1. Sept D, McCammon JA: Thermodynamics and kinetics of actin filament nucleation . <i>Biophysical journal</i> 2001, 81 :667–674.
2. Selzer T, Schreiber G: New insights into the mechanism of protein-protein association . <i>Proteins: Structure, Function, and Genetics</i> 2001, 45 :190-198.
3. Długosz M, Huber GA, McCammon JA, Trylska J: Brownian dynamics study of the association between the 70S ribosome and elongation factor G . <i>Biopolymers</i> 2011, 95 :616-627.
4. Lee KI, Rui H, Pastor RW, Im W: Brownian Dynamics Simulations of Ion Transport through the VDAC . <i>Biophysical Journal</i> 2011, 100 :611-619.
5. Noguchi H, Takasu M: Fusion pathways of vesicles: A Brownian dynamics simulation. The Journal of Chemical Physics 2001, 115:9547.
6. Barreda JL, Zhou H-X: Theory and simulation of diffusion-influenced, stochastically gated ligand binding to buried sites . <i>The Journal of Chemical Physics</i> 2011, 135 :145101.
7. Sadigh B, Lenosky TJ, Theiss SK, Caturla M-J, Diaz de la Rubia T, Foad MA: Mechanism of Boron Diffusion in Silicon: An Ab Initio and Kinetic Monte Carlo Study . <i>Phys. Rev. Lett.</i> 1999, 83 :4341-4344.
8. Voter AF: Introduction to the kinetic Monte Carlo method. <i>Radiation Effects in Solids</i> 2007:1–23.
9. Straßer A, Wittmann H-J: LigPath: a module for predictive calculation of a ligand's pathway into a receptor-application to the gpH1 - receptor . <i>Journal of Molecular Modeling</i> 2006, 13 :209-218.
10. Forli S, Olson AJ: A Force Field with Discrete Displaceable Waters and Desolvation Entropy for Hydrated Ligand Docking. <i>J. Med. Chem.</i> 2011, 55 :623-638.