

Exhibit C

Information Retrieval and Display System

Inventor:
Alan Swahn

FIELD OF THE INVENTION

This invention relates to information retrieval and display in a networked communications environment and is hereinafter referred to as "IRDS". The networked communications environment ("Network") includes Wide Area Networks (WAN), Metropolitan Area Networks (MAN), Local Area Networks (LAN), wired and wireless systems that permit multiple computers to communicate utilizing a set of protocols, such as Transmission Control Protocol/Internet Protocol (TCP/IP) and Hypertext Transfer Protocol (HTTP), in a internet, intranet, or extranet environment. An embodiment of IRDS may be, but not limited to, a standalone application computer program or an add-on to an existing computer program, such as a conventional web browser including but not limited to Microsoft's Internet Explorer and Netscape's Navigator.

IRDS (i) calls a search engine program, which may be embedded in the browser or available as a Network resource and provides the search engine with a search topic and any available options and search constraints; (ii) accepts a list of hyperlinks returned by the search engine, where the hyperlinks points to where the web pages are expected to reside on the Network; (iii) concurrently loads one or more pages from the Network into the browser; (iv) directs the browser to displays one or more such pages in the browser simultaneously and (v) operates on one or more pages at the same time with subsequent direction provided to the browser. A browser that has been enhanced with IRDS capability will be hereinafter referred to as "Enhanced Browser".

IRDS capitalizes on the availability of (i) high bandwidth networks, such as Broadband cable networks rated at up to 1.5 Mbits/sec. and Digital Subscriber Line (DSL) networks rated at up to 1.5 Mbits/sec., but also may be available at 384 or 768 Kbits/sec.; (ii) multithreaded computer architectures; (iii) large inexpensive computer memory storage.

1 **BACKGROUND**

2
3 Common search engines “Search Engines” include, but are not limited to Google,
4 Yahoo!, AltaVista, Lycos, Webcrawler, Excite, Northern Light, MSN Search, iWon,
5 HotBot, AlltheWeb, Teoma, DMOZ, DOGPILE, WizeNut, Overture, AOL, Ask Jeeves,
6 Inktomi, LookSmart, and Netscape. Search Engines differentiate themselves mainly on
7 content and features. The size of the search engine database is one of the content metrics.
8 Specialized content hyperlinks may include: news, music files, auctions, employment,
9 insurance, loans, yellow pages, white pages, email addresses, sports, shopping, movies,
10 classifieds, health, images, movies, home life, finance, stocks, and travel. Features may
11 include search options such as: language selection, word exclusion, exact phrases to be
12 returned, number of pages to be returned, file format, returning results from specific
13 website domain, and content blocks. Some search engines are website domain specific
14 such as Dell, GM, and Sears and are accessed from their respective websites.
15
16 Web browsers include but are not limited to Internet Explorer, Netscape Navigator,
17 Mozilla, Opera, Konqueror, and Galeon. Web browsers have differentiated themselves by
18 computer operating system support (such as Apple, Microsoft Windows, and Unix), page
19 download speed, computer memory usage and compliance to standards.
20
21 Today, there are two common methods searching for information on the Internet. First is
22 a serial process of using a web browser to go to a Search Engine website; entering the
23 search topic, options and constraints; executing the search; a list of hyperlinks (usually a
24 set of ten (10) at one time) are returned and displayed by the web browser; clicking on a
25 single hyperlink from the list; being vectored to the associated website; reviewing the
26 information that resides on the website in the browser; and returning to the Search Engine
27 website to click on another hyperlink to continue the process for each such successive
28 hyperlink. To view the next set (usually ten) of hyperlinks requires selecting a hyperlink
29 to render the next set of hyperlinks in the browser. This laborious ping-pong process
30 between the websites and the Search Engine hyperlink list is continued until the sought

1 after information is found or by quitting the search, if there is simply not enough time to
2 find the information.

3

4 The second common search method requires a web browser with integrated search. This
5 type of browser, such as Microsoft's Internet Explorer, allows a search topic, options and
6 constraints to be entered into the browser, without first going to the search engine
7 website. The search engine itself is not required to be part of the browser. The browser
8 can contact the search engine and pass the topic to search, options, and constraints. The
9 list of hyperlinks returned from the search engine can then be formatted and displayed in
10 the browser. A list of hyperlinks is usually displayed in one panel of the browser, similar
11 to the first search method. In a second browser panel an image and description of the
12 page associated with the hyperlink is displayed. These images are simple hyperlinks to
13 the associated website. This has distinct advantages over the first method in not returning
14 to the search engine website to select each successive hyperlink.

15

16 There are multiple inherent problems that stem from an age where network bandwidth
17 was limited and costly. Internet browsers are mostly serial from the users perspective as
18 'search the web' is an analogy for hopping between a Search Engine website and the
19 websites from the Search Engine hyperlink list. Even method two searches (browsers
20 with integrated search) requires selection from a hyperlink list (text or hyperlinked
21 image) to display the next website page associated with that hyperlink. Every website has
22 its own latency in responding to a browser, such that the browser can download the page
23 and render the page in the display. Hence the time to review multiple website pages
24 includes the website response time and Network latency from every website. The time to
25 select the next hyperlink must be added to this latency as well. If the average website
26 response time and Network latency per page is 7 seconds and the time required to select
27 the next hyperlink is 3 seconds, then the extra time to get to the next website page from
28 the hyperlink list is 10 seconds per hyperlink. To review 400 hyperlinks listed by a
29 Search Engine would then require over 1 hour of extra (wasted) time. Method one search
30 take even longer, as the user must first return to the Search Engine website before
31 selecting the next successive hyperlink.

1 An Enhanced Browser solution is needed that removes the foregoing requirements and
2 makes searching for information a fast efficient process that displays not text hyperlinks
3 or image hyperlinks to websites, but displays the web pages themselves one or more at a
4 time.

5

6 **SUMMARY**

7

8 An Enhanced Browser is described that removes the requirements (i) to go to a Search
9 Engine website to start a search; (ii) to select a hyperlink returned by the Search Engine
10 to review the next website page; and (iii) to select the “next set” hyperlink to render the
11 next grouping of hyperlinks associated with the search topic. Such an Enhanced Browser
12 allows multiple web pages to be displayed simultaneously and operated on individually.

13

14 This Enhanced Browser sends the search topic, options and constraints to one or more
15 Search Engines without going to the Search Engine websites. The lists of hyperlinks
16 returned from one or more Search Engines is aggregated and prioritized by the Enhanced
17 Browser. The Enhanced Browser loads a number of the associated website pages into the
18 Enhanced Browser concurrently for review. The number of pages to load concurrently
19 will depend on the Network bandwidth, how much computer memory is available, and to
20 a much smaller degree, the computer processor speed. Network bandwidth, computer
21 memory, and processor speed will be collectively referred to as “Power”. If sufficient
22 Power is available, all the pages may be loaded concurrently and made available for
23 Enhanced Browser display. In a more likely scenario, there will be some Power
24 limitations.

25

26 The Enhanced Browser solution should provide a selectable number of pages to be
27 loaded concurrently after a search is started from the list of hyperlinks that the search
28 engine returns (“Concurrent Page Loading”). In addition to this Concurrent Page
29 Loading, one or more look-ahead page loading mechanisms should be provided for the
30 remaining unloaded pages, to ensure a near instantaneous page review experience.

31

1 Look-ahead page loading mechanisms can apply to conventional browsers, as well as, an
2 Enhanced Browser. Such mechanisms could include (i) a next-in-queue look-ahead page
3 loading method (“Next-In-Queue Page Loading”); (ii) a periodic opportunistic look-
4 ahead page loading method (“Periodic Opportunistic Page Loading”); (iii) and/or a
5 preemptive descendant look-ahead page loading method (“Preemptive Descendant Page
6 Loading”).

7
8 Next-In-Queue Page Loading refers to a method that loads the next page or pages pointed
9 to in a hyperlink queue that haven’t been previously loaded by Concurrent Page Loading,
10 Periodic Opportunistic Page Loading, or Preemptive Descendant Page Loading. While
11 one or more web pages are being displayed in the Enhanced Browser, these pages can be
12 preloaded and subsequently displayed in an Enhanced Browser on demand.

13
14 Periodic Opportunistic Page Loading refers to a method whereby the hyperlink queue is
15 scanned periodically for unloaded pages and preloads one or more of these pages, which
16 may then be subsequently displayed in an Enhanced Browser on demand. These pages
17 may be selectively preloaded depending on which pages are currently displayed, user
18 preferences and/or other criteria, hence the preloading order is not required to be
19 sequential.

20
21 Web pages (parents) referred to by the list of search engine hyperlinks may contain
22 hyperlinks that point to other web pages (children), which in turn may contain hyperlinks
23 that point to other web pages (grandchildren), in perpetuity collectively “Descendants”.

24 Preemptive Descendant Page Loading refers to a method that preloads selected
25 Descendants. Any such Descendants would be visible in the Enhanced Browser on
26 demand. A selectable limit on the number of Descendants pages or generation of
27 Descendants to preemptively preload should be provided, as the number of possible
28 pages to preemptively load rises exponentially.

29
30 The Enhanced Browser allows one or more pages to be displayed at the same time, with
31 pages from (i) the same website domain; or (ii) differing website domains. These pages

1 would be fully active website pages, as if the multiple browsers were encapsulated in a
2 master browser.
3
4 The Enhanced Browser would have a control panel to (i) operate on the pages which may
5 include functions: to zoom in or out on a page; change the number of pages displayed;
6 find and highlight the search topic within a page; display the next page or next set of
7 pages depending on the number of pages being displayed at a given time; display any
8 selected page or any set of pages depending on the number of pages displayed at a given
9 time; bookmark selected pages or all the pages as a list of hyperlinks that can be recalled
10 and the associated pages can be loaded into the Enhanced Browser without calling a
11 Search Engine; delete a selected page or pages thereby pruning the list of pages; (ii)
12 select a Search Engine or multiple Search Engines to be contacted; (iii) enter a search
13 topic for the Search Engine and any options, criteria and/or constraints; (iv) execute a
14 search; (v) display search statistics such as the number of hyperlinks returned by the
15 Search Engine(s); and (vi) display page number(s) being viewed, highest page number
16 preloaded, Network bandwidth, memory usage, and/or processor usage statistics.

17
18 **BRIEF DESCRIPTION OF THE DRAWINGS**
19

20 The present invention is described with respect to particular exemplary embodiments
21 thereof and reference is accordingly made to the drawings in which:

22
23 Figure 1 shows the distributed network environment for a conventional information
24 search utilizing a search engine and web browser on a computer.
25
26 Figure 2 shows a typical search engine display in a browser with command and control, a
27 list of textual hyperlinks returned from a search and optional value-add information.
28
29 Figure 3 shows a typical search engine display in a browser with command and control, a
30 list of hyperlinked images returned from a search and optional value-add information.

1 Figure 4 shows a flowchart of the conventional information acquisition and review
2 operation for a search performed with a conventional search engine.
3
4 Figure 5 shows a conventional browser with an integrated search function with command
5 and control, a list of textual hyperlinks and a list of hyperlinked images returned from a
6 search and optional value-add information.
7
8 Figure 6 shows a flowchart of a conventional information acquisition and review
9 operation for a search performed with a browser with an integrated search function.
10
11 Figure 7 shows a flowchart of a browser serial page loading cycle after the browser has
12 requested a new page from a website, if a valid cached copy is not available in computer
13 memory.
14
15 Figure 8 shows that an Information Retrieval and Display System (“IRDS”) can be (i)
16 added to a conventional browser as an add-on program or (ii) can be incorporated in a
17 new browser to create an Enhanced Browser.
18
19 Figure 9 shows that IRDS can be local to a computer or distributed on a Network such
20 that one or more computer can load and run IRDS across a Network.
21
22 Figure 10 shows the IRDS command, control, status panel and a single (1) fully active
23 website page displayed.
24
25 Figure 11 shows the IRDS command, control, status panel, and two (2) fully active
26 website pages displayed.
27
28 Figure 12 shows the IRDS command, control, status panel, and four (4) fully active
29 website pages displayed.
30

1 Figure 13 shows the IRDS command, control, status panel and nine (9) fully active
2 website pages displayed.
3

4 Figure 14 shows a flowchart of the IRDS information acquisition and review cycle.
5

6 Figure 15 shows a flowchart of the IRDS search function.
7

8 Figure 16 shows an IRDS directed, browser concurrent multiple page loading from one or
9 more websites, after a search has been initiated.
10

11 Figure 17 shows a flowchart that describes the IRDS directed, browser look-ahead Next-
12 In-Queue Page Loading function, where when a request is made to view n pages, the next
13 group of n web pages pointed to by the associated hyperlinks in the queue are loaded in
14 display frames that are not visible but are immediately available to become visible and
15 viewed upon demand.
16

17 Figure 18 shows a flowchart that describes the IRDS directed, browser look-ahead Next-
18 In-Queue Page Loading function, where when a request is made to view n pages, the next
19 group of n+k (where k is an integer greater than 0) web pages pointed to by the
20 associated hyperlinks in the queue are loaded in display frames that are not visible but are
21 immediately available to become visible and viewed upon demand.
22

23 Figure 19 shows a flowchart that describes the IRDS directed, browser look-ahead
24 Periodic Opportunistic Page Loading function. After a page is loaded into a browser
25 display frame, the associated hyperlink in the hyperlink queue is marked as loaded. The
26 Periodic Opportunistic Page Loading function scans the hyperlink queue for hyperlinks
27 not marked as loaded and directs the browser to load one or more of the web pages
28 pointed to by selected unmarked hyperlinks in display frames that are not visible but are
29 immediately available to become visible and viewed upon demand. After directing the
30 browser to load such pages, the unmarked hyperlinks are marked as loaded and the

1 function waits a specified period of time before rescanning the hyperlink queue and
2 repeating the process.
3
4 Figure 20 shows a flowchart that describes the IRDS directed, browser look-ahead
5 Periodic Opportunistic Page Loading function with page loading collision avoidance.
6 After a page is loaded into a browser display frame, the associated hyperlink in the
7 hyperlink queue is marked as loaded. The Periodic Opportunistic Page Loading function
8 scans the hyperlink queue for hyperlinks not marked as loaded and directs the browser to
9 load one or more of the web pages pointed to by selected unmarked hyperlinks in display
10 frames that are not visible but are immediately available to become visible and viewed
11 upon demand, if such display frame is not already in the process of being loaded by a
12 different type of look-ahead function as described in Figure 17 and Figure 18 for
13 example. After directing the browser to load such pages, the unmarked hyperlinks are
14 marked as loaded and the function waits a specified period of time before rescanning the
15 hyperlink queue and repeating the process.
16
17 Figure 21 shows a flowchart that describes the IRDS directed, browser look-ahead
18 Periodic Opportunistic Page Loading function with page loading collision avoidance,
19 Network saturation avoidance, and processor saturation avoidance. After a page is loaded
20 into a browser display frame, the associated hyperlink in the hyperlink queue is marked
21 as loaded. The Periodic Opportunistic Page Loading function scans the hyperlink queue
22 for hyperlinks not marked as loaded and directs the browser to load one or more of the
23 web pages pointed to by selected unmarked hyperlinks in display frames that are not
24 visible but are immediately available to become visible and viewed upon demand, if (i)
25 such display frame is not already in the process of being loaded by a different type of
26 load-ahead function as described in Figure 17 and Figure 18 for example; (ii) the
27 Network bandwidth has not become saturated; and (iii) the computer processor has not
28 become saturated. After directing the browser to load such pages, the unmarked
29 hyperlinks are marked as loaded and the function waits a specified period of time before
30 rescanning the hyperlink queue and repeating the process.

31

1 Figure 22 depicts an IRDS directed, browser look-ahead Preemptive Descendant Page
2 Loading, where the Descendant pages pointed to by hyperlinks that reside on pages that
3 have been already loaded into display frames whether or not visible, are preemptively
4 loaded into cache memory or frames that are not visible. A user then selecting a hyperlink
5 on a visible page would immediately have the page associated with such hyperlink
6 available on demand and made visible.

7

8 Figure 23 shows a flowchart and drawing associated with selecting the number of web
9 pages to display at a given time.

10

11 Figure 24 shows a flowchart and drawing associated with selecting a page in a multi-page
12 Enhanced Browser display and changing the zoom factor for a selected page.

13

14 Figure 25 shows a drawing associated with selecting a page in a multi-page Enhanced
15 Browser display and making the selected page encompass the entire screen area allotted
16 for the multi-page display, which is equivalent to setting the number of website pages to
17 display to one.

18

19 Figure 26 shows a drawing associated with removing a selected page from a multi-page
20 Enhanced Browser display and removing the hyperlink associated with the selected page
21 from the hyperlink queue.

22

23 Figure 27 shows a drawing associated with book-marking a selected set of hyperlinks,
24 where such set of hyperlinks can be recalled and used to reload the pages pointed to by
25 such hyperlinks into the Enhanced Browser.

26

27 Figure 28 shows a drawing associated with jumping from an IRDS mode to a
28 conventional browser mode for a selected page.

29

30 Figure 29 shows a drawing associated with selecting any portion of a displayed page or
31 pages, if in a multi-page display mode, and creating an image in a standard image format,

- 1 such as Joint Photography Experts Group ("JPEG"), Graphics Interchange Format
- 2 ("GIF"), or bitmapped ("BMP") that can be saved to storage such as a hard drive or
- 3 Compact Disk (CD) or copied to another computer application, such as a word processor,
- 4 spread sheet, or presentation program.

5

6

1 **DETAILED DESCRIPTION OF THE INVENTION**

2

3

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA 01845, 978.794.1053, Alan@Swahn.com

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Figure 1

Conventional Text Search Paradigm

Figure 2

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Conventional Image Search Paradigm

Figure 3

Conventional Information Acquisition and Review Cycle

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Figure 4

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Conventional Browser with Integrated Search

Figure 5

Conventional Information Acquisition and Review Cycle
for Browser with Integrated Search

Figure 6

Conventional Serial Page Loading Cycle

Figure 7

Information Retrieval and Display System ("IRDS")
Add-on to Conventional Browser or IRDS Enhanced Browser

"Information Retrieval and Display System"
Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Figure 8

"Information Retrieval and Display System"
Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Local or Distributed IRDS and Data Access

Figure 9

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Enhanced Browser Single Page Display

Figure 10

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Enhanced Browser Concurrent Multiple Page Display

Figure 11

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Enhanced Browser Concurrent Multiple Page Display

Figure 12

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Enhanced Browser Concurrent Multiple Page Display

Figure 13

IRDS Information Acquisition and Review Cycle

Figure 14

Figure 15

IRDS Directed Concurrent Multiple Page Browser Loading

"Information Retrieval and Display System"
Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Figure 16

IRDS Look-Ahead Symmetrical Next-In-Queue Page Loading

Figure 17

IRDS Look-Ahead Asymmetrical Next-In-Queue Page Loading

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Figure 18

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

IRDS Directed Look-Ahead Periodic Opportunistic Page Loading

Figure 19

IRDS Directed Look-Ahead Periodic Opportunistic Page Loading with Loading Collision Avoidance

Figure 20

IRDS Directed Look-Ahead Periodic Opportunistic Page Loading with Network and/or Processor Saturation Avoidance

"Information Retrieval and Display System"
Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Figure 21

IRDS Directed Preemptive Descendant Page Loading

Figure 22

Enhanced Browser Set Number of Pages to Display Function

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Figure 23

Enhanced Browser Zoom Page Function

Figure 24

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Enhanced Browser Full Display Function

Figure 25

Enhanced Browser Remove Page Function

Figure 26

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Enhanced Browser Bookmark Function

Figure 27

"Information Retrieval and Display System"

Alan Swahn, 95 Kara Drive, North Andover, MA, 01845, 978-794-1053, alan@swahn.com

Enhanced Browser to Conventional Browser Jump Function

Figure 28

Enhanced Browser Imaging of Selected
Page, Pages or Portion Thereof

Figure 29