Assignment Project Exam Help Add WeChat powcoder

Companyaming (2)

Add WeChat powcoder Jérôme Waldispühl

School of Computer Science McGill University

Based on (Kleinberg & Tardos, 2005) & Slides by K. Wayne

Assignment Project Exam Help Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

SINGLE SOURCE SHORTEST PATHS

Assignment Project Exam Help

Modelingas, graphs

Input:

- Directed graph G = (V, E)
- Weight function $w : E \rightarrow R$

Weight of path
$$p = \langle v_0, v_1, v_2 \rangle$$

Assignment Project Exam Help

$$= \sum_{k=1}^{n} w(v_{k-1}, v_{k-1}) = \sum_$$

= sum of edge weightspeechat powcoder

Shortest-path weight *u* to *v*:

$$\delta(u,v) = \begin{cases} \min \left\{ w(p) : u \mapsto^p v \right\} & \text{if there exists a path } u \rightsquigarrow v. \\ \infty & \text{Otherwise.} \end{cases}$$

Shortest path u to v is any path p such that $w(p) = \delta(u, v)$. Generalization of breadth-first search to weighted graphs.

Assignment Project Exam Help Dijkstra's algorithm

- No negative-weight edges.
- Weighted version of BFS:
 - Instead of a FIFO queue, uses a priority queue.
 Assignment Project Exam Help
 - Keys are shortest-path weights (d[v]).
- Greedy choice: Attento step we choose the light edge.

How to deal with negative weight edgesoder

- Allow re-insertion in queue? ⇒ Exponential running time...
- Add constant to each edge?

Assignment Project Exam Help Bellman-Fard Algorithm

- Allows negative-weight edges.
- Computes a [v] and π[v] for all v ∈ v.
- Returns TRUE TROWN Megative Weight cycles reachable from the fatherwiseer

If Bellman-Ford has not converged after V(G) - 1 iterations, then there cannot be a shortest path tree, so there must be a negative weight cycle.

Assignment Project Exam Help Bellman-Ford Algorithm

- Can have negative-weight edges.
- Will "detect" reachable negative-weight cycles.

```
Assignment Project Exam Help
```

```
Initialize(G, s);

fohttps://ppv/gpder.gom

for each (u, v) in E[G] do
Add WeChat powcoder
Relax(u, v, w)

for each (u, v) in E[G] do
if d[v] > d[u] + w(u, v) then
return false

return true
```

Time Complexity is O(VE).

Assignment Project Exam Help Add wexnample 2 Add wexnample 2

Assignment Project Exam Help Add wexnar Power and Add wexnar Power and Add wexnar Power and Add wexnar Add wexnar Power and Add wexnar Power Add wexnar

Assignment Project Exam Help

Another Look at Bellman-Ford

Note: This is essentially **dynamic programming**.

Let d(i, j) = cost of the shortest path from s to i that is at most j hops.

$$d(i,j) = \begin{cases} 0 & \text{Assignment Project Exam Help} & \text{if } i = s \land j = 0 \\ \infty & \text{if } i \neq s \land j = 0 \\ \min(\{d(k,j-h)\text{ tpsi(k,poweraller)}\}\text{ cond } (i,j-1)\}) & \text{if } j > 0 \end{cases}$$

Add WeChat powcoder

Assignment Project Exam Help Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

KNAPSACK PROBLEM

Assignment Project Exam Help Knapsack problem

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ and has value $v_i > 0$.
- Knapsack has capacity of W.
- Goal: fill knapsack so as to maximize total value.

 Assignment Project Exam Help

 1

 Ex. {1,2,5} has value 35.

 Ex. {3,4} has value 4ttps://powcoder.com

 3

 Ex. {3,5} has value 46 (but exceeds weight limit).

 Add WeChat powcoder

 5

 6

 7

knapsack instance (weight limit W = 11)

Greedy by value. Repeatedly add item with maximum v_i . Greedy by weight. Repeatedly add item with minimum w_i . Greedy by ratio. Repeatedly add item with maximum ratio v_i / w_i .

Observation. None of greedy algorithms is optimal.

Assignment Project Exam Help Add Walse Starter

Def. $OPT(i) = \max \text{ profit subset of items } 1, ..., i$.

Case 1. OPT does signment Project Exam Help

• *OPT* selects best of { 1, 2, ..., *i* - 1 }.

https://powcoder.com
optimal substructure property
(proof via exchange argument)

Case 2. OPT selects itemd WeChat powcoder

- Selecting item i does not immediately imply that we will have to reject other items.
- Without knowing what other items were selected before i, we don't even know if we have enough room for i.

Conclusion. Need more subproblems!

Assignment Project Exam Help

Add Wew variable

Def. $OPT(i, w) = \max \text{ profit subset of items } 1, ..., i \text{ with weight limit } w$.

Case 1. *OPT* does not select item i.
Assignment Project Exam Help
• *OPT* selects best of $\{1, 2, ..., i-1\}$ using weight limit w.

https://powcoder.com \ optimal substructure property

- New weight limit = Add. WeChat powcoder (proof via exchange argument)
 - *OPT* selects best of $\{1, 2, ..., i-1\}$ using this new weight limit.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$

Assignment Project Exam Help Dynamicaprogramming algorithm

```
KNAPSACK (n, W, w_1, ..., w_n, v_1, ..., v_n)
```

```
FOR w = 0 TO W Assignment Project Exam Help M[0, w] \leftarrow 0.

https://powcoder.com

FOR i = 1 TO w = 1
```

IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$. ELSE $M[i, w] \leftarrow \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \}$.

RETURN M[n, W].

Assignment Project Exam Help Add Weenat poleter

i	v _i	w i
Assignmer	nt Project E	Exam Help
Pttps:/	/powcoder	.com ²
3	18	5
Add V	VeChat pov	vcoder
5	28	7

Max weight W = 11

v _i	w _i
1	1
6	2
18	5
22	6
28	7
	1 6 18 22

Assignment Project Exam Help Add Weenat powelder

Assignment Project Exam Help M 3 6 0 9 10 11 //bowcoder.com {} 0 0 0 0 0 0 0 0 Add WeChat powcoder **{1}** 0 {1,2} {1,2,3} 0 {1,2,3,4} 0 {1,2,3,4,5} 0

W

i	Vi	W: A	Assi
1			
1	1	1	
2	6	2	
3	18	5	
4	22	6	
5	28	7	

ignment Project Exam Help Add Weenat Project Exam Help Add Weenat Project Exam Help

M	0	1	2 http	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	0	f.CO 0	0	0	0	0	0
{1}	0	1	Add	1 W (eCha 1	at po	WCC 1	oder 1	1	1	1	1
{1,2}	0											
{1,2,3}	0											
{1,2,3,4}	0											
{1,2,3,4,5}	0											

Assign	w _i 4	v _i	i
٨	1	1	1
Ac	2	6	2
	5	18	3
	6	22	4
	7	28	5

{1,2}

{1,2,3}

{1,2,3,4}

{1,2,3,4,5}

gnment Project Exam Help Add Weenat Popleder

Assignment Project Exam Help M https://bowcoder.com {} WeChat powcoder **{1**}

i	v _i	w _i 4	Assignment Project Exam Help
1	1	1	Add weekampleder
2	6	2	Add weenat poweoder
3	18	5	
4	22	6	
5	28	7	

Assignment Project Exam Help M bowcoder.com {} **{1}** M(i-1,w) $V_2+M(i-1,w-w_2)$ 1 {1,2,3} {1,2,3,4} {1,2,3,4,5}

i	v _i	w _i 4	Assignment Project Exam Help
1	1	1	Add weenat populeder
2	6	2	Add Weenat poweoder
3	18	5	
4	22	6	
5	28	7	

Assignment Project Exam Help M bowcoder.com {} eChat powcoder **{1}** M(i-1,w) {1,2} $V_2+M(i-1,w-w_2)$ {1,2,3} {1,2,3,4} {1,2,3,4,5}

Assign	w _i 4	v _i	i
٨	1	1	1
Ac	2	6	2
	5	18	3
	6	22	4
	7	28	5

gnment Project Exam Help Add Weenat Project Exam Help

М	0	1	2 httr	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	code 0	0	0	0	0	0	0
{1}	0	1	Add	1 W (eCha 1	at po	WCC 1	oder 1	1	1	1	1
{1,2}	0	1	6	7	7	7	7	7	7	7	7	7
{1,2,3}	0											
{1,2,3,4}	0											
{1,2,3,4,5}	0											

i	v _i	w _i 4	Assignment Project Exam Help
1	1	_	Add weenat populeder
2	6	2	Add Weenat poweoder
3	18	5	
4	22	6	
5	28	7	

M	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	http 0	0	0	ode 0	0	0	0	0	0	0
{1}	0	1	Add	1 Wo	eCha 1	at po	WCC 1	oder 1	1	1	1	1
{1,2}	0	1	6	7	7	7	7	7	7	7	7	7
{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
{1,2,3,4}	0											
{1,2,3,4,5}	0											

i	v _i	w _i /	Assignment Project Exam Help
1	1	1	Add weekampleder
2	6	2	Add weenat poweoder
3	18	5	
4	22	6	
5	20	7	

M	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0 0	0	r.co : 0	0	0	0	0	0
{1}	0	1	Add	1 W (eCha 1	at po	WCC 1	oder 1	1	1	1	1
{1,2}	0	1	6	7	7	7	7	7	7	7	7	7
{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
{1,2,3,4,5}	0											

i	v _i	w _i 4	Assignment Project Exam Help
1	1	1	Add weenat populeder
2	6	2	Add Weenat poweoder
3	18	5	
4	22	6	
5	28	7	

Assignment Project Exam Help M nowcoder {} WeChat po wcoder **{1**} Item 3 in solution {1,2} Item 4 in solution {1,2,3} {1,2,3,4} {1,2,3,4,5}

Assignment Project Exam Help

Add Wechar bysisder

Theorem. There exists an algorithm to solve the knapsack problem with nitems and maximum weight W in $\Theta(n \ W)$ time and $\Theta(n \ W)$ space.

Pf.

- Takes O(1) time per table entry. Assignment Project Exam Help There are $\Theta(n|W)$ table entries.
- After computing optimal values wan trace back to find solution: take item i in OPT(i, w) iff M[i, w] < M[i-1, w].

Add WeChat powcoder

Remarks.

- Not polynomial in input size! ← "pseudo-polynomial"
- Decision version of knapsack problem is NP-Complete. [Chapter 8]
- There exists a poly-time algorithm that produces a feasible solution that has value within 1% of optimum. [Section 11.8]