

BUSINESS PROCESS MANAGEMENT - EXERCISE

FORMALIZATION

FORMAL REPRESENTATION OF (PROCESS) MODELS

- In order to represent process models in a machine-readable way, we formalize process models
- A (process) model is a tuple

$$M=(V,E,C,L,T_V,T_F,\alpha,\beta,\chi)$$

 Each element of this tuple must be formally defined

TUPLE VS. SET

- Tuple
 - **-**()
 - express direction, i.e., the order of elements matters
- Set
 - **•** { }
 - can contain each element only once
 - are undirected, i.e., the order of elements does not matter

VERTICES (V) & EDGES (E)

VERTICES (V) & EDGES (E)

V is the set of vertices

$$\blacksquare V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\} = \{v_1, ..., v_7\}$$

- E is the set of edges
 - $E = E_D \cup E_U$
 - E_D is the set of directed edges

$$\blacksquare$$
 E_D = {e₁,e₃,e₄,e₅}

- E_U is the set of undirected edges
 - $E_U = \{e_2, e_6\}$

EDGES (E)

- E is the set of edges
 - $E = E_D \cup E_U$
 - \blacksquare $E_D = \{e_1, e_3, e_4, e_5\}$
 - $\blacksquare E_U = \{e_2, e_6\}$

$$e_2 = \{v_2, v_3, 1\}, e_6 = \{v_2, v_7, 1\} \rightarrow sets$$

CAPTIONS (C)

- C is a set of captions
- C = {"Invoice has arrived", "Check invoice", "Invoice auditing", "Invoice is correct", "Invoice is incorrect", "10 minutes"}

LANGUAGE (L)

- L is the modeling language the model M belongs to
- This means that L defines, which types of vertices can be connected by which types of edges
- Hence, $T_V, T_E \in L$
- A modeling language is a tuple
 - $L=(T_V,T_E)$

VERTEX TYPES (T_v) & EDGE TYPES (T_E)

- T_V is the set of vertex types
 - T_v={event, <u>function</u>, <u>x</u>or, <u>s</u>ystem, <u>d</u>uration}
- T_E is the set of edge types

$$\blacksquare T_E = T_{ED} \cup T_{EU}$$

$$T_{ED} = \{e_f, f_x, x_e\}$$

$$T_{FU} = \{f_s, f_d\}$$

- T_{ED}: e_f = (event, function, 1) ...
- T_{FU}: f_s = {function, system, 1} ...

(analog for remaining types)

FUNCTION α

• α : $V \rightarrow T_V$ is a function that assigns each vertex V a vertex type T_V

$$\blacksquare V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$

T_V={<u>e</u>vent,<u>f</u>unction,<u>x</u>or,<u>s</u>ystem, <u>d</u>uration}

•
$$\alpha(v_2)$$
 = function

•
$$\alpha(v_3)$$
 = system

$$\bullet$$
 $\alpha(v_4) = xor$

•
$$\alpha(v_7)$$
 = duration

FUNCTION β

• β : $E \rightarrow T_E$ is a function that assigns each edge E an edge type T_E

$$\blacksquare E_D = \{e_1, e_3, e_4, e_5\}, E_U = \{e_2, e_6\}$$

$$T_{ED} = \{e_f, f_x, x_e\}, T_{EU} = \{f_s, f_d\}$$

■
$$\beta$$
(e₂) = f_s,

•
$$\beta(e_3) = f_x$$

•
$$\beta(e_4) = \beta(e_5) = x_e,$$

$$-\beta(e_6) = f_d$$

FUNCTION χ

- χ: Z→C is a function that assigns a caption C to each vertex V (or edge E)
- C = {"Invoice has arrived", "Check invoice", "Invoice auditing", "Invoice is correct", "Invoice is incorrect", "10 minutes"}
- \blacksquare V = { $V_1, V_2, V_3, V_4, V_5, V_6, V_7$ }
- $\chi(v_1)$ ="Invoice has arrived"
- $\chi(v_2)$ ="Check invoice"
- $\chi(v_3)$ ="Invoice auditing"
- $\chi(v_5)$ ="Invoice is correct"
- $\chi(v_6)$ ="Invoice is incorrect"
- $\chi(v_7)$ ="10 minutes"

SUMMARY EXAMPLE - 1

$$\blacksquare V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$

$$\blacksquare E = E_D \cup E_U$$

$$\blacksquare$$
 E_D = {e₁,e₃,e₄,e₅}

$$\blacksquare E_U = \{e_2, e_6\}$$

- C = {"Invoice has arrived", "Check invoice", "Invoice auditing", "Invoice is correct", "Invoice is incorrect", "duration"}
- $L=(T_V,T_E)$
- T_V={<u>e</u>vent, <u>f</u>unction, <u>x</u>or, <u>s</u>ystem, <u>d</u>uration}

$$T_{E}=T_{ED}\cup T_{EU}$$

$$T_{ED} = \{e_f, f_x, x_e\}$$

$$T_{EU} = \{f_s, f_d\}$$

■
$$T_{EU}$$
: $f_s = \{function, system, 1\} ...$

SUMMARY EXAMPLE - 2

•
$$\alpha(v_2)$$
 = function

•
$$\alpha(v_3)$$
 = system

$$\alpha(v_4) = xor$$

•
$$\alpha(v_7)$$
 = duration

■
$$\beta(e_1) = e_f$$
,

■
$$\beta(e_2) = f_s$$
,

■
$$\beta(e_3) = f_x$$

•
$$\beta(e_4) = \beta(e_5) = x_e,$$

■
$$\beta(e_6) = f_d$$

•
$$\chi(v_1)$$
="Invoice has arrived"

•
$$\chi(v_2)$$
="Check invoice"

•
$$\chi(v_3)$$
="Invoice auditing"

•
$$\chi(v_5)$$
="Invoice is correct"

•
$$\chi(v_6)$$
="Invoice is incorrect"

•
$$\chi(v_7)$$
="10 minutes"

GENERAL HINTS

- Make sure to specifically define each element of M
- Define tuples () and sets { } correctly
- In the exam, you can annotate captions straight to visible vertices (unless stated otherwise)
- Abbreviate things such as
 - $\blacksquare V = \{v_1, ..., v_7\}$

 - T_{ED}: e_f = (event, function, 1) ... analog for remaining directed edges

BUSINESS PROCESS MANAGEMENT - EXERCISE