MODULE 2.2 MONTE CARLO METHODS

Monte-Carlo estimation

- Goal is to calculate a deterministic quantity
- .. using an approximation with random sampling

Example

• Let U be a Uniform(0,1) random variable
$$\theta = \mathrm{E}[g(U)] = \int_0^1 g(u) du$$

• Let X be a random variable following a pdf
$$f(x)$$

$$\theta = \mathrm{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Characterizing Monte-Carlo estimation

- Types of Monte-Carlo methods
 - Crude Monte-Carlo
 - Importance sampling
- Key properties of ideal Monte-Carlo methods
 - Consistency: the estimate converges the true value
 - Unbiasedness : $E[\hat{\theta}] = \theta$
 - Smaller (or minimal) variance

A crude Monte-Carlo method

To calculate
$$\theta = \mathrm{E}[g(U)] = \int_0^1 g(u) du$$
 ,

- 1. Generate B random samples u_1, \dots, u_B from Uniform(0,1).
- 2. Take the average as the estimate

$$\widehat{\theta} = \frac{1}{B} \sum_{i=1}^{B} g(u_i)$$

Analysis of the crude Monte-Carlo method

- Is it consistent?
 - By Weak law of large number,

$$\hat{\theta} \stackrel{P}{\to} \lim_{B \to \infty} \frac{1}{B} \sum_{i=1}^{B} g(U_i) = E[g(U)] = \theta$$

Is it unbiased?

$$E[\hat{\theta}] = E\left[\frac{1}{B}\sum_{i=1}^{B} g(u_i)\right] = E[g(U)] = \theta$$

How small is the variance?

$$Var[\hat{\theta}] = \frac{1}{B}Var[g(U)] = \frac{E[g^2(U)] - \theta^2}{B}$$

An alternative Monte-Carlo estimator

To calculate
$$\theta = \mathrm{E}[g(U)] = \int_0^1 g(u) du$$
, assuming $0 < g(u) < 1$,

- 1. Define a rectangle R between (0,0) and (1,1)
- 2. Initialize counters h = 0, m = 0
- 3. Uniformly select a random point (x,y) from R
- 4. If y < g(x), increase h, otherwise increase m
- 5. Repeat step 3-4 for B times.
- 6. Return $\hat{\theta} = \frac{h}{h+m}$ as the estimate.

Analysis of the hit-and-miss method

Consistency

$$h \sim Binomial(B, \theta)$$
$$\hat{\theta} = \frac{h}{B} \stackrel{P}{\to} \theta$$

Bias

$$\mathrm{E}\big[\hat{\theta}\big] = \frac{1}{R}\mathrm{E}[h] = \theta$$

Variance

$$\operatorname{Var}[\hat{\theta}] = \frac{1}{B^2} \operatorname{Var}[h] = \frac{B\theta(1-\theta)}{B^2} = \frac{\theta(1-\theta)}{B}$$

Which one is better?

$$\operatorname{Var}_{hitmiss}[\hat{\theta}] - \operatorname{Var}_{crude}[\hat{\theta}] = \frac{\theta(1-\theta)}{B} - \frac{\operatorname{E}[g^2(U)] - \theta^2}{B}$$

$$= \frac{\theta - \operatorname{E}[g^2(U)]}{B} \ge \frac{\theta - \operatorname{E}[g(U)]}{B} = 0$$

$$(g^2(U) < g(U) \text{ because } 0 < g(U) < 1)$$

Crude Monte-Carlo method is better than hit-and-miss in terms of variance

An example of Monte-Carlo estimation

Consider a normal distribution

$$X \sim N(0,1)$$

We're interested in calculating

$$Pr(X > 10) = 7.62 \times 10^{-24}$$

Using Monte-Carlo methods, without using CDF

Possible solution with crude Monte-Carlo

• Variance, when sampling from [10,10+w) (ignoring bias)

$$\widehat{\theta} = \frac{1}{B} \sum_{i=1}^{B} g(u)w$$

$$\operatorname{Var}\left[\hat{\theta}\right] = \frac{1}{B} \int_{10}^{10+w} [g(u)w - \theta]^2 du$$

Importance sampling

- Let x_i be random variable,
- Let *f*(*x*) be an arbitrary density function of the sampled random variable.

$$\theta = \int g(x)dx = \int \frac{g(x)}{f(x)}f(x)dx = \operatorname{E}_{f}\left[\frac{g(x)}{f(x)}\right]$$

$$\hat{\theta} = \frac{1}{B} \sum_{i=1}^{B} \frac{g(x_i)}{f(x_i)}$$

Key idea of importance sampling

 When g(x) deviates from the uniform distribution, the variance becomes very large

 The idea is to prevent sampling from highvariance distribution

Analysis of importance sampling

Bias

$$E[\widehat{\theta}] = \frac{1}{B} \sum_{i=1}^{B} E_f \left[\frac{g(x_i)}{f(x_i)} \right] = \frac{1}{B} \sum_{i=1}^{B} \theta = \theta$$

Variance

$$\operatorname{Var}[\widehat{\theta}] = \frac{1}{B} \int \left[\frac{g(x)}{f(x)} - \theta \right]^2 f(x) dx$$
$$= \frac{\operatorname{E}_f \left[\frac{g(x_i)}{f(x_i)} \right]^2 - \theta^2}{B}$$

An importance sampling solution for Pr(X>10)

- Let f_0 be the pdf of standard normal distribution N(0,1)
- Let $f_{\mathbf{u}}$ be the pdf of a normal distribution $N(\boldsymbol{\mu},1)$
- 1. Transform the problem into an unbounded integration problem

$$\theta = \Pr(X > 10) = \int_{10}^{\infty} f_0(x) dx = \int I(x > 10) f_0(x) dx$$

- 2. Sample B random values from $N(\mu, 1)$ where μ is close to 10
- 3. Estimate the probability as the weighted average

$$\hat{\theta} = \frac{1}{B} \left[I(x_i \ge 10) \frac{f_0(x_i)}{f_\mu(x_i)} \right]$$

Implementation of possible algorithms

```
## pnormUpper() function to calculate Pr[x>t] using n random samples
pnormUpper <- function(n, t) {</pre>
  1o <- t
  hi <- t + 50 ## w=50 was used hi is a reasonably large number
  ## accept-reject sampling
  r <- rnorm(n) ## random sampling from N(0,1)
  v1 <- sum(r > t)/n ## count how many meets the condition
  ## Monte-Carlo integration
  u <- runif(n,lo,hi) ## uniform sampling [t,t+50]</pre>
  v2 <- mean(dnorm(u))*(hi-lo) ## Monte-Carlo integration</pre>
  ## importance sampling using N(t,1)
  q \leftarrow rnorm(n,t,1) ## sample from N(t,1)
  v3 \leftarrow sum((g > t) * dnorm(g)/dnorm(g,t,1)) / n; ## take a weighted average
  return (c(v1,v2,v3)) ## return three values
```

100 experiments with B=1,000

```
r <- 100 ## number of repeated experiments
B <- 1000 ## size of boostrap
t < -10 ## Pr(t>10)
gold <- pnorm(t,lower.tail=FALSE) ## gold standard answer</pre>
emp <- matrix(nrow=r,ncol=3) ## matrix containing empirical answers</pre>
for(i in 1:r) { emp[i,] <- pnormUpper(B,t) } ## repeat r times</pre>
m <- colMeans(emp)</pre>
s <- apply(emp, 2, sd)
rst <- list(gold.standard=gold,
            estimates=m,
            abs.bias=m-gold,
            abs.std=s,
            rel.bias=(m-gold)/gold,
            rel.std=s/gold)
print(rst)
```

Results

```
$gold.standard
[1] 7.619853e-24
$estimates
[1] 0.000000e+00 7.949908e-24 7.572652e-24
$abs.bias
[1] -7.619853e-24 3.300552e-25 -4.720110e-26
$abs.std
[1] 0.000000e+00 3.860388e-24 8.233907e-25
$rel.bias
[1] -1.00000000 0.04331517 -0.00619449
$rel.std
[1] 0.0000000 0.5066224 0.1080586
```

Adding results with B=10,000

```
$gold.standard
[1] 7.619853e-24
$estimates
[1] 0.000000e+00 7.949908e-24 7.572652e-24
$abs.bias
[11 -7.619853e-24 3.300552e-25 -4.720110e-26
$abs.std
[1] 0.000000e+00 3.860388e-24 8.233907e-25
$rel.bias
[1] -1.00000000 0.04331517 -0.00619449
$rel.std
[1] 0.0000000 0.5066224 0.1080586
```

```
$gold.standard
[1] 7.619853e-24
Sestimates
[1] 0.000000e+00 7.551066e-24 7.587339e-24
$abs.bias
[1] -7.619853e-24 -6.878701e-26 -3.251440e-26
Sabs.std
[1] 0.000000e+00 1.033607e-24 2.300938e-25
$rel.bias
[1] -1.000000000 -0.009027341 -0.004267065
$rel.std
[1] 0.00000000 0.13564662 0.03019662
```

Summary

Monte-Carlo estimation

Use random sample to approximately calculate a complex quantity

Types of Monte-Carlo estimation

- Crude Monte-Carlo
- Accept-reject (hit-and-miss) Monte-Carlo estimation
- Importance sampling