Treinamento de Machine Learning e Deep Learning

Do Básico ao Avançado

Salomão Machado Mafalda¹

¹Universidade Federal do Acre PAVIC

2023

Agenda

- Perceptron
- 2 Adaline
- Neurônio Sigmoide
- 4 Funções de Ativação
- Backpropagation
- 6 Redes Neurais Profundas
- Funções de Custo
- Rede Neural do Zero

Figure: Neurônio humano

Figure: Neurônio Artificial

(a) Neurônio Humano

(b) Neurônio Artificial

- Modelo mais básico de NN
- Um neurônio
- N entradas, Uma saída ŷ

Figure: Neurônio Artificial

$$\hat{y} = f(\sum_{i} w_{i} x_{i} + b)$$

- Modelo mais básico de NN
- Um neurônio
- N entradas, Uma saída ŷ
- Classificador binário linear
- Pode ser usado para Regressão
- Perceptron Rule
- Aprendizado Online
 - Atualiza os pesos por amostra

Função de ativação do perceptron

$$\begin{cases} 0 & \text{if } 0 > x \\ 1 & \text{if } x \ge 0 \end{cases}$$

- 0 se for negativo
- 1 se maior ou igual a 0

Perceptron Rule

O perceptron atualiza seus pesos utilizando a perceptron rule, não com o gradiente

Atualização dos pesos:

$$w_i = w_i + \lambda * (y_i - \hat{y}_i) * x_i$$

Atualização do bias:

$$b_i = b_i + \lambda * (y_i - \hat{y}_i)$$

Observação importante

"Quando a diferença yi - ŷi for 0 então não ocorrerá a atualização dos pesos"

Ponto de partida diferente

Com diferentes pontos de partida, o algoritmo encontra quase a mesma solução, embora com diferentes taxas de convergência.

```
▶ Caso 01
```

▶ Caso 02

Learning Rate - Taxa de aprendizagem

- \bullet LR = 0.01 a velocidade de convergência é muito lenta. Quando o cálculo se torna complicado, uma taxa de aprendizado muito baixa afetará a velocidade do algoritmo, mesmo nunca atingindo o destino.
- LR = 0.5, o algoritmo se aproxima do alvo muito rapidamente após várias iterações. No entanto, o algoritmo falha ao convergir porque o salto é muito grande, fazendo com que ele fique parado no destino.

Caso 01

▶ Caso 02

Vamos ver na prática

 $Vamos\ praticar\ utilizando\ o\ notebook\ 00_perceptron$

Figure: Neurônio Artificial

- Modelo mais básico de NN
- Um neurônio
- N entradas, Uma saída ŷ
- Classificador binário linear
- Pode ser usado para Regressão
- Sabe o quanto 'errou'
- Aplica-se o gradiente descendente
- Aprendizado Online

$$\hat{y} = f(\sum_{i} w_{i} x_{i} + b)$$

Função de ativação do Adaline

$$f(x) = x$$

Possibilita o cálculo da derivada

Adaline vs Perceptron

Adaline vs Perceptron

Como atualizar os pesos do Adaline

$$w_i = w_i - \lambda * (y_i - \hat{y}_i) * x_i$$

O erro predito será a saída predita menos a saída desejada multiplicados pela entrada (x)

$$J(w) = \frac{1}{2} \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

$$\frac{\partial J}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{i}^{N} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i}^{N} \frac{\partial}{\partial w_i} (y_i - \hat{y}_i)^2$$

$$= \sum_{i}^{N} (y_i - \hat{y}_i) \frac{\partial}{\partial w_i} (y_i - \hat{y}_i) = \sum_{i}^{N} (y_i - \hat{y}_i)(x_i) \to \frac{\partial J}{\vec{w}} = -(\vec{y} - \vec{\hat{y}})\vec{x}$$

Vamos ver na prática

Vamos praticar utilizando o notebook 01_{-} adaline

Figure: Neurônio Artificial

- Modelo mais básico de NN
- Um neurônio
- N entradas, Uma saída ŷ
- Custo: Entropia Cruzada
- Classificação binária não-linear
- Pequenas alterações nos parâmetros geram pequenas alterações nas saídas
- Sabe o quanto 'errou'
- Aplica-se o gradiente descendente

$$\hat{y} = f(\sum_{i} w_{i} x_{i} + b)$$

Função de ativação do Neurônio Sigmoide

$$f(x) = \frac{1}{1 - e^{-x}}$$

- Possibilita o cálculo da derivada em todos pontos
- Aplicado em problemas de regressão logística

Entropia Cruzada

 p_j é o valor a ser predito e t_j é o valor predito

$$L = -rac{1}{N}\left[\sum_{j=1}^{N}[t_{j}log(
ho_{j})+(1-t_{j})log(1-
ho_{j})]
ight]$$

Vamos tomar:

pj	tj	Erro	L
0	0	0 - 0 = 0	0
0	1	0 - 1 = -1	∞
1	0	1 - 0 = 1	∞
1	1	1 - 1 = 0	0

Entropia Cruzada

Para entrada 0,0 e saída predita 0 e a saída desejada for 0

$$L = -\frac{1}{N} \left[\sum_{j=1}^{N} [0 log(0) + (1 - 0) log(1 - 0)] \right]$$

Vamos tomar:

pj	tj	Erro	L
0	0	0 - 0 = 0	0
0	1	0 - 1 = -1	∞
1	0	1 - 0 = 1	∞
1	1	1 - 1 = 0	0

Entropia Cruzada

Para entrada 0,1 e saída predita 0 e a saída desejada for 1

$$L = -\frac{1}{N} \left[\sum_{j=1}^{N} [0 log(1) + (1 - 0) log(1 - 1)] \right]$$

Vamos tomar:

pj	tj	Erro	L
0	0	0 - 0 = 0	0
0	1	0 - 1 = -1	∞
1	0	1 - 0 = 1	∞
1	1	1 - 1 = 0	0

Entropia Cruzada

Para entrada 1,0 e saída predita 1 e a saída desejada for 0

$$L = -rac{1}{N} \left[\sum_{j=1}^{N} [1 log(0) + (1 - 1) log(1 - 0)] \right]$$

Vamos tomar:

pj	tj	Erro	L
0	0	0 - 0 = 0	0
0	1	0 - 1 = -1	∞
1	0	1 - 0 = 1	∞
1	1	1 - 1 = 0	0

Entropia Cruzada

Para entrada 1,1 e saída predita 1 e a saída desejada for 1

$$L = -\frac{1}{N} \left[\sum_{j=1}^{N} [1 \log(1) + (1 - 1) \log(1 - 1)] \right]$$

Vamos ver na prática

Vamos praticar utilizando o notebook 02_neuronio_sigmoid

27 / 92

- Localizada a saída de cada neurônio
- Usada para mapear entradas em novas saídas
- ullet Pode alterar o range ex: $[-100\ 100]$ para $[1\ 0]$

Figure: Neurônio Artificial

$$\hat{y} = f(\sum_{i} w_{i} x_{i} + b)$$

Linear

- $y \in [-\infty, +\infty]$
- Função de ativação simples
- Comumente usada em regressão
- Baixa complexidade
- Baixo poder de aprendizagem

Função:

$$f(x) = x$$

Derivada:

$$\frac{\partial y}{\partial x} = 1$$

Atenção

Note este caso: Porque construir modelos apenas com Lineares?

input: "10 \rightarrow 100 \rightarrow 200 \rightarrow 10"

pesos: "10 \rightarrow 2 \rightarrow 00.5 = 10 x 10 = 10"

Podemos substituir todos pesos por um só

Sigmoid

- $y \in [0, +1]$
- Regressão Logística
- Geralmente interpretada como probabilidade
- Saída não centrada em 0
- Satura os gradientes
- Não indicada para camadas ocultas
- Converge lentamente

Função:

$$f(x) = \frac{1}{1 - e^{-x}}$$

Derivada:

$$\frac{\partial y}{\partial x} = y(1 - y)$$

Tanh

- $y \in [-1, +1]$
- Uma versão da Sigmoid
- Saída centrada em 0
- Satura os gradientes. um pouco menos que a Sigmoid
- Converge lentamente

Função:

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Derivada:

$$\frac{\partial y}{\partial x} = 1 - y^2$$

Relu

- $y \in [0, +\infty]$
- Não tem derivada para valores < 0
- Simples e Eficiente
- Evita a saturação dos gradientes
- Converge mais rápido
- Usada nas camadas escondidas
- Ela mata neurônio

Função:

$$f(x) = max(0, x)$$

Derivada:

$$\frac{\partial y}{\partial x} = \begin{cases} 0, & \text{if } x \le 0\\ 1, & \text{if } x > 0 \end{cases}$$

Leaky Relu

- $y \in [-\infty, +\infty]$
- Tem derivada para valores < 0
- Simples e Eficiente
- Evita a saturação dos gradientes
- Converge mais rápido
- Usada nas camadas escondidas
- Diminui as mortes de neurônios

Função:

$$f(x) = \begin{cases} \alpha(e^x - 1), x \le 0 \\ x, x > 0 \end{cases}$$

Derivada:

$$\frac{\partial y}{\partial x} = \begin{cases} \alpha, x \le 0\\ 1, x > 0 \end{cases}$$

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Qual função de ativação usar?

- Evitar Sigmoid nas camadas ocultas, boa na saída
- Tanh usada em modelos generativos
- Relu Muito boa nas camadas ocultas
- Linear não usar em camadas escondidas
- Leaky Relu raramente usadas

Softmax

- $y \in [0,1] \ e \sum_{y} = 1$
- Aplicada em dois ou mais neurônios. Pega saída e converte
- A saída é uma confiança
- Nunca nas camadas ocultas
- Multiclasses
- Saída One-hot Encode

Função:

$$S_i = \frac{e^{\hat{y}_i}}{\sum_i e^{\hat{y}_i}}$$

Assim para cada k: $P^k = S_i^{[k]}$ Derivada:

$$\frac{\partial S}{\partial y} = p^k * (1 - p^k)$$

Softmax

Example

 $[0.1, 1.3, 2.5] \rightarrow [0.07, 0.22, 0.72]$

$$\frac{e^{0.1}}{e^{0.1} + e^{0.3} + e^{2.5}}$$

Função:

$$S_i = \frac{e^{\hat{y}_i}}{\sum_j e^{\hat{y}_i}}$$

Assim para cada k: $P^k = S_i^{[k]}$ Derivada:

$$\frac{\partial y}{\partial x} = \begin{cases} \alpha, x \le 0\\ 1, x > 0 \end{cases}$$

Vamos ver na prática

Vamos praticar utilizando o notebook 03_funções de ativação

Para que usamos o backpropagation?

Utilizamos o Backpropagation no treinamento das redes neurais

Example

Vamos tomar uma função simples de multiplicação:

$$f(x,y) = x * y$$

Example

Vamos tomar uma função simples de multiplicação:

$$f(x,y) = x * y$$

Com que força alterar as entradas desse circuito para de maneira "leve" alteremos a saída?

Example

Vamos tomar uma função simples de multiplicação:

$$f(x,y) = x * y$$

Example

O Problema.....

- Para qual direção seguir?
- Com que velocidade seguir?
- Como sei se cheguei no local mais baixo?

Vamos ver na prática

Vamos praticar utilizando o notebook 03_backpropagation Será apresentado a busca aleatória e a busca aleatória local

Como atualizamos os pesos?

Diante disso...

É possível encontrar a força de atualização dos pesos com derivadas

► Figura demonstrando

Qual a definição básica de derivada?

A derivada em relação à x pode ser definida como:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Neste caso, o h tende a 0, ou seja, é um valor bem pequeno.

Qual a definição básica de derivada parcial?

E se tivéssemos n argumentos (componentes)?

A derivada parcial de uma função com n argumentos $(x_1, x_2, x_3, ..., x_n)$ é dada por:

$$\frac{\partial f}{\partial x_i}(x_1,...,x_n) = \lim_{h \to 0} \frac{f(x_1,...,x_i+h,x_n) - f(x_1,...,x_n)}{h}$$

Basta derivar cada elemento, ou cada componente da função.

Example

Derivada da função $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Example

Derivada da função $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 $h \rightarrow 0$ tende a zero

f(x + h) é p próprio f(x) somado com um pequeno passo

-f(x) que é a própria função

Dividido por h normalizando a derivação

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{(x+h)^2-x^2}{h} \rightarrow \frac{\cancel{\cancel{N}}+2xh+h^2-\cancel{\cancel{N}}}{h} \rightarrow \frac{\cancel{\cancel{h}}(2x+h)}{\cancel{\cancel{h}}} \rightarrow 2x+\cancel{\cancel{h}} \xrightarrow{0} 2x$$

Example

Derivada da função f(x) = x * y

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{\partial f(x,y)}{\partial x} = \frac{(x+h)y - xy}{h} = \frac{xy + yh - xy}{h} = \frac{yh}{h} = y$$

$$\frac{\partial f(x,y)}{\partial y} = \frac{x(y+h) - xy}{h} = \frac{xy + xh - xy}{h} = \frac{xh}{h} = x$$

Mais de duas variáveis na função...

E se a função tiver 3 componentes? f(x, y, z) = (x + y)z

Neste caso, a melhor opção é decompor a função em subfunções, ou pequenos circuitos

Mais de duas variáveis na função...

$$f(x, y, z) = (x + y)z$$
$$g(x, y) = x + y$$

$$f(q, z) = qz$$

$$q(x, y) = x + y$$

$$\frac{\partial f(x,y)}{\partial x} = 1$$

$$\frac{\partial f(x,y)}{\partial v} = 1$$

$$f(q,z)=qz$$

$$\frac{\partial f(x,y)}{\partial q} = z$$

$$\frac{\partial f(x,y)}{\partial z} = q$$

Mais de duas variáveis na função...

Se quisermos calcular a derivada em relação a uma entrada, utilizamos a regra da cadeia:

Ex: derivada em relação a x de f

- ullet É a derivada de q em relação a f
- Derivada de x em relação a q

$$\frac{\partial f(x,y)}{\partial x} = \frac{\partial f(x,y)}{\partial q} * \frac{\partial f(x,y)}{\partial x}$$
$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial f(x,y)}{\partial q} * \frac{\partial f(x,y)}{\partial y}$$
$$\frac{\partial f(x,y)}{\partial z} = q$$

Mais de duas variáveis na função...

Vamos verificar se dividindo a função principal em subfunções é válido.

$$\frac{\frac{\partial f(x,y,z)}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y,z) - f(x,y,z)}{h} = \frac{(x+h+y)*z - (x+y)*z}{h} = \frac{hz}{h} = z$$

Mais de duas variáveis na função...

Vamos verificar se dividindo a função principal em subfunções é válido.

$$\frac{\frac{\partial f(x,y,z)}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h,z) - f(x,y,z)}{h} = \frac{(x+y+h)*z - (x+y)*z}{h} = \frac{x+hz+yz-yz}{h} = \frac{hz}{h} = z$$

Mais de duas variáveis na função...

Vamos verificar se dividindo a função principal em subfunções é válido.

Example

Podemos notar que a saída é a porta de soma, ou seja. o próprio q

Vamos derivar o Neurônio Sigmoide

- $y \in [0, +1]$
- Regressão Logística
- Geralmente interpretada como probabilidade
- Saída não centrada em 0
- Satura os gradientes
- Não indicada para camadas ocultas
- Converge lentamente

Função:

$$f(x) = \frac{1}{1 - e^{-x}}$$

Vamos derivar o Neurônio Sigmoide

- $y \in [0, +1]$
- Regressão Logística
- Geralmente interpretada como probabilidade
- Saída não centrada em 0
- Satura os gradientes
- Não indicada para camadas ocultas
- Converge lentamente

Função:

$$f(x) = \frac{1}{1 - e^{-x}}$$

Vamos derivar o Neurônio Sigmoide

Função:
$$f(w,x) = \frac{1}{1-e^{-x}}$$

O w são os pesos e o x as entradas...

$$f(w,x) = \frac{1}{1 - e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Example

Vamos praticar um pouquinho...

A derivada de x = a * b é:

$$da = b * dx$$

Sempre teremos a derivada de dentro da multiplicando a derivada de quem está fora dx. Desta forma, podemos decompor qualquer função complexa.

$$E db = a * dx$$

$$x = a * b$$

$$x = a + b$$

$$da = b * dx$$

$$da = 1 * dx$$

$$db = a * dx$$

$$db = 1 * dx$$

Example

Vamos ver a derivada da função x = a + b + c

Primeiro vamos dividir por partes: q = a + b e x = q + c

$$dq = 1 * dx x = a + b + c$$

$$dc = 1 * dx$$
 $da = 1 * dx$

$$db = 1 * dq db = 1 * dx$$

$$da = 1 * dq \qquad \qquad dc = 1 * dx$$

Intuitivamente pode-se perceber que a derivação da soma sempre será 1*dx

63 / 92

Example

$$x = a * b + c$$

$$q = a * bdx$$

$$x = q + c$$

$$dq = 1 * dx$$

$$dc = 1 * dx$$

$$db = a * dq$$

$$da = b * dq$$

Example

$$x = a * a$$

$$da = 2a * dx$$

$$x = a * a + b * b + c * c$$

$$da = 2a * dx$$

$$db = 2b * dx$$

$$dc = 2c * dx$$

Example

Vamos ver este exemplo mais complexo

$$x = ((a*b+c)*d)^{2}$$

$$x_{1} = a*b+c$$

$$x_{2} = x_{1}*d$$

$$X = X_2 * X_2$$

$$dx_2 = 2x_2 * dx$$

$$dx_1 = d * dx_2$$

$$dd = x_1 * dx_2$$

$$da = b * dx_1$$

$$db = a * dx_1$$

$$dc = 1 * dx_1$$

Example

Vamos ver este exemplo de divisão

$$x = \frac{1}{a}$$

$$da = \left(-\frac{1}{a*a}\right)*dx_1$$

$$x = \frac{a+b}{c+d}$$

$$x_1 = a+b$$

$$x_2 = c+d$$

$$x_3 = \frac{1}{x_2}$$

$$x = x_1 * x_3$$

$$dx_1 = x_3 * dx$$

$$dx_3 = x_1 * dx$$

$$dx_2 = -\frac{1}{x_2 * x_2} * dx_3$$

$$dc = 1 * dx_2$$

$$dd = 1 * dx_2$$

$$da = 1 * dx_1$$

$$db = 1 * dx_1$$

Example

$$x = max(a, b)$$

$$da = x == a?1 * dx : 0$$

$$da = x == b?1 * dx : 0$$

Lembram da Relu?

$$x = max(0, a)$$

$$da = a > 0.1 * dx : 0$$

Como fazer derivação de matrizes

O que vimos até agora foram números escalares...

Como derivar uma matriz?

Example

W = np.random.randn(5, 10)

X = np.random.randn(3, 10)

 $Y = X.dot(W^T)$

W são nossos pesos, X nossas entradas, Y a saída

10 é a dimensão da entrada, 3 Qtd de amostras, 5 Qtd de neurônios.

Anteriormente só tínhamos 1 neurônio

A multiplicação de uma matriz de 3x10*10x5 gerará uma saída 3x5

Example

Vamos imaginar que nosso Y=WX Se a multiplicação de uma matriz de 3x10*10x5 gerará uma saída 3x5 a derivação de dY deverá ter a dimensão de 3x5. Assim, a derivada de uma matriz sempre terá o shape da matriz original

dY = np.random.randn(*Y.shape)

A derivada de W dado Y = WX será o de dentro * o de fora X * dY, assim:

$$dW = dY^T.dot(X)$$

A derivada de X dado Y = WX será o de dentro * o de fora W * dY, assim:

$$dY = dY.dot(W)$$

A derivada de uma matriz deverá possuir o mesmo shape da matriz original, neste caso Y tem 3x5 e dY também

Resumo das derivadas

Vamos tomar este exemplo:

Resumo das derivadas

Vamos tomar este exemplo:

Backpropagation

Derivando o neurônio Sigmoide

Agora que sabemos como derivar, vamos retornar ao neurônio Sigmoide:

Backpropagation

Derivando o neurônio Sigmoide

Vamos fazer o processo de forward.

74 / 92

Backpropagation

Derivando o neurônio Sigmoide

Após o forward, faremos agora a propagação reversa ou backpropagation.

Funções de Ativação

Vamos ver na prática

 $Vamos\ praticar\ utilizando\ o\ notebook\ 04_backpropagation$

Dimensão das matrizes

Até o momento vimos que um neurônio pode ser dado pela equação: $y = f(xw^T + b)$. Sendo f uma função de ativação. A função de ativação não altera o *shape* dos dados.

A princípio tivemos $x = [1xD_{in}]$ shape. Onde 1 era a quantidade de amostras e D_{in} o dimensões da amostra, por exemplo, a porta OR que recebe duas entradas (x_1, x_2) , assim $D_{in} = 2$.

O mesmo ocorre para a saída, $y=[1xD_{out}]$ shape. Onde 1 era a quantidade de amostras e D_{out} a dimensão de saída, em todos casos visto até agora igual a 1. Mas podemos ter quantas saídas forem necessárias. Mas qual a dimensão do bias e dos nossos pesos?

Dimensão das matrizes

Assim...

- $x = [1xD_{in}]$
- $y = [1xD_{out}]$
- $bias = [1xD_{out}]$
- $w^T = [D_{in} x D_{out}]$
- $\bullet \ [1xD_{out}] = [1xD_{in}] * [D_{in}xD_{out}] + [1xD_{out}]$

Dimensão das matrizes

$[1xD_{in}]$	$[D_{in} \times D_{out}]$	$[1xD_{out}]$	$[1xD_{out}]$
1 <i>X</i> 3	3x4	1x4	1x4

A multiplicação das matrizes 1X3 * 3x4 nos retornará uma matriz 1x4, que deve ser a mesma dimensão do *bias*. Cada neurônio possui um bias.

Dimensão das matrizes

$[1 \times D_{in}]$	$[D_{in} \times D_{out}]$	$[1 \times D_{out}]$	$[1 \times D_{out}]$
1 <i>X</i> 3	3x4	1x4	1x4
1X4	4×4	1x4	1x4

A multiplicação das matrizes 1X3*4x4 nos retornará uma matriz 1x4, que deve ser a mesma dimensão do *bias*.

Cada neurônio possui um bias.

Dimensão das matrizes

$[1 \times D_{in}] \mid [D_{in} \times D_{out}]$		$[1 \times D_{out}]$ $[1 \times D_{out}]$	
1 <i>X</i> 3	3x4	1x4	1x4
1X4	4×4	1x4	1x4
1X4	4x1	1x1	1x1

A multiplicação das matrizes 1X1 * 4x1 nos retornará uma matriz 1x1, que deve ser a mesma dimensão do *bias*.

Dimensão das matrizes

Quantos parâmetros treináveis esta rede possui?

-
t]
1

$$12 + 4 + 16 + 4 + 4 + 1 = 41$$
 Parâmetros

Funções de Custo - Regressão

MAE- mean of absolute errors

$$J = \frac{1}{N} \sum |y_i - \hat{y}_i|$$

$$\frac{\partial J}{\partial \hat{y}} = \frac{1}{N} \begin{cases} +1 \operatorname{se} \hat{y} > y \\ -1 \operatorname{se} \hat{y} < y \end{cases}$$

MSE- mean of squared errors

$$J = \frac{1}{2N} \sum |y_i - \hat{y}_i|^2$$

$$\frac{\partial J}{\partial \hat{y}} = -(y - \hat{y}) \frac{1}{N}$$

Funções de Custo - Classificação binária

Binary Cross Entropy

$$J = -\frac{1}{N} \sum y_i ln(\hat{y}_i) + (1 - y_i) ln(1 - \hat{y}_i)$$
$$\frac{\partial J}{\partial \hat{y}} = \frac{-(y - \hat{y})}{\hat{y}(1 - \hat{y})} \frac{1}{N}$$

One hot Encode

One hot Encode

Antes de falar sobre classificação de classes, vamos entender a seguinte situação:

у	One-hot		
1	1000		
2	0100		
3	0 0 1 0		
4	0001		

у	One-hot		
3	0010		
2	0100		
4	0001		
1	1000		

Funções de Custo - Classificação Multiclasse

Softmax

Função:

$$S_i = \frac{e^{\hat{y}_i}}{\sum_j e^{\hat{y}_i}}$$

Assim para cada k: $P^k = S_i^{[k]}$ Derivada:

$$\frac{\partial S}{\partial y} = p^k * (1 - p^k)$$

Atenção

A Softmax não é uma função de custo.

Funções de Custo - Classificação Multiclasse

Softmax

$$S_i = \frac{e^{\hat{y}_i}}{\sum_j e^{\hat{y}_i}}$$

Assim para cada k: $P^k = S_i^{[k]}$ Derivada:

$$\frac{\partial S}{\partial y} = p^k * (1 - p^k)$$

Neg. Log-likelihood

$$J = \frac{1}{N} \sum -ln(p_i^k)$$
$$\frac{\partial J}{\partial p^k} = -\frac{1}{p^k}$$

Derivada:

$$\frac{\partial J}{\partial \hat{y}} = -(1 - p^k) = -(y - \hat{y}) \frac{1}{N}$$

Atenção

A Neg. Log-likelihood será o somatório do logarítmico da negação para cada elemento da Softmax pelo total de elementos.

Funções de Custo

Qual função de custo utilizar?

	Problema		
	Regressão	Classificação	Classificação
	Regressao		Multiclasse
#neurônios	#outputs	1	#classes
ult. camada	#outputs		
F. Ativação	Linear	Sigmoid	Linear
ult. camada	Lillear		
F. de Custo	MSE, MAE,	Cross Entropy	Softmax +
i . de Custo	SSE,		Neg. Log-Likelihood

Funções de Ativação

Vamos ver na prática

 $Vamos\ praticar\ utilizando\ o\ notebook\ 05_redesneuraisintuicao$

Funções de Custo - Regressão

Passo 1

Primeiramente vamos implementar nossas funções de custo... Será Utilizado o notebook 06 rede neural

MAE- mean of absolute errors

$$J = \frac{1}{N} \sum |y_i - \hat{y}_i|$$

$$\frac{\partial J}{\partial \hat{y}} = \frac{1}{N} \begin{cases} +1 \operatorname{se} \hat{y} > y \\ -1 \operatorname{se} \hat{y} < y \end{cases}$$

MSE- mean of squared errors

$$J = \frac{1}{2N} \sum |y_i - \hat{y}_i|^2$$

$$\frac{\partial J}{\partial \hat{y}} = -(y - \hat{y}) \frac{1}{N}$$

Funções de Custo - Classificação binária

Passo 2

Vamos implementar nossas funções de custo...

Binary Cross Entropy

$$J = -\frac{1}{N} \sum y_i ln(\hat{y}_i) + (1 - y_i) ln(1 - \hat{y}_i)$$

$$\frac{\partial J}{\partial \hat{y}} = \frac{-(y - \hat{y})}{\hat{y}(1 - \hat{y})} \frac{1}{N}$$

Highlighting text

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

