

Why data governance

Usual pitfall with data/AI projects

- Not enough Data
 - Insufficient volume to correctly learn hidden pattern inside data
 - Some technics exists to artifficially create data but it's not safe and we can miss the business objectif

Data is biased

Distribution of existing data is not balanced, some population are far more present than others, difficulties to generalize and learn the global pattern

Lack of knowledge

• AI (technical part) is in the hands of Data Scientists while Knowledge is in the hands of domain experts

Trust

• Without proofs (explainability), we can't trust an Al model

Integration with production environment

• Lab and production are really far from each other in term of exigence and constraints

Concepts

Management VS Governance

Govern

Create best practices, normalization, patterns to guide and orient peoples and technologies

Manage

Organize (people) to deliver/operate a service. Strategies are based on rules defined by the governance.

Define rules that must be applied

Apply, Enforce rules

Concepts Data, a blured definition

- Data (= information = data)
 - A concept manipulated by a group
 of people in their daily work
 consisting of one or more attributes
- Attribute or Characteristic
 - Unitary element constituting a piece of data, defined by a name and a format and contains at most one value

- Record
 - Instance of a data, represented by a set of values for each attribute corresponding to the definition of the data (value that can be null)
- Dataset
 - Group of records of the same nature (linked to the same data or set of data), exhaustive or not (sample).

- Classification
 - Hierarchical organization of data and attributes to link them to business areas of the company (complementary to tags)

Data Bundle

 Grouping of several records of different nature (representing different data), revolving around (being attached to) a main record.

Exemplary?

Version?

Transactional?

Exploratory?

Population?

Concepts

More definitions

REFERENCE DATA Cross-company information which structures the other information (ISO COUNTRY, etc.). These data can be external and not managed by the company,

DATA MODEL Set of several Master Data linked (or not) together with Relations.

MASTER DATA Business-critical data. Uniquely defines information specific to the company and shared within the services and therefore the IS (Third Party, Finished Product, etc.).

DATA STEWARD Administrator, guarantor of the quality of one or more Master Data. It is the key player in Governance, a strong link between business and IT.

META DATA Additional information over the data. Groups the qualifiers/tags on each Master Data and on each attribute of these (text, integer, Date, ...), DataOwner, ...

DATA OWNER Responsible for one or more Master Data by defining access and uses. Guarantor of the definition of the criteria of accuracy, quality, consistency, etc of these data

GOLDEN COPY Truth point. Currently confirmed, valid, and trusted version of a record. Consolidated vision.

DATA LINEAGE Description of the life cycle of a data through the mapping of information flows (origin, transformation, target).

EVIDEN

From datalake to mesh

The beginning

Late 1980s Data Warehouse Late 2000s

Mid 2010s Cloud Data Platform Early 2020s
Data Lakehouse

Data Warehouse: structured storage that concentrate all the data of the enterprise, used for analytical purposes (reports, dashboards)

Issue: Hard to scaleup

Data Mart: structured storage oriented for a specific use Wiltering, renormalization, etc)

Data Lake: Huge amount of unstructured (and structured) storage with a scalable compute power and a centralized point for data analysis.

Issue: slow (batch oriented technologies), strong coupling between storage and compute

Data Platform: Cloud offering (easy access, agile, scalable) with a complete set of data services: from the enterprise data lake to different complementary products (streaming layer, data mart, etc) with a best of breed approach

Issue: requires strong technical skills to use or operate (especially onbrem)

Data Lakehouse: scalable structured processing on top of heterogenous data in a lake Issue: still a centralized approach with potential bottleneck on central data engineering team

Actual Data Architecture

Monolith datalake, the limits

Objectives

- Ingest data from several sources
- Cleanse and enrich data
- Expose to various heterogeneous consumers

Fail 1: Monlith and centrilized approach

Pressure points

- Data and sources proliferation
- Innovation with short expérimentations

Central team is bottleneck and hard to scale efficiently

Fail 2: Highly coupled pipeline

Highly coupled data pipelines Delivering a new feature requires an end2end new pipeline

Central team manipulate data they don't master

Domain teams fight for priority on backlog

Cross-functional

Data & ML Platform Engineers

Domain oriented consumer teams

Data Mesh Architecture

Concepts

Domain Driven

Business domain responsibilities should extend to the data

- Source oriented domains focus on curating data
- Consumer oriented focus on modeling and extracting value

Self serve platform

Every domain needs data and big data capabilities (storage, compute, automatization, ...) Duplicating domain data platform will increase cost, so we should use shared infra that provide Big Data as a Service

Pifall

Don't build a fragmented siloed enterprise with inaccessible data

Data Products

Domains owner should consider their Data assets as any other valuable products (APIs, Applications, etc). Data consumer **experience** should be their main focus.

Discoverable Addressable

TrustworthySelf-describing

8

Inter Operable

Secure

Data Mesh governance

New roles and responsibilities

Data Product Owner

He's responsible for the **roadmap** and the **vision** behind every data products of his domain. He decides what data and on which form is exposed to the company. He's the domain local relay of governance best practices and norms.

He's focussed on **consumers satisfaction** and **product quality**. His main objective is to provide more and better data, well defined and documented, easy to use and with rich value. He defines KPIs to measure QoS and ensure that every engagements are respected (SLO, SLA).

This new role is created to ensure that **operational** and **data ambitions** (analytics, ML, etc) are well managed, integrated and included into the core requirements of every data product's lifecycle

Rest of the business domain team

Data Engineers

Usually DE are a centralized ressource, but now DE need to be in every domain team to develop domain data pipelines (data cleansing, processing, exposition pipelines)

Software Developers

They develop, support and integrate domain applications (business interfaces, customer websites, midlleware engines, etc)

Data Scientists

They explore, analyse, cross data to discover patterns and implement data pipelines to achieve business objectives

Infra Engineers

They instanciate and maintain a data platform for their busines domain, they bring support on industrialization of every data product during its lifecycle

Data Analysts

They build KPIs and produce dashboard to follow business indicators

9

Data security

Authentication, Authorization, Audit

- The user accesses the resources in his name (recommended)
- 2. The user goes through a service account while still transmitting his personal identity (used a lot in the Hadoop ecosystem)
- 3. The user does not use his identity and goes through a shared account, not recommended
- 4. Programs use their service account to access resources (recommended)

Data Organization

Data lifecycle inside dataplatform

Also known as "Medalion architecture"

Ingest

Staging zone used as technical interface between two systems

Majestic_entries

123654851|2018-05-24|book|Tallinn, Estonia 123736540|2018-05-24|book|Doha, Qatar 123793204|2018-05-24|audio|Nashville, USA 123835264|2018-05-24|audio|Panama City, Panama

123862351|2018-05-24|book|Nabgkok, Tailand 123965841|2018-05-24|book|Bishkek, Kyrgyzstan

Archive

Used for legal and forensic analysis

Standard

Cleansed and standardized data

Refined

Data structured in Business Objects (BOM) ready to be used in any use case **Expose**

Output zone to transfer augmented data to other systems

Majestic_clean

orderNb siteNb	date	item	itemNb	site	
	2018-05-24	book	42	Tallinn, Estonia	
	2018-05-24	book	42	Doha, Qatar	
123793204 632	2018-05-24	audio	15	Nashville, USA	
123835264 540	2018-05-24	audio	15	Panama City, Company_Item_sale	:S
	2018-05 <mark>-24</mark>	book quet	₩ €	Nabgkok, TailanderNb date %Discount	iten
107065071	2010 01 27		(a [-	757 July 14 mm 123654851 2018-05-24 k	اممد

Bishkek, Kyrg <u>123654</u>851 2018-05-24 book 42 123736540 2018-05-24 book 42 123793204 2018-05-24 audio 15 123835264 2018-05-24 audio 15 123862351 2018-05-24 book 42 123965841 2018-05-24 book 42

m itemNb site siteNb Price Margin 30 15 Tallinn, Estonia 155 24 28 0 Doha, Qatar Nashville, USA 632 10 9 5 Panama City, Panama 540 8 7 5 Nabgkok, Tailand 325 31 22 15 Bishkek, Kyrgyzstan 611 48 15

Books

date	item	item	Nb Pric	e Mar	gin
%Discount					
2018-05-24	book	42	42	30	15
2018-05-24	book	42	24	28	0
2018-05-24	book	42	31	22	15
2018-05-24	book	42	48	24	1:
Audio					

date	item	itemN	Nb Pri	ce	Margin
%Discount					
2018-05-24	audio	15	10	9	5
2018-05-24	audio	15	8	7	5

Data lifecycle

Focus on a domain

Synonyms

Ingest: Consume, Staging, In, Input, Raw, Bronze

Standard : Normalized, Silver Refined : Business. Golden

Expose: Serve

Archive: Raw, Bronze, Cold, Backup

Explore: Lab

Application: Processing, Project, Work

Data lifecycle

Multi domains

Data Governance

Sumup

Concepts

Peoples

Data product owner that is responsible of the roadmap of its data products

Tools

Mesh/Data catalog that index every valuable data of the company

Confidential information owned by Eviden SAS, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Eviden SAS.

ML lifecycle and personae

ML Engineer

He helps Data Scientists with technical support and he is responsible for the industrialization of the ML application

Data Scientist

Focus on algorithms and mathematics, he meets a business need through agile iterations of R&D.

He is responsible for packaging his model into an ML application

Present Results 🗸

Business owner

Based on the technical and business performance metrics of the model, he validates or not the new model.

Feature

Data exploration

Train

Evaluate

Monitor

Data Engineer 📫

He builds data pipelines to ingest the data in the platform and others pipelines to expose refined data generated by ML applications

Operationals

He leads the deployment of the new ML app and he is responsible for following technical metrics in production

ML lifecycle and personae

Support profiles

Data Product owner

He's responsible for the roadmap and the vision behind every data products of his domain. He gives business requirements and direction to the engineers responsible to develop his product

Scrum master

Delivery profil, he's responsible to organise and follow all the evolutions made by the agile team. He support the team gathering through the company all necessary information so that the backlog can move forward.

DPO

In collaboration with the project teams, he ensures that the ML application complies with the safety and ethical rules of the company and the country.

Data Architect

It ensures the consistency of data processing, services and applications within the company's specific context. It can also support the company's data strategy.

ML Governance

Governance tooling

ML Governance

Model registry

Usefull metadata

- Name
- Version
- Storage link
- State (experimental / staging/ production / archived)

© Eviden SAS

the model

Model Serving

Provides

20

ML Governance

Feature store

21

Expose via API

Al Project management

Traditional approach

Framing workshop

- Precise identification of the data that will be used
- Removal of technical and functional gray areas
- GDPR analysis (CADP, AIDP)
- Creation of specifications (backlog) for the first sprints to go "flying start"

Quick data analysis

- Analysis of data availability and accessibility
- Quality analysis (quantity, distribution, accuracy, etc.)

Proof Of Concept/Technology/Value

Agile iterative cycles of sprints to explore the problem and try to converge towards a solution

At each end of the cycle, an inventory is made of the value delivered to record whether or not the experience is continued.

Pilote

Industrialization of the results of the POC: taking into account the industrial constraints of the IS, automation, security, scalability, performance, etc.

Phase 1 – Framing

Phase 2 – POC

Phase 3 - Pilote

Al Project management

Agile iterative sprints

- Goals
 - Avoid "infinite R&D" mode on data
 - Reduce the time to production (TTM) of the use case
 - Reinforce the Dev/Ops mindset of the team
 - Integrate business users (create an enterprise-level data culture)
- Cinematic:
 - Framing and definition of the business problem, targeting of useful data to the use case
 - Analysis of data quality and content, understanding of business concepts behind the data
 - Cleaning, formatting, creation of features
 - Choice of technique/architecture, model configuration, training
 - Evaluation of the performance of the trained model

At the end of the cycle, demo to show the results/difficulties and readjust the objectives with the business users if necessary

Quizz

What we've learned

Question				
Truth point of the business data that will be consumed by other services			Reference	
of the company	Metadata	Master data	data	Golden data
A limit of Datalakes is the lake of knowledge sharing between Platform				
engineers and domain experts	Υ	N		
Data Mesh use big data and datalake technologies	Υ	N		
Data Product should inherit of the specific/closed formats and protocols				
of the technology serving them	Υ	N		
A Data Product owner is focused on data consumer satisfaction,				
developping trust and quality	Υ	N		
The Standard data layer is composed of Raw data that have been				
structured and normalized	Υ	N		
The Release phase of the ML lifecycle is focused on the industrialization				
and validation of the model	Υ	N		
Feature store are used only in the Discovery phase when doing feature				
engineering	Υ	N		
Model registry can retrain models when needed	Υ	N		
The only profile needed for AI agile sprints are data scientists	Υ	N		

Quizz

What we've learned

Question				
Truth point of the business data that will be consumed by other services			Reference	
of the company	Metadata	Master data	data	Golden data
A limit of Datalakes is the lake of knowledge sharing between Platform				
engineers and domain experts	Υ	N		
Data Mesh use big data and datalake technologies	Υ	N		
Data Product should inherit of the specific/closed formats and protocols				
of the technology serving them	Υ	N		
A Data Product owner is focused on data consumer satisfaction,				
developping trust and quality	Υ	N		
The Standard data layer is composed of Raw data that have been				
structured and normalized	Υ	N		
The Release phase of the ML lifecycle is focused on the industrialization				
and validation of the model	Υ	N		
Feature store are used only in the Discovery phase when doing feature				
engineering	Υ	Ν		
Model registry can retrain models when needed	Υ	N		
The only profile needed for AI agile sprints are data scientists	Υ	N		

They should be based on open standards
Feature store is also used in model serving during inference
Model registry is only a passive store

Data Engineers, Business Owner (or proxy BO), Ops are also necessary for AI sprints => create an enterprise-level data culture

In Practice

Lab Content

- Exo1 Data search & discovery with Catalog
 - Find where raw data is located using search
 - Create a transformation view on this data (ELT approach)
 - Visualize lineage into the catalog
 - Add metadata to this newly created data
- Exo2 Use feature store
 - From this transformed data, apply already existing features (available in the Feature store)
 - Create and register a new feature
 - Use both features to train a model
- Exo3 Use Model Registry
 - Push the trained model into the registry
 - Retrain changing some HP, push to registry and compare both models
- Go further :
 - Use the features and the model in a batch inference pipeline in KFP
 - Use the features and the model in a streaming inference pipeline in Kserve

Confidential information owned by Eviden SAS, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Eviden SAS.