PH20014: Electromagnetism 1

Problem Sheet 1

Electric Fields

1. At a particular temperature and pressure, a helium gas contains 5×10^{25} atoms per cubic metre. If an electric field of 10 kV m⁻¹ applied to the gas causes an average electron cloud shift of 10^{-18} m, find the relative permittivity of the helium.

 $[\epsilon_r = 1.00018]$

2. A material has an electric susceptibility of 3.5. Calculate the electric dipole moment, P, and the D-field if the electric field E is 15 Vm⁻¹.

$$[P = 4.6 \times 10^{-10} \text{ Cm}^{-2}, D = 6.0 \times 10^{-10} \text{ Cm}^{-2}]$$

3. A slab of dielectric of relative permittivity ε_r fills the space between $z=\pm a$ in the x-y plane, and contains a uniform density of free charges ρ_f per unit volume.

Using Gauss' Law, find \vec{E} , \vec{D} and \vec{P} as functions of z. What is the surface density of polarisation charge on the surface of the dielectric?

$$[\sigma = P = \pm (\epsilon_r - 1) \rho_f a / \epsilon_r]$$

4. A charge Q is placed at the centre of a spherical shell of LIH dielectric material with relative permittivity ε_r . The shell has an inner radius a, and an outer radius b, and the rest of space is a vacuum. Using Gauss' Law, find (a) the displacement field \vec{D} at any distance, r, from the charge, (b) Find the electric field for (i) r < a, (ii) a < r < b and (iii) r > b and (c) find the electrostatic energy stored in the dielectric.

[(a) D=Q/
$$(4\pi R^2)$$
, (b) (i),(iii) E =Q/ $(4\pi \epsilon_0 R^2)$, (ii) E =Q/ $(4\pi \epsilon_r \epsilon_0 R^2)$, (c) U=Q²/ $(8\pi \epsilon_r \epsilon_0)$ (1/a - 1/b)]

Magnetic Fields

5. A material has a magnetic susceptibility of 0.01. Calculate the magnetic dipole moment per unit volume M and the B-field if the H-field is 10^3 A m⁻¹.

$$[M=10 \text{ Am}^{-1}, B=1.3 \times 10^{-3} \text{ T}]$$

6. An infinitely long cylindrical conductor of radius a and permeability $\mu_0\mu_r$ is placed along the z-axis. The conductor carries a uniformly distributed current I along z. Use Ampère's Law to find H and then M for 0 < r < a.

$$[M = (\mu_r - 1) I R / (2\pi a^2)]$$

7. In a certain homogeneous isotropic medium for which $\mu_r = 4$, the magnetic field (B-field) is given in mT by $\vec{B} = 2\hat{i} - 5\hat{j} + 4\hat{k}$, where \hat{i} , \hat{j} and \hat{k} are unit vectors. Calculate (a) the magnetic susceptibility χ_m , (b) the H-field – the magnetic field intensity, (c) the magnetisation \vec{M} and (d) the magnetic energy stored per unit volume.

[(a)
$$\chi$$
=3, (b) H=(2, -5, 4)/4 μ 0 mAm⁻¹, (c) M= 3(2, -5, 4)/4 μ 0 mAm⁻¹, (d) W = 4.5 J m⁻³]

8. Use your new definition of \vec{B} and a Maxwell equation to show that $\nabla \cdot \vec{H} = -\nabla \cdot \vec{M}$. Using your understanding of divergence, explain the meaning of this result. What does this tell you about the fields around a bar magnet?

PH20014: Electromagnetism 1

More General Question

9. The Dielectric Relaxation Time. Use the following equations,

$$\nabla \cdot \vec{J}_f = -\frac{\partial \rho_f}{\partial t} \qquad \text{(The continuity Equation),}$$

$$\vec{J}_f = \sigma \vec{E} \qquad \text{(Ohm's law) and}$$

$$\nabla \cdot \vec{E} = \frac{\rho_f}{\varepsilon_0} \qquad \text{(Gauss' Law),}$$

to find a differential equation which has the solution $\rho_f = \rho_{f0} e^{-t/\tau}$, where $\tau = \frac{\varepsilon_0}{\sigma}$, ρ_{f0} is the initial charge density at t=0 and τ is the relaxation or rearrangement time.