Bio Computing & Machine Learning (BCML) Lab

Machine Learning Intro

Prof. Cheolsoo Park

02_Definition of Pattern Recognition

- What is pattern recognition?
 - A study about how a computer or device can recognize an object or phenomenon

Machine Learning

- ML allows computers to find hidden insights without being explicitly programmed where to look (e.g. pattern recognition)
- A method of automating analytical model building

classification

Y: Classes,
Discrete Output

regression

Y: Real Number, Continuous Output

03_Feature and Pattern

- What is feature?
 - A feature of something is an interesting or important part or characteristic of it.
- What is pattern?
 - Set of traits and features

Feature 1

Feature space

03_Feature and Pattern

Good and bad features

Types of patterns

Process of ML

Process of ML in Material Science

Fig. 2. The general process of machine learning in materials science.

Y. Liu et al. (2017 J. Materiomics)

Data Preprocessing

T2000

- Improve the data quality before the prediction model
- Data cleaning
 - incomplete, noisy and inconsistent
 - Fill in missing values
 - Identify or remove outliers
 - Noise filtering
- Data reduction
 - Remove factors, not relevant to the decision attributes
 - Dimensionality reduction
- Data transformation
 - Normalization

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation = "" (missing data)
 - noisy: containing noise, errors, or outliers
 - e.g., Salary = "-10" (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - Age = "42", Birthday = "03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes
 of data. Complex data analysis may take a very long time to run on the
 complete data set.
- The curse of dimensionality
 - A term coined by Bellman in 1961
 - Refers to the problems associated with multivariate data analysis as the dimensionality increases
- When the dimensionality increases, the <u>volume</u> of the space increases so fast that the available data become sparse.
 - This sparsity is problematic for any method that requires statistical significance

Curse of Dimensionality

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization (standardization)
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Process of ML

Model Building

- Types of problems
 - classification
 - Derive specific numbers for the classes
 - regression
 - Generalization of classification

classification

Y: Classes,
Discrete Output

regression

Y: Real Number,
Continuous Output

Model Building

- Supervised learning (ex: classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by
 labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (ex: clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations,
 etc. with the aim of establishing the
 existence of classes or clusters in the data

Model Building

- Reinforcement Learning
 - No supervisor, only a reward signal
 - Feedback is delayed, not instantaneous
 - Sequential, non independent-and-identical distributed data
 - Examples of Reinforcement Learning

https://youtu.be/2pWv7GOvuf0?list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT&t=935

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - \blacksquare Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

One Variable Linear Regression

Smoking vs lifespan

Life span

- Supervised Learning
 - Classification : discrete output
 - Regression : continuous value output

of tobacco per day

One Variable Linear Regression

• Linear regression with one variable $h_{\theta}(x) = \theta_0 + \theta_1 x$

Cost function of Linear Regression

- Parameter estimation in linear regression problem
- Hypothesis : $h_{\theta}(x) = \theta_0 + \theta_1 x$, where θ_i (i = 0 and 1) are parameters
- Let's find the parameters, θ_i
- Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{k=1}^{n} \left(h_{\theta}(x^{(k)}) - y^{(k)} \right)^2$$

• To estimate θ_0 and θ_1 , minimize $J(\theta_0, \theta_1)$ minimize θ_0, θ_1 $J(\theta_0, \theta_1)$

Classification

Classification problem using regression

- Classification using threshold $h_{\theta}(x) = 0.5$
 - If $h_{\theta}(x) \geq 0.5$, then classify the sample into Woman (y=1)
 - If $h_{\theta}(x) < 0.5$, then classify the sample into Man (y=0)

Classification

Outlier

- Linear regression output $h_{\theta}(x)$ can be >1 or <0 even though y=0 or 1
 - \rightarrow Logistic Regression producing $0 \le h_{\theta}(x) \le 1$

Logistic Regression

- Goal: $0 \le h_{\theta}(x) \le 1$
- Linear regression $h_{\theta}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x} \Rightarrow g(\boldsymbol{\theta}^T \mathbf{x})$, , where $g(z) = \frac{1}{1+e^{-z}}$ (Sigmoid function or Logistic function)
- Logistic Regression Model

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic Regression

 Transform the linear regression problem to binary 0/1 classification problem

- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units

80 billion neurons

1 trillion glia cells

100 trillion connections

- Much more efficient than computer in terms of learning
- Think about object recognition
- That's why people would like to mimic the brain to develop software (ANN) and hardware (Neuromorphic)
 Neuroscience: Exploring the Brain

Neuron

- Brain consists of neurons
- Plasticity of neuron
- Restructuring by learning

Components of neuron

- Dendrite: input channel of neural excitation from the next neurons
- Axon : transferring neural excitation
- Cell body or soma : accumulating the input signal and transferring the signal to its axon

Hubel and Wiesel experiment

- Found the principles of the visual perception
- Nobel Prize in Physiology and Medicine in 1981
- https://youtu.be/IOHayh06LJ4
- https://youtu.be/Cw5PKV9Rj3o

Hubel and Wiesel experiment

- The neurons fired only when the line was in a particular place on the retina
- The activity of these neurons changed depending on the orientation of the line
- Sometimes the neurons fired only when the line was moving in a particular direction.

"There has been a myth that the brain cannot understand itself. ... The brain can be studied just as the kidney can."

Visual System

- McCulloch-Pitts Model
 - McCulloch : A psychiatrist and neuroanatomist
 - Pitts: A mathematician
 - A logical calculus of ideas immanent in nervous activity, 1943
 - 3 years before the first computer ANIAC (1946)
 - Demonstrated the logic gates like 'AND', 'OR',
 'NOT', and ect. using artificial neural network

- An n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping
- The inputs to unit are outputs from the previous layer. They are multiplied by their corresponding weights to form a weighted sum, which is added to the bias associated with unit. Then a nonlinear activation function is applied to it.

Deep Learning

White box: human controlled Gray box: machine controlled

Commonly Used ML

Y. Liu et al. (2017 J. Materiomics)

Process of ML

Confusion matrix

	Actual Positive	Actual Negative
Predicted Positive	TP	FP
Predicted Negative	FN	TN

Recall Rate =
$$\frac{TP}{TP + FN}$$

Precision =
$$\frac{TP}{TP + FP}$$

$$=\frac{TP}{TP + FN}$$

$$=\frac{FP}{FP+TN}$$

$$=\frac{TN}{FP+TN}$$

Sensitivity = Recall Rate = True Positive Rate

$$\frac{TP}{TP + FN}$$

Specificity = True Negative Rate

$$\frac{TN}{FP + TN}$$

Receiver Operating Charateristic (ROC) Curve

	Actual Positive	Actual Negative
Predicted Positive	TP	FP
Predicted Negative	FN	TN

- AUROC

Area under the ROC curve

08_Applications

- Applications of pattern recognition
 - Recognition of letters
 - Automatic classification of letters, Producing code and text from an image scanning,
 ATM machine, recognition of car registration number

- Pattern recognition of Bio-physiological signal and Behavior
 - Pattern recognition of speech, finger print, pupil, face, DNA mapping, gait, etc.
 - Voice/finger print/iris/face/walking pattern recognition, DNA mapping, etc
- Diagnosis
 - Car fault, Clinics, Signal processing of electroencephalogram and electrocardiogram,

Reseach Scopes

Research Scopes	Applications
Adaptive Signal Processing	Image Processing
Machine Learning	Computer Vision
Artificial Neural Network	Audio/Video Recognition
Robotics/Vision	Automatic Target Recognition
Cognitive Science	Optical Letter Recognition
Statistics	Seismic Analysis
Nonlinear Optimization	Chat bot
Data Analytics	Biometric Authentication
Fuzzy/Genetic System	Fintech
Inference/Decision Theory	Medical Diagnosis
Structural Modeling	Etc
Computational Neuroscience	
Etc	

Example

