2022/02/23, 2022 네트워크 세미나

TCP/IP 완벽 가이드

- 1부 TCP/IP 개요와 배경 정보 -

김 지 혜(jihye@pel.sejong.ac.kr)

세종대학교 프로토콜공학연구실

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

- 네트워킹 소개
 - 네트워크
 - 데이터 교환을 위해 연결된 하드웨어 장치
 - 네트워킹
 - 네트워크 연결을 위한 하드웨어, 소프트웨어적 행위
 - e.g., 정보 송수신 과정

• 네트워킹 소개

장점	단점
연결성과 통신	네트워크 하드웨어, 소프트웨어, 구성 비용
데이터 공유	하드웨어와 소프트웨어 관리 비용
하드웨어 공유	바람직하지 않은 공유
인터넷 접속	불법 또는 바람직하지 않은 행위
인터넷 접속 공유	데이터 보안 염려
데이터 보안 관리	
성능 향상과 분배	
엔터테인먼트	

- 네트워킹 기술
 - 하위 계층(하드웨어 형태)
 - e.g., 하드웨어 신호, 하위 수준 통신
 - 상위 계층(소프트웨어 형태)
 - e.g., 애플리케이션 구현
- 네트워킹 모델
 - OSI(Open Systems Interconnection) 참조 모델
 - 하위 계층
 - e.g., 물리 계층, 데이터 링크 계층, 네트워크 계층, 전송 계층
 - 상위 계층
 - e.g., 세션 계층, 프레젠테이션 계층, 애플리케이션 계층

- 네트워크 특성
 - 네트워킹 구조
 - 각 계층의 특정 기능 설명
 - 네트워크 단어 정의
 - 프로토콜
 - 정보를 송수신할 때의 통신 방법에 대한 규칙 또는 약속
 - 다른 용도의 프로토콜
 - 프로토콜 슈트
 - 프로토콜의 집합이지만 단순히 프로토콜이라 부름
 - 마이크로소프트 윈도우 프로토콜
 - TCP/IP나 IPX/SPX 같은 네트워킹 스택을 프로토콜이라 부르기도 함
 - 기타 기술
 - e.g., TCP/IP RMON(Remote Network Monitoring)

- 네트워크 특성
 - 서킷 스위칭
 - 가장 적합한 경로 탐색 후, 데이터 전송
 - e.g., 전화 시스템

- 패킷 스위칭
 - 패킷이라는 작은 조각으로 분할 후,
 패킷들이 개별로 적합한 경로를 탐색하며 데이터 전송

- 연결형 프로토콜
 - 데이터 전송(교환) 전, 장비 간에 논리적 연결을 맺음
 - 연결을 맺고 나면 데이터 교환 가능
 - 데이터 전송(교환) 후, 연결 해제
 - e.g., 서킷 스위칭, 패킷 스위칭(가상 회선 방식), TCP(Transmission Control Protocol)
- 비연결형 프로토콜
 - 장비 간에 연결을 맺지 않고, 데이터를 즉시 전송
 - e.g., 패킷 스위칭(데이터그램 방식), IP(Internet Protocol), **UDP(User Datagram Protocol)**
 - 하지만, IP의 경우 비동기 전송 방식(ATM, Asynchronous Transfer Mode) 같은 연결형 프로토콜 위에서 작동 가능
 - 이유 : 연결형 프로토콜 위에서 비연결형 프로토콜을 구현할 수 있기 때문 (반대도 가능)

- 메시지 지칭 용어
 - 패킷
 - OSI 참조 모델 네트워크 계층의 전송 단위
 - 데이터그램
 - 패킷과 동의어, 상위 계층에서 전송되는 메시지를 말하기도 함
 - 프레임
 - OSI 참조 모델 데이터 링크 계층의 전송 단위
 - 셀
 - 크기가 고정된 메시지
 - 프레임이나 패킷의 경우는 고정되지 않음
 - 프로토콜 데이터 유닛(PDU)과 서비스 데이터 유닛(SDU)
 - OSI 참조 모델 프로토콜 메시지 설명을 위한 용어
 - N계층 PDU : N계층 헤더 + (N+1)계층에서의 캡슐화 된 데이터

- 메시지 포매팅
 - 헤더(Header)
 - 데이터를 식별하는 제어 정보 바이트 포함
 - 데이터(Data)
 - 전송되는 실제 데이터로, 메시지의 페이로드라 불림
 - 푸터(Footer)
 - 헤더와 기능상 동일, 계산된 값을 저장하거나 에러 탐지할 때 쓰임

- 메시지 주소지정과 전송 방법
 - 유니캐스트
 - 한 장비에서 다른 한 장비로 전송
 - 특정한 하나의 주소 지정
 - 브로드캐스트
 - 한 장비에서 모든 장비로 전송
 - 예약된 특수 주소를 이용
 - 멀티캐스트
 - 한 장비에서 특정 장비 그룹 으로 전송
 - 특정 장비 그룹 식별을 위한 수단 필요
 - 가장 복잡한 메시지 유형

• 네트워크 특성

• 네트워크 구조 모델

• 피어투피어 네트워킹(Peer-to-Peer, P2P)

• 모든 장비들이 동등한 위치에서 동등한 일을 함

- 서로 요청 및 응답(송수신) 가능
- 보통 작은 네트워크에서 사용

- 네트워크 구조 모델
 - 클라이언트/서버 네트워킹
 - 소수의 중앙 서버와 다수의 클라이언트 머신들
 - 클라이언트가 서비스 요청, 서버에서 정보를 찾아 응답
 - 보통 대형 네트워크에서 사용
 - TCP/IP와 인터넷 애플리케이션의 많은 부분이 이 구조로 구성됨

• 네트워크 유형

- 통신 방법에 따른 네트워크 구분
 - 근거리 네트워크(LAN, Local Area Networks)
 - 보통 가까이 있거나, 소형 컴퓨터를 연결할 때 사용
 - 케이블 이용
 - 무선 LAN(WLAN, Wireless LANs)
 - 완전히 무선으로 구성된 것이라 볼 수 없음
 - 라디오 주파수, 빛 이용
 - 원거리 네트워크(WAN, Wide Area Networks)
 - 먼 거리의 장비나 다른 네트워크 혹은 LAN을 연결할 때 사용
 - 캠퍼스 네트워크(CAN, Campus Area Networks)
 - LAN과 WAN을 적절히 혼합한, 동일 지역의 여러 건물에 걸친 네트워크
 - 도시권 네트워크(MAN, Metropolitan Area Networks)
 - LAN과 WAN 사이에서 , 특정 지역 또는 도시에 걸친 네트워크

• 네트워크 유형

- 상대적 크기 설명을 위한 네트워크 용어
 - 네트워크
 - 가장 일반적인 용어
 - 수천 혹은 수만 대의 머신이 연결된 것
 - 서브네트워크(서브넷)
 - 네트워크나 인터네트워크를 구성하는 네트워크
 - 세그먼트
 - 네트워크의 작은 영역
 - 대부분 서브네트워크보다 좀 더 작고 구체적인 의미
 - 인터네트워크
 - 작은 네트워크들을 연결한 큰 네트워킹 구조

• 네트워크 유형

- 인터넷(Internet)과 유사한 용어
 - 인터넷(internet)
 - 공용 네트워크
 - 인터네트워크의 축약어 또는 TCP/IP 네트워크를 가리키는 용어
 - 인트라넷(intranet)
 - 개인 네트워크
 - TCP/IP 기술을 사용하는 내부 네트워크
 - 내부(회사 및 구성원)에서만 데이터에 접근할 수 있음
 - 엑스트라넷(extranet)
 - 개인 네트워크
 - 외부에서 접근할 수 있는 내부 네트워크
 - 외부(파트너 및 고객)에서 데이터에 접근할 때 사용하는 네트워크

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

- 네트워크 성능 문제
 - 네트워크의 주요 특성
 - 설계와 구현 비용
 - 고성능 네트워크를 구현하려면 비용이 많이 듦
 - 품질
 - 안정성이나 성능 같은 모든 특성에 영향을 줌
 - 표준화
 - 독점 표준은 개선된 기술을 포함할 수 있지만, 비용이 많이 들거나 관리가 어려워짐
 - 안정성
 - 빠른 네트워크가 보다 안정적

- 네트워크 성능 문제
 - 네트워크의 주요 특성
 - 확장성과 개량성
 - 미래를 예상하여 네트워크를 구현하거나 필요할 때 업그레이드할 수 있게 구현
 - 관리와 유지의 편의성
 - 관리와 유지에 많은 작업이 필요하고, 느린 네트워크에 비해 문제가 많이 발생
 - 공간과 설비 문제
 - 공간이나 배치에 영향을 받음
 - e.g., 가정에서 유선을 쓸 지, 무선을 쓸 지 결정하는 것

- 네트워크 성능 문제
 - 네트워크 성능 측정 용어
 - 속도(Speed)
 - 네트워킹에서 일어날 수 있는 최대 데이터 전송 능력
 - 대역폭(Bandwidth)
 - 단위 시간 동안 전송될 수 있는 최대 데이터 양(비트 수)
 - 주파수 대역폭 또는 데이터 용량의 의미
 - e.g., 라디오 주파수 대역폭, 네트워크를 통해 전송되는 데이터 양
 - 처리율(Throughput)
 - 단위 시간 동안 실제 데이터가 전송될 수 있는 정확한 비트 수
 - 대역폭이나 속도에 의해 제한을 받음
 - 지연 시간(Latency)
 - 요청을 처리한 후, 응답 데이터가 도착할 때까지의 시간 간격

• 네트워크 성능 문제

- 네트워크 성능 측정 단위
 - 비트(bit)와 바이트(byte)
 - 대문자 B로 바이트 표현, 소문자 b로 비트 표현
 - 속도 수치는 비트로 표현
 - 처리율에서는 비트와 바이트 모두 사용
 - 하드웨어 처리율은 초당 비트 수(bit/s, bps, b/s), 소프트웨어 애플리케이션 전송율은 초당 바이트 수(bytes/s, Bps, B/s)로 표현함
 - 보(Baud)
 - 처리율이 아닌 신호 변화율 측정
 - 초당 비트 수와 보의 차이점
 - 초당 비트 수는 데이터를 측정하고, 보는 정해진 데이터 묶음을 측정
 - e.g., 4bit 데이터를 초당 200개 보내는 경우 BPS: 4bit * 200 = **800**, Baud: **200**

- 네트워크 성능 문제
 - 이론적 처리율과 실제 처리율이 다른 이유
 - 상시 네트워크 부하
 - 기본적인 상시 부하 때문에 모든 대역폭을 사용할 수 없음
 - 외부 성능 제한
 - 하드웨어의 데이터 처리 능력, 대역폭 제한
 - 네트워크 설정 문제
 - 하드웨어나 소프트웨어의 구성 문제로 인한 속도 저하
 - 비대칭
 - 보통 양 방향 중 한쪽 방향의 대역폭이 훨씬 큰 구조임
 - e.g., 네트워크에서 사용자 방향 대역폭이, 사용자에서 네트워크 방향 대역폭보다 큼 (사용자가 보통 업로드보다 다운로드를 많이 하기 때문)

- 네트워크 성능 문제
 - 네트워크 연결 동작 방식
 - 단방향 동작
 - 한 장비가 송신 또는 수신만 할 수 있음

- 반양방향 동작(반이중)
 - 양방향으로 송수신이 가능하지만, 동시에는 불가능함

- 양방향 동작(전이중)
 - 양방향으로 동시에 송수신이 가능함
 - 이론적 대역폭이 두 배로 증가, 실제 대역폭은 그렇지 않음. 보통 양방향으로 대량의 데이터를 동시에 보내지 않기 때문

• 네트워크 성능 개념

- 서비스 품질(QoS, Quality of Service)
 - 데이터 전송 방법 설명
 - 설정한 속도를 유지할 수 있도록 데이터 스트림을 제공
 - QoS 특징
 - 대역폭 예약
 - 미리 일정 시간 동안 대역폭을 예약하여 작업 수행 시 사용 가능하도록 함
 - 대기 시간 관리
 - 대기 시간을 특정 값 이하로 제한
 - 트래픽 우선순위 조정
 - 중요한 연결에 우선 순위를 주어 패킷 처리
 - 트래픽 셰이핑
 - 버퍼와 속도 제한으로 전송율 유지
 - 네트워크 혼잡 예방
 - 혼잡 현상이 일어나는 경우에 데이터 다시 라우팅

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

• 네트워크 표준

- 사유 표준
 - 회사들이 각각 정해 둔 표준
- 공개 표준
 - 모두가 인정하고, 국제 기구로부터 검증된 것
- 실질 표준
 - 표준 위원회로부터 승인된 건 아니지만, 대부분의 회사들이 표준으로 쓰고 있는 것
- 표준이 여러 개인 이유
 - 원본 표준의 갱신
 - 복잡한 문서의 경우 하나 이상의 문서로 설명
 - 관련된 다른 기술의 채용 혹은 다른 기술 문서에 기반한 근거
 - 하나 이상의 기구가 기술 개발에 참여

- 네트워크 관련 기구와 표준 단체
 - 국제 네트워킹 표준 기구
 - 이들은 표준 개발 절차를 관리하는 감독 기구
 - 국제 표준화 기구(ISO, International Organization for Standardization)
 - OSI 참조 모델을 만들었음
 - 미국 표준 협회(ANSI, American National Standards Institute)
 - 미국 컴퓨터와 정보 기술 표준 조정 및 출판
 - 정보 기술 산업 협의회(ITIC, Information Technology Industry Council)
 - 컴퓨터 관련 주제의 표준 개발
 - 국가 정보 기술 위원회(NCITS, National Committee for Information Technology)
 - 정보 기술 관련 표준 개발 및 관리

• 네트워크 관련 기구와 표준 단체

- 국제 네트워킹 표준 기구
 - 이들은 표준 개발 절차를 관리하는 감독 기구
 - 미국 전기 전자 학회(IEEE, Institute of Electrical and Electronics Engineers)
 - IEEE 802 프로젝트 같은 유명 네트워킹 기술이 알려진 전문 기구
 - 미국 전자 공업 협회(EIA, Electronic Industries Alliance)
 - 전기 결선과 전송 표준 출판
 - 미국 통신 산업 협회(TIA, Telecommunications Industry Association)
 - 통신 표준 개발
 - 국제 전기 통신 연합-통신 표준 부문(ITU-T, International Telecommunication Union-Telecommunication Standardization Sector)
 - 통신 산업 표준 개발
 - 유럽 전기 통신 표준 협회(ETSI, European Telecommunications Standards Institute)
 - 유럽을 위한 통신 표준 개발

- 네트워크 관련 기구와 표준 단체
 - 네트워킹 산업 그룹과 표준 기구의 차이

산업 그룹	표준 기구
특정 기술 홍보	여러 다른 단체 관리
실제 표준 작성	구현 가능할 정도로 표준이 명확한지 감독

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준 기구
 - 인터넷 소사이어티(ISOC, Internet Society)
 - 상위 수준 활동 담당(인터넷 관리, 개발, 홍보)
 - 다른 기구에 재정적, 관리적 지원

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준 기구
 - 인터넷 아키텍쳐 위원회(IAB, Internet Architecture Board)
 - 인터넷 표준의 종합적 관리와 개발 담당
 - 인터넷 표준(RFC) 출판

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준 기구
 - 인터넷 엔지니어링 태스크 포스(IETF, Internet Engineering Task Force)
 - 여러 워킹 그룹으로 나뉘어 라우팅이나 보안 같은 특정 표준과 기술 개발

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준 기구
 - 인터넷 기술 관리 그룹(IESG, Internet Engineering Steering Group)
 - IETF와 인터넷 표준 개발 절차를 직접 관리

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준 기구
 - 인터넷 연구 태스크 포스(IRTF, Internet Research Task Force)
 - 인터넷, TCP/IP 기술 관련 장기 연구 담당
 - 워킹 그룹과 유사한 연구 그룹으로 구성

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준 기구
 - 인터넷 연구 관리 그룹(IRSG, Internet Research Steering Group)
 - 전체 IRTF 의장과 함께 연구 활동에 대한 결정 내림

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준화의 측면
 - 인자 표준화
 - 보통 프로토콜은 동작 방식 제어 인자 포함
 - e.g., IP는 여러 IP 옵션 필드를 포함, 주소 결정 프로토콜(ARP, Address Resolution Protocol)의 Operation Code 필드도 여러 값을 가질 수 있음
 - 전역 자원 할당과 식별자 유일성
 - 유일하게 할당되어야 하는 고정값 존재
 - e.g., TCP/IP 호스트에 대한 IP 주소, DNS 도메인 네임

- 네트워크 관련 기구와 표준 단체
 - 인터넷 중앙 등록 기관
 - 인터넷 번호 할당 관리 기관(IANA, Internet Assigned Numbers Authority)
 - 인터넷과 관련된 번호 관리
 - e.g., TCP와 UDP 포트 번호, IP 주소, 최상위 도메인
 - 인터넷 이름 및 번호 할당 기관(ICANN, Internet Corporation for Assigned Names and Numbers)
 - 중앙 등록 작업을 공식적으로 책임지는 기관
 - e.g., IP 주소와 도메인 네임 할당, 프로토콜 인자 관리

- 네트워크 관련 기구와 표준 단체
 - 인터넷 등록 기관 체계
 - 예전에는 클래스 단위로 IP 주소 할당
 - 지금은 클래스 비사용 도메인간 라우팅(CIDR, Classless Inter-Domain Routing) 주소지정 방식 사용
 - IANA는 지역별 인터넷 레지스트리(RIR, regional Internet registers)에게 큰 주소 블록 할당
 - APNIC(Asia Pacific Network Information Centre)
 - 아시아/태평양 담당
 - APIN(American Registry for Internet Numbers)
 - 북아메리카, 카리브해 제도 일부, 아프리카 남반구 담당
 - LACNIC(Latin American and Caribbean Internet Addresses Registry)
 - 라틴 아메리카, 카리브해 제도 일부 담당
 - RIPE NCC(Reseaux IP Europeans Network Coordination Center)
 - 유럽, 중동, 중앙 아시아, 아프리카 북반구 담당

- 네트워크 관련 기구와 표준 단체
 - 인터넷 등록 기관 체계
 - 레지스트리는 주소 블록을 인터넷 서비스 제공자(ISP, Internet Service Provider)에게 직접 할당
 - 국가나 지역 인터넷 레지스트리에 주소 할당 위임 가능

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준과 절차
 - RFC(Request for Comments)
 - 표준화를 위해 제안된 기술에 대한 논평을 기다리는 메모
 - 초기 표준을 정의하는 문서
 - RFC 분류
 - 제안 표준/초안 표준/표준
 - 표준 트랙에 있는 기술 설명
 - 현재 최고 사례
 - IETF에서 제공하는 문서로, 공식 표준은 아님
 - 정보나 주석 제공
 - 실험적
 - 표준 트랙에 있지 않은 실험적인 표준 제안
 - 역사적
 - 더 이상 쓰이지 않는 예전 표준

- 네트워크 관련 기구와 표준 단체
 - 인터넷 표준과 절차
 - 인터넷 표준화 절차
 - 인터넷 초안(ID, Internet Draft) 출판
 - ID는 IETF의 워킹 그룹의 피드백에 의해 여러 번 개정됨
 - 평가받은 ID는 제안 표준으로 바뀌어 인터넷 표준 트랙에 올라감
 - 그래도 개정은 계속됨
 - 이 문서가 2개 이상의 다른 코드로 개발된 독립적인 동작을 한다면 초안 표준으로 격상
 - 오래도록 널리 사용되는 경우엔 인터넷 표준이 되는데, 이 때 STD(Standard, 표준) 번호를 부여받음
 - 하지만 보통의 경우 인터넷 표준이 되기 어려움

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

• 2진 정보

- 2진 정보 표현
 - 컴퓨터 기본 구성 요소는 비트(bit: binary digit)
 - 비트가 오직 두 상태(0 또는 1)로 존재하기 때문에, 특정 값을 정확히 표현할 수 있다는 장점
 - 8비트 모음은 바이트(byte)나 옥텟(octet)으로 부름
 - 바이트는 공식적인 데이터 최소 단위
 - 바이트보다 옥텟이 더 정확한 용어

- 2진 정보
 - 2진 정보 표현

비트 수	표현 용어
1	비트 / 숫자 / 플래그
4	니블
8	바이트 / 옥텟 / 문자
16	더블 바이트 / 워드
32	더블 워드 / 롱 워드
64	확장 롱 워드

- 10진, 2진, 8진, 16진수
 - 10진수
 - 첫 자리에서 9까지 센 다음엔 둘째 자리를 이용하는데. 2진수도 이와 마찬가지로 첫 자리에서 1까지 센 다음에 둘째 자리를 이용하는 원리
 - e.g., 10진수로 211은 2진수로 11010011

2진수	1	1	0	1	0	0	1	1
2의 지수승	7	6	5	4	3	2	1	0
각 숫자의 자리값	128	64	32	16	8	4	2	1
각 숫자의 실제 값	128	64	0	16	0	0	2	1
중간 합(오른쪽으로)	128	192	192	208	208	208	210	211

- 10진, 2진, 8진, 16진수
 - 8진수
 - 2진수에서 2, 10진수에서 10처럼, 8진수에서는 8을 사용하는 것을 제외하면 방식은 동일
 - e.g., 2진수로 11110100, 10진수로 244는 8진수로 364

2진수: 11110100

11110100을 세 개씩(3비트로) 그룹화

- -> (11)(110)(100)
- \rightarrow (2+1)(4+2+0)(4+0+0)
- -> (3)(6)(4)

8진수: 364

3*64 + 6*8 + 4 = 244

10진수: 244

- 10진, 2진, 8진, 16진수
 - 16진수
 - 8진수와 비슷하게 동작하지만, 3비트 그룹이 아닌 4비트 그룹을 이용함 => 4비트를 포함하기 때문에 16개의 값을 가질 수 있음
 - 0~9는 0~9로 표기하고, 10~15는 알파벳 A~F로 표기함
 - e.g., 2진수 11110100, 10진수 244는 16진수로 F4

2진수: 11110100

11110100을 네 개씩(4비트로) 그룹화

- **->** (1111)(0100)
- -> (8+4+2+1)(0+4+0+0)
- -> (15)(4)

-> F4 15*16 + 4 = 244

16진수: F4 10진수: 244

• 10진, 2진, 8진, 16진수 변환

2진수	8진수	16진수	10진수
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7

2진수	8진수	16진수	10진수
1000	-	8	8
1001	-	9	9
1010	-	А	-
1011	-	В	-
1100	-	С	-
1101	-	D	-
1110	-	E	-
1111	-	F	-

- 2진, 8진, 16진 연산
 - 2진 연산
 - 10진수와 동일한 논리

이전 자리에서 올린 수		1	1			1	1	
첫 번째 2진수	1	0	1	1	0	0	1	1
두 번째 2진수	0	0	1	1	1	0	0	1
자리 숫자의 합	1	1	3	2	1	1	2	2
결과	1	1	1	0	1	1	0	0
상위 자리로 올릴 수			1	1			1	1

- 2진, 8진, 16진 연산
 - 8진, 16진 연산
 - 각 자리 숫자 합이 각각 8 또는 16 이상일 때 상위 자리로 1을 올리는 걸 제외하면 2진수 연산과 동일
 - 아래 표는 16진수 덧셈의 예시

이전 자리에서 올린 수		1	1	
첫 번째 2진수	2	C(12)	D(13)	8
두 번째 2진수	4	0	E(14)	А
자리 숫자의 합	6	13	28	18
결과	6	D(13)	C(12)	2
상위 자리로 올릴 수			1	1

- •불 논리와 논리 함수
 - 불 논리(Boolean logic) 함수
 - 입력 값이 참인지 거짓인지에 따라 출력이 참인지 여부 결정
 - 논리 부정(NOT 함수)
 - 입력 값의 반대 상태가 출력 값

입력	출력
거짓	참
참	거짓

NOT 연산자 진리표

입력	출력
0	1
1	0

NOT 연산자 진리표 (비트 값 이용)

- •불 논리와 논리 함수
 - 불 논리(Boolean logic) 함수
 - 논리합(AND 함수)
 - 모든 입력값이 참일 때만 출력값이 참

입력 1	입력 2	출력
0	0	0
0	1	0
1	0	0
1	1	1

AND 연산자 진리표

- •불 논리와 논리 함수
 - 불 논리(Boolean logic) 함수
 - 논리곱(OR 함수)
 - 입력값 중 하나만 참이면 출력값이 참

입력 1	입력 2	출력
0	0	0
0	1	1
1	0	1
1	1	1

OR 연산자 진리표

- •불 논리와 논리 함수
 - 불 논리(Boolean logic) 함수
 - 배타적 논리합(XOR 함수)
 - 입력 값이 다 다른 경우에만 출력값이 참

입력 1	입력 2	출력
0	0	0
0	1	1
1	0	1
1	1	0

XOR 연산자 진리표

- •불 논리와 논리 함수
 - 비트 마스킹
 - OR로 비트 그룹 켜기
 - 비트를 켜고 싶은 부분만 1로 설정하고, 나머지는 다 0으로 설정하여 OR 연산

입력	1	0	1	0	0	1	0	1	1	0	1	0
마스크	0	0	0	1	1	1	1	1	1	0	0	0
OR 연산 결과	1	0	1	1	1	1	1	1	1	0	1	0

비트 마스크를 이용하여 비트 켜기

- •불 논리와 논리 함수
 - 비트 마스킹
 - AND로 비트 그룹 끄기
 - 비트를 끄고 싶은 부분만 0으로 설정하고, 나머지는 다 1로 설정하여 AND 연산

입력	1	0	1	0	0	1	0	1	1	0	1	0
마스크	1	1	1	0	0	0	0	0	0	1	1	1
AND 연산 결과	1	0	1	0	0	0	0	0	0	0	1	0

비트 마스크를 이용하여 비트 끄기

- •불 논리와 논리 함수
 - 비트 마스킹
 - XOR로 비트 반전
 - 비트를 반전하고 싶은 부분만 1로 설정하고, 나머지는 다 0으로 설정하여 XOR 연산

입력	1	0	1	0	0	1	0	1	1	0	1	0
마스크	0	0	0	1	1	1	1	1	1	0	0	0
XOR 연산 결과	1	0	1	1	1	0	1	0	0	0	1	0

비트 마스크를 이용하여 비트 반전

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

- OSI의 역사
 - 국제 표준화 기구(ISO)와 국제 전신 전화 자문 위원회 (CCITT)에서의 네트워킹 모델 설명 문서들이 병합된 것이 OSI 참조 모델
 - 원래는 전 세계적으로 사용할 프로토콜 슈트 기반을 마련하기 위한 것이었기에, OSI 프로토콜 슈트라 불렸음
 - 하지만, TCP/IP 프로토콜이 널리 알려지면서 OSI 모델은 네트워킹 동작을 설명하는 도구로 자리잡음

- 네트워킹 모델
 - 한 사람이 아닌 여러 사람의 업무 분담으로 이루어짐
- 업무 분담의 장점
 - 훈련과 문서화
 - 전문화
 - 쉬운 설계 변경과 개선
 - 모듈 방식
 - 기능별로 나눠져 있기 때문에, 서로 다른 계층에서 동작하는 기술이라도 교환이 가능함

- 참조 모델 이해의 중요성
 - 프로토콜 설명을 위한 틀 제공, 여러 기술들 비교 가능
 - e.g., 이더넷과 HomePNA 기술이 어떻게 유사한지 (같은 2계층), 스위치와 라우터 같은 연결 장비 간의 차이
 - 네트워크와 네트워크 프로토콜의 동작 방식 이해를 도움
 - 프로토콜과 통신할 수 있는 장비 파악 가능

- OSI 참조 모델 특징
 - 대부분 프로토콜이 OSI 모델을 참고하지 않기에, OSI 계층에 맞지 않을 수 있음
 - 두 개 이상의 계층에 걸치거나, 여러 프로토콜이 한 계층을 공유하기도 함
 - LAN을 참고하여 설계됨
 - WAN은 일부만 공유하기에 OSI 모델과 맞지 않음
 - 제품 설계 시 OSI 모델 특정 계층만 구현하진 않음
 - 단순 물리 장비를 제외한 거의 모든 네트워킹 장비는 여러 계층에서 동작함

- 기타 네트워크 구조와 프로토콜 스택
 - 프로토콜 슈트는 OSI 모델과 독립적으로 개발되었기에. OSI 모델과 정확히 맞지 않음
 - 모든 프로토콜 슈트는 네트워크 구현에 대해 동일한 목표를 가졌기에, 계층이 달라도 비교가 가능함
 - e.g., TCP/IP 슈트 설명 시, DoD(Department of Defense) 모델이나 TCP/IP 모델 사용
 - 관련 프로토콜이 계층 구조로 구성된 경우도 있음
 - e.g., 이더넷, 비동기 전송 방식, TCP/IP 점대점 프로토콜(PPP)

• OSI 참조 모델 개념

- OSI 모델 계층
 - 계층이 올라갈수록 추상화 수준 증가
 - 일부 OSI 계층들은 서로 연관성이 높음
 - 하위 계층(1~4계층)
 - 컴퓨터를 위한 계층
 - 하드웨어 형태로 구현
 - 데이터 포매팅, 인코딩, 전송 담당
 - 상위 계층(5~7계층)
 - 사용자를 위한 계층
 - 소프트웨어 형태로 구현
 - 애플리케이션 구현 담당

• OSI 참조 모델 개념

- OSI 모델 계층 용어
 - 계층 이름과 번호
 - e.g., 데이터 링크 계층, DLL, L2, 2계층은 모두 동일한 표현
 - N 표기법
 - 계층을 개별로 언급할 때 사용
 - e.g., N계층 기능, N계층 서비스
 - 프로토콜과 인터페이스
 - 프로토콜
 - 동일 계층에서의 논리적, 물리적 통신
 - 인터페이스
 - 인접 계층에서의 이동

• OSI 참조 모델 개념

- OSI 모델 계층 용어
 - 네트워크 스택
 - 모델의 전체 계층 또는 기술의 모음을 의미
 - 실체, 기능, 설비, 서비스
 - 실체(entity)와 기능(function)
 - 그 계층에서의 동작이나 작업을 의미
 - 설비(facilities)와 서비스(services)
 - 상위 계층에게 제공하는 것
 - e.g., "N+1 계층이 N계층에게 제공하는 N 서비스나 N 설비 모음을 이용한다."

=> 각 계층은 상위 계층에 서비스를 제공하고, 하위 계층의 서비스를 이용함

• OSI 참조 모델 개념

- 인터페이스: 수직 통신
 - 인접 계층 간의 수직적인 통신 방식
 - e.g., 2/3계층 인터페이스는 2, 3계층 연결
 - 수직 통신이 일어나는 이유
 - 상위 계층이 논리적으로 연결되어 있기 때문
 - 여러 유형 간의 통신이 일어남
 - 상위 계층의 하위 계층 이용
 - 하위 계층 정보를 상위 계층으로 돌려주는 것
 - 데이터의 양방향 전송
 - 송신은 하위 계층으로 이루어지며 캡슐화
 - 수신은 상위 계층으로 이루어짐

• OSI 참조 모델 개념

- 프로토콜: 수평 통신
 - 동일 계층에서의 수평적 통신을 정의하는 규칙
 - 1계층에서만 물리적으로 연결된 논리적 통신
 - 실제 데이터 송수신은 1계층(물리 계층)에서 일어남
 - 송신 머신의 데이터는 하위 계층으로 전달되고, 1계층까지 도달한 데이터는 물리적 회선을 타고 다른 머신의 1계층으로 이동한 후, 상위 계층으로 거슬러 올라감

- OSI 참조 모델 개념
 - 프로토콜: 수평 통신

• OSI 참조 모델 개념

- 데이터 캡슐화
 - 프로토콜 데이터 유닛 (PDU, Protocol Data Unit)
 - 프로토콜 속 데이터 단위
 - 같은 계층에서 프로토콜 간 정보 교환
 - 서비스 데이터 유닛 (SDU, Service Data Unit)
 - 캡슐화되어 하위 계층으로 넘겨짐

• OSI 참조 모델 개념

- 데이터 캡슐화
 - 7계층 헤더(L7H) + 7계층 데이터 => 7계층 PDU이자 6계층 SDU
 - 6계층 헤더(L6H) + 6계층 데이터 => 6계층 PDU이자 5계층 SDU
 - 이렇게 2계층까지 진행된 후, 2계층 PDU는 1계층에서 물리적 비트 신호로 변환되어 전송
 - 즉, N계층 PDU는 N-1계층 SDU, 이는 N-1계층 PDU로 캡슐화됨

- OSI 참조 모델 개념
 - 데이터 캡슐화

• OSI 참조 모델 개념

- 메시지 라우팅
 - 네트워크는 간접적인 연결이 가능한 인터네트워크를 만들 수 있음
 - e.g., 머신 A는 머신 B의 위치를 몰라도 메시지 전송 가능
 - 포워딩(Forwarding)
 - 스위칭(Switching)이라고 부르기도 함
 - 한 네트워크 속 메시지를 다른 네트워크로 전송하는 과정
 - 라우팅(Routing)
 - 한 장비에서 다른 장비로 포워딩하는 과정

- OSI 참조 모델 개념
 - 메시지 라우팅

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

- 물리 계층(1계층, Physical Layer)
 - 유일하게 데이터가 인터페이스를 통해 전송되는 계층
 - 데이터 단위: 비트(Bit)
 - 물리 계층 역할
 - 하드웨어 명세 정의
 - 하드웨어 장비 동작의 세부 사항은 대부분 물리 계층 기능
 - 인코딩과 신호
 - 비트 데이터를 네트워크 신호로 인코딩하거나 변환
 - 데이터 송수신
 - 실제로 데이터를 송수신(유선, 무선 네트워크 모두 적용됨)
 - 토폴로지(Topology)와 물리 네트워크 설계
 - 하드웨어 관련 네트워크 설계 문제를 다룸

- 데이터 링크 계층(2계층, Data Link Layer)
 - 유선/무선 LAN 기술의 주요 기능이 위치한 계층
 - 데이터 단위: 프레임(Frame)
 - 데이터 링크 계층 역할
 - 논리적 연결 제어(LLC, Logical Link Control)
 - 상위 네트워크 계층에 서비스 제공, 다른 기술이 상위 계층과 쉽게 결합하도록 도움
 - e.g., IEEE 802.2 LLC 프로토콜 이용
 - 매체 접근 제어(MAC, Media Access Control)
 - 충돌을 피하기 위해 네트워크에 대한 접근 통제
 - e.g., 이더넷의 CSMA/CD 이용, 토큰 링의 토큰 전달 방법 이용
 - 데이터 프레이밍(Data Framing)
 - 상위 메시지를 하위 계층으로 전달하기 위한 최종 캡슐화 작업

- 데이터 링크 계층(2계층, Data Link Layer)
 - 유선/무선 LAN 기술의 주요 기능이 위치한 계층
 - 데이터 단위: 프레임(Frame)
 - 데이터 링크 계층 역할
 - 주소 지정
 - 정보에 목적지 주소를 지정
 - 네트워크 장비는 MAC 주소를 가짐
 - 에러 탐지와 처리
 - 네트워크 스택 하위 수준에서 발생하는 에러 처리
 - e.g., 순환 중복 검사(CRC, Cyclic Redundancy Check)
 - 물리 계층 표준
 - 데이터 링크 계층은 물리 계층과 연관되어 있음
 - e.g., 이더넷 표준인 IEEE 802.3
 - 데이터 링크 계층에서 어떻게 동작할지 명시

- 네트워크 계층(3계층, Network Layer)
 - 연결된 네트워크의 동작 과정을 정의하는 계층
 - 데이터 단위: 패킷(Packet)
 - 네트워크 계층 역할
 - 논리적 주소 지정
 - 네트워크 장비들은 논리적 주소를 가지며, 3계층 주소라 부름
 - e.g., 네트워크 계층 프로토콜의 IP(인터넷 프로토콜) 주소
 - 라우팅 네트워크
 - 패킷을 받아 최적의 경로를 찾아서 최종 목적지까지 보냄
 - 데이터그램 캡슐화
 - 상위 계층에서 받은 메시지에 헤더를 붙여 캡슐화 한 데이터그램을 생성

- 네트워크 계층(3계층, Network Layer)
 - 연결된 네트워크의 동작 과정을 정의하는 계층
 - 데이터 단위: 패킷(Packet)
 - 네트워크 계층 역할
 - 단편화와 재조합
 - 데이터가 너무 크면 패킷을 단편화하여 데이터 링크 계층으로 보내야 하고, 단편화 된 패킷을 받는 경우에는 재조합을 해야 함
 - 에러 처리와 진단
 - 네트워크나 장비 상태 정보를 교환할 수 있도록 하는 특수 프로토콜 사용

- 전송 계층(4계층, Transport Layer)
 - 데이터를 전송하는 계층
 - 데이터 단위: 세그먼트(Segment)
 - 전송 계층에서는 데이터 이동을 직접 처리하지 않고 하위 계층 서비스를 이용함
 - 물리 계층은 비트, 데이터 링크 계층은 로컬 네트워크, 네트워크 계층은 라우팅을 다룸
 - 종단-종단(end-to-end) 또는 호스트 간(host-to-host) 전송
 - 상위 계층의 데이터를 하나의 흐름으로 결합하여 하위 계층으로 송신 => 수신은 반대 작업

- 전송 계층(4계층, Transport Layer)
 - 전송 계층 역할
 - 프로세스 수준 주소 지정
 - 소프트웨어 프로그램 구분을 위해 사용
 - e.g., TCP/IP의 TCP 포트와 UDP 포트
 - 별도로 동작하게 하여 동시에 이용할 수 있도록 함
 - 다중화와 역다중화
 - 송신할 데이터를 다중화하여 하나의 데이터 스트림으로 결합
 - 수신한 데이터그램 스트림을 역다중화하여 각 프로세스로 전달
 - 단편화, 패키징, 재조합
 - 대량의 데이터를 송신할 때 단편화
 - 단편화된 데이터를 받았을 때는 데이터 재조합

- 전송 계층(4계층, Transport Layer)
 - 전송 계층 역할
 - 연결 수립, 유지, 종료
 - 연결형 프로토콜은 연결을 수립하고, 데이터 전송하는 동안 연결 유지, 전송이 종료되면 연결도 종료
 - 승인과 재전송
 - 안정적인 데이터 전달을 위해 송신 장비는 데이터 전송 시 타이머 시작
 - 데이터를 수신하면 수신자는 승인 정보 전송
 - 만약 정보가 타이머 만료 시간까지 오지 않으면 데이터 재전송
 - 흐름 제어
 - 데이터 송신율을 낮추도록 요구 -> 대량의 데이터를 처리하지 못하는 경우를 예방함

- 세션 계층(5계층, Session Layer)
 - 응용 프로그램들 간의 통신 관리 및 동기화 유지 계층
 - e.g., 로그인
 - 로그아웃할 때까지 통신 관리 및 동기화 이루어짐
 - 세션 계층 역할
 - 세션 생성 및 관리
 - e.g., TCP/IP 세션을 만들고 없애는 과정이 세션 계층에서 일어남
 - 데이터 교환
 - 오류 복구
 - 오류 발생 시 데이터 재전송하거나 복구 가능
 - 세션 계층 도구는 인터페이스(API, Application Program Interface)로 제공
 - 상위 수준 네트워크 통신을 이용할 수 있게 함

- 프레젠테이션 계층(6계층, Presentation Layer)
 - 데이터 표현을 다루는 계층
 - 프레젠테이션 계층 역할
 - 버역
 - 컴퓨터 간의 차이에 따라 데이터를 서로 다른 방법으로 표현
 - 압축
 - 데이터 처리율 향상을 위한 압축
 - 암호화
 - 데이터 보안을 보장하기 위한 암호화
 - e.g., SSL(Secure Sockets Layer)

- 애플리케이션 계층(7계층, Application Layer)
 - 사용자의 실제 수행 기능을 구현하는 계층
 - 애플리케이션 계층 역할
 - 다양하게 정보 처리 및 서비스 제공
 - 사용자 인터페이스 제공
 - e.g., HTTP, FTP 등의 프로토콜

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

OSI 참조 모델 요약

• OSI 모델 계층 요약표

그룹	#	계층 이름	핵심 역할	처리하는 데이터	유형 범위	주요 프로토콜과 기술
하위 계층	1	물리	인코딩과 신호 처리, 물리적 데이터 전송, 하드웨어 명세, 토폴로지와 설계	비트	로컬 장비 간 전송된 전기 또는 광 신호	대부분의 데이터 링크 계층 기술을 위한 기술들
	2	데이터 링크	논리적 연결 제어, 매체 접근 제어, 데이터 프레이밍, 주소 지정, 에러 탐지와 처리, 물리 계층 요구 사항 정의	프레임	로컬 장비 간 전송된 하위 수준 데이터 메시지	IEEE 802.2 LLC, 토큰 링, FDDI와 CDDI, IEEE 802.11, HomePNA, ATM, SLIP과 PPP
	3	네트워크	논리적 주소 지정, 라우팅, 데이터그램 캡슐화, 단편화와 재조합, 에러 처리와 진단	데이터그램/ 패킷	로컬 또는 원격 장비 간 메시지	IP, IPv6, IP NAT, IPsec, 모바일 IP, ICMP, IPX, DLC, PLP, 라우팅 프로 토콜
	4	전송	프로세스 수준 주소 지정, 다중화와 역다중화, 연결, 분할과 재조합, 승인과 재전송, 흐름 제어	데이터그램/ 세그먼트	소프트웨어 프로세스 간 통신	TCP와 UDP, SPX, NetBEUI/NBF

OSI 참조 모델 요약

• OSI 모델 계층 요약표

그룹	#	계층 이름	핵심 역할	처리하는 데이터	유형 범위	주요 프로토콜과 기술
상위 계층	5	세션	세션 수립, 유지, 종료	세션	로컬 또는 원격 장비 간 세션	NetBIOS, 소켓, 네임드 파이프, RPC
	6	프레젠테이션	데이터 번역, 압축과 암호화	인코딩 된 사용자 데이터	애플리케이션 데이터 표현	SSL, 셸과 방향변경자, MIME
	7	애플리케이션	사용자 애플리케이션 서비스	사용자 데이터	애플리케이션 데이터	DNS, NFS, BOOTP, DHCP, SNMP, RMON, FTP,TFTP, SMTP, POP3, IMAP, NNTP, HTTP, Telnet

목 차

- 네트워킹 기본
 - 네트워킹 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
 - OSI 참조 모델 요약
- TCP/IP 프로토콜 슈트와 구조

• TCP/IP 개요

- TCP/IP 역사
 - 미국 국방부 고등 연구 계획국(DARPA, Defense Advanced Research Projects Agency)에서 연구 네트워크 일부로 설계
 - 이 네트워크는 알파넷(ARPAnet)
 - 용량이 부족했던 탓에, 기존 프로토콜을 사용하려면 문제가 생길 것이라는 사실을 깨달음
 - 알파넷을 위해 완전한 인터네트워킹 프로토콜 시스템 개발, 이 프로그램은 전송 제어 프로그램(TCP, Transmission Control Program) (현재 의 TCP와는 다른 의미)
 - 이 TCP가 보안되고 개정되어 RFC 675(Specification of Internet Transmission Control Program)로 공식 문서화됨
 - 현재의 TCP/IP는 원래의 전송 제어 프로그램이 전송 제어 프로토콜 (Transmission Control Protocol)과 인터넷 프로토콜(Internet Protocol)로 분리 되면서 나옴

• TCP/IP 개요

- TCP/IP 성장의 주요인
 - 통합 주소 지정 체계
 - 각 장비의 유일한 주소를 보장하기 위해 인터넷 중앙 관리에 사용
 - 라우팅을 위한 설계
 - 라우터가 다른 네트워크로 중요 정보를 교환하고 효율적으로 흐르게 관리하도록 설계
 - 하부 네트워크와의 독립성
 - 주로 3계층 이상에서 동작
 - 확장성
 - 작은 네트워크에서 수백만 개의 호스트로 구성된 거대 인터네트워크로 성장함

- TCP/IP 개요
 - TCP/IP 성장의 주요인
 - 표준과 개발 절차 공개
 - 사유 표준이 아닌 공개된 표준으로. RFC 절차에 따라 개발되고 수정되며 누구나 참여 가능
 - 보편성
 - 모든 사람들이 TCP/IP를 사용함

• TCP/IP 서비스

- TCP/IP는 OSI 모델처럼 한 계층이 상위 계층에 서비스를 제공함
- 다른 프로토콜에 제공하는 서비스
 - 주요 TCP/IP 프로토콜이 구현하는 핵심 기능으로 구성
 - e.g., 네트워크 계층에서 IP는 주소 지정, 단편화 같은 기능 제공, 전송 계층에서 TCP와 UDP는 데이터 캡슐화, 장비 연결 기능 제공
- 최종 사용자 서비스
 - 사용자가 인터넷을 이용하기 위해 실행하는 애플리케이션 동작을 도움
 - e.g., 인터넷의 가장 중요한 애플리케이션은 웹(Web)

• TCP/IP 클라이언트/서버 구조 모델

- TCP/IP 클라이언트/서버 구조 모델
 - 하드웨어와 소프트웨어 역할
 - 클라이언트와 서버는 하드웨어가 수행하는 역할
 - 클라이언트 컴퓨터는 보통 개인 PC 의미
 - 서버는 보통 전산실 의미
 - TCP/IP는 하드웨어 프로토콜을 위해 각각 다른 소프트웨어 이용
 - e.g., 웹 브라우저는 클라이언트 소프트웨어지만 웹 서버 소프트웨어는 그와 다름

- TCP/IP 클라이언트/서버 구조 모델
 - 트랜잭션 역할
 - 트랜잭션 정의
 - 거래를 위해 컴퓨터가 처리해야 할 동작 의미
 - e.g., 서버가 응답을 보내는 과정

- TCP/IP 구조와 모델
 - 네트워크 인터페이스 계층

• TCP/IP 프로토콜이 로컬 네트워크에 접근할 때 사용하는 인터페이스 역할

- TCP/IP 구조와 모델
 - 인터넷 계층
 - OSI 참조 모델의 네트워크 계층에 해당하는 계층
 - 역할
 - 논리적 장비 주소 지정
 - 데이터 패키징
 - 조작과 전달
 - 라우팅
 - 핵심 프로토콜
 - IP, 인터넷 제어 메시지 프로토콜, 라우팅 프로토콜

- TCP/IP 구조와 모델
 - 호스트 간 전송 계층
 - OSI 참조 모델의 전송 계층에 해당하는 계층
 - 역할
 - 인터네트워크 상에서 종단간 통신을 쉽게 함
 - 장비 간 데이터를 안정 또는 불안정적으로 전달할 수 있게 논리적 연결을 맺음
 - 특정 출발지와 목적지를 식별하는 작업 수행
 - 핵심 프로토콜
 - TCP, UDP

• TCP/IP 구조와 모델

- 애플리케이션 계층
 - OSI 참조 모델의 5~7계층을 포함하는 계층
 - 역할
 - 최종 사용자 애플리케이션과 서비스 위치
 - 핵심 프로토콜
 - HTTP, FTP, SMTP와 같은 애플리케이션 프로토콜
 - 단순 네트워크관리 프로토콜
 - 동적 호스트 설정 프로토콜
 - 도메인 네임 시스템 같은 관리 프로토콜

• TCP/IP 프로토콜

Thanks!

김 지 혜 (jihye@pel.sejong.ac.kr)