Задача 11-2. Звуковые волны, эффект Доплера.

При движении относительно друг друга излучателя и приёмника волн наблюдается эффект изменения частоты волн, который получил название эффекта Доплера. Сущность данного эффекта представлена на рисунке 1.

1. Неподвижный источник излучает звуковые волны частотой

u . Если источник звука движется по направлению к покоящемуся приёмнику с постоянной скоростью u , то приёмник регистрирует сигнал частотой u , если источник удаляется от покоящегося приёмника с постоянной скоростью u , то приёмник регистрирует сигнал частотой u .

Рисунок 1.

Скорость звука в среде не зависит от скорости источника и приёмника звука. Среда однородная и неподвижная. Во всех пунктах данной задачи источник и приёмник звука считайте точечными, скорость звука в среде .

- 1.1. Укажите соотношение между частотами ν^{\cdot} и $\nu^{\prime\prime}$ (больше, меньше).
- 1.2. Покажите, что

$$v' = \frac{cv}{c - v}$$
 (1).

1.3. Покажите, что

$$v'' = \frac{cv}{c + v}$$
 (2).

Указание. Если Вам не удалось вывести уравнения (1) и (2), то далее в случае необходимости Вы можете пользоваться ими в готовом виде.

2. Источник звука помещён внутрь абсолютно упругого мяча (шара). Мяч находится на некоторой высоте h_0 над абсолютно упругой горизонтальной поверхностью, мячу сообщают скорость v_0 направленную вертикально вверх. На некотором расстоянии L от траектории движения мяча и на некоторой высоте h_0 над поверхностью находится приёмник звука $h_0 > h_0$ (рис.2). Зависимость частоты звука от времени v(t), регистрируемого приёмником, показана на графике (рис.3). Частота звука, излучаемого неподвижным источником, $v = 500\Gamma_{\bf q}$

Сопротивление воздуха не учитывать. Запаздыванием звукового сигнала пренебречь.

Определите:

- 2.1. Максимальную высоту подъёма мяча ${m H}$,
- 2.2. Начальную скорость мяча v_{\bullet} ,
- 2.3. Высоту **h**₀,
- 2.4. Высоту п приёмника над поверхностью,
- 2.5. Расстояние L от приёмника до траектории движения мяча.

Рисунок 2.

- 3. Движение источника звука по окружности (запаздыванием звукового сигнала пренебречь).
- 3.1.Источник звука движется по окружности радиуса r со скоростью v. Приемник звука находится на расстоянии R=2r от центра окружности, по которой движется источник. Сделайте рисунок и укажите следующие точки на окружности: A точка, в которой должен находиться источник, когда приёмник будет регистрировать сигналы наименьшей частоты; B точка, в которой должен находиться источник, когда приёмник будет регистрировать сигналы наибольшей частоты; C и D точки, в которой должен находиться источник, когда приёмник будет регистрировать сигналы с частотой, равной частоте излучения неподвижного источника.
- 3.2. Источник звука движется по окружности радиуса r со скоростью v=0,3c. Период обращения источника звука r . Приемник звука находится на расстоянии r r от центра окружности, по которой движется источник. Постройте график зависимости частоты звука от времени r r регистрируемого приёмником, за промежуток времени равному двум периодам обращения источника звука по окружности. За начало отсчёта времени возьмите момент, когда расстояние между источником и приёмником было наименьшим. График

постройте в относительных координатах (v, t). Подсказка: для построения графика уравнение зависимости (v, t) получать необязательно.