# Train a model with bike rental data using XGBoost algorithm

Model is trained with XGBoost installed in notebook instance

In the later examples, we will train using SageMaker's XGBoost algorithm

```
In [1]: # Install xgboost in notebook instance.
        #### Command to install xgboost
        !pip install xgboost
        Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaws.co
        Collecting xgboost
          Downloading xgboost-1.7.6-py3-none-manylinux2014_x86_64.whl (200.3 MB)
                                                    200.3/200.3 MB 3.1 MB/s eta 0:00:000
        0:0100:01
        Requirement already satisfied: numpy in /home/ec2-user/anaconda3/envs/python3/lib/
        python3.10/site-packages (from xgboost) (1.22.3)
        Requirement already satisfied: scipy in /home/ec2-user/anaconda3/envs/python3/lib/
        python3.10/site-packages (from xgboost) (1.10.1)
        Installing collected packages: xgboost
        Successfully installed xgboost-1.7.6
In [2]: import sys
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.metrics import mean squared error, mean absolute error
        # XGBoost
        import xgboost as xgb
In [3]: column_list_file = 'bike_train_column_list.txt'
        train_file = 'bike_train.csv'
        validation file = 'bike validation.csv'
        test_file = 'bike_test.csv'
In [4]: columns = ''
        with open(column list file, 'r') as f:
            columns = f.read().split(',')
In [5]: columns
```

```
Out[5]: ['count',
           'season',
           'holiday',
           'workingday',
           'weather',
           'temp',
           'atemp',
           'humidity',
           'windspeed',
           'year',
           'month',
           'day',
           'dayofweek',
           'hour']
 In [6]: # Specify the column names as the file does not have column header
          df_train = pd.read_csv(train_file,names=columns)
          df_validation = pd.read_csv(validation_file,names=columns)
 In [7]: df_train.head()
 Out[7]:
             count season holiday workingday weather temp atemp humidity
                                                                              windspeed year mon
          0
                87
                        3
                                0
                                            0
                                                     2 26.24 30.305
                                                                           73
                                                                                  7.0015 2011
                        3
          1
               248
                                0
                                                       32.80 34.850
                                                                           33
                                                                                  7.0015 2012
                                            0
                                                                                 11.0014 2011
          2
               334
                        4
                                0
                                                       15.58
                                                            19.695
                                                                           40
          3
                        3
                                0
                                                       32.80 37.880
                                                                           55
                                                                                 12.9980 2012
               623
          4
                70
                        2
                                0
                                            1
                                                     1 13.94 17.425
                                                                           76
                                                                                  7.0015 2011
 In [8]:
         df_validation.head()
 Out[8]:
             count season holiday workingday weather temp atemp humidity windspeed year mon
          0
               443
                        3
                                0
                                                      28.70
                                                              33.335
                                                                           79
                                                                                 12.9980
                                                                                         2011
          1
               387
                        2
                                            0
                                                       32.80
                                                              37.880
                                                                           55
                                                                                 12.9980
                                                                                        2011
          2
                2
                        1
                                0
                                                                                         2011
                                            1
                                                     1
                                                       14.76 16.665
                                                                           40
                                                                                 19.9995
          3
                                                         9.02
                                                                                 36.9974 2011
                48
                                                               9.090
                                                                           47
          4
                55
                        4
                                            0
                                                        10.66 15.150
                                                                           87
                                                                                  0.0000 2011
 In [9]: X_train = df_train.iloc[:,1:] # Features: 1st column onwards
          y_train = df_train.iloc[:,0].ravel() # Target: 0th column
          X_validation = df_validation.iloc[:,1:]
          y_validation = df_validation.iloc[:,0].ravel()
In [10]: # XGBoost Training Parameter Reference:
              https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
```

```
#regressor = xgb.XGBRegressor(max_depth=5,eta=0.1,subsample=0.7,num_round=150)
#DWB# Note. 5 is the max depth - how many nodes any tree can go down.
#DWB# 150 is the number of trees
regressor = xgb.XGBRegressor(max_depth=5,n_estimators=150)
```

```
In [11]: regressor
```

```
Out[11]:
```

### XGBRegressor

In [12]: regressor.fit(X\_train,y\_train, eval\_set = [(X\_train, y\_train), (X\_validation, y\_val

| [0]  |                             |                             |
|------|-----------------------------|-----------------------------|
| [0]  | validation_0-rmse:200.21253 | validation_1-rmse:198.50750 |
| [1]  | validation_0-rmse:158.44940 | validation_1-rmse:156.82238 |
| [2]  | validation_0-rmse:130.70633 | validation_1-rmse:129.74683 |
| [3]  | validation_0-rmse:113.91983 | validation_1-rmse:113.36164 |
| [4]  | validation_0-rmse:97.49929  | validation_1-rmse:97.96390  |
| [5]  | validation_0-rmse:84.68191  | validation_1-rmse:86.42600  |
| [6]  | validation_0-rmse:75.20273  | validation_1-rmse:77.72003  |
| [7]  | validation 0-rmse:71.41857  | validation 1-rmse:74.25260  |
| [8]  | validation_0-rmse:64.23005  | validation_1-rmse:67.80524  |
| [9]  | validation_0-rmse:61.87001  | validation_1-rmse:65.64181  |
| [10] | validation_0-rmse:60.00386  | validation_1-rmse:63.93544  |
| [11] | validation_0-rmse:57.38252  | validation_1-rmse:61.66847  |
| [12] | validation_0-rmse:55.40470  | validation_1-rmse:59.70897  |
|      | <del>-</del>                | <del>-</del>                |
| [13] | validation_0-rmse:53.46252  | validation_1-rmse:58.07008  |
| [14] | validation_0-rmse:50.16573  | validation_1-rmse:55.00782  |
| [15] | validation_0-rmse:49.58626  | validation_1-rmse:54.48380  |
| [16] | validation_0-rmse:49.10568  | validation_1-rmse:53.95741  |
| [17] | validation_0-rmse:46.31593  | validation_1-rmse:51.42871  |
| [18] | validation_0-rmse:45.25657  | validation_1-rmse:50.72695  |
| [19] | validation_0-rmse:44.66090  | validation_1-rmse:50.27214  |
| [20] | validation_0-rmse:43.69099  | validation_1-rmse:49.51648  |
| [21] | validation 0-rmse:43.06359  | validation_1-rmse:49.09360  |
| [22] | validation_0-rmse:42.79748  | validation_1-rmse:48.97205  |
| [23] | validation_0-rmse:42.22981  | validation_1-rmse:48.57886  |
| [24] | validation_0-rmse:42.07683  | validation_1-rmse:48.46537  |
| [25] | validation_0-rmse:41.79092  | validation_1-rmse:48.40560  |
| [26] | validation_0-rmse:40.22368  | validation_1-rmse:47.06446  |
| [27] | validation_0-rmse:40.02085  | validation_1-rmse:46.96824  |
|      | <del>-</del>                | <del>_</del>                |
| [28] | validation_0-rmse:39.61362  | validation_1-rmse:46.72801  |
| [29] | validation_0-rmse:39.32625  | validation_1-rmse:46.58315  |
| [30] | validation_0-rmse:39.17388  | validation_1-rmse:46.47925  |
| [31] | validation_0-rmse:38.45699  | validation_1-rmse:46.02084  |
| [32] | validation_0-rmse:38.15526  | validation_1-rmse:45.90458  |
| [33] | validation_0-rmse:37.93132  | validation_1-rmse:45.77935  |
| [34] | validation_0-rmse:37.61136  | validation_1-rmse:45.62779  |
| [35] | validation_0-rmse:37.41721  | validation_1-rmse:45.47065  |
| [36] | validation_0-rmse:37.33951  | validation_1-rmse:45.43344  |
| [37] | validation_0-rmse:36.62579  | validation_1-rmse:44.90997  |
| [38] | validation_0-rmse:36.42528  | validation_1-rmse:44.84257  |
| [39] | validation_0-rmse:36.06161  | validation_1-rmse:44.76581  |
| [40] | validation_0-rmse:35.93213  | validation_1-rmse:44.74343  |
| [41] | validation_0-rmse:35.88741  | validation_1-rmse:44.71638  |
| [42] | validation_0-rmse:35.50912  | validation 1-rmse:44.60798  |
| [43] | validation_0-rmse:35.11191  | validation_1-rmse:44.35004  |
| [44] | validation_0-rmse:35.00737  | validation_1-rmse:44.29069  |
| [45] | validation_0-rmse:34.78141  | validation_1-rmse:44.23079  |
| [46] | validation_0-rmse:34.73855  | validation_1-rmse:44.23772  |
|      | validation_0-rmse:34.65160  | validation_1-rmse:44.17048  |
| [47] | <del>-</del>                | <del>_</del>                |
| [48] | validation_0-rmse:34.35805  | validation_1-rmse:44.09884  |
| [49] | validation_0-rmse:34.19989  | validation_1-rmse:44.09992  |
| [50] | validation_0-rmse:34.14433  | validation_1-rmse:44.11222  |
| [51] | validation_0-rmse:33.91166  | validation_1-rmse:44.04286  |
| [52] | validation_0-rmse:33.74896  | validation_1-rmse:44.04637  |
| [53] | validation_0-rmse:33.58468  | validation_1-rmse:43.98733  |
| [54] | validation_0-rmse:33.51054  | validation_1-rmse:43.98548  |
| [55] | validation_0-rmse:33.31730  | validation_1-rmse:44.02941  |
|      |                             |                             |

| [56]         | validation_0-rmse:33.23237 | validation_1-rmse:44.02083 |
|--------------|----------------------------|----------------------------|
| [57]         | validation_0-rmse:33.19658 | validation_1-rmse:44.00654 |
| [58]         | validation_0-rmse:33.07861 | validation_1-rmse:43.99136 |
| [59]         | validation_0-rmse:32.86804 | validation_1-rmse:43.89020 |
| [60]         | validation_0-rmse:32.72255 | validation_1-rmse:43.82265 |
| [61]         | validation_0-rmse:32.31547 | validation_1-rmse:43.49294 |
| [62]         | validation_0-rmse:32.29336 | validation_1-rmse:43.46725 |
| [63]         | <del>-</del>               | validation_1-rmse:43.38681 |
|              | validation_0-rmse:32.07836 | <del>_</del>               |
| [64]         | validation_0-rmse:31.90100 | validation_1-rmse:43.32034 |
| [65]         | validation_0-rmse:31.86057 | validation_1-rmse:43.32324 |
| [66]         | validation_0-rmse:31.70479 | validation_1-rmse:43.18750 |
| [67]         | validation_0-rmse:31.59029 | validation_1-rmse:43.19710 |
| [68]         | validation_0-rmse:31.39416 | validation_1-rmse:43.18815 |
| [69]         | validation_0-rmse:31.12865 | validation_1-rmse:43.09848 |
| [70]         | validation_0-rmse:31.07494 | validation_1-rmse:43.09148 |
| [71]         | validation_0-rmse:31.00557 | validation_1-rmse:43.09359 |
| [72]         | validation_0-rmse:30.87338 | validation_1-rmse:43.00188 |
| [73]         | validation_0-rmse:30.56048 | validation 1-rmse:42.88081 |
| [74]         | validation_0-rmse:30.48123 | validation_1-rmse:42.82766 |
| [75]         | validation_0-rmse:30.32723 | validation_1-rmse:42.81791 |
| [76]         | validation_0-rmse:30.23960 | validation_1-rmse:42.79342 |
| [77]         | validation_0-rmse:30.20228 | validation_1-rmse:42.78964 |
| [78]         | validation 0-rmse:29.99587 | validation_1-rmse:42.77126 |
| [79]         | validation_0-rmse:29.75669 | validation_1-rmse:42.64365 |
| [80]         | validation_0-rmse:29.66938 | validation_1-rmse:42.59289 |
| [81]         | validation_0-rmse:29.62375 | validation_1-rmse:42.59439 |
| [82]         | <del>-</del>               | <del>-</del>               |
|              | validation_0-rmse:29.50415 | validation_1-rmse:42.54275 |
| [83]         | validation_0-rmse:29.42191 | validation_1-rmse:42.49808 |
| [84]         | validation_0-rmse:29.36916 | validation_1-rmse:42.49365 |
| [85]         | validation_0-rmse:29.27202 | validation_1-rmse:42.43840 |
| [86]         | validation_0-rmse:29.13929 | validation_1-rmse:42.42627 |
| [87]         | validation_0-rmse:29.08375 | validation_1-rmse:42.40068 |
| [88]         | validation_0-rmse:29.02746 | validation_1-rmse:42.39586 |
| [89]         | validation_0-rmse:28.88187 | validation_1-rmse:42.35033 |
| [90]         | validation_0-rmse:28.75088 | validation_1-rmse:42.28242 |
| [91]         | validation_0-rmse:28.64258 | validation_1-rmse:42.29661 |
| [92]         | validation_0-rmse:28.51315 | validation_1-rmse:42.24072 |
| [93]         | validation_0-rmse:28.43576 | validation_1-rmse:42.21895 |
| [94]         | validation_0-rmse:28.34130 | validation_1-rmse:42.23728 |
| [95]         | validation_0-rmse:28.24365 | validation_1-rmse:42.19883 |
| [96]         | validation_0-rmse:28.14093 | validation_1-rmse:42.15161 |
| [97]         | validation_0-rmse:28.08991 | validation_1-rmse:42.13850 |
| [98]         | validation_0-rmse:28.05213 | validation_1-rmse:42.12963 |
| [99]         | validation_0-rmse:28.01991 | validation_1-rmse:42.13131 |
| [100]        | validation_0-rmse:27.97190 | validation_1-rmse:42.12578 |
| [101]        | validation_0-rmse:27.95016 | validation_1-rmse:42.13953 |
| [102]        | validation_0-rmse:27.84402 | validation_1-rmse:42.10889 |
| [103]        | validation_0-rmse:27.80204 | validation_1-rmse:42.07974 |
| [104]        | validation_0-rmse:27.79910 | validation_1-rmse:42.08551 |
| [105]        | validation_0-rmse:27.75465 | validation_1-rmse:42.08251 |
| [106]        | validation_0-rmse:27.62789 | validation_1-rmse:42.08866 |
| [107]        | validation_0-rmse:27.48359 | validation_1-rmse:42.00880 |
| [108]        | validation_0-rmse:27.31545 | validation_1-rmse:41.93489 |
| [109]        | validation_0-rmse:27.23284 | validation_1-rmse:41.92242 |
| [110]        | validation_0-rmse:27.09928 | validation_1-rmse:41.90098 |
| [111]        | validation_0-rmse:27.00993 | validation_1-rmse:41.87125 |
| [ <b>-</b> ] |                            |                            |

```
[112]
        validation_0-rmse:27.00165
                                         validation_1-rmse:41.87185
[113]
        validation_0-rmse:26.93704
                                         validation_1-rmse:41.84040
        validation 0-rmse:26.80303
                                         validation 1-rmse:41.80264
[114]
        validation_0-rmse:26.73493
                                         validation_1-rmse:41.80721
[115]
[116]
        validation_0-rmse:26.64247
                                         validation_1-rmse:41.77972
        validation_0-rmse:26.57824
                                         validation_1-rmse:41.79133
[117]
[118]
        validation_0-rmse:26.46564
                                         validation_1-rmse:41.71431
[119]
        validation_0-rmse:26.39325
                                         validation_1-rmse:41.67695
        validation 0-rmse:26.37278
                                         validation 1-rmse:41.68118
[120]
[121]
        validation_0-rmse:26.28281
                                         validation_1-rmse:41.66746
[122]
        validation_0-rmse:26.19166
                                         validation_1-rmse:41.64710
[123]
        validation_0-rmse:26.00082
                                         validation_1-rmse:41.58643
                                         validation_1-rmse:41.59726
        validation_0-rmse:25.85092
[124]
[125]
        validation 0-rmse:25.79182
                                         validation_1-rmse:41.58297
        validation 0-rmse:25.68885
                                         validation 1-rmse:41.61713
[126]
[127]
        validation_0-rmse:25.58066
                                         validation_1-rmse:41.60252
                                         validation_1-rmse:41.56733
[128]
        validation_0-rmse:25.52994
[129]
        validation_0-rmse:25.45470
                                         validation_1-rmse:41.56769
        validation_0-rmse:25.39346
                                         validation_1-rmse:41.54351
[130]
[131]
        validation_0-rmse:25.37824
                                         validation 1-rmse:41.53871
        validation_0-rmse:25.24823
                                         validation_1-rmse:41.49660
[132]
[133]
        validation 0-rmse:25.19883
                                         validation 1-rmse:41.47297
[134]
        validation_0-rmse:25.12123
                                         validation_1-rmse:41.47223
        validation_0-rmse:25.07267
                                         validation_1-rmse:41.46833
[135]
        validation 0-rmse:25.01747
                                         validation 1-rmse:41.44283
[136]
[137]
        validation 0-rmse:24.91436
                                         validation 1-rmse:41.39120
                                         validation_1-rmse:41.39363
[138]
        validation_0-rmse:24.90468
        validation 0-rmse:24.81354
                                         validation 1-rmse:41.36809
[139]
        validation_0-rmse:24.78586
                                         validation_1-rmse:41.36993
[140]
[141]
        validation_0-rmse:24.74158
                                         validation_1-rmse:41.36148
        validation 0-rmse:24.62951
                                         validation 1-rmse:41.32304
[142]
[143]
        validation 0-rmse:24.57401
                                         validation 1-rmse:41.32358
        validation_0-rmse:24.51089
                                         validation_1-rmse:41.28476
[144]
        validation 0-rmse:24.42649
                                         validation 1-rmse:41.25937
[145]
        validation_0-rmse:24.39769
                                         validation_1-rmse:41.25983
[146]
[147]
        validation_0-rmse:24.30934
                                         validation_1-rmse:41.26104
[148]
        validation 0-rmse:24.20446
                                         validation 1-rmse:41.19978
[149]
        validation 0-rmse:24.10522
                                         validation_1-rmse:41.11284
```

Out[12]:

#### XGBRegressor

```
In [13]: eval_result = regressor.evals_result()
```

## Training Vs Validation Error Training Error Validation Error Iteration

```
In [17]: xgb.plot_importance(regressor)
    plt.show()
```



In [18]: # Verify Quality using Validation dataset
# Compare actual vs predicted performance with dataset not seen by the model before
df = pd.read\_csv(validation\_file,names=columns)

In [19]: df.head()

| Out[19]: |   | count | season | holiday | workingday | weather | temp  | atemp  | humidity | windspeed | year | mon |
|----------|---|-------|--------|---------|------------|---------|-------|--------|----------|-----------|------|-----|
|          | 0 | 443   | 3      | 0       | 1          | 2       | 28.70 | 33.335 | 79       | 12.9980   | 2011 |     |
|          | 1 | 387   | 2      | 0       | 0          | 1       | 32.80 | 37.880 | 55       | 12.9980   | 2011 |     |
|          | 2 | 2     | 1      | 0       | 1          | 1       | 14.76 | 16.665 | 40       | 19.9995   | 2011 |     |
|          | 3 | 48    | 1      | 0       | 1          | 1       | 9.02  | 9.090  | 47       | 36.9974   | 2011 |     |
|          | 4 | 55    | 4      | 0       | 0          | 1       | 10.66 | 15.150 | 87       | 0.0000    | 2011 |     |

In [20]: df.shape

Out[20]: (3266, 14)

In [21]: #DWB# The [:,1:] excludes the datetime variable
X\_test = df.iloc[:,1:]
print(X\_test[:5])

```
atemp humidity windspeed
             season holiday workingday
                                            weather
                                                       temp
          0
                   3
                                                      28.70
                                                             33.335
                                                                            79
                                                                                   12.9980
                   2
          1
                            0
                                         0
                                                   1
                                                      32.80
                                                             37.880
                                                                            55
                                                                                   12.9980
          2
                  1
                            0
                                         1
                                                   1
                                                      14.76 16.665
                                                                            40
                                                                                   19.9995
          3
                   1
                            0
                                         1
                                                   1
                                                       9.02
                                                              9.090
                                                                            47
                                                                                   36.9974
          4
                  4
                            0
                                         0
                                                   1 10.66 15.150
                                                                            87
                                                                                    0.0000
                   month
                           day
                                dayofweek
             year
             2011
                                               8
                        7
                             7
                                         3
             2011
                                              13
          1
                        6
                            11
                                         5
          2
             2011
                        2
                            14
                                         0
                                               2
                        2
                                              10
          3
             2011
                             8
                                         1
             2011
                       12
                             4
                                                8
         result = regressor.predict(X_test)
In [22]:
In [23]:
          result[:5]
Out[23]: array([452.154
                                               0.7550393, 64.58522 , 83.32642 ],
                             , 373.7294
                dtype=float32)
         df['count_predicted'] = result
In [24]:
In [25]:
         df.head()
Out[25]:
             count season holiday workingday weather temp atemp humidity
                                                                              windspeed
                                                                                          year mon
          0
               443
                        3
                                0
                                            1
                                                     2
                                                        28.70
                                                              33.335
                                                                           79
                                                                                  12.9980
                                                                                         2011
                        2
          1
               387
                                0
                                            0
                                                        32.80
                                                              37.880
                                                                           55
                                                                                  12.9980
                                                                                         2011
          2
                 2
                        1
                                0
                                            1
                                                     1
                                                        14.76
                                                              16.665
                                                                           40
                                                                                  19.9995
                                                                                         2011
          3
                48
                        1
                                0
                                                         9.02
                                                               9.090
                                                                           47
                                                                                  36.9974
                                                                                         2011
                                                     1
          4
                55
                        4
                                0
                                            0
                                                        10.66
                                                                           87
                                                                                   0.0000 2011
                                                             15.150
In [26]: # Negative Values are predicted
          df['count_predicted'].describe()
Out[26]:
         count
                    3266.000000
                     190.070770
          mean
          std
                     174.655914
          min
                     -95.306847
          25%
                     43.720430
          50%
                     150.537590
          75%
                     284.134521
                     901.711853
          max
          Name: count_predicted, dtype: float64
In [27]: df[df['count_predicted'] < 0]</pre>
```

| Out[27]: |      | count | season | holiday | workingday | weather | temp  | atemp  | humidity | windspeed | year | r |
|----------|------|-------|--------|---------|------------|---------|-------|--------|----------|-----------|------|---|
|          | 99   | 71    | 2      | 0       | 1          | 3       | 22.96 | 26.515 | 88       | 7.0015    | 2012 |   |
|          | 103  | 11    | 3      | 0       | 1          | 2       | 27.88 | 31.820 | 83       | 12.9980   | 2012 |   |
|          | 117  | 2     | 4      | 0       | 1          | 1       | 8.20  | 12.880 | 80       | 0.0000    | 2011 |   |
|          | 137  | 9     | 1      | 0       | 1          | 1       | 15.58 | 19.695 | 54       | 7.0015    | 2012 |   |
|          | 158  | 45    | 1      | 0       | 0          | 2       | 12.30 | 13.635 | 100      | 19.9995   | 2011 |   |
|          | •••  |       |        |         |            |         |       |        |          |           |      |   |
|          | 3129 | 44    | 1      | 0       | 1          | 3       | 13.12 | 16.665 | 70       | 8.9981    | 2012 |   |
|          | 3176 | 16    | 4      | 0       | 1          | 2       | 12.30 | 14.395 | 52       | 16.9979   | 2012 |   |
|          | 3199 | 8     | 4      | 0       | 1          | 1       | 13.94 | 15.910 | 81       | 15.0013   | 2011 |   |
|          | 3252 | 11    | 3      | 0       | 0          | 1       | 25.42 | 30.305 | 61       | 0.0000    | 2011 |   |
|          | 3259 | 4     | 1      | 0       | 1          | 1       | 8.20  | 12.880 | 61       | 0.0000    | 2012 |   |

127 rows × 15 columns





```
def adjust_count(x):
In [29]:
              if x < 0:
                  return 0
              else:
                  return x
In [30]:
         df['count_predicted'] = df['count_predicted'].map(adjust_count)
         df[df['count_predicted'] < 0]</pre>
In [31]:
Out[31]:
           count season holiday workingday weather temp atemp humidity windspeed year month
In [32]: # Actual Vs Predicted
          plt.plot(df['count'], label='Actual')
          plt.plot(df['count_predicted'],label='Predicted')
          plt.xlabel('Sample')
         plt.ylabel('Count')
          plt.xlim([100,150])
          plt.title('Validation Dataset - Predicted Vs. Actual')
         plt.legend()
          plt.show()
```

## Validation Dataset - Predicted Vs. Actual



```
In [33]:
         # Over prediction and Under Prediction needs to be balanced
         # Training Data Residuals
         residuals = (df['count'] - df['count_predicted'])
```

```
plt.hist(residuals)
plt.grid(True)
plt.xlabel('Actual - Predicted')
plt.ylabel('Count')
plt.title('Residuals Distribution')
plt.axvline(color='r')
plt.show()
```

## Residuals Distribution 2000 1500 Count 1000 500 -400-300-200-100100 200 300 400 0 Actual - Predicted

```
In [34]: value_counts = (residuals > 0).value_counts(sort=False)
         print(' Under Estimation: {0:0.2f}'.format(value_counts[True]/len(residuals)))
         print(' Over Estimation: {0:0.2f}'.format(value_counts[False]/len(residuals)))
          Under Estimation: 0.50
          Over Estimation: 0.50
In [35]: | print("RMSE: {0:0.2f}".format(mean_squared_error(df['count'],df['count_predicted'])
         RMSE: 40.89
In [36]: # RMSLE - Root Mean Squared Log Error
         # RMSLE Metric is used by Kaggle for this competition
         # RMSE Cost Function - Magnitude of difference matters
         # RMSLE cost function - "Only Percentage difference matters"
         # Reference: Katerina Malahova, Khor SoonHin
         # https://www.slideshare.net/KhorSoonHin/rmsle-cost-function
```

```
def compute_rmsle(y_true, y_pred):
             if type(y_true) != np.ndarray:
                 y_true = np.array(y_true)
             if type(y_pred) != np.ndarray:
                 y_pred = np.array(y_pred)
             return(np.average((np.log1p(y_pred) - np.log1p(y_true))**2)**.5)
In [37]: print('RMSLE')
         print(compute_rmsle(100,50),
               compute_rmsle(1000,500),
               compute_rmsle(10000,5000))
         RMSLE
         0.683294884116934 0.6921486782303559 0.6930471955576127
In [38]: print('RMSLE')
         print(compute_rmsle(100,25),
               compute_rmsle(1000,250),
               compute_rmsle(10000,2500))
         RMSLE
         1.3570239788197775 1.383301840183437 1.3859944360988976
In [39]:
         print('RMSE')
         print(mean_squared_error([100],[50])**.5,
               mean_squared_error([1000],[500])**.5,
               mean_squared_error([10000],[5000])**.5)
         RMSE
         50.0 500.0 5000.0
In [40]: print('RMSE')
         print(mean_squared_error([100],[25])**.5,
               mean_squared_error([1000],[250])**.5,
               mean_squared_error([10000],[2500])**.5)
         RMSE
         75.0 750.0 7500.0
In [41]: | print("RMSLE: {0}".format(compute_rmsle(df['count'],df['count_predicted'])))
         RMSLE: 0.5999730473932068
In [42]: # Prepare Data for Submission to Kaggle
         df_test = pd.read_csv(test_file,parse_dates=['datetime'])
In [43]: df_test.head()
```

| Out[43]: |                       | datetime                              | season                                 | holiday   | workingday                            | weather                                  | temp                                      | atemp                      | humidity                                          | windspee                             | d ye               | ar n                       |
|----------|-----------------------|---------------------------------------|----------------------------------------|-----------|---------------------------------------|------------------------------------------|-------------------------------------------|----------------------------|---------------------------------------------------|--------------------------------------|--------------------|----------------------------|
|          | 0                     | 2011-01-<br>20<br>00:00:00            | 1                                      | 0         | 1                                     | 1                                        | 10.66                                     | 11.365                     | 56                                                | 26.002                               | 27 20°             | 11                         |
|          | 1                     | 2011-01-<br>20<br>01:00:00            | 1                                      | 0         | 1                                     | 1                                        | 10.66                                     | 13.635                     | 56                                                | 0.000                                | 00 20°             | 11                         |
|          | 2                     | 2011-01-<br>20<br>02:00:00            | 1                                      | 0         | 1                                     | 1                                        | 10.66                                     | 13.635                     | 56                                                | 0.000                                | 00 20°             | 11                         |
|          | 3                     | 2011-01-<br>20<br>03:00:00            | 1                                      | 0         | 1                                     | 1                                        | 10.66                                     | 12.880                     | 56                                                | 11.001                               | 14 20 <sup>-</sup> | 11                         |
|          | 4                     | 2011-01-<br>20<br>04:00:00            | 1                                      | 0         | 1                                     | 1                                        | 10.66                                     | 12.880                     | 56                                                | 11.001                               | 14 20 <sup>.</sup> | 11                         |
| 4        |                       |                                       |                                        |           |                                       |                                          |                                           |                            |                                                   |                                      |                    | •                          |
| In [44]: | X_                    | test = o                              | lf_test.                               | iloc[:,:  | 1:] # Exclu                           | de date                                  | time fo                                   | r predi                    | ction                                             |                                      |                    |                            |
| In [45]: | X_                    | test.head                             | d()                                    |           |                                       |                                          |                                           |                            |                                                   |                                      |                    |                            |
|          |                       |                                       |                                        |           |                                       |                                          |                                           |                            |                                                   |                                      |                    |                            |
| Out[45]: |                       | season h                              | oliday v                               | workingda | y weather                             | temp a                                   | temp h                                    | umidity                    | windspeed                                         | year r                               | nonth              | day                        |
| Out[45]: | 0                     | season h                              | oliday v                               | workingda |                                       |                                          | t <b>emp h</b><br>1.365                   | umidity                    | windspeed                                         |                                      | month<br>1         |                            |
| Out[45]: |                       |                                       |                                        | workingda | 1 1                                   |                                          | 1.365                                     |                            | 26.0027                                           |                                      |                    | 20                         |
| Out[45]: | 0                     | 1                                     | 0                                      | workingda | 1 1 1                                 | 10.66 1                                  | 1.365<br>3.635                            | 56                         | 26.0027                                           | 2011                                 | 1                  | 20                         |
| Out[45]: | 0                     | 1                                     | 0                                      | workingda | 1 1<br>1 1<br>1 1                     | 10.66 1<br>10.66 1                       | 1.365<br>3.635<br>3.635                   | 56<br>56                   | 26.0027                                           | 2011<br>2011<br>2011                 | 1                  | 20<br>20<br>20             |
| Out[45]: | 0<br>1<br>2           | 1<br>1<br>1                           | 0 0 0                                  | workingda | 1 1<br>1 1<br>1 1<br>1 1              | 10.66 1<br>10.66 1                       | 1.365<br>3.635<br>3.635<br>2.880          | 56<br>56<br>56             | 26.0027<br>0.0000<br>0.0000<br>11.0014            | 2011<br>2011<br>2011<br>2011         | 1<br>1<br>1        | 20<br>20<br>20             |
| Out[45]: | 0<br>1<br>2           | 1<br>1<br>1                           | 0 0 0                                  | workingda | 1 1<br>1 1<br>1 1<br>1 1              | 10.66 1<br>10.66 1<br>10.66 1            | 1.365<br>3.635<br>3.635<br>2.880          | 56<br>56<br>56             | 26.0027<br>0.0000<br>0.0000<br>11.0014            | 2011<br>2011<br>2011<br>2011         | 1<br>1<br>1        | 20<br>20<br>20<br>20<br>20 |
| Out[45]: | 0<br>1<br>2<br>3<br>4 | 1<br>1<br>1<br>1                      | 0 0 0 0 0                              |           | 1 1<br>1 1<br>1 1<br>1 1              | 10.66 1<br>10.66 1<br>10.66 1            | 1.365<br>3.635<br>3.635<br>2.880          | 56<br>56<br>56             | 26.0027<br>0.0000<br>0.0000<br>11.0014            | 2011<br>2011<br>2011<br>2011         | 1<br>1<br>1        | 20<br>20<br>20<br>20<br>20 |
| 4        | 0<br>1<br>2<br>3<br>4 | 1<br>1<br>1<br>1<br>1<br>sult = re    | 0 0 0 0 0                              |           | 1 1 1 1 1 1 1 1 1 1 1 1               | 10.66 1<br>10.66 1<br>10.66 1            | 1.365<br>3.635<br>3.635<br>2.880          | 56<br>56<br>56             | 26.0027<br>0.0000<br>0.0000<br>11.0014            | 2011<br>2011<br>2011<br>2011         | 1<br>1<br>1        | 20<br>20<br>20<br>20<br>20 |
| In [46]: | 0<br>1<br>2<br>3<br>4 | 1<br>1<br>1<br>1<br>sult = result[:5] | 0<br>0<br>0<br>0<br>0                  | .predict  | 1 1 1 1 1 1 1 1 1 1 1 1               | 10.66 1<br>10.66 1<br>10.66 1<br>10.66 1 | 1.365<br>3.635<br>3.635<br>2.880<br>2.880 | 56<br>56<br>56<br>56<br>56 | 26.0027<br>0.0000<br>0.0000<br>11.0014<br>11.0014 | 2011<br>2011<br>2011<br>2011<br>2011 | 1<br>1<br>1        | 20<br>20<br>20<br>20<br>20 |
| In [46]: | 0<br>1<br>2<br>3<br>4 | 1<br>1<br>1<br>1<br>sult = result[:5] | 0<br>0<br>0<br>0<br>0<br>0<br>egressor | o.predict | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10.66 1<br>10.66 1<br>10.66 1<br>10.66 1 | 1.365<br>3.635<br>3.635<br>2.880<br>2.880 | 56<br>56<br>56<br>56<br>56 | 26.0027<br>0.0000<br>0.0000<br>11.0014<br>11.0014 | 2011<br>2011<br>2011<br>2011<br>2011 | 1<br>1<br>1        | 20<br>20<br>20<br>20<br>20 |

| Out[49]:          |    | datetime                   | season  | holiday | workingday | weather | temp  | atemp  | humidity | windspeed | year | n           |
|-------------------|----|----------------------------|---------|---------|------------|---------|-------|--------|----------|-----------|------|-------------|
|                   | 0  | 2011-01-<br>20<br>00:00:00 | 1       | 0       | 1          | 1       | 10.66 | 11.365 | 56       | 26.0027   | 2011 |             |
|                   | 1  | 2011-01-<br>20<br>01:00:00 | 1       | 0       | 1          | 1       | 10.66 | 13.635 | 56       | 0.0000    | 2011 |             |
|                   | 2  | 2011-01-<br>20<br>02:00:00 | 1       | 0       | 1          | 1       | 10.66 | 13.635 | 56       | 0.0000    | 2011 |             |
|                   | 3  | 2011-01-<br>20<br>03:00:00 | 1       | 0       | 1          | 1       | 10.66 | 12.880 | 56       | 11.0014   | 2011 |             |
|                   | 4  | 2011-01-<br>20<br>04:00:00 | 1       | 0       | 1          | 1       | 10.66 | 12.880 | 56       | 11.0014   | 2011 |             |
| <b>↓</b> In [50]: | df | : test[df                  | tost["c | count"l | v 01       |         |       |        |          |           |      | <b>&gt;</b> |

| Out[50]: |      | datetime                   | season | holiday | workingday | weather | temp  | atemp  | humidity | windspeed | year |
|----------|------|----------------------------|--------|---------|------------|---------|-------|--------|----------|-----------|------|
|          | 1    | 2011-01-<br>20<br>01:00:00 | 1      | 0       | 1          | 1       | 10.66 | 13.635 | 56       | 0.0000    | 2011 |
|          | 2    | 2011-01-<br>20<br>02:00:00 | 1      | 0       | 1          | 1       | 10.66 | 13.635 | 56       | 0.0000    | 2011 |
|          | 3    | 2011-01-<br>20<br>03:00:00 | 1      | 0       | 1          | 1       | 10.66 | 12.880 | 56       | 11.0014   | 2011 |
|          | 4    | 2011-01-<br>20<br>04:00:00 | 1      | 0       | 1          | 1       | 10.66 | 12.880 | 56       | 11.0014   | 2011 |
|          | 25   | 2011-01-<br>21<br>01:00:00 | 1      | 0       | 1          | 2       | 9.84  | 11.365 | 70       | 16.9979   | 2011 |
|          | •••  |                            |        |         |            |         |       |        |          |           |      |
|          | 6210 | 2012-12-<br>20<br>03:00:00 | 4      | 0       | 1          | 2       | 12.30 | 15.910 | 70       | 6.0032    | 2012 |
|          | 6211 | 2012-12-<br>20<br>04:00:00 | 4      | 0       | 1          | 2       | 12.30 | 15.910 | 70       | 6.0032    | 2012 |
|          | 6235 | 2012-12-<br>21<br>04:00:00 | 1      | 0       | 1          | 2       | 14.76 | 15.910 | 71       | 32.9975   | 2012 |
|          | 6284 | 2012-12-<br>23<br>05:00:00 | 1      | 0       | 0          | 1       | 8.20  | 12.880 | 51       | 0.0000    | 2012 |
|          | 6451 | 2012-12-<br>30<br>06:00:00 | 1      | 0       | 0          | 2       | 9.84  | 9.850  | 52       | 27.9993   | 2012 |

285 rows × 15 columns

```
df_test["count"] = df_test["count"].map(adjust_count)
        df_test[['datetime','count']].to_csv('predicted_count.csv',index=False)
In [ ]: # RMSLE (Kaggle) Score
          Test 1: 0.62
```