1. [Proof of Concept, Hand Calculation] Consider a machined steel circular shaft subjected to a minimum bending moment of 1500 lb.in. and a maximum bending moment of 6000 lb.in.; and a minimum torque of 0 and maximum torque of 2500 lb.in. Consider the safety factor to be 1.5, the yield strength of the materials 58 ksi, and its ultimate strength to be 82 ksi.

Determine the minimum diameter of the shaft for the case where D is 20% larger than d, the fillet radius is 10% of d, and reliability is 99.9%. You may use DE-Gerber formula.

Table 6-2

		Surface Finish
	Surface Modification	Ground
	Factor, Eq. (6–19)	Machined or cold
		Hot-rolled

	rucioi u		Exponent	
Surface Finish	S _{ut} , kpsi	S _{ut} , MPa	Ь	
Ground	1.34	1.58	-0.085	
Machined or cold-drawn	2.70	4.51	-0.265	
Hot-rolled	14.4	57.7	-0.718	
As-forged	39.9	272.	-0.995	

$$k_{a} = aS_{ut}^{b} \qquad k_{a} = (7.70)(87 \text{ ksi})^{-0.265} = 0.8399$$

$$k_{b} = \begin{cases} \frac{(d/0.3)^{-0.107}}{0.91 \cdot d^{-0.157}} & \text{for } \frac{0.11 \le d \le 2m}{2.79 \le d \le 10m} \\ \frac{(d/7.62)^{-0.107}}{1.51 \cdot d^{-0.157}} & \text{for } \frac{2.79 \le d \le 51mm}{51 \cdot d \le 254mm} \end{cases}$$

$$Se = k_{a}k_{b}k_{c}k_{d}k_{a} \qquad (4.5)$$

$$k_b = \begin{cases} (d/0.3)^{-0.107} & \text{for } 0.11 \le d \le 2in \\ 0.91 \cdot d^{-0.157} & \text{for } 2 < d \le 10in \\ (d/7.62)^{-0.107} & \text{for } 2.79 \le d \le 51mm \\ 1.51 \cdot d^{-0.157} & \text{for } 51 < d \le 254mm \end{cases}$$

$$k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion}^{17} \end{cases}$$

$$k_e = 1 - 0.08z_a$$

temp					
Reliability, %	Transformation Variate z _a	Reliability Factor			
50	0	1.000			
90	1.288	0.897			
95	1.645	0.868			
99	2.326	0.814			
99.9	3.091	0.753			
99,99	3.719	0.702			
99.999	4.265	0.659			
00 0000	4.750	0 + 20			

DE-Gerber

$$\frac{1}{n} = \frac{8A}{\pi d^3 S_e} \left\{ 1 + \left[1 + \left(\frac{2BS_e}{AS_{ut}} \right)^2 \right]^{1/2} \right\}$$
$$d = \left(\frac{8nA}{\pi S_e} \left\{ 1 + \left[1 + \left(\frac{2BS_e}{AS_{ut}} \right)^2 \right]^{1/2} \right\} \right)^{1/3}$$

where

$$A = \sqrt{4(K_f M_a)^2 + 3(K_{fs} T_a)^2}$$

$$B = \sqrt{4(K_f M_m)^2 + 3(K_{fs} T_m)^2}$$

Ma = 6.000-1500 - 2.250 Nb.in

Mu = 6,000+1500 = 3.750 Nb in

 $k_{z} = 0.753$

Figure C-3 Geometric Stress-Concentration Factor K_t for a Shaft with a Shoulder **Fillet in Torsion**

Figure C-2 Geometric Stress-Concentration Factor K_t for a Shaft with a Shoulder

$$A = 7.3924$$
 $K_f = 8 = 11.7085$

$$K_f = 1 + \frac{K_t - 1}{1 + \sqrt{a/r}} \quad q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}$$

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{a}}}$$

1.02

-0.332 43

