The Chemical Mechanism of MECCA

KPP version: 2.2.3_rs3

MECCA version: 4.4.0

Date: June 12, 2020

Batch file: latex

Integrator: rosenbrock_posdef

Gas equation file: gas.eqn

Replacement file:

Selected reactions:

"!Ara"

Number of aerosol phases: 1

Number of species in selected mechanism:

Gas phase: 699

Aqueous phase: 104

All species: 805

Number of reactions in selected mechanism: Gas phase (Gnnn): 1794

Aqueous phase (Annn): 188 Henry (Hnnn): 93

Photolysis (Jnnn): 384 Aqueous phase photolysis (PHnnn): 5

Heterogeneous (HETnnn): 21 Equilibria (EQnn): 86

Isotope exchange (IEXnnn): 0
Tagging equations (TAGnnn): 0

Dummy (Dnn): 1
All equations: 2572

Table 1: Gas phase reactions

#	labels	reaction	rate coefficient	reference
G1000	$\operatorname{UpStTrG}$	$O_2 + O(^1D) \to O(^3P) + O_2$	3.3E-11*EXP(55./temp)	Burkholder et al. (2015)
G1001	$\operatorname{UpStTrG}$	$\mathrm{O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{O_3}$	6.0E-34*((temp/300.)**(-2.4))	Burkholder et al. (2015)
			*cair	
G1002a	UpStG	$\mathrm{O_3} + \mathrm{O(^1D)} \rightarrow 2 \; \mathrm{O_2}$	1.2E-10	Burkholder et al. $(2015)^*$
G1002b	UpG	$O_3 + O(^1D) \rightarrow O_2 + 2 O(^3P)$	1.2E-10	Burkholder et al. (2015)
G1003	UpStG	$\mathrm{O_3} + \mathrm{O(^3P)} ightarrow 2 \mathrm{O_2}$	8.0E-12*EXP(-2060./temp)	Burkholder et al. (2015)
G1004	UpG	$O_2 + O^+ \rightarrow O_2^+ + O(^3P)$	k_Op_O2(temp,temp_ion)	Fuller-Rowell (1993)
G1101	UpG	$O_2^+ + e^- \to 2 O(^3P)$	2.7E-7*(300./temp_elec)**.7	Fuller-Rowell (1993)
G2100	UpStTrG	$\mathrm{H} + \mathrm{O}_2 \to \mathrm{HO}_2$	k_3rd(temp,cair,4.4E-32,1.3,	Burkholder et al. (2015)
			7.5E-11,-0.2,0.6)	
G2101	UpStG	$\mathrm{H} + \mathrm{O}_3 \rightarrow \mathrm{OH} + \mathrm{O}_2$	1.4E-10*EXP(-470./temp)	Burkholder et al. (2015)
G2102	UpStG	$\mathrm{H_2} + \mathrm{O(^1D)} \rightarrow \mathrm{H} + \mathrm{OH}$	1.2E-10	Burkholder et al. (2015)
G2103	UpStG	$\mathrm{OH} + \mathrm{O}(^{3}\mathrm{P}) \to \mathrm{H} + \mathrm{O}_{2}$	1.8E-11*EXP(180./temp)	Burkholder et al. (2015)
G2104	$\operatorname{UpStTrG}$	$\mathrm{OH} + \mathrm{O}_3 \to \mathrm{HO}_2 + \mathrm{O}_2$	1.7E-12*EXP(-940./temp)	Burkholder et al. (2015)
G2105	$\operatorname{UpStTrG}$	$\mathrm{OH} + \mathrm{H_2} o \mathrm{H_2O} + \mathrm{H}$	2.8E-12*EXP(-1800./temp)	Burkholder et al. (2015)
G2106	UpStG	$\mathrm{HO_2} + \mathrm{O(^3P)} \rightarrow \mathrm{OH} + \mathrm{O_2}$	3.E-11*EXP(200./temp)	Burkholder et al. (2015)
G2107	$\operatorname{UpStTrG}$	$\mathrm{HO_2} + \mathrm{O_3} \rightarrow \mathrm{OH} + 2 \mathrm{O_2}$	1.E-14*EXP(-490./temp)	Burkholder et al. (2015)
G2108a	UpStG	$\mathrm{HO_2} + \mathrm{H} \rightarrow 2 \mathrm{OH}$	7.2E-11	Burkholder et al. (2015)
G2108b	UpStG	$\mathrm{HO_2} + \mathrm{H} ightarrow \mathrm{H_2} + \mathrm{O_2}$	6.9E-12	Burkholder et al. (2015)
G2108c	UpStG	$\mathrm{HO_2} + \mathrm{H} \rightarrow \mathrm{O(^3P)} + \mathrm{H_2O}$	1.6E-12	Burkholder et al. (2015)
G2109	UpStTrG	$\mathrm{HO_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{O_2}$	4.8E-11*EXP(250./temp)	Burkholder et al. (2015)
G2110	UpStTrG	$\mathrm{HO_2} + \mathrm{HO_2} ightarrow \mathrm{H_2O_2} + \mathrm{O_2}$	k_H02_H02	Burkholder et al. $(2015)^*$
G2111	UpStTrG	$\mathrm{H_2O} + \mathrm{O(^1D)} \rightarrow 2 \mathrm{OH}$	1.63E-10*EXP(60./temp)	Burkholder et al. (2015)
G2112	UpStTrG	$\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{HO_2}$	1.8E-12	Burkholder et al. (2015)
G2113	UpG	$\mathrm{H_2} + \mathrm{O(^3P)} \rightarrow \mathrm{H} + \mathrm{OH}$	1.60E-11*EXP(-4570./temp)	Roble (1995)
G2114a	UpG	$OH + OH \rightarrow H_2O + O(^3P)$	4.20E-12*EXP(-240./temp)	Sander et al. (2003)
G2114b	UpG	$\mathrm{OH} + \mathrm{OH} o \mathrm{H}_2\mathrm{O}_2$	$k_3rd(temp, cair, 6.9E-31, 1.0,$	Burkholder et al. (2015)
			2.6E-11,0.,0.6)	
G2115	UpG	$\mathrm{H} + \mathrm{H} ightarrow \mathrm{H}_2$	5.7E-32*(300./temp)**1.6*cair	Roble (1995)
G2116	UpG	$\mathrm{H_2O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{OH} + \mathrm{HO_2}$	1.40E-12*EXP(-2000./temp)	Sander et al. (2003)
G2117	UpStTrG	$\mathrm{H_2O} + \mathrm{H_2O} ightarrow (\mathrm{H_2O})_2$	6.521E-26*temp*EXP(1851.09/temp)	Scribano et al. $(2006)^*$
			*EXP(-5.10485E-3*temp)	
G2118	UpStTrG	$(\mathrm{H_2O})_2 ightarrow \mathrm{H_2O} + \mathrm{H_2O}$	1.E0	see note*
G3001	UpGN	$NO^{+} + e^{-} \rightarrow .15 N + .85 N(^{2}D) + O(^{3}P)$	4.2E-7*(300./temp_elec)**0.85	Bailey et al. (2002)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3002	UpGN	$N_2^+ + e^- \rightarrow .88 \text{ N} + 1.12 \text{ N}(^2\text{D})$	1.8E-7*(temp_elec/300.)**(-0.39)	Swaminathan et al. (1998)
G3003	UpGN	$N(^{2}D) + e^{-} \rightarrow N + e^{-}$	3.8E-12*(temp_elec)**.81	Swaminathan et al. (1998)
G3100	UpStGN	$N + O_2 \rightarrow NO + O(^3P)$	1.5E-11*EXP(-3600./temp)	Burkholder et al. (2015)
G3101	$\operatorname{UpStTrGN}$	$N_2 + O(^1D) \to O(^3P) + N_2$	2.15E-11*EXP(110./temp)	Burkholder et al. (2015)
G3102a	UpStGN	$\mathrm{N_2O} + \mathrm{O(^1D)} \rightarrow 2 \; \mathrm{NO}$	7.259E-11*EXP(20./temp)	Burkholder et al. (2015)
G3102b	StGN	$N_2O + O(^1D) \to N_2 + O_2$	4.641E-11*EXP(20./temp)	Burkholder et al. (2015)
G3103	UpStTrGN	$NO + O_3 \rightarrow NO_2 + O_2$	3.0E-12*EXP(-1500./temp)	Burkholder et al. (2015)
G3104	UpStGN	$NO + N \rightarrow O(^{3}P) + N_{2}$	2.1E-11*EXP(100./temp)	Burkholder et al. (2015)
G3105	UpStGN	$NO_2 + O(^3P) \rightarrow NO + O_2$	5.1E-12*EXP(210./temp)	Burkholder et al. (2015)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Burkholder et al. (2015)
G3107	UpStGN	$NO_2 + N \rightarrow N_2O + O(^3P)$	5.8E-12*EXP(220./temp)	Burkholder et al. (2015)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Burkholder et al. (2015)
G3109	$\operatorname{UpStTrGN}$	$\mathrm{NO_3} + \mathrm{NO_2} ightarrow \mathrm{N_2O_5}$	k_N03_N02	Burkholder et al. (2015)*
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_NO3_NO2/(5.8E-27*EXP(10840./ temp))	Burkholder et al. $(2015)^*$
G3111	UpGN	$N(^{2}D) + NO \rightarrow N_{2} + O(^{3}P)$	6.70E-11	Fuller-Rowell (1993)
G3112	UpGN	$N(^{2}D) + O_{2} \rightarrow NO + O(^{3}P)$	6.20E-12*(temp/300.)	Duff et al. (2003)
G3113	UpGN	$N(^{2}D) + O(^{3}P) \rightarrow N + O(^{3}P)$	6.90E-13	Fell et al. (1990)
G3114	UpGN	$N(^{2}D) + O_{3} \rightarrow NO + O_{2}$	0.80E-16	Sander et al. (2003)
G3115	UpGN	$NO + O(^{3}P) \rightarrow NO_{2}$	k_3rd(temp,cair,9.0E-32,1.5, 3.0E-11,0.0,0.6)	Burkholder et al. (2015)
G3116	UpGN	$NO_2 + O(^3P) \rightarrow NO_3$	k_3rd(temp,cair,2.5E-31,1.8, 2.2E-11,0.7,0.6)	Burkholder et al. (2015)
G3117	UpGN	$N(^2D) \to N$	10.6	Fuller-Rowell (1993)
G3118	UpGN	$N^+ + O_2 \rightarrow NO + O^+$	3.66E-11	Barth (1992)
G3119	UpGN	$N_2^+ + O(^3P) \to NO^+ + N(^2D)$	k_N2_O(temp, temp_ion)	Fuller-Rowell (1993)
G3120a	UpGN	$N^{+} + O_{2} \rightarrow NO^{+} + O(^{3}P)$	2.60E-10	Fuller-Rowell (1993)
G3120b	UpGN	$N^+ + O_2 \rightarrow O_2^+ + N$	3.10E-10	Swaminathan et al. (1998)
G3121	UpGN	$N^+ + O(^3P) \stackrel{2}{\rightarrow} O^+ + N$	1.00E-12	Fuller-Rowell (1993)
G3122	UpGN	$O_2^+ + N \rightarrow NO^+ + O(^3P)$	1.20E-10	Fuller-Rowell (1993)
G3123	UpGN	$O_2^+ + NO \rightarrow NO^+ + O_2$	4.40E-10	Fuller-Rowell (1993)
G3124	UpGN	$O^+ + N_2 \rightarrow NO^+ + N$	k_Op_N2(temp,temp_ion)	Fuller-Rowell (1993)
G3125	UpGN	$N_2^+ + O_2^- \to N_2 + O_2^+$	5.10E-11*(temp/300.)**(-0.8)	Fuller-Rowell (1993)
G3200	TrGN	$NO + OH \rightarrow HONO^2$	k_3rd(temp,cair,7.0E-31,2.6, 3.6E-11,0.1,0.6)	Burkholder et al. (2015)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3201	UpStTrGN	$NO + HO_2 \rightarrow NO_2 + OH$	3.3E-12*EXP(270./temp)	Burkholder et al. (2015)
G3202	UpStTrGN	$\mathrm{NO_2} + \mathrm{OH} \rightarrow \mathrm{HNO_3}$	k_3rd(temp,cair,1.8E-30,3.0, 2.8E-11,0.,0.6)	Burkholder et al. (2015)
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Burkholder et al. (2015)*
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Burkholder et al. (2015)
G3205	TrGN	$\mathrm{HONO} + \mathrm{OH} \rightarrow \mathrm{NO}_2 + \mathrm{H}_2\mathrm{O}$	1.8E-11*EXP(-390./temp)	Burkholder et al. (2015)
G3206	StTrGN	$\mathrm{HNO_3} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{NO_3}$	k_HNO3_OH	Dulitz et al. (2018)*
G3207	StTrGN	$\mathrm{HNO_4} \rightarrow \mathrm{NO_2} + \mathrm{HO_2}$	k_NO2_HO2/(2.1E-27*EXP(10900./ temp))	Burkholder et al. (2015)*
G3208	StTrGN	$\mathrm{HNO_4} + \mathrm{OH} \rightarrow \mathrm{NO_2} + \mathrm{H_2O}$	1.3E-12*EXP(380./temp)	Burkholder et al. (2015)
G3209	TrGN	$NH_3 + OH \rightarrow NH_2 + H_2O$	1.7E-12*EXP(-710./temp)	Kohlmann and Poppe (1999)
G3210	TrGN	$\mathrm{NH_2} + \mathrm{O_3} o \mathrm{NH_2O} + \mathrm{O_2}$	4.3E-12*EXP(-930./temp)	Kohlmann and Poppe (1999)
G3211	TrGN	$NH_2 + HO_2 \rightarrow NH_2O + OH$	4.8E-07*EXP(-628./temp) *temp**(-1.32)	Kohlmann and Poppe (1999)
G3212	TrGN	$NH_2 + HO_2 \rightarrow HNO + H_2O$	9.4E-09*EXP(-356./temp) *temp**(-1.12)	Kohlmann and Poppe (1999)
G3213	TrGN	$NH_2 + NO \rightarrow HO_2 + OH + N_2$	1.92E-12*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3214	TrGN	$\mathrm{NH_2} + \mathrm{NO} \rightarrow \mathrm{N_2} + \mathrm{H_2O}$	1.41E-11*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3215	TrGN	$\mathrm{NH_2} + \mathrm{NO_2} ightarrow \mathrm{N_2O} + \mathrm{H_2O}$	1.2E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3216	TrGN	$NH_2 + NO_2 \rightarrow NH_2O + NO$	0.8E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3217	TrGN	$NH_2O + O_3 \rightarrow NH_2 + O_2$	1.2E-14	Kohlmann and Poppe (1999)
G3218	TrGN	$\mathrm{NH_2O} \rightarrow \mathrm{NHOH}$	1.3E3	Kohlmann and Poppe (1999)
G3219	TrGN	$\mathrm{HNO} + \mathrm{OH} \rightarrow \mathrm{NO} + \mathrm{H_2O}$	8.0E-11*EXP(-500./temp)	Kohlmann and Poppe (1999)
G3220	TrGN	$\text{HNO} + \text{NHOH} \rightarrow \text{NH}_2\text{OH} + \text{NO}$	1.66E-12*EXP(-1500./temp)	Kohlmann and Poppe (1999)
G3221	TrGN	$\text{HNO} + \text{NO}_2 \rightarrow \text{HONO} + \text{NO}$	1.0E-12*EXP(-1000./temp)	Kohlmann and Poppe (1999)
G3222	TrGN	$NHOH + OH \rightarrow HNO + H_2O$	1.66E-12	Kohlmann and Poppe (1999)
G3223	TrGN	$NH_2OH + OH \rightarrow NHOH + H_2O$	4.13E-11*EXP(-2138./temp)	Kohlmann and Poppe (1999)
G3224	TrGN	$\mathrm{HNO} + \mathrm{O}_2 \rightarrow \mathrm{HO}_2 + \mathrm{NO}$	3.65E-14*EXP(-4600./temp)	Kohlmann and Poppe (1999)
G3225	UpGN	$N + OH \rightarrow NO + H$	5.00E-11	Roble (1995)
G3226	UpGN	$NO_2 + H \rightarrow NO + OH$	4.00E-10*EXP(-340./temp)	Sander et al. (2003)
G4100	UpStG	${\rm CH_4 + O(^1D) \rightarrow .75~CH_3 + .75~OH + .25~HCHO + .4~H} \ + .05~H_2$	1.75E-10	Burkholder et al. (2015)
G4101	StTrG	$\mathrm{CH_4} + \mathrm{OH} \rightarrow \mathrm{CH_3} + \mathrm{H_2O}$	1.85E-20*EXP(2.82*LOG(temp) -987./temp)	Atkinson (2003)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4102	TrG	$\mathrm{CH_3OH} + \mathrm{OH} \rightarrow .85 \ \mathrm{HCHO} + .85 \ \mathrm{HO_2} + .15 \ \mathrm{CH_3O} + \mathrm{H_2O}$	6.38E-18*(temp**2)*EXP(144./temp)	Atkinson et al. (2006)
G4103a	StTrG	$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$	3.8E-13*EXP(780./temp)/(1.+1./ 498.*EXP(1160./temp))	Atkinson et al. (2006)
G4103b	StTrG	$CH_3O_2 + HO_2 \rightarrow HCHO + H_2O + O_2$	3.8E-13*EXP(780./temp)/(1.+ 498.*EXP(-1160./temp))	Atkinson et al. (2006)
G4104a	StTrGN	$CH_3O_2 + NO \rightarrow CH_3O + NO_2$	2.3E-12*EXP(360./temp)*(1beta_ CH3NO3)	Atkinson et al. (2006), Butkovskaya et al. (2012), Flocke et al. (1998)
G4104b	StTrGN	$\mathrm{CH_3O_2} + \mathrm{NO} \to \mathrm{CH_3ONO_2}$	2.3E-12*EXP(360./temp)*beta_ CH3NO3	Atkinson et al. (2006), Butkovskaya et al. (2012), Flocke et al. (1998)*
G4105	TrGN	$CH_3O_2 + NO_3 \rightarrow CH_3O + NO_2 + O_2$	1.2E-12	Atkinson et al. (2006)
G4106a	StTrG	$\mathrm{CH_3O_2} \rightarrow \mathrm{CH_3O} + .5 \mathrm{O_2}$	7.4E-13*EXP(-520./temp)*R02*2.	Atkinson et al. (2006)
G4106b	StTrG	$\text{CH}_3\text{O}_2 \rightarrow .5 \text{ HCHO} + .5 \text{ CH}_3\text{OH} + .5 \text{ O}_2$	(k_CH302-7.4E-13*EXP(-520./temp)) *R02*2.	Atkinson et al. (2006)
G4107	StTrG	$\text{CH}_3\text{OOH} + \text{OH} \rightarrow .6 \text{ CH}_3\text{O}_2 + .4 \text{ HCHO} + .4 \text{ OH} + \text{H}_2\text{O}$	k_CH300H_OH	Wallington et al. (2018)
G4108	StTrG	$\mathrm{HCHO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2$	9.52E-18*EXP(2.03*LOG(temp) +636./temp)	Sivakumaran et al. (2003)
G4109	TrGN	$\mathrm{HCHO} + \mathrm{NO}_3 \rightarrow \mathrm{HNO}_3 + \mathrm{CO} + \mathrm{HO}_2$	3.4E-13*EXP(-1900./temp)	Burkholder et al. (2015)*
G4110	UpStTrG	$CO + OH \rightarrow H + CO_2$	(1.57E-13+cair*3.54E-33)	McCabe et al. (2001)
G4111	$\operatorname{Tr} G$	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{CO}_2 + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O}$	2.94E-14*exp(786./temp) +9.85E-13*EXP(-1036./temp)	Paulot et al. (2011)
G4112	UpStG	$\mathrm{CO} + \mathrm{O}(^{3}\mathrm{P}) \rightarrow \mathrm{CO}_{2}$	6.60E-33*EXP(-1103./temp)	Roble (1995)
G4113	UpStG	$CH_4 + O(^3P) \rightarrow .51 CH_3 + .51 OH + .49 CH_3O + .49 H$	6.03E-18*temp**(2.17)*EXP(-3619./temp)	Roble (1995), Garton et al. (2003), Espinosa-Garcia and Garcia-Bernáldez (2000)
G4114	StTrGN	$\mathrm{CH_3O_2} + \mathrm{NO_2} \to \mathrm{CH_3O_2NO_2}$	k_N02_CH302	Burkholder et al. (2015)
G4115	StTrGN	$CH_3O_2NO_2 \rightarrow CH_3O_2 + NO_2$	k_NO2_CH3O2/(9.5E-29*EXP(11234./ temp))	Burkholder et al. $(2015)^*$
G4116	StTrGN	$\mathrm{CH_3O_2NO_2} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{NO_3} + \mathrm{H_2O}$	3.00E-14	see note*
G4117	StTrGN	$\mathrm{CH_3ONO_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{HCHO} + \mathrm{NO_2}$	4.0E-13*EXP(-845./temp)	Atkinson et al. (2006)
G4118	StTrG	$\mathrm{CH_{3}O} \rightarrow \mathrm{HO_{2}} + \mathrm{HCHO}$	1.3E-14*exp(-663./temp)*c(ind_02)	Chai et al. (2014)
G4119a	StTrGN	$\mathrm{CH_3O} + \mathrm{NO_2} \rightarrow \mathrm{CH_3ONO_2}$	k_3rd_iupac(temp,cair,8.1E-29, 4.5,2.1E-11,0.,0.44)	Atkinson et al. (2006)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4119b	StTrGN	$CH_3O + NO_2 \rightarrow HCHO + HONO$	9.6E-12*EXP(-1150./temp)	Atkinson et al. (2006)
G4120a	StTrGN	$\mathrm{CH_{3}O} + \mathrm{NO} \rightarrow \mathrm{CH_{3}ONO}$	<pre>k_3rd_iupac(temp,cair,2.6E-29, 2.8,3.3E-11,0.6,REAL(EXP(-temp/ 900.),SP))</pre>	Atkinson et al. (2006)
G4120b	StTrGN	$CH_3O + NO \rightarrow HCHO + HNO$	2.3E-12*(temp/300.)**0.7	Atkinson et al. (2006)
G4121	StTrG	$\mathrm{CH_3O_2} + \mathrm{O_3} \rightarrow \mathrm{CH_3O} + 2 \mathrm{O_2}$	2.9E-16*exp(-1000./temp)	Burkholder et al. (2015)
G4122	StTrGN	$\mathrm{CH_3ONO} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{HCHO} + \mathrm{NO}$	1.E-10*exp(-1764./temp)	Nielsen et al. (1991)
G4123	StTrG	$\mathrm{HCHO} + \mathrm{HO}_2 \rightarrow \mathrm{HOCH}_2\mathrm{O}_2$	9.7E-15*EXP(625./temp)	Atkinson et al. (2006)
G4124	StTrG	$\mathrm{HOCH_2O_2} \rightarrow \mathrm{HCHO} + \mathrm{HO_2}$	2.4E12*EXP(-7000./temp)	Atkinson et al. (2006)
G4125	StTrG	$HOCH_2O_2 + HO_2 \rightarrow .5 \ HOCH_2OOH + .5 \ HCOOH + .2 \ OH + .2 \ HO_2 + .3 \ H_2O + .8 \ O_2$	5.6E-15*EXP(2300./temp)	Atkinson et al. (2006)
G4126	StTrGN	$HOCH_2O_2 + NO \rightarrow NO_2 + HO_2 + HCOOH$	0.7275*2.3E-12*EXP(360./temp)	Atkinson et al. $(2006)^*$
G4127	StTrGN	$HOCH_2O_2 + NO_3 \rightarrow NO_2 + HO_2 + HCOOH$	1.2E-12	see note*
G4129a	StTrG	$HOCH_2O_2 \rightarrow HCOOH + HO_2$	(k_CH302*5.5E-12)**0.5*R02*2.	Atkinson et al. (2006)
G4129b	StTrG	$HOCH_2O_2 \rightarrow .5 HCOOH + .5 HOCH_2OH + .5 O_2$	(k_CH302*5.7E-14*EXP(750./temp)) **0.5*R02*2.	Atkinson et al. (2006)
G4130a	StTrG	$\mathrm{HOCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{HOCH_2O_2} + \mathrm{H_2O}$	k_roohro	Taraborrelli (2010)*
G4130b	StTrG	$HOCH_2OOH + OH \rightarrow HCOOH + H_2O + OH$	k_rohro + k_s*f_sooh*f_soh	Taraborrelli (2010)*
G4132	StTrG	$\mathrm{HOCH_2OH} + \mathrm{OH} \rightarrow \mathrm{HO_2} + \mathrm{HCOOH} + \mathrm{H_2O}$	2.*k_rohro + k_s*f_soh*f_soh	Taraborrelli (2010)*
G4133	StTrG	$\mathrm{CH_3O_2} + \mathrm{OH} \rightarrow \mathrm{CH_3O} + \mathrm{HO_2}$	1.4E-10	Bossolasco et al. $(2014)^*$
G4134	StTrG	$CH_2OO \rightarrow CO + HO_2 + OH$	1.124E+14*EXP(-10000./temp)	see note*
G4135	StTrG	$\mathrm{CH_2OO} + \mathrm{H_2O} \rightarrow \mathrm{HOCH_2OOH}$	k_CH200_N02*3.6E-6	Ouyang et al. $(2013)^*$
G4136	StTrG	$\mathrm{CH_2OO} + (\mathrm{H_2O})_2 \to \mathrm{HOCH_2OOH} + \mathrm{H_2O}$	5.2E-12	Chao et al. (2015) , Lewis et al. $(2015)^*$
G4137	StTrGN	$\mathrm{CH_2OO} + \mathrm{NO} \rightarrow \mathrm{HCHO} + \mathrm{NO_2}$	6.E-14	Welz et al. (2012)*
G4138	StTrGN	$\mathrm{CH_2OO} + \mathrm{NO_2} \rightarrow \mathrm{HCHO} + \mathrm{NO_3}$	k_CH200_N02	Welz et al. (2012), Stone et al. $(2014)^*$
G4140	StTrG	$\mathrm{CH_2OO} + \mathrm{CO} \to \mathrm{HCHO} + \mathrm{CO_2}$	3.6E-14	Vereecken et al. (2012)
G4141	StTrG	$CH_2OO + HCOOH \rightarrow 2 HCOOH$	1.E-10	Welz et al. (2014)*
G4142	StTrG	$\text{CH}_2\text{OO} + \text{HCHO} \rightarrow 2 \text{ LCARBON}$	1.7E-12	Stone et al. (2014)*
G4143	StTrG	$\text{CH}_2\text{OO} + \text{CH}_3\text{OH} \rightarrow 2 \text{ LCARBON}$	5.E-12	Vereecken et al. (2012)*
G4144	StTrG	$CH_2OO + CH_3O_2 \rightarrow 2 LCARBON$	5.E-12	Vereecken et al. (2012)*
G4145	StTrG	$CH_2OO + HO_2 \rightarrow LCARBON$	5.E-12	Vereecken et al. (2012)
G4146	StTrG	$CH_2OO + O_3 \rightarrow HCHO + 2 O_2$	1.E-12	Vereecken et al. (2014)
G4147	StTrG	$\mathrm{CH_2OO} + \mathrm{CH_2OO} \rightarrow 2 \; \mathrm{HCHO} + \mathrm{O_2}$	6.E-11	Buras et al. (2014)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4148	StTrGN	$HOCH_2O_2 + NO_2 \rightarrow HOCH_2O_2NO_2$	k_NO2_CH3O2	see note*
G4149	StTrGN	$HOCH_2O_2NO_2 \rightarrow HOCH_2O_2 + NO_2$	k_NO2_CH3O2/(9.5E-29*EXP(11234./ temp))	Barnes et al. (1985)*
G4150	StTrGN	$HOCH_2O_2NO_2 + OH \rightarrow HCOOH + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)*f_soh	see note*
G4151	StTrG	$\mathrm{CH_3} + \mathrm{O_2} \to \mathrm{CH_3O_2}$	k_3rd_iupac(temp,cair,7.0E-31, 3.,1.8E-12,-1.1,0.33)	Atkinson et al. (2006)
G4152	StTrG	$\text{CH}_3 + \text{O}_3 \rightarrow .956 \text{ HCHO} + .956 \text{ H} + .044 \text{ CH}_3\text{O} + \text{O}_2$	5.1E-12*exp(-210./temp)	Albaladejo et al. (2002), Ogryzlo et al. (1981)
G4153	StTrG	${ m CH_3 + O(^3P)} \rightarrow .83 \ { m HCHO} + .83 \ { m H} + .17 \ { m CO} + .17 \ { m H_2} + .17 \ { m H}$	1.3E-10	Atkinson et al. (2006)
G4154	StTrG	$\mathrm{CH_3O} + \mathrm{O_3} \rightarrow \mathrm{CH_3O_2} + \mathrm{O_2}$	2.53E-14	Albaladejo et al. (2002)*
G4155	StTrG	${\rm CH_3O} + {\rm O(^3P)} \rightarrow .75 {\rm ~CH_3} + .75 {\rm ~O_2} + .25 {\rm ~HCHO} + .25 {\rm ~OH}$	2.5E-11	Baulch et al. (2005)
G4156	StTrG	$\mathrm{CH_3O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{CH_3O} + \mathrm{O_2}$	4.3E-11	Zellner et al. (1988)
G4157	StTrG	$\text{HCHO} + \text{O(^3P)} \rightarrow .7 \text{ OH} + .7 \text{ CO} + .3 \text{ H} + .3 \text{ CO}_2 + \text{HO}_2$	3.4E-11*EXP(-1600./temp)	Burkholder et al. (2015)
G4158	$\operatorname{Tr} G$	${\rm CH_2OO^*} \rightarrow .37~{\rm CH_2OO} + .47~{\rm CO} + .47~{\rm H_2O} + .16~{\rm HO_2} + .16~{\rm CO} + .16~{\rm OH}$	KDEC	Atkinson et al. (2006)
G4159	TrGN	$HCN + OH \rightarrow H_2O + CN$	k_3rd(temp,cair,4.28E-33,1.0, REAL(4.25E-13*EXP(-1150./temp),SP),1.0,0.8)	Kleinböhl et al. (2006)
G4160a	TrGN	$HCN + O(^{1}D) \rightarrow O(^{3}P) + HCN$	1.08E-10*EXP(105./temp) *0.15*EXP(200./temp)	Strekowski et al. (2010)
G4160b	TrGN	$HCN + O(^{1}D) \rightarrow H + NCO$	1.08E-10*EXP(105./temp)*0.68/2.	Strekowski et al. $(2010)^*$
G4160c	TrGN	$HCN + O(^{1}D) \rightarrow OH + CN$	1.08E-10*EXP(105./temp)*(1(0.68/ 2.+0.15*EXP(200./temp)))	Strekowski et al. (2010)*
G4161	TrGN	$HCN + O(^{3}P) \rightarrow H + NCO$	1.0E-11*EXP(-4000./temp)	Burkholder et al. $(2015)^*$
G4162	TrGN	$CN + O_2 \rightarrow NCO + O(^3P)$	1.2E-11*EXP(210./temp)*0.75	Baulch et al. (2005)
G4163	TrGN	$CN + O_2 \rightarrow CO + NO$	1.2E-11*EXP(210./temp)*0.25	Baulch et al. (2005)
G4164	TrGN	$NCO + O_2 \rightarrow CO_2 + NO$	7.E-15	Becker et al. $(2000)^*$
G42000	TrGC	$C_2H_6 + OH \rightarrow C_2H_5O_2 + H_2O$	1.49E-17*temp*temp*EXP(-499./ temp)	Atkinson et al. (2006)
G42001	TrGC	$C_2H_4 + O_3 \rightarrow HCHO + CH_2OO^*$	9.1E-15*EXP(-2580./temp)	Atkinson et al. $(2006)^*$
G42002	TrGC	$C_2H_4 + OH \rightarrow HOCH_2CH_2O_2$	k_3rd_iupac(temp,cair,8.6E-29, 3.1,9.E-12,0.85,0.48)	Atkinson et al. (2006), Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42003	TrGC	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH$	7.5E-13*EXP(700./temp)	Burkholder et al. (2015)
G42004a	TrGCN	$C_2H_5O_2 + NO \rightarrow CH_3CHO + HO_2 + NO_2$	2.55E-12*EXP(380./temp)*(1beta_	Atkinson et al. (2006),
			C2H5NO3)	Butkovskaya et al. (2010)
G42004b	TrGCN	$C_2H_5O_2 + NO \rightarrow C_2H_5ONO_2$	2.55E-12*EXP(380./temp)*beta_	Atkinson et al. (2006) ,
			C2H5NO3	Butkovskaya et al. (2010)
G42005	TrGCN	$C_2H_5O_2 + NO_3 \rightarrow CH_3CHO + HO_2 + NO_2$	2.3E-12	Wallington et al. (2018)
G42006	TrGC	$C_2H_5O_2 \rightarrow .8 \text{ CH}_3\text{CHO} + .6 \text{ HO}_2 + .2 \text{ C}_2H_5\text{OH}$	2.*(7.6E-14*k_CH302)**(.5)*R02	Sander et al. (2019), Atkinson et al. (2006)
G42007a	TrGC	$C_2H_5OOH + OH \rightarrow C_2H_5O_2 + H_2O$	k_roohro	Sander et al. (2019)
G42007b	TrGC	$C_2H_5OOH + OH \rightarrow CH_3CHO + OH$	k_s*f_sooh	Sander et al. (2019)
G42008a	TrGC	$\mathrm{CH_3CHO} + \mathrm{OH} \rightarrow \mathrm{CH_3C(O)} + \mathrm{H_2O}$	4.4E-12*EXP(365./temp)*0.95	Atkinson et al. (2006)
G42008b	TrGC	$\mathrm{CH_{3}CHO} + \mathrm{OH} \rightarrow \mathrm{HCOCH_{2}O_{2}} + \mathrm{H_{2}O}$	4.4E-12*EXP(365./temp)*0.05	Atkinson et al. (2006)
G42009	TrGCN	$CH_3CHO + NO_3 \rightarrow CH_3C(O) + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42010	TrGC	$\mathrm{CH_{3}COOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}} + \mathrm{CO_{2}} + \mathrm{H_{2}O}$	k_CH3CO2H_OH	Atkinson et al. $(2006)^*$
G42011a	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} \rightarrow \mathrm{OH} + \mathrm{CH_3} + \mathrm{CO_2}$	5.20E-13*EXP(980./temp)*1.507*0.61	Groß et al. (2014)
G42011b	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} \to \mathrm{CH_3C}(\mathrm{O})\mathrm{OOH}$	5.20E-13*EXP(980./temp)*1.507*0.23	Groß et al. (2014)
G42011c	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COOH} + \mathrm{O_3}$	5.20E-13*EXP(980./temp)*1.507*0.16	Groß et al. (2014)
G42012	TrGCN	$CH_3C(O)OO + NO \rightarrow CH_3 + CO_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001a)
G42013	TrGCN	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{NO}_2 \to \mathrm{PAN}$	k_CH3CO3_NO2	Burkholder et al. $(2015)^*$
G42014	TrGCN	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{NO_3} \rightarrow \mathrm{CH_3} + \mathrm{NO_2} + \mathrm{CO_2}$	4.E-12	Canosa-Mas et al. (1996)
G42017a	TrGC	$CH_3C(O)OO \rightarrow CH_3 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42017b	TrGC	$CH_3C(O)OO \rightarrow CH_3COOH$	k1_R02RC03*0.1	Sander et al. (2019)
G42018	TrGC	$CH_3C(O)OOH + OH \rightarrow CH_3C(O)OO + H_2O$	k_roohro	Rickard and Pascoe (2009)*
G42020	TrGCN	$PAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	3.00E-14	Rickard and Pascoe (2009)
G42021	TrGCN	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Burkholder et al. $(2015)^*$
G42022a	TrGC	$C_2H_2 + OH \rightarrow GLYOX + OH$	k_3rd(temp,cair,5.5e-30,0.0, 8.3e-13,-2.,0.6)*0.71	Burkholder et al. (2015)*
G42022b	TrGC	$C_2H_2 + OH \rightarrow HCOOH + CO + HO_2$	k_3rd(temp,cair,5.5e-30,0.0, 8.3e-13,-2.,0.6)*0.29	Burkholder et al. $(2015)^*$
G42023a	TrGC	$HOCH_2CHO + OH \rightarrow HOCH2CO + H_2O$	8.00E-12*0.80	Atkinson et al. (2006)
G42023b	TrGC	$HOCH_2CHO + OH \rightarrow HOCHCHO + H_2O$	8.00E-12*0.20	Atkinson et al. (2006)
G42024a	TrGC	$HOCH2CO + O_2 \rightarrow HOCH_2CO_3$	5.1E-12*(11./(1+1.85E-18*cair))	Atkinson et al. (2006), Beyers-
				dorf et al. (2010)*
G42024b	TrGC	$HOCH2CO + O_2 \rightarrow OH + HCHO + CO_2$	5.1E-12*1./(1+1.85E-18*cair)	Atkinson et al. (2006), Beyersdorf et al. (2010)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42025	TrGC	$\mathrm{HOCHCHO} ightarrow \mathrm{GLYOX} + \mathrm{HO}_2$	KDEC	Sander et al. (2019)
G42026	TrGCN	$HOCH_2CHO + NO_3 \rightarrow HOCH2CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42027a	TrGC	$HOCH_2CO_3 \rightarrow HCHO + CO_2 + HO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42027b	TrGC	$HOCH_2CO_3 \rightarrow HOCH_2CO_2H$	k1_R02RC03*0.1	Sander et al. (2019)
G42028a	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HCHO + HO_2 + OH + CO_2$	KAPHO2*rco3_oh	Sander et al. (2019), Groß et al. (2014)
G42028b	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_3H$	KAPHO2*rco3_ooh	Sander et al. (2019), Groß et al. (2014)
G42028c	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_2H + O_3$	KAPHO2*rco3_o3	Sander et al. (2019), Groß et al. (2014)
G42029	TrGCN	$HOCH_2CO_3 + NO \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KAPNO	Rickard and Pascoe (2009)
G42030	TrGCN	$HOCH_2CO_3 + NO_2 \rightarrow PHAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G42031	TrGCN	$HOCH_2CO_3 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G42032	TrGC	${\rm HOCH_2CO_2H} + {\rm OH} \rightarrow .09 \ {\rm HCHO} + .09 \ {\rm CO_2} + .91 \ {\rm HCOCO_2H} + {\rm HO_2} + {\rm H_2O}$	k_co2h+k_s*f_soh*f_co2h	Sander et al. (2019)
G42033a	TrGC	$HOCH_2CO_3H + OH \rightarrow HOCH_2CO_3 + H_2O$	k_roohro	Sander et al. (2019)
G42033b	TrGC	$HOCH_2CO_3H + OH \rightarrow HCOCO_3H + HO_2$	k_s*f_soh*f_co2h	Sander et al. (2019)
G42034	TrGCN	$PHAN \rightarrow HOCH_2CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G42035	TrGCN	$PHAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	k_s*f_soh*f_cpan+k_rohro	Sander et al. (2019)
G42036	TrGC	$GLYOX + OH \rightarrow HCOCO + H_2O$	3.1E-12*EXP(340./temp)	Atkinson et al. (2006), Orlando and Tyndall (2001), Lockhart et al. (2013)
G42037	TrGCN	$GLYOX + NO_3 \rightarrow HCOCO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42038a	TrGC	$HCOCO \rightarrow CO + CO + HO_2$	7.E11*EXP(-3160./temp) +5.E-12*c(ind_02)	Orlando and Tyndall (2001), Lockhart et al. (2013), Rickard and Pascoe (2009)
G42037b	TrGC	$HCOCO \rightarrow HCOCO_3$	5.E-12*c(ind_02)*3.2*exp(-550./ temp)	Lockhart et al. (2013), Rickard and Pascoe (2009)
G42037c	TrGC	$HCOCO \rightarrow OH + CO + CO_2$	5.E-12*c(ind_02) *(13.2*exp(-550./temp))	Lockhart et al. (2013), Rickard and Pascoe (2009)
G42039a	TrGC	$HCOCO_3 \rightarrow CO + HO_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42039b	TrGC	$HCOCO_3 \rightarrow HCOCO_2H$	k1_R02RC03*0.1	Sander et al. (2019)
G42040	TrGC	$\mathrm{HCOCO_3} + \mathrm{HO_2} \rightarrow \mathrm{HO_2} + \mathrm{CO} + \mathrm{CO_2} + \mathrm{OH}$	KAPHO2	Feierabend et al. (2008), Sander et al. (2019)
G42041	TrGCN	$HCOCO_3 + NO \rightarrow HO_2 + CO + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42042	TrGCN	$HCOCO_3 + NO_3 \rightarrow HO_2 + CO + NO_2 + CO_2$	KRO2NO3*1.74	Rickard and Pascoe (2009)
G42043	TrGCN	$HCOCO_3 + NO_2 \rightarrow HO_2 + CO + NO_3 + CO_2$	k_CH3CO3_NO2	Orlando and Tyndall (2001),
				Sander et al. (2019)
G42044	TrGC	$HCOCO_2H + OH \rightarrow CO + HO_2 + CO_2 + H_2O$	$k_{co2h+k_t*f_o*f_co2h}$	Sander et al. (2019)
G42045a	TrGC	$HCOCO_3H + OH \rightarrow HCOCO_3 + H_2O$	k_roohro	Sander et al. (2019)
G42045b	TrGC	$HCOCO_3H + OH \rightarrow CO + CO_2 + H_2O + OH$	k_t*f_o*f_co2h	Sander et al. (2019)
G42046	TrGC	$\text{HOCH}_2\text{CH}_2\text{O}_2 \rightarrow .6 \text{ HOCH}_2\text{CH}_2\text{O} + .2 \text{ HOCH}_2\text{CHO} + .2$ ETHGLY	2.*(7.8E-14*EXP(1000./temp) *k_CH302)**(.5)*R02	Atkinson et al. (2006), Rickard and Pascoe (2009)
G42047	TrGCN	$HOCH_2CH_2O_2 + NO \rightarrow .25 HO_2 + .5 HCHO + .75$	KRO2NO*(1alpha_AN(3,1,0,0,0,	Rickard and Pascoe (2009)*
		$HOCH_2CH_2O + NO_2$	temp, cair))	(1 1)
G42048	TrGCN	$HOCH_2CH_2O_2 + NO \rightarrow ETHOHNO3$	<pre>KRO2NO*alpha_AN(3,1,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G42049a	TrGC	$HOCH_2CH_2O_2 + HO_2 \rightarrow HYETHO2H$	1.53E-13*EXP(1300./temp) *(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G42049b	TrGC	$HOCH_2CH_2O_2 + HO_2 \rightarrow HOCH_2CH_2O + OH$	1.53E-13*EXP(1300./temp) *rchohch2o2_oh	Rickard and Pascoe (2009)
G42050	TrGCN	ETHOHNO3 + OH \rightarrow .93 NO ₃ CH2CHO + .93 HO ₂ + .07 HOCH ₂ CHO + .07 NO ₂ + H ₂ O	k_s*(f_soh*f_ch2ono2+f_ono2*f_ pch2oh)+k_rohro	Sander et al. (2019)
G42051a	TrGC	$\text{HYETHO2H} + \text{OH} \rightarrow \text{HOCH}_2\text{CH}_2\text{O}_2 + \text{H}_2\text{O}$	k_roohro	Rickard and Pascoe (2009)*
G42051b	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CHO + OH + H_2O$	k_s*f_sooh*f_pch2oh	Sander et al. (2019)
G42051c	TrGC	$HYETHO2H + OH \rightarrow HOOCH2CHO + HO_2 + H_2O$	k_s*f_soh*f_pch2oh+k_rohro	Sander et al. (2019)
G42052a	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HOCH_2CHO$	6.00E-14*EXP(-550./temp) *C(ind_02)	Rickard and Pascoe (2009)
G42052b	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HCHO + HCHO$	9.50E13*EXP(-5988./temp)	Rickard and Pascoe (2009)
G42053	TrGC	$ETHGLY + OH \rightarrow HOCH_2CHO + HO_2 + H_2O$	2.*k_s*f_soh*f_pch2oh+2.*k_rohro	Sander et al. (2019)
G42054	TrGC	$\mathrm{HCOCH_2O_2} \rightarrow .6~\mathrm{HCHO} + .6~\mathrm{CO} + .6~\mathrm{HO_2} + .2~\mathrm{GLYOX} + .2~\mathrm{HOCH_2CHO}$	k1_R02p0R02	Sander et al. (2019)
G42055a	TrGC	$\text{HCOCH}_2\text{O}_2 + \text{HO}_2 \rightarrow \text{HOOCH2CHO}$	KRO2HO2(2)*rcoch2o2_ooh	Sander et al. (2019)
G42055b	TrGC	$\mathrm{HCOCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{OH}$	KRO2HO2(2)*rcoch2o2_oh	Sander et al. (2019)
G42056a	TrGCN	$\mathrm{HCOCH_2O_2} + \mathrm{NO} \rightarrow \mathrm{NO_2} + \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO_2}$	<pre>KR02N0*(1alpha_AN(3,1,1,0,0, temp,cair))</pre>	Sander et al. (2019)
G42056b	TrGCN	$\text{HCOCH}_2\text{O}_2 + \text{NO} \rightarrow \text{NO}_3\text{CH2CHO}$	<pre>KRO2NO*alpha_AN(3,1,1,0,0,temp, cair)</pre>	Sander et al. (2019)
G42057	TrGCN	$\mathrm{HCOCH_2O_2} + \mathrm{NO_3} \rightarrow \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{NO_2}$	KR02N03	Sander et al. (2019)
G42058a	TrGC	$HOOCH2CHO + OH \rightarrow HCOCH_2O_2$	k_roohro	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42058b	TrGC	$\mathrm{HOOCH2CHO} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{CO} + \mathrm{OH}$	0.8*8.E-12	Sander et al. (2019)*
G42058c	TrGC	$HOOCH2CHO + OH \rightarrow GLYOX + OH$	k_s*f_sooh*f_cho	Sander et al. (2019)
G42059	TrGCN	$HOOCH2CHO + NO_3 \rightarrow OH + HCHO + CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42060	TrGCN	$HOOCH_2CO_3 + NO \rightarrow NO_2 + OH + HCHO + CO_2$	KAPNO	Sander et al. (2019)
G42061	TrGCN	$HOOCH_2CO_3 + NO_3 \rightarrow NO_2 + OH + HCHO + CO_2$	KR02N03*1.74	Sander et al. (2019)
G42062a	TrGC	$\mathrm{HOOCH_2CO_3} + \mathrm{HO_2} \rightarrow 2 \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO_2}$	KAPHO2*rco3_oh	Sander et al. (2019)
G42062b	TrGC	$\mathrm{HOOCH_2CO_3} + \mathrm{HO_2} \rightarrow \mathrm{HOOCH2CO3H}$	KAPHO2*rco3_ooh	Sander et al. (2019)
G42062c	TrGC	$HOOCH_2CO_3 + HO_2 \rightarrow HOOCH_2CO_2H + O_3$	KAPHO2*rco3_o3	Sander et al. (2019)
G42063a	TrGC	$\mathrm{HOOCH_2CO_3} \rightarrow \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO_2}$	k1_R02RC03*0.9	Sander et al. (2019)
G42063b	TrGC	$\mathrm{HOOCH_2CO_3} \rightarrow \mathrm{HOOCH2CO2H}$	k1_R02RC03*0.1	Sander et al. (2019)
G42064a	TrGC	$HOOCH2CO3H + OH \rightarrow HOOCH_2CO_3 + H_2O$	2.*k_roohro	Sander et al. (2019)
G42064b	TrGC	$HOOCH2CO3H + OH \rightarrow HCOCO_3H + OH + H_2O$	k_s*f_sooh*f_co2h	Sander et al. (2019)
G42065	TrGC	$HOOCH2CO2H + OH \rightarrow HCOCO_2H + OH + H_2O$	k_s*f_sooh*f_co2h+k_co2h	Sander et al. (2019)
G42066	TrGC	$CH2CO + OH \rightarrow .6 HCHO + .6 HO_2 + .6 CO + .4$	2.8E-12*exp(510./temp)	Baulch et al. (2005), Sander et al.
		HOOCH2CO2H		(2019)
G42067a	TrGC	$CH3CHOHOOH + OH \rightarrow CH_3COOH + OH$	(k_t*f_tooh*f_toh + k_rohro)	Sander et al. (2019)
G42067b	TrGC	$CH3CHOHOOH + OH \rightarrow CH3CHOHO2$	k_roohro	Sander et al. (2019)
G42068	TrGC	$\text{CH3CHOHO2} \rightarrow \text{CH}_3\text{CHO} + \text{HO}_2$	3.46E12*EXP(-12500./(1.98*temp))	Hermans et al. (2005), Sander et al. (2019)
G42069	TrGC	$\mathrm{CH_{3}CHO} + \mathrm{HO_{2}} \rightarrow \mathrm{CH3CHOHO2}$	3.46E12*EXP(-12500./(1.98*temp)) /(6.34E26*EXP(-14700./ (1.98*temp)))	Hermans et al. (2005), Sander et al. (2019)
G42070	TrGC	CH3CHOHO2 + HO ₂ \rightarrow .5 CH3CHOHOOH + .3 CH ₃ COOH + .2 CH ₃ + .2 HCOOH + .2 OH	5.6E-15*EXP(2300./temp)	Sander et al. (2019)
G42071	TrGC	$\text{CH3CHOHO2} \rightarrow \text{CH}_3 + \text{HCOOH} + \text{OH}$	k1_R02s0R02	Sander et al. (2019)
G42072	TrGCN	$\text{CH3CHOHO2} + \text{NO} \rightarrow \text{CH}_3 + \text{HCOOH} + \text{OH} + \text{NO}_2$	KRO2NO	Sander et al. (2019)
G42073	TrGCN	$C_2H_5ONO_2 + OH \rightarrow CH_3CHO + H_2O + NO_2$	6.7E-13*EXP(-395./temp)	Atkinson et al. (2006)
G42074a	TrGCN	$NO_3CH2CHO + OH \rightarrow GLYOX + NO_2 + H_2O$	k_s*f_ch2ono2*f_cho	Paulot et al. (2009a), Sander et al. (2019)*
G42074b	TrGCN	$NO_3CH2CHO + OH \rightarrow NO_3CH2CO_3 + H_2O$	k_t*f_o*f_ch2ono2*3.	Paulot et al. (2009a), Sander et al. (2019)*
G42075	TrGCN	$NO_3CH2CO_3 + HO_2 \rightarrow HCHO + NO_2 + CO_2 + OH$	KAPHO2	Rickard and Pascoe (2009)*
G42076	TrGCN	$NO_3CH2CO_3 + NO \rightarrow HCHO + NO_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G42077	TrGCN	$NO_3CH2CO_3 + NO_2 \rightarrow NO_3CH2CHO$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G42078	TrGCN	$NO_3CH2CO_3 \rightarrow HCHO + NO_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42079	TrGCN	$NO_3CH2CHO \rightarrow NO_3CH2CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G42080	StTrGCN	$C_2H_5O_2 + NO_2 \rightarrow C_2H_5O_2NO_2$	k_3rd_iupac(temp,cair,1.3E-29, 6.2,8.8E-12,0.0,0.31)	Atkinson et al. (2006)
G42081	$\operatorname{StTrGCN}$	$C_2H_5O_2NO_2 \rightarrow C_2H_5O_2 + NO_2$	<pre>k_3rd_iupac(temp,cair, REAL(4.8E-4*EXP(-9285./temp) ,SP),0.0,REAL(8.8E15*EXP(-10440./temp),SP),0.0,0.31)</pre>	Atkinson et al. (2006)
G42082	StTrGCN	$C_2H_5O_2NO_2 + OH \rightarrow CH_3CHO + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)	Sander et al. $(2019)^*$
G42083a	TrGC	$\mathrm{CH_3C}(\mathrm{O}) + \mathrm{O}_2 \to \mathrm{CH_3C}(\mathrm{O})\mathrm{OO}$	5.1E-12*(1 1./(1.+ 9.4E-18*cair))	Atkinson et al. (2006) , Beyersdorf et al. $(2010)^*$
G42083b	TrGC	$\mathrm{CH_3C}(\mathrm{O}) + \mathrm{O_2} \to \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO}$	5.1E-12*1./(1.+9.4E-18*cair)	Atkinson et al. (2006), Beyersdorf et al. (2010)*
G42084	TrGC	$C_2H_5OH + OH \rightarrow .95 C_2H_5O_2 + .95 HO_2 + .05 HOCH_2CH_2O_2 + H_2O$	3.0E-12*EXP(20./temp)	Sander et al. (2019), Atkinson et al. (2006)
G42085a	TrGCN	$CH_3CN + OH \rightarrow NCCH_2O_2 + H_2O$	8.1E-13*EXP(-1080./temp)*0.40	Atkinson et al. (2006), Tyndall et al. (2001b)*
G42085b	TrGCN	$CH_3CN + OH \rightarrow OH + CH_3C(O) + NO$	8.1E-13*EXP(-1080./temp)*(10.40)	Atkinson et al. (2006), Tyndall et al. (2001b)*
G42086a	TrGCN	$\mathrm{CH_3CN} + \mathrm{O(^1D)} \rightarrow \mathrm{O(^3P)} + \mathrm{CH_3CN}$	2.54E-10*EXP(-24./temp) *0.0269*EXP(137./temp)	Strekowski et al. (2010)
G42086b	TrGCN	$\mathrm{CH_3CN} + \mathrm{O(^1D)} \rightarrow 2~\mathrm{H} + \mathrm{CO} + \mathrm{HCN}$	2.54E-10*EXP(-24./temp)*0.16	Strekowski et al. (2010)*
G42086c	TrGCN	$\mathrm{CH_3CN} + \mathrm{O(^1D)} \rightarrow .5 \ \mathrm{CH_3} + .5 \ \mathrm{NCO} + .5 \ \mathrm{NCCH_2O_2} + .5 \ \mathrm{OH}$	2.54E-10*EXP(-24./temp)*(1(0.16+ 0.0269*EXP(137./temp)))	Strekowski et al. (2010)*
G42087	TrGCN	$NCCH_2O_2 + NO \rightarrow HCN + CO_2 + HO_2 + NO_2$	KRO2NO	see note*
G42088	TrGCN	$NCCH_2O_2 + HO_2 \rightarrow HCN + CO_2 + HO_2$	KRO2HO2(2)	see note*
G42089a	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{HCHO}$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019) , So et al. $(2014)^*$
G42089b	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{OH} \rightarrow \mathrm{HOCH_{2}CHO} + \mathrm{HO_{2}}$	k_CH2CHOH_OH_ALD	Sander et al. (2019), So et al. (2014)
G42090	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{HCOOH} \rightarrow \mathrm{CH_{3}CHO} + \mathrm{HCOOH}$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*
G42091	TrGC	$\mathrm{CH_{3}CHO} + \mathrm{HCOOH} \rightarrow \mathrm{CH_{2}CHOH} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G43000a	TrGC	$\mathrm{C_3H_8} + \mathrm{OH} \rightarrow \mathrm{iC_3H_7O_2} + \mathrm{H_2O}$	k_s	Sander et al. (2019)
G43000b	TrGC	$C_3H_8 + OH \rightarrow C_3H_7O_2 + H_2O$	2.*k_p	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43001a	TrGC	$C_3H_6 + O_3 \rightarrow HCHO + .16 CH3CHOHOOH + .50 OH + .50 HCOCH_2O_2 + .05 CH2CO + .09 CH_3OH + .09 CO + .2 CH_4 + .2 CO_2$	5.5E-15*EXP(-1880./temp)*.57	Atkinson et al. (2006)*
G43001b	TrGC	$C_3H_6 + O_3 \rightarrow CH_3CHO + CH_2OO^*$	5.5E-15*EXP(-1880./temp)*.43	Atkinson et al. $(2006)^*$
G43002	TrGC	$C_3H_6 + OH \rightarrow HYPROPO2$	<pre>k_3rd_iupac(temp,cair,8.6E-27, 3.5,3.E-11,1.,0.5)</pre>	Atkinson et al. (2006), Rickard and Pascoe (2009)
G43003	TrGCN	$C_3H_6 + NO_3 \rightarrow PRONO3BO2$	4.6E-13*EXP(-1155./temp)	Wallington et al. (2018)
G43004	TrGC	$iC_3H_7O_2 + HO_2 \rightarrow iC_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson (1997)*
G43005a	TrGCN	$iC_3H_7O_2 + NO \rightarrow CH_3COCH_3 + HO_2 + NO_2$	2.7E-12*EXP(360./temp)*(1alpha_AN(3,2,0,0,0,temp,cair))	Wallington et al. (2018)
G43005b	TrGCN	$iC_3H_7O_2 + NO \rightarrow iC_3H_7ONO_2$	2.7E-12*EXP(360./temp)*alpha_ AN(3,2,0,0,0,temp,cair)	Wallington et al. (2018)
G43006	TrGC	$iC_3H_7O_2 \rightarrow .8 CH_3COCH_3 + .2 IPROPOL + .6 HO_2$	2.*(1.6E-12*EXP(-2200./temp) *k_CH302)**(.5)*R02	Rickard and Pascoe (2009), Atkinson et al. (2006)
G43007a	TrGC	$\mathrm{iC_3H_7OOH} + \mathrm{OH} \rightarrow \mathrm{iC_3H_7O_2} + \mathrm{H_2O}$	k_roohro	Sander et al. (2019)
G43007b	TrGC	$iC_3H_7OOH + OH \rightarrow CH_3COCH_3 + H_2O + OH$	k_t*f_tooh	Sander et al. (2019)
G43008	TrGC	$\mathrm{C_3H_7O_2} + \mathrm{HO_2} \rightarrow \mathrm{C_3H_7OOH}$	1.9E-13*EXP(1300./temp)	Atkinson $(1997)^*$
G43009a	TrGCN	$C_3H_7O_2 + NO \rightarrow C_2H_5CHO + HO_2 + NO_2$	2.7E-12*EXP(360./temp)*(1alpha_AN(3,1,0,0,0,temp,cair))	Wallington et al. (2018)
G43009b	TrGCN	$C_3H_7O_2 + NO \rightarrow C_3H_7ONO_2$	2.7E-12*EXP(360./temp)*alpha_ AN(3,1,0,0,0,temp,cair)	Wallington et al. (2018)
G43010	TrGC	$C_3H_7O_2 \rightarrow .8 CH_3COCH_3 + .2 NPROPOL + .6 HO_2$	2.*(k_CH302*3.E-13)**(.5)*R02	Rickard and Pascoe (2009), Atkinson et al. (2006)
G43011	TrGC	$CH_3COCH_3 + OH \rightarrow CH_3COCH_2O_2 + H_2O$	(8.8E-12*EXP(-1320./temp) +1.7E-14*EXP(423./temp))	Atkinson et al. (2006)*
G43012a	TrGC	$\mathrm{CH_{3}COCH_{2}O_{2}} + \mathrm{HO_{2}} \rightarrow \mathrm{CH_{3}COCH_{2}O_{2}H}$	8.6E-13*EXP(700./temp)*rcoch2o2_ ooh	Tyndall et al. (2001a), Sander et al. (2019)
G43012b	TrGC	$\mathrm{CH_3COCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{OH} + \mathrm{CH_3C(O)} + \mathrm{HCHO}$	8.6E-13*EXP(700./temp)*rcoch2o2_ oh	Tyndall et al. (2001a), Sander et al. (2019)
G43013a	TrGCN	$CH_3COCH_2O_2 + NO \rightarrow CH_3C(O) + HCHO + NO_2$	2.9E-12*EXP(300./temp)*(1alpha_AN(4,1,1,0,0,temp,cair))	Burkholder et al. (2015)
G43013b	TrGCN	$CH_3COCH_2O_2 + NO \rightarrow NOA$	2.9E-12*EXP(300./temp)*alpha_ AN(4,1,1,0,0,temp,cair)	Burkholder et al. (2015)
G43014	TrGC	CH ₃ COCH ₂ O ₂ \rightarrow .3 CH ₃ C(O) + .3 HCHO + .5 MGLYOX + .2 CH ₃ COCH ₂ OH	k1_R02p0R02	Orlando and Tyndall (2012)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43015a	TrGC	$\text{CH}_3\text{COCH}_2\text{O}_2\text{H} + \text{OH} \rightarrow \text{CH}_3\text{COCH}_2\text{O}_2 + \text{H}_2\text{O}$	k_roohro	see note*
G43015b	TrGC	$CH_3COCH_2O_2H + OH \rightarrow MGLYOX + OH + H_2O$	k_s*f_sooh*f_co	Sander et al. (2019)
G43016	TrGC	$CH_3COCH_2OH + OH \rightarrow MGLYOX + HO_2 + H_2O$	1.6E-12*EXP(305./temp)	Atkinson et al. (2006)
G43017	TrGC	MGLYOX + OH \rightarrow .4 CH ₃ + .6 CH ₃ C(O) + 1.4 CO + H ₂ O	1.9E-12*EXP(575./temp)	Baeza-Romero et al. (2007), Atkinson et al. (2006)
G43020	TrGCN	$iC_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2$	6.2E-13*EXP(-230./temp)	Wallington et al. (2018)
G43021	TrGCN	$CH_3COCH_2O_2 + NO_3 \rightarrow CH_3C(O) + HCHO + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G43022	TrGC	$HYPROPO2 \rightarrow CH_3CHO + HCHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)
G43023a	TrGC	$HYPROPO2 + HO_2 \rightarrow HYPROPO2H$	KRO2HO2(3)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G43023b	TrGC	$\mathrm{HYPROPO2} + \mathrm{HO}_2 \rightarrow \mathrm{CH}_3\mathrm{CHO} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{OH}$	KRO2HO2(3)*rchohch2o2_oh	Rickard and Pascoe (2009)
G43024a	TrGCN	$\mathrm{HYPROPO2} + \mathrm{NO} \rightarrow \mathrm{CH_3CHO} + \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{NO_2}$	<pre>KRO2NO*(1alpha_AN(4,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G43024b	TrGCN	$\mathrm{HYPROPO2} + \mathrm{NO} \rightarrow \mathrm{PROPOLNO3}$	<pre>KRO2NO*alpha_AN(4,1,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G43025	TrGCN	$\mathrm{HYPROPO2} + \mathrm{NO}_3 \rightarrow \mathrm{CH}_3\mathrm{CHO} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{NO}_2$	KR02N03	Rickard and Pascoe (2009)
G43026a	TrGC	$HYPROPO2H + OH \rightarrow HYPROPO2$	k_roohro	Rickard and Pascoe (2009)
G43026b	TrGC	$\mathrm{HYPROPO2H} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_2OH} + \mathrm{OH}$	(k_s*f_soh*f_pch2oh+k_t*f_ tooh*f_pch2oh)	Sander et al. (2019)
G43027	TrGCN	$PRONO3BO2 + HO_2 \rightarrow PR2O2HNO3$	KRO2HO2(3)	Rickard and Pascoe (2009)
G43028	TrGCN	$PRONO3BO2 + NO \rightarrow NOA + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G43029	TrGCN	$PRONO3BO2 + NO_3 \rightarrow NOA + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G43030a	TrGCN	$PR2O2HNO3 + OH \rightarrow PRONO3BO2$	k_roohro	Rickard and Pascoe (2009)
G43030b	TrGCN	$PR2O2HNO3 + OH \rightarrow NOA + OH$	k_t*f_tooh*f_ch2ono2	Sander et al. (2019)
G43031	TrGCN	$MGLYOX + NO_3 \rightarrow CH_3C(O) + CO + HNO_3$	KNO3AL*2.4	Rickard and Pascoe (2009)
G43032	TrGCN	$NOA + OH \rightarrow MGLYOX + NO_2$	$(k_s*f_co*f_ono2+k_p*f_co)$	Sander et al. (2019)
G43033	TrGC	HOCH2COCHO + OH → .8609 HOCH2CO + .8609 CO + .1391 HCOCOCHO + .1391 HO $_2$	(1.9E-12*EXP(575./temp)+k_s*f_ soh*f_co)	Sander et al. (2019)
G43034	TrGCN	$HOCH2COCHO + NO_3 \rightarrow HOCH2CO + CO + HNO_3$	KN03AL*2.4	Sander et al. (2019)
G43035	TrGC	$\mathrm{CH_3COCO_2H} + \mathrm{OH} \rightarrow \mathrm{CH_3C(O)} + \mathrm{H_2O} + \mathrm{CO_2}$	4.9E-14*EXP(276./temp)	Mellouki and Mu (2003), Sander et al. (2019)
G43036	TrGC	$\mathrm{HCOCOCH_2O_2} \rightarrow .6 \ \mathrm{HCOCO} + .6 \ \mathrm{HCHO} + .2 \ \mathrm{HCOCOCHO} + .2 \ \mathrm{HCOCOCHO}$	k1_R02p0R02	Sander et al. (2019)
G43037	TrGCN	$\text{HCOCOCH}_2\text{O}_2 + \text{NO} \rightarrow \text{HCOCO} + \text{HCHO} + \text{NO}_2$	KRO2NO	Sander et al. $(2019)^*$
G43038a	TrGC	$\mathrm{HCOCOCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{HCOCOCH_2OOH}$	KRO2HO2(3)*rcoch2o2_ooh	Sander et al. (2019)
G43038b	TrGC	$\mathrm{HCOCOCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{HCOCO} + \mathrm{HCHO} + \mathrm{OH}$	KRO2HO2(3)*rcoch2o2_oh	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43039	TrGCN	$\text{HCOCOCH}_2\text{O}_2 + \text{NO}_3 \rightarrow \text{HCOCO} + \text{HCHO} + \text{NO}_2$	KRO2NO3	Sander et al. (2019)
G43040a	TrGC	$\text{HCOCOCH}_2\text{OOH} + \text{OH} \rightarrow \text{HOOCH}_2\text{CO}_3 + \text{CO} + \text{H}_2\text{O}$	k_t*f_co*f_o	Sander et al. (2019)*
G43040b	TrGC	$\text{HCOCOCH}_2\text{OOH} + \text{OH} \rightarrow \text{HCOCOCHO} + \text{H}_2\text{O} + \text{OH}$	k_s*f_sooh*f_co	Sander et al. (2019)*
G43040c	TrGC	$\mathrm{HCOCOCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{HCOCOCH_2O_2} + \mathrm{H_2O}$	k_roohro	Sander et al. (2019)
G43041	TrGCN	$\mathrm{HCOCOCH_2OOH} + \mathrm{NO_3} \rightarrow \mathrm{HOOCH_2CO_3} + \mathrm{CO} + \mathrm{HNO_3}$	KNO3AL*2.4	Sander et al. (2019)
G43042	TrGC	$HOCH2COCH2O2 \rightarrow HCHO + HOCH2CO$	k1_R02p0R02	Sander et al. (2019)
G43043a	TrGC	$HOCH2COCH2O2 + HO_2 \rightarrow HOCH2COCH2OOH$	KRO2HO2(3)*rcoch2o2_ooh	Sander et al. (2019)
G43043b	TrGC	$HOCH2COCH2O2 + HO_2 \rightarrow HCHO + HOCH2CO + OH$	KRO2HO2(3)*rcoch2o2_oh	Sander et al. (2019)
G43044	TrGCN	$HOCH2COCH2O2 + NO \rightarrow HCHO + HOCH2CO + NO_2$	KRO2NO	Sander et al. (2019)*
G43045a	TrGC	$HOCH2COCH2OOH + OH \rightarrow HOCH2COCHO + OH$	k_s*f_sooh*f_co	Sander et al. (2019)
G43045b	TrGC	$HOCH2COCH2OOH + OH \rightarrow HOCH2COCH2O2$	k_roohro	Sander et al. (2019)
G43045c	TrGC	$HOCH2COCH2OOH + OH \rightarrow HCOCOCH_2OOH + HO_2$	1.60E-12*EXP(305./temp)	Sander et al. (2019)*
G43046	TrGC	$\mathrm{CH3CHCO} + \mathrm{OH} \rightarrow .72~\mathrm{CO} + .72~\mathrm{CH_3CHO} + .72~\mathrm{HO_2} +$	7.6E-11	Hatakeyama et al. (1985),
		$.21 \text{ CH}_3\text{COCO}_2\text{H} + .07 \text{ CH}_3\text{CHO} + .07 \text{ HO}_2 + .07 \text{ CO}_2$		Sander et al. (2019)
G43047	TrGCN	$PROPOLNO3 + OH \rightarrow CH_3COCH_2OH + NO_2$	k_t*f_ono2*f_pch2oh+k_s*f_soh*f_	Sander et al. (2019)
			ch2ono2	
G43048	TrGCN	$CH_3COCH_2O_2 + NO_2 \rightarrow CH_3COCH_2OONO_2$	2.3E-12*EXP(300./temp)	Tyndall et al. $(2001a)^*$
G43049	TrGCN	$CH_3COCH_2OONO_2 \rightarrow CH_3COCH_2O_2 + NO_2$	1.9E16*EXP(-10830./temp)	Sehested et al. $(1998)^*$
G43050	TrGCN	$CH_3COCH_2OONO_2 + OH \rightarrow MGLYOX + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)*f_co	Sander et al. $(2019)^*$
G43051a	TrGC	$C_3H_7OOH + OH \rightarrow C_3H_7O_2 + H_2O$	k_roohro	Sander et al. (2019)
G43051b	TrGC	$C_3H_7OOH + OH \rightarrow C_2H_5CHO + H_2O + OH$	k_s*f_sooh	Sander et al. (2019)
G43051c	TrGC	$C_3H_7OOH + OH \rightarrow C_2H_5CHO + HO_2 + H_2O$	k_s*f_pch2oh	Sander et al. $(2019)^*$
G43052	TrGC	$C_2H_5CHO + OH \rightarrow C_2H_5CO_3 + H_2O$	4.9E-12*EXP(405./temp)	Atkinson et al. $(2006)^*$
G43053	TrGCN	$C_2H_5CHO + NO_3 \rightarrow C_2H_5CO_3 + HNO_3$	6.3E-15	Atkinson et al. (2006)
G43054a	TrGC	$\mathrm{C_2H_5CO_3} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{CO_2}$	k1_R02RC03*0.9	Sander et al. (2019)
G43054b	TrGC	$\mathrm{C_2H_5CO_3} \rightarrow \mathrm{C_2H_5CO_2H}$	k1_R02RC03*0.1	Sander et al. (2019)
G43055a	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5O_2 + CO_2 + OH$	KAPHO2*rco3_oh	Sander et al. (2019), Groß et al. (2014)
G43055b	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5CO_3H$	KAPHO2*rco3_ooh	Sander et al. (2019), Groß et al.
G43055c	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5CO_2H + O_3$	VADHOO+man2 n2	(2014)
G43055C	1160	$\bigcirc_{2}\Pi_{5}\bigcirc\bigcirc_{3}+\Pi\bigcirc_{2}\rightarrow\bigcirc_{2}\Pi_{5}\bigcirc\bigcirc_{2}\Pi+\bigcirc_{3}$	KAPHO2*rco3_o3	Sander et al. (2019), Groß et al. (2014)
G43056	TrGCN	$C_2H_5CO_3 + NO \rightarrow NO_2 + C_2H_5O_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G43057	TrGCN	$C_2H_5CO_3 + NO_2 \rightarrow PPN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43058	TrGCN	$PPN \rightarrow C_2H_5CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43059	TrGC	$C_2H_5CO_2H + OH \rightarrow CH_3CHO + CO_2 + H_2O$	k_co2h+k_p+k_s*f_co2h	Sander et al. (2019)*
G43060a	TrGC	$C_2H_5CO_3H + OH \rightarrow C_2H_5CO_3 + H_2O$	k_roohro	Sander et al. (2019)
G43060b	TrGC	$C_2H_5CO_3H + OH \rightarrow CH_3CHO + CO_2 + H_2O$	k_s*f_co2h+k_p	Sander et al. (2019)*
G43061	TrGCN	$PPN + OH \rightarrow CH_3CHO + CO_2 + NO_2 + H_2O$	k_s*f_cpan+k_p	Sander et al. $(2019)^*$
G43062	TrGC	$CH_3COCO_3H + OH \rightarrow CH_3COCO_3 + H_2O$	k_roohro	Sander et al. (2019)
G43063a	TrGC	$\mathrm{CH_3COCO_3} + \mathrm{HO_2} \rightarrow \mathrm{CH_3C(O)} + \mathrm{CO_2} + \mathrm{OH}$	KAPHO2*rco3_oh	Sander et al. (2019)
G43063b	TrGC	$\mathrm{CH_{3}COCO_{3}} + \mathrm{HO_{2}} \rightarrow \mathrm{CH_{3}COCO_{3}H}$	KAPHO2*(rco3_ooh+rco3_o3)	Sander et al. (2019)
G43064	TrGCN	$CH_3COCO_3 + NO \rightarrow CH_3C(O) + CO_2 + NO_2$	KAPNO	Sander et al. (2019)
G43065	TrGCN	$CH_3COCO_3 + NO_2 \rightarrow CH_3C(O) + CO_2 + NO_3$	k_CH3CO3_NO2	Sander et al. $(2019)^*$
G43066	TrGCN	$CH_3COCO_3 + NO_3 \rightarrow CH_3C(O)OO + CO_2 + NO_2$	KR02N03*1.74	Sander et al. (2019)
G43067	TrGC	$CH_3COCO_3 \rightarrow CH_3C(O)OO + CO_2$	k1_R02RC03	Sander et al. (2019)
G43068	TrGC	$\text{HCOCOCHO} + \text{OH} \rightarrow 3 \text{ CO} + \text{HO}_2$	2.*k_t*f_co*f_o	Sander et al. (2019)
G43069	TrGC	$IPROPOL + OH \rightarrow CH_3COCH_3 + HO_2 + H_2O$	2.6E-12*EXP(200./temp)	Atkinson et al. (2006)
G43070a	TrGC	$NPROPOL + OH \rightarrow C_2H_5CHO + HO_2 + H_2O$	4.6E-12*EXP(70./temp)*(k_s*f_soh/(k_p+k_s*f_pch2oh+k_s*f_soh))	Atkinson et al. (2006), Sander et al. (2019)*
G43070b	TrGC	NPROPOL + OH \rightarrow HYPROPO2 + H ₂ O	4.6E-12*EXP(70./temp)*((k_p+k_ s*f_pch2oh)/(k_p+k_s*f_pch2oh+k_ s*f_soh))	Atkinson et al. (2006), Sander et al. (2019)*
G43071a	TrGC	$\mathrm{CH_2CHCH_2OH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{CH_3CHO}$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019) , So et al. $(2014)^*$
G43072	TrGC	$\mathrm{CH_2CHCH_2OH} + \mathrm{HCOOH} \rightarrow \mathrm{C_2H_5CHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G43073	TrGC	$C_2H_5CHO + HCOOH \rightarrow CH_2CHCH_2OH + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G43074	TrGC	$HCOCOCH_2OOH + OH \rightarrow HCOCO + CO + HO_2 + OH$	k_s*f_sooh*f_co+k_roohro	Sander et al. (2019)*
G43202	TrGTerC	$\text{HCOCH2CHO} + \text{OH} \rightarrow \text{HCOCH2CO3}$	4.29E-11	Rickard and Pascoe (2009)
G43203	TrGTerCN	$\text{HCOCH2CHO} + \text{NO}_3 \rightarrow \text{HCOCH2CO3} + \text{HNO}_3$	2.*KN03AL*2.4	Rickard and Pascoe (2009)
G43204a	TrGTerC	$\text{HCOCH2CO3} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2$	k1_R02RC03*0.9	Sander et al. (2019)
G43204b	TrGTerC	$HCOCH2CO3 \rightarrow HCOCH2CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G43205	TrGTerCN	$\text{HCOCH2CO3} + \text{NO} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (2009)
G43206	TrGTerCN	$HCOCH2CO3 + NO_2 \rightarrow C_3PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43207a	TrGTerC	$\text{HCOCH2CO3} + \text{HO}_2 \rightarrow \text{HCOCH2CO3H}$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G43207b	TrGTerC	$\text{HCOCH2CO3} + \text{HO}_2 \rightarrow \text{HCOCH2CO2H} + \text{O}_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G43207c	TrGTerC	$\text{HCOCH2CO3} + \text{HO}_2 \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{OH}$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G43210	TrGTerCN	$C_3PAN2 \rightarrow HCOCH2CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43211	TrGTerCN	$C_3PAN2 + OH \rightarrow GLYOX + CO + NO_2$	2.10E-11	Rickard and Pascoe (2009)
G43212	TrGTerC	$\text{HCOCH2CO2H} + \text{OH} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2$	2.14E-11	Rickard and Pascoe (2009)
G43213a	TrGTerC	$\mathrm{HOC_2H_4CO_3} \rightarrow \mathrm{HOCH_2CH_2O_2} + \mathrm{CO_2}$	k1_R02RC03*0.9	Sander et al. (2019)
G43213b	TrGTerC	$HOC_2H_4CO_3 \rightarrow HOC2H4CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G43214	TrGTerCN	$HOC_2H_4CO_3 + NO \rightarrow HOCH_2CH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G43215a	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOC2H4CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G43215b	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOCH_2CH_2O_2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G43215c	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOC2H4CO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G43218	TrGTerCN	$HOC_2H_4CO_3 + NO_2 \rightarrow C_3PAN1$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43219	TrGTerC	$HOC2H4CO2H + OH \rightarrow HOCH_2CH_2O_2 + CO_2$	1.39E-11	Rickard and Pascoe (2009)
G43220	TrGTerC	$HOC2H4CO3H + OH \rightarrow HOC_2H_4CO_3$	1.73E-11	Rickard and Pascoe (2009)
G43221	TrGTerCN	$C_3PAN1 \rightarrow HOC_2H_4CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43222	TrGTerCN	$C_3PAN1 + OH \rightarrow HOCH_2CHO + CO + NO_2$	4.51E-12	Rickard and Pascoe (2009)
G43223	TrGTerC	$\text{HCOCH2CO3H} + \text{OH} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{H}_2\text{O}$	2.49E-11	Rickard and Pascoe (2009)*
G43415	TrGAroC	$C3DIALOOH + OH \rightarrow HCOCOCHO + OH$	1.44E-10	Rickard and Pascoe (2009)
G43418a	TrGAroC	$C3DIALO2 + HO_2 \rightarrow C3DIALOOH$	<pre>KRO2HO2(3)*(rco3_ooh+rco3_o3)</pre>	Rickard and Pascoe (2009)
G43418b	TrGAroC	$C3DIALO2 + HO_2 \rightarrow GLYOX + CO + HO_2 + OH$	KRO2HO2(3)*rco3_oh	Rickard and Pascoe (2009)
G43419	TrGAroCN	$C3DIALO2 + NO \rightarrow GLYOX + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G43420	TrGAroCN	$C3DIALO2 + NO_3 \rightarrow GLYOX + CO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G43421	TrGAroC	$C3DIALO2 \rightarrow GLYOX + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G43422a	TrGAroC	$\text{HCOCOHCO3} + \text{HO}_2 \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2 + \text{OH}$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G43422b	TrGAroC	$\text{HCOCOHCO3} + \text{HO}_2 \rightarrow \text{HCOCOHCO3H}$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G43424	TrGAroCN	$\text{HCOCOHCO3} + \text{NO} \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (2009)
G43425	TrGAroCN	$\text{HCOCOHCO3} + \text{NO}_2 \rightarrow \text{HCOCOHPAN}$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43426	TrGAroCN	$\text{HCOCOHCO3} + \text{NO}_3 \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2 + \text{NO}_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G43427	TrGAroC	$HCOCOHCO3 \rightarrow GLYOX + CO_2 + HO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)
G43428	TrGAroC	$METACETHO + OH \rightarrow CH_3C(O) + CO_2$	9.82E-11	Rickard and Pascoe (2009)
G43442	TrGAroCN	$\text{HCOCOHPAN} + \text{OH} \rightarrow \text{GLYOX} + \text{CO} + \text{NO}_2$	6.97E-11	Rickard and Pascoe (2009)
G43443	TrGAroCN	$\text{HCOCOHPAN} \rightarrow \text{HCOCOHCO3} + \text{NO}_2$	k_PAN_M	Rickard and Pascoe (2009)
G43444	TrGAroC	$C32OH13CO + OH \rightarrow HCOCOHCO3$	1.36E-10	Rickard and Pascoe (2009)
G43446	TrGAroC	$HCOCOHCO3H + OH \rightarrow HCOCOHCO3$	7.33E-11	Rickard and Pascoe (2009)
G44000	TrGC	$C_4H_{10} + OH \rightarrow LC_4H_9O_2 + H_2O$	2.03E-17*temp*temp*EXP(78./temp)	Atkinson et al. (2006)*
G44001a	TrGC	$LC_4H_9O_2 \rightarrow C_3H_7CHO + HO_2$	(k1_R02pR02*0.1273+k1_	Rickard and Pascoe (2009),
			RO2sRO2*0.8727)*0.1273	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44001b	TrGC	$LC_4H_9O_2 \rightarrow .636 \text{ MEK} + .636 \text{ HO}_2 + .364 \text{ CH}_3\text{CHO} +$	(k1_R02pR02*0.1273+k1_	Rickard and Pascoe (2009),
		$.364 \text{ C}_2\text{H}_5\text{O}_2$	RO2sRO2*0.8727)*0.8727	Sander et al. $(2019)^*$
G44002	TrGC	$LC_4H_9O_2 + HO_2 \rightarrow LC_4H_9OOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44003a	TrGCN	$LC_4H_9O_2 + NO \rightarrow NO_2 + C_3H_7CHO + HO_2$	<pre>KRO2NO*(1(0.1273*alpha_AN(4,1,</pre>	Rickard and Pascoe (2009),
			0,0,0,temp,cair)+0.8727*alpha_	Sander et al. (2019)
			AN(4,2,0,0,0,temp,cair)))*0.1273	
G44003b	TrGCN	$LC_4H_9O_2 + NO \rightarrow NO_2 + .636 \text{ MEK} + .636 \text{ HO}_2 + .364$	KRO2NO*(1(0.1273*alpha_AN(4,1,	Rickard and Pascoe (2009),
		$\mathrm{CH_{3}CHO} + .364 \mathrm{C_{2}H_{5}O_{2}}$	0,0,0,temp,cair)+0.8727*alpha_	Sander et al. (2019)
			AN(4,2,0,0,0,temp,cair)))*0.8727	
G44003c	TrGCN	$LC_4H_9O_2 + NO \rightarrow LC4H9NO3$	<pre>KRO2NO*(0.1273*alpha_AN(4,1,0,0,</pre>	Rickard and Pascoe (2009)*
			$0, temp, cair) + 0.8727*alpha_AN(4,$	
			2,0,0,0,temp,cair))	
G44004a	TrGCN	$LC_4H_9O_2 + NO_3 \rightarrow NO_2 + C_3H_7CHO + HO_2$	KR02N03*0.1273	Rickard and Pascoe (2009),
				Sander et al. (2019)
G44004b	TrGCN	$LC_4H_9O_2 + NO_3 \rightarrow NO_2 + .636 \text{ MEK} + .636 \text{ HO}_2 + .364$	KR02N03*0.8727	Rickard and Pascoe (2009),
		$\mathrm{CH_3CHO} + .364 \mathrm{C_2H_5O_2}$		Sander et al. (2019)
G44005a	TrGC	$LC_4H_9OOH + OH \rightarrow LC_4H_9O_2 + H_2O$	k_roohro	Sander et al. (2019)
G44005b	TrGC	$LC_4H_9OOH + OH \rightarrow C_3H_7CHO + H_2O + OH$	$k_s*f_tooh*f_alk*(k_p/(k_p+k_s))$	Sander et al. (2019)
G44005c	TrGC	$LC_4H_9OOH + OH \rightarrow MEK + H_2O + OH$	$k_t*f_tooh*f_alk*(k_s/(k_p+k_s))$	Sander et al. (2019)
G44006a	TrGC	$iC_4H_{10} + OH \rightarrow TC_4H_9O_2 + H_2O$	1.17E-17*temp*temp*EXP(213./temp)	Atkinson (2003)
			$*k_t/(3.*k_p+k_t)$	
G44006b	TrGC	$iC_4H_{10} + OH \rightarrow IC_4H_9O_2 + H_2O$	1.17E-17*temp*temp*EXP(213./temp)	Atkinson (2003)
			$*3.*k_p/(3.*k_p+k_t)$	
G44007	TrGC	$TC_4H_9O_2 \rightarrow CH_3COCH_3 + CH_3$	k1_R02tR02	Rickard and Pascoe (2009),
				Sander et al. (2019)
G44008	TrGC	$TC_4H_9O_2 + HO_2 \rightarrow TC_4H_9OOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44009a	TrGCN	$TC_4H_9O_2 + NO \rightarrow NO_2 + CH_3COCH_3 + CH_3$	$KRO2NO*(1alpha_AN(4,3,0,0,0,$	Rickard and Pascoe (2009),
			temp,cair))	Sander et al. (2019)
G44009b	TrGCN	$TC_4H_9O_2 + NO \rightarrow TC4H9NO3$	$KRO2NO*alpha_AN(4,3,0,0,0,temp,$	Rickard and Pascoe (2009)
			cair)	
G44010a	TrGC	$TC_4H_9OOH + OH \rightarrow TC_4H_9O_2 + H_2O$	k_roohro	Sander et al. (2019)
G44010b	TrGC	$TC_4H_9OOH + OH \rightarrow CH_3COCH_3 + HCHO + OH + H_2O$	3.*k_p*f_tch2oh	Sander et al. $(2019)^*$
G44011	TrGCN	$TC4H9NO3 + OH \rightarrow CH_3COCH_3 + HCHO + NO_2 + H_2O$	3.*k_p*f_ch2ono2	Sander et al. $(2019)^*$
G44012	TrGC	$IC_4H_9O_2 \rightarrow IPRCHO$	k1_R02sR02	Rickard and Pascoe (2009),
				Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44013	TrGC	$IC_4H_9O_2 + HO_2 \rightarrow IC_4H_9OOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44014a	TrGCN	$IC_4H_9O_2 + NO \rightarrow NO_2 + IPRCHO$	<pre>KRO2NO*(1alpha_AN(4,2,0,0,0,</pre>	Rickard and Pascoe (2009),
			temp,cair))	Sander et al. (2019)
G44014b	TrGCN	$IC_4H_9O_2 + NO \rightarrow IC4H9NO3$	<pre>KRO2NO*alpha_AN(4,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G44015a	TrGC	$IC_4H_9OOH + OH \rightarrow IC_4H_9O_2 + H_2O$	k_roohro	Sander et al. (2019)
G44015b	TrGC	$IC_4H_9OOH + OH \rightarrow IPRCHO + OH + H_2O$	$k_s*f_sooh+2.*k_s+k_t*f_pch2oh$	Sander et al. (2019)*
G44016	TrGCN	$IC4H9NO3 + OH \rightarrow IPRCHO + NO_2 + H_2O$	k_s*f_ono2+2.*k_p+k_t*f_ch2ono2	Sander et al. (2019)*
G44017	TrGC	$\begin{array}{l} {\rm MVK}+{\rm O}_3\rightarrow.87{\rm MGLYOX}+.5481{\rm CO}+.1392{\rm HO}_2\\ +.1392{\rm OH}+.3219{\rm CH}_2{\rm OO}+.13{\rm HCHO}+.04680{\rm OH}\\ +.04680{\rm CO}+.07280{\rm CH}_3{\rm C(O)}+.026{\rm CH}_3{\rm CHO}+.026\\ {\rm CO}_2+.026{\rm HCHO}+.026{\rm HO}_2+.02402{\rm MGLYOX}+.02402{\rm H}_2{\rm O}_2+.00718{\rm CH}_3{\rm COCO}_2{\rm H} \end{array}$	8.5E-16*EXP(-1520./temp)	Sander et al. (2019)
G44018	TrGC	$MVK + OH \rightarrow LHMVKABO2$	2.6E-12*EXP(610./temp)	Sander et al. (2019), Atkinson et al. (2006)*
G44019	TrGC	$MEK + OH \rightarrow LMEKO2 + H_2O$	1.5E-12*EXP(-90./temp)	Atkinson et al. (2006), Sander et al. (2019)*
G44020	TrGC	$LMEKO2 + HO_2 \rightarrow LMEKOOH$	KRO2HO2(4)	Sander et al. (2019)
G44021a	TrGCN	LMEKO2 + NO \rightarrow .62 CH ₃ CHO + .62 CH ₃ C(O) + .38 HCHO + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + NO ₂	<pre>KRO2NO*(1(.62*alpha_AN(4,2,1, 0,0,temp,cair)+.38*alpha_AN(4,1, 0,1,0,temp,cair)))</pre>	Sander et al. (2019)*
G44021b	TrGCN	$LMEKO2 + NO \rightarrow LMEKNO3$	<pre>KRO2NO*(.62*alpha_AN(4,2,1,0,0, temp,cair)+.38*alpha_AN(4,1,0,1, 0,temp,cair))</pre>	Sander et al. (2019)
G44022a	TrGC	$LMEKOOH + OH \rightarrow LMEKO2 + H_2O$	k_roohro	Sander et al. (2019)
G44022b	TrGC	LMEKOOH + OH \rightarrow .62 BIACET + .38 HCHO + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + H ₂ O + OH	(.62*k_t*f_tooh*f_co+.38*k_s*f_ sooh)	Sander et al. (2019)
G44023a	TrGCN	$LC4H9NO3 + OH \rightarrow MEK + NO_2 + H_2O$	(k_t*f_ono2*f_alk+k_p*f_alk+k_ s*f_ch2ono2+k_p)*(k_s/(k_p+k_s))	Sander et al. (2019)*
G44023b	TrGCN	$LC4H9NO3 + OH \rightarrow C_3H_7CHO + NO_2 + H_2O$	(k_p+k_s*(1.+f_ch2ono2+f_ono2) *f_alk)*(k_p/(k_p+k_s))	Sander et al. (2019)*
G44024	TrGCN	$MPAN + OH \rightarrow CH_3COCH_2OH + CO + NO_2$	3.2E-11	Orlando et al. (2002)
G44025	TrGCN	$MPAN \rightarrow MACO3 + NO_2$	k_PAN_M	see note*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44026	TrGC	$LMEKO2 \rightarrow .538 \ HCHO + .538 \ CO_2 + .459$	(.62*k1_R02s0R02+.38*k1_R02p0R02)	Rickard and Pascoe (2009)*
		$HOCH_2CH_2O_2 + .079 C_2H_5O_2 + .462 CH_3C(O) +$		
		.462 CH ₃ CHO		
G44027	TrGC	$MACR + OH \rightarrow .45 MACO3 + .55 MACRO2$	8.E-12*EXP(380./temp)	Orlando et al. (1999b), Sander et al. (2019)
G44028	TrGC	$MACR + O_3 \rightarrow .5481 CO + .1392 HO_2 + .1392 OH + .3219 CH_2OO + .87 MGLYOX + .13 HCHO + .13 OH + .065 HCOCOCH_2O_2 + .065 CO + .065 CH_3C(O)$	1.36E-15*EXP(-2112./temp)	Sander et al. (2019)
G44029	TrGCN	$MACR + NO_3 \rightarrow MACO_3 + HNO_3$	KNO3AL*2.0	Rickard and Pascoe (2009)
G44030a	TrGC	$MACO3 \rightarrow CH_3C(O) + HCHO + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G44030b	TrGC	$MACO3 \rightarrow MACO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G44031a	TrGC	$MACO3 + HO_2 \rightarrow MACO2 + OH$	KAPHO2*rco3_oh	Sander et al. (2019)
G44031b	TrGC	$MACO3 + HO_2 \rightarrow MACO3H$	KAPHO2*rco3_ooh	Sander et al. (2019)
G44031c	TrGC	$MACO3 + HO_2 \rightarrow MACO2H + O_3$	KAPHO2*rco3_o3	Sander et al. (2019)
G44032	TrGCN	$MACO3 + NO \rightarrow MACO2 + NO_2$	8.70E-12*EXP(290./temp)	Sander et al. (2019)
G44033	TrGCN	$MACO3 + NO_2 \rightarrow MPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44034	TrGCN	$MACO3 + NO_3 \rightarrow MACO2 + NO_2$	KR02N03*1.74	Sander et al. (2019)
G44035	TrGC	MACRO2 \rightarrow .7 CH ₃ COCH ₂ OH + .7 HCHO + .7 HO ₂ + .3 MACROH	k1_R02t0R02	Rickard and Pascoe (2009)*
G44036a	TrGC	$MACRO2 + HO_2 \rightarrow MACRO + OH$	KRO2HO2(4)*rcoch2o2_oh	Sander et al. (2019)
G44036b	TrGC	$MACRO2 + HO_2 \rightarrow MACROOH$	KRO2HO2(4)*rcoch2o2_ooh	Sander et al. (2019)
G44037a	TrGCN	$MACRO2 + NO \rightarrow MACRO + NO_2$	<pre>KRO2NO*(1alpha_AN(6,3,1,0,0, temp,cair))</pre>	Sander et al. (2019)
G44037b	TrGCN	$MACRO2 + NO \rightarrow MACRNO3$	<pre>KRO2NO*alpha_AN(6,3,1,0,0,temp, cair)</pre>	Sander et al. (2019)
G44038	TrGCN	$MACRO2 + NO_3 \rightarrow MACRO + NO_2$	KR02N03	Sander et al. (2019)
G44039a	TrGC	$MACROOH + OH \rightarrow MACRO2$	k_roohro	Sander et al. (2019)
G44039b	TrGC	$MACROOH + OH \rightarrow CO + CH_3COCH_2OH + OH$	k_t*f_o*f_tch2oh*f_alk	Sander et al. (2019)
G44039c	TrGC	$MACROOH + OH \rightarrow CO + MGLYOX + HO_2$	(k_s*f_soh*f_pch2oh + k_rohro)	Sander et al. (2019)
G44040	TrGC	$MACROH + OH \rightarrow CH_3COCH_2OH + CO + HO_2$	k_t*f_o*f_tch2oh*f_alk	Sander et al. (2019)
G44041	TrGC	$MACRO \rightarrow .885 CH_3COCH_2OH + .885 CO + .115$	KDEC	Sander et al. (2019)
		$MGLYOX + .115 HCHO + HO_2$		•
G44042	TrGC	$MACO2H + OH \rightarrow CH_3COCH_2OH + HO_2 + CO_2$	((k_adt+k_adp)*a_co2h+k_co2h)	Sander et al. (2019)
G44043a	TrGC	$MACO3H + OH \rightarrow CH_3COCH_2OH + CO_2 + OH$	(k_adt+k_adp)*a_co2h	Sander et al. (2019)
G44043b	TrGC	$MACO3H + OH \rightarrow MACO3$	k_roohro	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44044	TrGC	$LHMVKABO2 \rightarrow .024 CO2H3CHO + .072 MGLYOX$	(.12*k1_RO2pORO2+.88*k1_RO2sORO2)	Sander et al. (2019)
		$+ .072 \text{ HO}_2 + .072 \text{ HCHO} + .5280 \text{ CH}_3\text{C(O)} + .5280$	-	,
		$HOCH_2CHO + .176 BIACETOH + .2 HO12CO3C4$		
G44045a	TrGC	$LHMVKABO2 + HO_2 \rightarrow OH + HOCH_2CHO + CH_3C(O)$	KRO2HO2(4)*.88*rcoch2o2_oh	Sander et al. (2019)
G44045b	TrGC	$LHMVKABO2 + HO_2 \rightarrow LHMVKABOOH$	<pre>KRO2HO2(4)*(.12+.88*rcoch2o2_ooh)</pre>	Sander et al. (2019)
G44046a	TrGCN	$LHMVKABO2 + NO \rightarrow .12 MGLYOX + .12 HO_2 + .88$	KRO2NO*(1(.12*alpha_AN(6,1,0,	Sander et al. (2019)
		HOCH2CHO + .88 CH3C(O) + .12 HCHO + NO2	$1,0,temp,cair)+.88*alpha_AN(6,2,$	
			1,0,0,temp,cair)))	
G44046b	TrGCN	$LHMVKABO2 + NO \rightarrow MVKNO3$	<pre>KRO2NO*(.12*alpha_AN(6,1,0,1,0,</pre>	Sander et al. $(2019)^*$
			temp, cair) $+.88*$ alpha_AN(6,2,1,0,	
			0,temp,cair))	
G44047	TrGCN	$LHMVKABO2 + NO_3 \rightarrow .12 MGLYOX + .12 HO_2 + .88$	KRO2NO3	Sander et al. (2019)
		$HOCH_2CHO + .88 CH_3C(O) + .12 HCHO + .12 HO_2 +$		
	_ ~ ~	NO_2		- ()
G44048a	TrGC	$LHMVKABOOH + OH \rightarrow LHMVKABO2$	k_roohro	Sander et al. (2019)
G44048b	TrGC	LHMVKABOOH + OH \rightarrow .12 CO2H3CHO + .88	(.12*k_s*f_sooh*f_pch2oh+.88*k_	Sander et al. (2019)
		BIACETOH + OH	t*f_tooh*f_pch2oh*f_co)	G (2212)
G44049a	TrGC	$CO2H3CHO + OH \rightarrow CO2H3CO3$	k_t*f_o*f_alk	Sander et al. (2019)
G44049b	TrGC	$CO2H3CHO + OH \rightarrow CH_3COCOCHO + HO_2 + H_2O$	k_t*f_co*f_toh*f_cho	Sander et al. (2019)
G44050	TrGCN	$CO2H3CHO + NO_3 \rightarrow CO2H3CO3 + HNO_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G44051	TrGC	$CO2H3CO3 \rightarrow MGLYOX + HO_2 + CO_2$	k1_R02RC03	Sander et al. (2019)
G44052a	TrGC	$CO2H3CO3 + HO_2 \rightarrow OH + MGLYOX + HO_2 + CO_2$	KAPHO2*rco3_oh	Sander et al. (2019)
G44052b	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO2H + O_3$	KAPHO2*rco3_o3	Sander et al. (2019)
G44052c	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO3H$	KAPHO2*rco3_ooh	Sander et al. (2019)
G44053	TrGCN	$CO2H3CO3 + NO \rightarrow MGLYOX + HO_2 + NO_2 + CO_2$	KAPNO	Sander et al. (2019)
G44054	TrGCN	$CO2H3CO3 + NO_3 \rightarrow MGLYOX + HO_2 + NO_2 + CO_2$	KR02N03*1.74	Sander et al. (2019)
G44055a	TrGC	$CO2H3CO3H + OH \rightarrow CO2H3CO3$	k_roohro	Sander et al. (2019)
G44055b	TrGC	$CO2H3CO3H + OH \rightarrow CH_3C(O) + CO + CO_2 + OH$	(k_t*f_co2h*f_co*f_toh)	Sander et al. (2019)
G44056 G44057a	TrGC TrGC	CO2H3CO2H + OH \rightarrow CH3COCOCO2H + HO ₂ HO12CO3C4 + OH \rightarrow BIACETOH + HO ₂	k_t*f_co2h*f_co*f_toh+k_co2h	Sander et al. (2019)
	TrGC	$HO12CO3C4 + OH \rightarrow BIACETOH + HO_2$ $HO12CO3C4 + OH \rightarrow CO2H3CHO + HO_2$	k_t*f_toh*f_alk*f_co	Sander et al. (2019) Sander et al. (2019)
G44057b G44058	TrGC	=	k_s*f_soh*f_alk KDEC	,
G44U58	IIGU	$MACO2 \rightarrow .65 \text{ CH}_3 + .65 \text{ CO} + .65 \text{ HCHO} + .35 \text{ OH} + .25 \text{ CH} \text{ COCH} \text{ O} + .60 \text{ CO}$	NDEC	Sander et al. (2019)
G44059	TrGC	$.35 \text{ CH}_3\text{COCH}_2\text{O}_2 + \text{CO}_2$ LHMVKABO2 $\rightarrow .88 \text{ MGLYOX} + .88 \text{ HCHO} + .12$	KHSD	Sandar et al. (2010)
G44059	IIGU		עטטע	Sander et al. (2019)
		$HOOCH2CHO + .12 CH_3C(O) + OH$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44060	TrGC	$MACRO2 \rightarrow MGLYOX + HCHO + OH$	KHSB	Sander et al. (2019)
G44061a	TrGCN	$\begin{array}{l} \text{MVKNO3} + \text{OH} \rightarrow \text{MGLYOX} + \text{CO}_2 + \text{HO}_2 + \text{NO}_2 + \\ \text{H}_2\text{O} \end{array}$	k_s*f_sooh*f_ch2ono2+k_rohro	Sander et al. $(2019)^*$
G44061b	TrGCN	$MVKNO3 + OH \rightarrow BIACETOH + NO_2 + H_2O$	k_t*f_ono2*f_co*f_pch2oh	Sander et al. $(2019)^*$
G44062a	TrGCN	$\begin{array}{l} {\rm MACRNO3} + {\rm OH} \rightarrow {\rm CH_3COCH_2OH} + {\rm CO_2} + {\rm NO_2} + \\ {\rm H_2O} \end{array}$	k_t*f_o*f_ch2ono2	Sander et al. (2019)*
G44062b	TrGCN	$MACRNO3 + OH \rightarrow MGLYOX + CO + NO_2 + H_2O$	k_rohro+k_s*f_sooh*f_ch2ono2	Sander et al. (2019)*
G44063	TrGC	$MACRO2 \rightarrow CH_3COCH_2OH + OH + CO$	K14HSAL	Sander et al. (2019)
G44064	TrGC	EZCH3CO2CHCHO \rightarrow .9 CH ₃ COCHCO + .1 CH ₃ C(O) + .01 GLYOX + .18 CO + .09 HO ₂ + OH	K15HS24VYNAL	Sander et al. (2019)
G44065	TrGC	EZCH3CO2CHCHO + $HO_2 \rightarrow CH_3COOHCHCHO$	KRO2HO2(4)	Sander et al. (2019)
G44066	TrGCN	$EZCH3CO2CHCHO + NO \rightarrow CH_3COCHO_2CHO + NO_2$	KRO2NO	Sander et al. $(2019)^*$
G44067	TrGCN	$EZCH3CO2CHCHO + NO_3 \rightarrow CH_3COCHO_2CHO + NO_2$	kR02N03	Sander et al. (2019)
G44068	TrGC	$EZCH3CO2CHCHO \rightarrow CH_3COCHO_2CHO$	k1_R02s0R02	Sander et al. (2019)
G44069	TrGC	$EZCHOCCH3CHO2 \rightarrow HCOCCH_3CO + OH$	K15HS24VYNAL	Sander et al. (2019)
G44070	TrGCN	$EZCHOCCH3CHO2 + NO \rightarrow HCOCO_2CH_3CHO + NO_2$	KRO2NO	Sander et al. $(2019)^*$
G44071	TrGC	$EZCHOCCH3CHO2 + HO_2 \rightarrow HCOCCH_3CHOOH$	KRO2HO2(4)	Sander et al. (2019)
G44072	TrGCN	$EZCHOCCH3CHO2 + NO_3 \rightarrow HCOCO_2CH_3CHO + NO_2$	KR02N03	Sander et al. (2019)
G44073	TrGC	$EZCHOCCH3CHO2 \rightarrow HCOCO_2CH_3CHO$	k1_R02p0R02	Sander et al. (2019)
G44074	TrGC	$CH_3COOHCHCHO \rightarrow CH_3COCHO_2CHO + OH$	KHYDEC	Sander et al. (2019)
G44075	TrGC	$HCOCCH_3CHOOH \rightarrow HCOCO_2CH_3CHO + OH$	KHYDEC	Sander et al. (2019)
G44076	TrGCN	$CH_3COCHO_2CHO + NO \rightarrow CH_3C(O) + GLYOX + NO_2$	KRO2NO	Sander et al. $(2019)^*$
G44077	TrGCN	$\text{CH}_3\text{COCHO}_2\text{CHO} + \text{NO}_3 \rightarrow \text{CH}_3\text{C(O)} + \text{GLYOX} + \text{NO}_2$	KR02N03	Sander et al. (2019)
G44078	TrGC	$CH_3COCHO_2CHO + HO_2 \rightarrow CH_3C(O) + GLYOX + OH$	KRO2HO2(4)	Sander et al. $(2019)^*$
G44079	TrGC	$CH_3COCHO_2CHO \rightarrow CH_3C(O) + GLYOX$	k1_R02s0R02	Sander et al. (2019)
G44080	TrGC	$HCOCO_2CH_3CHO \rightarrow MGLYOX + CO + HO_2$	k1_R02t0R02	Sander et al. (2019)
G44081	TrGCN	$\mathrm{HCOCO_2CH_3CHO} + \mathrm{NO} \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{NO_2}$	KRO2NO	Sander et al. (2019)*
G44082	TrGC	$\mathrm{HCOCO_2CH_3CHO} + \mathrm{HO_2} \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{OH}$	KR02H02(4)	Sander et al. $(2019)^*$
G44083	TrGCN	$\mathrm{HCOCO_2CH_3CHO} + \mathrm{NO_3} \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{NO_2}$	KR02N03	Sander et al. (2019)
G44084	TrGC	$\mathrm{HCOCCH_{3}CO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{MGLYOX} + \mathrm{HO}_{2}$	1E-10*a_cho	Hatakeyama et al. (1985), Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44085	TrGC	$\mathrm{CH_{3}COCHCO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{MGLYOX} + \mathrm{HO}_{2}$	7.6E-11*a_coch3	Hatakeyama et al. (1985), Sander et al. (2019)*
G44086	TrGCN	LMEKNO3 + OH \rightarrow .62 MGLYOX + .62 HCHO + .62 HO ₂ + .62 NO ₂ + .38 CH ₃ C(O) + .38 NO ₃ CH ₂ CHO	.62*(k_p*(f_co+f_ch2ono2)) +.38*(k_s*f_ch2ono2*f_co)	Sander et al. (2019)*
G44087	TrGC	$\text{MEPROPENE} + \text{OH} \rightarrow \text{IBUTOLBO2}$	9.4E-12*EXP(505./temp)	Atkinson et al. (2006)
G44088a	TrGC	$MEPROPENE + O_3 \rightarrow CH_3COCH_3 + CH_2OO^*$	2.7E-15*EXP(-1630./temp)*0.33	Atkinson et al. (2006), Sander et al. (2019)
G44088b	TrGC	$MEPROPENE + O_3 \rightarrow CH_3COCH_2O_2 + OH + HCHO$	2.7E-15*EXP(-1630./temp)*0.67	Atkinson et al. (2006), Sander et al. (2019)
G44089	TrGCN	$MEPROPENE + NO_3 \rightarrow CH_3COCH_3 + HCHO + NO_2$	3.4E-13	Atkinson et al. (2006), Sander et al. (2019)*
G44090	TrGC	$IBUTOLBO2 \rightarrow CH_3COCH_3 + HCHO + HO_2$	k1_RO2tORO2	Sander et al. (2019)
G44091a	TrGC	$\mathrm{IBUTOLBO2} + \mathrm{HO}_2 \rightarrow \mathrm{IBUTOLBOOH}$	KRO2HO2(4)*rcoch2o2_ooh	Sander et al. (2019)
G44091b	TrGC	$\begin{array}{l} \mathrm{IBUTOLBO2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{OH} \end{array}$	KR02H02(4)*rcoch2o2_oh	Sander et al. (2019)
G44092a	TrGCN	$\begin{array}{l} \mathrm{IBUTOLBO2} + \mathrm{NO} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	<pre>KRO2NO*(1alpha_AN(5,3,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G44092b	TrGCN	$IBUTOLBO2 + NO \rightarrow IBUTOLBNO3$	<pre>KRO2NO*alpha_AN(5,3,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G44093	TrGCN	$\begin{array}{c} \mathrm{IBUTOLBO2} + \mathrm{NO_3} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	KRO2NO3	Sander et al. (2019)
G44094a	TrGC	$IBUTOLBOOH + OH \rightarrow IBUTOLBO2$	k_roohro	Sander et al. (2019)
G44094b	TrGC	$IBUTOLBOOH + OH \rightarrow CH_3COCH_3 + HCHO + HO_2$	k_s*f_sooh*f_pch2oh	Sander et al. (2019)
G44095	TrGCN	$\begin{array}{l} \mathrm{IBUTOLBNO3} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	3.*k_p	Sander et al. (2019)
G44096	TrGC	$\mathrm{BUT1ENE} + \mathrm{OH} \rightarrow \mathrm{LBUT1ENO2}$	6.6E-12*EXP(465./temp)	Atkinson et al. $(2006)^*$
G44097a	TrGC	BUT1ENE + $O_3 \rightarrow HCHO + .5 C_2H_5CHO + .5 H_2O_2 + .5 CH_3CHO + .5 CO + .5 HO_2$	3.35E-15*EXP(-1745./temp)*.57	Atkinson et al. (2006), Sander et al. (2019)*
G44097b	TrGC	$BUT1ENE + O_3 \rightarrow C_2H_5CHO + CH_2OO^*$	3.35E-15*EXP(-1745./temp)*.43	Atkinson et al. (2006), Sander et al. (2019)*
G44098	TrGCN	$BUT1ENE + NO_3 \rightarrow C_2H_5CHO + HCHO + NO_2$	3.2E-13*EXP(-950./temp)	Atkinson et al. (2006), Sander et al. (2019)*
G44099	TrGC	$LBUT1ENO2 \rightarrow C_2H_5CHO + HCHO + HO_2$	k1_R02s0R02	Sander et al. (2019)
G44100a	TrGC	$\mathrm{LBUT1ENO2} + \mathrm{HO_2} \rightarrow \mathrm{LBUT1ENOOH}$	KRO2HO2(4)*rcoch2o2_ooh	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44100b	TrGC	$LBUT1ENO2 + HO_2 \rightarrow C_2H_5CHO + HCHO + HO_2 +$	KRO2HO2(4)*rcoch2o2_oh	Sander et al. (2019)
		ОН		
G44101a	TrGCN	$LBUT1ENO2 + NO \rightarrow C_2H_5CHO + HCHO + HO_2 + NO_2$	$KRO2NO*(1alpha_AN(5,2,0,0,0,$	Sander et al. (2019)
			temp,cair))	
G44101b	TrGCN	$LBUT1ENO2 + NO \rightarrow LBUT1ENNO3$	$KRO2NO*alpha_AN(5,2,0,0,0,temp,$	Sander et al. (2019)
			cair)	
G44102	TrGCN	LBUT1ENO2 + NO ₃ \rightarrow C ₂ H ₅ CHO + HCHO + HO ₂ + NO ₂	KR02N03	Sander et al. (2019)
G44103a	TrGC	$LBUT1ENOOH + OH \rightarrow LBUT1ENO2$	k_roohro	Sander et al. (2019)
G44103b	TrGC	LBUT1ENOOH + OH \rightarrow C ₂ H ₅ CO ₃ + HCHO + HO ₂	k_t*f_tooh*f_pch2oh	Sander et al. (2019)*
G44104	TrGCN	LBUT1ENNO3 + OH \rightarrow C ₂ H ₅ CHO + CO + HO ₂ + NO ₂	k_s*f_soh*f_ch2ono2	Sander et al. (2019)*
G44105	TrGC	CBUT2ENE + OH \rightarrow BUT2OLO2	1.1E-11*EXP(485./temp)	Atkinson et al. (2006)
G44106	TrGC	CBUT2ENE + $O_3 \rightarrow CH_3CHO + .16 CH3CHOHOOH +$	3.2E-15*EXP(-965./temp)	Atkinson et al. (2006), Sander
011100	1100	$.50 \text{ OH} + .50 \text{ HCOCH}_2\text{O}_2 + .05 \text{ CH2CO} + .09 \text{ CH}_3\text{OH} +$	0.22 20 2 (000., 00p,	et al. (2019)*
		$.09 \text{ CO} + .2 \text{ CH}_4 + .2 \text{ CO}_2$		(2010)
G44107	TrGCN	CBUT2ENE + NO ₃ \rightarrow 2 CH ₃ CHO + NO ₂	3.5E-13	Atkinson et al. (2006), Sander
				et al. (2019)*
G44108	TrGC	$TBUT2ENE + OH \rightarrow BUT2OLO2$	1.0E-11*EXP(553./temp)	Atkinson et al. (2006)
G44109	TrGC	TBUT2ENE $+ O_3 \rightarrow CH_3CHO + .16 CH3CHOHOOH +$	6.6E-15*EXP(-1060./temp)	Atkinson et al. (2006), Sander
		$.50 \text{ OH} + .50 \text{ HCOCH}_2\text{O}_2 + .05 \text{ CH2CO} + .09 \text{ CH}_3\text{OH} +$		et al. (2019)
		$.09 \text{ CO} + .2 \text{ CH}_4 + .2 \text{ CO}_2$		
G44110	TrGCN	$TBUT2ENE + NO_3 \rightarrow 2 CH_3CHO + NO_2$	1.78E-12*EXP(-530./temp)	Atkinson et al. (2006), Sander
			+1.28E-14*EXP(570./temp)	et al. $(2019)^*$
G44111	TrGC	$BUT2OLO2 \rightarrow C_2H_5CHO + HCHO + HO_2$	k1_R02s0R02	Sander et al. (2019)
G44112a	TrGC	$BUT2OLO2 + HO_2 \rightarrow BUT2OLOOH$	KRO2HO2(4)*rcoch2o2_ooh	Sander et al. (2019)
G44112b	TrGC	$BUT2OLO2 + HO_2 \rightarrow 2 CH_3CHO + HO_2 + OH$	KRO2HO2(4)*rcoch2o2_oh	Sander et al. (2019)
G44113a	TrGCN	$BUT2OLO2 + NO \rightarrow 2 CH_3CHO + HO_2 + NO_2$	$KRO2NO*(1alpha_AN(5,2,0,0,0,$	Sander et al. (2019)
			temp,cair))	
G44113b	TrGCN	$BUT2OLO2 + NO \rightarrow BUT2OLNO3$	$KRO2NO*alpha_AN(5,2,0,0,0,temp,$	Sander et al. (2019)
			cair)	
G44114	TrGCN	$BUT2OLO2 + NO_3 \rightarrow 2 CH_3CHO + HO_2 + NO_2$	KRO2NO3	Sander et al. (2019)
G44115a	TrGC	$BUT2OLOOH + OH \rightarrow BUT2OLO2$	k_roohro	Sander et al. (2019)
G44115b	TrGC	$BUT2OLOOH + OH \rightarrow LMEKOOH + HO_2$	k_t*f_toh*f_pch2oh	Sander et al. (2019)
G44115c	TrGC	$BUT2OLOOH + OH \rightarrow BUT2OLO + OH$	k_t*f_tooh*f_pch2oh	Sander et al. (2019)
G44116	TrGCN	$BUT2OLNO3 + OH \rightarrow LMEKNO3 + HO_2$	k_t*f_toh*f_ch2ono2	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44117	TrGC	$BUT2OLO + OH \rightarrow BIACET + HO_2$	k_t*f_toh*f_co	Sander et al. (2019)
G44118	TrGC	$IPRCHO + OH \rightarrow IPRCO3 + H_2O$	6.8E-12*EXP(410./temp)	Atkinson et al. (2006)
G44119	TrGCN	$IPRCHO + NO_3 \rightarrow IPRCO_3 + HNO_3$	1.67E-12*EXP(-1460./temp)	Atkinson et al. (2006)
G44120	TrGC	$IPRCO3 \rightarrow iC_3H_7O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G44121a	TrGC	$IPRCO3 + HO_2 \rightarrow PERIBUACID$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009), Sander et al. (2019)
G44121b	TrGC	$IPRCO3 + HO_2 \rightarrow iC_3H_7O_2 + CO_2 + OH$	KAPHO2*(1rco3_ooh)	Rickard and Pascoe (2009), Sander et al. (2019)
G44122	TrGCN	$IPRCO3 + NO_2 \rightarrow PIPN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44123	TrGCN	$\mathrm{IPRCO3} + \mathrm{NO} \rightarrow \mathrm{iC_3H_7O_2} + \mathrm{CO_2} + \mathrm{NO_2}$	KAPNO	Rickard and Pascoe (2009)
G44124a	TrGC	$PERIBUACID + OH \rightarrow IPRCO3 + H_2O$	k_roohro	Rickard and Pascoe (2009)
G44124b	TrGC	$PERIBUACID + OH \rightarrow CH_3COCH_3 + H_2O + CO_2$	k_s*f_co2h	Sander et al. $(2019)^*$
G44125	TrGCN	$PIPN \rightarrow IPRCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44126	TrGCN	$PIPN + OH \rightarrow CH_3COCH_3 + CO_2 + NO_2$	k_s*f_cpan	Sander et al. $(2019)^*$
G44127	TrGC	$MPROPENOL + OH \rightarrow HCOOH + OH + CH_3COCH_3$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019) , So et al. $(2014)^*$
G44128	TrGC	$\mathrm{MPROPENOL} + \mathrm{HCOOH} \rightarrow \mathrm{IPRCHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G44129	TrGC	$\mathrm{IPRCHO} + \mathrm{HCOOH} \rightarrow \mathrm{MPROPENOL} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44130	TrGC	$\mathrm{BUTENOL} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{C}_2\mathrm{H}_5\mathrm{CHO}$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019), So et al. (2014)*
G44131	TrGC	${\rm BUTENOL} + {\rm HCOOH} \rightarrow {\rm C_3H_7CHO} + {\rm HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G44132	TrGC	$C_3H_7CHO + HCOOH \rightarrow BUTENOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44133	TrGC	$HVMK + OH \rightarrow HCOOH + OH + MGLYOX$	8.8E-11	Sander et al. (2019), So et al. (2014), Messaadia et al. (2015)*
G44134	TrGC	$\mathrm{HVMK} + \mathrm{HCOOH} \rightarrow \mathrm{CO2C3CHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G44135	TrGC	$CO2C3CHO + HCOOH \rightarrow HVMK + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44136	TrGC	$\mathrm{HMAC} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{MGLYOX}$	8.8E-11	Sander et al. (2019), So et al. (2014), Messaadia et al. (2015)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44137	TrGC	$\mathrm{HMAC} + \mathrm{HCOOH} \rightarrow \mathrm{IBUTDIAL} + \mathrm{HCOOH}$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*
G44138	TrGC	$\mathrm{IBUTDIAL} + \mathrm{HCOOH} \rightarrow \mathrm{HMAC} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44139	TrGC	$CO2C3CHO + OH \rightarrow CH_3COCH_2O_2 + CO_2 + H_2O$	k_t*f_o*f_alk+k_s*f_cho*f_co	Sander et al. $(2019)^*$
G44140	TrGCN	$CO2C3CHO + NO_3 \rightarrow CH_3COCH_2O_2 + CO_2 + HNO_3$	KNO3AL*4.0	Sander et al. $(2019)^*$
G44141	TrGC	$\begin{array}{l} \mathrm{IBUTDIAL} + \mathrm{OH} \rightarrow \mathrm{CH_3CHO} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{CO_2} + \\ \mathrm{H_2O} \end{array}$	2.*k_t*f_o*f_alk+k_t*f_cho*f_cho	Sander et al. (2019)*
G44142	TrGCN	$\begin{array}{l} \mathrm{IBUTDIAL} + \mathrm{NO_3} \rightarrow \mathrm{CH_3CHO} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{CO_2} + \\ \mathrm{HNO_3} \end{array}$	2.*KNO3AL*4.0	Sander et al. $(2019)^*$
G44200	TrGTerC	$CH_3COCOCH_2O_2 \rightarrow CH_3C(O) + HCHO + CO$	k1_R02p0R02	Rickard and Pascoe (2009)
G44201	TrGTerC	$\mathrm{CH_{3}COCOCH_{2}O_{2}} + \mathrm{HO_{2}} \rightarrow \mathrm{CH_{3}COCOCH_{2}OOH}$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44202	TrGTerCN	$\mathrm{CH_3COCOCH_2O_2} + \mathrm{NO} \rightarrow \mathrm{CH_3C(O)} + \mathrm{HCHO} + \mathrm{CO} + \mathrm{NO_2}$	KR02N0	Rickard and Pascoe (2009)*
G44203a	TrGTerC	$CH_3COCOCH_2OOH + OH \rightarrow CH_3COCOCHO + OH$	k_s*f_co*f_sooh	Rickard and Pascoe (2009)*
G44203b	TrGTerC	$\mathrm{CH_{3}COCOCH_{2}OOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}COCOCH_{2}O_{2}}$	k_roohro	Rickard and Pascoe (2009)
G44204	TrGTerC	$C44O2 + HO_2 \rightarrow C44OOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44205	TrGTerCN	$C44O2 + NO \rightarrow HCOCH2CHO + CO_2 + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44206	TrGTerC	$C44O2 \rightarrow HCOCH2CHO + CO_2 + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)
G44207	TrGTerC	$C44OOH + OH \rightarrow C44O2$	7.46E-11	Rickard and Pascoe (2009)
G44208	TrGTerC	$CHOC3COO2 \rightarrow HCOCH2CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G44209	TrGTerC	$CHOC3COO2 + HO_2 \rightarrow C413COOOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44210	TrGTerCN	$CHOC3COO2 + NO \rightarrow HCOCH2CO3 + HCHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44211	TrGTerC	$C413COOOH + OH \rightarrow CHOC3COO2$	8.33E-11	Rickard and Pascoe (2009)
G44212	TrGTerC	$C4CODIAL + OH \rightarrow C312COCO3$	3.39E-11	Rickard and Pascoe (2009)
G44213	TrGTerCN	$C4CODIAL + NO_3 \rightarrow C312COCO3 + HNO_3$	2.*KNO3AL*4.0	Rickard and Pascoe (2009)
G44214	TrGTerC	$C312COCO3 \rightarrow HCOCOCH_2O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G44215a	TrGTerC	$C312COCO3 + HO_2 \rightarrow C312COCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G44215b	TrGTerC	$C312COCO3 + HO_2 \rightarrow HCOCOCH_2O_2 + CO_2 + OH$	KAPHO2*(1rco3_ooh)	Rickard and Pascoe (2009)
G44216	TrGTerCN	$C312COCO3 + NO_2 \rightarrow C312COPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44217	TrGTerCN	$C312COCO3 + NO \rightarrow HCOCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44218	TrGTerC	$C312COCO3H + OH \rightarrow C312COCO3$	1.63E-11	Rickard and Pascoe (2009)
G44219	TrGTerCN	$C312COPAN \rightarrow C312COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44220	TrGTerCN	$C312COPAN + OH \rightarrow HCOCOCHO + CO + NO_2$	1.27E-11	Rickard and Pascoe (2009)
G44221	TrGTerC	$CH_3COCOCHO + OH \rightarrow CH_3C(O) + 2 CO$	8.4E-13*EXP(830./temp)	Sander et al. (2019)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44222	TrGTerCN	$\text{CH}_3\text{COCOCHO} + \text{NO}_3 \rightarrow \text{CH}_3\text{C(O)} + 2 \text{ CO} + \text{HNO}_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G44223	TrGTerC	$IBUTALOH + OH \rightarrow IPRHOCO3$	1.4E-11	Rickard and Pascoe (2009)
G44224a	TrGTerC	$IPRHOCO3 + HO_2 \rightarrow CH_3COCH_3 + CO_2 + HO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009), Sander et al. (2019)
G44224b	TrGTerC	$\mathrm{IPRHOCO3} + \mathrm{HO_2} \rightarrow \mathrm{IPRHOCO2H} + \mathrm{O_3}$	KAPHO2*rco3_o3	Rickard and Pascoe (2009), Sander et al. (2019)
G44224c	TrGTerC	$\mathrm{IPRHOCO3} + \mathrm{HO_2} \rightarrow \mathrm{IPRHOCO3H}$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009), Sander et al. (2019)
G44225	TrGTerCN	$IPRHOCO3 + NO \rightarrow CH_3COCH_3 + CO_2 + HO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44226	TrGTerCN	$IPRHOCO3 + NO_2 \rightarrow C4PAN5$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44227	TrGTerCN	$IPRHOCO3 + NO_3 \rightarrow CH_3COCH_3 + CO_2 + HO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G44228a	TrGTerC	$IPRHOCO3 \rightarrow CH_3COCH_3 + CO_2 + HO_2$	k1_R02RC03*0.7	Rickard and Pascoe (2009)
G44228b	TrGTerC	$IPRHOCO3 \rightarrow IPRHOCO2H$	k1_R02RC03*0.3	Rickard and Pascoe (2009)
G44229	TrGTerC	$IPRHOCO2H + OH \rightarrow CH_3COCH_3 + CO_2 + HO_2 + H_2O$	1.72E-12	Rickard and Pascoe (2009)
G44230	TrGTerC	$OH + IPRHOCO3H \rightarrow IPRHOCO3$	4.80E-12	Rickard and Pascoe (2009)
G44231	TrGTerCN	$C4PAN5 \rightarrow IPRHOCO3 + NO_2$	K_PAN_M	Rickard and Pascoe (2009)
G44232	TrGTerCN	$C4PAN5 + OH \rightarrow CH_3COCH_3 + CO + NO_2$	4.75E-13	Rickard and Pascoe (2009)
G44233a	TrGTerC	$MBOOO \rightarrow IPRHOCO2H$	1.60E-17*C(ind_H20)*(0.08+0.15)	Rickard and Pascoe (2009), Sander et al. (2019)
G44233b	TrGTerC	$MBOOO \rightarrow IBUTALOH + H_2O_2$	1.60E-17*C(ind_H20)*0.77	Rickard and Pascoe (2009), Sander et al. (2019)
G44234	TrGTerC	$MBOOO + CO \rightarrow IBUTALOH + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G44235	TrGTerCN	$MBOOO + NO \rightarrow IBUTALOH + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G44236	TrGTerCN	$MBOOO + NO_2 \rightarrow IBUTALOH + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G44400	TrGAroC	$MALANHY + OH \rightarrow MALANHYO2$	1.4E-12	Rickard and Pascoe (2009)
G44401a	TrGAroC	$MALDIALOOH + OH \rightarrow HOCOC4DIAL + OH$	1.22E-10	Rickard and Pascoe (2009)
G44401b	TrGAroC	$MALDIALOOH + OH \rightarrow MALDIALO2$	k_roohro	Rickard and Pascoe (2009)
G44402	TrGAroCN	$NC4DCO2H + OH \rightarrow MALANHY + NO_2$	k_roohro	Rickard and Pascoe (2009)*
G44403	TrGAroC	$CO14O3CO2H + OH \rightarrow HCOCH_2O_2 + 2 CO_2$	2.19E-11	Rickard and Pascoe (2009)
G44404	TrGAroC	$BZFUOOH + OH \rightarrow BZFUO2$	3.68E-11	Rickard and Pascoe (2009)
G44405	TrGAroC	$HOCOC4DIAL + OH \rightarrow CO2C4DIAL + HO_2$	3.67E-11	Rickard and Pascoe (2009)
G44406a	TrGAroC	$MALDIALCO3 + HO_2 \rightarrow MALDALCO2H + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (2009)
G44406b	TrGAroC	${\rm MALDIALCO3 + HO_2 \rightarrow MALDALCO3H}$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G44406c	TrGAroC	MALDIALCO3 + HO $_2 \rightarrow .6$ MALANHY + HO $_2$ + .4 GLYOX + .4 CO + .4 CO $_2$ + OH	KAPHO2*rco3_oh	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44407	TrGAroCN	$MALDIALCO3 + NO \rightarrow .6 MALANHY + HO_2 + .4$	KAPNO	Rickard and Pascoe (2009)*
		GLYOX + .4 CO + .4 CO2 + NO2		
G44408	TrGAroCN	$MALDIALCO3 + NO_2 \rightarrow MALDIALPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44409	TrGAroCN	$MALDIALCO3 + NO_3 \rightarrow .6 MALANHY + HO_2 + .4$	KRO2NO3*1.74	Rickard and Pascoe $(2009)^*$
		GLYOX + .4 CO + .4 CO2 + NO2		
G44410	TrGAroC	$MALDIALCO3 \rightarrow .6 MALANHY + HO_2 + .4 GLYOX +$	k1_R02RC03	Rickard and Pascoe (2009)*
		$.4 \text{ CO} + .4 \text{ CO}_2$		
G44411	TrGAroCN	$BZFUONE + NO_3 \rightarrow NBZFUO2$	3.00E-13	Rickard and Pascoe (2009)
G44412	TrGAroC	BZFUONE + $O_3 \rightarrow .3125 \text{ CO14O3CO2H} + .1875$	2.20E-19	see note*
		$CO14O3CHO + .1875 H_2O_2 + .5 CO + .5 CO_2 + .5$		
		$HCOCH_2O_2 + .5 OH$		D. 1. 1. D. (2222)
G44413	TrGAroC	$BZFUONE + OH \rightarrow BZFUO2$	4.45E-11	Rickard and Pascoe (2009)
G44414	TrGAroCN	$NBZFUOOH + OH \rightarrow NBZFUO2$	6.18E-12	Rickard and Pascoe (2009)
G44415	TrGAroC	$MALDALCO3H + OH \rightarrow MALDIALCO3$	4.00E-11	Rickard and Pascoe (2009)
G44416	TrGAroC	$EPXDLCO2H + OH \rightarrow C3DIALO2 + CO_2$	2.31E-11	Rickard and Pascoe (2009)
G44417a	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow C3DIALO2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G44417b	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow EPXDLCO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G44417c	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow EPXDLCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G44418	TrGAroCN	$EPXDLCO3 + NO \rightarrow C3DIALO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44419	TrGAroCN	$EPXDLCO3 + NO_2 \rightarrow EPXDLPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44420	TrGAroCN	$EPXDLCO3 + NO_3 \rightarrow C3DIALO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G44421	TrGAroC	$EPXDLCO3 \rightarrow C3DIALO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G44422	TrGAroC	$MALNHYOHCO + OH \rightarrow CO + CO + CO + CO_2 + HO_2$	5.68E-12	Rickard and Pascoe (2009)
G44423	TrGAroCN	$MALDIAL + NO_3 \rightarrow MALDIALCO3 + HNO_3$	2.*KNO3AL*2.0	Rickard and Pascoe (2009)
G44424	TrGAroC	$MALDIAL + O_3 \rightarrow 1.0675 GLYOX + .125 HCHO + .1125$	2.00E-18	Rickard and Pascoe (2009)*
		$HCOCO_2H + .0675 H_2O_2 + .82 HO_2 + .57 OH + 1.265$		
		$CO + .25 CO_2$		
G44425	TrGAroC	$MALDIAL + OH \rightarrow .83 MALDIALCO3 + .17$	5.20E-11	Rickard and Pascoe (2009)*
		MALDIALO2		
G44426	TrGAroC	$MALANHYOOH + OH \rightarrow MALNHYOHCO + OH$	4.66E-11	Rickard and Pascoe (2009)
G44427	TrGAroCN	$MALDIALPAN + OH \rightarrow GLYOX + CO + CO + NO_2$	3.70E-11	Rickard and Pascoe (2009)
G44428	TrGAroCN	$MALDIALPAN \rightarrow MALDIALCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44429a	TrGAroC	$\mathrm{MALANHYO2} + \mathrm{HO_2} \rightarrow \mathrm{MALANHYOOH}$	KRO2HO2(4)*(1rcoch2o2_	Rickard and Pascoe (2009),
			oh-rchohch2o2_oh)	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44429b	TrGAroC	$\mathrm{MALANHYO2} + \mathrm{HO}_2 \rightarrow \mathrm{HCOCOHCO3} + \mathrm{CO}_2 + \mathrm{OH}$	KRO2HO2(4)*(rcoch2o2_oh+	Rickard and Pascoe (2009),
			rchohch2o2_oh)	Sander et al. (2019)
G44430	TrGAroCN	$MALANHYO2 + NO \rightarrow HCOCOHCO3 + CO_2 + NO_2$	KRO2NO	Rickard and Pascoe $(2009)^*$
G44431	TrGAroCN	$MALANHYO2 + NO_3 \rightarrow HCOCOHCO3 + CO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G44432	TrGAroC	$MALANHYO2 \rightarrow HCOCOHCO3 + CO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44433	TrGAroC	$EPXDLCO3H + OH \rightarrow EPXDLCO3$	2.62E-11	Rickard and Pascoe (2009)
G44434	TrGAroC	$CO2C4DIAL + OH \rightarrow CO + CO + CO + CO + HO_2$	2.45E-11	Rickard and Pascoe (2009)
G44435a	TrGAroCN	$NBZFUO2 + HO_2 \rightarrow NBZFUOOH$	KRO2HO2(4)*(1rcoch2o2_oh)	Rickard and Pascoe (2009), Sander et al. (2019)
G44435b	TrGAroCN	NBZFUO2 + HO ₂ \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + OH	KRO2HO2(4)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2019)
G44436	TrGAroCN	NBZFUO2 + NO \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G44437	TrGAroCN	NBZFUO2 + NO $_3 \rightarrow .5$ CO14O3CHO + $.5$ NO $_2$ + $.5$ NBZFUONE + $.5$ HO $_2$ + NO $_2$	KR02N03	Rickard and Pascoe (2009)*
G44438	TrGAroCN	NBZFUO2 \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂	k1_R02s0R02	Rickard and Pascoe (2009)*
G44439	TrGAroC	MALDALCO2H + OH \rightarrow .6 MALANHY + HO ₂ + .4 GLYOX + .4 CO + .4 CO ₂	3.70E-11	Rickard and Pascoe (2009)*
G44440	TrGAroCN	$EPXC4DIAL + NO_3 \rightarrow EPXDLCO3 + HNO_3$	2.*KN03AL*4.0	Rickard and Pascoe (2009)
G44441	TrGAroC	$EPXC4DIAL + OH \rightarrow EPXDLCO3$	4.32E-11	Rickard and Pascoe (2009)
G44442a	TrGAroC	$\mbox{MECOACETO2} + \mbox{HO}_2 \rightarrow \mbox{MECOACEOOH}$	KRO2HO2(4)*(1rcoch2o2_oh)	Rickard and Pascoe (2009), Sander et al. (2019)
G44442b	TrGAroC	$\begin{array}{l} {\rm MECOACETO2 + HO_2 \rightarrow CH_3C(O)OO + HCHO + CO_2} \\ + {\rm OH} \end{array}$	KRO2HO2(4)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2019)
G44443	TrGAroCN	$ \begin{array}{l} \text{MECOACETO2} + \text{NO} \rightarrow \text{CH}_3\text{C(O)OO} + \text{HCHO} + \text{CO}_2 \\ + \text{NO}_2 \end{array} $	KRO2NO	Rickard and Pascoe (2009)*
G44444	TrGAroCN	$\begin{array}{l} \mathrm{MECOACETO2} + \mathrm{NO_3} \rightarrow \mathrm{CH_3C(O)OO} + \mathrm{HCHO} + \mathrm{CO_2} \\ + \mathrm{NO_2} \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G44445	TrGAroC	$MECOACETO2 \rightarrow CH_3C(O)OO + HCHO + CO_2$	k1_R02p0R02	Rickard and Pascoe (2009)*
G44446	TrGAroCN	$\mathrm{CO14O3CHO} + \mathrm{NO_3} \rightarrow \mathrm{CO} + \mathrm{HCOCH_2O_2} + \mathrm{CO_2} + \mathrm{HNO_3}$	KNO3AL*8.0	Rickard and Pascoe (2009)
G44447	TrGAroC	$CO14O3CHO + OH \rightarrow CO + HCOCH_2O_2 + CO_2$	3.44E-11	Rickard and Pascoe (2009)
G44448	TrGAroCN	$NBZFUONE + OH \rightarrow BZFUCO + NO_2$	1.16E-12	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44449a	TrGAroC	$\mathrm{BZFUO2} + \mathrm{HO}_2 \to \mathrm{BZFUOOH}$	KRO2HO2(4)*(1rcoch2o2_	Rickard and Pascoe (2009),
			oh-rchohch2o2_oh)	Sander et al. (2019)
G44449b	TrGAroC	$BZFUO2 + HO_2 \rightarrow CO14O3CHO + HO_2 + OH$	KRO2HO2(4)*(rcoch2o2_oh+	Rickard and Pascoe (2009),
			rchohch2o2_oh)	Sander et al. (2019)
G44450	TrGAroCN	$BZFUO2 + NO \rightarrow CO14O3CHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44451	TrGAroCN	$BZFUO2 + NO_3 \rightarrow CO14O3CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G44452	TrGAroC	$BZFUO2 \rightarrow CO14O3CHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44453	TrGAroC	$BZFUCO + OH \rightarrow CO14O3CHO + HO_2$	1.78E-11	Rickard and Pascoe (2009)
G44456a	TrGAroC	$\mathrm{MALDIALO2} + \mathrm{HO_2} \rightarrow \mathrm{MALDIALOOH}$	<pre>KRO2HO2(4)*(1rcoch2o2_ oh-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G44456b	TrGAroC	$MALDIALO2 + HO_2 \rightarrow GLYOX + GLYOX + HO_2 + OH$	KRO2HO2(4)*(rcoch2o2_oh+	Rickard and Pascoe (2009)
			rchohch2o2_oh)	
G44457	TrGAroCN	$MALDIALO2 + NO \rightarrow GLYOX + GLYOX + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44458	TrGAroCN	$\begin{array}{c} \mathrm{MALDIALO2} + \mathrm{NO_3} \rightarrow \mathrm{GLYOX} + \mathrm{GLYOX} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G44459	TrGAroC	$MALDIALO2 \rightarrow GLYOX + GLYOX + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44460	TrGAroCN	$EPXDLPAN + OH \rightarrow HCOCOCHO + CO + NO_2$	2.29E-11	Rickard and Pascoe (2009)
G44461	TrGAroCN	$EPXDLPAN \rightarrow EPXDLCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G44462	TrGAroC	${\tt MECOACEOOH+OH \rightarrow MECOACETO2}$	3.59E-12	Rickard and Pascoe (2009)
G45000	TrGC	$C_5H_8 + O_3 \rightarrow .3508 \text{ MACR} + .01518 \text{ MACO2H} + .2440 \text{ MVK} + .7085 \text{ HCHO} + .11 \text{ CH}_2\text{OO} + .1275 \text{ C}_3\text{H}_6 + .1575 \text{ CH}_3\text{C}(\text{O}) + .0510 \text{ CH}_3 + .2625 \text{ HO}_2 + .27 \text{ OH} + .09482 \text{ H}_2\text{O}_2 + .255 \text{ CO}_2 + .522 \text{ CO} + .07182 \text{ HCHO} + .03618 \text{ HCOCH}_2\text{O}_2 + .01782 \text{ CO} + 0.05408 \text{ LCARBON}$	1.03E-14*EXP(-1995./temp)	Atkinson et al. (2006), Sander et al. (2019)
G45001	TrGC	$C_5H_8 + OH \rightarrow .63 \text{ LISOPAB} + .30 \text{ LISOPCD} + .07 \text{ LISOPEFO2}$	2.7E-11*EXP(390./temp)	Atkinson et al. (2006), Sander et al. (2019)
G45002	TrGCN	$C_5H_8 + NO_3 \rightarrow NISOPO2$	3.0E-12*EXP(-450./temp)	Atkinson et al. (2006)
G45003a	TrGC	$LISOPAB + O_2 \rightarrow LISOPACO2$	5.530E-13	Sander et al. (2019)
G45003b	TrGC	$LISOPAB + O_2 \rightarrow ISOPBO2$	3.E-12	Sander et al. (2019)
G45004a	TrGC	$LISOPCD + O_2 \rightarrow LDISOPACO2$	6.780E-13	Sander et al. (2019)
G45004b	TrGC	$LISOPCD + O_2 \rightarrow ISOPDO2$	3.E-12	Sander et al. (2019)
G45005	TrGC	$LISOPACO2 \rightarrow LISOPAB + O_2$	3.1E12*exp(-7900./temp)*.6+ 7.8E13*exp(-8600./temp)*.4	Sander et al. (2019)
G45006	TrGC	$ISOPBO2 \rightarrow LISOPAB + O_2$	3.7E14*exp(-9570./temp) +4.2E14*exp(-9970./temp)	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45007	TrGC	$LDISOPACO2 \rightarrow LISOPCD + O_2$	5.65E12*exp(-8410./temp)	Sander et al. (2019)
			*.42+1.4E14*exp(-9110./temp)*.58	
G45008	TrGC	$ISOPDO2 \rightarrow LISOPCD + O_2$	5.0E14*exp(-10120./temp)	Sander et al. (2019)
			+8.25E14*exp(-10220./temp)	
G45009a	TrGC	$LISOPACO2 \rightarrow C1ODC2O2C4OOH$	K16HSZ14 * 2./3.*(1fhpal)	Sander et al. (2019)
G45009b	TrGC	$LISOPACO2 \rightarrow LZCODC23DBCOOH + HO_2$	K16HSZ14 * (2./3.*fhpal + 1./3.)	Sander et al. (2019)
G45010a	TrGC	$LDISOPACO2 \rightarrow C1OOHC3O2C4OD$	k16HSZ41 * 2./3.*(1fhpal)	Sander et al. (2019)
G45010b	TrGC	$LDISOPACO2 \rightarrow LZCODC23DBCOOH + HO_2$	k16HSZ41 * (2./3.*fhpal + 1./3.)	Sander et al. (2019)
G45011	TrGC	$LISOPACO2 \rightarrow .9 LISOPACO + .1 ISOPAOH$	k1_RO2LISOPACO2	Rickard and Pascoe (2009),
				Sander et al. (2019)
G45012	TrGC	$LISOPACO2 + HO_2 \rightarrow LISOPACOOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45013a	TrGCN	$LISOPACO2 + NO \rightarrow LISOPACO + NO_2$	KRO2NO*(1alpha_AN(6,1,0,0,0,	Lockwood et al. (2010), Paulot
			temp,cair))	et al. (2009a), Sander et al.
				(2019)
G45013b	TrGCN	$LISOPACO2 + NO \rightarrow LISOPACNO3$	<pre>KRO2NO*alpha_AN(6,1,0,0,0,temp,</pre>	Lockwood et al. (2010), Paulot
			cair)	et al. (2009a), Sander et al.
				(2019)
G45014	TrGCN	$LISOPACO2 + NO_3 \rightarrow LISOPACO + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G45015	TrGC	$LDISOPACO2 \rightarrow .9 LISOPACO + .1 ISOPAOH$	k1_RO2LISOPACO2	Rickard and Pascoe (2009),
				Sander et al. (2019)
G45016	TrGC	$LDISOPACO2 + HO_2 \rightarrow LISOPACOOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45017a	TrGCN	$LDISOPACO2 + NO \rightarrow LISOPACO + NO_2$	KRO2NO*(1alpha_AN(6,1,0,0,0,	Lockwood et al. (2010), Paulot
			temp,cair))	et al. (2009a), Sander et al.
				(2019)
G45017b	TrGCN	$LDISOPACO2 + NO \rightarrow LISOPACNO3$	<pre>KRO2NO*alpha_AN(6,1,0,0,0,temp,</pre>	Lockwood et al. (2010), Paulot
			cair)	et al. (2009a), Sander et al.
				(2019)
G45018	TrGCN	$LDISOPACO2 + NO_3 \rightarrow LISOPACO + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G45019a	TrGC	$LISOPACOOH + OH \rightarrow LISOPACO2$	k_roohro	Sander et al. (2019)
G45019b	TrGC	$LISOPACOOH + OH \rightarrow LZCODC23DBCOOH + HO_2$	k_s*f_allyl*f_soh	Sander et al. (2019)
G45019c	TrGC	$LISOPACOOH + OH \rightarrow LHC4ACCHO + OH$	(k_s*f_sooh*f_allyl+ k_rohro)	Sander et al. (2019)
G45019d	TrGC	$LISOPACOOH + OH \rightarrow LIEPOX + OH$	(k_adt+k_ads)*a_ch2oh*a_ch2ooh	Sander et al. (2019)*
G45020	TrGC	$ISOPAOH + OH \rightarrow LHC4ACCHO + HO_2$	(k_adt+k_ads)*a_ch2oh*a_ch2oh+k_	Sander et al. (2019)
			s*f_soh*f_allyl+k_rohro	
G45021	TrGCN	$LISOPACNO3 + OH \rightarrow LISOPACNO3O2$	(k_adt+k_ads)*a_ch2ono2*a_ch2oh	Sander et al. $(2019)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45022	TrGC	$ISOPBO2 \rightarrow .8 \text{ MVK} + .8 \text{ HCHO} + .8 \text{ HO}_2 + .2 \text{ ISOPBOH}$	k1_RO2ISOPBO2	Rickard and Pascoe (2009)
G45023a	TrGC	$ISOPBO2 + HO_2 \rightarrow ISOPBOOH$	<pre>KRO2HO2(5)*(1rchohch2o2_oh)</pre>	Sander et al. (2019)
G45023b	TrGC	$ISOPBO2 + HO_2 \rightarrow MVK + HCHO + HO_2 + OH$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2019)
G45024a	TrGCN	$ISOPBO2 + NO \rightarrow MVK + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(6,3,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45024b	TrGCN	$ISOPBO2 + NO \rightarrow ISOPBNO3$	<pre>KRO2NO*alpha_AN(6,3,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45025	TrGCN	$\begin{split} \text{ISOPBO2} + \text{NO}_3 \rightarrow \text{MVK} + .75 \text{ HCHO} + .75 \text{ HO}_2 + .25 \\ \text{CH}_3 + \text{NO}_2 \end{split}$	KR02N03	Rickard and Pascoe (2009)
G45026a	TrGC	$ISOPBOOH + OH \rightarrow LIEPOX + OH$	(k_ads+k_adp)*a_ch2ooh	Paulot et al. (2009b), Sander et al. (2019)
G45026b	TrGC	$ISOPBOOH + OH \rightarrow ISOPBO2$	k_roohro	Sander et al. (2019)
G45026c	TrGC	$ISOPBOOH + OH \rightarrow MGLYOX + HOCH_2CHO$	k_rohro+k_s*f_alk*f_soh	Sander et al. (2019)
G45027	TrGC	$\begin{split} & \text{ISOPBOOH} + \text{O}_3 \rightarrow .1368 \text{ MACROOH} + .1368 \text{ H}_2\text{O}_2 + \\ & .2280 \text{ HO}_2 + .4332 \text{ CH}_3\text{COCH}_2\text{OH} + .2280 \text{ CO}_2 + .6384 \\ & \text{OH} + .2052 \text{ CO} + .57 \text{ HCHO} + .43 \text{ MACROOH} + .06880 \\ & \text{HO}_2 + .06880 \text{ OH} + .2709 \text{ CO} + .1591 \text{ CH}_2\text{OO} \end{split}$	1.E-17	Sander et al. (2019)
G45028	TrGC	ISOPBOH + OH \rightarrow MVK + .75 HCHO + .75 HO ₂ + .25 CH ₃	k_s*f_alk*f_soh+(k_adp+k_ads) *a_ch2oh	Sander et al. (2019)
G45029	TrGCN	$ISOPBNO3 + OH \rightarrow ISOPBDNO3O2$	(k_adt+k_adp)*f_ch2ono2	Sander et al. (2019)
G45030	TrGC	$\begin{split} & \text{ISOPDO2} \rightarrow .8 \text{ MACR} + .8 \text{ HCHO} + .8 \text{ HO}_2 + .1 \text{ HCOC5} \\ & + .1 \text{ ISOPDOH} \end{split}$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)
G45031a	TrGC	$ISOPDO2 + HO_2 \rightarrow ISOPDOOH$	KRO2HO2(5)*(1rchohch2o2_oh)	Sander et al. (2019)
G45031b	TrGC	$ISOPDO2 + HO_2 \rightarrow MACR + HCHO + HO_2 + OH$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2019)
G45032a	TrGCN	$ISOPDO2 + NO \rightarrow MACR + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(6,2,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45032b	TrGCN	$ISOPDO2 + NO \rightarrow ISOPDNO3$	<pre>KRO2NO*alpha_AN(6,2,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45033	TrGCN	$ISOPDO2 + NO_3 \rightarrow MACR + HCHO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G45034a	TrGC	$ISOPDOOH + OH \rightarrow LIEPOX + OH$	(k_adt+k_adp)*a_ch2ooh	Paulot et al. (2009b), Sander et al. (2019)
G45034b	TrGC	$\mathrm{ISOPDOOH} + \mathrm{OH} \rightarrow \mathrm{ISOPDO2}$	k_roohro	Sander et al. (2019)
G45034c	TrGC	$ISOPDOOH + OH \rightarrow HCOC5 + OH$	k_t*f_tooh*f_allyl*f_pch2oh	Sander et al. (2019)
G45034d	TrGC	$ISOPDOOH + OH \rightarrow CH_3COCH_2OH + GLYOX + OH$	k_s*f_pch2oh*f_soh	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45035	TrGC	ISOPDOOH + $O_3 \rightarrow 1.393$ OH + BIACETOH + .67	1.E-17	Sander et al. (2019)
		$HCHO + .05280 HO_2 + .2079 CO + .1221 CH_2OO$		
G45036	TrGC	$ISOPDOH + OH \rightarrow HCOC5 + HO_2$	2.*k_rohro+(k_t*f_toh*f_allyl+k_	Sander et al. (2019)
			s*f_soh)*f_pch2oh+(k_adt+k_adp)	
			*a_ch2oh	
G45037	TrGCN	$ISOPDNO3 + OH \rightarrow ISOPBDNO3O2$	(k_adp+k_ads)*a_ch2ono2	Sander et al. $(2019)^*$
G45038	TrGCN	$NISOPO2 \rightarrow .8 NC4CHO + .6 HO_2 + .2 LISOPACNO3$	k1_RO2LISOPACO2	Rickard and Pascoe (2009)
G45039	TrGCN	$NISOPO2 + HO_2 \rightarrow NISOPOOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45040	TrGCN	$NISOPO2 + NO \rightarrow NC4CHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45041	TrGCN	$NISOPO2 + NO_3 \rightarrow NC4CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45042	TrGCN	$NISOPOOH + OH \rightarrow NC4CHO + OH$	1.03E-10	Rickard and Pascoe (2009)
G45043	TrGCN	$NC4CHO + OH \rightarrow LNISO3$	(k_adt+k_ads)*a_cho*a_ch2ono2	Sander et al. $(2019)^*$
G45044	TrGCN	$NC4CHO + O_3 \rightarrow .27 NOA + .027 HCOCO_2H + .0162$	2.40E-17	Sander et al. (2019)
		$GLYOX + .0162 H_2O_2 + .1458 HCOCO + .0405 HCOOH$		
		$+ .0405 \text{ CO} + .8758 \text{ OH} + .365 \text{ MGLYOX} + .73 \text{ NO}_2 +$		
		$0.7705 \text{ HCHO} + .4055 \text{ CO}_2 + .73 \text{ GLYOX}$		
G45045	TrGCN	$NC4CHO + NO_3 \rightarrow LNISO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G45046	TrGCN	$LNISO3 + HO_2 \rightarrow LNISOOH$	0.5*KRO2HO2(5)+0.5*KAPHO2	Rickard and Pascoe (2009)
G45047	TrGCN	LNISO3 + NO \rightarrow NOA + .5 HOCHCHO + .5 CO + .5	0.5*KAPNO+0.5*KRO2NO	Rickard and Pascoe (2009)*
		$\mathrm{HO_2} + \mathrm{NO_2} + .5 \mathrm{CO_2}$		
G45048	TrGCN	$LNISO3 + NO_3 \rightarrow NOA + .5 HOCHCHO + .5 CO + .5$	KR02N03*1.37	Rickard and Pascoe (2009)
		$\mathrm{HO_2} + \mathrm{NO_2} + .5 \mathrm{CO_2}$		
G45049	TrGCN	$LNISOOH + OH \rightarrow LNISO3$	2.65E-11	Rickard and Pascoe (2009)
G45050a	TrGC	$LHC4ACCHO + OH \rightarrow LC578O2$	$(k_adtertprim+k_ads)*a_cho*a_$	Sander et al. (2019)
			ch2oh	
G45050b	TrGC	$LHC4ACCHO + OH \rightarrow LHC4ACCO3$	k_t*f_o	Sander et al. (2019)
G45050c	TrGC	$LHC4ACCHO + OH \rightarrow C4MDIAL + HO_2$	k_s*f_soh*f_allyl	Sander et al. (2019)
G45051	TrGC	$LHC4ACCHO + O_3 \rightarrow .2225 \ CH_3C(O) + .89 \ CO \ +$	2.40E-17	Rickard and Pascoe (2009)
		$.0171875 \text{ HOCH}_2\text{CO}_2\text{H} + .075625 \text{ H}_2\text{O}_2 + .0171875$		
		$HCOCO_2H + .2775 CH_3COCH_2OH + .6675 HO_2 +$		
		.2603125 GLYOX + .2225 HCHO + .89 OH + .2603125		
		$HOCH_2CHO + .5 MGLYOX$		
G45052	TrGCN	$LHC4ACCHO + NO_3 \rightarrow LHC4ACCO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G45053	TrGC	$LC578O2 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25$	k1_R02t0R02	Rickard and Pascoe (2009)
		$\mathrm{HOCHCHO} + .75\ \mathrm{HOCH_2CHO} + .75\ \mathrm{HO_2}$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45054a	TrGC	$LC578O2 + HO_2 \rightarrow MGLYOX + HOCH_2CHO + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009)
G45054b	TrGC	$LC578O2 + HO_2 \rightarrow LC578OOH$	KRO2HO2(5)*rcoch2o2_ooh	Rickard and Pascoe (2009)
G45055	TrGCN	$LC578O2 + NO \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25 HOCHCHO + .75 HOCH_2CHO + .75 HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45056	TrGCN	$LC578O2 + NO_3 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25 HOCHCHO + .75 HOCH_2CHO + .75 HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45057	TrGC	$LC578O2 \rightarrow .25 \text{ CH}_3\text{COCH}_2\text{OH} + .75 \text{ MGLYOX} + .25$ $HOCH_2\text{CHO} + .75 \text{ HOCH}_2\text{CHO} + \text{HO}_2 + \text{OH}$	KHSB	Sander et al. (2019)
G45058a	TrGC	$LC578OOH + OH \rightarrow LC578O2$	k_roohro	Sander et al. (2019)
G45058b	TrGC	$LC578OOH + OH \rightarrow C1ODC2OOHC4OD + HO_2$	<pre>k_t*f_o*f_tch2oh*f_alk+k_t*f_ toh*f_pch2oh*f_pch2oh+k_s*f_ soh*f_pch2oh</pre>	Sander et al. (2019)
G45059a	TrGC	$ \begin{array}{l} LHC4ACCO3 \rightarrow OH + .5 \; MACRO2 + .5 \; LHMVKABO2 \\ + \; CO_2 \end{array} $	k1_R02RC03*0.9	Sander et al. (2019)
G45059b	TrGC	$LHC4ACCO3 \rightarrow LHC4ACCO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G45060a	TrGC	LHC4ACCO3 + HO $_2$ \rightarrow 2 OH + .5 MACRO2 + .5 LHMVKABO2 + CO $_2$	KAPHO2*rco3_oh	Sander et al. (2019)
G45060b	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO3H$	KAPHO2*rco3_ooh	Sander et al. (2019)
G45060c	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO2H + O_3$	KAPH02*rco3_o3	Sander et al. (2019)
G45061	TrGCN	$ \begin{array}{l} LHC4ACCO3 + NO \rightarrow .5 \ MACRO2 + .5 \ LHMVKABO2 \\ + \ NO_2 + CO_2 \end{array} $	KAPNO	Sander et al. (2019)
G45062	TrGCN	$LHC4ACCO3 + NO_2 \rightarrow LC5PAN1719$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45063	TrGCN	$ \begin{array}{l} LHC4ACCO3 + NO_3 \rightarrow .5 \; MACRO2 + .5 \; LHMVKABO2 \\ + \; NO_2 + CO_2 \end{array} $	KR02N03*1.74	Sander et al. (2019)
G45064a	TrGC	LHC4ACCO2H + OH \rightarrow OH + .5 MACRO2 + .5 LHMVKABO2 + CO ₂	2.52E-11	Sander et al. (2019)
G45064b	TrGC	$LHC4ACCO3H + OH \rightarrow LHC4ACCO3$	2.88E-11	Rickard and Pascoe (2009)
G45065	TrGCN	$LC5PAN1719 \rightarrow LHC4ACCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45066	TrGCN	$LC5PAN1719 + OH \rightarrow .5 MACROH + .5 HO12CO3C4 + CO + NO_2$	2.52E-11	Rickard and Pascoe (2009)
G45067	TrGC	$HCOC5 + OH \rightarrow C59O2$	3.81E-11	Rickard and Pascoe (2009)
G45068	TrGC	${\rm HCOC5} + {\rm O_3} \rightarrow {\rm BIACETOH} + .335~{\rm H_2O_2} + .67~{\rm HCHO} + .2079~{\rm CO} + .1221~{\rm CH_2OO} + .05280~{\rm OH}$	7.51E-16*EXP(-1521./temp)	Sander et al. (2019)
G45069	TrGC	$C59O2 \rightarrow CH_3COCH_2OH + HOCH2CO$	k1_R02t0R02	Sander et al. (2019)
G45070a	TrGC	$C59O2 + HO_2 \rightarrow OH + CH_3COCH_2OH + HOCH2CO$	KRO2HO2(5)*rcoch2o2_oh	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45070b	TrGC	$C59O2 + HO_2 \rightarrow C59OOH$	KRO2HO2(5)*rcoch2o2_ooh	Sander et al. (2019)
G45071	TrGCN	$C59O2 + NO \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KRO2NO	Sander et al. (2019)*
G45072	TrGCN	$C59O2 + NO_3 \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KR02N03	Sander et al. (2019)
G45073	TrGC	$C59OOH + OH \rightarrow C59O2$	9.7E-12	Rickard and Pascoe (2009)
G45074	TrGC	$LIEPOX + OH \rightarrow DB1O2 + H_2O$	5.78E-11*EXP(-400./temp)	Paulot et al. (2009b), Bates et al.
			*(1.52/3.+0.98*2./3.)/1.51	(2014) , Sander et al. $(2019)^*$
G45075	TrGC	$ISOPBO2 \rightarrow MVK + HCHO + OH$	KHSB	Sander et al. (2019)
G45076	TrGC	$ISOPDO2 \rightarrow MACR + HCHO + OH$	KHSD	Sander et al. (2019)
G45077a	TrGC	LZCODC23DBCOOH + OH \rightarrow .6 C1ODC2O2C4OOH + .4 C1OOHC2O2C4OD	k_adt*a_cho*a_ch2ooh	Sander et al. (2019)
G45077b	TrGC	LZCODC23DBCOOH + OH \rightarrow .6 C1ODC3O2C4OOH + .4 C1OOHC3O2C4OD	k_ads*a_cho*a_ch2ooh	Sander et al. (2019)
G45077c	TrGC	$LZCODC23DBCOOH + OH \rightarrow LZCO3HC23DBCOD$	k_t*f_o*f_alk+k_roohro	Sander et al. (2019)
G45077d	TrGC	$LZCODC23DBCOOH + OH \rightarrow C4MDIAL + OH$	k_s*f_sooh*f_allyl	Sander et al. (2019)
G45078	TrGC	$\begin{array}{l} {\rm LZCODC23DBCOOH} \ + \ {\rm O_3} \ \rightarrow \ .4672 \ {\rm OH} \ + \ .2336 \\ {\rm HCOCOCH_2O_2} \ + \ .2336 \ {\rm CO} \ + \ .2336 \ {\rm CH_3C(O)} \ + \ .4672 \\ {\rm HOOCH2CHO} \ + \ .1728 \ {\rm MGLYOX} \ + \ .1901 \ {\rm OH} \ + \ .0864 \\ {\rm GLYOX} \ + \ .02765 \ {\rm HOOCH2CHO} \ + \ .02765 \ {\rm H_2O_2} \ + \ .02592 \\ {\rm CH_3OOH} \ + \ .02592 \ {\rm CO_2} \ + \ .01037 \ {\rm HCOCO} \ + \ .01555 \\ {\rm CH_2OO} \ + \ .01555 \ {\rm CO} \ + \ .006908 \ {\rm HOOCH_2CO_3} \ + \ .2628 \ {\rm OH} \\ + \ .1314 \ {\rm MGLYOX} \ + \ .1314 \ {\rm OH} \ + \ .1314 \ {\rm HCOCOCH_2OOH} \\ + \ .2628 \ {\rm GLYOX} \ + \ .0972 \ {\rm CH_3COCH_2O_2H} \ + \ .00972 \\ {\rm HCOCO_2H} \ + \ .005832 \ {\rm GLYOX} \ + \ .005832 \ {\rm H_2O_2} \ + \ .05249 \\ {\rm OH} \ + \ .05249 \ {\rm HCOCO} \ + \ .01458 \ {\rm HCHO} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm HCO$	2.4E-17	Sander et al. (2019)
G45079	TrGC	C1OOHC2O2C4OD \rightarrow .78 CH ₃ COCH ₂ O ₂ H + .78 HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH	k1_R02t0R02	Sander et al. (2019)
G45080	TrGCN	C1OOHC2O2C4OD + NO \rightarrow .78 CH ₃ COCH ₂ O ₂ H + .78 HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH + NO ₂	KRO2NO	Sander et al. (2019)*
G45081a	TrGC	${\rm C1OOHC2O2C4OD} + {\rm HO_2} \rightarrow {\rm C1OOHC2OOHC4OD}$	KRO2HO2(5)*rcoch2o2_ooh	Sander et al. (2019)
G45081b	TrGC	C1OOHC2O2C4OD + $HO_2 \rightarrow .78 \text{ CH}_3\text{COCH}_2\text{O}_2\text{H} + .78$ HOCHCHO + .22 CO2H3CHO + .22 HCHO + 1.22 OH	KR02H02(5)*rcoch2o2_oh	Sander et al. (2019)
G45082	TrGC	C1OOHC2O2C4OD \rightarrow CH ₃ COCH ₂ O ₂ H $+$ GLYOX $+$ OH	KHSB	Sander et al. (2019)
G45082	TrGC	$C1ODC2O2C4OOH \rightarrow CH_3COCH_2O2H + GLTOX + OH$ $C1ODC2O2C4OOH \rightarrow OH + C1ODC2OOHC4OD$	K15HSDHB	Sander et al. (2019)
4-0000	1100	OTODOZOZOTOON / ON OTODOZOONOTOD	WIGHOUND	Dailet Co al. (2015)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45084a	TrGC	$C1OOHC2OOHC4OD + OH \rightarrow C1ODC2OOHC4OD +$	2.*k_s*f_sooh*f_tch2oh	Sander et al. (2019)
		OH		
G45084b	TrGC	$C1OOHC2OOHC4OD + OH \rightarrow CH_3COCH_2O_2H + 2 CO$	k_t*f_toh*f_pch2oh*f_pch2oh	Sander et al. (2019)
		$+ 2 HO_2 + OH$		
G45084c	TrGC	$C1OOHC2OOHC4OD + OH \rightarrow C1OOHC2O2C4OD$	k_roohro	Sander et al. (2019)
G45085	TrGC	$C1ODC2OOHC4OD + OH \rightarrow CO2H3CHO + CO + H_2O$	k_t*f_o*f_tch2oh+k_t*f_toh*f_	Sander et al. (2019)
	_ ~ ~	+ OH	toh*f_cho	~
G45086	TrGC	$C1ODC3O2C4OOH \rightarrow MGLYOX + HOOCH2CHO +$	k1_R02s0R02	Sander et al. (2019)
245007	T CON	HO ₂	WD COMO	0 1 1 (2010)
G45087	TrGCN	$C10DC3O2C4OOH + NO \rightarrow MGLYOX + HOOCH2CHO$	KRO2NO	Sander et al. (2019)
G45088	TrGC	$+ HO_2 + NO_2$ C1ODC3O2C4OOH + $HO_2 \rightarrow .5 CH_3C(O) + .5 CO + .5$	KR02H02(5)	Sander et al. (2019)
G45000	IIGC	$MGLYOX + .5 HO_2 + HOOCH_2CO_3$	NNU2NU2(5)	Sander et al. (2019)
G45089	TrGC	C1ODC3O2C4OOH \rightarrow MGLYOX + OH + HOOCH2CHO	KHSD	Sander et al. (2019)
G45090	TrGC	C10OHC3O2C4OD \rightarrow .625 MGLYOX + 2 CO + 1.625	K15HSDHB	Sander et al. (2019)
		$HO_2 + .375 CH_3C(O) + .375 CO_2 + OH$		(2020)
G45091	TrGC	$LHC4ACCO3 \rightarrow LZCO3HC23DBCOD + HO_2$	K16HS	Sander et al. (2019)
G45092a	TrGC	$C4MDIAL + OH \rightarrow C1ODC2O2C4OD$	(k_adt+k_ads)*a_cho*a_cho	Sander et al. (2019)*
G45092b	TrGC	$C4MDIAL + OH \rightarrow LZCO3C23DBCOD$	2.*k_t*f_o*f_alk	Sander et al. (2019)*
G45093	TrGCN	$C4MDIAL + NO_3 \rightarrow LZCO3C23DBCOD + HNO_3$	KNO3AL*4.25*2.	Sander et al. $(2019)^*$
G45094a	TrGC	C1ODC2O2C4OD + $HO_2 \rightarrow OH + MGLYOX + HOCHCHO$	KRO2HO2(5)*rcoch2o2_oh	Sander et al. (2019)
G45094b	TrGC	$C1ODC2O2C4OD + HO_2 \rightarrow C1ODC2OOHC4OD$	KRO2HO2(5)*rcoch2o2_ooh	Sander et al. (2019)
G45095	TrGCN	C1ODC2O2C4OD + NO \rightarrow NO ₂ + MGLYOX + HOCHCHO	KRO2NO	Sander et al. (2019)*
G45096	TrGC	$C1ODC2O2C4OD \rightarrow MGLYOX + HOCHCHO$	k1_R02t0R02	Sander et al. (2019)
G45097a	TrGC	$C1ODC2OOHC4OD + OH \rightarrow MGLYOX + 2 CO$	(2.*k_t*f_o*f_tch2oh*f_alk+k_	Sander et al. (2019)
			t*f_toh*f_cho*f_pch2oh)*.5	·
G45097b	TrGC	${\rm C1ODC2OOHC4OD} + {\rm OH} \rightarrow {\rm MGLYOX} + 2~{\rm CO} + {\rm OH}$	$(2.*k_t*f_o*f_tch2oh*f_alk+k_t$	Sander et al. (2019)
			t*f_toh*f_cho*f_pch2oh)*.5	
G45098	TrGCN	LISOPACNO $3O2 + NO \rightarrow .21 NOA + .21 HOCH_2CHO$	KRO2NO	Sander et al. $(2019)^*$
		$+ .21 \text{ HO}_2 + .49 \text{ HO12CO3C4} + .49 \text{ HCHO} + .49 \text{ NO}_2$		
		$+ .045 \text{ MVKNO3} + .045 \text{ HCHO} + .255 \text{ CH}_3 \text{COCH}_2 \text{OH} +$		
		$.255 \text{ NO}_3\text{CH2CHO} + .225 \text{ H}_2\text{O}_2 + \text{NO}_2$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45099	TrGCN	$LISOPACNO3O2 \rightarrow .21 NOA + .21 HOCH_2CHO + .21$	k1_R02t0R02+KR02H02(5)*c(ind_	Sander et al. (2019)
		$HO_2 + .49 HO12CO3C4 + .49 HCHO + .49 NO_2 + .045$	HO2)	
		$MVKNO3 + .045 HCHO + .255 CH_3COCH_2OH + .255$		
		$NO_3CH2CHO + .225 H_2O_2$		
G45100	TrGCN	ISOPBDNO3O2 + NO \rightarrow .6 CH ₃ COCH ₂ OH + .6	KRO2NO	Sander et al. $(2019)^*$
		$HOCH_2CHO + .26 MACRNO3 + .14 MVKNO3 + .4$		
0.454.04	TI CON	$HCHO + .4 HO_2 + 1.6 NO_2$	14 700 0700 (7700700 (5) (7)	0 1 (2010)
G45101	TrGCN	ISOPBDNO3O2 \rightarrow .6 CH ₃ COCH ₂ OH + .6 HOCH ₂ CHO	k1_R02s0R02+KR02H02(5)*c(ind_	Sander et al. (2019)
		$+ .26 \text{ MACRNO3} + .14 \text{ MVKNO3} + .4 \text{ HCHO} + .4 \text{ HO}_2 + .6 \text{ NO}_2$	HO2)	
G45102	TrGCN	$+ .0 \text{ NO}_2$ LISOPACNO3 + O ₃ $\rightarrow .8704 \text{ OH} + .365 \text{ HO}_2 + .73$	2.8E-17	Feierabend et al. (2008), Sander
G45102	IIGON	$MGLYOX + .4325 NO_3CH2CHO + .135 CH_3COCH_2OH$	2.06 17	et al. (2019)
		$+.0675 \text{ GLYOX} + .4325 \text{ NO}_2 + .0891 \text{ H}_2\text{O}_2 + .135 \text{ NOA}$		cu ai. (2013)
		$+.0675 \text{ HOCHCHO} +.3866 \text{ HOCH}_2\text{CHO} +.0405 \text{ CH}_3\text{OH}$		
		+ .0405 CO + .0054 HOCH2CO		
G45103	TrGC	$DB1O2 \rightarrow DB1O2$	k1_R02s0R02	Sander et al. (2019)
G45104a	TrGC	$\mathrm{DB1O2} + \mathrm{HO}_2 \rightarrow \mathrm{DB1OOH}$	KRO2HO2(5)*(1rchohch2o2_oh)	Sander et al. (2019)*
G45104b	TrGC	$DB1O2 + HO_2 \rightarrow DB1O2 + OH$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2019)
G45105a	TrGCN	$DB1O2 + NO \rightarrow DB1O2 + NO_2$	$KRO2NO*(1alpha_AN(7,2,0,0,0,$	Sander et al. (2019)
	_ 0.00-		temp,cair))	(
G45105b	TrGCN	$DB1O2 + NO \rightarrow DB1NO3$	KRO2NO*alpha_AN(7,2,0,0,0,temp,	Sander et al. (2019)
845400	T CON	DD100 - NO DD100 - NO	cair)	0 1 (2010)
G45106	TrGCN	$DB1O2 + NO_3 \rightarrow DB1O2 + NO_2$	KRO2NO3	Sander et al. (2019)
G45107 G45108a	TrGC TrGC	$DB1O2 \rightarrow DB1O2 + OH$ $DB1O2 \rightarrow DB1O2$	1.E4 KDEC*0.72	Peeters and Nguyen (2012)* see note*
G45108a G45108b	TrGC	$DB1O2 \rightarrow DB1O2$ $DB1O2 \rightarrow .5 \text{ HVMK} + .5 \text{ HMAC} + \text{HCHO} + \text{HO}_2$	KDEC*0.72 KDEC*0.28	see note see note*
G45100b	TrGC	$DB102 \rightarrow .3 \text{ HVMK} + .3 \text{ HMAC} + \text{HCHO} + \text{HO}_2$ $DB102 \rightarrow .48 \text{ CH}_3\text{COCH}_2\text{OH} + .52 \text{ HOCH}_2\text{CHO} + .52$	k1_R02s0R02	Sander et al. (2019)
G45105	1160	$MGLYOX + .48 GLYOX + HO_2$	KI_ItUZSUItUZ	Dander et al. (2019)
G45110a	TrGC	$DB1O2 + HO_2 \rightarrow DB2OOH$	KRO2HO2(5)*(1rchohch2o2_oh)	Sander et al. (2019)
G45110b	TrGC	$DB1O2 + HO_2 \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2019)
		$+.52 \text{ MGLYOX} + .48 \text{ GLYOX} + \text{HO}_2 + \text{OH}$,
G45111	TrGCN	$DB1O2 + NO \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO$	KRO2NO	see note*
		$+ .52 \text{ MGLYOX} + .48 \text{ GLYOX} + \text{HO}_2 + \text{NO}_2$		
G45112	TrGCN	$DB1O2 + NO_3 \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO$	KRO2NO3	Sander et al. (2019)
		$+ .52 \text{ MGLYOX} + .48 \text{ GLYOX} + \text{HO}_2 + \text{NO}_2$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45113	TrGC	$\mathrm{DB1O2} \rightarrow .48\ \mathrm{MACROOH} + .52\ \mathrm{LHMVKABOOH} + \mathrm{CO} + \mathrm{OH}$	K14HSAL	Sander et al. (2019)
G45114a	TrGC	$DB1OOH + OH \rightarrow DB1O2$	k_roohro	Sander et al. (2019)
G45114b	TrGC	$DB1OOH + OH \rightarrow HCOOH + HO_2 + CH_3COCHO_2CHO$	k_adt	Sander et al. (2019)*
G45115	TrGC	$DB1OOH + HCOOH \rightarrow C1ODC2OOHC4OD + HCOOH$	4.67E-26*temp**3.286*EXP(4509./ (1.987*temp))	Sander et al. (2019), da Silva (2010)*
G45116	TrGCN	$DB1NO3 + OH \rightarrow HCOOH + NO_2 + CH_3COCHO_2CHO$	k_adt	Sander et al. (2019)*
G45117	TrGC	$DB2OOH + OH \rightarrow DB1O2$	k_roohro	Sander et al. (2019)*
G45118	TrGC	LISOPACOOH + $O_3 \rightarrow 1.3272$ OH + $.36986$ HO ₂ + $.0432$ H ₂ O ₂ + $.08422$ CO + $.2025$ CH ₃ OOH + $.01215$ CH ₂ OO + $.3704$ HCHO + $.00405$ CH ₃ OH + $.0405$ CO ₂ + $.1825$ HOCH2COCH2O2 + $.365$ MGLYOX + $.3866$ HOOCH2CHO + $.135$ CH ₃ COCH ₂ OH + $.0675$ GLYOX + $.00324$ HCOCO + $.3866$ HOCH ₂ CHO + $.135$ CH ₃ COCH ₂ O ₂ H + $.0675$ HOCHCHO + $.0054$ HOCH2CO	4.829E-16	Sander et al. (2019)
G45119a	TrGC	LZCO3HC23DBCOD + OH \rightarrow .62 CO2H3CHO + .62 OH + .62 CO ₂ + .38 MGLYOX + .38 HCOCO ₃ H + .38 HO ₂	k_adt*a_cho*a_co2h	Sander et al. (2019)
G45119b	TrGC	LZCO3HC23DBCOD + OH \rightarrow .62 CH ₃ COCO ₃ H + 1.24 CO + 1.24 HO ₂ + .38 MGLYOX + .38 HO ₂ + .38 CO + .38 HO ₂ + .38 OH + .38 CO ₂	k_ads*a_cho*a_co2h	Sander et al. (2019)
G45120	TrGC	$LISOPEFO2 \rightarrow LISOPEFO$	k1_R02p0R02	Sander et al. (2019)
G45121a	TrGCN	${\rm LISOPEFO2 + NO \rightarrow LISOPEFO + NO_2}$	<pre>KRO2NO*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G45121b	TrGCN	$LISOPEFO2 + NO \rightarrow ISOPDNO3$	<pre>KRO2NO*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Sander et al. (2019)*
G45122a	TrGC	LISOPEFO2 + $\mathrm{HO}_2 \rightarrow .7143$ ISOPDOOH + .2857 ISOPBOOH	KRO2HO2(5)*(1rchohch2o2_oh)	Sander et al. (2019)
G45122b	TrGC	$LISOPEFO2 + HO_2 \rightarrow LISOPEFO + OH$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2019)
G45123	TrGCN	LISOPEFO2 + $NO_3 \rightarrow LISOPEFO + NO_2$	KRO2NO3	Sander et al. (2019)
G45124	TrGC	LISOPEFO2 \rightarrow .7143 MACR + .2857 MVK + HCHO + OH	0.7143*KHSD+.2857*KHSB	Sander et al. (2019)
G45125	TrGC	LISOPEFO \rightarrow .7143 MACR + .2857 MVK + HCHO + $\rm HO_2$	KDEC	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45126a	TrGC	LISOPACO \rightarrow 3METHYLFURAN + HO ₂	KDEC*0.37	Sander et al. (2019), Paulot et al.
				(2009a), Francisco-Marquez
				et al. (2003)
G45126b	TrGC	LISOPACO \rightarrow .65 LHC4ACCHO + .65 HO ₂ + .35 DB1O2	KDEC*(10.37)	Sander et al. (2019), Paulot et al.
				(2009a), Francisco-Marquez
045407	m aa	LICODACO - AMERIJA BUDAN - HO	VDEG. 0.07	et al. (2003)
G45127a	TrGC	LISOPACO \rightarrow 3METHYLFURAN + HO ₂	KDEC*0.37	Sander et al. (2019), Paulot et al. (2009a), Francisco-Marquez
				et al. (2003)
G45127b	TrGC	LISOPACO \rightarrow .65 LHC4ACCHO + .65 HO ₂ + .35 DB1O2	KDFC*(1 -0 37)	Sander et al. (2019), Paulot et al.
Q401276	1100		NDEO*(1. 0.07)	(2009a), Francisco-Marquez
				et al. (2003)
G45128	TrGC	3 METHYLFURAN + OH \rightarrow L 3 METHYLFURANO 2	3.2E-11*EXP(310./temp)	Sander et al. (2019)*
G45129	TrGCN	3 METHYLFURAN + NO $_3$ \rightarrow L 3 METHYLFURANO2 +	1.9E-11	Sander et al. (2019), Atkinson
		NO_2		et al. (2006)*
G45130	TrGC	$L3METHYLFURANO2 \rightarrow C4MDIAL + HO_2$	k1_R02s0R02	Sander et al. (2019)
G45131	TrGCN	L3METHYLFURANO2 + NO \rightarrow C4MDIAL + HO ₂ +	KRO2NO	Sander et al. $(2019)^*$
G45132	TrGC	NO_2 L3METHYLFURANO2 + $HO_2 \rightarrow C4MDIAL + HO_2$	KR02H02(5)	Sander et al. $(2019)^*$
G45132 G45133	TrGC	LZCO3C23DBCOD \rightarrow .62 EZCH3CO2CHCHO $+$.38	k1_R02RC03	Sander et al. (2019) Sander et al. (2019)
G45155	1160	EZCHOCCH3CHO2 + CO_2	KI_RUZRCUS	Sander et al. (2019)
G45134a	TrGC	$LZCO3C23DBCOD + HO_2 \rightarrow .62 EZCH3CO2CHCHO +$	KAPHO2*rco3_oh	Sander et al. (2019)
		.38 EZCHOCCH3CHO2 + CO_2 + OH		
G45134b	TrGC	$LZCO3C23DBCOD + HO_2 \rightarrow LZCO3HC23DBCOD$	KAPHO2*(rco3_ooh+rco3_o3)	Sander et al. $(2019)^*$
G45135	TrGCN	$LZCO3C23DBCOD + NO \rightarrow .62 EZCH3CO2CHCHO +$	KAPNO	Sander et al. (2019)
		$.38 \ EZCHOCCH3CHO2 + CO_2 + NO_2$		
G45136	TrGCN	$LZCO3C23DBCOD + NO_2 \rightarrow LZCPANC23DBCOD$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45137	TrGCN	LZCO3C23DBCOD + NO ₃ \rightarrow .62 EZCH3CO2CHCHO +	KR02N03*1.74	Sander et al. (2019)
045400	T. CON	.38 EZCHOCCH3CHO2 + CO ₂ + NO ₂	1 DAY W	D: 1 1 1 D (2000)
G45138	TrGCN	$LZCPANC23DBCOD \rightarrow LZCO3C23DBCOD + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45139	TrGCN	LZCPANC23DBCOD + OH \rightarrow .62 EZCH3CO2CHCHO +	2.52E-11	Sander et al. (2019)*
045000	ТъСТоъС	.38 EZCHOCCH3CHO2 + CO_2 + NO_2	1-1 DOC-0000	Distant and Dagge (2000)
G45200	TrGTerC	$C511O2 \rightarrow CH_3C(O) + HCOCH2CHO$	k1_R02s0R02	Rickard and Passos (2009)
G45201	TrGTerCN	$C511O2 + NO \rightarrow CH_3C(O) + HCOCH2CHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45202a	TrGTerC	$C511O2 + HO_2 \rightarrow C511OOH$	KRO2HO2(5)*rcoch2o2_ooh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G45202b	TrGTerC	$C511O2 + HO_2 \rightarrow CH_3C(O) + HCOCH2CHO + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G45203	TrGTerC	$C511OOH + OH \rightarrow C511O2$	7.49E-11	Rickard and Pascoe (2009)
G45204	TrGTerC	$CO23C4CHO + OH \rightarrow CO23C4CO3$	6.65E-11	Rickard and Pascoe (2009)
G45205	TrGTerCN	$CO23C4CHO + NO_3 \rightarrow CO23C4CO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45206	TrGTerC	$CO23C4CO3 \rightarrow CH_3COCOCH_2O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45207	TrGTerCN	$CO23C4CO3 + NO \rightarrow CH_3COCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G45208	TrGTerCN	$CO23C4CO3 + NO_2 \rightarrow C5PAN9$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45209a	TrGTerC	$\text{CO23C4CO3} + \text{HO}_2 \rightarrow \text{CO23C4CO3H}$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G45209b	TrGTerC	$CO23C4CO3 + HO_2 \rightarrow CH_3COCOCH_2O_2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G45210	TrGTerCN	$C5PAN9 \rightarrow CO23C4CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45211	TrGTerCN	$C5PAN9 + OH \rightarrow CH_3COCOCHO + CO + NO_2$	3.12E-13	Rickard and Pascoe (2009)
G45212	TrGTerC	$C512O2 \rightarrow C513O2$	k1_R02pR02	Rickard and Pascoe (2009)
G45213	TrGTerC	$C512O2 + HO_2 \rightarrow C512OOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45214	TrGTerCN	$C512O2 + NO \rightarrow C513O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45215	TrGTerC	$C512OOH + OH \rightarrow CO13C4CHO + OH$	1.01E-10	Rickard and Pascoe (2009)
G45216	TrGTerC	$C513O2 \rightarrow GLYOX + HOC_2H_4CO_3$	k1_R02s0R02	Rickard and Pascoe (2009)
G45217	TrGTerCN	$C513O2 + NO \rightarrow GLYOX + HOC_2H_4CO_3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45218a	TrGTerC	$C513O2 + HO_2 \rightarrow C513OOH$	KRO2HO2(5)*rcoch2o2_ooh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G45218b	TrGTerC	$C513O2 + HO_2 \rightarrow GLYOX + HOC_2H_4CO_3 + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G45219	TrGTerC	$CO13C4CHO + OH \rightarrow CHOC3COCO3$	1.33E-10	Rickard and Pascoe (2009)
G45220	TrGTerCN	$CO13C4CHO + NO_3 \rightarrow CHOC3COCO3 + HNO_3$	2.*KNO3AL*5.5	Rickard and Pascoe (2009)
G45221	TrGTerC	$C513OOH + OH \rightarrow C513CO + OH$	9.23E-11	Rickard and Pascoe (2009)
G45222	TrGTerC	$CHOC3COCO3 \rightarrow CHOC3COO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45223	TrGTerC	$CHOC3COCO3 + HO_2 \rightarrow CHOC3COOOH$	KAPHO2	Rickard and Pascoe (2009)
G45224	TrGTerCN	$CHOC3COCO3 + NO_2 \rightarrow CHOC3COPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45225	TrGTerCN	$CHOC3COCO3 + NO \rightarrow CHOC3COO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G45226	TrGTerC	$C513CO + OH \rightarrow HOC_2H_4CO_3 + CO + CO$	2.64E-11	Rickard and Pascoe (2009)
G45227	TrGTerC	$C514O2 + HO_2 \rightarrow C514OOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45228a	TrGTerCN	$C514O2 + NO \rightarrow CO13C4CHO + HO_2 + NO_2$	$KRO2NO*(1alpha_AN(7,2,0,1,0,$	Rickard and Pascoe (2009),
			temp,cair))	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45228b	TrGTerCN	$C514O2 + NO \rightarrow C514NO3$	<pre>KRO2NO*alpha_AN(7,2,0,1,0,temp,</pre>	Rickard and Pascoe (2009),
			cair)	Sander et al. (2019)
G45229	TrGTerCN	$C514O2 + NO_3 \rightarrow CO13C4CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45230	TrGTerC	$C514O2 \rightarrow CO13C4CHO + HO_2$	k1_R02sR02	Rickard and Pascoe (2009)
G45231	TrGTerC	$C514OOH + OH \rightarrow CO13C4CHO + OH$	1.10E-10	Rickard and Pascoe (2009)
G45232	TrGTerCN	$C514NO3 + OH \rightarrow CO13C4CHO + NO_2$	4.33E-11	Rickard and Pascoe (2009)
G45233	TrGTerC	$CHOC3COOOH + OH \rightarrow CHOC3COCO3$	7.55E-11	Rickard and Pascoe (2009)
G45234	TrGTerCN	$CHOC3COPAN \rightarrow CHOC3COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45235	TrGTerCN	$CHOC3COPAN + OH \rightarrow C4CODIAL + CO + NO_2$	7.19E-11	Rickard and Pascoe (2009)
G45236	TrGTerC	$MBO + OH \rightarrow LMBOABO2$	8.1E-12*EXP(610./temp)	Rickard and Pascoe (2009) , Sander et al. $(2019)^*$
G45237a	TrGTerC	MBO + O ₃ → HCHO + .16 CH ₃ COCH ₃ + .16 HO ₂ + .16 CO + .16 OH + .84 MBOOO	1.0E-17*0.57	Rickard and Pascoe (2009), Sander et al. (2019)
G45237b	TrGTerC	MBO + O ₃ \rightarrow IBUTALOH + .63 CO + .37 HOCH ₂ OOH + .16 OH + .16 HO ₂	1.0E-17*0.43	Rickard and Pascoe (2009), Sander et al. (2019)
G45238	TrGTerCN	$MBO + NO_3 \rightarrow LNMBOABO2$	4.6E-14*EXP(-400./temp)	Rickard and Pascoe (2009), Sander et al. (2019)
G45239	TrGTerC	${\rm LMBOABO2 + HO_2 \rightarrow LMBOABOOH}$	KRO2HO2(5)	Rickard and Pascoe (2009), Sander et al. (2019)
G45240a	TrGTerCN	${\rm LMBOABO2 + NO \rightarrow LMBOABNO3}$	<pre>KR02N0*(.67*alpha_AN(7,2,0,0,0, temp,cair)+.33*alpha_AN(7,1,0,0, 0,temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G45240b	TrGTerCN	$\label{eq:localization} \begin{split} \mathrm{LMBOABO2} + \mathrm{NO} &\rightarrow \mathrm{HOCH_2CHO} + \mathrm{CH_3COCH_3} + \mathrm{HO_2} \\ + \mathrm{NO_2} \end{split}$	<pre>KRO2NO*(1(.67*alpha_AN(7,2,0, 0,0,temp,cair)+.33*alpha_AN(7,1, 0,0,0,temp,cair)))*.67</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G45240c	TrGTerCN	LMBOABO2 + NO \rightarrow IBUTALOH + HCHO + HO ₂ + NO ₂	<pre>KRO2NO*(1(.67*alpha_AN(7,2,0, 0,0,temp,cair)+.33*alpha_AN(7,1, 0,0,0,temp,cair)))*.33</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G45241a	$\operatorname{TrGTerC}$	${\rm LMBOABO2} \rightarrow {\rm HOCH_2CHO} + {\rm CH_3COCH_3} + {\rm HO_2}$	k1_R02s0R02*.67	Rickard and Pascoe (2009), Sander et al. (2019)
G45241b	TrGTerC	${\rm LMBOABO2} \rightarrow {\rm IBUTALOH} + {\rm HCHO} + {\rm HO_2}$	k1_R02p0R02*.33	Rickard and Pascoe (2009), Sander et al. (2019)
G45242a	TrGTerC	${\rm LMBOABOOH} + {\rm OH} \rightarrow {\rm MBOACO}$	0.67*2.93E-11+.33*2.05E-12	Rickard and Pascoe (2009), Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45242b	TrGTerC	$LMBOABOOH + OH \rightarrow LMBOABO2$	k_roohro	Rickard and Pascoe (2009),
				Sander et al. (2019)
G45243	TrGTerCN	$LMBOABNO3 + OH \rightarrow MBOACO + NO_2$	0.67*1.75E-12+.33*2.69E-12	Rickard and Pascoe (2009), Sander et al. (2019)
G45244	TrGTerC	$MBOACO + OH \rightarrow MBOCOCO + HO_2$	3.79E-12	Rickard and Pascoe (2009)
G45244 G45245	TrGTerC	$MBOCOCO + OH \rightarrow MBOCOCO + HO_2$ $MBOCOCO + OH \rightarrow CO + IPRHOCO3$	1.38E-11	Rickard and Pascoe (2009)
G45246	TrGTerCN	$LNMBOABO2 + HO_2 \rightarrow LNMBOABOOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45240	IIGIEICN	ENMBOADO2 + IIO2 → ENMBOADOOII	NNUZNUZ(3)	Sander et al. (2019)
G45247	TrGTerCN	LNMBOABO2 + NO \rightarrow .65 NO ₃ CH2CHO + .65	KRO2NO	Rickard and Pascoe (2009),
		$\mathrm{CH_{3}COCH_{3}}$ + .65 $\mathrm{HO_{2}}$ + .35 $\mathrm{IBUTALOH}$ + .35 HCHO		Sander et al. (2019)*
		$+ .35 \text{ NO}_2 + \text{NO}_2$		
G45248	TrGTerCN	LNMBOABO2 + NO $_3$ \rightarrow .65 NO $_3$ CH2CHO + .65	KRO2NO3	Rickard and Pascoe (2009),
		$CH_3COCH_3 + .65 HO_2 + .35 IBUTALOH + .35 HCHO$		Sander et al. (2019)
		$+.35~\mathrm{NO_2} + \mathrm{NO_2}$		
G45249	TrGTerCN	LNMBOABO2 \rightarrow .65 NO ₃ CH2CHO + .65 CH ₃ COCH ₃ +	k1_R02s0R02	Rickard and Pascoe (2009),
	a a	$.65 \text{ HO}_2 + .35 \text{ IBUTALOH} + .35 \text{ HCHO} + .35 \text{ NO}_2$		Sander et al. (2019)
G45250a	TrGTerCN	LNMBOABOOH + OH \rightarrow .65 C4MCONO3OH + .35	0.65*4.89E-12+.35*2.52E-12	Rickard and Pascoe (2009),
a	TO COM	NMBOBCO		Sander et al. (2019)
G45250b	TrGTerCN	$LNMBOABOOH + OH \rightarrow LNMBOABO2$	k_roohro	Rickard and Pascoe (2009),
945054	TOTAL CINI	NMDODGO - OH - NGAOHGOO	4.000 40	Sander et al. (2019)
G45251	TrGTerCN	$NMBOBCO + OH \rightarrow NC4OHCO3$ $NC4OHCO3 + HO \rightarrow RBUTALOH + CO \rightarrow NO \rightarrow OH$	4.26E-12	Rickard and Pascoe (2009)
G45252a	TrGTerCN	$NC4OHCO3 + HO_2 \rightarrow IBUTALOH + CO_2 + NO_2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (2009),
9450501	TOTAL CINI	NOTOTION - HO - NOTOTIONI	WARWOO. (0 0. 0 1)	Sander et al. (2019)
G45252b	TrGTerCN	$NC4OHCO3 + HO_2 \rightarrow NC4OHCO3H$	KAPHO2*(rco3_o3+rco3_ooh)	Rickard and Pascoe (2009),
G45253	TrGTerCN	$NC4OHCO3 + NO \rightarrow IBUTALOH + CO_2 + NO_2 + NO_2$	KAPNO	Sander et al. (2019) Rickard and Pascoe (2009)
G45254	TrGTerCN	$NC4OHCO3 + NO_2 \rightarrow NC4OHCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45254 G45255	TrGTerCN	$NC4OHCO3 + NO_2 \rightarrow NC4OHCI AN$ $NC4OHCO3 + NO_3 \rightarrow IBUTALOH + CO_2 + NO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45256	TrGTerCN	$NC4OHCO3 + NO_3 + IBOTALOH + CO_2 + NO_2 + NO_2$ $NC4OHCO3 \rightarrow IBUTALOH + CO_2 + NO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45257	TrGTerCN	$NC4OHCO3H + OH \rightarrow NC4OHCO3$	4.50E-12	Rickard and Pascoe (2009)
G45258	TrGTerCN	$NC4OHCOSH + OH \rightarrow IBUTALOH + CO + NO_2 + NO_2$	1.27E-12	Rickard and Pascoe (2009)
G45259	TrGTerCN	$NC4OHCPAN \rightarrow NC4OHCO3 + NO_2$	K_PAN_M	Rickard and Pascoe (2009)
G45260	TrGTerCN	C4MCONO3OH + OH \rightarrow CH ₃ COCH ₃ + HCHO + CO ₂		Rickard and Pascoe (2009),
G 10200	110101011	$+ NO_2$	1.202 12	Sander et al. (2019)
G45400	TrGAroCN	$NC4MDCO2HN + OH \rightarrow MMALANHY + NO_2$	k_roohro	Rickard and Pascoe (2009)*
			<u> </u>	()

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45401	TrGAroCN	$C54CO + NO_3 \rightarrow 3 CO + CH_3C(O)OO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45402	TrGAroC	$C54CO + OH \rightarrow 3 CO + CH_3C(O)OO$	1.72E-11	Rickard and Pascoe (2009)
G45403a	TrGAroCN	$NTLFUO2 + HO_2 \rightarrow NTLFUOOH$	KRO2HO2(5)*(1rcoch2o2_oh)	Rickard and Pascoe (2009)
G45403b	TrGAroCN	$NTLFUO2 + HO_2 \rightarrow ACCOMECHO + NO_2 + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009)
G45404	TrGAroCN	$NTLFUO2 + NO \rightarrow ACCOMECHO + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45405	TrGAroCN	$NTLFUO2 + NO_3 \rightarrow ACCOMECHO + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45406	TrGAroCN	$NTLFUO2 \rightarrow ACCOMECHO + NO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45407	TrGAroC	$C5134CO2OH + OH \rightarrow C54CO + HO_2$	7.48E-11	Rickard and Pascoe (2009)
G45408	TrGAroCN	$C5COO2NO2 + OH \rightarrow MGLYOX + CO + CO + NO_2$	5.43E-11	Rickard and Pascoe (2009)
G45409	TrGAroCN	$C5COO2NO2 \rightarrow C5CO14O2 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G45410	TrGAroC	$C5DIALOOH + OH \rightarrow C5DIALCO + OH$	7.52E-11	Rickard and Pascoe (2009)
G45411a	TrGAroC	$C4CO2DBCO3 + HO_2 \rightarrow C4CO2DCO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G45411b	TrGAroC	$C4CO2DBCO3 + HO_2 \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009), Sander et al. (2019)
G45412	TrGAroCN	$C4CO2DBCO3 + NO \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45413	TrGAroCN	$C4CO2DBCO3 + NO_2 \rightarrow C4CO2DBPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G45414	TrGAroCN	$C4CO2DBCO3 + NO_3 \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45415	TrGAroC	$C4CO2DBCO3 \rightarrow HO_2 + CO + HCOCOCHO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45416	TrGAroC	$MMALANHY + OH \rightarrow MMALANHYO2$	1.50E-12	Rickard and Pascoe (2009)
G45421a	TrGAroC	${\rm MMALANHYO2} + {\rm HO_2} \rightarrow {\rm MMALNHYOOH}$	<pre>KRO2HO2(5)*(1rcoch2o2_ oh-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G45421b	$\operatorname{TrGAroC}$	$\label{eq:MMALANHYO2} \text{MMALANHYO2} + \text{HO}_2 \rightarrow \text{CO2H3CO3} + \text{CO}_2 + \text{OH}$	<pre>KRO2HO2(5)*(rcoch2o2_oh+ rchohch2o2_oh)</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G45422	TrGAroCN	$MMALANHYO2 + NO \rightarrow CO2H3CO3 + CO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45423	$\operatorname{TrGAroCN}$	$MMALANHYO2 + NO_3 \rightarrow CO2H3CO3 + CO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45424	TrGAroC	$MMALANHYO2 \rightarrow CO2H3CO3 + CO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45428	$\operatorname{TrGAroCN}$	$C4CO2DBPAN + OH \rightarrow HCOCOCHO + CO_2 + CO +$	2.74E-11	Rickard and Pascoe (2009)
		NO_2		,
G45429	TrGAroCN	$C4CO2DBPAN \rightarrow C4CO2DBCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G45430a	TrGAroC	$C5CO14O2 + HO_2 \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2 + OH$		` ,
G45430b	TrGAroC	$C5CO14O2 + HO_2 \rightarrow C5CO14OH + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (2009)
G45430c	TrGAroC	$C5CO14O2 + HO_2 \rightarrow C5CO14OOH$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45431	TrGAroCN	$C5CO14O2 + NO \rightarrow .83 MALANHY + .83 CH_3 + .17$	KAPNO	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2 + NO_2$		
G45432	TrGAroCN	$C5CO14O2 + NO_2 \rightarrow C5COO2NO2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G45433	TrGAroCN	$C5CO14O2 + NO_3 \rightarrow .83 MALANHY + .83 CH_3 + .17$	KR02N03*1.74	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2 + NO_2$		D. 1. 1. D. (2222)
G45434	TrGAroC	$C5CO14O2 \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17 \text{ MGLYOX}$	k1_R02RC03	Rickard and Pascoe (2009)*
045426	TrGAroC	$+ .17 \text{HO}_2 + .17 \text{CO} + .17 \text{CO}_2$	5.44E-11	Distant and Dagge (2000)*
G45436	1rGAroC	$C5CO14OH + OH \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17 \text{ MGLYOX} + .17 \text{ HO}_2 + .17 \text{ CO} + .17 \text{ CO}_2$	5.44E-11	Rickard and Pascoe (2009)*
G45441	TrGAroCN	$C_{11} C_{11} C_{12} C_{11} C_{12} C_{11} C_{12} C_{12} C_{12} C_{13} C_{14} C_{14} C_{14} C_{15} $	KN03AL*2.75	Rickard and Pascoe (2009)
G45441	TrGAroC	C5DICARB + $O_3 \rightarrow C5CO14O2 + INVO_3$ C5DICARB + $O_3 \rightarrow .5338$ GLYOX + $.063$ CH ₃ CHO +	2.00E-18	Rickard and Pascoe (2009)
Q-10-1-12	11011100	$.348 \text{ CH}_3\text{C(O)OO} + .918 \text{ CO} + .57 \text{ OH} + .473 \text{ HO}_2 +$	2.001 10	Trickard and Tascoc (2005)
		$.0563 \text{ CH}_3\text{COCO}_2\text{H} + .5338 \text{ MGLYOX} + .676 \text{ H}_2\text{O}_2 +$		
		$.063 \text{ HCHO} + .0563 \text{ HCOCO}_2\text{H} + .2465 \text{ CO}_2$		
G45443	TrGAroC	C5DICARB + OH \rightarrow .48 C5CO14O2 + .52 C5DICARBO2	6.2E-11	Rickard and Pascoe (2009)
G45444	TrGAroC	MC3ODBCO2H + OH \rightarrow .35 GLYOX + .35 CH ₃ + .35	4.38E-11	Rickard and Pascoe (2009)*
		$CO + .35 CO_2 + .65 MMALANHY + .65 HO_2$		
G45451	TrGAroCN	$TLFUONE + NO_3 \rightarrow NTLFUO2$	1.00E-12	Rickard and Pascoe (2009)
G45452	TrGAroC	TLFUONE + $O_3 \rightarrow .5 \text{ CO} + .5 \text{ OH} + .5 \text{ MECOACETO2}$	8.00E-19	see note*
		+ .3125 C24O3CCO2H + .1875 ACCOMECHO + .1875		
		$\mathrm{H_{2}O_{2}}$		D. 1. 1. D. (2222)
G45453	TrGAroC	$TLFUONE + OH \rightarrow TLFUO2$	6.90E-11	Rickard and Pascoe (2009)
G45454a	TrGAroC	$ACCOMECO3 + HO_2 \rightarrow ACCOMECO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G45454b	TrGAroC	$ACCOMECO3 + HO_2 \rightarrow MECOACETO2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G45455	TrGAroCN	$ACCOMECO3 + NO \rightarrow MECOACETO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45456 G45457	TrGAroCN TrGAroCN	$ACCOMECO3 + NO_2 \rightarrow ACCOMEPAN$ $ACCOMECO3 + NO_3 \rightarrow MECOACETO2 + CO_2 + NO_2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)* Rickard and Pascoe (2009)
G45457 G45458	TrGAroCN	$ACCOMECO3 + NO_3 \rightarrow MECOACETO2 + CO_2 + NO_2$ $ACCOMECO3 \rightarrow MECOACETO2 + CO_2$	KRO2NO3*1.74 k1_RO2RCO3	Rickard and Pascoe (2009) Rickard and Pascoe (2009)
G45458 G45459	TrGAroC	$\begin{array}{c} ACCOMECOS \rightarrow MECOACE1O2 + CO_2 \\ C4CO2DCO3H + OH \rightarrow C4CO2DBCO3 \end{array}$	3.06E-11	Rickard and Pascoe (2009)
G45464	TrGAroCN	$ACCOMECHO + NO_3 \rightarrow ACCOMECO_3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45465	TrGAroC	$\begin{array}{c} ACCOMECHO + NO_3 \rightarrow ACCOMECO_3 + INVO_3 \\ ACCOMECHO + OH \rightarrow ACCOMECO_3 \end{array}$	7.09E-11	Rickard and Pascoe (2009)
G45466	TrGAroC	$MMALNHYOOH + OH \rightarrow MMALANHYO2$	1.69E-11	Rickard and Pascoe (2009)
G45467a	TrGAroC	C5DICAROOH + OH \rightarrow C5134CO2OH + OH	1.21E-10	Rickard and Pascoe (2009)
G45467b	TrGAroC	C5DICAROOH + OH \rightarrow C5DICARBO2	k_roohro	Rickard and Pascoe (2009)
G45468	TrGAroC	$C24O3CCO2H + OH \rightarrow MECOACETO2 + CO_2$	8.76E-13	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45469	TrGAroCN	$NTLFUOOH + OH \rightarrow NTLFUO2$	4.44E-12	Rickard and Pascoe (2009)
G45470	TrGAroCN	$ACCOMEPAN + OH \rightarrow METACETHO + CO + CO + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G45471	TrGAroCN	$ACCOMEPAN \rightarrow ACCOMECO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45476a	TrGAroC	$\text{TLFUO2} + \text{HO}_2 \rightarrow \text{TLFUOOH}$	KRO2HO2(5)*(1rcoch2o2_ oh-rchohch2o2_oh)	Rickard and Pascoe (2009)
G45476b	TrGAroC	$\mathrm{TLFUO2} + \mathrm{HO_2} \rightarrow \mathrm{ACCOMECHO} + \mathrm{HO_2} + \mathrm{OH}$	<pre>KRO2HO2(5)*(rcoch2o2_oh+ rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)*
G45477	TrGAroCN	$TLFUO2 + NO \rightarrow ACCOMECHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45478	TrGAroCN	$TLFUO2 + NO_3 \rightarrow ACCOMECHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45479	TrGAroC	$TLFUO2 \rightarrow ACCOMECHO + HO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45480	TrGAroC	$C5CO14OOH + OH \rightarrow C5CO14O2$	3.59E-12	Rickard and Pascoe (2009)
G45483	TrGAroC	$TLFUOOH + OH \rightarrow TLFUO2$	2.53E-11	Rickard and Pascoe (2009)
G45485	TrGAroC	$ACCOMECO3H + OH \rightarrow ACCOMECO3$	3.59E-12	Rickard and Pascoe (2009)
G45486a	TrGAroC	$C5DIALO2 + HO_2 \rightarrow C5DIALOOH$	KRO2HO2(5)*(1rcoch2o2_oh)	Rickard and Pascoe (2009)
G45486b	TrGAroC	$C5DIALO2 + HO_2 \rightarrow MALDIAL + CO + HO_2 + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009)*
G45487	TrGAroCN	$C5DIALO2 + NO \rightarrow MALDIAL + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45488	TrGAroCN	$C5DIALO2 + NO_3 \rightarrow MALDIAL + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45489	TrGAroC	$C5DIALO2 \rightarrow MALDIAL + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G45490a	TrGAroC	$C5DICARBO2 + HO_2 \rightarrow C5DICAROOH$	KRO2HO2(5)*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G45491b	TrGAroC	C5DICARBO2 + $HO_2 \rightarrow MGLYOX + GLYOX + HO_2 + OH$	KRO2HO2(5)*rco3_oh	Rickard and Pascoe (2009)*
G45492	$\operatorname{TrGAroCN}$	$C5DICARBO2 + NO \rightarrow MGLYOX + GLYOX + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45493	TrGAroCN	$C5DICARBO2 + NO_3 \rightarrow MGLYOX + GLYOX + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45494	TrGAroC	$C5DICARBO2 \rightarrow MGLYOX + GLYOX + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46200a	TrGTerC	$\mathrm{CO235C6O2} + \mathrm{HO_2} \rightarrow \mathrm{CO235C6OOH}$	KRO2HO2(6)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2019)
G46200b	TrGTerC	$\mathrm{CO235C6O2} + \mathrm{HO}_2 \rightarrow \mathrm{CO23C4CO3} + \mathrm{HCHO} + \mathrm{OH}$	KRO2HO2(6)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2019)
G46201	TrGTerCN	$CO235C6O2 + NO \rightarrow CO23C4CO3 + HCHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46202	TrGTerC	$CO235C6O2 \rightarrow CO23C4CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G46203	TrGTerC	$CO235C6OOH + OH \rightarrow CO235C6O2$	1.01E-11	Rickard and Pascoe (2009)
G46204	TrGTerC	$C614O2 \rightarrow CO23C4CHO + HCHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46205a	TrGTerCN	$C614O2 + NO \rightarrow CO23C4CHO + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(9,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G46205b	TrGTerCN	$C614O2 + NO \rightarrow C614NO3$	<pre>KRO2NO*alpha_AN(9,2,0,1,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G46206a	TrGTerC	$C614O2 + HO_2 \rightarrow C614OOH$	KRO2HO2(6)*(1rchohch2o2_oh)	Rickard and Pascoe (2009), Sander et al. (2019)
G46206b	TrGTerC	$C614O2 + HO_2 \rightarrow CO23C4CHO + HCHO + HO_2 + OH$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2019)
G46207	TrGTerCN	$C614NO3 + OH \rightarrow C614CO + NO_2$	7.11E-12	Rickard and Pascoe (2009)
G46208	TrGTerC	$C614OOH + OH \rightarrow C614CO + OH$	8.69E-11	Rickard and Pascoe (2009)
G46209	TrGTerC	$C614CO + OH \rightarrow CO235C5CHO + HO_2$	3.22E-12	Rickard and Pascoe (2009)
G46210	TrGTerC	$CO235C5CHO + OH \rightarrow CO23C4CO3 + CO$	1.33E-11	Rickard and Pascoe (2009)
G46211	TrGTerCN	$CO235C5CHO + NO_3 \rightarrow CO23C4CO3 + CO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G46400	TrGAroC	$PHENOOH + OH \rightarrow PHENO2$	1.16E-10	Rickard and Pascoe (2009)
G46401	TrGAroC	C6CO4DB + OH \rightarrow CO + CO + HO ₂ + CO + HCOCOCHO	7.70E-11	Rickard and Pascoe (2009)
G46402	TrGAroC	$C5CO2DCO3H + OH \rightarrow C5CO2DBCO3$	3.60E-11	Rickard and Pascoe (2009)
G46403	TrGAroCN	$NDNPHENOOH + OH \rightarrow NDNPHENO2$	k_roohro	Rickard and Pascoe (2009)
G46404a	TrGAroC	$C615CO2O2 + HO_2 \rightarrow C615CO2OOH$	KRO2HO2(6)*(1rcoch2o2_oh)	Rickard and Pascoe (2009)
G46404b	TrGAroC	$C615CO2O2 + HO_2 \rightarrow C5DICARB + CO + HO_2 + OH$	KRO2HO2(6)*rcoch2o2_oh	Rickard and Pascoe (2009)*
G46405	TrGAroCN	$C615CO2O2 + NO \rightarrow C5DICARB + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46406	TrGAroCN	$C615CO2O2 + NO_3 \rightarrow C5DICARB + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46407	TrGAroC	$C615CO2O2 \rightarrow C5DICARB + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46408	TrGAroCN	$BZEMUCPAN + OH \rightarrow MALDIAL + CO + CO_2 + NO_2$	4.05E-11	Rickard and Pascoe (2009)
G46409	TrGAroCN	$BZEMUCPAN \rightarrow BZEMUCCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46410	TrGAroCN	$BZBIPERNO3 + OH \rightarrow BZOBIPEROH + NO_2$	7.30E-11	Rickard and Pascoe (2009)
G46411	TrGAroCN	$HOC6H4NO2 + NO_3 \rightarrow NPHEN1O + HNO_3$	9.00E-14	Rickard and Pascoe (2009)
G46412	TrGAroCN	$HOC6H4NO2 + OH \rightarrow NPHEN1O$	9.00E-13	Rickard and Pascoe (2009)
G46413a	TrGAroCN	$NDNPHENO2 + HO_2 \rightarrow NDNPHENOOH$	<pre>KR02H02(6)*(1rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G46413b	TrGAroCN	NDNPHENO2 + $HO_2 \rightarrow NC4DCO2H + HNO_3 + CO + CO + NO_2 + OH$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G46414	$\operatorname{TrGAroCN}$	NDNPHENO2 + NO \rightarrow NC4DCO2H + HNO ₃ + CO + CO + NO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G46415	TrGAroCN	NDNPHENO2 + NO ₃ \rightarrow NC4DCO2H + HNO ₃ + CO + CO + NO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

labels	reaction	rate coefficient	reference
TrGAroCN	$NDNPHENO2 \rightarrow NC4DCO2H + HNO_3 + CO + CO +$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
	NO_2		
TrGAroC	$PBZQCO + OH \rightarrow C5CO2OHCO3$	6.07E-11	Rickard and Pascoe (2009)
TrGAroCN	$CATECHOL + NO_3 \rightarrow CATEC1O + HNO_3$	9.9E-11	Rickard and Pascoe (2009)*
TrGAroC	$CATECHOL + O_3 \rightarrow MALDALCO2H + HCOCO_2H +$	9.2E-18	Rickard and Pascoe (2009)
	$HO_2 + OH$		
		1.0E-10	Rickard and Pascoe (2009)
		8.01E-11	Rickard and Pascoe (2009)
	*	2.60E-12	Rickard and Pascoe (2009)
		3.47E-12	Rickard and Pascoe (2009)
	-	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
TrGAroC		KAPHO2*rco3_oh	Rickard and Pascoe (2009)
TrGAroCN	——————————————————————————————————————	KAPNO	Rickard and Pascoe (2009)
	<u> </u>		
			Rickard and Pascoe (2009)*
TrGAroCN		KRO2NO3*1.74	Rickard and Pascoe (2009)
T C 1 C			D. 1 1 1 D (2000)
			Rickard and Pascoe (2009)
			Rickard and Pascoe (2009)
TrGAroC		2.00E-18	Rickard and Pascoe (2009)*
TI CA C		C 00F 44	D: 1 1 1 D (2000)
IrGAroC		6.08E-11	Rickard and Pascoe (2009)
ThC And CN		VD001100(6) + (1h -h -h 0-0h)	Rickard and Pascoe (2009)
			Rickard and Pascoe (2009)*
HGAIOCN		KKUZHUZ(6) *1 CHOHCHZOZ_OH	Rickard and Fascoe (2009)
TrC AroCN	·	KDUONU	Rickard and Pascoe (2009)*
HOAHOON		MUZIVU	Tuckaru anu i ascue (2009)
TrGAroCN		KRU5NU3	Rickard and Pascoe (2009)*
1101110011		111021100	100mm and 1 above (2003)
TrGAroCN		k1 RO2TSOPDO2	Rickard and Pascoe (2009)*
		_	Rickard and Pascoe (2009)
TrGAroCN	$\begin{array}{c} \text{NPHENO2} + \text{HO}_2 \rightarrow \text{NPHENOOH} \end{array}$	KRO2HO2(6)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
	TrGAroC TrGAroCN TrGAroC TrGAroC TrGAroCN TrGAroC TrGAroCN TrGAroCN TrGAroCN TrGAroCN TrGAroCN TrGAroCN TrGAroCN TrGAroCN TrGAroCN	TrgAroC PBZQCO + OH \rightarrow C5CO2OHCO3 TrGAroCN CATECHOL + NO3 \rightarrow CATEC1O + HNO3 TrGAroC CATECHOL + O3 \rightarrow MALDALCO2H + HCOCO2H + HO2 + OH TrGAroC CATECHOL + OH \rightarrow CATEC1O TrGAroC C5COOHCO3H + OH \rightarrow C5CO2OHCO3 TrGAroCN NCATECHOL + OH \rightarrow NCATECO2 TrGAroCN NCATECHOL + OH \rightarrow NCATECO2 TrGAroCN NCATECHOL + OH \rightarrow NCATECO2 TrGAroC C5CO2OHCO3 + HO2 \rightarrow C5COOHCO3H TrGAroC C5CO2OHCO3 + HO2 \rightarrow HOCOC4DIAL + HO2 + CO + CO2 + OH TrGAroCN C5CO2OHCO3 + NO \rightarrow HOCOC4DIAL + HO2 + CO + CO2 + NO2 TrGAroCN C5CO2OHCO3 + NO2 \rightarrow C5CO2OHPAN TrGAroCN C5CO2OHCO3 + NO3 \rightarrow HOCOC4DIAL + HO2 + CO + CO2 + NO2 TrGAroCN C5CO2OHCO3 \rightarrow NO3 \rightarrow HOCOC4DIAL + HO2 + CO + CO2 + NO2 TrGAroCN C5CO2OHCO3 \rightarrow NO3 \rightarrow HOCOC4DIAL + HO2 + CO + CO2 + NO2 TrGAroCN BZEPOXMUC + NO3 \rightarrow BZEMUCCO3 + HNO3 TrGAroC BZEPOXMUC + O3 \rightarrow EPXC4DIAL + .125 HCHO + .1125 HCOC2H + .0675 GLYOX + .0675 H2O2 + .82 HO2 + .57 OH + 1.265 CO + .25 CO2 TrGAroCN NCATECO2 + HO2 \rightarrow NCATECOOH TrGAroCN NCATECO2 + HO2 \rightarrow NCATECOOH TrGAroCN NCATECO2 + HO2 \rightarrow NCADCO2H + HCOCO2H + HO2 + OH TrGAroCN NCATECO2 + NO \rightarrow NC4DCO2H + HCOCO2H + HO2 + NO2 TrGAroCN NCATECO2 \rightarrow NC4DCO2H + HCOCO2H + HO2 + NO2 TrGAroCN NCATECO2 \rightarrow NC4DCO2H + HCOCO2H + HO2 TrGAroCN NCATECO2 \rightarrow NC4DCO2H + HCOCO2H + HO2	$\begin{array}{c} NO_2 \\ TrGArcC \\ PZQCO + OH \rightarrow C5CO2OHCO3 \\ TrGArcO \\ CATECHOL + NO_3 \rightarrow CATEC1O + HNO_3 \\ HO_2 + OH \\ TrGArcC \\ CATECHOL + O_3 \rightarrow MALDALCO2H + HCOCO_2H + \\ HO_2 + OH \\ TrGArcC \\ CATECHOL + OH \rightarrow CATEC1O \\ TrGArcC \\ CATECHOL + OH \rightarrow CATEC1O \\ TrGArcC \\ C5COOHCO3H + OH \rightarrow C5CO2OHCO3 \\ R.01E-11 \\ TrGArcC \\ NCATECHOL + OH \rightarrow CATEC1O \\ TrGArcCN \\ NCATECHOL + OH \rightarrow NCATECO2 \\ TrGArcON \\ NCATECHOL + OH \rightarrow NCATECO2 \\ TrGArcCN \\ NCATECHOL + OH \rightarrow NCATECO2 \\ TrGArcC \\ C5CO2OHCO3 + HO_2 \rightarrow C5COOHCO3H \\ CO_2 + OH \\ CO_2 + OH \\ TrGArcC \\ C5CO2OHCO3 + HO_2 \rightarrow C5COOHCO3H \\ CO_2 + NO_2 \\ TrGArcC \\ C5CO2OHCO3 + NO \rightarrow HOCOC4DIAL + HO_2 + CO + \\ CO_2 + NO_2 \\ TrGArcC \\ C5CO2OHCO3 + NO_2 \rightarrow C5CO2OHPAN \\ C5CO2OHCO3 + NO_3 \rightarrow HOCOC4DIAL + HO_2 + CO + \\ CO_2 + NO_2 \\ TrGArcC \\ C5CO2OHCO3 + NO \rightarrow HOCOC4DIAL + HO_2 + CO + \\ CO_2 + NO_2 \\ TrGArcC \\ D3CO2OHCO3 + D3COC4DIAL + HO_2 + CO + CO + \\ C5CO2OHCO3 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + \\ CO_2 + NO_3 \\ TrGArcC \\ D3CO2OHCO3 + D3COC4DIAL + HO_2 + CO + CO + \\ C5CO2OHCO3 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \\ TrGArcC \\ D3COCAUCH + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + HO_2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + D2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + D2 + CO + CO + \\ C0_2 + NO_3 \rightarrow D2COC4DIAL + D2 + CO + \\ C0_2 + NO_3 \rightarrow D2COC4D1$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46437b	TrGAroCN	$\begin{array}{l} \text{NPHENO2} + \text{HO}_2 \rightarrow \text{MALDALCO2H} + \text{GLYOX} + \text{NO}_2 \\ + \text{OH} \end{array}$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G46438	TrGAroCN	$\begin{array}{l} \text{NPHENO2} + \text{NO} \rightarrow \text{MALDALCO2H} + \text{GLYOX} + \text{NO}_2 \\ + \text{NO}_2 \end{array}$	KRO2NO	Rickard and Pascoe (2009)*
G46439	$\operatorname{TrGAroCN}$	$\begin{array}{l} \mathrm{NPHENO2} + \mathrm{NO_3} \rightarrow \mathrm{MALDALCO2H} + \mathrm{GLYOX} + \mathrm{NO_2} \\ + \mathrm{NO_2} \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G46440	TrGAroCN	$NPHENO2 \rightarrow MALDALCO2H + GLYOX + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46441	TrGAroC	BENZENE + OH \rightarrow .352 BZBIPERO2 + .118 BZEPOXMUC + .118 HO ₂ + .53 PHENOL + .53 HO ₂	2.3E-12*EXP(-190./temp)	Rickard and Pascoe (2009)*
G46442	TrGAroCN	$C5CO2OHPAN + OH \rightarrow HOCOC4DIAL + CO + CO + NO_2$	7.66E-11	Rickard and Pascoe (2009)
G46443	TrGAroCN	$C5CO2OHPAN \rightarrow C5CO2OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46444	TrGAroCN	$CATEC1O + NO_2 \rightarrow NCATECHOL$	k_C6H50_N02	Rickard and Pascoe (2009), Platz et al. (1998)
G46445	TrGAroC	$CATEC1O + O_3 \rightarrow CATEC1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G46446	TrGAroC	$BZEMUCCO + OH \rightarrow EPXDLCO3 + GLYOX$	9.20E-11	Rickard and Pascoe (2009)
G46447a	TrGAroCN	$NNCATECO2 + HO_2 \rightarrow NNCATECOOH$	KRO2HO2(6)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G46447b	TrGAroCN	$NNCATECO2 + HO_2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + OH$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G46448	TrGAroCN	$NNCATECO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46449	TrGAroCN	$NNCATECO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46450	TrGAroCN	$NNCATECO2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46451	TrGAroC	$BZEMUCCO2H + OH \rightarrow C5DIALO2 + CO_2$	4.06E-11	Rickard and Pascoe (2009)
G46452	TrGAroCN	$NNCATECOOH + OH \rightarrow NNCATECO2$	k_roohro	Rickard and Pascoe (2009)
G46453	TrGAroCN	$\mathrm{NPHEN1O} + \mathrm{NO_2} \rightarrow \mathrm{DNPHEN}$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)
G46454	TrGAroCN	$NPHEN1O + O_3 \rightarrow NPHEN1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G46455	TrGAroCN	$\text{DNPHEN} + \text{NO}_3 \rightarrow \text{NDNPHENO2}$	2.25E-15	Rickard and Pascoe (2009)
G46456	TrGAroCN	$\text{DNPHEN} + \text{OH} \rightarrow \text{DNPHENO2}$	3.00E-14	Rickard and Pascoe (2009)
G46457	TrGAroCN	PHENOL + NO $_3 \rightarrow .742$ C6H5O + .742 HNO $_3$ + .258 NPHENO2	3.8E-12	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46458	TrGAroC	$PHENOL + OH \rightarrow .06 C6H5O + .8 CATECHOL + .8 HO_2$	4.7E-13*EXP(1220./temp)	Rickard and Pascoe (2009)*
		+ .14 PHENO2	-	,
G46459	TrGAroCN	$PBZQONE + NO_3 \rightarrow NBZQO2$	3.00E-13	Rickard and Pascoe (2009)
G46460	TrGAroC	$PBZQONE + OH \rightarrow PBZQO2$	4.6E-12	Rickard and Pascoe (2009)
G46461a	TrGAroC	$PHENO2 + HO_2 \rightarrow PHENOOH$	KRO2HO2(6)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G46461b	TrGAroC	PHENO2 + HO ₂ \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + OH	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G46462	TrGAroCN	PHENO2 + NO \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + NO ₂	KR02N0	Rickard and Pascoe (2009)*
G46463	TrGAroCN	PHENO2 + NO ₃ \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)*
G46464	TrGAroC	PHENO2 \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G46465	TrGAroC	$C615CO2OOH + OH \rightarrow C6125CO + OH$	9.42E-11	Rickard and Pascoe (2009)
G46466a	TrGAroC	$C5CO2DBCO3 + HO_2 \rightarrow C5CO2DCO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G46466b	TrGAroC	$C5CO2DBCO3 + HO_2 \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G46467	TrGAroCN	$C5CO2DBCO3 + NO \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G46468	TrGAroCN	$C5CO2DBCO3 + NO_2 \rightarrow C5CO2DBPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G46469	TrGAroCN	$C5CO2DBCO3 + NO_3 \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G46470	TrGAroC	$C5CO2DBCO3 \rightarrow CH_3C(O) + HCOCOCHO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G46471	TrGAroCN	$NPHEN1O2 + HO_2 \rightarrow NPHEN1OOH$	KRO2HO2(6)	Rickard and Pascoe (2009)
G46472a	TrGAroCN	$NPHEN1O2 + NO \rightarrow NPHEN1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46472b	TrGAroCN	$NPHEN1O2 + NO_2 \rightarrow NPHEN1O + NO_3$	k_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G46473	TrGAroCN	$NPHEN1O2 + NO_3 \rightarrow NPHEN1O + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G46474	TrGAroCN	$NPHEN1O2 \rightarrow NPHEN1O$	k1_R02sR02	Rickard and Pascoe (2009)
G46475	TrGAroCN	$NPHENOOH + OH \rightarrow NPHENO2$	1.07E-10	Rickard and Pascoe (2009)
G46476	TrGAroCN	$C6H5O + NO_2 \rightarrow HOC6H4NO2$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)*
G46477	TrGAroC	$C6H5O + O_3 \rightarrow C6H5O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G46478	TrGAroCN	$NCATECOOH + OH \rightarrow NCATECO2$	k_roohro	Rickard and Pascoe (2009)
G46479	TrGAroC	$PBZQOOH + OH \rightarrow PBZQCO + OH$	1.23E-10	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46480a	TrGAroC	$PBZQO2 + HO_2 \rightarrow PBZQOOH$	KRO2HO2(6)*(1rchohch2o2_	Rickard and Pascoe (2009)
			oh-rcoch2o2_oh)	
G46480b	TrGAroC	$PBZQO2 + HO_2 \rightarrow C5CO2OHCO3 + OH$	KRO2HO2(6)*(rchohch2o2_oh+	Rickard and Pascoe (2009)*
			rcoch2o2_oh)	
G46481	TrGAroCN	$PBZQO2 + NO \rightarrow C5CO2OHCO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46482	TrGAroCN	$PBZQO2 + NO_3 \rightarrow C5CO2OHCO3 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G46483	TrGAroC	$PBZQO2 \rightarrow C5CO2OHCO3$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46484	TrGAroC	$BZOBIPEROH + OH \rightarrow MALDIALCO3 + GLYOX$	8.16E-11	Rickard and Pascoe (2009)
G46485a	TrGAroCN	$\text{DNPHENO2} + \text{HO}_2 \rightarrow \text{DNPHENOOH}$	KRO2HO2(6)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G46485b	TrGAroCN	$\begin{array}{l} {\rm DNPHENO2 + HO_2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2} \\ {\rm + OH} \end{array}$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G46486	TrGAroCN	$DNPHENO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
		$+ NO_2$, ,
G46487	TrGAroCN	$DNPHENO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	KR02N03	Rickard and Pascoe (2009)*
		$+ NO_2$		
G46488	TrGAroCN	$DNPHENO2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46489	TrGAroC	$BZBIPEROOH + OH \rightarrow BZOBIPEROH + OH$	9.77E-11	Rickard and Pascoe (2009)
G46490a	TrGAroC	$BZEMUCO2 + HO_2 \rightarrow BZEMUCOOH$	KR02H02(6)	Rickard and Pascoe (2009)
G46490b	TrGAroC	$BZEMUCO2 + HO_2 \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5$	KR02H02(6)	Rickard and Pascoe (2009)*
		$HO_2 + .5 C3DIALO2 + .5 C32OH13CO + OH$		
G46491a	TrGAroCN	$BZEMUCO2 + NO \rightarrow BZEMUCNO3$	KRO2NO*alpha_AN(10,2,0,1,0,	Rickard and Pascoe (2009)
G46491b	TrGAroCN	$BZEMUCO2 + NO \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5$	temp, cair)	Rickard and Pascoe (2009)*
G46491D	IIGAIOUN	$HO_2 + .5 C3DIALO2 + .5 C32OH13CO + NO_2$	<pre>KRO2NO*(1alpha_AN(10,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G46492	TrGAroCN	$HO_2 + .5 C5DIALO2 + .5 C52OH15CO + NO_2$ BZEMUCO2 + $NO_3 \rightarrow .5$ EPXC4DIAL + .5 GLYOX + .5	KRO2NO3	Rickard and Pascoe (2009)*
G40492	IIGAIOCN	$HO_2 + .5 C3DIALO2 + .5 C32OH13CO + NO_2$	NRUZNU3	Rickard and Pascoe (2009)
G46493	TrGAroC	$BZEMUCO2 \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5 HO_2 + .5 EPXC4DIAL + .5 GLYOX + .5 HO_2 + .$	k1_R02s0R02	Rickard and Pascoe (2009)*
040433	HGAIOC	.5 C3DIALO2 + .5 C32OH13CO	KI_ItUZSUItUZ	Tuckard and I ascoe (2009)
G46494	TrGAroCN	$C5CO2DBPAN + OH \rightarrow HCOCOCHO + CH_3CHO + CO_2$	3.28E-11	Rickard and Pascoe (2009)
		$+ NO_2$,
G46495	TrGAroCN	$C5CO2DBPAN \rightarrow C5CO2DBCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46496	TrGAroCN	$NBZQOOH + OH \rightarrow NBZQO2$	6.68E-11	Rickard and Pascoe (2009)
G46497	TrGAroC	$CATEC1OOH + OH \rightarrow CATEC1O2$	k_roohro	Rickard and Pascoe (2009)
G46498	TrGAroC	$C6125CO + OH \rightarrow C5CO14O2 + CO$	6.45E-11	Rickard and Pascoe (2009)
G46499a	TrGAroCN	$NBZQO2 + HO_2 \rightarrow NBZQOOH$	KRO2HO2(6)*(1rcoch2o2_oh)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46499b	TrGAroCN	$NBZQO2 + HO_2 \rightarrow C6CO4DB + NO_2 + OH$	KRO2HO2(6)*rcoch2o2_oh	Rickard and Pascoe (2009)*
G46500	TrGAroCN	$NBZQO2 + NO \rightarrow C6CO4DB + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46501	TrGAroCN	$NBZQO2 + NO_3 \rightarrow C6CO4DB + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46502	TrGAroCN	$NBZQO2 \rightarrow C6CO4DB + NO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46503	TrGAroCN	$DNPHENOOH + OH \rightarrow DNPHENO2$	k_roohro	Rickard and Pascoe (2009)
G46504	TrGAroC	$CATEC1O2 + HO_2 \rightarrow CATEC1OOH$	KRO2HO2(6)	Rickard and Pascoe (2009)
G46505a	TrGAroCN	$CATEC1O2 + NO \rightarrow CATEC1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46505b	TrGAroCN	$CATEC1O2 + NO_2 \rightarrow CATEC1O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G46506	TrGAroCN	$CATEC1O2 + NO_3 \rightarrow CATEC1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46507	TrGAroC	$CATEC1O2 \rightarrow CATEC1O$	k1_R02s0R02	Rickard and Pascoe (2009)
G46508	TrGAroC	$BZEMUCCO3H + OH \rightarrow BZEMUCCO3$	4.37E-11	Rickard and Pascoe (2009)
G46509	TrGAroC	$C6H5OOH + OH \rightarrow C6H5O2$	3.60E-12	Rickard and Pascoe (2009)
G46510	TrGAroC	$BZEMUCOOH + OH \rightarrow BZEMUCCO + OH$	1.31E-10	Rickard and Pascoe (2009)
G46511a	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow BZEMUCCO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G46511b	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow BZEMUCCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G46511c	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow C5DIALO2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G46512	TrGAroCN	$BZEMUCCO3 + NO \rightarrow C5DIALO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G46513	TrGAroCN	$BZEMUCCO3 + NO_2 \rightarrow BZEMUCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G46514	TrGAroCN	$BZEMUCCO3 + NO_3 \rightarrow C5DIALO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G46515	TrGAroC	$BZEMUCCO3 \rightarrow C5DIALO2 + CO_2$	k1_RO2RCO3	Rickard and Pascoe $(2009)^*$
G46516	TrGAroC	$C6H5O2 + HO_2 \rightarrow C6H5OOH$	KR02H02(6)	Rickard and Pascoe (2009)
G46517a	TrGAroCN	$C6H5O2 + NO \rightarrow C6H5O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46517b	TrGAroCN	$C6H5O2 + NO_2 \rightarrow C6H5O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G46518	TrGAroCN	$C6H5O2 + NO_3 \rightarrow C6H5O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46519	TrGAroC	$C6H5O2 \rightarrow C6H5O$	k1_R02sR02	Rickard and Pascoe (2009)
G46521	TrGAroCN	$BZEMUCNO3 + OH \rightarrow BZEMUCCO + NO_2$	4.38E-11	Rickard and Pascoe (2009)
G46522a	TrGAroC	$BZBIPERO2 + HO_2 \rightarrow BZBIPEROOH$	<pre>KRO2HO2(6)*(1rbipero2_oh)</pre>	Rickard and Pascoe (2009)
G46522b	TrGAroC	BZBIPERO2 + $HO_2 \rightarrow OH + GLYOX + HO_2 + .5$	KRO2HO2(6)*rbipero2_oh	Rickard and Pascoe (2009), Bird-
		BZFUONE + .5 BZFUONE		sall et al. $(2010)^*$
G46523a	TrGAroCN	$BZBIPERO2 + NO \rightarrow BZBIPERNO3$	<pre>KRO2NO*alpha_AN(9,2,0,0,1,temp, cair)</pre>	Rickard and Pascoe (2009)
G46523b	TrGAroCN	BZBIPERO2 + NO \rightarrow NO ₂ + GLYOX + HO ₂ + .5	<pre>KRO2NO*(1alpha_AN(9,2,0,0,1,</pre>	Rickard and Pascoe (2009)*
		BZFUONE + .5 BZFUONE	temp,cair))	
G46524	TrGAroCN	BZBIPERO2 + NO $_3$ \rightarrow NO $_2$ + GLYOX + HO $_2$ + .5 BZFUONE + .5 BZFUONE		Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46525	TrGAroC	$BZBIPERO2 \rightarrow GLYOX + HO_2 + BZFUONE$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47200	TrGTerCN	$CO235C6CHO + NO_3 \rightarrow CO235C6CO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G47201	TrGTerC	$CO235C6CHO + OH \rightarrow CO235C6CO3$	6.70E-11	Rickard and Pascoe (2009)
G47202a	TrGTerC	$\text{CO235C6CO3} + \text{HO}_2 \rightarrow \text{C235C6CO3H}$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G47202b	TrGTerC	$CO235C6CO3 + HO_2 \rightarrow CO235C6O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G47203	TrGTerCN	$CO235C6CO3 + NO \rightarrow CO235C6O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47204	TrGTerCN	$CO235C6CO3 + NO_2 \rightarrow C7PAN3$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G47205	TrGTerC	$CO235C6CO3 \rightarrow CO235C6O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G47206	TrGTerC	$C235C6CO3H + OH \rightarrow CO235C6CO3$	4.75E-12	Rickard and Pascoe (2009)
G47207	TrGTerCN	$C7PAN3 + OH \rightarrow CO235C5CHO + CO + NO_2$	8.83E-13	Rickard and Pascoe (2009)
G47208	TrGTerCN	$C7PAN3 \rightarrow CO235C6CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G47209a	TrGTerC	$C716O2 + HO_2 \rightarrow C716OOH$	KRO2HO2(7)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2019)
G47209b	TrGTerC	$C716O2 + HO_2 \rightarrow CO13C4CHO + CH_3C(O) + OH$	KR02H02(7)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2019)
G47210	TrGTerCN	$C716O2 + NO \rightarrow CO13C4CHO + CH_3C(O) + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47211	TrGTerC	$C716O2 \rightarrow CO13C4CHO + CH_3C(O)$	k1_R02s0R02	Rickard and Pascoe (2009)
G47212	TrGTerC	$C716OOH + OH \rightarrow CO235C6CHO + OH$	1.20E-10	Rickard and Pascoe (2009)
G47213	TrGTerC	$C721O2 + HO_2 \rightarrow C721OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47214	TrGTerCN	$C721O2 + NO \rightarrow C722O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47215	TrGTerC	$C721O2 \rightarrow C722O2$	k1_R02pR02	Rickard and Pascoe (2009)
G47216	TrGTerC	$C721OOH + OH \rightarrow C721O2$	1.27E-11	Rickard and Pascoe (2009)
G47217	TrGTerC	$C722O2 + HO_2 \rightarrow C722OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47218	TrGTerCN	$C722O2 + NO \rightarrow CH_3COCH_3 + C44O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47219	TrGTerC	$C722O2 \rightarrow CH_3COCH_3 + C44O2$	k1_R02tR02	Rickard and Pascoe (2009)
G47220	TrGTerC	$C722OOH + OH \rightarrow C722O2$	3.31E-11	Rickard and Pascoe (2009)
G47221	TrGTerC	$ROO6R3O2 \rightarrow ROO6R5O2$	5.68E10*EXP(-8745./temp)	Vereecken and Peeters (2012)
G47222	TrGTerCN	$ROO6R3O2 + NO \rightarrow ROO6R3O + NO_2$	KRO2NO	Vereecken and Peeters $(2012)^*$
G47223	TrGTerC	$ROO6R3O2 + HO_2 \rightarrow 7 LCARBON$	KRO2HO2(7)	Vereecken and Peeters $(2012)^*$
G47224	TrGTerC	$ROO6R3O2 \rightarrow ROO6R3O$	k1_R02sR02	Vereecken and Peeters (2012)
G47225	TrGTerC	$ROO6R3O \rightarrow 7 LCARBON + HO_2$	5.7E10*EXP(-2949./temp)	Vereecken and Peeters $(2012)^*$
G47226	TrGTerC	$ROO6R5O2 \rightarrow 7 LCARBON + OH$	9.17E10*EXP(-8706./temp)	Vereecken and Peeters $(2012)^*$
G47400	TrGAroC	TOLUENE + OH \rightarrow .07 C6H5CH2O2 + .18 CRESOL + .18 HO ₂ + .65 TLBIPERO2 + .10 TLEPOXMUC + .10 HO ₂	1.8E-12*EXP(340./temp)	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47401	TrGAroC	$C6H5CH2O2 + HO_2 \rightarrow C6H5CH2OOH$	1.5E-13*EXP(1310./temp)	Rickard and Pascoe (2009)
G47402a	TrGAroCN	$C6H5CH2O2 + NO \rightarrow C6H5CH2NO3$	<pre>KRO2NO*alpha_AN(7,1,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)*
G47402b	TrGAroCN	$C6H5CH2O2 + NO \rightarrow BENZAL + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(7,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47403	TrGAroCN	$C6H5CH2O2 + NO_3 \rightarrow BENZAL + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe $(2009)^*$
G47404	TrGAroC	$C6H5CH2O2 \rightarrow BENZAL + HO_2$	2.*(k_CH302*2.4E-14*EXP(1620./ temp))**0.5*R02	Rickard and Pascoe (2009)*
G47405	TrGAroCN	CRESOL + NO ₃ \rightarrow .103 CRESO2 + .103 HNO ₃ + .506 NCRESO2 + .391 TOL1O + .391 HNO ₃	1.4E-11	Rickard and Pascoe (2009)*
G47406	TrGAroC	CRESOL + OH \rightarrow .2 CRESO2 + .727 MCATECHOL + .727 HO ₂ + .073 TOL1O	4.65E-11	Rickard and Pascoe (2009)*
G47407a	TrGAroC	${\rm TLBIPERO2} + {\rm HO_2} \rightarrow {\rm TLBIPEROOH}$	<pre>KR02H02(7)*(1rbipero2_oh)</pre>	Rickard and Pascoe (2009)
G47407b	TrGAroC	TLBIPERO2 + HO ₂ \rightarrow OH + .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	KRO2HO2(7)*rbipero2_oh	Rickard and Pascoe (2009), Birdsall et al. (2010)*
G47408a	TrGAroCN	TLBIPERO2 + NO \rightarrow NO ₂ + .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	<pre>KRO2NO*(1alpha_AN(11,2,0,0,1, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47408b	TrGAroCN	TLBIPERO2 + NO \rightarrow TLBIPERNO3	<pre>KRO2NO*alpha_AN(11,2,0,0,1, temp,cair)</pre>	Rickard and Pascoe (2009)*
G47409	TrGAroCN	TLBIPERO2 + NO ₃ \rightarrow NO ₂ + .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	KR02N03	Rickard and Pascoe (2009)*
G47410	TrGAroC	TLBIPERO2 \rightarrow .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	k1_R02s0R02	Rickard and Pascoe (2009)*
G47411	TrGAroCN	$TLEPOXMUC + NO_3 \rightarrow TLEMUCCO3 + HNO_3$	KNO3AL*2.75	Rickard and Pascoe (2009)
G47412	TrGAroC	TLEPOXMUC + $O_3 \rightarrow$ EPXC4DIAL + .125 CH ₃ CHO + .695 CH ₃ C(O) + .57 CO + .57 OH + .125 HO ₂ + .1125 CH ₃ COCO ₂ H + .0675 MGLYOX + .0675 H ₂ O ₂ + .25 CO ₂	5.00E-18	Rickard and Pascoe (2009)*
G47413	TrGAroC	TLEPOXMUC + OH \rightarrow .31 TLEMUCCO3 + .69 TLEMUCO2	7.99E-11	Rickard and Pascoe (2009)*
G47414	TrGAroC	$C6H5CH2OOH + OH \rightarrow BENZAL + OH$	2.05E-11	Rickard and Pascoe (2009)
G47415	TrGAroCN	$C6H5CH2NO3 + OH \rightarrow BENZAL + NO_2$	6.03E-12	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47416	TrGAroCN	$BENZAL + NO_3 \rightarrow C6H5CO3 + HNO_3$	2.40E-15	Rickard and Pascoe (2009)
G47417	TrGAroC	$BENZAL + OH \rightarrow C6H5CO3$	5.9E-12*EXP(225./temp)	Rickard and Pascoe (2009)
G47418a	TrGAroC	$CRESO2 + HO_2 \rightarrow CRESOOH$	KRO2HO2(7)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G47418b	TrGAroC	CRESO2 + HO ₂ \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + OH	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G47419	TrGAroCN	CRESO2 + NO \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G47420	TrGAroCN	CRESO2 + NO ₃ \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + NO ₂	KR02N03	Rickard and Pascoe (2009)*
G47421	TrGAroC	$\text{CRESO2} \rightarrow .68 \text{ C5CO14OH} + .68 \text{ GLYOX} + \text{HO}_2 + .32$ PTLQONE	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47422a	TrGAroCN	$NCRESO2 + HO_2 \rightarrow NCRESOOH$	KRO2HO2(7)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G47422b	TrGAroCN	NCRESO2 + $HO_2 \rightarrow C5CO14OH + GLYOX + NO_2 + OH$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G47423	TrGAroCN	$NCRESO2 + NO \rightarrow C5CO14OH + GLYOX + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47424	TrGAroCN	$NCRESO2 + NO_3 \rightarrow C5CO14OH + GLYOX + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47425	TrGAroCN	$NCRESO2 \rightarrow C5CO14OH + GLYOX + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47426	TrGAroCN	$TOL1O + NO_2 \rightarrow TOL1OHNO2$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)*
G47427	TrGAroC	$TOL1O + O_3 \rightarrow OXYL1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G47428	TrGAroCN	$MCATECHOL + NO_3 \rightarrow MCATEC1O + HNO_3$	1.7E-10*1.0	Rickard and Pascoe (2009)
G47429	TrGAroC	$MCATECHOL + O_3 \rightarrow MC3ODBCO2H + HCOCO_2H + HO_2 + OH$	2.8E-17	Rickard and Pascoe (2009)*
G47430	TrGAroC	$MCATECHOL + OH \rightarrow MCATEC1O$	2.0E-10*1.0	Rickard and Pascoe (2009)
G47431	TrGAroC	$TLBIPEROOH + OH \rightarrow TLOBIPEROH + OH$	9.64E-11	Rickard and Pascoe (2009)
G47432	TrGAroCN	$TLBIPERNO3 + OH \rightarrow TLOBIPEROH + NO_2$	7.16E-11	Rickard and Pascoe (2009)
G47433	TrGAroC	TLOBIPEROH + OH \rightarrow C5CO14O2 + GLYOX	7.99E-11	Rickard and Pascoe (2009)
G47434a	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow C615CO2O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G47434b	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow TLEMUCCO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G47434c	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow TLEMUCCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G47435	TrGAroCN	$TLEMUCCO3 + NO \rightarrow C615CO2O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47436	TrGAroCN	$TLEMUCCO3 + NO_2 \rightarrow TLEMUCPAN$	k_CH3CO3_NO2	Rickard and Pascoe $(2009)^*$
G47437	TrGAroCN	$TLEMUCCO3 + NO_3 \rightarrow C615CO2O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47438	TrGAroC	$TLEMUCCO3 \rightarrow C615CO2O2 + CO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)*
G47439a	TrGAroC	$TLEMUCO2 + HO_2 \rightarrow TLEMUCOOH$	KRO2HO2(7)*(1rchohch2o2_	Rickard and Pascoe (2009)
			oh-rcoch2o2_oh)	
G47439b	TrGAroC	TLEMUCO2 + $HO_2 \rightarrow .5 C3DIALO2 + .5 CO2H3CHO +$	KRO2HO2(7)*(rchohch2o2_oh+	Rickard and Pascoe (2009)*
		$.5 \text{ EPXC4DIAL} + .5 \text{ MGLYOX} + .5 \text{ HO}_2 + \text{OH}$	rcoch2o2_oh)	
G47440a	TrGAroCN	$TLEMUCO2 + NO \rightarrow TLEMUCNO3$	$KRO2NO*alpha_AN(11,2,1,0,0,$	Rickard and Pascoe (2009)
			temp,cair)	
G47440b	TrGAroCN	TLEMUCO2 + NO \rightarrow .5 C3DIALO2 + .5 CO2H3CHO +	$KRO2NO*(1alpha_AN(11,2,1,0,0,$	Rickard and Pascoe (2009)*
		$.5 \text{ EPXC4DIAL} + .5 \text{ MGLYOX} + .5 \text{ HO}_2 + \text{NO}_2$	temp,cair))	
G47441	TrGAroCN	TLEMUCO2 + NO ₃ \rightarrow .5 C3DIALO2 + .5 CO2H3CHO +	KRO2NO3	Rickard and Pascoe (2009)*
		$.5 \text{ EPXC4DIAL} + .5 \text{ MGLYOX} + .5 \text{ HO}_2 + \text{NO}_2$		
G47442	TrGAroC	TLEMUCO2 \rightarrow .5 C3DIALO2 + .5 CO2H3CHO + .5	k1_R02s0R02	Rickard and Pascoe (2009)*
		$EPXC4DIAL + .5 MGLYOX + .5 HO_2$		
G47443a	TrGAroC	$C6H5CO3 + HO_2 \rightarrow C6H5CO3H$	1.1E-11*EXP(364./temp)*0.65	Roth et al. (2010)
G47443b	TrGAroC	$C6H5CO3 + HO_2 \rightarrow C6H5O2 + CO_2 + OH$	1.1E-11*EXP(364./temp)*0.20	Roth et al. (2010)
G47443c	TrGAroC	$C6H5CO3 + HO_2 \rightarrow PHCOOH + O_3$	1.1E-11*EXP(364./temp)*0.15	Roth et al. (2010)
G47444	TrGAroCN	$C6H5CO3 + NO \rightarrow C6H5O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47445	TrGAroCN	$C6H5CO3 + NO_2 \rightarrow PBZN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G47446	TrGAroCN	$C6H5CO3 + NO_3 \rightarrow C6H5O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G47447	TrGAroC	$C6H5CO3 \rightarrow C6H5O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G47448	TrGAroC	$CRESOOH + OH \rightarrow CRESO2$	1.15E-10	Rickard and Pascoe (2009)
G47449	$\operatorname{TrGAroCN}$	$NCRESOOH + OH \rightarrow NCRESO2$	1.07E-10	Rickard and Pascoe (2009)
G47450	TrGAroCN	$TOL1OHNO2 + NO_3 \rightarrow NCRES1O + HNO_3$	3.13E-13*1.0	Rickard and Pascoe (2009)
G47451	TrGAroCN	$TOL1OHNO2 + OH \rightarrow NCRES1O$	2.8E-12	Rickard and Pascoe (2009)
G47452	TrGAroC	$OXYL1O2 + HO_2 \rightarrow OXYL1OOH$	KR02H02(7)	Rickard and Pascoe (2009)
G47453	TrGAroCN	$OXYL1O2 + NO \rightarrow TOL1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47454	TrGAroCN	$OXYL1O2 + NO_2 \rightarrow TOL1O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel (2007)*
G47455	TrGAroCN	$OXYL1O2 + NO_3 \rightarrow TOL1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47456	TrGAroC	$OXYL1O2 \rightarrow TOL1O$	k1_R02sR02	Rickard and Pascoe (2009)
G47457	TrGAroCN	$MCATEC1O + NO_2 \rightarrow MNCATECH$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)
G47458	TrGAroC	$MCATEC1O + O_3 \rightarrow MCATEC1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao
				and Li (1999)
G47459	TrGAroC	$TLEMUCCO2H + OH \rightarrow C615CO2O2 + CO_2$	5.98E-11	Rickard and Pascoe (2009)
G47460	TrGAroC	$TLEMUCCO3H + OH \rightarrow TLEMUCCO3$	6.29E-11	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47461	TrGAroCN	$TLEMUCPAN + OH \rightarrow C5DICARB + CO + CO_2 + NO_2$	5.96E-11	Rickard and Pascoe (2009)
G47462	TrGAroCN	$TLEMUCPAN \rightarrow TLEMUCCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G47463	TrGAroC	$TLEMUCOOH + OH \rightarrow TLEMUCCO + OH$	7.04E-11	Rickard and Pascoe (2009)
G47464	TrGAroCN	$TLEMUCNO3 + OH \rightarrow TLEMUCCO + NO_2$	3.06E-11	Rickard and Pascoe (2009)
G47465	TrGAroC	$TLEMUCCO + OH \rightarrow CH_3C(O) + EPXC4DIAL + CO$	4.06E-11	Rickard and Pascoe (2009)
G47466	TrGAroC	$C6H5CO3H + OH \rightarrow C6H5CO3$	4.66E-12	Rickard and Pascoe (2009)
G47467	TrGAroC	$PHCOOH + OH \rightarrow C6H5O2 + CO_2$	1.10E-12	Rickard and Pascoe (2009)
G47468	TrGAroCN	$PBZN + OH \rightarrow C6H5OOH + CO + NO_2$	1.06E-12	Rickard and Pascoe (2009)
G47469	TrGAroCN	$PBZN \rightarrow C6H5CO3 + NO_2$	k_PAN_M*0.67	Rickard and Pascoe (2009)
G47470	TrGAroCN	$PTLQONE + NO_3 \rightarrow NPTLQO2$	1.00E-12	Rickard and Pascoe (2009)
G47471	TrGAroC	$PTLQONE + OH \rightarrow PTLQO2$	2.3E-11	Rickard and Pascoe (2009)
G47472	TrGAroCN	$NCRES1O + NO_2 \rightarrow DNCRES$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)
G47473	TrGAroCN	$NCRES1O + O_3 \rightarrow NCRES1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G47474	TrGAroC	$OXYL1OOH + OH \rightarrow OXYL1O2$	4.65E-11	Rickard and Pascoe (2009)
G47475	TrGAroCN	$MNCATECH + NO_3 \rightarrow MNNCATECO_2$	5.03E-12	Rickard and Pascoe (2009)
G47476	TrGAroCN	$MNCATECH + OH \rightarrow MNCATECO2$	6.83E-12	Rickard and Pascoe (2009)
G47477	TrGAroC	$MCATEC1O2 + HO_2 \rightarrow MCATEC1OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47478	TrGAroCN	$MCATEC1O2 + NO \rightarrow MCATEC1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47479	TrGAroCN	$MCATEC1O2 + NO_2 \rightarrow MCATEC1O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel (2007)*
G47480	TrGAroCN	$MCATEC1O2 + NO_3 \rightarrow MCATEC1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47481	TrGAroC	$MCATEC1O2 \rightarrow MCATEC1O$	k1_R02s0R02	Rickard and Pascoe (2009)
G47482a	TrGAroCN	$NPTLQO2 + HO_2 \rightarrow NPTLQOOH$	KRO2HO2(7)*(1rcoch2o2_oh)	Rickard and Pascoe (2009)
G47482b	TrGAroCN	$NPTLQO2 + HO_2 \rightarrow C7CO4DB + NO_2 + OH$	KRO2HO2(7)*rcoch2o2_oh	Rickard and Pascoe (2009)*
G47483	TrGAroCN	$NPTLQO2 + NO \rightarrow C7CO4DB + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47484	TrGAroCN	$NPTLQO2 + NO_3 \rightarrow C7CO4DB + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47485	TrGAroCN	$NPTLQO2 \rightarrow C7CO4DB + NO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47486a	TrGAroC	$PTLQO2 + HO_2 \rightarrow PTLQOOH$	<pre>KRO2HO2(7)*(1rchohch2o2_ oh-rcoch2o2_oh)</pre>	Rickard and Pascoe (2009)
G47486b	TrGAroC	$\mathrm{PTLQO2} + \mathrm{HO_2} \rightarrow \mathrm{C6CO2OHCO3} + \mathrm{OH}$	<pre>KRO2HO2(7)*(rchohch2o2_oh+ rcoch2o2_oh)</pre>	Rickard and Pascoe (2009)*
G47487	TrGAroCN	$PTLQO2 + NO \rightarrow C6CO2OHCO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47488	TrGAroCN	$PTLQO2 + NO_3 \rightarrow C6CO2OHCO3 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47489	TrGAroC	$\mathrm{PTLQO2} \rightarrow \mathrm{C6CO2OHCO3}$	k1_R02s0R02	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47490	TrGAroCN	$DNCRES + NO_3 \rightarrow NDNCRESO2$	7.83E-15	Rickard and Pascoe (2009)
G47491	TrGAroCN	$\text{DNCRES} + \text{OH} \rightarrow \text{DNCRESO2}$	5.10E-14	Rickard and Pascoe (2009)
G47492	TrGAroCN	$NCRES1O2 + HO_2 \rightarrow NCRES1OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47493	TrGAroCN	$NCRES1O2 + NO \rightarrow NCRES1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47494	TrGAroCN	$NCRES1O2 + NO_2 \rightarrow NCRES1O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G47495	TrGAroCN	$NCRES1O2 + NO_3 \rightarrow NCRES1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47496	TrGAroCN	$NCRES1O2 \rightarrow NCRES1O$	k1_R02sR02	Rickard and Pascoe (2009)
G47497a	TrGAroCN	$\mathrm{MNNCATECO2} + \mathrm{HO_2} \rightarrow \mathrm{MNNCATCOOH}$	<pre>KRO2HO2(7)*(1rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G47497b	TrGAroCN	$\begin{array}{l} \text{MNNCATECO2} + \text{HO}_2 \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_2\text{H} \\ + \text{NO}_2 + \text{OH} \end{array}$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G47498	TrGAroCN	$\begin{array}{l} \text{MNNCATECO2} + \text{NO} \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_2\text{H} \\ + \text{NO}_2 + \text{NO}_2 \end{array}$	KRO2NO	Rickard and Pascoe (2009)*
G47499	TrGAroCN	$\begin{array}{l} \text{MNNCATECO2} + \text{NO}_3 \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_2\text{H} \\ + \text{NO}_2 + \text{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G47500	TrGAroCN	$MNNCATECO2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)
G47501a	TrGAroCN	$MNCATECO2 + HO_2 \rightarrow MNCATECOOH$	KRO2HO2(7)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G47501b	TrGAroCN	$\begin{array}{l} \text{MNCATECO2} + \text{HO}_2 \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_2\text{H} \\ + \text{HO}_2 + \text{OH} \end{array}$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G47502	TrGAroCN	$MNCATECO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47503	TrGAroCN	$MNCATECO2 + NO_3 \rightarrow NC4MDCO2HN + HCOCO_2H + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47504	TrGAroCN	$MNCATECO2 \rightarrow NC4MDCO2HN + HCOCO_2H + HO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47505	TrGAroC	$MCATEC1OOH + OH \rightarrow MCATEC1O2$	2.05E-10	Rickard and Pascoe (2009)
G47506	TrGAroCN	$NPTLQOOH + OH \rightarrow NPTLQO2$	8.56E-11	Rickard and Pascoe (2009)
G47507	TrGAroC	$\mathrm{PTLQOOH} + \mathrm{OH} \rightarrow \mathrm{PTLQCO} + \mathrm{OH}$	1.42E-10	Rickard and Pascoe (2009)
G47508	TrGAroC	$PTLQCO + OH \rightarrow C6CO2OHCO3$	7.95E-11	Rickard and Pascoe (2009)
G47509a	TrGAroCN	$NDNCRESO2 + HO_2 \rightarrow NDNCRESOOH$	<pre>KRO2HO2(7)*(1rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G47509b	TrGAroCN	NDNCRESO2 + $HO_2 \rightarrow NC4MDCO2HN + HNO_3 + 2$ $CO + NO_2 + OH$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G47510	TrGAroCN	NDNCRESO2 + NO \rightarrow NC4MDCO2HN + HNO ₃ + 2 CO + NO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G47511	TrGAroCN	NDNCRESO2 + NO ₃ \rightarrow NC4MDCO2HN + HNO ₃ + 2 CO + NO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)*
G47512	$\operatorname{TrGAroCN}$	$NDNCRESO2 \rightarrow NC4MDCO2HN + HNO_3 + 2 CO + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47513a	TrGAroCN	$\text{DNCRESO2} + \text{HO}_2 \rightarrow \text{DNCRESOOH}$	KRO2HO2(7)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G47513b	TrGAroCN	$DNCRESO2 + HO_2 \rightarrow NC4MDCO2HN + HCOCO_2H +$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
		$NO_2 + OH$		
G47514	TrGAroCN	$DNCRESO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H +$	KR02N0	Rickard and Pascoe (2009)*
		$NO_2 + NO_2$		
G47515	TrGAroCN	$DNCRESO2 + NO_3 \rightarrow NC4MDCO2HN + HCOCO_2H +$	KR02N03	Rickard and Pascoe (2009)*
		$NO_2 + NO_2$		
G47516	TrGAroCN	$DNCRESO2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47517	TrGAroCN	$NCRES1OOH + OH \rightarrow NCRES1O2$	1.53E-12	Rickard and Pascoe (2009)
G47518	TrGAroCN	$MNNCATCOOH + OH \rightarrow MNNCATECO2$	k_roohro	Rickard and Pascoe (2009)
G47519	TrGAroCN	$MNCATECOOH + OH \rightarrow MNCATECO2$	k_roohro	Rickard and Pascoe (2009)
G47520	TrGAroC	$C7CO4DB + OH \rightarrow CO + CO + CH_3C(O) + HCOCOCHO$	9.58E-11	Rickard and Pascoe (2009)
047501-	TrGAroC	$C6CO2OHCO3 + HO_2 \rightarrow C5134CO2OH + HO_2 + CO +$	VADIIOOdaa aa 2 ah	Rickard and Pascoe (2009)
G47521a	IIGAIOC	$CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G47521b	TrGAroC	$C6CO2OHCO3 + HO_2 \rightarrow C6COOHCO3H$	KAPH02*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G47521b	TrGAroCN	$C6CO2OHCO3 + NO \rightarrow C5134CO2OH + HO_2 + CO +$	KAPNO	Rickard and Pascoe (2009)
G41 322	IIGAIOCN	$CO_2 + NO_2$	KAFNU	Tilckard and Lascoe (2003)
G47523	TrGAroCN	$C6CO2OHCO3 + NO_2 \rightarrow C6CO2OHPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G47524	TrGAroCN	$C6CO2OHCO3 + NO_3 \rightarrow C5134CO2OH + HO_2 + CO +$	KRO2NO3*1.74	Rickard and Pascoe (2009)
		$CO_2 + NO_2$		
G47525	TrGAroC	$C6CO2OHCO3 \rightarrow C5134CO2OH + HO_2 + CO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G47526	TrGAroCN	$NDNCRESOOH + OH \rightarrow NDNCRESO2$	k_roohro	Rickard and Pascoe (2009)
G47527	TrGAroCN	$\text{DNCRESOOH} + \text{OH} \rightarrow \text{DNCRESO2}$	k_roohro	Rickard and Pascoe (2009)
G47528	TrGAroC	$C6COOHCO3H + OH \rightarrow C6CO2OHCO3$	9.29E-11	Rickard and Pascoe (2009)
G47529	TrGAroCN	$C6CO2OHPAN + OH \rightarrow C5134CO2OH + CO + CO +$	8.96E-11	Rickard and Pascoe (2009)
		NO_2		
G47530	TrGAroCN	$C6CO2OHPAN \rightarrow C6CO2OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G48200	TrGTerC	$C85O2 \rightarrow C86O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48201	TrGTerC	$C85O2 + HO_2 \rightarrow C85OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48202	TrGTerCN	$C85O2 + NO \rightarrow C86O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G48203	TrGTerC	$C85OOH + OH \rightarrow C85O2$	1.29E-11	Rickard and Pascoe (2009)
G48204	TrGTerC	$C86O2 \rightarrow C511O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G48205	TrGTerCN	$C86O2 + NO \rightarrow C511O2 + CH_3COCH_3 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G48206	TrGTerC	$C86O2 + HO_2 \rightarrow C86OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G48207	TrGTerC	$C86OOH + OH \rightarrow C86O2$	3.45E-11	Rickard and Pascoe (2009)
G48208	TrGTerC	$C811O2 \rightarrow C812O2$	k1_R02pR02	Rickard and Pascoe (2009)
G48209	TrGTerC	$C811O2 + HO_2 \rightarrow 8 LCARBON$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48210	TrGTerCN	$C811O2 + NO \rightarrow C812O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48211	TrGTerC	$C812O2 \rightarrow C813O2$	k1_R02t0R02	Rickard and Pascoe (2009)
G48212	TrGTerCN	$C812O2 + NO \rightarrow C813O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48213	TrGTerC	$C812O2 + HO_2 \rightarrow C812OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48214	TrGTerC	$C812OOH + OH \rightarrow C812O2$	1.09E-11	Rickard and Pascoe (2009)
G48215	TrGTerC	$C813O2 \rightarrow CH_3COCH_3 + C512O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48216	TrGTerCN	$C813O2 + NO \rightarrow CH_3COCH_3 + C512O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48217	TrGTerC	$C813O2 + HO_2 \rightarrow C813OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48218	TrGTerC	$C813OOH + OH \rightarrow C813O2$	1.86E-11	Rickard and Pascoe (2009)
G48219	TrGTerCN	$C721CHO + NO_3 \rightarrow C721CO3 + HNO_3$	KN03AL*8.5	Rickard and Pascoe (2009)
G48220	TrGTerC	$C721CHO + OH \rightarrow C721CO3$	2.63E-11	Rickard and Pascoe (2009)
G48221a	TrGTerC	$C721CO3 + HO_2 \rightarrow C721CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G48221b	TrGTerC	$C721CO3 + HO_2 \rightarrow C721O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G48221c	TrGTerC	$C721CO3 + HO_2 \rightarrow NORPINIC + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G48222	TrGTerCN	$C721CO3 + NO \rightarrow C721O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G48223	TrGTerCN	$C721CO3 + NO_2 \rightarrow C721PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G48224	TrGTerCN	$C721CO3 + NO_3 \rightarrow C721O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G48225	TrGTerC	$C721CO3 \rightarrow C721O2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G48226	TrGTerC	$C721CO3 \rightarrow NORPINIC$	k1_R02RC03*0.1	Sander et al. (2019)
G48227	TrGTerC	$C721CO3H + OH \rightarrow C721CO3$	9.65E-12	Rickard and Pascoe (2009)
G48228	TrGTerC	$NORPINIC + OH \rightarrow C721O2 + CO_2$	6.57E-12	Rickard and Pascoe (2009)
G48229	TrGTerCN	$C721PAN + OH \rightarrow C721OOH + CO + NO_2$	2.96E-12	Rickard and Pascoe (2009)
G48230	TrGTerCN	$C721PAN \rightarrow C721CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G48231	TrGTerC	$C8BC + OH \rightarrow C8BCO2$	3.04E-12	Rickard and Pascoe (2009)
G48232	TrGTerC	$C8BCO2 + HO_2 \rightarrow C8BCOOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48233a	TrGTerCN	$C8BCO2 + NO \rightarrow C89O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(8,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G48233b	TrGTerCN	$C8BCO2 + NO \rightarrow C8BCNO3$	KRO2NO*alpha_AN(8,2,0,0,0,temp, cair)	Rickard and Pascoe (2009)
G48234	TrGTerC	$C8BCO2 \rightarrow C89O2$	k1_R02sR02	Rickard and Pascoe (2009)
G48235	TrGTerC	$C8BCOOH + OH \rightarrow C8BCCO + OH$	1.62E-11	Rickard and Pascoe (2009)
G48236	$\operatorname{TrGTerCN}$	$C8BCNO3 + OH \rightarrow C8BCCO + NO_2$	1.84E-12	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G48237	TrGTerC	$C8BCCO + OH \rightarrow C89O2$	3.94E-12	Rickard and Pascoe (2009)
G48238	TrGTerC	$C89O2 + HO_2 \rightarrow C89OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48239a	TrGTerCN	$C89O2 + NO \rightarrow C810O2 + NO_2$	KRO2NO*(1alpha_AN(7,2,0,0,0,	Rickard and Pascoe (2009)
			temp,cair))	
G48239b	TrGTerCN	$C89O2 + NO \rightarrow C89NO3$	$KRO2NO*alpha_AN(7,2,0,0,0,temp,$	Rickard and Pascoe (2009)
			cair)	
G48240	TrGTerCN	$C89O2 + NO_3 \rightarrow C810O2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G48241	TrGTerC	$C89O2 \rightarrow C810O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48242	TrGTerC	$C89OOH + OH \rightarrow C89O2$	3.61E-11	Rickard and Pascoe (2009)
G48243	TrGTerCN	$C89NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	2.56E-11	Rickard and Pascoe (2009)
G48244	TrGTerC	$C810O2 + HO_2 \rightarrow C810OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48245a	TrGTerCN	$C810O2 + NO \rightarrow CH_3COCH_3 + C514O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(10,3,0,0,0,</pre>	Rickard and Pascoe (2009)
			temp,cair))	
G48245b	TrGTerCN	$C810O2 + NO \rightarrow C810NO3$	KRO2NO*alpha_AN(10,3,0,0,0,	Rickard and Pascoe (2009)
			temp,cair)	
G48246	TrGTerCN	$C810O2 + NO_3 \rightarrow CH_3COCH_3 + C514O2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G48247	TrGTerC	$C810O2 \rightarrow CH_3COCH_3 + C514O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48248	TrGTerC	$C810OOH + OH \rightarrow C810O2$	8.35E-11	Rickard and Pascoe (2009)
G48249	TrGTerCN	$C810NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	4.96E-11	Rickard and Pascoe (2009)
G48400a	TrGAroC	$LXYL + OH \rightarrow TLEPOXMUC + HO_2 + LCARBON$	0.401E-11	Rickard and Pascoe (2009)*
G48400b	TrGAroC	$LXYL + OH \rightarrow C6H5CH2O2 + LCARBON$	0.101E-11	Rickard and Pascoe (2009)*
G48400c	TrGAroC	$LXYL + OH \rightarrow CRESOL + LCARBON$	0.261E-11	Rickard and Pascoe (2009)*
G48400d	TrGAroC	$LXYL + OH \rightarrow TLBIPERO2 + HO_2 + LCARBON$	0.932E-11	Rickard and Pascoe (2009)*
G48401	TrGAroCN	$LXYL + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + LCARBON$	3.9E-16	Rickard and Pascoe (2009)*
G48402	TrGAroC	$EBENZ + OH \rightarrow .10 \text{ TLEPOXMUC} + .07 \text{ C6H5CH2O2} +$	7.00E-12	Rickard and Pascoe (2009)*
		$.18 \text{ CRESOL} + .65 \text{ TLBIPERO2} + .28 \text{ HO}_2 + \text{LCARBON}$		
G48403	TrGAroCN	$EBENZ + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + LCARBON$	1.20E-16	Rickard and Pascoe (2009)*
G48404	TrGAroCN	$STYRENE + NO_3 \rightarrow NSTYRENO2$	1.50E-12	Rickard and Pascoe (2009)
G48405	TrGAroC	STYRENE $+ O_3 \rightarrow .545 \text{ HCHO} + .1 \text{ BENZENE} + .28$	1.70E-17	Rickard and Pascoe (2009)*
		$C6H5O2 + .56 CO + .36 OH + .28 HO_2 + .075 PHCOOH$		
		$+ .545 \text{ BENZAL} + .09 \text{ H}_2\text{O}_2 + .075 \text{ HCOOH} + .2 \text{ CO}_2$		
G48406	TrGAroC	$STYRENE + OH \rightarrow STYRENO2$	5.80E-11	Rickard and Pascoe (2009)
G48407	TrGAroCN	$NSTYRENO2 + HO_2 \rightarrow NSTYRENOOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48408	TrGAroCN	${\rm NSTYRENO2} + {\rm NO} \rightarrow {\rm NO}_2 + {\rm NO}_2 + {\rm HCHO} + {\rm BENZAL}$	KRO2NO	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G48409	TrGAroCN	$NSTYRENO2 + NO_3 \rightarrow NO_2 + NO_2 + HCHO +$	KR02N03	Rickard and Pascoe (2009)*
		BENZAL		,
G48410	TrGAroCN	$NSTYRENO2 \rightarrow NO_2 + HCHO + BENZAL$	k1_R02sR02	Rickard and Pascoe (2009)*
G48411	TrGAroCN	$NSTYRENOOH + OH \rightarrow NSTYRENO2$	6.16E-11	Rickard and Pascoe (2009)
G48412a	TrGAroC	$STYRENO2 + HO_2 \rightarrow STYRENOOH$	KRO2HO2(8)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G48412b	TrGAroC	$STYRENO2 + HO_2 \rightarrow HO_2 + OH + HCHO + BENZAL$	KRO2HO2(8)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G48413	TrGAroCN	$STYRENO2 + NO \rightarrow NO_2 + HO_2 + HCHO + BENZAL$	KRO2NO	Rickard and Pascoe (2009)*
G48414	TrGAroCN	$STYRENO2 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + BENZAL$	KR02N03	Rickard and Pascoe (2009)*
G48415	TrGAroC	$STYRENO2 \rightarrow HO_2 + HCHO + BENZAL$	k1_R02sR02	Rickard and Pascoe (2009)*
G48416	TrGAroC	$STYRENOOH + OH \rightarrow STYRENO2$	6.16E-11	Rickard and Pascoe (2009)
G49200	TrGTerC	$C96O2 \rightarrow C97O2$	k1_R02pR02	Rickard and Pascoe (2009)
G49201	TrGTerC	$C96O2 + HO_2 \rightarrow C96OOH$	KR02H02(9)	Rickard and Pascoe (2009)
G49202a	TrGTerCN	$C96O2 + NO \rightarrow C97O2 + NO_2$	$KR02N0*(1alpha_AN(10,1,0,0,0,$	Rickard and Pascoe (2009)
			temp,cair))	
G49202b	TrGTerCN	$C96O2 + NO \rightarrow C96NO3$	$KRO2NO*alpha_AN(10,1,0,0,0,$	Rickard and Pascoe (2009)
			temp,cair)	
G49203	TrGTerCN	$C96NO3 + OH \rightarrow NORPINAL + NO_2$	2.88E-12	Rickard and Pascoe (2009)
G49204a	TrGTerC	$C96OOH + OH \rightarrow C96O2$	k_roohro	Rickard and Pascoe (2009)
G49205b	TrGTerC	$C96OOH + OH \rightarrow NORPINAL + OH$	1.30E-11	Rickard and Pascoe (2009)
G49206	TrGTerC	$C97O2 \rightarrow C98O2$	k1_RO2tRO2	Rickard and Pascoe (2009)
G49207	TrGTerCN	$C97O2 + NO \rightarrow C98O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G49208a	TrGTerC	$C97O2 + HO_2 \rightarrow C97OOH$	KRO2HO2(9)*rcoch2o2_ooh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G49208b	TrGTerC	$C97O2 + HO_2 \rightarrow C98O2 + OH$	KRO2HO2(9)*rcoch2o2_oh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G49209	TrGTerC	$C97OOH + OH \rightarrow C97O2$	1.05E-11	Rickard and Pascoe (2009)
G49210	TrGTerC	$C98O2 \rightarrow C614O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G49211a	TrGTerCN	$C98O2 + NO \rightarrow C614O2 + CH_3COCH_3 + NO_2$	KRO2NO*(1alpha_AN(12,3,0,0,0,	Rickard and Pascoe (2009)
	- C- C31	Garage No. of GLDDON TAMEDOGEN	temp,cair))	D. 1
G49211b	TrGTerCN	$C98O2 + NO \rightarrow 9 LCARBON + LNITROGEN$	KRO2NO*alpha_AN(12,3,0,0,0,	Rickard and Pascoe (2009)
			temp, cair)	
G49212	TrGTerC	$C98O2 + HO_2 \rightarrow C98OOH$	KR02H02(9)	Rickard and Pascoe (2009)
G49213	TrGTerC	$C98OOH + OH \rightarrow C98O2$	2.05E-11	Rickard and Pascoe (2009)
G49214	TrGTerC	$NORPINAL + OH \rightarrow C85CO3$	2.64E-11	Rickard and Pascoe (2009)
G49215	TrGTerCN	$NORPINAL + NO_3 \rightarrow C85CO3 + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G49216	TrGTerC	$C85CO3 \rightarrow C85O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G49217	TrGTerCN	$C85CO3 + NO \rightarrow C85O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49218	TrGTerCN	$C85CO3 + NO_2 \rightarrow C9PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49219a	TrGTerC	$C85CO3 + HO_2 \rightarrow C85CO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G49219b	TrGTerC	$C85CO3 + HO_2 \rightarrow C85O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G49220	TrGTerCN	$C9PAN2 \rightarrow C85CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49221	TrGTerCN	$C9PAN2 + OH \rightarrow C85OOH + CO + NO_2$	6.60E-12	Rickard and Pascoe (2009)
G49222	TrGTerC	$C85CO3H + OH \rightarrow C85CO3$	1.02E-11	Rickard and Pascoe (2009)
G49223a	TrGTerC	$C89CO3 \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G49223b	TrGTerC	$C89CO3 \rightarrow C89CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G49224a	TrGTerC	$C89CO3 + HO_2 \rightarrow C89CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G49224b	TrGTerC	$C89CO3 + HO_2 \rightarrow C89CO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G49224c	TrGTerC	C89CO3 + HO ₂ → .80 C811CO3 + .20 C89O2 + .2 CO ₂ + OH	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G49225	TrGTerCN	$C89CO3 + NO_2 \rightarrow C89PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49226	TrGTerCN	$C89CO3 + NO \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49227	TrGTerC	$C89CO2H + OH \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2$	2.69E-11	Rickard and Pascoe (2009)
G49228	TrGTerC	$C89CO3H + OH \rightarrow C89CO3$	3.00E-11	Rickard and Pascoe (2009)
G49229	TrGTerCN	$C89PAN \rightarrow C89CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49230	TrGTerCN	$C89PAN + OH \rightarrow CH_3COCH_3 + CO13C4CHO + CO + NO_2$	2.52E-11	Rickard and Pascoe (2009)
G49231a	TrGTerC	$C811CO3 \rightarrow C811O2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G49231b	TrGTerC	$C811CO3 \rightarrow PINIC$	k1_R02RC03*0.1	Sander et al. (2019)
G49232a	TrGTerC	$C811CO3 + HO_2 \rightarrow C811CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G49232b	TrGTerC	$C811CO3 + HO_2 \rightarrow PINIC + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G49232c	TrGTerC	$C811CO3 + HO_2 \rightarrow C811O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G49233	TrGTerCN	$C811CO3 + NO \rightarrow C811O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49234	TrGTerCN	$C811CO3 + NO_2 \rightarrow C811PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49235	TrGTerC	$PINIC + OH \rightarrow C811O2 + CO_2$	7.29E-12	Rickard and Pascoe (2009)
G49236	TrGTerC	$NOPINONE + OH \rightarrow NOPINDO2$	1.55E-11	Capouet et al. (2008), Rickard and Pascoe (2009)
G49237a	TrGTerC	${\rm NOPINDO2} + {\rm HO_2} \rightarrow {\rm NOPINDOOH}$	KRO2HO2(9)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G49237b	TrGTerC	$NOPINDO2 + HO_2 \rightarrow C89CO3 + OH$	KRO2HO2(9)*rcoch2o2_oh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G49238	TrGTerCN	$NOPINDO2 + NO \rightarrow C89CO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G49239	TrGTerC	$NOPINDO2 \rightarrow C89CO3$	k1_R02p0R02	Rickard and Pascoe (2009)
G49240	TrGTerC	$NOPINDOOH \rightarrow NOPINDCO$	2.63E-11	Rickard and Pascoe (2009)
G49241	TrGTerC	$NOPINDCO + OH \rightarrow C89CO3$	3.07E-12	Rickard and Pascoe (2009)
G49242	TrGTerC	$NOPINOO \rightarrow NOPINONE + H_2O_2$	6.00E-18*c(ind_H20)	Rickard and Pascoe (2009)
G49243	TrGTerC	$NOPINOO + CO \rightarrow NOPINONE + CO_2$	1.2E-15	Rickard and Pascoe (2009)
G49244	TrGTerCN	$NOPINOO + NO \rightarrow NOPINONE + NO_2$	1.E-14	Rickard and Pascoe (2009)
G49245	TrGTerCN	$NOPINOO + NO_2 \rightarrow NOPINONE + NO_3$	1.E-15	Rickard and Pascoe (2009)
G49246	${\rm TrGTerC}$	$NORPINENOL + OH \rightarrow HCOOH + OH + C86O2$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019), So et al.
	T. CT. C	NODDINENOL - HOOOH - NODDINEL - HOOOH		(2014)*
G49247	TrGTerC	$NORPINENOL + HCOOH \rightarrow NORPINAL + HCOOH$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*
G49248	$\operatorname{TrGTerC}$	$NORPINAL + HCOOH \rightarrow NORPINENOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G49249	TrGTerC	$C811CO3H + OH \rightarrow C811CO3$	1.04E-11	Rickard and Pascoe (2009)
G49250	TrGTerCN	$C811PAN \rightarrow C811CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49251	TrGTerCN	$C811PAN + OH \rightarrow C721CHO + CO + NO_2$	6.77E-12	Rickard and Pascoe (2009)
G49400a	TrGAroC	$LTMB + OH \rightarrow TLEPOXMUC + HO_2 + 2 LCARBON$	0.827E-11	Rickard and Pascoe (2009)*
G49400b	TrGAroC	$LTMB + OH \rightarrow C6H5CH2O2 + 2 LCARBON$	0.189E-11	Rickard and Pascoe (2009)*
G49400c	TrGAroC	$LTMB + OH \rightarrow CRESOL + 2 LCARBON$	0.141E-11	Rickard and Pascoe (2009)*
G49400d	TrGAroC	$LTMB + OH \rightarrow TLBIPERO2 + HO_2 + 2 LCARBON$	2.917E-11	Rickard and Pascoe (2009)*
G49401	TrGAroCN	$LTMB + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + 2 LCARBON$	1.52E-15	Rickard and Pascoe (2009)*
G40200	TrGTerC	APINENE + OH \rightarrow .75 LAPINABO2 + .15	1.2E-11*EXP(440./temp)	Atkinson et al. $(2006)^*$
		$MENTHEN6ONE + .15 HO_2 + .10 ROO6R1O2$	•	,
G40201a	TrGTerCN	$LAPINABO2 + NO \rightarrow PINAL + HO_2 + NO_2$	KRO2NO*(1(.65*alpha_AN(11,3,0,	Rickard and Pascoe (2009),
			0,0,temp,cair)+.35*alpha_AN(11,	Sander et al. (2019)
			2,0,0,0,temp,cair)))	,
G40201b	TrGTerCN	$LAPINABO2 + NO \rightarrow LAPINABNO3$	KRO2NO*(.65*alpha_AN(11,3,0,0,0,	Rickard and Pascoe (2009),
			temp, cair) +.35*alpha_AN(11,2,0,	Sander et al. (2019)
			0,0,temp,cair))	()
G40202a	TrGTerC	$LAPINABO2 + HO_2 \rightarrow LAPINABOOH$	KRO2HO2(10)*(1rchohch2o2_oh)	Rickard and Pascoe (2009),
		· - <u>2</u> · · ·	, a, , , a a a a a a a a a a a a a a a	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40202b	TrGTerC	$LAPINABO2 + HO_2 \rightarrow PINAL + HO_2 + OH$	KRO2HO2(10)*rchohch2o2_oh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G40203	TrGTerC	$LAPINABO2 \rightarrow PINAL + HO_2$	RO2*(0.65*k1_RO2tORO2+.35*k1_	Rickard and Pascoe (2009)*
			RO2sORO2)	
G40204	TrGTerC	$LAPINABOOH + OH \rightarrow .35 LAPINABO2 + .65 C96CO3$	2.77E-11	Rickard and Pascoe $(2009)^*$
G40205	TrGTerCN	$LAPINABNO3 + OH \rightarrow .35 PINAL + .65 C96CO3 + NO_{2}$	4.29E-12	Rickard and Pascoe $(2009)^*$
G40206	TrGTerC	$MENTHEN6ONE + OH \rightarrow OHMENTHEN6ONEO2$	6.46E-11	Vereecken et al. $(2007)^*$
G40207	TrGTerCN	OHMENTHEN6ONEO2 + NO \rightarrow 2OHMENTHEN6ONE	KRO2NO	Vereecken et al. $(2007)^*$
		$+ HO_2 + NO_2$		
G40208	TrGTerC	OHMENTHEN6ONEO2 + $HO_2 \rightarrow 2OHMENTHEN6ONE$	KRO2HO2(10)	Vereecken et al. (2007)
G40209	TrGTerC	OHMENTHEN6ONEO2 \rightarrow 2OHMENTHEN6ONE + HO ₂	k1_R02t0R02	Vereecken et al. (2007)
G40210	TrGTerC	$2OHMENTHEN6ONE + OH \rightarrow 10 LCARBON$	1E-11	Vereecken et al. (2007)
G40211	TrGTerC	$PINAL + OH \rightarrow .772 C96CO3 + .228 PINALO2$	5.2E-12*EXP(600./temp)	Wallington et al. $(2018)^*$
G40212	TrGTerCN	$PINAL + NO_3 \rightarrow C96CO3 + HNO_3$	2.0E-14	Wallington et al. $(2018)^*$
G40213a	TrGTerC	$C96CO3 \rightarrow C96O2 + CO_2$	k1_R02RC03*0.9	Rickard and Pascoe (2009)
G40213b	TrGTerC	$C96CO3 \rightarrow PINONIC$	k1_R02RC03*0.1	Rickard and Pascoe (2009)
G40214a	TrGTerC	$C96CO3 + HO_2 \rightarrow PERPINONIC$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G40214b	TrGTerC	$C96CO3 + HO_2 \rightarrow PINONIC + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G40214c	TrGTerC	$C96CO3 + HO_2 \rightarrow C96O2 + OH + CO_2$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G40215	TrGTerCN	$C96CO3 + NO_2 \rightarrow C10PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G40216	TrGTerCN	$C96CO3 + NO \rightarrow C96O2 + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G40217	TrGTerCN	$C96CO3 + NO_3 \rightarrow C96O2 + NO_2 + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G40218	TrGTerCN	$C10PAN2 \rightarrow C96CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G40219	TrGTerCN	$C10PAN2 + OH \rightarrow NORPINAL + CO + NO_2$	3.66E-12	Rickard and Pascoe (2009)
G40220	TrGTerC	$PINONIC + OH \rightarrow C96O2 + CO_2$	6.65E-12	Rickard and Pascoe (2009)
G40221	TrGTerC	$PERPINONIC + OH \rightarrow C96CO3$	9.73E-12	Rickard and Pascoe (2009)
G40222	TrGTerC	$PINALO2 + HO_2 \rightarrow PINALOOH$	KRO2HO2(10)	Rickard and Pascoe (2009)
G40223a	TrGTerCN	$PINALO2 + NO \rightarrow C106O2 + NO_2$	KRO2NO*(1alpha_AN(12,3,0,1,0,	Rickard and Pascoe (2009),
			temp,cair))	Sander et al. (2019)
G40223b	TrGTerCN	$PINALO2 + NO \rightarrow PINALNO3$	<pre>KRO2NO*alpha_AN(12,3,0,1,0,</pre>	Rickard and Pascoe (2009),
			temp,cair)	Sander et al. (2019)
G40224	TrGTerC	$PINALO2 \rightarrow C106O2$	k1_R02tR02	Rickard and Pascoe (2009)
G40225	TrGTerC	$PINALOOH + OH \rightarrow PINALO2$	2.75E-11	Rickard and Pascoe (2009)
G40226	TrGTerCN	$\begin{array}{l} \text{PINALNO3} \ + \ \text{OH} \ \rightarrow \ \text{CO235C6CHO} \ + \ \text{CH}_{3}\text{COCH}_{3} \ + \\ \text{NO}_{2} \end{array}$	2.25E-11	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40227	TrGTerC	$C106O2 + HO_2 \rightarrow C106OOH$	KRO2HO2(10)	Rickard and Pascoe (2009)
G40228a	TrGTerCN	$C106O2 + NO \rightarrow C716O2 + CH_3COCH_3 + NO_2$	KRO2NO*0.875*(1alpha_AN(13,3,0,	Rickard and Pascoe (2009),
			0,0,temp,cair))	Sander et al. (2019)
G40228b	TrGTerCN	$C106O2 + NO \rightarrow C106NO3$	KRO2NO*0.875*alpha_AN(13,3,0,0,	Rickard and Pascoe (2009),
			0,temp,cair)	Sander et al. (2019)
G40229	TrGTerC	$C106O2 \rightarrow C716O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G40230	TrGTerC	$C106OOH + OH \rightarrow C106O2$	8.01E-11	Rickard and Pascoe (2009)
G40231	TrGTerCN	$C106NO3 + OH \rightarrow CO235C6CHO + CH_3COCH_3 + NO_2$	7.03E-11	Rickard and Pascoe (2009)
G40232	TrGTerC	APINENE + $O_3 \rightarrow .09$ APINBOO + $.08$ PINONIC +	8.05E-16*EXP(-640./temp)	Wallington et al. $(2018)^*$
		$.77 \text{ OH} + .33 \text{ NORPINAL} + .33 \text{ CO} + .33 \text{ HO}_2 + .06$		
		APINAOO + .44 C109O2		
G40233	TrGTerC	$APINAOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)	Rickard and Pascoe (2009)
G40234	TrGTerC	$APINAOO + CO \rightarrow PINAL + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G40235	TrGTerCN	$APINAOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G40236	TrGTerCN	$APINAOO + NO_2 \rightarrow PINAL + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G40237a	TrGTerC	$APINBOO \rightarrow PINONIC$	$1.00E-17*c(ind_H20)*(0.08+0.15)$	Rickard and Pascoe (2009)
G40237b	TrGTerC	$APINBOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)*0.77	Rickard and Pascoe (2009)
G40238	TrGTerC	$APINBOO + CO \rightarrow PINAL + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G40239	TrGTerCN	$APINBOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G40240	TrGTerCN	$APINBOO + NO_2 \rightarrow PINAL + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G40241	TrGTerC	$C109O2 \rightarrow C89CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G40242	TrGTerCN	$C109O2 + NO \rightarrow C89CO3 + HCHO + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G40243a	TrGTerC	$C109O2 + HO_2 \rightarrow C109OOH$	KRO2HO2(10)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2019)
G40243b	TrGTerC	$C109O2 + HO_2 \rightarrow C89CO3 + HCHO + OH$	KRO2HO2(10)*rcoch2o2_oh	Rickard and Pascoe (2009),
				Sander et al. (2019)
G40244	TrGTerC	$C109OOH + OH \rightarrow C109CO + OH$	5.47E-11	Rickard and Pascoe (2009)
G40245	TrGTerC	$C109CO + OH \rightarrow C89CO3 + CO$	5.47E-11	Rickard and Pascoe (2009)
G40246	TrGTerCN	$APINENE + NO_3 \rightarrow LNAPINABO2$	1.2E-12*EXP(490./temp)	Wallington et al. $(2018)^*$
G40247	TrGTerCN	$\text{LNAPINABO2} \rightarrow \text{PINAL} + \text{NO}_2$	(0.65*k1_RO2tRO2 + 0.35*k1_ RO2sRO2)	Rickard and Pascoe (2009)
G40248	TrGTerCN	$LNAPINABO2 + NO \rightarrow PINAL + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G40249	TrGTerCN	$LNAPINABO2 + HO_2 \rightarrow LNAPINABOOH$	KRO2HO2(10)	Rickard and Pascoe (2009)
G40250	TrGTerCN	$LNAPINABO2 + NO_3 \rightarrow PINAL + NO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G40251	TrGTerCN	$LNAPINABOOH + OH \rightarrow LNAPINABO2$	(.65*6.87E-12+.35*1.23E-11)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40252a	TrGTerC	$BPINENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./temp) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites (2002)*
G40252b	TrGTerC	$\mathrm{BPINENE} + \mathrm{OH} \rightarrow \mathrm{ROO6R1O2}$	1.47E-11*EXP(467./temp) *0.8326*0.7/(0.8326+0.068)	Gill and Hites $(2002)^*$
G40253a	TrGTerC	${\rm BPINAO2} + {\rm HO_2} \rightarrow {\rm BPINAOOH}$	KRO2HO2(10)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2019)
G40253b	TrGTerC	$\mathrm{BPINAO2} + \mathrm{HO_2} \rightarrow \mathrm{NOPINONE} + \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{OH}$	KRO2HO2(10)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2019)
G40254a	TrGTerCN	$\mathrm{BPINAO2} + \mathrm{NO} \rightarrow \mathrm{NOPINONE} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{NO}_2$	<pre>KRO2NO*(1alpha_AN(11,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G40254b	TrGTerCN	$\mathrm{BPINAO2} + \mathrm{NO} \rightarrow \mathrm{BPINANO3}$	<pre>KRO2NO*alpha_AN(11,3,0,0,0, temp,cair)</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G40255	TrGTerC	$BPINAO2 \rightarrow NOPINONE + HCHO + HO_2$	k1_R02t0R02	Rickard and Pascoe (2009)
G40256	TrGTerC	$\mathrm{BPINAOOH} + \mathrm{OH} \rightarrow \mathrm{BPINAO2}$	1.33E-11	Rickard and Pascoe (2009)
G40257	TrGTerCN	$BPINANO3 + OH \rightarrow NOPINONE + HCHO + NO_2$	4.70E-12	Rickard and Pascoe (2009)
G40258a	TrGTerCN	$ROO6R1O2 + NO \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	<pre>KRO2NO*(1alpha_AN(13,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40258b	TrGTerCN	$ROO6R1O2 + NO \rightarrow ROO6R1NO3$	<pre>KRO2NO*alpha_AN(13,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40259	TrGTerC	$ROO6R1O2 + HO_2 \rightarrow 10 LCARBON$	KRO2HO2(10)	Vereecken and Peeters (2012)*
G40260	TrGTerC	$ROO6R1O2 \rightarrow ROO6R3O2 + CH_3COCH_3$	k1_R02t0R02	Vereecken and Peeters (2012)
G40261a	TrGTerCN	$RO6R1O2 + NO \rightarrow RO6R3O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40261b	$\operatorname{TrGTerCN}$	$RO6R1O2 + NO \rightarrow RO6R1NO3$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40262	TrGTerC	$RO6R1O2 + HO_2 \rightarrow 10 LCARBON$	KRO2HO2(10)	Vereecken and Peeters (2012)*
G40263	TrGTerC	$RO6R1O2 \rightarrow RO6R3O2$	k1_R02s0R02	Vereecken and Peeters (2012)
G40264a	TrGTerCN	$RO6R3O2 + NO \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40264b	$\operatorname{TrGTerCN}$	${\rm RO6R3O2 + NO \rightarrow 10\; LCARBON + LNITROGEN}$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40265	TrGTerC	$RO6R3O2 + HO_2 \rightarrow 10 LCARBON$	KRO2HO2(10)	Vereecken and Peeters (2012)
G40266	TrGTerC	$RO6R3O2 \rightarrow 9 LCARBON + HCHO + HO_2$	k1_R02sR02	Vereecken and Peeters (2012)*
G40267a	TrGTerC	BPINENE + $O_3 \rightarrow NOPINONE + .63 CO + .37 CH_2OO + .16 OH + .16 HO_2$	1.35E-15*EXP(-1270./temp) *.051/(1027)	Wallington et al. (2018)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40267b	TrGTerC	BPINENE + $O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.368/(1027)	et al. (2018)
G40267c	TrGTerC	BPINENE + $O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.283/(1027)	et al. (2018)
G40267d	TrGTerC	BPINENE + $O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*(.104+.167)/(1027)	et al. (2018)
G40268	TrGTerCN	BPINENE + $NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018)*
G40269	TrGTerCN	$LNBPINABO2 + HO_2 \rightarrow LNBPINABOOH$	KRO2HO2(10)	Rickard and Pascoe (2009)
G40270	TrGTerCN	LNBPINABO2 + NO \rightarrow NOPINONE + HCHO + NO ₂ +	KRO2NO	Rickard and Pascoe (2009)*
		NO_2		` '
G40271	TrGTerCN	LNBPINABO2 + $NO_3 \rightarrow NOPINONE + HCHO + NO_2$	KR02N03	Rickard and Pascoe (2009)
		$+ NO_2$, ,
G40272a	TrGTerCN	$LNBPINABO2 \rightarrow NOPINONE + HCHO + NO_2$	k1_R02tR02*0.7	Rickard and Pascoe (2009)
G40272b	TrGTerCN	$LNBPINABO2 \rightarrow BPINANO3$	k1_R02tR02*0.3	Rickard and Pascoe (2009)
G40273	TrGTerCN	$LNBPINABOOH + OH \rightarrow LNBPINABO2$	9.58E-12	Rickard and Pascoe (2009)
G40274	TrGTerCN	$ROO6R1NO3 + OH \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	9.16E-13	Vereecken and Peeters (2012),
				Gill and Hites (2002)*
G40275	TrGTerCN	$RO6R1NO3 + OH \rightarrow 9 LCARBON + HCHO + HO_2 +$	9.16E-13	Vereecken and Peeters (2012),
		NO_2		Gill and Hites (2002)
G40276	TrGTerC	$PINEOL + OH \rightarrow HCOOH + OH + NORPINAL$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019), So et al.
				$(2014)^*$
G40277	TrGTerC	$PINEOL + HCOOH \rightarrow PINAL + HCOOH$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva
				$(2010)^*$
G40278	TrGTerC	$PINAL + HCOOH \rightarrow PINEOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva
				$(2010)^*$
G40279a	TrGC	$CARENE + OH \rightarrow LAPINABO2$	8.8E-11*(.50+.25)	Atkinson and Arey (2003)
G40279b	TrGC	$CARENE + OH \rightarrow MENTHEN6ONE + HO_2$	8.8E-11*.25*.60	Atkinson and Arey (2003)
G40279c	TrGC	$CARENE + OH \rightarrow ROO6R1O2$	8.8E-11*.25*.40	Atkinson and Arey (2003)
G40280a	TrGC	$CARENE + O_3 \rightarrow APINBOO$	3.7E-17*.50*.18	Atkinson and Arey (2003)
G40280b	TrGC	$CARENE + O_3 \rightarrow PINONIC$	3.7E-17*.50*.16	Atkinson and Arey (2003)
G40280c	TrGC	$CARENE + O_3 \rightarrow OH + NORPINAL + CO + HO_2$	3.7E-17*.50*.66	Atkinson and Arey (2003)
G40280d	TrGC	$CARENE + O_3 \rightarrow APINAOO$	3.7E-17*.50*.12	Atkinson and Arey (2003)
G40280e	TrGC	$CARENE + O_3 \rightarrow OH + C109O2$	3.7E-17*.50*(.22+.66)	Atkinson and Arey (2003)
G40281	TrGCN	$CARENE + NO_3 \rightarrow LNAPINABO2$	9.1E-12	Atkinson and Arey (2003)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40282a	TrGTerC	$SABINENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./temp) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites (2002)*
G40282b	TrGTerC	SABINENE + OH \rightarrow ROO6R1O2	1.47E-11*EXP(467./temp) *0.8326*0.7/(0.8326+0.068)	Vereecken and Peeters (2012), Gill and Hites (2002)*
G40283a	TrGTerC	SABINENE + $O_3 \rightarrow NOPINONE + .63 CO + .37 HOCH_2OOH + .16 OH + .16 HO_2$	1.35E-15*EXP(-1270./temp) *.051/(1027)	Wallington et al. (2018)*
G40283b	TrGTerC	SABINENE + $O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp) *.368/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40283c	TrGTerC	SABINENE + $O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp) *.283/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40283d	TrGTerC	SABINENE + $O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp) *(.104+.167)/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40284	$\operatorname{TrGTerCN}$	SABINENE + $NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. $(2018)^*$
G40285a	TrGTerC	$CAMPHENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./temp) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites $(2002)^*$
G40285b	TrGTerC	$CAMPHENE + OH \rightarrow ROO6R1O2$	1.47E-11*EXP(467./temp) *0.8326*0.7/(0.8326+0.068)	Vereecken and Peeters (2012), Gill and Hites (2002)*
G40286a	TrGTerC	CAMPHENE + $O_3 \rightarrow NOPINONE + .63 CO + .37$ HOCH ₂ OOH + .16 OH + .16 HO ₂	1.35E-15*EXP(-1270./temp) *.051/(1027)	Wallington et al. (2018)*
G40286b	TrGTerC	$CAMPHENE + O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp) *.368/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40286c	TrGTerC	$CAMPHENE + O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp) *.283/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40286d	TrGTerC	$CAMPHENE + O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp) *(.104+.167)/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40287	$\operatorname{TrGTerCN}$	$CAMPHENE + NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018)*
G40400	TrGAroC	LHAROM + OH \rightarrow .14 TLEPOXMUC + .03 C6H5CH2O2 + .04 CRESOL + .79 TLBIPERO2 + .18 HO ₂ + 4 LCARBON	5.67E-11	Rickard and Pascoe (2009)*
G40401	TrGAroCN	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.60E-15	Rickard and Pascoe (2009)*
G6100	UpStTrGCl	$Cl + O_3 \rightarrow ClO + O_2$	2.8E-11*EXP(-250./temp)	Atkinson et al. (2007)
G6101	UpStGCl	$ClO + O(^{3}P) \rightarrow Cl + O_{2}$	2.5E-11*EXP(110./temp)	Atkinson et al. (2007)
G6102a	StTrGCl	$ClO + ClO \rightarrow Cl_2 + O_2$	1.0E-12*EXP(-1590./temp)	Atkinson et al. (2007)
G6102b	StTrGCl	$ClO + ClO \rightarrow 2 Cl + O_2$	3.0E-11*EXP(-2450./temp)	Atkinson et al. (2007)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6102c	StTrGCl	$ClO + ClO \rightarrow Cl + OClO$	3.5E-13*EXP(-1370./temp)	Atkinson et al. (2007)
G6102d	StTrGCl	$ClO + ClO \rightarrow Cl_2O_2$	k_C10_C10	Burkholder et al. (2015)
G6103	StTrGCl	$\text{Cl}_2\text{O}_2 \to \text{ClO} + \text{ClO}$	k_ClO_ClO/(2.16E-27*EXP(8537./ temp))	Burkholder et al. $(2015)^*$
G6200	StGCl	$Cl + H_2 \rightarrow HCl + H$	3.9E-11*EXP(-2310./temp)	Atkinson et al. (2007)
G6201a	StGCl	$Cl + HO_2 \rightarrow HCl + O_2$	4.4E-11-7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6201b	StGCl	$Cl + HO_2 \rightarrow ClO + OH$	7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6202	StTrGCl	$Cl + H_2O_2 \rightarrow HCl + HO_2$	1.1E-11*EXP(-980./temp)	Atkinson et al. (2007)
G6203	StGCl	$\text{ClO} + \text{OH} \rightarrow .94 \text{ Cl} + .94 \text{ HO}_2 + .06 \text{ HCl} + .06 \text{ O}_2$	7.3E-12*EXP(300./temp)	Atkinson et al. (2007)
G6204	StTrGCl	$ClO + HO_2 \rightarrow HOCl + O_2$	2.2E-12*EXP(340./temp)	Atkinson et al. (2007)*
G6205	StTrGCl	$HCl + OH \rightarrow Cl + H_2O$	1.7E-12*EXP(-230./temp)	Atkinson et al. (2007)
G6206	StGCl	$HOCl + OH \rightarrow ClO + H_2O$	3.0E-12*EXP(-500./temp)	Burkholder et al. (2015)
G6300	UpStTrGClN	$ClO + NO \rightarrow NO_2 + Cl$	6.2E-12*EXP(295./temp)	Atkinson et al. (2007)
G6301	StTrGClN	$ClO + NO_2 \rightarrow ClNO_3$	k_3rd_iupac(temp,cair,1.6E-31, 3.4,7.E-11,0.,0.4)	Atkinson et al. (2007)
G6302	TrGClN	$CINO_3 \rightarrow CIO + NO_2$	6.918E-7*EXP(-10909./temp)*cair	Anderson and Fahey (1990)
G6303	StGClN	$\text{ClNO}_3 + \text{O(}^3\text{P)} \rightarrow \text{ClO} + \text{NO}_3$	4.5E-12*EXP(-900./temp)	Atkinson et al. (2007)
G6304	StTrGClN	$\text{ClNO}_3 + \text{Cl} \rightarrow \text{Cl}_2 + \text{NO}_3$	6.2E-12*EXP(145./temp)	Atkinson et al. (2007)
G6400	StTrGCl	$Cl + CH_4 \rightarrow HCl + CH_3$	6.6E-12*EXP(-1240./temp)	Atkinson et al. (2006)
G6401	StTrGCl	$Cl + HCHO \rightarrow HCl + CO + HO_2$	8.1E-11*EXP(-34./temp)	Atkinson et al. (2006)
G6402	StTrGCl	$Cl + CH_3OOH \rightarrow HCHO + HCl + OH$	5.9E-11	Atkinson et al. $(2006)^*$
G6403	StTrGCl	$ClO + CH_3O_2 \rightarrow HO_2 + Cl + HCHO$	1.8E-12*EXP(-600./temp)	Burkholder et al. (2015)
G6404	StGCl	$CCl_4 + O(^1D) \rightarrow LCARBON + ClO + 3 Cl$	3.3E-10	Burkholder et al. (2015)
G6405	StGCl	$\text{CH}_3\text{Cl} + \text{O(}^1\text{D)} \rightarrow 0.1 \text{ CH}_3\text{Cl} + 0.1 \text{ O(}^3\text{P)} + 0.46 \text{ ClO} + 0.35 \text{ Cl} + 0.09 \text{ H} + 0.9 \text{ LCARBON} + 0.09 \text{ LCHLORINE}$	1.65E-10	Burkholder et al. (2015)
G6406	StGCl	$CH_3Cl + OH \rightarrow LCARBON + H_2O + Cl$	1.96E-12*EXP(-1200./temp)	Burkholder et al. (2015)
G6407	StGCCl	$CH_3CCl_3 + O(^1D) \rightarrow 2 LCARBON + OH + 3 Cl$	3.25E-10	Burkholder et al. (2015)
G6408	StTrGCCl	$CH_3CCl_3 + OH \rightarrow 2 LCARBON + H_2O + 3 Cl$	1.64E-12*EXP(-1520./temp)	Burkholder et al. (2015)
G6409	TrGCCl	$Cl + C_2H_4 \rightarrow HOCH_2CH_2O_2 + HCl$	<pre>k_3rd_iupac(temp,cair,1.85E-29, 3.3,6.0E-10,0.0,0.4)</pre>	Atkinson et al. $(2006)^*$
G6410	TrGCCl	$Cl + CH_3CHO \rightarrow HCl + CH_3C(O)$	8.0e-11	Atkinson et al. (2006)
G6411	TrGCCl	$C_2H_2 + Cl \rightarrow LCARBON + CH_3 + HCl$	k_3rd_iupac(temp,cair,6.1e-30, 3.0,2.0e-10,0.,0.6)	Atkinson et al. (2006)
G6412	TrGCCl	$C_2H_6 + Cl \rightarrow C_2H_5O_2 + HCl$	8.3E-11*EXP(-100./temp)	Atkinson et al. (2006)
G6413	StTrGClN	$Cl + CH_3ONO_2 \rightarrow HCl + HCHO + NO_2$	1.3E-11*EXP(-1200./temp)	Burkholder et al. (2015)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6414	StTrGClN	$Cl + CH_3ONO \rightarrow HCl + HCHO + NO$	2.1E-12	Sokolov et al. (1999)
G6415	StTrGCl	$Cl + CH_3O_2 \rightarrow .5 ClO + .5 CH_3O + .5 HCl + .5 CH_2OO$	1.6E-10	Burkholder et al. (2015)
G6416	TrGCClN	$Cl + CH_3CN \rightarrow NCCH_2O_2 + HCl$	1.6E-11*EXP(-2104./temp)	Tyndall et al. (1996), Tyndall et al. (2001b), Sander et al. (2019)
G6500	StGClF	$CF_2Cl_2 + O(^1D) \rightarrow LCARBON + 2 LFLUORINE + ClO + Cl$	1.4E-10	Burkholder et al. (2015)
G6501	StGClF	$CFCl_3 + O(^1D) \rightarrow LCARBON + LFLUORINE + ClO + 2 Cl$	2.3E-10	Burkholder et al. (2015)
G7100	StTrGBr	$Br + O_3 \rightarrow BrO + O_2$	1.7E-11*EXP(-800./temp)	Atkinson et al. (2007)
G7101	StGBr	$\mathrm{BrO} + \mathrm{O}(^{3}\mathrm{P}) \to \mathrm{Br} + \mathrm{O}_{2}$	1.9E-11*EXP(230./temp)	Atkinson et al. (2007)
G7102a	$\operatorname{StTrGBr}$	${ m BrO} + { m BrO} ightarrow 2 \ { m Br} + { m O}_2$	2.7E-12	Atkinson et al. (2007)
G7102b	$\operatorname{StTrGBr}$	$BrO + BrO \rightarrow Br_2 + O_2$	2.9E-14*EXP(840./temp)	Atkinson et al. (2007)
G7200	$\operatorname{StTrGBr}$	$\mathrm{Br} + \mathrm{HO}_2 \to \mathrm{HBr} + \mathrm{O}_2$	7.7E-12*EXP(-450./temp)	Atkinson et al. (2007)
G7201	$\operatorname{StTrGBr}$	$\mathrm{BrO} + \mathrm{HO}_2 \to \mathrm{HOBr} + \mathrm{O}_2$	4.5E-12*EXP(500./temp)	Atkinson et al. (2007)
G7202	$\operatorname{StTrGBr}$	$\mathrm{HBr} + \mathrm{OH} \to \mathrm{Br} + \mathrm{H}_2\mathrm{O}$	6.7E-12*EXP(155./temp)	Atkinson et al. (2007)
G7203	StGBr	$HOBr + O(^{3}P) \rightarrow OH + BrO$	1.2E-10*EXP(-430./temp)	Atkinson et al. (2007)
G7204	$\operatorname{StTrGBr}$	$\mathrm{Br}_2 + \mathrm{OH} \to \mathrm{HOBr} + \mathrm{Br}$	2.0E-11*EXP(240./temp)	Atkinson et al. (2007)
G7300	TrGBrN	$Br + BrNO_3 \rightarrow Br_2 + NO_3$	4.9E-11	Orlando and Tyndall (1996)
G7301	StTrGBrN	$\mathrm{BrO} + \mathrm{NO} \to \mathrm{Br} + \mathrm{NO}_2$	8.7E-12*EXP(260./temp)	Atkinson et al. (2007)
G7302	StTrGBrN	${\rm BrO} + {\rm NO}_2 \to {\rm BrNO}_3$	k_Br0_N02	Atkinson et al. $(2007)^*$
G7303	TrGBrN	$BrNO_3 \rightarrow BrO + NO_2$	k_BrO_NO2/(5.44E-9*EXP(14192./	Orlando and Tyndall (1996),
			<pre>temp)*1.E6*R_gas*temp/(atm2Pa*N_ A))</pre>	Atkinson et al. $(2007)^*$
G7400	$\operatorname{StTrGBr}$	$\mathrm{Br} + \mathrm{HCHO} \rightarrow \mathrm{HBr} + \mathrm{CO} + \mathrm{HO}_2$	7.7E-12*EXP(-580./temp)	Atkinson et al. (2006)
G7401	TrGBr	$Br + CH_3OOH \rightarrow CH_3O_2 + HBr$	2.6E-12*EXP(-1600./temp)	Kondo and Benson (1984)
G7402	TrGBr	$\mathrm{BrO} + \mathrm{CH_3O_2} \rightarrow \mathrm{HOBr} + \mathrm{CH_2OO}$	2.42E-14*EXP(1617./temp)	Shallcross et al. (2015)
G7403	$\operatorname{StTrGBr}$	$CH_3Br + OH \rightarrow LCARBON + H_2O + Br$	1.42E-12*EXP(-1150./temp)	Burkholder et al. (2015)
G7404	TrGBrC	$Br + C_2H_4 \rightarrow HOCH_2CH_2O_2 + HBr$	2.8E-13*EXP(224./temp)/(1.+ 1.13E24*EXP(-3200./temp) /C(ind_02))	Atkinson et al. $(2006)^*$
G7405	TrGBrC	$Br + CH_3CHO \rightarrow HBr + CH_3C(O)$	1.8e-11*EXP(-460./temp)	Atkinson et al. (2006)
G7406	TrGBrC	$Br + C_2H_2 \rightarrow LCARBON + CH_3O_2 + HBr$	6.35e-15*EXP(440./temp)	Atkinson et al. (2006)
G7407	TrGBr	$CHBr_3 + OH \rightarrow LCARBON + H_2O + 3 Br$	9.0E-13*EXP(-360./temp)	Burkholder et al. (2015)*
G7408	TrGBr	$CH_2Br_2 + OH \rightarrow LCARBON + H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	Burkholder et al. (2015)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G7600	TrGBrCl	$Br + BrCl \rightarrow Br_2 + Cl$	3.32E-15	Manion et al. (2015)
G7601	TrGBrCl	$Br + Cl_2 \rightarrow BrCl + Cl$	1.10E-15	Dolson and Leone (1987)
G7602	TrGBrCl	$Br_2 + Cl \rightarrow BrCl + Br$	2.3E-10*EXP(135./temp)	Bedjanian et al. (1998)
G7603a	StTrGBrCl	$\mathrm{BrO} + \mathrm{ClO} \to \mathrm{Br} + \mathrm{OClO}$	1.6E-12*EXP(430./temp)	Atkinson et al. (2007)
G7603b	StTrGBrCl	$BrO + ClO \rightarrow Br + Cl + O_2$	2.9E-12*EXP(220./temp)	Atkinson et al. (2007)
G7603c	StTrGBrCl	$\mathrm{BrO} + \mathrm{ClO} \to \mathrm{BrCl} + \mathrm{O}_2$	5.8E-13*EXP(170./temp)	Atkinson et al. (2007)
G7604	TrGBrCl	$BrCl + Cl \rightarrow Br + Cl_2$	1.45E-11	Clyne and Cruse (1972)
G7605	TrGBrCl	$\mathrm{CHCl_2Br} + \mathrm{OH} \rightarrow \mathrm{LCARBON} + 2 \ \mathrm{LCHLORINE} + \mathrm{H_2O} + \mathrm{Br}$	2.0E-12*EXP(-840./temp)	see note*
G7606	TrGBrCl	$\begin{array}{c} \mathrm{CHClBr_2} + \mathrm{OH} \rightarrow \mathrm{LCARBON} + \mathrm{LCHLORINE} + \mathrm{H_2O} + \\ 2 \ \mathrm{Br} \end{array}$	2.0E-12*EXP(-840./temp)	see note*
G7607	TrGBrCl	$\mathrm{CH_2ClBr} + \mathrm{OH} \rightarrow \mathrm{LCARBON} + \mathrm{LCHLORINE} + \mathrm{H_2O} + \mathrm{Br}$	2.1E-12*EXP(-880./temp)	Burkholder et al. $(2015)^*$
G8100	TrGI	$I + O_3 \rightarrow IO + O_2$	2.1E-11*EXP(-830./temp)	Atkinson et al. (2007)
G8102	TrGI	$OIO + OIO \rightarrow I(part)$	5.E-11	von Glasow et al. $(2002)^*$
G8103	TrGI	$IO + IO \rightarrow .38 OIO + 1.62 I + .62 O_2$	5.4E-11*EXP(180./temp)	Atkinson et al. $(2007)^*$
G8200	TrGI	$\mathrm{I} + \mathrm{HO}_2 o \mathrm{HI} + \mathrm{O}_2$	1.5E-11*EXP(-1090./temp)	Atkinson et al. (2007)
G8201	TrGI	$IO + HO_2 \rightarrow HOI + O_2$	1.4E-11*EXP(540./temp)	Atkinson et al. (2007)
G8202	TrGI	$\mathrm{HI} + \mathrm{OH} \rightarrow \mathrm{I} + \mathrm{H}_2\mathrm{O}$	1.6E-11*EXP(440./temp)	Atkinson et al. (2007)
G8203	TrGI	$OIO + OH \rightarrow HIO_3$	2.2E-10*EXP(243./temp)	Plane et al. (2006)
G8204	TrGI	$I_2 + OH \rightarrow HOI + I$	2.1E-10	Atkinson et al. (2007)
G8205	TrGI	$HOI + OH \rightarrow IO + H_2O$	5.0E-12	Riffault et al. (2005)
G8300	TrGIN	$\mathrm{I} + \mathrm{NO}_2 o \mathrm{INO}_2$	k_I_N02	Atkinson et al. $(2007)^*$
G8301	TrGIN	$I + NO_3 \rightarrow IO + NO_2$	1.E-10	Dillon et al. (2008)
G8302	TrGIN	${ m IO} + { m NO} ightarrow { m I} + { m NO}_2$	7.15E-12*EXP(300./temp)	Atkinson et al. (2007)
G8303	TrGIN	$IO + NO_2 \rightarrow INO_3$	k_3rd_iupac(temp,cair,7.7E-31, 5.,1.6E-11,0.,0.4)	Atkinson et al. (2007)
G8304	TrGIN	$OIO + NO \rightarrow NO_2 + IO$	1.1E-12*EXP(542./temp)	Atkinson et al. (2007)
G8305	TrGIN	$\mathrm{INO}_2 ightarrow \mathrm{I} + \mathrm{NO}_2$	k_I_NO2/(3.7E-7*EXP(9568./temp)	van den Bergh and Troe (1976),
			*1.E6*R_gas*temp/(atm2Pa*N_A))	Atkinson et al. (2007)*
G8306	TrGIN	$INO_3 \rightarrow IO + NO_2$	2.1e15*EXP(-13670./temp)	Kaltsoyannis and Plane (2008)
G8307	TrGIN	$I_2 + NO_3 \rightarrow I + INO_3$	1.5E-12	Atkinson et al. (2007)
G8308	TrGIN	${ m IO} + { m NO}_3 ightarrow { m OIO} + { m NO}_2$	9.E-12	Dillon et al. (2008)
G8309	TrGIN	$I + INO_3 \rightarrow I_2 + NO_3$	9.1E-11*EXP(-146./temp)	Kaltsoyannis and Plane (2008)
G8400	TrGCI	$CH_3CHICH_3 + OH \rightarrow 2 LCARBON + CH_3O_2 + I$	1.22E-12	Carl and Crowley (2001)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G8401	TrGI	$CH_3O_2 + IO \rightarrow .4 I + .6 OIO + HCHO + HO_2$	2.E-12	Dillon et al. (2006b), Bale et al.
				(2005)*
G8402	$\operatorname{Tr}\operatorname{GIN}$	$CH_3I + NO_3 \rightarrow HNO_3 + HCHO + IO$	3.4E-17	Wayne et al. (1991)*
G8600	TrGClI	$IO + ClO \rightarrow .2 \ ICl + .25 \ Cl + .55 \ OClO + .8 \ I + .45 \ O_2$	4.7E-12*EXP(280./temp)	Atkinson et al. (2007)
G8700	TrGBrI	$I + BrO \rightarrow IO + Br$	1.2E-11	Burkholder et al. (2015)
G8701	TrGBrI	$IO + BrO \rightarrow Br + .8 OIO + .2 I + .2 O_2$	1.5E-11*EXP(510./temp)	Atkinson et al. $(2007)^*$
G8702	TrGBrI	$\mathrm{IBr} + \mathrm{OH} \rightarrow .84 \; \mathrm{HOI} + .84 \; \mathrm{Br} + .16 \; \mathrm{HOBr} + .16 \; \mathrm{I}$	1.4E-10	Riffault et al. (2005)
G8703	TrGBrI	$IO + Br \rightarrow I + BrO$	2.3E-11	Bedjanian et al. (1997)
G8704	TrGBrI	$I_2 + Br \rightarrow IBr + I$	1.2E-10	Bedjanian et al. (1997)
G9200	StTrGS	$SO_2 + OH \rightarrow H_2SO_4 + HO_2$	k_3rd(temp,cair,3.3E-31,4.3,	Burkholder et al. (2015)
			1.6E-12,0.,0.6)	
G9400a	TrGCS	$DMS + OH \rightarrow CH_3SO_2 + HCHO$	1.13E-11*EXP(-253./temp)	Atkinson et al. $(2004)^*$
G9400b	TrGCS	$DMS + OH \rightarrow DMSO + HO_2$	k_DMS_OH	Atkinson et al. $(2004)^*$
G9401	TrGCNS	$DMS + NO_3 \rightarrow CH_3SO_2 + HNO_3 + HCHO$	1.9E-13*EXP(520./temp)	Atkinson et al. (2004)
G9402	TrGCS	$DMSO + OH \rightarrow .6 SO_2 + HCHO + .6 CH_3 + .4 HO_2 +$	1.E-10	Hynes and Wine (1996)
		$.4~\mathrm{CH_3SO_3H}$		
G9403	TrGS	$\mathrm{CH_3SO_2} \to \mathrm{SO_2} + \mathrm{CH_3}$	1.8E13*EXP(-8661./temp)	Barone et al. (1995)
G9404	TrGS	$CH_3SO_2 + O_3 \rightarrow CH_3SO_3$	3.E-13	Barone et al. (1995)
G9405	TrGS	$\mathrm{CH_3SO_3} + \mathrm{HO_2} \rightarrow \mathrm{CH_3SO_3H}$	5.E-11	Barone et al. (1995)
G9408	StTrGS	$\mathrm{CH_2OO} + \mathrm{SO_2} \rightarrow \mathrm{H_2SO_4} + \mathrm{HCHO}$	k_CH200_S02	Welz et al. (2012), Stone et al.
				$(2014)^*$
G9409	TrGTerCS	$NOPINOO + SO_2 \rightarrow NOPINONE + H_2SO_4$	7.E-14	Rickard and Pascoe (2009)
G9410	TrGTerCS	$APINAOO + SO_2 \rightarrow PINAL + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9411	TrGTerCS	$APINBOO + SO_2 \rightarrow PINAL + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9412	TrGTerCS	$MBOOO + SO_2 \rightarrow IBUTALOH + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9600	TrGCClS	$DMS + Cl \rightarrow CH_3SO_2 + HCl + HCHO$	3.3E-10	Atkinson et al. (2004)
G9700	TrGBrCS	$DMS + Br \rightarrow CH_3SO_2 + HBr + HCHO$	9.E-11*EXP(-2386./temp)	Jefferson et al. (1994)
G9701	TrGBrCS	$DMS + BrO \rightarrow DMSO + Br$	4.4E-13	Ingham et al. (1999)
G9800	TrGCIS	$DMS + IO \rightarrow DMSO + I$	3.2E-13*EXP(-925./temp)	Dillon et al. (2006a)
G10100	TrGHg	$Hg + O_3 \rightarrow HgO + O_2$	3.0E-20	Hall (1995)
G10200	TrGHg	$\mathrm{Hg} + \mathrm{OH} \rightarrow \mathrm{HgO} + \mathrm{H}$	3.55E-14*EXP(294./temp)	Pal and Ariya (2004)
G10201	TrGHg	$\mathrm{Hg} + \mathrm{H_2O_2} \rightarrow \mathrm{HgO} + \mathrm{H_2O}$	8.5E-19	Tokos et al. (1998)*
G10600	TrGClHg	$\mathrm{Hg} + \mathrm{Cl} \to \mathrm{HgCl}$	1.0E-11	Ariya et al. (2002)
G10601	TrGClHg	$\mathrm{Hg} + \mathrm{Cl}_2 \to \mathrm{HgCl}_2$	2.6E-18	Ariya et al. (2002)
G10700	TrGBrHg	$\mathrm{Hg} + \mathrm{Br} \to \mathrm{HgBr}$	3.0E-13	Donohoue et al. (2006)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G10701	TrGBrHg	$HgBr + Br \rightarrow HgBr_2$	2.5E-10*(temp/298.)**(-0.57)	Goodsite et al. (2004)
G10702	TrGBrHg	$\mathrm{Hg} + \mathrm{Br}_2 \to \mathrm{HgBr}_2$	9.0E-17	Ariya et al. (2002)
G10703	TrGBrHg	$\mathrm{Hg} + \mathrm{BrO} \to \mathrm{HgO} + \mathrm{Br}$	1.0E-15	Raofie and Ariya (2003)
G10704	TrGBrHg	$HgBr + BrO \rightarrow BrHgOBr$	3.0E-12	Calvert and Lindberg (2003)
G10705	TrGBrClHg	$HgCl + BrO \rightarrow ClHgOBr$	3.0E-12	Calvert and Lindberg (2003)
G10706	TrGBrClHg	$HgBr + Cl \rightarrow ClHgBr$	3.0E-12	Calvert and Lindberg (2003)
G10707	TrGBrClHg	$HgCl + Br \rightarrow ClHgBr$	3.0E-12	Calvert and Lindberg (2003)

Three-body reactions

Rate coefficients for three-body reactions are defined via the function $k_3rd(T, M, k_0^{300}, n, k_{\inf}^{300}, m, f_c)$. In the code, the temperature T is called temp and the concentration of "air molecules" M is called cair. Using the auxiliary variables $k_0(T)$, $k_{\inf}(T)$, and k_{ratio} , k_3rd is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n \tag{1}$$

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (2)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{3}$$

k_3rd =
$$\frac{k_0(T)M}{1 + k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{\text{ratio}}))^2}\right)}$$
(4)

A similar function, called k_3rd_iupac here, is used by Wallington et al. (2018) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$$
 (5)

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (6)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{7}$$

$$N = 0.75 - 1.27 \times \log_{10}(f_{\rm c}) \tag{8}$$

$$\texttt{k_3rd_iupac} = \frac{k_0(T)M}{1 + k_{\mathrm{ratio}}} \times f_{\mathrm{c}}^{\left(\frac{1}{1 + (\log_{10}(k_{\mathrm{ratio}})/N)^2}\right)}(9)$$

Structure-Activity Relationships (SAR)

Some unmeasured rate coefficients are estimated with structure-activity relationships, using the following parameters and substituent factors:

k for H-abstraction by OH in ${\rm cm^{-3}s^{-1}}$			
k_p	$4.49 \times 10^{-18} \times (T/K)^2 \exp(-320 K/T)$		
k_s	$4.50 \times 10^{-18} \times (T/K)^2 \exp(253 K/T)$		
k_t	$2.12\times 10^{-18}\times (T/{\rm K})^2\exp(696{\rm K}/T)$		
k_rohro	$2.1\times 10^{-18}\times (T/{\rm K})^2\exp(-85{\rm K}/T)$		
k_co2h	$0.7 \times k_{\mathrm{CH_3CO_2H+OH}}$		
k_roohro	$0.6 \times k_{\mathrm{CH_3OOH+OH}}$		
f_alk	1.23		
f_soh	3.44		
f_toh	2.68		
f_sooh	8.		
f_tooh	8.		
f_ono2	0.04		
f_ch2ono2	0.20		
f_cpan	0.25		
f_allyl	3.6		
f_cho	0.55		
f_co2h	1.67		
f_co	0.73		
f_o	8.15		
f_pch2oh	1.29		
f_tch2oh	0.53		

k for OH-addition to double bonds in ${\rm cm}^{-3}{\rm s}^{-1}$			
k_adp	$4.5 \times 10^{-12} \times (T/300 \mathrm{K})^{-0.85}$		
k_ads	$1/4 \times (1.1 \times 10^{-11} \times \exp(485 \mathrm{K}/T) +$		
	$1.0 \times 10^{-11} \times \exp(553 \mathrm{K}/T))$		
k_adt	$1.922 \times 10^{-11} \times \exp(450 \mathrm{K/T}) - k_{\mathrm{ads}}$		
$k_{adsecprim}$	3.0×10^{-11}		
$k_adtertprim$	5.7×10^{-11}		
a_pan	0.56		
a_cho	0.31		
a_coch3	0.76		
a_ch2oh	1.7		
a_ch2ooh	1.7		
a_coh	2.2		
a_cooh	2.2		
a_co2h	0.25		
a_ch2ono2	0.64		

RO₂ self and cross reactions

The self and cross reactions of organic peroxy radicals are treated according to the permutation reaction formalism as implemented in the MCM (Rickard and Pascoe, 2009), as decribed by Jenkin et al. (1997). Every organic peroxy radical reacts in a pseudo-first-order reaction with a rate constant that is expressed as $k^{\rm 1st} = 2 \times \sqrt{k_{\rm self} \times k_{\rm CH302}} \times [{\rm RO_2}]$ where $k_{\rm self} =$ second-order rate coefficient of the self reaction of the organic peroxy radical, k_CH302 = second-order rate coefficient of the self reaction of CH₃O₂, and [RO₂] = sum of the concentrations of all organic peroxy radicals.

Specific notes

G1002a: The path leading to $2 O(^{3}P) + O_{2}$ results in a null cycle regarding odd oxygen and is neglected.

The rate coefficient is: $k_H02_H02 =$ (3.0E-13*EXP(460./temp)+2.1E-33*EXP(920./temp)*cair)*(1.+1.4E-21*EXP(2200./temp)*C(ind_H20)).

G2117: Converted to Kc [molec-1 cm3] = Kp*R*T/NA, where R is 82.05736 [cm3atmK1mol1].

G2118: Assuming fast equilibrium.

G3109: The rate coefficient is: $k_NO3_NO2 = k_$ 3rd(temp, cair, 2.4E-30, 3.0, 1.6E-12, -0.1, 0.6).

G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3203: The rate coefficient is: $k_N02_H02 = k_$ 3rd(temp, cair, 1.9E-31, 3.4, 4.0E-12, 0.3, 0.6).

The rate coefficient is: k_HNO3_OH = 1.32E-14 * EXP(527/temp) + 1 / (1 / EXP(527/temp)) + 1 / (1 / EXP(52(7.39E-32 * EXP(453/temp)*cair) + 1 /(9.73E-17 * EXP(1910/temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4104b: Methyl nitrate yield according to Banic et al. (2003) but reduced by a factor of 10 according to the upper limit derived from measurements by Munger et al. (1999).

Same temperature dependence as for rate equal to that of CH₃O₂NO₂. G4109: $CH_3CHO+NO_3$ assumed.

G4115: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4116: Same value as for PAN + OH.

G4126: Same as for G4104 but scaled to match the G4160b: Half of the H-yield is attributed to fast secrecommeded value at 298K.

G4127: Same as for CH3O2 + NO3 in G4105.

G4130a: SAR for H-abstraction by OH.

G4130b: SAR for H-abstraction by OH.

G4132: SAR for H-abstraction by OH.

G4133: Lower limit of the rate constant. Products uncertain but CH₃OH can be excluded because of a likely high energy barrier (L. Vereecken, pers. comm.). CH₂OO production cannot be excluded.

G4134: Estimate based on the decomposition lifetime of 3 s (Olzmann et al., 1997) and a 20 kcal/mol energy barrier (Vereecken and Francisco, 2012).

G4135: Rate constant for $CH_2OO + NO_2$ (G4138) multiplied by the factor from Ouvang et al. (2013).

G4136: Average of two measurements.

G4137: Upper limit.

G4138: Average of 7.E-12 and 1.5E-12.

G4141: HOOCH₂OCHO forms and then decomposes to formic anhydride (Gruzdev et al., 1993) which hydrolvses in the humid atmosphere (Conn et al., 1942).

G4142: High-pressure limit.

G4143: Generic estimate for reaction with alcohols.

G4144: Generic estimate for reaction with RO₂.

G4148: Same value as for $NO_2+CH_3O_2$.

G4149: Barnes et al. (1985) estimated a decomposition

G4150: Value for CH₃O₂NO₂ + OH, H-abstraction enhanced by the HO-group by f_soh.

G4154: Products assumed to be $CH_3O_2 + O_2$ (could also be $HCHO + O_2 + OH$).

ondary chemistry.

G4160c: The NH + CO channel is also significant but neglected here.

G4161: No studies below 450 K and only the major channel is considered.

G4164: Upper limit. Dominant pathway under atmospheric conditions.

G42001: The product distribution is from Rickard and Pascoe (2009), after substitution of the energized Criegee intermediate, CH₂OO, by its decomposition products and reaction of the stabilized CI with the water dimer.

G42010: Only major channel considered as the end products are essentially the same.

G42013: The rate coefficient is: $k_CH3CO3_NO2 = k_C$ 3rd(temp, cair, 9.7E-29, 5.6, 9.3E-12, 1.5, 0.6).

G42018: The rate coefficient is the same as for the CH₃ channel in G4107 ($CH_3OOH+OH$).

G42021: The rate coefficient is $k_PAN_M = k_CH3CO3_$ NO2/9.0E-29*EXP(-14000./temp), i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G42022a: Quantum yields and products are from Glowacki et al. (2012).

G42022b: Quantum yields and products are from Glowacki et al. (2012).

G42024a: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42024b: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42047: Orlando et al. (1998) estimated that about 25% of the HOCH₂CH₂O in this reaction is produced with sufficient excess energy that it decomposes promptly. The decomposition products are 2 HCHO + HO_2 .

G42051a: Same as for the CH₃O₂ channel in G4107: G42089a: The minor channel with k=5.2E-12 is com- $CH_3OOH+OH$.

G42058b: The aldehydic H is assumed to be like the analogous H of HOCH₂CHO.

G42074a: Factor of 3 to match the estimate of k = 1.E-11 molec/cm3/s by Paulot et al. (2009a).

G42074b: Factor of 3 to match the estimate of k = 1.E-11 molec/cm3/s by Paulot et al. (2009a).

G42075: NO₃CH₂CO₂H and NO₃CH₂CO₃H neglected.

G42078: NO₃CH₂CO₂H neglected.

G42082: Same rate constant as for PAN + OH.

G42083a: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42083b: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42085a: Uncertainties on the kinetics at pressures < 0.1 bar.

G42085b: Channel proposed by Hynes and Wine 1991, OH + HCHO + HOCN, could not be confirmed by Tyndall et al. (2001b). There is no alternative mechanism at the moment. Products assumed to be OH + CH3CO3 + NO

G42086b: Assuming HCN is from channel 2h, HCO + H + HCN. HCO is replaced by H + CO.

G42086c: Assuming exothermic channels 2b and 2d are equally important.

G42087: HCOCN is produced but replaced here by its likely oxidation products (HCN + CO₂) as studied by Tyndall et al. (2001b). The rate constant for a typical $RO_2 + NO$ reaction is used.

G42088: NCCH₂OOH is produced but replaced here by its likely oxidation products (HCN + CO₂) as studied by Tyndall et al. (2001b). The rate constant for a typical $RO_2 + HO_2$ reaction is used.

bined with the major one producing HCOOH.

G42090: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G42091: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43001a: Branching ratios according to Rickard et al. (1999).

G43001b: Branching ratios according to Rickard et al. (1999).

G43004: The value for the generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

G43008: The value for the generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

G43011: Strong positive deviation of k below 240 K compared to the expression recommended by JPL (Burkholder et al., 2015).

G43015a: The same value as for G4107 (CH₃OOH +OH) is used, multiplied by the branching ratio of the CH₃O₂ channel.

G43028: Alkyl nitrate formation neglected. (also not considered in MCM).

G43037: Alkyl nitrate formation neglected. (also not considered in MCM).

Rate coefficient estimated with SAR G43040a: (Taraborrelli, 2010).

G43040b: Rate coefficient estimated with SAR (Taraborrelli, 2010).

G43044: Alkyl nitrate formation neglected.

G43045c: Rate coefficient assumed to equal to the one of hydroxyacetone (ACETOL) for this channel.

G43048: Using the high-pressure limit.

G43049: The pressure fall-off between 1000 and 100 mbar is only 3% (Kirchner et al., 1999).

G43050: Value for $CH_3O_2NO_2 + OH$, H-abstraction enhanced by the CH₃CO-group by f₋co.

G43051c: Products approximated with $C_2H_5CHO +$ HO_2 .

G43052: Only major H-abstraction channel considered.

G43059: Products approximated with the major endproduct CH₃CHO.

G43060b: Products approximated with the major endproduct CH₃CHO.

G43061: Products approximated with the likely endproduct CH_3CHO .

G43065: As for $HCOCO_3$.

G43070a: Branching ratios estimated with SAR for Habstraction rate constants by OH.

G43070b: Branching ratios estimated with SAR for Habstraction rate constants by OH.

G43071a: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G43072: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43073: Theoretical keto-enol tautomerization catalvzed by formic acid (Grenfell et al., 2006).

G43074: HCOCOCHO would be produced but undergoes fast photolysis (faster than MGLYOX) and is substituted with its products.

G43223: Products simplified

G43419: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

G43420: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

G43421: Permutation reaction (minor channels removed).

G44000: The $LC_4H_9O_2$ composition ($nC_4H_9O_2$: $sC_4H_9O_2$ G44026: Products as in G4415. Only the main chanratio) is assumed to be equal to the ratio of the pro- nels for each isomer are considered. Weighted average duction rates at 298K: $k_p/(k_p+k_s) = 0.1273$ and for the isomers. $k_s/(k_p+k_s) = 0.8727.$

G44001b: sC₄H₉O₂ products are substituted with 0.636 $MEK + HO_2$ and $0.364 CH_3CHO + C_2H_5O_2$ at 1 bar and 298 K.

G44003c: The alkyl nitrate yield is the weighted average yield for the two isomers forming from nC₄H₉O₂ and $sC_4H_9O_2$.

G44010b: H-abstraction from primary C and substitution of the resulting peroxy radical with its products from the reaction with NO.

G44011: H-abstraction from primary C and substitution of the resulting peroxy radical with its products from the reaction with NO.

G44015b: Products assumed to be only from Habstraction from a secondary C bearing the -OOH group.

G44016: Products assumed to be only from Habstraction from a secondary C bearing the -ONO₂ group.

G44018: LHMVKABO2 is 0.12 HMVKAO2 + 0.88HMVKBO2.

G44019: LMEKO2 represents 0.62 MEKBO2 + 0.38MEKAO2.

G44021a: The products of MEKAO are substituted with $HCHO + CO_2 + HOCH_2CH_2O_2$.

G44023a: Products from H-abstraction from the tertiary carbon bearing the ONO₂ group.

G44023b: Products from H-abstraction from the secondary carbon bearing the ONO₂ group.

G44025: Same value as for PAN.

G44035: Rate constant replaced with the one of beta hydroxy RO_2 .

G44046b: Using value for secondary nitrate (88% of total).

G44061a: Using value for secondary nitrate (88% of to-

G44061b: Using value for secondary nitrate (88% of to-

G44062a: Simplified products.

G44062b: Simplified products.

G44066: Alkyl nitrate formation neglected.

G44070: Alkyl nitrate formation neglected.

G44076: Alkyl nitrate formation neglected.

G44078: Other channel neglected.

G44081: Alkyl nitrate formation neglected.

G44082: Other channel neglected.

G44085: k for CH₃CHCO from Hatakeyama et al. (1985) adjusted.

G44086: Simplified product distribution.

G44089: The nitrated RO₂ is replaced by its products upon reaction with NO.

G44096: Both LBUT1ENO2 isomers mostly C₂H₅CHO.

G44097a: Branching ratios according to Rickard et al. (1999). CH₃CHO₂CHO is replaced with its major products $CH_3CHO + CO + HO_2$.

G44097b: Branching ratios according to Rickard et al. (1999).

G44098: The nitrated RO₂ is replaced by its products upon reaction with NO.

G44103b: MEKCOH replaced by its major oxidation products.

G44104: Carbonyl nitrate replaced by its major oxidation products.

G44106: CH3CHOOA products as from $C_3H_6 + O_3$ reaction.

G44107: The nitrated RO₂ is replaced by its products upon reaction with NO.

G44110: The nitrated RO₂ is replaced by its products upon reaction with NO.

G44124b: Skipping intermediate steps mostly leading to acetone.

G44126: Skipping intermediate steps mostly leading to acetone.

G44127: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G44128: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44129: Theoretical keto-enol tautomerization catalvzed by formic acid (Grenfell et al., 2006).

G44130: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G44131: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44132: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44133: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G44134: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44135: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44136: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G44137: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44138: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44139: Simplified oxidation.

G44140: Simplified oxidation.

G44141: Simplified oxidation.

G44142: Simplified oxidation.

G44202: Alkyl nitrate formation neglected.

G44203a: Rate coefficient estimated with SAR (Taraborrelli, 2010).

G44205: Alkyl nitrate formation neglected.

G44210: Alkyl nitrate formation neglected.

G44221: Same k as for MGLYOX + OH (Tyndall et al., 1995).

G44402: KDEC NC4DCO2→ MALANHY + NO2

G44406c: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY +

HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44407: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44409: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY +

G44410: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY +

HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44412: KDEC BZFUONOOA \rightarrow 0.5 BZFUONOO + 0.5 CO + 0.5 CO2 + 0.5 HCOCH2O2 + 0.5 OHand BZFUONOO \rightarrow 0.625 CO14O3CO2H + 0.375 CO14O3CHO + 0.375 H2O2

G44421: Only major channel.

GLYOO + 0.82 HO2 + 0.57 OH + 1.265 CO +

 $0.25~\mathrm{CO2}$ and H2O substitution GLYOO $\rightarrow 0.625$ HCOCO2H + 0.375 GLYOX + 0.375 H2O2

G44425: Merged equations.

G44430: KDEC MALANHYO → HCOCOHCO3

G44431: KDEC MALANHYO \rightarrow HCOCOHCO3

G44432: Only major channel. KDEC MALANHYO \rightarrow HCOCOHCO3

G44436: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2

G44437: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2

G44438: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2 and RO2 Only major channel.

G44439: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44443: KDEC MECOACETO \rightarrow CH3CO3 + HCHO

G44444: KDEC MECOACETO → CH3CO3 + HCHO

G44445: KDEC MECOACETO \rightarrow CH3CO3 + HCHO

G44450: KDEC BZFUO \rightarrow CO14O3CHO + HO2

G44451: KDEC BZFUO \rightarrow CO14O3CHO + HO2

G44452: KDEC BZFUO \rightarrow CO14O3CHO + HO2. Only major channel.

G44457: KDEC MALDIALO \rightarrow GLYOX + GLYOX +

G44458: KDEC MALDIALO \rightarrow GLYOX + GLYOX +

G44459: KDEC MALDIALO \rightarrow GLYOX + GLYOX + HO2. Only major channel.

G44461: KBPAN \rightarrow k_PAN_M

G45019d: Delta-1 and delta-2 LIEPOX are not consid-G44424: KDEC: GLYOOA \rightarrow 0.125 HCHO + 0.18 ered and replaced by beta-LIEPOX formed by ISOP-BOOH and ISOPDOOH.

G45021: SAR estimate within uncertainty range of the experimentally determined rate constant by Solberg et al. (1997), 1.1E-11.

G45037: SAR estimate within uncertainty range of the experimentally determined rate constant by Solberg et al. (1997), 4.2E-11.

G45040: Alkyl nitrate formation neglected.

G45043: Old MCM rate constant 4.16E-11.

G45047: Alkyl nitrate formation neglected.

G45055: Alkyl nitrate formation neglected.

G45071: Alkyl nitrate formation neglected.

G45074: Formic acid production consistent with results of Bates et al. (2014). Here, the high yields of formic acid and hydroxycarbonyls at low NO from oxidation of cis-beta-LIEPOX (the most abundant isomer) are approximated with the production of DB1O which undergo both the Dibble double H-transfer to DB2O2 and HOCH2 elimination yielding HVMK and HMAC (ketovinyl alcohol potentially arising from decomposition of the alkoxy radical resulting from the ring opening after H-abstraction). The rate constant is from Paulot et al. (2009b) and adjusted based on Bates et al. (2014) that determined the single rate constants for the cis- and trans- beta isomer.

G45080: Alkyl nitrate formation neglected.

G45092a: C4MDIAL = CM4DIAL in MCM only fromaromatics.

G45092b: Only one acyl peroxy radical considered.

G45093: Two aldehydic sites reacting with NO₃ but only one isomer product considered.

G45095: Alkyl nitrate formation neglected.

G45098: Alkyl nitrate formation neglected.

G45100: Alkyl nitrate formation neglected.

G45104a: DB1OOH is a hydroperoxide bearing a vinyl 2-methyl-butenedial (C4MDIAL) although Aschmann alcohol moiety that upon reaction with OH yields HCOOH (Davis et al., 1998).

G45107: OH production here is to take into account the hydroperoxidic function formed by the shift of the enolic hydrogen and not present in DB2O2. This approximation leads to spurious HO₂ production.

G45108a: Consistent with the results of Bates et al. (2014).

G45108b: Consistent with the results of Bates et al. (2014). Assuming that the enol alkoxy radical partly decomposes yielding a substitute vinyl alcohol.

G45111: Alkyl nitrate formation neglected.

G45114b: Here, formic acid is mechanistically produced by the OH-addition to the vinvl alcohol which, upon RO₂-to-RO conversion (skipped here), yields the HOCHOH fragment which in turn reacts with O₂ forming HCOOH + HO₂. Along CH₃COCHOOHCHO should be produced but not in the mechanism. Only CH₃COCHO₂CHO. The rate constant is consistent with predictions by Ganzeveld et al. (2006) for ENOL. OH-addition to the OH-bearing carbon is considered the dominant channel as it is already for the ENOL (Ganzeveld et al., 2006).

G45115: Theoretical keto-enol tautomerization catalvzed by formic acid (Grenfell et al., 2006). The product should be C1ODC3OOHC4OD but it is neglected in the mechanism.

G45116: As for DB1OOH + OH.

G45117: Additional sinks for DB2OOH are neglected.

G45121b: Nitrate assumed to be major isomer that is mostly similar to products of ISOPDO2-chemistry.

G45128: Rate constant by Liljegren and Stevens (2013) A lumped RO₂ that upon conversion to RO yields 100%

et al. (2014) quantified a 38% yield of the Z/E mixture.

G45129: As for 3METHYLFURAN + OH but with additional NO_2 production for mass conservation.

G45131: Alkyl nitrate formation neglected.

G45132: Hydroperoxide formation neglected.

G45134b: ZCO2HC23DBCOD formation is neglected. However, it is produced in MCM and in aromaticrelated reactions under the name of MC3ODBCO2H.

G45139: LZCPANC23DBCOD is assumed to react like LC5PAN1719.

G45201: Alkyl nitrate formation neglected.

G45207: Alkyl nitrate formation neglected.

G45214: Alkyl nitrate formation neglected.

G45217: Alkyl nitrate formation neglected.

G45225: Alkyl nitrate formation neglected.

G45236: LMBOABO2 = 0.67 MBOAO2 + 0.33MBOBO2

G45247: Alkyl nitrate formation neglected.

G45400: KDEC NC4MDCO2 \rightarrow MMALANHY + NO2

G45404: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45405: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45406: KDEC NTLFUO \rightarrow ACCOMECHO

G45409: KBPAN \rightarrow k_PAN_M(renaming)

G45413: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45422: KDEC MMALANHYO→CO2H3CO3

G45423: KDEC MMALANHYO→CO2H3CO3

G45424: KDEC MMALANHYO→CO2H3CO3 and Only major channel.

G45429: KBPAN \rightarrow k_PAN_M (renamed)

G45430a: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + $0.17~\mathrm{CO}2$

G45431: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + $0.17~\mathrm{CO}2$

G45432: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45433: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO_{2}

G45434: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO +0.17 CO2 and only major channel.

G45436: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO +0.17 CO2

G45444: KDEC MC3CODBCO2 \rightarrow 0.35 GLYOX + 0.35 CH3 + 0.35 CO + 0.35 CO2 + 0.65 MMALANHY $+ 0.65 \text{ HO}_{2}$

G45452: KDEC TLFUONOOA $\rightarrow 0.5$ CO + 0.5 OH + 0.5 MECOACETO2 + 0.5 TLFUONOO and H2O subs TLFUONOO \rightarrow 0.625 C24O3CCO2H + 0.375 AC-COMECHO + 0.375 H2O2

G45456: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45476b: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 and reactions with KRO2HO2.

G45477: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45478: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45479: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45486b: KDEC C5DIALO →MALDIAL + CO + HO2 and reactions with KRO2HO2.

G45487: KDEC C5DIALO →MALDIAL

G45488: KDEC C5DIALO →MALDIAL

G45489: KDEC C5DIALO →MALDIAL

G45491b: Reactions with KRO2HO2.

G45492: MGLYOX + GLYOX + HO2 from KDEC sub- G46434: stitution

G45493: MGLYOX + GLYOX + HO2 from KDEC sub- G46435: stitution

G45494: Permutation reaction (minor channels removed).

G46201: Alkyl nitrate formation neglected.

G46404b: Reactions with KRO2HO2 and KDEC $C615CO2O \rightarrow C5DICARB + CO + HO2.$

G46405: KDEC C615CO2O \rightarrow C5DICARB + CO + HO2

G46406: KDEC C615CO2O \rightarrow C5DICARB + CO + HO2

G46407: Only major channel.

G46413b: Reactions with KRO2HO2 and KDEC ND- $NPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO +$ NO2.

G46414: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46415: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46416: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46418: KDEC CATECOOA \rightarrow MALDALCO2H +HCOCO2H + HO2 + OH

G46426: KFPAN \rightarrow k_CH3CO3_NO2

G46430: KDEC GLYOOA \rightarrow .125 HCHO + .18 0.71 GLYOX + 0.29 PBZQONE + HO2 GLYOO + .82 HO2 + .57 OH + 1.265 CO

G46432b: Reactions with KRO2HO2 and KDEC $NCATECO \rightarrow NC4DCO2H + HCOCO2H + HO2$

HCOCO2H + HO2

KDEC NCATECO \rightarrow NC4DCO2H + G46468: KFPAN \rightarrow k_CH3CO3_NO2 HCOCO2H + HO2

 $KDEC NCATECO \rightarrow NC4DCO2H +$ HCOCO2H + HO2

G46437b: Reactions with KRO2HO2 and KDEC $NPHENO \rightarrow MALDALCO2H + GLYOX + NO2$

G46438: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46439: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46440: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46441: Merged equations.

G46447b: reactions with KRO2HO2 and KDEC $NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2$

G46448: KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46449: KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46450: KDEC NNCATECO \rightarrow NC4DCO2H +HCOCO2H + NO2

G46457: Merged equations.

G46458: Merged equations.

G46461b: Reactions with KRO2HO2 and KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

G46462: KDEC PHENO $\rightarrow 0.71$ MALDALCO2H +

G46463: KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

G46464: KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + G46433: KDEC NCATECO \rightarrow NC4DCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2 and Only major channel.

G46472b: new channel

G46476: HOC6H4NO2 is a nitro-phenol

G46480b: Reactions with KRO2HO2 and KDEC PBZQO →C5CO2OHCO3

G46481: KDEC PBZQO →C5CO2OHCO3

G46482: KDEC PBZQO →C5CO2OHCO3

G46483: KDEC PBZQO \rightarrow C5CO2OHCO3 and Only major channel.

G46485b: Reactions with KRO2HO2 and KDEC $DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2$

G46486: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46487: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46488: $KDEC DNPHENO \rightarrow NC4DCO2H +$ HCOCO2H + NO2

G46490b: Reactions with KRO2HO2 and KDEC BZE- $MUCO \rightarrow 0.5 EPXC4DIAL + 0.5 GLYOX + 0.5 HO2$ + 0.5 C3DIALO2 + 0.5 C32OH13CO.

G46491b: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO.

G46492: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO

G46493: KDEC BZEMUCO \rightarrow 0.5 EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO and Only major channel.

G46499b: Reactions with KRO2HO2 and KDEC $NBZQO \rightarrow C6CO4DB + NO2.$

G46500: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46501: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46502: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46505b: New channel.

G46515: Only major channel.

G46517b: New channel.

(Birdsall et al., 2010).

G46523b: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

G46524: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

G46525: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE and Only major channel.

G47210: Alkyl nitrate formation neglected.

G47214: Alkyl nitrate formation neglected.

G47218: Alkyl nitrate formation neglected.

G47222: Alkyl nitrate formation neglected.

G47223: ROO6R3OOH produced but no sink for it.

G47225: ROO6R4P produced but no sink for it.

G47226: ROO6R5P produced but no sink for it

G47400: Merged.

G47402a: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47402b: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47403: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47404: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2. C6H5CH2OH replaced by its oxidation product BENZAL.

G47405: Merged.

G47406: Merged.

G47407b: According to Birdsall et al. (2010), the branching ratio rbipero2_oh is set to 0.4 in order to take into account the OH-recycling and summed yield of butendial and methylbutendial.

G46522b: In analogy to TLBIPERO2 from toluene G47408a: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MGLYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB+ 0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

> G47408b: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2MALDIAL

> G47409: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2MALDIAL

G47410: Only major channel and KDEC TLBIPERO \rightarrow 0.6 GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2 C5DICARB + 0.2 TL-FUONE + 0.2 BZFUONE + 0.2 MALDIAL

G47412: KDEC MGLOOB $\rightarrow 0.125$ CH3CHO + 0.695CH3CO + 0.57 CO + 0.57 OH + 0.125 HO2 + 0.18MGLOO + 0.25 CO2

G47413: Merged.

G47418b: Reactions with KRO2HO2 and KDEC $CRESO \rightarrow 0.68 C5CO14OH + 0.68 GLYOX + HO2$ + 0.32 PTLQONE.

G47419: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

G47420: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

G47421: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE and Only major channel.

G47422b: Reactions with KRO2HO2 and KDEC $NCRESO \rightarrow C5CO14OH + GLYOX + NO2$

G47423: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

G47424: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

G47425: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2 and Only major channel.

G47426: TOL1OHNO2 is a nitro-phenol

G47429: KDEC MCATECOOA \rightarrow MC3ODBCO2H +HCOCO2H + HO2 + OH

G47436: KFPAN →k_CH3CO3_NO2

G47438: Only major channel.

G47439b: Reactions with KRO2HO2 and KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2

G47440b: KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5HO2

G47441: KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + $0.5~\mathrm{HO2}$

G47442: KDEC TLEMUCO \rightarrow 0.5 C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2 and Only major channel.

G47445: KFPAN \rightarrow k_CH3CO3_NO2

G47447: Only major channel.

G47454: New channel.

G47479: New channel.

G47482b: Reactions with KRO2HO2 and KDEC $NPTLQO \rightarrow C7CO4DB + NO2$

G47483: KDEC NPTLQO \rightarrow C7CO4DB + NO2

G47484: KDEC NPTLQO \rightarrow C7CO4DB + NO2

G47485: KDEC NPTLOO \rightarrow C7CO4DB + NO2

G47486b: Reactions with KRO2HO2 and KDEC $PTLQO \rightarrow C6CO2OHCO3$

G47487: KDEC PTLQO \rightarrow C6CO2OHCO3

G47488: KDEC PTLQO \rightarrow C6CO2OHCO3

G47489: Only major channel. KDEC PTLQO \rightarrow C6CO2OHCO3.

G47494: New channel.

G47497b: Reactions with KRO2HO2 and KDEC MN- $NCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2$

G47498: KDEC MNNCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2

G47499: KDEC MNNCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2

G47501b: Reactions with KRO2HO2 and KDEC MN- $CATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2$

G47502: KDEC MNCATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2

G47503: KDEC MNCATECO \rightarrow NC4MDCO2H +HCOCO2H + HO2

G47504: KDEC MNCATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2

G47509b: Reactions with KRO2HO2 and KDEC ND- $NCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO +$ NO2

G47510: KDEC NDNCRESO \rightarrow NC4MDCO2H +HNO3 + CO + CO + NO2

G47511: KDEC NDNCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO + NO2

G47512: KDEC NDNCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO + NO2

G47513b: Reactions with KRO2HO2 and KDEC $DNCRESO \rightarrow NC4MDCO2H + HCOCO2H + NO2$

G47514: KDEC DNCRESO \rightarrow NC4MDCO2H +HCOCO2H + NO2

HCOCO2H + NO2

G47516: KDEC DNCRESO \rightarrow NC4MDCO2H +HCOCO2H + NO2

G48202: Alkyl nitrate formation neglected.

G48205: Alkyl nitrate formation neglected.

G48210: Alkyl nitrate formation neglected.

G48212: Alkyl nitrate formation neglected.

G48216: Alkyl nitrate formation neglected.

G48222: Alkyl nitrate formation neglected.

G48400a: Same products as for toluene. ing a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.24 + 2.31E-11*0.29 + 1.43E11*0.155)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400b: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.05 + 2.31E-11*0.04 + 1.43E-11*0.10)/3where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400c: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.16 + 2.31E-11*0.17 + 1.43E-11*0.12)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400d: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.55 + 2.31E-11*0.50 + 1.43E-1.43E)11*0.625)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G47515: KDEC DNCRESO \rightarrow NC4MDCO2H + G48401: Same products as for toluene. The rate constant is the average of m, p, o k=(4.10E-16+2.60E-16-2.60E-16-2.16+5.00E-16)/3 = 3.9E-16.

G48402: merged under same rate constant

G48403: Same products as for toluene

G48405: KDEC CH2OOB $\rightarrow 0.24$ CH2OO + 0.40 CO + 0.36 HO2 + 0.36 CO + 0.36 OH and H2O + PH $CHOO \rightarrow 0.625 \ PHCOOH + 0.375 \ BENZAL + 0.375$ H2O2 + 0.2 CO2

G48408: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48409: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48410: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48412b: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL and reactions with KRO2HO2.

G48413: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G48414: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G48415: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G49207: Alkyl nitrate formation neglected.

G49238: Alkyl nitrate formation neglected.

Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.Instead of the (lacking) carbonyl a product of further degradation is assumed.

G49247: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G49248: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G49400a: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to $(3.27\text{E}-11^*0.21+3.25\text{E}-11^*0.30+5.67\text{E}-11^*0.14)/3$, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49400b: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (3.27E-11*0.06+3.25E-11*0.06+5.67E-11*0.03)/3, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49400c: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to $(3.27\text{E}-11^*0.03+3.25\text{E}-11^*0.03+5.67\text{E}-11^*.04)/3$, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49400d: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to $(3.27\text{E}-11^*0.70+3.25\text{E}-11^*0.61+5.67\text{E}-11^*0.79)/3$, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49401: Same products as for toluene. The rate constant is the average of m, p, o k=(1.90+1.80+0.88)E-15/3=1.52E-15.

G40200: Products from Vereecken et al. (2007). LAP-INABO2 = 0.65 APINAO2 + 0.35 APINBO2

G40203: Weighted average for isomers A and B, k = 0.33*9.20E-14+0.67*8.80E-13.

G40204: Weighted average for isomers A and B, k = 0.35*1.83E-11+0.65*3.28E-11.

G40205: Weighted average for isomers A and B, k = 0.35*5.50E-12+0.65*3.64E-12.

G40206: SAR-estimated rate constant, (kads+ kadt)*acoch3 = 6.46E-11 where kads = 3.0E-11, kadt = 5.5E-11, acoch3 = 0.76

G40207: Alkyl nitrate formation neglected.

G40211: Products from Rickard and Pascoe (2009).

G40212: Products from Rickard and Pascoe (2009).

G40232: Products from Capouet et al. (2008).

G40242: Alkyl nitrate formation neglected.

G40246: Products from Rickard and Pascoe (2009).

G40248: Alkyl nitrate formation neglected.

G40252a: Products from Vereecken and Peeters (2012).

G40252b: Products from Vereecken and Peeters (2012).

G40259: ROO6R1OOH is produced but no sink for it.

 $\tt G40262: RO6R1OOH$ is produced but no sink for it.

G40266: Rate constant modified according to MCM protocol.

G40267a: Products from Nguyen et al. (2009).

G40268: Products from Rickard and Pascoe (2009).

G40270: Alkyl nitrate neglected.

G40274: As for RO6R1NO3 in G4085.

G40276: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G40277: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G40278: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G40282a: Products from Vereecken and Peeters (2012).

 $\tt G40282b:$ Products from Vereecken and Peeters (2012).

G40283a: Products from Nguyen et al. (2009).

G40284: Products from Rickard and Pascoe (2009).

G40285a: Products from Vereecken and Peeters (2012).

G40285b: Products from Vereecken and Peeters (2012).

G40286a: Products from Nguyen et al. (2009).

G40287: Products from Rickard and Pascoe (2009).

 $\tt G40400:$ DIET35TOL(from MCM) as representative of higher aromatics

G40401: Same products as for toluene.

G6103: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G6204: At low temperatures, there may be a minor reaction channel leading to O_3+HCl . See Finkbeiner et al. (1995) for details. It is neglected here.

G6402: The initial products are probably HCl and CH_2OOH (Atkinson et al., 2006). It is assumed that CH_2OOH dissociates into HCHO and OH.

G6409: It is assumed that the reaction liberates all Cl atoms in the form of HCl.

G7302: The rate coefficient is: $k_Br0_N02 = k_3rd(temp, cair, 5.2E-31, 3.2, 6.9E-12, 2.9, 0.6)$.

G7303: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (Orlando and Tyndall, 1996).

G7404: It is assumed that the reaction liberates all Br atoms in the form of HBr.

G7407: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7408: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7605: Same value as for G7408: CH₂Br₂+OH assumed. It is assumed that the reaction liberates all

Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G7606: Same value as for G7408: CH₂Br₂+OH assumed. It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G7607: It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G8102: Consistent with O'Dowd and Hoffmann (2005). it is assumed that the reaction produces new particles.

G8103: The yield of 38 % OIO is from Atkinson et al. (2007). It is assumed here that the remaining 62 % produce $2 I + O_2$.

G8300: The rate coefficient is: $k_IN02 = k_3rd$ iupac(temp, cair, 3.E-31, 1., 6.6E-11, 0., 0.63).

G8305: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (van den Bergh and Troe, 1976).

G8401: The rate coefficient is from Dillon et al. (2006b), Neglecting the effect on O_3 and NO_x , the remaining the yield of I atoms is a lower limit given on page 2170 of Bale et al. (2005).

G8402: The products are from Nakano et al. (2005).

G8701: 80% Br + OIO production is from Atkinson et al. (2007). The remaining channels are assumed to produce $Br + I + O_2$.

G9400a: For the abstraction path, the assumed reaction sequence (omitting H₂O and O₂ as products) according to Yin et al. (1990) is:

$$\begin{array}{cccc} DMS + OH & \rightarrow & CH_3SCH_2 \\ CH_3SCH_2 + O_2 & \rightarrow & CH_3SCH_2OO \\ CH_3SCH_2OO + NO & \rightarrow & CH_3SCH_2O + NO_2 \\ CH_3SCH_2O & \rightarrow & CH_3S + HCHO \\ CH_3S + O_3 & \rightarrow & CH_3SO \\ CH_3SO + O_3 & \rightarrow & CH_3SO_2 \\ \hline DMS + OH + NO + 2O_3 & \rightarrow & CH_3SO_2 + HCHO + NO_2 \\ \end{array}$$

reaction is:

$$DMS + OH + O_3 \rightarrow CH_3SO_2 + HCHO$$

G9400b: For the addition path, the rate coefficient is: $k_DMS_OH = 1.0E-39*EXP(5820./temp)*C(ind_02)$ $/ (1.+5.0E-30*EXP(6280./temp)*C(ind_02)).$

G9408: Average of 3.9E-11 and 3.42E-11.

G10201: Upper limit.

Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J (gas)				
J0001	UpGJ	$O(^{3}P) \to O^{+} + e^{-}$	<pre>jx(ip_Op_em) +jx(ip_se_Op_em)</pre>	Fuller-Rowell (1993)
J0002a	UpGJ	$O_2 \to O_2^+ + e^-$	jx(ip_02p_em) +jx(ip_se_02_b1)	Fuller-Rowell (1993)
J0002b	UpGJ	$O_2 \to O^{+} + O(^{3}P) + e^{-}$	jx(ip_0p_0_em) +jx(ip_se_02_b2)	Fuller-Rowell (1993)
J0003a	UpGJN	$N_2 \rightarrow N_2^+ + e^-$	$jx(ip_N2p_em) + jx(ip_se_N2_b1)$	Fuller-Rowell (1993)
J0003b	UpGJN	$N_2 \rightarrow N^{+} + N + e^{-}$	<pre>jx(ip_Np_N_em) +jx(ip_se_N2_b2)</pre>	Fuller-Rowell (1993)
J0003c	UpGJN	$N_2 \to N^+ + N(^2D) + e^-$	<pre>jx(ip_Np_N2D_em)+jx(ip_se_N2_b3)</pre>	Fuller-Rowell (1993)
J0003d	UpGJN	$N_2 \rightarrow N + N(^2D)$	<pre>jx(ip_N_N2D_em) +jx(ip_se_N2_b4)</pre>	Fuller-Rowell (1993)
J1000a	UpStTrGJ	$O_2 + h\nu \rightarrow O(^3P) + O(^3P)$	jx(ip_02)	Sander et al. (2014)
J1000b	UpGJ	$O_2 + h\nu \to O(^3P) + O(^1D)$	jx(ip_03P01D)	Sander et al. (2014)
J1000c	UpGJ	$O_2 + h\nu \rightarrow O_2^+ + e^-$	jx(ip_02_b1)	Sander et al. (2014)
J1000d	UpGJ	$O_2 + h\nu \to O^{+} + O(^{3}P) + e^{-}$	jx(ip_02_b2)	Sander et al. (2014)
J1001a	$\operatorname{UpStTrGJ}$	$O_3 + h\nu \rightarrow O(^1D) + O_2$	jx(ip_01D)	Sander et al. (2014)
J1001b	UpStTrGJ	$O_3 + h\nu \rightarrow O(^3P) + O_2$	jx(ip_03P)	Sander et al. (2014)
J1002	UpGJ	$O(^{3}P) + h\nu \rightarrow O^{+} + e^{-}$	jx(ip_03Pp)	Sander et al. (2014)
J2100a	UpStGJ	$H_2O + h\nu \rightarrow H + OH$	jx(ip_H2O)	Sander et al. (2014)
J2100b	UpGJ	$\mathrm{H_2O} + \mathrm{h}\nu \to \mathrm{H_2} + \mathrm{O}(^1\mathrm{D})$	jx(ip_H2O1D)	Sander et al. (2014)
J2101	UpStTrGJ	$\mathrm{H_2O_2} + \mathrm{h}\nu \rightarrow 2 \mathrm{OH}$	jx(ip_H2O2)	Sander et al. (2014)
J3000a	UpGJN	$N_2 + h\nu \to N_2^+ + e^-$	jx(ip_N2_b1)	Sander et al. (2014)
J3000b	UpGJN	$N_2 + h\nu \rightarrow N^{+} + N + e^{-}$	jx(ip_N2_b2)	Sander et al. (2014)
J3000c	UpGJN	$N_2 + h\nu \to N^+ + N(^2D) + e^-$	jx(ip_N2_b3)	Sander et al. (2014)
J3000d	UpGJN	$N_2 + h\nu \rightarrow N + N(^2D)$	jx(ip_NN2D)	Sander et al. (2014)
J3100	UpStGJN	$ m N_2O + h u ightarrow O(^1D) + N_2$	jx(ip_N2O)	Sander et al. (2014)
J3101	UpStTrGJN	$NO_2 + h\nu \rightarrow NO + O(^3P)$	jx(ip_NO2)	Sander et al. (2014)
J3102a	UpStGJN	$NO + h\nu \rightarrow N + O(^{3}P)$	jx(ip_NO)	Sander et al. (2014)
J3102b	UpGJN	$NO + h\nu \rightarrow NO^+ + e^-$	jx(ip_NOp)	Sander et al. (2014)
J3103a	$\operatorname{UpStTrGJN}$	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	jx(ip_N020)	Sander et al. (2014)
J3103b	$\operatorname{UpStTrGJN}$	$NO_3 + h\nu \rightarrow NO + O_2$	jx(ip_N002)	Sander et al. (2014)
J3104	$\operatorname{StTrGJN}$	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	Sander et al. (2014)
J3200	TrGJN	$\mathrm{HONO} + \mathrm{h}\nu \rightarrow \mathrm{NO} + \mathrm{OH}$	jx(ip_HONO)	Sander et al. (2014)
J3201	StTrGJN	$HNO_3 + h\nu \rightarrow NO_2 + OH$	jx(ip_HNO3)	Sander et al. (2014)
J3202	StTrGJN	$\text{HNO}_4 + \text{h}\nu \rightarrow .667 \text{ NO}_2 + .667 \text{ HO}_2 + .333 \text{ NO}_3 + .333 \text{ OH}$	jx(ip_HNO4)	Sander et al. (2014)
J41000	StTrGJ	$\mathrm{CH_3OOH} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O} + \mathrm{OH}$	jx(ip_CH300H)	Sander et al. (2014)
J41001a	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H}_2 + \mathrm{CO}$	jx(ip_COH2)	Sander et al. (2014)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J41001b	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H} + \mathrm{CO} + \mathrm{HO}_2$	jx(ip_CHOH)	Sander et al. (2014)
J41002	StGJ	$\mathrm{CO}_2 + \mathrm{h}\nu \to \mathrm{CO} + \mathrm{O}(^3\mathrm{P})$	jx(ip_CO2)	Sander et al. (2014)
J41003	StGJ	CH ₄ + h $\nu \rightarrow$.42 CH ₃ + .42 H + .6912 H ₂ + .0864 HCHO + .0864 O(³ P) + .1584 OH + .1584 HO ₂ + .2112 CO ₂ + .1824 CO + .024 H ₂ O + .10 LCARBON	<pre>jx(ip_CH4)</pre>	Sander et al. $(2014)^*$
J41004	StTrGJN	$\mathrm{CH_3ONO} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O} + \mathrm{NO}$	jx(ip_CH30NO)	Sander et al. (2014)
J41005	StTrGJN	$\mathrm{CH_3ONO_2} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O} + \mathrm{NO_2}$	jx(ip_CH3NO3)	Sander et al. (2014)
J41006	$\operatorname{StTrGJN}$	${\rm CH_3O_2NO_2} + {\rm h}\nu \rightarrow .667~{\rm NO_2} + .667~{\rm CH_3O_2} + .333~{\rm NO_3} + .333~{\rm CH_3O}$	jx(ip_CH302N02)	Sander et al. $(2014)^*$
J41007	StTrGJ	$HOCH_2OOH + h\nu \rightarrow HCOOH + OH + HO_2$	jx(ip_CH300H)	Sander et al. (2014)
J41008	StTrGJ	$CH_3O_2 + h\nu \rightarrow HCHO + OH$	jx(ip_CH302)	Sander et al. (2014)
J41009	StTrGJ	$\mathrm{HCOOH} + \mathrm{h}\nu \rightarrow \mathrm{CO} + \mathrm{HO}_2 + \mathrm{OH}$	jx(ip_HCOOH)	Sander et al. (2014)
J41010	$\operatorname{StTrGJN}$	$\rm HOCH_2O_2NO_2 + h\nu \rightarrow .667~NO_2 + .667~HOCH_2O_2 + .333~NO_3 + .333~HCOOH + .333~HO_2$	jx(ip_CH302N02)	Sander et al. (2014)
J42000	TrGJC	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J42001a	TrGJC	$\mathrm{CH_3CHO} + \mathrm{h}\nu \rightarrow \mathrm{CH_3} + \mathrm{HO_2} + \mathrm{CO}$	jx(ip_CH3CH0)	Sander et al. (2014)
J42001b	TrGJC	$\mathrm{CH_{3}CHO} + \mathrm{h}\nu \rightarrow \mathrm{CH_{2}CHOH}$	jx(ip_CH3CH02VINY)	Clubb et al. (2012)
J42002	TrGJC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OOH} + \mathrm{h}\nu \rightarrow \mathrm{CH_3} + \mathrm{OH} + \mathrm{CO_2}$	jx(ip_CH3CO3H)	Sander et al. (2014)
J42004	TrGJCN	$PAN + h\nu \rightarrow .7 CH_3C(O) + .7 NO_2 + .3 CH_3 + .3 CO_2 + .3 NO_3$	jx(ip_PAN)	Sander et al. $(2014)^*$
J42005a	TrGJC	$HOCH_2CHO + h\nu \rightarrow HCHO + 2 HO_2 + CO$	jx(ip_HOCH2CHO)*0.83	Sander et al. $(2014)^*$
J42005b	TrGJC	$HOCH_2CHO + h\nu \rightarrow OH + HCOCH_2O_2$	jx(ip_HOCH2CHO)*0.07	Sander et al. (2014)*
J42005c	TrGJC	$HOCH_2CHO + h\nu \rightarrow CH_3OH + CO$	jx(ip_HOCH2CH0)*0.10	Sander et al. (2014)*
J42006	TrGJC	$HOCH_2CO_3H + h\nu \rightarrow HCHO + HO_2 + OH + CO_2$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J42007	TrGJCN	PHAN + h $\nu \rightarrow$.7 HOCH2CO + .7 NO ₂ + .3 HCHO + .3 HO ₂ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	see note*
J42008	TrGJC	$\mathrm{GLYOX} + \mathrm{h}\nu \rightarrow 2~\mathrm{CO} + 2~\mathrm{HO}_2$	<pre>jx(ip_GLYOX)</pre>	Sander et al. (2014)
J42009	TrGJC	$\mathrm{HCOCO_2H} + \mathrm{h}\nu \rightarrow 2\ \mathrm{HO_2} + \mathrm{CO} + \mathrm{CO_2}$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J42010	TrGJC	$HCOCO_3H + h\nu \rightarrow HO_2 + CO + OH + CO_2$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J42011	TrGJC	$HYETHO2H + h\nu \rightarrow HOCH_2CH_2O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J42012	TrGJCN	ETHOHNO3 + $h\nu \rightarrow HO_2 + 2 \text{ HCHO} + NO_2$	j_IC3H7NO3	Rickard and Pascoe (2009)
J42013	TrGJC	$HOOCH2CO3H + h\nu \rightarrow OH + HCHO + CO_2 + OH$	2.*jx(ip_CH3OOH)	Sander et al. (2019)
J42014	TrGC	$HOOCH2CO2H + h\nu \rightarrow OH + HCHO + HO_2 + CO_2$	jx(ip_CH300H)	Sander et al. (2019)
J42015	TrGC	CH2CO + $h\nu \rightarrow .4$ CO ₂ + .8 H + .34 CO + .34 OH + .34 HO ₂ + .16 HCHO + .16 O(^3P) + .1 HCOOH + CO	j_ketene* 0.36	Sander et al. (2019)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J42016	TrGC	$\text{CH3CHOHOOH} + \text{h}\nu \rightarrow \text{CH}_3 + \text{HCOOH} + \text{OH}$	jx(ip_CH300H)	Sander et al. (2019)
J42017	TrGJCN	$NO_3CH2CHO + h\nu \rightarrow HO_2 + CO + HCHO + NO_2$	(jx(ip_C2H5NO3)+jx(ip_CH3CHO)) *(jx(ip_NOA)+1E-10)/(0.59*j_ IC3H7NO3+jx(ip_CH3COCH3)+1E-10)	Sander et al. (2019)*
J42018	TrGJC	$\mathrm{HOOCH2CHO} + \mathrm{h}\nu \rightarrow \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO}_2$	jx(ip_CH3OOH)+jx(ip_HOCH2CHO)	Sander et al. (2019)
J42019	TrGJCN	$C_2H_5ONO_2 + h\nu \rightarrow CH_3CHO + HO_2 + NO_2$	jx(ip_C2H5NO3)	Sander et al. (2019)
J42020	TrGJCN	NO ₃ CH2CHO + h ν \rightarrow .7 NO ₃ CH2CO ₃ + .7 NO ₂ + .3 HCHO + .3 NO ₂ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	Sander et al. (2019)*
J42021	StTrGJCN	$C_2H_5O_2NO_2 + h\nu \rightarrow .667 \text{ NO}_2 + .667 C_2H_5O_2 + .333 \text{ NO}_3 + .333 \text{ CH}_3\text{CHO} + .333 \text{ HO}_2$	jx(ip_CH302N02)	Sander et al. (2019)*
J43000	TrGJC	$iC_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43001	TrGJC	$CH_3COCH_3 + h\nu \rightarrow CH_3C(O) + CH_3$	jx(ip_CH3COCH3)	Sander et al. (2014)
J43002	TrGJC	CH ₃ COCH ₂ OH + h $\nu \rightarrow$.5 CH ₃ C(O) + .5 HCHO + .5 HO ₂ + .5 HOCH2CO + .5 CH ₃	j_ACETOL	Sander et al. (2014)*
J43003	TrGJC	$MGLYOX + h\nu \rightarrow CH_3C(O) + CO + HO_2$	jx(ip_MGLYOX)	Sander et al. (2014)
J43004	TrGJC	$CH_3COCH_2O_2H + h\nu \rightarrow CH_3C(O) + HCHO + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J43005	TrGJC	$HOCH2COCH2OOH + h\nu \rightarrow HOCH2CO + HCHO + OH$	jx(ip_CH300H)+j_ACETOL	Sander et al. (2019)
J43006	TrGJCN	$iC_3H_7ONO_2 + h\nu \rightarrow CH_3COCH_3 + NO_2 + HO_2$	j_IC3H7NO3	von Kuhlmann et al. (2003)*
J43007	TrGJCN	$NOA + h\nu \rightarrow CH_3C(O) + HCHO + NO_2$	jx(ip_NOA)	Barnes et al. (1993)
J43009	TrGJC	$HYPROPO2H + h\nu \rightarrow CH_3CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43010	TrGJCN	$PR2O2HNO3 + h\nu \rightarrow NOA + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43011	TrGJC	$\mathrm{HOCH2COCHO} + \mathrm{h}\nu \rightarrow \mathrm{HOCH2CO} + \mathrm{CO} + \mathrm{HO}_2$	<pre>jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J43012	TrGJC	$\mathrm{HCOCOCH_{2}OOH} + \mathrm{h}\nu \rightarrow \mathrm{HCOCO} + \mathrm{HCHO} + \mathrm{OH}$	jx(ip_CH300H)+j_ACETOL	Sander et al. (2019)
J43013	TrGJC	$\mathrm{HCOCOCH_2OOH} + \mathrm{h}\nu \rightarrow \mathrm{HOOCH_2CO_3} + \mathrm{CO} + \mathrm{HO_2}$	<pre>jx(ip_MGLYOX)</pre>	Sander et al. (2019)
J43014	TrGJTerC	$\text{HCOCH2CHO} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{HO}_2 + \text{CO}$	jx(ip_HOCH2CHO)*2.	Rickard and Pascoe (2009)
J43015	TrGJTerC	$\text{HCOCH2CO2H} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{HO}_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J43016	TrGJTerC	$HOC2H4CO3H + h\nu \rightarrow HOCH_2CH_2O_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43017	TrGJC	$\text{HCOCOCHO} + \text{h}\nu \rightarrow \text{HCOCO} + \text{HO}_2 + \text{CO}$	2.*jx(ip_MGLYOX)	Sander et al. (2019)
J43018	TrGJC	${\rm CH_3COCO_2H} + {\rm h}\nu \rightarrow .32~{\rm CH_3CHO} + .16~{\rm CH_2CHOH} + .54~{\rm CO_2} + .38~{\rm CH_3C(O)} + .38~{\rm HO_2} + .38~{\rm CO_2} + .07~{\rm CH_3COOH} + .07~{\rm CO} + .05~{\rm CH_3C(O)} + .05~{\rm CO} + .05~{\rm OH}$	jx(IP_CH3COCO2H)	Sander et al. (2019)*
J43019	TrGC	$\mathrm{CH_3COCO_3H} + \mathrm{h}\nu \rightarrow \mathrm{CH_3C(O)} + \mathrm{OH} + \mathrm{CO_2}$	<pre>jx(IP_MGLYOX)+jx(ip_CH300H)</pre>	Sander et al. (2019)
J43020	TrGC	$CH3CHCO + h\nu \rightarrow C_2H_4 + CO$	j_ketene*0.36*2.	Sander et al. (2019)
J43021	TrGCN	$PROPOLNO3 + h\nu \rightarrow HOCH_2CHO + HCHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J43022	TrGCN	$\mathrm{CH_3COCH_2OONO_2} + \mathrm{h}\nu \rightarrow \mathrm{CH_3C(O)} + \mathrm{HCHO} + \mathrm{NO_3}$	<pre>jx(ip_CH302N02)+jx(ip_CH3COCH3)</pre>	Sander et al. (2019)
J43023	TrGJC	$C_3H_7OOH + h\nu \rightarrow C_2H_5CHO + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43024	TrGJCN	$C_3H_7ONO_2 + h\nu \rightarrow C_2H_5CHO + NO_2 + HO_2$	0.59*j_IC3H7NO3	see note*
J43025a	TrGJC	$C_2H_5CHO + h\nu \rightarrow C_2H_5O_2 + HO_2 + CO$	jx(ip_C2H5CHO2HCO)	see note*
J43025b	TrGJC	$C_2H_5CHO + h\nu \rightarrow CH_2CHCH_2OH$	jx(ip_C2H5CHO2ENOL)	Andrews et al. (2012) ,
				Sander et al. $(2019)^*$
J43026	TrGJCN	PPN + $h\nu \rightarrow .7 \text{ C}_2\text{H}_5\text{CO}_3 + .7 \text{ NO}_2 + .3 \text{ C}_2\text{H}_5\text{O}_2 + .3 \text{ CO}_2 + .3 \text{ NO}_3$	jx(ip_PAN)	Sander et al. (2014)
J43027	TrGJC	$C_2H_5CO_3H + h\nu \rightarrow C_2H_5O_2 + CO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43028a	TrGJC	$\text{HCOCOCH}_2\text{OOH} + \text{h}\nu \rightarrow \text{HOOCH}_2\text{CO}_3 + \text{CO} + \text{HO}_2$	jx(ip_MGLYOX)	Sander et al. (2019)
J43028b	TrGJC	$\text{HCOCOCH}_2\text{OOH} + \text{h}\nu \rightarrow \text{HCOCO} + \text{HCHO} + \text{OH}$	jx(ip_HOCH2CHO)+jx(ip_CH3OOH)	Sander et al. (2019)
J43200	TrGJTerC	$\text{HCOCH2CO3H} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{OH}$	jx(ip_HOCH2CHO)+jx(ip_CH3OOH)	Rickard and Pascoe (2009)
J43400	TrGJAroC	C3DIALOOH + $h\nu \rightarrow GLYOX + CO + HO_2 + OH$	jx(ip_HOCH2CH0)*2.+jx(ip_CH3OOH)	Rickard and Pascoe (2009)*
J43401	TrGJAroC	$C32OH13CO + h\nu \rightarrow GLYOX + HO_2 + HO_2 + CO$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J43402	TrGJAroC	$\text{HCOCOHCO3H} + \text{h}\nu \rightarrow \text{GLYOX} + \text{HO}_2 + \text{CO}_2 + \text{OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44000a	TrGJC	$LC_4H_9OOH + h\nu \rightarrow OH + C_3H_7CHO + HO_2$	jx(ip_CH300H)*(k_p/(k_p+k_s))	Rickard and Pascoe
				(2009), Sander et al. (2019)
J44000b	TrGJC	$LC_4H_9OOH + h\nu \rightarrow OH + .636 MEK + .636 HO_2 + .364$	jx(ip_CH300H)*(k_s/(k_p+k_s))	Rickard and Pascoe
		$CH_3CHO + .364 C_2H_5O_2$		(2009), Sander et al. (2019)
J44001	TrGJC	$MVK + h\nu \rightarrow .5 C_3H_6 + .5 CH_3C(O) + .5 HCHO + CO + .5$	jx(ip_MVK)	Sander et al. (2014)
		HO_2		
J44002	TrGJC	$MEK + h\nu \rightarrow CH_3C(O) + C_2H_5O_2$	0.42*jx(ip_CHOH)	von Kuhlmann et al.
				(2003)
J44003	TrGJC	LMEKOOH + $h\nu \rightarrow .62 \text{ CH}_3\text{C(O)} + .62 \text{ CH}_3\text{CHO} + .38 \text{ HCHO}$	jx(ip_CH300H)+0.42*jx(ip_CH0H)	Sander et al. (2019)
		$+ .38 \text{ CO}_2 + .38 \text{ HOCH}_2\text{CH}_2\text{O}_2 + \text{OH}$		
J44004	TrGJC	BIACET + $h\nu \rightarrow 2$ CH ₃ C(O)	2.15*jx(ip_MGLYOX)	see note*
J44005a	TrGJCN	$LC4H9NO3 + h\nu \rightarrow NO_2 + C_3H_7CHO + HO_2$	j_IC3H7NO3*(k_p/(k_p+k_s))	see note*
J44005b	TrGJCN	LC4H9NO3 + $h\nu \rightarrow NO_2 + MEK + HO_2$	j_IC3H7NO3*(k_s/(k_p+k_s))	see note*
J44006	TrGJCN	$MPAN + h\nu \rightarrow .7 MACO3 + .7 NO_2 + .3 MACO2 + .3 NO_3$	jx(ip_PAN)	see note*
J44007a	TrGJC	$CO2H3CO3H + h\nu \rightarrow MGLYOX + HO_2 + OH + CO_2$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44007b	TrGJC	$CO2H3CO3H + h\nu \rightarrow CH_3C(O) + HO_2 + HCOCO_3H$	j_ACETOL	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44008	TrGJC	MACR + h $\nu \rightarrow$.5 MACO3 + .5 CH ₃ C(O) + .5 HCHO + .5 CO + HO ₂	jx(ip_MACR)	Sander et al. (2014)
J44009	TrGJC	$MACROOH + h\nu \rightarrow MACRO + OH$	jx(ip_CH300H)+2.77*jx(ip_ HOCH2CHO)	Sander et al. (2019)*
J44010	TrGJC	$MACROH + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + HO_2$	2.77*jx(ip_HOCH2CHO)	see note*
J44011	TrGJC	$MACO3H + h\nu \rightarrow MACO2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44012	TrGJC	LHMVKABOOH + h $\nu \rightarrow$.12 MGLYOX + .12 HO $_2$ + .88 CH $_3$ C(O) + .88 HOCH $_2$ CHO + .12 HCHO + OH	jx(ip_CH300H)+j_ACETOL	Sander et al. (2019)
J44013	TrGJC	$CO2H3CHO + h\nu \rightarrow MGLYOX + CO + HO_2 + HO_2$	jx(ip_HOCH2CHO)+j_ACETOL	Sander et al. (2019)
J44014	TrGJC	$HO12CO3C4 + h\nu \rightarrow CH_3C(O) + HOCH_2CHO + HO_2$	j_ACETOL	Rickard and Pascoe (2009)
J44015	TrGJC	$BIACETOH + h\nu \rightarrow CH_3C(O) + HOCH2CO$	2.15*jx(ip_MGLYOX)	see note*
J44016	TrGC	HCOCCH ₃ CO + h ν \rightarrow .5 OH + .5 CH ₃ CHO + CO + .5 CH ₃ CHCO + .5 CO	j_KETENE	Sander et al. (2019)
J44017a	TrGC	CH ₃ COCHCO + h $\nu \rightarrow$.0192 CH ₃ COCO ₂ H + .1848 H ₂ O ₂ + .2208 MGLYOX + .36 OH + .36 CO + .56 CH ₃ C(O) + .2 CH ₃ CHO + .2 CO ₂ + .2 HCHO + .2 HO ₂ + CO	j_KETENE*0.5	Sander et al. (2019),Rickard and Pascoe (2009)*
J44017b	TrGC	$CH_3COCHCO + h\nu \rightarrow CH3CHCO + CO$	j_KETENE*0.5	Sander et al. (2019)
J44018a	TrGJC	$CH_3COCOCHO + h\nu \rightarrow CH_3C(O) + 2 CO + HO_2$	<pre>jx(ip_MGLYOX)</pre>	Sander et al. (2019)
J44018b	TrGJC	$CH_3COCOCHO + h\nu \rightarrow HCOCO + CH_3C(O)$	2.15*jx(ip_MGLYOX)	Sander et al. (2019)
J44019	TrGJC	$CH3COCOCO2H + h\nu \rightarrow CH_3C(O) + CO + CO_2 + HO_2$	3.15*jx(ip_MGLYOX)	Sander et al. (2019)
J44020a	TrGJTerC	$CH_3COCOCH_2OOH + h\nu \rightarrow CH_3C(O) + OH + HCHO + CO$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J44020b	TrGJTerC	$CH_3COCOCH_2OOH + h\nu \rightarrow CH_3C(O) + HCOCO$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J44021	TrGJTerC	$C44OOH + h\nu \rightarrow HCOCH2CHO + CO_2 + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44022	TrGJTerC	C413COOOH + $h\nu \rightarrow HCOCH2CO3 + HCHO + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0) +j_ACETOL</pre>	Rickard and Pascoe (2009)
J44023a	TrGJTerC	$C4CODIAL + h\nu \rightarrow HCOCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J44023b	TrGJTerC	$C4CODIAL + h\nu \rightarrow HCOCH2CO3 + HO_2 + CO$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J44024	TrGJTerC	$C312COCO3H + h\nu \rightarrow HCOCOCH_2O_2 + CO_2 + OH$	jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J44025	TrGJCN	LMEKNO3 + $h\nu \rightarrow .62 \text{ CH}_3\text{C(O)} + .62 \text{ CH}_3\text{CHO} + .38 \text{ HCHO} + .38 \text{ CO}_2 + .38 \text{ HOCH}_2\text{CH}_2\text{O}_2 + \text{NO}_2$	jx(ip_MEKNO3)	Barnes et al. (1993), Sander et al. (2019)*
J44026	TrGJCN	$\text{MVKNO3} + \text{h}\nu \rightarrow \text{CH}_3\text{C(O)} + \text{HOCH}_2\text{CHO} + \text{NO}_2$	jx(ip_MEKNO3)	Barnes et al. (1993), Sander et al. (2019)*
J44027	TrGJCN	$MACRNO3 + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + NO_2$	(2.84*j_IC3H7NO3+jx(ip_CH3CH0)) *(jx(ip_MEKNO3)+1E-10)/(j_ IC3H7NO3+0.42*jx(ip_CH0H)+1E-10)	Müller et al. (2014), Sander et al. (2019)*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44028	TrGJCN	$TC4H9NO3 + h\nu \rightarrow CH_3COCH_3 + CH_3 + NO_2$	2.84*j_IC3H7NO3	Sander et al. (2019)
J44029	TrGJC	$TC_4H_9OOH + h\nu \rightarrow CH_3COCH_3 + CH_3 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44030	TrGJCN	$IBUTOLBNO3 + h\nu \rightarrow CH_3COCH_3 + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	Sander et al. (2019)
J44031	TrGJC	$IBUTOLBOOH + h\nu \rightarrow CH_3COCH_3 + HCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44032	TrGJC	LBUT1ENOOH + $h\nu \rightarrow C_2H_5CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44033	TrGJCN	$LBUT1ENNO3 + h\nu \rightarrow C_2H_5CHO + HCHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44034	TrGJC	$BUT2OLOOH + h\nu \rightarrow 2 CH_3CHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44035	TrGJCN	$BUT2OLNO3 + h\nu \rightarrow 2 CH_3CHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44036	TrGJC	$BUT2OLO + h\nu \rightarrow CH_3C(O) + HOCH2CO$	j_ACETOL	Sander et al. (2019)
J44037a	TrGJC	$C_3H_7CHO + h\nu \rightarrow C_3H_7O_2 + CO + HO_2$	jx(ip_C3H7CHO2HCO)	Sander et al. (2019)
J44037b	TrGJC	$C_3H_7CHO + h\nu \rightarrow C_2H_4 + CH_2CHOH$	jx(ip_C3H7CHO2VINY)	Sander et al. $(2019)^*$
J44038	TrGJC	$IPRCHO + h\nu \rightarrow iC_3H_7O_2 + CO + HO_2$	<pre>jx(ip_IPRCH02HC0)</pre>	Sander et al. (2019)
J44039	TrGJCN	$IC4H9NO3 + h\nu \rightarrow IPRCHO + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44040	TrGJC	$IC_4H_9OOH + h\nu \rightarrow IPRCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44041	TrGJC	$PERIBUACID + h\nu \rightarrow iC_3H_7O_2 + CO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44042	TrGJCN	PIPN + h $\nu \rightarrow$.7 IPRCO3 + .7 NO ₂ + .3 iC ₃ H ₇ O ₂ + .3 CO ₂ + .3 NO ₃	<pre>jx(ip_PAN)</pre>	Sander et al. (2019), Sander et al. (2014)
J44043	TrGJC	$HVMK + h\nu \rightarrow MGLYOX + CO + 2 OH$	jx(ip_PeDIONE24)	Sander et al. (2019), Nakanishi et al. (1977), Messaadia et al. (2015), Yoon et al. (1999)*
J44044	TrGJC	${ m HMAC} + { m h} \nu \rightarrow { m HCOCCH_3CO} + 2 { m OH}$	<pre>jx(ip_PeDIONE24)</pre>	Sander et al. (2019), Nakanishi et al. (1977), Messaadia et al. (2015), Yoon et al. (1999)*
J44045a	TrGJC	$CO2C3CHO + h\nu \rightarrow CH_3COCH_2O_2 + HO_2 + CO$	jx(ip_C2H5CHO2HCO)	Rickard and Pascoe (2009)
J44045b	TrGJC	$CO2C3CHO + h\nu \rightarrow HVMK$	jx(ip_C2H5CH02ENOL)	Andrews et al. (2012), Sander et al. (2019)
J44046a	TrGJC	$IBUTDIAL + h\nu \rightarrow CH_3CHO + CO + HO_2 + CO_2 + H_2O$	jx(ip_C2H5CHO2HCO)*2.	see note*
J44046b	TrGJC	$IBUTDIAL + h\nu \rightarrow HMAC$	jx(ip_C2H5CH02ENOL)*2.	Andrews et al. (2012), Sander et al. (2019)
J44200	TrGJTerC	$IBUTALOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + HO_2 + CO$	j_ACETOL	Rickard and Pascoe (2009)
J44201	TrGJTerC	IPRHOCO3H + $h\nu \rightarrow CH_3COCH_3 + HO_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44400a	TrGJAroC	MALDIALOOH + $h\nu \rightarrow C32OH13CO + CO + OH + HO_2$	jx(ip_HOCH2CHO)*2.	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44400b	TrGJAroC	$MALDIALOOH + h\nu \rightarrow GLYOX + GLYOX + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44401	TrGJAroC	$\mathrm{BZFUOOH} + \mathrm{h}\nu \rightarrow \mathrm{CO14O3CHO} + \mathrm{HO_2} + \mathrm{OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44402	TrGJAroC	$HOCOC4DIAL + h\nu \rightarrow HCOCOHCO3 + HO_2 + CO$	<pre>jx(ip_MGLYOX)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J44403	TrGJAroCN	NBZFUOOH + h ν \rightarrow .5 CO14O3CHO + .5 NO $_2$ + .5 NBZFUONE + .5 HO $_2$ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44404a	TrGJAroC	$MALDALCO3H + h\nu \rightarrow HCOCO_3H + HO_2 + CO + HO_2 + CO$	jx(ip_MACR)	Rickard and Pascoe (2009)
J44404b	TrGJAroC	MALDALCO3H + h $\nu \rightarrow$.6 MALANHY + HO ₂ + .4 GLYOX + .4 CO + .4 CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44405	TrGJAroC	$EPXDLCO2H + h\nu \rightarrow C3DIALO2 + CO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J44406	TrGJAroC	$MALDIAL + h\nu \rightarrow .4 BZFUONE + .6 MALDIALCO3 + .6 HO_2$	jx(ip_NO2)*0.14	Rickard and Pascoe (2009)
J44407	TrGJAroC	${\rm MALANHYOOH} + {\rm h}\nu \rightarrow {\rm HCOCOHCO3} + {\rm CO}_2 + {\rm OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44408	TrGJAroC	$EPXDLCO3H + h\nu \rightarrow C3DIALO2 + OH + CO_2$	jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)	Rickard and Pascoe (2009)
J44409	TrGJAroC	$CO2C4DIAL + h\nu \rightarrow CO + CO + HO_2 + HO_2 + CO + CO$	<pre>jx(ip_MGLYOX)*2.</pre>	Rickard and Pascoe (2009)
J44410	TrGJAroC	$MALDALCO2H + h\nu \rightarrow HCOCO_2H + HO_2 + CO + HO_2 + CO$	jx(ip_MACR)	Rickard and Pascoe (2009)
J44411	TrGJAroC	$EPXC4DIAL + h\nu \rightarrow C3DIALO2 + CO + HO_2$	2.77*jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J44412	TrGJAroC	$CO14O3CHO + h\nu \rightarrow HO_2 + CO + HCOCH_2O_2 + CO_2$	<pre>jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J44414	TrGJAroC	$MECOACEOOH + h\nu \rightarrow CH_3C(O) + HCHO + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45002	TrGJC	$LISOPACOOH + h\nu \rightarrow LISOPACO + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45003	TrGJCN	$LISOPACNO3 + h\nu \rightarrow LISOPACO + NO_2$	0.59*j_IC3H7NO3	see note*
J45004	TrGJC	ISOPBOOH + $h\nu \rightarrow MVK + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45005	TrGJCN	$ISOPBNO3 + h\nu \rightarrow MVK + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	see note*
J45006	TrGJC	$ISOPDOOH + h\nu \rightarrow MACR + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45007	TrGJCN	$ISOPDNO3 + h\nu \rightarrow MACR + HCHO + HO_2 + NO_2$	j_IC3H7NO3	see note*
J45008	TrGJCN	$NISOPOOH + h\nu \rightarrow NC4CHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45009	TrGJCN	$NC4CHO + h\nu \rightarrow LHC4ACCO3 + NO_2$	(.59*j_IC3H7NO3+jx(ip_MACR)) *(jx(ip_MEKNO3)+1E-10)/(j_ IC3H7NO3+0.42*jx(ip_CHOH)+1E-10)	Müller et al. (2014), Sander et al. (2019)*
J45010	TrGJCN	LNISOOH + h ν \rightarrow NOA + OH + .5 HOCHCHO + .5 CO + .5 HO ₂ + .5 CO ₂	jx(ip_CH300H)	Taraborrelli et al. (2009), Sander et al. (2019)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45011	TrGJC	LHC4ACCHO + h $\nu \rightarrow$.5 LHC4ACCO3 + .5 HO ₂ + .5 CO + .5 OH + .25 MACRO2 + .25 LHMVKABO2	jx(ip_MACR)	Sander et al. (2019)
J45012	TrGJC	LC578OOH + h ν \rightarrow .25 CH ₃ COCH ₂ OH + .75 MGLYOX + .25 HOCHCHO + .75 HOCH ₂ CHO + .75 HO ₂ + OH	jx(ip_CH300H)+ 2.77*jx(ip_ HOCH2CHO)	Sander et al. (2019)
J45013	TrGJC	LHC4ACCO3H + $h\nu \rightarrow$ OH + .5 MACRO2 + .5 LHMVKABO2 + OH + CO ₂	j_HPALD	Sander et al. (2019)
J45014	TrGJCN	LC5PAN1719 + h $\nu \rightarrow$.7 LHC4ACCO3 + .7 NO ₂ + .15 MACRO2 + .15 LHMVKABO2 + .3 CO ₂ + .3 NO ₃	<pre>jx(ip_PAN)</pre>	Sander et al. (2019)
J45015	TrGJC	${\rm HCOC5} + {\rm h}\nu \rightarrow .65~{\rm CH_3} + .65~{\rm CO} + .65~{\rm HCHO} + .35~{\rm OH} + .35~{\rm CH_3COCH_2O_2} + {\rm HOCH2CO}$	0.5*jx(ip_MVK)	Sander et al. $(2019)^*$
J45016	TrGJC	$C59OOH + h\nu \rightarrow CH_3COCH_2OH + HOCH2CO + OH$	j_ACETOL+jx(ip_CH300H)	Sander et al. (2019)
J45017	TrGJTerC	C511OOH + $h\nu \rightarrow CH_3C(O) + HCOCH2CHO + OH$	jx(ip_CH3OOH)+jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J45018a	TrGJTerC	$CO23C4CHO + h\nu \rightarrow CH_3COCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J45018b	TrGJTerC	$CO23C4CHO + h\nu \rightarrow CH_3C(O) + HCOCH2CO3$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J45019	TrGJTerC	$CO23C4CO3H + h\nu \rightarrow CH_3COCOCH_2O_2 + CO_2 + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J45020	TrGJTerC	$C512OOH + h\nu \rightarrow C513O2 + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J45021	TrGJTerC	$CO13C4CHO + h\nu \rightarrow CHOC3COO2 + CO + HO_2$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J45022	TrGJTerC	$C513OOH + h\nu \rightarrow GLYOX + HOC_2H_4CO_3 + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J45023	TrGJTerC	$C513CO + h\nu \rightarrow HOC_2H_4CO_3 + HO_2 + CO + CO$	<pre>jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J45024	TrGJTerC	$C514OOH + h\nu \rightarrow CO13C4CHO + HO_2 + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0)*2.	Rickard and Pascoe (2009)
J45025	TrGJTerCN	$C514NO3 + h\nu \rightarrow CO13C4CHO + HO_2 + NO_2$	j_IC3H7NO3+jx(ip_HOCH2CHO)*2.	Rickard and Pascoe (2009)
J45026a	TrGJC	LZCODC23DBCOOH + $h\nu \rightarrow OH + CO + HVMK + OH$	j_HPALD*0.6*0.5	Sander et al. (2019), Jenkin et al. (2015), Peeters et al. (2014)
J45026b	TrGJC	LZCODC23DBCOOH + h ν \rightarrow OH + CO + CH $_3$ C(O) + HOCH $_2$ CHO	j_HPALD*0.6*0.5	Sander et al. (2019), Jenkin et al. (2015), Peeters et al. (2014)
J45026c	TrGJC	LZCODC23DBCOOH + $h\nu \rightarrow OH + CO + HMAC + OH$	j_HPALD*0.4*0.5	Sander et al. (2019), Jenkin et al. (2015), Peeters et al. (2014)
J45026d	TrGJC	LZCODC23DBCOOH + h ν \rightarrow OH + CO + CO + CH ₃ COCH ₂ OH + HO ₂	j_HPALD*0.4*0.5	Sander et al. (2019), Jenkin et al. (2015), Peeters et al. (2014)
J45027	TrGJC	LZCO3HC23DBCOD + h $\nu \rightarrow .62$ EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + OH + CO2	j_HPALD	Sander et al. (2019)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45028a	TrGJC	C1OOHC2OOHC4OD + $h\nu \rightarrow CH_3COCH_2O_2H + OH + 2 CO + HO_2$	2.77*jx(IP_HOCH2CH0)	Sander et al. (2019)
J45028b	TrGJC	C1OOHC2OOHC4OD + h $\nu \rightarrow$.5 CH3COCH2O2H + .5 HOCHCHO + .5 CO2H3CHO + .5 HCHO + 1.5 OH	2.*jx(IP_CH300H)	Sander et al. (2019)
J45029	TrGC	$\mathrm{DB1OOH} + \mathrm{h}\nu \rightarrow \mathrm{DB1O2} + \mathrm{OH}$	jx(IP_CH300H)	Sander et al. (2019)
J45030	TrGC	DB2OOH + h $\nu \rightarrow$.48 CH3COCH2OH + .52 HOCH2CHO + .52 MGLYOX + .48 GLYOX + HO2 + OH	jx(ip_CH300H)	Sander et al. (2019)
J45031a	TrGJC	$C1ODC2OOHC4OD + h\nu \rightarrow MGLYOX + HOCHCHO + OH$	jx(ip_CH300H)	Sander et al. (2019)
J45031b	TrGJC	$C1ODC2OOHC4OD + h\nu \rightarrow CO2H3CHO + CO + HO_2 + OH$	2.*2.77*jx(IP_HOCH2CH0)	Sander et al. (2019)
J45032	TrGJC	C4MDIAL + $h\nu \rightarrow .5$ CH ₃ COCHCO + $.5$ HCOCCH ₃ CO + CO + HO ₂ + OH	jx(ip_N02)*0.1*0.5	Sander et al. (2019)*
J45033	TrGCN	$DB1NO3 + h\nu \rightarrow DB1O2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J45034	TrGJTerC	$CHOC3COOOH + h\nu \rightarrow CHOC3COO2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0) +j_ACETOL</pre>	Rickard and Pascoe (2009)
J45200a	TrGJTerC	LMBOABOOH + h $\nu \rightarrow$ HOCH ₂ CHO + CH ₃ COCH ₃ + HO ₂ + OH	jx(ip_CH300H)*.67	Rickard and Pascoe (2009), Sander et al. (2019)
J45200b	TrGJTerC	LMBOABOOH + h $\nu \rightarrow$ IBUTALOH + HCHO + HO ₂ + OH	jx(ip_CH300H)*.33	Rickard and Pascoe (2009), Sander et al. (2019)
J45201	TrGJTerC	$MBOACO + h\nu \rightarrow HCHO + HO_2 + IPRHOCO3$	j_ACETOL	Rickard and Pascoe (2009)
J45202	TrGJTerC	$MBOCOCO + h\nu \rightarrow CO + HO_2 + IPRHOCO3$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J45203a	TrGJTerCN	LNMBOABOOH + $h\nu \rightarrow NO_3CH2CHO + CH_3COCH_3 + HO_2 + OH$	jx(ip_CH300H)*.65	Rickard and Pascoe (2009), Sander et al. (2019)
J45203b	TrGJTerCN	LNMBOABOOH + $h\nu \rightarrow IBUTALOH + HCHO + NO_2 + OH$	jx(ip_CH300H)*.35	Rickard and Pascoe (2009), Sander et al. (2019)
J45204	TrGJTerCN	$NC4OHCO3H + h\nu \rightarrow IBUTALOH + CO_2 + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45400	TrGJAroC	$C54CO + h\nu \rightarrow HO_2 + CO + CO + CO + CH_3C(O)$	<pre>jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX) *2.</pre>	Rickard and Pascoe (2009)
J45401	TrGJAroC	C5134CO2OH + $h\nu \rightarrow CH_3COCOCHO + HO_2 + CO + HO_2$	<pre>jx(ip_HOCH2CH0)+2.15*jx(ip_ MGLYOX)</pre>	Rickard and Pascoe (2009)
J45402	TrGJAroC	C5DIALOOH + $h\nu \rightarrow MALDIAL + CO + HO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45406	TrGJAroC	$C5CO14OH + h\nu \rightarrow CH_3C(O) + HCOCO_2H + HO_2 + CO$	jx(ip_MVK)	Rickard and Pascoe (2009)
J45407	TrGJAroC	C5DICARB + $h\nu \rightarrow .6$ C5CO14O2 + $.6$ HO $_2$ + $.4$ TLFUONE	jx(ip_NO2)*0.2	Rickard and Pascoe (2009)*
J45408	TrGJAroC	MC3ODBCO2H + $h\nu \rightarrow CH_3COCO_2H + HO_2 + CO + HO_2 + CO$	<pre>jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J45409	TrGJAroC	$ACCOMECHO + h\nu \rightarrow MECOACETO2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J45410	TrGJAroC	$\label{eq:malnhyooh} \text{MMALNHYOOH} + \text{h}\nu \rightarrow \text{CO2H3CO3} + \text{CO}_2 + \text{OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45411	TrGJAroC	C5DICAROOH + $h\nu \rightarrow MGLYOX + GLYOX + HO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0) +j_ACETOL</pre>	Rickard and Pascoe (2009)*
J45412	TrGJAroCN	$NTLFUOOH + h\nu \rightarrow ACCOMECHO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45414	TrGJAroC	C5CO14OOH + h $\nu \to .83$ MALANHY + .83 CH ₃ + .17 MGLYOX + .17 HO ₂ + .17 CO + .17 CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45415	TrGJAroC	TLFUOOH + $h\nu \rightarrow ACCOMECHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45417	TrGJAroC	$ACCOMECO3H + h\nu \rightarrow MECOACETO2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45418	TrGJAroC	$C5DIALCO + h\nu \rightarrow MALDIALCO3 + CO + HO_2$	jx(ip_MGLYOX)+jx(ip_MACR)	Rickard and Pascoe (2009)
J46200	TrGJTerCN	$C614NO3 + h\nu \rightarrow CO23C4CHO + HCHO + HO_2 + NO_2$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46201	TrGJTerC	$C614OOH + h\nu \rightarrow CO23C4CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46202	TrGJTerC	$CO235C5CHO + h\nu \rightarrow CO23C4CO3 + CO + HO_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46203	TrGJTerC	$CO235C6OOH + h\nu \rightarrow CO23C4CO3 + HCHO + OH$	<pre>jx(ip_CH300H)+2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J46400	TrGJAroC	PHENOOH + $h\nu \rightarrow .71$ MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO_2 + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46401	TrGJAroC	$C6CO4DB + h\nu \rightarrow C4CO2DBCO3 + HO_2 + CO$	jx(ip_MGLYOX)*2.	Rickard and Pascoe (2009)
J46402	TrGJAroC	$C5CO2DCO3H + h\nu \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + OH$	jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46403	TrGJAroCN	NDNPHENOOH + $h\nu \rightarrow NC4DCO2H + HNO_3 + CO + CO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46404	TrGJAroCN	BZBIPERNO3 + $h\nu \rightarrow GLYOX + HO_2 + .5$ BZFUONE + $.5$ BZFUONE + NO_2	j_IC3H7NO3	Rickard and Pascoe (2009)*
J46405	TrGJAroCN	$HOC6H4NO2 + h\nu \rightarrow HONO + CPDKETENE$	jx(ip_HOC6H4NO2)	Chen et al. (2011)*
J46406	TrGJAroC	CPDKETENE + $h\nu \rightarrow CO_2 + CO + 2 HO_2 + MALDIAL$	j_KETENE	see note*
J46407	TrGJAroC	C5COOHCO3H + h ν → HOCOC4DIAL + HO ₂ + CO + CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J46408	TrGJAroC	BZEPOXMUC + h $\nu \rightarrow$.5 C5DIALO2 + 1.5 HO ₂ + 1.5 CO + .5 MALDIAL	4.E3*jx(ip_MVK)*0.1	Rickard and Pascoe (2009)
J46409	TrGJAroCN	$NPHEN1OOH + h\nu \rightarrow NPHEN1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46410	TrGJAroC	$BZEMUCCO + h\nu \rightarrow HCOCOHCO3 + C3DIALO2$	jx(ip_HOCH2CH0)*2.+j_ACETOL	Rickard and Pascoe (2009)
J46411	TrGJAroC	$BZEMUCCO2H + h\nu \rightarrow C5DIALO2 + CO_2 + HO_2$	jx(ip_MACR)	Rickard and Pascoe (2009)
J46412	TrGJAroCN	NNCATECOOH + h $\nu \rightarrow$ NC4DCO2H + HCOCO ₂ H + NO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46413	TrGJAroC	$C615CO2OOH + h\nu \rightarrow C5DICARB + CO + HO_2 + OH$	<pre>jx(ip_MVK)+jx(ip_CH300H)</pre>	Rickard and Pascoe (2009)
J46414	TrGJAroCN	$NPHENOOH + h\nu \rightarrow MALDALCO2H + GLYOX + OH + NO_2$	j_IC3H7NO3 + jx(ip_CH3OOH)	Rickard and Pascoe (2009)
J46415	TrGJAroCN	$NCATECOOH + h\nu \rightarrow NC4DCO2H + HCOCO_2H + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46416	TrGJAroC	$PBZQOOH + h\nu \rightarrow C5CO2OHCO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46417	TrGJAroC	$BZOBIPEROH + h\nu \rightarrow MALDIALCO3 + GLYOX + HO_2$	j_ACETOL	Rickard and Pascoe (2009)
J46418	TrGJAroC	BZBIPEROOH + h ν \rightarrow GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46419	TrGJAroCN	$NBZQOOH + h\nu \rightarrow C6CO4DB + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46420	TrGJAroC	$CATEC1OOH + h\nu \rightarrow CATEC1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46421	TrGJAroC	$C6125CO + h\nu \rightarrow C5CO14O2 + CO + HO_2$	<pre>jx(ip_MGLYOX)+jx(ip_MVK)</pre>	Rickard and Pascoe (2009)
J46422	TrGJAroCN	DNPHENOOH + $h\nu \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46423	TrGJAroC	$BZEMUCCO3H + h\nu \rightarrow C5DIALO2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J46424	TrGJAroC	$C6H5OOH + h\nu \rightarrow C6H5O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46425	TrGJAroC	BZEMUCOOH + h $\nu \rightarrow$.5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + OH	jx(ip_CH300H)+jx(ip_H0CH2CH0)*2.	Rickard and Pascoe (2009)*
J46427	TrGJAroCN	$BZEMUCNO3 + h\nu \rightarrow EPXC4DIAL + NO_2 + GLYOX + HO_2$	2.77*jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J46428	TrGJAroCN	$\text{DNPHEN} + \text{h}\nu \rightarrow \text{HONO} + \text{NCPDKETENE}$	jx(ip_HOC6H4NO2)	Sander et al. (2019)
J46429	TrGJAroCN	NCPDKETENE + $h\nu \rightarrow CO_2 + CO + 2 HO_2 + NC4DCO2H$	j_KETENE	see note*
J47200	TrGJTerC	$CO235C6CHO + h\nu \rightarrow CHOC3COCO3 + CH_3C(O)$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J47201	TrGJTerC	$C235C6CO3H + h\nu \rightarrow CO235C6O2 + CO_2 + OH$	<pre>jx(ip_CH300H)+2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J47202	TrGJTerC	$C716OOH + h\nu \rightarrow CO13C4CHO + CH_3C(O) + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J47203	TrGJTerC	$C721OOH + h\nu \rightarrow C722O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47204	TrGJTerC	$C722OOH + h\nu \rightarrow CH_3COCH_3 + C44O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J47400	TrGJAroC	TLEPOXMUC + $h\nu \rightarrow .5$ C615CO2O2 + HO_2 + CO + $.5$	4.E3*jx(ip_MVK)*0.1	Rickard and Pascoe (2009)
		$EPXC4DIAL + .5 CH_3C(O)$		
J47401	TrGJAroC	$C6H5CH2OOH + h\nu \rightarrow BENZAL + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe
				$(2009)^*$
J47402	TrGJAroCN	$C6H5CH2NO3 + h\nu \rightarrow BENZAL + HO_2 + NO_2$	0.59*j_IC3H7NO3	Rickard and Pascoe
				(2009)*
J47403	TrGJAroC	$BENZAL + h\nu \rightarrow HO_2 + CO + C6H5O2$	jx(ip_BENZAL)	Wallington et al. (2018)
J47404	TrGJAroC	TLBIPEROOH + $h\nu \rightarrow .6$ GLYOX + $.4$ MGLYOX + HO_2 + $.2$	jx(ip_CH300H)	Rickard and Pascoe
		C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE +		$(2009)^*$
7.45.4.05	TO CIA CIN	.2 MALDIAL + OH		D: 1 1 D
J47405	TrGJAroCN	TLBIPERNO3 + $h\nu \rightarrow .6$ GLYOX + $.4$ MGLYOX + HO_2 + $.2$	j_IC3H7NO3	Rickard and Pascoe
		C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE +		$(2009)^*$
147406	TrGJAroC	.2 MALDIAL + NO ₂ TLOBIPEROH + $h\nu \rightarrow C5CO14O2 + GLYOX + HO_2$: ACETOI	Rickard and Pascoe (2009)
J47406 J47407	TrGJAroC	CRESOOH + $h\nu \rightarrow .68 \text{ C5CO14O2} + \text{GLYOX} + \text{HO}_2 + .32$	j_ACETOL jx(ip_CH300H)	Rickard and Pascoe (2009) Rickard and Pascoe
J41401	HGJAIOC	PTLQONE + OH	Jx(Ip_Ch300h)	(2009)*
J47408a	TrGJAroCN	NCRESOOH + $h\nu \rightarrow .68$ C5CO14OH + $.68$ GLYOX + HO ₂ +	j_IC3H7NO3	Rickard and Pascoe
341400a	11037110011	.32 PTLQONE + OH + NO ₂	J_100117 NOO	(2009)*
J47408b	TrGJAroCN	NCRESOOH + $h\nu \rightarrow C5CO14OH + GLYOX + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe
01, 1000	11 001110 011	Trendscore mr / cocorror adroir rioz or	J (=P_0000)	(2009)*
J47409	TrGJAroCN	$TOL1OHNO2 + h\nu \rightarrow HONO + MCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*
J47410	TrGJAroC	TLEMUCCO2H + $h\nu \rightarrow C615CO2O2 + CO_2 + HO_2$	jx(ip_MACR)	Rickard and Pascoe (2009)
J47411	TrGJAroC	TLEMUCCO3H + $h\nu \rightarrow C615CO2O2 + CO_2 + OH$	jx(ip_CH3OOH)+jx(ip_MACR)	Rickard and Pascoe (2009)
J47412	TrGJAroC	TLEMUCOOH + $h\nu \rightarrow .5$ C3DIALO2 + $.5$ CO2H3CHO + $.5$	jx(ip_CH300H)+2.77*jx(ip_	Rickard and Pascoe
		$EPXC4DIAL + .5 MGLYOX + .5 HO_2 + OH$	HOCH2CHO)+j_ACETOL	$(2009)^*$
J47413	TrGJAroCN	TLEMUCNO3 + $h\nu \rightarrow EPXC4DIAL + NO_2 + CH_3C(O) + CO$	2.77*jx(ip_HOCH2CH0)+j_ACETOL	Rickard and Pascoe (2009)
		$+ HO_2$		
J47414	TrGJAroC	$TLEMUCCO + h\nu \rightarrow CH_3C(O) + EPXC4DIAL + CO + HO_2$	2.77*jx(ip_HOCH2CH0)+2.15*jx(ip_	Rickard and Pascoe (2009)
			MGLYOX)	
J47415	TrGJAroC	$C6H5CO3H + h\nu \rightarrow C6H5O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47416	TrGJAroC	$OXYL1OOH + h\nu \rightarrow TOL1O + OH$	<pre>jx(ip_CH300H)</pre>	Rickard and Pascoe (2009)
J47417	TrGJAroCN	$MNCATECH + h\nu \rightarrow HONO + MCPDKETENE$	<pre>jx(ip_HOPh3Me2NO2)</pre>	see note*
J47418	TrGJAroC	$MCPDKETENE + h\nu \rightarrow CO_2 + CO + 2 HO_2 + C4MDIAL$	j_KETENE	see note*
J47419	TrGJAroCN	$DNCRES + h\nu \rightarrow HONO + MNCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J47420	TrGJAroCN	MNCPDKETENE + $h\nu$ \rightarrow CO_2 + CO + 2 HO_2 +	j_KETENE	see note*
		NC4MDCO2HN		
J47421	TrGJAroC	$MCATEC1OOH + h\nu \rightarrow MCATEC1O + OH$	jx(ip_CH3OOH)	Rickard and Pascoe (2009)
J47422	TrGJAroCN	$NPTLQOOH + h\nu \rightarrow C7CO4DB + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47423	TrGJAroC	$PTLQOOH + h\nu \rightarrow C6CO2OHCO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47424	TrGJAroCN	$NCRES1OOH + h\nu \rightarrow NCRES1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47425	TrGJAroCN	MNNCATCOOH + $h\nu \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47426	TrGJAroCN	MNCATECOOH + h ν \rightarrow NC4MDCO2HN + HCOCO ₂ H + HO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47427	TrGJAroC	$C7CO4DB + h\nu \rightarrow C5CO2DBCO3 + HO_2 + CO$	<pre>jx(ip_MGLYOX)*2.</pre>	Rickard and Pascoe (2009)
J47428	TrGJAroCN	NDNCRESOOH + $h\nu \rightarrow NC4MDCO2HN + HNO_3 + CO + CO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47429	TrGJAroCN	DNCRESOOH + h $\nu \rightarrow$ NC4MDCO2HN + HCOCO ₂ H + NO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47430	TrGJAroC	C6COOHCO3H + h ν \rightarrow C5134CO2OH + HO ₂ + CO + CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48200	TrGJTerC	$C86OOH + h\nu \rightarrow C511O2 + CH_3COCH_3 + OH$	<pre>jx(ip_CH300H)+ jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J48201	TrGJTerC	$C812OOH + h\nu \rightarrow C813O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48202	TrGJTerC	$C813OOH + h\nu \rightarrow CH_3COCH_3 + C512O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J48203	TrGJTerC	$C721CHO + h\nu \rightarrow C721O2 + CO + HO_2$	<pre>jx(ip_HOCH2CHO)</pre>	Rickard and Pascoe (2009)
J48204	TrGJTerC	$C721CO3H + h\nu \rightarrow C721O2 + CO_2 + OH$	jx(ip_CH3OOH)	Rickard and Pascoe (2009)
J48205	TrGJTerC	$C8BCOOH + h\nu \rightarrow C89O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48206	TrGJTerC	$C89OOH + h\nu \rightarrow C810O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J48207	TrGJTerCN	$C89NO3 + h\nu \rightarrow C810O2 + NO_2$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J48208	TrGJTerC	$C810OOH + h\nu \rightarrow CH_3COCH_3 + C514O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J48209	TrGJTerCN	$C810NO3 + h\nu \rightarrow CH_3COCH_3 + C514O2 + NO_2$	2.84*j_IC3H7NO3+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J48210	TrGJTerCN	$C8BCNO3 + h\nu \rightarrow C89O2 + NO_2$	j_IC3H7NO3	Rickard and Pascoe (2009)
J48211	TrGJTerC	$C85OOH + h\nu \rightarrow C86O2 + OH$	<pre>jx(ip_CH300H)+j_ACETOL</pre>	Rickard and Pascoe (2009)
J48400	TrGJAroC	$STYRENOOH + h\nu \rightarrow HO_2 + HCHO + BENZAL + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J49200	TrGJTerC	$C96OOH + h\nu \rightarrow C97O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J49201	TrGJTerC	$C97OOH + h\nu \rightarrow C98O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J49202	TrGJTerC	$C98OOH + h\nu \rightarrow C614O2 + CH_3COCH_3 + OH$	(jx(ip_CH300H)+2.15*jx(ip_ MGLYOX))	Rickard and Pascoe (2009)
J49203a	$\operatorname{TrGJTerC}$	$NORPINAL + h\nu \rightarrow C85O2 + CO + HO_2$	jx(ip_PINAL2HCO)	Rickard and Pascoe (2009), Sander et al. (2019)
J49203b	TrGJTerC	$NORPINAL + h\nu \rightarrow NORPINENOL$	<pre>jx(ip_PINAL2ENOL)</pre>	Sander et al. (2019), Andrews et al. (2012)
J49204	TrGJTerC	$C85CO3H + h\nu \rightarrow C85O2 + CO_2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J49205	TrGJTerC	$C89CO2H + h\nu \rightarrow .8 \ C811CO3 + .2 \ C89O2 + .2 \ CO_2 + HO_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J49206	TrGJTerC	$C89CO3H + h\nu \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J49207	TrGJTerC	$C811CO3H + h\nu \rightarrow C811O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J49208	TrGJTerC	$NOPINDOOH + h\nu \rightarrow C89CO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40200	TrGJTerC	$LAPINABOOH + h\nu \rightarrow PINAL + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40201	TrGJTerC	MENTHEN6ONE + $h\nu \rightarrow RO6R1O2 + OH$	jx(ip_CH300H)	Vereecken et al. (2007)
J40202	TrGJTerC	$2OHMENTHEN6ONE + h\nu \rightarrow 10 LCARBON + OH$	jx(ip_CH300H)	Vereecken et al. (2007)
J40203a	TrGJTerC	$PINAL + h\nu \rightarrow C96O2 + CO + HO_2$	jx(ip_PINAL2HCO)	Rickard and Pascoe (2009)
J40203b	TrGJTerC	$PINAL + h\nu \rightarrow PINEOL$	jx(ip_PINAL2ENOL)	Sander et al. (2019), Andrews et al. (2012)*
J40204	TrGJTerC	PERPINONIC + $h\nu \rightarrow C96O2 + CO_2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J40205	TrGJTerC	$PINALOOH + h\nu \rightarrow C106O2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J40206	TrGJTerCN	$PINALNO3 + h\nu \rightarrow C106O2 + NO_2$	j_IC3H7NO3+jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J40207	TrGJTerC	$C106OOH + h\nu \rightarrow C716O2 + CH_3COCH_3 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J40208	TrGJTerCN	$C106NO3 + h\nu \rightarrow C716O2 + CH_3COCH_3 + NO_2$	j_IC3H7NO3+ jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J40209	TrGJTerC	$C109OOH + h\nu \rightarrow C89CO3 + HCHO + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J40210	TrGJTerC	$C109CO + h\nu \rightarrow C89CO3 + CO + HO_2$	<pre>jx(ip_MGLYOX)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J40211	TrGJTerCN	$LNAPINABOOH + h\nu \rightarrow PINAL + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40212	TrGJTerC	$BPINAOOH + h\nu \rightarrow NOPINONE + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40213	TrGJTerCN	LNBPINABOOH + $h\nu \rightarrow NOPINONE + HCHO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40214	TrGJTerCN	$ROO6R1NO3 + h\nu \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	2.84*j_IC3H7NO3+jx(ip_CH3OOH)	Sander et al. (2019)
J40215	TrGJTerCN	$RO6R1NO3 + h\nu \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	Sander et al. (2019)
J6000	StTrGJCl	$\text{Cl}_2 + \text{h}\nu \rightarrow \text{Cl} + \text{Cl}$	jx(ip_Cl2)	Sander et al. (2014)
J6100	StTrGJCl	$\text{Cl}_2\text{O}_2 + \text{h}\nu \to 2 \text{ Cl}$	jx(ip_Cl202)	Sander et al. (2014)
J6101	StTrGJCl	$OClO + h\nu \rightarrow ClO + O(^{3}P)$	jx(ip_OC10)	Sander et al. (2014)
J6200	StGJCl	$\mathrm{HCl} + \mathrm{h}\nu \to \mathrm{Cl} + \mathrm{H}$	jx(ip_HCl)	Sander et al. (2014)
J6201	StTrGJCl	$HOCl + h\nu \rightarrow OH + Cl$	jx(ip_HOCl)	Sander et al. (2014)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J6300	TrGJClN	$CINO_2 + h\nu \rightarrow Cl + NO_2$	jx(ip_C1NO2)	Sander et al. (2014)
J6301a	StTrGJClN	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{Cl} + \text{NO}_3$	<pre>jx(ip_ClNO3)</pre>	Sander et al. (2014)
J6301b	StTrGJClN	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{ClO} + \text{NO}_2$	jx(ip_ClONO2)	Sander et al. (2014)
J6400	StGJCl	$CH_3Cl + h\nu \rightarrow Cl + CH_3$	jx(ip_CH3C1)	Sander et al. (2014)
J6401	StGJCl	$\mathrm{CCl}_4 + \mathrm{h}\nu \to \mathrm{LCARBON} + 4 \mathrm{Cl}$	<pre>jx(ip_CC14)</pre>	Sander et al. (2014)
J6402	StGJCCl	$CH_3CCl_3 + h\nu \rightarrow 2 LCARBON + 3 Cl$	<pre>jx(ip_CH3CCl3)</pre>	Sander et al. (2014)
J6500	StGJClF	$CFCl_3 + h\nu \rightarrow LCARBON + LFLUORINE + Cl + 2$	jx(ip_CFCl3)	Sander et al. $(2014)^*$
		LCHLORINE		
J6501	StGJClF	$CF_2Cl_2 + h\nu \rightarrow LCARBON + 2 LFLUORINE + Cl +$	jx(ip_CF2C12)	Sander et al. $(2014)^*$
		LCHLORINE		
J7000	StTrGJBr	$Br_2 + h\nu \rightarrow Br + Br$	jx(ip_Br2)	Sander et al. (2014)
J7100	StTrGJBr	$BrO + h\nu \rightarrow Br + O(^{3}P)$	jx(ip_Br0)	Sander et al. (2014)
J7200	StTrGJBr	$HOBr + h\nu \rightarrow Br + OH$	jx(ip_HOBr)	Sander et al. (2014)
J7300	TrGJBrN	$BrNO_2 + h\nu \rightarrow Br + NO_2$	<pre>jx(ip_BrN02)</pre>	Sander et al. (2014)
J7301	StTrGJBrN	$\rm BrNO_3 + h\nu \rightarrow .85~Br + .85~NO_3 + .15~BrO + .15~NO_2$	<pre>jx(ip_BrN03)</pre>	Sander et al. $(2014)^*$
J7400	StGJBr	$CH_3Br + h\nu \rightarrow Br + CH_3$	jx(ip_CH3Br)	Sander et al. (2014)
J7401	TrGJBr	$CH_2Br_2 + h\nu \rightarrow LCARBON + 2 Br$	jx(ip_CH2Br2)	Sander et al. (2014)
J7402	TrGJBr	$CHBr_3 + h\nu \rightarrow LCARBON + 3 Br$	<pre>jx(ip_CHBr3)</pre>	Sander et al. (2014)
J7500	StGJBrF	$CF_3Br + h\nu \rightarrow LCARBON + 3 LFLUORINE + Br$	jx(ip_CF3Br)	Sander et al. (2014)
J7600	StTrGJBrCl	$BrCl + h\nu \rightarrow Br + Cl$	<pre>jx(ip_BrCl)</pre>	Sander et al. (2014)
J7601	StGJBrClF	$CF_2ClBr + h\nu \rightarrow LCARBON + 2 LFLUORINE + Br + Cl$	<pre>jx(ip_CF2ClBr)</pre>	Sander et al. (2014)
J7602	TrGJBrCl	$CH_2ClBr + h\nu \rightarrow LCARBON + Br + Cl$	jx(ip_CH2C1Br)	Sander et al. (2014)
J7603	TrGJBrCl	$CHCl_2Br + h\nu \rightarrow LCARBON + Br + 2 Cl$	<pre>jx(ip_CHCl2Br)</pre>	Sander et al. (2014)
J7604	TrGJBrCl	$CHClBr_2 + h\nu \rightarrow LCARBON + 2 Br + Cl$	<pre>jx(ip_CHClBr2)</pre>	Sander et al. (2014)
J8000	TrGJI	$I_2 + h\nu \rightarrow I + I$	jx(ip_I2)	Sander et al. (2014)
J8100	TrGJI	$IO + h\nu \rightarrow I + O(^{3}P)$	<pre>jx(ip_I0)</pre>	Sander et al. (2014)
J8200	TrGJI	$\mathrm{HOI} + \mathrm{h} \nu \to \mathrm{I} + \mathrm{OH}$	<pre>jx(ip_HOI)</pre>	Sander et al. (2014)
J8300	TrGJIN	$\mathrm{INO}_2 + \mathrm{h} u ightarrow \mathrm{I} + \mathrm{NO}_2$	<pre>jx(ip_IN02)</pre>	Sander et al. (2014)
J8301	TrGJIN	$\mathrm{INO_3} + \mathrm{h} \nu \to \mathrm{I} + \mathrm{NO_3}$	jx(ip_INO3)	Sander et al. (2014)
J8400	TrGJI	$\mathrm{CH_2I_2} + \mathrm{h}\nu \rightarrow 2\ \mathrm{I} + 2\ \mathrm{HO_2} + \mathrm{CO}$	jx(ip_CH2I2)	Sander et al. (2014)
J8401	TrGJI	$\mathrm{CH_3I} + \mathrm{h}\nu \to \mathrm{I} + \mathrm{CH_3}$	jx(ip_CH3I)	Sander et al. (2014)
J8402	TrGJCI	$CH_3CHICH_3 + h\nu \rightarrow 2 LCARBON + I + CH_3$	jx(ip_C3H7I)	Sander et al. (2014)
J8403	TrGJClI	$\mathrm{CH_2CII} + \mathrm{h}\nu \to \mathrm{I} + \mathrm{Cl} + 2~\mathrm{HO_2} + \mathrm{CO}$	jx(ip_CH2ClI)	Sander et al. (2014)
J8600	TrGJClI	$ICl + h\nu \rightarrow I + Cl$	<pre>jx(ip_IC1)</pre>	Sander et al. (2014)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J8700	TrGJBrI	$IBr + h\nu \rightarrow I + Br$	jx(ip_IBr)	Sander et al. (2014)
PH (aqueous)				
PH3200_a01	TrAa01JN	$NO_3^-(aq) + h\nu \rightarrow NO_2(aq) + OH(aq) + OH^-(aq)$	xaer(01)*jx(ip_NO2) * 1.4E-4	see note*
PH10200_a01	TrAa01JHg	$Hg(OH)_2(aq) + h\nu \rightarrow Hg(aq)$	<pre>xaer(01)*6E-5*jx(ip_NO2)</pre>	see note*
PH11000_a01	TrAa01JFe	$FeOH^{2+}(aq) + h\nu \rightarrow Fe^{2+}(aq) + OH(aq)$	xaer(01)*4.51E-3*0.312	Herrmann et al. (2000)
PH11001_a01	TrAa01JFe	$\operatorname{Fe}(\operatorname{OH})_{2}^{+}(\operatorname{aq}) + \operatorname{h}\nu \to \operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{OH}(\operatorname{aq}) + \operatorname{OH}^{-}(\operatorname{aq})$	xaer(01)*5.77E-3*0.255	Herrmann et al. (2000)
PH11003_a01	TrAa01JFeS	$FeSO_4^+(aq) + h\nu \to Fe^{2+}(aq) + SO_4^-(aq)$	xaer(01)*6.43E-3*7.9E-3	Herrmann et al. (2000)

j-values are calculated with an external module (e.g., JVAL) and then supplied to the MECCA chemistry.

Values that originate from the Master Chemical Mechanism (MCM) by Rickard and Pascoe (2009) are translated according in the following way:

 $j(11) \rightarrow jx(ip_COH2)$

 $j(12) \rightarrow jx(ip_CHOH)$

 $j(15) o jx(ip_HOCH2CH0)$

 $j(18) \rightarrow jx(ip_MACR)$

 $j(22) \rightarrow jx(ip_ACETOL)$

 $j(23)+j(24) \rightarrow jx(ip_MVK)$

 $j(31)+j(32)+j(33) \rightarrow jx(ip_GLYOX)$

 $j(34) \rightarrow jx(ip_MGLYOX)$

 $j(41) \rightarrow jx(ip_CH300H)$

 $i(53) \rightarrow i(isopropyl nitrate)$

 $j(54) \rightarrow j(isopropyl nitrate)$

 $j(55) \rightarrow j(isopropyl nitrate)$

 $j(56)+j(57) \rightarrow jx(ip_NOA)$

Specific notes

J41003: CH₃- and CH₂-channels are considered only and with their branching ratios being 0.42 and 0.48,

respectively (Gans et al., 2011). CH-production is neglected. CH₂ is assumed to react only with O2 yielding 1.44 H₂ + 0.18 HCHO + 0.18 O(3 P) + 0.33 OH + 0.33 HO₂ + 0.44 CO₂ + 0.38 CO + 0.05 H₂O as assumed in the WACCM model by J. Orlando (Doug Kinnison, pers. comm. with D. Taraborrelli).

J41006: product distribution as for HNO4

J42004: Quantum yields from Burkholder et al. (2015).

J42005a: Quantum yields from Burkholder et al. (2015).

J42005b: Quantum yields from Burkholder et al. (2015).

J42005c: Quantum yields from Burkholder et al. (2015).

J42007: It is assumed that J(PHAN) is the same as J(PAN).

J42017: Enhancement of j according to Müller et al. (2014).

J42020: It is assumed that $j(NO_3CH2CHO)$ is the same as j(PAN).

J42021: In analogy to what is assumed for $CH_3O_2NO_2$ photolysis as in (Sander et al., 2014).

J43002: Following von Kuhlmann et al. (2003), we use $j(CH_3COCH_2OH) = 0.11*jx(ip_CHOH)$. As an additional factor, the quantum yield of 0.65 is taken from Orlando et al. (1999a).

J43006: Following von Kuhlmann et al. (2003), we use $J(iC_3H_7ONO_2) = 3.7*jx(ip_PAN)$.

J43018: One third of the acetal dehyde channel is considered to be CH2CHOH according to Hjorth (2002) EUPHORE Report.

J43024: Assuming $J(C_3H_7ONO_2) = 0.59 \times J(iC_3H_7ONO_2)$, consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J43025a: Photolysis frequencies very similar to the ones of CH_3CHO .

 $\tt J43025b:$ Photolysis frequencies very similar to the ones of $\rm CH_3CHO.$

J43400: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

J44004: It is assumed that J(BIACET) is 2.15 times larger than J(MGLYOX), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44005a: It is assumed that J(LC4H9NO3) is the same as $J(iC_3H_7ONO_2)$.

as $J(iC_3H_7ONO_2)$.

J44006: It is assumed that J(MPAN) is the same as J(PAN).

J44009: It is assumed that J(MACROOH) is 2.77 times larger than J(HOCH₂CHO), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44010: It is assumed that J(MACROH) is 2.77 times larger than J(HOCH₂CHO), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

 $\tt J44015:$ It is assumed that $\tt J(BIACETOH)$ is 2.15 times larger than J(MGLYOX), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44017a: CO-channel yielding CH₃COCH which upon reaction with O₂ produces an excited Criegee Intermediate assumed to be similar to MGLOOA in MCM. MGLOOA is produced also in other reactions and is substituted by its decomposition products. Furthermore, the stabilized Criegge Intermediate is assumed to solely react with water.

J44025: J values only for the secondary nitrate.

J44026: Like for LMEKNO3 photolysis

J44027: 2.84*J_IC3H7NO3 like for other tertiary alkyl nitrates (see J4505). Enhancement of J according to Müller et al. (2014).

J44037b: Channel which produces just vinvl alcohol and not a larger enol via keto-enol phototautomerization.

J44043: The resulting vinyl peroxy radical is assumed to mostly form with HO₂ a labile hydroperoxide (see ketene formation). The products are further simplified. HO2 + 0.4 TLFUONE

J44005b: It is assumed that J(LC4H9NO3) is the same J44044: 1.5-H-shift for the resulting vinvl peroxy radical assumed to be dominant.

J44046a: Simplified oxidation.

J44400b: KDEC MALDIALO \rightarrow GLYOX + GLYOX + HO2

J44401: KDEC BZFUO \rightarrow CO14O3CHO + HO2

J44403: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2

J44404b: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO

J44407: KDEC MALANHYO \rightarrow HCOCOHCO3

J44414: KDEC MECOACETO \rightarrow CH3CO3 + HCHO

J45003: It is assumed that $J(LISOPACNO3) = 0.59 \times$ J(iC₃H₇ONO₂), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J45005: It is assumed that $J(ISOPBNO3) = 2.84 \times$ J(iC₃H₇ONO₂), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J45007: It is assumed that J(ISOPDNO3) is the same as $J(iC_3H_7ONO_2)$.

J45009: 0.59*J_IC3H7NO3 like for other primary alkyl nitrates (see J4503). Enhancement of J according to Müller et al. (2014).

J45015: Consistent with the MCM (Rickard and Pascoe, 2009), we assume that J(HCOC5) is half as large as J(MVK). With exeption of HOCH2CO the products of MACO2 decomposition without CO₂.

J45032: approximation with 4-oxo-pentenal photolysis combining results of Thner et al(2004) and Xiang et al(2007)

J45402: KDEC C5DIALO \rightarrow MALDIAL + CO + HO2 J45407: KDEC TLFUONE $\rightarrow 0.6$ C5CO14O2 + 0.6

J45410: KDEC MMALANHYO \rightarrow CO2H3CO3

J45411: KDEC C5DICARBO → MGLYOX + GLYOX + HO2

J45412: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

J45414: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + .17 MGLYOX + .17 HO2 + .17 CO + .17CO2

J45415: KDEC TLFUO \rightarrow ACCOMECHO + HO2

J46400: KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

J46403: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

J46404: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

J46405: new channel created for nitrophenol decomposition

J46406: new channel created for nitrophenol decomposition

J46412: KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2

 $KDEC NCATECO \rightarrow NC4DCO2H +$ J46415: HCOCO2H + HO2

J46416: KDEC PBZQO \rightarrow C5CO2OHCO3

J46418: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

J46419: KDEC NBZQO \rightarrow C6CO4DB + NO2

KDEC DNPHENO → NC4DCO2H + J46422: HCOCO2H + NO2

J46425: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL + .5GLYOX + .5 HO2 + .5 C3DIALO2 + .5 C32OH13CO

J46429: new channel

BENZAL + HO2

J47402: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2

J47404: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MG-LYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB +0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

J47405: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MG-LYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB +0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

J47407: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

J47408a: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

J47408b: KDEC NCRESO \rightarrow C5CO14OH + GLYOX HNO3 + CO + CO + NO2 + NO2

J47409: Using J for 3-methyl-2-nitrophenol.

J47401: KROPRIM*O2 fast reaction C6H5CH2O = J47412: KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5HO2

J47417: Using J for 3-methyl-2-nitrophenol.

J47418: new channel

J47419: Using J for 3-methyl-2-nitrophenol.

J47420: new channel

J47422: KDEC NPTLQO \rightarrow C7CO4DB + NO2

J47423: KDEC PTLQO \rightarrow C6CO2OHCO3

J47425: KDEC MNNCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2

J47426: KDEC MNCATECO \rightarrow NC4MDCO2H +HCOCO2H + HO2

J47428: KDEC NDNCRESO \rightarrow NC4MDCO2H +

J47429: KDEC DNCRESO \rightarrow NC4MDCO2H +HCOCO2H + NO2

J48400: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

J40203b: Substituted vinvl alcohol in analogy to CH₃CHO photolysis.

J6500: Only 1 Cl atom is produced (Felder and Demuth, 1993).

J6501: Only 1 Cl atom is produced in analogy to $CFCl_3$.

J7301: The quantum yields are recommended by Burkholder et al. (2015) for $\lambda > 300$ nm and used here for the entire spectrum.

PH3200_a01: Scaled to J(NO₂) so that its lifetime is about 10.5 days, as suggested by Zellner et al. (1990).

PH10200_a01: Scaled to J(NO₂) so that it produces about 3.0×10^{-7} .

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H1000f_a01	TrAa01Sc	$O_2 \to O_2(aq)$	k_exf(01,ind_02)	see general notes*
H1000b_a01	TrAa01Sc	$O_2(aq) \rightarrow O_2$	k_exb(01,ind_02)	see general notes*
H1001f_a01	TrAa01MblScScm	$O_3 \rightarrow O_3(aq)$	k_exf(01,ind_03)	see general notes*
H1001b_a01	TrAa01MblScScm	$O_3(aq) \rightarrow O_3$	k_exb(01,ind_03)	see general notes*
H2100f_a01	TrAa01Sc	$OH \rightarrow OH(aq)$	k_exf(01,ind_OH)	see general notes*
H2100b_a01	TrAa01Sc	$OH(aq) \rightarrow OH$	k_exb(01,ind_OH)	see general notes*
H2101f_a01	TrAa01Sc	$\mathrm{HO}_2 \to \mathrm{HO}_2(\mathrm{aq})$	$k_{exf}(01, ind_{H}02)$	see general notes*
H2101b_a01	TrAa01Sc	$\mathrm{HO}_2(\mathrm{aq}) \to \mathrm{HO}_2$	k_exb(01,ind_HO2)	see general notes*
H2102f_a01	TrAa01MblScScm	$\mathrm{H_2O_2} \to \mathrm{H_2O_2(aq)}$	k_exf(01,ind_H202)	see general notes*
H2102b_a01	TrAa01MblScScm	$\mathrm{H_2O_2(aq)} \rightarrow \mathrm{H_2O_2}$	$k_{exb}(01, ind_{H202})$	see general notes*
H3101f_a01	TrAa01ScN	$NO_2 \rightarrow NO_2(aq)$	k_exf(01,ind_NO2)	see general notes*
H3101b_a01	TrAa01ScN	$NO_2(aq) \rightarrow NO_2$	k_exb(01,ind_NO2)	see general notes*
H3102f_a01	TrAa01ScN	$NO_3 \rightarrow NO_3(aq)$	k_exf(01,ind_NO3)	see general notes*
H3102b_a01	TrAa01ScN	$NO_3(aq) \rightarrow NO_3$	k_exb(01,ind_NO3)	see general notes*
H3200f_a01	TrAa01MblScScmN	$NH_3 \rightarrow NH_3(aq)$	k_exf(01,ind_NH3)	see general notes*
H3200b_a01	TrAa01MblScScmN	$NH_3(aq) \rightarrow NH_3$	k_exb(01,ind_NH3)	see general notes*
H3201_a01	TrAa01MblScScmN	$N_2O_5 \to HNO_3(aq) + HNO_3(aq)$	k_exf_N205(01)*C(ind_H20_a01)	Behnke et al. (1994), Behnke et al. (1997)
H3202f_a01	TrAa01ScN	$HONO \rightarrow HONO(aq)$	k_exf(01,ind_HONO)	see general notes*
H3202b_a01	TrAa01ScN	$HONO(aq) \rightarrow HONO$	k_exb(01,ind_HONO)	see general notes*
H3203f_a01	TrAa01MblScScmN	$HNO_3 \rightarrow HNO_3(aq)$	k_exf(01,ind_HN03)	see general notes*
H3203b_a01	TrAa01MblScScmN	$HNO_3(aq) \rightarrow HNO_3$	k_exb(01,ind_HN03)	see general notes*
H3204f_a01	TrAa01ScN	$HNO_4 \rightarrow HNO_4(aq)$	k_exf(01,ind_HNO4)	see general notes*
H3204b_a01	TrAa01ScN	$\mathrm{HNO}_4(\mathrm{aq}) \to \mathrm{HNO}_4$	k_exb(01,ind_HNO4)	see general notes*
H4100f_a01	TrAa01MblScScm	$\mathrm{CO}_2 \to \mathrm{CO}_2(\mathrm{aq})$	k_exf(01,ind_C02)	see general notes*
H4100b_a01	TrAa01MblScScm	$\mathrm{CO}_2(\mathrm{aq}) o \mathrm{CO}_2$	k_exb(01,ind_CO2)	see general notes*
H4101f_a01	TrAa01ScScm	$\text{HCHO} \to \text{HCHO}(\text{aq})$	k_exf(01,ind_HCHO)	see general notes*
H4101b_a01	TrAa01ScScm	$HCHO(aq) \rightarrow HCHO$	k_exb(01,ind_HCHO)	see general notes*
H4102f_a01	TrAa01Sc	$CH_3O_2 \rightarrow CH_3OO(aq)$	k_exf(01,ind_CH302)	see general notes*
H4102b_a01	TrAa01Sc	$CH_3OO(aq) \rightarrow CH_3O_2$	k_exb(01,ind_CH302)	see general notes*
H4103f_a01	TrAa01ScScm	$HCOOH \rightarrow HCOOH(aq)$	k_exf(01,ind_HCOOH)	see general notes*
H4103b_a01	TrAa01ScScm	$HCOOH(aq) \rightarrow HCOOH$	k_exb(01,ind_HCOOH)	see general notes*
H4104f_a01	TrAa01ScScm	$CH_3OOH \rightarrow CH_3OOH(aq)$	$k_{exf}(01, ind_{CH300H})$	see general notes*
H4104b_a01	TrAa01ScScm	$CH_3OOH(aq) \rightarrow CH_3OOH$	k_exb(01,ind_CH300H)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H6000f_a01	TrAa01MblScCl	$\text{Cl}_2 \to \text{Cl}_2(\text{aq})$	k_exf(01,ind_Cl2)	see general notes*
H6000b_a01	TrAa01MblScCl	$\mathrm{Cl}_2(\mathrm{aq}) \to \mathrm{Cl}_2$	k_exb(01,ind_Cl2)	see general notes*
H6200f_a01	TrAa01MblScScmCl	$HCl \rightarrow HCl(aq)$	k_exf(01,ind_HCl)	see general notes*
H6200b_a01	Tr Aa01 Mbl Sc Scm Cl	$HCl(aq) \rightarrow HCl$	k_exb(01,ind_HCl)	see general notes*
H6201f_a01	TrAa01MblScCl	$HOCl \rightarrow HOCl(aq)$	k_exf(01,ind_HOC1)	see general notes*
H6201b_a01	TrAa01MblScCl	$HOCl(aq) \rightarrow HOCl$	k_exb(01,ind_HOC1)	see general notes*
H6300_a01	TrAa01MblClN	$N_2O_5 + Cl^-(aq) \rightarrow ClNO_2 + NO_3^-(aq)$	k_exf_N2O5(01) * 5.E2	Behnke et al. (1994), Behnke et al. (1997)
H6301_a01	TrAa01MblClN	$ClNO_3 \rightarrow HOCl(aq) + HNO_3(aq)$	$k_exf_ClN03(01) * C(ind_H20_a01)$	see general notes*
H6302_a01	TrAa01MblClN	$\text{ClNO}_3 + \text{Cl}^-(\text{aq}) \rightarrow \text{Cl}_2(\text{aq}) + \text{NO}_3^-(\text{aq})$	$k_exf_Cln03(01) * 5.E2$	see general notes*
H7000f_a01	TrAa01MblScBr	$\mathrm{Br}_2 \to \mathrm{Br}_2(\mathrm{aq})$	k_exf(01,ind_Br2)	see general notes*
H7000b_a01	TrAa01MblScBr	$\mathrm{Br}_2(\mathrm{aq}) \to \mathrm{Br}_2$	k_exb(01,ind_Br2)	see general notes*
H7200f_a01	Tr Aa 01 Mbl Sc Scm Br	$\mathrm{HBr} \to \mathrm{HBr}(\mathrm{aq})$	k_exf(01,ind_HBr)	see general notes*
H7200b_a01	Tr Aa 01 Mbl Sc Scm Br	$\mathrm{HBr}(\mathrm{aq}) \to \mathrm{HBr}$	k_exb(01,ind_HBr)	see general notes*
H7201f_a01	TrAa01MblScBr	$HOBr \rightarrow HOBr(aq)$	k_exf(01,ind_HOBr)	see general notes*
H7201b_a01	TrAa01MblScBr	$HOBr(aq) \rightarrow HOBr$	k_exb(01,ind_HOBr)	see general notes*
H7300_a01	TrAa01MblBrN	$N_2O_5 + Br^-(aq) \rightarrow BrNO_2 + NO_3^-(aq)$	k_exf_N2O5(01) * 3.E5	Behnke et al. (1994), Behnke et al. (1997)
H7301_a01	TrAa01MblBrN	$BrNO_3 \rightarrow HOBr(aq) + HNO_3(aq)$	k_exf_BrN03(01) * C(ind_H20_a01)	see general notes*
H7302_a01	TrAa01MblBrN	$BrNO_3 + Br^-(aq) \rightarrow Br_2(aq) + NO_3^-(aq)$	k_exf_BrNO3(01) * 3.E5	see general notes*
H7600f_a01	TrAa01MblScBrCl	$BrCl \to BrCl(aq)$	k_exf(01,ind_BrCl)	see general notes*
H7600b_a01	TrAa01MblScBrCl	$BrCl(aq) \to BrCl$	k_exb(01,ind_BrCl)	see general notes*
H7601_a01	TrAa01MblBrClN	$ClNO_3 + Br^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	$k_exf_Cln03(01) * 3.E5$	see general notes*
H7602_a01	TrAa01MblBrClN	$BrNO_3 + Cl^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	k_exf_BrN03(01) * 5.E2	see general notes*
H8000f_a01	TrAa01ScI	$I_2 \rightarrow I_2(aq)$	k_exf(01,ind_I2)	see general notes*
H8000b_a01	TrAa01ScI	$I_2(aq) \rightarrow I_2$	k_exb(01,ind_I2)	see general notes*
H8100f_a01	TrAa01MblScI	$IO \rightarrow IO(aq)$	$k_{exf}(01, ind_{I0})$	see general notes*
H8100b_a01	TrAa01MblScI	$IO(aq) \rightarrow IO$	k_exb(01,ind_I0)	see general notes*
H8101_a01	TrAa01I	$OIO \rightarrow HOI(aq) + HO_2(aq)$	$k_{exf}(01, ind_{0})$	see general notes*
H8102_a01	TrAa01I	$I_2O_2 \rightarrow HOI(aq) + H^+(aq) + IO_2^-(aq)$	k_exf(01,ind_I202)	see general notes*
H8200f_a01	TrAa01MblScI	$HOI \rightarrow HOI(aq)$	k_exf(01,ind_HOI)	see general notes*
H8200b_a01	TrAa01MblScI	$HOI(aq) \rightarrow HOI$	k_exb(01,ind_HOI)	see general notes*
H8201_a01	TrAa01MblScI	$\mathrm{HI} \to \mathrm{H}^+(\mathrm{aq}) + \mathrm{I}^-(\mathrm{aq})$	$k_{ m mt}({ m HI}) \cdot lwc$	see general notes*
H8202_a01	TrAa01ScI	$\mathrm{HIO_3} \rightarrow \mathrm{IO_3^-(aq)} + \mathrm{H^+(aq)}$	$k_{ m mt}({ m HIO_3}) \cdot lwc$	see general notes*
H8300_a01	TrAa01IN	$INO_2 \rightarrow HOI(aq) + HONO(aq)$	k_exf(01,ind_INO2)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H8301_a01	TrAa01MblIN	$INO_3 \rightarrow HOI(aq) + HNO_3(aq)$	k_exf(01,ind_INO3)	see general notes*
H8600f_a01	TrAa01MblScClI	$ICl \rightarrow ICl(aq)$	k_exf(01,ind_IC1)	see general notes*
H8600b_a01	TrAa01MblScClI	$ICl(aq) \rightarrow ICl$	k_exb(01,ind_IC1)	see general notes*
H8700f_a01	TrAa01MblScBrI	$\operatorname{IBr} \to \operatorname{IBr}(\operatorname{aq})$	k_exf(01,ind_IBr)	see general notes*
H8700b_a01	TrAa01MblScBrI	$IBr(aq) \rightarrow IBr$	k_exb(01,ind_IBr)	see general notes*
H9100f_a01	TrAa01MblScScmS	$SO_2 \to SO_2(aq)$	k_exf(01,ind_S02)	see general notes*
H9100b_a01	TrAa01MblScScmS	$\mathrm{SO}_2(\mathrm{aq}) o \mathrm{SO}_2$	$k_{exb}(01, ind_{S}02)$	see general notes*
H9200_a01	TrAa01MblScScmS	$H_2SO_4 \rightarrow H_2SO_4(aq)$	<pre>xnom7sulf*k_exf(01,ind_H2S04)</pre>	see general notes*
H9400f_a01	TrAa01CS	$DMSO \rightarrow DMSO(aq)$	k_exf(01,ind_DMSO)	see general notes*
H9400b_a01	TrAa01CS	$DMSO(aq) \rightarrow DMSO$	k_exb(01,ind_DMSO)	see general notes*
H9401_a01	TrAa01MblS	$CH_3SO_3H \rightarrow CH_3SO_3^-(aq) + H^+(aq)$	k_exf(01,ind_CH3SO3H)	see general notes*
H9402f_a01	TrAa01CS	$DMS \to DMS(aq)$	k_exf(01,ind_DMS)	see general notes*
H9402b_a01	TrAa01CS	$DMS(aq) \rightarrow DMS$	k_exb(01,ind_DMS)	see general notes*
H10000f_a01	TrAa01Hg	$\mathrm{Hg} \to \mathrm{Hg(aq)}$	k_exf(01,ind_Hg)	see general notes*
H10000b_a01	TrAa01Hg	$\mathrm{Hg(aq)} \to \mathrm{Hg}$	k_exb(01,ind_Hg)	see general notes*
H10100f_a01	TrAa01Hg	$\mathrm{HgO} \to \mathrm{HgO}(\mathrm{aq})$	k_exf(01,ind_HgO)	see general notes*
H10100b_a01	TrAa01Hg	$\mathrm{HgO}(\mathrm{aq}) \to \mathrm{HgO}$	k_exb(01,ind_HgO)	see general notes*
H10600f_a01	TrAa01ClHg	$HgCl_2 \to HgCl_2(aq)$	k_exf(01,ind_HgCl2)	see general notes*
H10600b_a01	TrAa01ClHg	$\mathrm{HgCl}_2(\mathrm{aq}) \to \mathrm{HgCl}_2$	k_exb(01,ind_HgCl2)	see general notes*
H10700f_a01	TrAa01BrHg	$HgBr_2 \to HgBr_2(aq)$	k_exf(01,ind_HgBr2)	see general notes*
H10700b_a01	TrAa01BrHg	$HgBr_2(aq) \to HgBr_2$	k_exb(01,ind_HgBr2)	see general notes*
H10701f_a01	TrAa01BrClHg	$ClHgBr \rightarrow ClHgBr(aq)$	<pre>k_exf(01,ind_ClHgBr)</pre>	see general notes*
H10701b_a01	TrAa01BrClHg	$ClHgBr(aq) \rightarrow ClHgBr$	<pre>k_exb(01,ind_ClHgBr)</pre>	see general notes*
H10702f_a01	TrAa01BrHg	$BrHgOBr \rightarrow BrHgOBr(aq)$	k_exf(01,ind_BrHgOBr)	see general notes*
H10702b_a01	TrAa01BrHg	$BrHgOBr(aq) \rightarrow BrHgOBr$	k_exb(01,ind_BrHgOBr)	see general notes*
H10703f_a01	TrAa01BrClHg	$ClHgOBr \rightarrow ClHgOBr(aq)$	k_exf(01,ind_ClHgOBr)	see general notes*
H10703b_a01	TrAa01BrClHg	$ClHgOBr(aq) \rightarrow ClHgOBr$	k_exb(01,ind_ClHgOBr)	see general notes*

and backward (k_exb) coefficients calculatedrate inmecca_aero_calc_k_ex inthe

ficients and Henry's law constants from chemprop (see and H7602, we define: chemprop.pdf).

$$k_{\rm exf}({\rm X}){=}\frac{k_{\rm mt}({\rm X})\times {\rm LWC}}{[{\rm H_2O}]+5\times 10^2[{\rm Cl^-}]+3\times 10^5[{\rm Br^-}]}$$

For uptake of X (X = N_2O_5 , ClNO₃, or BrNO₃) and Here, $k_{\rm mt} = {\rm mass}$ transfer coefficient, and LWC = liq $messy_mecca_aero.f90$ using accommodation coef- H6300, H6301, H6302, H7300, H7301, H7302, H7601, of X is only determined by k_{mt} . The factors only affect

subsequent reaction with H₂O, Cl⁻, and Br⁻ in H3201, uid water content of the aerosol. The total uptake rate

tions. The factor 5×10^2 was chosen such that the chlo- $5 \times 10^2/3 \times 10^5$ was chosen such that the reactions with for ClNO₃ and BrNO₃. ride reaction dominates over hydrolysis at about [Cl⁻] chloride and bromide are roughly equal for sea water

the branching between hydrolysis and the halide reactor the ratio $[H_2O]/[Cl^-]$ is less than 5×10^2 . The ratio measured for uptake of N_2O_5 . Here, they are also used > 0.1 M (see Fig. 3 in Behnke et al. (1997)), i.e. when composition (Behnke et al., 1994). These ratios were

Table 4: Heterogeneous reactions

#	labels	reaction	rate coefficient	reference
HET200	StHetN	$N_2O_5 + H_2O \rightarrow 2 \text{ HNO}_3$	khet_St(ihs_N2O5_H2O)	see general notes*
HET201	TrHetN	$N_2O_5 \to 2 NO_3^-(cs) + 2 H^+(cs)$	khet_Tr(iht_N2O5)	see general notes*
HET410	StHetCl	$HOCl + HCl \rightarrow Cl_2 + H_2O$	khet_St(ihs_HOC1_HC1)	see general notes*
HET420	StHetClN	$ClNO_3 + HCl \rightarrow Cl_2 + HNO_3$	khet_St(ihs_C1NO3_HC1)	see general notes*
HET421	StHetClN	$ClNO_3 + H_2O \rightarrow HOCl + HNO_3$	khet_St(ihs_C1NO3_H2O)	see general notes*
HET422	StHetClN	$N_2O_5 + HCl \rightarrow ClNO_2 + HNO_3$	khet_St(ihs_N2O5_HC1)	see general notes*
HET510	StHetBr	$HOBr + HBr \rightarrow Br_2 + H_2O$	khet_St(ihs_HOBr_HBr)	see general notes*
HET520	StHetBrN	$BrNO_3 + H_2O \rightarrow HOBr + HNO_3$	khet_St(ihs_BrNO3_H2O)	see general notes*
HET540	StHetBrClN	$ClNO_3 + HBr \rightarrow BrCl + HNO_3$	khet_St(ihs_C1NO3_HBr)	see general notes*
HET541	StHetBrClN	$BrNO_3 + HCl \rightarrow BrCl + HNO_3$	khet_St(ihs_BrNO3_HCl)	see general notes*
HET542	StHetBrCl	$HOCl + HBr \rightarrow BrCl + H_2O$	khet_St(ihs_HOC1_HBr)	see general notes*
HET543	StHetBrCl	$\mathrm{HOBr} + \mathrm{HCl} \rightarrow \mathrm{BrCl} + \mathrm{H_2O}$	khet_St(ihs_HOBr_HC1)	see general notes*
HET1001	StTrHetHg	$\mathrm{Hg} \to \mathrm{Hg}(\mathrm{cs})$	<pre>khet_Tr(iht_Hg) + khet_St(ihs_Hg)</pre>	see general notes*
HET1002	StTrHetHg	$HgO \to Hg(cs)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1003	StTrHetClHg	$HgCl \rightarrow Hg(cs) + LCHLORINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1004	StTrHetClHg	$HgCl_2 \rightarrow Hg(cs) + 2 LCHLORINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1005	StTrHetBrHg	$HgBr \rightarrow Hg(cs) + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1006	StTrHetBrHg	$HgBr_2 \rightarrow Hg(cs) + 2 LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1007	StTrHetBrClHg	$ClHgBr \rightarrow Hg(cs) + LCHLORINE + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1008	StTrHetBrHg	$BrHgOBr \rightarrow Hg(cs) + 2 LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1009	StTrHetBrClHg	$ClHgOBr \rightarrow Hg(cs) + LCHLORINE + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*

Heterogeneous reaction rates are calculated with an external module (e.g., MECCA_KHET) and then supplied to the MECCA chemistry (see www.messy-interface.org for details)

Table 5: Acid-base and other equilibria

#	labels	reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference
EQ20_a01	TrAa01Sc	$HO_2 \rightleftharpoons O_2^- + H^+$	1.6E-5		Weinstein-Lloyd and Schwartz (1991)
EQ21_a01	TrAa01MblScScm	$H_2O \rightleftharpoons H^{+} + OH^{-}$	1.0E-16	-6716	Chameides (1984)
EQ30_a01	TrAa01MblScScmN	$NH_4^+ \rightleftharpoons H^+ + NH_3$	5.88E-10	-2391	Chameides (1984)
EQ31_a01	TrAa01ScN	$HONO \rightleftharpoons H^+ + NO_2^-$	5.1E-4	-1260	Schwartz and White (1981)
EQ32_a01	TrAa01MblScScmN	$HNO_3 \rightleftharpoons H^+ + NO_3^-$	15	8700	Davis and de Bruin (1964)
EQ33_a01	TrAa01ScN	$HNO_4 \rightleftharpoons NO_4^- + H^+$	1.E-5		Warneck (1999)
EQ40_a01	TrAa01MblScScm	$CO_2 \rightleftharpoons H^+ + HCO_3^-$	4.3E-7	-913	Chameides (1984)*
EQ41_a01	TrAa01ScScm	$HCOOH \rightleftharpoons H^+ + HCOO^-$	1.8E-4		Weast (1980)
EQ60_a01	TrAa01Cl	$Cl_2^- \rightleftharpoons Cl + Cl^-$	7.3E-6		Yu (2004)
EQ61_a01	TrAa01MblScScmCl	$H\tilde{C}l \rightleftharpoons H^+ + Cl^-$	1.7E6	6896	Marsh and McElroy (1985)
EQ62_a01	TrAa01ScCl	$HOCl \rightleftharpoons H^+ + ClO^-$	3.2E-8		Lax (1969)
EQ70_a01	TrAa01Br	$Br_2^- \rightleftharpoons Br + Br^-$	2.54E-6	-2256	Liu et al. (2002)
EQ71_a01	Tr Aa 01 Mbl Sc Scm Br	$HBr \rightleftharpoons H^+ + Br^-$	1.0E9		Lax (1969)
EQ72_a01	TrAa01ScBr	$HOBr \rightleftharpoons H^+ + BrO^-$	2.3E-9	-3091	Kelley and Tartar (1956)*
EQ73_a01	TrAa01MblBrCl	$BrCl + Cl^- \rightleftharpoons BrCl_2^-$	3.8	1191	Wang et al. (1994)
EQ74_a01	TrAa01MblBrCl	$BrCl + Br^- \rightleftharpoons Br_2Cl^-$	1.8E4	7457	Wang et al. (1994)
EQ75_a01	TrAa01MblBrCl	$Br_2 + Cl^- \rightleftharpoons Br_2Cl^-$	1.3	0	Wang et al. (1994)
EQ76_a01	TrAa01MblBrCl	$Br^- + Cl_2 \rightleftharpoons BrCl_2^-$	4.2E6	14072	Wang et al. (1994)
EQ80_a01	TrAa01MblScClI	$ICl + Cl^- \rightleftharpoons ICl_2^-$	7.7E1		Wang et al. (1989)
EQ81_a01	TrAa01MblScBrI	$IBr + Br^- \rightleftharpoons IBr_2^-$	2.9E2		Troy and Margerum (1991)
EQ82_a01	TrAa01MblScBrClI	$ICl + Br^- \rightleftharpoons IBr + Cl^-$	3.3E2		see note*
EQ90_a01	TrAa01MblScScmS	$SO_2 \rightleftharpoons H^+ + HSO_3^-$	1.7E-2	2090	Chameides (1984)
EQ91_a01	TrAa01MblScScmS	$HSO_3^- \rightleftharpoons H^+ + SO_3^{2-}$	6.0E-8	1120	Chameides (1984)
EQ92_a01	TrAa01MblScScmS	$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-}$	1.2E-2	2720	Seinfeld and Pandis (1998)
EQ93_a01	${\rm TrAa01MblScScmS}$	$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$	1.0E3		Seinfeld and Pandis (1998)
EQ100_a01	TrAa01Hg	$\mathrm{Hg^{2+}} + \mathrm{OH^{-}} \rightleftharpoons \mathrm{HgOH^{+}}$	4.0E10		Ammann and Pöschl (2007)
EQ101_a01	TrAa01Hg	$HgOH^+ + OH^- \rightleftharpoons Hg(OH)_2$	1.58E11		Ammann and Pöschl (2007)
EQ102_a01	TrAa01ClHg	$Hg^{2+} + Cl^{-} \rightleftharpoons HgCl^{+}$	5.8E6		Ammann and Pöschl (2007)
EQ103_a01	TrAa01ClHg	$HgCl^+ + Cl^- \rightleftharpoons HgCl_2$	2.5E6		Ammann and Pöschl (2007)
EQ104_a01	TrAa01ClHg	$HgOH^+ + Cl^- \rightleftharpoons Hg(OH)Cl$	2.69E7		Ammann and Pöschl (2007)
EQ105_a01	TrAa01BrHg	$Hg^{2+} + Br^{-} \rightleftharpoons HgBr^{+}$	1.1E9		Raofie and Ariya (2004)
EQ106_a01	TrAa01BrHg	$HgBr^{+} + Br^{-} \rightleftharpoons HgBr_{2}$	2.5E8		Raofie and Ariya (2004)
EQ107_a01	TrAa01HgS	$\mathrm{Hg^{2+} + SO_3^{2-}} \rightleftharpoons \mathrm{HgSO_3}$	2.E13		van Loon et al. (2001)
EQ108_a01	TrAa01HgS	$HgSO_3 + SO_3^{2-} \rightleftharpoons Hg(SO_3)_2^{2-}$	1.E10		van Loon et al. (2001)

Table 5: Acid-base and other equilibria

#	labels	reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference
EQ110_a01	TrAa01Fe	$Fe^{3+} \rightleftharpoons FeOH^{2+} + H^{+}$	2.34E-3		de Laat and Le (2006)*
EQ111_a01	TrAa01Fe	$FeOH^{2+} \rightleftharpoons Fe(OH)_2^+ + H^+$	2E-4		de Laat and Le $(2006)^*$
EQ112_a01	TrAa01Fe	$Fe^{3+} + H_2O_2 \rightleftharpoons FeHO_2^{2+} + H^+$	3.1E-3		de Laat and Le (2006)
EQ113_a01	TrAa01Fe	$\text{FeOH}^{2+} + \text{H}_2\text{O}_2 \rightleftharpoons \text{Fe(OH)(HO}_2)^+ + \text{H}^+$	2E-4		de Laat and Le (2006)
EQ114_a01	TrAa01ClFe	$Fe^{3+} + Cl^{-} \rightleftharpoons FeCl^{2+}$	6.61		de Laat and Le $(2006)^*$
EQ115_a01	TrAa01ClFe	$FeCl^{2+} + Cl^{-} \rightleftharpoons FeCl_{2}^{+}$	1.6		de Laat and Le $(2006)^*$
EQ116_a01	TrAa01FeS	$Fe^{3+} + SO_4^{2-} \rightleftharpoons FeSO_4^+$	120		Brand and van Eldik (1995)*
EQ117_a01	TrAa01FeS	$FeOH^{2+} + HSO_3^- \rightleftharpoons FeSO_3^+$	8.25E2		Warneck (2018)*
EQ118_a01	TrAa01FeS	$Fe^{2+} + SO_3^- \rightleftharpoons FeSO_3^+$	1.6E7		Warneck (2018)

Specific notes

EQ40_a01: For $pK_a(CO_2)$, see also Dickson and Millero (1987).

EQ72_a01: For $pK_a(HOBr)$, see also Keller-Rudek et al. (1992).

EQ82_a01: Thermodynamic calculations on the IBr/ICl equilibrium according to the data tables from Wagman et al. (1982):

$$ICl + Br^- \rightleftharpoons IBr + Cl^-$$

-17.1 -103.96 = -4.2 -131.228

$$\frac{\Delta G}{[\text{kJ/mol}]} = -4.2 - 131.228 - (-17.1 - 103.96) = -14.368$$

$$K = \frac{[\mathrm{IBr}] \times [\mathrm{Cl}^{-}]}{[\mathrm{ICl}] \times [\mathrm{Br}^{-}]} = \exp\left(\frac{-\Delta G}{RT}\right) = \exp\left(\frac{14368}{8.314 \times 298}\right) = 330$$

This means we have equal amounts of IBr and ICl when the $[Cl^-]/[Br^-]$ ratio equals 330.

EQ110_a01: See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ111_a01: Equilibrium calculated from K_1 and K_2 in Tab. 1 of de Laat and Le (2006). Rate constant for back reaction assumed. See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ114_a01: See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ115_a01: Equilibrium calculated from K_{29} and K_{30} in Tab. 2 of de Laat and Le (2006). Rate constant for forward reaction assumed. See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ116_a01: Equilibrium at I=1 M. Rate constant for back reaction assumed.

EQ117_a01: Rate of equilibration assumed.

Table 6: Aqueous phase reactions

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A1000_a01	TrAa01Sc	$O_3 + O_2^- \rightarrow OH + OH^-$	1.5E9		Sehested et al. (1983)
A2100_a01	TrAa01Sc	$OH + O_2^- \rightarrow OH^-$	1.0E10		Sehested et al. (1968)
A2101_a01	TrAa01Sc	$\mathrm{OH} + \mathrm{OH} o \mathrm{H}_2\mathrm{O}_2$	5.5E9		Buxton et al. (1988)
A2102_a01	TrAa01Sc	$HO_2 + O_2^- \to H_2O_2 + OH^-$	1.0E8	-900	Christensen and Sehested (1988)
A2103_a01	TrAa01Sc	$\mathrm{HO_2} + \mathrm{OH} \rightarrow \mathrm{H_2O}$	7.1E9		Sehested et al. (1968)
A2104_a01	TrAa01Sc	$\mathrm{HO_2} + \mathrm{HO_2} ightarrow \mathrm{H_2O_2}$	9.7E5	-2500	Christensen and Sehested (1988)
A2105_a01	TrAa01Sc	$\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{HO_2}$	$2.7\mathrm{E}7$	-1684	Christensen et al. (1982)
A3100_a01	TrAa01ScN	$NO_2^- + O_3 \rightarrow NO_3^-$	5.0E5	-6950	Damschen and Martin (1983)
A3101_a01	TrAa01ScN	$NO_2 + NO_2 \rightarrow HNO_3 + HONO$	1.0E8		Lee and Schwartz (1981)
A3102_a01	TrAa01ScN	$NO_4^- \rightarrow NO_2^-$	8.0E1		Warneck (1999)
A3200_a01	TrAa01ScN	$NO_2 + HO_2 \rightarrow HNO_4$	1.8E9		Warneck (1999)
A3201_a01	TrAa01ScN	$NO_2^- + OH \rightarrow NO_2 + OH^-$	1.0E10		Wingenter et al. (1999)
A3202_a01	TrAa01ScN	$NO_3^- + OH^- \rightarrow NO_3^- + OH$	8.2E7	-2700	Exner et al. (1992)
A3203_a01	TrAa01ScN	$\mathrm{HONO} + \mathrm{OH} \rightarrow \mathrm{NO}_2$	1.0E10		Barker et al. (1970)
A3204_a01	TrAa01ScN	$\mathrm{HONO} + \mathrm{H_2O_2} + \mathrm{H^+} \rightarrow \mathrm{HNO_3} + \mathrm{H^+}$	4.6E3	-6800	Damschen and Martin (1983)
A4100_a01	TrAa01Sc	$\mathrm{CO_3^-} + \mathrm{O_2^-} \to \mathrm{HCO_3^-} + \mathrm{OH^-}$	6.5E8		Ross et al. (1992)
A4101_a01	TrAa01Sc	$\mathrm{CO_3^-} + \mathrm{H_2O_2} \rightarrow \mathrm{HCO_3^-} + \mathrm{HO_2}$	4.3E5		Ross et al. (1992)
A4102_a01	TrAa01Sc	$\mathrm{HCOO^-} + \mathrm{CO_3^-} \rightarrow 2~\mathrm{HCO_3^-} + \mathrm{HO_2}$	1.5 E5		Ross et al. (1992)
A4103_a01	TrAa01Sc	$\mathrm{HCOO^-} + \mathrm{OH} \rightarrow \mathrm{OH^-} + \mathrm{HO_2} + \mathrm{CO_2}$	3.1E9	-1240	Chin and Wine (1994)
A4104_a01	TrAa01Sc	$HCO_3^- + OH \rightarrow CO_3^-$	8.5E6		Ross et al. (1992)
A4105_a01	TrAa01Sc	$\text{HCHO} + \text{OH} \rightarrow \text{HCOOH} + \text{HO}_2$	7.7E8	-1020	Chin and Wine (1994)
A4106_a01	TrAa01Sc	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{HO}_2 + \mathrm{CO}_2$	1.1E8	-991	Chin and Wine (1994)
A4107_a01	TrAa01Sc	$\text{CH}_3\text{OO} + \text{O}_2^- \rightarrow \text{CH}_3\text{OOH} + \text{OH}^-$	$5.0\mathrm{E}7$		Jacob (1986)
A4108_a01	TrAa01Sc	$\text{CH}_3\text{OO} + \text{HO}_2 \rightarrow \text{CH}_3\text{OOH}$	4.3E5		Jacob (1986)
A4109_a01	TrAa01Sc	$\mathrm{CH_3OH} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{HO_2}$	9.7E8		Buxton et al. (1988)
A4110a_a01	TrAa01Sc	$\mathrm{CH_{3}OOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}OO}$	$2.7\mathrm{E}7$	-1715	Jacob (1986)
A4110b_a01	TrAa01Sc	$CH_3OOH + OH \rightarrow HCHO + OH$	1.1E7	-1715	Jacob (1986)
A6000_a01	TrAa01Cl	$Cl + Cl \rightarrow Cl_2$	8.8E7		Wu et al. (1980)
A6001_a01	TrAa01Cl	$\text{Cl}_2^- + \text{Cl}_2^- \to \text{Cl}_2 + 2 \text{Cl}^-$	3.5E9		Yu (2004)
A6100_a01	TrAa01Cl	$\text{Cl}^- + \text{O}_3 \to \text{ClO}^-$	3.0E-3		Hoigné et al. (1985)
A6101_a01	TrAa01Cl	$\text{Cl}_2 + \text{O}_2^- \to \text{Cl}_2^-$	1.0E9		Bjergbakke et al. (1981)
A6102_a01	TrAa01Cl	$Cl_{2}^{-} + O_{2}^{-} \rightarrow 2 Cl^{-}$	1.0E9		Jacobi (1996)*
A6200_a01	TrAa01Cl	$\text{Cl} \rightarrow \text{H}^+ + \text{ClOH}^-$	1.8E5		Yu (2004)
A6201_a01	TrAa01Cl	$\mathrm{Cl} + \mathrm{H}_2\mathrm{O}_2 \to \mathrm{HO}_2 + \mathrm{Cl}^- + \mathrm{H}^+$	$2.7\mathrm{E}7$	-1684	Christensen et al. (1982)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A6202_a01	TrAa01Cl	$\mathrm{Cl}^- + \mathrm{OH} \to \mathrm{ClOH}^-$	4.2E9		Yu (2004)
A6203_a01	TrAa01Cl	$\mathrm{Cl}_2 + \mathrm{HO}_2 \to \mathrm{Cl}_2^- + \mathrm{H}^+$	1.0E9		Bjergbakke et al. (1981)
A6204_a01	TrAa01MblCl	$\text{Cl}_2 \to \text{Cl}^- + \text{HOCl} + \text{H}^+$	21.8	-8012	Wang and Margerum (1994)
A6205_a01	TrAa01Cl	${\rm Cl}_2^- + {\rm HO}_2 \to 2 \; {\rm Cl}^- + {\rm H}^+$	1.3E10		Jacobi (1996)
A6206_a01	TrAa01Cl	$HOCl + O_2^- \rightarrow Cl + OH^-$	7.5 E6		Long and Bielski (1980)
A6207_a01	TrAa01Cl	$HOCl + HO_2 \rightarrow Cl$	7.5 E6		Long and Bielski (1980)
A6208_a01	TrAa01MblCl	$HOCl + Cl^- + H^+ \rightarrow Cl_2$	2.2E4	-3508	Wang and Margerum (1994)
A6209_a01	TrAa01Cl	$ClOH^- \rightarrow Cl^- + OH$	6.0 E9		Yu (2004)
A6210_a01	TrAa01Cl	$ClOH^- + H^+ \rightarrow Cl$	2.4E10		Yu (2004)
A6300_a01	TrAa01ClN	$Cl + NO_3^- \rightarrow NO_3 + Cl^-$	1.0E8		Buxton et al. (1999b)
A6301_a01	TrAa01ClN	$\text{Cl}^- + \text{NO}_3 \rightarrow \text{NO}_3^- + \text{Cl}$	3.4E8		Buxton et al. (1999b)*
A6302_a01	TrAa01ClN	$\text{Cl}_2^- + \text{NO}_2^- \rightarrow 2 \text{ Cl}^- + \text{NO}_2$	6.0E7		Jacobi et al. (1996)
A6400_a01	TrAa01Cl	$\text{Cl}_2^- + \text{CH}_3^-\text{OOH} \rightarrow 2 \text{ Cl}^- + \text{H}^+ + \text{CH}_3^-\text{OO}$	5.0 E4		Jacobi et al. (1996)
A7000_a01	TrAa01Br	$Br_2^- + Br_2^- \to 2 Br^- + Br_2$	1.9E9		Ross et al. (1992)
A7100_a01	TrAa01Br	$Br^{-} + O_{3} \rightarrow BrO^{-}$	2.1E2	-4450	Haag and Hoigné (1983)
A7101_a01	TrAa01Br	$\mathrm{Br}_2 + \mathrm{O}_2^- \to \mathrm{Br}_2^-$	5.6E9		Sutton and Downes (1972)
A7102_a01	TrAa01Br	${\rm Br}_2^- + {\rm O}_2^- \to 2 \ {\rm Br}^-$	1.7E8		Wagner and Strehlow (1987)
A7200_a01	TrAa01Br	$\mathrm{Br}^{2} + \mathrm{OH} \rightarrow \mathrm{BrOH}^{-}$	1.1E10		Zehavi and Rabani (1972)
A7201_a01	TrAa01Br	$\mathrm{Br}_2 + \mathrm{HO}_2 \to \mathrm{Br}_2^- + \mathrm{H}^+$	1.1E8		Sutton and Downes (1972)
A7202_a01	TrAa01MblBr	$\mathrm{Br}_2 \to \mathrm{Br}^- + \mathrm{HOBr} + \mathrm{H}^+$	9.7E1	-7457	Beckwith et al. (1996)
A7203_a01	TrAa01Br	$Br_2^- + HO_2 \to Br_2 + H_2O_2 + OH^-$	4.4E9		Matthew et al. (2003)
A7204_a01	TrAa01Br	$Br_2^- + H_2O_2 \rightarrow 2 Br^- + H^+ + HO_2$	1.0E5		Jacobi (1996)
A7205_a01	TrAa01Br	$HOBr + O_2^- \rightarrow Br + OH^-$	3.5E9		Schwarz and Bielski (1986)
A7206_a01	TrAa01Br	$\mathrm{HOBr} + \mathrm{HO}_2 o \mathrm{Br}$	1.0E9		Herrmann et al. (1999)
A7207_a01	TrAa01Br	$HOBr + H_2O_2 \rightarrow Br^- + H^+$	1.2E6		Bichsel and von Gunten (1999)
A7208_a01	TrAa01MblBr	$\mathrm{HOBr} + \mathrm{Br}^- + \mathrm{H}^+ \to \mathrm{Br}_2$	1.6E10		Beckwith et al. (1996)
A7209a_a01	TrAa01Br	$BrOH^- \rightarrow Br^- + OH$	3.3E7		Zehavi and Rabani (1972)
A7209b_a01	TrAa01Br	$BrOH^- \rightarrow Br + OH^-$	4.2E6		Zehavi and Rabani (1972)
A7210_a01	TrAa01Br	$BrOH^- + H^+ \rightarrow Br$	4.4E10		Zehavi and Rabani (1972)
A7300_a01	TrAa01BrN	$Br^- + NO_3 \rightarrow Br + NO_3^-$	4.0E9		Neta and Huie (1986)
A7301_a01	TrAa01BrN	${\rm Br}_2^- + {\rm NO}_2^- \to 2 \; {\rm Br}^- + {\rm NO}_2$	1.7E7	-1720	Shoute et al. (1991)
A7400_a01	TrAa01Br	$Br_2^- + CH_3^-OOH \rightarrow 2 Br^- + H^+ + CH_3OO$	1.0E5		Jacobi (1996)*
A7601_a01	TrAa01BrCl	$Br^{-} + ClO^{-} + H^{+} \rightarrow BrCl + OH^{-}$	3.7E10		Kumar and Margerum (1987)
A7602_a01	TrAa01MblBrCl	$\mathrm{Br}^- + \mathrm{HOCl} + \mathrm{H}^+ \to \mathrm{BrCl}$	1.32E6		Kumar and Margerum (1987)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A7603_a01	TrAa01MblBrCl	$HOBr + Cl^- + H^+ \rightarrow BrCl$	2.3E10	ω, []	Liu and Margerum (2001)*
A7604_a01	TrAa01MblBrCl	$BrCl \rightarrow Cl^- + HOBr + H^+$	3.0E6		Liu and Margerum (2001)
A8100_a01	TrAa01MblI	$I^- + O_3 \rightarrow HOI + OH^-$	4.2E9	-9311	Magi et al. (1997)
A8101_a01	TrAa01MblI	$IO + IO \rightarrow HOI + IO_2^- + H^+$	1.5E9		Buxton et al. (1986)
A8200_a01	TrAa01MblI	$IO_{2}^{-} + H_{2}O_{2} \rightarrow IO_{3}^{-}$	6.0E1		Furrow (1987)
A8201_a01	TrAa01I	$HOI + IO_2^- \rightarrow IO_3^- + I^- + H^+$	6.0E2		Chinake and Simoyi (1996)
A8202_a01	TrAa01MblI	$HOI + I^- + H^+ \rightarrow I_2$	4.4E12		Eigen and Kustin (1962)
A8203_a01	TrAa01MblI	$IO_2^- + I^- + H^+ \rightarrow 2 \text{ HOI} + OH^-$	2.0E10		Edblom et al. (1987)
A8600_a01	TrAa01MblClI	$ICl \rightarrow HOI + Cl^- + H^+$	2.4E6		Wang et al. (1989)
A8601_a01	TrAa01MblClI	$I^- + HOCl + H^+ \rightarrow ICl$	3.5E11		Nagy et al. (1988)
A8602_a01	TrAa01ClI	$IO_2^- + HOCl \rightarrow IO_3^- + Cl^- + H^+$	1.5E3		Lengyel et al. (1996)
A8603_a01	TrAa01MblClI	$HOI + Cl^- + H^+ \rightarrow ICl$	2.9E10		Wang et al. (1989)
A8604_a01	TrAa01ClI	$HOI + Cl_2 \rightarrow IO_2^- + 2 Cl^- + 3H^+$	1.0E6		Lengyel et al. (1996)
A8605_a01	TrAa01ClI	$\mathrm{HOI} + \mathrm{HOCl} \rightarrow \mathrm{IO}_2^- + \mathrm{Cl}^- + 2 \; \mathrm{H}^+$	5.0E5		Citri and Epstein (1988)
A8606_a01	TrAa01ClI	$ICl + I^- \rightarrow I_2 + Cl^-$	1.1E9		Margerum et al. (1986)
A8700_a01	TrAa01MblBrI	$IBr \rightarrow HOI + H^+ + Br^-$	8.0E5		Troy et al. (1991)
A8701_a01	TrAa01MblBrI	$I^- + HOBr \rightarrow IBr + OH^-$	5.0E9		Troy and Margerum (1991)
A8702_a01	TrAa01BrI	$\mathrm{IO_2^-} + \mathrm{HOBr} \rightarrow \mathrm{IO_3^-} + \mathrm{Br^-} + \mathrm{H^+}$	1.0E6		Chinake and Simoyi (1996)
A8703_a01	TrAa01MblBrI	$HOI + Br^- + H^+ \rightarrow IBr$	3.3E12		Troy et al. (1991)
A8704_a01	TrAa01BrI	$\mathrm{HOI} + \mathrm{HOBr} \rightarrow \mathrm{IO}_2^- + \mathrm{Br}^- + 2 \mathrm{H}^+$	1.0E6		Chinake and Simoyi (1996)
A8705_a01	TrAa01BrI	$IBr + I^- \rightarrow I_2 + Br^-$	2.0E9		Faria et al. (1993)
A9100_a01	TrAa01ScS	$\mathrm{SO_3^-} + \mathrm{O_2} o \mathrm{SO_5^-}$	1.5E9		Huie and Neta (1987)
A9101_a01	${\bf TrAa01MblScScmS}$	$SO_3^{2-} + O_3 \to SO_4^{2-}$	1.5E9	-5300	Hoffmann (1986)
A9102_a01	TrAa01ScS	$SO_4^- + O_2^- \rightarrow SO_4^{2-}$	3.5E9		Jiang et al. (1992)
A9103_a01	TrAa01ScS	$SO_4^- + SO_3^{2-} \to SO_3^- + SO_4^{2-}$	4.6E8		Huie and Neta (1987)
A9104_a01	TrAa01ScS	$SO_5^- + O_2^- \rightarrow HSO_5^- + OH^-$	2.3E8		Buxton et al. (1996)
A9105_a01	TrAa01S	$SO_5^- + SO_3^{2-} \rightarrow .72 SO_4^- + .72 SO_4^{2-} + .28 SO_3^- + .28 HSO_5^- + .28 OH^-$	1.3E7		Huie and Neta (1987), Deister and Warneck (1990)*
A9106_a01	TrAa01S	$SO_5^- + SO_5^- \rightarrow O_2 + SO_4^{2-} + LSULFUR$	1.0E8		Ross et al. (1992)*
A9200_a01	TrAa01ScS	$SO_3^{2-} + OH \rightarrow SO_3^{-} + OH^{-}$	5.5E9		Buxton et al. (1988)
A9201_a01	TrAa01ScS	$SO_4^- + OH \rightarrow HSO_5^-$	1.0E9		Jiang et al. (1992)
A9202_a01	TrAa01ScS	$SO_4^{-} + HO_2 \rightarrow SO_4^{2-} + H^+$	3.5E9		Jiang et al. (1992)
A9203_a01	TrAa01ScS	$SO_4^{-} + H_2O \rightarrow SO_4^{2-} + H^+ + OH$	1.1E1	-1110	Herrmann et al. (1995)
A9204_a01	TrAa01ScS	$SO_4^- + H_2O_2 \rightarrow SO_4^{2-} + H^+ + HO_2$	1.2E7		Wine et al. (1989)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A9205_a01	TrAa01ScS	$HSO_3^- + O_2^- \to SO_4^{2-} + OH$	3.0E3		see note*
A9206_a01	${\bf TrAa01MblScScmS}$	$HSO_3^- + O_3 \to SO_4^{2-} + H^+$	3.7E5	-5500	Hoffmann (1986)
A9207_a01	TrAa01ScS	$HSO_3^- + OH \rightarrow SO_3^-$	4.5E9		Buxton et al. (1988)
A9208_a01	TrAa01ScS	$HSO_3^- + HO_2 \to SO_4^{2-} + OH + H^+$	3.0E3		see note*
A9209_a01	${\bf TrAa01MblScScmS}$	$HSO_3^- + H_2O_2 \to SO_4^{2-} + H^+$	5.2E6	-3650	Martin and Damschen (1981)
A9210_a01	TrAa01ScS	$HSO_3^- + SO_4^- \to SO_3^- + SO_4^{2-} + H^+$	8.0E8		Huie and Neta (1987)
A9211_a01	TrAa01S	$HSO_3^- + SO_5^- \rightarrow .75 SO_4^- + .75 SO_4^{2-} + .75 H^+ +$	1.0E5		Huie and Neta (1987)
		$.25 \text{ SO}_{3}^{-} + .25 \text{ HSO}_{5}^{-}$,
A9212_a01	TrAa01ScS	$HSO_3^- + HSO_5^- + H^+ \rightarrow 2 HSO_4^- + H^+$	7.1E6		Betterton and Hoffmann (1988)
A9301_a01	TrAa01ScNS	$SO_4^- + NO_3^- \rightarrow SO_4^{2-} + NO_3$	5.0E4		Exner et al. (1992)
A9302_a01	TrAa01ScNS	$SO_4^{2-} + NO_3 \rightarrow NO_3^{-} + SO_4^{-}$	1.0 E5		Løgager et al. (1993)
A9304_a01	TrAa01ScNS	$HSO_3^- + NO_3 \to SO_3^- + NO_3^- + H^+$	1.4E9	-2000	Exner et al. (1992)
A9305_a01	TrAa01ScNS	$HSO_3^- + HNO_4 \rightarrow HSO_4^- + NO_3^- + H^+$	3.1E5		Warneck (1999)
A9400_a01	TrAa01ScS	$SO_3^{2-} + HCHO \rightarrow CH_2OHSO_3^- + OH^-$	$1.4\mathrm{E}4$		Boyce and Hoffmann (1984)*
A9401_a01	TrAa01ScS	$SO_3^{2-} + CH_3OOH + H^+ \rightarrow SO_4^{2-} + H^+ + CH_3OH$	1.6E7	-3800	Lind et al. (1987)
A9402_a01	TrAa01ScS	$HSO_3^- + HCHO \rightarrow CH_2OHSO_3^-$	4.3E-1		Boyce and Hoffmann (1984)*
A9403_a01	TrAa01ScS	$HSO_3^- + CH_3OOH + H^+ \rightarrow HSO_4^- + H^+ + CH_3OH$	1.6E7	-3800	Lind et al. (1987)
A9404_a01	TrAa01ScS	$\mathrm{CH_2OHSO_3^-} + \mathrm{OH^-} \rightarrow \mathrm{SO_3^{2-}} + \mathrm{HCHO}$	3.6E3		Seinfeld and Pandis (1998)
A9600_a01	TrAa01ClS	$SO_3^{2-} + Cl_2^- \to SO_3^- + 2 Cl^-$	6.2E7		Jacobi et al. (1996)
A9601_a01	TrAa01MblClS	$SO_3^{2-} + HOCl \rightarrow Cl^- + HSO_4^-$	7.6E8		Fogelman et al. (1989)
A9602_a01	TrAa01ClS	$SO_4^- + Cl^- \rightarrow SO_4^{2-} + Cl$	2.5E8		Buxton et al. (1999a)
A9603_a01	TrAa01ClS	$SO_4^{2-} + Cl \rightarrow SO_4^{-} + Cl^{-}$	2.1E8		Buxton et al. (1999a)
A9604_a01	TrAa01ClS	$HSO_3^- + Cl_2^- \to SO_3^- + 2 Cl^- + H^+$	4.7 E8	-1082	Shoute et al. (1991)
A9605_a01	TrAa01MblClS	$HSO_3^- + HOCl \rightarrow Cl^- + HSO_4^- + H^+$	7.6E8		see note*
A9606_a01	TrAa01ClS	$HSO_5^- + Cl^- \rightarrow HOCl + SO_4^{2-}$	1.8E-3	-7352	Fortnum et al. (1960)
A9700_a01	TrAa01BrS	$SO_3^{2-} + Br_2^- \to 2 Br^- + SO_3^-$	2.2E8	-649	Shoute et al. (1991)
A9701_a01	TrAa01BrS	$SO_3^{2-} + BrO^- \to Br^- + SO_4^{2-}$	1.0E8		Troy and Margerum (1991)
A9702_a01	TrAa01MblBrS	$SO_3^{2-} + HOBr \rightarrow Br^- + HSO_4^-$	5.0E9		Troy and Margerum (1991)
A9703_a01	TrAa01BrS	$SO_4^- + Br^- \rightarrow Br + SO_4^{2-}$	2.1E9		Jacobi (1996)
A9704_a01	TrAa01BrS	$HSO_3^- + Br_2^- \to 2 Br^- + H^+ + SO_3^-$	6.3E7	-782	Shoute et al. (1991)
A9705_a01	TrAa01MblBrS	$HSO_3^- + HOBr \rightarrow Br^- + HSO_4^- + H^+$	5.0E9		see note*
A9706_a01	TrAa01BrS	$HSO_5^- + Br^- \rightarrow HOBr + SO_4^{2-1}$	1.0E0	-5338	Fogelman et al. (1989)
A9800_a01	TrAa01IS	$HSO_3^- + I_2 \rightarrow 2 I^- + HSO_4^- + 2 H^+$	1.7E9		Yiin and Margerum (1990)
A10100_a01	TrAa01Hg	$\mathrm{Hg} + \mathrm{O}_3 \to \mathrm{HgO} + \mathrm{O}_2$	4.7E7		Munthe (1992)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}] -E_a/R[K]$	reference
A10200_a01	TrAa01Hg	$HgO + H^+ \rightarrow Hg^{2+} + OH^-$	1.0E10	Pleijel and Munthe (1995)
A10201_a01	TrAa01Hg	$Hg + OH \rightarrow Hg^{+} + OH^{-}$	2.0E9	Lin and Pehkonen (1997)
A10202_a01	TrAa01Hg	$\mathrm{Hg^+} + \mathrm{OH} \rightarrow \mathrm{Hg^{2+}} + \mathrm{OH^-}$	1.0E10	Lin and Pehkonen (1997)
A10203_a01	TrAa01Hg	$Hg^{2+} + HO_2 \rightarrow Hg^+ + O_2 + H^+$	1.7E4	Enami et al. (2007)
A10204_a01	TrAa01Hg	$\mathrm{Hg^+} + \mathrm{HO_2} \rightarrow \mathrm{Hg} + \mathrm{O_2} + \mathrm{H^+}$	1.0E10	Lin and Pehkonen (1997)
A10600_a01	TrAa01ClHg	$\mathrm{Hg} + \mathrm{HOCl} \rightarrow \mathrm{Hg}^{2+} + \mathrm{Cl}^{-} + \mathrm{OH}^{-}$	2.09 E6	Lin and Pehkonen (1998)
A10601_a01	TrAa01ClHg	$\mathrm{Hg} + \mathrm{ClO}^- \rightarrow \mathrm{Hg}^{2+} + \mathrm{Cl}^- + 2 \mathrm{OH}^-$	1.99E6	Lin and Pehkonen (1998)
A10700_a01	TrAa01BrHg	$\mathrm{Hg} + \mathrm{HOBr} \rightarrow \mathrm{Hg}^{2+} + \mathrm{Br}^{-} + \mathrm{OH}^{-}$	0.279	Wang and Pehkonen (2004)
A10701_a01	TrAa01BrHg	$Hg + BrO^{-} \rightarrow Hg^{2+} + Br^{-} + 2 OH^{-}$	0.273	Wang and Pehkonen (2004)
A10702_a01	TrAa01BrHg	$\mathrm{Hg} + \mathrm{Br}_2 \to \mathrm{Hg}^{2+} + 2 \; \mathrm{Br}^-$	0.196	Wang and Pehkonen (2004)
A10900_a01	TrAa01HgS	$HgSO_3 \rightarrow Hg + HSO_4^- + H^+$	0.0106	van Loon et al. (2000)
A11101_a01	TrAa01Fe	$Fe^{2+} + O_2^- \to Fe^{3+} + HO2^- + OH^-$	1E7	de Laat and Le (2006)
A11102_a01	TrAa01Fe	$Fe^{3+} + O_2^{-} \to O_2 + Fe^{2+}$	5E7	de Laat and Le (2006)
A11103_a01	TrAa01Fe	$Fe^{2+} + O_3 \rightarrow FeO^{2+} + O_2$	8.2E5	Løgager et al. (1992)
A11201a_a01	TrAa01Fe	$\mathrm{Fe^{2+}} + \mathrm{OH} \rightarrow \mathrm{Fe^{3+}} + \mathrm{OH^{-}}$	2.7E8	de Laat and Le (2006)
A11201b_a01	TrAa01Fe	$\text{FeOH}^+ + \text{OH} \rightarrow \text{Fe}^{3+} + 2 \text{ OH}^-$	2.7E8	de Laat and Le (2006)
A11202a_a01	TrAa01Fe	${\rm Fe^{2+} + H_2O_2 \to Fe^{3+} + OH + OH^-}$	5.5E1	de Laat and Le (2006)
A11202b_a01	TrAa01Fe	$\text{FeOH}^+ + \text{H}_2\text{O}_2 \to \text{Fe}^{3+} + \text{OH} + 2 \text{ OH}^-$	5.9E6	de Laat and Le (2006)
A11203_a01	TrAa01Fe	$\text{FeHO}_2^{2+} \rightarrow \text{Fe}^{2+} + \text{HO}_2$	2.3E-3	de Laat and Le (2006)
A11204_a01	TrAa01Fe	$Fe(OH)(HO_2)^+ \rightarrow Fe^{2+} + HO_2 + OH^-$	2.3E-3	de Laat and Le (2006)
A11206_a01	TrAa01Fe	${\rm Fe^{2+} + HO_2 \to Fe^{3+} + HO2^{-}}$	1.2E6	de Laat and Le (2006)
A11208a_a01	TrAa01Fe	$\text{FeOH}^{2+} + \text{O}_2^- \to \text{Fe}^{2+} + \text{O}_2 + \text{OH}^-$	1.5E8	Rush and Bielski (1985)
A11208b_a01	TrAa01Fe	$Fe(OH)_2^+ + O_2^- \to Fe^{2+} + O_2 + 2 OH^-$	1.5E8	Rush and Bielski (1985)
A11209_a01	TrAa01Fe	$Fe^{2+} + O_2^- \to Fe^{3+} + H_2O_2 + 2 OH^-$	1.0E7	Rush and Bielski (1985)
A11210_a01	TrAa01Fe	$Fe^{2+} + OH \rightarrow FeOH^{2+}$	4.3E8	Christensen and Sehested (1981)
A11211_a01	TrAa01Fe	${\rm FeO^{2+}+H_2O_2\to Fe^{3+}+HO_2+OH^-}$	9.5E3	Løgager et al. (1992)
A11212_a01	TrAa01Fe	$\text{FeO}^{2+} \rightarrow \text{Fe}^{3+} + \text{OH} + \text{OH}^-$	1.3E-2	Løgager et al. (1992)
A11213_a01	TrAa01Fe	$\text{FeO}^{2+} + \text{HO}_2 \rightarrow \text{Fe}^{3+} + \text{O}_2 + \text{OH}^-$	2.0 E6	Løgager et al. (1992)
A11214_a01	TrAa01Fe	$\text{FeO}^{2+} + \text{OH} \rightarrow \text{Fe}^{3+} + \text{HO2}^{-}$	1.0E7	Løgager et al. (1992)
A11215_a01	TrAa01Fe	$\text{FeO}^{2+} + \text{Fe}^{2+} \to 2 \text{ Fe}^{3+} + 2 \text{ OH}^{-}$	1.4E5	Løgager et al. (1992)
A11216_a01	TrAa01Fe	$\text{FeO}^{2+} + \text{Fe}^{2+} \rightarrow \text{Fe(OH)}_2\text{Fe}^{4+}$	1.8E4	Jacobsen et al. (1997)
A11217_a01	TrAa01Fe	$Fe(OH)_2Fe^{4+} + H^+ \rightarrow 2 Fe^{3+} + OH^-$	2.0	Jacobsen et al. (1997)
A11218_a01	TrAa01Fe	$Fe(OH)_2Fe^{4+} \to 2 Fe^{3+} + 2 OH^-$	0.49	Jacobsen et al. (1997)
A11301_a01	TrAa01FeN	$FeO^{2+} + HONO \rightarrow Fe^{3+} + NO_2 + OH^-$	1.1E4	Jacobsen et al. (1998)
A11302_a01	TrAa01FeN	$Fe^{2+} + NO_3 \to Fe^{3+} + NO_3^-$	8.0E6	Herrmann et al. $(2000)^*$

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}] -E_a/R[K]$	reference
A11601_a01	TrAa01ClFe	$\mathrm{Fe^{2+} + Cl \rightarrow Fe^{3+} + Cl^{-}}$	5.9E9	Jayson et al. (1973)
A11602a_a01	TrAa01ClFe	$Fe^{2+} + Cl_2^- \to Fe^{3+} + 2 Cl^-$	1E7	Thornton and Laurence (1973)
A11602b_a01	TrAa01ClFe	$\mathrm{Fe^{2+}} + \mathrm{Cl_2^-} \rightarrow \mathrm{FeCl^{2+}} + \mathrm{Cl^-}$	4E6	Thornton and Laurence (1973)
A11603a_a01	TrAa01ClFe	$FeCl^+ + HO_2 \rightarrow Fe^{3+} + Cl^- + HO2^-$	1.2E6	de Laat and Le (2006)
A11603b_a01	TrAa01ClFe	$\text{FeCl}^+ + \text{O}_2^- \to \text{Fe}^{3+} + \text{Cl}^- + \text{HO2}^- + \text{OH}^-$	1E7	de Laat and Le (2006)
A11604a_a01	TrAa01ClFe	$FeCl^{2+} + HO_2 \rightarrow Fe^{2+} + Cl^- + O_2 + H^+$	2E4	de Laat and Le (2006)
A11604b_a01	TrAa01ClFe	$FeCl_2^+ + HO_2 \rightarrow Fe^{2+} + 2 Cl^- + O_2 + H^+$	2E4	de Laat and Le (2006)
A11604c_a01	TrAa01ClFe	$FeCl^{2+} + O_2^- \to Fe^{2+} + Cl^- + O_2$	5E7	de Laat and Le (2006)
A11604d_a01	TrAa01ClFe	$FeCl_2^+ + O_2^- \to Fe^{2+} + 2 Cl^- + O_2$	5E7	de Laat and Le (2006)
A11605_a01	TrAa01ClFe	$\text{FeO}^{2+} + \text{Cl}^- \rightarrow \text{Fe}^{3+} + \text{Cl} + 2 \text{ OH}^-$	1E2	Jacobsen et al. $(1998)^*$
A11701_a01	TrAa01BrFe	$Fe^{2+} + Br_2^- \to Fe^{3+} + 2 Br^-$	3.6E6	Thornton and Laurence (1973)
A11901_a01	TrAa01FeS	$\text{FeO}^{2+} + \text{SO}_2 \rightarrow \text{Fe}^{3+} + \text{SO}_3^-$	4.5E5	Jacobsen et al. $(1998)^*$
A11902_a01	TrAa01FeS	$\text{FeO}^{2+} + \text{HSO}_3^- \to \text{Fe}^{3+} + \text{SO}_3^- + \text{OH}^-$	2.5 E5	Jacobsen et al. $(1998)^*$
A11903_a01	TrAa01FeS	$\text{FeOH}^{2+} + \text{HSO}_3^- \to \text{Fe}^{2+} + \text{SO}_3^- + \text{H}_2\text{O}$	30	Ziajka et al. (1994)
A11904_a01	TrAa01FeS	$\text{Fe}^{2+} + \text{SO}_5^- \rightarrow \text{FeOH}^{2+} + \text{HSO}_5^-$	8E5	Ziajka et al. $(1994)^*$
A11905_a01	TrAa01FeS	$\text{Fe}^{2+} + \text{HSO}_5^- \rightarrow \text{FeOH}^{2+} + \text{SO}_4^-$	3.0 E4	Gilbert and Stell (1990)
A11906_a01	TrAa01FeS	$\mathrm{Fe^{2+}} + \mathrm{SO_4^-} \to \mathrm{FeSO_4^+}$	3.6E7	McElroy and Waygood (1990)*
A11907_a01	TrAa01FeS	$FeOH^{2+} + SO_3^- \rightarrow Fe^{2+} + HSO_4^-$	3E7	Warneck (2018)
A11908_a01	TrAa01FeS	$FeSO_3^+ + SO_3^- \to Fe^{2+} + SO_4^{2-} + SO_2$	2.16E6	Warneck $(2018)^*$

Specific notes

A6102_a01: Jacobi (1996) found an upper limit of 6E9 and cite an upper limit from another study of 2E9. Here, we set the rate coefficient to 1E9.

A6301_a01: There is also an earlier study by Exner et al. (1992) which found a smaller rate coefficient but did not consider the back reaction.

A7400_a01: Assumed to be the same as for $\rm Br_2^- + H_2O_2.$

A7603_a01: The rate coefficient is defined as backward reaction divided by equilibrium constant.

A9105_a01: The rate coefficient for the sum of the paths (leading to either HSO_5^- or SO_4^{2-}) is from Huie and Neta (1987), the ratio 0.28/0.72 is from Deister and Warneck (1990).

A9106_a01: See also: (Huie and Neta, 1987; Warneck, 1991). If this reaction produces a lot of SO_4^- , it will have an effect. However, we currently assume only the stable $S_2O_8^{2-}$ as product. Since $S_2O_8^{2-}$ is not treated explicitly in the mechanism, SO_4^{2-} is used as a proxy and the second sulfur atom is put into the lumped LSULFUR.

A9205_a01: D. Sedlak, pers. comm. (1993).

A9208_a01: D. Sedlak, pers. comm. (1993).

A9400_a01: Product $2.48 \times 10^7 \times 5.5 \times 10^{-4}$ considering the hydrated form of HCHO.

A9402_a01: Product $790 \times 5.5 \times 10^{-4}$ considering the hydrated form of HCHO.

A9605_a01: Assumed to be the same as for SO_3^{2-} + HOCl.

A9705_a01: Assumed to be the same as for SO_3^{2-} + HOBr.

A11302_a01: value from Pikaev et al. (1974)

A11605_a01: products assumed

A11901_a01: products assumed

A11902_a01: products assumed

A11904_a01: Assumed. Note that CAPRAM 2.4 from Williams PhD 1996 http://lib.leeds.ac.uk/ lists k=4.3E7 from Herrmann Air Pollution Re- record=b1835184~S5. Brand and van Eldik (1995) also

search Report 57 and it also lists k=2.65E7 list k=3.56E4 from Waygood EUROTRAC 1992 report.

A11906_a01: 3E8*6500/(48000+6500)

A11908_a01: Assuming that the intermediate ${\rm S_2O_6^{2-}}$ dissociates quickly.

References

- Albaladejo, J., Jiménez, E., Notario, A., Cabañas, B., and Martínez, E.: CH_3O yield in the $CH_3 + O_3$ reaction using the LP/LIF technique at room temperature, J. Phys. Chem. A, 106, 2512–2519, doi: 10.1021/jp012249o, 2002.
- Ammann, M. and Pöschl, U.: Kinetic model framework for aerosol and cloud surface chemistry and gasparticle interactions Part 2: exemplary practical applications and numerical simulations, Atmos. Chem. Phys., 7, 6025–6045, doi:10.5194/ACP-7-6025-2007, 2007.
- Anderson, L. C. and Fahey, D. W.: Studies with ClONO₂: Thermal dissociation rate and catalytic conversion to NO using an NO/O_3 chemiluminescence detector, J. Phys. Chem., 94, 644–652, doi: 10.1021/J100365A027, 1990.
- Andrews, D. U., Heazlewood, B. R., Maccarone, A. T., Conroy, T., Payne, R. J., Jordan, M. J. T., and Kable, S. H.: Photo-tautomerization of acetaldehyde to vinyl alcohol: a potential route to tropospheric acids, Science, 337, 1203–1206, doi:10.1126/science. 1220712, 2012.
- Ariya, P. A., Khalizov, A., and Gidas, A.: Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications, J. Phys. Chem. A, 106, 7310–7320, doi: 10.1021/JP020719O, 2002.
- Aschmann, S. M., Nishino, N., Arey, J., and Atkinson, R.: Products of the OH radical-initiated reactions of furan, 2- and 3-methylfuran, and 2,3- and 2,5-dimethylfuran in the presence of NO, J. Phys. Chem. A, 118, 457–466, doi:10.1021/jp410345k, 2014.

- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215–290, doi:10.1063/1.556012, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, doi:10.5194/ACP-3-2233-2003, 2003.
- Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, doi:10.1021/cr0206420, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I gas phase reactions of O_x, HO_x, NO_x and SO_x species, Atmos. Chem. Phys., 4, 1461–1738, doi: 10.5194/ACP-4-1461-2004, 2004.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, doi:10.5194/ACP-6-3625-2006, 2006.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, doi:10.5194/ACP-7-981-2007, 2007.
- Baeza-Romero, M. T., Glowacki, D. R., Blitz, M. A., Heard, D., Pilling, M. J., Rickard, A. R., and

- Seakins, P. W.: A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration, Phys. Chem. Chem. Phys., 9, 4114–4128, doi:10.1039/b702916k, 2007.
- Bailey, S. M., Barth, C. A., and Solomon, S. C.: A model of nitric oxide in the lower thermosphere, J. Geophys. Res., 107, doi:10.1029/2001JA000258, 2002.
- Bale, C. S. E., Canosa-Mas, C. E., Shallcross, D. E., and Wayne, R. P.: A discharge-flow study of the kinetics of the reactions of IO with $\mathrm{CH_3O_2}$ and $\mathrm{CF_3O_2}$, Phys. Chem. Chem. Phys., 7, 2164–2172, doi: $10.1039/\mathrm{B501903F}$, 2005.
- Banic, C. M., Beauchamp, S. T., Tordon, R. J., Schroeder, W. H., Steffen, A., Anlauf, K. A., and Wong, H. K. T.: Vertical distribution of gaseous elemental mercury in Canada, J. Geophys. Res., 108D, 4264, doi:10.1029/2002JD002116, 2003.
- Barker, G. C., Fowles, P., and Stringer, B.: Pulse radiolytic induced transient electrical conductance in liquid solutions, Trans. Faraday Soc., 66, 1509–1519, doi:10.1039/TF9706601509, 1970.
- Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., Zabel, F., and Niki, H.: FTIR spectroscopic study of the gas-phase reaction of HO₂ with H₂CO, Chem. Phys. Lett., 115, 1–8, doi:10.1016/0009-2614(85) 80091-9, 1985.
- Barnes, I., Becker, K. H., and Zhu, T.: Near UV absorption-spectra and photolysis products of difunctional organic nitrates possible importance as NO_x reservoirs, J. Atmos. Chem., 17, 353–373, doi: 10.1007/BF00696854, 1993.

- Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Role of adducts in the atmospheric oxidation of dimethyl sulfide, Faraday Discuss., 100, 39–54, doi: 10.1039/FD9950000039, 1995.
- Barth, C. A.: Nitric oxide in the lower thermosphere, Planet. Space Sci., 40, 315–336, doi:10.1016/0032-0633(92)90067-X, 1992.
- Bates, K. H., Crounse, J. D., St. Clair, J. M., Bennett, N. B., Nguyen, T. B., Seinfeld, J. H., Stoltz, B. M., and Wennberg, P. O.: Gas phase production and loss of isoprene epoxydiols, J. Phys. Chem. A, 118, 1237– 1246, doi:10.1021/jp4107958, 2014.
- Baulch, D. L., Bowman, C. T., Cobos, C. J., Cox, R. A., Just, T., Kerr, J. A., Pilling, M. J., Stocker, D., Troe, J., Tsang, W., Walker, R. W., and Warnatz, J.: Evaluated kinetic data for combustion modeling: Supplement II, J. Phys. Chem. Ref. Data, 34, 757–1397, doi:10.1063/1.1748524, 2005.
- Becker, K. H., Kurtenbach, R., Schmidt, F., and Wiesen, P.: Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame, 120, 570–577, doi:10.1016/S0010-2180(99)00108-X, 2000.
- Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35, 995–1000, doi:10.1021/IC950909W, 1996.
- Bedjanian, Y., Le Bras, G., and Poulet, G.: Kinetic study of the Br + IO, I + BrO and Br + I₂ reactions. Heat of formation of the BrO radical, Chem. Phys. Lett., 266, 233–238, doi:10.1016/S0009-2614(97)01530-3, 1997.
- Bedjanian, Y., Laverdet, G., and Le Bras, G.: Lowpressure study of the reaction of Cl atoms with iso-

- prene, J. Phys. Chem. A, 102, 953–959, doi:10.1021/JP973336C, 1998.
- Behnke, W., Scheer, V., and Zetzsch, C.: Production of BrNO₂, Br₂ and ClNO₂ from the reaction between sea spray aerosol and N₂O₅, J. Aerosol Sci., 25, S277–S278, doi:10.1016/0021-8502(94)90369-7, 1994.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, doi: 10.1029/96JD03057, 1997.
- Betterton, E. A. and Hoffmann, M. R.: Oxidation of aqueous SO_2 by peroxymonosulfate, J. Phys. Chem., 92, 5962–5965, doi:10.1021/J100332A025, 1988.
- Beyersdorf, A. J., Blake, D. R., Swanson, A., Meinardi, S., Rowland, F. S., and Davis, D.: Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations, Atmos. Environ., 44, 4565–4574, doi:10.1016/j.atmosenv.2010.08.025, 2010.
- Bichsel, Y. and von Gunten, U.: Oxidation of iodide and hypoiodous acid in the disinfection of natural waters, Environ. Sci. Technol., 33, 4040–4045, doi: 10.1021/ES990336C, 1999.
- Birdsall, A. W., Andreoni, J. F., and Elrod, M. J.: Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene, J. Phys. Chem. A, 114, 10655–10663, doi:10.1021/jp105467e, 2010.
- Bjergbakke, E., Navartnam, S., Parsons, B. J., and Swallow, A. J.: Reaction between HO_2 · and chlorine in aqueous solution, J. Am. Chem. Soc., 103, 5926–5928, doi:10.1021/JA00409A059, 1981.

- Bossolasco, A., Faragó, E. P., Schoemaecker, C., and Fittschen, C.: Rate constant of the reaction between CH₃O₂ and OH radicals, Chem. Phys. Lett., 593, 7–13, doi:10.1016/j.cplett.2013.12.052, 2014.
- Boyce, S. D. and Hoffmann, M. R.: Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH, J. Phys. Chem., 88, 4740–4746, doi: 10.1021/j150664a059, 1984.
- Brand, C. and van Eldik, R.: Transition metal-catalyzed oxidation of sulfur(IV)oxides. Atmospheric relevant processes and mechanisms, Chem. Rev., 95, 119–190, doi:10.1021/cr00033a006, 1995.
- Buras, Z. J., Elsamra, R. M. I., and Green, W. H.: Direct determination of the simplest Criegee intermediate (CH₂OO) self reaction rate, J. Phys. Chem. Lett., 5, 2224–2228, doi:10.1021/jz5008406, 2014.
- Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov, 2015.
- Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and temperature dependence of ethyl nitrate formation in the C₂H₅O₂ + NO reaction, J. Phys. Chem. A, 114, 956–964, doi:10.1021/jp910003a, 2010.
- Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and temperature dependence of methyl nitrate formation in the CH₃O₂ + NO reaction, J. Phys. Chem. A, 116, 5972–5980, doi:10.1021/jp210710d, 2012.
- Buxton, G. V., Kilner, C., and Sellers, R. M.: Pulse radiolysis of HOI and IO⁻ in aqueous solution. For-

- mation and characterization of I(II), Proc. Tihany Symp. Radiat. Chem., 6, 155–159, 1986.
- Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O⁻) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513–886, doi: 10.1063/1.555805, 1988.
- Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D.: A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and γ -radiolysis study, Atmos. Environ., 30, 2483–2493, doi: 10.1016/1352-2310(95)00473-4, 1996.
- Buxton, G. V., Bydder, M., and Salmon, G. A.: The reactivity of chlorine atoms in aqueous solution: Part II. The equilibrium $SO_4^- + Cl^- \rightleftharpoons Cl^+ + SO_4^{2-}$, Phys. Chem. Chem. Phys., 1, 269–273, doi:10.1039/A807808D, 1999a.
- Buxton, G. V., Salmon, G. A., and Wang, J. Q.: The equilibrium $NO_3 + Cl^- \rightleftharpoons NO_3^- + Cl^-$: A laser flash photolysis and pulse radiolysis study of the reactivity of NO_3 with chloride ion in aqueous solution, Phys. Chem. Chem. Phys., 1, 3589–3593, doi: 10.1039/A903286J, 1999b.
- Calvert, J. G. and Lindberg, S. E.: A modeling study of the mechanism of the halogen-ozone-mercury homogeneous reactions in the troposphere during the polar spring, Atmos. Environ., 37, 4467–4481, doi: 10.1016/J.ATMOSENV.2003.07.001, 2003.
- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃(O)O₂ and NO₃ important in the night-time troposphere?,

- J. Chem. Soc. Faraday Trans., 92, 2211–2222, doi: 10.1039/FT9969202211, 1996.
- Capouet, M., Müller, J.-F., Ceulemans, K., Compernolle, S., Vereecken, L., and Peeters, J.: Modeling aerosol formation in alpha-pinene photo-oxidation experiments, J. Geophys. Res., 113D, doi:10.1029/2007JD008995, 2008.
- Carl, S. A. and Crowley, J. N.: 298 K rate coefficients for the reaction of OH with $i-C_3H_7I$, $n-C_3H_7I$ and C_3H_8 , Atmos. Chem. Phys., 1, 1–7, doi:10.5194/acp-1-1-2001, 2001.
- Chai, J., Hu, H., Dibble, T. S., Tyndall, G. S., and Orlando, J. J.: Rate constants and kinetic isotope effects for methoxy radical reacting with NO₂ and O₂, J. Phys. Chem. A, 118, 3552–3563, doi:10.1021/jp501205d, 2014.
- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739–4755, doi:10.1029/JD089ID03P04739, 1984.
- Chao, W., Hsieh, J.-T., Chang, C.-H., and Lin, J. J.-M.: Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor, Science, 347, 751–754, doi:10.1126/science.1261549, 2015.
- Chen, J., Wenger, J. C., and Venables, D. S.: Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity, J. Phys. Chem. A, 115, 12235–12242, doi:10.1021/jp206929r, 2011.
- Chin, M. and Wine, P. H.: A temperature-dependent competitive kinetics study of the aqueous-phase reactions of OH radicals with formate, formic acid, acetate, acetic acid, and hydrated formaldehyde, in:

- Aquatic and Surface Photochemistry, edited by Helz, G. R., Zepp, R. G., and Crosby, D. G., pp. 85–96, A. F. Lewis, NY, 1994.
- Chinake, C. R. and Simoyi, R. H.: Kinetics and mechanism of the complex bromate-iodine reaction, J. Phys. Chem., 100, 1643–1656, doi:10.1021/ JP951956C, 1996.
- Christensen, H. and Sehested, K.: Pulse radiolysis at high temperatures and high pressures, Radiat. Phys. Chem., 18, 723–231, doi:10.1016/0146-5724(81)90195-3, 1981.
- Christensen, H. and Sehested, K.: HO_2 and O_2^- radicals at elevated temperatures, J. Phys. Chem., 92, 3007-3011, doi:10.1021/J100321A060, 1988.
- Christensen, H., Sehested, K., and Corfitzen, H.: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, J. Phys. Chem., 86, 1588–1590, doi:10.1021/J100206A023, 1982.
- Citri, O. and Epstein, I. R.: Mechanistic study of a coupled chemical oscillator: the bromate-chloriteiodide reaction, J. Phys. Chem., 92, 1865–1871, doi: 10.1021/J100318A034, 1988.
- Clubb, A. E., Jordan, M. J. T., Kable, S. H., and Osborn, D. L.: Phototautomerization of acetaldehyde to vinyl alcohol: a primary process in UV-irradiated acetaldehyde from 295 to 335 nm, J. Phys. Chem. Lett., 3, 3522–3526, doi:10.1021/jz301701x, 2012.
- Clyne, M. A. A. and Cruse, H. W.: Atomic resonance fluorescence spectrometry for the rate constants of rapid bimolecular reactions. Part 2. Reactions Cl + BrCl, Cl + Br₂, Cl + ICl, Br + IBr, Br + ICl, J. Chem. Soc. Faraday Trans. 2, 68, 1377–1387, doi: 10.1039/F29726801377, 1972.

- Conn, J. B., Kistiakowsky, G. B., Roberts, R. M., and Smith, E. A.: Heats of organic reactions. XIII. Heats of hydrolysis of some acid anhydrides, Journal of the American Chemical Society, 64, 1747–1752, doi: 10.1021/ja01260a001, 1942.
- da Silva, G.: Carboxylic acid catalyzed keto-enol tautomerizations in the gas phase, Angew. Chem., 122, 7685–7687, doi:10.1002/ange.201003530, 2010.
- Damschen, D. E. and Martin, L. R.: Aqueous aerosol oxidation of nitrous acid by O_2 , O_3 and H_2O_2 , Atmos. Environ., 17, 2005–2011, doi:10.1016/0004-6981(83) 90357-8, 1983.
- Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., and Berresheim, H.: DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and field observations of DMS, DMSO, DMSO₂, H₂SO₄(g), MSA(g), and MSA(p), J. Geophys. Res., 103D, 1657–1678, doi:10.1029/97JD03452, 1998.
- Davis, Jr., W. and de Bruin, H. J.: New activity coefficients of 0-100 per cent aqueous nitric acid, J. Inorg. Nucl. Chem., 26, 1069–1083, doi:10.1016/ 0022-1902(64)80268-2, 1964.
- de Laat, J. and Le, T. G.: Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process, Appl. Catal. B: Environ., 66, 137–146, doi: 10.1016/j.apcatb.2006.03.008, 2006.
- Deister, U. and Warneck, P.: Photooxidation of SO₃²⁻ in aqueous solution, J. Phys. Chem., 94, 2191–2198, doi:10.1021/J100368A084, 1990.
- Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic

- acid in seawater media, Deep-Sea Res. A, 34, 1733–1743, 1987.
- Dillon, T. J., Karunanandan, R., and Crowley, J. N.: The reaction of IO with CH₃SCH₃: Products and temperature dependent rate coefficients by laser induced fluorescence, Phys. Chem. Chem. Phys., 8, 847–855, doi:10.1039/B514718B, 2006a.
- Dillon, T. J., Tucceri, M. E., and Crowley, J. N.: Laser induced fluorescence studies of iodine oxide chemistry. Part II. The reactions of IO with CH₃O₂, CF₃O₂ and O₃, Phys. Chem. Chem. Phys., 8, 5185– 5198, doi:10.1039/B611116E, 2006b.
- Dillon, T. J., Tucceri, M. E., Sander, R., and Crowley, J. N.: LIF studies of iodine oxide chemistry, part 3. Reactions IO + NO₃ \rightarrow OIO + NO₂, I + NO₃ \rightarrow IO + NO₂, and CH₂I + O₂ \rightarrow (products): Implications for the chemistry of the marine atmosphere at night., Phys. Chem. Chem. Phys., 10, 1540–1554, doi:10.1039/B717386E, 2008.
- Dolson, D. A. and Leone, S. R.: A reinvestigation of the laser-initiated chlorine/hydrogen bromide chain reaction: absolute rate constants and the v=2/v=1 ratio from chlorine atom + hydrogen bromide \rightarrow hydrogen chloride(v) + bromine atom, J. Phys. Chem., 91, 3543–3550, doi:10.1021/J100297A016, 1987.
- Donohoue, D. L., Bauer, D., Cossairt, B., and Hynes, A. J.: Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: a pulsed laser photolysis-pulsed laser induced fluorescence study, J. Phys. Chem. A, 110, 6623–6632, doi:10.1021/JP054688J, 2006.
- Duff, J. W., Dothe, H., and Sharma, R. D.: On the rate coefficient of the $N(^2D)+O_2 \rightarrow NO+O$ reaction

- in the terrestrial thermosphere, Geophys. Res. Lett., 30, 1259–1263, 2003.
- Dulitz, K., Amedro, D., Dillon, T. J., Pozzer, A., and Crowley, J. N.: Temperature (208–318 K) and pressure (18–696 Torr) dependent rate coefficients for the reaction between OH and HNO₃, Atmos. Chem. Phys., 18, 2381–2394, doi:10.5194/acp-18-2381-2018, 2018.
- Edblom, E. C., Györgyi, L., Orbán, M., and Epstein, I. R.: A mechanism for dynamical behavior in the Landolt reaction with ferrocyanide, J. Am. Chem. Soc., 109, 4876–4880, doi:10.1021/JA00250A020, 1987.
- Eigen, M. and Kustin, K.: The kinetics of halogen hydrolysis, J. Am. Chem. Soc., 84, 1355–1361, doi: 10.1021/JA00867A005, 1962.
- Enami, S., Hoshino, Y., and Kawasaki, M.: A kinetic study of the gas-phase reactions of OIO with NO, NO₂, and Cl₂, Int. J. Chem. Kinet., 39, 688–693, doi:10.1002/KIN.20283, 2007.
- Espinosa-Garcia, J. and Garcia-Bernáldez, J. C.: Analytical potential energy surface for the $CH_4 + O(^3P) \rightarrow CH_3 + OH$ reaction. Thermal rate constants and kinetic isotope effects, Phys. Chem. Chem. Phys., 2, 2345–2351, doi:10.1039/b001038n, 2000.
- Exner, M., Herrmann, H., and Zellner, R.: Laser-based studies of reactions of the nitrate radical in aqueous solution, Ber. Bunsenges. Phys. Chem., 96, 470–477, doi:10.1002/BBPC.19920960347, 1992.
- Faria, R. B., Lengyel, I., Epstein, I. R., and Kustin, K.: Combined mechanism explaining nonlinear dynamics in bromine(III) and bromine(V) oxidations of iodide ion, J. Phys. Chem., 97, 1164–1171, doi: 10.1021/J100108A011, 1993.

- Feierabend, K. J., Zhu, L., Talukdar, R. K., and Burkholder, J. B.: Rate coefficients for the OH + HC(O)C(O)H (glyoxal) raction between 210 and 390 K, J. Phys. Chem. A, 112, 73–82, doi:10.1021/JP0768571, 2008.
- Felder, P. and Demuth, C.: Photodissociation of CFCl₃ at 193 nm investigated by photofragment translational spectroscopy, Chem. Phys. Lett., 208, 21–26, doi:10.1016/0009-2614(93)80070-6, 1993.
- Fell, C., Steinfeld, J. I., and Miller, S.: Quenching of $N(^2D)$ by $O(^3P)$, J. Chem. Phys., 92, 4768–4777, doi: 10.1063/1.457694, 1990.
- Finkbeiner, M., Crowley, J. N., Horie, O., Müller, R., Moortgat, G. K., and Crutzen, P. J.: Reaction between HO₂ and ClO: Product formation between 210 and 300 K, J. Phys. Chem., 99, 16264–16275, doi: 10.1021/J100044A011, 1995.
- Flocke, F., Atlas, E., Madronich, S., Schauffler, S. M., Aikin, K., Margitan, J. J., and Bui, T. P.: Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms, Geophys. Res. Lett., 25, 1891–1894, doi: 10.1029/98GL01417, 1998.
- Fogelman, K. D., Walker, D. M., and Margerum, D. W.: Non-metal redox kinetics: Hypochlorite and hypochlorous acid reactions with sulfite, Inorg. Chem., 28, 986–993, doi:10.1021/IC00305A002, 1989.
- Fortnum, D. H., Battaglia, C. J., Cohen, S. R., and Edwards, J. O.: The kinetics of the oxidation of halide ions by monosubstituted peroxides, J. Am. Chem. Soc., 82, 778–782, doi:10.1021/JA01489A004, 1960.
- Francisco-Marquez, M., Alvarez-Idaboy, J. R., Galano, A., and Vivier-Bunge, A.: Theoretical study of the

- initial reaction between OH and isoprene in tropospheric conditions, Phys. Chem. Chem. Phys., 5, 1392-1399, doi:10.1039/B211185C, 2003.
- Fuller-Rowell, T. J.: Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere, J. Geophys. Res., 98A, 1559–1570, doi:10. 1029/92JA02201, 1993.
- Furrow, S.: Reactions of iodine intermediates in iodate-hydrogen peroxide oscillators, J. Phys. Chem., 91, 2129–2135, doi:10.1021/J100292A031, 1987.
- Gans, B., Boyé-Peronne, S., Broquier, M., Delsaut, M., Douin, S., Fellows, C. E., Halvick, P., Loison, J.-C., Lucchese, R. R., and Gauyacq, D.: Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry, Phys. Chem. Chem. Phys., 13, 8140–8152, doi:10.1039/c0cp02627a, 2011.
- Ganzeveld, L., Klemm, O., Rappenglück, B., and Valverde-Canossa, J.: Evaluation of meteorological parameters over a coniferous forest in a single-column chemistry-climate model, Atmos. Environ., 40, S21–S27, doi:10.1016/J.ATMOSENV.2006.01.061, 2006.
- Garton, D. J., Minton, T. K., Troya, D., Pascual, R., and Schatz, G. C.: Hyperthermal reactions of O(³P) with alkanes: Observations of novel reaction pathways in crossed-beams and theoretical studies, J. Phys. Chem. A, 107, 4583–4587, doi:10.1021/jp0226026, 2003.
- Gilbert, B. C. and Stell, J. K.: Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion (HOOSO3⁻) with TiIII, FeII, and α-oxygen-substituted radicals, J. Chem. Soc. Perkin Trans. 2, pp. 1281–1288, doi: 10.1039/P29900001281, 1990.

- Gill, K. J. and Hites, R. A.: Rate constants for the gas-phase reactions of the hydroxyl radical with isoprene, α and β -pinene, and limonene as a function of temperature, J. Phys. Chem. A, 106, 2538–2544, doi:10.1021/jp013532q, 2002.
- Glowacki, D. R., Lockhart, J., Blitz, M. A., Klippenstein, S. J., Pilling, M. J., Robertson, S. H., and Seakins, P. W.: Interception of excited vibrational quantum states by O₂ in atmospheric association reactions, Science, 337, 1066–1069, doi:10.1126/science. 1224106, 2012.
- Goodsite, M., Plane, J. M. C., and Skov, H.: A theoretical study of the oxidation of Hg⁰ to HgBr₂ in the troposphere, Environ. Sci. Technol., 38, 1772–1776, doi:10.1021/ES034680S, 2004.
- Grenfell, J. L., Lehmann, R., Mieth, P., Langematz, U., and Steil, B.: Chemical reaction pathways affecting stratospheric and mesospheric ozone, J. Geophys. Res., 111D, doi:10.1029/2004JD005713, 2006.
- Groß, C. B. M., Dillon, T. J., Schuster, G., Lelieveld, J., and Crowley, J. N.: Direct kinetic study of OH and O₃ formation in the reaction of CH₃C(O)O₂ with HO₂, J. Phys. Chem. A, 1, 974–985, doi:10.1021/jp412380z, 2014.
- Gruzdev, A. N., Elokhov, A. S., Makarov, O. V., and Mokhov, I. I.: Some recent results of Russian measurements of surface ozone in Antarctica. A meteorological interpretation, Tellus, 45B, 99–105, doi: 10.3402/TELLUSB.V45I2.15584, 1993.
- Haag, W. R. and Hoigné, J.: Ozonation of bromidecontaining waters: Kinetics of formation of hypobromous acid and bromate, Environ. Sci. Technol., 17, 261–267, doi:10.1021/ES00111A004, 1983.

- Hall, B.: The gas phase oxidation of elemental mercury by ozone, Water Air Soil Pollut., 80, 301–315, doi:10.1007/BF01189680, 1995.
- Hatakeyama, S., Honda, S., and Akimoto, H.: Rate constants and mechanism for reactions of ketenes with OH radicals in air at 299±2 K, Bull. Chem. Soc. Jpn., 58, 2157–2162, doi:10.1246/BCSJ.58.2157, 1985.
- Hermans, I., Müller, J.-F., Nguyen, T. L., Jacobs, P. A., and Peeters, J.: Kinetics of α-hydroxy-alkylperoxyl radicals in oxidation processes. HO₂--initiated oxidation of ketones/aldehydes near the tropopause, J. Phys. Chem. A, 109, 4303–4311, doi:10.1021/jp044080v, 2005.
- Herrmann, H., Reese, A., and Zellner, R.: Time resolved UV/VIS diode array absorption spectroscopy of SO_x^- (x=3, 4, 5) radical anions in aqueous solution, J. Mol. Struct., 348, 183–186, doi:10.1016/0022-2860(95)08619-7, 1995.
- Herrmann, H., Ervens, B., Nowacki, P., Wolke, R., and Zellner, R.: A chemical aqueous phase radical mechanism for tropospheric chemistry, Chemosphere, 38, 1223–1232, doi:10.1016/S0045-6535(98)00520-7, 1999.
- Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem., 36, 231–284, doi:10.1023/A:1006318622743, 2000.
- Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ., 20, 1145–1154, doi:10.1016/0004-6981(86) 90147-2, 1986.
- Hoigné, J., Bader, H., Haag, W. R., and Staehelin, J.: Rate constants of reactions of ozone with organic and

- inorganic compounds in water III Inorganic compounds and radicals, Wat. Res., 19, 993–1004, doi: 10.1016/0043-1354(85)90368-9, 1985.
- Huie, R. E. and Neta, P.: Rate constants for some oxidations of S(IV) by radicals in aqueous solutions, Atmos. Environ., 21, 1743–1747, doi:10.1016/0004-6981(87)90113-2, 1987.
- Hynes, A. J. and Wine, P. H.: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + DMSO reaction, J. Atmos. Chem., 24, 23–37, doi:10.1007/BF00053821, 1996.
- Ingham, T., Bauer, D., Sander, R., Crutzen, P. J., and Crowley, J. N.: Kinetics and products of the reactions
 BrO + DMS and Br + DMS at 298 K, J. Phys. Chem.
 A, 103, 7199–7209, doi:10.1021/JP9905979, 1999.
- Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91D, 9807–9826, doi: 10.1029/JD091ID09P09807, 1986.
- Jacobi, H.-W.: Kinetische Untersuchungen und Modellrechnungen zur troposphärischen Chemie von Radikalanionen und Ozon in wäßriger Phase, Ph.D. thesis, Universität GH Essen, Germany, 1996.
- Jacobi, H.-W., Herrmann, H., and Zellner, R.: Kinetic investigation of the Cl₂⁻ radical in the aqueous phase, in: Air Pollution Research Report 57: Homogeneous and heterogeneous chemical Processes in the Troposphere, edited by Mirabel, P., pp. 172–176, Office for official Publications of the European Communities, Luxembourg, 1996.
- Jacobsen, F., Holcman, J., and Sehested, K.: Activation parameters of ferryl ion reactions in aqueous acid solutions, Int. J. Chem. Kinet., 29,

- 17-24, doi: $10.1002/(SICI)1097-4601(1997)29:1\langle 17::AID-KIN3 \rangle 3.0.CO; 2-O, 1997.$
- Jacobsen, F., Holcman, J., and Sehested, K.: Reactions of the ferryl ion with some compounds found in cloud water, Int. J. Chem. Kinet., 30, 215–221, doi:10.1002/(SICI)1097-4601(1998)30: $3\langle 215::AID-KIN7\rangle 3.0.CO; 2-V, 1998.$
- Jagiella, S. and Zabel, F.: Reaction of phenylperoxy radicals with NO₂ at 298 K, Phys. Chem. Chem. Phys., 9, 5036–5051, doi:10.1039/B705193J, 2007.
- Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution, J. Chem. Soc. Faraday Trans. 1, 69, 1597–1607, doi:10.1039/F19736901597, 1973.
- Jefferson, A., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of the reactions $Br(^2P_{3/2}) + CH_3SCH_3 \leftrightarrow CH_3SCH_2 + HBr$. Heat of formation of the CH_3SCH_2 radical, J. Phys. Chem., 98, 7128–7135, doi:10.1021/J100080A006, 1994.
- Jenkin, M., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ., 31, 81–104, doi:10.1016/ S1352-2310(96)00105-7, 1997.
- Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433-11459, doi:10.5194/ acp-15-11433-2015, 2015.
- Jiang, P.-Y., Katsumura, Y., Nagaishi, R., Domae, M., Ishikawa, K., Ishigure, K., and Yoshida, Y.: Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate

- radicals, J. Chem. Soc. Faraday Trans., 88, 1653–1658, doi:10.1039/FT9928801653, 1992.
- Kaltsoyannis, N. and Plane, J. M. C.: Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO₃, (IO)₂, I₂O₃, I₂O₄ and I₂O₅) of importance in the atmosphere, Phys. Chem. Chem. Phys., 10, 1723–1733, doi:10.1039/B715687C, 2008.
- Keller-Rudek, H., Koschel, D., Merlet, P., Ohms-Bredemann, U., Wagner, J., and Wietelmann, A.: Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Edition, Br, Bromine, Supplement Volume B2, Compounds with Oxygen and Nitrogen, Springer Verlag, Berlin, 1992.
- Kelley, C. M. and Tartar, H. V.: On the system: bromine-water, J. Am. Chem. Soc., 78, 5752–5756, doi:10.1021/JA01603A010, 1956.
- Kirchner, F., Mayer-Figge, A., Zabel, F., and Becker, K. H.: Thermal stability of peroxynitrates, Int. J. Chem. Kinet., 31, 127–144, doi:10.1002/(SICI)1097-4601(1999)31:2\(\(\)127:: AID-KIN6\(\)3.0.CO;2-L, 1999.
- Kleinböhl, A., Toon, G. C., Sen, B., Blavier, J.-F. L., Weisenstein, D. K., Strekowski, R. S., Nicovich, J. M., Wine, P. H., and Wennberg, P. O.: On the stratospheric chemistry of hydrogen cyanide, Geophys. Res. Lett., 33, doi:10.1029/2006GL026015, 2006.
- Kohlmann, J.-P. and Poppe, D.: The tropospheric gasphase degradation of NH_3 and its impact on the formation of N_2O and NO_x , J. Atmos. Chem., 32, 397–415, doi:10.1023/A:1006162910279, 1999.
- Kondo, O. and Benson, S. W.: Kinetics and equilibria in the system $Br + CH_3OOH \rightleftharpoons HBr + CH_3OO$. An up-

- per limit for the heat of formation of the methylper-oxy radical, J. Phys. Chem., 88, 6675-6680, doi: 10.1021/J150670A034, 1984.
- Kumar, K. and Margerum, D. W.: Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid, Inorg. Chem., 26, 2706–2711, doi:10.1021/IC00263A030, 1987.
- Lax, E.: Taschenbuch für Chemiker und Physiker, Springer Verlag, Berlin, 1969.
- Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840–848, doi: 10.1021/J150607A022, 1981.
- Lengyel, I., Li, J., Kustin, K., and Epstein, I. R.: Rate constants for reactions between iodine- and chlorine-containing species: A detailed mechanism of the chlorine dioxine/chlorite reaction, J. Am. Chem. Soc., 118, 3708–3719, doi:10.1021/JA953938E, 1996.
- Lewis, T. R., Blitz, M. A., Heard, D. E., and Seakins, P. W.: Direct evidence for a substantive reaction between the Criegee intermediate, CH₂OO, and the water vapour dimer, Phys. Chem. Chem. Phys., 17, 4859–4863, doi:10.1039/C4CP04750H, 2015.
- Liljegren, J. A. and Stevens, P. S.: Measurements of the kinetics of the reaction of OH radicals with 3methylfuran at low pressure, Int. J. Chem. Kinet., 45, 787–794, doi:10.1002/KIN.20814, 2013.
- Lin, C.-J. and Pehkonen, S. O.: Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol, Atmos. Environ., 31, 4125–4137, doi:10.1016/S1352-2310(97)00269-0, 1997.

- Lin, C.-J. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl⁻): Implications for tropospheric mercury chemistry, J. Geophys. Res., 103D, 28093–28102, doi:10.1029/98JD02304, 1998.
- Lind, J. A., Lazrus, A. L., and Kok, G. L.: Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 92D, 4171–4177, doi:10.1029/JD092ID04P04171, 1987.
- Liu, Q. and Margerum, D. W.: Equilibrium and kinetics of bromine chloride hydrolysis, Environ. Sci. Technol., 35, 1127–1133, doi:10.1021/ES001380R, 2001.
- Liu, Y., Pimentel, A. S., Antoku, Y., Giles, B. J., and Barker, J. R.: Temperature-dependent rate and equilibrium constants for $\text{Br} \cdot (\text{aq}) + \text{Br}^-(\text{aq}) \rightleftharpoons \text{Br}_2^- \cdot (\text{aq})$, J. Phys. Chem. A, 106, 11 075–11 082, doi: 10.1021/JP0255536, 2002.
- Lockhart, J., Blitz, M., Heard, D., Seakins, P., and Shannon, R.: Kinetic study of the OH + glyoxal reaction: experimental evidence and quantification of direct OH recycling, J. Phys. Chem. A, 117, 11027–11037, doi:10.1021/jp4076806, 2013.
- Lockwood, A. L., Shepson, P. B., Fiddler, M. N., and Alaghmand, M.: Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry, Atmos. Chem. Phys., 10, 6169–6178, doi: 10.5194/acp-10-6169-2010, 2010.
- Løgager, T., Holcman, J., Sehested, K., and Pedersen, T.: Oxidation of ferrous ions by ozone in acidic solutions, Inorg. Chem., 31, 3523–3529, doi: 10.1021/ic00043a009, 1992.
- Løgager, T., Sehested, K., and Holcman, J.: Rate constants of the equilibrium reactions SO₄ + HNO₃

- \rightleftharpoons HSO₄⁻ + NO₃ and SO₄ + NO₃ \rightleftharpoons SO₄²⁻ + NO₃, Radiat. Phys. Chem., 41, 539–543, doi:10.1016/0969-806X(93)90017-O. 1993.
- Long, C. A. and Bielski, B. H. J.: Rate of reaction of superoxide radical with chloride-containing species, J. Phys. Chem., 84, 555–557, doi:10.1021/J100442A023, 1980.
- Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C.: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. Chem. A, 101, 4943–4949, doi:10.1021/JP970646M, 1997.
- Manion, J. A., Huie, R. E., Levin, R. D., Burgess, Jr.,
 D. R., Orkin, V. L., Tsang, W., McGivern, W. S.,
 Hudgens, J. W., Knyazev, V. D., Atkinson, D. B.,
 Chai, E., Tereza, A. M., Lin, C.-Y., Allison, T. C.,
 Mallard, W. G., Westley, F., Herron, J. T., Hampson,
 R. F., and Frizzell, D. H.: NIST Chemical Kinetics Database, NIST Standard Reference Database 17
 (Web Version), http://kinetics.nist.gov, 2015.
- Margerum, D. W., Dickson, P. N., Nagy, J. C., Kumar, K., Bowers, C. P., and Fogelman, K. D.: Kinetics of the iodine monochloride reaction with iodide measured by the pulsed-accelerated-flow method, Inorg. Chem., 25, 4900–4904, doi:10.1021/IC00247A025, 1986.
- Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075–1080, doi:10.1016/0004-6981(85)90192-1, 1985.
- Martin, L. R. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ., 15, 1615–1621, doi:10.1016/0004-6981(81)90146-3, 1981.

- Matthew, B. M., George, I., and Anastasio, C.: Hydroperoxyl radical (HO2·) oxidizes dibromide radical anion (·Br₂) to bromine (Br₂) in aqueous solution: Implications for the formation of Br₂ in the marine boundary layer, Geophys. Res. Lett., 30, doi: 10.1029/2003GL018572, 2003.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + CO under atmospheric conditions, Geophys. Res. Lett., 28, 3135–3138, doi:10.1029/2000GL012719, 2001.
- McElroy, W. J. and Waygood, S. J.: Kinetics of the reactions of the SO_4^- radical with SO_4^- , $S_2O_8^{2-}$, H_2O and Fe^{2+} , J. Chem. Soc. Faraday Trans., 86, 2557–2564, doi:10.1039/FT9908602557, 1990.
- Mellouki, A. and Mu, Y.: On the atmospheric degradation of pyruvic acid in the gas phase, J. Photochem. Photobiol. A: Chem., 157, doi:10.1016/S1010-6030(03)00070-4, 2003.
- Messaadia, L., Dib, G. E., Ferhati, A., and Chakir, A.: UV-visible spectra and gas-phase rate coefficients for the reaction of 2,3-pentanedione and 2,4-pentanedione with OH radicals, Chem. Phys. Lett., 626, 73–79, doi:10.1016/j.cplett.2015.02.032, 2015.
- Müller, J.-F., Peeters, J., and Stavrakou, T.: Fast photolysis of carbonyl nitrates from isoprene, Atmos. Chem. Phys., 14, 2497–2508, doi:10.5194/acp-14-2497-2014, 2014.
- Munger, J. W., Jacob, D. J., Fan, S.-M., Colman, A. S., and Dibb, J. E.: Concentrations and snowatmosphere fluxes of reactive nitrogen at Summit, Greenland, J. Geophys. Res., 104D, 13721–13734, doi:10.1029/1999JD900192, 1999.

- Munthe, J.: The aqueous oxidation of elemental mercury by ozone, Atmos. Environ., 26A, 1461–1468, doi: 10.1016/0960-1686(92)90131-4, 1992.
- Nagy, J. C., Kumar, K., and Margerum, D. W.: Non-metal redox kinetics: Oxidation of iodide by hypochlorous acid and by nitrogen trichloride measured by the pulsed-accelerated-flow method, Inorg. Chem., 27, 2773–2780, doi:10.1021/IC00289A007, 1988.
- Nakanishi, H., Morita, H., and Nagakura, S.: Electronic structures and spectra of the keto and enol forms of acetylacetone, Bull. Chem. Soc. Jpn., 50, 2255–2261, doi:10.1246/bcsj.50.2255, 1977.
- Nakano, Y., Ishiwata, T., and Kawasaki, M.: Rate constants of the reaction of NO₃ with CH₃I measured with use of cavity ring-down spectroscopy, J. Phys. Chem. A, 109, 6527–6531, doi:10.1021/JP051817N, 2005.
- Neta, P. and Huie, R. E.: Rate constants for reactions of NO₃ radicals in aqueous solutions, J. Phys. Chem., 90, 4644–4648, doi:10.1021/J100410A035, 1986.
- Nguyen, T. L., Peeters, J., and Vereecken, L.: Theoretical study of the gas-phase ozonolysis of β -pinene (C₁₀H₁₆), Phys. Chem. Chem. Phys., 11, 5643–5656, doi:10.1039/b822984h, 2009.
- Nielsen, O. J., Sidebottom, H. W., Donlon, M., and Treacy, J.: Rate constants for the gas-phase reactions of OH radicals and Cl atoms with *n*-alkyl nitrites at atmospheric pressure and 298 K, Int. J. Chem. Kinet., 23, 1095–1109, doi:10.1002/kin.550231204, 1991.
- O'Dowd, C. D. and Hoffmann, T.: Coastal new particle formation: a review of the current state-of-the-art, Environ. Chem., 2, 245–255, doi:10.1071/EN05077, 2005.

- Ogryzlo, E. A., Paltenghi, R., and Bayes, K. D.: The rate of reaction of methyl radicals with ozone, Int. J. Chem. Kinet., 13, 667–675, doi:10.1002/kin. 550130707, 1981.
- Olzmann, M., Kraka, E., Cremer, D., Gutbrod, R., and Andersson, S.: Energetics, kinetics, and product distributions of the reactions of ozone with ethene and 2,3-dimethyl-2-butene, J. Phys. Chem. A, 101, 9421–9429, doi:10.1021/JP971663E, 1997.
- Orlando, J. J. and Tyndall, G. S.: Rate coefficients for the thermal decomposition of $BrONO_2$ and the heat of formation of $BrONO_2$, J. Phys. Chem., 100, $19\,398-19\,405$, doi:10.1021/JP9620274, 1996.
- Orlando, J. J. and Tyndall, G. S.: The atmospheric chemistry of the HC(O)CO radical, Int. J. Chem. Kinet., 33, 149–156, doi:10.1002/1097-4601(200103) $33:3\langle149::AID-KIN1008\rangle3.0.CO;2-1, 2001.$
- Orlando, J. J. and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chem. Soc. Rev., 41, 6294–6317, doi:10.1039/C2CS35166H, 2012.
- Orlando, J. J., Tyndall, G. S., Bilde, M., Ferronato, C., Wallington, T. J., Vereecken, L., and Peeters, J.: Laboratory and theoretical study of the oxy radicals in the OH- and Cl-initiated oxidation of ethene, J. Phys. Chem. A, 102, 8116–8123, doi: 10.1021/JP981937D, 1998.
- Orlando, J. J., Tyndall, G. S., Fracheboud, J. M., Estupinan, E. G., Haberkorn, S., and Zimmer, A.: The rate and mechanism of the gas-phase oxidation of hydroxyacetone, Atmos. Environ., 33, 1621–1629, doi: 10.1016/S1352-2310(98)00386-0, 1999a.

- Orlando, J. J., Tyndall, G. S., and Paulson, S. E.: Mechanism of the OH-initiated oxidation of methacrolein, Geophys. Res. Lett., 26, 2191–2194, doi:10.1029/1999GL900453, 1999b.
- Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with CH₂=C(CH₃)C(O)OONO₂ (MPAN), Atmos. Environ., 36, 1895–1900, doi:10. 1016/S1352-2310(02)00090-0, 2002.
- Ouyang, B., McLeod, M. W., Jones, R. L., and Bloss, W. J.: NO₃ radical production from the reaction between the Criegee intermediate CH₂OO and NO₂, Phys. Chem. Chem. Phys., 15, 17 070–17 075, doi: 10.1039/c3cp53024h, 2013.
- Pal, B. and Ariya, P. A.: Gas-phase HO-initiated reactions of elemental mercury: Kinetics, product studies, and atmospheric implications, Environ. Sci. Technol., 38, 5555–5566, doi:10.1021/ES0494353, 2004.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479–1501, doi:10.5194/ACP-9-1479-2009, 2009a.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten,
 A., St. Clair, J. M., Seinfeld, J. H., and Wennberg,
 P. O.: Unexpected epoxide formation in the gasphase photooxidation of isoprene, Science, 325, 730–733, doi:10.1126/science.1172910, 2009b.
- Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.:

- Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, doi:10.5194/acp-11-1989-2011, 2011.
- Peeters, J. and Nguyen, T. L.: Unusually fast 1,6-H shifts of enolic hydrogens in peroxy radicals: formation of the first-generation C₂ and C₃ carbonyls in the oxidation of isoprene, J. Phys. Chem. A, 116, 6134–6141, doi:10.1021/jp211447q, 2012.
- Peeters, J., Müller, J.-F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism, J. Phys. Chem. A, 118, 8625–8643, doi:10.1021/jp5033146, 2014.
- Plane, J. M. C., Joseph, D. M., Allan, B. J., Ashworth, S. H., and Francisco, J. S.: An experimental and theoretical study of the reactions OIO + NO and OIO + OH, J. Phys. Chem. A, 110, 93–100, doi: 10.1021/JP055364Y, 2006.
- Platz, J., Nielsen, O. J., Wallington, T. J., Ball, J. C., Hurley, M. D., Straccia, A. M., Schneider, W. F., and Sehested, J.: Atmospheric chemistry of the phenoxy radical, $C_6H_5O(\cdot)$: UV spectrum and kinetics of its reaction with NO, NO₂, and O₂, J. Phys. Chem. A, 102, 7964–7974, doi:10.1021/jp9822211, 1998.
- Pleijel, K. and Munthe, J.: Modelling the atmospheric mercury cycle Chemistry in fog droplets, Atmos. Environ., 29, 1441–1457, doi:10.1016/1352-2310(94) 00323-D, 1995.
- Raofie, F. and Ariya, P. A.: Kinetics and products study of the reaction of BrO radicals with gaseous mercury, J. Phys. IV France, 107, 1119–1121, doi: 10.1051/JP4:20030497, 2003.

- Raofie, F. and Ariya, P. A.: Product study of the gasphase BrO-initiated oxidation of Hg⁰: Evidence for stable Hg¹⁺ compounds, Environ. Sci. Technol., 38, 4319–4326, doi:10.1021/ES035339A, 2004.
- Rickard, A. and Pascoe, S.: The Master Chemical Mechanism (MCM), http://mcm.leeds.ac.uk, 2009.
- Rickard, A. R., Johnson, D., McGill, C. D., and Marston, G.: OH yields in the gas-phase reactions of ozone with alkenes, J. Phys. Chem. A, 103, 7656–7664, doi:10.1021/JP9916992, 1999.
- Riffault, V., Bedjanian, Y., and Poulet, G.: Kinetic and mechanistic study of the reactions of OH with IBr and HOI, J. Photochem. Photobiol. A: Chem., 176, 155–161, doi:10.1016/j.jphotochem.2005.09.002, 2005.
- Roble, R. G.: Energetics of the mesosphere and thermosphere, in: The upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophysical Monograph 87, edited by Johnson, R. M. and Killeen, T. L., pp. 1–23, American Geophysical Union, Washington, DC, USA, 1995.
- Ross, A. B., Mallard, W. G., Helman, W. P., Bielski,
 B. H. J., Buxton, G. V., Cabelli, D. E., Greenstock,
 C. L., Huie, R. E., and Neta, P.: NDRL-NIST Solution Kinetics Database: Ver. 1, National Institute of Standards and Technology, Gaithersburg, MD, 1992.
- Roth, E., Chakir, A., and Ferhati, A.: Study of a benzoylperoxy radical in the gas phase: ultraviolet spectrum and $C_6H_5C(O)O_2 + HO_2$ reaction between 295 and 357 K, J. Phys. Chem. A, 114, 10367–10379, doi:10.1021/jp1021467, 2010.
- Rush, J. D. and Bielski, B. H. J.: Pulse radiolytic studies of the reaction of $\rm HO_2/O_2^-$ with $\rm Fe(II)/Fe(III)$

- ions. The reactivity of $\mathrm{HO_2/O_2^-}$ with ferric ions and its implication on the occurrence of the Haber-Weiss reaction, J. Phys. Chem., 89, 5062–5066, doi: $10.1021/\mathrm{j}100269a035$, 1985.
- Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and Pozzer, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev., 7, 2653–2662, doi:10.5194/GMD-7-2653-2014, 2014.
- Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooß, J.-U., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A., Niemeyer, K. E., Pozzer, A., Riede, H., Schultz, M. G., Taraborrelli, D., and Tauer, S.: The community atmospheric chemistry box model CAABA/MECCA-4.0, Geosci. Model Dev., 12, 1365–1385, doi:10.5194/ gmd-12-1365-2019, 2019.
- Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., and Ravishankara, A. R.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.
- Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in: Advances in Environmental Science and Engineering, edited by Pfafflin, J. R. and Ziegler, E. N., vol. 4, pp. 1–45, Gordon and Breach Science Publishers, NY, 1981.
- Schwarz, H. A. and Bielski, B. H. J.: Reactions of $\rm HO_2$ and $\rm O_2^-$ with iodine and bromine and the $\rm I_2^-$ and I atom reduction potentials, J. Phys. Chem., 90, 1445–1448, doi:10.1021/J100398A045, 1986.

- Scribano, Y., Goldman, N., Saykally, R. J., and Leforestier, C.: Water dimers in the atmosphere III: Equilibrium constant from a flexible potential, J. Phys. Chem. A, 110, 5411–5419, doi:10.1021/jp056759k, 2006.
- Sehested, J., Christensen, L. K., Nielsen, O. J., Bilde, M., Wallington, T. J., Schneider, W. F., Orlando, J. J., and Tyndall, G. S.: Atmospheric chemistry of acetone: Kinetic study of the $\rm CH_3C(O)CH_2O_2 + NO/NO_2$ reactions and decomposition of $\rm CH_3C(O)CH_2O_2NO_2$, Int. J. Chem. Kinet., 30, 475–489, doi:10.1002/(SICI)1097-4601(1998)30: $7\langle 475::AID-KIN4\rangle 3.0.CO; 2-P$, 1998.
- Sehested, K., Rasmussen, O. L., and Fricke, H.: Rate constants of OH with HO₂, O₂⁻, and H₂O₂⁺ from hydrogen peroxide formation in pulse-irradiated oxygenated water, J. Phys. Chem., 72, 626–631, doi: 10.1021/J100848A040, 1968.
- Sehested, K., Holcman, J., and Hart, E. J.: Rate constants and products of the reactions of e_{aq}, O₂ and H with ozone in aqueous solutions, J. Phys. Chem., 87, 1951–1954, doi:10.1021/J100234A024, 1983.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., 1998.
- Shallcross, D. E., Leather, K. E., Bacak, A., Xiao, P., Lee, E. P. F., Ng, M., Mok, D. K. W., Dyke, J. M., Hossaini, R., Chipperfield, M. P., Khan, M. A. H., and Percival, C. J.: Reaction between CH₃O₂ and BrO radicals: a new source of upper troposphere lower stratosphere hydroxyl radicals, J. Phys. Chem. A, 119, 4618–4632, doi:10.1021/JP5108203, 2015.
- Shoute, L. C. T., Alfassi, Z. B., Neta, P., and Huie, R. E.: Temperature dependence of the rate constants

- for reaction of dihalide and azide radicals with inorganic reductants, J. Phys. Chem., 95, 3238–3242, doi:10.1021/J100161A050, 1991.
- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821–4827, doi:10.1039/B306859E, 2003.
- So, S., Wille, U., and da Silva, G.: Atmospheric chemistry of enols: a theoretical study of the vinyl alcohol + OH + O₂ reaction mechanism, Environ. Sci. Technol., 48, 6694–6701, doi:10.1021/es500319q, 2014.
- Sokolov, O., Hurley, M. D., Ball, J. C., Wallington, T. J., Nelsen, W., Barnes, I., and Becker, K. H.: Kinetics of the reactions of chlorine atoms with CH₃ONO and CH₃ONO₂, Int. J. Chem. Kinet., 31, 357–359, doi:10.1002/(SICI)1097-4601(1999)31: $5\langle 357::AID-KIN5\rangle 3.0.CO; 2-6, 1999.$
- Solberg, S., Stordal, F., and Hov, Ø.: Tropospheric ozone at high latitudes in clean and polluted air masses, a climatological study, J. Atmos. Chem., 28, 111–123, doi:10.1023/A:1005766612853, 1997.
- Stone, D., Blitz, M., Daubney, L., Howes, N. U. M., and Seakins, P.: Kinetics of CH₂OO reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of pressure, Phys. Chem. Chem. Phys., 16, 1139–1149, doi:10.1039/c3cp54391a, 2014.
- Strekowski, R. S., Nicovich, J. M., and Wine, P. H.: Kinetic and mechanistic study of the Reactions of O(¹D₂) with HCN and CH₃CN, Chem. Phys. Chem., 11, 3942–3955, doi:10.1002/cphc.201000550, 2010.
- Sutton, H. C. and Downes, M. T.: Reactions of the HO_2 radical in aqueous solution with bromine and

- related compounds, J. Chem. Soc. Faraday Trans. 1, 68, 1498–1507, doi:10.1039/F19726801498, 1972.
- Swaminathan, P. K., Strobel, D. F., Kupperman, D. G., Acton, L., DeMajistre, R., Yee, J.-H., Paxton, L., Anderson, D. E., Strickland, D. J., and Duff, J. W.: Nitric oxide abundance in the mesosphere/lower thermosphere region: Roles of solar soft X rays, suprathermal N(⁴S) atoms, and vertical transport, J. Geophys. Res., 103A, 11579–11594, doi:10.1029/97JA03249, 1998.
- Tao, Z. and Li, Z.: A kinetics study on reactions of C_6H_5O with C_6H_5O and O_3 at 298 K, Int. J. Chem. Kinet., 31, 65–72, doi:10.1002/(SICI)1097-4601(1999)31:1 $\langle 65::$ AID-KIN8 $\rangle 3.0.CO$;2-J, 1999.
- Taraborrelli, D.: Isoprene oxidation and its impacts on the atmospheric composition, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, http:// d-nb.info/1003538770/34, 2010.
- Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling, Atmos. Chem. Phys., 9, 2751–2777, doi:10.5194/ACP-9-2751-2009, 2009.
- Thornton, A. T. and Laurence, G. S.: Kinetics of oxidation of transition-metal ions by halogen radical anions. Part I. The oxidation of iron(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc. Dalton Trans., pp. 804–813, doi: 10.1039/DT9730000804, 1973.
- Tokos, J. J. S., Hall, B., Calhoun, J. A., and Prestbo, E. M.: Homogeneous gas-phase reaction of Hg⁰ with

- H_2O_2 , O_3 , CH_3I , and $(CH_3)_2S$: Implications for atmospheric Hg cycling, Atmos. Environ., 32, 823–827, doi:10.1016/S1352-2310(97)00171-4, 1998.
- Troy, R. C. and Margerum, D. W.: Non-metal redox kinetics: Hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate, Inorg. Chem., 30, 3538–3543, doi: 10.1021/IC00018A028, 1991.
- Troy, R. C., Kelley, M. D., Nagy, J. C., and Margerum, D. W.: Non-metal redox kinetics: Iodine monobromide reaction with iodide ion and the hydrolysis of IBr, Inorg. Chem., 30, 4838–4845, doi:10.1021/ IC00025A030, 1991.
- Tyndall, G. S., Staffelbach, T. A., Orlando, J. J., and Calvert, J. G.: Rate coefficients for the reactions of OH radicals with methylglyoxal and acetaldehyde, Int. J. Chem. Kinet., 27, 1009–1020, doi: 10.1002/KIN.550271006, 1995.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., Sehested, J., and Nielsen, O. J.: Kinetics of the reactions of acetonitrile with chlorine and fluorine atoms, J. Phys. Chem., 100, 660–668, doi:10.1021/ ip9521417, 1996.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157–12182, doi:10.1029/2000JD900746, 2001a.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., and Hurley, M. D.: Products of the chlorine-atomand hydroxyl-radical-initiated oxidation of CH₃CN, J. Phys. Chem. A, 105, 5380–5384, doi:10.1021/ jp004318p, 2001b.

- van den Bergh, H. and Troe, J.: Kinetic and thermodynamic properties of INO and INO₂ intermediate complexes in iodine recombination, J. Chem. Phys., 64, 736–742, doi:10.1063/1.432220, 1976.
- van Loon, L., Mader, E., and Scott, S. L.: Reduction of the aqueous mercuric ion by sulfite: UV spectrum of ${\rm HgSO_3}$ and its intramolecular redox reaction, J. Phys. Chem. A, 104, 1621–1626, doi:10.1021/JP994268S, 2000.
- van Loon, L. L., Mader, E. A., and Scott, S. L.: Sulfite stabilization and reduction of the aqueous mercuric ion: Kinetic determination of sequential formation constants, J. Phys. Chem. A, 105, 3190–3195, doi: 10.1021/JP003803H, 2001.
- Vereecken, L. and Francisco, J. S.: Theoretical studies of atmospheric reaction mechanisms in the troposphere, Chem. Soc. Rev., 41, 6259–6293, doi:10.1039/c2cs35070j, 2012.
- Vereecken, L. and Peeters, J.: A theoretical study of the OH-initiated gas-phase oxidation mechanism of β -pinene (C₁₀H₁₆): first generation products, Phys. Chem. Chem. Phys., 14, 3802–3815, doi:10.1039/c2cp23711c, 2012.
- Vereecken, L., Müller, J.-F., and Peeters, J.: Low-volatility poly-oxygenates in the OH-initiated atmospheric oxidation of α -pinene: impact of non-traditional peroxyl radical chemistry, Phys. Chem. Chem. Phys., 9, 5241–5248, doi:10.1039/b708023a, 2007.
- Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee intermediates with NO, RO₂, and SO₂, and their fate in the atmosphere, Phys. Chem. Chem. Phys., 14, 14682–14695, doi:10.1039/c2cp42300f, 2012.

- Vereecken, L., Harder, H., and Novelli, A.: The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides, Phys. Chem. Chem. Phys., 16, 4039–4049, doi:10.1039/c3cp54514h, 2014.
- von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer, 1. Cloud-free MBL, J. Geophys. Res., 107D, 4341, doi:10.1029/2001JD000942, 2002.
- von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3D-modeling study considering non-methane hydrocarbons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.
- von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J.: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108D, 4294, doi:10.1029/2002JD002893, 2003.
- Wagman, D. D., Evans, W. H., Parker, V. B., Schumm,
 R. H., Halow, I., Bailey, S. M., Churney, K. L., and
 Nuttall, R. L.: The NBS tables of chemical thermodynamic properties; Selected values for inorganic and
 C₁ and C₂ organic substances in SI units, J. Phys.
 Chem. Ref. Data, 11, suppl. 2, 1982.
- Wagner, I. and Strehlow, H.: On the flash photolysis of bromide ions in aqueous solution, Ber. Bunsenges. Phys. Chem., 91, 1317–1321, doi:10.1002/BBPC. 19870911203, 1987.
- Wallington, T. J., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V., Mellouki, A., Rossi, M. J., and Troe, J.: IUPAC Task group on atmospheric chemical kinetic data evaluation: Evaluated kinetic data, http://iupac.pole-ether.fr, 2018.

- Wang, T. X. and Margerum, D. W.: Kinetics of reversible chlorine hydrolysis: Temperature dependence and general-acid/base-assisted mechanisms, Inorg. Chem., 33, 1050–1055, doi:10.1021/IC00084A014, 1994.
- Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, doi:10.1021/IC00103A040, 1994.
- Wang, Y. L., Nagy, J. C., and Margerum, D. W.: Kinetics of hydrolysis of iodine monochloride measured by the pulsed-accelerated-flow method, J. Am. Chem. Soc., 111, 7838–7844, doi:10.1021/JA00202A026, 1989.
- Wang, Z. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous bromine: atmospheric implications, Atmos. Environ., 38, 3675–3688, doi: 10.1016/J.ATMOSENV.2004.02.059, 2004.
- Warneck, P.: Chemical reactions in clouds, Fresenius J. Anal. Chem., 340, 585–590, doi:10.1007/BF00322434, 1991.
- Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, doi:10.1039/A906558J, 1999.
- Warneck, P.: The oxidation of sulfur(IV) by reaction with iron(III): a critical review and data analysis, Phys. Chem. Chem. Phys., 20, 4020–4037, doi: 10.1039/c7cp07584g, 2018.
- Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and

- Sidebottom, H.: The nitrate radical: Physics, chemistry, and the atmosphere, Atmos. Environ., 25A, 1–203. doi:10.1016/0960-1686(91)90192-A, 1991.
- Weast, R. C., ed.: CRC Handbook of Chemistry and Physics, 61st Edition, CRC Press, Inc., Boca Raton, FL. 1980.
- Weinstein-Lloyd, J. and Schwartz, S. E.: Low-intensity radiolysis study of free-radical reactions in cloudwater: $\rm H_2O_2$ production and destruction, Environ. Sci. Technol., 25, 791–800, doi:10.1021/ES00016A027, 1991.
- Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂, Science, 335, 204–207, doi:10.1126/science.1213229, 2012.
- Welz, O., Eskola, A. J., Sheps, L., Rotavera, B., Savee,
 J. D., Scheer, A. M., Osborn, D. L., Lowe, D.,
 Booth, A. M., Xiao, P., Khan, M. A. H., Percival,
 C. J., Shallcross, D. E., and Taatjes, C. A.: Rate coefficients of C1 and C2 Criegee intermediate reactions with formic and acetic acid near the collision limit: Direct kinetics measurements and atmospheric implications, Angew. Chem., 126, 4635–4638,
 doi:10.1002/ange.201400964, 2014.

- Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D.: Kinetics of aqueous phase reactions of the SO₄⁻ radical with potential importance in cloud chemistry, J. Geophys. Res., 94D, 1085–1094, doi: 10.1029/JD094ID01P01085, 1989.
- Wingenter, O. W., Sive, B. C., Blake, N. J., and Rowland, F. S.: Atomic chlorine concentrations determined from ethane and hydroxyl measurements made over the Central Pacific Ocean, Eos, Trans. AGU (Abstract Supplement), 80, F149–F150, 1999.
- Wu, D., Wong, D., and Di Bartolo, B.: Evolution of Cl_2^- in aqueous NaCl solutions, J. Photochem., 14, 303–310, doi:10.1016/0047-2670(80)85102-1, 1980.
- Yiin, B. S. and Margerum, D. W.: Nonmetal redox kinetics: reactions of iodine and triiodide with sulfite and hydrogen sulfite and the hydrolysis of iodosulfate, Inorg. Chem., 29, 1559–1564, doi:10.1021/ IC00333A023, 1990.
- Yin, F., Grosjean, D., and Seinfeld, J. H.: Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development, J. Atmos. Chem., 11, 309–364, doi:10.1007/BF00053780, 1990.
- Yoon, M.-C., Choi, Y. S., and Kim, S. K.: The OH production from the $\pi \pi^*$ transition of acetylace-

- tone, Chem. Phys. Lett., 300, 207–212, doi:10.1016/S0009-2614(98)01373-6, 1999.
- Yu, X.-Y.: Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions, J. Phys. Chem. Ref. Data, 33, 747–763, doi: 10.1063/1.1695414, 2004.
- Zehavi, D. and Rabani, J.: The oxidation of aqueous bromide by hydroxyl radicals. A pulse radiolytic investigation, J. Phys. Chem., 76, 312–319, doi: 10.1021/J100647A006, 1972.
- Zellner, R., Hartmann, D., Karthäuser, J., Rhäsa, D., and Weibring, G.: A laser photolysis/LIF study of the reactions of O(³P) atoms with CH₃ and CH₃O₂ radicals, J. Chem. Soc. Faraday Trans. 2, 84, 549–568, doi:10.1039/f29888400549, 1988.
- Zellner, R., Exner, M., and Herrmann, H.: Absolute OH quantum yield in the laser photolysis of nitrate, nitrite and dissolved $\rm H_2O_2$ at 308 and 351 nm in the temperature range 278-353 K, J. Atmos. Chem., 10, 411–425, doi:10.1007/BF00115783, 1990.
- Ziajka, J., Beer, F., and Warneck, P.: Iron-catalysed oxidation of bisulphit aqueous solution: evidence for free radical chain mechanism, Atmos. Environ., 28, 2549–2552, doi:10.1016/1352-2310(94)90405-7, 1994.