Number Theory & Mathematical Reasoning Instructor: Dr. Daniel Saracino

Note Taken by Daniel Jeong

from 2024-08-29 to 2024-12-20

Theorem 1

For all integers a, b, c, d:

- (i) If $a \mid b$ and $b \mid c$, then $a \mid c$.
- (ii) If $a \mid b$ and $a \mid c$, then for all $x, y \in \mathbb{Z}$, $a \mid (xb + yc)$.
- (iii) If $a \mid b$ and $c \mid d$, then $ac \mid bd$.

Theorem 2

Suppose a and b are integers that are not both 0, so that (a,b) exists. Then for every $n \in \mathbb{Z}$,

$$(a,b) = (a + nb, b) = (a, b + na)$$

Theorem 3

Every integer $n \ge 2$ is the product of one or more primes.

Theorem 4

There exist infinitely many primes.

Theorem 5

For every integer $n \ge 2$, the factorization of n into primes is unique, except for the order in which the factors are written.

Theorem 6

Suppose $m \in \mathbb{Z}^+$ and $a, b \in \mathbb{Z}$. Then the following are equivalent:

- (i) $a \equiv b \pmod{m}$; that is, $m \mid (a b)$.
- (ii) $a = b + m\ell$ for some $\ell \in \mathbb{Z}$.
- (iii) $\overline{a}^m = \overline{b}^m$.

Thus, the remainders are equal, and any one of (i), (ii), or (iii) proves the other two.

Theorem 7

Basic Properties of Congruence Modulo m:

Suppose $m \in \mathbb{Z}^+$, then the following all hold:

- (i) **Reflexivity**: For every $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$.
- (ii) **Symmetry**: For all $a, b \in \mathbb{Z}$, if $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.
- (iii) **Transitivity**: For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

When a relationship between elements of a set S is reflexive, symmetric, and transitive, the relationship is called an equivalence relation on S.

Thus, **** says that "congruence modulo m" is an equivalence relation on the set \mathbb{Z} .

Theorem 8

Suppose $m \in \mathbb{Z}^+$, and let $a, b, c, d \in \mathbb{Z}$.

Then, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, we have:

- 1. $a + c \equiv b + d \pmod{m}$.
- 2. $ac \equiv bd \pmod{m}$.

Lemma 1 Bezout's Lemma

If m and n are integers that are not both zero, then there exist $x, y \in \mathbb{Z}$ such that xm + yn = (m, n).

Lemma 2 Euclid's Lemma

Suppose a, b, c are integers such that $a \mid bc$ and (a, b) = 1. Then $a \mid c$.

Definition 1: Coprime

We say integers a and b are relatively prime (or "coprime") if (a, b) = 1.

Definition 2: Prime

An integer p is prime if p > 1 and the only positive integers that divide p are 1 and p.

Corollary 1

Every integer $n \ge 2$ has a unique representation in the form:

$$n = p_1^{e_1} \times p_2^{e_2} \times p_3^{e_3} \times \cdots \times p_k^{e_k}$$

where the p's are distinct primes and each $e_i \ge 1$. This is called the prime-power decomposition of n.

Corollary 2

Suppose $n \ge 2$ and the prime-power decomposition (ppd) of n is:

$$n=p_1^{e_1}\times p_2^{e_2}\times p_3^{e_3}\times\cdots\times p_k^{e_k}.$$

Then if m is any positive integer that divides n,

$$m = p_1^{f_1} \times p_2^{f_2} \times p_3^{f_3} \times \cdots \times p_k^{f_k}$$

for some integers f_1, \dots, f_k such that $0 \le f_i \le e_i$.

Corollary 3

If

$$n = p_1^{c_1} \times p_2^{c_2} \times p_3^{c_3} \times \cdots \times p_k^{c_k}$$

and

$$m = p_1^{d_1} \times p_2^{d_2} \times p_3^{d_3} \times \cdots \times p_k^{d_k},$$

where p_1, \dots, p_k are distinct primes, and the c_i 's and d_i 's are nonnegative integers, then:

$$(m,n)=p_1^{\min(c_1,d_1)}\times p_2^{\min(c_2,d_2)}\times\cdots\times p_k^{\min(c_k,d_k)}.$$

Corollary 4

If n is an integer such that $n \ge 2$, then there exists a positive integer m such that $n = m^2$ if and only if all the exponents in the ppd of n are even.

Corollary 5 Theorem 8-1

Suppose $a \equiv b \pmod{m}$. Then:

```
\begin{aligned} a &\equiv b \pmod m, \\ a^2 &\equiv b^2 \pmod m, \\ a^3 &\equiv b^3 \pmod m, \\ &\vdots \\ a^k &\equiv b^k \pmod m \quad \text{for every } k \in \mathbb{Z}^+. \end{aligned}
```

Thus, using part (ii) of Theorem 8 repeatedly, we get: If $a \equiv b \pmod{m}$, then $a^k \equiv b^k \pmod{m}$ for every $k \in \mathbb{Z}^+$.

Corollary 6 Theorem 8-2

If p(x) is a polynomial with integer coefficients and $a \equiv b \pmod{m}$, then $p(a) \equiv p(b) \pmod{m}$.