# Spektraldichte großer Matrizen Eine numerische Annäherung

Carina Seidel

Universität Potsdam

9. Juni 2024



#### Inhaltsverzeichnis



#### Motivation

- Eigenwerte einer Matrix sind in vielen Bereichen der Mathematik und Physik interessant
- Oftmals sind Matrizen zu groß um diese effizient zu berechnen
- Stattdessen berechnen wir die Spektraldichte (Density of States)



#### Delta Distribution

Sei  $\mathcal{E}=\mathcal{C}^{\infty}(\Omega)$  mit  $0\in\Omega\subset\mathbb{K}^n$ Dann ist  $\delta:\mathcal{E}\to\mathbb{K}, f\mapsto f(0)$  mit  $\delta(f)=\langle\delta,f\rangle=f(0)$ Wichtige Eigenschaft:

$$\int_{-\infty}^{\infty} f(x)\delta(x-a) dx = \int_{-\infty}^{\infty} f(x)\delta(a-x) dx = f(a) \implies \int_{-\infty}^{\infty} \delta(x-a) = 1$$



## Spektraldichte

Sei  $A \in \mathbb{R}^{n \times n}$ ,  $A^T = A$  und A spärlich besetzt.

Dann ist die Spektraldichte (engl. Denisty of States (DOS)) definiert als

$$\phi(t) = \frac{1}{n} \sum_{j=1}^{n} \delta(t - \lambda_j)$$
 (1)

wobei  $\delta$  die Dirac Verteilung und  $\lambda_j$  die Eigenwerte von A in nicht-absteigender Reihenfolge sind.

Die Anzahl der Eigenwert in einem Intervall  $\left[a,b\right]$  kann dann wie folgt ausgedrückt werden:

$$\nu_{[a,b]} = \int_{a}^{b} \sum \delta(t - \lambda_j) dt \equiv \int_{a}^{b} n\phi(t) dt$$
 (2)



## Problemstellung

- Spektraldichte trivial wenn Eigenwerte von A bekannt
- Unpraktisch wenn A sehr groß, da Berechnung teuer
- ullet Wir brauchen effiziente Alternativen um  $\phi(t)$  abzuschätzen
- Allerdings:  $\phi(t)$  keine "Funktion" im eigentlichen Sinne



#### Idee

- Sei  $I \subseteq \mathbb{R}$  das Interval, dass das Spektrum von A beinhaltet.
- Teile nun I in kleinere Teilintervalle  $[t_i, t_{i+1}]$
- Benutze den Silvestreschen Trägheitssatz um die Eigenwerte in jedem Teilintervall zu zählen.
- $\bullet$  Berechne den Durchschnittswert von  $\phi(t)$  in jedem dieser Intervalle mithilfe von
- ullet Für  $(t_{i+1}-t_i)\longrightarrow 0$  nähern sich die Histogramme der Spektraldichte.
- Problem: Berechnung der Zerlegung  $A t_i I = LDL^T$  für alle  $t_i$  ist zu zeitaufwendig.
- Besser: A nur mit Vektoren multiplizieren.



#### Annahmen

- Wir betrachten zwei Methoden zur Annäherung der Spektraldichte
- Der Einfachheit halber sei im Folgenden immer  $A \in \mathbb{R}^{n \times n}$ ,  $A^T = A$
- Die Verallgemeinerung auf hermitesche Matrizen ist im Nachhinein unkompliziert
- Zunächst die Kernel-Polynom-Methode (KPM)
- Danach das klassische Lanczos-Verfahren zur teilweisen Diagonalisierung von A
- Schwierig zu beurteilen welche Methode die beste ist



## Kernel-Polynom-Methode (KPM)

- Formelle polynomiale Erweiterung der Spektraldichte.
- Macht von der Moment Matching Methode gebrauch.
- Wir zeigen, wie das Lanczos-Spektrokopieverfahren mit der KPM zusammenhängt
- Eine weitere Variante ist die Delta-Gauss-Legendre Methode



## Problemstellung

- $\bullet$  Sei im Folgenden  $\tilde{\phi}(t)$  eine reguläre Funktion die die Spektraldichte schätzt
- Alle Annäherungen sind stetige Funktionen
- ullet  $\phi(t)$  ist keine Funktion im eigentlichen Sinne
- $\bullet$  Wir können nicht die  $L^p\text{-Norm}$  benutzen, um  $\phi(t)-\tilde{\phi}(t)$  abzuschätzen
- Zwei Möglichkeiten, dies zu umgehen



#### Schwartz-Raum über $\mathbb R$

$$\mathcal{S}(\mathbb{R}) := \left\{ f \in \mathcal{C}^{\infty}(\mathbb{R}) \mid \forall p, k \in \mathbb{N}_0 : \sup_{x \in \mathbb{R}} \left| x^p f^{(k)}(x) \right| < \infty \right\}$$



#### Erste Methode

Wir benutzen die Tatsache, dass  $\delta(t)$  eine Verteilung ist: Sei  $g\in\mathcal{C}^\infty(\mathbb{R})$  eine Testfunktion aus dem Schwartz-Raum  $\mathcal{S}$ , dann

$$\langle \delta(\cdot - \lambda), g \rangle \equiv \int_{-\infty}^{\infty} \delta(t - \lambda) g(t) dt \equiv g(\lambda)$$

und für alle  $p,k\in\mathbb{N}_0$ 

$$\sup_{t \in \mathbb{R}} |t^p g^{(k)}(t)| < \infty$$

Dann wird der Fehler wie folgt gemessen:

$$\epsilon_1 = \sup_{g \in \mathcal{S}} \left| \langle \phi, g \rangle - \langle \tilde{\phi}, g \rangle \right|$$



#### Zweite Methode

Wir "regularisieren" die  $\delta(t)$ -Funktionen Dazu ersetzen wir sie durch stetige und glatte Funktionen Zum Beispiel die Gaussche Normalverteilung mit einer angemessene Standardabweichung  $\sigma$  Die daraus entstandene Funktion  $\phi_{\sigma}(t)$  ist wohldefiniert Für p=1,2 und  $\infty$  können wir folgenden Fehler berechnen:

$$\epsilon_2 = \left| \left| \phi_{\sigma}(t) - \tilde{\phi}(t) \right| \right|_p \tag{3}$$

Diese beiden Methoden sind eng verwandt!



## Der Begriff der Auflösung

Selten ist eine exakte Annäherung aller Eigenwerte von A gewünscht.

Oftmals genügt es, die Anzahl der Eigenwerte in einem beliebigen Teilintervall [a,b] des Spektrums zu wissen.

Die Größe b-a dieses Teilintervalls bezeichnet man als Auflösung der Schätzung:

Je kleiner das Teilintervall, desto höher die Auflösung.

Die Genauigkeit der Annäherung ist nur bis zur gewünschten Auflösung aussagekräftig.

Für 
$$\epsilon_2 = \left| \left| \phi_{\sigma}(t) - \tilde{\phi}(t) \right| \right|_p$$
 aus (??) gilt:

Je kleiner das  $\sigma$ , desto höher die Auflösung.



#### Noch mehr Probleme mit Dirac

#### Betrachte

$$\nu_{[a,b]} = \int_{a}^{b} n\phi(t) \, \mathrm{d}t$$

aus (??). Definiere entsprechend

$$\tilde{\nu}_{[a,b]} = \int_{a}^{b} n\tilde{\phi(t)} \, \mathrm{d}t$$

 $\min \, \tilde{\phi}(t) \in \mathcal{C}^{\infty}$ 



## Noch mehr Probleme mit Dirac (2)

Angenommen, n=1 und  $\phi(t)=\delta(t)$ .

Unendliche Auflösung bedeutet  $\left|\nu_{[a,b]}-\tilde{\nu}_{[a,b]}\right|$  soll für [a,b] beliebig klein ebenfalls klein sein.

Sei also  $a=-\varepsilon, b=\varepsilon.$  Aus der Definition der  $\delta$ -Funktion folgt dann, dass

$$\lim_{\varepsilon \to 0+} \nu_{[-\varepsilon,\varepsilon]} = 1$$

während für glatte Funktionen  $ilde{\phi}$  selbstverständlich gilt, dass

$$\lim_{\varepsilon \to 0+} \tilde{\nu}_{[-\varepsilon,\varepsilon]} = 0$$

Fazit: Keine glatte Funktion konvergiert zur Spektraldichte unter stetiger Erhöhung der Auflösung

## Einschränkung des Schwartz-Raums

Eine endliche Auflösung ist oftmals genug.

Wir können den Schwartz-Raum  ${\mathcal S}$  also einschränken.

Beispiel: Betrachte nur Gaussche Verteilungsfunktionen der Form

$$g_{\sigma}(t) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} e^{-\frac{t^2}{2\sigma^2}}$$

und schränke  ${\cal S}$  auf den Unterraum

$$\mathcal{S}(\sigma; [\lambda_{lb}, \lambda_{ub}]) = \{g \mid g(t) \equiv g_{\sigma}(t - \lambda), \lambda \in [\lambda_{lb}, \lambda_{ub}]\}$$

Hierbei sind  $\lambda_{lb}$  und  $\lambda_{ub}$  jeweils das Infimum und Supremum der Eigenwerte von A und der Parameter  $\sigma$  die Zielauflösung.

Wir können nun die folgende Metrik zur Qualitätsbewertung nutzen:

$$E\left[\tilde{\phi}; \mathcal{S}\left(\sigma; [\lambda_{lb}, \lambda_{ub}]\right)\right] = \sup_{g \in \mathcal{S}\left(\sigma; [\lambda_{lb}, \lambda_{ub}]\right)} \left| \langle \phi, g \rangle - \langle \tilde{\phi}, g \rangle \right|$$





## Regularisierung der Spektraldichte

Wir konstruieren zunächst eine glatte Darstellung der  $\delta$ -Funktion. Dies muss verhältnismäßig zur gewünschten Auflösung sein. Der Fehler kann dann direkt berechnet werden



## Beispiel: Regularisierung der Spektraldichte

Sei

$$\phi_{\sigma}(t) = \langle \rangle$$

Dies muss verhältnismäßig zur gewünschten Auflösung sein. Der Fehler kann dann direkt berechnet werden



### **Schluss**

 $Zusammen fassung\ und\ Schlussbemerkungen.$ 

