U.E. ARES Architecture des Réseaux

Cours 6/6: Architectures supports

Olivier Fourmaux

(olivier.fourmaux@upmc.fr)

Version 5.4

Technologies supports et modèle OSI

OSI: Couche Liaison

La **Couche Liaison** achemine les trames de bits sur **un médium** avec une technique de transmission. Les fonctions associées sont :

- découpage de trame (framming)
- contrôle d'erreur
- ordonnancement et fiabilité
- contrôle de flux
- trois types de technologie pour la Couche Liaison
 - ✓ point-à-point
 - ✓ multipoint sans diffusion U.E. RTEL
- ✓ multipoint avec diffusion (médium partagé)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 2

OSI: Couche Physique

La Couche Physique est associée à la transmission du signal :

- spécification des supports et signaux
 - ✓ encodage des bits, émission en bande de base ou large bande
 - ✓ caractéristiques des signaux électriques, optique, radio...
- ✓ caractéristique des supports :
 - impédance des cables électriques, atténuation, longueur maximum
 - is fibre optique multimode, monomode
 - forme des connecteurs, couleur des gaines...

Technologies supports et TCP/IP

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

Ethernet: Introduction

- \implies années 90 : nombreuses technologies LAN
 - Ethernet, Token Ring, FDDI, ATM...

Actuellement (en filaire) : LAN = Ethernet

- Ethernet est aux réseaux locaux ce qu'Internet est aux réseaux mondiaux
- pourquoi?
- ✓ apparu en avance (milieu des années 70)
- ✓ simple
- ✓ décentralisé
- ✓ autoconfigurable
- économique et évolutif

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 6

Ethernet: Où?

Ethernet: Variantes

Différents types d'Ethernet...

- deux topologies :
 - ✓ bus
 - ✓ étoile
- supports variés :
 - ✓ cables coaxiaux
 - ✓ paires torsadées
 - ✓ fibres optiques
- large choix de débits :
 - ✓ 10 Mbit/s, 100 Mbit/s, 1 Gbit/s, 10 Gbit/s...

... mais toujours la même base :

- adresses LAN
- structure de la trame
- service non connecté non fiable
- transmission généralement bande de base (numérique)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 8

Ethernet: Adresses LAN

Adresses de l'adaptateur (sur 6 octets, notation hexadécimale) identifiant

- aussi appelées :
 - ✓ adresses Ethernet
 - ✓ adresses physiques (physical address)
 - ✓ adresses MAC (Media Access Control address)
- adressage à plat administré par l'IEEE

Ethernet : Structure de la trame (1)

- 1: Diffusion ou multipoint
- 0: Adresse individuelle

Délimitation de la trame :

- début
- ✓ préambule
 - détection d'émission
 - vérouillage temporel (synchronisation sur l'horloge de l'émetteur)
 - indication du début (8ème octet)
- fin
- ✓ absence de courant pendant IFS (Inter Frame Spacing)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 10

Ethernet : Structure de la trame (2)

Adresses destination et source :

• l'adaptateur n'accepte que les trames qui lui sont destinées

Type ethernet (Ethertype) > 1500 :

 0x0800 = DoD Internet
 0x0806 = ARP

 0x0801 = X.75 Internet
 0x8035 = RAP

 0x0802 = NBS Internet
 0x8098 = Appletalk

 0x0803 = ECMA Internet
 0x86DD = IPv6

 0x0804 = ChaosNet
 ...

Données:

- MTU (Maximum Transfer Unit) : taille maximum = 1500 octets
- taille minimum = 46 octets
 - ✓ si besoin, ajout d'octets de bourrage (transmis à la couche réseau)

CRC-32 (*Cyclic Redundancy Check* sur 32 bits), polynome générateur : $G(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

Ethernet: Service

Service à la couche réseau :

- sans connexion
 - ✓ service datagramme (identique à IP ou UDP)
 - ✓ pas d'échange préalable à l'envoi de données
- non fiable
 - ✓ contrôle d'erreur (et élimination sans indication)
 - ✓ pas de correction d'erreur
 - ✓ pas d'acquittement
 - l'émetteur n'a pas connaissance de la remise des données
 - pas de contrôle de flux (sauf commutateurs)
 - pas de fenêtre d'anticipation
 - détection des pertes dans les couches supérieures (ex : TCP...)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 12

Ethernet: Transmission

Bande de base

• émission directe des signaux numériques

Codage manchester

- pour les débits à 10 Mbps
 - ✓ bande passante de 20 Mhz nécéssaire (1B/2B) :

 pour les débits supérieurs, 4B/5B (FDDI), 8B/10B (Fiber Channel), 64B/66B et diverses encapsulations (FR, ATM, SONET...)

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 14

Protocoles d'accès au médium

Liaisons directes émetteur récepteur voir le cours Archi. point-à-point

Liaisons partagées :

- protocoles de partage de canal
 - ✓ partage fixe de la bande passante (R/N) par émetteur)
 - multiplexage fréquenciel (FDM)
 - multiplexage temporel (TDM)
- protocoles à partage de resource (taking-turns protocols)
 - \checkmark partage déterministe de la bande passante (R par émetteur)
 - invitation à émettre (polling)
 - passage de jeton (token-passing)
- protocoles d'accès aléatoire
 - \checkmark partage statistique de la bande passante (R par émetteur) mais collisions possibles
 - **IST** ALOHA
 - **CSMA ⇒** Ethernet

ALOHA

Université d'Hawaii 70'

- technologie support d'un réseau radio basé sur des datagrammes
- protocole à accès aléatoire complètement décentralisé
- si collision, retransmission après un temps aléatoire

picture from Tanenbaum A. S. Computer Networks 3rd edition

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 16

CSMA

Amélioration de l'approche aléatoire

- détection de porteuse : CSMA (Carrier Sense Mutliple Access)
 - attente avant émission
- détection de collision : CSMA/CD (CSMA with Collision Detection)
 - □ retransmission
- ✓ exemple avec une taille de trame mini de 64 octets
 - **T** détection : 64 octets à $10 \text{Mbps} = 512/10^7 = 51, 2 \mu sec$
 - **T prop. max** : 2 * 2500m à $2.10^8 ms^{-1} = 25 \mu sec + 8 * t_{renet}$

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 17

(d)

Protocole d'accès Ethernet

- fonctionnement des adaptateurs :
 - ✓ debut d'émission à tout moment : temps non discrétisé
- ✓ pas d'émission si détection d'une activité sur le canal : CSMA
- ✓ interruption de la transmission si autre activité : /CD
- ✓ attente aléatoire croissante avant retransmission : TBEB (Truncated Binary Exponential Backoff)
- étapes du protocole mis en œuvre dans les adaptateurs :
- 1. construction et mémorisation de la trame
- 2. si activité détecté, attente fin signal
- 3. attente IFS de 96 bits (sans détection de signal)
- 4. début transmission
- (a) si détection collision :
 - i. interruption de la transmission
 - ii. signal de brouillage de 32 bits jam sequence
 - iii. attente exponentielle (pour la n^{ieme} collision consécutive) de $int(rand()*2^{min(10,n)})*$ 512 bits (exponential backoff phase) puis retour à l'étape 2.
- (b) sinon continue la transmission jusqu'à la fin

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 18

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

Ethernet: 10Base5

• débit : 10 Mbps

• médium : cable coaxial **jaune** de **5**00m max et **2 bouchons** (50Ω)

• stations reliées aux transceivers agrippés au coax par un cable bleu

• topologie : **bus** étendu (51.2 μ s max \implies 4 répéteurs : 2500m max entre

2 stations)

UPMC PARISUNIVERSITAS

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 20

Ethernet: 10Base2

• débit : 10 Mbps

• médium : cable coaxial **noir** de **2**00m (185m max) et 30 stations max par segments, **connecteurs BNC en "T"** et terminateurs 50Ω

 topologie : bus étendu (51.2µs max → 4 répéteurs et 925m max entre 2 stations)

Ethernet: 10BaseT

• débit : 10 Mbps

• médium : paire torsadée de 100m max (UTP3), connecteurs RJ45

• topologie : étoile à partir d'un hub (concentrateur)

• accès :

✓ half duplex

→ CSMA/CD

plusieurs hubs possibles, reliés en cascade (51.2 μ s max)

✓ full duplex → point-à-point bidirectionnel simultané (sans collision)

• détection d'activité (Link Pulse toutes les 16±8 ms)

UPMC PARISUNIVERSITAS

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 22

Ethernet: 100BaseTX

Fast Ethernet (1995)

• débit : 100 Mbps

• médium : paires torsadées de 100m max (UTP5), connecteurs RJ45

• encodage : 4B/5B (FDDI)

• topologies : étoile à partir d'un **hub** (concentrateur)

• accès :

✓ half duplex → CSMA/CD avec toujours 64 octets mini

 $^{\text{\tiny EP}}$ 2 *hubs* peuvent être reliés (mais $5.12\mu \text{s}$ max : 210m max)

distance limité en entreprise... voir les commutateurs

🗸 full duplex 🗯 point-à-point bidirectionnel simultané

ullet détection d'activité (*Fast Link Pulse* : 33 impulsions / \sim 16 ms)

✓ FLP contient 16 bits pour l'auto-négociation

détection des vitesses, modes et mécanismes disponibles

• plusieurs variantes :

✓ 100BaseT4 : 4 paires torsadées UTP3 (pas de full duplex)

✓ 100BaseFX : 2 fibres optiques (400m max MMF, 20km max SMF)

Ethernet: 1000BaseT

Gigabit Ethernet (1998)

- débit : 1000 Mbps (1 Gbps)
- médium : paires torsadées de 100m max en UTP5+ (4 paires)
- encodage : 8B/10B (Fiber Channel)
- topologies : étoile à partir d'un hub (concentrateur)
- accès :
 - ✓ half duplex

 → CSMA/CD avec 512 octets mini (extension de porteuse si besoin)

 → 4.01

 µs plutôt que 0.512

 µs!
 - 2 hubs peuvent être reliés (toujours 210m max)
 - performance? burst possible pendant l'extension
 - ✓ full duplex point-à-point bidirectionnel simultané
- plusieurs variantes :
 - ✓ 1000BaseCX : 2 paires torsadées blindées STP, 25m max
 - ✓ 1000BaseSX : fibres optiques multimode 850nm 500m max
 - ✓ 1000BaseLX : fibres optiques multimode (MMF) et monomode (SMF) 1300nm 5km max

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 24

Ethernet: 10GBase?

10Gigabit Ethernet (2002)

- débit : 10 Gbps
- accès : **full duplex** uniquement (plus de CSMA/CD)
- médium : fibres optiques, OC192, DWDM...
- encodage: 64B/66B
- topologies : étoile à partir de commutateurs
- plusieurs variantes :
 - ✓ fibres optiques (850nm, 1300nm et 1550nm)
 - de 65m à 40km max...

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 26

Réseaux à diffusion

Accès multiples sur un médium partagé : diffusion implicite

Transport d'IP:

- résolution d'adresses
- format d'encapsulation

Résolution d'adresse : ARP

Diffusion explicite (utilisation d'une adresse destination de diffusion)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 28

ARP sur Ethernet

ARP est un protocole transporté directement dans la trame Ethernet :

- ARP request: adresse destination = diffusion (FF:FF:FF:FF:FF:FF), source = demandeur
- ARP response : adresse destination = demandeur, source = répondeur

IP sur Ethernet

Type ethernet (Ethertype) > 1500:

0x0800 = DoD Internet

Données :

- MTU : taille maximum du paquet IP = 1500 octets
- taille minimum = 46 octets (mais le paquet IP peut faire moins)
 ✓ si besoin, ajout d'octets de bourrage (transmis à IP)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 30

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

Hub Ethernet

Concentrateur

- élément de la couche physique (niveau bit)
- répéteur multiport
 - ✓ un bit arrivant sur une interface est diffusé sur les autres
- possibilité d'administration : SNMP, RMON...

Interconnexion de hubs

- linéaire
- hiérarchique avec hub fédérateur

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 32

Interconnexion de hubs

Dans un système multi-niveau (plusieurs hubs)

- LAN = l'ensemble du réseau local = domaine de collision)
- **segment** = les équipements reliés à un *hub*

- intérêts :
 - ✓ + augmente la connectivité
 - √ + augmente la redondance (déconnexion des hubs en panne)
 - ✓ limitations physiques (distance, nb machines...)
 - ✓ diminution du débit par machine
 - ✓ augmentation des collisions (et réduction du débit)

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 34

Pont Ethernet

Bridge

- élément de la couche liaison (niveau trame)
- commutateur de trames
 - ✓ filtre en fonction des adresses destinations
 - ✓ une trame arrivant est transmise au port vers le destinataire
 - ✓ mémorisation + CSMA/CD (équipement sans adresse)

- intérêts :
 - ✓ + séparation des domaines de collision
 - ✓ + multi-technologie (10Base2 avec 100BaseTX...)
 - ✓ + plus de limitations physiques

Pont : Filtrage et relayage

Filtrage (filtering)

• détermination de l'acceptation ou du rejet d'une trame

Relayage (forwarding)

- choix de l'interface de sortie
- table :

Adresse LAN	Interface	Heure
00:10:A4:86:2D:0B	1	09 : 32 : 55
00:04:76:21:27:8E	3	09:32:55
00:04:76:21:1B:95	3	09:32:55

- algorithme d'utilisation de la table :
- ✓ lorsque qu'une trame avec @LAN_dest arrive par If_x, la table indique comme port de sortie IF_y:
 - si IF_x = IF_y alors la trame provient du segment du destinataire ➡ filtrage
 - sinon la trame est transmise à IF_y
 relayage

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 36

Pont : Auto-apprentissage

Self-learning

- Algorithme de création de la table
- 1. table **vide** initialement
- 2. lors de la réception d'une trame, insertion dans la table de :
- (a) son @LAN_source
- (b) son interface d'arrivée
- (c) son heure d'arrivée
- 3. validité limitée dans le temps
- remarques :
 - ✓ si @LAN_dest absente de la table, alors diffusion (recopie vers les autres interfaces, mémorisation + CMSA/CD)
 - ✓ les ponts sont dits :
 - □ auto-adaptatifs (plug and play)
 - transparents (non adressés)

Ponts: Redondance

- chemins multiples
- ✓ + chemin de secours
- ✓ + auto-configuration
- ✓ création de boucles (duplication)
 - protocole d'arbre couvrant (STP)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 38

Ponts: STP

Spanning Tree Protocol

- réseaux pontés avec redondance \sim graphe (nœuds = ponts)
 - ✓ graphe sans boucle = arbre → construction d'un arbre couvrant
 - pont avec un numéro identificateur : le plus petit est la racine
 - echange de BPDU <id_root, dst_root, id_snd, num_port>
 - inhibition des ports qui n'atteignent pas la racine par le plus court chemin

Pont ou routeur

Comment choisir?

Pont (couche 2):

- commutateur de trames
 - ✓ + auto-configurable
 - ✓ + performance de relayage
- ✓ toutes les trames empruntent le même arbre couvrant (SPF)
- ✓ les diffusions (*broadcast*) sont globales
 - réseau de taille limitée (→100 machines)
 - recherche de simplicité

Routeur (couche 3):

- commutateur de paquets
 - ✓ + pas de boucle (TTL limitatif en période transitoire)
 - ✓ + calcul du meilleur chemin (routage)
 - ✓ configuration manuelle
 - ✓ traitement plus long des messages
 - réseau taille importante (1000→ machines)
 - fonctions "intelligentes": isolation de trafic, filtrage...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 40

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

Commutateurs Ethernet

Ethernet Switch

- ponts à hautes performances (couche 2)
- ✓ nombreuses interfaces (~ hubs)
- ✓ débit agrégé important **m matrice de commutation**
- multi-débit
 - √ 10 Mbps, 100 Mbps, 1 Gbps...
- full duplex
 - ✓ possibilité d'éviter CSMA/CD (~ liaison point-à-point)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 42

Commutation "Store and Forward"

Mémorisation puis transmission de la trame

- ullet \sim fonctionne comme un pont
- stockage complet avant retransmission (et calcul du CRC-32)
- latence mini de L_F/R_i (L_F taille trame, R_i débit du lien de sortie)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 44

Commutation "Cut-Through"

Transmission directe

- ullet \sim fonctionne comme un *hub*
- émission dès que le tampon de sortie est vide
- $\bullet \ \ \text{latence mini} = \text{lecture de l'adresse destination}$
 - \checkmark exemple : 100Mbps, trame de 1518 octets wo gain de \sim 120 μ s
- plus de contrôle de la trame (CRC-32)

VLAN(1)

picture from Tanenbaum A. S. Computer Networks 4rd edition

Infrastructure de cablage générique

configuration logique des LAN : Virtual LAN

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 46

VLAN(2)

Table de configuration dans les ponts et commutateurs

- détermination de l'appartenance à un VLAN
 - ✓ par port
 - ✓ par adresse LAN
 - ✓ par protocole ou réseau de la couche 3
- plusieurs VLAN par port pour le transit (*Virtual STP*)

picture from Tanenbaum A. S. Computer Networks 4rd edition

Plan

802.1x

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 48

Normalisation IEEE 802

Définition de l'architecture

Quelques normes intéressantes :

- 802.1d MAC Bridges
 ✓ protocole STP...
- **802.1f** MIB IEEE 802
- 802.1g MAC distant bridging

 ✓ inteconnexion de LAN avec des technologies WAN
- 802.1h MAC Bridging of Ethernet V2 in IEEE 802 LAN
- 802.1q Virtual Bridged LAN...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 50

802.1q(1)

Ajout d'un identifiant de VLAN dans la trame

picture from Tanenbaum A. S. Computer Networks 4rd edition

802.1q (2)

Evolution de la structure la trame Ethernet : 1522 octets max!

- seuls les équipements 802.1q échangent les nouvelles trames
- 4096 VLAN identifiables
- 3 bits de priorité

picture from Tanenbaum A. S. Computer Networks 4rd edition

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 52

Pontage 802.2

Subdivision en 2 sous-couches de la Couche ISO Liaison

- LLC (Logical Link Control) sublayer
- MAC (Medium Access Control) sublayer
- permet le pontage direct des différents réseaux IEEE 802 :

picture from Tanenbaum A. S. Computer Networks 3rd edition

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 53

IEEE 802.2

picture from Tanenbaum A. S. Computer Networks 4rd edition

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 54

IEEE 802.3 : CSMA/CD

Encapsulation de type SNAP/LLC :

Sous couche LLC

IEEE 802.3 : Appellations

Norme	date	nom	remarque
802.3	1985	10Base5	coaxial épais 50Ω
802.3a	1988	10Base2	coaxial fin 50Ω
802.3b	1985	10Broad36	coaxial TV 75Ω
802.3i	1990	10BaseT	sur 2 paires UTP3
802.3j	1993	10BaseF	sur fibres MM/SM
802.3u	1995	100BaseT4	sur 4 paires UTP3
802.3x et	1997	100BaseT2	sur 2 paires UTP5
802.3y			
802.3z	1998	1000BaseX	module GBIC
802.3ab	1999	1000BaseT	sur 4 paires UTP5
802.3ac	1998	VLAN	pour 802.3
802.3ad	2000	Agrégation	plusieurs liens (trunking)
802.3ae	2002	10GBaseX	sur fibres MM/SM

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 56

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Architecture point-à-point

De la boucle locale...

IEEE 802.5 : Token Ring

picture from Tanenbaum A. S. Computer Networks 3rd edition

UPMC

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 58

IEEE802.11: WLAN

Wireless Ethernet

- zone de service : cellule ou BSS (Basic Service Set)

 ✓ stations sans-fil
 - ✓ station de base (fixe) ou AP (Access Point) servant de pont 802

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 60

Introduction

Communication directe entre deux entités

Fonctions principales en point-à-point :

- découpage de trame (framming)
- des fonctionnalités similaires à celles de la couche transport peuvent aussi intervenir (sauf contrôle de **congestion**) :
 - ✓ contrôle d'erreur
 - ✓ contrôle de flux
 - ✓ ordonnancement (numérotation)
 - ✓ anticipation (sliding window)
 - ✓ fiabilité (acquittements et retransmissions)

Pour le transport de données :

- pas de résolution d'adresses
- format d'encapsulation

Couche liaison point-à-point

Ce service point-à-point correspond à celui de la couche liaison OSI

- Caractéristiques :
 - ✓ technologie d'interface homogène

- ✓ unités de transmission variées
 - bits, octets, cellules ...
- ✓ couches sous-jacentes variées
 - niveaux intermédiaires possible avant la couche physique
 - possibilité de multiples éléments actifs (multiplexeurs, modems, ponts, commutateurs, routeur, passerelles applicatives...)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 62

Liaisons point-à-point : Où?

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 64

HDLC: Famille

La plupart des protocoles de la couche **liaison** pour le point-à-point sont apparentés à HDLC :

- SDLC (Synchronous Data Link Control) d'IBM pour SNA
- ADCCP (Advance Data Communication Control Procedure) normalisation de SDLC par l'ANSI
- HDLC (High-level Data Link Control) normalisation de SDLC par l'ISO
- LAP (Link Access Procedure) normalisation d'HDLC par l'ITU
 - ✓ LAP-B pour X25
 - ✓ LAP-D pour ISDN
 - ✓ LAP-F pour Frame Relay
- PPP (Point-to-Point Protocol) standard de l'IETF

Ces protocoles s'appuient sur une grande variété de supports **physiques** permettant de transmettre des bits ou caractères entre deux machines.

HDLC: Structure

Découpage au niveau bit ou octet

- délimitation par un fanion (flag) de valeur binaire : 0111 1110
- ✓ suite de bit 01111110 (protection par bit stuffing)
- ✓ octet de valeur 0x7E (protection par byte stuffing)

picture from Tanenbaum A. S. Computer Networks 3rd edition

3 types de trames (control):

- Information : transmission de données avec *sliding window* (7 trames non acquittées max)
- Supervisory: contrôle de flux, ACK non piggyback, NACK, demande de retransmission selective...
- Unumbered : pour le contrôle interne à la couche liaison

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 66

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

IP sur ligne série

picture from Tanenbaum A. S. Computer Networks 3rd edition

- SLIP (Serial Line Internet Protocol)
 - ✓ orienté caractère, découpage grâce au caractère 0xC0
- ✓ rudimentaire : aucun contrôle, aucune négociation
- PPP ...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 68

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

PPP: Introduction

Point-to-Point Protocol (RFC 1661)

Protocole générique mombreuses fonctionnalités :

- multiprotocolaire
- ✓ transporte d'autres niveaux 3 que IP
- ✓ s'appuie sur d'autres technologies que les lignes séries
- négociation
 - ✓ adaptation au support
 - détection et correction d'erreur
 - compression d'entête pour les liaisons à faible débit
 - ✓ configuration automatique du client

PPP: Structure protocolaire

Encapsulation simple : ajout de 2 octets (compressibles à 1 octet)

- Protocol : indique le type d'information transportée
 - ✓ **LCP** : protocole de contrôle de la couche liaison
 - responsible in mégociation des paramètres de la couche support (compression, taille des trames...)
 - ✓ PAP et CHAP : protocoles d'authentification
- ✓ NCP : protocole de contrôle de la couche réseau
 - r négociation des paramètres du protocole transporté (adressage...) → dépend de chaque couche réseau supportée
- ✓ IP, AppleTalk, IPX, IPv6...
- Payload : contient les données de la trame
 - ✓ MRU (Maximum Receive Unit) négociable (par défaut : 1500 o)
 - ✓ bourrage si la technologie support le nécessite

PPP: Protocoles transportés

Valeur	Description
0x0001	Protocole de bourrage
0x0021	IP
0x0029	AppelTalk
0x002B	IPX
0x002D	TCP/IP Compression d'entête de Van Jacobson
0x002F	TCP/IP Compression inefficace
0x0057	IPv6
0x0281	MPLS
0x8021	IPCP : configuration d'IP
	ii ci : comgaration a n
0x8029	ATCP : configuration d'AppelTalk
0x8029 0x802B	
	ATCP : configuration d'AppelTalk
0x802B	ATCP : configuration d'AppelTalk IPXCP : configuration d'IPX
0x802B 0x8057	ATCP : configuration d'AppelTalk IPXCP : configuration d'IPX IPV6CP : configuration d'IPv6
0x802B 0x8057 0x8281	ATCP : configuration d'AppelTalk IPXCP : configuration d'IPX IPV6CP : configuration d'IPv6 Configuration de MPLS
0x802B 0x8057 0x8281 0xC021	ATCP : configuration d'AppelTalk IPXCP : configuration d'IPX IPV6CP : configuration d'IPv6 Configuration de MPLS LCP : Link Control Protocol

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 72

PPP: Encapsulation standard

Similaire à une trame **HDLC** pour les flux d'octets :

- un fanion (flag) de valeur binaire : 0111 1110 (0x7E)
- address (1 octet): 1111 1111 (0xFF, diffusion)
 - ✓ il n'y a qu'un destinataire (point-à-point)
- control (1 octet):
 - ✓ liaison fiable ⇒ pas de contrôle : 0000 0011 (0x03, trame UI, voir le RFC 1662)
 - optimisation : suppression des champs Address et Control
 - ✓ liaison peu fiable

 contrôle du séquencement (voir HDLC, trames UA et SABME, voir le RFC 1663)
- Protocol et Payload : encapsulation PPP
- Checksum (2 octets) : CRC 16 bits
- encore un fanion de valeur binaire : 0111 1110

PPP: Protection du fanion

Deux types de liaison point-à-point :

- synchrone (bits : le fanion est la séquence 0111 1110)
 - ✓ protection par bourrage au niveau bit (bit stuffing)
 - 1 bit à 0 est rajouté tout les 5 bits à 1
 - □ 01111110111110 → 011111**0**1011111**0**0
- asynchrone (octets, le fanion à la valeur 0x7E)
 - ✓ protection par échappement au niveau octet (byte stuffing)

 - □ 0x7E □ 0x7D 0x5E
 - ∞ 0x7D **→** 0x7D 0x5D
- ✓ valeurs d'octets actives pour la gestion de la connexion asynchrone (correspond aux codes ASCII < 32), même principe de protection :
 - © 0x11 (XON : reprise du transfert) → 0x7D 0x31
 - ☞ 0x13 (XOFF : arrêt du transfert) ➡ 0x7D 0x33
- La bande passante disponible est variable!

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 74

PPP: Négociation

Structure de la trame de négociation typique de PPP :

0		7	15	bit 31
	code		identificateur	longueur
			don	nées

- code : indique le type de négociation
- identificateur : mise en correspondance entre les requêtes et les réponses
- longueur : taille totale de la trame avec l'entête LCP
 - ✓ permet de supprimer de potentiels octets de bourrage
- données : paramètres de la négociation

Les négociations débutent lors de l'initiation de la connexion

PPP: Trames de négociation

Valeur	Code	Description	LCP	NCP
1	Configure-Request	modif. aux valeurs par défaut	~	~
2	Configure-Ack	récepteur accepte toutes les mofif.	~	>
3	Configure-Nak	valeurs refusées, en proposer d'autres	~	~
4	Configure-Reject	valeurs non négociables	>	~
5	Terminate-Request	un des equipements veut terminer	~	~
6	Terminate-Ack	confirmation de la terminaison	V	>
7	Code-Reject	code inconnu	~	~
8	Protocol-Reject	protocole inconnu	~	
9	Echo-Request	demande test l'état de la liaison	~	
10	Echo-Reply	réponse de test de l'état de la liaison	>	
11	Discard-Request	supprimées en silence par le récepteur	>	

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 76

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

LCP

Link Control Protocol

Supervision de l'état de la liaison

- champ protocol de la trame PPP : 0xC021
- négociation initiale à l'ouverture de la connexion
- définition d'options de type TLV
 - ✓ voir RFC 1570 et RFC 1661

/	format :	Туре	Longueur	Valeur	1
		1 octet	1 octet	(Longueur - 2) octets	l

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 78

LCP: Types d'options

Valeur	Code	Taille	Description
1	MRU	4	Taille maximale des trames reçues
2	ACCM	6	table des caractères à transcoder
3	authentification	4	type du protocole d'authentification choisi
4	qualité	6	type du protocole de gestion de la QoS
5	Magic Number	6	négociation de cette valeur
7	compression protocol	2	champ de contrôle sur 1 octet
8	compression address	2	suppression de ces champs
	et control		
10	bourrage auto-descriptif	3	paramètre d'un bourrage qui peut être
			automatiquement supprimé par le récepteur
13	rappel automatique	3+	

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 80

PAP

Password Authentification Protocol (RFC 1334)

Une fois la connexion établie et les paramètres LCP négociés

- vérification de l'identité
 - champ protocol de la trame PPP : 0xC023
 - transmission en clair de l'identifiant et du mot de passe
 - 4 types de trames de négociation (Configure-Request, Configure-Ack, Configure-Nak ou Configure-Reject)
 - format identique à LCP, valeur du champ code :
 - ✓ 1 : demande d'authentifiaction

format : 1 o. (Lgld) octets 1 o. (LgMP) octets	iorinat .	Lgld	Identificateur	LgMP	Mot_de_passe
	format :	1 o.	(LgId) octets	1 o.	(LgMP) octets

✓ 2 : acquittement positif

format : 1 o. (Lgld) octets

Lgld Message_pour_le_client

√ 3 : acquittement négatif (retransmission nécéssaire)

CHAP

CHallenge Authentification Protocol (RFC 1334)

Après la négociation LCP et pendant la communication

- - champ protocol de la trame PPP : 0xC223
 - les 2 extrémités possèdent une clé identique et secrète
 - 4 types de trames de négociation (Configure-Request, Configure-Ack, Configure-Nak ou Configure-Reject)
 - format identique à LCP, valeur du champ code :
 - ✓ 1 : challenge (envoi d'une séquence binaire)

format :	1 o.	(LgCh) octets
TOTTITAL .	LgCh	séquence_binaire

✓ 2 : **réponse** (retour de la séquence cryptée avec la **clé** → sceau)

✓ 3 : succès : la séquence cryptée reçue et celle calculée localement sont identiques

4 : échec (retransmission nécéssaire)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 82

RADIUS (1)

Remote Authentication Dial-In User Service (RFC 2865)

Centralisation des informations concernant un utilisateur

- fonctions AAA : Authentication, Authorization, and Accounting
- ✓ vérification de l'identité
- ✓ connaître les droits et configuration d'accès
- ✓ suivre les actions de l'utilisateur
- modèle client/serveur
 - ✓ le client peut se connecter aux différents points d'accès d'un FAI

 ☐ client : point d'accès au FAI (extrémité PPP, ou autre protocole)
 ☐ serveur : supporte une base de données utilisateurs du FAI

RADIUS (2)

Service sans connexion (UDP port 1812)

- fiabilité gérée au niveau applicatif
- format du message :

10111	iat au ilicos	ugc.		
0	7	16		bit 31
	code	identificateur	longueur	
	digest =	authentific = MD5(code+id.+long.	cateur +auth_req+param+secret)	
 		paramè	tres	

Echange typique :

- message Access-Request du client d'accès
 - ✓ nom de l'utilisateur, mot de passe crypté
 - ✓ adresse IP du point d'accès, port UDP
- ✓ type de session (PPP, rlogin, telnet...)
- réponse Access-Accept du serveur RADIUS
 - ✓ liste d'attributs à utiliser pour la session (adresse, serveurs...)
- réponse Access-Reject du serveur RADIUS

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 84

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

NCP

Network Control Protocol

Après la configuration de la liaison (LCP) et une authentification optionnelle (PAP ou CHAP), **configuration des protocoles de couche 3**

- un NCP par protocole transporté :
 - ✓ IPCP pour la configuration IPv4 (RFC 1332)
- ✓ IPV6CP pour la configuration IPv6 (RFC 2472)
- ✓ ATCP pour la configuration AppleTalk (RFC 1378)
- ✓ IPXCP pour la configuration IPX (RFC 1552)
- ✓ OSINLCP pour la configuration des protocoles de l'OSI (RFC 1377)
- ✓ ...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 86

IPCP

Internet Protocol Control Protocol

- champ protocol de la trame PPP : 0x8021
- 4 types de trames de négociation (Configure-Request, Configure-Ack, Configure-Nak ou Configure-Reject)
- format identique à LCP, valeur du champ code :
 - ✓ 2 : compression d'entête
 - 2 octets pour le type de compression (0x002d pour Van Jacobson; 0x0061 pour étendu, RFC 2507; 0x0003 pour ROHC, RObust Header Compression, RFC 3241)
 - □ 1 octet pour le nombre max de connexions compressées
 - □ 1 octet pour indiquer la présence du numéro de connexion
 - ✓ 3 : adresse IP du client sur 4 octets
- ✓ 4 : adresse IP permanente (home address)
- ✓ 129 : adresse IP du serveur DNS primaire
- √ 130 : adresse IP du serveur NBNS primaire
- ✓ 131 : adresse IP du serveur DNS secondaire
- ✓ 132 : adresse IP du serveur NBNS secondaire

Compression d'entête TCP/IP

PPP doit être efficace sur les liaisons à bas débit

- connexion TCP/IP interactive (telnet...)
 - ✓ algorithme de Nagle
 - ✓ taille importante des entêtes
 - ✓ exemple :

Différence entre deux segments

Algorithme de Van Jacobson

Algorithme de compression des entêtes TCP/IP (RFC 1144)

- émission des entêtes classiques pour SYN, RST et FIN (champ protocol à 0x0021)
- puis compression :
 - ✓ envoi complet avec l'**identificateur** de connexion (0x002F) :
 - pour la synchronisation (premier paquet complet)
 - pour les valeurs négatives d'acquitement ou de séquence (erreur)
 - ✓ différentiel entre deux entêtes (0x002D) :
 - identificateur de connexion
 - maintient d'un **contexte** à chaque extrémitée
 - seuls les champs modifiés sont transmis
 - la différence est généralement codée sur un octet

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 90

Entête IP compressé

Seul le premier octet et cheksum TCP sont obligatoires (3 octets mini)

- la présence des champs est indiquée dans le premier octet
- les delta sont codés sur 1 à 2 o.
 ✓ 1 octet :0x01 à 0xFF
- ✓ 3 o.: 0x000100 à 0x00FFFF
- bit C : présence id. connex.
 ✓ non émis si idem précédent
- checksum TCP : recopie
- bit U : recopie
- bit W : delta fenetre
 ✓ négatif en complément à 2
- bits S/A : delta seq./acq.
 ✓ pas de négatifs
- bit I : delta id. IP

 ✓ absent = +1
- bit P : recopie bit PUSH TCP

Détection d'erreur

Validation de la reconstitution grâce au checksum TCP :

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 92

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

POS (1)

Packet Over SONET

PPP Over SONET/SDH (RFC 2615)

- PPP initialement pour les liaisons RTC à faible débit
- mais aussi adapté aux liaisons à haut débit du monde télécom
 - ✓ hiérarchies des multiplexes SONET/SDH
 - OC-3c/STM-1 (155 Mbps)
 - OC-12c/STM-4c (622 Mbps)
 - OC-48c/STM-16c (2.5 Gbps)
 - OC-192c/STM-64c (10 Gbps)
 - ✓ PPP sur liaisons synchrones basées sur des octets
 - \sim connexions série orientée octet
- but : se rapprocher de la fibre
 - ✓ POS simplifie l'approche IP/ATM/SONET
 - MPLS/POS plus souple (Traffic Eng.)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 94

POS (2)

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 96

PPPoA

PPP Over ATM

PPP Over AAL5 (RFC 2364)

- Utilisation des connexions ATM AAL 5
 - ✓ plus de framing HDLC
 - ✓ adaptation au trames CPCS PDU AAL 5
 - padding (multiples de 48 octets)
- deux encapsulation RFC 1483 :
 - ✓ VC-multiplexed PPP
 - les extrémités savent qu'elles transportent du PPP
 - ✓ LLC encapsulated PPP
 - identification du protocole pour chaque PDU

PPPoA: Encpsulations

SNAP/LLC

VCMUX

Protocol Identifier	
(8 or 16 bits)	
PPP information field	PPP payload
PAD (0 - 47 octets)	
PAD (0 - 47 octets) CPCS-UU (1 octet)	
,	
CPCS-UU (1 octet)	CPCS-PDU

Destination SAP (0xFE) Source SAP (0xFE) Frame Type = UI (0x03)	LLC header
NLPID = PPP (0xCF)	
Protocol Identifier (8 or 16 bits)	
PPP information field	PPP payload
PAD (0 - 47 octets)	
CPCS-UU (1 octet) CPI (1 octet) Length (2 octets) CRC (4 octets)	CPCS-PDU Trailer

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 98

PPPoA: Critiques

Avantages

- dissocie le fournisseur d'accès ADSL/ATM du FAI
- authentification par session (PAP et CHAP)
- surveillance des utilisateurs (RADIUS)
 - ✓ facturation des utilisateurs à la session
 - ✓ sur-réservation et déconnexions temporisées
- attribution d'une adresse IP au client
 - ✓ possibilité d'en gérer plus avec NPAT
- sécurisation de l'accès sans gestion au niveau ATM
 - ✓ signalisation ATM trop complexe : utilisation de PVC
 - ✓ VPN géré par des tunnels PPP (pas besoin de PVC de bout en bout ■ L2TP)
- adaptable aux évolutions du réseau
 - ✓ gestion souple au niveau IP
 - déploiement de routeurs d'agrégation (terminaison PPP)

Inconvénients

- une connexion par PVC
- complexité globale de la solution (maitrise IP, PPP, AAA, ATM...)

PPPoA sur ADSL

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 100

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 101

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

PPPoE (1)

PPP Over Ethernet (RFC 2516)

Quel est l'intérêt de faire du point-à-point sur un support partagé?

- Ethernet dispose d'autoconfiguration : ARP, DHCP...
- ... mais pas de prise en charge à distance, ni de AAA

Mise en place d'une connexion point-à-point :

- valeurs Ethertype
 - ✓ 0x8863 pour les trames de découverte
- ✓ 0x8864 pour les trames de données
- format du payload de ces trames Ethernet

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

| Ver | Type | Code | Session_id |

| Length | PPPoE payload |
```

- ✓ Ver et Type = 0x01
- ✓ Code = 00 (données) et ... (découverte)
- ✓ Session_id = identification d'un flux (avec l'@ MAC)
- ✓ Length = taille des données (élimination du bourrage)

UPMC PARISUNIVERSITAS

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 102

PPPoE (2)

Messages de découverte

- encapsulé dans des trames PPPoE (Ethertype = 0x8863)
 - ✓ champ Code:
 - □ 0x09 : PADI (*PPPoE Active Discovery Initiation*) → diffusion
 - □ 0x07 : PADO (*PPPoE Active Discovery Offer*) → proposition (avec Session_id)
 - □ 0x19 : PADR (*PPPoE Active Discovery Request*) selection
 - 0x65 : PADS (PPPoE Active Discovery Session-confirmation)
 - © 0xA7 : PADT (PPPoE Active Discovery Terminate)
 - ✓ champ PPPoE payload: TLV avec caractères codées en UTF-8

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

rs nom du FAI, nom du concentrateur d'accès, identificateur de session, cookie de validation, nature d'une erreur...

PPPoE: Critiques

Avantages

- similaires à ceux de PPPoA
- authentification par session (PAP et CHAP)
 - ✓ dans un réseau de type LAN
- surveillance des utilisateurs (RADIUS)
 - ✓ facturation des utilisateurs à la session
 - ✓ sur-réservation et déconnexions temporisées
- utilisateurs sans accès direct à ATM (pontage)
- plusieurs connexions par PVC
- attribution d'une adresse IP au client
 - ✓ préserve le modèle point-à-point sur un médium partagé
 - ✓ possibilité de gérer plusieurs adresses avec NPAT

Inconvénients

- technologie LAN, sujet au raffales de broadcast
- complexité globale de la solution (maitrise IP, PPP, AAA, ATM, LAN + pontage ...)
- NPAT limite toujours les applications

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 104

PPPoE sur ADSL

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 106

Tunnels PPP

Relayer les trames PPP

- L2F (Layer 2 Forwarding)
 - ✓ propriétaire Cisco, Northern Telecom et Shiva
 - ✓ à partir d'une Home Gateway vers un Network Access Server
- PPTP (Point-to-Point Tunneling Protocol)
 - ✓ propriétaire Microsoft, 3Com, Ascend, US Robotics et ECI Telematics
- ✓ à partir d'une concentrateur vers un serveur d'accès (logiciel)
- L2TP (Layer 2 Tunneling Protocol)
- ✓ standard IETF

L2TP (1)

Exemple: l'accès ADSL,

- le fournisseur d'accès ADSL (FAA) gère la liaison jusqu'à un concentrateur d'accès (CA)
- comment atteindre le fournisseur de service Internet (FAI)?
 - ✓ CA chez le FAI (au service d'un seul FAI)
 - ✓ le FAA gère la configuration IP (délégation du FAI)
 - ✓ le FAI à un accès à chaque CA (trop lourd)
 - réation d'un tunnel du CA vers le FAI
 - relayage de PPP à travers le réseau entre le FAA et le FAI

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 108

L2TP (2)

Layer 2 Tunneling Protocol (RFC 2661)

Encapsulation des trames PPP sur :

- réseaux télécom (ATM, FR...)
- Internet (UDP port 1702)
 - ✓ architecture L2TP :

- Data Channel : trames PPP encapsulées dans des messages L2TP non fiable non sécurisé
- Control Channel : échange de messages de contrôle des tunnels, avec protocole de fiabilité et de contrôle de flux spécifique

ADSL et L2TP

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 110

Plan

Architecture Ethernet

Architecture point-à-point

- HDLC
- IP sur liaison série
- PPP
- contrôle de la couche liaison (LCP)
- authentification (PAP, CHAP et RADIUS)
- contrôle de la couche réseau (NCP)
- PPP sur SONET
- PPP sur ATM
- PPP sur Ethernet
- tunnel PPP
- VPN

De la boucle locale...

VPN

Plan

Virtual Private Network

Liaison virtuelles entre plusieurs entités.

- réseaux privés peu couteux (infrastructure mutualisée)
 - ✓ généralement Internet
 - peut transporter d'autres protocoles
 - peut concaténer plusieurs technologies (ATM-TCP/IP...)
- basé sur des tunnels entre différentes extrémités :
 - ✓ point d'accès à un réseau
 - ✓ machine isolée
- sécurisation
 - ✓ IPSEC ING

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 112

Boucle locale: Où?

Architecture Ethernet

Architecture point-à-point

De la boucle locale...

- Réseau Téléphonique Commuté
- xDSL
- Hybride Fibre Coaxial
- Réseaux Optiques Passifs
- Courants Porteurs en Ligne
- Boucle Locale Radio
- Satellites

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 114

Le système téléphonique

Réseau Téléphonique Commuté (RTC)

Public Switched Telephone Network (PSTN)

Plain Old Telephone Systeme (POTS)

- Buts :
 - ✓ transmission de la parole humaine
 - $\sim 300 \; Hz 3400 \; Hz$
 - ✓ étendue mondiale
 - ✓ service analogique
- Extentions (disponibilité limités) :
 - ✓ service numérique
 - ✓ transmission de données entre les réseaux informatiques
 - LS, X25, FR, ATM...
 - débits jusqu'au Gigabit/s

Architecture du réseau téléphonique

pictures from Tanenbaum A. S. Computer Networks 4rd edition

Réseau à interconnexion totale (a), à commutateur central (b) et hiérarchique à deux niveaux (c)

Structuration du réseau téléphonique

- hiérarchie multi-niveaux (jusqu'à 5)
 - ✓ composants de base :
 - □ liaisons abonnés-centraux
 - centraux
 - □ liaisons inter-centraux

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 116

Cheminement d'une connexion téléphonique

pictures from Tanenbaum A. S. Computer Networks 4rd edition

- éléments impliqués :
 - ✓ Commutateur Local (CL, end office)
 - accès téléphones par la **Boucle Locale** (BL. *local loop* ou desserte locale)
 - ✓ Commutateur à Autonomie d'Acheminement (CAA, toll office)
 - réliés par des **lignes** ou artères interurbaines (toll connecting trunks)
 - forme une ZAA (Zone à Autonomie d'Accès) : plusieur par zones urbaines
 - ✓ Commutateurs de Transit primaires/secondaires (CTP/CTS, intermediate switching offices)
 - réliés par des artère haut débit (intertoll trunks)

Boucle locale par le réseau téléphonique

pictures from Tanenbaum A. S. Computer Networks 3rd edition

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 118

Modems classiques

Modulateur/démodulateur

- échange full duplex
- émission large bande (analogique)
 - ✓ utilisation d'une **porteuse** (1000-2000 Hz)
- ✓ nombre de **modulations** par seconde (2400 bauds)
 - modulation d'amplitude (AM. Amplitude Modulation)
 - modulation de phase (PSK, Phase Shift Keying)
 - modulation de fréquence (FSK, Frequency Shift Keying)
 - combinaisons : modulation avec codage en treillis...
- ✓ théorème de **Shannon** : limite théorique = $H*log_2(1+S/N)$ bit/s
 - \blacksquare avec : H bande passante, S/N de rapport signal/bruit
 - téléphone : $S/N\sim$ 30 dB $\stackrel{\blacksquare}{\longrightarrow}$ limite \sim 35 kbit/s
- ✓ théorème de **Nyquist** : débit binaire max = $2H * log_2V$ bit/s
 - ∨ V.32bis : $log_2V = 6 → 14.4 \text{ kbit/s}$
- ∨ V.34 : $log_2V = 12 → 28.8 \text{ kbit/s}$
- ∨ V.34bis : $log_2V = 14$ 33.6 kbit/s

Modems 56K

Dépasser la limite de Nyquist?

- accès direct au numérique chez l'ISP (schéma précédent : ISP 2)
 - ✓ une seule double conversion (moins de bruits introduits)
 - récupération de 70 kbit/s théorique
 - ✓ Nyquist avec la bande passante numérique :
 - 4 kHz = 8000 bauds
 - ✓ nombre de bits par échantillons :
 - Europe : 8 bits ➡ 64 kbit/s
 - US: 7 bits ➡ 56 kbit/s
 - ✓ normes :
 - V.90 ➡ 56 kbit/s descendant et 33.6 kbit/s montant
 - ▼ V.92 ► 56 kbit/s descendant et 48 kbit/s montant

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 120

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 121

IP sur RTC

Service offert par les modems sur RTC

- couche physique :
 - ✓ asynchrone orienté octet
- couche liaison :
 - ✓ SLIP
 - ✓ CSLIP
 - / PPF

PPP sur RTC

Encapsulation PPP sur un support orienté octets :

- Similaire à une trame HDLC
 - ✓ fanion de valeur (1 octet) : 0x7E
 - ✓ address (1 octet): 0xFF
 - ✓ control (1 octet): 0x03
 - ✓ protocol (1 ou 2 octet)
 - optimisation : suppression des champs address et control, réduction de protocol et compression des entêtes TCP/IP
- ✓ protection par échappement (octet de valeur 0x7D) :
 - ramion = 0x7E → 0x7D 0x5E et 0x7D → 0x7D 0x5D
- \checkmark valeurs actives pour la gestion du modems (codes ASCII <32)
 - □ 0x11 (XON) → 0x7D 0x31 et 0x13 (XOFF) → 0x7D 0x33
- La bande passante disponible est variable!

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 122

Plan

Architecture Ethernet

Architecture point-à-point

De la boucle locale...

- Réseau Téléphonique Commuté
- xDSL
- Hybride Fibre Coaxial
- Réseaux Optiques Passifs
- Courants Porteurs en Ligne
- Boucle Locale Radio
- Satellites

Evolution de la boucle locale téléphonique

La paire torsadée est limitée artificiellement

- optimisée pour la voix
- ✓ filtrage dès le commutateur local :
 - \sim filtre passe-bande 300Hz 3400Hz
- ✓ les modems sont forcément lents!
 - fin '90, les autres techno. de boucle locale sont à plusieurs Mbit/s
- **■** Digital Subscriber Line
 - utilisation de paire torsadée à sa limite physique
 - ✓ dépasse le MHz
 - ✓ plusieurs Mbit/s (selon la longueur, l'épaisseur et la qualité)
 - ✓ contraintes de conception :
 - ne pas géner les services existants (Voix et RNIS)
 - accès permanent
 - fonctionner sur une paire UTP3...

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 124

Structure du réseau RTC

Paire torsadée du commutateur local à la prise téléphonique

Possibilité d'armoires de brassage intermédaires (sous-répartiteurs)

Bande passante de la paire torsadée

Débit théorique d'une paire type UTP3

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 126

Partage du spectre fréquentiel

DMT (Discrete MultiTone)

- ullet 256 canaux indépendants de 4312.5 Hz
 - ✓ 0 voix
- ✓ 1-5 marge (limitation des interférences)
- ✓ 6-(n) pour le flux montant (à partir de 26 kHz)
 - dont 1 pour le contrôle de flux montant
- ✓ (n+1)-255 pour le flux descendant dont 1 pour le contrôle de flux descendant
- accès typiques (80% descendant et 20% montant) :
- / 256/64 kbit/s, **512/128 kbit/s**, 1024/256 kbit/s...

Configuration xDSL

pictures from Tanenbaum A. S. Computer Networks 4rd edition

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 128

Comparaison des technologies xDSL

nom	signification	mode de	paires	débit	débit	distance
110111	Signification	transmission	cuivre	descendant	montant	max
IDGI	ICDAI					
IDSL	ISDN over	Symétrique	1	128 kbit/s	128 kbit/s	3.6 km
	DSL	(2B1Q)		ou 144 kbit/s	ou 144 kbit/s	
HDSL	High-Data-	Symétrique	2/3	1.5 Mbit/s	1.5 Mbit/s	3.6 km
	Rate DSL	(2B1Q/CAP)		ou 2 Mbit/s	ou 2 Mbit/s	
SDSL	Single-Line	Symétrique	1	1.5 Mbit/s	1.5 Mbit/s	2.9 km
	DSL	(2B1Q/CAP)		ou 2 Mbit/s	ou 2 Mbit/s	
RADSL	Rate-Adap-	Asymétrique	1	jusqu'à	jusqu'à	5.4 km
	tative DSL	(CAP)		à 7 Mbit/s	1 Mbit/s	(1.5 Mbit/s)
ADSL	Asymetric	Asymétrique	1	jusqu'à	jusqu'à	5.4 km
	DSL	(DMT)		8 Mbit/s	640 kbit/s	(1.5 Mbit/s)
G.Lite	ADSL	Asymétrique	1	jusqu'à	jusqu'à	3.6 km
	splitterless	(DMT)		1.5 Mbit/s	512 kbit/s	
ADSL2	Evolution	Asymétrique	1	jusqu'à	jusqu'à	5.4 km
Annex J	ADSL	(DMT)		12 Mbit/s	3.5 Mbit/s	
ADSL2	Extended	Asymétrique	1	jusqu'à	jusqu'à	7 km
Annex L	Range ADSL2	(DMT)		12 Mbit/s	1 Mbit/s	
ADSL2+	Evolution	Asymétrique	1	jusqu'à	jusqu'à	5.4 km
Annex M	ADSL2	(DMT)		24 Mbit/s	3.5 Mbit/s	
ADSL2+	Extended	Asymétrique	1	Jusqu'à	jusqu'à	7 km
Annex L	Range ADSL2+	(DMT)		à 24 Mbit/s	1 Mbit/s	

Technologie ADSL

- modulation DMT
 - ✓ chaque sous porteuse code 0 à 15 bits (valence) à 4000 Bauds $^{\bowtie}$ la valence dépend du S/B pour chaque canal
- format de trame (par canal)
- ✓ 1 super trame (68 trames + 1 sync) toute les 17ms

- \square une trame toute les 250μ s avec réservation
- □ longueur de trame variable (valence)
- deux flux multiplexés alimentés par deux tampons d'émission

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 130

Débit du lien ADSL

Quantité d'information par canal avec la modulation DTM

ADSL2

Evolutions ADSL (G.992.3 et G.992.4)

- augmentation de la portée et du débit en longue distance
 - ✓ amélioration du codage
 - ✓ réduction de l'*overhead*
 - ✓ récupération des canaux analogiques (All digital mode)
- économie d'énergie (mode veille dynamique)
- bonding: multiplexage inverse ATM (couplage de plusieurs lignes)
- création de canaux dédiés (ToDSL)
- support des services basés sur des trames (Ethernet)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 132

ADSL2+

Evolutions ADSL2 (G.992.5)

- ullet utilisation d'une bande passante étendue (jusqu'à 2.2 MHz)
- \checkmark augmentation du débit pour les courtes distance ($l < 2500 \mathrm{m})$
- ✓ théoriquement d > 20 Mbit/s en download si l < 1000 m
- mode double bande passante en *upload* possible

IP sur ADSL

Encapsulation IP sur ADSL?

- ADSL est une technologie de la couche physique
 - une couche liaison est nécéssaire
 - ✓ ATM?
 - compatible avec les opérateurs télécom (actuels FAA)
 - IP/AAL5/ATM/ADSL
 - ✓ Ethernet?
 - compatible avec les opérateurs internet (futurs FAA)
 - IP/Ethernet/ADSL
 - ✓ PPP?
 - AAA avec Radius
 - PPPoA/AAL5/ATM/ADSL
 - PPPoE/Ethernet/AAL5/ATM/ADSL
 - PPPoE/Ethernet/ADSL
 - PPP/ADSL, avec MPLS pour le TE

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 134

ATM sur ADSL

les cellules sont multiplexées dans les deux flux ADSL

PPPoA sur ADSL

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 136

PPPoE sur ADSL

Ethernet sur ADSL2

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 138

VDSL

Plus rapide que l'ADSL...

nom	signification	mode de transmission	paires cuivre	débit descendant	débit montant	distance max
ADSL	Asymetric	Asymétrique	1	jusqu'à	jusqu'à	5.4 km
	DSL	(DMT)		8 Mbit/s	640 kbit/s	(1.5 Mbit/s)
ADSL2 Annex J	Evolution ADSL	Asymétrique (DMT)	1	jusqu'à 12 Mbit/s	jusqu'à 3.5 Mbit/s	5.4 km
ADSL2+ Annex M	Evolution ADSL2	Asymétrique (DMT)	1	jusqu'à 24 Mbit/s	jusqu'à 3.5 Mbit/s	5.4 km
VDSL	Very-High- Rate DSL	Asymétrique (CAP/DMT)	1	jusqu'à 53 Mbit/s	jusqu'à 12 Mbit/s	1.5km (13 Mbit/s)
VDSL2	Very-High- Rate DSL	Asymétrique (CAP/DMT)	1	jusqu'à 250 Mbit/s	jusqu'à 12 Mbit/s	3.5km (13 Mbit/s)

- ... mais distances plus courtes!
 - VDSL2 : 250 Mbit/s théorique à la source, 100 Mbit/s à 500 m
 - ✓ à plus d'1 km, ADSL2+ est intéressant
 - ✓ il faut être proche de la source
 - FTTN (Fiber To The Neighborhood)

FITL (FTTN)

Fiber In The Loop (Fiber To The Neighborhood)

Distribution locale hybride (fibre optique jusqu'au sous-répartiteur)

→ attention, intégration des DSLAM... sinon FTTH (Fiber To The Home)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 140

Plan

Architecture Ethernet

Architecture point-à-point

De la boucle locale...

- Réseau Téléphonique Commuté
- xDSL
- Hybride Fibre Coaxial
- Réseaux Optiques Passifs
- Courants Porteurs en Ligne
- Boucle Locale Radio
- Satellites
- Satemites

Réseau câblé avec antenne collective

pictures from Tanenbaum A. S. Computer Networks 4rd edition

CATV (Community Antenna TeleVision)

- ullet distribution de la télévision sur câble coaxial 75Ω jusqu'a $100~{\rm km}$
- ✓ relai de la télévision hertzienne/satellitaire
- évolution ('70)
- ✓ contenu spécifique
- ✓ câblo-opérateurs
 - interconnexion des désertes locales : réseau longue distance

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 142

Réseau de distribution hybride

HFC (Hybrid Fiber Coax)

- arbre de distribution
 - ✓ toujours une **tête de réseau** (*Head End*)
 - commutateurs optique/optique
 - centres de distribution optique/coax
- intégration de service
 - √ télévision
- ✓ téléphonie
- ✓ data
- médium partagé
 - ✓ jusqu'à 2000 utilisateurs par câbles
 - segmentation si les beaucoup d'utilisateurs data

Structure du réseau câblé

pictures from TANENBAUM A. S. Computer Networks 4rd edition

UPMC PARISINIVERSITAS

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 144

Allocation des fréquences du câble

pictures from Tanenbaum A. S. Computer Networks 4rd edition

Récupération de fréquences autour de la vidéo :

- vidéo (+ radio 87–108 M*Hz*)
 - \checkmark 65–550 MHz (EU), 54–550 MHz(US)
 - \square largeur canal TV = 8 MHz (PAL/SECAM), 6 MHz (NTSC)
- bande passante données montantes
 - ✓ 5-65 MHz (EU), 5-42 MHz(US)
- bande passante données descendantes
 - ✓ 550-850 MHz (EU), 550-750 MHz(US)

Modem-câble (1)

Modulation numérique, pour augmenter les performances du coax.

- débit montant
 - ✓ modulation QPSK/QAM-16 sur des canaux de 2 MHz

 3 Mbit/s partagé par canal (~ 90 Mbit/s agrégé)
- débit descendant
 - ✓ modulation QAM-64/QAM-256 sur des canaux de 6/8 MHz 3/2 $27-56 \text{ Mbit/s par canal } (\sim 1-2 \text{ Gbit/s agrégé})$

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 146

Modem-câble (2)

- contrôle par la tête de réseau (CMTS : Cable Modem Termination System)
 - ✓ signalisation dans des canaux dédiés
 - auto-configuration

 auto-config
 - allocation **dvnamique** des canaux montants et descendants
 - mesure de distance (ranging) pour se synchroniser
- partage du canal montant
 - ✓ minislot (dépend du réseau ~ 8 octets)
- ✓ contrôle d'accès type ALOHA discrétisé
 - détection de collision avec BEB (Binary Exponential Backoff)
- contrôle du canal descendant
 - ✓ émeteur unique (CMTS)
 - ✓ paquet de 204 octets (FEC sur 20 bits : correction de 6 bits)
- Paramètres optimisés pour la transmission de flux MPEG 2

IP sur câble

Encapsulation IP sur cable?

- le câble est associé à la couche physique
 - une couche liaison est nécéssaire
 - ✓ protocoles propriétaire?
 - nombreux mais abandonés pour faire baisser les prix
 - ✓ IEEE 802.2 (SNAP/LLC)?
 - compatible avec DOCSIS (US), EuroDOCSIS
 - IP/LLC/câble
 - □ auto-configuration : DHCP (approache LAN)
 - ✓ ATM?
 - compatible avec DVB/DAVIC, EuroDOCSIS
 - IP/ATM/câble
 - auto-configuration : PPP (approche télécom)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 148

Comparaison câble/ADSL

 $Lequel\ choisir\ ?$

- similitudes :
 - ✓ réseau fédérateur en fibre optique
- avantages du câble :
 - ✓ bande passante 850 MHz
 - partagé avec la télévision et les autres utilisateurs
 - ✓ longue distance
 - ✓ encapsulation plus simple, mais cryptage
- avantages de l'ADSL :
 - \checkmark bande passante 1.1 MHz
 - support dédié (avec la voix)
 - ✓ alimenation téléphonique autonome
 - ✓ débit déterministe
- Services comparables (et souvent disponible aux mêmes endroits)

Plan

Architecture Ethernet

Architecture point-à-point

De la boucle locale...

- Réseau Téléphonique Commuté
- xDSL
- Hybride Fibre Coaxial
- Réseaux Optiques Passifs
- Courants Porteurs en Ligne
- Boucle Locale Radio
- Satellites

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 150

FTTH

Fiber To The Home

Distribution optique jusqu'aux clients avec des éléments optiques intermédaires passifs (Optical splitters)

PON (1)

Déserte résidentielle optique

- topologie point-à-multipoint
 - ✓ réduction de la quantité de fibre utilisée
- terminologie : un **PON** (Passive Optical network) est constitué :
 - ✓ **OLT** (Optical Line Terminaison)
 - tête de réseau HFC.
 - ✓ ONU (Optical Network Units)
 - e éléments optiques intermédaires passifs
 - ✓ **ONT** (Optical Network Terminals)
 - permet de servir typiquement 32 clients
 - distance OLT-ONT jusqu'à 20 km
 - extended reach jusqu'à 135 km

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 152

PON (2)

Support partagé

- WDM (Wavelength Division Multiplexing): 3 longueur d'ondes
 - ✓ 1.310 μ m
 - Filux montants combinés par TDMA
 - attribution des slots par l'OLT
 - ✓ 1.490 μ m

 - r cryptage nécessaire
 - ✓ $1.550 \mu m$
 - réservé pour véhiculer un flux HFC (Câble)

PON (3)

Standards

- APON/BPON (ATM/Broadband PON)
 - ✓ ITU-T G.983
 - ✓ 32 ONT
 - ✓ asymétrique :
 - downstream: 622 Mbit/s upstream: 155 Mbit/s
- GPON Gigabit Broadband PON (2006)
- ✓ ITU-T G.984
- √ 64 ONT
- ✓ asymétrique :
 - downstream : 2.5 Gbit/s upstream : 1.25 Gbit/s
- **EPON**/GEPON (Ethernet/Gigabit Ethernet PON)
 - ✓ IEEE 802.3ah (Ethernet in the First Mile)
 - √ 32 ONT (interface d'accès FastEthernet)
 - ✓ symétrique :
 - downstream: 1.25 Gbit/s upstream: 1.25 Gbit/s

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 154

IP sur PON

Similaire au HFC et xDSL

- APON
- ✓ IP/ATM
- ✓ IP/PPPoA/ATM
- EPON
- ✓ IP/Ethernet
- ✓ IP/PPPoE/Ethernet

Plan

Architecture Ethernet

Architecture point-à-point

De la boucle locale...

- Réseau Téléphonique Commuté
- xDSL
- Hybride Fibre Coaxial
- Réseaux Optiques Passifs
- Courants Porteurs en Ligne
- Boucle Locale Radio
- Satellites

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 156

Autre accès filaire

Il y a d'autres réseaux qui connectent les habitations

- eau?
- gaz?
- électricité : Courant Porteurs en Ligne (CPL)
 - \checkmark signal hautes fréquences ajouté à l'onde 50 Hz qui véhicule l'énergie ray modem avec filtre passe-haut
 - ✓ propagation
 - structure arborescente

 - perturbation selon les types de charges, les filtres...

Allocation des fréquences CPL EN50065-1

Utilisation des courants porteurs sur les réseaux de distribution

- 4 bandes définies :
 - ✓ 9–95 kHz : distributeur
 - ✓ 95–125 et 140–148.5 kHz: domotique sans protocole d'accès
 - ✓ 125–140 kHz: domotique avec protocole d'accès (data)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 158

Allocation des fréquences CPL ETSI EP-PLT

- 1 bande haute fréquence définie :
- ✓ 1.6-30 MHz
 - ☞ limites des perturbations rayonnées propres à chaque pays
- ✓ deux sous-bandes :

 - interne (in-house system)

Powerband

Broadband over Power Lines

- Comités de standardisation :
 - ✓ Power Line Forum
 - ✓ Home Plug Alliance
- commercialisation d'équipements pour le *in-house* (HomePlug 1.0)
 - ✓ CSMA/CA avec modulation OFDM
 - ✓ jusqu'à 14 Mbit/s
 - permet l'installation immédiate d'un LAN dans un bâtiment
- expérimentation d'équipements pour l'access (HomePlug AV)
 - ✓ 256 kbit/s à 2.7 Mbit/s pour le modem résidentiel
 - ✓ jusqu'a 256 modems agrégés au niveau du transformateur

 r

 puis accès à Internet par un médium classique

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 160

Plan

Architecture Ethernet

Architecture point-à-point

De la boucle locale...

- Réseau Téléphonique Commuté
- xDSL
- Hybride Fibre Coaxial
- Réseaux Optiques Passifs
- Courants Porteurs en Ligne
- Boucle Locale Radio
- Satellites

Boucle Locale Radio (BLR)

Wireless Local Loop (WLL)

- services visés
 - ✓ haut débit
 - ☞ similaire à l'ADSL et au câble
- ✓ pas de raccordement filaire
 - antenne en hauteur (taille selon la technologie)
- √ usager statique
 - sans-fil fixe (fixed wireless)
- deux anciennes technologies :
 - ✓ MMDS (Multichannel Multipoint Distribution Service)
 - micro-ondes, portée de 50 km
 - \blacksquare 33 canaux de 6 MHz dans la bande des 2.5 GHz
 - technologie silicium, économique mais bande passante limitée
 - ✓ LMDS (Local Multipoint Distribution Service)
 - ondes millimétriques, portée de 2 à 5 km
 - 3 GHz dans la bande des 40.5-43.5 GHz (29-32 GHz US)
 - retechnologie arséniure de gallium coûteuse

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 162

Architecture LMDS

pictures from Tanenbaum A. S. Computer Networks 4rd edition

- antennes directionnelles (réutilisation de fréquences)
 - ✓ 36 Gbit/s par secteur
- liaison directe (sans obstacles) ** tours
 - ✓ perturbation par le mauvais temps

802.16: WMAN (Wimax)

Air Interface for Fixed Broadband Wireless Access Systems

- communication sans fils haut débit
- technologie de boucle locale :
 - ✓ deserte d'immeuble (non mobile)
- ✓ plusieurs ordinateurs fixes (réseau)
- √ équipements mutualisés
 - plus cher que 802.11 plus cher que 802.11
 - ondes-millimétriques
 - duplex
- ✓ longue distance : atténuations fortes
- ✓ accès multiples : cryptographie
- ✓ gestion de la QoS
 - support audio/vidéo
- analogie :
 - ✓ 802.11 = réseau Ethernet sans fils
 - ✓ 802.16 = réseau CATV sans fil

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 164

802.16 : Pile de protocoles

pictures from Tanenbaum A. S. Computer Networks 4rd edition

- approche 802 usuelle :
 - ✓ couche liaison (orienté connexion)
 - 3 sous-couches : LLC + MAC + sécurité
 - ✓ couche physique
 - adaptation au support et à la distance

802.16 : Couche physique

pictures from Tanenbaum A. S. Computer Networks 4rd edition

- antennes directionnelles
 - ✓ multiples modulations, en fonction de la distance :
 - avec un canal de 50 MHz, 300 Mbit/s, 200 Mbit/s et 100 Mbit/s

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 166

802.16 : Duplexage

transmission full-duplex asymétrique

- duplexage fréquentiel (FDD : Frequency Division Duplexing)
 - ✓ approche classique symétrique (GSM, D-AMPS)
- duplexage temporel (FDD : Time Division Duplexing)
 - ✓ contrôle par la station de base
 - retournement pendant l'envoi d'une trame
 - temporisation de retournement

pictures from TANENBAUM A. S. Computer Networks 4rd edition

- correction d'erreur (codes de Hamming)
 - ✓ la moitié du trafic en redondance (~ CDROM)

802.16: Sous-couche MAC

Service d'accès au médium en mode connecté

- chiffrement de la charge utile
- gestion des slots
 - ✓ allocation aux stations pour les flux montants
 - ✓ 4 classes de services
 - débit constant (CBR) : allocation systématique
 - débit variable en temps réel (RT-VBR) : intérrogation
 - débit variable différé (NRT-VBR) : intérrogation
 - □ au mieux (UBR) : CSMA+BEB

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 168

802.16 : Structure de trame

pictures from Tanenbaum A. S. Computer Networks 4rd edition

IP sur 802.16

Encapsulation IP sur 802.16?

- 802.16 est une technologie qui présente un service de couche liaison avec support :
 - ✓ couche réseau connectée : ATM
 - une connexion 802.16 par VC
 - ✓ couche réseau non-connectée : Ethernet, IP, PPP...
 - connexion 802.16 considéré comme un lien point-à-point
- Complexe mais potentialité d'utiliser les extensions QoS d'IP.

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 170

Plan

Architecture Ethernet

Architecture point-à-point

De la boucle locale...

- Réseau Téléphonique Commuté
- xDSL
- Hybride Fibre Coaxial
- Réseaux Optiques Passifs
- Courants Porteurs en Ligne
- Boucle Locale Radio
- Satellites

Satellites: Introduction

Réflecteur dans l'espace

- répéteur de micro-ondes
- ✓ plusieurs transpondeurs
 - amplification
 - ransposition fréquencielle
- ✓ couverture terrestre
- (faisceaux descendants)
- □ larges (15000 km)
- étroits (100 km)période orbitale
- ✓ 3^e loi de Kepler : $P^2 = \alpha R^3$
 - (avec α constant)
 - **lune** (384000 km) : 28j
 - géostationnaire (35800 km) : 24h

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 172

Satellites: 3 catégories

pictures from Tanenbaum A. S. Computer Networks 4rd edition

Geostationary Earth Orbit

• orbite géostationnaire : altitude 35800 km sur le plan equatorial

Satellites: GEO

- ✓ un satellite tous les 2 degrès (180 satellites max)
- ✓ 5 bandes de fréquence disponible
 - \blacksquare L: 1.5 GHz desc., 1.6 GHz mont., BP=15 MHz (encombrée)
- \blacksquare **S**: 1.9 GHz desc., 2.2 GHz mont., BP=70 MHz (encombrée)
- \mathbf{C} : 4.0 GHz, 6.0 GHz, BP=500 MHz (interférences térrestres)
- $\mathbf{K}\mathbf{u}: 11~\mathrm{G}Hz, 14~\mathrm{G}Hz, BP=500~\mathrm{M}Hz$ (absorbtion par la puie)
- **Ka** : 20 GHz, 30 GHz, BP=3500 MHz (absorbtion par la puie, coût élevé)
- ✓ plusieurs transpondeurs (+ 40)
 - \bowtie 80 MHz chacun
 - gestion du multiplexage fréquenciel et temporel
 - r télécom, vidéo et data
- ✓ délais (propagation à la vitesse de la lumière $\sim 3\mu \text{s/km}$)
 - \approx 270 ms de bout-en-bout (RTT > 540 ms)

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 174

Satellites: Hub et microstations

pictures from Tanenbaum A. S. Computer Networks 4rd edition

- microstations terrestres **VSAT** (*Very Small Aperture Terminal*)
 - ✓ antennes de moins d'1m (10m pour une antenne GEO) sous 1 watt
 - débits : montant = 19.2 kbit/s et descendant = 512 kbit/s
 - délais : 540 ms de bout-en-bout entre 2 VSAT
 - DBS-TV (*Direct Broadcast Satellite-TV*) : en **unidirectionnel**

Satellites: MEO

Medium-Earth Orbit

- orbite : altitude entre 5000 km et 15000 km
 - ✓ entre les 2 ceintures de Van Allen
- √ besoin de les suivre dans le ciel
- exemple
 - ✓ système GPS (Global Positioning System)
 - 24 satellites
 - période : 6h
 - ☞ altitude : 18000 km
- pas de services telecom/data

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 176

Satellites: LEO - Couverture

Low-Earth Orbit

• Iridium

■ 253440 au total Globalstar

✓ 48 satellites à 920 km

✓ 66 satellites à 750 km

3840 cannaux /sat

48 faisceaux spots /sat

■ 1628 cellules terrestres

- simples répeteurs
- puissance réduite
- Teledesic (2005)
 - ✓ 30 satellites à 1350 km
 - r bande **Ka**
 - antennes VSAT
 - 100 Mbit/s montant
 - 750 Mbit/s descendant

6 colliers Iridium

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 177

Satellites: LEO - Relayage

pictures from Tanenbaum A. S. Computer Networks 4rd edition

- Deux approches pour gérer les connexions/flux de données
 - ✓ commutation/routage dans l'espace → Iridium, Teledesic
 - ✓ commutation/routage sur terre → Globalstar

U.E. ARES Cours 6/6 v5.4 olivier.fourmaux@upmc.fr 178

Satellites / Fibres optiques

- utilisations différentes
 - ✓ satellites
 - diffusion
 - ✓ fibres optiques
 - bande passante
 - insensibilité aux perturbations

Fin

Document réalisé avec LATEX. Classe de document foils. Dessins réalisés avec xfig.

Olivier Fourmaux, olivier.fourmaux@upmc.fr http://www-rp.lip6.fr/~fourmaux

Ce document est disponible en format PDF sur le site : http://www-master.ufr-info-p6.jussieu.fr/

