- 1. (15 поена) Нека је низ $\{a_n\}_{n\in\mathbb{N}}$ дат са $a_{n+1}=4a_n-3a_n^2$ за свако $n\in\mathbb{N},$ при чему је $a_1<0.$
 - (а) Испитати конвергенцију овог низа.
 - (б) Израчунати $\lim_{n \to \infty} \frac{n^{3/3}}{\sqrt{1 a_n}}$.
- **2.** (15 поена)
 - (a) Одредити константе $a_0, a_1, a_2, a_3, a_4, a_5, a_6 \in \mathbb{R}$ тако да важи

$$\ln(\cos x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + o(x^6), \ x \to 0.$$

(б) Одредити константу $b \in \mathbb{R}$ такву да функција $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ дата са

$$f(x) = \begin{cases} \frac{\ln(\cos x) + \sqrt{1 + x^2} - 1}{x^4}, & x \in \left(-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right) \\ b, & x = 0 \end{cases}$$

буде непрекидна на свом домену.

- (в) Испитати диференцијабилност функције f за тако добијену константу b.
- **3.** (20 поена) Дата је функција $f(x) = \ln \frac{|2x-1|-1}{2x-1} 2x.$ (a) Испитати ток и скицирати график функције f.

 - (б) Одредити број решења једначине f(x) = a у зависности од реалног параметра a.
- 4. (10 поена)
 - (a) Доказати да једначина $x^3 = 6 \arctan x + 1$ има тачно три решења на скупу $\mathbb R$.
 - (б) Одредити број решења једначине $x^3 = 6 \arctan x + \lambda$ у зависности од параметра $\lambda \in \mathbb{R}$.

(Писмени испит укупно вреди 60 поена. Време за рад је 3 сата.)