Øving 4 IELET1002 - Datateknikk

Gunnar Myhre, BIELEKTRO

1. november 2021

1 Oppgåve 1

1.1 a)

Sekvenskoplinga er synkron sidan vippene har det same klokkesignalet, og sidan utgongsvariabelen y er kun ein funksjon av vippeutgongane og ikkje den eksterne inngongsvariablen x er det snakk om MOORE-logikk

1.2 b)

Finner først funksjonsuttrykk ved å analysere den kombinatoriske blokka

•
$$J_A(A, B, x) = \overline{A + \overline{B}} \to \overline{A}B$$

•
$$K_A(A, B, x) = \overline{\overline{A + \overline{B} + \overline{B} + x}} \to (A + \overline{B})(B + x) \to B\overline{x} + AB$$

•
$$J_B(A, B, x) = K_A(A, B, x) = B\bar{x} + AB$$

•
$$K_B(A, B, x) = \overline{x} + \overline{B} \to Bx$$

•
$$y(A,B) = \overline{A+B} \to \overline{A}\overline{B}$$

Finner karakteristisk tabell for JK-vippe

J	K	Q_{t+1}	
0	0	Q_t	(uendra)
0	1	0	(reset)
1	0	1	(set)
1	1	Q_{t+1}	(toggle)

Så setter eg inn i tabell for tilstand og nestetilstand

ABx	J_A	K_A	J_B	K_B	A_{t+1}	B_{t+1}	y
000	0	0	0	0	0	0	1
001	0	1	1	0	0	1	1
010	1	0	0	0	1	1	0
011	1	0	0	1	1	0	0
100	0	0	0	0	1	0	0
101	0	1	1	0	0	1	0
110	0	1	1	0	0	1	0
111	0	1	1	1	0	0	0

1.3 c)

Teikner tilstandsdiagrammet med dei fire tilstandane AB.

Dette konkluderer analysen.

2 Oppgåve 2

2.1 a)

Vi har tre tilstandar, og treng derfor to vipper sidan $2^2 > 3$. Setter opp eksitasjonstabell for JK-vippe.

Q_T	Q_{t+1}	JK
0	0	0X
0	1	1X
1	0	X1
1	1	X0

Fyller inn nestetilstandstabellen med informasjon frå tilstandsdiagrammet og vippefunksjonane vha. eksitasjonstabellen til JK-vippe

Indeks	ABx	A_{t+1}	B_{t+1}	y	J_A	K_A	J_B	K_B
0	000	0	0	0	0	X	0	X
1	001	0	1	0	0	X	1	X
2	010	0	0	1	0	X	X	1
3	011	1	0	0	1	X	X	1
4	100	0	0	0	X	1	0	X
5	101	1	0	1	X	0	0	X
6	110	-	-	-	X	X	X	X
7	111	-	-	-	X	X	X	X

Tilstanden når AB=11 er ikkje brukt i tilstandsdiagrammet, derfor kan vi bruke desse valfrie kombinasjonane til å forenkle logikken. Finner vippeinngongsfunksjonane vha. Karnaugh-diagram:

$$J_A(A, B, x) = Bx$$

$$K_A(A, B, x) = \bar{x}$$

 $J_B(A, B, x) = A\bar{x}$

		Bx				
		00	01	11	10	
$K_B(A,B,x) \to A$	0	-	-	1	1	
	1	-	-	-	-	

 $K_B(A, B, x) = 1$

$$y(A,B,x) \to A \\ 1 \\ 00 \\ 01 \\ 11 \\ 10 \\ 1 \\ 10 \\ 1 \\ - \\ -$$

 $y(A, B, x) = B\bar{x} + Ax$

Med alle funksjonsuttrykka kan vi konstruere den kombinatoriske blokka og dette konkluderer konstruksjonen.

2.2 b)

I forenklinga av funksjonsuttrykka i deloppgåve a) har eg vald verdiar for dei valfrie kombinasjonane. Desse kan eg nå fylle inn i nestetilstandstabellen.

- $J_A(A, B, x) = \Sigma(3, 7)$
- $K_A(A, B, x) = \Sigma(0, 2, 4, 6)$
- $J_B(A, B, x) = \Sigma(1, 3)$
- $K_B(A, B, x) = 1$
- $y(A, B, x) = \Sigma(2, 5, 6, 7)$

Indeks	ABx	A_{t+1}	B_{t+1}	y	J_A	K_A	J_B	K_B
0	000	0	0	0	0	1	0	1
1	001	0	1	0	0	0	1	1
2	010	0	0	1	0	1	0	1
3	011	1	0	0	1	0	1	1
4	100	0	0	0	0	1	0	1
5	101	1	0	1	0	0	0	1
6	110	0	0	1	0	1	0	1
7	111	1	0	1	1	0	0	1

Ut ifrå denne tabellen kan vi teikne eit nytt tilstandsdiagram som inkluderer tilstanden AB=11

Sekvenskoplinga er sjølvstartande sidan den kjem over til ein lovleg tilstand etter endelig mange periodar (her éin eller to klokkesyklusar, avhengig av påtrykt x ved oppstart). Det hadde kanskje vore meir heldig om den uønska tilstanden 11 hadde pekt til 00 for begge x, og at den ikkje hadde påtrykt y=1. Korvidt dette er eit problem kjem an på kva kretsen skal styre.

Dersom 11 hadde pekt på seg sjølv for éin verdi x ville kretsen vore vilkårleg sjølvstartande. Dette trenger ikkje å vere eit problem (f.eks. dersom x=0 er default-påtrykket og peker til ein gyldig tilstand).

Dersom 11 hadde pekt på seg sjølv for begge verdiar x ville ikkje kretsen vore sjølvstartande. Dette er ikkje bra sidan kretsen i dette tilfellet vil henge seg opp dersom den startar i tilstanden 11.

I begge tilfella vil vi kunne endre den kombinatoriske blokka ved å sette $11 \rightarrow 00$ som eit kriterie i nestetilstandstabellen og konstruere tilstandsdiagrammet på nytt. Men det er verdt å merke seg at den kombinatoriske blokka vi har konstruert vha. Karnaugh-diagrammer er den enklaste moglege, og krever derfor færrast logiske portar.

3 Oppgåve 3

3.1 a)

Ein måte å implementere dette på er med fire tilstandar, ein for kvar bit i bitmønsteret. Tilstandsdiagram for MEALY-logikk:

Ved påtrykk av 0110 vil ein bevege seg frå tilstand 00 med klokka, og til slutt påtrykke y etter fire riktige påtrykk. Dersom feil x er påtrykt vil vi returnere til enten 01 (om ein 1 var venta) eller 00 (om ein 0 var venta).

3.2 b)

Dette er eit forsøk på å implementere med MOORE-logikk. Eg kan ikkje finne nokon måte å gjere dette på med færre enn fem tilstandar.

Kretsen oppfører seg for det meste likt som kretsen i deloppgåve a). Forskjelen er at vi har ein ekstra tilstand som kun førekommer dersom sekvensen har vorte korrekt påtrykt.

3.3 c)

Fordelar og ulemper med MOORE-logikk:

- Vi trenger fem tilstandar, og derfor tre vipper. Dette medfører fleire komponent i den kombinatoriske blokka (som igjen medfører høgare tidsforsinking, høgare energiforbruk og større sjangs for feil).
- Vi har $2^3 5 = 3$ ubrukte tilstandar som potensielt må takast hensyn til
- Fordelen er at utgongane er synkrone sidan y er ein direkte utgong frå ei vippe. Utgongsverdien vil også ligge fast ein heil klokkeperiode.

Fordelar og ulemper med MEALY-logikk:

- Kretsen har fire tilstandar, så vi trenger kun to vipper.
- Utgongen kan reagere straks på endring av inngongsvariabel.
- Det er ei ulempe at utgongssignalet kan ha ei levetid som er kortare enn klokkesignalet.