

Mesenchymal Stem cell Loaded Thermosensitive Hydrogel Wound Dressings in Wound Healing

Wound Healing

four stages of wound healing:

- 1-<u>Hemostasis</u>: to prevent excessive blood loss
- 2-<u>Inflammation</u>: to clear debris, pathogens, and dead tissue from the wound
- 3-Proliferation: formation of new tissue
- 4-<u>remodeling</u>: collagen fibers are reorganized, and the tensile strength of the new tissue increases

R. Gu et al., "Research progress related to thermosensitive hydrogel dressings in wound healing: a review," Nanoscale Advances, vol. 5, no. 22, pp. 6017–6037, Jan. 2023, doi: 10.1039/d3na00407d.

Mesenchymal Stem Cell in Wound Healing

P. Ahangar, S. J. Mills, and A. J. Cowin, "Mesenchymal stem cell secretome as an emerging Cell-Free alternative for improving wound repair," International Journal of Molecular Sciences, vol. 21, no. 19, p. 7038, Sep. 2020, doi: 10.3390/ijms21197038.

The Rule of dressings in Wound Healing

Wound dressings

Protection from Infection

Moisture Management Temperature Regulation

Pain Reduction and Comfort Delivery of Therapeutic Agents

Hydrogels in Wound Care

High water content

Biocompatibility

Flexibility and conformability

thermosensitivity

Controlled release of therapeutics

Thermosensitive Hydrogels Dressings

- a class of smart materials that exhibit a phase transition in response to temperature changes
- liquid at lower temperatures and gel at physiological temperatures (around 37°C)
- easily applied in liquid form and then solidify to form a protective gel layer on the wound
- The gelation process can be designed to release therapeutic agents in a controlled manner, enhancing the healing process

R. Gu et al., "Research progress related to thermosensitive hydrogel dressings in wound healing: a review," Nanoscale Advances, vol. 5, no. 22, pp. 6017–6037, Jan. 2023, doi: 10.1039/d3na00407d.

Integration of Stem Cells with Thermosensitive Hydrogels

R. Gu et al., "Research progress related to thermosensitive hydrogel dressings in wound healing: a review," Nanoscale Advances, vol. 5, no. 22, pp. 6017–6037, Jan. 2023, doi: 10.1039/d3na00407d.

Thermosensitive Injectable Chitosan/Collagen/β-Glycerophosphate Composite Hydrogels for Enhancing Wound Healing by Encapsulating Mesenchymal Stem Cell Spheroids

Thermosensitive Injectable Chitosan/Collagen/β-Glycerophosphate Composite Hydrogels for Enhancing Wound Healing by Encapsulating Mesenchymal Stem Cell Spheroids

Enhanced cutaneous wound healing by functional injectable thermo-sensitive chitosan-based hydrogel encapsulated human umbilical cord-mesenchymal stem cells

H. Xu et al., "Enhanced cutaneous wound healing by functional injectable thermo-sensitive chitosan-based hydrogel encapsulated human umbilical cord-mesenchymal stem cells," International Journal of Biological Macromolecules, vol. 137, pp. 433–441, Sep. 2019, doi: 10.1016/j.ijbiomac.2019.06.246.

