CSCI 567: Machine Learning

Vatsal Sharan Fall 2022

Lecture 10, Nov 10

Administrivia

- Start on your project if you haven't already!
 - Make groups (of 4) by tomorrow (Nov 11), minimum team size is 3.
 - Top teams as of Nov 16 can get a bonus!
- HW4 is due in about one weeks (Nov 16 at 2pm).
 - We'll release another question on Gaussian mixture models tomorrow.
- Today's plan:
 - Clustering
 - Gaussian Mixture Models and Expectation Maximization (EM)
 - In the discussion, we will go over popular evaluation metrics for supervised learning

A simplistic taxonomy of ML

Supervised learning:

Aim to predict outputs of future datapoints

Unsupervised learning:

Aim to discover hidden patterns and explore data

Reinforcement learning:

Aim to make sequential decisions

Clustering

- Introduction
- Formalizing and solving the objective (alternating minimization)
- *k*-means algorithm

Clustering: Informal definition

Given: a set of data points (feature vectors), without labels

Output: group the data into some clusters, which means

- assign each point to a specific cluster
- find the center (representative/prototype/...) of each cluster

Clustering: More formal definition

Given: data points $x_1, \ldots, x_n \in \mathbb{R}^d$ and #clusters k we want

Output: group the data into k clusters, which means,

- find assignment $\gamma_{ij} \in \{0,1\}$ for each data point $i \in [n]$ and $j \in [k]$ s.t. $\sum_{j \in [k]} \gamma_{ij} = 1$ for any fixed i
- find the cluster centers $\mu_1, \dots, \mu_k \in \mathbb{R}^d$

Many applications

Clustering is one of the most fundamental ML tasks, with many applications:

- recognize communities in a social network
- group similar customers in market research
- image segmentation
- accelerate other algorithms (e.g. nearest neighbor classification)

• . . .

Clustering

- Introduction
- Formalizing and solving the objective (alternating minimization)
- *k*-means algorithm

Formal objective

As with PCA, no ground-truth to even measure the quality of the answer (*no labels given*).

What is the high-level goal here?

We want to partition the points into k clusters, such that points within each cluster are close to their cluster center.

We can turn this into an optimization problem, find γ_{ij} and μ_i to minimize

$$F(\{\gamma_{ij}\}, \{\mu_j\}) = \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij} \|x_i - \mu_j\|_2^2$$

i.e. the sum of squared distances of each point to its center. This is the "k-means" objective.

How to solve this? Alternating minimization

Unfortunately, finding the exact minimizer of the k-means objective is NP-hard!

Therefore, we use a heuristic (*alternating minimization*) that alternatingly minimizes over $\{\gamma_{ij}\}$ and $\{\mu_j\}$:

Initialize $\{\boldsymbol{\mu}_j^{(1)}: j \in [k]\}$

For t = 1, 2, ...

• find

$$\{\gamma_{ij}^{(t+1)}\} = \underset{\{\gamma_{ij}\}}{\operatorname{argmin}} F\left(\{\gamma_{ij}\}, \{\boldsymbol{\mu}_{j}^{(t)}\}\right)$$

• find

$$\{\boldsymbol{\mu}_{j}^{(t+1)}\} = \operatorname*{argmin}_{\{\boldsymbol{\mu}_{j}\}} F\left(\{\boldsymbol{\gamma}_{ij}^{(t+1)}\}, \{\boldsymbol{\mu}_{j}\}\right)$$

Alternating minimization: Closer look

The first step

$$\min_{\{\gamma_{ij}\}} F(\{\gamma_{ij}\}, \{\mu_j\}) = \min_{\{\gamma_{ij}\}} \sum_{i} \sum_{j} \gamma_{ij} \|\mathbf{x}_i - \mu_j\|_2^2
= \sum_{i} \min_{\{\gamma_{ij}\}} \sum_{j} \gamma_{ij} \|\mathbf{x}_i - \mu_j\|_2^2$$

is simply to assign each x_i to the closest μ_j , i.e.

$$\gamma_{ij} = \mathbb{I}\left[j == \operatorname*{argmin}_{c} \|oldsymbol{x}_i - oldsymbol{\mu}_c\|_2^2
ight]$$

for all $j \in [k]$ and $i \in [n]$.

Alternating minimization: Closer look

The second step

$$egin{aligned} \min_{\{m{\mu}_j\}} F\left(\{\gamma_{ij}\}, \{m{\mu}_j\}
ight) &= \min_{\{m{\mu}_j\}} \sum_i \sum_j \gamma_{ij} \|m{x}_i - m{\mu}_j\|_2^2 \ &= \sum_j \min_{m{\mu}_j} \sum_{i: \gamma_{ij} = 1} \|m{x}_i - m{\mu}_j\|_2^2 \end{aligned}$$

is simply to average the points of each cluster (hence the name)

$$\boldsymbol{\mu}_j = \frac{\sum_{i:\gamma_{ij}=1} \boldsymbol{x}_i}{|\{i:\gamma_{ij}=1\}|} = \frac{\sum_i \gamma_{ij} \boldsymbol{x}_i}{\sum_i \gamma_{ij}}$$

for each $j \in [k]$.

Clustering

- Introduction
- Formalizing and solving the objective (alternating minimization)
- *k*-means algorithm

k-means algorithm

Step 0 Initialize μ_1, \ldots, μ_k

Step 1 For the centers μ_1, \ldots, μ_k being fixed, assign each point to the closest center:

$$\gamma_{ij} = \mathbb{I}\left[j = \operatorname*{argmin}_{c} \|oldsymbol{x}_i - oldsymbol{\mu}_c\|_2^2
ight]$$

Step 2 For the assignments $\{\gamma_{ij}\}$ being fixed, update the centers

$$oldsymbol{\mu}_j = rac{\sum_i \gamma_{ij} oldsymbol{x}_i}{\sum_i \gamma_{ij}}$$

Step 3 Return to Step 1 if not converged (convergence means that all the assignments γ_{ij} are unchanged in Step 1).

k-means algorithm: Example

k-means algorithm: Convergence

k-means will converge in a finite number of iterations, why?

• objective strictly decreases at each step if the algorithm has not converged.

Why? For t = 1, 2, ...

• find

$$\{\gamma_{ij}^{(t+1)}\} = \underset{\{\gamma_{ij}\}}{\operatorname{argmin}} F\left(\{\gamma_{ij}\}, \{\boldsymbol{\mu}_{j}^{(t)}\}\right)$$
$$= \mathbb{I}\left[j = \underset{c}{\operatorname{argmin}} \|\boldsymbol{x}_{i} - \boldsymbol{\mu}_{c}\|_{2}^{2}\right]$$

find

$$\{\boldsymbol{\mu}_{j}^{(t+1)}\} = \underset{\{\boldsymbol{\mu}_{j}\}}{\operatorname{argmin}} F\left(\{\gamma_{ij}^{(t+1)}\}, \{\boldsymbol{\mu}_{j}\}\right)$$
$$= \frac{\sum_{i} \gamma_{ij} \boldsymbol{x}_{i}}{\sum_{i} \gamma_{ij}}$$

k-means algorithm: Convergence

k-means will converge in a finite number of iterations, why?

- objective strictly decreases at each step if the algorithm has not converged.
- #possible_assignments is finite (k^n , exponentially large though)

Therefore, the algorithm must converge in at most k^n steps.

Why? More specifically, why can't the algorithm cycle between different clusterings?

- Suppose the algorithm finds the same clustering at time steps t_1 and t_2 .
- Since the objective function value decreases at every step, this means the same clustering (at time steps t_1 and t_2) has two different costs, which is not possible.
- Therefore, by contradiction, the algorithm cannot cycle between clusterings.

k-means algorithm: Convergence

k-means will converge in a finite number of iterations, why?

- objective strictly decreases at each step if the algorithm has not converged.
- #possible_assignments is finite (k^n , exponentially large though)

However

- it could take *exponentially many iterations* to converge
- and it *might not converge to the global minimum* of the k-means objective

k-means algorithm: How to initialize?

There are different ways to initialize:

- randomly pick k points as initial centers μ_1, \ldots, μ_k
- or randomly assign each point to a cluster, then average to find centers
- or more sophisticated approaches (e.g. k-means++)

Initialization matters for **convergence**.

k-means algorithm: Local vs Global minima

Simple example: 4 data points, 2 clusters, 2 different initializations

K-means converges immediately in both cases, but

- left has K-means objective $L^2 = 4W^2$
- right has K-means objective W^2 , 4 times better than left!
- in fact, left is **local minimum**, and right is **global minimum**.

k-means algorithm: Summary

- Clustering is a fundamental unsupervised learning task.
- k-means is a alternating minimization algorithm for the k-means objective.
- The algorithm always converges, but it can converge to a local minimum.
- Initialization matters a lot for the convergence. There are principled initialization schemes, which have guarantees on the solution they find (e.g. k-means++).

Gaussian Mixture Model

- Introduction
- Learning the parameters
- EM algorithm
- EM for the Gaussian Mixture Model

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

- more explanatory than minimizing the k-means objective
- can be seen as a soft version of k-means

To solve GMM, we will introduce a powerful method for learning probabilistic models: the **Expectation Maximization (EM) algorithm**.

A generative model

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

That is, each point is an independent sample of $x \sim p$.

Why do generative modelling?

- can generate data from p
- can estimate probability of seeing any datapoint (useful for many tasks, such as for finding outliers/anomalies in data)

What probabilistic model generates data like this?

GMM: Intuition

GMM is a natural model to explain such data.

Assume there are 3 ground-truth Gaussian models.

To generate a point, we

- first randomly pick one of the Gaussian models,
- then draw a point according this Gaussian.

Hence the name "Gaussian mixture model".

GMM: Formal definition

A GMM has the following density function:

$$p(\boldsymbol{x}) = \sum_{j=1}^k \pi_j N(\boldsymbol{x} \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

where

- k: the number of Gaussian components (same as #clusters we want)
- π_1, \ldots, π_k : mixture weights, a distribution over k components
- μ_j and Σ_j : mean and covariance matrix of the k-th Gaussian
- N: the density function for a Gaussian

Another view

By introducing a latent variable $z \in [k]$, which indicates cluster membership, we can see p as a marginal distribution

$$p(\mathbf{x}) = \sum_{j=1}^{k} p(\mathbf{x}, z = j) = \sum_{j=1}^{k} p(z = j) p(\mathbf{x} | z = j) = \sum_{j=1}^{k} \pi_{j} N(\mathbf{x} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})$$

 \boldsymbol{x} and z are both random variables drawn from the model

- x is observed
- z is unobserved/latent

An example

The conditional distributions are

$$p(\boldsymbol{x} \mid z = \text{red}) = N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

$$p(\boldsymbol{x} \mid z = \text{blue}) = N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$p(\boldsymbol{x} \mid z = \text{green}) = N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

The marginal distribution is

$$p(\boldsymbol{x}) = p(\text{red})N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(\text{blue})N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$
$$+ p(\text{green})N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

Learning GMMs

Learning a GMM means finding all the parameters $\theta = {\pi_j, \mu_j, \Sigma_j}_{j=1}^k$.

In the process, we will learn the distribution of the latent variable z_i as well:

$$p(z_i = j \mid \boldsymbol{x}_i) := \gamma_{ij} \in [0, 1]$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by k-means.

GMM is more explanatory than k-means

- both learn the cluster centers μ_j 's
- in addition, GMM learns cluster weight π_j and covariance Σ_j , thus
 - we can predict probability of seeing a new point
 - we can generate synthetic data

Gaussian Mixture Model

- Introduction
- Learning the parameters
- EM algorithm
- EM for the Gaussian Mixture Model

How do we learn the parameters?

As always, we want to do maximum-likelihood estimation (MLE): find

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{i=1}^{n} p(\boldsymbol{x}_i ; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p(\boldsymbol{x}_i ; \boldsymbol{\theta}) := \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta}).$$

This is called incomplete log-likelihood (since z_i 's are unobserved). We can still write it down as an optimization problem by marginalizing out the z_i 's.

$$P(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ln p(\boldsymbol{x}_i ; \boldsymbol{\theta}) = \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} p(\boldsymbol{x}_i, z_i = j ; \boldsymbol{\theta}) \right)$$
$$= \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} p(z_i = j ; \boldsymbol{\theta}) p(\boldsymbol{x}_i | z_i = j ; \boldsymbol{\theta}) \right) = \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} \pi_j N(\boldsymbol{x}_i | \mu_j, \boldsymbol{\Sigma}_j) \right).$$

This is a non-concave problem, and does not have a closed-form solution.

One solution is to still apply GD/SGD, but a much more effective approach is the **Expectation Maximization** (EM) algorithm.

Preview of EM for learning GMMs

Step 0 Initialize $\pi_j, \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j$ for each $j \in [k]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{ij} = p(z_i = j \mid \boldsymbol{x}_i) \propto \pi_j N\left(\boldsymbol{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\right)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\pi_j = rac{\sum_i \gamma_{ij}}{n}$$
 $oldsymbol{\mu}_j = rac{\sum_i \gamma_{ij} oldsymbol{x}_i}{\sum_i \gamma_{ij}}$

$$oldsymbol{\Sigma}_j = rac{1}{\sum_i \gamma_{ij}} \sum_i \gamma_{ij} (oldsymbol{x}_i - oldsymbol{\mu}_j) (oldsymbol{x}_i - oldsymbol{\mu}_j)^{\mathrm{T}}$$

Step 3 return to Step 1 if not converged

We will see how this is a special case of EM.

Demo

See Colab notebook

Gaussian Mixture Model

- Introduction
- Learning the parameters
- EM algorithm
- EM for the Gaussian Mixture Model

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ln p(\boldsymbol{x}_i ; \boldsymbol{\theta}) = \sum_{i=1}^{n} \ln \int_{z_i} p(\boldsymbol{x}_i, z_i ; \boldsymbol{\theta}) dz_i$$

- \bullet is the parameters for a general probabilistic model
- x_i 's are observed random variables
- z_i 's are latent variables

Again, directly solving the objective is usually complicated and does not have a closed form solution.

High-level idea

Keep maximizing a lower bound of *P* that is more manageable

Jensen's inequality

A lower bound on the log likelihood

Finding the lower bound of P:

$$\ln p(\boldsymbol{x};\boldsymbol{\theta}) = \ln \left(\sum_{z=1}^{k} p(\boldsymbol{x}, z; \boldsymbol{\theta}) \right)$$

$$= \ln \left(\sum_{z=1}^{k} q(z) \frac{p(\boldsymbol{x}, z; \boldsymbol{\theta})}{q(z)} \right)$$

$$= \ln \left(\mathbb{E}_{z \sim q(z)} \left[\frac{p(\boldsymbol{x}, z; \boldsymbol{\theta})}{q(z)} \right] \right)$$

$$\geq \mathbb{E}_{z \sim q(z)} \left[\ln \left(\frac{p(\boldsymbol{x}, z; \boldsymbol{\theta})}{q(z)} \right) \right].$$

Therefore, our log-likelihood can be written as,

$$P(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ln p(\boldsymbol{x}_i ; \boldsymbol{\theta}) \ge \sum_{i=1}^{n} \mathbb{E}_{z_i \sim q_i(z_i)} \left[\ln \left(\frac{p(\boldsymbol{x}_i, z_i ; \boldsymbol{\theta})}{q_i(z_i)} \right) \right]$$
$$= F(\boldsymbol{\theta}, \{q_i\}_{i=1}^n).$$

Alternatively maximizing the lower bound

The expression for the likelihood holds for any $\{q_i\}$, so how do we choose? If we have some guess of the parameters θ , we should choose $\{q_i\}$ to try to make the lower bound tight at that value of θ , i.e. make the inequality hold with equality at that value of θ .

Equivalently, this is the same as alternatingly maximizing F over $\{q_i\}$ and θ (similar to k-means).

Suppose we fix $\theta^{(t)}$, what should we choose $\{q_i^{(t)}\}$?

The inequality arises from the step where we used Jensen's inequality. How do we get this step to hold with equality? The function should be a constant function, i.e.

$$\frac{p(\boldsymbol{x}_i, z_i; \boldsymbol{\theta}^{(t)})}{q_i^{(t)}(z_i)} = c_i$$

for some constant c_i which does not depend on the value taken by the random variable z_i .

Maximizing over $\{q_i\}$

(continued) Since $\sum_{z_i=1}^k q_i^{(t)}(z_i) = 1$, we get,

$$c_{i} = \sum_{z_{i}=1}^{k} p(\boldsymbol{x}_{i}, z_{i}; \boldsymbol{\theta}^{(t)})$$

$$\Rightarrow q_{i}^{(t)}(z_{i}) = \frac{p(\boldsymbol{x}_{i}, z_{i}; \boldsymbol{\theta}^{(t)})}{\sum_{z_{i}=1}^{k} p(\boldsymbol{x}_{i}, z_{i}; \boldsymbol{\theta}^{(t)})}$$

$$= \frac{p(\boldsymbol{x}_{i}, z_{i}; \boldsymbol{\theta}^{(t)})}{p(\boldsymbol{x}_{i}; \boldsymbol{\theta}^{(t)})}$$

$$= p(z_{i}|\boldsymbol{x}_{i}; \boldsymbol{\theta}^{(t)})$$

i.e., the *posterior distribution of* z_i given x_i and $\theta^{(t)}$.

So at $\theta^{(t)}$, we found the tightest lower bound $F\left(\theta, \{q_i^{(t)}\}\right)$:

- $F\left(\boldsymbol{\theta}, \{q_i^{(t)}\}\right) \leq P(\boldsymbol{\theta})$ for all $\boldsymbol{\theta}$.
- $F\left(\boldsymbol{\theta}^{(t)}, \{q_i^{(t)}\}\right) = P(\boldsymbol{\theta}^{(t)})$

Maximizing over θ

Fix $\{q_i^{(t)}\}$, maximize over $\boldsymbol{\theta}$:

$$\begin{split} & \underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta}, \{q_i^{(t)}\}\right) \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln \left(\frac{p(\boldsymbol{x}_i, z_i \; ; \boldsymbol{\theta})}{q_i^{(t)}(z_i)} \right) \right] \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln p(\boldsymbol{x}_i, z_i \; ; \boldsymbol{\theta}) \right] - \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln (q_i^{(t)}(z_i)) \right] \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^n \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln p(\boldsymbol{x}_i, z_i \; ; \boldsymbol{\theta}) \right] \\ &:= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ Q(\boldsymbol{\theta} \; ; \boldsymbol{\theta}^{(t)}) \end{split} \tag{$\{q_i^{(t)}\}$ are computed via $\boldsymbol{\theta}^{(t)}$}$$

Q is the (expected) complete likelihood and is usually more tractable.

• versus the incomplete likelihood: $P(\theta) = \sum_{i=1}^{n} \ln p(\mathbf{x}_i; \theta)$

General EM algorithm

Step 0 Initialize $\theta^{(1)}$, t=1

Step 1 (E-Step) update the posterior of latent variables z_i ,

$$q_i^{(t)}(z_i) = p(z_i \mid \boldsymbol{x}_i ; \boldsymbol{\theta}^{(t)})$$

and obtain **Expectation** of complete likelihood

$$Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) = \sum_{i=1}^{n} \mathbb{E}_{z_i \sim q_i^{(t)}} \left[\ln p(\boldsymbol{x}_i, z_i; \boldsymbol{\theta}) \right]$$

Step 2 (M-Step) update the model parameter via Maximization

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)})$$

Step 3 $t \leftarrow t + 1$ and return to Step 1 if not converged

Pictorial explanation

 $P(\theta)$ is non-concave, but $Q(\theta; \theta^{(t)})$ often is concave and easy to maximize.

$$P(\boldsymbol{\theta}^{(t+1)}) \ge F\left(\boldsymbol{\theta}^{(t+1)}; \{q_i^{(t)}\}\right)$$
$$\ge F\left(\boldsymbol{\theta}^{(t)}; \{q_i^{(t)}\}\right)$$
$$= P(\boldsymbol{\theta}^{(t)})$$

So EM always increases the objective value and will converge to some local maximum (similar to k-means).

Gaussian Mixture Model

- Introduction
- Learning the parameters
- EM algorithm
- EM for the Gaussian Mixture Model

Applying EM to learn GMMs: E-Step

E-Step:

$$q_i^{(t)}(z_i = j) = p\left(z_i = j \mid \boldsymbol{x}_i ; \boldsymbol{\theta}^{(t)}\right)$$

$$\propto p\left(\boldsymbol{x}_i, z_i = j ; \boldsymbol{\theta}^{(t)}\right)$$

$$= p\left(z_i = j ; \boldsymbol{\theta}^{(t)}\right) p(\boldsymbol{x}_i \mid z_i = j ; \boldsymbol{\theta}^{(t)})$$

$$= \pi_j^{(t)} N\left(\boldsymbol{x}_i \mid \boldsymbol{\mu}_j^{(t)}, \boldsymbol{\Sigma}_j^{(t)}\right)$$

This computes the "soft assignment" $\gamma_{ij} = q_i^{(t)}(z_i = j)$, i.e. conditional probability of x_i belonging to cluster k.

Applying EM to learn GMMs: M-Step

M-Step:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{n} \mathbb{E}_{z_{i} \sim q_{i}^{(t)}} \left[\ln p(\boldsymbol{x}_{i}, z_{i} ; \boldsymbol{\theta}) \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{n} \mathbb{E}_{z_{i} \sim q_{i}^{(t)}} \left[\ln p(z_{i} ; \boldsymbol{\theta}) + \ln p(\boldsymbol{x}_{i} | z_{i} ; \boldsymbol{\theta}) \right]$$

$$= \underset{\{\pi_{j}, \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\}}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij} \left(\ln \pi_{j} + \ln N(\boldsymbol{x}_{i} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) \right)$$

To find π_1, \ldots, π_k , solve

$$\underset{\boldsymbol{\pi}}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{ij} \ln \pi_{j}$$

To find each μ_j, Σ_j , solve

$$\underset{\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}}{\operatorname{argmax}} \sum_{i=1}^{n} \gamma_{ij} \ln N(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})$$

Applying EM to learn GMMs: M-Step

Solutions to previous two problems are very natural, for each j

$$\pi_j = \frac{\sum_i \gamma_{ij}}{n}$$

i.e. (weighted) fraction of examples belonging to cluster j

$$oldsymbol{\mu}_j = rac{\sum_i \gamma_{ij} oldsymbol{x}_i}{\sum_i \gamma_{ij}}$$

i.e. (weighted) average of examples belonging to cluster j

$$oldsymbol{\Sigma}_j = rac{1}{\sum_i \gamma_{ij}} \sum_i \gamma_{ij} (oldsymbol{x}_i - oldsymbol{\mu}_j) (oldsymbol{x}_i - oldsymbol{\mu}_j)^{\mathrm{T}}$$

i.e (weighted) covariance of examples belonging to cluster j

You will verify some of these in HW4.

Applying EM to learn GMMs: Putting it together

EM for learning GMMs:

Step 0 Initialize $\pi_j, \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j$ for each $j \in [k]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{ij} = p(z_i = j \mid \boldsymbol{x}_i) \propto \pi_j N\left(\boldsymbol{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\right)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\pi_j = rac{\sum_i \gamma_{ij}}{n}$$
 $\mu_j = rac{\sum_i \gamma_{ij} x_i}{\sum_i \gamma_{ij}}$

$$oldsymbol{\Sigma}_j = rac{1}{\sum_i \gamma_{ij}} \sum_i \gamma_{ij} (oldsymbol{x}_i - oldsymbol{\mu}_j) (oldsymbol{x}_i - oldsymbol{\mu}_j)^{\mathrm{T}}$$

Step 3 return to Step 1 if not converged