UFMA - Curso de Ciência da Computação

Introdução à Computação - 2ª Avaliação

QUESTÕES

1. A 1º tabela na figura abaixo mostra as coordenadas planas e as massas de 3 objetos.

	Α	В	C	D	E	F	G
1	Centro de	e Massa					
2		x, cm	y, cm	Massa, g		Centro	le Massa
3	Obj.1	0,50	2,50	30,00		X	у
4	Obj.2	3,50	2,50	35,00		2,07	1,74
5	Obj.3	2,00	0,50	40,00			
6							

Construa o *layout* mostrado na figura, e use as fórmulas dadas abaixo para determinar a posição do centro de massa (CM) destes objetos, mostrado na 2ª tabela em F4 e G4 (em amarelo).

Temperatura Final

V1, I

96

1º Volume

T1, °C

20

$$x = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}; y = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3};$$

2. Se um volume V_1 de água à temperatura T_1 é misturada com outro volume V_2 à temperatura T_2 , a temperatura resultante T_f pode ser calculada usando-se a seguinte fórmula: $V_1(T_f-T_1)+V_2(T_f-T_2)=0$. Construa uma planilha igual a da figura ao lado.

trua uma planilha igual a da figura ao lado e que calcule o valor de T_f.

Qual o valor de T_f se: V_1 =150 I , T_1 =50 $^{\circ}$ C, V_2 =300 I, e T_2 =110 $^{\circ}$ C?

3. Construa a tabela ao lado numa planilha eletrônica e crie o gráfico conforme mostrado (use ao menos 20 pares de pontos). A função usada tem a forma $y=x^3-4x^2$. Construa em seguida o gráfico para a função $y=e^x-3|x|$.

2º Volume

V2, I

220

T2, °C

82

Tf, °C

63,16

4. A recursão é muito usada para resolver certos problemas matemáticos. O método babilônico (também chamado de Heron), para calcular raízes quadradas é resumido pela seguinte equação recursiva:

$$x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right)$$

Em palavras: (1) chute um valor; (2) divida o radicando pelo seu valor; (3) ache a média destes dois números, e (4) use este valor como seu próximo chute. Construa uma planilha similar a da figura ao lado e teste para vários valores de N.

1	A	В	C	D	E
1	Raiz Quad	rada Babiló	Método de	e Heron	
2	N	169		Raiz=	13
3					
4	Chute	N/Chute	Média	Teste	Erro
5	10	16,9	13,45	180,9025	-11,9025
6	13,45	12,56506	13,00753	169,1958	-0,19578
7	13,00753	12,99248	13	169,0001	-5,7E-05
8	13	13	13	169	-4,7E-12
9	13	13	13	1 69	0
	9				

5. Se Ax=b então a solução deste sistema linear é o vetor coluna $x=A^{-1}b$, naturalmente. Determine a solução do sistema abaixo aplicando este fato, e usando as operações matriciais (funções embutidas) existentes nas planilhas eletrônicas.

$$A = \begin{pmatrix} 2 & 2 & 1 \\ 4 & 3 & 5 \\ 3 & 1 & 4 \end{pmatrix}; x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}; b = \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix}$$

Qual o valor de seu determinante, i.e., det(A)? Mostre o resultado com duas casas decimais.

6. Resolva o sistema linear Ax = b onde:

$$A = \begin{pmatrix} -4.3 & -4.2 & 1.1 \\ 0.90 & -2.4 & -0.70 \\ 0.70 & -3.4 & -0.10 \end{pmatrix}; x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}; b = \begin{pmatrix} 3.4 \\ 2.1 \\ -3.3 \end{pmatrix}$$

Qual o valor de seu determinante? Mostre o resultado com duas casas decimais.

7. Resolva os sistemas lineares abaixo (mostre o resultado com duas casas decimais):

a)
$$\begin{cases} 2x_1 + 3x_2 + x_3 - x_4 = 6.90 \\ -x_1 + x_2 - 4x_3 + x_4 = 10.20 \\ 4x_1 - 5x_2 + x_3 - 2x_4 = 12.30 \end{cases}$$
b)
$$\begin{cases} x_1 + x_2 + 2x_3 + 4x_4 = 7.12 \\ x_1 + x_2 + 5x_3 + 6x_4 = 12.02 \\ 2x_1 + 5x_2 + x_3 + 2x_4 = 14.90 \\ 4x_1 + 6x_2 + 2x_3 + x_4 = 20.72 \end{cases}$$
c)
$$\begin{cases} -1.2x_1 + 5x_2 + 6x_3 + x_4 = 7 \\ 2x_1 + 3.4x_2 + x_3 + 0x_4 = 1 \\ -x_1 + x_2 - 3x_3 + x_4 = -2 \\ 5.6x_1 - 2x_2 + x_3 + x_4 = 2 \end{cases}$$
d)
$$\begin{cases} 5x_2 - x_3 + 2x_4 = 10 \\ 8x_2 - x_3 + 2x_4 = 16 \\ 2x_1 + x_2 - x_3 - x_4 = 2 \\ x_2 - 2x_3 + x_4 = -2 \end{cases}$$
e)
$$\begin{cases} 5x_1 + 3x_2 - 7x_3 = 4 \\ 2x_1 - 8x_2 + x_3 = 6 \\ -x_1 + 9x_2 + 4x_3 = 5 \end{cases}$$
f)
$$\begin{cases} 5x_1 + 3x_2 - 7x_3 = 4 \\ 2x_1 + 3x_2 - 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 3x_2 - 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 3x_2 - 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_2 - 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_3 + 2x_3 + 2x_4 = 1.01 \\ 3x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + 2x_3 + 2x_4$$

Quais os valores de seus determinantes? Mostre o resultado com duas casas decimais.

 $3.02x_1 + 1.45x_2 + 3.99x_3 + 1.45x_4 = 3.97$

8. Resolva o sistema linear abaixo:

$$\begin{cases} 3.81x_1 + 0.25x_2 + 1.28x_3 + 0.80x_4 = 4.21 \\ 2.25x_1 + 1.32x_2 + 5.08x_3 + 0.49x_4 = 6.97 \\ 5.31x_1 + 6.78x_2 + 0.98x_3 + 1.04x_4 = 2.38 \\ 9.89x_1 + 2.45x_2 + 3.35x_3 + 2.28x_4 = 10.98 \end{cases}$$

Qual o valor de seu determinante? Mostre o resultado com duas casas decimais.

ä	Α	В	С	D	E	F	G			
1		Informática/CI-2015.1								
2	Nº	Aluno	N1	N2	N3	M.P.	Situação			
3	1	Alberto	7,0	6,0	8,0	7,1	Aprovado			
4	2	Jurema	6,0	9,0	6,0	6,9	Reprovado			
5	3	Laerte	4,2	7,0	7,0	6,2	Reprovado			
6	4	Roberta	5,5	8,0	9,0	7,7	Aprovado			
7	5	Walfrida	8,0	6,5	5,0	6,4	Reprovado			
8	Média		6,1	7,3	7,0		.00			
9										

9. Na coluna F da tabela acima à direita é usada a média ponderada (MP, fórmula abaixo) no cálculo da mé dia, com pesos 3, 3, e 4 para as provas (N1, N2 e N3), respectivamente. Construa esta tabela sabendo que o valor de aprovação é igual ou superior a 7,00.

$$MP = \frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} p_i}$$

10. A planilha ao lado mostra a simulação do valor economizado por uma pessoa durante certo número de meses. Na linha 2, a pessoa economiza R\$ 200,00 a cada mês por um prazo de 24 meses. Na linha 3, a pessoa economiza R\$ 300,00 a cada 2 meses, por um prazo de 12 meses. Na linha 4, a pessoa economiza R\$ 500,00 a cada 3 meses, por um prazo de 6 meses.

A	A Valor economizado		B A cada n	C Total de meses	Valor total economizado	
1			meses			
2	R\$	200,00	1	24	R\$,00
3	R\$	300,00	2	12	R\$,00
4	R\$	500,00	3	6	R\$,00
5	Total				R\$,00
6				,		

Na célula D2 deve-se digitar uma fórmula baseando-

se nos conceitos de utilização da regra de três para calcular o valor total economizado pelo tempo em meses presente na célula C2. A fórmula que deve ser digitada na célula D2 de forma que possa ser copia da, posteriormente, para as células D3 e D4 gerando automaticamente os resultados nessas células, é:

a)
$$=A2*B2/C2$$

b)
$$=B2*C2/A2$$

e)
$$=A2*C2/RAIZ(B2)$$

11. A planilha ao lado foi criada utilizando-se um software de planilhas. A linha 2 mostra uma dívida de R\$ 1.000,00 (célula B2) com um Credor A (célula A2) que deve ser paga em 2 meses (célula D2) com uma taxa de juros de 8% ao mês (célula C2) pelo regime de juros simples. A fórmula correta que deve ser digitada na célula E2 para calcular o montante que será pago é:

1	Α	В	C	D	E
1		Capital	Taxa de Juros	Períodos, meses	Montante
2	Credor A	R\$ 1.000,00	8,00%	2	
3	Credor B	R\$ 7.350,00	2,75%	24	
4	Credor C	R\$ 2.440,00	0,95%	9	
5					

c)
$$=B2*C2*D2$$

c)
$$=B2*C2*D2$$
 d) $=B2*(1+(C2*D2))$ e) $=D2*(1+(B2*C2))$

12. Se na planilha do exercício anterior fosse usado juros compostos ao invés de juros simples, qual seria a fórmula correta que deveria ser digitada na célula E2 para calcular o montante que será pago?

a) B2*POT((1+C2),D2) b) =B2*POW((1+C2);D2) c) =B2*(1+C2)^ d) =B2*POW((1+C2),D2) D2

В

13. Com base na figura ao lado, que ilustra uma planilha em edição em um software de planilha, a partir da qual foi gerado o gráfico mostrado, é correto afirmar que (assinale V ou F):

- b. ____ 50% dos processos pertencem à zona 002 e zona 003?
- c. ____ 50% dos processos pertencem à zona 001 e zona 004?

- d. ____ A maioria dos processos pertencem à zona 001 e zona 003?
- 14. Na planilha ao lado foram usadas na coluna D2:D5 as fórmulas matemáticas mostradas abaixo, cujas notações na planilha serão, respectivamente:

$$D2 = \sqrt{a}; D3 = \frac{c}{a^2 - b^2}; D4 = \sqrt[3]{a}; D5 = \frac{a - b}{b + c};$$

- a) =RAIZ(A2); =C3/(A3^2-2*B3); =A4^(1/3); =(A5-B5)/B5+C5;
- b) =RAIZ(A2); =C3/A3^2-B3^2; =A4^(1/3); =A5-B5/B5+C5;
- c) =RAIZ(A2); =C3/A3^2-2*B3; =A4^1/3; =A5-B5/(B5+C5);
- d) =RAIZ(A2); =C3/(A3 2 -B3 2); =A4 $^(1/3)$; =(A5-B5)/(B5+C5)

al.	Α	В	C	D
1	a	b	С	d
2	5	5		
3	5	3	8	
4	729	8		
5	16	12	4	
6				

D E F