ubpulse 360

ubpulse 360 개발자용 매뉴얼

Doc. ID. LXD27 V2

Release Date. 2017-02-14.

Abstract — ubpulse 360 은 손가락 끝에서 PPG(맥파)를 측정하여 Bluetooth, USB 로 측정데이터를 실시간 전송한다. Bluetooth SPP 프로파일을 지원하는 모든 스마트기기, 일반 PC 에서 ubpulse 360 과 통신연결하여 측정데이터를 실시간 수신가능하다. 본 문서는 ubpulse 360 과 블루투스 혹은 USB 통신연결하여 실시간 측정데이터를 활용하려는 개발자용 매뉴얼이다.

필수참조문서 : 통신데이터 규격 설명서 2종.

문서 아이디: LXD23, 문서 제목: ubpulse 3 시리즈 통신규격.

다운로드:https://github.com/ubpulse/ubpulse-360-340-320/blob/master/LXD23_ubpulse3xx_CommunicationSpec.pdf

문서 아이디: LXD12, 문서 제목: LXSDFT2 통신규격.

다운로드: $\underline{\text{https://github.com/LAXTHA/LXSDF/blob/master/LXD12_LXSDFT2_CommunicationStandard.pdf}}$

목차

UBPULSE 360 개요.	4
BLUETOOTH CONNECTIVITY	5
USB CONNECTIVITY	6
FUNCTIONAL BLOCK DIAGRAM	······7
PRINCIPLE OF MEASUREMENT	8
심장박동 동기된 혈량의 변화	8
광학식 혈량변화 검출	9
심박검출 및 심박시간격 측정법	10
심박시간격 측정 정밀도의 중요성	10
SPECIFICATIONS	11
General	
BLUETOOTHUSB	
Measurement	
UBPULSE 360 사용법-기본	13
장치 전원켜기 끄기	13
측정법	14
디스플레이 화면	14
전지교체방법	16
사용시 주의사항	17
UBPULSE 360 BLUETOOTH 연결(스마트폰)	18
UBPULSE 360 BLUETOOTH 연결 (일반 PC)	21
WINDOWS 7 에서 블루투스 연결방법 예	22
WINDOWS XP 에서 블루투스 연결방법 예	25
BLUETOOTH 연결된 PC 에서 UBPULSE 360 과의 통신	28
UBPULSE 360 USB 연결	30
USB 연결된 PC 에서 UBPULSE 36o 과의 통신프로그램	32
UBPULSE 360 통신 프로그램 개발방법	34
UBPULSE 360 과 통신가능한 호스트기기	34

ubpulse 360 ubpulse 360 개발자용 매뉴얼

UBPULSE 36o 은 호스트기기에서 시리얼포트로 인식	34
UBPULSE 360 의 통신데이터포맷 – LXSDF T2	35
LXSDF T2 및ubpulse 360 의 데이터 배치 규격 문서	36
통신 프로그램 개발과정 전체흐름	37
PC 에서 LX DEVICE MANAGER 를 이용한 장치 데이터 모니터링	38
APPENDIX A - USB DRIVER INSTALLATION	39
LX USBCDC 드라이버 설치 방법 – WINDOWS XP	39
단계 1. 장치와 컴퓨터를 USB 케이블로 연결	39
단계 2. 새하드웨어 검색마법사 안내에 따라 설치 진행	40
장치의 자동생성된 com 포트 확인하기	42
LX USBCDC 드라이버 설치 방법 – WINDOWS 7	··· 43
단계 1. 장치와 컴퓨터를 USB 케이블로 연결한다	43
단계 2. 장치관리자를 열고 수동 드라이버 설치 진행	44
장치관리자 열어서 LX USBCDC 선택하기	44
수동 드라이버 설치진행	45
REVISION HISTORY	48
그림 목차.	
그림 1. UBPULSE 360 FUNCTIONAL BLOCK DIAGRAM	7
그림 2. 심장박동에 동기된 모세혈관 동맥혈량(ARTERIAL BLOOD VOLUME) 변화	8
그림 3. 광학식 혈량변화 검출 원리.	9
그림 4. 심박검출 및 심박시간격 측정법.	10
그림 5. UBPULSE 36o 이 블루투스로 PC 와 통신 연결되면 PC 에서는 일반적인 COM 포트로 인식되므로	
COM 포트 오픈하여 통신가능한 모든 개발툴에서 통신가능하다.	28
그림 6. BLUETOOTH 연결된 UBPULSE 36o 과 LX DEVICE MANAGER 에서 통신하는 예.	29
그림 $_{7}$. UBPULSE $_{3}$ 60 이 USB 로 PC 와 연결되면 PC 에서는 일반적인 COM 포트로 인식되므로 COM 포트	<u>-</u>
오픈하여 통신가능한 모든 개발툴에서 통신가능하다.	32
그림 8. USB 연결된 UBPULSE 360 과 LX DEVICE MANAGER 에서 통신하는 예.	33
그림 9. (A) 장치계층과 호스트계층사이의 데이터 통신 포맷 LXSDF T2. (B) LXSDF T2 TX 상세 구조.	35
그림 10. UBPULSE 360 과 통신하는 프로그램 전체 구조.	37
그림 11. UBPULSE 360 장치와 통신하는 프로그램 전체 작동흐름 .	37

ubpulse 360 개요.

ubpulse 360 은 센서 내에 맥파(PPG, PhotoPlethysmoGraph) 측정에 필요한 모든 회로 및 디지털 프로세서, 스피커, OLED 디스플레이, 전원부등 측정에 필요한 모든 요소가 내장되어있고, 모든 측정과정이 자동으로 이뤄진다. 손가락을 센서에 배치한 상태를 인식하여, 최적 측정 세팅이 자동으로 진행되며, 연속 측정 및 디지털신호처리, 데이터 전송이 이뤄진다.

측정된 원시파형데이터 및 분당심박수등의 계산치들은 디지털화 되어 ubpulse 360 에 내장된 Bluetooth, USB 통신수단으로 실시간 출력이 이뤄진다. Bluetooth SPP(Serial Port Profile), USB(윈도우운영체제)가 지원되는 모든 기기에 연결가능하며, 스마트폰, 태블릿, PC 등에서 사람의 PPG 측정정보를 활용 가능하다. ubpulse 360 을 도입한 개발자가 작업할 부분은 개발 프로그램에서 시리얼 포트 오픈하여 장치에서 전송되는 데이터를 수신하는 부분의 코드구현이다.

Bluetooth Connectivity

블루투스 SPP 프로파일을 지원하는 모든 기기와 통신가능.

주의사항: ubpulse 360 과 연결가능한 스마트폰

스마트폰에서 Bluetooth SPP 프로파일을 지원해야 장치와의 통신 가능하다.

- 통신가능한 기기 예: 갤럭시 S₃, 갤럭시노트, 갤럭시 탭 등 (기타 최신 안드로이드 폰은 Bluetooth SPP 지원하나 지원여부의 정확한 정보는 스마트폰 제조사 제공스펙 참조 혹은 폰 제조사 고객센터 문의하여 확인.)
- 통신불가능한 기기 예 : 아이폰등 애플사의 모든 제품.

USB Connectivity

ubpulse 360 이 USB 로 PC 와 연결되면 PC 에서는 일반적인 com 포트로 인식되므로 com 포트 오픈하여 통신가능한 모든 개발툴에서 통신가능하다.

Functional Block Diagram

그림 1. ubpulse 360 Functional Block Diagram

Principle of Measurement

심장박동 동기된 혈량의 변화

- 1. 심장박동에 의하여 생성된 압력에 의하여 혈관내에서 혈액의 흐름이 생긴다. 심장박동이 발생할 때마다 압력은 신체의 말단 모세혈관 까지 작용하며, 손가락 끝의 혈관까지도 압력이 작용한다. 그림
- 2. 손가락 끝 모세혈관의 동맥 혈액은 세포조직으로 혈액을 공급하고, 정맥으로 들어가서 다시 심장으로 되돌아간다. 그림의 (a)
- 3. 심장박동에 동기되어 손가락 끝의 혈관에서의 동맥혈량(Arterial blood volume)이 증가하고 줄어드는 상태가 반복된다. 그림의 (b)

그림 2. 심장박동에 동기된 모세혈관 동맥혈량(Arterial Blood Volume) 변화

광학식 혈량변화 검출

- 1. 광원에서 손가락에 빛을 조사하면 혈액, 뼈, 조직에서 빛의 흡수가 발생하고 일부광은 투과하여 광수신기에 도달한다.-그림(a)
- 2. 빛이 흡수되는 정도는 빛이 지나가는 경로에 있는 피부, 조직, 혈액의 양에 비례하며, 심박박동에 의한 혈류변화를 제외하고는 변하지 않는 성분이어서, 흡수되는 광량변화는 혈류변화에 비례한다.-그림 (b)
- 3. 광수신부에서 검출된 투과광은 손가락에서 흡수된 광량만큼 차감되어 수신되므로, 투과광의 광량 변화 역시 혈류변화를 반영하게 되어 광수신기의 광량을 측정함으로써 심장박동에 동기된 혈량변화 검출이 가능해진다.-그림 (c). 그림(C) 의 AC 성분을 통상 PPG(PhotoPlethysmoGraph, 맥파) 라고 부른다.

그림 3. 광학식 혈량변화 검출 원리.

심박검출 및 심박시간격 측정법.

그림(b) 에서 보이듯이 PPG 를 $_2$ 차 미분한 파형의 피크 검출하여 심박지점을 검출하며, 매번의 심박발생시마다 직전 심박과의 시간격을 계산하게 된다.

그림(c) 에서 심박 1 이 발생한 시점부터 심박 2 가 발생할 때 까지의 클락의 수량을 카운팅하여 클락의 주기인 0.000976sec 를 곱하기 하여 심박시간격 2 를 장치 내부 프로세서에서 계산한다. 사용되는 클락의 주기인 0.000976 초가 시간측정의 최소 간격에 해당한다. 시간측정에 사용되는 클락의 정밀도는 0.002%로써 충분한 정확성과 정밀도 높은 심박시간격 측정이 가능하다.

심박시간격 측정 정밀도의 중요성.

HRV(Heart Rate Variability) 연구분야에서는 심박시간격 측정 정밀성이 특히 요구된다. PPG 측정을 기반으로 하는 심박피크 검출 및 심박 시간격 검출 방법론은 여러가지 가 있을 수 있으며, 사용된 방법에 따라 정확성은 크게 차이가 난다. 심박시간격 검출에서 충분한 정밀도가 보장되지 못하면, 동일 피검자의 2개 손가락에서 동시에 측정된 심박시간격데이터로 HRV 분석한 결과가 크게 차이가 나며, 신뢰할 수 없는 HRV 분석결과가나온다. ubpulse 360 은 초기 설계 단계부터 정밀도를 고려하여 충분한 정밀도를 확보하였으며, HRV 분석법 적용시 신뢰할 수 있는 결과를 제공한다.

그림 4. 심박검출 및 심박시간격 측정법.

Specifications

General

Item	Description	
Display	Graphic OLED, 64x128 pixel, yellow-blue 2color	
Sound	Operation effect and heart beat sound from inner speaker	
Power Supply	Battery or USB bus power.	
Battery	AAA 1.5V x 2 ea	
Battery life	up to 6 hours (Bluetooth paired and continuous operation)	
Interface	Bluetooth, USB	
Power Consumption	100 mA at 3V (Bluetooth paired, finger out)	
	110 mA at 3V (Bluetooth paired, finger in)	
Weight	38g (no battery)	
	61g (include battery)	
Dimension	36mm x 66mm x 40mm (width x length x height)	
Temperature.	-20 °C ~ 60 °C	
(Normal operation)		
Temperature.	-40 °C ~ 70 °C	
(Storage)		
Material	ABS (Acrylonitrile Butadiene Styrene)	
	PC (polycarbonate resin)	

Bluetooth

Item	Description	
Bluetooth version	Bluetooth Spec. V2.0 EDR(Enhanced Data Rate)	
Class	Class 2	
Profile	SPP (Serial Port Profile)	
Pairing Password	1234	
Serial Port Setting	Baud rate: 115200 bps	
	Data bits : 8bit	
	Stop bit: 1bit	
	Parity : None	

USB

Item	Description
USB version	USB 2.0 full speed
Function	Virtual Com Port
Device driver	LX USBCDC.inf
Serial Port Setting	Baud rate: 115200 bps
	Data bits: 8bit
	Stop bit: 1bit
	Parity : None

Measurement

Item	Descrition	
Heart pulsation	Optical, using light absorption modulation via capillary filling pulsations.	
measurement method		
Light wavelength	940nm (infrared)	
Light noise immunity	Light noise is minimized using ELP(Environment Light Protection) technology.	
Heart Beat Detection method.	High Precision Peak Detection from 2 nd Derivatives of PPG.	
Clock for Heart Beat Interval	The time interval of heart beats is measured by high precision clock.	
Measurement	Clock Resolution: 0.000976 sec.	
	Clock Accuracy: 0.002%	
	 The clock is divided by 32 from main clock. Main clock: 32.768kHz Quartz Crystal Oscillator with accuracy: +-20ppm (0.002%) 	
Measurement	PPG waveform, heart rate per minute, heart beat interval, heart beat event,	
Quantity	perfusion index.	

장치에서 측정되는 각 측정량들의 의미 및 전송시 사용되는 데이터 포맷 설명 문서아아디: LXD23 필수 참조.

문서 아이디 : LXD23

문서 제목: ubpulse 3 시리즈 통신규격.

다운로드:https://github.com/ubpulse/ubpulse-360-340-320/blob/master/LXD23 ubpulse3xx CommunicationSpec.pdf

ubpulse 360 사용법-기본

장치 전원켜기 끄기.

켜기: 장치 전원이 꺼진 상태에서 전원스위치를 2초 이상 누르면 전원이 켜진다.

끄기: 장치 전원이 켜진 상태에서 전원스위치를 2초 이상 누르면 전원이 꺼진다.

자동 전원끄기 기능.

- 전지사용상태에서, 손가락이 센서 비 삽입상태로 1분이 경과되면 자동으로 전원끄기된다.
- USB 연결되어있는 경우에는 자동 전원끄기 하지 않음.
- 블루투스연결되어있는 경우에는 자동 전원끄기 하지 않음.

장치가 USB 로 연결된 경우에는 전지전원을 사용하지 않고 USB 전원만으로 시스템이 구동되며, USB 가 연결되어있을 때는 전원스위치 누름 상태와 무관하게 항상 전원이 켜져있다.

측정법.

손가락을 센서에 배치하면 자동으로 측정셋팅과정이 이뤄지고 나서 (최대 5 초 소요), 정상 측정이 진행되면 화면에서도 정상적인 데이터가 표현된다.

디스플레이 화면.

	아이콘 상세 설명	아이콘
맥파 파형	맥파 파형 모니터링	
스피커	심박음 켜짐 상태	(∞)
	심박음 꺼짐 상태	×××
전지 잔량	전지 잔량 표현	
	전지 잔량 부족 경고. Х표시가 처음으로	
	보인 이후 3o 분동안 연속사용가능.	
블루투스	블루투스 사용 가능.	*
	블루투스 연결되어 통신 상태.	*
USB	USB 사용 가능	**************************************
	USB 연결되어 통신가능 상태	*
	USB 장치 인식 실패 상태	***
	* USB 를 PC 에 연결한 이후 20 초동안 PC 측에서	⊗• ②■※ ●
	USB 장치 인식이 이뤄지지 않는 경우 USB 통신불가하며 USB 로는 제품에 전원공급만 이뤄짐.	HI
	USB 장치 인식 실패 상태 * USB 를 PC 에 연결한 이후 20 초동안 PC 측에서 USB 장치 인식이 이뤄지지 않는 경우 USB 통신	HRbpm PI %

 $\,\mathrm{M}\,$ 버튼을 $\,3\,$ 초 이상 누르고 있으면 심박음 출력을 무음, 유음 토글식으로 변경 가능하다.

전지교체방법

● 전지 커버 열기.

화살표 방향으로 힘을 주어 밀어 준다.

● 전지 교체 방법

AAA 건전지를 사용하며, 극성에 맞게 끼워 준다.

● 전지 커버 닫기

(1) 전지커버와 본체의 측면에 있는 2 개의 눈금이 일치하도록 하여 전지커버를 본체에 닿게한 상태에서, (2) 전지커버를 화살표 방향으로 밀어준다.

사용시 주의사항.

- 1. 손가락 끝이 차가운 경우 혈류량이 감소하여 정상적인 측정이 안되는 경우, 손을 따뜻하게 하여 측정한다.
- 2. 손가락에 물이 묻은 상태에서 사용하지 않아야 한다.
- 3. 측정 손가락은 장갑이나, 밴드 등으로 손가락 피부를 감싸고 있지 않아야 한다.
- 4. 손톱은 화장(매니큐어)되지 않은 상태여야 한다.

ubpulse 360 Bluetooth 연결(스마트폰)

본 예는 스마트폰 (갤럭시 S_3)에 기본 내장된 블루투스로 연결하는 방법을 설명한다. 스마트폰 기종에 따라 블루투스 연결 설정법은 조금씩 다르지만 전반적인 설정방식은 유사하다.

블루투스 정상 연결 상태(통신중일때)

블루투스 비연결 상태

정상적으로 블루투스 연결되어 통신중인 경우 블루투스 아이콘이 연결상태로 변경된다.

1. [환경설정] - [블루투스] 켜짐 클릭

3. [ubpulse 360]을 2 초동안 클릭

2. [검색]을 눌러 기기를 검색한다.

4. [등록요청] 창이 뜬다.

5. 핀번호 1234 를 입력

6. 스마트폰과 연결 성공

ubpulse 360 Bluetooth 연결 (일반 PC).

본 예는 노트북에 기본 내장된 블루투스에서의 설정을 예로 들고 있다. 노트북마다 사용되는 블루투스 동글에 따라 다른 프로그램이 사용되므로, 본 예시에서 제시되는 설정법과 완전히 동일하지는 않지만 전반적인 설정방식은 유사하다. 블루투스 설정은 처음 한번만 수행하고 나면, 이후 연결할 때는 추가 설정하지 않아도 장치와의 블루투스 연결을 바로 사용 가능하다. 윈도우 7인 경우와 윈도우 Xp인 2가지 경우의 연결법을 각각보인다.

블루투스 정상 연결(통신중) 상태

블루투스 비연결 상태

정상적으로 블루투스 연결되어 통신중인경우 장치의 블루투스 아이콘에는 정상연결 상태가 표시된다..

Windows 7 에서 블루투스 연결방법 예.

1. [제어판] - [하드웨어 및 소리] - [장치 및 프린터] 클릭

2. [장치 추가] 버튼을 클릭하면 ubpulse 360 이 선택된다. 이때 [다음] 클릭

3. 블루투스 페어링이 완성되면 다음과 같이 [연결 코드 만들기]가 보인다. [연결 코드 만들기] 클릭

4. 연결코드에 [1234]를 입력한다.

5. ubpulse 360 장치 추가 완료됨.

Windows XP 에서 블루투스 연결방법 예.

본 예는 노트북(Windows XP)에 기본 내장된 블루투스에서의 설정을 예로 들고 있다. 컴퓨터마다 사용되는 블루투스 동글에 따라 다른 프로그램이 사용되므로, 본 예시에서 제시되는 설정법과 완전히 동일하지는 않지만 전반적인 설정방식은 유사하다. 블루투스 설정은 처음 한번만 수행하고 나면, 이후 연결할 때는 추가 설정하지 않아도 장치와의 블루투스 연결을 바로 사용가능하다.

- ubpulse 360 이 켜져있는 상태에서,
 PC 의 블루투스 설정 아이콘 클릭.
- 2. Bluetooth 설정 클릭.

3. 설정창에서 새 연결 버튼 클릭.

ubpulse 360 개발자용 매뉴얼

4. 새연결 추가 대화상자에서 빠른모드(자동연결에 해당) 선택하고 다음 버튼 클릭.

5. 주변에서 발견된 블루투스 장치를 자동검색하여 보여주고 있다. ubpulse 360 이 발견된 것을 볼 수 있다. ubpulse 360 선택하고, 다음 버튼 클릭.

6. 자동설정된 com 포트 번호 확인하고 다음 버튼 클릭.

ubpulse 360 개발자용 매뉴얼

7. 앞의 6 과정에서 블루투스 설정이 완료되어, 연결가능한 되었다. 아이콘이 상태가 생성되었다. 0| 단계에서 블루투스 페어링을 하기 위해서는 아이콘을 더블 클릭한다. 암호키를 입력하라는 창이 뜨는데, 여기에 기록하고 1234 확인버튼 클릭.

8. 블루투스 페어링 성공하여 연결된 표시가 나타난다.

Bluetooth 연결된 PC 에서 ubpulse 360 과의 통신.

PC 와 블루투스연결 되면 ubpulse 360 은 PC 에서는 일반 com 포트로 인식되기 때문에 com 포트 통신가능한 모든 개발툴에서 ubpulse 360 과 통신이 가능하다. MS Visual Studio, Java 와 같은 범용적인 프로그램 개발언어를 이용해도 되며, 랩뷰 매트랩과 같은 전물툴소프트웨어를 활용해서도 가능하다.

그림 $_{5}$. ubpulse $_{360}$ 이 블루투스로 PC 와 통신 연결되면 PC 에서는 일반적인 $_{com}$ 포트로 인식되므로 $_{com}$ 포트 오픈하여 통신가능한 모든 개발툴에서 통신가능하다.

아래 그림의 예에서는 LX Device Manager 라는 프로그램에서에서 블루투스로 연결된 ubpulse 360 과 통신하면서 장치에서의 측정치들을 실시간 모니터링 하는 예를 보이고 있다.

그림 6. Bluetooth 연결된 ubpulse 360 과 LX Device Manager 에서 통신하는 예.

ubpulse 360 USB 연결.

아래 그림과 같이 컴퓨터의 USB 에 연결하고, 장치와도 연결한다.

USB 케이블로 PC 의 USB 에 연결된 모습.

ubpulse 360 = USB로 연결하면 운영체제에서 자동으로 com 포트가 할당되며, 제어판의 장치관리자를 열어 포트 하위에 LX USBCDC로 표시된 항목이 ubpulse 360 USB 연결을 의미한다. 본 예에서는 COM_4 가 할당되어있지만, 이는 컴퓨터마다 다른 값일 수 있다.

● ubpulse 360 USB 드라이버 설치법: 본 문서 뒷부분 Appendix. A 에 상세 설명함.

USB 연결시 주의사항.

ubpulse 360 을 USB 로 연결하여 USB 전원이 인가된 시점부터 20 초 이내에 USB 통신가능한 상태가 호스트측에서 설정되지 않는 경우 ubpulse 360 은 USB 로는 통신 불가능한 상태로 판정하게되며, 장치 화면의 USB 아이콘에는 통신 불가능이 표시된다. 통상적으로 아래 상황에서는 USB 통신불가 아이콘이 보이게 된다.

- 1. PC 에 디바이스 드라이버가 설치되지 않은 경우.
- 2. PC 가 부팅되어있지 않은 상태에서 USB 포트로 전원은 출력되는 경우.
- 3. PC 가 아닌 USB 충전기에 연결된 경우.
- 4. PC 의 USB 인식과정에 문제가 발생한 경우.(해결책: 재연결시도해도 PC가 인식을 못하는 경우 PC를 재부팅해야함)

USB 연결된 PC 에서 ubpulse 360 과의 통신프로그램.

ubpulse $_{360}$ 을 PC 와 USB 로 연결하면 일반 COM 포트로 설정되기 때문에 $_{com}$ 포트 통신가능한 모든 프로그램에서 접근이 가능하다.

그림 $_{7}$. ubpulse $_{360}$ 이 USB 로 PC 와 연결되면 PC 에서는 일반적인 $_{com}$ 포트로 인식되므로 $_{com}$ 포트 오픈하여 통신가능한 모든 개발툴에서 통신가능하다.

아래 예에서는 LX Device Manager 에서 USB로 연결된 장치와 통신하면서 장치에서의 측정치들을 실시간 모니터링 하는 예를 보이고 있다. 운영체제의 장치관리자에서 LX USBCDC(COM4) 로 등록된 것이 ubpulse 360 이다. LX Device Manager 에서 ubpulse 360 을 연결하여 장치에서 전송중인 데이터를 보이고 있다.

그림 8. USB 연결된 ubpulse 360 과 LX Device Manager 에서 통신하는 예.

ubpulse 360 통신 프로그램 개발방법

ubpulse 360 과 통신가능한 호스트기기

ubpulse 360 은 Bluetooth, USB 인터페이스를 통한 동시 통신을 지원하며, 블루투스 연결로 스마트폰, 일반 PC(블루투스 동글등이 구비된)등에서도 연결이 가능하다. USB 인퍼페이스로 일반 PC 등에 통신연결이 가능하다. USB 연결인 경우에는 장치의 전원공급도 USB 버스 전원을 이용하므로 전지사용하지 않아도 된다.

주의사항 – 스마트폰은 블루투스 프로파일 SPP 를 지원해야 통신연결이 가능함. (최신 안드로이드폰 대부분은 Bluetooth SPP 지원. 애플의 모든 제품은 Bluetooth SPP 지원되지 않으므로 장치와 통신불가.)

ubpulse 360 은 호스트기기에서 시리얼포트로 인식.

Bluetooth 는 SPP 프로파일을 사용하기 때문에 호스트기기에서 자동으로 시리얼 포트(com 포트)로 인식되며, USB 연결한 경우에도 호스트기기에서는 시리얼포트(com 포트)로 인식된다. 통신 프로그램측에서 장치 접속은 모두 동일한 com 포트 통신을 개설하는 것으로 장치와의 통신이 시작된다. Bluetooth 든 USB 든 시리얼포트 통신규격은 동일하므로, 1개의 통신프로그램으로 블루투스와 USB 연결 모두 사용가능하다.

 COM
 포트
 통신가능한
 모든

 개발툴에서 앱개발 가능.

예:이클립스(자바등)

COM 포트 통신가능한 모든 개발툴에서 장치통신 프로그램 개발 가능.

예: 랩뷰, 매트랩, MS Visual Studio(C#,C++,Basic 등),델파이,자바

ubpulse 360 의 통신데이터포맷 - LXSDF T2

ubpulse360은 시리얼포트(com 포트) 통신규격을 준수하며, 측정/계산된 측정 데이터 및 장치의 상태정보를 실시간으로 전송하게된다. 시리얼포트(com 포트) 통신규격은 기본 전송데이터가 1 바이트(8 비트)를 반복 전송하는 형식이므로 다양한 타입의 데이터를 전송하기 위해서는 수십바이트를 그룹핑한 별도의 데이터 포맷(패킷)이 있어야 한다. ubpulse 360 에서 사용되는 데이터 포맷은 LXSDF T2 라는 시리얼통신 데이터 포맷을 사용한다.

그림 (a)에서 장치와 호스트 기기 사이의 데이터 통신 상황을 보이고 있다. 장치에서 호스트로 전송하는 데이터 형식을 LXSDF T2 Tx, 장치가 호스트로부터 수신받는 데이터 형식을 LXSDF T2 Rx 라 한다. 그림(b)에 LXSD T2 Tx 에 대한 세부 구조를 보인다. 기본 전송단위인 패킷을 연속으로 전송하며, 수십바이트로 구성된 1 패킷내의 바이트별로 어떤 의미의 데이터가 있는지를 보이고 있다. 1 패킷의 시작점에는 항상 255, 254 의 값이 순차적으로 전송되고 있고 이후에 1 패킷내의 데이터 바이트들이 전송된다.

그림 9. (a) 장치계층과 호스트계층사이의 데이터 통신 포맷 LXSDF T2. (b) LXSDF T2 Tx 상세 구조.

LXSDF T2 및 ubpulse 360 의 데이터 배치 규격 문서.

LXSDF T2 포맷은 실시간 스트림데이터 전송과 동시에 상대적으로 저속인 일반 데이터들을 하나의 패킷형식으로 전송가능한 간단하면서도, 범용의 시리얼 통신 포맷이다. 스트림데이터란 아날로그 신호의 디지털변환된 시계열 데이터류가 대표적인 예이다. LXSDF T2 통신규격 문서는 아래 박스내의 문서아이디: LXD12 로 제공되고있다.

문서 아이디: LXD12

문서 제목: LXSDF T2 통신규격.

다운로드: https://github.com/LAXTHA/LXSDF/blob/master/LXD12 LXSDFT2 CommunicationStandard.pdf

LXSDF T2 포맷은 범용적인 데이터포맷이기 때문에, 특정 제품별로 어떤 데이터를 기록하여 보내는지는 제품마다 다르다. 제품별로 LXSDF T2 에 데이터 배치상황을 Device Specialization 규격이라고 부른다. ubpulse 360 의 LXSDF T2 Device Specialization 규격은 아래 박스내의 별도로 정리된 문서를 참조한다.

문서 아이디: LXD23

문서 제목: ubpulse 3 시리즈 통신규격.

다운로드: https://github.com/ubpulse/ubpulse-360-340-320/blob/master/LXD23 ubpulse3xx CommunicationSpec.pdf

통신 프로그램 개발과정 전체흐름.

호스트기기의 개발툴에서 COM 포트 열어서 통신가능한 상태를 달성하고, 통신규격문서를 참조하여 데이터포맷에 준하여 수신된 데이터에서 정보들을 추출하여 확보하고 해당 데이터를 활용하여 디스플레이저장 등의 후처리 코드 개발. 요구되는 개발자의 능력: 호스트 기기의 개발툴 활용능력. 장치의 com 포트 통신코드 생성능력.

통신 프로그램의 전체적인 작동 흐름은 그림과 같은 구조이다. 가장 먼저 장치의 com 포트 열기를 한다. com 포트의 설정값들을 보이고 있다. "1.com 포트에서 데이터 읽기"에서는 순차적으로 com 포트에서 수신된 바이트열을 읽어오게 된다. 바이트열들로부터 패킷의 시작점을 의미하는 싱크바이트(255,254 순으로 데이터가 배치되어있다.)를 검출하는 "2.LXSDF T2 Tx 패킷추출"에서 패킷단위로 데이터를 분리해내고 패킷 내의 데이터요소들을 "3.패킷데이터 파싱"에서 추출한다. 3의 과정에서 확보된 각 데이터 요소들에 ubpulse 360의 정보들이 배치되어있다. 이들 정보들을 "4.ubpulse 360 정보 확보" 단계에서 구하여 활용한다.

그림 10. ubpulse 360 과 통신하는 프로그램 전체 구조.

PC 에서 LX Device Manager 를 이용한 장치 데이터 모니터링.

LX Device Manager 를 이용하면, ubpulse 360 에서 전송 중인 데이터를 PC 에서 간편하게 모니터링 가능하다. USB 혹은 Bluetooth 로 PC 에 ubpulse 360 을 연결한 상태에서 LX Device Manager 를 실행하여, 전송중인 데이터를 실시간 확인가능하다.

개발과정 중에 특히 유용한 활용 상황의 예를 들어보면, 블루투스로 스마트폰에서 앱 개발 진행하는 과정중에 앱이 장치와 정상적으로 데이터를 수신한 것인지 점검해야할 경우가 종종 발생한다. 이 때, 아래 그림의 구성과 같이 PC 에는 USB 로 ubpulse 360 을 연결하고 LX Device Manager 를 실행시켜 장치의 데이터를 확인하면서 스마트폰에서의 개발중인 앱의 데이터를 비교가능하므로 개발속도를 향상시킬 수 있다. 또한, 장치의 전원공급을 USB 전원에서 공급받게되므로, 개발과정중엔 전지를 사용하지 않아도 된다.

LX Device Manager 정보 : http://www.laxtha.com/ProductView.asp?Model=LX%20Device%20Manager

LX Device Manager 설치파일 다운로드: https://github.com/LAXTHA/LXDeviceManager/raw/master/LXDeviceManagerSetup.msi

PC 에 USB 연결하여 LX Device Manager 로 장치의 전송데이터 확인하면서, 동시에 스마트폰으로는 블루투스 연결하여 데이터 비교 하면서 앱 개발 진행이 가능하다.

Appendix A - USB Driver Installation

USB Driver 이름	LX USBCDC	
지원가능운영체제	Windows 2000/2003/XP/Vista/ 7	
	32 비트/64 비트.	
드라이버설치파일	방법 1. 드라이버 설치파일 다운로드	
	https://github.com/LAXTHA/DeviceDriver/raw/master/LXUSBCDC.zip	
입수방법	https://github.com/LAXTHA/DeviceDiver/Taw/master/LXOSDeDC.Zip	
	방법 2. LX Device Manager 를 설치한 경우	
	드라이버 설치 파일이 있는 경로.	
	C:\Program Files\LAXTHA\LX Device Manager\Driver\LX USBCDC.inf	
	LX Device Manager 설치프로그램 다운로드	
	https://github.com/LAXTHA/LXDeviceManager/raw/master/LXDeviceManagerSetup.msi	
	LX Device Manager 제품정보사이트.	
	http://www.laxtha.com/ProductView.asp?Model=LX%20Device%20Manager	
설치방법	장치를 PC에 usb케이블로 연결 -> 드라이브 설치파일을 사용자 지정하여	
	드라이버설치	
	(상세 설치 방법 아래 별도 설명)	

LX USBCDC 드라이버 설치 방법 - Windows XP

단계 1. 장치와 컴퓨터를 USB 케이블로 연결.

1 컴퓨터와 장치와 USB 케이블로 연결한다. 제품사진의 원형부분이 USB 커넥터이다.

2. 장치가 연결된 초기 PC 에서는 새 하드웨어 발견 알림이 트레이영역에 나타나며, 곧이어서 새하드웨어 검색마법사가 실행된다.

단계 2. 새하드웨어 검색마법사 안내에 따라 설치 진행.

1. 아니오, 지금연결안함 선택하고 다음 클릭.

 검색할때 다음 위치 포함만 선택하고 찾아보기 버튼 클릭.

3. LX USBCDC 드라이버 설치 파일이 있는 폴더를 선택하고 확인버튼 클릭.

본 설치 예에서는 LX Device Manager Manager 가 설치되어있는 경우의 경로를 보이고 있으며, 별도로 LX USBCDC.inf 를 다운로드 받은 경우는 해당파일이 있는 폴더를 선택한다.

설치 진행중.

5. 호환성 경고창이 뜨면 계속 버튼 클릭하여 설치 진행시킴.

6. 드라이브 설치 완료. 마침 버튼 클릭한다.

> 장치를 컴퓨터에서 분리하고 다시 연결한다.

장치의 자동생성된 com 포트 확인하기.

장치 드라이브를 성공적으로 설치하고 나서, 장치를 컴퓨터에서 분리하고 다시 연결하면 시리얼 포트가 자동으로 할당되며, 이후 장치는 컴퓨터측에서 일반 com 포트 통신으로 접근이 가능해진다.

컴퓨터에서 com 포트의 자동 배정상태를 확인하기 위해서는 제어판의 장치관리자를 열어서 확인가능하다.

제어판의 시스템을 클릭하면 시스템 등록정보 창이 뜨며, 여기서 하드웨어 탭 클릭하고, 장치관리자 버튼을 클릭한다.

장치관리자 창에서 포트 하위에 LX USBCDC 가 정상적으로 인식되었음을 확인할 수 있다. 본 예에서는 COM4 가 할당되어있다. com 포트 번호는 자동으로 할당되기 때문에 컴퓨터마다 번호는 다를 수 있다.

LX USBCDC 드라이버 설치 방법 - Windows 7

윈도우 $_7$ 인 경우 $_{\rm XP}$ 처럼 하드웨어 설치마법사가 윈도우 $_{\rm XP}$ 만큼 매끄럽게 진행되지 않고, "알수없는 장치"로 처리되어 수동으로 드라이브 설치 해야한다.

단계 1. 장치와 컴퓨터를 USB 케이블로 연결한다.

 컴퓨터와 장치와 USB 케이블로 연결한다. 제품사진의 원형부분이 USB 커넥터이다.

 장치가 연결된 초기 PC 에서는 새 하드웨어 발견 알림이 트레이영역에 나타난다.

3. 장치드라이버를 설치하지 못했다는 메시지가 나온다.

단계 2. 장치관리자를 열고 수동 드라이버 설치 진행.

장치관리자 열어서 LX USBCDC 선택하기.

 제어판에서 하드웨어 및 소리 클릭한다.

2. 하드웨어 및 소리 화면에서 장치관리자 클릭한다.

3. 장치관리자에서 기타장치에 있는 LX USBCDC 를 마우스로 선택한다..

수동 드라이버 설치진행.

1. LX USBCDC 를 오른쪽마우스 클릭하여 드라이버 소프트웨어 업데이트 클릭한다.

2. 컴퓨터에서 드라이버 소트트웨어 찾아보기 클릭한다.

3. 찾아보기 버튼 클릭한다.

4. 폴더찾아보기 창에서 LX USBCD.inf 파일이 있는 폴더를 선택하고 확인버튼 클릭한다.

본 예에서는 LX Device Manager 가설치되어있는 경우 Program Files – LAXTHA – LX Device Manager – Driver 폴더를 선택한 것을 보이고 있다.

별도로 LX USBDC.inf 를 다운로드 받은 경우에는 해당 폴더를 지정한다.

5. 다음 버튼 클릭한다.

6. Windows 보안창이 뜨면 "이 드라이버 소프트웨어를 설치합니다."클릭한다.

ubpulse 360 개발자용 매뉴얼

7. 설치완료창이 뜬다. 닫기 버튼 클릭한다.

8. 장치를 컴퓨터에서 분리하고 다시 연결하면 시리얼 포트가 자동으로 할당되며, 이후 장치는 컴퓨터측에서 일반 com 포트 통신으로 접근이 가능해진다. 장치관리자에서 정상인식됨을 확인하고 자동으로 할당된 com 포트 번호 확인한다.

ubpulse 360 개발자용 매뉴얼

Revision History

Release Date	Doc. ID	Description of Change
2013-01-02	LXD27 V1.0	First release.
2017-02-15	LXD27V2	url link modified.