Geometric Progression - 1

Sequences & Series

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

Q Search

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

♣ India's BEST Educators

Unacademy Subscription

If you want to be the BEST "Learn" from the BEST

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Homework Question

If
$$\sum_{j=1}^{21} a_j = 693$$
, where $a_1, a_2,, a_{21}$, are in A.P., then $\sum_{i=0}^{10} a_{2i+1}$ is

A. 361 B. 396 C. 363 D. Data insufficient

$$a_1 + a_2 + a_3 + - - - + a_{21} = 693$$

$$\Rightarrow 21(a_1+a_{21})=69233$$

$$=) \quad \alpha_1 + \alpha_{21} = 66$$

T jee

$$\sum_{i=0}^{10} a_{2i+1} = a_1 + a_3 + a_5 + \dots + a_{21}$$

$$a_1 + a_{21} = 66 \qquad a_{11} = a_1 + a_{21} = a_1 + a_2 = a_1 + a_2$$

$$a_1 + a_{21} = 66$$
 $a_3 + a_{19} = 66$
 $a_5 + a_{17} = 66$
 $a_7 + a_{15} = 66$
 $a_7 + a_{15} = 66$
 $a_{10} = a_1 + a_{21} = 33$
 $a_{21} + a_{22} = 33$
 $a_{31} + a_{22} = 33$
 $a_{32} + a_{33} = 330$
 $a_{31} + a_{32} = 33$
 $a_{32} + a_{33} = 330$

ag + an = 66

Geometric Progression

Geometric Progression (G.P.)

G.P. is a sequence of numbers whose first term is non zero & each of the succeeding terms is equal to the proceeding terms multiplied by a constant.

This constant multiplier is called common ratio $(r \neq 0)$

$$\sum_{k=2}^{2} \frac{1}{1}, \frac{2}{2}, \frac{9}{4}, \frac{8}{16}, \frac{32}{32}, \dots$$

$$8 = 2 = \frac{1}{2} = \frac{8}{4}$$

General Term of G.P.

If 'a' is the first term and 'r' the common ratio, of GP

a, ar, ar, ar, ar,
$$\frac{1}{\sqrt{1}}$$
 $\frac{1}{\sqrt{1}}$
 $\frac{1}{\sqrt{1}}$
 $\frac{1}{\sqrt{1}}$
 $\frac{1}{\sqrt{1}}$
 $\frac{1}{\sqrt{1}}$
 $\frac{1}{\sqrt{1}}$
 $\frac{1}{\sqrt{1}}$

jee

$$Sg: -1, -2, -4, -8, ---: \begin{cases} \alpha = -1 \\ 9 = 2 \end{cases}$$

Every term of a G.P. is positive and also every term is the sum of two preceding terms. Then the common ratio of the G.P. is

A.
$$\frac{1-\sqrt{5}}{2}$$

B.
$$\frac{\sqrt{5}+1}{2}$$

c.
$$\frac{\sqrt{5-1}}{2}$$

$$a, an, an^2 \rightarrow 6P$$

$$\Rightarrow a \% = a + a \%$$

$$\Rightarrow$$
 $2^{2} = 1 + 2$

$$\lambda = 1 \pm \sqrt{1 + 4}$$

$$\lambda = 1 \pm \sqrt{1 + 4}$$

$$\hat{\lambda} = 1 - \sqrt{2} \quad , \quad \hat{\lambda} = 1 + \sqrt{2}$$

Let α and β be the roots of x^2 - 3x + p = 0 and γ and δ be the roots of x^2 - 6x + q = 0. If α , β , γ and δ form a G.P. The ratio of (2q + p) : (2q - p) is:

JEE Main 2020

$$x^{2}-3x+p=0$$
; (x,β) $x^{2}-6x+q=0$; (x,δ) x^{2

$$(x, \beta, \chi, \delta)$$
 (x, β, χ, δ)
 $(x, \lambda, \chi, \delta)$
 $(x,$

$$\frac{No\nu:}{29,+P} \\
= 2(ys) + (\alpha p) \\
= 2(ys) - (\alpha p) \\
= 2(a^2 x^5) + (a^2 x) \\
= 7(a^2 x^5) - (a^2 x)$$

$$= \frac{2 x^{4} + 1}{2 x^{4} - 1}$$

$$= 2 (2)^{2} + 1$$

2(2)2-1

In a G.P if the (m + n)th term be a and (m - n)th term be b, then its

B.
$$\sqrt{\frac{a}{b}}$$

c.
$$\frac{b}{a}$$

D.
$$\frac{a}{b}$$

$$T_{m+n} = A \cdot R^{m+n-1} = \alpha \quad ($$

$$T_{m-n} = A \cdot R^{m-n-1} = b$$

$$\perp^{W} = \forall \delta_{W-1} = \delta$$

jee

$$A^{2}R^{2}m-2=a.6$$

$$\left(AR^{m-1}\right)^{2} = \alpha \cdot 6$$

Let a be the first term and b be the n^{th} term of a G.P. if P is the product of n terms, then P^2 =

jee

B. (ab

c. (ab)^{n/2}

D. None of these

$$T_1 = a$$

$$n = 6 = a n^{-1}$$

Mou:

$$P = (a)(as^{2}) \cdot (as^{2}) - - - - (as^{n-1})$$

$$P = (a^{n}) \cdot (s^{n}) \cdot (s^{n})$$

$$\frac{n(n+1)}{2}$$

$$\frac{n-1}{2}$$

$$P = (a^n)(x^2)$$

$$\Rightarrow P^2 = (a^2 n) (n^{(n-1)})$$

$$P = (ab)$$

$$= \left(\alpha^2 \cdot \chi^{n-1}\right)^n$$

$$= \left(\alpha \cdot \chi^{n-1}\right)^n$$

Let a, b, c, d and p be any non zero distinct real numbers such that $(a^2 + b^2 + c^2)p^2 - 2$ (ab + bc + cd)p + (b² + c² + d²) = 0. Then

A. a, c, p are in A.P.

B. a, c, p are in G.P.

c, a, b, c, d are in G.P.

D. a, b, c, d are in A.P.

JEE Main 2020

$$(a^{2}+b^{2}+c^{2})p^{2}-2(ab+b(+cd))p+(b^{2}+c^{2}+d^{2})=0$$

$$a^{2}p^{2}+b^{2}-2abp \qquad (ap-b)^{2}+(bp-c)^{2}+c^{2}-2bcp \qquad +(cp-d)^{2}=0$$

$$+c^{2}p^{2}+d^{2}-2cdp \qquad +(cp-d)^{2}=0$$

$$p - b = 0$$
 $b = 0$
 $c = 0$
 $c = 0$

$$a, b, c, d$$

$$b, c, d$$

$$c, d$$

Sum of G.P.

Sum of n terms of G.P.

$$S_{n} = a + an + an^{2} + - - - + an + an^{n-2} + an^{n-1}$$

$$S_{n} = an + an^{2} + an^{3} + - - + an^{n-1} + an^{n-1}$$

$$(1-\lambda)S_n = \alpha - \alpha\lambda^n$$

$$S_n = \alpha(1-8^n)$$

$$(1-8)$$

$$S_{n} = \begin{cases} \frac{\alpha(1-n^{n})}{(1-n)} ; n < 1 \\ n \alpha ; n = 1 \end{cases}$$

$$\frac{\alpha(n^{n}-1)}{(n^{n}-1)} ; n > 1$$

Sum of infinite terms of G.P.

$$S_{2} = 1, 2, 4, 8, --- \infty : S_{\infty} = \infty$$

$$S_{9}: 1, \frac{1}{2}, \frac{1}{8}, \frac{1}{16}, \dots = 8$$

$$S_{n} = \frac{\alpha(1-n)}{(1-n)}$$

$$N \rightarrow \infty ; (n) \rightarrow 0$$

$$S_{\infty} = \frac{\alpha}{1-n}$$

$$\frac{59}{\left(\frac{1}{2}\right)^{10}}$$

$$\left(\frac{1}{2}\right)^{10}$$

$$\left(\frac{1}{2}\right)^{10}$$

9<

The sum of an infinite G.P., whose first term is 28 and fourth

T jee

term is $\frac{4}{49}$, is

$$\frac{98}{3}$$

B.
$$\frac{49}{3}$$

c.
$$\frac{78}{3}$$

$$T_{4} = \alpha \lambda^{3} = \frac{4}{49}$$

$$\Rightarrow (28) \lambda^{3} = \frac{4}{49}$$

$$\Rightarrow \lambda^{3} = \frac{4}{49}$$

$$S_{\infty} = \frac{1}{3}$$

$$S_{\infty} = \frac{28}{1 - 1}$$

$$= \frac{28x}{6}$$

Let a_n be the nth term of the G.P. of positive numbers.

Ţ jee

Let
$$\sum_{n=1}^{100} a_{2n} = \alpha$$
 and $\sum_{n=1}^{100} a_{2n-1} = \beta$,

such that $\alpha \neq \beta$, then the common ratio

B. $\frac{\beta}{\alpha}$

c. $\sqrt{\frac{\alpha}{\beta}}$

 $-\sqrt{\frac{\beta}{\alpha}}$

$$\begin{cases} a_2 + a_4 + a_6 + - - - + a_{200} = \alpha \\ a_1 + a_3 + a_5 + - - - + a_{199} = \beta \\ a_1 + a_1 + a_2 + a_3 + a_4 + - - + a_1 + a_1 + a_2 + a_1 + a_2 + a_2 + a_3 + a_4 + - - + a_1 + a_2 + a_2 + a_3 + a_4 + - - + a_1 + a_2 + a_2 + a_2 + a_3 + a_3 + a_4 + - - - + a_1 + a_2 + a_2 + a_2 + a_3 + a_3 + a_4 + - - - + a_2 + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_4 + - - - + a_3 + a_4 + a_$$

Tjee

$$2\left(\frac{a+ax^2+ax^4+---+ax^{198}}{6}\right)=0$$

$$\chi(\beta) = \propto$$

$$S = \frac{X}{B}$$

If S be the sum, P the product and R the sum of the reciprocals of n terms of a G.P. then

$$\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \dots, \alpha_{n-1}$$

$$S = \alpha_{1}(1-2^{n})$$

$$P = (a)(a)(a)(a)^{-1}$$

$$\zeta = \alpha \sqrt{\beta} \sqrt{(\nu-1)(\nu)} - (-1)(\nu)$$

$$\frac{Now}{a}$$
, $\frac{L}{a}$, $\frac{L}{a}$, $\frac{L}{a}$, $\frac{L}{a}$, $\frac{L}{a}$

$$=\frac{1}{an^{n-1}},\frac{1}{an^{n-2}},\dots,\frac{1}{an^{2}},\frac{1}{an},\frac{1}{an}$$

$$R = \frac{1}{(\alpha + n^{-1})(1 - x^{n})} - 2$$

$$\frac{\left(\frac{S}{R}\right)^{n} = \left(\frac{\alpha\left(1-\frac{N}{N}\right)}{\left(1-\frac{N}{N}\right)} \times \frac{\left(1-\frac{N}{N}\right)}{\left(1-\frac{N}{N}\right)} \times \frac{\left(1-\frac{N}{N}\right)}{\left(1-\frac{N}{N}\right)} = \left(\frac{2}{N}\frac{N}{N}\right)^{n}$$

$$= \left(\frac{2}{N}\frac{N}{N}\right)^{n} \times \frac{\left(\frac{N}{N}\right)^{n}}{\left(1-\frac{N}{N}\right)^{n}} \times \frac{\left(\frac{N}{N}\right)^{n}}{\left(1-\frac{N}$$

$$= \left(\alpha^{N} \cdot \beta^{N(N-1)}\right)^{2}$$

$$= \left(\alpha^{N} \cdot \beta^{N(N-1)}\right)^{2}$$

A football is dropped from a height of 600 cm. Each time it rebounds, it rises to 2/3 of the height it has fallen through. Find the total distance travelled by the ball before it comes to rest.

$$h + 2\left(\frac{2h}{3} + \left(\frac{2}{3}\right)^{3}h + - - - \infty\right)$$

$$h + 2\left(\frac{2h}{3}\right)$$

$$h + 2\left(\frac{2h}{3}\right)$$

$$1 - \frac{2}{3}$$

If in a G.P. of 3n terms, S_1 denotes the sum of the first n terms, S_2 the sum of the second block of n terms & S_3 the sum of the last n terms, then S_1 , S_2 , S_3 are in

Ţ jee

A. A.P.

B. G.P.

C. H.P.

D. None of these

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's BEST Educators

Unacademy Subscription

If you want to be the BEST "Learn" from the BEST

Top Results T

Ashwin Prasanth 99.94

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

99.50

Devashish Tripathi

99.52

Tarun Gupta 99.50

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Yash Bhaskar 99.28 99.10

99.02

98.67

98.59

98.16 98.48

Step 1

12 MONTHS

2 SUBSCRIPTION FREE TILL IIT JEE 2022 MONTHS

24 MONTHS

3 SUBSCRIPTION FREE TILL IIT JEE 2023 MONTHS

3 MONTHS

1 SUBSCRIPTION FREE TILL IIT JEE 2021

Test Series 2022

Test Series 2023

9th & 23rd June | 9 AM to 12 PM

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Started on 12th May

Upcoming Batches in June

All Stars Batch: JEE Main 2021

Started on 9th June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023

Early Excel Batch for Droppers : JEE Main & Advanced 2022

Starts on 16th June 2021

Evolve Batch (Class 12th): JEE Main & Advanced 2022

Starts on 16th June 2021

Starts on 16th June 2021

INDIA'S BIGGEST WEEKLY SCHOLARSHIP TEST

SCAN NOW TO ENROLL

For IIT-JEE Aspirants

Enroll for Free

Win Scholarship from a pool of

₹ 4 Crore
Terms and conditions apply*

Take it live from android

IIT-JEE COMBAT

Every Sunday at 11 AM

To unlock, use code
SAMEERLIVE

Thank you

#JEE Live Daily

unacademy

Download Now!