OPTIONAL MIDTERM

- 1. a) If the sequence $(\vec{x_k})_{k \in N} = \begin{pmatrix} x_{1,k} \\ x_{2,k} \end{pmatrix}$ is divergent, then necessarily one of the two sequences $(x_{1,k})_{k \in N}$ or $(x_{2,k})_{k \in N}$ is also divergent.
 - b) $\partial (E \cup F) \subset \partial E \cup \partial F$?
 - (i) TT
 - (ii) TF
 - (iii) FF
 - (iv) FT
- 2. Let f be a continuous function on \mathbb{R} and $F \subset \mathbb{R}$ is closed Which of the following statements is true?
 - (i) The image of \mathring{F} by f is open
 - (ii) f is differentiable
 - (iii) $\{x: f(x) \in F\}$ is closed
 - (iv) All the above.
- 3. Let $(x_k)_{k\in\mathbb{N}}$ be a sequence in $B(\bar{0},4)$. Which of the followings is true?
 - (i) There is not necessarily a convergent subsequence.
 - (ii) There is necessarily a convergent subsequence to a limit in $B(\bar{0},4)$.
 - (iii) There exists a divergent subsequence .
 - (iv) None of (i) (iii)
- 4. For f a real C^1 function on \mathbb{R}^3 , the Hessian matrix at $\bar{0}$, H satisfies ${\rm Tr}(H)=2$, |H|=-1,
 - (i) $\bar{0}$ is a saddle point
 - (ii) $\bar{0}$ is a local maximum
 - (iii) $\bar{0}$ is either a saddle point or a local minimum but we cannot say which
 - (iv) Not enough information to conclude any of the above.

5. For E a nonempty set and $F = \overline{B(\binom{1}{2},5)}$, we define the function

$$f(\bar{x}) = \inf_{y \in E} d(\bar{x}, \bar{y}).$$

We say that \bar{x}_0 in F is one of the closest points to E (in F) if $f(\bar{x}_0) \leq f(\bar{x}) \ \forall \bar{x} \in F$.

- a) There exists at least one \bar{x}_0 in F that is closest to E
- b) There exists $(\bar{x}_0, \bar{y}_0) \in F \times E : \forall (\bar{x}, \bar{y}) \in F \times E, \ d(\bar{x}, \bar{y}) \geq d(\bar{x}_0, \bar{y}_0)$
 - (i) TT
 - (ii) TF
- (iii) FT
- (iv) FF
- 6. Suppose that $u = 2x^2 + y$ and $v = 3y^2 + 2x$ and define locally at (3,1) the function

$$f(u,v) = g(x,y)$$

- $\frac{\partial f}{\partial v}(3,1) =$
 - (i) $\frac{6}{26}\frac{\partial g}{\partial x}(-1,1)$ $\frac{1}{26}\frac{\partial g}{\partial y}(-1,1)$
 - (ii) $-2\frac{\partial g}{\partial x}(-1,1) + 4\frac{\partial g}{\partial y}(-1,1)$
- (iii) $\frac{1}{26}\frac{\partial g}{\partial x}(-1,1) + \frac{2}{13}\frac{\partial g}{\partial y}(-1,1)$
- (iv) Not enough information to say
- 7. For the function

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^4} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0). \end{cases}$$

- a) The partial derivatives exist everywhere but are not continuous
- b) The derivatives $D_{xy}f$ exist everywhere but are not continuous at (0,0)
 - (i) TT
 - (ii) TF
- (iii) FT
- (iv) FF
- 8. For the function $f(x,y) = e^{xy}$ the tangent hyperplane at $(1,2,e^2)^T$ is
 - (i) $z = e^2 + 2e^2x + e^2y$
 - (ii) $z = e^2y + 2e^2x 3e^2y$
 - (iii) $z = 2e^2 + e^2(x-1) + 2e^2(y-2)$
 - (iv) None of the above.
- 9. A C^1 function \bar{v} from \mathbb{R}^2 to itself has Jacobean matrix $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ at $\bar{0}$

- (i) locally it has an inverse
- (ii) it may locally have a C^1 inverse but we cannot tell from the information given.
- (iii) it may have a local inverse but we cannot tell
- (iv) None of the above
- 10. Because of snow/nuclear war, the only road is the curve $\Gamma = \{(12\sin(t), 12\cos(t), 5t)^T, -\infty < t < \infty\}$. If we go along this road at a speed of 2, how much time to go from $(0, 12, 0)^T$ to $(6\sqrt{2}, 6\sqrt{2}, 5\pi/4)^T$?
 - (i) $13\pi/2$
 - (*ii*) $13/\sqrt{2}$
 - (*iii*) $13\pi/8$
 - (iv) Not enough information
- 11. Calculate the directional derivative of

$$f(x,y) = xe^{-4y}$$

- at (3,0) for the vector (1,2)
 - (i) 0
 - (ii) -7
- (iii) -10
- (iv) 8
- 12. Find the equation of the tangent hyperplane to the surface $4x^2 + 3y^2 + 3z^2 = 70$ at (4, -1, 1)
 - (i) 16x 3y + 3z = 70
 - (ii) 16x + 3y + 3z = 64
 - (*iii*) 16x 3y + 3z = 64
 - (iv) 16x + 3y + 3z = 70
- 13. Find $D_{xy}f$ when $f(x,y) = x^2 \sin(xy)$
 - $(i) -x^2(3\sin(xy) + xy\cos(xy))$
 - $(ii) -2x^2(3\cos(xy) + xy\sin(xy))$
 - $(iii) \ 2xy(3\cos(xy) xy\sin(xy))$
 - $(iv) \ x^2(3\cos(xy) xy\sin(xy))$
- 14. The variables x and y satisfy $f(x,y) = x^5 + xy^4 + y + x^2 = 0$. In the neighbourhood of (0,0), y is approximately
 - (i) $1 + x + x^2$
 - (*ii*) $x + 2x^2$

- (iii) $-2x^2$
- (iv) $-x^2$
- 15. Consider the surface f(x,y) = 0 where $f(x,y) = x^2 + 2e^y + \sin(xy) 2$. Let $y = \phi(x)$ near (0,0). We have $\phi'(0) =$
 - (i) 2
 - (*ii*) 1
 - (iii) 0
 - (iv) Does not exist since we cannot define ϕ .
- 16. a) If all directional derivatives exist at $\bar{0}$, then f is differentiable.
 - b) If the gradient exists then all directional derivatives exist at $\bar{0}$ We have $\phi'(0) =$
 - (i) TT
 - (ii) TF
 - (iii) FT
 - (iv) FF.
- 17. Consider the functions $f: \mathbb{R}^2 \to \mathbb{R}^3$ and $g: \mathbb{R}^3 \to \mathbb{R}$ given by $f(x,y) = (2x^3, xy, y^2)$ and $g(u,v,w) = u + v^2w$.

$$J_{g \circ f}(x, y) =$$

- (i) $\left(6x^2 + 2xy^4, 2x^2y^3 + 2x^2y^3\right)$
- (ii) $((2x^2y^3 + 2xy^4, 3x^4 + 2x^2y^3))$
- (iii) $(3x^2 + 2y^4, 2xy^3 + 2x^2y^2)$
- (iv) None of the above.
- 18. Consider the functions $f: \mathbb{R}^2 \to \mathbb{R}^3$ et $g: \mathbb{R}^3 \to \mathbb{R}^4$

$$J_{g \circ f}(x, y) =$$

- (i) $J_g(f(x,y)) \cdot J_g(x,y)$
- (ii) $J_g(f(x,y)) \cdot J_f(x,y)f$
- (iii) $J_f(g(x,y)) \cdot J_f(x,y)$
- (iv) None of the above.
- 19. The function $w = xz^2e^{y^2}$ et $x = t^3$, y = 1 t z = 1 + 3t.

$$\frac{dw}{dt} =$$

- (i) $(t^2z^2 + 2xz + xyz)e^{y^2}$
- (ii) $(3t^2z^2 + 6xz + 2xyz^2)e^{y^2}$
- (iii) $(3t^2z^2 + 6xz 2xyz^2)e^{y^2}$
- (iv) $(t^2z^2 + 2xz + xyz)e^{y^2}$
- 20. The maximum of $f(x,y) = x^2 + xy + 2y^2$ on $E = \{(x,y) : x^2 + 2y^2 \le 4\}$
 - (i) is not attained
 - (ii) = 0
 - $(iii) = 4 + \sqrt{2}$
 - $(iv) = 6 \sqrt{2}$

EXTRA: Give a definition for $f: \mathbb{R}^2 \to \mathbb{R}$ to be differentiable at \bar{a} . Give a nice condition for f to be differentiable at \bar{a} . Show it is not necessary. Show by example that the gradient of a function can exist at every point without it being differentiable.