PEAK FINDER 2D

- 1- Find middle row/column, then pick a number in middle row/column ==> $\theta(1)$
- 2- Check if the number is peak number, if it is a peak number then return it ==> $\theta(1)$
- 3- Find max number in row/column ==> $\theta(m)$ or $\theta(n)$
- 4- Check if the number is peak number, if it is a peak number then return it ==> $\theta(1)$
- 5- Compare max number with its neighbors ==> $\theta(1)$
 - If the max's neighbor is bigger than max, then maintain search on neighbor's part arr[midRow+1][max] > arr[midRow][max] arr[max][midCol+1] > arr[max][midCol]
 - If the max's other neighbor is bigger, then maintain search on this neighbor's part arr[midRow-1][max] > arr[midRow][max] arr[max][midCol-1] > arr[max][midCol]

n (number of rows)	m (number of columns)	rowOrCol	Time(ns)
10	100	0	13800
10	100	1	12500
10	100	2	3900
100	10	0	11800
100	10	1	15100
100	10	2	9100
50	200	0	197599
50	200	1	151499
50	200	2	85700
200	50	0	245500
200	50	1	37600
200	50	2	474699
50	1000	0	219700
50	1000	1	158200
50	1000	2	449800
1000	50	0	241600
1000	50	1	135099
1000	50	2	78700
50	10000	0	1661400
50	10000	1	126201
50	10000	2	680400
10000	50	0	230900
10000	50	1	143999
10000	50	2	1238900

Condition 1: rowOrCol = 0 ---> array is split by row

		15	
10	5	18	13
		20	

To find the peak number in an nXm-sized array;

n: number of rows

m: number of columns

$$T(n,m) = \begin{cases} m, n = 1 \\ T\left(\frac{n}{2}, m\right) + m, n > 1 \end{cases}$$

$$T(n,m) = m + T(\frac{n}{2},m)$$
 1.Equation

In 1.Equation, we write $T\left(\frac{n}{2},m\right)=m+T\left(\frac{n}{4},m\right)$ instead of $T\left(\frac{n}{2},m\right)$

$$T(n,m) = 2m + T(\frac{n}{4},m)$$
 2.Equation

 $T(n,m) = km + T(\frac{n}{2^k}, m)$ General Formula

$$T(1,m)=m$$

$$\frac{n}{2^k} = 1, \ k = \log n$$

Substitute k value in the general formula

$$T(n,m) = \log n \cdot m + T(1,m)$$

$$T(n,m) = \log n \cdot m + m$$

$$O(n) = n. log m$$

Condition 2: rowOrCol = 1 ---> array is split by column

		11		
		15		
10	19	18	13	10
		20		
		9		

To find the peak number in an nXm-sized array;

n: number of rows

m: number of columns

$$T(n,m) = \begin{cases} n, m = 1 \\ T\left(n, \frac{m}{2}\right) + m, m > 1 \end{cases}$$

$$T(n,m) = n + T(n,\frac{m}{2})$$
 1.Equation

In 1. Equation, we write $T\left(n,\frac{m}{2}\right)=n+T(n,\frac{m}{4})$ instead of $T\left(n,\frac{m}{2}\right)$

$$T(n,m) = 2n + T(n,\frac{m}{4})$$
 2.Equation

 $T(n,m) = kn + T(n,\frac{m}{2^k})$ General Formula

$$T(n,1) = n$$

$$\frac{n}{2^k} = 1 \quad k = \log n$$

Substitute k value in the general formula

$$T(n,m) = \log n \cdot m + T(n,1)$$

$$T(n,m) = \log n \cdot m + n$$

$$O(n) = m.logn$$

Condition 3: rowOrCol = 2 ---> first, array is split by row then column

		15				
10	5	18	13			
		20			20	
					11	
	25	20 11	5	25		

To find the peak number in an nXm-sized array;

n: number of rows

m: number of columns

$$T(n,m) = \begin{cases} n,m = 1\\ m,n = 1 \end{cases}$$

$$T(n,m) = \begin{cases} T\left(\frac{n}{2},m\right) + m, & n > 1\\ T\left(n,\frac{m}{2}\right) + n,m > 1 \end{cases}$$

$$T(n,m) = m + T\left(\frac{n}{2},m\right) \text{ 1.Equation}$$

$$T\left(\frac{n}{2},m\right) = m + T\left(\frac{n}{2},\frac{m}{2}\right) \text{ 2. Equation}$$

$$T\left(\frac{n}{2},\frac{m}{2}\right) = \frac{m}{2} + T\left(\frac{n}{4},\frac{m}{2}\right) \text{ 3. Equation}$$

$$T\left(\frac{n}{4},\frac{m}{2}\right) = \frac{n}{4} + T\left(\frac{n}{4},\frac{m}{4}\right) \text{ 4. Equation}$$

$$T\left(\frac{n}{4},\frac{m}{2}\right) = \frac{m}{4} + T\left(\frac{n}{4},\frac{m}{4}\right) \text{ 5. Equation}$$

We write the above equations, starting from the 5th equation, backwards to the 1st equation.

$$T(n,m) = m + n + \frac{m}{2} + \frac{n}{2} + \frac{m}{4} + \frac{n}{4} + T(\frac{n}{8}, \frac{m}{4})$$

$$T(n,m) = m + n + \frac{m}{2^k} + \frac{n}{2^k} + T(\frac{n}{2^k}, \frac{m}{2^k}) \text{ General Formula}$$

$$n \sum_{k=1}^{\infty} \frac{1}{2^k} = n$$

$$m \sum_{k=1}^{\infty} \frac{1}{2^k} = m$$

$$T(n,m) = m + n + m + n = 2m + 2n$$

$$O(n,m) = m + n$$

PEAK FINDER 3D

- 1- Find middle layer, then pick a number in midLayer => $\theta(1)$
- 2- Check if the number is peak number, if it is a peak number then return it => $\theta(1)$
- 3- Find max number in midLayer => $\theta(mn)$
- 4- Check if the number is peak number, if it is a peak number then return it => $\theta(1)$
- 5- Compare max number with its neighbors => $\theta(1)$
 - If the max's neighbor is bigger than max, then maintain search on neighbor's part => $\theta(1)$ arr[max][max][midLayer] > arr[max][max][midLayer+1]
 - If the max's other neighbor is bigger, then maintain search on this neighbor's part => $\theta(1)$ arr[max][max][midLayer] > arr[max][max][midLayer-1]

Split by layer

Row Mid Layer

Column

To find the peak number in an nXmXd-sized array;

n: number of rows

m: number of columns

d: number of layers

$$T(n, m, d) = \begin{cases} n.m, & d = 1 \\ T(n, m, \frac{d}{2}) + m.n, & d > 1 \end{cases}$$

$$T(n, m, d) = n.m + T(n, m, \frac{d}{2})$$
 1.Equation

In 1. Equation, we write $T\left(n,m,\frac{d}{2}\right)=n.m+T\left(n,m,\frac{d}{4}\right)$ instead of $T\left(n,m,\frac{d}{2}\right)$

$$T(n, m, d) = 2. n. m + T(n, m, \frac{d}{4})$$
 2.Equation

$$T(n, m, d) = k.n.m + T(n, m, \frac{d}{2^k})$$
 General Formula

$$T(n, m, 1) = m.n,$$
 $\frac{d}{2^k} = 1$

$$k = \log d$$

Substitute k value in the general formula

$$T(n, m, d) = \log d.m.n + T(n, m, 1)$$
$$T(n, m, d) = \log d.m.n + n.m$$
$$O(n, m, d) = m.n. \log d$$