Package 'mlsauce'

July 7, 2020

Title Miscellaneous Statistical/Machine Learning stuff			
Version 0.4.0			
Author T. Moudiki Maintainer T. Moudiki < thierry.moudiki@pm.me> Description Miscellaneous Statistical/Machine Learning stuff. License BSD_3_clause Clear + file LICENSE			
			Imports reticulate, R6, Rcpp
			Suggests reticulate, R6, Rcpp
			Collate 'zzz.R' 'adaopt.R' 'lsboost.R'
Encoding UTF-8 LazyData true Roxygen list(markdown = TRUE) RoxygenNote 7.1.1 NeedsCompilation no			
		R topics documented:	
		AdaOpt	
		Index	
		AdaOpt classifier	
Description			

AdaOpt classifier

2 AdaOpt

Usage

```
AdaOpt(
  n_{iterations} = 50L,
  learning_rate = 0.3,
  reg_lambda = 0.1,
  reg_alpha = 0.5,
  eta = 0.01,
  gamma = 0.01,
 k = 3L
  tolerance = 0,
 n_{clusters} = 0,
 batch_size = 100L,
 row_sample = 1,
  type_dist = "euclidean-f",
  cache = TRUE,
  seed = 123L
)
```

Arguments

n_iterations	number of iterations of the optimizer at training time
learning_rate	controls the speed of the optimizer at training time
reg_lambda	L2 regularization parameter for successive errors in the optimizer (at training time)
reg_alpha	L1 regularization parameter for successive errors in the optimizer (at training time)
eta	controls the slope in gradient descent (at training time)
gamma	controls the step size in gradient descent (at training time)
k	number of nearest neighbors selected at test time for classification
tolerance	controls early stopping in gradient descent (at training time)
n_clusters	number of clusters, if MiniBatch k -means is used at test time (for faster prediction)
batch_size	size of the batch, if MiniBatch k-means is used at test time (for faster prediction)
row_sample	percentage of rows chosen from training set (by stratified subsampling, for faster prediction)
type_dist	distance used for finding the nearest neighbors; currently euclidean-f (euclidean distances calculated as whole), euclidean (euclidean distances calculated row by row), cosine (cosine distance)
cache	if the nearest neighbors are cached or not, for faster retrieval in subsequent calls
seed	reproducibility seed for initial weak learner and clustering

Value

An object of class AdaOpt

LSBoostClassifier 3

Examples

```
library(datasets)
X <- as.matrix(iris[, 1:4])</pre>
y <- as.integer(iris[, 5]) - 1L</pre>
n \leftarrow dim(X)[1]
p \leftarrow dim(X)[2]
set.seed(21341)
train_index <- sample(x = 1:n, size = floor(0.8*n), replace = TRUE)
test_index <- -train_index</pre>
X_train <- as.matrix(iris[train_index, 1:4])</pre>
y_train <- as.integer(iris[train_index, 5]) - 1L</pre>
X_test <- as.matrix(iris[test_index, 1:4])</pre>
y_test <- as.integer(iris[test_index, 5]) - 1L</pre>
obj <- mlsauce::AdaOpt()</pre>
print(obj$get_params())
obj$fit(X_train, y_train)
print(obj$score(X_test, y_test))
```

LSBoostClassifier

LSBoost classifier

Description

LSBoost classifier

Usage

```
LSBoostClassifier(
    n_estimators = 100L,
    learning_rate = 0.1,
    n_hidden_features = 5L,
    reg_lambda = 0.1,
    row_sample = 1,
    col_sample = 1,
    dropout = 0,
    tolerance = 1e-04,
    direct_link = 1L,
    verbose = 1L,
    seed = 123L
)
```

4 LSBoostClassifier

Arguments

n_estimators: int, number of boosting iterations.

learning_rate: float, controls the learning speed at training time.

n_hidden_features:

int

number of nodes in successive hidden layers.

reg_lambda: float, L2 regularization parameter for successive errors in the optimizer (at train-

ing time).

row_sample: float, percentage of rows chosen from the training set.

col_sample: float, percentage of columns chosen from the training set.

dropout: float, percentage of nodes dropped from the training set.

tolerance: float, controls early stopping in gradient descent (at training time).

direct_link: bool, indicates whether the original features are included (True) in model's fit-

ting or not (False).

verbose: int, progress bar (yes = 1) or not (no = 0) (currently).

seed: int, reproducibility seed for nodes_sim=='uniform', clustering and dropout.

Value

An object of class LSBoostClassifier

Examples

```
library(datasets)
X <- as.matrix(iris[, 1:4])</pre>
y <- as.integer(iris[, 5]) - 1L
n \leftarrow dim(X)[1]
p <- dim(X)[2]
set.seed(21341)
train_index <- sample(x = 1:n, size = floor(0.8*n), replace = TRUE)
test_index <- -train_index</pre>
X_train <- as.matrix(iris[train_index, 1:4])</pre>
y_train <- as.integer(iris[train_index, 5]) - 1L</pre>
X_test <- as.matrix(iris[test_index, 1:4])</pre>
y_test <- as.integer(iris[test_index, 5]) - 1L</pre>
obj <- mlsauce::LSBoostClassifier()</pre>
print(obj$get_params())
obj$fit(X_train, y_train)
print(obj$score(X_test, y_test))
```

LSBoostRegressor 5

LSBoostRegressor

LSBoost Regressor

Description

LSBoost Regressor

Usage

```
LSBoostRegressor(
    n_estimators = 100L,
    learning_rate = 0.1,
    n_hidden_features = 5L,
    reg_lambda = 0.1,
    row_sample = 1,
    col_sample = 1,
    dropout = 0,
    tolerance = 1e-04,
    direct_link = 1L,
    verbose = 1L,
    seed = 123L
)
```

Arguments

n_estimators: int, number of boosting iterations.

learning_rate: float, controls the learning speed at training time.

n_hidden_features:

int

number of nodes in successive hidden layers.

reg_lambda: float, L2 regularization parameter for successive errors in the optimizer (at train-

ing time).

row_sample: float, percentage of rows chosen from the training set.

col_sample: float, percentage of columns chosen from the training set.

dropout: float, percentage of nodes dropped from the training set.

tolerance: float, controls early stopping in gradient descent (at training time).

direct_link: bool, indicates whether the original features are included (True) in model's fit-

ting or not (False).

verbose: int, progress bar (yes = 1) or not (no = 0) (currently).

seed: int, reproducibility seed for nodes_sim=='uniform', clustering and dropout.

Value

An object of class LSBoostRegressor

6 LSBoostRegressor

Examples

```
library(datasets)
X <- as.matrix(datasets::mtcars[, -1])</pre>
y <- as.integer(datasets::mtcars[, 1])</pre>
n \leftarrow dim(X)[1]
p \leftarrow dim(X)[2]
set.seed(21341)
train\_index <- sample(x = 1:n, size = floor(0.8*n), replace = TRUE)
test_index <- -train_index</pre>
X_train <- as.matrix(X[train_index, ])</pre>
y_train <- as.integer(y[train_index, ])</pre>
X_test <- as.matrix(X[test_index, ])</pre>
y_test <- as.integer(y[test_index])</pre>
obj <- mlsauce::LSBoostRegressor()</pre>
print(obj$get_params())
obj$fit(X_train, y_train)
print(obj$score(X_test, y_test))
```

Index

```
AdaOpt, 1

LSBoostClassifier, 3
LSBoostRegressor, 5
```