CS 189: Introduction to Machine Learning - Discussion 6

- 1. Fun with Lagrange Multipliers (taken from Harvard class worksheet)
 - (a) Minimize the function:

$$f(x, y, z) = x + y + 2z$$
 such that $x^2 + y^2 + z^2 = 3$

(b) Minimize the function:

$$f(x, y, z) = x^2 - y^2$$
 such that $x^2 + 2y^2 + 3z^2 = 1$

Solution:

(a) The Lagrangian is:

$$L(x, y, z, \lambda) = x + y + 2z + \lambda(x^2 + y^2 + z^2 - 3)$$

Taking all of the partial derivatives and setting them to 0, we get this system of equations:

$$\lambda x = -\frac{1}{2}$$

$$\lambda y = -\frac{1}{2}$$

$$\lambda z = -1$$

$$x^{2} + y^{2} + z^{2} = 3$$

We can infer that x = y, and that z = 2y. Plugging this into the constraint, we have:

$$y^2 + y^2 + 4y^2 = 3$$

which shows that $y=\pm\frac{\sqrt{2}}{2}$. We have two critical points, $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},-\sqrt{2})$ and $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},\sqrt{2})$. Plugging these into our objective function f, we find that the minimizer is the former, with a value of $-3\sqrt{2}$.

(b) The Lagrangian is:

$$x^2 - y^2 + \lambda(x^2 + 2y^2 + 3z^2 - 1)$$

Taking all of the partial derivatives and setting them to 0, we get this system of equations:

$$x = -\lambda x$$

$$y = 2\lambda y$$

$$0 = \lambda z$$

$$x^{2} + 2y^{2} + 3z^{2} = 1$$

To solve this, we look at several cases:

Case 1: $\lambda = 0$. This implies that x = y = 0, and $z = \pm \frac{1}{3}$. We have two critical points: $(0,0,\pm \frac{1}{3})$.

Case 2: $\lambda \neq 0$. z must be 0.

Case 2a: x = 0. The constraint gives us that $y = \pm \frac{1}{\sqrt{2}}$. This gives us another two critical points: $(0, \pm \frac{1}{\sqrt{2}}, 0)$.

Case 2b: y = 0. The constraint gives us $x = \pm 1$, giving us another two critical points: $(\pm 1, 0, 0)$.

Plugging in all of our critical points, we find that $(0, \pm \frac{1}{\sqrt{2}}, 0)$ minimizes our function with a value of $-\frac{1}{2}$.

2. Quadratic Kernel

Find a feature mapping Φ such that $\Phi(x)^T \Phi(y) = K(x,y)$ where the kernel function is $K(x,y) = (x^Ty+1)^2$. For simplicity, you may assume that the data is 2-dimensional, i.e. $x = [x_1, x_2]^T$.

Solution:

$$K(x,y) = (x^{T}y + 1)^{2} = (x_{1}y_{1} + x_{2}y_{2} + 1)^{2}$$

$$= 1 + x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + 2x_{1}y_{1} + 2x_{2}y_{2} + 2x_{1}y_{1}x_{2}y_{2}$$

$$= 1 + x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + 2x_{1}y_{1} + 2x_{2}y_{2} + 2x_{1}y_{1}x_{2}y_{2}$$

$$= [1, \sqrt{2}x_{1}, \sqrt{2}x_{2}, \sqrt{2}x_{1}x_{2}, x_{1}^{2}, x_{2}^{2}][1, \sqrt{2}y_{1}, \sqrt{2}y_{2}\sqrt{2}y_{1}y_{2}, y_{1}^{2}, y_{2}^{2}]^{T}$$

$$= \Phi(x)^{T}\Phi(y)$$

where

$$\Phi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2]^T$$

- 3. Fun with Newton's method for root-finding
 - (a) Write down the iterative update equation of Newton's method for finding a root x: f(x) = 0 for a real-valued function f.

Solution:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(b) Prove that if f(x) is a quadratic function $(f(x) = ax^2 + bx + c)$, then it only takes one iteration of Newton's Method to find the minimum/maximum.

Solution: The Newton's method update for finding a mininum/maximum is

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)} = x_n - \frac{2ax_n + b}{2a} = \frac{-b}{2a}$$

And this is the point for mininum/maximum.