What is claimed is:

1	1. A th	erapeutic ultrasound device comprising:
2		a substrate having a face and configured to be positionable on a
3		body surface of a human or veterinary patient; and
4		a plurality of ultrasound transducer elements disposed on the
5		face of the substrate;
6		the device being structured to be effective to deliver ultrasound
7		energy to at least an organ or portion of the patient's body for a
8		sufficient time to stimulate angiogenesis and/or relieve ischemia.
1 2	2.	An ultrasound device according to Claim 1 wherein the substrate comprises a flexible sheet.
1	3.	An ultrasound device according to Claim 1 further comprising drive
2		electronics for controlling operation of at least some of the
3		transducer elements.
1	4.	An ultrasound device according to claim 1 wherein the transducer
2		elements comprise piezoelectric ceramic material.
1	5.	An ultrasound device according to claim 1 wherein the transducer
2		elements comprise PZT.
1	6.	The ultrasound device according to claim 1 wherein the transducer
2		elements are rigidly connected together.
1	7	The ultrasound device according to claim 1 being configured to cover
2	••	a portion of a human chest.
		The observed device according to claim 1 being configured to cover
1	8.	The ultrasound device according to claim 1 being configured to cover
2		a portion of a human leg.

1	9.	A method for causing an ultrasound-induced effect within the body
2		of a human or veterinary patient, said method comprising the steps
3		of:
4		positioning an ultrasound device including a plurality of flexibly
5		connected ultrasound transducer elements on the body surface of
6		the patient; and
7		using the ultrasound transducer elements to deliver ultrasound
8		to at least a portion of the patient's body for sufficient time to cause
9		the ultrasound-induced effect.
1	10.	A method according to claim 9 wherein the step of using the
2		ultrasound transducer elements comprises radiating ultrasound into
3		the patient's body for a time period of at least about one hour.
1	11.	A method according to claim 9 wherein the ultrasound has a
2		frequency in the range of about 1.6 MHz to about 8 MHz.
1	12.	A method according to claim 9 wherein the ultrasound has a
2		frequency in the range of about 40KHz to about 400 KHz.
1	13.	A method according to claim 9 wherein the all of the transducer
2		elements emit ultrasound of substantially the same frequency.
1	14.	A method according to claim 9 wherein the frequency of ultrasound
2		emitted by at least one of the transducer elements is different from
3		the frequency of ultrasound that that is emitted from at least one of
4		the other transducer elements.
1	15.	A method according to claim 9 wherein all of the transducer
2		elements emit ultrasound during the same time period.

1 2 3 4	16.	A method according to claim 9 wherein at least one of the transducer elements emits ultrasound during a time period that is different from the time period during which at least one of the other transducer elements emits ultrasound.
1 2	17.	A method according to Claim 9 wherein the ultrasound-induced effect is angiogenesis and/or treatment or prevention of ischemia.
1 2 3	18.	A method according to Claim 9 wherein the ultrasound device is positioned on the chest and used to promote angiogenesis in the heart for relief of myocardial ischemia.
1 2	19.	A method according to Claim 9 wherein the ultrasound device is used to cause thrombolysis in the patient.
1 2 3	20.	A method according to Claim 9 wherein the patient is presenting with ST segment changes or other clinical or biochemical indicia of myocardial infarction.
1 2 3	21.	A method according to Claim 9 wherein the ultrasound device is used to prevent restenosis after angioplasty and/or stent placement in a coronary artery or other vessel.
1 2 3 4	22.	A method according to Claim 9 wherein the ultrasound device is positioned on the patient's calf and used to promote angiogenesis, relieve myocardial ischemia and/or intermittent claudication or other ischemic condition of the leg.
1 2 3 4	23.	A method according to Claim 9 wherein the ultrasound device is positioned on the chest of a patient who suffers from dilated cardiomyopathy and used to promote angiogenesis and/or improve left ventricular function.

A method according to Claim 9 wherein the ultrasound device is positioned on at least one extremity of a patient who suffers from diabetic neuropathy or other neuropathy and used to promote angiogenesis and /or relieve pain resulting from such neuropathy.

- 25. A method according to claim 9 wherein the step of using the ultrasound transducer elements comprises radiating ultrasound energy from more than one of the transducer elements simultaneously.
- 26. A method according to claim 9 wherein the step of using the ultrasound transducer elements comprises radiating ultrasound energy from each of the transducer elements in an alternating manner.
- 27. A method according to claim 9 wherein the step of using the ultrasound transducer elements comprises radiating ultrasound energy into the patient's body in a preprogrammed sequence.