

MESTRADO EM ENGENHARIA INFORMÁTICA

Modelação e Simulação de Processos

Exame de Época Normal - 22 de Junho de 2020

SEM CONSULTA

Duração da Prova: 1h 10

Para acesso a uma loja de roupa desportiva é necessária uma higienização das mãos antes da entrada em loja. Cerca de 30% dos clientes necessita de se dirigir aos provadores para experimentar peças de roupa. Estes devem aguardar até que o gabinete seja higienizado. Para além do funcionário que está à entrada da loja, existe apenas um outro funcionário, que deverá garantir a higienização dos provadores e efetuar registos/pagamentos, sendo necessário dar prioridade sempre que estiver alguém na fila de acesso aos provadores.

A chegada de clientes é dada por uma distribuição exponencial de valor médio 5 mins. O tempo necessário à higienização dos gabinetes demora cerca de 30 a 80 segundos; o tempo de atendimento no balcão de registos e pagamentos segue uma distribuição exponencial de valor médio 4 minutos.

- a) Identifique e caracterize as entidades e as atividades. Apresente ciclo de atividades completo. (3 val)
- b) Identifique e caracterize o conjunto de eventos necessário à simulação do sistema descrito, segundo uma abordagem de Simulação Discreta por Eventos. Apresente todos os eventos, analise e justifique, com base na apresentação de um **grafo de eventos**, quantas e quais as rotinas de eventos que no **mínimo** teria de implementar. (3 val)
- c) Apresente, em pseudo-código, as rotinas dos eventos associados ao registo/pagamento. (3 val)
- d) Indique quais as <u>medidas de desempenho e 3 cenários alternativos a analisar</u>, de modo a sugerir melhorias no funcionamento da loja. (3 val)
- e) Quantas e quais são as fontes de aleatoriedade do sistema descrito? Detalhe e justifique. (2 val)
- f) Considere os tempos médios de espera pelo provador, após 10 corridas de simulação. Apresente a análise estatística e as conclusões que daí retira quanto à hipótese do tempo médio de espera pelo provador ser de 2.5. (3 val) **confiança 95%**

Espera Provador	5,6	9	8,2	2,3	4,5	3,4	2,7	11,3	4,2	5	
-----------------	-----	---	-----	-----	-----	-----	-----	------	-----	---	--

g) Com base na descrição do sistema que simulou durante o trabalho prático nº 2, indique quantos e quais os processos necessários para proceder à sua simulação segundo uma abordagem por processos, e apresente as respetivas rotinas. (3 val)

MESTRADO EM ENGENHARIA INFORMÁTICA

Modelação e Simulação de Processos

Exame de Época Normal - 22 de Junho de 2020

SEM CONSULTA

Duração da Prova: 1h 10

	- 10								γ				
ν	0.6000	0.7000	0.8000	0.9000	0.9333	0.9500	0.9600	0.9667	0.9750	0.9800	0.9833	0.9875	0.9900
1	0.325	0.727	1.376	3.078	4.702	6.314	7.916	9.524	12.706	15.895	19.043	25.452	31.821
2	0.289	0.617	1.061	1.886	2.456	2.920	3.320	3.679	4.303	4.849	5.334	6.205	6.965
3	0.277	0.584	0.978	1.638	2.045	2.353	2.605	2.823	3.182	3.482	3.738	4.177	4.541
4	0.271	0.569	0.941	1.533	1.879	2.132	2.333	2.502	2,776	2.999	3.184	3.495	3.747
5	0.267	0.559	0.920	1.476	1.790	2.015	2.191	2.337	2.571	2.757	2.910	3.163	3.365
6	0.265	0.553	0.906	1.440	1.735	1:943	2.104	2.237	2.447	2.612	2.748	2.969	3.143
7	0.263	0.549	0.896	1.415	1.698	1.895	2.046	2.170	2.365	2.517	2.640	2.841	2.998
8	0.262	0.546	0.889	1.397	1.670	1.860	2.004	2.122	2.306	2.449	2.565	2.752	2.896
9.	0.261	0.543	0.883	1:383	1.650	1.833	1.973	2.086	2.262	2.398	2.508	2.685	2.821
10	0.260	0.542	0.879	1.372	1.634	1.812	1.948	2.058	2.228	2.359	2.465	2.634	2.764
11	0.260	0.540	0.876	1.363	1.621	1.796	1.928	2.036	2.201	2.328	2.430	2.593	2.718

$$S^{2}(n) = \frac{\sum_{i=1}^{n} \left[X_{i} - \overline{X}(n) \right]^{2}}{n-1} \qquad \overline{X}(n) \pm t_{n-1,1-\alpha/2} \sqrt{\frac{S^{2}(n)}{n}} \qquad t_{n} = \frac{\left[\overline{X}(N) - \mu \right]}{\sqrt{S^{2}(n)/n}}$$

$$n_a^*(\beta) = \min \left\{ i \ge n : t_{i-1,1-\alpha/2} \sqrt{\frac{S^2(n)}{i}} \le \beta \right\} \qquad n_r^*(\gamma) = \min \left\{ i \ge n : \frac{t_{i-1,1-\alpha/2} \sqrt{\frac{S^2(n)}{i}}}{\left| \overline{X}(n) \right|} \le \gamma' \right\}$$

$$\overline{X_1}(n_1) - \overline{X_2}(n_2) \pm t_{\hat{f}, 1 - \alpha/2} \sqrt{\frac{S_1^2(n_1)}{n_1} + \frac{S_2^2(n_2)}{n_2}}$$

$$\hat{f} = \frac{\left[S_1^2(n_1)/n_1 + S_2^2(n_2)/n_2\right]^2}{\left[S_1^2(n_1)/n_1\right]^2/(n_1 - 1) + \left[S_2^2(n_2)/n_2\right]^2/(n_2 - 1)}$$