Национальный исследовательский университет «МЭИ» Кафедра вычислительных машин, систем и сетей

Лабораторная работа № 01

Прохождение сигналов через *RC*-цепи

Москва 2023 НИУ МЭИ

Содержание

1.	Цель работы
2.	Описание лабораторной установки4
3.	Подготовка к работе6
4.	Рабочее задание
	Исследование частотных характеристик RC-цепей
	Исследование импульсных характеристик RC-цепей9
5.	Оформление отчета о выполненной работе10
6.	Методические указания
7.	Основные сведения
8.	Контрольные вопросы и задачи
9.	Литература

1. Цель работы

Цель работы — экспериментальное исследование RC-цепей первого порядка, выполняющих функции простейших низкочастотных и высокочастотных фильтров и применяемых в электронных устройствах в качестве элементов связи. Проводится сравнение экспериментальных частотных и переходных характеристик RC-цепей с теоретическими характеристиками, определяются параметры цепей.

Другая цель — это приобретение и закрепление навыков работы с запоминающим цифровым двухканальным осциллографом GDS-2062 [1] и генератором сигналов специальной формы GFG-3015 [2], т.е. с теми приборами, с которыми студент будет работать на протяжении всего практического курса изучения электроники.

2. Описание лабораторной установки

Лабораторная установка включает запоминающий цифровой двухканальный осциллограф GDS-2062, генератор сигналов специальной формы GFG-3015 и лабораторный пульт со съемной передней панелью.

В пульт встроены источники питания $(+5B, \pm 15B)$, необходимые для выполнения всех лабораторных работ, понижающий сетевой трансформатор, выходное напряжение которого в некоторых работах используется для формирования задающего сигнала при снятии вольтамперных характеристик. Сменная панель лабораторной работы (рис. 1) включает две схемы:

- схема 1 RC-цепь, являющаяся фильтром верхних частот (рис. 1,a);
- схема 2 RC-цепь, являющаяся фильтром нижних частот (рис. 1, δ);

Рис. 1. Лицевая панель лабораторной установки

Для схем (рис. 1,a и δ) с помощью генератора, который подключен к схемам внутри стенда, и осциллографа снимаются амплитудно-частотные и переходные характеристики.

3. Подготовка к работе

- 3.1. Ознакомиться с описанием осциллографа GDS-2062 [1] и генератора сигналов GFG-3015 [2] и методами измерений напряжения и временных интервалов.
- 3.2. Для схем (рис. 1,a и b) получить выражение для амплитудночастотной $H(f) = \frac{U_{\text{вых}}(f)}{U_{\text{вх}}(f)}$ и переходной $h(t) = \frac{u_{\text{вых}}(t)}{u_{\text{хх}}(t)}$ характеристик.

Построить данные зависимости и показать, как по графикам определить:

- для схемы рис. 1,a нижнюю граничную частоту ($f_{\rm H}$) и спад плоской вершины (δu) при фиксированной длительности импульса $t_{\rm u}$;
- для схемы рис. $1, \delta$ верхнюю граничную частоту ($f_{\rm B}$) и фронт выходного импульса ($t_{\rm \varphi}$).

Параметры элементов схемы приведены в таблице 1.

При расчете АЧХ коэффициент передачи рассчитать на частотах 46, 100, 220, 460 Гц, 1, 2.2, 4.6, 10, 22, 100 и 220 кГц, а график построить в двойном логарифмическом масштабе (см. раздел 6 «Основные сведения»).

При расчете спада плоской вершины считать, что длительность входного импульса $t_{\rm H}$ =30мкс.

Номер варианта соответствует порядковому номеру студента в учебном журнале.

Таблица 1

Варианты заданий

Bap.№		1	2	3	4	5	6	7	8	9	10
C	<i>R</i> ₁ , кОм	15	30	20	10	3	2	1	3,9	6,2	100
Схема а)	С1, нФ	20	10	15	30	100	150	300	75	51	3
Cyara 6)	R_2 , кОм	1	3.3	5	10	20	0,1	0,2	0,33	0,5	0,75
Схема <i>б</i>)	С2, нФ	10	3	2	1	0.51	100	51	30	20	15
Bap	Bap.№		12	13	14	15	16	17	18	19	20
C)	<i>R</i> ₁ , кОм	30	62	39	20	6,2	3,9	2	7,5	12	200
Схема а)	С1, нФ	10	5,1	7,5	15	51	75	150	39	27	1,5
Current (i)	R_2 , кОм	2	6,8	10	20	39	0,2	0,39	0,68	1	1,5
Схема <i>б</i>)	С2, нФ	5,1	1,5	1	0,51	0,24	51	27	15	10	7,5
Bap.№		21	22	23	24	25	26	27	28	29	30
Cross a)	<i>R</i> ₁ , кОм	7,5	15	10	5,1	1,5	1	0,51	2	3	51
Схема <i>a</i>)	C (T	39	20	30	62	200	300	620	150	100	6.2

62

5,1

2

200

10

1

300

0,051

200

620

0,1

100

150

0,15

68

100

0,24

39

6,2

0,39

30

39

0,51

20

 C_1 , н Φ

 R_2 , кОм

 C_2 , н Φ

Схема б)

20

1,5

6,2

30

2,7

3,9

4. Рабочее задание

<u>Исследование частотных характеристик RC-цепей</u>

1. Снять амплитудно-частотную характеристику RC-цепи с разделительным конденсатором (рис. 1,а).

<i>f</i> , кГц	0,046	0,100	0,220	0,460	1,0	2,2	4,6	10	22	46	100	220
$2U_{\rm BX}$, B												
$2U_{\text{вых}}$, В												
$\gamma = U_{_{ m BMX}}/U_{_{ m BX}}$												
L ү, д $\overline{\mathrm{b}}$												

п – –				C
По построенной	vanaktenuctuke	определить	границии	uactotu t
110 Hocipocimon	Aupakicphoinko	определить	I pariti ili yio	idelety / _R .
1	1 1	1 ' '	1	• J J B

Верхняя граничная частота $f_{\rm B} =$ _____ к Γ ц.

2. Снять амплитудно-частотную характеристику RC-цепи с интегрирующим конденсатором (рис. 1,б).

<i>f</i> , кГц	0,046	0,100	0,220	0,460	1,0	2,2	4,6	10	22	46	100	220
$2U_{\scriptscriptstyle \Gamma}$, B												
2U _{вых} , В												
$\gamma = U_{\text{\tiny BMX}}/U_{\text{\tiny BX}}$												
<i>L</i> ү, дБ												

По построенной характеристике определить граничную частоту д
--

Нижняя граничная частота $f_{\rm B} =$ _____ Гц.

Результаты этой части работы оформить в виде таблиц и графиков.

Исследование импульсных характеристик RC-цепей

- 1. Снять переходную характеристику RC-цепи с интегрирующим конденсатором (рис. 1,б). Определить длительность фронта t_{ϕ} и среза t_{c} при длительности входного сигнала 100мкс.
- 2. Снять переходную характеристику RC-цепи с разделительным конденсатором (рис. 1,а). Для выходного импульса (при длительности входного импульса 30мкс) определить амплитуду U_m и спад плоской вершины ΔU . По этим данным рассчитать относительный спад плоской вершины δU .
- 3. Исследовать дифференцирующую RC-цепь (рис. 1,а). Для этого увеличить длительность входного сигнала до 2 мс. Снять временные осциллограммы входного и выходного сигналов. По уровню 0,5 определить длительности положительного и отрицательного импульсов выходного сигнала. Провести теоретический расчет длительности импульсов, исходя из параметров схемы, и сравнить с экспериментом.

Результаты п.п. 1 и 2 представить в виде осциллограмм с указанием осей, дополнительных построений и сводной таблицы.

Результаты п.3 представить в виде осциллограмм с указанием осей, дополнительных построений и результатов расчета.

Схема	RC-цепь с ин	гегрирующим	RC-цепь с разделительным конденсатором (рис.1,а)				
CACMa	конденсатор	оом (рис.1,б)					
Параметр	р $f_{\scriptscriptstyle m B}$, к Γ ц $t_{\scriptscriptstyle m \varphi}$, мкс		$f_{\scriptscriptstyle m H}$, к Γ ц	δ, %			
Расчет							
Эксперимент							

5. Оформление отчета о выполненной работе

Отчет может быть выполнен как в рукописном виде на стандартных листах A4, так и его можно напечатать с использованием вычислительной техники. Не допускается ксерокопирование отчета.

Оформленный отчет должен содержать:

- Титульный лист или заголовок, включающий название лабораторной работы, фамилию студента и дату выполнения работы.
- Все пункты подготовки к работе, включая схемы, расчеты, графики.
- Все выполненные пункты рабочего задания, включая принципиальные схемы исследуемых цепей, результаты измерений, а также осциллограммы, диаграммы, графики с указанием осей, масштаба, всеми дополнительными построениями и расчетами.
- Сравнение данных, полученных при подготовке к работе и результатов, полученных в процессе выполнения работы.

6. Методические указания

- 1. При снятии амплитудно-частотной характеристики (п.п. 1 и 2 рабочего задания) амплитуда синусоидального входного напряжения устанавливается равной 1В и поддерживается постоянной во всем частотном диапазоне.
- 2. Для снятия и построения АЧХ рекомендуется воспользоваться программой *АСН*, которая позволяет не только снимать данные, но и визуально отражать характеристику в двойном логарифмическом масштабе. Данные и характеристику впоследствии можно перенести в отчет.
- 3. Нижняя $f_{\rm H}$ и верхняя $f_{\rm B}$ граничные частоты определяется по амплитудно-частотной характеристике в точках, где модуль коэффициента передачи уменьшается в 1,41 раз, что эквивалентно уменьшению логарифмического коэффициента передачи на 3 дБ.
- 4. При исследовании переходных характеристик снимаются осциллограммы выходных напряжений при воздействии на входе импульсного сигнала. При амплитуде входного сигнала 1B осциллограмма выходного напряжения и определяет переходную характеристику h(t) цепи.
- 5. Длительность фронта t_{ϕ} определяется интервалом времени между уровнями 0,1 и 0,9 при нарастании импульса. Длительность среза t_{c} определяется интервалом времени между уровнями 0,9 и 0,1 при срезе импульса. Эти временные параметры следует определять с помощью курсоров осциллографа.
- 6. Длительность фронта t_{ϕ} и среза t_{c} связаны с постоянной времени RC-цепи соотношением $t_{\phi} = t_{c} = 2,2\tau$.
- 7. Относительный спад плоской вершины определяется как отношение абсолютного спада за время импульса к амплитуде сигнала (рис. 8). Относительный спад плоской вершины δu и постоянная времени цепи τ

связаны между собой формулой
$$\delta u = \frac{\Delta u}{U_{_{\rm M}}} 100\% = \frac{t_{_{\rm BX}}}{\tau} 100\%$$
.

7. Основные сведения

В электронике RC-цепи применяются часто. Изображенная на рис. 1,6 схема представляет собой простейший RC-фильтр нижних частот, который без изменений передает низкочастотные и обеспечивает затухание высокочастотных сигналов и их запаздывание по фазе относительно входных сигналов. Частотная характеристика НЧ-фильтра (рис. 1,6) может быть представлена в комплексной форме следующим образом:

$$H(j\omega) = \frac{1}{1 + j\omega RC}.$$

Отсюда получаем выражение для амплитудно-частотной характеристики:

$$H(\omega) = \frac{1}{\sqrt{1 + \left(\omega RC\right)^2}}$$
 или $H(f) = \frac{1}{\sqrt{1 + \left(\frac{f}{f_{\mathrm{B}}}\right)^2}}$.

Выражение для фазо-частотной характеристики будет иметь такой вид:

$$\varphi(\omega) = -\arctan(\omega RC)$$
 или $\varphi(f) = -\arctan\left(\frac{f}{f_{_{\rm B}}}\right)$

Здесь $f_{\rm B} = \frac{1}{2\pi RC}$ — верхняя граничная частота НЧ-фильтра.

Рис. 4. АЧХ и ФЧХ НЧ-фильтра

На частоте среза коэффициент передачи $H(f_{_{\rm B}})=\frac{1}{\sqrt{2}}=0{,}707\,,$ что в логарифмическом масштабе соответствует — 3дБ. Фазовый сдвиг на этой частоте равен — 45° .

Графики АЧХ и ФЧХ изображены на рис. 4. Как видно из рис. 4, амплитудно-частотную характеристику проще всего составить из двух асимптот:

- на нижних частотах (f < $f_{\scriptscriptstyle B}$) H(f) = 1 => 0 дБ,
- на высоких частотах (f $>> f_{\rm B}$) $H(f) \approx \frac{f_{\rm B}}{f}$, т.е. коэффициент усиления обратно пропорционален частоте.

Таким образом, при увеличении частоты в 10 раз коэффициент усиления уменьшается тоже в 10 раз. А это для характеристики, построенной в логарифмическом масштабе, эквивалентно наклону –20дБ на декаду.

На рис. 1,а изображен другой простейший RC-фильтр — верхних частот. Он без изменений передает высокочастотные сигналы и обеспечивает затухание низкочастотных. Его частотная характеристика в комплексной форме может быть представлена следующим образом:

$$H(j\omega) = \frac{1}{1 - j\frac{1}{\omega RC}}.$$

Отсюда получаем выражение для амплитудно-частотной характеристики:

$$H(\omega) = \frac{1}{\sqrt{1 + \left(\frac{1}{\omega RC}\right)^2}}$$
 или $H(f) = \frac{1}{\sqrt{1 + \left(\frac{f_{\text{H}}}{f}\right)^2}}$.

Выражение для фазо-частотной характеристики будет иметь такой вид:

$$\phi(\omega) = \operatorname{arctg}\left(\frac{1}{\omega RC}\right)$$
 или $\phi(f) = \operatorname{arctg}\left(\frac{f_{\scriptscriptstyle \mathrm{H}}}{f}\right)$.

Здесь $f_{_{\rm H}} = \frac{1}{2\pi\!RC}$ — нижняя граничная частота или частота среза ВЧ-фильтра.

На частоте среза коэффициент передачи $H(f_{_{\rm B}})=\frac{1}{\sqrt{2}}=0{,}707\,,$ что в логарифмическом масштабе соответствует — 3дБ. Фазовый сдвиг на этой частоте равен $+45^{\circ}$.

Рис. 5. АЧХ и ФЧХ ВЧ-фильтра

Графики АЧХ и ФЧХ для ВЧ-фильтра изображены на рис. 5. Как и для НЧ-фильтра, амплитудно-частотную характеристику ВЧ-фильтра в двойном логарифмическом масштабе проще всего составить из двух асимптот:

- на высоких частотах ($f > f_H$) $H(f) = 1 \Rightarrow 0$ дБ,
- на низких частотах (f << f_H) $H(f) \approx \frac{f}{f_{\rm H}}$, т.е. коэффициент усиления пропорционален частоте.

Таким образом, при увеличении частоты в 10 раз коэффициент усиления тоже увеличивается в 10 раз. А это для характеристики, построенной в двойном логарифмическом масштабе, эквивалентно наклону +20дБ на декаду.

Для анализа схем (рис. 1,а и б) во временной области на вход надо подать прямоугольный импульс напряжения. Выражение для переходной характеристики в этом случае можно записать в виде:

$$U_{\text{RMX}}(t) = U_{\text{RMX}}(\infty) - [U_{\text{RMX}}(\infty) - U_{\text{RMX}}(0)]e^{-t/\tau},$$

где $U_{\mbox{\tiny Bыx}}(\infty)$ — напряжение на выходе в установившемся режиме;

 $U_{_{\mathrm{Bыx}}}(0)$ — выходное напряжение в момент скачка входного напряжения;

 $\tau = RC -$ постоянная времени.

Диаграммы выходного напряжения для схемы НЧ-фильтра (рис. 1,б) при разных скачках входного сигнала показаны на рис. 6, а для схемы ВЧ-фильтра (рис. 1,а) на рис. 7 и 8.

Рис. 6. Переходные процессы в НЧ-фильтре

Для интегрирующей цепи (рис. 1,6) характерно наличие фронта (рис. 6,а) или среза (рис. 6,б) в выходном сигнале. Время нарастания (среза) импульса можно определить из общей формулы

$$t_2 - t_1 = \tau \ln \frac{U_{\text{\tiny BMX}}(\infty) - U_{\text{\tiny BMX}}(t_1)}{U_{\text{\tiny BMX}}(\infty) - U_{\text{\tiny BMX}}(t_2)},$$

где $U_{\text{вых}}(t_1)$ и $U_{\text{вых}}(t_2)$ — выходное напряжение в соответствующие моменты времени.

Тогда время фронта, определяемое по уровням 0,1...0,9, равно $t_{\rm \phi}=2,2\tau$. Для среза аналогично $t_{\rm c}=2,2\tau$.

Для схемы с разделительным конденсатором (рис. 1,a) возможны два случая.

Если постоянная времени для этой схемы мала по сравнению с длительностью входного сигнала ($t_{\rm BX} >> \tau$), то конденсатор в этом случае называется дифференцирующим или укорачивающим. За время действия входного импульса он успеет полностью зарядиться или разрядиться. Таким образом, перепад входного напряжения приведет к появлению на выходе конечного по длительности импульса положительной (рис. 7,а) или отрицательной (рис. 7,б) полярности. Длительность этого импульса, определенную по уровню 0,5, можно рассчитать по формуле $t_{\rm upix} \approx 0.7\tau$.

Рис. 7. Переходные процессы в ВЧ-фильтре при большой длительности входного сигнала ($t_u >> \tau$)

Если длительность входного сигнала мала по сравнению с постоянной времени ($t_{\rm Bx}<<\tau$), то в этом случае напряжение на конденсаторе за время действия входного сигнала не успеет существенно измениться, и форма выходного сигнала практически повторит форму входного импульса. Конденсатор в этом случае называется разделительным или конденсатором связи. Однако на выходе при этом будет спад плоской вершины выходного импульса Δu (рис. 8). Относительный спад плоской вершины δu рассчитывается по формуле $\delta u = \frac{\Delta u}{U_{\rm c}} 100\% = \frac{t_{\rm Bx}}{\tau} 100\%.$

Данной формулой можно пользоваться, если δu не превосходит 10...15%.

Рис. 8. Переходные процессы в ВЧ-фильтре при малой длительности входного сигнала ($t_{\scriptscriptstyle H}$ << τ)

8. Контрольные вопросы и задачи

- 1. Дайте определение амлитудно-частотной характеристики.
- 2. Как определить граничную частоту фильтра по АЧХ, построенной в линейном и логарифмическом масштабах.
- 3. Как связан относительный спад плоской вершины с нижней граничной частотой ВЧ-фильтра (рис.1,*a*).
- 4. Как связана верхняя граничная частота НЧ-фильтра с длительностью фронта выходного сигнала (рис. $1, \delta$).
- 5. Определите связь граничной частоты и постоянной времени цепи для схем, изображенных на рис.1.
- 6. Для одной из схем первого порядка с двумя резисторами (рис. 9), где $R_1 = R_2 = 1$ кОм, а C = 10нФ:
- определить постоянную времени цепи τ;
- получить выражение для амплитудно-частотной характеристики, нарисовать ее и определить граничную частоту;
- получить выражение для переходной характеристики и изобразить ее для случая, когда длительность входного импульса t_u =100мкс.

Рис. 9. Схемы фильтров первого порядка с двумя резисторами

9. Литература

- 1. **Генератор сигналов специальной формы GFG-3015**. Руководство по эксплуатации.
- 2. Осциллограф цифровой GDS-2062. Руководство по эксплуатации.
- 3. Электротехника и электроника: Учебник для вузов. В 3-х кн. Кн. 3. Электрические измерения и основы электроники/ Г.П. Гаев, В.Г., Герасимов, О.М. Князьков и др.; Под ред. проф. В.Г. Герасимова. М.: Энергоатомиздат, 1998.
- 4. **Опадчий Ю.Ф., Глудкин О.П., Гуров А.И**. Аналоговая и цифровая электроника (Полный курс): Учебник для вузов /Под ред. О.П.Глудкина. М.: Горячая линия Телеком, 2000.