Prueba Intertrimestral

Nombre: María

Apellidos: Oliva Calero

Tiempo de la prueba: 2 Horas

Asignatura: Desarrollo de Aplicaciones para la Visualización de Datos

Fecha: 18 de octubre de 2023

Instrucciones:

- Escribe código limpio y autoexplicativo.
- Se eliminará 0.5 puntos por usar Seaborn o Matplotlib.
- Se pueden utilizar los materiales de clase.
- Se puede utilizar internet para búsqueda de dudas y documentación.
- No se puede utilizar ningún tipo de LLM.
- No se puede utilizar mensajería instantánea.
- Sube tus resultados a tu repositorio de Github.
- Imprime una versión en PDF en A3 y Portrait del notebook.
- Envialo tus resultados a dmartincorral@icai.comillas.edu adjuntando el PDF y la url del notebook subido al repositorio de Github.

Inicialización de librerías

Carga aquí todas las librerías que vayas a utilizar.

```
import sklearn
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import ElasticNet
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
{\tt from \ sklearn.svm \ import \ LinearSVC}
from \ sklearn.metrics \ import \ (classification\_report, \ mean\_squared\_error, \ mean\_absolute\_error, \ mean\_absolute\_percentage\_error, \ mean\_absolute\_error, \ mean\_absolute\_percentage\_error, \ mean\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absolute\_absol
                                                                                                                     silhouette_score, accuracy_score)
from sklearn.linear_model import ElasticNet
from sklearn.cluster import KMeans
import numpy as np
import seaborn as sns
import plotly as pt
```

• Ejercicio 1 (2 puntos):

- a) Crea una función que calcule y devuelva el factorial de un número entero. (0.6 puntos)
- b) Crea una función que verifique si un número es primo o no. (0.6 puntos)
- c) Muestra en un dataframe los 50 primeros números positivos, si es primo y su factorial utilizando las funciones anteriores. (0.6 puntos)
- d) ¿Cómo se podría programar en una clase las tres operaciones anteriores? (0.2 puntos)
- [] L,1 celda oculta

▼ Ejercicio 2 (4 puntos):

- a) Extrae de sklearn el conjunto de datos California Housing dataset y transfórmalo a dataframe de pandas (0.25 puntos)
- b) Construye una función que muestra la estructura del dataset, el número de NAs, tipos de variables y estadísticas básicas de cada una de las variables. (0.5 puntos)
- c) Construye una Regresión lineal y un Random forest que predigan el Median house value según los datos disponibles. (0.75 puntos)

```
d) Visualiza cuales son las variables (coeficientes) más importantes en cada uno de los modelos. (1.25 puntos)
```

e) Decide a través de las métricas que consideres oportunas, cuál de los dos modelos es mejor, por qué y explica el proceso que has realizado para responder en los puntos anteriores. (1.25 puntos)

III

```
#a
from sklearn.datasets import fetch_california_housing
cali= fetch_california_housing(as_frame=True)
df = pd.DataFrame(data = cali['data'], columns = cali["feature_names"])
df.head()
```

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25

```
#D
def info(df):
    print("Estructura:")
    print(df.head(5))  # pinto los 5 primeros valores para que se vea la estructura
    print("_______")
    print("\nNúmero de NAs por columna:")
    print(df.isna().sum())
    print("______")
    print("\nTipos de variables:")
    print(df.dtypes)
    print("_____")
    print("\nEstadísticas básicas:")
    print(df.describe())
```

Estructura:

info(df)

```
MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
0 8.3252
            41.0 6.984127 1.023810
                                         322.0 2.555556
                                                          37.88
1 8.3014
             21.0 6.238137
                           0.971880
                                        2401.0 2.109842
                                                          37.86
2 7.2574
            52.0 8.288136 1.073446
                                         496.0 2.802260
                                                          37.85
            52.0 5.817352 1.073059
                                         558.0 2.547945
3 5.6431
                                                          37.85
4 3.8462
                                         565.0 2.181467
            52.0 6.281853 1.081081
                                                          37.85
```

Longitude
0 -122.23
1 -122.22
2 -122.24
3 -122.25
4 -122.25

Número de NAs por columna: MedInc 0

HouseAge 0
AveRooms 0
AveBedrms 0
Population 0
AveOccup 0
Latitude 0
Longitude 0
dtype: int64

Tipos de variables: MedInc float64

MedInc float64
HouseAge float64
AveRooms float64
AveBedrms float64
Population float64
AveOccup float64
Latitude float64
Longitude float64
dtype: object

Estadísticas básicas:

MedInc HouseAge AveRooms AveBedrms Population \

```
20640.000000
                         20640.000000 20640.000000
                                                     20640.000000 20640.000000
     count
               3.870671
                            28.639486
                                           5.429000
                                                         1.096675
                                                                   1425.476744
     mean
                            12.585558
                                                         0.473911
                                                                   1132.462122
     std
               1.899822
                                           2.474173
     min
                0.499900
                             1,000000
                                           0.846154
                                                         0.333333
                                                                       3,000000
     25%
                                                                     787,000000
               2,563400
                            18,000000
                                           4.440716
                                                         1,006079
     50%
                                           5.229129
                                                         1.048780
               3.534800
                            29,000000
                                                                   1166,000000
     75%
               4.743250
                            37.000000
                                           6.052381
                                                         1.099526 1725.000000
               15.000100
                            52.000000
                                         141.909091
                                                        34.066667 35682.000000
                Ave0ccup
                              Latitude
                                          Longitude
            20640.000000
                         20640.000000
                                       20640.000000
     count
               3.070655
                            35.631861
                                       -119.569704
     mean
     std
               10.386050
                             2.135952
                                          2.003532
                                        -124.350000
     min
               0.692308
                            32,540000
     25%
                                        -121.800000
               2,429741
                            33,930000
                                        -118.490000
     50%
               2.818116
                            34.260000
# Agregamos la variable objetivo
df["target"] = cali["target"]
# Dividir train-test
X = cali["data"].copy()
y = cali["target"].copy()
 \textit{X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y , test\_size = 0.3, random\_state = 123) } 
reg = LinearRegression()
reg.fit(X_train,y_train)
     ▼ LinearRegression
     LinearRegression()
predictions = reg.predict(X_test)
predictions_train = reg.predict(X_train)
# Metricas de evaluación
rmse_train = np.sqrt(mean_squared_error(y_train,predictions_train))
mae_train = mean_absolute_error(y_train, predictions_train)
mape_train = mean_absolute_percentage_error(y_train, predictions_train)
rmse_test = np.sqrt(mean_squared_error(y_test,predictions))
mae_test = mean_absolute_error(y_test, predictions)
mape_test = mean_absolute_percentage_error(y_test, predictions)
print("El RMSE de train del modelo es: {}".format(rmse_train))
print(f"El MAE de train del modelo es: {mae_train}")
print(f"El MAPE de train del modelo es: {100 * mape_train} %")
print("")
print("El RMSE de test del modelo es: {}".format(rmse_test))
print(f"El MAE de test del modelo es: {mae_test}")
print(f"El MAPE de test del modelo es: {100*mape_test} %")
reg_coef = reg.score(X_train,y_train)
print(reg_coef)
     El RMSE de train del modelo es: 0.7265293808219301
     El MAE de train del modelo es: 0.5330981590557595
     El MAPE de train del modelo es: 31.74009324464936 %
     El RMSE de test del modelo es: 0.7187326821064438
     El MAE de test del modelo es: 0.528816003284153
     El MAPE de test del modelo es: 31.780348070932174 %
     0.604714940991568
#Random Forest
rf = RandomForestRegressor(n_estimators=50, random_state=3)
# Entrenar el modelo en el conjunto de entrenamiento
rf.fit(X_train, y_train)
# Realizar predicciones en el conjunto de prueba
y_pred = rf.predict(X_test)
```

18/10/23, 19:09

Prueba_intertrimestral_18102023.ipynb - Colaboratory	
	-

18/10/23, 19:09 plt.figure(figsize=(10, 6)) plt.bar(range(len(reg_coefs), reg_coefs) plt.xticks(range(len(coeficientes), labels=nombre_de_tus_variables) plt.xlabel('Variable') plt.ylabel('Coeficiente') plt.title('Importancia de las variables en el modelo de regresión lineal') plt.show() y = y_train for column in X_train.columns[1:]: x = X_train[column] # Dependent variable plt.figure() plt.scatter(x, y, label=column) plt.legend()

plt.show()

rueba_intertrimestral_18102023.ipynb - Colaboratory											

▼ Ejercicio 3 (4 puntos):

Consideremos el dataset que contiene The Most Streamed Spotify Songs 2023 que se encuentra en el respositorio.

Información de las variables:

- track_name: Name of the song
- artist(s)_name: Name of the artist(s) of the song
- vartist_count: Number of artists contributing to the song
- released_year: Year when the song was released
- released_month: Month when the song was released
- release_day: Day of the month when the song was released
- in_spotify_playlists: Number of Spotify playlists the song is included in
- in_spotify_charts: Presence and rank of the song on Spotify charts
- streams: Total number of streams on Spotify
- in_apple_playlists: Number of Apple Music playlists the song is included in
- in_apple_charts: Presence and rank of the song on Apple Music charts
- in_deezer_playlists: Number of Deezer playlists the song is included in
- in_deezer_charts: Presence and rank of the song on Deezer charts
- in_shazam_charts: Presence and rank of the song on Shazam charts
- bpm: Beats per minute, a measure of song tempo
- key: Key of the song
- mode: Mode of the song (major or minor)
- danceability_%: Percentage indicating how suitable the song is for dancing
- valence_%: Positivity of the song's musical content
- energy_%: Perceived energy level of the song
- acousticness_%: Amount of acoustic sound in the song
- instrumentalness_%: Amount of instrumental content in the song
- liveness_%: Presence of live performance elements
- speechiness_%: Amount of spoken words in the song

Para las respuestas b, c, d, e, f y g es imperativo acompañarlas respuestas con una visualización.

- a) Lee el fichero en formato dataframe, aplica la función del ejercicio 2.b, elimina NAs y convierte a integer si fuera necesario. (0.25 puntos)
- b) ¿Cuántos artistas únicos hay? (0.25 puntos)
- c) ¿Cuál es la distribución de reproducciones? (0.5 puntos)
- d) ¿Existe una diferencia signitificativa en las reproducciones entre las canciones de un solo artista y las de más de uno? (0.5 puntos)
- e) ¿Cuáles son las propiedades de una canción que mejor correlan con el número de reproducciones de una canción? (0.5 puntos)
- f) ¿Cuáles son las variables que mejor predicen las canciones que están por encima el percentil 50? (1 puntos)

Nota: Crea una variable binaria (Hit/No Hit) en base a 3.c, crea una regresión logística y visualiza sus coeficientes.

g) Agrupa los 4 gráficos realizados en uno solo y haz una recomendación a un sello discográfico para producir un nuevo hit. (1 puntos)

```
18/10/23, 19:09
         key
         mode
         danceability_%
        valence_%
energy_%
         acousticness_%
         instrumentalness_%
         liveness_%
         speechiness_%
         dtype: int64
         Tipos de variables:
         track_name
                                object
                                object
int64
         artist(s)_name
         artist_count
         released_year
                                 int64
                                 int64
         released_month
         released_day
                                  int64
         in_spotify_playlists
                                 int64
         in_spotify_charts
                                 int64
                                object
         streams
         in_apple_playlists
                                 int64
        in_apple_charts
in_deezer_playlists
in_deezer_charts
                                 int64
                                object
int64
         in_shazam_charts
                                object
                                 int64
         key
                                object
         mode
                                object
         danceability_%
                                 int64
         valence_%
                                  int64
        energy_%
acousticness_%
                                 int64
                                 int64
         instrumentalness_%
                                 int64
        liveness_% speechiness_%
                                 int64
                                 int64
         dtype: object
         Estadísticas básicas:
               artist_count released_year released_month released_day \
                 953.000000
                                953.000000
                                                953.000000
                                                              953.000000
         mean
                   1.556139
                                2018.238195
                                                  6.033578
                                                               13.930745
         std
                   0.893044
                                 11.116218
                                                  3.566435
                                                                9.201949
                                                  1.000000
         min
                   1.000000
                               1930.000000
                                                                1.000000
         25%
                               2020.000000
                                                  3.000000
                                                                6.000000
                   1.000000
         50%
                   1.000000
                               2022.000000
                                                  6.000000
                                                               13.000000
         75%
                                                               22.000000
                   2.000000
                               2022.000000
                                                  9.000000
                               2023.000000
                   8.000000
                                                 12.000000
                                                               31.000000
         max
                in_spotify_playlists in_spotify_charts in_apple_playlists \
                        953.000000
                                            953.000000
                                                                953.000000
         count
    df = df.dropna()
    streams = []
    df['streams']=pd.to_numeric(df['streams'], errors="coerce")
    artists=df["artist(s)_name"].unique()
    print(len(artists))
        571
    import plotly.express as px
    fig = px.histogram(df, x="streams")
```

fig.show()

Prueba_intertrimestral_18102023.ipynb - Colab	oratory		A
			- 1
			-
			-
			-

df.groupby("artist_count").mean()

<ipython-input-121-6ddd34a3bf61>:1: FutureWarning:

The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

	released_year	released_month	released_day	in_spotify_playlists	in_spotify_charts	streams	in_apple_playlists	in_apple_charts	in_deezer_charts	bpm	danceability_%	valence_%	energy_%	acousticness
artist_count														
1	2017.500000	5.959514	13.599190	5375.232794	11.064777	5.063944e+08	59.589069	50.080972	2.089069	123.736842	64.461538	48.949393	62.459514	28.0708
2	2020.580357	5.995536	14.580357	4067.602679	13.651786	4.388571e+08	62.866071	54.441964	3.424107	121.754464	71.633929	53.950893	67.066964	25.0267
3	2017.946667	6.333333	11.880000	4492.466667	12.653333	3.839797e+08	60.586667	38.600000	2.226667	117.320000	71.320000	54.840000	67.106667	20.3733
4	2018.357143	6.142857	12.428571	3571.571429	4.071429	3.201655e+08	60.357143	18.785714	2.285714	133.142857	75.571429	57.714286	66.928571	21.5714
5	2022.600000	6.800000	11.200000	1028.400000	7.600000	1.448082e+08	17.000000	25.200000	1.000000	98.000000	77.800000	62.000000	71.800000	21.8000
6	2022.000000	8.666667	19.666667	395.333333	2.666667	8.746645e+07	22.666667	65.333333	0.000000	108.666667	83.333333	66.666667	75.333333	9.6666
7	2022.000000	1.000000	14.000000	1034.000000	1.000000	2.454002e+08	19.000000	5.000000	0.000000	174.000000	67.000000	74.000000	75.000000	44.0000
8	2021.000000	8.000000	12.000000	1560.000000	0.000000	2.233199e+08	72.000000	0.000000	0.000000	84.000000	56.000000	61.000000	76.000000	10.0000

df["single_artist"] = df.apply(lambda row: True if row["artist_count"] ==1 else False, axis = 1)

df.groupby("single_artist").mean()
#si que existe diferencia significativa

<ipython-input-137-e1b1999efbb9>:1: FutureWarning:

The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

	artist_count	released_year	released_month	released_day	<pre>in_spotify_playlists</pre>	in_spotify_charts	streams	<pre>in_apple_playlists</pre>	in_apple_charts	in_deezer_charts	bpm	danceability_%	valence_%	energy_
single_artist														
False	2.436533	2019.922601	6.108359	13.845201	4046.445820	12.727554	4.118884e+08	61.037152	48.544892	3.006192	120.773994	71.873065	54.647059	67.27244
True	1.000000	2017.500000	5.959514	13.599190	5375.232794	11.064777	5.063944e+08	59.589069	50.080972	2.089069	123.736842	64.461538	48.949393	62.45951

y = df["streams"]

for column in df.columns[1:]:
 x = df[column] # Dependent variable
 plt.figure()
 plt.scatter(x, y, label=column)
 plt.legend()
 plt.show()

 $\texttt{\# las variables mas significativas que correlan con streams son in_spotify_playlists, release_year, artist_count y in_apple_playlists}$

Sachin-Jig வருக்கு நடித்த நட

ba_intertrimestral_18102023.ipynb - Colaboratory										

ueba_intertrimestral_18102023.ipynb - Colaboratory											

18/10/23, 19:09

rueba_intertrimestral_18102023.ipynb - Colaboratory		

rueba_intertrimestral_18102023.ipynb - Co	laboratory		

rueba_intertrimestral_18102023.ipynb - Colaboratory											

df.corr()

<ipython-input-144-2f6f6606aa2c>:1: FutureWarning:

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

	artist_count	released_year	$released_month$	released_day	<pre>in_spotify_playlists</pre>	in_spotify_charts	streams	<pre>in_apple_playlists</pre>	in_apple_charts	<pre>in_deezer_charts</pre>	bpm	danceability_%	valence_%	energy_9
artist_count	1.000000	0.073564	0.033857	-0.014762	-0.085226	-0.008570	-0.109760	-0.017024	-0.075271	0.020585	-0.058844	0.214078	0.123650	0.137530
released_year	0.073564	1.000000	0.076439	0.166377	-0.390729	0.068679	-0.242726	-0.201474	0.003479	0.095741	-0.011570	0.215032	-0.047643	0.078886
released_month	0.033857	0.076439	1.000000	0.057784	-0.122407	-0.050186	-0.046041	-0.034029	-0.017813	0.006942	-0.049400	-0.054808	-0.110355	-0.086897