Ivan Fateev

 • New Zealand
 ■ ivan.fateev.nz@gmail.com
 □ +64 27 203 2304
 Im in/ivanf-nz
 ivanf.nz

SUMMARY

I'm a Computer Systems Engineering student at the University of Auckland, passionate about building innovative hardware and software solutions. I enjoy solving complex challenges, learning new concepts, and collaborating with others to create impactful solutions. With a strong problem-solving mindset and a hands-on approach, I'm eager to apply my skills in real-world projects that drive meaningful results.

EDUCATION

Bachelor of Computer Systems Engineering (Honours)

University of Auckland · Auckland · 2024 - 2027 · GPA - 8.4

· 2024 Dean's Honours List recognises students with top 5% performance or a minimum of an 8.25 GPA.

PROJECT

Blockchain Voting System (Governance Challenge Winner, Web3 Hackathon)

github.com/se-camus/2025-web3-hackathon · March 2025

- Developed the backend of the winning project, securing 1st place in the Governance Challenge at New Zealand's FIRST Web3 Hackathon, earning \$4,000 NZD while competing against 40% industry professionals.
- · Engineered a decentralised voting system using MetaMask wallets in 36 hours, enabling secure, transparent, and verifiable on-chain governance.
- · Implemented 8 unit tests to ensure smart contracts functioned as expected across code changes and deployments.

3D Spatial Mapping System

github.com/ivanf-nz/realtime-mesh-renderer · November 2024 - January 2025

- Engineered a 3D spatial mapping system using LiDAR sensors and stepper motors, capturing -100,000 data points per scan at 250Hz. This system enabled real-time visualisation of indoor environments, providing precise mapping for detailed analysis.
- Designed and 3D printed custom mechanical components, including a base, spur gear system, and 2-axis gimbal using Autodesk Inventor. Engineered these components to optimise sensor alignment and enable smooth, accurate movement for precise spatial data capture across multiple axes.
- Programmed the hardware integration using Arduino UNO and C++ algorithms to control the stepper motors' rotation and process the raw LiDAR data. The system converted this data into clean, usable formats suitable for 3D mesh processing, producing CAD-ready models for spatial visualisations.

Personal Portfolio Website

ivanf.nz · April 2025 - Present

- Built and deployed a custom terminal-style website using Vercel, Next.js, and TypeScript. Enabled real-time command processing and dynamic rendering of README.md files directly from GitHub's API, all hosted on a personalised domain.
- Ensured responsive design to provide an optimal user experience across mobile and desktop devices while maintaining a terminal-like interface for interacting with the site.
- · Managed the codebase with Git and GitHub, tracking over 50 commits across development cycles to maintain version history and implement continuous improvements, ensuring smooth functionality of command processing.

3D to ASCII Renderer

github.com/ivanf-nz/x2ascii • December 2024 - April 2025

- Built a Python tool to render .obj 3D models as ASCII in the terminal, using custom 3D projection, shading, and face-sorting logic with real-time rotation at ~60 FPS.
- · Leveraged NumPy for efficient storage and manipulation of parsed vertex data, enabling fast transformation and projection during rendering.
- · Implemented robust error handling and data validation, ensuring reliable parsing of large .obj files.

EXPERIENCE

Chilled/Frozen Assistant

New World NZ

October 2022 - February 2024, Auckland

- $\cdot \ \, \text{Helped streamline day-to-day operations by working across multiple departments, figuring out faster ways to restock and stay in sync with the team.}$
- · Trained 3 new team members on procedures and workflow, ensuring smooth operations and effective collaboration across shifts.
- · Built solid communication and problem-solving skills dealing with 50+ customers a day, handling questions and fixing issues on the spot.

SKILLS

- · Languages & Tools: Python, C++, Git, Arduino and ESP32 Microcontrollers, Fusion 360
- · Core Skills: Rapid Prototyping, Problem Solving, Teamwork, Effective communication, Adaptability