

RA cheatsheet - This is a relational algebra cheat sheet.

Introduction to Databases (University of Toronto)

CSC343 Relational Algebra Cheat Sheet

CSC343 Kelational Algebra Cheat Sheet						
Operation	Symbol	Latex	Sample usage	Notes		
Select	σ	\sigma	$\sigma_{s.cgpa \geq 3.5}(s)$			
Project	π	\pi	$\pi_{s.name, s.cgpa}(s)$			
Cartesian Product	×	\cross	$\sigma_{lab.utorid = test.utorid}(lab \times test)$			
Set Union	U	\cup	$A \cup B$	Includes all tuples that are in tables A OR in B, remove duplicates		
Set Intersection	C C	\cap	$A \cap B$	Includes all tuples that are in tables A AND in B, remove duplicates		
Set Difference	-	U	A - B NIVERSIT	Includes all tuples that are in table A NOT in B, remove duplicates		
And	٨	\wedge	$A \wedge B$	Conjunction		
Or	V	\vee	$A \lor B$	Disjunction		
Rename	ρ	\rho	$\rho_{'new\;name'/'old\;name'}(s)$			
Duplicate Elimination	δ	\delta	$\delta(R)$	Only retain unique pair of R(A, B)		
Sort	τ	\tau	$\pi_{s.cgpa}(\tau_{s.cgpa}(s))$	Default sort by ascending order, extra -, $\tau_{-s.cgpa}(s)$ is sorting by descending order		
Grouping and Aggregation	Υ	\gamma	I := Infraction $\pi_{SIN, SUM(Fine)} (\gamma_{SIN, SUM(Fine)}(I))$	Aggregation operation include: AVG, MIN, MAX, SUM, COUNT		
Variable Assignment (shorthand)	→	\rightarrow	I := Infraction $\pi_{SIN, s} (\gamma_{SIN, SUM(Fine) \to s} (I))$	Stores SUM(FINE) into a variable called s for this RA query.		

Theta Join	× _θ	\bowtie_\theta	$A\bowtie_{A.column\ 2>\ B.column\ 2}(B)$	Inner join
Natural Join	X	\bowtie	$A\bowtie B$	Inner join on same column name
Equi Join	\bowtie_{c}	\bowtie_c	$A\bowtie_{A.column\ 2=\ B.column\ 2}(B)$	Theta join with column condition being equal
Left Outer Join	⋈	\leftouterjoin*	$Student \bowtie_{Student.SIN=Phone.SIN}(Phone))$	
Right Outer Join	М	\rightouterjoin*	$Phone\bowtie_{Phone.SIN=Student.SIN}(Student))$	
Full Outer Join	×	\fullouterjoin*	$A\bowtie B$	

TORONTO MISSISSAUGA

 $\label{leftouterjoin} $$\def\le \sum_{n=0}^\infty \sinh(n) \operatorname{def}\left(\sum_{n=0}^\infty \sinh(n) \operatorname{def}\left(\sum_{n=0}^\infty \sinh(n) \right) \right) = 0.$

\def\rightouterjoin{\mathbin{\bowtie\mkern-5.8mu\ojoin}}

\def\fullouterjoin{\mathbin{\ojoin\mkern-5.8mu\bowtie\mkern-5.8mu\ojoin}}

^{*} Need to add the following definition to your LaTeX project for special outer join symbols: $\def\ojoin{setbox0=\hbox{\hbox{\hbox[-.02ex]{.25em}{.4pt}\lap{rule[\ht0]{.25em}{.4pt}}}}$