KLASSZIUKS FIZIKA LABORATÓRIUM

Termoelektromos hűtőelemek vizsgálata jegyzőkönyv

Mérést végezte: Koroknai Botond Mérés időpontja: 2023.05.17

Neptun kód: AT5M0G Jegyzőkönyv leadásának időpontja: 2023.06.05

Tartalomjegyzék:

1	A mérés célja és menete:	2		
2	A mérőeszközök:			
3	Fontos összefüggések	2		
4	Mérési adatok kiértékelése:4.1 Egyensúlyi hőmérséklet és karakterisztikus idő:	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
5	Diezkusezió:	6		

1 A mérés célja és menete:

A mérés során a Peltier elem Seebeck-együtthatóját (S_{ab}) , jósági tényezőjét (z), ellenállását (R_{ab}) , hővezetését (h_{ab}) , hőátadási együtthatójáz h_K , és Peltier-együtthatóját (P_{ab}) kellett kiszámolni. Ehhez meg kelett határoznunk, hogy különböző áramerősségek esetén mekkora τ idő alatt áll be az egyensúly hülés esetén, és ehhez milyen egyensúlyi hőmérsékletek tartoznak.

2 A mérőeszközök:

- Áramgenerátor
- Mérőprogram
- · Peltier-elem
- · Hőtartály vízhűtéssel
- Hőmérő
- Feszültségmérő

3 Fontos összefüggések

Joule-hő:

$$\frac{dQ}{dt} = I^2 R \tag{1}$$

Ahol Q a fejlődő hő, R az ellenállás, és I az áram nagysága.

Hővezetés:

$$\frac{1}{A}\frac{dQ}{dt} = -\lambda \frac{dT}{dx} \tag{2}$$

A vezető keresztmetszetén átáramlott Q hőmennyiség arányos a hőmérséklet gradienssel, λ az arányossági tényező és melegebb helyről hidegebb felé halad.

Peltier-effektus:

$$\frac{dQ}{dt} = P_{ab}I\tag{3}$$

Különböző minőségű áramjárta fémek határán az egyik csatlakozási pont felmelegszik, míg a másik lehül: $P_{ab}=P_a-P_b$

Seebeck-effektus:

$$U = S_{ab}(T_m - T_h) \tag{4}$$

A hőmérsékletkülönbség hatására feszültség indukálódik.

A hűtőtt pontról időegységenként kiszivattyúzott hő:

$$\frac{dQ}{dT} = P_{ab}I - \frac{1}{2}R_{ab}I^2 - h_{ab}(T_0 - T) - h(T_k - T)$$
(5)

Minimális hőmérséklethez tartozó áram:

$$I_{min} = \frac{h_{ab}}{S_{ab}} \left(\sqrt{1 + \frac{2S_{ab}^2 T_0}{h_{ab} R_{ab}}} - 1 \right) \tag{6}$$

Minimális hőmérséklet:

$$T_{min} = \frac{R_{ab}I_{min}}{S_{ab}} \tag{7}$$

Az elem ellenállása:

$$R_{ab} = \frac{S_{ab}T_{min}}{I_{min}} \tag{8}$$

Jósági tényező:

$$z = \frac{S_{ab}^2}{h_{ab}R_{ab}} = \frac{2(T_0 - T_{min})}{T_{min}^2} \tag{9}$$

Hővezetési tényező:

$$h_{ab} = \frac{S_{ab}^2}{zR_{ab}} \tag{10}$$

Peltier együttható:

$$P_{ab}(T) = S_{ab}T\tag{11}$$

A következő összefüggést felhasználva:

$$\frac{T_{\infty}}{I} = \frac{R_a b}{2S_{ab}} + \frac{h_{ab}}{S_{ab}} \frac{T_0 - T_{\infty}}{I^2}$$
 (12)

Egy egyenest kapunk, melynek segítségével meghatározhatjuk a kívánt együtthatókat.

4 Mérési adatok kiértékelése:

4.1 Egyensúlyi hőmérséklet és karakterisztikus idő:

Első lépésben megmértem a 0 A -hez tartozó hőmérséklet időfüggését, és egy illesztés segítségével meghatároztam az egyensúlyi hőmérsékletet, mely a vízhűtés hatására beáll, valamint azt a karakrerisztikus időt, mely ezen beálláshoz szükséges. Az illesztett egyenlet:

$$T(t) = -A \cdot e^{\frac{-t}{\tau}} + T_{\infty} \tag{13}$$

	au karakterisztikus idő [s]	Egyensúlyi hőmérséklet [° C]	Egyensúlyi hőmérséklet [K]
érték	51.04	20.581	293.731
hiba	0.22	0.005	0.005

4.2 Peltier elem hűlési görbéje:

I[A]	T [K]
0.5	266.832
1	260.697
1.5	255.327
2	250.314
2.5	246.091
3	242.397
3.5	238.937
4	235.971
4.5	233.87
5	231.592

Az áramerősség hibájának a különböző mérések szórásainak átlagát vettem: $\Delta I=0.2~A$, míg a hőmérséklet hibájának a különböző illesztések szórásainak átlagát: $\Delta T=0.038~K$. A mért adatokra az alábbi modellt illesztettem:

 $T(I) = \frac{aI^2 + b}{cI + 1} \tag{14}$

Ahol a = $\frac{R_{ab}}{2h_{ab}}$, b = T_0 , míg c = $\frac{S_{ab}}{h_{ab}}$.

Az illesztés alapján:

$$a = \frac{R_{ab}}{2h_{ab}} = (0.746 \pm 0.019) \frac{\Omega K}{W}$$
 (15)

$$b = T_0 = (273.62 \pm 0.14) K \tag{16}$$

$$c = \frac{S_{ab}}{h_{ab}} = (0.0524 \pm 0.0005) \frac{V}{W}$$
 (17)

Az illesztés során kapott értékekkel, valamint a (6) - os képlet átalakításval meghatározhatjuk a I_{min} -t és a hozzátartozó T_{min} -t (7).

Az átalakított egyenlet:

$$I_{min} = \frac{1}{c} \left(\sqrt{1 + \frac{bc^2}{a}} - 1 \right) = (7.953 \pm 0.255) A$$

Valamint T_{min} értékéhez a (7) - es képletet kicsit megvariáltam: Ha a/c hányadost felírjuk:

$$\frac{a}{c} = \frac{R_{ab}}{2h_{ab}} \frac{h_{ab}}{S_{ab}} \quad \setminus \frac{1}{2}, \ \cdot 2$$

A szorzást követően:

$$= \frac{1}{2} \frac{R_{ab}}{S_{ab}} \to T_{min} = 2 \cdot \frac{a}{c} \cdot I_{min} = (226.448 \pm 15.188) \ K$$

Hiba:

$$\Delta T_{min} = T_{min} \cdot \left(\frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta I_{min}}{I_{min}}\right)$$
(18)

4.3 Seebeck-együttható:

Az adatokra való illesztést, a "peltier_evalue" program segítségével végeztem.

Az illesztést háromszor elvégeztem és az értéknek az adatok átlagát vettem, a hibát a szórásból származtattam. Az együttható értéke így:

$$S_{ab} = (0.01273 \pm 0.00008) \ \frac{V}{K}$$

4.4 A mérési elrendezés további jellemzői:

4.4.1 Ellenállás:

A (8) - as összefüggés alapján:

$$R_{ab} = (0.0362 \pm 0.038) \Omega$$

4.4.2 Jósági tényező:

A (9) -es képlet alapján:

$$z = (0.0018 \pm 0.0001) \ \frac{1}{K}$$

4.4.3 Hővezetési együttható:

A (10) -es képlet alapján:

$$h_{ab} = (0.243 \pm 0.045) \; \frac{W}{K}$$

4.4.4 Hőátadási együttható:

$$h_k = h_{ab} \cdot \frac{T(0) - T_0}{T_k - T(0)} = (0.279 \pm 0.011) \frac{W}{K}$$

Ahol T_k a környezet hőmérséklete volt: $T_k=298.65\,K$, valamint T(0) a 4.1 - es bekezdésben kiszámolt egyensúlyi hőmérséklet.

4.4.5 Peltier együtthatók T_0 , és T_{min} esetén.

$$P_{ab}(T_0) = S_{ab}T_0 = (3.483 \pm 0.024) V$$

 $P_{ab}(T_{min}) = S_{ab}T_{min} = (2.883 \pm 0.211) V$

A hibákat minden esetben a hibaterjededéssel számoltam.

Példa:

$$\Delta R_{ab} = R_{ab} \cdot \left(\frac{\Delta S_{ab}}{S_{ab}} + \frac{\Delta T_{min}}{T_{min}} + \frac{\Delta I_{min}}{I_{min}}\right)$$

4.5 Teljesítményegyenleg tagjainak meghatározása:

A teljesítményegyenleg:

$$\frac{dQ}{dt} = \frac{dQ_p}{dt} - \frac{1}{2}\frac{dQ_j}{dt} - \frac{dQ_v}{dt} - \frac{dq}{dt} = 0$$

$$\tag{19}$$

Peltier-hő:

$$\frac{dQ_p}{dt} = P_{ab}(T_{min})I_{min} = (27.703 \pm 2.417) W$$

Joule-hő:

$$\frac{1}{2}\frac{dQ_j}{dt} = \frac{1}{2}I_{min}^2 R_{ab} = (11.463 \pm 1.943) W$$

Hővezetési-hő:

$$\frac{dQ_v}{dt} = h_{ab} \cdot (T_0 - T_{min}) = (11.462 \pm 1.943) W$$

Beáramló-hő:

$$\frac{dq}{dt} = h_k \cdot (T_k - T_{min}) = 20.14 \pm 1.53 \ W$$

A hibákat itt szintén hibaterejdéssel számoltam. A tagok arányáról azt láthatjuk, hogy a Peltier-hő és Beáramlóhő közel azonos, míg a másik kettő értéknek nagyjából kétszeresei.

A hővezetések arányai:

$$\frac{h_k}{h_{ab}} = 1.15$$

5 Diszkusszió:

A mérésem nagyrészét sikeresnek mondhatom, hisz minden értéket viszonylag kis hibahatárral meghatároztam. Akadtak sajnos kisebb, nagyobb hibák is, hisz a teljesítményegyenleg összege nem nullát adott eredményül.