EPITA / InfoS3		
NOM:	Prénom :	

Décembre 2016 Groupe :

Partiel Electronique - Corige

Les calculatrices et les documents ne sont pas autorisés. Le barème (sur 20,5) est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Redresseur douoble alternance (6 points)

Soit le montage ci-contre dans lequel v(t) est un signal périodique triangulaire, représenté dans les questions e et f. Pour les premières questions, on utilise le modèle idéal pour les diodes.

a) Durant l'alternance positive ($0 \le t \le \frac{T}{2}$), quelles diodes sont conductrices ? Justifiez votre réponse.

Durant l'alternance >0, D3 et D2 sout prassantes car: . dans une diodi, le courant circule de l'anode vers la cathode . dans un dipole récepteur, le courant descend les potentiels.

b) Quelle est alors l'expression de u ?

Loi des mailles: $V - V_3 + \mu - V_2 = 0$ $= \sum_{n=1}^{\infty} \mu = -\mu + V_3 + V_2 = -\mu \quad \text{ear les diodes}$

c) Durant l'alternance négative $(\frac{T}{2} \le t \le T)$, quelles diodes sont conductrice? Justifiez votre réponse.

Pour les mêmes raisons pui à la function a., les dis des passantes lors de l'alternance nègative sont D4 et Ds.

d) Quelle est alors l'expression de u ?

Loi dus mailles: $x + V_1 - u + V_4 = 0$ $= 5 \| u = x + V_1 + V_4 = x \text{ car les disoles sont}$ $= 1 \| u = x + V_1 + V_4 = x \text{ disoles sont}$

e) Tracer alors u(t).

f) On remplace désormais les diodes par leur modèle à seuil. Tracer l'allure de u(t), en justifiant votre réponse. On notera V_0 , la tension de seuil de chacune des diodes et on prendra $V_0 = 0.7 \ V$.

Bur with < 20, les 4 diades sont bloquées.

Exercice 2. Diode Zéner (4 points)

On considère le schéma suivant. $V \in \mathbb{R}$

Tracez la caractéristique de transfert c'est-à-dire U = f(V) en substituant la diode par son modèle réel.

Vous préciserez les équations de chaque portion de caractéristique. On notera V_0 la tension de seuil en direct, r_D , la résistance interne de la diode en direct, V_Z , la tension de seuil Zéner et r_Z , la résistance interne de la diode en inverse.

 R_E

Exercice 3. Polarisation du transistor (6 points)

On considère le montage ci-contre, où :

- $R_B = 200k\Omega$, $R_C = 500\Omega$, $R_E = 1k\Omega$, $V_{CC} = 10V$
- <u>Caractéristiques du transistor</u>: $\beta=100$, $V_{BE}=0.7V$ quand la jonction Base-Emetteur est passante et $V_{CE_{SAT}}=0.2V$
- 1. En supposant que le transistor soit polarisé dans sa zone de fonctionnement linéaire, déterminer le point de polarisation du transistor (c'est-à-dire les les courants I_B , I_C et I_E , ainsi que les tensions V_{BE} , V_{BC} et V_{CE}). Donner d'abord les expressions littérales avant d'effectuer les applications numériques. On pourra considérer, pour les calculs uniquement, que $\beta+1\approx\beta$.

L'hypothèse de départ (transistor polarisé dans sa zone de fonctionnement linéaire) est-elle bien vérifiée ?

Le transister étant polarise dans sa zone de fonchonnement lineair, on a VBE = 0,7V. Loi dus mailles: VCC & RBIB + VBE + REIE Hyprousa Ic = BIB et IE = IB+ Ic = (B+1) IB = NCC = RBIB + VBE + B+1 REIB. = TB = Vcc - VBE RB+(S+1)RE Puis, Ic = B. Vcc-VBE et IE = (S+1) Vcc-VBE
RB+(S+1)RE doi des mailles: Vcc = Rc Ic + VcE + RE IE = NCE = VCC - ROIC - REIF Julin, VBC = VBE + VEC = VBE - VCE AN: $T_B = \frac{10 - 0.7}{200 + 100 \times 4} = \frac{9.3}{300} = 3.1.10^2 \text{ mA} = 31.4$ Ic = B. Is = 3, 1 mA & IE VCE = 10 - (0,5+4). 3,4 = 5,35V VBC = -4,65V Gua VCE > VCESAT = 2 de tremsistor est sien potações

dans sa zone lineaix

 I_{B1}

 $I_E \neq E$

2. Quelle est l'expression du courant de saturation $I_{C_{Sat}}$ de ce transistor ?

Icsat = Ic garand
$$\forall cE = 0 V$$
.

So Loi des mailles. $^{1}V_{CC} - R_{C}I_{CSAT} - R_{E}I_{E} = 0$

Gr, $I \in \mathcal{Z}I_{C}$ ici

 $= 5 I_{CSAT} = \frac{V_{CC}}{R_{C} + R_{E}}$

AN: $I_{CSAT} = \frac{10}{A_{1}5} \approx 6,67 \, \text{mA} \left(= \frac{20}{3} \, \text{mA} \right)$.

Exercice 4. Montage Darligton (2 points)

On considère le montage ci-contre.

 eta_1 étant le coefficient de transfert du courant de base (aussi appelé Gain en courant) du transistor de droite et eta_2 celui du transistor de $oldsymbol{B}$ gauche, déterminer le gain en courant $oldsymbol{\beta}$ du transistor équivalent, en fonction de $oldsymbol{\beta}_1$ et $oldsymbol{\beta}_2$.

On supposera les deux transistors polarisés dans leur zone de fonctionnement linéaire.

Rq : Commencez par exprimer I_C en fonction de I_B .

Exercice 5. QCM (2, 5 points - Pas de point négatif)

1. Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle réel de la diode :

- 2. En polarisation inverse, on peut représenter la diode Zéner à l'aide de l'un des 2 modèles : à seuil ou linéaire le modèle idéal n'existant pas pour cette diode.
 - (a-) VRAI

b- FAUX

3. L'effet transistor :

- (a) Permet de faire passer un grand courant entre l'émetteur et le collecteur.
- b- Permet de faire passer un grand courant entre la base et le collecteur.
- c- Permet de faire passer un grand courant entre l'émetteur et la base.
- 4. Lorsque l'on fait fonctionner le transistor comme un interrupteur :
 - (a-) Le transistor est équivalent à un interrupteur fermé lorsqu'un courant passe dans la base.
 - b- Le transistor est équivalent à un interrupteur fermé lorsqu'aucun courant ne passe dans la base.
 - c- Le transistor est équivalent à un interrupteur ouvert lorsqu'un courant passe dans la base.
 - (d) Le transistor est équivalent à un interrupteur ouvert lorsqu'aucun courant ne passe dans la base.