2021 Spring – Introduction to Machine Learning Final Presentation

Titanic - Machine Learning from Disaster

Presenter:

102012805 Mey Yeh, 107011153 Huey-Chii Liang, 109032805 Chih-Mei Young

Instructor: Prof. Shun-Chi Wu

Table of Contents

- Basic Information and Data Interpretation
- Data Preprocessing
- Selection of Models:
 - ☐ Gaussian Naïve Bayes Classifier (NBC)
 - ☐ K-Nearest Neighbor Classifier (KNN)
- Results and Discussion
- Reference

Basic Information and Data Interpretation

■ Training data information:

Dataset.info

Missing Data

print(pd.isnull(train).sum())

	Total	%
Cabin	600	77 A
Captil	090	//:4
Age	189	21.2
Pclass	133	14.9
Fare	1	0.1
Embarked	0	0.0
Ticket	<u> </u>	0 0
TICKET	•	0.0
Parch	0	0.0
SibSp	0	0.0
Sex	0	0.0
Name	0	0.0
Survived	0	0.0
PassengerId	0	0.0

- Fill in rational value
 - > Age (mean value)
 - > Fare (mean value)
 - > Pclass (observed)
- Delete the feature
 - > Cabin, Ticket

Correlation between Features

■ Seaborn:

• Correlation: Sex > Pclass > Fare

Visualize the dataset for selecting features-1

Visualize the dataset for selecting features-2

• Fare

• Name

Features Combination

Features	A	В	C	D	E	F
Pclass	observed	observed	observed	observed	Depend on Fare	Depend on Fare
Name	A->1, B->2	A->1, B->2	-	-	-	-
Sex	Male=0 Female=1	Male=0 Female=1	Male=0 Female=1	Male=0 Female=1	Male=0 Female=1	Male=0 Female=1
Age	Mean age	Random number (mean +std) Age group(1-6)				
SibSp	+	: -	-	+	+	+
Parch	+	-	-	+	+	+
Relatives	-	+	+	+	+	-
Ticket	-	-	_	7=	r -	-
Fare	A.	-	Fare band (4)	Fare band (4)	Fare per person	Fare per person
Cabin	-	-	-	r -	-	-
Embarked	S:1, C:2, Q:3	S:1, C:2, Q:3	S:1, C:2, Q:3	S:1, C:2, Q:3	S:1, C:2, Q:3	S:1, C:2, Q:3
Not alone	-	+	+	+	+	=

Selection of Models – Gaussian NBC

■ Gaussian Naïve Bayes Classifier

- Algorithm
 - A collection of classification algorithms based on Bayes' Theorem
 - Assumptions → Each feature makes an **equal** and **independent** contribution to the outcome
 - Bayes' Theorem: $P(y|X) = \frac{P(X|y)P(y)}{P(X)}$ where y = class variable, $X = (x_1, x_2, x_3, x_4, ..., x_n)$ a dependent feature vector (of size n)
 - Naïve Assumption: P(A,B) = P(A)P(B)
 - Combination: $P(y|x_1, x_2, x_3, x_4, ..., x_n) = \frac{P(x_1|y)P(x_2|y)P(x_3|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)P(x_3)...P(x_n)}$
 - Gaussian NBC:

Continuous values associated with each feature are assumed to be distributed according to a <u>Gaussian distribution</u>
The <u>likelihood</u> of the features is assumed to be Gaussian, hence, conditional probability is given by

$$P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2})$$

Selection of Models – Gaussian NBC

• Code from scratch

```
#%% Gaussian NB
def split_classes(X_train, y_train):
   C1 count = (y train == 1).sum()
    C2 count = (y train == 0).sum()
   X_train_C1 = np.zeros([C1_count, X_train.shape[1]])
   X train C2 = np.zeros([C2 count, X train.shape[1]])
   y train C1 = np.zeros([C1 count, 1])
   y_train_C2 = np.zeros([C2_count, 1])
    c1 = 0
    c2 = 0
                                                                                                     1(Survived) and C2(Dead).
    for i in range(len(y train)):
       if y train[i] == 1.:
           X_train_C1[c1] = X_train[i]
           y_train_C1[c1] = y_train[i]
           c1 = c1 + 1
           X_train_C2[c2] = X_train[i]
           y_train_C2[c2] = y_train[i]
           c2 = c2 + 1
    return X train C1, X train C2, y train C1, y train C2
def Gaussian_NB(X train, y train, X test):
   y_pred = np.zeros(len(X_test))
   X_train_C1, X_train_C2, y_train_C1, y_train_C2 = split classes(X_train, y_train)
   C1_mean = np.mean(X_train_C1, axis=0)
   C2 mean = np.mean(X train C2, axis=0)
   C1_std = np.std(X_train_C1, axis=0, ddof=1)
   C2_std = np.std(X_train_C2, axis=0, ddof=1)
   C1_prob = len(y_train_C1) / len(y_train)
                                                                                                    culate discriminant function
   C2_prob = len(y_train_C2) / len(y_train)
    for i in range(len(X test)):
                                                                                                     d make prediction.
       g1 = ln(C1_prob) - 0.5 * np.sum(( (X_test[i] - C1_mean) / C1_std )**2)
       g2 = ln(C2_prob) - 0.5 * np.sum(( (X_test[i] - C2_mean) / C2_std )**2)
       i \neq g1 > g2:
           y_pred[i] = 1
           y_pred[i] = 0
    return y pred
y pred2 = Gaussian NB(X train, y train, X test)
```

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_j^t - m_{ij}}{s_j} \right)^2 + \log \hat{P}(C_i)$$

Selection of Models – KNN

- K-Nearest Neighbor Classifier
 - Algorithm
 - A model that classifies data points based on the points that are most similar to it
 - Step 1: Calculate Euclidean Distance
 - Step 2: Get Nearest Neighbors (number of nearest neighbors, K=1,3,5,7,...)
 - Step 3: Make Predictions

Euclidean Disctance =
$$\sqrt{\sum_{i}^{N} (x1_i - x2_i)^2}$$

Selection of Models – KNN

• Code from scratch

```
#%% KNN
     K neighbors = 5
     X train = ( X train - np.mean(X train, axis=0) ) / np.std(X train, axis=0, ddof=1)
25
     X_test = ( X_test - np.mean(X_test, axis=0) ) / np.std(X_test, axis=0, ddof=1)
     def KNN(X_train, y_train, X_test, k):
         y pred = np.zeros(len(X test))
         distances = pd.DataFrame(np.zeros([len(X train),2]), columns=['y','dist'])
         distances['v'] = v train
          for i in range(len(X test)):
              for j in range(len(X train)):
                  distances['dist'][j] = np.sqrt(np.sum((X_test[i]-X_train[j])**2))
             dist = distances.sort values(by=['dist'])[:k]
             y pred[i] = dist['y'].value counts().idxmax()
          return y pred
                                                                                KNN with different k-value
     y_pred1 = KNN(X_train, y_train, X_test, k=K_neighbors)
```

• Our KNN model has the best performance when K=5, hence we set K=5.

Results & Discussion

	A	В	C	D	E	F
Pclass	observed	observed	Observed	Observed	Depend on Fare	Depend on Fare
Name	A->1, B->2	A->1, B->2				
Age	Mean age	Random number (mean +std) Age group(1-6)				
SibSp	+			+	+	+
Parch	+			+	+	+
relatives		+	+	+	+	
Fare	+	+	Fare band (4)	Fare band (4)	Fare per person	Fare per person
Not alone		+	+	+	+	
KNN (k=3)	0.79640	0.76047	0.76646	0.76047	0.75449	0.73053
KNN (k=5)	0.80239	0.77844	0.76646	0.76646	0.73056	0.75449
Naïve Bayes	0.81437	0.82634	0.77844	0.74850	0.77245	0.76047

Discussion

	Α	В	С	D	E	F
KNN (k=3)	0.79640	0.76047	0.76646	0.76047	0.75449	0.73053
KNN (k=5)	0.80239	0.77844	0.76646	0.76646	0.73056	0.75449
Naïve Bayes	0.81437	0.82634	0.77844	0.74850	0.77245	0.76047

- **■** Gaussian Naïve Bayes Classifier v.s KNN
 - All the results of Naïve are better than KNN except "D"

Gaussian Naïve Bayes considered every feature

$$\frac{P(x_1|y)P(x_2|y)P(x_3|y) ... P(x_n|y) P(y)}{P(x_1)P(x_2)P(x_3) ... P(x_n)}$$

Discussion

	Α	B (B')	С
Pclass	observed	observed	Observed
Name	A->1, B->2	A->1, B->2()	
Age	Mean age	Random number (mean +std) Age group(1-6)	Random number (mean +std) Age group(1-6)
SibSp	+		
Parch	+		
relatives		+	+
Fare	+	+	Fare band (4)
Not alone		+	+
Naïve Bayes	0.81437	0.82634	0.77844

■ Name

- o B': delete the feature of Name
- O Result B and Result B' are the same

■ Fare

 Original fare value is more informative than fare band.

■ SibSp and Parch

 Number of relatives and Not alone have enough information.

Discussion

Features	В0	B 1	B2	В 3	B 4	B5
Pclass	observed	observed	observed	observed	observed	Depend on Fare
Name	A->1, B->2 			A->1, B->2	A->1, B->2	A->1, B->2
Age	Age group(1-6)	Age group(1-6)	Mean Age	Age group(1-6)	Age group(1-6)	Age group(1-6)
SibSp	+	+	+	+	+	+
Parch	+	+	+	+	+	+
Fare	+	+	+	Fare Band (4)	Fare per person	+
relatives	+	+	+	+	+	+
Not alone	+	+	+	+	+	+
Naïve Bayes	0.83	0.83	0.81	0.79	0.80	0.83

- "Name" did not affect the results. (B0,B1)
- Label of Pclass differently did not affect the results. (B0,B5)
- "Fare" need not label. (B3,B4)
- "Age" label to different group have better result. (B1,B2)

standard deviation (stdv): Fare > Age
"Fare" more discrete

→ need not divided into groups

Conclusion

- Feature selection and feature labeling are the most important step for machine learning.
 - Trial and error
- Different algorithms and models have different benefit.
 - Gaussian NB : Fast, Easy to train.
 - o KNN : Simple, Intuitive.

References

https://towardsdatascience.com/introduction-to-na%C3%AFve-bayes-classifier-fa59e3e24aaf

https://www.kaggle.com/nadintamer/titanic-survival-predictions-beginner

https://www.youtube.com/watch?v=UqYde-LULfs

https://jingwen-z.github.io/titanic-survival-prediction/

https://medium.com/@lope.ai/knn-classifier-from-scratch-with-numpy-python-5c436e26a228

https://www.geeksforgeeks.org/naive-bayes-classifiers/