MA0505 - Análisis I

Lección VI: Completitud

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

Definición de Completitud

Un Recordatorio...

A diferencia de *compacidad*, este concepto es intrínseco a los espacios métricos.

Recordemos que una sucesión $(x_n)_{n=1}^{\infty}$ es de Cauchy si para $\varepsilon > 0$, existe un $n_0 \in \mathbb{N}$ tal que

$$n, m \geqslant n_0 \Rightarrow d(x_n, x_m) < \varepsilon$$
.

Ejercicio

- Toda sucesión convergente es de Cauchy.
- Toda sucesión de Cauchy es acotada.

La Definición

Definición

A un espacio (X, d) le llamamos completo si toda sucesión de Cauchy en X es convergente.

Como ejemplo consideremos el espacio $\{f: [0,1] \to \mathbb{R}, f \text{ continua }\}$. La distancia es

$$d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Si $x \in [0,1]$ y $(f_n)_{n=1}^{\infty}$ es de Cauchy, entonces existe $n_0 \in \mathbb{N}$ tal que $d_{\infty}(f_n, f_m) < \frac{\varepsilon}{2}$ cuando $n, m \geqslant n_0$.

Resumen

q

Ejercicios

Lista 5

0

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.