$\label{eq:miscarea} \textbf{MIŞCAREA RECTILINIE UNIFORM} \breve{\mathbf{v}}(t) = \mathbf{constant}$

$$OX: \vec{r} = x \vec{i}$$

$$\vec{F} = 0$$
 \Rightarrow $\vec{v}(t) = constant$ \Rightarrow $x(t) = x_0 + v_x \cdot (t - t_0)$

Condiții inițiale: poziția inițială x_0 la momentul inițial t_0

MIȘCARE RECTILINIE UNIFORM ACCELERATĂ $\vec{a}(t) = const.$

OY:
$$\vec{r} = y \vec{j}$$

$$\vec{F} = \text{const} \iff \vec{a}(t) = \text{constant}$$

$$\implies v_y(t) = v_{0y} + a \cdot (t - t_0)$$

Condițiile inițiale : t_0 , y_0 , v_{0y}

$$\Rightarrow y(t) = y_0 + v_{oy} \cdot (t - t_0) + a \cdot \frac{(t - t_0)^2}{2}$$

Definiția **impulsul**ui: $\vec{\mathbf{p}} = \mathbf{m} \cdot \vec{\mathbf{v}}$ (N's)

Energia cinetică
$$E_c = \frac{m \cdot v^2}{2}$$
 (JOULE) $\left(E_c = \frac{p^2}{2m}\right)$, $p = IMPULS$

Energia potențială ca expresie depinde de tipul de forțe care acționează între corpurile sistemului.

Exemple:

-Energia potențială gravitațională în apropierea Pământului

$$E_p = mgy$$
 (forța $G = -mg$)

-Energia potențială elastică

$$E_p = \frac{kx^2}{2}$$
 (fortța $F_{el} = -kx$)

Lucrul mecanic pentru \vec{F} =const. $L = \vec{F} \cdot \Delta \vec{r}$

TEOREMA CONSERVĂRII IMPULSULUI

Din legea a doua a lui Newton dacă $\vec{\mathbf{F}} = \mathbf{0}$ \iff $\vec{p} = \mathbf{constant}$

IMPULSUL TOTAL AL UNUI SISTEM FIZIC IZOLAT SE CONSERVĂ.

TEOREMA VARIAȚIEI ENERGIEI CINETICE

$$L = \Delta E_c$$
 $L = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$

Pentru forțe conservative

$$L = -\Delta E_p \qquad \qquad L = -(E_p(2) - E_p(1))$$

TEOREMA CONSERVĂRII ENERGIEI MECANICE

ENERGIA TOTALĂ A UNUI SISTEM IZOLAT, SUPUS FORȚELOR CONSERVATIVE, SE CONSERVĂ.

$$E_c(1) + E_P(1) = E_c(2) + E_P(2) = constant$$