

Bayesian Personalized Feature Interaction Selection for Factorization Machines

Yifan Chen^{1,2} Pengjie Ren¹ Yang Wang³ Maarten de Rijke¹

¹University of Amsterdam, Amsterdam, the Netherlands

²Key Laboratory of Science and Technology on Information System Engineering, National University of Defense Technology, Changsha, China

³Hefei University of Technology, Hefei, China

Introduction

Factorization Machines for Recommendation

Feature Interaction Selection

What is Factorization Machine?

- ► A generic supervised learning method
- ► Account for feature interactions with factored parameters
 - the combination of features

#Hashtag Feature combinations

"comics" ("comics", "marvel")

"avengers" ("comics", "avengers")

ightharpoonup Linear regression: O(d)

$$\hat{r}(\boldsymbol{x}) = b_0 + \sum_{i=1}^d w_i x_i$$

 \triangleright Linear regression: O(d)

$$\hat{r}(\mathbf{x}) = b_0 + \sum_{i=1}^d w_i x_i$$

▶ Degree-2 polynomial regression: $O(d^2)$

$$\hat{r}(\mathbf{x}) = b_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d w_{ij} \cdot x_i x_j$$

X

ightharpoonup Linear regression: O(d)

$$\hat{r}(\boldsymbol{x}) = b_0 + \sum_{i=1}^d w_i x_i$$

▶ Degree-2 polynomial regression: $O(d^2)$

$$\hat{r}(x) = b_0 + \sum_{i=1}^{d} w_i x_i + \sum_{i=1}^{d} \sum_{j=i+1}^{d} w_{ij} \cdot x_i x_j$$

ightharpoonup Factorization machine: O(dk)

$$\hat{r}(\mathbf{x}) = b_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d \langle \mathbf{v}_i, \mathbf{v}_j \rangle \cdot x_i x_j$$

Example

$$\hat{r}(\text{spider-man}) = b_0 + w_{\text{comics}} + w_{\text{marvel}} + w_{\text{avengers}} + \langle \mathbf{v}_{\text{comics}}, \mathbf{v}_{\text{marvel}} \rangle + \langle \mathbf{v}_{\text{comics}}, \mathbf{v}_{\text{avengers}} \rangle$$

#Hashtag Feature combinations

"comics" ("comics", "marvel")

"avengers" ("comics", "avengers")

Introduction

Factorization Machines for Recommendation

Feature Interaction Selection

Factorization Machines for Recommendation

- Effective use of historical interactions between users and items
- ▶ Incorporate additional information associated with users or items
- ► High-dimensional feature space
 - #feature = #user + #item + #additional
 - not all features or feature interactions are helpful

Factorization Machines for Recommendation

- ▶ Effective use of **historical interactions** between users and items
- Incorporate additional information associated with users or items
- High-dimensional feature space
 - #feature = #user + #item + #additional
 - not all features or feature interactions are helpful

Feature Interaction Selection (FIS)

Filter out useless feature interactions

P-FIS: Select feature interactions for users personally ► FIS: select a common set of interactions

Feature Interaction Selection (FIS)

Filter out useless feature interactions

► P-FIS: Select feature interactions for users personally

► FIS: select a common set of interactions

Introduction

Factorization Machines for Recommendation Feature Interaction Selection

Model description

Bayesian personalized feature interaction selection

Efficient optimization

Personalized Factorization Machines (PFM)

FM

$$\hat{r}(\mathbf{x}) = b_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d w_{ij} \cdot x_i x_j$$

PFM

$$\hat{r}(\mathbf{x}) = b_u + \sum_{i=1}^d w_{ui} x_i + \sum_{i=1}^d \sum_{j=i+1}^d w_{uij} \cdot x_i x_j$$

Select 1st-order and 2nd-order interactions by $\{w_{ui}\}$ and $\{w_{uij}\}$

Bayesian Variable Selection (BVS)

- ► Apply BVS to select feature interactions
 - avoid expensive cross-validation
- Priors for BVS
 - sparsity priors
 - ► spike-and-slab

Bayesian Variable Selection

Spike-and-slab

- ► Spike (black arrow): p(w = 0) = 0.5
- ► Slab (blue line)

Sparsity priors

- $f(w) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$ p(w=0) = 0

► Spike-and-slab

$$s \sim Bernoulli(\pi), \quad \tilde{w} \sim \mathcal{N}(0,1), \quad w = \tilde{w} \cdot s.$$

- ► Hereditary spike-and-slab
 - capture the relations between 1st-order and 2nd-order feature interactions

$$egin{aligned} s_{ui}, s_{uj} &\sim Bernoulli(\pi_1) \ p(s_{uij} = 1 \mid s_{ui}s_{uj} = 1) = 1 \ p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 1) = \pi_2 \ p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 0) = 0 \end{aligned}$$

(Strong heredity)
(Weak heredity)

► Spike-and-slab

$$s \sim Bernoulli(\pi), \quad \tilde{w} \sim \mathcal{N}(0,1), \quad w = \tilde{w} \cdot s.$$

- ► Hereditary spike-and-slab
 - capture the relations between 1st-order and 2nd-order feature interactions

$$s_{ui}, s_{uj} \sim Bernoulli(\pi_1)$$

 $p(s_{uij} = 1 \mid s_{ui}s_{uj} = 1) = 1$
 $p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 1) = \pi_2$
 $p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 0) = 0$

(Weak heredity)

(Strong heredity)

► Spike-and-slab

$$s \sim Bernoulli(\pi), \quad \tilde{w} \sim \mathcal{N}(0,1), \quad w = \tilde{w} \cdot s.$$

- ► Hereditary spike-and-slab
 - capture the relations between 1st-order and 2nd-order feature interactions

$$s_{ui}, s_{uj} \sim Bernoulli(\pi_1)$$
 $p(s_{uij} = 1 \mid s_{ui}s_{uj} = 1) = 1$
 $p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 1) = \pi_2$
 $p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 0) = 0$

(Strong heredity)

(Weak heredity)

► Spike-and-slab

$$s \sim Bernoulli(\pi), \quad \tilde{w} \sim \mathcal{N}(0,1), \quad w = \tilde{w} \cdot s.$$

- ► Hereditary spike-and-slab
 - capture the relations between 1st-order and 2nd-order feature interactions

$$s_{ui}, s_{uj} \sim Bernoulli(\pi_1)$$

 $p(s_{uij} = 1 \mid s_{ui}s_{uj} = 1) = 1$
 $p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 1) = \pi_2$
 $p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 0) = 0$

(Strong heredity)

(Weak heredity)

► Spike-and-slab

$$s \sim Bernoulli(\pi), \quad \tilde{w} \sim \mathcal{N}(0,1), \quad w = \tilde{w} \cdot s.$$

- ► Hereditary spike-and-slab
 - capture the relations between 1st-order and 2nd-order feature interactions

$$s_{ui}, s_{uj} \sim Bernoulli(\pi_1)$$

 $p(s_{uij} = 1 \mid s_{ui}s_{uj} = 1) = 1$
 $p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 1) = \pi_2$
 $p(s_{uij} = 1 \mid s_{ui} + s_{uj} = 0) = 0$

(Strong heredity)
(Weak heredity)

- 1: **for** each user $u \in \mathcal{U}$ **do**
- 2: **for** each feature $i \in \mathcal{F}$ **do**
- 3: draw first-order interaction selection variable $s_{ui} \sim Bernoulli(\pi_1)$;

- 1: **for** each user $u \in \mathcal{U}$ **do**
- 2: **for** each feature $i \in \mathcal{F}$ **do**
- 3: draw first-order interaction selection variable $s_{ui} \sim Bernoulli(\pi_1)$;
- 4: draw first-order interaction weight $\tilde{w}_i \sim \mathcal{N}(0,1)$;

- 1: **for** each user $u \in \mathcal{U}$ **do**
- 2: **for** each feature $i \in \mathcal{F}$ **do**
- 3: draw first-order interaction selection variable $s_{ui} \sim Bernoulli(\pi_1)$;
- 4: draw first-order interaction weight $\tilde{w}_i \sim \mathcal{N}(0,1)$;
- 5: $w_{ui} = s_{ui} \cdot \tilde{w}_i$.

- 1: **for** each user $u \in \mathcal{U}$ **do**
- 2: **for** each feature $i \in \mathcal{F}$ **do**
- 3: draw first-order interaction selection variable $s_{ui} \sim Bernoulli(\pi_1)$;
- 4: draw first-order interaction weight $\tilde{w}_i \sim \mathcal{N}(0, 1)$;
- 5: $w_{ui} = s_{ui} \cdot \tilde{w}_i$.
- 6: **for** each feature pair $i, j \in \mathcal{F}$ **do**
- 7: draw second-order interaction selection variable $s_{uij} \sim p(s_{uij} \mid s_{ui}, s_{uj});$

- 1: **for** each user $u \in \mathcal{U}$ **do**
- 2: **for** each feature $i \in \mathcal{F}$ **do**
- 3: draw first-order interaction selection variable $s_{ui} \sim Bernoulli(\pi_1)$;
- 4: draw first-order interaction weight $\tilde{w}_i \sim \mathcal{N}(0,1)$;
- 5: $w_{ui} = s_{ui} \cdot \tilde{w}_i$.
- 6: **for** each feature pair $i, j \in \mathcal{F}$ **do**
- 7: draw second-order interaction selection variable $s_{uij} \sim p(s_{uij} \mid s_{ui}, s_{uj});$
- 8: draw second-order interaction weight $\tilde{w}_{ij} \sim \mathcal{N}(0,1)$;

- 1: **for** each user $u \in \mathcal{U}$ **do**
- 2: **for** each feature $i \in \mathcal{F}$ **do**
- 3: draw first-order interaction selection variable $s_{ui} \sim Bernoulli(\pi_1)$;
- 4: draw first-order interaction weight $\tilde{w}_i \sim \mathcal{N}(0,1)$;
- 5: $w_{ui} = s_{ui} \cdot \tilde{w}_i$.
- 6: **for** each feature pair $i, j \in \mathcal{F}$ **do**
- 7: draw second-order interaction selection variable $s_{uij} \sim p(s_{uij} \mid s_{ui}, s_{uj});$
- 8: draw second-order interaction weight $\tilde{w}_{ij} \sim \mathcal{N}(0,1)$;
- 9: $w_{uij} = s_{uij} \cdot \tilde{w}_{ij}$.

- 1: **for** each user $u \in \mathcal{U}$ **do**
- 2: **for** each feature $i \in \mathcal{F}$ **do**
- 3: draw first-order interaction selection variable $s_{ui} \sim Bernoulli(\pi_1)$;
- 4: draw first-order interaction weight $\tilde{w}_i \sim \mathcal{N}(0,1)$;
- 5: $w_{ui} = s_{ui} \cdot \tilde{w}_i$.
- 6: **for** each feature pair $i, j \in \mathcal{F}$ **do**
- 7: draw second-order interaction selection variable $s_{uij} \sim p(s_{uij} \mid s_{ui}, s_{uj});$
- 8: draw second-order interaction weight $\tilde{w}_{ij} \sim \mathcal{N}(0,1)$;
- 9: $w_{uij} = s_{uij} \cdot \tilde{w}_{ij}$.
- 10: for each feature vector $\mathbf{x} \in \mathcal{X}$ do
- 11: calculate the rating prediction $\hat{r}(x)$ by PFM;

- 1: **for** each user $u \in \mathcal{U}$ **do**
- 2: **for** each feature $i \in \mathcal{F}$ **do**
- 3: draw first-order interaction selection variable $s_{ui} \sim Bernoulli(\pi_1)$;
- 4: draw first-order interaction weight $\tilde{w}_i \sim \mathcal{N}(0, 1)$;
- 5: $w_{ui} = s_{ui} \cdot \tilde{w}_i$.
- 6: **for** each feature pair $i, j \in \mathcal{F}$ **do**
- 7: draw second-order interaction selection variable $s_{uij} \sim p(s_{uij} \mid s_{ui}, s_{uj});$
- 8: draw second-order interaction weight $\tilde{w}_{ij} \sim \mathcal{N}(0,1)$;
- 9: $w_{uij} = s_{uij} \cdot \tilde{w}_{ij}$.
- 10: for each feature vector $\mathbf{x} \in \mathcal{X}$ do
- 11: calculate the rating prediction $\hat{r}(x)$ by PFM;
- 12: draw $r(\mathbf{x}) \sim p(r \mid \hat{r}(\mathbf{x}))$.

Introduction

Factorization Machines for Recommendation Feature Interaction Selection

Model description

Bayesian personalized feature interaction selection

Efficient optimization

Optimization

Maximum A Posteriori: $\arg\max_{\tilde{W},S} p(\tilde{W},S\mid\mathcal{R},\mathcal{X})$

Optimization

Maximum A Posteriori: $arg \max_{\tilde{W},S} p(\tilde{W},S \mid \mathcal{R},\mathcal{X})$

Infeasible exact inference

ightharpoonup space complexity: $O(md^2)$

▶ time complexity: $O(2^{md^2})$

Optimization

Maximum A Posteriori: $arg max_{\tilde{W},S} p(\tilde{W},S \mid \mathcal{R},\mathcal{X})$

Infeasible exact inference

- ▶ space complexity: $O(md^2)$
- ▶ time complexity: $O(2^{md^2})$

Variational inference

- ▶ approximate $p(\tilde{W}, S \mid \mathcal{R}, \mathcal{X})$ by $q(\tilde{W}, S)$
 - ightharpoonup space complexity: O(md)
- Stochastic Gradient Variational Bayes
 - ▶ time complexity: O(dk), same as FMs

Introduction

Factorization Machines for Recommendation
Feature Interaction Selection

Model description

Bayesian personalized feature interaction selection Efficient optimization

Experiment

Experimental Setup

Datasets

HetRec: Information Heterogeneity and Fusion in Recommender Systems

- ► MovieLens: rating and tagging
- LastFM: rating, tagging, social networking
- Delicious: rating, tagging, social networking

Baselines

- ► Factorization Machine (FM)
- Sparse Factorization Machine (SFM)
- Attentional Factorization Machine (AFM)
- Neural Factorization Machine (NFM)

Experimental Setup

Our methods apply BP-FIS to a linear and a

- non-linear FMs
 ► BP-FM
 - ▶ BP-NFM

Evaluation

Top-N recommendation

- ► Leave-One-Out-Cross-Validation (LOOCV)
- ranking among 100 items
- metrics: HR@N and ARHR@N

Overall Performances

Table: Delicious

Method	HR@1	HR@10	ARHR@10
FM	0.0202	0.1147	0.0440
SFM	0.0229	0.1212	0.0465
AFM	0.0274	0.1169	0.0494
BP-FM	0.0278	0.1240**	0.0509*
NFM	0.0229	0.1065	0.0426
BP-NFM	0.0268	0.1289**	0.0504**

^{*} and ** indicate that the best score is significantly better than the second best score with p < 0.1 and p < 0.05, respectively.

- ➤ SFM outperforms FM and AFM on HR@10: need for FIS
- ▶ BP-FM and BP-NFM significantly outperforms FMs and NFM, respectively: effect of P-FIS

Impact of Embedding Size

- k = 64: P-FIS has insignificant effect of FMs
- k = 128, 256:
 - ▶ BP-FM and BP-NFM significantly outperform FMs and NFM
 - BP-NFM does not outperform BP-FM

Impact of Training

- k = 64: BP-FM plays competitively with BP-NFM
- ightharpoonup k = 128: BP-FM grows constantly, while BP-NFM fluctuate
- ightharpoonup k = 256: BP-NFM performs better with less iterations, but unstable

Introduction

Factorization Machines for Recommendation Feature Interaction Selection

Model description

Bayesian personalized feature interaction selection Efficient optimization

Experiment

Conclusion

Conclusion

1. We study personalized feature interaction selection (P-FIS) for Factorization Machines.

Conclusion

- 2. We propose a Bayesian personalized feature interaction selection (BP-FIS) method based on the Bayesian variable selection.
 - ▶ We propose hereditary spike-and-slab as priors to achieve P-FIS.
 - ▶ BP-FIS is a plug-and-play framework for FMs

Conclusion

3. We design an efficient optimization algorithm based on Stochastic Gradient Variational Bayes (SGVB).

Future Work

- 1. Extend BP-FIS to select higher-order feature interactions
- 2. Consider group-level personalization via clustering to speed up training

