FLAC Assignment 5

Exercise 1 Are the following two DFAs equivalent? "\rightarrow" and "*" is used to denote start and accept state here. Justify your conclusion. minimize, make isomorphism

	0	1
$\rightarrow A$	В	F
В	G	С
*C	A	С
D	С	G
E	Н	F
F	С	G
G	G	Е
Н	G	С

	0	1
$\rightarrow A$	G	С
В	В	A
С	D	В
*D	A	D
G	В	D

Exercise 2 $\Sigma = \{0, 1\}$, build a two-way finite automaton that recognizes the following language:

$$\{w\Sigma^*w^R\mid w\in\Sigma^{100\}}$$

Try to minimize the number of states of the automata. At least how many states does a minimum DFA have for the same language?

Exercise 3 Given the following Context Free Grammar:

Please answer the following question:

- 1. What are the variables? A,B,C,D,E,S
- 2. What are the terminals? a,b,c
- 3. Which is the start variable?
- 4. Give three strings in the language. ac,aacc,aaaccc
- 5. Give three strings not in the language. e, abc, aabbcc
- 6. Is "aaabbcc" in the language?
- 7. Give a description of the language in English.

Exercise 4 Make an OBDD for the boolean function

$$x_1 \oplus x_2 \oplus x_3$$
.

Hint: This is the parity function; it is true if and only if an odd number of variables are true.

Exercise 5 (bonus) Is $\{(d^*c)^m(c^*d)^m \mid m \ge 1\}$ a regular language? Prove your conclusion.

X generates (d*c)

Y generates (c*d)