

Prácticas BigData

1. Montar un cluster real

- Paramos el cluster y el nodo1
- Clonar las máquinas tal y como se indican en el vídeo. En principio, en este curso probamos con 3 nodos, pero si tienes suficiente hardware puedes probar con más.
- En el nodo 1 modificamos el fichero "/opt/hadoop/etc/hadoop/slaves" para añadir los nodos que vamos a crear y que van a ser los esclavos. Debemos asegurarnos de que el nodo1 no está, porque va a ser el maestro. Por ejemplo
 - o Nodo2
 - o Nodo3
 - 0
- Vamos a generar de nuevo todo el cluster, por lo tanto vamos a gtener que limpiar todo.
- En cada nodo, debemos asegurarnos de:
 - o Poner el nombre correcto a la máquina: nodo2, nodo3, etc...
 - o En el caso de CENTOS 6 se hace con el comando

host nodo2

- Y modificando el nombre en el fichero /etc/sysconfig/network
- En el caso de CENTOS 7 se hace con el comando

hostnamectl set-hostname nodo2

- Configurar correctamente la dirección IP, según se indica en el vídeo
- El /etc/hosts debe ser igual en todos los nodos
- Copiar el fichero "/home/hadoop/.bashrc" del nodo1 al resto de nodos para asegurarnos de que tenemos corresctamente las variables de arranque
- Generar clave pública y privada con el comando "ssh-keygen" en cada nodo
- Copiar la clave (/home/hadoop/.ssh/authorized_keys) del nodo1 al resto de nodos para poder tener conectividad ssh.
 - Si queremos poder trabajar desde todos los nodos debemos copiar la clave de todos
- Copiar hadoop en cda nodo al /opt/hadoop y ponerle los permisos adecuados para el usuario "hadoop"

 Limpiamos el directorio "/datos" en cada nodo. Lo podemos hacer con el comando

```
rm -rf /datos/*
```

o Cambiamos en el hdfs-site.xml el valor de replicación a 3:

- Nos aseguramos de que en el core-site.xml esté identificado el nodo1 (No puede ser localhost, fallaría)
- IMPORTANTE: copiamos el directorio /opt/hadoop/etc/hadoop del nodo1 al resto de nodos, para asegurarnos de que los ficheros de configuración son iguales y por tanto son correctos. Cada vez que cambiemos la configuración debemos copiarlo al resto de nodos.
- Arrancamos las máquinas
- Antes de arrancar el cluster, volvemos a crear el HDFS

hdfs namenode -format

8/01/07 10:30:47 INFO util.GSet: capacity = $2^15 = 32768$ entries

18/01/07 10:30:47 INFO namenode.FSImage: Allocated new BlockPoolld: BP-130915252-192.168.56.101-1515317447407

18/01/07 10:30:47 INFO common.Storage: Storage directory /datos/namenode has been successfully formatted.

18/01/07 10:30:47 INFO namenode.FSImageFormatProtobuf: Saving image file /datos/namenode/current/fsimage.ckpt_00000000000000000 using no compression

18/01/07 10:30:47 INFO namenode.FSImageFormatProtobuf: Image file /datos/namenode/current/fsimage.ckpt_000000000000000000 of size 323 bytes saved in 0 seconds.

18/01/07 10:30:47 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0

18/01/07 10:30:47 INFO namenode.NameNode: SHUTDOWN_MSG:

SHUTDOWN_MSG: Shutting down NameNode at nodo1/192.168.56.101

 Probamos a arrancar todo el cluster, primero la parte de HDFS. En este caso yo estoy haciendo el ejemplo con 7 nodos, 1 maestro y 6 esclavos

start-dfs.sh

Starting namenodes on [localhost]

localhost: starting namenode, logging to /opt/hadoop/logs/hadoop-hadoop-namenode-nodo1.out

nodo2: starting datanode, logging to /opt/hadoop/logs/hadoop-hadoop-datanode-nodo2.out

nodo6: starting datanode, logging to /opt/hadoop/logs/hadoop-hadoop-datanode-nodo6.out

nodo7: starting datanode, logging to /opt/hadoop/logs/hadoop-hadoop-datanode-nodo7.out

nodo5: starting datanode, logging to /opt/hadoop/logs/hadoop-hadoop-datanode-nodo5.out

nodo4: starting datanode, logging to /opt/hadoop/logs/hadoop-hadoop-datanode-nodo4.out

nodo3: starting datanode, logging to /opt/hadoop/logs/hadoop-hadoop-datanode-nodo3.out

Starting secondary namenodes [0.0.0.0]

 $0.0.0.0: starting \ secondary name node, \ logging \ to \ /opt/hadoop/logs/hadoop-hadoop-secondary name node-nodo 1. out$

 En el maestro debemos tener estos procesos. Solo los procesos maestros

jps

21928 NameNode

22314 Jps

22157 SecondaryNameNode

En cada uno de los esclavos solo debemos tener el datanode

jps

3834 Jps

3723 DataNode

• En el admin web deben aparecer todos los nodos que hemos creado

Arrancamos ahora el YARN.

start-yarn.sh

En este caso, los procesos del maestro deben ser

jps
28833 NameNode
29538 Jps
29268 ResourceManager
29062 SecondaryNameNode

Y los de los esclavos

jps
6373 Jps
6086 DataNode
6232 NodeManager

En la Web de administración de YARN deben a parecer los nodos

- Por último, en el nodo1, arrancamos el History Server para poder controlar los procesos de Mapper y reducer
- En versión 2 de Haddop usamos el comando

```
mapred --daemon start historyserver
starting historyserver, logging to /opt/hadoop/logs/mapred-hadoop-
historyserver-nodo1.out

jps

28833 NameNode
29907 ResourceManager
29062 SecondaryNameNode
2794 JobHistoryServer
2844 Jps
```

•

2. Trabajar con el cluster

- Podemos comprobar el cluster con dfsadmin -report
- Aparece información sobre cada nodo

hdfs dfsadmin -report

Configured Capacity: 321965260800 (299.85 GB)

Present Capacity: 281433378816 (262.11 GB)

DFS Remaining: 281433329664 (262.11 GB)

DFS Used: 49152 (48 KB)

DFS Used%: 0.00%

Under replicated blocks: 0
Blocks with corrupt replicas: 0

Missing blocks: 0

Missing blocks (with replication factor 1): 0

Pending deletion blocks: 0

Live datanodes (6):

Name: 192.168.56.103:50010 (nodo2)

Hostname: nodo2

Decommission Status: Normal

Configured Capacity: 53660876800 (49.98 GB)

DFS Used: 8192 (8 KB)

Non DFS Used: 6442340352 (6.00 GB) DFS Remaining: 47218528256 (43.98 GB)

DFS Used%: 0.00%

DFS Remaining%: 87.99%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Sun Jan 07 12:53:28 CET 2018

Last Block Report: Sun Jan 07 12:41:43 CET 2018

Name: 192.168.56.123:50010 (nodo3)

Hostname: nodo3

Decommission Status: Normal

Configured Capacity: 53660876800 (49.98 GB)

DFS Used: 8192 (8 KB)

Non DFS Used: 7820476416 (7.28 GB) DFS Remaining: 45840392192 (42.69 GB)

DFS Used%: 0.00%

DFS Remaining%: 85.43%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Sun Jan 07 12:53:28 CET 2018

Last Block Report: Sun Jan 07 12:41:43 CET 2018

Name: 192.168.56.125:50010 (nodo4)

Hostname: nodo4

Decommission Status: Normal

Configured Capacity: 53660876800 (49.98 GB)

DFS Used: 8192 (8 KB)

Non DFS Used: 6591770624 (6.14 GB) DFS Remaining: 47069097984 (43.84 GB)

DFS Used%: 0.00%

DFS Remaining%: 87.72%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Sun Jan 07 12:53:28 CET 2018

Last Block Report: Sun Jan 07 12:41:43 CET 2018

3. Probar el rendimiento del cluster

- Podemos probar también el rendimiento del Cluster antes de empezar a trabajar con él.
- Existe un comando denominado TestDFIO en la libraría "hadoopmapreduce-client-jobclient-2.9.0-tests.jar" que permite indicar el número de ficheros y el tamaño de cada uno par que nos haga un benchmark.
 - Se encuentra en el directorio /opt/hadoop/share/hadoop/mapreduce
- Por ejemplo, para probar 10 ficheros de 100MG cada uno

hadoop jar hadoop-mapreduce-client-jobclient-2.9.0-tests.jar TestDFSIO - write -nrFiles 10 -fileSize 100

El resultado será similar al siguiente

8/01/07 13:14:02 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write

18/01/07 13:14:02 INFO fs.TestDFSIO: Date & time: Sun Jan 07 13:14:02 CET

2018

18/01/07 13:14:02 INFO fs.TestDFSIO: Number of files: 10

18/01/07 13:14:02 INFO fs.TestDFSIO: Total MBytes processed: 1000

18/01/07 13:14:02 INFO fs.TestDFSIO: Throughput mb/sec: 12,22

18/01/07 13:14:02 INFO fs.TestDFSIO: Average IO rate mb/sec: 12,71

18/01/07 13:14:02 INFO fs.TestDFSIO: IO rate std deviation: 2,56

18/01/07 13:14:02 INFO fs.TestDFSIO: Test exec time sec: 71,13

• También lo Podemos lanzar en modo "read" para ver el rendimiento en lectura