HEART DISEASE PREDICTION USING LOGISTIC REGRESSION IN R

Brief explanation of the R code:

1. Load Essential Libraries:

o Import the necessary libraries for data manipulation, visualization, and modeling: ggplot2, gridExtra, reshape2, grid, DT, dplyr, and cowplot.

2. Load and Examine Data:

- Load the heart disease dataset from the CSV file: data <-read.csv("C:\\dataset\\HeartFailure\\heart.csv")
- o Explore the first few rows and structure of the data: head(data, n=5), str(data)
- Check for missing values: missing_val <- colSums(is.na(data))

3. Data Visualization:

- o Create a custom theme for consistent plot styling.
- Generate a histogram of patient ages: ggplot(data, aes(x=Age)) + geom_histogram(...)
- Create a bar plot showing the distribution of heart disease cases: ggplot(heart_counts_df, aes(x=Disease_Status, y=Count, fill=Disease_Status)) + geom_bar(...)
- o Create a pie chart illustrating gender distribution: pie(category_counts, labels=..., col=custom_colors, main="Pie Chart of Gender")

4. Prepare Data for Modeling:

- Separate features (X) from the target variable (y): X <- select(data, -'HeartDisease'), y
 data\$'HeartDisease'
- Split data into training (80%) and testing (20%) sets: sample_indices <- sample(...),
 train_data <- data[sample_indices,], test_data <- data[-sample_indices,]

5. Build Logistic Regression Model:

• Train a logistic regression model using the training data: model <- glm(HeartDisease ~ ., data=train_data, family=binomial)

6. Evaluate Model Performance:

- Generate predictions on the testing set: predictions <- predict(model, newdata=test_data, type="response")
- Apply a threshold (0.5) to convert probabilities to binary predictions: predicted_classes <- ifelse(predictions > threshold, 1, 0)
- Calculate accuracy using a confusion matrix: accuracy <- sum(diag(confusion_matrix))
 / sum(confusion_matrix)

7. Make New Predictions:

- Create a new dataset with patient information for prediction: new_data <data.frame(...)
- Generate predictions for the new dataset: new_predictions <- predict(model, newdata=new data, type="response")
- Convert probabilities to binary predictions using the threshold: new_predicted_classes <- ifelse(new_predictions > threshold, 1, 0)