VİTMO

Основы электротехники

Домашнее задание №1 Расчёт цепей постоянного тока

Группа *Р3331* Вариант *107*

Выполнил: Нодири Хисравхон

Дата сдачи: 16.12.2024

Контрольный срок сдачи: 04.12.2024

Количество баллов:

Анализ цепей постоянного тока

На рисунке 1 показаны три варианта структур схем электрической цепи. Для выполнения задания необходимо заменить условные элементы (1...6) схем резистивными элементами и источниками энергии согласно таблице 1 в соответствии с заданным преподавателем вариантом. Индексы значений токов и ЭДС источников в таблицах соответствуют номерам элементов структурных схем, а направление их действия — направлению стрелок.

Рисунок 1

Выполнение задания 1

Вариант: 107

Исходные данные приведены в табл.1.

Таблица 1 – Исходные данные для схемы 1 на рис.1

Вариант	Схема	Параметры источников энергии: $J[A], E[B]$				Параметры резисторов [Ом]					
					1	2	3	4	5	6	
107	1	$f J_4 = 1,05$	← $E_3 = 22$	← $E_5 = 17$	1	5	8	ı	8	6	

В соответствии с рис. 1 и табл. 1 заданная схема цепи приведена на рис. 1.1.

Рисунок 1.1 – Схема цепи

Дано: $R_1 = 1$ [Ом], $R_2 = 5$ [Ом], $R_3 = 8$ [Ом], $R_5 = 8$ [Ом], $R_6 = 6$ [Ом],

$$J_4 = 1,05 [A], E_3 = 22 [B], E_5 = 17 [B]$$

Найти: значения всех неизвестных токов, используя:

- а) законы Кирхгофа,
- б) метод контурных токов или метод узловых напряжений.
- в) Рассчитать ток любой ветви, **содержащей источник** ЭДС, методом эквивалентных преобразований *или* методом эквивалентного генератора.
- г) Определить напряжение, приложенное к источнику тока. Определить мощность всех источников энергии, всех резистивных элементов, суммарную мощность источников цепи и суммарную мощность потребителей цепи.

Решение

а) Расчет по законам Кирхгофа

Определим топологию цепи:

 $p^* = 6$ (общее количество ветвей),

 $p_{\text{ит}} = 1$ (количество ветвей с источниками тока),

 $p = p^* - p_{\text{ит}} = 6 - 1 = 5$ (количество неизвестных токов),

q = 4 (количество независимых узлов),

n = p - (q - 1) = 5 - (4 - 1) = 2 (количество независимых контуров),

 $m_{\rm I} = q - 1 = 4 - 1 = 3$ (количество уравнений по 3КI),

 $m_{\rm II} = n = 2$ (количество уравнений по ЗКІІ).

Произвольно обозначим p неизвестных токов, q узлов и n независимых контуров (см. рис. 1.2).

Рисунок 1.2 – Схема цепи для расчета по законам Кирхгофа

Составим уравнения Кирхгофа:

ЗКІ.1:
$$I_1 - I_4 - J_4 = 0$$
; или $I_1 - I_4 = J_4$

$$3KI.2: -I_1 - I_2 + I_3 = 0;$$

ЗКІ.3:
$$I_2 + J_4 - I_5 = 0$$
; или $I_2 - I_5 = -J_4$

3KII.1:
$$-I_1R_1 + I_2R_2 - I_4R_6 + I_5R_5 = -E_5$$
;

3KII.2:
$$I_2R_2 + I_3R_3 + I_5R_5 = E_3 - E_5$$
;

Запишем эти уравнения в матричном виде:

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -R_1 & R_2 & 0 & -R_6 & R_5 \\ 0 & R_2 & R_3 & 0 & R_5 \end{pmatrix} \cdot \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{pmatrix} = \begin{pmatrix} J_4 \\ 0 \\ -J_4 \\ -E_5 \\ E_3 - E_5 \end{pmatrix}$$

Подставив численные значения, получим:

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 5 & 0 & -6 & 8 \\ 0 & 5 & 8 & 0 & 8 \end{pmatrix} \cdot \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{pmatrix} = \begin{pmatrix} 1,05 \\ 0 \\ -1,05 \\ -17 \\ 5 \end{pmatrix}$$

Решение этой системы уравнений имеет вид:

$$\begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 5 & 0 & -6 & 8 \\ 0 & 5 & 8 & 0 & 8 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1,05 \\ 0 \\ -1,05 \\ -17 \\ 5 \end{pmatrix} = \begin{pmatrix} 2,476 \\ -1,105 \\ 1,371 \\ 1,426 \\ -0,055 \end{pmatrix},$$

где обратная матрица

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 5 & 0 & -6 & 8 \\ 0 & 5 & 8 & 0 & 8 \end{pmatrix}^{-1} = = \begin{pmatrix} 0,502 - 0,414 - 0,255 - 0,084 & 0,052 \\ -0,191 & -0,223 & 0,478 & 0,032 & 0,028 \\ 0,311 & 0,363 & 0,223 & -0,052 & 0,08 \\ -0,498 - 0,414 - 0,255 - 0,084 & 0,052 \\ -0,191 & -0,223 & -0,522 & 0,032 & 0,028 \end{pmatrix}$$

Ответ: $I_1 = 2,476$ [A], $I_2 = -1,105$ [A], $I_3 = 1,371$ [A], $I_4 = 1,426$ [A],

$$I_5 = -0.055$$
 [A].

б) Расчет методом контурных токов

Определим топологию цепи:

 $p^* = 6$ (общее количество ветвей),

 $p_{\text{ит}} = 1$ (количество ветвей с источниками тока),

 $p = p^* - p_{\text{ит}} = 6 - 1 = 5$ (количество неизвестных токов),

q = 4 (количество независимых узлов),

n = p - (q - 1) = 5 - (4 - 1) = 2 (количество неизвестных контурных токов),

 $m = p_{\text{ит}} = 1$ (количество известных контурных токов),

s = n + m = 2 + 1 = 3 (общее количество контурных токов).

произвольно обозначаем p неизвестных токов, n неизвестных контурных токов и m известных контурных токов.

$$I_{33} = -J_4 = -1,05 \text{ [A]}.$$

$$\begin{array}{c} I_{11} & I_{22} \\ I_{11} & I_{33} \\ \hline \end{array}$$

$$\begin{array}{c} I_{11} & I_{22} \\ I_{33} & III \\ \hline \end{array}$$

$$\begin{array}{c} I_{22} & I_{33} \\ \hline \end{array}$$

$$\begin{array}{c} I_{33} & III \\ \hline \end{array}$$

Рисунок 1.3 – Схема цепи для расчета методом контурных токов

В схеме на рис. 1.3 имеется три независимых контура с токами I_{11} , I_{22} , I_{33} .

Составим уравнения для контуров I и II

$$\begin{cases} R_{11}I_{11} + R_{12}I_{22} + R_{13}I_{33} = E_{11} \\ R_{21}I_{11} + R_{22}I_{22} + R_{23}I_{33} = E_{22} \end{cases}$$

или

$$\begin{cases} I_{11}(R_1 + R_2 + R_5 + R_6) + I_{22}(R_2 + R_5) - I_{33}(R_5 + R_6) = -E_5 \\ I_{11}(R_2 + R_5) + I_{22}(R_2 + R_3 + R_5) - I_{33}R_5 = E_3 - E_5 \end{cases}$$

или

$$\begin{cases} I_{11}(R_1 + R_2 + R_5 + R_6) + I_{22}(R_2 + R_5) = -E_5 - J_4(R_5 + R_6) \\ I_{11}(R_2 + R_5) + I_{22}(R_2 + R_3 + R_5) = E_3 - E_5 - J_4R_5 \end{cases}$$

Подставим численные значения:

$$\begin{cases} I_{11}(1+5+8+6) + I_{22}(5+8) = -17 - 1,05(8+6) \\ I_{11}(5+8) + I_{22}(5+8+8) = 22 - 17 - 1,05 \cdot 5 \end{cases}$$

Решим систему уравнений:

$$\begin{cases} 20I_{11} - 13I_{22} = -31,7 \\ 13I_{11} + 21I_{22} = -3,4 \end{cases}$$

В результате получим

$$I_{11} = -2,476; I_{22} = 1,371.$$

Найдем искомые токи через контурные токи.

$$I_1 = -I_{11} = 2,476 [A],$$
 $I_2 = I_{11} + I_{22} = -2,476 + 1,371 = -1,105 [A],$
 $I_3 = I_{22} = 1,371 [A],$
 $I_4 = -I_{11} + I_{33} = 2,476 - 1,05 = 1,426 [A],$
 $I_5 = I_{11} + I_{22} - I_{33} = -2,476 + 1,371 + 1,05 = -0,055 [A].$
 $I_{11} = 2,476 [A], I_{12} = -1,105 [A], I_{13} = 1,371 [A], I_{14} = 1,426 [A].$

Ответ: $I_1 = 2,476$ [A], $I_2 = -1,105$ [A], $I_3 = 1,371$ [A], $I_4 = 1,426$ [A], $I_5 = -0,055$ [A].

в) Расчет тока методом эквивалентных преобразований

Дано:
$$R_1 = 1$$
[Ом], $R_2 = 5$ [Ом], $R_3 = 8$ [Ом], $R_5 = 8$ [Ом], $R_6 = 6$ [Ом], $I_4 = 1.05$ [A], $I_3 = 22$ [B], $I_5 = 17$ [B]

Найти: найти ток в цепи с ЭДС.

В схеме рис. 1.2 расщепляем источник тока J_4 на два источника J_{91} и J_{92} на R_5 , R_6 , E_5 (см. рис. 1.4):

Рисунок 1.4 — Расщепление источника тока J_3

$$J_{91} = J_{92} = 1.05 [A].$$

Заменим J_{91} и J_{92} источниками ЭДС (см. рис. 1.5):

$$E_6 = J_{31}R_1 = 1,05 \cdot 1 = 1,05 \text{ [B]},$$
 $E_7 = J_{32}R_2 = 1,05 \cdot 5 = 5,25 \text{ [B]}.$
 R_1
 E_7
 R_2
 R_6
 R_5
 R_7

Рисунок 1.5 — Замена источников тока $J_{\mathfrak{I}1}$ и $J_{\mathfrak{I}2}$ на ЭДС E_{6} и E_{7}

Заменим параллельно-последовательно соединенные резисторы R_1, R_6, R_3 на эквивалентный R_9 , включенный в ветвь с E_3 , E_6 и обединим ЭДС E_3 , E_6 , в E_9 , включенную в ветвь с R_9 (см. рис. 1.6):

$$R_{9} = \frac{1}{1/(R_{1} + R_{6}) + 1/R_{3}} = \frac{1}{1/(1+6) + 1/8} = 0,140 \text{ [OM]},$$

$$E_{9} = R_{9}(E_{6}/(R_{1} + R_{6}) - E_{3}/R_{3}) = 31,7 \text{ [B]}.$$

Рассчитаем ток I_2 в образовавшейся одноконтурной цепи:

$$I_{92} = \frac{E_9 - E_5 + E_7}{R_2 + R_5 + R_9} = \frac{31,7 - 224}{4,2 + 8} = -0,082$$
[A],

что совпадает с величиной тока I_1 , рассчитанного двумя предыдущими методами.

Рисунок 1.6 — Замена резисторов R_1 , R_6 , R_3 на эквивалентный R_9 , ЭДС E_3 , E_6 на эквивалентную E_9

Ответ: $I_1 = -0.082$ [A] – ток в ветви, содержащий ЭДС E_1 .

г) Определение напряжения, приложенного к источнику тока, мощности всех источников энергии, всех резистивных элементов, суммарной мощности источников цепи и суммарной мощности потребителей цепи

Направление (знак) напряжения U_J , приложенного к источнику тока, выберем против направления тока J_4 и определим его из уравнения, составленного по ЗКІІ для контура ІІІ (см. рис. 1.3).:

$$U_I = -I_4R_6 + I_5R_5 + E_5 = -1,426 \cdot 6 - 0,055 \cdot 8 + 17 = 8,004$$
 [B].

Определение мощностей элементов.

$$P_J = U_J J_4 = 8,004 \cdot 1,05 = 8,404 \text{ [BT]},$$
 $P_{E3} = E_3 I_3 = 22 \cdot 1,371 = 30,162 \text{ [BT]},$
 $P_{E5} = -E_5 I_5 = -17 \cdot (-0,055) = 0,935 \text{ [BT]},$
 $P_{R1} = R_1 I_1^2 = 1 \cdot (2,476)^2 = 6,131 \text{ [BT]},$
 $P_{R2} = R_2 I_2^2 = 5 \cdot (1,105)^2 = 6,105 \text{ [BT]},$
 $P_{R3} = R_3 I_3^2 = 8 \cdot (1,371)^2 = 15,037 \text{ [BT]}.$
 $P_{R5} = R_5 I_5^2 = 8 \cdot (0,055)^2 = 0,024 \text{ [BT]},$
 $P_{R6} = R_6 I_4^2 = 6 \cdot (1,426)^2 = 12,201 \text{ [BT]},$

Суммарная мощность всех источников:

$$P_{\text{M}} = P_I + P_{E3} + P_{E5} = 8,404 + 30,162 + 0,935 = 58,393 \text{ [Bt]}.$$

Суммарная мощность потребителей

$$P_{\Pi}=P_{R1}+P_{R2}+P_{R3}+P_{R5}+P_{R6}=$$
 = 6,131 + 6,105 + 15,037 + 0,024 + 12,201 = 39,498 [Bt].
$$P_{\Pi}\neq P_{\Pi}-\text{баланс мощностей не сошелся}$$
 Ответ: $I_1=2,476$ [A], $I_2=-1,105$ [A], $I_3=1,371$ [A], $I_4=1,426$ [A],
$$I_5=-0,055$$
 [A], $U_J=8,004$ [B], $P_J=8,404$ [Bt], $P_{E3}=30,162$ [Bt], $P_{E5}=0,935$ [Bt], $P_{R1}=6,131$ [Bt], $P_{R2}=6,105$ [Bt], $P_{R3}=15,037$ [Bt], $P_{R5}=0,024$ [Bt], $P_{R6}=12,201$ [Bt], $P_{\Pi}=58,393$ [Bt], $P_{\Pi}=39,498$ [Bt].