Optimal constant picewise vaccination policies for COVID-19

- Gabriel A. Salcedo-Varela^a, Francisco Peñuñuri^b, D. González-Sánchez^c, Saúl Díaz-Infante^{c,*}
- ^a Departamento de Matemáticas, Universidad de Sonora, Blvd. Luis Encinas y Rosales
 S/N, Hermosillo, Sonora, México, C.P. 83000.
- ^b Facultad de Ingeniería, Universidad Autónoma de Yucatán, A.P. 150, Cordemex, Mérida,
 Yucatán, México.
- ^c CONACYT-Universidad de Sonora, Departamento de Matemáticas, Blvd. Luis Encinas y
 Rosales S/N, Hermosillo, Sonora, México, C.P. 83000.

11 Abstract

BACKGROUND. FINDINGS. IMPLICATIONS.

- 12 Keywords: COVID-19, Optimal Control, COVAX, Vaccination, WHO-SAGE,
- DALYs.

1. Introduction

- 15 Main contribution and its relevance.
- 16 Background.
- 17 Vaccine development.
- 18 Problem setup.
- 19 Litterature review.
- 20 Papaer structure.

2. Covid-19 spread dynamics

- Uncontrolled dynamics. We split a given population of size N in the base SEIR
- 23 structure with segregation infected classes according to the manifestation of
- symptoms. Let $L, S, E, I_S, I_A, H, R, D$ respectively denote the class of an indi-
- vidual according to its current state, namely
- Lockdown (L) All individuals that has with null mobility and that remains under isolation

^{*}Corresponding author

Email addresses: adrian.acuna@unison.mx (Gabriel A. Salcedo-Varela),
francisco.pa@uady.mx (Francisco Peñuñuri), dgonzalezsa@conacyt.mx (D.
Francisco.pa@uady.mx (Gaúl Díaz-Infante)

December 20, 2020

- Suceptible (S) Individual under risk
- Exposed (E) Population fraction that host SARS-CoV-2 but cannot infect
- Infected-Symptomatic (I_S) Population infected fraction with symptoms and reported as confirmed case
- Infected-Asymptomatic (I_A) Infected individual whit transitory or null symptoms and unreported
- Hospitalized (H) Infected population that requires hospitalization or intensive care.
- Recover or removed (R) Population that recovers from infection and develops partial immunity
- **Death** (D) Population fraction that death by COVID-19
- To fit data of cumulative reported symptomatic cases, we postulated the counter state Y_{I_S} and made the following hypothesis.
- Hypothesis 1. (H-1) We suppose that at least 30 % of the population is under lock-down and that eventually a fraction of this class move to the susceptible compartment at rate δ_L .
- 44 (H-2) Force infection is defined as the probablity of acquire COVID-19 given 45 the contact with a symptomatic or asymptotomatic individual. Thus we 46 normalize under live population N^*
- 47 (H-3) Susceptible individuals become exposed—but not infectious—when they are in contact with asymptomatic or symptomatic individuals. Thus β_S , β_A denote probability of infectious given the contact with a symptomatic or asymptomatic infectious individuals.
- 51 (H-4) After a period of latency of $1/\kappa = 5.1$ days, an exposed individual became infected. Being p the probability of develop symptoms and (1-p) the probability of became infectious but asymptomatic. Thus $p\kappa E$ denotes the event of become infectious and develop symptoms given that the individual has been exposed
- 56 (H-5) Asymptomatic individuals not die or get in a Hospital
- (H-6) A fraction μ_H of symptomatic individuals die by COVID-19 without hospitalization

Thus we formulate the following Ordinary Differential Equation (ODE)

$$L' = \theta \mu N^* - \epsilon \lambda L - \delta_L L - \mu L,$$

$$S' = (1 - \theta) \mu N^* + \delta_L L + \delta_R R - (\lambda + \mu) S,$$

$$E' = \lambda (\epsilon L + S) - (\kappa + \mu) E,$$

$$I'_S = p \kappa E - (\gamma_S + \delta_H + \mu_{IS}^{SDIV} + \mu) I_S,$$

$$I'_A = (1 - p) \kappa E - (\gamma_A + \mu) I_A,$$

$$H' = \delta_H I_S - (\gamma_H + \mu_H + \mu) H,$$

$$R' = \gamma_S I_S + \gamma_A I_A + \gamma_H H - (\delta_R + \mu) R,$$

$$D' = \mu_{IS} I_S + \frac{SDIV}{M} \mu_H H,$$

$$\frac{dY_{IS}}{dt} = p \kappa E,$$

$$\lambda := \frac{\beta_A I_A + \beta_S I_S}{N^*},$$

$$N^*(t) = L + S + E + I_S + I_A + H + R.$$

$$(1)$$

See Table 1 for notation and references values.

59

Figure 1: Cumulative new symptomatic and confirmed COVID19 reported cases from Ciudad de Mexico and Valle de Mexico [CITE] between March, 10, to March 30 of 2020.

61 2.1. Parameter callibration

Bayesian estimation. We calibrate parameters of our base dynamics in (1) via

Multichain Montecarlo (MCMC). To this end, we assume that the comulative

Parameter	Description	
μ	Death rate	
eta_S	Infection rate between suscepti-	
	ble and symptomatic infected	
eta_A	Infection rate between suscepti-	
	ble and asymptomatic infected	
λ_V	Vaccination rate	
δ_V^{-1}	Vaccine-induced immunity	
arepsilon	Vaccine efficacy	
κ^{-1}	Average incubation time	
p	New asymptomatic generation	
	proportion	
heta	Proportion of individuals under	
	lockdown	
γ_S^{-1}	Average time of symptomatic	
γ_S^{-1}	recovery	
γ_A^{-1}	Recovery average time of	
'A	asymptomatic individuals	
γ_H^{-1}	Recovery average time by hos-	
'11	pitalization	
δ_R^{-1}	Natural immunity	
δ_H	Infected symptomatic hospital-	
- 11	ization rate	

Table 1: Parameters definition of model in Equation (1).

- $_{\it 64}$ $\,$ incidence of new infected symptomatic cases CI_S follows a Poisson distribution
- with mean $\lambda_t = IC_s(t)$. Further, following [] we postulate priors for p and κ

$$Y_{t} \sim Poisson(\lambda_{t}),$$

$$\lambda_{t} = \int_{0}^{t} p \delta_{e} E,$$

$$p \sim \text{Uniform}(0.3, 0.8),$$

$$\kappa \sim \text{Gamma}(10, 50).$$
(2)

Using the reproductive number definition of Van DenDrishe [CITE], we obtain

$$R_0 := \frac{N^*(\beta_S p \kappa + \beta_A \kappa (1 - p))}{(\mu - \kappa)(\gamma_S + \mu_{I_s} + \gamma_A + \mu)N^* \mu}.$$

[SDIV 1] Review this R_0 calculation with

Gabriel

- Figure 2 displays data of coumulative confirmed cases of COVID-19 of Mex-
- 67 ico city, and Figure 2 displays the fitt of our model in Equations (1) and (2).
- Table 2 enclose fixed and estimated parameters to this setting.

Reference	Median	Parameter
this study	0.4, 0.3, 0.1	$\overline{q_r, \epsilon}$
this study	$q_r \times 8.690483 \times 10^{-1}$	β_S
this study	$q_r \times 7.738431 \times 10^{-1}$	β_A
*	0.19607843	κ
*	0.1213	p
this study	0.2,	θ
postulated	0.04	δ_L
*	0.2	δ_H
$\delta_V^{-1} = 2 \text{ years}$ CanSinoBIO	0.0027397260273972603	δ_V
$\delta_R^{-1} \approx 180 \mathrm{days}$	0.00555556	δ_R
**	3.913894×10^{-5}	μ
	0.0	μ_{I_S}
[FENG]	0.016 32	μ_H
*	0.092 506 94	γ_S
*	0.167 504 19	γ_A
*	5.079869×10^{-1}	γ_H
	0.000 611 35	λ_V
[PRESS RELESASES]	0.7, 0.80, 0.9, 0.95	ε
**	26 446 435	\overline{N}
	0.26626009702112796	L_0
	0.463606046009872	S_0°
*	0.00067033	E_0
* * *	9.283×10^{-5}	I_{S_0}
*	0.00120986	I_{A_0}
**	1.34157969×10^{-4}	H_0
	$2.66125939 \times 10^{-1}$	R_0
**	0.00190074	D_0
	0.0	X_{vac}^{0}
	0.0	V_0^{vac}
	0.12258164	$Y_{I_S}^0$
$9500\mathrm{beds}/N$	0.0003592166581242425	$\stackrel{I_S}{B}$
DALY def	0.002 012 775 543 825 648 6	a_{I_S}
	0.001 411 888 738 103 725, or	a_H
DALY def [Jo 2020] DALY def	$a_H(x) := 0.001411888738103725\log(\frac{1}{B - \kappa I_S})$ 7.25	a_D

Table 2: Model parameters. Values based mainly in [FNEG]

Figure 2: Fit of diary new cases of Mexico city during exponential growth.

₆₉ 3. Imperfect-preventive Covid-19 vaccination

- 70 Preventive vaccines.
- 71 Efficacy and vaccine-induced immunity.
- Actual vaccine stage development.
- 73 Vaccination reproductive number.
- ⁷⁴ Vaccination rate λ_V estimate.

Feasibility regions according to efficacy and vaccination rate.

$$L' = \theta \mu N^* - (\epsilon \lambda + \delta_L + \mu)L$$

$$S' = (1 - \theta)\mu N^* + \delta_L L + \delta_V V + \delta_R R$$

$$- (\lambda + \lambda_V + \mu) S$$

$$E' = \lambda (\epsilon L + (1 - \varepsilon)V + S) - (\kappa + \mu)E$$

$$I'_S = p\kappa E - (\delta_H + \gamma_S + \mu_{I_S} + \mu)I_S$$

$$I'_A = (1 - p)\kappa E - (\gamma_A + \mu)I_A$$

$$H' = \delta_H I_S - (\gamma_H + \mu_H + \mu)H$$

$$R' = \gamma_S I_S + \gamma_A I_A + \gamma_H H - (\delta_R + \mu)R$$

$$D' = \mu_{I_S} I_S + \mu_H H$$

$$V' = \lambda_V S - [(1 - \varepsilon)\lambda + \delta_V + \mu] V$$

$$\frac{dX_{vac}}{dt} = (u_V(t) + \lambda_V) [S + E + I_A + R]$$

$$\frac{dY_{I_S}}{dt} = p\kappa E$$

$$\lambda := \frac{\beta_A I_A + \beta_S I_S}{N^*}$$

$$L(0) = L_0, S(0) = S_0, E(0) = E_0,$$

$$I_S(0) = I_{S_0}, I_A(0) = I_{A_0}, H(0) = H_0,$$

$$R(0) = R_0, D(0) = D_0,$$

$$V(0) = 0, X_{vac}(0) = 0,$$

$$X_{vac}(T) = x_{coverage},$$

⁷⁵ 4. Vaccination reproductive number

- 76 R_0 definition.
- 77 No vaccine reproductive number.
- 78 Vaccine reproductive number.
- 79 Efficacy, coverage and vaccination rate.
- 80 Here Gabriel's R not calculations. SDIV

$$-\frac{\kappa \left(\epsilon \mu p\theta \beta_A - \epsilon \mu p\theta \beta_S + \epsilon p\theta \beta_A \delta_H\right)}{\gamma_A \mu_{I_S} \gamma_A \mu_{I_S}} \tag{4}$$

plots figure as function of efficacy and vaccina-

[SDIV 2]

tion rate

Here countor

81

 $N^*(t) = L + S + E + I_S + I_A + H + R + V.$

Figure 3: R not contour plot as function of efficacy and vaccination rate.

5. Optimal controlled version

- 83 Controlled Model. Now wee model vaccination, treatment and lockdown as a
- optimal control problem. According to dynamics in Equation (1), we modu-
- late the vaccination rate with a time-dependent control signal $u_V(t)$. We add
- compartment X_{vac} to count all the vaccine applications of susceptible, exposed,
- 87 asymptomatic and recovered individuals. This process is modeled by

$$X'(t) = (\lambda_V + u_V(t))(S + E + I_A + R)$$
(5)

and describes the number of applied vaccines at time t. Consider

$$x(t) := (L, S, E, I_S, I_A, H, R, D, V, X_{vac})^{\top}(t)$$

- and control signal $u_v(\cdot)$. We quantify the cost and reward of a vaccine strategy
- 89 policy via the penalization functional

$$J(u_L, u_V) := \int_0^T a_S I_S + a_d D + \frac{1}{2} \left(c_L u_L^2 + c_V u_v^2 \right) ds.$$
 (6)

- In other words, we assume in functional J that pandemic cost is proportional to
- 91 the symptomatic and death reported cases and that a vaccination policy implies
- 92 quadratic consumption of resources.

Further, since we aim to simulate vaccination policies at different coverage scenarios, we impose the vaccination counter state's final time condition X(T)

$$x(T) = (\cdot, \cdot, \cdot, \cdot, \cdot, X_{vac}(T))^{\top}, \in \Omega$$

$$X_{vac}(T) = x_{coverage},$$

$$x_{coverage} \in \{\text{Low}(0.2), \text{Mid}(0.5), \text{High}(0.8)\}.$$
(7)

- Thus, given the time horizon T, we impose that the last fraction of vaccinated populations corresponds to 20%, 50% or 80%, and the rest of final states as free.
- We also impose the path constraint

100

102

103

104

105

106

107

108

109

110

$$\Phi(x,t) := \kappa I_S(t) \le B, \qquad \forall t \in [0,T], \tag{8}$$

to ensure that healthcare services will not be overloaded. Here κ denotes hospitalization rate, and B is the load capacity of a health system.

Given a fixed time horizon and vaccine efficiency, we estimate the constant vaccination rate as the solution of

$$x_{coverage} = 1 - \exp(-\lambda_V T). \tag{9}$$

That is, λ_v denotes the constant rate to cover a fraction $x_{coverage}$ in time horizon T. Thus, according to this vaccination rate, we postulate a policy u_v that modulates vaccination rate according to λ_V as a baseline. That is, optimal vaccination amplifies or attenuates the estimated baseline λ_V in a interval $[\lambda_v^{\min}, \lambda_v^{\max}]$ to optimize functional $J(\cdot)$ —minimizing symptomatic, death reported cases and optimizing resources.

Our objective is minimize the cost functional (6)—over an appropriated functional space—subject to the dynamics in equations (1) and (5), boundary conditions, and the path constrain in (8). That is, we search for vaccination policies

 $u_V(\cdot)$, which solve the following optimal control problem (OCP).

$$\min_{u \in \mathcal{U}} J(u) := \int_0^T [(a_D \mu_s + a_H \delta_H) \, I_S(r) + a_{I_S} p \kappa E(r)] \, dr$$
s. t.
$$L' = \theta \mu N^* - \epsilon \lambda L - u_L(t) L - \mu L$$

$$S' = (1 - \theta) \mu N^* + u_L(t) L + \delta_v V + \delta_R R$$

$$- [\lambda + (\lambda_V + u_V(t)) + \mu] \, S$$

$$E' = \lambda (\epsilon L + (1 - \varepsilon) V + S) - (\kappa + \mu) E$$

$$I'_S = p \kappa E - (\gamma_S + \mu_{I_S} + \delta_H + \mu) I_S$$

$$I'_A = (1 - p) \kappa E - (\gamma_A + \mu) I_A$$

$$H' = \delta_H I_S - (\gamma_H + \mu_H + \mu) H$$

$$R' = \gamma_S I_S + \gamma_A I_A + \gamma_H H - (\delta_R + \mu) R$$

$$D' = \mu_{I_S} I_S + \mu_H H$$

$$V' = (\lambda_V + u_V(t)) S - [(1 - \varepsilon) \lambda + \delta_V + \mu] V$$

$$\frac{dX_{vac}}{dt} = (u_V(t) + \lambda_V) [L + S + E + I_A + R]$$

$$\frac{dY_{I_S}}{dt} = p \kappa E$$

$$\lambda := \frac{\beta_A I_A + \beta_S I_S}{N^*}$$

$$L(0) = L_0, \ S(0) = S_0, \ E(0) = E_0, \ I_S(0) = I_{S_0},$$

$$I_A(0) = I_{A_0}, H(0) = H_0, \ R(0) = R_0, \ D(0) = D_0,$$

$$V(0) = 0, \ X_{vac}(0) = 0, \ u_V(.) \in [u_{\min}, u^{\max}],$$

$$X_{vac}(T) = x_{coverage}, \ \kappa I_S(t) \leq B, \ \forall t \in [0, T],$$

² 6. Numerical Results

113 Changes (compact)

120

 $N^{\star}(t) = L + S + E + I_S + I_A + H + R + V$

121 Appendix A. Appendix

122 Consider the following cost functional that we want to minimize

$$\int_0^T C(t, X(t), u(t))dt \tag{A.1}$$

123 subject to the dynamics

$$\dot{X}(t) = f(t, X(t), u(t)), \qquad 0 \le t \le T, \tag{A.2}$$

and the initial state $X(0) = x_0$. Let $t_0 < t_1 < \ldots < t_n$, with $t_0 = 0$ and $t_n = T$, be a partition of the interval [0,T]. We consider *piecewise constant controls* \tilde{u} of the form

$$\tilde{u}(t) = a_i \qquad t_i \le t < t_{i+1} \tag{A.3}$$

127 for $j = 0, \dots, n-1$.

ASSUMPTION 1.

ASSUMPTION 2.

By Assumption 1, the system

$$\dot{X}(t) = f(t, X(t), a_0), \quad X(0) = x_0, \quad 0 \le t \le t_1,$$

has a unique solution $\tilde{X}_0(t;x_0,a_0)$ which is continuous in (x_0,a_0) . Next, put $x_1:=\tilde{X}_0(t_1;x_0,a_0)$ and consider the system

$$\dot{X}(t) = f(t, X(t), a_1), \quad X(t_1) = x_1, \quad t_1 < t < t_2,$$

which, again by Assumption 1, has a unique solution $\tilde{X}_1(t; x_1, a_1)$ continuous in (x_1, a_1) . By following this procedure, we end up having a recursive solution

$$\tilde{X}_{n-1}(t; x_{n-1}, a_{n-1}),$$

$$x_{n-1} := \tilde{X}_{n-2}(t_{n-1}; x_{n-2}, a_{n-1}), \quad t_{n-1} \le t \le T.$$

Thus, for a control \tilde{u} of the form (A.3) and the corresponding solution path \tilde{X} , we have

$$\int_0^T C(t, \tilde{X}(t), \tilde{u}(t)) dt = \sum_{j=0}^{n-1} \int_{t_j}^{t_{j+1}} C(t, \tilde{X}_j(t), a_j) dt.$$

Notice that each \tilde{X}_j is a continuous function of (a_0, \ldots, a_j) and x_0 . Therefore, by Assumption 2, the mapping

$$(a_0, \dots, a_{n-1}) \mapsto \sum_{j=0}^{n-1} \int_{t_j}^{t_{j+1}} C(t, \tilde{X}_j(t), a_j) dt$$

is continuous.

References

- [1] Yinon M Bar-on, Ron Sender, Avi I Flamholz, Rob Phillips, and Ron Milo. A quantitative compendium of COVID-19 epidemiology. pages 1–51.
- [2] Bruno Buonomo. Effects of information-dependent vaccination behavior on coronavirus outbreak: insights from a SIRI model. *Ricerche di Matematica*, 2020.
- [3] Anastasia Chatzilena, Edwin van Leeuwen, Oliver Ratmann, Marc
 Baguelin, and Nikolaos Demiris. Contemporary statistical inference for infectious disease models using Stan. *Epidemics*, 29(February):100367, 2019.
- [4] Nicholas G Davies, Adam J Kucharski, Rosalind M Eggo, Amy Gimma,
 CMMID COVID-19 Working Group, and W. John Edmunds. The effect
 of non-pharmaceutical interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study. medRxiv, page
 2020.04.01.20049908, 2020.
- [5] Laura Di Domenico, Giulia Pullano, Chiara E Sabbatini, Pierre-Yves
 Boëlle, and Vittoria Colizza. Currently under screening at medRxiv Expected impact of lockdown in Île-de-France and possible exit strategies.
 2020.
- [6] Wandi Ding and Suzanne Lenhart. Introduction to optimal control for discrete time models with an application to disease modeling. In *Modeling paradigms and analysis of disease transmission models*, volume 75, pages 109–119. Amer. Math. Soc., Providence, RI, oct 2010.
- [7] Ramses Djidjou-Demasse, Yannis Michalakis, Marc Choisy, Micea T. Sofonea, and Samuel Alizon. Optimal COVID-19 epidemic control until vaccine deployment. medRxiv, page 2020.04.02.20049189, 2020.
- Neil M Ferguson, Daniel Laydon, Gemma Nedjati-gilani, Natsuko Imai, 163 Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, 164 Zulma Cucunubá, Gina Cuomo-dannenburg, Amy Dighe, Han Fu, Katy 165 Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C Okell, Sabine Van, Hayley Thompson, Robert Verity, Erik Volz, Haowei Wang, Yuan-167 rong Wang, Patrick G T Walker, Caroline Walters, Peter Winskill, Charles 168 Whittaker, Christl A Donnelly, Steven Riley, and Azra C Ghani. Impact of 169 non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality 170 and healthcare demand. (March), 2020. 171
- [9] M. H. A. Biswas, L. T. Paiva, and MdR de Pinho. A SEIR model for control of infectious diseases with constraints. *Mathematical Biosciences and Engineering*, 11(4):761–784, 2014.
- 175 [10] IHME COVID-19 health service utilization forecasting Team and Christo-176 pher JL Murray. Forecasting COVID-19 impact on hospital bed-days,

- ICU-days, ventilator-days and deaths by US state in the next 4 months.

 medRxiv, page 2020.03.27.20043752, mar 2020.
- 179 [11] Gang Huang, Yasuhiro Takeuchi, Wanbiao Ma, and Daijun Wei. Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate. *Bulletin of Mathematical Biology*, 72(5):1192–1207, 2010.
- [12] Jiwei Jia, Jian Ding, Siyu Liu, Guidong Liao, Jingzhi Li, B. E.N. Duan,
 Guoqing Wang, and R. A.N. Zhang. Modeling the control of COVID 19: Impact of policy interventions and meteorological factors. *Electronic Journal of Differential Equations*, 2020:1–21, 2020.
- [13] Abdelilah Kaddar, Abdelhadi Abta, and Hamad Talibi Alaoui. A comparison of delayed SIR and SEIR epidemic models. Nonlinear Analysis:
 Modelling and Control, 16(2):181–190, apr 2011.
- 189 [14] Qian Li, Biao Tang, Nicola Luigi Bragazzi, Yanni Xiao, and Jianhong Wu.
 190 Modeling the impact of mass influenza vaccination and public health inter191 ventions on COVID-19 epidemics with limited detection capability. Math192 ematical Biosciences, 325(May):108378, jul 2020.
- 193 [15] Gustavo Barbosa Libotte, Fran Sérgio Lobato, Gustavo Mendes Platt, and
 Antônio José da Silva Neto. Determination of an Optimal Control Strategy
 for Vaccine Administration in COVID-19 Pandemic Treatment. (November
 2019), apr 2020.
- 197 [16] Manotosh Mandal, Soovoojeet Jana, Swapan Kumar Nandi, Anupam Khatua, Sayani Adak, and T.K. Kar. A model based study on the dynamics of COVID-19: Prediction and control. *Chaos, Solitons & Fractals*, 136:109889, jul 2020.
- [17] Van Kinh Nguyen and Esteban A. Hernandez-Vargas. Parameter Estimation in Mathematical Models of Viral Infections Using R. volume 1836, pages 531–549. 2018.
- [18] Jorge Nocedal, Andreas Wächter, and Richard A. Waltz. Adaptive Barrier Update Strategies for Nonlinear Interior Methods. SIAM Journal on Optimization, 19(4):1674–1693, jan 2009.
- [19] Xinwei Wang, Haijun Peng, Boyang Shi, Dianheng Jiang, Sheng Zhang,
 and Biaosong Chen. Optimal vaccination strategy of a constrained time varying SEIR epidemic model. Communications in Nonlinear Science and
 Numerical Simulation, 67:37–48, 2019.