EE5137 Lecture 4: Motivating the Poisson Process using Goals in World Cup Games

Vincent Y. F. Tan

Department of Electrical and Computer Engineering, National University of Singapore

Feb 2022

The Poisson Process

■ The inter-arrival times of a Poisson process is the i.i.d. process $\{X_i\}_{i=1}^{\infty}$, where X_i is an exponential rv with rate λ , i.e., $X_i \sim \operatorname{Exp}(\lambda)$ or

$$f_X(x) = \lambda \exp(-\lambda x), \qquad x \ge 0$$

The Poisson Process

■ The inter-arrival times of a Poisson process is the i.i.d. process $\{X_i\}_{i=1}^{\infty}$, where X_i is an exponential rv with rate λ , i.e., $X_i \sim \operatorname{Exp}(\lambda)$ or

$$f_X(x) = \lambda \exp(-\lambda x), \qquad x \ge 0$$

■ The arrivals of a Poisson process is the sequence of increasing random variables $0 < S_1 < S_2 < \dots$ In particular,

$$S_n = \sum_{j=1}^n X_j, \qquad n \in \mathbb{N}.$$

It is known that S_n has an Erlang pdf with shape parameter n.

The Poisson Counting Process

■ The Poisson counting process $\{N(t): t>0\}$ is the process in which N(t) represents the number of arrivals up to and including time t.

The Poisson Counting Process

- The Poisson counting process $\{N(t): t>0\}$ is the process in which N(t) represents the number of arrivals up to and including time t.
- \blacksquare N(t) has the Poisson pmf

$$p_{N(t)}(n) = \frac{(\lambda t)^n \exp(-\lambda t)}{n!}, \quad n \in \mathbb{N}$$

The Poisson Counting Process

- The Poisson counting process $\{N(t): t>0\}$ is the process in which N(t) represents the number of arrivals up to and including time t.
- \blacksquare N(t) has the Poisson pmf

$$p_{N(t)}(n) = \frac{(\lambda t)^n \exp(-\lambda t)}{n!}, \qquad n \in \mathbb{N}$$

Sample path of a Poisson process

←□▶←□▶←□▶←□▶
 □▼

■ Focus on 232 World cup (soccer) games from 1990 to 2002

■ Focus on 232 World cup (soccer) games from 1990 to 2002

■ In the first game of 1990, Cameroon scored a single goal against Argentina at the 67th minute.

■ Focus on 232 World cup (soccer) games from 1990 to 2002

- In the first game of 1990, Cameroon scored a single goal against Argentina at the 67th minute.
- In the second game, Romania scored 2 goals against the Soviet Union at the 42nd and 57th minutes.

■ Focus on 232 World cup (soccer) games from 1990 to 2002

- In the first game of 1990, Cameroon scored a single goal against Argentina at the 67th minute.
- In the second game, Romania scored 2 goals against the Soviet Union at the 42nd and 57th minutes.
- Times to these goals are 65 = (90 67) + 42 and 15 = 57 42 min.

■ Focus on 232 World cup (soccer) games from 1990 to 2002

- In the first game of 1990, Cameroon scored a single goal against Argentina at the 67th minute.
- In the second game, Romania scored 2 goals against the Soviet Union at the 42nd and 57th minutes.
- \blacksquare Times to these goals are 65=(90-67)+42 and 15=57-42 min.

	Game 1	Game 2	 Game 232
Goals	*	* *	 * *
Time between	-		
Goals		\leftarrow	
			↔

Process of the arrival of goals

■ For $X \sim \operatorname{Exp}(\lambda)$, we have

$$\mathbb{E}[X] = \frac{1}{\lambda}, \quad \text{var}(X) = \frac{1}{\lambda^2}$$

so the mean and standard deviation coincide.

5/11

■ For $X \sim \operatorname{Exp}(\lambda)$, we have

$$\mathbb{E}[X] = \frac{1}{\lambda}, \quad \text{var}(X) = \frac{1}{\lambda^2}$$

so the mean and standard deviation coincide.

■ Empirically,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = 36.25 \text{ min}, \quad \sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(X_{i} - \frac{1}{n}\sum_{j=1}^{n}X_{j}\right)^{2}} = 36.68 \text{ min}$$

■ For $X \sim \operatorname{Exp}(\lambda)$, we have

$$\mathbb{E}[X] = \frac{1}{\lambda}, \quad \operatorname{var}(X) = \frac{1}{\lambda^2}$$

so the mean and standard deviation coincide.

■ Empirically,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = 36.25 \text{ min}, \quad \sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(X_{i} - \frac{1}{n}\sum_{j=1}^{n}X_{j}\right)^{2}} = 36.68 \text{ min}$$

■ There were 574 goals in the 232 games. Thus, $\lambda = 574/232$ goals per game.

■ For $X \sim \operatorname{Exp}(\lambda)$, we have

$$\mathbb{E}[X] = \frac{1}{\lambda}, \quad \text{var}(X) = \frac{1}{\lambda^2}$$

so the mean and standard deviation coincide.

■ Empirically,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = 36.25 \text{ min}, \quad \sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(X_{i} - \frac{1}{n}\sum_{j=1}^{n}X_{j}\right)^{2}} = 36.68 \text{ min}$$

- There were 574 goals in the 232 games. Thus, $\lambda = 574/232$ goals per game.
- These compare well to the theoretical expectation

$$\frac{90}{\lambda} \approx 36.31 \text{ min}$$

Inter-goal	Actual	Empirical	Theoretical	Expected
Duration (minutes)		Probability	Probability	
0-10	144	0.2504	0.2407	138
10-20	106	0.1843	0.1828	105
20-30	86	0.1496	0.1388	80
30-40	52	0.0904	0.1054	60
40-50	46	0.0800	0.0800	46
50-60	27	0.0470	0.0607	35
60-70	35	0.0626	0.0461	26
70-80	16	0.0278	0.0350	20
80-90	22	0.0383	0.0266	15
90-100	12	0.0209	0.0202	12
100-110	3	0.0052	0.0153	9
110-120	3	0.0052	0.0116	7
120-130	6	0.0104	0.0088	5
130 or more	16	0.0278	0.0279	16
Total	574	1	1	574

Times Between Goals

6/11

■ The interarrival times are also memoryless, i.e., that

$$\Pr(X > t + x) = \Pr(X > x) \Pr(X > t), \quad \forall t, x \ge 0.$$

or

$$\Pr(X > t + x | X > t) = \Pr(X > x)$$

■ The interarrival times are also memoryless, i.e., that

$$\Pr(X > t + x) = \Pr(X > x) \Pr(X > t), \qquad \forall t, x \ge 0.$$

or

$$\Pr(X > t + x | X > t) = \Pr(X > x)$$

We calculate empirically

$$\Pr(X > 10) = 1 - \frac{144}{574} \approx 0.7491,$$

$$\Pr(X > 20|X > 10) = \frac{574 - 144 - 106}{574 - 144} \approx 0.7534,$$

$$\Pr(X > 30|X > 20) \approx 0.7346$$

Times Between Goals

8/11

Property 3: Independence of Inter-arrival Times

■ The X_i 's (Inter-Goal or Inter-Arrival Times) are independent.

Property 3: Independence of Inter-arrival Times

- The X_i 's (Inter-Goal or Inter-Arrival Times) are independent.
- Autocorrelations of times between goals

Lag	1	2	3	4	5	6	7	8	9
Autocorrelation	-0.0122	-0.0086	0.0021	-0.0033	0.0128	-0.0051	0.0003	0.0092	0.0033

Autocorrelation Between Goals

■ All these times lie inside a band of plus or minus twice the standard error i.e., $2/\sqrt{574}$ or 0.0835.

Property 3: Independence of Inter-arrival Times

- The X_i 's (Inter-Goal or Inter-Arrival Times) are independent.
- Autocorrelations of times between goals

Lag	1	2	3	4	5	6	7	8	9
Autocorrelation	-0.0122	-0.0086	0.0021	-0.0033	0.0128	-0.0051	0.0003	0.0092	0.0033

Autocorrelation Between Goals

- All these times lie inside a band of plus or minus twice the standard error i.e., $2/\sqrt{574}$ or 0.0835.
- So empirically inter-arrival times also appear approximately independent.

Property 4: Poisson Counts N(t)

■ We will prove in class that N(t) is Poisson.

Vincent Tan (NUS) Poisson Process Feb 2022 10/11

Property 4: Poisson Counts N(t)

■ We will prove in class that N(t) is Poisson.

Distribution of Goals per Game

Reference

Singfat Chu, (2003) Using Soccer Goals to Motivate the Poisson Process. INFORMS Transactions on Education 3(2):64-70. https://doi.org/10.1287/ited.3.2.64