DS-GA 1003: Machine Learning

March 12, 2019: Midterm Exam (100 Minutes)

Answer the	questions	in the	spaces	provided.	If you	run o	out of	room	for an	ans	wer,	use 1	the
blank page	at the en	d of the	e test.	Please do	n't mi	ss the	e last	ques	tions	, on	the	back	of
				the last	test pa	ge.							

Name:			
NVII NotID:			

Question	Points	Score
1) Bayes Optimal	7	
2) Risk Decomposition	6	
3) Linear Separability and Loss Functions	6	
4) SVM with Slack Variables	9	
5) Dependent Features	6	
6) RBF Kernel	4	
7) ℓ_2 -norm Penalty	6	
Total:	44	

1. (7 points) Consider a binary classification problem. For class y=0, x is sampled from $\{1,2,3,4,5,6,7,8\}$ with equal probability; for class y=1, x is sampled from $\{7,8,9,10\}$ with equal probability. Assume that both classes are equally likely. Let $f^*: \{1,2,3,4,5,6,7,8,9,10\} \rightarrow \{0,1\}$ represent the Bayes prediction function for the given setting under 0-1 loss. Find f^* and calculate the Bayes risk.

Solution: 0-1 loss:

$$l(a, y) = 1 (a \neq y) := \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise.} \end{cases}$$

Risk:

$$R(f) = \mathbb{E}\left[1(f(x) \neq y)\right] = 0 \cdot \mathbb{P}\left(f(x) = y\right) + 1 \cdot \mathbb{P}\left(f(x) \neq y\right)$$
$$= \mathbb{P}\left(f(x) \neq y\right),$$

which is just the misclassification error rate.

Bayes prediction function is just the assignment to the most likely class,

$$f^*(x) = \underset{c \in \{0,1\}}{\operatorname{argmax}} \ p(y = c|x)$$

Therefore:

$$f^*(x) = \begin{cases} 0 & \text{if } x \in \{1, 2, 3, 4, 5, 6\} \\ 1 & \text{if } x \in \{7, 8, 9, 10\} \end{cases}$$

Under 0-1 loss, risk is the probability of mis-classification. $f^*(x)$ mis-classifies points from class 0 occurring in $\{7,8\}$ as class 1. Hence, bayes risk is

$$p(y = 0, x \in \{7, 8\}) = p(x \in \{7, 8\} | y = 0)p(y = 0)$$
$$= \frac{1}{4} \times \frac{1}{2}$$
$$= \frac{1}{8}$$

2. Consider the statistical learning problem for the distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} = \mathcal{Y} = \mathbf{R}$. A labeled example $(x,y) \in \mathbf{R}^2$ sampled from \mathcal{D} has probability distribution given by $x \sim \mathcal{N}(0,1)$ and $y|x \sim \mathcal{N}(f^*(x), 1)$, where $f^*(x) = \sum_{i=0}^{5} (i+1)x^i$.

Let P_k denote the set of all polynomials of degree k on \mathbf{R} —that is, the set of all functions of the form $f(x) = \sum_{i=0}^k a_i x^i$ for some $a_1, \ldots, a_k \in \mathbf{R}$.

Let D_m be a training set $(x_1, y_1), \ldots, (x_m, y_m) \in \mathbf{R} \times \mathbf{R}$ drawn i.i.d. from \mathcal{D} . We perform empirical risk minimization over a hypothesis space \mathcal{H} for the square loss. That is, we try to find $f \in \mathcal{H}$ minimizing

$$\hat{R}_m(f) = \frac{1}{m} \sum_{i=1}^{m} (f(x) - y)^2$$

- (a) (2 points) If we change the hypothesis space \mathcal{H} from $P_3(x)$ to $P_4(x)$ while keeping the same training set, select **ALL** of the following that **MUST** be true:
 - \square Approximation error increases or stays the same.
 - Approximation error decreases or stays the same.
 - \Box Estimation error increases or stays the same.
 - \square Bayes risk decreases.
- (b) (2 points) If we change the hypothesis space \mathcal{H} from $P_5(x)$ to $P_6(x)$ while keeping the same training set, select **ALL** of the following that **MUST** be true:
 - Approximation error stays the same.
 - \square Estimation error stays the same.
 - ☐ Optimization error stays the same.
 - Bayes risk stays the same.
- (c) (2 points) If we increase the size of the training set m from 1000 to 5000 while keeping the same hypothesis space $P_5(x)$, select **ALL** of the following that **MUST** be true:
 - Approximation error stays the same.
 - \square Estimation error decreases or stays the same.
 - The variance of $\hat{R}_m(f)$ for $f(x) = x^2$ decreases.
 - Bayes risk stays the same.

3. Let D_t denote a training set $(x_1, y_1), \ldots, (x_{n_t}, y_{n_t}) \in \mathbf{R}^d \times \{-1, 1\}$ and D_v a validation set $(x_1, y_1), \ldots, (x_{n_v}, y_{n_v}) \in \mathbf{R}^d \times \{-1, 1\}$. The training set D_t is linearly separable. Define $J(\theta) = \frac{1}{n_t} \sum_{(x,y) \in D_t} \ell(m)$, where $\ell(m)$ is a margin-based loss function, and m is the margin defined by $m = y(\theta^T x)$.

We have run an iterative optimization algorithm for 100 steps and attained $\tilde{\theta}$ as our approximate minimizer of $J(\theta)$.

Denote the training accuracy by $\alpha(D_t) = \frac{1}{n_t} \sum_{(x,y) \in D_t} \mathbf{1}(y\tilde{\theta}^T x > 0)$ and the validation accuracy by $\alpha(D_v) = \frac{1}{n_v} \sum_{(x,y) \in D_v} \mathbf{1}(y\tilde{\theta}^T x > 0)$.

- (a) Answer the following for the logistic loss $\ell(m) = \log(1 + e^{-m})$:
 - i. (1 point) <u>F</u> True or False: Achieving 100% training accuracy ($\alpha(D_t) = 1$) implies that we have achieved a minimizer of the objective function ($\tilde{\theta} \in \arg\min_{\theta} J(\theta)$).
 - ii. (1 point) <u>F</u> True or False: Achieving 100% validation accuracy ($\alpha(D_v) = 1$) implies that we have achieved a minimizer of the objective function ($\theta_t \in \arg\min_{\theta} J(\theta)$).
- (b) Answer the following for the hinge loss $\ell(m) = \max(0, 1 m)$:
 - i. (1 point) <u>F</u> True or False: Achieving 100% training accuracy ($\alpha(D_t) = 1$) implies that we have achieved a minimizer of the objective function ($\tilde{\theta} \in \arg\min_{\theta} J(\theta)$).
 - ii. (1 point) <u>T</u> True or False: Achieving a minimizer of the objective function $(\tilde{\theta} \in \arg\min_{\theta} J(\theta))$ implies we have achieved **training** accuracy 100% $(\alpha(D_t) = 1)$.
- (c) Answer the following for the perceptron loss $\ell(m) = \max(0, -m)$:
 - i. (1 point) <u>T</u> True or False: Achieving 100% training accuracy ($\alpha(D_t) = 1$) implies that we have achieved a minimizer of the objective function ($\tilde{\theta} \in \arg\min_{\theta} J(\theta)$).
 - ii. (1 point) <u>F</u> True or False: Achieving a minimizer of the objective function $(\tilde{\theta} \in \arg\min_{\theta} J(\theta))$ implies we have achieved **training** accuracy 100% ($\alpha(D_t) = 1$).

Figure 1: A subset of datapoints from D_m with the decision boundary.

4. Given a dataset $D_m = \{(z_1, y_1), \dots, (z_m, y_m)\} \in \mathbf{R}^2 \times \{-1, 1\}$ we solve the optimization problem given below to obtain w, b which characterizes the hyperplane which classifies any point $z \in \mathbf{R}^d$ into one of the classes y = +1 or y = -1 and a number ξ_i for each datapoint $z_i \in D_m$, referred to as slack.

$$\begin{aligned} & \text{minimize}_{w,b,\xi} & & \|w\|_2^2 + \frac{C}{m} \sum_{i=1}^n \xi_i \\ & \text{subject to} & & y_i(w^T z_i - b) \geq 1 - \xi_i \quad \text{for all } i \\ & & \xi_i \geq 0 \quad \text{for all } i. \end{aligned}$$

On solving the optimization problem on D_{100} for some $C \geq 0$, we get that $\hat{w} = (1,1)^T$ and $\hat{b} = 1$. Define $\hat{f}(z) = \hat{w}^T z - \hat{b}$. Figure 1 shows a subset of datapoints from D_m and assume that for all the datapoints $z_i \in D_m$ not shown in Figure 1 we have $y_i \hat{f}(z_i) > 1$. In the figure a label of + represents y = 1 and a label of \blacktriangle represents y = -1.

Figure 2: Solution to SVM Question

- (a) (2 points) On the graph in figure 1, draw lines to characterize the margin of the classifier $\hat{w}^Tz=\hat{b}$. The lines characterizing the margin are defined by $\{z\in\mathbf{R}^2:\hat{f}(z)=1\}$ and $\{z\in\mathbf{R}^2:\hat{f}(z)=-1\}$.
- (b) (4 points) Let ξ_{x_1,x_2} denote the slack of the point located at $z=(x_1,x_2)$. For each of the following questions below, fill in the blanks with the best choice from =,> or <:

- (c) From the representer theorem and from duality, we saw that \hat{w} can be expressed as $\hat{w} = \sum_{i=1}^{m} \alpha_i z_i$, where any z_i with $\alpha_i \neq 0$ is called a support vector. The complementary slackness conditions give us the following possibilities for any training example:
 - 1. The example **definitely IS** a support vector.
 - 2. The example **definitely IS NOT** a support vector.
 - 3. We cannot determine from the complementary slackness conditions whether or

not the example is a support vector.

For each of the following training points, select the \mathbf{ONE} best option from the possibilities above:

- i. (1 point) Example at (2,4) \square 1 \blacksquare 2 \square 3
- ii. (1 point) Example at (1,1) \square 1 \square 2 \blacksquare 3
- iii. (1 point) Example at (2,0) \blacksquare 1 \Box 2 \Box 3

5. Let D_n represent a dataset $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbf{R}^d \times \mathbf{R}$. The first two dimensions (i.e. features) of every vector x_i are related to each other by scaling: $x_{i1} = sx_{i2}, \forall i = 1, 2, \ldots, n$ for some $s \in \mathbf{R}$. Let $X \in \mathbf{R}^{n \times d}$ be the design matrix where the i^{th} row of X contains x_i^T and rank(X) = d - 1 (i.e. there are no other linear dependencies besides the one given). Consider the following objective function for elastic net defined over D_n :

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{T} x_{i} - y_{i})^{2} + \lambda_{1} \|\theta\|_{1} + \lambda_{2} \|\theta\|_{2}^{2}$$

- (a) Suppose that $|s| \neq 1$. We optimize $J(\theta)$ using subgradient descent. We start the optimization from θ_0 and converge to $\hat{\theta} \in \operatorname{argmin}_{\theta \in \mathbf{R}^d} J(\theta)$. We then restart the optimization from a different point θ'_0 and converge to $\hat{\theta}' \in \operatorname{argmin}_{\theta \in \mathbf{R}^d} J(\theta)$. Consider the following possibilities:
 - 1. Must have $\hat{\theta} = \hat{\theta}'$
 - 2. May have $\hat{\theta} \neq \hat{\theta}'$ but must have $J(\hat{\theta}) = J(\hat{\theta}')$
 - 3. May have $\hat{\theta} \neq \hat{\theta}'$ and $J(\hat{\theta}) \neq J(\hat{\theta}')$

For each of the subparts below, select the **ONE** best possibility from the three given above:

- i. (1 point) $\lambda_1 = 0, \lambda_2 = 0 \square 1 \blacksquare 2 \square 3$
- ii. (1 point) $\lambda_1 > 0, \lambda_2 = 0 \quad \blacksquare \quad 1 \quad \Box \quad 2 \quad \Box \quad 3$
- iii. (1 point) $\lambda_1 = 0, \lambda_2 > 0 \quad \blacksquare \quad 1 \quad \Box \quad 2 \quad \Box \quad 3$

(b) (3 points) Fix $\lambda_1 = 0$ and $\lambda_2 > 0$. We optimize $J(\theta)$ using stochastic gradient descent, starting from 0, and we attain $\hat{\theta} \in \operatorname{argmin}_{\theta \in \mathbf{R}^d} J(\theta)$. Let $\hat{f}(x) = \hat{\theta}^T x$. Consider a new point $x_t \in \mathbf{R}^d$ such that $x_t^T x_i = 0 \ \forall i = 1, 2, ..., n$. Show that $\hat{f}(x_t) = 0$. (This holds for any s, though you should not need to mention s in your answer.)

Solution: First we need to know that $\hat{\theta} = \sum_{i=1}^{n} \alpha_i x_i$, for some $\alpha \in \mathbf{R}^n$. This follows from the representer theorem or from the fact that in stochastic subgradient descent, we're always taking a step that's a multiple of a data point.

Once we know that θ is in the span of the data, we simply apply it to x_t : $\hat{f}(x_t) = \theta^T x_t = \sum_{i=1}^n \alpha_i x_i^T x_t = 0$.

- 6. Let $k(x, x') = \exp(-\frac{1}{2\sigma^2}||x x'||_{\mathcal{X}}^2)$, $\sigma > 0$ be the radial basis function (RBF) kernel. By Mercer's theorem, the kernel k corresponds to a feature map $\varphi : \mathcal{X} \to \mathcal{H}$ mapping inputs into an inner product space (actually a Hilbert space). Let $||\cdot||_{\mathcal{H}}$ be the norm in \mathcal{H} and $||\cdot||_{\mathcal{X}}$ be the norm in \mathcal{X} .
 - (a) (4 points) Show that for any inputs $x_1, x_2, x_3 \in \mathcal{X}$, $||x_2 x_1||_{\mathcal{X}}^2 \leq ||x_3 x_1||_{\mathcal{X}}^2 \Longrightarrow ||\varphi(x_2) \varphi(x_1)||_{\mathcal{H}}^2 \leq ||\varphi(x_3) \varphi(x_1)||_{\mathcal{H}}^2$. (Hint: Expand $||\varphi(x) \varphi(x')||^2$ using inner products, and then derive the conclusion.)

Solution:

$$\|\varphi(x_{2}) - \varphi(x_{1})\|_{\mathcal{H}}^{2} = \langle \varphi(x_{2}), \varphi(x_{2}) \rangle + \langle \varphi(x_{1}), \varphi(x_{1}) \rangle - 2\langle \varphi(x_{2}), \varphi(x_{1}) \rangle$$

$$= k(x_{2}, x_{2}) + k(x_{1}, x_{1}) - 2k(x_{2}, x_{1})$$

$$= 1 + 1 - 2 \exp(-\frac{1}{2} \|x_{1} - x_{2}\|_{\mathcal{X}}^{2})$$

$$\leq 1 + 1 - 2 \exp(-\frac{1}{2} \|x_{1} - x_{3}\|_{\mathcal{X}}^{2})$$

$$\leq k(x_{3}, x_{3}) + k(x_{1}, x_{1}) - 2k(x_{3}, x_{1})$$

$$\leq \langle \varphi(x_{3}), \varphi(x_{3}) \rangle + \langle \varphi(x_{1}), \varphi(x_{1}) \rangle - 2\langle \varphi(x_{3}), \varphi(x_{1}) \rangle$$

$$\leq \|\varphi(x_{3}) - \varphi(x_{1})\|_{\mathcal{H}}^{2}$$

7. Consider the regression setting in which $\mathcal{X} = \mathbf{R}^d$, $\mathcal{Y} = \mathbf{R}$, and $\mathcal{A} = \mathbf{R}$ with a linear hypothesis space $\mathcal{F} = \{f(x) = w^T x | w \in \mathbf{R}^d\}$ and the loss function

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$

where \hat{y} is the action and y is the outcome. Consider the objective function

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w^{T} x_{i}, y_{i}) + \lambda ||w||,$$

where $||w|| = \sqrt{\sum_{i=1}^d w_i^2}$ is the ℓ_2 norm of w.

(a) (4 points) Provide a kernelized objective function $J_k(\alpha) : \mathbf{R}^n \to \mathbf{R}$. You may write your answer in terms of the Gram matrix $K \in \mathbf{R}^{n \times n}$, defined as $K_{ij} = x_i^T x_j$.

Solution: The kernelized objective function is

$$J_k(\alpha) = \frac{1}{n} \sum_{i=1}^n \ell((K\alpha)_i, y_i) + \lambda \sqrt{\alpha^T K \alpha}$$

- (b) (1 point) <u>T</u> True or False: Suppose we use subgradient descent to optimize the objective function and want to find the global minima of the objective function. If we find that there exists a zero subgradient at some step in the subdifferential set, we should stop the subgradient descent immediately.
- (c) (1 point) <u>T</u> True or False: Let w^* be any minimizer of J(w). Then w^* has the form of $w^* = \sum_{i=1}^n \alpha_i x_i$.