СТРУКТУРА И КИСЛОРОДНАЯ НЕСТЕХИОМЕТРИЯ СЛОЖНЫХ ОКСИДОВ, ОБРАЗУЮЩИХСЯ В СИСТЕМЕ «Ho₂O₃ – BaO – Fe₂O₃»

Воробьева А.В., Бастрон И.А., Волкова Н.Е. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

В настоящее время многих исследователей привлекают сложные оксиды с перовскитоподобной структурой в связи с их успешным применением в различных областях науки и техники. Благодаря их высокой химической и термической стабильности, уникальным электрическим и магнитным свойствам данные соединения находят применение в создании электродов ТОТЭ, газовых сенсоров и кислородных мембран. Поэтому целью данной работы является изучение возможности получения, изучение кристаллической структуры и физикохимических свойств сложных оксидов, образующихся в системе «½ $Ho_2O_3 - BaO - \frac{1}{2}$ Fe_2O_3 ».

Образцы для исследования были приготовлены по глицерин-нитратной технологии с последующим отжигом при температуре 1100 °C на воздухе, в течение 120 часов с промежуточными перетираниями в среде этилового спирта и последующей закалкой на 1100 °C. Фазовый состав полученных оксидов устанавливали методом порошковой рентгеновской дифракции. Идентификацию фаз осуществляли при помощи картотеки ICDD и программного пакета "Fpeak" (ИЕНиМ, УрФУ). Уточнение структурных параметров анализируемых сложных оксидов проведено методом Ритвелда в программе «FullProf 2023».

По описанному выше методу были синтезированы образцы следующих составов: $Ba_{1-x}Ho_xFeO_{3-\delta}$ (x=0,1-0,9), $BaHo_yFe_{1-y}O_{3-\delta}$ ($y=0,05;\ 0,1;\ 0,15;\ 0,2;\ 0,3;\ 0,4;\ 0,6$), $HoBaFeO_{4-\gamma}$ и $Ba_3HoFe_2O_{8-\epsilon}$. По данным рентгенофазового анализа установлено, что твердые растворы $BaHo_yFe_{1-y}O_{3-\delta}$ (при $y\leq0,15$) кристаллизуются в кубической элементарной ячейке (пр. гр. $Pm\overline{3}m$) и имеют статистическое распределение атомов железа и гольмия в B-подрешетке перовскита; сложный оксид $HoBaFeO_{4-\gamma}$ имеет орторомбическую структуру (пр. гр. Pnma); индивидуальная фаза $Ba_3HoFe_2O_{8-\epsilon}$ также кристаллизуется в орторомбической ячейке (пр. гр. Pnma).

Кислородную нестехиометрию (δ) однофазных образцов $BaFe_{0,9}Ho_{0,1}O_{3-\delta}$, $HoBaFeO_{4-\gamma}$ и $Ba_3HoFe_2O_{8-\epsilon}$ изучали методом высокотемпературной термогравиметрии ($T\Gamma A$). Обмен кислородом образцов $BaFe_{0,9}Ho_{0,1}O_{3-\delta}$ и $Ba_3HoFe_2O_{8-\epsilon}$ с газовой фазой начинается выше 400 °C, при этом обмен кислородом с окружающей средой происходит лучше у фазы с кубической структурой, чем с ортором-бической. $HoBaFeO_4$ является стехиометричным по кислороду во всем исследуемом интервале температур.