DS342 - Data Analytics

Lecture 8
Regression Analysis:
Estimating Relationships

Edited Version

Introduction

(slide 1 of 2)

- Regression analysis is the study of relationships between variables.
- There are two potential objectives of regression analysis: to understand how the world operates and to make predictions.
- Two basic types of data are analyzed:
 - Cross-sectional data are usually data gathered from approximately the same period of time from a population.
 - Time series data involve one or more variables that are observed at several, usually equally spaced, points in time.
 - Time series variables are usually related to their own past values—a property called autocorrelation—which adds complications to the analysis.

Introduction

(slide 2 of 2)

- In every regression study, there is a single variable that we are trying to explain or predict, called the dependent variable.
 - It is also called the **response** variable or the **target** variable.
- To help explain or predict the dependent variable, we use one or more explanatory variables.
 - They are also called independent or predictor variables.
- If there is a single explanatory variable, the analysis is called simple regression.
- If there are several explanatory variables, it is called multiple regression.
- Regression can be linear (straight-line relationships) or nonlinear (curved relationships).
 - Many nonlinear relationships can be linearized mathematically.

Scatterplots: Graphing Relationships

- Drawing scatterplots is a good way to begin regression analysis.
- A scatterplot is a graphical plot of two variables, an X and a Y.
- If there is any relationship between the two variables, it is usually apparent from the scatterplot.

Example 10.1: Drugstore Sales.xlsx (slide 1 of 2)

- Objective: To use a scatterplot to examine the relationship between promotional expenditures and sales at Pharmex.
- Solution: Pharmex has collected data from 50 randomly selected metropolitan regions.
- There are two variables: Pharmex's promotional expenditures as a percentage of those of the leading competitor ("Promote") and Pharmex's sales as a percentage of those of the leading competitor ("Sales").
- A partial listing of the data is shown below.

24	Α	В	C	D	E	F	G	
1	Region	Promote	Sales					
2	1	77	85					
3	2	110	103	- (Each value is a percentage of			
4	3	110	102	- 1				
5	4	93	109	ı	what the lead	ling competi	tor did.	
6	5	90	85					
7	6	95	103					
50	49	95	108					
51	50	96	87					

Example 10.1: Drugstore Sales.xlsx (slide 2 of 2)

- Use Excel's Chart Wizard Scatterplot to create a scatterplot.
 - Sales is on the vertical axis and Promote is on the horizontal axis because the store believes that large promotional expenditures tend to "cause" larger values of sales.

Example 10.2: X Overhead Costs.xlsx (slide 1 of 3)

- **Objective**: To use scatterplots to examine the relationships among overhead, machine hours, and production runs at Bendrix.
- **Solution**: Data file contains observations of overhead costs, machine hours, and number of production runs at Bendrix.
- Each observation (row) corresponds to a single month.

1	A	В	C	D
1	Month	Machine Hours	Production Runs	Overhead
2	1	1539	31	99798
3	2	1284	29	87804
4	3	1490	27	93681
5	4	1355	22	82262
6	5	1500	35	106968
34	33	1678	41	117183
35	34	1723	35	107828
36	35	1413	30	88032
37	36	1390	54	117943

Example 10.2: Overhead Costs.xlsx (slide 2 of 3)

 Examine scatterplots between each explanatory variable (Machine Hours and Production Runs) and the dependent variable (Overhead).

X

Example 10.2: Overhead Costs.xlsx (slide 3 of 3)

- Check for possible time series patterns, by creating a time series graph for any of the variables.
- Check for relationships among the multiple explanatory variables (Machine Hours versus Production Runs).

Linear versus Nonlinear Relationships

- Scatterplots are useful for detecting relationships that may not be obvious otherwise.
- The typical relationship you hope to see is a straight-line, or linear, relationship.
 - This doesn't mean that all points lie on a straight line, but that the points tend to cluster around a straight line.
- The scatterplot below illustrates a relationship that is clearly nonlinear.

Outliers (slide 1 of 2)

- Scatterplots are especially useful for identifying outliers observations that fall outside of the general pattern of the rest of the observations.
 - If an outlier is clearly not a member of the population of interest, then it is probably best to delete it from the analysis.
 - If it isn't clear whether outliers are members of the relevant population, run the regression analysis with them and again without them.
 - If the results are practically the same in both cases, then it is probably best to report the results with the outliers included.
 - Otherwise, you can report both sets of results with a verbal explanation of the outliers.

Outliers (slide 2 of 2)

In the figure below, the outlier (the point at the top right) is the company CEO, whose salary is well above that of all of the other employees.

Unequal Variance

- Occasionally, the variance of the dependent variable depends on the value of the explanatory variable.
- The figure below illustrates an example of this.
 - There is a clear upward relationship, but the variability of amount spent increases as salary increases—which is evident from the *fan* shape.

This unequal variance violates one of the assumptions of linear regression analysis, but there are ways to deal with it.

No Relationship

A scatterplot can also indicate that there is no relationship between a pair of variables.

This is usually the case when the scatterplot appears as a shapeless swarm of

points.

Correlations: Indicators of Linear Relationships (slide 1 of 2)

- Correlations are numerical summary measures that indicate the strength of linear relationships between pairs of variables.
 - A correlation between a pair of variables is a single number that summarizes the information in a scatterplot.
 - It measures the strength of *linear* relationships only.
 - The usual notation for a correlation between variables X and Y is r_{xy} .

Correlations: Indicators of Linear Relationships (slide 2 of 2)

- By looking at the sign of the correlation—plus or minus—you can tell whether the two variables are positively or negatively related.
- Correlations are completely unaffected by the units of measurement.
 - A correlation equal to 0 or near 0 indicates practically no linear relationship.
 - A correlation with magnitude close to 1 indicates a <u>strong linear relationship</u>.
 - A correlation equal to -1 (negative correlation) or +1 (positive correlation) occurs only when the linear relationship between the two variables is perfect.
- Be careful when interpreting correlations—they are relevant descriptors only for *linear* relationships.

Simple Linear Regression

- Scatterplots and correlations indicate linear relationships and the strengths of these relationships, but they do not *quantify* them.
- Simple linear regression quantifies the relationship where there is a single explanatory variable.
- A straight line is fitted through the scatterplot of the dependent variable Y versus the explanatory variable X.

Least Squares Estimation

- When fitting a straight line through a scatterplot, choose the line that makes the vertical distance from the points to the line as small as possible.
- A fitted value is the predicted value of the dependent variable.
 - Graphically, it is the height of the line above a given explanatory value.

Least Squares Estimation

 True values for the slope and intercept are not known so they are estimated using sample data

$$\hat{Y} = b_0 + b_1 X$$

where

Y =dependent variable (response)

X = independent variable (predictor or explanatory)

 b_0 = intercept (value of Y when X = 0)

 b_1 = slope of the regression line

 The best-fitting line minimizes the sum of squares of the residuals.

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - [b_0 + b_1 X_i])^2$$

$$b_1 = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2}$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

Errors associated with individual observations

Least Squares Estimation

- The residual is the difference between the actual and fitted values of the dependent variable.
- Fundamental Equation for Regression:
 Observed Value = Fitted Value + Residual
- The best-fitting line through the points of a scatterplot is the line with the smallest sum of squared residuals.
 - This is called the least squares line.
 - It is the line quoted in regression outputs.
- The least squares line is specified completely by its slope and intercept.
 - Equation for Slope in Simple Linear Regression:
 - Equation for Intercept in Simple Linear Regression:

Example 10.1 (continued): Drugstore Sales.xlsx (slide 1 of 2)

- Objective: To use Excel Regression Data Analysis procedure to find the least squares line for sales as a function of promotional expenses at Pharmex.
- Solution: Select Regression from the Data Analysis tools.
- Use Sales as the dependent variable and Promote as the explanatory variable.
- The regression output is shown below and on the next slide.

d	А	В	C	D	E	F	G
7	Multiple Regression fo	or Sales					
8		Multiple	R-Square	Adjusted	StErr of		
9	Summary	R	n-Square	R-Square	Estimate		
10		0.6730	0.4529	0.4415	7.394732934		
11							
12		Degrees of	Sum of	Mean of	F-Ratio	p-Value	
13	ANOVA Table	Freedom	Squares	Squares	1 -Nacio	praide	
14	Explained	1	2172.880392	2172.880392	39.7366	< 0.0001	•
15	Unexplained	48	2624.739608	54.68207516			
16							
17		Coefficient	Standard	t-Value	p-Value	Confidence	Interval 95%
18	Regression Table	Coemcient	Error	t-value	p-value	Lower	Upper
19	Constant	25.12642006	11.8825852	2.1146	0.0397	1.234881256	49.01795886
20	Promote	0.762296485	0.120928454	6.3037	< 0.0001	0.519153532	1.005439438

Example 10.1 (continued): Drugstore Sales.xlsx (slide 2 of 2)

The equation for the least squares line is:

Predicted Sales = 25.1264 + 0.7623***Promote**

Regression Statistics

- ▶ Multiple R: | r |, where r is the sample correlation coefficient. The value of r varies from -1 to +1 (r is negative if slope is negative)
- ▶ R Square: coefficient of determination, R², which varies from 0 (no fit) to 1 (perfect fit)
- ▶ Adjusted R Square: adjusts R² for sample size and number of X variables
- Standard Error: variability between observed and predicted Y values. This is formally called the standard error of the estimate, S_{YX} .

Example 10.2 (continued): Overhead Costs.xlsx (slide 1 of 2)

- Objective: To use the Excel Regression Data Analysis procedure to regress overhead expenses at Bendrix against machine hours and then against production runs.
- Solution: The Bendrix manufacturing data set has two potential explanatory variables, Machine Hours and Production Runs.
- The regression output for Overhead with Machine Hours as the single explanatory variable is shown below.

d	Α	В	С	D	E	F	G
7	Multiple Regression fo	or Overhead			.5.0		
8		Multiple	R-Square	Adjusted	StErr of		
9	Summary	R	K-Square	R-Square	Estimate		
10		0.6319	0.3993	0.3816	8584.739353	-	
11							
12		Degrees of	Sum of	Mean of	F-Ratio	p-Value	
13	ANOVA Table	able Freedom	Squares	Squares	T-Nacio	p-value	
14	Explained	1	1665463368	1665463368	22.5986	< 0.0001	
15	Unexplained	34	2505723492	73697749.75			
16							
17		Coefficient	Standard	t-Value	p-Value	Confidence	Interval 95%
18	Regression Table	Coemicient	Error	t-value	p-value	Lower	Upper
19	Constant	48621.35463	10725.3327	4.5333	< 0.0001	26824.85615	70417.85312
20	Machine Hours	34.70223642	7.299902097	4.7538	< 0.0001	19.86705047	49.53742238

x **■**

Example 10.2 (continued):

Overhead Costs.xlsx (slide 2 of 2)

The output when Production Runs is the only explanatory variable is

shown below.

:1	А	В	C	D	E	F	G
7	Multiple Regression f	or Overhead					
8		Multiple	R-Square	Adjusted	StErr of		
9	Summary	R	N-Square	R-Square	Estimate		
10		0.5205	0.2710	0.2495	9457.239463	XI.	
11							
12		Degrees of	Sum of	Mean of	F-Ratio	p-Value	
13	ANOVA Table	Freedom	Squares	Squares	THACIO	p-value	e.
14	Explained	1	1130247999	1130247999	12.6370	0.0011	
15	Unexplained	34	3040938861	89439378.26			
16							
17		Coefficient	Standard	t-Value	p-Value	Confidence	Interval 95%
18	Regression Table	Coemolene	Error		Praide	Lower	Upper
19	Constant	75605.51571	6808.610629	11.1044	< 0.0001	61768.75415	89442.27728
20	Production Runs	655.0706602	184.2746779	3.5549	0.0011	280.5794579	1029.561862

The two least squares lines are therefore:

Predicted Overhead = 48621 + 34.7*MachineHours

Predicted Overhead = 75606 + 655.1*ProductionRuns

Standard Error of Estimate

- The magnitude of the residuals provide a good indication of how useful the regression line is for predicting Y values from X values.
- Because there are numerous residuals, it is useful to summarize them with a single numerical measure.
 - This measure is called the standard error of estimate and is denoted s_e.
 - It is essentially the standard deviation of the residuals.
- The usual empirical rules for standard deviation can be applied to the standard error of estimate.
- In general, the standard error of estimate indicates the level of accuracy of predictions made from the regression equation.
 - The smaller it is, the more accurate predictions tend to be.

The Percentage of Variation Explained: R-Square

- R² is an important measure of the goodness of fit of the least squares line.
 - It is the percentage of variation of the dependent variable explained by the regression.
 - It always ranges between 0 and 1.
 - The better the linear fit is, the closer R^2 is to 1.
 - In simple linear regression, R² is the square of the correlation between the dependent variable and the explanatory variable.

Residual Analysis and Regression Assumptions

- Residual (error) = Actual Y value Predicted Y value
- Standardized residual = residual / standard deviation
- Rule of thumb: Standardized residuals outside of ±2 or ±3 are potential outliers.

This point has a standard residual of 4.53

Multiple Regression

- To obtain improved fits in regression, several explanatory variables could be included in the regression equation. This is the realm of *multiple* regression.
 - Graphically, you are no longer fitting a *line* to a set of points. If there are two
 explanatory variables, you are fitting a *plane* to the data in three-dimensional space.
 - The regression equation is still estimated by the least squares method, but it is not practical to do this by hand.
 - There is a slope term for each explanatory variable in the equation, but the interpretation of these terms is different.
 - The standard error of estimate and R² summary measures are almost exactly as in simple regression.
 - Many types of explanatory variables can be included in the regression equation.

Interpretation of Regression Coefficients

- If Y is the dependent variable, and X_1 through X_k are the explanatory variables, then a typical multiple regression equation has the form shown below, where a is the Y-intercept, and b_1 through b_k are the slopes.
- General Multiple Regression Equation:

Predicted
$$Y = a + b_1 X_1 + b_2 X_2 + ... + b_k X_k$$

- Collectively, a the bs in the equation are called the regression coefficients.
- ▶ Each slope coefficient is the expected change in Y when this particular X increases by one unit and the other Xs in the equation remain constant.
 - This means that the estimates of the bs depend on which other Xs are included in the regression equation.

Example 10.2 (continued): **X** Overhead Costs.xlsx

- **Objective**: To use StatTools's Regression procedure to estimate the equation for overhead costs at Bendrix as a function of machine hours and production runs.
- **Solution**: Select Regression from the StatTools Regression and Classification dropdown list. Then choose the Multiple option and specify the single D variable and the two I variables.
- The coefficients in the output below indicate that the estimated regression equation is: Predicted Overhead = 3997 + 43.54Machine Hours + 883.62Production Runs.

1	Α	В	С	D	E	F	G
7	Multiple Regression for	Overhead					
8		Multiple	R-Square	Adjusted	StErr of		
9	Summary	R	N-Square	R-Square	Estimate	_	
10	10	0.9308	0.8664	0.8583	4108.99309		
11							
12		Degrees of	Sum of	Mean of	F-Ratio	p-Value	
13	ANOVA Table	Freedom	Squares	Squares	r-natio	p-value	
14	Explained	2	3614020661	1807010330	107.0261	< 0.0001	
15	Unexplained	33	557166199.1	16883824.22			
16	557						
17		Coefficient	Standard	t-Value	p-Value	Confidence	Interval 95%
18	Regression Table	Coefficient	Error	t-value	p-value	Lower	Upper
19	Constant	3996.678209	6603.650932	0.6052	0.5492	-9438.550632	17431.90705
20	Machine Hours	43.53639812	3.5894837	12.1289	< 0.0001	36.23353862	50.83925763
21	Production Runs	883.6179252	82.25140753	10.7429	< 0.0001	716.2761784	1050.959672

- Linearity
- Normality of Errors
- Homoscedasticity: variation about the regression line is constant
- Independence of Errors: successive observations should not be related.

Linearity:

- ✓ examine scatter diagram (should appear linear)
- ✓ examine residual plot (should appear random)

Nonlinear relationship

Linear relationship between X and Y

A random plot of residuals, errors seem random and no discernible pattern is present

Normality of Errors:

- √ view a histogram of standardized residuals (normal errors with mean 0)
 - i.e., regression is robust to departures from normality

- Homoscedasticity: variation about the regression line is constant
 - examine the residual plot, residual plot shows no serious difference in the spread of the data for different X values.

A random plot of residuals, errors seem random and no discernible pattern is present

Residual Plots

■ Nonconstant error variance, the errors increase as X increases!

Heteroscedasticity

There are two ways to deal with it:

- Use a different estimation method than least squares, called *weighted least squares*.
- Use a logarithmic transformation of the dependent variable.

Checking Assumptions

- Independence of Errors: successive observations should not be related.
 - ✓ This is important when the independent variable is time.
 - ✓ This assumption means that information on some of the errors provides no information on the values of the other errors.
 - 1. For cross-sectional data, this assumption is usually taken for granted.
 - 2. For time-series data, this assumption is often violated.
 - This is because of a property called autocorrelation.
 - The Durbin-Watson (DW) statistic is one measure of autocorrelation. It always have a value ranging between 0 and 4.
 - ✓ A value of 2.0 indicates there is no autocorrelation.
 - ✓ Values from 0 to less than 2 point to positive autocorrelation.
 - ✓ values from 2 to 4 means negative autocorrelation.

Multicollinearity

- One other assumption is important for numerical calculations: No explanatory variable can be an exact linear combination of any other explanatory variables.
 - The violation occurs if one of the explanatory variables can be written as a weighted sum of several of the others.
 - This is called exact multicollinearity.
 - If it exists, there is redundancy in the data.
 - A more common and serious problem is multicollinearity, where explanatory variables are highly correlated.

Multicollinearity

- You will get two extra columns in the Regression table section of the regression output: VIF (variance inflation factor) and R-Square.
 - ✓ The R-Square for any X variable is the usual R-square value from a regression with that X as the dependent variable and the other X's as the explanatory variables. It indicates how related that X is to the other X's.
 - ✓ VIF is considered large when > 10. However a cutoff of 5 is commonly used. A value between 1 and 5 is moderate correlation. A value of 1 indicates no correlation.

Multicollinearity

Figure 11.7 Regression Output with Multicollinearity Diagnostics

1	A	В	С	D	E	F	G	Н	I
1	Multiple Regression for Salary	Multiple	R-Square	Adjusted	Std. Err. of	Rows	Outliers		
2	Summary	R	N-3quare	R-square	Estimate	Ignored	Outileis		
3		0.9755	0.9516	0.9509	4964.209	0	1		
4									
5		Degrees of	Sum of	Mean of	F	p-Value			
6	ANOVA Table	Freedom	Squares	Squares	•	p-value			
7	Explained	4	1.42789E+11	35697211405	1448.552	< 0.0001			
8	Unexplained	295	7269795846	24643375.75					
9									
10		C#:-:	Standard	4 Malus	- 1/-1	Confidence Interval 95%		Multicollinearity Checking	
11	Regression Table	Coefficient	Error	t-Value	p-Value	Lower	Upper	VIF	R-Square
12	Constant	49714.255	3815.818	13.028	<0.0001	42204.580	57223.930		
13	Gender (Female)	-2967.637	616.555	-4.813	<0.0001	-4181.041	-1754.232	1.001	0.001
14	Age	-309.744	148.123	-2.091	0.0374	-601.255	-18.233	31.504	0.968
15	Experience	388.641	190.562	2.039	0.0423	13.608	763.675	38.153	0.974
16	Seniority	2997.964	94.860	31.604	<0.0001	2811.276	3184.652	5.595	0.821
17									
18									
19	Correlation Matrix	Salary	Gender (Female)	Age	Experience	Seniority			
20	Salary	1.000	-0.093	0.857	0.882	0.973			
21	Gender (Female)	-0.093	1.000	-0.028	-0.026	-0.033			
22	Age	0.857	-0.028	1.000	0.984	0.884			
23	Experience	0.882	-0.026	0.984	1.000	0.905			
24	Seniority	0.973	-0.033	0.884	0.905	1.000			

Measuring the Fit of the Regression Model

- Regression models can be developed for any variables X and Y
- How do we know the model is actually helpful in predicting Y based on X?
- Three measures of variability are
 - *SST* Total variability about the mean
 - SSE Variability about the regression line
 - *SSR* Total variability that is explained by the regression model

Measuring the Fit of the Regression Model

Three measures of variability are

SST - Total variability about the mean

SSR – Total Variability that is explained by the regression line

SSE – variability about the regression model

Testing the Significance

Testing the Significance of the Overall Model

Testing the Significance of the coefficients of the Model

- When the sample size is too small, you can get good values for MSE and r^2 even if there is no relationship between the variables
- Testing the model for significance helps determine if the values are meaningful
- We do this by performing a statistical hypothesis test

Regression as Analysis of Variance

ANOVA conducts an *F*-test to determine whether variation in *Y* is due to varying levels of *X* (to test for *significance of regression*).

We start with the general linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

 H_0 : population slope coefficient $(\beta_1)=0$

 H_1 : population slope coefficient $(\beta_1) \neq 0$

- If $\beta_1 = 0$, the null hypothesis is that there is **no** relationship between X and Y
- The alternate hypothesis is that there is a linear relationship $(\beta_1 \neq 0)$
- If the null hypothesis can be rejected, we have proven there is a relationship

Analysis of Variance (ANOVA) Table

- When software is used to develop a regression model, an ANOVA table is typically created that shows the observed significance level (p-value) for the calculated F value
- This can be compared to the level of significance (α) to make a decision

	DF	SS	MS	F	SIGNIFICANCE
Regression	k	SSR	MSR = SSR/k	MSR/MSE	P(F > MSR / MSE)
Residual	n - k - 1	SSE	MSE = SSE/(n - k - 1)		
Total	n - 1	SST			

- If there is very little error, the MSE would be small and the Fstatistic would be large indicating the model is useful.
- If the F-statistic is large, the significance level (p-value) will be low, indicating it is unlikely this would have occurred by chance.
- So when the F-value is large, we can reject the null hypothesis and accept that there is a linear relationship between X and Y and the values of the MSE and r² are meaningful.

Make a decision using one of the following methods

a) Reject the null hypothesis if the test statistic is greater than the F-value from the statistical tables. Otherwise, do not reject the null hypothesis:

Reject if
$$F_{calculated} > F_{\alpha,df_1,df_2}$$
 $df_1 = k$ $df_2 = n-k-1$

b) Reject the null hypothesis if the observed significance level, or p-value, is less than the level of significance (α). Otherwise, do not reject the null hypothesis:

$$p$$
 - value = $P(F > \text{calculated test statistic})$
Reject if p - value < α

Drugstore Sales Example

Given $\alpha = 0.05$

Calculate the value of the test statistic

$$F = \frac{MSR}{MSE} = \frac{2172.88}{54.68} = 39.74$$

d	Α	В	C	D	E	F	G
7	Multiple Regression fo	or Sales					
8	111111111111111111111111111111111111111	Multiple	R-Square	Adjusted	StErr of		
9	Summary	R	Noquale	R-Square	Estimate		
10	in the second	0.6730	0.4529	0.4415	7.394732934	NO.	
11							
12		Degrees of	Sum of	Mean of	F-Ratio	p-Value	
13	ANOVA Table	Freedom	Squares	Squares	1 - Natio	praide	
14	Explained	1	2172.880392	2172.880392	39.7366	< 0.0001	
15	Unexplained	48	2624.739608	54.68207516			
16							
17		Coefficient	Standard	t-Value	p-Value	Confidence Interval 95%	
18	Regression Table	Coemicient	Error			Lower	Upper
19	Constant	25.12642006	11.8825852	2.1146	0.0397	1.234881256	49.01795886
20	Promote	0.762296485	0.120928454	6.3037	< 0.0001	0.519153532	1.005439438

The value of *F* associated with a 5% level of significance and with degrees of freedom 1 and 48 from tables is

$$F_{0.05,1,48} = 4$$

 $F_{\text{calculated}} = 39.74$

Reject H_0 because 39.74 > 4

Drugstore Sales Example

Evaluating Multiple Regression Models

- Evaluation is similar to simple linear regression models
 - The p-value for the F-test and r^2 are interpreted the same
- The hypothesis is different because there is more than one independent variable
 - The F-test is investigating whether all the coefficients are equal to 0

Evaluating Overhead Cost Example 10.2

 Both explanatory variables are significant since both have too low p-values (<0.0001)

1	Α	В	С	D	E	F	G
7	Multiple Regression for	Overhead					
8		Multiple	R-Square	Adjusted	StErr of		
9	Summary	R	Noquale	R-Square	Estimate	_	
10) i	0.9308	0.8664	0.8583	4108.99309		
11							
12		Degrees of	Sum of	Mean of	F-Ratio	p-Value	
13	ANOVA Table	Freedom	Squares	Squares	T-Natio	p-value	
14	Explained	2	3614020661	1807010330	107.0261	< 0.0001	
15	Unexplained	33	557166199.1	16883824.22			
16							
17		Coefficient	Standard	t-Value	p-Value	Confidence Interval 95%	
18	Regression Table	Coemicient	Error	CValue	p-value	Lower	Upper
19	Constant	3996.678209	6603.650932	0.6052	0.5492	-9438.550632	17431.90705
20	Machine Hours	43.53639812	3.5894837	12.1289	< 0.0001	36.23353862	50.83925761
21	Production Runs	883.6179252	82.25140753	10.7429	< 0.0001	716.2761784	1050.959672

Thank You (**)

