থায় বিক্রিয়াটিকে স্থির মনে হলেও প্রকৃতপক্ষে বিক্রিয়াটি গতিশীল। এ অবস্থায় প্রতি সেকেন্ডে যতগুলো বিক্রিয়ক অণু বিক্রিয়া করে উৎপাদ তৈরি করে ঐ একই সময়ে উৎপাদ বিক্রিয়া করে ঠিক ততগুলো বিক্রিয়ক অণু উৎপন্ন করে। তাই রাসায়নিক সাম্যাবস্থা একটি গতিশীল অবস্থা, স্থির অবস্থা নয়।
- (গ) উদ্দীপকের (ii) নং বিক্রিয়াটি-

উক্ত বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ ঘটেছে। নিচে ইলেকট্রনীয় মতবাদে তা ব্যাখ্যা করা হলো-

জারণ-বিজারণ বিক্রিয়ার সময় সাধারণত একটি বিক্রিয়ক ইলেকট্রন বর্জন করে এবং অপর বিক্রিয়ক ইলেকট্রন গ্রহণ করে।

আবার, জারণ হচ্ছে এমন এ<mark>ক</mark>টি প্রক্রিয়া যেখানে একটি বিক্রিয়ক ইলেকট্রন বর্জন করে এবং বিজারণ হচ্ছে এমন একটি প্রক্রিয়া যেখানে অপর বিক্রিয়ক কর্তৃক ইলেকট্রন গৃহীত হয়।

উদ্দীপকের বিক্রিয়ায় Z_n এর জারণ সংখ্যা শূন্য (0) থেকে বৃদ্ধি পেয়ে উৎপাদ Z_nSO_4 এ Z_n এর জারণ সংখ্যা +2 হয়েছে অর্থাৎ বিক্রিয়ায় বিজারক Z_n দুটি ইলেকট্রন ত্যাগ করে জারিত হয় এবং Z_nSO_4 এ পরিণত হয়।

জারণ অর্ধবিক্রিয়া : $Zn \longrightarrow Zn^{2+} + 2e^{-}$

অপরদিকে $CuSO_4$ এ Cu এর জারণ সংখ্যা +2 থেকে ব্রাস পেয়ে উৎপাদ Cu এ জারণ সংখ্যা শূন্য (0) হয়েছে। অর্থাৎ বিক্রিয়ায় জারক $CuSO_4$, Zn কর্তৃক ত্যাগকৃত দুটি ইলেকট্রন গ্রহণ করে বিজারিত হয় এবং Cu-এ পরিণত হয়।

বিজারণ অর্থবিক্রিয়া : $Cu^{2^+} + 2e^- \longrightarrow Cu$ অর্থাৎ, বিক্রিয়াটিতে ইলেকট্রনের আদান-প্রদান একই সাথে ঘটেছে।

(ঘ) উদ্দীপকের (i) নং বিক্রিয়াটি-

 $A(g) + 3B(g) \Rightarrow 2D(g); \Delta H = -x kJ/mol$ বিক্রিয়াটি একটি তাপোৎপাদী বিক্রিয়া এবং আয়তন ব্রাসের মাধ্যমে ঘটে। নিচে বিক্রিয়ার সাম্যাবস্থার উপর তাপমাত্রা ও চাপের প্রভাব বিশ্রেষণ করা হলো-

তাপমাত্রার প্রভাব : বিক্রিয়াটির ΔH মান ঋণাত্মক হওয়ায় এটি তাপোৎপাদী বিক্রিয়া । তাপোৎপাদী বিক্রিয়ার ক্ষেত্রে তুলনামূলক কম তাপমাত্রায় উৎপাদের বৃদ্ধি ঘটে । অর্থাৎ কম তাপমাত্রায় A ও B বিক্রিয়ক পরস্পর বিক্রিয়া করে বিক্রিয়ার সাম্যাবস্থা ডানদিকে সরে গিয়ে উৎপাদ D এর পরিমাণ বৃদ্ধি করে । তাপমাত্রা বৃদ্ধির সাথে সাথে উৎপাদের পরিমাণ কমতে থাকে । ফলে তাপমাত্রা বৃদ্ধিতে বিক্রিয়ার সাম্যাবস্থা ডান থেকে বামে সরে আসে এবং উৎপাদের ব্রাস ঘটায় । চাপের প্রভাব : বিক্রিয়াটি গ্যাসীয় উভমুখী বিক্রিয়া এবং আয়তন ব্রাসের মাধ্যমে ঘটে (বিক্রিয়ক =(1+3)=4 এবং উৎপাদ 2

মোল)। ফলে বিক্রিয়ায় সাম্যাবস্থায় চাপ বৃদ্ধি করলে A ও B পরস্পরের বিক্রিয়ার হার বৃদ্ধি পায়। যার ফলে বিক্রিয়ার সাম্যাবস্থা বাম থেকে ডানে সরে গিয়ে উৎপাদ D এর পরিমাণ বৃদ্ধি করে। অপরদিকে চাপ ব্রাসে বিক্রিয়ার সাম্যাবস্থা ডান থেকে বামে সরে যায়। যার কারণে উৎপাদ D এর পরিমাণ ব্রাস ঘটে।

২৩

- (ক) নিঃসরণ কাকে বলে?
- (খ) রাসায়নিক সাম্যবস্থা একটি গতিময় অবস্থা ব্যাখ্যা করো।
- (গ) (i) ও (ii) নং দ্রবণের মিশ্রণে উৎপন্ন লবণের কেন্দ্রীয় পরমাণুর জারণসংখ্যা নির্ণয় করো।
- (ঘ) (ii) ও (iii) নং দ্রবণে (i) নং দ্রবণ পৃথকভাবে যোগ করলে সংঘটিত বিক্রিয়া একই হবে কি না? সমীকরণসহ বিশ্রেষণ করো।

২৩ নং প্রশ্নের উত্তর

- (ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- (খ) উভমুখী বিক্রিয়ার সম্মুখমুখী বিক্রিয়ায় হার ও পশ্চাৎমুখী বিক্রিয়ার হার সমান হলেই বিক্রিয়াটি সাম্যাবস্থায় উপনীত হয়। আপাতদৃষ্টিতে সাম্যাবস্থায় বিক্রিয়াটিকে স্থির মনে হলেও প্রকৃতপক্ষে বিক্রিয়াটি গতিশীল। এ অবস্থায় প্রতি সেকেন্ডে যতগুলো বিক্রিয়ক অণু বিক্রিয়া করে উৎপাদ তৈরি করে ঐ একই সময়ে উৎপাদ বিক্রিয়া করে ঠিক ততগুলো বিক্রিয়ক অণু উৎপন্ন করে। তাই রাসায়নিক সাম্যাবস্থা একটি গতিময় অবস্থা, স্থির অবস্থা নয়।
- (গ) উদ্দীপকের (i) ও (ii) নং দ্রবণের বিক্রিয়া নিম্নরূপ : $FeSO_4 + 2NaOH \rightarrow Na_2SO_4 + Fe(OH)_2$ লবণ

এখানে উৎপন্ন লবণ Na_2SO_4 । ধরি Na_2SO_4 লবণের কেন্দ্রীয় S পরমাণুর জারণ মান =x

$$\therefore$$
 Na₂SO₄ = 0
বা , $(1 \times 2) + x + (-2 \times 4)$
= 0
বা , $2 + x - 8 = 0$
 \therefore x = + 6

সুতরাং Na_2SO_4 এর কেন্দ্রীয় পরমাণুর জারণ সংখ্যা + 6।

্ঘ) উদ্দীপকের (i), (ii) ও (iii) নং দ্রবণ যথাক্রমে NaOH, FeSO4 ও HCl । FeSO4 ও HCl দ্রবণে NaOH দ্রবণ পৃথকভাবে যোগ করলে ন সংঘটিত বিক্রিয়া একই হবে না। নিচে সমীকরণসহ তা বিশ্লেষণ করা হলো-

বসামূল ৭ম অধ্যাম

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

FeSO₄ ও NaOH একত্রে যোগ করলে অধনুক্ষেপণ বিক্রিয়া ঘটবে। কারণ এক্ষেত্রে সবুজ বর্ণের $Fe(OH)_2$ এর অধঃক্ষেপ পড়ে। আর যে বিক্রিয়ায় তরল বিক্রিয়ক পদার্থ বিক্রিয়া করে কঠিন উৎপাদে পরিণত হয় তাকে অধঃক্ষেপণ বিক্রিয়া বলে।

বিক্রিয়া : $FeSO_4(aq) + 2NaOH(aq) \rightarrow Fe(OH)_2(s)\downarrow + Na_2SO_4(aq)$

সবুজ অধঃক্ষেপ

অপরদিকে HCl ও NaOH এর বিক্রিয়াটি একটি প্রশমন বিক্রিয়া। কারণ একটি এসিড ও একটি ক্ষার পরস্পরের সাথে বিক্রিয়া করে প্রশমিত হয়ে লবণ ও পানি উৎপন্নের বিক্রিয়াকে প্রশমন বিক্রিয়া বলে। এক্ষেত্রে HCl এসিড এর সাথে NaOH ক্ষার বিক্রিয়া করে NaCl লবণ ও পানি (H2O) তৈরি করে। কাজেই বিক্রিয়াটি একটি প্রশমন বিক্রিয়া।

বিক্রিয়া : HCl + NaOH → NaCl + H2O
এসিড ক্ষার লবণ পানি
উপরের আলোচনা থেকে বলা যায়, উদ্দীপকের (ii) ও (iii) নং
দ্রবণে (i) নং দ্রবণ পৃথকভাবে যোগ করলে সংঘটিত বিক্রিয়া একই
হবে না।

- 88. (i) X₂(g) + Y₂(g) + 180kJ ≠ 2XY(g)
 - (ii) $2\text{FeCl}_2 + \text{Cl}_2 \rightarrow 2\text{FeCl}_3$
 - (iii) $KOH + H_2SO_4 \rightarrow K_2SO_4 + H_2O$

[ঢাকা বোর্ড ২০২২]

- (ক) কেলাস পানি কাকে বলে?
- (খ) Cu এর দ্রব্যাদির ক্ষয় হয় না কেন? ব্যাখ্যা করো।
- (গ) (i) নং বিক্রিয়ায় রাসায়নিক সাম্যাবস্থায় তাপমাত্রার প্রভাব ব্যাখ্যা
- (ঘ) (ii) নং এবং (iii) নং এর কোনটি জারণ-বিজারণ বিক্রিয়াকে সমর্থন করে? যৌক্তিক কারণ বিশ্বেষণ করে।

২৪ নং প্রশ্নের উত্তর

- (ক) আর্দ্র বা সোদক কে<mark>লাসের প্রতি অণুতে যুক্ত নির্দিষ্ট সংখ্যক পানির</mark> অণুকে কেলাস পানি বলে।
- (খ) Cu এর দ্রব্যাদির ক্ষয় হয় না। কারণ Cu এর দ্রব্যাদি বাতাসের অক্সিজেনের সংস্পর্শে আসলে প্রথমে এর উপর CuO এর একটি আন্তরণ পড়ে। পরবর্তীতে বাতাসের অক্সিজেন উক্ত আন্তরণ ভেদ করে Cu এর সংস্পর্শে আর আসতে পারে না। ফলে আর বিক্রিয়া সংঘটিত হয় না। এজন্য Cu এর দ্রব্যাদির ক্ষয় হয় না।
- (গ) উদ্দীপকের (i) নং বিক্রিয়ায় 180 kJ তাপ শোষিত হয়। কাজেই বিক্রিয়াটি তাপহারী বিক্রিয়া। বিক্রিয়াটি নিম্নরূপ-

$$X_2(g) + Y_2(g) + 180 \text{ kJ} \rightleftharpoons 2XY(g)$$

নিচে বিক্রিয়াটির রাসায়নিক সাম্যাবস্থায় তাপমাত্রার প্রভাব ব্যাখ্যা করা

তাপমাত্রার প্রভাব : বিক্রিয়াটি গ্যাসীয় উভমুখী ও তাপহারী হওয়ায় লা- শাতেলিয়ার নীতি অনুসারে বিক্রিয়ার সাম্যাবস্থায় তাপ বৃদ্ধি করলে সাম্যের অবস্থান সামনের দিকে এবং তাপ ব্রাস করলে সাম্যের অবস্থান পেছনের দিকে অগ্রসর হয়। অর্থাৎ বিক্রিয়ার সাম্যাবস্থায় তাপ বৃদ্ধি করলে X_2 ও Y_2 মৌলদ্বয় পরস্পর যুক্ত হয়ে উৎপাদ XY এর

পরিমাণ বৃদ্ধি করে এবং তাপ ব্রাস করলে সাম্যের অবস্থান পেছনের দিকে সরে আসে এবং XY এর পরিমাণের ব্রাস ঘটায়। অর্থাৎ তাপ বৃদ্ধিতে উৎপাদ বৃদ্ধি পায় এবং তাপ ব্রাসে উৎপাদ ব্রাস পায়।

(ঘ) উদ্দীপকের (ii) ও (iii) নং বিক্রিয়ার মধ্যে (ii) নং বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়াকে সমর্থন করে। নিচে এর যৌক্তিক কারণ বিশ্লেষণ করা হলো-

 $^{+2}$ $^{-1}$ 0 $^{+3}$ $^{-1}$ উদ্দীপকের (ii) নং বিক্রিয়াটি- $2 FeCl_2 + Cl_2 \longrightarrow 2 FeCl_3$ বিক্রিয়াটি একটি জারণ-বিজারণ বিক্রিয়া । কারণ ইলেকট্রনীয় ধারণা মতে, জারণ হচ্ছে এমন একটি রাসায়নিক প্রক্রিয়া যেখানে কোনো পরমাণু বা আয়ন ইলেকট্রন ত্যাগ করে । অপরদিকে, বিজারণ হচ্ছে এমন একটি প্রক্রিয়া যেখানে কোনো পরমাণু বা আয়ন ইলেকট্রন গ্রহণ করে । উল্লেখিত বিক্রিয়ায় $FeCl_2$ যৌগে Fe^{2+} আয়ন ইলেকট্রন ত্যাগ করে Fe^{2+} আয়নের জারণ সংঘটিত হয় । অন্যদিকে, ক্লোরিন পরমাণু ইলেকট্রন গ্রহণ করে Cl^- আয়নে পরিণত হয় । অর্থাৎ এক্ষেত্রে যে এর বিজারণ সংঘটিত হয় ।

জারণ : $2Fe^{2+}Cl_2^- \rightarrow Fe^{3+} + 2e$

বিজারণ : $Cl_2 + 2e \rightarrow 2Cl$

জারণ-বিজারণ : $2Fe^{2+}Cl_2^- + Cl_2 \rightarrow 2Fe^{2+}Cl_2^-$

বা, $2\text{FeCl}_2 + \text{Cl}_2 \rightarrow \text{FeCl}_3$

সুতরাং (ii) নং বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়াকে সমর্থন করে। অপরদিকে (iii) নং বিক্রিয়াটি-

$$+$$
 -1 +1 -2 +1 -1
 $KOH + H_2SO_4 \longrightarrow K_2SO_4 + H - OH$

বিক্রিয়াটি একটি প্রশমন বিক্রিয়া। এ বিক্রিয়ায় সমস্ত বিক্রিয়ক ও উৎপাদের জারণ মান একই থাকে বলে বিক্রিয়ায় কোনো ইলেকট্রনের আদান-প্রদান ঘটেনি। কাজেই বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়া নয়। সুতরাং উপরের আলোচনার প্রেক্ষিতে বলা যায়, উদ্দীপকের (ii) নং ও (iii) নং এর মধ্যে (ii) নং বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়াকে সমর্থন করে।

২৫. নিচের চিত্রগুলো লক্ষ করো এবং সংশ্রিষ্ট প্রশ্নগুলোর উত্তর দাও:

[ময়মনসিংহবোর্ড ২০২২]

- (ক) প্রিজারভেটিভস কাকে বলে?
- (খ) ${}^{23}_{11}{\rm Na}^+$ এর অর্থ কী? ব্যাখ্যা করো।
- (গ) উদ্দীপকের (i) নং টেস্টটিউবে রক্ষিত পদার্থের ঝুঁকি, ঝুঁকির মাত্রা ও সাবধানতা ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের (ii) ও (iii) নং টেস্টটিউবে সংঘটিত বিক্রিয়া একই প্রকৃতির কিনা? বিশ্লেষণ করো।

২৫ নং প্রশ্নের উত্তর

বুসামূল ৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

- (ক) যেসব রাসায়নিক পদার্থ অল্প পরিমাণ ব্যবহার করে বিভিন্ন খাদ্যদ্রব্য দীর্ঘসময় সংরক্ষণ করা যায় তাকে প্রিজারভেটিভস বলে।
- খে) $^{23}_{11}{\rm Na}^+$ এর অর্থ হলো- ${\rm Na}$ হলো সোডিয়ামের প্রতীক। ${\rm Na}^+$ দ্বারা বুঝায় এটি +1 আধানবিশিষ্ট একটি ক্যাটায়ন, যার বাম দিকের পাদবিন্দুতে 11 দ্বারা সোডিয়ামের প্রোটন সংখ্যা বুঝায়। বামদিকের শীর্ষবিন্দুতে 23 দ্বারা ${\rm Na}$ পরমাণুর ভরসংখ্যা প্রকাশ করে।
- (গ) উদ্দীপকের (i) নং টেস্টটিউবে রক্ষিত পদার্থটি জাইলিন, যা স্বাস্থ্য ঝুঁকিপূর্ণ পদার্থ। এ ধরনের পদার্থের সাংকেতিক চিহ্ন ি। নিচে এ ধরনের পদার্থের ঝুঁকি, ঝুঁকির মাত্রা ও সাবধানতা ব্যাখ্যা করা হলোজাইলিন ত্বকে লাগলে বা শ্বাস-প্রশ্বাসের সাথে শরীরের ভেতরে গেলে শরীরের স্বল্পমেয়াদী বা দীর্ঘমেয়াদী ক্ষতিসাধন করে। এগুলো শরীরের মধ্যে গেলে ক্যান্সারের মত কঠিন রোগ হতে পারে কিংবা শ্বাসতন্ত্রের ক্ষতিসাধন করতে পারে। এ ধরনের পদার্থ ব্যবহারের সময় হাতে দন্তানা, চোখে নিরাপদ চশমা, নাকে মুখে মান্ধ ব্যবহার করতে হবে। পরীক্ষণ মিশ্রণের সংগ্রহ ও যথায়থ পরিশোধন করতে হবে।
- (ঘ) উদ্দীপকের (ii) ও (iii) নং টেস্টটিউবে সংঘটিত বিক্রিয়ান্বয় ভিন্ন প্রকৃতির। নিচে তা বিশ্লেষণ করা হলো-

প্রদত্ত (ii) ও (iii) নং টেস্টটিউবে সংঘটিত বিক্রিয়াদ্বয়-

- (ii) MgCl(s) +7H₂O(1) → MgCl₂.H₂O হেন্টা হাইড্রেট ম্যাগনেসিয়াম ক্লোরাইড
- (iii) AlCl₃(s) +3H₂O(1) \rightarrow Al(OH)₃(s) \ +3HCl
- (ii) নং বিক্রিয়ায়, দেখা গেছে, আয়নিক যৌগ $MgCl_2$ 7 অণু পানির অণুর সাথে যুক্ত হয়ে হেন্টা হাইড্রেট ম্যাগনেসিয়াম ক্লোরাইডের কেলাস গঠন করে। তাই বিক্রিয়াটি পানি যোজন বিক্রিয়া। আবার যে বিক্রিয়ায় কোনো বিক্রিয়কের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ গঠন করে তাকে পানি বিশ্লেষণ বিক্রিয়া বলে। (iii) নং টেস্টটিউবে $AlCl_3$ যৌগের Al^{3+} আয়নের সাথে পানির OH^- আয়ন এবং Cl^- আয়নের সাথে পানির H^+ আয়ন বিক্রিয়া করে $Al(OH)_3$ ও HCl তৈরি করে। অর্থাৎ (iii) নং টেস্টটিউবে সংঘটিত বিক্রিয়া পানি বিশেষণ বিক্রিয়া। আবার (iii) নং বিক্রিয়ায় উৎপন্ন $Al(OH)_3$ এর পানিতে দ্রবণীয়তা অত্যন্ত কম হওয়ায তা বিক্রিয়ার পরে পাত্রের তলায় অধ্যক্ষেপ হিসেবে জমা হবে। সুতরাং (iii) নং বিক্রিয়াটি অধ্যক্ষেপণ বিক্রিয়াও। সুতরাং উপরের আলোচনায় বলা যায়, উদ্দীপকের (ii) ও (iii) নং টেস্টটিউবে সংঘটিত বিক্রিয়াঘ্য একই প্রকৃতির নয়।

$$\Leftrightarrow$$
 (i) $2\text{FeCl}_2 + \text{Cl}_2 \longrightarrow 2\text{FeCl}_3$

(ii) $2SO_2(g) + O_2(g)$

[ময়মনসিংহ বোর্ড ২০২২]

- (ক) বিক্রিয়ার হার কাকে বলে?
- (খ) উভয়মুখী বিক্রিয়াকে কীভাবে একমুখী করা যায়? ব্যাখ্যা করো।
- (গ) (i) নং বিক্রিয়াটি একটি রেডক্স বিক্রিয়া ব্যাখ্যা করো।
- (ঘ) (ii) নং বিক্রিয়ায় লা-শাতেলিয়ার নীতি অনুযায়ী সম্মুখমুখী ও বিপরীতমুখী বিক্রিয়ায় তাপের প্রভাব বিশ্লেষণ করো।

২৬ নং প্রশ্নের উত্তর

- (ক) প্রতি একক সময়ে কোনো একটি বিক্রিয়া পাত্রে যে পরিমাণ উৎপাদের ঘনমাত্রা বৃদ্ধি বা বিক্রিয়কের ঘনমাত্রা হ্রাস পায় তাকে বিক্রিয়ার হার বলে।
- (খ) আমরা জানি, উভমুখী বিক্রিয়া অসম্পূর্ণ। উভমুখী বিক্রিয়াকে বিভিন্নভাবে একমুখী করা যায়। কোনো উভমুখী বিক্রিয়ায় একটি উৎপাদকে যদি ক্রমাগত বিক্রিয়াস্থল থেকে সরিয়ে নেওয়া যায়, তাহলে বিপরীত বিক্রিয়াটি সংঘটিত হতে পারে না। অর্থাৎ তখন উভমুখী সাম্যাবস্থা আর বজায় থাকে না। যেমন- জিংক ও সালফিউরিক এসিডের বিক্রিয়ায় উৎপন্ন হাইড্রোজেন গ্যাসকে পৃথকভাবে সংগ্রহ করা হলে বিক্রিয়া সম্পূর্ণ হয় তথা বিক্রিয়াটি একমুখী হয়। যেমন,

 $Zn + H_2SO_4 o ZnSO_4 + H_2↑$ আবার, বিক্রিয়াটি খোলা পাত্রে সংঘটিত হলে এবং উৎপাদ গ্যাসীয় হলে উভমুখী বিক্রিয়া একমুখী হয়।

(গ) উদ্দীপকের (i) নং বিক্রিয়াটি-

$$2FeCl_2 + Cl_2 \rightarrow 2FeCl_3$$

বিক্রিয়াটি একটি রেডক্স (জারণ-বিজারণ) বিক্রিয়া। যে বিক্রিয়ায় ইলেকটনের আদান প্রদান বা স্থানারব হ

যে বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান বা স্থানান্তর ঘটে তাকে রেডক্স বিক্রিয়া বা জারণ-বিজারণ বিক্রিয়া বলা হয়। বিক্রিয়ায় ইলেকট্রনের গ্রহণ বিজারণ এবং ইলেকট্রনের প্রদান জারণ নামে পরিচিত। উদ্দীপকের বিক্রিয়ায় $FeCl_2$ এর Fe^{2+} ইলেকট্রন ত্যাগ করে Fe^{3+} -

উদ্দীপকের বিক্রিয়ায় FeCl_2 এর Fe^{2+} ইলেকট্রন ত্যাগ করে Fe^{3+} -এ পরিণত হয় , যা একটি জারণ প্রক্রিয়া।

জারণ : $FeCl_2 - e \longrightarrow Fe^{3+} + 2Cl^- \dots (i)$

আবার, Cl_2 এর Cl ইলেকট্রন গ্রহণ করে Cl^- -এ পরিণত হয়, যা একটি বিজারণ প্রক্রিয়া।

বিজারণ : $Cl_2 + 2e^- \longrightarrow 2Cl^-$ (ii)

সমীকরণ (i) ও (ii) থেকে পাই

$$2FeCl2 - 2e \longrightarrow 2Fe3+ + 4Cl-$$

$$Cl2 + 2e- \longrightarrow 2Cl-$$

জারণ-বিজারণ বিক্রিয়া : $2 \text{FeCl}_2 - \text{Cl}_2 \longrightarrow 2 \text{FeCl}_3$

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি-

$$2SO_2 + O_2(g) = \frac{440^{\circ} - 550 \text{ °C V}_2O_5}{1 \text{ atm}} 2SO_3(g); \Delta H = -198$$

নিচে লা শাতেলিয়ার নীতি অনুসারে সম্মুখমুখী ও বিপরীতমুখী বিক্রিয়ায় তাপের প্রভাব বিশ্লেষণ করা হলো-

- সম্মুখমুখী বিক্রিয়য় তাপের প্রভাব : উদ্দীপকের সম্মুখমুখী বিক্রিয়াটি তাপোৎপাদী বিক্রিয়া। কারণ এক্ষেত্রে 198 kJ তাপ নির্গত হয়। লা-শাতেলিয়ার নীতি অনুসারে, তাপোৎপাদী বিক্রিয়ায় কম তাপে ভালো উৎপাদ পাওয়া য়বে। অর্থাৎ কম তাপে SO2 ও O2 পরক্ষার বিক্রিয়া করে অধিক SO2 (g) উৎপন্ন করবে এবং সাম্যের অবস্থান ভান দিকে সরে গিয়ে উৎপাদের পরিমাণ বৃদ্ধি করবে। পক্ষান্তরে তাপমাত্রা বৃদ্ধির সাথে সাথে উৎপাদের পরিমাণ ব্রাস পায়। লা-শাতেলিয়ার নীতি অনুসারে, সম্মুখমুখী বিক্রিয়ায় তাপমাত্রা বাড়ালে সাম্যের অবয়্থা ভান থেকে বামে সরে গিয়ে উৎপাদের পরিমাণ ব্রাস করে।
- ২. বিপরীতমুখী বিক্রিয়ায় তাপের প্রভাব : উদ্দীপকের বিপরীতমুখী বিক্রিয়াটি হবে-

বসায়ৰ

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

$$2SO_2 + O_2(g) = \frac{440^{\circ} - 550 \text{ °C V}_2O_5}{1 \text{ atm}} 2SO_3(g); \Delta H = -198 \text{ kJ}$$

সুতরাং বিপরীতমুখী বিক্রিয়াটি তাপহারী বিক্রিয়া। লা-শাতেলিয়ার নীতি অনুসারে, এ বিক্রিয়ায় তাপমাত্রা বৃদ্ধির সাথে সাথে $SO_3(g)$ এর বিয়োজন বৃদ্ধি পেতে থাকে। বিক্রিয়ার সাম্যাবস্থা ডানদিকে সরে গিয়ে উৎপাদ $SO_2(g)$ ও $O_2(g)$ এর পরিমাণ বৃদ্ধি করে। পক্ষান্তরে তাপমাত্রা ব্রাস করলে $SO_3(g)$ এর বিয়োজন ব্রাস পায়। সাম্যের অবস্থান ডান থেকে বামে সরে গিয়ে উৎপাদের পরিমাণ ব্রাস ঘটায়।

$$49. (i) N_2(g) + 3H_2(g) \rightleftharpoons 2X(g) [\Delta H = -ye]$$

(ii) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

[রাজশাহী বোর্ড ২০২২]

- (ক) প্রতীক কাকে বলে?
- (খ) এন্টাসিড জাতীয় পদার্থ পাকস্থলীর এসিডিটি কীরূপে নিয়ন্ত্রণ করে? ব্যাখ্যা করো।
- (গ) (i) নং বিক্রিয়াটির সাম্যবস্থায় তাপ ও চাপের প্রভাব ব্যাখ্যা করো।
- (ঘ) (ii) নং বিক্রিয়াটিতে জারণ বিজারণ যুগপৎ ঘটে কি? যুক্তি দাও।

২৭ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপ্ত রূপকে মৌলের প্রতীক বলা হয়।
- (খ) মানুষের শরীরের বিপাক ক্রিয়ায় অনেকের অতিরিক্ত HCl তৈরি হয়। অতিরিক্ত HCl কে প্রশমিত করার জন্য রোগীকে ডাক্তার এন্টাসিড জাতীয় ওমুধ খাওয়ার পরামর্শ দেন। এন্টাসিড হচ্ছে $Mg(OH)_2$ ও $Al(OH)_2$ এর মিশ্রণ। এই ক্ষারক দুটি অতিরিক্ত HCl কে প্রশমিত করে এবং রোগী এসিডিটি থেকে মুক্তি পান। এন্টাসিডের বিক্রিয়া নিম্নরূপ-

$$2HCl + Mg(OH)_2 \longrightarrow MgCl_2 + 2H_2O$$

 $3HCl + Al(OH)_3 \longrightarrow AlCl_3 + 3H_2O$

- গে) উদ্দীপক প্রদন্ত (i) নং বিক্রিয়াটি পূর্ণ করে পাই- $N_2(g)+3H_2(g) \rightleftharpoons 2X(g)$ [$\Delta H=-ye$] উপরিউক্ত বিক্রিয়াটি তাপোৎপাদী বিক্রিয়া, কেননা ΔH এর মান ঋণাত্মক। বিক্রিয়াটির সাম্যাবস্থায় তাপ ও চাপের প্রভাব নিম্নরূপ- তাপমাত্রার প্রভাব : বিক্রিয়াটি তাপোৎপাদী অর্থাৎ এক্ষেত্রে তাপ নির্গত হয়। সুতরাং তাপমাত্রা বাড়ালে লা-শাতেলিয়ার নীতি অনুযায়ী বিক্রিয়ার সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে। অর্থাৎ NH_3^- এর উৎপাদন ব্রাস পাবে। আবার, তাপমাত্রা কমালে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ NH_3^- এর উৎপাদন বেড়ে যাবে। চাপের প্রভাব : বিক্রিয়াটিতে বিক্রিয়কের মোট মোল সংখ্যা (4) অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম। সুতরাং চাপ বাড়ালে লা শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে অর্থাৎ NH_3^- এর উৎপাদন বৃদ্ধি পাবে। আবার চাপ কমালে সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে অর্থাৎ NH_3^- এর উৎপাদন হ্রাস পাবে।
- ্ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ ঘটেছে। নিচে এর বিশ্লেষণ করা হলো-

ইলেকট্রনীয় মতবাদ অনুসারে , যে বিক্রিয়ায় ইলেকট্রনের স্থানান্তর ঘটে তাকে জারণ-বিজারণ বিক্রিয়া বলা হয়।

 $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$

উদ্দীপকের বিক্রিয়াটিতে Zn পরমাণু দুটি ইলেক্ট্রন , ত্যাগ করে Zn^0 থেকে Zn^{2^+} এ পরিণত হয় । অর্থাৎ Zn এর জারণ ঘটে । আবার , Zn এর ত্যাগকৃত ইলেক্ট্রন 2টি H^+ আয়ন গ্রহণ করে $2H^+$ থেকে $H_2^{\ 0}$ এ পরিণত হয় । অর্থাৎ H^+ এর বিজারণ ঘটে ।

অর্থাৎ উদ্দীপকের (ii) নং বিক্রিয়াটিতে Zn হতে হাইড্রোজেনে ইলেকট্রনের স্থানান্তর ঘটে। আবার ইলেকট্রন স্থানান্তর তথা জারণ-বিজারণ একই সাথে ঘটে। সুতরাং বলা যায়, প্রদত্ত বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ ঘটে।

(ii) $A + 3H_2O \rightarrow B + 3HC1$

[দিনাজপুর বোর্ড ২০২২]

- (ক) জারণ সংখ্যা কাকে বলে?
- (খ) ইথেনের দহন একটি রাসায়নিক পরিবর্তন ব্যাখ্যা করো।
- (গ) উদ্দীপ<mark>কের</mark> (i) নং বিক্রিয়ায় জারণ-বিজারণ ঘটে ব্যাখ্যা করো।
- (घ) (ii) নং বিক্রিয়ায় একই সাথে অধ্যক্ষেপণ এবং আর্দ্র বিশ্লেষণ ঘটে কি-না যুক্তিসহ বিশ্লেষণ করো।

২৮ নং প্রশ্নের উত্তর

- (ক) যৌগ গঠনের সময় কোনো মৌল যত সংখ্যক ইলেকট্রন বর্জন করে ধনাত্মক আয়ন উৎপন্ন করে অথবা যত সংখ্যক ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়ন উৎপন্ন করে তাকে মৌলের জারণ সংখ্যা বলে।
- (খ) যে পরিবর্তনের ফলে সম্পূর্ণ ভিন্নধর্মী নতুন পদার্থে পরিণত হয় তাকে রাসায়নিক পরিবর্তন বলে। ইথেন (C_2H_6) এর দহন একটি, রাসায়নিক পরিবর্তন। কারণ ইথেনের দহন বিক্রিয়াটি-

$$C_2H_6 + \frac{7}{2}O_2 \to 2CO(g) + 3H_2O +$$
 শাজি

বিক্রিয়া অনুসারে, বিক্রিয়ক C_2H_6 ও O_2 এর ধর্ম উৎপাদ CO2 ও H_2O এর ধর্ম থেকে সম্পূর্ণ ভিন্ন । সুতরাং এটি একটি রাসায়নিক পরিবর্তন ।

(গ) উদ্দীপকের (i) নং বিক্রিয়াটি- $2 FeCl_2 + Cl_2 = 2 FeCl_3$ বিক্রিয়াটি একটি রেডক্স (জারণ-বিজারণ) বিক্রিয়া। যে বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান বা স্থানান্তর ঘটে তাকে রেডক্স বিক্রিয়া বা জারণ-বিজারণ বিক্রিয়া বলা হয়। বিক্রিয়ায় ইলেকট্রনের গ্রহণ বিজারণ এবং ইলেকট্রনের প্রদান জারণ নামে পরিচিত। উদ্দীপকের বিক্রিয়ায় $FeCl_2$ এর Fe^{2+} ইলেকট্রন ত্যাগ করে Fe^{3+} -এ পরিণত হয়, যা একটি জারণ প্রক্রিয়া।

জারণ :
$$FeCl_2 - e \longrightarrow Fe^{3+} + 2Cl^-$$
 (i) আবার , Cl_2 এর Cl ইলেকট্রন গ্রহণ করে Cl^- -এ পরিণত হয় , যা একটি বিজারণ প্রক্রিয়া ।

বসায়ৰ

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

বিজারণ : $Cl_2 + 2e^- \longrightarrow 2Cl^-$ (ii)

সমীকরণ (i) ও (ii) থেকে পাই,

$$2FeCl2 - 2e- \longrightarrow 2Fe3+ + 4Cl-$$

$$Cl2 + 2e- \longrightarrow 2Cl-$$

জারণ-বিজারণ : $2FeCl_2 - Cl_2 \longrightarrow 2FeCl_3$

সূতরাং (i) নং বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়া।

(ঘ) উদ্দীপকের বিক্রিয়া দুটি পূর্ণ করে পাই,

(i)
$$2\text{FeCl}_2 + \text{Cl}_2 \rightarrow \text{FeCl}_3$$

(ii)
$$FeCl_3 + 3H_2O \rightarrow Fe(OH)_3(s) + 3HCl$$
(A)

সুতরাং (ii) নং বিক্রিয়া একই সাথে অধ্যক্ষেপণ ও আর্দ্র-বিশ্লেষণ বিক্রিয়া। নিচে যক্তিসহ তা বিশ্লেষণ করা হলো-

জানা আছে, যে বিক্রিয়ায় একাধিক তরল বিক্রিয়ক পদার্থ বিক্রিয়া করে কোনো একটি কঠিন উৎপাদ তৈরি করলে সে বিক্রিয়াকে অধ্যক্ষেপণ বিক্রিয়া বলে।

উদ্দীপকের (ii) নং বিক্রিয়াটি-

 $FeCl_3(aq) + 3H_2O \rightarrow Fe(OH)_3(s) \downarrow + 3HCl(aq)$ বিক্রিয়া থেকে দেখা যায়, বিক্রিয়ায় একটি উৎপাদ $Fe(OH)_3$

াবাক্রয়া থেকে দেখা যায়, বাক্রয়ায় একাচ ৬ৎপাদ Fe(OH)3
অধ্যক্ষিপ্ত হয় বা কঠিন হওয়ায় তলানী পড়ে। এজন্য এটি একটি
অধনুক্ষেপণ বিক্রিয়া।

আবার, যে বিক্রিয়ায় কোনো বিক্রিয়কের দুই অংশ পানির বিপরীত আধান বিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ গঠন করে তাকে আর্দ্র-বিশ্লেষণ বিক্রিয়া বলে। উদ্দীপকের (ii) নং বিক্রিয়া থেকে দেখা যায়, $FeCl_3$ এর ধনাত্মক প্রাপ্ত (Fe^{3+}) পানির ঋণাত্মক অংশ (OH^-) এবং $FeCl_3$ এর ঋণাত্মক প্রাপ্ত (Cl^-) পানির ধনাত্মক অংশ (H^+) এর সাথে যুক্ত হয়ে যথাক্রমে $Fe(OH)_3$ ও HCl গঠন করে। কাজেই এটি একটি আর্দ্র-বিশেষণ বিক্রিয়া।

সুতরাং উদ্দীপকের (ii) নং বিক্রিয়ায় একই সাথে অধঃক্ষেপণ এবং আর্দ্র- বিশ্লেষণ ঘটে।

২৯.
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g), \Delta H = -196kJ$$
 [দিনাজপুর বোর্ড ২০২২]

- (ক) রাসায়নিক সাম্যাবস্থা কাকে বলে?
- (খ) Cl⁻ একটি বিজারক ব্যাখ্যা করো।
- (গ) উদ্দীপকের বিক্রিয়ায় উৎপন্ন যৌগের 10 গ্রামের পরমাণু সংখ্যা নির্ণয় করো।
- (ঘ) সাম্যবস্থায় বিক্রিয়াটির উপর তাপমাত্রা ও চাপের প্রভাব বিশ্লেষণ করো।

২৯ নং প্রশ্নের উত্তর

- (ক) যে অবস্থায় কোনো উভমুখী বিক্রিয়ার সম্মুখমুখী বিক্রিয়ার হার ও পশ্চাৎমখী বিক্রিয়ার হার সমান হয় তাকে রাসায়নিক সাম্যাবস্থা বলে।
- (খ) জারণ-বিজারণ বিক্রিয়ায় যে পরমাণু বা মূলক ইলেকট্রন বর্জন করে তাকে বিজারক বলে। Cl^- একটি বিজারক। কারণ রাসায়নিক বিক্রিয়ায় Cl^- আয়ন ইলেকট্রন বর্জন করে Cl_2 গ্যাসে পরিণত হয়।

$$Cl^- \longrightarrow \frac{1}{2} \, Cl_2 + e^-$$

(গ) উদ্দীপকের বিক্রিয়ায় উৎপন্ন যৌগটি ${
m SO}_3$ ।

 ${
m SO_3}$ এর আণবিক ভর = $32+(16 imes3)=80~{
m g}$ এবং পরমাণুর সংখ্যা 4 ।

সুতরাং , $80~g~SO_3$ যৌগে পরমাণুর সংখ্যা = $4\times6.023\times10^{23}$ টি

$$\therefore$$
 10 g SO $_3$ যৌগে পরমাণুর সংখ্যা = $\frac{4 \times 6.023 \times 10^{23} \times 10}{80}$ টি

$$= 3.0115 \times 10^{23}$$

সুতরাং উদ্দীপকের উৎপন্ন যৌগের 10 গ্রামে $3.0115 imes 10^{23}$ টি পরমাণু থাকে।

(ঘ) উদ্দীপকের বিক্রিয়াটি-

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g), \Delta H = -196kJ$ নিচে সাম্যাবস্থায় বিক্রিয়াটির উপর তাপমাত্রা ও চাপের প্রভাব বিশেষণ করা হলো-

তাপমাত্রার প্রভাব: বিক্রিয়াটি তাপোৎপাদী অর্থাৎ এক্ষেত্রে তাপ নির্গত হয়। সুতরাং তাপমাত্রা বাড়ালে লা-শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে। অর্থাৎ SO_3 এর উৎপাদন ব্রাস পাবে। আবার, তাপমাত্রা কমালে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ SO_3 -এর উৎপাদন বেড়ে যাবে।

চাপের প্রভাব : বিক্রিয়াটিতে বিক্রিয়কের মোট মোল সংখ্যা (3) অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম। সুতরাং চাপ বাড়ালে লা- শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে অর্থাৎ SO_3 এর উৎপাদন বাড়বে। আবার, চাপ কমালে সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে অর্থাৎ SO_3 এর উৎপাদন হ্রাস পাবে।

- $\mathfrak{So.}(i)$ FeCl₂ + SnCl₄ \longrightarrow FeCl₃ + SnCl₂
 - (ii) $2N_2O_5(g) \rightleftharpoons 4NO_2(g) + O_2(g)$

[কমিল্লা বোর্ড ২০২২]

- (ক) ধাতব বন্ধন কাকে বলে?
- (খ) মোলারিটি তাপমাত্রার উপর নির্ভর করে কেন? ব্যাখ্যা করো।
- (গ) লা-শাতেলিয়ার নীতি অনুসারে (ii) নং বিক্রিয়ার চাপের প্রভাব আলোচনা করো।
- (ঘ) (i) নং বিক্রিয়াটি কোন কোন বিক্রিয়ার প্রতিনিধিত্ব করে? সমীকরণসহ বিশ্লেষণ করো।

৩০ নং প্রশ্নের উত্তর

- (ক) ধাতব প্রমাণুসমূহ যে আকর্ষণ বল দ্বারা প্রস্পরের সাথে আবদ্ধ থাকে তাকে ধাতব বন্ধন বলে।
- (খ) মোলারিটি তাপমাত্রার উপর নির্ভরশীল। কারণ মোলারিটি নির্ণয়ে দ্রব এবং দ্রাবক উভয়ই প্রয়োজন। দ্রবের ভরের উপর তাপমাত্রার কোনো প্রভাব না থাকলেও দ্রবণের আয়তনের উপর তাপমাত্রার প্রভাব। বিদ্যমান এবং দ্রবণের আয়তন তাপমাত্রা নির্ভর। এজন্য মোলারিটিও তাপমাত্রা নির্ভর।
- (গ) উদ্দীপকের (ii) নং বিক্রিয়াটি-

 $2N_2O_5(g) \rightleftharpoons 4NO_2(g) + O_2(g)$

Prepared by: SAJJAD HOSSAIN

বিক্রিয়াটি গ্যাসীয় উভমুখী এবং আয়তন বৃদ্ধির মাধ্যমে ঘটে। নিচে বিক্রিয়াটির উপর চাপের প্রভাব ব্যাখ্যা করা হলো-

চাপের প্রভাব : উদ্দীপকের বিক্রিয়াটিতে বিক্রিয়কের মোল সংখ্যা 2 এবং উৎপাদের মোল সংখ্যা 4+1=5। সুতরাং বিক্রিয়াটি আয়তন বৃদ্ধির মাধ্যমে ঘটে। এজন্য কম চাপে N_2O_5 এর বিয়োজন অধিক হয়। ফলে বিক্রিয়ার সাম্যাবস্থা ডানদিকে সরে গিয়ে উৎপাদ NO_2 ও O_2 এর পরিমাণ বৃদ্ধি করে। অপরদিকে, চাপ বৃদ্ধি করলে N_2O_5 এর বিয়োজন হ্রাস পায়। ফলে সাম্যাবস্থা বাম দিকে সরে গিয়ে উৎপাদের পরিমাণ কমে যায়।

- (ঘ) উদ্দীপকের (i) নং বিক্রিয়াটি নিয়ে পাই,
 - (i) FeCl₂ + SnCl₄ → FeCl₃ + SnCl₂ প্রদত্ত বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়ার প্রতিনিধিত্ব করে। নিচে সমীকরণসহ তা বিশ্রেষণ করা হলো-

জারণ-বিজারণ বিক্রিয়া: যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন ত্যাগ করে তাকে জারণ-বিক্রিয়া এবং যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে বিজারণ বিক্রিয়া বলে। উদ্দীপকের বিক্রিয়াটি আয়নিত করে পাই,

বিক্রিয়া থেকে দেখা যায়, Fe^{2+} ১টি ইলেকট্রন ত্যাগ করে Fe^{3+} আয়নে পরিণত হয়েছে। সুতরাং Fe^{2+} এর জারণ ঘটেছে।

জারণ বিক্রিয়া : $2Fe^{2+} \longrightarrow 2Fe^{3+} + 2e^{-}$

আবার, ${\rm Sn}^{4+}$ দুটি ইলেকট্রন গ্র<mark>হ</mark>ণ করে উৎপাদ ${\rm Sn}^{2+}$ হয়েছে। এজন্য ${\rm Sn}^{4+}$ এর বিজারণ ঘটেছে।

বিজারণ বিক্রিয়া : $\mathrm{Sn}^{4+} + 2\mathrm{e}^- \longrightarrow \mathrm{Sn}^{2+}$

সুতরাং দেখা যাচ্ছে যে, (i) নং বিক্রিয়াটিতে জারণ সংখ্যার হ্রাস-বৃদ্ধি ঘটেছে। তথা e^- এর আদান-প্রদান ঘটেছে। তাই বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়ার প্রতিনিধিত্ব করে।

- లు. (i) $2\text{FeCl}_3 + \text{H}_2\text{S} \rightarrow 2\text{FeCl}_2 + 2\text{HCl} + \text{S}$
 - (ii) $PCl_5(g) +$ তাপ $\rightleftharpoons PCl_3(g) + Cl_2(g)$

[চট্টগ্রাম বোর্ড ২০২২]

- (ক) সংশ্লেষণ বিক্রিয়া কাকে বলে?
- (খ) সমাণুকরণ বিক্রিয়ায় প্রমাণুর পুনর্বিন্যাস ঘটে ব্যাখ্যা করো।
- (গ) উদ্দীপকের (i) নং বিক্রিয়ায় S জারিত হয়েছে ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের (ii) নং বিক্রিয়ায় Cl_2 এর উৎপাদন বাড়াতে কী কী ব্যবস্থা গ্রহণ করতে হবে? মতামত দাও।

৩১ নং প্রশ্নের উত্তর

- (ক) যে সংযোজন বিক্রিয়ায় কোনো যৌগ তার উপাদান মৌলসমূহের প্রত্যক্ষ সংযোগে উৎপন্ন হয় তাকে সংশ্লেষণ বিক্রিয়া বলে।
- (খ) কোনো রাসায়নিক বিক্রিয়ায় যৌগের পরমাণুসমূহের পুনর্বিন্যাসের মাধ্যমে একটি সমাণু থেকে অপর সমাণু উৎপন্ন হলে তাকে সমাণুকরণ বিক্রিয়া বলে। যেমন অ্যামোনিয়াম সায়ানেটকে তাপ দিলে ইউরিয়া উৎপন্ন হয়। এ প্রক্রিয়ায় অ্যামোনিয়া সায়ানেট ও ইউরিয়া পরস্পরের সমাণু।

 $NH_4CNO \xrightarrow{\Delta} NH_2 - CO - NH_2$

দেখা যাচ্ছে যে, বিক্রিয়ক NH_4CNO যৌগের পরমাণুসমূহ নিজেদের মধ্যে পুনর্বিন্যাসের মাধ্যমে $NH_2-CO-NH_2$ তৈরি করেছে।

সুতরাং বলা যায়, সমাণুকরণ বিক্রিয়ায় পরমাণুর পুনর্বিন্যাস ঘটে। (গ) উদ্দীপকের (i) নং বিক্রিয়াটি-

$$\begin{array}{ccc}
& & \downarrow \\
+3 & -2 & +2 \\
2\text{FeCl}_3 + \text{H}_2\text{S} \longrightarrow 2\text{FeCl}_2 + 2\text{HCl} + \text{S}
\end{array}$$

বিক্রিয়ায় দেখা যাচেছ, বিক্রিয়ক যৌগে S^{2-} এর জারণ মান -2 থেকে বৃদ্ধি পেয়ে উৎপাদ সালফার পরমাণুতে S এর জারণ মান শূন্য (0) হয়েছে। এক্ষেত্রে H_2S যৌগের S^{-2} আয়ন দুটি ইলেকট্রন ত্যাগ করে S পরমাণুতে পরিণত হয়েছে।

$$H_2S - 2e^- \rightarrow 2H^+ + S$$

জানা আছে, জারণ-বিজারণ বিক্রিয়ায় বিক্রিয়ক যৌগের পরমাণুর জারণ মান উৎপাদ যৌগে বৃদ্ধি ঘটলে পরমাণুটি জারিত হয়। এক্ষেত্রে বিক্রিয়ক H_2S যৌগে S^{2-} এর জারণ মান -2 থেকে বৃদ্ধি পেয়ে উৎপাদ S পরমাণুর জারণ মান শূন্য (0) হয়েছে। সুতরাং এ বিক্রিয়ায় S^{2-} জারিত হয়েছে।

(ঘ) উদ্দীপকের (রর) নং বিক্রিয়াটি-

 $PCl_5(g)$ + তাপ $\rightleftharpoons PCl_3(g)$ + $Cl_2(g)$ দেখা যাচ্ছে, বিক্রিয়াটি সংঘটিত হতে পরিবেশ থেকে তাপ শোষিত হয়েছে। তাই এটি তাপহারী বিক্রিয়া এবং আয়তন বৃদ্ধির মাধ্যমে ঘটে। এ বিক্রিয়ায় Cl_2 এর উৎপাদন বাড়াতে নিম্নোক্ত ব্যবস্থা গ্রহণ করতে হবে।

- (i) তাপমাত্রার প্রভাব : বিক্রিয়াটি তাপহারী বিক্রিয়া হওয়ায় তাপ বৃদ্ধির সাথে PCl₅(g) এর বিয়োজন বৃদ্ধি পায়। ফলে সাম্যের অবস্থান বাম থেকে ডান দিকে সরে গিয়ে Cl₂ এর পরিমাণ বৃদ্ধি করে। অর্থাৎ এ বিক্রিয়ায় তাপ বৃদ্ধি করলে Cl₂ এর পরিমাণ বৃদ্ধি পাবে।
- (ii) চাপের প্রভাব : বিক্রিয়াটি গ্যাসীয় উভমুখী ও আয়তন বৃদ্ধির মাধ্যমে ঘটে বলে এ বিক্রিয়ার কম চাপে PCl_2 এর বিয়োজন সহজ হয়। ফলে সাম্যের অবস্থান বাম থেকে ডান দিকে সরে গিয়ে Cl_2 এর পরিমাণ বৃদ্ধি ঘটায়। অর্থাৎ এ বিক্রিয়ায কম চাপে Cl_2 এর উৎপাদন বৃদ্ধি পায়।
- (iii) **ঘনমাত্রার প্রভাব** : এ বিক্রিয়ায় উৎপাদ Cl_2 এর পরিমাণ বৃদ্ধি করতে কিছু পরিমাণ $PCl_5(g)$ বিক্রিয়কের সাথে যোগ করতে হবে। ফলে বিক্রিয়কে PCl_5 এর ঘনমাত্রা বৃদ্ধি পাবে। যার কারণে PCl_5 অধিক হারে বিয়োজিত হয়ে উৎপাদ Cl_2 এর পরিমাণ বৃদ্ধি করবে।
- ૭૨. (i) $N_2O_4(g) \rightleftharpoons 2X(g)$, $\Delta H = -55.3 \text{ kJ}$
 - (ii) 2SO₂(g) + O₂(g) ⇌ Y(g), ΔH = − 196.6 kJ [সলেট বোর্ড ২০২২]
 - (ক) গলন কাকে বলে?

ব্সায়ৰ

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

- (খ) আপেক্ষিক পারমাণবিক ভরের একক থাকে না কেন?
- (গ) X এবং Y এর মধ্যে কোন গ্যাসের ব্যাপন হার কম হবে? গাণিতিক ব্যাখ্যা দাও।
- ্ঘ) উদ্দীপক (ii) হতে কীভাবে অধিক পরিমাণ উৎপাদ পাওয়া যায়? বিশ্লেষণ করো।

৩২ নং প্রশ্নের উত্তর

- (ক) তাপ প্রয়োগে কোনো পদার্থের কঠিন অবস্থা থেকে তরল অবস্থায় রূপান্তর করার প্রক্রিয়াকে গলন বলে।
- (খ) জানা আছে, দুটি একই রকম রাশি অনুপাত আকারে থাকলে এর কোনো একক থাকে না। কোনো মৌলের আপেক্ষিক পারমাণবিক ভরকে নিমুদ্ধপে প্রকাশ করা হয়-

মৌলের আপেক্ষিক পারমাণবিক ভর

্র ১টি কার্বন-12 আইসোটোপের ভরের $\frac{1}{12}$ অংশ

সুতরাং, দেখা যায়, আপেক্ষিক পারমাণবিক ভর দুটি পৃথক ভরের অনুপাত (kg/kg বা g/g)। তাই এর কোনো একক থাকে না।

(গ) উদ্দীপকের বিক্রিয়া দুটি পূর্ণ করে পাই,

(i)
$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

(X)

(ii)
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

সুতরাং X ও Y গ্যাসম্বয় যথাক্রমে NO_2 এবং SO_3 । এদের মধ্যে SO_3 গ্যাসের ব্যাপন হার কম। নিচে গাণিতিক ব্যাখ্যা দেওয়া হলোজানা আছে, কোনো গ্যাসের ব্যাপন হার এর আণবিক ভরের উপর নির্ভর করে। যেসব গ্যাসের আণবিক ভর যত বেশি তাদের ব্যাপন হার তত কম। আর যেসব গ্যাসের আণবিক ভর যত কম তাদের ব্যাপন হার তত বেশি।

 SO_3 এর আণবিক ভর = $32+3\times 16=32+48=80$ NO_2 এর আণবিক ভর = $14+2\times 16=14+32=46$ যেহেতু SO_3 ও NO_2 এর মধ্যে SO_2 এর আণবিক ভর বেশি, সেহেতু SO_2 এর তুলনায় NO_2 এর ব্যাপন দ্রুত ঘটবে। অর্থাৎ SO_2 এর ব্যাপন হার কম হবে।

- (ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি-
 - $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$, $\Delta H = -196.6 \ kJ$ বিক্রিয়াটি গ্যাসীয় উভমুখী এবং তাপোৎপাদী বিক্রিয়া। নিচে এ বিক্রিয়া থেকে সর্বাধিক পরিমাণে উৎপাদ পাওয়ার শর্তাবলি বিশ্লেষণ করা হলো-
 - ১. তাপমাত্রার প্রভাব : বিক্রিয়াটি তাপোৎপাদী অর্থাৎ এক্ষেত্রে তাপ নির্গত হয় । সুতরাং লা-শাতেলিয়ারের নীতি অনুয়ায়ী তাপমাত্রা কমালে সাম্যাবয়্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ SO₃-এর উৎপাদন বেড়ে য়াবে ।
 - ২. **চাপের প্রভাব** : বিক্রিয়াটিতে বিক্রিয়কের মোট মোল সংখ্যা (3) অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম। সুতরাং চাপ বাড়ালে লা শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে অর্থাৎ SO_3 এর উৎপাদন বাড়বে।

- ৩. প্রভাবকের প্রভাব : উদ্দীপকের বিক্রিয়ায় সর্বোচ্চ SO_3 পেতে প্রভাবক হিসাবে V_2O_5 ব্যবহার করা হয়।
- 8. **ঘনমাত্রার প্রভাব** : বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়ার সংশ্লিষ্ট কোনো উপাদান যেমন– SO_2 বা O_2 যোগ করলে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ SO_3 এর উৎপাদন বৃদ্ধি পাবে।
- $\circ \circ$.(i) SnCl₂ + FeCl₃ →
 - (ii) $AlCl_3 + H_2O \rightarrow X + HCl$

[সিলেট বোর্ড ২০২২]

- (ক) অ্যালকাইল মূলক কাকে বলে?
- (খ) রাসায়নিক সাম্যবস্থায় চলমান অবস্থা ব্যাখ্যা করো।
- (গ) (i) নং বিক্রিয়াটি সম্পন্ন কর এবং দেখাও যে , তাতে ইলেকট্রনের স্থানান্তর ঘটে।
- (ঘ) (ii) নং বিক্রিয়াটি ভিন্ন ভিন্ন ধরনের বিক্রিয়া দেখায় সমীকরণসহ বিশ্লেষণ করো।

৩৩ নং প্রশ্নের উত্তর

- (ক) অ্যালকেন থেকে একটি H পরমাণু অপসারণ করলে যে একযোজী মূলকের সৃষ্টি হয় তাকে অ্যালকাইল মূলক বলে।
- (খ) উভমুখী বিক্রিয়ার সম্মুখমুখী বিক্রিয়ায় হার ও পশ্চাৎমুখী বিক্রিয়ার হার সমান হলেই বিক্রিয়াটি সাম্যাবস্থায় উপনীত হয়। আপাতদৃষ্টিতে সাম্যাবস্থায় বিক্রিয়াটিকে স্থির মনে হলেও প্রকৃতপক্ষে বিক্রিয়াটি গতিশীল। এ অবস্থায় প্রতি সেকেন্ডে যতগুলো বিক্রিয়ক অণু বিক্রিয়া করে উৎপাদ তৈরি করে ঐ একই সময়ে উৎপাদ বিক্রিয়া করে ঠিক ততগুলো বিক্রিয়ক অণু উৎপন্ন করে। তাই রাসায়নিক সাম্যাবস্থা একটি গতিশীল অবস্থা, স্থির অবস্থা নয়।
- (গ) উদ্দীপকের (i) নং বিক্রিয়া একটি জারণ-বিজারণ বিক্রিয়া; যা একই সাথে ঘটে। নিচে তা বিশ্লেষণ করা হলো:
 যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন ত্যাগ করে তাকে জারণ-বিক্রিয়া এবং যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে বিজারণ বিক্রিয়া বলে। উদ্দীপকের বিক্রিয়াটি-

 $SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$ বিক্রিয়াটিকে আয়নিত করে পাই,

বিক্রিয়া থেকে দেখা যায়, Sn^{+2} 2টি ইলেক্ট্রন ত্যাগ করে Sn^{+4} আয়নে পরিণত হয়েছে; জারণ সংখ্যা বৃদ্ধি পেয়েছে। সুতরাং Sn^{2+} এর জারণ ঘটেছে।

জারণ বিক্রিয়া : $\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{+4} + 2\mathrm{e}^{-}$

আবার , Fe^{+3} 1টি ইলেকট্রন গ্রহণ করে উৎপাদ Fe^{+2} হয়েছে; জারণ সংখ্যা হ্রাস পেয়েছে । এজন্য Sn^{4+} এর বিজারণ ঘটেছে ।

বিজারণ বিক্রিয়া : $2Fe^{+3} + 2e^- \longrightarrow 2Fe^{+2}$

সুতরাং দেখা যাচ্ছে যে, (i) নং বিক্রিয়াটিতে জারণ সংখ্যার হ্রাস-বৃদ্ধি ঘটেছে তথা e^- এর আদান-প্রদান ঘটেছে।

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি:

 $AlCl_3 + 3H_2O \rightarrow Al(OH)_3(s) + 3HCl$

Prepared by: SAJJAD HOSSAIN

এ বিক্রিয়াটি অধ্যক্ষেপণ ও পানি বিশ্লেষণ এ দুই ধরনের ভিন্ন বিক্রিয়া দেখায়। নিচে তা সমীকরণসহ বিশ্লেষণ করা হলো-

যে বিক্রিয়ায় উৎপন্ন যৌগ অধ্যক্ষেপ হিসেবে, পাত্রের তলদেশে জমা হয় তাকে অধ্যক্ষেপণ বিক্রিয়া বলা হয়।

উদ্দীপকের (ii) নং বিক্রিয়াটি নিমুরূপ:

AlCl₃(s) + 3H₂O(*l*) → Al(OH)₃(s)↓ + 3HCl(aq) বিক্রিয়াটি থেকে দেখা যায়, বিক্রিয়ার একটি উৎপাদ Al(OH)₃ অধ্যক্ষিপ্ত হয়। অতএব, এটি একটি অধ্যক্ষেপণ বিক্রিয়া। আবার, যে বিক্রিয়ায় কোনো বিক্রিয়কের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ গঠন করে তাকে পানি বিশ্লেষণ বলা হয়।

বিক্রিয়া হতে দেখা যায় , $AlCl_3$ এর ধনাত্মক প্রান্ত (Al^{3+}) পানির ঋণাত্মক অংশ (OH^-) এবং $AlCl_3$ এর ঋণাত্মক অংশ (Cl^-) পানির ধনায়ক অংশ (H^+) এর সাথে যুক্ত হয়ে যথাক্রমে $Al(OH)_3$ ও HCl গঠন করে।

Al
$$Cl_3 - 3H$$
 \rightarrow Al(OH)₃ + 3HCl

কাজেই উদ্দীপকের (ii) নং বিক্রিয়াটি একটি পানি বিশ্লেষণ বিক্রিয়া। সুতরাং উপরের আলোচনা থেকে বলা যায়, উদ্দীপকের (ii) বিক্রিয়াটি অধ্যক্ষেপণ ও পানি বিশ্লেষণ এ দু'ধরনের অর্থাৎ, ভিন্ন বিক্রিয়া দেখায়।

- 98. (i) FeCl₂ + SnCl₄ → FeCl₃ + SnCl₂
 - (ii) $Ca + O_2 \longrightarrow CaO$

[যশোর বোর্ড ২০২২]

- (ক) বিক্রিয়ার হার কী?
- (খ) অ্যালকেন অপেক্ষা অ্যালকিন অধিক সক্রিয়? ব্যাখ্যা করো।
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ সংঘটিত হয়েছে ব্যাখ্যা করো।
- (ঘ) (ii) নং বিক্রিয়াটি কোন কোন বিক্রিয়ার প্রতিনিধিত্ব করে, সমীকরণসহ বিশ্লেষণ করো।

৩৪ নং প্রশ্নের উত্তর

- (ক) প্রতি একক সময়ে কোনো একটি বিক্রিয়া পাত্রে যে পরিমাণ উৎপাদের ঘনমাত্রা বৃদ্ধি বা বিক্রিয়কের ঘনমাত্রা হ্রাস পায় তাকে বিক্রিয়ার হার বলে।

সমযোজী বন্ধনের মাধ্যমে গঠিত। তাই এ যৌগসমূহ সহজে রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে না। এজন্য এদের প্যারাফিন বলে। কিন্তু অ্যালকিন অণুতে কার্বন-কার্বন দ্বিন্ধন (=) বিদ্যমান যার প্রথমটি শক্তিশালী হলেও দ্বিতীয় বন্ধনটি খুবই দুর্বল। ফলে অ্যালকিন অণুসমূহ রাসায়নিকভাবে অত্যন্ত সক্রিয় হয়।

(গ) উদ্দীপকের (i) নং বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ সংঘটিত হয়েছে। নিচে তা ব্যাখ্যা করা হলো-

যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন ত্যাগ করে তাকে জারণ-বিক্রিয়া এবং যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে বিজারণ বিক্রিয়া বলে। উদ্দীপকের বিক্রিয়াটি-

 $2FeCl_2 + SnCl_4 \longrightarrow 2FeCl_3 + SnCl_2$ আয়নিত করে পাই .

বিক্রিয়া থেকে দেখা যায়, Fe^{2+} 1টি ইলেকট্রন ত্যাগ করে Fe^{3+} আয়নে পরিণত হয়েছে। সূতরাং Fe^{2+} এর জারণ ঘটেছে।

$$2Fe^{2+} \longrightarrow Fe^{3+} + 2e^{-}$$
 (জারণ বিক্রিয়া)

আবার, ${\rm Sn}^{4+}$ আয়ন ${\rm Sn}^{2+}$ এর ত্যাগকৃত ইলেকট্রন গ্রহণ করে উৎপাদ ${\rm Sn}^{2+}$ হয়েছে। এজন্য ${\rm Sn}^{4+}$ এর বিজারণ ঘটেছে।

$$\operatorname{Sn}^{4+} + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}$$
 (বিজারণ বিক্রিয়া)

সুতরাং দেখা যাচ্ছে যে, (i) নং বিক্রিয়াটিতে জারণ সংখ্যার হ্রাস-বৃদ্ধি ঘটেছে তথা e এর আদান-প্রদান ঘটেছে। তাই বিক্রিয়াটি জারণ- বিজারণ বিক্রিয়া।

আবার বিক্রিয়াটিতে ইলেকট্রন দান ও গ্রহণ একই সাথে ঘটে। এজন্য (i) নং বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ সংঘটিত হয়েছে।

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি সংযোজন, সংশ্লেষণ, দহন ও জারণ-বিজারণ এ চার প্রকার বিক্রিয়ার প্রতিনিধিত্ব করে। নিচে তা সমীকরণসহ বিশ্লেষণ করা হলো-

সংযোজন বিক্রিয়া : যে বিক্রিয়ায় একাধিক মৌল বা যৌগ পরস্পর যুক্ত হয়ে একটিমাত্র উৎপাদ তৈরি করে তাকে সংযোজন বা যুত বিক্রিয়া বলে। (ii) নং বিক্রিয়াটিতে C_a ও O_2 পরস্পর যুক্ত হয়ে একটি উৎপাদ C_aO তৈরি হয়েছে। কাজেই এটি সংযোজন বিক্রিয়া।

$$2Ca + O_2 \longrightarrow 2CaO$$

সংশ্লেষণ বিক্রিয়া: যে সংযোজন বিক্রিয়ায় একাধিক মৌলিক পদার্থ পরস্পর যুক্ত হয়ে একটি মাত্র যৌগ তৈরি করে তাকে সংশ্লেষণ বিক্রিয়া বলে। (ii) নং বিক্রিয়ায় $Ca \circ O_2$ উভয়ই মৌলিক পদার্থ যুক্ত হয়ে CaO যৌগ তৈরি করেছে। কাজেই এটি সংশ্লেষণ বিক্রিয়া।

$$2Ca + O_2 \longrightarrow 2CaO$$

মৌলিক মৌলিক যৌগিক

পদার্থ

দহন বিক্রিয়া : কোনো মৌল বা যৌগকে বায়ুর অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদান মৌলের অক্সাইডে পরিণত করাকে দহন বিক্রিয়া বলে। উদ্দীপকের (ii) নং বিক্রিয়ায় Ca মৌলকে বায়ুর O_2 দ্বারা পুড়িয়ে তার উপাদান অক্সাইড CaO এ পরিণত করে। কাজেই এটি দহন বিক্রিয়া।

$$2Ca$$
 + O_2 \longrightarrow CaO মৌল অক্সিজেন উপাদান অক্সাইড

জারণ-বিজারণ বিক্রিয়া : উদ্দীপকের (ii) নং বিক্রিয়ায় ধাতব Ca দুইটি ইলেকট্রন ত্যাগ করে Ca^{2^+} আয়ন এবং অক্সিজেন 2টি ইলেকট্রন গ্রহণ করে O^{2^-} আয়নে পরিণত হয়। কাজেই এটি জারণ-বিজারণ বিক্রিয়া :

বসায়ৰ

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

জারণ বিক্রিয়া : $2Ca - 4e^- \longrightarrow 2Ca^{2+}$

বিজারণ বিক্রিয়া : $O_2 + 4e^- \longrightarrow 2O^{2-}$

জারণ-বিজারণ বিক্রিয়া : $2Ca + O_2 \longrightarrow 2CaO$

উপরের আলোচনা থেকে বলা যায়, উদ্দীপকের (ii) নং বিক্রিয়া সংযোজন, সংশ্লেষণ, দহন ও জারণ-বিজারণ বিক্রিয়ার প্রতিনিধিত্ব করে।

OC.

(i)
$$H_2SO_4(aq) + KOH(aq) \rightarrow K_2SO_4(aq) + H_2O(l)$$

(A)

(B)

(C)

 $[50~{
m gm(A)}$ যৌগ $25{
m gm~(B)}$ যৌগের সাথে বিক্রিয়া করে (C) যৌগ উৎপন্ন করে]

(ii) $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$

[বরিশাল বোর্ড ২০২২]

- (ক) ভরসংখ্যা কী?
- (খ) পানির গলনাঙ্ক ও স্ফুটনাঙ্ক ভিন্ন কেন?
- (গ) (i) নং বিক্রিয়ায় (C) যৌগের পরিমাণ নির্ণয় করো।
- (ঘ) উদ্দীপকের বিক্রিয়া দুটির মধ্যে কোনটিতে জারণ-বিজারণ সংঘটিত হয়েছে? যক্তিসহ বিশ্লেষণ করো।

৩৫ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটন ও নিউট্রনের মোট সংখ্যাকে সে মৌলের পরমাণুর ভরসংখ্যা বলা হয়।
- (খ) যে তাপমাত্রায় পানি (বরফ) এর আন্তঃআণবিক বল ও গতিশক্তি সমান হয়ে যায় বা তরলে পরিণত হয় তাকে পানির গলনাস্ক বলে। পানির গলনাস্ক ০°С। আবার যে তাপমাত্রায় পানির অণুসমূহের আন্তঃআণবিক বল অপেক্ষা অণুসমূহের গতিশক্তি বেশি হয় বা পানি বাম্পে পরিণত হয় সে অবস্থাকে স্ফুটনাস্ক বলে। পানির স্ফুটনাস্ক 100°С। অর্থাৎ পানির অণুসমূহ বাম্পীভূত হওয়ার জন্য গতিশক্তি বেশি হওয়া দরকার। এজন্য অধিক তাপশক্তির প্রয়োজন হয়। তাই পানির স্ফুটনাস্ক গলনাস্ক অপেক্ষা বেশি হয়। অর্থাৎ পানির গলনাস্ক ও স্ফুটনাস্ক ভিন্ন হয়।
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটি-

 $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$ (1×2+32+16×4) 2(39+16+1)

 $(39 \times 2 + 32 + 16 \times 4)$

= 90 g = 112 g = 174 g (C)

বিক্রিয়া মতে , 112~g~KOH বিক্রিয়া করে = $98~g~H_2SO_4$ এর সাথে

ightharpoonup 25 g KOH বিক্রিয়া করে = $\frac{98 imes 25}{112}$ g H_2SO_4 এর

সাথে

= 21.875 g H₂SO₄ এর সাথে

কিন্তু বিক্রিয়াটিতে বিক্রিয়ক H_2SO_4 আছে $50~g,\$ যা প্রয়োজন (21.875~g) অপেক্ষা বেশি। তাই KOH বিক্রিয়া করে সম্পূর্ণ শেষ

হয়ে যাবে বলে এটি লিমিটিং বিক্রিয়ক এবং এর উপরই উৎপাদ H_2SO_4 এর পরিমাণ নির্ভর করে। বিক্রিয়া অনুসারে,

112 g KOH থেকে প্রাপ্ত $H_2SO_4 = 174 \text{ g}$

$$Arr$$
 25g KOH থেকে প্রাপ্ত $H_2SO_4 = \frac{174 \times 25}{112}$ g = 38.84

g সুতরাং উদ্দীপকের (i) নং বিক্রিয়ায় (C) যৌগের পরিমাণ 38.84 g.

্ঘ) উদ্দীপকের (i) নং বিক্রিয়াটিতে জারণ-বিজারণ সংঘটিত হয়েছে। নিচে যুক্তিসহ বিশ্লেষণ করা হলো-

আধুনিক মতবাদ তথা ইলেকট্রনীয় মতবাদ অনুসারে, যে বিক্রিয়ায় ইলেকট্রনের স্থানান্তর ঘটে তাকে জারণ-বিজারণ বিক্রিয়া বলা হয়।

প্রদন্ত বিক্রিয়া : $Zn+H_2SO_4\longrightarrow ZnSO_4+H_2$ উদ্দীপকের বিক্রিয়াটিতে Zn পরমাণু দুটি ইলেকট্রন ত্যাগ করে Zn^0 থেকে Zn^{2+} -এ পরিণত হয়। অর্থাৎ Zn এর জারণ ঘটে। আবার, দুটি H^+ আয়ন দুটি ইলেকট্রন গ্রহণ করে $2H^+$ থেকে H_2^0 এ পরিণত হয়। অর্থাৎ H^+ এর বিজারণ ঘটে।

$$Z_{n}^{0} - 2e^{-} \rightarrow Z_{n}^{2+}$$
জারণ
 $Z_{n} = II_{2}SO_{4} \longrightarrow Z_{n}SO_{4} = II_{2}$
বিজারণ
 $2II^{+} + 2e^{-} \longrightarrow II_{2}$

যেহেতু ইলেক্ট্রনের স্থানান্তরের মাধ্যমে প্রদত্ত (ii) নং বিক্রিয়াটি ঘটেছে, সেহেতু ইলেকট্রনীয় মতবাদ অনুযায়ী উদ্দীপকের বিক্রিয়াটি একটি জারণ-বিজারণ বিক্রিয়া।

অপরদিকে উদ্দী<mark>প</mark>কের (i) নং বিক্রিয়াটি-

 $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H - OH$ বিক্রিয়া থেকে দেখা যাচেছ, বিক্রিয়ক ও উৎপাদের প্রতিটি পরমাণুর জারণ মান অপরিবর্তিত আছে। অর্থাৎ এ বিক্রিয়ায় কোনো ইলেকট্রনের স্থানান্তর ঘটে নি। সুতরাং বিক্রিয়াটি জারণ-বিজারণ বিক্রিয়া নয়। সুতরাং উপরের আলোচনা থেকে স্পষ্ট যে, উদ্দীপকের (ii) নং বিক্রিয়ায় জারণ-বিজারণ সংঘটিত হয়েছে।

৩৬.
$$X_2(g) + 3Y_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92kJ/mol$$
 [বরিশাল বোর্ড ২০২২]

- (ক) জারণ সংখ্যা কাকে বলে?
- (খ) SO₂ এর মোলার আয়তন ব্যাখ্যা করো।
- (গ) 5টি X_2 অণু থেকে উৎপন্ন উৎপাদের অণুর সংখ্যা নির্ণয় করো।
- (ঘ) উদ্দীপকের বিক্রিয়াটির সাম্যবস্থায় তাপ ও চাপের প্রভাব ব্যাখ্যা করো।

৩৬ নং প্রশ্নের উত্তর

(ক) যৌগ গঠনের সময় কোনো মৌল যত সংখ্যক ইলেকট্রন বর্জন করে ধনাত্মক আয়ন উৎপন্ন করে অথবা যত সংখ্যক ইলেকট্রন, গ্রহণ করে ঋণাত্মক আয়ন উৎপন্ন করে তাকে মৌলের জারণ সংখ্যা বলে।

বুসামূল ৭ম অধ্যাম

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

- (খ) এক মোল পরিমাণ কোনো পদার্থের আয়তনকে মোলার আয়তন বলে। SO_2 এর এক মোল $=(32+16\times2)\,g$ বা $64\,g$ । সুতরাং প্রমাণ তাপমাত্রা ও চাপে $64\,g$ SO_2 গ্যাসের আয়তনকে তার মোলার আয়তন বলা যাবে। অ্যাভোগেড্রো সূত্রানুসারে, STP তে এক মোল বা $64\,g$ SO_2 গ্যাসের আয়তন হবে $22.4\,L$ । সুতরাং SO_2 গ্যাসের মোলার আয়তন $22.4\,L$ ।
- (গ) উদ্দীপকের বিক্রিয়াটি পূর্ণ করে-

$$N_2(g)$$
 + $3H_2(g) \rightleftharpoons 2NH_3(g)$; $\Delta H = -92 \text{ kJ}$
 mol^{-1}
 6.023×10^{23} $2 \times 6.023 \times 10^{23}$

বিক্রিয়া অনুসারে, X_2 হলো N_2 ।

 ${\bf ...}~6.023~{\bf ...}~10^{23}$ টি N_2 অণু থেকে উৎপন্ন NH_3 অণু = 2×6.023 $\times~10^{23}$ টি

 \therefore 5টি N_2 অণু থেকে উৎপন্ন NH_3 অণু = $\frac{2 \times 6023 \times 10^{23} \times 5}{6.023 \times 10^{23}}$ টি

= 10 ចិ

সুতরাং উদ্দীপকের 5টি N_2 অণু থেকে উৎপন্ন উৎপাদের অণু সংখ্যা 10টি।

(ঘ) উদ্দীপকের বিক্রিয়াটি:

 $N_2(g)+3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H=-92kJ/mol$ নিচে বিক্রিয়াটির সাম্যাবস্থায় তাপ ও চাপের প্রভাব ব্যাখ্যা করা হলো— তাপমাত্রার প্রভাব : বিক্রিয়াটিতে ΔH এর মান ঋণাত্মক হওয়ায় এটি একটি তাপোৎপাদী বিক্রিয়া অর্থাৎ এক্ষেত্রে তাপ নির্গত হয় । সুতরাং , তাপমাত্রা বাড়ালে লা-শাতেলিয়ার নীতি অনুযায়ী বিক্রিয়ার সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে । অর্থাৎ NH_3 -এর উৎপাদন ব্রাস পাবে । আবার , তাপমাত্রা কমালে সাম্যাবস্থা বাম থেকে ডান দিকে অগ্রসর হবে অর্থাৎ NH_3 -এর উৎপাদন বেড়ে যাবে ।

চাপের প্রভাব : লা-শাতেলিয়ারের নীতি অনুসারে, যে সকল উভমুখী বিক্রিয়ায় বিক্রিয়ক ও উৎপাদ গ্যাসীয় এবং বিক্রিয়ায় আয়তনের পরিবর্তন ঘটে তাদের সাম্যাবস্থার উপর চাপের প্রভাব রয়েছে। বিক্রিয়াটিতে বিক্রিয়াকের মোট মোল সংখ্যা (4) অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম। এক্ষেত্রে আয়তনের ব্রাসের মাধ্যমে বিক্রিয়াটি ঘটে। সুতরাং, চাপ বাড়ালে লা-শাতেলিয়ারের নীতি অনুযায়ী সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে অর্থাৎ NH_3 -এর উৎপাদন বৃদ্ধি পাবে। আবার চাপ কমালে সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে অর্থাৎ NH_3 -এর উৎপাদন ব্রাস পাবে।

- v9. (i) Na₂SO₄(aq) + Ba(NO₃)₂(aq) \rightarrow BaSO₄(s) + 2NaNO₃(aq)
 - (ii) $2AB_2(g) + B_2 \rightleftharpoons 2AB_3(s) + 197 \text{ kJ}$

[ঢাকা বোর্ড ২০২০]

- (ক) খর পানি কাকে বলে?
- (খ) ক্ষার ও ক্ষারকের মধ্যে পার্থক্য ব্যাখ্যা করো।
- (গ) (i) নং বিক্রিয়াটি কোন ধরনের বর্ণনা করো।

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটিতে রাসায়নিক সাম্যবস্থার উপর তাপ ও চাপের প্রভাব বিশ্লেষণ করো।

৩৭ নং প্রশ্নের উত্তর

- (ক) যে পানিতে Ca বা Mg ধাতুর ক্লোরাইড, সালফেট, কার্বনেট, বাই-কার্বনেট ইত্যাদি লবণ দ্রবীভূত থাকায় সাবানের সাথে সহজে ফেনা উৎপন্ন করে না, সে পানিকে খর পানি বলে।
- (খ) ধাতু বা ধাতুর মতো ক্রিয়াশীল হাইড্রোক্সাইড যৌগ, যা পানিতে দ্রবণীয় তাদেরকে ক্ষার বলে। অপরদিকে, সাধারণত ধাতু বা ধাতুর মতো ক্রিয়াশীল যৌগমূলকের অক্সাইড এবং হাইড্রোক্সাইড যা এসিডের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে তাকে ক্ষারক বলে। নিচে উদাহরণের মাধ্যমে ক্ষার ও ক্ষারকের পার্থক্য করা হলো

 - ২. Fe(OH)2 যৌগে OH মূলক আছে কিন্তু এটি পানিতে দ্রবণীয় নয় ত্যই এটি ক্ষার নয়, শুধু ক্ষারক।
- (গ) উদ্দীপকের (i) নং বিক্রিয়া নিয়ে পাই-

 $Na_2SO_4(aq) + Ba(NO_3)_2(aq) \rightarrow BaSO_4(s) + 2NaNO_3(aq)$

উক্ত বিক্রিয়াটি হলো অধ্যক্ষেপণ বিক্রিয়া। নিচে তা বর্ণনা করা হলো

জানা আছে, একই দ্রাবকে দুটি যৌগ মিশ্রিত করলে তারা পরস্পরের সাথে বিক্রিয়া করে যে উৎপাদগুলো উৎপন্ন করে তাদের মধ্যে কোনোটি যদি ঐ দ্রাবকে অদ্রবণীয় বা খুবই কম পরিমাণে দ্রবণীয় হয় তবে তা বিক্রিয়া পাত্রের তলায় কঠিন অবস্থায় তলানি হিসেবে জমা হয়। এ তলানিকে অধ্যক্ষেপ বলে। যে বিক্রিয়ায় তরল বিক্রিয়ক পদার্থ বিক্রিয়া করে কঠিন উৎপাদে পরিণত হয় তাকে অধ্যক্ষেপ বিক্রিয়া বলে।

দেখা যাচ্ছে যে, জলীয় দ্রবণে Na_2SO_4 ও $Ba(NO_3)_2$ পরম্পরের সাথে বিক্রিয়া করায় $BaSO_4$ ও $NaNO_3$ উৎপন্ন হয়। পানিতে $NaNO_3$ এর দ্রবণীয়তা বেশি বলে এটি দ্রবীভূত অবস্থায় থাকে। কিন্তু পানিতে $BaSO_4$ এর দ্রবণীয়তা অত্যন্ত কম বলে তা বিক্রিয়ার পর পাত্রের তলায় অধ্যক্ষেপ হিসেবে জমা হয়। সুতরাং, বিক্রিয়াটি একটি অধ্যক্ষেপণ বিক্রিয়া।

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়া নিম্নরূপ:

 $2AB_2(g) + B_2 \rightleftharpoons 2AB_3(s) + 197 \ kJ$ বা , $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$; $\Delta H = -197 \ kJ$ বিক্রিয়াটিতে রাসায়নিক সাম্যাবস্থার উপর তাপ ও চাপের প্রভাব নিচে বিশ্লেষণ করা হলো :

তাপের প্রভাব : যেহেতু বিক্রিয়াটির ΔH -এর মান ঋণাত্মক, সেহেতু বিক্রিয়াটি একটি তাপোৎপাদী বিক্রিয়া। বিক্রিয়াটির সাম্যাবস্থায় তাপমাত্রা বৃদ্ধি করলে লা-শাতেলিয়ার নীতি অনুসারে বিক্রিয়ার সাম্যাবস্থা বামদিকে সরে যাবে অর্থাৎ, SO_3 ভেঙে SO_2 ও O_2 উৎপন্ন করবে। আবার তাপমাত্রা ব্রাস করলে তাপমাত্রা ব্রাসের ফলাফল প্রশমিত করার জন্য সাম্যাবস্থা বাম দিকে সরে গিয়ে উৎপাদের (SO_3) পরিমাণ বৃদ্ধি করবে।

বসায়ল

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

চাপের প্রভাব : জানা আছে, যে সকল বিক্রিয়ার গ্যাসীয় অণুর সংখ্যার ব্রাস-বৃদ্ধি ঘটে, সে সকল বিক্রিয়াতে চাপের প্রভাব রয়েছে। প্রদত্ত বিক্রিয়াটিতে বিক্রিয়াকের মোট মোল সংখ্যা (3) অপেক্ষা উৎপাদের মোট মোল সংখ্যা (2) কম। সুতরাং বিক্রিয়াটিতে চাপের প্রভাব রয়েছে। এক্ষেত্রে চাপ বাড়ালে লা-শাতেলিয়ারের নীতি অনুযায়ী, সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে অর্থাৎ উৎপাদের (SO_3) পরিমাণ বাড়বে। আবার, চাপ কমালে সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে অর্থাৎ উৎপাদের (SO_3)

စမ. (i)
$$H_2S + Cl_2 = 2A + S$$

(ii) $AlCl_3(s) + H_2O(1) \longrightarrow A + B$

[দিনাজপুর বোর্ড ২০২০]

- (ক) লা-শাতেলিয়ার নীতি কী?
- (খ) জীবাণুনাশক হিসেবে ব্লিচিং পাউডার ব্যবহার করা হয় কেন?
- (গ) উদ্দীপকের (i) নং বিক্রিয়া একটি রেডক্স বিক্রিয়া ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের (ii) নং বিক্রিয়াকে অধ্যক্ষেপণ বিক্রিয়া ও পানি বিশ্লেষন বিক্রিয়া বলা যাবে কিনা - তোমার উত্তরের স্বপক্ষে যুক্তি দাও।

৩৮ নং প্রশ্নের উত্তর

- (ক) লা-শাতেলিয়ারের নীতিটি হলো- "উভমুখী বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়ার যেকোনো একটি নিয়ামক (তাপমাত্রা/চাপ/বিক্রিয়কের ঘনমাত্রা) পরিবর্তন করলে বিক্রিয়ার সাম্যাবস্থা এমনভাবে পরিবর্তিত হয় যেন নিয়ামক পরিবর্তনের ফলাফল প্রশমিত হয়।"
- (খ) ব্লিচিং পাউডারকে জীবাণুনাশক বলা হয়। কারণ ব্লিচিং পাউডার পানিতে দ্রবীভূত হয়ে জায়মান অক্সিজেন উৎপন্ন করে। উৎপন্ন জায়মান অক্সিজেন জীবাণুকে জারিত করে মেরে ফেলে।

ব্লিচিং পাউডার এসিড

হাইপোক্লোরাস

উৎপন্ন হাইপোক্লোরাস এসিড ভেঙে গিয়ে জায়মান অক্সিজেন [O] তৈরি করে যা জীবাণুকে ধ্বংস করে।

 $HOC1 \longrightarrow HC1 + [O]$ জীবাণু $+ [O] \longrightarrow$ মৃত জীবাণু,

(গ) উদ্দীপকের (i) নং বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$H_2S + Cl_2 = HCl + S$$

জানা আছে, যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন দান করে তা হচ্ছে জারণ বিক্রিয়া। অপরদিকে, যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন গ্রহণ করে তা হচ্ছে বিজারণ বিক্রিয়া। উদ্দীপকের (i) নং বিক্রিয়াটির আয়নিক রূপ নিমুরূপ:

$$H_2^{1+}S^{2-} + Cl_2^{0} \longrightarrow S^0 + 2H^+Cl^-$$

বিক্রিয়া হতে দেখা যায় যে, বিক্রিয়ক H_2S এর S^{2-} আয়ন দুটি ইলেকট্রন ত্যাগ করে S^0 এ পরিণত হয়, যা একটি জারণ বিক্রিয়া।

জারণ :
$$S^{2-} - 2e \longrightarrow S^0$$

আবার, $Cl_2{}^0$ দুটি ইলেকট্রন গ্রহণ করে $2Cl^-$ এ পরিণত হয় যা। একটি বিজারণ বিক্রিয়া।

বিজারণ : $Cl_2^0 + 2e \longrightarrow 2Cl^-$

উপরের আলোচনার পরিপ্রেক্ষিতে বলা যায়, উদ্দীপকের (i) নং বিক্রিয়ায় ইলেকট্রনের আদান ও প্রদান ঘটে, তাই এটি জারণ-বিজারণ বিক্রিয়া।

(ঘ) উদ্দীপকের (ii) নং বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$AlCl_3(s) + H_2O(1) \longrightarrow 3HCl + Al(OH)_3$$
(A) (B)

উদ্দীপকের (ii) নং বিক্রিয়াটিকে অধ্যক্ষেপণ ও পানি বিশ্লেষণ উভয় শ্রেণির বিক্রিয়ার অন্তর্ভুক্ত করা যায়। নিচে তা ব্যাখ্যা করা হলো-যে বিক্রিয়ায় উৎপন্ন যৌগ অধ্যক্ষপ হিসেবে পাত্রের তলদেশে জমা হয় তাকে অধ্যক্ষেপণ বিক্রিয়া বলা হয়। প্রদত্ত বিক্রিয়াটি-

 $AlCl_3(s) + 3H_2O(l) \longrightarrow Al(OH)_3(s) \downarrow + 3HCl(aq)$ বিক্রিয়াটি থেকে দেখা যায়, বিক্রিয়ার একটি উৎপাদ $Al(OH)_3$ অধ্যক্ষিপ্ত হয়। অতএব, এটি একটি অধক্ষেপণ বিক্রিয়া। আবার, যে বিক্রিয়ায় কোনো বিক্রিয়কের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ গঠন করে তাকে পানি বিশ্লেষণ বলা হয়।

বিক্রিয়া হতে দেখা যায়, $AlCl_3$ এর ধনাত্মক প্রান্ত (Al^{3+}) পানির ঋণাত্মক অংশ (OH^-) এবং ঋণাত্মক অংশ (Cl^-) পানির ধনাত্মক অংশ (H^+) এর সাথে যুক্ত হয়ে যথাক্রমে $Al(OH)_3$ ও HCl গঠনকরে।

অ<mark>তএ</mark>ব উদ্দীপকের (ii) নং বিক্রিয়াটি একটি পানি বিশ্লেষণ বিক্রিয়া। উপরের আলোচনার পরিপ্রেক্ষিতে বলা যায়, উদ্দীপকের (ii) নং বিক্রিয়াটিকে অধ্যক্ষেপণ ও পানি বিশ্লেষণ উভয়ই বলা যাবে।

o৯.
$$FeCl_2 + X_2 \longrightarrow FeCl_3$$

[কুমিল্লা বোর্ড ২০২০]

- (ক) ইলেকট্রনিক পরিবাহী কাকে বলে?
- (খ) "CaO একটি ক্ষারক" ব্যাখ্যা করো।
- (গ) উদ্দীপকের X_2 অণুর বন্ধন গঠন চিত্রসহ ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের বিক্রিয়ায় জারণ-বিজারণ একই সাথে সংঘটিত হয় –
 বিশ্লেষণ করো।

৩৯ নং প্রশ্নের উত্তর

- (ক) যে সকল পরিবাহী ইলেকট্রন প্রবাহের মাধ্যমে বিদ্যুৎ প্রবাহিত করে তাদের ইলেকট্রনিক পরিবাহী বলে।
- (খ) ধাতু বা ধাতুর মতো ক্রিয়াশীল যৌগমূলকের অক্সাইড বা হাইড্রোক্সাইড যা এসিডের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে তাকে ক্ষারক বলে। CaO হলো ক্যালসিয়াম ধাতুর অক্সাইড, যা এসিডের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে। যেমন CaO, HCl এর সাথে বিক্রিয়া করে নিম্নোক্তভাবে CaCl2 লবণ ও পানি উৎপন্ন করে।

$$CaO + HCl \longrightarrow CaCl_2 + H_2O$$

ফারক এসিড লবণ পানি

সুতরাং, উপরিউক্ত কারণেই CaO কে ক্ষারক বলা হয়।

৭ম অধ্যায

বাসায়নিক বিক্রিয়া

বসায়ৰ

Prepared by: SAJJAD HOSSAIN

(গ) উদ্দীপকের (i) নং বিক্রিয়াটি সম্পূর্ণ করে পাই.

$$2FeCl_2 + Cl_2 \longrightarrow 2FeCl_3$$

অর্থাৎ, X2 হলো Cl2।

 Cl_2 অণুর বন্ধন গঠন প্রক্রিয়া নিচে আলোচনা করা হলো :

Cl এর পারমাণবিক সংখ্যা 17। এর পরমাণুর ইলেক্ট্রন বিন্যাস নিমুরূপ-

$$_{17}\text{C1} \longrightarrow 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^5$$

উপরিউক্ত ইলেকট্রন বিন্যাস থেকে দেখা যায়, ক্লোরিন পরমাণুর সর্বশেষ কক্ষপথে 7টি ইলেকট্রন বিদ্যমান। অষ্টক পূর্ণতার জন্য দুটি ক্লোরিন প্রমাণ্র প্রত্যেকে একটি করে ইলেকট্রন প্রদান করে এক জোড়া ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী বন্ধন গঠনের মাধ্যমে একটি ক্লোরিন অণু (Cl_2) গঠন করে। ফলে প্রতিটি ক্লোরিন প্রমাণু নিকটবর্তী নিষ্ক্রিয় গ্যাস আর্গনের ইলেকট্রন বিন্যাস অর্জন করে।

চিত্র : Cl2 অণুর বন্ধন গঠন।

(ঘ) উদ্দীপকের (i) নং বিক্রিয়াটি-

$$2FeCl_2 + Cl_2 \rightarrow 2FeCl_3$$

বিক্রিয়াটি একটি রেডক্স (জারণ-বিজারণ) বিক্রিয়া।

যে বিক্রিয়ায় ই**লেক্ট্রনের আদান-প্র<mark>দা</mark>ন বা স্থানান্তর ঘটে তাকে রে**ডক্স বিক্রিয়া বা জার<mark>ণ</mark>-বিজারণ বিক্রিয়া বলা হয়। বিক্রিয়ায় ইলেক্ট্রনের গ্রহণ বিজারণ এব<mark>ং ইলেকট্রনের প্র</mark>দান জারণ নামে পরিচিত। উদ্দীপকের বিক্রিয়ায় FeCl2 এর Fe²⁺ ইলেক্ট্রন ত্যাগ করে Fe³⁺-এ পরিণত হয়, যা একটি জারণ প্রক্রিয়া।

জারণ : $FeCl_2 - e \longrightarrow Fe^{3+} + 2Cl^- \dots (i)$

আবার, Cl₂ এর Cl ইলেক্ট্রন গ্রহণ করে Cl⁻ -এ পরিণত হয়, যা একটি বিজারণ প্রক্রিয়া।

বিজারণ : $Cl_2 + 2e^- \longrightarrow 2Cl^-$ (ii)

সমীকরণ (i) ও (ii) থেকে পাই

$$2FeCl_2 - 2e \longrightarrow 2Fe^{3+} + 4Cl^{-}$$

$$Cl_2 + 2e^{-} \longrightarrow 2Cl^{-}$$

জারণ-বিজারণ বিক্রিয়া : $2 \text{FeCl}_2 - \text{Cl}_2 \longrightarrow 2 \text{FeCl}_3$

- 80. (i) $ZnSO_4(aq) + Ba(NO_3)(aq) \rightarrow BaSO_4(s) +$ $Zn(NO_3)_2(aq)$
 - (ii) $SiCl_4 + H_2O \rightarrow Si(OH)_4 + HCl$
 - (iii) $ZnSO_4 + 7H_2O \rightarrow ZnSO_4.7H_2O$

[চট্টগ্রাম বোর্ড ২০২০]

- (ক) নিঃসরণ কাকে বলে?
- (খ) কার্বনিক এসিডকে দুর্বল এসিড বলা হয় কেন?
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটি কোন ধরনের বিক্রিয়াকে সমর্থন করে? বর্ণনা করো।
- (ঘ) (ii) ও (iii) নং বিক্রিয়া পানির উপস্থিতিতে সম্পন্ন হলেও বিক্রিয়া দুটির ধরন একই কি? বিশ্লেষণ করো।

৪০ নং প্রশ্নের উত্তর

- (ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- (খ) य সকল এসিড জলীয় দ্রবণে সম্পর্ণ বিয়োজিত না হয়ে আংশিক বিয়োজিত হয় তাদেরকে দুর্বল এসিড বলা হয়। কার্বনিক এসিড (H₂CO₃) একটি দুর্বল এসিড, কারণ এটি জলীয় দ্রবণে আংশিক আয়নিত হয়।

 $H_2CO_3 + 2H_2O \implies 2H_3O^+ + CO_3^{2-}$ এ এসিডের প্রোটন ত্যাগের ক্ষমতা খুবই কম।

- (গ) উদ্দীপকের (i) নং বিক্রিয়াটি অধ্যক্ষেপণ বিক্রিয়া যা নন-রেডক্স বিক্রিয়াকে সমর্থন করে। নিচে তা বর্ণনা করা হলো:
 - যে বিক্রিয়ায় ইলেক্ট্রনের আদান-প্রদান ঘটে না সে বিক্রিয়াকে নন-রেডক্স বিক্রিয়া বলে। অর্থাৎ বিক্রিয়ায় কোনো পরমাণুর জারণ সংখ্যার হ্রাস বা বৃদ্ধি ঘটে না। উদ্দীপকের (i) নং বিক্রিয়া নিমুরূপ:

 $ZnSO_4(aq) + Ba(NO_3)_2(aq) \rightarrow BaSO_4(s) +$ $Zn(NO_3)_2(aq)$

অথবা, Zn²⁺SO₄²⁻(aq) + Ba²⁺NO₃⁻ → BaSO₄(s) + $Zn^{2+}NO_{3}^{-}$ (ag)

বিক্রিয়া থেকে দেখা যাচেছ যে. বিক্রিয়ায় বেরিয়াম নাইট্রেটের বেরিয়াম আয়ন (Ba^{2+}) ও জিংক সালফেটের সালফেট আয়ন (SO_4^{2-}) যুক্ত रुदा तितिशाम जालरकरित व्यक्षरक्रे उर्भन्न करत, या व्यक्षरक्रे হিসেবে তলানিতে অবস্থান করে। এ কারণে বিক্রিয়াটি অধ্যক্ষেপ বিক্রিয়া। আ<mark>বার</mark> জিংক নাইট্রেটের জলীয় দ্রবণে জিংক আয়ন (Zn^{2+}) ও নাইট্রেট আয়ন (NO_3^-) বিক্রিয়ায় অংশগ্রহণ করে না <mark>অর্থাৎ জারণ সংখ্</mark>যার কোনো হ্রাস বদ্ধি হয় না। অতএব ় বিক্রিয়াটিতে কোনো ইলেকট্র<mark>নে</mark>র স্থানান্তর ঘটে না।

সুতরাং বলা যা<mark>য় যে, উদ্দীপকের (i) নং বিক্রিয়া নন-রেডক্স বিক্রিয়া।</mark>

- (ঘ) উদ্দীপকের (ii) ও (ররর) নং বিক্রিয়া যথাক্রমে আর্দ্রবিশ্লেষণ ও পানিযোজন বিক্রিয়া। উপরিউক্ত বিক্রিয়ায় পানি সংযক্ত হলেও তাদের ধরন একই নয় নিচে তা বিশ্লেষণ করা হলো :
 - পানির অণুতে ধনাতাক হাইড্রোজেন আয়ন (H⁺) ও ঋণাতাক হাইদ্রক্সিন আয়ন (OH⁻) থাকে। কোনো যৌগের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন করে। এই বিক্রিয়াকে আর্দ্র বিশ্লেষণ বিক্রিয়া বলে। আর্দ্র বিশ্লেষণ বিক্রিয়া, দ্বি- প্রতিষ্থাপন বিক্রিয়ার অনুরূপ। তবে এই বিক্রিয়ায় পানি অংশগ্রহণ করায় একে পানির বিশ্লেষণ বলে। (ii) নং বিক্রিয়ায় সিলিকন টেট্রাক্লোরাইড পানির সাথে বিক্রিয়া করে সিলিকন টেট্রাহাইড্রোক্সাইড ও হাইড্রোক্লোরিক এসিড উৎপন্ন করে।
 - (ii) $SiCl_4 + 4H_2O \longrightarrow Si(OH)_4 + 4HCl$ আবার, আয়নিক যৌগের কেলাস গঠনের সময় এক বা একাধিক সংখ্যার পানির অণুর সাথে যুক্ত হয়। এই বিক্রিয়াকে পানি যোজন বিক্রিয়া বলে। (iii) নং বিক্রিয়ায়, 7 অণু পানি অণুর সাথে বিক্রিয়ক ZnSO₄ যুক্ত হয়ে কেলাস অণু গঠন করেছে।

(iii) $ZnSO_4 + 7H_2O \longrightarrow ZnSO_4.7H_2O$ এই বিক্রিয়া সংযোজন বিক্রিয়ার অনুরূপ।

সুতরাং বলা যায়, (ii) নং বিক্রিয়ার ক্ষেত্রে পানি আর্দ্র বিশেষিত হয় অর্থাৎ পানির H-বন্ধন ভেঙে যায় কিন্তু (iii) নং বিক্রিয়ার ক্ষেত্রে

বসায়ল

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

পানির সংযোজন হয়। অর্থাৎ পানির বন্ধন না ভেঙে যৌগের সাথে সংযুক্ত হয়।

তাই বলা যায় যে, (ii) ও (iii) নং বিক্রিয়া দুটির ধরন ভিন্ন।

8১. 'X' ও 'Y' বাতাসের দুটি প্রধান উপাদান যেখানে X₂ অণুতে ত্রি-বন্ধন বিদ্যমান এবং এদের সংযোজন একটি উভমুখী বিক্রিয়া। অপরদিকে আয়রন (ii) ক্লোরাইড ও ক্লোরিনের বিক্রিয়াও একটি সংযোজন বিক্রিয়া।

[সিলেট বোর্ড ২০২০]

- (ক) pH কাকে বলে?
- (খ) প্রায় সকল প্রশমন বিক্রিয়ায় একটি সাধারণ উৎপাদন থাকে ব্যাখ্যা করো।
- (গ) দ্বিতীয় বিক্রিয়াটি একটি রেডক্স বিক্রিয়া ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের প্রথম প্রক্রিয়াটির সম্মুখমুখী বিক্রিয়ার গতিবেগ বাড়াতে তাপ ও চাপ উভয়ের প্রভাব আছে কি? বিশ্লেষণ করো।

৪১ নং প্রশ্নের উত্তর

- (ক) কোনো দ্রবণের হাইড্রোজেন <mark>আয়নে</mark>র (${
 m H}^+$) মোলার ঘনমাত্রার ঋণাত্মক লগারিদমকে ঐ দ্রবণের pH বলে।
- (খ) একটি এসিড ও এক<mark>টি ক্ষার প্র</mark>স্পরের <mark>সাথে</mark> বিক্রিয়া করে প্রশমিত হয়ে লবণ ও পানি উৎপ<mark>ন্ন করে। এই বি</mark>ক্রিয়াকে প্রশমন বিক্রিয়া বলে।

विकिया : HCl + NaOH → NaCl + H2O

এসিড ক্ষার

পা

প্রায় সকল প্রশামন বিক্রিয়ায় এসিডের H^+ ও ক্ষারের OH^- পরস্পরের সাথে বিক্রিয়া করে H_2O উৎপন্ন হয়।

 $H^+ + OH^- \rightarrow H_2O$

এজন্য প্রায় সকল প্রশমন বিক্রিয়ায় একটি সাধারণ উৎপাদ (H_2O) থাকে।

(গ) উদ্দীপকের ২য় বিক্রিয়াটি নিমুরূপ-

$$2FeCl_2 + Cl_2 = 2FeCl$$

বিক্রিয়াটি একটি রে<mark>ডক্স (জারণ</mark>-বিজারণ) বিক্রিয়া। নিচে তা বর্ণনা করা হলো-

যে বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান বা স্থানান্তর ঘটে তাকে রেডক্স বিক্রিয়া বা জারণ-বিজারণ বিক্রিয়া বলা হয়। বিক্রিয়ায় ইলেকট্রনের গ্রহণ বিজারণ এবং ইলেকট্রনের প্রদান জারণ নামে পরিচিত। উদ্দীপকের বিক্রিয়ায় FeCl_2 এর Fe^{2+} ইলেকট্রন ত্যাগ করে Fe^{3+} -এ পরিণত হয়, যা একটি জারণ প্রক্রিয়া।

জারণ : $FeCl_2 - e \longrightarrow Fe^{3+} + 2Cl^- \dots (i)$

আবার, Cl_2 এর Cl ইলেকট্রন গ্রহণ করে Cl -এ পরিণত হয়, যা একটি বিজারণ প্রক্রিয়া।

বিজারণ : $Cl_2 + 2e^- \longrightarrow 2Cl^-$ (ii)

সমীকরণ (i) ও (ii) থেকে পাই,

$$2FeCl2 - 2e^{-} \longrightarrow 2Fe^{3+} + 4Cl^{-}$$

$$Cl2 + 2e^{-} \longrightarrow 2Cl^{-}$$

$$2FeCl_2 + Cl_2 \longrightarrow 2FeCl_3$$

সুতরাং উপরের আলোচনা থেকে বলা যায়, উদ্দীপকের দ্বিতীয় বিক্রিয়াটি একটি রেডক্স বিক্রিয়া। (ঘ) উদ্দীপকের তথ্য অনুসারে, X হলো N_2 (বায়ুতে 78% থাকে) এবং Y হলো O_2 (বাতাসে প্রায় 21% থাকে)। N_2 অণুতে ত্রিবন্ধনা বিদ্যুমান। এদের মধ্যে সংঘটিত সংযোজন উভযুখী বিক্রিয়াটি-

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g): \Delta H = +180~kJ$ এ বিক্রিয়ায় সম্মুখমুখী বিক্রিয়ার গতিবেগ বাড়াতে তাপের প্রভাব থাকলেও চাপের কোনো প্রভাব নেই। নিচে তা বিশ্লেষণ করা হলো- তাপের প্রভাব: বিক্রিয়াটি একটি তাপহারী বিক্রিয়া হওয়ায় বিক্রিয়ায় তাপ হলো একটি নিয়ামক। এ বিক্রিয়ায় তাপমাত্রা বৃদ্ধি করা হলে লা-শাতেলিয়ার নীতি অনুযায়ী, তাপমাত্রা বৃদ্ধির ফলাফল প্রশমিত করার জন্য বিক্রিয়ার সাম্যাবস্থা ডানদিকে সরে গিয়ে উৎপাদের পরিমাণ বৃদ্ধি করবে।

অপরদিকে তাপমাত্রা হ্রাস করা হলে লা-শাতেলিয়ার নীতি অনুযায়ী, তাপমাত্রা হ্রাসের ফলাফল প্রশমিত করার জন্য সাম্যাবস্থা বামদিকে সরে গিয়ে উৎপাদের পরিমাণ হ্রাস করবে।

চাপের প্রভাব : জানা আছে, যেসব গ্যাসীয় ও উভমুখী বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের মোলসংখ্যা সমান থাকে তাদের ক্ষেত্রে চাপের কোনো প্রভাব নেই। এ বিক্রিয়ায় বিক্রিয়ক এর মোট মোল সংখ্যা 1+1=2 এবং উৎপাদের মোট মোল সংখ্যাও 2, অর্থাৎ এ বিক্রিয়ায় মোল সংখ্যার কোনো পরিবর্তন হয় নি। কাজেই এ বিক্রিয়ার সাম্যাবস্থায় চাপের কোনো প্রভাব নেই।

সুতরাং দেখা যাচ্ছে যে, উদ্দীপকের প্রথম প্রক্রিয়াটির সম্মুখমুখী বিক্রিয়ার গতিবেগ বাড়াতে তাপের প্রভাব থাকলেও চাপের কোনো প্রভাব নেই।

- 8২. (i) Zn(s) + ব্যু $H_2SO_4(aq) \longrightarrow ZnSO_4(aq) + A$
 - (ii) $NH_4Cl(s) + CaO(s) \xrightarrow{\Delta} CaCl_2(aq) + B + H_2O(l)$ [Upwing case 2020]
 - (ক) পলিমারকরণ কাকে বলে?
 - (খ) নিশাদলকে ঊর্ধ্বপাতিত পদার্থ বলা হয় কেন? ব্যাখ্যা করো।
 - (গ) (i) নং বিক্রিয়ায় কীভাবে জারণ ও বিজারণ ঘটে তা বর্ণনা করো।
 - (ঘ) A ও B গ্যাস দুটির ব্যাপনের হার তুলনা করো।

৪২ নং প্রশ্নের উত্তর

- (ক) একই পদার্থের অসংখ্য অণু বা একাধিক পদার্থের অসংখ্য অণু পরস্পরের সাথে যুক্ত হয়ে বৃহৎ অণু গঠন করার প্রক্রিয়াকেই পলিমারকরণ বলে।
- (খ) যেসব কঠিন পদার্থকে তাপ দিলে বা ষাভাবিকভাবে উন্মুক্ত অবস্থায় রেখে দিলে তা সরাসরি কঠিন হতে গ্যাসীয় অবস্থায় পরিণত হয় তাদেরকে উর্ধ্বপাতিত্ব পদার্থ বলে। নিশাদলকে তাপ দিলে বা ষাভাবিকভাবে উন্মুক্ত অবস্থায় রেখে দিলে তা কঠিন থেকে তরলে। পরিণত না হয়ে সরাসরি বাম্পে পরিণত হয়। এজন্য নিশাদলকে উর্ধ্বপাতিত পদার্থ বলা হয়।
- (গ) উদ্দীপকের (ii) নং বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ ঘটেছে। নিচে এর বিশ্রেষণ করা হলো-

ইলেকট্রনীয় মতবাদ অনুসারে, যে বিক্রিয়ায় ইলেকট্রনের স্থানান্তর ঘটে তাকে জারণ-বিজারণ বিক্রিয়া বলা হয়।

 $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$

বসায়ৰ

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

উদ্দীপকের বিক্রিয়াটিতে Zn পরমাণু দুটি ইলেকট্রন , ত্যাগ করে Zn^0 থেকে Zn^{2+} এ পরিণত হয় । অর্থাৎ Zn এর জারণ ঘটে । আবার , Zn এর ত্যাগকৃত ইলেকট্রন 2টি H^+ আয়ন গ্রহণ করে $2H^+$ থেকে $H_2^{\ 0}$ এ পরিণত হয় । অর্থাৎ H^+ এর বিজারণ ঘটে ।

অর্থাৎ উদ্দীপকের (ii) নং বিক্রিয়াটিতে Zn হতে হাইড্রোজেনে ইলেকট্রনের স্থানান্তর ঘটে। আবার ইলেকট্রন স্থানান্তর তথা জারণ-বিজারণ একই সাথে ঘটে। সুতরাং বলা যায়, প্রদত্ত বিক্রিয়াটিতে জারণ-বিজারণ যুগপৎ ঘটে।

- (ঘ) উদ্দীপকের বিক্রিয়া দুটি হলো-
 - (i) Zn(s) +লঘু $H_2SO_4(aq) \longrightarrow ZnSO_4(aq) + H_2(g)$
 - (ii) $NH_4Cl(s) + CaO(s) \longrightarrow CaCl_2(aq) + 2NH_3(aq) + H_2O(l)$

বিক্রিয়া অনুসারে A ও B যৌগদ্বয় হলো যথাক্রমে H_2 ও NH_3 । নিতে এদের ব্যাপন হারের তুলনা করা হলো-

যেকোনো দুটি যৌগের ব্যাপন হারের তুলনা যৌগদ্বয়ের আণবিক ভরের মান থেকে ব্যাখ্যা করা যায়। কোনো যৌগের আণবিক ভর বেশি হলে যৌগটির বাষ্প ঘনতু বেশি থাকে ফলে যৌগটি স্বতঃস্কূর্তভাবে ধীরে ধীরে ছড়িয়ে পড়ে অর্থাৎ যৌগটির ব্যাপন হার কম হয়। বিপরীতভাবে কোনো যৌগের আণবিক ভর কম হলে যৌগটি তুলনামূলকভাবে কম। ঘনতু বিশিষ্ট অর্থাৎ হালকা হয়। এ কারণে যৌগটির কণাসমূহ স্বতঃস্কূর্তভাবে দ্রুত ছড়িয়ে পড়ে যা উচ্চ ব্যাপন হার নির্দেশ করে। এখানে H_2 এর আণবিক ভর = 2~g/mol এবং NH_3 এর আণবিক ভর = 17~g/mol

যেহেতু H_2 এর আণ্বিক ভর 2 যা NH_3 এর আণ্বিক ভর 17 অপেক্ষা কম। তাই H_2 , NH_3 থেকে হালকা।

এ কারণে H_2 এর ব্যাপন হার NH_3 এর ব্যাপন হার থেকে বেশি হবে।

- 89. (i) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$; $\Delta H = 180kJ/mol$
 - (ii) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92 \text{ kJ/mol}$ [যশোর বোর্ড ২০২০]
 - (ক) লিমিটিং বিক্রিয়ক কাকে বলে?
 - (খ) যোজনী ও জারণ সংখ্যা এক নয় কেন? ব্যাখ্যা করো।
 - (গ) প্রমাণ অবস্থায় (ii) নং বিক্রিয়াটির উৎপাদ যৌগটির 10g এ অণুর সংখ্যা নির্ণয় করো।
 - (ঘ) সাম্যবস্থায় (i) নং বিক্রিয়াটির উপর তার ও চাপের প্রভাব বিশ্লেষণ করো।

৪৩ নং প্রশ্নের উত্তর

(ক) রাসায়নিক বিক্রিয়ায় একাধিক বিক্রিয়ক এর মধ্যে যে বিক্রিয়ক বিক্রিয়া করে শেষ হয়ে যায়, সেই বিক্রিয়ককে লিমিটিং বিক্রিয়ক বলে।

- (খ) যোজনী ও জারণ সংখ্যা এক নয়, এর কারণ নিচে ব্যাখ্যা করা হলো:
 - কোনো মৌলের যোজনী হলো অপর মৌলের সাথে যুক্ত হওয়ার ক্ষমতা। অপরদিকে কোনো যৌগে কোনো মৌলের জারণ সংখ্যা বলতে এমন একটি সংখ্যাকে বোঝায়, যা দ্বারা সংশ্রিষ্ট পরমাণুতে সষ্ট চার্কের প্রকতি ও সংখ্যামান উভয়ই প্রকাশ পায়।
 - ২. যোজনীর কোনো ধনাত্মকতা বা ঋণাত্মকতা নেই, কিন্তু জারণ সংখ্যা ধনায়ক ও ঋণাত্মক বা শূন্য হতে পারে।
 - মৌলের যোজনী সব সময় পূর্ণসংখ্যা কিন্তু জারণ সংখ্যা ভয়াংশ
 হতে পারে।
- (গ) উদ্দীপকের (ii) নং বিক্রিয়াটি নিয়ে পাই,

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

প্রদত্ত বিক্রিয়ার উৎপাদ যৌগটি NH3।

NH3 এর আণবিক ভর 17। প্রমাণ অবস্থায়,

 $17~{
m g~NH_3}$ তে অণুর সংখ্যা $=6.023 imes 10^{23}$ টি

$$\therefore \ 1 \text{ g NH}_3$$
 তে অণুর সংখ্যা = $\frac{6.023 \times 10^{23}}{17}$ টি

$$\therefore$$
 10 g NH $_3$ তে অণুর সংখ্যা = $\frac{6.023 \times 10^{23} \times 10}{17}$ টি = 3.54×10^{23} টি

সুতরাং , প্রমাণ অবস্থায় (ii) নং বিক্রিয়াটির উৎপাদ যৌগটির 10~g- এ 3.54×10^{23} টি অণু থাকে ।

(ঘ) উদ্দীপকের (i) নং বিক্রিয়াটি নিয়ে পাই,

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g); \Delta H = 180 kJ/mol$ এ বিক্রিয়াটির সাম্যাবস্থায় তাপমাত্রা ও চাপের প্রভাব নিচে বিশ্লেষণ করা হলো-

তাপের প্রভাব : এ বিক্রিয়ার ΔH মান ধনাত্মক হওয়ায় বিক্রিয়াটি তাপহারী বিক্রিয়া। লা-শাতেলিয়ার নীতি অনুসারে, এ বিক্রিয়ার সাম্যাবস্থায় তাপ প্রয়োগ করা হলে বিক্রিয়ার সাম্যা বামদিক থেকে ডানদিকে সরে যাবে অর্থাৎ N_2 ও O_2 বিক্রিয়ার করে NO উৎপন্ন হবে। আবার সাম্যাবস্থায় তাপ ব্রাস করা হলে বিক্রিয়ার সাম্য ডানদিক থেকে বামদিকে সরে যাবে অর্থাৎ NO ভেঙে N_2 ও O_2 উৎপন্ন হবে। চাপের প্রভাব: প্রদত্ত বিক্রিয়ায় বিক্রিয়ক এর মোট মোল সংখ্যা 1+1=2 এবং উৎপাদের মোট মোল সংখ্যাও 1+1=2 এবং উৎপাদের মোট মোল সংখ্যাও 1+1=10 অর্থাৎ এ বিক্রিয়ায় গ্যাসীয় মোলের পরিবর্তন হয় না। জানা আছে, য়ে সকল বিক্রিয়ায় গ্যাসীয় অণু সংখ্যার ব্রাস-বৃদ্ধি ঘটে না সে সকল বিক্রিয়ার সাম্যাবস্থায় চাপের কোনো প্রভাব থাকে না। সুতরাং বলা যায়, এই বিক্রিয়ার সাম্যাবস্থায় চাপের কোনো প্রভাব নেই।

88.

- (ক) বিক্রিয়ার হার কাকে বলে?
- (খ) Na₂CO₃ এর জলীয় দ্রবণের প্রকৃতি ব্যাখ্যা করো।
- (গ) উদ্দীপকের ১ম চিত্রের বিক্রিয়ায় উৎপন্ন গ্যাস কীভাবে শনাক্ত করবে? ব্যাখ্যা করো।

বসামূল ৭ম অধ্যাম

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

(ঘ) উদ্দীপকের কোন বিক্রিয়ায় ইলেকট্রন স্থানান্তর ঘটেছে? বিশ্লেষণ করো।

88 নং প্রশ্নের উত্তর

- (ক) প্রতি একক সময়ে কোনো একটি বিক্রিয়া পাত্রে যে পরিমাণ উৎপাদের ঘনমাত্রা বৃদ্ধি বা বিক্রিয়কের ঘনমাত্রা হ্রাস পায় তাকে বিক্রিয়ার হার বলে।
- (খ) Na_2CO_3 এর জলীয় দ্রবণ ক্ষারীয় প্রকৃতির। কারণ Na_2CO_3 জলীয় দ্রবণে বিযোজিত হয়ে NaOH নামক তীব্র ক্ষার এবং H_2CO_3 নামক দুর্বল এসিড উৎপন্ন করে।

বিক্রিয়া : $Na_2CO_3 + 2H_2O \longrightarrow 2NaOH + H_2CO_3$

তীব্র ক্ষার

দুর্বল

এসিড

জলীয় দ্রবণে NaOH সম্পূর্ণরূপে Na^+ আয়ন ও OH^- আয়নে বিয়োজিত থাকে, কিন্তু H_2CO_3 মৃদু বলে খুব অল্প পরিমাণে বিয়োজিত হয়। তাই Na_2CO_3 এর জলীয় দ্রবণ, ক্ষারীয় প্রকৃতির।

(গ) উদ্দীপকের ১ম চিত্রে সংঘটিত বিক্রিয়াটি নিয়ে পাই-

 $CaCO_3(s)$ \longrightarrow $CaO(s) + CO_2(g)$ \uparrow ঙ এক্ষেত্রে উৎপন্ন গ্যাসটি CO_2 । নিচে CO_2 গ্যাস শনাক্তকরণ ব্যাখ্যা করা হলো-

CO₂ গ্যাস শনাক্তকরণ: একটি পরীক্ষানলে সামান্য চুনের পানি বা ক্যালসিয়াম হাইড্রক্সাইড নিয়ে তাতে কার্বন ডাইঅক্সাইড গ্যাস প্রবেশ করালে যদি ক্যালসিয়াম কার্বনেটের সাদা বর্ণের অধপ্লক্ষেপ তৈরি হয় এবং চুনের পানি ঘোলা হয়ে যায় তবে গ্যাসটি কার্বন ডাইঅক্সাইড গ্যাস।

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3(s)$$

+ $H_2O(l)$

চুনের পানি কার্বন ডাইঅক্সাইড গ্যাস ক্যালসিয়াম কার্বনেটের সাদা অধঃক্ষেপ

এ যদি CO_2 গ্যাসকে আবার এ চুনের পানিতে চালনা করা হয় তবে চুনের পানি স্বচ্ছ হয়ে যায়। কারণ অদ্রবণীয় ক্যালসিয়াম কার্বনেট CO_2 এবং পানির সাথে বিক্রিয়া করে দ্রবণীয় $Ca(HCO_3)_2$ উৎপন্ন

করে। CaCO₃(s) + H₂O(*l*) +

$$H_2O(l)$$
 + $CO_2(g)$ \longrightarrow

দ্রবণীয়

এভাবে CO2 গ্যাস শনাক্ত করা যায়।

 $Ca(HCO_3)_2(aq)$

(ঘ) ১ম বিক্রিয়া: উদ্দীপকের ১ম চিত্রে সংঘটিত বিক্রিয়াটি-

$$CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$$

উদ্দীপকের (i) নং চিত্রের বিক্রিয়া থেকে দেখা যায়, বিক্রিয়কে Ca এর জারণ সংখ্যা +2, C এর জারণ সংখ্যা +4 এবং O এর জারণ সংখ্যা -2। উৎপাদে Ca, O এবং C এর জারণ সংখ্যা +2, -2 এবং +4। বিক্রিয়া থেকে দেখা যায় যে (i) নং বিক্রিয়ায় বিক্রিয়ক ও উৎপাদে জারণ সংখ্যার মানের কোনো পরিবর্তন হয় নি। অর্থাৎ

এখানে কোনো ইলেকট্রন আদান-প্রদান ঘটে নি। তাই বিক্রিয়াটি জারণ বিজারণ নয়।

২য় বিক্রিয়া: উদ্দীপকের ২য় চিত্রে সংঘটিত বিক্রিয়াটি-

প্রক্রিয়াটিতে দেখা যাচ্ছে যে, বিক্রিয়কে PCl_5 এর P এর জারণ সংখ্যা + 5 হলেও উৎপাদ P এর জারণ সংখ্যা + 3 । অর্থাৎ বিক্রিয়াটিতে জারণ সংখ্যা হ্রাস পেয়েছে । সুতরাং, প্রক্রিয়াটি বিজারণ প্রক্রিয়া । আবার, বিক্রিয়কে Cl এর জারণ সংখ্যা - 1 হলেও উৎপাদে Cl এর জারণ সংখ্যা 0 । অর্থাৎ বিক্রিয়াটিতে জারণ সংখ্যা বৃদ্ধি পায় । সুতরাং প্রক্রিয়াটি জারণ প্রক্রিয়া ।

দেখা যাচেছ যে , এ বিক্রিয়াটি ইলেকট্রন স্থানান্তর অর্থাৎ জারণ- বিজারণ বিক্রিয়ার মাধ্যমে ঘটেছে।

8¢. (i) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$; $\Delta H = -2280 \text{kJ}$

(ii) $N_2(g) + O_2(g) \rightarrow 2NO(g)$: $\Delta H = + 180kJ$

(11) 112(8) + 02(8) + 2110	$J(g), \Delta \Pi = 100 \text{K}$
Bond	Bond enrgy
C-C	344 kJ/mol
C – H	414 kJ/mol
O – H	464 kJ/mol
O = O	498 kJ/mol

[ময়মনসিংহ বোর্ড ২০২০]

- (ক) তড়িৎ প্রলেপন কী?
- (খ) H₂S এবং SO₂ এর মধ্যে কোনটির ব্যাপন হার সর্বাধিক এবং
- (গ) C = O এর বন্ধনশক্তি হিসাব কর।
- (ঘ) উদ্দীপকের (i) ও (ii) নং বিক্রিয়া দুটির সাম্যাবস্থায় তাপ ও চাপের প্রভাব ভিন্ন – বিশ্লেষণ কর।

৪৫ নং প্রশ্নের উত্তর

- (ক) তড়িৎ বিশ্লেষণের মাধ্যমে একটি ধাতুর উপর অন্য একটি ধাতুর প্রলেপ দেওয়াকে তড়িৎ প্রলেপণ বলে।
- (খ) H_2S ও SO_2 এর মধ্যে H_2S এর ব্যাপন হার সর্বাধিক। কারণ জানা আছে, কোনো গ্যাসের ব্যাপন হার ঐ গ্যাসের আণবিক ভরের উপর নির্ভরশীল। অর্থাৎ যে গ্যাসের আণবিক ভর যত বেশি সে গ্যাসের ব্যাপন হার তত কম। H_2S এর আণবিক ভর = 2+32=34। কিন্তু SO_2 এর আণবিক ভর = $32+16\times 2=64$ । যেহেতু H_2S এর আণবিক ভর কম, তাই এর ব্যাপন হার সর্বাধিক।
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটি-

 $C_3H_8 + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O; \Delta H = -2280kJ$

জানা আছে,

 $\Delta H = (পুরাতন কখন ভাঙতে প্রয়োজনীয় শক্তি)$

— (নতুন বন্ধন গড়তে নিৰ্গত শক্তি)

$$\exists t$$
, $-2280 = (C_3H_8 + 5O_2) - (3CO_2 + 4H_2O)$

৭ম অধ্যায

<u>বাসামূ</u>ৰিক বিক্ৰিয়া

Prepared by: SAJJAD HOSSAIN

উদ্দীপক হতে Bond energy এর মানগুলো বসিয়ে পাই-

$$-2280 = \{(8 \times 414) + (2 \times 344) + (5 \times 498) - \{6 \times (C = O) + (8 \times 464)\}\$$

$$\sqrt{1}$$
, −2280 = 6490 − 6 × (C = O) − 3712

বা,
$$6(C = O) = 2778 + 2280$$

বা,
$$(C = O) = \frac{5058}{6} = 843$$

$$\therefore$$
 (C = O) = 843 kJ mol⁻¹

সূতরাং, C = O এর বন্ধনশক্তি 843 kJ/mol।

- (ঘ) উদ্দীপকের (i) নং ও (ii) নং বিক্রিয়াস্বয় নিয়ে পাই,
 - (i) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$; $\Delta H = -2280$ kJ

(ii) $N_2(g) + O_2(g) \to 2NO(g); \Delta H = +\ 180 kJ$ বিক্রিয়া হতে দেখা যাচেছ, (i) নং বিক্রিয়ার ΔH মান ঋণাত্মক হওয়ায় বিক্রিয়াটি তাপোৎপাদী এবং (ii) নং বিক্রিয়ার ΔH মান ধনাত্মক হওয়ায় বিক্রিয়াটি তাপহারী বিক্রিয়া। বিক্রিয়া দুটির সাম্যাবস্থায় তাপ, ও চাপের প্রভাব ভিন্ন। নিচে তা বিশ্লেষণ করা হলো-তাপের প্রভাব : উদ্দীপকের (i) নং বিক্রিয়াটি তাপোৎপাদী হওয়ায় কম তাপে উৎপাদ পাওয়া হয়। তাপমাত্রা বৃদ্ধির সাথে সাথে উৎপাদের পরিমাণ কমতে থাকে। পক্ষান্তরে (ii) নং বিক্রিয়ার ক্ষেত্রে বেশি তাপে N_2 ও O_2 এর দ্রুত সংযোজন ঘটে এবং NO এর পরিমাণ কমে যায়। সুতরাং দেখা যাচেছ যে, (i) নং বিক্রিয়াটি কম তাপে এবং (ii) নং বিক্রিয়াটি বেশি তাপে ভালো উৎপাদ দেয় অর্থাৎ বিক্রিয়ার সাম্যাবস্থায় তাপের প্রভাব ভিন্ন।

চাপের প্রভাব : উদ্দীপকের (i) নং বিক্রিয়াটির বিক্রিয়কের মোট মোল সংখ্যা 1+5=6 এবং উৎপাদের মোট মোল সংখ্যা 3+4=7 অর্থাৎ বিক্রিয়াটি আয়তন বৃদ্ধির মাধ্যমে ঘটে। এজন্য লা-শাতেলিয়ার নীতি অনুসারে এ বিক্রিয়ায় চাপ হ্রাস করলে আয়তন বৃদ্ধি করে সাম্যের অবস্থান ডান দিকে সরে উৎপাদের পরিমাণ বৃদ্ধি করবে। পক্ষান্তরে (ii) নং বিক্রিয়ায় বিক্রিয়ক এর মোল সংখ্যা। 1+1=2 এবং উৎপাদের মোট মোল সংখ্যা 2 অর্থাৎ এ বিক্রিয়ায় মোলের পরিবর্তন হয় না। কাজেই চাপেরও পরিবর্তন হয় না। অন্যভাবে বলতে পারি, এ বিক্রিয়ার সাম্যাবস্থায় চাপের কোনো প্রভাব নেই। সুতরাং দেখা যাচ্ছে যে, উদ্দীপকের (i) ও (ii) নং বিক্রিয়ার সাম্যাবস্থায় চাপের প্রভাবও ভিন্ন হয়।

৪৬. FeCl₃(aq) + 3NaOH(aq) → উপরের বিক্রিয়ার আলোকে নিচের ছকটি পূরণ করা হলো –

I	উপাদান	১ম	২য়	৩য়	সর্বমোট	অধঃক্ষেপের	
	9111111						
		পাত্র	পাত্র	পাত্র	আয়তন	বৰ্ণ	
	0.5 M						
	FeCl ₃ এর	6		_			
	আয়তন		4	2	12		
	(mL)						
	পানির আয়তন	2	4	(10	লালচে	
	(mL)		2	4	4 6	12	বাদামী
	0.5 M		9 7	\.			
	NaOh এর	- 0			7 0	1.50	
	আয়তন	50	50	50	150		
Ī	(mL)						

[রাজশাহী বোর্ড ২০১৯]

- (ক) সমানু কাকে বলে?
- (খ) বর্ষাকালে পাকা বাড়ির ছাদ পিচ্ছিল হলে বালু দেওয়া হয় কেন?
- (গ) কোন পাত্রের দ্রবণটি অধিক লালচে বাদামী হবে? বর্ণনা কর।
- (ঘ) উদ্দীপকের বিক্রিয়াটি দ্বি-প্রতিষ্থাপন ও রেডক্স উভয় ধরনের বিক্রিয়াকে সমর্থন করে কিনা? যুক্তিসহ বিশ্লেষণ কর।

৪৬ নং প্রশ্নের উত্তর

- (ক) যেসব যৌগের আণবিক সংকেত একই কিন্তু গাঠনিক সংকেত ভিন্ন তাদের একটিকে অপরটির সমাণু বলে।
- (খ) বর্ষাকালে পাকা বাড়ির ছাদ পিচ্ছিল হলে বালু দেওয়া হয়। এর কারণ বর্ষাকালে পাকা বাড়ির ছাদে পিচ্ছিলধর্মী পদার্থ জমা হয় যা মূলত ক্ষারধর্মী। এ সমস্যা দূর করতে এতে অমুধর্মী পদার্থ বালু (SiO₂) যোগ করা হয়। ফলে প্রশমন বিক্রিয়ার মাধ্যমে পিচ্ছিলতা দূর হয়ে যায়।

পিচ্ছিলকারক পদার্থ
$$+$$
 বালু $(SiO_2) \rightarrow \qquad$ লবণ $+$ পানি $($ ম্ফারধর্মী $)$ $($ অমুধর্মী $)$ নিরপেক্ষ

পদার্থ

(গ) উদ্দীপকের বিক্রিয়াটি সম্পন্ন করে পাই-

FeCl₃ + 3 NaOH
$$\longrightarrow$$
 3NaCl +
Fe(OH)₃ \downarrow
(56 + 35.5 × 3)g

$$(56 + 35.5 \times 3)g$$
 লালচে বাদামী
= $162.5g$ অধঃক্ষেপ

উপরের বিক্রিয়ায় যে পাত্রে অধিক পরিমাণ $Fe(OH)_3$ উৎপন্ন হবে সেই পাত্রের দ্রবণ অধিক লালচে বাদামী হবে। $FeCl_3$ ও NaOH দ্রবণের পরিমাণ যত বেশি হবে উৎপন্ন $Fe(OH)_3$ এর পরিমাণও তত বাডবে।

উদ্দীপকের প্রতিটি পাত্রে সমান পরিমাণ NaOH ব্যবহার করা হয়েছে। বিক্রিয়াটির ক্ষেত্রে উৎপন্ন উৎপাদন $Fe(OH)_3$ এর পরিমাণ নির্ভর করবে $FeCl_3$ এর পরিমাণের উপর।

আমরা জানি ,
$$w = \frac{SVM}{1000}$$

১ম পাত্রে
$$FeCl_3$$
 এর পরিমাণ $=$ $\frac{0.5 \times 6 \times 162.5}{1000}$ $=$ $0.4875g$

Prepared by: SAJJAD HOSSAIN

২য় পাত্রে
$$FeCl_3$$
 এর পরিমাণ = $\dfrac{0.5 \times 4 \times 162.5}{1000}$ = $0.325g$

৩য় পাত্রে
$$FeCl_3$$
 এর পরিমাণ $= \frac{0.5 imes 2 imes 162.5}{1000} =$

0.1625g

যেহেতু, ১ম পাত্রে $FeCl_3$ এর পরিমাণ সবচেয়ে বেশি, ফলে ১ম পাত্রের দ্রবণটি অধিক লালচে বাদামী হবে।

(ঘ) উদ্দীপকের বিক্রিয়াটি পূর্ণ করে পাই-

 $FeCl_3(aq) + 3NaOH(aq) \longrightarrow Fe(OH)_3 + 3NaCl$ বিক্রিয়াটি দ্বি-প্রতিছাপন ও রেডক্স উভয় ধরনের বিক্রিয়াকে সমর্থন করে কি-না নিচে তা যুক্তিসহ বিশ্লেষণ করা হলো-

প্রদত্ত বিক্রিয়াটিতে ফেরিক ক্লোরাইড $(FeCl_3)$ এর ফেরিক আয়ন (Fe^{3+}) দ্বারা সোডিয়াম হাইড্রোক্সাইডের সোডিয়াম আয়নকে (Na^+) প্রতিস্থাপন করে, একইভাবে NaOH এর সোডিয়াম আয়ন (Na^+) দ্বারা $FeCl_3$ এর ফেরিক আয়ন (Fe^{3+}) প্রতিস্থাপিত হয়। ফলে এটি একটি দ্বি-প্রতিস্থাপন বিক্রিয়া।

সুতরাং উদ্দীপকের বিক্রিয়াটি <mark>দ্বি-প্রতিস্থাপ</mark>ন বিক্রিয়া। অপরদিকে, যে বিক্রিয়ায় ইলেকট্রনের স্থানান্তর ঘটে তাকে রেডক্স বিক্রিয়া বলে। উদ্দী**পকে**র বিক্রিয়াটি পুনরায় লিখে পাই-

 $Fe^{+3}Cl_3^{-1} + Na^{+1}OH \rightarrow Fe^{+3} (OH)_2 + 3Na^{+1}Cl^{-1}$ বিক্রিয়া থেকে দেখা যায় যে, এ বিক্রিয়ার প্রতিটি বিক্রিয়ক ও উৎপাদের জারণ মান সমান। অর্থাৎ এ বিক্রিয়ায় ইলেকট্রনের স্থানান্তর হয় না বলে এটি রেডক্স বিক্রিয়া নয়।

সুতরাং, উপরের আলোচনা থেকে বলা যায়, উদ্দীপকের বিক্রিয়াটি দ্বি-প্রতিষ্থাপন ও রেডক্স উভয় ধরনের বিক্রিয়াকে সমর্থন করে না।

89. C₃H₈(g) + 5O₂(g) **⇒** 3CO₂ + 4H₂O + 2012kJ এখানে, C − C, C − H, O = O এবং O − H এর বন্ধনশক্তি যথাক্রমে 344, 414, 498 এবং 464 kJ/mol

[চট্টগ্রাম বোর্ড ২০১৯]

- (ক) তাপহারী বিক্রিয়া কাকে বলে?
- (খ) গ্রাফাইট ইলেকট্রনিক পরিবাহী বলা হয় কেন? ব্যাখ্যা কর।
- (গ) উদ্দীপকের বিক্রিয়া হতে (C = O) এর বন্ধনশক্তি নির্ণয় কর।
- (ঘ) উদ্দীপকের বিক্রিয়ায় তাপ বৃদ্ধি ও চাপ হ্রাসের প্রভাবে সাম্যাবস্থা একইদিকে ধাবিত হবে কিনা যুক্তিসহ ব্যাখ্যা কর।

৪৭ নং প্রশ্নের উত্তর

- (ক) যে, রাসায়নিক বিক্রিয়া সংঘটিত হওয়ার জন্য তাপের শোষণ ঘটে, তাকে তাপহারী বিক্রিয়া বলে।
- (খ) যেসব পদার্থের মধ্যদিয়ে ইলেকট্রনের মাধ্যমে বিদ্যুৎ পরিবাহিত হয় সেসব পরিবাহীকে ইলেকট্রনীয় পরিবাহী বলে। গ্রাফাইট হলো কার্বনের একটি রূপভেদ। কার্বন-কার্বন পরমাণু যখন গ্রাফাইট অণুর আকারে সজ্জিত হয় তখন তার তিনটি ইলেকট্রন সমযোজী বন্ধনে আবন্ধ থাকে এবং অন্য ইলেকট্রনটি মুক্ত থাকে। এই মুক্ত ইলেকট্রনের

মাধ্যমে বিদ্যুৎ পরিবাহিত হয়। তাই গ্রাফাইটকে ইলেকট্রনিক পরিবাহী বলা হয়।

(গ) উদ্দীপকের বিক্রিয়াটি নিমুরূপ-

দেয়া আছে.

C – C এর বন্ধন শক্তি = 344 kJ/mol

C – H এর কখন শক্তি = 414 kJ/mol

O = O এর বন্ধন শক্তি = 498 kJ/mol

O = H এব বন্ধন শক্তি = 464 kJ/mol

বন্ধন ভাঙার শক্তি =
$$2(C-C) + 8(C-H) + 5(O=O)$$

= $(2 \times 344) + (8 \times 414) + (5 \times 498)$
= $688 + 3312 + 2490$
= 6490 kJ

বন্ধন গড়ার শক্তি =
$$6(C = O) + 8(O - H)$$

= $6(C = O) + 8 \times 464$
= $3712 + 6(C = O)$ kJ

 $\Delta ext{H} =$ বন্ধন ভাঙার শক্তি - বন্ধন গড়ার শক্তি

$$\sqrt{1}$$
, $-2012 = 6490 - \{3712 + 6(C = O)\}$

বা,
$$6(C = O) = 8502 - 3712$$

$$\therefore C = O = 798.33 \text{ kJ}$$

সতরাং C = O এর কন্ধন শক্তি 798.33 kJ।

(ঘ) উদ্দীপকের বিক্রিয়াটি নিমুরূপ-

$$C_3H_8(g) + 5O_2(g) \rightleftharpoons 3CO_2 + 4H_2O; \Delta H = -2012kJ$$

উদ্দীপকের বিক্রিয়াটি একটি তাপোৎপাদী বিক্রিয়া এবং উৎপাদে মোলসংখ্যা বৃদ্ধি পায়। তাই বিক্রিয়াটিতে তাপ বৃদ্ধি ও চাপ ব্রাসের প্রভাবে সাম্যাবস্থা একইদিকে ধাবিত হবে না। নিচে যুক্তিসহ ব্যাখ্যা করা হলো-

তাপের প্রভাব : লা-শাতেলিয়ারের নীতি অনুসারে, তাপোৎপাদী বিক্রিয়ার ক্ষেত্রে তাপমাত্রা বৃদ্ধি করলে সাম্যাবস্থার অবস্থান ডানদিক থেকে বাম দিকে সরে উৎপাদের পরিমাণ ব্রাস করবে অর্থাৎ পশ্চাৎ বিক্রিয়াটি সংঘটিত হবে।

চাপের প্রভাব: আবার, বিক্রিয়াটিতে আয়তন প্রসারণ ঘটেছে। অর্থাৎ উৎপাদে মোলসংখ্যা বৃদ্ধি পেয়েছে। লা-শাতেলিয়ারের নীতি অনুসারে চাপ ব্রাস করলে আয়তন বৃদ্ধি করে সাম্যের অবস্থান ডান দিকে সরে উৎপাদের পরিমাণ বৃদ্ধি করবে। অর্থাৎ, সম্মুখ বিক্রিয়াটি সংঘটিত হবে।

8b. (i)
$$Ca(OH)_2 + Cl_2 \xrightarrow{40^{\circ}C} A + H_2O$$

বুসামূৰ ৭ম অধ্যাম

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

(ii) $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + NaCl(aq)$

(iii) $NaCl(aq) + KNO_3(aq) \rightarrow NaNO_3(aq) + KCl(aq)$

[চট্টগ্রাম বোর্ড ২০১৯]

- (ক) সংশ্লেষণ বিক্রিয়া কাকে বলে?
- (খ) Cl মৌলের আয়নিকরণ শক্তি অধিক কেন? ব্যাখ্যা কর।
- (গ) দেখাও যে, 'A' যৌগটি পরিষ্কারক হিসেবে ব্যবহৃত হয়।
- (ঘ) উদ্দীপকের (ii) ও (iii) নং সমীকরণ দুটিতেই রাসায়নিক বিক্রিয়া সম্পন্ন হয়েছে কিনা – তোমার মতামত দাও।

৪৮ নং প্রশ্নের উত্তর

- (ক) যে বিক্রিয়ায় কোনো যৌগ তার উপাদান মৌলসমূহের প্রত্যেক্ষ সংযোগে উৎপন্ন হয় তাকে সংশেষণ বিক্রিয়া বলে।
- (খ) গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল বিচ্ছিন্ন পরমাণু থেকে একটি করে ইলেকট্রন সরিয়ে একে গ্যাসীয় বিচ্ছিন্ন এক মোল একক ধনাত্মক আয়নে পরিণত করতে যে পরিমাণ শক্তি প্রয়োজন হয়, তাকে সেই মৌলের আয়নিকরণ শক্তি বলে। 17Cl (1s² 2s² 2p⁶ 3s² 3p⁵) হলো পর্যায় সারণির সর্বভানের মৌল। জানা আছে, একই পর্যায়ের বাম থেকে ডানে গেলে পরমাণুর আকার কমতে থাকে এবং ইলেকট্রন ত্যাগ করা তত কষ্টকর হয়। অর্থাৎ আয়নিকরণ শক্তির মান বেশি হয়। এ কারণে Cl এর আয়নিকরণ শক্তির মান অধিক।
- (গ) উদ্দীপকের (i) নং বিক্রিয়াটি সম্পন্ন করে পাই,

$$Ca(OH)_2 + Cl_2 \xrightarrow{40^{\circ}C} Ca(OCl)Cl + H_2O$$
্বিচিং পাউডার (A)

বিক্রিয়া থেকে অ যৌগ হলো ব্লিচিং পাউডার। ব্লিচিং পাউডার একটি পরিষ্কারক নিচে বিক্রিয়াসহ তা দেখানো হলো-

ব্লিচিং পাউডার বায়ুমণ্ডলের কার্বন ডাইঅক্সাইড এবং পানির সাথে বিক্রিয়ায় হাইপোক্লোরাস এসিড উৎপন্ন করে। হাইপোক্লোরাস এসিড (HClO) তাৎক্ষণিক বিয়োজিত হয়ে জায়মান অক্সিজেন উৎপন্ন করে।

এই জায়মান অক্সিজেনের জারণ ক্রিয়ায় কাপড়ের দাগ দূর হয়। জায়মান অক্সিজেন ও HCl এর বিক্রিয়ায় পানি ও সক্রিয় ক্লোরিন উৎপন্ন হয়। উৎপন্ন ক্লোরিনের জারণ ক্রিয়ায় দাগ দূর হয়।

 $2Ca(OCl)Cl + H_2O + CO_2 \rightarrow CaCO_3 + CaCl_2 + 2HClO$

 $2HC1O \rightarrow HC1 + [O]$

 $2HCI + [O] \rightarrow H_2O + 2[C1]$

এভাবে ব্লিচিং পাঁউডার কাপড়ের ময়লা পরিষ্কার করে।

সুতরাং বলা যায়, ব্লিচিং পাউডার [Ca(OCl) Cl] পরিষ্কারক হিসেবে কাজ করে।

(ঘ) উদ্দীপকের (ii) ও (iii) নং বিক্রিয়া দুটিতে রাসায়নিক বিক্রিয়া সম্পন্ন হয়নি। নিচে মতামত দেওয়া হলো-

উদ্দীপকের (ii) নং বিক্রিয়া হলো-

 $BaCl_2(aq) + Na_2SO_4(aq) \longrightarrow BaSO_4(s)\downarrow + NaCl(aq)$

এক্ষেত্রে $BaCl_2$ এর বেরিয়াম আয়ন (Ba^{2+}) ও Na_2SO_4 এর সালফেট আয়ন (SO_4 $^{2-}$) যুক্ত হয়ে বেরিয়াম সালফেটের

 $(BaSO_4)$ এর অধ্যক্ষেপ উৎপন্ন করে। NaCl এর জলীয় দ্রবণে Na^+ ও Cl^- আয়ন হিসেবে থাকে। জলীয় দ্রবণে এ আয়নদ্বয় বিক্রিয়ায় অংশগ্রহণ করে না। তাই এরা হচ্ছে দর্শক আয়ন। এ বিক্রিয়ায় কোনো ইলেকট্রনের স্থানান্তর ঘটে না। তবে এক্ষেত্রে $BaSO_4$ অধ্যক্ষিপ্ত হয়েছে। অর্থাৎ, Ba^{2+} ও SO_4^{2-} এর মধ্যে রাসায়নিক বিক্রিয়া ঘটে $BaSO_4$ অধ্যক্ষিপ্ত হয়েছে।

$$Ba^{2+}(aq) + Cl^{-}(aq) + Na^{+}(aq) + SO_4^{2-}(aq)$$

 \longrightarrow Na⁺(aq) + Cl⁻(aq) + BaSO₄(s) \downarrow

আবার, উদ্দীপকের (iii) নং বিক্রিয়া নিমুরূপ-

 $NaCl(aq) + KNO_3(aq) \longrightarrow NaNO_3(aq) + KCl(aq)$

বিক্রিয়াটি দ্বি-প্রতিস্থাপন বিক্রিয়া। দ্বি-প্রতিস্থাপন বিক্রিয়ায় উভয় যৌগ পানিতে দ্রবণীয় হলে অধ্যক্ষেপণ না হওয়ায় কোনো রাসায়নিক বিক্রিয়া সম্পন্ন হয় না। সোডিয়াম ক্লোরাইড ও পটাসিয়াম নাইট্রেট জলীয় দ্রবণে দ্বি-প্রতিস্থাপন বিক্রিয়া করে উৎপন্ন সোডিয়াম নাইট্রেট ও পটাসিয়াম ক্লোরাইড উভয় জলীয় দ্রবণে দ্রবীভূত অবস্থায় থাকে। ফলে দ্রবণে সকল আয়ন দর্শক আয়ন হিসেবে থাকে। অর্থাৎ কোনো রাসায়নিক বিক্রিয়া সম্পন্ন হয় না।

৪৯. একটি যৌগে H=3.06%, P=31.63% এবং O=65.30% আছে। যৌগটির আণবিক ভর 98। উক্ত যৌগটির সাথে Zn ধাতুর বিক্রিয়া ঘটানো হলো।

[সিলেট বোর্ড ২০১৯]

- (ক) জারক কাকে বলে?
- ্খ) অ্যালুমিনিয়াম ও হাইড্রোক্লোরিক এসিডের বিক্রিয়ার সমতাকৃত সমীকরণটি লিখ।
- (গ) উদ্দীপকের যৌগটির আণবিক সংকেত নির্ণয় কর।
- (घ) উদ্দীপকের বিক্রিয়াটি রিডক্স বিক্রিয়া কিনা-বিশ্লেষণ কর।

৪৯ নং প্রশ্নের উত্তর

- (ক) জারণ-বিজারণ বিক্রিয়ায় যে বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে জারক বলে।
- (খ) অ্যালুমিনিয়াম ধাতু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে অ্যালুমিনিয়াম ক্লোরাইড ও হাইড্রোজেন গ্যাস উৎপন্ন করে। বিক্রিয়াটি হলো-

 $Al\left(s\right)+HCl\left(aq\right)\longrightarrow AlCl_3(s)+H_2\left(g\right)$ এই বিক্রিয়া সমতাকরণে প্রথমে ক্লোরিন পরমাণুর সংখ্যা সমতার জন্য বিক্রিয়ক HCl এর সাথে 3 দ্বারা গুণন করা হয়। এতে উৎপাদে H

এর সংখ্যা সমান করার জন্য $\frac{3}{2}$ দ্বারা গুণন করা হয়।

Al (s) + 3 HCl (aq)
$$\longrightarrow$$
 AlCl₃(s) + $\frac{3}{2}$ H₂ (g)

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

(গ) উদ্দীপক হতে,

$$H = 3.06\%$$

$$P = 31.63\%$$

 $Q = 65.30\%$

প্রতিটি মৌলের শতকরা সংযুক্তিকে নিজ নিজ পারমাণবিক ভর দ্বারা ভাগ করে পাই

$$H = \frac{3.06}{1} = 3.06$$
; $P = \frac{31.63}{31} = 1.02$; $O = \frac{65.30}{16} =$

প্রাপ্ত ভাগফলসমূহের মধ্যে ক্ষুদ্রতম ভাগফল 1.02 দ্বারা পুনরায় ভাগ করে পাই.

$$H = \frac{3.06}{1.02} = 3$$
; $P = \frac{1.02}{1.02} = 1$; $O = \frac{4.08}{1.02} = 4$

∴ যৌগটির স্থূল সংকেত = H₃PO₄

ধরি, যৌগটির আণবিক সংকেত = $(H_3PO_4)_n$

তাহলে যৌগের আণবিক ভর (H এর ভর \times 3+P এর ভর \times 1+O এর ভর \times $4)_n$

বা,
$$98 = (1 \times 3 + 31 \times 1 + 16 \times 4)$$
 n

$$41, \ n = \frac{98}{3+3+64} \ \therefore \ n = \frac{98}{98} = 1$$

সুতরাং, যৌগটির আণবিক সংকেত (H₃PO₄)₁ বা H₃PO₄

্ঘে) উদ্দীপকের 'গ' থেকে প্রাপ্ত যৌগটি হলো ফসফরিক এসিড (H_3PO_4) । Zn ধাতুর সাথে H_3PO_4 এর বিক্রিয়াটি নিম্নরূপ : $3\ Zn + 2\ H_3PO_4 \longrightarrow Zn_3\ (PO_4)_2 + 3H_2$ উক্ত বিক্রিয়াটি রিডক্স বিক্রিয়া কিনা- নিচে তা বিশ্লেষণ করা হলো : যে বিক্রিয়ায় ইলেক্ট্রনের আদান-প্রদান তথা জারণ সংখ্যার হ্রাস-বৃদ্ধি ঘটে তাকে জারণ-বিজারণ বা রিডক্স বিক্রিয়া বলে । বিক্রিয়াটির আয়নিক রূপ :

দেখা যাচ্ছে যে, বিক্রিয়ক Z_n এর জারণ সংখ্যা 0 থেকে বৃদ্ধি পেয়ে উৎপাদ Z_n এর জারণ সংখ্যা +2 হয়েছে। অর্থাৎ Z_n 2টি ইলেকট্রন ত্যাগ করে Z_n^{2+} আয়ন তৈরি করে। সুতরাং Z_n এর জারণ ঘটে। জারণ অর্ধ-বিক্রিয়া : $Z_n \longrightarrow Z_n^{2+} + 2e^-$

আবার, অপরদিকে বিক্রিয়ক H এর জারণ সংখ্যা + 1 থেকে হ্রাস পেয়ে উৎপাদ H এর জারণ সংখ্যা 0 হয়েছে। অর্থাৎ 1টি H^+ , 1 টি ইলেকট্রন গ্রহণ করে H পরমাণুতে পরিণত হয়েছে, এরূপে 2টি H^+ , 2 টি ইলেকট্রন গ্রহণ করে H_2 গঠন করে। সুতরাং H^+ এর বিজারণ ঘটে।

বিজারণ অর্ধ-বিক্রিয়া : $2H^+ + 2e^- \longrightarrow H_2$ সূতরাং বলা যায় যে, বিক্রিয়াটি একটি রিডক্স বিক্রিয়া ।

৫০. নিচের বিক্রিয়াগুলো লক্ষ কর:

- (i) $H_2S + Cl_2 \rightarrow S + 2HCl$
- (ii) $CH_3COOCH_3 + H_2O \rightarrow CH_3CH_2OH + CH_3COOH$

[সকল বোর্ড ২০১৮]

- (ক) কেলাস পানি কাকে বলে?
- (খ) সোডিয়াম হাইড্রোজেন কার্বনেট কিভাবে কেক ফোলায়?
- (গ) (ii) নং বিক্রিয়াকে আর্দ্র বিশ্লেষণ বিক্রিয়া বলার কারণ ব্যাখ্যা কর।
- (ঘ) (i) নং বিক্রিয়াকে একই সাথে জারণ-বিজারণ ও প্রতিস্থাপন বিক্রিয়া বলা যায় কি? সমীকরণসহ বিশ্লেষণ কর।

৫০ নং প্রশ্নের উত্তর

- (ক) আয়নিক যৌগের তথা লবণের কেলাসের সাথে যুক্ত পানিকে কেলাস পানি বলে।
- (খ) কেক প্রস্তুতির সময় ময়দার মধ্যে বেকিং পাউডার মিশিয়ে তাপ দেওয়া হয়। বেকিং পাউডার হচ্ছে $NaHCO_3$ ও টারটারিক এসিডের মিশ্রণ। তাপের প্রভাবে $NaHCO_3$ ও টারটারিক এসিড পরস্পরের সাথে বিক্রিয়া করে সোডিয়াম টারটারেট, CO_2 গ্যাস এবং পানি (H_2O) উৎপন্ন করে। উৎপন্ন CO_2 গ্যাসের জন্যই কেক ফুলে ওঠে। বিক্রিয়া: $2NaHCO_3 + C_4H_6O_6$

সোডিয়াম বাইকার্বনেট টারটারিক এসিড

C₆H₄Na₂O₆ + 2CO₂↑ + 2H₂O সোডিয়াম টারটরেট

(গ) উদ্দীপকের (ii) নং বিক্রিয়াকে আর্দ্র বিশ্রেষণ বিক্রিয়া বলে। নিচে এর কারণ ব্যাখ্যা করা হলো-

জানা আছে, কোনো যৌগের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন হলে সে বিক্রিয়াকে আর্দ্র বিশ্লেষণ বিক্রিয়া বলে। উদ্দীপকের মিথাইল প্রোপানয়েট $(CH_3-CH_2-COOCH_3)$ এস্টার পানির সাথে বিক্রিয়া করে পানির ধনাত্মক অংশ (H^+) এস্টারটির এক প্রান্তে এবং ঋণাত্মক অংশ (OH^-) এস্টারটির অপর প্রান্তে যুক্ত হয়ে নতুন উৎপাদ ইথানল (CH_3-CH_2-OH) ও ইথানোয়িক এসিড (CH_3-COOH) উৎপন্ন হয়েছে।

বিক্রিয়া :
$$CH_3 - CH_2 - COOCH_3 + H - OH \longrightarrow$$
 এস্টার পানি
$$CH_3 - CH_2 - OH + CH_3 - COOH$$
 ইথানেল ইথানোয়িক

এসিড

এ কারণেই মূলত (ii) নং বিক্রিয়াকে আর্দ্র বিশ্লেষণ বিক্রিয়া বলা হয়।

(ঘ) উদ্দীপকের (i) নং বিক্রিয়াকে একই সাথে জারণ-বিজারণ ও প্রতিস্থাপন বিক্রিয়া বলা যায়। নিচে তা সমীকরণসহ বিশ্লেষণ করা হলো-

যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন দান করে তাকে জারণ বিক্রিয়া বলা হয়। অপরদিকে, যে বিক্রিয়ায় বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে বিজারণ বিক্রিয়া বলা হয়।

প্রদত্ত (i) নং বিক্রিয়াটি নিমুরূপ :

বসায়ল

৭ম অধ্যায়

বাসায়নিক বিক্রিয়া

Prepared by: SAJJAD HOSSAIN

 $H_2^{1+}S^{2-} + Cl_2^0 \longrightarrow S^0 + 2H^+C^{-}$

বিক্রিয়া হতে দেখা যায় যে , H_2S এর S^{2-} আয়ন দুটি ইলেকট্রন দান করে S^0 এ পরিণত হয় , যা একটি জারণ বিক্রিয়া-

 $S^{2-} - 2e \longrightarrow S^0$ [জারণ]

আবার, ${\rm Cl_2}^0$ দুটি ইলেকট্রন গ্রহণ করে $2{\rm Cl}^-$ এ পরিণত হয়, যা একটি বিজারণ প্রক্রিয়া।

 $Cl_2^0 + 2e \longrightarrow 2Cl^-$ [বিজারণ]

সুতরাং (i) নং বিক্রিয়াটি একটি জারণ-বিজারণ বিক্রিয়া । আবার কোনো যৌগের একটি মৌল বা যৌগমূলককে অপর কোনো মৌল বা যৌগমূলক দ্বারা প্রতিষ্থাপন করে নতুন যৌগ উৎপন্ন করার প্রক্রিয়ার নাম প্রতিষ্থাপন বিক্রিয়া ৷ উক্ত (i) নং বিক্রিয়া থেকে দেখা যায় , H_2S যৌগের S পরমাণু Cl_2 দ্বারা প্রতিষ্থাপিত হয়ে HCl ও S উৎপন্ন হয়েছে । সুতরাং এটি একটি প্রতিষ্থাপন বিক্রিয়া ।

সুতরাং বলা যায়, উদ্দীপকের (i) নং বিক্রিয়াকে একই সাথে জারণ-বিজারণ ও প্রতিস্থাপন বিক্রিয়া বলা যায়।