Praktische Netzwerksicherheit: (2) Denial of Service

Prof. Dr. Klaus-Peter Kossakowski

Gliederung der Vorlesung

- Firewall
- **■** Denial of Service

Inhalte dieses Kapitels

In diesem Kapitel wird die Rolle der Verfügbarkeit in Bezug auf die Anbindung heutiger lokaler Netze ans Internet behandelt und die gängigen Methoden für "Denial of Service Attacks" / Verfügbarkeitsangriffe erklärt.

Besonders wird darauf eingegangen, wie auch hier Eigenschaften des Netzwerk- sowie der Transportprotokolle genutzt werden, um trotz der Separierung von Rechnern durch Firewalls erfolgreiche Angriffe durchzuführen.

Verschiedene Architekturen werden besprochen.

Ziele dieses Kapitels

Sie können erklären was Denial-of-Service-Angriffe sind und warum und wie diese durchgeführt werden.

Sie kennen verschiedene konkrete Angriffe und können diese den Mechanismen innerhalb von Rechnernetzen zuordnen, die dabei ausgenutzt werden.

Sie können Abwehrmechanismen gegen Denial-of-Service-Angriffe mit ihren individuellen Vor- und Nachteilen benennen.

Worum geht es eigentlich?

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Schutzziele

- In der Informationssicherheit werden verschiedene Schutzziele definiert, um Bedrohungen zu klassifizieren
- Schutz heißt hier: Sicherstellen der Eigenschaften von Objekten und somit mehr als "nur" Vermeidung von Angriffen
- Traditionell spricht man hierbei von CIA
 - Confidentiality Vertraulichkeit
 - Integrity Integrität
 - Availability Verfügbarkeit

Schutzziele: CIA

- Confidentiality Vertraulichkeit
 - Schutz von Daten vor Kenntnisnahme durch Unbefugte
- **■** Integrity Integrität
 - Schutz von Daten und Systemen vor nicht autorisierten Änderungen
- Availability Verfügbarkeit
 - Sicherstellung der Verfügbarkeit von Daten und Systemen für Befugte

Verfügbarkeit

Zugänglichkeit von Daten und Systemen für Befugte

- Daten
 - Kundendaten, Webseite, Fotosammlung, Bachelorarbeit
- Dienste
 - Webseite (Abruf), E-Mail, Netzwerkzugang, Datenbankserver, Hotline
- Systeme / Anwendungen
 - Arbeitsplatz-PC, Router
 - E-Mail-Client, Webserver

Warum brauchen wir Verfügbarkeit?

- Verfügbarkeit gewährleistet den autorisierten Zugriff auf Daten und Systeme
- Keine Verarbeitung ohne Daten oder Systeme
 - Webseiten / Onlineshops
 - Präsentation der Firma und Angebote
 - Produktdatenbank
 - Abruf, Suche, Filterung von Angeboten
 - Kundendaten
 - Bestellvorgänge und Abrechnungswesen

Wie messen wir Verfügbarkeit?

- Verfügbarkeit wird vielfach als anteilige Verfügbarkeit über die Zeit gemessen
 - Verfügbare Zeit / gesamte Zeit
- Service Level Agreements (SLAs) schreiben die garantierte Verfügbarkeit fest
- Ein großer deutscher Internet Provider bietet eine "mittlere Verfügbarkeit [von] 97% im Jahresdurchschnitt"
- lst das viel?
 - Ein Jahr hat 365 * 24 = 8.760,0 h
 - Ausfälle: 3% * 8760 h = 262,8 h = 10,9 d

Wie messen wir Verfügbarkeit? (2)

- Verfügbarkeitsklassen (VK) werden z.B. im IT- Grundschutz über die Anzahl führender Neunen definiert
 - VK 0: Ohne Verfügbarkeitsgarantie
 - VK 1: Normale Verfügbarkeit 99%
 - VK 2: Erhöhte Verfügbarkeit 99,9%
 - VK 3: Hochverfügbar 99,99%
 - VK 4: Höchstverfügbar 99,999%
 - ... und wieviel ist das dann bei VK 4?
 - Ausfälle: 0,001% * 8760 h = 8,76 h

Einschränkungen bei SLAs

- Wichtig ist der zugrunde gelegte Zeitraum, von dem ausgehend die Berechnung erfolgt
- Behandlung von Wartungsfenstern
 - Zählen solche als Ausfall oder verringern diese die Berechnungsgrundlage
 - Erfordern sie eine Ankündigung? Mit welcher Frist?
- Weitere Einschränkungen nach Art des Ausfalls (höhere Gewalt)

Angriffe auf die Verfügbarkeit == Denial of Service

Denial of Service

- Allgemein alle Angriffe mit dem Ziel, die Verfügbarkeit des angegriffenen Objekts für die legitimen Nutzer zu beeinträchtigen
 - Daten Löschen, Verschlüsseln
 - Diensten Überlast von Systemen/Netzen, veränderte Konfiguration
 - Systemen Zerstörung des Systems, Löschen von Routen, Überlast von Netzen, Absturz von Anwendungen, veränderte Konfigurationen

Warum ...

... werden Denial-of-Service-Angriffe überhaupt durchgeführt?

- Ablenkung
- Cybercrime / Erpressung
- Hacktivismus, politische Ziele
- Online-Auseinandersetzungen
- Vandalismus, Lulz
- Wettbewerb ausschalten

Ablenkung

- Denial of Service lenkt von anderen Aktivitäten ab
- Eine Überlastung von Sicherheitsmechanismen – aber auch Verantwortlichen oder Analysten – verhindert oder versteckt Alarme
 - Nicht alle eingehenden Daten können verarbeitbar werden
 - Flut von Alarmen verhindert Priorisierung und rechtzeitige Reaktion

Cybercrime / Erpressung

- Ziel eines Angriffs ist die Erpressung des Opfers
 - Ransomware
 - Verschlüsselung von Daten
 - Entschlüsselung gegen Bezahlung (manchmal)
 - Schutzgelderpressung
 - Androhung von Angriffen
 - Zahlung, damit Angriffe nicht erfolgen oder aufhören

Cybercrime / Erpressung (2)

- DD4BC: DDoS for Bitcoins (seit Mitte 2014)
 - Ziele aus verschiedenen Branchen: Glücksspiel, Bankensektor, Verlage, ...
 - Schutzgeld von bis zu 100 BTC
 - Nachahmer: Armada Collective, ...
 - Teilweise ohne angedrohte Angriffe
- **■** Populäre Ziele: Wettbüros
 - Insbesondere zeitnah zu sportlichen Großveranstaltungen
 - Olympia, Superbowl, Pferderennen

Cybercrime / Erpressung (3)

- Angriffe werden auch gegen Bezahlung durchgeführt
 - DDoS as a Service
 - Booter
 - Angriffe auf Gegner oder Servern von Online-Spielen
 - Stresser
 - Präsentiert als Testdienste für eigene Systeme, allerdings kaum bis keine Kontrolle der Legitimation

Cybercrime / Erpressung (4)

Name	Boot-Zeit	Verkehr	Preis pro Monat
zStress	1200	15-20 Gbps	\$15,00
Data Booter	900	10-20 Gbps	\$15,00
instaBooter	1800	10-20 Gbps	\$20,00
SynStress	1200	10-15 Gbps	\$14,99

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Hacktivismus, politische Ziele

- Hacktivismus (aus Hack und Aktivismus) ist die (kreative) Anwendung von Technik zur Verfolgung politischer Ziele
 - Angriff → Onlinedemonstration
- Online-Demonstration gegen Lufthansa wegen Zwangsabschiebungen (2001)
 - Rechtliche Bewertung schwierig,
 OLG Frankfurt hat die Klage abgewiesen

Hacktivismus, politische Ziele (2)

- Operation Payback (2010)
 - Ursprünglich Reaktion von Anonymous auf DoS-Angriffe auf Torrentseiten, die Take-Down-Notices ignorierten
 - Ziele in der Musik- und Filmbranche: Kanzleien, Copyright-Befürworter
 - Neue Ziele, nachdem Banken Spenden für WikiLeaks wegen der Veröffentlichung von diplomatischen US-Papieren einfrieren: American Express, Visa, PayPal, ...

Hacktivismus, politische Ziele (3)

- Politische Ziele werden aber auch im Rahmen von staatlichen Konflikten verfolgt
 - "Cyberwar"
- **Estland (2007)**
 - Umstellung eines pro-russischen Denkmals in Tallinn führt zu russischen Protesten
 - DoS-Angriffe auf Webseiten der Regierung, des Parlament, von Medien und Banken
 - Angreifer unklar: Aktivisten, Kreml-nahe Aktivisten, …?

Online-Auseinandersetzungen

- Angriffe, die zur Austragung von Konflikten durchgeführt werden
- DoS auf KrebsOnSecurity (2016)
 - Wahrscheinlich Reaktion auf Veröffentlichungen zum Stresser vDOS
 - zeitnah zur Verhaftung der mutmaßlichen Betreiber

SoSe 2017:: Praktische Netzwerksicherheit: Denial of Service

Titanium Stresser Service

Titanium Stresser Service (2)

KrebsonSecurity

In-depth security news and investigation

25 UK Man Gets Two Years in Jail for Running 'Titanium Stresser' Attack-for-Hire Service

A 20-year-old man from the United Kingdom was sentenced to two years in prison today after admitting to operating and selling access to "Titanium Stresser," a simple-to-use service that let paying customers launch crippling online attacks against Web sites and individual Internet users.

Adam Mudd of Hertfordshire, U.K. admitted to three counts of computer misuse connected with his creating and operating the attack service, also known as a "stresser" or "booter" tool. Services like Titanium Stresser coordinate so-called "distributed denial-of-service" or DDoS attacks that hurl huge barrages of junk data at a site in a bid to make it crash or become otherwise unreachable to legitimate visitors.

Vandalismus, Lulz

- Ziel eines Angriffs sind Schlagzeilen, Bloßstellung des Ziels, Rufaufbau, etc.
- LulzSec
 - Verschiedene Angriffe auf prestigeträchtige Ziele
 - Regierungsseiten, Online Gaming
 - "Laughing at your security since 2011"
 - DoS-Angriff auf die Webseite des CIA (2011)

Wettbewerb ausschalten

- Von der Nutzung von Bootern / Stressern zur Austragung von Konflikten hin zur Behinderung von Wettbewerbern ist es nur ein kleiner Schritt
- **■** Lyft ↔ Uber (2014)
 - Gegenseitige Anschuldigungen, Fahrten beim Konkurrenten zu buchen und dann wieder zu stornieren

SoSe 2017:: Praktische Netzwerksicherheit: Denial of Service

Wie wird ein DoS erreicht?

- **■** Ein DoS kann an verschiedenen Stellen von IT-Systemen erreicht werden:
 - Programmschwachstellen
 - Protokollschwachstellen
 - Prozessschwachstellen
 - Resourcenauslastung
 - Plötzliche Popularität: flash crowd, Slashdot-Effekt
- Selbst verursachte Probleme sehen (fast) genauso aus → Konfigurationsfehler

DoS durch

Programmschwachstellen

- Fehler in Software lassen sich ausnutzen, um die Bearbeitung von legitimen Anfragen zu beeinträchtigen
 - Programmfehler, die zum Absturz führen
 - Ressourcen innerhalb des Programms, die verbraucht werden
 - Ressourcen außerhalb des Programms, die durch das Programm belegt werden
 - Hauptspeicher, Festplattenspeicher

DoS durch Protokollschwachstellen

- Schwachstellen in Protokolldefinitionen lassen sich auf ähnliche Weise ausnutzen sind allerdings häufig schwerwiegender
 - Nur durch Änderung des Protokolls behebbar
 - Teilweise bewusste Designentscheidung
 - Lässt sich durch Software manchmal abmildern
 - Einschränkung des Protokolls oder des Zugriffs auf Protokollfunktionen

DoS durch Prozessschwachstellen

- Schwachstellen in definierten Prozessen, die Zustände ermöglichen, die eine Diensterbringung verhindern
 - Außerhalb der technischen Infrastruktur aber mit Auswirkung darauf
 - Hijacking von Adressbereichen oder Domänen (Umkonfiguration beim Registrar)

DoS durch Resourcenauslastung

- Angriffe belegen (endliche) Resourcen, die für die Bearbeitung von legitimen Anfragen dann nicht zur Verfügung stehen
 - Bandbreite
 - Hauptspeicher
 - Zustände
 - offene Verbindungen
 - bearbeitete Anfragen
 - **CPU**

slashdot-Effekt durch plötzliche Popularität

- Verlinkung auf populären Portalen führt zu verstärkter Nutzung der Angebote
- Legitime Anfragen haben nicht erwartete Nebenwirkungen:
 - Kosten durch hohen Verkehr
 - Schwer von Angriffen zu unterscheiden
- Der beim Nutzer beobachtete Effekt entspricht dem eines DoS

Wie funktionieren

Denial of Service Angriffe?

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Angriffstypen

- Über die Schwachstellen und konkreten Protokolle und Layer hinweg, kommen grundlegende Angriffstypen vor
 - Einzelnes Paket, einzelne Anfrage
 - Flood
 - Reflection
- DDoS (Distributed Denial of Service)
 - Verteilter Angriff von mehreren Quellen, um die Auswirkungen zu verstärken

Angriffstypen Flood

- Bei einer Flood wird das Ziel mit einer Vielzahl von Daten geflutet, so dass legitime Anfragen darin untergehen
- Eine Überlastsituation kann dabei an unterschiedlichen Stellen der Datenverarbeitung auftreten
 - Router durch zu viele Pakete
 - Leitung durch zu hohe Bandbreite
 - Firewall oder Anwendung durch zu viele Verbindungen

Angriffstypen Reflection

- Bei einem Reflection-Angriff wird ein drittes System davon überzeugt, dass das Ziel Anfragen stellt und so quasi "über Bande" angegriffen
- Der Angreifer ist hierbei auf dem Ziel nicht mehr ersichtlich und somit schwer zu identifizieren
- In Kombination mit Diensten, die auf kleine Anfragen große Antworten erzeugen, lässt sich der Effekt vergrößern (Amplification)

Angriffstypen Reflection (2)

Angriffstypen Reflection / Amplification

Angriffstypen Reflection / Amplification (2)

DoS gegen Infrastruktur

- Um einen Dienst zu stören, muss der Angreifer nicht den Dienst selbst, sondern nur dessen Verfügbarkeit, einschränken
 - Netzwerkstruktur
 - Router und Leitungen auf dem Weg
 - Firewall vor Webserver
 - Überlastbar durch gespeicherten Verbindungsstatus
 - IDS überlastet Analysten durch getriggerte Fehlalarme
 - Kollateralschäden

Angriffe: Webserver

- Webserver lassen sich je nach Software durch einzelne Anfragen angreifen
 - Programmschwachstelle, einzelne Anfrage
- **■** PHP Floating Point Bug
 - CVE-2010-4645
 - Versionen vor 5.2.17 bzw. 5.3.5
 - Endlosschleife mit 100% CPU-Last auf 32- Bit- Systemen:

```
<?php $d = 2.2250738585072011e-308; ?>
```

Angriffe: Webserver (2)

- Webserver lassen sich durch teure Anfragen angreifen
 - Ressourcenauslastung, Flood
- Anfragen an dynamische Seiten, deren Bereitstellung teuer ist:
 - Hoher CPU-Verbrauch und Belegung von Verbindungen
 - Datenbankanfragen (CMS)
 - Suchfunktionen

Angriffe: Webserver (3)

- Webserver lassen sich durch teure Anfragen angreifen
 - Ressourcenauslastung, Flood
- Anfragen, deren Bearbeitung verlangsamt wird:
 - Belegung von Verbindungen
 - Slowloris
 - Slow Read
 - Schon wenige Anfragen können selbst große Webseiten stören

Angriffe: Webserver - Slowloris

Slowloris sendet unvollständige HTTP-Anfragen an Webserver, die so nie die Anfrage beantworten können

```
GET / HTTP/1.1\r\n
Host: host\r\n
User-Agent: [...] \r\n
Content-Length: [...]\r\n
X-a: b\r\n
X-a: b\r\n
```

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Angriffe: Webserver - Slow Read

- Slow Read sendet vollständige Anfragen, ändert dann aber die Parameter zur Flusskontrolle, um die Antwort sehr langsam zu lesen
- Receive Window Size wird sehr klein
- Empfangspuffer werden langsam geleert

Angriffe: Webserver (4)

- Webserver lassen sich durch viele Anfragen angreifen
 - Ressourcenauslastung, Flood
- **LOIC (Low Orbit Ion Cannon)**
 - Tool für Lasttests
 - Sendet Flut von TCP, UDP oder HTTP- Anfragen
 - Verwendet in Operation Payback "Hive Mind" für Fernsteuerung

Layer 7 Angriffe: Webserver – LOIC

Screenshot by FockeWulf FW 190, Wikipedia, CC BY-SA 4

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Angriffe: Spam

- Spam ist ein DoS-Angriff auf den Dienst E- Mail
 - ... oder auf den Empfänger der Nachrichten
 - Ressourcenauslastung, Flood
 - Überlast von CPU, Speicher durch Verarbeitung von Nachrichten
 - Überlast des Anwenders durch Filterung von Nachrichten

Angriffe: Spam (2)

Verstärkung durch

- Kontaktformulare auf Webseiten, da hierdurch die Filterung erschwert wird
- Sogenannte Joe Jobs
 - Eintragen des Ziels als Absender für versendete
 E-Mails
 - Ziel bekommt Fehlermeldungen (Bounces) von Reflektoren, landet unter Umständen auf Blacklists

Layer 4 Flood-Angriffe

- Flood-Angriffe auf diesem Layer nutzen zum Angriff auf die Verfügbarkeit
 - Das reine Verkehrsvolumen in Paketen oder Bytes
 - Eigenschaften der Verarbeitung auf den durchlaufenen Systemen

Layer 4 Flood-Angriffe: SYN-Flood

- Bei einer SYN-Flood wird das Ziel mit einer Vielzahl von SYN-Paketen bombardiert
 - Ressourcenauslastung, Flood
- Überlast durch begrenzten Speicher für Verbindungen
 - Der Angreifer sendet SYN-Pakete, ohne sich um den Verbindungszustand zu kümmern
 - Das Ziel baut Verwaltungsstrukturen auf, um den Zustand der Verbindung zu speichern (z. B. Sequenznummern)

Layer 4 Flood-Angriffe: SYN-Flood (2)

Layer 4 Reflection-Angriffe

- Reflection-Angriffe lassen sich insbesondere durch Anwendungen und Protokolle durchführen, die auf UDP basieren
 - Ressourcenauslastung, Flood
 - Keine Verifikation von Quell-IP-Adressen
 - Anwendungen schicken große Antworten auf kleine Anfragen
- Auch TCP ermöglicht solche Angriffe, allerdings mit geringerer Verstärkung

Layer 4 Reflection-Angriffe: DNS

- Bei einer DNS- Reflection werden Anfragen mit der Adresse des gewählten Angriffsziels als Absender verschickt
- Reflektoren sind "Open Resolver", die Anfragen für beliebige Systeme aus dem Internet beantworten
 - Open Resolver Projekt http://www.openresolverproject.org/
- **■** Verstärkungsfaktor ~ 75

Layer 4 Reflection-Angriffe: DNS (2)

- **■** Für eine hohe Verstärkung werden
 - Bestimmte Anfragen gewählt
 - Selbst Antworten zur Verfügung gestellt
 - Indem geeignete Antworten auf einem eigenen DNS-Server angeboten und dann über Open Resolver abgerufen werden
 - DNSSEC ausgenutzt wird (EDNS)
 - Ursprünglich wurden DNS-Anfragen per UDP bis 512 Byte beantwortet, größere nur per TCP
 - EDNS ist eine Erweiterung von DNS um die größeren DNSSEC-Antworten zu unterstützen
 → MUST 1220 Byte, SHOULD 4000 Byte

Layer 4 Reflection-Angriffe: DNS (3)

Bestimmte Anfragen

dig ANY isc.org

Anfrage: 48 Byte, Antwort: 3.998 Byte

Verstärkung: 83

- Selbst Antworten bereitstellen
 - ghmn.ru und fkfkfkfa.com lösen auf hunderte IP-Adressen auf (2013)
- DNSSEC platziert Schlüsselmaterial und kryptographische Signaturen im DNS
 - Größere Antworten

Layer 4 Reflection-Angriffe: DNS (4)

Layer 4 Reflection-Angriffe: NTP

- Bei einer NTP-Reflection werden verschiedene Statusanfragen an NTP-Server mit dem Ziel als Absender verschickt
 - monlist Liste der letzten NTP-Clients
 - Verstärkung ~ 1.000
 - readvar Abfrage von Statusvariablen
 - Verstärkung ~ 10
 - Open NTP Project http://openntpproject.org/

Layer 4 Reflection-Angriffe: NTP

2013/14

2014/15

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Layer 4 Reflection-Angriffe: NTP

2014/15: Bytes/sec

2014/15: Packets/sec

CVE-2013-5211 Reflection-Angriffe: NTP

CVE-2013-5211

Reflection-Angriffe: NTP

Layer 4 Reflection-Angriffe: SNMP

- Bei einer SNMP-Reflection werden SNMP-Anfragen (SNMPv2) mit der Adresse des ausgewählten Ziels (Absender) verschickt
 - GetBulk
 - Verbreitete MIBs
- Dabei werden vielfach Endgeräte verwendet, die ungesicherte SNMP-Anfragen aus dem Internet beantworten
 - Open SNMP Project http://opensnmpproject.org/
- **■** Verstärkungsfaktor ~ 10

Layer 4 Reflection-Angriffe: SNMP

2014/15: Bytes/sec

2014/15: Packets/sec

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Einzelnes Paket: Ping of death

- Programmschwachstellen in TCP/IP-Stacks lassen sich durch einzelne Pakete ausnutzen, die zum Absturz des Systems führen
 - Programmschwachstelle, einzelnes Paket
- Ping of death (1996 und wieder 2007)
 - Durch Fragmentierung wird ein Paket spezifiziert, welches größer als 65.535 Byte ist
 - Offset + Size > 65.535 Byte
- **■** Weitere Fragmentierungsbasierte Angriffe

Reflection-Angriffe: Smurf

- Als Klassiker der Reflection-Angriffe werden bei Smurf ICMP-Pings (Echo Request) an die Broadcast-Adresse eines Netzwerks versendet, als Absender wird dabei das Ziel eingesetzt
 - Ressourcenauslastung, Flood

Reflection-Angriffe: Smurf

Layer 2 Einzelnes Paket: SLAAC

- Stateless Address Autoconfiguration ist ein Mechanismus in IPv6, der zur automatischen Konfiguration von IP-Adressen verwendet werden kann
- Nach Wahl einer Adresse, sendet das System eine Anfrage, ob diese Adresse schon verwendet wird
- Antwortet der Angreifer auf diese Anfragen jeweils ablehnend, kann das Ziel keine Adresse einrichten

Zwischenfazit

Überlast bei Diensten

- Erst der Zugang zu Diensten stellt die Nutzung des Netzes selbst sicher und erlaubt die eigentliche Wertschöpfung!
- Gelingt es Angreifern, diesen Zugang zu blockieren
 - ist dies im Internet üblicherweise auch für Dritte sichtbar
 - können legitime Nutzer nicht arbeiten
- **Vielfältige Beispiele:**
 - DDoS, Flash Crowds, Slash-Dot Effect

DDoS-Angriffe

- Techniken sind seit vielen Jahren bekannt und grundsätzlich unverändert!
- Vielzahl von Angriffen hängen von einer konkreten Schwachstelle ab, die vorhanden sein muss, damit "etwas" passiert:
 - Kaputt machen geht immer und ist leicht!
 - Neue Buffer-Overflows gibt es immer wieder! (Nun ja, solange Programmiersprachen so was ermöglichen!)

Ein Paket reicht ...

- Wenn die Schwachstelle im Mittelpunkt steht:
 - Ausnutzung konkreter Schwachstellen erfordert manchmal nur ein einzelnes Paket
- **Unabdingbar:**
 - Härten und restriktives Patch-Management
 - Angriffsfenster abhängig von Exploits und Schnelligkeit der Prozesse beim Hersteller und betroffenen Organisationen

Einordnung der Angriffsverfahren

Quelle: A Flow-based Method for Abnormal Network Traffic Detection / Myung-Sup Kim, Hun-Jeong Kang, Seong-Cheol Hong, Seung-Hwa Chung, and James W. Hong. - POSTECH; Dept. of Computer Science and Engineering. 2004.

Konkrete Angriffspunkte

Konkrete Angriffspunkte bei Email

Botnetze

Botnetze

Ein Botnetz besteht aus kompromittierten Systemen, den Bots, die durch den Command-and-Control Server Befehle bekommen

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Botnetze (2)

- Zur Kommunikation zwischen den beteiligten Systemen kommen unterschiedliche Protokolle zum Einsatz
 - **IRC**
 - HTTP
 - **Twitter**

Botnetze für Denial-of-Service-Angriffe

- Ein Einsatzzweck von Botnetzen sind DoS- Angriffe (u.a.!)
 - Nicht zurückverfolgbar zum Angreifer
 - Schwierig zu verteidigen, da verteilt
 - Größere Angriffe durch
 - Viele angreifende Systeme
 - Keine (eigenen) Kosten für Bandbreite
 - Synergieeffekte
 - Schon kompromittiert für Spam, Banking, …, warum dann nicht auch DoS

Internet of Things Mirai

- Mitte 2016 hat mit Mirai eine neue Bedrohung das Internet betreten
- loT-Geräte sind traditionell schlecht gesichert
 - Günstige Herstellung
 - Leichte Inbetriebnahme, keine Konfigurationsmöglichkeiten
 - Keine Updates
- Vielfach Telnetzugänge mit unveränderlichen Default-Passwörtern

Internet of Things Mirai: Default-Passwörter

Mirai verwendet 68 hart kodierte Kombinationen aus Nutzername und Passwort, um Geräte zu übernehmen

Тур	Hersteller	Nutzername	Passwort
IP Kamera	ACTi IP Camera	admin	123456
DVR	ANKO Products DVR	root	anko
IP Kamera	Axis IP Camera, et al.	root	pass
DVR	Dahua DVR	root	888888
Drucker	Panasonic Printer	root	00000000
Router	RealTek Routers	root	realtek

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

Internet of Things Mirai: Angriffe

- Wie andere Angriffstools unterstützt Mirai eine Liste von verschiedenen Angriffen
 - SYN, ACK, UDP Floods
 - GRE Floods
 - Paket Flood
 - Aufgrund des Protokolls vielfach durchgeleitet
 - HTTP GET, POST, HEAD
 - DNS "Water Torture"
 - Zufällige DNS-Namen, um autoritative DNS-Server zu überlasten

Internet of Things Mirai: Scans nach Port 23

www.dshield.org

Aktuelle DoS-Angriffe

- Angreifer bauen ihre Kapazitäten mit den Kapazitäten der Verteidiger aus
- Dabei haben Angreifer durch die Verstärkung mittels Botnetzen und Amplification viele Vorteile für DoS-Angriffe
- **■** Französischer Hoster OVH mit 1,1 Tbps angegriffen (2016-09-19)
 - Vermutete Mirai-Beteiligung
 - DE-CIX als einer der größten Internetknoten hatte 2015 eine Spitze von 5,5 Tbps

Und was kann man dagegen tun?

– Allgemeine Maßnahmen

Dienstentwicklung

- Sprachen, Bibliotheken kennen
 - Wie funktionieren Konstrukte
 - Welche Komplexität haben Algorithmen
- Systeme kennen
 - Welche Eigenschaften hat die Zielplattform
- Sicherheit bei der Entwicklung beachten
 - OWASP (Open Web Application Security Project)
 - SANSTop 25 Most Dangerous Software Errors

Dienstbetrieb

- Kapazitäten kennen
 - Passende Reaktion erfordert Kenntnisse und Vorbereitung
 - Reserven schaffen
- **■** Härtung der Dienste
 - Aktuelle Versionen einsetzen
 - Konfiguration anpassen
 - Module zur Abwehr spezieller Angriffe
 - Basisdienst ermöglichen
 - Statische Seiten im Fall hoher Last

Netzwerkbetrieb

- Begrenzung der zur Verfügung stehenden Bandbreite, Traffic Shaping
 - Auswirkung (möglicher) Angriffe begrenzen
- Segmentierung zum Schutz kritischer Bereiche
 - Angriff auf externen Webserver beeinträchtigt Intranet nicht
- Reserven schaffen
 - Dimensionierung von Router und Leitung
 - Load Balancing, Proxys, Caching

Netzwerkbetrieb (2)

- Reflection-Angriffe basieren auf der Fälschung von Quell-IP-Adressen
- BCP (Best Current Practice)
 - BCP ist eine Sammlung von Dokumenten innerhalb von RFC, die bewährte Vorgehensweisen dokumentiert
 - BCP 38 Network Ingress Filtering
 - Filtert eingehende Pakete anhand der Plausibilität der Quell-IP-Adressen
 - Verhindert Fälschung von beliebigen Adressen, wenn dies in relativer Nähe der Angreifer eingesetzt wird (also nicht erst beim Ziel!)

Und was kann man dagegen tun?

- Aktive Abwehr

Mitigation

- Laufende Angriffe lassen sich durch verschiedene Maßnahmen abmildern
- Filtern, z.B. durch Router oder Firewalls
 - Pakete an das Ziel werden verworfen
 - → weniger Kollateralschäden, aber Dienst bleibt nicht erreichbar ;(
 - Pakete von identifizierten Quellen werden verworfen
 - → Entfernt konkreten Angriffsverkehr
 - Auch legitime Quellen bei Reflection betroffen
 - Botnetze wechseln angreifende Bots durch

Mitigation (2)

- Filtern, z.B. durch Router oder Firewalls (Fortsetzung)
 - Pakete mit bekanntem Angriffsinhalt verwerfen
 - → Entfernt konkreten Angriffsverkehr
 - Verwirft nur den Angriff, wenn die Pattern korrekt und ausreichend sind
 - Erfordert genaue Analyse des Angriffs
 - Verarbeitung der Pakete ist teuer

Mitigation durch Dienstleister

■ ISP / IXP

- Verstopft der Angriff die Zugangsleitung, ist der Provider gefragt
 - DE-CIX Blackholing ist über BGP steuerbare Filterfunktion

Spezialisierte Dienstleister

- Übernehmen Analyse und Mitigation
- Verkehr inklusive Angriff wird per BGP oder DNS zum Dienstleister umgeleitet
- Verkehr exklusive Angriff wird zum Empfänger weitergeleitet

Mitigation durch Dienstleister: Normalzustand ohne Angriff

Dienstleister

Mitigation durch Dienstleister: Angriff erfolgt parallel

Dienstleister

Mitigation durch Dienstleister: Mitigation wird eingeleitet

Ziel

Mitigation durch Dienstleister: Erfolgreiche Mitigation

Dienstleister

Mitigation durch Dienstleister: Spektrum der Angebote

- Option 1: Keine Mitigation, nur Erkennung
 - Maßnahmen verbleiben auf manueller Ebene
 - Längere Response-Zeiten
- Option 2: Mitigation beim Dienstleister (in der Cloud)
- Option 3:
 Mitigation beim ISP
- Option 4:
 Mitigation beim Anwender

1: Nur Erkennung

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

2: Mitigation in der Cloud

3: Mitigation durch den eigenen ISP

3: Mitigation durch eigenen ISP

4: Mitigation beim Anwender

... nicht zu früh freuen

4: Routing vs. Bridging

Rolle eines Portals

- **Z**entrale Information
 - Statusinformationen
 - Bewertungen und Anmerkungen
 - Übersicht aller Ereignisse
 - Dokumentation
- **■** Zentrale Steuerung der Mitigation
 - Analyse
 - Initiierung
 - Verfolgung

Kommerzielles Produkt: Dashboard

Alert Tota	als	High	Medium	Low	00 H	Custo	omer Traffic Summary		- L
Ongoing	[1]:	0	1	0 + vat))0 H-			mmm	mny
Recent	[296]:	8	<u>42</u>	246	00 H				mmmm
ast 24 Hours	[19]:	0	4	15	0 H Hon 20:00 Hon 23		ue 05:00 Tue 08:00	Tue 11:00 To	ue 14:00 Tue 17:
op Ongoing Alerts									
ID		Traffic		Importance	Impact	Duration	Start Time	Direction	Туре

Alarmmeldungen

SoSe 2017 :: Praktische Netzwerksicherheit : Denial of Service

- ID: Die eindeutige Kennnummer des Ereignisses.
- Traffic: Visualisierung der übertragenen Daten im fraglichen Zeitraum
- Importance: Die Risikoeinschätzung anhand der innerhalb der Erkennungskomponenten gesammelten Daten über Netznutzung und Auslastung
- Impact: Die Auslastung angegeben als Bytes pro Sekunde (bei Ereignissen bzgl. der Bandbreiten) oder als Pakets pro Sekunde (bei Ereignissen bzgl. der Protokollnutzung).
- Duration: Die Gesamtlänge des Ereignisses in Minuten mit dem Hinweis "Ongoing", wenn das Ereignis noch nicht beendet ist.
- Starttime: Der Zeitpunkt, zu dem das Ereignis begann.
- Direction: Entweder "Incoming" oder "Outgoing" gemäß der Richtung des Datenstroms, der zur Auslösung des Ereignisses erfolgte.
- Type: Die Hersteller-Klassifikation des Ereignisse

DoS Alert 18082

Importance

Alert Summary

18082

ID

Standard Annotations | none

Start Time

Sun, Sep 28 2008, 00:04:48

Direction

Incoming

Type

Bandwidth

(Profiled)

Resource

Duration

40m

(Ended)

Impact

N/A

High

203.9% Of 103.0 Pps

Lernen ist Pflicht!

Eigene Lösung seit 2016

Mitigation 0525-nemo-erkennung-test.dfn-cert.de (Version 39)										
Mitigation Details Target Filter Statistics										
Description			nada-stu: Started							
Mitigate attack on Autonomous System CERT/DFN-CERT Services GmbH, Hamburg (AS65052)										
			Mitigation Target							
Protected Ranges ①			Autonomous System							
			Hamburg (AS65052)							
			Target Filter:							
Rules			ip							
Name Direction Source CIDRs Dest. CIDRs Protocol	Source Ports 1 Dest. Ports 1	Action bps Limit								
X incoming v		COUNTERM. V	Comments / Histo							
Add new rule			today, 09:54 Version 39 changed							
Countermeasures			today, 09:53 Version 38 changed							
□ IP Header Validation			today, 09:53 Version 39 changed							
☐ TCP Flags Validation ③			today, 09:53							
✓ TCP Handshake Validator Top Handshake Validator Top Handshake			Active version 39 cre							
GeoIP Filter										
✓ PCAP Filter PASS src port DROP dst port			Add comment							

Stop Mitigation Save & Update Mitigation

Eigene Lösung seit 2016 (2)

Empfehlungen

- **■** Für die grundlegende Architektur sollte beachtet werden:
 - keine Inline-Lösungen für Grobschutz
 - aktive Abwehr, und zwar bevor eigene Komponenten betroffen sind
 - Mitigationskomponenten als Grob- / Mittel- und Feinschutz verstehen
 - Grobschutz outsourcen bzw. vereinbaren
 - Mittelschutz am eigenen Netzwerkübergang
 - Feinschutz direkt am Server

Überlast trotz Mitigation

- Die Praxis zeigt, dass trotz richtiger Maßnahmen auf ISP-Ebene weiterhin
 - DDoS-Angriffe nicht erkannt werden, bevor Systemadministratoren Probleme ihres Servers erkennen
 - DDoS-Angriffe nicht abgewehrt werden können, weil die Mitigationsanwendung dafür nicht ausgelegt ist
 - Maßnahmen auf Organisations- bzw. Server-Ebene anderes Wissen über die Dienste erfordern

Kontakt

Prof. Dr. Klaus-Peter Kossakowski

Email: klaus-peter.kossakowski

@haw-hamburg.de

Mobil: +49 171 5767010

https://users.informatik.haw-hamburg.de/~kpk/