Linear Regression

Eun Yi Kim

Agenda

- Linear regression with one variable
 - ✓ Model representation
 - ✓ Cost function
 - √ Gradient decent
 - √ Gradient decent for linear regression
- Linear regression with multiple variable
 - ✓ Multiple features
 - ✓ Gradient decent for multiple variables
 - ✓ Gradient decent in practice
 - ✓ Features and Polynomial regression

Linear regression with one variable

Model Representation

Housing Prices (in 100,000s of dollars)

- Supervised Learning
 - : Given the "right answers" for each example in the data

- Regression
 - : Predict real-valued output (price)
- Classification
 - : Discrete-valued output

Model Representation

Training set of housing prices

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

Notation:

- **m** = Number of training examples
- x's = "input" variable / features
- y's = "output" variable / "target" variable

Model Representation

How do we represent *h*?

Linear regression with one variable

: Univariate linear regression

Cost Function

Training set of housing prices

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_i$$
's:
Parameters
How to choose θ_i 's?

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

Cost Function

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 1.5$$

$$\theta_1 = 0$$

$$\theta_0 = 0$$
$$\theta_1 = 0.5$$

$$\theta_0 = 1$$
$$\theta_1 = 0.5$$

Cost Function

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to y for our training example (x, y)

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$h_{\theta}(x) = \theta_{1}x$$

(for fixed θ_1 , this is a function of x)

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to y for our training example (x, y)

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$$

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

$$h_{\theta}(x) = 50 + 0.06x$$

 $J(\theta_{\rm l})$ (function of the parameter $\theta_{\rm l}$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_{\rm l})$ (function of the parameter $\theta_{\rm l}, \theta_{\rm l}$)

 $J(\theta_1)$ (function of the parameter θ_0, θ_1)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_{\rm l})$ (function of the parameter $\theta_{\rm l}, \theta_{\rm l}$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_1)$ (function of the parameter θ_0, θ_1)

Have some function $J(\theta_0, \theta_1)$

Want
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

assignment a:=b

$$\begin{array}{l} \text{repeat until convergence } \{ \\ \theta_j := \theta_j - \bigcirc \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) & \text{(for } j = 0 \text{ and } j = 1) \\ \} & \text{Learning rate} & \text{Simultaneously update} \\ \Theta_0 \& \Theta_1 & \end{array}$$

Correct: Simultaneous update

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Incorrect:

$$\begin{array}{l} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

Gradient descent algorithm

```
\begin{array}{l} \text{repeat until convergence } \{\\ \theta_j := \theta_j - \textcircled{0} \\ \hline \partial \theta_j \\ \end{bmatrix} J(\theta_0, \theta_1) \\ \text{derivative} \end{array} \qquad \begin{array}{l} \text{(simultaneously update} \\ j = 0 \text{ and } j = 1) \\ \end{array}
```


$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

• If α is too small, gradient descent can be slow

• If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge

• Gradient descent can converge to a local minimum, even with the learning rate α fixed

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

As we approach a local minimum, gradien t descent will automatically take smaller st eps. So no need to decrease α over time

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Gradient descent algorithm

$$\begin{aligned} \text{repeat until convergence} & \left\{ \frac{\frac{d}{d\theta_0} \cdot J(\theta_0, \theta_1)}{\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right)} \right. & \text{update} \\ \theta_0 & \text{and} & \theta_1 \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum\limits_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) \cdot x^{(i)}} \right] & \text{simultaneously} \\ \left. \left\{ \frac{\frac{d}{d\theta_0} \cdot J(\theta_0, \theta_1)}{\theta_0 \cdot \theta_1} \right\} & \frac{\frac{d}{d\theta_0} \cdot J(\theta_0, \theta_1)}{\theta_0 \cdot \theta_1} \end{aligned} \end{aligned}$$

Gradient Descent for linear regression

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

(function of the parameter θ_0, θ_1)

Gradient Descent for linear regression

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

(function of the parameter θ_0, θ_1)

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples

Linear regression with multiple variable

Multiple Features (variables)

Training set of housing prices

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

- **n** = number of features
- $x^{(i)}$ = input (features) of ith training example
- $x_i^{(i)}$ = value of feature j in ith training example

Hypothesis

Previously: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

For convenience of notation, define $x_0 = 1$

Multivariate linear regression

Gradient Descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Gradient Descent for multiple variables

Gradient Descent

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\underbrace{\frac{\partial}{\partial \theta_0} J(\theta)}_{\text{optition}}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

}

New algorithm
$$(n \geq 1)$$
: Repeat $\left\{ \begin{array}{l} \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ \text{ (simultaneously update } \theta_j \text{ for } j = 0, \ldots, n) \end{array} \right\}$
$$\left\{ \begin{array}{l} \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)} \\ \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)} \end{array} \right\}$$

Artificial Inteligence & Computer Vision Laboratory

: Feature scaling

Idea: Make sure features are on a similar scale

: Feature scaling

Get every feature into approximately a $-1 \le x_i \le 1$ range

Artificial Inteligence & Computer Vision Laboratory

: Feature scaling

Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$)

E.g.
$$x_1=\frac{size-1000}{2000}$$

$$x_2=\frac{\#bedrooms-2}{5}$$

$$-0.5 \leq x_1 \leq 0.5, -0.5 \leq x_2 \leq 0.5$$

& Computer Vision Laboratory

: Learning rate

Gradient decent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly
- How to choose learning rate α

Artificial Inteligence & Computer Vision Laboratory

: Learning rate

Make sure gradient descent is working correctly

Artificial Inteligence & Computer Vision Laboratory

: Learning rate

Make sure gradient descent is working correctly

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Artificial Inteligence & Computer Vision Laboratory

: Learning rate

Summary

- If α is too small: slow convergence
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge

```
To choose learning rate \alpha, try ..., 0.001, 0.1, 1, .....
```

Features and Polynomial Regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Polynomial Regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$= \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

$$\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2}$$
 $\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3}$

Polynomial Regression

Choice of features

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$
$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Gradient Descent

Normal equation:

Method to solve for θ analytically

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\theta \in \mathbb{R}^{n+1}$$
 $J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

$$\frac{\partial}{\partial \theta_i} J(\theta) = \cdots = 0$$
 (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m=4

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \quad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = \left(X^T X\right)^{-1} X^T y$$

m=4 examples $(x^{(1)},y^{(1)}),...,(x^{(m)},y^{(m)})$: n features

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

E.g. If
$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^T X)^{-1} \text{ is inverse of matrix } X^T X$$

Pinv()

m=4 examples $(x^{(1)},y^{(1)}),...,(x^{(m)},y^{(m)})$: n features

<u>Gradient Descent</u>

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

Normal Equation and non-invertibility To

Norma equation

$$\theta = \left(X^T X\right)^{-1} X^T y$$

• What if X^TX is non-invertible?

What if X^TX is non-invertible?

• Redundant features (linearly dependent)

E.g.
$$x_1 = \text{size in feet}^2$$

 $x_2 = \text{size in } m^2$

- Too many features (e.g. $m \le n$)
 - → Delete some features, or use regularization