

TEST REPORT

CE WLAN (2 400 MHz ~ 2 483.5 MHz) Test for SRM200A

APPLICANT
SEONG JI INDUSTRIAL CO.,LTD

REPORT NO. HCT-RF-1911-CE017

DATE OF ISSUE November 08, 2019

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

REPORT NO. HCT-RF-1911-CE017

DATE OF ISSUE November 08, 2019

Applicant

SEONG JI INDUSTRIAL CO.,LTD

54-33, Dongtan Hana 1-gil, Hwaseong-si, Gyeonggi-do, 18423, Korea

Eut Type Monarch Quad-mode module Model Name SRM200A Date of Test September 09, 2019 ~ November 06, 2019 Test Standard Used ETSI EN 300 328 V2.1.1 (2016-11) Test Results Approval for CE Temperature: (22.5 ± 3.0) °C, Relative Humidity: (54.6 ± 3.0) % R. H. Results, Measurement uncertainty: Refer to the attachment Manufacturer SEONG JI INDUSTRIAL CO.,LTD Operating frequency range 2 400 MHz ~2 483.5 MHz The result shown in this test report refer only to the sample(s) tested unless

otherwise stated.

This test results were applied only to the test methods required by the standard.

Tested by

Hyeong Hoon Lee

Technical Manager Seul Ki Lee

HCT CO., LTD.

Soo Chan Lee

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	November 08, 2019	Initial Release

F-TP22-03 (Rev. 01) Page 3 of 61

CONTENTS

1. CLIENT INFORMATION	6
2. EQUIPMENT UNDER TEST (EUT)	6
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST	7
3.1 Manufacturers declarations	7
3.2 Channel List	8
3.3 Operating frequency range during under the test	8
3.4 The EUT was operation in special test mode.	9
3.5 Data rate of the worst	10
5. TEST EQUIPMENT	12
6. TRANSMITTER MEASUREMENTS – RESULTS	14
6.1 RF output power	14
6.1.1 Test Setup	14
6.1.2 Test Procedure	14
6.1.3 Limit	16
6.1.4 Test Result	17
6.2 Power Spectral Density	19
6.2.1 Test Setup	19
6.2.2 Test Procedure	19
6.2.3 Limit	20
6.2.4 Test Result	21
6.3 Occupied channel bandwidth	22
6.3.1 Test Setup	22
6.3.2 Test Procedure	22
6.3.3 Limit	23
6.3.4 Test Result	24
6.4 Transmitter unwanted emissions in the out-of-band domain	26
6.4.1 Test Setup	26
6.4.2 Test Procedure	26
6.4.3 Limit	29
6.4.4 Test Result	30
6.5 Adaptivity	31
6.5.1 Test set-up	31
6.5.2 Test Procedure	32
6.5.3 The energy detection threshold	35

F-TP22-03 (Rev. 01) Page 4 of 61

	6.5.4 Signal calibration plot	36
	6.5.5 Limit	39
	6.5.6 Test Result	40
	6.5.7 Test Plot	41
	6.6 Transmitter unwanted emissions in the spurious domain	45
	6.6.1 Test Setup	45
	6.6.2 Test Procedure	46
	6.6.3 Test Site	46
	6.6.4 Test Method	46
	6.6.5 Limit	46
	6.6.6 Test Result	47
7.	RECEIVER MEASUREMENTS – RESULTS	49
	7.1 Receiver spurious emissions	49
	7.1.1 Test Setup	49
	7.1.2 Test Procedure	50
	7.1.3 Test Site	50
	7.1.4 Test Method	50
	7.1.5 Limit	50
	7.1.6 Test Result	51
	7.2 Receiver Blocking	53
	7.2.1 Test Setup	53
	7.2.2 Test Procedure	54
	7.2.3 Limit	55
	7.2.4 Test Result	57
8.	GEO-LOCATION CAPABILITY	59
	8.1 Definition	59
	8.2 Requirements	59
	8.3 Declaration by the Manufacturer	59
9.	PHOTOGRAPHS OF THE EUT	60
1(). SETUP PHOTO	61

F-TP22-03 (Rev. 01) Page 5 of 61

1. CLIENT INFORMATION

The EUT has been tested by request of

Company	SEONG JI INDUSTRIAL CO.,LTD 54-33, DongtanHana 1-gil, Hwaseong-si, Gyeonggi-do, 18423, Korea
---------	--

2. EQUIPMENT UNDER TEST (EUT)

Equipment	Monarch Quad-mode module
Model	SRM200A
Additional Model	-
Serial number	-
Manufacturer	SEONG JI INDUSTRIAL CO.,LTD
Rating	DC 3.30 V

F-TP22-03 (Rev. 01) Page 6 of 61

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

3.1 Manufacturers declarations

No. of units:	One (Transceiver)		
No. of deviating variants:	None		
Application:	Monarch Quad-mode module		
Equipment category:	Short Range Device		
Model No.:	SRM200A		
Additional Model No.:	-		
Serial No.:	-		
Type of modulation:	DSSS (802.11b) & OFDM (802.11g, 802	.11n(HT20))	
Specification(s):	ETSI EN 300 328 V2.1.1 (2016-11)		
Receiver Category:	1		
Type of unit:	Stand-alone equipment		
- (- :	☐ Adaptive Equipment without the possibility to switch to a non-adaptive mode		
Type of Equipment	☐ Non-adaptive Equipment		
	☐ Adaptive Equipment which can also operate in a non-adaptive mode		
Operating frequency range:	2 400 MHz ~2 483.5 MHz		
Frequency alignment range:	2 412 MHz ~ 2 472 MHz		
Beam forming	Not Applicable		
Channels:	13		
Version	Hardware: v1.4		
Version	Software: v1.0.1		
	Normal voltage :	DC 3.3 V	
Power source:	Extreme lower voltage :	DC 2.7 V	
	Extreme upper voltage :	DC 3.6 V	
	Normal Temperature :	+22.5°C	
Temperature range:	Extreme lower Temperature :	-30.0°C	
	Extreme upper Temperature :	+85.0°C	
Operating mode :			
	802.11n (HT20) : Smart Antenna Systems - Single Antenna		
Antenna type:	External antenna (Dipole Antenna)		
Max. antenna gain:	4.44 dBi		

Note:

1. At the request of the customer, all test requirements were performed ETSI EN 300 328 V2.1.1 (2016-11)

F-TP22-03 (Rev. 01) Page 7 of 61

3.2 Channel List

802.11b/g/n Working Frequency of Each Channel		
Channel	Frequency(MHz)	
01	2 412	
02	2 417	
03	2 422	
04	2 427	
05	2 432	
06	2 437	
07	2 442	
08	2 447	
09	2 452	
10	2 457	
11	2 462	
12	2 467	
13	2 472	

3.3 Operating frequency range during under the test

Operating frequency	Frequency(MHz)
Bottom	2 412
Middle	2 442
Тор	2 472

F-TP22-03 (Rev. 01) Page 8 of 61

3.4 The EUT was operation in special test mode.

- The value of the power parameters of the test software, please refer to the table below.

Maximum Power

Test Mode	2 412 MHz	2 442 MHz	2 472 MHz
802.11b	20	20	20
802.11g	18	18	18
802.11n(HT20)	18	18	18

F-TP22-03 (Rev. 01) Page 9 of 61

3.5 Data rate of the worst

All tests conducted in this report were made at the worst case data rate of each modulation. For each modulation data rate of the worst, please refer to the table below.

Modulation	Data Rate (Mbps)
802.11b	1
802.11g	12
802.11n(HT20)	MCS1

Parameter	Modulation	Data Rate (Mbps)
Adaptivity	802.11b	1

Parameter	Modulation	Data Rate (Mbps)
Receiver Blocking	802.11b	1

Parameter	Modulation	Data Rate (Mbps)
Do oci vov on uvie ve omiceiane	802.11b	1
Receiver spurious emissions	802.11g	6

F-TP22-03 (Rev. 01) Page 10 of 61

4. TEST SUMMARY

Clause	Parameter	Test method	Result
4.3.2.2	RF Output Power	Conducted	Pass
4.3.2.3	Power Spectral Density	Conducted	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	N/A	(See note1)
4.3.2.5	Medium Utilisation	N/A	(See note1)
4.3.2.6	Adaptivity	Conducted	Pass
4.3.2.7	Occupied Channel Bandwidth	Conducted	Pass
4.3.2.8	Transmitter unwanted emissions in the OOB domain	Conducted	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Radiated	Pass (See note4)
4.3.2.10	Receiver Spurious emissions	Radiated	Pass (See note4)
4.3.2.11	Receiver Blocking	Conducted	Pass
4.3.2.12	Geo-location capability	N/A	(See note2)

Note:

- 1. These requirements does not apply to Adaptive Equipment without the possibility to switch to a non-adaptive mode.
- 2. Geo-location capability is implemented in this product and can't be accessible to the user.
- 3. At the request of the customer, all test requirements were performed EN 300 328 V2.1.1 (2016-11).
- 4. This item was tested in the worst case and the results recorded.

F-TP22-03 (Rev. 01) Page 11 of 61

5. TEST EQUIPMENT

No.	Instrument	Model No.	Due to Calibration	Manufacture	Serial No.
\boxtimes	Signal Analyzer (20 Hz ~ 40.0 GHz)	FSV40-N	2020-09-26	ROHDE & SCHWARZ	101068-SZ
×	Signal Analyzer (20 Hz ~ 26.5 GHz)	N9020A	2019-12-24	AGILENT	MY50200666
×	SIGNAL GENERATOR (100kHz~40GHz)	SMB100A	2020-07-15	Rohde&Schwarz	177633
×	SIGNAL GENERATOR (9kHz~6GHz)	SMBV100A	2020-09-24	Rohde&Schwarz	255727
\boxtimes	Communication Tester	CMW500	2020-05-23	Rohde&Schwarz	127521
\boxtimes	Power Measurement Set	OSP 120(See note3)	2020-07-24	Rohde&Schwarz	101231
\boxtimes	High Pass Filter	WHKX10-2700-3000- 18000-40SS	2020-07-22	WAINWRIGHT INSTRUMET	3
\boxtimes	Band rejection filter	WRCJV2400/2483.5- 2370/2520-60/12SS	2020-06-19	WAINWRIGHT INSTRUMET	2
×	Band rejection filter (5 100 MHz ~ 5 800 MHz)	WRCJV5100/5850-40/50- 8EEK	2020-01-03	WAINWRIGHT INSTRUMET	2
\boxtimes	BI-LOG Antenna (25 MHz ~ 1 GHz)	VULB9160	2020-08-09	Schwarzbeck	9160-3368
\boxtimes	Full anechoic chamber	10m×5m×5m	-	EMERSON&CUMING	-
	STEP ATTENUATOR (1 W, DC ~ 18 GHz)	AF9003-69-31	2020-10-14	WEINSCHEL	5701
\boxtimes	Fixed Attenuator (10 dB, DC ~ 26.5 GHz)	56-10	2020-09-24	WEINSCHEL	72324
\boxtimes	Fixed Attenuator (20 dB, DC ~ 26.5 GHz)	8493C	2020-06-04	НР	17280
\boxtimes	Turn Table	DE 3260	-	INNCO GmbH	7860504
\boxtimes	DC power supply	E3632A	2020-06-18	HP	KR75303960
	Temp & Humidity Chamber	SU-642	2020-03-12	ESPEC	0093008124
\boxtimes	POWER SPLITTER (Dc to 26.5 GHz)	11667B	2020-05-03	НР	11275
\boxtimes	Power Divider-2way (DC ~ 26.5 GHz)	11636B	2020-02-15	НР	51942
×	POWER DIVIDER-4WAY (0.5 ~ 18 GHz)	Narda 4426-4	2020-01-30	Narda	11927
\boxtimes	POWER AMP (0.1 GHz ~ 18 GHz)	CBLU1183540B-01	2020-03-20	CERNEX	28548
⊠	Horn Antenna (1 GHz ~ 18 GHz)	BBHA9120D	2021-09-25	Schwarzbeck	9120D-1298
×	Companion device (Access Point)	WEA453e	-	SAMSUNG	-

Note:

- 1. All equipment is calibrated with traceable calibrations.
- 2. Each calibration is traceable to the national or international standards.
- 3. OSP120 spec:

F-TP22-03 (Rev. 01) Page 12 of 61

- RMS integration over a significant portion of signal
- Fast response time for accurate burst detection
- Sampling rate 1 MS/s
- Storage of max. 32 Million samples in total
- Synchronous measurement channels for 4 antenna port
- Maximum DUT output power 12 dBm linear without attenuator, with included attenuators 22 dBm linear (and 32 dBm linear optional)
- Measurement tolerances better than ETSI requirements

F-TP22-03 (Rev. 01) Page 13 of 61

6. TRANSMITTER MEASUREMENTS - RESULTS

6.1 RF output power

6.1.1 Test Setup

6.1.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.2.2

Step 1:

- Use a fast power sensor suitable for 2,4 GHz and capable of minimum 1 MS/s.
- Use the following settings:
- Sample speed 1 MS/s or faster.
- The samples shall represent the RMS power of the signal.
- Measurement duration: For non-adaptive equipment: equal to the observation period defined in clause 4.3.1.3.2 or clause 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) is captured.

For adaptive equipment, to increase the measurement accuracy, a higher number of bursts may be used.

Step 2:

- For conducted measurements on devices with one transmit chain:
- Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.
- For conducted measurements on devices with multiple transmit chains:
- Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports.

F-TP22-03 (Rev. 01) Page 14 of 61

- Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than 500 ns.
- For each individual sampling point (time domain), sum the coincident power samples of all ports and store them. Use these summed samples as the new stored data set.

Step 3:

• Find the start and stop times of each burst in the stored measurement samples.

The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples in step 2.

In case of insufficient dynamic range, the value of 30 dB may need to be reduced appropriately.

Step 4:

• Between the start and stop times of each individual burst calculate the RMS power over the burst using the

formula below. The start and stop points shall be included. Save these Pburst values, as well as the start and stop times for each burst.

$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$$

with k being the total number of samples and n the actual sample number.

Step 5:

• The highest of all Pburst values (value A in dBm) will be used for maximum e.i.r.p. calculations.

Step 6:

- Add the (stated) antenna assembly gain G in dBi of the individual antenna.
- If applicable, add the additional beamforming gain Y in dB.
- If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
- The RF Output Power (P) shall be calculated using the formula below:

$$P = A + G + Y$$

• This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.

F-TP22-03 (Rev. 01) Page 15 of 61

6.1.3 Limit

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm.

The maximum RF output power for non-adaptive equipment shall be declared by the manufacturer and shall not exceed 20 dBm. See clause 5.4.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the manufacturer.

This limit shall apply for any combination of power level and intended antenna assembly.

F-TP22-03 (Rev. 01) Page 16 of 61

6.1.4 Test Result

TEST CON	TEST CONDITIONS:		RF Output Power (dBm)		
TEST CON			2 442 MHz	2 472 MHz	
T nom	V nom	15.01	14.42	13.96	
тІ	ow	19.36	18.73	18.21	
T high		12.08	11.51	11.05	

Measurement Uncertainty: 0.35 dB (about 95 %, k=2)

Note:

1. Modulation type: 802.11b

2. P = A + G + Y

(P: RF Output Power, A: Highest of all Pburst values. G: Antenna assembly gain, Y: Beamforming gain)

TEST CONDITIONS:		RF Output Power (dBm)		
TEST CON	TEST CONDITIONS:		2 442 MHz	2 472 MHz
T nom	V nom	14.73	14.66	13.55
T l	ow	19.05	19.01	17.82
T high		12.10	11.70	10.65

Measurement Uncertainty: 0.35 dB (about 95 %, k=2)

Note:

1. Modulation type: 802.11g

2. P = A + G + Y

(P: RF Output Power, A: Highest of all Pburst values. G: Antenna assembly gain, Y: Beamforming gain)

F-TP22-03 (Rev. 01) Page 17 of 61

TEST COL	TEST CONDITIONS:		RF Output Power (dBm)		
TEST COI			2 442 MHz	2 472 MHz	
T nom	V nom	14.69	14.64	13.54	
Т	low	19.04	18.98	17.82	
T high		11.71	11.90	10.64	

Measurement Uncertainty : 0.35 dB (about 95 %, k=2)

Note:

1. Modulation type: 802.11n(HT20)

2. P = A + G + Y

(P: RF Output Power, A: Highest of all Pburst values. G: Antenna assembly gain, Y: Beamforming gain)

F-TP22-03 (Rev. 01) Page 18 of 61

6.2 Power Spectral Density

6.2.1 Test Setup

6.2.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.3.2

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: The centre frequency of the channel under test

- RBW: 1 MHz

- VBW: 3 MHz

- Frequency Span: 2 × Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel)

Detector Mode: PeakTrace Mode: Max Hold

Step 2:

When the trace is complete, find the peak value of the power envelope and record the frequency.

Step 3:

Make the following changes to the settings of the spectrum analyser:

- Centre Frequency: Equal to the frequency recorded in step 2

- Frequency Span: 3 MHz

- RBW: 1 MHz - VBW: 3 MHz

- Sweep Time: 1 minute- Detector Mode: RMS- Trace Mode: Max Hold

F-TP22-03 (Rev. 01) Page 19 of 61

Step 4:

- When the trace is complete, the trace shall be captured using the "Hold" or "View" option on the spectrum
- analyser.
- Find the peak value of the trace and place the analyser marker on this peak. This level is recorded as the highest mean power (power spectral density) D in a 1 MHz band.
- Alternatively, where a spectrum analyser is equipped with a function to measure power spectral density, this function may be used to display the power spectral density D in dBm / MHz.
- In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit

chains active simultaneously, the power spectral density of each transmit chain shall be measured separately to calculate the total power spectral density (value D in dBm / MHz) for the UUT.

Step 5:

The maximum Power Spectral Density (PSD) e.i.r.p. is calculated from the above measured power spectral

density D, the observed Duty Cycle (DC) (see clause 5.4.2.2.1.3, step 4), the applicable antenna assembly gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the highest gain shall be used.

$$PSD = D + G + Y + 10 \times log (1 / DC) (dBm / MHz)$$

6.2.3 Limit

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10dBm per MHz.

F-TP22-03 (Rev. 01) Page 20 of 61

6.2.4 Test Result

TEST CONDITIONS:		Power Spectral Density (dBm/MHz)		
TEST CON	NDITIONS:	2 412 MHz	2 442 MHz	2 472 MHz
T nom	V nom	6.04	5.26	4.61
Measurement Uncertainty: 1.18 dB (about 95 %, k = 2)				

Note:

1. Modulation type: 802.11b

TEST CON	NDITIONS:	Power Spectral Density (dBm/MHz)		
TEST CON	NDITIONS:	2 412 MHz	2 442 MHz	2 472 MHz
T nom	V nom	1.69	1.81	0.34
Measurement Uncertainty : 1.18 dB (about 95 %, $k=2$)				

Note:

1. Modulation type: 802.11g

TEST CON	NDITIONS:	Power Spectral Density (dBm/MHz)		
TEST CON	NDITIONS:	2 412 MHz	2 442 MHz	2 472 MHz
T nom	V nom	1.42	1.53	0.06
	Measurement Uncertainty : 1.18 dB (about 95 %, k = 2)			

Note:

1. Modulation type: 802.11n(HT20)

F-TP22-03 (Rev. 01) Page 21 of 61

6.3 Occupied channel bandwidth

6.3.1 Test Setup

6.3.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.7.2

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

• Centre Frequency: The centre frequency of the channel under test

• Resolution BW: ~ 1 % of the span without going below 1 %

• Video BW: 3 × RBW

• Frequency Span: 2 × Occupied Channel Bandwidth

Detector Mode: RMSTrace Mode: Max Hold

• Sweep time: 1 s

Step 2:

Wait until the trace is completed.

Find the peak value of the trace and place the analyser marker on this peak.

Step 3:

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.

F-TP22-03 (Rev. 01) Page 22 of 61

6.3.3 Limit

The Occupied Channel Bandwidth shall fall completely within the band given in clause 1.

• clause 1.: 2,4 GHz to 2,4835 GHz.

In addition, for non-adaptive equipment using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

F-TP22-03 (Rev. 01) Page 23 of 61

6.3.4 Test Result

TEST COA	IDITIONS:	Occupied Channel Bandwidth (MHz)		
TEST CON	IDITIONS:	Bottom Frequency	Top Frequency	
T nom	V nom	11.18	11.19	
Range of 0	OBW(MHz)	2 406.4 ~ 2 477.56		
Limit(MHz)		2 400 ~ 2 483.5		
Measurement Uncertainty : 95 kHz (about 95 %, k = 2)				

Note: 1. Modulation type: 802.11b

TEST COA	IDITIONS.	Occupied Channel Bandwidth (MHz)		
TEST CON	IDITIONS:	Bottom Frequency	Top Frequency	
T nom	V nom	16.48	16.48	
Range of 0	OBW(MHz)	2 403.76 ~ 2 480.2		
Limit(MHz)		2 400 ~ 2 483.5		
	Measurement Uncertainty : 95 kHz (about 95 %, k = 2)			

Note: 1. Modulation type: 802.11g

F-TP22-03 (Rev. 01) Page 24 of 61

TEST CONDITIONS:		Occupied Channel Bandwidth (MHz)		
TEST CON	NDITIONS:	Bottom Frequency	Top Frequency	
T nom	V nom	17.61	17.62	
Range of OBW(MHz)		2 403.08 ~ 2 480.8		
Limit(MHz)		2 400 ~ 2 483.5		
Measurement Uncertainty : 95 kHz (about 95 %, k = 2)				

Note:

1. Modulation type: 802.11n (HT20)

F-TP22-03 (Rev. 01) Page 25 of 61

6.4 Transmitter unwanted emissions in the out-of-band domain

6.4.1 Test Setup

6.4.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.8.2

Step 1:

• Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: 2 484 MHz

- Span: 0 Hz

Resolution BW: 1 MHzFilter mode: Channel filter

- Video BW: 3 MHz- Detector Mode: RMS- Trace Mode: Max Hold- Sweep Mode: Continuous

- Sweep Points: Sweep Time [s] / $(1 \mu s)$ or 5 000 whichever is greater

- Trigger Mode: Video trigger

NOTE 1: In case video triggering is not possible, an external trigger source may be used.

- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

F-TP22-03 (Rev. 01) Page 26 of 61

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

- Adjust the trigger level to select the transmissions with the highest power level.
- For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.
- Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power
- shall be measured using the Time Domain Power function.
- Select RMS power to be measured within the selected window and note the result which is the RMS power
- within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.
- Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

- Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first
- 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

• Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

• Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1

F-TP22-03 (Rev. 01) Page 27 of 61

MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 6:

- In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain G in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figure 1 or figure 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
- In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain G in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
- Option 1: Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain Y in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figure 1 or figure 3.
- Option 2: Option 2: the limits provided by the mask given in figure 1 or figure 3 shall be reduced by $10 \times log10$ (Ach) and the additional beamforming gain Y in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE: Ach refers to the number of active transmit chains.

It shall be recorded whether the equipment complies with the mask provided in figure 1 or figure 3.

F-TP22-03 (Rev. 01) Page 28 of 61

6.4.3 Limit

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 3.

figure 3: Transmit mask

F-TP22-03 (Rev. 01) Page 29 of 61

6.4.4 Test Result

Test Conditions	Modulation	Measured Power (dBm/ MHz)			
		Bottom Frequency		Top Frequency	
		2400 MHz -2 BW ~ 2400 MHz -BW	2400 MHz - BW ~ 2400 MHz	2483.5 MHz ~ 2483.5 MHz + BW	2483.5 MHz + BW ~ 2483.5 MHz + 2BW
T nom	802.11b	-42.47	-39.13	-41.45	-42.40
	802.11g	-41.81	-29.77	-28.98	-42.09
	802.11n(HT20)	-40.78	-29.99	-34.40	-41.93

Measurement Uncertainty: 0.70 dB (about 95 %, k=2)

F-TP22-03 (Rev. 01) Page 30 of 61

6.5 Adaptivity

6.5.1 Test set-up

- S/A: N9020A

- AP: WEA453e

- S/G: SMBV100A (interferer)

- S/G: SMB100A (Blocker)

- 4WAY-DIVIDER: Narda 4426-4

- Step attenuator : AF9003-69-31

- Power Splitter : 11667B

- Cable Loss

- A: 0.4 dB

- B: 0.4 dB

- D:0.7 dB

- E:0.7 dB

- F:0.7 dB

- G1, G2: 0.4 dB

- Power Splitter : 6.0 dB

F-TP22-03 (Rev. 01) Page 31 of 61

6.5.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.6.2.1.4

Step 1:

- The UUT shall connect to a companion device during the test. The interference signal generator, the unwanted signal generator, the spectrum analyser, the UUT and the companion device are connected using a set-up equivalent to the example given by figure 5, although the interference and unwanted signal generators do not generate any signals at this point in time. The spectrum analyser is used to monitor the transmissions of both the UUT and the companion device and it should be possible to distinguish between either transmission. In addition, the spectrum analyser is used to monitor the transmissions of the UUT in response to the interfering and the unwanted signals.
- Adjust the received signal level (wanted signal from the companion device) at the UUT to the value defined in table 10 (clause 4.3.2.6.3.2.2) for Frame Based Equipment or in table 11 (clause 4.3.2.6.3.2.3) for Load Based Equipment.

Testing of Unidirectional equipment does not require a link to be established with a companion device.

- The analyser shall be set as follows::
- RBW: ≥ Occupied Channel Bandwidth (if the analyser does not support this setting, the highest available setting shall be used)
- VBW: 3 × RBW (if the analyser does not support this setting, the highest available setting shall be used)
- Detector Mode: RMS
- Centre Frequency: Equal to the centre frequency of the operating channel
- Span: 0 Hz
- Sweep time: > maximum Channel Occupancy Time
- Trace Mode: Clear Write
- Trigger Mode: Video

Step 2:

• Configure the UUT for normal transmissions with a sufficiently high payload resulting in a minimum transmitter activity ratio (TxOn / (TxOn + TxOff)) of 0,3. Where this is not possible, the UUT shall be configured to the maximum payload possible.

F-TP22-03 (Rev. 01) Page 32 of 61

• For Load Based equipment, using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.3.2.3, step 2 and step 3. When measuring the Idle Period of the UUT, it shall not include the transmission time of the companion device.

For the purpose of testing Load Based Equipment referred to in the first paragraph of clause 4.3.2.6.3.2.3 (IEEE 802.11™ [i.3] or IEEE 802.15.4™ [i.4] equipment), the limits to be applied for the minimum Idle Period and the maximum Channel Occupancy Time are the same as defined for other types of Load Based

Equipment (see clause 4.3.2.6.3.2.3, step 2 and step 3). The Idle Period is considered to be equal to the CCA or Extended CCA time defined in clause 4.3.2.6.3.2.3, step 1 and step 2.

Step 3: Adding the interference signal

• An interference signal as defined in clause B.6 is injected on the current operating channel of the UUT. The power spectral density level (at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clause 4.3.2.6.3.2.2 step 5) (frame based equipment) or clause 4.3.2.6.3.2.3 step 5) (load based equipment).

Step 4: Verification of reaction to the interference signal

• The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel with the interfering signal injected. This may require the spectrum analyser sweep to be triggered by

the start of the interfering signal.

- Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:
- i) The UUT shall stop transmissions on the current operating channel.

The UUT is assumed to stop transmissions within a period equal to the maximum Channel Occupancy Time defined in clause 4.3.2.6.3.2.2 (frame based equipment) or clause 4.3.2.6.3.2.3 (load based equipment).

ii) Apart from Short Control Signalling Transmissions, there shall be no subsequent transmissions while the

interfering signal is present.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be 60 s or more.

iii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering signal is present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

F-TP22-03 (Rev. 01) Page 33 of 61

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

iv) Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the blocking signal

- With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 10 (clause 4.3.2.6.3.2.2) for Frame Based Equipment or in table 11 (clause 4.3.2.6.3.2.3) for Load Based Equipment.
- The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel. This may require the spectrum analyser sweep to be triggered by the start of the unwanted signal.
- Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:
- i) The UUT shall not resume normal transmissions on the current operating channel as long as both the interference and unwanted signals remain present.

To verify that the UUT is not resuming normal transmissions as long as the interference and unwanted signals are present, the monitoring time may need to be 60 s or more.

ii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering and unwanted signals are present. These transmissions shall comply with the limits defined

in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

Step 6: Removing the interference and blocking signal

• On removal of the interference and unwanted signals the UUT is allowed to start transmissions again on this channel; however, this is not a requirement and, therefore, does not require testing.

Step 7:

• Step 2 to step 6 shall be repeated for each of the frequencies to be tested.

F-TP22-03 (Rev. 01) Page 34 of 61

6.5.3 The energy detection threshold

Test Frequency: 2 412 MHz

- The energy detection threshold

```
802.11b = -70 \text{ dBm/MHz} + 10 \times \log 10 (100 \text{ mW / Pout}) = -70 + 10 \times \log 10 (100 \text{ mW / } 31.70) = -65.01 \text{ dBm/MHz}
```

Test Frequency: 2 472 MHz

- The energy detection threshold

```
802.11b = -70 \text{ dBm/MHz} + 10 \times \log 10 (100 \text{ mW / Pout}) = -70 + 10 \times \log 10 (100 \text{ mW / } 24.89) = -63.96 \text{ dBm/MHz}
```

Measurement Uncertainty:

- Time : \pm 0.01 % (about 95 %, k=2)

- Threshold level : ± 1.18 dB (about 95 %, k=2)

F-TP22-03 (Rev. 01) Page 35 of 61

6.5.4 Signal calibration plot

- 1. Threshold level
- 2. Test Frequency: 2 412 MHz
- 3. We tested using the worst-case the interference signal level (-70dBm).

- 1. Threshold level
- 2. Test Frequency: 2 472 MHz
- 3. We tested using the worst-case the interference signal level (-70dBm).

- 1. Interference Signal (bandwidth)
- 2. Test Frequency: 2 412 MHz
- 3. Modulation: 802.11b

F-TP22-03 (Rev. 01) Page 36 of 61

- 1. Interference Signal (bandwidth)
- 2. Test Frequency: 2 472 MHz
- 3. Modulation: 802.11b

- 1. Interference Signal (length): 50ms
- 2. Test Frequency: 2 412 MHz

- 1. Interference Signal (length): 50ms
- 2. Test Frequency: 2 472 MHz

F-TP22-03 (Rev. 01) Page 37 of 61

- 1. Unwanted Signal
- 2. Blocking frequency: 2 395.0 MHz
- 3. Limit: -35 dBm
- 4. Type of interfering signal: CW
- 5. This level has to be corrected by the actual antenna assembly gain

- 1. Unwanted Signal
- 2. Blocking frequency: 2 488.5 MHz
- 3. Limit: -35 dBm
- 4. Type of interfering signal: CW
- 5. This level has to be corrected by the actual antenna assembly gain

F-TP22-03 (Rev. 01) Page 38 of 61

6.5.5 Limit

Adaptivity Limit
LBT based Detect and Avoid(Load Based Equipment)
$\sqrt{}$ Channel Occupancy Time shall be less than 13 ms;
$\sqrt{}$ Detection threshold level = -70dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)
Short Control Signalling Transmissions:
$\sqrt{}$ Short Control Signalling Transmissions shall have a maximum TxOn / (TxOn + TxOff) ratio of
10% within any observation period of $50\mathrm{ms}$.

Unwanted Signal parameters					
Wanted signal mean power	Unwanted signal				
from companion device	frequency	frequency			
(dBm)	(MHz)	(MHz)			
sufficient to maintain the link	2 395 or 2 488,5	-35			
(see note 2)	(see note 1)	(see note 3)			

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1.

NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.

NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.

F-TP22-03 (Rev. 01) Page 39 of 61

6.5.6 Test Result

Minimum requirements test					
Modulation Frequency Maximum Occupand					
Mode	(MHz)	(ms)			
802.11b	2 412	11.90			
002.1115	2 472	11.90			
Test Result : Pass					

Adaptivity test							
Modulation Freq. interference Signal Transmission Short Control Signal							
Mode	(MHz)	Frequency (MHz)	(ms)	Transmissions			
002.115	2 412	2 412	0.8467	0.28			
802.11b	0.28						
Test Result : Pass							

Receiver Blocking test									
Modulation Mode	Freq. (MHz)	Blocking Signal Blocking Signal Frequency (MHz) Mean power (dBm)		Verification of reaction					
Mode	2 412	2 488.5	-35	Maintain the					
802.11b	0.470	0.005.0	0.5	transmission stop state Maintain the					
2 472 2 395.0 -35 transmission stop st									
		Test Result : Pass							

F-TP22-03 (Rev. 01) Page 40 of 61

6.5.7 Test Plot

- 1. Maximum Occupancy time
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 412 MHz
- 4. Result : 11.90 ms

- 1. Adaptivity
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 412 MHz
- 4. Marker($1\triangle 2$)
 - : Transmission time after the interference signal injected = 0.8467 ms
- 5. Result
 - : Stopped the transmissions on the current operating channel.

F-TP22-03 (Rev. 01) Page 41 of 61

- 1. Monitoring
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 412 MHz
- 4. Marker($1\triangle 2$): Monitoring time = 60s
- 5. Result
 - : There is no transmissions while the interference & blocking signal injected.

1. Short Control Signaling

2. Modulation type: 802.11b

3. Test Frequency: 2 412 MHz

4. Result: 0.28 ms

F-TP22-03 (Rev. 01) Page 42 of 61

1. Maximum Occupancy time

2. Modulation type: 802.11b

3. Test Frequency: 2 472 MHz

4. Result: 11.90 ms

1. Adaptivity

2. Modulation type: 802.11b

3. Test Frequency: 2 472 MHz

4. Marker($1\triangle 2$)

: Transmission time after the interference signal injected = 1.473 ms

5. Result

: Stopped the transmissions on the current operating channel.

1. Monitoring

2. Modulation type: 802.11b

3. Test Frequency: 2 472 MHz

4. Marker($1\triangle 2$): Monitoring time = 60s

5. Result

: There is no transmissions while the interference & blocking signal injected.

F-TP22-03 (Rev. 01) Page 43 of 61

- 1. Short Control Signaling
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 472 MHz
- 4. Result : 0.28 ms

F-TP22-03 (Rev. 01) Page 44 of 61

6.6 Transmitter unwanted emissions in the spurious domain

6.6.1 Test Setup

F-TP22-03 (Rev. 01) Page 45 of 61

6.6.2 Test Procedure

- Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.9.2
- The test site as described in annex B and applicable measurement procedures as described in annex C shall be used. The test procedure is further as described under clause 5.4.9.2.1.

6.6.3 Test Site

- Fully Anechoic Room

6.6.4 Test Method

- Correction values from a verified site calibration was used.
- During the tests, the measurement antenna polarization and EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.
- The test was performed by placing the EUT on 3 orthogonal axis(X, Y, Z) and shown the worst case on this report.
- If the test data is very low, the data is not reported.

6.6.5 Limit

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 Hz	-30 dBm	1 MHz

F-TP22-03 (Rev. 01) Page 46 of 61

6.6.6 Test Result

Measurement	Polarization	Level	Limit	Margin	Detector	
Frequency(MHz)		(dBm)	(dBm)	(dB)		
No Peak Found						
Below 1 GHz : 5.16 dB (about 95 %, k = 2)						
Measurement once	Above	e 1 GHz : 5.57 dE	3 (about 95 %,	, <i>k</i> = 2)		

Note

Modulation type: 802.11b
 Test Frequency: 2 412 MHz

Measurement	Polarization	Level	Limit	Margin	Detector	
Frequency(MHz)		(dBm)	(dBm)	(dB)		
No Peak Found						
Below 1 GHz : 5.16 dB (about 95 %, k = 2)						
weasurement once	Above	1 GHz : 5.57 dE	3 (about 95 %,	, <i>k</i> = 2)		

Note

Modulation type: 802.11b
 Test Frequency: 2 472 MHz

F-TP22-03 (Rev. 01) Page 47 of 61

Measurement	Polarization	Level	Limit	Margin	Detector		
Frequency(MHz)		(dBm)	(dBm)	(dB)			
No Peak Found							
Massurament Unco	Below 1 GHz : 5.16 dB (about 95 %, k = 2)						
Measurement once	Above	1 GHz : 5.57 dE	3 (about 95 %,	k=2)			

Note

Modulation type: 802.11g
 Test Frequency: 2 412 MHz

3. The worst case of 802.11g, n modulation was tested.

Measurement	Polarization	Level	Limit	Margin	Detector	
Frequency(MHz)		(dBm)	(dBm)	(dB)		
No Peak Found						
Measurement Uncertainty Below 1 GHz: 5.16 dB (about 95 %, k = 2) Above 1 GHz: 5.57 dB (about 95 %, k = 2)						

Note

Modulation type: 802.11g
 Test Frequency: 2 472 MHz

3. The worst case of 802.11g, n modulation was tested.

F-TP22-03 (Rev. 01) Page 48 of 61

7. RECEIVER MEASUREMENTS - RESULTS

7.1 Receiver spurious emissions

7.1.1 Test Setup

F-TP22-03 (Rev. 01) Page 49 of 61

7.1.2 Test Procedure

- Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.10.2
- The test site as described in annex B and applicable measurement procedures as described in annex C shall be used. The test procedure is further as described under clause 5.4.10.2.1.

7.1.3 Test Site

- Fully Anechoic Room

7.1.4 Test Method

- Correction values from a verified site calibration was used.
- During the tests, the measurement antenna polarization and EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.
- The test was performed by placing the EUT on 3 orthogonal axis(X, Y, Z) and shown the worst case on this report.
- If the test data is very low, the data is not reported.

7.1.5 Limit

Frequency range	Maximum power	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12.75 GHz	-47 dBm	1 MHz

F-TP22-03 (Rev. 01) Page 50 of 61

7.1.6 Test Result

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
1248.12	Н	-54.42	-47.00	7.42	RMS
Measurement Unce	Below	1 GHz : 5.16 dE	3 (about 95 %,	k=2)	
Measurement once	Above	1 GHz : 5.57 dE	3 (about 95 %,	k=2)	

Note

Modulation type: 802.11b
 Test Frequency: 2 412 MHz

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
3296.15	Н	-57.38	-47.00	10.38	RMS
Measurement Uncertainty		Below 1 GHz : 5.16 dB (about 95 %, <i>k</i> = 2)			
		Above	1 GHz : 5.57 dE	3 (about 95 %,	, <i>k</i> = 2)

Note

Modulation type: 802.11b
 Test Frequency: 2 472 MHz

F-TP22-03 (Rev. 01) Page 51 of 61

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
No Peak Found					
Below 1 GHz : 5.16 dB (about 95 %, k= 2)					, <i>k</i> = 2)
Measurement Unce	Above 1 GHz: 5.57 dB (about 95 %, $k=2$)				

Note

Modulation type: 802.11g
 Test Frequency: 2 412 MHz

3. The worst case of 802.11g, n modulation was tested.

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
3296.15	Н	-57.03	-47.00	10.03	RMS
Management Handsteinber		Below 1 GHz : 5.16 dB (about 95 %, k= 2)			
Measurement Uncertainty		Above	1 GHz : 5.57 dE	3 (about 95 %,	, <i>k</i> = 2)

Note

Modulation type: 802.11g
 Test Frequency: 2 472 MHz

3. The worst case of 802.11g, n modulation was tested.

F-TP22-03 (Rev. 01) Page 52 of 61

7.2 Receiver Blocking

7.2.1 Test Setup

- Companion device : CMW500

- Signal Generator : SMB100A

- 30 dB attenuator: 8493C

- Power divider: 11636B

- We performed PER test using the Companion device.

F-TP22-03 (Rev. 01) Page 53 of 61

7.2.2 Test Procedure

Step 1:

• For non-frequency hopping equipment, the UUT shall be set to the lowest operating channel.

Step 2:

• The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

Step 3:

- With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6. The attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin.
- This signal level (Pmin) is increased by the value provided in the table corresponding to the receiver category and type of equipment.

Step 4:

• The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is met.

Step 5:

• Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

Step 6:

• For non-frequency hopping equipment, repeat step 2 to step 5 with the UUT operating at the highest operating channel.

F-TP22-03 (Rev. 01) Page 54 of 61

7.2.3 Limit

The minimum performance criterion shall be a PER less than or equal to 10 %.

While maintaining the minimum performance criteria, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table below.

■ Receiver Category 1

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal
Pmin + 6 dB	2 380 2 503,5	-53	CW
Pmin + 6 dB	2 300 2 330 2 360	-47	CW
Pmin + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	CW

F-TP22-03 (Rev. 01) Page 55 of 61

• Receiver Category 2

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal
Pmin + 6 dB	2 380 2 503,5	-57	CW
Pmin + 6 dB	2 300 2 583,5	-47	CW

• Receiver Category 3

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal
Pmin + 12 dB	2 380 2 503,5	-57	CW
Pmin + 12 dB	2 300 2 583,5	-47	CW

F-TP22-03 (Rev. 01) Page 56 of 61

7.2.4 Test Result

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal	Verification of performance criterion (%)
Pmin + 6 dB	2 380.0	-53	CW	0.00
FIMILLOUD	2 503.5	-55	CVV	0.00
	2 300.0	-47	CW	0.00
Pmin + 6 dB	2 330.0			0.00
	2 360.0			0.00
	2 523.5			0.33
	2 553.5	-47		0.67
Doning L C dD	2 583.5		CIM	0.00
Pmin + 6 dB	2 613.5		CW	0.00
	2 643.5			1.00
	2 673.5			0.00

Note:

1. Receiver Category: 1

2. Pmin: Pmin is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria in the absence of any blocking signal = -94.01 dBm

3. Minimum performance criterion : PER less than or equal to 10 %.

4. Test Frequency: 2 412 MHz5. Modulation type: 802.11b

6. Data Rate: 1Mbps

7. The smallest channel bandwidth shall be used together with the lowest data rate for this channel bandwidth.(Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.11.1)

F-TP22-03 (Rev. 01) Page 57 of 61

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal	Verification of performance criterion (%)
Pmin + 6 dB	2 380.0	-53	CW	0.33
	2 503.5			0.33
	2 300.0			0.33
Pmin + 6 dB	2 330.0	-47	CW	0.67
	2 360.0			0.33
	2 523.5			1.33
	2 553.5	-47		0.67
Pmin + 6 dB	2 583.5		CW	0.33
PMIN + 6 dB	2 613.5	-41	CVV	0.33
	2 643.5			1.00
	2 673.5			0.00

Note:

- 1. Receiver Category: 1
- 2. Pmin: Pmin is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria in the absence of any blocking signal = -93.92 dBm
- 3. Minimum performance criterion : PER less than or equal to 10 %.

4. Test Frequency: 2 472 MHz5. Modulation type: 802.11b

6. Data Rate: 1Mbps

7. The smallest channel bandwidth shall be used together with the lowest data rate for this channel bandwidth.(Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.11.1)

F-TP22-03 (Rev. 01) Page 58 of 61

8. GEO-LOCATION CAPABILITY

8.1 Definition

Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.

The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

8.2 Requirements

The geographical location determined by the equipment as defined in clause 8.1 shall not be accessible to the user.

8.3 Declaration by the Manufacturer

Geo-location capability is implemented in this product and can't be accessible to the user.

F-TP22-03 (Rev. 01) Page 59 of 61

9. PHOTOGRAPHS OF THE EUT

Photographs is described in Appendix A. Please refer to Appendix A.

F-TP22-03 (Rev. 01) Page 60 of 61

10. SETUP PHOTO

Setup photo is described in Appendix B. Please refer to Appendix B.

F-TP22-03 (Rev. 01) Page 61 of 61