Ciclo de Born – Haber

Es un método para descomponer en etapas sencillas de energías conocidas, el cambio energético producido en la formación de un sólido iónico a partir de los elementos que lo constituyen.

Ejemplos:

E1.- En la formación del ClNa, el calor de formación experimental es Hf = -410,9 Kj/mol y los pasos serían:

i.-
$$Na_{(metal)} + \frac{1}{2} Cl_{2 (g)} = Na^{+} Cl_{(solido)} Hf = -411 Kj/mol$$

Ciclo:

El Na metálico sólido, tiene que separar sus átomos entre sí, para ello habrá que aportarle la energía de sublimación del Na:

Na (sólido) +
$$E$$
(Sublimación) Na (gas); $S = 109 \text{ Kj/mol}$

ii.- El $Na_{(gas)}$ se ioniza, para lo cual hay que comunicarle la energía de ionización del Na:

$$Na_{(gas)} + E_{(ionización)}$$
 Na⁺ + 1 e⁻ $I = 122 \text{ Kj/mol}$

iii.- El Cloro, no metal, tendrá que romper la molécula (Cl_2) aportando la energía de disociación, que al obtener dos átomos de Cl, la energía será la mitad, es decir disociamos medio mol de Cl_2 para obtener 1 mol de átomos de Cl.

$$\frac{1}{2} \text{ Cl}_{2 \text{ (gas)}} + \frac{1}{2} \text{ E}_{\text{(Disociación)}} - \text{Cl}_{\text{ (gas)}}$$
 $\frac{1}{2} \text{ D} = 122 \text{ Kj/mol}$

iv.- Posteriormente, aportaremos 1 e a cada átomo de Cl, para transformarlo en un ión negativo. Para elle aportaremos la energía de afinidad electrónica – En principio la energía aportada a un sistema es positiva; la energía cedida por el sistema es negativa. –

$$Cl_{(g)} + 1 e^{-}$$
 $Cl_{(g)} + E_{(afinidad)}$ $E = -348 \text{ Kj/mol}$

v.- Como que la energía desprendida al pasar los iones en estado gaseoso a la formación de un sólido cristalino –Energía reticular -.

La energía desprendida no supera a la suministrada; esto es debido a que los iones en estado gaseoso se atraen y hacen que la energía potencial electrónica disminuya.

$$Na^{+}_{(g)} + Cl^{-}_{(g)}$$
 \longrightarrow $NaCl_{(S)} + E_{(reticular)}$ Energía reticular $(U) = -790 \text{ Kj/mol}$

Es decir el balance sería:

$$\Delta Ef = E_{(Sublimación)} + E_{(Ionización)} + \frac{1}{2} E_{(Disociación)} + E_{(Afinidad)} + E_{(Reticular)}$$
 Simplificando
$$\Delta Ef = S + I + \frac{1}{2} D + E + U$$

$$\Delta Ef = 109 + 496 + 122 - 348 - 790 ;$$

$$\Delta Ef = -411 \ Kj/mol$$

Energías:

Entalpía de red

La estabilidad de un sólido iónico viene fundamentalmente dada por la fuerza de atracción entre los iones de carga opuesta. La entalpía de red (Δ Hu) mide la estabilidad de una red iónica. Es la entalpía correspondiente al proceso de ruptura en iones gaseosos.

E2.-

P.e.
$$KCl_{(s)} \longrightarrow K^+_{(S)} + Cl^-_{(g)}$$

La entalpía de formación (Δ Hf) de una substancia es la correspondiente al proceso de formación de dicha substancia a partir de los elementos en su forma estable en condiciones normales.

p.e.
$$K_{(S)} + \frac{1}{2} Cl_{2(g)}$$
 KCl (S)

ΔH_S = Entalpía de sublimación 89Kj/mol

 ΔH_D = Entalpía de disolución , ½ 244= 122 Kj/mol

ΔH_I = Entalpía ionización, 418 Kj/mol

ΔH_{EA} = Entalpía de electroafinidad, -349 Kj/mol

 ΔH_{U} = Entalpía de red, - 717 Kj/mol

ΔH_f = Entalpía de formación, -437 Kj/mol

- 1.- Formación de átomos gaseosos a partir de los elementos.
- 2.- Formación de los iones gaseosos a partir de los átomos gaseosos.
- 3.- Formación de la red iónica a partir de los iones gaseosos.

$$\Delta H_f = \Delta H_S (K) + \frac{1}{2} \Delta H_D (Cl_2) + \Delta H_I (K) + \Delta H_{EA} (Cl) - \Delta H_U$$

E3.- Entalpía de disolución del LiCl está relacionada con la hidratación y de red:

 ΔH_H (Li⁺) Entalpía de hidratación = -558 Kj/mol ΔH_H (Cl⁻) Entalpía de hidratación = -340 Kj/mol ΔH_U (LiCl) Entalpía de red = 861 Kj/mol ΔH_d Entalpía de disolución = -37 Kj/mol

- 1.- Ruptura de la red iónica para producir gases
- 2.- Hidratación de los iones gaseosos

 ΔH_d (LiCl) = ΔH_H (Li⁺) + ΔH_H (Cl⁻) + ΔH_U (LiCl)

E4.- Calcular la afinidad electrónica del flúor a partir de los siguientes datos:

 $E_{Sub}(Rb) = 78 \text{ Kj/mol}$ $E_{dis}(F_2) = 160 \text{ Kj/mol}$ $E_{ion}(Rb) = 402 \text{ Kj/mol}$ $\Delta H_H(RbF) = -552 \text{ Kj/mol}$

 E_{ret} (RbF) = -760 Kj/mol

(R: -352 Kj/mol)

$$\Delta H_H (RbF) = S + E_{ion}(Rb) + 1/2 E_{dis} (F_2) + A + (-U)$$
 = $A = -78 - 402 - 80 - 552 + 760 = -352 \text{ Kj/mol}$

E5.- Los ciclos para el NaF, KF, LiF serían del tipo:

E6.- Estudiar la espontaneidad de la formación Na + Cl₂ NaCl₂

$$\Delta H_f = \Delta H_S + \Delta H_D + PI_1 + PI_2 - 2AE + U_D$$

 $\Delta H_f = 109 + 242 + 500 + 4560 - (2x358) - 2056$
 $\Delta H_f = 2639 \text{ Kj/mol}$

Como $\Delta H_f > 0$ y $\Delta S < 0$ (aumenta el orden), la reacción no es espontánea.

E7.- Determinar la entalpía de sublimación del I a partir de los datos siguientes:

 ΔH_d (I₂) = 144 Kj/mol ΔH_s (Pb) = 178 Kj/mol ΔH_f (PbI₂) = -178 Kj/mol

Ei1 = 715,5 Kj/mol; Ei2 = 1443,5 Kj/mol; U = -2108 Kj/mol

$$\Delta H_f = \Delta H_s + Ei1 + Ei2 + \Delta H_d + 2 \cdot Afinidad e^- + U$$

$$-178 = 178 + 715,5 + 1443,5 + 144 + X + 590 - 2108 = 39 \text{ Kj/mol}$$

E8.- Calcular la energía de red en la formación del MgO.

$$Mg^{2+}(g) + O^{-2}(g) \longrightarrow MgO$$

$$EI_{2(Mg)} = 1447,9 \text{ Kj/mol} \qquad EI_{2(0)} = -791 \text{ Kj/mol}$$

$$Mg^{+}(g) \qquad O^{-}(g)$$

$$EI_{1(Mg)} = 736,3 \text{ Kj/mol} \qquad EI_{1(0)} = -141,2 \text{ Kj/mol} \qquad U$$

$$Mg(g) \qquad O_{(g)}$$

$$S_{(Mg)} = 146,1 \text{ Kj/mol} \qquad \Delta H_d = \frac{1}{2} 498,2 = 249,1 \text{Kj/mol}$$

$$Mg(s) \qquad + \frac{1}{2} O_2$$

$$-602 = 2330,3 - 141,2 - 791 + U + (498,2 \cdot 1/2) \qquad U = 2249,2 \text{ Kj/mol}$$

E9.- Ciclo de Born - Haber para el CuCl₂:

$$U_{Reticular} = \Delta H_f - S_{(Cu)} - EI_{1(Cu)} - EI_{2(Cu)} - \Delta H_{d(Cl)} - 2 \cdot E. A e^{-(Cl)}$$

E10.- Calcular la entalpía estándar de formación del CaCl₂ a partir de:

Sublimación del Ca, $\Delta H_s = 178,2$ Kj/mol. Disociación del Cl₂, $\Delta H_d = 243,2$ Kj/mol. Energía de ionización 1 del Ca, $\Delta H_I = 590$ Kj/mol. Energía de disociación 2 del Ca, $\Delta H_{II} = 1145$ Kj/mol. Afinidad electrónica del Cloro, $\Delta H_{AE} = -348$ Kj/mol. Energía reticular del CaCl₂, U = -2223 Kj/mol.

E11.- Ciclo de Born - Haber para el CuCl₂:

$$\Delta H^{0}_{f} = \Delta H_{S} + \Delta H_{I} + \Delta H_{II} + \Delta H_{d} + 2 \cdot \Delta H_{AE} + U$$

$$\Delta H^{0}_{f} = 178,2 + 590 + 1145 + 243,2 - 2 \cdot 348 - 2223 = -762,6 \text{ Kj/mol}.$$