Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle		Bea	Beam Coverplate Connection	
MainMo	odule			Moment Connection	
Moment(kNm)*				1.0	
Shear (l	kN)*			89.0	
Axial (k	:N) *			32.0	
		Section	•		
	Beam S	ection *		WPB 200x200x101	
т Ү	Prefer	rences		Outside + Inside	
	Mate	rial *		E 250 (Fe 410 W)A	
	Ultimate stren	ngth, fu (MPa)		410	
$\frac{(B-t)}{4}$ t $-$	Yield	240	R1(mm)	1.8	
ZZ D	Strength				
	, fy (MPa)	100.00	Do()	0.0	
R ₁	Mass	100.99	R2(mm)	0.0	
-R ₂	Area(mm2) -	12870.0	Iz(mm4)	114686000.0	
В	D(mm)	229.0	Iy(mm4)	36645800.0	
*	B(mm)	210.0	rz(mm)	94.4	
	t(mm)	14.5	ry(mm)	53.4	
	T(mm)	23.7	Zz(mm3)	1001620.0	
	FlangeSlope	90	Zy(mm3)	349010.0	
		Bolt Details			
Diameter	(mm)*			[12.0]	
Grade	e *		[9.8]		
Type *		Bearing Bolt			
Bolt hole type		Standard			
Slip factor	r (μ_f)			0.3	
Type of	edges		a -	Sheared or hand flame cut	
Gap between beam and	 support (mm)		10.0	
Are the members exposed to	 corrosive	influences		False	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$A_c = \frac{A * f_y}{\gamma_{m0} * 10^3}$ $= \frac{12870.0 * 240}{1.1 * 10^3}$ $= 2808.0$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 10^3}$ $= \frac{181.6 * 14.5 * 240}{\sqrt{3} * 1.1 * 10^3}$ $= 331.7$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 10^6}$ $= \frac{1 * 119547.28 * 240}{1.1 * 10^6}$ $= 26.08$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 10^6}$ $= \frac{1.5 * 1001620.0 * 240}{1.1 * 10^6}$ $= 327.8$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(26.08, 327.8)$ = 26.08	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Load Au (kN)	$Ac_{min} = 0.3 * A_c$ = 0.3 * 2808.0 = 842.4 $Ac_{max} = Ac$ = 2808.0	$A_u = 842.4$	Pass
Applied Shear Load Vu (kN)	$Vc_{min} = 0.6 * S_c$ = 0.6 * 331.7 = 199.02 $Vc_{max} = Sc$ = 331.7	$V_u = 199.02$	Pass
Applied Moment Load Mu (kNm)	$Mc_{min} = 0.5 * M_c$ = 0.5 * 26.08 = 13.04 $Mc_{max} = Mc$ = 26.08	$M_u = 13.04$	Pass
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(229.0 - 2 * 23.7) * 14.5 * 842.4}{12870.0}$ $= 172.35 \ kN$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{119547.28 * 13.04}{1165460.0}$ $= 1.34 \ kNm$	
Forces Carried by Flange		$A_f = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{842.4 * 210.0 * 23.7}{12870.0}$ $= 325.77 \ kN$ $M_f = Moment \ in \ flange$ $= Mu - M_w$ $= 13.04 - 1.34$ $= 11.7 \ kNm$ $F_f = flange \ force$ $= \frac{M_f * 10^3}{D - T} + A_f$ $= \frac{11.7 * 10^3}{229.0 - 23.7} + 325.77$ $= 382.78 \ kN$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.3 Initial Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)	$F_f = 382.78$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 210.0 * 23.7 * 240}{1.1}$ $= 1131.14$	Pass
Web Tension Yielding Capacity (kN)	$A_w = 172.35$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 181.6 * 14.5 * 240}{1.1}$ $= 598$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.4 Initial flange plate height check

Check	Required	Provided	Remarks
flange_plate.Height	Outer.b $>= 50$	Outer.b = 210.0	Pass
flange_plate.InnerHeight	Inner.b >= 50	$inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{210.0 - 14.5 - (2 * 1.8)}{2}$ $= 95.95$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.5 Flange plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	T = 11.85	$t_f = 25.0$	Pass
Plate Area check (mm2)	$pt.area>=$ $connected\ member\ area*1.05$ $=5225.85$	$outer.b = B$ $= 210.0$ $inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{210.0 - 14.5 - (2 * 1.8)}{2}$ $= 95.95$ $pt.area = (210.0 + (2 * 95.95)) * 25.0$ $= 10047.5$	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.6 Web plate thickness

Check	Required	Provided	Remarks
Thickness	t = 7.25	$t_w = 20.0$	Pass
(mm)*			
		$web \ b = D - (2 * T) - (2 * r_1)$	
	pt.area >=	= 229.0 - (2 * 23.7) - (2 * 1.8)	
Plate Area	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	= 111.6	Pass
check (mm2)	= 1699.11	pt.area = 20.0 * 2 * 111.6	
		=4464.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.7 Web Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 30 \ (Row \ Limit \ (r_l) = 2)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 25 + (2.0 - 1) * 30$ $= 80.0$	111.6	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.8 Flange Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ =2.5 * 12.0 = 30.0	$g = 0.0 (Row Limit (r_l) = 1)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 25 + (1.0 - 1) * 30$ $= 50.0$	95.95	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.9 Flange Bolt Checks

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 12.0	
Grade	Bolt Grade Optimisation	9.8	
Bolt.fu		900.0	
Bolt.fy		720.0	
Hole Diameter (mm)		$d_0 = 13.0$	
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{900.0 * 2 * 84.3}{\sqrt{3} * 1.25}$ $= 70.09$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 23.7 * 410}{1.25}$ $= 121.27$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (70.09, 121.27)$ $= 70.09$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 382.78^{2}}}{70.09}$ $= 12$	16	
No of Columns		$n_c = 4$	
No of Rows		$n_r = 4$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 23.7, \ 300 \ mm)$ = 300) 30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	45	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 23.7, \ 300 \ mm)$ = 300) 45	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *25.0 * \sqrt{\frac{250}{250}}$ $= 300.0$	25	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25.475	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 25.0 * \sqrt{\frac{250}{250}}$ $= 300.0$	25.475	Pass
Bolt Capacity post Long Joint (kN)	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{4}{2} - 1) * 30 + 25) + 10.0$ $= 120.0$ $lr = 2 * ((\frac{4}{2} - 1) * 45 + 25.475$ $+ 1.8) + 14.5 = 159.0499999999999$ $l = 159.0499999999999$ $l = 159.0499999999999$ $15 * d = 15 * 12.0 = 180.0$ $since, \ l < 15 * d$ $then \ V_{rd} = V_{db}$ $V_{rd} = 70.09$	8
Capacity (kN)	47.85	70.09	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.10 Web Bolt Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{900.0 * 2 * 84.3}{\sqrt{3} * 1.25}$ $= 70.09$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 14.5 * 410}{1.25}$ $= 74.19$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (70.09, 74.19)$ = 70.09	
No of Bolts	$R_u = \sqrt{V_u^2 + A_u^2}$ $n_{trial} = R_u/V_{bolt}$ $R_u = \frac{\sqrt{199.02^2 + 172.35^2}}{70.09}$ $= 8$	30	
No of Columns		$n_c = 10$	
No of Rows		$n_r = 3$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 14.5, \ 300 \ mm)$ = 300) 30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	45	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 14.5, \ 300 \ mm)$ = 300) 45	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{250}}$ $= 240.0$	25	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{250}}$ $= 240.0$	25	Pass
Parameters required for bolt force (mm)	$l_n = length \ available$ $l_n = (n_r - 1) * g$ $= (3 - 1) * 45$ $= 90$ $y_{max} = l_n/2$ $= 90/2$ $= 45.0$ $x_{max} = p * (\frac{n_c}{2} - 1)/2$ $= 30 * (\frac{10}{2} + -1)/2$		
Moment Demand (kNm		$= 60.0$ $M_d = (V_u * ecc + M_w)$ $= \frac{(199.02 * 10^3 * 135.0 + 1.34 * 1}{10^6}$ $= 28.21$	06)
Bolt.Force		$vbv = V_u/(n_r * n_c)$ $= \frac{199.02}{(3*10)}$ $= 13.27$ $tmh = \frac{M_d * y_{max}}{\Sigma r_i^2}$ $= \frac{28.21 * 45.0}{47.25}$ $= 26.86$ $tmv = \frac{M_d * x_{max}}{\Sigma r_i^2}$ $= \frac{28.21 * 60.0}{47.25}$ $= 35.82$ $abh = \frac{A_u}{(n_r * n_c)}$ $= \frac{172.35}{(3*10)}$ $= 11.49$ $vres = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(13.27 + 35.82)^2 + (26.86 + 4.85)^2}$ $= 62.29$	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Bolt Capacity post Long Joint (kN)	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{10}{2} - 1) * 30 + 25) + 10.0$ $= 300.0$ $lr = (3 - 1) * 45 = 90$ $l = 300.0$ $15 * d = 15 * 12.0 = 180.0$ $since, \ l \ge 15 * d$ $then \ V_{rd} = \beta_{ij} * V_{db}$ $\beta_{ij} = 1.075 - 300.0/(200 * 12.0)$ $= 0.95$ $V_{rd} = 0.95 * 70.09 = 66.58$	
Capacity (kN)	62.29	66.58	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.11 Inner and Outer flange plate Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$min\ flange\ plate\ ht = beam\ width$ $= 210.0$	210.0	Pass
Min. Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{4}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 158.4$	170.0	Pass
Min. Inner Plate Height (mm)	$= \frac{B - t - (2 * R1)}{2}$ $= \frac{210.0 - 14.5 - 2 * 1.8}{2}$ $= 95.95$	95.95	Pass
Max. Inner Plate Height (mm)	$= 95.95$ $= \frac{B - t - (2 * R1)}{2}$ $= \frac{210.0 - 14.5 - 2 * 1.8}{2}$ $= 95.95$	95.95	Pass
Min. Inner Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{4}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 158.4$	170.0	Pass
Min.Plate Thickness (mm)	$t_w = 11.85$	25.0	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.12 Member Checks

Check	Required	Provided	Remarks
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
Flange Tension Yielding Capacity (kN)		$=\frac{1*210.0*23.7*240}{1.1}$	
Capacity (KIV)		= 1131 14	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		$I_{dn} \equiv \frac{\gamma_{m1}}{\gamma_{m1}}$	
Flange Tension Rupture		$= \frac{0.9 * (210.0 - 4 * 13.0) * 23.7 *}{1.25}$	410
Capacity (kN)			
		= 1105.41	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Flange Block Shear Ca-		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
pacity (kN)			
		$T_{db} = min(T_{db1}, T_{db2}) = 1046.0$ $T_d = min(T_{dg}, T_{dn}, T_{db})$	
		_	
Flange Tension Capacity	$f_f = 382.78$	= min(1131.14, 1105.41, 1046.0)	Pass
(kN)		= 1046.0	
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
Web Tension Yielding Ca-			
pacity (kN)		$= \frac{1*181.6*14.5*240}{1.1}$	
		= 598.45	
		$= 598.45$ $T_{dn} = \frac{0.9 * A_n * f_u}{2}$	
W1 77 . D . C		/m1	410
Web Tension Rupture Capacity (kN)		$= \frac{0.9 * (181.6 - 3 * 13.0) * 14.5 *}{1.25}$	410
pacity (KIV)			
		$= 610.39$ $T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
		$I_{db1} = \frac{1}{\sqrt{3}\gamma_{m0}} + \frac{1}{\gamma_{m1}}$	
Web Block Shear Capac-		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
ity (kN)		, ,	
		$T_{db} = min(T_{db1}, T_{db2}) = 932.72$ $T_d = min(T_{dg}, T_{dn}, T_{db})$	
Web Tension Capacity	$A_w = 172.35$	= min(598.45, 610.39, 932.72)	Pass
(kN)		= 598.45	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.13 Flange Plate Capacity Checks in axial-Outside/Inside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 401.9 * 25.0 * 250}{1.1}$ $= 2283.52$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (401.9 - 4 * 13.0) * 25.0 *}{1.25}$ $= 2582.26$	410
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 2309.59$	
Plate Tension Capacity (kN)	$f_f = 382.78$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(2283.52, 2582.26, 2309.59)$ $= 2283.52$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.14 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 140 * 20.0 * 250}{1.1}$ $= 734.81$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (140 - 3 * 13.0) * 20.0 * 9}{1.25}$ $= 1192.61$	00.0
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 2573.02$	
Plate Tension Capacity (kN)	$A_w = 172.35$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(1272.73, 1192.61, 2573.02)$ $= 1192.61$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.15 Web Plate Capacity Checks in Shear

Check	Required	Provided	Remarks
		$V_{dy} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity (V_dy) (kN)		$= \frac{1*140*20.0*250}{\sqrt{3}*1.1}$	
		=734.81	
		$V_{dn} = \frac{0.9 * A_{vn} * f_u}{\sqrt{3} * \gamma_{m1}}$	
Shear Rupture Capacity		$= \frac{0.9 * (140 - (5.0 * 13.0)) * 20.0}{\sqrt{3} * 1.25}$	* 410
(V_dn) (kN)		$\sqrt{3} * 1.25$ = 688.55	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Block Shear Capacity in Shear (V_db) (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 1880.61$	
		$V_d = min(V_{dy}, V_{dn}, V_{db})$	
Plate Shear Capacity (kN)	$V_u = 199.02$	= min(734.81, 688.55, 2573.02)	Pass
		=688.55	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View