Task: KWA Squares

XXII OI, Stage I. Source file kwa.* Available memory: 64 MB.

6.10-3.11.2014

We consider decompositions of positive integers into sums of *unique* squares of positive integers, called decompositions in short from now on. For example, the number 30 has two decompositions: $1^2 + 2^2 + 5^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30$, whereas the number 8 has none.

Specifically, we are interested in how large the largest square in the decomposition of a given number n has to be. In other words, we want to determine the value k(n), defined as the minimum over decompositions of n of the maximum integer (not its square!) in the decomposition. We assume that $k(n) = \infty$ if n cannot be decomposed. For example, k(1) = 1, $k(8) = \infty$, k(30) = 4, k(378) = 12, k(380) = 10.

We call an integer x overgrown if there is an integer y > x such that k(y) < k(x). It follows from the previous example that 378 is overgrown.

For a given integer n, you are to determine k(n) and the number of overgrown integers no larger than n.

Input

In the first and only line of the standard input, there is a single integer n ($1 \le n \le 10^{18}$). There is a set of tests worth 45% of total score, in which $n \le 50\,000\,000$ holds, a subset of these worth 30% of total score, in which $n \le 1\,000\,000$ holds, and an even smaller subset of the latter worth 20% of total score, in which $n \le 1\,000$ holds.

Output

Your program should print two integers, separated by a single space, to the standard output: first k(n) and then the number of overgrown integers in the range from 1 to n. If $k(n) = \infty$, then – (dash or minus sign) should be printed instead of the first number.

Example

For the input data: the correct result is:

30 4 15

whereas for the following input data: the correct result is:

- 5

1/1 Squares