NOTE:

field: Расширение поля

field: E, k — два поля, $k \subset E \Leftrightarrow E$ — расширение k

NOTE:

field: Конечное (бесконечномерное) расширение

field: Расширение E конечно (бесконечно) $\Leftrightarrow E$ — конечномерно (бесконечномерно) как линейное пространство над k

Т.е. E — конечно над $k \Leftrightarrow \exists a_1, \ldots, a_n \in E : \forall x \in E, \ x = \alpha_1 a_1 + \cdots + \alpha_n a_n$, где $\alpha_1, \ldots \in k$.

[E:k] (степень E над k) — размерность E как линейного пространства

NOTE:

field: Теорема о конечных расширениях полей

field:

Th 1. Пусть E — конечное расширение поля k, F — конечное расширение поля E. \Rightarrow F — конечное расширение поля k u [F:k] = [E:k][F:E].

NOTE:

field: Алгебраический элемент

field: $x \in E$ — алгебраический $\Leftrightarrow x$ является корнем многочлена с коэффициентами из k ($\exists \alpha_0, \dots, \alpha_n \in k : \alpha_0 + \alpha_1 x + \dots + \alpha_n x^n = 0$)

Расширение E поля k — алгебраическое $\Leftrightarrow \forall e \in E : e$ — алгебраический.

NOTE:

field: Теорема о алгебраических расширениях конечных полей

field: Любое конечное расширение является алгебраическим

NOTE:

field: Теорема о наименьшем подполе

field: E — расширение поля k. $a_1, ..., a_n \in E$. $k(a_1, ..., a_n)$ — наименьшее подполе E, содержащее $a_1, ..., a_n$.

Th 2. $a \in E$ алгебраичен над $k \Rightarrow k(a)$ — конечное расширение поля k

NOTE:

field: Теорема о алгебраических расширениях

field:

Th 3. E — алгебраическое расширение поля k и F — алгебраическое расширение поля $E \Rightarrow F$ — алгебраическое расширение поля k.

NOTE:

field: Теорема о существовании расширения, в котором многчлен имеет корень

field:

Th 4. $\forall p(x) \in k[x] \exists$ расширение поля k в котором p(x) имеет корень

NOTE:

field: Характеристика поля

field: k — поле

Пусть $\exists p: p\cdot 1=0$ и p — минимально, $\Rightarrow p=char(k)$.

Если такого p не существует, то char(k) = 0

NOTE:

field: Свойства характеристики

field: Простое число или ноль

 $(a+b)^p = a^p + b^p$

NOTE:

field: Морфизм Фробениуса

field: $(a+b)^p = a^p + b^p$, $(ab)^p = a^p b^p \Rightarrow f : k \mapsto k^p$, $f(x) = x^p$ — гомомор-

физм

NOTE:

field: Совершенное поле

field: char(k) = 0 или $char(k) = p, k = k^p$

NOTE:

field: Признак совершенного поля

field: k — конечное поле $\Rightarrow k$ — совершенное поле