基礎数 (毎) 第3回小テスト追試 学籍番号	氏名
	== (2 + X)(X - D)
注意 (1) 解を導きだす経過をできるだけ丁寧に記述するこ(2) 字が粗暴な解答も減点の対象とする。 (3) 最終的に導き出した答えを右側の四角の中に記入せよ。	と. 説明が不十分な場合は減点する。
1 次の多項式を(実数の範囲で)因数分解しなさい	. (各7点)
(1) $3x^2 - x - 2 = f(x)$	1) = 0 2 9
fau は(2-11で割り切	43
7-1,x1-	(1) $(\chi - 1)(3\chi + 2)$
(2) $x^4 - a^2$	
$=(\chi^2)^2 - \alpha^2 = (\chi^2 - \alpha)$	$)(\chi^2+A)$
$= ((x + \sqrt{a}))$ (3) $x^3 - 6x^2 + 11x - 6$ "fry 4 to 42	$(\gamma(-\sqrt{a})(\chi^2+a)$
(3) $x^3 - 6x^2 + 11x - 6$ "fry 4 h = 4	- f(1) = 0 x17
four 12 (2-1) 7: 割りゃる	540
fn)= (x-n(x2-52+6	(3)
$= (2-1)(2(-2)(x-1))$ (4) $2x^3 - 3x^2 - 3x + 2$	-3)
· (9(+1) (22-1) (2-2)	,

2 次の複素数を計算し、a+bi (ただし、a,b は実数) の形に直しなさい。(各 7 点)

(1)
$$4i+2-(4-3i)$$

(4)

$$(2) \frac{2i+1}{2-3i} = \frac{(2\hat{i}+1)(2+3\hat{i})}{(2-3\hat{i})(2+3\hat{i})}$$

$$= \frac{4\hat{i}+6\hat{i}^2+2+3\hat{i}}{4-9\hat{i}^2}$$

$$= \frac{4\hat{i}-6+2+3\hat{i}}{4+9}$$

$$= \frac{-4+7\hat{i}}{13}$$
(2010.5.18 flill : £\text{flil})

3 次の2次方程式の解を複素数の範囲で求めなさい。(各7点)

(1)
$$x^2 - x - 6 = 0$$

(2)
$$x^2 - 4x + 2 = 0$$

$$= (\chi - 3)(\chi + 2) = 0$$

$$\chi = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm \sqrt{8}}{2}$$

$$= \frac{4 \pm 2\sqrt{2}}{2} = \frac{2(2 \pm \sqrt{2})}{2} = 2 \pm \sqrt{2}$$

$$(3) 2x^2 + 3x + 1 = 0$$

$$(4) x^2 + x + 2 = 0$$

$$\chi_{2} = \frac{-3 \pm \sqrt{9-8}}{4} = \frac{-3 \pm 1}{4}$$

$$\alpha = \frac{-1 \pi \sqrt{1-\xi}}{2} = \frac{-1 \pi \sqrt{7}}{2}$$

$$= \frac{-1 \pi \sqrt{7}}{2}$$

$$\frac{(3)}{2}$$
 - 1, - $\frac{1}{2}$

$$\frac{-1\pm\sqrt{7}\hat{2}}{2}$$

4 次の 2次関数 f(x) に対し、(i) f(x) を平方完成し、(ii) y = f(x) のグラフの概形を描き、(iii) 与えられた範囲における最大値、最小値を求めなさい(グラフは余白を利用して描きなさい)。(各 15 点)

(1)
$$f(x) = x^2 - 4x + 3$$
 $(0 \le x \le 3)$

(2)
$$f(x) = -x^2 + x + 12 \ (-1 \le x \le 1)$$

(ii)
$$f(x) = \begin{bmatrix} (1) & (\chi - 2)^2 & -1 \\ (1) & (\chi - 2)^2 & -1 \end{bmatrix}$$
(iii) $f(x) = \begin{bmatrix} (1) & (\chi - 2)^2 & -1 \\ (1) & (\chi - 2)^2 & -1 \end{bmatrix}$
(iii) $f(x) = \begin{bmatrix} (1) & (\chi - 2)^2 & -1 \\ (1) & (\chi - 2)^2 & -1 \end{bmatrix}$
(iii) $f(x) = \begin{bmatrix} (1) & (\chi - 2)^2 & -1 \\ (1) & (\chi - 2)^2 & -1 \end{bmatrix}$