ASSIGNMENT-2

Name:Gopu Bala Reshma Sravani

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.get_dataset_names()
     ['anagrams',
      'anscombe',
      'attention',
      'brain_networks',
      'car crashes',
      'diamonds',
      'dots',
      'dowjones',
      'exercise',
      'flights',
      'fmri',
      'geyser',
      'glue',
      'healthexp',
      'iris',
      'mpg',
      'penguins',
      'planets',
      'seaice',
      'taxis',
      'tips',
      'titanic']
df=sns.load_dataset('car_crashes')
df
```

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev	
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL	
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK	
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ	
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR	
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA	
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	СО	
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ	
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE	
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC	
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL	
10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA	
11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI	
12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID	
13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL	
14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN	
15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA	
16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS	
17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY	
18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA	
19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME	
20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD	
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA	
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI	
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN	
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS	
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО	
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT	

27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8 692	9.116	890.03	111.62	WA
nfo								

df.info

<bou< td=""><td>nd method</td><td>DataFram</td><td>ne.info of</td><td>total speedir</td><td>ng alcohol</td><td>not_distracted</td><td>no_previous</td><td>ins_premium</td><td>\</td></bou<>	nd method	DataFram	ne.info of	total speedir	ng alcohol	not_distracted	no_previous	ins_premium	\
0	18.8	7.332	5.640	18.048	15.040	784.55			
1	18.1	7.421	4.525	16.290	17.014	1053.48			
2	18.6	6.510	5.208	15.624	17.856	899.47			
3	22.4	4.032	5.824	21.056	21.280	827.34			
4	12.0	4.200	3.360	10.920	10.680	878.41			
5	13.6	5.032	3.808	10.744	12.920	835.50			
6	10.8	4.968	3.888	9.396	8.856	1068.73			
7	16.2	6.156	4.860	14.094	16.038	1137.87			

8	5.9	2.006	1.593	5.900	5.900	1273.89
9	17.9	3.759	5.191	16.468	16.826	1160.13
10	15.6	2.964	3.900	14.820	14.508	913.15
11	17.5	9.450	7.175	14.350	15.225	861.18
12	15.3	5.508	4.437	13.005	14.994	641.96
13	12.8	4.608	4.352	12.032	12.288	803.11
14	14.5	3.625	4.205	13.775	13.775	710.46
15	15.7	2.669	3.925	15.229	13.659	649.06
16	17.8	4.806	4.272	13.706	15.130	780.45
17	21.4	4.066	4.922	16.692	16.264	872.51
18	20.5	7.175	6.765	14.965	20.090	1281.55
19	15.1	5.738	4.530	13.137	12.684	661.88
20	12.5	4.250	4.000	8.875	12.375	1048.78
21	8.2	1.886	2.870	7.134	6.560	1011.14
22	14.1	3.384	3.948	13.395	10.857	1110.61
23	9.6	2.208	2.784	8.448	8.448	777.18
24	17.6	2.640	5.456	1.760	17.600	896.07
25	16.1	6.923	5.474	14.812	13.524	790.32
26	21.4	8.346	9.416	17.976	18.190	816.21
27	14.9	1.937	5.215	13.857	13.410	732.28
28	14.7	5.439	4.704	13.965	14.553	1029.87
29	11.6	4.060	3.480	10.092	9.628	746.54
30	11.2	1.792	3.136	9.632	8.736	1301.52
31	18.4	3.496	4.968	12.328	18.032	869.85
32	12.3	3.936	3.567	10.824	9.840	1234.31
33	16.8	6.552	5.208	15.792	13.608	708.24
34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99
40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43	19.4	7.760	7.372	17.654	16.878	1004.75
44	11.3	4.859	1.808	9.944	10.848	809.38
45	13.6	4.080	4.080	13.056	12.920	716.20
46	12.7	2.413	3.429	11.049	11.176	768.95
47	10.6	4.452	3.498	8.692	9.116	890.03
48	23.8	8.092	6.664	23.086	20.706	992.61
49	13.8	4.968	4.554	5.382	11.592	670.31
50	17.4	7.308	5.568	14.094	15.660	791.14

ins_losses abbrev 0 145.08 AL 1 133.93 AK 2 110.35 AZ df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):

		/ -	
#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	not_distracted	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

df.describe()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	E
coun	t 51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	
mear	15.790196	4.998196	4.886784	13.573176	14.004882	886.957647	134.493137	
std	4.122002	2.017747	1.729133	4.508977	3.764672	178.296285	24.835922	
min	5.900000	1.792000	1.593000	1.760000	5.900000	641.960000	82.750000	
25%	12.750000	3.766500	3.894000	10.478000	11.348000	768.430000	114.645000	
50%	15.600000	4.608000	4.554000	13.857000	13.775000	858.970000	136.050000	
75%	18.500000	6.439000	5.604000	16.140000	16.755000	1007.945000	151.870000	
max	23.900000	9.450000	10.038000	23.661000	21.280000	1301.520000	194.780000	

df.head()

		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev	\blacksquare
	^	400	7 000	F 040	40 040	45.040	704 55	445.00	Λ1	_
4E +-	:1/	\								

df.tail()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev	\blacksquare
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA	ıl.
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA	
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV	
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI	
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY	

df.isnull().sum()

total 0
speeding 0
alcohol 0
not_distracted 0
no_previous 0
ins_premium 0
ins_losses 0
abbrev 0
dtype: int64

df.isna().sum()

total 0 speeding 0 alcohol 0 not_distracted 0 no_previous 0 ins_premium 0 ins_losses 0 abbrev 0 dtype: int64

corr=df.corr()
corr

<ipython-input-13-7d5195e2bf4d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a f
 corr=df.corr()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	\blacksquare
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011	ıl.
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928	
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547	
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970	
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359	
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.623116	
ins losses	-0 036011	-0 065928	-0 112547	-0 075970	-0 006359	0 623116	1 000000	

sns.heatmap(corr,annot=True)

<Axes: >

Scatterplot

sns.scatterplot(x='total',y='speeding',data=df)

<Axes: xlabel='total', ylabel='speeding'>

Inference involved: From the graph it is evident that the total number of drivers in fatal collisions is linearly proportional percentage of drivers involved in fatal collisions, who were speeding.

sns.scatterplot(x='total',y='alcohol',data=df,color="g")

<Axes: xlabel='total', ylabel='alcohol'>

Inference involved: From the graph it is evident that the total number of drivers in fatal collisions is linearly proportional percentage of drivers involved in fatal collisions, consuming alcohol.

```
<Axes: xlabel='total'. vlabel='not distracted'>
```

Inference involved: From the graph it is evident that the total number of drivers in fatal collisions is linearly proportional percentage of drivers involved in fatal collisions who were not distracted.

Inference involved: From the graph it is evident that the total number of drivers in fatal collisions is linearly proportional percentage of drivers involved in fatal collisions who do not have previous accidents.

Distributionplot

```
sns.displot(df['ins_premium'])
```

total

<seaborn.axisgrid.FacetGrid at 0x7cf23d533b80>

Inference:ins_premium mostly lies between 300 to 900

Relplot

sns.relplot(x='alcohol',y='speeding',data=df,hue="abbrev")

RI

SC

SD

TN

Inference:with an increase in alcohol consumption, speeding also increasing.

_ \

Barplot

■ VVA

```
plt.figure(figsize=(18,16))
sns.barplot(data=df,x="abbrev",y="total")
plt.show()
```


sns.jointplot(x="ins_premium",y="ins_losses",data=df)

plt.figure(figsize=(18,16))

sns.boxplot(x=df["total"],y=df["alcohol"],data=df) plt.show()

https://colab.research.google.com/drive/1mJ0EB6YqfMq3yuNIPvtH57WtBLIvsP_A#scrollTo=oVKseCTx0P8Q&printMode=true

✓ 1s completed at 10:10 PM

×