第4节 同构(★★★★)

内容提要

在某些方程、不等式问题中,可以通过等价变形,使方程、不等式左右两端结构一致,进而构造函数来解决问题,这类解题方法一般叫做同构.同构常出现在小题与大题压轴位置,是较难掌握的方法,需要敏锐的观察能力和一定的解题经验才能灵活运用,下面为大家归纳几类常见的同构题型.

- 1. 以例 1 及其后的变式为代表的不同变量在两边,简单变形即可同构;或者分别给出关于两个变量的等式,通过换元、变形将一个等式化为与另一等式同构;又或者将含参的和不含参的分离到不等号两侧,简单变形即可同构.
- 2. 以例 2 为代表的利用恒等式 $x = e^{\ln x}(x > 0)$ 将指数部分调整为与所给不等式其余含 x 的部分一致的结构,整体换元简化不等式的同构.
- 3. 以例 3 及其变式为代表的指对共生式同构: (以下底数 e 也可换成其它底数,类似处理即可)
- ① $m(x) = e^x \pm x$ 与 $n(x) = x \pm \ln x$ 的同构: $m(x) = e^x \pm x = e^x \pm \ln e^x = n(e^x)$, $n(x) = x \pm \ln x = e^{\ln x} \pm \ln x = m(\ln x)$, 所以这两个结构可以相互转化.
- ② $f(x) = xe^x g(x) = x \ln x$ 的同构: $f(x) = xe^x = e^x \cdot \ln e^x = g(e^x)$, $g(x) = x \ln x = e^{\ln x} \cdot \ln x = f(\ln x)$, 所以这两个结构可以相互转化.

③
$$u(x) = \frac{e^x}{x}$$
与 $v(x) = \frac{x}{\ln x}$ 的同构: $u(x) = \frac{e^x}{x} = \frac{e^x}{\ln e^x} = v(e^x)$, $v(x) = \frac{x}{\ln x} = \frac{e^{\ln x}}{\ln x} = u(\ln x)$, 所以这两个结构可以相互转化.

典型例题

类型 I: 简单变形化同构

【例 1】已知正实数
$$a$$
, b 满足 $\frac{8}{(b+1)^3} + \frac{10}{b+1} \le a^3 + 5a$,则 $ab+a$ 的最小值是_____.

解析:已知的不等式中,左侧只含b,右侧只含a,变量已隔离开,观察发现两侧可调整为同构形式,

$$\frac{8}{(b+1)^3} + \frac{10}{b+1} \le a^3 + 5a \Leftrightarrow (\frac{2}{b+1})^3 + 5 \cdot \frac{2}{b+1} \le a^3 + 5a$$
 ①,这样左右两侧结构就一致了,可构造函数分析,

设 $f(x) = x^3 + 5x(x \in \mathbb{R})$,则 $f'(x) = 3x^2 + 5 > 0$,所以 f(x) 在 $\mathbb{R} \perp \nearrow$,

而不等式①即为 $f(\frac{2}{b+1}) \le f(a)$,所以 $\frac{2}{b+1} \le a$,又a,及b均为正实数,所以b+1 > 0,故 $a(b+1) \ge 2$,

即 $ab+a \ge 2$,所以 ab+a 的最小值为 2.

答案: 2

【反思】①对不好研究,但形式相近的不等式,一般会先思考能否变为同构形式;②本题原题其实是求a+b的最小值,你会做吗?可在 $a(b+1) \ge 2$ 的基础上,进一步得出 $a+b=a+(b+1)-1 \ge 2\sqrt{a(b+1)}-1 \ge 2\sqrt{2}-1$,并验证取等条件,求得a+b的最小值为 $2\sqrt{2}-1$.

【变式 1】已知实数 a, b 满足 $a = e^{5-a}$, $2 + \ln b = e^{3-\ln b}$,则 $ab = ____$.

解析: 所给的两个等式都无法直接求出 a 和 b,但形式相近,故考虑同构,其中 $a = e^{5-a}$ 这个式子已经很简单了,所以将 $2 + \ln b = e^{3-\ln b}$ 朝 $a = e^{5-a}$ 变形,对比此两式发现可将 $2 + \ln b$ 整体换元成 t,

令 $2 + \ln b = t$,则 $\ln b = t - 2$,代入 $2 + \ln b = e^{3 - \ln b}$ 可得 $t = e^{5 - t}$,这就与 $a = e^{5 - a}$ 同构了,可构造函数分析,

设
$$f(x) = x - e^{5-x} (x \in \mathbf{R})$$
,则
$$\begin{cases} f(a) = a - e^{5-a} = 0 \\ f(t) = t - e^{5-t} = 0 \end{cases}$$
,所以 a 和 t 都是 $f(x)$ 的零点,

又 $f'(x)=1+e^{5-x}>0$,所以 f(x)在 **R**上之,从而 a=t,故 $a=2+\ln b$ ①,

要想求出ab,光靠式①不够,可结合已知的等式 $2+\ln b=e^{3-\ln b}$,因为该式的左边就是 $2+\ln b$,

将
$$a = 2 + \ln b$$
 代入 $2 + \ln b = e^{3-\ln b}$ 左侧可得 $a = e^{3-\ln b}$, 所以 $a = \frac{e^3}{e^{\ln b}} = \frac{e^3}{b}$, 故 $ab = e^3$.

答案: e³

【变式 2】若关于 x 的不等式 $e^{ax} + e^{-\ln x} - \sin(\ln x) > e^{-ax} + e^{\ln x} - \sin(ax)$ 在区间 $(0, +\infty)$ 上恒成立,则实数 a 的取值范围是()

(A)
$$(\frac{2}{e}, +\infty)$$
 (B) $(\frac{1}{e}, +\infty)$ (C) $(-\infty, \frac{1}{e})$ (D) $(-\infty, \frac{2}{e})$

解析: 所给的不等式较复杂, 考虑通过同构将其化简, 要同构, 先把含 a 的和不含 a 的分离到两端,

$$e^{ax} + e^{-\ln x} - \sin(\ln x) > e^{-ax} + e^{\ln x} - \sin(ax) \Leftrightarrow e^{ax} - e^{-ax} + \sin(ax) > e^{\ln x} - e^{-\ln x} + \sin(\ln x)$$
 1,

此时左右两侧已经同构了,可构造函数分析,设 $f(x)=e^x-e^{-x}+\sin x(x\in\mathbf{R})$,则式①即为 $f(ax)>f(\ln x)$,

又
$$f'(x) = e^x + e^{-x} + \cos x \ge 2\sqrt{e^x \cdot e^{-x}} + \cos x = 2 + \cos x > 0$$
,所以 $f(x)$ 在 **R** 上 \nearrow ,故 $ax > \ln x$,

此不等式画图结合经典切线分析最方便,

如图,注意到 $y = \ln x$ 过原点的切线方程为 $y = \frac{1}{e}x$,所以当且仅当 $a > \frac{1}{e}$ 时, $ax > \ln x$ 恒成立.

答案: B

【**反思**】同构需要较强的观察能力和代数变形的基本功,操作的方法之一是将参数集中到等式或不等式的一侧,再调整结构.

类型 II: 利用 $x = e^{\ln x}$ 化局部统一结构换元处理

【例 2】设函数 $f(x) = xe^x - a(x + \ln x)$,若 $f(x) \ge 0$ 恒成立,则实数 a 的取值范围是(

(A) [0,e] (B) [0,1] (C) $(-\infty,e]$ (D) $[e,+\infty)$

解析: 若将 xe^x 调整为 $e^{\ln x+x}$,则含x的部分都以 $x+\ln x$ 这一整体结构出现,可换元简化不等式,

曲题意, $f(x) = xe^x - a(x + \ln x) = e^{\ln x} \cdot e^x - a(x + \ln x) = e^{\ln x + x} - a(x + \ln x)$,

设 $t = x + \ln x$, 则 $t \in \mathbb{R}$, 且 $f(x) = e^t - at$, 所以 $f(x) \ge 0$ 即为 $e^t - at \ge 0$, 故 $e^t \ge at$,

这一不等式若要全分离,需讨论 t 的正负,比较麻烦,画图结合经典切线来分析更简单,

如图,函数 $y = e^t$ 过原点的切线为 y = et ,所以当且仅当 $0 \le a \le e$ 时, $e^t \ge at$ 恒成立.

答案: A

【反思】①从例 2 可以看出,通过恒等式 $x = e^{\ln x}(x > 0)$ 可将 $u(x)e^{v(x)}(u(x) > 0)$ 化为 $e^{\ln u(x) + v(x)}$,若某等式或不等式的其余部分恰好也是 $\ln u(x) + v(x)$ 这种整体结构,就能换元简化处理;②本题若将解析式改为 $f(x) = x^2 e^x - a(x + 2\ln x)$,其余不变,你会做吗?一样地,将 $x^2 e^x$ 化为 $e^{x + 2\ln x}$ 即可.

【例 3】若 $e^x \ge \ln(x+a) + a$ 恒成立,则 a 的最大值为_____.

解析:两端同时加x,可将右侧统一成x+a,运用 e^x+x 与 $x+\ln x$ 的同构方法来同构,

 $e^x \ge \ln(x+a) + a \Leftrightarrow e^x + x \ge \ln(x+a) + (x+a) \Leftrightarrow e^x + \ln e^x \ge \ln(x+a) + (x+a)$ 1,

设 $f(x) = \ln x + x(x > 0)$,则 $f'(x) = \frac{1}{x} + 1 > 0$,所以 f(x)在 $(0, +\infty)$ 上 \nearrow ,

不等式①即为 $f(e^x) \ge f(x+a)$, 所以 $e^x \ge x+a$, 此不等式画图结合经典切线分析最方便,

如图, $y = e^x$ 的斜率为 1 的切线是 y = x + 1,所以当且仅当 $a \le 1$ 时, $e^x \ge x + a$ 恒成立,故 a 的最大值为 1. **答案:** 1

【反思】①基础模型 $e^x \pm x$ 与 $x \pm \ln x$ 之间的同构务必熟悉; ②本题对 $e^x + x \ge \ln(x+a) + (x+a)$ 的同构,也可化为左边的形式,即变形成 $e^x + x \ge \ln(x+a) + e^{\ln(x+a)}$,构造函数 $g(x) = e^x + x$ 来分析.

【变式 1】设 $\lambda > 0$,若对任意的 $x \in (0, +\infty)$,不等式 $\lambda e^{\lambda x} - \ln x \ge 0$ 恒成立,则 λ 的最小值为_____.

解析:看到 $\lambda e^{\lambda x}$ 这一结构,想到乘以 x 将前面的系数 λ 调整为与指数部分一致,

 $\lambda e^{\lambda x} - \ln x \ge 0 \Leftrightarrow \lambda e^{\lambda x} \ge \ln x \Leftrightarrow \lambda x e^{\lambda x} \ge x \ln x$,这样问题就转化成了 $x e^{x} = x \ln x$ 同构这一基本模型, $\lambda x e^{\lambda x} \ge x \ln x \Leftrightarrow \lambda x e^{\lambda x} \ge e^{\ln x} \cdot \ln x$ ①,同构完成了,接下来可构造函数分析,

设 $f(x) = xe^x(x \in \mathbf{R})$,则 $f'(x) = (x+1)e^x$,所以 $f'(x) > 0 \Leftrightarrow x > -1$, $f'(x) < 0 \Leftrightarrow x < -1$,故 f(x) 在 $(-\infty, -1)$ 上〉,在 $(-1, +\infty)$ 上〉,

又 $\lim_{x \to \infty} f(x) = 0$, $f(-1) = -\frac{1}{e}$, $\lim_{x \to +\infty} f(x) = +\infty$, f(0) = 0, 所以 f(x) 的大致图象如图 1,

不等式①即为 $f(\lambda x) \ge f(\ln x)$,由题意, $\lambda x > 0$,所以 $f(\lambda x) \ge f(\ln x) \Leftrightarrow \lambda x \ge \ln x$,

这一不等式的处理可以全分离成 $\lambda \ge \frac{\ln x}{x}$,对右侧求导研究最值,但更简单的做法是画图分析,

如图 2,注意到 $y = \ln x$ 过原点的切线为 $y = \frac{1}{e}x$,所以当且仅当 $\lambda \ge \frac{1}{e}$ 时, $\lambda x \ge \ln x$ 恒成立,故 $\lambda_{\min} = \frac{1}{e}$.

答案: $\frac{1}{e}$

【反思】例 3 和变式 1 凑同构的操作不同,一个是加 x,一个是乘以 x,但在原不等式中都有线索,比如例 3 的 $\ln(x+a)+a$,变式 1 的 $\lambda e^{\lambda x}$,这些都提示了我们应该如何去凑出像 $\ln x+x$, $x e^x$ 这些基本结构.

【变式 2】(2020•新高考 I 卷节选) 已知函数 $f(x) = ae^{x-1} - \ln x + \ln a$,若 $f(x) \ge 1$,求 a 的取值范围.

解:(f(x) 的解析式中指对共生,同构是值得尝试的方向,若要同构,我们心中应有基本同构模型,如 $x + e^x$ 与 $x + \ln x$ 的同构, $x e^x$ 与 $x \ln x$ 的同构,若接 $x + e^x$ 与 $x + \ln x$ 的同构来,应先把 $f(x) \ge 1$ 调整为对应的形式,例如 $a e^{x-1}$ 这个部分,a 应调整到指数部分,化为 $e^{\ln a + x - 1}$,且应凑出 $e^{\ln a + x - 1} + (\ln a + x - 1)$ 这种结构,从而变形的方向就有了)

曲题意, $f(x) \ge 1 \Leftrightarrow ae^{x-1} - \ln x + \ln a \ge 1 \Leftrightarrow e^{\ln a + x - 1} - \ln x + \ln a \ge 1 \Leftrightarrow e^{\ln a + x - 1} + (\ln a + x - 1) \ge x + \ln x$,

(这样就化为了 $x + e^x$ 与 $x + \ln x$ 的同构模型,右侧比较简单,可将右侧调整为左侧的形式)

所以 $e^{\ln a + x - 1} + (\ln a + x - 1) \ge e^{\ln x} + \ln x$ ①,(左右两侧同构了,可构造函数分析)

设 $h(x) = e^x + x(x \in \mathbb{R})$,则 $h'(x) = e^x + 1 > 0$,所以h(x)在 \mathbb{R} 上单调递增,

不等式①即为 $h(\ln a + x - 1) \ge h(\ln x)$,所以 $\ln a + x - 1 \ge \ln x$,故 $\ln a \ge \ln x - x + 1$,

设 $u(x) = \ln x - x + 1(x > 0)$,则 $u'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x}$, $u'(x) > 0 \Leftrightarrow 0 < x < 1$, $u'(x) < 0 \Leftrightarrow x > 1$,

所以u(x)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减,故 $u(x)_{max} = u(1) = 0$,

因为 $\ln a \ge u(x)$ 恒成立,所以 $\ln a \ge 0$,从而 $a \ge 1$,故实数a的取值范围为[1,+∞).

【总结】常见的指对同构模型要熟悉,例如 $e^x \pm x = 5x \pm \ln x$, $xe^x = 5x \ln x$, $\frac{e^x}{x} = \frac{x}{\ln x}$ 等.

强化训练

- 1. (★★★) 已知 $x,y \in \mathbb{R}$,若 $x+y > \cos x \cos y$,则下面式子一定成立的是()

- (A) x+y<0 (B) x+y>0 (C) x-y>0 (D) x-y<0

- 2. (2022 南平模拟 ★★★)对任意的 $x_1, x_2 \in (1,3]$,当 $x_1 < x_2$ 时, $x_1 x_2 \frac{a}{3} \ln \frac{x_1}{x_2} > 0$ 恒成立,则实数 a的取值范围是()

- (A) $[3,+\infty)$ (B) $(3,+\infty)$ (C) $[9,+\infty)$ (D) $(9,+\infty)$

- 3. (★★★★) 已知实数 a, b 满足 $3^a + a = 7$, $\log_3 \sqrt[3]{3b+1} + b = 2$, 则 a + 3b =____.
- 4. (★★★★) 已知函数 $f(x) = xe^{x+1}$, $g(x) = k(\ln x + x + 1)$, 其中 k > 0, 设 h(x) = f(x) g(x), 若 $h(x) \ge 0$ 恒 成立,则k的取值范围是 .

- 5. (2022•广州三模•★★★★)若对任意的x>0,都有 $x^x-ax\ln x\geq 0$,则 a 的取值范围为()

- (A) [0,e] (B) $[-e^{1-\frac{1}{e}},e]$ (C) $(-\infty,-e^{1-\frac{1}{e}}] \cup [e,+\infty)$ (D) $(-\infty,e]$

6. $(2022 \cdot 广州模拟 \cdot ★★★★★) 若不等式 ln(<math>mx+1$) $-x-1>mx-e^x$ 在 (0,+∞) 上恒成立,则正实数 m 的最大值为____.

8. $(2022 \cdot \text{T8 联考} \cdot \star \star \star \star \star)$ 设 a, b 都为正数,e 为自然对数的底数,若 $ae^{a+1} + b < b \ln b$,则() (A) ab > e (B) $b > e^{a+1}$ (C) ab < e (D) $b < e^{a+1}$

9. $(2022 \cdot 成都模拟 \cdot ★★★★) 若不等式 <math>\log_2 x - m \cdot 2^m \le 0$ 对任意的 x > 0 都成立,则正实数 m 的取值范围为_____.