Inductive definitions

- Factorial
 - f(0) = 1
 - $f(n) = n \times f(n-1)$
- Insertion sort
 - isort([]) = []
 - isort([x1,x2,..,xn]) = insert(x1,isort([x2,...,xn]))

... Recursive programs

```
def factorial(n):
   if n <= 0:
     return(1)
   else:
     return(n*factorial(n-1))</pre>
```

Sub problems

- factorial(n-1) is a subproblem of factorial(n)
 - So are factorial(n-2), factorial(n-3), ..., factorial(0)
- isort([x2,...,xn]) is a subproblem of isort([x1,x2,...,xn])
 - So is isort([xi,...,xj]) for any 1 ≤ i ≤ j ≤ n
- Solution of f(y) can be derived by combining solutions to subproblems

Evaluating subproblems

Fibonacci numbers

- fib(0) = 0
- fib(1) = 1
- fib(n) = fib(n-1) + fib(n-2)

```
def fib(n):
    if n == 0 or n == 1:
       value = n
    else:
      value = fib(n-1) +
            fib(n-2)
    return(value)
```

```
def fib(n):
  if n -- 0 or n -- 1:
                                            fib(5
    value = n
  else:
                                                       fib(3)
                                 fib(4
    value = fib(n-1) +
              fib(n-2)
  return(value)
                         fib(3)
                                       fib(2)
                            fib(1)
                     fib(2)
```

```
def fib(n):
  if n == 0 or n == 1:
                                            fib(5
    value = n
  else:
                                                        fib(3)
                                 fib(4
    value = fib(n-1)
              fib(n-2)
  return(value)
                         fib(3)
                                       fib(2)
                            fib(1)
                     fib(2)
                                    fib(1)
                                          fib(0)
```


- Wasteful recomputation
- Computation tree grows exponentially

Never re-evaluate a subproblem

- Build a table of values already computed
 - Memory table
- Memoization
 - Remind yourself that this value has already been seen before

Memoized fib(5)

Memoization

- Store each newly computed value in a table
- Look up table before starting a recursive computation
- Computation tree is linear

fib(5)

Memoized fib(5)

Memoization

 Store each newly computed value in a table

 Look up table before starting a recursive computation

 Computation tree is linear

Memoized fibonacci

```
def fib(n):
  if fibtable[n]:
    return(fibtable[n])
  if n == 0 or n == 1:
   value = n
 else:
   value = fib(n-1) + fib(n-2)
 fibtable[n] - value
 return(value)
```

Memoized fibonacci

```
def fib(n):
  if fibtable[n]:
    return(fibtable[n])
  if n == 0 or n == 1:
   value = n
 else:
   value = fib(n-1) + fib(n-2)
 fibtable[n] - value /
 return(value)
```

In general

```
function f(x,y,z):
 if ftable[x][y][z]:
   return(ftable[x][y][z])
 value = expression in terms of
             subproblems
 ftable[x][y][z] = value
 return(value)
```

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
- Solve subproblems in order of dependencies
 - Must be acyclic,

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
- Solve subproblems in order of dependencies
 - Must be acyclic,

Dynamic programming fibonacci

```
return(fibtable[n])
```

Summary

Memoization

- Store values of subproblems in a table
- Look up the table before making a recursive call

- Solve subproblems in order of dependency
 - Dependencies must be acyclic
- Iterative evaluation

Grid Paths

(5,10)

- Roads arranged in a rectangular grid
- Can only go up or right
- How many different routes from (0,0) to (m,n)?

(0,0)

- Every path from (0,0) to (5,10) has 15 segments
 - In general m+n se
- Of these exactly 5 a.

- **nm** (0,0) to (m,n)
- ves, 10 are up moves
- Fix the positions of the 5 right moves among the overall 15 positions

П

- 15 choose 5 = (15!)/(10!)(5!) = 3003
- Same as 15 choose 10: fix the 10 up moves

Holes

(5,10)

- What if an intersection is blocked?
 - (2,4), for example
- Paths through (2,4)
 need to be discarded
 - Two of our earlier examples are invalid paths

- Every path through (2,4) goes from (0,0) to (2,4) and then from (2,4) to (5,10)
 - Count these separately:
 - (4+2) choose 2 = 15
 - (6+3) choose 3 = 84

- Multiply to get all paths through (2,4): 1260
- Subtract from 15 choose 5 = 3003 to get valid paths that avoid (2,4): 1743

- Every path from (0,0) to (5,10) has 15 segments
 - In general m+n segments from (0,0) to (m,n)
- Of these exactly 5 are right moves, 10 are up moves
- Fix the positions of the 5 right moves among the overall 15 positions
 - 15 choose 5 = (15!)/(10!)(5!) = 3003
 - Same as 15 choose 10: fix the 10 up moves

- Every path through (2,4) goes from (0,0) to (2,4) and then from (2,4) to (5,10)
 - Count these separately:
 - (4+2) choose 2 = 15
 - (6+3) choose 3 = 84
 - Multiply to get all paths through (2,4): 1260
 - Subtract from 15 choose 5 = 3003 to get valid paths that avoid (2,4): 1743

Holes

- What if two intersections are blocked?
- Subtract paths through (2,4), (4,4)
 - Some paths are counted twice!
- Add back paths through both holes
- Inclusion-exclusion: messy

Inductive formulation

- How can a path reach (i,j)
 - Move up from (i,j-1)
 - Move right from (i-1,j)
- Every path to these neighbours extends in a unique way to (i,j)

Inductive formulation

- Paths(i,j): Number of paths from (0,0) to (i,j)
- Paths(i,j) = Paths(i-1,j) + Paths(i,j-1)
- Boundary cases
 - Paths(i,0) = Paths(i-1,0) # Bottom row
 - Paths(0,j) = Paths(0,j-1) # Left column
 - Paths(0,0) = 1 # Base case

Computing Paths(i,j)

- Naive recursion will recompute multiple times
 - Paths(5,10) requires Paths(4,10) and Paths(5,9)
 - Both Paths(4,10) and Paths(5,9) require Paths(4,9)
- Use memoization ...
- ... or compute the subproblems directly in a suitable way

Dealing with holes

- Paths(i,j) = 0, if there is a hole at (i,j)
- Paths(i,j) = Paths(i-' (i,j-1), otherwise
- Boundary cases
 - Paths(i,0) = Paths(i-1,0) # Bottom row
 - Paths(0,j) = Paths(0,j-1) # Left column
 - Paths(0,0) = 1 # Base case

Dealing with holes

- Paths(i,j) = 0, if there is a hole at (i,j)
- Paths(i,j) = Paths(i-1,j) + Paths(i,j-1), otherwise
- Boundary cases
 - Paths(i,0) = Paths(i-1,0) # Bottom row
 - Paths(0,j) = Paths(0,j-1) # Left column
 - Paths(0,0) = 1 # Base case

(5,10)

- Identify dependency structure
- Paths(0,0) has no dependencies
- Start at (0,0)

- Start at (0,0)
- Fill row by row

- Start at (0,0)
- Fill row by row

1	11	51	181	526	1363
1	10	40	130	345	837
1-	9	30	90	215	492
1	8	21	80	125	272
1	7	13	39	65	147
1	6	6	26	26	82
1	5	0	20	0	56
1	4	10	20	35	56
1	3	6	10	15	21
1	2	3	4	5	6
1	1	1	1	1	1

- Start at (0,0)
- Fill by column

1	11	51	181	526	1363
1	10	40	130	345	837
1	9	30	90	215	492
1	8	21	60	125	272
1	7	13	39	65	147
1	6	6	26	26	82
1	5	0	20	0	56
1	4	10	20	35	56
1	3	6	10	15	21
1	2	3	4	5	6
1	1	1	1	1	1

Memoization vs dynamic programming

- Holes just inside the border
- Memoization never explores the shaded region

Memoization vs dynamic programming

- Memo table has O(m+n) entries
- Dynamic programming blindly fills all O(mn) entries
- Iteration vs recursion

 "wasteful"
 dynamic
 programming is still
 better, in general

Longest common subword

- Given two strings, find the (length of the) longest common subword
 - "secret", "secretary" "secret", length 6
 - "bisect", "trisect" "sect", length 4
 - "bisect", "secret" "sec", length 3
 - "director", "secretary" "ec", "re", length 2

More formally ...

- Two strings u = a₀a₁...a_{m-1}, v = b₀b₁...b_{n-1}
- If a_ia_{i+1}...a_{i+k-1} = b_jb_{j+1}...b_{j+k-1} for some i and j, u and v have a common subword of length k
- Aim: Find the length of the longest common subword of u and v

Longest common subword

- Given two strings, find the (length of the) longest common subword
 - "secret", "secretary" "secret", length 6
 - "bisect", "trisect" "sect", length 4
 - "bisect", "secret" "sec", length 3
 - "director", "secretary" "ec", "re", length 2

Brute force

- u = a₀a₁...a_{m-1} and v = b₀b₁...b_{n-1}
- Try every pair of starting positions i in u, j in v
 - Match (a_i, b_i), (a_{i+1},b_{i+1}),... as far as possible
 - Keep track of the length of the longest match
- Assuming m > n, this is O(mn²)
 - mn pairs of positions
 - From each starting point, scan can be O(n)

Brute force

- u = a₀a₁...a_{m-1} and v = b₀b₁...b_{n-1}
- Try every pair of starting positions i in u, j in v
 - Match (a, b), (a, 1, b, 1),... as far as possible
 - Keep track of the length of the longest match
- Assuming m > n, this is O(mn²)
 - mn pairs of positions
 - From each starting point, scan can be O(n)

- a_ia_{i+1}...a_{i+k-1} = b_jb_{j+1}...b_{j+k-1} is a common subword of length k at (i,j) iff
 - a_i = b_j and
 - a_{i+1}...a_{i+k-1} = b_{j+1}...b_{j+k-1} is a common subword of length k-1 at (i+1,j+1)
- LCW(i,j): length of the longest common subword starting at a_i and b_j
 - If a_i ≠ b_j, LCW(i,j) is 0, otherwise 1+LCW(i+1,j+1)
 - Boundary condition: when we have reached the end of one of the words

- Consider positions 0 to m in u, 0 to n in v
 - m, n means we have reached the end of the word
- LCW(m+1,j) = 0 for all j
- LCW(i,n+1) = 0 for all i
- LCW(i,j) = 0, if a_i ≠ b_j,
 1+ LCW(i+1,j+1), if a_i = b_j

Subproblem dependency

- LCW(i,j) depends on LCW(i+1,j+1)
- Last row and column have no dependencies
- Start at bottom right corner and fill by row or by column

Reading off the solution

- Find (i,j) with largest entry
 - LCW(2.0) = 3
- Read off the actual subword diagonally

LCW(u,v), DP

```
def LCW(u,v): # u[0..m-1], v[0..n-1]
  for r in range(len(u)+1):
   L(W[r][len(v)+1] = 0 # r for row
  for c in range(len(v)+1):
   LCW[len(u)+1][c] = 0 \# c for col
 maxLCW = 0
 for c in range(len(v)+1,-1,-1):
   for r in range(len(u)+1,-1,-1):
     if u[r] -- v[c]:
       LCW[r][c] = 1 + LCW[r+1][c+1]
     else:
       L(N[r][c] = 0
     if LCW[r][c] > maxLCW:
       maxLCW = LCW[r][c]
 return(maxL(W)
```

LCW(u,v), DP

```
def LCW(u,v): # u[0..m-1], v[0..n-1]
  for r in range(len(u)+1):
    L(W[r][len(v)+1] = 0 # r for row
  for c in range(len(v)+1):
    L(W[len(u)+1][c] = 0 \# c \text{ for col}
 maxLCW = 0
 for c in range(len(v)+1,-1,-1):
    for r in range(len(u)+1,-1,-1):
      if u[r] == v[c]:
        LCW[r][c] = 1 + LCW[r+1][c+1]
     else:
        L(W[r][c] = 0
      if LCW[r][c] > maxLCW:
        maxLCW = LCW[r][c]
 return(maxLCW)
```

Complexity

- Recall that the brute force approach was O(mn²)
- The inductive solution is O(mn) if we use dynamic programming (or memoization)
 - Need to fill an O(mn) size table
 - Each table entry takes constant time to compute

Longest common subsequence

- Subsequence: can drop some letters in between
- Given two strings, find the (length of the) longest common subsequence
 - "secret", "secretary" "secret", length 6
 - "bisect", "trisect" "isect", length 5
 - "bisect", "secret" "sect", length 4
 - "director", "secretary" "ectr", "retr", length 4

 LCS is longest path we can find between non-zero LCW entries, moving right and down

Applications

- Analyzing genes
 - DNA is a long string over A,T,G,C
 - Two species are closer if their DNA has longer common subsequence
- UNIX diff command
 - Compares text files
 - Find longest matching subsequence of lines

If a₀ = b₀,

$$LCS(a_0...a_{m-1}, b_0...b_{n-1}) = 1 + LCS(a_1a_2...a_{m-1}, b_1b_2...b_{n-1})$$

- Can force (a₀,b₀) to be part of LCS
- If not, a₀ and b₀ cannot both be part of LCS
 - Not sure which one to drop
 - Solve both subproblems LCS(a₁a₂...a_{m-1}, b₀b₁...b_{n-1}) and
 LCS(a₀a₁...a_{m-1},b₁b₂...b_{n-1}) and take the maximum

If a₀ = b₀,

$$LCS(a_0...a_{m-1}, b_0...b_{n-1}) = 1 + LCS(a_1a_2...a_{m-1}, b_1b_2...b_{n-1})$$

- Can force (a₀,b₀) to be part of LCS
- If not, a₀ and b₀ cannot both be part of LCS
 - Not sure which one to drop
 - Solve both subproblems LCS(a₁a₂...a_{m-1}, b₀b₁...b_{n-1})
 and
 LCS(a₀a₁...a_{m-1},b₁b₂...b_{n-1}) and take the maximum

- LCS(i,j) stands for LCS(a_ia_{i+1}...a_m, b_jb_{j+1}...b_n)
- If a_i = b_j, LCS(i,j) = 1 + LCS(i+1,j+1)
- If a_i ≠ b_j, LCS(i,j) = max(LCS(i+1,j), LCS(i,j+1))
- As with LCW, extend positions to m+1, n+1
 - LCS(m+1,j) = 0 for all j
 - LCS(i,n+1) = 0 for all i

Subproblem dependency

- LCS(i,j) depends on LCS(i+1,j+1) as well as LCS(i+1,j) and LCS(i,j+1)
- Dependencies for LCS(m,n) are known
- Start at LCS(m,n) and fill by row, column or diagonal

Recovering the sequence

- Trace back the path by which each entry was filled
- Each diagonal step is an element of the LCS
 - "sect"

LCS(u,v), DP

```
def LCS(u,v): # u[0..m-1], v[0..n-1]
  for r in range(len(u)+1):
    LCS[r][len(v)+1] = 0 # r for row
  for c in range(len(v)+1):
    LCS[len(u)+1][c] = 0 # c for col
  for c in range(len(v),-1,-1):
    for r in range(len(u), -1, -1):
      if (u[r] == v[c])
        L(S[r][c] = 1 + L(S[r+1][c+1]
      else
        LCS[r][c] = max(LCS[r+1][c],
                        L(S[r][c+1])
 return(LCS[0][0])
```

- Again O(mn) using dynamic programming (or memoization)
 - Need to fill an O(mn) size table
 - Each table entry takes constant time to compute

- To multiply matrices A and B, need compatible dimensions
 - A of dimension m x n, B of dimension n x p
 - AB has dimension mp
- Each entry in AB take O(n) steps to compute
 - AB(i,j) is A(i,1)B(1,j) + A(i,2)B(2,j) +...+ A(i,n)B(n,j)
- Overall, computing AB is O(mnp)

- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change the answer ...
 - ... but can affect the complexity of computing it!

- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change the answer ...
 - ... but can affect the complexity of computing it!

- Suppose dimensions are A[1,100], B[100,1], C[1,100]
 - Computing A(BC)
 - BC is [100,100], 100 x 1 x 100 = 10000 steps
 - A(BC) is [1,100], 1 x 100 x 100 = 10000 steps
 - Computing (AB)C
 - AB is [1,1], 1 x 100 x 1 = 100 steps
 - (AB)C is [1,100], 1 x 1 x 100 = 100 steps
- A(BC) takes 20000 steps, (AB)C takes 200 steps!

- Suppose dimensions are A[1,100], B[100,1], C[1,100]
 - Computing A(BC)
 - BC is [100,100], 100 x 1 x 100 = 10000 steps
 - A(BC) is [1,100], 1 x 100 x 100 = 10000 steps
 - Computing (AB)C
 - AB is [1,1], 1 x 100 x 1 = 100 steps
 - (AB)C is [1,100], 1 x 1 x 100 = 100 steps
- A(BC) takes 20000 steps, (AB)C takes 200 steps!

- Given matrices M₁, M₂,..., M_n of dimensions [r₁,c₁], [r₂,c₂], ..., [r_n,c_n]
 - Dimensions match, so M₁ x M₂ x ...x M_n can be computed
 - $c_i = r_{i+1}$ for $1 \le i < n$
- Find an optimal order to compute the product
 - That is, bracket the expression optimally

- Product to be computed: M₁ x M₂ x ...x M_n
- Final step would have combined two subproducts
 - (M₁ x M₂ x ...x M_k) x (M_{k+1} x M_{k+2} x ...x M_n), for some 1 ≤ k < n
 - First factor has dimension (r₁,c_k), second (r_{k+1},c_n)
 - Final multiplication step costs O(r₁c_kc_n)
 - Add cost of computing the two factors

Subproblems

- Final step is
 (M₁ x M₂ x ... x M_k) x (M_{k+1} x M_{k+2} x ... x M_n)
- Subproblems are (M₁ x M₂ x ...x M_k) and (M_{k+1} x M_{k+2} x ...x M_n)
- Total cost is Cost(M₁ x M₂ x ...x M_k) + Cost(M_{k+1} x M_{k+2} x ...x M_n) + r₁C_kC_n
- Which k should we choose?
- No idea! Try them all and choose the minimum!

Inductive formulation

Cost(M₁ x M₂ x ...x M_n) =
 minimum value, for 1 ≤ k < n, of
 Cost(M₁ x M₂ x ...x M_k) +
 Cost(M_{k+1} x M_{k+2} x ...x M_n) +
 r₁C_kC_n

 When we compute Cost(M₁ x M₂ x ...x M_k) we will get subproblems of the form M_j x M_{j+1} x ...x M_k

In general ...

```
    Cost(M<sub>i</sub> x M<sub>i+1</sub> x ...x M<sub>j</sub>) =
        minimum value, for i ≤ k < j, of
        Cost(M<sub>i</sub> x M<sub>i+1</sub> x ...x M<sub>k</sub>) +
        Cost(M<sub>k+1</sub> x M<sub>k+2</sub> x ...x M<sub>j</sub>) +
        riCkC<sub>j</sub>
```

Write Cost(i,j) to denote Cost(Mi x Mi+1 x ...x Mj)

Final equation

- Cost(i,i) = 0 No multiplication to be done
- Cost(i,j) = min over i ≤ k < j
 [Cost(i,k) + Cost(k+1,j) + rickc_i]
- Note that we only require Cost(i,j) when i ≤ j

Subproblem dependency

- Cost(i,j) depends on Cost(i,k), Cost(k+1,j) for all i ≤ k < j
- Can have O(n)
 dependent values,
 unlike LCS, LCW
- Start with main diagonal and fill matrix by columns, bottom to top, left to right

Subproblem dependency

- Cost(i,j) depends on Cost(i,k), Cost(k+1,j) for all i ≤ k < j
- Can have O(n) dependent values, unlike LCS, LCW
- Start with main diagonal and fill matrix by columns, bottom to top, left to right

MMCost(M1,...,Mn), DP

```
def MMC(R,C):
 # R[0..n-1],C[0..n-1] have row/column sizes
  for r in range(len(R)):
   MMC[r][r] = 0
 for c in range(1, len(R)): \# c = 1, 2, ... n-1
    for r in range(c-1,-1,-1):# r = c,c-1,...,0
     MMC[r][c] = infinity # Something large
      for k in range(r,c) # k = r,r+1,...,c-1
        subprob = MMC[r][k] + MMC[k][c] +
                                  R[r]C[k]C[c]
        if subprob < MMC[r][c]:
         MMC[r][c] = subprob
```

Complexity

- As with LCS, ED, we to fill an O(n²) size table
- However, filling MMC[i][j] could require examining O(n) intermediate values
- Hence, overall complexity is O(n³)

Complexity

- However, filling MMC[i][j] could require examining O(n) intermediate values
- Hence, overall complexity is O(n³)

Python vs other languages

- Python is a good programming language to start with because
 - No declaration of names in advance
 - Indentation avoids punctuation { }, (), ;
 - No explicit memory management
- Are there any down sides to this?

Debugging

- Declaring names helps debug code
 - "Simple" typos are caught by compiler
 - Mistyped name will be "undeclared"
- Static typing assigning types to names
 - Again catch "simple" typos by type mismatch

- Can only associate a type with a name by creating an object
- Empty tree, with name and type declarations
 - Declare t to be of type Tree
 - Empty tree t has value None
- Instead, cumbersome convention with empty nodes to denote frontier etc

- We want public interface, private implementation
- For a Point p, p.x and p.y should not be available directly outside the class
 - Stack implemented as a list has public methods push() and pop() but s.append() not ruled out
- Need to declare parts of implementation private
 - Only methods inside the class can access private names

- Ideally, all internal names are private
- Special functions to access and update values
 - p.getx() gets x-coordinate
 - p.setx(v) sets x-coordinate
- x-coordinate is an "abstract" attribute
- Works even if internal representation is (r, 0)

- Handle integrity of compound values
- Date is a tuple (day,r
 - Range for day is 1
 th is 1−12
 - Valid combinations depend on all three fields
 - 29 02 is valid only in a leap year
- d.setdate(d,m,y) vs separate d.setd(d),
 d.setm(m), d.sety(y)

- Handle integrity of compound values
- Date is a tuple (day,month,year)
 - Range for day is 1—31, month is 1—12
 - Valid combinations depend on all three fields
 - 29 02 is valid only in a leap year
- d.setdate(d,m,y) vs separate d.setd(d), d.setm(m), d.sety(y)

Storage allocation

- Python needs to allocate space dynamically
 - Each assignment to a name could a new type
- Name declarations allow some static allocation
 - Still need dynamic allocation for lists, trees etc that grow at run time

Storage allocation

- Python needs to allocate space dynamically
 - Each assignment to a name could a new type
- Name declarations allow some static allocation
 - Still need dynamic allocation for lists, trees etc that grow at run time
 - Static arrays can optimize access time: base address plus offset

Dynamic storage

- What happens when we execute del(x)?
- Or when we delete a list node by bypassing it?
- Do these "dead" values continue to use memory?

Garbage collection

- Python, Java and other languages reclaim space using automatic "garbage collection"
 - Periodically mark all memory reachable from names in use in the program
 - Collect all unmarked memory locations as free space
 - Run time overhead to schedule garbage collector
- In C, need to explicitly ask for and return dynamic memory

Functional programming

- Declarative vs imperative
- "What to compute" vs "how to compute it"
- Directly specify functions inductively

```
factorial :: Int -> Int # Type

factorial 0 = 1

factorial n = n * factorial (n-1)
```


Functional programming

```
List processing
sumlist :: [Int]
sumlist [] = 0
sumlist l = (head l) + sumlist (tail l)
```

Functional programming

List processing

```
sumlist :: [Int] -> Int
sumlist [] = 0
sumlist l = (head l) + sumlist (tail l)
```

Summary

- No programming language is "universally" the best
 - Otherwise why are there so many?
- Python's simplicity makes it attractive to learn
 - But also results in some limitations
- Use the language that suits your task best
- Learn programming, not programming languages!