实验报告

实验名称: 页面置换算法模拟
实验时间:
实验人员:李子强(姓名)115010352(学号) _15(年级)
实验目的: 掌握页面置换的原理,深入理解不同策略之间的优势和劣势
实验环境: Linux_
实验步骤:
1.了解不同页面置换算法的细节与思想
2.编写模拟程序
实验陈述:
1、基础知识回顾:
1.FIFO 置换算法的内容与复杂度分析:置换最先调入内存的页面,即置换在内存中驻留
时间最久的页面。按照进入内存的先后次序排列成队列,从队尾进入,从队首删除。替换
时间复杂度为 O(1)。
2. Min 置换算法的内容与复杂度分析:置换以后不再被访问,或者在将来最迟才回被访问
的页面,缺页中断率最低。但是,这个是理论上在线算法的性能,只有在离线的情况下能
达到。可以以 O(n)的时间复杂度实现。
3. LRU 置换算法的内容与复杂度分析: 置换最近一段时间以来最长时间未访问过的页面。
根据程序局部性原理,刚被访问的页面,可能马上又要被访问;而较长时间内没有被访问
的页面,可能最近不会被访问。可以以 O(n)的时间复杂度实现。
4. Clock 置换算法的内容与复杂度分析: 为了节约 Second Chance 算法一个接着一个检查
使用位的开销,时钟轮转法又提出了改进。时钟轮转法将所有的页组成一个圆,圆心的指
针指向下一个要被置换的页面,置换前同样检查使用位,如果使用位为 1,同样将其使用
位置为 0,随后将顺指针旋转,检查下一个页面,直到发现某页的使用位为 0,将此页置换出内存。很容易理解此算法为什么叫"时钟"轮转法。可以以 O(n)的时间复杂度实现。
<u> </u>
5. Second-chance 置换算法的内容与复杂度分析: 为了避免 FIFO 算法将重要的页换出内
存,Second Chance 算法提供了一些改进。讲 FIFO 列表的一部分采用 LRU 模式,踢出最
近不使用。结合了 LRU 和 FIFO 的优点。可以以 O(n)的时间复杂度实现。
近年校用。组目1 EKO 相 I II O 的优然。可以从 O(II)的时间交示及关系。
2、理论基础
页面置换理论最优的算法是: Min
请给出相关证明 Min 是 OPT 算法,因为是离线算法,运行时知道所有将来的数据。
每次替换页面操作都可选出将来最晚使用的页面替换。
FIFO 算法是否有提升的空间?如果有请提出方案,没有请给出证明。查找,更新时
间优化为 O(1),加入哈希表和双向链表另外存储页面数据。
LRU 算法是否有提升的空间?如果有请提出方案,没有请给出证明。 查找,更新时间
优化为 O(1),加入哈希表和双向链表另外存储页面数据。

_) 때 로리 / /) 크
3.	遇到的问题与解决方法

问题 1: _____算法逻辑错误

解决方法_____排查临界值解决。

运行表格: (hit percentage) cache size: 123

	0 /		
Algorithms/test	1.in	2.in	3.in
FIFO	11.98%	11.85%	82.36%
MIN	42.4%	43.27%	88.58%
LRU	11.76%	11.85%	82.39%
Clock	11.93%	11.83%	82.38%
Second-chance	11.85%	11.85%	82.39%

实验总结:

1,42.0 1,41
学习不同页面置换算法的细节与思想。