

Teoria da Computação

Exame Final 2020–2021

Data: 15 de Fevereiro de 2021 Duração: 120 minutos

Justifique de forma clara e sucinta todas as respostas.

1. Considere o AFD A definido pelo seguinte diagrama de transições:

- (a) (3 valores) Usando o método de identificação de estados indistinguíveis, determine se o autómato A é ou não mínimo. Indique quantas iterações realizou e para cada par de estados distinguíveis apresente uma palavra que os distinga.
- (b) (3 valores) Indique uma expressão regular R tal que $\mathcal{L}(R) = \mathcal{L}(A)$ e uma expressão regular S tal que $\mathcal{L}(S) = \mathcal{L}(A)^{-1}$.
- 2. (3 valores) Sejam R, S e T expressões regulares. Admitindo que $\mathcal{L}(R+ST)\subseteq\mathcal{L}(S)$ mostre que $\mathcal{L}(RT^*)\subseteq\mathcal{L}(S)$.
- 3. (3 valores) Mostre que a linguagem $\left\{a^nb^{m^2+n}c^m:\ 0\leq n\leq m\right\}$ não é Independente do Contexto.
- 4. (3 valores) Construa um autómato de pilha que reconheça a linguagem

$$L = \{w \in \{a, b\}^* : \#_a(w) < \#_b(w)\}.$$

Indique a modalidade de reconhecimento e se o autómato é ou não determinista.

5. (3 valores) Considere os problemas de decisão $E_{MT} = \{\langle M \rangle: \ \mathcal{L}(M) = \emptyset\}$ e

$$EQ_{MT} = \{\langle M_1, M_2 \rangle : M_1 \in M_2 \text{ são máquinas de Turing e } \mathcal{L}(M_1) = \mathcal{L}(M_2) \}.$$

Mostre que EQ_{MT} é indecidível, por redução do problema E_{MT} (assumido como indecidível) ou por aplicação do Teorema de Rice.

6. (1 valor) Um Autómato Generalizado (AG) sobre um alfabeto Σ é um quíntuplo $A = (Q, \Sigma, \Delta, s, F)$, onde Q é um conjunto finito de estados, $s \in Q$ é estado inicial, F é conjunto de estados aceitação e a função $\Delta \colon Q \times Q \to \mathcal{P}(\Sigma^*)$ associa a cada par de estados (p, q) uma linguagem $\Delta(p, q) \subseteq \Sigma^*$.

Denote-se por $Q^{\geq 2}$ o conjunto de todas as sequências finitas de dois ou mais estados (com eventuais repetições de estados), denominadas passeios no diagrama do autómato A. Um passeio de um estado p para um estado q é uma sequência finita da forma $P=(p,q_1,\ldots,q_k,q)\in Q^{\geq 2}$, para algum $k\geq 0$. Denote-se por $Q_{p,q}$ o conjunto de todos os passeios de p para q.

Seja $\Delta^*: Q^{\geq 2} \to \mathcal{P}(\Sigma^*)$ a função que a cada passeio $P = (q_1, q_2, \dots, q_n)$, de comprimento $n \geq 2$, faz corresponder a linguagem $\Delta^*(P) = \prod_{i=1}^{n-1} \Delta(q_i, q_{i+1})$, onde o símbolo \prod denota a concatenação de linguagens. A linguagem reconhecida pelo autómato generalizado é

$$\mathcal{L}(A) = \bigcup_{t \in T, P \in Q_{s,t}} \Delta^*(P).$$

Mostre que se todas as linguagens $\Delta(p,q)$, $p,q \in Q$, são regulares então $\mathcal{L}(A)$ é uma linguagem regular.

7. (1 valor) Seja $A = (Q_A, \Sigma_A, \Gamma_A, \delta_A, s_A, Z_0)$ um qualquer Autómato de Pilha Determinista reconhecedor da linguagem $\mathcal{L}(A)$ por pilha vazia. Defina uma máquina de Turing $M = (Q_M, \Sigma_M, \Gamma_M, \delta_M, s_M, f_M)$ que decida $\mathcal{L}(A)$. Descreva o funcionamento da MT, o alfabeto da fita, o alfabeto de entrada, etc.

FIM.

Formulário:

Lema da Bombagem para LIC:

Se L é uma linguagem independente do contexto então $\exists n>0: \ \forall z\in L: \ |z|\geq n, \ \exists u,v,w,x,y\in \Sigma^{\star}: \ (\mathrm{i}) \ z=uvwxy; \ \ (\mathrm{ii}) \ |vwx|\leq n; \ \ \ (\mathrm{iii}) \ |vx|>0; \ \ \ (\mathrm{iv}) \ \forall k\geq 0, \ uv^kwx^ky\in L.$

Teorema de Rice.

Consideremos o conjunto $\mathcal{M} = \{ \langle M \rangle : M \text{ \'e uma MT sobre o alfabeto de entrada } \Sigma \}$ e seja $\mathcal{P} \subset \mathcal{M}$ uma linguagem tal que: (i) $\mathcal{P} \neq \emptyset$; (ii) $\mathcal{P} \neq \mathcal{M}$; (iii) Dadas duas quaisquer MT M_1 e M_2 tais que $\mathcal{L}(M_1) = \mathcal{L}(M_2)$, ou $\langle M_1 \rangle \in \mathcal{P}$ e $\langle M_2 \rangle \in \mathcal{P}$ ou $\langle M_1 \rangle \notin \mathcal{P}$ e $\langle M_2 \rangle \notin \mathcal{P}$. Nestas condições, a linguagem \mathcal{P} é indecidível.