INSTRUCCIONS:

- 1. Responeu amb claredat d'exposició les següents questions. Totes les respostes han de ser degudament justificades.
- 2. Primer llegiu totes i cadascuna de les preguntes. Comenceu responent i deixant en net totes aquelles de les que us trobeu més segurs.

PROBLEMES:

1. [1 punt] Sigui f(x) una funció amb gràfica

- (a) Té inversa? justifica la resposta.
- (b) Dibuixa les següents funcions: f(x) 0.5, f(x+1), -f(x), f(-x) i |f(x)|.

Solució: No té inversa ja que per exemple, hi ha tres valors de x diferents amb f(x) = 0.5. No és injectiva.

- 2. [1.5 punts] Considera la funció $f(x) = \frac{x-1}{2x+3}$
 - (a) Fes un esbòs de la gràfica de f(x) a partir de la de $\frac{1}{x}$ i transformacions elementals.
 - (b) Té inversa? Si és així calcula-la.

Solució:

(a) Si fem la divisió de polinomis obtenim que $f(x)=\frac{1}{2}-\frac{\frac{5}{4}}{x+\frac{3}{2}}$. Comenem amb la gràcfica de $\frac{1}{x}$ que ja coneixem.

Traslladem horitzontalment a l'esquerra per $\frac{3}{2}$ i després fem dilatació en eix vertical per $\frac{5}{4}$ i simetria respecte l'eix horitzontal ja que hi ha un signe negatiu davant de la fracció i la pugem verticalment en $\frac{1}{2}$.

(b) Aïllem x de l'equació $y = \frac{x-1}{2x+3}$. Aleshores

$$x - 1 = 2xy - 3y \tag{1}$$

$$x - 2xy = 3y + 1 \tag{2}$$

$$x(1-2y) = 3y + 1 \tag{3}$$

$$x = \frac{3y + 1}{1 - 2y} \tag{4}$$

(5)

Així

$$f^{-1}(x) = \frac{3x+1}{1-2x} \tag{6}$$

3. [1 punt] Calcula el domini de la funció $f(x) = \log_{10}(\sqrt{\frac{3}{x-1} - \frac{5}{x+7}})$.

Solució: El logaritme només està definit per valors estrictament positius, aleshores el domini de la funció f(x) són aquells $x \in \mathbb{R}$ tals que

$$\frac{3}{x-1} - \frac{5}{x+7} > 0$$

Un cop feta la resta de fraccions, $-2\frac{x-13}{(x-1)(x+7)}>0$, o bé $\frac{x-13}{(x-1)(x+7)}<0$.

$$\begin{cases} x - 13 < 0 & \text{si } x \in (-\infty, 13), \\ x - 13 > 0 & \text{si } \in (13, +\infty). \end{cases}$$

$$\begin{cases} (x-1)(x+7) < 0 & \text{si } x \in (-7,1), \\ (x-1)(x+7) > 0 & \text{si } x \in (-\infty,-7) \cup (1,\infty). \end{cases}$$

Fent una taula,

	x – 13	x-1	x + 7	$\frac{x-13}{(x-1)(x+7)}$
$(-\infty, -7)$	_	_	_	_
-7	_	_	0	
(-7,1)	_	_	+	+
1	_	0	+	
(1, 13)	_	+	+	_
13	0	+	+	0
$(13, +\infty)$	+	+	+	+

aleshores obtenim que el domini de la funció és

4. [2 punts] Calcula els següents límits:

(a)
$$\lim_{x \to 1} \frac{\sqrt{x^3 + x} - \sqrt{x^3 + 1}}{x - 1}$$
, (b) $\lim_{x \to \infty} \left(\frac{x^2 + x}{3 + x^2}\right)^{2x - 1}$

Solució:

(a) Si substituim x=1 a l'expressió obtenim $\frac{0}{0}$. Per resoldre l'indeterminació, multipliquem i dividim $\frac{\sqrt{x^3+x}-\sqrt{x^3+1}}{x-1}$ per $\sqrt{x^3+x}+\sqrt{x^3+1}$. Així

$$\frac{\sqrt{x^3 + x} - \sqrt{x^3 + 1}}{x - 1} = \frac{(x^3 + x) - (x^3 + 1)}{(x - 1)(\sqrt{x^3 + x} + \sqrt{x^3 + 1})} = \frac{1}{\sqrt{x^3 + x} + \sqrt{x^3 + 1}}$$

Finalment,

$$\lim_{x \to 1} \frac{\sqrt{x^3 + x} - \sqrt{x^3 + 1}}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x^3 + x} + \sqrt{x^3 + 1}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

$$\lim_{x \to 1} \frac{\sqrt{x^3 + x} - \sqrt{x^3 + 1}}{x - 1} = \frac{\sqrt{2}}{4}$$
(8)

(b) En una primera observació veiem que dóna una situació d'indeterminació 1^{∞} . En aquest cas, per un exercici de la llista de problemes sabem que si $f(x) = \frac{x^2 + x}{3 + x^2}$ i g(x) = 2x - 1, aleshores

$$\lim_{x \to \infty} \left(\frac{x^2 + x}{3 + x^2} \right)^{2x - 1} = e^{\lim_{x \to \infty} (f(x) - 1)g(x)}$$

En aquest cas,

$$\lim_{x \to \infty} (f(x) - 1)g(x) = \lim_{x \to \infty} \frac{(x - 3)(2x - 1)}{3 + x^2} = \lim_{x \to \infty} \frac{2x^2 - 7x + 3}{x^2 + 3} = \lim_{x \to \infty} \frac{2 - \frac{7}{x} + \frac{3}{x^2}}{1 + \frac{3}{x^2}} = 2$$

i

$$\lim_{x \to \infty} \left(\frac{x^2 + x}{3 + x^2} \right)^{2x - 1} = e^2$$
 (9)

5. [3 punts] Es considera la funció definida per

$$f(x) = \begin{cases} \frac{x^2 + 12x + 20}{x + 1} & \text{si } x < 8, \\ ax^{1/3}e^{-2x + 16} & \text{si } x \ge 8. \end{cases}$$

- (a) Estudieu la continuitat de la funció f(x) i les seves assímptotes.
- (b) Si $a \neq 0$, proveu hi ha un valor $x \leq -3$ pel qual f(x) = 0. Per quins valors $x \in [0, +\infty)$ es compleix que f(x) = 0?

Solució:

(a) El domini d'aquesta funció és $(-\infty, -1) \cup (-1, +\infty)$. En x = 8, la funció serà contínua si

$$\lim_{x \to 8^+} f(x) = \lim_{x \to 8^-} f(x) = f(8)$$

Si fem els càlculs tenim

$$\lim_{x \to 8^{-}} f(x) = \lim_{x \to 8^{-}} \frac{x^{2} + 12x + 20}{x + 1} = 20$$

$$\lim_{x \to 8^+} f(x) = \lim_{x \to 8^-} ax^{1/3} e^{-2x+16} = a8^{1/3} e^{-2 \cdot 8 + 16} = 2a = f(8)$$

Per tant, f(x) serà contínua en x = 8 si 20 = 2a, és a dir, si a = 10.

Si
$$a = 10$$
, és contínua a $(-\infty, -1) \cup (-1, +\infty)$. (10)

Si
$$a \neq 10$$
, és conínua a $\mathbb{R} \setminus \{-1, 8\}$ i té una discontinuitat de salt en $x = 8$. (11)

Anem a calcular les assímptotes. Comencem amb les verticals en el punt x = -1.

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{x^{2} + 12x + 20}{x + 1} = \frac{9}{0^{-}} = -\infty$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \frac{x^{2} + 12x + 20}{x + 1} = \frac{9}{0^{+}} = +\infty$$

$$\boxed{\text{Ass\'imptota vertical } x = -1}$$
(12)

Anem a estudiar les assímptotes horitzontals.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 + 12x + 20}{x + 1} = \frac{33}{0^-} = \lim_{x \to -\infty} \frac{1 + \frac{12}{x} + \frac{20}{x^2}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{0^-} = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} ax^{1/3} e^{-2x + 16} = \lim_{x \to +\infty} \frac{ax^{1/3}}{e^{2x - 16}} = 0$$

ja que en general $\lim_{x\to+\infty}\frac{x^n}{e^x}=0$.

Assímptota horitzontal a la dreta
$$y = 0$$
 (13)

Per acabar cal veure si hi ha una assímptota obliqua y = mx + n a l'esquerra.

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^2 + 12x + 20}{x(x+1)} = \lim_{x \to -\infty} \frac{1 + \frac{12}{x} + \frac{20}{x^2}}{1 + \frac{1}{x}} = 1$$

$$\lim_{x \to -\infty} f(x) - mx = \lim_{x \to -\infty} \frac{x^2 + 12x + 20}{x+1} - x = \lim_{x \to -\infty} \frac{11x - 20}{x+1} = \lim_{x \to -\infty} \frac{11 - \frac{20}{x}}{1 + \frac{1}{x}} = 11$$

$$Assímptota obliqua a l'esquerra $y = x + 11$ (14)$$

(b) Si a>0, la funció $f(x)=ax^{1/3}e^{-2x+16}$ sempre és positiva si x>8; i si a<0, la funció $f(x)=ax^{1/3}e^{-2x+16}$ sempre és negativa si x>8. A més, per valors $x\in[0,8]$, és clar que $\frac{x^2+12x+20}{x+1}$ sempre és un número positiu. Així:

No hi ha cap
$$x \in [0, +\infty)$$
 que compleixi $f(x) = 0$ (15)

La funció f(x) és contínua en $(-\infty, -3]$. Com que $\lim_{x \to -\infty} f(x) = -\infty$, podrem trobar valors $x \in (-\infty, -3]$ tals que f(x) < 0. Per exemple, si calculem $f(-100) = -\frac{8820}{99} < 0$. Només

cal trobar un valor en que la funció és positiva. Si fem $f(-3) = \frac{7}{2} > 0$. Per tant el Teorema de Bolzano per funcions contínues ens assegura que

$$f(x) = 0 \text{ per algun valor } x \in [-100, -3].$$
 (16)

A més, podem calcular directament quan f(x) = 0 si $x \le -3$, ja que $\frac{x^2 + 12x + 20}{x(x+1)} = 0$ si i només si $x^2 + 12x + 20 = 0$. Per tant, resolent l'equació de segon grau tenim que f(-10) = 0.

6. [1.5 punts]

(a) La probabilitat de que un individu de Drosophila Melanogaster visqui més de t dies és

$$S(t) = e^{\frac{-t^3}{100}}$$

Quina és l'edat (número de dies de vida) que supera la meitat de la població? Quin percentatge de la problació supera els 5 dies de vida?

(b) Sigui I la intensitat del so (W/m^2) , watts per metre quadrat). El llindar a partir del qual un so és audible és $I_0 = 10^{-12} \ W/m^2$. Els decibels es calculen a partir de la intensitat segons la fórmula

$$D = 10\log_{10}(\frac{I}{h})$$

Tenim una alarma que, començant en $3I_0$ emet un so que a cada segon és $\sqrt{10}$ vegades més alta. Escriu la fórmula de la intensitat I(t) i la dels decibels del so de l'alarma D(t) en el segon t. A partir de quin moment supera el llindar del dolor que és de 130 decibels?

Solució:

(a) Primer ens demanen per quin valor de t, S(t) = 0.5 i aïllant obtenim

$$t = \sqrt[3]{100 \ln(2)} \approx 4.1 \text{ dies.}$$
 (17)

Després ens demanen $S(5)=e^{-1.25}=rac{1}{e^{1.25}}pprox 0.29$. És a dir,

(b) Si a cada minut la intensitat es multiplica per $\sqrt{10}=10^{\frac{1}{2}}$, tenim que $I(t)=3I_0(10^{\frac{1}{2}})^t=3I_010^{\frac{t}{2}}$. En decibels, apliquem la formula

$$D(t) = 10 \log_{10}(\frac{3I_0 10^{\frac{t}{2}}}{I_0}) = 10 \log_{10}(3 \cdot 10^{\frac{t}{2}}) = 10(\log_{10}(3) + \log_{10}(10^{\frac{t}{2}})) =$$

$$= 10(\log_{10}(3) + \frac{t}{2}) = 10 \log_{10}(3) + 5t$$

$$I(t) = 3I_0 10^{\frac{t}{2}} W/m^2 i D(t) = 10 \log_{10}(3) + 5t \text{ decibels}$$
(19)

Finalment $10 \log_{10}(3) + 5t > 130$. Per

$$t > \frac{130 - 10\log_{10}(3)}{5} \approx 25 \text{ segons,}$$
 (20)

la intensitat sobrepassarà el llindar del dolor.