Programming Languages – Describing Syntax and Semantics

Jongwoo Lim

Introduction

- Syntax: the form or structure of the expressions, statements, and program units
- Semantics: the meaning of the expressions, statements, and program units
 - Syntax and semantics provide a language's definition
 - Users of a language definition
 - Other language designers
 - Implementers
 - Programmers (the users of the language)

Introduction

• Example: Fibonacci numbers in C/C++ and in Haskel.

```
int fibonacci(int iterations) {
  int first = 0, second = 1; // seed values
  for (int i = 0; i < iterations; ++i) {
    int sum = first + second;
    first = second;
    second = sum;
  return first;
fibRecurrence first second =
    first : fibRecurrence second (first + second)
fibonacci = fibRecurrence 0 1
main = print (fibonacci !! 10)
```

The General Problem of Describing Syntax: Terminology

- A language is a set of sentences.
- A sentence is a string of characters over some alphabet.

```
English: I like Programming Languages.
C/C++: index = 2 * count + 17;
```

• Lexeme is the lowest level syntactic unit of a language.

```
English: I, like, Programming, Languages, .
C/C++: index, =, 2, *,;
```

• **Token** is a category of lexemes.

```
English: pronoun, verb, noun, symbol_period, ...
C/C++: identifier, equal sign, int literal, ...
```

Formal Definition of Languages

Recognizers

- Is the given sentence in the language?
- A recognition device reads input strings over the alphabet of the language and decides whether the input strings belong to the language.
- Example: syntax analysis part of a compiler.
- Detailed discussion of syntax analysis appears in Chapter 4.

Generators

- A device that generates sentences of a language.
- One can determine if the syntax of a particular sentence is syntactically correct by comparing it to the structure of the generator.

© 2009 Addison-Wesley.

BNF and Context-Free Grammars

Context-Free Grammars

- Developed by Noam Chomsky in the mid-1950s.
- Language generators, meant to describe the syntax of natural languages.
- Define a class of languages called context-free languages.
- Block structure:

```
John, whose blue car was in the garage, walked to the store.
(John, ((whose blue car) (was (in the garage))), (walked
(to (the store))).
```

© 2009 Addison-Wesley.

BNF and Context-Free Grammars

- Backus-Naur Form (1959)
 - Invented by John Backus to describe Algol 58.
 - BNF is equivalent to context-free grammars.
 - BNF is a metalanguage for programming languages.

BNF and Context-Free Grammars

- In BNF, **abstractions** are used to represent classes of syntactic structures they act like syntactic variables.
 - Also called **nonterminal symbols**, or just **nonterminals**.
 - Nonterminals are often enclosed in angle brackets.

```
<identifier>, <equal_sign>, <int_literal>
```

- Terminals are lexemes or tokens.
- A rule has a left-hand side (LHS) and a right-hand side (RHS).
 - A left-hand side (LHS) is a nonterminal.
 - A right-hand side (RHS) is a string of terminals and/or nonterminals.

```
<assign> → <var> = <expression>
```

BNF Fundamentals

A nonterminal can have more than one RHS.

Recursive definition:

- Examples:

```
1 (0)
1,2,3,4 (0)
1,2 3,4 (X)
```

BNF Fundamentals

- **Grammar**: a finite non-empty set of rules
 - The sentences are generated through applications of the rules, beginning with the **start symbol** (a nonterminal).

Derivation

• Derivation:

- Repeated application of rules, starting with the start symbol and ending with a sentence (all terminal symbols).
- **Sentential form**: string of symbols in a derivation.
 - A sentence is a sentential form that has only terminal symbols.
- Leftmost derivation:
 - the leftmost nonterminal in each sentential form is expanded.
- A derivation may be neither leftmost nor rightmost.

An Example Derivation

HANYANG UNIVERSITY

```
=> begin <stmt> ; <stmt list> end
    => begin <var> = <expression> ; <stmt list> end
    => begin A = <expression> ; <stmt list> end
    => begin A = <var> + <var> ; <stmt list> end
    => begin A = B + <var> ; <stmt list> end
    => begin A = B + C ; <stmt list> end
    => begin A = B + C ; <stmt> end
    => begin A = B + C ; <var> = <expression> end
    => begin A = B + C ; B = <expression> end
    \Rightarrow begin A = B + C ; B = \langle var \rangle end
    \Rightarrow begin A = B + C ; B = C end
                      Example Small Language
                      oprogram> → begin <stmt list> end
                      <stmt list> → <stmt>
                                  <stmt> → <var> = <expression>
                      \langle var \rangle \rightarrow A \mid B \mid C
                      <expression> → <var> | <var> + <var>
```

<var> - <var>

Another Example: Simple Assignment

Example statement:

```
A = B * (A + C)
```

Leftmost derivation:

Parse Tree

A hierarchical representation of a derivation.

Simple Assignment

Can the grammar accept the following equation?

```
A = (A + C) * B
```

Parse Tree with Modified Grammar

Ambiguous Grammar

• Example statement:

$$A = B + C * A$$

Ambiguous Grammar

 A grammar is ambiguous if there exists a string that can have more than one parse tree (leftmost derivation).

$$A = B + C * A$$

Simple Assignment Revisited

 The precedence order of operators is not usual.

$$A = B + A * C$$

 $A = B * A + C$

An Unambiguous Expression Grammar

Ambiguity can be resolved by indicating precedence levels of the operators.

Parse Tree with Unambiguous Grammar

```
Unambiguous Simple Assignment
\langle assign \rangle \rightarrow \langle id \rangle = \langle expr \rangle
\langle id \rangle \rightarrow A \mid B \mid C
<factor> → ( <expr> ) | <id>
A = B + C * A
\langle assign \rangle = \langle id \rangle = \langle expr \rangle
     => A = <expr>
     => A = <expr> + <term>
     => A = <term> + <term>
     => A = <factor> + <term>
     \Rightarrow A = <id> + <term>
     => A = B + <term>
     \Rightarrow A = B + <term> * <factor>
     => A = B + <factor> * <factor>
     \Rightarrow A = B + <id> * <factor>
     => A = B + C * < factor>
     => A = B + C * <id>
```

=> A = B + C * A

← Leftmost derivation

Parse Tree from Rightmost Derivation

=> A = B + C * A

```
Unambiguous Simple Assignment
                                                        <assign>
\langle assign \rangle \rightarrow \langle id \rangle = \langle expr \rangle
\langle id \rangle \rightarrow A \mid B \mid C
                                                  < id >
                                                                  <expr>
<expr> → <expr> + <term> | <term>
< factor > \rightarrow (< expr > ) | < id >
                                                                          <term>
                                                         <expr>
A = B + C * A
\langle assign \rangle = \langle id \rangle = \langle expr \rangle
                                                         <term>
                                                                 <term>
                                                                                  <factor>
     => <id> = <expr> + <term>
     => <id> = <expr> + <term> * <factor>
     => <id> = <expr> + <term> * <id>
                                                        <factor>
                                                                 <factor>
                                                                                   < id >
     => <id> = <expr> + <term> * A
     => <id> = <expr> + <factor> * A
     => <id> = <expr> + <id> * A
                                                          <id>
                                                                  < id >
     => <id> = <expr> + C * A
     => <id> = <term> + C * A
     => <id> = <factor> + C * A
     => <id> = <id> + C * A
     => <id> = B + C * A
```

© 2009 Addison-Wesley.

Note: the parse trees are same.

Associativity of Operators

- Operators with the same precedence
 - Example:

$$A = A + B + C$$

 $(A + B) + C == A + (B + C)$

- Can be problematic in floating-point operations.
 - Example: (-1 + 1) + 1e-200 != -1 + (1 + 1e-200)
- Left- and right-recursion:

```
<expr> → <expr> + <term> vs.
<factor> → <exp> ** <factor>
```

Unambiguous Grammar for if-then-else

Dangling else:

```
if <logic_expr> then if <logic_expr> then <stmt> else <stmt>
```


then

Unambiguous Grammar for if-then-else

Match else to the nearest then.

```
Unambiguous if-then-else
<stmt> → <matched> | <unmatched> | ...
<matched> → if <logic expr> then <matched> else <matched>
          <any non if statement>
<unmatched> → if <logic expr> then <stmt>
              if <logic expr> then <matched> else <unmatched>
```

```
if <logic expr> then if <logic expr> then <stmt> else <stmt>
```

© 2009 Addison-Wesley.

Extended BNF

- []: optional parts (0 or 1)
- (| |) : alternative parts of RHSs.
- { } : repetitions (0 or more). { }+ represents 1 or more.

Extended BNF

- Recent Variations:
 - Alternative RHSs are put on separate lines (intead of using |).
 - Use of a colon(:) instead of \rightarrow .
 - Use of opt for optional parts.

```
ConstructorDeclare \rightarrow SimpleName (FormalParamList<sub>opt</sub>)
```

- Use of one of for choices.

```
AssignmentOperator \rightarrow one of = *= /= %= += -= <<= >>= ...
```

Grammars and Recognizers

- Recognizer for a given context-free grammar can be constructed algorithmically.
 - yacc (yet another compiler compiler).

Static Semantics

- Nothing to do with 'meaning'.
- Context-free grammars (CFGs) cannot describe all of the syntax of programming languages.
- Categories of constructs that are trouble:
 - Context-free, but cumbersome. (e.g., types of operands in expressions)
 - Non-context-free. (e.g., variables must be declared before they are used)

© 2009 Addison-Wesley

Attribute Grammars

- Attribute grammars (AGs) have additions to CFGs to carry some semantic info on parse tree nodes.
 - Attributes (to symbols).
 - Attribute computation functions (semantic functions) (to rules)
 - Predicate functions
- Primary value of AGs:
 - Static semantics specification.
 - Compiler design (static semantics checking).

© 2009 Addison-Wesley

Attribute Grammars: Definition

- Def: An attribute grammar is a context-free grammar with the following additions:
 - For each grammar symbol x there is a set A(x) of attribute values.
 - $A(X) = S(X) \cup I(X)$; synthesized and inherited attributes.
 - Each rule $x_0 \rightarrow x_1 \dots x_n$ has a set of functions that define certain attributes of the nonterminals in the rule.
 - $S(X_0) = f(A(X_1), ..., A(X_n)).$
 - $I(X_j) = f(A(X_0), ..., A(X_n)), for 1 <= j <= n.$
 - Each rule has a (possibly empty) set of predicates to check for attribute consistency.
 - Boolean expression on {A(X₀), ..., A(X_n)}.
 - False predicate function value: violation of the syntax or static
 semantic rules.

Attribute Grammars: Definition

- Intrinsic attributes on the leaf nodes.
 - e.g. type of a variable comes from the symbol table, which is set from an earlier declaration statement.

```
int i;
...
i = i + 10;
```

 The parse tree is said to be fully attributed if all the attribute values are computed.

Attribute Grammars: An Example

```
Example 1:
    procedure MyFunction
    ...
    end MyFunction;

Example 2:
    procedure MyFunction1
    ...
    end MyFunction2;
```

Attribute Grammars: Simple Assignment

```
An attribute grammar for simple assignment

Syntax rule: <assign> → <var> = <expr> <expr> → <var> + <var> | <var> → A | B | C
```

- Example attribute grammar for type checking:
 - actual_type: a synthesized attribute for <var> and <expr>.
 - expected_type: an inherited attribute for <expr>.

© 2009 Addison-Wesley.

Attribute Grammars: Simple Assignment

Figure 3.6

A parse tree for

$$A = A + B$$

Attribute Grammars: Simple Assignment

```
An attribute grammar for simple assignment
                     \langle assign \rangle \rightarrow \langle var \rangle = \langle expr \rangle
Syntax rule:
                     <expr>.expected type ← <var>.actual type
Semantic rule:
Syntax rule:
                     \langle expr \rangle \rightarrow \langle var \rangle [2] + \langle var \rangle [3]
                     <expr>.actual type ←
Semantic rule:
                          if (var[2].actual type == int) and
                              (var[3].actual type == int)
                          then int
                          else real endif
Predicate:
                     <expr>.actual type == <expr>.expected type
Syntax rule:
                     <expr> → <var>
Semantic rule:
                     <expr>.actual type ← <var>.actual type
Predicate:
                     <expr>.actual type == <expr>.expected type
Syntax rule:
                     \langle var \rangle \rightarrow A \mid B \mid C
Semantic rule:
                     <var>.actual type ← look up(<var>.string)
```

Attribute Grammars (continued)

- How are attribute values computed?
 - Inherited attributes: decorated in top-down order.
 - Synthesized attributes: decorated in bottom-up order.
 - In many cases, both kinds of attributes are used, and it is some combination of top-down and bottom-up that must be used.

Attribute Grammars: Simple Assignment

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Attribute Grammars: Simple Assignment

What happens if A.actual_type is int_type and B.actual_type is real_type? © 2009 Addison-Wesley.

(Dynamic) Semantics

- There is no single widely acceptable notation or formalism for describing semantics.
- Needs for a methodology and notation for semantics:
 - Programmers need to know what statements mean.
 - Compiler writers must know exactly what language constructs do.
 - Correctness proofs would be possible.
 - Compiler generators would be possible.
 - Designers could detect ambiguities and inconsistencies.

© 2009 Addison-Wesley HANYANG UNIVERSIT

Operational Semantics

- Operational Semantics
 - Describe the meaning of a program by executing its statements on a machine, either simulated or actual.
 - The change in the state of the machine (memory, registers, etc.) defines the meaning of the statement.
 - **Natural** operational semantics: the final result of a program.
 - **Structural** operational semantics: the precise meaning of a program.
- To use operational semantics for a high-level language:
 - Design an appropriate intermediate language clarity.
 - Virtual machine for the intermediate language is needed in natural operational semantics.

© 2009 Addison-Wesley HANYANG UNIVERSITY

Operational Semantics

Example:

```
C Statement
                                  Meaning
for (expr1; expr2; expr3) {
                                        expr1;
                                  loop: if expr == 0 goto out
                                        expr3;
                                        goto loop
                                  out:
```

- Uses of operational semantics:
 - Language manuals and textbooks.
 - Teaching programming languages.
- Evaluation
 - Good if used informally (language manuals, etc.).
 - Extremely complex if used formally (e.g., VDL).

Denotational Semantics

- The most rigorous and widely known method.
 - Based on recursive function theory.
 - Originally developed by Scott and Strachey (1970).
 - The meaning of language constructs are defined by only the values of the program's variables.
 - Operational semantics: simpler language vs. mathematical objects.
- Building a denotational specification for a language:
 - Define a mathematical object for each language entity.
 - Define a function that maps instances of the language entities onto instances of the corresponding mathematical objects.
 - Syntactic domain → semantic domain.

Denotational Semantics: Examples

Binary numbers.

- E.g. Parse tree for '110':
 - Syntactic domain: all string representations of binary numbers.
 - <u>Semantic domain</u>: non-negative decimal numbers.
 - Semantic functions:

```
Mbin('0') = 0
Mbin('1') = 1
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)
Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1
```

Denotational Semantics: Examples

Decimal numbers.

- E.g. '352'
 - Syntactic domain: all string representations of decimal numbers.
 - Semantic domain: non-negative decimal numbers.
 - Semantic functions:

```
M<sub>dec</sub>('0') = 0, M<sub>dec</sub>('1') = 1, M<sub>dec</sub>('2') = 2, ...,
M<sub>dec</sub>('9') = 9

M<sub>dec</sub>(<dec_num> '0') = 10 * M<sub>dec</sub>(<dec_num>)
M<sub>dec</sub>(<dec_num> '1') = 10 * M<sub>dec</sub>(<dec_num>) + 1
...
M<sub>dec</sub>(<dec_num> '9') = 10 * M<sub>dec</sub>(<dec_num>) + 9
```

State of Program

• The state of a program is the values of all its current variables.

```
s = \{ \langle i_1, v_1 \rangle, \langle i_2, v_2 \rangle, ..., \langle i_n, v_n \rangle \}
```

- i_1 : the name of a variable, v_1 : the current value of the variable.
- undef represents the value is currently undefined.
- VARMAP(ij, s) → vj :
 map from states to states (or to values for expressions).
- Example:

```
s = \{ <'a', 1>, <'b', 2>, <'c', 3> \}
VARMAP('a', s) \rightarrow 1
VARMAP('i', s) \rightarrow undef
```

Expressions

```
Expressions
<expr> → <var> | <dec num> | <binary expr>
<binary expr> → <left expr> <operator> <right expr>
<left expr> → <dec num> | <var>
<right expr> → <dec num> | <var>
<operator> → + | *
```

- Map expressions onto Z U {error}.
 - We assume expressions have no side effects.
 - We assume expressions are decimal numbers, variables, or binary expressions having one arithmetic operator and two operands, each of which can be a variable or a decimal number.

© 2009 Addison-Wesley. HANYANG UNIVERSITY

Expressions

```
M_e(<expr>, s) \Delta=
  case <expr> of
     <dec num> => M<sub>dec</sub>(<dec_num>, s)
     <var> =>
       if (VARMAP(<var>, s) == undef)
       then error
       else VARMAP(<var>, s)
     <br/><br/>dinary expr> =>
       if (Me(<binary expr>.<left_expr>, s) == error OR
            M<sub>e</sub>(<binary expr>.<right expr>, s) == error)
       then error
       else if (<binary expr>.<operator> == '+')
             then M<sub>e</sub>(<binary expr>.<left expr>, s) +
                   M<sub>e</sub>(<binary expr>.<right expr>, s)
             else M<sub>e</sub>(<binary expr>.<left expr>, s) *
                   M<sub>e</sub>(<binary expr>.<right expr>, s)
```

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Maps state sets to state sets U {error}

```
M_a(x = E, s) \Delta =
   if (M_e(E, s) == error)
   then error
   else
       \{ \langle i_1, v_1' \rangle, \langle i_2, v_2' \rangle, ..., \langle i_n, v_n' \rangle \}, \text{ where }
       for j = 1, 2, ..., n,
          if (i_i == x)
          then v_i' = M_e(E, S)
          else v_i' = VARMAP(i_i, s)
Example: a = b + c, { \langle a, 0 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle }
      M_a(a = b + c, \{ \langle a, 0 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \})
                  M_e(b + c, \{ \langle a, 0 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \}) = 3
       \rightarrow { <a,3>, <b,1>, <c,2> }
```

Logical Pretest Loops

- Maps state sets to state sets U {error}
 - мь maps Boolean expressions to Boolean values (or error).
 - M_{s1} maps statement lists and states to states (or error).

```
\begin{array}{lll} \texttt{M}_1(\textbf{while } \texttt{B} \ \textbf{do} \ \texttt{L, s}) \ \Delta = \\ & \textbf{if } (\texttt{M}_b(\texttt{B, s}) \ == \ \textbf{undef}) \\ & \textbf{then error} \\ & \textbf{else if } (\texttt{M}_b(\texttt{B, s}) \ == \ \textbf{false}) \\ & \textbf{then s} \\ & \textbf{else if } (\texttt{M}_{s1}(\texttt{L, s}) \ == \ \textbf{error}) \\ & \textbf{then error} \\ & \textbf{else } \texttt{M}_1(\textbf{while } \texttt{B} \ \textbf{do} \ \texttt{L, } \texttt{M}_{s1}(\texttt{L, s})) \end{array}
```

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Logical Pretest Loops

- The loop has been converted from iteration to recursion.
 - The recursive control is mathematically defined by other recursive state mapping functions.
 - Recursion is easier to describe with mathematical rigor.

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Logical Pretest Loop Example

```
M_1 (while B do L, s) \Delta=
  if (M_b(B, s) == undef)
  then error
  else if (M_b(B, s) == false)
         then s
         else if (M_{sl}(L, s) == error)
               then error
               else M_1(while B do L, M_{s1}(L, s))
Example: while i > 0 do sum = sum + i; i--;
  M_1 (while i > 0 do a = a + i; --i, { \langle a, 0 \rangle, \langle i, 3 \rangle })
\rightarrow M<sub>1</sub>(while i > 0 do a = a + i; --i, { <a,3>, <i,2> })
\rightarrow M<sub>1</sub>(while i > 0 do a = a + i; --i, { <a,5>, <i,1> })
\rightarrow M<sub>1</sub>(while i > 0 do a = a + i; --i, { <a,6>, <i,0> })
\rightarrow { <a,6>, <i,0> }
```

Denotational Semantics

- Evaluation of denotational semantics:
 - Can be used to prove the correctness of programs.
 - Provides a rigorous way to think about programs.
 - Can be an aid to language design.
 - Revise the design if it is too complex and difficult.
 - Has been used in compiler generation systems.
 - Because of its complexity, it is of little use to language users.

Axiomatic Semantics

- Axiomatic semantics:
 - Based on mathematical logic (predicate calculus).
 - What can be proven about the program?
 - Original purpose: formal program verification.
 - Also used for program semantics specification.
 - Axioms or inference rules are defined for each statement type in the language (to allow transformations of logic expressions into more formal logic expressions).

Axiomatic Semantics

- The logic expressions are called assertions (predicates).
 - **Precondition**: assertion before a statement, stating the relationships and constraints among variables that are true at that point in execution.
 - **Postcondition**: assertion following a statement.
 - The precondition of a statement is the postcondition of the previous statement.
 - Preconditions for the statements are computed from given postconditions.
- Pre-, post form: {P} statement {Q}
 - Example: $\{ x > 0 \}$ sum = 2 * x + 1 $\{ sum > 1 \}$
 - What would be the possible precondition for the postcondition?

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Weakest Precondition

 A weakest precondition is the least restrictive precondition that will guarantee the postcondition.

```
- Example: \{??\} sum = 2 * x + 1 { sum > 1 }
     \{ x > 10 \}, \{ x > 50 \}, \{ x > 0 \}, \dots
```

- Program proof process:
 - The postcondition for the entire program is the desired result.
 - Work back through the program to the first statement. If the precondition on the first statement is the same as the program specification, the program is correct.

Inference Rule

Inference rule:

$$S_1$$
, S_2 , ..., S_n antecedent consequent

- If s_1 , s_2 , ..., and s_n are true, then the truth of s can be inferred.
- **Axiom**: a logical statement that is assumed to be true.
- Either an axiom or an inference rule must be available for each kind of statement in the language.

Axiom for assignment statements:

```
{Q_{x\rightarrow E}} \quad x = E \quad {Q}
```

- $Q_{x\to E}$: Q with all instances of x replaced by E.
- Examples:

```
a = b / 2 - 1 { a < 10 }
Weakest precondition: b < 22

x = 2 * y - 3 { x > 25 }
Weakest precondition: y > 14

x = x + y - 3 { x > 10 }
Weakest precondition: y > 13 - x
```

Consider the following logical statement.

```
\{ x > 3 \} x = x - 3 \{ x > 0 \}
```

Can we prove this statement?

$$x = x - 3$$
 { $x > 0$ }
Weakest precondition: $x > 3$

- This is same as the precondition – proven!

Another example:

```
{ x > 5 } x = x - 3 { x > 0 } Weakest precondition: x > 3
```

- However $\{x > 5\}$ implies $\{x > 3\}$.
- Rule of consequence:

$$\{P\} S \{Q\}, P' \Rightarrow P, Q \Rightarrow Q'$$
 $\{P'\} S \{Q'\}$

- Precondition can always be strengthened.
- Postcondition can always be weakened.

```
\{x>3\} x = x - 3 \{x>0\}, \{x>5\} => \{x>3\}, \{x>0\} => \{x>0\}
```

Sequences

• An inference rule for sequences of the form \$1; \$2

- Sequences of assignments:

- Weakest precondition with postcondition P is $\{(P_{x2\to E2})_{x1\to E1}\}$.
- Example:

```
y = 3 * x + 1; x = y + 3; { x < 10 }
{ y < 7 } x = y + 3; { x < 10 }
{ x < 2 } y = 3 * x + 1; x = y + 3; { x < 10 }
```

Selection

• An inference rule for selection statements:

```
{B and P} S1 {Q}, {(not B) and P} S2 {Q}
{P} if B then S1 else S2 {Q}
```

- Example:

Logical Pretest Loops

An inference rule for logical pretest loops:

```
{P} while B do S end {Q}

{I and B} S {I}

{I} while B do S end {I and (not B)}
```

- where I is the loop invariant.
- How to find the loop invariant?
 - P => I $^{\bigcirc}$: the loop invariant must be true initially.
 - {I and B} S {I} 2 : I is not changed by executing the loop body.
 - (I and (not B)) => Q^{3} : if I is true and B is false, Q is implied.
 - The loop terminates. (4): this can be difficult to prove.

```
{I and B} S {I}^{\textcircled{2}} \textcircled{\$} {I} while B do S end {I and (not B)} , P => I^{\textcircled{1}}, {I and (not B)} => Q^{\textcircled{3}}
```

Logical Pretest Loop: Example

• Weakest precondition predicate transformer:

```
wp(statement, postcondition) = precondition
```

- It takes a predicate and returns the weakest precondition of the statement which is another predicate.
- Example:

```
while y <> x do y = y + 1 end { y == x }
begin: { y == x }
1 iter: wp(y = y + 1, { y == x }) = { y == x-1 }
2 iter: wp(y = y + 1, { y == x-1 }) = { y == x-2 }
3 iter: wp(y = y + 1, { y == x-2 }) = { y == x-3 }
...
{ y <= x }
while y <> x do y = y + 1 end { y == x }
```

Logical Pretest Loop

- {P} while B do S end {Q} Example: { $y \le x$ } while $y \le x$ do y = y + 1 end { y == x } • Does the invariant $I = \{ y \le x \}$ satisfy the four criteria? - P => I : true since P == I. - {I **and** B} S {I} • {I and B} : { $y \le x \text{ and } y \le x$ } • Using assignment axiom: $\{y < x\}$ is the w.p. of $y = y + 1 \{y < x\}$ • True since $\{ y \le x \text{ and } y \le x \} \Rightarrow \{ y \le x \}$ - (I and (not B)) => Q • { $(y \le x)$ and not $(y \le x)$ } => { y == x } • { $(y \le x)$ and (y == x) } => { y == x }
 - The loop terminates.
 - For integer x and y, the loop terminates.

Logical Pretest Loop: Another Example

```
• while s > 1 do s = s / 2 end { s == 1 }
    { s == 1 }
    wp(s = s / 2, { s == 1 }) = { s / 2 == 1 }, or { s == 2 }
    wp(s = s / 2, { s == 2 }) = { s / 2 == 2 }, or { s == 4 }
    ...
    { s == 2<sup>i</sup>, i>=0 } while s > 1 do s = s / 2 end { s == 1 }
```

- This is not the weakest precondition (for integer operations).
- { s >= 1 } while s > 1 do s = s / 2 end { s == 1 }

Loop Invariant

- The loop invariant I:
 - A weakened version of the loop postcondition, and also a precondition.
 - Weak enough to be satisfied prior to the beginning of the loop.
 - Strong enough to force the truth of the postcondition, when combined with the loop exit condition.
- Loop termination is hard to prove.
 - Total correctness vs. partial correctness.

Program Proofs: Example 1

Program Proofs: Example 2

- Check the four criteria for the loop.

```
\{ n >= 0 \}
     count = n; fact = 1;
     while count <> 0 do
            fact = fact * count;
            count = count - 1;
     end
 { fact == n! }
Find the loop invariant (using some ingenuity!):
     fact == (count+1)*(count+2)*...*(n-1)*n == n!/count!
 I = (fact == n!/count!) and (count >= 0)
```

HANYANG UNIVERSITY © 2009 Addison-Wesley.

Program Proofs: Example 2

Loop body:

```
- P \Rightarrow I
```

It holds since I and B => P'.

- {I and B} S {I}

 ${I and B}$:

```
Program proofs - example 2
                         \{ n >= 0 \}
                            count = n; fact = 1;
                            - while count <> 0 do
                                fact = fact * count;
                               count = count - 1;
                         { fact == n! }
It holds since P == I. I = (fact == n!/count!) and (count >= 0)
  {(fact == n!/count!) and (count >= 0) and (count <> 0)}
{I} : {(fact == n!/count!) and (count >= 0)}
\{Pc\} count = count - 1; \{I\}
    Pc = (fact == n!/(count-1)!) and (count >= 1)
{P'} fact = fact * count; {Pc}
    P' = (fact == n!/count!) and (count >= 1)
```

Program Proofs: Example 2

Loop body (cont.):

```
- (I and (not B)) => Q
  ((fact == n!/count!) and (count>=0) and not (count<>0))
    => ((fact == n!/count!) and (count==0)) **note 0! = 1
    => fact == n!
```

• Entire program:

Evaluation of Axiomatic Semantics

- Evaluation of axiomatic semantics:
 - Developing axioms or inference rules for all of the statements in a language is difficult.
 - It is a good tool for correctness proofs, and an excellent framework for reasoning about programs, but it is not as useful for language users and compiler writers.
 - Its usefulness in describing the meaning of a programming language is limited for language users or compiler writers.

Summary

- BNF and context-free grammars are equivalent meta-languages.
 - Well-suited for describing the syntax of programming languages.
- An attribute grammar is a descriptive formalism that can describe both the syntax and the semantics of a language.
- Three primary methods of semantics description
 - Operation, denotational, axiomatic.

HANYANG UNIVERSITY © 2009 Addison-Wesley.