

Des it produce a largest compatible subset? Lemma: Let S be fle output of EFT.

Let T be any compatible subset.

Order all jobs in S and T by EFT.

Kinny Kisi Linn, Linn

Let S be the output of EFT, and M be any largest competible subset. The ISI'= IMI Proof. Write S=K,,.., K₁₅₁ and M=L,,..,L₁₀₁₁. Suppose By the lemma, $f(K_{151}) \leq f(L_{151})$. But them $f(K_{151}) \leq f(L_{151}) \leq s(L_{151+1})$. But then LISI+1 B compatible with S, or contradiction

Theorem Let S be the sutput of ECT and M be any largest compatible sisset. The ISI'= IMI Proof. Write S=K1,, K1s1 and M=L1,Lin1. Signore 1SI < IM. By the lemmon, f(K1s1) \(\sigma \) f(L1s1). But then \[\int \left(\text{Kis1} \right) \(\sigma \) f(L1s1) \(\sigma \) compatible with S, a compatible with S, a compatible with S.	
Proof. Write S=K1,, K151 and M=L1, L1011. Suprose 151<1M. R V 10 C(V) < C(1,) R + Hum.	
R V 10 C(V) < C(1,) R + Hum	
But then L _{ISI+1} is compatible with S _i or contradiction	

Graphs A graph G = (V, E) is a wrtex set V together with an edge set E = V2. 9,4) 12 an elge 5, h) E E A cycle is a sick to itself, A free is a connected graph w/o cycles. M Tuo verties are connected

Greedy Algorithus for MST.
Kruskal's Algerithm
Start with as elses. At each step add the lowest wight edge that doesn't conect a cycle.
Prims Algorithm
Stert with an artifrary root out no edges.
At each step, extend the tree by adding the lovest weight edge an the boundary.

Why do Kruskal's gul Prim's work? Lemma. For any SCV, every MST contains the lowest weight edge in the cert of S. M

C'est Lemma. For any SCV, every MST contains the lowest weight edge in the cent of S. Proof. Let e be the lowest weight edge in the cut & S. Let T be any sparning tree. Suppose T doesn't outain e, WTS is that Tis ust a MST. a path in T fran v to w. Iden 13 that we exchange e' for e. T'= Tize'30 Ee3

Cut Lemma. For any SCV, every MST contains
the lowest neight edge in the cent of S. Need to show T'is a Proof. Let e be the lowest weight edge in the cut & S. Let T be any spanning tree. Suppose T doesn't outain e, WTS 12 that Tis unt a MST. replace et in any path Sy the rest of the cycle Dypose me have a a path in T fram v to w. Cycle on T. This cycle unst include c. Con estyl Idea is that we exchange e' for e. T'= Tize'30 E3 to a cycle in I using the $\omega(T') = \omega(T) - \omega(e') + \omega(e) < \omega(T)$ Same Cozianoth => They lower weight then T

