

# Colle: Dynamique CHAISES VOLANTES

#### 1 Présentation

Un manège est constitué d'un socle 1, d'un fût central 2 qui supporte dix potences. Au bout de chacune d'elles, est suspendu l'ensemble noté 3 constitué d'une barre et du passager. Le siège est situé en B et fait partie intégrante de cet ensemble 3 rigide. La direction  $\overrightarrow{z_1}$  est verticale. Les liaisons sont parfaites et sans frottement.

On donne:

• 
$$\overrightarrow{O_1A} = R \cdot \overrightarrow{x_2}$$
  $\overrightarrow{AG_3} = -L \cdot \overrightarrow{z_3}$   $\overrightarrow{y_2} = \overrightarrow{y_2}' = \overrightarrow{y_3}$ 

• Solide  $\mathbf{3}$ : masse  $m_3$ , centre d'inertie  $G_3$ ,  $\overline{\overline{I}}_{(A,3)} = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{b_3}$ 

• La schématisation cinématique :





Objectif -

v1.0

L'objectif est de déterminer l'angle d'inclinaison  $\theta$  correspondant à une vitesse de rotation du manège donnée.

# 2 Travail demandé

Question 1 Tracer le graphe des liaisons en plaçant l'ensemble des informations nécessaires à l'étude.



Question 2 Réaliser les figures de changement de bases.



**Question 3** Préciser le torseur des actions mécaniques de 2 sur 3 en A dans la base  $b_2$ .

Liaison pivot d'axe 
$$(A, \overrightarrow{y_2})$$
: 
$$\{\mathcal{T}_{2\rightarrow 3}\} = \left\{ \begin{array}{cc} X_{23} & L_{23} \\ Y_{23} & 0 \\ Z_{23} & N_{23} \end{array} \right\}_{b_2}$$

Question 4 Déterminer la stratégie d'isolement et de projection afin d'étudier les variations de l'angle  $\theta$ .

On isole 3 puis on applique le théorème du moment dynamique en A autour de  $\overrightarrow{y_2} = \overrightarrow{y_3}$ . Comme cela, on trouvera directement l'équation du mouvement et on ne verra pas apparaître les actions mécaniques de la liaison pivot.

La vitesse de rotation  $\dot{\varphi}$  est constante. De plus, on suppose que le moment d'inertie  $C_3$  est négligeable devant les autres.

**Question 5** Déterminer le torseur cinétique en A de 3 dans  $R_1$ .

#### Résultante cinétique

$$\overrightarrow{V_{G_3 \in 3/1}} = \left[ \frac{d\overrightarrow{O_1 G_3}}{dt} \right]_{R_1} = \left[ \frac{d}{dt} R.\overrightarrow{x_2} - L.\overrightarrow{z_3} \right]_{R_1}$$

$$\text{Avec}: \left[ \frac{d\overrightarrow{x_2}}{dt} \right]_{R_1} = \dot{\varphi}.\overrightarrow{y_2} \quad \text{et} \quad \left[ \frac{d\overrightarrow{z_3}}{dt} \right]_{R_1} = -\dot{\theta}.\overrightarrow{x_3} - \dot{\varphi}\sin\theta.\overrightarrow{y_2}$$

$$\text{On a alors}: \quad \overrightarrow{V_{G_3 \in 3/1}} = -L\dot{\theta}.\overrightarrow{x_3} + (R - L\sin\theta)\dot{\varphi}.\overrightarrow{y_2}$$

$$\text{Soit enfin}: \quad \overrightarrow{R\{C_{3/1}\}} = m_3 \, \overrightarrow{V_{G_3 \in 3/1}} = m_3 \left( -L\dot{\theta}.\overrightarrow{x_3} + (R - L\sin\theta)\dot{\varphi}.\overrightarrow{y_2} \right)$$

#### Moment cinétique en A

$$\overrightarrow{M_A\{\mathcal{C}_{3/1}\}} = \overrightarrow{\sigma_{A \in 3/1}} = \overline{\bar{I}}_{(A,3)}.\overrightarrow{\Omega_{3/1}} + m_3\overrightarrow{AG_3} \wedge \overrightarrow{V_{A \in 3/1}}$$



Pour le produit matriciel, il faut exprimer 
$$\overrightarrow{\Omega_{3/1}}$$
 dans  $b_3: \overrightarrow{\Omega_{3/1}} = \dot{\theta}.\overrightarrow{y_3} + \dot{\varphi}.\overrightarrow{z_1} = \begin{pmatrix} -\dot{\varphi}\sin\theta \\ \dot{\theta} \\ \dot{\varphi}\cos\theta \end{pmatrix}_{b_3}$ 

Soit, avec  $C_3$  négligeable :  $\bar{\bar{I}}_{(A,3)}.\overrightarrow{\Omega_{3/1}} = -A_3\dot{\varphi}\sin\theta.\overrightarrow{x_3} + B_3\dot{\theta}.\overrightarrow{y_3}$ 

$$\text{Et}: \quad \overrightarrow{AG_3} \wedge \overrightarrow{V_{A \in 3/1}} = -L.\overrightarrow{z_3} \wedge R\dot{\varphi}.\overrightarrow{y_2} = LR\dot{\varphi}.\overrightarrow{x_3} \quad \Rightarrow \quad \overrightarrow{\sigma_{A \in 3/1}} = \boxed{(m_3LR - A_3\sin\theta)\,\dot{\varphi}.\overrightarrow{x_3} + B_3\dot{\theta}.\overrightarrow{y_3}}$$

# Torseur cinétique

En combinant les 2 résultats précédents :  $\left\{ \mathcal{C}_{3/1} \right\} = \left\{ \begin{array}{l} m_3 \left( -L\dot{\theta}.\overrightarrow{x_3} + (R-L\sin\theta)\dot{\varphi}.\overrightarrow{y_2} \right) \\ \left( m_3LR - A_3\sin\theta \right)\dot{\varphi}.\overrightarrow{x_3} + B_3\dot{\theta}.\overrightarrow{y_3} \end{array} \right\}$ 

# **Question 6** Déterminer le torseur dynamique en A de 3 dans $R_1$ .

# Résultante dynamique

$$\overrightarrow{\Gamma_{G_3 \in 3/1}} = \left[\frac{d}{dt}\overrightarrow{V_{G_3 \in 3/1}}\right]_{R_1} \text{ avec}: \quad \left[\frac{d\overrightarrow{x_3}}{dt}\right]_{R_1} = -\dot{\theta}.\overrightarrow{z_3} + \dot{\varphi}\cos\theta.\overrightarrow{y_3}$$
 
$$\text{Alors}: \quad \overrightarrow{R\{\mathcal{D}_{3/1}\}} = m_3 \overrightarrow{\Gamma_{G_3 \in 3/1}} = \left[m_3 \left(-L\ddot{\theta}.\overrightarrow{x_3} - 2L\dot{\theta}\dot{\varphi}\cos\theta.\overrightarrow{y_2} - (R - L\sin\theta)\dot{\varphi}^2.\overrightarrow{x_2} + L\dot{\theta}^2.\overrightarrow{z_3}\right)\right]$$

## Moment dynamique en A

On a: 
$$\overrightarrow{M_A\{\mathcal{D}_{3/1}\}} = \overrightarrow{\delta_{A\in3/1}} = \left[\frac{d}{dt}\overrightarrow{\sigma_{A\in3/1}}\right]_{R_1} + \overrightarrow{V_{A/1}} \wedge m_3 \overrightarrow{V_{G_3\in3/1}}$$
 ce qui donne après calculs : 
$$\overrightarrow{\delta_{A\in3/1}} = -B_3\dot{\varphi}\dot{\theta}.\overrightarrow{x_2} - A_3\dot{\varphi}\dot{\theta}\cos\theta.\overrightarrow{x_3} + \left((-A_3\sin\theta + m_3LR)\dot{\varphi}^2\cos\theta + B_3\ddot{\theta}\right).\overrightarrow{y_2} + A_3\sin\theta\dot{\varphi}\dot{\theta}.\overrightarrow{z_3}$$

## Torseur dynamique

En combinant les 2 résultats précédents :

$$\left\{ \mathcal{D}_{3/1} \right\} = \left\{ \begin{array}{c} m_3 \left( -L\ddot{\theta}.\overrightarrow{x_3} - 2L\dot{\theta}\dot{\varphi}\cos\theta.\overrightarrow{y_2} - (R - L\sin\theta)\dot{\varphi}^2.\overrightarrow{x_2} + L\dot{\theta}^2.\overrightarrow{z_3} \right) \\ -B_3\dot{\varphi}\dot{\theta}.\overrightarrow{x_2} - A_3\dot{\varphi}\dot{\theta}\cos\theta.\overrightarrow{x_3} + \left( (-A_3\sin\theta + m_3LR)\dot{\varphi}^2\cos\theta + B_3\ddot{\theta} \right).\overrightarrow{y_2} + A_3\sin\theta\dot{\varphi}\dot{\theta}.\overrightarrow{z_3} \end{array} \right\}$$

# **Question 7** Déterminer l'équation différentielle qui gouverne les variations de l'angle $\theta$ .

On va appliquer le PFD à 3 et on écrira l'équation de moment en A en projection sur  $\overrightarrow{y_2}$ . De cette manière, on ne verra pas apparaître les inconnues de liaison de la liaison pivot.

#### **IAME**

•  $MomA\{\mathcal{T}_{\text{pes}\to 3}\} \cdot \overrightarrow{y_2} = -Lm_3g\sin\theta$ 

#### **PFD**

En reprenant les résultats précédents, on trouve :  $B_3\ddot{\theta} + \dot{\varphi}^2 \cos\theta \left( m_3 L R - A_3 \sin\theta \right) = -L m_3 g \sin\theta \qquad (1)$ 

A une vitesse de rotation constante, la barre 3 se stabilise par rapport à  $\mathbf{2}$ :  $\theta$  est alors constant et noté  $\theta_s$ .





Question 8 Déterminer l'expression de cet angle d'inclinaison en supposant qu'en première approximation  $A_3$  peut être négligé devant le produit  $m_3LR$ . Réaliser l'application numérique avec  $R=4\,\mathrm{m}$  et  $\dot{\varphi}=1\,\mathrm{rad.s^{-1}}$ .

Avec 
$$\theta = \theta_s$$
 et  $A_3 \ll m_3 LR$ :  $(1): m_3 LR \dot{\varphi}^2 = -L m_3 g \sin \theta \implies \tan \theta_s = -\frac{R \dot{\varphi}^2}{g}$ 

AN:  $\theta_s = -22.2^{\circ}$  (< 0 car attiré vers l'extérieur... comportement logique)

**Question 9** Déterminer dans ce cas l'expression des composantes de  $\{\mathcal{T}_{2\to 3}\}$ .

On reprend le PFD appliqué à 
$$\mathbf{3}$$
: 
$$\left\{ \mathcal{T}_{2\rightarrow 3} \right\} = \left\{ \begin{array}{ccc} -m_3 \left( R - L \sin \theta \right) \dot{\varphi}^2 & 0 \\ 0 & 0 \\ m_3 g & 0 \end{array} \right\}_{b_2}$$

**Question 10** Réaliser l'application numérique avec :  $L=2\,\mathrm{m}$   $m_3=100\,\mathrm{kg}$   $A_3=B_3=130\,\mathrm{kg.m^2}$ .

$$\{\mathcal{T}_{2\to 3}\} = \begin{cases} -324 & 0 \\ 0 & 0 \\ 981 & 0 \end{cases}_{b_2} \Rightarrow \boxed{\|\overline{F}_{2\to 3}\| = 1033 \,\mathrm{N}}$$

**Question 11** Dessiner dans le plan  $(A_2, \overrightarrow{x_2}, \overrightarrow{z_1})$  la position de la barre ainsi que les efforts qu'elle subit.

