

1 Random Forest

2 Neural Network

3 Nearest Neighbors

The CIFAR-100 dataset contains 50,000 training and 10,000 test images of 20 object classes, along with 100 object subclasses.

ResourceData["CIFAR-100"]

Pre-Processing

The result of taking 20% of the original data testing 5 different preprocessing method

feD = FeatureExtraction[keys, "DimensionReducedVector"]
Takes least time and yields the highest accuracy. So I choose to use this method to preprocess my data.

Method	Training Time	Accuracy
fe = FeatureExtraction[keys]	229.907s	0.64
<pre>feR = FeatureExtraction[keys, "NumericVector"]</pre>	231.224s	0.71
<pre>feD = FeatureExtraction[keys, "DimensionReducedVector"]</pre>	223.637 s	0.7175
<pre>fel = FeatureExtraction[keys, "ImageFeatures"]</pre>	224.111s	0.69
No Preprocessing	225.363s	0.6725

Random Forest

Orange AUROC: 0.999(Highest)

Neural Network

Sunflower Auroc: 0.999(Highest)

Nearest Neighbors

Apple auroc: 0.999(Highest)

Accuracy 0.6011

Rabbit auroc: 0.878(Lowest)

Beaver AUROC: 0.943(Lowest)

Lizard Auroc: 0.901(Lowest)

Training time 5387.19s

Conclusions and What I have learned

Neural Network yields highest accuracy but takes most time.

I don't use cross-validation because we are comparing the performance of different algorithm instead of choosing the best one.

Error source: lack of data, an unfit model for that data, incorrect settings of parameters and so on.

I choose Nearest Neighbors because there are 100 classes to be classified, and k-NN performs well when there are multi-classes.

Different algorithm should be applied to different situations, when we are choosing an algorithm, we should take a lot into consideration: the feature of the problem, the pros and cons of the algorithm and etc.