Core Energy Comparison

Do we always need the extra hardware?

MorphCore:

An Energy-Efficient Architecture for High-Performance ILP and High-Throughput TLP

Khubaib*

M. Aater Suleman*+

Milad Hashemi*

Chris Wilkerson[‡]

Yale N. Patt*

* HPS Research Group
The University of Texas at Austin

+ Calxeda Inc.

[‡] Intel Labs

Courtesy: Prof. Yale Patt, UT Austin

The Need for an Adaptive Core

- Sometimes a single thread with high ILP
 - Need a heavy-weight out-of-order core
 - Provides high performance by exploiting ILP
- Sometimes many threads
 - Out-of-order is unnecessary
 - Need a power-efficient core
 - Provides high performance by exploiting thread-level parallelism
- We need an adaptive core that can do both
 - Exploits instruction-level parallelism when needed
 - Exploits thread-level parallelism when needed

Problem

Current core architectures do not adapt

Large cores limit performance when TLP is high

Small cores limit performance when TLP is low

Outline

- Problem Statement
- Previous Work
 - Asymmetric chip multiprocessors
 - Reconfigurable core architectures
- MorphCore
- Evaluation

Asymmetric Chip Multiprocessors

 One or few large out-of-order cores with many small in-order cores

[Morad+ CAL'06, Suleman+ TR'07, Hill+ Computer'07, Suleman+ ASPLOS'09]

- Limited flexibility
 - Fixed number of large and small cores
- Migration overhead
 - Migrate the thread state/data to large core

Reconfigurable Core Architectures

- Fundamental Idea
 - Build a chip with "simpler cores" and "combine" them at runtime using additional logic to form a high-performance out-of-order core
 - Core Fusion Ipek+ ISCA'07, TFlex Kim+
 MICRO'07, Federation Cores Tarjan+ DAC'08, and many others
- Fused core has low performance and low energy-efficiency
 - Increased latencies among its pipeline stages
- Significant mode switching overhead

Outline

- Problem Statement
- Previous Work
- MorphCore
 - Key Insights and Basic Idea
 - Design and Operation
- Evaluation

Key Insight 1: The Potential of In-Order SMT

Number of SMT threads on the core

 With 8 threads, the in-order core's performance almost matches the out-of-order core's

Key Insight 2

Minimal changes to a traditional OOO core can transform it into a highly-threaded in-order SMT core

Existing structures in an OOO core can be re-used to support highly-threaded in-order SMT execution

MorphCore: Basic Idea

The opposite of previous proposals:

- A) The base design: OOO core
- B) Then we add in-order SMT

Two modes:

OutOfOrder out-of-order core

Exploits ILP

High single-thread performance

highly-threaded in-order SMT core

InOrder Exploits TLP

High multi-thread performance

No OOO execution → Energy savings

Outline

- Problem Statement
- Previous Work
- MorphCore
 - Key Insights and Basic Idea
 - Design and Operation
- Evaluation

Baseline OOO Pipeline

MorphCore Pipeline

Microarchitecture Summary

- Use existing structures without modification
 - Physical Register File (PRF), Decode, Execution pipeline
- Use existing structures with minor modification
 - OOO Reservation Stations → InOrder instruction queues
 - Because of InOrder execution, delayed writeback into PRF (extra bypass)
- SMT related changes
 - Front-end (e.g. multiple PCs, branch history regs), changes in resource allocation algorithms
- In-Order instruction scheduler

Overheads

- Core area increases by 1.5%
 - Increase in SMT contexts (0.5%)
 (Note that added contexts are in-order, so no additional rename tables and physical registers)
 - InOrder Wakeup and Select Logic (0.5%)
 - Extra bypass (0.5%)

- Core frequency decreases by 2.5%
 - Add multiplexers in the critical path of 2 stages
 - Rename and Scheduling

Mode Switching Policy

Number of active threads ≤ 2?

- OutofOrder when active threads ≤ 2
 - MorphCore can support up to 2 000 threads
 - TLP is limited so execute OOO to obtain performance
- InOrder when active threads > 2
 - More than 2 threads can only run simultaneously in InOrder mode
 - TLP is high so high core throughput and energy savings can be obtained by executing threads in-order

How Mode Switching Happens?

- (1) Drains the core pipeline
- (2) Spills architectural registers of currently active threads to reserved ways in the private 256KB L2
- (3) Turns off/on Renaming, OOO Scheduling, Load Queue
- (4) Fills the architectural registers of next-active threads into PRF (update RATs when going into OutofOrder)

Currently an overhead of 300 - 450 cycles

Outline

- Problem Statement
- Previous Work
- MorphCore
- Evaluation

Methodology

- Detailed cycle-level x86 simulator
- McPAT (modified) to calculate energy/area
- Performance/energy evaluation of MorphCore vs. alternative architectures
 - Large OOO cores: optimized for single-thread
 - Medium and Small cores: optimized for multi-thread
- Workloads
 - Single-threaded (ST): 14 SPEC 2006
 - Multi-threaded (MT): 14 Databases, SPLASH, others

All comparisons on approximately equal area

ST : single-thread MT: multi-thread

Core	Freq. (GHz)		SMT threads	Peak throughput
			Per core	ops/cycle
				ST MT

All comparisons on approximately equal area

ST : single-thread MT: multi-thread

Core	# of cores	Freq. (GHz)	Type	Issue width	SMT threads Per core	Total threads	throu	eak Ighput 'cycle
							ST	MT
000-2	1	3.4	000	4	2	2	4	4
000-4	1	-5%	000	4	4	4	4	4

All comparisons on approximately equal area

ST : single-thread MT: multi-thread

Core	# of cores	Freq. (GHz)	Type	Issue width	SMT threads Per core	Total threads	throu	eak Ighput 'cycle MT
000-2	1	3.4	000	4	2	2	4	4
000-4	1	-5%	000	4	4	4	4	4
MED	3	3.4	000	2	1	3	2	6

All comparisons on approximately equal area

ST : single-thread MT: multi-thread

Core	# of cores	Freq. (GHz)	Type	Issue width	SMT threads Per core	Total threads	Peak throughput ops/cycle ST MT	
000-2	1	3.4	000	4	2	2	4	4
000-4	1	-5%	000	4	4	4	4	4
MED	3	3.4	000	2	1	3	2	6
SMALL	3	3.4	InO	2	2	6	2	6

All comparisons on approximately equal area

ST : single-thread MT: multi-thread

Core	# of cores	Freq. (GHz)	Type	Issue width	SMT threads Per core	Total threads	throu	eak Ighput 'cycle) MT
000-2	1	3.4	000	4	2	2	4	4
000-4	1	-5%	000	4	4	4	4	4
MED	3	3.4	000	2	1	3	2	6
SMALL	3	3.4	InO	2	2	6	2	6
MorphCore	1	-2.5%	000/ InO	4	2 000/ 8 InO	2 000/ 8 InO	4	4

Performance: Single-thread

Performance: Multi-thread

Performance: Both ST and MT

Energy

Energy-delay-squared (ED²)

Summary

- MorphCore adapts well to both single-thread and multi-thread workloads
- Requires minimal changes to a traditional OOO core

- Operates in two modes:
 - OOO core when TLP is low
 - Highly-threaded in-order SMT core when TLP is high
- Significantly outperforms other alternative architectures