

Situação Problema Memória Principal Volátil e limitada Aplicações Grandes quantidades de informação Armazenamento permanente de informações

anaeliza.moura@unicap.br

Situação Problema
 Estruturas de Dados para Armazenamento Secundário
 Árvores de Busca Binária
 Apropriado para memória principal
 Ineficiente em memória secundária
 Grande quantidade de acessos a disco
 » Acesso feito em blocos

- Necessidade
 - Reduzir o número de acessos a disco
- Solução
 - Agrupar várias chaves dentro de um nó
 - · Obter com o mesmo acesso vários registros
 - Reduzir o número de acessos
 - Diminuir o tempo necessário para inserções, remoções e pesquisas.

5

Árvores Multivias ou M-Vias

Definição

- Uma árvore de busca multivias de ordem
 M é uma árvore n-ária na qual todos os nós têm grau menor ou igual a M.
- Um nó com M descendentes contém M-1 valores de chave.

Lembrete:

O *grau de um nó* é o número de subárvores (filhos) do nó.

O *grau de uma árvore* (n-aridade) é a quantidade máxima de filhos que os nós de uma árvore podem ter.

anaeliza.moura@unicap.br

Árvores Multivias ou M-Vias

- Desempenho da Busca
 - Árvores multivias com N chaves no total e fator de ramificação S.
 - Caminho médio de busca: O(log_SN)
 - Se N = 10^6 e S = 100, então uma busca requer, em média, $log_{100}10^6$ = 3 passos.
 - Árvore de busca binária: $log_2 10^6 = 20$ passos.

anaeliza.moura@unicap.br

Q

Árvores Multivias ou M-Vias

- Problema
 - Inserções aleatórias de maneira irrestrita
 - Aumento do caminho de busca
- Solução
 - Balanceamento

anaeliza.moura@unicap.br

9

Árvores B

- Definição
 - Bayer e McCreight em 1970.
 - Uma árvore B de ordem M é uma árvore de busca multivias balanceada.
 - Uma árvore B ou está vazia ou possui nós com K chaves e K+1 apontadores.

OBS: Um nó de uma árvore B é chamado de **página**.

anaeliza.moura@unicap.br

Uso

 Árvores B são utilizadas como forma de armazenamento em diversos sistemas de BD comerciais.

anaeliza.moura@unicap.br

11

Árvores B

- Características estruturais:
 - Na raiz, K deve ser, no mínimo, 1. Ou seja, a raiz possui no mínimo uma chave e dois filhos;
 - Nos demais nós, K deve ser, no mínimo, M/2. Ou seja, os demais nós possuem, no mínimo, M/2 chaves e M/2 + 1 filhos;
 - Exceção: Folhas não têm filhos.

anaeliza.moura@unicap.br

- Características (cont.):
 - O valor máximo de K é M-1, ou seja, todos os nós têm, no máximo, M-1 chaves e M filhos;
 - Todas as folhas estão no mesmo nível (balanceamento).

OBS: M deve ser escolhido de forma que o número máximo de chaves nos nós da árvore seja uma potência de 2.

anaeliza.moura@unicap.br

13

Árvores B

- Características (cont.)
 - Formato do nó:

 $N, (C_1A_1), (C_2A_2), ..., (C_{M-1}A_{M-1}), A_M$ onde:

- N, M/2+1≤ N ≤ M, é o número de entrada ativas (ocupadas) de um nó em um dado momento;
- A_i, 1 ≤ i ≤ M, é um apontador para uma subárvore;
- C_i , $1 \le i \le M-1$, é um valor de chave e $C_i < C_{i+1}$;
- O par (C_iA_i) é chamado de entrada;
- O apontador A_M também é definido como entrada.

anaeliza.moura@unicap.br

Árvores B

- Características (cont.)
 - Definição do nó:

```
class NodeB <T> {
    private int n;
    private T[]chv;
    private NodeB<T>[] pont;
    NodeB (int m) { // construtor
        chv = new T[m-1];
        pont = new NodeB[m];
    }
    ...
```

anaeliza.moura@unicap.br

15

Árvores B

- Características (cont.):
 - Seja uma página com N chaves:
 - Para qualquer chave y, pertencente à página apontada por A₁, y < C₁;
 - Para qualquer chave y, pertencente à página apontada por A_i, 2≤ i ≤ N, C_{i-1} < y < C_i;
 - Para qualquer chave y, pertencente à página apontada por A_{N+1}, y > C_N.

anaeliza.moura@unicap.br

 Comparação em termos de nós e chaves por nível entre uma árvore binária e uma árvore
 B de ordem M de mesma altura.

Nível	Binária	Árvore B
0	1 nó	1 nó x M-1 chaves
1	2 nós	M nós x (M-1) chaves
2	4 nós	M x M nós x (M-1) chaves
3	8 nós	M x M x M nós x (M-1) chaves
	•••	
n	2 ⁿ nós	M ⁿ nós x (M-1) chaves

anaeliza.moura@unicap.br

17

Árvores B

- Observações:
 - A ordem M determina as quantidades máximas e mínimas de chaves dentro de cada nó.
 - O número mínimo de chaves é estabelecido para determinar o percentual mínimo de ocupação dentro de um nó. Na árvore B esse percentual é de 50% (não considerando a raiz).

anaeliza.moura@unicap.br

- Inserção
 - Em uma árvore B, a inserção de uma nova chave ocorre sempre em um nó folha.
 - Passos:
 - Localizar a folha dentro da qual a chave deve ser inserida;
 - Se a folha não estiver completa, inserir chave na ordem correta;
 - Se a folha estiver completa, realizar a cisão da página.

19

Árvore B

- Inserção (Exemplo)
 - Inserir chave 85 85 | |
 - Inserir chave 60 60 85 | |
 - Inserir chave 52 52 | 60 | 85 |
 - Inserir chave 70 52 | 60 | 70 | 85
 - Inserir chave 58 ← *Realizar cisão*

anaeliza.moura@unicap.br

Árvore B

- Inserção -> Cisão de Página
 - O processo de cisão consiste em separar a folha completa em duas: folha esquerda e folha direita.

anaeliza.moura@unicap.br

21

Árvore B

- Inserção -> Cisão de Página
 - As **M** chaves serão divididas em três grupos:
 - as (M div 2) chaves menores ficam na folha esquerda;
 - as (M div 2) chaves maiores ficam na folha direita;
 - a chave do meio é colocada no nó pai, se possível.

anaeliza.moura@unicap.br

Árvore B

Inserção (Exemplo - cont.)

- Inserir chaves 37, 111, 23, 205

23 |37 |52 |58 | 70 |85 |111 |205

- Inserir chave 5 ← Realizar cisão

anacliza.moura@unicap.br

- Inserção
 - A inserção da nova entrada no nó pai pode acarretar a necessidade de uma nova cisão;
 - A cisão de páginas é propagável, podendo atingir até mesmo a raiz da árvore.
 - Neste caso, surge uma nova raiz, o que implica em alteração da altura da árvore.
 - Após o processo de inserção, a árvore permanece balanceada.

29

- Consulta
 - Verifica se a chave procurada está na raiz;
 - Caso não esteja, se a chave procurada for menor que a chave C_i , $1 \le i \le N-1$, então repetir a pesquisa na subárvore A_i ;
 - Se a chave procurada for maior que a chave $\mathbf{C}_{\mathbf{N-1}}$, então repetir a pesquisa na subárvore $\mathbf{A}_{\mathbf{N}}$;
 - A pesquisa termina quando encontramos a chave ou um apontador A_i igual a nulo.

31

Árvore B

- Consulta (Algoritmo)
 - A pesquisa dentro de um nó é seqüencial.
 - Se a ordem da árvore for maior que 10, devemos considerar a utilização de pesquisa binária.

anaeliza.moura@unicap.br

33

Árvore B

- Remoção de uma chave X
 - <u>Caso 1</u>: A chave **X** não se encontra em uma folha
 - X é substituída pela chave Y, imediatamente maior;
 - Y necessariamente pertence a uma folha.

anaeliza.moura@unicap.br

Árvore B Remoção - Quando uma chave é retirada de um nó folha, o número de chaves restantes pode ser menor que M/2. - Tratamentos: • Concatenação • Redistribuição

- Remoção com Concatenação
 - Duas páginas P e Q são chamada irmãos adjacentes se têm o mesmo pai W e são apontadas por ponteiros adjacentes em W.
 - P e Q podem ser concatenadas se são irmãos adjacentes e juntas possuem menos de M-1 chaves.

41

Árvore B

- Remoção com Concatenação
 - A concatenação agrupa as entradas de duas páginas em uma só;
 - No nó pai deixa de existir uma entrada: aquela da chave que se encontra entre os ponteiros para P e Q.
 - Essa chave passa a fazer parte do nó concatenado e seu ponteiro desaparece.

anaeliza.moura@unicap.br

- Remoção com Concatenação
 - Como foi retirada uma chave do nó W, caso ele passe a ter menos de M/2 chaves, o processo se repete;
 - Ou seja, a concatenação é um processo propagável;
 - Se a propagação atingir a raiz, a árvore diminuirá de altura.

45

. .

Árvore B Remoção com Redistribuição Se a página P e seu irmão adjacente Q possuem em conjunto M-1 ou mais chaves, estas podem ser equilibradamente distribuídas: Concatena-se P e Q; Efetua-se a cisão da página resultante.

Árvore B

- Remoção com Redistribuição
 - A redistribuição não é propagável;
 - A página W, pai de P e Q, é modificada, mas seu número de chaves permanece o mesmo.

anaeliza.moura@unicap.br