COAL Notes - Day 1 (Simple English)

Lecture 1: Registers, Cache, Architecture, and RAM

- 1. Registers and Cache (Small Fast Memory in CPU)
- Registers are very small and very fast storage inside the CPU.
- They hold data that the CPU is currently using.
- Example: If CPU is adding 2 numbers, they will first go into registers.
- Cache is like a helper memory near CPU. It keeps recently used data ready.
 - L1 Cache: Closest and fastest.
 - L2 Cache: A little slower, more space.
 - L3 Cache: Shared by all CPU cores.

Difference Between Register and Cache:

Feature	Register	Cache	
Location	Inside the CPU core	Near the CPU (between CPU and RAM)	1
Speed	Fastest memory	Very fast (slightly slower than registers)	1
Size	Very small (few bytes)	Bigger (KB to MB)	
Used for	Data CPU is using right now	Recently used data/instructions	I
Controlled by	Programmer/Compiler	Automatically by hardware	1
Example	Adding numbers directly in C	PU Keeping recently used variables close	e to CPU
I			

- 2. Von Neumann Architecture (Basic Computer Design)
- A computer is made from CPU, memory, and input/output devices.

COAL Notes - Day 1 (Simple English)

- Both data and instructions (code) are stored in the same memory.

- CPU gets both data and instructions from memory using a "bus".

- This design is called Von Neumann Architecture.

3. Internal Buses (Wires for Communication Inside Computer)						
- Buses are like roads for data inside the computer.						
- Address Bus: Tells where to send or get data from memory.						
- Data Bus: Carries the actual data.						
- Control Bus: Sends signals like "read" or "write".						
- More bits in a bus = more power and speed.						
4. RAM Logical Structure (How RAM is Organized)						
- RAM stores data temporarily when your computer is running.						
- It is made of cells. Each cell has a unique address.						
- RAM is accessed in blocks. Size of blocks depends on system (32-bit or 64-bit).						
- When power is off, RAM is cleared.						
5. 32-bit vs 64-bit Systems (How Big Data Can Be)						
- 32-bit means CPU can handle 32 bits of data at once.						
- 64-bit means CPU can handle 64 bits of data at once.						
- 64-bit systems can use more RAM and are faster for heavy tasks.						
- Most modern computers are 64-bit now.						
Feature 32-bit 64-bit						

COAL Notes - Day 1 (Simple English)

Register size	32 bits	64 bits	
Max RAM	Around 4 GB	Very large (TBs)	I
Used in	Old systems	New systems, laptops	l
Word size	4 bytes	8 bytes	