Computer lab I: Implementation of arc-length solvers with a total Lagrangian bar element

Prof. Dr. Eleni Chatzi, Dr. Konstantinos Tatsis, Konstantinos Vlachas

17 October, 2024

Institute of Structural Engineering, ETH Zürich

Outline

Introduction

- 2 Implementation of arc-length solvers
- 3 Implementation of a geometrically non linear bar element using the total Lagrangian formulation

Learning goals

- Implementation of arc length solvers
- Implementation of a total Lagrangian bar element

Path-following methods: Arc-length

Illustration of arc-length methods:

Crisfield:

Riks:

The system to be solved at each step of a path-following method is:

$$\begin{bmatrix} \mathbf{K_T} & -\mathbf{f_{ext}} \\ \mathbf{h}^T & s \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u} \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} -\mathbf{R}^i \\ -g^i \end{bmatrix}$$

where:

- $\Delta \mathbf{u}$ is the nodal displacement increment
- $\Delta \lambda$ is the load factor increment
 - g_i The value of the constraint function used at the previous increment
 - **h** Is the gradient of g with respect to \mathbf{u} : $\mathbf{h} = \frac{\partial g}{\partial \mathbf{u}}$
 - s is the derivative of g with respect to λ : $s = \frac{\partial g}{\partial \lambda}$

Block solution of the system:

$$egin{aligned} \Delta \mathbf{u}^I &= \mathbf{K_T}^{-1} \mathbf{f_{ext}}, \ \Delta \mathbf{u}^{II} &= -\mathbf{K_T}^{-1} \mathbf{R}^I \end{aligned}$$
 $\Delta \lambda &= -rac{\mathbf{g}^I + \mathbf{h}^T \Delta \mathbf{u}^{II}}{\mathbf{s} + \mathbf{h}^T \Delta \mathbf{u}^I}$
 $\Delta \mathbf{u} &= \Delta \lambda \Delta \mathbf{u}^I + \Delta \mathbf{u}^{II}$

Predictor step incremental displacements:

$$\Delta \mathbf{u}^p = \mathbf{K_T}^{-1} \mathbf{f}_{\mathrm{ext}}$$

Load factor increment:

$$\Delta \lambda^p = \pm \frac{\Delta s}{\|\Delta \mathbf{u}^p\|}$$

Sign is determined by:

$$\kappa = \frac{\mathbf{f_{ext}}^T \Delta \mathbf{u}}{\Delta \mathbf{u}^T \Delta \mathbf{u}}$$

Solution overview:

1	Initial values	\mathbf{u}^0, λ^0	
2	Obtain internal force, tangent stiffness and external force	R, K_T, f_{ext}	
3	Predictor step incremental displacements	$\Delta u^p = K_T^{-1} f_{ext}$	
4	Predictor step incremental load factor	$\kappa = \frac{\mathbf{f_{ext}}^T \Delta \mathbf{u}}{\Delta \mathbf{u}^T \Delta \mathbf{u}}, \Delta \lambda^p = \operatorname{sign}(\kappa) \frac{\Delta s}{\ \Delta \mathbf{u}^p\ }$	
5	Load factor and displacement update	$\lambda^1 = \lambda^0 + \Delta \lambda^p$, $\mathbf{u}^1 = \mathbf{u}^0 + \Delta \lambda^p \Delta \mathbf{u}^p$	
6	Update residual and tangent stiffness	R, K_T	
7	Iterations	For $i = 1, 2, 3,$	
8	Evaluate constraint	g ⁱ , h , s	
9	Solution of linear systems	$\Delta \mathbf{u}^I = \mathbf{K_T}^{-1} \mathbf{f_{ext}}, \ \Delta \mathbf{u}^{II} = -\mathbf{K_T}^{-1} \mathbf{R}^I$	
10	Displacement and load factor increments	$\Delta \lambda = -\frac{g^{i} + \mathbf{h}^{T} \Delta \mathbf{u}^{II}}{s + \mathbf{h}^{T} \Delta \mathbf{u}^{I}}, \ \Delta \mathbf{u} = \Delta \lambda \Delta \mathbf{u}^{I} + \Delta \mathbf{u}^{II}$	
11	Solution update	$\lambda^{i+1} = \lambda^i + \Delta\lambda, \mathbf{u}^{i+1} = \mathbf{u}^i + \Delta\mathbf{u}$	
12	Update residual and tangent stiffness	R,K _T	
13	Convergence check	If $\ \mathbf{R}\ \le tol$ converged, else go to 7	

Constraint definitions:

Name	g	h	s
Load control	$\lambda - \bar{\lambda}$	0	1
Displacement control	$\mathbf{T} \cdot \mathbf{u} - ar{u}$	Т	0
Arc length method	$\sqrt{\left(\mathbf{u}-\mathbf{u}^{0}\right)^{T}\cdot\left(\mathbf{u}-\mathbf{u}^{0}\right)+\left(\lambda-\lambda^{0}\right)^{2}}-\Delta s$	$\frac{(\mathbf{u}^i - \mathbf{u}^0)}{g}$	$\frac{(\lambda^i - \lambda^0)}{g}$
Riks method	$\left(\Delta \mathbf{u}^p\right)^T\left(\mathbf{u}-\mathbf{u}^1\right)+\Delta \lambda^p\left(\lambda-\lambda^1\right)$	$\Delta \mathbf{u}^{p}$	$\Delta \lambda^p$

where \mathbf{u}^0 and λ^0 are the displacements and load factor at the beginning of the step and:

$$\mathbf{u}^1 = \mathbf{u}^0 + \Delta \lambda^p \Delta \mathbf{u}^p, \ \lambda^1 = \lambda^0 + \Delta \lambda^p$$

Geometry of the truss element.

Where:

$$u_1^2 = u_1^1 + I\cos\theta - L$$

$$u_2^2 = u_2^1 + I\sin\theta$$

Linear part of the stiffness matrix:

$$\mathbf{K_L} = EA \frac{I^2}{L^3} \left[\begin{array}{cccc} \cos^2\theta & \cos\theta \sin\theta & -\cos^2\theta & -\cos\theta \sin\theta \\ & \sin^2\theta & -\sin\theta \cos\theta & -\sin^2\theta \\ & & \cos^2\theta & \sin\theta \cos\theta \\ \mathrm{Symm} & & \sin^2\theta \end{array} \right]$$

where A is the cross section of the bar in the reference configuration.

The nonlinear part of the tangent stiffness matrix is:

$$\mathbf{K_{NL}} = EA \frac{I^2 - L^2}{2L^3} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

The force vector is:

$$\mathbf{f_{int}} = EA \ \frac{l^2 - L^2}{2L^2} \begin{bmatrix} -\cos\theta \\ -\sin\theta \\ \cos\theta \\ \sin\theta \end{bmatrix}$$

Application

Simulate the following arc truss with radii $R_1=49$, $R_2=51$, and angle $\phi=\pi/6$

