Linear Models

Peter Stuckey

Overview

- Many models involves
 - -resources and limits
 - -choices in production/transport
 - -costs
- Constraints of this nature are often expressed as
 - linear constraints
- Solving technology for linear models is highly effective

Linear Constraints

- ► A linear expression is of the form
 - $-\sum_{i=1...n} a_i X_i$
 - where a_i are constants and x_i are variables
- A linear inequality has the form
 - $-\sum_{i=1..n} a_i X_i \leq a_0$
 - where a_i are constants and x_i are variables
- ► A linear equation has the form
 - $-\sum_{i=1..n} a_i X_i = a_0$
 - where a_i are constants and x_i are variables
- ► Linear constraints are either
 - linear inequalities, or linear equations

Linear Models

- A linear model consists of
 - linear constraints, and
 - a linear objective
 - minimize ear expression>, or
 - maximize linear expression>
- Linear models are solvable using
 - linear programming (reals), and
 - (mixed) integer programming (integers)
- ► These solver technologies scale to
 - 100000 variables
 - 100000 constraints
 - and sometimes more

Shipping Problem

► A shipping company has to transport bags of cement to W warehouses from F factories daily. Each warehouse has a daily demand, and each factory a daily output. The cost of shipping one bag is given by a table, e.g.

cost	w1	w2	w3	w4
f1	6	5	7	9
f2	3	2	4	1
f3	7	3	9	5

Find the minimal shipping costs

Shipping Problem: Data and Decisions

► Data

```
int: W; % number of Warehouses
set of int: WARE = 1..W;
int: F; % number of Factories
set of int: FACT = 1...F;
array[WARE] of int: demand;
array[FACT] of int: production;
array[FACT, WARE] of int: cost;
Decisions
array[FACT, WARE] of var int: ship;
```

Shipping Problem: Constraints

Only ship positive amounts

```
forall(f in FACT, w in WARE)

(ship[f,w] >= 0);
```

Ship to each warehouse its demand

Dont ship more from each factory than it produces

```
forall(f in FACT)
          (sum(w in WARE)(ship[f,w])
          <= production[f]);</pre>
```

Shipping Problem: Objective

Minimize total shipping costs

```
solve minimize
    sum(f in FACT, w in WARE)
        (cost[f,w]*ship[f,w]);
...
```

A Linear Model

- Each constraint is a linear constraint
- ► The objective is a linear term
- Solving with default solver
 - many solutions found, 43.246s
- Solving with MIP solver
 - -one optimal solution found, 0.061s

Improving the Model

Decisions

```
array[FACT, WARE] of var int: ship;
```

- Unbounded integers are bad for many solvers
 - -can even make the problem intractable

Limit the size of the variable!

```
int: m = max(production);
array[FACT, WARE] of var 0..m: ship;
```

- Remove the first set of constraints!
- ► But in this case makes no difference!

Overview

Linear constraints are a major component of many models

- If we can build a linear model
 - or almost linear model
- Then we can solve it very efficiently
- Get used to modeling with linear constraints

EOF