实验一 单管放大电路仿真及实验

自54 田毅 2015011451

一、实验目的

- 1. 熟悉放大电路的基本原理,掌握静态工作点的调节方法。
- 2. 掌握放大电路的主要性能指标的测量方法。
- 3. 了解静态工作点对放大电路动态特性的影响。
- 4. 了解发射极负反馈电阻对放大电路性能的影响。
- 5. 学习基于 Multisim 的电路设计和测量方法。

二、预习要求

请仔细阅读网络学堂中的 ppt 和本文档,完成理论估算(估算时假设 $r_{bb'}=100\Omega$, β 、 f_H 、 f_L 不必估算)、仿真实验内容,熟悉硬件实验内容,拟定测试方法、步骤和数据表格,写出预习报告。实验室安装的软件版本为 Multisim 11.0。

三、实验电路及测试内容

- 1. 观测晶体管输出特性曲线
- 2. 静态调试
- 3. 测量动态特性
- 4. 射极负反馈电阻对动态特性的影响
- 5. 静态工作点对最大不失真输出电压 Uom 的影响

四、仿真实验内容

利用 Multisim 对上述单管放大电路进行仿真,完成"三、实验电路及测试内容"中的全部测试内容。其中三极管选用实际元件,型号为 MRF9011L,将模型参数中的 β (即 BF) 改为第四周实验时的实测值;其它元件均选用虚拟元件。

为了更好地指导硬件实验,仿真时请采用硬件实验的测试方法。

1. 观测晶体管输出特性曲线

仿真电路:

仿真波形:

数据记录:

已将基极阶梯电流固定为 $5\mu A$ 每级,因为要测量静态工作点附近的 β ,所以应在Y轴为 $1\sim2mA$ 时进行测量,测得结果为2.138-1.069=1.069mA; $\beta=1069/5=214$ 。

2. 静态调试

理论估算:

(1) I_{co}=1mA时静态工作点估算

求Rw:

$$\begin{split} \frac{R_{B2}}{R_{B2} + R_{B1}} V_{CC} &\approx 0.7 + I_{CQ} (R_{E1} + R_{E2}) \Rightarrow R_{B1} \approx 79.74 \mathrm{k}\Omega \\ R_{W} &= R_{B1} - R'_{B1} = 59.74 \mathrm{k}\Omega \end{split}$$

求Q点:

$$U_{CQ} = V_{CC} - I_{CQ}R_C = 8.7V$$

 $U_{EQ} = I_{CQ}(R_{E1} + R_{E2}) = 1.2V$
 $U_{CEQ} = U_{CQ} - U_{EQ} = 7.5V$

(2) $I_{CQ}=2mA$ 时静态工作点估算

求Rw:

$$\frac{R_{B2}}{R_{B2} + R_{B1}} V_{CC} \approx 0.7 + I_{CQ} (R_{E1} + R_{E2}) \Rightarrow R_{B1} \approx 43.06 \text{k}\Omega$$

$$R_W = R_{B1} - R'_{B1} = 23.06 \text{k}\Omega$$

求Q点:

$$U_{CQ} = V_{CC} - I_{CQ}R_C = 5.4V$$

 $U_{EQ} = I_{CQ}(R_{E1} + R_{E2}) = 2.4V$
 $U_{CEQ} = U_{CQ} - U_{EQ} = 3V$

仿真电路:

在仿真电路中,通过Rc两端电压间接检测Ic:

仿真结果:

 $R_w = 55.5\% \times 100$ kΩ = 55.5kΩ时,三个万用表示数:

 $R_W = 19.5\% \times 100$ kΩ = 19.5kΩ时,三个万用表示数:

数据记录:

测试量	I _c = 1mA 仿真值	I _c = 2mA 仿真值	
Rw	55.5kΩ	19.5kΩ	
U _{CQ}	8.705V	5.301V	
$U_{\rm EQ}$	1.203V	2.447V	

3. 测量动态特性

理论估算(取 $R_{bb'} = 100\Omega$, $\beta = 220$):

(1) I_{CQ}=1mA时动态参数估算

求Au:

$$r_{be} \approx r_{bb'} + \beta U_T / I_C = 100 + 220 \times 26 / 1 = 5.82 \text{k}\Omega$$

 $A_u = -\beta (R_C || R_L) / r_{be} \approx -75.74$

求R_i: (取理论值 R_{B1} = 79.74kΩ)

$$R_i = R_{B1} /\!\!/ R_{B2} /\!\!/ R_{be} \approx 3.98 \text{ k}\Omega$$

求Ro:

$$R_o = R_C = 3.3 \text{k}\Omega$$

(2) Icq=2mA时动态参数估算

求Au:

$$r_{be} \approx r_{bb'} + \beta U_T / I_C = 100 + 220 \times 26/2 = 2.96 \text{k}\Omega$$

 $A_u = -\beta (R_C / R_L) / r_{be} \approx -148.91$

求R_i: (取理论值 R_{B1} = 43.06kΩ)

$$R_i = R_{B1} /\!\!/ R_{B2} /\!\!/ R_{be} \approx 2.34 \text{ k}\Omega$$

求Ro:

$$R_o = R_C = 3.3 \text{k}\Omega$$

仿真电路及结果:

$I_C = 1$ mA时:

(1)Au测量:

 U_{o} 峰-峰值989.901mV, U_{i} 峰-峰值13.661mV, $A_{u}=U_{o}$ / $U_{i}=$ -72.46。

(2) 输入电阻测量:

输入端电阻为 0 时, $U_i = 7.071V$;接入可变电阻,测得 $R_i = 4.8k\Omega$ 。

(3) 输出电阻测量:

输出端开路时, U_o = 562.293mV;

接入可变电阻,测得 $R_o = 3.1 k\Omega$ 。

(4) 上下限频率测量:

由交流分析图象可以读出, U_0/U_s 约为49.85,0.707倍对应的 f_H 为2.62MHz, f_L 为104.67Hz。

$I_C = 2mA时:$

(1) Au测量:

 U_{o} 峰-峰值1.474V, U_{i} 峰-峰值10.765mV, $A_{u}=U_{o}$ / $U_{i}=-136.93$ 。

(2)输入电阻测量:

输入端短路时,测得 $U_i = 7.071V$;接入可变电阻,测得 $R_i = 2.34k\Omega$ 。

(3)输出电阻测量:

输出端开路时, U₀ = 813.586mV;

接入可变电阻,测得 $R_o = 2.85 k\Omega$ 。

(4)上下限频率测量:

由交流分析图象可以读出, U_o/U_s 约为74,0.707倍对应的 f_H 为1.44MHz, f_L 为156.07Hz。

4. 射极负反馈电阻对动态特性的影响($I_C = 2mA$)

理论计算:

 $I_{CQ}=1mA$ 时,改接电容 C_e ,使之与 R_{e2} 并联后,易知直流通路不变,故静态工作点都不变。但交流通路中等效为在射极上加一个值为 $(1+eta)R_{b1}$ 的电阻,故有:

$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = -\frac{\beta(R_{c} //R_{L})}{r_{be} + (1+\beta)R_{e1}}, \quad R_{i} = R_{b1} //R_{b2} //[r_{be} + (1+\beta)R_{e1}], \quad R_{o} = R_{c}$$

因为 $R_{e1}=200\Omega$,故可计算出 $\overset{\bullet}{A_u}=-9.81$, $R_i\approx 10.20k\Omega$, $R_o=3.3k\Omega$ 。

 $I_C = 2$ mA时同理。

仿真电路及结果:

A_u测量:

 U_o 峰-峰值151.010mV, U_i 峰-峰值16.255mV, $A_u = U_o / U_i = -9.29$ 。

输入电阻测量:

输入端短路时, 测得 $U_i = 7.071V$;

接入可变电阻,测得 $R_i = 8.7k\Omega$ 。

输出电阻测量:

输出端开路时, U₀ = 87.441mV;

接入可变电阻,测得 $R_0 = 3.25 k\Omega$ 。

5. 静态工作点对最大不失真输出电压 U_{om} 的影响 仿真电路及结果:

可以看到, $I_C = 1$ mA时,约在有效值15.8mV时失真; $I_C = 2$ mA时,约在有效值34.5mV时失真。

五、硬件实验内容

(一) 必做实验

1.观测晶体管输出特性曲线

测试方法和步骤:将晶体管三个引脚E、B、C分别插入学习机上对应测试点,"NPN/PNP"开关拨至"NPN";将示波器CH1和CH2通道分别接学习机"接X轴"和"接Y轴",并置于"X-Y"工作模式;打开学习机及示波器开关,经过调整,即可在屏幕上看到大小和位置合适的输出曲线如下:

数据分析: 测试电路已将基极阶梯电流固定为 5μ A每级,示波器X通道为 U_{CE} ,Y通道为 I_C ,1mA/V;本实验静态工作点为 $I_C=1mA/2mA$,因此如图中cursor所示,在这一取值附近进行测量,测得 $\Delta I_B=5\mu$ A时, $\Delta I_C=1.125mA$;计算出 $\beta=\Delta I_C/\Delta I_B\approx 225$ 。仿真修改BF=240后实测 $\beta=214$,与此结果较为接近,参照仿真比较实测结果有一定价值。

2.静态调试

测试方法及步骤:调节 R_W ,分别使 $I_{CQ}=1mA$ 、2mA,即 R_C 两端电压为3.3V、6.6V,记录相应的 U_{CQ} 、 U_{EQ} 以及 R_W ,并根据 $U_{CEQ}=U_{CQ}$ · U E_Q 计算出 U_{CEQ} 的值。数据整理如下。

测试量	1mA 实测	1mA 仿真	1mA 理论	2mA 实测	2mA 仿真	2mA 理论
$R_W/k\Omega$	59.2	55.5	59.74	21.7	19.5	23.06
U _{CQ} /V	8.62	8.705	8.7	5.38	5.301	5.4
U_{EQ}/V	1.21	1.203	1.2	2.42	2.447	2.4
U _{CEQ} /V	7.41	7.502	7.5	2.96	2.854	3

数据分析:从表中可见,静态参数实测值与仿真值、理论值吻合得相当好。

3.测量动态特性

(1) 在静态工作点Ico=1mA、2mA时,测量电路的动态特性

测试方法及步骤:电路图如仿真。设置信号源输出为峰-峰值为20mV、频率为10kHz的正弦波,用示波器同时显示u₁和u₀的波形;注意若波形不好应开带宽限制(BW),并对于输入信号用×1探头,

输出信号使用×10探头。波形调好后,观察失真情况,发现大体不失真后测量 U_i 、 U_o ,使用cursor测量或使用measure的交流有效值功能直接读出,据此计算 A_u 。测量输入(输出)电阻采用仿真中的方法,分别将 $R_s(R_L)$ 替换为可变电阻,直至输入电压是 R_s 短路时的一半(输出电压是 R_L 开路时的一半);此时,断开电路,测量可变电阻阻值即为输入(输出)电阻。对于 f_L 和 f_H 测量,使用示波器自带的信号源,为减少示波器探头电容的影响,将探头1移除,只使用探头2进行本项实验,分别测量 u_o 在低频和高频区大小为中频区0.707倍的位置,即为 f_L 和 f_H 。需要特别注意的是,高频时应取消带宽限制。

波形图:

i. 1mA时测量Ui、U。波形图:

由图中有效值数据,可计算出 $A_u = 343.1 / 4.823 = 71.13$ 。

ii. 1mA时测量输入电阻时Rs短路和输入电压减半时的波形图

Rs短路时波形图

输入电压减半时的波形图

测得输入电阻 $R_i = 4.34k\Omega$ 。

iii. 1mA时测量输出电阻时RL开路和输出电压减半时的波形图

输出电阻时RL开路时波形图

输出电压减半时的波形图

测得输出电阻 $R_o = 3.24 \mathrm{k}\Omega$ 。

iv. 1mA时上限截止频率和下限截止频率的测量波形图

DS0-X 2012A, MY52163431: Fri Mar 24 15:09:01 2017 2 5000/ 0.0s 100.05/ 停止 KEYSIGHT TECHNOLOGIES 标准模式 500MSa/s 通道 1.00:1 10.0:1 DC DC 峰-峰值(2): 峰-峰值(1): 无信号 交流有效值 - ...(2): 340.2mV 波形发生器菜单 GEN ◇ 正弦波, 高 Z 频率 10.00kHz 偏移 20.0mVpp

测量fH和fL时的中频参照

测量 fL波形图

测量 fn 波形图

测得 $f_L = 107.0 Hz$; $f_H = 286.3 kHz$ 。

v. 2mA时,测量波形类似,不一一赘述,整理列出如下

测量 R_i输入电压减半时的波形图

输出电阻时RL开路时波形图

输出电压减半时的波形图

测量 f_H和 f_L时的中频参照即测 A_u波形图

测量 fL波形图

测量 fu 波形图

最终数据整理如下表:

测试量	1mA 实测	1mA 仿真	1mA 理论	2mA 实测	2mA 仿真	2mA 理论
U _i (峰-峰值)	13.647mV	13.661mV	-	12.500mV	10.765mV	-
U。(峰-峰值)	970.7mV	989.901mV	-	1568.75mV	1.474V	-
A_{u}	-71.13	-72.46	-75.74	-125.5	-136.93	-148.91
R_{i}	4.34kΩ	4.8kΩ	3.98kΩ	$3.31 \mathrm{k}\Omega$	$2.34 \mathrm{k}\Omega$	2.34kΩ
Ro	3.24 kΩ	3.1kΩ	3.3kΩ	$3.17 \mathrm{k}\Omega$	$2.85 \mathrm{k}\Omega$	3.3kΩ
$f_{ m L}$	107.0Hz	104.67Hz	-	171.5Hz	156.07Hz	-
f_{H}	286.3kHz	2.62MHz	-	184kHz	1.44MHz	-

数据分析:

可以看到,除了 f_L 和 f_H 以外,其他动态参数实测、仿真、理论偏差都较小,特别是 1mA 时的数据,实测与仿真非常接近,2mA 的实测数据与仿真偏差较大可能是因为 2mA 数据分别在间隔一周的两节课测量,实验条件不完全一致。无论如何,比较 A_u 、 R_i 、 R_o 三个基本的动态参数,我们可以看到,实测和仿真都体现出了一致的趋势,即 I_{CO} 大时, A_u 更大、 R_i 更小、 R_o 基本不变。

f_L和f_H的测量,实测比仿真的通频范围窄得多,这与仿真的参数过于理想化有关,例如未考虑示波器探头的电容。这也启示着我们不能过于依赖于仿真软件,特殊条件下实验比仿真更有说服力。

(二) 选作实验

4.射极负反馈电阻对动态特性的影响

改接的电路如仿真电路图所示。测量方法与第3项完全相同,在此不做赘述,将波形图整理后统一列出如下。

测量Au时波形图

Rs短路时波形图

输入电压减半时波形图

输出电阻时RL开路时波形图

输出电压减半时的波形图

数据整理如下:

测试量	选作实测	选作仿真	选作理论
Ui(峰-峰值)	16.18mV	16.255mV	•
U。(峰-峰值)	150.84mV	151.010mV	-
A_{u}	-9.32	-9.29	-9.81
R_{i}	8.91kΩ	8.7kΩ	$10.20 \mathrm{k}\Omega$
Ro	$3.30 \mathrm{k}\Omega$	3.25kΩ	$3.3 \mathrm{k}\Omega$

数据分析:选作实验中实测、仿真、理论值符合得相当好。可以看到,当R_E没有与旁路电容并联时,会显著降低电压放大倍数,并增加输入电阻,但对输入电阻基本无影响。

六、硬件实验注意事项

- 1. 实验中要将学习机、信号源、示波器等电子仪器和实验电路共地,以免引起干扰。
- 2. 测量 Rw 的阻值时,须断电、断开电阻所在支路的连线。
- 3. 测量放大电路的各项动态特性时,要始终用示波器监视输入、输出波形。只有在输入输出信号不失真的情况下进行测量才有意义。

七、实验中遇到的问题及解决方法

1. 波形不稳的问题

问题:最初示波器波形不稳,时现时无,检查原因在于测量方式。示波器探头若直接与电阻腿接触测量,则容易在晃动过程中带出电阻,导致电路连接故障。

解决方法:使用示波器测量,应从面包板接出引线,这样才能保证稳定的探头连接,并保证电路不被破坏。在以后的实验中均注意了这一经验。

2. 波形不稳的问题

问题:在改变频率后波形不稳,呈移动状态。

解决方法:尝试改变带宽限制选项,如果还不能解决则调节trigger旋钮。

八、实验体会

- 1. 本次实验中,首先加深了对三极管输出特性的理解,对于其测量方式亦有掌握。三极管是模拟电路的基本元件,对三极管特性的熟悉对于以后的学习有很大帮助;
- 2. 本次实验体会了放大电路测试的基本流程,遵循"先静态、后动态"的原则,由浅入深,循序渐进地完成了实验;
- 3. 在实验方法上,本次实验中通过测量电压间接得知 Ic 电流、通过电压减半测输入、输出电阻的实验方法令我体会到电路中测量方法的魅力,并将启示我在以后的实验中注重测量方法的设计;
- 4. 在实验经验上,本次实验是我积累了用示波器探头测量小信号、高频信号的经验,使我对示波器 ×1、×10 挡的区别,以及示波器探头的电容效应体会更加深入;
- 5. 本次实验还使我对放大电路的频率响应的问题有了基本的认识,为模拟电路课程第四章的继续学习做了铺垫;
- 6. 本次实验中曾麻烦任老师、助教老师检查波形、数据,老师们丰富的经验使得实验变得更加有趣、 更加像一门科学而非玄学,在此对老师们的帮助表示感谢。