Appunti di Analisi I

Analisi Matematica - Informatica - 23/24

Indice

Insiemi	4
Notazione	4
Prodotto cartesiano	4
Esempio	5
Insieme delle parti	5
Esempio	5
Funzioni	5
Funzioni Iniettive e Suriettive	6
Immagine e controimmagine	7
Numeri Reali	7
Insiemi numerici	7
Proprietà dei numeri reali	7
Algebriche	8
Di Ordinamento	8
Assioma di Continuità	8
Sottoinsiemi dei reali	9
Inferiore, Superiore, Massimo e Minimo	9
Estremo superiore ed Estremo inferiore	10
Caratterizzazione di inf e sup	11
Funzioni reali	11
Grafici, Iniettività e Suriettività	12
Funzioni elementari	13
Potenze pari	13
Potenze dispari	13
Esponenziali	14
Funzioni trigonometriche	14
Seno	14

۸n	niii	٦ŧi	٦i	Ana	lici	ı
Aυ	pui	ıu	uı	Alla	แรเ	ı

Successioni per ricorrenza	29
Successioni monotone	28
Coeff. binomiali	27
Disuguaglianza di Bernoulli (dimostrazione)	27
Principio di induzione	26
Dimostrazione del criterio della radice	26
Criterio del rapporto-radice	24
Gerarchia degli infiniti	24
Fattoriale	23
Criterio della radice	23
Criterio del rapporto	22
Criterio del rapporto & Criterio della radice	22
Dimostrazione teorema del confronto a 2	22
Disuguaglianza di Bernoulli	21
Tecniche di calcolo dei limiti	21
Teoremi di confronto	20
Teoremi algebrici	
Retta reale estesa	
Teorema di permanenza del segno	
Limitatezza delle successioni convergenti	
Teorema di unicità del limite	
Limite di una successione	
Succesioni a valori reali	16
Terminologia	
Successioni	16
Trasformazione di grafici	15
Tungente	10
Tangente	
Coseno	15

Se	erie numeriche	32
	Definizione SBAGLIATA	32
	Definizione CORRETTA	32
	Carattere di una serie (comportamento)	32
	Serie telescopiche	33
	Serie geometriche	33
	Strumenti per lo studio delle serie	34
	Teoremi algebrici	35
	Condizione necessaria	35
	Serie note	35
	Serie a termini di segno costante	36

Insiemi

Notazione

Per elenco: Prima operazione, poi insieme di partenza

$$A = \{ 1, 2, 3, 4, 5 \}$$

 $B = \{ n^2 \mid n \text{ naturale } \}$

Per proprietà: Prima insieme che scelgo, poi la proprietà che verifico

$$C = \{ n \text{ naturale } | n \text{ è un quadrato } \}$$

Altri simboli:

$$\begin{array}{c} \operatorname{appartiene} \to a \in A \\ \operatorname{non appartiene} \to a \notin A \\ \text{\`e sottoinsieme} \to A \subseteq B \\ \text{\`e sottoinsieme stretto} \to A \subset B \\ \text{insieme vuoto} \to \varnothing \\ \\ \operatorname{unione} \to A \cup B \mid \vee \\ \\ \operatorname{intersezione} \to A \cap B \mid \wedge \\ \\ \operatorname{sottrazione} \to A \setminus B \\ \\ \operatorname{cardinalit\grave{a}} \to |A| \end{array}$$

Prodotto cartesiano

Dati due insiemi A e B, il loro **prodotto cartesiano** è l'insieme delle coppie (a,b) con $a \in A, b \in B$.

Si indica con $A \times B$.

$$|A \times B| = |A| \cdot |B|$$

Esempio

$$A = \{ 1, 2, 3 \}$$

$$A \times A = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \}$$

Insieme delle parti

Dato A, $\mathcal{P}(A)$ è l'insieme di tutti i sottoinsiemi di A.

$$|\mathcal{P}(A)| = 2^{|A|}$$

Esempio

$$A = \{ 1, 2 \}$$

$$\mathcal{P}(A) = \{ \varnothing, A, \{ 0 \}, \{ 1 \} \}$$

Funzioni

Come si descrive una funzione:

- 1. Un insieme di partenza (A) (dominio);
- 2. Un insieme di arrivo (*B*) (*codominio*);
- 3. Una serie di regole che ad ogni elemento di A associa un **unico** elemento di $f(a) \in B$.

$$f: A \to B$$

Il grafico di una funzione è:

$$g = \{ (a, f(a)) \in A \times B \mid a \in A \}$$
$$= \{ (a, b) \in A \times B \mid b = f(a) \}$$

Funzioni Iniettive e Suriettive

Sia $f:A\to B$ una funzione.

• f si dice **iniettiva** se manda elementi distinti di A in elementi distinti di B.

$$a_1 \in A, a_2 \in A, a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$

ovvero se

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$

 f si dice suriettiva se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

$$\forall b \in B \,\exists a \in A \text{ t.c. } f(a) = b$$

Una funzione si dice **biunivoca** se è sia iniettiva che suriettiva.

Teorema: Una funzione $f:A\to B$ è biunivoca se e solo se è invertibile, cioè se e solo se esiste una funzione $g:B\to A$ t.c.:

$$g(f(a)) = a \,\forall \, a \in A$$

$$f(g(b)) = b \,\forall \, b \in B$$

Osservazione:

$$f:A\to B$$

- è iniettiva se ogni elemento di B è ottenuto da al più un elemento di A tramite f;
- è suriettiva se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

Immagine e controimmagine

Sia $f:A\to B$ una funzione.

- Se b = f(a) con $a \in A, b \in B$, si dice che b è immagine di a tramite f;
- Sia $C \subseteq A$ un sottoinsieme, si dice *immagine di* C tramite f l'insieme degli elementi di B che sono imamgine di elementi di C. $f(c) = \{ f(a) : a \in C \} \subseteq B$
- Immagine di A: $f(A) = \{ f(a) : a \in A \}$
- Sia $D \subseteq B$ un sottoinsieme, si dice **controimmagine di** D tramite f l'insieme di tutti gli elementi di A che hanno immagine contenuta in D.
- Controlmmagine di D: $f^{-1}(D) = \{ a \in A : f(a) \in D \}$ (definita anche se f non è invertibile).

Numeri Reali

Insiemi numerici

```
• Naturali: \mathbb{N} = \{0, 1, 2, 3, \dots\}
```

• Razionali: $\mathbb{Z}=\{\,rac{m}{n}:m\in\mathbb{Z},n\in\mathbb{N}\setminus\{\,0\,\}\,\}$

• Reali: $\mathbb R$

• Irrazionali: $\mathbb Q$

• Complessi: $\mathbb C$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{R}\subset\mathbb{Q}\subset\mathbb{C}$$

Proprietà dei numeri reali

Sono di tre tipi:

- Algebriche;
- · Di Ordinamento;
- Assioma di Continuità.

Algebriche

Sui numeri reali sono definite due operazioni $+ e \cdot$, dette somma e prodotto, con le seguenti proprietà:

- Relative alla somma:
 - Commutativa: $a+b=b+a \ \forall \ a,b \in \mathbb{R}$ (n,z,q,r,c)
 - Asociativa: $(a+b)+c=a+(b+c)\ \forall\ a,b,c\in\mathbb{R}$ (n,z,q,r,c)
 - Elemento neutro somma: $\exists \, 0 \in R \text{ t.c. } a+0=a \; \forall \, a \in \mathbb{R} \; \textit{(n,z,q,r,c)}$
 - Esistenza dell'inverso: $\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \text{t.c.} \ a+b=0 \ \textit{(z,q,r,c)}$
- Relative al prodotto:
 - Commutativa: $a \cdot b = b \cdot a \ \forall \ a,b \in \mathbb{R}$ (n,z,q,r,c)
 - Associativa: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall \ a,b,c \in \mathbb{R}$ (n,z,q,r,c)
 - Elemento neutro prodotto: $\exists 1 \in \mathbb{R} \text{ t.c. } a \cdot 1 = a \ \forall \ a \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Esistenza dell'inverso: $\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \mathsf{t.c.} \ a \cdot b = 1 \ \textit{(q,r,c)}$
- Distributiva: $a \cdot (b+c) = ab + ac \ \forall \ a,b,c \in \mathbb{R}$ (n,z,q,r,c)

Di Ordinamento

Dati due numeri reali x e y, si ah sempre che $x \ge y$ oppure $x \le y$. Tale ordinamento ha le proprietà:

- Riflessiva: $x > x \ \forall \ x \in \mathbb{R}$
- Antisimmetrica: se $x \ge y \land y \ge x$, allora x = y
- Transitiva: se $x \ge y \land y \ge z$, allora $x \ge z$
- se $x \ge y$, allora $x + z \ge y + z \ \forall z \in \mathbb{R}$
- se $x \geq y$, allora $x \cdot z \geq y \cdot z \ \forall \ z \in \mathbb{R} \ \mathsf{con} \ z \geq 0$

Queste valgono in \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , ma non in \mathbb{C} .

Assioma di Continuità

Dati $A,B\subseteq\mathbb{R}$ sottoinsiemi diversi da \varnothing . Diciamo che A sta tutto a sinistra di B se $a\leq b\ \forall\ a\in A,\ \forall\ b\in B$.

L'assioma di continuità dice che se A sta tutto a sinstra di B allora esiste almeno un $c \in \mathbb{R}$ t.c. $c > a \ \forall \ a \in A; c < b \ \forall \ b \in B$.

c non è obbligato ad essere unico; c può appartenere ad A, a B o anche a entrambi (in questo caso è unico elemento "separatore").

Esempio

$$A = \{ x \in Q : x \ge 0 \land x^2 < 2 \}$$

$$B = \{ x \in Q : x \ge 0 \land x^2 > 2 \}$$

$$\text{se } a \in A, b \in B \to a > b$$

$$c^2 = 2$$

Questo è impossibile in Q, quindi l'assioma di continuità non vale in Q.

Conclusione: sui numeri reali, $\sqrt{2}$ è l'elemento separatore tra A e B e si può dimostrare che è unico.

Sottoinsiemi dei reali

 $(a,b) \subseteq \mathbb{R}$ è l'intervallo separato da estremi $a,b \in \mathbb{R}$ (con a < b).

- $|a, b| = (a, b) = \{ x \in \mathbb{R} \text{ t.c. } a < x < b \}$
- $[a,b] = \{ x \in \mathbb{R} \text{ t.c. } a \le x \le b \}$

Inferiore, Superiore, Massimo e Minimo

Sia $A \subseteq \mathbb{R}$ un sottoinsieme *non vuoto*.

```
M \in \mathbb{R} si dice maggiorante di A se M \geq a \ \forall \, a \in A
```

```
m \in \mathbb{R} si dice minorante di A se m \leq a \ \forall \ a \in A
```

Minoranti e maggioranti non sono obbligati ad esistere. Ad esempio $A=\mathbb{N}$ ha minoranti ma non ha maggioranti.

Se esiste un maggiorante invece, ne esistono infiniti. Se M è un maggiorante, anche M+1 lo è. Lo stesso vale per i minoranti.

 $A\subseteq\mathbb{R}, A\neq\varnothing$ si dice **superiormente limitato** se ammette un maggiorante e **inferiormente limitato** se ammette un minorante. Si dice **limitato** se è contemporaneamente superiormente e inferiormente limitato.

Esempi:

- $A = (0, +\inf)$ è inferiormente limitato ma non superiormente
- $B = \{ \frac{1-n}{2} : n \in \mathbb{N} \}$ è superiormente limitato, ma non inferiormente
- C = (1, 7] è limitato

 $M\in\mathbb{N}$ si dice **massimo** di A (e si scrive $M=\max A$) se $M\in A\land M\geq a\ \forall\ a\in A$

 $m \in \mathbb{N}$ si dice **minimo** di A (e si scrive $m = \min A$) se $m \in A \land m \le a \ \forall \ a \in A$

 \max e \min non sono obbligati ad esistere, nemmeno per insiemi limitati.

Esempio:

• A = (0,1) non ha nè \max , nè \min

 \max e \min , se esistono, sono **unici**.

Estremo superiore ed Estremo inferiore

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$.

Si dice che $\sup A=+\inf$ se A non è superiormente limitato o $\sup A=L\in\mathbb{R}$ se lo è e L è il minimo dei maggioranti.

Si dice che $\inf A = -\inf$ se A non è inferiormente limitato o $\inf A = l \in \mathbb{R}$ se lo è e l è il massimo dei minoranti.

Esempi:

- $\sup \mathbb{N} = +\inf$
- $\inf \mathbb{N} = 0$
- $\sup(0,1)=1$

Teo: Se $A \subseteq \mathbb{R}, A \neq \emptyset$ è superiormente limitato, allora il minimo dei maggioranti esiste.

Dimostrazione: Sia $B=\{\,x\in\mathbb{R}\,|\,x\geq a\;\forall\,a\in A\,\}$ l'insieme dei maggioranti. Allora A sta tutto a sinistra di B. Per l'assioma di continuità c'è un elemento separatore $c\in\mathbb{R}$, ovvero $c\leq b\;\forall\,b\in B$ e $c\geq a\;\forall\,a\in A\implies c\in B$. Quindi $c=\min B$.

Esercizio per casa #todo/compito: Enunciare e dimostrare il teorema analogo per il massimo dei minoranti.

Caratterizzazione di inf e sup

- $\sup A = +\inf$ se $\forall M \in \mathbb{R} \ \exists \ a \in A \ \text{t.c.} \ a \geq M$ (ovvero se posso trovare elementi di A grandi quanto voglio)
- $\inf A = -\inf \operatorname{se} \forall M \in \mathbb{R} \ \exists \ a \in A \text{ t.c. } a \leq M$
- $\sup A = L \in \mathbb{R}$ se
 - $a \le L \ \forall \ a \in A \ (L \ \grave{e} \ un \ maggiorante)$
 - $\forall \varepsilon > 0 \; \exists \, a \in A \text{ t.c. } a \geq L \varepsilon$
- $\inf A = L \in \mathbb{R}$ se
 - $a \ge l \ \forall \ a \in A \ (l \ \grave{e} \ un \ minorante)$
 - $\forall \varepsilon > 0 \ \exists \ a \in A \ \text{t.c.} \ a \leq l + \varepsilon$

Se esiste $M = \max A$ allora $\sup A = M$. Se esiste $m = \min A$ allora $\inf A = m$. $\sup A$ non è obbligato ad appartenere ad A, ma se vi appartiene è il **massimo**. Stessa cosa per $\inf A$.

Funzioni reali

```
f:\mathbb{R}	o\mathbb{R} oppure f:A	o\mathbb{R}. Grafico di f=\{\,(x,y)\in\mathbb{R}^2:y=f(x)\,\} (\mathbb{R}^2=\mathbb{R}	imes\mathbb{R}).
```

Proprietà di simmetria:

- f si dice **pari** se $f(x) = f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'asse y)
- f si dice **dispari** se $f(x) = -f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'origine)
- f si dice **periodica** se $\exists T > 0$ t.c. $f(x+T) = f(x) \ \forall x \in \mathbb{R}$ (il grafico si ottiene traslando il pezzo [0,T] in [T,2T], [T,3T], ...)

Se $f: \mathbb{R} \to \mathbb{R}$ è dispari, allora f(0) = 0.

Se T è un periodo, anche $2T, 3T, 4T, \ldots$ lo sono. Il **minimo periodo** è il più piccolo T (se esiste) per cui vale $f(x+T)=f(x)\ \forall\ T\in\mathbb{R}$.

Proprietà di monotonia:

- *f* si dice **monotona**:
 - f si dice strettamente crescente se $x>y \implies f(x)>f(y) \ \forall \ x,y\in\mathbb{R}$
 - f si dice strettamente decrescente se $x > y \implies f(x) < f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice debolmente crescente se $x > y \implies f(x) \ge f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice debolmente decrescente se $x > y \implies f(x) \le f(y) \ \forall x, y \in \mathbb{R}$

Se f è strettamente crescente allora è anche debolmente crescente. Se f è strettamente decrescente allora è anche debolmente decrescente.

Se f è sia deb. crescente che deb. decrescente allora è **costante**.

Grafici, Iniettività e Suriettività

- Suriettiva
 in ogni elemento dell'insieme di arrivo termina almeno una freccia
 (tutto l'asse y è "coperto")
- Iniettiva \iff in ogni elemento dell'insieme di arrivo termina al più (0|1) una freccia (l'asse y è "coperto" solo una volta)
- Retta orizzontale: $y = \lambda$
- Grafico di f: y = f(x)
- Intersezioni: $f(x) = \lambda$

```
f iniettiva \iff f(x) = \lambda ha al più una soluz. \forall \, \lambda \in \mathbb{R} f suriettiva \iff f(x) = \lambda ha almeno una soluz. \forall \, \lambda \in \mathbb{R}
```

Se f è pari o periodica non è iniettiva. Se f è strettamente crescente o strettamente decrescente allora è iniettiva.

Funzioni elementari

Potenze pari

$$f(x) = x^{2k}$$
 $k \in \mathbb{N} \setminus \{0\}$

- Con $\mathbb{R} \to \mathbb{R}$ (non iniettiva o suriettiva).
- Con $\mathbb{R}_{\geq 0} o \mathbb{R}$ (iniettiva ma non suriettiva)
- Con $\mathbb{R} o \mathbb{R}_{\geq 0}$ (non iniettiva ma suriettiva)
- Con $\mathbb{R}_{\geq 0} o \mathbb{R}_{\geq 0}$ (biunivoca)

Quindi l'inverso è

$$g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$$
$$g(x) = \sqrt{x}^{2k}$$

Oss: $f(x)=x^{2k}$ è una funzione *pari*, strettamente crescente su $[0,+\infty)$ e strettamente decrescente su $[-\infty,0)$.

Oss: la funzione f(x) = |x| ha le stesse proprietà.

Potenze dispari

$$f(x) = x^{2k+1} \qquad k \in \mathbb{N}$$

È una funzione dispari.

• $\mathbb{R} o \mathbb{R}$ (biunivoca)

L'inverso è definito come

$$g: \mathbb{R} \to \mathbb{R}$$
$$g(x) = \sqrt{x^{2k+1}}$$

Vale lo stesso per $f(x) = \frac{1}{x^k}$

[!warning] Confermare la funzione

Oss: $f(x) = x^{2k+1}$ è strettamente crescente su \mathbb{R} .

Esponenziali

$$f(x) = a^x \qquad \text{con } a > 1$$

- $\mathbb{R} \to \mathbb{R}$ (inietiva)
- $\mathbb{R} o \mathbb{R}_{>0}$ (biunivoca)

L'inversa è

$$g: \mathbb{R}_{>0} \to \mathbb{R}$$
$$g(x) = \log_a x$$

Ese: fate lo stesso per $f(x) = a^x \operatorname{con} 0 < a < 1$

Oss: se $a \in (0,1)$ allora $b = \frac{1}{a} \in (1,+\infty)$.

Funzioni trigonometriche

Seno

$$f(x) = \sin x$$

 $f: \mathbb{R} \to \mathbb{R}$ è periodica di periodo minimo 2π ed è dispari ($\sin(-x) = -\sin x$).

- $\mathbb{R} \to \mathbb{R}$ (non iniettiva e non suriettiva)
- $\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \rightarrow \left[-1,1\right]$ (biunivoca)

L'inversa è

$$g: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

 $g(x) = \arcsin x$

Oss: $\arcsin(\sin(\frac{3}{4}\pi)) = \frac{\pi}{4} \neq \frac{3}{4}\pi$

Coseno

$$f(x) = \cos x$$

 $f: \mathbb{R} \to \mathbb{R}$ è periodica di periodo minimo 2π ed è pari ($\cos x = \cos(-x)$).

- $\mathbb{R} o \mathbb{R}$ (non iniettiva e non suriettiva)
- $[0,\pi] \rightarrow [-1,1]$ (biunivoca)

L'inversa è

$$g: [-1,1] \to [0,\pi]$$

 $g(x) = \arccos x$

Oss: $\arccos(\cos(\frac{3}{2}\pi)) \neq \frac{3}{2}\pi$

Tangente

$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

- $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\} \to \mathbb{R}$ è periodica di periodo minimo π ed è dispari (solo suriettiva)
- $\mathbb{R}\setminus\{\,rac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\,\} o \left(-rac{\pi}{2},rac{\pi}{2}
 ight)$ è dispari (biunivoca)

L'inversa è

$$g: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $g(x) = \arctan x$

Trasformazione di grafici

Dato $f:\mathbb{R} \to \mathbb{R}$.

- Simmetria assiale rispetto all'asse x: y = -f(x)
- Simmetria assiale rispetto all'asse y: y = f(-x)
- Traslazione del vettore (0,c) (verso l'alto se c>0): y=f(x)+c
- Traslazione del vettore (-c,0) (verso sinistra se c>0): y=f(x+c)
- Compressione verso l'asse x (dilatazione se c > 1): $y = f(x) \cdot c$
- Dilatazione verso l'asse y (compressione se c>1): $y=f(x\cdot c)$
- Ribaltamento sull'asse x: y = |f(x)|
- Ribaltamento sull'asse y: y = f(|x|)

Successioni

Terminologia

Sia $\mathcal{P}(n)$ una affermazione a proposito del numero $n \in \mathbb{N}$. Sarà vera o falsa a seconda del valore di n.

Diciamo che:

- $\mathcal{P}(n)$ è vera frequentemente se è vera per infiniti $n \in \mathbb{N}$
- $\mathcal{P}(n)$ è vera definitivamente se è vera "da un certo punto in poi", cioè se $\exists\, n_0\in\mathbb{N}$ t.c. $\mathcal{P}(n)$ è vera $\forall\, n\geq n_0$

Oss: Definitivamente \implies Frequentemente.

Es:

- 1. $n^2 \ge 1000$ è vera definitivamente
- 2. n^3 è multiplo di 8 è vera frequentemente, ma non definitivamente
- 3. $n+1 \ge 3^n$ è falsa definitivamente

Succesioni a valori reali

Def rigida: una successione a valori reali è una funzione $a: \mathbb{N} \to \mathbb{R}$.

Di solito, invece di scrivere a(n), si scrive a_n .

Oss: così non è possibile considerare $a_n = \frac{1}{n}$.

Def più elastica: una successione a valori reali è una funzione $a:A\to\mathbb{R}$ con $A\subseteq\mathbb{N}$, tale che $\exists\, n_0\in\mathbb{N}$ per cui $\forall\, n\geq n_0, n\in A$ (tale che $n\in A$ definitivamente).

Limite di una successione

Sia a_n una successione. Abbiamo 4 possibili comportamenti:

- 1. $\lim_{n\to+\infty} a_n = \ell \ (a_n \to \ell \ ; \ \ell \in \mathbb{R})$
- 2. $\lim a_n = +\infty \ (a_n \to +\infty)$
- 3. $\lim a_n = -\infty \ (a_n \to -\infty)$
- 4. $\lim a_n$ non esiste (a_n è indeterminata)

Def:

- Una successione è di tipo 4. se non è di nessun degli altri tipi
- Una successione è di tipo 2. se $\forall M \in \mathbb{R}, a_n \geq M$ definitivamente ($\forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N} \text{ t.c. } a_n \geq M \ \forall n \geq n_0$)
- Una successione è di tipo 3. se $\forall m \in \mathbb{R}, a_n \leq m$ definitivamente ($\forall m \in \mathbb{R}, \ \exists \ n_0 \in \mathbb{R}$ t.c. $a_n \leq m \ \forall \ n \geq n_0$)
- Una successione è di tipo 1. se
 - $\forall \, \varepsilon > 0, a_n \in [\ell \varepsilon, \ell + \varepsilon]$ definitivamente \lor
 - $\forall \, \varepsilon > 0, \ell \varepsilon \leq a_n \leq \ell + \varepsilon$ definitivamente \vee
 - $\forall \varepsilon > 0, |a_n \ell| \le \varepsilon$ definitivamente

Varianti di 1.:

- $a_n \to \ell^+$ tende a ℓ da destra se $\forall \varepsilon > 0, \ell < a_n \le \ell + \varepsilon$ definitivamente
- $a_n \to \ell^-$ tende a ℓ da sinistra se $\forall \varepsilon > 0, \ell \varepsilon \le a_n < \varepsilon$ definitivamente

Teorema di unicità del limite

Una successione ricade sempre in uno e uno solo dei quattro tipi di comportamento. Se poi ricade nel tipo 1. ($\ell \in \mathbb{R}$), il valore ℓ è unico.

Dim: se a_n è di tipo 1. cioè $a_n \to \ell$, allora definitivamente $\ell - 1 \le a_n \le \ell + 1$. $l - 1 \le a_n$ implica che non può essere di tipo 3.. $a_n \le \ell + 1$ implica che non può essere di tipo 2..

Inoltre se è di tipo 2., definitivamente si avrà $a_n \ge 1$. Se è di tipo 3., definitivamente si avrà $a_n \le -1$. Queste condizioni non possono accadere insieme.

Infine, se $a_n \to \ell_1, \ a_n \to \ell_2 \ \text{con} \ \ell_1 \neq \ell_2$, allora fisso $\varepsilon = \frac{|\ell_1 - \ell_2|}{4}$. Quindi a_n si ritrova in due intervalli contemporaneamente: $\ell_1 - \varepsilon \leq a_n \leq \ell_1 + \varepsilon \ \text{e} \ \ell_2 - \varepsilon \leq a_n \leq \ell_2 + \varepsilon$. Se $\ell_1 < \ell_2$ allora $\ell_1 + \varepsilon < \ell_2 - \varepsilon$. Dunque $a_n \leq \ell_1 + \varepsilon < \ell_2 - \varepsilon \leq a_n$ definitivamente. Questo è assurdo!

Limitatezza delle successioni convergenti

- Se $a_n \to \ell \in \mathbb{R}$ allora $\{ a_n \mid n \in \mathbb{N} \}$ è limitato
- Se $a_n \to +\infty$ allora $\{ a_n \mid n \in \mathbb{N} \}$ è inferiormente limitato
- Se $a_n \to -\infty$ allora $\{ a_n \mid n \in \mathbb{N} \}$ è superiormente limitato

Dimostrazione nelle slide. #view-slide

Teorema di permanenza del segno

- Se $a_n \to \ell \in (0, +\infty)$ o se $a_n \to +\infty$ allora $a_n > 0$ definitivamente
- Se $a_n \geq 0$ definitivamente e se $a_n \rightarrow \ell$ allora $\ell \geq 0$ oppure $\ell = +\infty$

Dimostrazione nelle slide #view-slide

Oss: vale lo stesso risultato con i negativi.

- Se $a_n \to \ell \in (-\infty,0)$ o se $a_n \to -\infty$ allora $a_n < 0$ definitivamente
- Se $a_n \leq 0$ definitivamente e se $a_n \to \ell$ allora $\ell \leq 0$ oppure $\ell = -\infty$

Retta reale estesa

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$$

- Posso scrivere $a_n \to \ell \in \overline{\mathbb{R}}$ per unificare i tipi 1., 2., 3.
- Le operazioni di \mathbb{R} si estendono a $\overline{\mathbb{R}}$ quasi bene:

$$+x \cdot (\pm \infty) = \pm \infty$$
$$-x \cdot (\pm \infty) = \mp \infty$$
$$x + (\pm \infty) = \pm \infty$$
$$(+\infty) \cdot (+\infty) = +\infty$$
$$(-\infty) \cdot (-\infty) = +\infty$$
$$(-\infty) \cdot (-\infty) = +\infty$$
$$\frac{x}{+\infty} = 0$$

- Ci sono 2 eccezioni:
 - 1. Le 7 forme indeterminate:

$$(+\infty) + (-\infty)$$

$$0 \cdot (\pm \infty)$$

$$\frac{\pm \infty}{\pm \infty}$$

$$0$$

$$0$$

$$0^{0}$$

$$1^{\pm \infty}$$

$$(\pm \infty)^{0}$$

2. Le divisioni per 0

Teoremi algebrici

Siano a_n , b_n successioni, $a_n \to \ell_1 \in \overline{\mathbb{R}}$, $b_n \to \ell_2 \in \overline{\mathbb{R}}$, allora:

$$a_n + b_n \to l_1 + l_2$$

$$a_n - b_n \to l_1 - l_2$$

$$a_n \cdot b_n \to l_1 \cdot l_2$$

$$\frac{a_n}{b_n} \to \frac{l_1}{l_2}$$

$$a_n^{b_n} \to l_1^{l_2}$$

Con le dovute eccezioni di ∞ .

Teoremi di confronto

Se $a_n \leq b_n$ definitivamente, allora:

- 1. Se $a_n \to a$ e $b_n \to b$, allora $a \le b$
- 2. Se $a_n \to +\infty$, allora $b_n \to +\infty$
- 3. Se $b_n o -\infty$, allora $a_n o -\infty$

Se a_n, b_n, c_n sono tali che $a_n \leq b_n \leq c_n$ definitivamente e $a_n \to \ell, c_n \to \ell$ (lo stesso $\ell \in \overline{\mathbb{R}}$) allora $b_n \to \ell$. (teorema del carabiniere).

Es: $\lim_{n\to+\infty} n + \cos n$.

$$\forall n \in \mathbb{N}, \cos n \ge -1 \implies n + \cos n \ge n - 1$$

Per il teorema del confronto a 2, visto che $\lim_{n\to+\infty}n-1=[+\infty-1]=+\infty$, ho che $\lim_{n\to+\infty}n+\cos n=+\infty$

Es: $\lim_{n\to+\infty}\frac{\sin n}{n}$.

$$\forall n \in \mathbb{N}, -1 \le \sin n \le 1 \implies -\frac{1}{n} \le \sin n \le \frac{1}{n}$$

E poichè $\lim_{n\to+\infty}-\frac{1}{n}=\lim_{n\to+\infty}\frac{1}{n}=0$, per il teorema del confronto a 3 $\frac{\sin n}{n}\to 0$.

Tecniche di calcolo dei limiti

Fatto N.1

$$\lim_{n \to +\infty} n^a = +\infty \qquad \forall \, a > 0$$

Fatto N.2

$$\lim_{n \to +\infty} n^a = 0^+ \qquad \forall \, a < 0$$

Oss:
$$n^a = \frac{1}{n^{-a}} \Rightarrow \lim_{n \to +\infty} n^a = \lim_{n \to +\infty} \frac{1}{n^{-a}} = \left[\frac{1}{+\infty}\right] = 0^+$$

[!note] Ricordare negli esercizi di scrivere teoremi algebrici dove vengono usati.

Disuguaglianza di Bernoulli

$$\forall n \in \mathbb{N}, \ \forall x \ge -1$$
 si ha $(1+x)^n \ge 1 + nx$

Fatto N.3

$$\lim_{n \to +\infty} a^n = +\infty \qquad \forall \, a > 1$$

Dim: $a^n=(1+(a-1))^n\geq 1+n(a-1)\to [1+\infty(a-1)]=+\infty \Rightarrow a^n\to +\infty$ per il confronto a 2.

Fatto N.4

$$\lim_{n \to +\infty} a^n = 0 \qquad \forall \, 0 < a < 1$$

Dim: $a=\frac{1}{b} \operatorname{con} b > 1$ e $b^n \to +\infty$ quindi $a^n=\frac{1}{b^n} \to 0^+$.

Fatto N.5

$$\lim_{n \to +\infty} a^{\frac{1}{n}} = 1 \qquad \forall \, a > 1$$

Dim: $a^{\frac{1}{n}} > 1 \ \forall n \in \mathbb{N}$

[!warning] Finire la dim dalle slide.

Dimostrazione teorema del confronto a 2

Sappiamo che $a_n \leq b_n$ definitivamente

1. Se $a_n \to a$, $b_n \to b$, vogliamo dimostrare che $a \le b$

Per assurdo, se b < a, posso scegliere $\varepsilon > 0$ tale che $\varepsilon < \frac{a-b}{2} \Rightarrow b + \varepsilon < a - \varepsilon$.

Allora definitivamente $a_n \geq a - \varepsilon$ e $b_n \leq b + \varepsilon$, quindi $b_n \leq b + \varepsilon < a - \varepsilon \leq a_n$ definitivamente.

Ciò significa che $b_n < a_n$, il che è assurdo.

- 2. Se $a_n \to +\infty$, $\forall M \in \mathbb{R}$, ho $a_n \geq M$ definitivamente \Rightarrow ho $b_n \geq a_n \geq M$ definitivamente $\forall M \in \mathbb{R} \Rightarrow b_n \to +\infty$.
- 3. Uguale a 2..

Criterio del rapporto & Criterio della radice

Criterio del rapporto

Sia a_n una successione definitivamente positiva (> 0). Supponiamo che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\ell\in [0,+\infty]$$

allora

- 1. se $\ell < 1, a_n \to 0$
- 2. se $\ell > 1$, $a_n \to +\infty$
- 3. se $\ell = 1, ??$

Criterio della radice

Sia a_n una successione definitivamente ≥ 0 . Supponiamo che

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell \in [0, +\infty]$$

allora

- 1. se $\ell < 1$, $a_n \to 0$
- 2. se $\ell > 1$, $a_n \to +\infty$
- 3. se $\ell = 1, ??$

Es: $a_n = \frac{n^3}{2^n}$ con i teo. alg. ottengo $[\frac{+\infty}{+\infty}]$, quindi

$$\frac{a_n+1}{a_n} = \frac{\frac{(n+1)^3}{2^{n+1}}}{\frac{n^3}{2^n}} = \frac{1}{2} \left(\frac{n+1}{n}\right)^3 \to \frac{1}{2}$$

per il criterio del rapporto $a_n \to 0$.

Fatto N.6 (Esponenziale batte potenza)

$$\lim_{n \to +\infty} \frac{n^a}{b^n} = 0 \qquad \forall b > 1, \ \forall a \in \mathbb{R}$$

Fattoriale

$$\lim_{n \to +\infty} n! = +\infty$$

Fatto N.7 (Il fattoriale batte l'esponenziale)

$$\lim_{n \to +\infty} \frac{b^n}{n!} = 0 \qquad \forall b > 0$$

 n^n batte il fattoriale.

$$\lim_{n \to +\infty} \frac{n!}{n^n} = 0$$

Gerarchia degli infiniti

- 1. n^n
- 2. *n*!
- 3. b^n
- **4.** n^a
- **5.** *n*

Attenzione: nella gerarchia degli infiniti, dovete rispettare religiosamente le espressioni date. n! batte 2^n , ma non so cosa fa con $2^{(n^2)}$.

Criterio del rapporto-radice

Supponiamo $a_n > 0$ definitivamente e che

$$\lim_{n\to +\infty} \frac{a_{n+1}}{a_n} = \ell \in [0,+\infty]$$

allora

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell \quad (\mathsf{stesso}\,\ell)$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n} = ?$

Applico il criterio rapporto-radice con $a_n=n$, che è definitivamente >0. Ho che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to +\infty}\frac{n+1}{n}=\lim_{n\to +\infty}1+\frac{1}{n}=1\implies \lim_{n\to +\infty}\sqrt[n]{n}=\lim_{n\to +\infty}\sqrt[n]{a_n}=1$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n^a} = ?$

$$\lim_{n\to +\infty} \sqrt[n]{n^a} = \lim_{n\to +\infty} n^{\frac{a}{n}} = \lim_{n\to +\infty} (n^{\frac{1}{n}})^a = 1$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n^7 - n^2 + 1} = ?$

Ha senso perchè $n^7-n^2+1\to +\infty \implies$ è definitivamente positiva per il teorema di permanenza del segno.

$$\lim_{n\rightarrow +\infty} \sqrt[n]{n^7} \cdot \sqrt[n]{1-\frac{1}{n^5}-\frac{1}{n^7}} = 1 \cdot 1 = 1$$

Fatto N.8

$$\lim_{n \to +\infty} \sqrt[n]{\text{polinomio}} = 1 \qquad \forall \, \text{polinomio}$$

Fatto N.9

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n!} = ?$

Metodo 1: $\forall b>1$ ho che $n!>b^n$ (per il teo di permanenza del segno: $\frac{b^n}{n!}\to 0 \implies$ definitivamente $\frac{b^n}{n!}<1 \implies b^n< n!$ definitivamente) $\implies \sqrt[n]{n!}>b$ definitivamente $\forall b>1n \implies \sqrt[n]{n!}\to +\infty.$

Metodo 2:

$$\lim_{n \to +\infty} \sqrt[n]{n!} = \lim_{n \to +\infty} \frac{(n+1)!}{n!} = \lim_{n \to +\infty} n + 1 = +\infty$$

Es: $\lim_{n\to+\infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n\to+\infty} \sqrt[n]{\frac{n!}{n^n}} = ?$

$$= \frac{1}{\left(\frac{n+1}{n}\right)^n} \to \frac{1}{e}$$

Oss: per n molto grandi, n! assomiglia a $(\frac{n}{e})^n$.

Es: $\lim_{n\to+\infty}\frac{2^{n^2}}{n!}=?$

Applico il criterio della radice.

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{2^{n^2}}{n!}} = \frac{(2^{n^2})^{\frac{1}{n}}}{(n!)^{\frac{1}{n}}} = \dots$$

Dimostrazione del criterio della radice

Supponiamo che $\sqrt[n]{a_n} \to \ell > 1$, allora la media sarà un numero tra 1 e ℓ

$$1 < \frac{ell+1}{2} < \ell \implies \text{ definitivamente } \sqrt[n]{a_n} \ge \frac{\ell+1}{2} \implies a_n \ge \left(\frac{\ell+1}{2}\right)^n$$

e poichè $\frac{\ell+1}{2}>1$, $\left(\frac{\ell+1}{2}\right)^n\to +\infty$. Quindi per il confronto a 2, ho che $a_n\to +\infty$.

Se invece $0 \le \ell < 1$, allora $0 \le \frac{\ell+1}{2} < 1 \implies$ definitivamente $\sqrt[n]{a_n} \le \frac{\ell+1}{2}$, inoltre $0 \le \sqrt[n]{a_n} \le \frac{\ell+1}{2} \implies 0 \le a_n \le \left(\frac{\ell+1}{2}\right)^n$ definitivamente e $0 < \frac{\ell+1}{2} < 1 \implies \left(\frac{\ell+1}{2}\right)^n \to 0$, dunque, per il teo del confronto a 3, $a_n \to 0$.

Principio di induzione

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

 $\mathcal{P}(n)=$ affermazione a prop. di n che può essere vera o falsa

Es: $n^2 = n + 6$ (definitivamente vera)

- n=0: falsa
- n=1: falsa
- n=2: falsa
- n = 3: vera!
- n=4: falsa
- n=5: falsa

Es: se l'insieme A ha n elementi, allora $\mathcal{P}(A)$ ha 2^n elementi (*definitivamente vera*).

Principio di induzione: supponiamo di sapere che

- 1. $\mathcal{P}(0)$ è vera (passo base)
- 2. $\mathcal{P}(n) \implies \mathcal{P}(n+1) \ \forall \ n \geq 0$ (passo induttivo)

allora $\mathcal{P}(n)$ è vera per ogni $n \in \mathbb{N}$.

Es: dimostrare che $0+1+\cdots+n=\frac{n(n+1)}{2}$.

Dimostrazione per induzione:

1.
$$n = 0$$
: $0 = \frac{0(0+1)}{2} = 0 \longrightarrow \text{vero}$

$$\text{2. Ipotesi}(\mathsf{passo}\,n): \ 0+1+\dots+n=\frac{n(n+1)}{2}. \ \mathsf{Voglio}\,\mathsf{dire}\,\mathsf{che}\,0+1+\dots+n+(n+1)=\frac{(n+1)(n+2)}{2}. \ 0+1+\dots+(n+1)=0+1+\dots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}.$$

Es: da fare a casa #todo/compito

1.
$$0^2 + 1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2.
$$0^3 + 1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

Disuguaglianza di Bernoulli (dimostrazione)

$$\forall n \in \mathbb{N}, \ \forall x \ge -1 \text{ si ha } (1+x)^n \ge 1 + nx$$

Dimostrazione per induzione su \boldsymbol{n}

1. Passo base:

$$n = 0$$
 $(1+x)^0 \ge 1$ $\forall x > -1$
 $n = 1$ $(1+x)^1 \ge 1+x$ $\forall x \ge -1$

2. Passo induttivo:

Ipotesi(passo
$$n$$
): $(1+x)^n \geq 1+nx$
$$\text{Tesi(passo } n+1) \colon (1+x)^{n+1} \geq 1+(n+1)x$$

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x) \geq (1+nx)(1+x) =$$

$$= 1+nx+x+nx^2 =$$

$$= 1+(n+1)^x+nx^2 \geq 1+(n+1)x \longrightarrow \text{Vero!} \Rightarrow$$
 La disug è dimostrata $\forall \, n \in \mathbb{N}, \ \forall \, x \geq -1$

Coeff. binomiali

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

 $\binom{n}{k}$ è l'elemento in posizione k nella riga n del **triangolo di Tartaglia** (si conta da 0).

Sviluppo del binomio:

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} \cdot a^{n-j} \cdot b^j$$

Successioni monotone

Sia a_n una successione. Diciamo che a_n è

- 1. strettamente crescente se $a_{n+1} > a_n \ \forall \ n \in \mathbb{N}$
- 2. strettamente decrescente se $a_{n+1} < a_n \ \forall \ n \in \mathbb{N}$
- 3. debolmente crescente se $a_{n+1} \geq a_n \ \forall \ n \in \mathbb{N}$
- 4. debolmente decrescente se $a_{n+1} \leq a_n \ \forall \ n \in \mathbb{N}$

Oss: similmente si definiscono i corrispondenti concetti per successioni definitivamente monotone.

Teo delle successioni monotone: sia a_n una successione *debolmente crescente*, allora a_n ha limite $\ell \in \mathbb{R} \cup \{+\infty\}$. Più precisamente $a_n \to \sup\{a_n \mid n \in \mathbb{N}\}$. Lo stesso vale per le successioni debolmente decrescenti $(a_n \to \inf\{a_n \mid n \in \mathbb{N}\})$.

Dim (caso crescente):

Primo caso: $\sup \{ a_n \mid n \in \mathbb{N} \} = +\infty \implies \forall M \in \mathbb{R} \ \exists \ n_0 \in \mathbb{N} \ \text{t.c.} \ a_{n_0} \geq M.$ Ma se la succ. è debolmente crescente $\implies \forall \ n \geq n_0 \ , \ a_n \geq a_{n_0} \geq M \implies a_n \to \infty.$

Secondo caso: $\sup \{ a_n \mid n \in \mathbb{N} \} = \ell \in \mathbb{R} \implies$

- $\forall n \in \mathbb{N}$, $a_n \leq \ell$ (ℓ è un maggiroante)
- $\forall \varepsilon > 0 \ \exists \ n_0 \in \mathbb{N} \ \text{t.c.} \ \ell \varepsilon \leq a_{n_0} \ (\ell \ \grave{\mathsf{e}} \ \textit{il minimo tra i maggioranti})$

Ma a_n è debolmente crescente $\implies \forall n \geq n_0$ ho che $\ell - \varepsilon \leq a_{n_0} \leq a_n \leq \ell \implies a_n \to \ell^-$

Caso decrescente: #todo/compito

Oss:

- 1. Se a_n è debolmente crescente e superiormente limitata, allroa $a_n \to \ell \in \mathbb{R}$
- 2. Se a_n è definitivamente debolmente crescente (o decrescente) allora $a_n \to \ell \in \mathbb{R} \cup \{+\infty\}$ (o $\mathbb{R} \cup \{-\infty\}$), ma non posso dire che $\ell = \sup\{a_n \mid n \in \mathbb{N}\}$

Applicazione: Sia $a_n = \left(1 + \frac{1}{n}\right)^n$. Allora

- 1. $2 \le a_n \quad \forall n \in \mathbb{N}$
- 2. $a_n < 3 \quad \forall n \in \mathbb{N}$
- 3. $a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$

Per il teo sulle successioni monotone, $a_n \to \ell \in \mathbb{R}$ e $2 \le \ell \le 3$.

Dim:

1. Per Bernoulli: $\left(1+\frac{1}{n}\right)^n \ge 1+n\cdot\frac{1}{n}=2 \quad \forall\, n\in\mathbb{N}\setminus\{\,0\,\}$

2.
$$\left(1+\frac{1}{n}\right)^n=\sum_{j=0}^n \binom{n}{j}\cdot 1^{n-j}\cdot \frac{1}{n^j}\longrightarrow guardare\ le\ slide$$

3. $\left(1+\frac{1}{n+1}\right)^{n+1} \geq (1+\frac{1}{n})^n \Rightarrow a_n \text{ è decrescente} \longrightarrow guardare le slide$

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Es:

$$\lim_{n\to +\infty} \left(1-\frac{1}{n}\right)^n = \lim_{n\to +\infty} \left(\frac{n-1}{n}\right)^n = \lim_{n\to +\infty} \frac{1}{\left(1+\frac{1}{n-1}\right)^{n-1}\cdot \left(\frac{n}{n-1}\right)} = \frac{1}{e}$$

Es:

$$\lim_{n \to +\infty} \left(1 + \frac{1}{2n} \right)^n = \lim_{n \to +\infty} \left(\left(1 + \frac{1}{2n} \right)^{2n} \right)^{\frac{1}{2}} = \sqrt{e}$$

Successioni per ricorrenza

Una successione per ricorrenza si presenta così:

• Un punto di partenza: $a_0 = 2$

- Una regola per calcolare il valore di un elemento dati i precedenti: $a_n = a_{n-1}^2 + \frac{1}{n+2}$

Possono essere dimostrate per induzione.

Es 1:

$$\begin{cases} a_0 = 1 & (I) \\ a_n = n \cdot a_{n-1} & (II) \end{cases}$$

Se voglio calcolare $a_4=4\cdot a_3=4\cdot 3\cdot a_2=4\cdot 3\cdot 2\cdot a_1=4\cdot 4\cdot 2\cdot 1\cdot a_0=4\cdot 3\cdot 2\cdot 1\cdot 1=24.$ In questo caso si ha $a_n=n!.$

Es 2:

$$\begin{cases} a_0 = 3 & (I) \\ a_n = 2a_{n-1} - 1 & (II) \end{cases}$$

Calcolando un po' di valori trovo guess: $a_n = 2^{n+1} + 1$. Si può dimostrare per induzione:

- **P.B.:** n = 0 per (I), $a_0 = 3 = 2^{0+1} + 1$ (Ok!)
- P.I.: se $a_n=2^{n+1}+1$ allora $a_{n+1}=2\cdot a_n-1=2(2^{n+1}+1)-1=2^{(n+1)+1}+1$ (Ok!)

Attenzione: Poter trovare una formula esplicita per le successioni per ricorrenza è *rarissimo*!

Terminologia: una successione per ricorrenza che dipende dai k termini precedenti si dice di **ordine** k. Una successione per ricorrenza senza una dipendenza esplicita da n si dice **autonoma**.

Tratteremo quasi esclusivamente successioni per ricorrenza di ordine 1, autonome.

$$\begin{cases} a_0 = a \\ a_n = f(a_{n-1}) & n \ge 1 \end{cases}$$

Es 3:

$$\begin{cases} a_0 = 2 \\ a_n = a_{n-1}^2 - 1 \quad n \ge 1 \end{cases}$$
$$a_n = f(a_{n-1})$$
$$f(x) = x^2 - 1$$

Intersezioni con la bisettrice y=x: $x=\frac{1\pm\sqrt{5}}{2}$.

Guess: la successione è crescente e tende a $+\infty$.

Strategia:

1. $a_n \geq 2 \quad \forall n \geq 0$

 $2. \ a_n \leq a_{n+1} \quad \forall \, n$

3. $a_n \to \ell \in \mathbb{R} \cup \{+\infty\}$

4. $\ell = +\infty$

Dim 3.: segue dal punto 2. per il teo sulle successioni monotone.

Dim 4.: Se $\ell \in \mathbb{R}$, allora posso passare al limite la relazione ricorsiva:

$$\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} a_n^2 - 1$$

$$\implies \ell = \ell^2 - 1$$

$$\implies \ell = \frac{1 + \sqrt{5}}{2} \text{ oppure } \frac{1 - \sqrt{5}}{2}$$

Ma $a_n \geq 2 \ \forall n \ (\text{per 1.}) \implies \ell \geq 2 \ (\text{permanenza del segno}) \implies \text{nessuno dei valori trovati è accettabile} \implies \ell = +\infty.$

Dim 1.: $a_n \ge 2 \ \forall n$. Per induzione:

• **P.B.:** $a_n = 2 > 2$ (Ok!)

• P.I.: se $a_n \ge 2$, allora $a_{n+1} = a_n^2 - 1 \ge 4 - 1 = 3 \ge 2$ (Ok!)

Dim 2.: $a_n \leq a_{n+1} \ \forall \ n$. Per induzione:

• **P.B.:** $a_1 = a_0^2 - 1 = 4 - 1 = 3 \ge a_0$ (Ok!)

• P.I.: se $a_n \leq a_{n+1}$, allora $f(a_n) \leq f(a_{n+1})$ perchè $f(x) = X^2 - 1$ è crescente su $[0, +\infty)$.

Quindi $a_n \to +\infty$.

Serie numeriche

Definizione SBAGLIATA

Data una successione a_n , indico con

$$\sum_{n=0}^{\infty} a_n$$

la somma di tutti i termini della successione (che sono infiniti).

Questo non ha senso

Definizione CORRETTA

Def: data una successione a_n , dato $k \in \mathbb{N}$, la **somma parziale** k-esima di a_n è

$$S_k = a_0 + a_1 + \dots + a_k = \sum_{n=0}^k a_n$$

Def: Una **serie numerica** $\sum_{n=0}^{\infty} a_n$ ($\sum a_n$) è il limite della successione S_k , per $k \to \infty$. Cioè

$$\sum_{n=0}^{\infty} a_n = \lim_{k \to +\infty} S_k = \lim_{k \to +\infty} (a_0 + a_1 + \dots + a_n)$$

Carattere di una serie (comportamento)

Essento un limite, $\sum_{n=0}^{\infty} a_n$ ha 4 possibili comportamenti:

- 1. Converge a $\ell \in \mathbb{R}$ se $S_k \to \ell$
- 2. Diverge $a + \infty$ se $S_k \to +\infty$
- 3. Diverge a $-\infty$ se $S_k \to -\infty$
- 4. È **indeterminata** se S_k non ha limite

Serie telescopiche

Es:

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - n} = \sum_{n=2}^{\infty} \frac{1}{n - 1} - \frac{1}{n}$$

•
$$S_2 = a_2 = 1 - \frac{1}{2} = \frac{1}{2}$$

•
$$S_3 = a_2 + a_3 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$$

•
$$S_4 = a_2 + a_3 + a_4 = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) = 1 - \frac{1}{4}$$

• $S_k = 1 - \frac{1}{k}$ (dimostrato per induzione)

$$\lim_{k o +\infty} S_k = 1 \implies \sum_{n=2}^\infty rac{1}{n^2 - n}$$
 converge a 1

Serie geometriche

La serie geometrica di ragione $a \in \mathbb{R}$ è

$$\sum_{n=0}^{\infty} a^n$$

Lemma: $a^0+a^1+\cdots+a^k=rac{a^{k+1}-1}{a-1}$ se a
eq 1

Dim:

$$(a^{0} + a^{1} + \dots + a^{k}) \cdot a = a^{1} + a^{2} + \dots + a^{k+1} + (a^{0} + a^{1} + \dots + a^{k})(-1) = -a^{0} - a^{1} - \dots - a^{k} = (a^{0} + a^{1} + \dots + a^{k})(a - 1) = -a^{0} + a^{k+1}$$

Poichè $a \neq 1$, posso dividere ed ottengo il teo.

Oss: se a = 1, $a^0 + \cdots + a^k = k + 1$.

Dunque si ha

$$S_k = \begin{cases} k+1 & \text{se } a=1 \\ \frac{a^{k+1}-1}{a-1} & \text{se } a \neq 1 \end{cases}$$

 $\lim_{k\to+\infty} S_k = ?$

- 1. Se -1 < a < 1 la serie converge a $\frac{1}{1-a}$
- 2. Se a=1 vedere esempio 2.
- 3. Se a > 1 diverge a $+\infty$
- 4. Se a < -1 non ha limite
- 5. Se a = -1 vedere esempio stupido 4

Dimostrazioni nelle slide #view-slide

Strumenti per lo studio delle serie

Il problema è determinare il carattere di una serie senza poter ricavare un'espressione esplicita per le somme parziali. Per farlo abbiamo:

- Teoremi algebrici
- Condizione necessaria alla convergenza
- Serie "note"
- · Criteri di convergenza
 - Serie a termini di segno costante ($a_n \le 0$ def. o $a_n \le 0$ def.)
 - * Radice
 - * Rapporto
 - * Confronto
 - * Confronto asintotico
 - * Condensazione di Cauchy
 - Serie a termini di segno alterno
 - * Leibniz
 - Serie a termini di segno qualunque
 - * Assoluta convergenza

Teoremi algebrici

1. Sia a_n una successione e sia $\lambda \in \mathbb{R}, \lambda \neq 0$. Allora (come operazione in $\overline{\mathbb{R}}$)

$$\sum_{n=0}^{\infty} (\lambda \cdot a_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n$$
 (come operazione in $\overline{\mathbb{R}}$)

2. Se a_n, b_n sono successioni, allora (con tutte le attenzioni delle operazioni nella retta reale estesa)

$$\sum_{n=0}^{\infty} (a_n + b_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

3. Attenzione!

$$\sum_{n=0}^{\infty} a_n \cdot b_n \neq \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$$

Condizione necessaria

$$\sum_{n=0}^{\infty} a_n \text{ converge } \implies a_n \to 0$$

Dim: $a_n = S_n - S_{n-1}$. Se $\sum_{n=0}^{\infty} a_n$ converge, allora $S_n \to \ell \in \mathbb{R}$. Quindi $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} (S_n - S_{n-1}) = \lim_{n \to +\infty} S_n - \lim_{n \to +\infty} S_{n-1} = \ell - \ell = 0$.

Dunque se a_n non tende a 0, la serie non può convergere (può divergere o essere indeterminata). Se $a_n \to 0$, potrebbe convergere.

Serie note

- 1. Serie geometriche
- 2. Serie armoniche generalizzate

$$\sum_{n=1}^{\infty} \frac{1}{n^a} = \begin{cases} \text{diverge a } +\infty & \text{se } a \leq 1 \\ \text{converge} & \text{se } a > 1 \end{cases}$$

3. Parenti dell'armonica

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^a} = \begin{cases} \text{diverge a } +\infty & \text{se } a \leq 1 \\ \text{converge} & \text{se } a > 1 \end{cases}$$

Serie a termini di segno costante

Lemma: sia a_n una successione def. ≥ 0 . Allora la succesione $S_k = (a_0 + \cdots + a_k)$ delle somme parziali è def. debolmente crescente.

Dim:

$$\exists n_0 \in \mathbb{N} \text{ t.c. } \forall n \ge n_0, \ a_n \ge 0 \implies$$

$$\forall n \ge n_0, \ S_n = a_n + S_n \ge S_{n-1}$$

Teo: Se a_n è una succ. def. ≥ 0 , allora $\sum_{n=0}^{\infty} a_n$ ha due comportamenti possibli: converge o diverge a $+\infty$.

Dim: teo sulle successioni monotone applicato a S_k .

Oss: Vale lo stesso risultato se $a_n \leq 0$ def. In quel caso $\sum_{n=0}^{\infty} a_n$ converge oppure diverge $a-\infty$.

Criterio della radice Sia $a_n \geq 0$ def. Supponiamo che $\sqrt[n]{a_n} \to \ell \in \overline{\mathbb{R}}$. Allora:

- 1. Se $\ell > 1$ la serie diverge a $+\infty$
- 2. Se $\ell < 1$ la serie converge
- 3. Se $\ell = 1$???

Criterio del rapporto Sia $a_n>0$ def. Supponiamo che $\frac{a_{n+1}}{a_n} o \ell \in \overline{\mathbb{R}}$. Allora:

- 1. Se $\ell > 1$ la serie diverge a $+\infty$
- 2. Se $\ell < 1$ la serie converge
- 3. Se $\ell = 1$???