Table 12.2 (Contd.)

n	Ĺ	w_i	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS ASSESSED.
6	1	0.17132	Z
	2	0.36076	-0.932
	3	0.46791	- U.BA(1)
	4	0.46791	- 0.232
	5	0.36076	U.Z.
	6	0.17132	9.881
		- 132	0.992

Example 12.10

Use Gauss-Legendre three-point formula to evaluate

$$\int_{2}^{4} (x^4 + 1) \, \mathrm{d}x$$

Given n=3, $\alpha=2$, and b=2. Hence

$$I_g = \frac{b-a}{2} \sum_{i=1}^{3} w_i g(z_i)$$

$$= w_1 g(z_1) + w_2 g(z_2) + w_3 g(z_3)$$

$$x = \frac{(b-a)}{2} z + \frac{b+a}{2} = z+3$$

Therefore,

$$g(z) = (z+3)^4 + 1$$

For n = 3, we have

$$w_1 = 0.55556$$
 $z_1 = -0.77460$
 $w_2 = 0.88889$ $z_2 = 0.0$
 $w_3 = 0.55556$ $z_3 = 0.77460$

Then

$$I_g = 0.55556 [(-0.77460 + 3)^4 + 1]$$

+0.88889 $[(0+3)^4 + 1]$
+0.55556 $[(0.77460 + 3)^4 + 1]$
= 14.18140 + 72.88898 + 113.33105
= 200.40143

We can verify the answer with analytical solution which is and that three-point Gauss formula should give exact answer for solution and the control of the c