I/O Devices and Operations 1

Minsoo Ryu

Real-Time Computing and Communications Lab.
Hanyang University

msryu@hanyang.ac.kr

Topics Covered

- **☐** Character Devices
- **☐** Block Devices
- Network Devices
- □ Clocks and Timers

프로서스 실행될 때

CPU Execution and I/O CPU burst: Instruction 체기 I/O burst: I/O 작업 수행

- ☐ The two main jobs of a computer
 - **CPU** execution
 - Input/Output
- ☐ Usually, the main job is I/O
 - The CPU execution is incidental

일반적으로 CPU burst는 실행 간직 짧음, 1/0작업은 실행 시간이 더 김 → 사용자가 느끼는 컴퓨터의 성능은 1/0에의해 결정됩

Variety of I/O Devices

☐ A computer is equipped with many I/O devices

VGA card, network card, disk controller, ...

Video card

print

Solid state drive

Hard disk

USB

Sound card

Typical I/O Data Rates

Types of I/O Devices

- ☐ Character devices (mouse, terminal, etc)
 - Commands include get and put

- ☐ Block devices (disk drive, flash drive, etc)
 - Commands include read, write, and seek

block でも (byte等号 第章)

- Raw I/O or file-system access
- Memory-mapped file I/O access possible
 - mmap() function: convenient programming interface
 - mmap is faster than read, because of single copy operation
- Network devices
 - NIC (network interface card)

Character Device: Mouse (1)

☐ Brief history

- First mechanical mouse with a roller ball
 - Bill English at Xerox PARC in the early 1970s
- Introduced by Apple Macintosh in 1984
 - They have helped to completely redefine the way we use computers since then
- Became the PC-human interface of choice quickly when Windows 3.1 made Graphical User Interface (GUI) a standard
- Optical Mouse
 - Gary Gordon at Agilent Laboratories in 1999

Character Device: Mouse (2)

Optical mouse

- Tiny camera takes 1500-7080 images per second
 - Camera = laser + a CMOS sensor
- Images sent for analysis to a DSP operating typically at 18 MIPS
- DSP detects patterns in images and thus estimates motion
- Data ports are used for two-way communication
- Upon mouse movement, a 3/5-byte packet is sent to the port
 - Typical description of the data
 ✓ (x_s, y_s), (x_d, y_d), mouse-up/down
- This data packet is decoded by the mouse driver and its internal co-ordinates are updated

Character Device: Mouse (3)

- □ Data transfer with optical mouse
 - Sensors (CMOS)
 - Mouse Controller (DSP)
 - Communication link (Cable/Wireless)
 - Data interface (Serial, PS/2, USB)
 - Device driver
 - Application

Character Device: Terminal (1)

☐ Example

■ DEC VT100, Heathkit Z19

Character Device: Terminal (2)

- ☐ Terminal = keyboard + display
 - Keyboard and display are handled independent in most systems (no automatic echo, full duplex serial link)
- ☐ I/O registers are connected to host via serial line
 - Keyboard data/status registers
 - KBDR (Keyboard Data Register), KBSR (Keyboard Status Register)
 - Display data/status registers
 - DDR (Display Data Register), DSR (Display Status Register)

Character Device: Terminal (3)

☐ Keyboard input handling

- One interrupt per character
 - One character (8-bit data or control function) is sent at a time
 - ASCII encoding is used: 'A' is 0x65
- Slow speed
 - 10-1800 characters per second
 - Measure: Baud rate (bits per second)

Character Device: Terminal (4)

■ When a character is typed:

- Its ASCII code is placed in bits [7:0] of keyboard data register
- The "ready bit" of keyboard status register is set to zero
- Generate interrupt and disable keyboard
 - Any typed characters will be ignored

☐ When KBDR is read:

- The "ready bit" of KBSR is set to one
- Enable keyboard

Character Device: Terminal (5)

Display output handling

- When monitor is ready to display another character
 - The "ready bit" of display status register is set to one

When data is written to DDR:

- The "ready bit" of DSR is set to zero
- Character in DDR is displayed
- Any other character data written to DDR is ignored

Block Device: Disk Drive (1)

Block Device: Disk Drive (2)

☐ Example disk characteristics

- 2-6 heads (platters x 2)
- Platter diameter between 0.8" and 8"
- 16,383 tracks (cylinders) per surface
- 63 blocks (sectors) per track
- Block (sector) size of 512 to 4096 bytes
 - 4KB physical emulated at 512-byte sectors
- Capacity ranges up to 4 TB

Block Device: Disk Drive (3)

Disk operation

- Select desired read/write head
- Move heads to the correct track ("seek")
 - Seek time
- Wait for disk to "rotate" desired block into position
 - Rotational delay
- Read from or write to the block
 - Transfer latency

□ Disk performance

- Seek time: 0-50 ms (average 10-20 ms)
- Rotational delay: 0-16 ms
- Typical drive spins at 3600-5400 RPM

하드디스크의

Network Interfaces

■ Network interfaces

UART and RS-232, USB, ethernet, etc

Layering (Protocol Stack)

- □ Network I/O is more complex than other types of I/O
 - Complex network protocols and layered processing

TCP Socket Programming Flow

Clocks and Timers

- Provide three basic functions
 - Give the current time
 - Give the elapsed time
 - Set a timer to trigger operation X at time Y
- □ Programmable interval timer
 - The hardware for last two functions
 - Wait and generate an interrupt
 - CPU scheduler uses this
- ☐ Unfortunately, the system calls for timer functions are not standardized across operating systems
 - alarm() in UNIX
 - timer_create() and timer_settime() in POSIX

Unix Time Values

- ☐ Two different time values
 - Calendar time
 - Counts the number of seconds since the Epoch (Jan 1, 1970)
 - UTC (coordinated Universal Time, Greenwich Mean Time)
 - Process time
 - Measures the CPU time used by a process
 - Process time is measured in clock ticks
 - ✓ Usually, 50, 60, or 100 ticks per second
 - CPU time = User CPU time + System CPU time
- □ Lack of timer support on Unix
 - We can get around by using alarm() system call
 - It generates a SIGALRM signal after the number of real-time seconds (specified by seconds) has elapsed
 - ioctl on UNIX covers odd aspects of I/O such as clocks and timers (catchall for I/O operations)

Linux

- ☐ The timer interrupt is set to a default frequency
 - "linux/param.h"
 - 100 Hz for most hardware platforms
- □ Jiffies
 - The number of clock ticks since the operating system was booted
 - When the timer interrupt occurs, the jiffies value is incremented

