Natural Language Processing

Timo Baumann

Heute

- consolidation: FSAs and FSTs
- syntax and constituent grammars
- parsing (=syntactic analysis) with CFGs

Principle of Compositionality

- Speech sounds (or letters) form words
- Words follow each other, forming sequences
- sequences of words have an inner structure (syntax)
- meaning (semantics) can be derived from the structure

automaton-based methods

- finite state automata correspond to linear grammar (and regular expressions)
- transducers provide the means to convert strings into other strings
- applications:
 - (de)composition of words (morphological analysis)
 - pronunciation modeling
 - sentence chunking (in a few slides)

Syntax and Parsing: Sentence structure and its analysis

Sentence structure / Syntax

- Syntax is the subfield of linguistics that is concerned with the structure of sentences
 - not: structure of words (that's morphology)
 (not parts of speech Wortarten either)
 - not the meaning of sentences either
 - understanding syntax is an important step in understanding the meaning of sentences
 - syntax is strongly lexicalized, i.e., what construction is allowed can depend on individual words ("Döner mit alles" is perfectly normal); therefore, syntax often relates to meaning

Syntax and NLP

Intersection of:

- linguistic perspective:
 what kinds of structures must be represented?
 - introspection
 - corpus studies
 - psycholinguistics / neurolinguistics
- formal languages and grammars (theory of computer science):
 - what formal models are available to represent the required kinds of structure?
- language resources (empirical / data science):
 - collections of (syntax-annotated) sentences: treebanks
 - syntactic lexica, which describe syntactic requirements of words (such as valence for verbs)

Syntax

 describes why some word sequences are structurally sound ("grammatical") while others are not

The man reads the book.

The book reads the man

*The book the reads man.

*The man reads the.

The man reads.

*The man the book.

Constituents

- some parts of a sentence belong together more closely than others. They form a constituent. Tests for constituency:
 - distribution (exchangability): Peter isst Eis. / Anne isst Eis. → "isst Eis" forms a constituent; Peter and Anne are of the same kind (grammatically)
 - coordination: Peter und Anne essen Eis.
 - exchangeable with a pronoun: Sie essen Eis. Sie essen etwas.
 - omission test (ellipsis): Peter isst Eis aus dem Eiscafé und Anne vom Kiosk.
 - question tests: Wer isst Eis? Was isst Anne? Was tut Peter?
 - repositioning tests: Eis essen Anne und Peter.
- constituents build hierarchies, i.e., constituents themselves consits of words or (lower-level) constituents

some constituents and their mapping to grammar rules

- nominal phrases such as:
 - names, determiners+nouns, det.+adjektives+nouns, ...
 - NP → NN | Det N | Det A N | ...
- determiner beyond the definite/indefinite articles (the/a):
 - Peter's Eis, Peter's Freundin's Eis, Peter's Freundin's Schwester's Eis, ...
 - Det → "der" | "die" | "das" | "ihr" ... | NP "'s"

automaton-based syntax analysis

[I begin] [with an intuition]: [when I read] [a sentence], [I read it] [a chunk] [at a time] (Example from S. Abney, Parsing by Chunks)

- Chunks correspond to prosodic phrases when reading / speaking aloud
 - stuff that belongs together is spoken together (=in-between short breaths)
- are *flat*, i.e., they don't build hierarchies
 - can be modelled by FSA/regular expressions via types of speech (=Wortarten)
 - e.g. NP = Det N | NN | Det Adj N
- chunking is a good basis for probabilistic approaches and knowledge extraction
- correspond to parts of constituents but do not relate constituents to each other
 - → no full support for hierarchical modelling
- are insufficient to model all of syntax → we'll ignore FSA-based syntax chunking

kontextfreie Grammatiken

$$G = (\Phi, \Sigma, R, S)$$

Ф Nonterminalsymbole

Σ Terminalsymbole

R Regeln $A\rightarrow\alpha$, wobei $A\in\Phi$ und $\alpha\in(\Phi\cup\Sigma)^*$

S Startsymbol aus Ф

 $S \rightarrow NP VP$

NP→ Pr | Det N Nominalphrase!

VP→ V NP | V | VP PP

PP → P NP

Präpositionalphrase!
(P = mit/hei/für/wegen/an/a

(P = mit/bei/für/wegen/an/auf/...)

Verbalphrase!

theoretical issues of automatonbased syntax analysis

- FSAs can do some hierarchies, such as:
 - einfache Rekursion wie bei Anne's Freund's Eis
- however, you remember that FSA can't do anbn do you?
 - die Frau
 - die Frau die den Hund führte
 - die Frau die den Hund der den Mann biss führte
 - die Frau die den Hund der den Mann der auf die Uhr sah biss führte
 - d Frau d d Hund d d Mann d a d Uhr die die Zeit anzeigte sah biss führte
 - "center embedding" is unlimited in theory
- in practice embedding depth is not unlimited, at least not in spontaneously observed language

constituents and context-free grammars

exchangeability is fundamental idea of constituents

- → that's what "context-free" is about
- CFGs therefore are a reasonable model for constituent structures

OSTBAYERISCHE
TECHNISCHE HOCHSCHULE
REGENSBURG

Colorless green ideas sleep furiously
- Noam Chomsky

context-free grammars and productions

- S
- NP VP
- Pr VP PP
- Pr V NP P NP
- Pr V Det N P Det N

- $S \rightarrow NP VP$
- $NP \rightarrow Pr \mid Det N \mid NP PP$
- VP→ V NP | V | VP PP
- $PP \rightarrow P NP$

I saw her duck with the telescope

could we have achieved the same results with different derivations?

visualization of derivation trees

(syntactic) ambiguity in language

"I saw her duck with a telescope..."

"I saw her duck with a telescope..."

Slide credit: Dhruv Batra, figure credit: Liang Huang

(syntactic) ambiguity in language

- natürlich sind nicht alle Interpretationen sinnvoll
 - aber Syntax schert sich nicht um Sinn
 - erstmal alle Möglichkeiten zulassen, später sieben
- im Ergebnis meist sehr viele mögliche Ergebnisse
 - auf Effizienz achten!

"I saw her duck with a telescope..."

parsing

- "parsing a sentence"
 - = infer the syntactic structure of a sentence from the sequence of words (=surface structure)
- "the parse" / parse tree = generated structure
- parser = computer programm for parsing

 default: syntax (however: "semantic parsing" is also something which you may hear)

challenge: efficient management of ambiguity

- search complexity: 2ⁿ (i.e., prohibitively high)
- dynamic programming (=storage and re-use of partial results)
- store partial results in a chart
 - complexity → O(n³) to find out if sentence is grammatical (still exponential if we want to get all possible parse trees)

Parsing strategies

- (purely) top-down:
 - expand S until we find the full sentence (hopefully)
- bottom-up (Cocke-Kasami-Younger 1967)
 - check what can be combined (e.g. NP → ... → "the telescope"), hoping that we'll eventually get an S at the top
- mixed: left-corner parsing (Earley 1970)
 - expand S (top-down), such that the first (then second, third, ...) words fit the derived structure

 $S \rightarrow NP VP$

NP→ Pr | Det N | NP PP

 $VP \rightarrow V NP \mid V \mid VP PP$

 $PP \rightarrow P NP$

I saw her duck with the telescope

Cocke-Kasami-Younger Algorithm

 erquires grammar to be in Chomsky-Normal-Form (CNF)

each rules produces (exactly) two non-terminals
 OR exactly one terminal symbol

 idea: always combine in two directions of the chart

Cocke-Kasami-Younger Algorithmus

```
function CKY-PARSE(words, grammar) returns table
  for j \leftarrow from 1 to LENGTH(words) do
     table[j-1,j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar \}
     for i \leftarrow from j - 2 downto 0 do
          for k \leftarrow i + 1 to j - 1 do
              table[i,j] \leftarrow table[i,j] \cup
                            \{A \mid A \rightarrow BC \in grammar,
                                 B \in table[i,k],
                                 C \in table[k, j]
```


CKY

- starting bottom up: search for ever longer constituents and add these higher up in the chart
 - use the fact that longer constituents are composed of shorter ones
- if in the end, the start symbol convers the full sentence, then the grammar supports the sentence
- need additional book-keeping to be able to retrieve the parse trees

limits of CFGs for syntax in NLP

- language contains structures which go beyond CFGs (if you're looking for examples of highly complex language, Swiss German is the language of choice)
 - see separate slide set
- agreement is difficult to model in CFGs
 - e.g.: subject-verb have to agree in person and number
 - → solution: unification based grammars
- subcategorization, e.g. arity (number of open semantic slots) of verbs
 - *John found. *John disappeared the ring.

summary

- parse trees capture syntactic structure and help in deducing semantics / meaning
- CFGs are useful to describe the grammar of natural language (by and large)
- efficient computation of parse trees via dynamic programming

applications of CFGs

- most NLP applications profit from syntactic structure
 (it's, however, not always clear whether automatically derived structure yields a benefit)
- speech recognition grammars that can readily be semantically interpreted (e.g. in command&control applications)

• beyond NLP (e.g. parsing programming languages)

ambiguity

- "One morning I shot an elephant in my pajamas."
 - -"How he got in my pajamas, I don't know."

- ambiguous: yes. equally likely? no.
 - probabilistic models in 2. third of the term

Thank you. Your questions?

timo.baumann@oth-regensburg.de

weiterführende Literatur

- Kozen (1997): Automata and Computability
- Jurafsky and Martin (2009): Kapitel 12,13
- Carstensen et al. (2004): Seiten 79ff, 264-329
- Grewendorf, Hamm, Sternefeld (1989) "Sprachliches Wissen": Seiten 150ff

Lehrziele

- die Studierenden kennen kontextfreie Grammatiken als strukturbildendes Mittel in der Sprachverarbeitung
- die Studierenden erfassen den Vorteil der Strukturbildung durch Syntaxparsing gegenüber flachen Verfahren
- die Studierenden kennen Verfahren zur manuellen Grammatikinferenz
- die Studierenden kennen einen Algorithmus zum Parsen syntaktischer Konstituentengrammatiken und können diesen anwenden

