Learning Molecular Representation

Hy Truong Son, Nguyen Duc Hai Advisor: Prof. Risi Kondor

The University of Chicago

December 2017

Harvard Clean Energy Project Dataset (HCEP)

SMILES: C1C=CC=C1c1cc2[Se]c3c4occc4c4nsnc4c3c2cn1 Power Conversion Efficiency (PCE, range 0 - 11): 5.16195

 $C_{18}H_9N_3OSSe$ Adjacency matrix

dK-Series Algorithms (2)

Reference:

Systematic Topology Analysis and Generation Using Degree Correlations ACM SIGCOMM 2006

Algorithm:

- Extract all subgraphs of size d in a molecular graph.
- Classify each subgraph as 1 element of the set of non-isomorphic graphs of size d.
- Based on the subgraph classification, we build the frequency vector (probability distribution) and use the frequency vector as the molecular graph representation.

Remark: Instead of using vertex degree, we use atomic types (for example, Carbon - C, Hydrogen - H, etc.).

Results & Future Plan

Results of using Linear Regression on dK-features:

	Test MAE	Test RMSE
d=1	1.492278	3.457323
d=2	1.255755	2.545540
d=3	1.130819	2.194515
d=4	1.025007	1.774689

Next steps:

- Apply more physical features rather than just atomic types
- Apply state-of-the-art graph neural networks in learning molecular representations
- Test on other molecular datasets

Thank you very much for your attention!

5/6

https://github.com/HyTruongSon/dk-series

For more detail, read our paper **Covariant Compositional Networks For Learning Graphs** (ICLR 2018 - Workshop) [Kondor et. al.]