

QuicSync

A Decentralized file sharing mechanism using **QUIC (Quick UDP Internet Connections)** protocol

Team

Members

- Shoray Singhal LCI2020037
- Nehal Sharma LCS2020001
- Sankalp Sahu LCI2020016
- Mili Singh LIT2020032

Supervisor

• Dr. Mainak Adhikari - Assistant Professor, CSE, IIIT Lucknow

Introduction

- Develop a fast, secure, and user-friendly decentralized file sharing system utilizing QUIC transport protocol.
- Use the encryption features of QUIC to ensure the secure transmission of data.
- Extensive testing and benchmarking will validate the system's effectiveness and superiority over other existing peer-to-peer file sharing systems.
- Make a proof-of-concept implementation of a hybrid P2P file sharing system using QUIC.

Related Work

SNo.	Authors	Objective	Gap
1	Enrique Costa- Montenegro et al	To Model a BitTorrent network as a multi-agent system	Incompatible with Binary-Agent system
2	Adam Langley et al	The QUIC Transport Protocol: Design and Internet-Scale Deployment	Limited Gain on Mobile Devices
3	Karthikeyan Bhargavan et al	To develop a verified reference implementation of TLS 1.2	No protection against Side-Channel Attacks

Motivation

Most decentralized file sharing systems use a peer-to-peer (P2P) networking method using the BitTorrent Protocol. It is designed to work with large numbers of users and handle high-bandwidth connections, making it an efficient and scalable solution for large file sharing.

But BitTorrent has some drawbacks:

- Reliance on trackers
- Traffic is often unencrypted
- Performance affected by the number of seeders, leechers and network congestion

QUIC

Improved speed and efficiency

 Reducing connection setup time, and minimizing protocol overheads.

Improved security

Using TLS 1.3 for encryption and authentication.

Improved reliability

 Using QUIC's loss recovery and congestion control mechanisms.

Research Question: To compare the performance of the QUIC protocol with other protocols commonly used in decentralized file sharing systems, such as BitTorrent or IPFS.

Scenario (1/3)

Overall scenario of the project is as follows:

• Peers connect to the rendezvous server and exchange information.

Scenario (2/3)

- Peers exchange UDP packets with each other's public IP addresses in an attempt to traverse the NATs. If successful, they establish a QUIC connection.
- If not, they attempt to establish a Quic connection using their private IP addresses.

Scenario (3/3)

- If a Quic connection is successfully established, the peers can communicate with each other.
- If the private IP connection attempt fails, the peers connect to a rendezvous server to transfer data through the server.

Workplan (1/2)

Till now

- Research and planning phase:
 - Studied the QUIC protocol and its implementation.
 - Studied the working of GO and other tools useful for the project.
- Design phase:
 - Designed the overall architecture of the project.
 - Designed the QUIC protocol implementation.

Workplan (2/2)

Next

- Implementation phase:
 - Implement the QUIC protocol.
 - Implement the rendezvous server.
 - Implement the file sharing system.
 - Implement Encryption and Authentication.
- Testing phase:
 - Test the whole system with contrained bandwidth and latency.
 - Test the system with different number of peers.
 - Test the system with different file sizes.

References

- BitTorrent, 2009. The official bittorrent page.
 URL http://www.bittorrent.com
- BitTorrent-Specification, 2009. Theory.org.
 URL http://wiki.theory.org/BitTorrentSpecification
- Google, 2019. The QUIC protocol.
 URL https://www.chromium.org/quic
- Chromium QUIC Implementation.
 URL https://cs.chromium.org/chromium/src/net/quic/
- IETF QUIC working group.
 URL https://datatracker.ietf.org/wg/quic/
- T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its relation to circular encryption.