Lab6: Logistic Regression and Metrics

Hao-Lun Sun & DataLab 2021.10.14

- Brief Review: Logistic Regression
 - Maximum likelihood in Logistic Regression
 - Implement

- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

- Brief Review: Logistic Regression
 - Maximum likelihood in Logistic Regression
 - Implement

- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

• Flipping coin: We have already known ground truth distribution. For example, $P(x = head) = \frac{1}{2}$ and $P(x = tail) = \frac{1}{2}$.

• Flipping coin: We have already known ground truth distribution. For example, $P(x = head) = \frac{1}{2}$ and $P(x = tail) = \frac{1}{2}$.

 However, in many tasks, the ground truth distributions are never known, e.g., probability distribution of getting COVID-19.

- The process to approximate the distribution:
 - First, we assume the proportion of people diagnosed with a disease follow Binomial distribution, e.g., $X \sim Bin(A, \rho)$.
 - A is the number of person that diagnosed, ρ is illness rate.
 - If there are 4 patients out of 10 people, the number of Binomial trials would be 10, i.e., $X \sim Bin(10, \rho)$.

$$P(X = 4 \mid \rho) = C_4^{10} \rho^4 (1 - \rho)^{(10-4)}$$

$$P(X = 4 \mid \rho) = C_4^{10} \rho^4 (1 - \rho)^{(10-4)}$$

- Brief Review: Logistic Regression
 - Maximum likelihood in Logistic Regression
 - Implement

- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

Logistic Regression

• In logistic regression, we solve maximum log-likelihood instead.

$$\underset{w}{\operatorname{arg max}} \log P(X | w)$$

Update with gradient decent:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}} \log P(\mathbf{X} \mid \mathbf{w}^{(t)})$$

• Where:

$$\nabla_{\mathbf{w}} \log P(X \mid \mathbf{w}^{(t)}) = \sum_{t=1}^{N} [y'^{(t)} - \sigma(\mathbf{w}^{(t)T} \mathbf{x}^{(t)})] \mathbf{x}^{(t)}, \quad y' = \frac{y+1}{2}$$

Logistic Regression

- Brief Review: Logistic Regression
 - Maximum likelihood in Logistic Regression
 - Implement

- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

Confusion Matrix

• It is important to know how the model make wrong prediction.

• In binary classification, confusion matrix is a common tool to analyze the predictions.

Confusion Matrix

 It is important to know how the model make wrong prediction.

• In binary classification, confusion matrix is a common tool to analyze the predictions.

Other metrics we can use:

$$TPR = \frac{TP}{TP + FN}$$
 $FPR = \frac{FP}{FP + TN}$

- Brief Review: Logistic Regression
 - Maximum likelihood in Logistic Regression
 - Implement

- Common Evaluation Metrics for Binary Classification
 - Confusion Matrix
 - Soft Classifiers ROC Curve

ROC Curve

• ROC curve analyze the performance for every threshold in soft classifiers.

• In X-axis: FPR

$$FPR = \frac{FP}{FP + TN}$$

• In Y-axis: TPR

$$TPR = \frac{TP}{TP + FN}$$

ROC Curve

 ROC curve analyze the performance for every threshold in soft classifiers.

• In X-axis: FPR

$$FPR = \frac{FP}{FP + TN}$$

• In Y-axis: TPR

$$TPR = \frac{TP}{TP + FN}$$

ROC Curve

- AUC Area Under the ROC Curve.
 - ROC can be quantified using AUC.

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc https://medium.com/acing-ai/what-is-auc-446a71810df9

Homework

- Homework: Lab06
 - Lab06: Logistic Regression, Metrics

- Bonus: Lab07 && Lab08
 - Lab07: Support Vector Machine, k-Nearest Neighbors
 - Lab08: Cross Validation, Ensemble

Reference

- https://bookdown.org/ccwang/medical_statistics6/section-43.html
- https://bookdown.org/ccwang/medical_statistics6/bernoulli.html
- https://bookdown.org/ccwang/medical_statistics6/binomial.html
- https://bookdown.org/ccwang/medical_statistics6/likelihood-definition.html
- https://en.wikipedia.org/wiki/Sensitivity_and_specificity
- https://commons.wikimedia.org/w/index.php?curid=109730045
- https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
- https://medium.com/acing-ai/what-is-auc-446a71810df9
- https://github.com/dariyasydykova/open_projects/tree/master/ROC_animation