2019年 後期期末試験の範囲 3年 数学特論(久保)

後期中間試験の範囲 実教出版「新版 線形代数」pp.76—79, pp.86—99 および

実教出版「新版 線形代数」pp.100—127

- ・ 偶順列・奇順列
- 行列式の性質 (pp.103—109) を用いた行列式の計算
- 行列式の展開
- 行列の積の行列式
- 余因子行列と逆行列
- クラメルの公式
- ※ 後期中間試験を復習しておく。
- ※ 実教出版「新版 線形代数演習」107, 109(3), 115, p.36**A** Ø **1**, **3**, **4**

2019年 後期期末試験の範囲 3年 数学特論(久保)

$$\begin{bmatrix} 1 \end{bmatrix}$$
 3 次の正方行列 $A=\left(egin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array}
ight)$ の行列式 $|A|$ の値を $k(\neq 0)$ とする

とき,次の行列の値を答えよ。

- |2| 3次の正方行列について, |-2A|=k|A|をみたす定数 k の値を答えよ。 ただし, $|A| \neq 0$ とする。
- |3| 次の式は、3次の行列式を第2列で展開したものである。

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = a \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + b \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} + c \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix}$$

- (1) *a* の値を答えよ。 (2) bの値を答えよ。 (3) *c* の値を答えよ。
- 4 次の順列が偶順列であるか奇順列であるか答えよ。
- (1) (1,2,3)(2) (1,3,2)
- (3) (2,1,3)

- (4) (2,3,1)
- (5) (3,1,2)
- (6) (3,2,1)

- (7) (4, 3, 5, 2, 1)
- $(8) \quad (3,6,1,4,5,2)$

$$\begin{bmatrix} 5 \end{bmatrix}$$
 3次の正方行列 $A = \begin{pmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ 0 & 8 & 7 \end{pmatrix}$ について次のものを答えよ。

- と (1,1) 余因子 \tilde{a}_{11}
- (1) (1,1) 小行列式 D_{11} (2) (1,2) 小行列式 D_{12} (3) (1,3) 小行列式 D_{13} と (1,2) 余因子 \tilde{a}_{12}
 - と (1,3) 余因子 \tilde{a}_{13}
- (4) (2,1) 小行列式 D_{21} (5) (2,2) 小行列式 D_{22} (6) (2,3) 小行列式 D_{23}
 - と (2,1) 余因子 \tilde{a}_{21} と (2,2) 余因子 \tilde{a}_{22}
 - と (2,3) 余因子 \tilde{a}_{23}
- (7) (3,1) 小行列式 D_{31} (8) (3,2) 小行列式 D_{32} (9) (3,3) 小行列式 D_{33} と (3,1) 余因子 \tilde{a}_{31}
 - と (3,2) 余因子 \tilde{a}_{32}
- と (3,3) 余因子 \tilde{a}_{33}
- | 前の問いの正方行列 A について、余因子行列を $B = \tilde{A}$ とする。 $B = (b_{ij})$ の各成分を答えよ。
- | 7 | クラメルの公式を使えるように練習すること。例えば,実教出版「新版 線形 代数」p.124 練習 2, p.135 第 3 章節末問題 5(1)

2019年 後期期末試験の範囲 3年 数学特論(久保)

解答例

1 (解答)

- (1) 第1列と第2列が交換されているから、-k
- (2) 第 2 行が 5 倍されているから、5k
- (3) 第 1 列と第 2 列が交換され、かつ、3 つの列が 5 倍されているから、 $-5^3k = -125k$

2 (解答)

 $(-2)^3 = -8$

3 (解答) ※ 符号に注意して答える。

- $(1) \quad a = -2$
- (2) b = 5
- (3) c = -8

(解答)

- (1) 偶順列
- (2) 奇順列
- (3) 奇順列
- (4) 偶順列

- (5) 偶順列
- (6) 奇順列
- (7) 偶順列
- (8) 偶順列

5 (解答)

(1)
$$D_{11} = \begin{vmatrix} 5 & 4 \\ 8 & 7 \end{vmatrix}$$
 (2) $D_{12} = \begin{vmatrix} 6 & 4 \\ 0 & 7 \end{vmatrix}$ (3) $D_{13} = \begin{vmatrix} 6 & 5 \\ 0 & 8 \end{vmatrix}$
= 3, $\tilde{a}_{11} = 3$ = 42, $\tilde{a}_{12} = -42$ = 48, $\tilde{a}_{13} = 48$

$$D_{12} = \begin{vmatrix} 6 & 4 \\ 0 & 7 \end{vmatrix}$$

$$D_{13} = \begin{vmatrix} 6 & 5 \\ 0 & 8 \end{vmatrix}$$

(4)
$$D_{21} = \begin{vmatrix} 2 & 1 \\ 8 & 7 \end{vmatrix}$$
 (5) $D_{22} = \begin{vmatrix} 3 & 1 \\ 0 & 7 \end{vmatrix}$ (6) $D_{23} = \begin{vmatrix} 3 & 2 \\ 0 & 8 \end{vmatrix}$

$$(5) \quad D_{22} = \begin{vmatrix} 3 & 1 \\ 0 & 7 \end{vmatrix}$$

$$6) \quad D_{23} = \left| \begin{array}{cc} 3 & 2 \\ 0 & 8 \end{array} \right|$$

$$=6, \ \tilde{a}_{21} = -6$$
 $= 21, \ \tilde{a}_{22} = 21$

$$=21, \tilde{a}_{22}=21$$

$$=24, \tilde{a}_{23}=-24$$

(7)
$$D_{31} = \begin{vmatrix} 2 & 1 \\ 5 & 4 \end{vmatrix}$$
 (8) $D_{32} = \begin{vmatrix} 3 & 1 \\ 6 & 4 \end{vmatrix}$ (9) $D_{33} = \begin{vmatrix} 3 & 2 \\ 6 & 5 \end{vmatrix}$
= 3, $\tilde{a}_{31} = 3$ = 6, $\tilde{a}_{32} = -6$ = 3, $\tilde{a}_{33} = 3$

(8)
$$D_{32} = \begin{vmatrix} 3 & 1 \\ 6 & 4 \end{vmatrix}$$
 (9) $D_{33} = \begin{vmatrix} 3 & 2 \\ 6 & 5 \end{vmatrix}$
= 6, $\tilde{a}_{32} = -6$ = 3, $\tilde{a}_{33} = 3$

$$(9) \quad D_{33} = \begin{vmatrix} 3 & 2 \\ 6 & 5 \end{vmatrix}$$

6 (解答)

(2)
$$\tilde{a}_{21} = -6$$
 より

(3)
$$\tilde{a}_{31} = 3$$
 より $b_{13} = 3$

$$b_{11} = 3 b_{12} = -6$$

(6)
$$\tilde{a}_{32} = -6 \ \text{\sharp} \ \text{\flat}$$

$$b_{21} = -42$$

$$b_{21} = -42$$

$$b_{22} = 21$$

$$b_{23} = -6$$

(7)
$$\tilde{a}_{13} = 48$$
 より $b_{31} = 48$

(8)
$$\tilde{a}_{23} = -24 \, \, \text{lm}$$
 $b_{32} = -24$

(9)
$$\tilde{a}_{33} = 3$$
 より $b_{33} = 3$

7 (解答)

解答は、それぞれの解答ページを参照。