

Définitions (1)

- Un compteur est un circuit séquentiel permettant d'établir une correspondance univoque entre le nombre d'impulsions appliquées sur son entrée d'horloge (clk) et l'état de la sortie.
- L'opérateur de base d'un compteur est la bascule à déclenchement sur front.
- À chaque instant l'état du comptage est donné par la sortie des bascules (Q_i).
- Un compteur constitué de N bascules délivre au plus 2^N combinaisons de sortie,
- Ainsi il peut compter de 0 à 2^N-1.

Définitions (2)

Fonction: Dispositif de comptage binaire modulo M: M états

Compteur à cycle complet

- Un compteur binaire à cycle complet de N bits comporte N bascules,
- Il énumère ses 2^N états dans l'ordre binaire naturel (incrémental) soit de 0 à 2^N-1|₁₀,
- C'est un compteur modulo 2^N (#2^N),

Compteur à cycle incomplet

- Un compteur binaire de N bits comportant donc N bascules, permet d'énumérer des cycles incomplets de M états (M ≤ 2^N) dans un ordre quelconque
- C'est un compteur modulo M (#M).

Registre à décalage bouclé (1)

- Compteur de Johnson 4 bits (1)
 - Le circuit est synchrone (CLK_i = H=_f),
 - Les bascules sont connectées en cascade:
 ∇i ≠ 0: D_i = Q_{i-1}
 - Sauf la première entrée qui est connectée sur la dernière sortie complémentée, ici: $D_0 = \overline{Q}_3$.

Registre à décalage bouclé (2)

Compteur de Johnson (3)

- Exemple: le registre contient le mot: $Q_0 Q_1 Q_2 Q_3 = 0 0 0 0$ (CI: conditions initiales)
- Le compteur se remplit de 1, puis de 0...
- Compteur synchrone #8, cycle incomplet non incrémental,

Н	Q_0	Q_1	Q_2	Q_3	₁₀
CI	0	0	0	0	0
1	1	0	0	0	1
2	1	1	0	0	3
3	1	1	1	0	7
4	1	1	1	1	15
5	0	1	1	~	14
6	0	0	1	1	12
7	0	0	0	1	8
8	0	0	0	0	0

Synthèse d'un compteur synchrone

- -> Identifier le nombre des bascules (flip-flops) pour le circuit.
- -> Connaître la table de Transition de la bascule utilisée,
- -> Graphe (ou diagramme) des états.
- -> Table des états présents et des états suivants (états futurs).
- -> Simplifier les équations des bascules par la méthode de Karnaugh.
- -> Réaliser le logigramme du circuit.

Ces différentes étapes seront développées par la suite avec un exemple d'un compteur ayant la séquence 0;1;2;3.

Table de Transition de la bascule JK

Table de vérité :

JK rising edge (1)					
clk	J	K	Q(t)	Q(t)	function
1	X	X	$Q_{t-\Delta t}$	$\overline{\mathbf{Q}_{t-\Delta t}}$	Memory
1	0	0	$\mathbf{Q}_{t-\Deltat}$	$\overline{\mathbf{Q}_{t-\Delta t}}$	Memory
1	0	1	Q=J=0	Q =K=1	J (Reset)
1	1	0	Q=J=1	Q=K=0	J (Set)
1	1	1	$\overline{\mathbf{Q}_{t-1}}$	Q_{t-1}	Toggle

Table de Transition:

Q(t)	Q(t+1)	J	K
0	0	0	Φ
0	1	1	Φ
1	0	Φ	1
1	1	Φ	0
Φ = 0 ou 1			

Diagramme des états (Graphe des états)

E_i: Etat numéro i

Représentation binaire

Représentation décimale

Exemple pour un compteur 2-bit

Graphe des états

Exemple: compteur 2-bit

Table des états présents et des états suivants.

	Etat	Etat
	Présent	suivant
	$Q_1 Q_0$	$Q_1 Q_0$
0	0 0	0 1
1	0 1	10
2	10	11
3	11	00

Q(t)	Q(t+1)	J	K
0	0	0	Φ
0	1	1	Φ
1	0	Φ	1
1	1	Φ	0
$\times \equiv \Phi = 0$ ou 1			

K- Maps pour: J₁

 K_1

Tables de Karnaugh respectives pour J₁,K₁ ; J₀,K₀

Simplifier les équations des bascules par la méthode de Karnaugh :

	Etats Présents	Etats
	$Q_1 Q_0$	$Q_1 Q_0$
0	0 0	0 1
1	01	10
2	10	11
3	11	00

Q(t)	Q(t+1)	J	K
0	0	0	Φ
0	1	1	Φ
1	0	Φ	1
1	1	Φ	0
$\times = \Phi = 0$ ou 1			

$$J_0 = 1$$

$$K_0 = 1$$

 $J_1 = Q_0$

Logigramme du compteur synchrone 2-bit :

$$J_1 = Q_0$$

$$K_1 = Q_0$$

$$J_0 = 1$$

$$K_0 = 1$$

Définitions (3)

Compteur synchrone ou parallèle

- Un système séquentiel est synchrone lorsque tous les changements d'états du système sont synchronisés par:
 - le même front,
 - d'un même signal d'horloge.

Compteur asynchrone ou série ou à propagation

- Si ce qui précède n'est pas vérifié, le système est dit asynchrone,
- Un compteur asynchrone possède une signal d'horloge mais qui ne sert qu'à déclencher la première bascule, celle de poids le plus faible,
- Le déclenchement des bascules suivantes dépend de l'état des bascules précédentes,
- La structure des compteurs asynchrones entraîne la propagation en cascade des changements d'état du système et de ce fait le cumul des retards.

Compteur asynchrone / synchrone

Compteurs asynchrones à cycle complet (1)

- Les bascules D sont montées en mode 'Toggle': $D_i = \overline{Q}_i$
- Seule la bascule Q_0 est déclenchée par H: $CLK_0 = H$,
- Les autres bascules sont déclenchées par \overline{Q} : $CLK_i = \overline{Q_{i-1}}$,
- Conditions Initiales (CI): $Q_0 = Q_1 = Q_2 = 1$,

Compteur asynchrone #8, cycle complet incréméntal,

Compteurs asynchrones à cycle complet (2)

- Le chronogramme précédent ne tient pas compte du temps de propagation dans chaque bascule,
- La structure cascadée induit un cumul des retards entre l'entrée CLK_i et les sorties Q_i et Q̄_i.
- Ainsi plus le nombre de bascules est grand plus le retard de la dernière bascule est grand,
- Le décalages des sorties les unes par rapport aux autres peuvent produire des états transitoires indésirables (aléa, glitch).

Compteurs asynchrones à cycle complet (3)

- Entrées prioritaires asynchrones inactives:

 PRE=CLR=1,
- Bascules JK programmées en bascule (toggle): $J_i = K_i = 1$,
- Seule la bascule Q_0 est déclenchée par H: $CLK_0 = H$,
- Les autres bascules sont déclenchées par Q: CLK_i = Q_{i-1},
- Le déclenchement se fait sur front descendant: CLK_i = ___
- Le nombre compté est donné par:
 Q₃Q₂Q₁Q₀,
- Conditions initiales (CI): $Q_3Q_2Q_1Q_0=0000$.

Compteurs asynchrones à cycle complet (4)

Décompteurs asynchrones (1)

- Le décompteur à cycle complet, D: clk = ↑
 - Les bascules D sont montées en diviseur par 2: $D_i = \overline{Q}_i$,
 - Seule la bascule Q_0 est déclenchée par H: $CLK_0 = H$,
 - Les autres bascules sont déclenchées par Q: CLK_i = Q_{i-1}.

TE302 - Systèmes Numériques - Leçon 3

19/20

Décompteurs asynchrones (2)

Le décompteur à cycle complet, JK: clk = ↑

