Leandro Vendramin

Associative algebras

Notes

Wednesday 8th September, 2021

Contents

1	Semisimple algebras	
Ref	erences	

Chapter 1

Semisimple algebras

Definition 1.1. An **algebra** (over the field K) is a vector space (over K) with an associative multiplication $A \times A \to A$ such that $a(\lambda b + \mu c) = \lambda(ab) + \mu(ac)$ and $(\lambda a + \mu b)c = \lambda(ac) + \mu(bc)$ for all $a, b, c \in A$, and that contains an element $1_A \in A$ such that $1_A a = a1_A = a$ for all $a \in A$.

Note that an algebra over K is a ring A that is a vector space (over K) such that the map $K \to A$, $\lambda \mapsto \lambda 1_A$, is injective.

Definition 1.2. An algebra *A* is **commutative** if ab = ba for all $a, b \in A$.

Example 1.3. The field \mathbb{R} is a real algebra and similarly \mathbb{C} is a complex algebra. Moreover, \mathbb{C} is a real algebra.

Any field K is an algebra over K.

Example 1.4. Let K be a field. Then K[X], K[X,Y] and K[[X]] are algebras over K.

Example 1.5. If *A* is an algebra, then $M_n(A)$ is an algebra.

The dimension of an algebra is by definition the dimension of the underlying vector space.

Definition 1.6. Let *A* and *B* be algebras. A map $f: A \rightarrow B$ is an **algebra homomorphism** if *f* is linear and it is a ring homomorphism.

The map $\mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$, is a ring homomorphism that is not \mathbb{C} -linear, so it is not an \mathbb{C} -algebra homomorphism.

Example 1.7. Let G be a finite group. The vector space $\mathbb{C}[G]$ with basis $\{g:g\in G\}$ is an algebra with multiplication

$$\left(\sum_{g\in G}\lambda_g g\right)\left(\sum_{h\in G}\mu_h h\right)=\sum_{g,h\in G}\lambda_g \mu_h(gh).$$

Note that dim $\mathbb{C}[G] = |G|$ and $\mathbb{C}[G]$ is commutative if and only G is abelian. This is the **complex group algebra** of G.

Two basic exercises about group algebras.

Exercise 1.8. Let G be a non-trivial finite group. Then $\mathbb{C}[G]$ has zero divisors.

Exercise 1.9. Let A be an algebra and G be a finite group. If $f: G \to \mathcal{U}(R)$ is a group homomorphism, then there exists an algebra homomorphism $\varphi: K[G] \to A$ such that $\varphi|_G = f$.

Definition 1.10. Let *A* be an algebra. An (left) **ideal** of *A* is an (left) ideal of the ring *A* that is also a subspace.

Let *A* be an algebra over *K*. If *I* is a left ideal of the ring *A*, then *I* is a subspace (over *K*), as $\lambda a = \lambda(1_A a) = (\lambda 1_A)a$ for all $\lambda \in K$ and $a \in A$.

Definition 1.11. Let *A* be an algebra. A **module** over *A* is a module *M* of the ring *A*.

Note that if M is a module over A, then M is a vector space with $\lambda m = (\lambda 1_A)m$ for all $\lambda \in K$ and $m \in M$.

Exercise 1.12. Let A be an algebra and M be a module over A. Then M is finitely generated if and only if M is finite-dimensional.

An important example of a module is given by the left representation. The algebra *A* is a module over *A* with the left multiplication.

Definition 1.13. Let *A* be an algebra and *M* be a module over *A*. Then *M* is **simple** if $M \neq \{0\}$ and $\{0\}$ and $\{0\}$ and $\{0\}$ are the only submodules of *M*.

Definition 1.14. Let A be a finite-dimensional algebra and M be a finite-dimensional module over A. Then M is **semisimple** if M is a direct sum of finitely many simple submodules.

Clearly, a finite direct sum of semisimples is semisimple.

Lemma 1.15 (Schur). *Let* A *be an algebra. If* S *and* T *are simple modules and* $f: S \to T$ *is a non-zero module homomorphism, then* f *is an isomorphism.*

Proof.

References