

Viewability in Programmatic Advertising

Charlene Chen

Agenda

- Background
- Hypothesis & Problem statement
- Dataset
- EDA
- Model
- Next Steps

Background

How we define if a video is viewable?

MRC VS. GroupM Standards

GroupM saw the MRC's guidelines as minimums by which we can trade. As a result, GroupM came up with stricter guidelines.

	Display	Video N 110
MRC	50% of Ad for 1 Second	50% of Ad for 2 Consecutive Seconds
GroupM*	100% of Ad	100% of Ad for 50% of Video Duration Sound On/User Initiated

^{*}assumes 100% NHT free

Viewability is here, it is real.

"An ad that is not seen by a human has zero value." - Ari Bluman

"At Xaxis, we believe strongly that viewability is a standard, not a KPI."

The Underlying Formula

Campaign	Impressions	View Measured Imps	Viewable Imps
Test	100,000	85,000	40,000

*All data should come from the viewability vendors. No 3rd party ad server data should be used for any of the calculations.

Measurement: Viewability Vendors

Problem Statement

This project is to determine which features (<u>advertiser vertical</u>, <u>domain/site</u>, <u>creative size</u>, <u>supply vendor</u>, <u>browser</u>, <u>non-human traffic rate</u>, <u>and small player size rate</u>) will lead to higher (>=10.1%) GroupM IVR and what different roles they are playing (high coefficient vs. low coefficient) when it comes to higher GroupM IVR.

Hypothesis

Advertiser vertical, domain/site, creative size, supply vendor, browser, non-human traffic rate, and small player size rate will allow us to predict if a video will have high viewability. (GroupM IVR>=10.1%)

Dataset

MOAT

GroupM: Use these measurements

MRC: Use these measurements

Advertiser	Impressions Analyzed	Human Impressions	Human and Fully On-Screen Measurable Impressions	Human, Audible & Fully On-Screen for Half of Duration (15 sec. cap) Impressions	NHT %	In-View Measurable Impressions	2 Sec In-View Impressions	2 Sec Video In-View %
×	3,756,051	3,465,963	3,356,065	1,117,974	7.72%	3,710,811	2,220,704	60.06%
jhcbia2	1,110,319	1,055,526	1,048,814	423,443	4.93%	1,104,898	834,992	75.57%
muzlyaz	594,545	565,524	563,427	250,658	4.88%	594,021	420,408	70.77%
oudr0mx	501,278	369,937	369,099	95,361	26.20%	500,939	257,321	51.37%
h23ak6v	360,959	356,345	343,258	172,728	1.28%	354,901	270,762	76.29%
ibekub67	307,992	291,147	241,833	20,796	5.47%	285,645	77,072	26.98%

January - March 2016 from MOAT

```
In [3]: df=pd.read_csv("2016Q1_video_viewability_train.csv")
Out[3]:
                                         Moat
                                                                                Supply
                                                                   Supply
                                                                                                           Advertiser
                                                                                                                                Impressions
                                                             Size
                                                                                Vendor Advertiser ID
               Moat Domain ID
                                         Domain Size ID
                                                                                                                       Browser
                                                             Label | Vendor ID
                                                                                                           Label
                                                                                                                                Analyzed
                                         Label
                                                                                Label
                                                                                                                                926627
               facebook.com
                                         NaN
                                                  400x300
                                                             NaN
                                                                   adaptv
                                                                                NaN
                                                                                        rvqft21
                                                                                                           Indeed.com
                                                                                                                       Chrome
                                                                                                                       Internet
                                                  450x300
                                                                   (unclassified) NaN
                                                                                        gknuc79
                                                                                                                                574514
               foodiewebsite.com
                                         NaN
                                                             NaN
                                                                                                           Valeant
                                                                                                                       Explorer
                                                                   (unclassified) NaN
                                                                                                                                406049
               facebook.com
                                         NaN
                                                  400x300
                                                             NaN
                                                                                        qknuc79
                                                                                                           Valeant
                                                                                                                       Chrome
                                                                                        qknuc79
                                                                                                                                405838
               thedoctorstv.com
                                         NaN
                                                  600x450
                                                             NaN
                                                                   (unclassified) NaN
                                                                                                           Valeant
                                                                                                                       Chrome
               facebook.com
                                         NaN
                                                  400x300
                                                             NaN
                                                                   (unclassified) NaN
                                                                                        5b1h712
                                                                                                           NaN
                                                                                                                       Chrome
                                                                                                                                318226
                                                                                                                       Internet
               popcornflix.com
                                         NaN
                                                  450x350
                                                             NaN
                                                                   (unclassified) NaN
                                                                                        h23ak6v
                                                                                                                                304786
                                                                                                           NBCU
                                                                                                                       Explorer
```

```
In [4]: df.shape
Out[4]: (1782, 107)
```

EDA

- Missing value
- If the dataset is representative

SUMMARY BENCHMARKS

59.8% 51.7% 42.3% 46.3% Fully On-Screen % (No Time Minimum) 3 Sec Video In-View % 3 Sec Fully On-Screen % 18.6s 81.4% Audible and Fully On-Screen for Half of Human, Audible & Fully On-Screen for Half of Audible and 80% On-% of Video Played Screen for Half of Duration (15 sec. cap) % Duration (15 sec. cap) % Duration % 64.3% Reached Complete % Audible and Visible on Completion Quality Complete %

High_IVR_df = df[df.GroupM_IVR >= 10.1]

High IVR df.shape

(746, 107)

746/1782.0

0.4186307519640853

###This dataset includes 41.9% videos which have high GroupM viewability

df.GroupM_IVR.mean()

19.96594048287478

This dataset is a good sample!

GroupM IVR

In [253]: df.groupby('Browser')['binary'].value_counts(inplace=True)

Out[253]:	Browser	binary			
	(unclassified)	1	2		
	Chrome	0	636		
		1	262		
	Firefox	0	145		
		1	52		
	Internet Explorer	1	295		
		0	292		
	Opera	0	10		
	Safari	0	61		
		1	27		

Name: binary, dtype: int64

Out[255]: <seaborn.axisgrid.FacetGrid at 0x11a7a860>

#get_dummies to convert categorical features into binary features

```
In [262]: def describe_categorical(X):
    from IPython.display import display, HTML
    display(HTML(X[X.columns[X.dtypes=='object']].describe().to_html()))
```

In [263]: describe_categorical(X)

	advertiser	supply	smlplayer		
count	1035	1035	1035		
unique	13	8	2		
top	Revlon	(unclassified)	0.00%		
freq	223	417	935		

```
In [264]: # use get_dummies to convert categoricals into binary features
    categorical_variables=['advertiser','supply','smlplayer']

for variable in categorical_variables:
    #create array of dummies
    dummies = pd.get_dummies(X[variable], prefix=variable)
    #update X to include dummies and drop main variable
    X=pd.concat([X, dummies],axis=1)
    X.drop([variable], axis =1, inplace=True)
```

Model: Decision Trees

```
In [268]: ###Build a decision tree model to predict the "high/low viewability" of a given video
          from sklearn.tree import DecisionTreeClassifier
          y=X['Binary']
          X.drop('Binary', axis=1, inplace=True)
          model = DecisionTreeClassifier()
In [269]: # Fits the model
          model.fit(X, y)
Out[269]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
                      max features=None, max leaf nodes=None,
                      min_impurity_split=1e-07, min_samples_leaf=1,
                      min_samples_split=2, min_weight_fraction_leaf=0.0,
                      presort=False, random state=None, splitter='best')
In [286]: ###Evaluate the decision tree using cross-validation; use AUC as the evaluation metric.
          from sklearn.model_selection import cross_val_score
          scores = cross_val_score(model, X, y, scoring='roc_auc', cv=5)
          print('CV AUC {}, Average AUC {}'.format(scores, scores.mean()))
          CV AUC [ 0.94880022 0.92666104 0.90779842 0.91380443 0.89184448], Average AUC 0.917781717632
```

Random Forest Classifier

Evaluate the Random Forest model using cross-validation; increase the number of estimators and view how that improves predictive performance.

```
In [290]: scores = cross val score(model, X, y, scoring='accuracy')
       print('CV Accuracy {}, Average Accuracy {}'.format(scores, scores.mean()))
       for n trees in range(1, 150, 10):
          model = RandomForestClassifier(n estimators = n trees)
          scores = cross val score(model, X, y, scoring='accuracy')
          print('n trees: {}, CV accuracy {}, Average accuracy {}'.format(n trees, scores, scores.mean()))
       n trees: 11, CV accuracy [ 0.84393064  0.8115942  0.79651163], Average accuracy 0.817345488881
       n trees: 21, CV accuracy [ 0.86705202  0.8
                                            0.81395349], Average accuracy 0.827001837164
                                   n trees: 31, CV accuracy [ 0.8583815
       n trees: 51, CV accuracy [ 0.84393064  0.8173913
                                            0.82267442], Average accuracy 0.827998786264
       n trees: 61, CV accuracy [ 0.86705202  0.82608696  0.8255814 ], Average accuracy 0.839573458331
       n trees: 71, CV accuracy [ 0.84682081  0.83188406  0.81104651], Average accuracy 0.829917126282
       n trees: 101, CV accuracy [ 0.85549133  0.82318841  0.82267442], Average accuracy 0.833784717961
       n trees: 111, CV accuracy [ 0.85260116  0.8173913
                                             0.82267442], Average accuracy 0.830888959674
       n trees: 121, CV accuracy [ 0.84971098  0.82608696  0.80813953], Average accuracy 0.827979158021
       n trees: 131, CV accuracy [ 0.86416185  0.82028986  0.81976744], Average accuracy 0.834739715548
       n trees: 141, CV accuracy [ 0.85260116  0.83478261  0.81976744], Average accuracy 0.835717068875
```

	Features	Importance Score
0	hover	0.445989
1	btf	0.177846
4	Internet Explorer	0.051982
11	advertiser_Indeed.com	0.044253
2	Chrome	0.030037
28	smlplayer_0.00%	0.022486
29	smlplayer_100.00%	0.021397
8	advertiser_Church and Dwight	0.019005
15	advertiser_Revlon	0.014390
20	supply_(unclassified)	0.014233
21	supply_adaptv	0.013980
22	supply_brightroll	0.013331
18	advertiser_Valeant	0.013065
23	supply_liverail	0.012457
12	advertiser_NBCU	0.012412

Check Feature Importance

X.corr()

	hover	btf	Binary	Chrome	Firefox	Internet Explorer
hover	1.000000	-0.318352	0.47904	-0.274742	-0.100049	0.277401
btf	-0.31835	1.000000	-0.294508	0.130648	0.03107	-0.148275
Binary	0.47904	-0.294508	1.000000	-0.251744	-0.044767	0.30794
Chrome	-0.27474	0.130648	-0.251744	1.000000	-0.282472	-0.76779
Firefox	-0.10005	0.03107	-0.044767	-0.282472	1.000000	-0.221539
Internet Explorer	0.277401	-0.148275	0.30794	-0.76779	-0.221539	1.000000
Safari	0.150328	0.00828	-0.046452	-0.222921	-0.064322	-0.174834
advertiser_Blackrock	0.125874	-0.087175	0.137845	-0.0824	-0.014264	0.081399
advertiser_Church and Dwight	0.132419	-0.058738	0.172489	0.128957	-0.037272	-0.090699
advertiser_IKEA	0.05596	0.030442	0.096693	-0.057392	-0.043039	0.099543
advertiser_Indeed.com	-0.13665	-0.047675	-0.301627	0.158122	-0.028266	-0.164672
advertiser_NBCU	-0.03323	0.216426	0.02428	-0.041903	0.058983	-0.009463
advertiser_Revlon	0.068397	-0.11764	0.116862	-0.16599	0.010631	0.141612
advertiser_Valeant	-0.10197	0.120005	-0.117002	0.061059	0.011919	-0.03897
supply_(unclassified)	-0.02598	0.13204	0.051405	-0.028699	0.041594	0.033645
supply_adaptv	0.107456	-0.138008	-0.078212	0.041419	-0.071755	-0.027046
supply_brightroll	-0.0565	0.069936	0.09529	0.002992	0.031887	-0.019611
supply_liverail	0.029054	-0.056407	-0.009298	-0.1048	0.010935	0.067907
supply_tremor	-0.05031	-0.10722	-0.016502	0.070045	-0.018741	-0.043208
smlplayer_0.00%	0.229509	-0.426781	0.264193	-0.003476	-0.042912	-0.002805
smlplayer_100.00%	-0.22951	0.426781	-0.264193	0.003476	0.042912	0.002805

Using Logistic Regression model to compare accuracy score

```
In [455]: from sklearn.cross validation import train test split
          from sklearn.preprocessing import StandardScaler
          Scaler =StandardScaler()
          X=Scaler.fit_transform(X)
In [456]: X train,X test,y train,y test=train test split(X,y,test size=0.2, random state=42)
In [457]: # TODO
          from sklearn.linear_model import LogisticRegression
          LR=LogisticRegression(C=10**2)
          #X=X train[df.columns[1:]]
          #y=y train['Binary']
          output=LR.fit(X train,y train)
In [458]: preds = output.predict(X test)
In [459]:
          from sklearn.metrics import accuracy_score
          score = accuracy score(y test,preds)
          print "LR accuracy is {:.2f}".format(score)
          LR accuracy is 0.84
```


Next Steps

"Viewability is not about ad effectiveness nor ad engagement. It is simply the delivery of ads that render on the screen. In other words, the opportunity to be seen."

Viewability VS. View Through Rate

Thank You!