Creating effective figures and tables

Karl W Broman

Biostatistics & Medical Informatics University of Wisconsin – Madison

The top ten worst graphs

With apologizes to the authors, we provide the following list of the top ten worst graphs in the scientific literature.

As these examples indicate, good scientists can make mistakes.

bit.ly/TopTenWorstGraphs

Epstein and Satten, Am J Hum Genet 73:1316-1329, 2003, Fig 1

Displaying data well

- Be accurate and clear.
- Let the data speak.
 - Show as much information as possible, taking care not to obscure the message.
- Science not sales.
 - Avoid unnecessary frills (esp. gratuitous 3d).
- In tables, every digit should be meaningful. Don't drop ending 0's.

Things not to do

- Display as little information as possible.
- Obscure what you do show (with chart junk).
- Use pseudo-3d and color gratuitously.
- Make a pie chart (preferably in color and 3d).
- Use a poorly chosen scale.
- Ignore sig figs.

Show the data

Show the data

Show the data

Avoid pie charts

Avoid pie charts

Avoid pie charts

Take differences

Ease comparisons

(things to be compared should be adjacent)

Ease comparisons

(add a bit of color)

Which comparison is easiest?

Don't distort the quantities

(value \propto radius)

Don't distort the quantities

(value \propto area)

Don't use areas at all

(value \propto length)

Encoding data

Quantities

- Position
- Length
- Angle
- Area
- Luminance (light/dark)
- Chroma (amount of color)

Categories

- Shape
- Hue (which color)
- Texture
- Width

Ease comparisons

(align things vertically)

Ease comparisons

(use common axes)

Use labels not legends

Don't sort alphabetically

Must you include 0?

A bad table

	b/c = 10.0		b/	b/c = 10.0		b/c = 100.0	
N	r^{\star}	\overline{G}	r^{\star}	G	r^{\star}	\overline{G}	
3	2	0.2	2	2.225	2	22.47499	
4	2	0.26333	2	2.88833	2	29.13832	
5	2	0.32333	3	3.54167	3	35.79166	
6	3	0.38267	3	4.23767	3	42.78764	
7	3	0.446	3	4.901	3	49.45097	
8	3	0.50743	4	5.5765	4	56.33005	
9	3	0.56743	4	6.26025	4	63.20129	
10	4	0.62948	4	6.92358	4	69.86462	

Fewer digits

	b/c = 10.0		b/c = 10.0		b/c =	: 100.0
N	r^{\star}	\overline{G}	r^{\star}	G	r^{\star}	\overline{G}
3	2	0.20	2	2.2	2	22
4	2	0.26	2	2.9	2	29
5	2	0.32	3	3.5	3	36
6	3	0.38	3	4.2	3	43
7	3	0.45	3	4.9	3	49
8	3	0.51	4	5.6	4	56
9	3	0.57	4	6.3	4	63
10	4	0.63	4	6.9	4	70

Yuck!

	1990		2005		2010		p value
	n	Rate (95% CI)	n	Rate (95% CI)	n	Rate (95% CI)	_
(Continued from pr	revious page)						
Globally							
<75 years							
Incidence	6353868	159-22 (145-32-174-98)	9 288 048	167-45 (150-96-187-11)	10469624	168-75 (152-43-187-09)	0.208
Prevalence	13 234 062	324-26 (288-74-374-96)	20187246	358.58 (317.58-412.79)	23 052 804	366.93 (328.04–420.66)	0.086
MIR		0.359 (0.318-0.409)		0.293 (0.249-0.332)		0.254 (0.212-0.287)	<0.001
DALYs lost	63991864	1543-96 (1452-03-1728-25)	74855520	1326-17 (1172-08-1388-74)	73 293 552	1163-448 (1011-43-1232-19)	<0.001
Mortality	2301435	57·38 (54·12–64·27)	2734251	49·16 (43·60–51·55)	2668499	42.89 (37.65–45.81)	<0.001
≥75 years							
Incidence	3725067	3173·50 (2932·14–3422·23)	5 446 077	3082-97 (2819-52-3372-55)	6 424 911	3113.00 (2850.95-3403.57)	0.361
Prevalence	4681276	3974-37 (3609-66-4441-23)	8308337	4700·18 (4239·37–5256·84)	9 972 153	4835-38 (4382-63-5433-92)	0.005
MIR		0.634 (0.575-0.709)		0.543 (0.476-0.607)		0.500 (0.439-0.560)	<0.001
DALYs	22 018 520	18665-35 (17464-55-20408-51)	27 096 178	15300-36 (13987-78-16317-62)	28 938 754	14053.63 (12761.98–15088.12)	<0.001
Mortality	2359013	2033-21 (1888-78-2233-65)	2 950 719	1678-65 (1528-60-1807-22)	3 205 682	1545-29 (1412-76-1685-12)	<0.001
All ages							
Incidence	10 078 935	250.55 (229.70–273.25)	14734124	255.79 (232.10–283.88)	16894536	257-96 (234-40-284-11)	0.335
Prevalence	17 915 338	434.86 (389.45-496.84)	28 495 582	490-13 (436-60-557-52)	33 024 958	502·32 (451·26–572·18)	0.047
MIR		0.461 (0.415-0.518)		0.386 (0.336-0.432)		0.348 (0.299-0.390)	<0.001
DALYs lost	86 010 384	2062-74 (1949-53-2280-29)	101 951 696	1749.59 (1568.67-1830.82)	102 232 304	1554-02 (1373-94-1642-26)	<0.001
Mortality	4660449	117-25 (111-51-129-68)	5684970	98.53 (89.02–103.86)	5874182	88-41 (79-84-94-41)	<0.001

^{*}p value for the difference in age-adjusted rates between 1990 and 2010 only.

Table 1: Age-adjusted annual incidence and mortality rates (per 100 000 person-years), disability-adjusted life-years (DALYs) lost, prevalence (per 100 000 people), and mortality-to-incidence ratio (MIR) by age groups in high-income and low-income and middle-income countries, and globally in 1990, 2005, and 2010

Yuck!

		1990			
		n	Rate (95% CI)		
-	(Continued from previous page)				
	Globally				
	<75 years				
	Incidence	6353868	159-22 (145-32-174-98)		
	Prevalence	13 234 062	324-26 (288-74-374-96)		
	MIR		0.359 (0.318-0.409)		
	DALYs lost	63 991 864	1543-96 (1452-03-1728-25)		
	Mortality	2301435	57.38 (54.12-64.27)		

What was wrong with that?

- Way too many digits.
- Numbers aren't aligned.
- Numbers to be compared aren't anywhere near each other.
- The interesting comparisons are horizontal rather than vertical.
- It would be much better as a multi-panel figure.

Summary

- Show the data
- Avoid chart junk
- Consider taking logs and/or differences
- Put the things to be compared next to each other
- Use color to set things apart, but consider color blind folks
- Use position rather than angle or area to represent quantities
- Align things vertically to ease comparisons
- Use common axis limits to ease comparisons
- Use labels rather than legends
- Sort on meaningful variables (not alphabetically)
- Must 0 be included in the axis limits?

Inspirations

- Hadley Wickham (slides at http://courses.had.co.nz)
- Naomi Robbins (Creating more effective graphs)
- Howard Wainer
- Andrew Gelman
- Edward Tufte

Further reading

- ER Tufte (1983) The visual display of quantitative information. Graphics Press.
- ER Tufte (1990) Envisioning information. Graphics Press.
- ER Tufte (1997) Visual explanations. Graphics Press.
- A Gelman, C Pasarica, R Dodhia (2002) Let's practice what we preach: Turning tables into graphs. The American Statistician 56:121-130
- NB Robbins (2004) Creating more effective graphs. Wiley
- Nature Methods columns: http://bang.clearscience.info/?p=546