Diffusion Model Project

By Miguel Pinel Martínez

Deep Learning 2022

General overview

Forward diffusion process

Reverse diffusion process

Objective:

Start with random noise

End with an original image

Main Components

Noise schedule

Denoising predictor (neural network)

Timestep Embedding

Noise schedule

New Previous Image Image Noise parameter

What does the noise schedule do?

It increase the noise parameter in each timestep. We will use a linear one.

Noise schedule optimization I

Can we calculate everything at one?

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Reparameterization trick:

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1} = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon_{t-1}$$

Notation:

$$\alpha_t = 1 - \beta_t$$

Alphas

$$\bar{\alpha}_t = \prod_{s=0}^t \alpha_s$$

Cumulative Alphas

Noise schedule optimization II

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1-\alpha_t} \epsilon_{t-1} = \ldots = \sqrt{\bar{\alpha}} x_0 + \sqrt{1-\bar{\alpha}_t} \epsilon_{t-1}$$

So the final formula for calculating a timestep t:

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

Now we can calculate directly the noise version of an image in any timestep without needing to calculate all the intermediate steps

Denoise Predictor

We will need to learn the reverse diffusion process and for this we will use a neural network.

As we are working with images we will use a modified version of the U-Net architecture for this task

U-Net architecture

From: U-Net: Convolutional Networks for Biomedical Image Segmentation 2015

Loss function

Learnable funtion
$$p_{\theta}(x_{t-1}|x_t) \approx q(x_{t-1}|x_t)$$
 Objective function

This loss funtion is imposible to learn

$$Loss = -log p_{\theta}(x_0)$$

We can stablish a lower bound to our loss function

$$-log p_{\theta}(x_0) \leq E_q(D_{KL}(q(x_T|x_0)||p_{\theta}(x_T))) + \sum_{t=2}^T D_{KL}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) - log p_{\theta}(x_0|x_1)$$

$$Constant term \qquad Stepwise denoising term \qquad Reconstruction term$$

Simplified Loss Function

This is the most simplified loss funtion we can use

$$L_{simple} = E_{t,x_0,\epsilon}[||\epsilon - \epsilon_{\theta}(x_t,t)||^2]$$

In this loss function we don't calculate the denoise image, instead we predict the noise that have been added and by substracting it we obtain the denoise image

Time Embedding I

Our neural network will need a way of knowing how noisy is the image in which it is working

Both are equal for our neural network

Time Embedding II

We will add a time embedding to our image in the same way as the postional encoding vectors in Transformers.

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Comparating with and without attention

Without attention

With attention

Neural Network Architecture I Main Blocks

Residual Block

Neural Network Architecture II Main Blocks

Attention Block

Neural Network Architecture III Main Blocks

MultiheadAttention

Neural Network Architecture IV

Architecture of the MinImagen implementation

Dataset I

First idea: Can we create our own dataset?

Main problem: Optimization

The datasets already incorporated in pytorch are highly optimized and this is a heavely consuming task.

Dataset II

So we will use the Oxford-IIIT Pet dataset already integrated in pytorch

Main problem: Size of the dataset

This dataset includes 37 pets classes and 200 image for each class, but as we only want similar images we will not use all classes

Results of the model I

After all of this, we end up with a model of 12.952.451 parameters that have been train for 600 epochs or around 8 hours.

This are some of the images that the model has generate.

Results of the model II

Let's compare some original images with the ones of the model

Original Artificial

Results of the model III

Results of the model IV

References

- Denoising Diffusion Probabilistic Models, 2020, [Link]
- Improved Denoising Diffusion Probabilistic Models, 2021, [Link]
- Attention Is All You Need, 2017, [Link]
- Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, 2022 [Link]
- U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015, [Link]