IN THE CLAIMS

Please amend the claims as follows:

- 36. (Currently Amended) A device [for an edge bead,] comprising:
 - a dispenser configured to release a chemical toward [said] <u>an</u> edge bead; and a splash controller around said dispenser, physically unattached from [said] <u>the</u> edge bead, and configured to draw [said] <u>the</u> chemical toward said splash controller, wherein said splash controller is configured to generate a gas pressure around [said] <u>the</u> edge bead that is lower than an ambient gas pressure, and wherein said splash controller is configured to physically intercept [said] <u>the</u> chemical.
- 37. (Currently Amended) The device in claim 36, wherein [said] the splash controller is around [said] the edge bead.
- 38. (New) The device of claim 36, wherein the splash controller completely surrounds said dispenser.
- 39. (New) The device of claim 36, wherein the dispenser has a diameter smaller than a diameter of the splash controller.
- 40. (New) The device of claim 36, wherein said dispenser is configured to release a chemical on a first side of a wafer and a second side of the wafer toward an edge bead, wherein the splash controller completely surrounds said dispenser.
- 41. (New) A device comprising:
- a dispenser configured to release a chemical toward an edge bead on a semiconductor substrate; and
- a splash controller including a vacuum port, wherein the vacuum port completely surrounds the dispenser, wherein the vacuum port is configured to generate a gas pressure around the edge bead and the dispenser, the generated gas pressure being sufficiently lower than an ambient gas

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 09/652,713

Filing Date: August 31, 2000

Title: CHEMICAL DISPENSING SYSTEM FOR SEMICONDUCTOR WAFER PROCESSING

Dkt: 303.928US5

pressure to draw the chemical toward the splash controller, wherein the dispenser has a smaller diameter than the vacuum port, and wherein the splash controller is configured to physically intercept the chemical.