

Frame Relay

M4, CCNA4, v5
Pavel Segeč
Katedra informačných sietí
Fakulta riadenia a informatiky, ŽU

Čo je Frame Relay?

- F.R. je najpoužívanejšia WAN technológia vo svete
 - Pôvodne myslená ako náhrada X.25 protokolu (dáta cez analog. tel. linky) jednoduchším a rýchlejším protokolom
 - Ponúka vzdialený prepoj LAN cez WAN sieť

 Definuje rozhranie medzi používateľom a verejnou sieťou (FR mračnom), tzv. UNI

 Definuje zapuzdrenie rámcov medzi DTE a DCE

Počítala pôvodne s ISDN, alebo leased line

 Nedefinuje prenos rámcov v rámci WAN provider siete

FR vlastnosti

- FR je paketová technológia
 - Založená na Packet switching prepínaní
 - Pôvodne plánovaná ako dátové rozšírenie ISDN
 - Veľkosť rámcov do 4096 bajtov, typicky 1600B
- Pracuje na ISO OSI L2
- Predpokladá nízku poruchovosť prenosových liniek (digitálny prenos)
 - Žiadny mechanizmus riadenia chýb rámcov pri prenose (retransmisia poškodených pri prenose)
 - Detekcia chýb a opravy sú ponechané na protokoly vyšších vrstiev (TCP) koncov
 - Neobsahuje mechanizmus riadenia toku
 - Obsahuje mechanizmus riadenia zahltenia siete (drop)
- Je spojovo orientovaná
 - Medzi používateľmi prepojenými FR existuje virtuálne spojenie
 - Max teoreticky je 1024 na linku
- Ponúka rýchlosti od 64 kbps do približne 45 Mbps
 - Bandwidth je prideľovaný podľa požiadavky (štatistický MUX)
 - Typicky záujem zákazníkov je 1Mbps or 2Mbps
- Najčastejšie nasadenie
 - Bursty prevádzka
 - Prepojenie odľahlých LAN, prístup do Internetu a pod.

Frame Relay WAN

Frame Relay poskytuje:

- prístup do siete
- doručenie rámcov v poradí,
- zabezpečenie chybovosti rámcov Cyclic Redundancy Check

FR – prepojenie – Virtual Connection

- Prepojenie zákazníkov
 - Virtuálne okruhy (logické spojenie)
 - PVC Permanent Virtual Circuit
 - SVC Switched Virtual Circuit
 - Zostavené signalizáciou CALL SETUP, DATA TRANSFER, IDLE, CALL TERMINATION

- Identifikátor VC
 - DLCI Digital Line Connection Identifier
 - Len lokálny význam medzi dvomi FR zariadeniami
 - Pri PVC pridelený providerom

FR – prepojenie zákazníkov - VC

- Multiplexovanie PVC cez prístupovú linku
 - Zdieľanie riešené cez štatistický multiplex
 - Odlíšenie PVC cez DLCI

FR rámec

- Flag 011111110
 - Značka začiatku a konca rámca (1 byte: 01111110)
- Address: 2B
 - DLCI 10-bit DLCI
 - C/R command/respond
 - E/A Extended Address indicator
 - "1" v rámci nie je ďalší adresný oktet
 - FR môže mať až 4 adresné oktety
 - Riadenie zahltenia
 - FECN: Forward Explicit Congestion Notification
 - BECN: Backward Explicit Congestion Notification
 - DE Discard Eligibility
- Information: data
- FCS
 - Frame Check Sum, CRC, 2B

Dva druhy rámcov

Cisco: hlavička 4B

IETF: hlavička 2B

Výhody FR

FR topológie – logická topológia

Mapovanie L3 na L2 adries

Mapovanie IP adries na FR adresy (DLCI)

- Ak chce smerovač komunikovať s iným smerovačom cez FR
 - podobne ako IP cez ethernet má ARP
 - musí vedieť mapovanie L3 IP adresy suseda do lokálneho VC kanálu - jeho DLCI (L2 adresa)

Mapovanie IP adries na FR adresy (DLCI)

Realizácia

- Dynamicky
 - inARP (inverse ARP)
 - Smerovač zistí IP adresu suseda z DLCI adresy VC
 - Smerovač posiela cez všetky svoje VC inARP správy
 - Z odpovedí vytvára tabuľku mapovaná L3 IP na L2 DLCI
 - LMI (Local Management Interface)
- Statické mapovanie
 - Manuálne zadáme aké IP adresy mapovať do akého DLCI VC
 - Použitie:
 - ak smerovač na druhej strane FR mračna nepodporuje inARP
 - Pri topológii Hub and Spoke, kde smerovače nie sú priamo susedia

Mapovanie IP adries na FR adresy (DLCI)

```
R1# show frame-relay map
Serial0/0/1 (up): ip 10.1.1.2 dlci 102(0x66,0x1860), static,
broadcast,
CISCO, status defined, active
R1#
```

```
R1(config) # interface serial 0/0/1
R1(config-if) # ip address 10.1.1.1 255.255.255.0
R1(config-if) # encapsulation frame-relay
R1(config-if) # no frame-relay inverse-arp
R1(config-if) # frame-relay map ip 10.1.1.2 102 broadcast
cisco
R1(config-if) # no shutdown
R1(config-if) #
*Mar 31 18:57:38.994: %LINK-3-UPDOWN: Interface Serial0/0/1,
changed state to up
R1(config-if) #
```

LMI (Local Management Interface)

- Signálny štandard medzi DTE a Frame Relay prepínačom (DCE)
 - Doplnený do FR neskôr
 - Slúži na dynamické získavanie informácií o stave siete
- Funkcie poskytované LMI
 - Keepalive mechanizmus
 - Zisťuje stav spojenia medzi DCE a DTE
 - Posielanie dotazov každých 10s
 - Ak nedostanem odpoveď, spojenie je down
 - Používa aj inArp na mapovanie DLCI a IP
- LMI rozšírenia
 - Stavový mechanizmus
 - Aké VC sú k dispozícii
 - Multicast komunikácia pripojených
 - Priradenie globálneho významu pre DLCI
 - Ináč je defaultne lokálne (per hop sa mení)
 - Jednoduché riadenie toku
- Info o LMI show frame-relay lmi

LMI

- LMI definuje správy na komunikáciu medzi DTE a DCE
- Líšia sa implementácie LMI (druhy)
 - Cisco
 - Ansi
 - ANSI standard T1.617 Annex D
 - Q933a
 - ITU standard Q933 Annex A
- Podľa druhu LMI sa mení využitie niektorých DLCI (max1024)
- Konfigurácia LMI, ak je potrebná

```
frame-relay lmi-type [cisco | ansi | q933a]
```

- Konfiguračne musí byť rovnaký typ na oboch stranách spojenia
 - t.j. DTE smerovač a FR prepínač
 - od Cisco IOS v11.2 je druh LMI zistený automaticky

Riešenia FR pripojenia

Spôsoby poskytnutia FR prístupu

Viaceré spôsoby realizácie pripojenia a spoplatnenia

- Access rate or port speed
 - Provider poskytne prístupovú linku (prenajatý okruh) do POP, ktorej kapacita je dedikovaná zákaznikovi na pripojenie k FR
 - Typicky 56 kb/s, T1 (1.536 Mb/s), or Fractional T1 (násobok 56 kb/s or 64 kb/s).
 - Port speeds má nastavený clock na strane providera
 - Platba za linku podľa rýchlosti, rýchlejšie = drahšie

PVC s Committed Information Rate (CIR)

- Vhodné pri Multiplexácií (prepojenie viac pobočiek)
- Zákazník si dohodne parametre pre každý PVC s providerom, ktoré budú dodržované
- Prenajatá prístupová linka, musí byť rýchlejšia aby dokázala obslúžiť všetky PVC pri multiplexovaní
 - Príklad: ak multiplexujeme 15 64 kbps PVCs, rýchlosť linky musí byť 960kbps (T1)

FR Oversubscription

- Oversubscription
 - Provider predá často väčšiu kapacitu ako fyzická rýchlosť linky
 - Málokedy pri data komunikácii idú všetci zákazníci naplno v rovnakom čase

Parametre PVC

- Garantované parametre priepustnosti
 - CIR: Committed Information Rate
 - Garantovaná rýchlosť, počíta sa cez T_c
 - B_C: Committed Burst Size
 - max. počet bitov prenesených počas jednotky času Tc (v rámci CIR)
 - $B_C = T_C * CIR$
- Rozšírené parametre priepustnosti
 - Umožňuje zákaznikovi preniesť určité množstvo dát v špičke navyše nad CIR negarantovane
 - Committed Burst Information Rate (CBIR)
 - Maximálna priepustnosť dostupná zákaznikovi, CIR plus Be .
 - EIR: Extended (Excess) Information Rate
 - Typicky je EIR nastavená na rýchlosť rozhrania.
 - B_F: Extended (Excess) Burst Size
 - max. počet bitov nad Bc, ktoré je sieť schopná preniesť v danom Tc, takéto rámce sú označené DE (Discard Eliglible)
 - Rámce takto označené sieť prenesie ak má kapacitu, ak nemá okamžite ich dropne
 - $B_E = T_C * EIR$
 - Rámce nad CIR plus BE sú pri zahltení hneď dropnuté
- T_C: Measurement Interval

Riadenie toku a zahltenia

- FR nemá explicitné metódy riadenia toku
 - FR sieť používateľa len informuje o zahltení v sieti (Congestion Avoidance)
- Riadenie zahltenia
 - FR prepínače dropnú pakety zo zahltených zásobníkov
- Informácia o zahltení cez hlavičku:

FECN

- Forward Explicit Congestion Notification
- Informácia prijímateľovi toku, aby informoval komunikačného partnera (odosielateľa), aby znížil množstvo generovaných dát.

BECN

Backward Explicit Congestion Notification

BECN bit je nastavený za účelom informovania stanice aby znížila množstvo generovaných dát

To A: DLCI 610

A

BECN

BECN

To B: DLCI 101

BECN

BECN

BECN

BECN

To A: DLCI 610

BECN

B

Transmission direction

Frame Relay (v porovnaní s prenajatými okruhmi)

- Pre firmy s viac pobočkami ponúka výhody
 - Jednoduchosť
 - Jednoduchosť technológie, konfigurácie
 - Flexibilita
 - Väčšia priepustnosť, spoľahlivosť ako prenajaté okruhy
 - Cena
 - Menej zariadení, jednoduchšia implementácia, menej zložitý, platba len za CIR nie za celú linku

Frame Relay (v porovnaní s prenajatými okruhmi)

- Nevýhody
 - Pozn. mnoho závisí na kontrakte s providerom
 - Nie je vhodný pre časovo citlivé aplikácie
 - VoIP, video
 - Negarantuje doručenie rámcov

Konfigurácia FR

Konfigurácia FR – nevyhnutné úkony

Nastavenie enkapsulácie

```
! Nastavenie enkapsulácie
Switch(config)#int serial 0/0/0
Switch(config-if)#encapsulation frame-relay
```

- Konfigurácia dynamického alebo statického mapovania
 - Defaultne je spustené LMI, ktoré využíva inArp
 - Vypnutie LMI no keepalive
 - Vypnutie inARP no frame-relay inverse-arp

Základná konfigurácia, LMI a inARP podporované

Základné príkazy

```
! Specifikacia rozhrania
Router(config) # interface serial0
! Zadefinovane enkapsulacie
Router(config-if)# encapsulation frame-relay [cisco | ietf]
!zadefinovanie BW pre smerovaci protokol
Router(config-if) # bandwidth value-in-kbps
!popis rozhrania
Router(config-if) # description text
!volitelne, od 12.1 autosence
!Zadefinovanie LMI a druhu LMI
Router(config-if) # frame-relay lmi-type [ansi | cisco | q933a]
! Staticke mapovanie IP na DLCI
Router(config-if)# frame-relay map  protocol> <address> <DLCI> [broadcast]
 Nastavenie lokalneho DLCI
Router(config-if) # frame-relay interface-dlci DLCI num
```

Konfiguráca smerovačov – DTE konce

Incoming int	DLCI	Outgoing int	DLCI
S1/4	102	S1/5	201
S1/5	201	S1/4	102

```
Lavy(config)#interface Serial1/0
Lavy(config-if)# ip address 1.0.0.1 255.255.255.252
Lavy(config-if)# encapsulation frame-relay
Lavy(config-if)#no shut
```

```
Pravy(config)#interface Serial1/0
Pravy(config-if)# ip address 1.0.0.2 255.255.252
Pravy(config-if)# encapsulation frame-relay
Pravy(config-if)#no shut
```

Overenie konfigurácie – DTE smerovač

```
Lavy#sh int s 1/0
Serial1/0 is up, line protocol is up
 Hardware is M4T
 Internet address is 1.0.0.1/30
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation FRAME-RELAY, crc 16, loopback not set
 Keepalive set (10 sec)
 Restart-Delay is 0 secs
 LMI eng sent 92, LMI stat recvd 92, LMI upd recvd 0, DTE LMI up
 LMI eng recvd 0, LMI stat sent 0, LMI upd sent 0
 LMI DLCI 1023 LMI type is CISCO frame relay DTE
 Broadcast queue 0/64, broadcasts sent/dropped 1/0, interface broadcasts 0
 Last input 00:00:07, output 00:00:07, output hang never
 Last clearing of "show interface" counters 00:15:27
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: weighted fair
 Output queue: 0/1000/64/0 (size/max total/threshold/drops)
    Conversations 0/1/256 (active/max active/max total)
    Reserved Conversations 0/0 (allocated/max allocated)
     Available Bandwidth 1158 kilobits/sec
 5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     99 packets input, 1928 bytes, 0 no buffer
```

Overenie konfigurácie – DTE smerovač

```
Lavy#sh frame-relay map
Serial1/0 (up): ip 1.0.0.2 dlci 102(0x66,0x1860), dynamic,
broadcast,, status defined, active

Lavy#sh frame-relay pvc
```

```
PVC Statistics for interface Serial1/0 (Frame Relay DTE)
           Active Inactive Deleted Static
 Local
 Switched
 Unused
                                               0
DLCI = 102, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial1/0
 input pkts 15 output pkts 18 in bytes 1210
 out bytes 1662 dropped pkts 0
                                           in pkts dropped 0
 out pkts dropped 0
                             out bytes dropped 0
 in FECN pkts 0 in BECN pkts 0 out FECN pkts 0
 out BECN pkts 0 in DE pkts 0 out DE pkts 0
 out bcast pkts 3 out bcast bytes 102
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 pvc create time 00:38:46, last time pvc status changed 00:37:46
```

Konfiguráca smerovača ako FR prepínač (DCE)

!konfiguracia FR prepinania
FR(config)#frame-relay switching

FR cloud

Incoming int	DLCI	Outgoing int	DLCI	
S1/4	102	S1/5	201	
S1/5	201	S1/4	102	

```
! Konfigurácia rozhraní
FR(config) #int s1/4
FR(config-if) #encapsulation frame-relay
FR(config-if) #frame-relay intf-type dce
FR(config-if) #clock rate 64000
FR(config-if) #no shut
FR(config-if) #int s 1/5
FR(config-if) #encapsulation frame-relay
FR(config-if) #frame-relay intf-type dce
FR(config-if) #clock rate 64000
FR(config-if) #no shut
```

```
!Konfigurácia FR prepinacej mapy
FR(config) #int s 1/4
FR(config-if) #frame-relay route 102 int s 1/5 201
FR(config-if) #int s 1/5
FR(config-if) #frame-relay route 201 interface s1/4 102
```

Overenie FR prepinacej mapy

FR#sh frame-relay route					
Input Intf	Input Dlci	Output Intf	Output Dlci	Status	
Serial1/4	102	Serial1/5	201	active	
Serial1/5	201	Serial1/4	102	active	

Príklad 2 – Full mesh


```
Lavy(config)#interface Serial1/0
Lavy(config-if)# ip address 1.0.0.1 255.255.255.0
Lavy(config-if)# encapsulation frame-relay
Lavy(config-if)#no shut
```

```
Pravy(config)#interface Serial1/0
Pravy(config-if)# ip address 1.0.0.2 255.255.255.0
Pravy(config-if)# encapsulation frame-relay
Pravy(config-if)#no shut
```

```
Horny(config)#interface Serial1/0
Horny(config-if)# ip address 1.0.0.3 255.255.255.0
Horny(config-if)# encapsulation frame-relay
Horny(config-if)#no shut
```

Overenie prepinacej mapy

FR#sh frame-relay route				
Input Intf	Input Dlci	Output Intf	Output Dlci	Status
Serial1/3	301	Serial1/4	103	active
Serial1/3	302	Serial1/5	203	active
Serial1/4	102	Serial1/5	201	active
Serial1/4	103	Serial1/3	301	active
Serial1/5	201	Serial1/4	102	active
Serial1/5	203	Serial1/3	302	active

Overenie konfigurácie – DTE smerovač

Lavy# sh frame-relay map

```
Serial1/0 (up): ip 1.0.0.2 dlci 102(0x66,0x1860), dynamic,
              broadcast,, status defined, active
Serial 1/0 (up): ip 1.0.0.3 dlci 103(0x67,0x1870), dynamic,
              broadcast,, status defined, active
Lavy# sh frame-relay pvc
PVC Statistics for interface Serial1/0 (Frame Relay DTE)
             Active
                       Inactive
                                   Deleted
                                                  Static
                2
  Local
                                                     0
  Switched
  Unused
DLCI = 102, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial1/0
  input pkts 15
                         output pkts 18
                                                 in bytes 1210
                       dropped pkts 0
  out bytes 1662
                                                 in pkts dropped 0
  out pkts dropped 0
                                  out bytes dropped 0
                         in BECN pkts 0
  in FECN pkts 0
                                                 out FECN pkts 0
  out BECN pkts 0
                         in DE pkts 0
                                                 out DE pkts 0
  out bcast pkts 3
                         out bcast bytes 102
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
  pvc create time 00:38:46, last time pvc status changed 00:37:46
DLCI = 103, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial1/0
  input pkts 6
                         output pkts 6
                                                 in bytes 554
                      dropped pkts 0
  out bytes 554
                                                 in pkts dropped 0
  out pkts dropped 0
                                  out bytes dropped 0
  in FECN pkts 0
                         in BECN pkts 0
                                                 out FECN pkts 0
 out BECN pkts 0
                         in DE pkts 0
                                         out DE pkts 0
                         out bcast bytes 34
  out bcast pkts 1
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
```

pvc create time 00:12:44, last time pvc status changed 00:07:04

Konfigurácia statickej FR mapy

Vykonávame v prípade nedostupnosti inARP

Konfiguráca smerovačov – DTE konce

 Incoming int
 DLCI
 Outgoing int
 DLCI

 \$1/4
 102
 \$1/5
 201

 \$1/5
 201
 \$1/4
 102

Simulujeme nedostupnosť inARP tak, že ho vypneme

```
Lavy(config) #interface Serial1/0
Lavy(config) #ip address 1.0.0.1 255.255.256.252
Lavy(config) #encapsulation frame-relay
Lavy(config) #no frame-relay inverse-arp
Lavy(config) #no shut
```

```
Pravy(config)#interface Serial1/0
Pravy(config)#ip address 1.0.0.2 255.255.255.252
Pravy(config)#encapsulation frame-relay
Pravy(config)#no frame-relay inverse-arp
Pravy(config)#no shut
```

Overenie konfigurácie – DTE smerovač

```
Lavy#ping 1.0.0.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.2, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
```

```
Lavy#sh frame-relay map

Lavy#
```

InARP je vypnutý, nemám ako zistiť adresu suseda

Konfigurácia statickej mapy

Router(config-if) # frame-relay map protocol protocol-address dlci [broadcast]

Pridáme mapovanie IP na DLCI do oboch DTE smerovačov

```
Lavy(config) #interface Serial1/0
Lavy(config) #frame-relay map ip 1.0.0.2 102 broadcast
Lavy(config) #no shut
```

```
Pravy(config)#interface Serial1/0
Pravy(config)#frame-relay map ip 1.0.0.1 201 broadcast
Pravy(config)#no shut
```

Overenie mapovania

```
Lavy#sh frame-relay map

Serial1/0 (up): ip 1.0.0.2 dlci 102(0x66,0x1860), static,

broadcast,

CISCO, status defined, active
```

Overenie dostupnosti

```
Lavy#ping 1.0.0.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 1.0.0.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 8/20/40 ms
```

Voľba Broadcast

```
Lavy(config) #interface Serial1/0
Lavy(config) #frame-relay map ip 1.0.0.2 102 broadcast
Lavy(config) #no shut
```

- FR je NBMA sieť a nepodporuje zasielanie broadcastov (aj mcastov) cez PVC
 - Niektoré smerovacie protokoly to k činnosti vyžadujú (RIP. EIGRP, OSPF)
 - Voľba broadcast aktivuje zasielanie bcast a mcast paketov cez PVC

Pokročilejšie techniky FR

FR#sh frame-relay route				
Input Intf	Input Dlci	Output Intf	Output Dlci	Status
Serial1/3	301	Serial1/4	103	inactive
Serial1/4	102	Serial1/5	201	inactive
Serial1/4	103	Serial1/3	301	inactive
Serial1/4	104	Serial1/6	401	inactive
Serial1/5	201	Serial1/4	102	inactive
Serial1/6	401	Serial1/4	104	inactive

Príklad 3 - Hub and spoke - konf. Spoke smerovačov

```
A(config-if)#int s 1/0
A(config-if)#encapsulation frame-relay
A(config-if)#ip add 1.0.0.1 255.255.255.0
A(config-if)#no shut
```

```
B(config)#int s 1/0
B(config-if)#encapsulation frame-relay
B(config-if)#ip add 1.0.0.2 255.255.255.0
B(config-if)#no shut
```

```
C(config) #int s 1/0
C(config-if) #encapsulation frame-relay
C(config-if) #ip add 1.0.0.3 255.255.255.0
C(config-if) #no shut
```

```
D(config)#int s 1/0
D(config-if)#encap fram
D(config-if)#ip add 1.0.0.4 255.255.255.0
D(config-if)#no shut
```

Akú konektivitu budeme mať?

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/16/44 ms
A#ping 1.0.0.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.3, timeout is 2 seconds:
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/16/36 ms
A#ping 1.0.0.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/15/40 ms
```

```
B#ping 1.0.0.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 12/40/72 ms

B#ping 1.0.0.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.3, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
B#ping 1.0.0.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.4, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
```

Hub

 Konektivita s každým spoke

Spoke

-Konektivita len s Hub s inými spoke nie je

-Každý spoke

Kde je problém?

```
A#sh frame-relay map
Serial1/0 (up): ip 1.0.0.2 dlci 102(0x66,0x1860), dynamic,
broadcast,, status defined, active
Serial1/0 (up): ip 1.0.0.3 dlci 103(0x67,0x1870), dynamic,
broadcast,, status defined, active
Serial1/0 (up): ip 1.0.0.4 dlci 104(0x68,0x1880), dynamic,
broadcast,, status defined, active
```

```
B#sh frame-relay map
Serial1/0 (up): ip 1.0.0.1 dlci 201(0xC9,0x3090), dynamic,
broadcast,, status defined, active
```

```
C#sh frame-relay map
Serial1/0 (up): ip 1.0.0.1 dlci 301(0x12D,0x48D0),dynamic,
broadcast,, status defined, active
```

- InARP poskytne mapovanie IP na DLCI medzi susedmi
- Spoke smerovače nie sú susedia
 - Nemám mapovanie ich IP na DLCI

Riešenie – pridať statické mapovanie na spoke smerovače

```
B(config) #int s 1/0
B(config-if) #frame-relay map ip 1.0.0.3 201 broadcast
B(config-if) #frame-relay map ip 1.0.0.4 201 broadcast
```

```
C(config)#int s 1/0
C(config-if)#frame-relay map ip 1.0.0.2 301 broadcast
C(config-if)#frame-relay map ip 1.0.0.4 301 broadcast
```

```
D(config)#int s 1/0
D(config-if)#frame-relay map ip 1.0.0.2 401 broadcast
D(config-if)#frame-relay map ip 1.0.0.3 401 broadcast
```

Overenie – spoke smerovač B

```
B#ping 1.0.0.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 12/26/64 ms
B#ping 1.0.0.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 16/32/48 ms
B#ping 1.0.0.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.0.0.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 12/30/92 ms
```

FR problémy s dostupnosťou

- FR je NBMA sieť
- Pri nasadení smerovacích protokolov, ktoré pracujú so Split Horizon
 - Môžeme nad FR mať problémy s dostupnosťou (Hub and Spoke topo.).
 - SPLIT zabraňuje posielanie informácií o danej sieti naučených z daného smeru späť cez to isté rozhranie

Riešenie split horizon problému

- Vypnutie split horizon na rozhraní
 - Podporuje len IP protokol
 - IPX a Apple nie
 - Pre RIP je split-horizon automaticky vypnutý
- Iné riešenie
 - Rozdeliť fyzické rozhrania na viac subrozhraní
 - Subrozhrania môžu byť typu
 - Point-to-point
 - split hotizon rieší
 - Point-to-multipoint
 - split hotizon nerieší

Topo z príkladu 3

- Pridáme LAN siete na každý smerovač a zapneme RIP
 - A:
 - LAN 10.0.0.0/8
 - fa 0/0: 10.0.0.1
 - B:
 - **LAN 20.0.0.0/8**
 - fa 0/0: 20.0.0.1
 - **C**:
 - LAN 30.0.0.0/8
 - fa 0/0: 30.0.0.1
 - **D**:
 - LAN 40.0.0.0/8
 - fa 0/0: 40.0.0.1

RIP nad FR

```
B#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF
   inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external
   type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 -
   IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-
   user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     1.0.0.0/24 is subnetted, 1 subnets
        1.0.0.0 is directly connected, Serial1/0
     20.0.0.0/8 is directly connected, FastEthernet0/0
R
     40.0.0.0/8 [120/1] via 1.0.0.1, 00:00:12, Serial1/0
R
    10.0.0.0/8 [120/1] via 1.0.0.1, 00:00:20, Serial1/0
     30.0.0.0/8 [120/1] via 1.0.0.1, 00:00:20, Serial1/0
R
```

Routing frčí lebo RIP ma def. Vypnuté split horizon

EIGRP nad FR

```
A#sh ip route
1.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
1.0.0.0/24 is directly connected, Serial1/0
1.0.0.0/8 is a summary, 00:02:33, Null0

D 20.0.0.0/8 [90/2172416] via 1.0.0.2, 00:02:12, Serial1/0
D 40.0.0.0/8 [90/2172416] via 1.0.0.4, 00:00:36, Serial1/0
C 10.0.0.0/8 is directly connected, FastEthernet0/0
D 30.0.0.0/8 [90/2172416] via 1.0.0.3, 00:01:41, Serial1/0
```

```
B#sh ip route

1.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

1.0.0.0/24 is directly connected, Serial1/0

1.0.0.0/8 is a summary, 00:05:58, Null0

20.0.0.0/8 is directly connected, FastEthernet0/0

10.0.0.0/8 [90/2172416] via 1.0.0.1, 00:05:10, Serial1/0
```

```
C#sh ip route

1.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

C 1.0.0.0/24 is directly connected, Serial1/0

D 1.0.0.0/8 is a summary, 00:05:56, Null0

D 10.0.0.0/8 [90/2172416] via 1.0.0.1, 00:05:31, Serial1/0

C 30.0.0.0/8 is directly connected, FastEthernet0/0
```

```
D#sh ip route

1.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

C 1.0.0.0/24 is directly connected, Serial1/0

D 1.0.0.0/8 is a summary, 00:04:59, Null0

C 40.0.0.0/8 is directly connected, FastEthernet0/0

D 10.0.0.0/8 [90/2172416] via 1.0.0.1, 00:05:04, Serial1/0
```

EIGRP riešenie – zákaz split horizon na spoke smerovači

```
Router(config-if) #no ip split-horizon eigrp AS
```

```
A(config-if) #no ip split-horizon eigrp 1
```

EIGRP nad FR – route tab. je kompletná

Riešenie cez subinterfaces

Overenie a diagnostika FR


```
! Info o enkaps a stave rozhrania
sh interface serial 0/0

! Zobrazi FR mapovanie IP a DLCI - InARP
sh frame-relay map

! Zobrazi FR mapovanie IP a DLCI
sh frame-relay map

! Zobrazi info o PVC
sh frame-relay pvc
```

! Info o type a stave LMI, DTE, DCE type

```
A#sh frame-relay lmi
LMI Statistics for interface Serial1/0 (Frame Relay DTE) LMI TYPE = CISCO
  Invalid Unnumbered info 0

Invalid dummy Call Ref 0

Invalid Status Message 0

Invalid Information ID 0

Invalid Report Request 0

Num Status Enq. Sent 421

Num Update Status Revd 0

Last Full Status Req 00:00:38

Invalid Prot Disc 0

Invalid Msg Type 0

Invalid Lock Shift 0

Invalid Report IE Len 0

Invalid Keep IE Len 0

Num Status msgs Revd 412

Num Status Timeouts 9

Last Full Status Revd 00:00:38
! Info o PVC
A#sh frame-relay pvc
PVC Statistics for interface Serial1/0 (Frame Relay DTE)
                     Active Inactive Deleted Static
   Local 3
Switched 0
Unused 0
DLCI = 102, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial1/0
   input pkts 202 output pkts 109 in bytes 15070 out bytes 8748 dropped pkts 0 in pkts dropped 0 out pkts dropped 0 out bytes dropped 0 in FECN pkts 0 out bECN pkts 0 in DE pkts 0 out DE pkts 0 out bcast pkts 62 out bcast bytes 4438
   5 minute input rate 0 bits/sec, 0 packets/sec
   5 minute output rate 0 bits/sec, 0 packets/sec
   pvc create time 01:10:02, last time pvc status changed 01:06:52
DLCI = 103, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial1/0
```

```
! Info o konketnom PVC
A#sh frame-relay pvc ?
  interface
  <16-1022> DLCI
          Output modifiers
  <cr>
A#sh frame-relay pvc 103
PVC Statistics for interface Serial1/0 (Frame Relay DTE)
DLCI = 103, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE =
Serial1/0
  input pkts 188 output pkts 107 in bytes 14288 out bytes 8500 dropped pkts 0 in pkts
dropped 0
  out pkts dropped 0
                                     out bytes dropped 0
                          in BECN pkts 0 out FECN pkts
  in FECN pkts 0
0
  out BECN pkts 0 in DE pkts 0 out bcast pkts 64 out bcast bytes 4566
                                                     out DE pkts 0
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
  pvc create time 01:12:01, last time pvc status changed 01:06:21
```

```
!debug udalosti
A# debug frame-relay lmi
Frame Relay LMI debugging is on
Displaying all Frame Relay LMI data
A#
*Mar 1 01:29:54.823: Serial1/0(out): StEng, myseg 186, yourseen 185, DTE up
*Mar
     1 01:29:54.823: datagramstart = 0 \times 2DB0D74, datagramsize = 13
*Mar 1 01:29:54.827: FR encap = 0 \times FCF10309
*Mar 1 01:29:54.827: 00 75 01 01 01 03 02 BA B9
*Mar
     1 01:29:54.827:
*Mar 1 01:29:54.839: Serial1/0(in): Status, myseq 186, pak size 13
*Mar 1 01:29:54.839: RT IE 1, length 1, type 1
*Mar 1 01:29:54.839: KA IE 3, length 2, yourseq 186, myseq 186
*Mar 1 01:30:04.823: Serial1/0(out): StEng, myseg 187, yourseen 186, DTE up
*Mar 1 01:30:04.823: datagramstart = 0x2DB1274, datagramsize = 13
*Mar 1 01:30:04.823: FR encap = 0xFCF10309
*Mar 1 01:30:04.827: 00 75 01 01 01 03 02 BB BA
*Mar 1 01:30:04.827:
*Mar 1 01:30:04.839: Serial1/0(in): Status, myseq 187, pak size 13
*Mar 1 01:30:04.839: RT IE 1, length 1, type 1
     1 01:30:04.839: KA IE 3, length 2, yourseq 187, myseq 187
*Mar
A#undebug all
All possible debugging has been turned off
```

Ďalšie zdroje

- Cisco FR tutorial
 - http://docwiki.cisco.com/wiki/Frame_Relay

ĎAKUJEM