Неделя №3 Электронный ферми-газ

Драчов Ярослав Факультет общей и прикладной физики МФТИ

25 марта 2021 г.

3.44.

Решение. В обоих случаях отдаётся в зону проводимости по одному электрону на атом, примитивные ячейки содержат единственный ион, так что числа электронов проводимости, примитивных ячеек и атомов совпадают.

Для электронной теплоёмкости пользуемся ферми-газовой моделью. Теплоёмкость электронов линейна по температуре при $T \ll E_F$, то есть вплоть до температуры плавления металла:

$$C_{el} = \frac{k_B NTm}{\hbar^2} \left(\frac{\pi}{3n}\right)^{2/3} = \frac{\pi^2 k_B^2 NT}{2E_F}.$$

Теплоёмкость ферми-газа выводится на лекции.

Фононная теплоёмкость при высоких температурах $(T>\theta)$ равна $C_{ph}=3Nk_B,$ что в $\sim \frac{E_F}{(k_BT)}\gg 1$ раз больше электронной. Значит сравниваются теплоёмкости при низких температурах.

При низких температурах для фононной теплоёмкости есть формула Дебая:

$$C_{ph} = \frac{12\pi^4 N k_B}{5} \left(\frac{T}{\theta}\right)^3.$$

Приравнивая, получаем

$$T^2 = \frac{5k_B\Theta^3}{24E_F\pi^2}.$$

После подстановки численных значений, получаем ответ: $3.3~{\rm K}$ для меди и $1.5~{\rm K}$ для натрия. Полученные числа оправдывают применение дебаевского приближения.

3.53.

Решение. В равновесии (когда пластины соединили) установится такое распределение заряда, что $e\varphi + \mu = {\rm const}~(e < 0)$, то есть выравнивается электрохимпотенциал. Электронам выгодно понижать свою энергию, переходя из натрия в медь (поверхность Ферми меди ниже по энергии), но такие переходы нарушают электронейтральность и возникает задерживающая разность потенциалов. При этом массивные металлические образцы можно считать в равновесии эквипотенциальными.

Значит разность электрических потенциалов равна $A_{\rm Cu}-A_{\rm Na}/e$, чтобы обеспечить эту разность потенциалов, перетёк заряд $C(A_{\rm Cu}-A_{\rm Na})/e=2.2$

 $10^{-2}~{\rm K}$ л = $1,38\cdot 10^7 e$ (зарядов электрона), что составляет $5,2\cdot 10^{-16}$ от общего числа электронов в образце.

3.59.

Решение. Пусть плотность состояний на уровне Ферми для каждого из направлений спина равна D'. В модели с квадратичным законом дисперсии

$$D' = \frac{dN}{dE} = \frac{V4\pi k_F^2 df/(2\pi)^3}{\hbar^2 k_F dk/m^*} = \frac{1}{2} \frac{m^* p_F}{\pi^2 \hbar^3} = \frac{1}{2} \frac{m^*}{\hbar^2} \sqrt[3]{\frac{3n}{\pi^4}},$$

или, по-другому,

$$D' = \frac{3n}{4E_F}.$$

Здесь n — полная концентрация электронов, D^\prime вдвое меньше полной плотности состояний.

Условие, что поле мало означает, что изменение распределения электронов мало. Тогда можно считать, что плотность состояний не изменилась при приложении поля. Считаем магнетизм чисто спиновым: g=2, магнитный момент каждого электрона равен боровскому магнетону и может быть направлен либо по полю, либо против поля.

Это значит, что электронов, магнитный момент которых направлен по полю (энергия которых понижается), стало в единице объёма больше на $D'\mu_BH$, а электронов, магнитный момент которых направлен против поля (энергия которых повышается) — меньше на ту же самую величину $D'\mu_BH$. Естественно, полное число электронов сохранилось (система осталась электронейтральной).

Таким образом

$$\frac{\delta n}{n} = \frac{2D'\mu_B H}{n} = \frac{3\mu_B H}{2E_F}.$$

Для поля 10 Тл $\frac{3}{2}\mu_B H \sim 1$ мэВ, то есть в реальных лабораторных полях в электронном газе в типичном металле ($E_F \sim 1$ эВ) перераспределяется ничтожная доля электронов проводимости.

Магнитный момент без поля был равен 0, а в поле стал равен

$$M = \mu_B \delta n = H \mu_B^2 \frac{m^*}{\hbar^2} \sqrt[3]{\frac{3n}{\pi^4}}.$$

Поскольку для каждой проекции спина

$$\mu_B H = \delta E = \frac{p_F \delta p}{m},$$

то

$$\frac{\delta p}{p_F} = 2m^* \frac{\mu_B H}{p_F^2} = \frac{\mu_B H}{E_F}.$$

Для восприимчивости:

$$\chi = M/H = \mu_B^2 \frac{m^*}{\hbar^2} \sqrt[3]{\frac{3n}{\pi^4}} = 5.2 \cdot 10^{-7}.$$

3.87.

Решение. Для фононной теплоёмкости одномерной цепочки при низких температурах (на единицу длины)

$$E = 2 \int_{0}^{\infty} \frac{\hbar ks}{\exp\left(\frac{\hbar ks}{T}\right) - 1} \frac{dk}{2\pi} = \frac{1}{\pi} \frac{T^2}{\hbar s} \int_{0}^{\infty} \frac{xdx}{e^x - 1} = \frac{\pi}{6} \frac{T^2}{\hbar s}$$

двойка учитывает движение фононов в обе стороны, поляризация для одномерной системы единственная. Для теплоёмкости, возвращая в запись постоянную Больцмана,

$$C_{ph} = \frac{\pi k_B^2 T}{3\hbar s}.$$

Скорость Ферми по определению $v_F = \left(\frac{dE}{dp}\right)_{E_F}$ независимо от вида спектра. Для электронной теплоёмкости

$$C = \frac{\pi^2}{3} D(E_F) T$$

плотность состояний в одномерном случае, но не делая явных предположений о спектре.

$$D = \frac{dN}{dE} = \frac{dN}{dp} \cdot \frac{dp}{dE} = 2 \cdot 2 \cdot \frac{1}{\hbar} \frac{L}{2\pi} \cdot \frac{1}{v_F}$$

(учтён спиновый множитель 2 и множитель 2, учитывающий движение электронов в обе стороны), откуда электронная теплоёмкость на единицу длины с постоянной Больцмана

$$C_{el} = \frac{2\pi}{3} \frac{k_B^2 T}{\hbar v_F}.$$

Соответственно,

$$\frac{C_{el}}{C_{ph}} = \frac{2s}{v_F} \sim 2 \cdot 10^{-2}.$$

3.61.

Решение. У ферми-жидкости два свойства:

- 1. Концентрация и фермиевский импульс в ней соответствуют полному числу частиц
- 2. Вблизи Ферми-поверхности наблюдается перенормированная (изменённая) масса, соответствующая изменённой плотности состояний. Именно эта масса и определяет все термодинамические свойства.

Спин ядра гелия-3 равен 1/2, электронный спин полностью заполненной *s*-оболочки нулевой, поэтому полный спин атома равен 1/2. Атом гелия-3 является ферми-частицей и низкотемпературные свойства гелия-3 — это свойства жидкости. Тогда можно использовать результат для теплоёмкости электронного газа:

$$C_V = \frac{k_B n T m^*}{\hbar^2} \left(\frac{\pi}{3n}\right)^{2/3} = \frac{m^*}{m} \frac{k_B(nm) T}{\hbar^2} \left(\frac{\pi}{3n}\right)^{2/3}.$$

Напомним, что эта формула — на единицу объёма. Воспользуемся тем, что $nm=\rho$, где m — масса атома He-3. Подставляя, и помня, что в условии —

молярная теплоёмкость, а нужна для вычислений теплоёмкость в единице объёма $C_V = C_\mu \rho/(mN_a)$, получаем после очевидных преобразований

$$\frac{m^*}{m} = \frac{C_{\mu}\hbar^2\rho}{N_a k_B^2 T \rho m} \left(\frac{3\rho}{\pi m}\right)^{2/3} = 2.15.$$

3.28.

Решение. Поскольку в звезде присутствует положительный фон, который в точности равен отрицательному, то мы пренебрегаем взаимодействием и рассматриваем только кинетическую энергию электронов.

Будем считать закон дисперсии ультрарелятивистским: $\varepsilon=pc$, поскольку для большинства состояний $\varepsilon\gg mc^2$.

Полная концентрация электронов:

$$n = 2 \cdot \frac{4}{3} \pi p_F^3 \cdot \frac{1}{(2\pi\hbar)^3}.$$

Фермиевский импульс такой же как и в обычном электронном газе (он определяется только концентрацией и не зависит от закона дисперсии):

$$p_F = \hbar (3\pi^2 n)^{1/3}$$
.

Полная энергия электронов в единице объёма:

$$E = 2 \cdot \frac{1}{(2\pi\hbar)^3} \int_{0}^{p_F} cp \cdot 4\pi p^2 dp = 2\pi c p_F^4 \cdot \frac{1}{(2\pi\hbar)^3} = 0.25 c\hbar (9\pi n^2)^{2/3}.$$

Полная энергия всего газа

$$E_{ ext{полн}} = EV = \frac{(9\pi)^{2/3}}{4} c\hbar N^{4/3} \frac{1}{V^{1/3}}.$$

$$P=-rac{dE_{ ext{полн}}}{dV}=rac{(9\pi)^{2/3}}{12}c\hbar n^{4/3},~~$$
или $pV^{4/3}={
m const.}$