TARP

<u>DIGITAL ASSIGNMENT - 2</u>

TEAM MEMBERS:

- ADRIJA MUKHOPADHYAY 19BDS0159
- MANDIRA HAWALDAR 19BCT0052
- TARANG GARG 19BCE0053
- VISHAKHA KUMARESAN 19BCE2678

LITERATURE REVIEW

No.	Paper Title	Summary	Strengths	Limitations
1	Patient Identification	The science of computer vision	Recovery of patient	The model needs to be
	using Facial Recognition	has the potential to completely	related documents	more developed in the
		alter how prescriptions are now	is quick and	areas of detection in low
		issued to patients. The use of	efficient, computer	lighting and detection of
		cutting-edge computer vision	vision coupled with	people who have similar
		technology to do away with	a database not only	facial features.
		written prescriptions and	makes the creation	
		tangible items like RFID record	of a new entry easy	
		files has been suggested in this	but also facilitates	
		research as a workable solution.	in search of	
		The benefits of having a	previous records of	
		Worldwide Medical Face	the patient.	
		Identification system for each		
		patient have been amply		
		demonstrated. These benefits		
		include a reduction in		
		inefficiency, the time spent at		
		the front desk, and the efforts of		
		medical staff in identifying		
		patients and picking up on		
		subtleties of their medical		
		histories, prior appointments		
		with specialists, and		
		prescriptions. A secure platform		
		may be used to install a		
		database connected to the		
		patient's face image, which can		
		be periodically updated and will		
		be globally accepted as the		

		foundation for the identification		
		of patients accessible to doctors		
		at all accredited medical		
		facilities for research and		
		prompt action.		
2	Emergency situation	With the development of	Provides	This research is heavily
	monitoring service using	convergence technology,	satisfactory	app dependent and thus
	context motion tracking of	interactive communication	monitoring and	requires implementation
	chronic disease patients	utilizing context-aware	assistance	of a good user interface
		computing environments and a	especially for	along with verification
		variety of devices became	chronic diseases	and authentication for
		possible, and research on health	which require	security.
		management are receiving a lot	constant	
		of attention. The need for	monitoring.	
		ongoing treatment and health		
		maintenance has been		
		emphasized rather than the		
		traditional method to treating		
		the condition since chronic		
		disease is on the rise, which is		
		being accompanied by changes		
		in lifestyle, improvements in		
		quality of life, and an increase		
		in life expectancy. Thus, there		
		is need of development of a		
		technology such that the patient		
		or their relatives themselves are		
		able to monitor the vitals and		
		tend to the needs of the patient.		
3	Emergency Patient	The patients' identities will be	Provides detection	To achieve higher
	Identification System	uniquely determined by this	of patient and their	accuracy cloud-based
		method. In an emergency,	history in an	services such as google
		doctors can act quickly by	emergency	cloud need to be used.
		gathering the most recent	situation where	
		information on their patients'	time is crucial.	
		conditions. The technology		
		assists the user in transmitting		
		and receiving the essential		
		medical information to		
		hospitals and doctors. This		

		system offers a lot of distinctive		
		characteristics, including the		
		ability to locate the closest		
		hospitals in an emergency. The		
		history of the patient's family		
		members might be added,		
		which can serve to remind him		
		of his current medical		
		condition.		
4	An IoT System for Social	The major causes of emergency	Integrates IOT	It is implemented on low
	Distancing and Emergency Management	circumstances in structures and infrastructures are the	sensors and	power devices, which
	in Smart Cities Using	occurrence of unintentional or	wireless sensor	might not have the
	Multi-Sensor Data	catastrophic natural disasters	networks to give an	necessary computational
		and the adoption of insufficient management techniques. These	optimal solution for	capacity for heavy loads.
		factors may have an impact on	the problem.	1 2
		the structural soundness of the aforementioned assets, which	r	
		may then have an impact on the		
		security and well-being of densely inhabited places.		
		Disaster situations sometimes		
		call for the surveillance of a		
		crowd, while other times call for the detection of air		
		components, for example.		
		Senor networks and Internet of Things (IOT) solutions aid in		
		reducing these issues		
5	Face Recognition for	Currently, the majority of	Effective	Monitoring of the visitors
	Security Efficiency in Managing and Monitoring	organizations, whether they are	management,	must be done in way such
	Visitors of an	in the public, commercial, or	tracking and	that it doesn't infringe
	Organization	even educational sectors,	monitoring of the	their privacy.
		manage their visits using manual	visitors which enter	
		systems. Before entering the	and are present in	
		facility, visitors under this	the organization.	
		manual method must enroll with		
		the person in control, who is		
		typically a security guard.		
		Numerous problems,		
		particularly in managing,		
		overseeing, and regulating the		
		organizations' visits, plagued		
		the manual procedure.		

		TIL. C		
		The face recognition technology		
		used in the computerized visitor		
		management system that		
		enables more effective		
		management, monitoring, and		
		control of the visitors is		
		discussed in this article.		
6	Face Recognition-Based Automatic Hospital	The lengthy list of processes that	Time is crucial in	It takes longer to calculate
	Admission with SMS	must be completed before	accident and	the facial vectors in faces
	Alerts	treating accident victims in India	emergency cases,	which include a bindi and
		is to blame for the high fatality	this recognition	beard or moustache.
		rate. These procedures include	system helps in	
		completing out entry forms and	reducing the time	
		occasionally notifying the	required for	
		nearby police station. To ensure	formalities so that	
		that the accident case is	the patient gets	
		legitimate and there is no	treated as soon as	
		conspiracy, it is crucial to	possible.	
		inform the police.	possioie.	
		The auto-filling of the form is a		
		method that might shorten the		
		_		
		time needed to complete the		
		requirements. By applying		
		image processing to identify the		
		patient, this automatic form		
		filling may be accomplished.		
7	FACE RECOGNITION	A face recognition system to	The test for face	To achieve smooth going
,	SYSTEM FOR	access patient information was	detection yielded a	higher accuracy cloud-
	ELECTRONIC FOR	created by means of hardware	100% result and out	based services such as
		•		
	MEDICAL RECORD TO	and software integration. The		google cloud need to be
	ACCESS OUT-PATIENT	hardware consisted mainly of a	conducted for face	used.
	INFORMATION	webcam for capturing the image	recognition, 25	
		of the patient's face. The	were recognized	
		webcam, together with the	with its respective	
		servos were connected to a	record.	
		gizDuino v4.0 microcontroller		
		to allow the camera to track the		
		face. An interface and software		
		program using C# (.Net		
		Framework 4) with the use of		

8	Project Design and Implementation of Face Recognition, Fever	Viola-Jones algorithm code sources for face detection, Eigen-faces sources for face recognition, and Arduino IDE to program the microcontroller was developed. They have discussed the design, operation, and implementation of a system for face recognition,	The system has successfully integrated many	It is implemented on low power devices, which might not have the
	Detection, and Attendance Record Based on Sensing Technology	fever sensing, and attendance recording. We used software such as HTML, CSS, JS, Django, MySQL, and WeChat programs among multiple frameworks and developments for our system, and used MySQL to store employee facial information, basic personal information, attendance records, personal temperature test results, and health records.	pieces of software and small hardware, the initial construction cost will be low. It is also energy saving, minimizing maintenance costs. It can also perform fever screenings and track personal health records.	necessary computational capacity for heavy loads.
9	High-Capacity Real-Time Face Retrieval Recognition Algorithm Based on Task Scheduling Model for the Treatment Area of Hospital	This paper presents an in-depth study of face detection, face feature extraction, and face classification from three important components of a high-capacity face recognition system for the treatment area of hospital and a study of a high-capacity realtime face retrieval and recognition algorithm for the treatment area of hospital based on a task scheduling model.	The performance tests of the face detection model and feature extraction network show that the face detection model has a significant reduction in false-positive rate, better fitting of border regression, and improved time performance. The face feature extraction network has no overfitting,	Although the system designed in this paper improves the speed of face detection and combines soft and hard code sign to accomplish the face recognition function, there are still some short. Firstly, it is difficult to improve the recognition rate of face recognition by relying on the simple task scheduling algorithm comings.

10	Principles of Cloud Computing Application in Emergency Management	Recent emergency situations in the world show the tendency that the occurrence frequency of natural disasters is expected to increase in future. Therefore new approaches for emergency management need to be elaborated based on the latest IT developments. Cloud computing is considered as a possible way to lower the cost and complexity of computing by providing applications that run on the Internet.	and the features are highly discriminative with small feature extraction time consumption. Cloud computing services are more readily available for a response to a catastrophic event. Since the cloud applications are hosted at geographically dispersed locations, they are not at risk of going down if one of the facilities fails.	In remote areas where internet availability is a problem, cloud based applications and resources cannot be used.
11	Mobile Healthcare Information Management utilizing Cloud Computing and Android OS	This work presents the implementation of a mobile system that enables electronic healthcare data storage, update and retrieval using Cloud Computing. The mobile application is developed using Google's Android operating system and provides management of patient health records and medical images (supporting DICOM format and JPEG2000 coding). The developed system has been evaluated using the Amazon's S3 cloud service.	The response time of the Amazon S3 Cloud service can play an important role on the total transmission time and makes response faster.	Limitation which needs to be worked on include improving security by implementing advanced user authentication techniques on the mobile device (e.g., through voice recognition) and deploying the platform in real healthcare environment for evaluating the system in terms of user acceptability and performance.

12	MEDiSN: Medical	The paper presents MEDiSN, a	PMs collect	Not as scalable and has
	Emergency Detection in	hierarchical wireless sensor	physiological data	high energy consumption.
	Sensor Networks	network for monitoring patients'	measurements that	
		physiological data. MEDiSN	are as accurate as	
		comprises a set of Physiological	commercial patient	
		Monitors (PMs) which collect,	monitors, the	
		encrypt and sign patients'	system can be	
		physiological data (e.g., pulse	quickly deployed in	
		oximetry, ECG, etc.) before	the hospital, and	
		transmitting them to a network	supports multiple	
		of Relay Points (RPs). These	mobile PMs with	
		RPs self-organize into a routing	high delivery ratios	
		tree which reliably delivers		
		periodic data and alerts from the		
		PMs to the network gateway as		
		well as management commands		
		from the gateway to individual		
		PMs. The gateway forwards		
		collected data to a backend		
		server, which persistently stores		
		them and disseminates them to		
		authenticated GUI clients. The		
		design of MEDiSN's GUI and		
		architecture were based on		
		multiple iterations of feedback		
		from hospital personnel and first		
		responders who will be the end		
		users of the system.		
13	A two way emergency medical monitoring	An application on the computing	Enable multiple	No developed prototype
	system with a computing	device enables remote control of	patients to be	of the hardware
	device fitted on a rotating holder	the orientation of the device and	monitored	component yet.
	noidei	zoom function on the camera,	simultaneously in	
		along with artificial intelligence	real time and round	
		including face detection to	the clock and from	
		enable to doctor to monitor the	a remote location.	
		patient remotely, and trigger		
		actions such as siren or calling a		
		neighbour in case of a medical		
		emergency. This enables a		

		comprehensive low cost		
		interactive monitoring system.		
14	Real Time Object	Deep learning has gained a	Excellent detection	Basic working is
14	_	tremendous influence on how		
	Detection and Tracking		and tracking results	designed, it is not
	Using Deep Learning and	the world is adapting to	on the object	deployed anywhere for
	OpenCV	Artificial Intelligence since past	trained and can	real time testing.
		few years. Some of the popular	further utilized in	
		object detection algorithms are	specific scenarios	
		Region-based Convolutional	to detect, track and	
		Neural Networks (RCNN),	respond to the	
		Faster RCNN, Single Shot	particular targeted	
		Detector (SSD) and You Only	objects in the video	
		Look Once (YOLO). Amongst	surveillance	
		these, Faster-RCNN and SSD		
		have better accuracy, while		
		YOLO performs better when		
		speed is given preference over		
		accuracy. Deep learning		
		combines SSD and Mobile Nets		
		_		
		implementation of detection and		
		tracking. This algorithm		
		performs efficient object		
		detection while not		
		compromising on the		
		performance.		
15	Object Detection in	We have proposed a system to	Detected with very	Limitations to be worked
	Medical Video Using Deep Learning	recognize the moving objects	high precision and	on include utilizing
		through an optimal features and	accuracy values	reduction approach to deal
		deep learning approach. These		with enhance power, and
		maximum likelihood feature		constancy of object
		points are characterized into		recognition process.
		foreground pixels and remaining		- *
		matching feature points are		
		grouped into background based		
		on the frame-to-frame contrast		
		process.		

16	An Area Efficient FPGA	Digital security footage is a vital	Detects moving	Uses a hardware based
	Implementation of Moving	component of the global shift to	objects and face	model, difficult to load
	Object Detection and Face	digital communication. Face and	rather than a static	results into the cloud.
	Detection using Adaptive	moving object detection are	object useful in real	
	Threshold Method	crucial components of video	time applications.	
		surveillance systems. It is a		
		component of security-focused		
		programs used in hospitals,		
		banks, and traffic control		
		systems. The process of		
		background subtraction is used		
		to identify the foreground. For		
		each input video frame, the		
		background removal module		
		requires an adjustable upper		
		bound due to fluctuations in		
		light intensity in a constantly		
		changing environment.		
		For video surveillance systems,		
		face and moving object		
		detection are essential needs.		
		For detecting moving objects,		
		there are typically three different		
		types of algorithms. Its three		
		components are the optical flow		
		field algorithm, frame difference		
		algorithm, and background		
		removal method.		
17	Design and	The conventional method of	An innovative	The accuracy of the results
	Implementation of an	keeping tabs on a patient's	approach to	is not provided.
	Embedded Monitor	breathing calls for physical	monitor the patient	•
	System for Detection of a	contact with the patient by	is implemented.	
	Patient's Breath by Double	attaching a gadget to it. In	Which requires no	
	Webcams in the Dark	Impedance Pneumography, for	contact with the	
		instance, the electrode is	patient's body	
		positioned on the skin of the	unlike wearable	
		chest and concurrently transmits	devices.	
		a high-frequency current while		
		using the receiver electrode to		
		and received electrode to		

		detect any current variations		
		while breathing.		
		Our system recognizes chest		
		expansion and contraction in a		
		manner akin to how image		
		processing finds moving		
		objects. The three main ways to		
		find a moving item are as		
		follows. To begin with,		
		"Temporal Differencing" is used		
		to compare two sets of		
		continuous visual data and		
		determine if an object's volume		
		has changed.		
18	Real Time Object	Although object detection is a	Implemented in	Real time detection
	Detection in Surveillance	very effective technique, it may	emergency	consumes a lot of energy
	Cameras with Distance	occasionally be challenging to	situation so	and computational power.
	Estimation using Parallel	deploy and get the best results.	displays practically	
	Implementation	The two types of networks used	no time lag.	
		for object detection are neural		
		networks and convolutional		
		neural networks (CNN). The		
		way the two types of networks		
		receive visual input is the		
		primary distinction between		
		them. Neural networks are often		
		developed and trained over		
		vectors, which means they		
		observe an image in two		
		dimensions. A tensor with		
		height, depth, and breadth as its		
		parameters is the input for CNN.		
		Additionally, we observed that		
		previous approaches required a		
		picture to be transformed to		
		grayscale before being utilized		
		for calculation.		

19	Head gesture recognition	A robust head gesture-based	When head	Both indoor and outdoor
17	for hands-free control of an	interface (HGI), is designed for	gestures are not in	environments where
	intelligent wheelchair	head gesture recognition of the	normal postures,	cluttered backgrounds,
	mionigen wheelenan	RoboChair user. The recognised	i.e., the non-vertical	changing lighting
		gestures are used to generate	head gestures ,	conditions, sunshine and
		motion control commands to the	HGI is still able to	shadows may bring
		low-level DSP motion controller	identify the user's	complications to head
		so that it can control the motion	intention and	gesture recognition.
		of the RoboChair according to	control the	gesture recognition.
		the user's intention. Adaboost	RoboChair very	
			•	
		face detection algorithm and	well, which is very	
		Camshift object tracking	robust. However,	
		algorithm are combined in our	HGI will ignore	
		system to achieve accurate face	head gestures if the	
		detection, tracking and gesture	user's head is not	
		recognition in real time. It is	located in the center	
		intended to be used as a human-	of images or is	
		friendly interface for elderly and	looking around the	
		disabled people to operate our	surroundings	
		intelligent wheelchair using	without the	
		their head gestures rather than	intention of	
		their hands.	moving.	
20	Occlusion Pattern	The fundamental issue of	Can detect objects	The model is still in
	Discovery for Object	object detection in computer	from various angles	development and needs to
	Detection and Occlusion	vision has drawn a lot of	and point of views.	be improved before
	Reasoning	attention. In actual applications,	Partially obstructed	deployment.
		partial occlusions are common	objects.	
		and pose a significant obstacle		
		to object recognition. As was		
		mentioned, the majority of		
		current object identification		
		techniques have trouble finding		
		things that are partially		
		obscured. The look of an item		
		varies as certain portions of it		
		are obscured. It can be		
		challenging to develop a		
		classifier that can accurately		
		identify one object category		
		from other object categories as		
		well as backdrop because partial		
			<u> </u>	

occlusions may increase	
appearance variance within an	
item category.	

RESEARCH GAP

We have studied research papers on and related to our domain, they span from hospital emergency, disaster situations to various algorithms implemented in object and face detection. After reviewing these papers, we identified a few research gaps which are discussed below.

Almost all of these research papers didn't use an internet enabled cloud-based model for deployment. It made fetching and storing the data both in real-time and in the future difficult. By using a cloud-based model we can not only make the computations easier but also make the data transfer and access by authorized personnel seamless. Another of the drawback that we observed was the lack of ability of the algorithms to detect faces which have accessories or birthmarks, or are in ill lit areas.

PROBLEM STATEMENT

Identification of an accident victim in the emergency room, so that the relatives can be contacted. Both of these instances require the detection of either an object or face accompanied by generation of an alert. This can be realized by an object and face recognition and alert system.