4c. Newton-artige Verfahren Ausgleichsprobleme

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Lineares Ausgleichsproblem
- Nichtlineares Ausgleichsproblem
- Konvergenz des Gauß-Newton-Verfahrens

Lineares Ausgleichsproblem

Minimiere
$$f(x) = \frac{1}{2} ||Ax - y||_2^2$$
 über $x \in \mathbb{R}^n$ $A \in \mathbb{R}^{m \times n}, \ y \in \mathbb{R}^m$ a_i i -te Zeile von A $y = (y_1, \dots, y_m)$ Minimiere $f(x) = \frac{1}{2} \sum_{i=1}^m \left(a_i^T x - y_i \right)^2$ über $x \in \mathbb{R}^n$

- x_* ist eine optimale Lösung $\Leftrightarrow Ax_*$ ist die Projektion von y auf im A
- Der Optimalwert ist gleich $0 \Leftrightarrow y \in \text{im } A$

Existenz von Lösungen

$$f(x) = \frac{1}{2} ||Ax - b||_{2}^{2}$$
$$= \frac{1}{2} x^{T} A^{T} A x - x^{T} A^{T} b + \frac{1}{2} b^{T} b$$

- f ist quadratisch und f ist beschränkt nach unten $(f \ge 0)$
- x_* ist eine optimale Lösung $\Leftrightarrow x_*$ erfüllt die Normalgleichung

$$A^T A x_* = A^T b$$
 (Aufgabe 2.21)

Die Pseudo-Inverse

$$A^T A x_* = A^T y$$

• Sei ker $A = \{0\}$, sodass $A^T A > 0$

$$x_* = \underbrace{(A^T A)^{-1} A^T y}_{A^+}$$

• A^+ heißt die (Moore-Penrose) Pseudo-Inverse von A

$$A^+y = \operatorname{argmin}_{x} \{ \|Ax - y\|_2 \}$$

Statistische Interpretation

Lineares Messmodel:

• Bestimme *x*

Distribution der Messfehler

• Seien ε_i unabhängige Zufallsvariablen von $N(0, \sigma^2)$:

$$\text{Wahrscheinlichkeitsdichtefunktion} \\ = \frac{1}{(2\pi\sigma^2)^{m/2}} \prod_{i=1}^m \exp\left(-\frac{t_i^2}{2\sigma^2}\right) \\ = \frac{1}{(2\pi\sigma^2)^{m/2}} \exp\left(-\frac{\|t\|_2^2}{2\sigma^2}\right) \\ t = (t_1, \dots, t_m)$$

• Der Vektor ε hat die mehrdimensionale Normalverteilung $N(0,\Sigma)$

$$\Sigma = \operatorname{diag}(\sigma^2, \cdots, \sigma^2)$$

Maximum-Likelihood-Methode

Für welches x ist die Realisierung $\varepsilon = y - Ax$ von $N(0, \Sigma)$ möglichst wahrscheinlich?

Maximiere "
$$\mathbb{P}(\varepsilon = y - Ax)$$
" über $x \in \mathbb{R}^n$

Minimiere
$$-\log(\mathbb{P}(\varepsilon = y - Ax))$$
 über $x \in \mathbb{R}^n$

nimiere
$$-\log(\mathbb{P}(\varepsilon = y - Ax))$$
 über $x \in \mathbb{R}^n$
$$\mathbb{P}'' = \frac{1}{(2\pi\sigma^2)^{m/2}} \exp\left(-\frac{\|t\|_2^2}{2\sigma^2}\right)$$
 Minimiere $\frac{1}{2\sigma^2} \|Ax - y\|_2^2$ über $x \in \mathbb{R}^n$

Beispiel: Lineare Regression

- $R_i \in \mathbb{R}$ Rendite des Investmentfonds PRSVX für die Woche $i=1,\ldots,m$ Von 15/01/2010 bis 27/12/2013
- $R_i^M \in \mathbb{R}$ die Marktrendite für die Woche i
- Gibt es einen Zusammenhang zwischen R_i und R_i^M ?

Lineare Regression

Aufgabe 4.6. Lineare Regression

Minimiere
$$f(\alpha, \beta) = \frac{1}{2} \sum_{i=1}^{m} (R_i - \alpha - \beta R_i^M)^2$$
 über $\alpha, \beta \in \mathbb{R}$

- Wir nehmen an, es gibt $i \neq j$ mit $R_i^M \neq R_j^M$
- Zeigen Sie, dass es eine eindeutige optimale Lösung α_* , β_* gibt, sodass:

$$\beta_* = \frac{\sum_{i=1}^m (R_i^M - \overline{R^M})(R_i - \overline{R})}{\sum_{i=1}^m (R_i^M - \overline{R^M})^2} \ \alpha_* = \overline{R} - \beta_* \overline{R^M}$$

$$\bar{R} = (R_1 + \dots + R_m)/m, \quad \bar{R}^M = (R_1^M + \dots + R_m^M)/m$$

Verzerrung-Varianz-Dilemma

Minimiere
$$f(x) = \frac{1}{2} ||Ax - y||_2^2$$
 über $x \in \mathbb{R}^n$ $\ker A = \{0\}, \ x_* = (A^T A)^{-1} A^T y$

- Seien die Spalten von A fast linear abhängig, so ist $(A^TA)^{-1}$ groß Die Messfehler in y werden verstärkt x_* spiegelt das Rauschen wider (Überanpassung)
- Finde einen geeigneten Ausgleich zwischen Empfindlichkeit auf Rauschen (Varianz) und Modellfehler (Verzerrung)

Falsche Beziehung zwischen x und y (Unteranpassung)

Tikhonov-Regularisierung

Minimiere
$$||Ax - y||_2^2 + \alpha ||x||_2^2$$
 über $x \in \mathbb{R}^n$ $A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^m$, $\alpha > 0$

Minimiere $\left\| \begin{bmatrix} A \\ \sqrt{\alpha}I \end{bmatrix} x - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|_2^2$ über $x \in \mathbb{R}^n$ $x = (A^TA + \alpha I)^{-1}A^Ty$

- Die Kondition $\kappa(A^TA + \alpha I)$ fällt mit α
- Ist $\kappa(A^TA + \alpha I) = N$, so wird der Fehler in $A^Ty \approx \text{um Faktor } N$ verstärkt

Aufgabe 4.7. Kondition fällt mit α

- Sei $A \in \mathbb{R}^{m \times n}$ mit ker $A = \{0\}$.
- Singulärwerte von $A \in \mathbb{R}^{m \times n}$ sind die Eigenwerte von $(A^T A)^{1/2}$ Ist $A \in \mathbb{S}^n_{>}$ so stimmen die Singulärwerte mit Eigenwerten überein
- Die Kondition von *A* ist definiert durch:

$$\kappa(A) = \frac{\sigma_{max}(A)}{\sigma_{min}(A)} - \text{max. Singulärwert von } A$$

$$- \text{min. Singulärwert von } A$$

Beweisen Sie die folgende Formel:

$$\kappa(A^T A + \alpha I) = \frac{\sigma_{max}^2(A) + \alpha}{\sigma_{min}^2(A) + \alpha} \qquad \alpha \ge 0$$

Plan

- Lineares Ausgleichsproblem
- Nichtlineares Ausgleichsproblem
- Konvergenz des Gauß-Newton-Verfahrens

Beispiel: Radioaktiver Zerfall

- Zwei radioaktive Substanzen werden in den Boden eingebracht
- y_i Zerfälle pro Minute werden zum Zeitpunkt t_i gemessen, $i=1,\ldots,m$
- Bestimme die Anfangsaktivitäten A_1 , A_2 und die Halbwertszeiten T_1 , T_2

$$y_i = A_1 2^{-t_i/T_1} + A_2 2^{-t_i/T_2} + \varepsilon_i, \quad i = 1, ..., m$$
Messfehler

Methode der kleinsten Quadrate

$$y_i = A_1 2^{-t_i/T_1} + A_2 2^{-t_i/T_2} + \varepsilon_i, \quad i = 1, ..., m$$
 Bestimme A_1, A_2, T_1, T_2

Wähle A_1,A_2,T_1,T_2 , sodass $\sum_{i=1}^m \varepsilon_i^2$ minimal ist $F_i(A_1,A_2,T_1,T_2) \coloneqq A_1 2^{-t_i/T_1} + A_2 2^{-t_i/T_2}$

$$F_i(A_1, A_2, T_1, T_2) := A_1 2^{-t_i/T_1} + A_2 2^{-t_i/T_2}$$

Minimiere
$$\frac{1}{2}\sum_{i=1}^{m}(F_{i}(A_{1},A_{2},T_{1},T_{2})-y_{i})^{2}$$
 über $A_{1},A_{2},T_{1},T_{2}\in\mathbb{R}$

Nichtlineares Ausgleichsproblem

Minimiere
$$f(x) = \frac{1}{2} ||F(x) - y||_2^2$$
 über $x \in \mathbb{R}^n$
 $F \in C^1(\mathbb{R}^n, \mathbb{R}^m), \ y \in \mathbb{R}^m$

- Sei x_* eine optimale Lösung
- Das Gauß-Newton-Verfahren versucht x_* näherungsweise zu bestimmen
- Die Konvergenz ist lokal quadratisch, falls das Problem kompatibel ist:

$$F(x_*) = y$$

Konvergenzgeschwindigkeit fällt mit $||F(x_*) - y||_2$

Gauß-Newton-Verfahren

Zwei Herleitungen:

- Wende das Newton-Verfahren mit einer Approximation an die Hesse-Matrix von f an
- Linearisiere F neben der aktuellen Näherungslösung und löse das resultierende quadratische Program für eine neue Näherungslösung

Ableitungen

$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (F_i(x) - y_i)^2$$

$$\frac{\partial f}{\partial x_i} = \sum_{k=1}^{m} \frac{\partial F_k}{\partial x_i} (F_k(x) - y_k)$$

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \sum_{k=1}^{m} \left[\frac{\partial^2 F_k}{\partial x_i \partial x_j} (F_k(x) - y_k) + \frac{\partial F_k}{\partial x_i} \frac{\partial F_k}{\partial x_j} \right] \approx \frac{\partial F_k}{\partial x_i} \frac{\partial F_k}{\partial x_j}$$

Ableitungen in Vektorform

$$DF = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}$$

$$f(x) = \frac{1}{2} (F(x) - y)^T (F(x) - y)$$

$$\nabla f(x) = DF(x)^T (F(x) - y)$$

$$\nabla^2 f(x) \approx DF(x)^T DF(x)$$

Erste Herleitung

Minimiere
$$f(x) = \frac{1}{2} \|F(x) - y\|_2^2$$
 über $x \in \mathbb{R}^n$ $F \in C^2(\mathbb{R}^n, \mathbb{R}^m)$, $y \in \mathbb{R}^m$ Newton-Verfahren
$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$
 aktuelle Approximation
$$\nabla f(x_k) = DF(x_k)^T (F(x_k) - y)$$

$$\nabla^2 f(x_k) \approx DF(x_k)^T DF(x_k) > 0$$

$$x_{k+1} = x_k - \left(DF(x_k)^T DF(x_k)\right)^{-1} DF(x_k)^T (F(x_k) - y)$$

$$DF(x_k)^+$$

Alternative Herleitung

Minimiere
$$f(x) = \frac{1}{2} ||F(x) - y||_2^2$$

 $F \in C^1(\mathbb{R}^n, \mathbb{R}^m), y \in \mathbb{R}^m$

linearisiere F

Minimiere
$$\frac{1}{2} ||F(x_k) + DF(x_k)(x - x_k) - y||_2^2$$
 aktuelle Approximation

) lineares Ausgleichsproblem

$$DF(x_k)^T DF(x_k)(x_{k+1} - x_k) = -DF(x_k)^T (F(x_k) - y)$$
 ker $DF(x_k) = \{0\}$

$$x_{k+1} = x_k - DF(x_k)^+ (F(x_k) - y) \longleftarrow$$

Gauß-Newton-Verfahren

- 1. Initialisierung: Startwert $x_0 \in \mathbb{R}^n$, Toleranzwert $\epsilon > 0$
- 2. for k = 0,1,2,... do: $||DF(x_k)^T(F(x_k) y)||_2$
- 3. **if** $\|\nabla f(x_k)\|_2 < \epsilon$ **then** break
- 4. $x_{k+1} = x_k DF(x_k)^+ (F(x_k) y)$
- 5. end for

Plan

- Lineares Ausgleichsproblem
- Nichtlineares Ausgleichsproblem
- Konvergenz des Gauß-Newton-Verfahrens

Satz 4.8. Lokale Konvergenz

Sei $F \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ und $x_* \in \operatorname{Argmin}_{x} ||F(x) - y||_2^2$. Angenommen:

- rang $(DF(x)) = n \ \forall x \in B_{\delta}(x_*) \longrightarrow DF(x)^T DF(x) > 0$
- $||DF(x)^+(DF(x) DF(y))||_2 \le \omega ||x y||_2 \ \forall x, y \in B_{\delta}(x_*)$
- $||DF(x)^{+}(F(x_{*}) y)||_{2} \le \kappa ||x x_{*}||_{2} \text{ mit } \kappa \in [0,1) \ \forall x \in B_{\delta}(x_{*})$ • ist $F(x_{*}) = y$, so gilt es mit $\kappa = 0$

Ist
$$||x_0 - x_*||_2 < \min\{\frac{2}{\omega}(1 - \kappa), \delta\}$$
, so gilt:
$$||x_{k+1} - x_*||_2 \le \frac{\omega}{2}||x_k - x_*||_2^2 + \kappa ||x_k - x_*||_2$$

Beweis

Ohne Beschränkung der Allgemeinheit: $x_* = 0, y = 0$

$$x_{k+1} = x_k - DF(x_k)^+ F(x_k)$$

$$= x_k - DF(x_k)^+ (F(x_k) - F(0)) - DF(x_k)^+ F(0)$$

$$= x_k - DF(x_k)^+ (F(x_k) - F(0)) - DF(x_k)^+ F(0)$$

$$= x_k - DF(x_k)^+ DF(x_k) x_k$$

$$= -DF(x_k)^+ (F(x_k) - F(0)) - DF(x_k) x_k - DF(x_k)^+ F(0)$$

$$= -DF(x_k)^+ (F(x_k) - F(0)) - DF(x_k) x_k - DF(x_k)^+ F(0)$$

$$= -\int_0^1 DF(x_k)^+ (DF(tx_k) - DF(x_k)) x_k dt - DF(x_k)^+ F(0)$$

Beweis

$$||DF(x_k)^+F(0)||_2 \le \kappa ||x_k||_2$$
Annahme

$$x_{k+1} = -\int_0^1 DF(x_k)^+ \left(DF(tx_k) - DF(x_k)\right) x_k dt - DF(x_k)^+ F(0)$$
Annahme

$$||DF(x_k)^+(DF(tx_k) - DF(x_k))||_2 \le \omega(1-t)||x_k||_2$$

$$||x_{k+1}||_2 \le \int_0^1 \omega (1-t) ||x_k||_2^2 dt + \kappa ||x_k||_2$$
$$= \frac{1}{2} \omega ||x_k||_2^2 + \kappa ||x_k||_2$$

Lemma 4.9. Konvergenzgeschwindigkeit

$$||DF(x)^{+}(F(x_{*}) - y)||_{2} \le \kappa ||x - x_{*}||_{2} \text{ mit } \kappa \in [0,1) \ \forall x \in B_{\delta}(x_{*})$$

$$\implies ||x_{k+1} - x_{*}||_{2} \le \frac{\omega}{2} ||x_{k} - x_{*}||_{2}^{2} + \kappa ||x_{k} - x_{*}||_{2}$$

Die Bedingung ist erfüllt mit $\kappa = \varepsilon L$, falls:

$$||DF(x)^{+} - DF(x_{*})^{+}||_{2} \le L||x - x_{*}||_{2} \text{ für } x \in B_{\delta}(x_{*})$$

 $||F(x_{*}) - y||_{2} = \varepsilon < \frac{1}{L} \text{ Rauschpegel in Messwerten}$

- Quadratische Konvergenz für exakte Daten: $\varepsilon = 0$
- Die Konvergenzgeschwindigkeit fällt mit steigendem arepsilon

Beweis

Behauptung:
$$||DF(x)^{+}(F(x_{*}) - y)||_{2} \le \kappa ||x - x_{*}||_{2} \text{ mit } \kappa \in [0,1)$$

$$f(x) = \frac{1}{2} ||F(x) - y||_{2}^{2}$$

$$\nabla f(x_{*}) = DF(x_{*})^{T}(F(x_{*}) - y) = 0$$

$$DF(x_{*})^{+}(F(x_{*}) - y) = 0$$

$$||DF(x)^{+}(F(x_{*}) - y)||_{2} = ||(DF(x)^{+} - DF(x_{*})^{+})(F(x_{*}) - y)||_{2}$$

$$\le ||DF(x)^{+} - DF(x_{*})^{+}||_{2} ||F(x_{*}) - y||_{2}$$

$$\le L||x - x_{*}||_{2}$$

$$\le L\varepsilon ||x - x_{*}||_{2}$$

Stabilität

Minimiere
$$f(x) = \frac{1}{2} ||F(x) - y||_2^2$$
 über $x \in \mathbb{R}^n$
 $F \in C^1(\mathbb{R}^n, \mathbb{R}^m), y \in \mathbb{R}^m$

- Oft sind Matrizen $DF(x)^TDF(x)$ schlecht konditioniert, d.h. $\kappa(DF(x)^TDF(x))$ ist groß
- ullet Der Fehler in Messwerten y wird beim Gauß-Newton-Schritt verstärkt :

$$x_{k+1} = x_k - (DF(x_k)^T DF(x_k))^{-1} DF(x_k)^T (F(x_k) - y)$$

Die Iterationen akkumulieren die Fehler

Levenberg-Marquardt-Verfahren

Minimiere
$$f(x) = \frac{1}{2} ||F(x) - y||_2^2$$
 über $x \in \mathbb{R}^n$
$$F \in C^1(\mathbb{R}^n, \mathbb{R}^m), \ y \in \mathbb{R}^m$$
 linearisiere F

$$\begin{array}{c|c} \text{Minimiere } \|F(x_k) + DF(x_k)(x - x_k) - y\|_2^2 \\ \text{aktuelle N\"aherungsl\"osung} & & & & \\ \text{Anpassungsparameter} > 0 \\ \text{Minimiere } \|F(x_k) + DF(x_k)(x - x_k) - y\|_2^2 + \alpha_k \|x - x_k\|_2^2 \end{array}$$

Minimiere
$$||F(x_k) + DF(x_k)(x - x_k) - y||_2^2 + \alpha_k ||x - x_k||_2^2$$

Ausgleich zwischen Empfindlichkeit auf Messfehler und Modellqualität

$$x_{k+1} = x_k - (DF(x_k)^T DF(x_k) + \alpha_k)^{-1} DF(x_k)^T (y - F(x_k))$$

Zusammenfassung

- Lineares Ausgleichsproblem
- Nichtlineares Ausgleichsproblem
- Konvergenz des Gauß-Newton-Verfahrens

Nächstes Video

5a. Lineare Nebenbedingungen: Gleichungen