Functions - Formula Sheet:

Functions – Formula Sneet:	
Average Rate of Change:	The Difference Quotient:
$\frac{f(b) - f(a)}{b - a}$	$\frac{f(x+h)-f(x)}{h}$
b-a	h
Vertical Line Test:	Horizontal Line Test:
If a vertical line intersects a graph at more than one point, then the relation does not represent a function.	If a horizontal line intersects a graph at only one point, then the function is one-to-one . In addition, the inverse function is also a function.
Even Functions:	Odd Functions:
f(-x) = f(x)	f(-x) = -f(x)
Composite Functions:	Inverse Functions:
$(f \circ g)(x) = f(g(x))$	If $f(g(x)) = x$ and $g(f(x)) = x$, then
$(g \circ f)(x) = g(f(x))$	$g(x) = f^{-1}(x) \text{ and } f(x) = g^{-1}(x)$
The Distance Formula:	The Midpoint Formula:
$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$
Transformations - Vertical Shifts:	Transformations - Horizontal Shifts:
$y = f(x) + c \qquad shift up$ $y = f(x) - c \qquad shift down$	y = f(x + c) Shift left y = f(x - c) Shift right
Vertical Stretch:	Horizontal Shrink:
$y = c \cdot f(x) \qquad c > 1$	$y = f(cx) \qquad c > 1$
Vertical Shrink:	Horizontal Stretch:
$y = c \cdot f(x) \qquad 0 < c < 1$	$y = f(cx) \qquad 0 < c < 1$
Reflection about the x-axis:	Reflection about the y-axis:
y = -f(x)	y = f(-x)
Reflection about the origin:	Reflection about the line y=x:
y = -f(-x)	$(x,y) \to (y,x)$

Linear Functions:

$$y = mx + b$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Horizontal Line: (m = 0)

$$y = k$$

Domain: $(-\infty, \infty)$ Range: $\{k\}$ Vertical Line: (m = undefined)

$$x = h$$

Domain: $\{h\}$ Range: $(-\infty, \infty)$

Quadratic Functions: (a = +)

$$y = ax^2 + bx + c$$

Domain: $(-\infty, \infty)$ Range: $[k, \infty)$

 $h = -b/2a \quad k = f(-b/2a)$

Quadratic Functions: (a = +)

$$y = a(x - h)^2 + k$$

Domain: $(-\infty, \infty)$ Range: $[k, \infty)$

Vertex Form

Quadratic Functions: (a = -)

$$y = ax^2 + bx + c$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, k]$

Standard Form

Cubic Functions:

$$y = ax^3 + bx^2 + cx + d$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Cube Root Function:

$$y = \sqrt[3]{x}$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Absolute Value Functions: (a = +)

$$y = a|x - h| + k$$

Domain: $(-\infty, \infty)$ Range: $[k, \infty)$

Absolute Value Functions: (a = -)

$$y = a|x - h| + k$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, k]$

Exponential Functions:

$$y = a^x + k$$

Domain: $(-\infty, \infty)$ Range: (k, ∞)

Exponential Functions:

$$y = a^{-x} + k$$

Domain: $(-\infty, \infty)$ Range: (k, ∞)

Exponential Functions:

 $y = -a^x + k$

Domain: $(-\infty, \infty)$ Range: $(-\infty, k)$ **Exponential Functions:**

$$y = -a^{-x} + k$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, k)$ Logarithmic Functions:

$$y = \log_a(x - h)$$

Domain: (h, ∞) Range: $(-\infty, \infty)$

Logarithmic Functions:

$$y = \log_a(h - x)$$

Domain: $(-\infty, h)$ Range: $(-\infty, \infty)$ Logarithmic Functions:

$$y = -\log_a(x - h)$$

Domain: (h, ∞) Range: $(-\infty, \infty)$ Logarithmic Functions:

$$y = -\log_a(h - x)$$

Domain: $(-\infty, h)$ Range: $(-\infty, \infty)$

Radical Functions:

$$y = \sqrt{x - h} + k$$

Domain: $[h, \infty)$ Range: $[k, \infty)$

Radical Functions:

$$y = \sqrt{h - x} + k$$

Domain: $(-\infty, h]$ Range: $[k, \infty)$

Radical Functions:

$$y = -\sqrt{h - x} + k$$

Domain: $(-\infty, h]$ Range: $(-\infty, k]$

Radical Functions:

$$y = -\sqrt{x - h} + k$$

Domain: $[h, \infty)$ Range: $(-\infty, k]$ Rational Functions: (a > 0)

$$y = \frac{a}{x - h} + k$$

Domain: $(-\infty, h) U(h, \infty)$ Range: $(-\infty, k) U(k, \infty)$ Rational Functions: (a > 0, k > c)

$$y = \frac{a}{(x - h_1)(x - h_2)} + k$$

 $D: (-\infty, h_1) \ U \ (h_1, h_2) \ U \ (h_2, \infty)$ $R: (-\infty, c) \ U \ (k, \infty)$

Rational Functions:

$$y = \frac{a(x-b)}{(x-h)(x-b)} + k$$

 $D: (-\infty, h) \ U \ (h, b) \ U \ (b, \infty)$ $R: (-\infty, k) \ U \ (k, c) \ U \ (c, \infty)$

Note: b > h and c > k.

Rational Functions:

$$y = \frac{a(x-b)}{(x-h)(x-b)} + k$$

 $D: (-\infty, b) \ U \ (b, h) \ U \ (h, \infty)$ $R: (-\infty, k) \ U \ (k, c) \ U \ (c, \infty)$

Note: h > b and c > k.

Complex Radical Functions:

$$y = \sqrt{(x-a)(x-b)} + k$$

Domain: $(-\infty, a] U [b, \infty)$ Range: $[k, \infty)$