电路与电子技术(2)

一、基本元器件

1. 三极管

基本模型

假设我们已经学会了三极管的最基本的模型和参数,比如: $i_b=\frac{i_c}{\beta}=\frac{i_e}{\beta+1}$, $V_{be}\approx 0.7V$,那么这个时候我们就已经掌握了三极管的一小半了。嗯,三极管的本质就是一个VCCS(电压控制电流源),没有特别多的东西。下面我们来看一下三极管的基本组态的实际应用:

图 1.2.37 BJT 三种组态的实际连接方式 (a) 共射连接 (b) 共基连接 (c) 共集连接

基本组态的判断可以用如下方法: 三个端口一个用作输入,一个用作输出,那么**剩下哪个端口,就是共什么组态**。通常来讲,共X组态的X端口会接地(在低频小信号模型中),但是不绝对(只可以用于辅助判断)。其他的东西确实也不怎么考。这个学期的课程并不会过于深入涉及到三极管本身。

低频小信号模型

低频小信号模型是**交流模型**的进一步转化。交流模型的变化非常简单,只需要将**直流电压源短路,直流电流源断路,电容视为导线**即可。

图 1.3.12 晶体管低频小信号模型 (a) 将晶体管视作双口网络 (b) 低频小信号模型 (c) 简化模型

三极管的低频小信号模型牢记以下几点变换法则:

- 1. be端口之间有等效电阻 r_{be}
- 2. ce端口之间有等效电流源 $i_s=eta\Delta i_b$
- 3. i_b 和电流源 βi_b 的**方向都指向e**
- 4. (一般可以忽略) ce之间有等效电阻 r_{ce}

低频小信号模型的参数:

1.
$$r_{be}=r_{bb'}+(1+eta)rac{V_T}{I_{EO}}$$
,其中 $r_{bb'}$ 已知, $V_T=26mV$

注: I_{EQ} 的计算可以采用在输入回路中用等效电压源的方式,如(这里近似 $I_e=I_c$):

$$R_{eq} = R_{b1}//R_{b2}; V_{eq} = rac{R_{b2}}{R_{b1} + R_{b2}} V_{CC}; I_{EQ} = rac{V_{CC} - 0.7}{rac{R_{eq}}{eta} + R_e}$$

高频小信号模型

对模型进行简化和单向化处理之后:

其中的参数显示如下:

1. 原本的 r_{be} 被拆成了 $r_{bb'}+r_{b'c}=r_{bb'}+(1+eta)rac{V_T}{I_{EQ}}$ 2. $\dot{K}=rac{V_{ce}}{V_{be}}$,中频放大倍数,一般而言,K是一个绝对值很大的负数3. $g_m=rac{eta}{r_{b'e}}pproxrac{I_{EQ}}{V_T}$

3.
$$g_m=rac{eta}{r_{b'e}}pproxrac{I_{EQ}}{V_T}$$

4.
$$C_i = C_{b'e} + (1 - K)C_{b'c}$$

5.
$$C_{b'e}=rac{g_m}{2\pi f_T}$$
,f为特性频率,会给

感觉不考啊, 题都没做到过。做到过这类题目的大佬可以指个路吗?

2. 场效应管

基本模型

学过高中技术的应该对三极管比较了解,场效应管的印象不深。场效应管的本质是一个CCCS (电流控制电流源)。由电压 V_{GS} 来控制电流 i_D 。

种类	增强型		耗尽型			
电压	NMOS	PMOS	N结型	P结型	NMOS	PMOS
$v_{ m GS}$	正	负	负	正	负(或正)	正(或负)
$v_{ m DS}$	正	负	Œ	负	正	负

个人感觉增强型和耗尽型才是区分的本质,N和P的区别仅仅在于把V全部反过来即可。由于考试 大多数是N, 因此**这里以N说明**。

参数	增强型	耗尽型
电压	开启电压 V_T	夹断电压 V_P
电流	$V=2V_T$ 的漏极电流 I_{D0}	$V=0$ 的漏极电流 I_{DSS}
关系	$i_D = i_{D0}(rac{V_{GS}}{V_T} - 1)^2 , V_{GS} > V_T$	$i_D=i_{DSS}(1-rac{V_{GS}}{V_P})^2,V_{GS}<0$

• 长相:

- o P箭头朝外, N箭头朝内
- 。 结形的中间是一条线, 绝缘栅型中间两条线
- 。 增强型的ds端分成三段, 耗尽型的ds端分成两段
- 如何解题:见"恒流源"节

低频小信号模型

图 1.3.14 场效应管的低频小信号模型 (a) 将 FET 视作双口网络 (b) 低频小信号模型

场效应管的低频小信号模型实际上更加简单,如果我们忽略 r_{ds} (实际上确实经常忽略),那么只有一个电流源。事实上,场效应管简单的本质原因是左右侧互不干扰,尤其是g端一般而言并不存在电流,所以 V_{GS} 很好求解。参数如下:

1.
$$\Delta i_D = g_m \cdot \Delta v_{GS}$$

二、单管放大电路

1. 放大电路基本分析

工作原理

- 放大电路的信号输入可以拆解为直流分量+交流分量。我们对放大电路做如下理想化处理:
 - 1. 输入的交流信号v远小于0.7V
 - 2. 入段耦合电容C的阻抗很小, 在交流电路中可以视为短接
- 由此,放大电路由直流信号提供静态工作点,交流信号负责在静态工作点附近产生微扰,电路将该微扰信号放大。
- 实际上原理的解释需要借助直流和交流的伏安特性曲线图,但是一般不会碰到,如果不想深究原理的话就跳过吧。看懂他对后面的解题(尤其是最大输入电压(最大不失真输出)还是有帮助的。

参数

基本放大电路的几个参数如下:

1. 增益 $A_v=rac{V_o}{V_i}$,有时也用单位分贝(dB)表示,公式是 $A_v=20lgrac{V_o}{V_i}\mathrm{dB}$

2. 输入电阻 $R_i=rac{V_i}{I_i}$;输入电阻 $R_o=rac{V_o}{I_o}$

3. 通频带 $BH=f_H-f_L$

4. 最大不失真输出

$$egin{cases} ar{ ext{d}} & ext{ d} ar{ ext{d}} & \Rightarrow & \exists i_B = 0$$
时截止 $\Rightarrow \Delta v_1 = I_{CQ} \cdot R_L^{'}$ $ar{ ext{d}} & \Rightarrow \exists v_{CE} < 0.7 V$ 时截止 $\Rightarrow \Delta v_2 = V_{CEQ} - 0.7 V$

2. 三极管基本放大电路

• **只供理解,不建议死记硬背**。如果放大系数输入输出电阻不能看图直接写出来的话我的评价 是寄。

共射组态CE

参数:

$$A = rac{-eta I_b R_L^{'}}{I_b r_{be}} = -rac{eta R_L^{'}}{r_{be}}
onumber \ R_i = R_b//r_{be}
onumber \ R_o pprox R_c$$

共集组态CC

参数:

$$A = rac{(eta+1)I_{b}R_{L}^{'}}{I_{b}r_{be}+(eta+1)I_{b}R_{L}^{'}} = -rac{eta R_{L}^{'}}{r_{be}+(eta+1)R_{L}^{'}}
onumber \ R_{i} = R_{b}//(r_{be}+(eta+1)R_{L}^{'})
onumber \ R_{o} = R_{e}//rac{r_{be}+R_{b}//R_{s}}{1+eta}$$

共基组态CB

参数:

$$A=rac{-eta I_b R_L^{'}}{-I_b r_{be}}=rac{eta R_L^{'}}{r_{be}}
onumber \ R_i=R_e//rac{r_{be}}{1+eta}
onumber \ R_opprox R_c$$

说实话感觉这个微变等效电路画的不如我好...

3. 场效应管基本放大电路

共源组态CS

参数:

$$A = rac{-g_{m}V_{gs}R_{L}^{'}}{V_{gs}} = -g_{m}R_{L}^{'}
onumber \ R_{i} = R_{g} + (R_{g1}//R_{g2})
onumber \ R_{o} pprox R_{d}$$

共漏组态CD

参数:

$$A = rac{g_m R_L^{'}}{1 + g_m R_L^{'}} \ R_i = R_g + (R_{g1}//R_{g2}) \ R_o = rac{V_o}{-g_m V_{gs} + rac{V_o}{R}} = rac{1}{g_m + rac{1}{R}} = rac{1}{g_m}//R$$

共栅组态CG

参数:

$$A = rac{g_m V_{gs} R_L^{'}}{-V_{gs}} = -g_m R_L^{'}$$
 $R_i = R_d$ $R_o = rac{V_o}{-g_m V_{gs} + rac{V_o}{R}} = rac{1}{g_m + rac{1}{R}} = rac{1}{g_m}//R$

总结

组态	特点	特点	优点
CE/CS	电压反向放大 (最常用)	输入电阻简单, 且与后方电路无关	电流放大
CC/CD	电压跟随, 同向	电压跟随器,电压之比约为1	电阻特性好
CB/CG	电压同相放大		频率特性好

 发现了吗,只有CE/CS是反向放大的,其他两个都是同向放大。这个一定要记住,在后面的 正弦波发生电路中要用

三、差分放大电路

1. 工作原理

$$egin{aligned} &egin{aligned} \{R_{e}=2I_{EQ}pprox2I_{CQ}=rac{V_{EE}-0.7V}{Re}\ η$$
泰偏置由 V_{EE} 提供,与 R_{e} 有关,左右完全对称,故 $v_{o}=0$ 动态 $egin{aligned} \{A_{e}:\ \Delta v_{Id}=\Delta v_{I1}-\Delta v_{I2}\ + A_{e}:\ \Delta v_{Ic}=(\Delta v_{I1}+\Delta v_{I2})/2\ + A_{e}:\ \Delta v_{o}=A_{vd}\cdot\Delta v_{Id}+A_{vc}\cdot\Delta v_{Ic} \end{aligned}$

注意,共模输入量是直接相减!也就是说还原的时候要除以2。比如差模100共模20,那么输入就是100±10,如下:

$$egin{cases} \Delta v_{I1} = \Delta v_{Ic} + rac{1}{2}\Delta v_{Id}, \ \Delta v_{I2} = \Delta v_{Ic} - rac{1}{2}\Delta v_{Id}, \end{cases}$$

2. 差模放大电路

• 注意交流接地点: Re会被短接

• 微变等效电路:

参数:

$$egin{aligned} i_{B1} &= rac{rac{v_{Id}}{2}}{r_{be}} = rac{v_{Id}}{2r_{be}} \ A_{vd1} &= rac{v_{od1}}{v_{Id}} = -rac{eta R_c}{2r_{be}} \ A_{vd} &= rac{v_{od}}{v_{Id}} = -rac{eta R_c}{r_{be}} \ R_i &= rac{v_{Id}}{i_{Id}} = 2r_{be} \ R_o &= 2R_c(eta \ddot{lpha}); R_o = R_c(\dot{f \mu} \ddot{lpha}) \end{aligned}$$

说明:

- 1. 不管是单端输出还是双端输出,**输入端电压均为v_{Id}**,因此单端和双端的放大系数差了2倍。
- 2. 上面的量应该有△, 但是嫌麻烦就没打。
- 3. 端口2和端口1完全反向,只差一个负号。

3. 共模放大电路

• 注意交流接地点: Re不会被短接

• 双端输出:

 \circ 电压放大倍数A=0,应该很好理解,因为左右完全对称全部抵消掉了

单端输出:

$$\circ$$
 电压放大倍数 $A=rac{v_{Od}}{v_{Id}}=rac{-eta i_BR_c}{i_Br_{be}+(eta+1)i_B\cdot 2R_c}=rac{-eta R_c}{r_{be}+2(eta+1)R_c}$

• 共模抑制比:

$$\circ \;\; K_{CMR} = |rac{A_{vd}}{A_{vc}}| = 20 lg |rac{A_{vd}}{A_{vc}}| dB$$

四、放大电路的应用与其他

1. 多级放大电路

级联方式

级联	缺点	优点
直流	静态工作点相互影响,容易零漂	低频特性好,集成性好
阻容	低频响应差	静态工作点相互独立,可分立考虑

性能指标

- 定义比较简单,只需要求分立的电压放大倍数相乘即可,电阻的定义也相同。
- 注意,输入电阻(CC)和电压放大倍数都有可能与其他部分的电阻有关,需要写出 R_i' 或 R_o' 才行。

2. 频率特性

电路 模型	电路图	电压/频率特性方程	频率特性图像
低通电路	$\begin{array}{c c} & R \\ + & \downarrow & + \\ \dot{V}_1 & C & \downarrow \dot{V}_0 \\ - & & - \end{array}$	$A_v = rac{1}{1+j\omega RC} = rac{1}{1+jf/f_H} \ arphi = -arctan(f/f_H)$	$20 \lg A_{\phi} /dB$ 0 0 0 0 0 0 0 0 0 0
高通电路	$\begin{array}{c c} C \\ + & $	$A_v = rac{j\omega RC}{1+j\omega RC} = rac{jf/f_L}{1+jf/f_L} \ arphi = 90 - arctan(f/f_L)$	201g A _v /dB

频率特性图像直线简化:

- 电压从 f_O 处开始变化,下降速度为**20dB/十倍频**。(f_O 为 f_L 或 f_H)
- 高频处从0°开始**下降**,速度为45°/十倍频;低频处从0°开始上升,速度为45°/十倍频
- 记住两个电路的电压放大系数公式, 低频处有分子

3. 恒流源电路

在电路分析中,有时会使用恒流源来增加稳定性/提供直流偏置。但是一般会用电子元器件来等效恒流源。

三极管

• 一个 (典型) 的三极管恒流源电路

- 在微变等效电路中, 恒压二极管可以等效成小电阻 (导线)
- 如果要求参数(如输出电阻),则需要画出微变等效电路图之后列方程求解($R_o = (1+\frac{\beta R_e}{r_{be}+R_e})r_{ce})$ 这个表达式可以看出输出电阻是一个很大的数(符合恒流源的要求),所以如果题目说 r_{ce} 可以不考虑,那就直接是 ∞ 。
- ullet $I_C=rac{V_Z-0.7}{R_e}$

场效应管

• 两个 (典型) 的场效应管恒流源电路 (结形N沟道 (耗尽型))

- 简单恒流源电路: $V_{gs}=0; i_D=I_{DSS}$
- 自偏压恒流源电路方程求解办法: (这是耗尽型,增强型请把第二条方程换掉)

 $egin{cases} V_{gs} = -i_D \cdot R_s \,; \ i_D = i_{DSS} \cdot (1 - rac{V_{GS}}{V_P})^2 \end{cases}$

集成电路恒流源

1. 基本镜像电流源

图 1.3.41 基本镜像电流源

基本上可以认为两个三极管的电流相等对称。其中:

$$\left\{egin{aligned} I_{REF} = I_C + 2I_B ($$
差值 $); \ I_L = I_C \end{aligned}
ight.$

2. 跟随镜像电流源

在中间多插入了一个三极管,可以进一步加强对称性。(差值减小约β倍)

3. 多路电流源

拆掉一个个看就行,运用等电压点,应该不会考。

五、负反馈放大电路

• 基本形式:

$$X_s
ightarrow egin{cases} X_f & <-F-X_o \ X_i & -A->X_o \end{cases} \; ; \; X_s-A_f->X_o$$

• 由于 $A_f = \frac{A}{1+AF}$,可以看做负反馈放大电路是放大电路的修正,**所以|1+AF|>1称为负反馈放大电路,反之为正反馈**

1. 分类

类别	图片	反馈系数	闭环放大增益
电压串联	\dot{v}_{s} \dot{v}_{s} \dot{v}_{t}	$F=rac{R_1}{R_1+R_f}$	$A_fpprox 1/F$
电压并联	$\begin{array}{c c} R_1 & \dot{I_s} & \dot{I_f} & \dot{I_{id}} \\ \hline \dot{V_s} & & & + \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $	$F=-rac{1}{R_f}$	略
电流串联	$ \dot{V}_{s} \stackrel{(+)}{\stackrel{\downarrow}{\longrightarrow}} R_{1} \stackrel{(+)}{\stackrel{\downarrow}{\longrightarrow}} R_{2} \stackrel{(+)}{\stackrel{\downarrow}{\longrightarrow}} R_{1} $	$F=rac{R_1R_2}{R_1+R_2+R_f}$	略
电流并联	$ \begin{array}{c c} I_s & R_1 & I_o \\ \hline I_s & R_1 & I_o \\ \hline I_s & R_1 & I_o \\ \hline I_s & R_2 & I_o \\ \hline I_s & I_o $	$F=rac{R_2}{R_2+R_f}$	略

串联	并联	电压	电流
从Vs中得到	从Is中得到	反馈量由Vo得到	反馈量由Io得到
i与 f 异节点	i与 f 同节点	输出电压源特性	输出电流源特性
分压	分流	R_L 一般接地	R_L 一般接地
可以使 R_{if} 增大	可以使 R_{if} 减小	Vo为0反馈也为0	Io为0反馈也为0

- 负反馈的好处:增加稳定性,减少非线性失真,提高抗干扰能力(温漂),扩展通频带,改善输入输出电阻特性
 - 。 若涉及定量计算,则记住系数均为(1+AF),至于是乘还是除,看物理量,反正是往好的方向变化

2. 自激振荡

• 自激振荡条件: $A_f = \frac{A}{1+AF} = \infty \Rightarrow AF = -1$, 即:

o
$$egin{cases} |\dot{A}\dot{F}|=1\ \Deltaarphi=(2n+1)\pi \end{cases}$$

- 起振条件: |AF| > 1
- 自激振荡判据(这个东西是我们要避免的):
 - 1. 在附加相移180°的时候, |AF|是否衰减到1以下(若|AF|<1则稳定)
 - 2. 在环路增益下降到1的时候,附加相移是否达到180°(若超过180°则稳定)
- 裕度:
 - 1. 增益裕度 $G_m=20{
 m lg}|AF|_{\Delta arphi=180^\circ}$,要求小于10dB
 - 2. 相位裕度 $\varphi_m = \Delta \varphi (-180^\circ)$, 要求大于45°

六、集成运放

1. 集成运放的基本概念

2. 基本运算电路

- 比例运算、仪用放大器、求和、积分、微分、指数对数、电压电流转换、精密整流、滤波器、电压比较器等
 - 感觉没什么好记录的,也不是说都会了,就是太多太杂了反正也记不住,有这个时间不如多看两道题

。 唯一需要注意的就是滞回比较器,其比较电压需要使用叠加定理来计算,电压传输特性 图纵坐标是 v_a ,横坐标是 v_i ,他会存在一个方框。

七、信号发生电路

1. 正弦波

• 震荡条件:

$$\left\{ egin{aligned} |AF| = 1 \ \Delta arphi = 2n\pi \end{aligned}
ight.$$

- 事实上就是一般而言只要能判断出来是正反馈就行。(对了还有**静态工作点也要满足**)
- 环节: 放大—正反馈网络—选频网络—稳幅
- 正反馈的判断:
 - 。 很喜欢我在"第二节:单管放大电路"中的最后一句话。现在你记住了吗?
 - 1. 找到反馈线 $(C_b$ 或 R_F) , 切断, 并将其作为输入。
 - 2. 输入端给一个(+)的信号
 - 3. 找附近的三极管,判断一下组态(输入已经找到了(1),再确定一下输出,剩下什么就是共什么组态)。用组态去判断输出端是(+)还是(-)
 - 4. 从输出端引到反馈线,看看是不是也是正的
- 对于带电阻和电容的电路,正负号的判断如下:
 - 1. 互感: 同名端同极性
 - 2. 三点式电感:中心抽头接地,两端极性相反;首尾端口接地,其余两者极性相同。
 - 3. 三点式电容: 跟上面一样

并联型石英	串联型石英	
电感性, 电容三点式	电阻性	
振荡频率在 f_s 和 f_p 之间	振荡频率 $f_0=f_s$ 时	

2. 非正弦波

八、功率放大电路

1. 分类

分类	甲类	乙类
图形	$V_{\text{CC}}/R_{\text{L}}$ $V_{\text{CC}}/R_{\text{L}}$ $V_{\text{CEQ}}/V_{\text{CC}}/V_{\text{CE}}$ $V_{\text{CEQ}}/V_{\text{CC}}/V_{\text{CE}}$	i_{C} $v_{\text{CEO}} = v_{\text{CC}}$ v_{CE} v_{CC} v_{C} v_{C} v_{C} v_{C} v_{C} v_{C} v_{C}
特点	动态范围 $V_{CEQ}=rac{1}{2}V_{CC}$	互补对称式(单电源/双电源)、变压器耦合推挽式
效 率	$\eta = rac{P_o}{P_E} = rac{rac{1}{2}I_{cm}^2R_L}{V_{CC}I_{CQ}} ightarrow rac{rac{1}{2}(rac{V_{CC}}{2R_L})^2R_L}{V_{CC}rac{V_{CC}}{2R_L}} = 25\%$	$\eta = rac{P_o}{P_E} = rac{V_{om}^2/(2R_L)}{rac{2V_{CC}V_{om}}{\pi R_L}} ightarrow rac{\pi}{4}rac{V_{om}}{V_{CC}} = rac{\pi}{4} = 78.5\%$
管耗		$P_T = P_E - P_o \leq rac{4}{\pi^2} P_{om} = P_{T1} + P_{T2}$ (平均 每个 $0.2P_{om}$)
参 数		耐压 $> 2V_{CC}; I_{CM} > rac{V_{cm}}{R_L}; P_{CM} > 0.2P_{om}$ (双电源为例)

2. 集成功率放大

- 1. 扩流
- 2. 扩压
- 3. 集成功率放大

3. 整流与滤波

步骤	图示	参数
输入	通过变压器	输入 $v_i = \sqrt{2} V_1 { m sin} \omega t$
整流	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	输出 $v_o=\sqrt{2}V_2\mathrm{sin}\omega t$ 有效值 V_2 平均值 $V_{o(avg)}=rac{1}{\pi}\int v_o\mathrm{d}t=rac{2\sqrt{2}}{\pi}V_2pprox 0.9V_2$
滤波	v_0 v_2 v_C C 放电 v_0 v_C $v_$	输出平均值 $V_{o(avg)} pprox 1.2 V_2$ (用于估算) $V_R = \sqrt{2} V_2$ 最大整流电流 $I_{D(avg)=rac{V_{o(avg)}}{2R_L}}$
稳压	$V_{\rm F} = F_{\rm g} V_{\rm O}$ $V_{\rm F} = V_{\rm G} V_{\rm G}$	稳压系数 $S_r = \frac{\Delta V_o/V_o}{\Delta V_i/V_i}$ 输出电阻 $R_o = \frac{\Delta V_o}{\Delta I_L} _{\Delta V_i=0}$ 输出电压 $V_o = (1+\frac{R_1}{R_2})V_{REF} \leq V_I - V_{CE}$ 最大电流 $I_{C(max)} = I_{R_L max} + I'(控制电路)$ 最大管耗 $P_{CM} = V_{CE(max)}I_{C(max)}$ 最大耐压 $V_{BR(CEO)} = V_{I(max)} - V_{o(min)}$