실시간 운전자 위험 지수 계산을 통한 안전성 확보 서비스(공모자들) 1

H Data, 얼굴인식 영상 처리, 아두이노 압력 센서 및 신호 시제 논리 를 이용한 운전자 위험 지수 계산기

공모자들

(github.com/gongmozadul/driverRiskIndex)

구현 환경 Python, OpenCV,

Arduino Sketch

- 양적 만족도를 평가할 수 있는 신호 시제 논리를 사용하여 H Data, 영상처리 결과, 압력 센서값 등을 명세
- 명세 결과에 가중치를 두어 실시간 운전자 위험 지수 계산 후 위험 상태를 실시간 알람

구현 아키텍처

- 사용 데이터: H Data(로그 데이터(4개) - 속도, 스티어링 휠 각도, 도로 종류, 도로 경사도, 요약 데이터(11개) – 시동시분초, 주행거리, 급가속 7 ~ 10, 11 ~ 13, 14 ~ 17, 18kph/s 이상, 급감속 -21kph/s 이하, -18 ~ -20, -14 ~ -17, -11 ~ -13, -7 ~ -10kph/s), 얼굴 인식 영상 처리 결과, 아두이노 압력 센서값

컨셉부

구현부

FORMAL METHOD USE CASE FOR AUTOMOTIVE SAFETY

	Methods		ASIL			
			В	С	D	
1a	Informal verification by walkthrough	++	+	0	0	
1b	leformal verification by inspection	+	++		++	
1c	Semi-formal verification ^a	+	+	++	++	
1d	Formal verification	0	+	+	+	

[출처] ISO 26262 - 자동차 기능 안전성을 위한 표준 문서에 요구사항의 검증을 위한 기법으로 준 정형 검증과 정형 검증을 사용할 것을 권고하는 부분

HOW TO APPLY FORMAL SPECIFICATION TO HYUNDAI AUTOMOTIVE USING H DATA AND OURS

Step 1 사용자가 안전한 상태를 H Data와 얼굴 인식 정보, 압력 센서 값을 사용하여 자연어로 기술

1초 동안 순간속도가 0Kph를 넘고 RPM이 0.0을 초과하며 브레이크 상태가 3(이상값)이 아니면서 기어 단수가 0(중립)이 아니면, 최소 1초 동안은 눈을 뜬 상태여야하고 핸들 압력 센서의 값이 0.1을 초과해야 한다.

Step 2 양적 만족도를 도출 가능하며 정형 검증이 가능한 신호 시제 논리로 명세

◇[0, 1) 현재속도(순간속도) > 0kph ∧ ◇[0, 1) RPM > 0.0 ∧ ◇[0, 1) 브레이크 상태 = ¬3(이상값) ∧ ◇[0, 1) 기어 단수 = ¬0(중립, neutral) -> □◇[0, 1) 눈 뜸 ∧ □◇[0, 1) 핸들압력센서 > 0.1

Step 3 검출된 양적 만족도 기반의 가중치를 통해 실시간 운전자 위험 지수(DRI)를 계산

산출물명

H DATA, 얼굴인식 영상 처리, 아두이노 압력 센서 및 신호 시제 논리를 이용한 운전자 위험 지수 계산기 (DRIVER RISK INDEX CALCULATOR USING H DATA, FACE RECOGNITION, ARDUINO PRESSURE SENSOR, SIGNAL TEMPORAL LOGIC)

공모자들

권혁주, 박민수, 정구범

구현 환경

PYTHON, ARDUINO SKETCH, OPENCV WINDOWS, MAC

구현 화면

요약 화면

이전의 모든 주행 정보를 사용하여 DRI 운행기록을 나타내고 사용자 피드백을 줌 작동 화면

주행로그 및 영상정보를 활용하여 실시간 DRI 기록을 나타내고 위험 상황에서 근처 자동차 및 운전자에게 알림

시연

현대자동차 CONNECT THE UNCONNECTED 팀 공모자들

