

Batch: C7- (3) Roll No.: 58

Experiment / assignment / tutorial No.

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

TITLE: Basic Data structure in python

AIM: Use suitable methods to get output for given input.

OUTCOME: Student will be able to Use of basic data structure in Python.

Resource Needed: Python IDE

Theory:

Python Collections (Arrays)

There are four collection data types in the Python programming language:

- **List** is a collection which is ordered and changeable. Allows duplicate members.
- Tuple is a collection which is ordered and unchangeable. Allows duplicate members.
- Set is a collection which is unordered and unindexed. No duplicate members.
- Dictionary is a collection which is unordered and changeable. No duplicate members.

When choosing a collection type, it is useful to understand the properties of that type. Choosing the right type for a particular data set could mean retention of meaning, and it could mean an increase in efficiency or security.

List: Lists are used to store multiple items in a single variable. Lists are created using square brackets. e.g. mylist = ["apple", "banana", "cherry"]

List Methods

Python has a set of built-in methods that you can use on lists. L:list, e:element, i:index

Method	Description
L.append(e)	Adds an element at the end of the list
L.clear()	Removes all the elements from the list
L.copy()	Returns a copy of the list
L.count(e)	Returns the number of elements with the specified value
L.extend(L2)	Add the elements of a list (or any iterable), to the end of the current list
L.index(e)	Returns the index of the first element with the specified value
L.insert(i,e)	Adds an element at the specified position
L.pop(i)	Removes the element at the specified position
L.remove(e)	Removes the item with the specified value
L.reverse()	Reverses the order of the list
L.sort()	Sorts the list

Department of Department of Science and Humanities

Tuple

Tuples are used to store multiple items in a single variable. A tuple is a collection which is ordered and **unchangeable**. Tuples are written with round brackets. e.g. mytuple = ("apple", "banana", "cherry")

Tuple Methods

Python has two built-in methods that you can use on tuples. T:tuple, e:element

Method	Description
T.count(e	Returns the number of times a specified value occurs in a tuple
)	
T.index(e	Searches the tuple for a specified value and returns the position of where it was
)	found

Set

Sets are used to store multiple items in a single variable. A set is a collection which is both *unordered* and *unindexed*. Sets are written with curly brackets. e.g. myset = {"apple", "banana", "cherry"}

Set Methods

Python has a set of built-in methods that you can use on sets.

Method	Description	
S.add(e)	Adds an element to the set	
S.clear()	Removes all the elements from the set	
S.copy()	Returns a copy of the set	
S1.difference(S2)	Returns a set containing the difference between two	
	or more sets	
S1.difference_update(S2)	Removes the items in this set that are also included	
	in another, specified set	
S1.discard(e)	Remove the specified item	
S1.intersection(S2)	Returns a set, that is the intersection of two other	
	sets	
S1.intersection_update(S2)	Removes the items in this set that are not present in	
	other, specified set(s)	
S1.isdisjoint(S2)	Returns whether two sets have a intersection or not	
S1.issubset(S2)	Returns whether another set contains this set or not	
S1.issuperset(S2)	Returns whether this set contains another set or not	
S.pop()	Removes an element from the set	
S.remove(e)	Removes the specified element	
S1.symmetric_difference(S2)	Returns a set with the symmetric differences of two	
	sets	
S1.symmetric_difference_update(S2	inserts the symmetric differences from this set and	
)	another	
S1.union(S2)	Return a set containing the union of sets	

Department of Department of Science and Humanities

S1.update(L1)	Update the set with the union of this set and others

Dictionary

Dictionaries are used to store data values in key:value pairs. A dictionary is a collection which is **ordered (3.7 version onward)**, **changeable** and **does not allow duplicates**.

Dictionaries are written with curly brackets, and have keys and values.

e.g. thisdict = {"brand": "Ford", "model": "Mustang", "year": 1964}

Dictionary Methods

Python has a set of built-in methods that you can use on dictionaries.

Method	Description
D.clear()	Removes all the elements from the dictionary
D.copy()	Returns a copy of the dictionary
D.get(k)	Returns the value of the specified key
D.items()	Returns a list containing a tuple for each key value pair
D.keys()	Returns a list containing the dictionary's keys
D.pop(k)	Removes the element with the specified key
D.popitem()	Removes the last inserted key-value pair
D.setdefault(k,v)	Returns the value of the specified key. If the key does not exist: insert the
	key, with the specified value
D.update({k:v})	Updates the dictionary with the specified key-value pairs
D.values()	Returns a list of all the values in the dictionary

Problem Definition:

1. In below table input variable, python code and output column is given. You have to complete blank cell in every row.

List			
Input	Python Code	Output	
thislist=["apple","banana","cherry","or	print(len(thislist))	7	
ange","kiwi","melon","mango"]	print(type(thislist))	<class 'list'=""></class>	
	print(thislist[1])	banana	
	print(thislist[-1])	mango	
	print(thislist[2:5])	['cherry', 'orange',	
	<pre>print(thislist[:4])</pre>	'kiwi']	
	<pre>print(thislist[2:])</pre>	['apple', 'banana',	
		'cherry', 'orange']	
		['cherry', 'orange',	
		'kiwi', 'melon',	
		'mango']	
thislist = ["orange", "mango", "kiwi",	if "apple" in thislist:	Yes, 'apple' is in the	
"pineapple", "apple"]	print("Yes, 'apple' is in the fruits list")	fruits list	
	for x in thislist:	orange	
	print(x)	mango	
	for i in range(len(thislist)):	kiwi	
	<pre>print(thislist[i])</pre>	pineapple	

Department of Department of Science and Humanities

	thislist.sort () print(thislist)	apple
thislist=["apple","banana","cherry"]	thislist. remove("banana")	['apple','blackcurrant','c
	thislist.insert(1, "blackcurrent")	herry']
	print (thislist)	
thislist=["apple", "banana", "cherry"]	thislist.insert (2, "watermelon")	['apple','banana','waterm
		elon', 'cherry']
thislist=["apple","banana","cherry"]	thislist.append("orange")	['apple', 'banana',
	print(thislist)	'cherry', 'orange']
thislist=["apple", "banana", "cherry"]	thislist.extend(tropical)	['apple', 'banana',
tropical=["mango", "pineapple"]	print(thislist)	'cherry', 'mango',
		'pineapple']
thislist = ["apple", "banana", "cherry"]	thislist.pop(1)	['apple', 'cherry']
	print (thislist)	
thislist = ["apple", "banana", "cherry"]	del thislist	Name Error : name
	print(thislist)	'thislist' is not defined
thislist = ["apple", "banana", "cherry"]	thislist.clear()	[]
	print(thislist)	
thislist = ["apple", "banana", "cherry"]	x=thislist	[]
	y= thislist.copy()	['apple', 'banana',
	thislist.clear()	'cherry']
	print(x)	
	print(y)	
list1 = [5, 6, 7]	list3 = list1 + list2	[5, 6, 7, 1, 2, 3]
list2 = [1, 2, 3]	print(list3)	_ , , , , , _

Tuple		
Input	Python Code	Output
x = ("apple",)	print(type(x))	<class< td=""></class<>
y = ("apple")	<pre>print(type(y))</pre>	'tuple'>
		<class< td=""></class<>
		'str'>
thistuple=("apple","banana","cherry")	print(thistuple[-1])	cherry
x = ("apple", "banana", "cherry")	x[1] = "kiwi"	TypeErr
	print(x)	or:
		'tuple'
		object
		does not
		support
		item
		assignm
		ent
x = ("apple", "banana", "cherry")	y = list(x)	('apple',
	y[1] = "kiwi"	'kiwi',
	x = tuple(y)	'cherry')
	print(x)	

Department of Department of Science and Humanities

v	0	8/	
fruits = ("apple", "banana", "cherry", "s	trawberry",	(green, yellow, *red) = fruits	apple
"raspberry")			banana
		print(green)	['cherry'
		print(yellow)	,
		print(red)	'strawbe
		print(type(red))	rry',
			'raspber
			ry']
			<class< td=""></class<>
			'list'>
fruits = ("apple", "banana", "cherry")		mytuple = fruits * 2	2
		<pre>print(mytuple.count("apple"))</pre>	1
		<pre>print(mytuple.index("banana"))</pre>	

Set		
Input	Python Code	Output
myset = {"abc", 34, True, 40.5}	print(myset)	{40.5, True,
	<pre>print(len(myset))</pre>	'abc', 34}
	<pre>print(type(myset))</pre>	4
	print(34 in thisset)	<class 'set'=""></class>
	myset.add("orange")	NameError:
	print(myset)	name
		'thisset' is
		not defined
	thisset=thisset+tropical	TypeError:
	print(thisset)	unsupporte
		d operand
		type(s) for
		+: 'set' and
		'set'
thisset = {"apple", "mango", "cherry"}	thisset.update(tropical)	{'apple',
tropical={"papaya", "mango"}	print(thisset)	'papaya',
tropical—{ papaya , mango }		'mango',
		'cherry'}
	thisset.intersection_update (tropical)	{'mango'}
	print(thisset)	
	thisset.symmetric_difference_update(tr	{'papaya',
	opical)	'apple',
	print(thisset)	'cherry'}

Dictionaries			
Input	Python Code	Output	
	print(thisdict)	{'brand'	
thisdict={"brand":"Ford","model": "Mustang","year":	<pre>print(type(thisdict))</pre>	: 'Ford',	
	<pre>print(len(thisdict))</pre>	'model':	
1964, "year": 2020}	<pre>print(thisdict["brand"])</pre>	'Mustan	
	<pre>print(thisdict["year"])</pre>	g ',	

Department of Department of Science and Humanities

K. J. Somarya Conege of Eng.	<u> </u>	
	x = thisdict.get("model")	'year':
	print(x)	2020}
	y = thisdict.keys()	<class< th=""></class<>
	print(y)	'dict'>
	z = thisdict.values()	3
	print(z)	Ford
	thisdict["color"] = "white"	2020
	print(thisdict)	Mustang
	if "model" in thisdict:	dict_key
	print("Yes")	s(['bran
	F()	d',
		'model',
		'year'])
		SyntaxE
		rror:
		EOL
		while
		scanning
		string
		literal
	thisdict["year"] = 2018	
	- I	{'brand'
	print(thisdict)	: 'Ford',
		'model':
		'Mustan
		g',
		'year':
	11.11. (0.1.10)	2018}
	thisdict.pop("model")	{'brand'
	print(thisdict)	: 'Ford',
		'year':
		2020}
	for x in thisdict:	brand
	print(x)	Ford
	<pre>print(thisdict[x])</pre>	model
		Mustang
		year
		2020
	for x, y in thisdict.items():	brand
	print(x, y)	Ford
		model
		Mustang
		year
		2020

Department of Department of Science and Humanities

- 2. Write a python program to take list values as input parameters and returns another list without any duplicates.
- 3. Write a program that takes a string as input from user and computes the frequency of each letters. Use a variable of dictionary type to maintain the count.

Books/ Journals/ Websites referred:

- 1. Reema Thareja, *Python Programming: Using Problem Solving Approach*, Oxford University Press, First Edition 2017, India
- 2. Sheetal Taneja and Naveen Kumar, *Python Programming: A modular Approach*, Pearson India, Second Edition 2018,India

Implementation details:

```
# Question 2
11 = input ( " Enter first element ")  # Enter the elements
12 = input ( " Enter second element ")
13 = input ( " Enter third element ")
14 = input ( " Enter fourth element ")
a_list = [ 11 , 12 , 13 , 14 ]  # Creating a list
list1 = set(a_list) # To convert list into set as 'set' does not allow duplicate or repeated elements
print(list(list1))  # Print list
```

```
# Question 3
a = input ( " Enter a string - ")  # input string from user
b = set (a)  # b is equal to set of a
for i in b :
    print (i, a.count(i))  # prints frequency of each letter
```


Output(s):

```
Enter first element 1
Enter second element 2
Enter third element 2
Enter fourth element 2
['2', '1']
```

```
Enter a string - apple
l 1
a 1
e 1
p 2
```

Post Lab Descriptive Questions

1. List out Mutable and Immutable Data Types in Python.

Ans: **Mutable data types** – Data types whose value can be altered or changed after it has been created. *Example: List, Dictionary, Set*

Immutable data types – Data types whose value cannot be altered or changed after it has been created. *Example: Tuple*

2. What do you mean by indexed and ordered data type in python?

Ans: **Ordered data type**- They retain the order of the inserted elements. *Example: List* **Index**- Refers to the position of the element in the given list or tuple. Indexing starts from 0

Date:	Signature of faculty in-charge

Department of Department of Science and Humanities