MG126, BLE Transceiver

Data Sheet

Revision History:

Rev. No.	History	Issue Date	Remark
0.1	Initial issue	April 3, 2015	Preliminary
0.2	update rf pin info	April 23, 2015	Preliminary
0.3	Update block diagram and application schematic	June 4, 2015	Preliminary
0.4	Update pinout info	June 9, 2015	Preliminary
0.5	Update TX power consumption	Nov 2, 2015	Preliminary
0.6	Add QFN16, Update Reflow profile	June 9, 2016	Preliminary
0.7	Update characteristic	Dec 11, 2016	Preliminary
1.0	Initial release	Feb 8, 2017	release
1.1	Update package info	April 6, 2017	release
1.2	Add ESD info	July 5, 2017	release
1.3	Update characteristic	Sept 4, 2017	release

Important Notice:

MACROGIGA reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice. MACROGIGA integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use in such applications is done at the sole discretion of the customer. MACROGIGA will not warrant the use of its devices in such applications.

Revision: 1.3

MacroGiga Electronics Ltd. Co.

Table of Contents

1. Overview	3
1.1 Features	3
1.2 Typical Application	4
1.3 Block Diagram	5
2. Pin Description	5
3. Example Application Schematic	6
4. Operating modes	(
5. Data and Control Interface	7
5.1 Features	7
5.2 Functional Description	7
5.3 SPI Timing	7
5.4 Interrupt	8
6. Register Map	<u>C</u>
7. Electrical Characteristic	<u>C</u>
8. Current Consumption	10
9. Package Information	10
10. Reflow Profile	
11. Tape and Reel Information	13
11.1 Tape Information	
11.2 Reel Information	14

4

MacroGiga Electronics Ltd. Co.

1. Overview

MG126 is a single mode BLE RF transceiver with software configurable registers, embedded packet handling engine, and designed for ultra low power Bluetooth Smart Devices.

The chips are configured and operated via the 4-wire SPI(Serial Peripheral Interface).

Internal voltage regulators ensure a high Power Supply Rejection Ratio (PSRR) and a wide power supply range(1.9~3.6V).

1.1 Features

Radio

Worldwide 2.4GHz ISM band operation with 2MHz channel spacing

Common RX and TX pins

GFSK modulation

1Mbps air data rate

Transmitter

Programmable output power: -28 ~ +4 dBm, without an external RF PA

20mA at 0dBm output power

Receiver

Integrated channel filters

-85 dBm sensitivity

Programmable LNA gain

Baseband

Dedicated logic performs:

Cyclic redundancy check

40

MacroGiga Electronics Ltd. Co.

Data whitening

Access code correlation

• Host Interface

4-wire hardware SPI

Max 10Mbps

• Power Management

Integrated voltage regulator

1.9 to 3.6V supply range

Idle modes with fast start-up times for advanced power management

50 uA in Standby mode, 3 uA in sleep mode

Max 1.5ms start-up from sleep mode

• Low cost BOM

Provides a single-ended RF TX / RX port pin

Single end RF output, No balun needed

Built-in 32.768KHz oscillator, no need external RTC crystal

Support low cost crystal(12MHz or 16MHz)

1.2 Typical Application

- Remote Controller
- Sport and Fitness sensors
- Wireless keyboard and mouse
- BLE watches

Revision: 1.3

1.3 Block Diagram

Figure 1.1 Block Diagram

2. Pin Description

Pin No.	Symbol	I/O	Function Description
1	CSN	DI	SPI Chip Select
2	VSS	Power	Ground (0V)
3	SCK	DĬ	SPI Clock
4	MOSI	DI	SPI Slave Data Input
5	MISO	DO	SPI Slave Data Output
6	DVDD	Power	Digital VDD 1.2v Output
7	VSS	Power	Ground (0V)
8	XTALO	AO	Crystal Pin
9	XTALI	AI	Crystal Pin
10	VBAT	Power	Power Supply
11	VSS	Power	Ground (0V)
12	ANT	RF	Antenna interface
13	VBAT	Power	Power Supply
14	VSS	Power	Ground (0V)

15	IRQ	DO	Maskable interrupt pin	
16	CT	DI	Test Use	

Table 2.1 MG126 Pin Description

3. Example Application Schematic

MG126 with single ended RF output, crystal and decoupling capacitors.

Figure 3.1 MG126 Example Application Schematic

4. Operating modes

The chip has 4 operating modes:

- Standby
- Sleep
- TX active
- RX active

5. Data and Control Interface

The data and control interface gives you access to all the features in the chip. The data and control interface consists of the following digital signals:

- IRQ (this signal is active low and is controlled by maskable interrupt sources)
- CSN (SPI signal)
- SCK (SPI signal)
- MOSI (SPI signal)
- MISO (SPI signal)

5.1 Features

- 4-wire SPI serial interface, as slave
- up to 10Mbps data rate
- Easily configurable register map

5.2 Functional Description

The SPI is a standard SPI with a maximum data rate of 10Mbps.

5.3 SPI Timing

The interface supports SPI. SPI operation and timing is given in Figure 5.3.1 and Figure 5.3.2. The device must be in one of the standby modes or sleep mode before writing to the configuration registers.

Figure 5.3.1 SPI read operation

Figure 5.3.2 SPI write operation

Figure 5.3.3 SPI timing diagram

Symbol	Parameters	Min.	Max	Unit
Tcc	CSN to SCK setup	2	-	ns
Tch	SCK high time	40	-	ns
Tcl	SCK low time	40	-	ns
Tcwh	CSN inactive time	50	-	ns
Tcch	SCK to CSN hold	2	-	ns
Tdc	Data to SCK setup	2	-	ns
Tdh	SCK to Data hold	2	-	ns

5.4 Interrupt

The chip has an active low interrupt (IRQ) pin. The IRQ pin is activated by the state machine, and is

resets when MCU writes '1' to the IRQ source bit in the STATUS register. The IRQ mask in the register is used to select the IRQ sources that are allowed to assert the IRQ pin. By setting one of the MASK bits high, the corresponding IRQ source is disabled. By default all IRQ sources are enabled.

6. Register Map

You can configure and control the radio chip by accessing the register map through the SPI by using read and write commands.

7. Electrical Characteristic

Absolute Maximum Ratings

		MIN	MAX	UNIT
Supply Voltage	All supply pins have the same voltage	0	3.6	V
Input RF level			10	dBm
Storage temperature range		-40	125	$^{\circ}$ C
	According to human-body model		4	KV
ESD	According to charged device model		800	V
	According to man-machine model		200	V

Recommended Operating Conditions

	MIN	NOM	MAX	UNIT
Operating ambient temperature range, T _A	-40		85	$^{\circ}$ C
Operating supply voltage	1.9		3.6	V

Electrical Characteristics

Conditions: VDD = +3V, VSS = 0V, TA = -40°C to +85°C

	General RF condition				
f_{OP}	Operating frequency	2402		2480	MHz
R _{GFSK}	Air data rate		1000		kbps
F _{channel}	Non-overlapping channel spacing		2		MHz
	Transmitter Operation condition				<u>C</u>
P_{RF}	Maximum output power			+4	dBm
	Receiver Operation			A)
RX _{SENS}	Sensitivity (0.1% BER)		-85		dBm
	Power on Reset				
T_{RUP}	Power ramp up time		19	100	ms
T _{POR}	Power on reset time	 1.5	5.3	10.3	ms

Table 7.1 Electrical Specification

8. Current Consumption

Table 8.1 shows total typical current consumption measured at the battery.

Mode	Description	Total Typical Current at 3.0v
Standby	In wakeup state, no TX, no RX	50 uA
sleep	Sleep. wakeup through SPI command	3 uA
TX active	In transmitting	20 mA @ 0dBm output power
RX active	In receiving	20 mA

Table 8.1 Current Consumption

9. Package Information

QFN16 3x3

Revision: 1.3

Revision: 1.3

MacroGiga Electronics Ltd. Co.

Side View

Symbol	Dimensions in Milimeters		Dimensions in Inches		
	Min.	Max.	Min.	Max.	
D/E	2.900	3.100	0.114	0.122	
D1/E1	1.600	1.800	0.063	0.071	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.203 REF		0.008 REF		
k	0.200	MIN.	0.008 MIN.		
b	0.180	0.300	0.007	0.012	
e	0.500	TYP.	0.020	TYP.	
L	0.300	0.500	0.012	0.020	

Table 9.1 QFN16 3x3 Package outline

10. Reflow Profile

Follow: IPC/JEDEC J-STD-020 C

IPC/JEDEC J-STD-020C July 2004

able 5-2 Classification Reflow Profiles	
Sn-Pb Eutectic Assembly	Pb-Free Assembly
3 °C/second max.	3° C/second max.
100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-180 seconds
183 °C 60-150 seconds	217 °C 60-150 seconds
See Table 4.1	See Table 4.2
10-30 seconds	20-40 seconds
6 °C/second max.	6 °C/second max.
6 minutes max.	8 minutes max.
	Sn-Pb Eutectic Assembly 3 °C/second max. 100 °C 150 °C 60-120 seconds 183 °C 60-150 seconds See Table 4.1 10-30 seconds 6 °C/second max.

Revision: 1.3 MacroGiga Electronics Ltd. Co. Confidential

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

11. Tape and Reel Information

11.1 Tape Information

Revision: 1.3

MacroGiga Electronics Ltd. Co.

11.2 Reel Information

Package Type	Tape Width	фА	φN	W1	W2max
3x3x0.8mm QFN	12 mm	330 mm	100 mm	12.8 mm	18.2 mm

Thanks