MA2115 Clase 1: Sucesiones Infinitas

Elaborado por los profesores Edgar Cabello y Marcos González

1 Definición de sucesión

Denotamos al conjunto de los números enteros positivos (o números naturales) usando el símbolo \mathbb{N} y al conjunto de los números reales mediante \mathbb{R} .

Definicion 1 Definimos una sucesión infinita como una función a valores reales cuyo dominio es el conjunto de enteros positivos \mathbb{N} .

Observemos que es posible definir una sucesión con valores en cualquier conjunto, no necesariamente \mathbb{R} . Más adelante en el curso consideraremos también sucesiones de funciones polinómicas. Una sucesión puede ser denotada de varias maneras:

- 1. Como una función $f: \mathbb{N} \to \mathbb{R}$;
- 2. Como un arreglo ordenado de la forma $a_1, a_2, ..., a_n, ...$, donde el término general a_n es igual a f(n), para cada $n \in \mathbb{N}$;
- 3. Usando la notación descriptiva de conjuntos $\{a_n\}_{n=1}^{\infty}$ o simplemente $\{a_n\}$.

En la práctica, las sucesiónes que generalmente consideramos son de la forma $\{a_k, a_{k+1}, a_{k+2}...\}$, es decir, el conjunto de índices es de la forma $\{n \in \mathbb{N} : n \ge k\}$, y no todo \mathbb{N} . Sin embargo, los resultados acerca de las sucesiones que discutiremos en esta clase se aplican sin modificaciones significativas a este tipo de funciones que también podemos considerar sucesiones (aunque no estén incluidas en nuestra definición).

1

Ejemplo 1

1.
$$a_n = \frac{1}{n}$$
, para $n \ge 1$: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

2.
$$a_n = \frac{1}{\sqrt{n}}$$
, para $n \ge 1$: $1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}}, \dots$

3.
$$a_n = n^2 - 1$$
, para $n \ge 0$: $-1, 0, 3, 7, ...$

4.
$$a_n = \frac{1}{2^n}$$
, para $n \ge 1$: $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$,...

5.
$$a_n = 3 + (-1)^n$$
, para $n \ge 1$: 2, 4, 2, 4, ...

6.
$$a_n = \frac{n^2}{2^n - 1}$$
, para $n \ge 1$: $1, \frac{4}{3}, \frac{9}{7}, \frac{16}{15}, \dots$

7.
$$a_n = (-1)^n \frac{n}{2n-1}$$
, para $n \ge 1$: $-1, \frac{2}{3}, -\frac{3}{5}, \frac{4}{7}, \dots$

En lo que resta de esta clase, cuando nos refiramos a sucesiones estaremos hablando de sucesiones a valores reales.

Conociendo los primeros términos de la sucesión no podemos garantizar que conocemos la sucesión, ya que dos sucesiones pueden tener los mismos primeros términos y ser diferentes. Por ejemplo, los primeros tres téminos de la sucesión $a_n = \left[\frac{2^n}{n}\right]$ son iguales a 2, pero la sucesión no es constante. De hecho, para cada $m \ge 1$, es posible conseguir fórmulas explícitas de pares de sucesiones que coincidan en los primeros m términos y no sean iguales.

Sin embargo, cuando sabemos además que la sucesión es una progresión aritmética, es posible obtener el término n-ésimo de la sucesión si conocemos unos términos. Por ejemplo, la sucesión $1,3,5,7,\ldots$ de los números impares tiene término general $a_n=2n-1$. así mismo, si la sucesión $1,4,7,10,13,\ldots$ es una progresión aritmética, el término n-ésimo es igual a $a_n=3n-2$, para $n\geq 1$.

Otra forma de determinar completamente una sucesión es mediante una fórmula de recurrencia:

Definicion 2 Decimos que la sucesión $\{a_n\}_{n=n_0}^{\infty}$ está definida en forma recurrente si, dado el valor a_{n_0} , $\{a_n\}_{n=n_0}^{\infty}$ es la única sucesión que satisface una ecuación de la forma

$$F_n(a_{n_0}, a_{n_0+1}, \dots, a_{n-1}) = a_n,$$
 (1)

donde F_n es alguna sucesión de funciones dada. En este caso, decimos que la ecuación (1) es la fórmula de recurrencia de $\{a_n\}_{n=n_0}^{\infty}$.

Por ejemplo, la progresión aritmetica 1,4,7,10,13,... puede ser descrita mediante la fórmula de recurrencia

$$a_n = a_{n-1} + 3$$
, $n > 2$, $a_1 = 1$.

2 Límites de sucesiones

Definicion 3 Si, para cada $\varepsilon > 0$, existe M > 0 tal que $|a_n - L| < \varepsilon$, siempre que n > N, entonces decimos que el límite de la sucesión $\{a_n\}$ es L y escribimos $\lim_{n \to \infty} a_n = L$.

Definicion 4 Si una sucesión tiene un límite finito entonces se dice que es convergente. En otro caso, se dice que es divergente.

Por ejemplo, si graficamos los primeros términos de la sucesión $a_n = \frac{n}{2n+1}$, tenemos $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{5}{11}, \dots$, podemos observar que dichos puntos se acercan a $\frac{1}{2}$.

Figura 1: Gráfica de la sucesión $a_n = \frac{n}{2n+1}$ con $1 \le n \le 15$.

Ejemplo 2

1.
$$\left\{\frac{n}{2n+1}\right\}, \lim_{n\to\infty}\frac{n}{2n+1}=\frac{1}{2}.$$

2.
$$\left\{ (-1)^n \frac{n+1}{n} \right\}, diverge: (-1)^n \frac{n+1}{n} = \left\{ \begin{array}{cc} 1 + \frac{1}{n} & \text{si n impar,} \\ -1 - \frac{1}{n} & \text{si n par.} \end{array} \right.$$

3. Si
$$a_n = \frac{1}{2^n}$$
, para cada $n \ge 1$, entonces $\lim_{n \to \infty} a_n = 0$.

4. Si
$$a_n = 3^n + (-3)^n$$
, para cada $n \ge 1$, entonces $\lim_{n \to \infty} a_n$ no existe, con lo cual (a_n) diverge.

5. Si
$$a_n = n - 1$$
, para cada $n \ge 1$, entonces $\lim_{n \to \infty} a_n = \infty$, con lo cual (a_n) diverge.

Ejemplo 3 Hallar el n-ésimo término de la sucesión cuyos primeros téminos son:

$$-\frac{2}{1}, \frac{8}{2}, -\frac{26}{6}, \frac{80}{24}, -\frac{242}{120}, \dots,$$

y decidir si converge o no.

Solución: Ordenamos los términos de la sucesión:

Numerador: Observemos que

de donde es claro que el numerador es de la forma $3^n - 1$.

Denominador: Observemos que

de donde es claro que el denominador es de la forma n!.

En suma, el término general de la sucesión es $a_n = (-1)^n \frac{3^n - 1}{n!}$ y, como $\lim_{n \to \infty} \frac{3^n - 1}{n!} = 0$, tenemos que (a_n) converge.

Ejemplo 4 *Demostrar, usando la definición de límite, que* $\lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2}$.

Solución: Debemos demostrar que, para cualquier $\varepsilon > 0$, existe un número N > 0 tal que

$$\left| \frac{n}{2n+1} - \frac{1}{2} \right| < \varepsilon$$
, para todo $n > N$.

En efecto, como $\left| \frac{n}{2n+1} - \frac{1}{2} \right| = \left| \frac{2n-2n-1}{2(2n+1)} \right| = \frac{1}{4n+2}$, para todo n > 0, basta con encontrar un N > 0 tal que $\frac{1}{4n+2} < \varepsilon$, para todo n > N, pero

$$\frac{1}{4n+2} < \varepsilon \Longleftrightarrow \frac{1}{\varepsilon} < 4n+2 \Longleftrightarrow \frac{1-2\varepsilon}{4\varepsilon} < n,$$

de donde $\left| \frac{n}{2n+1} - \frac{1}{2} \right| < \varepsilon$ siempre que $n > N := \frac{1-2\varepsilon}{4\varepsilon}$.

Ejemplo 5 Demuestre en cada caso, usando la definición de límite, que L es el límite de la sucesión $\{a_n\}_{n=1}^{\infty}$:

1.
$$a_n = \frac{1}{n^3} y L = 0;$$

2.
$$a_n = \frac{4n}{2n-1}$$
 y $L = 2$;

3.
$$a_n = \frac{e^n + 1}{e^n} y L = 1;$$

4.
$$a_n = 1 + \frac{(-1)^n}{n} y L = 1;$$

Solución: 1. $\lim_{n \to \infty} \frac{1}{n^3} = 0$ si, y sólo si, para todo $\varepsilon > 0$ existe N > 0 tal que $\frac{1}{n^3} = \left| \frac{1}{n^3} - 0 \right| < \varepsilon$ siempre que n > N. Pero $\frac{1}{n^3} < \varepsilon \iff \frac{1}{\varepsilon} < n^3 \iff \frac{1}{\sqrt[3]{\varepsilon}} < n$, de modo que podemos considerar $N := \frac{1}{\sqrt[3]{\varepsilon}}$.

2. $\lim_{n\to\infty} \frac{4n}{2n-1} = 2$ si, y sólo si, para todo $\varepsilon > 0$ existe N > 0 tal que $\left| \frac{4n}{2n-1} - 2 \right| < \varepsilon$ siempre que n > N. Pero, para n un entero positivo tenemos que 2n-1>0 y, así,

$$\left|\frac{4n}{2n-1}-2\right|<\varepsilon\Longleftrightarrow\frac{2}{2n-1}<\varepsilon\Longleftrightarrow\frac{2+\varepsilon}{2\varepsilon}< n,$$

de modo que podemos considerar $N := \frac{2+\varepsilon}{2\varepsilon}$.

3. $\lim_{n\to\infty}\frac{e^n+1}{e^n}=1$ si, y sólo si, para cada $\varepsilon>0$ existe N>0 tal que $\left|\frac{e^n+1}{e^n}-1\right|<\varepsilon$ siempre que n>N. Como

$$\left|\frac{e^n+1}{e^n}-1\right|=\left|\frac{e^n+1-e^n}{e^n}\right|=\frac{1}{e^n}<\varepsilon$$

y la última desigualdad dse cumple si, y sólo si, $n > -\ln \varepsilon = N$, podemos elegir $N = -\ln \varepsilon$. Es decir, $\lim_{n \to \infty} \frac{e^n + 1}{e^n} = 1$.

4. $\lim_{n\to\infty}\left(1+\frac{(-1)^n}{n}\right)=1$ si, y sólo si, para cada $\varepsilon>0$ existe N>0 tal que $\left|1+\frac{(-1)^n}{n}-1\right|=\frac{1}{n}<\varepsilon$ siempre que n>N. Pero es claro que, para cada $\varepsilon>0$, el valor $N=\frac{1}{\varepsilon}$ siempre satisface esta condición. \square

Teorema 1 Sea $f: Dom(f) \subset \mathbb{R} \to \mathbb{R}$ alguna función $y \ x_0 \in \mathbb{R} \cup \{\infty\}$. Si el límite $L = \lim_{x \to x_0} f(x)$ existe, entonces, para cada sucesión $(x_n)_{n=1}^{\infty}$ contenida en Dom(f) tal que $\lim_{n \to \infty} x_n = x_0$ existe, tenemos que $\lim_{n \to \infty} f(x_n)$ existe y es igual a L. Recíprocamente, si existe L tal que $\lim_{n \to \infty} f(x_n)$ existe y es igual a L, para cada sucesión $(x_n)_{n=1}^{\infty} \subset Dom(f)$ para la cual $\lim_{n \to \infty} x_n = x_0$ existe, entonces $\lim_{x \to x_0} f(x)$ existe y es igual a L.

Demostración: Como $L = \lim_{x \to x_0} f(x)$ tenemos que, para cada $\varepsilon > 0$, existe $\delta > 0$ tal que $|f(x) - L| < \varepsilon$ siempre que $|x - x_0| < \varepsilon$. Por otra parte, como $\lim_{n \to \infty} x_n = x_0$, para cada $\delta > 0$, existe N > 0 tal que $|x_n - x_0| < \delta$ siempre que n > N, pero entonces también tenemos que $|f(x_n) - L| < \varepsilon$ siempre que n > N, es decir $L = \lim_{n \to \infty} f(x_n)$.

Recíprocamente, supongamos que $L = \lim_{n \to \infty} f(x_n)$, para cada sucesión $(x_n) \subset \text{Dom}(f)$ tal que $\lim_{n \to \infty} x_n = x_0$. Si no se cumple que $L = \lim_{x \to x_0} f(x)$ entonces existe $\varepsilon > 0$ tal que, para cada $\delta > 0$, existe $x_\delta \in \text{Dom}(f)$ para el cual $|x_\delta - x_0| < \delta$ y $|f(x_\delta) - L| \ge \varepsilon$. Por lo tanto, para cada entero positivo n, podemos elegir $x'_n := x_{1/n} \in \text{Dom}(f)$ tal que $|f(x'_n) - L| \ge \varepsilon$ mientras que $|x'_n - x_0| < \frac{1}{n}$, pero esto nos dice que la sucesión (x'_n) satisface $\lim_{n \to \infty} x'_n = x_0$ y $\lim_{n \to \infty} f(x'_n) \ne L$ (es decir, o bien el límite no existe ó bien existe y es distinto de L). Esta contradicción viene de suponer que no se cumple $L = \lim_{x \to x_0} f(x)$.

Por ejemplo, es trivial que $\lim_{n\to\infty} n = \infty$, y sabemos que $\lim_{x\to\infty} \frac{1}{x^p} = 0$ para cualquier real positivo p. Por lo tanto, el Teorema 1 nos dice que $\lim_{n\to\infty} \frac{1}{n^p} = 0$.

El Teorema 1 también es útil para demostrar que ciertos límites de funciones reales no existen. Por ejemplo, sabemos que $\operatorname{sen}(\pi n) = 0$ y $\operatorname{sen}\pi\left(2n + \frac{1}{2}\right) = 1$, para todo $n \in \mathbb{N}$, con lo cual, en particular, $\lim_{n \to \infty} \operatorname{sen}(\pi n) = 0$, mientras que $\lim_{n \to \infty} \operatorname{sen}\pi\left(2n + \frac{1}{2}\right) = 1$. Como dichos límites no coinciden, el Teorema 1 nos dice que $\lim_{n \to \infty} \operatorname{sen}(\pi x)$ no existe.

Corolario 1 Sea r un número real cualquiera. Entonces, la sucesión $(r^n)_{n=1}^{\infty}$ converge siempre que |r| < 1.

Ejemplo 6 Determine la convergencia o divergencia de las sucesiones siguientes:

1.
$$a_n = \frac{3n^2}{7n^2 + 1}$$
;

2.
$$a_n = n \operatorname{sen} \frac{\pi}{n}$$
;

$$3. \ a_n = \left(1 + \frac{2}{n}\right)^n;$$

Solución:

1.
$$\lim_{n\to\infty} \frac{3n^2}{7n^2+1} = \lim_{n\to\infty} \frac{3}{7+\frac{1}{n^2}} = \frac{3}{7}$$
, ya que $\lim_{x\to 0} \frac{3}{7+x}$ y $\lim_{n\to\infty} \frac{1}{n^2} = 0$.

2.
$$\lim_{n\to\infty} n \operatorname{sen} \frac{\pi}{n} = \lim_{n\to\infty} \frac{\operatorname{sen} \frac{\pi}{n}}{\frac{1}{n}} = \pi$$
, ya que $\lim_{x\to 0} \frac{\operatorname{sen}(\pi x)}{x} = \pi$ y $\lim_{n\to\infty} \frac{1}{n} = 0$.

3.
$$\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n = e^2$$
, ya que $\lim_{x\to\infty} \left(1+\frac{2}{x}\right)^x = e^2$.

3 Propiedades de los límites de sucesiones

Teorema 2 Para cualquier sucesión $(a_n)_{n=1}^{\infty}$, tenemos que $\lim_{n\to\infty} a_n = 0$ si, y sólo si, $\lim_{n\to\infty} |a_n| = 0$.

Demostración: En virtud de la definición de límite, $\lim_{n\to\infty} |a_n| = 0$ si, y sólo si, para cada $\varepsilon > 0$ existe N > 0 tal que $||a_n| - 0| = |a_n| = |a_n - 0| < \varepsilon$ siempre que n > N, esto es, si, si y sólo si, $\lim_{n\to\infty} a_n = 0$.

Teorema 3 Sean $(a_n)_{n=1}^{\infty}$ y $(b_n)_{n=1}^{\infty}$ successiones convergentes y K una constante arbitraria. Entonces,

1.
$$\lim_{n\to\infty} K = K$$
;

$$2. \lim_{n\to\infty} Ka_n = K \lim_{n\to\infty} a_n;$$

3.
$$\lim_{n\to\infty}(a_n\pm b_n)=\lim_{n\to\infty}a_n\pm\lim_{n\to\infty}b_n;$$

$$4. \lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n;$$

5.
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} \operatorname{si} \lim_{n\to\infty} b_n \neq 0.$$

El siguiente teorema es la versión para sucesiones del conocido teorema del emparedado.

Teorema 4 Supongamos que $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ y $(c_n)_{n=1}^{\infty}$ son sucesiones para las cuales

- **a)** existe un k > 0 tal que $a_n \le b_n \le c_n$, y
- **b)** las sucesiones $(a_n)_{n=1}^{\infty} y(c_n)_{n=1}^{\infty}$ convergen $yL = \lim_{n \to \infty} a_n y \lim_{n \to \infty} c_n$.

Entonces, la sucesión $(b_n)_{n=1}^{\infty}$ converge y $L = \lim_{n \to \infty} b_n$.

Corolario 2 Sean $(a_n)_{n=1}^{\infty}$ y $(b_n)_{n=1}^{\infty}$ sucesiones tales que existe k > 0 para el cual $|b_n| \le a_n$, para cada n > k. Entonces, $\lim_{n \to \infty} b_n = 0$ siempre que $\lim_{n \to \infty} a_n = 0$.

Demostración: Como $|b_n| \le a_n$, tenemos que $-a_n \le b_n \le a_n$, y podemos usar el teorema del emparedado (observe que $\lim_{n\to\infty} -a_n = -\lim_{n\to\infty} a_n = 0$) para concluir que $\lim_{n\to\infty} b_n = 0$.

Ejemplo 7 Demuestre que la sucesión $\left\{ (-1)^n \frac{1}{n!} \right\}_{n=1}^{\infty}$ converge y encuentre su límite.

Solución: Observemos que, para todo $n \le 2$, tenemos que $n! \ge 2^{n-1}$, con lo cual $0 < \frac{1}{n!} \le \frac{1}{2^{n-1}}$. Como $\lim_{n \to \infty} \frac{1}{2^{n-1}} = 0$, tenemos que $\lim_{n \to \infty} \frac{1}{n!} = 0$.

4 Sucesiones monótonas

Definicion 5 Decimos que una sucesión $(a_n)_{n=k}^{\infty}$ es

- **a)** creciente (no-decreciente) si, para cada $n \ge k$, $a_n < a_{n+1}$ ($a_n \le a_{n+1}$),
- **b**) decreiente (no-creciente) si , para cada $n \ge k$, $a_n < a_{n+1}$ $(a_n \ge a_{n+1})$, y
- c) monótona si es no-decreciente o no-creciente.

Es claro entonces que $(a_n)_{n=k}^{\infty}$ es creciente (no-decreciente) si, y sólo si, $(-a_n)_{n=k}^{\infty}$ es decreciente (no-creciente).

Ejemplo 8 La sucesión $\{3n\}_{n=1}^{\infty} = \{3,6,9,\ldots\}$ es creciente, la sucesión $\left\{\frac{1}{n^2}\right\}_{n=1}^{\infty} = \left\{1,\frac{1}{4},\frac{1}{9},\ldots\right\}$ es decreciente, la sucesión $\left\{\left[\frac{n}{2}\right]\right\}_{n=1}^{\infty} = \{1,2,2,3,3,4,4,\ldots\}$ es no-decreciente pero no creciente, todas las sucesiones anteriores son monotonas, y un ejemplo de sucesión que no es monótona está dado por $\{3+(-1)^n\}_{n=1}^{\infty} = \{2,4,2,4,\ldots\}$.

Ejemplo 9 Demostrar que la sucesión $\left\{\frac{n^2}{2^n}\right\}_{n=3}^{\infty}$ es decreciente.

Demostración: Queremos ver que, $\frac{n^2}{2^n} > \frac{(n+1)^2}{2^{n+1}}$, para cada $n \ge 3$. Para esto, observemos, por una parte, que

$$\frac{n^2}{2^n} > \frac{(n+1)^2}{2^{n+1}} \iff 2^{n+1}n^2 > 2^n(n+1)^2$$

$$\iff 2n^2 > n^2 + 2n + 1$$

$$\iff n^2 - 2n > 1 \iff n(n-2) > 1$$

y, por otra parte, que n(n-1) > 1, para cada $n \ge 3$.

Definicion 6 Una sucesión $(a_n)_{n=k}^{\infty}$ es acotada si existe un D > 0 tal que $|a_n| \leq D$, para todo $n \geq k$. Si existe un número real M tal que $a_n \leq M$, para todo $n \geq k$, decimos que $(a_n)_{n=k}^{\infty}$ es acotada superiormente p que p es una cota superior de p que p es una cota superior de p que p es acotada inferiormente p que p es una cota inferior de p que p es acotada inferiormente p que p es una cota inferior de p p es acotada inferiormente p que p es una cota inferior de p p es acotada inferiormente p que p es una cota inferior de p p es acotada inferiormente p que p es una cota inferior de p p es p es acotada inferiormente p que p es una cota inferior de p es p

Proposicion 1 a) Toda sucesión no-decreciente y acotada superiormente es convergente.

- **b)** Toda sucesión no-creciente y acotada inferiormente es convergente.
- c) En particular, toda sucesión monótona y acotada es convergente.

Demostración: a) Sea $(a_n)_{n=k}^{\infty}$ una sucesión no-decreciente y acotada superiormente. Recordemos que todo conjunto de números reales que es ambos acotado y no vacío, tiene una cota superior m' inima. Sea L dicha cota superior mínima. Afirmamos que $\lim_{n\to\infty} a_n = L$. En efecto, dado $\varepsilon > 0$, el valor real $L - \varepsilon$ no es una cota superior de la sucesión (a_n) , con lo cual existe un entero $n_0 \ge k$ tal que $a_{n_0} > L - \varepsilon$. Por otra parte, como la sucesión es no-decreciente, $a_{n_0} \le a_n$, para cada $n \ge n_0$, y, por lo tanto,

$$L - \varepsilon < a_{n_0} \le a_n \le L < L + \varepsilon$$
,

para cada $n \ge n_0$. En particular, $L - \varepsilon < a_n < L + \varepsilon$, para cada $n \ge n_0$, lo cual es equivalente a que $|a_n - L| < \varepsilon$, para cada $n \ge n_0$. Es decir, $\lim_{n \to \infty} a_n = L$.

- **b)** Si $(b_n)_{n=k}^{\infty}$ es no-creciente y acotada inferiormente, entonces $(-b_n)_{n=k}^{\infty}$ es no-decreciente y acotada superiormente, lo cual en virtud de **a**) nos dice que $(-b_n)$, y por lo tanto (b_n) , es convergente.
- c) Por último, es claro que si $(a_n)_{n=k}^{\infty}$ es una sucesión acotada, entonces es ambas acotada superior e inferiormente, de modo que es convergente siempre que sea monótona.

Ejemplo 10 Demuestre que la sucesión $\left\{\frac{2^n}{n!}\right\}_{n=1}^{\infty}$ es convergente.

Solución: Por una parte,

$$\frac{2^n}{n!} \ge \frac{2^{n+1}}{(n+1)!} \iff 2^n(n+1)! \ge 2^{n+1}n!$$
$$\iff n+1 \ge 2 \iff n \ge 1,$$

con lo cual tenemos que $\left\{\frac{2^n}{n!}\right\}_{n=1}^{\infty}$ es no-creciente y, por otra parte, los términos de la sucesión son todos

positivos, con lo cual 0 es una cota inferior. En suma, $\left\{\frac{2^n}{n!}\right\}_{n=1}^{\infty}$ es una sucesión no-decreciente acotada inferiormente y, por lo tanto, convergente.

Ejemplo 11 Sea $(a_n)_{n=1}^{\infty}$ la sucesión definida en forma recurrente mediante las ecuaciones $a_1 = 1$, y $a_{n+1} = \sqrt{2a_n}$. Demuestre que dicha sucesión converge a 2.

Solución: Veamos primero, usando el método de inducción, que, para cada $n \ge 1$, $0 < a_n < a_{n+1} < 2$. En efecto, para n = 1, es claro que $0 < 1 = a_1 < \sqrt{2} = a_2 < 2$. Supongamos que $0 < a_n < a_{n+1} < 2$ se cumple para algún $n \ge 1$. Queremos ver que $0 < a_{n+1} < a_{n+2} < 2$ o, equivalentemente, usando la fórmula de recurrencia, que $0 < \sqrt{2a_n} < \sqrt{2a_{n+1}} < 2$. Pero esta última desigualdad se obtiene al multilplicar por 2 y luego extraer la raíz cuadrada en cada miembro de la desigualdad $0 < a_n < a_{n+1} < 2$. En virtud del principio de inducción, tenemos que $0 < a_n < a_{n+1} < 2$, para cada $n \ge 1$. En particular, $(a_n)_{n=1}^{\infty}$ es creciente y acotada y, en consecuencia, convergente. Sea $a = \lim_{n \to \infty} a_n$. Ahora usando las propiedades de límite y la relación $a_{n+1} = \sqrt{2a_n}$, tenemos que

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{2a_n} = \sqrt{2 \lim_{n \to \infty} a_n} = \sqrt{2a},$$

es decir, $a = \sqrt{2a} \iff a^2 = 2a \iff a(a-2) = 0$ y, así, a = 0 ó a = 2. Más aún, a no puede ser 0 ya que $a > a_1 = 1$, y, en consecuencia, a = 2.

Correcciones y gráficos: Boris Iskra