Week 4: Hypothesis Testing for One/Two Samples

Or, (Theoretical) Populations VS (Actual) Samples

Scott Schwartz

May 18, 2021

Manually flip a coin 10 times and record the outcomes, or...

```
set.seed(130); for(i in 1:10){
  sample(c("H","T"), size=1)#cat(sample(c("H","T"), size=1));cat(" ")
}
```

H H H T H H T T H T

```
Or...
sample(c("H","T"), size=10, p=c(1/2,1/2), replace=TRUE)
```

```
## [1] "T" "H" "T" "H" "T" "T" "T" "T" "T"
```

- p defaults to "equal chances", so p=c(1/2,1/2) isn't strictly required
- Why is replace=TRUE critically important in conjunction with size=10?

Manually flip a coin 10 times and record the outcomes, or...

- p defaults to "equal chances", so p=c(1/2,1/2) isn't strictly required
- Why is replace=TRUE critically important in conjunction with size=10?

The \bar{x} Sample mean() statistic (lower case)

```
x
n < -4
set.seed(130)
                                               ## [1] "Heads" "Tails" "Tails" "Tails"
x <- sample(c("Heads", "Tails"), size=n,
                                               as.factor(x)
            p=c(1/2,1/2), replace=TRUE)
                                               ## [1] Heads Tails Tails Tails
                                               ## Levels: Heads Tails
xbar <- mean(x)
## Warning in mean.default(x): argument is not numeric or logical: returning NA
mean(as.numeric(factor(x)))
                                               as.numeric(as.factor(x))
## [1] 1.75
                                               ## [1] 1 2 2 2
xbar <- mean(as.numeric(factor(x))-1)</pre>
                                               as.numeric(as.factor(x))-1
xbar
## [1] 0.75
                                               ## [1] 0 1 1 1
```

The Sampling Distribution VS \bar{x} the Sample mean() statistic (lower case)

```
N <- 100#00000000000000?
n <- 10 # <- What's this?
simulated xbars <- 1:N # <- What's this?
set.seed(130) # <- What happens if this goes inside the for loop?</pre>
for(i in 1:N){
  simulated_x <- sample(c("Heads", "Tails"), size=n, p=c(1/2,1/2),</pre>
                         replace=TRUE)
  simulated xbar <- mean(2-as.numeric(as.factor(simulated x)))
                   # mean(as.numeric(as.factor(simulated x))-1) ?
  simulated xbars[i] <- simulated xbar</pre>
} # What do we have in `simulated xbars` once the for loop completes?
```

The Sampling Distribution VS \bar{x} the Sample mean() statistic (lower case)

```
n <- 50; N<-10000; simulated_xbars<-1:N
set.seed(42); for(i in 1:N){
  sim_x <- sample(c("Heads", "Tails"),</pre>
      size=n, p=c(1/2,1/2), replace=TRUE)
  sim x <- 2-as.numeric(as.factor(sim x))</pre>
  simulated_xbars[i] <- mean(sim_x)</pre>
tibble("xbar"=simulated xbars) %>%
  ggplot(aes(x=xbar)) +
  xlim(0,1) + geom_histogram(bins=51)
# IGNORE the warning "Removed 2 rows
# containing missing values (geom bar)."
```

```
# {r, fig.width=2.5, fig.height=1.5}
library(tidyverse)
    1200 -
     900 -
 count
     600 -
     300 -
       0 -
                0.25
                       0.50
                               0.75
         0.00
                                      1.00
                       xbar
```


Statistical Inference and Hypothesis Testing

Statistical Inference

Can we infer [some specific thing] from the data?

• We'll be doing Statistical Inference in a specific way called Hypothesis Testing

Hypothesis Testing

Could the observed data be plausibly generated under a given assumption?

• We'll do **Hypothesis Testing** in a specific way with an α -significance level test

α -Significance Level Hypothesis Testing

 $\boldsymbol{\alpha}$ is the probability we make a wrong decision about a chosen assumption.

The Sampling Distribution VS \bar{x} the Sample mean() statistic (lower case)

The **NULL** Hypothesis

The assumed value of the parameter

$$H_0: p = 0.5$$

implying a **sampling distribution** to be compared against the **observed test stat**

The ALTERNATIVE Hypothesis

$$H_1: p \neq 0.5$$
 or $H_A: p \neq 0.5$

or just H_1/H_A : H_0 is FALSE

p-value

The probability [which can be approximated] of observing a test statistic that is as or more extreme than the one we got if the NULL Hypothesis is actually TRUE

p-value

The probability [which can be approximated] of observing a test statistic that is as or more extreme than the one we got if the NULL Hypothesis is actually TRUE

Not a p-value: The probability of the Null Hypothesis is TRUE

That's not how Statistical Hypothesis Testing works...

- The **NULL Hypothesis** *IS* either TRUE or *IS* FALSE (not both)
- The NULL Hypothesis can't be sometimes TRUE and sometimes FALSE
- The NULL Hypothesis can't be TRUE for me and FALSE for you

Saying "I put a x% chance on the Null Hypothesis being TRUE/FALSE" is

- \longrightarrow using probability to express *belief* rather than random chance.
 - If you want to use probability to express **belief** then you'll need to be *Bayesian*...

p-value

The probability [which can be approximated] of observing a test statistic that is as or more extreme than the one we got if the NULL Hypothesis is actually TRUE

Not a p-value: The probability parameter is the NULL hypothesis value

That's not how Statistical Hypothesis Testing works...

- The NULL Hypothesis parameter isn't a "random event"
- The **NULL Hypothesis parameter** doesn't change values at different times
- The NULL Hypothesis parameter isn't drawn from some "distribution"

Except if you're Bayesian, in which case you model belief about parameters

- \longrightarrow as distributions, and then do make probability statements about parameters
 - but this is a different statistical paradigm than Hypothesis Testing

The Sampling Distribution VS \bar{x} the Sample mean() statistic (lower case)

```
n <- 50; N<-10000; simulated_xbars<-1:N
p <- 0.5 # <- This isn't "sometimes 0.5"
# The NULL Hypothesis and n are "fixed"
set.seed(42); for(i in 1:N){
  # Each flip is where there's p "chance"
  x <- sample(c("Heads", "Tails"), size=n,
              p=c(p,1-p), replace=TRUE)
  simulated x<-2-as.numeric(as.factor(x))</pre>
  simulated xbars[i] <- mean(simulated x)</pre>
} # what are the following two values?
mean(abs(simulated xbars-p)>=abs(0.65-p))
## [1] 0.0294
mean(abs(simulated xbars-p)>=abs(0.68-p))
## [1] 0.0088
```

{r, fig.width=3.25, fig.height=2.5}

Simulated Sampling Distribution if the NULL Hypothesis is TRUE

Kissing the "Right" Way

← Rodin's sculpture The Kiss

- Güntürkün (2003) recorded how kissing couples tilt their heads.
- 80 out of 124 couples, or 64.5% tilted their heads to the right.
- Would we reject a NULL hypothesis
 H₀ that the population of humans
 don't have left or right head tilt
 tendencies when kissing?

Hypothesis Testing

- **1** State the **NULL Hypothesis** $H_0: p = 0.5$ for the *population* [which is?]
 - Assume the value of the parameter of the NULL Hypothesis is TRUE
 - The ALTERNATIVE Hypothesis is just that the NULL Hypothesis is FALSE
- 2 Set an α -significance level which specifies a " H_0 rejection rule"
 - You will "Reject H_0 at the α -significance level" for **p-values** less than α
 - This is also the probability of a Type I error of "rejecting a true H₀ [Why?]
- **3** For the sample size *n* of the observed **test statistic**
 - Simulate the Sampling Distribution assumming the NULL Hypothesis is TRUE
- ① Compute the p-value of the observed test statistic
 The probability [which can be approximated] of observing a test statistic that is as or more extreme than the one we got if the NULL Hypothesis is actually TRUE
- **6** "Reject H_0 at the α -significance level" if the p-value is less than α
 - Otherwise, "Fail to reject H_0 at the α -significance level"

Type I and II Errors in Hypothesis Testing

Innocent	Guilty
× Oops! Type I √ Justice! Freedome!	✓ Gotcha! Justice! × Oops! Type II

Type I and II Errors in Hypothesis Testing

This is weird, but...

this is how I remember the difference between Type I and Type II Errors. . .

- WW I wrongly rejected H_0 : peace when it shouldn't have \rightarrow **Type I Error**
- WW II appeasement failed to reject H_0 when it should have \rightarrow **Type II Error**

Type I and II Errors in Hypothesis Testing

What's the NULL hypothesis in a Covid Test?

- You don't have Covid? You probably have Covid?
- What are the corresponding Type I and II Errors?

Do people know the difference between covid-19 vs sars-cov 2?

- What test statistic could we use?
- What NULL hypothesis parameter could we use?

Two Sample Hypothesis Testing

Can we follow the above steps for the following H_0 ?

$$H_0: p_1 = p_2 \implies H_{1/A}: p_1 \neq p_2$$

• What kind of example problems could this represent? Treatment/Control?

- **2** [\checkmark] Choose **significance level** $\alpha = 0.5$
- **3** [\checkmark] Use **observed test statistic** $\bar{x}_1 \bar{x}_2$ based on n_1 and n_2 samples
 - [?] Simulate the Sampling Distribution asumming the NULL Hypothesis is TRUE
- [√] Compute p-value
- **5** $[\checkmark]$ Reject / Fail to reject H_0

Two Sample Hypothesis Testing

```
set.seed(13)
n1 <- 30; n2 <- 40; ns <- paste("n1=", n1, " and n2=", n2, sep="")
x1 \leftarrow sample(c(0,1), size=n1, replace=TRUE)
x2 \leftarrow sample(c(0,1), size=n2, p=c(1/3,2/3), replace=TRUE)
observed test statistic <- mean(x1)-mean(x2); observed test statistic
## [1] -0.2083333
N <- 10000: permutation test statistics <- 1:N
set.seed(130); for(i in 1:N){
  shuffled_xs <- sample(c(x1,x2), size=n1+n2, replace=FALSE)</pre>
  tmp <- mean(shuffled_xs[1:n1])-mean(shuffled_xs[(n1+1):(n1+n2)])</pre>
  permutation test statistics[i] <- tmp</pre>
} # What does `permutation test statistics` assume about H O?
mean(abs(permutation test statistics)>=abs(observed test statistic))
## [1] 0.0701
```

Two Sample Hypothesis Testing

Sampling Distribution of $\overline{x}_1 - \overline{x}_2$ for n1=30 and n2=40 if H_0 : $p_1 = p_2$ is TRUE

More General Hypothesis Testing

$$\bar{x} = \frac{1}{n} \sum x_i \text{ VS } \hat{p} = \frac{1}{n} \sum x_i \text{ (don't confuse with } p \text{ (don't confuse with } p \text{-value)})$$

- We've considered $\frac{1}{n}\sum x_i$ when x_i is 0 or 1 with probability p and 1-p, respectively
 - In this case, we often write \hat{p} instead of \bar{x} since \hat{p} , the observed proportion of x_i that are 1, estimates p, **NULL hypothesis parameter** chance that $x_i = 1$

$$x_i \sim f(E[x_i] = \mu, \; m{ heta})$$
, $E[x_i] = \mu$, and $H_0: \mu = m_0$ and $H_0: \mu_1 - \mu_2 = 0$

- Everything we did also works if x_i has a different distribution of possible values
 - Not just when x_i can only be 0 or 1
 - A Gaussian distribution is a common example: $x_i \sim N(E[x_i] = \mu, SD[x_i] = \sigma)$

mean() VS median(), var(), etc.

 H_0 : $Median=m_0$ and H_0 : $Median_1=Median_2$ and H_0 : $\sigma^2=s_0^2$ and H_0 : $\sigma^2_1=\sigma^2_2$

$$H_0: \mu = m_0 \mid x_i \sim N(\mu, \sigma) \mid H_0: \mu_1 = \mu_2$$

```
n1 <- 10; N<-10000; simulated_xbars<-1:N
set.seed(130); x1 <- rnorm(mean=1, n=n1)
set.seed(42); for(i in 1:N){
    simulated_x <- rnorm(mean=0, n=n1)#H_0
    # sample(c(0,1), size=n, replace=TRUE)
    simulated_xbars[i] <- mean(simulated_x)
}; mean(x1)</pre>
```

[1] 0.7785339 Sampling Distribution of x₁ for n 1 = 10 if H₀:μ = 0 is TRUE

[1] 0.703317

Sampling Distribution of $\overline{x}_1 - \overline{x}_2$ for n1=10 and n2=15 if H_0 : $\mu_0 = \mu_1$ is TRUE

H_0 : Median= m_0

50th %tile

H_0 : Median₁=Median₂

```
n1 <- 10: N<-10000: simulated xmeds<-1:N
set.seed(130); x1 <- rnorm(mean=1, n=n1)
set.seed(42): for(i in 1:N){
  simulated x <- rnorm(mean=0, n=n1)#H 0
  # sample(c(0,1), size=n, replace=TRUE)
  simulated_xmeds[i] <- median(simulated_x)</pre>
}: median(x1)
   [1] 0.6916658
     Sampling Distribution of Median(x1) for n1 = 10
     if H 0: Median=0 is TRUE
  1000 -
   750 -
xount
  500 -
   250 -
```

0.0

xmed

0,5

1.0

-05

_i o

-1.5

```
n2 <- 15; permutation_test_statistics<-1:N
set.seed(131); x2 <- rnorm(mean=0. n=n2)
set.seed(43); for(i in 1:N){
  shuffled xs <- sample(c(x1,x2),
                    size=n1+n2,replace=FALSE)
  tmp <- median(shuffled_xs[1:n1]) -</pre>
          median(shuffled xs[(n1+1):(n1+n2)])
  permutation_test_statistics[i] <- tmp</pre>
}; median(x1)-median(x2)
        0.6336835
    Sampling Distribution of Median(x1) - Median(2) for n1=10 and n2=15
    if H 0: Median 1=Median 2 is TRUE
```


$$H_0: \sigma^2 = s_0^2 \mid s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} \mid H_0: \sigma_1^2 = \sigma_2^2$$

Sampling Distribution of var(x1) for n1 = 10 if H_0 : $\sigma^2 = 1$ is TRUE

[1] 0.8407229

Sampling Distribution of var(x1) - var(x2) for n1=10 and n2=15 if $H_0: \sigma_1^2 = \sigma_2^2$ is TRUE