Introduction to Artificial Intelligence

LIAW, RUNG-TZUO

Department of Computer Science and Information Engineering
Fu Jen Catholic University, Taiwan

Chapter 4 Search in Complex Environments

Outline

- Heuristic (informed) search strategies
- Heuristic functions
- Local search algorithms & optimization problems
- Global search algorithm
- Online search agents & unknown environment

Outline

- Heuristic (informed) search strategies
 - Best-first search
 - Greedy search
 - A* search
 - RBFS / SMA*
- Heuristic functions
- Local search algorithms & optimization problems
- Global search algorithm
- Online search agents & unknown environment

Review: Tree-Search

- Tree-search
- A strategy is defined by picking the order of node expansion

```
function TREE-SEARCH(problem, fringe) returns a solution or failure
  fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
  loop do
  if EMPTY(fringe) then return failure
  node ← REMOVE-FIRST(fringe)
  if GOAL-TEST[problem] applied to STATE[node] succeeds
    then return SOLUTION(node)
  fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
```

Best-First Search

- General approach of informed search
 - Uninformed: Uses only info available in problem definition
 - Informed: When strategies can determine whether one non-goal state is better than another → need evaluation
- Node is selected for expansion based on an evaluation function f(n)
 - Evaluation function measures distance to the goal
 - Best-first: choose node which appears best
- Implementation:
 - Fringe is a queue sorted in decreasing order of desirability
 - Special cases: greedy search, A* search

What if f(n) is unobtainable?

Heuristic

- "A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood."
- E.g. for tree search, heuristic function h(n) = 'estimated' cost of the cheapest path from node n to goal node
 - If n is goal then h(n) = 0
 - More information later

Example

Romania with step costs in km

h_{SLD} = straight-line distance heuristic

h_{SLD} can NOT be computed from the problem description

itself from certain experience

• In this example f(n) = h(n)

Expand node that is closest to goal
 Greedy (best-first) search

Oradea 71 Zerind 151 Arad 140 Sil	99	Neamt 87	Iasi 92 Vaslui
Timisoara	Rimnicu Vilcea	\	Vasiui
Lugoj	97 Pites	211	142
70 Mehadia	146	101 85 Urzi	98 Hirsova
75 Drobeta 120	138	Bucharest	86
	Craiova	Giurgiu	Eforie

City	h _{SLD}	City	h _{SLD}
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

a) Initial state

Arad

Scenario

- Use greedy search to solve the problem of traveling from Arad to Bucharest
- Initial state = Arad

Procedure

- The first expansion step produces Sibiu (253), Timisoara (329), Zerind (374)
- · Greedy best-first will select Sibiu
 - Use greedy search to solve the problem of traveling from Arad to Bucharest

• **Procedure** (cont'd)

- If Sibiu is expanded we get: Arad, Fagaras, Oradea and R.V.
- Greedy best-first search will select: Fagaras (176)

- Procedure (cont'd)
 - If Fagaras is expanded we get: Sibiu and Bucharest
 - Goal reached!
 - Yet NOT optimal
 - (cf. Arad, Sibiu, R.V., Pitesti)

Greedy Search

- Completeness? No
 - cf. DFS
 - Start down an infinite path and never return
 - Check on repeated states
 - Minimizing h(n) can result in false starts

e.g. lasi to Fagaras

- Optimality? No
 - Same as DFS

Greedy Search

- Time complexity: $O(b^m)$
 - cf. Worst-case DFS
 - (with m is maximum depth of search space)
 - Good heuristic can give dramatic improvement
- Space complexity: $O(b^m)$
 - Keeps all nodes in memory

A* Search

A* search

- Best-known form of best-first search
- Idea: avoid expanding paths that are already expensive
- Evaluation function

$$f(n) = g(n) + h(n)$$

- g(n): real cost (so far) to reach the node
- h(n): estimated cost to get from the node to the goal
- f(n): estimated total cost of path through node n to goal

A* Search

A* search uses an admissible heuristic

- A heuristic is admissible if it never overestimates the cost to reach the goal
 - e.g. h_{SLD}(n) never overestimates the actual road distance
- Are optimistic
- Formally:
 - $h(n) \le h^*(n)$ where $h^*(n)$ is the true cost from n
 - $h(n) \ge 0$ so h(G) = 0 for any goal G

a) Initial state

Scenario

- Find Bucharest starting at Arad
- Initial state = Arad
- Procedure
 - f(Arad)

$$= g(Arad, Arad) + h(Arad)$$

= 0 + 366 = 366

City	h _{SLD}	City	h _{SLD}
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

Example: A* Search b) After expanding Arad Arad Timisoara Timisoara Timisoara Zerind Sibiu Timisoara

118+329=447

- Expand Arad and determine f(n) for each node
 - f(s) = g(A,S) + h(S) = 140 + 253 = 393
 - f(T) = g(A,T) + h(T) = 118 + 329 = 447
 - f(Z) = g(A, Z) + h(Z) = 75 + 374 = 449
- Best choice is Sibiu

140+253=393

City	h _{SLD}	City	h _{SLD}
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

75+374=449

- Expand Sibiu and determine f(n) for each node
 - f(A) = g(S, A) + h(A) = 280 + 366 = 646
 - f(F) = g(S, F) + h(F) = 239 + 176 = 415
 - f(0) = g(S, 0) + h(0) = 291 + 380 = 671
 - f(RV) = g(S, RV) + h(RV) = 220 + 193 = 413
- Best choice is Rimnicu Vilcea

City	h _{SLD}	City	h _{SLD}
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

- Expand Rimnicu Vilcea and determine f(n) for each node
 - f(C) = g(RV, C) + h(C) = 360 + 160 = 526
 - f(P) = g(RV, P) + h(P) = 317 + 100 = 417
 - f(S) = g(RV, S) + h(S) = 300 + 253 = 553
- Best choice is Fagaras

City	h _{SLD}	City	h _{SLD}
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

- Expand Rimnicu Vilcea and determine f(n) for each node
 - f(S) = g(F,S) + h(S) = 338 + 253 = 591
 - f(B) = g(F,B) + h(B) = 450 + 0 = 450
- Best choice is Pitesti

City	h _{SLD}	City	h _{SLD}
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

- Expand Pitesti and determine f(n) for each node
 - f(B) = g(P, B) + h(B) = 418 + 0 = 418
 - f(C) = g(P,C) + h(C) = 455 + 160 = 615
 - f(RV) = g(P,RV) + h(RV) = 414 + 193 = 607
- Best choice is Bucharest

City	h _{SLD}	City	h _{SLD}
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

Bucharest

Rimnicu Vilcea

Zerind

75+374=449

A* Search

Completeness? Yes

- Since bands of increasing f are added
- Unless there are infinitely many nodes with f < f(G)

Optimality? Yes

- Cannot expand f_i+1 until f_i is finished
- A* expands all nodes with $f(n) < C^*$
- A* expands some nodes with $f(n) = C^*$
- A* expands no nodes with $f(n) > C^*$
- Also optimally efficient (not including ties)

A* Search

Time complexity:

 Number of nodes expanded is still exponential in the length of the solution

Space complexity:

- It keeps all generated nodes in memory
- Hence space is the major problem, not time

Memory-Bounded Heuristic Search

- Some solutions to A* space problems (maintain completeness and optimality)
 - Iterative-deepening A* (IDA*)
 - Here cutoff information is the f-cost (g+h) instead of depth
 - Recursive best-first search (RBFS)
 - Recursive algorithm that attempts to mimic standard best-first search with linear space
 - (Simple) Memory-bounded A* ((S)MA*)
 - Drop the worst-leaf node when memory is full

Recursive Best-First Search

- Keeps track of the f-value of the bestalternative path available
 - Idea: change mind timely
 - If current f-values exceeds this alternative f-value than backtrack to alternative path
 - Upon backtracking change f-value to best f-value of its children
 - Re-expansion of this result is thus still possible

Recursive Best-First Search

function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution, or failure return RBFS(problem,MAKE-NODE(INITIAL-STATE[problem]),∞)

```
function RBFS(problem, node, f_{limit}) return a solution, or failure and a new f-cost limit if GOAL-TEST[problem](STATE[node]) then return node successors ← EXPAND(node, problem) if successors is empty then return failure, ∞ for each s in successors do f[s] \leftarrow \max(g(s) + h(s), f[node]) repeat best ← the lowest f-value node in successors if f[best] > f_{limit} then return failure, f[best] alternative ← the second lowest f-value among successors result, f[best] \leftarrow RBFS(problem, best, \min(f_{limit}, alternative)) if result ≠ failure then return result
```

Example: RBFS Rimnicu Vilcea a) After expanding Arad, Sibiu, and Mehadia Arad Rimnicu Vilcea Bucharest 336 Zerind Sibiu Timisoara 393 449 447 **Fagaras** Oradea Arad 413 415 671 646 Pitesti Sibiu Craiova 553 526 417

- Path until Rumnicu Vilcea is already expanded
 - Above node: f_{limit} for every recursive call is shown on top
 - Below node: f(n)
 - The path is followed until Pitesti which has a f-value worse than the f-limit

City	h _{SLD}	City	h _{SLD}
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

 Unwind recursion and store best f-value for current best leaf Pitesti

result, f [best] \leftarrow RBFS(problem, best, $min(f_{limit}, alternative))$

 best is now Fagaras. Call RBFS for new best (best value is now 450)

	City	h _{SLD}	City	h _{SLD}
	Arad	366	Mehadia	241
e	Bucharest	0	Neamt	234
U	Craiova	160	Oradea	380
	Drobeta	242	Pitesti	100
	Eforie	161	Rimnicu Vilcea	193
	Fagaras	176	Sibiu	253
	Giurgiu	77	Timisoara	329
	Hirsova	151	Urziceni	80
	lasi	226	Vaslui	199
	Lugoj	244	Zerind	374

Example: RBFS

418

•	Unwind recursion and store best f-value
	current best leaf Fagaras

615

- best is now Rimnicu Viclea (again). Call RBF for new best
 - Subtree is again expanded
 - Best alternative subtree is now through Timisoara

607

Solution is found since 447 > 417

City	h _{SLD}	City	h _{SLD}	
Arad	366	Mehadia	241	
Bucharest	0	Neamt	234	
Craiova	160	Oradea	380	
Drobeta	242	Pitesti	100	
Eforie	161	Rimnicu Vilcea	193	
Fagaras	176	Sibiu	253	
Giurgiu	77	Timisoara	329	
Hirsova	151	Urziceni	80	
lasi	226	Vaslui	199	
Lugoj	244	Zerind	374	

Recursive Best-First Search

- Completeness: Yes
- Optimality: Yes
 - Like A*, RBFS is optimal if h(n) is admissible
- Time complexity:
 - Depends on accuracy of h(n) and how often best path changes
- Space complexity: O(bd)

RBFS vs. IDA* (Iterative Deepening A*)

- RBFS is a bit more efficient than IDA* (Iterative Deepening A*)
 - Still excessive node generation (mind changes)
 - IDA* retains only one single number (the current fcost limit)
 - IDA* and RBFS suffer from too little memory

(Simplified) Memory-Bounded A*

Use all available memory

- i.e. expand best leaves until available memory is full
- When full, SMA* drops worst leaf node (highest f-value)
- Like RFBS backup forgotten node to its parent

What if all leaves have the same f-value?

- Same node could be selected for expansion and deletion
- SMA* solves this by expanding newest best leaf and deleting oldest worst leaf
- SMA* is complete if solution is reachable, optimal if optimal solution is reachable

Learning to Search Better

- Background: All previous algorithms use fixed strategies
- Could agents learn how to search better?
 - YES. Agents can learn to improve their search by exploiting the meta-level state space
 - Each meta-level state is a internal (computational) state of a program that is searching in the object-level state space
 - In A* such a state consists of the current search tree
 - A meta-level learning algorithm can learn from experiences to avoid exploring unpromising subtrees

Outline

- Heuristic (informed) search strategies
- Heuristic functions
- Local search algorithms & optimization problems
- Global search algorithm
- Online search agents & unknown environment

Heuristic Functions

The 8-puzzle problem

- Avg. solution cost is about 22 steps (branching factor ≈ 3)
- Exhaustive search to depth 22: **3.1x10**¹⁰ states
- A good heuristic function can reduce the search process

Heuristic Functions

Two common heuristics for 8-puzzle

- h₁ = the number of misplaced tiles:
 h₁(s) = 8
- h₂ = the sum of the distances of the tiles from their goal positions (Manhattan distance):

$$h_2(s) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

Inventing Admissible Heuristics

- Admissible heuristics
 - Required by A*, RBFS, etc.
- Can be derived from the exact solution cost of a relaxed version of the problem:
 - Relaxed 8-puzzle for h₁: a tile can move anywhere
 - As a result, h₁(n) gives the shortest solution
 - Relaxed 8-puzzle for h₂: a tile can move to any adjacent square
 - As a result, h₂(n) gives the shortest solution
 - The cost of optimal solution to a relaxed problem is no greater than the cost of optimal solution to the real problem

Inventing Admissible Heuristics

- Can also be derived from the solution cost of a subproblem of a given problem
 - A lower bound on the cost of the real problem
 - Pattern databases store the exact solution to for every possible subproblem instance
 - The complete heuristic is constructed using the patterns in the database

Start State

Goal State

Inventing Admissible Heuristics

- Another way to find an admissible heuristic is through learning from experience:
 - Experience = solving lots of 8-puzzles
 - An inductive learning algorithm can be used to predict costs for other states that arise during search

Heuristic Quality

- How good is a heuristic?
- A way is effective branching factor b*
 - which is the branching factor that a uniform tree of depth d would have, in order to contain N + 1 nodes

$$N + 1 = 1 + b^* + b^{*2} + \dots + b^{*d}$$

- Measure is fairly constant for sufficiently hard problems
 - Can thus provide a good guide to the heuristic's overall usefulness
 - A good value of b* is 1

Heuristic Quality and Dominance

- Performance comparison
 - On 1200 random problems with solution lengths from 2 to 24
 - Dominance: If h₂(n) >= h₁(n) for all n (both admissible) then h₂ dominates h₁ and is better for search

	Search Cost (nodes generated)			Effective Branching Factor		
d	BFS	$A^*(h_1)$	$A^*(h_2)$	BFS	$A^*(h_1)$	$A^*(h_2)$
6	128	24	19	2.01	1.42	1.34
8	368	48	31	1.91	1.40	1.30
10	1033	116	48	1.85	1.43	1.27
12	2672	279	84	1.80	1.45	1.28
14	6783	678	174	1.77	1.47	1.31
16	17270	1683	364	1.74	1.48	1.32
18	41558	4102	751	1.72	1.49	1.34
20	91493	9905	1318	1.69	1.50	1.34
22	175921	22955	2548	1.66	1.50	1.34
24	290082	53039	5733	1.62	1.50	1.36
26	395355	110372	10080	1.58	1.50	1.35
28	463234	202565	22055	1.53	1.49	1.36

Outline

- Heuristic (informed) search strategies
- Heuristic functions
- Local search algorithms & optimization problems
- Online search agents & unknown environment

Optimization Problem

- Definition (minimization problem)
 - Given a search space Ω which represents feasible solutions
 - Given an objective function $f: \Omega \to \mathbb{R}$
 - Find a solution $x^* = \operatorname{argmin} f(x)$
 - x* is known as global optimum
- Optimization problem can always be reduced to a decision problem.
 - E.g. The traveling salesman problem:
 - Optimization: Find an optimal Hamiltonian tour which optimizes the total distance.
 - Decision: Given a distance D, is there a Hamiltonian tour with a distance less than or equal to D?

Complexity Classes

- Class P: decision problems solved by a deterministic machine in polynomial time
- Class NP: decision problems solved by a nondeterministic algorithm in polynomial time
 - There is a short certificate for any solution which can be checked in polynomial time
- Class NP-hard: if all problems of the class NP can be reduced in polynomial time to the problem
- NP-complete: problems in NP class and NP-hard class
- Important open question: P = NP?

Problem Solving as Optimization

- Optimization problem
 - The aim is to find the best state according to an objective function
 - State space landscape
 - Very useful for understanding local search and the problem

Problem Solving as Optimization

Completeness

A complete algorithm always finds a goal if one exists

Optimality

 An optimal algorithm always finds a global minimum (or maximum)

Local Search

- A.k.a single solution-based search
 - "Improvement" of a single solution
 - Generate-and-test
 - Use single current state and move to neighboring states
 - Walks through neighborhoods or search trajectories
 - Exploitation Oriented:
 - Iterative exploration of the neighborhood. (intensification)

Template of local search

Input: Initial solution s_0 .

Output: Best solution found

- 1 $t \leftarrow 0$;
- 2 Repeat
- 3 C_t ←Generate(s_t); \triangleleft Generate candidates C_t from s_t
- 4 s_{t+1} = Select(C_t); Select a solution in C_t to replace s_t
- 5 $t \leftarrow t + 1$
- 6 Until stopping criteria satisfied

Elements of local search

- Representation of the solution
- Evaluation function
- Neighborhood function
 - To define solutions which can be considered close to a given solution
- Neighborhood search strategy
 - Random search
 - Systematic search
- Acceptance criterion
 - First improvement
 - Best improvement
 - Random

Features of local search

Advantages

- Use very little memory
- Find often reasonable solutions in large or infinite state spaces
- Guarantee of local optimality in little computational time

Disadvantages

- No guarantee of global optima
- Poor quality of solution due to getting stuck in poor local optima

- **Neighborhood.** A neighborhood function N is a mapping $N: S \to 2^S$ that assigns to each solution s of S a set of solutions $N(s) \subset S$.
 - A solution s' is a neighbor of s iff $s' \in N(s)$
 - Defined by a move operator

Locality

- The effect on the solution (phenotype) when performing a move (small perturbation) to the representation (genotype)
- Strong locality: small changes on representation → small changes on solution
- Weak locality may lead to random search

• The neighborhood N(s) of a solution s in a continuous space is the ball with center s and radius equal to ϵ with $\epsilon > 0$:

$$N(s) = \{s' \in \mathbb{R}^n | ||s' - s|| < \epsilon\}$$

- If objective function is continuous and differentiable
 - Gradient descent with different step size
- Otherwise,
 - Gaussian perturbation $N(0, \sigma_i)$ can be considered

The circle represents the neighborhood of *s* in a continuous problem with two dimensions.

- In a discrete optimization problem, the neighborhood N(s) of a solution s is represented by the set $\{s' \in S | d(s',s) < \epsilon\}$, where d represents a given distance that is related to the move operator. E.g.,
 - Hamming distance for binary representation
 - |N(S)| = n
 - Can be extended to any discrete vector defined by some alphabet Σ with |N(S)| = n(k-1), $k = |\Sigma|$
 - Nodes of the hypercube represent solutions of the problem.
 - ➤ The neighbors of a solution (e.g., (0,1,0)) are the adjacent nodes in the graph.

- Permutation
 - Defined by permutation-based operators
 - E.g., swap, inversion, insertion, ...
 - Scheduling problems
 - Permutation represents a priority.
 - The relative order in the sequence is important (2-opt → weak locality).
 - Routing problems
 - adjacency of the element is important (2-opt → strong locality).

(2,1,3)

(1,2,3)

(3,1,2)

(1,3,2)

An example of neighborhood for a permutation problem of size 3. For instance, the neighbors of the solution (2, 3, 1) are (3, 2, 1), (2, 1, 3), and (1, 3, 2).

Local Optimum

- Local optimum. Relatively to a given neighboring function N, a solution $s \in S$ is a local optimum if it has a better quality than all its neighbors; that is, $f(s) \le f(s') \ \forall s' \in N(s)$.
 - Local optimum for a neighborhood N_1 may not be a local optimum for another neighborhood N_2

Local optimum and global optimum in a search space.

k-distance versus k-exchange neighborhoods

- Position-based neighborhoods
 - Insertion
- Order-based neighborhoods
 - Swap
 - Inversion

- Insertion
 - Preserves most of the order and the adjacency information
 - Procedure:
 - 1. Pick two allele values at random
 - 2. Move the second to follow the first, shifting the rest along to accommodate

1 2 5 3 4 6 7 8 9

- Swap
 - Most widely used
 - Preserves most of adjacency information (4 links broken), disrupts order more
 - Procedure:
 - Pick two alleles at random and swap their positions

1 2 3 4 5 6 7 8 9

1 5 3 4 2 6 7 8 9

- Scramble
 - Procedure:
 - 1. Pick a subset of genes at random
 - 2. Randomly rearrange the alleles in those positions

- Inversion
 - Preserves most adjacency information (only breaks two links) but disruptive of order information
 - Procedure:
 - Pick two alleles at random and then invert the substring between them.

```
1 2 3 4 5 6 7 8 9
```

Neighborhood size

- Neighborhood size = #neighbors
- Compromise between
 - Size of the neighborhood (computational complexity)
 - Usually linear or quadratic
 - Quality of solutions

Design efficient procedures to explore large neighborhoods!

Very large neighborhood size

- Size of the neighborhood: high-order polynomial (n>2) or exponential to the problem size
- Main issue: identify improving neighbors or the best neighbor without enumeration of the whole neighborhood

Neighborhood search strategy

- Systematic search
 - Search the whole neighborhood
- Random (partial) search
 - Search partial set of the neighborhood
 - Finding the best neighbor (local optimum) is not guaranteed
 - E.g.,
 - Lin–Kernighan (LK) heuristic the TSP
 - Generalized k-opt (variable depth)
 - Only consider nearest (top 5) cities

Initial Solution

- Trade-off: quality vs. computational time
 - Random solution
 - Heuristic solution (e.g. Greedy)
- Using better initial solutions will not always lead to better local optima.
- Hybrid strategy for improving the robustness
- Generating random solutions may be difficult for highly constrained problems
- Partially or completely initialized by a user (e.g. expert) for real-world application

Evaluation of the neighborhood

Evaluation

- Most expensive part of a metaheuristic
- Naive evaluation
 - Direct evaluation of f(s') using objective function f
 - Complete evaluation of each solution in the neighborhood
- Incremental evaluation
 - An essential issue in design single solution-based metaheuristics
 - Evaluate the difference $\Delta(s, m)$ only $f(s') = f(s \oplus m) = f(s) + \Delta(s, m)$
 - s: current solution
 - *m*: applied move
- Approximated evaluation
 - Approximate f(s') by calling its surrogates g
 - Trade-off: complexity versus accuracy

Acceptance Criterion

- First improvement
 - Replace the current solution with the first improved solution in neighborhood
 - Deterministic and partial search
- Best improvement
 - Replace the current solution with the best solution in neighborhood
 - Deterministic and fully search
- Random selection
 - Replace the current solution with a random better solution in neighborhood
 - Stochastic and partial search

Outline

- Heuristic (informed) search strategies
- Heuristic functions
- Local search algorithms & optimization problems
 - Hill Climbing
 - Simulated Annealing
 - Local Beam Search
- Global search algorithm
- Online search agents & unknown environment

Hill-Climbing Search

- Hill-climbing (HC)
 - a.k.a. greedy local search, descent, iterative improvement
 - is a loop that continuously moves in the direction of increasing value
 - It terminates when a peak is reached
 - Like climbing a hill
 - Chooses the best successors, but not look ahead of the immediate neighbors of the current state
 - Randomly chooses among the set of best successors, if there is more than one

Hill-Climbing Search

function HILL-CLIMBING(problem) return a state that is a local maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor ← highest valued successor of *current*

if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]

current ← *neighbor*

HC: Towards a local optimum

- From a solution s_0 , HC will generate a sequence $s_1, s_2, ..., s_k$
 - Length of the sequence k is unknown a priori
 - $s_{i+1} \in N(s_i) \forall i \in \{0,1,...,k-1\}$
 - $f(s_{i+1}) < f(s_i) \forall i \in \{0,1,...,k-1\}$ Minimization
 - s_k is a local optimum: $f(s_k) \le f(s) \forall s \in N(s_k)$

Pros and Cons

Pros

- Easy to implement
- Acceptable time complexity

Cons

- It only leads to local optima.
- The found optima depends on the initial solution.
- No mean to estimate the relative error from the global optimum
- No mean to have an upper bound of the computation time: the worst case is exponential

Pros and Cons

HC often gets stuck since

- Local maxima
 - A local max. is a peak higher than its neighbors, but lower than global max.
- Ridge
 - Sequence of local max. that is difficult for greedy algorithms to navigate objective function
- Plateaus
 - An area of the state space where the evaluation function is flat

Hill-Climbing Variations

Stochastic hill-climbing

- Random selection among the uphill moves
- The selection probability can vary with the steepness of the uphill move

First-choice hill-climbing

• cf. Stochastic hill climbing by generating successors randomly until a better one is found

Random-restart hill-climbing

- Conducts a series of HC from randomly generated initial states
- Tries to avoid getting stuck in local maxima

Example: Hill-Climbing (1)

8-queens problem

- Complete-state formulation
- Successor function: move a single queen to another square in the same column
- Heuristic function h(n): the number of pairs of queens that are attacking each other (directly or indirectly)

Example: Hill-Climbing (2)

A state of h=17 and the h-value for each possible successor

A local minimum in the 8queens state space (h=1)

2-Dimensional packing problem

- Input: A set of n rectangles $I = \{1, 2, ..., n\}$ characterized by (width, length, ...)
- Output: Coordinates x, y of rectangles. Place all the rectangles on a plan without overlap to minimize the Surface used
- Applications: textile, metal, wood, factory layout planning

2-Dimensional packing problem

Outline

- Heuristic (informed) search strategies
- Heuristic functions
- Local search algorithms & optimization problems
 - Hill Climbing
 - Simulated Annealing
 - Local Beam Search
- Global search algorithm
- Online search agents & unknown environment

Simulated Annealing

- Simulated annealing (SA)
 - Escape local maxima by allowing "bad" moves
 - Idea: but gradually decrease their size and frequency
 - Origin: metallurgical annealing
 - A heat treatment causing changes in its properties such as strength and hardness
 - If temperature T decreases slowly enough, best state is reached
 - Quenching (淬火): harden (+brittle)
 Annealing (退火): harden
 Temping (回火): soften (+tougher)

Simulated Annealing

- Simulated annealing (cont'd)
 - Bouncing ball analogy:
 - Shaking hard (= high temperature)
 - Shaking less (= lower the temperature)
 - Widely applied in industrial area, e.g., VLSI layout, airline scheduling, etc.

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state input: problem, a problem schedule, a mapping from time to temperature local variables: current, a node next, a node T, a "temperature" controlling the downward steps prob. $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$ for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$ if T=0 then return current *next* ← a randomly selected successor of *current* $\Delta E \leftarrow VALUE[next] - VALUE[current]$ if $\Delta E > 0$ then current \leftarrow next else current \leftarrow next only with **probability** $e^{\Delta E/T}$

Outline

- Heuristic (informed) search strategies
- Heuristic functions
- Local search algorithms & optimization problems
 - Hill Climbing
 - Simulated Annealing
 - Local Beam Search
- Online search agents & unknown environment

Local Beam Search

Keep track of k states instead of one

- Initially: k random states
- Next: determine all successors of k states
- If any of successors is goal → finished
- Else select k best from successors and repeat

Major difference with random-restart search

- Information is shared among k search threads
- e.g. one state may generates several good while others do bad → "come over here, guys!"

Can suffer from lack of diversity

 Stochastic variant: choose k successors in proportional to state success

Outline

- Heuristic (informed) search strategies
- Heuristic functions
- Local search algorithms & optimization problems
- Global search algorithm
- Online search agents & unknown environment

Genetic Algorithm

- Genetic algorithm (GA)
 - Variant of local beam search with sexual recombination
 - Simulates natural evolution, based on "survival of the fittest"

Genetic Algorithm

```
function GENETIC_ALGORITHM( population, FITNESS-FN) return an individual
   input: population, a set of individuals FITNESS-FN, a function that measures the fitness of an individual
   repeat
      new population ← empty set
      loop for i from 1 to SIZE(population) do
         x \leftarrow \text{RANDOM SELECTION}(population, FITNESS FN)
         y \leftarrow RANDOM SELECTION(population, FITNESS_FN)
         child \leftarrow REPRODUCE(x, y)
         if (small random probability) then child \leftarrow MUTATE(child)
         add child to new_population
      population ← new population
   until some individual is fit enough, or enough time has elapsed
   return the best individual in population, according to FITNESS-FN
```

GA for 8 queens puzzle: Representation

Phenotype:

a board configuration

Genotype:

a permutation (integer vector) of the numbers 1–8

GA for 8 queens puzzle: Reproduction and mutation

One-point crossover and mutation on genotype

Result of one-point crossover and mutation on phenotype

Outline

- Heuristic (informed) search strategies
- Heuristic functions
- Local search algorithms & optimization problems
- Global search algorithm
- Online search agents & unknown environment

Exploration Problems

- Until now all algorithms were offline
 - Offline = solution is determined before executing it
 - Online = interleaving computation and action
- However, online search is necessary for dynamic and semi-dynamic environments
 - It is impossible to take into account all possible contingencies
- Used for exploration problems:
 - Unknown states and actions
 - e.g. any robot in a new environment, a newborn baby,...

Online Search Problems

Agent knowledge:

- ACTION(s): list of allowed actions in state s
- C(s,a,s'): step-cost function (After s' is determined)
- GOAL-TEST(s)

Notes

Cannot access the successor of a state unless trying all actions in it

- e.g. the agent doesn't know UP from (1,1) leads to (1,2)
- Can recognize previous states
- Actions are deterministic
- Access to admissible heuristic h(s)
 - e.g. Manhattan distance

A simple maze problem. The agent starts at S and must reach G but knows nothing of the environment.

Online Search Problems

- Objective: reach goal with minimal cost
 - Cost = total cost of traveled path
 - Competitive ratio = comparison of cost with cost of the solution path if search space is known
 - Can be infinite in case of the agent accidentally reaches dead ends

The Adversary Argument

- Assume an adversary who can construct the state space while the agent explores it
 - Visited states S and A. What next?
 - Fails in one of the state spaces

No algorithm can avoid dead ends in all state spaces.

Online Search Agents

- The agent maintains a map of the environment
 - This map is used to decide next action
 - Updated based on percept input
 - Note difference with e.g. A*
 - An online version can only expand the node it is physically in (local order)

Online DFS

```
function ONLINE-DFS-AGENT(problem, s') returns an action
             s, a, the previous state and action, initially null
     persistent: result, a table mapping (s, a) to s', initially empty untried, a table mapping s to a list of untried actions unbacktracked, a table mapping s to a list of states never backtracked to
     if problem.IS-GOAL(s') then return stop
     if s' is a new state (not in untried) then untried[s']←problem.ACTIONS(s')
     if s is not null then
          result [s, a]←s' add s to the front of unbacktracked[s']
     if untried[s'] is empty then
  if unbacktracked[s'] is empty then return stop
  else a←an action b s.t. result [s', b] = POP(unbacktracked[s'])
else a←POP(untried[s'])
     return a
```

Example: Online DFS (1)

Maze problem on 3x3 grid

- s' = (1,1) is initial state
- Result, unexplored (UX), unbacktracked (UB), ...are empty
- s, a are also empty

Example: Online DFS (2)

- GOAL-TEST((1,1))?
 - S!= G thus false
- (1,1) a new state?
 - True
 - ACTION((1,1)) → UX[(1,1)]
 - Action: {UP, RIGHT}
- s is null?
 - True (initially)
- UX[(1,1)] empty?
 - False
- POP(UX[(1,1)])->a
 - a=UP
- s = (1,1)
- Return a

Example: Online DFS (3)

- GOAL-TEST((2,1))?
 - S!= G thus false
- (2,1) a new state?
 - True
 - ACTION((2,1)) → UX[(2,1)]
 - Action: {DOWN}
- s is null?
 - false (s=(1,1))
 - result[UP,(1,1)] ← (2,1)
 - UB[(2,1)]={(1,1)}
- UX[(2,1)] empty?
 - False
- a=DOWN, s=(2,1) return a

Example: Online DFS (4)

- GOAL-TEST((1,1))?
 - S not = G thus false
- (1,1) a new state?
 - false
- s is null?
 - false (s=(2,1))
 - result[DOWN,(2,1)] ← (1,1)
 - UB[(1,1)]={(2,1)}
- UX[(1,1)] empty?
 - False
- a=RIGHT, s=(1,1) return a

Example: Online DFS (5)

- GOAL-TEST((1,2))?
 - S not = G thus false
- (1,2) a new state?
 - True, UX[(1,2)]={LEFT, RIGHT, UP}
- s is null?
 - false (s=(1,1))
 - result[RIGHT,(1,1)] ← (1,2)
 - UB[(1,2)]={(1,1)}
- UX[(1,2)] empty?
 - False
- A=LEFT, s=(1,2) return A

Example: Online DFS (6)

- GOAL-TEST((1,1))?
 - S not = G thus false
- (1,1) a new state?
 - false
- s is null?
 - false (s=(1,2))
 - result[LEFT,(1,2)] ← (1,1)
 - UB[(1,1)]={(1,2),(2,1)}
- UX[(1,1)] empty?
 - True
 - UB[(1,1)] empty? False
- a= b for b in result[b,(1,1)]=(1,2)
 - b=RIGHT
- a=RIGHT, s=(1,1) ...

Example: Online DFS (7)

Notes

- Worst case each node is visited twice
- An agent can go on a long walk even when it is close to the solution

An online iterative deepening approach solves this problem

Online DFS works only when actions are reversible

