Trabalhando com Tabela Verdade

Algoritmos, Lógica e Linguagens de Programação

A Tabela Verdade

As tabelas verdade são ferramentas importantes no campo da lógica. Nos estudos para Matemática ou Filosofia aplicada a situações específicas do nosso cotidiano.

"O conhecimento é poder."

Conhecimento e poder estão intimamente relacionados: O operador lógico "E" é utilizado para enfatizar a relação estreita entre as ideias de conhecimento e poder na frase. Pode-se interpretar a frase como uma afirmação de que o conhecimento é uma condição necessária para o poder. Ou seja, para se obter poder é preciso possuir conhecimento.

A TABELA VERDADE

- Tabela verdade é um dispositivo utilizado no estudo da lógica matemática.
- Com o uso desta tabela é possível definir o valor lógico de uma proposição, isto é, saber quando uma sentença é verdadeira ou falsa.
- Em lógica, as proposições representam pensamentos completos e indicam afirmações de fatos ou ideias.

EXEMPLOS DE PROPOSIÇÕES

"O sol é uma estrela." - essa proposição lógica pode ser verdadeira ou falsa, dependendo se o sol se encaixa na definição de estrela ou não.

"**Todos os seres humanos são mortais.**" - essa proposição lógica é verdadeira, pois se encaixa na definição de mortalidade.

"2 + 2 = 5." - essa proposição lógica é falsa, pois a soma de dois e dois é igual a quatro, não a cinco.

"**Todas as abelhas têm asas.**" - essa proposição lógica é verdadeira, pois as abelhas são conhecidas por terem asas.

"**A Terra é plana.**" - essa proposição lógica é falsa, pois a Terra é um objeto esférico em vez de plano.

EXEMPLOS DE NÃO PROPOSIÇÕES

"**Qual é o seu nome?**" - essa frase é uma pergunta e, portanto, não é uma proposição lógica.

"Ai!" - essa frase é uma expressão de dor ou desconforto, não uma proposição lógica.

"Vamos torcer para o Brasil ganhar o jogo." - essa frase é uma sugestão ou um pedido, não uma proposição lógica.

"Como você está se sentindo hoje?" - essa frase é uma pergunta sobre estados emocionais ou físicos, não uma proposição lógica.

"**Era uma vez um reino encantado.**" - essa frase é o começo de uma história e, portanto, não é uma proposição lógica, pois não é possível determinar sua veracidade ou falsidade.

REPRESENTAÇÃO DAS PROPOSIÇÕES NA TABELA VERDADE

Podemos representar afirmações de uma proposição em variáveis que irão guardar o valor da afirmação.

Ex:

q = Hoje é segunda-feira.

p = A mesa é de plástico.

m = Vai chover hoje.

Analise a frase:

O carro é vermelho.

C = O carro é vermelho.

 $\sim C =$

~ C = O carro não é vermelho

Analise a frase:

O carro é vermelho e o tempo está chuvoso.

C = O carro é vermelho.

T = O tempo está chuvoso

 $C \wedge T = Verdade!$

Analise a frase:

O carro é vermelho e o tempo está chuvoso.

C = O carro é vermelho.

T = O tempo está chuvoso

Temos 2 afirmações, portanto:

MONTANDO A TABELA VERDADE

- Para montar uma tabela verdade com duas proposições, podemos seguir os seguintes passos:
 - Identifique as proposições que deseja avaliar e atribua a elas valores verdadeiros ou falsos. Normalmente, esses valores são representados por "V" para verdadeiro e "F" para falso.
 - Liste todas as possíveis combinações desses valores para as duas proposições. Para duas proposições, existem quatro combinações possíveis:

TABELA VERDADE

С	Т	C ^ T	CvT
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	F

EXERCÍCIO:

Considere as proposições:

A = é dia

B = está ensolarado

Vamos montar uma tabela verdade para a expressão lógica "A ∧ B".

Considere as proposições:

- p: Está frio q: Está chovendo.
- Traduza para tabela verdade as seguintes proposições:
- a) ~c
- b) p \ ~q
- d) $\sim q \wedge (p \wedge q)$
- e) $(p \lor \sim q) \lor (\sim q \land (p \land q))$

Considere as proposições:

р	q	~q	p v ∼q	p ^ q	~q	(p ∨ ~q) v (~q ∧ (p ^ q))
V	V	F	V	V	F	V
V	F	V	V	F	F	V
F	V	F	F	F	F	F
F	F	V	V	F	F	V

Operador SE ... ENTÃO

- O operador SE ENTÃO, ou condicional binário é o operador que recebe como entrada dois valores.
- O resultado será falso quando a variável antecedente for verdadeira e a seguinte for falsa (nesse caso é preciso respeitar a precedência das variáveis).
- Símbolo de representação:

Operador SE ENTÃO

Tabela de resultados:

$$0 \longrightarrow 0 = 1$$

$$0 \longrightarrow 1 = 1$$

Operador SE ... SOMENTE SE

- O operador SE SOMENTE SE, ou bicondicional binário é o operador que recebe como entrada dois valores.
- O resultado será verdadeiro quando ambas as variáveis forem verdadeiras ou ambas forem falsas.

Símbolo de representação:

Operador SE ... SOMENTE SE

Tabela de resultados:

TABELA VERDADE SE ENTÃO e SE SOMENTE SE

р	q	p — q	p ←→ q
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	V

TABELA DE OPERAÇÕES

Conectivo	Símbolo	Operação Lógica	Valor Lógico		
não ~		negação	Terá valor falso quando a proposição for verdadeira e vice-versa.		
е ^		conjunção	Será verdadeira somente quando todas as proposições forem verdadeiras.		
ou v		disjunção	Será verdadeira quando pelo menos uma das proposições for verdadeira.		
se…então →		condicional	Será falsa quando a proposição antecedente for verdadeira e a consequente for falsa.		
se somente se	↔	bicondicional	Será verdadeira quando ambas as proposições forem verdadeira ou ambas falsas.		

Construa uma tabela de verdade para as proposições abaixo.

- a) (k ^ j) v ~k
- b) $(p \land q) \rightarrow \sim q$
- c) $(f \leftrightarrow g) \land (g \rightarrow f)$
- d) $\sim a \leftrightarrow b$
- e) (~n v m) ↔ ~m
- f) $(z \rightarrow \sim x) \vee (x \leftrightarrow \sim (z \rightarrow \sim x))$

k	j	(k ^ j)	~k	(k ^ j) v ~k
V	V	V	F	V
V	F	F	F	F
F	V	F	V	V
F	F	F	V	V

р	q	p ^ q	~q	(p ∧ q)
				→~q
V	V	V	F	F
V	F	F	V	V
F	V	F	F	V
F	F	F	V	V

f	g	(f ↔ g)	(g → f)	$(f \leftrightarrow g) \land (g \rightarrow f)$
V	V	V	V	V
V	F	F	V	F
F	V	F	F	F
F	F	V	V	V

$$(z \rightarrow \sim x) v (x \leftrightarrow \sim (z \rightarrow \sim x))$$

Z	x	~ x	Z →	~(z →	(x ↔ ~(z →	(z → ~x) v (x
			~x	~x)	~x))	
V	V	F	F	V	V	V
V	F	V	V	F	V	V
F	V	F	V	F	V	V
F	F	V	V	F	V	V