Zbiór zadań - Java

Piotr Jastrzębski

2023-07-02

Spis treści

Zbiór zadań - Java	1
I. Wprowadzenie do języka Java	3
1. Instrukcje wejścia/wyjścia	5
II. Programowanie obiektowe	7
2. Konstruktor	g
3. Dziedziczenie	13
Pibliagrafia i inno zbioru zadań	17

Zbiór zadań - Java

Tu będzie zbiór zadań z programowania w języku Java. Inspiracją było zebranie zadań powstałych w trakcie prowadzenia zajęć dydaktycznych realizowanych na Wydziale Matematyki i Informatyki Uniwersytetu Warmińsko-Mazurskiego w Olsztynie.

Cześć I.

Wprowadzenie do języka Java

1. Instrukcje wejścia/wyjścia

1. Napisz prostą aplikację kalkulatora tekstowego, która przyjmuje dwa liczby od użytkownika jako wejście i wykonuje podstawowe operacje matematyczne (dodawanie, odejmowanie, mnożenie, dzielenie). Wyświetl wyniki na ekranie.

Cześć II.

Programowanie obiektowe

2. Konstruktor

- 1. Stwórz klasę Samochod zawierającą prywatne pola: marka, model, rokProdukcji, przebieg oraz kolor. Dodaj konstruktor, który przyjmuje wszystkie pola jako argumenty. Dodaj metody dostępowe (gettery i settery) dla wszystkich pól. Następnie dodaj metodę wyswietlInformacje(), która wyświetla wszystkie informacje o samochodzie.
- 2. Stwórz klasę Osoba z prywatnymi polami: imie, nazwisko, wiek, adres. Dodaj konstruktor, który przyjmuje wszystkie pola jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metodę przedstawSie(), która zwraca łańcuch znaków z informacjami o osobie.
- 3. Stwórz klasę Ksiazka z prywatnymi polami: tytul, autor, rokWydania, wydawnictwo oraz liczbaStron. Dodaj konstruktor, który przyjmuje wszystkie pola jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metodę pokazInformacje(), która wyświetla informacje o książce.
- 4. Stwórz klasę Punkt2D z prywatnymi polami x i y, reprezentującymi współrzędne punktu na płaszczyźnie. Dodaj konstruktor, który przyjmuje współrzędne jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metodę odleglosc(Punkt2D innyPunkt), która oblicza odległość między dwoma punktami na płaszczyźnie.
- 5. Stwórz klasę Prostokat z prywatnymi polami szerokosc i wysokosc. Dodaj konstruktor, który przyjmuje długości boków jako argumenty.

2. Konstruktor

- Dodaj metody dostępowe (gettery i settery) oraz metody pole() i obwod(), które obliczają pole powierzchni i obwód prostokata.
- 6. Stwórz klasę Kolo z prywatnym polem promien. Dodaj konstruktor, który przyjmuje promień jako argument. Dodaj metody dostępowe (gettery i settery) oraz metody pole() i obwod(), które obliczają pole powierzchni i obwód koła.
- 7. Stwórz klasę Student z prywatnymi polami: imie, nazwisko, numerIndeksu, rokStudiow oraz sredniaOcen. Dodaj konstruktor, który przyjmuje wszystkie pola jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metodę pokazInformacje(), która wyświetla informacje o studencie.
- 8. Stwórz klasę Pracownik z prywatnymi polami: imie, nazwisko, stanowisko, wiek oraz placa. Dodaj konstruktor, który przyjmuje wszystkie pola jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metodę pokazInformacje(), która wyświetla informacje o pracowniku.
- 9. Stwórz klasę KontoBankowe z prywatnymi polami: numerKonta, wlasciciel, saldo oraz typKonta. Dodaj konstruktor, który przyjmuje wszystkie pola jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metody wplac(double kwota) i wyplac(double kwota), które odpowiednio dodają lub odejmują kwotę od salda konta.
- 10. Stwórz klasę Telewizor z prywatnymi polami: marka, przekatnaEkranu, rozdzielczosc, czySmartTV oraz cena. Dodaj konstruktor, który przyjmuje wszystkie pola jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metodę pokazInformacje(), która wyświetla informacje o telewizorze.
- 11. Stwórz klasę DziennikOcen z prywatnymi polami: imie, nazwisko oraz oceny (jako ArrayList typu int). Dodaj konstruktor, który przyjmuje imię i nazwisko jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metody dodajOcene(int ocena) i

- usunOcene(int indeks), które odpowiednio dodają lub usuwają ocenę z listy ocen. Dodaj również metodę sredniaOcen() do obliczania średniej ocen.
- 12. Stwórz klasę HistoriaTemperatur z prywatnym polem temperatury (jako ArrayList typu double). Dodaj konstruktor domyślny. Dodaj metody dostępowe (gettery i settery) oraz metody dodajTemperature(double temperatura) i usunTemperature(int indeks), które odpowiednio dodają lub usuwają temperaturę z listy temperatur. Dodaj również metodę sredniaTemperatur() do obliczania średniej temperatur.
- 13. Stwórz klasę WynikiTestow z prywatnymi polami: imie, nazwisko oraz wyniki (jako tablica typu int). Dodaj konstruktor, który przyjmuje imię, nazwisko oraz rozmiar tablicy jako argumenty. Dodaj metody dostępowe (gettery i settery) oraz metodę dodajWynik(int indeks, int wynik), która dodaje wynik testu na podanym indeksie. Dodaj również metodę sredniWynik() do obliczania średniego wyniku.
- 14. Stwórz klasę ZarzadcaZadan z prywatnym polem priorytetyZadan (jako ArrayList typu int). Dodaj konstruktor domyślny. Dodaj metody dostępowe (gettery i settery) oraz metody dodajPriorytet(int priorytet) i usunPriorytet(int indeks), które odpowiednio dodają lub usuwają priorytet z listy priorytetów. Dodaj również metodę najwyzszyPriorytet() do znajdowania najwyższego priorytetu.
- 15. Stwórz klasę Magazyn z prywatnym polem iloscProduktow (jako tablica typu int). Dodaj konstruktor, który przyjmuje rozmiar tablicy jako argument. Dodaj metody dostępowe (gettery i settery) oraz metodę dodajProdukty(int indeks, int ilosc), która dodaje określoną ilość produktów na podanym indeksie. Dodaj również metodę sumaProduktow() do obliczania sumy wszystkich produktów w magazynie.

3. Dziedziczenie

- 1. Utwórz klasę Pojazd z polami marka, model i rokProdukcji. Utwórz klasy Samochod i Motocykl, które dziedziczą po klasie Pojazd. Klasa Samochod powinna mieć dodatkowe pole liczbaDrzwi, a klasa Motocykl pole pojemnoscSilnika. Dodaj konstruktory, metody gettery i settery, metodę toString() oraz equals() dla każdej z klas. Napisz program testujący zdefiniowane klasy i metody.
- 2. Utwórz klasę Pracownik z polami imie, nazwisko i placa. Utwórz klasy Programista i Tester, które dziedziczą po klasie Pracownik. Klasa Programista powinna mieć dodatkowe pole jezykProgramowania, a klasa Tester pole typTestowania. Dodaj konstruktory, metody gettery i settery, metodę toString() oraz equals() dla każdej z klas. Napisz program testujący zdefiniowane klasy i metody.
- 3. Utwórz klasę Nieruchomosc z polami adres, metraż i cena. Utwórz klasy Dom i Mieszkanie, które dziedziczą po klasie Nieruchomosc. Klasa Dom powinna mieć dodatkowe pole liczbaPieter, a klasa Mieszkanie pole numerPietra. Dodaj konstruktory, metody gettery i settery, metodę toString() oraz equals() dla każdej z klas. Napisz program testujący zdefiniowane klasy i metody.
- 4. Utwórz klasę GraPlanszowa z polami nazwaGry, minLiczbaGraczy, maxLiczbaGraczy oraz zasadyGry (jako ArrayList typu String). Utwórz klasy GraEdukacyjna i GraStrategiczna, które dziedziczą

3. Dziedziczenie

- po klasie GraPlanszowa. Klasa GraEdukacyjna powinna mieć dodatkowe pole przedmiot, a klasa GraStrategiczna pole czasTrwania. Dodaj konstruktory, metody gettery i settery, metodę toString() oraz equals() dla każdej z klas. Napisz program testujący zdefiniowane klasy i metody.
- 5. Utwórz klasę Druzyna z polami nazwa, miasto oraz punkty (jako ArrayList typu Integer). Utwórz klasy DruzynaPilkarska i DruzynaSiatkarska, które dziedziczą po klasie Druzyna. Klasa DruzynaPilkarska powinna mieć dodatkowe pole pozycjaWRankingu, a klasa DruzynaSiatkarska pole liczbaZwyciestw. Dodaj konstruktory, metody gettery i settery, metodę toString() oraz equals() dla każdej z klas. Napisz program testujący zdefiniowane klasy i metody.
- 6. Utwórz klasę Komputer z polami producent, model oraz cenyCzesci (jako ArrayList typu Double). Utwórz klasy Laptop i Stacjonarny, które dziedziczą po klasie Komputer. Klasa Laptop powinna mieć dodatkowe pole waga, a klasa Stacjonarny pole obudowa. Dodaj konstruktory, metody gettery i settery, metodę toString() oraz equals() dla każdej z klas. Napisz program testujący zdefiniowane klasy i metody.
- 7. Utwórz klasę AlbumMuzyczny z polami tytul, artysta oraz oceny (jako ArrayList typu Integer). Utwórz klasy AlbumRockowy i AlbumJazzowy, które dziedziczą po klasie AlbumMuzyczny. Klasa AlbumRockowy powinna mieć dodatkowe pole gatunekRocka, a klasa AlbumJazzowy pole gatunekJazzu. Dodaj konstruktory, metody gettery i settery, metodę toString() oraz equals() dla każdej z klas. Napisz program testujący zdefiniowane klasy i metody.
- 8. Zdefiniuj abstrakcyjną klasę NarzedziePracy z polami nazwa typu String oraz rokProdukcji typu java.time.LocalDate. Dodaj metodę abstrakcyjną uzyj(), która będzie symulować użycie narzędzia. Następnie zdefiniuj klasy Mlotek, Srubokret i Pila, które dziedziczą po klasie NarzedziePracy i implementują metodę uzyj(). Stwórz

- listę tablicową odpowiednich 5 obiektów i wywołaj dla nich napisaną metodę.
- 9. Zdefiniuj abstrakcyjną klasę GrafikaKomputerowa z polami szerokosc, wysokosc typu int oraz nazwaPliku typu String. Dodaj abstrakcyjne metody wczytajPlik() i zapiszPlik(). Następnie zdefiniuj klasy Bitmapa i Wektor, które dziedziczą po klasie GrafikaKomputerowa i implementują metody wczytajPlik() oraz zapiszPlik(). Stwórz listę tablicową odpowiednich 5 obiektów i wywołaj dla nich napisaną metodę.
- 10. Zdefiniuj abstrakcyjną klasę UrządzenieElektroniczne z polami producent typu String, model typu String oraz rokProdukcji typu java.time.LocalDate. Dodaj abstrakcyjne metody włącz() i wyłącz(). Następnie zdefiniuj klasy Smartfon, Telewizor i Laptop, które dziedziczą po klasie UrządzenieElektroniczne i implementują metody włącz() oraz wyłącz(). Stwórz listę tablicową odpowiednich 5 obiektów i wywołaj dla nich napisaną metodę.

Bibliografia i inne zbiory zadań

Jan, Kozak. b.d. *Materiały do ćwiczeń*. http://www.jkozak.pl/przedmio ty/podstawy-i-jezyki-programowania/materialy-do-cwiczen/. Rychlicki, Wiesław. 2012. *Programowanie w języku Java. Zbiór zadań z (p)odpowiedziami*. Helion.