Math 215, Spring 2018 - Assignment # 9

Name: Tam Nguyen

Section 11.1 8 **Statement:** Define a relation on Z as xRy if |x-y| < 1. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why. What familiar relation is this?

Proof. i) Show that R is reflective: For any $x \in Z$, then |x - x| = 0 < 1. Then xRx

ii) Show that R is symmetric For any $x,y \in Z$ Assume that xRy that is |x-y| < 1Now |x-y| = |y-x| < 1. Then yRx

iii) Show that R is transitive

For any $x,y,z \in Z$

We have: |x-y| < 1 x, y Z when x = y.

Assume that xRy and yRz, that is |x-y| < 1 and |y-z| < 1.

Then we must have x=y=z. So |x-z|=0<1, that means xRz. Therefore, R is transitive.

Section 11.1 12 **Statement:** Prove that the relation | (divides) on the set Z is reflexive and transitive. (Use Example 11.8 as a guide if you are unsure of how to proceed.)

Proof. For any $x \in Z$, x = 1x, so x|x, hence the relation is reflexive. Suppose $x, y, z \in Z$ are such that x|y and y|z. Then there exist integers a and b such that xa = y and yb = z. Then $ab \in Z$ and x(ab) = z, so x|z. We conclude the relation is transitive.

Section 11.2 6 **Statement:** There are five different equivalence relations on the set A = {a,b,c}. Describe them all. Diagrams will suffice.

```
\begin{aligned} &\textit{Proof.} \ \ R = \{(a,a),\, (b,b),\, (c,c)\} \\ &R = \{(a,a),\, (b,b),\, (c,c),\, (a,c),\, (c,a)\} \\ &R = \{(a,a),\, (b,b),\, (c,c),\, (a,b),\, (b,a)\, \} \\ &R = \{(a,a),\, (b,b),\, (c,c),\, (b,c),\, (c,b)\, \} \\ &R = \{(a,a),\, (b,b),\, (c,c),\, (a,c),\, (c,a),\, (b,a),\, (a,b)\, \} \\ &R = \{(a,a),\, (b,b),\, (c,c),\, (a,c),\, (c,a),\, (b,a),\, (a,b)\, (b,c),\, (c,b)\} \end{aligned}
```

Section 11.2 8 **Statement:** Define a relation R on Z as xR y if and only if $x^2 + y^2$ is even. Prove R is an equivalence relation. Describe its equivalence classes.

Proof. We must show that R is reflexive, symmetric and transitive.

- i) Show that R is reflexive; i.e., show that $\forall x \in Z$, xRx: Let $x \in Z$. Then $x^2 + x^2 = 2x^2$, which is even, so xRx.
- ii) Show that R is symmetric; i.e., show that \forall x, y \in Z, if xRy then yRx.

Let $x, y \in Z$

Assume xRy that is $x^2 + y^2$ is even

Now $y^2 + x^2 = x^2 + y^2$. So $y^2 + x^2$ is even and yRx.

iii) Show that R is transitive; i.e., show that \forall x, y, z \in Z, if xRy and yRz then xRz. Let x, y, z \in Z. Assume xRy and yRz, that is that $x^2+y^2=2s$ and $y^2+z^2=2t, s, t\in$ Z. So $x^2=2^sy^2$ and $z^2=2^ty^2$, with s, t \in Z And $x^2+z^2=2^sy^2+2^ty^2=2s+2t2y^2=2(s+ty^2)wheres+ty^2\in$ Z So x^2+z^2 is even. Therefore xRz

This proves that R is an equivalence relation on Z.

= {x : xR1} = {x : $x^2 + 1$ is even} = {x : x^2 is odd} = {x : x is odd}

= $\{x : xR2\}$ = $\{x : x^2 + 4 \text{ is even}\}$ = $\{x : x^2 \text{ is even}\}$ = $\{x : x \text{ is even}\}$ So these are the two distinct equivalence classes

Section 11.3 2 **Statement:** List all the partitions of the set $A = \{a,b,c\}$. Compare your answer to the answer to Exercise 6 of Section 11.2.

Section 11.4 2 **Statement:** Write the addition and multiplication tables for \mathbb{Z}_3 .

Proof. Below are table of addition and multiplication for \mathbb{Z}_3

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

	0	1	2
0	0	0	0
1	0	1	1
2	0	2	1

Section 11.4 6 **Statement:** Suppose [a],[b] $\in \mathbb{Z}_6$ and [a][b] = [0]. Is it necessarily true that either [a] = [0] or [b] = [0]?

Proof. Here is the multiplication table of \mathbb{Z}_6

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	0	4
5	0	5	4	3	4	1

As we can see, if [a][b] = [0], then possibly, [a] = [2] and [b] = 3. It means that it is not necessarily true that either [a] = [0] or [b] = [0] if [a][b] = [0].