After this tutorial you should be able to:

1. read and devise natural-deduction proofs for propositional logic.

Problem 1. Prove the following consequents in Natural Deduction:

- 1. $(A \land B) \land C \vdash A$
- 2. $A, B \vdash C \lor (A \land B)$
- 3. $(A \land B) \lor (A \land C) \vdash A$

Problem 2. The following consequent is called *Modus Tollens*:

$$(F \rightarrow G)$$
, $\neg G \vdash \neg F$

Modus Tollens formalises the following reasoning:

- 1. If it is hot, I wear a hat.
- 2. I do not wear a hat.
- 3. So it is not hot.

Prove $(F \rightarrow G)$, $\neg G \vdash \neg F$ in ND.

Solution 2.

Proof strategy: Assume F, get \bot , deduce $\neg F$ by $(\neg Intr)$

Line	Assumptions	Formula	Justification	References
1	1	$F \rightarrow G$	Asmp. Intr	
2	2	$\neg G$	Asmp. Intr	
3	3	F	Asmp. Intr	
4	1,3	G	\rightarrow Elim	1,3
5	1,3,2		⊥ Intr	4,2
6	1,2	$\neg F$	¬ Intr	3,5

Problem 3. Prove $(F \lor G)$, $\neg G \vdash F$ in ND.

Solution 3. Proof strategy: Apply reasoning by cases... so we must show F from F (easy) and F from G (we do this using the other assumption $\neg G$ to get \bot , which then gets us F, or anything we want, with assumptions G, $\neg G$)).

Line	Assumptions	Formula	Justification	References
1	1	$F \vee G$	Asmp. Intr	
2	2	$\neg G$	Asmp. Intr	
3	3	G	Asmp. Intr	
4	2,3		⊥ Intr	2,3
5	2,3	F	⊥ Elim	4
6	6	F	Asmp. Intr	
7	1,2	F	∨ E	1,6,6,3,5

References: L1 ($F \lor G$), L6, L6 (F is assumed, F is proven), L3, L5 (G is assumed, F is proven)

Problem 4. \land and \lor also have the associativity property. We'll just show one direction of the equivalence, as the proof of the converses of each of these two consequences are almost identical.

- 1. $(A \wedge (B \wedge C)) \vdash ((A \wedge B) \wedge C)$
- **2.** $(A \lor (B \lor C)) \vdash ((A \lor B) \lor C)$

Solution 4.

	Line	Assumptions	Formula	Justification	References
1.	1	1	$(A \wedge (B \wedge C))$	Asmp. I	
	2	1	A	\wedge E	1
	3	1	$(B \wedge C)$	\wedge E	1
	4	1	В	\wedge E	3
	5	1	C	\wedge E	3
	6	1	$(A \wedge B)$	\wedge I	2, 4
	7	1	$((A \wedge B) \wedge C)$	\wedge I	6,5
	Line	Assumptions	Formula	Justification	References
	1	1	$(A \lor (B \lor C))$	Asmp. I	
	2	2	A	Asmp. I	
	3	3	$(B \vee C)$	Asmp. I	
	4	4	В	Asmp. I	
	5	5	C	Asmp. I	
2.	6	2	$(A \vee B)$	\vee I	2
	7	2	$((A \vee B) \vee C)$	\vee I	6
	8	4	$(A \vee B)$	\vee I	4
	9	4	$((A \lor B) \lor C)$	\vee I	8
	10	5	$((A \lor B) \lor C)$	\vee I	5
	11	3	$((A \vee B) \vee C)$	\vee E	3, 4, 9, 5, 10
	12	1	$((A \vee B) \vee C)$	V E	1, 2, 7, 3, 11

We ought to prove the converses of these too (e.g. that $((A \land B) \land C) \vdash (A \land (B \land C))$) etc.,) if we want to show that these are logical equivalences, but the proofs would be almost identical.

Problem 5. Prove some of de Morgan's Laws:

- 1. $\neg A \lor \neg B \vdash \neg (A \land B)$ Hint: $(\neg I)$ works well here
- 2. $\neg(A \lor B) \vdash \neg A \land \neg B$ Hint: assume A, and try to deduce $\neg A$ while cancelling that assumption

Solution 5.

	Line	Assumptions	Formula	Justification	References
	1	1	$(\neg A \lor \neg B)$	Asmp. I	
	2	2	$\neg A$	Asmp. I	
	3	3	$\neg B$	Asmp. I	
	4	4	$(A \wedge B)$	Asmp. I	
1.	5 6	4	A	\wedge E	4
1.	6	2, 4	\perp	\perp Intr	2, 5
	7	2	$\neg(A \land B)$	$\neg I$	4, 6
	8	4	В	\wedge E	4
	9	3, 4	\perp	\perp Intr	3, 8
	10	3	$\neg(A \land B)$	$\neg I$	4, 9
	11	1	$\neg(A \land B)$	\vee E	1, 2, 7, 3, 10
	Line	Assumptions	Formula	Justification	References
	Line 1	Assumptions 1	Formula $\neg (A \lor B)$	Justification Asmp. I	References
					References
	1	1	$\neg(A \lor B)$	Asmp. I	References 2
	1 2	1 2	$\neg (A \lor B)$ A	Asmp. I Asmp. I	
2.	1 2 3	1 2 2	$\neg (A \lor B)$ A	Asmp. I Asmp. I V I	2
2.	1 2 3 4	1 2 2 1, 2	$ \neg (A \lor B) A (A \lor B) \bot $	Asmp. I Asmp. I V I ¬ E	2 1, 3
2.	1 2 3 4 5	1 2 2 1, 2 1	$ \begin{array}{c} \neg(A \lor B) \\ A \\ (A \lor B) \\ \bot \\ \neg A \end{array} $	Asmp. I Asmp. I ∨ I ¬ E ¬ I	2 1, 3
2.	1 2 3 4 5 6	1 2 2 1, 2 1 6	$ \begin{array}{c} \neg(A \lor B) \\ A \\ (A \lor B) \\ \bot \\ \neg A \\ B \end{array} $	Asmp. I Asmp. I ∨ I ¬ E ¬ I Asmp. I	2 1, 3 2, 4
2.	1 2 3 4 5 6 7	1 2 2 1, 2 1 6 6	$ \begin{array}{c} \neg(A \lor B) \\ A \\ (A \lor B) \\ \bot \\ \neg A \\ B \end{array} $	Asmp. I Asmp. I ∨ I ¬ E ¬ I Asmp. I ∨ I	2 1, 3 2, 4
2.	1 2 3 4 5 6 7 8	1 2 2 1, 2 1 6 6 1, 6	$ \neg(A \lor B) A (A \lor B) \bot \neg A B (A \lor B) \bot $	Asmp. I Asmp. I ∨ I ¬ E ¬ I Asmp. I ∨ I ⊥ Intr	2 1, 3 2, 4 6 1, 7

Problem 6. Formalise the following in propositional logic and prove it in ND. A certain Company has Directors.

- 1. Every Director holds either Bonds or Shares; but no Director holds both.
- 2. Every Bondholder is a Director.

What can you conclude about this company? Formalise and prove it in ND.

Solution 6. Let *D* stand for the set of directors, *B* for the set of bondholders, *S* for the set of shareholders.

One possible conclusion is "no Bondholder holds Shares".

Then the argument can be formalised in a number of ways, e.g.,

$$D \rightarrow (B \lor S), D \rightarrow \neg (B \land S), B \rightarrow D \vdash B \rightarrow \neg S$$

Problem 7. Prove the following in ND:

1.
$$(p \lor (q \lor r)) \vdash (\neg p \to (q \lor r))$$

2. $\vdash p \to ((q \to r) \to ((p \to q) \to (p \to r)))$
3. $p \to (q \lor \neg r) \vdash ((q \to \neg p) \land r) \to \neg p$

These were 2021 assignment questions.

Solution 7.

1. We want to use $\to I$ to deduce $(\neg p \to (q \lor r))$ from a line corresponding to $\neg p, (p \lor (q \lor r)) \vdash (q \lor r)$. Therefore, we start by assuming $\neg p$. Using that and the original disjunction, we can deduce $(q \lor r)$ using 'reasoning by cases' (lines 3-7), then combine these with $\to I$ to finish the proof.

Line	Assumptions	Formula	Justification	References
1	1	$(p \lor (q \lor r))$	Asmp. I	
2	2	$\neg p$	Asmp. I	
3	3	p	Asmp. I	
4	2, 3	\perp	\perp I	3, 2
5	2, 3	$(q \lor r)$	\perp E	4
6	6	$(q \lor r)$	Asmp. I	
7	1, 2	$(q \lor r)$	\vee E	1, 3, 5, 6, 6
8	1	$(\neg p \to (q \lor r))$	\rightarrow I	2, 7

2. This proof is an exercise in using $\to I$ and $\to E$. The conclusion is a series of nested implications. We will need to use $\to I$ several times, so it's reasonable to assume all the antecedents of each of the subformulas (i.e. $p, q \to r$, and $p \to q$). We deduce the final consequent of the conclusion, $p \to r$ using these, and then repeatedly use $\to I$ to build the answer.

Line	Assumptions	Formula	Justification	References
1	1	p	Asmp. I	
2	2	(q o r)	Asmp. I	
3	3	(p o q)	Asmp. I	
4	1, 3	q	\rightarrow E	1, 3
5	1, 2, 3	r	\rightarrow E	4, 2
6	2, 3	$(p \to r)$	\rightarrow I	1, 5
7	2	$((p \to q) \to (p \to r))$	\rightarrow I	3, 6
8		$((q \to r) \to ((p \to q) \to (p \to r)))$	\rightarrow I	2, 7
9	1	$(p \land ((q \to r) \to ((p \to q) \to (p \to r))))$	\wedge I	1, 8
10	1	$((q \to r) \to ((p \to q) \to (p \to r)))$	\wedge E	9
11		$(p \to ((q \to r) \to ((p \to q) \to (p \to r))))$	\rightarrow I	1, 10

The final $\to I$ is tricky, because the definition of $\to I$ requires us to have lines corresponding to $A, S \vdash F$ and $A \vdash A$, but line 8 is of the form $\emptyset \vdash ((q \to r) \to ((p \to q) \to (p \to r)))$ (i.e. it's not dependent on the assumption p!) To introduce the dependency we need, we use $\land I$ and $\land E$.

A common error is lacking the dependency on p to perform the final \rightarrow I. Another common error is introducing assumptions of q or of r, which are difficult to discharge in a useful way.

3. We're trying to prove an implication, so we start by assuming the antecedent of that implication, $((q \to \neg p) \land r)$. Our goal now, is to somehow deduce $\neg p$ from that. As p is also the antecedent of the starting assumption, a proof by contradiction looks promising, so we start a subproof assuming p. Using p and $\to E$, we deduce $(q \lor \neg r)$, and then do a 'proof by cases', deducing \bot from both sides (with the aim of contradicting p). Now that we have \bot deduced from the first three assumptions, we can use $\neg I$ and then $\to I$ to eliminate the two assumptions we introduced, while constructing the formula we needed.

Line	Assumptions	Formula	Justification	References
1	1	$(p \to (q \lor \neg r))$	Asmp. I	
2	2	$((q \to \neg p) \land r)$	Asmp. I	
3	3	p	Asmp. I	
4	1, 3	$(q \vee \neg r)$	$\rightarrow E^{-}$	3, 1
5	5	q	Asmp. I	
6	2	$(q \rightarrow \neg p)$	\wedge E	2
7	2, 5	$\neg p$	\rightarrow E	5, 6
8	2, 3, 5	<u> </u>	\perp Intr	3, 7
9	9	$\neg r$	Asmp. I	
10	2	r	\wedge E $$	2
11	2, 9	上	\perp I	10, 9
12	1, 2, 3	\perp	\vee E	4, 5, 8, 9, 11
13	1, 2	$\neg p$	$\neg I$	3, 12
14	1	$(((q \to \neg p) \land r) \to \neg p)$	\rightarrow I	2, 13

A common error is failing to identify the sensible starting assumptions (($(q \rightarrow \neg p) \land r)$) is a fairly obvious choice, but p is a bit harder to identify). Take care when introducing new assumptions to have a plan about (1) how you will eliminate that assumption, and (2) how it will contribute to deriving the formulas you need.