

Estrutura e Objetivos

- 3.1 Regras de Comunicação
 - Explicar como as regras facilitam a comunicação.
 - Descrever os tipos de regras que são necessárias para o êxito da comunicação.
- 3.2 Protocolos e Padrões de Redes
 - Explicar a função dos protocolos e das organizações de standards para facilitar a interoperabilidade nas comunicações de rede.
 - Explicar a necessidade dos protocolos na comunicação de rede.
 - Explicar a finalidade da adesão a uma suíte de protocolos.
 - Explicar a função de organizações de standards no estabelecimento de protocolos para interoperabilidade de rede.
 - Explicar como o modelo TCP/IP e o modelo OSI são usados para facilitar a padronização no processo de comunicação.
- 3.3 Transferência de Dados na Rede
 - Explicar como os dispositivos de uma LAN acedem aos recursos numa rede de empresas de pequeno a médio porte.
 - Explicar como o encapsulamento permite que os dados sejam transportados pela rede.
 - Explicar como os hosts locais acedem aos recursos locais numa rede.

3.1 Regras de Comunicação

Princípios da comunicação

- Todos os métodos de comunicação possuem três elementos em comum:
 - Origem ou remetente
 - Destino ou destinatário
 - Canal ou meio de transmissão
- As regras ou os protocolos regem todos os métodos de comunicação.

cisco

Estabelecimento de regras

- Os protocolos que são necessários para a comunicação eficaz e incluem:
 - Um emissor e um receptor identificados
 - Língua e gramática comuns
 - Velocidade e ritmo de transmissão
 - Requisitos de confirmação ou recepção
- Os protocolos usados nas comunicações de rede também definem:
 - Codificação de mensagens
 - Opções de envio de mensagem
 - Formatação e Encapsulamento de mensagens
 - Temporização de mensagem
 - Tamanho da mensagem

Codificação da mensagem

- A codificação entre hosts deve estar em formato adequado para o meio físico.
- As mensagens são convertidas primeiramente em bits pelo host emissor.
- Depois, cada bit é codificado num padrão de sons, de ondas de luz ou de impulsos elétricos, dependendo do meio de transmissão.
- Finalmente, o host destino recebe e descodifica os sinais para interpretar a mensagem.

Formatação e encapsulamento da mensagem

- Há um formato combinado para cartas e endereçamento de cartas necessário para a entrega adequada das mesmas.
- Colocar a carta no envelope endereçado é conhecido como "encapsulamento".
- Cada mensagem de computador é também encapsulada num formato específico, chamado de trama (ou *quadro*), antes de ser enviada pela rede.
- Uma trama atua como um envelope fornecendo os endereços de destino e origem.

Tamanho da mensagem

- Os seres humanos dividem as mensagens longas em partes ou frases menores.
- As mensagens longas também devem ser divididas em pedaços menores para se deslocarem por uma rede.
 - Cada parte é enviada numa trama separada.
 - Cada trama tem suas próprias informações de endereçamento.
 - Um host destinatário reconstruirá várias tramas para obter a mensagem original.

Temporização de mensagem

Método de Acesso

 Os hosts de uma rede precisam de saber quando começar a enviar mensagens e como proceder quando houver colisões.

Controlo de fluxo

 Os hosts de origem e destino usam o controlo de fluxo para negociar a temporização correta e evitar sobrecarregar o destino, bem como certificar-se de que as informações foram recebidas.

Limite de Tempo da Resposta

 Os hosts da rede têm regras que especificam por quanto tempo têm de aguardar pelas respostas e especificam que ação devem tomar se o limite de tempo da resposta for ultrapassado.

Opções de entrega da mensagem

Mensagem unicast

Entrega de um para um

Mensagem multicast

Entrega de um para muitos Entrega de um para todos

Mensagem de broadcast

3.2 Protocolos e Standards de Redes

Protocolos

Regras que regem as comunicações

- As suites (conjuntos) de protocolos são implementadas por hosts e por dispositivos de rede, quer em software, em hardware ou em ambos.
- Os protocolos são visualizados em camadas (ou níveis), com cada serviço de nível superior dependendo da funcionalidade definida pelos protocolos mostrados nos níveis inferiores.

Protocolos

Protocolos de rede

- Os protocolos de rede definem um formato e um conjunto de regras comuns para a troca de mensagens entre dispositivos.
- Estes são alguns protocolos de rede comuns: Hypertext Transfer Protocol (HTTP), Transmission Control Protocol (TCP) e Internet Protocol (IP).

Protocolos

Interação entre protocolos

- A comunicação entre um servidor Web e um cliente Web é um exemplo de uma interação entre vários protocolos:
 - HTTP é um protocolo comum que rege a maneira como um servidor Web e um cliente Web interagem.
 - TCP é o protocolo de transporte que gere as conversas individuais.
 - **IP** encapsula os segmentos TCP em pacotes, atribui endereços e entrega ao host de destino.
 - Ethernet permite a comunicação por uma ligação de dados e a transmissão física dos dados no meio de transmissão.

Conjuntos de protocolo e standards do setor

- Uma suíte de protocolos é um grupo de protocolos que funciona em conjunto para fornecer serviços abrangentes de comunicação em redes.
 - Pode ser especificado por uma entidade criadora de standards ou desenvolvido por um fabricante.
- O conjunto de protocolos TCP/IP (mais conhecido por arquitectura TCP/IP) é um standard aberto, ou seja, os protocolos estão totalmente disponíveis, e qualquer fornecedor pode implementá-los em hardware ou em software.

Nome da camada	TCP/IP	ISO	AppleTalk	Novell Netware
Aplicação	HTTP DNS DHCP FTP	ACSE ROSE TRSE SESE	AFP	NDS
Transporte	TCP UDP	TP0 TP1 TP2 TP3 TP4	ATP AEP NBP RTMP	SPX
Internet	IPv4 IPv6 ICMPv4 ICMPv6	CONP/CMNS CLNP/CLNS	AARP	IPX
Acesso à rede Ethernet PPP Frame Relay ATM WLAN				

Desenvolvimento do TCP/IP

- A Advanced Research Projects
 Agency Network (ARPANET) foi a predecessora da Internet de hoje.
 - A ARPANET foi fundada pelo Departamento de Defesa dos EUA para uso pelas universidades e laboratórios de pesquisa.

TCP/IP Protocol Suite

Processo de comunicação do TCP/IP

- Ao enviar os dados de um servidor Web para um cliente, o procedimento de encapsulamento seria o seguinte:
 - O servidor Web prepara a página Hypertext
 Markup Language (HTML). O protocolo da
 camada de aplicação HTTP envia os dados para
 a camada de transporte.
 - A camada de transporte divide os dados em segmentos e identifica cada um.
 - Em seguida, os endereços IP de origem e destino são adicionados, criando um pacote IP.
 - As informações sobre a Ethernet são adicionadas em seguida, criando a trama Ethernet, ou a estrutura de ligação de dados.

 Essa trama é entregue ao router mais próximo ao longo do caminho para o cliente Web. Cada router adiciona novas informações de ligação de dados antes de enviar o pacote.

Processo de comunicação do TCP/IP (continuação)

- Ao receber as tramas de ligação de dados do servidor Web, o cliente processa e remove cada cabeçalho de protocolo na ordem oposta à da adição:
 - O cabeçalho Ethernet é removido primeiro
 - Em seguida, o cabeçalho IP
 - Em seguida, o cabeçalho da camada de transporte
 - Por fim, as informações de HTTP são processadas e enviadas para o web brower do cliente.

Standards Organizations

Open Standards (padrões abertos)

- Os open standards (padrões abertos) incentivam a interoperabilidade, a concorrência e a inovação.
- As organizações de criação de standards são, geralmente, organizações sem fins lucrativos e independentes de fornecedores, estabelecidas para desenvolver e promover o conceito de open standards.

Standards Organizations Internet Standards

- Internet Society (ISOC) promove o desenvolvimento aberto e a evolução da Internet em todo o mundo.
- Internet Architecture Board (IAB) gestão e desenvolvimento geral de standards da Internet.
- Internet Engineering Task Force (IETF) desenvolve, atualiza e mantém a Internet e as tecnologias TCP/IP.
- Internet Research Task Force (IRTF) voltada para a pesquisa, a longo prazo, relacionada com a Internet e protocolos TCP/IP.

- Internet Corporation for Assigned Names and Numbers (ICANN) – coordena a alocação de Endereços IP e a gestão de nomes de domínio.
- Internet Assigned Numbers Authority
 (IANA) gere a alocação de endereços IP,
 gestão de nomes de domínio e os
 identificadores de protocolos para a ICANN.

Standards Organizations

Standards Organizations - Eletrónica e Comunicação

- Institute of Electrical and Electronics Engineers (IEEE) dedicado a promover a inovação tecnológica e criar standards numa grande área de setores, incluindo redes.
- Electronic Industries Alliance (EIA) standards relacionados com cablagem eléctrica, conectores e bastidores de rede.
- Telecommunications Industry Association (TIA) standars para equipamentos de rádio, torres da rede móvel celular, dispositivos de voz sobre IP (VoIP) e comunicação por satélite.
- International Telecommunications Union-Telecommunication Standardization Sector (ITU-T) standards para a compactação de vídeo, Internet Protocol Television (IPTV) e comunicações de banda larga.

Os benefícios de se usar um modelo de camadas

- Os Benefícios de se usar um modelo de camadas incluem:
 - Facilitar o design de protocolos, já que os protocolos em cada camada têm funções bem definidas.
 - Estimular a competitividade porque os produtos de diferentes fornecedores podem trabalhar em conjunto.
 - Evitar que alterações na tecnologia de uma camada afetem as outras camadas.
 - Fornecer um idioma comum para descrever funções e capacidades de rede.

O modelo de referência OSI

- Aplicação contém protocolos usados para comunicações processo-aprocesso.
- Apresentação garante uma representação comum dos dados.
- Sessão fornece serviços à camada de apresentação para organizar o diálogo e gerir a troca de dados.
- Transporte define serviços para segmentar, transferir e reagrupar os dados.
- Rede fornece serviços para realizar trocas de fragmentos individuais de dados na rede entre dispositivos finais identificados.
- Ligação de dados fornece métodos para a troca de tramas de dados entre os dispositivos num meio físico comum.
- **Física** descreve os meios mecânicos, elétricos, funcionais e de procedimentos para transmissão de bits através de conexões físicas.

O modelo de protocolos TCP/IP

Modelo TCP/IP

- Criado no início dos anos 70 para comunicações de rede.
- Standard aberto.
- Também chamado de modelo TCP/IP, arquitectura TCP/IP ou modelo de Internet.

Comparação entre os modelos OSI e TCP/IP

 No modelo OSI, a camada de acesso à rede e a camada de aplicação do modelo TCP/IP são divididas em várias camadas para descrever funções discretas que

devem ocorrer nessas camadas.

3.3 Transferência de Dados na Rede

Segmentação de mensagens

- Os grandes fluxos de dados são divididos em partes menores e mais gerenciáveis para o envio pela rede.
 - Ao enviar partes menores, várias conversas diferentes podem ser intercaladas na rede. Esse processo é denominado multiplexagem.
 - Cada parte deve ser etiquetada/rotulada.
 - Se uma parte da mensagem falhar em chegar ao destino, somente as partes perdidas precisarão de ser retransmitidas.

Unidades de dados de protocolo

- Conforme os dados das aplicações passam pelas pilhas de protocolos, são adicionadas informações em cada nível/camada. Isso é conhecido como o processo de encapsulamento.
- O formato que os dados assumem em cada camada é chamado de unidade de dados de protocolo (PDU – Protocol Data Unit).
 - Dados PDU da camada de aplicação
 - Segmento PDU da camada de transporte
 - Pacote PDU da camada de rede
 - Trama PDU da camada de ligação de dados
 - Bits PDU da camada física

Exemplo de encapsulamento

- O processo de encapsulamento funciona de cima para baixo:
 - Os Dados são divididos em segmentos.
 - O segmento TCP é encapsulado no Pacote IP.
 - O pacote IP é encapsulado na trama (ou *quadro*) Ethernet.

Desencapsulamento

- O processo de desencapsulamento funciona de baixo para cima.
- O desencapsulamento é o processo usado por um dispositivo receptor para remover um ou mais cabeçalhos de protocolo.
 - Os dados são desencapsulados à medida que se movem na pilha em direção à aplicação do utilizador final.

Endereços de rede

- Endereços origem e destino da camada de rede – Responsáveis por entregar o pacote IP do endereço origem para o destino final.
 - Endereço IP origem O endereço IP do dispositivo emissor, a origem do pacote.
 - Endereço IP destino O endereço IP do dispositivo receptor, o destino final do pacote.

Endereços de ligação de dados

- A finalidade do endereço de ligação de dados é fornecer a trama de ligação de dados de uma interface de rede para outra na mesma rede.
 - Como o pacote de IP viaja da origem para o destino, ele é encapsulado numa nova trama de ligação de dados ao ser encaminhado por cada router.

Dispositivos na mesma rede

- Os endereços da camada de rede, ou endereços IP, indicam a origem e o destino final
 - Parte de rede A parte da extremidade esquerda do endereço indica de qual rede o endereço IP é membro.
 - **Parte de host** o restante do endereço identifica um dispositivo específico na rede.
- A trama de ligação de dados, que usa o endereçamento MAC, é enviado diretamente para o dispositivo destinatário.
 - Endereço MAC de origem endereço do dispositivo remetente.
 - Endereço MAC de destino endereço do dispositivo destinatário.

Dispositivos numa rede remota

- Envio para uma rede remota os endereços IP de origem e destino representam os hosts em redes diferentes.
- A trama de ligação de dados não pode ser enviada diretamente para o host de destino remoto. Portanto, a trama é enviada para o default gateway (gateway padrão), que é o interface do router mais próximo.
- O router remove as informações recebidas da Layer 2 e adiciona novas informações de ligação de dados antes de a encaminhar para a interface de saída.

3.4 Resumo do Capítulo

Resumo do Módulo

Módulo 3: Comunicação e protocolos de rede

- Explicar como as regras facilitam a comunicação.
- Explicar a função dos protocolos e das organizações de standards para facilitar a interoperabilidade nas comunicações de rede.
- Explicar como os dispositivos de uma LAN acedem a recursos numa rede empresarial de pequena a média dimensão.

