Reinforcement Learning III

Reinforcement Learning Roadmap

1

Core concepts in reinforcement learning
Actions, Rewards, Value, Environments, and Policies

Environment Knowledge

Perfect knowledge Known Markov Decision Process

2

Markov decision processes

...and Markov chains and Markov reward processes

3

Dynamic Programming

How do we find optimal policies? (Bellman equations)

No knowledgeMust learn from experience

4 Monte Carlo Control

How do we estimate our value functions? How do we use the value functions to choose actions? How do we learn optimal policies from experience?

Markov Decision Process

Components:

State space S

Transition probabilities, P

Rewards, R

Discount rate, γ

Actions, A

Returns (Expected future rewards)

(discount factor weights the the future)

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots$$

Policy (how we choose actions)

(can be stochastic or deterministic)

$$\pi(a|s) = P(a|s)$$

State value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E[G_t|s]$$

$$v_{\pi}(s) = E[R_{t+1} + \gamma v_{\pi}(S_{t+1})|s]$$

Action value function

(expected return from state s, taking action a, and following policy π)

$$q_{\pi}(s, a) = E[G_t|s, a]$$

$$q_{\pi}(s, a) = E[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | s, a]$$

David Silver, UCL, 2015

Bellman Expectation Equations for the state value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= E_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

Expectation over the possible actions

Expectation over the rewards

(based on state and choice of action)

Expectation over the next possible states

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

Bellman Expectation Equations for the action value function

(expected return from state s, taking action a, then following policy π)

$$q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$$

$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Expectation over the rewards

(based on state and choice of action)

Expectation over the next possible states

$$q_{\pi}(s, a) = \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s', a') \right]$$

 $q_{\pi}(s',a') \leftarrow a'$

Markov Decision Process

If we know the components of the MDP, we can use those to calculate the value functions and determine the optimal policy

Components:

State space S

Transition probabilities, P

Rewards, R

Discount rate, γ

Actions, A

Policy (how we choose actions)

(can be stochastic or deterministic)

$$\pi(a|s) = P(a|s)$$

State value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E[G_t|s]$$

Action value function

(expected return from state s, taking action a, and following policy π)

$$q_{\pi}(s, a) = E[G_t | s, a]$$

Dynamic Programming

Roadmap to optimal policies

If we assume a fully known MDP environment, how do we...

(Markov Decision Process)

1. Evaluate the returns a policy will yield? Policy evaluation

2. Find a **better** policy? **Policy improvement**

3. Find the **best** policy? **Policy iteration**

4. Find the best policy **faster**? **Value iteration**

What if we don't have a fully known MDP? Monte Carlo Methods

Running example: Gridworld

16 states, 2 of them terminal states labeled "goal"

Kyle Bradbury

Valid actions: (unless there is a wall)

Reward:

-1 for all transitions

(until the terminal state has been reached)

Note: actions that would take the agent off the board are not allowed

Sutton and Barto, 2018

Dynamic Programming

Roadmap to optimal policies

If we assume a **fully known MDP environment**, how do we... (Markov Decision Process)

1.	Evaluate the	returns a	policy	will yield?	Policy evaluation
----	--------------	-----------	--------	-------------	--------------------------

- 2. Find a **better** policy? **Policy improvement**
- 3. Find the **best** policy? **Policy iteration**
- 4. Find the best policy **faster**? **Value iteration**

What if we don't have a fully known MDP? Monte Carlo Methods

1. Policy Evaluation Evaluate the returns a policy will yield

Input: policy $\pi(a|s)$

Output: value function $v_{\pi}(s)$

- Select a policy function to evaluate (estimate the value function)
- Start with a guess of the value function, v_0 (often all zeros)
- Iteratively apply the Bellman Expectation Equation to "backup" the values until they converge on the actual value function for the policy, v_{π}

$$v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{\pi}$$

Adapted from David Silver, 2015

1. Policy Evaluation

Evaluate the returns a policy will yield

$$v_0(s)$$

Policy:
$$\pi(a|s) = \frac{1}{N_{\text{valid_actions}}}$$
 for any action a (i.e. randomly go in any valid direction)

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Value function initialization:

$$v_0(s) = 0$$
 for all s (all zeros)
 $v_k(s) \rightarrow \text{iteration } k$ of policy evaluation

We estimate the value function that corresponds to the policy: $v_{\pi}(s)$

1. Policy Evaluation

Evaluate the returns a policy will yield

$$v_0(s)$$

Policy:
$$\pi(a|s) = 1/N_{\text{valid_actions}}$$
 (randomly go in any direction)

Bellman Expectation Equation:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_k(s')]$$

$$\downarrow 1 (\gamma = 1)$$

0 -1 (rewards are deterministic and constant for all actions)

0

0

0

0

0

0

In Gridworld:

$$\frac{1}{N_a}$$

1 (once you pick an action there's no uncertainty as to which state you'll transition to)

$$v_{k+1}(s) = \sum_{a} \frac{1}{N_a} \left(-1 + v_k(s'(a)) \right) = -1 + \sum_{a} \frac{1}{N_a} v_k(s'(a)) \quad \text{Average of the value of the }$$
Here, the next state is a

Here, the next state is a deterministic function of a, so we can think of it as s'(a)

1. Policy Evaluation $v_{k+1}(s) = -1 + \sum \frac{1}{N_a} v_k(s'(a))$

$$v_{
m eld}$$

$$k+1(s) = -1 + \frac{1}{s}$$

$$\sum \frac{1}{N_a} v_k (s'(a))$$

$$v_1 = -1 + \sum_{a} \frac{1}{4} v_k (s'(a)) = -1$$

$$v_0(s)$$

One neighborhood in
$$v_0(s)$$

$$v_1(s)$$

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

$$v_1(s)$$

0 -1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1 0

$\nu_2(s)$							
0	-1.7	-2	-2				
-1.7	-2	-2	-2				
-2	-2	-2	-1.7				
-2	-2	-1.7	0				

12 (0)

	<i>v</i> ₃ (3)						
0	-2.4	-2.9	-3.0				
-2.4	-2.9	-3.0	-2.9				
-2.9	-3.0	-2.9	-2.4				
-3.0	-2.9	-2.4	0				

122(5)

$$v_{10}(s)$$

$$v_{\infty}(s) = v_{\pi}(s)$$

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	0

We've found the value function (expected returns) from our random movement policy

1. Policy Evaluation Evaluate the returns a policy will yield

Dynamic Programming

Roadmap to optimal policies

If we assume a fully known MDP environment, how do we...

(Markov Decision Process)

1. Evaluate the returns a policy will yield? Policy evaluation

2.	Find a better policy?	Policy improvement
	ı y	

- 3. Find the **best** policy? **Policy iteration**
- 4. Find the best policy **faster**? **Value iteration**

What if we don't have a fully known MDP? Monte Carlo Methods

2. Policy Improvement Input:

Find a **better** policy

nput: policy

Output: better policy

 $\pi(a|s)$

 $\pi'(a|s)$

Definition of better: has greater or equal expected return in all states: $v_{\pi'}(s) \ge v_{\pi}(s)$ for all states

- 1 Select a policy function to improve
- 2 Evaluate the value function (our last discussion)
- **Greedily** select a new policy, π' , that chooses actions that maximize value

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

 $q_{\pi}(s,a) =$ expected return from state s, taking action a, and following policy π

i.e. pick the action that yields the highest expected returns

Adapted from David Silver, 2015

Value function:

In this case, $q_{\pi}(s,\pi(s)) = v_{\pi}(s)$ since each action leads to only one state

$v_0(s)$

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

$$v_{\infty}(s) = v_{\pi}(s)$$

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	

Improved policy

(in this case this is an optimal policy)

$$\pi'(s)$$

Initial policy: $\pi(s)$

$$\pi(a|s) = \text{randomly go}$$
in any valid direction

2. Policy Improvement Find a better policy

Dynamic Programming

Roadmap to optimal policies

If we assume a fully known MDP environment, how do we...

(Markov Decision Process)

1.	Evaluate the	e returns a	policy	will yield?	Policy evaluation	n
----	--------------	-------------	--------	-------------	-------------------	---

- 2. Find a **better** policy? **Policy improvement**
- 3. Find the **best** policy? **Policy iteration**
- 4. Find the best policy **faster**? **Value iteration**

What if we don't have a fully known MDP? Monte Carlo Methods

3. Policy Iteration

Find the **best** policy

Policy **Evaluation**

Policy **Improvement**

This process will converge to the optimal functions

policy Input:

 $\pi^*(a|s)$

 $\pi(a|s)$

Output: **best** policy

Best in the sense that: $v_{\pi^*}(s) \ge v_{\pi}(s)$ for all states and for all policies

Lecture 22

Adapted from David Silver, 2015 and Sutton and Barto, 1998

19

3. Policy Iteration Find the best policy

Input: policy $\pi(a|s)$ Output: **best** policy $\pi^*(a|s)$

Policy **Evaluation**

Policy **Improvement**

- 1 Policy Evaluation: estimate v_{π} Iterative policy evaluation

 Note: This is VERY slow
- **Policy Improvement**: generate $\pi' \ge \pi$ Greedy policy improvement
- 3 Iterate 1 and 2 until convergence

Adapted from David Silver, 2015 and Sutton and Barto, 1998

$$3 \pi_1(s) = \pi^*(s)$$

 $v_0(s)$

0 0

0 0 0

0 0 0

0 0 0

 $v_{\infty}(s) \rightarrow v_{\pi_0}(s)$

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	

$v_0(s)$							
0	-14	-20	-22				
11	10	20	20				

-18 -20 -20

-20 -18 -20 -14

-22 -20

v_{\propto}	5	5)		>	v_{π}	0 (S	s)	

Policy

Evaluation

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

0

Dynamic Programming

Roadmap to optimal policies

If we assume a fully known MDP environment, how do we...

(Markov Decision Process)

1. Evaluate the returns a policy will yield? Policy evaluation

2. Find a **better** policy? **Policy improvement**

3. Find the **best** policy? **Policy iteration**

4. Find the best policy **faster**? **Value iteration**

What if we don't have a fully known MDP? Monte Carlo Methods

 $v_0(s)$

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

 $v_1(s)$

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

What if we stopped after one sweep. This is...

4. Value Iteration

Find the best policy faster

4. Value Iteration

Find the best policy faster

Input: policy

Output: **best** policy

 $\pi(a|s)$

 $\pi^*(a|s)$

Policy **Evaluation**

Policy **Improvement**

- 1 Policy Evaluation: estimate v_{π} One-sweep of policy evaluation
- **2** Policy Improvement: generate $\pi' \ge \pi$ Greedy policy improvement
- 3 Iterate 1 and 2 until convergence

Adapted from David Silver, 2015 and Sutton and Barto, 1998

$$v_1(s)$$

v_2	(s)
	ししノ

$$v_3(s)$$

0	-1.7	-2	-2
-1.7	-2	-2	-2
-2	-2	-2	-1.7
-2	-2	-1.7	0

0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0

$$v_{10}(s)$$

$$v_{\infty}(s) = v_{\pi}(s)$$

0	-6.1	-8.4	-9.0	0	-14	-20	-22
-6.1	-7.7	-8.4	-8.4	-14	-18	-20	-20
-8.4	-8.4	-7.7	-6.1	-20	-20	-18	-14
-9.0	-8.4	-6.1	0	-22	-20	-14	

So far, we've run policy evaluation all the way to convergence (this is slow)

$$v_1(s)$$

$$v_2(s)$$

$$v_3(s) = v_{\pi^*}(s)$$

$$2 \quad \pi_0(s)$$

$$\sigma_2(s)$$

$$\mathbf{8}\,\pi_3(s)=\pi^*(s)$$

Generalized Policy Iteration

Input: policy

Output: **best** policy

 $\pi(a|s)$

 $\pi^*(a|s)$

Policy **Evaluation**

- Policy Evaluation: estimate v_{π} Any policy evaluation algorithm
- 2 Policy Improvement: generate $\pi' \ge \pi$ Any policy improvement algorithm
- 3 Iterate 1 and 2 until convergence

Adapted from David Silver, 2015 and Sutton and Barto, 1998

Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

So far, we've assumed full knowledge of the environment (MDP)

What if we **DO NOT assume full knowledge of the environment** (MDP)

This means we have to **learn by experience**!

Reinforcement Learning Roadmap

1

Core concepts in reinforcement learning
Actions, Rewards, Value, Environments, and Policies

Environment Knowledge

Perfect knowledge Known Markov

Decision Process

No knowledgeMust learn from experience

2 Markov decision processes

...and Markov chains and Markov reward processes

3 Dynamic Programming

How do we find optimal policies? (Bellman equations)

4 Monte Carlo Control

How do we estimate our value functions? How do we use the value functions to choose actions? How do we learn optimal policies from experience?