30

<u>Claims</u>

- An implant having a coating on its external surface comprising:
- a) a crosslinked, water swellable polymer matrix having a dry thickness of at least 0.1 μm , and
- b) a pharmaceutically active compound in which the polymer has pendant zwitterionic groups and pendant cationic groups.
- 2. An implant according to claim 1 in which the pharmaceutically active compound comprises a nucleic acid.
- 10 3. An implant having a coating on its external surface comprising:
 - a) a crosslinked, biostable polymer matrix and
 - a pharmaceutically active compound which is a nucleic acid, in which the polymer has pendant zwitterionic groups and pendant cationic groups.
- 15 4. An implant having a coating on its external surface comprising:
 - a) a cross-linked, biostable polymer and
 - b) a pharmaceutically active comound which is a protein which is anionically charged at physiological pH in which the polymer has pendant zwitterionic groups and pendant cationic groups.
- 5. An implant according to claim 4 in which the protein is an antibody or fragment thereof.
 - 6. An implant according to any preceding claim in which the polymer is formed from ethylenically unsaturated monomers including less than 20 mole % cross-linkable monomer.
- 7. An implant according to any preceding claim in which the polymer is formed from ethylenically unsaturated monomers including
 - a) a zwitterionic monomer of the formula I
 YBX

wherein B is a bond or a straight or branched alkylene, alkylene-oxaalkylene or alkylene-oligooxa-alkylene group, any of which optionally include one or more fluorine substituents;

X is an organic group having a zwitterionic moiety; and

10

15

20

25

Y is an ethylenically unsaturated polymerisable group;

b) a cationic monomer of the formula II

Y¹B¹O¹

11

wherein B¹ is a bond or a straight or branched alkylene, alkylene-oxaalkylene or alkylene-oligooxa-alkylene group, any of which optionally includes one or more fluorine substituents;

Y¹ is an ethylenically unsaturated polymerisable group; and Q is an organic group having a cationic or cationisable moiety and c) a crosslinkable monomer having the general formula IV:

Y³B³Q³

IV

wherein B³ is a bond or a straight or branched alkylene, alkylene-oxaalkylene or alkylene-oligooxa-alkylene group, any of which optionally includes one or more fluorine substituents;

Y³ is an ethylenically unsaturated polymerisable group; and Q³ is an organic group having a reactive group capable of cross-linking the polymer.

- 8. An implant according to claim 7 in which Q³ contains a crosslinkable cinnamyl, epoxy, -CHOHCH₂Hal (in which Hal is a halogen atom), methylol, or reactive silyl group, an ethylenically unsaturated crosslinkable group, such as an acetylenic, diacetylenic, vinylic or divinylic group, or an acetoacetoxy or chloroalkyl sulfone, preferably chloroethyl sulphone, group.
- 9. An implant according to claim 8 in which Q³ is a group SiR⁴₃ in which each R⁴ is a C₁₄ alkoxy (preferably methoxy) group or a halogen atom.
- 10. An implant according to claim 9 in which the monomers further include a compound.
 - 11. An implant according to any of claims 7 to 10 in which X is a group of formula V

$$-x^{1}-P-x^{2}-W^{+} \qquad (V)$$

15

25

30

in which the moieties X^1 and X^2 , which are the same or different, are -O-, -S-, -NH- or a valence bond, preferably -O-, and W^+ is a group comprising an ammonium, phosphonium or sulphonium cationic group and a group linking the anionic and cationic moieties which is preferably a C_{1-12} -alkylene group.

- 12. An implant according to claim 11 in which the ethylenically unsaturated groups of all monomers copolymerised together are either the acrylate type or are the styrene type (CH₂=C(R)C(O)A- or CH=CH-(C₆H₄)K), and preferably each has the same formula.
 - 13. An implant according to claim 12 in which W¹ is a straight-chain alkylene group, most preferably 1,2-ethylene.
 - 14. An implant according to any of claims 11 to 13 in which X is a group of formula VI

$$-O-P-O(CH_2)_e-N (R^8)_3$$
(VI)

where the groups R^8 are the same or different and each is hydrogen or C_{1-4} alkyl, and e is from 1 to 6, preferably all R^8 's being the same, more preferably CH_3 , and C preferably being 2 or 3.

20 15. An implant according to any of claims 7 to 14 in which Q¹ is a group N⁺R⁵₃, P⁺R⁵₃ or S⁺R⁵₂

in which the groups R⁵ are the same or different and are each hydrogen, C₁₋₄-alkyl or aryl (preferably phenyl) or two of the groups R⁵ together with the heteroatom to which they are attached from a saturated or unsaturated heterocyclic ring containing from 5 to 7 atoms.

16. An implant according to any of claims 6 to 15 in which the monomers further include a termonomer of the formula III

wherein B² is a bond or a straight or branched alkylene, alkylene-oxaalkylene or alkylene-oligooxa-alkylene group, any of which may optionally include one or more fluorine substituents;

Y² is an ethylenically unsaturated polymerisable group; and

Q² is an organic group having a hydrophobic group selected from alkyl groups having at least six carbon atoms, fluorine substituted alkyl groups and alkyl groups having at least one siloxane substituent.

17. An implant according to any of claims 7 to 16 in which Y, Y¹, Y², Y³ and/or Y³, as the case may be are independently selected from CH=CH- (C_6H_4) -K-, CH₂=C(R)C(O)-A-, CH₂=C(R)-CH₂-O-, CH₂=C(R)-CH₂OC(O)-, CH₂=C(R)OC(O)-, and CH₂=C(R)CH₂OC(O)N(R¹)-wherein:

R is hydrogen or a C₁-C₄ alkyl group;

5

A is -O- or -NR¹- where R¹ is hydrogen or a C₁-C₄ alkyl group or R¹ is -B-X, B¹Q¹, B²Q² or B³Q³, as the case may be, where B, B¹, B², B³, Q¹, Q² and Q³ and X are as defined above in the respective one of the formula I to IV and

K is a group $-(CH_2)_pOC(O)-$, $-(CH_2)_pC(O)O-$,

- -(CH₂)_pOC(O)O-, -(CH₂)_pNR²-, -(CH₂)_pNR²C(O)-, -(CH₂)_pC(O)NR²-, -(CH₂)_pNR²C(O)O-, -(CH₂)_pOC(O)NR²-, -(CH₂)_pNR²C(O)NR²-, (in which the groups R² are the same or different) -(CH₂)_pO-, -(CH₂)_pSO₃ -, or, optionally in combination with B, a valence bond and p is from 1 to 12 and R² is hydrogen or a C₁-C₄ alkyl group.
- 20 18. An implant according to claim 17 in which the ethylenically unsaturated groups of all monomers copolymerised together are either the acrylate type or are the styrene type (CH₂=C(R)C(O)A- or CH=CH-(C₆H₄)-K-), and, preferably each has the same formula, more preferably the formula CH₂=C(R)C(O)A in which R is H or CH₃ and A is -NH or -O-, most preferably in which A is -O-.
 - 19. An implant stent according to any preceding claim in which the polymer matrix has a dry thickness of at least 0.5µm, preferably at least 1µm.
- 20. An implant according to claim 2 or claim 3 in which the nucleic acid is DNA or RNA, and may be linear or circular, single or double stranded.

25

- 21. An implant according to claim 1, claim 3 or claim 4 in which the pharmaceutically active compound has a molecular weight higher than IkD, preferably higher than 1.2kD.
- 22. An implant according to any preceding claim in which the polymer is formed from ethylenically unsaturated zwitterionic monomer and ethylenically unsaturated cationic monomer and in which the ratio of zwitterionic to cationic monomer used to form the polymer is in the range 1:100 to 100:1, preferably 1:10 to 10:1, more preferably 1:2 to 2:1.
 - 23. An implant according to any preceding claim which is a stent.
- 24. A method of producing an implant according to any preceding claim in which an empty implant, having an empty (of pharmaceutical active) coating of cross-linked water-swellable polymer matrix on its external surface is contacted with a solution or dispersion of a pharmaceutical active in a solvent whereby pharmaceutical active or nucleic acid is absorbed into or adsorbed onto the polymer matrix.
 - 25. A method according to claim 24 in which the solvent is capable of swelling partially the polymer matrix and swells it in the method.
 - 26. A method according to claim 24 or 25 in which the polymer matrix is substantially free of solvent when it is contacted with the said solution or dispersion.
 - 27. A method according to claim 24 or 25 in which the polymer matrix has been preswollen with a swelling liquid when it is contacted with the said solution or dispersion.
 - 28. A method according to any of claims 24 to 27 in which the said solution or dispersion is aqueous.
 - 29. A method according to any of claims 24 to 27 in which the said solution or disposition comprises organic solvent, and the method includes a drying step in which the organic solvent is removed from the treated implant, preferably by evaporation.
- 30. A method according to any of claims 24 to 29 in which the implant is contacted with the said solution or dispersion by dipping it into a volume of the solution or dispersion.

- 31. A method according to claim 30 in which the implant is a stent.
- 32. A method according to claim 31 in which the stent is mounted on a delivery device, preferably a catheter.
- 33. A method according to any of claims 24 to 32 in which the contact
 time of solution or dispersion and implant is at least 30s, preferably at least 2 minutes, more preferably at least 5 minutes.
 - 34. A method according to any of claims 24 to 33 in which the said solution or dispersion is at a temperature in the range of 0 to 60°C, preferably 20 to 40°C, more preferably about 37°C.
- 10 35 A method according to any of claims 24 to 34 including the preliminary step of coating an implant with a cross-linkable polymer and cross-linking the polymer.
 - 36. A method in which an implant according to any of claims 1 to 23 is placed in an environment comprising a liquid medium, whereby the pharmaceutical active is released into the liquid medium.
 - 37. A method according to claim 36 in which the environment is *in vivo* in the body of a human or animal, preferably in a human, most preferably a blood vessel.
- 38. A method according to claim 36 in which the environment is an *in vitro* test method and the implant is not subsequently delivered to a human or animal.