RACHUNEK PRAWDOPODOBIEŃSTWA 1R Lista zadań nr 10

- **1.** Sprawdzić, że zdarzenie $\{\lim_{n\to\infty}X_n=a\}$ należy do \mathcal{F}_{∞} .
- **2.** Sprawdzić, że zdarzenie $\{\lim \sup_{n\to\infty} X_n = \infty\}$ należy do \mathcal{F}_{∞} .
- 3. Sprawdzić, że zdarzenie $\{\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n X_i\leq a\}$ należy do \mathcal{F}_{∞} .
- **4.** Zmienne losowe X_1, X_2, \ldots są niezależne. Udowodnij, że ciąg średnich

$$\frac{X_1 + X_2 + \dots + X_n}{n}$$

jest zbieżny p.w. z prawdopodobieństwem 0 lub 1. Pokaż ponadto, że jeżeli ten ciąg jest zbieżny p.w., to jego granica ma rozkład jednopunktowy.

- 5. Obliczyć granice:
 - a) $\lim_{n\to\infty} \frac{1}{\sqrt{n}} \int_{[0,1]^n} \sqrt{\sum_{i=1}^n x_i^2} dx_1 \dots dx_n;$
 - b) $\lim_{n\to\infty} \frac{1}{\sqrt{n}} \int_{[0,1]^n} \frac{\sum_{i=1}^n x_i^i}{\sum_{i=1}^n x_i^2} dx_1 \dots dx_n;$
- **6.** Niech $f:[0,1] \to \mathbb{R}$ będzie funkcją ciągłą. Obliczyć granice:

 - a) $\lim_{n\to\infty} \int_{[0,1]^n} f\left(\frac{1}{n}\sum_{i=1}^n x_i\right) dx_1 \dots dx_n;$ b) $\lim_{n\to\infty} \int_{[0,1]^n} f\left(\sqrt[n]{\Pi_{i=1}^n x_i}\right) dx_1 \dots dx_n.$
- 7. Definiujemy ciąg zmiennych losowych w następujący sposób: niech X_0 ma rozkład jednostajny na [0,1], dla $n \geq 1$, X_{n+1} na rozkład jednostajny na $[0,X_n]$. Pokaż, że granica

$$\lim_{n\to\infty}\frac{1}{n}\log X_n$$

istnieje p.n. i znajdź jej wartość.

8. Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie. Zna-

$$\lim_{n\to\infty} \sqrt[n]{\prod_{i=1}^n X_i} ,$$

jeśli

- a) X_1 ma rozkład jednostajny U(0,1); b) X_1 ma rozkład o gestości postaci $f(x)=\frac{1}{2\sqrt{x}}~\mathbbm{1}_{(0,1)}(x).$
- 9^* . Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem zmiennych losowych o średniej 0. Czy ze zbieżności $X_n \stackrel{\mathbb{P}}{\longrightarrow} 0$ wynika zbieżność $\frac{1}{n} \sum_{i=1}^n X_i \stackrel{\mathbb{P}}{\longrightarrow} 0$?
- 10. Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie Poissona Poi (λ) . Znaleźć granice:

 - a) $\frac{1}{n} \sum_{i=1}^{n} X_i X_{i+1}$; b) $\frac{1}{n} \sum_{i=1}^{n} X_i^2 X_{i+1}$; c) $\frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i X_{i+1}}$.
- ${\bf 11}^*.$ Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie ciągiem nieujemnych niezależnych zmiennych o takim samym rozkładzie i takich, że $\mathbb{E}X_1=\mu<\infty$. Niech $S_n=X_1+\ldots+X_n$. Zdefiniujmy $N_t=\sup\{n:\ S_n\leq t\}$. Pokaż, że gdy $t \to \infty$, to

$$\frac{N_t}{t} \to \frac{1}{\mu}$$
 p.n.

12. (Średnia i wariancja empiryczna) Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie takim, że \mathbb{V} ar $(X_1) < \infty$. Definiujemy zmienne losowe

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 oraz $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

Sprawdzić, że $\mathbb{E}\left(\overline{X}\right)=\mathbb{E}X_1$, $\mathbb{E}\left(S^2\right)=\mathbb{V}$ ar (X_1) oraz pokazać, że $\overline{X} \overset{\mathrm{p.n.}}{\longrightarrow} \mathbb{E}X_1$, $S^2 \overset{\mathrm{p.n.}}{\longrightarrow} \mathrm{Var}(X_1)$.

13. Dany jest ciąg X_1,X_2,\ldots niezależnych i nieujemnych zmiennych losowych o tym samym rozkładzie. Udowodnij, że jeżeli $\mathbb{E} X_1=\infty$, to

$$\frac{X_1 + X_2 + \dots + X_n}{n} \to \infty \qquad \text{p.w.}$$

14*. Udowodnij ogólniejszą wersję lematu Kroneckera: jeżeli $\{a_n\}_n$ i $\{b_n\}$ są dwoma ciągami takimi, że $0 < b_n \nearrow \infty$ (tzn. monotonicznie zbiega do ∞) oraz

$$\sum_{k=1}^{\infty} \frac{a_k}{b_k} < \infty,$$

to

$$\lim_{n \to \infty} b_n^{-1} \sum_{k=1}^n a_k = 0.$$

15*. Załóżmy, że $\{X_n\}$ jest ciągiem niezależnych zmiennych losowych o takim samym rozkładzie i ich wspólna dystrybuanta jest funkcją ciągłą. Mówimy, że X_j jest rekordem, jeżeli $X_j > X_i$ dla każdego i < j. Niech Y_n będzie liczbą rekordów wśród pierwszych n zmiennych losowych. Pokaż, że

$$\lim \frac{Y_n}{\log n} = 1, \quad p.n.$$

Wskazówka: pokaż, że zdarzenia $\{X_n \text{ jest rekordem}\}$ są niezależne, a następnie postępuj jak w dowodzie SLLN, korzystając ostatecznie z ogólniejszej wersji lematu Kroneckera.