

Algorithms. Matching

Part II. Preference model.

B9 - Algorithms Matching

M-ALG-102

Introduction

Figure: Graph

Introduction

 $https://github.com/nlehir/ALGO2\\ We will need (the installation of these packages should work with pip):$

- matplotlib
- pandas
- sklearn
- optionnally : ipdb

Day 2

Compatibility graphs

Simple geometrical data Complex data

Probability distributions

Reminders on probabilities Analyzing a distribution Optimization and Maximum Likelihood

Multivariate analysis and clustering

Correlation

Gradients

Kmeans clustering

Similarities and Spectral Clustering

Similarities

Spectral Clustering

Additional considerations and conclusions

- Yesterday we processed graphs describing relationship between data
- ▶ If two nodes were related, they were linked by an edge in the graph.

- Yesterday we processed graphs describing relationship between data
- ▶ If two nodes were related, they were linked by an edge in the graph.
- ► Today we are interested in building such graphs directly from the data, we call them **compatibility graphs**.

We are interested in building **compatibility graphs**. Given two nodes in a graph, should there be an edge between them ?

We are interested in building **compatibility graphs**.

Given two nodes in a graph, should there be an edge between them ?

Note: it is not the same problem as the matching problem. In the matching problem, the edges are already defined.

We are interested in building **compatibility graphs**. Given two nodes in a graph, should there be an edge between them ?

Note: it is not the same problem as the matching problem. In the matching problem, the edges are already defined. However, once the edges are built, we can apply a matching to it.

Example applications

- Social networks management
- Recommendations

Building compatibility graphs

- ▶ We will build graphs first from simple data
- ▶ Then from more complex data.

Building a graph from simple data

▶ We will first build a graph from simple data in the 2D space.

Euclidian distance and compatibility

Consider the following data:

Figure: Data : we would like to define edge between some of them

Is this set of edges a good solution?

Figure: Some definition of edges

Is this set of edges a good solution?

Figure: Some definition of edges

Euclidian distance and compatibility

Here, all we know about the data is their euclidian distance :

This one looks ok

Figure: A proposition of edges

Backboard

Euclidian distance and threshold.

Exercice 1 : Setting a threshold **cd compatibility_simple** and set the threshold used in **build_graph.py** to draw relevant edges between the nodes. Feel free to use another dataset!

Exercice 2: Changing the distance

- ► Assess the impact of changing the distance used. Possible choices :
 - ► L1 distance (Manhattan)
 - ▶ $||||_{\infty}$ distance (backboard)
 - custom distance
- use build_graph_other_distance.py and edit the distances used at the end of the file.
- Try several values for the threshold.

General notion of a distance

Let us generalize what we experimentally studied.

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional **vectors**.

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

► L2 :
$$||x - y||_2^2 = \sum_{k=1}^{p} (x_k - y_k)^2$$
 (Euclidian distance)

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional **vectors**.

► L2 :
$$||x - y||_2^2 = \sum_{k=1}^{p} (x_k - y_k)^2$$
 (Euclidian distance)

▶ L1 :
$$||x - y||_1 = \sum_{k=1}^{p} |x_k - y_k|$$
 (Manhattan distance)

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional **vectors**.

► L2 :
$$||x - y||_2^2 = \sum_{k=1}^{p} (x_k - y_k)^2$$
 (Euclidian distance)

▶ L1 :
$$||x - y||_1 = \sum_{k=1}^{p} |x_k - y_k|$$
 (Manhattan distance)

• weighted L1 :
$$\sum_{k=1}^{p} w_k |x_k - y_k|$$

Hamming distance

• $\#\{x_i \neq y_i\}$ (Hamming distance)

Hamming distance and edit distance

- $\#\{x_i \neq y_i\}$ (Hamming distance)
- ▶ linked to **edit distance** : used to quantify how dissimilar two strings are by counting the number of operations needed to transform one into the other (several variants exist)

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

▶ be symmetrical : $\forall x, y, d(x, y) = d(y, x)$

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

- be symmetrical : $\forall x, y, d(x, y) = d(y, x)$
- ▶ separate the values : $\forall x, y, d(x, y) = 0 \Leftrightarrow x = y$

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

- ▶ be symmetrical : $\forall x, y, d(x, y) = d(y, x)$
- ▶ separate the values : $\forall x, y, d(x, y) = 0 \Leftrightarrow x = y$
- respect the **triangular inequality** $\forall x, y, z, d(x, y) \leq d(x, z) + d(y, z)$

Building compatibility graphs for more complex data

- ▶ We will do the same with more complex data:
 - possibly more dimensions
 - possibility categorical variables

Random variables

▶ A random variable is a quantity that can take several values

Random variables

- ▶ A random variable is a quantity that can take several values
- For instance :
 - ▶ the result of a dice throw

Figure: Dice

Random variables

- ▶ A random variable is a quantity that can take several values
- For instance :
 - the result of a dice throw
 - waiting time with RATP

Figure: Some metro station

- ▶ A random variable is a quantity that can take several values
- ► For instance :
 - the result of a dice throw
 - waiting time with RATP
 - weather

Figure: Weather in November

- ▶ A random variable is a quantity that can take several values
- For instance :
 - the result of a dice throw
 - waiting time with RATP
 - weather
 - number of cars taking the periphrique at the same time

What are the differences between these random variables?

What are the differences between these random variables ?

- ► Some are **continuous**, others **discrete**
- continuous :

What are the differences between these random variables ?

- ► Some are **continuous**, others **discrete**
- **continuous**: weather, RATP

What are the differences between these random variables?

- ► Some are continuous, others discrete
- continuous : weather, RATP
- ▶ discrete : dice (6 possibilities), number of cars (> 10000)

A random variable is linked to a **probability distribution**.

- A random variable is linked to a **probability distribution**.
- ▶ It quantifies the probability of observing one outcome.

- ► A random variable is linked to a **probability distribution**, which is a function *P*
- ▶ It quantifies the probability of observing one outcome.
- ► For a discrete variable : each possible outcome is associated with a number between 0 and 1

- ▶ For a dice game, the possible outcomes are in the set $\{1, 2, 3, 4, 5, 6\}$
- ► For a dice game : P(1) = P(2) = P(3) = P(4) = P(5) = P(6) =

- ► For a dice game, the possible outcomes are in the set $\{1, 2, 3, 4, 5, 6\}$
- ► For a dice game : $P(1) = \frac{1}{6}$, $P(2) = \frac{1}{6}$, $P(3) = \frac{1}{6}$, $P(4) = \frac{1}{6}$, $P(5) = \frac{1}{6}$, $P(6) = \frac{1}{6}$
- This is called a uniform distribution

► Periphrique :

 Periphrique : probably a time-dependent very complicated distribution

Continuous variables

► How would you model a continuous variable ? Can you assign a number to a waiting time or a weather ?

Continuous variables

- ► How would you model a continuous variable? Can you assign a number to a waiting time or a weather?
- ▶ One needs to use **probability densities**. Formally, the probably of being between x and x + dx is p(x)dx.

Continuous variables

- ► How would you model a continuous variable? Can you assign a number to a waiting time or a weather?
- ▶ One needs to use **probability densities**. Formally, the probably of being between x and x + dx is p(x)dx.
- ▶ Let's see some examples

Uniform discrete

Figure: Uniform discrete distribution

Bernoulli

Figure: Bernoulli distribution

Bernoulli p

- With probability p, X = 1
- With probability 1 p, X = 0

Bernoulli

Figure: Bernoulli Distribution

Bernoulli

Figure: Bernoulli Distribution

Uniform continuous

Figure: Uniform continuous distribution

Uniform continuous

Figure: Uniform continuous distribution

Figure: Normal distribution

Figure: Normal distribution

Figure: Normal distribution

White noise

Figure: White noise

Histograms

Is looking at the raw dataset really informative ?

Histograms

Is looking at the raw dataset really **informative?** It is informative, but often a **histogram** tells more.

Uniform discrete

Figure: Historgram 1

Bernoulli

Figure: Historgram 2

Uniform continuous

Figure: Historgram 3

Figure: Historgram 4

Exercice 3 : Analyzing a distribution I put values in the file **mysterious_distro_1.csv**

Exercise

Exercice 4: Analyzing a distribution I put values in the file mysterious_distro_1.csv
Can you analyze these values in terms of a distribution?
Use read_myst_1.py to analyze the distribution (suggestion: change the number of bins used)

Exercise

When you have guessed the kind of distribution it is, you need to finds its **parameters**.

- its mean
- its standard deviation

This is called **fitting** a distribution to a dataset : it's a classical machine learning problem.

To do so, uncomment the last section of the script read_myst_1

Distribution 1

Figure: The data we analyze

histograms

Figure: 5 bins

histograms

Figure: 100 bins

histograms

Figure: 1000 bins (too many)

Normal distribution

```
import csv
import numpy as np

file_name = 'mysterious_distro_1.csv'

mean = 4

std_dev = 1
nb_point = 1000

with open('csv_files/' + file_name, 'w') as csvfile:
    filewriter = csv.writer(csvfile, delimiter=',')
    for point in range(1, nb_point):
        random_variable = np.random.normal(loc=mean, scale=std_dev)
        filewriter.writerow([str(point), str(random_variable)])
```

Figure: create_normal.py : Creation of the distribution

Second example

Let's try to perform the same analysis on the file **mysterious_distro_2.csv** using **read_myst_1**.

Second example

Figure: Second distribution

Multimodal distribution

Figure: This distribution has several modes

Multimodal distribution

```
mean_1 = 4
std_dev_1 = 1
nb_point_1 = 1000

mean_2 = 15
std_dev_2 = 3
nb_point_2 = 1000

nb_point = nb_point_1 + nb_point_2

with open('csv_files/' + file_name, 'w') as csvfile:
    filewriter = csv.writer(csvfile, delimiter=',')
    for point in range(1, nb_point):
        if random.randint(1, 2) == 1:
            random_variable = np.random.normal(loc=mean_1, scale=std_dev_1)
            filewriter.writerow([str(point), str(random_variable]])
        else:
            random_variable = np.random.normal(loc=mean_2, scale=std_dev_2)
            filewriter.writerow([str(point), str(random_variable]])
```

Figure: create_bimodal.py : Generation of multimodal distribution

Fitting

In most cases, it won't be that straightforward to fit a distribution :

Fitting

In most cases, it won't be that straightforward to fit a distribution .

- what distribution do we want to use ?
- even if we know the right shape of the distribution, how to choose the parameters ?

The **Maximum Likelihood** method is one example method used in Machine Learning.

Say you have a dataset $(x_1, ..., x_n)$.

The **Maximum Likelihood** method is one example method used in Machine Learning.

Say you have a dataset $(x_1, ..., x_n)$.

You first need to choose a **model** (which is the distribution) of your dataset, p.

The **Maximum Likelihood** method is the one used in Machine Learning.

Say you have a dataset $(x_1, ..., x_n)$.

You first need to choose a **model** (which is the distribution) of your dataset, p.

Then, you must optimize the **parameters of this model**, noted θ .

The Likelihood of your model is

$$L(\theta) = \prod_{i=1}^{n} p(x_i | \theta)$$
 (1)

The Likelihood of your model is

$$L(\theta) = \prod_{i=1}^{n} p(x_i | \theta)$$
 (2)

This is the function that you want to **maximise**.

Most of the time it's written this way : "minimise $-logL(\theta)$ " Why ?

Most of the time it's written this way : "minimise $-logL(\theta)$ " Because the log **transforms the product into a sum**, which is easier to **derivate**.

$$-logL(\theta) = -\sum_{i=1}^{n} \log(p(x_i|\theta))$$
 (3)

Max Likelihood

So how can we minimise $-logL(\theta)$? In the case of very large datasets, and large numbers of parameters (tens, hundredths, more), most of the time an **analytic solution** is not available. So people use **gradient descent**.

The gradient descent

We want x to **minimise** f. We perform, until some criteria is satisfied :

$$x \leftarrow x - \alpha \nabla_f(x) \tag{4}$$

Use the file "gradient_algo.py" and implement the gradient algorithm on a simple example.

I inserted two errors in the code.

The gradient descent

$$x \leftarrow x - \alpha \nabla_f(x) \tag{5}$$

The gradient descent

Experiment with it, try to change all the parameters and to break it again. Is it stable ?

Multidimensional vectors

We can consider data that live in higher dimensional spaces than 2.

Multidimensional vectors

We can consider data that live in higher dimensional spaces than 2. Examples ?

Multidimensional vectors

We can consider data that live in higher dimensional spaces than

- 2. Examples ?
 - images
 - sensor that receives multimodal information

Correlation

Sometimes the components of a multidimensonial vector $(x_1,...,x_n)$ are not independent.

Correlation

Sometimes the components of a multidimensonial vector $(x_1,...,x_n)$ are not independent.

To study this, we can use the **covariance** of the two components, or the **correlation** which is actually clearer.

Example

Look at the data contained in **mysterious_distro_3.csv**They contain a random variable with 5 dimensions. Some of these dimensions are correlated.

Think for instance to physics: temperature and pressure, etc. If you have measurements of temperature and pressure, the two would probably be **correlated**.

Correlation matrix

Figure: Correlation matrix for the distribution

Generation of the data

```
mean 1 = 4
std \overline{\text{dev }} 1 = 1
mean 2 = 15
std \overline{\text{dev }} 2 = 3
mean 3 = -5
std dev 3 = 2
mean noise = 0
noise std dev = 1
nb point = 1000
with open('csv_files/' + file_name, 'w') as csvfile:
    filewriter = csv.writer(csvfile, delimiter=',')
    for point in range(1, nb_point):
        noise = np.random.normal(loc=mean noise. scale=noise std dev)
        random variable 1 = np.random.normal(loc=mean 1, scale=std dev 1)
        random variable 2 = np.random.normal(loc=mean 2, scale=std dev 2)
        random variable 3 = random variable 1 + noise
        random_variable_4 = np.random.normal(loc=mean_3, scale=std_dev_3)
        random_variable_5 = -0.4 * random_variable_2 + noise
        filewriter.writerow([str(point),
                              str(random variable 1).
                              str(random variable 2),
                              str(random variable 3).
                              str(random variable 4),
                              str(random variable 5)1)
```

Figure: Multidimensional random variable

Kmeans clustering

Figure: Data we want to cluster

Kmeans clustering

Modify the **kmeans.py** file so that it performs the kmeans algorithm.

I inserted two errors in the code.

You should obtain something like this:

Kmeans

Figure: Voronoi 0th iteration

Kmeans

Figure: Centroids 0th iteration

Kmeans

Figure: Voronoi 1st iteration

Kmeans

Figure: Centroids 1st iteration

► The kmeans were based on a notion of **distance between points**

- ► The kmeans were based on a notion of **distance between points**
- But sometimes you do not have access to a distance between the points.

- ► The kmeans were based on a notion of **distance between points**
- But sometimes you do not have access to a distance between the points.
- You might need to work with something that is more general, for instance a similarity.

- ▶ When working with distances, two points that "look the same" should be separated by a **small distance** .
- ► When working with a similarity, two points that "look the same" should have a **high similarity**.

Example of similarity: adjacency

- ► An example of similarity is the relationship of **adjacency**.
- ▶ If *i* and *j* are related by an edge, $S_{ij} = 1$.
- ▶ Otherwise $S_{ij} = 0$.

Adjacency matrix

Differences between similarities and distances:

▶ A similarity *S* is not always symmetrical.

Differences between similarities and distances:

- ▶ A similarity *S* is not always symmetrical.
- ▶ Indeed, in a **directed graph**, having a directed edge between *i* and *j* does not mean that we have an edge between *j* and *i*.

Differences between similarities and distances:

- ▶ A similarity *S* is not always symmetrical.
- ▶ Indeed, in a **directed graph**, having a directed edge between *i* and *j* does not mean that we have an edge between *j* and *i*.
- ▶ $S_{ij} = 0$ does not mean that i = j, it is rather the contrary.

► A similarity is a more general notion than a distance. Given a similarity between two points, we can deduce a similarity.

- ▶ A similarity is a more general notion than a distance. Given a similarity between two points, we can deduce a similarity.
- ▶ For instance this way, if d_{ij} is the distance between i and j:

$$S_{ij} = \exp(-d_{ij}) \tag{6}$$

Spectral Clustering

- ► A clustering method that works with similarities
- ► It performs a low dimensional embedding of the similarity matrix, followed by a Kmeans

Exercise

We will perform Spectral Clustering on this graph :

Please **cd spectral_clustering** and use **vanilla_spectral_clustering** in order to apply spectral clustering. You first need to input to right **affinity matrix** or **similarity matrix** and then use the **sklearn** library. You also need to **tune the number of clusters.**

doc: check the sklean page for Spectral Clustering,

Spectral clustering

Can you guess some drawbacks of the method?

Spectral clustering

Can you guess some drawbacks of the method?

- Need to provide the number of clusters.
- Not adapted to a large number of clusters.
- kmeans step : so depends on a random initialization.

Heuristic

► We would like a critetion in order to justify the number of clusters used.

Normalized cut: a measurement of the quality of a clustering

- ► The cut of a cluster is the number of outside connections (connections with other clusters).
- ▶ The **degree** of a node is its number of adjacent edges
- ► The degree of a cluster is the sum of the degrees of its nodes.
- ▶ The **normalized cut** of a clustering is:

$$NCut(C) = \sum_{k=1}^{K} \frac{Cut(C_k, V \setminus C_k)}{d_{C_k}}$$
 (7)

Normalization

► The normalization is useful in order to take the **weight** (degree) of a cluster into account.

Normalized cut and clustering

Let's see how the normalized cut can help us choose the right number of clusters (backboard).

Exercise: normalized cut elbow

Please use the criterion in the file $normalized_cut$ in order to guess the relevant number of clusters in order to process the data contained in data/

Normalized cuts

Similarity

Example

Figure: In a), the elbow method is used to choose the number of clusters. [Le Hir et al., 2018]

Other methods to evaluate the quality of a clustering

- ▶ Stability of the result when lauching the algorithm many times
- Separation of the clusters (the mean distance between pairs of centroids is large)
- ▶ Ratio inter / intra
- Silhouette coefficient.

Other interesting notions

- Agglomerative clustering (CHA : classification Hirarchique Ascendante)
- Xmeans : improvement of k means
- ▶ If you know more about probabilities or are curious :
 - Latent variables and variational learning
 - Auto Encoders
 - Boltzmann Machines

Conclusion

Different kinds of problems exist:

- P problems where exact polynomial solutions exist (max matching)
- For other problems :
 - exhaustive search works but is too slow
 - to solve the problem a balance between rapidity and quality must be found.
- Evaluating the quality of a result is not an easy task.

Project

Desciption of the project

Questions?

References

Le Hir, N., Sigaud, O., and Laflaquière, A. (2018). Identification of Invariant Sensorimotor Structures as a Prerequisite for the Discovery of Objects. *Frontiers in Robotics and AI*, 5(June):1–14.