CONCOURS MAROCAIN 2006: Maths II, PSI

PCSI, lycée Med V, casablanca, Maroc

Mr Mamouni : myismail@altern.org

Source disponible sur:

@http://www.chez.com/myismail

CORRIGÉ

EXERCICE

- 1) On a: $\mathcal{M}_{\mathcal{B}}(u^3 + u) = A^3 + A = 0$, donc $u^3 + u = 0$ et $\mathcal{M}_{\mathcal{B}}(u) = A \neq 0$, donc $u \neq 0$.
- 2) a) Si u était injectif, alors A inversible, donc $A^3 + A = 0$ devient en multipliant par A^{-1} , $A^2 + I_3 = 0$, d'où $u^2 + id_E = 0$. Ainsi $A^2 = -I_3$, donc $\det(A^2) = \det(-I_3)$, d'où $\det(A)^2 = -1$ ce qui est impossible, donc u injective.
 - b) $u : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, donc $\dim(\operatorname{Ker}(u)) \leq 3$. D'aprés la question précèdente u est injective, donc $\dim(\operatorname{Ker}(u)) \neq 0$ et aussi $u \neq 0$, donc $\operatorname{Ker}(u) \neq \mathbb{R}^3$ et donc $\dim(\operatorname{Ker}(u)) \neq 3$, d'où $\dim(\operatorname{Ker}(u)) \in \{1, 2\}$.
- 3) $x \in \text{Ker}(u) \cap \text{Ker}(u^2 + id_E) \Longrightarrow u(x) = 0_E, x = -u^2(x) = -u(0_E) = 0_E,$ donc $\text{Ker}(u) \cap \text{Ker} = \{0_E\}$ D'autre part : $\forall x \in E$ on a : $x = x + u^2(x) - u^2(x)$ avec $u(x + u^2(x)) = u(x) + u^3(x) = 0_E$ et $(u^2 + id_E)(-u^2(x)) = -(u^4(x) + u^2(x)) = -u(u^3(x) + u(x)) = -u(0_E) = 0_E$, donc $E = \text{Ker}(u) \oplus \text{Ker}(u^2 + id_E)$, et donc $\dim(\text{Ker}(u^2 + id_E)) = \dim(E) - \dim(\text{Ker}(u)) = 3 - \dim(\text{Ker}(u)) \in \{1, 2\}$, car $\dim(\text{Ker}(u)) \in \{1, 2\}$
- 4) a) Soit $x \in F = \text{Ker}(u^2 + id_E)$, donc $u^2(x) + x = 0_E$, d'où $u^3(x) + u(x) = u(0_E) = 0_E$, donc $(u^2 + id_E)(u(x)) = 0_E$, d'où $u(x) \in \text{Ker}(u^2 + id_E) = F$, donc F est stable par F.

- b) $x \in F \Longrightarrow u^2(x)x = -x \Longrightarrow v^2(x) = -x \Longrightarrow v^2 = -id_F$.
- c) $\det(v^2) = \det(-id_F) = (-1)^{\dim(F)}$, or $\det(v^2) = \det(v)^2 \ge 0$, et $\dim(F) \in \{2,3\}$, d'où $\dim(F) = 2$.
- d) Soit λ une valeur réelle de v, et x un vecteur propre associé, alors $v(x) = \lambda x$ et donc $-x = v^2(x) = v(\lambda x) = \lambda v(x) = \lambda^2 x$, d'où $\lambda^2 = -1$, impossible.
- 5) a) Soit λ, μ réels tel que $\lambda e'_2 + \mu e'_3 = 0_E$, on compose par u, d'où $\lambda e'_3 \mu e'_2 = 0_E$, car $u(e'_2) = e'_3$ et $u(e'_3) = u^2(e'_2) = v^2(e'_2) = -e'_2$, puisque $e'_2 \in F$, F stable par u, u = v sur F et $v^2 = -id_F$.

 On obtient alors le système suivant : $\begin{cases} \lambda e'_2 + \mu e'_3 = 0_E \\ -\mu e'_2 + \lambda e'_3 = 0_E \end{cases} (1)$
 - $\lambda \times (1) \mu \times (2) \Longrightarrow (\lambda^2 + \mu^2) e_2' = 0_E \Longrightarrow \lambda^2 + \mu^2 = 0 \Longrightarrow \lambda = \mu = 0,$ donc la famille (e_2', e_3') est libre.
 - b) Comme $\operatorname{Card}(\mathcal{B}') = \dim(E) = 3$, pour montrer que c'est une base, il suffit de montrer qu'elle est libre.
 - En effet, soit a, b, c des réels tel que $ae'_1 + be'_2 + ce'_3 = 0_E$, on compose par u, on obtient alors : $be'_3 ce'_2 = 0$ car $u(e'_1) = 0_E$, $u(e'_2) = e'_3$, $u(e'_3) = -e'_2$, or la famille (e'_2, e'_3) est libre, donc b = c = 0 et par suite $ae'_1 = 0_E$, d'où a = 0, donc la famille (e'_1, e'_2, e'_3) est libre.

PROBLÉME.

Première partie.

1) a) On a
$$A = \sum_{1 \le k, l \le n} a_{k,l} E_{k,l}$$
, donc:

$$AE_{i,j} = \sum_{1 \le k, l \le n} a_{k,l} E_{k,l} E_{i,j}$$

$$= \sum_{1 \le k, l \le n} a_{k,l} \delta_{l,i} E_{k,j}$$

$$= \sum_{k=1} a_{k,i} E_{k,j} \quad \text{car} : \quad \delta_{l,i} = 0 \text{ si } l \ne i$$

$$= 1 \text{ si } l = i$$

$$E_{i,j}A = \sum_{1 \le k, l \le n} a_{k,l} E_{i,j} E_{k,l}$$

$$= \sum_{1 \le k, l \le n} a_{k,l} \delta_{k,j} E_{i,l}$$

$$= \sum_{l=1} a_{j,l} E_{i,l} \quad \text{car} : \quad \delta_{k,j} = 0 \text{ si } k \ne j$$

$$= 1 \text{ si } k = j$$

$$= \sum_{l=1} a_{j,k} E_{i,k}$$

b)
$$AM = MA \implies AM - MA = 0$$

$$\implies AE_{i,j} = E_{i,j}A$$

$$\implies \sum_{k=1}^{n} a_{k,i}E_{k,j} - a_{j,k}E_{i,k} = 0$$

$$\implies \sum_{k\neq i,j} a_{k,i}E_{k,j} - a_{j,k}E_{i,k} +$$

$$a_{i,i}E_{i,j} - a_{j,i}E_{i,i} + a_{j,i}E_{i,j} - a_{j,j}E_{i,j} = 0$$

$$\implies \sum_{k\neq i,j} a_{k,i}E_{k,j} - a_{j,k}E_{i,k} + (a_{i,i} - a_{j,j})E_{i,j} = 0$$

Ainsi $a_{k,i} = a_{j,k} = 0$ si $k \neq i, j$ et $a_{i,i} = a_{j,j} = \lambda$, d'où $M = \lambda I_n$

2) a) On sait que la trace est linéaire et que : $Tr(E_{k,j}) = 0$ si $k \neq j$, = 1 si k = i

donc
$$Tr(AE_{i,j}) = Tr\left(\sum_{k=1}^{n} a_{k,i}E_{k,j}\right) = a_{j,i}.$$

- b) $Tr(AM) = 0 \Longrightarrow Tr(AE_{i,j}) = 0 \ \forall i, j \Longrightarrow a_{j,i} \ \forall i, j \Longrightarrow A = 0.$
- 3) Posons $A = (a_{i,j}), B = (b_{i,j}), AB = (c_{i,j}), BA = (d_{i,j}), \text{ on a}$: $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} \text{ et } Tr(AB) = \sum_{i=1}^{n} c_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{i,k} b_{k,i} \text{ et on a aussi} :$ $Tr(BA) = \sum_{i=1}^{n} d_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{n} b_{i,k} a_{k,i}, \text{ en \'echangeant les indices } i \text{ et } k, \text{ on voit bien que} : Tr(AB) = Tr(BA).$
- 4) D'aprés le cours, toute composé à droite ou à gauche par un autmorphisme laisse invariant le rang, donc toute multiplication à gauche ou à droite par une matrice inversible laisse le rang invariant, d'où rg(PMQ) = rg(M) et $rg(P^tMQ) = rg(tM) = rg(M)$
- 5) $\det(PMQ) = \det(P) \det(M) \det(Q)$, donc $u_{P,Q}$ conserve le déterminant $\iff \det(P) \det(Q) = 1$. De même pour $v_{P,Q}$, puisque $\det({}^tM) = \det(M)$.

Deuxième partie.

- 1) On sait que les valeurs propres d'une matrice sont exactement les racines de son polynôme caractéristique associé, que son déterminant est égal à leurs produit et que sa trace est égale à leurs somme, comptées avec leurs multiplicités. Donc deux matrices qui ont même polynôme caractéristique ont même déterminant et même trace, en particulier Φ conserve le déterminant et la trace.
- 2) C'est une conséquence immediate de la propriété admise au début de la 2ème partie.
- 3) a) Si $\Phi = u_{P,Q}$, alors $Tr(PE_{i,j}Q) = Tr(\Phi(E_{i,j})) = Tr(E_{i,j})$ car Φ conserve la norme. Si $\Phi = u_{P,Q}$, alors $Tr(PE_{i,j}Q) = Tr(\Phi({}^tE_{i,j})) = Tr({}^tE_{i,j}) = Tr(E_{i,j})$.

- b) On a Tr(AB) = Tr(BA), qu'on peut généraliser ainsi : Tr(ABC) = Tr(CAB), en particulier : $Tr(QPE_{i,j}) = Tr(PE_{i,j}Q) = Tr(E_{i,j})$, or la trace est linéaire et $(E_{i,j})$ constitue une base de $\mathcal{M}_n(\mathbb{C})$ donc Tr(QPM) = Tr(M), pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, d'où $Tr((QP I_n)M) = 0$, d'aprés la question 2.b) 1ère partie, on déduit que $PQ = I_n$, d'où $Q = P^{-1}$.
- 4) D'aprés tout ce qui précède on conclut que les endomorphismes qui conservent le polynôme caractéristique sont ceux de la forme $u_{P,Q}$ ou $v_{P,Q}$ tel que $Q = P^{-1}$.
- 5) a) Il est clair que Φ est linéaire, d'autre part soit : $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Ker }(\Phi), \text{ donc } Tr(M)I_2 = M, \text{ d'où } \begin{pmatrix} a+d & 0 \\ 0 & a+d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ d'où } a=b=c=d=0, \text{ d'où } \Phi$ est injective comme il s'agit d'un endomrphisme en dimension fini, alors il est isomorphisme.
 - b) Soit $\mathcal{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ la base canonique de $\mathcal{M}_2(\mathbb{C})$, on a les résultats suivants : $\phi(E_{1,1}) = I_2 E_{1,1} = E_{2,2}, \phi(E_{1,2}) = -E_{1,2}, \phi(E_{2,1}) = -E_{2,1}, \phi(E_{2,2}) = I_2 E_{2,2} = E_{1,1}, \text{ donc } A = \mathcal{M}_{\mathcal{B}}(\phi) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \text{ le polynôme caractéristique de } \Phi \text{ est égal à } \chi_{\phi}(X) = \det(A XI_4) = (1 + X)^3(1 X), \text{ les valeurs propres de } \Phi \text{ sont donc -1 et 1.}$

Soit M vecteur propre associé à -1, donc Tr(M) = 0, c'est le noyau de la forme linéaire trace, donc de dimension 3 ègale à la multiplicté de -1 dans $\chi_{\phi}(X)$.

Soit M vecteur propre associé à 1, donc $M = \lambda I_2$, avec $\lambda = \frac{1}{2}Tr(M)$, donc la dimension du sous-espace propre est égale à 1, égale la multiplicté de 1 dans $\chi_{\phi}(X)$, donc Φ est diagonalisable.

c) soit:
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, donc $\Phi(M) = \begin{pmatrix} d & b \\ c & a \end{pmatrix}$, il est clair que ces

deux matrices ont même polynôme caractéristique.

d) $\Phi = v_{P,P^{-1}} \Longrightarrow \Phi(P) = P \Longrightarrow P = \lambda I_2$

Troisième partie.

- a) On a $\chi_{\Phi(A)\Phi(B)} = \chi_{AB}$, donc d'aprés la question 1), deuxième partie, $\Phi(A)\Phi(B)$ et AB ont même trace, en particulier $Tr(\Phi(E_{i,j})\Phi(E_{k,l})) = Tr(E_{i,j}E_{k,l}) = Tr(\delta_{j,k}E_{i,l}) = \delta_{j,k}Tr(E_{i,l}) = \delta_{j,k}\delta_{i,l}$.
 - b) On a $\operatorname{Card}(\Phi(E_{i,j})) = n^2 = \dim(\mathcal{M}_n(\mathbb{C}))$, pour montrer que c'est une base il suffit alors de montrer qu'elle est libre. En effet soit $(\lambda_{i,j})$ des nombres complexes tels que $\sum_{1 \leq i,j \leq n} \lambda_{i,j} \Phi(E_{i,j}) = 0$, on multiplie par $\Phi(E_{k,l})$, la trace de la somme est toujours nulle, tenant compte de la linéarité de la trace et de la relation pécédente on obtient : $\sum_{1 \leq i,j \leq n} \lambda_{i,j} \delta_{j,k} \delta_{i,l} = \lambda_{l,k} = 0 \quad \forall \ k, \forall \ l,$

d'où la famille est libre.

- 2) a) $Tr((\Phi(A+B) \Phi(A) \Phi(B))\Phi(E_{i,j}))$ $= Tr(\Phi(A+B)\Phi(E_{i,j}) \Phi(A)\Phi(E_{i,j}) \Phi(B)\Phi(E_{i,j}))$ $= Tr(\Phi(A+B)\Phi(E_{i,j})) Tr(\Phi(A)\Phi(E_{i,j})) Tr(\Phi(B)\Phi(E_{i,j}))$ $= Tr((A+B)E_{i,j}) Tr(AE_{i,j}) Tr(BE_{i,j}))$ = 0 car la trace est linéaire et . distributive par rapport à +
 - b) Comme la trace est linéaire et que $(\Phi(E_{i,j}))$ est une base de $\mathcal{M}_n(\mathbb{C})$ et tenant compte de la question précédente alors $Tr((\Phi(A+B)-\Phi(A)-\Phi(B))M)$ pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, et enfin d'aprés la question 2.b) 1ére partie, on conclut que $\Phi(A+B)-\Phi(A)-\Phi(B)=0$.
- Soit $\lambda \in \mathbb{C}$, mn montre comme dans la question précédente que : $Tr((\Phi(\lambda A) \lambda \Phi(A))\Phi(E_{i,j})) = 0$, puis on en déduit que $Tr((\Phi(\lambda A) \lambda \Phi(A))M)) = 0 \ \forall M \in \mathcal{M}_n(\mathbb{C})$, puis enfin que : $\Phi(\lambda A) \lambda \Phi(A)$, d'où Φ est linéaire.

 D'autre part : Soit $A \in \text{Ker }(\Phi)$, donc $Tr(AE_{i,j}) = Tr(\Phi(A)\Phi(E_{i,j})) = 0$, comme $(E_{i,j})$ est une base de $\mathcal{M}_n(\mathbb{C})$, alors $Tr(AM) = 0 \ \forall M \in \mathcal{M}_n(\mathbb{C})$, donc A = 0 et par suite Φ est injective, comme c'est un endomr-

phisme en dimension finie, alors c'est un automorphisme.

- 4) $E_{i,j}^2 = E_{i,j} E_{i,j} = \delta_{i,j} \delta_{j,i} = 0$ car $i \neq j$, donc $E_{i,j}$ est nilpotente. D'autre part : $\chi_{\Phi(E_{i,j}^2)}(X) = \chi_{E_{i,j}^2}(X) = (-1)^n X^n$ car $E_{i,j}^2 = 0$, en utilisant le théorème de Cayley-Hamiltion on conclut que $\Phi(E_{i,j}^{2n} = 0, \text{ donc } \Phi(E_{i,j})$ est nilpotente.
- 5) a) D'aprés la supposition de la partie 3, on a : $\chi_{AG} = \chi_{\Phi(A)\Phi(G)} = \chi_{\Phi(A)}$ car $\Phi(G) = I_n$.
 - b) Tout calcul fait $E_{i,j}G$ est la matrice dont toutes les lignes sont nulle

sauf la i éme,
$$E_{i,j}G = \begin{pmatrix} 0 & \dots & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & \dots & 0 \\ g_{j,1} & \dots & g_{j,i} & \dots & g_{j,n} \\ 0 & \dots & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & \dots & 0 \end{pmatrix}$$
, donc sont po-

lynôme caractéristique est $(-1)^n X^{n-1}(X - g_{j,i})$

c) Pour $i \neq j$, la matrice $\Phi(E_{i,j})$ est nilpotente, donc $\chi_{\Phi(E_{i,j})} = (-1)^n X^n$, or $(-1)^n X^{n-1} (X - g_{j,i}) = \chi_{E_{i,j}G} = \chi_{\Phi(E_{i,j})} = (-1)^n X^n$, donc $g_{j,i} = 0$ si $i \neq j$, d'où G est diagonale.

D'autre part, $\chi_{G^2} = \chi_{\Phi(G)}$ (1), d'aprés 5.a) 3éme partie, or $\Phi(G) = I_n$ et $G^2 = Diag(g_{1,1}^2, \ldots, g_{n,n}^2)$, (matrice diagonale), la relation (1) devient $(-1)^n (X - 1)^n = (-1)^n \prod_{i=1}^n (X - g_{i,i}^2)$, d'où $g_{i,i}^2 = 1$ et par suite $G^2 = I_n$.

- 6) a) Soit $A \in \mathcal{M}_n(\mathbb{C})$, on a : $\chi_{\Psi(A)} = \chi_{\Phi(AG)} = \chi_{AG^2} = \chi_A$ en utilisant la question 5.a) 3éme partie pour AG et le fait que $G^2 = I_n$. Donc Ψ conserve le polynôme caractéristique.
 - b) On a Ψ conserve le polynôme caractéristique, d'aprés les résultats de la 2ème partie $\exists G$ inversible telle que $\Psi = u_{P,P^{-1}}$ ou $\Psi = v_{P,P^{-1}}$, or $\Phi(M) = \Psi(MG^{-1}) = \Psi(MG)$ car $G^{-1} = G$ puisque $G^2 = I_n$, donc $\Phi(M) = \Psi(MG) = u_{P,P^{-1}} = PMGP^{-1}$ ou $\Phi(M) = \Psi(MG) = v_{P,P^{-1}} = P^tMGP^{-1}$.
- 7) a) Tr(AGBG) = Tr(AB) car le produit matriciel est commutatif à l'interieur de la trace et que $G^2 = I_n$.
 - b) D'aprés la question précédente et vu que la trace est linéaire, on conclut que : $Tr((GBG B)A) = 0 \quad \forall A \in \mathcal{M}_n(\mathbb{C})$, d'aprés la question 2.b) 1ére partie, on concult que GBG B = 0.
 - c) $GBG = B \Longrightarrow GB = BG^{-1} = BG$ et d'aprés 1.b) 1ére partie, on a $G = \lambda I_n$, or $G^2 = I_n$, d'où $\lambda \in \{-1, 1\}$.
- 8) Si $w = \varepsilon u_{P,P^{-1}}$, on a : $\chi_{w(A)w(B)} = \chi_{\varepsilon PAP^{-1}\varepsilon PBP^{-1}} = \chi_{PABP^{-1}} = \chi_{AB}$ car deux matrices semblables ont même polynôme caractéristique. Le même raisonnement est encore valable pour le cas où $w = \varepsilon v_{P,P^{-1}}$.

Fin.