#### **CS1010S Programming Methodology**

### Lecture 2 Functional Abstraction

19 Aug 2020

## Recitation classes starts on Thursday/Friday

#### Late Policy

• < 10 min: OK

• < 24 hours: -10%

• > 24 hours: -20%

Ask early for extensions

#### Submission is Final

But please remember to click

Finalize Submission

# Don't Stress But please do your work

Try NOT to submit at 23:58

Do not plagiarise

#### Operators

Assignment

$$a = 5$$

**Equality testing** 

$$a == 5$$

Not equal

$$a != 5$$

#### Backslash \

Escape character

```
print('That's')
print('That\'s')
```

#### #Comments

```
# this is not a hashtag!
print("Good to go")
#print("Good to go")
# whatever is after the # is ignored
if light == "red": # Check state of light
```

#### What's this?

Fython Imaging Library

from PIL import \*

(Misison 0)



#### Forums

#### Post reflections for EXP

# Trainings Please don't anyhow hantam

# Computational Thinking



#### CS1010S Road Map



**Fundamental** concepts of computer programming

#### Functional Abstraction

## HOW WHY

#### What is a function?



#### Functions are nothing new



# Let's start with something easier Question

How do we square a number?

#### The square function



```
square(21) 441
```

```
square(2 + 5) 49
```

square(square(3)) 81

#### Another function

```
def sum_of_squares(x, y):
    return square(x) + square(y)

sum_of_squares(3, 4)
25
```

#### And another

```
from math import sqrt

def hypotenuse(a, b):
    return sqrt(sum_of_squares(a, b))

hypotenuse(5, 12)
13
```

#### **General Form**

```
def <name> (<formal parameters>):
     <body>
```

#### name

Symbol associated with the function

#### formal parameters

- Names used in the body to refer to the arguments of the function

#### body

- The statement(s) to be evaluated
- Has to be indented (standard is 4 spaces)
- Can return values as output

#### Black Box



Don't need to know how it works

Just know what it does

#### Black Box



$$x = \frac{a}{\cos(\theta)}$$

Do you know how cos work?

#### Black Box



As long as we know what it does, we can use it.

(the inputs and output)

#### Return Type



Output is returned with return Return type can be None

#### **Abstract Environment**

### Picture Language

(runes.py)

Also graphics.py + PyGif.py

#### **Elements of Programming**

- 1. Primitives
- 2. Means of Combination
- 3. Means of Abstraction
- 4. Controlling Logic





show(corner\_bb)



show(sail\_bb)



show(nova\_bb)



show(heart\_bb)



# Applying operations op(picture) function name input(s)

Example:
show(heart\_bb)

#### Fun with IDLE

```
runes.py - F:\My Documents\Dropbox\cs1010s\lectures\runes.py (3.5.2)
                                                                       - □ X
File Edit Format Run Options Window Help
def is list(lst):
        return isinstance(lst, (list, tuple))
# Constants
viewport size = 600 # This is the height of the viewport
spread = 20 #used to be 20, but i like at 80
active hollusion = None
lastframe = None
#Setup
import graphics
import math
import time
import PvGif
Posn = graphics.Posn
Rgb = graphics.Rgb
draw solid polygon = graphics.draw solid polygon
graphics.init(viewport size)
vp = graphics.open viewport("ViewPort", 4/3*viewport size, viewport size)
lp = graphics.open pixmap("LeftPort", 4/3*viewport size, viewport size)
rp = graphics.open pixmap("RightPort", 4/3*viewport size, viewport size)
def clear all():
        global active hollusion
        global vp, lp, rp
        if(active hollusion != None):
                active_hollusion("kill")
                active hollusion = None
        graphics.clear viewport(vp)
        graphics.clear_viewport(lp)
        graphics.clear viewport(rp)
class Frame:
        def __init__(self, p0, p1, p2, z1, z2):
                self.orig = p0
                self.x = p1
                self.y = p2
                self.z1 = z1
                self.z2 = z2
```

#### Spacing matters

#### Primitive Operation Rotating to the Right

```
clear_all()
show(quarter_turn_right(sail_bb))
```

result is another picture



### Derived Operation<br/>Rotating Upside Down

```
def turn_upside_down(pic):
    return quarter_turn_right(
                quarter_turn_right(pic))
clear_all()
show(turn_upside_down(sail_bb))
```



### How about Rotating to the Left?



### Means of Combination Stacking



#### Multiple Stacking



### Means of Combination Placing Beside

#### A complex object

```
clear_all()
show(
 stack(
   beside(
     quarter_turn_right(rcross_bb),
     turn_upside_down(rcross_bb)),
   beside(
     rcross_bb,
     quarter_turn_left(rcross_bb))))
                     Let's give it a name
                        make cross
```





```
stack(
  beside(
    quarter_turn_right(rcross_bb),
    turn_upside_down(rcross_bb)),
  beside(
    rcross_bb,
    quarter_turn_left(rcross_bb))))
```

```
stack(
  beside(
    quarter_turn_right(pic),
    turn_upside_down(pic)),
  beside(
    pic,
    quarter_turn_left(pic))))
```

```
def make_cross(pic):
 return stack(
   beside(
     quarter_turn_right(pic),
     turn_upside_down(pic)),
   beside(
     pic,
     quarter_turn_left(pic))))
```

return vs show

#### Naming your objects

```
clear_all()
my_pic = make_cross(sail_bb)
show(my_pic)

my_pic_2 = make_cross(nova_bb)
show(my_pic_2)
```





#### Repeating the pattern

```
clear_all()
show(make_cross(make_cross(nova_bb)))
```



#### Repeating multiple times

```
clear_all()
def repeat_pattern(n, pat, pic):
    if n == 0:
        return pic
        return pat(repeat_pattern(n-1, pat, pic))
show(repeat_pattern(4, make_cross, nova_bb))
On: What does
repeat_pattern
return?
```





#### **Anonymous Functions**

```
def (square ox):
    return x * x
                   output
           input
foo = lambda x: x *
            function
foo(1)
foo(16)
                256
```

#### **New Patterns**



#### Another nice pattern

```
clear_all()
show(repeat_pattern(4, make_cross, rcross_bb))
```





#### What about 3 rows?



#### Repeating n times

```
def stackn(n, pic):
    if n == 1:
        return pic
    else:
        return stack_frac(1/n,
                           pic,
                           stackn(n-1, pic))
clear_all()
show(stackn(3, nova_bb))
clear_all()
show(stackn(5, nova_bb))
```





#### A rectangular quilting pattern





#### A rectangular quilting proc







# After all this... No idea how a picture is represented

# No idea how the operations do their work

# Yet, we can build complex pictures

## This is Functional Abstraction

#### We can make Sterograms!



#### Black Box



#### **Functional Abstraction**

# Can't see stereograms?

#### Anaglyphs



### And if you think this is cool...

# You ain't seen nothing yet!





### What have we learnt? WHAT

Functional Abstraction = Black-box

HOW def and lambda

### Functions are objects (in Python)

# WHY? Help us manage complexity

# Allow us to focus on high-level problem solving

#### Creating 3D objects

#### We use greyscale to represent depth

- Black is nearest to you
- White is furthest away



#### **Overlay Operation**

```
clear_all()
show(overlay(sail_bb, rcross_bb))
```





#### **Advanced Overlay Operation**

```
clear_all()
show(overlay_frac(1/4, corner_bb, heart_bb))
```





#### Scaling

```
clear_all()
show(scale(1/2, heart_bb))
```





#### Recall

Depth Stereogram
Map Generator Stereogram



## <Break>

# Managing Complexity

# Computers will follow orders precisely

#### **Abstractions**



What makes a good abstraction?

1. Makes it more natural to think about tasks and subtasks

#### Example



#### Programming



- 1. Makes it more natural to think about tasks and subtasks
- 2. Makes programs easier to understand

```
Compare:
def hypotenuse(a, b):
    return sqrt((a*a) + (b*b))
Versus:
def hypotenuse(a, b):
    return sqrt(sum of squares(a, b))
def sum of squares(x, y):
    return square(x) + square(y)
def square(x):
    return x * x
```

- 1. Makes it more natural to think about tasks and subtasks
- 2. Makes programs easier to understand
- 3. Captures common patterns

```
stack(
  beside(
    quarter_turn_right(rcross_bb),
    turn_upside_down(rcross_bb)),
  beside(
    rcross_bb,
    quarter_turn_left(rcross_bb))))
```

```
stack(
  beside(
    quarter_turn_right(pic),
    turn_upside_down(pic)),
  beside(
    pic,
    quarter_turn_left(pic))))
```

```
def make_cross(pic):
    return stack(
        beside(
            quarter_turn_right(pic),
            turn_upside_down(pic)),
        beside(
            pic,
            quarter_turn_left(pic))))
```

#### Allows Code Reuse

- 1. Makes it more natural to think about tasks and subtasks
- 2. Makes programs easier to understand
- 3. Captures common patterns
- 4. Allows for code reuse
- Function square used in sum\_of\_squares.
- square can also be used in calculating area of circle.

#### Another Example

Function to calculate area of circle given the radius

```
pi = 3.14159
def circle_area_from_radius(r):
    return pi * square(r)
```

given the diameter:

```
def circle_area_from_diameter(d):
    return circle_area_from_radius(d/2)
```

- 1. Makes it more natural to think about tasks and subtasks
- 2. Makes programs easier to understand
- 3. Captures common patterns
- 4. Allows for code reuse
- 5. Hides irrelevant details



Ok for some chemical analyses, inadequate for others.



- 1. Makes it more natural to think about tasks and subtasks
- 2. Makes programs easier to understand
- 3. Captures common patterns
- 4. Allows for code reuse
- 5. Hides irrelevant details
- 6. Separates specification from implementation

#### Recap

#### **Functional Abstraction**

Black Box

No need to know how a car works to drive it!

#### **Functional Abstraction**

Separates specification from implementation

Specification: WHAT

Implementation: HOW

#### Example

```
def square(x):
    return x * x
def square(x):
   return exp(double(log(x)))
def double(x): return x + x
```

#### To think about

Why would we want to implement a function in different ways?

- 1. Makes it more natural to think about tasks and subtasks
- 2. Makes programs easier to understand
- 3. Captures common patterns
- 4. Allows for code reuse
- 5. Hides irrelevant details
- 6. Separates specification from implementation
- 7. Makes debugging (fixing errors) easier

```
Where is the bug?
   def hypotenuse(a, b):
       return sqrt(sum of squares(a, b))
   def sum of squares(x, y):
       return square(x) + square(y)
   def square(x): return x + x
   def hypotenuse(a, b):
       return sqrt((a + a) * (b + b))
```

```
x = 10
def square(x): return x * x
def double(x): return x + x
def addx(y): return y + x
square(20)
square(x)
                       Which x?
addx(5)
```

```
formal parameter

def square(x):
    return x * x } body
```

A function definition binds its formal parameters.

i.e. the formal parameters are visible only inside the definition (body), not outside.

```
formal parameter

def square(x):
    return x * x } body
```

- Formal parameters are bound variables.
- The region where a variable is visible is called the scope of the variable.
- Any variable that is not bound is free.

```
def square(x):
    return x * x
                 x is bound
def double(x):
    return x + x
                 x is bound
```

#### Example

#### **Block Structure**

```
def hypotenuse(a, b):
    def sum_of_squares():
        return square(a) + square(b)
    return math.sqrt(sum_of_squares())
```

The variables a and b in sum\_of\_squares refer to the formal parameters of hypotenuse.

<u>Hides</u> irrelevant details (sum\_of\_squares) from the user of hypotenuse.

# Wishful Thinking

## WHAT

# Top-down design approach:

Pretend you have whatever you need

# WHY

# Easier to think with in the goal in mind

## Analogy

Suppose you are to build a house. Where do you start?

Individual bricks



**Building plan** 



### Example

Suppose you want to compute hypotenuse

```
def hypotenuse(a, b):
    return sqrt(sum_of_squares(a, b))

def sum_of_squares(x, y):
    return square(x) + square(y)

def square(x):
    return x * x
```

### Another Example

Comfort Delgro, the largest taxi operator in Singapore, determines the taxi fare based on distance traveled as follows:

• For the first kilometre or less: \$2.40

• Every 200 metres thereafter or less up to 10 km: \$0.10

• Every 150 metres thereafter or less after 10 km: \$0.10

# Problem:

Write a Python function that computes the taxi fare from distance travelled.

# How do we start?

### Formulate the problem

Function

Needs a name
Pick an appropriate name
(not foo)

### Formulate the problem

distance → Taxi Fare → fare

- What data do you need? (be thorough)
- Where would you get it? (argument/ computed?)

Results should be unambiguous

- What other abstractions may be useful?
- Ask the same questions for each abstraction.

# How can the result be computed from data?

- 1. Try simple examples
- 2. Strategize step by step
- 3. Write it down and refine

#### Solution

What to call the function? taxi\_fare

• What data are required? distance

Where to get the data? function argument

What is the result? fare

# How can the result be computed from data?

- e.g. #1: distance = 800 m, fare = \$2.40
- e.g. #2: distance = 3,300 m

```
fare = $2.40 + [2300/200] \times $0.10
= $3.60
```

• e.g. #3: distance = 14,500 m

```
fare = $2.40 + [9000/200] \times $0.10 + [4500/150] \times $0.10 = $9.90
```

#### Pseudocode

```
Case 1: distance <= 1000
        fare = $2.40
Case 2: 1000 < distance <= 10,000
        fare = $2.40 + $0.10 * [(distance - 1000)/200]]
                             What's this?
Case 3: distance > 10,000
        fare = ($6.90) + $0.10 * (distance - 10,000)/150)
Note: the Python function ceil rounds up its argument. math.ceil(1.5) = 2
```

#### Solution

```
def taxi fare(distance): # distance in metres
  if distance <= 1000:</pre>
    return 2.4
  elif distance <= 10000:
    return 2.4 + (0.10 * ceil((distance - 1000) / 200))
  else:
    return 6.9 + (0.10 * ceil((distance - 10000) / 150))
# check: taxi_fare(3300) = 3.6
```

Can we improve this solution?

## Coping with Change

What if...

- 1. the starting fare increases?
- 2. stage distance changes?
- 3. increment amount changes?

#### CAB CONFUSION

Singapore has many different types of taxis plying the roads, all with different flag-down rates. **LIM YONG** and **BRYANDT LYN** help sort through the choices available.



#### **Avoid Magic Numbers**

It is a terrible idea to hardcode numbers (magic numbers):

- Hard to make changes in future

Define abstractions to hide them!

#### Solution v2

```
def taxi_fare(distance): # distance in metres
    if distance <= stage1:</pre>
        return start fare
    elif distance <= stage2:</pre>
        return start_fare + (increment * ceil((distance - stage1) / block1))
    else:
                                       recursive call
               taxi_fare(stage2) + (increment * ceil((distance - stage2) / block2))
stage1 = 1000
stage2 = 10000
start_fare = 2.4
increment = 0.1
block1 = 200
block2 = 150
```

#### in 2018

```
def taxi_fare(distance): # distance in metres
    if distance <= stage1:</pre>
        return start fare
    elif distance <= stage2:</pre>
        return start_fare + (increment * ceil((distance - stage1) / block1))
    else:
        return taxi_fare(stage2) + (increment * ceil((distance - stage2) / block2))
stage1 = 1000
stage2 = 10000
start_farg = 3.7
incremenc = 0.22
block1 # 400
block2 \(\frac{1}{2}\) 350
```

#### Summary

- Functional Abstraction
- Good Abstractions
- Variable Scoping
- Wishful Thinking

Recitation Thursday/Friday



Overwhelmed?