Contents

1 Overview 1

1 Overview

This document is meant to log my progress in the investigation of mechanical modes in crystals of hard regular polygon particles. The system consists of $N=n^2\times n_{\rm unit}$ particles, where n is some integer and $n_{\rm unit}$ is the number of particles in the unit cell. The system is initialized in its densest known packing and then the crystal vectors are enlarged by constant factors to achieve a prescribed packing fraction. The motion of particles is decomposed into $n\times n$ distinct Fourier modes. There are $3n_{\rm unit}$ relevant fields to investigate. The first $2n_{\rm unit}$ are phonon fields signified by $\tilde{\bf u}=(\tilde{u}_x,\tilde{u}_y)$ (if the number of particles per unit cell is greater than 1, then these fields are further indexed i.e. $\tilde{\bf u}^{\alpha,\beta,\gamma...}$. The remaining $n_{\rm unit}$ fields are libron fields, signified by $\tilde{\theta}^{\alpha,\beta,\gamma...}$. In the case of hexagons, $n_{\rm unit}=1$, and in the case of many other polygons including pentagons studied here, $n_{\rm unit}=2$.

The various control parameters in a simulation are n the number of unit cells along one side of the box, ϕ the packing fraction, s the number of simulation steps, and the polygon shape. The densest packing, and thus the crystal lattice vectors, are determined by the polygon. The real space lattice vectors given by $\mathbf{a}_1, \mathbf{a}_2$ are usually meant to be in the densest packing, ϕ_{max} . When the system is relaxed to a smaller packing fraction, the lattice vectors are presumed to be $\mathbf{a}_i(\phi) = \mathbf{a}_i \sqrt{\phi_{\text{max}}/\phi}$. The reciprocal lattice vectors \mathbf{G}_i are constructed from these real space lattice vectors, and the unit cell of the reciprocal lattice forms the Brillouin zone within which \mathbf{k} vectors are sampled. The relevant \mathbf{k} vectors to sample are $n_1\mathbf{G}_1/n + n_2\mathbf{G}_2/n$.