JHARKHAND RAKSHA SHA

Subject: Mathematics (GE-1) Class : BCACS Sem-I Time : 21/2 hrs.

GROUP-A

Answer all the following questions :-1.

- If $y = e^{ax} \sin(bx + c)$, then $y_n =$
- If $y = \frac{1}{x^2 + a^2}$, then $y_n =$ b)
- Give conditions of failure for Taylor's series and Maclaurin's c) series.
- Write the expansion of e^x . d)
- State Euler's Theorem on homogeneous function of two e) variable.
- $\int x^n dx$ is equal to _____ f)
- $\int e^x \{f(x) + f^1(x)\}$ is equal to q)
- $\lim_{n\to\infty} \sum_{r=0}^{n-1} \left[\frac{b-a}{n} \cdot f\left(a+r, \frac{b-a}{n} \right) \right] \text{ is equal to}$
- Write the rule of integration for integration by parts. i)
- Write the Limit of the integral j)

$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x,y) dx dy$$

Write the equation of a straight line passing through two k) given points (x, y) and (x_2, y_2) .

- Write the co-ordinates of a point p(x, y) if the direction of ones is changed by an angle but the origin is fixed.
- Write the length of lotus-rectum for parabola $v^2 = \Delta ax$.
- The direct scircle of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- Write down the co-ordinate of foci for hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1.$

GROUP-B

Answer any five questions :-

5x5=25

a) Expand
$$\frac{x}{e^x - 1}$$
 as far as x^4 .

b)
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
. Show that

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}.$$

c) Integrate
$$\int \frac{d\theta}{(2+\cos\theta)}$$

Derive equation of tangent at the point (α, β) on the parabola $y^2 = 4ax$. Also write the Co-ordinates of the point of intersection of tangents $\left(at_1^2, 2at_1\right)$ and $\left(at_2^2, 2at_2\right)$.

3.

Write properties of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- e) Write properties x_1, y_2 f) Find the equation of the normal at the point (x_1, y_1) to
- f) Find the equation of the flow the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- g) If ϕ and ψ be differentiable scalar functions of position (x,y,z). Then prove that grad $(\phi\pm\psi)=$ grade $\phi\pm$ grad ψ .
- Prove that a monotonic decreasing sequence tends to its lower bound.

GROUP-C

3. Answer any TWO questions :-

2x15=30

- a) State and prove Leibnitz's Theorem.
- b) Change the order of integration in

$$\int\limits_{0}^{a\cos\alpha}\int\limits_{x\tan\alpha}^{\sqrt{(a^2-x^2)}}f(x,y)dxdy \text{ and verify the result when}$$

$$f(x,y)=1$$

- c) Derive the equation of hyperbola and focal distances of a point p(x, y) on the hyperbola.
- d) Prove that the necessary and sufficient condition for the vector function $\vec{V}(t)$ to have constant direction is

$$\overrightarrow{u} \times \frac{\overrightarrow{du}}{dt} = \overrightarrow{0}.$$

e) State and prove Bolzano-weierstrass Theorem.

Jharkhand Raksha Shakti University-2017

Subject: BCACS-GE-I

Pass Marks: 32 Class: Semester-I

F.M.: 70

Time: 21/2 Hrs.

GROUP-B

Answer all the following questions :-

15x1=15

Define homogeneous function with an example.

b) Find
$$\frac{\partial u}{\partial x}$$
 if $u = x^3 + y^3 + 3axy$

- 0 State Euler's theorem for the functions of too variable
- (p Can $f(x) = \sqrt{x}$ be expanded in ascending powers of x?
- e) For the curve y = f(x), the length of subnormal z'R+15 R ¿
- the curve y = f(x). $(Y \beta) = \frac{\partial f}{\partial x} (X \alpha)$ $\int e^{x} \{f(x) + f'(x)\} dx \text{ is equal to } \underbrace{e^{x} fx}_{} + C$ Write down the equation of tangent at any point (α, β) of
- h) If f(x) is an odd function, then $\int f(x)dx$ is equal
- about y axis is area bounded by the curve y = f(x) y axis and y = c, y = dThe volume of the solid generated by the revolution of the
- the curve x = f(y), between y = c, y = d and Y-axis, when the axes of coordinates are rectangular. Write down the formula for finding the area bounded by
- If $r = \cos 2\pi t i + 3\sin 2\pi t j$, find $\frac{dr}{dt}$ at t = 0.
- Define divergence of a vector point function.

3

funct of degree n if the degree or a comogeneous Evaluate $\nabla . \vec{r}$ where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.

$$y^2 = 4ax$$
.

NON COMMER

7

o) Define eccentricity of the conic section.

If
$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.

Expand cosx upto three terms using Maclaurin's theorem

Show that in the curve $y = b \cdot e^{-a/x}$ square of the abscissa. , the subtangent varies as the

5. Evaluate
$$\int_{0}^{\pi/2} \frac{\sqrt{\tan x}}{1 + \sqrt{\tan x}} dx$$

The state of the s

6. Evaluate
$$\int_{0}^{3} \int_{1}^{2} xy(1+x+y)dy dx$$

- 1. time t=1. A particle moves along the curve $x = 3t^2$, $y = t^2$ is the time. Find the magnitudes of velocity and acceleration at -2t $z=t^3$, where
- .00 Find $\vec{v} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational. the constants a,b,cso that the vector
- 9. point (x_1, y_1) . Find the equation of the tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ $b^2 = 1$, at

GROUP-C (2x15=30)

- 10. State and prove Leibnitz theorem.
- H'a Show that the intercepts of the tangent to $\sqrt{x} + \sqrt{y} = \sqrt{a}$ the coordinate axes is constant noon
- 12. Find the volume of this sphere with radius 'a'
- 13. Show that $r^m \cdot r$ is solenoidal if m = -3 where r = xi + yj + zk

JHARKHAND RAKSHA SHAKTI UNIVERSITY

Subject: Mathematics (BCACS-102) Time: 21/2 Class: Sem-I

F.M.: 70 P.M.: 32

Group-A

- $15 \times 1 = 15$ Answer all the following questions:-1.
 - a) State Leibnitz Theorem
 - For the curve y = f(x), the length of subtangent b) is....?
 - Give one condition when the expansion of any function f(x) by Taylor's series will not be valid.
 - d) $\int_0^{2a} f(x) dx = 2 \int_0^a f(x) dx$, if....?
 - e) Let \overrightarrow{f} be a vector valued function, then geometrical meaning of div \overrightarrow{f} is.....
 - Let P be a point on the curve $\overrightarrow{r} = f(t)$ then f) geometrically $\frac{d\vec{r}}{dt}$ at P is
 - A sufficient condition for the vector function $\stackrel{\rightarrow}{u}$ of a g) scalar variable t to have constant magnitude is......
 - The condition that the general equation of the second $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent two straight lines is.....
 - If the line y = mx + c is a tangent to the parabola i) $v^2 = 4ax$ then the point of contact is.....

The equation of normal to the parabola $y^2 = 4\alpha_{\rm tr}$ is.... The equation property of real numbers. State Archimedian

State ...
Let $A = \left\{2 + \frac{1}{n}, n \in N\right\}$ then the set of limit points of A

Let $a_n = (-1)^n \left(1 + \frac{1}{n}\right)$ then the sequence ossillates

finitely between.....

n) Limit of $\left(1+\frac{x}{n}\right)^n$ is.....

Consider the double integral $\iint f(x,y) dxdy$ defined over the region R. Let the independent variable x, y be changed to u,v by transformations given by $x = \phi(u, v), y = \Psi(u, v)$ then the double integral is

Group-B

transformed into.....

Answer any five questions :-

5×5=25

 $(1+3xyz+x^2y^2z^2)e^{xyz}$ oxdydz If $u = e^{xyz}$, show that

by If $y = e^{ian_x^{-1}}$ show that

 $(1+x^2)y_{n+2} + (2nx+2x-1)y_{n+1} + n(n+1)y_n = 0$

Change the order of integration in the double integral $\int_{x}^{\infty} \int_{y}^{e^{-y}} dx dy$ and hence find the value.

d)/ Prove that curlgrad $\phi = \vec{0}$

at the point (1, -2, -1) in the direction of the vector Find the directional derivatives of $f(x, y, z) = x^2yz + 4xz^2$ 9

$$2\overrightarrow{i}-\overrightarrow{j}-2\overrightarrow{k}$$
.

 $S \equiv ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ at the point Find the equation of a tangent to the conic

Prove that the intersection of a finite number of open sets is an open set. 6

Prove that a monotonic increasing sequence bounded above tends to a limit which is its least upper bound. H

Group-C

 $2 \times 15 = 30$

State and prove Euler's Theorem. Answer any two questions:-3

ii) If $u = tan^{-1} \frac{x^3 + y^3}{x - y}$, prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

Prove that $dir\begin{pmatrix} \rightarrow & \rightarrow \\ u \times v \end{pmatrix} = v \cdot curl \cdot u - u \cdot curl \cdot v$ 9

Find the volume a tetrahedron by the use of triple 0

d) If
$$a_n = \frac{1.3.5....(2n-1)}{2.4.6....(2n)}$$
 and $b_n = \frac{3.5.7....(2n+1)}{2.4.6....(2n)}$

show that $\{a_n\}$ and $\{b_n\}$ are monotonic sequences and

$$\{a_nb_n\}$$
 bounded within $\frac{1}{2}$ and 1.

END SEMESTER EXAMINATION 2021

DATE:25.03.2021

SUBJECT: BCACS-GE-1 MATHEMATICS

CLASS: BCACS-I

TIME: 21/2 hrs

F.M.: 70 P.M.: 32

SECTION A

Q. 1 Select the most appropriate answers from the following Multiple Choice Questions. All questions are compulsory. 1x15 = 15 Marks

1.
$$\frac{d}{dx} \sec x is$$

- a) sec x sin x
- c) cosec x cot x

- b) sec x tan x
- d) sec x cot x

2. According to Euler's Theorem,

a)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n^2 u$$

c)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$$

b)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$

d)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$

3. $\int \cot x \, dx$

- a) log lsin xl
- er log Isec xl

- b) log I tan xI
- d) None of these

 $4. \quad \int \frac{1}{|x|\sqrt{x^2-1}} \, dx =$

- a) sec x
- c) $\cos^{-1} x$

- b) $\sec^{-1} x$
- d) $\sin^{-1} x$

5. Sum of the series $1^2 + 2^2 + 3^2 + 4^2 + - - - + n^2$ is

- n(n+1)(2n-1)

- b) $\frac{n(n+1)(2n+1)}{n(n+1)(2n+1)}$

6. $\int e^x (\sin x + \cos x) dx =$

- a) $e^x \sin x$
- c) $e^x \cos x$

- $e^x \tan x$
- d) ex

7. If $A = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ then ∇A

- a) 3
- c) 0

- b) 1
- d) 2

8. curl curl F is equal to

a) grad div $F - \nabla^2 F$

b) grad div F - ∇F

c) curl div $F - \nabla^2 F$

d) grad curl $F - \nabla^2 F$

9. The value of curl (grad f), where $f = 2x^2 - 3y^2 + 4z^2$

- a) 4x 6y + 8z

- b) $4x\hat{\imath} 6y\hat{\jmath} + 8z\hat{k}$
- c)- 0

a) 1/3
a) 1/3
a) 1/3
c) 1

d) F (-4, 0)
and is perpendicular to the line 3x + y = 3. Its y - intercept is 12. The eccentricity of the ellipse $4x^2 + 9y^2 + 8x + 36y + 4 = 0$ is d) $\sqrt{5}/3$ 13. If $y = e^{ax}$ then $y_n =$ a) e^{ax} c) aeax by an eax d) $n^a e^{ax}$

14. According to Nested Interval Property of the real line, which of the following is true a). $\bigcap_{m=1}^{\infty} l_m \neq \emptyset$

c)
$$\bigcap_{m=1}^{\infty} I_m = 1$$

b)
$$\bigcap_{m=1}^{\infty} I_m = \emptyset$$

d)
$$\bigcup_{m=1}^{\infty} l_m \neq \emptyset$$

- 15. "Between any two distinct real numbers there lie infinity of rationals and infinity of irrationals. This theorem is known as
- a) Density Theorem
- c) Sandwich Theorem

- b) Bolzano Weierstrass theorem
- d) Schroeder-BernsteinTheorem

Answer any FIVE questions.

SECTION B

5x5 = 25

1. If
$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$

- 2. State and prove Archimedean property of real numbers.
- 3. Show that $Div(curl \vec{v}) = 0$ i.e. $\nabla \cdot (\nabla \times \vec{v}) = 0$
- 4. Evaluate $\int \sqrt{\tan\theta} \ d\theta$.
- 5. Apply Maclaurin's Theorem to obtain the expansion of $\log (1 + \tan x)$
- 6. Find the equation of the parabola whose vertex is at (2,1) and the directrix is x=y-1

7. If
$$A = 5t^2\hat{\imath} + t\hat{\jmath} - t^3\hat{k}$$
, $B = \sin t \hat{\imath} - \cos t \hat{\jmath}$, find i) $\frac{d}{dt}(A.B)$ ii) $\frac{d}{dt}(A \times B)$

$$(ii) \frac{d}{dt}(A \times B)$$

8. If
$$y = (\sin^{-1} x)^2$$
, prove that

$$i) (1 - x^2)y_2 - xy_1 = 2$$

$$ii)(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$$

SECTION C

Answer any TWO questions.

15x2 = 30

- 1. Prove that $\int_0^{\frac{\pi}{2}} \log \sin x \, dx = -\frac{\pi}{2} \log 2$
- 2. State and prove Bolzano Weierstrass theorem.
- 3. Find equation of tangent and normal of 2nd degree general equation of conic at any arbitrary point using calculus method.
- 4. a) Find a unit vector normal to the surface $xy^3z^2 = 4$ at the point (-1, -1, 2).
 - b) If u = x + y + z, $v = x^2 + y^2 + z^2$, w = yz + zx + xy, prove that grad u, grad v and grad w are coplanar