Analysis I und Lineare Algebra für Ingenieurwissenschaften Hausaufgabe 07 - Al-Maweri 13

Daniel Geinets (453843), Christopher Neumann (409098), Dennis Schulze (458415)

13. Januar 2021

Inhaltsverzeichnis

2																																	
3																																	
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	3	3	3 	3 	3 	3 	2 	2	2 3	2 	2	2	2	2	2	2	2	2	2	2	2	2	2										

Aufgabe 1

Aufgabe 2

Sei $a \in \mathbb{R}$ und sei da eine beliebige Folge x_n mit $\lim_{n\to\infty} x_n = a$, dann gilt

$$\lim_{n \to \infty} \sin(2\pi x_n) + 3 = \lim_{x \to a} \sin(2\pi x) + 3 = \sin(2\pi a) + 3$$

daraus folgt, $\sin(2\pi x) + 3$ ist stetig.

Ebenso gilt

$$\lim_{n \to \infty} (x_n)^3 - 1 = \lim_{x \to a} x^3 - 1 = a^3 - 1$$

daraus folgt, $x^3 - 1$ ist stetig.

Desweiteren gilt

$$\lim_{x \to 1} \sin(2\pi x) + 3 = \sin(2\pi \cdot 1) + 3 = \sin(2\pi) + 3 = 3$$
$$\lim_{x \to 1} (x^3 - 1) = (1)^3 - 1 = 0 \neq 3$$

daraus folgt, f ist nicht stetig in x = 1.

Aufgabe 3

- a)
- (a)
- (b)
- b)
- (a)
- (b)
- (c)

Aufgabe 4