

Departamento de Matemáticas 4º Académicas

Universidad, Cultura y Deporte	Exal	шеп	г ра	гсіа	11 3	eva	arua	CIOI	.1	PE	UNU CENHADA	
Nombre:	Jombre:						Fecha:					
Tiempo: 50 minutos							Tipo: A					
Esta prueba tie le la prueba se puntuación má	erá la parte j		_									
	Ejercicio:	1	2	3	4	5	6	7	Total			
	Puntos:	3	4	5	2	2	1	4	21			
(a) $\sin \alpha$:	$ gonométrica $ $ = \frac{\sqrt{2}}{2} $									~	a, las	(1 punto
(b) $\cos \alpha =$	$=\frac{\sqrt{1}}{2}$											(1 punto
(c) $\tan \alpha$	$=\sqrt{3}$											(1 punto
2. Calcular la	s razones tri	igon	om	étri	cas	de 1	un a	ángı	ulo α si:			
(a) $\tan \alpha$	$=\sqrt{3} y \cos c$	<i>γ</i> <	0									(2 puntos
(b) $\tan \alpha$	$=\frac{\sqrt{3}}{3}y\cos a$	α <	0									(2 puntos
3. Resuelve lo	s triángulos	rec	tán	gulo	os:							
(a) Sabier	ndo que la h	ipot	enu	ısa 1	mid	e 8	y u	n ca	ateto 17	cm.		(1 punto
(b) Sabier	ndo que un o	cate	to n	nide	e 15	cm	. y	su a	ángulo o	puesto 30°)	(1 punto

(b) Sabiendo que un cateto inide 13 cm. y su angulo opuesto 30	(1 panto)
(c) Sabiendo que un cateto mide 30 cm. y su ángulo opuesto $45^{\rm o}$	$(1 \ punto)$
(d) Sabiendo que la hipotenusa mide 20 cm. y un ángulo $60^{\rm o}$	$(1 \ punto)$
(e) Sabiendo que un cateto mide 20 cm. y el ángulo opuesto al otro	$(1 \ punto)$
cateto 30°	

4. Resuelve

- (a) La diagonal menor de un rombo mide 20 cm y el ángulo menor es (1 punto)de 60°. ¿Cuánto mide la diagonal?¿Y el lado del rombo?
- (b) La diagonal menor de un rombo mide 40 cm y el ángulo menor es (1 punto)de 60°. ¿Cuánto mide la diagonal?¿Y el lado del rombo?

5. Resuelve

(a) Un carpintero quiere construir una escalera de tijera cuyos brazos, (1 punto)una vez abiertos, formen un ángulo de 60°. Si la altura de la escalera, estando abierta es de 2m, ¿qué longitud deberá tener cada brazo?

- (b) Un carpintero quiere construir una escalera de tijera cuyos brazos, una vez abiertos, formen un ángulo de 60°. Si la altura de la escalera, estando abierta es de 3m, ¿qué longitud deberá tener cada brazo?
- (1 punto)

6. Resuelve

- (a) Desde el punto donde estoy, la visual al punto más alto de una torre de 100 m que tengo enfrente forma un ángulo de 30° con la horizontal. ¿Cuántos m me tengo que acercar para que el ángulo sea de 60°?; A cuántos metros estaba inicialmente?.
- (1 punto)

7. Resuelve las siguientes ecuaciones

(a)
$$\cos x = \frac{1}{2}$$
 (1 $punto$)

(b)
$$\cos x = -\frac{1}{2}$$
 (1 punto)

(c)
$$4(\cos x)^2 - 3 = 0$$
 (1 punto)

(d)
$$4(\cos x)^2 - 2 = 0$$
 (1 punto)