

Machine Learning CS60050

Introduction

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 1: The Learning Problem

The learning problem - Outline

- Example of machine learning
- Components of Learning
- A simple model
- Types of learning
- Puzzle

© MC Creator: Yaser Abu-Mostafa - LFD Lecture 1

Example: Predicting how a viewer will rate a movie

10% improvement = 1 million dollar prize

The essence of machine learning:

- A pattern exists.
- We cannot pin it down mathematically.
- We have data on it.

Movie rating - a solution

The learning approach

© MC Creator: Yaser Abu-Mostafa - LFD Lecture 1

Components of learning

Metaphor: Credit approval

Applicant information:

age	23 years
gender	male
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
• • •	

Approve credit?

Components of learning

Formalization:

- \bullet Input: \mathbf{x} (customer application)
- Output: y (good/bad customer?)
- ullet Target function: $f:\mathcal{X} o \mathcal{Y}$ (ideal credit approval formula)
- ullet Data: $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$ (historical records)
 - \downarrow \downarrow \downarrow
- ullet Hypothesis: $g:\mathcal{X} \to \mathcal{Y}$ (formula to be used)

(set of candidate formulas)

 $\begin{array}{cc} \text{HYPOTHESIS} & \text{SET} \\ \mathcal{H} \end{array}$

Solution components

The 2 solution components of the learning problem:

• The Hypothesis Set

$$\mathcal{H} = \{h\} \qquad g \in \mathcal{H}$$

• The Learning Algorithm

Together, they are referred to as the *learning* model.

A simple hypothesis set - the 'perceptron'

For input $\mathbf{x} = (x_1, \cdots, x_d)$ 'attributes of a customer'

Approve credit if
$$\sum_{i=1}^d w_i x_i > ext{threshold},$$

Deny credit if
$$\sum_{i=1}^d w_i x_i < \mathsf{threshold}.$$

This linear formula $h \in \mathcal{H}$ can be written as

$$m{h}(\mathbf{x}) = ext{sign}\left(\left(\sum_{i=1}^d m{w_i} x_i
ight) - ext{threshold}
ight)$$

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w_i} \ x_i\right) + \mathbf{w_0}\right)$$

Introduce an artificial coordinate $x_0=1$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^d \mathbf{w_i} \ x_i\right)$$

In vector form, the perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

'linearly separable' data

A simple learning algorithm - PLA

The perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

Iterations of PLA

• One iteration of the PLA:

$$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$$

where (\mathbf{x}, y) is a misclassified training point.

ullet At iteration $t=1,2,3,\cdots$, pick a misclassified point from $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$

and run a PLA iteration on it.

• That's it!

The learning problem - Outline

- Example of machine learning
- Components of learning
- A simple model
- Types of learning
- Puzzle

Basic premise of learning

"using a set of observations to uncover an underlying process"

broad premise \implies many variations

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Supervised learning

Example from vending machines - coin recognition

Unsupervised learning

Instead of (input, correct output), we get (input, ?)

© M Creator: Yaser Abu-Mostafa - LFD Lecture 1

Reinforcement learning

Instead of (input,correct output),
we get (input,some output,grade for this output)

The world champion was a neural network!

A Learning puzzle

$$f = -1$$

$$f = +1$$

$$f = ?$$

Thank You!

