科目:《大学数学》(微积分)

适用专业年级:数学三各专业 2007 级本科生

题号	_	 ==	四	Ŧi.	六	总分
得分						

考试须知

四川大学学生参加由学校组织或由学校承办的各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》。有考试违纪作弊行为的,一律照《四川大学学生考试违纪作弊处理罚条例》进行处理。

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、四川大学考场规则》和《四川大学监考人员职责》。有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理。

阅卷人 得 分

一、填空(每题3分,共15分)

1. 岩
$$F(x) = \int_{\cos x}^{e^{\sin x}} x f(t) dt$$
, 则 $F'(x) =$ _____.

4. 函数
$$f(x)=\sin 2x$$
 的幂级数展开式中 x^{20} 的系数为_____

5. 若
$$\lim_{x\to 0} \frac{\int_0^{x^2} t \sin x \cdot \arctan(at)dt}{x^7} = 2$$
,则常数 $a =$ ______

壬课教师:

姓名:

学号:

手级:

小院:

阅卷人	
得 分	

二、单项选择题 (每小题 3 分, 共 15 分)

1. 点(2, 3, -4) 关于坐标原点对称的点是().

2. 设积分域为 $D = \{(x,y) \mid x^2 + y^2 \le 1, x \ge -\frac{1}{2}\}$,则 $\iint_D (x^2 + y^2) dx dy = ($).

(A)
$$\int_{-\frac{1}{2}}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} (x^2 + y^2) dy$$
, (B) $\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dx \int_{-\frac{1}{2}}^{1} (x^2 + y^2) dy$,

(C)
$$\int_{-1}^{1} dy \int_{-\frac{1}{2}}^{\sqrt{1-y^2}} (x^2 + y^2) dx$$
, (D) $\int_{-\frac{1}{2}}^{1} dx \int_{-1}^{1} (x^2 + y^2) dy$.

3. 下列级数中收敛的是().

(A)
$$\sum_{n=1}^{\infty} (\frac{1}{10n} + \frac{1}{10^n})$$
; (B) $\sum_{n=1}^{\infty} (\frac{1}{2^n} + \frac{1}{\sqrt[n]{2}})$

(C)
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{10^n} - \frac{1}{10n} \right];$$
 (D) $\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{\sqrt{2}} \right)^n.$

(A)
$$F(3) = \frac{5}{4}F(2)$$
 (B) $F(-3) = \frac{3}{4}F(2)$

(C)
$$F(3) = -\frac{3}{4}F(-2)$$
 (D) $F(-3) = -\frac{5}{4}F(-2)$

阅卷人	
復 分	

得分 三、计算题 (每题 8 分, 共 40 分)

1. 设 f(x) 为连续函数,且满足 $f(x) = \int_0^{5x} f(\frac{t}{5}) dt + x^2$,求 f(x).

2. 设球面方程为 $x^2 + y^2 + z^2 - 2x + 4y + 2z = 0$, 求该球面方程的球心坐标及半径.

3. 设 $z = e^{xy} \cos(x^2 - y)$, 求 dz.

4. 计算二重积分 $I = \iint_{D} \sqrt{x^2 + y^2} dxdy$,其中 D 是圆 $x^2 + y^2 = 2y$ 围成的平面区域.

5. 将下列 f(x)函数展开成(x-1)的幂级数并求收敛域.

$$(1). f(x) = \frac{1}{x}$$

(1).
$$f(x) = \frac{1}{x}$$
; (2). $f(x) = \frac{1}{x^2}$.

阅卷人	
得 分	

四、解答题(10分)

设级数 $\frac{x^4}{2 \cdot 4} + \frac{x^6}{2 \cdot 4 \cdot 6} + \frac{x^8}{2 \cdot 4 \cdot 6 \cdot 8} + \cdots$ $(-\infty < x < +\infty)$ 的和函数为 S(x). 求:

- (1) S(x)所满足的一阶微分方程;
- (2) S(x)的表达式.

阅卷人			
得 分	五、	应用题	(10分)

设有曲线 $y=4x^2$ $(0 \le x \le 1)$ 和直线 y=c (0 < c < 4) 记它们与 y 轴所围图形的面积为 A_1 ,它们与直线 x=1 所围图形的面积为 A_2 问 c 为何值时,可使 $A=A_1+A_2$ 最小,并求出 A 的最小值.

阅着	人	
得	分	

六、证明题(共10分)

设 F(x,y)具有连续偏导数,已知方程 $F(\frac{x}{z},\frac{y}{z})=0$. 证明: $\frac{x}{z}\frac{\partial z}{\partial x}+\frac{y}{z}\frac{\partial z}{\partial y}\mathbf{d}y=1$, 其中 F_1' 表示 $F_u'(u,v),F_2'$ 表示 $F_v'(u,v)$.