

Presentación del Equipo

Juan P. Henao

Diego Vanegas

Miguel Correa

Mauricio Toro

Diseño del Algoritmo

Podemos reducir la impureza mediante los antecedentes estudiantiles de forma considerable, donde sabemos que si un estudiante tiene antecedentes negativos, se vera reflejado un posible bajo promedio en los resultados. Mientras que, si el estudiantes ha tenido buenos antecedentes, es mas probable que el resultado sea encima del promedio, aunque no podriamos asegurar com certeza, ya que no sabemos como fueron los metodos evaluativos tanto del Colegio como de la Universidad, y no sabemos si el estudiante fue honesto en sus procesos educativos

División de un nodo

Esta división está basada en la condición "Antecedentes Estudiantiles" Para este caso, la impureza Gini de la izquierda es 0.48, la impureza Gini de la derecha es 0.50 y la impureza ponderada es de 0.98.

Esta división está basada en la condición "Curso Preparacion" Para este caso, la impureza Gini de la izquierda es 0.49, la impureza Gini de la derecha es 0.50 y la impureza ponderada es 0.99.

Complejidad del Algoritmo

	Complejidad en tiempo	Complejidad en memoria
Entrenamiento del modelo	O(N*M)	O(N*M)
Validación del modelo	O(N*M)	O(N*M)

Complejidad en tiempo y memoria del algoritmo CART

Modelo de Árbol de Decisión

Un árbol de decisión para predecir el resultado del Saber Pro usando los resultados del Saber 11. El azul representa el nodo padre (Pregunta principal) y el verde, dependiendo de su tonalidad si tiende a ser más oscuro, mayor probabilidad de éxito tiene el estudiante.

Características Más Relevantes

Lenguaje y Matemáticas

Inglés

Antecedentes

Métricas de Evaluación

Métricas de Evaluación

	Conjunto de entrenamiento	Conjunto de validación
Exactitud		
Precisión		
Sensibilidad		

Métricas de evaluación obtenidas con el conjunto de datos de entrenamiento de 5,000 estudiantes y el conjunto de datos de validación de 15,000 estudiantes.

Consumo de tiempo y memoria

Reporte Aceptado en arXiv

C. Patiño-Forero, M. Agudelo-Toro, and M. Toro. Planning system for deliveries in Medellín. ArXiv e-prints, Nov. 2016. Available at: https://arxiv.org/abs/1611.04156

arXiv.org > cs > arXiv:1611.04156

Computer Science > Data Structures and Algorithms

[Submitted on 13 Nov 2016]

Planning system for deliveries in Medellín

Catalina Patiño-Forero, Mateo Agudelo-Toro, Mauricio Toro

Here we present the implementation of an application capable of planning the shortest delivery route in the city of Medellín, Colombia. We discuss the different approaches to this problem which is similar to the famous Traveling Salesman Problem (TSP), but differs in the fact that, in our problem, we can visit each place (or vertex) more than once. Solving this problem is important since it would help people, especially stores with delivering services, to save time and money spent in fuel, because they can plan any route in an efficient way.

Comments: 5 pages, 9 figures

Subjects: Data Structures and Algorithms (cs.DS)

ACM classes: F.2.0; G.2.2

Cite as: arXiv:1611.04156 [cs.DS]

(or arXiv:1611.04156v1 [cs.DS] for this version)

