Probability Theory

Exercise Sheet 11

Exercise 11.1 Let $(X_n)_{n\geq 0}$ be a sequence of random variables with values in [0,1]. We set $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$. Suppose that $X_0 = a \in [0,1]$ and

$$P\left[X_{n+1} = \frac{X_n}{2} \middle| \mathcal{F}_n\right] = 1 - X_n, \qquad P\left[X_{n+1} = \frac{1 + X_n}{2} \middle| \mathcal{F}_n\right] = X_n.$$

- (a) Show that $(X_n)_{n\geq 0}$ is a \mathcal{F}_n -martingale that converge to a random variable X_{∞} P-almost surely and in L^2 .
- (b) Show that $E[(X_{n+1} X_n)^2] = \frac{1}{4}E[X_n(1 X_n)].$

Exercise 11.2 Let Y_n , $n \ge 0$ be i.i.d. with $P[Y_0 = 1] = p$ and $P[Y_0 = 0] = 1 - p$ for some $p \in (0, 1)$. Let $\mathcal{F}_n := \sigma(Y_0, \dots, Y_n)$ for $n \ge 0$ and define

$$T := \inf\{n \ge 0 \mid Y_n = 1\}.$$

Determine the Doob decomposition of $X_n := 1_{\{T \le n\}}, n \ge 0$.

Hint: First check that X_n is an \mathcal{F}_n -submartingale.

Exercise 11.3 Let (Ω, \mathcal{F}, P) be a probability space and let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration on this space. Let $(M_n)_{n\geq 0}$ be a $(\mathcal{F}_n)_{n\geq 0}$ -martingale such that $M_0=0$ and $M_n\in L^2$ for all n.

- (a) Why is $(M_n^2)_{n\geq 0}$ a submartingale?
- (b) Let $(A_n)_{n\geq 0}$ be the non-decreasing and predictable process from the Doob decomposition of $(M_n^2)_{n\geq 0}$. Show that $\tau_a := \inf\{n \geq 0; A_{n+1} > a^2\}$ is a stopping time.
- (c) Show that $P\left[\sup_{n\geq 0}|M_{n\wedge\tau_a}|>a\right]\leq \frac{E[A_\infty\wedge a^2]}{a^2}$, where A_∞ is the P-a.s. limit of $(A_n)_{n\geq 0}$.

Hint: First consider $P\left[\sup_{n\leq N}|M_{n\wedge\tau_a}|>a\right]$ for $N\in\mathbb{N}$ and use Doob's inequality.

(d) Show that
$$P\left[\sup_{n\geq 0}|M_n|>a\right]\leq P[A_\infty>a^2]+P\left[\sup_{n\geq 0}|M_{n\wedge \tau_a}|>a\right].$$

Submission: until 14:15, Dec 10., during exercise class or in the tray outside of HG G 53.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
Afa-Fül	Tue 13-14	HG F 26.5	Angelo Abächerli
Gan-Math	Tue 13-14	ML H 41.1	Zhouyi Tan
Meh-Schu	Tue 14-15	HG F 26.5	Angelo Abächerli
Schü-Zur	Tue 14-15	ML H 41.1	Dániel Bálint

Solution 11.1

(a) Since $X_0 = a \in [0, 1]$, from the assumption that $P[X_{n+1} = \frac{X_n}{2} \text{ or } X_{n+1} = \frac{1+X_n}{2}] = 1$ we can use induction argument to conclude that $0 \le X_n \le 1$ for all n, Hence each X_n is integrable. Moreover, it holds that

$$E[X_{n+1}|\mathcal{F}_n] = \frac{X_n}{2}P[X_{n+1} = \frac{X_n}{2}|\mathcal{F}_n] + \frac{1+X_n}{2}P[X_{n+1} = \frac{1+X_n}{2}|\mathcal{F}_n]$$

$$= \frac{X_n}{2}(1-X_n) + \frac{1+X_n}{2}X_n = X_n.$$

Thus X_n is a non-negative martingale, and by the Martingale Convergence Theorem, X_n converge to a random variable X_{∞} a.s. Besides, we have that X_n is bounded by 1, then the convergence holds also in L^p for all $p \geq 1$ due to the Dominated Convergence Theorem.

(b) We have that

$$E[(X_{n+1} - X_n)^2] = E[E[(X_{n+1} - X_n)^2 | \mathcal{F}_n]]$$

$$= E[E[(X_{n+1}^2 - 2X_{n+1}X_n + X_n^2 | \mathcal{F}_n]].$$
(1)

It is easy to see that

$$E[X_{n+1}^2|\mathcal{F}_n] = \left(\frac{X_n}{2}\right)^2 P[X_{n+1} = \frac{X_n}{2}|\mathcal{F}_n] + \left(\frac{1+X_n}{2}\right)^2 P[X_{n+1} = \frac{1+X_n}{2}|\mathcal{F}_n]$$
$$= \left(\frac{X_n}{2}\right)^2 (1-X_n) + \left(\frac{1+X_n}{2}\right)^2 X_n = \frac{X_n}{4}(1+3X_n).$$

Plugging this in (1) we have that

$$E[E[(X_{n+1} - X_n)^2 | \mathcal{F}_n]] = E[\frac{X_n}{4}(1 + 3X_n) - 2X_n^2 + X_n^2] = \frac{1}{4}E[X_n(1 - X_n)].$$

Solution 11.2 As in the hint, we first check that X_n is an \mathcal{F}_n -submartingale. Clearly, X_n is \mathcal{F}_n -adapted. Furthermore, X_n is bounded for all n, so it is integrable. Finally, $1_{\{T \leq n+1\}} \geq 1_{\{T \leq n\}}$ for every $n \geq 0$, since $\{T \leq n\} \subseteq \{T \leq n+1\}$. Due to this, and by the monotonicity property of conditional expectation, we obtain

$$E[X_{n+1}|\mathcal{F}_n] = E[1_{\{T \le n+1\}}|\mathcal{F}_n] \ge E[1_{\{T \le n\}}|\mathcal{F}_n] = 1_{\{T \le n\}} = X_n \quad P\text{-a.s.}$$

Hence, X_n is an \mathcal{F}_n -submartingale, so the Doob decomposition (unique up to P-nullsets) must exist. In other words, there exists a martingale M_n , $n \geq 0$, and a predictable, non-decreasing process A_n , with $A_0 = 0$, such that

$$X_n = M_n + A_n, \quad n \ge 0.$$

To find M_n and A_n , we follow the proof of existence of this decomposition. For our X_n , we have for $k \geq 0$:

$$E[X_{k} - X_{k-1} | \mathcal{F}_{k-1}] = E[1_{\{T \le k\}} - 1_{\{T \le k-1\}} | \mathcal{F}_{k-1}]$$

$$= E[1_{\{T = k\}} | \mathcal{F}_{k-1}]$$

$$= E[1_{\{Y_{k} = 1\}} 1_{\{T > k-1\}} | \mathcal{F}_{k-1}]$$

$$= 1_{\{T > k-1\}} E[1_{\{Y_{k} = 1\}} | \mathcal{F}_{k-1}]$$

$$= 1_{\{T > k-1\}} P[Y_{k} = 1]$$

$$= p1_{\{T > k-1\}} (= A_{k} - A_{k-1}) \quad P\text{-a.s.},$$
(2)

since Y is independent of \mathcal{F}_{k-1} . Thus, we define

$$A_n := \sum_{k=1}^n p 1_{\{T > k-1\}} = p \cdot (T \wedge n), \quad n \ge 0,$$
 (3)

and we have that

$$M_n = X_n - A_n = 1_{\{T \le n\}} - p \cdot (T \land n), \quad n \ge 0,$$

is a \mathcal{F}_n -martingale, since one can verify with equations (2) and (3) that

$$E[X_{n+1} - A_{n+1}|\mathcal{F}_n] = X_n - A_n$$
 P-a.s.

Furthermore, A_n is non-decreasing, $A_0 = 0$ and A_n is predictable, since each indicator function in the sum in equation (3) is \mathcal{F}_{n-1} -measurable. Thus, the Doob decomposition is

$$X_n = M_n + A_n = \left(1_{\{T \le n\}} - p \cdot (T \land n)\right) + p \cdot (T \land n), \quad n \ge 0.$$

Solution 11.3

- (a) $(M_n^2)_{n\geq 0}$ is a submartinale by Jensen's inequality for the conditional expectation, see (3.2.22) in the lecture notes.
- (b) For $n \geq 0$ we obtain,

$$\{\tau_a = n\} = \left(\bigcap_{k=0,\dots,n} \{A_k \le a^2\}\right) \cap \{A_{n+1} > a^2\} \in \mathcal{F}_n,$$

and thus τ_a is a stopping time (the events on the right-hand side, even the one involving A_{n+1} , are \mathcal{F}_n -measurable since $(A_n)_{n\geq 0}$ is predictable).

(c) Note that A_{∞} is well-defined P-a.s., since the process $(A_n)_{n\geq 0}$ is monotone P-a.s. Now let $N \in \mathbb{N}$: Since $(M_{n\wedge \tau_a}^2)_{n\geq 0}$ is a non-negative submartingale, Doob's inequality implies that

$$P\left[\sup_{n \le N} |M_{n \land \tau_a}| > a\right] = P\left[\sup_{n \le N} M_{n \land \tau_a}^2 > a^2\right] \le \frac{E[M_{N \land \tau_a}^2]}{a^2} = \frac{E[A_{N \land \tau_a}]}{a^2} \le \frac{E[A_{\tau_a}]}{a^2},$$

where we used that $E[M_{N\wedge\tau_a}^2]=E[A_{N\wedge\tau_a}]$ since $M_{n\wedge\tau_a}^2-A_{n\wedge\tau_a}$ is a martingale (by the optional stopping theorem; recall that $M_n^2-A_n$ is a martingale and τ_a a stopping time) with $M_{0\wedge\tau_a}^2-A_{0\wedge\tau_a}=0$. We also used that $A_{N\wedge\tau_a}\leq A_{\tau_a}$, since A_n is non-decreasing. Taking the limit $N\to\infty$ we obtain $P\Big[\sup_{n\geq 0}|M_{n\wedge\tau_a}|>a\Big]\leq \frac{E[A_{\tau_a}]}{a^2}$. On the other hand, we have $A_{\tau_a}\leq A_{\infty}$ and

$$A_{\tau_a} \le a^2$$
 on $\{\tau_a < +\infty\}$,
 $A_{\tau_a} = A_{\infty} \le a^2$ on $\{\tau_a = +\infty\}$,

which implies that $A_{\tau_a} \leq A_{\infty} \wedge a^2$.

(d) Since $\tau_a = +\infty$ on $\{A_{\infty} \le a^2\}$, we have

$$\{A_{\infty} \le a^2\} \cap \left\{ \sup_{n \ge 0} |M_n| > a \right\} \subseteq \left\{ \sup_{n \ge 0} |M_{n \wedge \tau_a}| > a \right\}.$$

From this we obtain

$$\begin{split} P\Big[\sup_{n\geq 0}|M_n| > a\Big] &= P\Big[A_{\infty} > a^2, \sup_{n\geq 0}|M_n| > a\Big] + P\Big[A_{\infty} \leq a^2, \sup_{n\geq 0}|M_n| > a\Big] \\ &\leq P[A_{\infty} > a^2] + P\Big[\sup_{n\geq 0}|M_{n \wedge \tau_a}| > a\Big]. \end{split}$$