Module -1 Foundation

1.What is HTTP?

- HTTP full form is the hyper text markup language.
- HTTP in functionality protocol used data communication on the world wide web.
- It is protocol used client and server communication like web communication

How to HTTP work:-

- 1. You open a website on your browser (ex. www.amazon.in)
- 2. Browser sends a request on website's server (this request is called HTTP request)
- 3. Server receives the request
- 4. Server sends a response
- 5. Browser shows the page

2. What is Browser? How they works?

• :- A browser is a software application that allows you to access and view websites on the internet.

- Example of browsers
 - 1. Google
 - 2. Mozila fireofx
 - 3. Microsoft edge
 - 4. Opera

• How they works.

- 1. User types URL
- 2. Browser finds the website
- 3. Sends HTTP/HTTPS request on server's website
- 4. Receives response by server
- 5. Displays the page on browser
- 6. Show the content of the website

3. What is Domain Name?

- A domain name is just the name used to identify a website on the internet.
- Structure of domain name:-
 - 1. Subdomain -> www
 - 2. Main domain name -> google
 - 3. Top-level domain -> .com

4. What is hosting?

 Hosting is a service that lets you publish your website on the internet.

- When you buy hosting, you're renting space on a web server to store your website's data.
- Here's some hosting providers in markets:-
 - 1. Hostinger
 - 2. Godaddy
 - 3. Scala hosting
 - 4. Inmotion

LABE EXERCISE

Create Github account & make repository.

- Here the steps of create github account:-
 - 1. Go to https://github.com
 - 2. Click on "Sign up"
 - 3. Enter your detail (username, email address, password)

- 4. Complete some verifications(puzzle solving,email inbox verify)
- 5. Now your github account is created
- How to make repostitory:-
 - 1. Go to https://github.com and log in
 - 2. In the top right corner, click + icon > New repository
 - 3. Fill in the repository details(repository name, Description, Public or Private)
 - 4. Now your repository is created

MODULE 2:- FUNDAMENTAL OF WORLD WIDE WEB

1. Difference between Web Designer and Web Developer.

- Web designer
 - Focus on Looks & layout (design) of the website.
 - Its goal is Make the site look attractive and userfriendly.
 - UI/UX, graphic design, color theory, layout is skills of web designer.
 - HTML, CSS, Adobe XD, Figma, Photoshop is key lenguages for web designer.
 - Web designer creates layout, styles, buttons, fonts, icons.

Web developer

- Focus on Functionality & logic (how it works).
- Its goal is Make the site work properly.
- Programming, logic, databases, server knowledge is skills of web developer.
- HTML, CSS, JavaScript, PHP, Python, Node.js is key languages of web developer.
- Web developer creates Backend logic, forms, login systems, databases.

2. What is a W3C?

- W3C stands for World Wide Web Consortium.
- It is the main international organization that creates rules and guidelines for building websites.
- W3C is like the boss of the web.
- W3C is create rules for HTML,CSS,XML for accessibility and websecurity.

3. What is domain?

- A domain is the address of a website that people type for search the website on browser.
- A domain is the name of a website on the internet.
- It replaces the IP addresses because IP addresses is very complex and not possible to remember it that's why IP address is replaces into the domain.

4. What SEO?

- SEO stands for Search Engine Optimization.
- SEO means making your website better so that more people can find it on Google.
- Shortly SEO means make your website browser friendly.
- Here the SEO activities:-
 - 1. Use relevant keywords in content
 - 2. Add meta titles & descriptions

- 3. Use alt text for images
- 4. Make website mobile-friendly

5. What is SDLC life cycle?

- SDLC stands for software development life cycle.
- SDLC is the process that makes the good quality software.
- SDLC goal is to deliver high quality, maintainable software based on user's requirements.
- Here some steps to follow in software development life cycle:-

Steps:-

- 1. requirement analysis
- 2. planning
- 3. Designing
- 4. Developing
- 5. Product testing

- 6. Deployment
- 7. Maintenance
- 1.requirement analysis :-
 - In this phase, the team gathers all the requirements from the client or user to understand what the software should do.

• 2.planning:-

- ➤ In this phase, the project team creates a plan for the entire development process.
- Estimate time, cost, resources etc.

• 3.designing:-

- ➤ This phase involves creating the blueprint or architecture of the software.
- UI/UX design, Database structure

• 4. Developing:-

- Developers write the actual code based on the design
- Use programming languages like Java, Python, PHP, etc.
- Includes Backend + Frontend coding

• 5. Testing:-

- ➤ In this phase, testers check the software for bugs or errors.
- ➤ Types of testing: Unit Testing, Integration Testing, System Testing, Acceptance Testing.
- 6.deployment:-
 - > The software is released to users for real-time use.
- 7.maintenance:-
 - ➤ After deployment, any issues, bugs, or changes are handled this field.

MODULE 3:- FUNDAMENTALS OF IT

1. Explain in your own words what a program is and how it functions.

- A program is a set of instructions that tells a computer how to perform a task.
- How does program function
 - Written by humans:-
 - Programs are written in programming language like python, c++, java, etc.
 - Translated into machine language:-
 - Compiler or interpreter translate it into binary language 0,1(computer language)
 - Executed by the computer:-
 - Once translated, the CPU reads and executes each instruction step by step.

2. What are the key steps involved in the programming process?

- Here the steps of programming process.
 - 1.understanding the problem:-
 - Analyze the problem requirements, inputs, outputs, and constraints.
 - 2. Planning the Solution:-
 - Decide how to solve the problem.(flowchart, algorithm)

3. Coding (Implementation):-

 Write the program using a suitable programming language (Python, C++, Java, etc.).

4. Testing and Debugging:-

- Test the program with different inputs.
- Debug the program by fixing any syntax, logic, or runtime errors.

➤ <u>5. Documentation:</u>-

 Explain how the program works and how to use it.

3. What are the main differences between high-level and low-level programminglanguages?

- High level programming languages:-
 - > Closer to human language high level of abstraction.
 - Easy to read, write, and understand.
 - > Less control over hardware
 - Languages:- Python, Java, C++, JavaScript.
 - Portable across platforms.
 - Easier to debug and maintain.
- Low level languages:-
 - Closer to machine language; low level of abstraction.
 - > Harder to read and understand.
 - Direct control over hardware.
 - Assembly Language, Machine Code.
 - Not portable; hardware-specific.

Difficult to debug and maintain.

4. Describe the roles of the client and server in web communication.

- here the step by step describe client and server communication.
- Communication:-
 - > Client initiates a request.
 - > The request goes to the server.
 - Server processes the request.
 - Server sends back a response to the client.
 - Client receives and displays the content of user.

5. Explain the function of the TCP/IP model and its layers.

- Here the tcp's full form(transmission control protocol) and ip(internet protocol).
- Tcp/ip model is the set of rules the define how data is transmitted over the internet.
- This model's main function is the reliable communication between computers across different networks.
- This cummication process into 4 layers:-
- **1.application layer:-** interfaces with the user; handles software-related communication(protocol's:- HTTP,FTP,DNS).

- **2.transport layer:-** Ensures reliable data transfer between devices; handles errors & sequencing(protocol's:-TCP,UDP).
- **3.internet layer:-** Handles logical addressing and routing across networks(protocol's:-IP,ICMP,ARP).
- 4.network access layer:- Deals with the physical transmission of data over a network(protocol's:ethernet,MAC).

6. Explain Client Server Communication.

- Here the step by step explanation of client server communication.
 - ➤ Client initiates communication It sends a request to the server.
 - Server receives the request It checks the data, processes it, and prepares a response.
 - > Server sends a response This could be success data, error message, or requested info.
 - ➤ Client receives and processes the response It displays or uses the information in the app/game.

7. How does broadband differ from fiber-optic internet?

• Broadband:-

- ➤ A general term for high-speed internet using various technologies (DSL, cable, satellite, etc.)
- ➤ It's transmit speed is 100 to 300 Mbps.
- Broadband uses coper wires.

- Some times in broadband faces high latency.
- ➤ Broadband affected distance, weather, and electromagnetic interference.
- Broadband's cost is very low.

• Fiber-optic internet:-

- ➤ A specific type of broadband that uses fiber-optic cables to transmit data as light signals.
- ➤ It's transmit speed is 1Gbps and more.
- Uses glass or plastic fibers that transmit light.
- ➤ In fiber-optic sometimes faces very low latency.
- Fiber-optic is highly reliable and less affected by external conditions.
- > Fiber-optic is more expensive than broadband.

8. What are the differences between HTTP and HTTPS protocols?

HTTP:-

- > HTTP full fom is hyper text transper protocol.
- > HTTP is sent data as plain text.
- > That's means HTTP is not secure.
- > HTTP port number is 80.
- HTTPS is used for basic websites or internal networks.
- ➤ In SEO(search engine optimization) HTTP priority is very low.

HTTPS:-

- > HTTPS full form is hyper text markup language.
- > HTTPS sent encrypted data.
- That means HTTPS is more secure than HTTP.
- > HTTPS port number is 443.
- > Data is safe from tampering.
- > HTTPS uses banking, e-commerce, login systems.
- ➤ In SEO(search engine optimization) HTTPS priority is high.

9. What is the role of encryption in securing application, Software Applications and Its Types.

- Encryption is the process of converting data into a coded format so that only authorized users can read or access it.
- Role of encryption:-
 - > 1. Protects sensitives data
 - Keeps passwords, personal info, payment data safe from hackers.
 - ➤ 2. Ensures privacy
 - Prevents third parties from reading user data during transmission.
 - ➤ 3. Data integrity
 - Ensures the data is not altered while being sent or stored.
 - ➤ 4. Secure communication
 - Used in HTTPS, messaging apps, email, etc.

➤ 5.compliance

 Helps meet legal and security standards (like GDPR, HIPAA).

• Software application and its types:-

types	description	Examples
System	Helps run computer	Windows,
software	hardware and	Linux, macOS
	system	
Application	For end-users to	MS Word,
software	perform tasks	Photoshop,
		Zoom
web	Runs in browser	Gmail,
applications	over internet	Facebook,
		YouTube
Mobile	Designed for	WhatsApp,
applications	smartphones/tablets	Instagram,
		Paytm
Enterprise	For business use	ERP, CRM, SAP
software		
Game software	For business use	PUBG,
		Minecraft, FIFA

10. What is the difference between system software and application software?

• System software:-

➤ Manages hardware and system operations.

- Works in the background.
- Ex. Windows, Linux, macOS, Device Drivers.
- ➤ Needed for running application software.
- Usually comes pre-installed.

• Application software:-

- Helps users perform specific tasks.
- Directly used by the user.
- > EX. MS Word, WhatsApp, Photoshop.
- > Runs on top of system software.
- ➤ Installed as per user needs.

11. What is the significance of modularity in software architecture?

 Modularity means dividing a software system into smaller, independent parts called modules, where each module performs a specific task or function.

Why modularity is important

> 1. Easy maintenance

 Bugs or issues can be fixed in one module without affecting the whole system.

> 2. Reusability

 Modules can be reused in other projects or parts of the software.

3. improved development

 Different teams can work on different modules at the same time.

> 4. Better testing

 Each module can be tested independently (unit testing).

> 5. Scalability

 New features or modules can be added easily without disturbing existing ones.

6. Improved code management

 Makes the software easier to read, understand, and manage.

12. Why are layers important in software architecture?

• Layers in software architecture refer to organizing the system into separate levels, each with a specific role. This is called layered architecture.

• Importance of layers:-

- ➤ 1. Separation of concerns
 - Each layer handles a specific responsibility (e.g., UI, logic, data), reducing complexity.
- 2. improved maintainability
 - Changes in one layer (like design) don't affect others (like database).

➤ 3. Reusability

- Layers can be reused across multiple applications or modules.
- 4. Scalability

 Easier to upgrade or scale specific layers (like switching to a better database layer).

> 5. Testability

 Each layer can be tested independently (unit testing or integration testing).

➤ 6.security

 Sensitive logic and data can be hidden in deeper layers, not exposed to the user.

13. Explain the importance of a development environment in software production.

 A development environment is a set of tools and resources that developers use to build, test, and debug software applications. It plays a crucial role in software production for several reasons.

• 1. Efficient development:-

- A good development environment provides tools like code editors, compilers, debuggers, and version control.
- ➤ These tools help developers write, test, and fix code faster, increasing productivity.

• 2. Debugging and testing:-

- ➤ Development environments offer debugging tools to identify and fix errors in the code.
- ➤ They also support unit testing, which ensures that each part of the program works correctly.

• 3. Consistency across teams:-

- ➤ A shared development environment ensures that all developers work with the same versions of tools and libraries.
- ➤ This reduces errors caused by differences in setup between team members.

• 4. Automation and Integration:-

- Many development environments support automation tools (e.g., build tools, continuous integration).
- ➤ These help in automating repetitive tasks like building and testing the code, speeding up development cycles.

• 5. Version Control Integration:-

- ➤ Most environments integrate with Git or other version control systems.
- ➤ This allows tracking changes, collaborating with team members, and managing multiple versions of the software easily.

• 6. Simulated environments for testing:-

- Developers can use local environments or virtual setups to simulate the production environment.
- ➤ This helps identify issues before the software is released to real users.

14. What is the difference between source code and machine code?

• Source code:-

- ➤ The human-readable instructions written by a programmer using a programming language like C, Java, Python, etc.
- ➤ Source code write in High-level languages (e.g., C++, Python) or low-level languages (Assembly).
- Source code is readable by humans.
- Ex. Print("hello world") python code.
- ➤ Source code must be compile or interpreted to be run by computer.
- Programmers can modify source code easily.

Machine code:-

- ➤ The binary code (0s and 1s) that the computer's processor understands and executes directly.
- Machine code is write in binary.
- ➤ Machine code is readable by computers.
- > Ex. 11110000 01100111
- Generated by compiling or interpreting the source code.
- Machine code is very difficult to modify by humans.

15. Why is version control important in software development?

- Version control is very important in software development because it helps developers manage changes to the code over time.
- 1.tracks every changes:-

- Version control systems (like Git) keep a record of all code changes.
- You can see who made changes, when, and why.
- ➤ If something breaks, you can easily go back to a previous working version.

• 2. Team collaboration:-

- ➤ In team projects, many developers work on the same codebase.
- Version control lets them work together without overwriting each other's work.
- ➤ It helps merge changes from multiple developers safely.

• 3. Safe experimentation:-

- > You can create a branch to test new features without affecting the main code.
- ➤ If the experiment fails, just delete the branch—no harm done.

• 4. Easy bug fixing:-

- > When a bug is found, version control helps you track down when the bug was introduced.
- This makes it easier to fix issues.

16. What are the benefits of using Github for students?

 Using GitHub offers many valuable benefits for students, especially those learning programming or working on projects.

• 1. Learn real world tools:-

- ➤ GitHub is used by professional developers all over the world.
- ➤ By using it early, students learn how software is built and managed in the real world.

• 2. Build a portfolio:-

- Students can upload their projects to GitHub.
- ➤ This becomes a public portfolio to show their skills to employers or internships.
- Recruiters often check GitHub profiles to see code quality and activity.

3. Collaboration and teamwork:-

- > Students can work on group projects using GitHub.
- ➤ It helps manage code, track who did what, and avoid conflicts.
- ➤ Perfect for college assignments or hackathons.

• 4. Version control:-

- ➤ GitHub is based on Git, so students learn version control automatically.
- ➤ They can go back to earlier versions, recover lost code, or fix mistakes easily.

• 5. Free hosting for projects:-

- ➤ GitHub Pages lets students host websites for free (ideal for portfolios or project demos).
- Great for web development students to showcase live projects.

17. What are the differences between open-source and proprietary software?

• Open source software:-

- > Available to everyone.
- Users can modify and improve the code.
- ➤ Usually free.
- ➤ Open licenses (e.g., GPL, MIT).
- Community-based support.
- Open to inspection by anyone (bugs can be fixed faster).
- Linux, VLC Media Player, GIMP.

• Prioprietary software:-

- Not shared with the public.
- > Only the company can modify it.
- Often paid or licensed.
- Restricted licenses (e.g., Microsoft EULA).
- ➤ Official customer support.
- Security is managed by the company only.
- Windows, MS Office, Adobe Photoshop.

18. How does GIT improve collaboration in a software development team?

 GIT improves collaboration in a software development team in several important ways:

• 1. Version control:-

Git keeps track of every change made to the codebase.

➤ Developers can see who made what changes and when, which helps in tracking progress and understanding the project history.

• 2. branching and merging:-

- ➤ Each developer can work on their own branch without affecting the main codebase.
- Once the feature is complete, it can be merged into the main branch after review.

• 3. Conflict management:-

- ➤ Git detects conflicts when two developers modify the same part of the code.
- ➤ It helps teams resolve these merge conflicts efficiently, maintaining code integrity.

4. Collaboration with remote repositories:-

- Git works with services like GitHub, GitLab, and Bitbucket.
- ➤ Developers can push (upload) and pull (download) changes from a central repository, enabling remote collaboration.

• 5. Code review and feedback:-

- ➤ Tools like GitHub allow pull requests, where code can be reviewed and discussed before merging.
- This improves code quality and helps in team learning.

19. What is the role of application software in businesses?

Here the role of application software in business.

• 1. Automating Business Processes:

➤ Application software like ERP (Enterprise Resource Planning) and CRM (Customer Relationship Management).

• 2. Data management and analysis:

- ➤ Software like Excel or database applications helps businesses:
- Store, retrieve, and manage large amounts of data.
- make data-driven decisions.

• 3. Communication and Collaboration:

- ➤ Tools like Microsoft Teams, Slack, Zoom, and email clients allow team members
- > Share files
- ➤ Hold meetings
- > Collaborate on documents in real-time

• 4. Security and Compliance:

- Security software ensures data privacy and compliance with regulations (e.g., GDPR).
- Antivirus, firewall, and encryption tools protect business data.

20. What are the main stages of the software development process?

• 1. Requirement analysis:-

Understand what the client or user needs.

➤ Gather and document all functional and nonfunctional requirements.

• 2. System design:-

- Plan the architecture of the software.
- Design components like user interfaces, databases, and system modules.

• 3.coding:-

- Developers write the actual code based on the design documents.
- Programming languages and tools are selected and used.

• 4. Testing:-

- ➤ Test the software for bugs, errors, and performance issues.
- ➤ Includes unit testing, integration testing, system testing, and acceptance testing.

• 5. Deployment:-

- > Release the software to the production environment.
- It becomes available for end-users.

• 6. Maintenance:-

- Fix issues that arise after deployment.
- Update the software with new features or improvements.