Лекция 9: Неприводиные многообразия

- Определение 9.1: Арфинное многообразие $V \in \mathbb{R}^n$ называется неприводими, если его нельзя представить в виде объединения двуж аффиник многообразий, отмигноги от V (т.е., если $V = V_1 \cup V_2$, где $V_1 \cup V_2$ аффинии многообразия, то $V_1 = V$ им $V_2 = V$).
- Onpegenenue 9.1: Ugear $I \in k[x_1,...,x_n]$ npocmovi morga u monsuo morga, korga uz $fg \in I$ gre $f,g \in k[x_1,...,x_n]$ cregyem, and subo $f \in I$, subo $g \in I$.
- Теорема 9.1: Пунь $V \in k^m$ адеринное многообразия. Тогда V неприводино тогда и таньиг тогда, когда идеах I(V) простай.
- Donagarenserbo: \bigoplus Nyero unoroospogue V nerpuboguu u rpousbegerne $fg \in I(V)$. Pac-champul appalature unoroospogue $V_1 = V \cap V(1)$ in $V_2 := V \cap V(9)$. Torga $V = V_1 \cup V_2$, $m.\kappa$. give $x \in V$ unto f(x) = 0 unto g(x) = 0, m.e unto $x \in V(1)$, into $x \in V(9)$. Tockousky V respubodulue, no into $V_1 = V$, into $V_2 = V$. Elin $V_1 = V$, no intoroxiete f saylinemal na V, m.e. $f \in I(V)$. Takun objagon ugen I(V) hypochori.
- Ψ Syer meneps ugeae I(V) προετοι $V = V_1 \cup V_2$. Spegnoward $V ≠ V_1$, govarner, rmo $I(V) = I(V_2)$. Τακ κακ $V_2 ⊂ V$, no $I(V) ⊆ I(V_2)$. Sockawby $V_1 ⊆ V_1$ no $I(V) ⊆ I(V_1)$. Βοιδερεμ $f ∈ I(V_1) − I(V)$ u $g ∈ I(V_2)$. Τοιga f ∈ I(V), m. κ. $V ⊃ V_1 \cup V_2$. f εμιμ προ επισ παραία f ∈ I(V) μιδο f ∈ I(V) μιδο f ∈ I(V). Μποιοτικά f ∈ I(V) πορισμμ μιστοτικά f ∈ I(V). Τακικά οδραγακ, f ∈ I(V), α zнατωπ f ∈ I(V), α f ∈ I(V) $f ∈ V_2 ∈ V_3$. f ∈ I(V)
- Lисдешвиге: Пусть k алгебранчески занкнугог нале. Тогда отобратания I и V определяют 1-1 соответствие неприводичени многообразичен b k^{n} и простами надагами b $k[x_{1},...,x_{n}]$.
- Донадачельного: Если идели І простой, то из $f^* \in I$ для неиоторого целого $n \ge 1$ следует, что $f^* \in I$. Інтич влямий простой иделя являются радинеленням.
- Предлочение 9.1: Пует k бесконенное поле, а многообразие Vek^m задано параметрически $x_i = f_i(t_i,...,t_m)$

: $z_n = f_n(t_1,...,t_m)$ $z_n = f_n(t_1,...,t_m)$ Torga V nenpuboguno.

Donagarenserbo: Paccuompun omogramerue
F: km -> kn,

F(t, ..., tm) = (f, (te, ..., tm), ..., f, (te, ..., tm)).

Mucrosopaque V shereixe ganaxarueu no Japuexay ofpega $F(k^m)$. B zaconocca, $I(V) = \overline{I}(F(k^m))$

Come $g \in k[x_1,...,x_n]$, me consequence $g \circ F \in k[t_1,...,t_m]$, m.r. $g \circ F = g(f_1(t_1,...,t_m),...,f_n(t_1,...,t_m))$

Joenstony & Sectionerroe in $I(V) = I(F(k^m))$, not nonytoen $I(V) = \{g \in k[x_1, \dots, x_n]: g \circ F = 0\}$

Syon $gh \in I(V)$. Drebugno, ero $(gh) \circ F = (g \circ F)(h \circ F)$. Tak kak gmo npoughegenue nysebosi sunorotaen b $k[t_1,...,t_m]$, mo subo $g \circ F$ nysebosi, subo $h \circ F$ superbosi. Ho morga subo $g \in I(V)$, subo $f \in I(V)$. Snarus ugeas I(V) npocmosi, a sunoroodpagne V respubogunce.

Предложение 9.2: Пусть k беспонегное поле, а многообразие $V c k^n$ задано размональной параметризацией $\frac{1}{g_s(t_s,...,t_m)}$,

$$\mathcal{Z}_{n} = \frac{g_{\theta}(t_{\theta}, ..., t_{m})}{g_{n}(t_{\theta}, ..., t_{m})},$$

29e f1, ..., fn, g1,..., gn & k[t1,...,tm]. Torga unoroofpague V renpuboquuo.

Dokazarenscrbo: Cm. Cox, Little & O'shea pp. 200-201.

Как мог знави точка $\{(a_1,...,a_n)\}\in k^n$ является адаричноги иногообразиви, ока задайтая парашегризациий $f_i(t_1,...,t_n)=a_i$, i=1,n. Эго неприводимое многообразия, имеютая равеней

$$I(\{a_1,...,a_n\}) = \langle x_1 - a_1,...,x_n - a_n \rangle.$$

Torga ugear I({a1,...,an}) npocmoù, ecu k beckonernoe nove.

Oppegenence 93: Mgear $I \in k[x_1,...,x_n]$ nagobaemas nakamanguan, ecru $I \neq k[x_1,...,x_n]$ (m.e. ngear I coloiberman), n ng bromerus $I \in J$, set J = n be $k[x_1,...,x_n]$, and n creagem, who subso J = J, subso $J = k[x_1,...,x_n]$

Regionmenue 9.3: Physic k - repossible serve noise. To zga ugas: $I = \langle x_r - a_1, ..., x_h - a_h \rangle, \ a_i \in k, \ i=1,n,$

b $b[x_1,...,x_n]$ released nanconaumon.

 $n \ f \in J$, $mo \ b = f - (A_1(x_1 - a_1) + ... + A_n(x_n - a_n)) \in J$. Shareet $m.x \ b \neq 0$, $mo \ 1 = \frac{1}{6} \cdot b \in J$. No growy $J = k[x_1, ..., x_n]$.

Tak kak $V(x_1-a_1,...,x_n-a_n)=\{(a_1,...,a_n)\}$, mo kamgas morka $(a_1,...,a_n)\in k^n$ coorbesorbyes makemanshamy regeas $(x_1-a_1,...,x_n-a_n)$. Objamhoe, eem nan k he skiseich arrespansken zankhymorm. Tak, makemanshami regeat (x_1+1) b morkye R[x] ne coorbesicibyes ku kamai rorke y R.

Предложение 9.4: Пусть k — произвольное поле. Тогда ваяний какимальной идеал в $k[x_1,...,x_n]$ лелегах простоля

Фокадательство: Лунт $I \subseteq k[x_1,...,x_n]$ не эвляется простоп, Сурт $g \in I$, т. $t \in I$ и $g \in I$. Рассиотрим идел (t) + I, етрого совержащий I, т. $t \in I$. Сеш оп этог идел совнадал с $k[x_1,...,x_n]$, то t = Cf + h для некотория $C \in k[x_1,...,x_n]$ и $h \in I$. Умно кий последнее равенейо на g, ил холучим $\delta \in g = Cf + hg \in I$, т.е. противоречие с выбором g, Следовательно, I + Cf > - собственняй идел, строго совержащий I, т.е. I не является максимациим

Как ин видим из предложеним 9.3 и 9.4, идеал «21-91, ..., In-9и) гвляется прости и в случае констного поле к.

Теорема 9.2: N_y ей k алгебраически закличное пак. Тогда вакимі мажимационі мдеах кольща $k[x_1,...,x_n]$ имоет вид $(x_1-a_1,...,x_n-a_n)$, гдх $a_i \in k_i$ j=1,n. (Эта теорема эквивалентия слаботі теоремя Гильберта o гирлях) Воказаїсььство: N_y еть $I \subset k[x_1,...,x_n]$ — максимамний идеах. N_y слаботі теоремя I имоберта o гирлях алерует, сто $V(I) \neq \emptyset$, т.к. $I \neq k[x_1,...,x_n]$. Поэтому мекоторах точка $(a_1,...,a_n)$ лежий b V(I). Катазий многочлем $f \in I$ замуметах b точке $(a_1,...,a_n)$, значит $f \in I(\{(a_1,...,a_n)\})$, т.е.

 $I \subset I(\{(a_1,...,a_n)\}) = \langle x_1 - a_1,...,x_n - a_n \rangle \not\subseteq k[x_1,...,x_n],$

Tax wax ugear I sheemed makeumanomum, mo $I = \langle x_1 - a_2, ..., x_n - a_n \rangle$

Смествие: Если k - алгебранчески даминутое поле. Тогда точки k^m находаїся ℓ 1-1 соотвействии с максимальноми идеалами ℓ $k[x_1,...,x_n]$.