ARCH633 Environmental Systems I

Assignment 9: Conduction

3 Typical Insulation Materials

Materials	Definition	R-Value	Price
Fiberglass	Consists of extremely fine glass fibers One of the most ubiquitous insulation materials Commonly used in two different types: - Blanket (batts and rolls) - Loose-fill Available as rigid boards and duct insulation	Batts 2.9 - 3.8 per inch Loose 2.2 - 2.9 per inch	Batts (R11) \$0.12-\$0.16 per feet ² Batts (R13) \$0.15-\$0.20 per feet ²
Mineral Wool	Formed by spinning or drawing molten minerals Contains 75% post-industrial recycled content Typically refers to two types of insulation material: - Rock wool, man-made consisting of natural minerals - Slag wool, man-made from blast furnace slag	3.7 – 4.2 per inch	Batts (R15) \$0.77 per feet ²
Celluose	Made from recycled paper products, primarily newsprint High recycled material content, generally 82% to 85% Add the mineral borate Sometimes blended with less costly ammonium sulfate	3.1 – 3.8 per inch	\$0.86-\$1.39 per feet ²

Insulation Materials Chart

3 Typical Window Assemblies

Definition & Relationship

Assembly U-Factor: The "area weighted" average thermal transmittance of all components. **Center-of-glass U-factor**: Referenced and describes the performance of the glazing alone without the effects of the frame. For most energy efficient windows, the whole window U-factor is higher than the center-of-glass U-factor.

Three components are used to calculate U-Factor:

- Center-of-glass (COG): Typical value 0.29 BTU/ ft²-hr-°F (low-e IG)
- Edge of Glass (EOG): Typical value 0.34 BTU/ ft2-hr-°F (aluminum spacer)
 Frame: Typical value 0.90 BTU/ ft2-hr-°F (thermal break)

Assembly U-Value = $((U_{Frame}^* Area_{Frame}) + (U_{FOG}^* Area_{FOG}) + (U_{COG}^* Area_{COG})) / Total Area$

- Frame U-Value includes heat transfer through surfaces perpendicular to the glass plane.
- The center-of-glass U-Value is the best-performing component of non-residential window assembly.
- Window area and configuration can significantly affect the overall window assembly U-Value.

Window Assembly I: Frame Type

- Thermal barriers in frames also improve EOG performance
- Other frame effects include (in order of their impact on local U-Value), mullion depth, emissivity of aluminum finish, glass set-back from the exterior, sightline, extrusion wall thickness, and number of frame extrusion webs.

Frame 1.32 BTU/ft2-hr-°F

EOG 0.40 BTU/ft2-hr-°F

COG 0.29 BTU/ft2-hr-°F

Frame **0.85** BTU/ft²-hr-°F (36% better)

EOG 0.37 BTU/ft²-hr-°F (8% better)

COG 0.29 BTU/ft2-hr-°F

Window Assembly II: Glass Spacer

- nsulating glass spacers can affect frame U-value more than EOG U-Value
- While difference in U-Factor is relatively minimal, note that surface temperature warms by 3 to 4 °F at standard conditions, forestalling condensation.

Stainless Steel "Warm Edge" Spacer Standard Aluminum Spacer stainless steel aluminum Local U-Factors Local U-Factors Frame 0.79 BTU/ft²-hr-°F (7% better) Frame 0.85 BTU/ft2-hr-°F EOG 0.35 BTU/ft2-hr-°F (5% better) EOG 0.37 BTU/ft2-hr-°F COG 0.29 BTU/ft2-hr-°F COG 0.29 BTU/ft2-hr-°F

Window Assembly III: Gas Fill

- Gas fill affects COG U-Factor much more than EOG U-Factor.
- Argon gas will dissipate from an insulating glass unit. The rate at which this occurs depends upon the type of edge seal, the quality of materials, and manufacturing assembly processes.

