

Controle Automático I

Trabalho 1

MODELAGEM DE SISTEMAS

DATA: 23 de Maio de 2019

O trabalho será feito **em duplas** e será necessário o uso do *software* Matlab.

CONTEXTUALIZAÇÃO

Exitem diversos tipos válvulas que atendem os mais variados setores, como: indústrias farmacêutica, químicas, alimentícias, siderurgias, saneamento, óleo e gás, açúcar e álcool, biocombustíveis, mineração, etc. No entanto, embora algumas válvulas tenham aplicações parecidas, cada tipo de válvula é destinada para uma finalidade. Dentro de um processo industrial, as válvulas podem representar até 15% de toda instalação (**Fonte: Meio Filtrante**).

A figura abaixo ilustra um sistema onde um motor CC é responsável por acionar uma válvula que permite a passagem de líquido de densidade ρ constante de um reservatório para um tanque.

Figura 1: Sistema analisado

CARACTERIZAÇÃO DO SISTEMA

As seguintes afirmações podem ser feitas com relação a este sistema (N é o número de cada dupla):

- O fluxo volumétrico de entrada do tanque, $q_i(t)$, depende da abertura angular fornecida pelo motor, $\theta(t)$, de forma que $q_i(t) = 80\theta(t)$;
- O tanque apresenta uma área $A = 10 * Nm^2$ e seu fluxo de saída, $q_o(t)$, é dado por uma relação linear com a altura do líquido no tanque, de forma que $q_o(t) = N * h(t)$;
- A indutância do motor é insignificante, assim como o atrito; J = 20 e equivale ao momento de inércia do sistema e as seguintes equações são válidas para o motor CC:

$$T_m = J\ddot{\theta}$$

$$T_m = 10i_a$$

$$v_b = 0.0706\dot{\theta}$$

PARTE 1 - MODELAGEM DO SISTEMA

- A partir do balanço de massa, desenvolva a equação diferencial para a altura do tanque dependendo da abertura angular do motor;
- Escreva a equação que expressa a corrente do circuito do motor em função da tensão de entrada e da velocidade do motor.

PARTE 2 - ANÁLISE DO SISTEMA

Faça, utilizando o software Matlab, as seguintes análises:

- Represente este sistema no ambiente Simulink do Matlab, considerando como entrada a tensão aplicada no motor. Essa tensão será representada por um sinal do tipo degrau com amplitude de 0,2V. A saída do sistema será a altura do líquido no tanque.
- Plote gráficos das seguintes variáveis em função do tempo: h(t), $q_o(t)$, $q_i(t)$, $\theta(t)$, $\theta(t)$ e $i_a(t)$. Comente os aspectos dos gráficos obtidos.
- Faça o item anterior, considerando que a tensão de entrada vale 0,02V e depois considerando que ela vale 2V. O que acontece com as variáveis analisadas?
 Faça uma análise comparativa dos gráficos para cada valor de tensão de entrada (0,02V, 0,2V e 2V).
- Do jeito que está sendo operada a planta, o operador aplica uma tensão e a válvula sempre abre completamente. Então, qual o efeito da tensão aplicada na abertura da válvula? Você diria que essa operação da válvula está ideal (sempre abrir completamente)? Se não, como deveria ser a operação desta planta?

Fazer um relatório detalhado, e enviar até o dia 24 de junho em *formato .pdf* para dayanebroedel@ucl.br, com o título TC1 - Controle1 - <Insira os nomes das duplas aqui>. Esse também deverá ser o nome do arquivo enviado.

Aluno	N
Vitor Brito	5
Pedro Italo	5
Micael	10
Ronaldo	10
Vinicius	15
Ruan	15
Willian	20
Juliana	20
Igor	25
Erick	25
Saulo	30
Taiani	30
Tiago	35
Josué	35
Elder	40
Renato	40
Caíque	45
Rafael	45
Marlon	50
Eder	50
Queimily	55
Laysla	55
Matheus	60
Felipe	60
Derby	65
Nicolas	65