AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

1 2

3

1. (Currently amended) A method for facilitating instant failover during
data packet routing by employing a flooding protocol to send data packets
between a source and a destination, the method comprising:

receiving a <u>data</u> packet eontaining data at an intermediate node located between the source and the destination, wherein the <u>data</u> packet is a <u>data packet</u> that is enroute from the source to the destination;

wherein the <u>data</u> packet is received from a first neighboring node; determining whether the <u>data</u> packet has been seen before at the intermediate node; and

if the <u>data</u> packet has not been seen before, forwarding the <u>data</u> packet to neighboring nodes of the intermediate node.

- 2. (Currently amended) The method of claim 1, wherein forwarding the <u>data</u> packet to neighboring <u>nodes needs</u> involves forwarding the <u>data</u> packet to all neighboring nodes except the first neighboring node from which the <u>data</u> packet was received.
- 3. (Currently amended) The method of claim 1, wherein determining whether the <u>data</u> packet has been seen before involves examining a sequence number, S_R , contained within the <u>data</u> packet to determine whether the sequence number has been seen before.

1	4. (Currently amended) The method of claim 3, wherein the sequence
2	number includes one of:
3	a sequence number inserted into a payload of the data packet;
4	a sequence number located within an Internet Protocol (IP) header of the
5	data packet; and
6	a sequence number located within a layer 4 header of the data packet.
1	5. (Currently amended) The method of claim 3, wherein examining the
2	sequence number involves looking up a highest received sequence number, S_H ,
3	stored at the intermediate node based upon the source of the data packet.
1	6. (Currently amended) The method of claim 3, wherein examining the
2	sequence number involves looking up a highest received sequence number, S_H ,
3	stored at the intermediate node based upon the source and the destination of the
4	data packet.
1	7. (Currently amended) The method of claim 3, wherein determining
2	whether the $\underline{\text{data}}$ packet has been seen before involves examining a record, R ,
3	indicating which of N possible sequence numbers preceding a highest received
4	sequence number, S_H , have been seen before.
1	8. (Currently amended) The method of claim 3, wherein determining
2	whether the data packet has been seen before involves:
3	looking up a highest received sequence number, S_H ;
4	if $S_R > S_H$,
5	overwriting S_H with S_R ,
6	updating a record, R , indicating which of N possible
7	sequence numbers preceding S_H have been seen before, and

8	forwarding the <u>data</u> packet to the neighboring nodes;
9	if $S_H - N > S_R$, discarding the <u>data</u> packet; and
10	if $S_H \ge S_R \ge S_H - N$, then
11	if R indicates that S_R has been seen before, discarding the
12	data packet, and
13	if R indicates the data packet has not been seen before,
14	updating R to indicate that S_R has been seen
15	and
16	forwarding the data packet to the
17	neighboring nodes.
1	9. (Original) The method of claim 8, wherein the record, R , is a bit vector
2	of size N.
1	10. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for facilitating instant failover during data packet routing by employing a
4	flooding protocol to send data packets between a source and a destination, the
5	method comprising:
6	receiving a data packet containing data at an intermediate node located
7	between the source and the destination, wherein the data packet is a data packet
8	that is enroute from the source to the destination;
9	wherein the data packet is received from a first neighboring node;
10	determining whether the data packet has been seen before at the
11	intermediate node; and
12	if the data packet has not been seen before, forwarding the data packet to
13	neighboring nodes of the intermediate node.

source and the destination of the data packet.

4

1	16. (Currently amended) The computer-readable storage medium of claim
2	12, wherein determining whether the data packet has been seen before involves
3	examining a record, R , indicating which of N possible sequence numbers
4	preceding a highest received sequence number, S_H , have been seen before.
1	17. (Currently amended) The computer-readable storage medium of claim
2	12, wherein determining whether the data packet has been seen before involves:
3	looking up a highest received sequence number, S_H ;
4	if $S_R > S_H$,
5	overwriting S_H with S_R ,
6	updating a record, R , indicating which of N possible
7	sequence numbers preceding S_H have been seen before, and
8	forwarding the <u>data</u> packet to the neighboring nodes;
9	if $S_H - N > S_R$, discarding the <u>data</u> packet; and
10	if $S_H \ge S_R \ge S_H - N$, then
11	if R indicates that S_R has been seen before, discarding the
12	data packet, and
13	if R indicates the <u>data</u> packet has not been seen before,
14	updating R to indicate that S_R has been seen
15	and
16	forwarding the data packet to the
17	neighboring nodes.
1	18. (Original) The computer-readable storage medium of claim 17,
2	wherein the record, R , is a bit vector of size N .

5

data packet; and

0	a sequence number located within a layer 4 header of the data packet.
1	23. (Currently amended) The apparatus of claim 21, wherein the
2	determination mechanism is configured to look up a highest received sequence
3	number, S_H , stored at the intermediate node based upon the source of the data
4	packet.
1	24. (Currently amended) The apparatus of claim 21, wherein the
2	determination mechanism is configured to look up a highest received sequence
3	number, S_H , stored at the intermediate node based upon the source and the
4	destination of the data packet.
1	25. (Currently amended) The apparatus of claim 21, wherein the
2	determination mechanism is configured to examine a record, R, indicating which
3	of N possible sequence numbers preceding a highest received sequence number,
4	S_H , have been seen before.
1	26. (Currently amended) The apparatus of claim 21, wherein the
2	determination mechanism is configured to:
3	look up a highest received sequence number, S_H ;
4	if $S_R > S_H$, to
5	overwrite S_H with S_R ,
6	update a record, R, indicating which of N possible sequence
7	numbers preceding S_H have been seen before, and to
8	forward the data packet to the neighboring nodes;
9	if $S_H - N > S_R$, to discard the <u>data</u> packet; and
10	if $S_H \ge S_R \ge S_H - N$, to

11	discard the <u>data</u> packet, if R indicates that S_R has been seen
12	before, and to
13	update R to indicate that S_R has been seen, and to forward
14	the data packet to the neighboring nodes, if R indicates the data
15	packet has not been seen before.
1	27. (Original) The apparatus of claim 26, wherein the record, R , is a bit
2	vector of size N.