Alexander Bleicher

3. Regularität von Sprachen

Definition Reguläre Sprache

Eine Sprache L über einem Alphabet X heißt genau dann regulär, wenn es einen endlichen Automaten A (DEA oder NEA) gibt, mit L(A) = L.

Beweisführung mit Pumping - Lemma

Wenn Pumping – Lemma für L nicht gilt, ist L keine reguläre Sprache.

Schritt 1: Sei $p \in \mathbb{N}$ beliebig

Schritt 2: Finde ein Wort $x \in L$ mit $|x| \ge p$

Schritt 3: Zerlege x in drei Teile uvw mit $|uv| \le p$ und $|v| \ge 1$ (Analog geht auch $|vw| \le p$).

Schritt 4: Pumpe v, sodass das daraus entstandene Wort <u>nicht</u> ∈ L. Diese Begründung hinschreiben.

Schritt 5: Daraus folgt Pumping – Lemma gilt nicht. L ist also nicht regulär.

Aufgabe 1

Zeigen Sie, dass die Sprache nicht regulär ist.

- a) L = { $a^n bb a^n | n \in \mathbb{N}$ }
- b) L = { $a^n b^{n-2} | n \in \mathbb{N} \text{ und } n \ge 2$ }
- c) $L = \{ a b^n a^{n+2} | n \in \mathbb{N} \}$
- d) L = { $a^n b^m c^i \mid n, m, i \in \mathbb{N}, n + m = i$ }

Aufgabe 2

Sind die folgenden Sprachen regulär? Begründen Sie.

- a) $L = \{a^n b^n \mid n \in \mathbb{N} \text{ und } n \leq 2\}$
- b) L = {c d^i cc d^{i+j} | $i \in \mathbb{N}$, j = |c|}
- c) $L = \{x^n \ y \ u | \ n \in \mathbb{N}, \ u \in \{a, b\}^*, \ |u| \le n+3\}$