Recent Advances on Object Detection in MSRA

Jifeng Dai, Han Hu, Lu Yuan and Yichen Wei

Visual Computing Group, Microsoft Research Asia

Outline

R-FCN and its extensions

Deformable ConvNets and its extensions

Video object detection

Summary

Highlights

Region-based, fully-convolutional networks for object detection

Fast and accurate

Motivate many extensions

Code is available at https://github.com/daijifeng001/R-FCN

Region-based Object Detectors

• Methodologies of region-based detectors using ResNet-101

	R-CNN	Faster R-CNN	R-FCN [ours]
depth of shared conv subnetwork	0	91	101
depth of RoI-wise subnetwork	101	10	0

Respecting Translation Variance for Detection

- Increasing translation invariance for image classification
 - Shift of an object inside an image should be indiscriminative
 - Leading deep (fully) convolutional architectures are translation-invariant
- Respecting translation variance for object detection
 - Responses should reflect how candidate boxes overlap with objects
 - A considerable deep per-ROI subnet in Faster-RCNN using ResNet-101

R-FCN

- Key idea of R-FCN for object detection
 - Position-sensitive score maps (kxk, e.g., k = 3)
 - Position-sensitive Rol pooling

R-FCN

Spatial information is encoded by position-sensitive score maps

R-FCN

- Key properties of R-FCN
 - Negligible per-Rol computational cost (in both training/inference)
 - The whole architecture is end-to-end trainable

Experiments

• Comparisons between Faster R-CNN and R-FCN using ResNet-101

	depth of per-RoI subnetwork	training w/ OHEM?	train time (sec/img)	test time (sec/img)	mAP (%) on VOC07
Faster R-CNN	10		1.2	0.42	76.4
R-FCN	0		0.45	0.17	76.6
Faster R-CNN	10	√ (300 RoIs)	1.5	0.42	79.3
R-FCN	0	√ (300 RoIs)	0.45	0.17	79.5
Faster R-CNN	10	√(2000 RoIs)	2.9	0.42	N/A
R-FCN	0	√(2000 RoIs)	0.46	0.17	79.3

R-FCN extensions: fully convolutional instance segmentation

- First pure fully convolutional solution for instance segmentation
 - Accurate: no feature warping/resizing or fc layers
 - Fast: negligible per-region computation

Previous best & fastest:

FCIS:

position-sensitive score maps

[Li et al. CVPR 2017.]

COCO Segmentation Challenge 2016

- MSRA won 1st place back-to-back
 - 11% relatively better than 2016 2nd (Google)
 - 33% relatively better than 2015 1st (MSRA)
 - Excellent on box: 2nd place in detection if public

R-FCN extensions: Light-head R-CNN

- PS scores-> PS features, followed by ultra-light detection head
 - Fast and accurate
 - Adopted in products

R-FCN extensions: R-FCN-3000 at 30fps

Decoupled classification and localization for scaling up

Outline

R-FCN and its extensions

Deformable ConvNets and its extensions

Video object detection

Summary

Highlights

- Enabling effective modeling of spatial transformation in ConvNets
- No additional supervision for learning spatial transformation
- Significant accuracy improvements on sophisticated vision tasks

Code is available at https://github.com/msracver/Deformable-ConvNets

Modeling Spatial Transformations

• A long standing problem in computer vision Deformation: Scale:

Viewpoint variation:

Intra-class variation:

Traditional Approaches

• 1) To build training datasets with sufficient desired variations

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1			_				_		_						
7	7	1	7	1	7	7	1	7	7	1	1	1	1	1	2	7
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Ž
ચ	2	2	2	a	Ŷ	Ŷ	a	2	Ŷ	a	7	P	a	a	a	P
9	9	9	9	9	q	9	9	9	9	9	9	9	9	9	q	9

• 2) To use transformation-invariant features and algorithms

 Drawbacks: geometric transformations are assumed fixed and known, hand-crafted design of invariant features and algorithms

Spatial Transformations in CNNs

- Regular CNNs are inherently limited to model large unknown transformations
 - The limitation originates from the fixed geometric structures of CNN modules

convolution regular Rol Pooling

Spatial Transformer Networks

- Learning a global, parametric transformation on feature maps
 - Prefixed transformation family, infeasible for complex vision tasks

Deformable Convolution

- Local, dense, non-parametric transformation
 - Learning to deform the sampling locations in the convolution/RoI Pooling modules

Deformable Convolution

Regular convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n)$$

Deformable convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$$

where $\Delta\mathbf{p}_n$ is generated by a sibling branch of regular convolution

Deformable Rol Pooling

Regular Rol pooling

$$\mathbf{y}(i,j) = \sum_{\mathbf{p} \in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p}) / n_{ij}$$

Deformable RoI pooling

$$\mathbf{y}(i,j) = \sum_{\mathbf{p} \in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p} + \Delta \mathbf{p}_{ij}) / n_{ij}$$

where $\Delta \mathbf{p}_{ij}$ is generated by a sibling fc branch

Deformable ConvNets

- Same input & output as the plain versions
 - Regular convolution -> deformable convolution
 - Regular Rol pooling -> deformable Rol pooling
- End-to-end trainable without additional supervision

Sampling Locations of Deformable Convolution

(a) standard convolution

(b) deformable convolution

Part Offsets in Deformable Rol Pooling

Object Detection on COCO (Test-dev)

- Deformable ConvNets v.s. regular ConvNets
 - Noticeable improvements for varies baselines
 - Marginal parameter & computation overhead

COCO Detection & Segmentation Challenge 2017

- Focus shifted from ImageNet to COCO in 2017
- Top-4 teams are quite close, surpassing others clearly

Ø **Bounding Boxes Leaderboard (II)** COCO AP (over all IoU) winner 2016 37% 19% 21 teams joined the competition 12 teams achieved better performance than last year's winner 4 teams > 50 AP (*)

Ø **Segmentation Leaderboard (II)** COCO AP (over all IoU) 55% 46% 37% 28% 19% 9 teams joined the competition 4 teams achieved better performance than last year's winner 4 teams > 40 AP

COCO Detection & Segmentation Challenge 2017

- Few tricks and hacks are adopted by MSRA and FAIR team
- Our accuracy is on par with FAIR team, at much smaller model size
- Deformable ConvNets are also adopted by other teams

Team	ВВох	Segmentation	Tricks & Hacks	Model Ensembled	Utilize of Deformable CNNs
Megvii (Face++)	1 st	2 nd	Many	Unknown	Unknown
Ucenter (SenseTime)	2 nd	1 st	Many	Unknown	Yes
MSRA	3 rd	4 th	Few	<u>6</u>	Yes
FAIR	4 th	3 rd	Few	<u>30</u>	No

Deformable ConvNets Extensions I

Deformable GANs

 Deformable volume network for flow estimation

[Lu et al. Arxiv Tech Report, 2018.]

Deformable ConvNets Extensions II

- Fully learnable region feature extraction
 - Deformed regular grid, offset learning -> Free-form shape, attention weight learning

Outline

R-FCN and its extensions

Deformable ConvNets and its extensions

Video object detection

Summary

Per-frame recognition in video is problematic

High Computational Cost

Infeasible for practical needs

Task	Image Size	ResNet-50	ResNet-101
Detection	1000x600	6.27 fps	4.05 fps
Segmentation	2048x1024	2.24 fps	1.52 fps

FPS: frames per second (NVIDIA K40 and Intel Core i7-4790)

Deteriorated Frame Appearance

Poor feature and recognition accuracy

motion blur

part occlusion

rare poses

Key idea

Flow-guided feature propagation & aggregation

warped from key frame to current frame

Powering the winner of ImageNet VID 2017

Team name	Entry description	Number of object categories won	mean AP
IC&USYD	provide_submission3	15	0.817265
IC&USYD	provide_submission1	6	0.808847
IC&USYD	provide_submission2	4	0.818309
NUS-Qihoo- UIUC_DPNs (VID)	no_extra + seq + mca + mcs	3	0.757772
NUS-Qihoo- UIUC_DPNs (VID)	no_extra + seq + vcm + mcs	1	0.757853
NUS-Qihoo- UIUC_DPNs (VID)	Faster RCNN + Video Context	1	0.748493
THU-CAS	merge-new	0	0.730498
THU-CAS	old-new	0	0.728707
THU-CAS	new-new	0	0.691423
GoerVision	Deformable R-FCN single model+ResNet101	0	0.669631
GoerVision	Ensemble 2 model, use ResNet101 as foundamental classification network and deformable R-FCN to detect video frames, multi-scale testing	0	0.665693
GoerVision	o train the video objectWe use the ResNet101 and Deformable R-FCN for the detection.	0	0.655686
GoerVision	Using R-FCN to detect video object, multi scale testing applied.	0	0.646965
FACEALL_BUPT	SSD based on Resnet101 networks	0	0.195754

	Jiankang Deng(1),	
	Yuxiang Zhou(1),	
	Baosheng Yu(2), Zhe	Ш
	Chen(2), Stefanos	
IC&USYD	Zafeiriou(1), Dacheng	
	Tao(2), (1)Imperial	
	College London,	
	(2)University of	
	Sydney	
	, ,	

Flow acceleration[1,2] is used. Final scores are adaptively chosen between the detector and tracker.

[1] Deep Feature Flow for Video Recognition Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[2] Flow-Guided Feature Aggregation for Video Object Detection, Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Arxiv tech report, 2017.

[top]

Towards High Performance Video Object Detection for Mobiles

- Accurate, real-time video object detection on mobiles for the first time
- An order faster than previous fastest object detectors with on par accuracy

Outline

R-FCN and its extensions

Deformable ConvNets and its extensions

Video object detection

Summary

Summary

- General object detection is still an open, unsolved, fundamental vision problem
 - Recognition of objects with large appearance variations
 - Low recognition latency on mobile devices
 - Panoramic scene understanding

Careful investigation and prototyping is necessary in application in products