This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

每1997-0005750

(19) (19) 대한민국특허청(KR) (12)

引用例2

(12) 특허공보(B1)

(51) Int. Cl.*
(51) Int. Cl.*
HOIF 1/059

(11) 등록번호 (45) 공고일자 1997년04월19일

(11) 공고번호 목1997-0005750

(21) 출원번호(21) 출원 특1994-0010203 (65) 공개번호 특1995-0031910 번호 (22) 출원일자(22) 출원 1994년05월10일 (43) 공개일자 1999년12월20일 임자

(73) 특허권자(73) 특허 권자

경상복도 포항시 효자동 산 32 번지신창식재단법인 산업과학기술연구소 <태그>내용</태그>포항증합제철 주식회사 김만제

경상북도 포항시 괴통돔 1번지

(72) 발명자

양총진

경상복도 포함시 효자동 산 32번지 재단법인산업과학기술원연구소내

변갑식

경상북도 포항시 효자등 산 32번지 재단법인산업과학기술원연구소내

최승덕

경상복도 포함시 효자동 산 32번지 재단법인산업과학기술원연구소내

박언병

경상북도 포항시 효자동 산 32번지 재단법인산업과학기술원연구소내

전준항, 손원, 김종윤

(74) 대리인 실사공 :

일명선 (작가공보 계493호)

(54) 수자자식용 시마리움-쉽게 영구자식 재료 몇 그 제조방법

(72) 발명자

MANE:

(54) 요약

내용없음.

BAH

[발명의 명청]

수지자석용 사미리움-쉽게 영구자석 재료 및 그 제조방법

[발명의 상세한 설명]

본 발명은 수지식용 사미리용(Sm)-철(Fe)계 영구자석 재료 및 그 제조방법에 관한 것으로서, 보다 상세히는 수지자석의 자성분일에 사용되는 Sm-Fe계 영구자석재료 및 그 제조방법에 관한 것이다.

증래에 상업화되어 있는 전통적인 영구자석 재료로는 산화철 페라이트 자석(주성분으로 Bao Felux는 Sro· 6Felu) 및 알니코자석(주성분으로 Fe-Co-Hi-Al-Ti-Cu)등의 메너지적이 낮은 보급형 영구자석이 있고, 또한 SmCo, 또는 SmcCo, 조성을 근간으로 하는 회톨류-교발트계 영구자석이 있다.

이들 영구자석 중에서 산화철 페라이트 자석은 자기특성이 열악하여 저급용으로 사용되고, 알니코 영구자석은 자기특성에 비해 재료비와 공정이 복잡하여 스피커, 계량기동 특수용도에만 사용된다.

한편, 에너지적이 높고(8.H)_{max}=20~30 립리온 가우스(MGOe)) 큐리온도가 높아(Tc=700~800°c)영구자석 재료로서 최상인 Sm—Co계 자석은 제조광정이 복잡하고 원료비가 비싸 고온용도의 제품에만 사용이 제한된다(K.J.strmat and Hoffer: USAF Materials Lab. Report AFML TR—65-446(1966), K.H.J. Buschow, R.A.Maastepad and F.F.Westerndorp: J.Appl. Phys. 40, (1969)P.4029 및 D.K.Das: IEEE Trans. Magn. (1969)P.214)

이에 반하여 최근에는 Co 대신에 회토류-철계 영구자석등이 실용화되어 있는데, 그 대표적인 예로서 FeuNdB 조성의 화합률을 근간으로 하는 회룡류계 영구자석을 들 수 있다.

상기 FewNd3 조성의 화합률 회톨류 영구자석은 Co 대신 Fe를 근간으로 하며, 높은 에너지적((B.H)a.-25~40 kBDe)과 높은 보자력(고유보자력 lHc-8~20KDe)을 보임으로써 영구자석의 새로운 활로를 개척하고

시장확대에 큰 역할을 하였다.

그러나, 상기 회롭류-쉽게 영구자석은 큐리온도(Tc)가 310°C이하여서 높은 온도에서는 사용이 제한되고 부식성이 커, 아직도 사용에 많은 제한이 있는 실정이다.

(M.Sagawa, S.Fujimura, N.Togawa, H.Yamtoto and Y.Matsuura : J.Appl.Phys. 55, (1984)P.2083, M.Tokunaga, N.Meguro, M.Endoh, and S.Manigawa. IEEE Trans. Magn. 21, (1985)P.1964, J.Croat, J.F.Herbst. R.W.Lee and F.E;Pinkorton J.Appl.Phys. 55, (1984)P.2078).

이와같이 영구자석은 용도에 따라 다양한 영구자석 재료가 개발되어 사용되어 왔는데, 지금까지 회토류 원소로써 Sm을 사용한 Sm-Fe 영구자석 재료의 경우에는 경제적인 촉면에서 잇점이 있으나 Sm-Fe 화학물을 제조하여 수지자석용으로 사용하기에는 자기 특성이 열화되어 실용화되지 못했다.

마라서, 본 발명은 경제성을 고려하여 저렴한 원료비가 소요되는 Sa-Fe계 회통류 회합을 영구자석 재료를 근간으로 하되, 조성을 변화시키고 자기특성이 우수하도록 조직을 변형시키므로서, 자기특성이 실용화에 문제가 없는 수지자석용 Sa-Fe계 영구자석재료 및 그 제조방법을 제공하고자 하는데 그 목적이 있다.

이하, 본 발명을 설명한다.

본 발명은 수지자석용 영구자석 재료에 있어서, ‱Fe_{xe}kk 화합물 조정식을 갖고, K은 No, Y, Nb 및 TI 중에서 선택된 1층 또는 2층 이상이며, X는 0.2~2.0의 조성범위로 이루어짐을 특징으로 하는 수지자석용 ‰Fe_x에 영구자석 재료에 관한 것이다.

또한, 본 발명은 수석자석용 영구자석 재료의 제조방법에 있어서, 상기한 조성범위를 갖는 모재를 진공용해한 후, 10~10~c/초의 생각속도로 급냉하는 것을 특징으로 하는 수지자석용 ‰Fe계 영구자석 재료의 제조방법에 관한 것이다.

이하, 본 발명의 영구자석 재료에 대하여 상세히 설명한다.

통상적으로 회통류 원소 Sm를 Fe에 고용시키는데는 어려움이 있기 때문에, 본 발명에서는 Sm을 Fe에 용이하게 고용할 수 있도록 Fe와 천화력이 큰 제3 원소를 참가하는 동시에 상기 Sm-Fe계 화합물의 조성을 변화시키고, 그 조직을 변형시키므로서 자기 특성이 무수한 Sm-Fe계 영구자석 재료를 얻을 수 있는 것이다.

즉, 본 발명에 따른 영구자석 재료는 Sm-Fe 이성분계에 참과 친화력이 우수한 제3의 천이원소(비)인 þb. Y, Ti 및 Nb 중에서 선택된 1종 또는 2종 이상을 참가하여 합성한 Sm-Fe, pk(X는 0.2~2.0) 화합물로 구성된다.

미때, 상기 kb, V, kb 및 TI은 Sa을 Fe에 고용을 측진시키며 자기특성을 우수하게 하는 역할을 하게된다. 상기 SaFe, kb(X는 0.2~2.0)의 조성을 갖는 본 발명은 Sa(Fe, N), 조성의 강자기특성을 가지는 주자성 상, Sa(Fe, N),조성의 약자기특성을 가지는 제2 상 및 α Fe상 그의 FeM 조성의 상자기특성을 가지는 제3 상이 형성되어 각 상의 특성에 의해 Sa-Fe계 영구자석 재료의 실용화가 가능한 것이다.

본 발명의 영구자석 재료의 각 조직에 대하여 설명하면 다음과 같다.

본 발명의 영구자석 재료의 조직중 주자성상인 Sm(Fe, #))은 강자기특성을 나타내며, 0.2~2.0m의 결정 입도를 가지며, 높은 자기자화력(또는 잔류자속 밀도)을 보이기 때문에 가장 중요한 자성상이 된다.

또한, 동시에 소량의 Sm(Fe, M). 조성의 약 자기특성을 보이는 자성상이 생성되는데, 이 Sm(Fe, M). 자성 상은 Sm(Fe, M), 결정입자들의 입경계선에서 즙은 대역을 이루며 형성되거나 새 결정립이 만나는 접합점 사이에 형성되기도 한다.

상기 ‰(Fe, H). 자성상은 출발재료인 ‱Fe, kk 영구자석 재료의 실용화가 가능하도록 보자력을 높며주는 역할을 한다.

그러나, 상기 Sm(Fe, N)= 자성상이 과도하게 생성되면 잔류자화량이 감소하여 전체적인 에너지적이 감소하므로 바람직하지 않다.

한편, 급속냉각도중 제3의 성분으로 Fell 조성의 상자성상도 미량 생성되며, 이 Fell 상은 Sufellek 재료 의 큐리온도 상승을 유발시키는 역할을 하게 된다.

상기 Fe,# 상이 생성되는 형상은 주로 Sm(Fe, M), 자성상 내에서 500~1500Å의 미립자 형상으로 석출하게 되나, 과도하게 생성될 경우 SmFe, MA 재료의 자기특성을 저하시키므로 비탐직하지 않다.

상기한 바와같이, 본 발명의 영구자석 자료는 상기 Sm(Fe, N), 강자성상이 주 조성이 되도록 천미원소의 조성 XB 조절하는 것이 중요하며, 이때 조성 X가 0.2 이하이면 본 발명의 영구자석 자료내에 Sm(Fe, N), 상이 생성되지 않아 강자성 특성이 발생되지 않고, X가 2.0 이상이면 Sm(Fe, N), 상이 약간 생성되고, Sm(Fe, N), 및 Fe,N 상(또는 α-Fe상)이 상대적으로 많이 생성되어 강자기특성이 발생되지 않기 때문에 조성 X는 0.2~2.0으로 조절하는 것이 바람직하며, 보다 바람직한 것은 XB 0.8~1.5으로 하는 것이다.

이하, 본 발명의 Sa-fe계 영구자석 재료의 제조방법에 대하며 상세히 설명한다.

본 발명에 따른 상기 조성의 출발재료를 진공용해하는데, 이때 용해는 진공중에서 유도 용해하거나 출라 즈마 아크에 의해서 용해할 수 있다.

진공 용해한 후에 상기 화합물을 급속냉각하는 것이 중요한데, 본 발명에 있어서는, 본 발명자가 발명한

특허 제 48371호 및 제 61335호의 촉출형 용용회전 기술에 의한 냉각방법 및 일반적으로 알려진 유도용해 기술(미국특허 제 4756775호)에 의한 냉각방법을 통하여 So-Fe계 영구자석 재료를 제조할 수 있다.

이때, 본 발명의 영구자석 재료는 일반적인 주조야금 기술로는 얻어질 수 없는 $0.2 \sim 2.0$ 의 초미세립의 결정입도를 갖는 합금을 형성하기 위해서는 $10^6 imes 10^6 imes 10^5 imes$

상기와 같은 급속냉각으로 제조된 %mfe,*km 화합물은 후속열처리를 하지 않은 상태에서도 수지 본드 자석(resin bonded magnet)용 재료로 사용될 수가 있으며 본 발명의 재료내에 생성된 %m(Fe, M),자성상의 결정입자물이 동방성 배향을 하고, 특히 결정입도가 작아(0.2~2.0km), 동방성 수지자석용으로 사용된다. 이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.

[실시에 1]

Sufe, Mox 화합물을 x=0.2, 0.4, 0.6, 0.8 및 1.0 조성으로 하여 각각 진공실내의 석영관에서 유도용해한 후, 급병회전체 표면에 용사시켜 급속용고된 자성체 리본을 제조한다. 이때, 제조된 급속용고 리본은 10 ~50 교의 두∭ 및 즉 1~2 한 형상으로 하였으며 급속생각시 사용된 급병회전체(구리합금으로 만들어졌음) 회진속도는 회전체 표면에서 30 등 Sc의 속도를 유지토록 하였다. 상기와 같이 제조된 자성체 리본은 X-ray 회접분석에 의해 미세결정립으로 구성된 것을 확인하였으며, 전자현미경 관찰에 의해 Sa(Fe, Mo),의 결정입도가 1~2 교로 분포하고, 또한 Sa(Fe, Mo), 입자경계선에 Sa(Fe, Mo), 결정입자가 1 때 이하로 분포되어 있음을 확인하였다. 상기와 같이, 제조된 Safe, Mox 급병리본은 자기특성의 변화를 보기 위해 650 C에서 30분간 소든 엄처리를 한 후, 엄처리전후 리본 표면의 수직방향 및 수평방향(김미쪽)을 따라 자기특성을 측정하고, 또한 큐리온도를 측정하여, 그 결과를 하기표 1에 나타내었다.

이때 자기록성 측정에 사용한 측정기구는 전통시로 자력계이며(YSA) 외부자장 16k0e을 부하하여 측정하였고, 또한 큐리온도는 열자기곡선 측정기(TGA)를 사용하며 측정하였다.

SmFer, Mox.	추정칭합	4 4 4			•			
		천왕주의 (hG)	正井以時間 (kOe)	최제자기 에너리학 (MGOe)	원류자화 (kG)	교류보자학 (kOe)	최대자기 매니지맥 (MGOs)	(C) 全页
일명에 1 2#02	94	3.29	1.57	1.32	3.12	1.25	LM	153
	中間	4.85	1.26	1.58	6.33	1.29	LBG	
प्रेचन ४ प्रमुख	수적	3.50	1.77	1.57	8.27	1.82	1.47	161
	수정	4.90	130	2.0	6.16	1.34	1.73	
चवन ३	수리	3.73	20	2.73	1.25	2.80	2.30	262
x=0.5	· 今增	5.50	2.98	3.0	6.15	2.50	2.56	
경영세 4 x=08	수박	4.90	3.65	3.07	4.25	30	3.20	241
	49	6.53	4.0	5.86	6.17	3.1	3.70	
발명력 5 x=1.0	수 리	6-13	ш	5.17	4.70	3,44	3.44	224
	今間	5.A5	4.0	62.3	4.0	3.35	374	
कृष्ण । SmFe ₁	কম	3,62	1.0	1.25	3.80	0.5	1.0	
	수계	. 6.80	10	1.23	6.0	0.48	14	151

[# 17

상기 표I에 나타난 바와같이 증래에(1)의 Sufe 화합물의 경우에는 보자력이 너무 작고 따라서 자기에너지적이 심용화에 부적점하였으나, 발명에(1-5)의 경우에는 증래에의 경우보다 자기특성이 향상되어 실용화가 가능한 최대 자기 에너지적을 나타내었으며, 특히 발명예(4) 및 (5)의 SufeMo 및 SufeMo 화합물의 경우에는 자기특성이 활동히 향상되어 최대 에너지적인 5세GOE 이상임을 알 수 있었다.

한편, 자기록성의 측정방향에 따른 특성 차이는 크지 않으나, 열처리후의 자기록성에 열화가 수반되었는데, 이는 열처리후에 Sa(Fe, Mo) 자성상의 입도가 증가함과 동시에 약 자성상인 Sa(Fe, Mo) 자성상외 FeMo상의 생성이 증가되어 보자력의 현지한 감소가 발생하기 때문이다.

[실시예 2

실시예 1에서와 같이, SufeVx 화합물을 x=0.2~2.0의 조성으로 하며 실시에 1과 동일한 방법으로 급냉용 고된 자성리본을 제조하고, 각각에 대하여 자기특성 및 큐리온도를 측정하고, 그 결과를 하기 표2에 나타 내었다.

[# 2]

SmFerraVx m 1	466	범보이진			*	유인		
		(FG)	(AOc)	의대자기 내다지지 (MGOs)	한유 추회 (kG)	교육보파력 (kOo)	#대자기 에너지워 (MGOs)	44 2.5 (T)
개명 에 6	수지	4.3	2.2	2.0	4,2	2.0	L.S	220
10.2	44	5.0	1.5	2.1	5.2	1.4	2.0	120
4447	구목	43	2.3	2.2	4.5	2.0	2.1	243
x=0.4	44	5.3	2.1	2.5	6.5	2.0	2.4	241
જેલ્વ 8 ×#06	中 国	4.53	2.5	3.3	5.2	2.3	. 33	282
	4.0	6.35	3.4	3.4	6.7	3.1	3.5	
함백에 9	\$4	4.5	3.0	4,5	5.35	3.0	4.2	304
x=0.8	수석	6.5	3.9	4.4	5.4	3.3	4.0	
थ्यंच ।०	44	5.13	5.0	5.1	5.0	4.5	5.0	355
x=1.0	9.10	6.5	6.0	4.5	8.3	8.0	6,0	
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 4	3.0	4.9	6.0	8.0	4.8	4.8	340
	44	6.3	5.8	6.0	6.0	5.5	5.8	340
#=20	\$ 4	4.6	3.0	43	4.4	4.5	45	335
	44	80	3.5	4.2	5.8	5.A	5.5	333

상기 표2에 나타난 바와같이 발명에(6-12)의 경우에는 심시에 1의 kb를 첨가한 경우와 마찬가지로 자기특성이 우수하며 실용화가 가능한 최대 자기에너지적을 나타내었으며 특히 발명에(9-11)에서와 같이 x=0.8 ~1.8의 조성범위에서 SefeVx 화합물의 자기특성이 월등히 향상되어 최대자기 에너지적인 4.5 kb0e 이상임을 알 수 있었다.

[실시에 3]

실시에 1에서와 같이 %FeTix 화합물을 X=0.2~2.0의 조성으로 하며 실시에 I과 동일한 방법으로 급냉용 고된 자성 리본을 제조하고, 각각에 대하여 자기특성 및 큐리온도를 촉정하고, 그 결과를 하기표 3에 나 타내었다.

[# 3]

SmPry aThe .B.4	*449	네 선 사 회 원 📑						
		質算当時 (kG)	(kOs) 교육보칙역	의대자기 이나지의 (MCOc)	변유치의 (kG)	(kOe)	위대자기 백년지역 (MGOs)	6.8 (°C)
방병에 13	44	5.0	LJ	. 1.5	5.1	1,1	1.5	190
x=0.2	수박	8.2	1.3	1,5	5,0	1.2	1.5	
발립에 14 . x=9.4	42	5.8	1.5	2.0	8.0	1.1	2.0	210
	수지	6.0	1.5	2.0	6.2	1.7	, 2.0	
494 16 *=0.6	수박	6.5	1,8	3.6	6.0	2.2	3,4	245
	44	6.8	2.0	- 3.5	6.3	2.3	3.4	
भृषुची 16	4-12	4.8	3.3	6.0	4.5	3.3	5.4	210
8.0=x	수박	8.6	4.0	6.1	6.4	4.0	5.8	
발력적 17	수박	5.2	4.0	6.5	. 5.0	2.8	5.4	305
x=1.0	4.4	6.6	5.6	6.5	4.5	5.4	8.4	
भेष्मच 18 सन्दर्भ	44	4.4	5.5	6.4	5.4	4.8	3.8	260
	- বৰ	4.5	5.5	4.0	6.5	5.0	3.8	
발명제 19	수익	- u	\$.1	3.4	4.8	49	3.3	
x=2.0	수박	44	5.0	3.5	5.0	4.0	34	360

상기 표 3에 나타난 바와같이 발명예(13-19)의 경우에는 실서예(1) 및 (2)의 ‰, Y을 첩가한 경우와 마찬 가지로 자기특성이 무수하며 실용화가 가능한 최대 자기에너지적을 나타내었으며, 특히 발명예(16-18)의 경우에서와 같이 x=0.8-1.5의 조성범위에서 SwFeTix 화합물의 자기특성이 활동히 향상되어 최대 자기에너 지적이 4.0 kGOe 이상임을 알 수 있었다.

[실시예 4]

실시예 1에서와 같이 Smedix 화합률 조성증 대표적으로 x=0.8 및 x=1.0에서 높은 자기특성을 나타내므로 조성을 x=0.8 및 1.0으로 하고, kb, V, Nb 및 Ti의 각 원소에 대하여 실시예 1과 동일한 방법으로 급냉 용고된 자성리본을 제조하고, 각각에 대하여 자기특성 및 큐리온도를 측정하고, 그 결과를 하기표 4에 나 타내었다.

[# 4]

포션	축결활활	જૂ મ લ શ			정치민수			
		製作率的 (kG)	교유보격적 (kOe)	최대왕의 에너지리 (MGO+)	한참기의 (kG)	교육보자학 (kQs)	의리차기 레니치칙 (NGOs)	± 1.5 (7)
발달·인 4 SmFer	ক্ষ	4.90	3.66	5.07	4.35	3.0	3.20	
Ma.	수정	6.53	1.0	5.05	6.17	3.i	3.70	24
244 5	수비	6.13	4.4	5.17	4.70	3,44	3.44	
SmFr.Mo	ተ 8	6.45	4.9	5.50	6.0	3,35	5.74	221
항명력 9 SmFe V.,	ቀ 4	4.5	3.0	4.5	8.35	3.0	4.20	304
	44	6.5	19	4.8	8.4	3.9	4.0	
방역시 10 SmFe.V	수 4	5.13	5.0	5.10	5.0	4.5	6,0	355
	44	6.5	80	6.5	5.3	6.0	6.0	
19 4 20 Bro Fer .	수석	8.0	2.5	3.5	5.0	24	2.5	187
Nb _{e s}	수 전	5.0	aı	3.7	4.8	2.8	1.8	
थवन ध	ক ৰ	3.5	3.4	30	3.0	2.4	2.4	194
SmFeNs	수리	4.8	3.2	3.9	4.5	34	3.3	194
प्रश्नंत 16 StaFer a Tha	수리	4.6	3.3	6.0	4.B	3.3	5.4	240
	44	6.6	4.0	8.1	64	4.0	5.8	
및명력 17 SmFe.Ti	수지	5.3	4.0	8.5	5.0	3.8	5.4	305
	44	6.6	5.8	6.5	6.5	6.4	6.4	-

상기 표 4에 나타난 바와같이 발명예(9-10) 및 발명예(16-17)의 화합물의 경우가 자기특성이 가장 우수하 대 특히 큐리온도의 향상이 뚜렷하므로 실용화의 가능성이 가장 흠을 알 수 있다.

또한, 상기 Swieklox, Swieklox 및 Swielix 화합물 모두 열쳐리 후에는 자기 특성이 열화되므로 실 제 자석 제조시에는 급속생각된 그 상태로 사용하는 것이 바람직합을 알 수 있다.

상습한 바와같이, 본 발명은 Sma Fe에 용이하게 고용할 수 있도록 제3의 천이원소인 kb, V, Ti 및 kb 중에서 선택된 1중 또는 2중 이상을 첨기하며 조성한 SmFetk(M는 상기 제3의 천이원소)의 조성을 본 발명범위로 하고 그 조직을 개선하므로서, 자기특성이 우수하면서 저렴하며 실용화될 수 있기 때문에 수지자석용 영구자석 분말재료로 사용되는 효과가 있는 것이다.

(57) 경구의 범위

성구한 1

수지자석용 영구자석 재료에 있대서, Sufe, kk 화합물 조성식을 갖고, kl은 kb, Y, Nb 및 TI 중에서 선택 된 1종 또는 2종이상이며, x는 0.2~2.0의 조성범위로 이루어짐을 특징으로 하는 수지자석용 Sm-Fe계 영구자석 재료.

and the second production of the second confidence of

성구함 2

제1항에 있어서, 상기 차 0.8~1.5의 조성범위로 이루어짐을 특징으로 하는 수지자석용 5m-fe계 영구자 석 재료.

청구항 3

제 항 또는 제2항에 있어서, 상기 화합물이 Sm(Fe, M), 주자성상, Sm(Fe, M), 약자성상, Fe M상 및 α -Fe 의 복합상 구조를 갖는 것을 특징으로 하는 수지 자석용 Sm-Fe계 영구자석 재료.

청구항 4

제3항에 있어서, 추자성상의 결정입도가 0.2~2.0m임을 특징으로 하는 수지 자석용 Sm-Fe계 영구자석 재료.

참구함 5

수지자석용 영구자석 재료의 재료의 제조방법에 있어서, SmFe_{ra}lk 화합률 조성식을 갖고, N은 No, V, No 및 Ti 중에서 선택된 1층 또는 2층이상이며, x는 0.2~2.0의 조성범위로 미루머진 모재를 진공용해한 후, 10⁵~10⁶·C/초의 냉각속도로 급행시키는 것을 특징으로 하는 수지자석용 Sm-Fe계 영구자석 재료의 제조방 병