公开(非对称)窓码算法之 ELGAMAL窓码体制

范明钰 信息安全研究中心

三类数学难题一回顾

- ◆ 大整数分解问题(The Integer Factorization Problem, RSA体制)
- ◆有限域的乘法群上的离散对数问题 (The Discrete Logarithm Problem, ElGamal体制)
- ◆椭圆曲线上的离散对数问题 (The Elliptic Curve Discrete Logarithm Problem, 类似的ElGamal体制)

ElGamal

- 口安全性基于离散对数
- □ 是Diffie-Hellman key distribution scheme 的 变形
- □ published in 1985 by ElGamal: T. ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms", IEEE Trans. Information Theory, vol IT-31(4), pp469-472, July 1985.
- □缺点:增加了消息长度(2倍)

补充--离散对数

- ◆运算
- ◆构造
- ◆难题

离散对数 (运算)

◆ (模n)指数 (幂) 运算

对任意整数n, 定义集合 Z_n^* 如下:

$$Z_n^* = \{a : 1 \le a \le n-1, \gcd(a,n) = 1\}$$

显然, Z_n^* 中含有 $\phi(n)$ 个元素:因为 Z_n^* 对模 Γ 的乘法构成群。由Euler定理,对任意的 $a\in Z_n^*$ 有

$$\mathbf{a}^{\phi(n)} \equiv 1 \pmod{\mathbf{n}}$$

定义a的(模n)阶 $ord_n(a)$ 为:

$$\operatorname{ord}_{n}(a) = \min \left\{ m : m \ge 1, a^{m} \equiv 1(\operatorname{mod} n) \right\}$$

例子: Z₁₀ 中所有元素的幂次表 $a^{\overline{10}}$ $a^{\overline{11}}$ $a^{\overline{14}}$ $a^{\overline{15}}$ $a^{\overline{17}}$ $a^{\overline{12}}$ $\overline{a^3}$ a^2 a^4 a^5 a^8 a^9 a^{13} a^{16} a^{18} \mathbf{a}^7 \mathbf{a}^{1} $\mathbf{a^6}$ 范明短

离散对数 (构造)

对某个 $a \in \mathbb{Z}_n^*$,若 $\operatorname{ord}_n(a) = \phi(n)$

则称a是 Z_n^* 的本原根(本原元)

由前面 Z_{19}^* 的<u>幂表</u>可知: 2,3,10,13,14,15均是 Z_{19}^* 的本原根

Z* 中本原根的存在性:

这里的P是奇素数。以下我们均假设 N = p

离散对数 (难题)

(模n)离散对数运算给定 Z_p*及其一个本原根α

对 $\forall \beta \in \mathbb{Z}_{p}^{*}$, \exists 唯一的整数k, $1 \le k \le p-1$,使得 $\beta = \alpha^{k} \pmod{p}$

离散对数 (计算例子)

例
$$Z_7^* = (1,2,3,4,5,6)$$

$$3和5都是Z_7^*$$
的一个生成元。 $log_3 6 = ? log_3 6 = 3$ $log_5 2 = ? log_5 2 = 4$

$$1^1 = 1$$

$$2^1 = 2$$
; $2^2 = 4$; $2^3 = 8 = 1$

$$3^{1} = 3$$
; $3^{2} = 2$; $3^{3} = 2 \times 3 = 6$; $3^{4} = 6 \times 3 = 4$; $3^{5} = 4 \times 3 = 5$; $3^{6} = 5 \times 3 = 1$

$$4^1 = 4$$
; $4^2 = 2$; $4^3 = 2 \times 4 \equiv 1$

$$5^{1} = 5$$
; $5^{2} = 4$; $5^{3} = 4 \times 5 \equiv 6$; $5^{4} = 6 \times 5 \equiv 2$; $5^{5} = 2 \times 5 \equiv 3$; $5^{6} = 3 \times 5 \equiv 1$

$$6^1 = 6$$
; $6^2 = 36 = 1$

ElGamal 密码体制

- 1. 体制描述
- 2. 倒子
- 3. 安全性

1. 体制描述

确定公共参数:

选择大素数p, $\alpha \in \mathbb{Z}_p^*$ 是本原根,将p和 α 公开确定公私钥对:

随机且秘密地选择整数 d, $0 \le d \le p-2$, 计算

$$\beta = \alpha^d \mod p$$

 p, α, β --- 公开密钥 (公钥) d --- 保密密钥 (私钥)

ElGamal 窓码体制--加解窓

加密变换:对于任意明文 $m \in \mathbb{Z}_p^*$,发方秘密随机地选取整数 k, 1 < k < p-1

解密变换:对任意密文 $(c_1,c_2) \in \mathbb{Z}_p^* \times \mathbb{Z}_p^*$

明文:
$$m = c_2 (c_1^d)^{-1} \mod p$$

ElGamal密码体制—证明

解密变换的正确性证明:

因为
$$c_1 = \alpha^k \pmod{p}$$
,
$$c_2 = m\beta^k \pmod{p}$$

$$= m(\alpha^d)^k \pmod{p}$$

$$= m(\alpha^d)^k \pmod{p}$$
所以 $c_2(c_1^d)^{-1} \equiv m\beta^d(\alpha^{dk})^{-1} \pmod{p}$

$$\equiv m \alpha^{dk} (\alpha^{dk})^{-1} \pmod{p}$$

$$\equiv m \pmod{p}$$

ElGamal密码体制 一例子

例子-1

确定公共参数:对p=19,有 $Z_{19}^*=\left\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
ight\}$ $lpha=2是 Z_{19}^*$ 的一个本原根

确定 (用户B的) 公私钥对:

用户B秘密地选择整数 d = 10, 计算

$$\beta = \alpha^d \mod p = 2^{10} \mod 19 = 17$$

$$p = 19, \alpha = 2, \beta = 17 - - - 公钥$$

10---私钥

ElGamal密码体制 一例子

例子-2

加密:用户A加密发送明文M=11给用户B,

A 选择一个随机数 d = 7, 1 < d < 19 - 1 , 并计算

 $c_1 = \alpha^d \mod p = 2^7 \mod 19 = 14$

 $c_2 = m\beta^d \mod p = 11 \times 17^7 \mod 19 = 17$

A将 $(c_1,c_2)=(14,17)$ 发送给B;

解密: B 收到密文后 $(c_1,c_2)=(14,17)$, 计算:

$$m = c_2(c_1^d)^{-1} \mod p$$

= 17 × (14⁷)⁻¹ mod 19
= 17 × 4 = 11 mod 19

加解窓计算例子

- ◆选择 p=97 及本原根 a=5
- ◆ 收方选择 秘密钥x_B=58 , 计算并发布公钥y_B=5⁵⁸=44 (mod 97)
- ◆若发方要加密 M=3 给收方,发方工作:
 - ▶ 首先获得收方的公开密钥 Y_R=44
 - ▶ 选择随机 k=36 计算: K=44³⁶=75 (mod 97)
 - > 计算密文对:
 - $> C_1 = 5^{36} = 50 \pmod{97}$
 - $ightharpoonup C_2 = 75.3 \pmod{97} = 31 \pmod{97}$
- ◆ 收方收到 {50,31}, 收方工作:
 - → 计算K=50⁵⁸=75 (mod 97)
 - → 计算 K⁻¹ = 22 (mod 97)
 - → 计算明文M = 31·22 = 3 (mod 97)

ELGAMAL体制---密钥建立

密钥生成

双方选取大素数p及本原元a mod p

收方选秘密密钥 XB

计算 $y_B = a^{XB} \mod p$

ElGamal密码体制—分析

3. 安全性

igwedge ElGamal 算法的安全性基于 在循环群 $oldsymbol{Z}_p^*$ 上求离散对数问题是困难

> 目前关于离散对数的分析方法有: Shanks算法 Pohlig-Hellman算法 指标计算法

量子计算机可以快速求解离散对数问题,但量子计算机从理论研究到实际应用,还会有相当长的时间

ElGamal密码体制

3. 安全性

- ▲ 实用时,素数 P 至少为700位十进制数 (2048 bit),而且要求p-1至少有一个大的素因子。
- ▲ ElGamal加密算法是一种随机算法,随机数k不能暴露, 也不能重用。
- ▲ 假设用同一个k来加密两个消息 m_1,m_2 ,所得到的密文分别为 $(a_1,b_1)(a_2,b_2)$,则 $b_1/b_2=m_1/m_2$,故若 m_1 已知, m_2 可以很容易地计算出来。

算法分析

- ◆ D.Bleichenbache"Generating ElGamal Signatures Without Knowing the Secret Key"中提到了攻击方法和对策
- ◆ElGamal的安全性主要依赖于p和d,若选取不当则签名容易伪造,应保证d对于p-1的大素数因子不可约
- ◆签名算法的安全性主要依赖于乘法群上的离散对数计算。素数p必须足够大,且p-1至少包含一个大素数因子以抵抗Pohlig & Hellman算法的攻击
- ◆明文应采用信息的HASH值(如SHA算法)
- ◆ 美国DSS(Digital Signature Standard)的DSA(Digital Signature Algorithm)算法是经ElGamal算法演变而来

ELGAMAL签名方案

ElGamal 加密算法是不可交换的 存在一个相关的签名算法 安全性是基于计算离散对数的困难性 方案的密钥生成是相同的: 有个共享的素数 p, 公开的本原根 a 每个用户选择一个随机数作为私钥x 计算各自的公开密钥: $y = a^x \mod p$ 公钥是 (y,a,p) 私钥是 (x)

ELGAMAL方案小结

选择

一个素数p,p的一个 原根 α ,一个整数d, 令 β = α ^d,公开 {p, α , β },保密d.

明文信息X

加密: 秘密选择随 机数k, 计算将(α^k mod p, xβ^k mod p) 作为密文

解密: $(x\beta^k)((\alpha^k)^d)^{-1}$ $\equiv x\alpha^{dk} \times \alpha^{-dk} \equiv x$ mod p

信息有扩张

实现参考

http://www.hackchina.com/cont/11646

作业

1.参考前面所列的 Z_{10}^* 中所有元素的幂次表,构造 Z_{17}^* 中所有元素的幂次表。

2. 说明3是Z₁₇的一个生成元。计算

$$\log_3 5 = ?$$
 $\log_3 (-7) = ?$

$$\log_3(-7) = ?$$

$$\log_3 7 = ?$$

$$\log_3 7 = ?$$
 $\log_3 16 = ?$

3. 按照ElGamal密码体制中小例子的步骤,在 Z_{17}^* 中若取

$$\alpha = 3, d = 9, k = 11, m = 13, 完成加密和解密。$$

1题答案:

Z₁₇ 中所有元素的幂次表

a^1	\mathbf{a}^2	a^3	\mathbf{a}^4	\mathbf{a}^5	\mathbf{a}^6	\mathbf{a}^7	a^8	a ⁹	a ¹⁰	a ¹¹	a ¹²	a ¹³	a ¹⁴	a ¹⁵	a ¹⁶
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	15	13	9	1	2	4	8	16	15	13	9	1
3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1
4	16	13	1	4	16	13	1	4	16	13	1	4	16	13	1
5	8	6	13	14	2	10	16	12	9	11	4	3	15	7	1
6	2	12	4	7	8	14	16	11	15	5	13	10	9	3	1
7	15	3	4	11	9	12	16	10	2	14	13	6	8	5	1
8	13	2	16	9	4	15	1	8	13	2	16	9	4	15	1
9	13	15	16	8	4	2	1	9	13	15	16	8	4	2	1
10	15	14	4	6	9	5	16	7	2	3	13	11	8	12	1
11	2	5	4	10	8	3	16	6	15	12	13	7	9	14	1
12	8	11	13	3	2	7	16	5	9	6	4	14	15	10	1
13	16	4	1	13	16	4	1	13	16	4	1	13	16	4	1
14	9	7	13	12	15	6	16	3	8	10	4	5	2	11	1
15	4	9	16	2	13	8	1	15	4	9	16	2	13	8	1
16	1	16	1	16	1	16	1	16	1	16	1	16	1	16	1

2题答案:
$$log_3 5 = 5$$
 $log_3 (-7) = 3$ $log_3 7 = 11$ $log_3 16 = 8$

3题答案:
$$\beta = \alpha^d \mod p = 3^9 \mod 17 = 14$$

$$c_1 = \alpha^k \mod p = 3^{11} \mod 17 = 7$$

$$c_2 = m\beta^k \mod p = 13 \cdot 14^{11} \mod 17 = 11$$

$$(c_1, c_2) = (7, 11)$$

$$m = c_2(c_1^d)^{-1} \mod p$$

= $11(7^9)^{-1} \mod 17$
= $11 \cdot 12 \mod 17 = 13$

下次内容

◆椭圆曲线密码算法: ECC