Лекция 1. Свойства лямбда-исчисления.

Некоторые базовые определения — повторение

Определение

Пред-лямбда-терм:

$$\Lambda ::= (\lambda x.\Lambda)|(\Lambda \Lambda)|x$$

Определение

Лямбда-терм: $\Lambda/(=_{lpha})$

Определение

 $R \subseteq A \times B$ — бинарное отношение.

3апишем aRb, если $\langle a, b \rangle \in R$

Отношение для инфиксной операции $a \star b : \langle a, b \rangle \in (\star)$

eta-редуцируемость

Определение

 $(woheadrightarrow_{eta})$ — транзитивное и рефлексивное замыкание отношения $(woheadrightarrow_{eta})$ А именно, будем говорить, что $A woheadrightarrow_{eta} B$, если найдутся такие $X_1 \dots X_n$, что $A =_{lpha} X_1 woheadrightarrow_{eta} X_2 woheadrightarrow_{eta} \dots woheadrightarrow_{eta} X_{n-1} woheadrightarrow_{eta} X_n =_{lpha} B$.

Пример

$$\Omega \twoheadrightarrow_{\beta} \Omega$$

Определение (Ромбовидное свойство)

Отношение R обладает ромбовидным свойством, если для любых a,b,c: из aRb, aRc, $b \neq c$ следует существование d, что bRd и cRd.

Пример

 (\leqslant) на \mathbb{N}_0 обладает ромбовидным свойством:

$$d = max(b, c)$$
: $1 \le 2, 1 \le 3 \Rightarrow d = max(2, 3) : 2 \le 3, 3 \le 3$

(>) на \mathbb{N}_0 не обладает ромбовидным свойством:

$$3 > 1, 3 > 0$$
: HET $d: 1 > d, 0 > d$

Теорема Чёрча-Россера

Теорема (Черча-Россера)

 $(--)_{\beta}$) обладает ромбовидным свойством.

Следствие

Если у А есть нормальная форма, то она единственная.

Доказательство.

Пусть $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$. B, C — нормальные формы и $B \neq_{\alpha} C$. Тогда по теореме Черча-Россера найдётся D: $B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Тогда $B =_{\alpha} D$ и $C =_{\alpha} D \Rightarrow B =_{\alpha} C$. Противоречие.

Лемма

Если В — нормальная форма, то не существует Q такой, что $B \to_{\beta} Q$. Значит если $B \to_{\beta} Q$, то количество шагов редукции равно 0.

Лемма

Если R — обладает ромбовидным свойством, то и R^* (транзитивное, рефлексивное замыкание R) им обладает.

Доказательство.

Две вложенных индукции.

Лемма

 (\rightarrow_{β}) не обладает ромбовидным свойством.

Пусть $A = (\lambda x. xx)({\rm II})$. Покажем, что в таком случае не будет выполняться ромбовидное свойство:

Рис.: Нет такого D, что $B \rightarrow_{\beta} D$ и $C \rightarrow_{\beta} D$.

Определение (Параллельная β -редукция)

$$A \rightrightarrows_{\beta} B$$
, если

- 1. A = B
- 2. $A = P_1 Q_1$, $B = P_2 Q_2 \cup P_1 \Rightarrow_{\beta} P_2$, $Q_1 \Rightarrow_{\beta} Q_2$
- 3. $A = \lambda x.P_1$, $B = \lambda x.P_2$ u $P_1 \Rightarrow_{\beta} P_2$
- 4. $A =_{\alpha} (\lambda x. P_1) Q_1$, $B =_{\alpha} P_2[x := Q_2]$, причем Q_2 свободна для подстановки вместо x в P_2 и $P_1 \Longrightarrow_{\beta} P_2$, $Q_1 \Longrightarrow_{\beta} Q_2$

Лемма: если $P_1 ightrightarrows_{eta} P_2$ и $Q_1 ightrightarrows_{eta} Q_2$, то $P_1[x \coloneqq Q_1] ightrightarrows_{eta} P_2[x \coloneqq Q_2]$

- ▶ Пусть $P_1 =_{\alpha} P_2$. Индукция по структуре выражения.
- ightharpoonup Пусть $P_1\equiv A_1B_1$, $P_2\equiv A_2B_2$. По определению $(\rightrightarrows_{eta})$ $A_1\rightrightarrows_{eta}A_2$ и $B_1\rightrightarrows_{eta}B_2$. Тогда:
 - 1. $x \in FV(A_1)$. По индукционному предположению $A_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[x \coloneqq Q_2]$. Тогда $A_1[x \coloneqq Q_1]B_1 \rightrightarrows_{\beta} A_2[x \coloneqq Q_2]B_2$. Тогда $A_1B_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2B_2[x \coloneqq Q_2]$.
 - 2. $x \in FV(B_1)$. По индукционному предположению $B_1[x := Q_1] \rightrightarrows_{\beta} B_2[x := Q_2]$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
- ▶ Пусть $P_1 \equiv \lambda y.A_1$, $P_2 \equiv \lambda y.A_2$. По определению (\Rightarrow_{β}) $A_1 \Rightarrow_{\beta} A_2$. Тогда по индукционному предположению $A_1[x \coloneqq Q_1] \Rightarrow_{\beta} A_2[x \coloneqq Q_2]$. Тогда $\lambda y.(A_1[x \coloneqq Q_1]) \Rightarrow_{\beta} \lambda y.(A_2[x \coloneqq Q_2])$ по определению (\Rightarrow_{β}) . Следовательно $\lambda y.A_1[x \coloneqq Q_1] \Rightarrow_{\beta} \lambda y.A_2[x \coloneqq Q_2]$ по определению подстановки.
- ▶ Пусть $P_1 =_{\alpha} (\lambda y.A_1)B_1$, $P_2 =_{\alpha} A_2[y := B_2]$ и $A_1 \rightrightarrows_{\beta} A_2$, $B_1 \rightrightarrows_{\beta} B_2$. По индукционному предположению получаем, что $A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2]$, $B_1[x := Q_1] \rightrightarrows_{\beta} B_2[x := Q_2]$. По определению $(\rightrightarrows_{\beta})$ тогда $(\lambda y.A_1[x := Q_1])B_1[x := Q_1] \rightrightarrows_{\beta} A_2[y := B_2][x := Q_2]$

Лемма: (\Rightarrow_{β}) обладает ромбовидным свойством

Будем доказывать индукцией по определению $(\Longrightarrow_{\beta})$. Покажем, что если $M \Longrightarrow_{\beta} M_1$ и $M \Longrightarrow_{\beta} M_2$, то существует M_3 , что $M_1 \Longrightarrow_{\beta} M_3$ и $M_2 \Longrightarrow_{\beta} M_3$. Рассмотрим случаи:

- ▶ Если $M \equiv M_1$, то просто возьмем $M_3 \equiv M_2$.
- ▶ Если $M \equiv \lambda x.P$, $M_1 \equiv \lambda x.P_1$, $M_2 \equiv \lambda x.P_2$ и $P \Rightarrow_{\beta} P_1$, $P \Rightarrow_{\beta} P_2$, то по предположению индукции существует P_3 , что $P_1 \Rightarrow_{\beta} P_3$, $P_2 \Rightarrow_{\beta} P_3$, тогда возьмем $M_3 \equiv \lambda x.P_3$.
- ▶ Если $M \equiv PQ$, $M_1 \equiv P_1Q_1$ естественное доказательство.
- ▶ Если $M \equiv (\lambda x.P)Q$, $M_1 \equiv P_1[x \coloneqq Q_1]$ и $P \rightrightarrows_\beta P_1$, $Q \rightrightarrows_\beta Q_1$, то рассмотрим случаи:
 - 1. $M_2 \equiv (\lambda x. P_2) Q_2$, $P \rightrightarrows_{\beta} P_2$, $Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме существует такой $M_3 \equiv P_3[x \coloneqq Q_3]$, что $P_1 \rightrightarrows_{\beta} P_3$, $Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3$, $Q_2 \rightrightarrows_{\beta} Q_3$.
 - 2. $M_2 \equiv P_2[x := Q_2], \ P \Rightarrow_{\beta} P_2, \ Q \Rightarrow_{\beta} Q_2$. Тогда по предположению индукции и лемме существует такой $M_3 \equiv P_3[x := Q_3]$, что $P_1 \Rightarrow_{\beta} P_3, \ Q_1 \Rightarrow_{\beta} Q_3$ и $P_2 \Rightarrow_{\beta} P_3, \ Q_2 \Rightarrow_{\beta} Q_3$.

Лемма

- 1. $(\Rightarrow_{\beta})^* \subseteq (\rightarrow_{\beta})^*$
- 2. $(\rightarrow_{\beta})^* \subseteq (\rightrightarrows_{\beta})^*$

Следствие

$$(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$$

Из приведенных выше лемм и следствия докажем теорему Черча-Россера.

Доказательство.

 $(\rightarrow_{\beta})^* = (\twoheadrightarrow_{\beta})$. Тогда $(\twoheadrightarrow_{\beta}) = (\rightrightarrows_{\beta})^*$. Значит из того, что $(\rightrightarrows_{\beta})$ обладает ромбовидным свойством и леммы 2, следует, что $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством.

Нормальный и аппликативный порядок вычислений

Пример

Выражение $KI\Omega$ можно редуцировать двумя способами:

- 1. $KI\Omega =_{\alpha} ((\lambda a. \lambda b. a) I)\Omega \rightarrow_{\beta} (\lambda b. I)\Omega \rightarrow_{\beta} I$
- 2. $KI\Omega =_{\alpha} ((\lambda a.\lambda b.a) I)((\lambda x.x x)(\lambda x.x x)) \twoheadrightarrow_{\beta} ((\lambda a.\lambda b.a) I)((\lambda x.x x)(\lambda x.x x)) \rightarrow_{\beta} KI\Omega$

Определение (нормальный порядок редукции)

Pедукция самого левого β -редекса.

Определение (аппликативный порядок редукции)

Редукция самого левого β -редекса из самых вложенных.

Теорема (Приводится без доказательства)

Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Нормальные формы

Определение

Pедекс — выражение вида $(\lambda x.P)$ Q

Определение

Выражение в нормальной форме — выражение без редексов

Определение

	Нормальная форма	Заголовочная (Head) Н.Ф.
(обычная)	Нет редексов	Без редексов в «заголовке»
	$N ::= \lambda x.N \mid ((x N) \ldots N)$	$H ::= \lambda x.H \mid ((x \land) \ldots \land)$
	$a(\lambda x.x)(\lambda x.x)$	$a((\lambda x.x)(\lambda x.x))$
Слабая (Weak)	Можно в абстракциях	Слабая и заголовочная
	$W ::= \lambda x. \Lambda \mid ((x \ W) \ldots W)$	$F ::= \lambda x. \Lambda \mid ((x \Lambda) \ldots \Lambda)$
	$\lambda f.(\lambda x.x) (\lambda x.x)$	$\lambda f.a ((\lambda x.x) (\lambda x.x))$

Использование СЗНФ

Нормальный порядок редукции останавливается в Н.Ф. А если Н.Ф. нет?

```
let InfList n = n: InfList (n+1)
InfList 0 = 0: InfList 1 = \ldots = 0: 1: 2: InfList 3 = \ldots
```

Для ленивого языка разумно искать СЗНФ.

Пусть $F:=\lambda r.\lambda v.Cons\ v\ (r\ (v+1)).$ Тогда построим СЗНФ для $Y\ F:$

$$(\lambda f.(\lambda x.f~(x~x))~(\lambda x.f(x~x)))~F \twoheadrightarrow_{\beta} \underbrace{(\lambda x.F~(x~x))~(\lambda x.F~(x~x))}_{Y_{F}}$$

И дальше:

$$Y_F \rightarrow_{\beta} F \ Y_F = \lambda r. \lambda v. Cons \ v \ (r \ (v+1)) \ Y_F \twoheadrightarrow_{\beta} \lambda v. Cons \ v \ (Y_F \ (v+1))$$

Тогда для 0:

$$Y_F \rightarrow_{\beta} (\lambda v. Cons \ v \ (Y_F \ (v+1))) \ 0 \rightarrow_{\beta} Cons \ 0 \ (Y_F \ (0+1))$$

Давайте ещё чуть вглубь: что такое *Cons*?

- Константа переменная, реализация которой указана в контексте. Ну или так: $(\lambda Cons.(\dots))$ (Cons implementation)
- ▶ Алгебраический тип для списка: type list = Nil | Cons a list
- ▶ $In_L a := \lambda p.\lambda q.p$ a; $In_R b := \lambda p.\lambda q.q$ b; Case f g v := v f g
- $ightharpoonup Y_F ext{ 0} woheadrightarrow_{eta} ext{ Cons 0 } (Y_F (0+1))$, то есть $\lambda p_1.\lambda q_1.q_1 \left<0, Y_F (0+1)\right>$
- ▶ Тогда dropFirst [] = []; dropFirst (x:xs) = xs превратится в такое: $dropFirst := \lambda I.I \ (\lambda c.[]) \ Snd$
- ▶ dropFirst $\lambda p_1.\lambda q_1.q_1 \langle 0, Y_F (0+1) \rangle \twoheadrightarrow_{\beta} Snd \langle 0, Y_F (0+1) \rangle \twoheadrightarrow_{\beta} Y_F (0+1) \twoheadrightarrow_{\beta} Cons (0+1) (Y_F ((0+1)+1))$

Нормальный порядок — медленный

Пример

Рассмотрим λ -выражение $(\lambda x.x \times x)(II)$. Попробуем редуцировать его нормальным порядком:

Как мы увидим, в данной ситуации аппликативный порядок редукции оказывается значительно эффективней:

$$(\lambda x.x \times x \times x)(II) \rightarrow_{\beta} (\lambda x.x \times x \times x) I \rightarrow_{\beta} IIII \rightarrow_{\beta} III \rightarrow_{\beta} II \rightarrow_{\beta} I$$

Просто-типизированное лямбда-исчисление

Определение (λ_{\rightarrow} по Карри)

$$\frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma, x : \varphi \vdash A : \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x . A : \varphi \to \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \to \psi}{\Gamma \vdash BA : \psi}$$

Определение (λ_{\rightarrow} по Чёрчу)

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \times \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x^{\varphi}.A : \varphi \to \psi} \times \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \to \psi}{\Gamma \vdash BA : \psi}$$

Просто-типизированное лямбда-исчисление

Определение (λ_{\rightarrow} по Карри)

$$\frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma, x: \varphi \vdash A: \varphi} \; x \notin \Gamma \qquad \frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma \vdash \lambda x. A: \varphi \rightarrow \psi} \; x \notin \Gamma \qquad \frac{\Gamma \vdash A: \varphi \qquad \Gamma \vdash B: \varphi \rightarrow \psi}{\Gamma \vdash BA: \psi}$$

Определение (λ_{\rightarrow} по Чёрчу)

$$\frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma, x: \varphi \vdash x: \varphi} \; x \notin \Gamma \qquad \frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma \vdash \lambda x^{\varphi}. A: \varphi \to \psi} \; x \notin \Gamma \qquad \frac{\Gamma \vdash A: \varphi \qquad \Gamma \vdash B: \varphi \to \psi}{\Gamma \vdash BA: \psi}$$

Пример

По Карри	По Черчу
$\lambda f.\lambda x.f\ (f\ x):(\alpha \to \alpha) \to (\alpha \to \alpha)$	$\lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . f(f x) : (\alpha \to \alpha) \to (\alpha \to \alpha)$

Просто-типизированное лямбда-исчисление

Определение (λ_{\rightarrow} по Карри)

$$\frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma, x: \varphi \vdash A: \varphi} \; x \notin \Gamma \qquad \frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma \vdash \lambda x. A: \varphi \rightarrow \psi} \; x \notin \Gamma \qquad \frac{\Gamma \vdash A: \varphi \qquad \Gamma \vdash B: \varphi \rightarrow \psi}{\Gamma \vdash BA: \psi}$$

Определение (λ_{\rightarrow} по Чёрчу)

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \times \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x^{\varphi}.A : \varphi \to \psi} \times \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi}{\Gamma \vdash BA : \psi}$$

Пример

По Карри	По Чёрчу
$\lambda f.\lambda x.f\ (f\ x):(\alpha\to\alpha)\to(\alpha\to\alpha)$	$\lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . f(f(x)) : (\alpha \to \alpha) \to (\alpha \to \alpha)$
$\lambda f.\lambda x.f\ (f\ x): (\beta \to \beta) \to (\beta \to \beta)$	$\lambda f^{\beta \to \beta} . \lambda x^{\beta} . f(f(x)) : (\beta \to \beta) \to (\beta \to \beta)$

Теоремы о λ_{\rightarrow}

Лемма (о редукции, subject reduction)

Если $A \rightarrow_{\beta} B$ и $\vdash A : \tau$, то $\vdash B : \tau$.

Лемма

Если $\vdash A$: τ , то любое подвыражение A также имеет тип.

Теорема (Чёрча-Россера)

Если \vdash $A : \tau$, $A \twoheadrightarrow_{\beta} B$, $A \twoheadrightarrow_{\beta} C$ и $B \neq C$, то найдётся D, что \vdash $D : \tau$, и $B \twoheadrightarrow_{\beta} D$, $C \twoheadrightarrow_{\beta} D$.

Соответствие между исчислениями

Определение

$$|A| = \begin{cases} x, & A = x \\ \lambda x.|Q| & A = \lambda x^{T}.Q \\ |P| |Q| & A = P Q \end{cases}$$

Теорема

- 1. Если $\Gamma \vdash_{\neg} A : \tau$, то $|\Gamma| \vdash_{\kappa} |A| : \tau$;
- 2. Если $\Gamma \vdash_{\kappa} A : \tau$, то найдутся такие B : A = |B| и $\Delta : \Gamma = |\Delta|$, что $\Delta \vdash_{\mathsf{q}} B : \tau$.

Теорема (уникальность типов, для исчисления по Чёрчу)

- 1. $\Gamma \vdash_{\mathsf{q}} M : \sigma$ и $\Gamma \vdash_{\mathsf{q}} M : \tau$ влечёт $\sigma = \tau$;
- 2. $\Gamma \vdash_{\mathbf{Y}} M : \sigma, \Gamma \vdash_{\mathbf{Y}} N : \tau$ и $M =_{\beta} N$ влечёт $\sigma = \tau$.

Лемма (о расширении, subject expansion)

Если $\Gamma \vdash_{\neg q} A : \tau$, $\Gamma \vdash_{\neg q} B : \sigma$ и $B \twoheadrightarrow_{\beta} A$, то $\Gamma \vdash_{\neg q} B : \tau$.

Изоморфизм Карри-Ховарда

Теорема (изоморфизм Карри-Ховарда)

- 1. Если $\Gamma \vdash au$, то найдётся Δ , A, что $\Gamma = |\Delta|$ и $\Delta \vdash A : au$;
- 2. Если $\Gamma \vdash A : \tau$, то $|\Gamma| \vdash \tau$.

Основные задачи типизации λ -исчисления

Pассмотрим $? \vdash ? :?.$

- 1. Проверка типа: выполняется ли $\Gamma \vdash M : \sigma$ для контекста Γ , терма M и типа σ Компиляция в языке программирования, типизированном по Чёрчу. Проверка доказательства.
- 2. Реконструкция типа: ? ⊢ М : ?.

Компиляция в языке программирования, типизированном по Карри. Это бывает чаще, чем кажется.

```
template <class A, class B>
auto min(A a, B b) -> decltype(a < b ? a : b) {
   return (a < b) ? a : b;
}</pre>
```

Обитаемость типа: Γ ⊢? : σ.
 Поиск доказательства.

Все задачи разрешимы.

Задача реконструкции типа

Определение

Алгебраический терм

$$\theta ::= x \mid (f \theta \dots \theta)$$

Определение

Подстановка переменных — функция $S_0: V \to T$, где $S_0(x) = x$ почти везде (за исключением конечного множества переменных).

Подстановка:
$$S:T\to T$$
, что $S(x)=S_0(x)$, но $S(f\;\theta_1\;\ldots\theta_k)=f\;S(\theta_1)\;\ldots\;S(\theta_k)$ $S(\Gamma)=\{x:S(\tau_x)\mid x:\tau_x\in\Gamma\}$

Определение

Будем воспринимать запись типа как некоторое выражение в алгебраических термах, импликация — единственный функциональный символ. Наиболее общей парой для задачи реконструкции типа ? \vdash M :? назовём такие $\langle \Gamma, \gamma \rangle$, что:

- 1. $\Gamma \vdash M : \gamma$
- 2. Если $\Delta \vdash M$: δ , то найдётся такая подстановка S, что $\Delta = S(\Gamma)$ и $\delta = S(\gamma)$.

Общий план решения

- 1. Основа решения алгоритм унификации для системы уравнений в алгебраических термах.
- 2. По терму M строим систему уравнений в алгебраических термах.
- 3. Наиболее общим унификатором системы будет является подстановка, из которой можно получить наиболее общую пару.

Система уравнений в алгебраических термах

Определение

Система уравнений в алгебраических термах

$$\begin{cases} \theta_1 = \sigma_1 \\ \vdots \\ \theta_n = \sigma_n \end{cases}$$

где θ_i и σ_i — термы

Задача унификации

Определение

Решением задачи унификации для системы уравнений $\sigma_k = \tau_k$ назовём такую подстановку S, что $S(\sigma_k) = S(\tau_k)$.

Определение

Наиболее общим решением задачи унификации назовём такую подстановку S, что для любого другого решения T найдётся подстановка R, что $T(\rho)=R(S(\rho))$.

Определение

Система в разрешённой форме — каждое уравнение имеет вид $x_i = \theta_i$, причём каждый из x_i входит в систему ровно один раз (является левой частью одного из уравнений)

Определение

Система несовместна — система не имеет решений.

Алгоритм унификации

Пусть дана система уравнений $\sigma_i = \tau_i$. Возьмём произвольное уравнение и попробуем проверить/применить одно из следующих условий/действий к нему:

- (a) $\sigma_i = x$ если σ_i не переменная перепишем как $x = \sigma_i$
- (b) $\sigma_i = \sigma_i$ удалим
- (c) f $\theta_1 \dots \theta_n = f$ $\rho_1 \dots \rho_n$ заменим на n уравнений $\theta_k = \rho_k$
- (d) если уравнение имеет вид $x= au_i$ и x входит хотя бы в одно другое уравнение, то заменим все другие уравнения на $\sigma_k[x:= au_i]= au_k[x:= au_i]$
- (e) если уравнение имеет вид x=f ... x_i ..., система несовместна (occurrs check)
- (f) если уравнение имеет вид $f \; ... = g \; ...$ при f
 eq g, система несовместна.

Если нет ни одного подходящего правила ни для одного уравнения — закончим работу (система находится в разрешённой форме).

Алгоритм всегда завершает работу

- ▶ Рассмотрим $\langle x, y, z \rangle$, где:
 - x количество переменных, входящих в систему, которые входят не в разрешённом виде. Переменная t входит в систему в разрешённом виде, если переменная входит в систему ровно один раз, причём входит в уравнение вида $t=\sigma$;
 - ▶ у количество функциональных символов в системе;
 - ightharpoonup z количество уравнений типа a=a и $\theta=b$, где θ не переменная.
- lacktriangle Упорядочим тройки лексикографически (согласно порядковому типу ω^3).
- Ваметим, что операции (a) и (b) всегда уменьшают z и иногда уменьшают x. Операция (c) всегда уменьшает y, иногда x и, возможно, увеличивает z. Операция (d) всегда уменьшает x и иногда увеличивает y. То есть, операции (a)-(d) всегда уменьшают соответствующий ординал.
- Согласно лемме из матлога любая строго убывающая последовательность ординалов имеет конечную длину.

Корректность алгоритма

Теорема

Для системы уравнений $\sigma_k = au_k$ алгоритм даёт наиболее общее решение, если оно существует.

Доказательство.

- Операции (a)-(d) не меняют множества решений системы. За конечное время либо выполнится условие (e) или (f), либо будут исчерпаны правила.
- Условия (e), (f) очевидно означают несовместность системы (в т.ч. исходной).
- При отсутствии возможности применения правил и условий все уравнения имеют вид $x=\theta_x$, где x входит в систему только один раз. Построим $S_0(x)=\theta_x$.
- Если есть подстановка $T: T(\sigma_k) = T(\tau_k)$, тогда положим $R = \mathcal{U}(\{S_0(x) = T_0(x) \mid x \neq T_0(x)\})$. Очевидно, $T(\zeta) = R(S(\zeta))$