ערמה בינומית

ניתן למיזוג בצורה יעילה 🦠

ערימה בינומית

מורכבת מאוסף של עצים בינומים בגדלים שונים,

העצים מסודרים לפי **גודלם** ולא לפי ערך האיבר בשורש.

יש לכל היותר $\log n + 1$ עצים בכל ערמה בינומית

עץ בינומי הוא עץ סדור המוגדר באופן רקורסיבי:

- מורכב מצומת יחיד B₀ •
- מורכב משני עצים בינומיים 1_{k-1} המקושרים זה לזה: השורש של עץ אחד הוא הבן השמאלי ביותר של B_k השורש של העץ האחר

א בינומי Bk תכונות עץ בינומי

- מכיל 2^k צמתים
 - k גובהו
- i ישנם ישנם $\binom{k}{i}$ צמתים בגובה •
- והיא הגדולה בעץ k דרגת השורש היא
- $B_0,\,B_1,\,...,\,B_{k-1}$ הבנים של השורש הם בעצמם עצים בינומיים -
- בעץ בינומי נשמרת תכונת הערימה המפתח של כל צומת גדול או שווה למפתח של אביו. (מכאן האיבר המינימלי בשורש).
 - עץ בינומי לא חייב להיות כמעט שלם •

צבי מינץ סמסטר ב' 2018

ערימה בינומית היא סוג של מבנה הנתונים ערימה .היא ממומשת בעזרת אוסף עצים בינומים .יתרונה הוא שהיא מאפשרת מיזוג שתי ערימות במהירות. דוגמא לערימה ביוומית:

:אבחנה

בערימה בינומית יש לכל היותר עץ אחד מכל דרגה. לפיכך, ניתן לדעת איזה עצים יש באוסף לפי כמות הצמתים הכוללת, למשל בערימה הבינומית הנוכחית יש $13 + 4 + 1 = 2^3 + 2^2 + 2^0 = 2^3 + 2^3 + 2^2 + 2^0$ בערימה הבינומית הינו $10 + 1 + 1 + 1 + 2^3 + 2^3 + 2^3$ היצוג של $13 + 1 + 2^3 + 2$

פעולות:

ם פעולת Insert

heaps-בין שני ה-merge חדש המכיל את האבר החדש, ונבצע heaps בין שני ה-

(איחוד שתי ערימות קיימות): Union(H1,H2)

ממזגים את רשימת השורשים בסדר עולה של גודל.

אם יש 2 עצים באותו גודל בשתי הערימות – מאחדים אותם.

אם נוצרים 3 עצים באותו גודל – משאירים אחד ומאחדים זוג.

 $O(\log n)$ סיבוכיות הפעולה:

ם פעולת minimum

- heapב עלינו לחפש את הערך המינימלי מבין שורשי העצים ב
- · Walk across roots, find minimum
- $O(\lg n)$ since at most $\lg n + 1$ trees

ם פעולת delete-min

- מצא את האבר ומחק אותו
- heaps-ומזג את שני ה-binomial heap הפוך את בניו ל

מעבר על כל השורשים ומציאת המינימלי. מוציאים את כל העץ הבינומי מהרשימה. מוציאים את שורש העץ - בניו הם כולם עצים בינומיים שאותם נאחד לערימה חדשה. אז נבצע איחוד של הערימה החדשה עם הקיימת. **סיבוכיות הפעולה:** 0(logn)

https://slideplayer.com/slide/14010568/ (קרדיט על התמונות)