Black-Scholes-Merton Model

Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

©Liming Feng. Do not distribute without permission of the author

Readings: Shreve Section 4.5, Chapter 5

The Black-Scholes-Merton model

- A derivative pricing model based on geometric
 Brownian motion
- Originated from two papers: Black-Scholes (1973) and Merton (1973)
- Scholes and Merton won Nobel prize in Economics in 1997

"for a new method to determine the value of derivatives"

Robert C. Merton

1/2 of the prize

USA

Harvard University Cambridge, MA, USA

b. 1944

Myron S. Scholes

1/2 of the prize

USA

Long Term Capital Management Greenwich, CT, USA

b. 1941 (in Timmins, ON, Canada)

Geometric Brownian motion

Asset price process follows a GBM

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

Instantaneous mean rate of return $\mu \in \mathbb{R}$, volatility $\sigma > 0$

$$S_t = S_0 \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right)$$

• $X_t = \ln(S_t/S_0)$ (the log return process),

$$X_t = (\mu - \frac{1}{2}\sigma^2)t + \sigma B_t$$

is a BM with drift. In differential form,

$$dX_t = (\mu - \frac{1}{2}\sigma^2)dt + \sigma dB_t$$

Option pricing in the BSM model

- Interested in pricing (European style) options in the BSM model
- First approach: finding a replicating portfolio so that option price = cost of replication (leads to a partial differential equation)
- Martingale approach: finding a risk neutral measure so that option price = discounted risk neutral expectation of option payoff (assuming the option payoff is replicable)

Black-Scholes-Merton equation

- Consider a **European style** derivative with payoff $V(S_T)$
- Binomial model: trading the underlying asset and investing at the risk free interest rate, one replicates the derivative payoff
- Value of the replicating portfolio X_t at time t = derivative value at t
- Suppose at time t, Δ_t shares are held, the remaining $X_t \Delta_t S_t$ is invested at the risk free rate r
- Find Δ_t so that the portfolio replicates the derivative payoff: comparing the dynamics of the replicating portfolio and the value process of the derivative

Dynamics of the replicating portfolio

- The dynamics of the replicating portfolio:
 - the value change of the stocks: $\Delta_t dS_t$
 - the value change of the risk free investment: $r(X_t \Delta_t S_t) dt$

$$dX_t = \Delta_t dS_t + r(X_t - \Delta_t S_t) dt$$

$$= \Delta_t (\mu S_t dt + \sigma S_t dB_t) + r(X_t - \Delta_t S_t) dt$$

$$= rX_t dt + \Delta_t S_t (\mu - r) dt + \sigma \Delta_t S_t dB_t$$

The term rX_tdt is the part of X_t that is earning risk free interest rate r. Can be removed by considering the discounted process $e^{-rt}X_t$

• By Itô product rule,

$$d(e^{-rt}X_t) = -re^{-rt}X_tdt + e^{-rt}dX_t$$

$$= -re^{-rt}X_tdt + e^{-rt}[rX_tdt + \Delta_tS_t(\mu - r)dt + \sigma\Delta_tS_tdB_t]$$

$$= e^{-rt}[\Delta_tS_t(\mu - r)dt + \sigma\Delta_tS_tdB_t]$$

Dynamics of the derivative price

- Denote the value of the derivative at time t by $V(t, S_t)$
- Dynamics of the derivative value process

$$dV = \frac{\partial V}{\partial t}dt + \frac{\partial V}{\partial S}dS_t + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}dS_t \cdot dS_t$$

$$= \frac{\partial V}{\partial t}dt + \frac{\partial V}{\partial S}(\mu S_t dt + \sigma S_t dB_t) + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2 S_t^2 dt$$

$$= (\frac{\partial V}{\partial t} + \frac{\partial V}{\partial S}\mu S_t + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2 S_t^2)dt + \frac{\partial V}{\partial S}\sigma S_t dB_t$$

• Want to compare $d(e^{-rt}X_t)$ and $d(e^{-rt}V)$

By Itô product rule,

$$d(e^{-rt}V) = -re^{-rt}Vdt + e^{-rt}dV$$

$$= -re^{-rt}Vdt$$

$$+ e^{-rt}\left[\left(\frac{\partial V}{\partial t} + \mu S_t \frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 V}{\partial S^2}\right)dt + \sigma S_t \frac{\partial V}{\partial S}dB_t\right]$$

$$= e^{-rt}\left[\left(\frac{\partial V}{\partial t} + \mu S_t \frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 V}{\partial S^2} - rV\right)dt$$

$$+ \sigma S_t \frac{\partial V}{\partial S}dB_t\right]$$

Finding the replicating strategy

$$\begin{split} d(e^{-rt}X_t) &= e^{-rt} \left[\Delta_t S_t(\mu - r) dt \right. \\ &+ \sigma S_t \Delta_t dB_t \right] \\ d(e^{-rt}V) &= e^{-rt} \left[\left(\frac{\partial V}{\partial t} + \mu S_t \frac{\partial V}{\partial S} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S_t^2 - rV \right) dt + \sigma S_t \frac{\partial V}{\partial S} dB_t \right] \end{split}$$

 The trading strategy replicates the derivative value process if and only if

$$X_0 = V_0$$

$$\Delta_t = \frac{\partial V}{\partial S}(t, S_t)$$

$$\Delta_t S_t(\mu - r) = \frac{\partial V}{\partial t} + \mu S_t \frac{\partial V}{\partial S} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S_t^2 - rV$$

Black-Scholes-Merton equation

• European derivative value with payoff $V(S_T)$ solves

$$\frac{\partial V}{\partial t} + rS\frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} - rV = 0, \quad t \in [0, T)$$

Terminal condition

$$V(T,S) = (S-K)^+$$
 for calls, $V(T,S) = (K-S)^+$ for puts

• Solve the Black-Scholes-Merton equation, one gets the Black-Scholes formula (transform the equation into a **heat** equation of the form $\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}$ whose analytical solution is known (Wilmott, Dewynne and Howison 1994))

Black-Scholes formula (zero yield)

European call and put option prices

$$c(t,S) = SN(d_{+}) - Ke^{-r(T-t)}N(d_{-})$$
 $p(t,S) = -SN(-d_{+}) + Ke^{-r(T-t)}N(-d_{-})$

where

$$d_{\pm} = \frac{\ln(S/K) + (r \pm \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

The put-call parity holds

$$c + Ke^{-r(T-t)} = p + S$$

Hedging

- The replicating strategy requires $\Delta_t = \frac{\partial V}{\partial S}(t,S)$ stocks
- **Delta hedging**: one should hold Δ_t shares to hedge a short position
- For calls,

$$\Delta_t = \frac{\partial c}{\partial S}(t,S) = N(d_+) > 0$$

for puts,

$$\Delta_t = \frac{\partial p}{\partial S}(t,S) = N(d_+) - 1 < 0$$

Martingale method overview

- Martingale method in binomial model for arbitrary European derivatives (including path dependent)
 - Under the risk neutral measure Q, discounted asset price process is a martingale
 - Discounted value process of the replicating portfolio for the European derivative is also a martingale under measure Q
 - 3 Risk neutral pricing formula in the binomial model

$$f_n = \mathbb{E}^{\mathbb{Q}}[e^{-r(N-n)\delta}f_N|\mathcal{F}_n]$$

The value of the European derivative with payoff f_N is the risk neutral expectation of the discounted payoff

- Martingale method in the Black-Scholes-Merton framework
 - Find the risk neutral measure (equivalent martingale measure) Q under which the discounted asset price process is a martingale
 - Show that the discounted value process of the replicating portfolio for the European derivative is a martingale under Q
 - Oerive the risk neutral pricing formula using the martingale property
 - Establish the existence of a replicating portfolio
- Applicable to path dependent European derivatives

Change of measure

- Find the equivalent martingale measure $\mathbb Q$ in the BSM model
- Suppose $\mathbb P$ and $\mathbb Q$ are equivalent probability measures on a finite sample space Ω (so that $\mathbb P(\omega), \mathbb Q(\omega) > 0, \forall \omega \in \Omega$)
- ullet Radon-Nikodým derivative of measure ${\mathbb Q}$ w.r.t. measure ${\mathbb P}$

$$Z(\omega) = \frac{\mathbb{Q}(\omega)}{\mathbb{P}(\omega)}$$

For any event A,

$$\mathbb{E}^{\mathbb{Q}}[\mathbf{1}_A] = \mathbb{Q}(A) = \sum_{\omega \in A} \mathbb{Q}(\omega) = \sum_{\omega \in A} Z(\omega) \mathbb{P}(\omega) = \mathbb{E}^{\mathbb{P}}[\mathbf{1}_A Z]$$

- Basic properties of Radon-Nikodým derivative
 - Positive: Z > 0
 - Unit expectation:

$$\mathbb{E}^{\mathbb{P}}[Z] = \sum_{\omega} Z(\omega) \mathbb{P}(\omega) = \sum_{\omega} \mathbb{Q}(\omega) = 1$$

• For any r.v. *Y*:

$$\mathbb{E}^{\mathbb{Q}}[Y] = \sum_{\omega \in \Omega} Y(\omega) \mathbb{Q}(\omega) = \sum_{\omega \in \Omega} Z(\omega) Y(\omega) \mathbb{P}(\omega) = \mathbb{E}^{\mathbb{P}}[ZY]$$

Radon-Nikodým theorem

• (Radon-Nikodým) Let $\mathbb P$ and $\mathbb Q$ be equivalent probability measures on $(\Omega,\mathcal F)$. There exists an a.s. positive r.v. Z such that $\mathbb E^{\mathbb P}[Z]=1$,

$$\mathbb{Q}(A) = \int_A Z(\omega) d\mathbb{P}(\omega) = \mathbb{E}^{\mathbb{P}}[\mathbf{1}_A Z], \quad orall A \in \mathcal{F}$$

The Radon-Nikodým derivative Z is written as

$$Z = \frac{d\mathbb{Q}}{d\mathbb{P}}$$

• For any r.v. Y,

$$\mathbb{E}^{\mathbb{Q}}[Y] = \mathbb{E}^{\mathbb{P}}[ZY], \quad \mathbb{E}^{\mathbb{P}}[Y] = \mathbb{E}^{\mathbb{Q}}[Y/Z]$$

• Conversely, if Z is an a.s. positive r.v. on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}^{\mathbb{P}}[Z] = 1$, then

$$\mathbb{Q}(A) = \int_A Z(\omega) d\mathbb{P}(\omega) = \mathbb{E}^{\mathbb{P}}[\mathbf{1}_A Z], \quad \forall A \in \mathcal{F}$$

defines an equivalent probability measure on (Ω, \mathcal{F})

• Suppose $X \sim N(0,1)$ on $(\Omega, \mathcal{F}, \mathbb{P})$ and $Y = \mu + \sigma X$ (under measure \mathbb{P} , $Y \sim N(\mu, \sigma^2)$). Define a new measure \mathbb{Q} via

$$Z = rac{d\mathbb{Q}}{d\mathbb{P}} = e^{- heta X - rac{1}{2} heta^2}, \quad ext{where } heta = rac{\mu -
u}{\sigma}$$

• $Y \sim N(\nu, \sigma^2)$ under the new measure $\mathbb Q$

$$\mathbb{Q}(Y \le y) = \mathbb{Q}\left(X \le \frac{y - \mu}{\sigma}\right) = \mathbb{E}^{\mathbb{P}}\left[1_{\{X \le \frac{y - \mu}{\sigma}\}}e^{-\theta X - \frac{1}{2}\theta^{2}}\right] \\
= \int_{-\infty}^{\frac{y - \mu}{\sigma}} e^{-\theta X - \frac{1}{2}\theta^{2}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}} dx \\
= \int_{-\infty}^{\frac{y - \mu}{\sigma}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x + \theta)^{2}} dx \\
= \int_{-\infty}^{\frac{y - \mu}{\sigma} + \theta} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}u^{2}} du \\
= \int_{-\infty}^{\frac{y - \nu}{\sigma}} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}u^{2}} du = N\left(\frac{y - \nu}{\sigma}\right)$$

Girsanov theorem

- Girsanov theorem changes the drift of a Brownian motion
- (Girsanov theorem) Given T > 0, let $\{B_t, 0 \le t \le T\}$ be a BM on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ and θ_t be an adapted process, then

$$Z_{T} = \frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\frac{1}{2}\int_{0}^{T}\theta_{t}^{2}dt - \int_{0}^{T}\theta_{t}dB_{t}\right)$$

defines an equivalent measure $\mathbb Q$ so that the process

$$B_t^* = \int_0^t \theta_s ds + B_t$$
 (in differential form $dB_t^* = \theta_t dt + dB_t$)

is a standard BM under the measure \mathbb{Q} .

• When $\theta_t = \theta$ is a constant,

$$Z_T = \frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\frac{1}{2}\theta^2T - \theta B_T\right).$$

Then $B_t^* = \theta t + B_t$ is a standard BM under measure \mathbb{Q} .

• Recall that Z_t defined below is a martingale

$$Z_t = \exp\left(-\frac{1}{2}\int_0^t \theta_s^2 ds - \int_0^t \theta_s dB_s\right)$$

satisfying $dZ_t = -\theta_t Z_t dB_t$. Therefore $\mathbb{E}^{\mathbb{P}}[Z_T] = Z_0 = 1$, $Z_T > 0$. So Z_T defines an equivalent measure \mathbb{Q} .

• $\{Z_t, 0 \le t \le T\}$ is known as the **Radon-Nikodým derivative** process

Proof of Girsanov theorem

- Theorem (Lévy): A continuous martingale M_t starting from zero is a BM if the quadratic variation [M, M](t) = t (Shreve p.168)
- **Property I**: suppose Y_t is \mathcal{F}_t -measurable,

$$\mathbb{E}^{\mathbb{Q}}[Y_t] = \mathbb{E}^{\mathbb{P}}[Y_t Z_t]$$

In fact,

$$\begin{split} \mathbb{E}^{\mathbb{P}}[Y_t Z_t] &= \mathbb{E}^{\mathbb{P}}[Y_t \mathbb{E}^{\mathbb{P}}[Z_T | \mathcal{F}_t]] = \mathbb{E}^{\mathbb{P}}[\mathbb{E}^{\mathbb{P}}[Y_t Z_T | \mathcal{F}_t]] \\ &= \mathbb{E}^{\mathbb{P}}[Y_t Z_T] = \mathbb{E}^{\mathbb{Q}}[Y_t] \end{split}$$

• **Property II**: suppose $s \le t$ and Y_t is \mathcal{F}_t -measurable

$$\mathbb{E}^{\mathbb{Q}}[Y_t|\mathcal{F}_s] = \frac{1}{Z_s}\mathbb{E}^{\mathbb{P}}[Y_tZ_t|\mathcal{F}_s]$$

By the definition of conditional expectation, for any $A \in \mathcal{F}_s$

$$\begin{split} \int_{A} \frac{1}{Z_{s}} \mathbb{E}^{\mathbb{P}}[Y_{t}Z_{t}|\mathcal{F}_{s}]d\mathbb{Q} &= \mathbb{E}^{\mathbb{Q}}\left[\mathbf{1}_{A} \frac{1}{Z_{s}} \mathbb{E}^{\mathbb{P}}[Y_{t}Z_{t}|\mathcal{F}_{s}]\right] \\ &= \mathbb{E}^{\mathbb{P}}\left[\mathbf{1}_{A} \mathbb{E}^{\mathbb{P}}[Y_{t}Z_{t}|\mathcal{F}_{s}]\right] \quad \text{by property I} \\ &= \mathbb{E}^{\mathbb{P}}\left[\mathbf{1}_{A}Y_{t}Z_{t}\right] \\ &= \mathbb{E}^{\mathbb{Q}}[\mathbf{1}_{A}Y_{t}] \quad \text{by property I} \\ &= \int_{A} Y_{t}d\mathbb{Q} \end{split}$$

• The quadratic variation of B_t^* is t since

$$dB_t^* = \theta_t dt + dB_t, \quad (dB_t^*)^2 = dt$$

It suffices to show that B_t^* is a martingale under measure \mathbb{Q} . We first show that $B_t^*Z_t$ is a martingale under measure \mathbb{P}

$$d(B_t^* Z_t) = B_t^* dZ_t + Z_t dB_t^* + dB_t^* \cdot dZ_t$$

$$= B_t^* (-\theta_t Z_t dB_t) + Z_t (\theta_t dt + dB_t)$$

$$+ (\theta_t dt + dB_t) (-\theta_t Z_t dB_t)$$

$$= (1 - \theta_t B_t^*) Z_t dB_t$$

Under measure \mathbb{Q} , $s \leq t$

$$\mathbb{E}^{\mathbb{Q}}[B_t^*|\mathcal{F}_s] = \frac{1}{Z_s} \mathbb{E}[B_t^* Z_t | \mathcal{F}_s] = \frac{1}{Z_s} B_s^* Z_s = B_s^*$$

Equivalent martingale measure

ullet Asset price follows a (generalized) GBM over period [0,T]

$$dS_t = \mu_t S_t dt + \sigma_t S_t dB_t,$$

 μ_t and $\sigma_t > 0$ are adapted w.r.t. natural filtration $\mathbb{F} = \{\mathcal{F}_t\}$ of the BM

- Risk free interest rate is r_t , adapted w.r.t. \mathbb{F}
- What is the EMM \mathbb{Q} under which discounted asset price $S_t^* = D_t S_t$ is a martingale? The **discount factor** is

$$D_t = e^{-\int_0^t r_s ds} \Leftrightarrow dD_t = -r_t D_t dt$$

• By the Itô product rule,

$$dS_t^* = D_t dS_t + S_t dD_t$$

$$= D_t (\mu_t S_t dt + \sigma_t S_t dB_t) - r_t D_t S_t dt$$

$$= (\mu_t - r_t) D_t S_t dt + D_t \sigma_t S_t dB_t$$

$$= \sigma_t S_t^* \left(\frac{\mu_t - r_t}{\sigma_t} dt + dB_t \right)$$

$$= \sigma_t S_t^* (\theta_t dt + dB_t) \quad \text{where } \theta_t = \frac{\mu_t - r_t}{\sigma_t}$$

Let
$$B_t^* = \int_0^t \theta_s ds + B_t \quad \Leftrightarrow \quad dB_t^* = \theta_t dt + dB_t$$

• By Girsanov theorem, B_t^* is a standard BM under measure $\mathbb Q$ defined by Radon-Nikodým derivative

$$Z_T = rac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-rac{1}{2}\int_0^T heta_t^2 dt - \int_0^T heta_t dB_t
ight)$$

• Discounted asset price process $S_t^* = D_t S_t$ is a martingale under measure $\mathbb Q$

$$dS_t^* = \sigma_t S_t^* dB_t^* \Leftrightarrow S_t^* = S_0 + \int_0^\tau S_u^* dB_u^*$$

- Q is the desired risk neutral measure:
 - Discounted asset price process is martingale
 - By Ito product rule,

$$dS_t = \mu_t S_t dt + \sigma_t S_t dB_t$$

$$= \mu_t S_t dt + \sigma_t S_t (dB_t^* - \theta_t dt)$$

$$= (\mu_t - \sigma_t \theta_t) S_t dt + \sigma_t S_t dB_t^*$$

$$= r_t S_t dt + \sigma_t S_t dB_t^* \quad \text{since } \theta_t = \frac{\mu_t - r_t}{\sigma_t}$$

 θ_t is known as the market price of risk: it is the excess rate of return per unit of volatility

Pricing European style derivatives

- Consider a European style derivative with payoff V_T (\mathcal{F}_T -measurable)
 - V may depend $S_u, u \leq T$ (e.g., lookback, Asian options)
- Consider a replicating strategy
 - with value X_t at time t
 - holding Δ_t shares
 - ullet investing $X_t \Delta_t S_t$ at the risk free interest rate
 - ullet replicates the payoff of the derivative: $X_T=V_T$
 - will show that such a strategy exists
- First show that discounted value process of the replicating portfolio is a martingale under measure Q

• Dynamics of X_t :

$$dX_t = \Delta_t dS_t + r_t (X_t - \Delta_t S_t) dt$$

$$= \Delta_t (\mu_t S_t dt + \sigma_t S_t dB_t) + r_t (X_t - \Delta_t S_t) dt$$

$$= r_t X_t dt + \Delta_t S_t (\mu_t - r_t) dt + \sigma_t \Delta_t S_t dB_t$$

• The $r_t X_t dt$ term will disappear when discounted value process is considered

• Dynamics of $X_t^* = D_t X_t$:

$$d(X_t^*) = D_t dX_t + X_t dD_t$$

$$= D_t (r_t X_t dt + \Delta_t S_t (\mu_t - r_t) dt + \sigma_t \Delta_t S_t dB_t) - r_t D_t X_t dt$$

$$= D_t (\Delta_t S_t (\mu_t - r_t) dt + \sigma_t \Delta_t S_t dB_t)$$

$$= \Delta_t S_t^* \sigma_t (\theta_t dt + dB_t) = \Delta_t S_t^* \sigma_t dB_t^*$$

so $X_t^* = D_t X_t$ is a martingale under measure $\mathbb Q$

Risk neutral pricing

 Risk neutral pricing of European style (including path dependent) derivatives

$$D_t X_t = \mathbb{E}^{\mathbb{Q}}[D_T X_T | \mathcal{F}_t] = \mathbb{E}^{\mathbb{Q}}[D_T V_T | \mathcal{F}_t]$$

hence the value of the derivative at time t is given by

$$V_t = X_t = rac{1}{D_t} \mathbb{E}^{\mathbb{Q}}[D_T V_T | \mathcal{F}_t] = \mathbb{E}^{\mathbb{Q}}\left[\exp\left(-\int_t^T r_s ds\right) V_T | \mathcal{F}_t
ight]$$

Martingale representation theorem

- Existence of the replicating portfolio is guaranteed by the martingale representation theorem
- (Martingale representation theorem) Let B_t be a BM in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and M_t a martingale w.r.t. $\mathcal{F}_t = \sigma(B_s, s \leq t)$. Then there exists an adapted process Δ_t such that

$$dM_t = \Delta_t dB_t, \quad \emph{i.e.,} \quad M_t = M_0 + \int_0^t \Delta_s dB_s$$

ullet Define $ar{V}_t$ by

$$ar{V}_t = rac{1}{D_t} E^{\mathbb{Q}}[D_T V_T | \mathcal{F}_t], \quad 0 \le t \le T$$

then $\{D_t \bar{V}_t, 0 \le t \le T\}$ is a martingale under measure \mathbb{Q} : for s < t,

$$\mathbb{E}^{\mathbb{Q}}[D_t \bar{V}_t | \mathcal{F}_s] = \mathbb{E}^{\mathbb{Q}}[\mathbb{E}^{\mathbb{Q}}[D_T V_T | \mathcal{F}_t] | \mathcal{F}_s] = \mathbb{E}^{\mathbb{Q}}[D_T V_T | \mathcal{F}_s] = D_s \bar{V}_s$$

• By martingale representation theorem, there exists an adapted process Δ_t^*

$$d(D_t\bar{V}_t)=\Delta_t^*dB_t^*$$

• A trading strategy with initial value $X_0 = \bar{V}_0$, value X_t at t, holding Δ_t shares and invest $X_t - \Delta_t S_t$ at risk free rate will replicate the option payoff V_T

$$\Delta_t = \frac{\Delta_t^*}{S_t^* \sigma_t}$$

$$d(D_tX_t) = \Delta_t\sigma_tS_t^*dB_t^* = \Delta_t^*dB_t^* = d(D_t\bar{V}_t)$$

So $X_t = \bar{V}_t$ for any $t \in [0, T]$. In particular,

$$X_T = \bar{V}_T = V_T$$

Risk neutral pricing formula

• Derivative with payoff V_T : risk neutral pricing formula

$$V_t = \mathbb{E}^{\mathbb{Q}}\left[\left. \exp\left(-\int_t^T r_s ds
ight) V_T
ight| \mathcal{F}_t
ight]$$

where r_t is the risk free interest rate. In particular,

$$V_0 = \mathbb{E}^{\mathbb{Q}}\left[\exp\left(-\int_0^T r_s ds
ight)V_T
ight]$$

• Under measure \mathbb{Q} , underlying asset price follows (μ_t not used)

$$dS_t = r_t S_t dt + \sigma_t S_t dB_t^*$$

• Black-Scholes formula follows with constants $r_t \equiv r, \sigma_t \equiv \sigma$

Derivatives on assets with continuous yield

• **Currency options**: a European call on GBP with strike *K*

option payoff at maturity
$$T:(S_T-K)^+$$

 S_T is the exchange rate at T. A currency is an asset paying continuous yield (e.g., the GBP risk free interest rate)

 Stock index options: a European put on S&P 500 with strike K

option payoff at maturity
$$T:(K-S_T)^+$$

 S_T is S&P 500 index value at T. Stock indices are considered as assets paying continuous dividend

• Futures options: a European call on copper futures with strike price K=3.15 (per pound). Payoff at maturity T:

$$(F_T - K)^+$$
 plus a long position in the futures contract

 F_T is the futures price at time T of the futures contract (with maturity $T^* > T$)

- Why trade options on copper futures instead of copper itself?
 - Futures contracts are more liquid
 - Exercising of the futures option does not usually lead to delivery of the underlying asset
- A futures option can be priced as an option on an asset paying continuous yield at the risk free interest rate

Pricing derivatives on assets with continuous yield

• Suppose the underlying asset pays continuous yield at rate q_t $(\mathcal{F}_t \text{ adapted})$

$$dS_t = (\mu_t - q_t)S_t dt + \sigma_t S_t dB_t$$

- ullet Martingale method for the pricing of a European derivative with payoff V_T
 - Find the equivalent measure under which the discounted value of the replicating portfolio is a martingale
 - Obtain risk neutral pricing formula
- Suppose the risk free interest rate is r_t (\mathcal{F}_t adapted)

- Consider the value X_t of a replicating portfolio with Δ_t shares, $X_t \Delta_t S_t$ invested at the risk free rate
 - the value change of the underlying assets: $\Delta_t dS_t$
 - the value change of the risk free investment: $r_t(X_t \Delta_t S_t)dt$
 - dividend: $q_t \Delta_t S_t dt$

$$dX_t = \Delta_t dS_t + r_t (X_t - \Delta_t S_t) dt + q_t \Delta_t S_t dt$$

= $r_t X_t dt + (\mu_t - r_t) \Delta_t S_t dt + \Delta_t \sigma_t S_t dB_t$

Discount factor

$$D_t = \exp\left(-\int_0^t r_s ds\right)$$
 (i.e., $dD_t = -rD_t dt$)

• Discounted value process $X_t^* = D_t X_t$

$$\begin{aligned} d(X_t^*) &= D_t dX_t + X_t dD_t \\ &= r_t X_t^* dt + (\mu_t - r_t) \Delta_t S_t^* dt + \Delta_t \sigma_t S_t^* dB_t - r_t X_t^* dt \\ &= (\mu_t - r_t) \Delta_t S_t^* dt + \Delta_t \sigma_t S_t^* dB_t \\ &= \Delta_t S_t^* \sigma_t (\theta_t dt + dB_t) \quad \text{where } \theta_t = \frac{\mu_t - r_t}{\sigma_t} \\ &= \Delta_t S_t^* \sigma_t dB_t^* \quad \text{where } dB_t^* = \theta_t dt + dB_t \end{aligned}$$

• Find $\mathbb Q$ under which X_t^* is a martingale. It suffices to make B_t^* a standard BM under measure $\mathbb Q$

Apply the Girsanov theorem with

$$Z_T = \frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\frac{1}{2}\int_0^T \theta_t^2 dt - \int_0^T \theta_t dB_t\right)$$

Then B_t^* is a standard BM under measure $\mathbb Q$

- Under measure \mathbb{Q} , $X_t^* = D_t X_t$ is a martingale
- ullet Dynamics of the asset price process under measure ${\mathbb Q}$

$$dS_t = (\mu_t - q_t)S_t dt + \sigma_t S_t dB_t \quad \text{(note that } dB_t^* = \theta_t dt + dB_t)$$

$$= (\mu_t - q_t)S_t dt + \sigma_t S_t (dB_t^* - \theta_t dt) \quad (\theta_t = \frac{\mu_t - r_t}{\sigma_t})$$

$$= (r_t - q_t)S_t dt + \sigma_t S_t dB_t^*$$

• Since $D_t X_t$ is a martingale

$$D_t X_t = \mathbb{E}^{\mathbb{Q}}[D_T X_T | \mathcal{F}_t] = \mathbb{E}^{\mathbb{Q}}[D_T V_T | \mathcal{F}_t]$$

Risk neutral pricing formula

$$V_t = X_t = \mathbb{E}^{\mathbb{Q}}\left[\left.\exp\left(-\int_t^T r_s ds
ight)V_T
ight|\mathcal{F}_t
ight]$$

 Existence of the replicating portfolio guaranteed by the martingale representation theorem

Black-Scholes formula (assets with continuous yield)

• Suppose $r_t \equiv r$, $q_t \equiv q$, $\sigma_t \equiv \sigma$ are constants

$$dS_t = (r - q)S_t dt + \sigma S_t dB_t^*$$

For a call option with $V_T = (S_T - K)^+$, compute

$$V_t = \mathbb{E}^{\mathbb{Q}}\left[e^{-r(T-t)}(S_T - K)^+|\mathcal{F}_t
ight]$$

where

$$S_T = S_0 \exp\left(\left(r - q - rac{1}{2}\sigma^2\right)T + \sigma B_T^*\right)$$

has a log normal distribution under measure $\mathbb Q$

 Black-Scholes formula for European vanilla call and put options on assets with continuous yield

$$c(t, S_t) = S_t e^{-q(T-t)} N(d_+) - K e^{-r(T-t)} N(d_-)$$

$$p(t, S_t) = -S_t e^{-q(T-t)} N(-d_+) + K e^{-r(T-t)} N(-d_-)$$

where

$$d_{\pm} = \frac{\ln(S_t/K) + (r - q \pm \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

• Intuitively: replace S_t by $S_t e^{-q(T-t)}$ in the Black-Scholes formula on assets with no yield

Black-Scholes-Merton equation

• Alternatively, one obtains the following PDE for derivatives with payoff $V_T(S_T)$

$$\frac{\partial V}{\partial t} + (r - q)S\frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} - rV = 0$$

Numbers of shares needed for replicating/hedging

$$\Delta_t = \frac{\partial \textit{V}}{\partial \textit{S}} = \left\{ \begin{array}{ll} e^{-q(T-t)}\textit{N}(\textit{d}_+) & \text{for a vanilla European call} \\ e^{-q(T-t)}(\textit{N}(\textit{d}_+)-1) & \text{for a vanilla European put} \end{array} \right.$$

- Index/currency options
 - Index options: q is the continuous dividend yield
 - Currency options: $q = r_f$ is the foreign risk free interest

Pricing futures options

 Consider an asset with price process (under risk neutral measure)

$$dS_t = rS_t dt + \sigma S_t dB_t^*$$

• Let F_t be the futures price of the asset with maturity $T^* \geq T$ (T is the option maturity)

$$F_t = e^{r(T^*-t)}S_t = e^{rT^*}S_t^*, \quad S_t^* = e^{-rt}S_t$$

• Dynamics of F_t

$$dF_t = e^{rT^*} dS_t^* = e^{rT^*} \sigma S_t^* dB_t^* = (r - r)F_t dt + \sigma F_t dB_t^*$$

Futures price evolves like an asset paying continuous yield at rate q=r

Suppose option maturity is T, futures price at time t is F_t.
 Then European call/put prices are given by

$$c(t, F_t) = e^{-r(T-t)} [F_t N(d_+) - KN(d_-)]$$
$$p(t, F_t) = e^{-r(T-t)} [-F_t N(-d_+) + KN(-d_-)]$$

where

$$d_{\pm} = \frac{\ln(F_t/K) \pm \frac{1}{2}\sigma^2(T-t)}{\sigma\sqrt{T-t}}$$

Black's model for pricing futures options (Black 1976)

Greek Letters

- Hedging is important for derivative traders. E.g., writing a naked call option is very risky
- Greeks letters measure sensitivities of derivative price to asset price, volatility, etc.
- Consider a European derivative with value process $\{V_t, t \geq 0\}$ in the Black-Scholes-Merton model

$$dS_t = (r - q)S_t dt + \sigma S_t dB_t^*$$

Delta

 Delta measures rate of change in derivative value as asset price changes

$$\Delta_t = \frac{\partial V}{\partial S}$$

- **Delta hedging** for a short position in a simple derivative (payoff V_T only depends on S_T)
 - Start with V_0 received from the short position
 - Long Δ_t shares at time t, invest $V_t \Delta_t S_t$ at the risk free interest rate
 - The short position is completely hedged (the hedged position is delta neutral)

- Delta of a long forward contract
 - Value of a long forward contract with delivery price K (asset with no yield (q=0))

$$V_t = e^{-q(T-t)}S_t - e^{-r(T-t)}K$$

- Delta: $\Delta_t = e^{-q(T-t)} = 1$, a static hedging
- Dynamic hedging
 - \bullet Δ_t changes over time
 - Need to adjust number of shares held over time (e.g., daily)
 - How frequent one rebalances?
- Γ measures rate of change in delta as asset price changes

$$\Gamma = \frac{\partial^2 V}{\partial S^2}$$

Gamma

- Small gamma: delta is less sensitive to asset price changes; less frequent refinancing to keep a delta neutral position
- Gamma of the underlying asset is zero:

$$\frac{\partial^2 S}{\partial S^2} = 0$$

- Need an additional derivative (with non zero gamma) to create a gamma neutral position,
- A delta- and gamma-neutral hedge reduces the effect that transaction costs are not zero

Risk management

 Vega measures the sensitivity of the derivative value to volatility

$$\mathcal{V} = \frac{\partial V}{\partial \sigma}$$

Need two additional derivatives to hedge a certain derivative by constructing a *delta-, gamma-, and vega-neutral* portfolio

• Risk management: risk manager sets maximum allowed risk exposures $(\Delta, \Gamma, \text{vega}, \text{etc.})$ for each trading desk