Near-Optimal Dimension Reduction for Facility Location

Lingxiao Huang ¹ Shaofeng H.-C. Jiang ² Robert Krauthgamer ³ **Di Yue** ²

August 29, 2024

¹Nanjing University

²Peking University

³Weizmann Institute of Science

Dimension Reduction

Theorem (Johnson-Lindenstrauss lemma [Johnson-Lindenstrauss 84])

For all n > 0, $\varepsilon \in (0,1)$, there exists a random linear map $\pi \colon \mathbb{R}^d \to \mathbb{R}^m$, for $m = O(\varepsilon^{-2} \log n)$, such that for every $X \subset \mathbb{R}^d$ with |X| = n, with high probability

$$\forall x, y \in X, \|\pi(x) - \pi(y)\| \in (1 \pm \varepsilon) \|x - y\|.$$

- JL mapping: $\pi \colon x \mapsto \frac{1}{\sqrt{m}} Gx$, where $G \in \mathbb{R}^{m \times d}$ with $g_{i,j} \sim i.i.d.N(0,1)$.
- $m = O(\varepsilon^{-2} \log n)$ is tight [Larsen, Nelson, FOCS 2017].
- Curse of dimensionality: target dimension $m = \Theta(\log n)$ is always too high to afford.
 - ullet TSP does not admit a PTAS in dimension $m = \Theta(\log n)$ [Trevisan, SIAM J. Comput. 00].
 - Many problems have 2^{2^d} dependence in the (low-dimensional) PTAS.

Doubling Dimension

[Gupta, Krauthgamer, Lee, FOCS 03]

Solution: Use intrinsic dimension.

• ddim(X) := the minimum $t \ge 0$, such that $\forall r > 0$, each ball in X of radius r can be covered by at most 2^t balls of radius r/2.

- Fundamental question: refine JL lemma such that m only depends on ddim(X).
- Preserve objective value for specific computational problems instead of pairwise distances. (i.e. $\operatorname{opt}(\pi(X)) \approx \operatorname{opt}(X)$)

Related Work on JL

• Preserve objective value for specific computational problems instead of pairwise distances. (i.e. $\operatorname{opt}(\pi(X)) \approx \operatorname{opt}(X)$)

Problems	Approximation	Target Dimension	References
Nearest Neighbor	$1 + \varepsilon$	$O(\varepsilon^{-2} ddim)$	IN07
k-Center Clustering	$1 + \varepsilon$	$O(\varepsilon^{-2}(\log k + \operatorname{ddim}))$	JKS24
k-Median / k -Means	$1+\varepsilon$	$O(\varepsilon^{-2}\log k)$	MMR19
Max-Cut	$1+\varepsilon$	$O(1/\varepsilon^2)$	CJK23
MST	$1+\varepsilon$	$O(\varepsilon^{-2} \operatorname{ddim} \log \log n)$	NSIZ21
UFL	O(1)	$O(\varepsilon^{-2} ddim)$	NSIZ21
UFL	$1 + \varepsilon$	$\tilde{O}(\varepsilon^{-2} ddim)$	This work

Uniform Facility Location (UFL)

Input: Point set $X \subset \mathbb{R}^d$ with bounded doubling dimension ddim , opening cost $\mathfrak{f} > 0$.

Goal: Find a set of facilities $F \subset \mathbb{R}^d$, so as to minimize the objective

$$\mathrm{cost}(X,F) := \underbrace{\mathfrak{f} \cdot |F|}_{\text{opening cost}} + \underbrace{\sum_{x \in X} \mathrm{dist}(x,F)}_{\text{connection cost}},$$

where $\operatorname{dist}(x, F) := \min_{y \in F} \operatorname{dist}(x, y)$ and $\operatorname{dist}(x, y) := \|x - y\|_2$.

- W.l.o.g., $f \equiv 1$ (by scaling the point set).
- Denote the *optimal value* by ufl(X).

Problem (Dimension reduction for UFL)

Given $\varepsilon, \delta > 0$, find target dimension $m = f(\operatorname{ddim}, \varepsilon, \delta)$, such that $\Pr[\operatorname{ufl}(\pi(X)) \in (1 \pm \varepsilon) \operatorname{ufl}(X)] \geq 1 - \delta$, where $\pi : \mathbb{R}^d \to \mathbb{R}^m$ is the JL mapping.

Theorem (Dimension reduction for UFL)

 $\Pr[\mathrm{ufl}(\pi(X)) \in (1 \pm \varepsilon) \, \mathrm{ufl}(X)] \ge 1 - \delta, \text{ for target dimension } m := O(\varepsilon^{-2} \mathrm{ddim} \cdot \log(\delta^{-1} \varepsilon^{-1} \mathrm{ddim})).$

Theorem (Dimension reduction for UFL)

 $\Pr[\text{ufl}(\pi(X)) \in (1 \pm \varepsilon) \text{ ufl}(X)] \ge 1 - \delta$, for target dimension $m := O(\varepsilon^{-2} \text{ddim} \cdot \log(\delta^{-1} \varepsilon^{-1} \text{ddim}))$.

• Previous results: O(1)-approximation with $m=O(\varepsilon^{-2}\mathrm{ddim})$ [Narayanan, Silwal, Indyk, Zamir, ICML 21] or $(1+\varepsilon)$ -approximation with $m=O(\varepsilon^{-2}\log n)$ [Makarychev, Makarychev, Razenshteyn, STOC 19].

Theorem (Dimension reduction for UFL)

 $\Pr[\operatorname{ufl}(\pi(X)) \in (1 \pm \varepsilon) \operatorname{ufl}(X)] \ge 1 - \delta, \text{ for target dimension } m := O(\varepsilon^{-2} \operatorname{ddim} \cdot \log(\delta^{-1} \varepsilon^{-1} \operatorname{ddim})).$

• Previous results: O(1)-approximation with $m=O(\varepsilon^{-2}\mathrm{ddim})$ [Narayanan, Silwal, Indyk, Zamir, ICML 21] or $(1+\varepsilon)$ -approximation with $m=O(\varepsilon^{-2}\log n)$ [Makarychev, Makarychev, Razenshteyn, STOC 19].

Theorem (PTAS for UFL)

There is an algorithm that computes a $(1+\varepsilon)$ -approximate solution for UFL, running in time $(2^{m'}d+2^{2^{m'}})\cdot \tilde{O}(n)$, for $m'=O(\operatorname{ddim}\cdot \log(\operatorname{ddim}/\varepsilon))$.

Theorem (Dimension reduction for UFL)

 $\Pr[\operatorname{ufl}(\pi(X)) \in (1 \pm \varepsilon) \operatorname{ufl}(X)] \ge 1 - \delta, \text{ for target dimension } m := O(\varepsilon^{-2} \operatorname{ddim} \cdot \log(\delta^{-1} \varepsilon^{-1} \operatorname{ddim})).$

• Previous results: O(1)-approximation with $m = O(\varepsilon^{-2} \text{ddim})$ [Narayanan, Silwal, Indyk, Zamir, ICML 21] or $(1+\varepsilon)$ -approximation with $m = O(\varepsilon^{-2} \log n)$ [Makarychev, Makarychev, Razenshteyn, STOC 19].

Theorem (PTAS for UFL)

There is an algorithm that computes a $(1+\varepsilon)$ -approximate solution for UFL, running in time $(2^{m'}d+2^{2^{m'}})\cdot \tilde{O}(n)$, for $m'=O(\operatorname{ddim}\cdot \log(\operatorname{ddim}/\varepsilon))$.

- Facilities are allowed to be picked from the (*d*-dimensional) ambient space.
- Previous result: Running in time $2^{2^{O(\operatorname{ddim}^2)}}d\cdot \tilde{O}(n)$, with facilities restricted to the same doubling metric [Cohen-Addad, Feldmann, Saulpic, JACM 21].

Proof Overview

• Upper bound $\operatorname{ufl}(\pi(X))$: $\operatorname{ufl}(\pi(X)) \leq \operatorname{cost}(\pi(X), \pi(F^*)) \lesssim \operatorname{cost}(X, F^*) = \operatorname{ufl}(X)$.

Proposition ([Johnson, Lindenstrauss 84] [Makarychev, Makarychev, Razenshteyn, STOC 19])

$$\forall x, y \in \mathbb{R}^d \text{ and } t > 0$$
,

$$\mathbb{E}\left[\max\left\{0, \frac{\|\pi(x) - \pi(y)\|}{\|x - y\|} - (1 + t)\right\}\right] \le \frac{1}{mt}e^{-t^2m/2}.$$

Proof Overview

- Upper bound $\operatorname{ufl}(\pi(X))$: $\operatorname{ufl}(\pi(X)) \leq \operatorname{cost}(\pi(X), \pi(F^*)) \lesssim \operatorname{cost}(X, F^*) = \operatorname{ufl}(X)$.
- Lower bound $ufl(\pi(X))$
 - (1) Partition X into "light" clusters $\mathbf{\Lambda} = \{C_1, C_2, \dots, C_{|\mathbf{\Lambda}|}\}$, where $\mathrm{ufl}(C_i) = \Theta(\mathrm{ddim}/\varepsilon)^{O(\mathrm{ddim})}$.
 - (2) Sub-additivity: $ufl(X) \leq \sum_{C \in \Lambda} ufl(C)$.
 - (3) On each cluster $C \in \Lambda$, $ufl(\overline{C}) \lesssim ufl(\pi(C))$ in expectation.
 - (4) $\sum_{C \in \mathbf{\Lambda}} \operatorname{ufl}(\pi(C)) \lesssim \operatorname{ufl}(\pi(X)).$

Recursively partition a large cluster into small sub-clusters of half radius.

Recursively partition a large cluster into small sub-clusters of half radius.

• Construct (r/2)-net N on C.

Definition (ρ -net)

- ρ -packing: $\forall x, y \in N$, $\operatorname{dist}(x, y) \geq \rho$.
- ρ -covering: $\forall x \in C$, $\exists y \in N$, s.t. $\operatorname{dist}(x, y) \leq \rho$.
- N is a ρ-net if it is both ρ-packing and ρ-covering for C.

Proposition (Packing property)

If S is ρ -packing then $|S| \leq (2 \operatorname{diam}(S)/\rho)^{\operatorname{ddim}(S)}$.

Recursively partition a large cluster into small sub-clusters of half radius.

• Construct a level i child cluster $C_u \leftarrow C \cap B(u, r/2) \setminus \bigcup_{v \in N: \sigma(v) < \sigma(u)} B(v, r/2)$.

Recursively partition a large cluster into small sub-clusters of half radius.

• Construct a level i child cluster $C_u \leftarrow C \cap B(u, r/2) \setminus \bigcup_{v \in N: \sigma(v) < \sigma(u)} B(v, r/2)$.

Recursively partition a large cluster into small sub-clusters of half radius.

• Construct a level i child cluster $C_u \leftarrow C \cap B(u, r/2) \setminus \bigcup_{v \in N: \sigma(v) < \sigma(u)} B(v, r/2)$.

- Node ↔ cluster.
 - Root: *X*;
 - leaves: singletons;
 - level *i*: diameter $\Theta(2^i)$.
- Each node (cluster) has $2^{O(\text{ddim})}$ child nodes (clusters).

Cut

- Cut [Talwar, STOC 04] [Cohen-Addad, Feldmann, Saulpic, JACM 21]: a pair of points (x,y) is cut by cluster C if $x \in C$ and $y \notin C$.
- Badly cut: (x, y) is badly cut if (x, y) is cut by some cluster C with $\operatorname{diam}(C) \ge \frac{\operatorname{ddim}}{c^2} \cdot ||x y||$.
- There is a (random) hierarchical decomposition, such that $\forall x,y \in X$, $\Pr[(x,y) \text{ is badly cut}] \leq O(\varepsilon^2)$.

Fix facility set $F \subseteq X$.

Fix facility set $F \subseteq X$.

- For each level *i*:
 - For each $x \in X$, if $x \in C$, $F(x) \notin C$ and $\operatorname{diam}(C) \ge \frac{\operatorname{ddim}}{\varepsilon^2} \cdot ||x F(x)||$, then "move" x into the same level i cluster as F(x).

Fix facility set $F \subseteq X$.

- For each level *i*:
 - For each $x \in X$, if $x \in C$, $F(x) \notin C$ and $\operatorname{diam}(C) \ge \frac{\operatorname{ddim}}{\varepsilon^2} \cdot ||x F(x)||$, then "move" x into the same level i cluster as F(x).

Fix facility set $F \subseteq X$.

- For each level i:
 - For each $x \in X$, if $x \in C$, $F(x) \notin C$ and $\operatorname{diam}(C) \ge \frac{\operatorname{ddim}}{\varepsilon^2} \cdot ||x F(x)||$, then "move" x into the same level i cluster as F(x).

- On the new decomposition \mathcal{T} , (x, F(x)) is not badly-cut.
 - Separation: If (x, F(x)) is cut by cluster C, then $||x F(x)|| \ge \frac{\varepsilon^2}{\operatorname{ddim}} \operatorname{diam}(C)$.

Given threshold $\kappa = \Theta(\operatorname{ddim}/\varepsilon)^{O(\operatorname{ddim})}$, find the lowest level "heavy cluster" $(\operatorname{ufl}(C) \ge \kappa)$ in a bottom-up manner.

• Bounded optimal value: $\forall C \in \Lambda$, $\kappa \leq \text{ufl}(C) \leq 2^{O(\text{ddim})} \kappa$.

JL on Each Cluster

- Bounded optimal value: $\forall C \in \Lambda$, $\kappa \leq \text{ufl}(C) \leq 2^{O(\text{ddim})} \kappa$.
- Equivalent to τ -median on C, where $\tau = 2^{O(\operatorname{ddim})} \kappa = \Theta(\operatorname{ddim}/\varepsilon)^{O(\operatorname{ddim})}$.

Lemma (Refined from [Makarychev, Makarychev, Razenshteyn, STOC 19])

Assume $\operatorname{ufl}(C) \leq \tau$. Then for $m = \Omega(\varepsilon^{-2} \log(1/\varepsilon))$,

$$\Pr\left[\mathrm{ufl}(\pi(C)) \le \frac{1}{1+\varepsilon}\,\mathrm{ufl}(C)\right] \le \tau^3 \cdot e^{-\Omega(\varepsilon^2 m)}.$$

- Choose target dimension $m = O(\varepsilon^{-2} \log \tau) = O(\varepsilon^{-2} \operatorname{ddim} \cdot \log(\operatorname{ddim}/\varepsilon)).$
- On each cluster $C \in \Lambda$, $ufl(C) \lesssim ufl(\pi(C))$ in expectation.

- Goal: $\sum_{C \in \Lambda} \operatorname{ufl}(\pi(C)) \lesssim \operatorname{ufl}(\pi(X))$.
- Idea: Open a "local" facility set $F'_{\pi(C)}$ for each $\pi(C)$ and show $\operatorname{dist}(\pi(x), F'_{\pi(C)}) \lesssim \operatorname{dist}(\pi(x), F^*_{\pi}), \forall x \in C$.

 $F'_{\pi(C)} :=$

- Goal: $\sum_{C \in \Lambda} \operatorname{ufl}(\pi(C)) \lesssim \operatorname{ufl}(\pi(X))$.
- Idea: Open a "local" facility set $F'_{\pi(C)}$ for each $\pi(C)$ and show $\operatorname{dist}(\pi(x), F'_{\pi(C)}) \lesssim \operatorname{dist}(\pi(x), F^*_{\pi}), \forall x \in C$.

$$F'_{\pi(C)} := (F^*_{\pi} \cap \pi(C))$$

- Goal: $\sum_{C \in \Lambda} \operatorname{ufl}(\pi(C)) \lesssim \operatorname{ufl}(\pi(X))$.
- Idea: Open a "local" facility set $F'_{\pi(C)}$ for each $\pi(C)$ and show $\operatorname{dist}(\pi(x), F'_{\pi(C)}) \lesssim \operatorname{dist}(\pi(x), F^*_{\pi}), \forall x \in C$.

- Goal: $\sum_{C \in \Lambda} \operatorname{ufl}(\pi(C)) \lesssim \operatorname{ufl}(\pi(X))$.
- Idea: Open a "local" facility set $F'_{\pi(C)}$ for each $\pi(C)$ and show $\operatorname{dist}(\pi(x), F'_{\pi(C)}) \lesssim \operatorname{dist}(\pi(x), F^*_{\pi}), \forall x \in C$.

- Goal: $\sum_{C \in \Lambda} \operatorname{ufl}(\pi(C)) \lesssim \operatorname{ufl}(\pi(X))$.
- Idea: Open a "local" facility set $F'_{\pi(C)}$ for each $\pi(C)$ and show $\operatorname{dist}(\pi(x), F'_{\pi(C)}) \lesssim \operatorname{dist}(\pi(x), F^*_{\pi}), \forall x \in C$.

- Goal: $\sum_{C \in \Lambda} \operatorname{ufl}(\pi(C)) \lesssim \operatorname{ufl}(\pi(X))$.
- Idea: Open a "local" facility set $F'_{\pi(C)}$ for each $\pi(C)$ and show $\operatorname{dist}(\pi(x), F'_{\pi(C)}) \lesssim \operatorname{dist}(\pi(x), F^*_{\pi}), \forall x \in C.$ $\sigma \cdot \operatorname{diam}(C)$ -net on C

$$F'_{\pi(C)} := (F_{\pi}^* \cap \pi(C)) \cup \pi(\qquad \widehat{N_C} \qquad)$$

- $\pi(x)$ and $\pi(u)$ are close.
 - $||x u|| \le \sigma \cdot \operatorname{diam}(C) \Longrightarrow ||\pi(x) \pi(u)|| \le O(\sigma) \cdot \operatorname{diam}(C) \text{ w.h.p.}$
- $\pi(x)$ and $\pi(y)$ are separated.
- $f(y) = F_\pi^*(\pi(x))$ (x,y) is not badly $\mathrm{cut} \Longrightarrow \|x-y\| \geq \frac{\varepsilon^2}{\mathrm{ddim}} \cdot \mathrm{diam}(C)$.
 - $\|\pi(x) \pi(y)\| \ge \frac{\Omega(\varepsilon^2)}{\operatorname{ddim}} \cdot \operatorname{diam}(C)$ w.h.p.
 - Conclusion: $\|\pi(x) \pi(u)\| \le \|\pi(x) \pi(y)\|$.

- Goal: $\sum_{C \in \Lambda} \operatorname{ufl}(\pi(C)) \lesssim \operatorname{ufl}(\pi(X))$.
- ullet Idea: Open a "local" facility set $F_{\pi(\mathit{C})}'$ for each $\pi(\mathit{C})$ and show

$$\operatorname{dist}(\pi(x), F'_{\pi(C)}) \lesssim \operatorname{dist}(\pi(x), F^*_{\pi}), orall x \in C.$$
 $\sigma \cdot \operatorname{diam}(C)$ -net on C $F'_{\pi(C)} := (F^*_{\pi} \cap \pi(C)) \cup \pi($

$$\pi(C) \qquad \text{ufl}(\pi(C)) \leq \sum_{x \in C} \operatorname{dist}(\pi(x), F'_{\pi(C)}) + \left| F'_{\pi(C)} \right| \\ \leq \sum_{x \in C} \operatorname{dist}(\pi(x), F^*_{\pi}) + \underbrace{\left| F^*_{\pi} \cap \pi(C) \right|}_{\text{opening cost on } \pi(C)} + |N_C|$$

 $\implies \sum \operatorname{ufl}(\pi(\mathit{C})) \leq \operatorname{ufl}(\pi(\mathit{X})) + \mathsf{err}.$

PTAS for UFL

- ullet Construct the partition $\Lambda.$
 - Hierarchical decomposition \mathcal{H} .
 - Eliminate badly-cut pairs $(x, F(x)) \Longrightarrow \mathcal{T}$.
 - Construct Λ via \mathcal{T} .
- Construct near-optimal clustering C.
 - For each $C \in \Lambda$, construct the near optimal clustering C_C for $\pi(C)$.
 - $\mathcal{C} := \bigcup_{C \in \Lambda} \mathcal{C}_C$.
- Construct facility set *F*.
 - For each $X_i \in \mathcal{C}$, compute the (approximate) 1-median center f_i for X_i .
 - $F := \{f_1, f_2, \dots, f_s\}.$

Thank you!