高等数学A(上)

本章重点

分析基础

函数 — 研究对象

极限 — 研究方法

连续 — 研究桥梁

常量

初等 数学 变量

高等 数学 函数

研究 对象 极限

研究 方法 连续

研究 桥梁

C 目 录 CONTENTS

第一章

第一节 函数的概述

第三节 函数的极限

第四节 极限运算法则

第五节 无穷小的比较

第六节 连续函数的运算与初等 函数的连续性

第二节 数列的极限

第四节 无穷小与无穷大

第四节 极限存在准则 两个重要极限

第六节 函数的连续性与间断点

第七节 闭区间上连续函数的性质

第五节 无穷小的比较

一、无穷小的比较

二、等价无穷小代换

一、无穷小阶的比较

在自变量统一变化过程中,两个无穷小之和、差、积仍为无穷小.

两个无穷小之商是否还是无穷小?

$$\lim_{x \to 0} \frac{x^3}{x} = 0$$

$$\lim_{x\to 0}\frac{x}{x^2}=\infty$$

$$\lim_{x \to 0} \frac{x}{x^2} = \infty \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

反映出无穷小量趋于零的 快慢程度不一样!

定义

设 α 和 β 是同一自变量变化过程中的无穷小量,且 $\alpha \neq 0$.

- (1) 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = 0$,则称 β 是比 α 高阶的无穷小, 记作 $\beta = o(\alpha)$;
- (2) 如果 $\lim_{\alpha}^{\beta} = \infty$, 则称 β 是比 α 低阶的无穷小;
- (3) 如果 $\lim \frac{\beta}{\alpha} = c \neq 0$, 则称 β 与 α 是 同阶无穷小; 特别地, 如果 $\lim \frac{\beta}{\alpha} = 1$, 则称 β 与 α 是 等价无穷小, 记作 $\alpha \sim \beta$.
- (4) 如果 $\lim \frac{\beta}{\alpha^k} = c \neq 0, k > 0$, 则称 β 是关于 α 的 k阶无穷小.

例如:

$$: \lim_{x \to 0} \frac{x^3}{x} = 0, \quad \therefore x \to 0 \text{ 时, } x^3 = x \text{ 的高阶无穷小, } 即x^3 = o(x);$$

$$: \lim_{x \to 0} \frac{x}{x^2} = \infty, \quad \therefore x \to 0 \text{ 时, } x \in \mathbb{R}^2 \text{ 的低阶无穷小;}$$

$$: \lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \therefore x \to 0 \text{ bt, } \sin x = x \text{ bt } \text{ in } x \to x;$$

$$: \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}, \quad \therefore x \to 0 \text{ 时, } 1 - \cos x = x^2 \text{ 的同阶无穷小;}$$

$$1-\cos x \sim \frac{1}{2}x^2$$

$$1 - \cos x = 2x$$
的二阶无穷小.

$$1 - \cos x$$
 是 $\frac{1}{2}x^2$ 的等价无穷小.

例1 求
$$\lim_{x\to 0}\frac{e^x-1}{x}$$
.

解 令 $e^x - 1 = u$, 即 $x = \ln(1 + u)$, 则当 $x \to 0$ 时, 有 $u \to 0$,

$$\because \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{u \to 0} \frac{u}{\ln(1 + u)}$$

$$= \lim_{u \to 0} \frac{1}{\ln(1+u)^{\frac{1}{u}}} = \frac{1}{\lim_{u \to 0} \ln(1+u)^{\frac{1}{u}}} = \frac{1}{\ln\lim_{u \to 0} (1+u)^{\frac{1}{u}}} = \frac{1}{\ln e} = 1.$$

即, 当 $x \to 0$ 时, $e^x - 1 \sim x$, $\ln(1 + x) \sim x$.

例2 证明: 当 $x \to 0$ 时, $\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$.

$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{\frac{x}{n}} \left(\frac{0}{0} \mathbb{Z} \right) a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

$$= \lim_{x \to 0} \frac{\left(\sqrt[n]{1+x}\right)^n - 1}{\frac{x}{n} \left[\left(\sqrt[n]{1+x}\right)^{n-1} + \left(\sqrt[n]{1+x}\right)^{n-2} + \dots + 1 \right]}$$

$$= \lim_{x \to 0} \frac{n}{\left(\sqrt[n]{1+x}\right)^{n-1} + \left(\sqrt[n]{1+x}\right)^{n-2} + \dots + 1} = 1.$$

$$\therefore \quad \text{当}x \to 0$$
时, $\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$.

定理1 β 与 α 是等价无穷小的充分必要条件为 $\beta = \alpha + o(\alpha)$. α

证 必要性 设
$$\alpha \sim \beta$$
, $\lim \frac{\beta - \alpha}{\alpha} = \lim \frac{\beta}{\alpha} - 1 = 0$,

$$\therefore \quad \beta - \alpha = o(\alpha), \ \mathbb{P} \beta = \alpha + o(\alpha).$$

充分性 设
$$\beta = \alpha + o(\alpha)$$
.

$$\lim \frac{\beta}{\alpha} = \lim \frac{\alpha + o(\alpha)}{\alpha} = \lim \left(1 + \frac{o(\alpha)}{\alpha}\right) = 1.$$

$$\alpha \sim \beta$$
.

意义: 用等价无穷小可给出函数的近似表达式.

例如: 常用的等价无穷小及其它们的近似表达

当 $x \to 0$ 时,

$$\sin x \sim x,$$

$$\tan x \sim x,$$

$$\arcsin x \sim x,$$

$$1 - \cos x \sim \frac{1}{2}x^{2},$$

$$e^{x} - 1 \sim x,$$

$$\ln(1 + x) \sim x,$$

$$\sqrt[n]{1 + x} - 1 \sim x.$$

当
$$x \to 0$$
时,

$$\sin x = x + o(x),$$

$$\tan x = x + o(x),$$

$$\arcsin x = x + o(x),$$

$$1 - \cos x = \frac{1}{2}x^2 + o(x),$$

$$e^x - 1 = x + o(x),$$

$$\ln(1 + x) = x + o(x),$$

$$\sqrt[n]{1 + x} - 1 = x + o(x).$$

二、等价无穷小代换

定理2 (等价无穷小代换定理)

设
$$\alpha \sim \tilde{\alpha}, \beta \sim \tilde{\beta}$$
,且 $\lim \frac{\tilde{\beta}}{\tilde{\alpha}}$ 存在,则 $\lim \frac{\beta}{\alpha} = \lim \frac{\tilde{\beta}}{\tilde{\alpha}}$.

$$\lim_{\alpha} \frac{\beta}{\alpha} = \lim_{\alpha} \frac{\beta}{\tilde{\beta}} \cdot \frac{\tilde{\beta}}{\tilde{\alpha}} \cdot \frac{\tilde{\alpha}}{\alpha} = \lim_{\alpha} \frac{\beta}{\tilde{\beta}} \cdot \lim_{\alpha} \frac{\tilde{\beta}}{\tilde{\alpha}} \cdot \lim_{\alpha} \frac{\tilde{\alpha}}{\tilde{\alpha}} = \lim_{\alpha} \frac{\tilde{\beta}}{\tilde{\alpha}}.$$

定理2说明,对于
$$\frac{0}{0}$$
 型的极限,选择恰当的等价无穷小可简化运算.

$$\lim_{x\to 0} \frac{\tan 2x}{\sin 5x} = \lim_{x\to 0} \frac{2x}{5x} = \frac{2}{5} \cdot x \to 0$$
 \Rightarrow $\sin(mx) \sim mx$, $\tan(mx) \sim mx$.

例3 求极限

(1)
$$\lim_{x \to 0} \frac{\ln(1+3x)}{\sin x} = \lim_{x \to 0} \frac{3x}{x} = 3$$

$$(2)\lim_{x \to \infty} \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{x^2}} = \lim_{x \to \infty} x = \infty$$

$$(3)\lim_{x\to 0} \frac{1-\sqrt[3]{1-x^2}}{\cos x - 1} = \lim_{x\to 0} \frac{\sqrt[3]{1+(-x^2)} - 1}{1-\cos x} = \lim_{x\to 0} \frac{\frac{1}{3}(-x^2)}{\frac{1}{3}} = -\frac{2}{3}$$

$ln(1+t) \sim t$

sint∼t

$$e^t - 1 \sim t$$

$$\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$$

$$1 - \cos t \sim \frac{1}{2}t^2$$

例4 求
$$\lim_{x\to 0} \frac{(x+1)\sin x^2}{(\arcsin x)^2}$$
.

解 当
$$x \to 0$$
时, $\sin x^2 \sim x^2 \Rightarrow (x+1)\sin x^2 \sim (x+1)x^2$, $\arcsin x \sim x \Rightarrow (\arcsin x)^2 \sim x^2$.

原式 =
$$\lim_{x \to 0} \frac{(x+1)x^2}{x^2} = \lim_{x \to 0} (x+1) = 1.$$

思考. 如下解法是否正确? 为什么?

乘、除项的因子可用等价无穷小代换;

加、减项的无穷小慎用等价无穷小代换.

$$\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 2x} = \lim_{x \to 0} \frac{\tan x (1 - \cos x)}{\sin^3 2x}$$

$$= \lim_{x \to 0} \frac{x \cdot \frac{1}{2}x^2}{(2x)^3} = \frac{1}{16}.$$

例5 求
$$\lim_{x\to 0} \frac{\tan 5x - \cos x + 1}{\sin 3x}$$
.

$$\Rightarrow \tan 5x = 5x + o(x), \sin 3x = 3x + o(x),$$

$$1 - \cos x = \frac{1}{2}x^2 + o(x^2).$$

$$\text{R} = \lim_{x \to 0} \frac{5x + o(x) + \frac{1}{2}x^2 + o(x^2)}{3x + o(x)}$$

$$= \lim_{x \to 0} \frac{5 + \frac{o(x)}{x} + \frac{1}{2}x + \frac{o(x)^2}{x}}{3 + \frac{o(x)}{x}} = \frac{5}{3}.$$