Definition. Mean of the distribution of a discrete random variable

$$\mu_X = \sum_{i=1}^K x_i p_i$$

Definition. Variance of the distribution of a discrete random variable

$$\sigma_X^2 = \sum_{i=1}^K (x_i - \mu_X)^2 p_i$$

Definition. For the sample of size n, picked from a Normally distributed $N(\mu, \sigma)$ population,

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\bar{x}}^2 = \sigma^2/n$$

Definition. To "standardize" a variable, X from $N(\mu, \sigma)$, define

$$P(X < p) = P(Z := \frac{X - \mu}{\sigma}) < \frac{p - \mu}{\sigma})$$

Definition. For Binomial distribution

$$\mu_X = np$$

$$\sigma_X^2 = np(1-p)$$