Tema 1: Interpolación a trozos por elementos finitos en un intervalo de la recta real

- 1. Sea $f(x) = (3+x)\cos^2\left(\frac{\pi x}{4}\right)$ $x \in \mathbb{R}$. Use el polinomio interpolador de Lagrange cuadrático con nodos $x_0 = 0$, $x_1 = 1$ y $x_2 = 3$ para aproximar f(2), f(2.4), f(3.5) y f(4).
- 2. Escriba, para las siguientes funciones f(x), el término del error $E_2(x)$ del polinomio interpolador de Lagrange cuadrático con nodos $x_0 = -1$, $x_1 = 1$ y $x_2 = 3$.

(a)
$$f(x) = 4x^2 - 3x + 2$$

 (b) $f(x) = x^3 - 2x^2 + 1$

- 3. A partir de los datos $\ln 9 = 2.1972$, $\ln 9.5 = 2.2513$ y $\ln 10 = 2.3026$, aproximar $\ln 9.2$ mediante interpolación lineal y cuadrática. Acotar el error cometido.
- 4. Aproxima el valor de $\sqrt[7]{1/2}$ mediante el polinomio interpolador cuadrático de la función $f(x) = 2^x$ con los nodos $x_0 = -1$, $x_1 = 0$ y $x_2 = 1$. Acota el error cometido.
- 5. ¿Cuál es el polinomio interpolador de Lagrange de grado 20 con nodos $x_0=0, x_1=1,\ldots, x_{19}=19, x_{20}=20$ de la función $f(x)=x^5+3x^{12}$?
- 6. Se considera la función

$$f\left(x\right) = \frac{1}{1+x^2},$$

calcular y representar gráficamente el polinomio de interpolación de grado 14 con puntos de interpolación equiespaciados en el intervalo [-5,5].

7. Haciendo uso de la transformación lineal $F: [-1,1] \to [-5,5]$, con F(x) = 5x, repetir el ejercicio anterior utilizando como puntos de interpolación $x_i = F(\hat{x}_i)$, donde los puntos $\hat{x}_i \in [-1,1]$ vienen dados por la fórmula

$$\hat{x}_i = \cos\left(\frac{2i+1}{2n+2}\pi\right), \qquad 0 \le i \le n.$$

- 8. Dado el intervalo [0,2], se genera un mallado D_h formado por elementos de anchura h=0.5 y sea V_h el espacio de elementos finitos generado con polinomios de grado 1 ó 2. Se considera la función $f:[0,2] \to \mathbb{R}$ dada por $f(x) = \operatorname{sen}(\pi x)$ y sea $f_h \in V_h$ una aproximación de f en el espacio V_h verificando que $f(x_i) = f_h(x_i)$ para todo x_i nodo del mallado. Se pide:
 - a) Calcular $|f(0.8) f_h(0.8)|$.
 - b) Repetir el ejercicio utilizando $h = 1/2^j$, j = 2, 3, 4.
 - c) Para que valor de h podemos afirmar que el error está por debajo de una tolerancia $\delta = 10^{-6}$.
- 9. Calcular la aproximación $f_h \in V_h$ de la función f del ejercicio 6 en un mallado formado por 7 elementos de igual anchura h utilizando polinomios de grado 1, 2 y 4. Representar gráficamente la solución obtenida.
- 10. Repetir el ejercicio 9 utilizando para construir V_h :
 - a) $h = \frac{5}{6}$ y polinomios de grado 1.
 - b) $h = \frac{5}{3}$ y polinomios de grado 2.
 - c) $h = \frac{10}{3}$ y polinomios de grado 4.
 - d) $h = \frac{5}{12}$ y polinomios de grado 1.
 - e) $h = \frac{5}{6}$ y polinomios de grado 2.
 - f) $h = \frac{5}{3}$ y polinomios de grado 4.

11. Determinar el valor de h para que la aproximación $f_h \in V_h$ de la función f verique que

$$||f - f_h||_{L^{\infty}([a,b])} < \delta$$

suponiendo que el mallado asociado a V_h es equiespaciado, que el grado de los polinomios para construir V_h es m=1 ó 2, que $\delta=10^{-8}$ y para las siguientes funciones f:

- a) $f:[0,10] \to \mathbb{R}, f(x) = x \operatorname{sen} x$.
- b) $f: [-1,1] \to \mathbb{R}, f(x) = \text{sen}(\pi x).$
- c) $f: [-1,1] \to \mathbb{R}, f(x) = \operatorname{arctg}(10x).$
- d) $f: [-5,5] \to \mathbb{R}, f(x) = e^{-x^2}$.