Série Nº 3

Exercice 1

Une sphère conductrice pleine (S_1) de rayon R_1 est portée au potentiel V_1 . Une deuxième sphère creuse (S_2) conductrice de rayon $R_2 > R_1$ est concentrique à S_1 . La sphère S_2 est portée au potentiel V_2 .

- 1°- Donner les expressions de la charge Q_1 de la sphère S_1 , de la charge Q_2 portée par la surface intérieure de S_2 et de la charge Q_2 portée par la surface extérieure de S_2 .
- 2°- En déduire les coefficients de capacité et d'influence. Vérifier que $C_{11}>0$, $C_{22}>0$, $C_{12}<0$ et que $C_{11}+C_{12}=0$.
- 3°- Que se passe-t-il si on porte les deux sphères au même potentiel V_2 ?

Exercice 2

Un condensateur cylindrique de longueur L formé par deux cylindres (A_1) et (A_2) , coaxiaux de rayons R_1 et R_2 respectivement $(R_1 < R_2)$, porte une charge Q. Les potentiels de A_1 et A_2 sont respectivement V_1 et V_2 . En considérant $L >> R_2$ afin de négliger les effets de bord, déterminer la capacité C de ce condensateur.

Exercice 3

Trois condensateurs sont associés suivant la figure ci-dessous.

- 1°- Quelle valeur doit avoir C_2 pour que la valeur équivalente de la capacité du système soit égale à C_2 sachant que C_1 =3 μ F.
- 2°- On applique entre A et B une tension U_0 =400 volts. Quelles sont la charge et la tension pour chaque condensateur dans le cas où C_I et C_2 ont les valeurs de la question 1°.

Exercice 4

Déterminer de deux manières différentes l'énergie électrostatique d'une sphère de rayon R chargée avec une densité volumique uniforme ρ :

- 1°- En utilisant l'expression de l'énergie en fonction du potentiel.
- 2°- En utilisant l'expression de la densité locale d'énergie.

Exercice 5

Un condensateur est formé par deux armatures planes horizontales circulaires de surface S, parallèle entre elles, de rayon R et distantes de e. On charge le condensateur au moyen d'un générateur de tension V. Donner les résultats en fonction de R.

- 1°- Déterminer la charge Q prise par le condensateur (sa capacité est $C = \frac{\varepsilon_0 S}{2}$).
- 2° Déterminer l'énergie W_c emmagasinée par le condensateur.
- 3°-Quelle est la densité W de cette énergie. En déduire l'intensité E du champ électrique.
- 4°- Déterminer l'énergie W_G fournie par le générateur. Comparer la avec W_c et interpréter le résultat.