## **Vertex of the Quadratic**

 $v_1 = -\frac{b}{2a}$  namely  $q(v_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at  $\mathsf{v}_{1^+}\mathsf{h}$ , namely

Given a quadratic  $q(v) = a v^2 + b v + c$  compute its value at

 $q(v_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute  $\triangle = q(v_1 + h) - q(v_1) = a h^2$ 

Since  $h^2 > 0$ , therefore if a > 0 then  $\triangle > 0$  or vertex is the global minimum!

## Example 1. $q(v) = v^2 + 2v - 55$



