Figure 1

CDR	H2				
1.	50	GINP NN VGSIYNQKFRG		66	70 <u>.</u> 8
•	254	NITV NN SGSYTCQAHNS		290	CEA
	288	NITV NN S GS YMC Q AHN <i>S</i>		304	NCA
2.	50	G I N PNN V GS I <u>Y</u> NQKFRG		66	708
	610	KIT PNN NGTYACFVSNL		626	CEA
	288	NITV NN S GS YMCQAHNS		304	NCA
3.	50	GINPNNVGSIYNQKFR <u>G</u>		66	708
	629	G R N NSI V K SI TVSASGT		645	CEA
CDR	кН3				
1	100	GY GN Y VAY	107	708	
	30	GY SWYKGE	37	CEA	
	59	GY SW Y KGE	72	NCA	
2.	100	GY GN Y VAY	107	708	
	389	S Y TY Y RPG	396	CEA	
	242	<u>s</u> kan y rpg	255	NCA	
3.	100	GYGNY VA Y	107	708	
	480	EDKDA VA F	487	CEA	
	159	EDKDA VA F	165	NCA	

2/5

Figure 2

	•		
CDRH2	•		
HLA-A3	N V G SI YNQK	• .	708
	I V K SI TVSA	• • •	CEA
	•		
Pan DR	INPNN V G SI		708
	SI V K SI TVSA		CEA
			•
HLA-DR1	V G SI YNQKF		708
	SI V K SI TVS		CEA
	•		
HLA-DR1	I N PNVGSI		708
	LATR N NSI		CEA
HLA-DR7	VGSIYN	708	
	IVKSITV	CEA	
CDRH3			
HLA-A3	CAR GY GN Y V		708
	HLF GY SW Y K		CEA
	NRFGY <u>S</u> WYK		NCA

Figure 3

A:

1 • EVQLQQSG	10 :PELVKPGAS	20 • VKISCKTSG	30 HTFT <u>EYNMQ</u> WV	40 KQSLGQSLEW	50 IGGINP	60 NNVGSIYNQKFRG	70 KATL
	FR1		<u>CDR1</u>	FR2		CDR2	
71 TVDKSSS	80 Taymelrsli	90 SEDSAVYYC	100 ARGYGNYVAYW	110 GQGTLVTVSA			
	FR3		CDR3 -	FR4	•		

B:

1	10	20	30	40	50	60	70
DIVMT	QSQKFMSTSV FR1	GDRVSVTC <u>KA</u>	SQNVNTNVAW CDR 1 -	YQQKPGQSPK FR2	SLIYSASYRY	SGVPDRFTGS 	GSGTD
71	80	90	100	•			
FTLTI	SNVQSEDLAE	FFC <u>QQYNRYP</u>	<u>FT</u> FGGGTKLE	LK			
FR3 CDR 3FR4							

Figure 4

 $\underline{\text{FVQLQQSGPETGKPGASGKMSCKTSGHTST}}\underline{\text{EHNGQ}} \text{WAKQSPGQSLEWIGGINPNNVGSI}\\ \underline{\text{YNQKFRGKATLTADKSSSTAHMELRSPTSEDTAVYYCAR}}\underline{\text{GYGNYVAY}} \text{WGQGTLVTVSA}$

Figure 5

 ${\tt EVQLQQSGPETGKPGASGKMSCKTSGHTST}{\tt EHNGQ}{\tt WAKQSPGQSLEWNG}{\tt GRNNSIVKSI}\\ {\tt TVSASGT}{\tt KATLTADKSSSTAHMELRSPTSEDTAVYYCSP}{\tt SYTYYRPG}{\tt WGQGTLVTVSA}$

Figure 6

Figure 7

 ${\tt EVQLQQSGPTLVKPTQTLTLTCTLSGFSFG\underline{STSMN}RLRQSPGQSLEWNG\underline{GRNNSIVKSI}\\ {\tt TVSASGT}KATLTADKSSSTAHMELRSPTSEDTAVYYCSP\underline{SYTYYRPG}WGQGTLVTVSA$

Figure 8

DIQTTQSQKSQSTSAGDRASTTC<u>KASQNVSTNAA</u>WYQQTPGQSPKSLIY<u>AASSLQS</u>GVP DRFTGSGSGTDFTQTTSNAQSEDSAEFFC<u>QQYNRYPHT</u>FGGGTKLELK

Figure 9

DIQTTQSQKSQSTSAGDRASTTC<u>TLLSVTRNDVA</u>WYQQTPGQSPKSLIY<u>AASSLQS</u>GVP DRFTGSGSGTDFTQTTSNAQSEDSAEFFC<u>YLSGANLNL</u>FGGGTKLELK

PCT/EP03/03580

Figure 10:

1 KLTIESTPFN VAEGKEVLLL VHNLPQHLFG YSWYKGERVD GNRQIIGYVI GTQQATPGPA
61 YSGREIIYPN ASLLIQNIIQ NDTGFYTLHV IKSDLVNEEA TGQFRVYPEL PKPSISSNNS
121 KPVEDKDAVA FTCEPETQDA TYLWWVNNQS LPVSPRLQLS NGNRTLTLFN VTRNDTASYK
181 CETQNPVSAR RSDSVILNVL YGPDAPTISP LNTSYRSGEN LNLSCHAASN PPAQYSWFVN
241 GTFQQSTQEL FIPNITVNNS GSYTCQAHNS DTGLNRTTVT TITVYAEPPK PFITSNNSNP
301 VEDEDAVALT CEPEIQNTTY LWWVNNQSLP VSPRLQLSND NRTLTLLSVT RNDVGPYECG
361 IQNELSVDHS DPVILNVLYG PDDPTISPSY TYYRPGVNLS LSCHAASNPP AQYSWLIDGN
421 IQQHTQELFI SNITEKNSGL YTCQANNSAS GHSRTTVKTI TVSAELPKPS ISSNNSKPVE
481 DKDAVAFTCE PEAQNTTYLW WVNGQSLPVS PRLQLSNGNR TLTLFNVTRN DARAYVCGIQ
541 NSVSANRSDP VTLDVLYGPD TPIISPPDSS YLSGANLNLS CHSASNPSPQ YSWRINGIPQ
601 QHTQVLFIAK ITPNNNGTYA CFVSNLATGR NNSIVKSITV SASGT

Figure 11:

1 DCGLPPDVPN AQPALEGRTS FPEDTVITYK CEESFVKIPG EKDSVICLKG SQWSDIEEFC
61 NRSCEVPTRL NSASLKQPYI TQNYFPVGTV VEYECRPGYR REPSLSPKLT CLQNLKWSTA
121 VEFCKKKSCP NPGEIRNGQI DVPGGILFGA TISFSCNTGY KLFGSTSSFC LISGSSVQWS
181 DPLPECREIY CPAPPQIDNG IIQGERDHYG YRQSVTYACN KGFTMIGEHS IYCTVNNDEG
241 EWSGPPPECR GKSLTSKVPP TVQKPTTVNV PTTEVSPTSQ KTTTKTTTPN AQATRSTPVS
301 RTTKHFHETT PNKGSGTTSG TTRLLSGHTC FTLTGLLGTL VTMGLLT