Multi-Object Tracking

Mihir Patel

Formulating the Problem

- Goal: Track objects in a video
- Input: Observations per frame (O_i)
 - Image
- Output: State per object (S_i)
 - Location, speed, color, ...
- Formally, maximize P(S_{1:t} | O_{1:t})
 - Find optimal sequence of states
- Evaluate on False Positives, False Negatives, Switches
- Upstream task for navigation

/cvgl2/u/mihirp/depth_tracking/results/new_aligned_reid/v10_2_final_train frame 27 detections 7 confirmed 6 unconfirmed 1

Types of Trackers

- Online vs. offline: can we see the future?
 - We formulate online tracking
- Detection based vs. detection free: what is part of tracking?
- 2D vs. 3D: how do we model the world?

Key Operations

- Predict: P(S_{t+1} | S_t)
 - O What is the expected next step?
- Update: P(S_t | O_t)
 - How do observations update our model?
- Initiation: When have we seen a new object?
- Termination: When has an object left?

Predict

- Want to model state of object
- Track position, velocity, acceleration, appearance and predict future states
- Filters (ie Kalman, particle) allow tracking with uncertainty

Update

- Update motion models given object observation
- Which object is which?
- Worker assignment problem with Hungarian algorithm
- Add dummy node for unmatched detections and tracks

	Job 1	Job 2	Job 3	Job 4
Α	9	2	7	8
В	6	4	3	7
c	5	8	1	8
D	7	6	9	4

Cost Matrices

- How good is a track-detection pair?
- Intersection over Union (IOU) of states
- Visual appearance similarity
 - Color histogram: well studied but loses spatial info
 - Optical flow: powerful but susceptible to occlusion
 - Learned approach: embed into some vector space
- How do we combine?
 - Concatenate, sum, product, cascade, learned

	Job 1	Job 2	Job 3	Job 4
Α	9	2	7	8
В	6	4	3	7
c	5	8	1	8
D	7	6	9	4

Initiation

- High recall: look for n matches in a row before confirming object
- High precision detector: always initiate on detection
- Estimate start state
 - Optical flow with velocity

Termination

- High recall: miss for 1 frame
- High precision: miss for n frames
- State based: uncertainty limit based approach

Open Ended Questions

- Hard Constraints: Cars can't exist in a wall
- Social Cues: Objects respond to each other.
- Occlusion Handling: How are states and cost matrices affected?

Tracking on JR

- Cute robot
- 2D stereo camera, 3D LIDAR data
- Drives around people and tries to not hit them

Images

Point Cloud

Tracks

Potential Work

- How useful is this machinery?
 - How much is academic selling vs. progress?
- How can we combine two cost matrices?
 - Orderless convolutions?
- How can we handle occlusion?
 - O How do appearance features change?
- How do we fuse 2D and 3D sources?

Frustum-PointNet

AlignREID

