

Inhaltsverzeichnis

1		1
	1.1 Overview	1
	1.2 Chapter 1.1 - What is machine learning	1
	1.3 Chapter 1.2 - What is deep learning	2
	1.3.1 What is a neural network (NN)	3
	1.4 Chapter 1.3 - Examples for Deep Learning	3
2	1 0	3
	2.1 Datasets	3
3	Machine learning basics	3
	3.1 Linear Algebra	4
	3.2 Chapter 3.2 Random variable and probability distribution	4
	3.2.1 3.2.1 One random vector	4
	3.3 Chapter 3.3 - Multiple random vectors	6
	3.3.1 Chapter 3.2.3 - Kernel basaed density estimation	6
	3.4 Chapter 3.4 Kullback-Leibler divergence and cross entropy	7
	3.4.1 E3.5 KLD between normal and Laplace distribution	8
	3.5 Chapter 3.5 Probabilistic framework	9
	3.5.1 Role of a NN	11
4	Dense Neural Networks	11
•		12
		12
	± • • • • • • • • • • • • • • • • • • •	13
1	Abbildungsverzeichnis	
Γ.	Abbildungsverzeichins	
1	Introduction	1
	1.1 Mathematical notations	1
	1.2 Three steps of machine learning	2
	1.3 Neural Network	3
2	Tools for Deep Learning	3
3	Machine learning basics	3
_	3.1 Vector Normes	4
	3.2 One random vector	4
	3.3 Moments of a vector	5

	3.11 3.12 3.13	Bayes decision theorem	5 6 7 8 9 10 10 10 11
1	4.1 4.2 4.3 4.4 4.5 4.6	Neuron	11 12 13 13 14 14
1	Intro	oduction	1
2	Tool	s for Deep Learning	3
3	Mac	chine learning basics	3
4	Dens	se Neural Networks	11

Lecture 1: Introduction

Date: 03/05/2020

Lecturer: David Silver By: Nithish Moudhgalya

1.1. Overview

•p.4 expert talks are not relevant for the exam

• scalar: x, A, α

- column vector: $\underline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = [x_i] \in \mathbb{R}^N$ with element $x_i = [\underline{x}]_i$
- matrix: $\mathbf{A} = [a_{ij}]_{1 \le i \le M, 1 \le j \le N} = [a_{ij}] \in \mathbb{R}^{M \times N}$ with element $a_{ij} = [\mathbf{A}]_{ij}$
- 3D, 4D **tensor**: $A = [a_{ijk}], A = [a_{ijkl}]$
- **transpose** of vector and matrix: $\mathbf{x}^T = [x_1, \dots, x_N], \mathbf{A}^T = [a_{ii}]_{ij}$
- determinant of a square matrix A: |A|
- inverse of a square matrix A: A^{-1}
- **trace** of a square matrix **A**: $tr(\mathbf{A}) = \sum_{i} a_{ii}$

Abbildung 1.1: Mathematical notations

•Element notation (element of vector): $[x_i = \underline{a} + \underline{b}]_i$

1.2. Chapter 1.1 - What is machine learning

- •Signal processing is not a subset of ML or the other way around, they are identical in the task
- •Basic difference is in how to design the processing rule
- •Regression means to calculate (SP,ML) a continuous-valued output in the real numbers from a signal, can be one-dimensional
- •Classification means to calculate (SP,ML) a discrete-valued output from the natural numbers
- •p. 1-5 filter in the middle is the view of a pixel and its 8 neighbours

Three steps of machine learning (1)

Abbildung 1.2: Three steps of machine learning

- •over-fitting just memorizes the training set so test set is needed
- •testerrorrate is similar to training error rate \rightarrow no over-fitting
- •Test set and training set need to be disjuct concatenated
- •TODO: Summary supervised learning and unsupervised learning

1.3. Chapter 1.2 - What is deep learning

- •feature extraction: a feature is a clustered subset of information for recognition
- •fish example: fish length, color etc.
- •Needs human experience, can't be calculated
- •DNN solves the problem without feature extraction

1.3.1. What is a neural network (NN)

•Cascaded pipeline of layers

Abbildung 1.3: Neural Network

1.4. Chapter 1.3 - Examples for Deep Learning

•Semantic image segmentation is pixelwise classification

Lecture 2: Tools for Deep Learning

Date: 02/05/2020

Lecturer: David Silver

By: Nithish Moudhgalya

2.1. Datasets

•Overview for Training Datasets up to ImageNet they are for teaching

Lecture 3: Machine learning basics

Date: 02/05/2020

Lecturer: David Silver

By: Nithish Moudhgalya

3.1. Linear Algebra

•TODO get Math nicely into the Context book

3.1 Linear algebra 3-4

Vector norms

Given a vector $\underline{x} = [x_i] \in \mathbb{R}^M$. There are different definitions for the vector norm:

- 2-norm or l_2 -norm or Euclidean norm: $||\underline{x}||_2 = \sqrt{\sum_{i=1}^M x_i^2} = \sqrt{\underline{x}^T}\underline{x}$
- 1-norm or l_1 -norm: $||\underline{x}||_1 = \sum_{i=1}^M |x_i|$ • 0-norm or l_0 -norm: $||\underline{x}||_0 =$ number of non-zero elements in \underline{x}

Comments:

- $||\underline{x}||_2^2$ represents the energy of \underline{x} .
- $||\underline{x}||_0$ measures the sparsity of \underline{x} .
- Different vector norms have different unit-norm contour lines $\{\underline{x} \mid ||\underline{x}||_p = 1\}$.

Abbildung 3.1: Vector Normes

3.2. Chapter 3.2 Random variable and probability distribution

3.2.1. 3.2.1 One random vector

- scalar: x, A, α
- column vector: $\underline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = [x_i] \in \mathbb{R}^N$ with element $x_i = [\underline{x}]_i$
- matrix: $\mathbf{A} = [a_{ij}]_{1 \le i \le M, 1 \le j \le N} = [a_{ij}] \in \mathbb{R}^{M \times N}$ with element $a_{ij} = [\mathbf{A}]_{ij}$
- 3D, 4D **tensor**: $A = [a_{ijk}], A = [a_{ijkl}]$
- **transpose** of vector and matrix: $\underline{x}^T = [x_1, \dots, x_N], \mathbf{A}^T = [a_{ji}]_{ij}$
- determinant of a square matrix A: |A|
- inverse of a square matrix $A: A^{-1}$
- **trace** of a square matrix **A**: $tr(\mathbf{A}) = \sum_{i} a_{ii}$

Abbildung 3.2: One random vector

PDF for a discrete-valued RV: $p(\underline{x}) = \sum_{i} p_{i} \delta(\underline{x} - \underline{x_{i}},) \ \delta(\underline{x}:) \text{ Dirac function}$ cumulative distribution function CCDF $F(\underline{x}) = \int_{-\infty}^{\infty} p(\underline{z}) d\underline{z}, \quad p(\underline{x}) = \frac{\partial^{d} F(\underline{x})}{\partial x_{i} ... \partial x_{d}}$

• scalar: x, A, α

• column vector:
$$\underline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = [x_i] \in \mathbb{R}^N$$
 with element $x_i = [\underline{x}]_i$

- matrix: $\mathbf{A} = [a_{ij}]_{1 \le i \le M, 1 \le j \le N} = [a_{ij}] \in \mathbb{R}^{M \times N}$ with element $a_{ij} = [\mathbf{A}]_{ij}$
- 3D, 4D **tensor**: $A = [a_{ijk}], A = [a_{ijkl}]$
- **transpose** of vector and matrix: $\underline{x}^T = [x_1, \dots, x_N], \mathbf{A}^T = [a_{ii}]_{ii}$
- determinant of a square matrix A: |A|
- inverse of a square matrix A: A⁻¹
- **trace** of a square matrix **A**: $tr(\mathbf{A}) = \sum_{i} a_{ii}$

Abbildung 3.3: Moments of a vector

special case d = 1:
$$\underline{X} \to X \in \mathbb{R}$$
 $\mu \to \mu \in \mathbb{R}$ $\underline{\underline{C}} \to \text{variance of } X = Var(X) = \delta^2 = E[(X - \mu)^2] = \dots = E(X^2) - \mu^2$ $\delta = \sqrt{Var(X)}$: standard deviation For any function $g(\underline{X})$ of $\underline{X}: E[g(\underline{x})] = \int g(x) \cdot p(\underline{x}) d\underline{x} = (d.v.) \sum_i g(\underline{x}_i \cdot P(\underline{x}_i))$

Multivariate normal (Gaussian) distribution

PDF

$$\begin{split} \underline{X} \in \mathbb{R}^d &\sim N(\underline{\mu}, \mathbf{C}) \\ p(\underline{x}) &= \frac{1}{(2\pi)^{d/2} |\mathbf{C}|^{1/2}} e^{-\frac{1}{2}(\underline{x} - \underline{\mu})^T \mathbf{C}^{-1}(\underline{x} - \underline{\mu})} \\ \ln(p(\underline{x})) &= -\frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln(|\mathbf{C}|) - \frac{1}{2} (\underline{x} - \underline{\mu})^T \mathbf{C}^{-1}(\underline{x} - \underline{\mu}) \end{split}$$

 $N(\underline{0}, \mathbf{I})$ is called the **standard normal distribution**.

1D-Visualization

Moments

Abbildung 3.4: Multivariate normal (Gaussian) distribution

one-hot coding: Only one bit is 1 e.g. 0100 one cold coding is the inverse

Coding for class label, random vector y of length c so the identity matrix with dimension c is used for class

Reforumulation of the PMF (categorical distribution) by one-hot coding of the classes

$$\underline{x} = [x_i] \in \{\underline{e}_1, \underline{e}_2, .., \underline{e}_c\} \text{ , i.e. all } x_i = 0 \text{ except for one single element equal to 1}$$

$$\text{PMF: } P(\underline{X} = \underline{x}) = P(\underline{x}) = \begin{cases} P_i \text{ if } \underline{x} = \underline{e}_1 \text{ or } x_1 = 1 \\ ... \\ P_c \text{ if } \underline{x} = \underline{e}_c \text{ or } x_c = 1 \end{cases} = p_1^{x_1} \cdot p_2^{x_2} \cdot , \ldots \cdot p_c^{x_c} = \prod_{i=1}^c p_i^{x_i} \cdot p_i^{x_i} \cdot p_i^{x_i} \cdot p_i^{x_i} = p_1^{x_i} \cdot p_i^{x_i} \cdot p_i$$

$$ln(P(\underline{x}) = sum_{i=1}^{c} x_{i} \cdot ln(p_{i}) = [x_{i}, ..., x_{c}] \cdot \begin{bmatrix} ln(P_{i}) \\ ... \\ ln(P_{c}) \end{bmatrix} = \underline{x}^{T} \cdot ln(\underline{P})$$

In function applied element wise

3.3. Chapter 3.3 - Multiple random vectors

- •3-16 Table for distributions
- •product rule for probability $p(\underline{x}, y) = p(\underline{x}) \cdot p(y)$
- •Bayes rule $p(\underline{y}|\underline{x}) = p(\underline{y}|\underline{x}) \cdot) \frac{p(\underline{x})}{p(\underline{y})}$ •Independent and identically distributed

x and y are independent if:

$$p(\underline{x}, y) = p(\underline{x}) \cdot p(y) \leftrightarrow p(\underline{x}|y) \text{ or } p(\underline{x}|y) = p(y)$$

$$P(\underline{x}_1, ..., \underline{x}_N) = \prod_{i=1}^N p_i(\underline{x}_i), \underline{X}_i \sim p_i(\underline{x}_i)$$

$$\begin{array}{l} \underline{x_1,...,\underline{x_N}} \text{ are independent and identically distributed (i.i.d)} \\ \underline{P(\underline{x_1},...,\underline{x_N})} = \prod_{i=1}^N p_i(\underline{x_i}), \underline{X_i} \sim p_i(\underline{x_i}) \\ p_i(\underline{x_i}) = p(\underline{x_i}) \rightarrow p(\underline{x_1},...,\underline{x_N}) = \prod_{i=1}^N p(\underline{x_i}) \end{array}$$

3.3.1. Chapter 3.2.3 - Kernel basaed density estimation

PDF: p(x) of $X \in \mathbb{R}^d$ unknown, only i.i.d samples $x(n), 1 \le n \le N$ kernel-based estimate $\hat{p}(x)ofp(x)$ from x(n)

kernel function k(x), like a PDF

$$1. k(\underline{x}) \ge 0 \forall \underline{x}$$

2.
$$\int k(\underline{x})d\underline{x} = 1$$

$$\hat{p}(\underline{x}) = \frac{1}{N} \sum_{n=1}^{N} k(\underline{x} - \underline{x}(n))$$

Abbildung 3.5: Kernel function

Smooth Gaussian Kernel:

$$N(\underline{0},\underline{\underline{I}}):k(\underline{x}) = \frac{1}{2\pi^{\frac{d}{2}}} \cdot e^{-\frac{1}{2}||\underline{x}||^2}$$

Dirac Kernel

$$k(\underline{x}) = \delta(\underline{x}) : \text{ Dirac function}$$

$$\delta(\underline{x}) = \begin{cases} \infty, \underline{x} = \underline{0} \\ 0, \underline{x} \neq \underline{0} \end{cases}$$

$$\int \delta(\underline{x}) d\underline{x} = 1$$

sampling property : $\int \delta(\underline{x} - \underline{x}_0 f(\underline{x}) d\underline{x}) = f(\underline{x}_0)$

empirical distribution

 $\hat{p}(\underline{x}) \cdot \frac{1}{N} \sum_{n=1}^{N} \delta(\underline{x} - \underline{x}(n))$

Abbildung 3.6: Estimated PDF function

3.4. Chapter 3.4 Kullback-Leibler divergence and cross entropy

Dissimilarity measure between 2 distributions:

Case A: continuous-valued random variables: PDF

 $X \sim p(x)$: true statistical distribution of X $q(\underline{x})$: approximation for $p(\underline{x})$, e.g. by DNN

KL divergence (KLD) between p and q:

$$D_{KL}(p||q) = \int p(\underline{x}) \cdot ln(\frac{p(\underline{x})}{q(\underline{x})}) d\underline{x}$$
$$= E_{\underline{X} \sim p}[ln(\frac{p(\underline{X})}{q(\underline{X})})]$$

expectation over $p(\underline{x})$

DKL is real valued scalar positive or negative or 0

Case B: discrete-valued random vector: PMF

$$\underline{X} \in \{\underline{x}_1,...\underline{x}_c\} \sim$$
: true PMF of $\underline{X} \sim Q(\underline{x})$: approximation for $P(\underline{x})$ $D_{KL}(P||Q) = \sum_{i=1}^c P(\underline{x}_i) \cdot ln(\frac{P(\underline{x})}{Q(\underline{x})}) = E_{\underline{X} \sim P}[ln(\frac{P(\underline{x})}{Q(\underline{x})})]$ Properties of the KL divergence: P1) Nonnegative $D_{KL}(P||Q) \geq 0 \forall p,q$

P2) Equality $D_{KL}(P||Q) = 0$ iff(if and only if) $p(\underline{x}) = q(\underline{x})$

proof for ßufficient": $ln(\frac{p(\underline{x})}{q(\underline{x})}) = 0 \forall \underline{x}$

P1 and P2: $D_{KL}(p||1)$ is a suitable metric for approximation p by q

P3 Asymmetry

$$D_{KL}(p||q) = E_{\underline{X} \sim p} = ln(\frac{p(x)}{q(\underline{x})}) \neq D_{KL}(q||p) = E_{\underline{X} \sim q} = ln(\frac{q(\underline{x})}{p(\underline{x})})$$
 forward KLD backward KLD

 D_{KL} is not a true distance measure with $D(\underline{x}, y) = D(y, \underline{x})$

- When minimizing $D_{KL}(p||q)$, a) is better than b) because q(x) is broad.
- When minimizing $D_{KL}(q||p)$, b) is better than a) because q(x) is narrow.

Abbildung 3.7: Forward vs. Backward KL divergence

3.4.1. E3.5 KLD between normal and Laplace distribution

$$p(x) = \sim N(0, \sigma^2), p(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{x^2}{2\sigma^2}}$$

$$q(x) \sim$$
 Laplace: $(0,b)q(x) = \frac{1}{2b}e^{-\frac{|x|}{b}}$ Task: choose b to best approximate p by q.

$$\frac{p(x)}{q(x)} = \sqrt{\frac{2}{\pi}} \cdot \frac{b}{\sigma} cdotexp(-\frac{x^2}{2\sigma^2} + \frac{|x|}{b})$$

$$D_{KL}(p||q) = E_{\underline{X} \ simp} = ln(\frac{p(\underline{x})}{q(\underline{x})}) = ln(\sqrt{\frac{2}{\pi}} \cdot \frac{b}{\sigma}) + E_{X \sim p}((-\frac{x^2}{2\sigma^2} + \frac{|x|}{b}))$$

$$E_{\underline{X}\ simp} = \sigma^2$$

$$E_{\underline{X} \ simp}(|x|) = \int_{-\infty}^{\infty} |x| \cdot \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{x^2}{2\sigma^2}) dx = 2 \int_{0}^{\infty} |\cdot \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{x^2}{2\sigma^2}) dx = \sqrt{\frac{2}{\pi}} \cdot \sigma$$

Let
$$\alpha = \frac{\sigma}{b}$$
, $D_{KL}(p||q) = \dots = \sqrt{\frac{2}{\pi}} \cdot \alpha - \ln(\alpha) + \ln(\sqrt{\frac{2}{\pi}}) - \frac{1}{2} \frac{dD_{KL}(p||q)}{d\alpha} = \sqrt{\frac{2}{\pi}} - \frac{1}{\alpha} = 0 \rightarrow \alpha = \sqrt{\frac{2}{\pi}}$, i.e. $b \approx 0.86$

$$D_{KL,min}(p||q) = D_{KL}(p||q)|\alpha = \sqrt{\frac{2}{\pi}} = .. = \frac{1}{2} - ln(\frac{\pi}{2}) \approx 0,048$$

•Probable exam question calculate this for 2 distributions

P4) Additive:

$$\underline{X}$$
) = $(\underline{x}_1, \underline{x}_2), \underline{x}_1$ and \underline{x}_2 are independent, *i.e.*

$$p(\underline{x})?p_1(\underline{x}_1) \cdot p_2(\underline{x}_2), q(\underline{x})?q_1(\underline{x}_1) \cdot q_2(\underline{x}_2)$$

Then:
$$D_{KL}(p||q) = D_{KL}(p_1||q_1) + D_{KL}(p_2||q_2)$$

P5) Relation to cross entropy:

Definiton of entropy 3-24 probability always greater than 0 but smaller than 1

$$D_{KL}(p||q) = \int pln(\frac{p}{q})d\underline{x} = \int pln(p)dx - \int pln(q)dx = -H(p) + H(p,q)$$
 or

cross entropy:
$$H(p,q) = D_{KL}(p||q) + H(p) \ge H(p) \ge 0$$

For a given (fixed) $p(\underline{x}): H(p)$ fixed

Hence: min $D_{KL}(p||q) \leftrightarrow min H(p,q)$

Not the case for backward KLD $D_{KL}(q||p)!$

Minimizing is not the same anymore because then it is H(q) and thats what we are trying to optimize

3.5. Chapter 3.5 Probabilistic framework

valid for both SP and ML valid for both regression problem and classicication problem

- y: latent variable, hidden, not directly measurable, quantity of interest
- <u>x</u>: observed variable, measurement, input for DNN
- \hat{y} : output of DNN as estimate for y
- real world: describes how is \underline{x} generated from y
- DNN: describes how to estimate y from \underline{x}

Abbildung 3.8: Probabilistic framework of supervised learning

Both \underline{y} and \underline{x} are modeled as random variables. They are described by the joint **data** generating distribution

$$p(\underline{x},\underline{y}) = p(\underline{x}|\underline{y})p(\underline{y}) = p(\underline{y}|\underline{x})p(\underline{x}).$$

- $p(\underline{y})$ prior PDF of \underline{y} or **prior**, available before any measurement of \underline{x}
- $p(\underline{x}|\underline{y})$ likelihood. It describes the real word, the generation of \underline{x} from \underline{y} . It is a kind of channel-sensor model, e.g.
 - bit: communication channel + receiver
 - speech: speech production system + microphone
 - digit: handwriting + camera
- $p(\underline{x})$ prior PDF of \underline{x} , also called **evidence**
- $p(y|\underline{x})$ posterior PDF of y after a measurement \underline{x} or posterior

Abbildung 3.9: The data generating distribution

Bayes Rule:

Beyon rule:

$$p(y|x) = p(x|y) \cdot \frac{p(y)}{p(x)}$$
 prior

 $p(y|x) = p(x|y) \cdot \frac{p(y)}{p(x)}$ evidence

posterior likelihood

i.e. $p(y|x)$ contains both $p(x|y)$ and $p(y)$

Training in ML: calculate/model $p(y|x) \neq x$, $y \neq x$ from Dtrain

Interference ..., Draw conclusion about $y \neq x$ for a given

 $x \neq x$ based on $x \neq y \neq x$

Abbildung 3.10: Bayes Rule in DL

a) Maximum a posterior (MAP) inference:

$$\max_{\underline{y}} p(\underline{y}|\underline{x}) = p(\underline{x}|\underline{y}) \frac{p(\underline{y})}{p(\underline{x})}$$

b) Minimum Bayesian risk (MBR) inference:

$$\min_{\hat{y}} \mathbb{E}_{\underline{X},\underline{Y}}[l(\underline{Y}, \underline{\hat{y}}(\underline{X}))] = \int l(\underline{y}, \underline{\hat{y}}(\underline{x})) p(\underline{x}, \underline{y}) d\underline{x} d\underline{y}$$

see course DPR and SASP for more details.

Abbildung 3.11: Bayes decision theorem

Abbildung 3.12: Supervised learning

Learning Criterion:

Learning criterson:

min
$$DKL(P(X,Y)|| \frac{1}{2}(X,Y;0)) \stackrel{P(X,X)}{=} fixed$$

min $H(Y,Y,0) = \frac{1}{2}(Y|X;0) \cdot \frac{1}{2}(X,Y;0) + \frac{1}{2}(X,Y;0) = -\int P(X,X) \ln \frac{1}{2}(X,Y;0) dXdY$
 $= -\int P(X,X) \cdot \ln \frac{1}{2}(X) \cdot \ln \frac{1}{2}(X) \cdot \ln \frac{1}{2}(X) \cdot \ln \frac{1}{2}(X) dXdY$

in dependent of D , compt

Abbildung 3.13: Calc part1

Abbildung 3.14: Calc part2

3.5.1. Role of a NN

- 1. approximate true posterior $p(y|\underline{x})$ by $q(y|\underline{x};\Theta)$
- 2. learn $\underline{\Theta}$ from D_{train}

Lecture 4: Dense Neural Networks

Date: 05/05/2020

Lecturer: David Silver

By: Nithish Moudhgalya

A general model for $q(y|\underline{x}; \Theta)$

- *) can learn any linear or nonlinear mapping
- *) suitable for both regression and classification problems artificial NN: mimic biological NN (brain)

4.0.1. 4.1 Fully connected neural networks - Neuron

Abbildung 4.1: Neuron

4.0.2. Chapter 4.2 Layer of Nurons

Abbildung 4.2: Layer of Neurons

2 meanings of $\phi()$:

2 meanings of
$$\phi()$$
:

*) $\phi(a): R \to R$ for one neuron

*) $\phi(a): R \to R^c$, , (ager

a) elementwise: $\phi(a) = \begin{bmatrix} \phi(a_i) \\ \vdots \\ \phi(a_c) \end{bmatrix}$

b) or not $\phi(a) = \begin{bmatrix} \phi(a) \\ \vdots \\ \phi(a) \end{bmatrix}$

nee ch. 44

Abbildung 4.3: Meanings of phi

Comments:

- •no interconnections between neurons in the same layer
- •dense layer, fully connected layer: •each input x_i connected to each neuron i
- $\rightarrow c \cdot d$ weights and w_{ij} an c biases b_i , $1 \le i \le c, 1 \le j \le d$,
- $\rightarrow c \cdot (d+1)$ parameters

4.1. 4.3 Feedforward neural network

A cascade of dense layers

Layer $1 \le l \le L$:

 $M_l - 1$ number of the input neurons

Abbildung 4.4: Feedforward multilayer neural network

Abbildung 4.5: Network Parameters