

MT1006 - DIFFERENTIAL EQUATIONS

NATIONAL UNIVERSITY OF COMPUTER & EMERGING SCIENCES, FAST-NU

Course Title	Differential Equations	Course Code	MT1006
Department	Department of Electrical Engineering (DEE) Campus		Lahore
Knowledge Profile	nowledge Profile Mathematics & Computing (WK2) Credit Hrs. 3		3
Knowledge Area	Ige Area Mathematics (KA10) Grading Scheme Relation		Relative
HEC Knowledge Area	Natural Sciences Applicable From Spring 2023		Spring 2023
Pre-requisite(s)	MT1001 Applied Calculus		

Course Objective	Develop a sound understanding of solutions of Differential Equations with their applications. Understand the concept of Laplace Transformations and Series Solutions.
------------------	---

No.	Assigned Program Learning Outcome (PLO)		
2	An ability to identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering science.		

I = Introduction, R = Reinforcement

E = Evaluation, A = Assignment, Q = Quiz, M = Midterm, F=Final, L = Lab, P = Project, W = Written Report.

No.	Course Learning Outcome (CLO) Statements	Assessment Tools	Taxonom y Levels	PLO
1	Discuss the basic concepts and notions of Differential Equations (DEs).	Q1, M1	C2	2
2	Determine the solutions of 1st order DEs and higher order DEs	A1, Q2, M1, M2, F	C6	2
3	Formulate DEs with applications	A2, Q2, M2	C5	2
4	Solve problems using Laplace Transform	Q3, A3, F	С3	2
5	Use the concept of series to appraise the solutions of DEs.	A4, F	С3	2

MT1006 - DIFFERENTIAL EQUATIONS NATIONAL UNIVERSITY OF COMPUTER & EMERGING SCIENCES, FAST-NU

	Title	A First Course in Differential Equation with modeling Application	
Text Books	Author	Dennis G. Zill	
	Publisher	BROOKS/COLE CENGAGE learning, 9th edition	
Reference Books	Title	Advance Engineering Mathematics	
	Author	Erwin Kreyszig	
	Publisher	Johan Wiley & Sons, 9th Edition, 2006	
	Title	Elementary Differential equation with boundary value problem	
	Author	Boyce & Diprima	
	Publisher	John Wiley & Sons, Inc.	

Week	Course Contents/Topics	Chapter*	CLO*
1	Definitions and Terminologies Initial values problem	1.1, 1.2	1, 2
2	Separable variables Linear equations	2.2,2.3	1
3	Exact Equations Solution by substitutions	2.4, 2.5	2
4	Linear Models (First Order Differential Equations), Non-linear models	3.1 ,3.2	2, 3
5	Preliminary Theory-Linear equations, Homogeneous and non-homogeneous equations	4.1	2, 3
6	Reduction of order	4.2	2
7	Homogeneous equations with constant coefficients, Undetermined Coefficients-Superposition approach	4.3 ,4.4	2
8	Undetermined coefficients-Annihilator approach, Variation of parameters	4.5 ,4.6	2
9	Cauchy Euler equation, Linear Models (Higher Order Differential Equations	4.7 ,5.1	3
10	Spring/Mass system: Free Un damped Motion, Spring/Mass system: Free damped Motion	5.1	3
11	Linear Models: Boundary value problems	5.2	3
12	Solution about ordinary points, Solution about Singular point	6.1 ,6.2	5
13	Special Functions	6.3	5
14	Laplace transform, Inverse Laplace transform	7.1 ,7.2	4
15	Operational properties-II	7.3 ,7.4	4

^{*}Reference book chapters are given in brackets

Assessment Tools	Weightage	
Quizzes, Assignments	20.0%	
Midterms (I+II)	30.0%	
Final Exam	50.0%	