目录

第 1章	向量	:代数	1
1.1	1.1向	量及其线性运算	1
	1.1.1	第一题	1
	1.1.2	第二题	1
	1.1.3	试问当向量 α 和 β 满足什么条件时,下列关系式成立:	2
	1.1.4	用向量法证明梯形两腰中点连线平行于上下两底边且等于	
		它们长度和的一半。	2
	1.1.5	证明: 三角形的重心是三条中线的交点。	2
	1.1.6	作图题	2
	1.1.7	第七题	3
	1.1.8	第八题	3
	1.1.9	第九题	4
	1.1.10	第十题	4
	1.1.11	第十一题	4
	1.1.12	第十二题	4
	1.1.13	第十三题	5
	1.1.14	第十四题	5
	1.1.15	第十五题	6
1.2	向量的	的内积、外积和混合积	7
	1.2.1	第一题	7
	1.2.2	第二题	7
	1.2.3	判断下列结论是否正确,并说明理由。	8
	1.2.4	用向量法证明三角形的余弦定理和正弦定理。	8
	1.2.5	已知等腰三角形两腰上的中线互相垂直,用向量法求这个	
		等腰三角形的顶角。	9

	1.2.6	证明:如果一个四面体有两对对棱互相垂直,则第三对对	
		棱也互相垂直,并且三对对棱的长度的平方和相等。	9
	1.2.7	证明: 只有零向量才既平行又垂直于一个非零向量; 只有	
		零向量才同时垂直于三个不共面的向量。	10
	1.2.8	第八题	10
	1.2.9	第九题	11
	1.2.10	用向量法证明三角形面积的海伦公式:	11
	1.2.11	第十一题	12
	1.2.12	证明下列等式,并说明几何意义:	12
	1.2.13	第十三题	13
	1.2.14	第十四题	13
	1.2.15	第十五题	14
	1.2.16	证明下列恒等式:	14
	1.2.17	第十七题	15
	1.2.18	第十八题	16
1.3	向量的	的坐标表示	17
	1.3.1	第一题	17
	1.3.2	第二题	17
	1.3.3	第三题	18
	1.3.4	第四题	18
	1.3.5	用坐标法证明梅涅劳斯定理。	18
	1.3.6	第六题	19
	1.3.7	第七题	19
	1.3.8	第八题	20
	1.3.9	第九题	20
	1.3.10	第十题	20
	1.3.11	用坐标法证明恒等式:	21
	1.3.12	第十二题	21
	1.3.13	用坐标法证明柯西-施瓦茨(Cauchy-Schwarz)不等式	22
	1.3.14	第十四题	22
	1.3.15	第十六题	23
第 2章	空间	中的平面和直线	27
2.1	2.1 空	间中的平面	27
	2.1.1	求满足下列条件的平面方程	27

目录

	2.1.2	水满足下列条件的干曲的参数万柱	28
	2.1.3	将下列平面的参数方程化为一般方程	30
	2.1.4	判断下列各组平面的位置关系:	31
	2.1.5	第五题	31
	2.1.6	第六题	32
	2.1.7	第七题	32
	2.1.8	第八题	32
	2.1.9	求满足下列条件的平面的方程	33
	2.1.10	第十题	34
	2.1.11	第十一题	34
	2.1.12	第十二题	35
	2.1.13	第十三题	35
	2.1.14	第十四题	36
2.2	空间中	中的直线	37
	2.2.1	求满足下列条件的直线的方程	37
	2.2.2	将下列直线的一般方程化为标准方程	38
	2.2.3	判断下列各组直线与平面的位置关系,如果相交则求出交点	39
	2.2.4	第四题	41
	2.2.5	第五题	42
	2.2.6	求满足下列条件的平面的方程	42
	2.2.7	第七题	43
	2.2.8	求满足下列条件的直线的方程	44
	2.2.9	第九题	45
	2.2.10	第十题	46
	2.2.11	求下列各对异面直线的距离和公垂线的方程:	47
	2.2.12	第十二题	48
	2.2.13	第十三题	49
	2.2.14	第十四题	49
	2.2.15	第十五题	50
第 3章	空间]中的曲面和曲线	51
3.1	曲面和	和曲线的方程	51
	3.1.1	指出下列方程所表示的图形	51
	3.1.2	求到点 A(0,0,-c) 和 B(0,0,c) 的距离之和为 2b 的点的轨迹方	
		程 (b > c > 0)	52

	3.1.3	第三题	52
	3.1.4	第四题	53
	3.1.5	求满足下列条件的球面的方程	53
	3.1.6	证明下列曲线都是在球面上的	54
	3.1.7	第七题	55
	3.1.8	把下列球坐标系中的方程转化为直角坐标系中的方程	55
	3.1.9	过原点作球面,分别交三条坐标轴于点 A, B, C, 如果保持四	
		面体 OABC 的体积等于定值 R, 求球心的轨迹	55
3.2	几类常	常见的曲面	56
	3.2.1	求满足下列条件的柱面的方程	56
	3.2.2	第二题	57
	3.2.3	证明下列方程表示的曲面是柱面,并求出柱面的方向	57
	3.2.4	title证明方程 $F(a_1x + b_1y + c_1z, a_2x + b_2y + c_2z) = 0$ 表示	
		的图形是柱面	58
	3.2.5	求满足下列条件的圆柱面的方程	59
	3.2.6	把下列柱坐标系中的方程转化为直角坐标系中的方程,并	
		指出所表示的图形	60
	3.2.7	求满足下列条件的锥面的方程	61
	3.2.8	过 x 轴和 y 轴分别作动平面,夹角为定值 θ ,求交线的轨	
		迹方程,并说明它是一个锥面	62
	3.2.9	求满足下列条件的圆锥面的方程	62
	3.2.10	第十题	63
	3.2.11	第十一题	63
	3.2.12	第十二题	64
	3.2.13	求下列旋转曲面的方程	64
	3.2.14	第十四题	65
	3.2.15	证明到两条垂直相交的直线的距离平方和是常数的点的轨	
		迹是一个旋转曲面	66
	3.2.16	证明下列方程表示的曲面是旋转曲面,并求出轴线	66
3.3		曲面	67
	3.3.1	第一题	67
	3.3.2	求满足下列条件的二次曲面的方程	67
	3.3.3	第三题	68
	3.3.4	分别写出双叶双曲面和椭圆抛物面的一种参数方程	68

3.3.5	证明二次锥面是直纹面,并指出它的所有直母线	68
3.3.6	求单叶双曲面 $\frac{x^2}{4} + \frac{y^2}{9} - z^2 = 1$ 上经过点 $(2, -3, 1)$ 的直母	
	线的方程	68
3.3.7	求双曲抛物面 $\frac{x^2}{16} - \frac{y^2}{4} = 2z$ 上平行于平面 $3x + 2y - 4z - $	
	1 = 0 的直母线的方程	69
3.3.8	证明单叶双曲面 $x^2 + y^2 - z^2 = 1$ 的正交直母线交点的轨	
	迹是一个圆周	69
3.3.9	证明双曲抛物面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z(a \neq b)$ 的正交直母线交点的	
	轨迹是一条双曲线	70
3.3.10	证明双曲抛物面上两条异族直母线必相交, 同族直母线异	
	面但平行于同一平面	70
3.3.11	第十一题	71
3.3.12	求与下列三条直线都共面的直线所构成的图形的方程	71
3.3.13	证明如果直线 L 与二次曲面 S 的交点多于两个,则 L 在 S 上.	72
3.3.14	选取适当的坐标系, 求下列轨迹的方程, 进而说明轨迹的类型.	72
3.3.15	设 L_1 和 L_2 是两条异面直线, 求分别过 L_1 和 L_2 并且互相	
	垂直的平面的交线的轨迹	73
二次由	由面的切平面	74
3.4.1	证明过单叶双曲面上一点的两条直母线所决定的平面是该	
	点处的切平面	74
3.4.2		74
3.4.3	证明空间中两个相交平面的所有奇异点构成它们的交线	75
3.4.4	第四题	75
二次	曲线和二次曲面的分类	77
仿射실	と标变换	77
4.1.1	第一题	77
4.1.2	第二题	77
4.1.3	第三题	78
4.1.4	第四题	79
4.1.5	第五题	79
4.1.6	第六题	80
4.1.7	第七题	81
4.1.8	第八题	81
4.1.9	第九题	82
	3.3.6 3.3.7 3.3.8 3.3.9 3.3.10 3.3.11 3.3.12 3.3.13 3.3.14 3.3.15 二次的 3.4.1 3.4.2 3.4.3 3.4.4 二次 6射型 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8	3.3.6 求单叶双曲面 $\frac{x^2}{4} + \frac{y^2}{9} - z^2 = 1$ 上经过点 $(2, -3, 1)$ 的直母线的方程. 3.3.7 求双曲抛物面 $\frac{x^2}{6} - \frac{y^2}{4} = 2z$ 上平行于平面 $3x + 2y - 4z - 1 = 0$ 的直母线的方程. 3.3.8 证明单叶双曲面 $x^2 + y^2 - z^2 = 1$ 的正交直母线交点的轨迹是一个圆周. 3.3.9 证明双曲抛物面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z(a \neq b)$ 的正交直母线交点的轨迹是一条双曲线—条双曲线—系双曲技—系列三条直线都共面的直线所构成的图形的方程. 3.3.10 证明双曲抛物面上两条异族直母线必相交,同族直母线异面但平行于同一平面. 3.3.11 第十一题. 3.3.12 求与下列三条直线都共面的直线所构成的图形的方程. 3.3.13 证明如果直线 L 与二次曲面 S 的交点多于两个,则 L 在 S L L 3.3.14 选取适当的坐标系,求下列轨迹的方程,进而说明轨迹的类型. 3.3.15 设 L_1 和 L_2 是两条异面直线,求分别过 L_1 和 L_2 并且互相垂直的平面的交线的轨迹. 二次曲面的切平面. 3.4.1 证明过单叶双曲面上一点的两条直母线所决定的平面是该点处的切平面. 3.4.2 第二题. 3.4.3 证明空间中两个相交平面的所有奇异点构成它们的交线. 3.4.4 第四题. 二次曲线和二次曲面的分类 仿射坐标变换 4.1.1 第一题 4.1.2 第二题 4.1.3 第三题 4.1.4 第四题 4.1.5 第五题 4.1.6 第六题 4.1.7 第七题

8 目录

	4.1.10	第十题	82
	4.1.11	第十一题	82
	4.1.12	第十二题	83
	4.1.13	证明圆锥面上平面截线的类型包含椭圆、双曲线、抛物	
		线、一条直线、两条相交直线和单点	84
4.2	二次自	曲线的分类	84
	4.2.1	利用正交和平移变换, 化简下列二次曲线的方程	84
	4.2.2	第二题	86
	4.2.3	第三题	86
	4.2.4	第四题	87
	4.2.5	第五题	87
	4.2.6	第六题	87
	4.2.7	证明如果一个平面经过单叶双曲面 S 的一条直母线,则它	
		和 S 的交线是两条直线	88
	4.2.8	列出单叶双曲面和马鞍面上平面截线的所有类型	88
	4.2.9	证明马鞍面上找不到五个点使其成为正五边形的五个顶点.	89
4.3	二次自	曲面的分类	89
	4.3.1	利用平移变换化简下列方程:	89
	4.3.2	利用直角坐标变换化简下列方程,并给出具体的坐标变换: .	90
	4.3.3	判断下列方程所表示的曲面类型:	93
	4.3.4	确定一空间直角坐标变换将平面方程 $2x + y + 2z + 5 = 0$	
		化为 $x'=0$	94
	4.3.5	第五题	94
4.4	二次自	曲面和二次曲线的不变量	94
	4.4.1	利用不变量判别下列二次曲面的类型并求出标准方程:	95
	4.4.2	第二题	96
	4.4.3	第三题	96
	4.4.4	证明定理 4.4.2	97
	4.4.5	第五题	97
	4.4.6	将单叶双曲面一般方程 $F(x,y,z) = 0$ 中的常数项 a 换成 b ,	
		试问 b 取不同值时可得到什么曲面?	98
	4.4.7	第七题	98
	4.4.8	利用不变量判别下列二次曲线的类型并求出标准方程:	99
	4.4.9	第九题	99

4.4.10	第十题 .															100	
4.4.11	第十一题															100	

向量代数

在数学中,严格性不是一切,但是没有它便没有一切。不 严格的证明微不足道。

----H.Poincaré

1.1.1 第一题

设 AC, BD 是平行四边形 ABCD 的两条对角线,已知向量 $\overrightarrow{AC}=\alpha$, $\overrightarrow{BD}=\beta$, 求向量 \overrightarrow{AB} 和 \overrightarrow{BC} 。

1.1.2 第二题

设 AD, BE, CF 是三角形 ABC 的三条中线,已知向量 $\overrightarrow{AB} = \alpha$, $\overrightarrow{AC} = \beta$, 求 向量 \overrightarrow{AD} , \overrightarrow{BE} 和 \overrightarrow{CF} 。

$$\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{\alpha} + \overrightarrow{\beta})$$
证明.
$$\overrightarrow{BE} = \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BC}) = -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{1}{2}\overrightarrow{\beta} - \overrightarrow{\alpha}$$

$$\overrightarrow{CF} = \frac{1}{2}(\overrightarrow{CA} + \overrightarrow{CB}) = -\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}(\overrightarrow{AB} - \overrightarrow{AC}) = \frac{1}{2}\overrightarrow{\alpha} - \overrightarrow{\beta}$$

1.1.3 试问当向量 α 和 β 满足什么条件时,下列关系式成立:

证明. (1): $\overrightarrow{\alpha} \perp \overrightarrow{\beta}$ (2): $\overrightarrow{\alpha}//\overrightarrow{\beta}$ (3): $\overrightarrow{\alpha} = \overrightarrow{\beta}$ 同向平行 (4): $\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \rangle \langle \frac{\pi}{2}$ (5): $\overrightarrow{\alpha} = \overrightarrow{\beta}$ 同向平行 (6): $\overrightarrow{\alpha} = \overrightarrow{\beta}$ 不同向平行

1.1.4 用向量法证明梯形两腰中点连线平行于上下两底边且等于它 们长度和的一半。

1.1.5 证明: 三角形的重心是三条中线的交点。

1.1.6 作图题

1. 作任意五边形 A₁A₂A₃A₄A₅ 的重心;

1.1. 1.1向量及其线性运算

2. 作任意六边形 $A_1A_2A_3A_4A_5A_6$ 的重心。

M, N, P分别是边AB、CD、MN的中点, O是PE的5等分点, 若 O 是正边形 ABCDE 的重心,则 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} = \overrightarrow{O}$

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 2\overrightarrow{OM} + 2\overrightarrow{ON} = 4 \overrightarrow{OP} = -\overrightarrow{OE}$$

则 $\overrightarrow{OE} + 4\overrightarrow{OP} = \overrightarrow{O}$, O 点即为所求

(2) 在 (1)基础上,做 OF 六等分点 O,若 O_1 是六边形的重心,则 $\overrightarrow{O_1A}$ + $\overrightarrow{O_1B}$ + $\overrightarrow{O_1C}$ + $\overrightarrow{O_1D}$ + $\overrightarrow{O_1E}$ + $\overrightarrow{O_1F}$ = \overrightarrow{O}

 $\overrightarrow{O_1A} + \overrightarrow{O_1B} + \overrightarrow{O_1C} + \overrightarrow{O_1D} + \overrightarrow{O_1F} = 5\overrightarrow{O_1O}, \overrightarrow{O} + (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OD}) = 5\overrightarrow{O_1O} = -\overrightarrow{O_1F}, \quad \emptyset \quad 5\overrightarrow{O_1O} + \overrightarrow{O_1F} = \overrightarrow{O}$

1.1.7 第七题

证明.
$$k\overrightarrow{\alpha} + \overrightarrow{\beta}$$
 与 $\overrightarrow{\alpha} + k\overrightarrow{\beta}$ 共线 $\Leftrightarrow \exists t, \text{ s.t. } t(k\overrightarrow{\alpha} + \overrightarrow{\beta}) = (\alpha + k\overrightarrow{\beta})$ 即 $(tk-1)\overrightarrow{\alpha} + (t-k)\overrightarrow{\beta} = \overrightarrow{0}$ 且 $\overrightarrow{\alpha}$ 与 $\overrightarrow{\beta}$ 不共线,则 $\begin{cases} tk-1=0 \\ t=k \end{cases}$

1.1.8 第八题

设向量 e_1 , e_2 , e_3 不共面, $\alpha = e_1 + e_2$, $\beta = e_2 + e_3$, $\gamma = e_3 + e_1$, 讨论 α , β , γ 是否共面。

证明. 由命题1.1.4可知 $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$ 共面 \Leftrightarrow 存在不全为 0 的实数 k_1, k_2, k_3 ,使 得 $k_1 \overrightarrow{\alpha} + k_2 \overrightarrow{\beta} + k_3 \overrightarrow{\gamma} = \overrightarrow{0}$

 $(k_2 + k_3) \overrightarrow{e}_3 = 0$

且 \overrightarrow{e}_1 , \overrightarrow{e}_2 , \overrightarrow{e}_3 不共面, 故 $k_1+k_3=k_2+k_3=k_1+k_2=0$ 解得 $k_1=k_2=0$ $k_3 = 0$ 则 $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, \overrightarrow{r} 不共面

3

1.1.9 第九题

证明三个向量 $\alpha = -e_1 + 3e_2 + 2e_3$, $\beta = 4e_1 - 6e_2 + 2e_3$, $\gamma = 7e_1 - 9e_2 + 6e_3$ 共面,其中 α 能否用 β , γ 线性表示? 如果可以表示,写出具体线性表示关系式。

证明. 设 $\overrightarrow{\alpha} = x \overrightarrow{\beta} + y \overrightarrow{\gamma}$ 即 $(-\overrightarrow{e}_1 + 3 \overrightarrow{e}_2 + 2 \overrightarrow{e}_3) = x (4 \overrightarrow{e}_1 - 6 \overrightarrow{e}_3 + 2 \overrightarrow{e}_3) + y (7 \overrightarrow{e}_1 - 9 \overrightarrow{e}_2 + 6 \overrightarrow{e}_3)$

$$e'_1 - 9e'_2 + 6e'_3$$
)
$$\iiint \begin{cases} -1 = 4x + 7y \\ 3 = -6x - 9y \\ 2 = 2x + 6y \end{cases}$$
解得:
$$\begin{cases} x = -2 \\ y = 1 \end{cases}$$
所以 $\overrightarrow{\alpha} = -2\overrightarrow{\beta} + \overrightarrow{\gamma}$

1.1.10 第十题

设 A,B,C,O 是不共面的四点,证明点 D 和 A,B,C 共面当且仅当向量 \overrightarrow{OD} 对向量 $\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$ 的分解系数之和等于 1。

证明. 由命题1.1.4可得, AB, C, D共面 \Leftrightarrow 存在不全为 0 的实数 k_1,k_2,k_3 ,使得 $\overrightarrow{k_1DA}+k_2D\overrightarrow{B}+k_3\overrightarrow{D}=\overrightarrow{0}$

即
$$(k_1 + k_2 + k_3)$$
 $\overrightarrow{OD} = k_1 \overrightarrow{OA} + k_2 \overrightarrow{OB} + k_3 \overrightarrow{OC}$ 所以 $\overrightarrow{OD} = \frac{k_1}{k_1 + k_2 + k_3} \overrightarrow{OA} + \frac{k_2}{k_1 + k_1 + k_3} \overrightarrow{OB} + \frac{k_3}{k_1 + k_2 + k_3} \overrightarrow{OC}$
$$\frac{k_1}{k_1 + k_2 + k_3} + \frac{k_2}{k_1 + k_2 + k_3} + \frac{k_3}{k_1 + k_2 + k_3} = 1$$

1.1.11 第十一题

证明: 四点 A, B, C, D 共面当且仅当存在不全为 0 的实数 k_1 , k_2 , k_3 , k_4 ,使得 $k_1+k_2+k_3+k_4=0$,并且

$$k_1\overrightarrow{OA} + k_2\overrightarrow{OB} + k_3\overrightarrow{OC} + k_4\overrightarrow{OD} = 0$$

其中O是任意点。

证明. 由10. 可知
$$k_1\overrightarrow{OA} + k_2\overrightarrow{OB} + k_3\overrightarrow{OC} + (-k_1 - k_2 - k_3)\overrightarrow{OD} = \overrightarrow{0}$$
 $k_1 + k_2 + k_3 - (k_1 + k_2 + k_3) = 0$

1.1.12 第十二题

设在三角形 ABC 中, $\overrightarrow{AB} = \alpha$, $\overrightarrow{AC} = \beta$,

1. $\angle A$ 的平分线交边 BC 于点 D,求向量 \overrightarrow{AD} ;

1.1. 1.1向量及其线性运算

2. E, F 是边 BC 的三等分点,求向量 $\overrightarrow{AE}, \overrightarrow{AF}$ 。

1.1.13 第十三题

设四面体 OABC 的三条棱 $\overrightarrow{OA} = \alpha$, $\overrightarrow{OB} = \beta$, $\overrightarrow{OC} = \gamma$, 且棱 OA, OB, OC 上的中点分别是 E, F, G; 棱 AB, BC, AC 上的中点分别是 P, Q, R,求向量 \overrightarrow{EQ} , \overrightarrow{FR} 和 \overrightarrow{GP} 。

1.1.14 第十四题

证明: 点 P 在三角形 ABC 内(包括三边),当且仅当存在非负实数 k_1,k_2,k_3 ,使得 $k_1+k_2+k_3=1$,并且

$$\overrightarrow{OP} = k_1 \overrightarrow{OA} + k_2 \overrightarrow{OB} + k_3 \overrightarrow{OC},$$

其中O是任意点。

5

证明. 由于P在 $\triangle ABC$ 内部,则 $\exists \mu, \lambda \in (0,1)$, s.t. $\overrightarrow{AP} = \mu \overrightarrow{AB} + \lambda \overrightarrow{AC}, \mu + \lambda \leqslant 1$

则
$$(\overrightarrow{OP} - \overrightarrow{OA}) = \mu(\overrightarrow{OB} - \overrightarrow{OA}) + \lambda(\overrightarrow{OC} - \overrightarrow{OA})$$

即 $\overrightarrow{OP} = (1 - \mu - \lambda)\overrightarrow{OA} + \mu\overrightarrow{OB} + \lambda\overrightarrow{OC}$
令 $k_1 = 1 - \mu - \lambda$ $k_2 = \mu$ $k_3 = \lambda$ 即 可

1.1.15 第十五题

用向量法证明塞瓦(Ceva)定理: 设平面上有三角形 ABC(图 1.10),D,E,F 依次是边 AB,BC,CA 的内点,则三条线段 AE,BF,CD 交于一点当且仅当

$$\frac{\overrightarrow{AD}}{\overrightarrow{DB}} \cdot \frac{\overrightarrow{BE}}{\overrightarrow{EC}} \cdot \frac{\overrightarrow{CF}}{\overrightarrow{FA}} = 1.$$

向量的内积、外积和混合积

1.2.1 第一题

已知 $|\alpha| = 2$, $|\beta| = 3$, $\langle \alpha, \beta \rangle = \frac{\pi}{3}$, 求:

- 1. $\alpha \cdot \beta$
- 2. $(\alpha + \beta)^2$
- 3. $(2\alpha + \beta) \cdot (\alpha \beta)$

這明. (1)
$$\overrightarrow{\alpha} \cdot \overrightarrow{\beta} = |\overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot \cos\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \rangle = 2 \times 3 \times \cos\frac{\pi}{3} = 3$$
 (2) $(\overrightarrow{\alpha} + \overrightarrow{\beta})^2 = |\overrightarrow{\alpha}|^2 + |\overrightarrow{\beta}|^2 + 2 \overrightarrow{2} \cdot \overrightarrow{\beta} = 2^2 + 3^2 + 2 \times 3 = 19$ (3) $(2\overrightarrow{\alpha} + \overrightarrow{\beta}) \cdot (\overrightarrow{\alpha} - \overrightarrow{\beta}) = 2|\overrightarrow{\alpha}|^2 - \overrightarrow{\alpha} \cdot \overrightarrow{\beta} - |\overrightarrow{\beta}|^2 = 2 \times 2^2 - 3 - 9 = -4$

1.2.2 第二题

已知 $\overrightarrow{AB} = \alpha - 2\beta$, $\overrightarrow{AC} = 2\alpha - 3\beta$, 其中 $|\alpha| = 4$, $|\beta| = 3$, $\langle \alpha, \beta \rangle = \frac{\pi}{6}$, 求:

- 1. 三角形 ABC 的面积
- 2. 三角形 ABC 的边 BC 的长度

证明. (1)

$$\begin{split} S_{\triangle}ABC &= \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| \\ &= \frac{1}{2} |(\overrightarrow{\alpha} - 2\overrightarrow{\beta}) \times (2\overrightarrow{\alpha} - 3\overrightarrow{\beta})| \\ &= \frac{1}{2} |2|\overrightarrow{\alpha}|^2 + 6|\overrightarrow{\beta}|^2 - 3\overrightarrow{\alpha} \times \overrightarrow{\beta} - 4\overrightarrow{\beta} \times \overrightarrow{\alpha}| \\ &= \frac{1}{2} |\overrightarrow{\alpha} \times \overrightarrow{\beta}| \\ &= \frac{1}{2} |\overrightarrow{2}| \cdot |\overrightarrow{\beta}| \operatorname{Sin}\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \rangle \\ &= \frac{1}{2} \times 4 \times 3 \times \frac{1}{2} = 3 \end{split}$$

$$(2) |\overrightarrow{BC}| = |\overrightarrow{\alpha} - \overrightarrow{\beta}| = \sqrt{(\overrightarrow{\alpha} - \overrightarrow{\beta})^2} = \sqrt{|\overrightarrow{\alpha}|^2 - 2 \cdot \overrightarrow{\alpha} \cdot \overrightarrow{\beta} + |\overrightarrow{\beta}|^2} = \sqrt{2^2 - 2 \times 4 \times 3 \times \frac{\sqrt{3}}{2} + 3^2} = \sqrt{25 - 12\sqrt{3}}$$

1.2.3 判断下列结论是否正确,并说明理由。

1.
$$(\alpha \cdot \beta)^2 = \alpha^2 \beta^2$$

2.
$$(\alpha \cdot \beta)\gamma = \alpha(\beta \cdot \gamma)$$

3. 因为
$$\alpha \cdot \beta = 0$$
,所以 $\alpha = 0$ 或 $\beta = 0$

4. 因为
$$\alpha \cdot \gamma = \beta \cdot \gamma$$
,且 $\gamma \neq 0$,所以 $\alpha = \beta$

5. 因为
$$\alpha \times \gamma = \beta \times \gamma$$
, 且 $\gamma \neq 0$, 所以 $\alpha = \beta$

延明. (1)
$$x: (\overrightarrow{\alpha} \cdot \overrightarrow{\beta})^2 = |\overrightarrow{\alpha}||\overrightarrow{\beta}|^2 \cos^2(\overrightarrow{\alpha} \cdot \overrightarrow{\beta}) \neq \overrightarrow{\alpha}^2 \overrightarrow{\beta}^2$$

(2)
$$x: \overrightarrow{\alpha} 与 \overrightarrow{\gamma}$$
 不平行时显然不对

$$(3) x : \overrightarrow{\alpha} \perp \overrightarrow{\beta}. \ \mathbb{M} \overrightarrow{\alpha} \cdot \overrightarrow{\beta} = 0$$

$$(2) x: \overrightarrow{\alpha} = \overrightarrow{\beta} \cdot \overrightarrow{\gamma} \times \overrightarrow{\gamma} \times \overrightarrow{\beta} = 0$$

$$(3) x: \overrightarrow{\alpha} \perp \overrightarrow{\beta} \cdot \overrightarrow{\beta} \cdot \overrightarrow{\beta} = 0$$

$$(4) x: \overrightarrow{\alpha} \neq \overrightarrow{\beta} = \overrightarrow{\alpha} \cdot \overrightarrow{\gamma} = \overrightarrow{\beta} \cdot \overrightarrow{\gamma}$$

(5) x:

1.2.4 用向量法证明三角形的余弦定理和正弦定理。

(1) 余弦定理:

$$|\overrightarrow{AB}|^2 = |\overrightarrow{CB} - \overrightarrow{CA}|^2 = |\overrightarrow{B}|^2 + |\overrightarrow{A}|^2 - 2\overrightarrow{CB} \cdot \overrightarrow{CA}| = a^2 + b^2 - 2 \cdot \cos \gamma \cdot ab = c^2$$

即
$$c^2 = a^2 + b^2 - 2ab \cos r$$
 其余同理

(2) 正弦定理

$$2S_{\triangle}ABC = |\overrightarrow{AB} \times \overrightarrow{AC}| = bc \sin \alpha$$

$$= |\overrightarrow{BA} \times \overrightarrow{BC}| = ac \sin \beta$$

$$= |\overrightarrow{CA} \times \overrightarrow{CB}| = ab \sin \gamma$$

$$\Rightarrow \Box abc \ \exists \frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin t}{c} \quad \Box$$

1.2.5 已知等腰三角形两腰上的中线互相垂直,用向量法求这个等腰三角形的顶角。

证明. 在
$$\triangle ABC$$
 中, AB 与 AC 边的中点分别为 E,D
$$\overrightarrow{BD} = \frac{1}{2}\overrightarrow{AC} - \overrightarrow{AB}, \overrightarrow{CE} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$$

$$\overrightarrow{BD} \cdot \overrightarrow{CE} = \frac{5}{4}\overrightarrow{AB} \cdot \overrightarrow{AC} - \frac{1}{2}(|\overrightarrow{AB}|^2 + |\overrightarrow{AC}|^2) = \frac{5}{4}|\overrightarrow{AB}|^2 \cos\theta - \left|\overrightarrow{AB^2}\right|^2 = 0$$
 即 $\cos\theta = \frac{3}{5}$ $\theta = 37^\circ$

1.2.6 证明:如果一个四面体有两对对棱互相垂直,则第三对对棱 也互相垂直,并且三对对棱的长度的平方和相等。

设 $\overrightarrow{AB} \perp \overrightarrow{CD}, \overrightarrow{CC} \perp \overrightarrow{BD}$ 证明 $\overrightarrow{AD} \perp \overrightarrow{BC}$,

$$\overrightarrow{AD} \cdot \overrightarrow{BC} = (\overrightarrow{\overrightarrow{AB}} + \overrightarrow{BD}) \cdot (\overrightarrow{AC} - \overrightarrow{AB})$$

$$= -|\overrightarrow{AB}|^2 - \overrightarrow{BD} \cdot \overrightarrow{AB} + \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BD} \cdot \overrightarrow{AC}$$

$$= -|\overrightarrow{AB}|^2 - (\overrightarrow{AD} - \overrightarrow{AB}) \cdot \overrightarrow{AB} + \overrightarrow{AB} \cdot \overrightarrow{AC}$$

$$= -|\overrightarrow{AB}|^2 + |\overrightarrow{AB}|^2 + \overrightarrow{AB} \cdot (\overrightarrow{AC} - \overrightarrow{AD})$$

$$= \overrightarrow{AB} \cdot \overrightarrow{CD} = 0 \quad \text{ If } \overrightarrow{AD} \perp \overrightarrow{BC}$$

1.2.7 证明:只有零向量才既平行又垂直于一个非零向量;只有零向量才同时垂直于三个不共面的向量。

$$\frac{\mathbf{i} \mathbf{E} \mathbf{H}.}{k \overrightarrow{\beta}} \underbrace{(1) \stackrel{.}{\ } \stackrel{$$

1.2.8 第八题

设空间不共面的向量组 α, β, γ 构成右手系,指出下列向量组的定向:

 $-\alpha, -\gamma, \beta; \quad \beta, -\alpha, \gamma; \quad -\alpha, -\beta, -\gamma; \quad -\beta, \gamma, -\alpha.$

证明. (1)
$$(-\overrightarrow{\alpha}, -\overrightarrow{\gamma}, \overrightarrow{\beta}) = -(\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma})$$
 左手系 (2) $(\overrightarrow{\beta}, -\overrightarrow{\alpha}, \overrightarrow{\gamma}) = (\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma})$ 右手系 (3) $(-\overrightarrow{\alpha}, -\overrightarrow{\beta}, -\overrightarrow{\gamma}) = -(\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma})$ 左手系 (4) $(-\overrightarrow{\beta}, \gamma, -\overrightarrow{\alpha}) = (\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma})$ 右手系

1.2.9 第九题

对于任意三个向量 α , β , γ , 证明:

- 1. 如果 $\alpha + \beta + \gamma = 0$,则 $\alpha \times \beta = \beta \times \gamma = \gamma \times \alpha$
- 2. 说明由 $\alpha \times \beta = \beta \times \gamma = \gamma \times \alpha$ 推不出 $\alpha + \beta + \gamma = 0$,但是如果 $\alpha \times \beta = \beta \times \gamma = \gamma \times \alpha$ $\beta \times \gamma = \gamma \times \alpha \neq 0$,则 $\alpha + \beta + \gamma = 0$

$$\overrightarrow{\alpha} \times (\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma}) = \overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\alpha} \times \overrightarrow{\gamma} = 00$$

$$\overrightarrow{\text{iff}}.$$

$$(\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma}) \times \overrightarrow{\beta} = \overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\gamma} \times \overrightarrow{\beta} = 02$$

$$0 \cdot 2 \Rightarrow \overrightarrow{\alpha} \times \overrightarrow{\gamma} = \overrightarrow{\gamma} \times \overrightarrow{\beta} \Leftrightarrow \overrightarrow{\beta} \times \overrightarrow{\gamma} = \overrightarrow{\gamma} \times \overrightarrow{\alpha}$$

$$0 \Leftrightarrow \overrightarrow{\alpha} \times \overrightarrow{\beta} = \overrightarrow{\gamma} \times \overrightarrow{\alpha}$$

也可考虑几何意义

(2) 当 $\overrightarrow{\alpha} = \overrightarrow{\beta} = \overrightarrow{\gamma} = \overrightarrow{x} \neq 0$ 时, 即三看平行 则 $\overrightarrow{\alpha} \times \overrightarrow{\beta} = \overrightarrow{\beta} \times \overrightarrow{\gamma} = \overrightarrow{\gamma} \times \overrightarrow{\alpha} = \overrightarrow{x} \times \overrightarrow{x} = 0$ 但 $\overrightarrow{\alpha} \overrightarrow{\beta} + \overrightarrow{\gamma} = 3\overrightarrow{x} \neq \overrightarrow{0}$ 当 $\overrightarrow{\alpha} \times \overrightarrow{\beta} = \overrightarrow{\beta} \times \overrightarrow{\gamma} = \overrightarrow{\gamma} \times \overrightarrow{\alpha} \neq 0$ 时, $(\overrightarrow{\alpha} \times \overrightarrow{\beta}) \cdot \overrightarrow{\gamma} = (\overrightarrow{\beta} \times \overrightarrow{\gamma}) \cdot \overrightarrow{\gamma} = (\overrightarrow{\gamma} \times$

0即 $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$ 共面

由于
$$\overrightarrow{\alpha} \times \overrightarrow{\beta} \neq 0$$
 则 $\overrightarrow{\gamma}$ 可由 $\overrightarrow{\alpha}$ 与 $\overrightarrow{\beta}$ 表示,故 $\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma} = k_1 \overrightarrow{\alpha} + k_2 \overrightarrow{\beta}$ ($\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\beta}$) $\times \overrightarrow{\alpha} = \overrightarrow{\beta} \times \overrightarrow{\alpha} + \overrightarrow{\alpha} \times \overrightarrow{\alpha} = k_2 \overrightarrow{\beta} \times \overrightarrow{\alpha} = 0 \Rightarrow k_2 = 0$) \Rightarrow ($\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma}$) $\times \overrightarrow{\beta} = \overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\alpha} \times \overrightarrow{\beta} = k_1 \overrightarrow{\alpha} \times \overrightarrow{\beta} = 0 \Rightarrow k_1 = 0$) \Rightarrow 故 $\overrightarrow{\alpha} + \overrightarrow{\alpha} + \overrightarrow{\gamma} = \overrightarrow{0}$

1.2.10 用向量法证明三角形面积的海伦公式:

$$S = \sqrt{p(p-a)(p-b)(p-c)},$$

其中 a,b,c 为三角形的三边长,p 为周长的一半,S 为面积。

$$S = \sqrt{p(p-a)(p-b)(p-c)} \Leftrightarrow 4S^2 = \frac{1}{4}(a+b-c)(a+c-b)(b+c-a)(a+b+c)$$

$$(\overrightarrow{\alpha} + \overrightarrow{\beta})^2 = |\overrightarrow{\alpha}|^2 + |\overrightarrow{\beta}|^2 + 2\overrightarrow{\alpha} \cdot \overrightarrow{\beta} = (-\overrightarrow{\gamma})^2 = |\overrightarrow{\gamma}|^2$$

$$\Rightarrow \overrightarrow{\alpha} \cdot \overrightarrow{\beta} = \frac{|\overrightarrow{\alpha}|^2 + |\overrightarrow{\beta}|^2 - |\overrightarrow{\gamma}|^2}{2} = \frac{c^2 - a^2 - b^2}{2}$$

$$4S^2 = |\overrightarrow{\alpha} \times \overrightarrow{\beta}|^2 = |\overrightarrow{\alpha}|^2 |\overrightarrow{\beta}|^2 \sin^2(\overrightarrow{\alpha}, \overrightarrow{\beta})$$

$$= |\overrightarrow{\alpha}|^2 |\overrightarrow{\beta}|^2 (1 - \cos^2(\overrightarrow{\alpha}, \overrightarrow{\beta})) = |\overrightarrow{\alpha}|^2 |\overrightarrow{\beta}|^2 - (\overrightarrow{\alpha} \cdot \overrightarrow{\beta})^2$$

$$= a^2b^2 - 4(c^2 - a^2 - b^2)^2 = \frac{1}{4}(2ab - c^2 + a^2 + b^2)(2ab + c^2 - a^2 - b^2)$$

$$= \frac{1}{4}[(a+b)^2 - c^2][c^2 - (a-b)^2]$$

$$= \frac{1}{4}(a+b-c)(a+b+c)(a-b+c)(b+c-a)$$

1.2.11 第十一题

证明 $|(\alpha, \beta, \gamma)| \leq |\alpha| \cdot |\beta| \cdot |\gamma|$,并说明等式何时成立。

$$\begin{split} |(\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma})| &= |(\overrightarrow{\alpha} \times \overrightarrow{\beta}) \cdot \overrightarrow{\gamma}| = |\overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot \sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot \overrightarrow{e} \cdot \overrightarrow{\gamma}| = |\overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot \overrightarrow{e} \cdot \overrightarrow{\gamma}| = |\overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot \overrightarrow{e} \cdot \overrightarrow{\gamma}| = |\overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot \overrightarrow{e} \cdot \overrightarrow{\gamma}| = |\overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot \overrightarrow{e} \cdot \overrightarrow{\gamma}| = |\overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot \overrightarrow{e} \cdot \overrightarrow{\gamma}| = |\overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot |\overrightarrow{e}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot |\overrightarrow{e}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot |\overrightarrow{e}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot |\overrightarrow{e}| \cdot |\overrightarrow{\gamma}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot |\overrightarrow{e}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}, \overrightarrow{\beta} > \cdot |\overrightarrow{e}| \cdot |\overrightarrow{\gamma}| \cdot |\sin < \overrightarrow{\alpha}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\overrightarrow{\beta}| \cdot |\overrightarrow{\gamma}| \cdot |\overrightarrow$$

1.2.12 证明下列等式,并说明几何意义:

1.
$$(\alpha + \beta) \times (\alpha - \beta) = 2(\beta \times \alpha)$$

2.
$$(\alpha + \beta, \beta + \gamma, \gamma + \alpha) = 2(\alpha, \beta, \gamma)$$

2.
$$(\alpha + \beta, \beta + \gamma, \gamma + \alpha) = 2(\alpha, \beta, \gamma)$$

证明. $(1) (\overrightarrow{\alpha} + \overrightarrow{\beta}) \times (\overrightarrow{\alpha} - \overrightarrow{\beta}) = \overrightarrow{\alpha} \times \overrightarrow{\alpha} - \overrightarrow{\alpha} \times \overrightarrow{\beta} - \overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\beta} \times \overrightarrow{\alpha}$
 $\overrightarrow{\alpha} = 2\overrightarrow{\beta} \times \overrightarrow{\alpha}$

1.2. 向量的内积、外积和混合积

几何意义: 以 $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$ 为邻边旦定向为 $\overrightarrow{\alpha} \times \overrightarrow{\beta}$ 的平行四边形的定向面积的两倍等于以它的两条对角线为邻边且定向为 $(\overrightarrow{\alpha} - \overrightarrow{\beta}) \times (\overrightarrow{\alpha} + \overrightarrow{\beta})$ 的平行四边形的定向面积。

13

$$(2) (\overrightarrow{\alpha} + \overrightarrow{\beta}, \overrightarrow{\beta} + \overrightarrow{\gamma}, \overrightarrow{\gamma} + \overrightarrow{\alpha}) = [(\overrightarrow{\alpha} + \overrightarrow{\beta}) \times (\overrightarrow{\beta} + \overrightarrow{\gamma})] \cdot (\overrightarrow{\gamma} + \overrightarrow{\alpha})$$

$$= (\overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\alpha} \times \overrightarrow{\gamma} + \overrightarrow{\beta} \times \overrightarrow{\gamma}) \cdot (\overrightarrow{\gamma} + \overrightarrow{\alpha})$$

$$= \overrightarrow{\alpha} \times \overrightarrow{\beta} \cdot \overrightarrow{\gamma} + \overrightarrow{\beta} \times \overrightarrow{\gamma} \cdot \overrightarrow{\alpha}$$

$$= 2(\overrightarrow{\alpha} \cdot \overrightarrow{\beta} \cdot \overrightarrow{\gamma})$$

几何意义: 以 $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$ 为邻边且定向为 $\overrightarrow{\alpha}$ × $\overrightarrow{\beta}$ · $\overrightarrow{\gamma}$ 的平行六面体的定向体积的两倍等于以他的三条体对角线为邻边其定向为 ($\overrightarrow{\alpha}$ + $\overrightarrow{\beta}$)×($\overrightarrow{\beta}$ + $\overrightarrow{\gamma}$)·($\overrightarrow{\gamma}$ + $\overrightarrow{\alpha}$) 的平行大面体用定向体积。

1.2.13 第十三题

证明: 如果两个关于 ξ 的向量方程 $\alpha_1 \times \xi = \beta_1$ 和 $\alpha_2 \times \xi = \beta_2$ 有公共解,则

$$\alpha_1 \cdot \beta_2 + \alpha_2 \cdot \beta_1 = 0.$$

1.2.14 第十四题

设 α 是非零向量, $\alpha \cdot \beta = 0$, 向量 ξ 满足 $\alpha \cdot \xi = c$, $\alpha \times \xi = \beta$, 证明:

$$\xi = \frac{c\alpha - \alpha \times \beta}{|\alpha|^2}$$

<u>证明.</u> (1) 若 $\overrightarrow{\beta} = \overrightarrow{0}$ 则 $\overrightarrow{\alpha} / / \overrightarrow{\xi}, \overrightarrow{\xi} = k \overrightarrow{\alpha}$ 所以 $k |\overrightarrow{\alpha}|^2 = c$ 得 $k = \frac{c}{|\alpha|^2}$ 此时 $\overrightarrow{\xi} = \frac{c \cdot \overrightarrow{\alpha}}{|\alpha|^2}$

$$\overrightarrow{\beta} \perp \overrightarrow{\alpha} \perp \overrightarrow{\beta} \neq \overrightarrow{0} \text{ 则 } \overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\alpha} \times \overrightarrow{\beta} \text{ 两两垂直且构成右手系,则} \overrightarrow{\xi} \text{ 可表示成} \overrightarrow{\xi} = k_1 \overrightarrow{\alpha} + k_2 \overrightarrow{\beta} + k_3 (\overrightarrow{\alpha} \times \overrightarrow{\beta})$$
 表示成 $\overrightarrow{\xi} = k_1 |\overrightarrow{\alpha}|^2 = c$ 即 $k_1 \cdot \frac{c}{-|\overrightarrow{\alpha}|^2}$; $\overrightarrow{\alpha} \times \overrightarrow{\xi} = k_2 (\overrightarrow{\alpha} \times \overrightarrow{\beta}) + k_3 \overrightarrow{\alpha} \times (\overrightarrow{\alpha} \times \overrightarrow{\beta}) = \overrightarrow{\beta}$, 即 $k_2 = 0$
$$\overrightarrow{\alpha} \times \overrightarrow{\xi} \cdot \overrightarrow{\beta} = k_3 [\overrightarrow{\alpha} \times (\overrightarrow{\alpha} \times \overrightarrow{\beta})] \cdot \overrightarrow{\beta} = |\overrightarrow{\beta}|^2 \text{ 即 } k_3 = \frac{|\overrightarrow{\beta}|^2}{-(\overrightarrow{\alpha} \times \overrightarrow{\beta})^2} = -\frac{1}{|\overrightarrow{\alpha}|^2}$$
 故 $\overrightarrow{\xi} = \frac{c \overrightarrow{\alpha} - \overrightarrow{\alpha} \times \overrightarrow{\beta}}{|\overrightarrow{\alpha}|^2}$

1.2.15 第十五题

证明:对于空间中不共线的三点 A,B,C,如果 $\overrightarrow{OA} = \alpha,\overrightarrow{OB} = \beta,\overrightarrow{OC} = \gamma$,则 $\alpha \times \beta + \beta \times \gamma + \gamma \times \alpha$ 垂直于 A,B,C 所确定的平面。

证明. $\overrightarrow{AB} = \overrightarrow{\beta} - \overrightarrow{\alpha}$, $\overrightarrow{AC} = \overrightarrow{\gamma} - \overrightarrow{\alpha}$ 可以做一对基底表示平面 \overrightarrow{ABC} 中的其它向量。设 $\overrightarrow{x} = \lambda \sqrt{B} + \mu \overrightarrow{AC} \in \text{平面 } \overrightarrow{ABC}$

它向量。设
$$\overrightarrow{x} = \lambda\sqrt{B} + \mu AC \in \mathbb{P}$$
面 ABC

$$(\overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\beta} \times \overrightarrow{\gamma} + \overrightarrow{\gamma} \times \overrightarrow{\alpha}) \cdot \overrightarrow{x} = (\overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\beta} \times \overrightarrow{\gamma} + \overrightarrow{\gamma} \times \overrightarrow{\alpha}) \cdot (\lambda \overrightarrow{A} + \mu \overrightarrow{c})$$

$$= \lambda(\overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\beta} \times \overrightarrow{\gamma} + \overrightarrow{\gamma} \times \overrightarrow{\alpha}) \cdot (\overrightarrow{\beta} - \overrightarrow{\alpha}) + \mu(\overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\beta} \times \overrightarrow{\gamma} + \overrightarrow{\gamma} \times \overrightarrow{\alpha}) \cdot (\overrightarrow{\gamma} - \overrightarrow{\alpha})$$

$$= \lambda[(\overrightarrow{\gamma} \times \overrightarrow{\alpha}) \cdot \overrightarrow{\beta} - (\overrightarrow{\beta} \times \overrightarrow{\gamma}) \cdot \overrightarrow{\alpha}] + \mu[(\overrightarrow{\alpha} \times \overrightarrow{\beta}) \cdot \overrightarrow{\gamma} - (\overrightarrow{\beta} \times \overrightarrow{\gamma}) \cdot \overrightarrow{\alpha}]$$

$$= \lambda [(\gamma \times \alpha) \cdot \beta - (\beta \times \gamma) \cdot \alpha] + \mu [(\alpha \times \beta) \cdot \gamma - (\beta \times \gamma) \cdot \alpha]$$

$$= \lambda \cdot 0 + \mu \cdot 0 = 0$$

1.2.16 证明下列恒等式:

1.
$$(\alpha \times \beta) \times (\gamma \times \delta) = (\alpha, \beta, \delta)\gamma - (\alpha, \beta, \gamma)\delta = (\alpha, \gamma, \delta)\beta - (\beta, \gamma, \delta)\alpha$$

2.
$$(\alpha \times \beta) \cdot (\gamma \times \delta) + (\alpha \times \gamma) \cdot (\delta \times \beta) + (\alpha \times \delta) \cdot (\beta \times \gamma) = 0$$

3.
$$\alpha \times (\beta \times (\gamma \times \delta)) = (\beta \cdot \delta)(\alpha \times \gamma) - (\beta \cdot \gamma)(\alpha \times \delta)$$

4.
$$(\alpha \times \delta, \beta \times \delta, \gamma \times \delta) = 0$$

证明.

$$(1) (\overrightarrow{\alpha} \times \overrightarrow{\beta}) \times (\overrightarrow{\gamma} \times \overrightarrow{\delta}) = [\overrightarrow{\alpha} \cdot (\overrightarrow{\gamma} \times \overrightarrow{\delta})] \overrightarrow{\beta} - [\overrightarrow{\beta} \cdot (\overrightarrow{\gamma} \times \overrightarrow{\delta})] \overrightarrow{\alpha}$$

$$= (\overrightarrow{\alpha}, \overrightarrow{\gamma}, \overrightarrow{\delta}) \overrightarrow{\beta} - (\overrightarrow{\beta}, \overrightarrow{\gamma}, \overrightarrow{\delta}) \overrightarrow{\alpha}$$

$$= -(\overrightarrow{\gamma} \times \overrightarrow{\delta}) \times (\overrightarrow{\alpha} \times \overrightarrow{\beta})$$

$$= -[\overrightarrow{\gamma} \cdot (\overrightarrow{\alpha} \times \overrightarrow{\beta})] \overrightarrow{\delta} + [\overrightarrow{\delta} \cdot (\overrightarrow{\alpha} \times \overrightarrow{\beta})] \overrightarrow{\gamma}$$

$$= (\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\delta}) \overrightarrow{\gamma} - (\overrightarrow{\alpha} \cdot \overrightarrow{\beta}) \overrightarrow{\delta}$$

$$(2) (\overrightarrow{\alpha} \times \overrightarrow{\beta}) \cdot (\overrightarrow{\gamma} \times \overrightarrow{\delta}) + (\overrightarrow{\alpha} \times \overrightarrow{\gamma}) \cdot (\overrightarrow{\delta} \times \overrightarrow{\beta}) + (\overrightarrow{\alpha} \times \overrightarrow{\delta}) \cdot (\overrightarrow{\beta} \times \overrightarrow{\gamma})$$

$$= \begin{vmatrix} \overrightarrow{\alpha} \cdot \overrightarrow{\gamma} & \overrightarrow{\alpha} \cdot \overrightarrow{\delta} & | + | \overrightarrow{\alpha} \cdot \overrightarrow{\delta} & \overrightarrow{\alpha} \cdot \overrightarrow{\beta} & | + | \overrightarrow{\alpha} \cdot \overrightarrow{\beta} & \overrightarrow{\beta} \cdot \overrightarrow{\gamma} \\ \overrightarrow{\beta} \cdot \overrightarrow{\gamma} & \overrightarrow{\beta} \cdot \overrightarrow{\delta} & | + | \overrightarrow{\gamma} \cdot \overrightarrow{\delta} & \overrightarrow{\gamma} \cdot \overrightarrow{\beta} & | + | \overrightarrow{\delta} \cdot \overrightarrow{\beta} & \overrightarrow{\delta} \cdot \overrightarrow{\gamma} \end{vmatrix}$$

$$= (\overrightarrow{\alpha} \cdot \overrightarrow{\gamma}) (\overrightarrow{\beta} \cdot \overrightarrow{\delta}) - (\overrightarrow{\alpha} \cdot \overrightarrow{\delta}) (\overrightarrow{\beta} \cdot \overrightarrow{\gamma}) + (\overrightarrow{\alpha} \cdot \overrightarrow{\delta}) (\overrightarrow{\gamma} \cdot \overrightarrow{\beta}) - (\overrightarrow{\alpha} \cdot \overrightarrow{\beta}) (\overrightarrow{\gamma} \cdot \overrightarrow{\delta}) + (\overrightarrow{\alpha} \cdot \overrightarrow{\beta}) (\overrightarrow{\delta} \cdot \overrightarrow{\gamma})$$

$$= 0$$

$$= -\overrightarrow{\alpha} \times [(\overrightarrow{\alpha} \times \overrightarrow{\delta}) \times \overrightarrow{\beta}] = -\overrightarrow{\alpha} \times [(\overrightarrow{\gamma} \cdot \overrightarrow{\beta}) \overrightarrow{\delta} - (\overrightarrow{\delta} \cdot \overrightarrow{\beta}) \overrightarrow{\gamma}]$$

$$= (\overrightarrow{\beta} \cdot \overrightarrow{\gamma}) (\overrightarrow{\alpha} \times \overrightarrow{\gamma}) - (\overrightarrow{\beta} \cdot \overrightarrow{\gamma}) (\overrightarrow{\alpha} \times \overrightarrow{\gamma})$$

$$(4) (\overrightarrow{\alpha} \times \overrightarrow{\delta}) \times (\overrightarrow{\beta} \times \overrightarrow{\delta}) (\overrightarrow{\gamma} \times \overrightarrow{\delta})$$

$$= [(\overrightarrow{\alpha} \times (\overrightarrow{\beta} \times \overrightarrow{\delta}) \times (\overrightarrow{\beta} \times \overrightarrow{\delta})) \overrightarrow{\delta} - (\overrightarrow{\delta} \cdot (\overrightarrow{\beta} \times \overrightarrow{\delta})) \overrightarrow{\alpha}] \cdot (\overrightarrow{\delta} \times \overrightarrow{\delta})$$

1.2.17 第十七题

 $=(\overrightarrow{\alpha},\overrightarrow{\beta},\overrightarrow{\delta})\cdot(\overrightarrow{\delta}\cdot(\overrightarrow{\gamma}\times\overrightarrow{\delta}))=0$

证明: 如果 α 与 β 不共线,则 $\alpha \times (\alpha \times \beta)$ 与 $\beta \times (\alpha \times \beta)$ 不共线。

$$\overrightarrow{\alpha} \times (\overrightarrow{\alpha} \times \overrightarrow{\beta}) = -(\overrightarrow{\alpha} \times \overrightarrow{\beta}) \cdot \overrightarrow{\alpha}$$

$$= -[(\overrightarrow{\alpha} \cdot \overrightarrow{\alpha}) \overrightarrow{\beta} - (\overrightarrow{\beta} \cdot \overrightarrow{\alpha}) \overrightarrow{\alpha}]$$

$$= (\overrightarrow{\alpha} \cdot \overrightarrow{\beta}) \overrightarrow{\alpha} - |\overrightarrow{\alpha}|^2 \overrightarrow{\beta}$$

$$\overrightarrow{\beta} \times (\overrightarrow{\alpha} \times \overrightarrow{\beta}) = -(\overrightarrow{\alpha} \times \overrightarrow{\beta}) \cdot \overrightarrow{\beta}$$

$$= -[(\overrightarrow{\alpha} \cdot \overrightarrow{\beta}) \overrightarrow{\beta} - (\overrightarrow{\beta} \cdot \overrightarrow{\beta}) \overrightarrow{\alpha}]$$

$$= |\overrightarrow{\beta}|^2 \overrightarrow{\alpha} - (\overrightarrow{\alpha} \cdot \overrightarrow{\beta}) \overrightarrow{\beta}$$

$$\overrightarrow{\beta}$$

则 $M = 0 \Leftrightarrow \overrightarrow{\alpha} \times \overrightarrow{\beta} = 0$

1.2.18 第十八题

证明: $\alpha \times \beta + \beta \times \gamma + \gamma \times \alpha = 0$ 成立当且仅当存在不全为零的实数 k_1, k_2, k_3 , 使得

$$k_1 + k_2 + k_3 = 0$$
, $\perp k_1 \alpha + k_2 \beta + k_3 \gamma = 0$.

延明. 必要性: $\overrightarrow{0} = \overrightarrow{\alpha} \times \overrightarrow{\beta} + \overrightarrow{\beta} \times \overrightarrow{\gamma} + \overrightarrow{\gamma} \times \overrightarrow{\alpha} = \overrightarrow{\alpha} \times \overrightarrow{\alpha} - \overrightarrow{\beta} \times \overrightarrow{\alpha} - \overrightarrow{\alpha} \times \overrightarrow{\alpha} - \overrightarrow{\beta} \times \overrightarrow{\alpha} - \overrightarrow{\alpha} \times \overrightarrow{\alpha} - \overrightarrow{\beta} \times \overrightarrow{\alpha} - \overrightarrow{\alpha} \times \overrightarrow{$

取 $k_1 = 1 - k$, $k_2 = -1$, $k_5 - k$ 充分性: $k_1 \overrightarrow{\alpha} + k_2 \overrightarrow{\beta} + k_3 \overrightarrow{\gamma} = k_1 \overrightarrow{\alpha} + k_1 \overrightarrow{\beta} - (k + k_2) \overrightarrow{\gamma} = k_1 (\overrightarrow{\alpha} - \overrightarrow{\beta}) + k_3 (\overrightarrow{\alpha} - \overrightarrow{\beta}) + k_3$

---- §1.3 -----向量的坐标表示

1.3.1 第一题

设在梯形 ABCD 中,向量 $\overrightarrow{AB} = 2\overrightarrow{DC}$,又设 E 是腰 BC 的中点,F 是底 CD 的中点,求点 A,B 和向量 \overrightarrow{AB} 在仿射坐标系 $[C; \overrightarrow{AE}, \overrightarrow{AF}]$ 中的坐标。

$$\frac{1}{\overrightarrow{AE}} = \frac{1}{\overrightarrow{AB}} + \frac{1}{2} \overrightarrow{BC} \quad [c; \overrightarrow{AE}, \overrightarrow{AF}]$$

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BC} + \frac{1}{2} \overrightarrow{CD} = \frac{3}{4} \overrightarrow{AB} + \overrightarrow{BC}$$

$$\overrightarrow{BC} = 2 \overrightarrow{AE} - 2 \overrightarrow{AB} = -\frac{6}{5} \overrightarrow{AB} + \frac{8}{5} \overrightarrow{AF} = \left(-\frac{6}{5}, \frac{8}{5}\right) \Rightarrow B\left(\frac{6}{5}, -\frac{8}{5}\right)$$

$$\overrightarrow{AB} = \frac{4}{5} (2 \overrightarrow{AB} - \overrightarrow{AF}) = \left(\frac{8}{5}, -\frac{4}{5}\right)$$

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \left(\frac{2}{5}, \frac{4}{5}\right) \Rightarrow A\left(-\frac{3}{5}, \frac{4}{5}\right)$$

$$\overrightarrow{AB} = \left(\frac{8}{5}, -\frac{4}{5}\right)$$

1.3.2 第二题

设 ABCDEF 是正六边形,

- 1. 求各顶点在仿射坐标系 $[A; \overrightarrow{AB}, \overrightarrow{AF}]$ 中的坐标;
- 2. 求向量 \overrightarrow{AB} , \overrightarrow{AF} 在仿射坐标系 $[A; \overrightarrow{AC}, \overrightarrow{AE}]$ 中的坐标。

(2)
$$\left\{ \begin{array}{l} \overrightarrow{AC} = 2\overrightarrow{AB} + \overrightarrow{AF} \\ \overrightarrow{AE} = \overrightarrow{AB} + 2\overrightarrow{AF} \end{array} \right.$$
 解得
$$\left\{ \begin{array}{l} \overrightarrow{AB} = \frac{1}{3}(2\overrightarrow{AC} - \overrightarrow{AE}) \\ \overrightarrow{AF} = \frac{1}{3}(2\overrightarrow{AE} - \overrightarrow{AC}) \end{array} \right.$$
 得
$$\overrightarrow{AB} = \left(\frac{2}{3}, -\frac{1}{3}\right)^{\top}, \overrightarrow{AF} = \left(-\frac{1}{3}, \frac{2}{3}\right)^{\top} \left[A; \overrightarrow{AC}, \overrightarrow{AE}\right]$$

1.3.3 第三题

设 AB, AC, AD 是平行六面体的顶点 A 处的三条棱,N 是此平行六面体的过 A 的对角线和 B, C, D 所确定的平面的交点,求 N 在仿射坐标系 $[A; \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}]$ 中的坐标。

1.3.4 第四题

设点 C 分线段 AB 成 2:1,点 A 的坐标为 (3,0,4),点 C 的坐标为 (1,2,2),求点 B 的坐标。

延明.
$$\overrightarrow{AC} = 2\overrightarrow{CB} = (-2, 2, -2)^{\top}$$
 得 $\overrightarrow{CB} = (1, 1, -1).B = (0, 3, 1)^{\top}$

1.3.5 用坐标法证明梅涅劳斯定理。

设 P,Q,k 分别为 $\triangle ABC$ 的边 AB,BC,CA 成定比 λ,μ,ν 取仿射杯架 $[A;\overrightarrow{AB},\overrightarrow{AC}]^{\top}$, 则 $A(0,0)^{\top},B(1,0)^{\top},C(0.1)^{\top},P\left(\frac{\lambda}{1+\lambda},0\right)^{\top},R\left(0,\frac{\nu}{1+\nu}\right)^{\top},Q\left(\frac{1}{(1+\mu},\frac{\mu}{(1+\mu})^{\top},\bot \right)$ 中 $\lambda\mu\nu=-1$

$$\begin{vmatrix} \frac{\lambda}{1+\lambda} & 0 & 1\\ 0 & \frac{1}{1+\nu} & 1\\ 0 & \frac{1}{1+\mu} & 1 \end{vmatrix} = \frac{1}{(1+\lambda)(1+\nu)(1+\mu)} \begin{vmatrix} \lambda & 0 & 1+\lambda\\ 0 & 1 & 1+\nu\\ 1 & \mu & 1+\mu \end{vmatrix} = \frac{-(1+\lambda\nu\mu)}{(1+\lambda)(1+\nu)(1+\mu)} = 0$$

1.3. 向量的坐标表示

19

1.3.6 第六题

在一个空间直角坐标系中,已知向量 $\alpha = (2, -2, 1), \beta = (1, -1, -3), \gamma = (1, 0, 2),$ 求:

- 1. $\alpha 3\beta + 2\gamma$;
- 2. $\cos\langle\alpha,\gamma\rangle$;
- 3. $(\alpha 2\beta) \times (2\alpha + \beta \gamma)$;
- 4. (α, β, γ) ;
- 5. 同时垂直于 α , β 的单位向量。

 追. (1)
$$\overrightarrow{\alpha}$$
 - 3 $\overrightarrow{\beta}$ + 2 $\overrightarrow{\gamma}$ = (2, -2, 1) - 3(1, -1, -3) + 2(1, 0, 2) = (1, 1, 14)
(2) $\cos\langle \overrightarrow{\alpha}, \overrightarrow{\gamma} \rangle = \frac{\overrightarrow{\alpha} \cdot \overrightarrow{\gamma}}{|\overrightarrow{\alpha}||\overrightarrow{\gamma}|} = \frac{4}{3 \cdot \sqrt{5}} = \frac{4}{15}\sqrt{5}$

$$(3) (\overrightarrow{\alpha} - 2\overrightarrow{\beta}) \times (2\overrightarrow{\alpha} + \overrightarrow{\beta} - \overrightarrow{\gamma}) = (0, 0, 7) \times (4, -5, -3) = \left(\begin{vmatrix} 0 & 7 \\ -5 & 3 \end{vmatrix}, \begin{vmatrix} 7 & 0 \\ -3 & 4 \end{vmatrix}, \begin{vmatrix} 0 & 0 \\ 4 & -5 \end{vmatrix} \right)$$

$$(35, 28, 0)$$

$$(4) (\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma}) = \begin{vmatrix} 2 & -2 & 1 \\ 1 & -1 & -3 \\ 1 & 0 & 2 \end{vmatrix} = 2 \begin{vmatrix} 2 & -2 \\ 1 & -1 \end{vmatrix} + \begin{vmatrix} -2 & 1 \\ -1 & -3 \end{vmatrix} = 7$$

$$(5) \overrightarrow{\alpha} \times \overrightarrow{\beta} = \left(\begin{vmatrix} -2 & 1 \\ -1 & -3 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ -1 & -3 \end{vmatrix}, \begin{vmatrix} 2 & -2 \\ 1 & -1 \end{vmatrix} \right) = (7,7,0) \quad \mathbb{N} \overrightarrow{e} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0 \right) \mathbb{N}$$

1.3.7 第七题

在一个空间直角坐标系中,已知向量 $\alpha = (1,0,2)$, $\beta = (1,1,1)$, $\gamma = (1,0,-2)$, 试把 α 分解为向量 α_1 和 α_2 的和,使得 α_1 和 β , γ 共面, α_2 和 β , γ 都垂直。

$$\overrightarrow{\beta} \times \overrightarrow{\gamma} = \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ 0 & -2 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \end{pmatrix} = (-2, 3, -1), 此方向的单位向量为 \overrightarrow{e}$$
证明. $\overrightarrow{\alpha}_2 = (\overrightarrow{\alpha} \cdot \overrightarrow{n}) \cdot \overrightarrow{n} = -\frac{4}{\sqrt{14}} \overrightarrow{n} = \begin{pmatrix} \frac{4}{7}, -\frac{6}{7}, \frac{2}{7} \end{pmatrix}$

$$\overrightarrow{\alpha}_1 = \overrightarrow{\alpha} - \overrightarrow{\alpha}_2 = \begin{pmatrix} \frac{3}{7}, \frac{6}{7}, \frac{12}{7} \end{pmatrix}$$

1.3.8 第八题

已知向量 $\alpha_1, \alpha_2, \alpha_3$ 互相垂直且都不是零向量, $\gamma = \sum_{i=1}^3 k_i \alpha_i$,求 γ 的模以及 γ 分别与 $\alpha_1, \alpha_2, \alpha_3$ 夹角的余弦值。

$$|\overrightarrow{\gamma}| = k_1 |\overrightarrow{\alpha_1}| + k_2 |\overrightarrow{\alpha}_2| + k_3 |\overrightarrow{\alpha}_3|$$
证明.
$$\cos \theta_i = \frac{\overrightarrow{\gamma} \cdot \overrightarrow{\alpha}_1}{|\overrightarrow{\gamma}| \cdot |\overrightarrow{\alpha}_1|} = \frac{k_i |\alpha_i|}{|\overrightarrow{\gamma}| \cdot |\overrightarrow{\alpha}_i|} = \frac{k_i |\alpha_i|}{k_1 |\overrightarrow{\alpha}_1| + k_2 |\overrightarrow{\alpha}_2| + k_3 |\overrightarrow{\alpha}_3|}$$

1.3.9 第九题

在一个空间直角坐标系中,已知向量 $\alpha = (-2,3,6)$, $\beta = (1,-2,2)$ 的起点相同, $|\gamma| = 5\sqrt{42}$,求沿 α 和 β 的夹角平分线上的向量 γ 的坐标。

证明. 设
$$\overrightarrow{F} = (x, y, z)$$
 ,则 $\cos\langle \overrightarrow{\gamma}, \overrightarrow{\alpha} \rangle = \overrightarrow{\gamma} \cdot \overrightarrow{\gamma} \cdot |\overrightarrow{\alpha}| = \cos\langle \overrightarrow{\gamma}, \overrightarrow{\beta} \rangle = \overrightarrow{\gamma} \cdot \overrightarrow{\beta}$

1.3.10 第十题

在一个空间直角坐标系中,求以向量 $\alpha = (2,0,3), \beta = (-1,1,-2)$ 为邻边的平行四边形对角线夹角的正弦值。

1.3. 向量的坐标表示

$$=\frac{\sqrt{6^2+2+4^2}}{\sqrt{105}}=\sqrt{\frac{56}{105}}=\frac{2\sqrt{10}}{15}$$

1.3.11 用坐标法证明恒等式:

$$(\alpha \times \beta) \times \gamma = (\alpha \cdot \gamma)\beta - (\beta \cdot \gamma)\alpha$$
。
证明. 取直角坐标系 $\{0; i, j f i k\}$,设 $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$ 的坐标分别为 (X_1, Y_1, Z_1) , $(X_2, Y_2 f i Z_2)$ (X_3, Y_3, Z_3)
 $\overrightarrow{\alpha} \times \overrightarrow{\beta}$ 的坐标是 (S_1, S_2, S_3) , $(\overrightarrow{\alpha} \times \overrightarrow{\beta}) \times \overrightarrow{\gamma}$ 的坐标是 (T_1, T_2, T_3)
则 $T_1 = S_2 Z_3 - S_2 Y_3 = (x_2 Z_1 - x_1 Z_2) Z_3 - (x_1 Y_2 - x_2 Y_1) Y_3$
 $= X_2 (Z_1 Z_3 + Y_1 y_3) - x_1 (Z_2 Z_3 + X_2 Y_3)$
 $= X_2 (\overrightarrow{\alpha} \cdot \overrightarrow{\gamma} - X_1 X_3) - X_1 (\overrightarrow{\beta} \overrightarrow{\gamma} - X_2 X_3)$
 $= (\overrightarrow{\alpha} - \overrightarrow{\gamma}) X_2 - (\overrightarrow{\beta} \cdot \overrightarrow{\gamma}) \cdot X_1$
同理可得: $T_2 = (\overrightarrow{\alpha} \cdot \overrightarrow{\gamma}) Y_2 - (\overrightarrow{\beta} \cdot \overrightarrow{\gamma}) Y_1$ $T_3 = (\overrightarrow{\alpha} \cdot \overrightarrow{\gamma}) Z_2 - (\overrightarrow{\beta} \cdot \overrightarrow{\gamma}) Z_2$
所以 $(\overrightarrow{\alpha} \times \overrightarrow{\beta}) \times \overrightarrow{\gamma} = (\overrightarrow{\alpha} \cdot \overrightarrow{\gamma}) (x_2, Y_2, Z_2) - (\overrightarrow{\beta} \cdot \overrightarrow{\gamma}) (x_1, Y_1, Z_1) = (\overrightarrow{\alpha} \cdot \overrightarrow{\gamma}) \overrightarrow{\beta} - (\overrightarrow{\beta} \cdot \overrightarrow{\gamma}) \overrightarrow{\alpha}$

1.3.12 第十二题

设在一个空间直角坐标系中,四面体的顶点为 A(1,2,3), B(2,3,4), C(3,0,5), D(0,0,1),求:

- 1. 三角形 ABC 的面积、重心以及 AB 边上的高;
- 2. 四面体 ABCD 的体积。

 连明.
$$(1)$$
 $\overrightarrow{AB} = (1,1,1)^{\top}$ $\overrightarrow{AC} = (2,-2,2)^{\top}$ $S_{\triangle}ABC = \frac{1}{2}|\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2}\left| \left(\begin{vmatrix} 1 & 1 \\ -2 & 2 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix}, \begin{vmatrix} 1 & -1 \\ 2 & -2 \end{vmatrix} \right)^{\top} = \frac{1}{2}\sqrt{4^2 + 4^2} = 1$

 $2\sqrt{2}$

重心:
$$(2, \frac{5}{3}, 4)^{\top}$$

 $|\overrightarrow{AB}|\sqrt{3}$ $h_{AB} = \frac{2S_{\triangle}ABC}{|\overrightarrow{AB}|} = \frac{4\sqrt{6}}{3}$
 $(2) V = \frac{1}{3}(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} = \frac{1}{3} \begin{vmatrix} 1 & 1 & 1 \\ 2 & -2 & 2 \\ -1 & -2 & -2 \end{vmatrix} = \frac{4}{3}$

21

1.3.13 用坐标法证明柯西-施瓦茨(Cauchy-Schwarz)不等式

$$\left(\sum_{i=1}^{3} a_{i} b_{i}\right)^{2} \leqslant \left(\sum_{i=1}^{3} a_{i}^{2}\right) \left(\sum_{i=1}^{3} b_{i}^{2}\right).$$

$$\underbrace{\mathbf{i} \mathbf{E} \mathbf{H}.}_{S_{\triangle}} (1) \overrightarrow{AB} = (1, 1, 1)^{\top} \quad \overrightarrow{AC} = (2, -2, 2)^{\top}$$

$$S_{\triangle} ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \left| \left(\begin{vmatrix} 1 & 1 \\ -2 & 2 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix}, \begin{vmatrix} 1 & -1 \\ 2 & -2 \end{vmatrix} \right)^{\top} = \frac{1}{2} \sqrt{4^{2} + 4^{2}} = 2\sqrt{2}$$

$$\underbrace{\mathbb{I} \mathcal{A}}_{AB} : (2, \frac{5}{3}, 4)^{\top}$$

$$|\overrightarrow{AB}| \sqrt{3} \quad h_{AB} = \frac{2S_{\triangle} ABC}{|\overrightarrow{AB}|} = \frac{4\sqrt{6}}{3}$$

$$(2) V = \frac{1}{3} (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} = \frac{1}{3} \begin{vmatrix} 1 & 1 & 1 \\ 2 & -2 & 2 \\ -1 & -2 & -2 \end{vmatrix} = \frac{4}{3}$$

1.3.14 第十四题

设 a,b,c,d,e,f 均为实数, $d+e+f\neq 0$,满足

$$a^2 + b^2 + c^2 = 25,$$

$$d^2 + e^2 + f^2 = 36,$$

$$ad + be + cf = 30,$$

求 a+b+c 的值。

证明. 在直角坐标系中,设
$$\overrightarrow{\alpha}=(a,b,c)$$
, $\overrightarrow{\beta}=(d,e,f)$ 则 $|\overrightarrow{\alpha}|=5$ 一 $|\overrightarrow{\beta}|=6$ $|\overrightarrow{\alpha}|\cdot|\overrightarrow{\beta}|=30=|\overrightarrow{\alpha}|\cdot|\overrightarrow{\beta}|$ 则 $|\overrightarrow{\alpha}|=5$ 同 向 平行,即 $|\overrightarrow{\alpha}|=5$,即 $|\overrightarrow{\alpha}|=5$ 。 $|\overrightarrow{\beta}|=6$ 。 $|\overrightarrow{\alpha}|=5$ 则 $|\overrightarrow{\beta}|=6$ 。 $|\overrightarrow{\alpha}|=5$ 。 $|\overrightarrow{\beta}|=6$ 。 $|\overrightarrow{$

第十五题

在一个空间直角坐标系中,已知四点 A,B,C,D 的坐标依次为 (x_i,y_i,z_i) ,i=1,2,3,4,证明: 四点 A,B,C,D 共面当且仅当

$$\begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix} = 0.$$

 证明.
$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$
 $\overrightarrow{AC} = (y_3 - x_1, y_5 - y_1, z_5 - z_1)$ $\overrightarrow{AD} = (x_4 - x_1, y_4 - y_1, z_4 - z_1)$

ABCD 四点共面 \Leftrightarrow \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} 共面 \Leftrightarrow >

$$\begin{vmatrix} x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ x_{3} - x_{1} & y_{3} - y_{1} & z_{3} - z_{1} \\ x_{4} - x_{1} & y_{4} - y_{1} & z_{4} - z_{1} \end{vmatrix} = 0 \Leftrightarrow \begin{vmatrix} x_{1} & y_{1} & z_{1} & 1 \\ x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} & 0 \\ x_{3} - x_{1} & y_{3} - y_{1} & z_{3} - z_{1} & 0 \\ x_{4} - x_{1} & y_{4} - y_{1} & z_{4} - z_{1} & 0 \end{vmatrix} = 0$$

$$0 \Leftrightarrow \begin{vmatrix} x_{1} & y_{1} & z_{1} & 1 \\ x_{2} & y_{2} & z_{2} & 1 \\ x_{3} & y_{3} & z_{3} & 1 \\ x_{4} & y_{4} & z_{4} & 1 \end{vmatrix} = 0$$

1.3.15 第十六题

用坐标法证明

$$(\alpha \times \beta, \beta \times \gamma, \gamma \times \alpha) = \begin{vmatrix} \alpha \cdot \alpha & \alpha \cdot \beta & \alpha \cdot \gamma \\ \beta \cdot \alpha & \beta \cdot \beta & \beta \cdot \gamma \\ \gamma \cdot \alpha & \gamma \cdot \beta & \gamma \cdot \gamma \end{vmatrix} = \begin{vmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \cdot (\alpha \beta \gamma) \end{vmatrix}.$$

延明. 设
$$\overrightarrow{\alpha} = (a_1, b_1, c_1)$$
 $\overrightarrow{\beta} = (a_2, b_2, c_2)$ $\overrightarrow{\gamma} = (a_3, b_3, c_3)$.

$$(\overrightarrow{\alpha} \times \overrightarrow{\beta}, \overrightarrow{\beta} \times \overrightarrow{\gamma}, \overrightarrow{\gamma} \times \overrightarrow{\alpha}) = (\overrightarrow{\alpha} \times \overrightarrow{\beta}) \times (\overrightarrow{\beta} \times \overrightarrow{x})) \cdot (\overrightarrow{\gamma} \times \overrightarrow{\alpha})$$

$$= [(\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma}) \cdot \overrightarrow{\beta} - (\overrightarrow{\beta}, \overrightarrow{\beta}, \overrightarrow{\gamma}) \overrightarrow{\alpha}] \cdot (\overrightarrow{\gamma} \times \overrightarrow{\alpha})$$

$$= (\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma})^2$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \cdot \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$

$$= \begin{vmatrix} \overrightarrow{\alpha} \cdot \overrightarrow{\alpha} & \overrightarrow{\alpha} \cdot \overrightarrow{\beta} & \overrightarrow{\beta} \cdot \overrightarrow{\beta} & \overrightarrow{\beta} \cdot \overrightarrow{\gamma} \\ \overrightarrow{\gamma} \cdot \overrightarrow{\alpha} & \overrightarrow{\gamma} \cdot \overrightarrow{\beta} & \overrightarrow{\gamma} \cdot \overrightarrow{\gamma} \end{vmatrix}$$

$$= \begin{vmatrix} \overrightarrow{\alpha} & \overrightarrow{\alpha} & \overrightarrow{\beta} & \overrightarrow{\beta} & \overrightarrow{\beta} & \overrightarrow{\beta} & \overrightarrow{\gamma} \\ \overrightarrow{\gamma} & \overrightarrow{\alpha} & \overrightarrow{\gamma} & \overrightarrow{\beta} & \overrightarrow{\beta} & \overrightarrow{\gamma} & \overrightarrow{\gamma} \end{vmatrix}$$

$$= \begin{vmatrix} \overrightarrow{\alpha} & \overrightarrow{\alpha} & \overrightarrow{\alpha} & \overrightarrow{\beta} & \overrightarrow{\beta} & \overrightarrow{\beta} & \overrightarrow{\beta} & \overrightarrow{\gamma} \\ \overrightarrow{\gamma} & \overrightarrow{\alpha} & \overrightarrow{\gamma} & \overrightarrow{\beta} & \overrightarrow{\beta} & \overrightarrow{\gamma} & \overrightarrow{\gamma} \end{vmatrix}$$

第十七题

在一个空间仿射坐标系中,已知

$$\alpha = (a_1, a_2, a_3), \quad \beta = (b_1, b_2, b_3), \quad \gamma = (c_1, c_2, c_3),$$

证明向量组 α , β , γ 共面的充要条件是

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0.$$

证明. 由于 $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$ 共面,则存在不全为0的三个数 $k_1k_2k_3$, 使得 $k_1\overrightarrow{\alpha}$ + $k_2\overrightarrow{\beta}$ + $k_3\overrightarrow{\gamma}$ = $\overrightarrow{0}$

1.3. 向量的坐标表示

即对于
$$\begin{bmatrix} a_1 & b_1 & a_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 有非零解
$$\Leftrightarrow \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

25

空间中的平面和直线

在数学中,严格性不是一切,但是没有它便没有一切。不 严格的证明微不足道。

—H.Poincaré

_____ § 2.1 _____ 2.1 空间中的平面

2.1.1 求满足下列条件的平面方程

- 1. 过点 $M_0(2,1,-1)$, 法向量为 $\overrightarrow{n}=(1,-2,3)$ 。
- 2. 原点到平面的垂足为点 P(2,3,-6)。
- 3. 过两点 A(0,4,-3), B(1,-2,6), 平行于向量 $\overrightarrow{\alpha}=(1,0,2)$ 。
- 4. 过x轴和点P(4,-1,2)。
- 5. 过点 P(2,-2,1) 且平行于平面 2x-3z+4=0。
- 6. 平行于向量 $\alpha = (2,1,-1)$ 且在 x 轴和 y 轴上的截距分别为 3 和 -2。

证明. 2.1.1

1. 设 M(x,y,z) 是该平面上的一点,则 $\overrightarrow{M_0M} \cdot \overrightarrow{n} = 0$ 。

$$(x-2) - 2(y-1) + 3(z+1) = 0 \implies x - 2y + 3z + 3 = 0$$

2. 由题意可知 $\overrightarrow{OP} = (2,3,-6)$ 是平面的法向量。

$$2(x-2) + 3(y-3) - 6(z+6) = 0 \implies 2x + 3y - 6z - 49 = 0$$

3.
$$\overrightarrow{AB} = (1, -6, 9)$$
, $\overrightarrow{\alpha} = (1, 0, 2)$, 设平面上的点 $M = (x, y, z)$ 。

$$\overrightarrow{AM} = (x - 0, y - 4, z + 3) = (x, y - 4, z + 3)$$

三向量共面, 所以

$$\begin{vmatrix} 1 & -6 & 9 \\ 1 & 0 & 2 \\ x & y - 4 & z + 3 \end{vmatrix} = 0$$

整理可得 12x - 7y - 6z + 10 = 0。

4. 由于平面 π 过 x 轴,则可设 π : By + Cz = 0,过 P(4, -1, 2),代入可得 π : 2y + z = 0。

$$\begin{vmatrix} 1 & 0 & 0 \\ 4 & -1 & 2 \\ x & y & z \end{vmatrix} = 0 \implies 2y + z = 0$$

5.
$$\overrightarrow{n} = (2, -3, 4), P(2, -2, 1).$$

$$2(x-2) - 3(y+2) + 4(z-1) = 0 \implies 2x - 3y + 4z - 4 = 0$$

6. 设平面
$$\pi: \frac{x}{3} + \frac{y}{-2} + \frac{z}{c} = 1$$
, π 的法向量为 $\overrightarrow{n} = \left(\frac{1}{3}, -\frac{1}{2}, \frac{1}{c}\right)$ 。

$$\overrightarrow{n} \cdot \overrightarrow{\alpha} = 0 \implies \frac{2}{3} - \frac{1}{2} - \frac{1}{c} = 0 \implies c = 6$$

故
$$\pi: \frac{x}{3} - \frac{y}{2} + \frac{z}{6} = 1$$
。

2.1.2 求满足下列条件的平面的参数方程

- 1. 过三点 A(1,0,0), B(1,3,2), C(-1,0,-2)。
- 2. 过两点 A(1,1,1), B(1,0,2) 且垂直于平面 x+2y-z-6=0。
- 3. 过点 A(1,2,3) 且与平面 x-y+z+1=0 和 3y-2z+2=0 都垂直。

证明.

2.1. 2.1 空间中的平面

1. 设平面上一点 M(x,y,z), $\overrightarrow{AB} = (0,3,2)$, $\overrightarrow{AC} = (-2,0,2)^T$, $\overrightarrow{AM} = (x-1,y,z)$. 由于 \overrightarrow{AB} 与平面无关,可设 m, 满足 $\overrightarrow{AM} = k\overrightarrow{AB} + m\overrightarrow{AC}$, 即 (x-1,y,z) = k(0,3,2) + m(-2,0,2). 故 π :

$$\begin{cases} x - 1 = -2m \\ y = 3k \\ z = 2k - 2m \end{cases}$$

2. 平面与 x + 2y - z - 6 = 0 平行,故 π 的法向量为 $\overrightarrow{n} = (1,2,-1)$. $\overrightarrow{AB} = (0,-1,1)$ 且可与平面无关,设 M(x,y,z) 是平面上一点. $\overrightarrow{AM} = (x+1,y+1,z+1)$,则有在 k,m,使得 $\overrightarrow{AM} = k\overrightarrow{a} + m\overrightarrow{aB}$,即 (x+1,y+1,z+1) = k(1,2,-1) + m(0,-1,1). 故 π :

$$\begin{cases} x = 1 + k \\ y = 1 + 2k - m \\ z = 1 - k + m \end{cases}$$

3. $\overrightarrow{\alpha} = (1, -1, 1)$, $\overrightarrow{\beta} = (0, 3, -2)$, $\overrightarrow{\alpha} \parallel \overrightarrow{\pi}$, $\overrightarrow{\beta} \parallel \overrightarrow{\pi}$, 且 $\overrightarrow{\alpha}$ 与 $\overrightarrow{\beta}$ 不共线. 设平面上一点 M(x, y, z), $\overrightarrow{AM} = (x - 1, y + 2, z - 3)$,则有任意 k, m, 使得 $\overrightarrow{AM} = k\overrightarrow{\alpha} + m\overrightarrow{\beta}$, 即 (x - 1, y + 2, z - 3) = k(1, -1, 1) + m(0, 3, -2). 故 π

$$\begin{cases} x = 1 + k \\ y = 2 - k + 3m \\ z = 3 + k - 2m \end{cases}$$

2.1.3 将下列平面的参数方程化为一般方程

1.

$$\begin{cases} x = 3 + k - m, \\ y = -1 + 2k + m, \\ z = 5k - 2m; \end{cases}$$

2.

$$\begin{cases} x = -2 + k, \\ y = -3 - k + m, \\ z = 1 + 3k - m. \end{cases}$$

证明.

1. 由:

$$\begin{cases} k - m = x - 3 \\ 2k + m = y + 1 \end{cases}$$

解得:

$$\begin{cases} k = \frac{1}{3}(x+y-2) \\ m = \frac{1}{3}(1-2x+7) \end{cases}$$

则:

$$z = 5k - 2m = \frac{5}{3}(x + y - 2) - \frac{2}{3}(2x + y) - \frac{14}{3} = 3x + y - 8$$

故平面方程: $3x + y - z - 8 = 0$

2. 由:

$$\begin{cases} k = x + 2 \\ m - k = y + 3 \end{cases}$$

解得:

$$\begin{cases} k = x + 2 \\ m = x + y + 5 \end{cases}$$

则:

$$z = 1 + 3k - m = 1 + 3(x + 2) - (x + y + 5) = 2x - y + 2$$

故平面方程: $2x - y - z + 2 = 0$

2.1.4 判断下列各组平面的位置关系:

- (1) x y z = 1 x y + 2z + 4 = 0;
- (2) x + 3y z 2 = 0 = 2x + 6y 2z + 1 = 0;
- (3) 3x + 9y 6z + 3 = 0 = 5 x + 3y 2z + 1 = 0.

证明.

- 1. 平面 $\vec{n}_1 = (1, -1, -1)$ 和 $\vec{n}_2 = (1, +1, 2)$,由于 $\vec{n}_1 \cdot \vec{n}_2 = 0$,则 $\vec{n}_1 \perp \vec{n}_2$,即两平面垂直。
- 2. 平面 $\vec{n}_1 = (1,3,-1)$ 和 $\vec{n}_2 = (2,6,-2)$, 由于 $\vec{n}_2 = 2\vec{n}_1$, 两平面平行但不重合。
- 3. 平面 $\vec{n}_1 = (3,9,-6)$ 和 $\vec{n}_2 = (1,3,-2)$, 由于 $\vec{n}_1 = 3\vec{n}_2$, 两平面平行但不重合。

2.1.5 第五题

设三个平面方程为:

- 1. $\pi_1 : ax + y + z + 1 = 0$
- 2. π_2 : x + ay + z + 3 = 0
- 3. π_3 : x + y 2z + 3 = 0
- 当 a 为什么数时,它们不相交于一点,又互相都不平行? **证明**. 若 π_1 , π_2 , π_3 三个平面不交于一点,故

$$\begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & -2 \end{vmatrix} = a^2 + a - 2 = 0$$

则 a=1 或 a=-2. 若 a=1,则 $\pi_1 \parallel \pi_2$;若 a=-2,则满足题意。

2.1.6 第六题

求平行平面 $Ax + By + Cz + D_1 = 0$ 与 $Ax + By + Cz + D_2 = 0$ 之间的距离。

证明. 平面 $\pi_1: Ax + By + Cz + D_1 = 0$ 与平面 $\pi_2: Ax + By + Cz + D_2 = 0$ 之间的距离 d 可以通过以下公式计算:

在平面 π_1 上取一点 $M_1(x_1,y_1,z_1)$,在平面 π_2 上取一点 $M_2(x_2,y_2,z_2)$,取两个平面的法向量为 $\vec{n}=(A,B,C)$

$$\mathbb{M} d(\pi, \pi_2) = \frac{\left| \overline{M_1 M_2} \cdot \vec{n} \right|}{|\vec{n}|} = \frac{|A(x - x_1) + B(y - y_1) + C(z - z_1)|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|P_2 - P_1|}{\sqrt{A^2 + B^2 + C^2}}$$

2.1.7 第七题

判断点 (1,2,3) 和 (2,0,5) 位于平面 3x-4y+z-2=0 的同侧还是异侧。**证明.** 将点代入平面可得:

$$3 - 8 + 3 - 2 = -4 < 0$$
$$6 + 5 - 2 = 9 > 0$$

故在异侧

2.1.8 第八题

试问当平面 x + ky - 2z - 9 = 0 满足下列条件时, k 分别为何值:

1. 与平面 2x - 3y + z + 14 = 0 夹角为 45° 。

$$\vec{n}_1 = (1, k, -2), \ \vec{n}_2 = (2, -3, 1), \quad \cos \theta = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|} = \frac{|2 - 3k - 2|}{\sqrt{5 + k^2} \cdot \sqrt{14}} = \frac{1}{2}, \ \text{##} \ \# \ k = \frac{1}{2}$$

2. 原点到平面的距离为 3。

$$d = \frac{|-9|}{\sqrt{5+k^2}} = 3$$
, \mathbb{M} $k = \pm 2$

2.1. 2.1 空间中的平面

33

2.1.9 求满足下列条件的平面的方程

1. 以 $\vec{n} = (1,2,3)$ 为法向量且与三个坐标平面围成的四面体体积为 6。

设平面方程为 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, 其中 $\frac{1}{a} : \frac{1}{b} : \frac{1}{c} = 1 : 2 : 3$, 且 |abc| = 36.

$$\begin{cases} a = 6 \\ b = 3 \\ c = 2 \end{cases}$$

或

$$\begin{cases} a = -6 \\ b = -3 \\ c = -2 \end{cases}$$

故平面方程为 $\frac{x}{6} + \frac{y}{3} + \frac{z}{2} = 1$ 或 $\frac{x}{-6} + \frac{y}{-3} + \frac{z}{-2} = 1$ 。

2. 过点 A(0,0,1), B(3,0,0) 且与 xy 平面夹角为 60°。

设平面 π 的法向量为 $\vec{n} = (A, B, C)$, 则 $\vec{n} \perp (3, 0, -1)$, 即 3A - C = 0.

xy平面的法向量 $\vec{n} = (0,0,1)$,则 $\cos 60^\circ = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|} = \frac{|C|}{\sqrt{A^2 + B^2 + C^2}} = \frac{1}{2}$,解得 $A^2 + B^2 - 3C$

故
$$A: B: C = 1: \pm \sqrt{26}: \sqrt{3}$$
。

平面
$$\pi: x + \sqrt{26}y + 3z - 3 = 0$$
 或 $x - \sqrt{26}y + 3z - 3 = 0$ 。

3. 过 z 轴且与平面 2x + y - z - 1 = 0 夹角为 30° 。

由于平面过z轴,则设其法向量 $\vec{n} = (A, B, 0)$.

$$\cos 30^\circ = \frac{|2A+B|}{\sqrt{6(A^2+B^2)}} = \frac{\sqrt{3}}{2}$$
, $\ \mathbb{P} \ 2A^2 - 16AB + 14B^2 = 0$.

$$(A-B)(A-7B) = 0$$
, $M = B \otimes A = 7B$.

故
$$\pi : x + y = 0$$
 或 $7x + y = 0$

2.1.10 第十题

已知两个平行平面的方程为 $\pi_1: 2x-y+3z-5=0$ 和 $\pi_2: 4x-2y+6z+1=0$, 求到 π_1 的距离与到 π_2 的距离之比为 2:1 的点的轨迹。

证明.

设
$$M(x,y,z)$$
, $d(M,\pi_1) = \frac{12x-y+3z-5}{\sqrt{4+1+9}}$, $d(M,\pi_2) = \frac{14x-2y+6z+11}{\sqrt{16+4+36}}$, $d(M,\pi_1) = 2d(M,\pi_2)$ 得 $2x-y+3z-5 = 4x-2y+6z+1$ 或 $2x-y+3z-5 = -(4x-2y+6z+1)$ 即 $x-y+3z+6 = 0$ 或 $6x-3y+9z-4 = 0$

2.1.11 第十一题

设平面 $\pi: Ax + By + Cz + D = 0$ 与连接两点 $M_1(x_1, y_1, z_1)$ 和 $M_2(x_2, y_2, z_2)$ 的线段交于点 M, M_2 不在平面 π 上且 $\overrightarrow{M_1M} = k\overrightarrow{MM_2}$, 证明:

$$k = -\frac{Ax_1 + By_1 + Cz_1 + D}{Ax_2 + By_2 + Cz_2 + D}.$$

证明. 设 M(x,y,z), 由定比分点公式可知,

$$x = \frac{x_1 + kx_2}{1+k}$$
, $y = \frac{y_1 + ky_2}{1+k}$, $Z = \frac{z_1 + kZ_2}{1+k}$

将 (x,y,z) 代入 π_1 , 可得

$$A\frac{x+kx_2}{1+k} + B\frac{y+ky_2}{1+k} + C\frac{z+kz_2}{1+k} + D = 0$$

即

$$Ax_1 + By_1 + Cz_1 + D + k(Ax_2 + By_2 + Cz_2) = 0$$

所以

$$K = -\frac{Ax_1 + By_1 + Cz_1 + D}{Ax_2 + By_2 + Cz_2}$$

2.1.12 第十二题

求平面 $\pi_1: x+y+z+1=0$ 与 $\pi_2: x+2y+z+4=0$ 形成的两个二面角中含有 (1,0,0) 的二面角。

证明. 设 T 的法向量为 $\vec{n}_1 = (1,1,1)$, T_2 的法向量为 $\vec{n}_2 = (1,2,1)$, P 在 T 的投影为 $M_1(x_1,y_1,z)$, P 在 T_2 的投影为 $M_2(x_2,y_2,z_2)$,取一个在 T_1 与 T_2 交线上的点 $M_0(2,-3,0)$,则 $\overrightarrow{PM_0} = (1,-3,0)$ 。

$$\overrightarrow{PM_1} = \frac{\overrightarrow{PM_0} \cdot \vec{n}_1}{\vec{n}_1 \cdot \vec{n}_1} \cdot \vec{n}_1 = -\frac{2}{3}(1, 1, 1) = \left(-\frac{2}{3}, -\frac{2}{3}, -\frac{2}{3}\right)$$

$$\overrightarrow{PM_2} = \frac{\overrightarrow{PM_0} \cdot \vec{n}_1}{\vec{n}_2 \cdot \vec{n}_2} \cdot \vec{n}_2 = -\frac{5}{6}(1, 2, 1) = \left(-\frac{5}{6}, -\frac{5}{3}, -\frac{5}{6}\right)$$

$$\cos \theta = -\cos \left\langle \overrightarrow{PM_1}, \overrightarrow{PM_2} \right\rangle = -\frac{2\sqrt{2}}{3}$$

$$\theta = \arccos\left(-\frac{2\sqrt{2}}{3}\right)$$

即
$$\theta = \arccos\left(-\frac{2\sqrt{2}}{3}\right)$$
 是所求的二面角。

2.1.13 第十三题

已知两平面的方程为 $\pi_1: 2x - y + z - 7 = 0$ 和 $\pi_2: x + y + 2z + 11 = 0$,

- 1. 求由此两平面构成的包含原点的二面角的角平分面的方程;
- 2. 上述二面角是锐角还是钝角?

证明.

1. 设点 P(x,y,z) 是所求平面上一点,则

$$\frac{|2x - y + z - 7|}{\sqrt{2^2 + 1^2 + 1^2}} = \frac{|x + y + 2z + 11|}{\sqrt{1^2 + 1^2 + 2^2}}$$

即

$$\begin{cases} 2x - y + z - 7 = x + y + 2z + 11 \\ 2x - y + z - 7 = -(x + y + 2z + 11) \end{cases}$$

解得:

$$\begin{cases} x - 2y - z - 18 = 0 \\ 3x + 3z + 4 = 0 \end{cases}$$

取 3x + 3z + 4 = 0 上一点 $M(0,0,-\frac{4}{3})$,将 $M(0,0,-\frac{4}{3})$ 与 O(0,0,0) 均代 入 π_1 与 π_2 中

可得
$$\pi_1: \begin{cases} M: -\frac{4}{3} - 7 < 0 \\ P: -7 < 0 \end{cases}$$

$$\pi_2: \begin{cases} M: \frac{-8}{3} + 11 > 0 \\ P: 11 > 0 \end{cases}$$

故 P,O 既在 π_1 同侧,又在 π_2 同侧

2. 设 3x + 3z + 4 = 0 的法向量为 $\vec{n_3} = (3,0,3)$, π_1 的法向量为 $\vec{n_1} = (2,-1,1)$

$$\cos\langle \overrightarrow{n_1}, \overrightarrow{n_3} \rangle = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_3}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_3}|} = \frac{\sqrt{3}}{2}$$

即 $\langle \vec{n_1}, \vec{n_3} \rangle = 60^\circ$, 所以 $\langle \vec{n_1}, \vec{n_2} \rangle = 120^\circ$, 则所求二面角 $\theta = \frac{\pi}{3}$

2.1.14 第十四题

设平面 π_i 的方程为 $A_i x + B_i y + C_i z + D_i = 0, i = 1, 2.$

- 1. 求平面 π_1 关于点 $M(x_0, y_0, z_0)$ 对称的平面的方程;
- 2. 求平面 π_1 关于 π_2 对称的平面的方程。

证明.

1. 设 π_1 关于 M 对称的平面是 π_2 ,则 $\pi_3//\pi_1$, π_3 : $Ax + By + Cz + D_3 = 0$,且 $d(\pi_1, M) = d(\pi_3, M)$, $A_1x_0 + B_1y_0 + C_1z_0 + D_1$ 与 $A_1x_0 + B_1y_0 + C_1z_0 + D_3$ 异号。

故
$$d(\pi, M) = d(\pi_3, M) \Leftrightarrow \frac{Ax_0 + By_0 + Cz_0 + D_1}{\sqrt{A^2 + B^2 + C^2}} = -\frac{Ax_0 + By_0 + Cz_0 + D_3}{\sqrt{A^2 + B^2 + C^2}}$$

即 $D_3 = -D_1 - 2(Ax_0 + By_0 + Cz_0)$

得 $\pi_3 = Ax + By + Cz - D_1 - 2(Ax_0 + By_0 + Cz_0) = 0$

2.2. 空间中的直线

37

2. 设 π_1 与 π_4 关于 π_4 对称, π_1 上的点 Q 与 π_2 上的点 P 是对称点。取 $M_2(X_2,Y_2,Z_2) \in \pi_2$, $\vec{n_2} = (A_2,B_2,C_2)$ 是 π_2 的法向量。并设 P(x,y,z),

$$\vec{PQ} = 2\frac{\vec{PM} \cdot \vec{n_2}}{\vec{n_2}^2} \cdot \vec{n_2} = 2\frac{A_2(x_2 - x) + B_2(y_2 - y) + C_2(z_2 - z)}{A_2^2 + B_2^2 + C_2^2} \cdot (A_2, B_2, C_2)$$

$$= -2\frac{A_2x + B_2y + C_2z + D_2}{A_2^2 + B_2^2 + C_2^2} (A_2, B_2, C_2)$$

$$\Rightarrow T = -2\frac{A_2x + B_2y + C_2z + D_2}{A_2^2 + B_2^2 + C_2^2},$$

由于
$$Q$$
 在 π_1 上,得 $A_1(x+A_2T)+B_1(y+B_2T)+C_1(z+C_2T)+D_1=0$,得到 P 的轨迹即为 π_4 :
$$\left[A_1(A_2^2+B_2^2+C_2^2)-2A_2(A_1A_2+B_1B_2+C_1C_2)\right]x+$$

$$\left[B_1(A_2^2+B_2^2+C_2^2)-2B_2(A_1A_2+B_1B_2+C_1C_2)\right]y+$$

$$\left[C_1(A_2^2+B_2^2+C_2^2)-2C_2(A_1A_2+B_1B_2+C_1C_2)\right]z+$$

$$\left[D_1(A_2^2+B_2^2+C_2^2)-2D_2(A_1A_2+B_1B_2+C_1C_2)\right]=0$$

—— §2.2 —— 空间中的直线

2.2.1 求满足下列条件的直线的方程

- 1. 过两点 $M_i(x_i, y_i, z_i)$, i = 1, 2;
- 2. 过点 P(1,0,1) 且平行于 y 轴;
- 3. 过点 P(1,2,3) 且垂直于平面 x + 4y 2z 1 = 0.

证明.

1. 设 $\vec{m}_1 = (x - x_1, y_2 - y_1, z_2 - z_1)$, 则直线 l 的参数方程为:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}.$$

2. 方向向量 $\vec{m} = (0,1,0)$, 则直线 l 的对称方程为:

$$\frac{x-1}{0} = \frac{y}{1} = \frac{z}{0}.$$

3. 方向向量 $\vec{m} = (1,4,-2)$, 则直线 l 的对称方程为:

$$\frac{x-1}{1} = \frac{y-2}{4} = \frac{z-3}{-2}.$$

2.2.2 将下列直线的一般方程化为标准方程

1.
$$\begin{cases} 3x - y - z - 1 = 0, \\ 4y + 3z + 3 = 0; \end{cases}$$

2.
$$\begin{cases} x - 2y + z - 3 = 0, \\ x + y - z + 2 = 0. \end{cases}$$

证明.

1. 对于向量 $\pi_1 = (3, -1, -1)$ 和 $\pi_2 = (0, 4, 2)$,它们的混合积 $\pi = \pi_1 \times \pi_2$ 计算如下:

$$\pi = \left(\begin{vmatrix} -1 & -1 \\ 4 & 3 \end{vmatrix}, \begin{vmatrix} -1 & 3 \\ 3 & 0 \end{vmatrix}, \begin{vmatrix} 3 & -1 \\ 0 & 4 \end{vmatrix} \right) = (1, -9, 12)$$

取两平面的交点 (0,0,-1), 故直线 l 的对称方程为:

$$\frac{x}{1} = -\frac{y}{9} = \frac{z+1}{12}$$

2. 对于向量 $\pi_1 = (1, -2, 1)$ 和 $\pi_2 = (1, 1, -1)$,它们的混合积 $\pi = \pi_1 \times \pi_2$ 计算如下:

$$\pi = \left(\begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix}, \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} \right) = (1, 2, 3)$$

取两平面的交点 (0,-1,1), 故直线 l 的对称方程为:

$$\frac{x}{1} = \frac{y+1}{2} = \frac{z-1}{3}$$

2.2. 空间中的直线 39

2.2.3 判断下列各组直线与平面的位置关系,如果相交则求出交点

- 1. 直线 $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-8}{2}$ 与平面 x + y z + 4 = 0;
- 2. 直线 $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z}{6}$ 与平面 2x + 3y + z 1 = 0;

3. 直线
$$\begin{cases} x - 2y + z - 4 = 0, \\ x + y - z + 1 = 0 \end{cases}$$
 与平面 $2x + 3y + z = 0$;
4. 直线
$$\begin{cases} 3x + z + 4 = 0, \\ x + y + z - 2 = 0 \end{cases}$$
 与平面 $2x - y + 6 = 0$.

4. 直线
$$\begin{cases} 3x + z + 4 = 0, \\ x + y + z - 2 = 0 \end{cases}$$
 与平面 $2x - y + 6 = 0$.

证明.

1. 直线方向向量 $\vec{n} = (1,1,2)$, 平面法向量 $\vec{n} = (1,1,-1)$ 。由于 $\vec{m} \cdot \vec{n} = 0$, 故前上前。

取直线上一点 (1,1,8) 代入平面方程得: $1+1-8+4=-2 \neq 0$,故直线与 平面相交。

2. 直线方向向量 $\vec{n} = (1, -2, 6)$, 平面法向量 $\vec{n} = (2, 3, 1)$ 。由于 $\vec{n} \cdot \vec{n} \neq 0$, 故平面与直线相交。

直线的参数方程为:

$$\begin{cases} x = 1 + t \\ y = -1 - 2t \\ Z = 6t \end{cases}$$

代入平面方程得:

$$2 + 2t - 3 - 6t + 6t - 1 = 0$$

解得 t=1, 故交点为 (2,-3,6)。

3. 由题意可得方程组:

$$\begin{cases} x - 2y + z - 4 = 0 \\ x + y - z + 1 = 0 \\ 2x + 3y + 7 = 0 \end{cases}$$

计算混合积:

$$\begin{vmatrix} 1 & -2 & 1 \\ 1 & 1 & -1 \\ 2 & 3 & 1 \end{vmatrix} = 11 \neq 0$$

故二面交于一点。

解方程:

$$\begin{vmatrix} 1 & -2 & 1 & 4 \\ 1 & 1 & -1 & -1 \\ 2 & 3 & 1 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & -1 & -1 \\ 0 & -3 & 2 & 5 \\ 0 & 1 & 3 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 11 & 11 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

得交点为 (1,-1,1)。

4. 由题意得方程组:

$$\begin{cases} 3x + 7 + 4 = 0 \\ x + y + 7 - 2 = 0 \\ 2x - y + 6 = 0 \end{cases}$$

计算混合积:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & -1 & 6 \end{vmatrix} = 0$$

解方程组:

$$\begin{vmatrix} 3 & 0 & 1 & -4 \\ 1 & 1 & 1 & 2 \\ 2 & -1 & 6 & 0 \end{vmatrix}$$

2.2. 空间中的直线

41

$$\begin{vmatrix} 1 & 1 & 1 & 2 \\ 0 & -3 & 2 & -10 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

可得方程组有无穷多组解, 故直线在平面内。

2.2.4 第四题

讨论直线方程

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

中各系数满足什么条件,才能使直线分别具有下列性质:

- 1. 过原点;
- 2. 与 y 轴平行;
- 3. 与 z 轴相交;
- 4. 与 yz 平面相交。

证明.

1.
$$D_1 = D_2$$

2.
$$B_1 = B_2$$

3.

$$\begin{vmatrix} C_1 & D_1 \\ C_2 & D_2 \end{vmatrix} \neq 0$$

$$\mathbb{E} C_1^2 + C_2^2 \neq 0$$

4.

$$\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} \neq 0$$

2.2.5 第五题

求点 P(-1,-1,-2) 到直线 $x-3=\frac{y+2}{2}=\frac{z-8}{3}$ 的距离以及它关于该直线的对称点。

证明. 直线过点 $M_0(3,-2,8)$, 方向向量 $\vec{m}=(1,2,-2)$ 。过 P 做直线的垂线垂足为 Q, P 关于直线对称点为 P'。

$$\overrightarrow{PQ} = \frac{|\overrightarrow{PM_0} \times \overrightarrow{m}|}{|\overrightarrow{m}|} = \frac{|(4,0,0) \times (1,2,-2)|}{\sqrt{1^2 + 2^2 + (-2)^2}} = 9$$

$$\overrightarrow{M_0Q} = \frac{\overrightarrow{M_0P} \times \overrightarrow{m}}{|\overrightarrow{m}|^2} = \frac{(-4,1,-10) \cdot (1,2,-2)}{1^2 + 2^2 + (-2)^2} \cdot (1,2,-2) = (2,4,-4)$$

$$\overrightarrow{OP} + \overrightarrow{OP'} = 2\overrightarrow{OQ}$$

故

$$\overrightarrow{OP'} = 2\overrightarrow{OQ} - \overrightarrow{OP} = 2(\overrightarrow{OM_0} + \overrightarrow{M_0Q}) - \overrightarrow{OP} = (11, 5, 10)$$

2.2.6 求满足下列条件的平面的方程

- 1. 过直线 $\frac{x-1}{2} = \frac{y}{1} = \frac{z}{2}$ 和原点;
- 2. 过直线 $\begin{cases} x + 3y 1 = 0, \\ 2y + z + 1 = 0 \end{cases}$ 且垂直于平面 3x 2y + 6z 1 = 0;
- 3. 过直线 $\frac{x}{-1} = \frac{y-2}{2} = \frac{z-1}{3}$, 在 x 轴和 y 轴上的截距相等且非零;
- 4. 过点 (4, -3, 1) 且平行于直线 $\frac{x}{6} = \frac{y}{2} = \frac{z}{-3}$ 和 x + 2y z + 1 = 0, 2x z + 2 = 0。

证明.

1. 直线方程可写为

$$\begin{cases} x - 2y + z = 0, \\ x - z - 1 = 0 \end{cases}$$

2.2. 空间中的直线

43

故平面方程可写为 k(x-2y-1)+m(x-z-1)=0, k, m 不全为 0 平面过原点, 故 -(k+m)=0, 可取 k=1, m=1, 则平面方程: 2y-z=0

- 2. 设过直线的平面方程为 k(x+3y-1)+m(2y+z+1)=0, k,m 不全为 0 即 kx+(3k+2m)y+mz+(m-k)=0, 其法向量为 $\overrightarrow{n}=(k,3k+2m,m)$ 故 $\overrightarrow{n}\cdot\overrightarrow{n_1}=(k,3k+2m,m)\cdot(3,-2,6)=0$, 即 3k=2m, 取 k=2, m=3 得平面方程为: 2x+12y+3z+1=0
- 3. 直线方程可写为 2x-y-2=0, 3x+z-1=0 故平面方程可写为 k(2x+y-2)+m(3x+z-1)=0, k, m 不全为 0 即 (2k+3m)x+ky+mz-(2k+m)=0, 则x轴上截距为 $\frac{2k+m}{2k+3m}$, y轴上截距为 $\frac{2k+m}{k}$ 则 $2k+3m=k\neq 0$, 取k=3, m=-1 满足题意得平面方程: 3x+3y-z-5=0
- 4. 直线方向向量分别为 $\overrightarrow{m_1} = (6,2,-3), \overrightarrow{m_2} = (1,2,-1) \times (2,0,-1) = (-2,-1,-4)$ 则平面法向量为 $\overrightarrow{n} = \overrightarrow{m_1} \times \overrightarrow{m_2} = (6,2,-3) \times (-2,-1,-4) = \left(\begin{vmatrix} 2 & -3 \\ -1 & -4 \end{vmatrix}, \begin{vmatrix} -3 & 6 \\ -4 & -2 \end{vmatrix}, \begin{vmatrix} 6 & 2 \\ -2 & -1 \end{vmatrix} \right) = (-11,30,-2)$ 故平面为: -11(x-4)+30(y+3)-2(z-1)=0, 即 11x-30y+2z-136=0

2.2.7 第七题

讨论直线 $\frac{x-c}{2} = \frac{y}{b} = \frac{z+2}{1}$ 和 $\frac{x}{a} = \frac{y+2}{-1} = \frac{z}{1}$ 重合、平行、相交或异面时,参数 a,b,c 分别满足的条件。

证明.

$$M_1(c,0,-2) \in l_1$$
, $M_2(0,-2,0) \in l_2$ $\overrightarrow{M_2M_1} = (c,2,-2)\overrightarrow{m}_1 = (2,b,1)$, $\overrightarrow{m}_2 = (a,-1,1)$

$$\begin{cases} 2a+c \neq 0, \\ b \neq 1 \end{cases}$$

- 2. 若 l_1 与 l_2 共面且重合时, 即 $\overrightarrow{M_1M_1} \parallel \overrightarrow{m_1} \parallel \overrightarrow{m_2}$, 故 c:2:a=2:b:-1=-2:1:1. 得 a = 2, b = -1, c = -4
- 3. 若 l_1 与 l_2 不重合,则 $\frac{2}{a} = \frac{1}{r} = 1$, 即 a = 2, b = -1, 但 c = -4
- 4. (1). 若 l_1 与 l_2 相交,则 (2a+c)(b+1)=0,

$$\begin{cases} b = 1 \stackrel{!}{\cancel{\bot}} a \neq 2 \\ b + 1 \stackrel{!}{\cancel{\bot}} 2a + c = 0 \end{cases}$$

2.2.8 求满足下列条件的直线的方程

- 1. 过点 (1,0,-2), 平行于平面 x-2y+z-1=0 且与直线 x+z+1=0 共 面;
- 2. 在平面 x + y + z + 1 = 0 内且与直线 x + 2y = 0 垂直相交;
- 3. 过点 (2,-3,1),与平面 x+y=0 夹角为 30° ,且与直线 $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-2}{2}$ 相交;
- 4. 过点 (4,0,-1),与直线 $\frac{x-1}{2} = \frac{y+3}{4} = \frac{z-5}{5}$ 和 $\frac{x}{5} = \frac{y-2}{-1} = \frac{z+1}{2}$ 都共面。

证明.

1. 设 $\frac{x}{A} = \frac{y}{B} = \frac{x+2}{C}$, 其中 A, B, C 不全为 0, 则 $(A, B, C) \cdot (1, -2, 1) = 0$, 即 A-2B+C=0。计算混合积:

故 $l: \frac{x+1}{0} = \frac{y}{1} = \frac{z+2}{2}$ 。

2. 联立 x+y+z+1=0 和 x+z+1=0, 得交点为 $M_0(0,0,-1)$ 。 设方向向量为 $\overrightarrow{m} = (a,b,c)$, 其中 a,b,c 不全为 0, 则 $(a,b,c)\cdot(1,1,1) =$ a + b + c = 0.

两直线垂直相交可得 $\vec{m} \cdot (1,0,1) = 0$ 和 $\vec{m} \cdot (1,2,0) = 0$, 即

$$\begin{vmatrix} a & b & c \\ 1 & 0 & 1 \\ 1 & 2 & 0 \end{vmatrix} = 0.$$

即 a=1, b+c-2a=0 可取 b=4, 即 $1:\frac{y}{4}=\frac{z}{3}$ 。

3. $M_0(2,-3,1)$ $M_1(2,-1,2)$, $\overrightarrow{m}=(1,2,2)$, $\overrightarrow{n}=(1,1,0)$, 设直线法向量 为 $\overrightarrow{m} = (a,b,c)$

为
$$\vec{m} = (a,b,c)$$
 则 $\frac{|\vec{m_1} \cdot \vec{n}|}{|\vec{m_1}| \cdot |\vec{n}|} = \sin \frac{\pi}{6}$,即 $\frac{|a+b|}{\sqrt{2}\sqrt{a^2+b^2+c^2}} = \frac{1}{2}$,即 $a^2 + 4ab + b^2 = c^2$ (*) 计算混合积可得 $\begin{vmatrix} a & b & c \\ 0 & 2 & 1 \\ 2 & 1 & 2 \end{vmatrix}$

代入(*)式可得
$$3b(5a+b)=0$$

若
$$b=0$$
, 则 $a=c=1$, 即 $\frac{x-2}{2}=\frac{y+3}{0}=\frac{z}{4}$

若
$$b = 0$$
, 则 $a = c = 1$, 即 $\frac{x-2}{2} = \frac{y+3}{0} = \frac{z}{4}$ 若 $b \neq 0$, 则 $5a + b = 0$, 即 $\frac{x-2}{2} = \frac{y+3}{10} = \frac{z-1}{3}$

2.2.9 第九题

设直线与三个坐标平面的夹角分别为 $\theta_1, \theta_2, \theta_3$, 证明:

$$\cos^2 \theta_1 + \cos^2 \theta_2 + \cos^2 \theta_3 = 2.$$

证明. 设直线方向向量为 $\overrightarrow{m} = (a,b,c)$

$$\cos^{2}\theta_{1} = 1 - \left(\frac{\overrightarrow{m} \cdot (0,0,1)}{\sqrt{a^{2} + b^{2} + c^{2}}}\right)^{2} = 1 - \frac{c^{2}}{a^{2} + b^{2} + c^{2}}$$

$$\cos^{2}\theta_{2} = 1 - \left(\frac{|\overrightarrow{m} \cdot (1,0,0)|}{\sqrt{a^{2} + b^{2} + c^{2}}}\right)^{2} = 1 - \frac{a^{2}}{a^{2} + b^{2} + c^{2}}$$

$$\cos^{2}\theta_{3} = 1 - \left(\frac{|\overrightarrow{m} \cdot (0,1,0)|}{\sqrt{a^{2} + b^{2} + c^{2}}}\right)^{2} = 1 - \frac{b^{2}}{a^{2} + b^{2} + c^{2}}$$

$$(\cos^{2}\theta_{1} + \cos^{2}\theta_{2} + \cos^{2}\theta_{3}) = 2$$

2.2.10 第十题

求直线 $\begin{cases} 5x - 4y - 2z - 5 = 0, \\ x + 2z - 1 = 0 \end{cases}$ 在平面 2x + y + z - 1 = 0 上的垂直投影直线的方程。

证明. 设直线的平面内 k(5x-4y-2z-5)+m(x+2z-1)=0, k, m 不全为 0

$$\overrightarrow{n} \cdot (2,1,1) = 0 \implies 2(5k+m) - 4k + (2m-2k) = 0 \implies 4(k+m) = 0$$

取
$$k = 1$$
, 则 $m = -1$ 得: $4x - 4y - 4z - 4 = 0$, 即: $x - y - z - 1 = 0$

故
$$l: \left\{ \begin{array}{l} x - y - z - 1 = 0 \\ 2x + 4y + z - 1 = 0 \end{array} \right.$$

2.2. 空间中的直线

47

2.2.11 求下列各对异面直线的距离和公垂线的方程:

1.
$$\frac{x-2}{1} = \frac{y-7}{-2} = \frac{z-6}{1}$$
 $\pi \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$;

2. x轴和 2x + z + 1 = 0.

证明.

1.
$$l_1: \frac{x-2}{1} = \frac{y-1}{-2} = \frac{z-6}{1}$$
 $M_1(2,7,6)$ $\overrightarrow{m_1} = (1,-2,1)$ $l_2: \frac{x-2}{1} = \frac{y+1}{-2} = \frac{z+1}{1}$ $M_2(-1,-1,-1)$ $\overrightarrow{m_2} = (1,-2,1)$ 公 垂线方向向量为 $\overrightarrow{m} = \overrightarrow{m_1} \times \overrightarrow{m_2} = \begin{pmatrix} \begin{vmatrix} -2 & -6 \\ 1 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 1 & 7 \end{vmatrix}, \begin{vmatrix} 1 & -2 \\ 7 & 6 \end{vmatrix} \end{pmatrix} = (4,6,8)$

$$d = \frac{|\overrightarrow{m_1} \times \overrightarrow{m_2}|}{\sqrt{\overrightarrow{m_1} \cdot \overrightarrow{m_2}}} = \frac{\sqrt{\begin{vmatrix} -8 & -7 \\ 6 & 8 \end{vmatrix}^2 + \begin{vmatrix} -7 & -3 \\ 8 & 4 \end{vmatrix}^2 + \begin{vmatrix} -3 & -8 \\ 4 & 6 \end{vmatrix}^2}}{\sqrt{4^2 + 6^2 + 8^2}} = \sqrt{6}$$

则直线可改写为:

$$l_1: \begin{cases} 2x + y - 13 = 0 \\ x - z + 4 = 0 \end{cases}$$

过 l_1 的平面 π_1 : $k_1(2x+y-13)+m_1(x-z+4)=0$, 法向量 $\overrightarrow{n_1}=(2k_1+m_1,k_1,-m_1)$

过 l_2 的平面 π_2 : $k_2(x-7z-6)+m_2(4x+6z+7)=0$, 法向量 $\overrightarrow{n_2}=(k_2,m_2,6m_2-7k_2)$

其中, 两平面垂直, 故:

$$\begin{cases} 2(2k_1 + m_1) + 3k_1 - 4m_1 = 0\\ 2k_2 + 3m_2 + 4(6m_2 - 7k_2) = 0 \end{cases}$$

解得:

$$\begin{cases} 7k_1 = 2m_2 \\ 26k_2 = 27m_2 \end{cases}$$

取
$$k_1 = 2$$
, $m_1 = 7$ 则 $k_2 = 27$, $m_2 = 26$,则:

$$l: \begin{cases} 9x + 2y - 7z + 2 = 0 \\ 27x + 26y - 33z + 20 = 0 \end{cases}$$

2.
$$M_1(0,0,0)$$
 $\overrightarrow{m_1} = (1,0,0)$ $M_2(0,5,-1)$ $\overrightarrow{m_2} = (1,1,-1) \times (2,0,1) = (1,-3,-2), \overrightarrow{M_1M_2} = (0,5,-1)$

公垂线方向向量
$$\overrightarrow{m} = \overrightarrow{m_1} \times \overrightarrow{m_2} = \begin{pmatrix} \begin{vmatrix} 0 & 0 \\ -3 & 2 \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ -2 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 1 & -3 \end{vmatrix} \end{pmatrix} = (0, 2, -3)$$

$$d = \frac{|\overrightarrow{M_1 M_2} \cdot \overrightarrow{m}|}{|\overrightarrow{m}|} = \sqrt{13}$$

$$\pi_1 : \begin{vmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 2 & -3 \end{vmatrix} = 3x + 2y = 0$$

$$\pi_2: \begin{vmatrix} x & y-5 & z+1 \\ 1 & -3 & -2 \\ 0 & 2 & -3 \end{vmatrix} = 13x + 3y + 2z - 13 = 0$$

$$l: \begin{cases} 3x + 4y + 27z = 0\\ 13x + 34y - 13 = 0 \end{cases}$$

2.2.12 第十二题

已知直线 L₁ 和 L₂ 分别有一般方程

$$L_1: \left\{ \begin{array}{l} x+2y-z+1=0, \\ x-4y-z+2=0 \end{array} \right. \quad L_2: \left\{ \begin{array}{l} x-y+z-2=0, \\ 4x-2y+1=0. \end{array} \right.$$

已知直线 L₁ 和 L₂ 分别有一般方程

$$L_1: \left\{ \begin{array}{l} x+2y-z+1=0, \\ x-4y-z+2=0 \end{array} \right. \quad L_2: \left\{ \begin{array}{l} x-y+z-2=0, \\ 4x-2y+1=0. \end{array} \right.$$

1.

$$\pi_0 = (1,1,1) \times (4,-2,0) = \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ 4 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 0 & -2 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 4 & -2 \end{vmatrix}) = (2,4,-2)$$

2.2. 空间中的直线

过1的平面
$$\pi_1: k(x+2y-z+1)+m(x-4y-z+2)=0$$
,其中 k,m 不全为0

即
$$(k+m)x + (2k-4m)y + (-k+m)z + (k+2m) = 0$$
, $\overrightarrow{n} = (k+m,2k-4m,-k-m)$

$$\pi \perp \pi_0$$
, $y \equiv \pi \cdot \overrightarrow{m_2} = k + m + 4k - 8m - k - m = 4k - 8m = 0$

取
$$k = 2$$
, $m = 1$, 则 $\pi : 3x - 3z + 4 = 0$

2.
$$\begin{cases} \pi: k_1(x+2y-z+1) + m_1(x-4y-z+2) = 0\\ \pi_2: k_2(x-y+z-2) + m_2(4x-2y+1) = 0 \end{cases}$$

将
$$M_0(1,1,1)$$
 代入 π_1, π_2 得
$$\begin{cases} 3k_1 - 2m_1 = 0 \\ -k_2 + 3m_2 = 0 \end{cases}$$

取
$$k_1 = 2, m_1 = 3; k_2 = 3, m_2 = 1$$

得
$$\begin{cases} 5x - 8y - 5z + 3 = 0 \\ x - 5y + 3z - 5 = 0 \end{cases}$$

2.2.13 第十三题

设 L_i 是过点 M_i , 以 α_i 为方向的三条两两异面的直线, i = 1, 2, 3. 求所有与此三条直线都共面的直线构成的图形的方程。

证明. 设
$$M_i(x_i, y_i, z_i)$$
, $\overrightarrow{\alpha_i} = (a_i, b_i, c_i)$, $M(x, y, z)$ 在该直线上 $(i = 1, 2, 3)$,

则 $M, M_i, \overrightarrow{x_i}$ 确定平面 $\pi_i: A_i x + B_i y + C_i z + D_i = 0$, 其中 $(A_i, B_i, C_i) = \overrightarrow{M_i M} \times \overrightarrow{\alpha_i}$,

则 $M \in \pi_i$ 且 $(\overrightarrow{M_1M} \times \overrightarrow{\alpha_1}, \overrightarrow{M_2M} \times \overrightarrow{\alpha_2}, \overrightarrow{M_3M} \times \overrightarrow{\alpha_3}) = 0$ 。

2.2.14 第十四题

设 L_1 和 L_2 是两条异面直线, 证明 L_1 上任意一点到 L_2 上任意一点的连线的中点轨迹是一个平面, 且这个平面垂直平分 L_1 与 L_2 的公垂线段。

证明. 取 x 轴为 L_1 的公垂线为 X 轴, X 轴的正半轴均 L_2 相交于 P(d,0,0)。 公垂线 OP 的垂直平分面过 $\left(\frac{d}{2},0,0\right)$ 且与 OP 垂直,故 (1,0,0) 是其法向量, $x-\frac{d}{2}=0$ 是其垂直平分面。

设 L_2 的方向向量 $\overrightarrow{z}=(X,Y,Z)$, 满足 $1\cdot X+0\cdot Y+0\cdot Z=0$, 即 X=0, 则 $L_2:\frac{x-d}{0}=\frac{y}{Y}=\frac{z}{Z}$ 。

于是 L_1 上任意一点 $M_1(0,0,Z)$, L_2 上任意一点 $M_2(d,tY,tZ)$,则 M_1M_2 中点为 $\left(\frac{d}{2},\frac{tY}{2},\frac{tZ+Z}{2}\right)$ 。

由于
$$t$$
可取任意实数,故中点轨迹方程为 $x=\frac{d}{2}$ 。

2.2.15 第十五题

设两条直线 L₁ 和 L₂ 分别有一般方程

$$L_1: \left\{ \begin{array}{l} A_1x+B_1y+C_1z+D_1=0,\\ A_2x+B_2y+C_2z+D_2=0 \end{array} \right. \quad L_2: \left\{ \begin{array}{l} A_3x+B_3y+C_3z+D_3=0,\\ A_4x+B_4y+C_4z+D_4=0. \end{array} \right.$$
 证明:

1.
$$L_1$$
 平行于 L_2 的充要条件是 $\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_4 & B_4 & C_4 \end{vmatrix} = 0;$

2.
$$L_1$$
 和 L_2 共面的充要条件是
$$\begin{vmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \\ A_3 & B_3 & C_3 & D_3 \\ A_4 & B_4 & C_4 & D_4 \end{vmatrix} = 0.$$

空间中的曲面和曲线

在数学中,严格性不是一切,但是没有它便没有一切。不 严格的证明微不足道。

---H.Poincaré

—— §3.1 —— 曲面和曲线的方程

3.1.1 指出下列方程所表示的图形

1.
$$yz + 2z^2 = 0$$
;

$$2. \ x^2 + 3y^2 + z^2 = 0;$$

3.
$$((x-1)^2 + (y+1)^2 + z^2 - 1)(x^2 + y^2 + z^2 - 4) = 0$$
;

4.
$$x^2 + (x^2 + y^2 + z^2 - 1)^2 = 0$$
;

5.
$$\begin{cases} x - 1 = 0, \\ z + 3 = 0; \end{cases}$$
;

6.
$$\begin{cases} x^2 + y^2 + z^2 = 9, \\ (x-1)^2 + (y-1)^2 + (z-1)^2 = 4. \end{cases}$$

证明. (1) $yz + 2z^2 = z(y+2z) = 0$ 解得 z = 0 或 y + 2z = 0, 故方程表示 两个平面

(2)
$$x^2 + 3$$
) $^2 + z^2 = 0$, 解得 $x = y = z$, 故方程表示一个点 (0,0,0)

(3)
$$[(x-1)^2 + (y+1)^2 + z^2 - 1][x^2 + y^2 + z^2 - 4] = 0$$
 解得 $(x-1)^2 + (y+1)^2 + z^2 = 1$ 或 $x^2 + y^2 + z^2 = 4$ 故方程表示的是以 $(1,-1,0)$ 为圆心1为半径; $(0,0,0)$ 为圆心,2为半径的两个圆

(4) $x^2 + (x^2 + y^2 + z^2 - 1)^2 = 0$,解得 x = 0 且 $x^2 + y^2 + z^2 = 1$ 即 x = 0 且 $y^2 + z^2 = 1$,故方程表示的是在 x = 0 这个平面上,以 (0,0,0) 为圆心, 1为 半径的一个圆

(5) 表示的是
$$\frac{x-1}{1} = \frac{y}{0} = \frac{7+3}{1}$$
 这条直线
(6)
$$\begin{cases} x^2 + y^2 + z^2 = 9 \\ (x-1)^2 + (y-1)^2 + (z-1)^2 = 4 \end{cases}$$
 解得
$$\begin{cases} x^2 + y^2 + z^2 = 9 \\ x + y + z = 4 \end{cases}$$
 表示的是以 $\left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right)$ 为圆心, $\frac{\sqrt{3}}{3}$ 为半径且在 $x + y + z = 4$ 平面上的一个圆。

3.1.2 求到点 A(0,0,-c) 和 B(0,0,c) 的距离之和为 2b 的点的轨迹方程 (b > c > 0).

证明. 设轨迹的动点为 P(x,y,z),则有 $\sqrt{x^2+y^2+(z-c)^2}+\sqrt{x^2+y^2+(z+c^2)}=2b$

即
$$\sqrt{x^2 + y^2 + (z - c)^2} - 2b = -\sqrt{x^2 + y^2 + (z + c)^2}$$
 两侧平方得 $b\sqrt{x^2 + y^2 + (z - c)^2} = b^2 - cz$ 再平方得 $x^2 + y^2 + \frac{b^2 - c^2}{b^2}z^2 = b^2 - c^2$ 记 $a^2 = b^2 - c^2 > 0$ 于是有 $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{c^2} = 1$

3.1.3 第三题

给出维维亚尼(Viviani)曲线

$$\Gamma: \left\{ \begin{array}{l} x^2 + y^2 + z^2 = a^2 \\ x^2 + \left(y - \frac{a}{2}\right)^2 = \left(\frac{a}{2}\right)^2 \end{array} \right.$$

的一个参数方程。

3.1.4 第四题

设曲面 S 有一般方程 F(x,y,z) = 0, 求

- 1. S 关于平面 $\pi: \overrightarrow{M_1M} \cdot n = 0$ 对称的图形 S_1 的方程,其中 M_1, n 的坐标分别为 $(x_1, y_1, z_1), (X_1, Y_1, Z_1)$.
- 2. S 关于直线 $L: \overline{M_2M} \times \mathbf{u} = 0$ 对称的图形 S_2 的方程,其中 M_2 , \mathbf{u} 的坐标分别为 (x_2, y_2, z_2) , (X_2, Y_2, Z_2) .

延明. (1) 记
$$M'(x', y', z')$$
 在S上, $M(x, y, z)$ 在 S_1 上, $\overrightarrow{MM'} = t \overrightarrow{n}$, $M_0 \left(\frac{x+x'}{2}, \frac{y+y'}{2}, \frac{z+y'}{2}\right)$ 由 $\overrightarrow{Mn'} = t \overrightarrow{n}$ 可得
$$\begin{cases} x' - x = tX_1 \\ y' - y = tY_1 \\ z' - z = tZ_1 \end{cases}$$
 由 $\overrightarrow{M_1} \overrightarrow{n}_0 \cdot \overrightarrow{n} = 0$, 可得 $\left(\frac{x+x'}{2} - x_1\right) x_1 + \left(\frac{y+y'}{2} - y_1\right) y_1 + \left(\frac{z+z}{2} - z_1\right) Z_1 = 0$
$$\left(\frac{2x + tX_1}{2} - x_1\right) X_1 + \left(\frac{2y + tY_1}{2} - y_1\right) Y_1 + \left(\frac{2\pi + 2}{2} - Z_1 - Z_1\right) Z_1 = 0$$

$$(x - x_1) X_1 + (y - y_1) Y_1 + (Z - Z_1) Z_1 = -\frac{1}{2} t \left(X_1^2 + Y_1^2 + Z_1^2\right)$$
 (2) $\overrightarrow{MM} \cdot \overrightarrow{U} = 0$, $M_0 \left(\frac{k+x'}{2}, \frac{y+y'}{2}, \frac{z+z}{2}\right)$ $\overrightarrow{M_2} \overrightarrow{M_0} = t \overrightarrow{u}$,则 $(x' - x) X_2 + (y' - y) Y_2 + (z' - z) Z_2 = 0$ 由 $\overrightarrow{M_2} \overrightarrow{A_0} = t \overrightarrow{u}$ 得
$$\begin{cases} \frac{x+x'}{2} - x_2 = ty_2 \\ \frac{y_1'}{2} - y_2 = tY_2 \\ \frac{z_2z'}{2} - z_2 = tZ_2 \end{cases}$$
 而 $F(x', y', z') = 0$,故 $F(2x_1 - x + 2tX_1, 2y_1 - y_{12}tY_1, 2Z_1 - z + 2tZ_1) = 0$

3.1.5 求满足下列条件的球面的方程

- 1. 一条直径的两个端点为 $M_1(2,-3,5)$ 和 $M_2(4,1,-3)$;
- 2. 过点 P(0,-3,1) 且与 xy-平面交线为圆周

$$\begin{cases} x^2 + y^2 = 16 \\ z = 0 \end{cases}$$

- 3. 内切于由平面 2x + 3y 6z 4 = 0 和三个坐标平面所构成的四面体的球面;
- 4. 球心在第一卦限且与三条坐标轴都相切.

证明. (1) 设 0 是
$$M_1M_2$$
 的中点,则 $O = \left(\frac{2+4}{2}, \frac{-3+1}{2}, \frac{5-3}{2}\right) = (3, -1, 1)$ $\overrightarrow{OM}_1 = (-1, -2, 4), |\overrightarrow{OM}_1| = \sqrt{1^2 + 2^2 + 44^2} = \sqrt{21}$,故球面方程为 $(x - 3)^2 + (y + 1)^2 + (z - 1)^2 = 21$ (2) 设 $O(0, 0, z_0)$ $B(0, 4, 0)$ $P(0, -3, 1)$ $|\overrightarrow{OB}||\overrightarrow{OP}|$ 即 $z_0^2 + \left(6 = 9 + (z_0 - 1)^2,$ 解得 $z_0 = -3$,故球面方程为 $x^2 + y^2 + (z + 3)^2 = 25$ (3) 设球面半径为 r , 则球心坐标为 $(r, r, r)(r > 0)$ 球心到平面的距离为 $\frac{|11r+4|}{\sqrt{2^2+3^2+6^2}} = \frac{1}{7}|11r+4| = r$,故 $r = 1$ 或 $r = \frac{2}{9}$

由于平面与坐标轴交点为
$$(2,0,0)$$
 $\left(0,\frac{4}{3},0\right)$ $(0,0,-\frac{2}{3})$ 故 $r=\frac{2}{9}$ 故球面方程为 $\left(x-\frac{2}{9}\right)^2+\left(y-\frac{2}{9}\right)^2+\left(2+\frac{2}{9}\right)^2=\frac{4}{81}$ (4) 设球的半经为R,球心为 (x_0,y_0,z_0) 故 $R^2=x_0^2+y_0^2=y_0^2+z_0^2=x_0^2+z_0^2$ 则 $y_0^2=x_0^2=z_0^2=\frac{R^2}{2}$ 且 $x_01y_0,z_0>0$,故 $x_0=y_0=z_0=\frac{\sqrt{2}}{2}R$ 故球面方程为 $\left(x-\frac{\sqrt{2}}{2}R\right)^2+\left(y-\frac{\sqrt{2}}{2}R\right)^2+\left(I-\frac{\sqrt{2}}{2}R\right)^2=R^2$

3.1.6 证明下列曲线都是在球面上的

$$\begin{cases} x = a \cos^2 \theta, \\ y = a \sin^2 \theta, \\ z = a \sqrt{2} \sin \theta \cos \theta, \quad 0 < \theta \le \pi; \end{cases}$$

$$\begin{cases} x = \frac{t}{1 + t^2 + t^4}, \\ y = \frac{t^2}{1 + t^2 + t^4}, \\ z = \frac{t^3}{1 + t^2 + t^4}, \quad -\infty < t < +\infty. \end{cases}$$

$$\underbrace{i \not \in \not H.}_{(x + y)^2 = a^2} (2) x^2 + y^2 + z^2 = \frac{t^2 + t^4 + t^6}{(1 + t^2 + t^4)^2} = \frac{t^2}{1 + t^2 + t^4} = y$$

$$\not \mid \not \mid x^2 + y^2 + \overrightarrow{x} = y \Rightarrow x^2 + \left(x - \frac{1}{2}\right)^2 + \overrightarrow{y} = \frac{1}{4}$$

3.1.7 第七题

$$\begin{cases} x^2 + y^2 + z^2 - 2x + 3y - 6z - 5 = 0, \\ 5x + 2y - z - 3 = 0 \end{cases}$$

和点 P(2,-1,1) 的球面的方程.

2y-z-3)=0 $\lambda_1\lambda_2$ 不全为 0

将
$$P(2,-1,1)$$
 带 λ ,可得 $\lambda_2=3\lambda_1$ 取 $\lambda_1=1\lambda_2=3$,故球面方程为 $x^2+y^2+z^2+Bx+9y-9z-14=0$

- 3.1.8 把下列球坐标系中的方程转化为直角坐标系中的方程
 - 1. 2 < r < 4;
 - 2. $r = 4\cos\varphi \ (0 \le \varphi \le \frac{\pi}{2});$
 - 3. $\varphi = \frac{\pi}{4}$;
 - 4. $r = 2, \varphi = \frac{\pi}{3}$.

证明. (1) $r^2 = x^2 + y^2 + z^2$ $2 \le r \le 4$, 故得 $4 \le x^2 + y^2 + z^2 \le 16$ $\frac{1}{(2) r^2} = 4 + \cos \varphi = 4z$, by $x^2 + y^2 + z^2 - 47 = 0$, $x^2 + y^2 + (z - 2)^2 = 0$ 4 $(z \geqslant 0)$

(3)
$$\tan^2 \varphi = 1$$
, $\text{th} \frac{x^2+4)^2}{z^2} = 1$, $x^2 + y^2 = z^2$

(4) $r^2 = x^2 + y^2 + \overline{z^2} = 4$, $\cos \varphi = \cos \frac{\pi}{3} = \frac{1}{2}$, $\cos^2 \varphi = \frac{z^2}{x^2 + u^2 + z^2} = \frac{1}{4}$, \Box

$$|z|=1$$
,且 $\cos \varphi>0$,故 $z=1$ 故方程为 $\begin{cases} x^2+y^2=3\\ z=1 \end{cases}$

3.1.9 过原点作球面,分别交三条坐标轴于点 A, B, C, 如果保持四 面体 OABC 的体积等于定值 R, 求球心的轨迹.

证明. 设 $A(x_0,0,0)$ $B(0,2y_0,0)$ $C(0,0,2z_0)$ 是球面与坐杯轴的交点,圆 心为 (x_0,y_0,z_0) ,则 $\frac{1}{6}|2x_0\cdot 2y_0\cdot 2z_0|=R$,即 $x_0y_0z_0=\pm \frac{3}{4}R$

—— §3.2 —— 几类常见的曲面

3.2.1 求满足下列条件的柱面的方程

1. 以曲线

$$\begin{cases} x^2 - y^2 = 25, \\ z = 0 \end{cases}$$

为准线,直母线平行于直线 x = y = z;

2. 以曲线

$$\begin{cases} (x-1)^2 + (y+3)^2 + (z-2)^2 = 25, \\ x+y-z+2 = 0 \end{cases}$$

为准线,直母线平行于 x 轴

3. 以曲线

$$\begin{cases} x = y^2 + z^2, \\ x = 2z \end{cases}$$

为准线, 直母线垂直于该准线所在的平面。

证明. (1) 设 M(x,y,z) M'(x',y',z') 在准线上 $\overrightarrow{MM'}=t$ $\overrightarrow{U}=(u_1,u_2,u_3)$, $\overrightarrow{u}=$ (1,1,1)

則
$$\begin{cases} x' = x + tu_1 \\ y' = y + tu_2 \\ z' = z + tu_3 \\ (x+t)^2 - (y+t)^2 = 25 \\ z+t = 0 \end{cases}$$
解得 $t = z_1$ 故: $(x-7)^2 - (y-1)^2 = 25$

解得
$$t = z_1$$
 故: $(x-7)^2 - (y-z)^2 = 25$

$$\begin{cases} x' = x + t \\ y' = y \\ z' = z \\ x + t + y - z + 2 = 0 \\ (x + t - 1)^2 + (y + 3)^2 + (z - 2)^2 = 0 \end{cases}$$
解得 $t = z - x - y - 2$, 故: $(z - y - 3)^2 + (y + 3)^2 + (z - 2)^2 = 25$

(3) 由准线方程得, 准线在平面 x-2z=0 上, 故直线的方向向量为 (1,0,2)

3.2. 几类常见的曲面

則
$$\begin{cases} x' = x + t \\ y = y \\ z' = z - 2t \\ x + t = y^2 + (z - 2t)^2 \\ x + t = 2(z - 2t) \end{cases}$$
解得 $t = \frac{2z - x}{5}$,代入得 $x + \frac{2z - x}{5} = y^2 + \left(z - \frac{4z - 2x}{5}\right)^2$ 即 $4x^2 + 25y^2 + z^2 + 47x - 107 - 15x = 0$

57

3.2.2 第二题

求空间曲线

$$\begin{cases} x^2 + y^2 + z^2 = 4 \\ x^2 + y^2 - 2x = 0 \end{cases}$$

在各坐标平面上的投影曲线的方程,并画图.

证明. x0y: 圆 $\begin{cases} (x-1)^2 + y^2 = 1 \\ z = 0 \end{cases}$ x0z: 一段拋物线 $\begin{cases} 2(x-2) = -z^2 \\ y = 0 \end{cases}$ y0z: 曲线 $\begin{cases} 4y^2 + (z^2 - 2)^2 = 4 \\ x = 0 \end{cases}$

3.2.3 证明下列方程表示的曲面是柱面,并求出柱面的方向

1.
$$(x+y)(y+z) = x + 2y + z$$
;

2.
$$x^2 + y^2 + z^2 + 2xz - 1 = 0$$
.

证明. (1)(x+y)(y+z) = (x+y) + (y+z),所以直线 $\begin{cases} x+y=0\\ y+z=0 \end{cases}$ 在曲面上,其方向向量是 (1,-1,1)

设 M(x',y',z') 是曲面止的任意点, P(x,y,z) 是过M的直线

$$\frac{x-x}{1} = \frac{y-y'}{0} = \frac{z-z'}{1}$$

上的一点, 我们要验证 P 在曲面上, 为此解得

$$\begin{cases} x + y = x' + y' \\ y + z = y' + z' \end{cases}$$

因此 (x+1)(y+z) = (x'+y')(y'+z') = x'+2y'+z' = (x+y)+(y+1) = x+2y+z

即点P的坐标满足曲面方程,说明整条直线都在曲面上,因此曲面是柱面

(2) 方程可化为
$$y^2 + (x+z)^2 = 1$$
, 所以直线 $\begin{cases} y=1\\ z+x=0 \end{cases}$ 在曲面上,其方向向量是 $(1,0,-1)$

设M(x',y',Z')是曲面上任意点,P(x,y,z)是过M的直线

$$\frac{x - x'}{1} = \frac{y - y'}{0} = \frac{z - z'}{1}$$

上的一点,我们要验证P在曲面上,为此解得

$$\begin{cases} y = y' \\ x + z = x' + z' \end{cases}$$

因此 $(x+z)^2 + y^2 = (x'+z')^2 + y'^2 = 1$

即点P的坐标满足曲面方程,说明整条直线都在曲面上,因此曲面是柱面。

3.2.4 title证明方程 $F(a_1x + b_1y + c_1z, a_2x + b_2y + c_2z) = 0$ 表示的图形是柱面.

证明. 设题中所给的曲面为 S,则有 $F(a_1x_0+b_1y_0+c_1z_0,a_0x_0+b_0y_0+c_2z_0)=0$

3.2. 几类常见的曲面

由于线性方程组
$$\begin{cases} a_1x + b_1y + c_1z = 0 \\ a_2x + b_2y + c_2z = 0 \end{cases}$$
 总有非零解 故可以取非零向量 $\overrightarrow{n} = (a,b,c)$,使得 $a_ia + b_ib + c_ic = 0$, $i = 1,2$ 过点 M_0 以 \overrightarrow{n} 为方向向量的直线 L 的参数方程为
$$\begin{cases} x = x_0 + ka \\ y = y_0 + kb \\ z = z_0 + kc \end{cases}$$

59

过点
$$M_0$$
以 \overrightarrow{n} 为方向向量的直线 L 的参数方程为
$$\begin{cases} x = x_0 + ka \\ y = y_0 + kb \\ z = z_0 + kc \end{cases}$$

将其代入S的方程左端,有 $F(a_1x_0+b_1x_0+c_1z_0+k(a_1a_1+b_1b+c_1c),a_2x_0+$ $b_2y_0 + (c_2z_0 + (a_2a_1 + b_bb + c_2c))$

$$= F(a_1x_0 + b_1y_0 + c_1z_0, a_2x_0 + b_2y_1 + c_2z_0) = 0$$

即LCS,由 M_0 的任意性可知,曲面S为柱面

3.2.5 求满足下列条件的圆柱面的方程

- 1. 外切于球面 $(x-1)^2 + (y-1)^2 + (z-1)^2 = 1$ 且方向为 (1,1,1);
- 2. 经过三条平行直线 x = y = z, x + 1 = y = z 1, x 1 = y + 1 = z;
- 3. 经过椭圆

$$\begin{cases} \frac{x^2}{4} + y^2 = 1\\ z = 0 \end{cases}$$

证明. (1) 球心 $M_0(1,1,1)$, 半径为R=1, 方向向量 $\overrightarrow{u}=(1,1,1)$, M 是球面上的一点, $\overline{M_0M}=(x-1,y-1,z-1)$

$$R = \frac{|\overrightarrow{M_0M} \times \overrightarrow{u}|}{|\overrightarrow{u}|}, |\overrightarrow{M_0M} \times \overrightarrow{u}| = \begin{vmatrix} e_1 & e_2 & e_3 \\ x - 1 & y - 1 & z - 1 \\ 1 & 1 & 1 \end{vmatrix} = (yz, z - x, x - y)$$

$$\mathbb{M} R^2 \cdot (\overrightarrow{u})^2 = (x - y)^2 + (y - z)^2 + (z - x)^2 = 3 \text{ if } 2x^2 + 2y^2 + 2z^2 - y^2 + y^2 +$$

2xy - 2yz - 2xz - 3 = 0

(2) 母线方向向量为 $\overrightarrow{v} = (1,1,1)$, 过原点与母线垂直的平面方程为 π :

$$x+y+z=0$$
 π 与母线的交点为 $A_1A_2A_3$,联立 $\begin{cases} x+y+z=0 \\ x=y=z \end{cases}$ $\begin{cases} x+y+z=0 \\ x+1=y=z-1 \end{cases}$ $\begin{cases} x+y+z=0 \\ x-1=y+1=z \\ \mathbb{M} A_1(0,0,0) & A_2(-1,0,1) \end{cases}$ $A_3(1,-1,0)$

平面 π 截圆柱所得圆所在的球的方程为: $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$, $A_1A_2A_3$ 在其中

$$\begin{cases} a^2 + b^2 + c^2 = r^2 \\ (+a)^2 + b^2 + (1-c)^2 = r^2 \\ (1-a)^2 + (-1-b)^2 + c^2 = r^2 \end{cases}$$

则 a=0 b=-1 c=1 , $r=\sqrt{2}$ 是方程组的一组解,令 D(0,-1,1) 在 所求的圆柱面对称轴上

圆柱面半径为
$$r = \sqrt{2}$$
,则圆柱面上的点 $M(x,y,z)$ 满足 $\frac{|\overrightarrow{MD} \times \overrightarrow{v}|}{|\overrightarrow{v}|} = r$ 即 $x^2 + y^2 + z^2 - xy - yz - xz + 3y - 3z = 0$

(3) 设母线的方向向量为 $\overrightarrow{v}=(1,b,c)$, 所求柱面半径为r, 在准线上的取三点 $M_1(2,0,0)$, $M_2(0,1,0)$, $M_3(1\frac{\sqrt{3}}{2},0)$,且圆柱面对称轴过点 $M_0(0,0,0)$,由准线上点到对称轴的距离等于半径可知

$$\begin{split} \frac{|\overrightarrow{M_0M_1}\times\overrightarrow{v}|}{\overrightarrow{v}} &= \frac{|\overrightarrow{M_0M_2}\times\overrightarrow{v}|}{\overrightarrow{v}} = \frac{|\overrightarrow{M_0M_3}\times\overrightarrow{v}|}{\overrightarrow{v}} = r \\ &\text{可解得 } b = 0, c = 2\frac{\sqrt{3}}{3}, r = 1 \\ &\text{由 } \overrightarrow{v} = \frac{|\overrightarrow{M_0M}\times\overrightarrow{v}|}{\overrightarrow{v}} = r \text{ 可得 } 4y^2 + (x \pm \sqrt{3}z)^2 = 4 \end{split}$$

- 3.2.6 把下列柱坐标系中的方程转化为直角坐标系中的方程,并指 出所表示的图形
 - 1. r = 4;
 - 2. $r = 2 \sin \theta \ (0 < \theta < \pi)$.

证明. (1) r=4, 则
$$\begin{cases} x = 4\cos\theta \\ y = 4\sin\theta \\ z = h \end{cases}$$
 表示准线为
$$\begin{cases} x^2 + y^2 = 16 \\ z = 0 \end{cases}$$
, 垂直xy平面

的圆柱

(2)
$$r=2\sin\theta$$
, 则
$$\begin{cases} x=2\sin\theta\cos\theta \\ y=2\sin^2\theta \\ z=h \end{cases}$$
 表示准线为
$$\begin{cases} x^2+y^2-2\neq0 \\ z=0 \end{cases}$$
,垂直 xy平面的圆柱

3.2.7 求满足下列条件的锥面的方程

1. 以双曲线

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\\ z = c(c \neq 0) \end{cases}$$

为准线,原点为锥顶;

2. 以曲线

$$\begin{cases} x^2 + y^2 + z^2 = 2Rz \\ ax + by + cz + d = 0 \end{cases}$$

为准线, (0,0,2R) 为锥顶;

3. 以 (5,4,2) 为锥顶,一条准线是 xy-平面上圆心为 (1,1,0)、半径为 2 的圆 周.

证明. (1) O(0,0,0), M'(x',y',z') 是准线上一点,那么所求锥面上一点 M(x,y,z) 满足方程

$$\begin{cases} x' = tx \\ y' = ty \\ z' = tz \\ \frac{t^2 x^2 x^2}{a^2} - \frac{y^2 y^2}{b^2} = 1 \\ tz = c \end{cases}$$

消去 $x_1y_1z_1t$ 可得所求锥面方程为 $a^2b^2z + a^2c^2y^2 - b^2c^2x^2 = 0$

(2) 设 (x,y,y,z) 为曲线上一点,那么所求锥面上一点 (x,y,z) 满足方程

$$\begin{cases} x_1^2 + y_1^2 + z_1^2 = 2Rz_1 \\ ax_1 + by_1 + (z_1 + d = 0) \\ x_1 = 0 + (x - 0)t \\ y_1 = 0 + (y - 0)t \\ z_1 = 2R + (z - 2R)t \end{cases}$$

消去 x_1, y_1, z_1, t 可得所求锥面方程为 $(2Rc+d)(x^2+y^2)+dz^2-2Raxz-2Rbyz+4R^2ax+4R^2by-4Rdz+4R^2d=0$

(3) 设 (x_1, y_1, z_1) 为曲线上一点,那么所求锥面上一点 (x, y, z) 满足方程

$$\begin{cases} x_1 - 5 = t(x - 5) \\ y_1 - 5 = t(y - 5) \\ z_1 - 5 = t(z - 5) \\ (x_1 -)^2 + (y_1 - 1^2 = 4) \\ z_1 = 0 \end{cases}$$

消去 x_1, y_1, z_1, t 可得所求锥面方程为 $25x^2 + 25y^2 + 28z^2 + 40xz + 70yz -$ 450x - 450y - 680z + 3950 = 0

3.2.8 过 x 轴和 y 轴分别作动平面, 夹角为定值 θ , 求交线的轨迹 方程,并说明它是一个锥面.

证明. 在交线上任取一点 $M(x_1,y_1,Z)$ 。由点M和x轴决定平面 π_1 的法向量 为 $\overrightarrow{n}_1 = \overrightarrow{e}_1 \times \overrightarrow{OM}$ 由点M与y轴决定的平面 π_2 的法向量为 $\overrightarrow{n}_2 = \overrightarrow{e}_2 \times \overrightarrow{OM}$,

由于
$$\overrightarrow{n_1}$$
 与 $\overrightarrow{n_2}$ 的夹角 α 为常数,那么 $\cos \alpha = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|} = \frac{|(\overrightarrow{e_1} \times \overrightarrow{OM}) \times (\overrightarrow{e_2} \times \overrightarrow{OM})|}{|(\overrightarrow{e_1} \times \overrightarrow{OM})| \times |(\overrightarrow{e_2} \times \overrightarrow{OM})|} \frac{|(0,z,y)(z,0,-x)|}{|(0,z,y)| \cdot |(z,0,x)|} = \frac{|x-1|}{\sqrt{z^2+y^2}\sqrt{z^2+x^2}}$ 即 (z^2+x^2) $(z^2+y^2) = (1+\tan^2\alpha) x^2y^2$,这是关于 x , y , z 的 4 次齐次方程,所以它是以原点为定点的锥面。

- 3.2.9 求满足下列条件的圆锥面的方程
 - 1. 以 (0,1,-1) 为锥顶,轴线垂直于平面 2x + 2y z + 1 = 0,半顶角为 30° ;
 - 2. 经过点 $M_1(2,-1,3)$ 和 $M_2(-2,-2,0)$,轴线过点 (3,-2,3) 且平行于 x 轴;
 - 3. 以 (1,1,1) 为锥顶,外切于球面 $x^2 + y^2 + z^2 + 2x 4y + 4z + 5 = 0$.

证明. (1). 设 (x,y,z) 由已知平面上的点,已知轴的方向向量为 (2,2,-1), 母线与轴夹角为节

那么
$$(x,y,z)$$
 满足以下方程 $\frac{|(x,y-1,z+1)(2,2,-1)|}{|(x,y-1,z-1)\cdot(2,2,-1)|} = \cos\frac{\pi}{6}$ 即 $(2x+2y-z-3)^2 = \frac{27}{4} (x^2+(y-1)^2+(z+1)^2)$

(2) 设轴线上的任意一点坐标为(3+t,-2,3),轴线上有点Q,使得 \overrightarrow{QM} 和 $\overrightarrow{QM_2}$ 和 轴线的夹角相等

轴线方向向量为
$$\overrightarrow{m} = (1,0,0)$$
 $\overrightarrow{QM_1} = (t-1,1,0)$, $\overrightarrow{Q}M_2 = (5+t,0,-3)$ 即 $\frac{|\overrightarrow{m} \cdot \overrightarrow{QM_1}|}{|\overrightarrow{m}| \cdot |\overrightarrow{QM_1}|} = \frac{|\overrightarrow{m} \cdot \overrightarrow{QM_2}|}{|\overrightarrow{m}| \cdot |\overrightarrow{QM_2}|}$ 解得 $|t+1| \cdot \sqrt{9+(5+t)^2} = |5+t| \cdot \sqrt{(t+1)^2+1}$ $t=1$ 或 $t=-2$

3.2. 几类常见的曲面

(1) 当锥顶坐标为 (4,-2,3) 时, $\cos\theta = \frac{\sqrt{2}}{2}$ 设 M(x,y,2) 是锥面上一点, $\mathbb{N}[\frac{\sqrt{2}}{2}] = \frac{|\overrightarrow{m} \cdot \overrightarrow{MM_1}|}{|\overrightarrow{m}| \cdot |\overrightarrow{MM_1}|}. \ \mathbb{N}[(x-2)^2 - (y+1)^2 - (z-3)^2] = 0$

(2) 当锥顶坐标为
$$(1,-2,3)$$
 时, $\cos\theta = \frac{2\sqrt{5}}{5}$ 则 $\frac{2\sqrt{5}}{5} = \frac{|\overrightarrow{m} \cdot \overrightarrow{MM_1}|}{|\overrightarrow{m}| \cdot |\overrightarrow{MM_1}|}$. 即 $(x-2)^2 - 4(y+1)^2 - 4(z-3)^2 = 0$ (3) 球面方程为 $(x+1)^2 + (y-2)^2 + (z+2)^2 = 4$,即球心为 $M_0(-1,2,-2)$,

设 $M_0(1,1,1)$, 轴线方向向量 $\overrightarrow{M_0N_0}=(2,-1,3)$, 半顶角为 α , $\cos\alpha=$ $\frac{\sqrt{|\overrightarrow{M_0N_0}|^2 - R^2}}{|\overrightarrow{M_0N_0}|} = \frac{\sqrt{5}}{7}$

$$M(x,y,y)$$
 是锥面上一点,则 $\cos \alpha = \frac{|\overrightarrow{M_0N_0} \cdot \overrightarrow{M_0M}|}{|\overrightarrow{M_0N_0}| \cdot |\overrightarrow{M_0M}|}$,即 $6x^2 + 9y^2 + \overrightarrow{z}^2 + 14xy - 12xz + 6yz - 4x - 28y + 4z + 14 = 0$

3.2.10 第十题

求直线族

$$L_k: \frac{x-k^2}{1} = \frac{y-k}{2} = \frac{z}{3}$$

构成的图形的方程.

直线族为平行直线,方向向量为 $\overrightarrow{m}=(1,2,3)$,每条直线过定点 $(k^2, k, 0)$

准线为
$$\begin{cases} y^2 = x \\ z = 0 \end{cases}$$
 ,从而 $\begin{cases} x' = x + t \\ y' = y + 2t \\ z' = z^2 + 3t \end{cases}$ 曲线方程为 $x - \frac{2}{3} = (y - \frac{27}{3})^2$

3.2.11 第十一题

求与z轴和直线

$$\begin{cases} x = 1, \\ z = 0 \end{cases}$$

都相交,且平行于平面 x+y+z=0 的所有直线构成的图形的方程.

证明. 记直线在平面 x+4+z-t=0 上,则与直线 $\begin{cases} x=1\\ z=0 \end{cases}$ 的交点为

(1,t-1,0),与z轴交点为(0,0,t)

则其方向向量为 (1,t-1,-t) ,故直线标准方程为 $\frac{x}{1}=\frac{y}{t-1}=\frac{zt}{-t}$,即 $t\frac{y}{x}+1$ 代回原方程,可得 $-x\left(\frac{y}{x}+1\right)=z-\frac{y}{x}-1$,即 $x^2+xz+xy-x-y=0$ \square

3.2.12 第十二题

设直线 L₁ 和 L₂ 的参数方程分别为

$$L_1: \begin{cases} x = \frac{3}{2} + 3t, \\ y = -1 + 2t, \\ z = -t, \end{cases}$$

$$L_2: \begin{cases} x = 3t, \\ y = 2t, \\ z = 0, \end{cases}$$

所有连接 L_1 和 L_2 上相同参数的点的直线构成图形 S,求 S 的方程.

证明. 连接参数相同的点,所得直线方向向量为 $\left(\frac{3}{2},-1,-t\right)$,过 $\left(3t,2t,0\right)$ 则直线方程为 $\frac{x-3t}{\frac{3}{2}}=\frac{y-2t}{-1}=\frac{z}{-t}\Rightarrow t=\frac{1}{6}x+\frac{1}{4}y$

代回原方程可得 $-t(y+t)+z=2t^2-t+tz$, 即 $\frac{x^2}{9}-\frac{y^2}{4}=-2z$

3.2.13 求下列旋转曲面的方程

1. 双曲线

$$\begin{cases} \frac{z^2}{4} - \frac{y^2}{9} = 1, \\ x = 0 \end{cases}$$

分别绕它的实轴和虚轴旋转;

2. 抛物线绕它的准线旋转

$$y^2 = 2px \quad (z = 0);$$

3. 曲线绕 x 轴旋转;

$$x^2 + y^2 = 1$$
, $(z = x^2)$;

4. 直线绕直线旋转.

$$x-1=0$$
, $(x+z+1=0, 2x-2y+z=0)$.

证明. (1) 实轴: z 轴
$$\frac{z^2}{4} - \frac{x^2 + y^2}{9} = 1$$
 虚轴: y 轴 $\frac{x^2 + z^2}{4} - \frac{y^2}{9} = 1$

(2)
$$\mu \notin \begin{cases} x = -\frac{p}{2} \\ z = 0 \end{cases}$$
 $\mathbb{P}x + \frac{p}{2} \notin \mathcal{N}\sqrt{(x + \frac{p}{2})^2 + z^2}, \quad \mathbb{P}y^2 = 2p\sqrt{(x + \frac{p}{2})^2 + z^2} - \frac{p}{2} = 2p\sqrt{(x + \frac{p}{2})^2 + z^2}$

 p^2

(3) 曲线到x轴距离为 $\sqrt{z^2+y^2} = \sqrt{x^4+1-x^2}$, 即 $z^2+y^2 = x^4+1-x^2$ 内所求

(4) 轴线方向向量
$$\overrightarrow{U} = \left(\begin{vmatrix} 0 & 1 \\ -2 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 2 & -2 \end{vmatrix} \right) = (2,1,-2)$$
 过

点 (1,0,-2)

设
$$M(x', y', z') M_0(x, y, z)$$

$$\begin{cases} 2(x-x') + (y-y') - 2(z-z') = 0\\ (x-1)^2 + y^2 + (z+x)^2 = (x'-1)^2 + y'^2 + (z'+2)^2\\ x'-1 = 0\\ z' = 0 \end{cases}$$

解得
$$(x-1)^2 + y^2 + (z+2)^2 = (2x+y-2z-2)^2 + 4$$

3.2.14 第十四题

设曲线Γ有参数方程

$$\begin{cases} x = f(t), \\ y = g(t), & a < t < b, \\ z = h(t), \end{cases}$$

求以 Γ 为母线、z 轴为轴线的旋转曲面的参数方程.
证明. 由题意得
$$\begin{cases} x^2 + y^2 + z^2 = f^2(t) + g^2(t) + h^2(t) \\ (x - f(t), y - g(t), z - h(t)) \cdot (0, 0, 1) = 0 \end{cases}$$
 解得
$$\begin{cases} x^2 + y^2 = f\left(f^2\right) + g^2(t) \\ z = h(t) \end{cases}$$

$$\mathbb{P} \begin{cases}
 x = \sqrt{f^2(t) + g^2(t)} \sin \theta \\
 y = \sqrt{f'(t)g^2(t)} \cos \theta \\
 z = h(t)
\end{cases}$$

$$a < t < b, \theta \in [0, 2\pi]$$

3.2.15 证明到两条垂直相交的直线的距离平方和是常数的点的轨迹是一个旋转曲面。

证明. 不妨设两条垂直相交的直线是 x轴和y轴,则有 $y^2 + x^2 + x^2 + x^2 = k$, k > 0

$$\phi x=0$$
,则有 $\begin{cases} y^2+2z^2=k \\ x=0 \end{cases}$, 故点的轨迹是以 $y^2+2z^2=k$ 为母线, z轴 为轴线形成的旋转曲面

3.2.16 证明下列方程表示的曲面是旋转曲面,并求出轴线

1.
$$(y^2 + z^2)(1 + x^2)^2 = 1$$
;

2.
$$x^2 + y^2 + z^2 - 2a(xy + yz + xz) = b^2$$
.

证明. (1) 令 $y^2 + t^2 = k^2$,则 $1 + x^2 = \frac{1}{k}$,即当 $x^2 = \frac{1}{k} - 1$ 时, $y^2 + x^2 = k^2$,表示以yz平面截取面得到的圆,从而曲面为一组构成,即为旋转曲面,轴线为x轴。

(2) 记
$$x^2+y^2+z^2+z^2=R^2$$
, 则 $x^2+y^2+z^2-2a$ $(xy+y(y+xz)=k^2-a$ $[(x+y+z^2-k^2)]$ 从而上式等价于
$$\begin{cases} x^2+y^2+z^2=k^2\\ x+y+z=\pm\sqrt{\frac{k^2-b^2}{a}+k^2} \end{cases}$$
,从而旋转曲面,轴线为 $x=y=z$

3.3. 二次曲面 67

— §3.3 — 二次曲面

3.3.1 第一题

已知 $ax^2 + by^2 + cz^2 + d = 0$ 是椭球面, $ax^2 + by^2 + cz^2 + d - s(x^2 + y^2 + z^2 + t) = 0$ 是两个平面. 证明如果它们相交, 则交线是两个圆周.

延明. 如果
$$ax^2 + by^2 + cz^2 + d^2 - s(x^2 + y^2 + z^2 + t) = 0$$
 有解,
$$\begin{cases}
ax^2 + by^2 + (z^2 + d = 0) \\
ax^2 + by^2 + cz^2 + d - s(x^2y^2 + z^2 + t) = 0
\end{cases}$$
即 $S(x^2 + y^2 + z^2 + t) = 0$,从而交线在圆 $x^2 + y^2 + z^2 + t = 0$ 上,取交 线为两个圆周

3.3.2 求满足下列条件的二次曲面的方程

1. 关于三个坐标轴都对称,并且经过点 $(1,2,\sqrt{11})$ 和曲线 $\left\{\begin{array}{l} \frac{x^2}{4} + \frac{y^2}{9} = 1, \\ z = 0 \end{array}\right.$ 的椭球面,顶点是原点

2.
$$\begin{cases} \frac{y^2}{16} - \frac{x^2}{9} = 1, \\ z = 0 \end{cases}$$
 和
$$\begin{cases} \frac{y^2}{32} + \frac{z^2}{8} = 1, \\ x = -3 \end{cases}$$
 的单叶双曲面 **证明**.

- 1. (1) 设方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, 代入曲线方程得 $a^2 = 4$, $b^2 = 9$, 从而方程为 $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{c^2} = 1$ 。将 $(1,2,\sqrt{11})$ 代入,可得 $c^2 = 36$,从而所求方程为 $x^2 + \frac{y^2}{9} + \frac{z^2}{36} = 1$ 。
- 2. (2) 设方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2y$, 代入坐标有 $\frac{4}{a^2} + \frac{25}{b^2} = 10$, $\frac{1}{a^2} + \frac{4}{b^2} = 4$, 解得 $a^2 = \frac{1}{2}$, $b^2 = 2$, 故为 $2x^2 + \frac{y^2}{2} = 2y$ 。
- 3. (3) 设方程为 $\frac{y^2}{a^2} + \frac{z^2}{b^2} \frac{x^2}{c^2} = 1$, 由于其过 $\left\{ \begin{array}{l} \frac{y^2}{16} \frac{x^2}{9} = 1 \\ z = 0 \end{array} \right.$, 则可得 $a^2 = 16$, $b^2 = 9$, 方程变为 $\frac{y^2}{16} + \frac{z^2}{b^2} \frac{x^2}{9} = 1$ 。 再将其代入 $\left\{ \begin{array}{l} \frac{y^2}{32} + \frac{z^2}{8} = 1 \\ x = -3 \end{array} \right.$ 可解得 $b^2 = 4$,从而求得方程为 $\frac{y^2}{16} + \frac{z^2}{4} \frac{x^2}{9} = 1$ 。

3.3.3 第三题

将抛物线
$$\begin{cases} x^2 = 2pz, \\ y = 0 \end{cases} ZsLfi@(sbffiytfi^*vt* \begin{cases} y^2 = -2qz, \\ x = 0 \end{cases} B@hff$$

证明. 对曲面上任意一点 (x,y,z),其在垂直于y轴的平面上,抛物线顶点坐标为 $(0,y,\frac{y^2}{-2q})$,则该点 (x,y,z) 在曲面上等价于 $(x,y,z)-\left(0,y,\frac{y^2}{2q}\right)=\left(x,0,z+\frac{y^2}{2q}\right)$ 在抛物线 $\begin{cases} x^2=2pz,\\ y=0 \end{cases}$ **s** $x^2\frac{1}{p-\frac{y^2}{q}=1}$ 为所求曲面。

3.3.4 分别写出双叶双曲面和椭圆抛物面的一种参数方程.

证明. 双叶双曲面
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
,则
$$\begin{cases} x = a \tan \varphi \cos \theta \\ y = b \tan \varphi \sin \theta \end{cases}, \quad \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \quad \theta \in [0, 2\pi]$$

椭圆抛物面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$

$$\begin{cases} x = a + \cos \theta, \\ y = bt \sin \theta \\ z = \frac{t^2}{2} \end{cases}$$

3.3.5 证明二次锥面是直纹面,并指出它的所有直母线.

证明. 设二次锥面方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$,则直线为 $\frac{x}{a} = \frac{y}{b} = \frac{z}{\sqrt{2c}}$ 在二次锥面上,且二次锥面为 $\frac{x}{a} = \frac{y}{b} = \frac{z}{\sqrt{2c}}$ 绕z轴旋转得到的曲面,故二次锥面为直纹面。

- 3.3.6 求单叶双曲面 $\frac{x^2}{4} + \frac{y^2}{9} z^2 = 1$ 上经过点 (2, -3, 1) 的直母线的方程.
 - 证明. 因为单叶双曲面是真纹面,它的直母线都可以表示为

$$\left\{ \begin{array}{l} \mu(\frac{x}{2}+z) + v(1+\frac{y}{3}) = 0 \\ \mu(1-\frac{y}{3}) + v(\frac{x}{2}-7) = 0 \end{array} \right. \\ \left. \begin{array}{l} \mu\left(\frac{x}{2}+y\right) + v\left(1-\frac{y}{3}\right) = 0 \\ \mu\left(1+\frac{y}{3}\right) + v\left(\frac{x}{2}-z\right) = 0 \end{array} \right.$$

3.3. 二次曲面 69

把点
$$(2,-3,1)$$
 代入上式可求得直是线方程为 $\begin{cases} x-2z=0\\ y+3=0 \end{cases}$ 和 $\begin{cases} x=2\\ y+3z=0 \end{cases}$

3.3.7 求双曲抛物面 $\frac{x^2}{16} - \frac{y^2}{4} = 2z$ 上平行于平面 3x + 2y - 4z - 1 = 0 的直母线的方程.

证明. 对于双曲抛物面
$$\frac{x^2}{16} - \frac{y^2}{4} = 2z$$
,直母线族可表示成 L_k :
$$\begin{cases} \frac{x}{a} + \frac{y}{b} = 2k \\ k\left(\frac{x}{a} - \frac{y}{b}\right) = z \end{cases}$$
, L_k' :
$$\begin{cases} \frac{x}{a} - \frac{y}{b} = 2k \\ k\left(\frac{x}{a} - \frac{y}{b}\right) = z \end{cases}$$
, L_k' :
$$\begin{cases} \frac{x}{a} - \frac{y}{b} = 2k \\ k\left(\frac{x}{a} + \frac{y}{b}\right) = z \end{cases}$$
 其中 $a = 4$, $b = 2$,方向向量分别为 $\overrightarrow{u_1} = \left(-\frac{1}{b}, \frac{1}{a}, -\frac{2k}{ab}\right) = \left(-\frac{1}{2}, \overrightarrow{p_1}, -\frac{k}{4}\right)$, $\overrightarrow{u_2} = \left(\frac{1}{b}, \frac{1}{a}, \frac{2k}{a}\right) = \left(\frac{1}{2}, \frac{1}{4}, \frac{k}{4}\right)$
$$\overrightarrow{u_1} = (3, 2, -4) = (3, 2, -4) = 1$$
 由 $\overrightarrow{x} = \overrightarrow{x} = \overrightarrow{x} = \overrightarrow{x} = 0$

 $\vec{u}_1 \cdot \vec{n} = \overrightarrow{u_2} \cdot \vec{n} = 0$

解得
$$k = 1$$
 或 $k = 2$,故方程为
$$\begin{cases} \frac{x}{4} - \frac{y}{2} = 2 \\ 2\left(\frac{x}{4} + \frac{y}{2}\right) = z \end{cases}$$
 和
$$\begin{cases} \frac{x}{4} + \frac{y}{2} = 1 \\ \frac{x}{4} - \frac{y}{2} = z \end{cases}$$

3.3.8 证明单叶双曲面 $x^2 + y^2 - z^2 = 1$ 的正交直母线交点的轨迹 是一个圆周.

证明. 过单双叶双曲面上所求轨迹一点 (x_0,y_2,z_0) ,有两条直母线 L_1,L_2 , 直线 L₁ 的方程为

$$\begin{cases} u(x+z) = v(1-y) &, \ \ \, \le 1 + y_0 \neq 0 \ \text{th}, \ \ u = x_0 - z_0, v = 1 + y_0 \\ v(x-z) = u(1+y) &, \ \ \, \le 1 + y_0 = 0 \ \text{th}, \ \ u = 1 - y_0, v = x_0 + z_0 \end{cases}$$

直母线
$$L_2$$
 的方程为
$$\begin{cases} u'(x+z) = v'(1+y) \\ v'(x-z) = u'(1-y) \end{cases}$$

当 $1+y_0=0$ 时, $u'=1+y_0, v'=x_0+z_0$; 当 $1+y_0=0$ 时, $u'=1+y_0$ $x_0 - z_0, v' = 1 - y_0$

直母线 L_1 的方向向量为 $\vec{v}_1 = (u^2 - v^2, 2uv, -(u^2 + v^2))$,直母线 L_2 的方向向 量为 $\overrightarrow{v_2} = (v'^2 - u'^2, 2u'v', u'^2 + v'^2)$

由 v_1, v_2 内积为0,可得 $\left(u^2-v^2\right)\left(v^2-{u'}^2\right)+4uvn'v'-\left(u^2+v^2\right)\left(u'^2+v'^2\right)=$ 0, $\mathbb{P} uu' = vv'$

因此由
$$x_0^2 + x_0^2 - 2_0^2 = 1$$
 可得所求轨迹方程为
$$\begin{cases} x_0^2 + y_0^2 - z_0^2 = 0 \\ z_0 = 0 \end{cases}$$

(2) 以定直线为Oxy平面,建立直角坐标系,使定点A的坐标为(0,0,a),设比值为 $k,k\geq 0$

k=0, 轨迹为一个点, 即 A。

k = 1, 轨迹方程为 $x^2 + y^2 = 2a(z - \frac{a}{2})$, 为椭圆抛物面。

$$k \neq 1$$
, 轨迹方程为 $x^2 + y^2 + (1 - r^2) \left(z - \frac{a}{1 - k^2}\right)^2 = \frac{a^2 k^2}{1 - k^2}$

0 < k < 1 时,轨迹为椭球面

k > 1 时, 轨迹为双叶双曲面

另解: 该双曲面的正交直母线方向向量分别为 $(-\sin\theta,\cos\theta,1)$, $(\sin\theta,-\cos\theta,1)$

都过定点
$$(\cos\theta,\sin\theta,0)$$
,从而其交点轨迹为 $\begin{cases} z=0 \\ x^2+y^2=1 \end{cases}$ 圆周。

3.3.9 证明双曲抛物面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z(a \neq b)$ 的正交直母线交点的轨 迹是一条双曲线.

证明. 双曲抛物线的直母线满足
$$L_k: \left\{ \begin{array}{l} \frac{x}{a} + \frac{y}{b} = 2k \\ k\left(\frac{x}{a} - \frac{y}{b}\right) = z \end{array} \right.$$
 $L_k': \left\{ \begin{array}{l} \frac{x}{a} - \frac{y}{b} = 2k \\ k\left(\frac{x}{a} + \frac{y}{b}\right) = z \end{array} \right.$ 方向向量分别为 $\vec{k} \left(-\frac{1}{b}, \frac{1}{a}, \frac{2k}{ab} \right)$, $\vec{k'} = \left(\frac{1}{b}, \frac{1}{a}, \frac{2k}{ab} \right)$,二者正交则 $b^2 - a^2 = 4k^2$ 故交点满足 $\left\{ \begin{array}{l} \frac{x}{a} + \frac{y}{b} = \sqrt{2\left(b^2 - a^2\right)} \\ \frac{x}{a} - \frac{y}{b} = \sqrt{2\left(b^2 - a^2\right)} \\ z = \sqrt{\frac{b^2 - x^2}{2}} \left(\frac{x}{a} - \frac{y}{b} \right) \end{array} \right.$,其交点在 $\left\{ \begin{array}{l} \frac{x^2}{a^2} = 2z \\ y = 0 \end{array} \right.$ 和 $\left\{ \begin{array}{l} \frac{x^2}{a^2} - \frac{y^2}{b^2} = a^2 - b^2 \\ z = \frac{a^2 - b^2}{2} \end{array} \right.$

3.3.10 证明双曲抛物面上两条异族直母线必相交, 同族直母线异面 但平行于同一平面.

证明. 设双曲抛物面方程为
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$$
,两组直母线分别为
$$\begin{cases} \mu\left(\frac{x}{a} + \frac{y}{b}\right) = 2\lambda \\ \mu z = \lambda\left(\frac{x}{a} - \frac{y}{b}\right) \end{cases}$$
 和
$$\begin{cases} \mu\left(\frac{x}{a} - \frac{y}{b}\right) = 2\lambda \\ \mu z = \lambda\left(\frac{x}{a} + \frac{y}{b}\right) \end{cases}$$

这四个方程系数与常数项所构成矩阵的行列式:

3.3. 二次曲面 71

$$\begin{vmatrix} \frac{\mu_1}{a} & \frac{\mu_1}{b} & 0 & -2\lambda_1 \\ \frac{\lambda_1}{a} & -\frac{\lambda_1}{b} & -\mu_1 & 0 \\ \frac{\mu_2}{a} & \frac{\mu_2}{b} & 0 & -2\lambda_2 \\ \frac{\lambda_2}{a} & -\frac{\lambda_2}{b} & -\mu_2 & 0 \end{vmatrix} = -\frac{2}{ab} \begin{vmatrix} \mu_1 & \mu_1 & 0 & \lambda_1 \\ \lambda_1 & -\lambda_1 & -\mu_1 & 0 \\ \mu_2 & \mu_2 & 0 & \lambda_2 \\ \lambda_2 & -\lambda_2 & -\mu_2 & 0 \end{vmatrix} = \frac{4}{ab} (\lambda_1 \mu_b - \lambda_2 \mu_1)^2 \neq$$

取双曲抛物面同族的两耳线为 $\begin{cases} \mu_1(\frac{x}{a}+\frac{y}{b}) \Rightarrow \lambda_1 \\ \mu_1z = \lambda_1(\frac{x}{a}-\frac{y}{b}) \end{cases} \qquad \text{和} \quad \begin{cases} \mu_1\left(\frac{x}{a}+\frac{y}{b}\right) = 2\lambda_2 \\ \mu_2z = \lambda_2\left(\frac{x}{a}-\frac{y}{b}\right) \end{cases}$ (与上式顺序反了) 取双曲抛物面异族的两条母线为 $\begin{cases} \mu\left(\frac{x}{a}+\frac{y}{b}\right) = 2\lambda \\ \mu z = \lambda\left(\frac{x}{a}-\frac{y}{b}\right) \end{cases}$

这四个方程的系数与常数项所构成矩阵的行列式为:

$$\frac{\frac{\mu}{a}}{\frac{\mu}{a}} \frac{\frac{\mu}{b}}{b} = 0 - 2\lambda$$

$$\frac{\frac{\lambda}{a}}{\frac{t}{a}} - \frac{\lambda}{b} - \mu = 0$$

$$\frac{\frac{t}{a}}{\frac{t}{a}} \frac{\frac{t}{b}}{b} = 0 - 2\nu$$

$$\frac{\frac{\nu}{a}}{\frac{\nu}{b}} \frac{\frac{\nu}{b}}{-t} - t = 0$$

$$\frac{\frac{\nu}{a}}{\frac{\nu}{b}} \frac{\frac{\nu}{b}}{-t} - t = 0$$

$$\frac{\frac{\nu}{a}}{\frac{\nu}{b}} \frac{\frac{\nu}{b}}{-t} - t = 0$$

$$\frac{\nu}{b} \frac{\frac{\nu}{b}}{\frac{\nu}{b}} - t = 0$$

$$\frac{\nu}{b} \frac{\frac{\nu}{b}}{\frac{\nu}{b}} - t = 0$$

$$\frac{\nu}{b} \frac{\nu}{b} \frac{\nu}{\nu} - t = 0$$

3.3.11 第十一题

由椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的中心沿着单位向量 $(\cos \theta_1, \cos \theta_2, \cos \theta_3)$ 引一射线交椭球面于点 M, 记 $r = |\overrightarrow{OM}|$, 证明

$$\frac{1}{r^2} = \frac{\cos^2 \theta_1}{a^2} + \frac{\cos^2 \theta_2}{b^2} + \frac{\cos^2 \theta_3}{c^2}.$$

证明. 设曲面上的点为 (x,y,z),则 $x = r\cos\alpha, y = r\cos\beta, z = r\cos\gamma$ 因此 $\frac{r^2\cos^2\alpha}{a^2} + \frac{r^2\cos^2\beta}{b^2} + \frac{r^2\cos^2\theta}{c^2} = 1$ 即 $\frac{1}{r^2} = \frac{\cos^2d}{a^2} + \frac{\cos^2\beta}{b^2} + \frac{\cos^2\gamma}{c^2}$

3.3.12 求与下列三条直线都共面的直线所构成的图形的方程

$$L_1: \left\{ \begin{array}{l} y-1=0, \\ x+2z=0, \end{array} \right. \quad L_2: \left\{ \begin{array}{l} y-z=0, \\ x-2=0, \end{array} \right. \quad L_3: \frac{x}{2}=\frac{y+1}{0}=\frac{z}{1}.$$

面

证明. 在l-1上取一动点 $A(-2\lambda,1,\lambda)$,在 l_3 上取一动点 $B(2\mu,-1,\mu)$,则 AB 连线为动直线,它的方程为

$$\frac{x + \lambda \lambda}{2(\mu + \lambda)} = \frac{y - 1}{-2} = \frac{z - \lambda}{\mu - \lambda}$$

由题设动直线与 l_2 相交,记 l_2 上点 c(2,0,0) 方向向量 $\vec{V}=(0,1,1)$,则有 $(\vec{v},\overrightarrow{AB},\overrightarrow{AC})=0$ 即

$$\begin{vmatrix} 0 & 1 & 1 \\ 2(\mu + \lambda) & -2 & \mu - \lambda \\ 2(-\lambda - 1) & 1 & \lambda \end{vmatrix} = 0$$

化简得 $\lambda\mu+1=0$,结合动直线方程消去参数 λ,μ ,得到所求取面方程为 $\frac{x^2}{4}+y^2-z^2=1$

3.3.13 证明如果直线 L 与二次曲面 S 的交点多于两个, 则 L 在 S 上.

证明. 设直线的参数方程为
$$L: \left\{ \begin{array}{ll} x = \alpha_1 + \beta_1 t \\ y = \alpha_2 + \dot{\beta}_2 t \end{array}, \ \Box 次曲线 $S: a_{11} x^2 + z = \alpha_3 + \beta_3 t \end{array} \right.$$$

 $a_{22}y^3 + a_{33}z^2 + 2a_{12}xy + 2a_{13}(z + 2a_{23})yz + 2b_1x + 2b_{22}y + 2b_3z + c = 0$ 将二者联立后,是一个关于 t 的二次方程,若其有 3 个及以上的根,根据代

数学基本定理可知,这个二次方程恒成立,故L在S上

- 3.3.14 选取适当的坐标系, 求下列轨迹的方程, 进而说明轨迹的类型.
 - 1. 到两定点距离之差等于常数的点的轨迹;
 - 2. 到一定点和一定平面(定点不在定平面上)距离之比等于常数的点的轨迹.

证明. (1) 取直角坐标系,使两定点A,B的坐标分别为 (a,0,0), (-a,0,0)。设动点 M(x,y,z), $|\overrightarrow{MA}| - |\overrightarrow{MB}| = \pm k$, $k \ge 0$ 。由三角不等式可知 $k \le 2a$. 当 0 < k < 2a 时,所求的轨迹方程为 $\frac{4x^2}{k^2} + \frac{4y^2}{k^2 - 4a^2} + \frac{4z^2}{k^2 - 4a^2} = 1$ 是双叶双曲

3.3. 二次曲面 73

当
$$k=2a$$
 时,所求轨迹方程为 $y^2+z^2=0$ 且 $|x|\geq a$ 当 $k=0$ 时,所求轨迹方程为 $x^2=0$,这是一对重合的 O_{yz} 平面。

3.3.15 设 L_1 和 L_2 是两条异面直线, 求分别过 L_1 和 L_2 并且互相垂直的平面的交线的轨迹.

证明. 设异面直线的距离如 2a、夹角为 2α , $\alpha \in (0, \frac{\pi}{4})$ 。以两直线的公垂线的x轴,公垂线段中点为坐标原点,两异面直线在 y0z坐标面上的投影的角平分线为坐标轴,则两直线的方程可表示为

$$L_1: \left\{ \begin{array}{l} x+a=0 \\ y-\tan\alpha=0 \end{array} \right. \quad L_2: \left\{ \begin{array}{l} x-a=0 \\ y+2\tan\alpha=0 \end{array} \right.$$

通过 L_1 和 L_2 的平面東方程分别为 $k(x+a)+y-Z\tan\alpha=0$, $l(x-a)+y+Z\tan\alpha=0$

要使两直线垂直,则有 $(k,1,-\tan\alpha)\cdot(L,1,\tan\alpha)=0$,即 $kl+1=\tan^2\alpha$ 于是相交直线的轨迹满足 $k(x+a)(x-a)-(y-z\tan\alpha)(y+z+\tan\alpha)=0$ 因而 $(1-\tan^2)x^2+y^2-y^2+a^2\alpha=(1-\tan^2)a^2$

: 交线的轨迹是直纹二次曲面.

另解:设 l_1 为坐标系的x轴,过 l_1 且平行于 l_2 的平面为xoy平面,则 l_1 过原点且方向向量为(1,0,0)

可设 l_2 过点, M(0,0,a) ,方向向量为 (b,c,0) ,因为 l_1l_2 不垂直,那么 $ab \neq 0$

若点 $M_0(x,y,z)$ 满足题设条件。那么 M_0 与 L,决定的平面 π_1 与 M_2 与 l_2 决定的平面 π_2 垂直,也就是说这两个平面的法向量的内积为零。

 π_1 的法向量为 $\overrightarrow{OM}_0 \times (1,0,0) = (0,-z,y)$, π_2 的法向量为 $\overrightarrow{M}_0 \times (b,c,0) = (c(z-a),-b(z-a),b+cx)$ 由两者内积为零可知, $M_0(x,y,z)$ 满足方程: $b\vec{z}^2-abz+bb^2-cxy=0$

即
$$b(z-\frac{a}{2})^2+b(y-\frac{c}{2b}x)^2-\frac{c^2}{4b}x^2=\frac{ba^2}{2}$$
,做仿射坐标变换
$$\begin{cases} x'=x\\ y^24-\frac{c}{2b}x\\ z'=z-\frac{a}{2} \end{cases}$$
 上式化为 $bz^2+by'^2-\frac{c^2}{4bx'^2}=\frac{ba^2}{2}$,那么它的单叶双曲面。

——— §3.4 ——— 二次曲面的切平面

3.4.1 证明过单叶双曲面上一点的两条直母线所决定的平面是该点 处的切平面.

证明. 设两直母线为
$$\begin{cases} \frac{x}{a} + \frac{z}{c} = m \left(1 + \frac{y}{b}\right) \\ m \left(\frac{x}{a} - \frac{z}{c}\right) = 1 - \frac{y}{b} \end{cases}$$
 与 $\begin{cases} \frac{x}{a} + \frac{z}{c} = n \left(1 - \frac{y}{b}\right) \\ n \left(\frac{k}{a} - \frac{z}{c}\right) = 1 + \frac{y}{b} \end{cases}$ 它们的交点是 $\left(\frac{a(mn+1)}{m+n}, \frac{b(n-m)}{m+n}, \frac{((mn-1)}{m-1}\right) \right)$ 切与交点的切平面为: $\frac{a(mn+1)}{m+n}x + \frac{b(n-m)}{n+m}y + \frac{c(mn-1)}{c^2}z = 1$ 化简得 $\frac{1}{a}(m+1)x + \frac{1}{b}(n-m)y - \frac{1}{c}(m-1)z = m+n$ 两直母线的方向为 $X_1: Y_1: Z_1 = a \left(m^2 - 1\right): 2bm: c \left(m^2 + 1\right)$ $X_2: Y_2: Z_2 = a \left(1 - n^2\right): 2bm: \left[-c \left(n^2 + 1\right)\right]$ 从而两直母线决定的平面为 $\left(\frac{a(mm+1)}{m} - \frac{y - \frac{b(n-m)}{m+n}}{m+n} - \frac{z - \frac{c(m+1)}{m+n}}{m+n}\right) = 0$ $a \left(1 - n^2\right) - 2bm - 1 \left(n^2 + 1\right)$ 化简得 $\frac{1}{a}(m+1)x + \frac{1}{b}(n-m)y - \frac{1}{c}(m-1)z = m+n$ 因此所求两平面一致,原命题得证。

3.4.2 第二题

已知椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上任意一点处的法线都通过它的对称中心, 试问 a,b,c 应该满足什么条件.

证明. 由题意得
$$a_{11} = \frac{1}{a^2}, a_{22} = \frac{1}{b^2}, a_{33} = \frac{1}{c^2}, a_{44} = -1$$

则 $F(x_0, y_0, z_0)$ 可由 $\begin{pmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{pmatrix} = \begin{pmatrix} \vec{a} & 0 & 0 & 0 \\ 0 & b^{-2} & 0 & 0 \\ 0 & 0 & c^{-2} & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$ 得到法线方

积

$$a^2 \frac{x - x_0}{x_0} = b^2 \frac{y - y_0}{y_0} = c^2 \frac{z - z_0}{z_0}$$
, 解得 $a^2 = b^2 = c^2$

3.4.3 证明空间中两个相交平面的所有奇异点构成它们的交线.

<u>证明.</u> 以其中一个平面的 yoz 平面,另一个平面内 y=kx,两平面交线为z轴,则两平面由 (6-kx)x=0,即 $-kx^2+xy=0$,其中 $a_1=-k$, $a_{12}=\frac{1}{2}$,故

$$\begin{pmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{pmatrix} = \begin{pmatrix} -k & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\begin{cases} F_1 = -kx + \frac{1}{2}y \\ F_2 = \frac{1}{2}x \\ F_3 = 0 \\ F_4 = 0 \end{cases} \qquad \text{所有的奇异点为} \begin{cases} F_1 = 0 \\ F_2 = 0 \\ F_3 = 0 \\ F_4 = 0 \end{cases} \text{ 即所有的}$$
奇异点构成 z 轴。

3.4.4 第四题

求二次曲面

$$2x^2 + 5y^2 + 2z^2 - 2xy + 6yz - 4x - y - 2z = 0$$

的经过直线

$$\begin{cases} 4x - 5y = 0 \\ z - 1 = 0 \end{cases}$$

的切平面方程.

证明. 设切点为 $M(x_0,y_0,z_0)$ 则切平面方程为 $(2x_0-y_0-2)x+\left(5y_0-x_0+3z_0-\frac{1}{2}\right)y+(2z_0z_0y_0-1)z-\left(2x_0+\frac{1}{2}y_0+z_0\right)=0$

直线上有点 (0,0,1) 代入其中,可得 $\frac{5}{2}y_0+7_0-2x-1=0$ 又 M_0 点在平面上,则 $2x_0^2+5y_0^2+2z_0^2-2x_0y_0+6y_0z_0-4x_0-y_0-2z_0=0$ 联立可求出 M_0 坐标为 (0,0,1),代回得所求平面方侱: $-2x+\frac{5}{2}y+z-1=$

0

二次曲线和二次曲面的分类

在数学中,严格性不是一 切,但是没有它便没有一切。不 严格的证明微不足道。

-H.Poincaré

§4.1 仿射坐标变换

4.1.1 第一题

设 ABCD 是平面上的一个梯形, $\overrightarrow{AB}=2\overrightarrow{DC}$, 记 O 为边 AB 的中点, 求从坐

标系 $I[O;\overrightarrow{OC},\overrightarrow{OD}]$ 到 $I'[A;\overrightarrow{AB},\overrightarrow{AC}]$ 的点坐标变换公式. **证明.** $\overrightarrow{AB} = 2\overrightarrow{OB} = 2\overrightarrow{OC} = 2(\overrightarrow{OC} - \overrightarrow{OD}) = 2\overrightarrow{OC} - 2\overrightarrow{OD},\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{OD} = 2\overrightarrow{OC} - \overrightarrow{OD}$

从而过渡矩阵为
$$C = \begin{pmatrix} 2 & 2 \\ -2 & -1 \end{pmatrix}$$

$$\overrightarrow{OA} = \overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC} , \text{ 从而A坐标为 } (-1,1)$$
故点坐标变换公式为 $\binom{x}{y} = \begin{pmatrix} 2 & 2 \\ -2 & -1 \end{pmatrix} \binom{x'}{y'} + \binom{-1}{1}$

4.1.2 第二题

设 OABC 是一个四面体, D, E, F 分别是棱 AB, BC, CA 的中点, 建立坐标系 $I[O;\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}], I'[O;\overrightarrow{OD},\overrightarrow{OE},\overrightarrow{OF}].$

- 1. 求从 I 到 I' 的点坐标变换公式;
- 2. 求 A, B, C 在 I' 中的坐标和直线 AB, BC, CA 在 I' 中的方程;

3. 求直线 DE, EF, FD 在 I 中的方程.

4.1.3 第三题

设 I 和 I' 是空间中的两个仿射坐标系,已知 I' 的原点 O' 在 I 中的坐标为 (1,5,2),坐标轴 x' 轴平行于向量 (0,1,1), y' 轴平行于向量 (1,0,1), z' 轴平行于向量 (1,1,0),又知道 I 的原点 O 在 I' 中的坐标为 (-1,-1,2),求从 I 到 I' 的点坐标变换公式.

证明. 由于 (0,0,1), (1,0,1), (1,1,0) 是I中坐标向量, 故I到 I'的过渡矩阵形如 $\begin{pmatrix} a & b & c \\ a & o & c \\ a & b & 0 \end{pmatrix}$

4.1. 仿射坐标变换 79

可得
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & b & c \\ a & 0 & c \\ a & b & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$$
 将 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$ 代入可得
$$\begin{pmatrix} -b + 2c = -1 \\ -a + 2c = -5 \\ -a - b = -2 \end{pmatrix} \Rightarrow \begin{pmatrix} a = 3 \\ b = -1 \\ c = -1 \end{pmatrix}$$
 因此,坐标变换公式为 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 \\ 3 & 0 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$

4.1.4 第四题

在空间直角坐标系中,以互相垂直的三条直线 $L_1: x=y=z, L_2: x=\frac{y}{-2}=z, L_3: x=-z, y=0$ 为坐标轴建立一个定向不变的新直角坐标系,求从新坐标系到旧坐标系的过渡矩阵.

证明.
$$I'$$
上的 $\begin{cases} (1,0,0) \\ (0,1,0) \\ (0,0,1) \end{cases}$ 对应原坐标为 $\begin{cases} \left(\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}\right) \\ \left(\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{3},\frac{\sqrt{6}}{6}\right) \\ \left(\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2}\right) \end{cases}$ 记过渡矩阵为 $C = \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} & 0 \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \end{pmatrix}$ 为旧到新,则新到旧为 $C^{-1} = \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$ 为所求

4.1.5 第五题

设 I 和 I' 是空间中的两个仿射坐标系, 已知 I' 的三个坐标平面在 I 中的方程分别为:

$$y'z'$$
 平面: $x + y + z = 0$,
 $x'z'$ 平面: $-x + y - z - 1 = 0$,
 $x'y'$ 平面: $y + z + 2 = 0$,

且 I' 中点 (1,-1,2) 在 I 中的坐标为 (1,1,1), 求:

- 1. 从 I 到 I' 的点坐标变换公式;
- 2. I 中的平面 3x + y z + 1 = 0 在 I' 中的方程;
- 3. $I + \text{ Prop } = \frac{y+1}{2} = \frac{z}{1} = \frac{z$

证明. 从I到I'的坐标变换公式形如
$$\begin{cases} x' = a(x+y+z) \\ y' = b(-x+y-z-1) \\ z' = c(y+z+2) \end{cases} \qquad \begin{pmatrix} y \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} x' \\ y' \\ z' \end{cases}$$

得
$$\begin{cases} a = \frac{1}{3} \\ b = \frac{1}{2} \end{cases} \quad \mathbb{P} \begin{cases} x' = \frac{1}{3}(x+y+z) \\ y' = \frac{1}{2}(-x+y-z-1) \end{cases} \quad \mathbb{P} \times \mathbb{P} \times$$

(2)
$$3(3x' - 2z' + 2) + (\frac{3}{2}x' + y' + \frac{1}{2}) - (-\frac{3}{2}x' - y' + 2z' - \frac{1}{2})' + 1 = 12x' + 2y' - 8z' + 10 = 0, \ \mathbb{P} 6x' + y' - 4z' + 5 = 0$$

(3) I中方向向量 (2,1,1) 在I'中表示内 ($\frac{2}{3}$,0,0)

I中定点 (1,-1,0) 在I'中表示为 $(0,-\frac{3}{2},\frac{1}{2})$

则所求方程为
$$\begin{cases} x = \frac{2}{3}t \\ y = -\frac{3}{2} \\ z = \frac{1}{2} \end{cases}$$

4.1.6 第六题

设空间中两个仿射坐标系 $I[O;e_1,e_2,e_3]$ 和 $I'[O;e_1',e_2',e_3']$ 的坐标向量满足

$$e_i \cdot e'_j = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases}$$
 $i, j = 1, 2, 3,$

用 e_1,e_2,e_3 表示从 I' 到 I 的过渡矩阵.

证明. 由于
$$e_i \cdot e'_j = \begin{cases} 1, & i = j \quad (i, j = 1, 2, 3) \\ 0, & i \neq j \end{cases}$$
,则 $e_i = e'_j \quad (i \neq j)$ 垂直

4.1. 仿射坐标变换 81

从而 e_1 用 (e'_1, e'_2, e'_3) 表示坐标为 $(a_1, 0, 0)$ 且 $e_1 \cdot e'_1 = 1$, 则 $a_{11} = 1$ 故 e_1 为 (1, 0, 0) e_2 力 $(0, 1, 0)e_3\theta(0, 0, 1)$

从而从
$$I$$
到 I' 过渡矩阵为 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

4.1.7 第七题

设 I 和 I' 都是平面右手直角坐标系, 从 I 到 I' 的点坐标变换公式为

$$\begin{cases} x = \frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' + 1, \\ y = -\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' - 2. \end{cases}$$

证明. $\binom{x}{y} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \binom{x'}{y'} + \binom{1}{-2}$, 则从I到I'的变换过程的将坐标轴顺时针旋转 45° ,再将原点平移至(-1,2)得到。

4.1.8 第八题

在平面右手直角坐标系 I 中,一个椭圆的长轴和短轴的方程分别为 x + y = 0 和 y - y + 1 = 0,并且长半轴为 2,短半轴为 1,求它的方程.

证明. 直线 l_1 与 l_2 的交点为 $\left(-\frac{1}{2},\frac{1}{2}\right)$, 那么以 $\left(-\frac{1}{2},\frac{1}{2}\right)$ 为新坐标系的原点, l_2 为x轴, l_1 为y轴

由于新坐标系与旧坐标系的X轴夹角 θ 满足 $\tan\theta=1$,那么从旧坐标系到新坐标系的坐标变换公式为 $\binom{x}{y}=\left(\begin{array}{cc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array}\right)\binom{x'}{y'}+\binom{-\frac{1}{2}}{2}$

那么可解出
$$\begin{pmatrix} \sqrt{\sqrt{2}} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \\ -\frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix} {x+\frac{1}{2} \choose y-\frac{1}{2}} = {x' \choose y} 即 \begin{cases} x' = \frac{\sqrt{2}}{2}(x+y) \\ y' = \frac{x_2}{2}(-x+y-1) \end{cases}$$

由于所求方程在新坐标系中的方程为 $\frac{y^2}{4} + \frac{x^2}{1} = 1$

因此可解得椭圆在旧坐标系中的方程为 $5x^2+5$) $^2+6y+2x-2y-7=$

4.1.9 第九题

在平面右手直角坐标系 I 中, 一条双曲线的两条对称轴的方程分别为 x + 2y - 4 = 0 和 2x - y + 2 = 0,并且它经过原点和点 $\left(-\frac{9}{4}, 1\right)$,求它的方程.

证明. 可设所求双曲线在I中的方程形如 $a(x+2y-4)^2+b(2x-y+2)^2=1$,将(0,0), $\left(-\frac{9}{4},1\right)$ 代入其中解得 $a=\frac{1}{15}$ $b=\frac{1}{60}$,代入并化简可得所求双曲线在I中方程为 $3y^2+4xy-8x-128=0$

4.1.10 第十题

在平面右手直角坐标系 I 中, 一条抛物线的准线为 x - y + 2 = 0, 焦点坐标为 (2,0), 求它的方程.

证明. 由抛物线准线和焦点可知,抛物线的顶点为 (1,1),那么可令 x 为新坐标系的x轴,(1,1)为新坐标系的原点,新坐标系的y轴垂直于x轴且x轴满足右手坐标系。则抛物线在新坐标系中的方程为 $x'^2 = -4\sqrt{2}y$,则从旧坐标系到新坐标系的坐标变换公式为

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} 即 \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} 化简代入 $x^{x^2} = -4\sqrt{2}y'$$$

可得原坐标系中的抛物线方程为 $x^2 + y^2 + 2xy - (2x + 4y + 4 = 0)$

4.1.11 第十一题

将一个空间右手直角坐标系 I 原点不动, 坐标轴绕直线 x = y = z 旋转 60° 角, 得到坐标系 I', 求从 I 到 I' 的过渡矩阵.

证明. 假设均同方向旋转,原坐标系中的坐标向量分别为 $\overrightarrow{OA} = (1,0,0)$ $\overrightarrow{OB} = (0,1,0)$ $\overrightarrow{OC} = (0,0,1)$

新坐标系中的坐标向量为
$$\overrightarrow{OAOB'OC}$$
,则由
$$\begin{cases} |\overrightarrow{OA}| = |\overrightarrow{OA'}| \\ \frac{\overrightarrow{OA.OA}}{|\overrightarrow{OA}| \cdot |\overrightarrow{OA}|} = \cos\frac{\pi}{3} \\ AA' \cdot (1,1,1) = 0 \end{cases}$$
解得 $A'\left(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right)$ 同理 $B\left(-\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ 见过渡矩阵为

4.1. 仿射坐标变换

$$C = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$$
另解: 由已知结论 $\overrightarrow{e_i} = (\cos\frac{\pi}{3}) \overrightarrow{e_i} + \frac{\overrightarrow{e_i} \cdot \overrightarrow{v}}{|\overrightarrow{v}|^2} (1 - \cos\frac{\pi}{3}) \overrightarrow{v} + \frac{\sin\frac{\pi}{3}}{|\overrightarrow{v}|} |\overrightarrow{v}| \times \overrightarrow{e_i}$ ($i = 1, 2, 3$) $\overrightarrow{v} = (1, 1, 1) = \overrightarrow{e_1} + \overrightarrow{\phi_2} + \overrightarrow{e_3}$ 故 $\overrightarrow{e'_1} = \frac{2}{3}\overrightarrow{e_1} + \frac{2}{3}\overrightarrow{e_2} - \frac{1}{3}\overrightarrow{e_3}, \overrightarrow{e_3} = -\frac{1}{3}\overrightarrow{e_1} + \frac{2}{3}\overrightarrow{e_2} + \frac{2}{3}\overrightarrow{e_3}, \overrightarrow{e'_3} = \frac{2}{3}\overrightarrow{e_1} - \frac{1}{3}\overrightarrow{e_2} + \frac{2}{3}\overrightarrow{e_3}$ 则[到 I' 的坐标变换公式为 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$

83

4.1.12 第十二题

设 $I[O;e_1,e_2,e_3]$ 和 $I'[O;e_1',e_2',e_3']$ 是空间右手直角坐标系,则从 I 到 I' 的坐标变换可以分三个阶段来完成:

(1)
$$\begin{cases} x = x'' \cos \psi - y'' \sin \psi, \\ y = x'' \sin \psi + y'' \cos \psi, \\ z = z''; \end{cases}$$

(2)
$$\begin{cases} x'' = x''', \\ y'' = y''' \cos \theta - z''' \sin \theta, \\ z'' = y''' \sin \theta + z''' \cos \theta; \end{cases}$$

$$(3) \begin{cases} x''' = x' \cos \varphi - y' \sin \varphi, \\ y''' = x' \sin \varphi + y' \cos \varphi, \\ z''' = z'. \end{cases}$$

这里的角 ψ , θ , φ 称为欧拉角, 它们完全确定了从 I 到 I' 的坐标变换. 试指出这三个阶段的坐标变换是怎么做的, 角 ψ , θ , φ 各是哪个角; 试写出用 ψ , θ , φ 表示的从 I 到 I' 的点坐标变换公式.

证明. 首先(1)表示的是坐标系I的z轴不动,x,y 轴绕z轴旋转度 ψ ,得到坐标系 I_1

- (2) 表示的是坐标系 I_1 的x轴不动, y_1 z轴绕x轴右旋角度 θ ,得到坐标系 I_2
- (3) 表示的是坐标系 I_2 的Z轴不动, x,y轴绕Z轴右旋角度 ϕ ,得到坐标系 I'

$$\Leftrightarrow \begin{pmatrix}
\cos \varphi & \cos \varphi \sin \psi + \cos \theta \cos \psi \sin \varphi & \sin \varphi \sin \theta \\
\sin \varphi & -\sin \varphi \sin \psi + \cos \theta \cos \psi \cos \varphi & \cos \varphi \sin \theta \\
0 & -\sin \theta \cos \psi & \cos \theta
\end{pmatrix} = A$$

由(1)(2)(3)公式可得
$$I'$$
 到 I 的点变换公式为 $\begin{pmatrix} x' \\ y \\ y \\ z' \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

由于A的每一行元素平方和为 1, 每两行对应元素乘积之和为 0, 则 A为正交矩阵则用 ψ , θ , φ 表示的I到 I' 的点坐标的坐标变换公式为 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} =$

$$A^{-1} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \qquad \Box$$

4.1.13 证明圆锥面上平面截线的类型包含椭圆、双曲线、抛物线、 一条直线、两条相交直线和单点.

证明. 由 4.1 与 4.2 中的命题易得

二次曲线的分类

4.2.1 利用正交和平移变换, 化简下列二次曲线的方程.

(1)
$$2x^2 + 2xy + 2y^2 - 8x + 2y + 5 = 0$$
;

(2)
$$2xy - 4x + 2y - 3 = 0$$
;

(3)
$$x^2 - 4xy - 2y^2 + 10x + 4y = 0$$
;

(4)
$$x^2 - 4xy + 4y^2 - 5x + 10y + 5 = 0$$
.

延明. (1) $\cot 2\theta = \frac{2-2}{2} = 0 = \frac{1-\tan\theta}{2\tan\theta}$ 则 $\tan \theta = 1$ 或 $\tan \theta = -1$, 取 $\theta = \frac{\pi}{4}$, $\sin \theta = \frac{\sqrt{2}}{2}$ $\cos \theta = \frac{\sqrt{2}}{2}$ 做正交变换 $\binom{x}{y} = (\frac{\sqrt{k}}{2} - \frac{\sqrt{2}}{2}) \binom{x'}{y}$,即 $\begin{cases} x = \frac{\sqrt{k}}{2} x' - \frac{6}{2} y' \\ y = \frac{-2}{2} x' + \frac{\sqrt{2}}{2} y' \end{cases}$ 则原方程化为 $2x^2 + 2y'^2 - 3\left[x' + 5\sqrt{2}y' + 5 = 0\right]$ 配方得 $2\left(x' - \frac{3(36)}{4}\right)^2 + 2\left(y + \frac{5(5)}{4}\right)^2 = \frac{7}{2}$

4.2. 二次曲线的分类

做平稳变换
$$\begin{cases} x'' = x' - \frac{3\sqrt{2}}{4} \\ y' = y' + \frac{5\sqrt{2}}{4} \end{cases}$$
 故方程化为 $x^{1^2} + y''^2 = \frac{7}{4}$

(2) $\cot 2\theta = \frac{0-0}{2} = 0 = \frac{1-\tan^2\theta}{2\tan\theta}$, 则 $\tan \theta = 1$ 或 $\tan \theta = 1$, 取 $\theta = \frac{\pi}{4}$, $\sin \theta = \frac{\sqrt{2}}{2}$, $\cos \theta = \frac{\sqrt{2}}{2}$,做正交变换

$$\binom{x}{y} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \binom{x'}{y'} \text{ if } \begin{cases} x = \frac{\sqrt{2}}{2}x' - \frac{\sqrt{2}}{2}y' \\ y = \frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' \end{cases}$$

则原方程化为 $x'^2 - y^2 - \sqrt{2}x' + 3\sqrt{2}y' - 3 = 0$

配方得
$$\left(x'\frac{1}{2}\right)^2 - \left(y - \frac{3\sqrt{2}}{2}\right)^2 = 1$$

做平移变换
$$\begin{cases} x' = x' \cdot \frac{\sqrt{2}}{2} \\ y' = y' - \frac{\sqrt{2}}{2} \end{cases}$$

故方程化为 $x''^2 - y''^2 = 1$

(3) $\cot 2\theta = \frac{1-(-2)}{4} = -\frac{3}{4} = \frac{1+\tan^2\theta}{2\tan\theta}$ 则 $\tan \theta = 2$ 或 $\tan \theta - \frac{1}{2}$,取 $\tan \theta = 2\sin \theta = \frac{2\sqrt{5}}{5}$, $\cos \theta = \frac{\sqrt{5}}{5}$,做正交变换

则原方程化为 $-3x^2 + 2y'^2 + \frac{1855}{5}x' - \frac{1655}{5}y' = 0$,

配方得
$$2\left(y'-\frac{4\sqrt{5}}{5}\right)^2-3\left(x'+\frac{35}{5}\right)^2=1$$

做平移变换
$$\begin{cases} x'' = x' - \frac{3\sqrt{5}}{5} \\ y'' = y' - \frac{4\sqrt{5}}{5} \end{cases}$$

故方程化为 $2y''^2 - 3x''^2 = 1$

(4) $\cot 2\theta = \frac{1-4}{-4} = \frac{3}{4} = \frac{1-\tan^2\theta}{2\tan\theta}$, $\tan \theta = -2$ $\sin \theta = \frac{1}{2}$, $\sin \theta = \frac{\sqrt{5}}{5}$ $\cos \theta = \frac{2\sqrt{5}}{5}$

$$\mathbb{M} \binom{x}{y} = \begin{pmatrix} \frac{2\sqrt{2}}{5} & -\frac{\sqrt{5}}{5} \\ \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{pmatrix} \binom{x'}{y'} , \quad \mathbb{R} \begin{cases} x = \frac{2\sqrt{6}}{5}x' - \frac{\sqrt{5}}{5}y' \\ y = \frac{\sqrt{5}}{5}x' + \frac{2\sqrt{5}}{5}y' \end{cases}$$

故原方程化为 $y^2 + \sqrt{5}y' + 1 = 0$

配方得
$$\left(y' + \frac{\sqrt{5}}{2}\right)^2 = \frac{1}{4}$$

做平移变换 $y'' = y' + \frac{\sqrt{5}}{2}$

故方程化为 $y''^2 = \frac{1}{4}$

4.2.2 第二题

证明不过锥顶的平面与圆锥面的交线是椭圆、双曲线或抛物线.

证明. 设圆锥面方程为 $\frac{x^2}{Q^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$, 平面: Ax + By + D = Mz。由 于平面不过原点,故 $D \neq 0$

(1) M=0 时, 若 AB 均为 0, 则 D=0, 矛盾,则 AB 不全为 0。不妨没 A = 0 $B \neq 0$, $y = -\frac{D}{B}$

则
$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = -\frac{D^2}{bB^2}$$
 为双曲线

下设 AB 均非 0、则设 A=1, 否则将 B,D 换为 $\frac{B}{A},\frac{D}{A}$

则
$$\frac{(D-By)^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
,即 $\left(\frac{B^2}{a^2} + \frac{1}{b^2}\right)y^2 - \frac{2BDy}{a^2} + \frac{D^2}{a^2} - \frac{z^2}{c^2} = 0$ 为双曲线

(2)
$$M \neq 0$$
 时,不妨设 $M \neq 1$ 则 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{A^2}{c^2}x^2 - \frac{B^2}{c^2}y^2 - \frac{2ABB}{c^2}xy - \frac{2AD}{c^2}x - \frac{2BD}{c^2}y + \frac{D^2}{c^2} = 0$

当 AB = 0 时,不妨设 A = 0 ,原方程化为 $\left(\frac{1}{b^2} - \frac{B^2}{c^2}\right)y^2 - \frac{1}{a^2}x^2 - \frac{2BD}{c^2}y +$ $\frac{D^2}{c^2} = 0$

若
$$\frac{1}{B} = \frac{b^2}{c^2}$$
,则 $-\frac{1}{c^2}x^2 - \frac{2BD}{c}y + \frac{b^2}{c^2} = 0$ 表示抛物线 若 $\left(\frac{1}{b^2} - \frac{\beta^2}{c^2}\right) \left(-\frac{1}{a^2}\right) > 0$,则原方程表示椭圆

4.2.3 第三题

在空间直角坐标系中,如果方程

$$a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2b_1x + 2b_2y + c = 0$$

在 xy-平面上的图形是椭圆(抛物线、双曲线), 请说明

$$z = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2b_1x + 2b_2y + c$$

表示的图形是什么曲面?

证明. 若曲面方程表示的是x0v平面椭圆, 那么可通过移轴和转轴将其转为 标准方程: $\frac{x'^2}{a^2} + \frac{y'^2}{h^2} = 1$

那么相应的二次曲面可化为: $\frac{x^2}{a^2} + \frac{y'^2}{b} - 1 = z$, 可令 z' = z' + 1, 得 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z'$ 是椭圆抛物面;同样当曲面方程表示的是 \mathbf{x} 0 \mathbf{y} 平面上的双曲线和抛物线时,二次曲面表示的是双曲抛物面和抛物柱面。

4.2.4 第四题

证明平面仿射坐标系中两条相交直线的方程为

$$(a_1x + b_1y + c_1)(a_2x + b_2y + c_2) = 0,$$

其中 $a_1b_2 - a_2b_1 \neq 0$.

证明. 两条直线相交,即
$$\begin{cases} a_x x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}$$
 有唯一解,即 $a_1 b_2 - a b_1 \neq$

0

从交点出发,表示
$$a_1x + b_1y + c = 0$$
 为直线 l_1 , $a_2x + b_2y + c_2 = 0$ 为直线 l_2 $(a_1x + b_1y + c_1)$ $(a_2x + b_2y + (2) = 0$ 表示两条相交直线

4.2.5 第五题

在平面直角坐标系中,二次曲线的方程

$$(A_1x + B_1y + C_1)^2 - (A_2x + B_2y + C_2)^2 = 1$$

满足 $A_1B_2 - A_2B_1 \neq 0$, $A_1A_2 + B_1B_2 = 0$, 将上述方程化成标准方程, 并指出曲线的类型. **证明.** 由 $A_1B_2 - AB_1 \neq 0$ 知直线 $A_1x + B_1y + C_1 = 0$ 与 $A_2x + B_2y + C_2 = 0$ 有唯一交点

由 $A_1A_2+B_1B_2=0$ 知直线 $A_1x+B_1y+C_1=0$ 与 $A_2x+B_2y+C_2=0$ 垂直

故坐标系经过正交和平移变换可以使
$$\begin{cases} x' = \pm \frac{1}{\sqrt{A_2^2 + B_1 B^2}} (A_1 x + B_1 y + C_1) \\ y' = \pm \frac{1}{\sqrt{A_2^2 + B_2^2}} (A_2 x + B_2 y + C_2) \end{cases}$$
 则原方程化为 $(A_1^2 + B_1^2) x^{1^2} - (A_1^{12} + B_2^2) y'^2 = 1$ 表示双曲线

4.2.6 第六题

证明在正交变换下二次曲线方程的系数 $a_{13}^2 + a_{23}^2$ 是不变的.

证明. 做平面正交坐标变换
$$\binom{x}{y} = C\binom{x'}{y'}$$
, 其中 C 为2阶正交

$$\overline{\mathbb{H}} \begin{pmatrix} x \\ y \end{pmatrix} = C \begin{pmatrix} x' \\ y' \end{pmatrix} 代入 \begin{pmatrix} x, y \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 2 \begin{pmatrix} a_{13}, a_{23} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + a_{33} = 0$$
可得 $\begin{pmatrix} x'y' \end{pmatrix} c^{\top} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} C \begin{pmatrix} x' \\ y' \end{pmatrix} + 2 \begin{pmatrix} a_{13}, a_{22} \end{pmatrix} C \begin{pmatrix} x' \\ y' \end{pmatrix} + a_{33} = 0$

故
$$(a'_{13}, a'_{23}) = (a_{13}, a_{33}) C$$
,则 $a'_{13}^2 + a'_{13}^2 = (a'_{13}, a'_3) \binom{a'_{13}}{a'_{33}} = (a_{13}, a_{23}) CC^{\top} \binom{a_{13}}{a_{33}} = (a_{13}, a_{23}) \binom{a_{13}}{a_{23}}$

即
$$a_{33}^{\prime 2} + a_{23}^{\prime 2} = a_{B3}^2 + a_{23}^2$$
,同理 $a_{14}^2 + a_{24}^2 + a_{34}^2 = \begin{pmatrix} a_{14} & a_{24} & a_{34} \end{pmatrix} \begin{pmatrix} a_{14} \\ a_{24} \\ a_{34} \end{pmatrix}$ 不

4.2.7 证明如果一个平面经过单叶双曲面 S 的一条直母线,则它和 S 的交线是两条直线.

证明. 单叶双曲面的两族直母线为 u族:
$$\begin{cases} w\left(\frac{x}{a_1} + \frac{z}{c}\right) = u\left(1 + \frac{y}{b}\right) \\ u\left(\frac{x}{a} - \frac{z}{c}\right) = w\left(1 - \frac{y}{b}\right) \end{cases}$$

v族:
$$\begin{cases} t\left(\frac{x}{a} + \frac{z}{c}\right) = v\left(1 - \frac{y}{b}\right) \\ v\left(\frac{x}{a} - \frac{z}{c}\right) = t\left(1 + \frac{y}{b}\right) \end{cases}$$

所以过**u**族的任意直母线的平面可以写成 $t\left[w\left(\frac{x}{a}+\frac{z}{c}\right)-u\left(1+\frac{y}{b}\right)\right]+v\left[u\left(\frac{x}{a}-\frac{z}{c}\right)-w\left(1-\frac{y}{b}\right)\right]$ 0

 $\mathbb{F}v\left[t\left(\frac{x}{a}+\frac{z}{c}\right)-v\left(1-\frac{y}{b}\right)\right]+u\left[v\left(\frac{x}{a}-\frac{z}{c}\right)-t\left(1+\frac{y}{b}\right)\right]=0$

显然它通过v族的一条直母线,同理通过v族的任一直母线的每平面经过属于u族的一条直母线

拓展: 此命题对于双曲抛物面不一定成立

设平面 $\frac{x}{a}+\frac{y}{b}=2\lambda$,它通过双曲抛物面 $\frac{R^2}{a^2}-\frac{y^2}{b}=2z$ 的 u 族直母线中的直线 $\begin{cases} \frac{x}{a}+\frac{y}{b}=5\lambda\\ \lambda\left(\frac{x}{a}-\frac{y}{b}\right)=z \end{cases}$

而不通过 u 族直母线 $\left\{\begin{array}{l} \frac{x}{a}-\frac{y}{b}=2V\\ V\left(\frac{x}{a}+\frac{y}{b}\right)=z \end{array}\right.$ 中任何的直母线,这是因为v族直母线的方向向量 $\vec{v}=\frac{1}{ab}\left(a,b,2v\right)$

而平面的法向量为
$$\vec{n} = \left(\frac{1}{a}, \frac{1}{b}, 0\right) = \frac{1}{ab}(b, a, 0)$$
 ,则 $\vec{n} \cdot \Rightarrow = \frac{1}{a^2 \cdot (2b}(abab) = \frac{2}{ab} \neq 0$

4.2.8 列出单叶双曲面和马鞍面上平面截线的所有类型.

证明. 马鞍面的平面截线: 双曲线, 两条相交直线, 抛物线, 一条直线

单叶双曲面的平面截线: 椭圆, 双曲线, 两条相交直线, 抛物线, 两条平行 且不重合的直线

4.2.9 证明马鞍面上找不到五个点使其成为正五边形的五个顶点.

证明. 不会。

结论:对于单叶双曲面S上任一点,即3S上经过该点的圆周。

—— §4.3 —— 二次曲面的分类

证明.

4.3.1 利用平移变换化简下列方程:

(1)
$$x^2 + y^2 + z^2 - 2x + 4y - 11 = 0$$
;

(2)
$$2x^2 - y^2 - 4y - z + 2 = 0$$
;

(3)
$$2z^2 - y + 12z + 5 = 0$$
.

<u>证明.</u> (1) 原式变为 $(x-1)^2 + (y+4)^2 + \vec{z}^2 = 16$, 即取 $\begin{cases} x' = x+1 \\ y' = y-2 \\ z' = z. \end{cases}$

(2) 原式变为
$$2x^2 - (y+2)^2 = z - 6$$
, 即取 $\left\{ egin{array}{l} x' = x \ y' = y + 2 \ z' = z - 6 \end{array}
ight.$

得到
$$x'^2 + y'^2 + z'^2 = 16$$
 表示球面
$$\begin{cases} x' = x \\ y' = y + 2 \\ z' = z - 6 \end{cases}$$
 (2) 原式变为 $2x^2 - (y+2)^2 = z - 6$,即取
$$\begin{cases} x' = x \\ y' = y + 2 \\ z' = z - 6 \end{cases}$$
 得到 $2x'^2 - y'^2 = z'$ 表示双曲抛物面
$$\begin{cases} x' = x \\ y' = y + 13 \\ z' = z + 3 \end{cases}$$

得到 $2z'^2 = y'$ 表示抛物柱面

4.3.2 利用直角坐标变换化简下列方程,并给出具体的坐标变换:

(1)
$$2x^2 - y^2 - z^2 + 4xy - 2x - 4y + 6z - 12 = 0$$
;

(2)
$$2x^2 + 5y^2 + 5z^2 + 4xy - 4xz - 8yz - 10 = 0$$
;

(3)
$$2x^2 + 3y^2 + 3z^2 - 4xy - 4xz + 2yz + 2y - 2z + 1 = 0;$$

(4)
$$x^2 + y^2 + 9z^2 - 2xy + 6xz - 6yz - 2x + 2y - 6z = 0$$
;

(5)
$$5x^2 + 8y^2 + 5z^2 + 4xy - 8xz + 4yz - 27 = 0$$
;

(6)
$$4x^2 - y^2 - z^2 - 8x - 4y + 8z - 2 = 0$$
.

证明. (1) 原方程可写为
$$(x,y,z)$$
 $\begin{pmatrix} 2 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $+ (-2,-4,6)$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $-$

$$12 = 0$$

対于
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 $|A - \lambda E| = (2 - \lambda)(-I - \lambda)^2 - 4(-1 - \lambda) = -(\lambda + 1)(\lambda + 2)(\lambda - 3) = 0$

$$\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = 3$$
 对应的特征向量为 $(0,0,1)^{\top}, (1,-2,0)^{\top}, (2,1,0)^{\top}$

所求特征向量单位化后构成正交矩阵
$$c=\begin{pmatrix} 0 & \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \\ 0 & -\frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} \\ 1 & 0 & 0 \end{pmatrix}\begin{pmatrix} x \\ y \\ z \end{pmatrix}=$$

$$C\left(\begin{array}{c}x'\\y'\\z'\end{array}\right)$$

原方程化为
$$-x^2 - 2y^2 + 3x^2 + 6x + \frac{6\sqrt{5}}{5}y - \frac{8\sqrt{5}}{5}z - 12 = 0$$

$$\mathbb{F} - (x-3)^2 - 2\left(y - \frac{3\sqrt{3}}{10}\right)^2 + 3\left(x - \frac{4\sqrt{5}}{15}\right)^2 - \frac{19}{6} = 0$$

从而
$$\begin{cases} x = x' + 3\\ y = y' + \frac{3\sqrt{5}}{10}\\ z = z' + \frac{4\sqrt{5}}{15} \end{cases}$$

$$\mathbb{F} x^2 + 2y^2 - 3x^2 = -\frac{19}{6}$$
, $\mathbb{F} \frac{x^2}{19} + \frac{y^2}{\frac{1}{19}} - \frac{z^2}{\frac{3}{19}} = -1$

4.3. 二次曲面的分类

(2) 原方程可写为
$$(x,y,z)$$
 $\begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $-10 = 0$

对于
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
 $|A - \lambda E| = (\lambda - 1)^2 (x - 10)$

解得特征根 $\lambda_1=10$ $\lambda_2=1$,对应特征向量 $(1,2,-2)^{\top}$, $(0,1,1)^{\top}$ 二者做外积得 $(4,-1,1)^{\top}$

所求特征向量单位化后构成正交矩阵
$$C = \begin{pmatrix} \frac{1}{3} & 0 & \frac{2\sqrt{2}}{3} \\ \frac{2}{3} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{6} \\ -\frac{1}{3} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{6} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

91

$$C\left(\begin{array}{c}x'\\y'\\z'\end{array}\right)$$

原方程化为
$$10x^2 + y^2 + z^2 - 10 = 0$$

$$\mathbb{P}\frac{y'^2}{1} + \frac{y'^2}{10} + \frac{z'^2}{10} = 1$$

(3) 原方程可写为
$$(x,y,z)$$
 $\begin{pmatrix} 2 & -2 & -2 \\ -2 & 3 & 1 \\ -2 & 1 & 3 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $+$ $(0,2,-2)$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $=$

0

対于
$$A = \begin{pmatrix} 2 & -2 & 2 \\ -2 & 3 & 1 \\ -2 & 1 & 3 \end{pmatrix}$$
 $|A - \lambda E| = \lambda(\lambda - 2)(\lambda - 6)$

解得特征根为 $\lambda_1 = 0$ $\lambda_2 = 2$ $\lambda_3 = 6$,对应特征向量为 $(0,1,-1)^\top$, $(-1,1,1)^\top$, $(2,1,1)^\top$

所求特征向量单位化后构成正交矩阵
$$C = \begin{pmatrix} 0 & -\frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

$$C\left(\begin{array}{c}x'\\y'\\z'\end{array}\right)$$

故原方程化为
$$2x'^2 + 6y'^2 + 2\sqrt{2}x' + 1 = 0$$

$$\mathbb{P}\left(x' + \frac{\sqrt{2}}{2}\right)^2 + 3y'^2 = 0$$

从而
$$\begin{cases} x' = x'' - \frac{\sqrt{2}}{2} \\ y' = y'' \\ z' = z'' \end{cases}$$
即 $x''^2 + 3y''^2 = 0$

(4) 原方程可写为
$$(x,y,z)$$
 $\begin{pmatrix} 1 & -1 & 3 \\ -1 & 1 & -3 \\ 3 & -3 & 9 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $+ (-2,2,-6)$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $=$

对于
$$A = \begin{pmatrix} 1 & -1 & 3 \\ -1 & 1 & -3 \\ 3 & -3 & 9 \end{pmatrix} \quad |A - \lambda E| = \lambda^2 (\lambda - 11)$$

解得特征根 $\lambda_1 = 0$ $\lambda_2 = 11$,对应特征向量 $(1,1,0)^{\top}$, $(-3,0,1)^{\top}$, $(1,-1,3)^{\top}$

所求特征向量单位化后构成正交阵
$$C = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{3\sqrt{10}}{10} & \frac{\sqrt{11}}{11} \\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{11}}{11} \\ 0 & \frac{\sqrt{10}}{10} & \frac{3\sqrt{11}}{11} \end{pmatrix}$$

故原方程化为 $z'^2 - 2z' = 0$

$$\mathbb{P}\left(z'-1\right)^2=1$$

从而
$$\begin{cases} x' = x'' \\ y' = y'' \\ z' = z'' + 1 \end{cases}$$

即
$$|z''| = 1$$

(5) 原方程可写为
$$(x,y,z)$$
 $\begin{pmatrix} 5 & 2 & -4 \\ 2 & 8 & 2 \\ -4 & 2 & 5 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $-27 = 0$

对于
$$A = \begin{pmatrix} 5 & 2 & -4 \\ 2 & 8 & 2 \\ -4 & 2 & 5 \end{pmatrix}$$
 $|A - \lambda E| = \lambda(\lambda - 9)^2$

解得特征根为
$$\lambda_1 = 0$$
 $\lambda_2 = 9$,对应特征向量 $(2, -1, 2)^{\top}$ $(2, 1, 0)^{\top}$ $(-1, 0, 1)^{\top}$ 所求特征向量单位化后得正交矩阵 $C = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{2\sqrt{5}}{5} & \frac{1}{3} \\ 0 & \frac{\sqrt{5}}{5} & -\frac{1}{3} \\ -\frac{\sqrt{2}}{2} & 0 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$

$$C\left(\begin{array}{c}x'\\y'\\z'\end{array}\right)$$

4.3. 二次曲面的分类

故原方程化为 $9x'^2 + 9y'^2 - 7 = 0$

即
$$x'^2 + y'^2 = 3$$

(6)原方程可写为

$$(x,y,z)\begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} + (-8,-4,8)\begin{pmatrix} x \\ y \\ z \end{pmatrix} - 2 = 0$$

対于
$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad |A - IE| = |\lambda + 1|^2(\lambda - 4)$$

解得特征根为 $\lambda_1 = -1$ $\lambda_2 = 4$,对应特征向量: $(0,0,1)^{\top}$, $(0,1,0)^{\top}$,(1,0,0)

93

所求特征向量单位化后得正交矩阵
$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = C \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

故原方程可化为 $4(x-1)^2 - (y+2)^2 - (z+4)^2$

从而
$$\begin{cases} x' = x - 1 \\ y' = y + 2 \\ z' = z + 4 \end{cases}$$
即 $4x'^2 - y'^2 - z'^2 = 14$

4.3.3 判断下列方程所表示的曲面类型:

(1)
$$(2x + y + z)^2 - (x - y - z)^2 = y - z;$$

(2)
$$9x^2 - 25y^2 + 16z^2 - 24xz + 80x - 60z = 0$$
.

证明. (1)做直角坐标变换
$$\begin{cases} x' = \frac{1}{\sqrt{6}}(2x+y+z) \\ y' = \frac{1}{\sqrt{3}}(x-y-z) \\ z' = \frac{1}{\sqrt{2}}(y-z) \end{cases}$$

那么S变为
$$6x'^2 - 3y'^2 = \sqrt{2}z'^2$$
,则它是马鞍面
$$\begin{cases} x = \frac{1}{5}(4x' - 3z') \\ y = y' \\ z = \frac{1}{5}(3x' + 4z') \end{cases}$$

则原方程变为 $-25y'^2 + 25z'^2 + 28x' - 96z' = 0$

配方得
$$-25y'^2 + 25\left(z' - \frac{48}{15}\right)^2 + 28x' - \frac{480^2}{5} = 0$$

$$\begin{cases} x'' = x' - \frac{576}{175} \\ y'' = y' \\ z'' = z' - \frac{48}{25} \end{cases}$$

$$\mathbb{P} 25y''^2 - 25z''^2 = 28x''$$

4.3.4 确定一空间直角坐标变换将平面方程 2x + y + 2z + 5 = 0 化 为 x' = 0.

证明. 做平移
$$\begin{cases} x = x'' - 1 \\ y = y'' - 1 \\ z = z'' - 1 \end{cases}$$

原方程变为2x'' + y'' + 2z'' = 0, 取其法向量 $\vec{n} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \frac{1}{3}, \frac{2}{3}$ 为x轴,令 $\vec{i} = \vec{n}$,取一个垂直 \vec{i} 的单位向量 \vec{i}

例如
$$\vec{j} = \left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}\right)$$
, 再令 $\vec{k} = \vec{i} \times \vec{j} = \left(-\frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}, -\frac{\sqrt{2}}{6}\right)$

$$\begin{cases} x = \frac{2}{3}x' + \frac{\sqrt{2}}{2}y'\frac{\sqrt{2}}{6}z' - 1 \\ y = \frac{1}{3}x' + \frac{2\sqrt{2}}{3}y' - 1 \\ z = \frac{2}{3}x' - \frac{\sqrt{2}}{2}y' - \frac{\sqrt{2}}{6}z' - 1 \end{cases}$$
已知平面的方程变为 $x' = 0$

4.3.5 第五题

求二次曲面

$$(a_1x + b_1y + c_1z + d_1)(a_2x + b_2y + c_2z + d_2) = 0$$

的标准方程.

证明.

______§4.4 _____ 二次曲面和二次曲线的不变量

 $a_{14}x^2 + a_{21}y^2 + a_{33}I^2 + 2a_{12}xy + 2a_{13}xz + 2a_{33}yz + 2a_{14}x + 2a_{34}y + 2a_{34}z + a_{44} = 0$

4.4. 二次曲面和二次曲线的不变量

$$I_{1} = a_{11} + a_{22} + a_{33}$$

$$I_{2} = \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{33} \\ a_{13} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}$$

$$I_{3} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$$

$$I_{4} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{12} & a_{22} & a_{23} & a_{24} \\ a_{13} & a_{23} & a_{33} & a_{34} \\ a_{14} & a_{24} & a_{34} & a_{14} \end{vmatrix}$$

$$k_{1} = \begin{vmatrix} a_{11} & a_{14} \\ a_{14} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{24} \\ a_{24} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{33} & a_{34} \\ a_{24} & a_{44} \end{vmatrix}$$

$$k_{2} = \begin{vmatrix} a_{22} & a_{23} & a_{14} \\ a_{23} & a_{33} & a_{34} \\ a_{24} & a_{34} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{3} & a_{24} \\ a_{13} & a_{33} & a_{37} \\ a_{14} & a_{24} & a_{34} \end{vmatrix}$$

4.4.1 利用不变量判别下列二次曲面的类型并求出标准方程:

(1)
$$3x^2 + 5y^2 + 3z^2 + 2xy + 2yz + 2xz - 4x - 8z + 5 = 0$$
;

(2)
$$xy + yz + xz - a^2 = 0$$
;

(3)
$$5x^2 - 4y^2 + 5z^2 + 4xy + 4yz - 14zx + 16x + 16y - 32z + 8 = 0;$$

(4)
$$2y^2 + 4xz + 2x - 4y + 6z + 5 = 0$$
.

延明. (1)
$$3x^2 + 5y^2 + 3z^2 + 2xy + 2yz + 2xz - 4x - 8z + 5 = 0$$
 $I_3 = 36$ $I_2 = 36$ $I_1 = 11$ $I_4 = -36$; $I_3 \neq 0$, $I_2 > 0$, $I_1I_3 > 0$, $I_4 < 0$ 故为椭球面

$$\lambda^3 - 11\lambda^2 + 36\lambda - 36 = 0$$
 解得 $\lambda_1 = 2, \lambda_2 = 3, \lambda_3 = 6$ 所求方程为 $2x^2 + 3y^2 + 6z^2 - 1 = 0$ (2) $xy + yz + xz - a^2 = 0$ $I_4 = -\frac{a^2}{4}, I_3 = \frac{1}{4}, I_2 = -\frac{3}{4}; I_3 \neq 0, I_2 < 0, I_4 < 0$ 故内双叶双曲面特征方程为 $\lambda^3 - \frac{3}{4}\lambda + \frac{1}{4} = 0$ 解得 $\lambda_1 = \frac{1}{2}$ $\lambda_2 = \frac{1}{2}$ $\lambda_3 = -1$ 所求方程为 $x^2 + y^2 - 2z^2 = -2a^2$

(3)
$$5x^2 - 4y^2 + 5z^2 + 4xy + 4yz - 14zx + 16x + 16y - 32z + 8 = 0$$
 $I_3 = -405$, $I_2 = -72$, $I_4 = 17496$, $I_1 = 6$; $I_3 \neq 0$, $I_2 < 0$, $I_4 > 0$ 故为单叶双曲面

特征方程为 $\lambda^3-6\lambda^2-72\lambda+405=0$,解得 $\lambda_1=9,\lambda_2=\frac{-3-3\sqrt{2}}{2},\lambda_3=\frac{-3+3\sqrt{21}}{2}$

所求方程为
$$9x^2 + \left(\frac{-3-3\sqrt{21}}{2}\right)y^2 + \left(\frac{-3+3\sqrt{21}}{2}\right)z^2 - \frac{216}{5} = 0$$

 $(4)\ 2y^2 + 4xz + 2x - 4y + 6z + 5 = 0$
 $I_3 = -8$, $I_2 = -4$, $I_4 = 0$, $I_1 = 2$; $I_3 \neq 0$, $I_2 < 0$, $I_4 = 0$ 故内二次锥面 特征方程为 $\lambda^3 - 2\lambda^2 - 4\lambda + 8 = 0$,解得 $\lambda_1 = \lambda_2 = 2$ $\lambda_3 = -2$
所求方程为 $x^2 + y^2 - z^2 = 0$

4.4.2 第二题

讨论实数 t 取不同值时, 方程

$$x^{2} + (2t^{2} + 1)(y^{2} + z^{2}) - 2xy - 2yz - 2xz - 2t^{2} + 3t - 1 = 0$$

各表示什么曲面?

延明. $I_3=4(t+1)(t-1)$ $I_2=4t^2\left(2t^2+1\right)>0$, $I_4=-4(t-1)^3(t-1)(2t-1)(t^2-1)$ $I_1=4t^2-3$

- (1) t < -1时, $I_3 \neq 0$, $I_2 > 0$, $I_4 < 0$ 为椭球面
- (2) t = -1 时, $I_3 = I_4 = 0$, $I_2k_2 < 0$ 为椭球柱面
- (3) $-1 < t < \frac{1}{2}$ 时, $I_3 \neq 0$, $I_2 > 0$, $I_4 > 0$ 为虚椭球面
- (4) $t = \frac{1}{2}$ 时, $I_3 \neq 0$, $I_2 > 0$, $I_4 = 0$ 为一个点
- (5) $\frac{1}{2} < t < 1$ 时, $I_3 \neq 0$, $I_2 > 0$, $I_4 < 0$ 为椭球面
- (6) t = 1 时, $I_3 = 0$, $I_4 = 0$, $I_2 > 0$ $k_2 = 0$ 为一条直线

$$(7) t > 1$$
 时, $I_3 \neq 0$, $I_2 > 0$, $I_4 < 0$ 为椭球面

4.4.3 第三题

证明二次锥面

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz = 0$$

上有三条互相垂直的直母线的充要条件是 $I_1 = 0$.

证明. 所给二次锥面的方程可写成矩阵形式: $X^{T}AX$, 做直角坐标变换 X = TX', 其中T为正交矩阵, 方程变为 X'^{\top} $(T^{\top}AT)$ X', 用tr(A)表示矩阵的主 对角线上元素的和,则有 $tr(A) = tr(T^{T}AT)$

充分性: 作直角变换 X = TX', 把二次锥面化内标准方程, 先求出二次锥 面上的一条直母线, 然后求与它垂直的一直母线, 最后求与这两条直线均垂直 的直线,说明它在二次锥面上。必要性:以三条互相垂直的直母线为新生标系的 坐标轴进行坐标变换x = TX',设 $T^{T}AT = (b_{ii})$

因为新坐标系上 (1,0,0)(0,1,0)(0,0,1) 的三点在二次锥面上, 得 b_{11} = $b_{22} = b_{33} = 0$

从而
$$a_{11} + a_{22} + a_{33} = \operatorname{tr}(A) = \operatorname{tr}(T^{\top}TT) = 0$$

4.4.4 证明定理 4.4.2.

证明. 证明: I_1, I_2, I_3 都是平移不变量

做任一转轴
$$\alpha = T\alpha'$$
, 其中 T 是正交矩阵, 二次曲线在转轴后的方程为 $(\alpha'^{\mathsf{T}}, 1) \begin{pmatrix} T^{\mathsf{T}}AT & T^{\mathsf{T}}\delta \\ \delta^{\mathsf{T}}T & a_0 \end{pmatrix} \binom{\alpha'}{1} = 0$

$$I_{1}' = \operatorname{tr}\left(T^{\top}TT\right) = \operatorname{tr}\left((AT)T^{\top}\right) = \operatorname{tr}(AI) = \operatorname{tr}(A) = I_{1}$$

$$I_{2}' = \left|T^{\top}AT\right| = \left|T^{\top}\right| |A||T| = |A| = I_{2}$$

$$I_{3}' = \left|T^{\top}AT \quad T^{\top}\delta\right| = \left|T^{\top} \quad a_{0}\right| = \left|T^{\top} \quad a_{0}\right$$

4.4.5 第五题

证明如果二次方程 F(x,y,z)=0 表示圆柱面, 那么 $I_3=I_4=0$, $I_1^2=4I_2$; 指 出当 λ,μ 为何值时,方程

$$x^2 - y^2 + 3z^2 + (\lambda x + \mu y)^2 - 1 = 0$$

所表示的图形为圆柱面.

证明. 若 F(x,y,z)=0 表示圆柱面,则标准方程为 $\lambda x^2 + \lambda y^2 + \frac{k_2}{l_2}=0$, $\lambda \neq$ $0, \lambda \cdot \frac{k_2}{l_2} < 0$

此时 $I_3=I_4=0$, $I_1=2\lambda\neq 0$, $I_2=\lambda^2>0$,且 $I_1^2=4I_2$,由 $\lambda\cdot \frac{k_2}{I_2}<0$ 可 推得 $I_1k_2 < 0$

反之,若 $I_3=I_4=0$, $I_1^2=4I_2$, $I_1k_2<0$,则特征方程为 $-\lambda^3+I_1\lambda^2-I_2\lambda=$ 0.

即 $\lambda \left(\lambda^2 - I_1\lambda + I_2\right) = 0$, 其特征根为 0, 又 $\lambda^2 - I_1 + I_2 = 0$ 有重根, 因判 别式 $I_1^2 - 4I_2 = 0$

记二重特征根为 λ_1 , 显然 $\lambda_1=\frac{1}{2}I_1\neq 0$, 于是我们有标准方程 λ_1x^2+ $\lambda_1 y^2 + \frac{k_2}{l_2} = 0$

再由 $I_2 > 0$, $I_2k_2 < 0$ 可知, 其表示圆柱面。

4.4.6 将单叶双曲面一般方程 F(x,y,z) = 0 中的常数项 a 换成 b, 试问 b 取不同值时可得到什么曲面?

证明. 记 I_i 为 F(x,y,z)=0的不变量

- $\overline{(1)}$ 当 $\frac{I_4}{I_3} + b a > 0$, $\frac{I_4}{I_3} > 0$ 或 $\frac{I_4}{I_3} + b a < 0$, $\frac{I_4}{I_3} < 0$ 时为单叶双曲面 (2) 当 $\frac{I_4}{I_3} + b a > 0$, $\frac{I_4}{I_3} < 0$ 或 $\frac{I_4}{I_3} + b a < 0$, $\frac{I_4}{I_3} > 0$ 时为双叶双曲面

4.4.7 第七题

由单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ 的中心引三条互相垂直的射线, 分别交单叶双曲面于点 P_1, P_2, P_3 , 记 $r_i = |\overrightarrow{OP_i}|, i = 1, 2, 3$, 证明:

$$\frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{1}{a^2} + \frac{1}{b^2} - \frac{1}{c^2}.$$

证明. 设 p_i 的坐标为 $r_i(x_i, y_i, z_i)$, 这里 $r_i > 0$, $x_i^2 + y_i^2 + z_i^2 = 1$. 由 $i \neq j$ 时, $\overrightarrow{OP_i} \ni \overrightarrow{OP_j} \triangleq \underline{1}$, $\exists z_1 = \delta_{ij}$, $\exists z_1 = \delta_{ij} = \delta$ 正交矩阵

则
$$\sum_{i=1}^{3} x_i^2 = \sum_{i=1}^{3} y_i^2 = \sum_{i=1}^{3} z_i^2 = 1$$

又 p_i 在S上,故 $r_i^2 \left(\frac{x_i^2}{a^2} + \frac{y_i^2}{b^2} + \frac{z_i^2}{c^2} \right) = 1$ $1 \le i \le 3$

则
$$\sum_{i=1}^{n} x_i^{-} = \sum_{i=1}^{n} y_i^{-} = \sum_{i=1}^{n} z_i^{-} = 1$$
又 p_i 在 S 上,故 $r_i^2 \left(\frac{x_i^2}{a^2} + \frac{y_i^2}{b^2} + \frac{z_i^2}{c^2} \right) = 1$ $1 \le i \le 3$
即 $\frac{x_i^2}{a^2} + \frac{y_i^2}{b^2} + \frac{z_i^2}{c^2} = \frac{1}{r_i^2}$ $1 \le i \le 3$,将此三式相加,可得 $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2}$

4.4. 二次曲面和二次曲线的不变量

99

4.4.8 利用不变量判别下列二次曲线的类型并求出标准方程:

(1)
$$8x^2 + 6xy - 26x - 12y + 13 = 0$$
;

(2)
$$5x^2 - 8xy + 5y^2 + 18x - 18y + 9 = 0$$
;

(3)
$$x^2 + 2xy + y^2 - 8x + 4 = 0$$
;

(4)
$$4x^2 + 4xy + y^2 - 10x - 5y + 6 = 0$$
.

证明. (1)
$$8x^2 + 6xy - 26x - 2xy + 13 = 0$$
 $I_1 = 8$, $I_2 = -9$, $I_3 = 63$; $I_2 < 0$, $I_3 \neq 0$, 故为双曲我特征方程为 $x^2 - 8\lambda - 9 = 0$ 解得 $\lambda_1 = 8$ $\lambda_2 = -1$ 所求方程为 $8x^2 - y^2 = 7$

(2)
$$5x^2 - 8(y+5)^2 + 18x - 18y + 9 = 0$$

 $I_1 = 10$, $I_2 = 9$, $I_3 = -81$; $I_2 > 0$, $I_1I_3 < 0$ 故为椭圆
特征方程为 $\lambda^2 - 10\lambda + 9 = 0$ 解得 $\lambda_1 = 9$ $\lambda_2 = 1$
所求程为 $9x^2 + y^2 = 9$.

(3)
$$x^2 + 2xy + y^2 - 8x + 4 = 0$$

 $I_1 = 2$, $I_2 = 0$, $I_3 = -16$; $I_2 = 0$, $I_3 \neq 0$ 故为抛物线
所求方程为 $y^2 + 2\sqrt{2}x = 0$

$$(4) 4x^2 + 4xy + y^2 - 10x - 5y + 6 = 0$$

$$I_1=5, I_2=0, I_3=0$$
 $k_1=-\frac{5}{4}; I_2=I_3=0$ $k_1<0$ 故为一对平行直线 $y^2=\frac{1}{20}$

4.4.9 第九题

讨论实数 t 取不同值时, 方程

$$x^2 - 4xy + y^2 - 4txy - 2tx + 8y + 3 - 2t = 0$$

各表示什么曲线?

证明.
$$I_1 = 5$$
, $I_2 = -4 + (t+2)$, $I_3 = 8(t+2)(t+1)(t-1)$

(1)
$$t < 2$$
 时, $I_2 < 0$, $I_3 \neq 0$, 双曲线

(2)
$$t = -2$$
 时, $I_2 = I_3 = 0, k_1 > 0$,空集

$$(3)$$
 $-2 < t < -1$ 时, $I_2 > 0$, $I_3 > 0$, 空集

(4)
$$t = -1$$
 时, $I_2 > 0$, $I_3 = 0$, 一点

(5)
$$-1 < t < 0$$
 时, $I_2 > 0$, $I_3 < 0$, 椭圆

- (6) t = 0 时, $I_2 = 0$, $I_3 \neq 0$, 抛物线
- (7) 0 < t < 1 时, I_2 < 0, I_3 = 0,两条相交直线
- (8) t = 1 时, $I_2 < 0$, $I_3 = 0$, 两条相交直线
- (9) t > 1 时, $I_2 < 0$, $I_3 \neq 0$,双曲线

4.4.10 第十题

设二次曲线 Γ 的方程为 F(x,y) = 0, 证明:

- 1. Γ是圆的充要条件是 $I_1^2 = 4I_2$, $I_1I_3 < 0$;
- 2. Γ 是等轴双曲线(两条渐近线互相垂直)的充要条件是 $I_1 = 0$, $I_3 \neq 0$.

证明. (1) 按照不变量方法 F(x,y) = 0 表示一个椭圆的充要条件为 $I_2 > 0$, 且 $I_1I_3 < 0$,

同时F(x,y) = 0 可化简为 $\lambda_1 x'^2 + \lambda_2 y'^2 + \frac{I_3}{I_2} = 0$ (*)

其中 $\lambda_1\lambda_2$ 是 $\lambda^2-I_1\lambda_1+I_2=0$ 的两个实根, 而椭圆是圆的充要条件是 $\lambda_1=\lambda_2$, 即 $I_1^2=4I_2$

(2) 按照不变量方法,F(x,y) = 0 表示双曲线充要条件是 $I_2 < 0$

且 F(x,y) = 0 可化简为 $\lambda_1 x'^2 + \lambda_2 y'^2 + \frac{I_3}{I_2} = 0$ (*)

其中 λ_1 和 λ_2 是方程的两个实根,而双曲线等轴的充要条件是 $\lambda_1=-\lambda_2$,即 $I_1=0$ 且 $I_3\neq 0$

4.4.11 第十一题

设二次方程 F(x,y)=0 表示的图形是两条平行直线,证明这两条平行直线的距离为

$$d = \sqrt{-\frac{4K_1}{I_1^2}}.$$

证明. 按照不变量方法 F(x,y) = 0 可表示一对平行直线的充要条件是 $I_2 = 0, I_3 = 0, k_1 < 0$

且
$$F(x,y) = 0$$
 可化简为 $I_1y'^2 + \frac{k_1}{I_1} = 0$ (*)

而(*)式表示的一对平行直线间的距离为 $d=\sqrt{-\frac{4k_1}{l_1^2}}$,但坐标变换不改变原图形的相对形状

所以
$$d = -\frac{-4k_1}{l_1^2}$$
 也是 $F(x,y) = 0$ 表示的一对平行直线间的距离。