

Satellite Communication

Col John Keesee

Satellite Communications Architecture

- Identify Requirements
- Specify Architectures
- Determine Link Data Rates
- Design & Size each link
- Document your rationale

Definition

The communications architecture consists of satellites and ground stations interconnected with communications links. (Adapted from SMAD.)

Architectures:

Defined by Satellite-Ground Geometry

- Store & Forward
- Geostationary
- Molniya
- Geostationary/ Crosslink
- LEO/ Crosslink

Low-altitude, Crosslinked Comsat Network Adapted from SMAD.

Architectures: Defined by Function

- System Function
 - Tracking Telemetry & Command
 - Data Collection
 - Data Relay
- Satellite Design
 - Onboard Processing
 - Autonomous Satellite Control
 - Network Management

Communications Architecture: Selection Criteria

- Orbit
- RF Spectrum
- Data Rate
- Duty Factor
- Link Availability
- Link Access Time
- Threat

Advantages of Digital Communication

- Less distortion and interference
- Easy to regenerate
- Low error rates
- Multiple streams can be easily multiplexed into a single stream
- Security
- Drift free, miniature, low power hardware

Tracking Telemetry & Control

- Telemetry
 - Voltages, currents, temperatures, accelerations, valve and relay states
- Commanding
 - Low data rate
 - Store, verify, execute or execute on time
 - Programmable control
- Range or Range Rate
 - Round trip delay yields range
 - Doppler shift yields range rate
 - Pseudo-random code
- Existing TT&C Systems
 - AFSCN (SGLS) AF Satellite Control Network (Space Ground Link System)
 - NASA DSN Deep Space Network
 - Intelsat/ □COMSAT
 - TDRS Tracking and Data Relay Satellite

Data Collection Mission

B) Multi-element Whiskbroom Sensor

C) Push Broom Sensor

D) Matrix Imager

$$DR(pushbroom) = \frac{Sw}{X} * \frac{Vn}{Y} * b$$

$$DR(imager) = \frac{Bits}{pixel} * \frac{Pixels}{sample} * \frac{Samples / Second}{duty _cycle}$$

Adapted from SMAD.

Variable Definitions

Chart 9

Variable	Definition	Units
DR	Data Rate	Bits/second
SW	Swath Width	Meters
X	Across track pixel dimension	Meters
Vn	Ground track velocity	Meters/second
Y	Along track pixel dimension	Meters
b	Bits/pixel	Bits

Reducing the Data Rate

- Increase the Duty Cycle
- Collect only above-threshold data
- Amplitude changes only
- Data compression

Link Design Process

- 1. Define Requirements for each link
- 2. Design Each Link
 - Select frequency
 - Select modulation & coding
 - Apply antenna size & beam width constraints
 - Estimate atmospheric, rain attenuation
 - Estimate received noise, interference power
 - Calculate required antenna gain & transmitter power

3. Size the Payload

- Payload antenna configuration, size & mass
- Estimate transmitter mass & power
- Estimate payload mass & power

Link Equation

$$\frac{E_b}{N_o} = \frac{PL_l G_t L_s L_a G_r}{k T_s R}$$

Energy/bit to noise-density ratio

Variable Definitions

Chart 12

Variable	Definition	Units	Units dB
E _b	Energy per bit	Watt-seconds	dB
N _o	Noise spectral	Watts/hertz	dB
	density		
P	Transmitter	Watts	dBW
	power		
L_1	Line loss		dB
G_{t}	Transmitter		db
	antenna gain		
$L_{\rm s}$	Space loss		DB

Variable Definitions

Chart 12 continued

Variable	Definition	Units	Units (dB)
L_{a}	Transmission		dB
	path loss		
G_{r}	Receiver gain		dB
k	Boltzmann	J/K	dBW/(Hz-K)
	constant		
$T_{\rm s}$	System noise	K	
	temperature		
R	Data rate	Bits/	
		second	

Power Flux Density

$$W_f = \frac{PL_lG_tL_a}{4\pi S^2} = \frac{(EIRP)L_a}{4\pi S^2}$$

EIRP - Effective Isotropic Radiated Power

Variable Definitions

for Chart 16

Variable	Definition	Units	Units (dB)
\mathbf{W}_{f}	Power flux	W/m^2	
	density		
S	Path length	M	
EIRP	Effective	\mathbf{W}	DBW
	Isentropic		
	Radiated		
	Power		

Received Power

$$C = Wf \cdot \frac{\pi Dr^2 \eta}{4} = \frac{PL_l G_t L_a Dr^2 \eta}{16S^2}$$

$$G_r = \left(\frac{\pi D r^2 \eta}{4}\right) \frac{4\pi}{\lambda^2} = \frac{\pi^2 D r^2 \eta}{\lambda^2}$$

Space Loss
$$L_s = (\frac{\lambda}{4\pi S})^2$$

$$C = EIRP * L_s * L_a * G_r$$

Variable Definitions

Chart 18

Variable	Definition	Units	Units (dB)
C	Received	W	
	power		
D_{r}	Receiver	m	dB
	antenna		
	diameter		
η	Antenna		
	efficiency		
λ	Wavelength	m	
$L_{\rm s}$	Space loss		

Link Equation Concluded

$$E_b = \text{energy/bit} = \frac{C}{R}$$

 N_o = noise spectral density

N =total received noise power

B = receiver noise bandwidth

$$N_o = k T_s = N/B$$

$$\frac{E_b}{N_o} = \frac{P \times L_l \times G_t \times L_a \times G_r \times L_s}{k \cdot T_s \cdot R}$$

Link Equation in dB

$$\frac{E_b}{N_o} = P + L_l + G_t + L_s + L_a + G_r + 228.6 - 10 \log T_s - 10 \log R$$

$$= EIRP + L_s + L_a + G_r + 228.6 - 10 \log T_s - 10 \log R$$

$$\frac{C}{N_o} = EIRP + L_s + L_a + \frac{G_r}{T_s} + 228.6$$

$$\frac{C}{N} = EIRP + L_s + L_a + \frac{G_r}{T_s} + 228.6 - 10\log B$$

$$RIP = \frac{E_b}{N_o} - \frac{G_r}{T_s} - 228.6 + 10\log R$$
 (Received isentropic power)

Gain in dB

$$G_r = \frac{\pi^2 D_r^2 \eta}{\lambda^2} \qquad f = \frac{c}{\lambda}$$

$$G = 20\log \pi + 20\log D + 20\log f + 10\log \eta$$

$$-20\log c \quad (dB)$$

$$= -159.59 + 20\log D + 20\log f + 10\log \eta \quad (dB)$$

Beamwidth

$$\theta = \frac{21}{f \cdot D}$$

$$\theta$$
 [degrees]

$$f$$
 [GHz]

$$D$$
 [m]

$$G = \frac{27,000}{\theta^2}$$

Antenna gain

$$L_{\theta} = 12(e/\theta)^2$$
 (dB)

Offset beam loss

Space loss in dB

$$L_s = \left(\frac{\lambda}{4\pi S}\right)^2 \quad \text{(ratio)}$$

$$L_s = 147.55 - 20 \log S - 20 \log f$$
 (dB)

System Noise Temperature

- External to Antenna

- Galactic noise
- Clouds, rain in path
- Solar noise (in mainbeam or sidelobe)
- Earth (290K)
- Man-made noise
- Nearby objects
- Satellite structure

(See SMAD Fig 13-7)

System Noise Temperature

- Internal to System

Transmission lines and filters

$$T_r = (1 - L)T$$

$$L = \frac{P_o}{P_i}$$

F is a figure of merit for a receiver

• Low noise amplifier

$$T_r = (F-1)290K$$

$$T_{s} = T_{ant} + T_{o} \left(\frac{1 - L_{r}}{L_{r}} \right) + T_{o} \left(\frac{F - 1}{L_{r}} \right)$$

Variable Definitions

Chart 21

Variable	Definition	Units
$T_{\rm r}$	Receiver noise	K
	temperature	
L	Power ratio	
T	Component temperature	K
P_{o}	Output power	W
$P_{\rm I}$	Input power	W
F	Noise figure	
T_{o}	Reference temperature	K
	(usually 290 K)	

Modulation

- Modulation modifies an RF Carrier signal so that it contains input signal information
 - Amplitude
 - Frequency
 - Phase
 - Polarization

Modulation Techniques

- BPSK Binary Phase Shift Keying
- QPSK Quadriphased Phase Shift Keying
- FSK Frequency Shift Keying
- MFSK Multiple FSK
- DPSK Differential Shift Keying

Bit Error Rate

- Primary Figure of Merit for Digital Link Performance
- Energy/bit (Eb) must exceed the noise spectral density (N_o) to achieve a required BER

Coding

- Forward Error Correction sends additional data to help detect and correct errors.
 - Reduces the Eb/No requirement
 - Reduces required transmitter power
 - Reduces antenna size
 - Increases margin
 - Increases data rate and bandwidth

Convolutional Coding with Viterbi Decoding

- Extra bits sent with each block of data bits
- Receiver examines string of bits, generates possible code sequences, selects most likely
- Shannon limit $E_b/N_o = -1.6 \text{ dB}$
- Double coding necessary on deep space probes

Attenuation

- Atmosphere absorbs some frequencies
- Divide zenith attenuation by sin(elevation angle)
- Oxygen absorption at 60 GHz
- Scintillation disrupts below 200 MHz

Rain and Cloud Attenuation

- Crane model for world's climatic data
- Important above 10 GHz
- Worst for elevation angles < 20 degrees
- Rain reduces availability

Rain and Cloud Attenuation

Adapted from SMAD.

SATCOM Frequencies Usage

Frequency Selection Drivers

- Spectrum availability and FCC allocation
- Relay/Ground Station frequency
- Antenna size
- Atmospheric/Rain attenuation
- Noise temperature
- Modulation and coding

Communication Payload Antennas

- Parabolic
- Helix
- Horn
- Phased Arrays
 - Multiple beams
 - Hopping beams

Milstar Satellite Layout

(Image removed due to copyright considerations.)

► UPLINK:

5 AGILES, 2 NARROW SPOTS, 1 WIDE SPOT, 1 EARTH COVERAGE

► DOWNLINK:

SINGLE DOWNLINK TIME-SHARED BY: 1 AGILE, 2 NARROW SPOTS, 1 WIDE SPOT, 1 EARTH COVERAGE

(Image removed due to copyright considerations.)

► UPLINK:

2 NULLING SPOTS 6 DISTRIBUTED USER COVERAGE (DUCs)

DOWNLINK:

SINGLE DOWNLINK TIME-SHARED BY: 2 SPOTS AND 6 DUCs

Multiple Access Strategies

- FDMA Frequency Division Multiple Access
- TDMA Time Division Multiple Access
- CDMA Code Division Multiple Access
 - Phase Modulation plus pseudo-random noise

Antijam Techniques

- Spread Spectrum
- Narrow beamwidths
- On board processing
- Nulling antennas

Special Topics

- Data security through encryption
- Spatial, time and satellite diversity
- Frequency hopping
- Interleaving

Why Compress Data

- Need to send more data than bandwidth accommodates
 - Digital image files in particular are very large
- Bandwidth is limited by the link equation and international regulation
- Concept inseparable from data encoding

Early Development -- Huffman codes

- Assign different number of bits to each possible symbol to minimize total number of bits
 - Example: Encode letters of alphabet
 - 26 symbols, each with equal chance of occurring => 5bits/symbol $(2^5 = 32 = lowest power of 2 above 26)$
 - If R occurs 50% of time, use fewer bits to encode R.

Compression Algorithms

Lossless compression

- Ensures data recovered is exactly same as original data
- Used for executable code, numeric data -- cannot tolerate mistakes

Lossy compression

- Does not promise that data received is the same as data sent
- Removes information that cannot later be restored
- Used for still images, video, audio Data contains more info than human can perceive
- Data may already contain errors/imperfections
- Better compression ratios than Lossless (order of magnitude)

When does Compression Pay Off?

- Compression/decompression algorithms involve timeconsuming computations
- Compression beneficial when

$$x/B_c + x/(rB_n) < x/B_n$$

Where $B_c = data$ bandwidth through compress/decompressprocess

 B_n = network bandwidth for uncompressed data

r = average compression ratio

 $x / B_n = time to send x bytes of uncompressed data$

 $x / B_c + x / (rB_n) = time to compress and send$

• Simplified:

$$B_c > + r / (r - 1) * B_n$$

Lossless Compression Algorithms

- Run Length Encoding
- Differential Pulse Code Modulation DPCM
- Dictionary-Based Methods

Run Length Encoding

- Replace consecutive occurrences of symbol with 1 copy plus count of how many times symbol occurs: AAABBCDDDD => 3A2B1C4D
- Can be used to compress digital imagery
 - Compare adjacent pixel values and encode only changes
- Scanned text can achieve 8-to-1 compression due to large white space
- Key compression algorithm used to transmit faxes
- Large homogeneous regions -- effective
- Small degree of local variation increases image byte size
 - 2 bytes represent 1 symbol when not repeated

Differential Pulse Code Modulation - DPCM

- Represent differences between data
 - Output reference symbol
 - For each symbol in data, output difference between it and reference symbol: AAABBCDDDD -> A0001123333
- When differences are small, encode with fewer bits (2 bits vs 8 bits)
- Takes advantage of fact that adjacent pixels are similar 1.5-to-1
- <u>Delta encoding</u> encodes symbol as difference from previous one: AAABBCDDDD -> A001011000.
- Works well when adjacent pixels are similar
- Can combine delta encoding and RLE

Dictionary-Based Methods

- Lempel-Ziv (LZ) most well known, used by Unix compress command
 - Build dictionary of expected data strings
 - Replace strings with index to dictionary
- Example: "compression" (77-bits of 7-bit ASCII) has index 4978 (15 bits) in /usr/share/dict/words -- 5-to-1 compression ratio
- How is the dictionary built?
 - A priori, static, tailored to data
 - Adaptively define based on contents of data. However,
 dictionary must be sent with data for proper decompression

Graphical Interchange Format (GIF)

- Variation of LZ algorithm used for digital images
 - Reduce 24-bit color to 8-bit-color
 - Store colors in table which can be indexed by an 8-bit number
 - Value for each pixel replaced by appropriate index
 - Run LZ over result and create dictionary by identifying common sequences of pixels
- If picture contains << 256 colors, can achieve 10-to-1 compression
- If picture contains > 256 colors, Lossy! (e.g., natural scenes)

- JPEG (Joint Photographic Experts Group) defines an algorithm and a format
 - Apply discrete cosine transform (DCT) to 8 x 8 block (transform into spatial frequency domain). Lossless.
 - Low frequency = gross features; high frequency = detail
 - Quantize result, losing least significant info. Lossy
 - Encode result RLE applied to coefficients. Lossless.

Color Images

- Three components used to represent each pixel 3D
 - RGB red, green, blue
 - YUV luminance (Y) and two chrominance (U and V)
- To compress, each component is processed independently
- Three components used to represent each pixel 3D
- JPEG can also compress multi-spectral images
- Compress 24-bit color images by 30-to-1 ratio
 - 24 bits -> 8 bits (GIF) gives 3-to-1
 - 3D JPEG compression gives 10-to-1

- Moving Picture Experts Group (MPEG)
- Succession of still images displayed at video rate
 - Each frame compressed using DCT technique (JPEG)
 - Interframe redundancy
- Typically, can achieve 90-to-1 ratio; 150-to-1 possible
- Involves expensive computation, typically done offline.

References

- Wertz, James R. and Wiley J.Larson, <u>Space Mission</u>
 <u>Analysis and Design</u>, Microcosm Press, El Segundo CA
 1999, pg 533-586
- Morgan and Gordon, <u>Communication Satellite</u> <u>Handbook</u>, 1989
- Peterson and Davie, on reserve in Barker Library
- http://www-isl.stanford.edu/people/gray/fundcom.pdf

