全国青少年信息学奥林匹克联赛

提高组模拟赛 day2

一、题目概况

中文题目名称	分组	迷宫	挖矿
英文题目与子目录名	group	maze	mine
输入文件名	group.in	maze.in	mine.in
输出文件名	group.out	maze.out	mine.out
每个测试点时限	1s	3s	1s
内存上限	256MB	256MB	256MB
测试点数目	20	20	20
每个测试点分值	5	5	5
题目类型	传统	传统	传统

二、提交源程序程序名

对于C++语言	group.cpp	maze.cpp	mine.cpp
对于C语言	group.c	maze.c	mine.c

三、评测说明

- 1.评测时栈空间限制等同于最大空间限制。
- 2.保证每道题目标算的运行时间不超过给定时限的60%。

1.分组(group)

时间限制: 1s 空间限制: 256MB

题目描述

八卦当老师了! 他管理了n个学生,每个学生有一个属性 a_i 。 有时八卦需要让一些学生去执行一些任务,任务的完成程度会是这些学生的属性的最大公约数。八卦希望对于 $1 \leq k \leq n$,求出让k个学生去执行任务时任务完成程度的最大值。

输入格式

从文件group.in中读入数据 第一行一个整数n。 第二行n个整数,第i个整数表示 a_i 。

输出格式

输出到文件group.out中。n行,每行一个整数,第i行表示让i个学生执行任务时任务完成程度的最大值。

样例

```
样例输入1
10
4 3 8 1 9 7 4 6 7 1
样例输出1
9
7
4
2
1
```

样例2和样例3 见下发文件。

数据规模与约定

对于30%的数据, $1 \leq n \leq 300, 1 \leq a_i \leq 300$ 。 对于60%的数据, $1 \leq n \leq 2000, 1 \leq a_i \leq 2000$ 。 对于100%的数据, $1 \leq n \leq 100000, 1 \leq a_i \leq 1000000$ 。

2.迷宫(maze)

时间限制: 3s 空间限制: 256M

题目描述

八卦和他的同伴去迷宫探险,被魔王关押了起来。八卦幸运地逃出,并获得了迷宫的地图,现在他需要把解救所有同伴并逃出迷宫。

迷宫可以看成一个n个点m条边的无向连通图。点的编号从1到n,第i条边 (ui,vi,wi)表示从ui到vi的一条边,r个人通过这条边的用时为r*wi。

第i个点的属性pi为0或1, 1表示该点可以离开迷宫, 0表示不可以。

八卦从s点出发。八卦有k个同伴,第i个同伴被关押在di点。

假设解救同伴不需要时间,且八卦和所有被解救出的同伴必须一起行动,八卦希望用最短的时间与所有同伴离开迷宫。请你输出这个最短时间。数据保证能救出所有同伴并离开迷宫。

输入格式

从文件maze.in中读入数据。

第一行四个整数n,m,k,s。

第二行n个整数, 第i个整数为pi。

第三到m+2行,每行三个整数,第i+2行的三个整数ui,vi,wi描述第i条边。

最后一行k个整数, 第i个整数为di。

输出格式

输出到文件*maze.out*中。 输出一行一个整数表示答案。

样例

样例输入1

5 8 2 5

0 1 0 1 0

1 2 9

1 3 1

1 4 1

1 5 1

5 1 1

5 2 6

4 2 7

2 3 1

5 3

样例输出1

7

样例2和样例3

见下发文件。

数据规模与约定

对于20%的数据, $1 \leq n \leq 300$, $1 \leq k \leq 10$ 。

对于50%的数据, $1 \le n \le 1000$, $1 \le k \le 10$ 。

对于70%的数据, $1 \le n \le 1000$, $1 \le k \le 20$ 。

对于100%的数据, $1 \le n \le 10000$, $1 \le k \le 20$ 。

对于所有数据, $1 \leq m \leq 50000, 0 \leq p_i \leq 1, 1 \leq u_i, v_i, d_i, s \leq n, 1 \leq w_i \leq 100000$ 。

3.挖矿(mine)

时间限制: 1s 空间限制: 256M

题目描述

八卦想赚钱,于是他去了C国,因为C国有很多矿脉,挖矿可以赚很多钱。

C国的地图是一颗n个点的有根树,保证每个点父亲的编号小于其自身的编号。有m条矿脉,每条矿脉所处的位置是树上的一条链,第i条矿脉能获得的收益为 w_i 。

八卦可以申请占领一条矿脉,然后八卦就可以获得这条矿脉的收益。但是八卦并不满足于一条矿脉。八卦想偷偷去 挖其它矿脉,但是八卦能挖的其它矿脉需要满足这样的条件:这条矿脉与八卦占领的矿脉有公共边,且这条矿脉的 任意一点到根的路径上(除去这一点)都有八卦占领的节点。只有这样,八卦才能把被发现的风险降到最低。 现在,八卦想要知道他能获得的最大收益。

输入格式

从文件mine.in中读入数据 第一行两个整数n,m。 第二行n-1个整数,第i个整数代表树上i+1号点的父亲 f_{i+1} 。 接下来m行,每行三个整数 u_i,v_i,w_i 表示第i条矿脉的两个端点和收益。

输出格式

输出到文件*mine.out*中。 一行一个整数表示八卦能获得的最大收益。

样例

样例输入1

5 5

1

2

3

1 4 2

4 5 1

1 1 1

2 5 2

2 4 1

样例输出1

5

样例2和样例3 见下发文件。

数据规模与约定

对于30%的数据, $1 \le n, m \le 300$ 。 对于50%的数据, $1 \le n, m \le 2000$ 。 对于另外20%的数据, $f_i = i - 1$ 。 对于100%的数据, $1 \leq n, m \leq 100000, 1 \leq u_i, v_i \leq n, 1 \leq w_i \leq 1000, 1 \leq f_i < i$ 。

