

Page 1 of 88

JQA File No.: KL80150165 Issue Date: October 6, 2015

TEST REPORT

Applicant : WESTUNITIS CO., LTD.

Address : NORTH BUILDING 7F 3-1 OFUKA-CHO KITA-KU OSAKA

530-0011 JAPAN

Products : InfoLinker

Model No. : WUZ-01A-NB01

Serial No. : 50007

FCC ID : 2AFRZWUZ-01A-NB01

Test Standard : CFR 47 FCC Rules and Regulations Part 15

Test Results : Passed

Date of Test : August $7 \sim 18, 2015$

Assun

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch

7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 2 of 88

TABLE OF CONTENTS

		Page
1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	5
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Description of Test Setup	6
7	Test Requirements	9

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT: Equipment Under TestEMC: Electromagnetic CompatibilityAE: Associated EquipmentEMI: Electromagnetic InterferenceN/A: Not ApplicableEMS: Electromagnetic Susceptibility

N/T : Not Tested

☑ - indicates that the listed condition, standard or equipment is applicable for this report.

 \Box - indicates that the listed condition, standard or equipment is not applicable for this report.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 3 of 88

1 Description of the Equipment Under Test

1. Manufacturer : WESTUNITIS CO., LTD.

NORTH BUILDING 7F 3-1 OFUKA-CHO KITA-KU OSAKA

530-0011 JAPAN

2. Products : InfoLinker

3. Model No. : WUZ-01A-NB01

4. Serial No. : 50007

5. Product Type : Mass Production

6. Date of Manufacture : June 2015

7. Power Rating : 3.7VDC (Lithium-ion Battery WHB-001 300mAh)

5.0VDC (USB)

8. Grounding : None

9. Transmitting Frequency : WLAN: 2412.0 MHz(01CH) -2462.0MHz(11CH)
 10. Receiving Frequency : WLAN: 2412.0 MHz(01CH) -2462.0MHz(11CH)

11. Max. RF Output Power : 6.06 dBm(Measure Value of IEEE802.11b)

: 17.07 dBm(Measure Value of IEEE802.11g)

16.95 dBm(Measure Value of IEEE802.11n HT20)
16.67 dBm(Measure Value of IEEE802.11n HT40)

12. Antenna Type : 1/2 λ Type Antenna (Integral)

13. Antenna Gain : -2.00 dBi

14. Category : DTS

15. EUT Authorization : Certification16. Received Date of EUT : August 5, 2015

17. Channel Plan

WLAN:

The carrier spacing is 5 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2407.0 + 5*n

Receiving Frequency (in MHz) = 2407.0 + 5*n

where, n: channel number $(1 \le n \le 11)$

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 4 of 88

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15

Subpart C – Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above.

Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

☑ - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

 \square - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.

- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Osawa

Deputy Manager

JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Tested by:

Takeshi Choda

Assistant Manager

JQA KITA-KANSAI Testing Center

SAITO EMC Branch

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 5 of 88

3 Test Procedure

Test Requirements : §15.247, §15.207 and §15.209

Test Procedure : ANSI C63.10–2009

Testing unlicensed wireless devices.

KDB 558074 D01

DTS Meas Guidance v03r03: June 9, 2015.

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No. : VLAC-001-2 (Expiry date: March 30, 2016) VCCI Registration No. : A-0002 (Expiry date: March 30, 2016)

BSMI Registration No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006

(Expiry date: September 14, 2016)

IC Registration No. : 2079E-3, 2079E-4 (Expiry date: July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date: February 22, 2016)

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 6 of 88

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of:

	Item	Manufacturer	Model No.	Serial No.	FCC ID
A	InfoLinker	WESTUNITIS	WUZ-01A-NB01	50007	2AFRZWUZ-01A-NB01
В	Li-ion Battery	WESTUNITIS	WHB-001		N/A

The auxiliary equipment used for testing:

	Item	Manufacturer	Model No.	Serial No.	FCC ID
C	Earphone				N/A
D	Note PC	Lenovo	TYPE 2875-55J	LR-DPMAD 10/07	N/A
E	AC Adapter (for PC)	Lenovo	92P1156	11S92P1156Z1ZDXN06 M1FE	DoC
F	Access Point	Buffalo	WHR-1166DHP	20157940663629	N/A
G	AC Adapter (for AP)	Asian Power Device	WA-12M12FU	Z052 YD84714520006440200	N/A
Н	Smart Phone	Sharp	SH-06E		APYHRO 00189

Type of Cable:

	Description	Identification	Connector	Cable	Ferrite	Length
No.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	Earphone cable		-	NO	NO	1.2
2	USB Cable		YES	YES	NO	1.2
3	DC Cable		-	NO	YES	1.8
4	AC Cable			NO	NO	1.0
5	LAN Cable		-	NO	NO	2.0
6	DC Cable		-	NO	NO	1.5
7	USB Cable		YES	YES	NO	0.8

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 7 of 88

6.2 Test Arrangement (Drawings)

a) Single Unit

b) Earphone used

c) Wireless LAN Tx and USB Charging

: Ferrite Core

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 8 of 88

6.3 Operating Condition

Power Supply Voltage : 3.7 VDC (for Battery)

5.0 VDC (for USB)

Transmitting/Receiving

WLAN:

Transmitting frequency : 2412.0 MHz(1CH) - 2462.0 MHz(11CH)Receiver frequency : 2412.0 MHz(1CH) - 2462.0 MHz(11CH)

Modulation Type 1. 802.11b: DSSS 2. 802.11g: OFDM

3. 802.11n HT20 : OFDM 4. 802.11n HT40 : OFDM

The tests were performed in the following worst condition.

Mode	Condition
IEEE802.11b	1 Mbps
IEEE802.11g	18 Mbps
IEEE802.11n HT20	MCS0 (6.5 Mbps)
IEEE802.11n HT40	MCS5 (108 Mbps)

Note: The worst condition was determined based on the test result of Maximum Peak Output Power(Low channel).

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 9 of 88

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
Antenna Requirement	Section 15.203	Section 1.12	Passed	-
Channel Separation	Section 15.247(a)(1)	-		-
Minimum Hopping Channel	Section 15.247(a)(1)(iii)	-	-	-
Occupied Bandwidth	Section 15.247(a)(2)	Section 7.3	Passed	-
Dwell Time	Section 15.247(a)(1)(iii)	-	-	-
Peak Output Power	Section 15.247(b)(3)	Section 7.5	Passed	-
(Conduction)				
Peak Power Density	Section 15.247(e)	Section 7.6	Passed	-
(Conduction)				
Spurious Emissions	Section 15.247(d)	Section 7.7	Passed	-
(Conduction)				
AC Powerline Conducted	Section 15.207	Section 7.8	Passed	-
Emission				
Radiated Emission	Section 15.247(d)	Section 7.9	Passed	-

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 10 of 88

7.1	Channel Separation	1			
Fo	or the requirements,	□ - Applicable [☑ - Not Applicable		□ - Not tested by	applicant request.]
Re	emarks:				
7.2	Minimum Hopping	Channel			
Fo	or the requirements,	□ - Applicable [☑ - Not Applicable		□ - Not tested by	applicant request.]
Re	emarks:				
7.3 Fo	Occupied Bandwidt			□ - Not tested by	applicant request.]
7.3.1	Test Results				
Fo	or the standard,	☑ - Passed	\square - Failed	\square - Not judged	
Th Th	ne 99% Bandwidth of ne 99% Bandwidth of ne 99% Bandwidth of ne 99% Bandwidth of	IEEE802.11g is IEEE802.11n HT2		14.619 MHz 16.483 MHz 17.803 MHz 35.969 MHz	at 2412.0 MHz at 2412.0 MHz at 2462.0 MHz at 2452.0 MHz
Th Th	ne 6dB Bandwidth of ne 6dB Bandwidth of ne 6dB Bandwidth of ne 6dB Bandwidth of	IEEE802.11g is IEEE802.11n HT2		10.099 MHz 15.749 MHz 15.128 MHz 35.117 MHz	at 2437.0 MHz at 2412.0 MHz at 2412.0 MHz at 2437.0 MHz and 2452.0 MHz
Uı	ncertainty of Measure	ement Results			± 0.9 %(2 σ)
Re	emarks:				

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 11 of 88

7.3.2 Test Instruments

Shielded Room S4						
Type Model Serial No. (ID)		Manufacturer	Cal. Due			
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/12		
Attenuator	2-10	BA6214 (D-79)	Weinschel	2015/11/18		
RF Cable	SUCOFLEX102E	6683/2E (C-70)	HUBER+SUHNER	2015/11/18		
DC Power Supply	PAB18-1.8	1420354 (F-22)	KIKUSUI	N/A		
Digital MultiMeter	CD772	07125007747 (F-51)	SANWA ELECTRIC	2016/04/07		

NOTE: The calibration interval of the above test instruments is 12 months.

7.3.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

	WLAN
Res. Bandwidth	100 kHz
Video Bandwidth	$300~\mathrm{kHz}$
Span	30 MHz
Sweep Time	AUTO
Trace	Maxhold

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 12 of 88

7.3.4 Test Data

Mode of EUT: WLAN

Test Date: August 18, 2015 Temp.:27°C, Humi:71%

The resolution bandwidth was set to 100 kHz, -6dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

A) IEEE 802.11b

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	14.619	10.098	500
06	2437.0	14.608	10.099	500
11	2462.0	14.605	10.095	500

Transmit Freq Error -48.760 kHz Occupied Bandwidth 10.098 MHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 13 of 88

Transmit Freq Error -32.413 kHz Occupied Bandwidth 10.099 MHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 14 of 88

B) IEEE 802.11g

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	16.483	15.749	500
06	2437.0	16.442	15.684	500
11	2462.0	16.441	15.114	500

Transmit Freq Error -41.840 kHz Occupied Bandwidth 15.749 MHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 15 of 88

Transmit Freq Error -39.948 kHz Occupied Bandwidth 15.684 MHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 16 of 88

C) IEEE 802.11n HT20

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	17.784	15.128	500
06	2437.0	17.748	15.114	500
11	2462.0	17.803	15.116	500

Transmit Freq Error -51.376 kHz Occupied Bandwidth 15.128 MHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 17 of 88

Transmit Freq Error -53.334 kHz Occupied Bandwidth 15.114 MHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 18 of 88

D) IEEE 802.11n HT40

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
03	2422.0	35.931	35.111	500
06	2437.0	35.939	35.117	500
09	2452.0	35.969	35.117	500

Transmit Freq Error -63.541 kHz Occupied Bandwidth 35.111 MHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 19 of 88

Transmit Freq Error -64.699 kHz Occupied Bandwidth 35.117 MHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 20 of 88

7.4 Dwell Time		
For the requirements,	\Box - Applicable [\Box - Tested. \boxdot - Not Applicable	\square - Not tested by applicant request.]
Remarks:		
7.5 Peak Output Power	(Conduction)	
For the requirements,	\square - Applicable $[\square$ - Tested. \square - Not Applicable	\Box - Not tested by applicant request.]
7.5.1 Test Results		
For the standard,		\square - Not judged
Peak Output Power of I Peak Output Power of I Peak Output Power of I Peak Output Power of I Uncertainty of Measure	IEEE802.11g is IEEE802.11n HT20 is IEEE802.11n HT40 is	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Remarks:		

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 21 of 88

7.5.2 Test Instruments

Shielded Room S4						
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due		
Power Meter	ML2495A	1423001 (B-16)	Anritsu	2016/07/16		
Power Sensor	MA2411B	1339136 (B-18)	Anritsu	2016/07/16		
Attenuator	2-10	BA6214 (D-79)	Weinschel	2015/11/18		
DC Power Supply	PAB18-1.8	1420354 (F-22)	KIKUSUI	N/A		
Digital MultiMeter	CD772	07125007747 (F-51)	SANWA ELECTRIC	2016/04/07		

NOTE: The calibration interval of the above test instruments is 12 months.

7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 22 of 88

7.5.4 Test Data

1) IEEE 802.11b

 $\frac{\text{Test Date: August 12, 2015}}{\text{Data Rate: 1Mbps}}$ $\frac{\text{Temp.: 25 °C, Humi: 70 \%}}{\text{Temp.: 25 °C, Humi: 70 \%}}$

Transmi	itting Frequency	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	9.92	-3.86	6.06	4.04	30.00	+23.94
06	2437	9.92	-4.53	5.39	3.46	30.00	+24.61
11	2462	9.92	-4.85	5.07	3.21	30.00	+24.93

Calculated result at 2412.000 MHz, as the worst point shown on underline:

Correction Factor = 9.92 dB +) Meter Reading = -3.86 dBm Result = 6.06 dBm = 4.04 mW

Minimum Margin: 30.00 - 6.06 = 23.94 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

CH 01	[MHz] 2412	
Rate	Meter Reading	Remark
	[dBm]	
1Mbps	-3.86	*
2Mbps	-3.93	
5.5Mbps	-4.07	
11Mbps	-3.96	

^{*}: Worst Rate

All comparison were performed on the same measurement condition.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 23 of 88

2) IEEE 802.11g

Transmi	tting Frequency	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	9.92	7.15	17.07	50.93	30.00	+12.93
06	2437	9.92	6.65	16.57	45.39	30.00	+13.43
11	2462	9.92	6.34	16.26	42.27	30.00	+13.74

Calculated result at 2412.000 MHz, as the worst point shown on underline:

Correction Factor = 9.92 dB +) Meter Reading = 7.15 dBm Result = 17.07 dBm = 50.93 mW

Minimum Margin: 30.00 - 17.07 = 12.93 (dB)

NOTES

 \mathbf{CH}

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

01	2412	
Rate	Meter Reading	Remark
	[dBm]	
6Mbps	6.86	
9Mbps	7.05	
12Mbps	7.08	
18Mbps	7.15	*
24Mbps	7.03	
36Mbps	7.12	
48Mbps	6.90	
54Mbps	6.97	

[MHz]

All comparison were performed on the same measurement condition.

^{*:} Worst Rate

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 24 of 88

3) IEEE 802.11n HT20

Data Rate: MCS0

Test Date: August 12, 2015 Temp.: 25 °C, Humi: 70 %

Transmi	tting Frequency	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	9.92	7.03	16.95	49.55	30.00	+13.05
06	2437	9.92	6.47	16.39	43.55	30.00	+13.61
11	2462	9.92	6.11	16.03	40.09	30.00	+13.97

Calculated result at 2412.000 MHz, as the worst point shown on underline:

Correction Factor = 9.92 dB +) Meter Reading = 7.03 dBm Result = 16.95 dBm = 49.55 mW

Minimum Margin: 30.00 - 16.95 = 13.05 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

CH 01	[MHz] 2412	
Rate	Meter Reading	Remark
	[dBm]	
MCS0	7.03	*
MCS1	6.98	
MCS2	7.03	*
MCS3	7.00	
MCS4	6.91	
MCS5	7.01	
MCS6	6.91	
MCS7	6.80	

*: Worst Rate

All comparison were performed on the same measurement condition.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 25 of 88

4) IEEE 802.11n HT40

 Test Date: August 12, 2015

 Data Rate: MCS5
 Temp.: 25 °C, Humi: 70 %

Transmi	itting Frequency	Correction Factor	Meter Reading	Conducted Peak Output Power						Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]				
03	2422	9.92	6.75	16.67	46.45	30.00	+13.33				
06	2437	9.92	6.41	16.33	42.95	30.00	+13.67				
09	2452	9.92	6.47	16.39	43.55	30.00	+13.61				

Calculated result at 2422.000 MHz, as the worst point shown on underline:

Correction Factor = 9.92 dB +) Meter Reading = 6.75 dBm Result = 16.67 dBm = 46.45 mW

Minimum Margin: 30.00 - 16.67 = 13.33 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	OFF

СН 01	[MHz] 2412	
Rate	Meter Reading [dBm]	Remark
MCS0	6.48	
MCS1	6.50	
MCS2	6.55	
MCS3	6.62	
MCS4	6.70	
MCS5	6.75	*
MCS6	6.05	
MCS7	5.59	

^{*:} Worst Rate

All comparison were performed on the same measurement condition.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 26 of 88

7.6 Peak Power Density(Conduction)

For the requirements,
☐ - Applicable
☐ - Tested.
☐ - Not tested by applicant request.
☐ - Not Applicable

7.6.1 Test Results

For the standard,	abla - Passed	\square - Failed	□ - Not	judged			
Peak Power Density Peak Power Density Peak Power Density Peak Power Density	IEEE802.11g is IEEE802.11n HT2		-7.75 -3.71 -4.03 -7.46	_ dBm _ dBm _ dBm _ dBm	at at at at	$ \begin{array}{r} 2437.0 \\ 2437.0 \\ 2437.0 \\ 2422.0 \end{array} $	MHz MHz MHz MHz
Uncertainty of Meass	urement Results					± 1.7	_ dB(2σ)
Remarks:							

7.6.2 Test Instruments

Shielded Room S4							
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/12			
Attenuator	2-10	BA6214 (D-79)	Weinschel	2015/11/18			
RF Cable	SUCOFLEX102E	6683/2E (C-70)	HUBER+SUHNER	2015/11/18			
DC Power Supply	PAB18-1.8	1420354 (F-22)	KIKUSUI	N/A			
Digital MultiMeter	CD772	07125007747 (F-51)	SANWA ELECTRIC	2016/04/07			

NOTE: The calibration interval of the above test instruments is 12 months.

7.6.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 27 of 88

7.6.4 Test Data

1) IEEE 802.11b

 $\begin{array}{c} \underline{\text{Test Date: August 18, 2015}} \\ \mathbf{Data \ Rate: 1Mbps} \\ \end{array}$

Transm	ransmitting Frequency Correction Me Factor		Meter Reading	Meter Reading Conducted Peak Power Density			Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	13.60	-21.66	-8.06	0.16	8.00	+16.06
06	2437	13.62	-21.37	-7.75	0.17	8.00	+15.75
11	2462	13.64	-22.03	-8.39	0.14	8.00	+16.39

Calculated result at 2437.000 MHz, as the worst point shown on underline:

Correction Factor = 13.62 dB +) Meter Reading = -21.37 dBm Result = -7.75 dBm = 0.17 mW

Minimum Margin: 8.00 - -7.75 = 15.75 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	100kHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 28 of 88

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 29 of 88

2) IEEE 802.11g

 Data Rate: 18Mbps
 Test Date: August 18, 2015

 Temp.: 27 °C, Humi: 71 %

Transmi	itting Frequency	Correction Factor			Conducted Peak Power Density		Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	13.60	-18.07	-4.47	0.36	8.00	+12.47
06	2437	13.62	-17.33	-3.71	0.43	8.00	+11.71
11	2462	13.64	-17.57	-3.93	0.40	8.00	+11.93

Calculated result at 2437.000 MHz, as the worst point shown on underline:

 Correction Factor
 =
 13.62 dB

 +) Meter Reading
 =
 -17.33 dBm

Result = -3.71 dBm = 0.43 mW

Minimum Margin: 8.00 - -3.71 = 11.71 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	$100 \mathrm{kHz}$

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 30 of 88

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 31 of 88

3) IEEE 802.11n HT20

 Data Rate : MCS0
 Test Date: August 18, 2015

 Temp.: 27 °C, Humi: 71 %

Transmi	tting Frequency	Correction Factor	Meter Reading	Conducted Peak Power Density				Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]		
01	2412	13.60	-17.70	-4.10	0.39	8.00	+12.10		
06	2437	13.62	-17.65	-4.03	0.40	8.00	+12.03		
11	2462	13.64	-17.99	-4.35	0.37	8.00	+12.35		

Calculated result at 2437.000 MHz, as the worst point shown on underline:

 Correction Factor
 =
 13.62 dB

 +) Meter Reading
 =
 -17.65 dBm

Result = -4.03 dBm = 0.40 mW

Minimum Margin: 8.00 - -4.03 = 12.03 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	$100 \mathrm{kHz}$

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 32 of 88

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 33 of 88

4) IEEE 802.11n HT40

 Data Rate : MCS5
 Test Date: August 18, 2015

 Temp.: 27 °C, Humi: 71 %

Transmi	itting Frequency	Correction Factor	Meter Reading	Conducted Peak Power Density		Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
03	2422	13.61	-21.07	-7.46	0.18	8.00	+15.46
06	2437	13.62	-21.29	-7.67	0.17	8.00	+15.67
09	2452	13.63	-21.37	-7.74	0.17	8.00	+15.74

Calculated result at 2422.000 MHz, as the worst point shown on underline:

Correction Factor = 13.61 dB +) Meter Reading = -21.07 dBm

Result = -7.46 dBm = 0.18 mW

Minimum Margin: 8.00 - -7.46 = 15.46 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	100kHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 34 of 88

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 35 of 88

7.7 Spurious Emissions(Conduction)

For the requirements, ☐ - Applicable [☐ - Tested. ☐ - Not tested by applicant request.] ☐ - Not Applicable

7.7.1 Test Results

7.7.2 Test Instruments

Remarks:

Shielded Room S4						
Type	Model	Serial No. (ID)	Manufacturer	Cal. Due		
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/12		
Attenuator	2-10	BA6214 (D-79)	Weinschel	2015/11/18		
RF Cable	SUCOFLEX102E	6683/2E (C-70)	HUBER+SUHNER	2015/11/18		
DC Power Supply	PAB18-1.8	1420354 (F-22)	KIKUSUI	N/A		
Digital MultiMeter	CD772	07125007747 (F-51)	SANWA ELECTRIC	2016/04/07		

NOTE: The calibration interval of the above test instruments is 12 months.

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Frequency Range	30 MHz - 25 GHz	Band-Edge
Res. Bandwidth	$100~\mathrm{kHz}$	$100~\mathrm{kHz}$
Video Bandwidth	$300~\mathrm{kHz}$	$300~\mathrm{kHz}$
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 36 of 88

7.7.4 Test Data

Test Date: August 18, 2015 Temp.:27°C, Humi:71%

1) IEEE 802.11b

Low Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 37 of 88

Middle Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 38 of 88

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 39 of 88

2) IEEE 802.11g

Low Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 40 of 88

Middle channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 41 of 88

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 42 of 88

3) IEEE 802.11n HT20

Low Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 43 of 88

Middle Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 44 of 88

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 45 of 88

4) IEEE 802.11n HT40

Low Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 46 of 88

Middle Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 47 of 88

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 48 of 88

Band-Edge Emission

Test Date: August 18, 2015 Temp.:27°C, Humi:71%

1) IEEE 802.11b

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 49 of 88

2) IEEE 802.11g

Low Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 50 of 88

3) IEEE 802.11n HT20

Low Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 51 of 88

4) IEEE 802.11n HT40

Low Channel

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 52 of 88

7.8 AC Powerline Conducted Emission

For the requirements,	☑ - Applicable □ - Not Applica		□ - Not tes	ted by app	licant reque	st.]
7.8.1 Test Results						
For the standard,		\square - Failed	□ - Not jud	lged		
Min. Limit Margin (Ave	erage)	_	<u>5.3</u> d	dB at	0.469	MHz
Uncertainty of Measure	ement Results				\pm 2.6	dB(2σ)
Remarks: Wireless L	AN and USB Cha	arging mode				

7.8.2 Test Instruments

Shielded Room S2								
Type	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2016/04/25				
AMN (Main)	KNW-407R	8-1832-1 (D-39)	Kyoritsu	2015/09/16				
RF Cable	RG223/U	(H-35)	HUBER+SUHNER	2016/06/04				
AMN (Sub)	ESH3-Z5	893045/007 (D-12)	Rohde & Schwarz	2015/08/27				
Terminator	65 BNC-50-0-1	(H-21)	HUBER+SUHNER	2015/10/13				

NOTE: The calibration interval of the above test instruments is 12 months.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 53 of 88

7.8.3 Test Method and Test Setup (Diagrammatic illustration)

The preliminary tests were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for final tests.

- Side View -

NOTE

AMN : Artificial Mains Network

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 54 of 88

7.8.4 Test Data

1) Mode of EUT: (WLAN) All modes have been investigated and the worst case mode for channel (06ch: 2437MHz/IEEE 802.11b, IEEE 802.11g and IEEE 802.11n) has been listed.

Test voltage: 120VAC 60Hz

Test Date: August 14, 2015 Temp.: 25 °C, Humi.: 64 %

Measured phase: L1

Frequency	Corr. Factor	Meter R [dB(leadings μV)]		mits [μV)]		ults μV)]	Mar [dI	U	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.150	10.3	38.0		66.0	56.0	48.3		+17.7		_
0.201	10.2	38.2	35.4	63.6	53.6	48.4	45.6	+15.2	+ 8.0	-
0.268	10.2	34.1		61.2	51.2	44.3		+16.9		-
0.469	10.1	31.1	31.1	56.5	46.5	41.2	41.2	+15.3	+ 5.3	-
0.604	10.1	31.3	29.8	56.0	46.0	41.4	39.9	+14.6	+ 6.1	_
1.811	10.3	32.3	27.1	56.0	46.0	42.6	37.4	+13.4	+ 8.6	_
5.366	10.4	25.7		60.0	50.0	36.1		+23.9		-

NOTES

- 1. The spectrum was checked from $0.15~\mathrm{MHz}$ to $30~\mathrm{MHz}$.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.469 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (AVE) = 10.1 + 31.1 = 41.2 dB(μ V)
- 7. QP: Quasi-Peak Detector / AVE: Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

JQA File No. : KL80150165 Issue Date: October 6, 2015

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 55 of 88

Test voltage: 120VAC 60Hz

Test Date: August 14, 2015 Temp.: 25 °C, Humi.: 64 %

Measured phase: L2

Frequency	Corr. Factor	Meter R [dB(j	8		nits μV)]	Res [dB(ults µV)]	Mar [dB	O	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.150	10.3	38.1		66.0	56.0	48.4		+17.6		_
0.201	10.2	38.0	34.6	63.6	53.6	48.2	44.8	+15.4	+ 8.8	_
0.268	10.2	33.7		61.2	51.2	43.9		+17.3		_
0.469	10.1	29.5	28.5	56.5	46.5	39.6	38.6	+16.9	+ 7.9	
0.604	10.1	29.0	26.2	56.0	46.0	39.1	36.3	+16.9	+ 9.7	_
1.811	10.3	31.1	22.5	56.0	46.0	41.4	32.8	+14.6	+13.2	_
5.365	10.4	31.0		60.0	50.0	41.4		+18.6		-

NOTES

- 1. The spectrum was checked from 0.15 MHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.469 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (AVE) = $10.1 + 28.5 = 38.6 \text{ dB}(\mu\text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 56 of 88

7.9 Radiated Emission

For the requirements,
☐ - Applicable
☐ - Tested.
☐ - Not tested by applicant request.
☐ - Not Applicable

7.9.1 Test Results

For the standard, □ - Passed \square - Failed □ - Not judged Min. Limit Margin (Average) 0.54 dB at <u>2483.5</u> MHz Uncertainty of Measurement Results 9 kHz - 30 MHz \pm 3.0 dB(2 σ) 30 MHz - 300 MHz \pm 3.8 dB(2 σ) $300~\mathrm{MHz} - 1000~\mathrm{MHz}$ \pm 4.8 dB(2 σ) \pm 4.7 dB(2 σ) $1 \, \mathrm{GHz} - 6 \, \mathrm{GHz}$ $6~\mathrm{GHz} - 18~\mathrm{GHz}$ \pm 4.6 dB(2 σ) $18~\mathrm{GHz} - 40~\mathrm{GHz}$ \pm 5.5 dB(2 σ)

Remarks: IEEE802.11n HT20 mode, X axis position. The measurement result is within the range of measurement uncertainty.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 57 of 88

7.9.2 Test Instruments

Anechoic Chamber A2								
Type	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2016/04/25				
AMN	HFH2-Z2	872096/25 (C-2)	Rohde & Schwarz	2016/07/26				
RF Cable	RG213/U	(H-28)	HUBER+SUHNER	2016/07/26				
Biconical Antenna	VHA9103/BBA9106	2355 (C-30)	Schwarzbeck	2016/05/24				
Log-periodic Antenna	UHALP9108-A1	0694 (C-31)	Schwarzbeck	2016/05/24				
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2016/04/15				
Site Attenuation		(H-15)		N/A				
Pre-Amplifier	TPA0118-36	1010 (A-37)	TOYO	2016/05/11				
Pre-Amplifier	RP1826G-45H	RP140121-11 (A-53)	EMCS	2016/06/28				
Horn Antenna	91888-2	562 (C-41-1)	EATON	2016/06/16				
Horn Antenna	91889-2	568 (C-41-2)	EATON	2016/06/16				
Horn Antenna	3160-04	9903-1053 (C-55)	EMCO	2016/06/29				
Horn Antenna	3160-05	9902-1061 (C-56)	EMCO	2016/06/29				
Horn Antenna	3160-06	9712-1045 (C-57)	EMCO	2016/06/29				
Horn Antenna	00		EMCO	2016/06/29				
Horn Antenna	3160-08	9904-1099 (C-59)	EMCO	2016/06/29				
Horn Antenna	3160-09	9808-1117 (C-48)	EMCO	2016/06/28				
Attenuator	54A-10	W5713 (D-29)	Weinschel	2015/09/24				
Attenuator	2-10	BA6214 (D-79)	Weinschel	2015/11/18				
Band Rejection Filter	BRM50701	029 (D-93)	MICRO-TRONICS	2016/02/08				
RF Cable	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2016/01/19				
RF Cable	SUCOFLEX104	267414/4 (C-67)	HUBER+SUHNER	2016/01/19				
RF Cable	SUCOFLEX102EA	3041/2EA (C-69)	HUBER+SUHNER	2016/01/19				
SVSWR		(H-19)		N/A				
Pre-Amplifier	310N	304573 (A-17)	SONOMA	2016/04/15				

NOTE: The calibration interval of the above test instruments is 12 months.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 58 of 88

7.9.3 Test Method and Test Setup (Diagrammatic illustration)

7.9.3.1 Radiated Emission 9 kHz - 30 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 59 of 88

7.9.3.2 Radiated Emission 30 MHz - 1000 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 60 of 88

7.9.3.3 Radiated Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

The setting of the measuring instruments are shown as follows:

Type	Peak	Average	
Detector Function	Peak	Peak	
Res. Bandwidth	1 MHz	1 MHz	
Video Bandwidth	$3~\mathrm{MHz}$	≥ 1/T *1)	
Video Filtering	Linear Voltage	Linear Voltage	
Sweep Time	AUTO	AUTO	
Trace	Max Hold	Max Hold	

Note: 1. T: Minimum transmission duration

Average (VBW) Setting:

Mode	Interval	Cycle	Duty cycle	Burst on period(T)	Min. VBW(1/T)	VBW Setting
Wode	(msec)	(msec)	(%)	(msec)	(kHz)	(kHz))
IEEE802.11b(11Mbps)	0.40	2.06	80.8%	1.67	0.60	1.00
IEEE802.11g(18Mbps)	0.40	1.32	69.6%	0.92	1.09	2.00
IEEE802.11n HT20(MCS0)	0.32	2.60	87.7%	2.28	0.44	0.50
IEEE802.11n HT40(MCS5)	0.31	0.49	35.8%	0.17	5.75	10.00

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 61 of 88

- Side View -

NOTE

The antenna height is scanned depending on the EUT's size and mounting height.

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 62 of 88

7.9.4 Test Data

7.9.4.1 Band-edge Compliance

Test Date: August 7, 2015

Temp.:27°C, Humi:70%

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11b)

Antenna Polarization: Horizontal

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 63 of 88

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11b)

Antenna Polarization: Vertical

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 64 of 88

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11b)

Antenna Polarization: Horizontal

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 65 of 88

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11b)

Antenna Polarization: Vertical

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 66 of 88

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11g)

Antenna Polarization: Horizontal

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 67 of 88

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11g)

Antenna Polarization: Vertical

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 68 of 88

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11g)

Antenna Polarization: Horizontal

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 69 of 88

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11g)

Antenna Polarization: Vertical

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 70 of 88

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11n HT20)

Antenna Polarization: Horizontal

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 71 of 88

Mode of EUT: 1ch: 2412 MHz, (IEEE 802.11n HT20)

Antenna Polarization: Vertical

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 72 of 88

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11n HT20)

Antenna Polarization: Horizontal

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 73 of 88

Mode of EUT: 11ch: 2462 MHz, (IEEE 802.11n HT20)

Antenna Polarization: Vertical

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 74 of 88

Mode of EUT: 1ch: 2422 MHz, (IEEE 802.11n HT40)

Antenna Polarization: Horizontal

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 75 of 88

Mode of EUT: 3ch: 2422 MHz, (IEEE 802.11n HT40)

Antenna Polarization: Vertical

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 76 of 88

Mode of EUT: 9ch: 2452 MHz, (IEEE 802.11n HT40)

Antenna Polarization: Horizontal

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 77 of 88

Mode of EUT: 9ch: 2452 MHz, (IEEE 802.11n HT40)

Antenna Polarization: Vertical

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 78 of 88

7.9.4.2 Other Spurious Emission (9kHz – 30MHz)

Test Date: August 11, 2015

Temp.:26°C, Humi:71%

Mode of EUT: WLAN

Results: No spurious emissions in the range 20dB below the limit.

7.9.4.3 Other Spurious Emission (30MHz – 1000MHz)

Mode of EUT: (WLAN) All modes have been investigated and the worst case mode for channel (06ch: 2437MHz/IEEE802.11b, IEEE802.11g and IEEE802.11n) has been listed.

 Test voltage : 120VAC 60Hz
 Test Date: August 11, 2015

 Temp.: 26 °C, Humi: 71 %

Antenna pole : Horizontal

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	$Meter\ Readings \\ [dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	Results [dB(μV/m)]	Margin [dB]	Remarks
63.43	7.4	-27.1	< 27.0	40.0	< 7.3	> +32.7	_
575.99	18.7	-24.2	37.3	47.0	31.8	+15.2	_

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from $30\,\mathrm{MHz}$ to $1000\,\mathrm{MHz}$.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 575.99 MHz, as the worst point shown on underline: Antenna Factor + Coorection Factor + Meter Reading = 18.7 + (-24.2) + 37.3 = 31.8 dB(μ V/m) Antenna Height : 1.56 m, Turntable Angle : 187 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz (QP : Quasi-Peak)

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 79 of 88

 Test voltage: 120VAC 60Hz
 Test Date: August 11, 2015

 Temp.: 26 °C, Humi: 71 %

Antenna pole : Vertical

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings $[dB(\mu V)]$	$Limits \\ [dB(\mu V/m)]$	$Results \\ [dB(\mu V/m)]$	Margin [dB]	Remarks
63.43	7.4	-27.1	29.7	40.0	10.0	+30.0	_
575.99	18.7	-24.2	34.2	47.0	28.7	+18.3	-

NOTES

- 1. Test Distance : $3\ \mathrm{m}$
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 575.99 MHz, as the worst point shown on underline: Antenna Factor + Coorection Factor + Meter Reading = 18.7 + (-24.2) + 34.2 = 28.7 dB(μ V/m) Antenna Height : 1.83 m, Turntable Angle : 155°
- 7. Test receiver setting(s): CISPR QP 120 kHz (QP: Quasi-Peak)

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 80 of 88

7.9.4.4 Other Spurious Emission (Above 1000MHz)

7.9.4.4.1 Mode of TX

7.9.4.4.1.1 IEEE802.11b

Test Date: August 10, 2015 Temp.: 27 °C, Humi: 68 %

Frequency	nency Antenna Corr.			Meter Read	dings [dB(µ'	V)]	Liı	mits	Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(į	uV/m)]	[dB(μV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	: Tx Low Ch											
4824.0	27.3	-35.6	52.1	50.5	54.3	51.2	74.0	54.0	46.0	42.9	+11.1	
7718.3	29.9	-36.3	48.9	43.8	48.9	43.8	74.0	54.0	42.5	37.4	+16.6	
12060.0	33.6	-35.6	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 46.0	< 36.0	> +18.0	
14472.0	37.0	-36.3	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 48.7	< 38.7	> +15.3	
19296.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
Test condition												
4874.0	27.3	-35.5	52.2	49.7	49.5	45.5	74.0	54.0	44.0	41.5	+12.5	
7311.0	29.9	-36.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.8	< 31.8	> +22.2	
12185.0	33.5	-35.4	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 46.1	< 36.1	> +17.9	
19496.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
Test condition	: TX High Cl	h										
4924.0	27.3	-35.4	52.8	50.3	51.8	46.2	74.0	54.0	44.7	42.2	+11.8	
7386.0	29.8	-36.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.6	< 31.6	> +22.4	
12310.0	33.4	-35.7	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 45.7	< 35.7	> +18.3	
19696.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
22158.0	40.6	-35.4	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.2	< 45.2	> + 8.8	

Calculated result at 22158.0 MHz, as the worst point shown on underline:

Minimum Margin: 54.0 - <45.2 = >8.8 (dB)

NOTES

- 1. Test Distance : 3 m $\,$
- 2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (7.6 - $18.0 \mathrm{GHz}$)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over $18~\mathrm{GHz}$)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 81 of 88

7.9.4.4.1.2 IEEE802.11g

Test Date: August 10, 2015 Temp.: 27 °C, Humi: 68 %

Frequency	Antenna	Corr.	Meter Readings [dB(μV)]			nits		sults	J	Remarks		
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	(V/m)]	[dB(μ V/m)]	[dB]	
[MHz]	[dB (1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	: Tx Low Ch											
4824.0	27.3	-35.6	59.8	48.9	55.7	45.3	74.0	54.0	51.5	40.6	+13.4	
7718.3	29.9	-36.3	48.9	43.8	48.9	43.8	74.0	54.0	42.5	37.4	+16.6	
12060.0	33.6	-35.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 46.5	< 36.5	> +17.5	
14472.0	37.0	-35.7	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
19296.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
Test condition	: TX Middle	Ch										
4874.0	27.3	-35.5	60.0	50.0	55.2	45.2	74.0	54.0	51.8	41.8	+12.2	
7311.0	29.9	-36.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.8	< 31.8	> +22.2	
12185.0	33.5	-35.4	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 46.1	< 36.1	> +17.9	
19496.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
Test condition	: TX High C	h										
4924.0	27.3	-35.4	60.9	50.5	57.4	46.3	74.0	54.0	52.8	42.4	+11.6	
7386.0	29.8	-36.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.6	< 31.6	> +22.4	
12310.0	33.4	-35.7	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 45.7	< 35.7	> +18.3	
19696.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
22158.0	40.6	-35.4	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.2	< 45.2	> + 8.8	

Calculated result at 22158.0 MHz, as the worst point shown on underline:

 $\begin{array}{ccccc} Antenna \, Factor & = & 40.6 \, dB(1/m) \\ Corr. \, Factor & = & \cdot 35.4 \, dB \\ +) \, \underline{Meter \, Reading} & = & <40.0 \, dB(\mu V) \\ \hline Result & = & <45.2 \, dB(\mu V/m) \end{array}$

Minimum Margin: 54.0 - <45.2 = >8.8 (dB)

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (7.6 - $18.0 \mathrm{GHz}$)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 82 of 88

7.9.4.4.1.3 IEEE802.11n HT20

Test Date: August 10, 2015 Temp.: 27 °C, Humi: 68 %

Frequency	Antenna	Corr.	orr. Meter Readings [dB(μV)]		V)]	Limits			sults	Margin	Remarks	
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	(V/m)]	[dB(μ V/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	· Tv. Low Ch											
			60 1	40.4	F.C. 0	46.0	74.0	54.0	51.8	41.1	.10 0	
4824.0	27.3	-35.6	60.1	49.4	56.8	46.2	74.0				+12.9	
7718.3	29.9	-36.3	48.9	43.8	48.9	43.8	74.0	54.0	42.5	37.4	+16.6	
12060.0	33.6	-35.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 46.5	< 36.5	> +17.5	
14472.0	37.0	-35.7	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
19296.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
Test condition	: TX Middle	Ch										
4874.0	27.3	-35.5	61.1	50.1	56.6	46.9	74.0	54.0	52.9	41.9	+12.1	
7311.0	29.9	-36.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.8	< 31.8	> +22.2	
12185.0	33.5	-35.4	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 46.1	< 36.1	> +17.9	
19496.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
Test condition	: TX High Cl	h										
4924.0	27.3	-35.4	62.0	51.4	57.8	47.3	74.0	54.0	53.9	43.3	+10.7	
7386.0	29.8	-36.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.6	< 31.6	> +22.4	
12310.0	33.4	-35.7	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 45.7	< 35.7	> +18.3	
19696.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
22158.0	40.6	-35.4	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.2	< 45.2	> + 8.8	

Calculated result at 22158.0 MHz, as the worst point shown on underline:

 $\begin{array}{ccccc} Antenna \, Factor & = & 40.6 \, dB(1/m) \\ Corr. \, Factor & = & \cdot 35.4 \, dB \\ +) \, \underline{Meter \, Reading} & = & <40.0 \, dB(\mu V) \\ \hline Result & = & <45.2 \, dB(\mu V/m) \end{array}$

Minimum Margin: 54.0 - <45.2 = >8.8 (dB)

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (7.6 - $18.0 \mathrm{GHz}$)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 83 of 88

7.9.4.4.1.4 IEEE802.11n HT40

Test Date: August 10, 2015 Temp.: 27 °C, Humi: 68 %

Frequency	Antenna	Corr.		Meter Read	dings [dB(µ'	V)]	Lir	nits	Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	ιV/m)]	[dB(μ V/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	: Tx Low Ch											
4844.0	27.3	-35.5	56.8	46.2	52.7	41.9	74.0	54.0	48.6	38.0	+16.0	
7266.0	29.9	-36.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.8	< 31.8	> +22.2	
7718.3	29.9	-36.3	48.9	43.8	48.9	43.8	74.0	54.0	42.5	37.4	+16.6	
12110.0	33.5	-35.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 46.3	< 36.3	> +17.7	
19376.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
Test condition 4874.0	27.3	-35.5	61.3	50.6	52.9	42.3	74.0	54.0	53.1	42.4	+11.6	
7311.0	29.9	-36.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.8	< 31.8	> +22.2	
12185.0	33.5	-35.4	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 46.1	< 36.1	> +17.9	
19496.0	40.5	-35.5	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 55.0	< 45.0	> + 9.0	
Test condition	0											
4904.0	27.3	-35.4	57.9	47.3	52.9	42.2	74.0	54.0	49.8	39.2	+14.8	
7356.0	29.9	-36.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.7	< 31.7	> +22.3	
12260.0	33.5	-35.6	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 45.9	< 35.9	> +18.1	
19616.0	40.5	-42.6	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.9	< 37.9	> +16.1	
22068.0	40.6	-43.1	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	

Calculated result at 19376.0 MHz, as the worst point shown on underline:

 $\begin{array}{ccccc} Antenna \ Factor & = & 40.5 \ dB(1/m) \\ Corr. \ Factor & = & \cdot 35.5 \ dB \\ +) \ \underline{Meter \ Reading} & = & <40.0 \ dB(\mu V) \\ \hline Result & = & <45.0 \ dB(\mu V/m) \end{array}$

Minimum Margin: 54.0 - <45.0 = >9.0 (dB)

NOTES

- 1. Test Distance : 3 m $\,$
- $2. \ The \ spectrum \ was \ checked \ from \ 1 \ GHz \ to \ 25 \ GHz \ (10th \ harmonic \ of \ the \ highest \ fundamental \ frequency).$
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over $18~\mathrm{GHz}$)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average

Model No. : WUZ-01A-NB01 FCC ID :2AFRZWUZ-01A-NB01

Standard : CFR 47 FCC Rules and Regulations Part 15

Page 84 of 88

7.9.4.4.2 Mode of RX (WLAN)

Test Date: August 11, 2015 Temp.: 26 °C, Humi: 71 %

Frequency	Antenna Factor	Corr. Factor		Meter Read Horizontal		ngs [dB(μV)] Vertical [d		Limits [dB(µV/m)]		Results [dB(µV/m)]		Remarks
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE	[dB]	
Test condition	n : RX Midd	le Ch										
2437.0	21.5	-38.0	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 31.5	< 21.5	> +32.5	
4874.0	27.3	-35.8	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 39.5	< 29.5	> +24.5	
7311.0	29.9	-36.4	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 41.5	< 31.5	> +22.5	

Calculated result at $4874.0\ \mathrm{MHz}$, as the worst point shown on underline:

 $\begin{array}{ccccc} \text{Antenna Factor} & = & 29.9 & \text{dB}(1/\text{m}) \\ \text{Corr. Factor} & = & -36.4 & \text{dB} \\ +) & \underline{\text{Meter Reading}} & = & <38.0 & \text{dB}(\mu\text{V}) \\ \hline \text{Result} & = & <31.5 & \text{dB}(\mu\text{V/m}) \end{array}$

Minimum Margin: 54.0 - <29.5 = >22.5 (dB)

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from 1 GHz to 7.5 GHz .
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak / AVE: Average