CENG 462 - Artificial Intelligence Homework 2

Beyazıt Yalçınkaya 2172138

I.

a. Below, given problem is defined as a constraint satisfaction problem. Notice that a constraint satisfaction problem is formally defined as a triple (X, D, C), where X is a set of variables, D is a set of their respective domains of values, and C is a set of constraints.

Given scheduling problem is defined as a triple (X, D, C), where

```
X = \{\texttt{CENG111}, \texttt{CENG213}, \texttt{CENG223}, \texttt{CENG315}, \texttt{CENG331}, \texttt{CENG351}\}  - D = \{(x, \delta) \mid \forall x \in X\}, \text{ where } \delta = \{(\texttt{BMB1}, \ 09 : 30), (\texttt{BMB1}, \ 13 : 30), \\ (\texttt{BMB2}, \ 09 : 30), (\texttt{BMB2}, \ 13 : 30), \\ (\texttt{BMB3}, \ 13 : 30), (\texttt{BMB3}, \ 16 : 30)\}  - C = \{\texttt{TIME}[\texttt{CENG213}] \neq \texttt{TIME}[\texttt{CENG223}], \texttt{TIME}[\texttt{CENG315}] \neq \texttt{TIME}[\texttt{CENG331}], \\ \texttt{TIME}[\texttt{CENG331}] \neq \texttt{TIME}[\texttt{CENG351}], \texttt{TIME}[\texttt{CENG315}] \neq \texttt{TIME}[\texttt{CENG351}], \\ \forall x \forall y \big(x \in X \land y \in X \land x \neq y \land (\texttt{CLASS}[x], \texttt{TIME}[x]) \neq (\texttt{CLASS}[y], \texttt{TIME}[y]))\}
```

b. Table for the application of backtracking by forward checking is given below.

CENG111	CENG213	CENG223	CENG315	CENG331	CENG351
{(BMB1, 09:30),					
(BMB1, 13:30),					
(BMB2, 09:30),					
(BMB2, 13:30),					
(BMB3, 13:30),					
(BMB3, 16:30)}					
	{(BMB1, 09:30),				
	(BMB1, 13:30),				
	(BMB2, 09:30),				
((BMB2, 13:30),				
(BMB3, 16:30)	(BMB3, 13:30)}				
	{(BMB1, 13:30),	{(BMB1, 13:30),			
	(BMB2, 09:30),	(BMB2, 09:30),		{(BMB1, 13:30),	{(BMB1, 13:30),
(5)(5)	(BMB2, 13:30),	(BMB2, 13:30),	(DMD4 00 00)	(BMB2, 13:30),	(BMB2, 13:30),
(BMB3, 16:30)	(BMB3, 13:30)}	(BMB3, 13:30)}	(BMB1, 09:30)	(BMB3, 13:30)}	(BMB3, 13:30)}
	{(BMB2, 09:30),	{(BMB2, 09:30),			
(DMD0 46 00)	(BMB2, 13:30),	(BMB2, 13:30),	(DMD4 00 00)	(DMD4 40 00)	d
(BMB3, 16:30)	(BMB3, 13:30)}	(BMB3, 13:30)}	(BMB1, 09:30)	(BMB1, 13:30)	Ø

c. Table for the application of backtracking by arc consistency is given below.

CENG111	CENG213	CENG223	CENG315	CENG331	CENG351
{(BMB1, 09:30),					
(BMB1, 13:30),					
(BMB2, 09:30),					
(BMB2, 13:30),					
(BMB3, 13:30),					
(BMB3, 16:30)}					
	{(BMB1, 09:30),				
	(BMB1, 13:30),				
	(BMB2, 09:30),				
(5)(5)	(BMB2, 13:30),				
(BMB3, 16:30)	(BMB3, 13:30)}				
	{(BMB1, 13:30),	{(BMB1, 13:30),			
	(BMB2, 09:30),	(BMB2, 09:30),		{(BMB1, 13:30),	
((BMB2, 13:30),	(BMB2, 13:30),	((BMB2, 13:30),	d
(BMB3, 16:30)	(BMB3, 13:30)}	(BMB3, 13:30)}	(BMB1, 09:30)	(BMB3, 13:30)}	Ø

II.

node	V	α	β
A	5	5	$+\infty$
В	5	$-\infty$	5
С	2	5	2
D	5	5	$+\infty$
Е	6	6	5
F	2	5	$+\infty$
G	_	_	_

Notice that the node G and the final states with value 0, 1, and 10 are not explored, i.e., they are pruned by the α/β pruning.

III.

a. Below, a sequence of tables are given for the forward chaining.

Step 1

\overline{c}	$\operatorname{count}[c]$
$K \implies L$	1
$I \wedge J \implies K$	2
$G \wedge H \implies I$	2
$H \wedge D \implies J$	2
$E \wedge H \implies G$	2
$E \wedge F \implies H$	2
$G \wedge A \implies E$	2
$A \wedge B \implies E$	2
$B \wedge C \implies F$	2
A	0
B	0
C	0
D	0
agenda	(A, B, C, D)

Step 2

c	$\operatorname{count}[c]$
$K \implies L$	1
$I \wedge J \implies K$	2
$G \wedge H \implies I$	2
$H \wedge D \implies J$	2
$E \wedge H \implies G$	2
$E \wedge F \implies H$	2
$G \wedge A \implies E$	1
$A \wedge B \implies E$	1
$B \wedge C \implies F$	2
A	0
B	0
C	0
D	0
$agenda$	$\overline{(B,C,D)}$
=	

Step 3

\overline{c}	count[c]
$K \Longrightarrow L$	1
$I \wedge J \implies K$	$\overline{2}$
$G \wedge H \implies I$	2
$H \wedge D \implies J$	2
$E \wedge H \implies G$	2
$E \wedge F \implies H$	2
$G \wedge A \implies E$	1
$A \wedge B \implies E$	0
$B \wedge C \implies F$	1
A	0
B	0
C	0
D	0
agenda	$\overline{(C,D,E)}$

Step 4

\overline{c}	$\operatorname{count}[c]$
$K \implies L$	1
$I \wedge J \implies K$	2
$G \wedge H \implies I$	2
$H \wedge D \implies J$	2
$E \wedge H \implies G$	2
$E \wedge F \implies H$	2
$G \wedge A \implies E$	1
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
agenda	$\overline{(D,E,F)}$

Step 5

\overline{c}	$\operatorname{count}[c]$
$K \implies L$	1
$I \wedge J \implies K$	2
$G \wedge H \implies I$	2
$H \wedge D \implies J$	1
$E \wedge H \implies G$	2
$E \wedge F \implies H$	2
$G \wedge A \implies E$	1
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
agenda	$\overline{(E,F)}$

Step 6

\overline{c}	count[c]
$K \implies L$	1
$I \wedge J \implies K$	2
$G \wedge H \implies I$	2
$H \wedge D \implies J$	1
$E \wedge H \implies G$	1
$E \wedge F \implies H$	1
$G \wedge A \implies E$	1
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
agenda	$\overline{(F)}$

Step 7

\overline{c}	count[c]
$K \implies L$	1
$I \wedge J \implies K$	2
$G \wedge H \implies I$	2
$H \wedge D \implies J$	1
$E \wedge H \implies G$	1
$E \wedge F \implies H$	0
$G \wedge A \implies E$	1
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
agenda	$\overline{(H)}$

Step 8

\overline{c}	count[c]
$K \implies L$	1
$I \wedge J \implies K$	2
$G \wedge H \implies I$	1
$H \wedge D \implies J$	0
$E \wedge H \implies G$	0
$E \wedge F \implies H$	0
$G \wedge A \implies E$	1
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
agenda	$\overline{(G,J)}$

Step 9

\overline{c}	$\operatorname{count}[c]$
$K \implies L$	1
$I \wedge J \implies K$	2
$G \wedge H \implies I$	0
$H \wedge D \implies J$	0
$E \wedge H \implies G$	0
$E \wedge F \implies H$	0
$G \wedge A \implies E$	0
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
$\overline{}$	$\overline{(J,I)}$

Step 10

c	$\operatorname{count}[c]$
$K \implies L$	1
$I \wedge J \implies K$	1
$G \wedge H \implies I$	0
$H \wedge D \implies J$	0
$E \wedge H \implies G$	0
$E \wedge F \implies H$	0
$G \wedge A \implies E$	0
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
	(I)

Step 11

\overline{c}	count[c]
$K \implies L$	1
$I \wedge J \implies K$	0
$G \wedge H \implies I$	0
$H \wedge D \implies J$	0
$E \wedge H \implies G$	0
$E \wedge F \implies H$	0
$G \wedge A \implies E$	0
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
agenda	$\overline{(K)}$

Step 12

$\overline{}$	count[c]
$K \implies L$	0
$I \wedge J \implies K$	0
$G \wedge H \implies I$	0
$H \wedge D \implies J$	0
$E \wedge H \implies G$	0
$E \wedge F \implies H$	0
$G \wedge A \implies E$	0
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
agenda	(L)

Final, $K \implies L$ is proved.

c	$\operatorname{count}[c]$
$K \implies L$	0
$I \wedge J \implies K$	0
$G \wedge H \implies I$	0
$H \wedge D \implies J$	0
$E \wedge H \implies G$	0
$E \wedge F \implies H$	0
$G \wedge A \implies E$	0
$A \wedge B \implies E$	0
$B \wedge C \implies F$	0
A	0
B	0
C	0
D	0
$agenda$	()

- **b.** Below, a sequence of steps are given for the backward chaining.
 - 1. Start with the goal $K \implies L$. Find proof for K.
 - 2. For K, I and J must be proved.
 - 3. For I, G and H must be proved.
 - 4. For J, H and D must be proved.
 - 5. For G, E and H must be proved.
 - 6. For H, E and F must be proved.
 - 7. For E, A and B must be proved. Since both are in the knowledge base, E is proved and added to the knowledge base.
 - 8. For F, B and C must be proved. Since both are in the knowledge base, F is proved and added to the knowledge base.
 - 9. Using E and F, H is proved and added to the knowledge base.
 - 10. Using E and H, G is proved and added to the knowledge base.
 - 11. Using H and D, J is proved and added to the knowledge base.
 - 12. Using G and H, I is proved and added to the knowledge base.
 - 13. Using I and J, K is proved and added to the knowledge base.
 - 14. Using K, L is proved; hence, the goal proposition $K \implies L$ is proved.