关系抽取实验

一、 基于卷积神经网络的关系抽取

(1) 补充 ./CNN/model.py 的 forward 部分, 跑通训练代码, 给出训练结果

Figure 1: Architecture of the neural network used for relation classification.

Figure 2: The framework used for extracting sentence level features.

根据论文中的图示,该网络接受一个输入句子并进行多个层次的特征提取,主要包括以下三个组件:词表示、特征提取和输出。

系统的输入是一个带有两个**标记名词**的句子。然后,通过查找单词嵌入将 单词标记转换为向量。接着,分别提取词汇和句子级别的特征,然后直接连接 以形成最终的特征向量。

➤ 在句子级特征提取中,每个标记进一步表示为单词特征(WF)和位置特征(PF)。然后,向量通过卷积和非线性变换获得句子级别的特征。

最后,为了计算每个关系的置信度,将特征向量馈送到 softmax 分类器中。 分类器的输出是一个向量,其维度等于预定义的关系类型数。每个维度的值是 相应关系的置信度得分。

因此可将 CNN 的推理过程 forward 函数按照上述图补充如下:

- ▶ 首先通过 encode layer 将 token 和位置编码混合
- ▶ 而后通过卷积层进行特征提取
- ▶ 最后通过 Max pooling 层和 tanh 激活函数的线性层

```
#todo 根据原论文补充
# Encoder Layer

emb = self.encoder_layer(token, pos1, pos2)

# Convolution Layer

conv = self.conv_layer(emb, mask)

# Maxpool Layer

sentence_feature = self.single_maxpool_layer(conv)

# Dense Layer

sentence_feature = self.linear(sentence_feature)

sentence_feature = self.tanh(sentence_feature)

sentence_feature = self.dropout(sentence_feature)

logits = self.dense(sentence_feature)

return logits
```

最后训练得到结果: test loss: 1.051 | micro fl on test: 0.7631 (>82.7*0.9):

(2) 进行消融实验,尝试去除 PF(Position features)重复实验

将(1)中 encoder_layer 中输入改为 emb = self.encoder_layer(token, $\mathbf{0}$, $\mathbf{0}$),即所有输入的位置编码都设置为 $\mathbf{0}$;

```
# Encoder Layer
# # 消融实验,去除位置信息,填充值为0

pos1 = torch.zeros_like(pos1)

pos2 = torch.zeros_like(pos2)
emb = self.encoder_layer(token, pos1, pos2)

# emb = self.encoder_layer(token, pos1, pos2)
```

最后训练得到结果: test_loss: 1.438 | micro fl on test: 0.6430

具体将两次实验对比如下表:

表格1消融实验对比

	Test loss	micro f1	Dev loss	micro f1	Train loss	
	1681 1088	on test		on dev		
CNN w PF	1.051	0.7631	1.408	0.7600	0.003	
CNN w/o PF	1.438	0.6430	2.124	0.6277	0.007	

显然,仅通过WF无法捕捉到这种结构信息。为此,PF(当前单词到 w_1 和 w_2 的相对距离的组合)被提出用于关系分类。根据当前单词到 w_1 和 w_2 的相对距离得到距离向量 d_1 和 d_2 , $PF=[d_1,d_2]$ 。将WF和PF结合起来,单词表示为[WF, PF] T ,随后将其输入到算法的卷积层中。

二、 远程监督关系抽取

在 nyt10m 数据集上分别按照下述四种方式进行训练,输入命令行和结果 AUC(accuracy)以及 F1 如下:

100 (E = 24 to 20								
	AUC	Maximum	Maximum	Micro	Macro	P@100	P@200	P@300
		micro F1	macro F1	F1	F 1			
cnn+att	0.55	0.55	0.12	0.22	0.04	0.97	0.95	0.93
cnn+avg	0.53	0.54	0.11	0.16	0.03	0.97	0.95	0.90
pcnn+att	0.58	0.57	0.17	0.31	0.05	0.97	0.95	0.94
pcnn+avg	0.56	0.56	0.14	0.29	0.05	0.95	0.93	0.90

表格 2 测试集上远程监督关系抽取结果(加粗为最好结果,下划线为次好结果)

详细命令行和训练截图如下:

● 使用 cnn 作为编码器,设置--aggr 为 att, 也就是使用句子级注意力,训练以及推理,报告 AUC 以及 F1 值

输入命令行: python example/train_bag_cnn.py --metric auc --dataset nyt10m --batch_size 160 --lr 0.1 --weight decay 1e-5 --max epoch 10 --max length 128 --seed 42 --encoder cnn --aggr att

● 使用 cnn 作为编码器,设置--aggr 为 avg, 也就是使用句子平均向量, 训练以及推理, 报告 AUC 以及 F1 值

输入命令行: python example/train_bag_cnn.py --metric auc --dataset nyt10m --batch_size 160 --lr 0.1 --weight decay 1e-5 --max epoch 10 --max length 128 --seed 42 --encoder cnn --aggr avg

● 使用 pcnn 作为编码器,设置--aggr 为 att, 也就是使用句子级注意力, 训练以及推理, 报告 AUC 以及 F1 值

输入命令行: python example/train_bag_cnn.py --metric auc --dataset nyt10m --batch_size 160 --lr 0.1 --weight_decay 1e-5 --max_epoch 10 --max_length 128 --seed 42 --encoder pcnn --aggr att

● 使用 pcnn 作为编码器,设置--aggr 为 avg,也就是使用句子平均向量,训练以及推理,报告 AUC 以及 F1 值输入命令行:

python example/train_bag_cnn.py --metric auc --dataset nyt10m --batch_size 160 --lr 0.1 --weight decay 1e-5 --max epoch 10 --max length 128 --seed 42 --encoder pcnn --aggr avg

三、 预训练模型关系抽取

最后在两个设置下的结果如下表所示:

表格 3 预训练模型关系抽取结果

	Train accuracy	Eval accuracy	Eval f1	Eval precision	Eval recall
w ENTITY START	0.84	0.82	0.76	0.77	0.76
w [CLS]	0.80	0.80	0.75	0.77	0.72

具体运行截图如下:

(1) 运行 main_task.py 代码,要求复现 accuracy>0.74(ENTITY MARKERS + ENTITY START)

3个 epoch 结束后,训练结束后在训练集上的训练 accuracy 为 0.84,在验证集 eval 上 accuracy=0.82,fl=0.76,precision=0.77,recall=0.76;

(2) 修改成 ENTITY MARKERS+[CLS]并重复实验。

由于形状对齐,这里将[CLS]重复两遍与上述代码的维度对齐,而后按照 ENTITY MARKERS + ENTITY START 的思路仿写代码如下:

```
cls = sequence_output[:, 0, :].unsqueeze(1).unsqueeze(1)

cls = cls.repeat(1, e1_e2_start.shape[0], e1_e2_start.shape[1], 1)

buffer = []

for i in range(cls.shape[0]): # iterate batch & collect

cls_token = cls[i, i, :, :]

v1v2 = torch.cat((cls_token[0], cls_token[1]))

buffer.append(v1v2)

del cls

v1v2 = torch.stack([a for a in buffer], dim=0)

del buffer
```

3个 epoch 结束后,训练结束后在训练集上的训练 accuracy 为 0.80,在验证集 eval 上 accuracy=0.80,f1=0.75,precision=0.77,recall=0.72;

