Massive Matrix Factorization for Resting-State fMRI Decomposition

Arthur Mensch, Julien Mairal, Bertrand Thirion, Gaël Varoquaux

Inria Parietal/Thoth, CEA, Neurospin, Université Paris-Saclay

July 24, 2017

Introduction

Resting-state functional MRI data:

- Undirect measure of brain activity
- Subject at rest for 15 min
- 200 000 voxels (8 mm³), every 2 s
- $\bullet \, \sim 1\,000$ brain maps per records

Unsupervised pattern analysis:

- Learn characteristic spatial components
- = Functional networks
- Validated by prediction on unseen subjects

How to extract functional networks?

Popular methods:

- Principal Components Anaysis [5]
- Independant Component Analysis [2]

Caveats

- Noise/signal components
- Small dataset size (ortho. constraints)
- Thresholding to obtain sparse networks

Alternative: sparse matrix factorization [6]

- Natural sparsity within the objective
- Can be adapted for large datasets

ICA (+ thresholding)

Matrix factorization

Challenge and contribution

Community effort to provide larger datasets:

- From 15 subjects in 1997 to 100000 in 2020
- Costly studies on large cohort: HCP, UKBiobank
- From 2 GB to 5 TB datasets

Decomposition algorithm should have a reasonable cost:

- Often followed by ROI extraction, connectivity analysis
- We pick sparse matrix factorization

New algorithms for massive matrix factorization.

A faster cousin of stochastic gradient descent.

Matrix Factorization for Functional MRI

Resting-state data analysis:

- Input: concatenated time-series for many subjects
- $X \in \mathbb{R}^{p \times n}$, $n = 5 \cdot 10^6$, $p = 2 \cdot 10^5$
- Goal: Extract representative sparse components D
- Functional networks

Formalism

Non-convex matrix factorization:

$$\min_{\mathbf{D} \in \mathcal{C}, \mathbf{A} \in \mathbf{R}^{k \times n}} \| \mathbf{X} - \mathbf{D} \mathbf{A} \|_F^2 + \lambda \Omega(\mathbf{A})$$

- ullet Constraints on the dictionary ${f D}$: each column ${f d}^{(j)}$ in ${\cal B}_2$ or ${\cal B}_1$
- Penalty on the code **A**: ℓ_1 , ℓ_2 (+ non-negativity)

Algorithm design

Naive resolution:

- Alternated minimization: use full X at each iteration
- **Slow:** single iteration cost in $\mathcal{O}(np)$

X is large (5TB) in both number of samples n and sample dimension p

New stochastic algorithms that scale in **both** directions

Online matrix factorization [1]

Scaling with *n*:

- Stream (\mathbf{x}_t) and update (\mathbf{D}_t) at each t
- Single iteration cost in $\mathcal{O}(p)$
- Convergence in a few epochs → large speed-up

Previous use case:

• Large n, regular p, e.g., image patches — sparse A

$$p = 256$$
 $n \approx 10^6$ **1GB**

Scaling-up for massive matrices

Out-of-the-box online algorithm ?

Limited time budget ?

Need to accomodate large p

Scaling-up in both directions

Scaling-up in both directions

Algorithm design

Online dictionary learning [1]

① Compute code – $\mathcal{O}(p)$

$$oldsymbol{lpha}_t = \operatorname*{argmin}_{oldsymbol{lpha} \in \mathbb{R}^k} \|\mathbf{x}_t - \mathbf{D}_{t-1}oldsymbol{lpha}\|_2^2 + \lambda \Omega(oldsymbol{lpha}_t)$$

2 Update surrogate – $\mathcal{O}(p)$

$$ar{g}_t(\mathsf{D}) = rac{1}{t} \sum_{s=1}^t \|\mathsf{x}_s - \mathsf{D} lpha_s\|_2^2 = \operatorname{Tr} \left(\mathsf{D}^ op \mathsf{D} \mathsf{ar{C}}_t - \mathsf{D}^ op \mathsf{ar{B}}_t
ight)$$

3 Minimize surrogate – $\mathcal{O}(p)$

$$\mathbf{D}_t = \operatorname*{argmin}_{\mathbf{D} \in \mathcal{C}} \bar{g}_t(\mathbf{D}) = \operatorname*{argmin}_{\mathbf{D} \in \mathcal{C}} \mathrm{Tr} \left(\mathbf{D}^\top \mathbf{D} \mathbf{C}_t - \mathbf{D}^\top \mathbf{B}_t \right)$$

Access to $\mathbf{x}_t \to \mathsf{Algorithm}$ in $\mathcal{O}(p)$ (complexity dependency in p)

Introducing subsampling

How to reduce single iteration cost $\mathcal{O}(p)$?

- Sample masking matrix M_t
- Diagonal matrix with rescaled Bernouilli coefficients, $\mathbb{E}[\operatorname{rank} \mathbf{M}_t] = q$
- $\bullet \ \mathsf{x}_t \to \mathsf{M}_t \mathsf{x}_t, \ \mathbb{E}[\mathsf{M}_t \mathsf{x}_t] = \mathsf{x}_t$
- Use only $\mathbf{M}_t \mathbf{x}_t$ in algorithm computations
 - \Rightarrow Complexity in $\mathcal{O}(q)$

Algorithmic contribution

Adapt the 3 parts of the algorith to obtain $\mathcal{O}(q)$ complexity

- Code computation
- Surrogate update
- Surrogate minimization

Subsampled Online matrix Factorization (SOMF)

Theoretical guarantees

Objective function for the dictionary:

$$ar{f} riangleq \min_{\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_F^2 + \lambda \Omega(\mathbf{A}).$$

Asymptotic convergence towards a critical point.

Proposition: $\bar{f}(\mathbf{D}_t)$ converges with probability one and every limit point \mathbf{D}_{∞} of $(\mathbf{D}_t)_t$ is a stationary point of \bar{f} : for all $\mathbf{D} \in \mathcal{C}$

$$abla ar{f}(\mathbf{D}_{\infty}, \mathbf{D} - \mathbf{D}_{\infty}) \geq 0$$

Low hypotheses: For all t > 0, $\bar{\mathbf{C}}_t, \mathbf{D}_t^{\top} \mathbf{D}_t \ge \rho \mathbf{I}$

- No assumption on $r = \frac{p}{q}$ (!)
- No rates (as the original **OMF**)
- ⇒ Empirical validation of speed-ups

Results

Online dictionary learning

Qualitatively, usable maps are obtained $12 \times$ faster

Quantitative results

Speed-up close to reduction factor $\frac{p}{q}$

Quantitative results

Stochastic subsampling introduce little noise

Information is acquired faster

Conclusion

New efficient algorithm with many potential use-cases:

- Hyperspectral images [4]
- Collaborative filtering [3]
- Genomics

Perspectives:

- Efficient heuristics and adaptative subsampling ratio
- To integrate in our Python package (github.com/arthurmensch/modl)
- Is this kind of approach transposable to SGD setting?

We may now easily use these dictionaries in a supervised setting.

Bibliography I

- J. Mairal, F. Bach, J. Ponce, and G. Sapiro.
 Online learning for matrix factorization and sparse coding.
 The Journal of Machine Learning Research, 11:19-60, 2010.
- [2] M. J. McKeown, S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell, and T. J. Sejnowski. Analysis of fMRI Data by Blind Separation into Independent Spatial Components.

Human Brain Mapping, 6(3):160-188, 1998.

- [3] A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux.
 Dictionary learning for massive matrix factorization.
 In 33rd International Conference on Machine Learning (ICML), June 2016.
- [4] A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Stochastic Subsampling for Factorizing Huge Matrices. arXiv:1701.05363 [cs, math, q-bio, stat], Jan. 2017.

Bibliography II

[5] J. Moeller and S. Strother.

A regional covariance approach to the analysis of functional patterns in positron emission tomographic data.

Journal of Cerebral Blood Flow & Metabolism, 11(1_suppl):A121-A135, 1991.

[6] G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion. Multi-subject dictionary learning to segment an atlas of brain spontaneous activity.

In Proceedings of the Information Processing in Medical Imaging Conference, volume 22, pages 562–573. Springer, 2011.