

## Álgebra Linear e Geometria Analítica Departamento de Engenharia Eletrotécnica LEEC

Exame época normal Data: 17-01-2023 Versão: 01

| Nome: |      |      |    |      |      |    |      |      |      | Número: |      |      |      | Turma: |      |      |       |
|-------|------|------|----|------|------|----|------|------|------|---------|------|------|------|--------|------|------|-------|
| 1.    | 2.a) | 2.b) | 3. | 4.a) | 4.b) | 5. | 6.a) | 6.b) | 6.c) | 7.a)    | 7.b) | 7.a) | 8.b) | 9.a)   | 9.b) | 9.c) | Total |
| 15    | 10   | 15   | 15 | 10   | 15   | 15 | 10   | 10   | 10   | 10      | 10   | 10   | 15   | 10     | 10   | 10   | 200   |
|       |      |      |    |      |      |    |      |      |      |         |      |      |      |        |      |      |       |

- 1. Encontre o número complexo z que satisfaz a equação  $\sqrt[3]{z}=\left(\frac{2-8i}{5-3i}\right)i$
- 2. Considere as matrizes  $A = \begin{bmatrix} 0 & 1 & 3 \\ -1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$  e  $C = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$ 
  - (a) Calcule  $X = AB 3IC^T$
  - (b) Calcule  $A^{-1}$
- 3. Considere a matriz  $A = \begin{bmatrix} x & x+1 & 1 \\ 1 & 5 & 2 \\ -2 & 1 & 2 \end{bmatrix}$ . Utilizando apenas as propriedades dos determinantes, escreva dois determinantes det (B) e det (C), tais que tenham, cada um, uma coluna só com "1" e satisfaçam a equação det (A) = det (B) + det (C)
- 4. Considere o sistema  $\begin{cases} x+z=2\\ x+y+2z=3\\ 2y+5z=7 \end{cases}$ 
  - (a) Mostre que o sistema é de Cramer
  - (b) Calcule x através da fórmula de Cramer
- 5. Considere o sistema  $\begin{cases} x-2z=1\\ x+y-3z=2\\ ax-2z=b \end{cases}, \forall a,b\in\mathbb{R} \text{ e discuta-o, com base na análise de } \operatorname{car}(\mathbf{A}) \text{ e } \operatorname{car}([\mathbf{A}\mid\mathbf{b}\mid))$
- 6. Considere o conjunto  $A = \{(x, y, z) \in \mathbb{R}^3 : x = 0 \land y = 2z\}$ 
  - (a) Averigue se A é, ou não, um subespaço vectorial de  $\mathbb{R}^3$
  - (b) Identifique uma base de A e indique qual a sua dimensão
  - (c) Identifique as coordenadas do vetor v = (0, 6, 3) na base que considerou na alínea anterior
- 7. Considere os vetores  $v_1 = (1, 1, 0)$ ,  $v_2 = (0, 3, 0)$  e  $v_3 = (2, 3, 2)$ 
  - (a) Averigue se os 3 vetores são, ou não, linearmente independentes
  - (b) Escreva, se possível, o vetor  $v_4(4,5,0)$  como combinação linear dos vetores  $v_1$  e  $v_2$

- 8. Considere a transformação linear  $U \to V$  definida por T(x, y, z) = (0, x + y, x + z)
  - (a) determine o nucleo e a imagem da transformação linear
  - (b) Encontre as coordenadas da imagem de (1,2,3) na base  $V_1 = \{(1,0,1),(0,1,1),(1,2,2)\}$  para o espaço de chegada e na base canónica, para o espaço de partida
- 9. Considere a matriz  $A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$ .
  - (a) Calcule os valores próprios associados a esta matriz
  - (b) Encontre os vetores prórios associados ao valor próprio de maior valor. Caso não tenha feito a alínea a), considere  $\lambda=3$
  - (c) Para  $\lambda = 3$ , encontre o subespaço próprio