4

5

3

_	_	_	_	样	***
•	n	.,	.,	\mathbf{x}	ᅔ

一. 简答题(共7题, 100分)

1. (简答题) CRC编码设计

一、(14分)假设通过某不可靠信道传输8位原始数据,具体数据如下

 $D_8D_7D_6D_5D_4D_3D_2D_1=0110\ 1100$

生成多项式为 x⁶+x⁵+x³+x²+x+1

(1)则生成多项式编码为<u>1101111</u>,假设校验位置于低位,请给出最终的 CRC 校验码的十 六进制编码。(4分)

CRC 编码为: $D_8D_7D_6D_5D_4D_3D_2D_1R_5R_4R_3R_2R_1R_0$ =01101100 <u>011110</u>= 0x1B1E

(2) 如果接收方接收到的 CRC 校验码中校验位不变,原始数据 D₈D₇D₈D₈D₂D₁变成 0110 11<u>1</u>0, 请简单说明接收方如何定位错误。(4分)

1000 0000÷1101111=10001 余数不为零, CRC 编码不同位发生 1 位错的余数值是固定的, 所以可以根据余数的值定位出错位

(3) 在本课程 CRC 编码实验中我们尝试对 16 位汉字编码进行 CRC 编码, 你最终选择的生成多项 ______位,余数是_____位,在假定没有 3 位以上错误发生的前提下,该生成多项式生 成的 CRC 编码检错时能否区分 1 位错和 2 位错? 为什么? (6 分)

答案 1: 多项式 6 位, 余数 5 位, 不能区分, 二者余数相同, 需要增加一个总校验位。

答案 2: 多项式 7 位,余数 6 位,能区分,二者余数不同,且都不为零,可以直接根据余数区分。

段落格式 字体 字号

2. 乘法运算

一. 简答题(100分)

2

二、(12 分) 已知 $[x]_{h}=100001$, $[y]_{h}=011101$,用补码一位乘法计算 $[x \times y]_{h}=?$ (单符号

位)将答案填写在下面,并将计算过程填写在表格中。

1) $[-x]_{\dot{h}} = 011111$ $[x \times y]_{\dot{h}} = 47D$ (16 进制) (8分)

2) 补码一位乘法运算速度较慢,如何进一步优化乘法器速度? (2分)

补码 2 位乘, 阵列乘法器, 乘法流水线

3) 假设运算结果只有 7 位,第 1 问中的乘法运算是否溢出,判断依据是什么? (2 分) 溢出,高位应该与符号位完全相同。

#	运算	部分积	移出位	判断位 Y _n Y _n +1
1		<u>0</u> 000000		<u>0</u> 1110 <u>10</u>
2	+[-x]*	<u>011111</u>		
3	=	<u>0</u> 11111		
4	→	<u>0</u> 01111	1	<u>0</u> 111 <u>01</u>
5	+[x]+	<u>1</u> 00001		
6	=	<u>1</u> 10000	1	
7	→	<u>1</u> 11000	01	<u>0</u> 11 <u>10</u>
8	+[X-]+	<u>011111</u>		
9	=	<u>0</u> 10111	01	
10	→	<u>0</u> 01011	101	<u>0</u> 1 <u>11</u>
11	+0	0		
12	=	<u>0</u> 01011	101	
13	→	<u>0</u> 00101	1101	<u>011</u>
14	+0	0		
15	=	<u>0</u> 00101	1101	
16	→	<u>0</u> 00010	11101	<u>01</u>
17	+[X]+	<u>1</u> 00001		
18	=	<u>1</u> 00011	11101	

段落格式	字体	字号

三、 $(12\,
m 分)$ 某计算机字长为 $32\,
m color / 2$ 方 $12K \times 32\,
m color / 32$ 位,其地址空间划分为: $00000H^{\sim}$ 0FFFFH 是保留区域, $10000H^{\sim}$ 2FFFFH 是 ROM 区域, $30000H^{\sim}$ 7FFFFH 是 RAM 区域。请用 $64K \times 32$ 位的 ROM 芯片和 $128K \times 16$ 位的 RAM 芯片为该计算机设计一个主存储器。

1) 共需要 2 片 ROM 芯片和 6 片 RAM 芯片,给出简单计算分析(4分)。

ROM 芯片规格为 $64K \times 32$ 位,构建 $128K \times 32$ 位存储器需要字数扩展至 128K,因此需要 2 片 ROM 芯片;

RAM 芯片规格为 $128K \times 16$ 位,构建 $320K \times 32$ 位存储器需要字长扩展至 32 位,字数扩展至 320K,因此需要 6 片 RAM 芯片。

2) 绘制 CPU 与存储芯片的连接示意图,注意标注译码器输出信号、地址线连接编号(8分)。

段落格式 字体 字号

4. Cache与虚拟存储系统

四、(12分)在一个拥有 TLB 和一级数据缓存(L1 d-cache)的小存储系统中:存储器按字节寻址的,一次访问一个字节,虚拟地址是 14bit,物理地址是 12bit,页面大小 64B, TLB 四路组相联,总共 16 个条目,L1 d-cache 是物理地址寻址,直接映射,行大小为 4 字节,总共有 16 个组。下图展示了小存储系统的一个快照,包括 TLB(a),部分页表(b),和 L1 高速缓存(c)。

Set	Tag	PPN	Valid									
0	03	-	0	09	0D	1	00	-	0	07	02	1
1	03	2D	1	02	-	0	04	-	0	0A	-	0
2	02	-	0	80	-	0	06	-	0	03	-	0
3	07	-	0	03	0D	1	0A	34	1	02	ı	0

(a) TLB: 四组, 16 个条目, 四路组相联

VPN	PPN	Valid	VPN	PPN	Valid
00	28	1	08	13	1
01	1	0	09	17	1
02	33	1	0A	09	1
03	02	1	0B	-	0
04	ı	0	0C	-	0
05	16	1	0D	2D	1
06	ı	0	0E	11	1
07	-	0	0F	0D	1

(b) 页表前 16 个页表项 PTE

ldx	Tag	Valid	Blk 0	Blk 1	Blk 2	Blk 3
0	19	1	99	11	23	11
1	15	0	_	-	_	_
2	1B	1	00	02	04	08
3	36	0	-	-	-	-
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	-	-	-	-
7	16	1	11	C2	DF	03
8	24	1	3A	00	51	89
9	2D	0	_	_	_	_
Α	2D	1	93	15	DA	3B
В	0B	0	-	1	-	_
С	12	0	-	-	-	_
D	16	1	04	96	34	15
Е	13	1	83	77	1B	D3
F	14	0	_	_	_	_

(c) L1 d-cache: 16 个组, 四字节的块, 直接映射

- (1)请问虚拟地址中虚拟页号(VPN)字段占<u>8</u>位,页内偏移(VPO)字段占<u>6</u>位, TLB 索引(TLBI)字段占<u>2</u>位,TLB 标记(TLBT)字段占<u>6</u>位。
 - (2) 物理地址中物理页号 (PPN) 字段占 <u>6</u> 位, cache 行索引字段占 <u>4</u> 位。
- (3) 当 CPU 访问 0x3D4 处字节时,虚拟地址转换为物理地址时 PPN 的值为<u>0D</u>, cache 行地址为<u>5</u>, 最终数据值为<u>36</u>(全部填写十六进制)。
- (4) 当 CPU 访问 **0x15F** 处字节时,虚拟地址转换为物理地址时 PPN 的值为<u>16</u>, cache 行地址为 **7** ,最终数据值为 **03** (全部填写十六进制)。

段落格式 字体 字号

+		
	分 数	
	评卷人	

五、(15分)下图为 MIPS32 指令格式, 完成下列各问:

字段长度			字段	名称		说明	
指令	6	5	5	5	5	6	MIPS 指令字长为 32 位
R型	OP	rs	rt	rd	shamt	funct	算术类指令,funct 为运算操作码
I型	OP	rs	rt	地址	位即数		数据传输、分支、立即数指令
J型	OP	目标	地址				跳转指令

1) 已知 OP 为零时为 R型指令,请问该指令格式最大能支持多少条指令,其中 R型指令最多多少条? I型和 J型指令总和最多多少条?请写出理由。(4分)

64,63

2) 指令是用户与硬件之间的接口,从本题给出的指令格式看,汇编级程序员可使用的源寄存器个数最多为多少?(3分)

32

3) MIPS 通用寄存器中 0 号寄存器的意义是什么, MIPS CPU 为何要设计零号寄存器? (4分)

恒零,便于置0操作,或者实现MOV指令,减少指令

4) beg 指令执行阶段的操作为 PC ← PC +4 + IR[15:0]<<2 , 即将指令字中低 16 位左移 2 位后与 PC+4 的值相加生成 32 位地址,请问这里为什么要左移 2 位? (4 分)

指令对齐

段落格式 字体 字号

- 六、(15 分) 某计算机的 CPU 主频为 2GHz, CPI 为 0.5, 总线带宽为 400MB/s。该计算机现有键盘和网卡两个设备,键盘以 32 位的字为单位进行数据传输,平均数据传输率为 1MB/s; 网卡以 2KB 的块大小与主机交换数据,平均数据传输率为 400MB/s。
- (1) 如果计算机对键盘采用程序查询方式进行数据输入,查询操作需要 100 个时钟周期,求 CPU 为 I/O 查询所花费的时间占整个 CPU 时间的百分比,假定进行足够的查询以避免数据丢失。(4分)

键盘采用程序查询方式,每秒进行查询的次数为: 1MB/4B=250K,而查询 250K 次需要的时钟周期数为: $250K \times 100T=25000KT$,则可算出 CPU 为 I/O 查询所花费的时间比率为: $25000K/2 \times 10^9=1.25\%$

(2) 如果计算机对键盘采用中断方式进行数据输入,对应的中断服务程序包含 20 条指令,中断服务的其他开销相当于 2 条指令的执行时间,求 CPU 为该设备传输数据花费的时间占整个 CPU 时间的百分比。(4分)

每秒 CPU 用于键盘 I/O 中断的次数为: 1MB/s / 4B = 250K, 每次所需的时钟周期数为: (20 + 2) * 0.5 = 11, 每秒用于中断方式数据传送的时钟周期数为: 250K * 11 = 2.75M, 因此占整个 CPU 时间的百分比为: $2.75M / 2 \times 10^9 = 0.1375\%$ 。

(3) 如果计算机对网卡采用 DMA 方式进行数据输入输出, DMA 预处理和后处理的总开销为 500 个时钟周期, 求 CPU 为该设备传输数据花费的时间占整个 CPU 时间的百分比。(4分)

每秒 CPU 用于 DMA 的次数为: 400MB/s / 2KB = 200K,每次所需的时钟周期数为 500,每秒用于 DMA 方式数据传送的时钟周期数为: 200K* 500 = 100M,因此占整个 CPU 时间的百分比为: 100M / $2*10^9 = 5$ %。

(5) 如果键盘采用中断方式,网卡采用 DMA 方式。键盘和网卡能否同时工作,为什么?如果能够同时工作,键盘和网卡谁的优先级高,为什么?如果不能同时工作,则应该采取什么措施使之同时工作。(3分)

键盘和网卡不能同时工作,虽然键盘和网卡在进行 I/O 操作时所占用的整个 CPU 时间的百分比都非常小,从 CPU 的角度来看是能够同时工作的;但是该计算机系统的总线带宽只有 400MB/s,仅能够满足网卡对总线带宽的需求,因此不能同时工作。采取的措施是提高总线带宽。

段落格式	字体	字号

七、(20分)某计算机字长32位,支持下表中的五条 MIPS32指令,CPU 内部采用单总线结构,具体数据通路如图所示。除多路选择器选择控制信号外,图中所有控制信号为1时表示有效、为0时表示无效,控制信号功能说明见表。

功能描述

#	指令	汇编代码	指令类型	RTL 功能说明
1	lw	lw rt.imm(rs)	I型	$R[rd] \leftarrow M[R[rs] + SignExt(imm)]$
2	<u>sw</u>	sw.rt.imm(rs)	I型	$M[R[rs] + SignExt(imm)] \leftarrow R[rt]$
3	<u>beq</u>	beg rs.rt.imm	I型	$if(R[rs] == R[rt]) PC \leftarrow PC + 4 + \underline{SignExt(imm)} << 2$
4	addi	addi rt,rs,imm	I型	$R[rt] \leftarrow R[rs] + SignExt(imm)$
5	slt	slt rd.rs.rt	R 型	If $(\underline{rs} < \underline{rt})$ $R[\underline{rd}] \leftarrow 1$ else $R[\underline{rd}] \leftarrow 0$

表 2、控制信号功能描述

#	控制信号	功能说明
1	<u>PCin</u>	控制 PC 接收来自内总线的数据,需配合时钟控制
2	PCout	控制 PC 向内总线输出数据
3	ARin	控制 AR 接收来自内总线的数据,需配合时钟控制
4	DRin	控制 DR 接收来自内总线的数据,需配合时钟控制
5	DRout	控制 DR 向内总线输出数据
6	DREin	控制 DR 接收从主存读出的数据,需配合时钟控制
7	DREout	控制 DR 向主存输出数据,以便最后将该数据写入主存
8	Xin	控制暂存寄存器 X 接收来自内总线的数据,需配合时钟控制
9	+4	将 ALU A 端口的数据加 4 输出
10	ADD	控制 ALU 执行加法,实现 A 端口和 B 端口的两数相加
11	SLT	控制 ALU 执行 SLT 小于置位运算
12	<u>PSWin</u>	控制状态寄存器 PSW 接收 ALU 的运算状态,需配合时钟控制
13	Zout	控制 Z 向内总线输出数据
14	IRin	控制 IR 接收来自内总线的指令,需配合时钟控制

#	控制信号	功能说明
19	Rin	控制寄存器堆接收来自内总线的数据,写入 W#端口对应的寄存器中,需配合时钟控制
20	Rout	控制寄存器堆输出指定编号 R#寄存器的数据,该寄存器组为单端口输出
21	Rs/Rt	控制多路选择器选择送入 R#的寄存器编号,为 0 时送入指令字中 rs. 字段,为 1 时送入 rt
22	RegDst	控制多路选择器选择送入 W#的寄存器编号,为 0 时送入指令字中的 rt 字段,为 1 时送入 rd

当 ALU 两操作数相等时, equal 状态信号输出为 1, 否则为零, equal 信号与运算无关。

- 1) 图中 Z 部件是什么部件,其主要作用是什么,该部件在该结构中是否是必须的? (3分) Z 是运算结果缓冲器,在时钟配合下缓存运算结果,是必须的,否则运算结果直接输出 到总线引起数据冲突。
- 2) 如果采用三级时序设计硬布线控制器,机器周期数,机器周期节拍数均固定,请给出三级时序发生器的状态机。(4分)

3) 采用微程序设计操作控制器,取指微程序和 sw 指令微程序已部分给出,请用 16 进制完成如下填空。(9 分)

- 第 2 条微指令控制字段为 85002 、 P 字段为 0 、 下址为 3
- 第 3 条微指令控制字段为 100100 、 P 字段为 2
- 第 12 条微指令控制字段为 40840
- 第 13 条微指令控制字段为 8001 、P 字段为 0 、 下址为 0
- 4) 第(2) 问如果需要支持中断,状态图需要进行什么修改,第(3) 问如需要支持中断, P 字段是否需要修改,为什么?(4分)

 S_{11} 状态需要进行中断判断,如果有中断请求需要进入中断响应周期,否则进入 S_{0} 。 需要增加 P_{end} 表示最后是微程序的最后一条微指令,方便进行中断判断。

段落格式 字体 字号