Klausur Mathematik für Informatik 2

27.7.2023

1.	Es	sei	V	ein	\mathbb{K} -	٠Ve	ktorı	aum.
----	----	-----	---	-----	----------------	-----	-------	------

- (a) Was ist eine Linearform auf V? (1)
- (b) Es sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf V. Geben Sie die durch das Skalarprodukt induzierte Norm $\| \cdot \|$ an. (1)
- (c) Zeigen Sie, dass die induzierte Norm die Parallelogramm-Identität erfüllt, das heißt, für alle $x, y \in V$ gilt (3)

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

- (d) Es sei C(I) die Menge der stetigen Funktionen auf einem Intervall $I=[a,b]\subset\mathbb{R}$. Begründen Sie, warum für $f,g\in C(I)$ durch $\langle f,g\rangle:=\int_a^b f(x)g(x)\,dx$ ein Skalarprodukt definiert ist. (7) Hinweis: Dass C(I) ein reeller Vektorraum ist, muss nicht gezeigt werden.
- (e) Was ist ein metrischer Raum? (4)
- 2. (a) Gegeben sei die rationale Funktion $R(x) = \frac{1}{(x^2 a^2)^2}$ mit $a \neq 0$. Leiten Sie ein lineares Gleichungssystem zur Bestimmung der Koeffizienten der Partialbruchdarstellung von R her. (7)
 - (b) Es sei $A \in M(m \times n, \mathbb{R})$, $b \in \mathbb{R}^m$ und $x \in \mathbb{R}^n$. Geben Sie Kriterien für die Lösbarkeit und die eindeutige Lösbarkeit des Gleichungssystems Ax = b an. (2)
 - (c) Es seien A, b und x wie in Teilaufgabe (b) und $v \in \mathbb{R}^n$ eine Lösung von Ax = b. Zeigen Sie, dass für $w \in \operatorname{Ker} A$ auch v + w eine Lösung von Ax = b ist. (2)
 - (d) Aufgrund welchen Satzes ist die eindeutige Lösbarkeit des Gleichungssystems aus Teilaufgabe (a) gegeben? (1)
- **3.** (a) Es sei $V \in \mathbb{K}$ -Vektorraum und $F: V \to V$ linear. Was ist ein Eigenwert von F? (2)
 - (b) Es sei nun $A \in M(n \times n, \mathbb{R})$.
 - (1) Erläutern Sie, was es heißt, dass A diagonalisierbar ist. (1)
 - (2) Was können Sie über die Transformationsmatrix aussagen, die A diagonalisiert? (1)
 - (c) Ist $\lambda = 2$ ein Eigenwert der Matrix $A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 2 \\ -1 & 2 & 0 \end{pmatrix}$? Wenn ja, geben Sie einen Eigenvektor zum Eigenwert λ an. (5)
 - (d) Zeigen Sie, dass für jedes $\lambda \in \mathbb{R}$ die Funktion $f(x) = e^{\lambda x}$ ein Eigenvektor der linearen Abbildung $D: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$, $f \mapsto f'$ ist. (2)

- (e) Begründen Sie mit Teilaufgabe (d), warum $C^{\infty}(\mathbb{R})$ ein unendlich-dimensionaler Vektorraum ist. (3)
- **4.** (a) Es sei $f:D\subseteq\mathbb{R}\to\mathbb{R}$. Wann heißt f auf D stetig? (2)
 - (b) Es seien $a, b \in \mathbb{R}$ mit a < b und $f : (a, b] \to \mathbb{R}$ stetig. Was bedeutet die Sprechweise "f ist stetig in a fortsetzbar"? (2)
 - (c) Geben Sie eine Funktion an, die in $x_0 = 2$ definiert, aber nicht stetig ist (mit Beweis). (2)
 - (d) Untersuchen Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x-1, & x>1 \\ \sin(\pi x), & x \leq 1 \end{cases}$ auf Stetigkeit und Differenzierbarkeit im Punkt $x_0 = 1$.
 - (e) Untersuchen Sie die Funktion f aus Teilaufgabe (d) auf Stetigkeit und Differenzierbarkeit für alle Punkte $x_0 \neq 1$. (3)
- **5.** (a) Zeigen Sie, dass für $a \neq 0$ gilt $\int \frac{x}{\sin^2(ax)} dx = -\frac{x}{a} \cot(ax) + \frac{1}{a^2} \ln \sin(ax)$ und geben Sie eine weitere, andere Stammfunktion von $\frac{x}{\sin^2(ax)}$ an. (4)
 - (b) Zeigen Sie mit Hilfe der ε - δ -Definition der Stetigkeit, dass für eine Riemannintegrierbare Funktion $f:[a,b]\to\mathbb{R}$, die Funktion $F(x)=\int_a^x f(t)\,dt$ auf [a,b] stetig ist. (7) Hinweis: Wenn Sie die Definition nicht kennen, erfragen Sie diese bei der Aufsicht. Sie erhalten dann aber keine Punkte auf Aufgabe 4(a).
 - (c) Geben Sie eine andere Begründung für die Stetigkeit von F aus Teilaufgabe (b) an. (2)
- **6.** (a) Für $k \in \mathbb{N}$ definieren wir $f_k : [0,1] \to \mathbb{R}$, $f_k(x) = \begin{cases} k^2 x, & 0 \le x < \frac{1}{2k}, \\ k^2 \left(\frac{1}{k} x\right), & \frac{1}{2k} \le x < \frac{1}{k}, \\ 0, & \frac{1}{k} \le x \le 1. \end{cases}$
 - (1) Skizzieren Sie f_1 , f_2 und f_3 . (3)
 - (2) Zeigen Sie, dass die Funktionenfolge $(f_k)_{k\in\mathbb{N}}$ punktweise gegen f(x)=0 konvergiert. Erinnerung: Das heißt, für (jedes) fest gewählte $x\in[0,1]$ gilt $\lim_{k\to\infty}f_k(x)=f(x)=0$.
 - (3) Zeigen Sie, dass $\int_0^1 f(x) dx \neq \lim_{k \to \infty} \int_0^1 f_k(x) dx$ gilt. (4) Hinweis: Berechnen Sie $\int_0^1 f_k(x) dx$.
 - (b) Es sei $f:(a,b)\to\mathbb{R}$ (n+1)-mal stetig differenzierbar. Zeigen Sie, dass dann für $x,x_0\in(a,b)$ gilt (4)

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^{x} \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt.$$