Detecting Emergent Leader in a Meeting Environment using

Nonverbal Visual Features Only

Cigdem Beyan¹, Nicolò Carissimi¹, Francesca Capozzi², Sebastiano Vascon³, Matteo Bustreo¹, Antonio Pierro⁴, Cristina Becchio^{5,6}, Vittorio Murino¹

- ² Department of Psychology, McGill University, Montreal, QC, Canada
- ³ European Center for Living Technology, Ca' Foscari University of Venice, Italy
- ⁴ Department of Social and Developmental Psychology, University of Rome La Sapienza, Italy
- ⁵ Department of Psychology, University of Turin, Italy
- ⁶ Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy

Contact: Cigdem.Beyan@iit.it www.iit.it/pavis/datasets/leadershipCorpus

MOTIVATION

- > The nonverbal visual features are not more effective compared to nonverbal audio features.
- In absence of audio sensors, the accurate detection of social interactions is still crucial.
- ➤ Better feature extraction methods and nonverbal features are needed.
- ➤ Identification of emergent leaders in small groups is a relatively new area in social signal processing.

CONTRIBUTIONS

- > Devising novel nonverbal features based on Visual Focus of Attention (VFOA).
- > Introducing a new dataset to detect Emergent Leaders (EL).
- > Presenting a comprehensive comparison among several VFOA methods.

DATASET

- ➤ 16 meetings (max. 30 minutes, min. 12 minutes).
- ➤ Video: 4 frontal cameras and a standard camera.
- > Audio: 4 wireless lapel microphones.

- > Survival Task
- > Social Psychology Questionnaires: Multiple Level Observation of Groups (SYMLOG) & General Leader Impression Scale (GLIS).

Total # of **Emergent** Agreement Average **Meetings/Out of** Agreement Leader Type Full 26/75 Most

Majority 0.73 49/75 Full 13/75 Least 62/75Majority 0.70

Data Annotation

- > Meetings were divided into small segments.
- \geq 75 meetings segments, each lasting \sim 5'.
- > 50 annotators, each annotated 12 or 13 video segments.
- > Annotation: The most and the least leader.

PROPOSED METHOD

- Facial Landmark Detection and Head Pose Estimation [1]: To extract the head pose (pan & tilt).
- > Modeling VFOA (right, left, front, no-one): SVM and its variants using 23000 labelled frames.
- > Nonverbal Visual Features: In total 15 features. E.g.:
 - > The total time that a person is mutually looking at any other persons in the meeting (total ME).
 - > The total time inter-current between the initiation of ME with any other persons in the meeting.
 - > The ratio between the total time that a person is being watched (total Watcher) and the total time that a person looked at other persons.
 - The maximum time that a person is looked at by any other two persons w/o ME.

Facial Landmark Detection Head Pose Estimation: Video From Tilt and Frontal Camera Pan Pan Distribution Tilt Distribution

→ Learn the Head Pose: Model Classify the data in each frame: VFOA Post-Processing: Final VFOA Annotated Data

Nonverbal Visual Feature Extraction: Features

Leadership Classification: Emergent Leader (Most, Least), Not Leader

better than features in [2]. For the least EL,

features performed

> The best features: E.g.

> Using the proposed

features together

> For the most EL

performed the best.

detection, the proposed

ME.

total Watcher and total

there was no difference.

Correlation Analysis:

> Except 4 features, all other features were found correlated with the SYMLOG and GLIS.

RESULTS

VFOA:	R	L	F	N
OTSU	0.44	0.53	0.55	0.60
k-means	0.75	0.87	0.79	0.10
GMM	0.73	0.77	0.62	0.10
SVM	0.88	0.86	0.67	0.39
SVM-cost	0.85	0.85	0.72	0.52
SVM-RUS	0.83	0.82	0.70	0.56
SVM-SMOTE	0.87	0.86	0.70	0.51

EL Detection Rate	Most	Least	Rest
SVM	0.71	0.59	0.75
SVM-cost	0.80	0.58	0.70
SVM-PCA	0.72	0.63	0.71
SVM-PCA-cost	0.79	0.63	0.64
SVM-CorrFea	0.67	0.62	0.72
RFLA[2]	0.71	0.71	0.69
RFLA-CorrFea	0.72	0.67	0.68

CONCLUSIONS

- > The proposed nonverbal features performed well for detection of ELs (avg. detection rate $\sim 70\%$).
- > The majority of them were highly correlated with social psychology questionnaires.
- > It is shown that accurate detection of VFOA and effective features result in more accurate EL detection.

References:

- [1] T. Baltrusaitis et al., Constrained local neural fields for robust facial landmark detection in the wild, ICCVW, 2013.
- [2] D. Sanchez-Cortes, Computational methods for audio-visual analysis of emergent leadership. PhD Thesis, EPFL, Lausanne, 2013.