Linear Regression

JP @ 2B3E

Contents

- Linear regression
- Multi-variate linear regression
- Gradient descent for linear regression

Linear regression

• Solving a regression problem, with a linear function

- Multiple variables = multiple features
- House price prediction with one feature
 - X = house size, use this to predict
 - y = house price
- If we have more than one feature (such as number of bedrooms, number floors, age of the home)
 - x_1 , x_2 , x_3 , x_4 are the four features
 - x₁ size (feet squared)
 - x₂ Number of bedrooms
 - x₃ Number of floors
 - x₄ Age of home (years)
 - y is the output variable (price)

- More notation n
 - number of features (n = 4)
- m
 - number of examples (i.e. number of rows in a table)
- Xi
- vector of the input for an example (so a vector of the four parameters for the ith input example)
- i is an index into the training set
- So
 - x is an n-dimensional feature vector
 - x³ is, for example, the 3rd house, and contains the four features associated with that house
- X_jⁱ
 - The value of feature j in the i-th training example
 - So
 - x_2^3 is, for example, the number of bedrooms in the third house

- hypothesis
 - Hypothesis with one feature
 - $h_{\theta}(x) = \theta_0 + \theta_1 x$
 - two parameters (including the bias)
 - One variable x
 - Hypothesis with multiple features

•
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

- For example
 - $h_{\theta}(x) = 80 + 0.1x_1 + 0.01x_2 + 3x_3 2x_4$
 - An example of a hypothesis which is trying to predict the price of a house
 - Parameters are still determined through a cost function

- For convenience of notation, $x_0 = 1$
 - Bias: an additional 0th feature for each example
 - feature vector
 - n + 1 dimensional feature vector indexed from 0
 - a column X: each example has a column vector associated with it
 - Parameters
 - are n+1 dimensional vector
 - This is also a column vector called θ
 - This vector is the same for each example
- Considering this, hypothesis can be written
 - $h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$

- Vector form: $h_{\theta}(x) = \theta^{T} X$
 - θ^T is an [1 x n+1] matrix
 - θ : a column vector $\rightarrow \theta$ a row vector
 - θ : [(n+1) x 1]
 - θ^{T} : [1 x (n+1)]
 - $\theta^T X$
 - [1 x n+1] * [n+1 x 1]
 - = $h_{\theta}(x)$
 - So, in other words, the transpose of our parameter vector * an input example X gives you a predicted hypothesis which is [1 x 1] dimensions (i.e. a single value)
- This is an example of multivariate linear regression

- Fitting parameters for the hypothesis with gradient descent
 - Parameters are θ_0 to θ_n
 - Instead of thinking about this as n separate values, think about the parameters as a single vector (θ)
 - Where θ is n+1 dimensional
- Our cost function is

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

• Instead of thinking of J as a function of the n+1 numbers, J() is just a function of the parameter vector $J(\theta)$

```
Repeat \{ \theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n) \} (simultaneously update for every j=0,\dots,n)
```

- This is $\theta_j = \theta_j$ learning rate (α) times the partial derivative of J(θ) with respect to $\theta_{J(...)}$
- We do this through a **simultaneous update** of every θ_i value

- Implementing this algorithm
 - When n = 1

Repeat
$$\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \right.$$

$$\left. \frac{\frac{\partial}{\partial \theta_0} J(\theta)}{\frac{\partial}{\partial \theta_0} J(\theta)} \right.$$
 $\left. \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$ (simultaneously update θ_0, θ_1)

- Above, we have slightly different update rules for θ_0 and θ_1
 - Actually they're the same, except the end has a previously undefined $x_0^{(i)}$ as 1, so wasn't shown
- —> almost identical rule for multivariate gradient descent

New algorithm
$$(n \ge 1)$$
: Repeat $\left\{ \begin{array}{c} \sqrt{2} & \sqrt{3} & \sqrt{3} \\ \sqrt{2} & \sqrt{3} & \sqrt{3} \end{array} \right\}$ (simultaneously update θ_j for $j=0,\ldots,n$)

- We're doing this for each j (0 until n) as a simultaneous update (like when n = 1)
- So, we re-set θ_i to
 - θ_j minus the learning rate (α) times the partial derivative of the θ vector with respect to θ_i

- In non-calculus words, this means that we do
 - Learning rate
 - Times 1/m (makes the maths easier)
 - Times the sum of
 - The hypothesis taking in the variable vector, minus the actual value, times the j-th value in that variable vector for EACH example
- It's important to remember that

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} = \frac{2}{205} 7(6)$$

Gradient Decent in practice

Feature scaling

Learning rate

- Having covered the theory
 - —> move on to learn about some of the practical tricks
- Feature scaling
 - If you have a problem with multiple features
 - You should make sure those features have a similar scale
 - Means gradient descent will converge more quickly
 - e.g.
 - x1 = size (0 2000 feet)
 - x2 = number of bedrooms (1-5)
 - Means the contours generated if we plot θ_1 vs. θ_2 give a very tall and thin shape due to the huge range difference
 - Running gradient descent on this kind of cost function can take a long time to find the global minimum

- Pathological input to gradient descent
- So we need to rescale this input so it's more effective
- So, if you define each value from x1 and x2 by dividing by the max for each feature
- Contours become more like circles (as scaled between 0 and 1)

- May want to get everything into -1 to +1 range (approximately)
 - Want to avoid large ranges, small ranges or very different ranges from one another
 - Rule a thumb regarding acceptable ranges
 - -3 to +3 is generally fine any bigger bad
 - -1/3 to +1/3 is ok any smaller bad
- Can do mean normalization
 - Take a feature x_i
 - Replace it by (x_i mean)/max
 - So your values all have an average about 0

Instead of max can also use standard deviation

- Focus on the learning rate (α)
- Topics
 - Update rule
 - Debugging
 - How to chose α

- Make sure gradient descent is working
 - Plot min $J(\theta)$ vs. # of iterations
 - (i.e. plotting $J(\theta)$ over the course of gradient descent
- If gradient descent is working then $J(\theta)$ should decrease after (almost) every iteration
- Can also show if you're not making huge gains after a certain number
 - Can apply heuristics to reduce number of iterations
 - If, for example, after 1000 iterations you reduce the parameters by nearly nothing you could chose to only run 1000 iterations in the future
 - Make sure you don't accidentally hard-code thresholds

- Number of iterations varies a lot
 - 30 iterations
 - 3000 iterations
 - 3000 000 iterations

Jud2 (0) [

decrease

 $\min J(\theta)$

- Very hard to tell in advance how many iterations will be needed
- Can often make a guess based a plot like this after the first 100 or so iterations

- Automatic convergence tests
 - Check if $J(\theta)$ changes by a small threshold or less
 - Choosing this threshold is hard
 - So often easier to check for a straight line
 - Why? Because we're seeing the straightness in the context of the whole algorithm

- Checking its working
 - If you plot $J(\theta)$ vs iterations and see the value is increasing means you probably need a smaller α
 - Cause is because your minimizing a function which looks like this

But you overshoot, so reduce learning rate so you actually reach the minimum (green line) \rightarrow So, use a smaller α

- Another problem might be if $J(\theta)$ looks like a series of waves
 - Here again, you need a smaller α
- However
 - If α is small enough, $J(\theta)$ will decrease on every iteration
 - BUT, if α is too small then rate is too slow
 - A less steep incline is indicative of a slow convergence, because we're decreasing by less on each iteration than a steeper slope
- Typically
 - Try a range of alpha values
 - Plot $J(\theta)$ vs number of iterations for each version of alpha
 - Go for roughly threefold (or fivefold) increases
 - 0.001, 0.003, 0.01, 0.03. 0.1, 0.3