

Autenticação e Autorização em Sistemas Web

Aula 3.1. Criptografia

Prof. Angelo Assis

Nesta aula

- ☐ Criptografia básica.
- ☐ Cifra de César.

Criptografia

"É a ciência e a arte de manter mensagens seguras" - Bruce Schneier

Texto claro

Cifragem

Texto cifrado

Decifragem

Texto claro

Criptografia de chave simétrica

- Utiliza uma chave secreta e um algoritmo de criptografia.
- Criptografia e decriptografia s\(\tilde{a}\)o realizadas utilizando a mesma chave.
- "Ingredientes":
 - Texto / Mensagem;
 - Algoritmo de criptografia;
 - Chave secreta;
 - Texto cifrado;
 - Algoritmo de decriptografia.

Cifra de César

Cifra de César

igti

- "Chave = 3":
 - OLA MUNDO ☐ ROD PXQGR

- "Chave = 11":
 - OLA MUNDO □ ZWL XFYOZ

- Cifra de César "online":
 - https://eapps.tech/cifra_de_cesar/

Fraquezas

- Mensagem pode ser descoberta por tentativa e erro (força bruta):
 - No exemplo anterior: 26 tentativas;
- Deixa "impressão digital":
 - Diminuem o número de tentativas.
- Língua portuguesa (Fonte: UFRJ)
 - 6 vogais: A, E, I, O, U, (Y) 48.75 %
 - 5 consoantes de frequência alta: S, R, N, D, M 29.12 %
 - 10 consoantes de frequência média: T, C, L, P, V, G, H, Q, B, F 21.03 %
 - 6 consoantes de frequência baixa: Z, J, X, K, W 1.10%

Próxima aula

☐ Chave polialfabética.

Autenticação e Autorização em Sistemas Web

Aula 3.2. Chave Polialfabética

Prof. Angelo Assis

Nesta aula

☐ Chave polialfabética.

Chave polialfabética


```
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25
```

- Mensagem: "Segurança é fundamental"
- Chave: "IGTI" (8, 6, 19, 8)
- Tradução

```
"segu.ranc.aefu.ndam.enta.1"
```


[&]quot;akzc.zggk.ikyc.vjtu.mtmi.t"

Chave polialfabética

Vantagens:

- Menor impressão digital;
- Estabilidade de frequência;
- Chave suprema:
 - Comprimento da chave = comprimento da mensagem.

Melhorias:

- Misturar idiomas;
- Adicionar camada de permutação.

Próxima aula

☐ Algoritmo Diffie-Hellman.

Autenticação e Autorização em Sistemas Web

Aula 3.3. Algoritmo Diffie-Hellman

Prof. Angelo Assis

Nesta aula

☐ Algoritmo Diffie-Hellman.

Troca de chaves Diffie-Hellman

- Baseado em princípios matemáticos:
 - Existem funções complexas, mas também existem funções fáceis de se calcular.
- Números primos dificultam "tentativa e erro".
- Distribuição uniforme: 3 é a raiz primitiva de 17.

Troca de chaves Diffie-Hellman

Base	Expoente	Resultado	Resto da divisão por 17
3	1	3	3
3	2	9	9
3	3	27	10
3	4	81	13
3	5	243	5
3	6	729	15
3	7	2187	11
3	8	6561	16
3	9	19683	14
3	10	59049	8
3	11	177147	7
3	12	531441	4
3	13	1594323	12
3	14	4782969	2
3	15	14348907	6
3	16	43046721	1
3	17	129140163	3

Troca de chaves Diffie-Hellman

- 1. A e B acordam com os números 3 e 17;
- 2. A escolhe um número secreto 15:

$$3 \land 15 \mod 17 = 6$$
.

3. B escolhe um número secreto 13:

```
3 ^ 13 mod 17 = 12.
```

- 4. A e B trocam os resultados (6 e 12);
- 5. A calcula 12 ^ 15 mod 17 = 10
- 6. B calcula 6 ^ 13 mod 17 = 10

Função de via única

- Hash
- Resultado de tamanho fixo
- Algoritmos SHA e MD5

Próxima aula

☐ Criptografia de chave assimétrica.

Autenticação e Autorização em Sistemas Web

Aula 3.4. Criptografia de Chave Assimétrica

Prof. Angelo Assis

Nesta aula

☐ Criptografia de chave assimétrica.

Chaves de Criptografia

- Chaves simétricas: Mesma chave encripta e decripta:
 - E(c, m) = m'
 - D(c, m') = m
 - Ideal para um único equipamento / usuário
- Chaves assimétricas: Uma chave encripta e outra decripta:
 - E(c, m) = m'
 - D(c', m') = m
 - Mais utilizado na internet
 - Chave c é pública
 - Chave c' é privada

Chave assimétrica

- Mensagem criptografada com chave pública do destinatário:
 - Somente o destinatário pode ler (Chave privada);
 - Conteúdo confidencial.
- Mensagem criptografada com chave privada do remetente:
 - Todos podem ler (Chave pública);
 - Assinatura:
 - Remetente.
- As chaves podem ser usadas em conjunto:
 - RSA, DAS.

TLS

iGTi

- Criptografia
 - Chaves simétricas
 - Chaves assimétricas
 - Hash
- Partes negociam
 - Algoritmos
 - Chaves
 - Parâmetros
- Servidor toma a decisão final

TLS

TLS

- Protocolo
 - TLS 1.1, 1.2, 1.3, SSL
- Troca de Chaves
 - Diffie-Hellman, RSA
- Algoritmo de Criptografia
 - AED, DES
- Certificado
 - Garantir confiabilidade do destinatário

Conclusão

√ HTTPS é o protocolo HTTP combinado com TLS.

Próxima aula

☐ Certificado Digital.

Autenticação e Autorização em Sistemas Web

Aula 3.5. Certificado Digital

Prof. Angelo Assis

Nesta aula

☐ Certificado Digital.

Como confiar na outra parte?

iGTi

- Documento digital.
- Informações:
 - Entidade certificada;
 - Validade;
 - Chave pública;
 - Assinatura digital;
 - Autoridade Certificadora (AC).

Declaração do Emissor

* Veja a declaração da autoridade de certificação para obter d

Válido a partir de 11/11/2020 até 12/11/2021

Emitido por RapidSSL TLS DV RSA Mixed SHA256 2020 CA-1

Emitido par www.globo.com

Certificado Digital – Brasil

- SERPRO.
- Caixa Econômica Federal.
- Serasa.
- Receita Federal.
- Prodemge.
- Outros.

Próxima aula

☐ Oauth 2.0.