K-means clustering

import library

```
In [ ]:
```

```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from matplotlib import cm
```

load data

```
In [ ]:
```

```
fname_data = 'assignment_11_data.csv'

feature = np.genfromtxt(fname_data, delimiter=',')

x = feature[:,0]
y = feature[:,1]

number_data = np.size(feature, 0)
number_feature = np.size(feature, 1)

print('number of data : {}'.format(number_data))
print('number of feature : {}'.format(number_feature))
```

number of data : 1000
number of feature : 2

plot the input data

In []:

```
plt.figure(figsize=(8,8))
plt.title('input data')

plt.scatter(x, y, color='blue')

plt.tight_layout()
plt.show()
```


compute distance

- feature : $n \times m$, center : $1 \times m$, distance : $n \times 1$
- ullet n : number of data, m : number of features

In []:

compute centroid

- feature : $n \times m$, label_feature : $n \times 1$, value_label : 1×1 , centroid : $1 \times m$
- n: number of data, m: number of features

In []:

compute label

- distance : $n \times k$, label feature : $n \times 1$
- n: number of data, k: number of clusters

the number of clusters K=2

In []:

In []:

the number of clusters K=4

In []:

the number of clusters K=8

In []:

the number of clusters K=16

In []:

functions for presenting the results

```
In [ ]:
```

```
def function_result_01():
    print("final loss (K=2) = {:13.10f}".format(loss_iteration_02[-1]))
```

```
In [ ]:
```

```
def function_result_02():
    print("final loss (K=4) = {:13.10f}".format(loss_iteration_04[-1]))
```

```
In [ ]:
```

```
def function_result_03():
    print("final loss (K=8) = {:13.10f}".format(loss_iteration_08[-1]))
```

In []:

```
def function_result_04():
    print("final loss (K=16) = {:13.10f}".format(loss_iteration_16[-1]))
```

In []:

```
def function_result_05():
    plt.figure(figsize=(8,6))
    plt.title('loss (K=2)')

    plt.plot(loss_iteration_02, '-', color='red')
    plt.xlabel('iteration')
    plt.ylabel('loss')

    plt.tight_layout()
    plt.show()
```

In []:

```
def function_result_06():
    plt.figure(figsize=(8,6))
    plt.title('loss (K=4)')

    plt.plot(loss_iteration_04, '-', color='red')
    plt.xlabel('iteration')
    plt.ylabel('loss')

    plt.tight_layout()
    plt.show()
```

```
def function_result_07():
    plt.figure(figsize=(8,6))
    plt.title('loss (K=8)')

    plt.plot(loss_iteration_08, '-', color='red')
    plt.xlabel('iteration')
    plt.ylabel('loss')

    plt.tight_layout()
    plt.show()
```

In []:

```
def function_result_08():
    plt.figure(figsize=(8,6))
    plt.title('loss (K=16)')

    plt.plot(loss_iteration_16, '-', color='red')
    plt.xlabel('iteration')
    plt.ylabel('loss')

    plt.tight_layout()
    plt.show()
```

```
def function result 09():
   plt.figure(figsize=(8,8))
   plt.title('centroid (K=2)')
   # complete the blanks
   initial = np.row_stack((centroid_iteration_02[0,0,:],centroid_iteration_02[0,1,:]))
   final = np.row_stack((centroid_iteration_02[-1,0,:],centroid_iteration_02[-1,1,:]))
   plt.plot(centroid_iteration_02[:,0,0],centroid_iteration_02[:,0,1],'-', label = 'cluster=
0')
   plt.plot(centroid_iteration_02[:,1,0],centroid_iteration_02[:,1,1],'-', label = 'cluster=
1')
   plt.plot(initial[:,0], initial[:,1], 'bo', label = 'initial')
   plt.plot(final[:,0], final[:,1], 'rs', label = 'final')
   plt.legend()
   plt.tight_layout()
   plt.show()
```

```
def function_result_10():
   plt.figure(figsize=(8,8))
   plt.title('centroid (K=4)')
   # complete the blanks
   k = 4
   initial = np.zeros((k,2))
   final = np.zeros((k,2))
   for i in range(k):
       initial[i] = centroid_iteration_04[0, i, :]
       final[i] = centroid_iteration_04[-1, i, :]
   for i in range(k):
       plt.plot(centroid_iteration_04[:, i, 0], centroid_iteration_04[:, i, 1], '-', label =
'cluster={0}'.format(i))
   plt.plot(initial[:,0], initial[:,1], 'bo', label = 'initial')
plt.plot(final[:,0], final[:,1], 'rs', label = 'final')
   plt.legend()
   plt.tight_layout()
   plt.show()
```

```
def function_result_11():
   plt.figure(figsize=(8,8))
   plt.title('centroid (K=8)')
   # complete the blanks
   k = 8
   initial = np.zeros((k,2))
   final = np.zeros((k,2))
   for i in range(k):
       initial[i] = centroid_iteration_08[0, i, :]
      final[i] = centroid_iteration_08[-1, i, :]
   for i in range(k):
      plt.plot(centroid_iteration_08[:, i, 0], centroid_iteration_08[:, i, 1], '-', label =
'cluster={0}'.format(i))
   plt.plot(initial[:,0], initial[:,1], 'bo', label = 'initial')
   plt.plot(final[:,0], final[:,1], 'rs', label = 'final')
   plt.legend()
   plt.tight_layout()
   plt.show()
```

In []:

```
def function_result_12():
   plt.figure(figsize=(8,8))
   plt.title('centroid (K=16)')
   # complete the blanks
   k = 16
   initial = np.zeros((k,2))
   final = np.zeros((k,2))
   for i in range(k):
       initial[i] = centroid_iteration_16[0, i, :]
      final[i] = centroid_iteration_16[-1, i, :]
   for i in range(k):
      plt.plot(centroid_iteration_16[:, i, 0], centroid_iteration_16[:, i, 1], '-', label =
'cluster={0}'.format(i))
   plt.plot(initial[:,0], initial[:,1], 'bo', label = 'initial')
   plt.plot(final[:,0], final[:,1], 'rs', label = 'final')
   plt.xlim(-14, 6.5)
   plt.legend(loc ='upper left')
   plt.tight_layout()
   plt.show()
```

In []:

In []:

results

[RESULT 06]

***	*****	****	****	****	****	***	***	***	***	***	**	**
	[RESULT	07]										

****	****	*****	****	***	****	***	***	***	**	**	**	* *	* *	* * *	***
## [I	RESULT	[80													

*	* *	* *	*	*	*:	* :	* *	*	*	*:	* 1	* *	*	* :	* *	*	*	* :	* *	*	*	* 7	* *	*	*	* *	*	*	* *	*	* :	* *	*	* *	*	*	* *	٠ *
#:	#	[R	Ε	SI	JI	LT	-	0	9]																											
٠.	* *	٠.	*	*	* :	* :	* *	*	*	* :	* *	٠.	*	* :	* *	*	*	* :	* *	*	*	* >	* *	*	*	* *	*	*	* *	*	* :	+ *	*	* *	*	*	* *	٠.

**********	*****	۲
## [RESULT 12]		

* * *	****	****	*****	*****	*****	*****	*****
##	[RES	SULT	13]				
* * *	****	****	****	*****	*****	*****	*****

## [RESULT 14]	

"" [DECULT 15]	***
## [RESULT 15]	

***	*****	*****	*****	*****	*****	*****	*****	*
##	[RESULT	16]						

