Відповіді на питання з Практичного Заняття 4

Питання 1

Умовна ентропія - це міра невизначеності одного випадкового величини, умовно відносно значення іншої випадкової величини. Вона вимірює середню кількість інформації, що міститься в одній величині, коли значення іншої величини відоме.

Питання 2

Різновиди умовної ентропії включають часткову умовну ентропію та загальну умовну ентропію.

Часткова умовна ентропія характеризує середню невизначеність одного символу джерела, умовно відносно іншого символу.

Загальна умовна ентропія характеризує середню невизначеність всього джерела, умовно відносно іншого джерела.

Питання 3

Основні властивості умовної ентропії включають невід'ємність, адитивність та симетрію.

Умовна ентропія завжди невід'ємна, адитивна відносно незалежних величин та симетрична, тобто H(X|Y) = H(Y|X) для незалежних X та Y.

Питання 4

Часткова умовна ентропія визначається як середня невизначеність одного символу джерела, умовно відносно іншого символу.

Для двох дискретних немарківських джерел інформації з алфавітами $A = \{a_1, a, \ldots, a_M\}$ ma $B = \{b_1, b_2, \ldots, b_N\}$, якщо вони є статистично залежними, поява символу a_1 на виході першого джерела дає розподіл умовних ймовірностей $p(b_k/a_1)$, який відрізняється від розподілу $p(b_k/a_2)$ i m . δ . Ентропія другого джерела в залежності від символу на виході першого джерела задається наступним виразом

$$H(B/a_i) = -\sum_{k=1}^{N} p(b_k/a_i) \cdot \log_2 p(b_k/a_i)$$

Питання 5

Загальна умовна ентропія визначається як середня невизначеність всього джерела, умовно відносно іншого джерела.

Якщо $H(B/a_i)$ усереднити по всіх a_i , то отримаємо загальну умовну ентропію

$$H(B/A) = \sum_{i=1}^{M} p(a_i)H(B/a_i) = -\sum_{i=1}^{M} \sum_{k=1}^{N} p(a_i)p(b_k/a_i)\log_2 p(b_k/a_i) =$$
$$= -\sum_{i=1}^{M} \sum_{k=1}^{N} p(a_i, b_k)\log_2 p(b_k/a_i)$$

де $p(a_i, b_k) = p(a_i)p(b_k/a_i)$ – ймовірність сумісної появи символів b_k та a_i на виходах другого та першого джерела.

Питання 6

Ентропія об'єднання двох джерел визначається як H(A, B) = H(A) + H(B|A) = H(B) + H(A|B), де H(A) та H(B) - ентропії джерел A та B відповідно, H(B|A) - умовна ентропія B при умові A, та H(A|B) - умовна ентропія A при умові B.

Завдання 7

Ентропія монітора персонального комп'ютера при виведенні тексту в 28 рядків по 60 рівноймовірних символів у кожному, використовуючи стандартний міжнародний код (128 символів) з двома градаціями яскравості, може бути знайдена за формулою:

$$H = \log_2(128 \cdot 2)^{28 \cdot 60} = 28 \cdot 60\log_2 2^8 = 1680 \cdot 8 = 13440 \, 6im$$

Завдання 8

Ансамбль повідомлень джерела А визначено, як $A = \{0; 1\}$ та $P_A = \{0,75;0,25\}$. Статистична залежність повідомлень $a_i \in A$ характеризується умовними ймовірностями p(0/1) = 0,12 і p(1/0) = 0,08. Визначити часткову та загальну умовну ентропію цього джерела.

Матриця умовних ймовірностей

$$\begin{pmatrix} p(0/0) & p(0/1) \\ p(1/0) & p(1/1) \end{pmatrix} = \begin{pmatrix} 0.75 - 0.12 & 0.12 \\ 0.08 & 0.25 - 0.08 \end{pmatrix} = \begin{pmatrix} 0.63 & 0.12 \\ 0.08 & 0.17 \end{pmatrix}$$

	(0/0)	(0/1)	(1/0)	(1/1)	Σ
$p(b_k/a_i)$	0,63	0,12	0,08	0,17	1
$\log_2(b_k/a_i)$	-0,6666	-3,0589	-3,6439	-2,5564	
$p \bullet log$	-0,4199	-0,3671	-0,2915	-0,4346	

$$\begin{split} H\big(B/a_i\big) &= -\sum_{k=1}^N p(b_k/a_i) \bullet \log_2 p(b_k/a_i) \\ H(B/0) &= -\left(p(0/0) \bullet \log_2 p(0/0) + p(1/0) \bullet \log_2 p(1/0)\right) = \\ &= 0.4199 + 0.2915 \approx 0.712 \ \emph{6im} \\ H(B/1) &= -\left(p(0/1) \bullet \log_2 p(0/1) + p(1/1) \bullet \log_2 p(1/1)\right) = \\ &= 0.3671 + 0.4346 \approx 0.802 \ \emph{6im} \end{split}$$

Загальна умовна ентропія

$$H(B/A) = \sum_{i=1}^{M} p(a_i)H(B/a_i)$$

$$H(B/A) = 0.75 \cdot H(B/0) + 0.25 \cdot H(B/1) \approx$$

$$\approx 0.75 \cdot 0.712 + 0.25 \cdot 0.802 \approx 1.085$$