# Digital System Design & Synthesis Introduction

Dr. Mahdi Abbasi
ma1358@gmail.com
Computer Engineering Department
Bu Ali Sina University

#### **Outline**

- Microelectronics
- Design Styles
- Design Domains and Levels of Abstractions
- Digital System Design
- Synthesis Process
- Design Optimization

#### **Microelectronics**

- Enabling and strategic technology for development of hardware and software.
- Primary markets
  - Information systems.
  - Telecommunications.
  - Consumer.
- Trends in microelectronics
  - Improvements in device technology
    - Smaller circuits.
    - Higher performance.
    - More devices on a chip.
  - Higher degree of integration
    - More complex systems.
    - Lower cost in packaging and interconnect.
    - Higher performance.
    - Higher reliability.

## Moore's Law and Technology Scaling

The performance of an IC, including the number components on it, doubles every 18-24 months with the same chip price ... - Gordon Moore - 1960.



## Microelectronic Design Problems

- Use most recent technologies: to be competitive in performance.
- Reduce design cost: to be competitive in price.
- Speed-up design time: Time-to-market is critical.
- Design Cost
  - Design time and fabrication cost.
  - Large capital investment on refining manufacturing process.
  - Near impossibility to repair integrated circuits.
- Recapture costs
  - Large volume production is beneficial.
  - Zero-defect designs are essential.

#### **Microelectronic Circuits**

- General-purpose processors
  - High-volume sales.
  - High performance.
- Application-Specific Integrated Circuits (ASICs)
  - Varying volumes and performances.
  - Large market share.
- Prototypes.
- Special applications (e.g. space).

## Computer-Aided Design

- Enabling design methodology.
- Makes electronic design possible
  - Large scale design management.
  - Design optimization
    - Feasible implementation choices grow rapidly with circuit size.
  - Reduced design time.
- CAD tools have reached good level of maturity.
- Continuous growth in circuit size and advances in technology requires CAD tools with increased capability.
- CAD tools affected by
  - Semiconductor technology
  - Circuit type

## Microelectronics Design Styles

- Adapt circuit design style to market requirements.
- Parameters
  - Cost.
  - Performance.
  - Volume.
- Full custom
  - Maximal freedom
  - High performance blocks
  - Slow design time
- Semi-custom
  - Standard Cells
  - Gate Arrays
    - Mask Programmable (MPGAs)
    - Field Programmable (FPGAs)
  - Silicon Compilers & Parametrizable Modules (adder, multiplier, memories)

## Microelectronics Design Technologies



## **Semi-Custom Design Styles**



#### **Standard Cells**

- Cell library
  - Cells are designed once.
  - Cells are highly optimized.
  - Cells have standard height but vary in width.
- Layout style
  - Cells are placed in rows.
  - Channels are used for wiring.
  - Over the cell routing.
- Compatible with macro-cells (e.g. RAMs).

### **Standard Cells**







#### **Macro Cells**

#### Module generators

- Synthesized layout.
- Variable area and aspect-ratio.

#### Examples

RAMs, ROMs, PLAs, general logic blocks.

#### Features

- Layout can be highly optimized.
- Structured-custom design.



## **Array-Based Design**

#### Pre-diffused arrays

- Personalization by metallization/contacts.
- Mask-Programmable Gate-Arrays (MPGAs).

#### Pre-wired arrays

- Personalization on the field.
- Field-Programmable Gate-Arrays (FPGAs).



### **MPGAs & FPGAs**

#### MPGAs

- Array of sites
  - Each site is a set of transistors.
- Batches of wafers can be pre-fabricated.
- Few masks to personalize chip.
- Lower cost than cell-based design.

#### □ FPGAs

- Array of cells
  - Each cell performs a logic function.
- Personalization ( or programming)
  - Soft: memory cell (e.g. Xilinx).
  - Hard: Anti-fuse (e.g. Actel).
- Immediate turn-around (for low volumes).
- Inferior performances and density.
- Good for prototyping.

## **Semi-Custom Style Trade-off**

|             | Custom    | Cell-based | Pre-Diff. | Pre-Wired   |
|-------------|-----------|------------|-----------|-------------|
| Density     | Very High | High       | High      | Medium-Low  |
| Performance | Very High | High       | High      | Medium-Low  |
| Flexibility | Very High | High       | Medium    | Low         |
| Design Time | Very Long | Short      | Short     | Very Short  |
| Man. Time   | Medium    | Medium     | Short     | Very Short  |
| Cost - Iv   | Very High | High       | High      | Low         |
| Cost - hv   | Low       | Low        | Low       | Medium-High |

## Microelectronic Circuit Design and Production









## **How to Deal with Design Complexity?**

- Moore's Law: Number of transistors that can be packed on a chip doubles every 18 months while the price stays the same.
- Hierarchy: structure of a design at different levels of description.
- Abstraction: hiding the lower level details.

## **Design Hierarchy**



#### **Abstractions**

- An <u>Abstraction</u> is a simplified model of some Entity which hides certain amount of the internal details of this Entity.
- Lower Level abstractions give more details of the modeled Entity.
- Several levels of abstractions (details) are commonly used:
  - System Level
  - Chip Level
  - Register Level
  - Gate Level
  - Circuit (Transistor) Level
  - Layout (Geometric) Level

More Details

(Less Abstract)

## Design Domains & Levels of Abstraction

- Designs can be expressed / viewed in one of three possible domains
  - Behavioral Domain (Behavioral View)
  - Structural/Component Domain (Structural View)
  - Physical Domain (Physical View)
- A design modeled in a given domain can be represented at several levels of abstraction (Details).

## **Modeling Views**

- Behavioral view
  - Abstract function.
- Structural view
  - An interconnection of parts.
- Physical view
  - Physical objects with size and positions.



## Levels of Abstractions & Corresponding Views



## Gajski and Kuhn's Y Chart



## **Design Domains & Levels of Abstraction**

#### Design Domain

|                   | Behavioral           | Structural      | Physical          |
|-------------------|----------------------|-----------------|-------------------|
| Abstraction Level |                      |                 |                   |
| System            | <b>English Specs</b> | Computer,       | Boards, MCMs,     |
|                   |                      | Disk Units,     | Cabinets,         |
|                   |                      | Radar, etc.     | Physical          |
|                   |                      |                 | <b>Partitions</b> |
| Chip              | Algorithms,          | Processors,     | Clusters, Chips,  |
| <b>-</b>          | Flow Charts          | RAMs, ROMs      | PCBs              |
| Register          | Data Flow, Reg.      | Registers,      | Std. Cells, Floor |
|                   | Transfer             | ALUs,           | Plans             |
|                   |                      | Counters,       |                   |
|                   |                      | MUX, Buses      |                   |
| Gate              | Boolean              | AND, OR,        | Cells, Module     |
|                   | <b>Equations</b>     | XOR, FFs, etc   | Plans             |
| Circuit (Tr)      | Diff, and            | Transistors, R, | Mask Geometry     |
|                   | element              | C, etc          | (Layout)          |
|                   | <b>Equations</b>     |                 |                   |

## Digital System Design

- Realization of a specification subject to the optimization of
  - Area (Chip, PCB)
    - Lower manufacturing cost
    - Increase manufacturing yield
    - Reduce packaging cost
  - Performance
    - Propagation delay (combinational circuits)
    - Cycle time and latency (sequential circuits)
    - Throughput (pipelined circuits)
  - Power dissipation
  - Testability
    - Earlier detection of manufacturing defects lowers overall cost
  - Design time (time-to-market)
    - Cost reduction
    - Be competitive

### Design vs. Synthesis

#### Design

 A sequence of synthesis steps down to a level of abstraction which is manufacturable.

#### Synthesis

Process of transforming H/W from one level of abstraction to a <u>lower</u> one.

## Synthesis may occur at many different levels of abstraction

- Behavioral or High-level synthesis
- Logic synthesis
- Layout synthesis

## Digital System Design Cycle



## **Synthesis Process**



## **Circuit Synthesis**

#### Architectural-level synthesis

- Determine the macroscopic structure
  - Interconnection of major building blocks.

#### Logic-level synthesis

- Determine the *microscopic* structure
  - Interconnection of logic gates.

#### Geometrical-level synthesis (Physical design)

- Placement and routing.
- Determine positions and connections.

## **Architecture Design**



## Behavioral or High-Level Synthesis

- The automatic generation of data path and control unit is known as high-level synthesis.
- Tasks involved in HLS are scheduling and allocation.
- Scheduling distributes the execution of operations throughout time steps.
- Allocation assigns hardware to operations and values.
  - Allocation of hardware cells includes functional unit allocation, register allocation and bus allocation.
  - Allocation determines the interconnections required.

## Behavioral Description and its Control Data Flow Graph (CDFG)

$$X = W + (S * T)$$
  
 $Y = (S * T) + (U * V)$ 

(a)

#### **CDFG**



#### **Scheduled CDFG**



## Resulting Architecture Design



## Design Space and Evaluation Space

- Design space: All feasible implementations of a circuit.
- Each design point has values for objective evaluation functions e.g. area.
- The multidimensional space spanned by the different objectives is called design evaluation space.



## **Optimization Trade-Off in Combinational Circuits**



## Optimization Trade-Off in Sequential Circuits



## **Pareto Optimality**

- A point of a design is called a Pareto Point if there is no other point in the design space with all objectives having lower value.
- Pareto points represent the set of solutions where there are no other solutions for which simultaneous improvements in all objectives can occur.
- Pareto points represent the set of solutions that are not dominated by any other solution.
- A solution is selected from the set of pareto points.

## Combinational Circuit Design Space Example

- Implement f = p q r s with 2-input or 3-input AND gates.
- Area and delay proportional to number of inputs.





### Architectural Design Space Example ...

```
\begin{array}{l} \textit{diffeq } \{ \\ & \text{read } (x,y,u,dx,a); \\ & \textbf{repeat } \{ \\ & xl = x + dx; \\ & ul = u - (3 \cdot x \cdot u \cdot dx) - (3 \cdot y \cdot dx); \\ & yl = y + u \cdot dx; \\ & c = x < a; \\ & x = xl; u = ul; y = yl; \\ & \} \\ & \textbf{until } (\ c\ )\ ; \\ & \text{write } (y); \\ \} \end{array}
```



$$xl = x + dx$$

$$ul = u - (3 \cdot x \cdot u \cdot dx) - (3 \cdot y \cdot dx)$$

$$yl = y + u \cdot dx$$

$$c = xl < a$$



## ... Architectural Design Space Example ...





1 Multiplier, 1 ALU

2 Multipliers, 2 ALUs

## ... Architectural Design Space Example



## **Area vs. Latency Tradeoffs**

Multiplier Area: 5
Adder Area: 1
Other logic Area: 1



### **Design Automation & CAD Tools**

- Design Entry (Description) Tools
  - Schematic Capture
  - Hardware Description Language (HDL)
- Simulation (Design Verification) Tools
  - Simulators (Logic level, Transistor Level, High Level Language "HLL")
- Synthesis Tools (logic level synthesis, high-level synthesis, layout synthesis)
- Formal Verification Tools
- Design for Testability Tools
- Test Vector Generation Tools