```
بسم الله الرحمن الرحيم
```

## قال تعالى " و قل ربي زدني علما "

## الخوارزميات الجزء الأول

```
نبدأ بتعريف الخوار زمية بشكل عام:
```

الخوارزمية (algorithm) هي مجموعة من الخطوات أو العمليات المنطقية التي تؤدي لحل مسألة ما.

المثال الأول: برنامج نظام الانتخاب

لنفرض وجود عدد n من المرشحين نريد أن نحسب عدد أصوات الناخبين لكل منهم و طباعة عدد الأصوات لكل مرشح الحل:

```
Const n=20;
 Index:1..20;
 Type mat=arrau[index] of integer;
 Procedure voter(var a:mat);
 Var i:integer;
 Begin
 For i:=1 to n do
 A[i]:=0;
 ReadIn(i);
 While(i<>0)do
 Begin
 If (1<=i) and (i<=n)then
 A[i]:=a[i]+1;
 ReadIn(i);
 End;
 For i:=1 to n do
 WriteIn('mat ',I,'=',a[i]);
 End;
                                     المثال الثاني: باستخدام بنية المصفوفات إجرائية إظهار عدد صحيح بشكل معكوس
                                                                       N=1234<______ N=4321
 Type mat=array[1..10] of integer;
 Procedure reverse (a:mat; n:integer);
 Var I,j:integer;
 Begin
 1:=0;
 While(N<>0)do
Begin
 I:=i+1;
 A[i]:=n mod 10;
 N:=n div 10;
 End;
 For j:=1 to i do
 Write(a[j]);
 End;
 Begin
 reverse(a,N);
```

end.

```
المثال الثالث: إجرائية تكرارية تحول من عدد عشري إلى عدد ثنائي
Procedure bin2dec(x:integer);
Var I,k:integer;
Begin
l:=1;
While(x<>0)do
Begin
A[i]:=x mod 2;
X:=x div 2;
i:=i+1;
 end;
for k:=i-1 downto 1 do
write(a[k]);
end;
                                                                      المثال الرابع: إجراء تكراري يحول من ثنائي إلى عشرى
                                                              {}^{210}_{101=1}*2^{0} + 0*2^{1} + 1*2^{2} = 1 + 0 + 4 = (5)_{10}
Function dec2bin(x:integer):integer;
Var res, i:integer;
Begin
Res:=0; i:=0;
While(x<>0)do
Begin
Res:=res+ x mod 10* power(i);
X:=x div 10; i:=i+1;
End;
Dec2bin:=res;
End;
                                                                                                  المثال الخامس: المصفو فات
               1
                                                                                   مصفوفة مربعة n=4
Mat[100][100]:integer;
n,i,j,x1:integer;
read(n);
x_1 \longleftarrow 0
i \longleftarrow 1
                                               الخوارزمية تقوم بحساب مجموع عناصر ما تحت القطر الرئيسي (المثلث
while(i≤n)
                                                                                        السفلي)للمصفوفة المربعة
.
i ←—1
 \begin{array}{c} \text{x1} \longleftarrow \text{x1+mat[i][j]; } \sum_{i=1}^{n} \sum_{j=1}^{i-1} 1 = \sum_{i=1}^{n} i - 1 = \sum_{i=1}^{n} i - \sum_{i=1}^{n} 1 = \frac{n(n+1)}{2} - n = \\ -\text{i:=i+1;} \end{array}
```

ر مفحة

i ← i+1; write(x1);

 $n^2$  إذاً عدد عمليات الجمع هي  $\frac{n^2-n}{2}$  و درجة العقيد هي من مرتبة

2

المثال السادس: المصفوفات



 $\sum_{i=1}^{n} \sum_{j=1}^{3} 1 = \sum_{i=1}^{n} 3 = 3n = \mathbf{0} (n^{2})$  $x_2 \leftarrow x_2 + mat[i][j];$ i ← i+1;

إذاً عدد عمليات الجمع هي 3n ودرجة التعقيد من مرتبة n<sup>2</sup>.

3

\_l ← i+1; Write $(x_2)$ ;

Mat[100][100]:integer;

n,i,j,x₃:integer; read(n);

 $x_3 \longleftarrow 0$  $j \longleftarrow n$ 

while(j≥1)  $\begin{cases} x_3 & \longleftarrow x_3 + \text{mat[n-j+1][j];} \\ j & \longleftarrow j-1; \end{cases}$ 

write $(x_3)$ ;

المثال السابع: المصفوفات

| مصفوفه مربعه n=4 |   |   |   |
|------------------|---|---|---|
|                  |   |   | * |
|                  |   | * |   |
|                  | * |   |   |
| *                |   |   |   |

الخوارزمية تقوم بحساب مجموع عناصر القطر الثانوي للمصفوفة  $\sum_{j=1}^{n} 1 = n = o(n)$ 

إذاً عدد عمليات الجمع هي n ودرجة التعقيد من مرتبة n.

المثال الثامن:

4 Mat[100][100]

n,i,j,x<sub>4</sub>:integer;

read(n);

 $x_4 \leftarrow 0$ 

مصفوفة مربعة n=4 \*

 $i \leftarrow 1$ While(i≤n) الخوارزمية تقوم بحساب مجموع عناصر ما فوق القطر الرئيسي (المثلث العلوي للمصفوفة المربعة) j **←** n while(j>i)do  $\begin{array}{l} \sum_{i=1}^{n} \sum_{j=i+1}^{n} (1) = \sum_{i=1}^{n} n - i = \sum_{i=1}^{n} n + \sum_{i=1}^{n} i = n^{2} - \left[ \frac{n(n+1)}{2} \right] = \\ \frac{n2 - n}{2} = o(n^{2}) \end{array}$  $\sum_{i=1}^{n} 1 = \sum_{i=1}^{i} 1 + \sum_{i=i+1}^{n} 1$ I ← i+1; Write( $x_4$ );

 $n^2$  ودرجة التعقيد من مرتبة  $n^2$  ودرجة التعقيد من مرتبة

```
المثال التاسع: حساب القاسم المشترك الأكبر لعددين صحيحين موجبين:
 Unsigned int gcd(Unsigned int m, Unsigned int n){
 Unsigned int rem;
 While(n>0){
 rem=m%n;
 m=n;
 n=rem;
 return (m);
                                    المثال العاشر: حساب القاسم المشترك الأكبر لعددين صحيحين موجبين بطريقة إقليدس:
 Function gcd (m,n:integer):integer;
 Begin
 If(m=n)then
 gcd:=m
 else
. begin
 if(m>n)then
 m:=m-n
 else
 n:=n-m;
 gcd:=(m,n);
 end;
end;
                                                                                  المثال الحادي عشر:مصفوفات
   لتكن لدينا مصفوفة [1..n] M[1..n] من الأعداد الطبيعية تحتوي على n<sup>2</sup> عنصر بلا أي ترتيب تريد تحويل هذه المصفوفة إلى
                                                                              مصفوفة مفروزة وفق الفرز التالي:
                                                              - يجب أن يكون العناصر مرتبة في كل سطر:
                                      M[x][y] < M[x][y+1] all x and y
                                                              - يجب أن تكون العناصر مرتبة في كل عمود:
                                      M[x][y] < M[x+1][y] all x and y
                                              اكتب إجرائية فرز المصفوفة وفق الترتيب السابق وما هو تعقيد الإجرائية.
                                                                                     مص.
بنية المعطيات هي كالتالي:
                                   Type matrix=array[1..n,1..n] of real;
                                                                             إجرائية فرز المصفوفة في كل سطر:
 Procedure sortline(var m:matrix; n:integer);
 Var k,i,j:integer;
 Begin
 For k:=1 to n do
 For i:=1 to n do
 For j:=1 to n-1 do
 If(m[i,j]>m[i,j+1])then
 Begin
 Temporary := m[i,j];
 m[i,j]:=m[[i,j+1];
 m[i,j+1]:=temporary;
```

```
\sum_{n=1}^{n-1} 1 = \sum_{n=1}^{n} \sum_{n=1}^{n} n - 1 = \sum_{n=1}^{n} n * (n-1) = n^{3} - n^{2} = O(n^{3})
                                                                                            إجرائية فرز المصفوفة في كل عمود:
   Procedure sorthorizontal(var m:matrix; n:integer);
→ Begin
   For k:=1 to n do
   For i:=1 to n-1 do
   For j:=1 to n do
   If(m[i,j]>m[i+1,j])then
   Temporary := m[i,j];
   m[i,j]:=m[[i+1,j];
   m[i+1,j]:=temporary;
   end;
  end;
  \sum_{i=1}^{n} \sum_{i=1}^{n-1} \sum_{i=1}^{n} 1 = \sum_{i=1}^{n} \sum_{i=1}^{n-1} n = \sum_{i=1}^{n} n * (n-1) = n^3 - n^2 = O(n^3)
                                                                                           المثال الثاني عشر: تعقيد الخوارزميات
                                                                                ليكن لدينا التابع : والمطلوب ايجاد تعقيده بدلالة n؟
   p = 1;
  for(int i = 1; i < n; i++)
    p = p * n;
                                                                          • نلاحظ بأنه لدينا حلقة واحدة تمتد من 1 إلى n
                                                             عند كل دخول بهذه الحلقة نقوم بتنفيذ عملية ضرب واحدة
                                                                                             • فيكون التعقيد على الشكل:
   \sum_{i=1}^{n} 1 = O(n)
                                                                                          المثال الثالث عشر: تعقيد الخوارزميات
ليكن لدينا التابع :
   int res = 1;
   factor = x;
   while (n>0)
     if((n mod 2) == 1)
       res = res * factor;
     factor = factor * factor;
     n = n div 2;
  }
```

المطلوب: إيجاد تعقيد التابع بدلالة n:

• تبدأ الحلقة بالقيمة n وعند كل مرور نقسم على 2

```
\frac{n}{2} عند المرور الأول يكون حجم المسألة:
```

- عند المرور الثاني  $\frac{n}{2}$
- $\frac{n}{4}$  عند المرور الثالث
- $\frac{n}{2^{i-1}}$  عند المرور رقم i تكون يكون بعد المسألة من مرتبة
- على فرض أن j هو المرور الأخير ضمن الحلقة السابقة:
- تكون قيمة n مساوية للصفر، عندها ولكي نتمكن من حساب قيمة j يتوجب علينا ايجاد حل للمعادلة لوغارتمية التالية:

$$\frac{n}{2^{j-1}}=1$$
 الطرفين  $n=2^{j-1}$  الطرفين نأخذ لوغارتم الطرفين

$$\log_2(n) = \log_2(2^{j-1}) \longrightarrow \log_2(n) = (j-1) * \log_2(2) \longrightarrow \log_2(n) = (j-1)$$

• تكون قيمة ¡ كالتالى:

 $j = \log_2(n) + 1$ 

• يوجد عمليتي ضرب ضمن الحلقة وعملية قسمة ،عمليات الضرب والقسمة التي يتم تنفيذها ضمن كل دخول بالحلقة هو

$$Cost = 3*(log_2(n) + 1) = 3log_2(n) + 3$$
  
 $Cost = O(log_2(n))$ 

المثال الرابع العشر: تعقيد الخوارزميات

ليكن لدينا التابع التالي والمطلوب: إيجاد تعقيد التابع بدلالةn:

بالتالي يكون تعقيد الخوارزمية كالتالي:

for i = 1 to m for j = 1 to q for k = 1 to n x = x \* 2:

$$Cost = \sum_{k=1}^{m} \sum_{j=1}^{q} \sum_{i=1}^{n} 1 \longrightarrow Cost = \sum_{k=1}^{m} \sum_{j=1}^{q} n \longrightarrow Cost = \sum_{k=1}^{m} q * n$$

$$Cost = \sum_{k=1}^{m} \sum_{j=1}^{q} n \longrightarrow Cost = \sum_{k=1}^{m} q * n$$

• و على فرض بأن m=q=n يكون التعقيد أو عدد العمليات الناجم عن تنفيذ هذه الخوار زمية هو n\*n\*n

$$\longrightarrow$$
 Cost =  $O(n^3)$ 

إذاً تعقيد الخوارزمية هو من مرتبة n3.

المثال الخامس عشر: تعقيد الخوار زميات

ليكن لدينا الخوارزمية التالية: والمطلوب إيجاد تعقيد التابع بدلالةn:

```
for j = i+1 to n
 for k = 1 to j
    m = m + 1;
                 p = p* 2;
                 I = I + 3;
```

for i = 1 to n-1

}

سوف نركز فقط على عمليات الضرب وذلك لأن كلفتها مرتفعة مقارنة بعملية الجمع

$$\sum_{k=1}^{j} 1$$
 :كلفة الحلقة الداخلية

$$\sum_{j=i+1}^{n} \sum_{k=1}^{j} 1$$
: كلفة الحلقة الوسطة

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{j} 1$$
 : كلفة الحلقة الخارجية

$$Cost = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} j$$

$$\sum_{1}^{n} = \sum_{1}^{i} + \sum_{i+1}^{n} \Longrightarrow \sum_{i+1}^{n} = \sum_{1}^{n} - \sum_{1}^{i}$$

$$Cost = \sum_{i=1}^{n-1} (\sum_{1}^{n} j - \sum_{1}^{i} j) \longrightarrow Cost = \sum_{i=1}^{n-1} (\frac{n(n+1)}{2} - \frac{i(i+1)}{2})$$

$$Cost = \frac{1}{2} \sum_{i=1}^{n-1} n^2 + \frac{1}{2} \sum_{i=1}^{n-1} n - \frac{1}{2} \sum_{i=1}^{n-1} i^2 - \frac{1}{2} \sum_{i=1}^{n-1} i \longrightarrow Cost \approx O(n^3)$$

إذا درجة التعقيد من مرتبة n<sup>3</sup>.

المثال السادس عشر: تعقيد الخوارزميات

ليكن لدينا الخوارزمية التالية: والمطلوب إيجاد تعقيد التابع بدلالة n:

for i=1 to n if( odd(i) == true) begin for j=1 to n x = x + 1;for j=1 to i y = y\*2;

نلاحظ بأنه يوجد حلقتين داخل الشرط، تقوم الحلقة الأولى بتنفيذ عمليات جمع بينما تقوم الحلقة الثانية بتنفيذ عمليات ضرب لذا سوف نقوم بحساب تعقيد عمليات الجمع على حدة ، ثم حساب تعقيد عمليات الضرب ويكون تعقيد الخوارزمية هو مجموع كل من

سمييس. عمليات الجمع: عند كل دخول في حلقة الجمع نقوم بإجراء n عملية جمع. يكون تعقيد عمليات الجمع على الشكل التالي:

$$= \sum_{i=1}^{n} \|\sum_{j=1}^{odd(i)} 1 = \sum_{i=1}^{n} \|n^{odd(i)}\|$$

بما أن عدد الأعداد الفردية من 1 إلى n هو  $\frac{n+1}{2}$ .

$$O(\mathsf{n}^2)$$
:ويكون التعقيد الناتج على الشكل التالي  $=\sum_{i=1}^n {}^{odd(i)} n = n * \frac{n+1}{2}$ 

عمليات الضرب:

$$\sum_{i=1}^{n} {\stackrel{odd(i)}{\|}} \sum_{i=1}^{i} 1$$

$$=\sum_{i=1}^n {}^{odd(i)}i$$

=(1+3+5+7+9+.....+2m+1):2m+1 < n

أي المجموع المطلوب هو مجموع الأعداد الفردية ويكافئ مجموع جميع الأعداد – مجموع الأعداد الزوجية

$$\sum_{i=1}^{n} \| \sum_{j=1}^{odd(i)} 1$$

$$= \sum_{i=1}^{n} \| i$$

$$= \frac{n(n+1)}{2} - \frac{n}{2} (\frac{n}{2} + 1)$$

 $\approx O(n^2)$ 

المثال السابع عشر: تعقيد الخوارزمية ليكن لدينا الخوارزمية التالية:المطلوب احسب تعقيد هذا التابع في أسوأ الأحوال بدلالةn:

Prod:=1;

Nfor := sqr(n) \* sqr(n);

for k:=1 to Nfour do

if  $k \mod sqr(n) = 0$  then

for j:=1 to k do

if j mod sqrt(n) = 0 then

for m:=1 to j do

prod:= prod \*4;

- يتم تنفيذ الحلقة الداخلية لوحدها j مرة وفي كل مرة تقوم بإجراء عملية ضرب واحدة .
  - $Cost(Loop_3) = \sum_{j=1}^{J} 1$ : تكون كلفة الحلقة الداخلية
- $\sqrt{n}$  يتم تنفيذ محتوى الحلقة الوسطى إلا بشرط على على العداد j وهو أن يقبل القسمة على الا يتم تنفيذ محتوى الحلقة الوسطى الإ
  - $Cost_{loop2} = \sum_{i=1}^{K} \|_{cond} \; (j) \;$  هي لا الأعلى k بذلك تكون كلفة الحلقة الوسطى بدلالة حدها الأعلى

$$Cost_{loop2} = \sum_{j=1}^{k} \|_{cond} (j) \longrightarrow Cost_{loop2} = \sum_{j=1}^{\frac{k}{\sqrt{n}}} \sqrt{n}.j\hat{} = \sqrt{n}.\sum_{j=1}^{\frac{k}{\sqrt{n}}} j\hat{}$$

- أما بالنسبة للحلقة الأولى فلا يتم تنفيذ محتواها إلا بشرط على العداد $_{\rm k}$  وهو أن يقبل القسمة على العدد  $_{\rm n}^2$ . عند تحقق الشرط يتم تنفيذ عدد من العمليات من مرتبة  $_{\rm n}^2$  وبذلك تكون كلفتها بدلالة حدها الأعلى  $_{\rm n}^4$  على الشكل التالي:

$$Cost_{loop1} = \sum_{k=1}^{\frac{n^4}{n^2}} \frac{(n^2.k^*)^2}{\sqrt{n}} \longrightarrow Cost_{loop1} = \sum_{k=1}^{n^4} \|_{n^2|k} \left(\frac{k^2}{\sqrt{n}}\right)$$

- يتم تنفيذ الحلقة الداخلية لوحدها j مرة وفي كل مرة تقوم بإجراء عملية ضرب واحدة .
  - $Cost(Loop_3) = \sum_{i=1}^{j} 1$ : تكون كلفة الحلقة الداخلية

$$Cost_{loop1} = rac{n^4}{\sqrt{n}} . \sum_{k'=1}^{n^2} k^{^2} :$$
 بالتالي يكون تعقيد الخوارزمية على الشكل التالي •  $Cost_{loop1} = rac{n^4}{\sqrt{n}} . O(n^2)^3 = n^{3.5} O(n^6) = O(n^{9.5})$ 

المثال الثامن عشر: تعقيد الخوارزميات ليكن لدينا التابع التالي:

```
Function strange(x,n:integer):integer;
 Var i,j,px,sum:integer;
 Begin
 i:=2; sum:=x;
→while(i<=n)do
 begin
 j:=2; px:=x;
 while(j<=n)do
 px:=px*x; j:=j+1;
 sum:=sum+px; i:=i+1;
 end;
 strange:=sum;
 end:
```

1 - ما الذي يحسبه التابع

- ب ما هي درجة تعقيده 2 - ما هي درجة تعقيده 3 - أعد كتابة هذا التابع بحيث يحسب القيمة نفسها و لكن بعدد عمليات اقل 4 - ما هي درجة تعقيد التابع الجديد

. التابع يقوم بحساب:

$$\sum_{i=1}^{n} x^{i} = x^{1} + x^{2} + \dots + x^{n}$$

التابع يقوم بحساب مجموع رفع لقوة i من 1 إلى n بالنسبة للعدد x درجة تعقيد التابع:

$$\sum_{i=0}^{n} \sum_{i=0}^{i} 1 = \sum_{i=0}^{n} i - 1 = \frac{n^2 - n}{2} \simeq O(n^2)$$

كتابة التابع السابق بعدد عمليات أقل:

Function strange (x,n:integer):integer;

Var

**Begin** 

px:=1; sum:=0;

for i:=1 to n do

px:=px\*x; sum:=sum+px;

strange:=sum;

end;

درجة تعقيد التابع الجديد:

$$\sum_{i=1}^n 1 = n \simeq O(n)$$

## (و ما توفيقي إلا بالله)