```
In [45]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [46]: s=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red - 11_winequality-red s

Out[46]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 12 columns

In [47]: s.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [48]: s.describe()

Out[48]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfu dioxid
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.46779
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.89532
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.00000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.00000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.00000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.00000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.00000

In [49]: s.columns

In [50]: sns.pairplot(s)

Out[50]: <seaborn.axisgrid.PairGrid at 0x28aeb538880>

In [51]: | sns.distplot(s['citric acid'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[51]: <AxesSubplot:xlabel='citric acid', ylabel='Density'>

In [52]: s1=s[['fixed acidity','volatile acidity','citric acid','residual sugar','chlori
sns.heatmap(s1.corr())

Out[52]: <AxesSubplot:>


```
In [53]: x=s1[['fixed acidity','volatile acidity','citric acid','residual sugar','chlori
y=s1['alcohol']

In [54]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

In [55]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)

Out[55]: LinearRegression()

In [56]: lr.intercept_
Out[56]: 603.4357739265045

In [57]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[57]:

	Co-efficient
fixed acidity	0.566435
volatile acidity	0.101828
citric acid	0.866467
residual sugar	0.242012
chlorides	- 0.260133
density	-614.127347
рН	4.081877

In [58]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)

Out[58]: <matplotlib.collections.PathCollection at 0x28af3f7c9a0>


```
In [59]:
         print(lr.score(x_test,y_test))
         0.6512578308050023
In [60]: from sklearn.linear_model import Ridge,Lasso
In [61]: from sklearn.linear_model import Ridge,Lasso
In [62]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
         rr.score(x_test,y_test)
Out[62]: 0.13510342225848648
In [63]: la=Lasso(alpha=10)
         la.fit(x train,y train)
         la.score(x_test,y_test)
Out[63]: -0.004113723787898316
In [64]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[64]: ElasticNet()
In [65]: |print(en.coef_)
         [-0. -0. 0. 0. -0. -0. 0.]
In [66]: |print(en.intercept_)
         10.401340482573726
```

In [67]: print(en.predict(x_test))

```
[10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
```

```
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048
10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 10.40134048 |
```

```
In [68]: print(en.score(x_test,y_test))
```

-0.004113723787898316

Evaluation metrics