

Prüfung

Digitale Signalverarbeitung

30.07.2013

Name	:	
Vorname	:	
Matrikelnummer	:	
Studiengang	:	
Klausurnummer		

Aufgabe	Punkte	
1	/11	
2	/15	
3	/13	
4	/11	
Σ	/50	
Note		

Aufgabe 1: Abtastratenwandlung

(11 Punkte)

Gegeben sei ein Signal x(n) mit der reellwertigen Fouriertransformierten $X(e^{j\Omega})$, wie nachfolgend skizziert:

Weiterhin sei folgende Struktur gegeben:

Das Filter mit der Übertragungsfunktion $H_1(z)$ sei ein idealer Tiefpass mit der normierten Grenzfrequenz $\Omega'_{g1} = \pi/2$. Das Filter mit der Übertragungsfunktion $H_2(z)$ sei ein idealer Tiefpass mit der normierten Grenzfrequenz $\Omega'_{g2} = \pi/3$.

a) Skizzieren Sie die Fouriertransformierten der Signale $x_1(n')$, $x_2(n')$, $x_3(n')$ und y(n'') in die auf der nächsten Seite dargestellten vier Diagramme. Ergänzen Sie die Beschriftung der Frequenzachse in geeigneter Weise!

- b) Die Filter mit den Übertragungsfunktionen $H_1(z)$ und $H_2(z)$ sollen nun durch ein einziges ideales Tiefpassfilter mit der Übertragungsfunktion $H_3(z)$ und der normierten Grenzfrequenz Ω'_{g3} ersetzt werden. Geben Sie den Wert von Ω'_{g3} an.
- c) Das Signal x(n) habe die Abtastfrequenz $f_s=48\,\mathrm{kHz}.$ Geben Sie die Abtastfrequenzen f_s' sowie f_s'' an.
- d) Skizzieren Sie die Polyphasendarstellung der oben dargestellten Struktur unter Berücksichtigung des Ergebnisses von Teilaufgabe b). Nutzen Sie hierbei ausschließlich kausale Teilsysteme/Blöcke! Beschriften Sie alle Blöcke, eine Berechnung der Filter-Übertragungsfunktionen ist jedoch nicht erforderlich.

Aufgabe 2: Entwurf eines FIR-Filters

(15 Punkte)

Gemäß nachfolgender Spezifikation soll ein FIR-Tiefpassfilter mit der Filterimpulsantwort h(n) entworfen werden:

$$\begin{array}{lll} 0.96 < |H(e^{j\Omega})| < 1.04 & \text{für} & 0 \leq |\Omega| \leq 0.7\pi \\ |H(e^{j\Omega})| < 0.004 & \text{für} & 0.9\pi \leq |\Omega| \leq \pi \end{array}$$

- a) Geben Sie die Größen δ_p , δ_{st} , sowie die Grenzen des Duchlass- bzw. Sperrbereiches Ω_p , Ω_{st} an.
- b) Zeichnen Sie das Toleranzschema und tragen Sie alle relevanten Größen und deren Zahlenwerte darin ein. Achten Sie auf die vollständige Beschriftung des Diagramms!
- c) Bestimmen Sie die Welligkeit im Durchlassbereich (Englisch: passband ripple) R_p sowie die Sperrdämpfung d_{st} .
- d) Welche Fenster (Rechteck/Boxcar, Hann, Hamming oder Blackman) kommen bei Verwendung der modifizierten Fourierapproximation grundsätzlich in Frage? Begründen Sie Ihre Aussage!

Im folgenden wird nun die modifizierte Fourierapproximation mit einem Kaiser-Fenster betrachtet. Die Grenzfrequenz des Filters sei gegeben durch $\Omega_c = \frac{\Omega_{st} + \Omega_p}{2}$.

- e) Bestimmen Sie die Grenzfrequenz Ω_c des Filters.
- f) Bestimmen Sie den Formfaktor β des Kaiser-Fensters.
- g) Geben Sie die minimale Filterordnung N_b bei Verwendung des Kaiser-Fensters an.
- h) Wie groß wäre die minimale Filterordnung N_b , wenn man statt des Kaiser-Fensters die Chebyshev-Approximation verwenden würde?

Aufgabe 3: Analyse eine kausalen LTI-Systems

(13 Punkte)

Gegeben sei ein kausales LTI-System mit der Übertragungsfunktion

$$G(z) = \frac{(1+0.5z^{-1})(1+0.7z^{-1})}{(1-0.36z^{-2})(1-0.5z^{-1})}$$

- a) Geben Sie alle Pol- und Nullstellen des Systems an.
- b) Skizzieren Sie den Amplitudengang $|G(e^{j\Omega})|$ im Bereich $0 \le \Omega \le \pi$ in das nachfolgende Diagramm und vervollständigen Sie hierbei die Beschriftung der Frequenzachse.

- c) Geben Sie die zu dem System gehörende Differenzengleichung an.
- d) Zeichen Sie das Blockschaltbild in Direktform I (DF I) und geben Sie die Zahlenwerte aller Koeffizienten an.
- e) Bestimmen Sie den Betrag des Frequenzgangs $|G(e^{j\Omega})|$ sowie die Phase $\phi(\Omega)$ des Systems jeweils für $\Omega = \pi$.
- f) Geben Sie das Konvergenzgebiet (ROC) des Systems an.

Nun sei G(z) ein nicht-kausales System mit beidseitiger Impulsantwort.

g) Geben Sie nun das Konvergenzgebiet (ROC) des Systems an.

Aufgabe 4: Pol-Nullstellen-Diagramme

(11 Punkte)

Gegeben seien nachfolgend dargestelle Pol-Nullstellen-Diagramme von kausalen LTI-Systemen. Die Zahlenwerte der Pol- und Nullstellen sind jeweils unter den Diagrammen angegeben.

$$z_0 = -2 + 2j$$

$$z_\infty = -0.25 + 0.25j$$

$$z_{0,1} = -0.7 + 0.5j$$

$$z_{0,2} = -0.7 - 0.5j$$

$$z_{\infty,1} = 0.5 + 0.5j$$

$$z_{\infty,2} = 0.5 - 0.5j$$

$$z_{0,1} = 1 + j$$

$$z_{0,2} = 1 - j$$

$$z_{\infty,1,2} = -0.7$$

- a) Bestimmen Sie für jedes der Diagramme, ob es sich jeweils um einen Allpass, Tiefpass, Hochpass oder Bandpass handelt. Geben Sie jeweils eine kurze Begründung für Ihre Antwort an.
- b) Bestimmen Sie für jedes der in den Diagrammen dargestellen Systeme, ob dieses minimalphasig ist. Geben Sie jeweils eine kurze Begründung für Ihre Auswahl an.
- c) Geben Sie für alle Systeme an, ob diese eine reellwertige oder eine komplexwertige Impulsantwort besitzen. Geben Sie jeweils eine kurze Begründung an!
- d) Ergänzen Sie die nachfolgenden Pol-Nullstellen-Diagramme (die Positionen der vorgegebenen Pol- und Nullstellen sind identisch mit den oben genannten Werten) so, dass <u>alle</u> Systeme eine reellwertige Impulsantwort besitzen <u>und</u> dabei ihre Eigenschaft aus Teilaufgabe a) beibehalten. Vermerken Sie die Zahlenwerte der Pol- und Nullstellen auf Ihrem Lösungsblatt!

