Теоремы Крулля Р. Д.

Теория размерности нетеровых колец

26 января 2024 года

Теоремы Крулля Р. Д.

Примарные идеалы

ОПРЕДЕЛЕНИЕ: Идеал $I \subset A$ называется **примарным,** если в факторе A/I всякий делитель нуля нильпотентен.

ЗАМЕЧАНИЕ: Если I примарен, то \sqrt{I} прост.

ПРЕДЛОЖЕНИЕ: Идеал I примарен тогда и только тогда, когда $xy \in I$ влечет $x \in I$, либо $y \in I$, либо $x, y \in \sqrt{I}$.

Теоремы Крулля

Простая версия теоремы Крулля

ОПРЕДЕЛЕНИЕ: Высотой простого идеала $\mathfrak{p}\subset A$ называется размерность Крулля локализации $A_{\mathfrak{p}}$.

ОПРЕДЕЛЕНИЕ: Идеал называется **минимальный простым** над идеалом I, если он минимален по включению среди идеалов, содержащих I.

ЗАМЕЧАНИЕ: Если \mathfrak{p} — минимальный простой идеал над I, то $V(\mathfrak{p})$ — максимальное неприводимое подмногообразие, содержащееся в V(I).

Теоремы Крулля

Простая версия теоремы Крулля

ОПРЕДЕЛЕНИЕ: Высотой простого идеала $\mathfrak{p} \subset A$ называется размерность Крулля локализации $A_{\mathfrak{p}}$.

ОПРЕДЕЛЕНИЕ: Идеал называется **минимальный простым** над идеалом I, если он минимален по включению среди идеалов, содержащих I.

ЗАМЕЧАНИЕ: Если \mathfrak{p} — минимальный простой идеал над I, то $V(\mathfrak{p})$ — максимальное неприводимое подмногообразие, содержащееся в V(I).

TEOPEMA: (Крулля о главных идеалах, простая версия): Пусть A — нетерово кольцо, $a \in A$, и р — минимальный простой идеал над (a). Тогда высота р не превосходит 1.

ДОКАЗАТЕЛЬСТВО: Можно считать, что A — локальное кольцо, а $\mathfrak{p} \subset A$ — максимальный идеал. Рассмотрим цепь длины два: $\mathfrak{p} \supset I \supset \{0\}$.

Теоремы Крулля

Простая версия теоремы Крулля

ОПРЕДЕЛЕНИЕ: Высотой простого идеала $\mathfrak{p}\subset A$ называется размерность Крулля локализации $A_{\mathfrak{p}}$.

ОПРЕДЕЛЕНИЕ: Идеал называется **минимальный простым** над идеалом I, если он минимален по включению среди идеалов, содержащих I.

ЗАМЕЧАНИЕ: Если \mathfrak{p} — минимальный простой идеал над I, то $V(\mathfrak{p})$ — максимальное неприводимое подмногообразие, содержащееся в V(I).

TEOPEMA: (Крулля о главных идеалах, простая версия): Пусть A — нетерово кольцо, $a \in A$, и р — минимальный простой идеал над (a). Тогда высота р не превосходит 1.

ДОКАЗАТЕЛЬСТВО: Можно считать, что A — локальное кольцо, а $\mathfrak{p} \subset A$ — максимальный идеал. Рассмотрим цепь длины два: $\mathfrak{p} \supset I \supset \{0\}$.

Определим символические степени $I^{(n)} = I^n A_I \cap A$. Это убывающая цепь идеалов: $I^{(0)} = A$, $I^{(1)} = I$, $I^{(k)} \supset I^{(k+1)}$. Всякая $I^{(n)}$ есть примарный идеал с $\sqrt{I^{(n)}} = I$, и $I^n \subset I^{(n)}$ (равенство достигается не всегда, однако увидеть это на примере трудно).

Простая версия теоремы Крулля (окончание)

Кольцо A/(a) — локальное кольцо **размерности нуль,** а потому **нильпотентное,** и всякая **убывающая** цепочка идеалов в нем стабилизируется. Пусть $u \in I^{(n)}$, тогда u = v + ab, $v \in I^{(n+1)}$, и $ab \in I^{(n)}$. Но $a \not\in I$, так что $b \in I^{(n)}$. Значит, $I^{(n)} \subset I^{(n+1)} + aI^{(n)}$ и потому $I^{(n)} = I^{(n+1)} + aI^{(n)}$. Тем самым $a\left(I^{(n)}/I^{(n+1)}\right) = I^{(n)}/I^{(n+1)}$, и **по лемме Накаямы** $I^{(n)} = I^{(n+1)}$. Значит, цепочка символических степеней $I^{(n)}$ стабилизируется не только в A/(a), но и в A.

Простая версия теоремы Крулля (окончание)

Кольцо A/(a) — локальное кольцо **размерности нуль,** а потому **нильпотентное,** и всякая **убывающая** цепочка идеалов в нем стабилизируется. Пусть $u \in I^{(n)}$, тогда u = v + ab, $v \in I^{(n+1)}$, и $ab \in I^{(n)}$. Но $a \not\in I$, так что $b \in I^{(n)}$. Значит, $I^{(n)} \subset I^{(n+1)} + aI^{(n)}$ и потому $I^{(n)} = I^{(n+1)} + aI^{(n)}$. Тем самым $a\left(I^{(n)}/I^{(n+1)}\right) = I^{(n)}/I^{(n+1)}$, и **по лемме Накаямы** $I^{(n)} = I^{(n+1)}$. Значит, цепочка символических степеней $I^{(n)}$ стабилизируется не только в A/(a), но и в A.

Пусть $x \in I$. Тогда $x^n \in I^n \subset I^{(n)} \subset I^n A_I$ и потому лежит в пересечении их всех. Но A_I — локальное нетерово кольцо, и по теореме Крулля о пересечении $\cap_k I^k A_I = 0$. Значит $x^n = 0$, и x = 0 в силу простоты I, а потому $I = \{0\}$. Противоречие!

Теоремы Крулля Р. Д.

Теорема Крулля о высоте

TEOPEMA: (Крулля о высоте) Пусть A — нетерово кольцо, идеал $I \subset A$ порожден n элементами, и $\mathfrak p$ — минимальный простой над I. Тогда высота $\mathfrak p$ не превосходит n.

ДОКАЗАТЕЛЬСТВО: База индукции n=1 известна. Будем доказывать **шаг.** Пусть $I=(a_1,\ldots,a_k)$, и имеется цепочка $\mathfrak{p}=I_{k+1}\supset I_k\supset\cdots\supset I_1\supset\{0\}$. Пусть $a_1\in I_{i+1}\setminus I_i$.

Теорема Крулля о высоте

TEOPEMA: (Крулля о высоте) Пусть A — нетерово кольцо, идеал $I \subset A$ порожден n элементами, и $\mathfrak p$ — минимальный простой над I. Тогда высота $\mathfrak p$ не превосходит n.

ДОКАЗАТЕЛЬСТВО: База индукции n=1 известна. Будем доказывать шаг. Пусть $I=(a_1,\ldots,a_k)$, и имеется цепочка $\mathfrak{p}=I_{k+1}\supset I_k\supset\cdots\supset I_1\supset\{0\}$. Пусть $a_1\in I_{i+1}\setminus I_i$.

Рассмотрим локальное кольцо $B = A_{I_{i+1}}/I_{i-1}A_{I_{i+1}}$, $a = [a_1] \neq 0$ лежит в его максимальном идеале. Пусть $J \subset B$ — минимальный простой над (a). По теореме Крулля о главных идеалах, высота J равна единице, и потому J не максимален. Положим за $I_i' \subset A$ обратный образ J. Он содержит a_1 .

Продолжая таким образом заменять I_i на I_i' , приходим к цепочке $\mathfrak{p}=I_{k+1}'\supset I_k'\supset\cdots\supset I_1'\supset\{0\}$ **с** $a_1\in I_1'$. Для кольца A/I_1' имеем противоречие с предположением индукции. \blacksquare

Теоремы Крулля Р. Д.

Теорема Крулля о высоте

TEOPEMA: (Крулля о высоте) Пусть A — нетерово кольцо, идеал $I \subset A$ порожден n элементами, и $\mathfrak p$ — минимальный простой над I. Тогда высота $\mathfrak p$ не превосходит n.

ДОКАЗАТЕЛЬСТВО: База индукции n=1 известна. Будем доказывать шаг. Пусть $I=(a_1,\ldots,a_k)$, и имеется цепочка $\mathfrak{p}=I_{k+1}\supset I_k\supset\cdots\supset I_1\supset\{0\}$. Пусть $a_1\in I_{i+1}\setminus I_i$.

Рассмотрим локальное кольцо $B = A_{I_{i+1}}/I_{i-1}A_{I_{i+1}}$, $a = [a_1] \neq 0$ лежит в его максимальном идеале. Пусть $J \subset B$ — минимальный простой над (a). По теореме Крулля о главных идеалах, высота J равна единице, и потому J не максимален. Положим за $I_i' \subset A$ обратный образ J. Он содержит a_1 .

Продолжая таким образом заменять I_i на I_i' , приходим к цепочке $\mathfrak{p}=I_{k+1}'\supset I_k'\supset\cdots\supset I_1'\supset\{0\}$ **С** $a_1\in I_1'$. Для кольца A/I_1' имеем противоречие с предположением индукции. \blacksquare

СЛЕДСТВИЕ: Если A локально, для $\mathfrak{m} = I = \mathfrak{p}$ имеем утверждение из прошлого занятия. В частности, нетерово локальное кольцо имеет конечную размерность Крулля.