3D Geometric Transformations

Spring 2016
Seungyong Lee
POSTECH

Overview

- 3D geometric transformations
 - similar to 2D geometric transformations
 - 3D rotations
- Chapter summary
 - 3D coordinate systems
 - basic and general transformations
 - general rotations and quaternions
- Related materials
 - Angel: Chapter 3
 - H&B: Chapter 11

3D Coordinate Systems

Right-handed/left-handed coordinate system

3D Coordinate Systems (2)

- Homogeneous coordinate system
 - from Cartesian to homogeneous coordinates
 - $(x, y, z) \rightarrow (x, y, z, 1)$
 - equivalent homogeneous coordinates
 - $(x, y, z, w) = (\alpha x, \alpha y, \alpha z, \alpha w), \alpha \neq 0$
 - from homogeneous to Cartesian coordinates
 - $(x, y, z, w) \rightarrow (x/w, y/w, z/w)$
 - w = 0?
 - point at infinity
 - can specify a 3D direction

Basic Transformations

Translation

$$-T(d_x, d_y, d_z) [x \ y \ z \ 1]^T = [x + d_x \ y + d_y \ z + d_z \ 1]^T$$

$$T(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

uniform/nonuniform scaling

$$T(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Basic Transformations (2)

Rotation

rotations about x, y, z axes

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta) = \begin{vmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Basic Transformations (3)

Reflections

$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shear transformations

$$SH_{xy}(sh_x, sh_y) = \begin{bmatrix} 1 & 0 & sh_x & 0 \\ 0 & 1 & sh_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Basic Transformations (4)

- Inverse transformations
 - translation
 - $T(d_x, d_y, d_z)^{-1} = T(-d_x, -d_y, -d_z)$
 - scaling
 - $S(s_x, s_y, s_z)^{-1} = S(1/s_x, 1/s_y, 1/s_z)$
 - rotation
 - $R_x(\theta)^{-1} = R_x(-\theta), R_y(\theta)^{-1} = R_y(-\theta), R_z(\theta)^{-1} = R_z(-\theta)$

General Transformations

- Composition of basic (primitive) transformations
 - concatenation of 4×4 matrix multiplications
 - finally represented by a single 4×4 matrix
- (e.g.) scaling about an arbitrary point
 - $T(x_1, y_1, z_1) S(s_x, s_y, s_z) T(-x_1, -y_1, -z_1)$

General Transformations (2)

• General transformation example

$$- R \cdot T = R_z(\alpha) R_x(\phi) R_y(\theta - 90) T(-x_1, -y_1, -z_1)$$

General Transformations (3)

- Transformation matrix
 - translation, scaling, rotation, shear

$$M = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Rigid-body transformation
 - the upper left 3 x 3 submatrix is orthonormal
 - orthonormal matrix: $B^{-1} = B^{T}$
- Affine transformation
- Perspective transformation?

General Transformations (4)

- Transformation process
 - the order is important in a composite transformation
 - efficient computation
 - $[x' \ y' \ z']^T = M [x \ y \ z]^T = R [x \ y \ z]^T + T$
- OpenGL transformation process
 - same as the 2D case

General rotations

Rotation about an axis parallel to a coordinate axis

$$-T^{-1}R_x(\theta)T$$

(b)
Translate Rotation Axis onto x Axis

(d) Translate Rotation Axis to Original Position

General rotations (2)

Rotation about an arbitrary axis

$$-R(\theta) = T^{-1}R_x^{-1}(\alpha)R_y^{-1}(\beta)R_z(\theta)R_y(\beta)R_x(\alpha)T$$

General rotations (3)

- General rotational matrix
 - results from a sequence of rotations
 - upper left 3 x 3 submatrix is orthonormal
 - $UU^{T} = U^{T}U = I$
 - 2D example?

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow R \begin{bmatrix} r_{11} \\ r_{12} \\ r_{13} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, R \begin{bmatrix} r_{21} \\ r_{22} \\ r_{23} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, R \begin{bmatrix} r_{31} \\ r_{32} \\ r_{33} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

General rotations (4)

General transformation example revisited

$$- R \cdot T = R_z(\alpha) R_x(\phi) R_y(\theta - 90) T(-x_1, -y_1, -z_1)$$

(b) Final position

$$R_z = [r_{31}]$$

$$r_{32}$$

$$R_z = [r_{31} r_{32} r_{33}]^T = \frac{P_1 P_2}{|P_1 P_2|}$$

$$R_{x} = [r_{11}]$$

$$R_{x} = [r_{11} r_{12} r_{13}]^{T} = \frac{P_{1}P_{3} \times P_{1}P_{2}}{|P_{1}P_{3} \times P_{1}P_{2}|}$$

$$R_{y} = [r_{21}]$$

$$r_{22}$$

$$R_y = \begin{bmatrix} r_{21} & r_{22} & r_{23} \end{bmatrix}^T = R_z \times R_x$$

$$R = \begin{bmatrix} R_x & R_y & R_z \end{bmatrix}^T$$

General rotations (5)

Rotation about an arbitrary axis revisited

$$-R(\theta) = T^{-1}R_x^{-1}(\alpha)R_y^{-1}(\beta)R_z(\theta)R_y(\beta)R_x(\alpha)T$$

$$u_{z} = u, u_{y} = \frac{u \times \vec{x}}{|u \times \vec{x}|}, u_{x} = u_{y} \times u_{z}$$

$$R = R_{y}(\beta)R_{x}(\alpha) = \begin{bmatrix} u_{x} & u_{y} & u_{z} \end{bmatrix}^{T}$$

$$R(\theta) = T^{-1}R^{-1}R_{z}(\theta)RT$$

Rotations with Quaternions

- What is a quaternion?
 - consists of one real part and three imaginary parts
 - an extension of complex number to 4D
 - q = (s, a, b, c) = s + ia + jb + kc
- Quaternion arithmetic

$$-i^{2} = j^{2} = k^{2} = -1$$

$$-ij = -ji = k, jk = -kj = i, ki = -ik = j$$

$$-q_{1} + q_{2} = (s_{1} + s_{2}) + i(a_{1} + a_{2}) + j(b_{1} + b_{2}) + k(c_{1} + c_{2})$$

Rotations with Quaternions (2)

- Vector representation
 - $q = (s, \vec{v})$
 - $q_1 + q_2 = (s_1 + s_2, \vec{v}_1 + \vec{v}_2)$
 - $q_1 q_2 = (s_1 s_2 \vec{v}_1 \cdot \vec{v}_2, s_1 \vec{v}_2 + s_2 \vec{v}_1 + \vec{v}_1 \times \vec{v}_2)$
- Length of a quaternion
 - $|q|^2 = s^2 + v \cdot v$
 - unit quaternion: |q| = 1
- Conjugate and inverse of a quaternion
 - conjugate: $\overline{q} = (s, -v)$
 - inverse: $qq^{-1} = q^{-1}q = (1, \vec{0}), q^{-1} = \frac{1}{|q|^2}(s, -v)$
 - for unit quaternion q, $q^{-1} = \overline{q}$

Rotations with Quaternions (3)

Rotations with quaternions

u: a unit vector passing through the origin

 θ : the specified rotation angle about axis u, $0 \le \theta < 2\pi$

$$q = (s, v)$$
, where $s = \cos \frac{\theta}{2}$, $v = u \sin \frac{\theta}{2}$
 $P = (0, p)$, $P' = qPq^{-1} = (0, p')$
 $p' = s^2 p + v(p \cdot v) + 2s(v \times p) + v \times (v \times p)$

- Successive rotations
 - can be handled by quaternion multiplication

$$p' = q_1 p q_1^{-1}, p'' = q_2 p' q_2^{-1}$$

$$p'' = q_2 (q_1 p q_1^{-1}) q_2^{-1} = (q_2 q_1) p (q_1^{-1} q_2^{-1}) = (q_2 q_1) p (q_2 q_1)^{-1}$$

Rotations with Quaternions (4)

Quaternion and rotational matrix

$$-q = (s, v) = (s, a, b, c)$$
 corresponds to

$$R = \begin{bmatrix} 1 - 2b^{2} - 2c^{2} & 2ab - 2sc & 2ac + 2sb \\ 2ab + 2sc & 1 - 2a^{2} - 2c^{2} & 2bc - 2sa \\ 2ac - 2sb & 2bc + 2sa & 1 - 2a^{2} - 2b^{2} \end{bmatrix}$$

• ex) rotation about z axis by θ

$$s = \cos\frac{\theta}{2}, v = (0,0,1)\sin\frac{\theta}{2}$$

$$1 - 2\sin^2\frac{\theta}{2} = \cos\theta, 2\cos\frac{\theta}{2}\sin\frac{\theta}{2} = \sin\theta$$

$$R = R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

a rotation matrix can be converted to a quaternion

Rotations with Quaternions (5)

Other properties

$$q = -q?$$

$$-q = \left(-\cos\frac{\theta}{2}, -u\sin\frac{\theta}{2}\right) = \left(\cos\left(\frac{360^{\circ} - \theta}{2}\right), -u\sin\left(\frac{360^{\circ} - \theta}{2}\right)\right)$$

$$q_1 q_2 \neq q_2 q_1$$

Summary

- Homogeneous coordinates
- Basic transformations
- General transformations
 - composite transformation by a 4×4 matrix
 - same transformation process as the 2D case

Rotations

- general rotation by a sequence of simple rotations
- coordinate frame transformation by computing an orthogonal submatrix
- rotations with quaternions

Summary (2)

- Rotation matrix computation
 - general rotation
 - quaternion → rotation matrix
 - glRotate(angle, x, y, z)

$$R = \begin{bmatrix} xx(1-c) + c & xy(1-c) - zs & xz(1-c) + ys \\ yx(1-c) + zs & yy(1-c) + c & yz(1-c) - xs \\ xz(1-c) - ys & yz(1-c) + xs & zz(1-c) + c \end{bmatrix}$$

$$c = \cos(angle)$$

$$s = \sin(angle)$$

$$||(x, y, z)|| = 1$$

- rotation of a frame into the principal axes
 - orthogonal submatrix
- rotation of one frame into another one
 - two orthogonal submatrices → rotation matrix

Supplementary Slides

General rotations

Another example

