Math 612 Homework 1

Paul Hacking

January 28, 2014

Reading: Dummit and Foote, 13.1,13.2,13.4. Justify your answers carefully.

- (1) Let $\alpha = \sqrt[3]{2}$. Compute the minimal polynomial for $\beta := 1 + \alpha^2$ over \mathbb{Q} .
- (2) Let $\alpha = \sqrt{2} + i$. Compute the minimal polynomial for α over (a) \mathbb{Q} , (b) $\mathbb{Q}(\sqrt{2})$, (c) $\mathbb{Q}(i)$, (d) $\mathbb{Q}(\sqrt{-2})$.
- (3) Let $\zeta_n = e^{2\pi i/n}$ for $n \in \mathbb{N}$. Compute the minimal polynomial for ζ_n over \mathbb{Q} for n = 4, 6, 8, 9, 10, 12.
- (4) Let $f = x^3 x + 1$.
 - (a) Prove that f is irreducible over \mathbb{Q} .
 - (b) Let $\alpha \in \mathbb{C}$ be a root of f and let $K = \mathbb{Q}(\alpha)$. Then $1, \alpha, \alpha^2$ is a basis for K as a vector space over \mathbb{Q} (why?). Express $(1+\alpha+\alpha^2)^{-1}$ in the form $c_0 + c_1\alpha + c_2\alpha^2$ for $c_0, c_1, c_2 \in \mathbb{Q}$.
- (5) Determine whether i is in the following fields (a) $\mathbb{Q}(\sqrt{-2})$, (b) $\mathbb{Q}(\sqrt[4]{-2})$, (c) $\mathbb{Q}(\alpha)$, where $\alpha \in \mathbb{C}$ is a root of $x^3 + x + 1$.
- (6) Let $F \subset K$ be a field extension and $\alpha, \beta \in K$. Let $m = [F(\alpha): F], n = [F(\beta): F]$ and suppose gcd(m, n) = 1. Show that $[F(\alpha, \beta): F] = mn$ and write down a basis for $F(\alpha, \beta)$ as a vector space over F.
- (7) For each of the following polynomials, determine the degree of the splitting field over \mathbb{Q} .
 - (a) $x^4 + x^3 + x^2 + x + 1$.

- (b) $x^4 2$.
- (8) Let $\omega = e^{2\pi i/3}$, $\alpha = \sqrt[3]{2}$ and $\beta = \omega \sqrt[3]{2}$.
 - (a) Describe an isomorphism $\varphi \colon \mathbb{Q}(\alpha) \xrightarrow{\sim} \mathbb{Q}(\beta)$.
 - (b) Prove that -1 cannot be written as a sum of squares in $\mathbb{Q}(\beta)$.
- (9) Let $F \subset K$ be a field extension such that [K : F] = 2. Assume that $\operatorname{char}(F) \neq 2$. Prove that $K = F(\alpha)$ for some $\alpha \in K$ such that $\alpha^2 \in F$.
- (10) Let $F \subset K$ be a field extension such that $K = F(\alpha)$ for some $\alpha \in K$ and [K : F] is odd. Prove that $K = F(\alpha^2)$.
- (11) (a) Let $F \subset K$ be a field extension and $\alpha \in K$ an element such that $K = F(\alpha), \ \alpha^2 \in F$, and $\alpha \notin F$. Determine all elements $\beta \in K$ such that $\beta^2 \in F$.
 - (b) Let $p_1, p_2, \ldots, p_n \in \mathbb{N}$ be distinct primes. Prove that

$$[\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_n}):\mathbb{Q}]=2^n.$$

(12) Let $\alpha, \beta \in \mathbb{C}$ be such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = [\mathbb{Q}(\beta) : \mathbb{Q}] = 3$. What are the possible values of $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$? Give examples to show that each case occurs.