

Mémoire

MMU, etc..

2. Mémoire Virtuelle

```
MOV EAX, a

CMP EAX, b

NEW RAM

MOV EAX, 1

JMP end
```

Mémoire Virtuelle

Schéma de principe

Rôle de la MMU

Bilan Mémoire Virtuelle

- ✓ Réservation de zones virtuelles contiguës
- ✓ RAM à la demande non contiguë
- ✓ Multi-application
 - ✓ Code plus facile à écrire (main séparés)
 - Exécution plus stable (espaces séparés)
- ✓ La RAM se prolonge sur le disque (Swap)
- Ralentissement lors du Swap
- Tailles modulo PageSize

Architecture en Couches

Architectures logiques

- Architecture FLAT
 - Optimisée mais moins sûre

- Architecture Monolithique
 - Sécurité des applications mais pas des drivers

- Architecture Micro-noyau
 - Sécurité des applications ET des drivers

Architecture « flat »

Exemples FLAT

- Marché du Temps-Réel
 - OS9
 - VxWorks 5.5, PSOS
 - ThreadX
 - MicroC/OS-II
 - RTX

- Mais Aussi...
 - MS-DOS
 - Windows 3.x
 - Microcontrôleurs

Architecture « Monolithique »

Exemples monolithique

- Marché du Temps-Réel
 - VxWorks 6.0
 - Windows CE 6.0

- Mais Aussi...
 - Windows NT
 - Linux (et autres UNIX)
 - Symbian

Architecture « Micro-Noyau »

Exemples micro-noyau

- Marché du Temps-Réel
 - − Chorus
 - -QNX
 - SoftKernel ₹

- Pilotes en mode User ...
 - Linux
 - Windows CE (>6)