Task 1: Give it a go

SIT190 - Week 6 - Quiz -Short SIT190 - Week 6 - Quiz -Short

Question Nu	ımber S	cor	е	Question Num	nber S	cor	e e	
Question	1 2	1	2 Review	Question 1	2	1	2	Review
Question	2 2	1	2 Review	Question 2	2	1	2	Review
Question	3 6	1	6 Review	Question 3	6	1	6	Review
Question	4 3	1	3 Review	Question 4	3	1	3	Review
Total	13	1	13 (100%)	Total	13	,	12	(100%)
Dorformor	oo Summ	01						(100%)
Performar				Performand	ce Summ		ry	- Quiz -Shor
			у	Performand	ce Summ		ry ek 6	
Exam Name:	SIT190 - 1	Wee	Ty ek 6 - Quiz -Short 110295750133	Performano Exam Name: Session ID:	ce Summ	Ne	ry ek 6	- Quiz -Shor 677060394
Exam Name: Session ID:	SIT190 - V	Wee	Ty ek 6 - Quiz -Short 110295750133	Performano Exam Name: Session ID:	CE Summ SIT190 -	Wei	ry ek 6 1 Del (e	- Quiz -Shor 677060394
Exam Name: Session ID: Student's Name:	SIT190 - 1 COWLISHAW, Etha	Wee	110295750133 let (edcowlishaw)	Performand Exam Name: Session ID: Student's Name:	SIT190 - COWLISHAW, Eth	Ne in E	ry ek 6 1 Del (e	- Quiz -Shor 6770603941 edcowlishaw

2) Review quiz results

a) Identify a question

Though I get the right answer eventually, I need to better understand how to convert radians to degrees and vice versa.

I am also struggling to understand the purpose of the \sin/\cos ratio. It's purpose hasn't become clear to me yet.

b/c) Implement a strategy to address this and your strategy.

I plan to study more intently on both of these and asking the teacher for help. I understand there is something with Special/standard triangles in understanding the ratios so I will focus on asking that. I will attempt to mockup an easy-to-refer-to resource for radian to degree conversion and vice versa.

4) Reflection on improvement

I did improve drastically in speed once again, this time by a factor of $3.9\times$. I now have a phrase to remember degree-to-radian: " $^{\circ}$ × π over 180" said like "degree pi over 180" which from that I can remember the reverse too.

I am starting to gain an understanding of sin and cos through the trigonometric identities and unit circle. It still eludes me intuitively but I am understanding it better each day mathematically through study. The unit circle is also becoming an intuitive tool for finding angles and mirror angles.

Task 2: Trigonometry

FIGURE 1. Triangle

1) Draw the two special triangles

a) Explain how special triangles can be used to solve triangle A's angles

The two main special triangles don't align with Triangle A and therefore cannot be used to solve these triangles' angles.

$$\tan(\theta) = \frac{3}{4}$$

->
$$\theta = \arctan(\frac{3}{4})$$

 $\theta = 0.6435 \text{ radians} = 36.87^{\circ}$
 $\phi = 180 - 90 - 36.87^{\circ} = 53.13^{\circ}$
 $\phi = \pi - \frac{\pi}{2} - 0.6435 = 0.9272952180$

b) Explain how special triangles can be used to solve triangle B's angles

The two main special triangles don't align with Triangle B.

$$an(lpha) = rac{3\sqrt{2}}{2}$$
-> $lpha = \arctan(rac{3\sqrt{2}}{2})$
 $lpha = 1.1303$ radians

$$eta=\pi-rac{\pi}{2}-1.1303=0.4405$$
 radians

c) Explain using a special triangle to find $\cos(\frac{\pi}{6})$, giving the answer too

The special triangle with sides ratio $1:\sqrt{3}:2$

We can decide the smallest angle, and apply the formula $\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}$

$$->\frac{\sqrt{3}}{2}=0.8660$$

$$-> \cos(\frac{\pi}{6}) = 0.8660$$

If the bigger angle is chosen, we can apply $\sin(heta) = rac{ ext{opposite}}{ ext{hypotenuse}}$

$$->\frac{\sqrt{3}}{2}=0.8660$$

and get the same answer.

2) Find the length of side c in Triangle C in figure 1

$$c = \sqrt{x^2 - b^2}$$

-> $c = \sqrt{4^2 - 2^2}$
-> $c = \sqrt{16 - 4}$
-> $c = \sqrt{12}$

3) Find the angle δ in Triangle C in radians

$$\tan(\delta) = \frac{2}{\sqrt{12}}$$
-> $\delta = \arctan(\frac{2}{\sqrt{12}})$
= 0.524 radians

4) Find the length of side a in Triangle D in figure 1

$$c = \sqrt{a^2 + b^2}$$
-> $c = \sqrt{\sqrt{13}^2 + 7^2}$
-> $c = \sqrt{13 + 49}$
 $c = \sqrt{62} = 7.874$

5) Find the angle γ in Triangle D in radians

$$\sin(\gamma) = \frac{\sqrt{13}}{7}$$
-> $\gamma = \arcsin(\frac{\sqrt{13}}{7})$
= 0.541 radians

6) Convert $21\degree$ to radians

$$21^{\circ} imes rac{\pi}{180^{\circ}}=0.367$$
 radians

7) Convert $\frac{\pi}{5}$ radians to degrees

$$\frac{\pi}{5} \times \frac{180}{\pi} = 36^{\circ}$$

Task 3: Functions and relations

1) Give the domain and range of the following

a)
$$y = \frac{2}{x+3}$$

Division can be any value except for 0. We can force a zero into the equation by finding what will make x cancel out the 3 and find $\frac{2}{0}$

$$x + 3 = 0$$

->
$$x = -3$$

The domain is therefore $x \neq -3$

A division can result in any value, even 0 if the numerator is 0, like $\frac{0}{x+3}$. Since it isn't, the range can be anything except 0

The range is therefore $y \neq 0$

b)
$$y = \frac{23}{\sqrt{5-x}}$$

A real square root cannot be negative and the denominator cannot be =0

$$5 - x = 0$$

$$-> -x = -5$$

$$x = 5$$

x therefore cannot =5 as $\sqrt{5-5}=\sqrt{0}=0$ which will create a division-by-zero error. It also cannot be any value above 5 like $\sqrt{5-6}=\sqrt{-1}$ as this will create a complex number.

Therefore the domain is x > 5

As a real square root will always produce a positive number and as the division will prevent values of 0, the range is

2) Show that $x^2 + y^2 = 49$ is not a function

A requirement of functions is that every x value has only one y value. This equation is not a function, it is a relation - $x^2 + y^2 = 7^2$ that will create a circle.

$$x^{2} + y^{2} = 49$$
-> $x^{2} + 0^{2} = 49$
-> $x^{2} = 49$
 $x = \pm 7$

Take the value of x=0 for example:

$$x^{2} + y^{2} = 49$$
-> $0^{2} + y^{2} = 49$
-> $y = \pm \sqrt{49}$
 $y = \pm 7$

The y value is 7 or -7, meaning one value of x is equal to at least two values of y and therefore eliminating it from being a function.