

TRANSACCIONES, AISLAMIENTO Y CANDADOS

Bases de Datos Ingeniería de Sistemas Universidad Nacional de Colombia 2013

Fin_SI

Ejemplo de una cuenta corriente

RETIRO

Ingrese retiro

Lea saldo del cliente A

Si saldo >= retiro

saldo = saldo - retiro

grabe saldo

suministre dinero

CONSIGNACION

Ingrese consignación
Lea saldo del cliente A
saldo = saldo +
consignación
grabe saldo

Operación sin control

Saldo inicial del cliente A = 1000

RETIRO

Ingrese retiro
Lea saldo del cliente A
Si saldo >= retiro
saldo = saldo - retiro
grabe saldo
suministre dinero
Fin SI

Retira 800

retiro = 800

saldo = 1000

saldo = 200

Operación sin control

CONSIGNACION

RETIRO

Ingrese retiro
Lea saldo del cliente A
Si saldo >= retiro
saldo = saldo - retiro
grabe saldo
suministre dinero
Fin SI

Ingrese consigna Lea saldo del cliente A saldo = saldo + consigna grabe saldo

Saldo inicial del cliente A = 1000

Retira 800	Retira 700	Retira 100	Consigna 300
retiro = 800	retiro = 700	retiro = 100	consigna = 300
saldo = 1000	saldo = 1000	saldo = 1000	saldo = 1000
saldo = 200	saldo = 300	saldo = 900	saldo = 1300

Operación con control

RETIRO

Ingrese retiro
Lea saldo del cliente A
Si saldo >= retiro
saldo = saldo - retiro
grabe saldo
suministre dinero
Fin SI

Ingrese consigna Lea saldo del cliente A saldo = saldo + consigna grabe saldo **CONSIGNACION**

Saldo inicial del cliente A = 1000

Retira 800	Retira 700	Retira 100	Consigna 300
retiro = 800	retiro = 700	retiro = 100	consigna = 300
saldo = 1000	Espere	Espere	Espere
saldo = 200	Espere	Espere	Espere
	saldo = 200	saldo = 200	Espere
		saldo = 100	saldo = 100
			saldo = 400

Transacciones

- Una transacción es una o más sentencias que se toman como una unidad (todo termina bien o todo se aborta)
- Una transacción es una unidad lógica de trabajo
 - Definida para las reglas del negocio
 - Típicamente incluye al menos una modificación de datos
 - Pasa la base de datos de un estado consistente a otro
- Una transacción tiene dos posibles salidas:
 - Committed
 - Todas las modificaciones quedan en firme
 - Rolled back
 - Las modificaciones retornan a su estado inicial

Rol de las transacciones

- Proteger los datos de las fallas del software, hardware, y potencia eléctrica
- Permitir el aislamiento de datos de tal forma que varios usuarios pueden acceder simultáneamente a los datos sin interferencia

Cuándo usar transacciones?

Cuando un conjunto de sentencias se deben comportar como una unidad

Sentencias para transacciones

- Cuatro sentencias definen la estructura de una transacción:
 - begin tran
 - commit tran
 - rollback tran
 - **save**

begin tran y commit tran

- begin tran
 - Inicia la transacción

- commit tran
 - Finaliza la transacción
 - Todas las modificaciones quedan en firme

Necesidad de aislamiento

- En ambientes
 multiusuario, las
 transacciones acceden
 a los datos
 simultáneamente
- Datos que no estén aislados pueden estar errados

Bloqueo (locking)

Mecanismo automático que aisla los datos para prevenir conflictos de los datos que se están modificando

Estructura interna de una tabla

Alcance de los candados

- El alcance de un candado determina cuántos datos se aislan
- Tres alcances

Tipos de candados

- El tipo de candado determina la extensión del aislamiento de datos de otras transacciones
- Tres tipos de candados
 - Shared
 - Exclusive
 - Update

Candados Shared

- Usado por sentencias que leen datos (selects)
- Otros procesos pueden leer los datos (coloca candado shared), pero ningún proceso puede cambiar los datos (coloca candado exclusive)

Candados exclusive

- Usado por sentencias que cambian datos (inserts, updates, deletes)
- Ningún otro proceso puede leer los datos (coloca candado shared) o cambiar los datos (coloca candado exclusive sobre la página)

Candados update

- Usado por operaciones que pueden o no cambiar los datos (updates, deletes)
- Cuando el proceso primero escanea los datos, le aplica un candado update. Otros procesos pueden colocar candados shared, pero ningún proceso puede colocar candados exclusive o update

Deadlock

Resolución del deadlock

Esquema de bloqueo

Esquema de bloqueo es un atributo de la tabla que determina qué datos asociados con la tabla están bloqueados

bloqueo "allpages"

- Se pueden bloquear las páginas de índices
- El servidor usa candados de tabla y candados de página, pero no candados de fila

Bloqueo "datapages"

- Las páginas de índices nunca se bloquean
- El servidor usa candados de tabla y candados de página, pero no candados de fila

Bloqueo "datarows"

- Las páginas de índices nunca se bloquean
- El servidor usa candados de tabla, candados de página y candados de fila

Leer datos no aislados

- Hay tres tipos de consultas o "reads", que pueden retornar datos que son inadecuados para limitar el aislamiento de datos
- Las características de cómo se hacen estos "reads" son propios de cada DBMS
- Hay tres tipo de "reads":
 - Dirty reads
 - Nonrepeatable reads
 - Phantom reads

Lectura sucia

- La transacción 1 modifica datos
- La transacción 2 lee los datos modificados antes de que la modificación haya terminado
 - Esta transacción lee datos "uncommitted" o "dirty"

Lectura no repetible

- La transacción 1 lee datos
- La transacción 2 modifica esos datos antes de que la primera transacción haya terminado
 - La primera lectura es ahora "nonrepeatable"

Lectura fantasma

- La transacción 2 modifica los datos de algunas columnas que no cumplían esa condición y ahora la cumplen, o al contrario
 - Las filas que aparecen y desaparecen se denominan "phantoms"

Nivel de aislamiento

- Un nivel de aislamiento es un conjunto de candados que permiten o no una combinación particular de los tres tipos de lectura: sucia, no repetible o con fantasmas
- ANSI define cuatro niveles de aislamiento, cada uno más restrictivo que el anterior

	Dirty Reads	Nonrepeatable Reads	Phantom Reads
Level 0	Allowed	Allowed	Allowed
Level 1	Prevented	Allowed	Allowed
Level 2	Prevented	Prevented	Allowed
Level 3	Prevented	Prevented	Prevented