

Sequence Listing

<110> Ashkenazi, Avi
Baker Kevin P.
Botstein, David
Desnoyers, Luc
Eaton, Dan
Ferrara, Napoleon
Filvaroff, Ellen
Fong, Sherman
Gao, Wei-Qiang
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, Audrey
Godowski, Paul J.
Grimaldi, J. Christopher
Gurney, Austin L.
Hillan, Kenneth J
Kljavin, Ivar J.
Kuo, Sophia S.
Napier, Mary A.
Pan, James;
Paoni, Nicholas F.
Roy, Margaret Ann
Shelton, David L.
Stewart, Timothy A.
Tumas, Daniel
Williams, P. Mickey
Wood, William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic
Acids Encoding the Same

<130> P2630P1C4

<140> 09/978191
<141> 2001-10-15

<150> 09/918585
<151> 2001-07-30

<150> 60/062250
<151> 1997-10-17

<150> 60/064249

<151> 1997-11-03

<150> 60/065311
<151> 1997-11-13

<150> 60/066364
<151> 1997-11-21

<150> 60/077450
<151> 1998-03-10

<150> 60/077632
<151> 1998-03-11

<150> 60/077641
<151> 1998-03-11

<150> 60/077649
<151> 1998-03-11

<150> 60/077791
<151> 1998-03-12

<150> 60/078004
<151> 1998-03-13

<150> 60/078886
<151> 1998-03-20

<150> 60/078936
<151> 1998-03-20

<150> 60/078910
<151> 1998-03-20

<150> 60/078939
<151> 1998-03-20

<150> 60/079294
<151> 1998-03-25

<150> 60/079656
<151> 1998-03-26

<150> 60/079664

<151> 1998-03-27

<150> 60/079689

<151> 1998-03-27

<150> 60/079663

<151> 1998-03-27

<150> 60/079728

<151> 1998-03-27

<150> 60/079786

<151> 1998-03-27

<150> 60/079920

<151> 1998-03-30

<150> 60/079923

<151> 1998-03-30

<150> 60/080105

<151> 1998-03-31

<150> 60/080107

<151> 1998-03-31

<150> 60/080165

<151> 1998-03-31

<150> 60/080194

<151> 1998-03-31

<150> 60/080327

<151> 1998-04-01

<150> 60/080328

<151> 1998-04-01

<150> 60/080333

<151> 1998-04-01

<150> 60/080334

<151> 1998-04-01

<150> 60/081070

<151> 1998-04-08

<150> 60/081049

<151> 1998-04-08

<150> 60/081071

<151> 1998-04-08

<150> 60/081195

<151> 1998-04-08

<150> 60/081203

<151> 1998-04-09

<150> 60/081229

<151> 1998-04-09

<150> 60/081955

<151> 1998-04-15

<150> 60/081817

<151> 1998-04-15

<150> 60/081819

<151> 1998-04-15

<150> 60/081952

<151> 1998-04-15

<150> 60/081838

<151> 1998-04-15

<150> 60/082568

<151> 1998-04-21

<150> 60/082569

<151> 1998-04-21

<150> 60/082704

<151> 1998-04-22

<150> 60/082804

<151> 1998-04-22

<150> 60/082700

<151> 1998-04-22

<150> 60/082797

<151> 1998-04-22

<150> 60/082796

<151> 1998-04-23

<150> 60/083336

<151> 1998-04-27

<150> 60/083322

<151> 1998-04-28

<150> 60/083392

<151> 1998-04-29

<150> 60/083495

<151> 1998-04-29

<150> 60/083496

<151> 1998-04-29

<150> 60/083499

<151> 1998-04-29

<150> 60/083545

<151> 1998-04-29

<150> 60/083554

<151> 1998-04-29

<150> 60/083558

<151> 1998-04-29

<150> 60/083559

<151> 1998-04-29

<150> 60/083500

<151> 1998-04-29

<150> 60/083742

<151> 1998-04-30

<150> 60/084366

<151> 1998-05-05

<150> 60/084414

<151> 1998-05-06

<150> 60/084441

<151> 1998-05-06

<150> 60/084637

<151> 1998-05-07

<150> 60/084639

<151> 1998-05-07

<150> 60/084640

<151> 1998-05-07

<150> 60/084598

<151> 1998-05-07

<150> 60/084600

<151> 1998-05-07

<150> 60/084627

<151> 1998-05-07

<150> 60/084643

<151> 1998-05-07

<150> 60/085339

<151> 1998-05-13

<150> 60/085338

<151> 1998-05-13

<150> 60/085323

<151> 1998-05-13

<150> 60/085582

<151> 1998-05-15

<150> 60/085700

<151> 1998-05-15

<150> 60/085689

<151> 1998-05-15

<150> 60/085579

<151> 1998-05-15

<150> 60/085580

<151> 1998-05-15

<150> 60/085573

<151> 1998-05-15

<150> 60/085704

<151> 1998-05-15

<150> 60/085697

<151> 1998-05-15

<150> 60/086023

<151> 1998-05-18

<150> 60/086430

<151> 1998-05-22

<150> 60/086392

<151> 1998-05-22

<150> 60/086486

<151> 1998-05-22

<150> 60/086414

<151> 1998-05-22

<150> 60/087208

<151> 1998-05-28

<150> 60/087106

<151> 1998-05-28

<150> 60/087098

<151> 1998-05-28

<150> 60/091010

<151> 1998-06-26

<150> 60/090863

<151> 1998-06-26

<150> 60/091359

<151> 1998-07-01

<150> 60/094651

<151> 1998-07-30

<150> 60/100038

<151> 1998-09-11

<150> 60/109304

<151> 1998-11-20

<150> 60/113296

<151> 1998-12-22

<150> 60/113621

<151> 1998-12-23

<150> 60/123957

<151> 1999-03-12

<150> 60/126773

<151> 1999-03-29

<150> 60/130232

<151> 1999-04-21

<150> 60/131022

<151> 1999-04-26

<150> 60/131445

<151> 1999-04-28

<150> 60/134287

<151> 1999-05-14

<150> 60/139557

<151> 1999-06-16

<150> 60/141037

<151> 1999-06-23

<150> 60/142680

<151> 1999-07-07

<150> 60/145698

<151> 1999-07-26

<150> 60/146222

<151> 1999-07-28

<150> 60/162506

<151> 1999-10-29

<150> 09/040220

<151> 1998-03-17

<150> 09/105413

<151> 1998-06-26

<150> 09/168978

<151> 1998-10-07

<150> 09/184216

<151> 1998-11-02

<150> 09/187368

<151> 1998-11-06

<150> 09/202054

<151> 1998-12-07

<150> 09/218517

<151> 1998-12-22

<150> 09/254465

<151> 1999-03-05

<150> 09/265686

<151> 1999-03-10

<150> 09/267213

<151> 1999-03-12

<150> 09/284291

<151> 1999-04-12

<150> 09/311832

<151> 1999-05-14

<150> 09/380137
<151> 1999-08-25

<150> 09/380138
<151> 1999-08-25

<150> 09/380142
<151> 1999-08-25

<150> 09/709238
<151> 2000-11-08

<150> 09/723749
<151> 2000-11-27

<150> 09/747259
<151> 2000-12-20

<150> 09/816744
<151> 2001-03-22

<150> 09/816920
<151> 2001-03-22

<150> 09/854280
<151> 2001-05-10

<150> 09/854208
<151> 2001-05-10

<150> 09/872035
<151> 2001-06-01

<150> 09/874503
<151> 2001-06-05

<150> 09/882636
<151> 2001-06-14

<150> 09/886342
<151> 2001-06-19

<150> PCT/US98/21141

<151> 1998-10-07

<150> PCT/US98/24855

<151> 1998-11-20

<150> PCT/US99/00106

<151> 1999-01-05

<150> PCT/US99/05028

<151> 1999-03-08

<150> PCT/US99/05190

<151> 1999-03-10

<150> PCT/US99/10733

<151> 1999-05-14

<150> PCT/US99/12252

<151> 1999-06-02

<150> PCT/US99/28313

<151> 1999-11-30

<150> PCT/US99/28551

<151> 1999-12-02

<150> PCT/US99/28565

<151> 1999-12-02

<150> PCT/US99/30095

<151> 1999-12-16

<150> PCT/US99/31243

<151> 1999-12-30

<150> PCT/US99/31274

<151> 1999-12-30

<150> PCT/US00/00219

<151> 2000-05-01

<150> PCT/US00/00277

<151> 2000-01-06

<150> PCT/US00/00376

<151> 2000-01-06

<150> PCT/US00/03565

<151> 2000-02-11

<150> PCT/US00/04341

<151> 2000-02-18

<150> PCT/US00/05841

<151> 2000-03-02

<150> PCT/US00/07532

<151> 2000-03-21

<150> PCT/US00/05004

<151> 2000-02-24

<150> PCT/US00/06319

<151> 2000-03-10

<150> PCT/US00/08439

<151> 2000-03-30

<150> PCT/US00/13705

<151> 2000-05-17

<150> PCT/US00/14042

<151> 2000-05-22

<150> PCT/US00/14941

<151> 2000-05-30

<150> PCT/US00/15264

<151> 2000-06-02

<150> PCT/US00/20710

<151> 2000-07-28

<150> PCT/US00/23328

<151> 2000-08-24

<150> PCT/US00/32678

<151> 2000-12-01

<150> PCT/US00/34956

<151> 2000-12-20

<150> PCT/US01/06520

<151> 2001-02-28

<150> PCT/US01/09552

<151> 2001-03-22

<150> PCT/US01/17092

<151> 2001-05-25

<150> PCT/US01/17800

<151> 2001-06-01

<150> PCT/US01/19692

<151> 2001-06-20

<150> PCT/US01/21066

<151> 2001-06-29

<150> PCT/US01/21735

<151> 2001-07-09

<160> 623

<210> 1

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 1

ccaggtccaa ctgcacacctg gttctatcga ttgaattccc cggggatcct 50

ctagagatcc ctgcacacctg acccacgcgt ccgccaagct ggccctgcac 100

ggctgcaagg gaggctcctg tggacaggcc aggcaggtgg gcctcaggag 150

gtgcctccag gcggccagtgc gcctgaggc cccagcaagg gctaggggcc 200

atctccagtc ccaggacaca gcagcgccca ccatggccac gcctgggctc 250

cagcagcatc agcagcccc aggaccgggg gaggcacagg tggcccccac 300

cacccggagg agcagctcct gccccgtcgg gggggatgac tgattctcct 350

ccgccaggcc acccagagga gaaggccacc cgcctggag gcacaggcca 400
tgaggggctc tcaggaggtg ctgctgatgt ggctctgggt gtggcagtg 450
ggcggcacag agcacgccta cggcccgcc cgtagggtg tgtgctgtcc 500
cggcctacg gggacctgt ctccgagtcg ttcgtgcagc gtgtgtacca 550
gcccttcctc accacctgctg acggcaccg ggcctgcagc acctaccgaa 600
ccatttata tag gaccgcctac cgccgcagcc ctggctggc ccctgccagg 650
cctcgctacg cgtgctgcccg cggctggaag aggaccagcg ggcttcctgg 700
ggcctgtgga gcagcaatat gccagccgcc atgccggaac ggagggagct 750
gttccagcc tggccgctgc cgctgccctg cagatggcg gggtagact 800
tgccagtcag atgtggatga atgcagtgtc aggagggcg gctgtcccc 850
gcgcgtcatc aacaccgccc gcagttactg gtgcagtgt tggaggggc 900
acagcctgtc tgcagacggt acactctgtc tgcccaaggg agggcccccc 950
agggtggccc ccaacccgac aggagtggac agtcaatga aggaagaagt 1000
gcagaggctg cagtcaggg tggacctgct ggaggagaag ctgcagctgg 1050
tgctggcccc actgcacagc ctggcctcgc aggactgga gcatggcctc 1100
ccggaccccg gcagcctcct ggtgcactcc ttccagcagc tcggccgcat 1150
cgactccctg agcgagcaga tttcctcct ggaggaggcag ctggggtcct 1200
gctcctgcaa gaaagactcg tgactgccc ggcggccagg ctggactgag 1250
ccccctacgc cgccctgcag ccccatgcc cctgcccac atgctggggg 1300
tccagaagcc acctcggggt gactgagcgg aaggccaggc agggccttcc 1350
tcctttcct cctcccccttc ctcgggagg gtcccccagac cttggcatgg 1400
gtggcgtgg gatttttttt gtgaatccac cccctggctac ccccacccctg 1450
gttaccccaa cggcatccca aggccaggtg ggcctcagc tgagggaagg 1500

tacgagttcc cctgctggag cctgggaccc atggcacagg ccaggcagcc 1550

cggaggctgg gtggggcctc agtggggct gctgcctgac ccccagcaca 1600

ataaaaatga aacgtgaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650

aaaaaaaaagg gcggccgcga ctctagagtc gacctgcaga agcttggccg 1700

ccatggccca acttgttat tgcatgttat aatggttaca aat 1743

<210> 2

<211> 295

<212> PRT

<213> Homo sapiens

<400> 2

Met Thr Asp Ser Pro Pro Pro Gly His Pro Glu Glu Lys Ala Thr
1 5 10 15

Pro Pro Gly Gly Thr Gly His Glu Gly Leu Ser Gly Gly Ala Ala
20 25 30

Asp Val Ala Ser Gly Val Gly Ser Gly Arg His Arg Ala Arg Leu
35 40 45

Pro Ala Arg Pro Leu Gly Cys Val Leu Ser Arg Ala His Gly Asp
50 55 60

Pro Val Ser Glu Ser Phe Val Gln Arg Val Tyr Gln Pro Phe Leu
65 70 75

Thr Thr Cys Asp Gly His Arg Ala Cys Ser Thr Tyr Arg Thr Ile
80 85 90

Tyr Arg Thr Ala Tyr Arg Arg Ser Pro Gly Leu Ala Pro Ala Arg
95 100 105

Pro Arg Tyr Ala Cys Cys Pro Gly Trp Lys Arg Thr Ser Gly Leu
110 115 120

Pro Gly Ala Cys Gly Ala Ala Ile Cys Gln Pro Pro Cys Arg Asn
125 130 135

Gly Gly Ser Cys Val Gln Pro Gly Arg Cys Arg Cys Pro Ala Gly
140 145 150

Trp Arg Gly Asp Thr Cys Gln Ser Asp Val Asp Glu Cys Ser Ala
155 160 165

Arg Arg Gly Gly Cys Pro Gln Arg Cys Ile Asn Thr Ala Gly Ser
170 175 180

Tyr Trp Cys Gln Cys Trp Glu Gly His Ser Leu Ser Ala Asp Gly
185 190 195

Thr Leu Cys Val Pro Lys Gly Gly Pro Pro Arg Val Ala Pro Asn
200 205 210

Pro Thr Gly Val Asp Ser Ala Met Lys Glu Glu Val Gln Arg Leu
215 220 225

Gln Ser Arg Val Asp Leu Leu Glu Glu Lys Leu Gln Leu Val Leu
230 235 240

Ala Pro Leu His Ser Leu Ala Ser Gln Ala Leu Glu His Gly Leu
245 250 255

Pro Asp Pro Gly Ser Leu Leu Val His Ser Phe Gln Gln Leu Gly
260 265 270

Arg Ile Asp Ser Leu Ser Glu Gln Ile Ser Phe Leu Glu Glu Gln
275 280 285

Leu Gly Ser Cys Ser Cys Lys Lys Asp Ser
290 295

<210> 3

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 3

tggaggcagca atatgccagc c 21

<210> 4

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 4

ttttccactc ctgtcggtt gg 22

<210> 5

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 5

ggtgacatt gccagtcaga tgtggatgaa tgcagtgcta ggaggg 46

<210> 6

<211> 2945

<212> DNA

<213> Homo sapiens

<400> 6

cgcctgcccc gtcgccccctc gcctccccgc agagtcccct cgccgcagca 50

gatgtgtgtg gggtcagccc acggcgggga ctatggtaa attcccgcg 100

ctcacgcact actggccctt gatccggttc ttggtgcccc tggcatcac 150

caacatagcc atcgacttcg gggagcaggc cttgaaccgg ggcattgctg 200

ctgtcaagga ggtatgcagtc gagatgctgg ccagctacgg gctggcgtac 250

tccctcatga agttctcac gggtcccatg agtgactca aaaatgtggg 300

cctgggttt gtgaacagca agagagacag gaccaaagcc gtcctgtta 350

tggtgtggc aggggccatc gctgccgtct ttcacacact gatacgcttat 400

agtgatttag gatactacat tatcaataaa ctgcaccatg tggacgagtc 450

ggtggggagc aagacgagaa gggccttcct gtacctgcc gcctttccctt 500

tcatggacgc aatggcatgg acccatgctg gcattctttt aaaacacaaaa 550

tacagttcc tgggtggatg tgcccaatc tcagatgtca tagctcagg 600
tgttttgta gccatttgc ttcacagtca cctggaatgc cgggagcccc 650
tgctcatccc gatcctctcc ttgtacatgg gcgcacttgt gcgcgtcacc 700
accctgtgcc tggctacta caagaacatt cacgacatca tccctgacag 750
aagtggcccg gagctggggg gagatgcaac aataagaaag atgctgagct 800
tctggtggcc ttggctcta attctggcca cacagagaat cagtcggcct 850
attgtcaacc tcttttttc ccgggacctt ggtggcagtt ctgcagccac 900
agaggcagtg gcgatttgta cagccacata ccctgtgggt cacatgccat 950
acggctggtt gacggaaatc cgtgctgtgt atccctgctt cgacaagaat 1000
aaccccagca acaaacttgt gagcacgagc aacacagtca cggcagccca 1050
catcaagaag ttcacccctcg tctgcatggc tctgtcactc acgctctgtt 1100
tcgtgatgtt ttggacaccc aacgtgtctg agaaaatctt gatagacatc 1150
atcggagtggtt actttgcctt tgcagaactc tgtgttgtc cttgcggat 1200
cttctcccttc ttcccagttc cagtcacagt gagggcgcacatc ctcaccgggt 1250
ggctgatgac actgaagaaa accttcgcc ttgccccccag ctctgtgctg 1300
cgatcatcg tcctcatcgcc cagcctcggt gtcctaccct acctgggggt 1350
gcacgggtcgcc accctggcg tgggtccct cctggcgccct tttgtggag 1400
aatccaccat ggtcgcacatc gctgcgtgct atgtctaccg gaagcagaaaa 1450
aagaagatgg agaatgagtc ggccacggag gggaaagact ctgccatgac 1500
agacatgcct ccgacagagg aggtgacaga catcgtggaa atgagagagg 1550
agaatgaata aggcacggga cgccatgggc actgcaggga cggtcagtc 1600
ggatgacact tcggcatcat ctcttccctc tcccatcgta tttgttccc 1650
tttttttgtt tttgtttgg taatgaaaga ggccttgatt taaagggttc 1700

gtgtcaattc tctagcatac tgggtatgct cacactgacg gggggaccta 1750
gtgaatggtc ttactgttg ctatgtaaaa acaaacgaaa caactgactt 1800
cataccctg cctcacgaaa acccaaaaga cacagctgcc tcacggttga 1850
cggtgttcc tcctccctg gacaatctcc tcttggAACCC aaaggactgc 1900
agctgtgccca tcgcgcctcg gtcaccctgc acagcaggcc acagactctc 1950
ctgtccccct tcategctct taagaatcaa caggtaaaaa ctggcttcc 2000
ttttagttgc ttcccagtca catggccgtaa caaagagatg gagccccgg 2050
ggcctcttaa atttcccttc tgccacggag ttcgaaacca tctactccac 2100
acatgcagga ggcgggtggc acgctgcagc ccggagtccc cggtcacact 2150
gaggaacgga gacctgtgac cacagcaggc tgacagatgg acagaatctc 2200
ccgtagaaag gtttggtttg aaatgccccgg gggcagcaa actgacatgg 2250
ttgaatgata gcatttcact ctgcgttctc ctagatctga gcaagctgtc 2300
agtcttcacc cccaccgtgt atatacatga gctaactttt ttaaattgtc 2350
acaaaagcgc atctccagat tccagaccct gccgcatgac tttcctgaa 2400
ggcttgcttt tccctcgctt ttcctgaagg tcgcattaga gcgagtcaca 2450
tggagcatcc taactttgca ttttagttt tacagtgaac tgaagctta 2500
agtctcatcc agcattctaa tgccagggttgc tcttagggta acttttgaag 2550
tagatatattt acctggttct gctatcctta gtcataactc tgccgtacag 2600
gttaattgaga atgtactacg gtacttcctt cccacaccat acgataaaagc 2650
aagacattttt ataacgatac cagagtcact atgtggcttccctgaaata 2700
acgcattcga aatccatgca gtgcagtata ttttctaag ttttggaaag 2750
caggttttt cctttaaaaaa aattatagac acggttcact aaattgattt 2800
agtcagaattt ccttagactga aagaacctaa acaaaaaaatttaaaga 2850

tataaatata tgctgtatat gttatgtaat ttatTTAGG ctataataca 2900

ttccattt tcgcatttc aataaaatgt ctctaataca aaaaa 2945

<210> 7

<211> 492

<212> PRT

<213> Homo sapiens

<400> 7

Met Val Lys Phe Pro Ala Leu Thr His Tyr Trp Pro Leu Ile Arg
1 5 10 15

Phe Leu Val Pro Leu Gly Ile Thr Asn Ile Ala Ile Asp Phe Gly
20 25 30

Glu Gln Ala Leu Asn Arg Gly Ile Ala Ala Val Lys Glu Asp Ala
35 40 45

Val Glu Met Leu Ala Ser Tyr Gly Leu Ala Tyr Ser Leu Met Lys
50 55 60

Phe Phe Thr Gly Pro Met Ser Asp Phe Lys Asn Val Gly Leu Val
65 70 75

Phe Val Asn Ser Lys Arg Asp Arg Thr Lys Ala Val Leu Cys Met
80 85 90

Val Val Ala Gly Ala Ile Ala Ala Val Phe His Thr Leu Ile Ala
95 100 105

Tyr Ser Asp Leu Gly Tyr Tyr Ile Ile Asn Lys Leu His His Val
110 115 120

Asp Glu Ser Val Gly Ser Lys Thr Arg Arg Ala Phe Leu Tyr Leu
125 130 135

Ala Ala Phe Pro Phe Met Asp Ala Met Ala Trp Thr His Ala Gly
140 145 150

Ile Leu Leu Lys His Lys Tyr Ser Phe Leu Val Gly Cys Ala Ser
155 160 165

Ile Ser Asp Val Ile Ala Gln Val Val Phe Val Ala Ile Leu Leu
170 175 180

His Ser His Leu Glu Cys Arg Glu Pro Leu Leu Ile Pro Ile Leu
185 190 195

Ser Leu Tyr Met Gly Ala Leu Val Arg Cys Thr Thr Leu Cys Leu
200 205 210

Gly Tyr Tyr Lys Asn Ile His Asp Ile Ile Pro Asp Arg Ser Gly
215 220 225

Pro Glu Leu Gly Gly Asp Ala Thr Ile Arg Lys Met Leu Ser Phe
230 235 240

Trp Trp Pro Leu Ala Leu Ile Leu Ala Thr Gln Arg Ile Ser Arg
245 250 255

Pro Ile Val Asn Leu Phe Val Ser Arg Asp Leu Gly Gly Ser Ser
260 265 270

Ala Ala Thr Glu Ala Val Ala Ile Leu Thr Ala Thr Tyr Pro Val
275 280 285

Gly His Met Pro Tyr Gly Trp Leu Thr Glu Ile Arg Ala Val Tyr
290 295 300

Pro Ala Phe Asp Lys Asn Asn Pro Ser Asn Lys Leu Val Ser Thr
305 310 315

Ser Asn Thr Val Thr Ala Ala His Ile Lys Lys Phe Thr Phe Val
320 325 330

Cys Met Ala Leu Ser Leu Thr Leu Cys Phe Val Met Phe Trp Thr
335 340 345

Pro Asn Val Ser Glu Lys Ile Leu Ile Asp Ile Ile Gly Val Asp
350 355 360

Phe Ala Phe Ala Glu Leu Cys Val Val Pro Leu Arg Ile Phe Ser
365 370 375

Phe Phe Pro Val Pro Val Thr Val Arg Ala His Leu Thr Gly Trp
380 385 390

Leu Met Thr Leu Lys Lys Thr Phe Val Leu Ala Pro Ser Ser Val
395 400 405

Leu Arg Ile Ile Val Leu Ile Ala Ser Leu Val Val Leu Pro Tyr
410 415 420

Leu Gly Val His Gly Ala Thr Leu Gly Val Gly Ser Leu Leu Ala
425 430 435

Gly Phe Val Gly Glu Ser Thr Met Val Ala Ile Ala Ala Cys Tyr
440 445 450

Val Tyr Arg Lys Gln Lys Lys Met Glu Asn Glu Ser Ala Thr
455 460 465

Glu Gly Glu Asp Ser Ala Met Thr Asp Met Pro Pro Thr Glu Glu
470 475 480

Val Thr Asp Ile Val Glu Met Arg Glu Glu Asn Glu
485 490

<210> 8

<211> 535

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 33, 66, 96, 387

<223> unknown base

<400> 8

cctgacagaa gtccccggga gctgggggag atncaacatt aagaagatgc 50

ttagcttcgt gtgccnttg gctctaattc tggccacaca gagaancagt 100

cggcctattg tcaaccctttt tgttccccgg gaccttggtg gcagttctgc 150

agccacagag gcagtggcga ttttgacagc cacataccct gtgggtcaca 200

tgccatacgg ctggttgacg gaaatccgtg ctgtgtatcc tgcttcgac 250

aagaataacc ccagcaacaa actggtgagc acgagcaaca cagtcacggc 300

ggcccacatc aagaagtta cttcgctctg catggctctg tcactcacgc 350

tctgtttcgt gatgttttgg acacccaacg tgtctgngaa aatcttgata 400

gacatcatcg gagtggactt tgcccttgcga gaactctgtt ttgttccttt 450

gcggatcttc tccttcttcc cagttccagt cacagtgagg ggcgcatactca 500

ccgggtggct gatgacactg aagaaaacct tcgtc 535

<210> 9

<211> 434

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 32, 54, 80, 111, 117, 122, 139, 193, 205, 221, 226, 228, 273,
293, 296, 305, 336, 358, 361

<223> unknown base

<400> 9

tgcggaaatc ccgggctggg tattctgggtt tngacaagat aaaccccccag 50

caanaaaattt gggagcaggg caaaacagtn acgggcagcc cacatcaaga 100

agttcacctt ngtttgnatg gntctgtcaa ctcacgctnt gtttcgtat 150

gttttggaca cccaaagtgt ttgagaaaaat ttgtatagac atnatcgag 200

tggantttgc ctgtcagaa ntttgnngntg ttcccttgcg gatttctcc 250

ttttccccag ttccagtcac agngagggcg catctcaccg ggnggntgat 300

gacantgaag aaaacctttg tccttggccc cagcttttg gtgcggatca 350

ttgtcctnat ngccagcctt gtggcctac cctacctggg ggtgcacgg 400

gcgaccctgg gcgtgggttc ctcctggcg ggca 434

<210> 10

<211> 154

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 33, 49, 68, 83, 90, 98, 119

<223> unknown base

<400> 10
tattcccaagt tccggtcacg gggagggcgc atntcaccgg gtggctgang 50

acactgaaga aaaccttgt ccttgccccc agntttgtgn tgccggatnat 100

cgtcctcatc gccagcctng tggtcctacc ctacctgggg gtgcacggtg 150

agac 154

<210> 11

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 11

ctgatccgggt tcttggtgcc cctg 24

<210> 12

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 12

gctctgtcac tcacgctc 18

<210> 13

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 13

tcatctttc cctctccc 18

<210> 14

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 14

cctccgcca cggagttc 18

<210> 15

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 15

ggcaaagtcc actccgatga tgtc 24

<210> 16

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 16

gcctgctgtg gtcacagggtc tccg 24

<210> 17

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 17

tcggggagca ggccgtgaac cggggcattt ctgttgtcaa ggagg 45

<210> 18

<211> 1901

<212> DNA

<213> Homo sapiens

<400> 18

gccccgcgcc cggcgccggg cgcccgaagc cgggagccac cgccatgggg 50

gcctgcctgg gagcctgctc cctgctcagc tgcgctcct gcctctgcgg 100

ctctgcccc tgcacccctgt gcagctgctg ccccgccagc cgcaactcca 150

ccgtgagccg cctcatcttc acgttcttcc tttccctggg ggtgctggtg 200

tccatcatta tgctgagccc gggcggtggag agtcagctct acaagctgcc 250

ctgggtgtgt gaggaggggg ccgggatccc caccgtccctg cagggccaca 300

tcgactgtgg ctccctgctt ggctaccgcg ctgtctaccg catgtgcttc 350

gccacggcgg ccttcttctt ctctttttc accctgctca tgctctgcgt 400

gagcagcagc cgggaccccc gggctgccat ccagaatggg tttggttct 450

ttaagttcct gatcctggtg ggcctcaccc tggtgcctt ctacatccct 500

gacggctcct tcaccaacat ctggttctac ttggcgctcg tgggtccctt 550

ccttttcattt ctcattccagc tgggtctgtt catcgacttt gcgcactcct 600

ggaaccagcg gtggctgggc aaggccgagg agtgcgattc ccgtgcctgg 650

tacgcaggcc tcttcttctt cactctccctc ttctacttgc tgtcgatgc 700

ggccgtggcg ctgatgttca tggactacac tgagcccagc ggctgccacg 750

aggcaagggt cttcatcagc ctcaacctca cttctgtgt ctgcgtgtcc 800

atcgctgttg tcctgtccaa ggtccaggac gcccagccca actcgggtct 850

gctgcaggcc tcggtcatca cccctcacac catgtttgtc acctgttcag 900

ccctatccag tatccctgaa cagaaatgca acccccattt gccaacccag 950

ctgggcaacg agacagtgtt ggcaggcccc gagggtatg agacccagtg 1000

gtgggatgcc ccgagcatgtt tgggcctcat catcttccctc ctgtgcaccc 1050

ttttcattt cttgcgttcc tcagaccacc ggcaggtaa cagcctgatg 1100

cagaccgagg agtgcacc tatgctagac gccacacagc agcagcagca 1150
gcaggtggca gcctgtgagg gccgggcctt tgacaacgag caggacggcg 1200
tcacctacag ctactccctc ttccacttct gcctggtgct ggcctcaactg 1250
cacgtcatga tgacgctcac caactggtac aagcccggtg agacccggaa 1300
gatgatcagc acgtggaccg ccgtgtgggt gaagatctgt gccagctggg 1350
cagggctgct cctctacctg tggaccctgg tagccccact cccctgcgc 1400
aaccgcgact tcagctgagg cagcctcaca gcctgccatc tggcctcc 1450
tgccacacctgg tgcctctcgg ctgggtgaca gccaacctgc cccctcccc 1500
caccaatcag ccaggctgag ccccccaccc tgccccagct ccaggacctg 1550
ccccctgagcc gggcctcta gtcgtagtgc cttcagggtc cgaggagcat 1600
caggctcctg cagagccccca tccccccgccc acacccacac ggtggagctg 1650
cctttccctt cccctccctcc ctgttgccca tactcagcat ctggatgaa 1700
agggctccct tgcctcagg ctccacggga gcggggctgc tggagagagc 1750
gggaaactcc caccacagtg gggcatccgg cactgaagcc ctgggttcc 1800
tggcacgtc ccccagggga ccctcccccc ttccctggact tcgtgcctta 1850
ctgagtcct aagactttt ctaataaaca agccagtgcg tgaaaaaaaa 1900

a 1901

<210> 19
<211> 457
<212> PRT
<213> Homo sapiens

<400> 19
Met Gly Ala Cys Leu Gly Ala Cys Ser Leu Leu Ser Cys Ala Ser
1 5 10 15
Cys Leu Cys Gly Ser Ala Pro Cys Ile Leu Cys Ser Cys Cys Pro
20 25 30

Ala Ser Arg Asn Ser Thr Val Ser Arg Leu Ile Phe Thr Phe Phe
35 40 45

Leu Phe Leu Gly Val Leu Val Ser Ile Ile Met Leu Ser Pro Gly
50 55 60

Val Glu Ser Gln Leu Tyr Lys Leu Pro Trp Val Cys Glu Glu Gly
65 70 75

Ala Gly Ile Pro Thr Val Leu Gln Gly His Ile Asp Cys Gly Ser
80 85 90

Leu Leu Gly Tyr Arg Ala Val Tyr Arg Met Cys Phe Ala Thr Ala
95 100 105

Ala Phe Phe Phe Phe Phe Thr Leu Leu Met Leu Cys Val Ser
110 115 120

Ser Ser Arg Asp Pro Arg Ala Ala Ile Gln Asn Gly Phe Trp Phe
125 130 135

Phe Lys Phe Leu Ile Leu Val Gly Leu Thr Val Gly Ala Phe Tyr
140 145 150

Ile Pro Asp Gly Ser Phe Thr Asn Ile Trp Phe Tyr Phe Gly Val
155 160 165

Val Gly Ser Phe Leu Phe Ile Leu Ile Gln Leu Val Leu Leu Ile
170 175 180

Asp Phe Ala His Ser Trp Asn Gln Arg Trp Leu Gly Lys Ala Glu
185 190 195

Glu Cys Asp Ser Arg Ala Trp Tyr Ala Gly Leu Phe Phe Thr
200 205 210

Leu Leu Phe Tyr Leu Leu Ser Ile Ala Ala Val Ala Leu Met Phe
215 220 225

Met Tyr Tyr Thr Glu Pro Ser Gly Cys His Glu Gly Lys Val Phe
230 235 240

Ile Ser Leu Asn Leu Thr Phe Cys Val Cys Val Ser Ile Ala Ala
245 250 255

Val Leu Pro Lys Val Gln Asp Ala Gln Pro Asn Ser Gly Leu Leu
260 265 270

Gln Ala Ser Val Ile Thr Leu Tyr Thr Met Phe Val Thr Trp Ser
275 280 285

Ala Leu Ser Ser Ile Pro Glu Gln Lys Cys Asn Pro His Leu Pro
290 295 300

Thr Gln Leu Gly Asn Glu Thr Val Val Ala Gly Pro Glu Gly Tyr
305 310 315

Glu Thr Gln Trp Trp Asp Ala Pro Ser Ile Val Gly Leu Ile Ile
320 325 330

Phe Leu Leu Cys Thr Leu Phe Ile Ser Leu Arg Ser Ser Asp His
335 340 345

Arg Gln Val Asn Ser Leu Met Gln Thr Glu Glu Cys Pro Pro Met
350 355 360

Leu Asp Ala Thr Gln Gln Gln Gln Gln Val Ala Ala Cys Glu
365 370 375

Gly Arg Ala Phe Asp Asn Glu Gln Asp Gly Val Thr Tyr Ser Tyr
380 385 390

Ser Phe Phe His Phe Cys Leu Val Leu Ala Ser Leu His Val Met
395 400 405

Met Thr Leu Thr Asn Trp Tyr Lys Pro Gly Glu Thr Arg Lys Met
410 415 420

Ile Ser Thr Trp Thr Ala Val Trp Val Lys Ile Cys Ala Ser Trp
425 430 435

Ala Gly Leu Leu Leu Tyr Leu Trp Thr Leu Val Ala Pro Leu Leu
440 445 450

Leu Arg Asn Arg Asp Phe Ser
455

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 20

gccgcctcat cttcacgttc ttcc 24

<210> 21

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 21

tcatccagct ggtgctgctc 20

<210> 22

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 22

cttctccac ttctgcctgg 20

<210> 23

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 23

cctggcaaaa aatgcaac 18

<210> 24

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 24

caggaatgt a gaggc accc acgg 24

<210> 25

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 25

tggcacagat cticacccac acgg 24

<210> 26

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 26

tgtccatcat tatgctgagc ccggcggtgg agagtcagct ctacaagctg 50

<210> 27

<211> 1351

<212> DNA

<213> Homo sapiens

<400> 27

gagcgaggcc gggactgaa ggtgtgggtg tcgagccctc tggcagaggg 50

ttaacctggg tcaa atgcac ggattctcac ctcgtacagt tacgctctcc 100

cgcggcacgt ccgcgaggac ttgaagtccct gagcgctcaa gtttgcgt 150

aggtcgagag aaggccatgg aggtgccgcc accggcaccg cggagcttc 200

tctgttagagc attgtgccta ttccccgag tctttgcgtc cgaagctgt 250

actgcccatt cggaagtccct tgaggagcgt cagaagcggc ttccctacgt 300

cccgagccc tattacccgg aatctggatg ggaccgcctc cgggagctgt 350
ttggcaaaga tgaacagcag agaattcaa aggacctgc taatatctgt 400
aagacggcag ctacagcagg catcattggc tgggtgtatg gggaaatacc 450
agctttatt catgctaaac aacaatacat tgagcagagc caggcagaaa 500
tttatcataa ccggtttgat gctgtgcaat ctgcacatcg tgctgccaca 550
cgaggcttca ttcgttatgg ctggcgctgg ggtggagaa ctgcagtgtt 600
tgtgactata ttcaacacag tgaacactag tctgaatgta taccgaaata 650
aagatgcctt aagccatttt gtaattgcag gagctgtcac gggaaagtctt 700
tttaggataa acgttaggcct gcgtggcctg gtggctggt gcataattgg 750
acccttgctg ggcactcctg taggaggcct gctgatggca tttcagaagt 800
acgctggta gactgttcag gaaagaaaaac agaaggatcg aaaggcactc 850
catgagctaa aactggaaga gtggaaaggc agactacaag ttactgagca 900
cctccctgag aaaattgaaa gtagttiacg ggaagatgaa cctgagaatg 950
atgctaagaa aattgaagca ctgctaaacc ttcctagaaa cccttcagta 1000
atagataaac aagacaagga ctgaaagtgc tctgaacttg aaactcactg 1050
gagagctgaa gggagctgcc atgtccgatg aatgccaaca gacaggccac 1100
tctttggtca gcctgctgac aaatttaagt gctggtacct gtggtggcag 1150
tggcttgctc ttgtctttt ctttctttt taactaagaa tggggctgtt 1200
gtactctcac ttacttac tttaaattta aatacatact tatgtttgta 1250
ttaatctatc aatatatgca tacatggata tatccaccca cctagattt 1300
aagcagtaaa taaaacattt cgcaaaagat taaagttgaa ttttacagtt 1350
t 1351

<211> 285

<212> PRT

<213> Homo sapiens

<400> 28

Met Glu Val Pro Pro Ala Pro Arg Ser Phe Leu Cys Arg Ala
1 5 10 15

Leu Cys Leu Phe Pro Arg Val Phe Ala Ala Glu Ala Val Thr Ala
20 25 30

Asp Ser Glu Val Leu Glu Glu Arg Gln Lys Arg Leu Pro Tyr Val
35 40 45

Pro Glu Pro Tyr Tyr Pro Glu Ser Gly Trp Asp Arg Leu Arg Glu
50 55 60

Leu Phe Gly Lys Asp Glu Gln Gln Arg Ile Ser Lys Asp Leu Ala
65 70 75

Asn Ile Cys Lys Thr Ala Ala Thr Ala Gly Ile Ile Gly Trp Val
80 85 90

Tyr Gly Gly Ile Pro Ala Phe Ile His Ala Lys Gln Gln Tyr Ile
95 100 105

Glu Gln Ser Gln Ala Glu Ile Tyr His Asn Arg Phe Asp Ala Val
110 115 120

Gln Ser Ala His Arg Ala Ala Thr Arg Gly Phe Ile Arg Tyr Gly
125 130 135

Trp Arg Trp Gly Trp Arg Thr Ala Val Phe Val Thr Ile Phe Asn
140 145 150

Thr Val Asn Thr Ser Leu Asn Val Tyr Arg Asn Lys Asp Ala Leu
155 160 165

Ser His Phe Val Ile Ala Gly Ala Val Thr Gly Ser Leu Phe Arg
170 175 180

Ile Asn Val Gly Leu Arg Gly Leu Val Ala Gly Gly Ile Ile Gly
185 190 195

Ala Leu Leu Gly Thr Pro Val Gly Gly Leu Leu Met Ala Phe Gln

200 205 210

Lys Tyr Ala Gly Glu Thr Val Gln Glu Arg Lys Gln Lys Asp Arg
215 220 225

Lys Ala Leu His Glu Leu Lys Leu Glu Glu Trp Lys Gly Arg Leu
230 235 240

Gln Val Thr Glu His Leu Pro Glu Lys Ile Glu Ser Ser Leu Arg
245 250 255

Glu Asp Glu Pro Glu Asn Asp Ala Lys Lys Ile Glu Ala Leu Leu
260 265 270

Asn Leu Pro Arg Asn Pro Ser Val Ile Asp Lys Gln Asp Lys Asp
275 280 285

<210> 29

<211> 324

<212> DNA

<213> Homo sapiens

<400> 29

cggaaagtccc ttgaggagcg tcagaagcgg ctccctacg tcccaagagcc 50

ctattacccg gaatctggat gggaccgctc cgggagctgt ttggcaaaga 100

tgaacagcag agaatttcaa aggacctgc taatatctgt aagacggcag 150

ctacagcagg catcattggc tgggtgtatg gggaaatacc agctttatt 200

catgctaaac aacaatacat tgagcagagc caggcagaaa ttatcataa 250

ccggtttgat gctgtcaat ctgcacatcg tgctgccaca cgaggctca 300

ttcgttcatg gctggcgccg aacc 324

<210> 30

<211> 377

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 262, 330, 371

<223> unknown base

<400> 30

tcaagtttgt ccgttaggtcg agagaaggcc atggagggtgc cgccaccggc 50

accgcggagc tttttctgt agagcattgt gcctatttcc ccgagtttt 100

gctgccgaag ctgtgactgc cgattcgaa gtccttgagg agcgtcagaa 150

gccccccc tacgtcccaag agccctatta cccggaattt ggtatgggacc 200

gcctccggga gctgttgcc aaagatgaac agcagagaat ttcaaaggac 250

cttgctgata tntgtaagac ggcagctaca gcaggcatca ttggctgggt 300

gtatggggga ataccagctt ttattcatgn taaacaacaa tacattgagc 350

agagccaggc agaaatttat nataacc 377

<210> 31

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 31

tcgtacagtt acgctctccc 20

<210> 32

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 32

cttgaggagc gtcagaagcg 20

<210> 33

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 33

ataaacgaatg aagcctcg 20

<210> 34

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 34

gctaataatct gtaagacggc agctacagca ggcattttt 40

<210> 35

<211> 1819

<212> DNA

<213> Homo sapiens

<400> 35

gagccgccc cgcgcgcgcg ccgcgcactg cagccccagg ccccgcccc 50

ccaccacgt ctgcgttgt gccccgcctg ggccaggccc caaaggcaag 100

gacaaaggcag ctgtcaggga acctccgcgcg gagtcgaatt tacgtgcagc 150

tgccggcaac cacaggttcc aagatggttt gcggggcctt cgcgtgttcc 200

aagaactgcc tgtgcgcctt caacctgcct tacaccttgg ttagtctgct 250

gctaatttggg attgcgtgcgtt ggggcattttt cttcggcgtt attccagtc 300

tccgagtggtt cggcggttgc attgcagtggt gcatcttctt ttcccttgcatt 350

gttttagtgg gtctgattttt agctgtaaaa catcatcagg ttttgctatt 400

tttttatatgtt attattctgt tacttgttatttattttttttat 450

cttgcgccttgc tttagccctg aaccaggagc aacagggtca gcttctggag 500

gttgggttggg acaatacggc aagtgcgtt aatgacatcc agagaaatct 550

aaactgctgt gggttccgaa gtgttaaccc aaatgacacc tgtctggcta 600
gctgtgttaa aagtgaccac tcgtgctcgc catgtgctcc aatcatagga 650
gaatatgctg gagagggttt gagatttgtt ggtggcattg gcctgttctt 700
cagtttaca gagatcctgg gtgttggtt gacctacaga tacaggaacc 750
agaaagaccc ccgcgcgaat cctagtgcatt tccttgcattt agaaaacaag 800
gaagatttcc ttcgttattt tgatcttgtt cacttctgtt aatttctgtt 850
taagctccat ttgccagttt aaggaaggaa acactatctg gaaaagtacc 900
ttattgatag tggaattata tattttact ctatgttctt ctacatgttt 950
ttttcttcc gttgctgaaa aatatttcaa acttgtggtc tctgaagctc 1000
ggtggcacct ggaatttact gtattcattt tcgggactg tccactgtgg 1050
ccttcttag cattttacc tgcagaaaaa ctttgtatgg taccactgtg 1100
ttggttatat ggtgaatctg aacgtacatc tcactggat aattatatgt 1150
agcactgtgc tgtgttagata gttcctactg gaaaaagagt gggaaatttt 1200
taaaatcaga aagtatgaga tcctgttatg ttaaggaaaa tccaaattcc 1250
caattttttt tggctttttt aggaaagattt gttgtggtaa aaagtgttag 1300
tataaaaaatg ataatttact tttttttttt tatgattaca ccaatgtattt 1350
ctagaaatag ttatgtctta ggaaatttgc gtttaatttt tgactttac 1400
aggtaagtgc aaaggagaag tggtttcattt aatgttctt atgtataata 1450
acatttaccc tcagcctcca tcagaatggaa acgagtttg agtaatcagg 1500
aagtataatct atatgatctt gatattgttt tataataatt tgaagtctaa 1550
aagactgcat ttttaaacaa gtttgttattt atgcgttggc ccacgttagca 1600
aaaagatatt tgattatctt aaaaattgtt aaataccgtt ttcatgaaat 1650
ttctcagttt tttttttttt ttcatgaaat tttttttttt ttcatgaaat 1700

atctccata atttcaaatt gaaatcgat tgtgtggctc tgtatattct 1750

gttaaaaaat taaaaggacag aaaccttct ttgtgtatgc atgttgaat 1800

taaaagaaag taatggaag 1819

<210> 36

<211> 204

<212> PRT

<213> Homo sapiens

<400> 36

Met Val Cys Gly Gly Phe Ala Cys Ser Lys Asn Cys Leu Cys Ala

1 5 10 15

Leu Asn Leu Leu Tyr Thr Leu Val Ser Leu Leu Ile Gly Ile

20 25 30

Ala Ala Trp Gly Ile Gly Phe Gly Leu Ile Ser Ser Leu Arg Val

35 40 45

Val Gly Val Val Ile Ala Val Gly Ile Phe Leu Phe Leu Ile Ala

50 55 60

Leu Val Gly Leu Ile Gly Ala Val Lys His His Gln Val Leu Leu

65 70 75

Phe Phe Tyr Met Ile Ile Leu Leu Leu Val Phe Ile Val Gln Phe

80 85 90

Ser Val Ser Cys Ala Cys Leu Ala Leu Asn Gln Glu Gln Gln Gly

95 100 105

Gln Leu Leu Glu Val Gly Trp Asn Asn Thr Ala Ser Ala Arg Asn

110 115 120

Asp Ile Gln Arg Asn Leu Asn Cys Cys Gly Phe Arg Ser Val Asn

125 130 135

Pro Asn Asp Thr Cys Leu Ala Ser Cys Val Lys Ser Asp His Ser

140 145 150

Cys Ser Pro Cys Ala Pro Ile Ile Gly Glu Tyr Ala Gly Glu Val

155 160 165

Leu Arg Phe Val Gly Gly Ile Gly Leu Phe Phe Ser Phe Thr Glu
170 175 180

Ile Leu Gly Val Trp Leu Thr Tyr Arg Tyr Arg Asn Gln Lys Asp
185 190 195

Pro Arg Ala Asn Pro Ser Ala Phe Leu
200

<210> 37
<211> 390
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 20, 35, 61, 83, 106, 130, 133, 187, 232, 260, 336
<223> unknown base

<400> 37
tgattggagc tgtaaaaaan tcttcagggtg ttgttnatttt tttatatgtat 50

tattctgtaa ntgttattta ttgttcagtt ttntgtatct tgcgcttgtt 100

tagccntgaa ccaggagcaa cagggtcagn ttntggaggt tggttggAAC 150

aatacggcaa gtgctcgaaa tgacatccag agaaatntaa actgctgtgg 20

gttccgaagt gttaacccaa atgacacacctg tntggctagc tgtgttaaaa 250

gtgaccactn gtgctcgcca tgtgctccaa tcataggaga atatgctgga 300

gaggtttga gatttgttgg tggcaitggc ctgttnttca gttttacaga 350

gatcctgggt gttggctga cctacagata caggaaccag 390

<210> 38

<211> 500
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 27
<223> unknown base

<400> 38

aatcccaat tcccccaattt tttgggnctt tttagggaaa gatgttgt 50

ggtaaaaagt gttgtataa aaatgataat ttacttgtag tcttttatga 100

ttacaccaat gtattctaga atagttatgt cttagaaat tgtggttaa 150

ttttgactt ttacaggtaa gtgcaaagga gaagtgggtt catgaaatgt 200

tctaattgtat aataacattt accttcagcc tcccatcaga atgaaacgag 250

tttgagtaa tccaggaagt atatctatat gatcttgata ttgtttata 300

taatttgaag tctaaaagac tgcattttta aacaaggtag tattaatgcg 350

ttggcccacg tagcaaaaag atatttgatt atcttaaaaa ttgttaaata 400

ccgtttcat gaaagttctc agtattgtaa cagcaacttg tcaaaccctaa 450

gcatatttga atatgatctc ccataatttgc aaattgaaat cgtattgtgt 500

ggaggaaatg gcaatcttat gtgtgctgaa ggacacagta agagcaccaa 550

gttgtgcccc acttgc 566

<210> 39

<211> 264

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 84-85, 206

<223> unknown base

<400> 39

atgattatttc tgttacttgt atttattgtt cagttttatg gtatcttgcg 50

cttgttttagc ccctgaaacc aggagcaaca gggncagct tcctggaggt 100

tggttggcaa caatcacggc caagtgactc cgcaaattgac atcccagaga 150

aatcctaaac tgctgtgggt tccgaagtgt taacccaaat gacacctgtc 200

tggctngctg tgttaaaagt gaccactcggt gctcgccatg tgctccaatc 250

ataggagaat atgc 264

<210> 40

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 40

acccacgtct gcgttgctgc c 21

<210> 41

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 41

gagaatatgc tggagagg 18

<210> 42

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 42

aggaatgcac taggattcgc gcgg 24

<210> 43

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 43

ggccccaaag gcaaggacaa agcagctgac agggAACCTC cgccg 45

<210> 44
<211> 2061
<212> DNA
<213> Homo sapiens

<400> 44
cagtcaccat gaagctgggc tgtgtccica tggcctggc cctctaccct 50
tcccttggt tgctctgggt gccccagatg ctactggctg ccagtttga 100
gacgctgcag tgtgagggac ctgtctgcac tgaggagac agctgccaca 150
cgaggatga cttgactgt gcaagggaa ctggcttcca ggtcaaggcc 200
tacactttca gtgaaccctt ccacctgatt gtgcctatg actggctgat 250
cctccaaggt ccagccaagc cagtttga agggcacctg ctggttctgc 300
gctgccaggc ctggcaagac tggccactga ctcaggtgac ctctaccga 350
gatggctcag ctctgggtcc ccccgggcct aacaggaaat tctccatcac 400
cgtggtacaa aaggcagaca gcgggcacta ccactgcagt ggcacatcc 450
agagccctgg tcctgggatc ccagaaacag catctgttgt ggctatcaca 500
gtccaagaac tgttccagc gccaattctc agagctgtac cctcagctga 550
acccaagca ggaagccccca tgaccctgag ttgtcagaca aagttgcccc 600
tgcagaggc agctgcccgc ctcccttct ccttctacaa ggttggagg 650
atagtcaaa gcagggggct ctcctcagaa ttccagatcc ccacagcttc 700
agaagatcac tccgggtcat actggtgtga ggcagccact gaggacaacc 750
aagtttggaa acagagcccc cagctagaga tcagagtgc gggtgcttcc 800
agctctgtc cacctccac attgaatcca gtcctcaga aatcagctgc 850
tccaggaact gtcctgagg aggccccctgg gcctctgcct ccggcccaa 900
ccccatcttc tgaggatcca ggctttctt ctccctggg gatgccagat 950
cctcatctgt atcaccagat gggcccttctt ctcaaacaca tgcaggatgt 1000

gagagtcctc ctggtcacc tgctcatgga gttgaggaa ttatctggcc 1050
accagaagcc tgggaccaca aaggctactg ctgaatagaa gtaaacagt 1100
catccatgtat ctcacttaac caccccaata aatctgattt tttattttct 1150
cttccgtcc tgcacatatg cataagtact ttacaagtt gtcccagtgt 1200
tttgttagaa taatgttagtt aggtgagtgt aaataaattt atataaagt 1250
agaatttagag tttagctata attgtgtatt ctctcttaac acaacagaat 1300
tctgctgtct agatcagggaa ttctatctg ttataatcgac cagaatgttg 1350
tgatttaaag agaactaatg gaagtggatt gaatacagca gtctcaactg 1400
ggggcaattt tgccccccag aggacattgg gcaatgttg gagacatttt 1450
ggcattata ctgggggggt tggggatgg tggatgtgt gctactggc 1500
atccagtaaa tagaagccag gggtgccgct aaacatccta taatgcacag 1550
ggcagtaccc cacaacgaaa aataatctgg cccaaatgt cagttgtact 1600
gagtttgaga aaccccagcc taatgaaacc cttagtgttg ggctctggaa 1650
tggactttg tccctctaa ttattatctc ttccagcct cattcagcta 1700
ttcttactga cataccagtc tttagctggt gctatggtct gttctttgt 1750
tctagttgt atccccctcaa aagccattat gttgaaatcc taatccccaa 1800
ggtgatggca ttaagaagtg ggccttggg aagtgattag atcaggagtg 1850
cagagccctc atgatttagga tttagtgcct tataaaaaa ggccccagag 1900
agctaactca ccctccacc atatgaggac gtggcaagaa gatgacatgt 1950
atgagaacca aaaaacagct gtcgccaac accgactctg tcgttgcctt 2000
gatcttgaac ttccagcctc cagaactatg agaaataaaa ttctgggtgt 2050
ttgtgccta a 2061

<211> 359

<212> PRT

<213> Homo sapiens

<400> 45

Met Lys Leu Gly Cys Val Leu Met Ala Trp Ala Leu Tyr Leu Ser
1 5 10 15

Leu Gly Val Leu Trp Val Ala Gln Met Leu Leu Ala Ala Ser Phe
20 25 30

Glu Thr Leu Gln Cys Glu Gly Pro Val Cys Thr Glu Glu Ser Ser
35 40 45

Cys His Thr Glu Asp Asp Leu Thr Asp Ala Arg Glu Ala Gly Phe
50 55 60

Gln Val Lys Ala Tyr Thr Phe Ser Glu Pro Phe His Leu Ile Val
65 70 75

Ser Tyr Asp Trp Leu Ile Leu Gln Gly Pro Ala Lys Pro Val Phe
80 85 90

Glu Gly Asp Leu Leu Val Leu Arg Cys Gln Ala Trp Gln Asp Trp
95 100 105

Pro Leu Thr Gln Val Thr Phe Tyr Arg Asp Gly Ser Ala Leu Gly
110 115 120

Pro Pro Gly Pro Asn Arg Glu Phe Ser Ile Thr Val Val Gln Lys
125 130 135

Ala Asp Ser Gly His Tyr His Cys Ser Gly Ile Phe Gln Ser Pro
140 145 150

Gly Pro Gly Ile Pro Glu Thr Ala Ser Val Val Ala Ile Thr Val
155 160 165

Gln Glu Leu Phe Pro Ala Pro Ile Leu Arg Ala Val Pro Ser Ala
170 175 180

Glu Pro Gln Ala Gly Ser Pro Met Thr Leu Ser Cys Gln Thr Lys
185 190 195

Leu Pro Leu Gln Arg Ser Ala Ala Arg Leu Leu Phe Ser Phe Tyr

200 205 210

Lys Asp Gly Arg Ile Val Gln Ser Arg Gly Leu Ser Ser Glu Phe
215 220 225

Gln Ile Pro Thr Ala Ser Glu Asp His Ser Gly Ser Tyr Trp Cys
230 235 240

Glu Ala Ala Thr Glu Asp Asn Gln Val Trp Lys Gln Ser Pro Gln
245 250 255

Leu Glu Ile Arg Val Gln Gly Ala Ser Ser Ser Ala Ala Pro Pro
260 265 270

Thr Leu Asn Pro Ala Pro Gln Lys Ser Ala Ala Pro Gly Thr Ala
275 280 285

Pro Glu Glu Ala Pro Gly Pro Leu Pro Pro Pro Pro Thr Pro Ser
290 295 300

Ser Glu Asp Pro Gly Phe Ser Ser Pro Leu Gly Met Pro Asp Pro
305 310 315

His Leu Tyr His Gln Met Gly Leu Leu Leu Lys His Met Gln Asp
320 325 330

Val Arg Val Leu Leu Gly His Leu Leu Met Glu Leu Arg Glu Leu
335 340 345

Ser Gly His Gln Lys Pro Gly Thr Thr Lys Ala Thr Ala Glu
350 355

<210> 46

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 46

tgggctgtgt cctcatgg 18

<210> 47

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 47

tttccagcgc caattctc 18

<210> 48

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 48

agticcttgga ctgtgatagc cac 23

<210> 49

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 49

aaacttgggtt gtcctcagtg gctg 24

<210> 50

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 50

gtgagggacc tgtctgact gaggagagca gctgccacac ggagg 45

<210> 51

<211> 2181

<212> DNA

<213> Homo sapiens

<400> 51

cccacgcgtc cgcccacgcg tccgcccacg ggtccgcccc cgcgccggg 50

ccaccagaag tttaggcctc ttggtagca ggaggctgga agaaaggaca 100

gaagtagctc tggctgtat ggggatcta ctggccctgc tactcctggg 150

gcacctaaca gtggacactt atggccgtcc catcctggaa gtgccagaga 200

gtgtaacagg accttggaaa ggggatgtga atctccctg cacctatgac 250

ccctgcaag gctacaccca agtcttggtg aagtggctgg tacaacgtgg 300

ctcagaccct gtcaccatct ttctacgtga ctcttctggaa gaccatatcc 350

agcaggcaaa gtaccaggcgc cgcctgcatt tgagccacaa gttccagga 400

gatgtatccc tccaatttag caccctggag atggatgacc ggagccacta 450

cacgtgtgaa gtcacactggc agactcctga tggcaaccaa gtcgtgagag 500

ataagattac tgagctccgt gtccagaaac tctctgtctc caagcccaca 550

tgacacaactg gcagcggta tggcttcacg gtgcggcagg gaatgaggat 600

tagccttcaa tgccaggctc ggggttctcc tcccatcagt tatatttgtt 650

ataagcaaca gactaataac caggaaccca tcaaagttagc aaccctaagt 700

accttactct tcaaggcctgc ggtgatagcc gactcaggct cctattctg 750

cactgccaag ggccagggtt gctctgagca gcacagcgcac attgtgaagt 800

ttgtggtaa agactcctca aagctactca agaccaagac tgaggcacct 850

acaaccatga cataccctt gaaagcaaca tctacagtga agcagtccctg 900

ggactggacc actgacatgg atggctacat tggagagacc agtgctggc 950

cagggaaagag cctgcctgtc ttggccatca tcctcatcat tccttgc 1000

tgtatggtgg ttttaccat ggcctataatc atgctctgtc ggaagacatc 1050

ccaacaagag catgtctacg aagcagccag gtaagaaaagt ctctcctt 1100
ccatTTTGA ccccgccct gccctaatt ttgattactg gcaggaaatg 1150
tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggcctc 1200
agggtcagga catagctgcc ttccctct caggcacctt ctgagggtgt 1250
tttggccctc tgaacacaaa ggataattt aatccatctg ccttcgtt 1300
ccagaatccc tgggtggtag gatcctgata attaattggc aagaattgag 1350
gcagaagggt gggaaaccag gaccacagcc ccaagtccct tcttatgggt 1400
ggtggctct tgggcatag ggcacatgcc agagaggcca acgactctgg 1450
agaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgatgagc 1500
caactccccaa gaatctggc aacaactact ctgtatgagcc ctgcatacg 1550
caggagtacc agatcatcgc ccagatcaat ggcaactacg cccgcctgt 1600
ggacacagtt cctctggatt atgagttct ggccactgag ggaaaatgt 1650
tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700
tcagtccttg ccttcgtat ggccttcctc cctgtaccc ctttcctgg 1750
atagccccaaa gtgtccgcct accaacactg gagccgctgg gagtcaactgg 1800
cttgccttg gaatttgcca gatgcaccc aagtaagcca gctgctggat 1850
ttggctctgg gcccctctatcttgcctt gggggcttctt ggtactccctc 1900
tctaaatacc agagggaaga tgcccatagc actaggactt ggtcatcatg 1950
cctacagaca ctatcaact ttggcatctt gccaccagaa gacccgaggg 2000
aggctcagct ctgccagctc agaggaccag ctatatccag gatcattct 2050
cttcttcag gcccagacag cttaatttgcctt aaattgttat ttcacaggcc 2100
agggttcagt tctgctccctc cactataagt ctaatgttct gactctcc 2150
tgggtcataaaatataatcta atcataacag c 2181

<210> 52

<211> 321

<212> PRT

<213> Homo sapiens

<400> 52

Met Gly Ile Leu Leu Gly Leu Leu Leu Leu His Leu Thr Val
1 5 10 15

Asp Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr
20 25 30

Gly Pro Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro
35 40 45

Leu Gln Gly Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg
50 55 60

Gly Ser Asp Pro Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp
65 70 75

His Ile Gln Gln Ala Lys Tyr Gln Gly Arg Leu His Val Ser His
80 85 90

Lys Val Pro Gly Asp Val Ser Leu Gln Leu Ser Thr Leu Glu Met
95 100 105

Asp Asp Arg Ser His Tyr Thr Cys Glu Val Thr Trp Gln Thr Pro
110 115 120

Asp Gly Asn Gln Val Val Arg Asp Lys Ile Thr Glu Leu Arg Val
125 130 135

Gln Lys Leu Ser Val Ser Lys Pro Thr Val Thr Thr Gly Ser Gly
140 145 150

Tyr Gly Phe Thr Val Pro Gln Gly Met Arg Ile Ser Leu Gln Cys
155 160 165

Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile Trp Tyr Lys Gln
170 175 180

Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr Leu Ser Thr
185 190 195

Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser Tyr Phe
200 205 210

Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp Ile
215 220 225

Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
230 235 240

Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser
245 250 255

Thr Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr
260 265 270

Leu Gly Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe
275 280 285

Ala Ile Ile Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr
290 295 300

Met Ala Tyr Ile Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His
305 310 315

Val Tyr Glu Ala Ala Arg
320

<210> 53

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 53

tatccctcca attgaggcacc ctgg 24

<210> 54

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 54
gtcggaaagac atcccaacaa g 21

<210> 55
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 55
cttcacaatg tcgctgtgct gctc 24

<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 56
agccaaatcc agcagctggc ttac 24

<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 57
tggatgaccg gagccactac acgtgtgaag tcacctggca gactcctgat 50

<210> 58
<211> 2458
<212> DNA
<213> Homo sapiens

<400> 58
gcgccggag cccatctgcc cccaggggca cggggcgcg ggccggctcc 50

cgcggcgcac atggctgcag ccacctcgcg cgaccccgaa ggccgcgc 100

ccagctcgcc cgaggcgtcg cggaggcgcc cggccgcccc ggagccaagc 150
agcaactgag cgggaaagcg cccgcgtccg gggatcggga tgtccctcct 200
ccttctcctc ttgcttagttt cctactatgt tggAACCTG gggactcaca 250
ctgagatcaa gagagtggca gaggaaaagg tcacttgcc ctgccaccat 300
caactggggc ttccagaaaa agacactctg gatattaat ggctgctcac 350
cgataatgaa gggAACCAAa aagtgggtat cacttactcc agtcgtcatg 400
tctacaataa cttgactgag gaacagaagg gccgagtggc ctttgcttcc 450
aatttccctgg caggagatgc ctcctgcag attgaacctc tgaagcccag 500
tgatgagggc cggtaacct gtaaggtaa gaattcaggg cgctacgtgt 550
ggagccatgt catctaaaaa gtcttagtga gaccatccaa gcccaagtgt 600
gagtttggaaag gagagctgac agaaggaagt gacctgactt tgcatgtgt 650
gtcatcctct ggcacagagc ccattgtta ttactggcag cgaatccgag 700
agaaagaggg agaggatgaa cgtctgcctc ccaaattctag gattgactac 750
aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800
actgtaccag tgcacagcag gcaacgaagc tggaaaggaa agctgtgtgg 850
tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaaggagca 900
gtgacaggca tagtggctgg agccctgctg atttcctct tgggtggct 950
gctaattccga aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000
atgaaattcg agaagatgct gaagctccaa aagccctct tgtaaaaccc 1050
agctcctctt cctcaggcctc tcggagctca cgctctggtt cttccctccac 1100
tcgctccaca gcaaatagtg cctcacgcag ccagcggaca ctgtcaactg 1150
acgcagcacc ccagccaggg ctggccaccc aggcatcag cctagtgggg 1200
ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250

caaagcagaa accacaccca gcatgatccc cagccagagc agagcttcc 1300
aaacggctcg aattacaatg gacttgactc ccacgcgttc ctaggagtca 1350
gggtcttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400
ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450
agatgagcat ttccctata caataccaaa caagcaaaag gatgtaaagct 1500
gattcatctg taaaaaggca tcttattgtc cctttagacc agagtaaggg 1550
aaagcaggag tccaaatcta ttgttgacc aggacctgtg gtgagaaggt 1600
tggggaaagg tgaggtgaat atacctaaaa ctttaatgt gggatattt 1650
gtatcagtgc ttgattcac aatttcaag aggaaatggg atgctgttg 1700
taaattttct atgcatttct gcaaacttat tggatttata gttattcaga 1750
cagtcaagca gaacccacag ccttattaca cctgtctaca ccatgtactg 1800
agctaaccac ttctaagaaa ctccaaaaaaaa gcaaacatgt gtcttctatt 1850
ctgacttaac ttcattgtc ataaggtttg gatattaatt tcaaggggag 1900
ttgaaatagt gggagatgga gaagagtgaa tgagttctc ccactctata 1950
ctaatttcac tatttgtatt gagccaaaa taactatgaa aggagacaaa 2000
aatttgtgac aaaggattgt gaagagctt ccatctcat gatgtatga 2050
ggattgtga caaacattag aaatatataa tggagcaatt gtggatttcc 2100
cctcaaatac gatgcctcta aggacttcc tgctagatat ttctggaagg 2150
agaaaaataca acatgtcatt tatcaacgtc cttagaaaga attctctag 2200
agaaaaaggatcttagaaat gctgaaagat tacccaaacat accattatag 2250
tctcttctt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300
tagaaaggga gattagatca gtttctt aatatgtcaa ggaaggtagc 2350
cgggcatggt gccaggcacc tgttagaaaa tccagcaggt ggaggtgca 2400

gtgagccgag attatgccat tgcaactccag cctgggtgac agagcgggac 2450

tccgtctc 2458

<210> 59

<211> 373

<212> PRT

<213> Homo sapiens

<400> 59

Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly
1 5 10 15

Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys
20 25 30

Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp
35 40 45

Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln
50 55 60

Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu
65 70 75

Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu
80 85 90

Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp
95 100 105

Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val
110 115 120

Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro
125 130 135

Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr
140 145 150

Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr
155 160 165

Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro
170 175 180

Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly Arg Val Leu Leu
185 190 195

Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln Cys Thr Ala
200 205 210

Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val Thr Val
215 220 225

Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr Gly
230 235 240

Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu
245 250 255

Ile Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Arg Pro
260 265 270

Asn Glu Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val
275 280 285

Lys Pro Ser Ser Ser Ser Gly Ser Arg Ser Ser Arg Ser Gly
290 295 300

Ser Ser Ser Thr Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln
305 310 315

Arg Thr Leu Ser Thr Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr
320 325 330

Gln Ala Tyr Ser Leu Val Gly Pro Glu Val Arg Gly Ser Glu Pro
335 340 345

Lys Lys Val His His Ala Asn Leu Thr Lys Ala Glu Thr Thr Pro
350 355 360

Ser Met Ile Pro Ser Gln Ser Arg Ala Phe Gln Thr Val
365 370

<210> 60

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 60

ccagtgcaca gcaggcaacg aagc 24

<210> 61

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 61

actaggctgt atgcctgggt gggc 24

<210> 62

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 62

gtatgtacaa agcatggca tggttgcagg agcagtgaca ggc 43

<210> 63

<211> 3534

<212> DNA

<213> Homo sapiens

<400> 63

tcgttccctt tgctctctcg cgcccagtcc tcctccctgg ttctcccttag 50

ccgctgtcgg aggagagcac ccggagacgc gggctgcagt cgcggcggct 100

tctccccgcc tgggcggcct cgccgctggg caggtgctga gcgcccctag 150

agcctccctt gccgcctccc tcctctgccc ggccgcagca gtgcacatgg 200

gtgttgtggag gtagatgggc tcccgcccg ggaggcggcg gtggatgcgg 250

cgctggcag aagcagccgc cgattccagc tgccccgcgc gccccggcgc 300

ccccctgcgag tccccgggttc agccatgggg acctctccga gcagcagcac 350
cgccctcgcc tcctgcagcc gcatcgcccg ccgagccaca gccacgtga 400
tcgcgggctc ctttctcctg ctggattcc ttagcaccac cacagctcag 450
ccagaacaga aggccctgaa tctcattggc acataccgcc atgttgaccg 500
tgccaccggc cagggtgctaa cctgtgacaa gtgtccagca ggaacctatg 550
tctctgagca ttgtaccaac acaaggctgc gcgtctgcag cagttgccct 600
gtggggacct ttaccaggca tgagaatggc atagagaaat gccatgactg 650
tagtcagcca tgcccatggc caatgattga gaaattacct tgtgctgcct 700
tgactgaccg agaatgcact tgcccacctg gcatgttcca gtctaacgct 750
acctgtgccc cccatacggt gtgtcctgtg ggttggggtg tgcggaagaa 800
agggacagag actgaggatg tgcggtgtaa gcagtgtgct cggggtaacct 850
tctcagatgt gccttctagt gtgatgaaat gcaaagcata cacagactgt 900
ctgagtcaga acctgggtggt gatcaagccg gggaccaagg agacagacaa 950
cgtctgtggc acactcccg tcttctccag ctccacacta cttccctgt 1000
gcacagccat ctttccacgc cctgaggcaca tggaaaccca tgaagtccct 1050
tcctccactt atgtcccaa aggcatac tcaacagaat ccaactcttc 1100
tgcctctgtt agaccaaagg tactgagtag catccaggaa gggacagtcc 1150
ctgacaacac aagctcagca aggggaaagg aagacgtgaa caagaccctc 1200
ccaaacccctc aggttgtcaa ccaccagcaa ggccccacc acagacacat 1250
cctgaagctg ctgccgtcca tggaggccac tgggggcgag aagtccagca 1300
cgcccatcaa gggccccaag aggggacatc ctagacagaa cctacacaag 1350
cattttgaca tcaatgagca tttgccctgg atgattgtgc tttcctgct 1400
gctggtgctt gtggtgattt tggtgtgcag tatccggaaa agctcgagga 1450

ctctgaaaaa ggggccccgg caggatccca gtgccattgt ggaaaaggca 1500
ggcgtgaaga aatccatgac tccaaccag aaccgggaga aatggatcta 1550
ctactgcaat ggccatggta tcgatatcct gaagcttgcgcagccaaag 1600
tggaaagcca gtggaaagat atctatcagt ttcttgcaa tgccagttag 1650
agggaggttgcgtttctc caatgggtac acagccgacc acgagcgggc 1700
ctacgcagct ctgcagcact ggaccatccg gggccccgag gccagcctcg 1750
cccagctaat taggcgcctg cgccagcacc ggagaaacga tgggtggag 1800
aagattcgtg ggctgatgga agacaccacc cagctggaaa ctgacaaact 1850
agctctcccg atgagccccca gcccgccttag cccgagcccc atccccagcc 1900
ccaacgcgaa acttggaaat tccgctctcc tgacggtgga gcctccccca 1950
caggacaaga acaagggtt cttcggttat gagtcggagc ccctctccg 2000
ctgtgactct acatccagcg gtcctccgc gctgagcagg aacggttccct 2050
ttattaccaa agaaaagaag gacacagtgt tgccgcaggat acgcctggac 2100
ccctgtgact tgcagcctat ctttgatgac atgctccact ttctaaatcc 2150
tgaggagctg cgggtgattt aagagattcc ccaggctgag gacaaactag 2200
accggctatt cgaaattatt ggagtcaaga gccaggaagc cagccagacc 2250
ctcctggact ctgtttatag ccatcttcct gacctgctgtt agaacatagg 2300
gatactgcat tctggaaattt actcaatttta gtggcagggtt ggtttttaa 2350
tttctcttg tttctgattt ttgttgtttt ggggtgtgtt gtgtgtttgt 2400
gtgtgtgtgt gtgtgtgtgt gtgtgtgtgtt gtttaacaga gaatatggcc 2450
atgcgttgag ttctttctcc ttctctctct ctctttttt tttaaataac 2500
tcctctggaa agttggttta taagcccttgc ccagggtaa ctgtgtgaa 2550
atacccacca ctaaagtttt ttaagttcca tattttctcc attttgcctt 2600

tttatgtatt ttcaagagtt ttctgtgcac tttaaattta cttaaacttac 2650
cataaatgca gtgtgacttt tcccacacac tggattgtga ggctttaac 2700
ttcttaaaaag tataatggca tcttgtaat cctataagca gctttatgt 2750
ctcttaacat tcacacctac ttttaaaaaa caaatattat tactatttt 2800
attattgttt gtcctttata aattttctta aagattaaga aaatttaaga 2850
ccccattgag ttactgtaat gcaattcaac tttgagttat cttaaata 2900
tgtcttgtat agttcatatt catggctgaa acttgaccac actattgctg 2950
attgtatggt ttccacctgg acaccgtgta gaatgcttga ttacttgtac 3000
tcttcattatg ctaatatgct ctgggctgga gaaatgaaat cctcaagcca 3050
tcaggatttgc tatataagt ggcttgacaa ctgggccacc aaagaacttg 3100
aacttcacct tttaggattt gagctgttct ggaacacatt gctgcacttt 3150
ggaaagtcaa aatcaagtgc cagtggcgcc cttccatag agaatttgcc 3200
cagcttgc ttaaaagatg tcttgtttt tatatacaca taatcaatag 3250
gtccaatctg ctctcaaggc cttggcctg gtgggattcc ttcaccaatt 3300
actttaaatgaaaatggctg caactgtaag aacccttgc tgatatattt 3350
gcaactatgc tcccatttac aaatgtaccc tctaattgcctc agttgccagg 3400
ttccaatgca aagggtggcgt ggactccctt tgggtgggtg gggtttgg 3450
gtagtggtga aggaccgata tcagaaaaat gcctcaagt gtactaattt 3500
attaataaac attaggtgtt tgtaaaaaaa aaaa 3534

<210> 64
<211> 655
<212> PRT
<213> Homo sapiens

<400> 64
Met Gly Thr Ser Pro Ser Ser Ser Thr Ala Leu Ala Ser Cys Ser

1 5 10 15

Arg Ile Ala Arg Arg Ala Thr Ala Thr Met Ile Ala Gly Ser Leu
20 25 30

Leu Leu Leu Gly Phe Leu Ser Thr Thr Ala Gln Pro Glu Gln
35 40 45

Lys Ala Ser Asn Leu Ile Gly Thr Tyr Arg His Val Asp Arg Ala
50 55 60

Thr Gly Gln Val Leu Thr Cys Asp Lys Cys Pro Ala Gly Thr Tyr
65 70 75

Val Ser Glu His Cys Thr Asn Thr Ser Leu Arg Val Cys Ser Ser
80 85 90

Cys Pro Val Gly Thr Phe Thr Arg His Glu Asn Gly Ile Glu Lys
95 100 105

Cys His Asp Cys Ser Gln Pro Cys Pro Trp Pro Met Ile Glu Lys
110 115 120

Leu Pro Cys Ala Ala Leu Thr Asp Arg Glu Cys Thr Cys Pro Pro
125 130 135

Gly Met Phe Gln Ser Asn Ala Thr Cys Ala Pro His Thr Val Cys
140 145 150

Pro Val Gly Trp Gly Val Arg Lys Lys Gly Thr Glu Thr Glu Asp
155 160 165

Val Arg Cys Lys Gln Cys Ala Arg Gly Thr Phe Ser Asp Val Pro
170 175 180

Ser Ser Val Met Lys Cys Lys Ala Tyr Thr Asp Cys Leu Ser Gln
185 190 195

Asn Leu Val Val Ile Lys Pro Gly Thr Lys Glu Thr Asp Asn Val
200 205 210

Cys Gly Thr Leu Pro Ser Phe Ser Ser Thr Ser Pro Ser Pro
215 220 225

Gly Thr Ala Ile Phe Pro Arg Pro Glu His Met Glu Thr His Glu

230 235 240

Val Pro Ser Ser Thr Tyr Val Pro Lys Gly Met Asn Ser Thr Glu
245 250 255

Ser Asn Ser Ser Ala Ser Val Arg Pro Lys Val Leu Ser Ser Ile
260 265 270

Gln Glu Gly Thr Val Pro Asp Asn Thr Ser Ser Ala Arg Gly Lys
275 280 285

Glu Asp Val Asn Lys Thr Leu Pro Asn Leu Gln Val Val Asn His
290 295 300

Gln Gln Gly Pro His His Arg His Ile Leu Lys Leu Leu Pro Ser
305 310 315

Met Glu Ala Thr Gly Gly Glu Lys Ser Ser Thr Pro Ile Lys Gly
320 325 330

Pro Lys Arg Gly His Pro Arg Gln Asn Leu His Lys His Phe Asp
335 340 345

Ile Asn Glu His Leu Pro Trp Met Ile Val Leu Phe Leu Leu
350 355 360

Val Leu Val Val Ile Val Val Cys Ser Ile Arg Lys Ser Ser Arg
365 370 375

Thr Leu Lys Lys Gly Pro Arg Gln Asp Pro Ser Ala Ile Val Glu
380 385 390

Lys Ala Gly Leu Lys Lys Ser Met Thr Pro Thr Gln Asn Arg Glu
395 400 405

Lys Trp Ile Tyr Tyr Cys Asn Gly His Gly Ile Asp Ile Leu Lys
410 415 420

Leu Val Ala Ala Gln Val Gly Ser Gln Trp Lys Asp Ile Tyr Gln
425 430 435

Phe Leu Cys Asn Ala Ser Glu Arg Glu Val Ala Ala Phe Ser Asn
440 445 450

Gly Tyr Thr Ala Asp His Glu Arg Ala Tyr Ala Ala Leu Gln His

455 460 465

Trp Thr Ile Arg Gly Pro Glu Ala Ser Leu Ala Gln Leu Ile Ser
470 475 480

Ala Leu Arg Gln His Arg Arg Asn Asp Val Val Glu Lys Ile Arg
485 490 495

Gly Leu Met Glu Asp Thr Thr Gln Leu Glu Thr Asp Lys Leu Ala
500 505 510

Leu Pro Met Ser Pro Ser Pro Leu Ser Pro Ser Pro Ile Pro Ser
515 520 525

Pro Asn Ala Lys Leu Glu Asn Ser Ala Leu Leu Thr Val Glu Pro
530 535 540

Ser Pro Gln Asp Lys Asn Lys Gly Phe Phe Val Asp Glu Ser Glu
545 550 555

Pro Leu Leu Arg Cys Asp Ser Thr Ser Ser Gly Ser Ser Ala Leu
560 565 570

Ser Arg Asn Gly Ser Phe Ile Thr Lys Glu Lys Lys Asp Thr Val
575 580 585

Leu Arg Gln Val Arg Leu Asp Pro Cys Asp Leu Gln Pro Ile Phe
590 595 600

Asp Asp Met Leu His Phe Leu Asn Pro Glu Glu Leu Arg Val Ile
605 610 615

Glu Glu Ile Pro Gln Ala Glu Asp Lys Leu Asp Arg Leu Phe Glu
620 625 630

Ile Ile Gly Val Lys Ser Gln Glu Ala Ser Gln Thr Leu Leu Asp
635 640 645

Ser Val Tyr Ser His Leu Pro Asp Leu Leu
650 655

<210> 65

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 65

gtagcagtgc acatggggtg ttgg 24

<210> 66

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 66

accgcacatc ctcagtcctc gtcc 24

<210> 67

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 67

acgatgatcg cgggctccct tctcctgctt ggattccta gcaccaccac 50

<210> 68

<211> 2412

<212> DNA

<213> Homo sapiens

<400> 68

atgggaagcc agtaaacactg tggcctacta tctctccgt ggtgccatct 50

acattttgg gactcgggaa ttatgaggta gaggtggagg cgagccgga 100

tgtcagaggt cctgaaatag tcaccatggg ggaaaatgat ccgcctgctg 150

ttgaagcccc ctttcattc cgatcgctt ttggccttga tgattgaaa 200

ataagtccctg ttgcaccaga tgcagatgt gtgcgtgcac agatcctgtc 250

actgctgcca ttgaagttt ttccaatcat cgtcattggg atcattgcat 300

tgatattagc actggccatt ggtctggca tccacttcga ctgctcaggg 350
aagtacagat gtgcgtcatc ctttaagtgt atcgagctga tagctcgatg 400
tgacggagtc tcggattgca aagacgggga ggacgagtac cgctgtgtcc 450
gggtgggtgg tcagaatgcc gtgcgtcagg tgttcacagc tgctcgtgg 500
aagaccatgt gctccgatga ctggaagggt cactacgcaa atgtgcctg 550
tgcccaactg ggttcccaa gctatgtgag ttcagataac ctcagagtga 600
gctcgcttgg agggcagttc cgggaggagt ttgttccat cgatcacctc 650
ttgccagatg acaaggtgac tgcattacac cactcagtat atgtgaggga 700
gggatgtgcc tctggccacg tggttaccctt gcagtgcaca gcctgtggc 750
atagaagggg ctacagctca cgcacgtgg gtggaaacat gtcctgtctc 800
tcgcagtggc cctggcaggg cagccttcag ttccagggt accacctgt 850
cgggggctct gtcacacgc ccctgtggat catcactgct gcacactgt 900
tttatgactt gtacccccc aagtcatgga ccatccaggt gggcttagtt 950
tccctgttgg acaatccagc cccatccac ttggggaga agattgtcta 1000
ccacagcaag tacaagccaa agaggctggg caatgacatc gcccttatga 1050
agctggccgg gccactcagc ttcaatgaaa tgcgtccagcc tgcgtgcctg 1100
cccaactctg aagagaactt cccccatggaa aaagtgtgct ggacgtcagg 1150
atggggggcc acagaggatg gaggtgacgc ctccctgtc ctgaaccacg 1200
cggccgtccc ttgttcc aacaagatct gcaaccacag ggacgtgtac 1250
ggggcatca tctcccccgc catgctctgc gcgggctacc tgacgggtgg 1300
cgtggacagc tgccaggggg acagcggggg gcccctggtg tgtcaagaga 1350
ggaggctgtg gaagtttgtg ggagcgtacca gctttggcat cggctgcga 1400
gaggtaaca agcctgggt gtacacccgt gtcacccct tcctggactg 1450

gatccacgag cagatggaga gagacctaaa aacctgaaga ggaaggggac 1500
aagttagccac ctgagttcct gaggtgatga agacagcccg atcctcccct 1550
ggactcccggt gtaggaacct gcacacgagc agacaccctt ggagctctga 1600
gttccggcac cagtagcagg cccgaaagag gcacccttc atctgattcc 1650
agcacaacct tcaagctgct ttttgtttt tgttttttg aggtggagtc 1700
tcgctctgtt gcccaggctg gagtgcagtgc gcgaaatccc tgctcaactgc 1750
agcctccgct tccctggttc aagcgattct ctgcctcag cttccccagt 1800
agctgggacc acaggtgcccc gccaccacac ccaactaatt ttgttatattt 1850
tagtagagac agggtttcac catgttgcc aggctgctct caaaccctg 1900
acctaataatg atgtgcctgc ttcagccctcc cacagtgcgtgg 1950
catggccac cacgcctagc ctcacgctcc tttctgatct tcactaagaa 2000
caaaagaagc agcaacttgc aaggcgcc 2050
tttctctcc agggcttgc aaaattcctg acgagataag cagttatgtg 2100
acctcacgtg caaagccacc aacagccact cagaaaagac gcaccagccc 2150
agaagtgcag aactgcagtc actgcacgtt ttcatctcta gggaccagaa 2200
ccaaacccac cctttctact tccaagactt attttcacat gtggggaggt 2250
taatcttagga atgactcggtt taaggccat tttcatgatt tcttttagc 2300
atttggtgct tgacgttta ttgccttg attccaaata atatgttcc 2350
ttccctcatt gctggcggtg tctgcgtgga ctggtgacgt gaatcaaataat 2400
catccactga aa 2412

<210> 69
<211> 453
<212> PRT
<213> Homo sapiens

<400> 69

Met Gly Glu Asn Asp Pro Pro Ala Val Glu Ala Pro Phe Ser Phe
1 5 10 15

Arg Ser Leu Phe Gly Leu Asp Asp Leu Lys Ile Ser Pro Val Ala
20 25 30

Pro Asp Ala Asp Ala Val Ala Ala Gln Ile Leu Ser Leu Leu Pro
35 40 45

Leu Lys Phe Phe Pro Ile Ile Val Ile Gly Ile Ile Ala Leu Ile
50 55 60

Leu Ala Leu Ala Ile Gly Leu Gly Ile His Phe Asp Cys Ser Gly
65 70 75

Lys Tyr Arg Cys Arg Ser Ser Phe Lys Cys Ile Glu Leu Ile Ala
80 85 90

Arg Cys Asp Gly Val Ser Asp Cys Lys Asp Gly Glu Asp Glu Tyr
95 100 105

Arg Cys Val Arg Val Gly Gly Gln Asn Ala Val Leu Gln Val Phe
110 115 120

Thr Ala Ala Ser Trp Lys Thr Met Cys Ser Asp Asp Trp Lys Gly
125 130 135

His Tyr Ala Asn Val Ala Cys Ala Gln Leu Gly Phe Pro Ser Tyr
140 145 150

Val Ser Ser Asp Asn Leu Arg Val Ser Ser Leu Glu Gly Gln Phe
155 160 165

Arg Glu Glu Phe Val Ser Ile Asp His Leu Leu Pro Asp Asp Lys
170 175 180

Val Thr Ala Leu His His Ser Val Tyr Val Arg Glu Gly Cys Ala
185 190 195

Ser Gly His Val Val Thr Leu Gln Cys Thr Ala Cys Gly His Arg
200 205 210

Arg Gly Tyr Ser Ser Arg Ile Val Gly Gly Asn Met Ser Leu Leu
215 220 225

Ser Gln Trp Pro Trp Gln Ala Ser Leu Gln Phe Gln Gly Tyr His
230 235 240

Leu Cys Gly Gly Ser Val Ile Thr Pro Leu Trp Ile Ile Thr Ala
245 250 255

Ala His Cys Val Tyr Asp Leu Tyr Leu Pro Lys Ser Trp Thr Ile
260 265 270

Gln Val Gly Leu Val Ser Leu Leu Asp Asn Pro Ala Pro Ser His
275 280 285

Leu Val Glu Lys Ile Val Tyr His Ser Lys Tyr Lys Pro Lys Arg
290 295 300

Leu Gly Asn Asp Ile Ala Leu Met Lys Leu Ala Gly Pro Leu Thr
305 310 315

Phe Asn Glu Met Ile Gln Pro Val Cys Leu Pro Asn Ser Glu Glu
320 325 330

Asn Phe Pro Asp Gly Lys Val Cys Trp Thr Ser Gly Trp Gly Ala
335 340 345

Thr Glu Asp Gly Gly Asp Ala Ser Pro Val Leu Asn His Ala Ala
350 355 360

Val Pro Leu Ile Ser Asn Lys Ile Cys Asn His Arg Asp Val Tyr
365 370 375

Gly Gly Ile Ile Ser Pro Ser Met Leu Cys Ala Gly Tyr Leu Thr
380 385 390

Gly Gly Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val
395 400 405

Cys Gln Glu Arg Arg Leu Trp Lys Leu Val Gly Ala Thr Ser Phe
410 415 420

Gly Ile Gly Cys Ala Glu Val Asn Lys Pro Gly Val Tyr Thr Arg
425 430 435

Val Thr Ser Phe Leu Asp Trp Ile His Glu Gln Met Glu Arg Asp
440 445 450

Leu Lys Thr

<210> 70

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 70

tgacatcgcc ctatgaagc tggc 24

<210> 71

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 71

tacacgtccc tgtggttgca gatc 24

<210> 72

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 72

cgttcaatgc agaaatgatc cagcctgtgt gcctgcccaa ctctgaagag 50

<210> 73

<211> 3305

<212> DNA

<213> Homo sapiens

<400> 73

ccccacgcgtc cgtccttagtc cccggggccaa ctcggacagt ttgctcattt 50

attgcaacgg tcaaggctgg cttgtgccag aacggcgcgc gcgccgcac 100

gcacgcacac acacgggggg aaactttttt aaaaatgaaa ggctagaaga 150
gctcagcggc ggcgcggcg ctgcgcgagg gctccggagc tgactcgccg 200
aggcaggaaa tccctccggt cgcgacgccc ggccccggct cggcgccgc 250
gtgggatggt gcagcgctcg cgcggggcc cgagagctgc tgcaactgaag 300
gccggcgacg atggcagcgc gcccgctgcc cgtgtccccccc gcccgcgcc 350
tcctgctcgc cctggccggt gctctgctcg cgccctgcga ggcccggagg 400
gtgagcttat ggaaccaagg aagagctgat gaagtgtca gtgcctctgt 450
tcggagtggg gacctctgga tcccagtgaa gagcttcgac tccaagaatc 500
atccagaagt gctgaatatt cgactacaac gggaaagcaa agaactgatc 550
ataaatctgg aaagaaatga aggtctcatt gccagcagtt tcacggaaac 600
ccactatctg caagacggta ctgatgtctc cctcgctcga aattacacgg 650
gtcactgtta ctaccatgga catgtacggg gatattctga ttcagcagtc 700
agtctcagca cgtgtctgg ttcagggga cttattgtgt ttgaaaatga 750
aagctatgtc ttagAACCAA tgAAAAGTGC AACCAACAGA TACAAACTCT 800
tcccagcgaa gaagctgaaa agcgtccggg gatcatgtgg atcacatcac 850
aacacaccaa acctcgctgc aaagaatgtt tttccaccac cctctcagac 900
atgggcaaga aggcataaaa gagagaccct caaggcaact aagtatgtgg 950
agctggtgat cgtggcagac aaccgagagt ttcagaggca aggaaaagat 1000
ctggaaaaag ttaagcagcg attaatagag attgctaatc acgttgacaa 1050
gttttacaga ccactgaaca ttccggatgt gttggtaggc gtggaaatgt 1100
ggaatgacat ggacaaatgc tctgtaaatgc aggaccatt caccagcctc 1150
catgaatttc tggactggag gaagatgaag ctctacctc gcaaattcca 1200
tgacaatgctc cagcttgtca gtggggttta ttccaaggaccaccatcg 1250

gcatggcccc aatcatgagc atgtcacgg cagaccagtc tgggggaatt 1300
gtcatggacc attcagacaa tccccttgtt gcagccgtga ccctggcaca 1350
tgagctgggc cacaatttcg gnatgaatca tgacacactg gacaggggct 1400
tagctgtca aatggcggtt gagaaggag gctgcatcat gaacgcttcc 1450
accgggtacc cattcccat ggtgttcagc agttcagca ggaaggactt 1500
ggagaccagc ctggagaaaag gaatgggggt gtgcctgtt aacctgccgg 1550
aagtcaaggaa gtcittcggg ggccagaagt gtggaaacag atttgtggaa 1600
gaaggagagg agtgtgactg tggggagcca gaggaatgta tgaatcgctg 1650
ctgcaatgcc accacctgta ccctgaagcc ggacgctgtg tgccacatg 1700
ggctgtgctg tgaagactgc cagctgaagc ctgcaggaac agcgtgcagg 1750
gactccagca actccctgtga cctccagag ttctgcacag gggccagccc 1800
tcactgcccga gccaatgtgt acctgcacga tggcactca tgcaggatg 1850
tgacggcta ctgctacaat ggcacatgcc agactcacga gcagcagtgt 1900
gtcacgctct ggggaccagg tgctaacacct gcccctggga tctgcttga 1950
gagagtcaat tctgcagggtg atccttatgg caactgtggc aaagtctcga 2000
agagttccct tgccaaatgc gagatgagag atgctaaatg tggaaaaatc 2050
cagtgcaag gaggtgccag ccggccagtc attgtacca atgccgttc 2100
catagaaaca aacatccctc tgcagcaagg aggccggatt ctgtgccggg 2150
ggacccacgt gtacttggc gatgacatgc cggacccagg gcttgcgtt 2200
gcaggcacaa agtgcgcaga tggaaaaatc tgcctgaatc gtcaatgtca 2250
aaatattagt gtctttgggg ttcacgagtg tgcaatgcag tgccacggca 2300
gaggggtgtg caacaacagg aagaactgcc actgcgaggc ccactggca 2350
cctccctct gtgacaaggtt tggcttgga ggaagcacag acagcggccc 2400

catccggcaa gcagaagcaa ggcaggaagc tgcagagtcc aacagggagc 2450
gccccccaggc ccaggagccc gtgggatcgc aggagcatgc gtctactgcc 2500
tcactgacac tcatactgagc cctccatga catggagacc gtgaccagt 2550
ctgctgcaga ggaggtcacg cgtcccaag gcctcctgtg actggcagca 2600
ttgactctgt ggcttgcca tcgttccat gacaacagac acaacacagt 2650
tctcggggct caggagggga agtccagcct accaggcacf tctgcagaaa 2700
cagtgcagg aaggcagcg acttcctggt tgagctctg ctaaaacatg 2750
gacatgctc agtgctgctc ctgagagagt agcaggta cactctggca 2800
ggccccagcc ctgcagcaag gaggaagagg actcaaaagt ctggccttc 2850
actgagcctc cacagcagt ggggagaagc aagggttggg cccagtgcc 2900
ccttccccca gtgacaccc tcgttggca gccctgtatga ctggctctg 2950
gctgcaactt aatgctctga tatggctttt agcatttatt atatgaaaat 3000
agcagggtt tagttttaa ttatcagag accctgccac ccattccatc 3050
tccatccaag caaaactgaat ggcaatgaaa caaactggag aagaaggtag 3100
gagaaagggc ggtgaactct ggctttgc tgtggacatg cgtgaccagc 3150
agtactcagg ttgagggtt tgcagaaagc cagggAACCC acagagtcac 3200
caaccctca ttacaacaagt aagaatgtta aaaagtgaaa acaatgttaag 3250
agcctaactc catccccgt ggccattact gcataaaata gagtgcattt 3300
gaaat 3305

<210> 74
<211> 735
<212> PRT
<213> Homo sapiens

<400> 74
Met Ala Ala Arg Pro Leu Pro Val Ser Pro Ala Arg Ala Leu Leu

1 5 10 15

Leu Ala Leu Ala Gly Ala Leu Leu Ala Pro Cys Glu Ala Arg Gly
20 25 30

Val Ser Leu Trp Asn Gln Gly Arg Ala Asp Glu Val Val Ser Ala
35 40 45

Ser Val Arg Ser Gly Asp Leu Trp Ile Pro Val Lys Ser Phe Asp
50 55 60

Ser Lys Asn His Pro Glu Val Leu Asn Ile Arg Leu Gln Arg Glu
65 70 75

Ser Lys Glu Leu Ile Ile Asn Leu Glu Arg Asn Glu Gly Leu Ile
80 85 90

Ala Ser Ser Phe Thr Glu Thr His Tyr Leu Gln Asp Gly Thr Asp
95 100 105

Val Ser Leu Ala Arg Asn Tyr Thr Gly His Cys Tyr Tyr His Gly
110 115 120

His Val Arg Gly Tyr Ser Asp Ser Ala Val Ser Leu Ser Thr Cys
125 130 135

Ser Gly Leu Arg Gly Leu Ile Val Phe Glu Asn Glu Ser Tyr Val
140 145 150

Leu Glu Pro Met Lys Ser Ala Thr Asn Arg Tyr Lys Leu Phe Pro
155 160 165

Ala Lys Lys Leu Lys Ser Val Arg Gly Ser Cys Gly Ser His His
170 175 180

Asn Thr Pro Asn Leu Ala Ala Lys Asn Val Phe Pro Pro Pro Ser
185 190 195

Gln Thr Trp Ala Arg Arg His Lys Arg Glu Thr Leu Lys Ala Thr
200 205 210

Lys Tyr Val Glu Leu Val Ile Val Ala Asp Asn Arg Glu Phe Gln
215 220 225

Arg Gln Gly Lys Asp Leu Glu Lys Val Lys Gln Arg Leu Ile Glu

230 235 240

Ile Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asn Ile Arg
245 250 255

Ile Val Leu Val Gly Val Glu Val Trp Asn Asp Met Asp Lys Cys
260 265 270

Ser Val Ser Gln Asp Pro Phe Thr Ser Leu His Glu Phe Leu Asp
275 280 285

Trp Arg Lys Met Lys Leu Leu Pro Arg Lys Ser His Asp Asn Ala
290 295 300

Gln Leu Val Ser Gly Val Tyr Phe Gln Gly Thr Thr Ile Gly Met
305 310 315

Ala Pro Ile Met Ser Met Cys Thr Ala Asp Gln Ser Gly Gly Ile
320 325 330

Val Met Asp His Ser Asp Asn Pro Leu Gly Ala Ala Val Thr Leu
335 340 345

Ala His Glu Leu Gly His Asn Phe Gly Met Asn His Asp Thr Leu
350 355 360

Asp Arg Gly Cys Ser Cys Gln Met Ala Val Glu Lys Gly Gly Cys
365 370 375

Ile Met Asn Ala Ser Thr Gly Tyr Pro Phe Pro Met Val Phe Ser
380 385 390

Ser Cys Ser Arg Lys Asp Leu Glu Thr Ser Leu Glu Lys Gly Met
395 400 405

Gly Val Cys Leu Phe Asn Leu Pro Glu Val Arg Glu Ser Phe Gly
410 415 420

Gly Gln Lys Cys Gly Asn Arg Phe Val Glu Glu Gly Glu Cys
425 430 435

Asp Cys Gly Glu Pro Glu Glu Cys Met Asn Arg Cys Cys Asn Ala
440 445 450

Thr Thr Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Gly Leu

455 460 465

Cys Cys Glu Asp Cys Gln Leu Lys Pro Ala Gly Thr Ala Cys Arg
470 475 480

Asp Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Ala
485 490 495

Ser Pro His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Ser
500 505 510

Cys Gln Asp Val Asp Gly Tyr Cys Tyr Asn Gly Ile Cys Gln Thr
515 520 525

His Glu Gln Gln Cys Val Thr Leu Trp Gly Pro Gly Ala Lys Pro
530 535 540

Ala Pro Gly Ile Cys Phe Glu Arg Val Asn Ser Ala Gly Asp Pro
545 550 555

Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala Lys Cys
560 565 570

Glu Met Arg Asp Ala Lys Cys Gly Lys Ile Gln Cys Gln Gly Gly
575 580 585

Ala Ser Arg Pro Val Ile Gly Thr Asn Ala Val Ser Ile Glu Thr
590 595 600

Asn Ile Pro Leu Gln Gln Gly Arg Ile Leu Cys Arg Gly Thr
605 610 615

His Val Tyr Leu Gly Asp Asp Met Pro Asp Pro Gly Leu Val Leu
620 625 630

Ala Gly Thr Lys Cys Ala Asp Gly Lys Ile Cys Leu Asn Arg Gln
635 640 645

Cys Gln Asn Ile Ser Val Phe Gly Val His Glu Cys Ala Met Gln
650 655 660

Cys His Gly Arg Gly Val Cys Asn Asn Arg Lys Asn Cys His Cys
665 670 675

Glu Ala His Trp Ala Pro Pro Phe Cys Asp Lys Phe Gly Phe Gly

680 685 690

Gly Ser Thr Asp Ser Gly Pro Ile Arg Gln Ala Glu Ala Arg Gln
695 700 705

Glu Ala Ala Glu Ser Asn Arg Glu Arg Gly Gln Gly Gln Glu Pro
710 715 720

Val Gly Ser Gln Glu His Ala Ser Thr Ala Ser Leu Thr Leu Ile
725 730 735

<210> 75

<211> 483

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 30, 94, 143, 156, 163, 179, 193, 369, 371, 381, 390, 473

<223> unknown base

<400> 75

tcccaaggct tcgtggatgg cagatgattn tggggtttg cattgttcc 50

ctgacaacga aaacaaaaca gtttggggg ttcaggaggg gaantccagc 100

ctacccagga agttgcaga aacagtgc当地 ggaagggcag gantccctgg 150

ttgagnttt tgntaaaaca tggacatgnt tcagtgc当地 tcntgagaga 200

gtgc当地 accacttttgcaggccccca gccctgc当地 aaggaggaag 250

aggactcaa agttggc当地 ttcactgagc ctccacagca gtgggggaga 300

agcaagggtt gggccc当地 tccccttcc ccagtgc当地 ctcagc当地 350

gcagccctga taactggnt ntggctgcaa nttaatgctn tgatatggct 400

tttagcattt attatatgaa aatagcaggg tttagttt taatttatca 450

gagaccctgc cacccattcc atntccatcc aag 483

<210> 76

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 76

gtctcagcac gtgttctggc ctcagg 27

<210> 77

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 77

catgagcatg tgcacggc 18

<210> 78

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 78

tacctgcacg atgggcac 18

<210> 79

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 79

cactgggcac ctcccttc 18

<210> 80

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 80

ctccaggctg gtctccaagt cttcc 26

<210> 81

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 81

tccctgttgg actctgcagc ttcc 24

<210> 82

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 82

tttcgctggg aagagtttg 19

<210> 83

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 83

gtgcaaccaa cagataaaaa ctttcccag cgaagaagct gaaaagcg 50

<210> 84

<211> 1714

<212> DNA

<213> Homo sapiens

<400> 84

catcctgcaa catggtaaaa ccacgcctgg ctaattttgt tgtatTTTg 50
gtagagatgg gatttcaccg tggtagccag gattgtctca atctgacctc 100
atgatctgcc cgccctggcc tcccaaagtg ctgggattac aggcgagtgc 150
aaccacaccc ggccacaaac ttttaagaa gttaatgaaa ccataccctt 200
tacattttta atgacaggaa aatgctcaca ataattgtta acccaaatt 250
ctggatacaa aagtacaatc ttactgtgt aaatacatgt atatgtacta 300
tatgaaaata taccaaatat caataatact tatctctggg taaaaacctc 350
ttctcataacc ctgtgctaac aactttaac aaaaaatttg catcacttt 400
aagaatcaag aaaaatttct gaaggtcata tggcacagaa aaaaaaacca 450
aggaaaaat cacGCCactt gggaaaaaaa gattcgaaat ctgcctttt 500
atagatttgt aattaataag gtccaggctt tctaagcaac ttaaatgttt 550
tggtaaaa caaagtactt gtctggatgt aggaggaaag ggagtgtatgt 600
cactGCCattt atgatGCCCC ttgaatataa gaccctactt gctatctccc 650
ctgcaccagc caggagccac ccattctcca gcacactgag cagcaagctg 700
gacacacggc acactgatcc aatggtaa gggatggtg gcgatgctca 750
ttctgggtct gctacttctg ggcgtgtcc tacccgtca ggtttttca 800
tttgttcctt taaccagtat gccggaagct actgcagccg aaaccacaaa 850
gccctccaaac agtGCCCTAC agcctacagc cggctccctt gtggcttgc 900
ttGCCCTCT acatctctac cattaagagg caggtcaaga aacagctaca 950
gttctccaaac ccatacacta aaaccgaatc caaatggtg ctagaagttc 1000
aatgtggcaa gaaaaaaaac caggtttca tcaaattctac taatttact 1050
ccattattaaac agagaaacgc ttgagagtct ccaaactggac tggtttaaag 1100
agcatctgaa ggatttgact agatgataaa tgcctgtact cccagtactt 1150

tgggaggcct aggccggcgg atcacctgag gtcaggagtt tgagactaac 1200
ctggccaaaa tggtaaaacc ccatctgtac taaaaataca aatattgact 1250
ggcggtggtg gtgagtgcccgt gtgatcccag ctactcaggt ggctgaagca 1300
ggacaatcac ttgaactcag gaggcagagg ttgcagttagt ctgagatcgc 1350
gctactgcac tctagcctag cctggcaac agagttagac ttcgtctcaa 1400
aaaaaaaaaa gccaaatgcac gtggctcagc cctgtaatcc cgccactttg 1450
ggaggccgag gtggcggtat cacgaggtaa ggagatcaag accatccgt 1500
ctaatacagt gaaaccctgt ctctactaaa aataaaaaaa attagccggg 1550
gatggtggca ggcacctgga gtcccagcta ctcgggaggc tgaggcagga 1600
gaatagcgta aactcaggag gcggagctt cagtgagccg agattgcgt 1650
actgcactcc agcctggcgc acagcgcgag actccgtctc aaaaaaaaaa 1700
aaaaaaaaaa aaaa 1714

<210> 85
<211> 67
<212> PRT
<213> Homo sapiens

<400> 85
Met Gly Lys Gly Met Val Ala Met Leu Ile Leu Gly Leu Leu Leu
1 5 10 15

Leu Ala Leu Leu Leu Pro Val Gln Val Ser Ser Phe Val Pro Leu
20 25 30

Thr Ser Met Pro Glu Ala Thr Ala Ala Glu Thr Thr Lys Pro Ser
35 40 45

Asn Ser Ala Leu Gln Pro Thr Ala Gly Leu Leu Val Val Leu Leu
50 55 60

Ala Leu Leu His Leu Tyr His
65

<210> 86
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 86
acgggcacac tggatcccaa atg 23

<210> 87
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 87
gttagagatg tagaaggcga agcaagacc 29

<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 88
gctccctacc cgtgcagggtt tcttcatttg ttcccttaac cagtatgccg 50

<210> 89
<211> 2956
<212> DNA
<213> Homo sapiens

<400> 89
gccgcggcga gagcgccccc agccccgccg cgatccccgc ggcgcaggaa 50

ccctccctcc cgctgctggc ccggccggcg gccctgactg cgctgctgt 100
gctgctgctg ggccatggcg gcggcggcg ctggggcgcc cggccagg 150

aggcggcggc ggccggcgac gacgggcccc ccgcggcaga cggcgaggac 200
ggacaggacc cgcacagcaa gcacctgtac acggccgaca ttttcacgca 250
cggatccag agcgccgcgc acttcgtcat gtttcgac cctgggtgt 300
gacactgcca gcggctgcag ccgacttggaa atgacctggg agacaaatac 350
aacagcatgg aagatgccaa agtctatgtg gctaaagtgg actgcacggc 400
ccactccgac gtgtgctccg cccaggggt gcgaggatac cccaccta 450
agctttcaa gccaggccaa gaagctgtga agtaccaggg tcctgggac 500
ttccagacac tggaaaactg gatgctgcag acactgaacg aggagccagt 550
gacaccagag ccgaaagtgg aaccgcccag tgcccccag ctcaagcaag 600
ggctgtatga gctctcagca agcaacttig agtgcacgt tgcaacaaggc 650
gaccacttta tcaagttctt cgctccgtgg tgtggtaact gcaaagccct 700
ggctccaacc tgggagcagc tggctctggg ccttgaacat tccgaaactg 750
tcaagattgg caaggttgat tgtacacagc actatgaact ctgctccgga 800
aaccaggatcc gtggctatcc cactttctc tggttccgag atggaaaaaa 850
ggtggatcag tacaaggaa agcgggattt ggagtcaactg agggagtacg 900
tgagtcgca gctgcagcgc acagagactg gagcgacgga gaccgtcacg 950
ccctcagagg ccccggtgt ggcagctgag cccgaggctg acaagggcac 1000
tgtgtggca ctcactgaaa ataactcga tgacaccatt gcagaaggaa 1050
taaccttcat caagtttat gtcctatgtt gtggcatttg taagactctg 1100
gctcctactt gggaggaact ctctaaaaag gaattccctg gtctggcggg 1150
ggtcaagatc gccgaagtag actgcactgc tgaacggaaat atctgcagca 1200
agtattcggt acgaggctac cccacgttat tgctttccg aggagggaaag 1250
aaagtcaactg agcacagtgg aggcagagac ctgactcgt tacaccgctt 1300

tgccctgagc caagcgaaag acgaacttta ggaacacagt tggaggtcac 1350
cttcctgcc cagctccgc accctgcgtt taggagttca gtcccacaga 1400
ggccactggg ttcccagtgg tggctgtca gaaaggcaga catactaagc 1450
gtgaggtatc ttctttgtgt gtgtgtttc caagccaaca cactctacag 1500
attcttatt aagttaagtt tctctaagta aatgtgtaac tcataggcac 1550
tgtgtaaaca tttcagtgg cgatatatcc ccttgaccc tctttgatg 1600
aaatttacat ggttccctt gagactaaaa tagcgttgag ggaaatgaaa 1650
ttgctggact atttggcgt cctgagttga gtgattttgg tgaaagaaag 1700
cacatccaaa gcatagtttta cctgcccacg agttctggaa aggtggcctt 1750
gtggcagttat tgacgttccct ctgatcttaa ggtcacagtt gactcaatac 1800
tgtgtggtc cgttagcatgg agcagattga aatgcaaaaa cccacaccc 1850
tggaaagatac cttcacggcc gctgctggag cttctgtgc tgtgaatact 1900
tctctcagtg tgagaggta gccgtgtatga aagcagcgtt acttctgacc 1950
gtgcctgagt aagagaatgc tgatgccata actttatgtg tcgataactg 2000
tcaaattcgt tactgttcag gggatcccttc tgtttctcac ggggtgaaac 2050
atgtcttag ttcctcatgt taacacgaag ccagagccca catgaactgt 2100
tggatgtctt ccttagaaag ggttaggcattt gaaaattcca cgaggctcat 2150
tctcagttatc tcattaactc attgaaagat tccagttgtta tttgtcacct 2200
gggggtgacaa gaccagacag gctttcccgag gcctgggtat ccaggaggc 2250
tctgcagcccc tgctgaaggg ccctaacttag agttcttagag ttctgttacc 2300
tgtttctcag tagtccctttt agaggcttgc tatacttggt ctgcttcaag 2350
gaggtcgacc ttctaatgtt tgaagaatgg gatgcatttgc atctcaagac 2400
caaagacaga tgcgtggg ctgctctggc cctgggtgtgc acggctgtgg 2450

cagctgttga tgccagtgtc ctctaactca tgctgtccctt gtgattaaac 2500
acctctatct cccttggaa taagcacata caggcttaag ctctaagata 2550
gataggtgtt tgtcctttta ccatcgagct acttcccata ataaccactt 2600
tgcatccaac actcttcacc cacctccat acgcaagggg atgtggatac 2650
ttggcccaa gtaactggtg gtaggaatct tagaaacaag accacttata 2700
ctgtctgtct gaggcagaag ataacagcag catctcgacc agcctctgcc 2750
ttaaaggaaa tcittattaa tcacgtatgg ttcacagata attctttt 2800
taaaaaaacc caacccctcta gagaagcaca actgtcaaga gtcttgtaca 2850
cacaacttca gcttgcattc acgagtcattg tattccaaga aaatcaaagt 2900
ggtacaattt gtttggttac actatgatac ttctaaata aactctttt 2950
tttaa 2956

<210> 90
<211> 432
<212> PRT
<213> Homo sapiens

<400> 90
Met Pro Ala Arg Pro Gly Arg Leu Leu Pro Leu Leu Ala Arg Pro
1 5 10 15

Ala Ala Leu Thr Ala Leu Leu Leu Leu Leu Gly His Gly Gly
20 25 30

Gly Gly Arg Trp Gly Ala Arg Ala Gln Glu Ala Ala Ala Ala
35 40 45

Ala Asp Gly Pro Pro Ala Ala Asp Gly Glu Asp Gly Gln Asp Pro
50 55 60

His Ser Lys His Leu Tyr Thr Ala Asp Met Phe Thr His Gly Ile
65 70 75

Gln Ser Ala Ala His Phe Val Met Phe Phe Ala Pro Trp Cys Gly
80 85 90

His Cys Gln Arg Leu Gln Pro Thr Trp Asn Asp Leu Gly Asp Lys
95 100 105

Tyr Asn Ser Met Glu Asp Ala Lys Val Tyr Val Ala Lys Val Asp
110 115 120

Cys Thr Ala His Ser Asp Val Cys Ser Ala Gln Gly Val Arg Gly
125 130 135

Tyr Pro Thr Leu Lys Leu Phe Lys Pro Gly Gln Glu Ala Val Lys
140 145 150

Tyr Gln Gly Pro Arg Asp Phe Gln Thr Leu Glu Asn Trp Met Leu
155 160 165

Gln Thr Leu Asn Glu Glu Pro Val Thr Pro Glu Pro Glu Val Glu
170 175 180

Pro Pro Ser Ala Pro Glu Leu Lys Gln Gly Leu Tyr Glu Leu Ser
185 190 195

Ala Ser Asn Phe Glu Leu His Val Ala Gln Gly Asp His Phe Ile
200 205 210

Lys Phe Phe Ala Pro Trp Cys Gly His Cys Lys Ala Leu Ala Pro
215 220 225

Thr Trp Glu Gln Leu Ala Leu Gly Leu Glu His Ser Glu Thr Val
230 235 240

Lys Ile Gly Lys Val Asp Cys Thr Gln His Tyr Glu Leu Cys Ser
245 250 255

Gly Asn Gln Val Arg Gly Tyr Pro Thr Leu Leu Trp Phe Arg Asp
260 265 270

Gly Lys Lys Val Asp Gln Tyr Lys Gly Lys Arg Asp Leu Glu Ser
275 280 285

Leu Arg Glu Tyr Val Glu Ser Gln Leu Gln Arg Thr Glu Thr Gly
290 295 300

Ala Thr Glu Thr Val Thr Pro Ser Glu Ala Pro Val Leu Ala Ala
305 310 315

Glu Pro Glu Ala Asp Lys Gly Thr Val Leu Ala Leu Thr Glu Asn
320 325 330

Asn Phe Asp Asp Thr Ile Ala Glu Gly Ile Thr Phe Ile Lys Phe
335 340 345

Tyr Ala Pro Trp Cys Gly His Cys Lys Thr Leu Ala Pro Thr Trp
350 355 360

Glu Glu Leu Ser Lys Lys Glu Phe Pro Gly Leu Ala Gly Val Lys
365 370 375

Ile Ala Glu Val Asp Cys Thr Ala Glu Arg Asn Ile Cys Ser Lys
380 385 390

Tyr Ser Val Arg Gly Tyr Pro Thr Leu Leu Leu Phe Arg Gly Gly
395 400 405

Lys Lys Val Ser Glu His Ser Gly Gly Arg Asp Leu Asp Ser Leu
410 415 420

His Arg Phe Val Leu Ser Gln Ala Lys Asp Glu Leu
425 430

<210> 91

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 91

atgttcttcg cgccctggtg 20

<210> 92

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 92

ccaagccaaac acactctaca g 21

<210> 93

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 93

aagtggtcgc cttgtcaac gtgc 24

<210> 94

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 94

ggtcaaaggg gatatatcgc cac 23

<210> 95

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 95

gcatggaaga tgccaaagtc tatgtggcta aagtggactg cacggccca 49

<210> 96

<211> 1016

<212> DNA

<213> Homo sapiens

<400> 96

cttttctgag gaaccacagc aatgaatggc tttgcatcct tgcttcgaag 50

aaaccaattt atcctcctgg tactatttct ttgc当地attt cagagtctgg 100

gtctggatat tgatagccgt cctaccgctg aagtctgtgc cacacacaca 150

atttcaccag gacccaaagg agatgatggt gaaaaaggag atccaggaga 200
agagggaaag catggcaaag tgggacgcat ggggccgaaa ggaattaaag 250
gagaactggg tgatatggga gatcaggca atattggcaa gactggccc 300
attgggaaga agggtgacaa agggaaaaaa gglttgcttg gaataacctgg 350
agaaaaaggc aaagcaggta ctgtctgtga ttgtggaaga taccggaaat 400
ttgtggaca actggatatt agtattgctc ggctcaagac atctatgaag 450
tttgcaaga atgtgatagc agggattagg gaaactgaag agaaattcta 500
ctacatcggt caggaagaga agaactacag ggaatcccta acccactgca 550
ggattcgggg tggaatgcta gccatgccca aggatgaagc tgccaacaca 600
ctcatcgctg actatgtgc caagagtggc ttcttcggg tggcattgg 650
cgtgaatgac cttgaaaggg agggacagta catgtccaca gacaacactc 700
cactgcagaa ctatagcaac tggaatgagg gggAACCCAG CGACCCCTAT 750
ggcatgagg actgtgtgga gatgctgagc tctggcagat ggaatgacac 800
agagtgccat cttaccatgt actttgtctg tgagttcatc aagaagaaaa 850
agtaacttcc ctcatcctac gtatttgcta tttcctgtg accgtcatta 900
cagttattgt tatccatcct tttttcctg attgtactac atttgatctg 950
agtcaacata gctagaaaaat gctaaactga ggtatggagc ctccatcatc 1000
aaaaaaaaaaa aaaaaa 1016

<210> 97
<211> 277
<212> PRT
<213> Homo sapiens

<400> 97
Met Asn Gly Phe Ala Ser Leu Leu Arg Arg Asn Gln Phe Ile Leu
1 5 10 15

Leu Val Leu Phe Leu Leu Gln Ile Gln Ser Leu Gly Leu Asp Ile
20 25 30

Asp Ser Arg Pro Thr Ala Glu Val Cys Ala Thr His Thr Ile Ser
35 40 45

Pro Gly Pro Lys Gly Asp Asp Gly Glu Lys Gly Asp Pro Gly Glu
50 55 60

Glu Gly Lys His Gly Lys Val Gly Arg Met Gly Pro Lys Gly Ile
65 70 75

Lys Gly Glu Leu Gly Asp Met Gly Asp Gln Gly Asn Ile Gly Lys
80 85 90

Thr Gly Pro Ile Gly Lys Lys Gly Asp Lys Gly Glu Lys Gly Leu
95 100 105

Leu Gly Ile Pro Gly Glu Lys Gly Lys Ala Gly Thr Val Cys Asp
110 115 120

Cys Gly Arg Tyr Arg Lys Phe Val Gly Gln Leu Asp Ile Ser Ile
125 130 135

Ala Arg Leu Lys Thr Ser Met Lys Phe Val Lys Asn Val Ile Ala
140 145 150

Gly Ile Arg Glu Thr Glu Glu Lys Phe Tyr Tyr Ile Val Gln Glu
155 160 165

Glu Lys Asn Tyr Arg Glu Ser Leu Thr His Cys Arg Ile Arg Gly
170 175 180

Gly Met Leu Ala Met Pro Lys Asp Glu Ala Ala Asn Thr Leu Ile
185 190 195

Ala Asp Tyr Val Ala Lys Ser Gly Phe Phe Arg Val Phe Ile Gly
200 205 210

Val Asn Asp Leu Glu Arg Glu Gly Gln Tyr Met Ser Thr Asp Asn
215 220 225

Thr Pro Leu Gln Asn Tyr Ser Asn Trp Asn Glu Gly Glu Pro Ser
230 235 240

Asp Pro Tyr Gly His Glu Asp Cys Val Glu Met Leu Ser Ser Gly
245 250 255

Arg Trp Asn Asp Thr Glu Cys His Leu Thr Met Tyr Phe Val Cys
260 265 270

Glu Phe Ile Lys Lys Lys Lys
275

<210> 98

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 98

cgctgactat gttgccaaga gtgg 24

<210> 99

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 99

gatgatggag gctccataacc tcag 24

<210> 100

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 100

gtgttcattg gcgtgaatga ccttcaaagg gagggacagt acatgttcac 50

<210> 101

<211> 2574

<212> DNA

<213> Homo sapiens

<400> 101

ggttctatcg attcgaattc ggccacactg gccggatcct ctagagatcc 50
ctcgacctcg acccacgcgt ccgctgctct ccgcccgtgt ggagtggtgg 100
gggcctgggt ggaaatggc gtgtgccagc gcacgcgc tccctggaag 150
gagaagtctc agctagaacg agcggcccta ggtttcggg aaggaggatc 200
agggatgtt gcgagcggct ggaaccagac ggtgccgata gaggaagcgg 250
gctccatggc tgccctctg ctgctcccc tgctgctgtt gctaccgctg 300
ctgctgctga agctacacct ctggccgcag ttgcgtggc ttccggcgg 350
cttggcctt gcggtgcgag ctctgtgctg caaaagggtt cttcgagctc 400
gcgcctggc cgccgctgcc gccgaccgg aaggcccga ggggggctgc 450
agcctggctt ggccctcgc ggaactggcc cagcagcgcg ccgcgcacac 500
cttttcatt cacggctcgc ggccgttttag ctactcagag gcggagcgcg 550
agagtaacag ggctgcacgc gccttcctac gtgcgtttag ctgggactgg 600
ggacccgacg gcggcgacag cggcgagggg agcgctggag aaggcgagcg 650
ggcagcgcggc ggagccggag atgcagcggc cggaagcggc gcggagtttgc 700
ccggagggga cggtgccgccc agaggtggag gagccgcccgc ccctctgtca 750
cctggagcaa ctgtggcgct gtcctcccc gctggcccg agtttctgtg 800
gctctggttc gggctggcca aggccggct gcgcactgcc ttgtgccc 850
ccgcctgcg ccggggcccc ctgctgcact gcctccgcag ctgcggcgcg 900
cgcgcgctgg tgctggcgcc agagttctg gagtccctgg agccggacct 950
gcccgcctg agagccatgg ggctccaccc tggggctgca ggcccaggaa 1000
cccaccctgc tggaatttagc gatttgcgtt ctgaagtgtc cgctgaagt 1050

gatgggccag tgccaggata cctctttcc cccagagca taacagacac 1100
gtccctgtac atcttcacct ctggcaccac gggccccc aaggctgctc 1150
ggatcagtca tctgaagatc ctgcaatgcc agggcttcta tcagctgtgt 1200
ggtgtccacc aggaagatgt gatctacetc gccctccac tctaccacat 1250
gtccggttcc ctgctggca tcgtggctg catggcatt gggccacag 1300
tggtgctgaa atccaagttc tcggctggtc agttctggta agattgccag 1350
cagcacaggg tgacggtgtt ccagtagatt gggagctgt gccgataacct 1400
tgtcaaccag ccccccggca aggccagaacg tggccataag gtccggctgg 1450
cagtggcag cgggctgcgc ccagataacct gggagcggtt tgtcggcgc 1500
ttcgggcccc tgcaggtgt ggagacatat ggactgacag agggcaacgt 1550
ggccaccatc aactacacag gacagcgggg cgctgtgggg cgtcittcct 1600
ggctttacaa gcatacttc cccttcct tgattcgcta tgatgtcacc 1650
acaggagagc caattcggga ccccccgggg cactgttatgg ccacatctcc 1700
aggtgagcca gggctgctgg tggcccccgtt aagccagcag tccccattcc 1750
tggctatgc tggcgggcca gagctggccc aggggaagtt gctaaaggat 1800
gtctccggc ctggggatgt ttcttcaac actggggacc tgctggctg 1850
cgatgaccaa ggtttctcc gctccatga tcgtactgga gacaccctca 1900
ggtggaaagg ggagaatgtg gccacaaccg aggtggcaga ggtttcgag 1950
gccctagatt ttcttcagga ggtgaacgtc tatggagtca ctgtgccagg 2000
gcatgaaggc agggctggaa tggcagccct agttctgcgt ccccccacg 2050
ctttggacct tatgcagctc tacacccacg tgtctgagaa ctgccacct 2100
tatgccccggc cccgattcct caggctccag gagtcttgg ccaccacaga 2150
gaccccaa cagcagaaag ttcggatggc aaatgagggc ttgcaccca 2200

gcaccctgtc tgacccactg tacgttctgg accaggctgt aggtgcctac 2250
ctgcccccta caactgcccgt acatcgccgc ctcctggcag gaaacccctcg 2300
aatctgagaa cttccacacc tgaggcacct gagagaggaa ctctgtgggg 2350
tgggggccgt tgcaggtgta ctggcgtc aggatctt tctataccag 2400
aactgcggtc actatttgt aataaatgtg gctggagctg atccagctgt 2450
ctctgaccta aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaaag ggcggccgcg 2500
actctagagt cgacctgcag tagggataac aggtaataa gcttggccgc 2550
catggcccaa ctgtttatt gcag 2574

<210> 102

<211> 730

<212> PRT

<213> Homo sapiens

<400> 102

Met Gly Val Cys Gln Arg Thr Arg Ala Pro Trp Lys Glu Lys Ser
1 5 10 15

Gln Leu Glu Arg Ala Ala Leu Gly Phe Arg Lys Gly Ser Gly
20 25 30

Met Phe Ala Ser Gly Trp Asn Gln Thr Val Pro Ile Glu Ala
35 40 45

Gly Ser Met Ala Ala Leu Leu Leu Pro Leu Leu Leu Leu
50 55 60

Pro Leu Leu Leu Leu Lys Leu His Leu Trp Pro Gln Leu Arg Trp
65 70 75

Leu Pro Ala Asp Leu Ala Phe Ala Val Arg Ala Leu Cys Cys Lys
80 85 90

Arg Ala Leu Arg Ala Arg Ala Leu Ala Ala Ala Asp Pro
95 100 105

Glu Gly Pro Glu Gly Gly Cys Ser Leu Ala Trp Arg Leu Ala Glu
110 115 120

Leu Ala Gln Gln Arg Ala Ala His Thr Phe Leu Ile His Gly Ser
125 130 135

Arg Arg Phe Ser Tyr Ser Glu Ala Glu Arg Glu Ser Asn Arg Ala
140 145 150

Ala Arg Ala Phe Leu Arg Ala Leu Gly Trp Asp Trp Gly Pro Asp
155 160 165

Gly Gly Asp Ser Gly Glu Gly Ser Ala Gly Glu Gly Glu Arg Ala
170 175 180

Ala Pro Gly Ala Gly Asp Ala Ala Ala Gly Ser Gly Ala Glu Phe
185 190 195

Ala Gly Gly Asp Gly Ala Ala Arg Gly Gly Ala Ala Ala Pro
200 205 210

Leu Ser Pro Gly Ala Thr Val Ala Leu Leu Leu Pro Ala Gly Pro
215 220 225

Glu Phe Leu Trp Leu Trp Phe Gly Leu Ala Lys Ala Gly Leu Arg
230 235 240

Thr Ala Phe Val Pro Thr Ala Leu Arg Arg Gly Pro Leu Leu His
245 250 255

Cys Leu Arg Ser Cys Gly Ala Arg Ala Leu Val Leu Ala Pro Glu
260 265 270

Phe Leu Glu Ser Leu Glu Pro Asp Leu Pro Ala Leu Arg Ala Met
275 280 285

Gly Leu His Leu Trp Ala Ala Gly Pro Gly Thr His Pro Ala Gly
290 295 300

Ile Ser Asp Leu Leu Ala Glu Val Ser Ala Glu Val Asp Gly Pro
305 310 315

Val Pro Gly Tyr Leu Ser Ser Pro Gln Ser Ile Thr Asp Thr Cys
320 325 330

Leu Tyr Ile Phe Thr Ser Gly Thr Thr Gly Leu Pro Lys Ala Ala
335 340 345

Arg Ile Ser His Leu Lys Ile Leu Gln Cys Gln Gly Phe Tyr Gln
350 355 360

Leu Cys Gly Val His Gln Glu Asp Val Ile Tyr Leu Ala Leu Pro
365 370 375

Leu Tyr His Met Ser Gly Ser Leu Leu Gly Ile Val Gly Cys Met
380 385 390

Gly Ile Gly Ala Thr Val Val Leu Lys Ser Lys Phe Ser Ala Gly
395 400 405

Gln Phe Trp Glu Asp Cys Gln Gln His Arg Val Thr Val Phe Gln
410 415 420

Tyr Ile Gly Glu Leu Cys Arg Tyr Leu Val Asn Gln Pro Pro Ser
425 430 435

Lys Ala Glu Arg Gly His Lys Val Arg Leu Ala Val Gly Ser Gly
440 445 450

Leu Arg Pro Asp Thr Trp Glu Arg Phe Val Arg Arg Phe Gly Pro
455 460 465

Leu Gln Val Leu Glu Thr Tyr Gly Leu Thr Glu Gly Asn Val Ala
470 475 480

Thr Ile Asn Tyr Thr Gly Gln Arg Gly Ala Val Gly Arg Ala Ser
485 490 495

Trp Leu Tyr Lys His Ile Phe Pro Phe Ser Leu Ile Arg Tyr Asp
500 505 510

Val Thr Thr Gly Glu Pro Ile Arg Asp Pro Gln Gly His Cys Met
515 520 525

Ala Thr Ser Pro Gly Glu Pro Gly Leu Leu Val Ala Pro Val Ser
530 535 540

Gln Gln Ser Pro Phe Leu Gly Tyr Ala Gly Gly Pro Glu Leu Ala
545 550 555

Gln Gly Lys Leu Leu Lys Asp Val Phe Arg Pro Gly Asp Val Phe
560 565 570

Phe Asn Thr Gly Asp Leu Leu Val Cys Asp Asp Gln Gly Phe Leu
575 580 585

Arg Phe His Asp Arg Thr Gly Asp Thr Phe Arg Trp Lys Gly Glu
590 595 600

Asn Val Ala Thr Thr Glu Val Ala Glu Val Phe Glu Ala Leu Asp
605 610 615

Phe Leu Gln Glu Val Asn Val Tyr Gly Val Thr Val Pro Gly His
620 625 630

Glu Gly Arg Ala Gly Met Ala Ala Leu Val Leu Arg Pro Pro His
635 640 645

Ala Leu Asp Leu Met Gln Leu Tyr Thr His Val Ser Glu Asn Leu
650 655 660

Pro Pro Tyr Ala Arg Pro Arg Phe Leu Arg Leu Gln Glu Ser Leu
665 670 675

Ala Thr Thr Glu Thr Phe Lys Gln Gln Lys Val Arg Met Ala Asn
680 685 690

Glu Gly Phe Asp Pro Ser Thr Leu Ser Asp Pro Leu Tyr Val Leu
695 700 705

Asp Gln Ala Val Gly Ala Tyr Leu Pro Leu Thr Thr Ala Arg Tyr
710 715 720

Ser Ala Leu Leu Ala Gly Asn Leu Arg Ile
725 730

<210> 103

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 103

gagagccatg gggctccacc tg 22

<210> 104

<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 104
ggagaatgtg gccacaac 18

<210> 105
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 105
gccctggcac agtgactcca tagacg 26

<210> 106
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 106
atccacttca gcggacac 18

<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 107
ccagtgcag gatacctctc ttccccccag agcataacag acacg 45

<210> 108
<211> 2579

<212> DNA

<213> Homo sapiens

<400> 108

cctgttaa gctgaggttt cccctagatc tcgtatatcc ccaacacata 50

cctccacgca cacacatccc caagaacctc gagtcacac caacagacac 100

acgcgcgcat acacactcg tctcgcttgt ccatctccct cccgggggag 150

ccggcgcgcg ctccccctt tgccgcacac tccggcgagc cgagcccgca 200

gcgcctccagg attctgcggc tcgaaactcg gattgcagct ctgaaccccc 250

atggtggtt tttaaacact tctttccctt ctcttcctcg ttttgattgc 300

accgtttcca tctggggct agaggagcaa ggcagcagcc ttcccagcca 350

gcccttgttg gcttgccatc gtccatctgg cttataaaag tttgctgagc 400

gcagtccaga gggctgcgct gctcgcccc tcggctggca gaagggggtg 450

acgctggca gcggcgagga ggcgcggct gcctctggcg ggcttcggc 500

ttgagggca agttaagag cgcaccggcc gtgggttta ccgagctgga 550

tttgtatgtt gcaccatgcc ttcttgatc gggctgtga ttctccct 600

cttggggctg ctgctctccc tccccgggg ggcggatgtg aaggctcgga 650

ctgccccgaga ggtccgcag gctacggtg ccaaggatt cagcctggcg 700

gacatcccct accaggagat cgcagggaa cacttaagaa tctgtcctca 750

ggaatataca tgctgcacca cagaaatgga agacaagtta agccaacaaa 800

gcaaactcga atttggaaac cttgtggaaag agacaagcca ttttgtgcgc 850

accactttt tgtccaggca taagaaattt gacgaatttt tccgagagct 900

cctggagaat gcagaaaagt cactaatga tattttgta cggacctatg 950

gcatgctgtt catgcagaat tcagaagtct tccaggacct ctgcacagag 1000

ctggaaaggt actacactgg gggtaatgtg aatctggagg aaatgctcaa 1050

tgactttgg gctcggtc tggAACGGAT gtttcAGCTG ataaACCCtC 1100
agtatcaCTT cagtGAAGAC tacCTGGAAT gtgtGAGCAA atacACTGAC 1150
cagCTCAAGC cattGGAGA cgtGCCCGG aaACTGAAGA ttcAGGTTAC 1200
ccgcGCCtC attgCTGCCA ggaccTTGT ccaggGGCTG actgtGGGCA 1250
gagaAGTGC aaACCgAGTT tccaAGGTCA gcccAAcccc aggGTGTAC 1300
cgtGCCtCA tgaAGATGCT gtACTGCCA tactTCGGG ggCTTCCCAC 1350
tgtGAGGCC TGCAACAact actGTCTCAA cgtcatGAAG ggCTGCTTGG 1400
caaATCAGGC TGACCTCGAC acAGAGTGGA atCTGTTAT agATGCAATG 1450
ctCTGGTGG cagAGCGACT ggAGGGGCCA ttcaACATTG agTCGGTcat 1500
ggACCCGATA gatGTCAAGA ttTCTGAAGC cattATGAAC atGCAAGAAA 1550
acAGCATGCA ggtGTCTGCA aaggTCTTC aggGTGTGG tcAGCCAAA 1600
cctGCTCCAG CCCTCAGATC tgCCCGCTCA gctCCTGAAA attTAatac 1650
acGTTcAGG CCCTACAATC ctGAGGAAAG accAACAact gctGAGGCA 1700
caAGCTTGGA CCGGCTGGTC acAGACATAA aAGAGAAATT gaAGCTCTCT 1750
aaaaAGGTCT ggtcAGCATT accCTACACT atCTGCAAGG acGAGAGCgt 1800
gacAGCGGGC acgtCCAACG aggAGGAATG ctGGAACGGG cacAGCAAAG 1850
ccAGATACTT gcCTGAGATC atGAATGATG ggCTCACCAA ccAGATCAAC 1900
aatCCCGAGG tggATGTGGA catCACTCGG CCTGACACTT tcatcAGACA 1950
gcAGATTATG gctCTCGTG tGATGACCAA caAACTAAAA aACGCCtACA 2000
atGGCAATGA tgtCAATTc caggACACAA gtGATGAAATC cagtGGCTCA 2050
gggAGTGGCA gtGGGTGCAt ggATGACGTG tGTCCTACGG agTTGAGTT 2100
tgtcACCACa gaggCCCCCG cagtGGATCC cgACCGGAGA gagGTGGACT 2150
cttCTGcAGC ccAGCGTGGC cactCCCTGC tctCCtGGTC tctCACCTGC 2200

attgtccctgg cactgcagag actgtgcaga taatcttggg ttttggtca 2250

gatgaaaactg catttttagct atctgaatgg ccaactcact tctttctta 2300

cactcttggaa caatggacca tgccacaaaa acttaccgtt ttctatgaga 2350

agagagcagt aatgcaactt gcctccctt ttgtttcccc aaagagtacc 2400

gggtgccaga ctgaactgct tcctcttcc ttcagctatc tgtggggacc 2450

ttgtttattc tagagagaat tcttactcaa attttcgta ccaggagatt 2500

ttcttacctt catttgcttt tatgctgcag aagtaaagga atctcacgtt 2550

gtgagggttt ttttttctc atttaaaat 2579

<210> 109

<211> 555

<212> PRT

<213> Homo sapiens

<400> 109

Met Pro Ser Trp Ile Gly Ala Val Ile Leu Pro Leu Leu Gly Leu

1 5 10 15

Leu Leu Ser Leu Pro Ala Gly Ala Asp Val Lys Ala Arg Ser Cys

20 25 30

Gly Glu Val Arg Gln Ala Tyr Gly Ala Lys Gly Phe Ser Leu Ala

35 40 45

Asp Ile Pro Tyr Gln Glu Ile Ala Gly Glu His Leu Arg Ile Cys

50 55 60

Pro Gln Glu Tyr Thr Cys Cys Thr Thr Glu Met Glu Asp Lys Leu

65 70 75

Ser Gln Gln Ser Lys Leu Glu Phe Glu Asn Leu Val Glu Glu Thr

80 85 90

Ser His Phe Val Arg Thr Thr Phe Val Ser Arg His Lys Lys Phe

95 100 105

Asp Glu Phe Phe Arg Glu Leu Leu Glu Asn Ala Glu Lys Ser Leu

110 115 120

Asn Asp Met Phe Val Arg Thr Tyr Gly Met Leu Tyr Met Gln Asn
125 130 135

Ser Glu Val Phe Gln Asp Leu Phe Thr Glu Leu Lys Arg Tyr Tyr
140 145 150

Thr Gly Gly Asn Val Asn Leu Glu Glu Met Leu Asn Asp Phe Trp
155 160 165

Ala Arg Leu Leu Glu Arg Met Phe Gln Leu Ile Asn Pro Gln Tyr
170 175 180

His Phe Ser Glu Asp Tyr Leu Glu Cys Val Ser Lys Tyr Thr Asp
185 190 195

Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys Leu Lys Ile Gln
200 205 210

Val Thr Arg Ala Phe Ile Ala Ala Arg Thr Phe Val Gln Gly Leu
215 220 225

Thr Val Gly Arg Glu Val Ala Asn Arg Val Ser Lys Val Ser Pro
230 235 240

Thr Pro Gly Cys Ile Arg Ala Leu Met Lys Met Leu Tyr Cys Pro
245 250 255

Tyr Cys Arg Gly Leu Pro Thr Val Arg Pro Cys Asn Asn Tyr Cys
260 265 270

Leu Asn Val Met Lys Gly Cys Leu Ala Asn Gln Ala Asp Leu Asp
275 280 285

Thr Glu Trp Asn Leu Phe Ile Asp Ala Met Leu Leu Val Ala Glu
290 295 300

Arg Leu Glu Gly Pro Phe Asn Ile Glu Ser Val Met Asp Pro Ile
305 310 315

Asp Val Lys Ile Ser Glu Ala Ile Met Asn Met Gln Glu Asn Ser
320 325 330

Met Gln Val Ser Ala Lys Val Phe Gln Gly Cys Gly Gln Pro Lys
335 340 345

Pro Ala Pro Ala Leu Arg Ser Ala Arg Ser Ala Pro Glu Asn Phe
350 355 360

Asn Thr Arg Phe Arg Pro Tyr Asn Pro Glu Glu Arg Pro Thr Thr
365 370 375

Ala Ala Gly Thr Ser Leu Asp Arg Leu Val Thr Asp Ile Lys Glu
380 385 390

Lys Leu Lys Leu Ser Lys Lys Val Trp Ser Ala Leu Pro Tyr Thr
395 400 405

Ile Cys Lys Asp Glu Ser Val Thr Ala Gly Thr Ser Asn Glu Glu
410 415 420

Glu Cys Trp Asn Gly His Ser Lys Ala Arg Tyr Leu Pro Glu Ile
425 430 435

Met Asn Asp Gly Leu Thr Asn Gln Ile Asn Asn Pro Glu Val Asp
440 445 450

Val Asp Ile Thr Arg Pro Asp Thr Phe Ile Arg Gln Gln Ile Met
455 460 465

Ala Leu Arg Val Met Thr Asn Lys Leu Lys Asn Ala Tyr Asn Gly
470 475 480

Asn Asp Val Asn Phe Gln Asp Thr Ser Asp Glu Ser Ser Gly Ser
485 490 495

Gly Ser Gly Ser Gly Cys Met Asp Asp Val Cys Pro Thr Glu Phe
500 505 510

Glu Phe Val Thr Thr Glu Ala Pro Ala Val Asp Pro Asp Arg Arg
515 520 525

Glu Val Asp Ser Ser Ala Ala Gln Arg Gly His Ser Leu Leu Ser
530 535 540

Trp Ser Leu Thr Cys Ile Val Leu Ala Leu Gln Arg Leu Cys Arg
545 550 555

<210> 110

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 110

aagcgtgaca gcgggcacgt c 21

<210> 111

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 111

tgcacagtct ctgcagtgcc cagg 24

<210> 112

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 112

gaatgctgga acgggcacag caaagccaga tacttgccctg 40

<210> 113

<211> 4649

<212> DNA

<213> Homo sapiens

<400> 113

cggacgcgtg ggccggacgcg tgggcaaaag aactcgagg gccaaggcta 50

aataagtttag ctgagaaaaac gcacgcgtt tgcaagccct gcccgggtg 100

cggcaactac gcaaagacca agcgggcctcc gcgccggaccg gccgcggggc 150

tagggaccccg gctttggcct tcaggctccc tagcagcggg gaaaaggaaat 200

tgctgcccgg agtttctgcg gaggtggagg gagatcagga aacggcttct 250

tcctcactic gccgcctggg gaggtgtcggg gagattggca aacgcctagg 300
aaaggactgg ggaaaatagc cctgggaaag tggagaaggt gatcaggagg 350
ccggtccact acggcagtt atctgtctga tcagagccag acgcgacgcg 400
tccacttcgc agttcttcc aggtgtgggg accgcaggac agacggccga 450
tcccggcc ctccgtacca gcactcccag gagagttagc ctcgctcccc 500
aacgtcgagg gcgctctggc cacgaaaagt tcctgtccac tgtgattctc 550
aattccitgc tttttttttt tctccagaga acttttgggt ggagatatta 600
actttttct tttttttttt ctttgttggaa agctgctcta gggagggggg 650
aggaggagga gaaagtgaaa tgtgtggag aagagcgagc ctccttg 700
cttcggagt cccatccatt aagccatcac ttcttggaaaga ttaaagtgt 750
cggacatggt gacagctgag aggagaggag gatttcttgc caggtggaga 800
gtcttcaccg tctgttgggt gcatgtgtc gcccgcagcg gcgccggcg 850
cgtggttctc cgcgtggagt ctcacctggg acctgagtga atggctccca 900
ggggctgtgc ggggcattccg cttccgcctt ctccacaggc ctgtgtctgt 950
cctggaaaga tgcttagcaat gggggcgctg gcaggattct ggatccttg 1000
cctccctact tatggttacc tgccttgggg ccaggcccta gaagaggagg 1050
aagaaggggc cttactagct caagctggag agaaaactaga gcccagcaca 1100
acttccaccc cccagccccca ttcattttc atcctagcggt atgatcagg 1150
attttagagat ggggttacc acggatctga gattaaaaca cctacttttg 1200
acaagctcgc tgccgaagga gttaaactgg agaactacta tgtccagcct 1250
atttgcacac catccaggag tcagtttatt actggaaagt atcagataca 1300
caccggactt caacattcta tcataagacc tacccaaccc aactgtttac 1350
ctctggacaa tgccacccta cctcagaaac tgaaggaggt tggatattca 1400

acgcatatgg tcggaaaatg gcacttgggt tttaacagaa aagaatgc 1450
gccaccaga agaggattg ataccttt tggtccctt tgggaagt 1500
gggattacta tacacactac aaatgtgaca gtcctggat gtgtggctat 1550
gacttgtatg aaaacgacaa tgctgcctgg gactatgaca atggcatata 1600
ctccacacag atgtacactc agagagtaca gcaaatctt gcttccata 1650
accccacaaa gcctatattt ttatatactg cctatcaagc tgttcattca 1700
ccactgcaag ctccctggcag gtatttcgaa cactaccgat ccattatcaa 1750
cataaacagg agaagatatg ctgccatgct ttccctgctt gatgaagcaa 1800
tcaacaacgt gacattggct ctaaagactt atggttctta taacaacagc 1850
attatcattt actcttcaga taatggtgc cagcctacgg caggagggag 1900
taactggcct ctcagaggtt gcaaaggaac atattggaa ggagggatcc 1950
gggctgttagg ctttgcat agcccacttc tgaaaaacaa gggAACAGT 2000
tgtaaggaac ttgtgcacat cactgactgg taccccactc tcatttcact 2050
ggctgaagga cagattgttggc aggacattca actagatggc tatgatatct 2100
gggagaccat aagtgggtt cttcgctcac cccgagttaga tatttgcat 2150
aacattgacc cctatacacc aaggcaaaaa atggctccgt ggcagcaggc 2200
tatggatct ggaacactgc aatccagtca gccatcagag tgcagcactg 2250
gaaattgctt acaggaaatc ctggctacag cgactgggtc cccccctcagt 2300
cttcagcaa cctgggaccg aaccgggtggc acaatgaacg gatcaccctg 2350
tcaactggca aaagtgtatg gctttcaac atcacagccg accccatatga 2400
gagggtggac ctatctaaca ggtatccagg aatcgtgaag aagctcctac 2450
ggaggcttc acagtcaac aaaactgcag tgccggtcag gtatcccccc 2500
aaagacccca gaagtaaccc taggctaat ggagggtct ggggaccatg 2550

gtataaaagag gaaaccaaga aaaagaagcc aagcaaaaat caggctgaga 2600
aaaagcaaaa gaaaagcaaa aaaaagaaga agaaacagca gaaagcagtc 2650
tcaggtaaac cagcaaattt ggctcgataa tatcgctggc ctaagcgtca 2700
ggctgtttt catgctgtgc cactccagag acttctgcc cctggccgcc 2750
acactgaaaa ctgtcctgct cagtgc当地 cgtcactct tgcaagccac 2800
acttagagag agtggagatg tttatttc tcgctccctt agaaaacgtg 2850
gtgagtcctg agtccactg ctgtgc当地 gtcaactgac caaacactgc 2900
tttgaattat aggaggagaa caataaccctt ccattccgcaaa gcatgcta 2950
ttgatgaaag ttacagggta gcatgattaa aactaccctt gataaattac 3000
agtcaaaagat tgtgtcacctt caaaggccctt gaagaatata tttcttgt 3050
gaattttgt atgtctgtca tatgacactt gggttttta attaattcta 3100
ttttatatat ataaatatat gtttctttc ctgtgaaaag ctgttttct 3150
cacatgtgaa cagcttgac ctcattttac catcgctgag ggaatggcaa 3200
ataagaatgt ttgagcacac tgcccacaat gaatgtaact atttctaaa 3250
cactttacta gaagaacatt tcagtataaa aaacctaatt tattttaca 3300
aaaaaatattt ttgtgtttt tataaaaagt tatgcaaatg acttttattt 3350
ttatttcctg cataccatta gaagaattttt atttcatttc ttcaaatttat 3400
caagcactgt aatactataa attaatgtaa tactgtgtga attcagacta 3450
taaaaaacat cattcagaaa actttataat cgtcattgtt caatcaagat 3500
tttgaatgtataagatgaa tatattccctt acaaattact tggaaattca 3550
atgtttgtgc agagttgaga caactttattt gtttctatca taaactattt 3600
atgtatctta attattaaaa tgatttactt tatggcacta gaaaatttac 3650
tggtggctttt ctgatctaactt ctcttagctaa aattgtatca ttggcctaa 3700

aaaataaaaa tcttactaa taggcaattg aaggaatggt ttgctaaca 3750
ccacagtaat ataatatgtat tttacagata gatgctccc cttggctatg 3800
acatggagaa agatTTccc ataataataa ctaatatttatttaggttg 3850
gtgcaaaact agttgcggtt ttcccattt aaagtaataa ccttactctt 3900
atacaaggta gacactgtgg ggagatacag agaaatggaa gatacgatc 3950
ctgcctggag tagttaacct tgcttggaaa ccccacatgc aaacgtcatg 4000
aggagaatta aaggagtatt atcagtaatg aagtttatca tgggtcatca 4050
atgagcatag attggtgtgg atccctgtaga ccctgggtt ttcttgaag 4100
tgccctctcc taatgcagag gccttgaagc ttacagtata cactgaaaa 4150
gtcacagata gctagaatta tgatcttga agttataact gtgatctgaa 4200
aatgtgtgtg gtggatgac agcataccat taaatacatt tacatcacag 4250
ctcaaaggac tgtgatataa tccatttata tcacaactca aaggactgtg 4300
atataatcca ttatatcac agctcacagt ttctgaaaat gtataaaaga 4350
atctataatc tagtactgaa attactaaat tggtaagat gatttaatg 4400
attttaattt taacatttta ttctagaat atatggctcc attttattt 4450
atagtgtaaa gtgttatttc cttaaggttt tggtttgtcg acagtatctt 4500
ttaaatgagt cttaaaaata aaggcatatt gttcatgtt aaaaaaaaaa 4550
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 4600
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 4649

<210> 114
<211> 515
<212> PRT
<213> Homo sapiens

<400> 114
Met Ala Pro Arg Gly Cys Ala Gly His Pro Pro Pro Ser Pro

1 5 10 15

Gln Ala Cys Val Cys Pro Gly Lys Met Leu Ala Met Gly Ala Leu
20 25 30

Ala Gly Phe Trp Ile Leu Cys Leu Leu Thr Tyr Gly Tyr Leu Ser
35 40 45

Trp Gly Gln Ala Leu Glu Glu Glu Gly Ala Leu Leu Ala
50 55 60

Gln Ala Gly Glu Lys Leu Glu Pro Ser Thr Thr Ser Thr Ser Gln
65 70 75

Pro His Leu Ile Phe Ile Leu Ala Asp Asp Gln Gly Phe Arg Asp
80 85 90

Val Gly Tyr His Gly Ser Glu Ile Lys Thr Pro Thr Leu Asp Lys
95 100 105

Leu Ala Ala Glu Gly Val Lys Leu Glu Asn Tyr Tyr Val Gln Pro
110 115 120

Ile Cys Thr Pro Ser Arg Ser Gln Phe Ile Thr Gly Lys Tyr Gln
125 130 135

Ile His Thr Gly Leu Gln His Ser Ile Ile Arg Pro Thr Gln Pro
140 145 150

Asn Cys Leu Pro Leu Asp Asn Ala Thr Leu Pro Gln Lys Leu Lys
155 160 165

Glu Val Gly Tyr Ser Thr His Met Val Gly Lys Trp His Leu Gly
170 175 180

Phe Asn Arg Lys Glu Cys Met Pro Thr Arg Arg Gly Phe Asp Thr
185 190 195

Phe Phe Gly Ser Leu Leu Gly Ser Gly Asp Tyr Tyr Thr His Tyr
200 205 210

Lys Cys Asp Ser Pro Gly Met Cys Gly Tyr Asp Leu Tyr Glu Asn
215 220 225

Asp Asn Ala Ala Trp Asp Tyr Asp Asn Gly Ile Tyr Ser Thr Gln

230 235 240

Met Tyr Thr Gln Arg Val Gln Gln Ile Leu Ala Ser His Asn Pro
245 250 255

Thr Lys Pro Ile Phe Leu Tyr Thr Ala Tyr Gln Ala Val His Ser
260 265 270

Pro Leu Gln Ala Pro Gly Arg Tyr Phe Glu His Tyr Arg Ser Ile
275 280 285

Ile Asn Ile Asn Arg Arg Arg Tyr Ala Ala Met Leu Ser Cys Leu
290 295 300

Asp Glu Ala Ile Asn Asn Val Thr Leu Ala Leu Lys Thr Tyr Gly
305 310 315

Phe Tyr Asn Asn Ser Ile Ile Ile Tyr Ser Ser Asp Asn Gly Gly
320 325 330

Gln Pro Thr Ala Gly Gly Ser Asn Trp Pro Leu Arg Gly Ser Lys
335 340 345

Gly Thr Tyr Trp Glu Gly Gly Ile Arg Ala Val Gly Phe Val His
350 355 360

Ser Pro Leu Leu Lys Asn Lys Gly Thr Val Cys Lys Glu Leu Val
365 370 375

His Ile Thr Asp Trp Tyr Pro Thr Leu Ile Ser Leu Ala Glu Gly
380 385 390

Gln Ile Asp Glu Asp Ile Gln Leu Asp Gly Tyr Asp Ile Trp Glu
395 400 405

Thr Ile Ser Glu Gly Leu Arg Ser Pro Arg Val Asp Ile Leu His
410 415 420

Asn Ile Asp Pro Tyr Thr Pro Arg Gln Lys Met Ala Pro Gly Gln
425 430 435

Gln Ala Met Gly Ser Gly Thr Leu Gln Ser Ser Gln Pro Ser Glu
440 445 450

Cys Ser Thr Gly Asn Cys Leu Gln Glu Ile Leu Ala Thr Ala Thr

455 460 465

Gly Ser Pro Leu Ser Leu Ser Ala Thr Trp Asp Arg Thr Gly Gly
470 475 480

Thr Met Asn Gly Ser Pro Cys Gln Leu Ala Lys Val Tyr Gly Phe
485 490 495

Ser Thr Ser Gln Pro Thr His Met Arg Gly Trp Thr Tyr Leu Thr
500 505 510

Gly Ile Gln Glu Ser
515

<210> 115

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 115

cccaacccaa ctgtttacct ctgg 24

<210> 116

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 116

ctctctgagt gtacatctgt gtgg 24

<210> 117

<211> 53

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<220>

<221> unsure

<222> 33

<223> unknown base

<400> 117

gccaccctac ctcagaaact gaaggaggtt ggntattcaa cgcatatgg 50

cgg 53

<210> 118

<211> 2260

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 2009, 2026, 2033, 2055, 2074, 2078, 2086

<223> unknown base

<400> 118

cggacgcgtg ggtgcgagtg gagcggagga cccgagcggc tgaggagaga 50

ggaggcggcg gcttagctgc tacgggtcc gccggcgcc ctcccgggg 100

gggctcagga ggaggaagga ggaccgtgc gagaatgcct ctgcctgg 150

gcctgcgtcccgtctg ctctcctggg tggcaggtgg ttccggaaac 200

gcggccagtgc caaggcatca cgggttgtta gcatggcac gtcagcctgg 250

ggctgtcac tatgaaacta aactggctg ctgtacggc tggagaagaa 300

acagcaaggg agtctgtgaa gctacatgcg aacctggatg taagtttgt 350

gagtgcgtgg gaccaaaca atgcagatgc ttccaggat acaccggaa 400

aacctgcgttcaagatgtga atgagtggtt aatgaaaccc cggccatgcc 450

aacacagatgtgtataca cacggaagct acaagtgc ttgcctcagt 500

ggccacatgc tcatgccaga tgctacgtgt gtgaactcta ggacatgtgc 550

catgataaac tgtcagtaca gctgtgaaga cacagaagaa gggccacagt 600

gcctgtgtcc atcctcagga ctccgcctgg ccccaaatgg aagagactgt 650

ctagatattg atgaatgtgc ctctggtaaa gtcatctgac cctacaatcg 700
aagatgtgtg aacacatttg gaagctacta ctgcaaatgt cacattggtt 750
tcgaactgca atatatcagt ggacgatatg actgtataga tataaatgaa 800
tgtactatgg atagccatac gtgcagccac catgccaatt gctcaatac 850
ccaagggtcc ttcaagtgtt aatgcaagca gggatataaa ggcaatggac 900
ttcgggttc tgctatccct gaaaattctg tgaaggaagt cctcagagca 950
cctggtagcca tcaaagacag aatcaagaag ttgcgtgc acaaaaaacag 1000
cataaaaaag aaggcaaaaa ttaaaaatgt tacccagaa cccaccagga 1050
ctcctacccc taaggtgaac ttgcagccct tcaactatga agagatagtt 1100
tccagaggcg ggaactctca tggaggtaaa aaaggaaatg aagagaaatg 1150
aaagaggggc ttgaggatga gaaaagagaa gagaaagccc tgaagaatga 1200
catagaggag cgaaggctgc gaggagatgt gttttccct aaggtgaatg 1250
aagcaggtga attcggcctg attctggtcc aaaggaaagc gctaacttcc 1300
aaactggAAC ataaagattt aaatatctcg gttgactgca gcttcaatca 1350
tggatctgt gactggaaac aggatagaga agatgattt gactggaatc 1400
ctgctgatcg agataatgct attggcttct atatggcagt tccggccttg 1450
gcaggtcaca agaaagacat tggccgattg aaacttctcc tacctgacct 1500
gcaaccccaa agcaacttct gttgcttct tgattaccgg ctggccggag 1550
acaaagtcgg gaaacttcga gtgttgtga aaaacagtaa caatgccctg 1600
gcatgggaga agaccacgag tgaggatgaa aagtggaaaga cagggaaat 1650
tcagttgtat caaggaactg atgctaccaa aagcatcatt ttgaagcag 1700
aacgtggcaa gggcaaaacc ggcgaaatcg cagtggatgg cgtcttgctt 1750
gttcaggct tatgtccaga tagcccttta tctgtggatg actgaatg 1800

actatctta tatttgcatt tgtatgtcag ttccctgggtt ttttgatat 1850
tgcatcatag gaccctctggc attttagaat tactagctga aaaattgtaa 1900
tgtaccaaca gaaatattat tgtaagatgc ctttcttgta taagatatgc 1950
caatatttgc tttaaatatc atatcactgt atcttcctag tcatttctga 2000
atcttccnc attatattat aaaatntgga aangtcagtt tatctcccct 2050
cctcngtata tctgatttgt atangtangt tgatngcct ctctctacaa 2100
cattctaga aaatagaaaaa aaaagcacag agaaatgttt aactgtttga 2150
ctcttatgt acttcttgga aactatgaca tcaaagatag actttgcct 2200
aagtggctta gctgggtctt tcatagccaa acttgatat ttaattctt 2250
gtaataataa 2260

<210> 119
<211> 338
<212> PRT
<213> Homo sapiens

<400> 119
Met Pro Leu Pro Trp Ser Leu Ala Leu Pro Leu Leu Ser Trp
1 5 10 15

Val Ala Gly Gly Phe Gly Asn Ala Ala Ser Ala Arg His His Gly
20 25 30

Leu Leu Ala Ser Ala Arg Gln Pro Gly Val Cys His Tyr Gly Thr
35 40 45

Lys Leu Ala Cys Cys Tyr Gly Trp Arg Arg Asn Ser Lys Gly Val
50 55 60

Cys Glu Ala Thr Cys Glu Pro Gly Cys Lys Phe Gly Glu Cys Val
65 70 75

Gly Pro Asn Lys Cys Arg Cys Phe Pro Gly Tyr Thr Gly Lys Thr
80 85 90

Cys Ser Gln Asp Val Asn Glu Cys Gly Met Lys Pro Arg Pro Cys

95

100

105

Gln His Arg Cys Val Asn Thr His Gly Ser Tyr Lys Cys Phe Cys
110 115 120

Leu Ser Gly His Met Leu Met Pro Asp Ala Thr Cys Val Asn Ser
125 130 135

Arg Thr Cys Ala Met Ile Asn Cys Gln Tyr Ser Cys Glu Asp Thr
140 145 150

Glu Glu Gly Pro Gln Cys Leu Cys Pro Ser Ser Gly Leu Arg Leu
155 160 165

Ala Pro Asn Gly Arg Asp Cys Leu Asp Ile Asp Glu Cys Ala Ser
170 175 180

Gly Lys Val Ile Cys Pro Tyr Asn Arg Arg Cys Val Asn Thr Phe
185 190 195

Gly Ser Tyr Tyr Cys Lys Cys His Ile Gly Phe Glu Leu Gln Tyr
200 205 210

Ile Ser Gly Arg Tyr Asp Cys Ile Asp Ile Asn Glu Cys Thr Met
215 220 225

Asp Ser His Thr Cys Ser His His Ala Asn Cys Phe Asn Thr Gln
230 235 240

Gly Ser Phe Lys Cys Lys Cys Lys Gln Gly Tyr Lys Gly Asn Gly
245 250 255

Leu Arg Cys Ser Ala Ile Pro Glu Asn Ser Val Lys Glu Val Leu
260 265 270

Arg Ala Pro Gly Thr Ile Lys Asp Arg Ile Lys Lys Leu Leu Ala
275 280 285

His Lys Asn Ser Met Lys Lys Ala Lys Ile Lys Asn Val Thr
290 295 300

Pro Glu Pro Thr Arg Thr Pro Thr Pro Lys Val Asn Leu Gln Pro
305 310 315

Phe Asn Tyr Glu Glu Ile Val Ser Arg Gly Gly Asn Ser His Gly

320

325

330

Gly Lys Lys Gly Asn Glu Glu Lys
335

<210> 120

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 120

cctcagtggc cacatgctca tg 22

<210> 121

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 121

ggctgcacgt atggctatcc atag 24

<210> 122

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 122

gataaaactgt cagtacagct gtgaaggcac agaagaaggg ccacagtgcc 50

<210> 123

<211> 1199

<212> DNA

<213> Homo sapiens

<400> 123

gggagctgct gctgtggctg ctgggtgtgt gcgcgcgtct cctgctcttg 50

gtcagctgc tgccgttcctt gagggtgac ggccacctga cgctactatg 100
ggccgagtgg cagggacgac gcccagaatg ggagctgact gatatggtgg 150
tgtgggtgac tggagccctcg agtggaaattg gtgaggagct ggcttaccag 200
ttgtctaaac taggagtttc tcttgtgctg tcagccagaa gagtgcatga 250
gctggaaagg gtgaaaagaa gatgcctaga gaatggcaat taaaaagaaa 300
aagatatact tggggcccc ctggacactga ccgacactgg ttcccatgaa 350
gcggctacca aagctgttct ccaggagttt ggtagaatcg acattctgg 400
caacaatggt ggaatgtccc agcggtctct gtgcatggat accagcttgg 450
atgtctacag aaagctaata gagcttaact acttagggac ggtgtccctg 500
acaaaatgtg ttctgcctca catgatcgag aggaagcaag gaaagattgt 550
tactgtgaat agcatcctgg gtatcatatc tgtacccctt tccattggat 600
actgtgctag caagcatgct ctccgggtt ttttaatgg cttcgaaca 650
gaacttgcca catacccagg tataatagtt tctaacattt gcccaggacc 700
tgtgcaatca aatattgtgg agaattccct agctggagaa gtcacaaaga 750
ctataggcaa taatggagac cagtcccacaa agatgacaac cagtcgttgc 800
gtcggctga tgtaatcag catggcaat gattgaaag aagtttggat 850
ctcagaacaa cctttctgt tagtaacata ttgtggcaa tacatgcca 900
cctgggcctg gtggataacc aacaagatgg ggaagaaaag gattgagaac 950
tttaagagtg gtgtggatgc agactctct tattttaaaa tcttaagac 1000
aaaacatgac taaaaagagc acctgtactt ttcaagccac tggagggaga 1050
aatggaaaac ataaaaacag caatcttctt atgcttctga ataatcaaag 1100
actaatttgt gattttactt tttaatagat atgactttgc ttccaacatg 1150
gaatgaaata aaaaataaat aataaaaagat tgccatgaat ctggaaaa 1199

<210> 124
<211> 289
<212> PRT
<213> Homo sapiens

<400> 124
Met Val Val Trp Val Thr Gly Ala Ser Ser Gly Ile Gly Glu Glu
1 5 10 15

Leu Ala Tyr Gln Leu Ser Lys Leu Gly Val Ser Leu Val Leu Ser
20 25 30

Ala Arg Arg Val His Glu Leu Glu Arg Val Lys Arg Arg Cys Leu
35 40 45

Glu Asn Gly Asn Leu Lys Glu Lys Asp Ile Leu Val Leu Pro Leu
50 55 60

Asp Leu Thr Asp Thr Gly Ser His Glu Ala Ala Thr Lys Ala Val
65 70 75

Leu Gln Glu Phe Gly Arg Ile Asp Ile Leu Val Asn Asn Gly Gly
80 85 90

Met Ser Gln Arg Ser Leu Cys Met Asp Thr Ser Leu Asp Val Tyr
95 100 105

Arg Lys Leu Ile Glu Leu Asn Tyr Leu Gly Thr Val Ser Leu Thr
110 115 120

Lys Cys Val Leu Pro His Met Ile Glu Arg Lys Gln Gly Lys Ile
125 130 135

Val Thr Val Asn Ser Ile Leu Gly Ile Ile Ser Val Pro Leu Ser
140 145 150

Ile Gly Tyr Cys Ala Ser Lys His Ala Leu Arg Gly Phe Phe Asn
155 160 165

Gly Leu Arg Thr Glu Leu Ala Thr Tyr Pro Gly Ile Ile Val Ser
170 175 180

Asn Ile Cys Pro Gly Pro Val Gln Ser Asn Ile Val Glu Asn Ser
185 190 195

Leu Ala Gly Glu Val Thr Lys Thr Ile Gly Asn Asn Gly Asp Gln
200 205 210

Ser His Lys Met Thr Thr Ser Arg Cys Val Arg Leu Met Leu Ile
215 220 225

Ser Met Ala Asn Asp Leu Lys Glu Val Trp Ile Ser Glu Gln Pro
230 235 240

Phe Leu Leu Val Thr Tyr Leu Trp Gln Tyr Met Pro Thr Trp Ala
245 250 255

Trp Trp Ile Thr Asn Lys Met Gly Lys Lys Arg Ile Glu Asn Phe
260 265 270

Lys Ser Gly Val Asp Ala Asp Ser Ser Tyr Phe Lys Ile Phe Lys
275 280 285

Thr Lys His Asp

<210> 125

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 125

gcaatgaact gggagctgc 19

<210> 126

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 126

ctgtgaatag catcctggg 19

<210> 127

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 127

ctttcaaggc cactggaggg 20

<210> 128

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 128

ctgttagacat ccaagctggatcc 24

<210> 129

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 129

aagagtctgc atccacaccca ctc 23

<210> 130

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 130

acctgacgct actatgggcc gagtggcagg gacgacgccc agaatg 46

<210> 131

<211> 2365

<212> DNA

<213> Homo sapiens

<400> 131

gcgacgtggg caccggccatc agctttcg gcgtttctc ctccagggtgg 50
ggcaggggtt tcgggctggt ggagcatgtg ctgggacagg acagcatcct 100
caatcaatcc aacagcatat tcgggttgcattttcacaca ctacagctat 150
tgttaggttg cctgcggaca cgctgggcct ctgtccgtat gctgctgagc 200
tccctgggtt ctctcgctgg ttctgtctac ctggccgttga tcctgttctt 250
cgtgctctat gatttctgca ttgtttgtat caccacat gctatcaacg 300
tgagcctgtat gtggctcagt ttccggaagg tccaagaacc ccagggcaag 350
gctaagaggc actgagccct caacccaagc caggctgacc tcatacgctt 400
tgctttggtc ttcaagccgc tcagcgtgcc tgtggacagc gtggcccccgg 450
cccccccaag ctcaggagg gcaacacagt ccctggcgag tggccctggc 500
aggccagtgt gaggaggcaa ggagccaca tctgcagcgg ctccctgggt 550
gcagacacctt gggcctcac tgctgcccac tgcttggaaa aggccagcagc 600
aacagaactg aattccttgtt cagtggctt gggttctctg cagcgtgagg 650
gactcagccc tggggccgaa gaggtgggggg tggctgcccgcgcgttgc 700
agggcctata accactacag ccagggctca gacccggccct tgctgcagct 750
cgccccaccc acgaccacaca caccctctg cctggcccgcccccacatc 800
gcttccctt tggagcctcc tgctggccca ctggctggga tcaggacacc 850
agtgtatgctc ctgggaccct acgcaatctg cgccctgcgtc tcatcagtcg 900
ccccacatgt aactgtatct acaaccagct gcaccagcga cacctgtcca 950
acccggcccg gcctggatg ctatgtgggg gccccccagcc tgggggtgcag 1000
ggccctgtc agggagattc cggggccctt gtgtgtgcc tcgagcctga 1050

cggacactgg gttcaggctg gcatcatcag ctttgcata agctgtgcc 1100
aggaggacgc tcctgtgctg ctgaccaaca cagctgctca cagttcctgg 1150
ctgcaggctc gagttcaggg ggcagcttc ctggcccaga gcccgagac 1200
cccgagatg agtgatgagg acagctgtgt agcctgtgga tccttgagga 1250
cagcagggtcc ccaggcagga gcaccctccc catggccctg ggaggccagg 1300
ctgatgcacc agggacagct ggcctgtggc ggagccctgg tgtcagagga 1350
ggcggtgcta actgctgccc actgcttcat tggcgccag gcccccagagg 1400
aatggagcgt agggctgggg accagaccgg aggagtgggg cctgaagcag 1450
ctcatcctgc atggagccta cacccacccct gaggggggct acgacatggc 1500
cctcctgctg ctggcccagc ctgtgacact gggagccagc ctgcggcccc 1550
tctgcctgcc ctatcctgac caccacctgc ctgatggga gcgtggctgg 1600
gttctggac gggcccgccc aggagcaggc atcagctccc tccagacagt 1650
gcccgtgacc ctccctgggc ctagggcctg cagccggctg catcagctc 1700
ctgggggtga tggcagccct attctgccgg ggatgggtgtg taccagtgt 1750
gtgggtgagc tgcccagctg tgagggcctg tctggggcac cactggtgca 1800
tgaggtgagg ggcacatgg tcctggccgg gctgcacagc ttggagatg 1850
cttgc当地 ccccgccagg ccggcggct tcaccgcgt ccctgcctat 1900
gaggactggg tcagcagttt ggactggcag gtctacttcg ccgaggaacc 1950
agagcccgag gctgagccctg gaagctgcct ggccaacata agccaaccaa 2000
ccagctgctg acaggggacc tggccattct caggacaaga gaatgcaggc 2050
aggcaaatgg cattactgcc cctgtcctcc ccaccctgtc atgtgtgatt 2100
ccaggcacca gggcaggccc agaagccag cagctgtggg aaggaacctg 2150
cctggggcca caggtgcccc ctccccaccc tgcaggacag gggtgtctgt 2200

ggacactccc acacccaact ctgctaccaa gcaggcgctc cagcttcct 2250

cctcccttac tcttcagat acaatcacgc cagccacgtt gtttgaaaa 2300

tttctttt tggtttttcag cagtttcct tttttaaac tttaataaat 2350

tgttacaaaa taaaa 2365

<210> 132

<211> 571

<212> PRT

<213> Homo sapiens

<400> 132

Met Leu Leu Ser Ser Leu Val Ser Leu Ala Gly Ser Val Tyr Leu
1 5 10 15

Ala Trp Ile Leu Phe Phe Val Leu Tyr Asp Phe Cys Ile Val Cys
20 25 30

Ile Thr Thr Tyr Ala Ile Asn Val Ser Leu Met Trp Leu Ser Phe
35 40 45

Arg Lys Val Gln Glu Pro Gln Gly Lys Ala Lys Arg His Gly Asn
50 55 60

Thr Val Pro Gly Glu Trp Pro Trp Gln Ala Ser Val Arg Arg Gln
65 70 75

Gly Ala His Ile Cys Ser Gly Ser Leu Val Ala Asp Thr Trp Val
80 85 90

Leu Thr Ala Ala His Cys Phe Glu Lys Ala Ala Ala Thr Glu Leu
95 100 105

Asn Ser Trp Ser Val Val Leu Gly Ser Leu Gln Arg Glu Gly Leu
110 115 120

Ser Pro Gly Ala Glu Glu Val Gly Val Ala Ala Leu Gln Leu Pro
125 130 135

Arg Ala Tyr Asn His Tyr Ser Gln Gly Ser Asp Leu Ala Leu Leu
140 145 150

Gln Leu Ala His Pro Thr Thr His Thr Pro Leu Cys Leu Pro Gln

155

160

165

Pro Ala His Arg Phe Pro Phe Gly Ala Ser Cys Trp Ala Thr Gly
170 175 180

Trp Asp Gln Asp Thr Ser Asp Ala Pro Gly Thr Leu Arg Asn Leu
185 190 195

Arg Leu Arg Leu Ile Ser Arg Pro Thr Cys Asn Cys Ile Tyr Asn
200 205 210

Gln Leu His Gln Arg His Leu Ser Asn Pro Ala Arg Pro Gly Met
215 220 225

Leu Cys Gly Gly Pro Gln Pro Gly Val Gln Gly Pro Cys Gln Gly
230 235 240

Asp Ser Gly Gly Pro Val Leu Cys Leu Glu Pro Asp Gly His Trp
245 250 255

Val Gln Ala Gly Ile Ile Ser Phe Ala Ser Ser Cys Ala Gln Glu
260 265 270

Asp Ala Pro Val Leu Leu Thr Asn Thr Ala Ala His Ser Ser Trp
275 280 285

Leu Gln Ala Arg Val Gln Gly Ala Ala Phe Leu Ala Gln Ser Pro
290 295 300

Glu Thr Pro Glu Met Ser Asp Glu Asp Ser Cys Val Ala Cys Gly
305 310 315

Ser Leu Arg Thr Ala Gly Pro Gln Ala Gly Ala Pro Ser Pro Trp
320 325 330

Pro Trp Glu Ala Arg Leu Met His Gln Gly Gln Leu Ala Cys Gly
335 340 345

Gly Ala Leu Val Ser Glu Glu Ala Val Leu Thr Ala Ala His Cys
350 355 360

Phe Ile Gly Arg Gln Ala Pro Glu Glu Trp Ser Val Gly Leu Gly
365 370 375

Thr Arg Pro Glu Glu Trp Gly Leu Lys Gln Leu Ile Leu His Gly

380 385 390

Ala Tyr Thr His Pro Glu Gly Gly Tyr Asp Met Ala Leu Leu Leu
395 400 405

Leu Ala Gln Pro Val Thr Leu Gly Ala Ser Leu Arg Pro Leu Cys
410 415 420

Leu Pro Tyr Pro Asp His His Leu Pro Asp Gly Glu Arg Gly Trp
425 430 435

Val Leu Gly Arg Ala Arg Pro Gly Ala Gly Ile Ser Ser Leu Gln
440 445 450

Thr Val Pro Val Thr Leu Leu Gly Pro Arg Ala Cys Ser Arg Leu
455 460 465

His Ala Ala Pro Gly Gly Asp Gly Ser Pro Ile Leu Pro Gly Met
470 475 480

Val Cys Thr Ser Ala Val Gly Glu Leu Pro Ser Cys Glu Gly Leu
485 490 495

Ser Gly Ala Pro Leu Val His Glu Val Arg Gly Thr Trp Phe Leu
500 505 510

Ala Gly Leu His Ser Phe Gly Asp Ala Cys Gln Gly Pro Ala Arg
515 520 525

Pro Ala Val Phe Thr Ala Leu Pro Ala Tyr Glu Asp Trp Val Ser
530 535 540

Ser Leu Asp Trp Gln Val Tyr Phe Ala Glu Glu Pro Glu Pro Glu
545 550 555

Ala Glu Pro Gly Ser Cys Leu Ala Asn Ile Ser Gln Pro Thr Ser
560 565 570

Cys

<210> 133

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 133

cctgtgctgt gcctcgagcc tgac 24

<210> 134

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 134

gtgggcagca gttagcaccg cctc 24

<210> 135

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 135

ggctggcatc atcagcttg catcaagctg tgcccaggag gacgc 45

<210> 136

<211> 1998

<212> DNA

<213> Homo sapiens

<400> 136

cgggccgccc ccggcccca ttctggccgg gcctcgctgc ggccggcact 50

gagccaggct gggccgcgtc cctgagtcgg agatcgccg cggcgccga 100

ggggcagcct tccaccacgg ggagcccgac tgcagccgc ctcacaggaa 150

gatgctgcgt cggcggggca gccctggcat ggggtgcattt gttttttttt 200

ccctgggagc actgtggttc tgcctcacag gagccctgga ggtccaggta 250

cctgaagacc cagtggggc actggggc accgatgcca ccctgtgcgtg 300

ctccttcctcc cctgagccctg gcttcagcct ggacacagctc aacctcatct 350
ggcagctgac agataccaaa cagctgggc acagcttgc tgagggccag 400
gaccaggca gcgcctatgc caaccgcacg gccctttcc cgacactgct 450
ggcacaggca aacgcattcc tgaggctgca ggcgtgcgt gtggcggacg 500
agggcagctt cacctgtttc gtgagcatcc gggatttcgg cagcgctgcc 550
gtcagcctgc aggtggccgc tccctactcg aagcccagca tgaccctgga 600
gccccacaag gacctgcggc caggggacac ggtgaccatc acgtgtcca 650
gctaccaggg ctaccctgag gctgaggtgt tctggcagga tggcagggt 700
gtgccccctga ctggcaacgt gaccacgtcg cagatggcca acgagcagg 750
cttgttgat gtgcacagcg tcctgcgggt ggtgctgggt gcgaatggca 800
cctacagctg cctggcgcgc aaccccggtc tgacgcagga tgcgcacrgc 850
tctgtcacca tcacagggca gcctatgaca ttccccccag aggccctgtg 900
ggtgaccgtg gggctgtctg tctgtctcat tgcaactgtg gtggccctgg 950
cttcgtgtg ctggagaaag atcaaacaga gctgtgagga ggagaatgca 1000
ggagctgagg accaggatgg ggagggagaa ggctccaaga cagccctgca 1050
gcctctgaaa cactctgaca gcaaagaaga tggatggacaa gaaatagcct 1100
gaccatgagg accagggagc tgctaccctt ccctacagct cttaccctct 1150
ggctgcaatg gggctgcact gtgagccctg ccccaacag atgcattctg 1200
ctctgacagg tgggctcctt ctccaaagga tgcgatacac agaccactgt 1250
gcagccttat ttctccaatg gacatgatc ccaagtcatc ctgctgcctt 1300
ttttcttata gacacaatga acagaccacc cacaacctta gttctctaag 1350
tcatcctgcc tgctgcctta tttcacagta catacattc ttagggacac 1400
agtacactga ccacatcacc accctttct tccagtgctg cgtggaccat 1450

ctggctgcct ttttctcca aaagatgcaa tattcagact gactgacccc 1500
ctgccttatt tcaccaaaga cacgatgcat agtcaccccg gcctgttc 1550
tccaaatggcc gtgatacact agtgatcatg ttcagccctg cttccacctg 1600
catagaatct ttcttctca gacagggaca gtgcggcctc aacatctct 1650
ggagtctaga agctgttcc ttccccctcc ttccctccctg ccccaagtga 1700
agacagggca gggccaggaa tgcttgggg acaccgaggg gactgcccc 1750
caccccccacc atggtgctat tctggggctg gggcagtctt ttccctggctt 1800
gcctctggcc agctcctggc ctctggtaga gtgagacttc agacgttctg 1850
atgccttccg gatgtcatct ctccctgccc caggaatgga agatgtgagg 1900
acttctaatt taaaatgtggg actcggaggg attttgtaaa ctgggggtat 1950
atttgggaa aaataaatgt cttgtaaaa aaaaaaaaaa aaaaaaaaa 1998

<210> 137
<211> 316
<212> PRT
<213> Homo sapiens

<220>
<221> unsure
<222> 233
<223> unknown amino acid

<400> 137
Met Leu Arg Arg Arg Gly Ser Pro Gly Met Gly Val His Val Gly
1 5 10 15

Ala Ala Leu Gly Ala Leu Trp Phe Cys Leu Thr Gly Ala Leu Glu
20 25 30

Val Gln Val Pro Glu Asp Pro Val Val Ala Leu Val Gly Thr Asp
35 40 45

Ala Thr Leu Cys Cys Ser Phe Ser Pro Glu Pro Gly Phe Ser Leu
50 55 60

Ala Gln Leu Asn Leu Ile Trp Gln Leu Thr Asp Thr Lys Gln Leu
65 70 75

Val His Ser Phe Ala Glu Gly Gln Asp Gln Gly Ser Ala Tyr Ala
80 85 90

Asn Arg Thr Ala Leu Phe Pro Asp Leu Leu Ala Gln Gly Asn Ala
95 100 105

Ser Leu Arg Leu Gln Arg Val Arg Val Ala Asp Glu Gly Ser Phe
110 115 120

Thr Cys Phe Val Ser Ile Arg Asp Phe Gly Ser Ala Ala Val Ser
125 130 135

Leu Gln Val Ala Ala Pro Tyr Ser Lys Pro Ser Met Thr Leu Glu
140 145 150

Pro Asn Lys Asp Leu Arg Pro Gly Asp Thr Val Thr Ile Thr Cys
155 160 165

Ser Ser Tyr Gln Gly Tyr Pro Glu Ala Glu Val Phe Trp Gln Asp
170 175 180

Gly Gln Gly Val Pro Leu Thr Gly Asn Val Thr Thr Ser Gln Met
185 190 195

Ala Asn Glu Gln Gly Leu Phe Asp Val His Ser Val Leu Arg Val
200 205 210

Val Leu Gly Ala Asn Gly Thr Tyr Ser Cys Leu Val Arg Asn Pro
215 220 225

Val Leu Gln Gln Asp Ala His Xaa Ser Val Thr Ile Thr Gly Gln
230 235 240

Pro Met Thr Phe Pro Pro Glu Ala Leu Trp Val Thr Val Gly Leu
245 250 255

Ser Val Cys Leu Ile Ala Leu Leu Val Ala Leu Ala Phe Val Cys
260 265 270

Trp Arg Lys Ile Lys Gln Ser Cys Glu Glu Glu Asn Ala Gly Ala
275 280 285

Glu Asp Gln Asp Gly Glu Gly Glu Ser Lys Thr Ala Leu Gln
290 295 300

Pro Leu Lys His Ser Asp Ser Lys Glu Asp Asp Gly Gln Glu Ile
305 310 315

Ala

<210> 138

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 138

ctggcacagc tcaacacctat ctgg 24

<210> 139

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 139

gctgtctgtc tgtctcattg 20

<210> 140

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 140

ggacacagta tactgaccac 20

<210> 141

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 141

tgcgaaccag gcagctgtaa gtgc 24

<210> 142

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 142

tggagaaga gggtggtgat gtgg 24

<210> 143

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 143

cagctgacag acaccaaaca gctggtgac agttcacccg aaggc 45

<210> 144

<211> 2336

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1620, 1673

<223> unknown base

<400> 144

ttcgtagccc ttgagaaaag agttgggtggt aaatgtgccca cgtttctaa 50

gaagggggag tcctgaacctt gtctgaagcc cttgtccgta agccttgaac 100

tacgttctta aatctatgaa gtcgaggac cttcgctgc ttttaggg 150
acttccttcc ttgcttcagc aacatgaggc tttcttgta gaacgcggc 200
ttgactctgt tcgtcacttc ttgattggg gcttgcattt ctgaaccaga 250
agtaaaatt gaagttctcc agaagccattt catctgccc cgcaagacca 300
aaggagggaa ttgtatgttgc ttccactatg aaggctactt agaaaaggac 350
ggctccttat ttcactccac tcacaaacat aacaatggc agcccatgg 400
gtttaccctg ggcacccctgg aggctctcaa aggttggac cagggcttga 450
aaggaatgtg tgttaggagag aagagaaagc tcatttcattcc tcctgctctg 500
ggctatggaa aagaaggaaa aggtaaaattt cccccagaaa gtacactgt 550
atttaatattt gatccctgg agattcgaaa tggaccaaga tcccatgaaat 600
cattccaaga aatggatctt aatgtactt ggaaactctc taaagatgag 650
gttaaagcat atttaaagaa ggagttgaa aaacatggtgc cgggggtgaa 700
tgaagtcat catgtatgttggatggagaa tatttttgtt aaagaagatg 750
aagacaaaga tgggttata tctgccagag aatttacata taaacacgt 800
gagttataga gatacatcta cccttttaat atagcactca tcttcaaga 850
gagggcagtc atctttaaag aacattttat ttttatacaa tgttcttct 900
tgcttggttt ttatttta tatattttt ctgactccta tttaaagaac 950
cccttaggtt tctaagtacc catttcatttc tgataaggta ttgggaagaa 1000
aaagctaattt ggttttgaa tagaagactt ctggacaattt ttcaacttc 1050
acagatatga agctttgtt tactttctca cttataaattt taaaatgtt 1100
caactggaa tataccacga catgagacca ggttatagca caaattagca 1150
ccctatattt ctgcttccctt ctatttctc caagtttagag gtcaacattt 1200
gaaaaggcctt ttgcaatagc ccaaggcttgc ctatttcat gttataatga 1250

aatagtttat gtgtaactgg ctctgagtc ctgcggagg accagaggaa 1300
aatgggttggt ggacctgact tgtaatggc tactgctta ctaaggagat 1350
gtgcaatgct gaagtttagaa acaaggtaa tagccaggca tggggctca 1400
tgccctgtaat cccagcactt tgggaggctg aggccccgg atcacctgag 1450
gttgggagtt cgagaccagc ctgaccaaca cggagaaacc ctatctctac 1500
taaaaataca aagttagcccg gcgtggtgat gcgtgcctgt aatcccagct 1550
accaggaaag gctgaggcgg cagaatcaact tgaacccgag gccgagggtg 1600
cggttaagccg agatcacctn cagcctggac actctgtctc gaaaaaaagaa 1650
aagaacacgg ttaataccat atnaatatgt atgcattgag acatgctacc 1700
taggacttaa gctgatgaag ctggctcct agtgatttgtt ggcttattat 1750
gataaatagg acaaattcatt tatgtgtgag tttctttgtataaaaaatgt 1800
tcaatatgtt atagatgagg tagaaagtta tatttatattt caatatttac 1850
ttcttaaggc tagcggaaata tccttcctgg ttcttaatg ggttagctat 1900
agtatattat actacaataa cattgtatca taagataaag tagtaaacca 1950
gtctacattt tcccatttct gtctcatcaa aaactgaagt tagctgggtg 2000
tggggctca tgccgttaat cccagcactt tggggccaa ggagggtgga 2050
tcacttgaga tcaggagttc aagaccagcc tggccaacat ggtgaaacct 2100
tgtctctact aaaaataca aatttagcca ggcgtggtg tgcacacctg 2150
tagtcccagc tactcgggag gctgagacag gagatttgct tgaacccggg 2200
aggcggaggt tgcaatgtgac caagattgt ccactgcact ccagcctggg 2250
tgacagagca agactccatc taaaaaaaaaaa aaaaaagaag cagacctaca 2300
gcagctacta ttgaataat acctatcctg gatttt 2336

<211> 211

<212> PRT

<213> Homo sapiens

<400> 145

Met Arg Leu Phe Leu Trp Asn Ala Val Leu Thr Leu Phe Val Thr
1 5 10 15

Ser Leu Ile Gly Ala Leu Ile Pro Glu Pro Glu Val Lys Ile Glu
20 25 30

Val Leu Gln Lys Pro Phe Ile Cys His Arg Lys Thr Lys Gly Gly
35 40 45

Asp Leu Met Leu Val His Tyr Glu Gly Tyr Leu Glu Lys Asp Gly
50 55 60

Ser Leu Phe His Ser Thr His Lys His Asn Asn Gly Gln Pro Ile
65 70 75

Trp Phe Thr Leu Gly Ile Leu Glu Ala Leu Lys Gly Trp Asp Gln
80 85 90

Gly Leu Lys Gly Met Cys Val Gly Glu Lys Arg Lys Leu Ile Ile
95 100 105

Pro Pro Ala Leu Gly Tyr Gly Lys Glu Gly Lys Gly Lys Ile Pro
110 115 120

Pro Glu Ser Thr Leu Ile Phe Asn Ile Asp Leu Leu Glu Ile Arg
125 130 135

Asn Gly Pro Arg Ser His Glu Ser Phe Gln Glu Met Asp Leu Asn
140 145 150

Asp Asp Trp Lys Leu Ser Lys Asp Glu Val Lys Ala Tyr Leu Lys
155 160 165

Lys Glu Phe Glu Lys His Gly Ala Val Val Asn Glu Ser His His
170 175 180

Asp Ala Leu Val Glu Asp Ile Phe Asp Lys Glu Asp Glu Asp Lys
185 190 195

Asp Gly Phe Ile Ser Ala Arg Glu Phe Thr Tyr Lys His Asp Glu

200

205

210

Leu

<210> 146

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 146

ctttccttgc tttagcaaca tgaggc 26

<210> 147

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 147

gcccgagca ggaggaatga tgagc 25

<210> 148

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 148

gtggAACGCG gtcttgactc tggcgtcac ttctttgatt gggctttg 49

<210> 149

<211> 2196

<212> DNA

<213> Homo sapiens

<400> 149

aataaAGCTT ccttaatgtt gtatATgtct ttGAAGTACA TCCGTGCATT 50

tttttttagc atccaaccat tcctcccttg tagtctcg cccctcaaat 100
caccctctcc cgtagccccac ccgactaaca tctcagtctc tgaaaatgca 150
cagagatgcc tggctacctc gccctgcctt cagcctcacg gggctcagtc 200
tcttttctc ttgggtgcca ccaggacgga gcatggaggt cacagtacct 250
gccaccctca acgtcctcaa tggctctgac gcccgcctgc cctgcacctt 300
caactcctgc tacacagtga accacaaaca gttctccctg aactggactt 350
accaggagtg caacaactgc tctgaggaga tggcttcca gttccgcattg 400
aagatcatta acctgaagct ggagcggttt caagaccgcg tggagttctc 450
aggaaacccc agcaagtacg atgtgtcggt gatgctgaga aacgtgcagc 500
cgaggatga ggggatttac aactgctaca tcatgaaccc ccctgaccgc 550
caccgtggcc atggcaagat ccatctgcag gtccctatgg aagagccccc 600
tgagcgggac tccacggtgg ccgtgattgt ggggcctcc gtcggggct 650
tcctggctgt ggtcatcttg gtgctgatgg tggtaagtg tgtgaggaga 700
aaaaaaagagc agaagctgag cacagatgac ctgaagaccg aggaggaggg 750
caagacggac ggtgaaggca acccgatga tggcgccaag tagtgggtgg 800
ccggccctgc agcctccgt gtcccgctc ctccctctc cgccctgtac 850
agtgaccctg cctgctcgct ctgggtgtc ttcccgatgc cttaggacccc 900
aggcccacc tggggcctcc tgaacccccc acttcgtatc tcccaccctg 950
caccaagagt gacccactct cttccatccg agaaacctgc catgctctgg 1000
gacgtgtggg ccctggggag aggagagaaa gggctccac ctgccagtcc 1050
ctggggggag gcaggaggca catgtgaggg tccccagaga gaagggagtg 1100
ggtagaggag gggccgctgt cacctgccc gtgcttgct 1150
ggcagtggct tcagagagga cctgggtggg agggagggtt tcctgtgt 1200

gacagcgctc cctcaggagg gcctggcct ggcacggctg tgccctccc 1250
ctgctccag cccagagcag ccatcaggct ggaggtgacg atgagttcct 1300
gaaacttgg aaaaaatgtt aaagggatga ctgtgcattc cagggcactg 1350
acggaaagcc agggctgcag gcaaagctgg acatgtgcc tggcccaagga 1400
ggccatgttgg ccgcctcggtt tccattgtta gtggcctcct tggggctcct 1450
gttggctcct aatcccttag gactgtggat gaggccagac tggaaagagca 1500
gctccaggta gggggccatgttccctcggtt gggaccacc aacagaggcc 1550
agtttcaaag tcagctgagg ggctgaggggg tggggctcca tggtaatgc 1600
agtttgctgc aggctctgcc ttctccatgg ggtaaccacc ctgcctggg 1650
caggggcagc caaggctggg aaatgaggag gccatgcaca gggggggca 1700
gcittcttg gggcttcagt gagaactctc ccagttgccccc ttgggggggt 1750
ttccacctgg ctttggcta cagagaggaa agggaaagcc tgaggccggc 1800
ataaggggag gccttggaaac ctgagctgcc aatgccagcc ctgtcccatc 1850
tgccggccacg ctactcgctc ctctcccaac aactcccttc gtggggacaa 1900
aagtgacaat tgttaggcccag gcacagtggc tcacgcctgt aatccctgg 1950
ctttgggagg ccaaggccggg tggattacct ccacgtttt agtagaaatg 2000
ggcaaaaaccc catctctact aaaaatacaa gaattagctg ggcgtgggtgg 2050
cggtgtgcctg taatcccagc tatttgggag gctgaggcag gagaatcgct 2100
tgagccccggg aagcagaggt tgcaatgttggaaac tgagatagtg atatgtccac 2150
tgcaattcag cctgggtgac atagagagac tccatctcaa aaaaaaa 2196

<210> 150

<211> 215

<212> PRT

<213> Homo sapiens

<400> 150

Met His Arg Asp Ala Trp Leu Pro Arg Pro Ala Phe Ser Leu Thr
1 5 10 15

Gly Leu Ser Leu Phe Phe Ser Leu Val Pro Pro Gly Arg Ser Met
20 25 30

Glu Val Thr Val Pro Ala Thr Leu Asn Val Leu Asn Gly Ser Asp
35 40 45

Ala Arg Leu Pro Cys Thr Phe Asn Ser Cys Tyr Thr Val Asn His
50 55 60

Lys Gln Phe Ser Leu Asn Trp Thr Tyr Gln Glu Cys Asn Asn Cys
65 70 75

Ser Glu Glu Met Phe Leu Gln Phe Arg Met Lys Ile Ile Asn Leu
80 85 90

Lys Leu Glu Arg Phe Gln Asp Arg Val Glu Phe Ser Gly Asn Pro
95 100 105

Ser Lys Tyr Asp Val Ser Val Met Leu Arg Asn Val Gln Pro Glu
110 115 120

Asp Glu Gly Ile Tyr Asn Cys Tyr Ile Met Asn Pro Pro Asp Arg
125 130 135

His Arg Gly His Gly Lys Ile His Leu Gln Val Leu Met Glu Glu
140 145 150

Pro Pro Glu Arg Asp Ser Thr Val Ala Val Ile Val Gly Ala Ser
155 160 165

Val Gly Gly Phe Leu Ala Val Val Ile Leu Val Leu Met Val Val
170 175 180

Lys Cys Val Arg Arg Lys Lys Glu Gln Lys Leu Ser Thr Asp Asp
185 190 195

Leu Lys Thr Glu Glu Gly Lys Thr Asp Gly Glu Gly Asn Pro
200 205 210

Asp Asp Gly Ala Lys
215

<210> 151
<211> 524
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 103, 233
<223> unknown base

<400> 151
gttgtatatg tcctgaagta catccgtgca ttttttttag catccaacca 50
tcctcccttg tagttctcgc cccctcaa at caccttctcc cttagccccac 100
ccnactaaca tctcagtctc tgaaaatgca cagagatgcc tggcaccc 150
gccctgcctt cagcctcacg gggctcagtc tcttttctc ttgggtgcca 200
ccaggacgga gcatggaggt ccacagtacc tgnccaccct caacgtcc 250
aatggctctg acgcccgcct gccctgcct tcaactcc 300
aaccacaaac agttctccct gaactggact taccaggagt gcaacaactg 350
ctctgaggag atgttcctcc agttccgcat gaagatcatt aacctgaagc 400
tgaggcggtt tcaagaccgc gtggagttct cagggAACCC cagcaagtac 450
gatgtgtcgg tgatgctgag aaacgtgcag ccggaggatg aggggattta 500
caactgctac atcatgaacc cccc 524

<210> 152
<211> 368
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 56, 123
<223> unknown base

<400> 152
tcacggggct catcttttt tctctttggt gcccaccagg acggagcatg 50

gaggtnacaca tacctgccac cctcaacgtc ctcaatggct ttgacgccccg 100

cctgccctgc accttcaact ccngctacac agtgaaccac aaacagttct 150

ccctgaactg gatttaccag gagtgcaaca actggctcg aggagatgtt 200

cctccagttc ccgcatggaa gatcatttaa cctgaaagct ggaagcgggtt 250

ttcaagaacc gcgtggaagt ttctcaggga accccagcaa gtacgatgtg 300

tcggtgatgc tgagaaacgt gcagccggag gatgagggga tttacaactg 350

ctacatcatg aacccccc 368

<210> 153

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 153

acggagcatg gaggtccaca gtac 24

<210> 154

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 154

gcacgtttct cagcatcacc gac 23

<210> 155

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 155

cgcctgccct gcaccccaa ctccgtcac acagtgaacc acaaacagt 50

<210> 156

<211> 2680

<212> DNA

<213> Homo sapiens

<400> 156

tgcggcgacc gtcgtacacc atgggcctcc acctccgccc ctaccgttg 50

gggctgtcc cggatggcct cctgtccctc ttgctgtgc taatgtgt 100

cgcggaccca ggcgtccccgg ccggacgtca ccccccagtg gtgctggtcc 150

ctggtgattt gggtaaccaa ctggaagcca agctggacaa gccgacagt 200

gtgcactacc tctgctccaa gaagaccgaa agctacttca caatctggct 250

gaacctggaa ctgctgctgc ctgtcatcat tgactgctgg attgacaata 300

tcaggctgggt ttacaacaaa acatccaggg ccacccagtt tcctgatgg 350

gtggatgtac gtgtccctgg ctttgggaag accttctcac tggagttcct 400

ggaccccagc aaaagcagcg tgggttccta tttccacacc atgggtggaga 450

gccttgggg ctggggctac acacggggtg aggatgtccg aggggctccc 500

tatgactggc gccgagcccc aaatgaaaac gggccctact tcctggccct 550

ccgcgagatg atcgaggaga tgtaccagct gtatggggc cccgtggtgc 600

tggttgccc a cagtatggc aacatgtaca cgctctactt tctgcagcgg 650

cagccgcagg cctggaagga caagtatatc cggccctcg tgtcaactggg 700

tgcgccttgg gggggcgtgg ccaagacccct gcgcgtcctg gcttcaggag 750

acaacaacccg gatcccagtc atcgggcccc tgaagatccg ggagcagcag 800

cggtcagctg tctccaccag ctggctgctg ccctacaact acacatggtc 850

acctgagaag gtgttcgtgc agacacccac aatcaactac acactgcggg 900

actaccgcaa gttctccag gacatggct ttgaagatgg ctggctcatg 950

cggcaggaca cagaaggcgt ggttgaagcc acgatgccac ctggcgta 1000
gctgcactgc ctctatggta ctggcgcccc cacaccagac tccttctact 1050
atgagagctt ccctgaccgt gaccctaaaa tctgcttgg tgacggcgat 1100
ggtaactgtga acttgaagag tgccctgcag tgccaggcct ggcagagccg 1150
ccaggaggcac caagtgttgc tgcaggagct gccaggcagc gagcacatcg 1200
agatgctggc caacgccacc accctggcct atctgaaacg tgtgctcctt 1250
ggccctgac tcctgtgcca caggactct gtggctcggc cgtggacctg 1300
ctgttggcct ctggggctgt catggccac gcgtttgca aagtttgta 1350
ctcaccattc aaggccccga gtcttgact gtgaagcatc tgccatggg 1400
aagtgcgtt ttttatcctt tctctgtggc agtgaagaag gaagaaatga 1450
gagtcttagac tcaagggaca ctggatggca agaatgctgc tggatggga 1500
actgctgtga ccttaggact ggctccacag ggtggactgg ctggccctg 1550
gtcccagtcctt ctggctgggg ccatgtgtcc ccctattcct gtgggcttt 1600
catacttgcc tactggggcc tggcccccga gccttcctat gaggatgtt 1650
actgggctgt ggtcctgtac ccagagggtcc cagggatcgg ctccctggccc 1700
ctcgggtgac cttccccaca caccagccac agataggcct gccactggtc 1750
atggtagct agagctgtcg gcttccctgt ggcttagctg gtggccagcc 1800
tgactggctt cctggcgag cctagtagct cctgcaggca gggcagttt 1850
gttgcgttct tcgtggttcc caggccctgg gacatctcac tccactccta 1900
cctcccttac caccaggagc attcaagctc tggattgggc agcagatgtg 1950
ccccccagtcctt cgcaggctgt gttccagggg ccctgatttc ctggatgtg 2000
ctattggccc caggactgaa gctgcctccc ttcccttgg gactgtggtt 2050
ccaaggatga gaggcagggtt tggagccatg gcctctggg aacctatgga 2100

gaaagggaat ccaaggaagc agccaaggct gctcgagct tccctgagct 2150
gcacctcttg ctaaccccac catcacactg ccaccctgcc cttaggtctc 2200
actagtacca agtgggtcag cacaggcgtg aggatggggc tcctatccac 2250
cctggccagc acccagctt gtgctggac tagcccagaa acttgaatgg 2300
gaccctgaga gagccagggg tccccctgagg ccccccctagg ggctttctgt 2350
ctgccccagg gtgctccatg gatctccctg tggcagcagg catggagagt 2400
cagggctgcc ttcatggcag taggctctaa gtgggtgact gcccacaggc 2450
cgagaaaagg gtacagcctc taggtgggggt tcccaaagac gccttcaggc 2500
tggactgagc tgctctccca cagggttct gtgcagctgg atttctctg 2550
ttgcatacat gcctggcatc tgtctccct tggcctgag tggccccaca 2600
tggggctctg agcaggctgt atctggattc tggcaataaa agtactctgg 2650
atgctgtaaa aaaaaaaaaa aaaaaaaaaa 2680

<210> 157

<211> 412

<212> PRT

<213> Homo Sapien

<400> 157

Met Gly Leu His Leu Arg Pro Tyr Arg Val Gly Leu Leu Pro Asp
1 5 10 15

Gly Leu Leu Phe Leu Leu Leu Leu Met Leu Leu Ala Asp Pro
20 25 30

Ala Leu Pro Ala Gly Arg His Pro Pro Val Val Leu Val Pro Gly
35 40 45

Asp Leu Gly Asn Gln Leu Glu Ala Lys Leu Asp Lys Pro Thr Val
50 55 60

Val His Tyr Leu Cys Ser Lys Lys Thr Glu Ser Tyr Phe Thr Ile
65 70 75

Trp Leu Asn Leu Glu Leu Leu Pro Val Ile Asp Cys Trp
80 85 90

Ile Asp Asn Ile Arg Leu Val Tyr Asn Lys Thr Ser Arg Ala Thr
95 100 105

Gln Phe Pro Asp Gly Val Asp Val Arg Val Pro Gly Phe Gly Lys
110 115 120

Thr Phe Ser Leu Glu Phe Leu Asp Pro Ser Lys Ser Ser Val Gly
125 130 135

Ser Tyr Phe His Thr Met Val Glu Ser Leu Val Gly Trp Gly Tyr
140 145 150

Thr Arg Gly Glu Asp Val Arg Gly Ala Pro Tyr Asp Trp Arg Arg
155 160 165

Ala Pro Asn Glu Asn Gly Pro Tyr Phe Leu Ala Leu Arg Glu Met
170 175 180

Ile Glu Glu Met Tyr Gln Leu Tyr Gly Gly Pro Val Val Leu Val
185 190 195

Ala His Ser Met Gly Asn Met Tyr Thr Leu Tyr Phe Leu Gln Arg
200 205 210

Gln Pro Gln Ala Trp Lys Asp Lys Tyr Ile Arg Ala Phe Val Ser
215 220 225

Leu Gly Ala Pro Trp Gly Gly Val Ala Lys Thr Leu Arg Val Leu
230 235 240

Ala Ser Gly Asp Asn Asn Arg Ile Pro Val Ile Gly Pro Leu Lys
245 250 255

Ile Arg Glu Gln Gln Arg Ser Ala Val Ser Thr Ser Trp Leu Leu
260 265 270

Pro Tyr Asn Tyr Thr Trp Ser Pro Glu Lys Val Phe Val Gln Thr
275 280 285

Pro Thr Ile Asn Tyr Thr Leu Arg Asp Tyr Arg Lys Phe Phe Gln
290 295 300

Asp Ile Gly Phe Glu Asp Gly Trp Leu Met Arg Gln Asp Thr Glu
305 310 315

Gly Leu Val Glu Ala Thr Met Pro Pro Gly Val Gln Leu His Cys
320 325 330

Leu Tyr Gly Thr Gly Val Pro Thr Pro Asp Ser Phe Tyr Tyr Glu
335 340 345

Ser Phe Pro Asp Arg Asp Pro Lys Ile Cys Phe Gly Asp Gly Asp
350 355 360

Gly Thr Val Asn Leu Lys Ser Ala Leu Gln Cys Gln Ala Trp Gln
365 370 375

Ser Arg Gln Glu His Gln Val Leu Leu Gln Glu Leu Pro Gly Ser
380 385 390

Glu His Ile Glu Met Leu Ala Asn Ala Thr Thr Leu Ala Tyr Leu
395 400 405

Lys Arg Val Leu Leu Gly Pro
410

<210> 158

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 158

ctggggctac acacgggtg agg 23

<210> 159

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 159

gggccgcgtc cagaaagtgc agcg 24

<210> 160

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 160

gccccaaatg aaaacgggcc ctacttcctg gccctccgcg agatg 45

<210> 161

<211> 1512

<212> DNA

<213> Homo sapiens

<400> 161

cggacgcgtg ggcggacgcg tggggcggcg gcagcggcgg cgacggcgcac 50

atggagagcg gggcctacgg cgcggccaag gcgggcccgt cttcgacct 100

gcggcgcttc ctgacgcagc cgcagggtgtt ggccgcgcgc gtgtgcgtgg 150

tcttcgcctt gatcggttcc tcctgcattct atggtgagggtt ctacagcaat 200

gccccacgagt ctaagcagat gtactgcgtg ttcaaccgca acgaggatgc 250

ctggccgttat ggcaatgcata tcgggggtgtt ggcccttcctg gcctcggcct 300

tcttcgttgtt ggtcgacgcg tattttcccc agatcagcaa cgccactgac 350

cgcaagtacc tggtcattgg tgacactgctc ttctcagctc tctggacatt 400

ccttgtggttt gtgggtttct gcttcctcac caaccatgtt ggcaatcaca 450

acccgaagga cgtgctggcg gggccgact ctgtgagggtt agccatcacc 500

ttcagcttct ttccatctt ctcctgggtt gtgctggcct ccctggccta 550

ccagcgctac aaggctggcg tggacgactt catccagaat tacgttgacc 600

ccactccgga ccccaacact gcctacgcct cctacccagg tgcatctgtg 650

gacaactacc aacagccacc cttcacccag aacgcggaga ccaccgaggg 700

ctaccagccg ccccctgtgt actgagtggc ggttagcgtg ggaaggggga 750
cagagagggc cctccctct gccctggact ttcccatcag cctcctggaa 800
ctgccagccc ctctttca cctgttccat cctgtgcagc tgacacacag 850
ctaaggagcc tcatagcctg gcgggggctg gcagagccac accccaagt 900
cctgtgccc gagggcttca gtcagccgct cactcctcca gggcacttt 950
aggaaaagggt ttttagctag tgttttcct cgcttttaat gacctcagcc 1000
ccgcctgcag tggctagaag ccagcagggt cccatgtgct actgacaagt 1050
gcctcagctt cccccggcc cgggtcaggc cgtgggagcc gctattatct 1100
gcgttctctg ccaaagactc gtgggggccca tcacacctgc cctgtgcagc 1150
ggagccggac caggctcttg tgccctact caggtttgct tccctgtgc 1200
ccactgctgt atgatctggg ggccaccacc ctgtgcccgt ggcctctggg 1250
ctgcctcccg tggtgtgagg gcggggctgg tgctcatggc acttcctcct 1300
tgctcccacc cctggcagca gggaaaggct ttgcctgaca acacccagct 1350
ttatgtaaat attctgcagt tgttacttag gaagcctggg gagggcaggg 1400
gtgccccatg gctcccagac tctgtctgtg ccgagtgatataaatcg 1450
tggggagat gcccggcctg ggatgctgtt tggagacgga ataaaatgtt 1500
tctcattcaa ag 1512

<210> 162
<211> 224
<212> PRT
<213> Homo sapiens

<400> 162
Met Glu Ser Gly Ala Tyr Gly Ala Ala Lys Ala Gly Gly Ser Phe
1 5 10 15

Asp Leu Arg Arg Phe Leu Thr Gln Pro Gln Val Val Ala Arg Ala
20 25 30

Val Cys Leu Val Phe Ala Leu Ile Val Phe Ser Cys Ile Tyr Gly
35 40 45

Glu Gly Tyr Ser Asn Ala His Glu Ser Lys Gln Met Tyr Cys Val
50 55 60

Phe Asn Arg Asn Glu Asp Ala Cys Arg Tyr Gly Ser Ala Ile Gly
65 70 75

Val Leu Ala Phe Leu Ala Ser Ala Phe Phe Leu Val Val Asp Ala
80 85 90

Tyr Phe Pro Gln Ile Ser Asn Ala Thr Asp Arg Lys Tyr Leu Val
95 100 105

Ile Gly Asp Leu Leu Phe Ser Ala Leu Trp Thr Phe Leu Trp Phe
110 115 120

Val Gly Phe Cys Phe Leu Thr Asn Gln Trp Ala Val Thr Asn Pro
125 130 135

Lys Asp Val Leu Val Gly Ala Asp Ser Val Arg Ala Ala Ile Thr
140 145 150

Phe Ser Phe Phe Ser Ile Phe Ser Trp Gly Val Leu Ala Ser Leu
155 160 165

Ala Tyr Gln Arg Tyr Lys Ala Gly Val Asp Asp Phe Ile Gln Asn
170 175 180

Tyr Val Asp Pro Thr Pro Asp Pro Asn Thr Ala Tyr Ala Ser Tyr
185 190 195

Pro Gly Ala Ser Val Asp Asn Tyr Gln Gln Pro Pro Phe Thr Gln
200 205 210

Asn Ala Glu Thr Thr Glu Gly Tyr Gln Pro Pro Pro Val Tyr
215 220

<210> 163

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 163

tggcttcgc cttgatcgtg ttct 24

<210> 164

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 164

gtgtactgag cggcggttag 20

<210> 165

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 165

ctgaaggta tggctgccct cac 23

<210> 166

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 166

ccaggaggct catggaaag tcc 23

<210> 167

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 167
ccacgagtct aagcagatgt actgcgttt caaccgcaac gaggatgcct 50

<210> 168
<211> 3143
<212> DNA
<213> Homo sapiens

<400> 168
gagccaccta ccctgctccg aggccaggcc tgcagggcct catcgccag 50
agggtgatca gtgagcagaa ggatgcccggt ggccgaggcc ccccaggtgg 100
ctggcgggca gggggacgga ggtgatggcg aggaagcgga gccagagggg 150
atgttcaagg cctgtgagga ctccaagaga aaagcccggt gctacctccg 200
cctggtgccc ctgtttgtgc tgctggccct gtcgtgctg gcttcggcgg 250
gggtgctact ctggatttc cttaggtaca aggccggaggt gatggtcagc 300
caggtgact cagggcgtct gcgtgtactc aatcgccact tctccagga 350
tcttacccgc cggaatcta gtgccttccg cagtgaaacc gccaaagccc 400
agaagatgct caaggagctc atcaccagca cccgcctggg aacttactac 450
aactccagct ccgtctattc cttggggag ggacccctca cctgccttctt 500
ctggttcatt ctccaaatcc ccgagcacccg ccggctgatg ctgagccccgg 550
aggtggtgca ggcactgctg gtggaggagc tgctgtccac agtcaacagc 600
tcggctgccc tcccctacag ggccgagttac gaagtggacc ccgagggcct 650
agtgatcctg gaagccagtg taaaagacat agtgcattt aattccacgc 700
tgggttgtta ccgctacagc tacgtgggcc agggccaggt cctccggctg 750
aaggggcctg accacctggc ctccagctgc ctgtggcacc tgcagggccc 800
caaggacctc atgctcaaac tccggctgga gtggacgctg gcagagtggcc 850
gggaccgact ggccatgtat gacgtggccg ggccctgga gaagaggctc 900

atcacctgg tgtacggctg cagccgccag gagcccgtgg tggaggttct 950
ggcgtcgaaa gccatcatgg cggtcgtctg gaagaagggc ctgcacagct 1000
actacgaccc cttcgtgctc tccgtgcagc cggtggctt ccaggcctgt 1050
gaagtgaacc tgacgctgga caacaggctc gactcccagg gcgtccttag 1100
cacccccgtac ttccccagct actactcgcc ccaaaccac tgctcctggc 1150
acctcacggt gccctctctg gactacggct tggccctctg gtttgatgcc 1200
tatgcactga ggaggcagaa gtatgatttg ccgtgcaccc agggccagtg 1250
gacgatccag aacaggagggc tgtgtggctt gcgcacccctg cagccctacg 1300
ccgagaggat ccccggttg gccacggccg ggatcaccat caacttcacc 1350
tcccagatct ccctcaccgg gcccgggttg cgggtgcact atggcttgta 1400
caaccagtgc gaccctgcc ctggagagtt cctctgttct gtgaatggac 1450
tctgtgtccc tgcctgtat ggggtcaagg actgccccaa cggcctggat 1500
gagagaaaact gcgtttgcag agccacattc cagtgc当地 aggacagcac 1550
atgcacatcta ctgccaagg tctgtatgg gcagcctgtat tgtctcaacg 1600
gcagcgtatga agagcagtgc caggaagggg tgccatgtgg gacattcacc 1650
ttccagtgtg aggaccggag ctgcgtgaag aagcccaacc cgcagtgtga 1700
tggcgccccc gactgcaggg acggctcggta tgaggagcac tgtgactgtg 1750
gcctccaggg cccctccagc cgcattgttg gtggagctgt gtccctccgag 1800
ggtgagtgcc catggcaggc cagcctccag gttcggggtc gacacatcg 1850
tggggggggcc ctcatcgctg accgctgggt gataacagct gcccactgct 1900
tccaggagga cagcatggcc tccacgggtgc tgtggaccgt gttcctggc 1950
aaggtgaggc agaactcgcg ctggcctgga gaggtgtcct tcaaggtgag 2000
ccgcctgctc ctgcacccgt accacgaaga ggacagccat gactacgacg 2050

tggcgctgct gcagctcgac cacccgggtgg tgcgctcggc cgccgtgcgc 2100
cccgcttgcc tgccccgcgcg ctcccacitc ttcgagcccg gcctgcactg 2150
ctggattacg ggctggggcg ccttgcgcga gggcggccccc atcagcaacg 2200
ctctgcagaa agtggatgtg cagttatcc cacaggacct gtgcagcgag 2250
gcctatcgct accaggtgac gccacgcatg ctgtgtgccg gctaccgcaa 2300
gggcaagaag gatgcctgtc agggtgactc aggtggtccg ctggtgtgca 2350
aggcactcag tggccgctgg ttccctggcgg ggctggtcag ctggggcctg 2400
ggctgtggcc ggcctaacta cttcggcgtc tacacccgca tcacaggtgt 2450
gatcagctgg atccagcaag tggtgacactg aggaactgcc cccctgcaaa 2500
gcagggccca ctcctggac tcagagagcc cagggcaact gccaaggcagg 2550
gggacaagta ttctggcggg gggtggggga gagagcaggc cctgtggtgg 2600
caggaggtgg catcttgct cgtccctgat gtctgttcca gtgtatggcag 2650
gaggatggag aagtgcacgc agctgggggt caagacgtcc cctgaggacc 2700
caggcccaca cccagccctt ctgcctccca attctcttc ctccgtcccc 2750
ttcctccact gtcgccta at gcaaggcagt ggctcagcag caagaatgt 2800
ggttctacat cccgaggagt gtctgagggtg cgcccccactc tgtacagagg 2850
ctgtttgggc agccttgccct ccagagagca gattccagct tcggaagccc 2900
ctggtctaac ttgggatctg ggaatggaag gtgcctccat cggaggggac 2950
cctcagagcc ctggagactg ccaggtggc ctgctgccac tggtaagccaa 3000
aaggtggggaa agtcctgact ccagggtcct tgccccaccc ctgcctgcca 3050
cctggggccct cacagcccag accctcactg ggaggtgagc tcagctgccc 3100
tttggaaataa agtcgcctga tcaaaaaaaaaaaa aaaaaaaaaaaa aaa 3143

<211> 802

<212> PRT

<213> Homo sapiens

<400> 169

Met Pro Val Ala Glu Ala Pro Gln Val Ala Gly Gly Gln Gly Asp
1 5 10 15

Gly Gly Asp Gly Glu Glu Ala Glu Pro Glu Gly Met Phe Lys Ala
20 25 30

Cys Glu Asp Ser Lys Arg Lys Ala Arg Gly Tyr Leu Arg Leu Val
35 40 45

Pro Leu Phe Val Leu Leu Ala Leu Leu Val Leu Ala Ser Ala Gly
50 55 60

Val Leu Leu Trp Tyr Phe Leu Gly Tyr Lys Ala Glu Val Met Val
65 70 75

Ser Gln Val Tyr Ser Gly Ser Leu Arg Val Leu Asn Arg His Phe
80 85 90

Ser Gln Asp Leu Thr Arg Arg Glu Ser Ser Ala Phe Arg Ser Glu
95 100 105

Thr Ala Lys Ala Gln Lys Met Leu Lys Glu Leu Ile Thr Ser Thr
110 115 120

Arg Leu Gly Thr Tyr Tyr Asn Ser Ser Val Tyr Ser Phe Gly
125 130 135

Glu Gly Pro Leu Thr Cys Phe Phe Trp Phe Ile Leu Gln Ile Pro
140 145 150

Glu His Arg Arg Leu Met Leu Ser Pro Glu Val Val Gln Ala Leu
155 160 165

Leu Val Glu Glu Leu Leu Ser Thr Val Asn Ser Ser Ala Ala Val
170 175 180

Pro Tyr Arg Ala Glu Tyr Glu Val Asp Pro Glu Gly Leu Val Ile
185 190 195

Leu Glu Ala Ser Val Lys Asp Ile Ala Ala Leu Asn Ser Thr Leu

200 205 210

Gly Cys Tyr Arg Tyr Ser Tyr Val Gly Gln Gly Gln Val Leu Arg
215 220 225

Leu Lys Gly Pro Asp His Leu Ala Ser Ser Cys Leu Trp His Leu
230 235 240

Gln Gly Pro Lys Asp Leu Met Leu Lys Leu Arg Leu Glu Trp Thr
245 250 255

Leu Ala Glu Cys Arg Asp Arg Leu Ala Met Tyr Asp Val Ala Gly
260 265 270

Pro Leu Glu Lys Arg Leu Ile Thr Ser Val Tyr Gly Cys Ser Arg
275 280 285

Gln Glu Pro Val Val Glu Val Leu Ala Ser Gly Ala Ile Met Ala
290 295 300

Val Val Trp Lys Lys Gly Leu His Ser Tyr Tyr Asp Pro Phe Val
305 310 315

Leu Ser Val Gln Pro Val Val Phe Gln Ala Cys Glu Val Asn Leu
320 325 330

Thr Leu Asp Asn Arg Leu Asp Ser Gln Gly Val Leu Ser Thr Pro
335 340 345

Tyr Phe Pro Ser Tyr Tyr Ser Pro Gln Thr His Cys Ser Trp His
350 355 360

Leu Thr Val Pro Ser Leu Asp Tyr Gly Leu Ala Leu Trp Phe Asp
365 370 375

Ala Tyr Ala Leu Arg Arg Gln Lys Tyr Asp Leu Pro Cys Thr Gln
380 385 390

Gly Gln Trp Thr Ile Gln Asn Arg Arg Leu Cys Gly Leu Arg Ile
395 400 405

Leu Gln Pro Tyr Ala Glu Arg Ile Pro Val Val Ala Thr Ala Gly
410 415 420

Ile Thr Ile Asn Phe Thr Ser Gln Ile Ser Leu Thr Gly Pro Gly

425 430 435

Val Arg Val His Tyr Gly Leu Tyr Asn Gln Ser Asp Pro Cys Pro
440 445 450

Gly Glu Phe Leu Cys Ser Val Asn Gly Leu Cys Val Pro Ala Cys
455 460 465

Asp Gly Val Lys Asp Cys Pro Asn Gly Leu Asp Glu Arg Asn Cys
470 475 480

Val Cys Arg Ala Thr Phe Gln Cys Lys Glu Asp Ser Thr Cys Ile
485 490 495

Ser Leu Pro Lys Val Cys Asp Gly Gln Pro Asp Cys Leu Asn Gly
500 505 510

Ser Asp Glu Glu Gln Cys Gln Glu Gly Val Pro Cys Gly Thr Phe
515 520 525

Thr Phe Gln Cys Glu Asp Arg Ser Cys Val Lys Lys Pro Asn Pro
530 535 540

Gln Cys Asp Gly Arg Pro Asp Cys Arg Asp Gly Ser Asp Glu Glu
545 550 555

His Cys Asp Cys Gly Leu Gln Gly Pro Ser Ser Arg Ile Val Gly
560 565 570

Gly Ala Val Ser Ser Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu
575 580 585

Gln Val Arg Gly Arg His Ile Cys Gly Gly Ala Leu Ile Ala Asp
590 595 600

Arg Trp Val Ile Thr Ala Ala His Cys Phe Gln Glu Asp Ser Met
605 610 615

Ala Ser Thr Val Leu Trp Thr Val Phe Leu Gly Lys Val Trp Gln
620 625 630

Asn Ser Arg Trp Pro Gly Glu Val Ser Phe Lys Val Ser Arg Leu
635 640 645

Leu Leu His Pro Tyr His Glu Glu Asp Ser His Asp Tyr Asp Val

650 655 660

Ala Leu Leu Gln Leu Asp His Pro Val Val Arg Ser Ala Ala Val
665 670 675

Arg Pro Val Cys Leu Pro Ala Arg Ser His Phe Phe Glu Pro Gly
680 685 690

Leu His Cys Trp Ile Thr Gly Trp Gly Ala Leu Arg Glu Gly Gly
695 700 705

Pro Ile Ser Asn Ala Leu Gln Lys Val Asp Val Gln Leu Ile Pro
710 715 720

Gln Asp Leu Cys Ser Glu Ala Tyr Arg Tyr Gln Val Thr Pro Arg
725 730 735

Met Leu Cys Ala Gly Tyr Arg Lys Gly Lys Lys Asp Ala Cys Gln
740 745 750

Gly Asp Ser Gly Gly Pro Leu Val Cys Lys Ala Leu Ser Gly Arg
755 760 765

Trp Phe Leu Ala Gly Leu Val Ser Trp Gly Leu Gly Cys Gly Arg
770 775 780

Pro Asn Tyr Phe Gly Val Tyr Thr Arg Ile Thr Gly Val Ile Ser
785 790 795

Trp Ile Gln Gln Val Val Thr
800

<210> 170

<211> 1327

<212> DNA

<213> Homo sapiens

<400> 170

gcacccaggg ccagtggacg atccagaaca ggaggctgtg tggcttgcgc 50

atcctgcagc cctacgccga gaggatcccc gtggtgccca cggccggat 100

caccatcaac ttcacctccc agatctccct caccggccccc ggtgtgcggg 150

tgcaactatgg ctgtacaac cagtcggacc cctgccctgg agagttcctc 200

tgtctgtga atggactctg tgtccctgcc tgtgtgggg tcaaggactg 250
ccccaacggc ctggatgaga gaaactgcgt ttgcagagcc acattccagt 300
gcaaagagga cagcacatgc atctcaactgc ccaaggctcg tcatggcag 350
cctgattgtc tcaacggcag cgatgaagag cagtgccagg aagggtgcc 400
atgtggaca ttcacccccc agtgtgagga ccggagctgc gtgaagaagc 450
ccaacccgca gtgtgatggg cggcccgact gcagggacgg ctggatgag 500
gagcaactgtg actgtggcct ccagggcccc tccagccgca ttgttgtgg 550
agctgtgtcc tccgagggtg agtggccatg gcaggccagc ctccagggttc 600
gggtcgaca catctgtggg gggccctca tcgctgaccg ctgggtgata 650
acagctgccc actgcitcca ggaggacagc atggcctcca cggtgctgtg 700
gaccgtgttc ctggcaagg tgtggcagaa ctgcgcgtgg cctggagagg 750
tgtcctcaa ggtgagccgc ctgctccgc acccgatcca cgaagaggac 800
agcccaigact acgacgtggc gctgctgcag ctgcaccacc cggtggtgcg 850
ctcggccgccc gtgcgccccg tctgcctgcc cgcgccgtcc cacttcttcg 900
agcccgccct gcactgctgg attacggctt gggcgccctt ggcgaggagc 950
ggcccccata gcaacgcctc gcagaaagtg gatgtgcagt tgatcccaca 1000
ggacctgtgc agcgaggcct atcgctacca ggtgacgcca cgcacgtgt 1050
gtgccggcta ccgcaaggagc aagaaggatg cctgtcagggt tgactcagg 1100
ggccgcgtgg tgtgcaaggc acicagtgcc cgcgtggcc tggcgccgt 1150
ggtcagctgg ggcctgggt gtggccggcc taactacttc ggcgtctaca 1200
cccgcatcac aggtgtgatc agctggatcc agcaagtggt gacccatgg 1250
actgcccccc tgcaaaggcag ggcccaccc ctggactcag agagccagg 1300
gcaactgcca agcaggggga caagtat 1327

<210> 171
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 171
taacagctgc ccactgcttc cagg 24

<210> 172
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 172
taatccagca gtgcaggccg gg 22

<210> 173
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 173
atggcctcca cggtgctgtg gaccgtgtc ctgggcaagg tgtggcagaa 50

<210> 174
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 174
tgccatatgca ctgaggaggc agaag 25

<210> 175

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 175

aggcagggac acagagtcca ttcac 25

<210> 176

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 176

atgtatgattt gccgtgcacc cagggccagt ggacgatcca gaacaggagg 50

<210> 177

<211> 1510

<212> DNA

<213> Homo sapiens

<400> 177

ggacgagggc agatctcggtt ctggggcaag ccgttgacac tcgtccccgt 50

ccaccgccccggc ggctccgtgc cgccaaatgtt tcattttcca ccttctctgc 100

ctccagtcctt ccagccccctg gcccggagagaa ggggttttacc ggccgggatt 150

gctggaaaca ccaagagggtt gtttttgttt tttaaaaactt ctgtttctgtt 200

ggaggggggtt tggcgccccca ggttggacaa ctccgttccct ctgtctgtt 250

tctggagccct ctgttattgc ttgtgtcggtt ggagccccgtt accttttgggtt 300

ccagagggac ggcttggaaaga taagctccac aaacccaaag ctacacagac 350

tgaggtcaaa ccatctgtga ggtttaacctt ccgcacccctt aaggacccag 400

agcatgaagg atgcttaccc tccgtcggtt acagccagcc cttttagaaagac 450

tgcatgttca acatgacagc taaaaccctt ttcatcattc acggatggac 500
gatgagcggt atcttgaaa actggctgca caaactcgta tcagccctgc 550
acacaagaga gaaagacgcc aatgttagttg tggttgactg gctccccctg 600
gcccaccaggc ttacacgga tgcggtaat aataccaggg tgggtggaca 650
cagcattgcc aggatgctcg actggctgca ggagaaggac gattttctc 700
tcgggaatgt ccacttgatc ggctacagcc tcggagcgca cgtggccggg 750
tatgcaggca acttcgtgaa aggaacggtg ggccgaatca caggtttggaa 800
tcctgccggg cccatgttgc aagggggccga catccacaag aggctctc 850
cgacgatgc agattttgtg gatgtccctcc acacctacac gcgttcccttc 900
gcgttgcgca ttggattca gatgcctgtg ggccacattt acatctaccc 950
caatgggggt gactccagc caggctgtgg actcaacgt gtcttggat 1000
caattgcata tggaacaatc acagagggtgg taaaatgtga gcatgagcga 1050
ccgttccacc tcttttgta ctctctggtg aatcaggaca agccgagttt 1100
tgccctccag tgcactgact ccaatcgctt caaaaaggggg atctgtctga 1150
gctgcccggcaa gaaccgttgt aatagcattt gctacaatgc caagaaaaatg 1200
aggaacaaga ggaacagcaa aatgtaccta aaaacccggg caggcatgcc 1250
tttcagaggt aacccatcg ccctggagtgc tccctgagga aggcccttaa 1300
taccccttc ttaataccat gctgcagagc agggcacatc ctagcccagg 1350
agaagtggcc agcacaatcc aatcaaatcg ttgcaaatca gattacactg 1400
tgcatgttca agggaaaggga atctttacaa aataaacagt gtggaccctt 1450
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaaaaaaaaa 1510

<211> 354

<212> PRT

<213> Homo sapiens

<400> 178

Met Ser Asn Ser Val Pro Leu Leu Cys Phe Trp Ser Leu Cys Tyr
1 5 10 15

Cys Phe Ala Ala Gly Ser Pro Val Pro Phe Gly Pro Glu Gly Arg
20 25 30

Leu Glu Asp Lys Leu His Lys Pro Lys Ala Thr Gln Thr Glu Val
35 40 45

Lys Pro Ser Val Arg Phe Asn Leu Arg Thr Ser Lys Asp Pro Glu
50 55 60

His Glu Gly Cys Tyr Leu Ser Val Gly His Ser Gln Pro Leu Glu
65 70 75

Asp Cys Ser Phe Asn Met Thr Ala Lys Thr Phe Phe Ile Ile His
80 85 90

Gly Trp Thr Met Ser Gly Ile Phe Glu Asn Trp Leu His Lys Leu
95 100 105

Val Ser Ala Leu His Thr Arg Glu Lys Asp Ala Asn Val Val Val
110 115 120

Val Asp Trp Leu Pro Leu Ala His Gln Leu Tyr Thr Asp Ala Val
125 130 135

Asn Asn Thr Arg Val Val Gly His Ser Ile Ala Arg Met Leu Asp
140 145 150

Trp Leu Gln Glu Lys Asp Asp Phe Ser Leu Gly Asn Val His Leu
155 160 165

Ile Gly Tyr Ser Leu Gly Ala His Val Ala Gly Tyr Ala Gly Asn
170 175 180

Phe Val Lys Gly Thr Val Gly Arg Ile Thr Gly Leu Asp Pro Ala
185 190 195

Gly Pro Met Phe Glu Gly Ala Asp Ile His Lys Arg Leu Ser Pro

200 205 210

Asp Asp Ala Asp Phe Val Asp Val Leu His Thr Tyr Thr Arg Ser
215 220 225

Phe Gly Leu Ser Ile Gly Ile Gln Met Pro Val Gly His Ile Asp
230 235 240

Ile Tyr Pro Asn Gly Gly Asp Phe Gln Pro Gly Cys Gly Leu Asn
245 250 255

Asp Val Leu Gly Ser Ile Ala Tyr Gly Thr Ile Thr Glu Val Val
260 265 270

Lys Cys Glu His Glu Arg Ala Val His Leu Phe Val Asp Ser Leu
275 280 285

Val Asn Gln Asp Lys Pro Ser Phe Ala Phe Gln Cys Thr Asp Ser
290 295 300

Asn Arg Phe Lys Lys Gly Ile Cys Leu Ser Cys Arg Lys Asn Arg
305 310 315

Cys Asn Ser Ile Gly Tyr Asn Ala Lys Lys Met Arg Asn Lys Arg
320 325 330

Asn Ser Lys Met Tyr Leu Lys Thr Arg Ala Gly Met Pro Phe Arg
335 340 345

Gly Asn Leu Gln Ser Leu Glu Cys Pro
350

<210> 179

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 179

gtgagcatga gcgagccgtc cac 23

<210> 180

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 180

gctattacaa cggttttgc ggcagc 26

<210> 181

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 181

ttgactctct ggtgaatcag gacaagccga gtttgccctt ccag 44

<210> 182

<211> 3240

<212> DNA

<213> Homo sapiens

<400> 182

cggacgcgtg ggcggacgca tggccctggg caaggcccgg ggcgccggc 50

cgagccacct cttccctcc cccgcttccc tgtcgcgctc cgctggctgg 100

acgcgcgtt ggagtggagc agcacccggc cggccctggg ggctgacagt 150

cggcaaagt tggcccgaag aggaagtggt ctcaaaccgg ggcaggtggc 200

gaccaggcca gaccaggggc gtcgcgtgcc tgcggccggg ctgttaggcga 250

ggcgccccc cagtggccgag acccgccccct tcaggagccg gccccgggag 300

agaagagtgc ggcggccggac ggagaaaaca actccaaagt tggcgaaagg 350

caccggccct actccggggc tgccggccgcc tccccggcccc cagccctggc 400

atccagagta cgggtcgagc ccggggccatg gagccccctt ggggaggcgg 450

caccaggagg cctggggccgc cggggctccg ccgcgacccc atcgggtaga 500

ccacagaagc tccgggaccc ttccggcacc tctggacagc ccaggatgct 550
gttggccacc ctccctcacc tcctccctgg aggcgccttg gcccattccag 600
accggattat tttccaaat catgcttgtg aggacccccc agcagtgctc 650
ttagaagtgc agggcacctt acagaggccc ctggccggg acagccgcac 700
ctccccctgcc aactgcacct ggctcatcct gggcagcaag gaacagactg 750
tcaccatcag gttccagaag ctacacctgg cctgtggctc agagcgctta 800
accctacgct cccctctcca gccactgatc tccctgtgtg aggacacctcc 850
cagccctctg cagctgcccgg gggcaacgt caccatcact tacagctatg 900
ctggggccag agcacccatg ggccagggtc tcctgctctc ctacagccaa 950
gatggctga tgtgcctgca ggaagagttt cagtgctga accaccgctg 1000
tgtatctgct gtccagcgct gtgatgggt tgatgcctgt ggcgatggct 1050
ctgatgaagc aggttgcagc tcagacccct tccctggcct gaccccaaga 1100
cccgccccct ccctgccttg caatgtcacc ttggaggact tctatgggt 1150
cttctccctt cctggatata cacaccttagc ctcagctcctc caccggcgt 1200
cctgccattt gctgctggac ccccatgatg gccggcggct ggccgtgcgc 1250
ttcacagccc tggacttggg cttggagat gcagtgcatg tgtatgacgg 1300
ccctggggcc cctgagagct cccgactact gcgtgtctc acccacttca 1350
gcaatggcaa ggctgtcact gtggagacac tgtctggcca ggctgttg 1400
tcctaccaca cagttgccttg gagcaatggt cgtggcttca atgccaccta 1450
ccatgtgcgg ggctattgtc tgccttggga cagaccctgt ggcttaggct 1500
ctggcctggg agctggcgaa ggccttaggtg agcgctgcta cagtggaggca 1550
cagcgctgtg acggctcatg ggactgtgtc gacggcacag atgaggagga 1600
ctgcccaggc tgcccacccgt gacacttccc ctgtggggct gctggcacct 1650

ctgggccac agcctgtac ctgcctgt accgctgaa ctaccagact 1700
ttctgtgtc atggaggcaga tgagagacgc tgtcgccatt gccagcctgg 1750
caatttccga tgccgggacg agaagtgcgt gtatgagacg tgggtgtgcg 1800
atggcagcc agactgtgcg gacggcagt atgagtggga ctgctctat 1850
gttctgcccc gcaaggcat tacagctgca gtcattggca gcctagtgtg 1900
cggcctgctc ctggcatcg ccctgggctg cacctgcaag ctctatgcca 1950
ttcgcaccca ggagtagcgc atctttgccc ccctctcccg gatggaggct 2000
gagattgtgc agcagcaggc acccccttcc tacgggcagc tcattgcccc 2050
gggtgccatc ccacctgttag aagacttcc tacagagaat cctaatagtata 2100
actcagtgct gggcaacctg cggtctctgc tacagatctt acgccaggat 2150
atgactccag gaggtggccc aggtgcccgc cgctgtcagc ggggcccgtt 2200
gatgcgacgc ctggtaacgcc gtctccgccc ctggggcttg ctccctcgaa 2250
ccaacacccc ggctcgggcc tctgaggcca gatcccaggcacacccctt 2300
gtgctcccc ttgaggccct agatggtggc acaggtccag cccgtgaggg 2350
cggggcagtg ggtggcaag atggggagca ggcaccccca ctgcccata 2400
aggctccctt cccatctgtc agcacgtctc cagccccac tactgtccct 2450
gaagccccag ggccactgccc ctcactgccc ctagagccat cactattgtc 2500
tggagtggtg caggccctgc gaggccgcct gttgcccagc ctggggcccc 2550
caggaccaac cggagcccc cctggacccc acacagcagt cctggccctg 2600
gaagatgagg acgatgtgtc actggtgcca ctggctgagc cgggggtgtg 2650
ggtagctgag gcagaggatg agccactgt tacctgaggg gacctggggg 2700
ctctactgag gcctctcccc tggggctct actcatagtg gcacaaccc 2750
ttagagggtgg gtcagcctcc cctccaccac ttccctccct gtccctggat 2800

ttcagggact tgggtggccct cccgttgacc ctatgttagct gctataaaagt 2850
taagtgtccc tcaggcaggg agagggctca cagagtctcc tctgtacgtg 2900
gccatggcca gacacccag tcccttcacc accacctgt ccccacgcca 2950
ccaccatttg ggtaggtgtt ttaaaaaagt aaagttctta gaggatcata 3000
ggtctggaca ctccatcctt gccaaacctc tacccaaaag tggcctaag 3050
caccggaatg ccaattaact agagaccctc cagccccaa ggggaggatt 3100
tgggcagaac ctgagggttt gccatccaca atccctccta cagggcctgg 3150
ctcacaaaaa gagtgcaaca aatgcttcta ttccatagct acggcattgc 3200
tcagtaagtt gaggtcaaaa ataaaggaat catacatctc 3240

<210> 183

<211> 713

<212> PRT

<213> Homo sapiens

<400> 183

Met Leu Leu Ala Thr Leu Leu Leu Leu Leu Gly Gly Ala Leu
1 5 10 15

Ala His Pro Asp Arg Ile Ile Phe Pro Asn His Ala Cys Glu Asp
20 25 30

Pro Pro Ala Val Leu Leu Glu Val Gln Gly Thr Leu Gln Arg Pro
35 40 45

Leu Val Arg Asp Ser Arg Thr Ser Pro Ala Asn Cys Thr Trp Leu
50 55 60

Ile Leu Gly Ser Lys Glu Gln Thr Val Thr Ile Arg Phe Gln Lys
65 70 75

Leu His Leu Ala Cys Gly Ser Glu Arg Leu Thr Leu Arg Ser Pro
80 85 90

Leu Gln Pro Leu Ile Ser Leu Cys Glu Ala Pro Pro Ser Pro Leu
95 100 105

Gln Leu Pro Gly Gly Asn Val Thr Ile Thr Tyr Ser Tyr Ala Gly
110 115 120

Ala Arg Ala Pro Met Gly Gln Gly Phe Leu Leu Ser Tyr Ser Gln
125 130 135

Asp Trp Leu Met Cys Leu Gln Glu Glu Phe Gln Cys Leu Asn His
140 145 150

Arg Cys Val Ser Ala Val Gln Arg Cys Asp Gly Val Asp Ala Cys
155 160 165

Gly Asp Gly Ser Asp Glu Ala Gly Cys Ser Ser Asp Pro Phe Pro
170 175 180

Gly Leu Thr Pro Arg Pro Val Pro Ser Leu Pro Cys Asn Val Thr
185 190 195

Leu Glu Asp Phe Tyr Gly Val Phe Ser Ser Pro Gly Tyr Thr His
200 205 210

Leu Ala Ser Val Ser His Pro Gln Ser Cys His Trp Leu Leu Asp
215 220 225

Pro His Asp Gly Arg Arg Leu Ala Val Arg Phe Thr Ala Leu Asp
230 235 240

Leu Gly Phe Gly Asp Ala Val His Val Tyr Asp Gly Pro Gly Pro
245 250 255

Pro Glu Ser Ser Arg Leu Leu Arg Ser Leu Thr His Phe Ser Asn
260 265 270

Gly Lys Ala Val Thr Val Glu Thr Leu Ser Gly Gln Ala Val Val
275 280 285

Ser Tyr His Thr Val Ala Trp Ser Asn Gly Arg Gly Phe Asn Ala
290 295 300

Thr Tyr His Val Arg Gly Tyr Cys Leu Pro Trp Asp Arg Pro Cys
305 310 315

Gly Leu Gly Ser Gly Leu Gly Ala Gly Glu Gly Leu Gly Glu Arg
320 325 330

Cys Tyr Ser Glu Ala Gln Arg Cys Asp Gly Ser Trp Asp Cys Ala
335 340 345

Asp Gly Thr Asp Glu Glu Asp Cys Pro Gly Cys Pro Pro Gly His
350 355 360

Phe Pro Cys Gly Ala Ala Gly Thr Ser Gly Ala Thr Ala Cys Tyr
365 370 375

Leu Pro Ala Asp Arg Cys Asn Tyr Gln Thr Phe Cys Ala Asp Gly
380 385 390

Ala Asp Glu Arg Arg Cys Arg His Cys Gln Pro Gly Asn Phe Arg
395 400 405

Cys Arg Asp Glu Lys Cys Val Tyr Glu Thr Trp Val Cys Asp Gly
410 415 420

Gln Pro Asp Cys Ala Asp Gly Ser Asp Glu Trp Asp Cys Ser Tyr
425 430 435

Val Leu Pro Arg Lys Val Ile Thr Ala Ala Val Ile Gly Ser Leu
440 445 450

Val Cys Gly Leu Leu Leu Val Ile Ala Leu Gly Cys Thr Cys Lys
455 460 465

Leu Tyr Ala Ile Arg Thr Gln Glu Tyr Ser Ile Phe Ala Pro Leu
470 475 480

Ser Arg Met Glu Ala Glu Ile Val Gln Gln Gln Ala Pro Pro Ser
485 490 495

Tyr Gly Gln Leu Ile Ala Gln Gly Ala Ile Pro Pro Val Glu Asp
500 505 510

Phe Pro Thr Glu Asn Pro Asn Asp Asn Ser Val Leu Gly Asn Leu
515 520 525

Arg Ser Leu Leu Gln Ile Leu Arg Gln Asp Met Thr Pro Gly Gly
530 535 540

Gly Pro Gly Ala Arg Arg Arg Gln Arg Gly Arg Leu Met Arg Arg
545 550 555

Leu Val Arg Arg Leu Arg Arg Trp Gly Leu Leu Pro Arg Thr Asn
560 565 570

Thr Pro Ala Arg Ala Ser Glu Ala Arg Ser Gln Val Thr Pro Ser
575 580 585

Ala Ala Pro Leu Glu Ala Leu Asp Gly Gly Thr Gly Pro Ala Arg
590 595 600

Glu Gly Gly Ala Val Gly Gly Gln Asp Gly Glu Gln Ala Pro Pro
605 610 615

Leu Pro Ile Lys Ala Pro Leu Pro Ser Ala Ser Thr Ser Pro Ala
620 625 630

Pro Thr Thr Val Pro Glu Ala Pro Gly Pro Leu Pro Ser Leu Pro
635 640 645

Leu Glu Pro Ser Leu Leu Ser Gly Val Val Gln Ala Leu Arg Gly
650 655 660

Arg Leu Leu Pro Ser Leu Gly Pro Pro Gly Pro Thr Arg Ser Pro
665 670 675

Pro Gly Pro His Thr Ala Val Leu Ala Leu Glu Asp Glu Asp Asp
680 685 690

Val Leu Leu Val Pro Leu Ala Glu Pro Gly Val Trp Val Ala Glu
695 700 705

Ala Glu Asp Glu Pro Leu Leu Thr
710

<210> 184

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 184

ggctgtcact gtggagacac 20

<210> 185

<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 185
gcaaggcat tacagctg 18

<210> 186
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 186
agaacatagg agcagtccca ctc 23

<210> 187
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 187
tgcctgctgc tgcacaatct cag 23

<210> 188
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 188
ggctattgct tgccttggga cagaccctgt ggcttaggct ctggc 45

<210> 189
<211> 663

<212> DNA

<213> Homo sapiens

<400> 189

cgagctggc gagaagttagg ggagggcggt gctccgccgc ggtggcggtt 50

gctatcgctt cgcagaacct actcaggcag ccagctgaga agagttgagg 100

gaaagtgcgt ctgctgggtc tgcagacgca atggataacg tgcagccgaa 150

aataaaaacat cgcccctct gcttcagtgt gaaaggccac gtgaagatgc 200

tgccgcgtgc actaacttg acatctatga ccttttttat catgcacaa 250

gccccctgaac catatattgt tatcaactgga tttaaagtca ccgttatctt 300

attttcata cttttatatg tactcagact tgatcgatttta atgaagtgg 350

tattttggcc ttgcgttgat attatcaact cactggtaac aacagtattc 400

atgctcatcg tatctgtgtt ggcaactgata ccagaaacca caacattgac 450

agtttgtgga ggggtgtttg cacttgtgac agcagtatgc tgtctgccc 500

acggggccct tatttaccgg aagcttctgt tcaatcccaag cggcccttac 550

cagaaaaaagc ctgtgcataa aaaaaaaagaa gttttgtaat ttttatattac 600

tttttagttt gatactaagt attaaacata ttctgtatt cttccaaaaa 650

aaaaaaaaaaa aaa 663

<210> 190

<211> 152

<212> PRT

<213> Homo sapiens

<400> 190

Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe
1 5 10 15

Ser Val Lys Gly His Val Lys Met Leu Arg Leu Ala Leu Thr Val
20 25 30

Thr Ser Met Thr Phe Phe Ile Ile Ala Gln Ala Pro Glu Pro Tyr

35 40 45

Ile Val Ile Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile
50 55 60

Leu Leu Tyr Val Leu Arg Leu Asp Arg Leu Met Lys Trp Leu Phe
65 70 75

Trp Pro Leu Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe
80 85 90

Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu Thr Thr Thr
95 100 105

Leu Thr Val Gly Gly Gly Val Phe Ala Leu Val Thr Ala Val Cys
110 115 120

Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn
125 130 135

Pro Ser Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu
140 145 150

Val Leu

<210> 191
<211> 495
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 78, 212, 234, 487
<223> unknown base

<400> 191
ggcgagaag tagggaggc cgtgtccgc cgccgtggcg gttgctatcg 50

tttgcagaa cctactcagg cagccagntg agaagagtgtt agggaaagtgt 100

ctgctgctgg gtctgcagac gcgatggata acgtgcagcc gaaaataaaaa 150

catgcacct tctgcttcag tgtgaaaggc cacgtgaaga tgctgcggct 200

ggcactaact gngacatcta tgaccctttt tatnatcgca caagccctg 250

aaccatatat ttttatcaact ggatttgaag tcaccgttat cttattttc 300

atactttat atgtactcag acttgatcga ttaatgaagt gtttatttg 350

gcctttgctt gatattatca actcactggtaacaacagta ttcatgctca 400

tcgtatctgt gttggcactg ataccagaaa ccacaacatt gacagttgg 450

ggaggggtgt ttgcacttgt gacagcagta tgctgtnttgcac 495

<210> 192

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 192

cgtttgcag aacctactca ggcag 25

<210> 193

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 193

cctccaccaa ctgtcaatgt tgtgg 25

<210> 194

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 194

aaagtgctgc tgctgggtct gcagacgcga tggataacgt 40

<210> 195
<211> 1879
<212> DNA
<213> Homo sapien

<400> 195
cagccccgca cgccggccga gtcgctgagc cgccggctgcc ggacgggacg 50
ggaccggcta ggctgggcgc gccccccggg ccccgccgtg ggcatggcgc 100
cactggcccg ggccgtcgctg ctgcctctgc tggcccagtg gctctgcgc 150
gccgccccgg agctggcccc cgccccccttc acgctgcccc tccgggtggc 200
cgccggccacg aaccgcgtac ttgcgcccac cccgggaccc gggacccctg 250
ccgagcgcaca cgccgacggc ttggcgctcg ccctggagcc tgccctggcg 300
tccccccggg ggcggccaa cttctggcc atggtagaca acctgcagg 350
ggactctggc cgccggctact acctggagat gctgtcggg accccccccgc 400
agaagctaca gattctcggt gacactggaa gcagtaactt tgccgtggca 450
ggaaccccgca actcctacat agacacgtac ttgacacag agaggtctag 500
cacataccgc tccaagggtt ttgacgtcac agtgaagtac acacaaggaa 550
gctggacggg cttcggtggg gaagacctcg tcaccatccc caaaggcttc 600
aatacttcctt ttcttgtcaa cattgccact atttttgaat cagagaattt 650
ctttttgcct gggattaaat ggaatggaat acttgcccta gcttatgcca 700
cacttgccaa gccatcaagt tctctggaga cttcttcga ctccctggtg 750
acacaagcaa acatcccaa cgtttctcc atgcagatgt gtggagccgg 800
cttgcggcgtt gctggatctg ggaccaacgg aggttagtctt gtcttgggtg 850
gaattgaacc aagtttgtat aaaggagaca tctggtatac ccctattaag 900
gaagagtggt actaccagat agaaattctg aaattggaaa ttggaggcca 950
aaggccttaat ctggactgca gagagtataa cgccgacaag gccatcgtgg 1000

acagtggcac cacgtgtcg cgccctcccc agaagggttt tgatgcgg 1050
gtgaaagctg tggcccgccc atctctgatt ccagaattct ctgtatgg 1100
ctggactggg tcccaagctgg cgtgctggac gaattcgaa acaccctgg 1150
cttacttccc taaaatctcc atctacactga gagacgagaa ctccagcagg 1200
tcattccgta tcacaatcct gcctcagctt tacattcagc ccatgatggg 1250
ggccggcctg aattatgaat gttaccgatt cgccattcc ccatccacaa 1300
atgcgctggt gatcggtgcc acggtgatgg agggcttcata cgtcatcttc 1350
gacagagccc agaagagggt gggcttcga gcgagccct gtgcagaaat 1400
tgccaggctgctg caatttcgg gccttctca acagaggatg 1450
tagccagcaa ctgtgtcccc gctcagctt tgagcgagcc caatttg 1500
attgtgtcct atgcgtcat gagcgtctgt ggagccatcc tcctgtctt 1550
aatcgtcctg ctgctgctgc cgttccggtg tcagcgtcgc cccctgacc 1600
ctgaggtcgt caatgtgag tcctctctgg tcagacatcg ctgaaatga 1650
atagccaggc ctgacacctaa gcaaccatga actcagctat taagaaaatc 1700
acatttccag ggcagcagcc gggatcgatg gtggcgctt ctccgtgcc 1750
caccctgtt caatctctgt tctgctcca gatgcctct agattcactg 1800
tctttgatt ctgattttc aagcttcaa atccctcccta cttccaagaa 1850
aaataattaa aaaaaaaact tcattctaa 1879

<210> 196
<211> 518
<212> PRT
<213> Homo sapien

<400> 196
Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln

1 5 10 15

Trp Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr
20 25 30

Leu Pro Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro
35 40 45

Thr Pro Gly Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu
50 55 60

Ala Leu Ala Leu Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala
65 70 75

Asn Phe Leu Ala Met Val Asp Asn Leu Gln Gly Asp Ser Gly Arg
80 85 90

Gly Tyr Tyr Leu Glu Met Leu Ile Gly Thr Pro Pro Gln Lys Leu
95 100 105

Gln Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Ala Gly
110 115 120

Thr Pro His Ser Tyr Ile Asp Thr Tyr Phe Asp Thr Glu Arg Ser
125 130 135

Ser Thr Tyr Arg Ser Lys Gly Phe Asp Val Thr Val Lys Tyr Thr
140 145 150

Gln Gly Ser Trp Thr Gly Phe Val Gly Glu Asp Leu Val Thr Ile
155 160 165

Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn Ile Ala Thr Ile
170 175 180

Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys Trp Asn Gly
185 190 195

Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser Ser Ser
200 205 210

Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile Pro
215 220 225

Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala
230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu
245 250 255

Pro Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu
260 265 270

Glu Trp Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly
275 280 285

Gln Ser Leu Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala
290 295 300

Ile Val Asp Ser Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val
305 310 315

Phe Asp Ala Val Val Glu Ala Val Ala Arg Ala Ser Leu Ile Pro
320 325 330

Glu Phe Ser Asp Gly Phe Trp Thr Gly Ser Gln Leu Ala Cys Trp
335 340 345

Thr Asn Ser Glu Thr Pro Trp Ser Tyr Phe Pro Lys Ile Ser Ile
350 355 360

Tyr Leu Arg Asp Glu Asn Ser Ser Arg Ser Phe Arg Ile Thr Ile
365 370 375

Leu Pro Gln Leu Tyr Ile Gln Pro Met Met Gly Ala Gly Leu Asn
380 385 390

Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro Ser Thr Asn Ala Leu
395 400 405

Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr Val Ile Phe Asp
410 415 420

Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro Cys Ala Glu
425 430 435

Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe Ser Thr
440 445 450

Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser Glu
455 460 465

Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly
470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Pro Phe Arg
485 490 495

Cys Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser
500 505 510

Ser Leu Val Arg His Arg Trp Lys
515

<210> 197

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 197

cgcagaagct acagattctc g 21

<210> 198

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 198

ggaaattgga ggccaaagc 19

<210> 199

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 199

ggatgttagcc agcaactgtg 20

<210> 200
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 200
gccttggctc gttctcttc 19

<210> 201
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 201
ggcctgtgc ctggatgg 18

<210> 202
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 202
gacaagacta cctccgttgg tc 22

<210> 203
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 203
tgatgcacag ttcagcacct gttg 24

<210> 204

<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 204
cgctccaagg gctttgacgt cacagtgaag tacacacaag gaagctg 47

<210> 205
<211> 1939
<212> DNA
<213> Homo sapiens

<400> 205
cgcctccgcc ttcggaggct gacgcgcccgg gcgcgcgttc caggcctgtg 50
cagggcggat cgccagccgc ctggcggcga tccagggcgg tgccccct 100
ggcgccggcgc cgggaggcgc gcgcggcatg gaggcgcgtc tgctggcgc 150
ggggttgcgt ctggcgcctt acgtgcgtgt ctactacaac ctggtaagg 200
ccccgcgtg cggcggcatg ggcaacctgc gggccgcac ggccgtggc 250
acgggcgcca acagcggcat cggaaagatg acggcgcgtt agctggcgc 300
ccggggagcg cgcgtggcgt tggcctgccc cagccaggag cgcggggagg 350
cggtgcctt cgacctccgc caggagatg ggaacaatga ggtcatcttc 400
atggccttgg acttggccag tctggcctcg gtgcgggcct ttgccactgc 450
ctttctgagc tctgagccac ggttggacat cctcatccac aatgccggta 500
tcagttcctg tggccggacc cgtgaggcgt ttaacctgct gctcgggtg 550
aaccatatcg gtccctttct gctgacacat ctgctgcgtc cttgcctgaa 600
ggcatgtgcc cctagccgcg tgggtgggt agcctcagct gcccactgtc 650
ggggacgtct tgacttcaaa cgcctggacc gcccagtggt gggctggcgg 700
caggagctgc gggcatatgc tgacactaag ctggctaatt tactgtttgc 750

ccgggagctc gccaaaccagc ttgaggccac tggcgtcacc tgctatgcag 800
cccacccagg gcctgtgaac tcggagctgt tcctgcgcca tggcttgga 850
tggctgcgcc cactttgcg cccattggct tggctggcgc tccgggcacc 900
aagagggggt gcccagacac ccctgtattg tgctctacaa gagggcatcg 950
agccccctcag tgggagatat tttgccaact gccatgtgga agaggtgcct 1000
ccagctgccc gagacgaccg ggcagccat cgctatggg aggccagcaa 1050
gaggctggca gggcttgggc ctggggagga tgctgaaccc gatgaagacc 1100
cccagtctga ggactcagag gccccatctt ctctaagcac cccccaccct 1150
gaggagccca cagttctca accttacccc agccctcaga gtcaccaga 1200
tttgtctaag atgacgcacc gaattcaggg taaagtttag cctgagatcc 1250
agctctccta accctcaggg caggatgctt gccatggcac ttcatggcc 1300
ttgaaaacct cggatgtgtg tgaggccatg ccctggacac tgacgggaaa 1350
gtgatctga cctccgtgg tactttctgg ggccccaagc tgtgccctgg 1400
acatctctt tcctgggtga aggaataatg ggtgattatt tcttcctgag 1450
agtgacagta accccagatg gagagatagg ggtatgctag acactgtgct 1500
tctcgaaat ttggatgttag tatttcagg ccccacccctt attgattctg 1550
atcagctctg gagcagagggc agggagtttcaatgtgatg cactgccaac 1600
attgagaatt agtgaactga tcccttgca accgtctagc taggtgtta 1650
aattacccccc atgttaatga agcgaaatta ggctcccgag ctaaggact 1700
cgccctagggt ctcacagtgta gtaggaggag ggcctggat ctgaacccaa 1750
gggtctgagg ccagggccga ctgcccgtaaatgggtgctg agaagtggat 1800
cagggcaggg cagctggatcgaggtgccc catgggagta aggggacgcc 1850
ttccgggcgg atgcagggtatgggtcatct gtatctgaag cccctcgaa 1900

taaagcgcgt tgaccgccaa aaaaaaaaaaaa aaaaaaaaaa 1939

<210> 206

<211> 377

<212> PRT

<213> Homo sapiens

<400> 206

Met Glu Ala Leu Leu Leu Gly Ala Gly Leu Leu Leu Gly Ala Tyr
1 5 10 15

Val Leu Val Tyr Tyr Asn Leu Val Lys Ala Pro Pro Cys Gly Gly
20 25 30

Met Gly Asn Leu Arg Gly Arg Thr Ala Val Val Thr Gly Ala Asn
35 40 45

Ser Gly Ile Gly Lys Met Thr Ala Leu Glu Leu Ala Arg Arg Gly
50 55 60

Ala Arg Val Val Leu Ala Cys Arg Ser Gln Glu Arg Gly Glu Ala
65 70 75

Ala Ala Phe Asp Leu Arg Gln Glu Ser Gly Asn Asn Glu Val Ile
80 85 90

Phe Met Ala Leu Asp Leu Ala Ser Leu Ala Ser Val Arg Ala Phe
95 100 105

Ala Thr Ala Phe Leu Ser Ser Glu Pro Arg Leu Asp Ile Leu Ile
110 115 120

His Asn Ala Gly Ile Ser Ser Cys Gly Arg Thr Arg Glu Ala Phe
125 130 135

Asn Leu Leu Leu Arg Val Asn His Ile Gly Pro Phe Leu Leu Thr
140 145 150

His Leu Leu Leu Pro Cys Leu Lys Ala Cys Ala Pro Ser Arg Val
155 160 165

Val Val Val Ala Ser Ala Ala His Cys Arg Gly Arg Leu Asp Phe
170 175 180

Lys Arg Leu Asp Arg Pro Val Val Gly Trp Arg Gln Glu Leu Arg

185 190 195

Ala Tyr Ala Asp Thr Lys Leu Ala Asn Val Leu Phe Ala Arg Glu
200 205 210

Leu Ala Asn Gln Leu Glu Ala Thr Gly Val Thr Cys Tyr Ala Ala
215 220 225

His Pro Gly Pro Val Asn Ser Glu Leu Phe Leu Arg His Val Pro
230 235 240

Gly Trp Leu Arg Pro Leu Leu Arg Pro Leu Ala Trp Leu Val Leu
245 250 255

Arg Ala Pro Arg Gly Gly Ala Gln Thr Pro Leu Tyr Cys Ala Leu
260 265 270

Gln Glu Gly Ile Glu Pro Leu Ser Gly Arg Tyr Phe Ala Asn Cys
275 280 285

His Val Glu Glu Val Pro Pro Ala Ala Arg Asp Asp Arg Ala Ala
290 295 300

His Arg Leu Trp Glu Ala Ser Lys Arg Leu Ala Gly Leu Gly Pro
305 310 315

Gly Glu Asp Ala Glu Pro Asp Glu Asp Pro Gln Ser Glu Asp Ser
320 325 330

Glu Ala Pro Ser Ser Leu Ser Thr Pro His Pro Glu Glu Pro Thr
335 340 345

Val Ser Gln Pro Tyr Pro Ser Pro Gln Ser Ser Pro Asp Leu Ser
350 355 360

Lys Met Thr His Arg Ile Gln Ala Lys Val Glu Pro Glu Ile Gln
365 370 375

Leu Ser

<210> 207

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 207

cttcatggcc ttggacttgg ccag 24

<210> 208

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 208

acgccagtggtt cctcaagctg gttg 24

<210> 209

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 209

cttctgagc tctgagccac ggttggacat cctcatccac aatgc 45

<210> 210

<211> 3716

<212> DNA

<213> Homo sapiens

<400> 210

ggaggagaca gcctcctggg gggcaggggt tccctgcctc tgctgctcct 50

gctcatcatg ggaggcatgg ctcaggactc cccgccccag atcctagtcc 100

accccccagga ccagctgttc cagggccctg gccctgccag gatgagctgc 150

caaggcctcag gccagccacc tcccaccatc cgctggttgc tgaatggca 200

gccccctgagc atggtgcccc cagacccaca ccacccctg cctgatggga 250

cccttctgct gctacagccc cctgccccggg gacatgccca cgatggccag 300

gccctgtcca cagacacctggg tgtctacaca tgtgaggcca gcaaccggct 350
tggcacggca gtcagcagag gcgcctcggt gtctgtggct gtcctccggg 400
aggatttcca gatccagcct cgggacatgg tggctgtgggt gggtgagcag 450
tttactctgg aatgtgggcc gccctggggc caccaggagc ccacagtctc 500
atggtgaaa gatgggaaac ccctggccct ccagccccgga aggcacacag 550
tgtccggggg gtccctgctg atggcaagag cagagaagag tgacgaaggg 600
acctacatgt gtgtggccac caacagcgca ggacataggg agagccgcgc 650
agcccccgggtt tccatccagg agcccccagga ctacacggag cctgtggagc 700
ttctggctgt gcgaattcag ctggaaaatg tgacactgct gaacccggat 750
cctgcagagg gccccaaagcc tagaccggcg gtgtggctca gctggaaggt 800
cagtggccct gctgcgcctg cccaatctta cacggccttg ttcaggaccc 850
agactgcccc gggaggccag ggagctccgt gggcagagga gctgctggcc 900
ggctggcaga gcgcagagct tggaggccctc cactggggcc aagactacga 950
gttcaaagtg agaccatcct ctggccgggc tcgaggccct gacagcaacg 1000
tgctgctcct gaggctgccc gaaaaagtgc ccagtcccc acctcaggaa 1050
gtgactctaa agcctggcaa tggcactgtc ttgtgagct gggtcccacc 1100
acctgctgaa aaccacaatg gcatcatccg tggctaccag gtctggagcc 1150
tggcaacac atcactgcca ccagccaact ggactgttagt tggtgagcag 1200
acccagctgg aaatcgccac ccatatgcca ggctctact gcgtgcaagt 1250
ggctgcagtc actggtgctg gagctgggga gcccagtaga cctgtctgcc 1300
tcctttaga gcaggccatg gagcgagcca cccaaagaacc cagtgagcat 1350
ggtccctgga ccctggagca gctgaggcgt accttgaagc ggcctgaggt 1400
cattgccacc tgcgggtgtc cactctggct gctgcttctg ggcaccgccc 1450

tgttatcca ccgcggcgc cgagctaggg tgcacctggg cccaggtctg 1500
tacagatata ccagttagga tgccatccta aaacacagga tggatcacag 1550
tgactcccag tggttggcag acacttggcg ttccacctct ggctctcggg 1600
acctgaggcag cagcagcagc ctcagcagtc ggctgggggc gatatccccgg 1650
gacccactag actgtcgctc ctccctgctc tcctggact cccgaagccc 1700
cgcggtgccc ctgcttccag acaccagcac ttttatggc tccctcatcg 1750
ctgagctgcc ctccagtagcc ccagccaggc caagtccccca ggtccccagct 1800
gtcaggcgcc tcccacccca gctggccag ctctccagcc cctgttccag 1850
ctcagacagc ctctgcagcc gcaggggact ctctctccc cgcttgcctc 1900
tgccccctgc agaggcttgg aaggccaaaa agaagcagga gctgcagcat 1950
gccaacagtt ccccactgct ccggggcagc cactccttgg agctccggc 2000
ctgtgagttt gaaaaatagag gttccaagaa cctttcccaa agccaggag 2050
ctgtccccca agctctggtt gcctggggg ccctgggacc gaaactcctc 2100
agctccctcaa atgagcttgt tactcgcat ctccctccag caccctt 2150
tcctcatgaa actcccccaa ctcagagtca acagacccag cctccgggtgg 2200
caccacaggc tccctccctcc atcctgctgc cagcagcccc catccccatc 2250
cttagccccct gcagtccccca tagccccca ggccttcccc tctctggccc 2300
cagccagct tccagtcgccc tgtccagctc ctcactgtca tccctggggg 2350
aggatcaaga cagcgtgctg accccctgagg aggttagccct gtgcttggaa 2400
ctcagtgagg gtgaggagac tcccaggaac agcgtctctc ccatgccaag 2450
ggctccctca cccccccacca cctatggta catcagcgct ccaacagcct 2500
cagagttcac ggacatgggc aggactggag gaggggtggg gcccagggg 2550
ggagtcttgc tgtgcccacc tcggccctgc ctccacccca ccccccagcga 2600

gggctccta gccaatgggtt ggggctcagc ctctaggac aatgccgc 2650
gcgcaggagc cagccttgc agtcctccg atggctcctt cctcgctgat 2700
gctcactttg cccggggccct ggcagtggct gtggatagct ttggttcgg 2750
tcttagagccc agggaggcag actgcgtt catagatgcc tcacaccc 2800
cctccccacg ggatgagatc ttccctgaccc ccaacctctc cctgcccctg 2850
tgggagtgga ggccagactg gttggaaagac atggaggtaa gccacaccc 2900
gcccggatgc agggggatgc ctccctggcc ccctgactct cagatcttt 2950
cccagagaag tcagctccac tgtcgatgc ccaaggctgg tgcttcct 3000
gtagattact cctgaaccgt gtccctgaga cttccagac gggaaatcaga 3050
accacttctc ctgtccaccc acaagacactg ggctgtggtg tgggttctt 3100
ggcctgtgtt tctctgcagc tgggtccac cttcccaagc ctccagagag 3150
ttctccctcc acgattgtga aaacaaatga aaacaaaatt agagcaaagc 3200
tgacctggag ccctcaggaa gcaaaacatc atctccacct gactccatgc 3250
cactgcttcc tcctctgtgc catccactcc caccaccagg ttgtttggc 3300
ctgaggagca gcccgcctg ctgcttcc cccaccattt ggatcacagg 3350
aagtggagga gccagaggatg ctttggaa ggacagcagt ggctgctggg 3400
agagggctgt ggaggaagga gcttcgga gccccctctc agccttaccc 3450
ggccccctcc tcctagagaag agctcaactc tctcccaacc tcaccatgg 3500
aagaaaataa ttatgaatgc cactgaggca ctgaggccct acctcatgcc 3550
aaacaaagggtt caaggctg ggtctagcga ggatgctgaa ggaaggagg 3600
tatgagaccg taggtcaaaa gcaccatccct cgtactgttgc tcaatgtgg 3650
cttaagaaat ttgataccat aaaatggtaa aaaaaaaaaaaaaaaa 3700
aaaaaaaaaaaaaaa aaaaaaa 3716

<210> 211
<211> 985
<212> PRT
<213> Homo sapiens

<400> 211
Met Gly Gly Met Ala Gln Asp Ser Pro Pro Gln Ile Leu Val His
1 5 10 15

Pro Gln Asp Gln Leu Phe Gln Gly Pro Gly Pro Ala Arg Met Ser
20 25 30

Cys Gln Ala Ser Gly Gln Pro Pro Pro Thr Ile Arg Trp Leu Leu
35 40 45

Asn Gly Gln Pro Leu Ser Met Val Pro Pro Asp Pro His His Leu
50 55 60

Leu Pro Asp Gly Thr Leu Leu Leu Gln Pro Pro Ala Arg Gly
65 70 75

His Ala His Asp Gly Gln Ala Leu Ser Thr Asp Leu Gly Val Tyr
80 85 90

Thr Cys Glu Ala Ser Asn Arg Leu Gly Thr Ala Val Ser Arg Gly
95 100 105

Ala Arg Leu Ser Val Ala Val Leu Arg Glu Asp Phe Gln Ile Gln
110 115 120

Pro Arg Asp Met Val Ala Val Val Gly Glu Gln Phe Thr Leu Glu
125 130 135

Cys Gly Pro Pro Trp Gly His Pro Glu Pro Thr Val Ser Trp Trp
140 145 150

Lys Asp Gly Lys Pro Leu Ala Leu Gln Pro Gly Arg His Thr Val
155 160 165

Ser Gly Gly Ser Leu Leu Met Ala Arg Ala Glu Lys Ser Asp Glu
170 175 180

Gly Thr Tyr Met Cys Val Ala Thr Asn Ser Ala Gly His Arg Glu
185 190 195

Ser Arg Ala Ala Arg Val Ser Ile Gln Glu Pro Gln Asp Tyr Thr
200 205 210

Glu Pro Val Glu Leu Leu Ala Val Arg Ile Gln Leu Glu Asn Val
215 220 225

Thr Leu Leu Asn Pro Asp Pro Ala Glu Gly Pro Lys Pro Arg Pro
230 235 240

Ala Val Trp Leu Ser Trp Lys Val Ser Gly Pro Ala Ala Pro Ala
245 250 255

Gln Ser Tyr Thr Ala Leu Phe Arg Thr Gln Thr Ala Pro Gly Gly
260 265 270

Gln Gly Ala Pro Trp Ala Glu Glu Leu Leu Ala Gly Trp Gln Ser
275 280 285

Ala Glu Leu Gly Gly Leu His Trp Gly Gln Asp Tyr Glu Phe Lys
290 295 300

Val Arg Pro Ser Ser Gly Arg Ala Arg Gly Pro Asp Ser Asn Val
305 310 315

Leu Leu Leu Arg Leu Pro Glu Lys Val Pro Ser Ala Pro Pro Gln
320 325 330

Glu Val Thr Leu Lys Pro Gly Asn Gly Thr Val Phe Val Ser Trp
335 340 345

Val Pro Pro Pro Ala Glu Asn His Asn Gly Ile Ile Arg Gly Tyr
350 355 360

Gln Val Trp Ser Leu Gly Asn Thr Ser Leu Pro Pro Ala Asn Trp
365 370 375

Thr Val Val Gly Glu Gln Thr Gln Leu Glu Ile Ala Thr His Met
380 385 390

Pro Gly Ser Tyr Cys Val Gln Val Ala Ala Val Thr Gly Ala Gly
395 400 405

Ala Gly Glu Pro Ser Arg Pro Val Cys Leu Leu Leu Glu Gln Ala
410 415 420

Met Glu Arg Ala Thr Gln Glu Pro Ser Glu His Gly Pro Trp Thr
425 430 435

Leu Glu Gln Leu Arg Ala Thr Leu Lys Arg Pro Glu Val Ile Ala
440 445 450

Thr Cys Gly Val Ala Leu Trp Leu Leu Leu Gly Thr Ala Val
455 460 465

Cys Ile His Arg Arg Arg Ala Arg Val His Leu Gly Pro Gly
470 475 480

Leu Tyr Arg Tyr Thr Ser Glu Asp Ala Ile Leu Lys His Arg Met
485 490 495

Asp His Ser Asp Ser Gln Trp Leu Ala Asp Thr Trp Arg Ser Thr
500 505 510

Ser Gly Ser Arg Asp Leu Ser Ser Ser Ser Leu Ser Ser Arg
515 520 525

Leu Gly Ala Asp Ala Arg Asp Pro Leu Asp Cys Arg Arg Ser Leu
530 535 540

Leu Ser Trp Asp Ser Arg Ser Pro Gly Val Pro Leu Leu Pro Asp
545 550 555

Thr Ser Thr Phe Tyr Gly Ser Leu Ile Ala Glu Leu Pro Ser Ser
560 565 570

Thr Pro Ala Arg Pro Ser Pro Gln Val Pro Ala Val Arg Arg Leu
575 580 585

Pro Pro Gln Leu Ala Gln Leu Ser Ser Pro Cys Ser Ser Ser Asp
590 595 600

Ser Leu Cys Ser Arg Arg Gly Leu Ser Ser Pro Arg Leu Ser Leu
605 610 615

Ala Pro Ala Glu Ala Trp Lys Ala Lys Lys Lys Gln Glu Leu Gln
620 625 630

His Ala Asn Ser Ser Pro Leu Leu Arg Gly Ser His Ser Leu Glu
635 640 645

Leu Arg Ala Cys Glu Leu Gly Asn Arg Gly Ser Lys Asn Leu Ser
650 655 660

Gln Ser Pro Gly Ala Val Pro Gln Ala Leu Val Ala Trp Arg Ala
665 670 675

Leu Gly Pro Lys Leu Leu Ser Ser Ser Asn Glu Leu Val Thr Arg
680 685 690

His Leu Pro Pro Ala Pro Leu Phe Pro His Glu Thr Pro Pro Thr
695 700 705

Gln Ser Gln Gln Thr Gln Pro Pro Val Ala Pro Gln Ala Pro Ser
710 715 720

Ser Ile Leu Leu Pro Ala Ala Pro Ile Pro Ile Leu Ser Pro Cys
725 730 735

Ser Pro Pro Ser Pro Gln Ala Ser Ser Leu Ser Gly Pro Ser Pro
740 745 750

Ala Ser Ser Arg Leu Ser Ser Ser Leu Ser Ser Leu Gly Glu
755 760 765

Asp Gln Asp Ser Val Leu Thr Pro Glu Glu Val Ala Leu Cys Leu
770 775 780

Glu Leu Ser Glu Gly Glu Glu Thr Pro Arg Asn Ser Val Ser Pro
785 790 795

Met Pro Arg Ala Pro Ser Pro Pro Thr Thr Tyr Gly Tyr Ile Ser
800 805 810

Val Pro Thr Ala Ser Glu Phe Thr Asp Met Gly Arg Thr Gly Gly
815 820 825

Gly Val Gly Pro Lys Gly Gly Val Leu Leu Cys Pro Pro Arg Pro
830 835 840

Cys Leu Thr Pro Thr Pro Ser Glu Gly Ser Leu Ala Asn Gly Trp
845 850 855

Gly Ser Ala Ser Glu Asp Asn Ala Ala Ser Ala Arg Ala Ser Leu
860 865 870

Val Ser Ser Ser Asp Gly Ser Phe Leu Ala Asp Ala His Phe Ala
875 880 885

Arg Ala Leu Ala Val Ala Val Asp Ser Phe Gly Phe Gly Leu Glu
890 895 900

Pro Arg Glu Ala Asp Cys Val Phe Ile Asp Ala Ser Ser Pro Pro
905 910 915

Ser Pro Arg Asp Glu Ile Phe Leu Thr Pro Asn Leu Ser Leu Pro
920 925 930

Leu Trp Glu Trp Arg Pro Asp Trp Leu Glu Asp Met Glu Val Ser
935 940 945

His Thr Gln Arg Leu Gly Arg Gly Met Pro Pro Trp Pro Pro Asp
950 955 960

Ser Gln Ile Ser Ser Gln Arg Ser Gln Leu His Cys Arg Met Pro
965 970 975

Lys Ala Gly Ala Ser Pro Val Asp Tyr Ser
980 985

<210> 212

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 212

gaaggggacct acatgtgtgt ggcc 24

<210> 213

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 213

actgacacctc cagctgagcc acac 24

<210> 214

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 214

aggactacac ggagcctgtg gagcttctgg ctgtgcgaat tcagctggaa 50

<210> 215

<211> 2749

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1869, 1887

<223> unknown base

<400> 215

ctcccacggt gtccagcgcc cagaatgcgg cttctgggcc tgctatgggg 50

ttgcctgcgt ctcccaggtt atgaagccct ggagggccca gaggaaatca 100

gcgggttcga aggggacact gtgtccctgc agtgcaccta cagggaaagag 150

ctgagggacc accggaagta ctggcgcagg aagggtggga tcctcttc 200

tgcgtctctt ggcaccatct atgcagaaga agaaggccag gagacaatga 250

aggcagggt gtccatccgt gacagccgccc aggagcttc gctattgtg 300

accctgtgga acctcaccct gcaagacgct gggagttact ggtgtgggt 350

cgaaaaacgg ggccccgatg agtctttact gatctcttg ttcgtctttc 400

caggaccctg ctgtcctccc tcccccttc ccaccttcca gcctctggct 450

acaacacgcc tgcagcccaa ggcaaaagct cagcaaaccc agcccccagg 500

attgacttct cctgggctct acccggcagc caccacagcc aagcagggga 550

agacaggggc tgaggccctt ccattgccag ggacttccca gtacgggcac 600

gaaaggactt ctcagttcac aggaacctct ctcacccag cgaccttcc 650
tcctgcaggg agctcccgcc cccccatgca gctggactcc acctcagcag 700
aggacaccag tccagcttc agcagtggca gctctaagcc caggggttcc 750
atcccgtatgg tccgcatact ggccccagtc ctggtgctgc tgagccctct 800
gtcagccgca ggcctgatcg ccctctgcag ccacctgctc ctgtggagaa 850
aggaagctca acaggccacg gagacacaga ggaacgagaa gttctggctc 900
tcacgcttga ctgcggagga aaaggaagcc ccctccagg cccctgaggg 950
ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctggct 1000
tctcgaagtt tgtctcagcg tagggcagga ggccctcctg gccaggccag 1050
cagtgaagca gtatggctgg ctggatcagc accgattccc gaaagcttc 1100
cacctcagcc tcagagtcca gctgccccga ctccagggtc ctccccaccc 1150
tccccaggct tcctcttgc atgttccagc ctgacccatcg agcgtttgtc 1200
agccctggag cccagagcgg tggccttgct ctccggctg gagactggaa 1250
catccctgat aggttacat ccctggcag agtaccaggc tgctgaccct 1300
cagcagggcc agacaaggct cagtggatct ggtctgagtt tcaatctgcc 1350
aggaactcct gggcctcatg cccagtgctg gaccctgcct tcctccact 1400
ccagacccca ccttgccttc cctccctggc gtcctcagac ttagtcccac 1450
ggtctcctgc atcagctggt gatgaagagg agcatgctgg ggtgagactg 1500
ggattctggc ttcttttga accacctgca tccagccctt caggaaggct 1550
gtaaaaaaacg tgattcctgg cccccaccaag acccaccaaa accatctgt 1600
ggcttggcagg aggactctga attctaacaa tgcccaatcgact 1650
tgagtttgag ggccagtggtt cctgatgaac gctcacaccc ctccagctta 1700
gagtctgcat ttggcgttgc acgtctccac ctgccccaaat agatctgctc 1750

tgtctgcac accagatcca cgtgggact cccctgaggc ctgctaagtc 1800
caggccttgg tcaggtcagg tgcacattgc aggataagcc caggaccggc 1850
acagaagtgg ttgccttnc cattgccct ccctggncca tgccttcgt 1900
ccttggaaa aaatgtgaa gaaaacctg gtccttcgt tgtctggaaa 1950
gggttacttg cctatgggtt ctgggtggcta gagagaaaaag tagaaaaacca 2000
gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050
ctgaagggtga ctccgagtcc agccccctgg agaaggggtc ggggggttgt 2100
gtaaagttagc acaactacta tttttttct tttccatta ttattgtttt 2150
ttaagacaga atctcggtct gctgcccagg ctggagtgca gtggcacgt 2200
ctgcaaactc cgcctcctgg gttcaagtga ttcttcgtcc tcagcctccc 2250
gagtagctgg gattacaggc acgcaccacc acacctggct aattttgtta 2300
cttttagtag agatggggtt tcaccatgtt ggccaggctg gtctgaact 2350
cctgacctca aatgagcctc ctgcttcgt ctcccaaatt gccgggatta 2400
caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtgaatatt 2450
agagttgttc agtatgcaaa acttgaaag atggaggaga aaaagaaaag 2500
gaagaaaaaaaa atgtcaccca tagtctcacc agagactatc attatttcgt 2550
tttgttgcac ttccctccac tcttttcttcc ttcacataat ttgcgggtt 2600
tcttttaca gagcaattat ctgttatata caactttgtt tcctgcctt 2650
tccacccat cgtccatca ctttattcca gcacttctct gtgtttaca 2700
gaccctttta taataaaaaat gttcatcagc tgcataaaaa aaaaaaaaaa 2749

<210> 216
<211> 332
<212> PRT
<213> Homo sapiens

<400> 216

Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Leu Pro Gly
1 5 10 15

Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly
20 25 30

Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp
35 40 45

His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg
50 55 60

Cys Ser Gly Thr Ile Tyr Ala Glu Glu Gly Gln Glu Thr Met
65 70 75

Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu
80 85 90

Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr
95 100 105

Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Ile
110 115 120

Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser
125 130 135

Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala
140 145 150

Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu
155 160 165

Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu
170 175 180

Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr
185 190 195

Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro
200 205 210

Ala Gly Ser Ser Arg Pro Pro Met Gln Leu Asp Ser Thr Ser Ala
215 220 225

Glu Asp Thr Ser Pro Ala Leu Ser Ser Gly Ser Ser Lys Pro Arg
230 235 240

Val Ser Ile Pro Met Val Arg Ile Leu Ala Pro Val Leu Val Leu
245 250 255

Leu Ser Leu Leu Ser Ala Ala Gly Leu Ile Ala Phe Cys Ser His
260 265 270

Leu Leu Leu Trp Arg Lys Glu Ala Gln Gln Ala Thr Glu Thr Gln
275 280 285

Arg Asn Glu Lys Phe Trp Leu Ser Arg Leu Thr Ala Glu Glu Lys
290 295 300

Glu Ala Pro Ser Gln Ala Pro Glu Gly Asp Val Ile Ser Met Pro
305 310 315

Pro Leu His Thr Ser Glu Glu Glu Leu Gly Phe Ser Lys Phe Val
320 325 330

Ser Ala

<210> 217

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 217

ccctgcagtg cacctacagg gaag 24

<210> 218

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 218

ctgtcttccc ctgcttggct gtgg 24

<210> 219
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 219
ggtcaggaa ggggggatc ctctcttc gtcgtctgg ccacatc 47

<210> 220
<211> 950
<212> DNA
<213> Homo sapiens

<400> 220
tttgactaa aagctggctt agcaggccag ggagtgcagc tgcaggcg 50
gggtggcag gagccgcaga gccagagcag acagccgaga aacaggtgga 100
cagtgtaaa gaaccagtgg tctcgcttg ttgcccgaggc tagagtgtac 150
tggcgtgatc atagctcaact gcagcctcag actccctggac ttgagaaatc 200
ctcctgcctt agcctcctgc atatctggga ctccagggtt gcactcaagc 250
cctgttctt ctcctctgt gagtggacca cggaggctgg tgagctgcct 300
gtcatcccaa agctcagctc tgagccagag tgggtggc tccacctctg 350
ccgcccggcat agaagccagg agcagggttc tcagaaggcgt gtggtgccca 400
gctggatca tgggtggc cctggctgt ctgctcagct gcctgctacc 450
ctccagttag gccaagctct acggtcgttg tgaactggcc agagtgtac 500
atgacttcgg gctggacgga taccggggat acagcctggc tgactgggtc 550
tgccctgcctt atttcacaag cggttcaac gcagctgcctt tggactacga 600
ggctgtatggg agcaccaaca acgggatctt ccagatcaac agccggaggt 650
ggtcagcaa ctcacccca aacgtccccca acgtgtgccg gatgtactgc 700

tcagatttgt tgaatcctaa tctcaaggat accgttatct gtgccatgaa 750

gataacccaa gagcctcagg gtctgggtta ctggaggccc tggaggcata 800

actgccaggg aaaagacctc actgaatggg tggatggctg tgacttctag 850

gatggacgga accatgcaca gcaggctggg aaatgtggtt tggttcctga 900

cctaggcttg ggaagacaag ccagcgaata aaggatggtt gaacgtgaaa 950

<210> 221

<211> 146

<212> PRT

<213> Homo sapiens

<400> 221

Met Leu Leu Ala Leu Val Cys Leu Leu Ser Cys Leu Leu Pro Ser
1 5 10 15

Ser Glu Ala Lys Leu Tyr Gly Arg Cys Glu Leu Ala Arg Val Leu
20 25 30

His Asp Phe Gly Leu Asp Gly Tyr Arg Gly Tyr Ser Leu Ala Asp
35 40 45

Trp Val Cys Leu Ala Tyr Phe Thr Ser Gly Phe Asn Ala Ala Ala
50 55 60

Leu Asp Tyr Glu Ala Asp Gly Ser Thr Asn Asn Gly Ile Phe Gln
65 70 75

Ile Asn Ser Arg Arg Trp Cys Ser Asn Leu Thr Pro Asn Val Pro
80 85 90

Asn Val Cys Arg Met Tyr Cys Ser Asp Leu Leu Asn Pro Asn Leu
95 100 105

Lys Asp Thr Val Ile Cys Ala Met Lys Ile Thr Gln Glu Pro Gln
110 115 120

Gly Leu Gly Tyr Trp Glu Ala Trp Arg His His Cys Gln Gly Lys
125 130 135

Asp Leu Thr Glu Trp Val Asp Gly Cys Asp Phe
140 145

<210> 222
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 222
gggatcatgt tgitggccct ggtc 24

<210> 223
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 223
gcaaggcaga cccagtcagc cag 23

<210> 224
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 224
ctgcctgcta ccctccaagt gaggccaagc tctacggtcg ttgtg 45

<210> 225
<211> 2049
<212> DNA
<213> Homo sapiens

<400> 225
agccgctgcc ccgggcccggg cgccccggc ggcaccatga gtccccgctc 50
gtgcctgcgt tcgctgcgcc tcctcgctt cgccgtttc tcagccgccc 100
cgagcaactg gctgtacctg gccaaagctgt cgtcggtggg gagcatctca 150

'gaggaggaga cgtgcgagaa actcaaggc ctgatccaga ggcaggtgca 200
gatgtgcaag cggaacctgg aagtcatgga ctggcgcc cgccgtgccc 250
agctggccat tgaggagtgc cagtaccagt tccggaaccg gcgctggaac 300
tgctccacac tcgactcctt gcccgtttc ggcaaggtgg tgacgcaagg 350
gactcgggag gcggccctcg tgtacccat ctctcggca ggtgtggcct 400
ttgcagtgac gcgggcgtgc agcagtgggg agctggagaa gtgcggctgt 450
gacaggacag tgcattgggt cagccacag ggctccagt gtcaggatg 500
ctctgacaac atgcctacg gtgtggcctt ctcacagtgc ttgtggatg 550
tgccggagag aagcaagggg gcctcgtcca gcagagccct catgaacctc 600
cacaacaatg aggccggcag gaaggccatc ctgacacaca tgccggtgga 650
atgcaagtgc cacggggtgt caggctcctg tgaggtaaag acgtgctggc 700
gagccgtgcc gcccttccgc caggtggtc acgcactgaa ggagaagttt 750
gatggtgcca ctgaggtgga gcccacccgc gtgggctcct ccagggcact 800
ggtaccacgc aacgcacagt tcaagccgca cacagatgag gacctgggt 850
acttggagcc tagccccgac ttctgtgagc aggacatgcg cagcggcgtg 900
ctggcacga gggccgcac atgcaacaag acgtccaagg ccatcgacgg 950
ctgtgagctg ctgtgctgtg gccgcggcctt ccacacggcg caggtggagc 1000
tggctgaacg ctgcagctgc aaattccact ggtgctgctt cgtcaagtgc 1050
cggcagtgcc agcggctcgt ggagttgcac acgtgccat gaccgcctgc 1100
ctagccctgc gccggcaacc accttagtggc ccagggaaagg ccgataattt 1150
aaacagtctc ccaccaccta ccccaagaga tactggtgtt atttttgtt 1200
ctggtttgtt ttgggtcc tcatgttatt tattgcccggaa accaggcagg 1250
caaccccaag ggcacccaacc agggccctccc caaagcctgg gcctttgtgg 1300

ctgccactga ccaaaggac cttgctcgtg ccgcggctg cccgcatgtg 1350
gctgccactg accactcagt tgttatctgt gtccgtttt ctacttgca 1400
acctaaggtg gagtaacaag gagtattacc accacatggc tactgaccgt 1450
gtcatcgaaa aagagggggc cttatggcag ggaaaaatagg taccgacttg 1500
atggaagtca caccctctgg aaaaaagaac tcttaactct ccagcacaca 1550
tacacatgga ctcctggcag cttgagccta gaagccatgt ctctcaaatg 1600
ccctgagaaa gggaaacaagc agataccagg tcaagggcac caggttcatt 1650
tcagccctta catggacagc tagaggttcg atatctgtgg gtcctccag 1700
gcaagaagag ggagatgaga gcaagagacg actgaagtcc caccctagaa 1750
cccagcctgc cccagcctgc ccctggaaag aggaaactta accactcccc 1800
agacccacct aggcaggcat ataggctgcc atcctggacc agggatcccg 1850
gctgtgcctt tgcatgtcc cccgagtcac cttcacagc gctgttcctc 1900
catgaaactg aaaaacacac acacacacac acacacacac acacacacac 1950
acacacacac ggacacacac acacacctgc gagagagagg gaggaaagg 2000
ctgtgcctt gcagtcatgc ccgagtcacc tttcacagca ctgttcctc 2049

<210> 226
<211> 351
<212> PRT
<213> Homo sapiens

<400> 226
Met Ser Pro Arg Ser Cys Leu Arg Ser Leu Arg Leu Leu Val Phe
1 5 10 15

Ala Val Phe Ser Ala Ala Ser Asn Trp Leu Tyr Leu Ala Lys
20 25 30

Leu Ser Ser Val Gly Ser Ile Ser Glu Glu Glu Thr Cys Glu Lys
35 40 45

Leu Lys Gly Leu Ile Gln Arg Gln Val Gln Met Cys Lys Arg Asn
50 55 60

Leu Glu Val Met Asp Ser Val Arg Arg Gly Ala Gln Leu Ala Ile
65 70 75

Glu Glu Cys Gln Tyr Gln Phe Arg Asn Arg Arg Trp Asn Cys Ser
80 85 90

Thr Leu Asp Ser Leu Pro Val Phe Gly Lys Val Val Thr Gln Gly
95 100 105

Thr Arg Glu Ala Ala Phe Val Tyr Ala Ile Ser Ser Ala Gly Val
110 115 120

Ala Phe Ala Val Thr Arg Ala Cys Ser Ser Gly Glu Leu Glu Lys
125 130 135

Cys Gly Cys Asp Arg Thr Val His Gly Val Ser Pro Gln Gly Phe
140 145 150

Gln Trp Ser Gly Cys Ser Asp Asn Ile Ala Tyr Gly Val Ala Phe
155 160 165

Ser Gln Ser Phe Val Asp Val Arg Glu Arg Ser Lys Gly Ala Ser
170 175 180

Ser Ser Arg Ala Leu Met Asn Leu His Asn Asn Glu Ala Gly Arg
185 190 195

Lys Ala Ile Leu Thr His Met Arg Val Glu Cys Lys Cys His Gly
200 205 210

Val Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Arg Ala Val Pro
215 220 225

Pro Phe Arg Gln Val Gly His Ala Leu Lys Glu Lys Phe Asp Gly
230 235 240

Ala Thr Glu Val Glu Pro Arg Arg Val Gly Ser Ser Arg Ala Leu
245 250 255

Val Pro Arg Asn Ala Gln Phe Lys Pro His Thr Asp Glu Asp Leu
260 265 270

Val Tyr Leu Glu Pro Ser Pro Asp Phe Cys Glu Gln Asp Met Arg
275 280 285

Ser Gly Val Leu Gly Thr Arg Gly Arg Thr Cys Asn Lys Thr Ser
290 295 300

Lys Ala Ile Asp Gly Cys Glu Leu Leu Cys Cys Gly Arg Gly Phe
305 310 315

His Thr Ala Gln Val Glu Leu Ala Glu Arg Cys Ser Cys Lys Phe
320 325 330

His Trp Cys Cys Phe Val Lys Cys Arg Gln Cys Gln Arg Leu Val
335 340 345

Glu Leu His Thr Cys Arg
350

<210> 227

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 227

gctgcagctg caaatccac tgg 23

<210> 228

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 228

tggtggaga ctgtttaaat tatcgccc 28

<210> 229

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 229

tgcttcgtca agtgccggca gtgccagcgg ctcgtggagt t 41

<210> 230

<211> 1355

<212> DNA

<213> Homo sapiens

<400> 230

cggacgcgtg ggcggacgcg tggcgacg cgtggcgga cgctggc 50

gggtgcctgc atgcgcattgg acaccaccag gtacagcaag tggggcggca 100

gctccgagga ggtccccgga gggccctggg gacgctgggt gcactggagc 150

aggagacccc tcttcttggc cctggctgc ctggcacca cagtccttg 200

ggctgtgatt ctgagtatcc tattgtccaa ggcctccacg gagcgcgcgg 250

cgctgcttga cggccacgac ctgctgagga caaacgcctc gaagcagacg 300

gcggcgctgg gtgccctgaa ggaggaggc ggagactgcc acagctgctg 350

ctcggggacg caggcgcagc tgcagaccac gcgcgcggag ctggggagg 400

cgcaggcgaa gctgatggag caggagagcg ccctgcggga actgcgtgag 450

cgcgtgaccc agggcttggc tgaagccggc agggccgtg aggacgtccg 500

cactgagctg ttccgggcgc tggaggccgt gaggctccag aacaactct 550

gcgagccgtg ccccacgtcg tggctgtcct tcgagggctc ctgctacttt 600

ttctctgtgc caaagacgac gtgggcggcg gcgcaggatc actgcgcaga 650

tgccagcgcg cacctggta tcgttgggg cctggatgag caggcttcc 700

tcactcgaa cacgcgtggc cgtggttact ggctggccct gaggcgtgt 750

cgcctatcg gcaagggtca gggctaccag tgggtggacg gagtcctct 800

cagcttcagc cactggAACc agggagagcc caatgacgct tggggcgcg 850

agaactgtgt catgatgctg cacacggggc tgtggaacga cgcaccgtgt 900
gacagcgaga aggacggctg gatctgtgag aaaaggcaca actgctgacc 950
ccgcccagtgc cccctggagcc ggcgcattgc cagcatgtcg tatcctgggg 1000
gctgctcacc tccctggctc ctggagctga ttgccaaaga gttttttct 1050
tcctcatcca ccgctgctga gtctcagaaa cacttggccc aacatagccc 1100
tgtccagccc agtgcctggg ctctgggacc tccatgccga cctcatccta 1150
actccactca cgccagacccca acctaaccctc cactagctcc aaaatccctg 1200
ctcctgcgtc cccgtgatgc gcctccactt ctctccctaa ccaaggtag 1250
gtgactgagg actggagctg ttgggtttc tcgcatttc caccaaactg 1300
gaagctgttt ttgcagcctg aggaagcatc aataaatatt tgagaaatga 1350
aaaaaa 1355

<210> 231
<211> 293
<212> PRT
<213> Homo sapiens

<400> 231
Met Asp Thr Thr Arg Tyr Ser Lys Trp Gly Gly Ser Ser Glu Glu
1 5 10 15

Val Pro Gly Gly Pro Trp Gly Arg Trp Val His Trp Ser Arg Arg
20 25 30

Pro Leu Phe Leu Ala Leu Ala Val Leu Val Thr Thr Val Leu Trp
35 40 45

Ala Val Ile Leu Ser Ile Leu Leu Ser Lys Ala Ser Thr Glu Arg
50 55 60

Ala Ala Leu Leu Asp Gly His Asp Leu Leu Arg Thr Asn Ala Ser
65 70 75

Lys Gln Thr Ala Ala Leu Gly Ala Leu Lys Glu Glu Val Gly Asp
80 85 90

Cys His Ser Cys Cys Ser Gly Thr Gln Ala Gln Leu Gln Thr Thr
95 . 100 . 105

Arg Ala Glu Leu Gly Glu Ala Gln Ala Lys Leu Met Glu Gln Glu
110 . 115 . 120

Ser Ala Leu Arg Glu Leu Arg Glu Arg Val Thr Gln Gly Leu Ala
125 . 130 . 135

Glu Ala Gly Arg Gly Arg Glu Asp Val Arg Thr Glu Leu Phe Arg
140 . 145 . 150

Ala Leu Glu Ala Val Arg Leu Gln Asn Asn Ser Cys Glu Pro Cys
155 . 160 . 165

Pro Thr Ser Trp Leu Ser Phe Glu Gly Ser Cys Tyr Phe Phe Ser
170 . 175 . 180

Val Pro Lys Thr Thr Trp Ala Ala Ala Gln Asp His Cys Ala Asp
185 . 190 . 195

Ala Ser Ala His Leu Val Ile Val Gly Gly Leu Asp Glu Gln Gly
200 . 205 . 210

Phe Leu Thr Arg Asn Thr Arg Gly Arg Gly Tyr Trp Leu Gly Leu
215 . 220 . 225

Arg Ala Val Arg His Leu Gly Lys Val Gln Gly Tyr Gln Trp Val
230 . 235 . 240

Asp Gly Val Ser Leu Ser Phe Ser His Trp Asn Gln Gly Glu Pro
245 . 250 . 255

Asn Asp Ala Trp Gly Arg Glu Asn Cys Val Met Met Leu His Thr
260 . 265 . 270

Gly Leu Trp Asn Asp Ala Pro Cys Asp Ser Glu Lys Asp Gly Trp
275 . 280 . 285

Ile Cys Glu Lys Arg His Asn Cys
290

<210> 232

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 232

gcgagaactg tgtcatatg ctgc 24

<210> 233

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 233

gtttctgaga ctcagcagcg gtgg 24.

<210> 234

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 234

caccgtgtga cagcgagaag gacggctgga tctgtgagaa aaggcacaac 50

<210> 235

<211> 1847

<212> DNA

<213> Homo sapiens

<400> 235

gccaggggaa gagggtgatc cgaccgggg aaggctcgctg ggcagggcga 50

gttggaaag cggcagcccc cggccccc gcagccctt ctccctttt 100

ctcccacgtc ctatctgcct ctcgctggag gccaggccgt gcagcatcga 150

agacaggagg aactggagcc tcattggccg gcccggggcg ccggcctcgg 200

gcttaatag gagctccggg ctctggctgg gacccgaccg ctgcccggccg 250

cgctccccgt gtcctgccc ggtgatggaa aaccccaagcc cggccgcgc 300
cctgggcaag gccctctgcg ctctccctt ggccactctc ggcgcgcgc 350
gccagccctt tgggggagag tccatctttt ccggccagagc cccggccaaa 400
tacagcatca cttcacggg caagtggaggc cagacggcct tcccaagca 450
gtacccctgt ttccgcgggg ctgcgcagtg gtctcgctg ctgggggcgg 500
cgcatagctc cgactacagc atgtggagga agaaccagta cgtcagtaac 550
gggctgcgcg actttgcgga gcgcggcgag gcctgggcgc tgatgaagga 600
gatcgaggcg gcggggggagg cgctgcagag cgtgcacgag gtgtttcgg 650
ccccggccgt ccccagcggc accgggcaga cgtcggcggc gctggagggt 700
cagcgcaggc actcgcgtgtt ctgcgttgt gtgcgcattcg tgccagccc 750
cgactgggtc gtggcgtgg acagcctggc cctgtgcgac ggggaccgtt 800
ggcgggaaca ggcggcgctg gacctgtacc cctacgacgc cgggacggac 850
agcggctca ctttccttc ccccaacttc gccaccatcc cgcaaggacac 900
ggtgaccgag ataacgtctt ccttcggcc aactccttct 950
actacccgcg gctgaaggcc ctgcctccca tcgcccagggt gacactgctg 1000
cggtgcgcac agagcccccag ggccttcattt cctccggccc cagtcctgcc 1050
cagcaggac aatgagattt tagacagcgc ctcagttcca gaaacgcccgc 1100
tggactgcga ggtctccctg tggtcgtcctt gggactgtg cggaggccac 1150
tgtgggaggc tcgggaccaa gagcaggact cgctacgtcc gggccagcc 1200
cgccaacaac gggagccctt gccccgagct cgaagaagag gctgagtgcg 1250
tccctgataa ctgcgtctaa gaccagagcc ccgcagcccc tggggccccc 1300
cgagccatg ggggtgcggg ggctccgtg caggctcatg ctgcaggcgg 1350
ccggaggcac agggggtttc ggcgtctcc tgaccgcggt gaggccgcgc 1400

cgaccatctc tgcactgaag ggccctctgg tggccggcac gggcaitggg 1450
aaacagcctc ctcccttccc aacctgcctt ctttaggggcc cccgtgtccc 1500
gtctgctctc agcctcctcc tcctgcagga taaagtcatc cccaaggctc 1550
cagctactct aaattatgtc tccttataag ttattgctgc tccaggagat 1600
tgtccttcat cgccagggg cctggctccc acgtgggtgc agataaccta 1650
gacctgggtgc tctaggctgt gctgagccca ctctcccgag ggcgcattca 1700
agcgggggcc acttgagaag tgaataaatg gggcggttc ggaagcgtca 1750
gtgttccat gtatggatc tctctgcgtt tgaataaaga ctatctctgt 1800
tgctcacaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 1847

<210> 236

<211> 331

<212> PRT

<213> Homo sapiens

<400> 236

Met Glu Asn Pro Ser Pro Ala Ala Ala Leu Gly Lys Ala Leu Cys
1 5 10 15

Ala Leu Leu Leu Ala Thr Leu Gly Ala Ala Gly Gln Pro Leu Gly
20 25 30

Gly Glu Ser Ile Cys Ser Ala Arg Ala Pro Ala Lys Tyr Ser Ile
35 40 45

Thr Phe Thr Gly Lys Trp Ser Gln Thr Ala Phe Pro Lys Gln Tyr
50 55 60

Pro Leu Phe Arg Pro Pro Ala Gln Trp Ser Ser Leu Leu Gly Ala
65 70 75

Ala His Ser Ser Asp Tyr Ser Met Trp Arg Lys Asn Gln Tyr Val
80 85 90

Ser Asn Gly Leu Arg Asp Phe Ala Glu Arg Gly Glu Ala Trp Ala
95 100 105

Leu Met Lys Glu Ile Glu Ala Ala Gly Glu Ala Gln Ser Val
110 115 120

His Glu Val Phe Ser Ala Pro Ala Val Pro Ser Gly Thr Gly Gln
125 130 135

Thr Ser Ala Glu Leu Glu Val Gln Arg Arg His Ser Leu Val Ser
140 145 150

Phe Val Val Arg Ile Val Pro Ser Pro Asp Trp Phe Val Gly Val
155 160 165

Asp Ser Leu Asp Leu Cys Asp Gly Asp Arg Trp Arg Glu Gln Ala
170 175 180

Ala Leu Asp Leu Tyr Pro Tyr Asp Ala Gly Thr Asp Ser Gly Phe
185 190 195

Thr Phe Ser Ser Pro Asn Phe Ala Thr Ile Pro Gln Asp Thr Val
200 205 210

Thr Glu Ile Thr Ser Ser Ser Pro Ser His Pro Ala Asn Ser Phe
215 220 225

Tyr Tyr Pro Arg Leu Lys Ala Leu Pro Pro Ile Ala Arg Val Thr
230 235 240

Leu Leu Arg Leu Arg Gln Ser Pro Arg Ala Phe Ile Pro Pro Ala
245 250 255

Pro Val Leu Pro Ser Arg Asp Asn Glu Ile Val Asp Ser Ala Ser
260 265 270

Val Pro Glu Thr Pro Leu Asp Cys Glu Val Ser Leu Trp Ser Ser
275 280 285

Trp Gly Leu Cys Gly Gly His Cys Gly Arg Leu Gly Thr Lys Ser
290 295 300

Arg Thr Arg Tyr Val Arg Val Gln Pro Ala Asn Asn Gly Ser Pro
305 310 315

Cys Pro Glu Leu Glu Glu Ala Glu Cys Val Pro Asp Asn Cys
320 325 330

Val

<210> 237

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 237

cagcactgcc agggaaagag gg 22

<210> 238

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 238

caggactcgac tacgtccg 18

<210> 239

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 239

cagcccctttc tcctcctttc tccc 24

<210> 240

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 240

gcagttatca gggacgcact cagcc 25

<210> 241

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 241

ccagcgagag gcagatag 18

<210> 242

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 242

cggtcaccgt gtcctgcggg atg 23

<210> 243

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 243

cagccccttc tcctcccttc tcccacgtcc tatctgcctc tc 42

<210> 244

<211> 1894

<212> DNA

<213> Homo sapiens

<400> 244

ggcgccgtcc gtgaggggct ccttgggca gggtagtgtt tggtgtccc 50

tgtcttgctt gatattgaca aactgaagct ttccctgcacc actggactta 100

aggaagagtg tactcgtagg cggacagctt tagtgccgg ccggccgctc 150
tcatcccccg taaggagcag agtccttgt actgaccaag atgagcaaca 200
tctacatcca ggagcctccc acgaatggga aggtttatt gaaaactaca 250
gctggagata ttgacataga gttgtggtcc aaagaagctc ctaaagcttg 300
cagaaatttt atccaacttt gtttggaaagc ttattatgac aataccattt 350
ttcatagagt tgcgttgtt tcatagtcc aaggcggaga tcctactggc 400
acagggagtg gtggagagtc tatctatgga gcgcattca aagatgaatt 450
tcattcacgg ttgcgtttta atcggagagg actgggtgcc atggcaaatg 500
ctggttctca tgataatggc agccagttt tcttcacact gggtcgagca 550
gatgaactta acaataagca taccatctt ggaaaggta cagggatac 600
agtatataac atgttgcgac tgtcagaagt agacattgtat gatgacgaaa 650
gaccacataa tccacacaaa ataaaaagct gtgaggttt gttaatcct 700
tttgcata tcattccaag ggaaattaaa aggctgaaaa aagagaaacc 750
agaggaggaa gtaaagaaat taaaacccaa aggacacaaa aatttttagtt 800
tacttcatt tggagaggaa gctgaggaag aagaggagga agtaaatcga 850
gttagtcaga gcatgaaggg caaaagcaaa agtagtcatg acttgcitaa 900
ggatgatcca catctcagtt ctgttccagt tgtagaaagt gaaaaagggtg 950
atgcaccaga tttagttgat gatggagaag atgaaagtgc agagcatgat 1000
gaatatattg atgggtatga aaagaacctg atgagagaaa gaattgccaa 1050
aaaattaaaa aaggacacaa gtgcgaatgt taaatcagct ggagaaggag 1100
aagtggagaa gaaatcagtc agccgcagtg aagagctcag aaaagaagca 1150
agacaattaa aacgggaact cttgcagca aaacaaaaaaaaa aagtagaaaa 1200
tgcagcaaaa caagcagaaa aaagaagtga agaggaagaa gcccctccag 1250

atggcgtgt tgccgaatac agaagagaaa agcaaaagta tgaagcttg 1300
aggaagcaac agtcaaagaa ggaaacttcc cggaagatc agaccctgc 1350
actgctgaac cagttaaat cttaactcac tcaggcaatt gctgaaacac 1400
ctgaaaatga cattcctgaa acagaagtag aagatgatga aggatggatg 1450
tcacatgtac ttcatgttga ggataaaagc agaaaagtga aagatgcaag 1500
catgcaagac tcagatacat ttgaaatcta tgatcctcg aatccagtga 1550
ataaaagaag gagggaaagaa agcaaaaagc tcatgagaga gaaaaaagaa 1600
agaagataaa atgagaataa tgataaccag aacttgctgg aaatgtgcct 1650
acaatggcct tgtaacagcc attgttccca acagcatcac tttagggtgt 1700
gaaaaagaagt attttgaac ctgtgtctg gtttgaaaa acaattatct 1750
tgtttgcaa attgtgaaat gatgttgc aatgttttg gttactggta 1800
catgtgtttt ttccctagctg acctttata ttgctaaatc tggaaataaaa 1850
taacttcct tccacaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1894

<210> 245
<211> 472
<212> PRT
<213> Homo sapiens

<400> 245
Met Ser Asn Ile Tyr Ile Gln Glu Pro Pro Thr Asn Gly Lys Val
1 5 10 15

Leu Leu Lys Thr Thr Ala Gly Asp Ile Asp Ile Glu Leu Trp Ser
20 25 30

Lys Glu Ala Pro Lys Ala Cys Arg Asn Phe Ile Gln Leu Cys Leu
35 40 45

Glu Ala Tyr Tyr Asp Asn Thr Ile Phe His Arg Val Val Pro Gly
50 55 60

Phe Ile Val Gln Gly Gly Asp Pro Thr Gly Thr Gly Ser Gly Gly

65 70 75

Glu Ser Ile Tyr Gly Ala Pro Phe Lys Asp Glu Phe His Ser Arg
80 85 90

Leu Arg Phe Asn Arg Arg Gly Leu Val Ala Met Ala Asn Ala Gly
95 100 105

Ser His Asp Asn Gly Ser Gln Phe Phe Thr Leu Gly Arg Ala
110 115 120

Asp Glu Leu Asn Asn Lys His Thr Ile Phe Gly Lys Val Thr Gly
125 130 135

Asp Thr Val Tyr Asn Met Leu Arg Leu Ser Glu Val Asp Ile Asp
140 145 150

Asp Asp Glu Arg Pro His Asn Pro His Lys Ile Lys Ser Cys Glu
155 160 165

Val Leu Phe Asn Pro Phe Asp Asp Ile Ile Pro Arg Glu Ile Lys
170 175 180

Arg Leu Lys Lys Glu Lys Pro Glu Glu Val Lys Lys Leu Lys
185 190 195

Pro Lys Gly Thr Lys Asn Phe Ser Leu Leu Ser Phe Gly Glu Glu
200 205 210

Ala Glu Glu Glu Glu Glu Val Asn Arg Val Ser Gln Ser Met
215 220 225

Lys Gly Lys Ser Lys Ser Ser His Asp Leu Leu Lys Asp Asp Pro
230 235 240

His Leu Ser Ser Val Pro Val Val Glu Ser Glu Lys Gly Asp Ala
245 250 255

Pro Asp Leu Val Asp Asp Gly Glu Asp Glu Ser Ala Glu His Asp
260 265 270

Glu Tyr Ile Asp Gly Asp Glu Lys Asn Leu Met Arg Glu Arg Ile
275 280 285

Ala Lys Lys Leu Lys Lys Asp Thr Ser Ala Asn Val Lys Ser Ala

290 295 300

Gly Glu Gly Glu Val Glu Lys Ser Val Ser Arg Ser Glu Glu
305 310 315

Leu Arg Lys Glu Ala Arg Gln Leu Lys Arg Glu Leu Leu Ala Ala
320 325 330

Lys Gln Lys Lys Val Glu Asn Ala Ala Lys Gln Ala Glu Lys Arg
335 340 345

Ser Glu Glu Glu Glu Ala Pro Pro Asp Gly Ala Val Ala Glu Tyr
350 355 360

Arg Arg Glu Lys Gln Lys Tyr Glu Ala Leu Arg Lys Gln Gln Ser
365 370 375

Lys Lys Gly Thr Ser Arg Glu Asp Gln Thr Leu Ala Leu Leu Asn
380 385 390

Gln Phe Lys Ser Lys Leu Thr Gln Ala Ile Ala Glu Thr Pro Glu
395 400 405

Asn Asp Ile Pro Glu Thr Glu Val Glu Asp Asp Glu Gly Trp Met
410 415 420

Ser His Val Leu Gln Phe Glu Asp Lys Ser Arg Lys Val Lys Asp
425 430 435

Ala Ser Met Gln Asp Ser Asp Thr Phe Glu Ile Tyr Asp Pro Arg
440 445 450

Asn Pro Val Asn Lys Arg Arg Glu Glu Ser Lys Lys Leu Met
455 460 465

Arg Glu Lys Lys Glu Arg Arg
470

<210> 246

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 246
tgccggagatc ctactggcac aggg 24

<210> 247
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 247
cgagtttagtc agagcatg 18

<210> 248
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 248
cagatggtgc tggccg 18

<210> 249
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 249
caactggaac aggaactgag atgtggatc 29

<210> 250
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 250

ctggttcagc agtgcaaggg tctg 24

<210> 251

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 251

cctctccgat taaaacgc 18

<210> 252

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 252

gagaggactg gttgccatgg caaatgctgg ttctcatgtat aatgg 45

<210> 253

<211> 2456

<212> DNA

<213> Homo sapiens

<400> 253

cggcgccgtt gggctggaa gtcccgcca ggtccgtgcc gggcgagaga 50

gatgctgccc ggccccctc ggcttgagg cgagagaagt gtcccgacc 100

catttcgcct tgctgacggc gtcgagccct ggccagacat gtccacaggg 150

ttccttcg ggtccggac tctggctcc accaccgtgg ccggccgg 200

gaccagcaca ggccgggttt tctccttcgg aacgggaacg tctagcaacc 250

cttctgtggg gctcaatttt ggaaatcttg gaagtacttc aactccagca 300

actacatctg ctccctcaag tggttttgga accgggtctt ttggatctaa 350

acctggccact ggggttcaactc taggaggaac aaatacaggt gccttgacaca 400

ccaagaggcc tcaagtggc accaaatatg gaaccctgca aggaaaacag 450
atgcatgtgg ggaagacacc catccaagtc tttttaggag tcccctctc 500
cagacccct ctaggtatcc tcaggttgc acctccagaa cccccggagc 550
cctggaaagg aatcagagat gctaccacct acccgctgg atggagtctc 600
gctctgtcgc caggctggag tgcagtggca cgatctcggc tcactgcaac 650
ctccgcctcc cgggttcaag cgagtctcct gcctcagcct ctgagtgtct 700
ggggctacag gtgcctgcag gagtcctggg gccagctggc ctcgatgtac 750
gtcagcacgc gggAACGGTA caagtggctg cgcttcagcgt aggactgtct 800
gtacctgaac gtgtacgcgc cggcgccgc gcccgggat ccccagctgc 850
cagtgatggt ctgggtcccg ggaggcgccct tcacgtggg cgctgcitct 900
tcgtacgagg gctctgactt ggccgccccgc gagaaagtgg tgctgggtt 950
tctgcagcac aggctggca tctcggctt cctgagcacg gacgacagcc 1000
acgcgcgcgg gaactggggg ctgctggacc agatggccgc tctgcgcigg 1050
gtcaggaga acatgcagc ctccggggga gacccaggaa atgtgaccct 1100
gttcggccag tcggcgaaaa ccatgagcat ctcaggactg atgatgtcac 1150
ccctagcctc gggctcttc catcgccca ttcccagag tggcaccgcg 1200
ttattcagac tttcatcac tagtaaccca ctgaaagtgg ccaagaaggt 1250
tgcccacctg gctggatgca accacaacag cacacagatc ctggtaaact 1300
gcctgagggc actatcaggg accaaggta tgctgtgtc caacaagatg 1350
agattcctcc aactgaactt ccagagagac ccggaaagaga ttatctggtc 1400
catgagccct gtggatggatg gtgtggatg cccagatgac cctttgggtc 1450
tcctgaccctt gggaaagggtt tcatctgtgc cctacccctt aggtgtcaac 1500
aacctggaat tcaattggctt cttgccttat aatatcacca aggaggcagg 1550

accactgtg gtggaggagt acctggacaa tgtcaatgag catgactgga 1600
agatgctacg aaaccgtatg atggacatag ttcaagatgc cacttcgtg 1650
tatgccacac tgcagactgc tcactaccac cgagaaaccc caatgatggg 1700
aatctgcctt gctggccacg ctacaacaag gatgaaaagt acctgcagct 1750
ggattttacc acaagagtgg gcatgaagct caaggagaag aagatggctt 1800
tttggatgag tctgtaccag tctcaaagac ctgagaagca gaggcaattc 1850
taagggtggc tatgcagggaa ggagccaaag aggggttgc ccccaccatc 1900
caggccctgg ggagacttagc catggacata cctggggaca agagttctac 1950
ccaccccaagt ttagaactgc aggagctccc tgctgcctcc aggccaaagc 2000
tagagcttt gcctgttg tggacactgc actgcccctt ccagcctgac 2050
atccccatgtat gcccctctac ttcactgttg acatccagtt aggccaggcc 2100
ctgtcaacac cacactgtgc tcagctctcc agcctcagga caacctctt 2150
tttcccttc ttcaaattctt cccacccttc aatgtctcct tgtgactcct 2200
tcttatggga ggtcgaccca gactgccact gcccctgtca ctgcacccag 2250
cttggcattt accatccatc ctgctcaacc ttgttcctgt ctgtcacat 2300
tggcctggag gcctaggca ggttgtgaca tggagcaaac tttggtagt 2350
ttgggatctt ctctcccacc cacacttac tccccaggg ccactccaaa 2400
gtctatacac aggggtggtc tcttcaataa agaagtgtg attagaaaaa 2450
aaaaaa 2456

<210> 254
<211> 545
<212> PRT
<213> Homo sapiens

<400> 254
Met Ser Thr Gly Phe Ser Phe Gly Ser Gly Thr Leu Gly Ser Thr

1 5 10 15
Thr Val Ala Ala Gly Gly Thr Ser Thr Gly Gly Val Phe Ser Phe
20 25 30

Gly Thr Gly Thr Ser Ser Asn Pro Ser Val Gly Leu Asn Phe Gly
35 40 45

Asn Leu Gly Ser Thr Ser Thr Pro Ala Thr Thr Ser Ala Pro Ser
50 55 60

Ser Gly Phe Gly Thr Gly Leu Phe Gly Ser Lys Pro Ala Thr Gly
65 70 75

Phe Thr Leu Gly Gly Thr Asn Thr Gly Ala Leu His Thr Lys Arg
80 85 90

Pro Gln Val Val Thr Lys Tyr Gly Thr Leu Gln Gly Lys Gln Met
95 100 105

His Val Gly Lys Thr Pro Ile Gln Val Phe Leu Gly Val Pro Phe
110 115 120

Ser Arg Pro Pro Leu Gly Ile Leu Arg Phe Ala Pro Pro Glu Pro
125 130 135

Pro Glu Pro Trp Lys Gly Ile Arg Asp Ala Thr Thr Tyr Pro Pro
140 145 150

Gly Trp Ser Leu Ala Leu Ser Pro Gly Trp Ser Ala Val Ala Arg
155 160 165

Ser Arg Leu Thr Ala Thr Ser Ala Ser Arg Val Gln Ala Ser Leu
170 175 180

Leu Pro Gln Pro Leu Ser Val Trp Gly Tyr Arg Cys Leu Gln Glu
185 190 195

Ser Trp Gly Gln Leu Ala Ser Met Tyr Val Ser Thr Arg Glu Arg
200 205 210

Tyr Lys Trp Leu Arg Phe Ser Glu Asp Cys Leu Tyr Leu Asn Val
215 220 225

Tyr Ala Pro Ala Arg Ala Pro Gly Asp Pro Gln Leu Pro Val Met

230 235 240

Val Trp Phe Pro Gly Gly Ala Phe Ile Val Gly Ala Ala Ser Ser
245 250 255

Tyr Glu Gly Ser Asp Leu Ala Ala Arg Glu Lys Val Val Leu Val
260 265 270

Phe Leu Gln His Arg Leu Gly Ile Phe Gly Phe Leu Ser Thr Asp
275 280 285

Asp Ser His Ala Arg Gly Asn Trp Gly Leu Leu Asp Gln Met Ala
290 295 300

Ala Leu Arg Trp Val Gln Glu Asn Ile Ala Ala Phe Gly Gly Asp
305 310 315

Pro Gly Asn Val Thr Leu Phe Gly Gln Ser Ala Gly Ala Met Ser
320 325 330

Ile Ser Gly Leu Met Met Ser Pro Leu Ala Ser Gly Leu Phe His
335 340 345

Arg Ala Ile Ser Gln Ser Gly Thr Ala Leu Phe Arg Leu Phe Ile
350 355 360

Thr Ser Asn Pro Leu Lys Val Ala Lys Lys Val Ala His Leu Ala
365 370 375

Gly Cys Asn His Asn Ser Thr Gln Ile Leu Val Asn Cys Leu Arg
380 385 390

Ala Leu Ser Gly Thr Lys Val Met Arg Val Ser Asn Lys Met Arg
395 400 405

Phe Leu Gln Leu Asn Phe Gln Arg Asp Pro Glu Glu Ile Ile Trp
410 415 420

Ser Met Ser Pro Val Val Asp Gly Val Val Ile Pro Asp Asp Pro
425 430 435

Leu Val Leu Leu Thr Gln Gly Lys Val Ser Ser Val Pro Tyr Leu
440 445 450

Leu Gly Val Asn Asn Leu Glu Phe Asn Trp Leu Leu Pro Tyr Asn

455 460 465

Ile Thr Lys Glu Gln Val Pro Leu Val Val Glu Tyr Leu Asp
470 475 480

Asn Val Asn Glu His Asp Trp Lys Met Leu Arg Asn Arg Met Met
485 490 495

Asp Ile Val Gln Asp Ala Thr Phe Val Tyr Ala Thr Leu Gln Thr
500 505 510

Ala His Tyr His Arg Glu Thr Pro Met Met Gly Ile Cys Pro Ala
515 520 525

Gly His Ala Thr Thr Arg Met Lys Ser Thr Cys Ser Trp Ile Leu
530 535 540

Pro Gln Glu Trp Ala
545

<210> 255

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 255

agggtgcctgc aggagtcctg ggg 23

<210> 256

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 256

ccacacctcagg aagccgaaga tgcc 24

<210> 257

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 257

gaacggtaca agtggctgcg cttcagcgag gactgtctgt acctg 45

<210> 258

<211> 2764

<212> DNA

<213> Homo sapiens

<400> 258

gagaacaggc ctgtctcagg caggccctgc gcctcctatg cggagatgct 50

actgccactg ctgctgtcct cgctgctggg cgggtcccag gctatggatg 100

ggagattctg gatacgagtg caggagtca gtagtgtgcc ggagggctg 150

tgcacatctg tgccctgctc ttctcctac ccccgacaag actggacagg 200

gtctacccca gcttatggct actggttcaa agcagtgact gagacaacca 250

agggtgtcc tgtggccaca aaccaccaga gtgcgagatgtt ggaaatgagc 300

acccggggcc gattccagct cactggggat cccgccaagg ggaactgctc 350

cttggtgatc agagacgcgc agatgcagga tgagtcacag tacttcttc 400

gggtggagag aggaagctat gtgcacatata atttcatgaa cgtatgggtc 450

tttctaaaag taacagtgct cagcttcacg cccagacccc aggaccacaa 500

caccgacctc acctgccatg tggacttctc cagaaagggt gtgagcgcac 550

agaggaccgt ccgactccgt gtggcctatg ccccccagaga ccttgcgtatc 600

agcatttcac gtgacaacac gccagccctg gagccccagc cccaggaaaa 650

tgtccccatac ctggaagccc aaaaaggcca gttcctgcgg ctccctgtg 700

ctgctgacag ccagccccc gccacactga gctgggtcct gcagaacaga 750

gtcctctcct cgtcccatcc ctggggccct agaccctgg ggctggagct 800

gcccggggtg aaggctgggg attcagggcg ctacacctgc cgagcggaga 850
acaggcttgg ctcccagcag cgagccctgg acctctctgt gcagtatcct 900
ccagagaacc tgagagtgtat gtttcccaa gcaaacagga cagtcctgga 950
aacaccttggg aacggcacgt ctctccagt actggagggc caaaggctgt 1000
gcctggtctg tgtcacacac agcagcccc cagccaggct gagctggacc 1050
cagaggggac aggttctgag cccctccag ccctcagacc ccggggctt 1100
ggagctgcct cgggtcaag tggagcacga aggagagttc acctgccacg 1150
ctcggcaccc actgggctcc cagcacgtct ctctcagcct ctccgtgcac 1200
tataagaagg gactcatctc aacggcattc tccaacggag cgtttctggg 1250
aatcggcatc acggctttc tttcctctg cctggccctg atcatcatga 1300
agattctacc gaagagacgg actcagacag aaaccccgag gcccaggttc 1350
tcccgacaca gcacgatcct ggattacatc aatgtggtcc cgacggctgg 1400
ccccctggct cagaagcgga atcagaaaagc cacacaaac agtcctcgga 1450
ccccctctcc accaggtgct ccctcccgag aatcaaagaa gaaccagaaa 1500
aagcagtatc agttgcccag ttcccagaa cccaaatcat ccactcaagc 1550
cccagaatcc caggagagcc aagaggagct ccattatgcc acgctcaact 1600
tcccaggcgt cagacccagg cctgaggccc ggtatgccaa gggcacccag 1650
gcccattatg cagaagtcaa gttccaatga gggtcttta ggcttagga 1700
ctgggacttc ggcttagggag gaaggttagag taagagggtt aagataacag 1750
agtgc当地 ttcctctct ccctctctct ctctctttct ctctctctct 1800
ctctttctct ctcttttaaa aaaacatctg gccaggcac agtggctcac 1850
gcctgtatc ccagcacttt gggaggttga ggtggcaga tcgcctgagg 1900
tcgggagttc gagaccagcc tggccaaactt ggtgaaaccc cgtctctact 1950

aaaaatacaa aaatttagctg ggcatggtgg caggcgccctg taatcctacc 2000
tacttggaa gctgaggcag gagaatcact tgaacctggg agacggaggt 2050
tgcaatgtgagc caagatcaca ccattgcacg ccagcctggg caacaaagcg 2100
agactccatc tcaaaaaaaaaa aatcctccaa atgggttggg tgtctgtat 2150
cccagcactt tgggaggcata aggtgggtgg attgcttgag cccaggagtt 2200
cgagaccagc ctgggcaaca tggtaaacc ccatctctac aaaaataaca 2250
aaacatagct gggcttggtg gtgtgtgcct gtagtcccag ctgtcagaca 2300
tttaaaccag agcaactcca tctgaaatag gagctgaata aatgaggct 2350
gagacctact gggctgcatt ctcagacagt ggaggcattc taagtcacag 2400
gatgagacag gaggtccgta caagatacag gtcataaaga ctttgcttgt 2450
aaaacagatt gcagtaaaga agccaaccaa atcccaccaa aaccaagttg 2500
gccacgagag tgacctctgg tcgtcctcac tgctacactc ctgacagcac 2550
catgacagtt tacaatgcc atggcaacat caggaagtta cccgataatgt 2600
ccccaaaggg ggaggaatga ataatccacc ctttgcgttag caaataagca 2650
agaaataacc ataaaagtgg gcaaccagca gctctaggcg ctgctttgt 2700
ctatggagta gccattttt tttttttttt aaacttgctt 2750
tcaccttaaa aaaa 2764

<210> 259
<211> 544
<212> PRT
<213> Homo sapiens

<400> 259
Met Leu Leu Pro Leu Leu Ser Ser Leu Leu Gly Ser Gln
1 5 10 15

Ala Met Asp Gly Arg Phe Trp Ile Arg Val Gln Glu Ser Val Met
20 25 30

Val Pro Glu Gly Leu Cys Ile Ser Val Pro Cys Ser Phe Ser Tyr
35 40 45

Pro Arg Gln Asp Trp Thr Gly Ser Thr Pro Ala Tyr Gly Tyr Trp
50 55 60

Phe Lys Ala Val Thr Glu Thr Thr Lys Gly Ala Pro Val Ala Thr
65 70 75

Asn His Gln Ser Arg Glu Val Glu Met Ser Thr Arg Gly Arg Phe
80 85 90

Gln Leu Thr Gly Asp Pro Ala Lys Gly Asn Cys Ser Leu Val Ile
95 100 105

Arg Asp Ala Gln Met Gln Asp Glu Ser Gln Tyr Phe Phe Arg Val
110 115 120

Glu Arg Gly Ser Tyr Val Thr Tyr Asn Phe Met Asn Asp Gly Phe
125 130 135

Phe Leu Lys Val Thr Val Leu Ser Phe Thr Pro Arg Pro Gln Asp
140 145 150

His Asn Thr Asp Leu Thr Cys His Val Asp Phe Ser Arg Lys Gly
155 160 165

Val Ser Ala Gln Arg Thr Val Arg Leu Arg Val Ala Tyr Ala Pro
170 175 180

Arg Asp Leu Val Ile Ser Ile Ser Arg Asp Asn Thr Pro Ala Leu
185 190 195

Glu Pro Gln Pro Gln Gly Asn Val Pro Tyr Leu Glu Ala Gln Lys
200 205 210

Gly Gln Phe Leu Arg Leu Leu Cys Ala Ala Asp Ser Gln Pro Pro
215 220 225

Ala Thr Leu Ser Trp Val Leu Gln Asn Arg Val Leu Ser Ser Ser
230 235 240

His Pro Trp Gly Pro Arg Pro Leu Gly Leu Glu Leu Pro Gly Val
245 250 255

Lys Ala Gly Asp Ser Gly Arg Tyr Thr Cys Arg Ala Glu Asn Arg
260 265 270

Leu Gly Ser Gln Gln Arg Ala Leu Asp Leu Ser Val Gln Tyr Pro
275 280 285

Pro Glu Asn Leu Arg Val Met Val Ser Gln Ala Asn Arg Thr Val
290 295 300

Leu Glu Asn Leu Gly Asn Gly Thr Ser Leu Pro Val Leu Glu Gly
305 310 315

Gln Ser Leu Cys Leu Val Cys Val Thr His Ser Ser Pro Pro Ala
320 325 330

Arg Leu Ser Trp Thr Gln Arg Gly Gln Val Leu Ser Pro Ser Gln
335 340 345

Pro Ser Asp Pro Gly Val Leu Glu Leu Pro Arg Val Gln Val Glu
350 355 360

His Glu Gly Glu Phe Thr Cys His Ala Arg His Pro Leu Gly Ser
365 370 375

Gln His Val Ser Leu Ser Leu Ser Val His Tyr Lys Lys Gly Leu
380 385 390

Ile Ser Thr Ala Phe Ser Asn Gly Ala Phe Leu Gly Ile Gly Ile
395 400 405

Thr Ala Leu Leu Phe Leu Cys Leu Ala Leu Ile Ile Met Lys Ile
410 415 420

Leu Pro Lys Arg Arg Thr Gln Thr Glu Thr Pro Arg Pro Arg Phe
425 430 435

Ser Arg His Ser Thr Ile Leu Asp Tyr Ile Asn Val Val Pro Thr
440 445 450

Ala Gly Pro Leu Ala Gln Lys Arg Asn Gln Lys Ala Thr Pro Asn
455 460 465

Ser Pro Arg Thr Pro Pro Pro Pro Gly Ala Pro Ser Pro Glu Ser
470 475 480

Lys Lys Asn Gln Lys Lys Gln Tyr Gln Leu Pro Ser Phe Pro Glu
485 490 495

Pro Lys Ser Ser Thr Gln Ala Pro Glu Ser Gln Glu Ser Gln Glu
500 505 510

Glu Leu His Tyr Ala Thr Leu Asn Phe Pro Gly Val Arg Pro Arg
515 520 525

Pro Glu Ala Arg Met Pro Lys Gly Thr Gln Ala Asp Tyr Ala Glu
530 535 540

Val Lys Phe Gln

<210> 260

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 260

caaaggctgc gcctggctcg tg 22

<210> 261

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 261

ttctggagcc cagagggtgc tgag 24

<210> 262

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 262

ggagctgcc a cccattcaaa tggagcacga aggagagttc acctg 45

<210> 263

<211> 2857

<212> DNA

<213> Homo sapiens

<400> 263

tgaagagtta tagttggat caaaaaggatc aacgcaatga actgttattt 50

actgctgcgt tttatgttgg gaattcctct cctatggcct tgtcttgag 100

caacagaaaa ctctcaaaca aagaaagtca agcagccagt gcgatctcat 150

ttgagagtga agcgtggctg ggtgtggAAC caatTTTtG taccagagGA 200

aatgaatacG actagtcatC acatcgGCCa gctaagatCT gatttagACA 250

atggaaacAA ttcttccAG tacaagCTT tgggagCTGG agctggAAgt 300

actTTTatCA ttGatgaaAG aacaggtGAC atATATGCCA tacAGAAgCT 350

tGatAGAGAG gagCGatCCC tCTACATCTT aAGAGCCAG gtaatAGACA 400

tcgctactgg aaggGctgtg gaacctgagt ctgagttgt catcaaagtT 450

tcggataatCA atGacaatGA accAAAATTC ctGatGAAC ctTatGAGGC 500

cattGtacCA gagatgtCTC cagaAGGAAC attAGTTATC caggGacAG 550

caagtGatGC tgacGatCCC tcaagtGgTA ataAtGCTG tCTCTCTAC 600

agCTTACTTC aaggCCAGCC atATTTTCT GTTGAACCAA caacAGGAGT 650

cataAGAAATA tCTTCTAAAAA tggatAGAGA ACTGCAAGAT gAGTATTGGG 700

taatCATTCA AGCCAAAGGAC ATGATTGGTC AGCCAGGAGC GTTGTCTGG 750

acaacaAGTG tattaattAA actttcAGAT GttAATGACA ATAAGCCTAT 800

atTTAAAGAA AGTTTATAcc GCTTGACTGT CTCTGAATCT GCACCCACTG 850

ggacttctat aggaacaATC ATGGCATATG ATAATGACAT aggAGAGAAT 900

gcagaaaatgg attacagcat tgaagaggat gattcgaaa catttgacat 950
tattactaat catgaaactc aagaaggaat agtttatata aaaaagaaag 1000
tggatttga gcaccagaac cactacggta ttagagcaaa agttaaaaac 1050
catcatgttc ctgagcagct catgaagtac cacactgagg cttccaccac 1100
ttcattaag atccaggtgg aagatgttga tgagccctt ctttcctcc 1150
ttccatatta tgtatttgaag gttttgaag aaaccccaca gggatcattt 1200
gtaggcggtgg tgtctgccac agacccagac aataggaaat ctccatcag 1250
gtattctatt actaggagca aagtgttcaa tatcaatgtat aatggtacaa 1300
tcactacaag taactcactg gatcgtgaaa tcagtgcctg gtacaaccta 1350
agtattacag ccacagaaaa atacaatata gaacagatct ctgcgtccc 1400
actgtatgtg caagttctta acatcaatga tcatgctcct gagttctctc 1450
aatactatga gacttatgtt tgtgaaaatg caggctctgg tcaggttaatt 1500
cagactatca gtgcgttgg tagagatgaa tccatagaag agcaccattt 1550
ttacttaat ctatctgttag aagacactaa caattcaagt ttacaatca 1600
tagataatca agataaacaca gctgtcattt tgactaatag aactggttt 1650
aaccttcaag aagaacctgt ctctcacatc tccatcttaa ttgccgacaa 1700
tggaatcccg tcacttacaa gtacaaacac ccttaccatc catgtctgtg 1750
actgtgggtga cagtgggagc acacagacct gccagttacca ggagcttgc 1800
cttccatgg gattcaagac agaagttatc attgcttattc tcatttgcatt 1850
tatgatcata ttgggttta ttttttgac ttgggttta aaacaacgga 1900
gaaaacagat tctatccct gagaaggtg aagatttcag agagaatata 1950
ttccaatatg atgatgaagg ggggtggagaat gaagatacag aggcctttga 2000
tatagcagag ctgaggagta gtaccataat gcgggaacgc aagactcgga 2050

aaaccacaag cgctgagatc aggaggctat acaggcagtc ttgcaga 2100
ggccccgaca gtgccatatt cagggaaattc attctggaaa agctcgaaga 2150
agctaatact gatccgtgtg cccctcctt tgattccctc cagacacctcg 2200
ctttgaggg aacagggtca ttagctggat ccctgagctc cttagaatca 2250
gcagtctctg atcaggatga aagctatgt taccttaatg agttgggacc 2300
tcgcattaaa agattagcat gcatgttgg ttctgcagtg cagtcaaata 2350
attaggcctt ttaccatca aaattttaa aagtgcataat gtgtattcga 2400
acccaatggt agtctaaag agtttgc cctggctcta tggggggaa 2450
agccctagtc tatggagttt tctgattcc ctggagtaaa tactccatgg 2500
ttatttaag ctacctacat gctgtcattg aacagagatg tggggagaaa 2550
tgtaaacaat cagctcacag gcatcaatac aaccagattt gaagtaaat 2600
aatgttaggaa gatattaaaa gtagatgaga ggacacaaga tgtagtcgat 2650
ccttatgcga ttatattcatt atttacttag gaaagagtaa aaataccaaa 2700
cgagaaaatt taaaggagca aaaattgca agtcaaatacg aaatgtacaa 2750
atcgagataa cattacatt tctatcatat tgacatgaaa attgaaaatg 2800
tatagtcaga gaaatttca tgaattttc catgaagtgat tggccctt 2850
atttaaa 2857

<210> 264
<211> 772
<212> PRT
<213> Homo sapiens

<400> 264
Met Asn Cys Tyr Leu Leu Leu Arg Phe Met Leu Gly Ile Pro Leu
1 5 10 15

Leu Trp Pro Cys Leu Gly Ala Thr Glu Asn Ser Gln Thr Lys Lys
20 25 30

Val Lys Gln Pro Val Arg Ser His Leu Arg Val Lys Arg Gly Trp
35 40 45

Val Trp Asn Gln Phe Phe Val Pro Glu Glu Met Asn Thr Thr Ser
50 55 60

His His Ile Gly Gln Leu Arg Ser Asp Leu Asp Asn Gly Asn Asn
65 70 75

Ser Phe Gln Tyr Lys Leu Leu Gly Ala Gly Ala Gly Ser Thr Phe
80 85 90

Ile Ile Asp Glu Arg Thr Gly Asp Ile Tyr Ala Ile Gln Lys Leu
95 100 105

Asp Arg Glu Glu Arg Ser Leu Tyr Ile Leu Arg Ala Gln Val Ile
110 115 120

Asp Ile Ala Thr Gly Arg Ala Val Glu Pro Glu Ser Glu Phe Val
125 130 135

Ile Lys Val Ser Asp Ile Asn Asp Asn Glu Pro Lys Phe Leu Asp
140 145 150

Glu Pro Tyr Glu Ala Ile Val Pro Glu Met Ser Pro Glu Gly Thr
155 160 165

Leu Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Ser Ser
170 175 180

Gly Asn Asn Ala Arg Leu Leu Tyr Ser Leu Leu Gln Gly Gln Pro
185 190 195

Tyr Phe Ser Val Glu Pro Thr Thr Gly Val Ile Arg Ile Ser Ser
200 205 210

Lys Met Asp Arg Glu Leu Gln Asp Glu Tyr Trp Val Ile Ile Gln
215 220 225

Ala Lys Asp Met Ile Gly Gln Pro Gly Ala Leu Ser Gly Thr Thr
230 235 240

Ser Val Leu Ile Lys Leu Ser Asp Val Asn Asp Asn Lys Pro Ile
245 250 255

Phe Lys Glu Ser Leu Tyr Arg Leu Thr Val Ser Glu Ser Ala Pro
260 265 270

Thr Gly Thr Ser Ile Gly Thr Ile Met Ala Tyr Asp Asn Asp Ile
275 280 285

Gly Glu Asn Ala Glu Met Asp Tyr Ser Ile Glu Glu Asp Asp Ser
290 295 300

Gln Thr Phe Asp Ile Ile Thr Asn His Glu Thr Gln Glu Gly Ile
305 310 315

Val Ile Leu Lys Lys Val Asp Phe Glu His Gln Asn His Tyr
320 325 330

Gly Ile Arg Ala Lys Val Lys Asn His His Val Pro Glu Gln Leu
335 340 345

Met Lys Tyr His Thr Glu Ala Ser Thr Thr Phe Ile Lys Ile Gln
350 355 360

Val Glu Asp Val Asp Glu Pro Pro Leu Phe Leu Leu Pro Tyr Tyr
365 370 375

Val Phe Glu Val Phe Glu Glu Thr Pro Gln Gly Ser Phe Val Gly
380 385 390

Val Val Ser Ala Thr Asp Pro Asp Asn Arg Lys Ser Pro Ile Arg
395 400 405

Tyr Ser Ile Thr Arg Ser Lys Val Phe Asn Ile Asn Asp Asn Gly
410 415 420

Thr Ile Thr Thr Ser Asn Ser Leu Asp Arg Glu Ile Ser Ala Trp
425 430 435

Tyr Asn Leu Ser Ile Thr Ala Thr Glu Lys Tyr Asn Ile Glu Gln
440 445 450

Ile Ser Ser Ile Pro Leu Tyr Val Gln Val Leu Asn Ile Asn Asp
455 460 465

His Ala Pro Glu Phe Ser Gln Tyr Tyr Glu Thr Tyr Val Cys Glu
470 475 480

Asn Ala Gly Ser Gly Gln Val Ile Gln Thr Ile Ser Ala Val Asp
485 490 495

Arg Asp Glu Ser Ile Glu Glu His His Phe Tyr Phe Asn Leu Ser
500 505 510

Val Glu Asp Thr Asn Asn Ser Ser Phe Thr Ile Ile Asp Asn Gln
515 520 525

Asp Asn Thr Ala Val Ile Leu Thr Asn Arg Thr Gly Phe Asn Leu
530 535 540

Gln Glu Glu Pro Val Phe Tyr Ile Ser Ile Leu Ile Ala Asp Asn
545 550 555

Gly Ile Pro Ser Leu Thr Ser Thr Asn Thr Leu Thr Ile His Val
560 565 570

Cys Asp Cys Gly Asp Ser Gly Ser Thr Gln Thr Cys Gln Tyr Gln
575 580 585

Glu Leu Val Leu Ser Met Gly Phe Lys Thr Glu Val Ile Ile Ala
590 595 600

Ile Leu Ile Cys Ile Met Ile Ile Phe Gly Phe Ile Phe Leu Thr
605 610 615

Leu Gly Leu Lys Gln Arg Arg Lys Gln Ile Leu Phe Pro Glu Lys
620 625 630

Ser Glu Asp Phe Arg Glu Asn Ile Phe Gln Tyr Asp Asp Glu Gly
635 640 645

Gly Gly Glu Glu Asp Thr Glu Ala Phe Asp Ile Ala Glu Leu Arg
650 655 660

Ser Ser Thr Ile Met Arg Glu Arg Lys Thr Arg Lys Thr Thr Ser
665 670 675

Ala Glu Ile Arg Ser Leu Tyr Arg Gln Ser Leu Gln Val Gly Pro
680 685 690

Asp Ser Ala Ile Phe Arg Lys Phe Ile Leu Glu Lys Leu Glu Glu
695 700 705

Ala Asn Thr Asp Pro Cys Ala Pro Pro Phe Asp Ser Leu Gln Thr
710 715 720

Tyr Ala Phe Glu Gly Thr Gly Ser Leu Ala Gly Ser Leu Ser Ser
725 730 735

Leu Glu Ser Ala Val Ser Asp Gln Asp Glu Ser Tyr Asp Tyr Leu
740 745 750

Asn Glu Leu Gly Pro Arg Phe Lys Arg Leu Ala Cys Met Phe Gly
755 760 765

Ser Ala Val Gln Ser Asn Asn
770

<210> 265

<211> 349

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 24, 60, 141, 226, 228, 249, 252

<223> unknown base

<400> 265

atttcaaggc cagccatatt ttnttgttga accaacaaca ggagtcataa 50

gaatatttttaaaaatggat agagaactgc aagatgagta ttgggttaatc 100

attcaaggcca aggacatgtat tggtcagccca ggagcggtgt ntggaaacaac 150

aagtgtatata attaaactttt cagatgttaa tgacaataag cctatattta 200

aagaaaagttt ataccgccttg actgtntntg aatctgcacc cactgggant 250

tntataggaa caatcatggc atatgataat gacataggag agaatgcaga 300

aatggattac agcattgaag aggatgattc gcaaacattt gacattatt 349

<210> 266

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 266

cttgactgtc tctgaatctg caccc 25

<210> 267

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 267

aagtggtgga agccctccagt gtgg 24

<210> 268

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 268

ccactacggt attagagcaa aagttaaaaa ccatcatggt tcctggagca 50

gc 52

<210> 269

<211> 2747

<212> DNA

<213> Homo sapiens

<400> 269

gcaaccctcag ctcttagtat ccagactcca gcgccgcccc gggcgcgac 50

cccaaccccg acccagagct tctccagcgg cggcgcagcg agcagggctc 100

cccgccctaa cttccctccgc ggggcccagc cacctcggg agtccgggtt 150

gcccacctgc aaactctccg ccttctgcac ctgccacccc tgagccagcg 200

cgggcccccg agcgagtcat gcccaacgcg gggctgcagc tggggctt 250

cattctcgcc tccctggat ggatcggcgc catcgacgc actgcccgc 300
cccagtggag gatttactcc tatgccggcg acaacatcg gaccgcccag 350
gccatgtacg agggcgttg gatgtcctgc gtgtcgcaga gcaccggca 400
gatccagtgc aaagctttg actcccttgtc gaatctgagc agcacatgc 450
aagcaacccg tgccctgatg gtgggtggca tcctcctggg agtgatagca 500
atcttgcgg ccaccgttgg catgaagtgt atgaagtgc tggaagacga 550
tgaggtgcag aagatgagga tggctgtcat tgggggtgcg atatttcitc 600
ttgcaggcttgcgttta gttgccacag catggatgg caatagaatc 650
gttcaagaat tctatgaccc tatgacccca gtcaatgcca ggtacgaatt 700
tggcaggct ctcttactg gctgggcgtc tgctctctc tgccctctgg 750
gaggtgccct actttgctgt tccgtcccc gaaaaacaac ctcttaccca 800
acaccaaggc cctatccaaa acctgcacct tccagcggga aagactacgt 850
gtgacacaga ggcaaaagga gaaaatcatg ttgaaacaaa ccgaaaatgg 900
acattgagat actatcatta acattaggac cttagaattt tgggtattgt 950
aatctgaagt atggtattac aaaacaaaca aacaaacaaa aaacccatgt 1000
gttaaaaatac tcagtgctaa acatggctta atcttatttt atcttcitc 1050
ctcaatatac gagggaagat tttccattt gtattactgc ttcccatgta 1100
gtiaatcatac tcaaatgggg gaaggggtgc tcctaaata tatatagata 1150
tgtatatac catgttttc tattaaaaat agacagtaaa atactattct 1200
cattatgttg atactagcat actaaaata tctctaaaat aggtaaatgt 1250
attnaattcc atattgatga agatgtttat tggtatattt tcttttcgt 1300
ccttatatac atatgtaaca gtcaaatac atttactttt cttcattagc 1350
tttgggtgcc ttgccacaa gacctagcct aattnaccaa ggatgaattc 1400

tttcaattct tcatgcgtgc cctttcata tacttatttt atttttacc 1450
ataatcttat agcacttgca tcgttattaa gcccttattt gtttgtgtt 1500
tcattggctc ctatccctg aatctaacac attcatagc ctacattta 1550
gttctaaag ccaagaagaa ttattacaa atcagaacct tggaggcaaa 1600
tcttcgtca tgaccaaagt gataattcc tggacccctt cccacacaat 1650
ccctgtactc tgacccatag cactctgtt tgcttgaaa atattgtcc 1700
aattgagtag ctgcgtgctt ttccccagg tggtaaca caactttatt 1750
gattgaattt ttaagctact tattcatagt ttatatccc cctaaactac 1800
cttttggc cccattccctt aattgtattt gttcccaag tgtaatttac 1850
atgcgtttta tatccctta ataagggtgtg gtctgttgtt ctgaacaaag 1900
tgcttagactt tctggagtga taatctggtg acaaataatcc tctctgtac 1950
tgtaagcaag tcacttaatc ttctacccctt tttttctat ctgccaaatt 2000
gagataatga tacttaacca gttttagagag gtagtgtgaa tattaaattag 2050
tttatattac tcttattctt tgaacatgaa ctatgcctat gtatgtctt 2100
tatttgctca gctggctgag acactgaaga agtcactgaa caaaacctac 2150
acacgtacct tcatgtgatt cactgccttc ctctctctac cagtttattt 2200
ccactgaaca aaacctacac acatacccttc atgtggtca gtgccttcct 2250
ctctctacca gtctatttcc actgaacaaa acctacgcac atacccat 2300
gtggctcagt gccttcctctt ctctaccagg ctatccat tcttcagct 2350
gtgtctgaca tgtttgctt ctgttccattt ttaacaactg ctcttacttt 2400
tccagtctgtt acagaatgctt atttcacttg agcaagatga tgtaatggaa 2450
agggtgttgg cactgggttc tggagacccctg gatttgagtc ttgggtctat 2500
caatcaccgt ctgtgttga gcaaggcattt ggctgtgtt aagcttattt 2550

cttcatctgt aagcggtgg tttgtaattcc tgatcttccc acctcacagt 2600

gatgttgtgg ggatccagtg agatagaata catgtaaagt gttttgtta 2650

atttaaaaag tgctatacta agggaaagaa ttgaggaaatt aactgcatac 2700

gttttgtgt tgctttcaa atgttgaaa ataaaaaaaaa tgttaag 2747

<210> 270

<211> 211

<212> PRT

<213> Homo sapiens

<400> 270

Met Ala Asn Ala Gly Leu Gln Leu Leu Gly Phe Ile Leu Ala Phe

1 5 10 15

Leu Gly Trp Ile Gly Ala Ile Val Ser Thr Ala Leu Pro Gln Trp

20 25 30

Arg Ile Tyr Ser Tyr Ala Gly Asp Asn Ile Val Thr Ala Gln Ala

35 40 45

Met Tyr Glu Gly Leu Trp Met Ser Cys Val Ser Gln Ser Thr Gly

50 55 60

Gln Ile Gln Cys Lys Val Phe Asp Ser Leu Leu Asn Leu Ser Ser

65 70 75

Thr Leu Gln Ala Thr Arg Ala Leu Met Val Val Gly Ile Leu Leu

80 85 90

Gly Val Ile Ala Ile Phe Val Ala Thr Val Gly Met Lys Cys Met

95 100 105

Lys Cys Leu Glu Asp Asp Glu Val Gln Lys Met Arg Met Ala Val

110 115 120

Ile Gly Gly Ala Ile Phe Leu Leu Ala Gly Leu Ala Ile Leu Val

125 130 135

Ala Thr Ala Trp Tyr Gly Asn Arg Ile Val Gln Glu Phe Tyr Asp

140 145 150

Pro Met Thr Pro Val Asn Ala Arg Tyr Glu Phe Gly Gln Ala Leu

155

160

165

Phe Thr Gly Trp Ala Ala Ala Ser Leu Cys Leu Leu Gly Gly Ala
170 175 180

Leu Leu Cys Cys Ser Cys Pro Arg Lys Thr Thr Ser Tyr Pro Thr
185 190 195

Pro Arg Pro Tyr Pro Lys Pro Ala Pro Ser Ser Gly Lys Asp Tyr
200 205 210

Val

<210> 271

<211> 564

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 21, 69, 163, 434, 436, 444

<223> unknown base

<400> 271

ttctggccaa acccggggct ncagctgttg ggcttcatct cgccttcgt 50

ggatggatcg ggcgcattt cacactgccc ttccccatgt gaggattta 100

ctccctatgc tggcgacaac atcgtgaccg cccagccat gtacgagggg 150

ctgtggatgt ccngcgtgtc gcagagcacc gggcagatcc agtgcaaagt 200

ctttgcattcc ttgctgaatc tgagcagcac attgcaagca acccgtgcct 250

tgtatgggt tggcatcctc ctgggagatgt tagcaatctt tgtggccacc 300

gttggcatga agtgttatgtaa gtgcattggaa gacgatgagg tgcagaagat 350

gaggatggct gtcattgggg gcgcgatatt tcgttcgtca ggtctggct 400

tttagttgc cacagcatgg tatggcaata gaancnttca acanttctat 450

gaccctatga cccccagtcaa tgccaggatgtc gaatttggtc aggctcttt 500

cactggctgg gctgctgctt ctctctgcct tctgggaggt gccctacttt 550

gctgttcctg tccc 564

<210> 272

<211> 498

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 30, 49, 102, 141, 147, 171, 324-325, 339-341

<223> unknown base

<400> 272

acccttgacc caacgcggcc ccccgaccgn ttcatggcca aacgcgggnc 50

tccagctgtt gggcttcatt ctccccttcc tggatggac cgccgccat 100

cntcagcact gccctgcccc agtggaggat ttactcttat nccggcnaca 150

acatcgtagc cggccaggcc ntgtacgagg ggctgtggat gtccctgcgtg 200

tcgcagagca ccgggcagat ccagtgcaaa gtcttgact cccttgctga 250

atctgagcag cacattgcaa gcaacccgtg ccttgatggt ggttggcatc 300

ctcctgggag tgatagcaat cttnntggcc accgttgtnn ntgaagtgtta 350

tgaagtgcctt ggaagacgat gaggtgcaga agatgaggat ggctgtcatt 400

gggggcgcga tatttcttct tgcaaggctg gctatttttag ttgccacagc 450

atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccga 498

<210> 273

<211> 552

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 25, 57, 67, 94-95, 116, 152, 165, 212, 233, 392-394

<223> unknown base

<400> 273

ggcccgacc attatccaac cgggntcaact gttggctcat ctccctcctg 50
gatgaancgc gccatcnica gactccctgc cccatggaga tttnnncstat 100
gctggcgaca acatcntgac ccccagccat gtacgagggg ctttgaacgt 150
cngcgtgtcg cagancacccg ggcagatcca gtgcaaagtc tttgactcct 200
tgctgaatct gngcagcaca ttgcagcaac ccntgcccctg atgggggtt 250
gcatcctcct gggagtgata gcaatcttg tggccaccgt tggcatgaag 300
tgtatgaagt gcttggaaaga cgatgagggtg cagaagatga ggatggctgt 350
cattgggggc gcgatatttc ttctgcagg tctggctatt tnnngttgcc 400
acagcatggt atggcaatag aatcgtaaa gaattctatg accctatgac 450
cccagtcaat gccaggtacg aatttggtca ggctctcttc actggctggg 500
ctgctgcttc tctctgcctt ctgggagggtg ccctacttgc ctgttcctgc 550
ga 552

<210> 274

<211> 526

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 25, 50, 60, 123, 127, 370, 395, 397-398, 402-403, 405-407

<223> unknown base

<400> 274

attctccccct cctggatgga tcgcnccacc gtcacattgc ctccccccan 50

tggaggattn actcctatgc tggcgacaac atcgatgaccc cccaggccat 100

ttaccgaggg gctttggatg tcntgcntgt cgcaagcac cgggcagatc 150

ccagtgcataa gtccttgact ccttgctgaa tctgagcagc acatgcaag 200

caacccgtgc cttgatgggg ttggcatcct cctggaggtg atagcaacct 250

tttgtggccac cgttggcatg aagtgtatga agtgcttgg aagacgatgag 300

gtgccagaag atgaggatgg ctgtcattgg gggcgcgata tttcttgg 350

caggtctggc tattttagtn gccacagcat ggtatggcaa tagantnntt 400

cnnngnnntct atgaccctat gaccccagtc aatgccaggt acgaatttgg 450

tcaggctctc ttcaactggct gggctgctgc ttctctctgc cttctgggag 500

gtgccctact ttgctgttcc tgtccc 526

<210> 275

<211> 398

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 22, 61, 91, 144, 238-239, 262, 265-266, 271, 274

<223> unknown base

<400> 275

agagcacccgg cagatccca gtncaaagtct ttgacccttg ctgaatctga 50

gcagcacatt ncaagcaacc cttgccttg aagggtggttt ncatcccccc 100

tgggagtgaa tagcaatctt tgtggccacc gtggcatga agtntatgaa 150

gtgcttggaa gacgatgagg tgcagaagat gaggatggct gtcattgggg 200

gcgcgatatt tcttcttgca ggtctggcta ttttagtnnc cacagcatgg 250

tatggcaata gnatnnttcg nggnntctat gaccctatga ccccaagtcaa 300

tgccaggtac gaatttggtc aggctcttt cactggctgg gctgctgctt 350

ctctctgcct tctgggaggt gccctacttt gctgttcctg tcccccga 398

<210> 276

<211> 495

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 39, 58, 130, 234, 314, 364, 427, 450, 461, 476

<223> unknown base

<400> 276

agcaatgccccc tgcccccagt ggaggattaa ttcctatgnt ggggacaaca 50

ttgtgacngc ccaggccatg tacgggggc tgtggatgtc ctgcgtgtcg 100

cagagcacccg ggcagatcca gtgcaaagtn ttgactcct tgcgtgaattt 150

gaggcagcaca ttgcaagcaa cccgtgcctt gatggtggtt ggcatcttcc 200

tgggagtgtat agcaatcttt gtggccaccg tggnaatgaa gtgtatgaag 250

tgcttggaaag acgatgaggt gcagaagatg aggatggctg tcattggggg 300

cgcgatattt ctnttgcag gtctggctat tttagttgcc acagcatggt 350

atggcaatag aatngttcaa gaattttatg accctatgac cccagtcaat 400

gccaggtacg aatttggtca ggcttnttc actggctggg ctgctgctn 450

tttcgcctt ntgggagggtg ccctanttg ctgttcctgc gaacc 495

<210> 277

<211> 200

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 34, 87, 138, 147, 163, 165-166, 172

<223> unknown base

<400> 277

tcataggggg gcgcgatatt ttcttgcg ggtntggta tttagttgc 50

cacagcatgg tatggcaata gaatcgtaa agaattntat gaccctatga 100

ccccagtcaa tgccaggtaa gaatttggtc aggctcttt cactggntgg 150

gctgctgcctt ctntnngcct tntgggagggt ggcctacttt gctgttcctg 200

<210> 278

<211> 542
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 26, 43, 55, 77, 198, 361-362, 391-392, 396
<223> unknown base

<400> 278
ttcctggat ggatccgcc ccatcntac atgccctgcc ccntggagat 50
ttacncctat gctggcgaac aacatntga ccgcccaggc catgtacgag 100
gggctgtgga atgtcctgcg tgtcccagag caccggcag atccagtgc 150
aagtcttga ctcccttgctg aatctgagca gcacattgca agcaaccntg 200
cctttagatggt ggttggcatc ctccctggag ttagatgcaat ctttgtggcc 250
accgttggca taaaatgtta taaatgttgc ttggacatc gaggtgcaga 300
agatgaggat ggctgtcatt gggggcgca tatttttc tgcaggctg 350
gctatttttag nngccacagc atggatggc aatcagaccc nntcanaaac 400
tctatgaccc tatgacccca gtcaatgcc aatcagaccc gaggtgc 450
ctcttcactg gctggctgc tgcttcctc tgccctctgg gaggtgc 500
actttgctgt tcctgtcccc gaaaaacaac ctcttaccca cg 542

<210> 279
<211> 548
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 90, 115, 147, 228, 387
<223> unknown base

<400> 279
cggggctgca gctgtgggc ttcatctgc ttccctggat ggaatcggcg 50

ccatgtcag cactgccctg cccatggag gatttactcn tatgctggcg 100
acaacatcg gaccnccag gccatgtacg aggggctgtg gatgtcncgc 150
tgtcgagag caccggcag atccagtgc aagtcttga ctcccttgctg 200
aatctgagca gcacattgc aagcaaccntg ctttgatggt ggttggcatc 250
ctccctggag tgatagcaat ctttgtggcc accgttggca tgaagtgtat 300
gaagtgcctg gaagacgatg aggtgcagaa gatgaggatg gctgtcattg 350
ggggcgcgat atttcttc ttgcaggtctgg ctattnntag ttgccacagc 400
atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccccaag 450
tcaatgccag gtacgaattt ggtcaggctc tcttcactgg ctgggctgct 500
gcttctctct gccttctggg aggtgcccta ctttgctgtt cctgcgaa 548

<210> 280

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 280

cgagcgagtc atggccaaacg c 21

<210> 281

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 281

gtgtcacacg tagtcttcc cgctgg 26

<210> 282

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 282

ctcgagctgt tgggcttcat tctgccttc ctggatgga tcg 43

<210> 283

<211> 2285

<212> DNA

<213> Homo sapiens

<400> 283

gcgtgccgtc agctgccgg gcaccgcggc ctcgcctcg ccctccgccc 50

ctgcgcctgc accgcgtaga ccgacccccc cctccagcgc gcccacccgg 100

tagaggaccc ccgcccgtgc cccgaccggc cccgccttt ttgtaaaact 150

taaaggcgggc gcagcattaa cgcttcccgc cccggtgacc ttcagggtt 200

ctccccgcca aagggtgtcc gccgctaagg aacatggcga aggtggagca 250

ggtcctgagc ctcgagccgc agcacgagct caaatccga ggtccctca 300

ccgatgttgtt caccaccaac ctaaagcttg gcaacccgac agaccgaaat 350

gtgtgtttta aggtgaagac tacagcacca cgttagtact gtgtgaggcc 400

caacagcggaa atcatcgatg caggggcctc aattaatgtt tctgtatgt 450

tacagccttt cgattatgtt cccaatgaga aaagtaaaca caagtttatg 500

gttcagtcta tgtttgctcc aactgacact tcagatatgg aagcagtatg 550

gaaggaggca aaaccggaag accttatgga ttcaaaaactt agatgtgtt 600

ttgaattgcc agcagagaat gataaaccac atgatgtaga aataaataaa 650

attatatcca caactgcacaa aagacagaaa acaccaatag tgtctaagtc 700

tctgagttct tctttggatg acaccgaagt taagaagggtt atggaagaat 750

gtaagaggct gcaagggtgaa gttcagaggc tacgggagga gaacaaggcag 800

ttcaaggaag aagatggact gcggatgagg aagacagtgc agagcaacag 850
ccccattca gcattagccc caactggaa ggaagaaggc cttagcaccc 900
ggctcttggc tctggtggtt ttgttctta tcgttgtgt aattattggg 950
aagattgcct ttagaggtt gcatgcacag gatggtaat tggattggg 1000
gatccaccat atcatggat ttaaatttat cataaccatg tgtaaaaaga 1050
aattaatgtt tgatgacatc tcacaggct tgccttaaa ttacccctcc 1100
ctgcacacac atacacagat acacacacac aaataataatg taacgatctt 1150
ttagaaagt aaaaatgtat agtaactgtat tgagggggaa aaagaatgtat 1200
ctttattaat gacaaggaa accatgagta atgccacaat ggcataattgt 1250
aaatgtcatt ttaaacattt gtggccctt gtacatgatg ctggattacc 1300
tctcttaaaa tgacaccctt cctcgccctgt tggctggc ccttggggag 1350
ctggagccca gcatgctggg gagtcggc agctccacac agtagcccc 1400
acgtggccca ctccggccc aggctgttt ccgtgtctt agttctgtcc 1450
aagccatcag ctcctggaa ctgtgaaca gagtcagaag cccaaaggaa 1500
ttgcactgtg gcagcatcag acgtactcgt cataagttag aggcgtgtgt 1550
tgactgattt acccagcgct ttggaaataa atggcagtgc ttttttact 1600
taaaggacc aagctaaatt tgtattgggtt catgttagtga agtcaaactg 1650
ttattcagag atgttaatg catatttaac ttatttaatg tatttcatct 1700
catgtttct tattgtcaca agagtacagt taatgctcg tgctgtcaa 1750
ctctgtggg tgaactggta ttgctgctgg agggctgtgg gctcctctgt 1800
ctctggagag tctggcatg tggaggtggg gtttattggg atgctggaga 1850
agagctgcca ggaagtgttt ttctgggtc agtaaataac aactgtcata 1900
gggagggaaa ttctcagtag tgacagtcaa ctctaggtta ctttttaa 1950

tgaagagtag tcagtcttct agattgttct tataccacct ctcaaccatt 2000
actcacactt ccagcgcccc ggtccaagtc tgaggctgac ctccccttgg 2050
ggacctagcc tggagtcagg acaaatggat cgggctgcag agggttagaa 2100
gcgagggcac cagcagttgt gggtggggag caagggaga gagaactct 2150
tcagcgaatc cttctagtac tagttgagag tttgactgtg aattaattt 2200
atgccataaa agaccaaccc agttctgtt gactatgtg catcttgaaa 2250
agaaaaaattta taataaagcc ccaaaattaa gaaaa 2285

<210> 284

<211> 243

<212> PRT

<213> Homo sapiens

<400> 284

Met Ala Lys Val Glu Gln Val Leu Ser Leu Glu Pro Gln His Glu

1 5 10 15

Leu Lys Phe Arg Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu

20 25 30

Lys Leu Gly Asn Pro Thr Asp Arg Asn Val Cys Phe Lys Val Lys

35 40 45

Thr Thr Ala Pro Arg Arg Tyr Cys Val Arg Pro Asn Ser Gly Ile

50 55 60

Ile Asp Ala Gly Ala Ser Ile Asn Val Ser Val Met Leu Gln Pro

65 70 75

Phe Asp Tyr Asp Pro Asn Glu Lys Ser Lys His Lys Phe Met Val

80 85 90

Gln Ser Met Phe Ala Pro Thr Asp Thr Ser Asp Met Glu Ala Val

95 100 105

Trp Lys Glu Ala Lys Pro Glu Asp Leu Met Asp Ser Lys Leu Arg

110 115 120

Cys Val Phe Glu Leu Pro Ala Glu Asn Asp Lys Pro His Asp Val

125 130 135

Glu Ile Asn Lys Ile Ile Ser Thr Thr Ala Ser Lys Thr Glu Thr
140 145 150

Pro Ile Val Ser Lys Ser Leu Ser Ser Leu Asp Asp Thr Glu
155 160 165

Val Lys Lys Val Met Glu Glu Cys Lys Arg Leu Gln Gly Glu Val
170 175 180

Gln Arg Leu Arg Glu Glu Asn Lys Gln Phe Lys Glu Glu Asp Gly
185 190 195

Leu Arg Met Arg Lys Thr Val Gln Ser Asn Ser Pro Ile Ser Ala
200 205 210

Leu Ala Pro Thr Gly Lys Glu Glu Gly Leu Ser Thr Arg Leu Leu
215 220 225

Ala Leu Val Val Leu Phe Phe Ile Val Gly Val Ile Ile Gly Lys
230 235 240

Ile Ala Leu

<210> 285

<211> 418

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 40, 53, 68, 119, 134, 177-178, 255

<223> unknown base

<400> 285

gtcagtcttc tagattgtcc ttatcccacc ttcaaccan tactcacatt 50

tcnagcgccc aggtccangt ctgagcctga cttcccccttg gggaccttagc 100

ctggagtcag gacaatggnt cgggctgcag aggnntagaa gcgagggcac 150

cagcagttt ggggtggggag caagggnnga gagaaactct tcagcgaatc 200

cttctagtagc tagttgagag tttgactgtg aattaattt atgccataaa 250

agacnaaccc agttctgtt gactatgtag catcttgaaa agaaaaattta 300

taataaagcc ccaaaattaa gaattctttt gtcatttgt cacattgct 350

ctatgggggg aattattattt ttatcatttt tattattttgc ccattggaag 400

gttaacttta aaatgagc 418

<210> 286

<211> 543

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 73, 97

<223> unknown base

<400> 286

tattgtaaag gccatttaa accattggta ggcctggta catgatgctg 50

gattacctcc ttaaatgaca ccnttcctcg cctgttggtg ctggccnttg 100

gggagctgga gccccagcat gctggggagt gcggtcagct ccacacagta 150

gtccccacgt ggcccactcc cggcccaggc tgcttccgt gtcttcagtt 200

ctgtccaagc catcagctcc ttgggactga tgaacagagt cagaagccca 250

aaggaattgc cactgtggca gcatcagacg tactcgtcat aagtgagagg 300

cgtgttgtga ctgattgacc cagcgcittg gaaataatg gcagtgcitt 350

gttcacttaa agggaccaag ctaaattgtt ttgggtcatg tagtgaagtc 400

aaactgttat tcagagatgt ttaatgcata tttaacttat ttaatgtatt 450

tcatctcatg tttcttatt gtcacaagag tacagttat gctgcgtct 500

gctgaactct gttgggtgaa ctggattgc tgctggaggg ctg 543

<210> 287

<211> 270

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 38, 64, 72, 164, 198, 200, 220, 222, 229, 242

<223> unknown base

<400> 287

ccctgggtt tttttttt aattcggtgg tgtaattttt ggaaagattt 50

ctttagagg tagnatgcac cnggctggta aattggattt gtggatccac 100

catatccatg ggatttaat ttatcataac catgtgtaaa aagaattaa 150

tgtatgatga catntcacag gtattgcctt taaattaccc atccctgnan 200

acacatacac agatacacan anacaaatnt aatgtaacga tnttttagaa 250

agttaaaaat gtatagtaac 270

<210> 288

<211> 428

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 35, 116, 129, 197, 278, 294, 297, 349, 351

<223> unknown base

<400> 288

ggggcccat tccggccca ggctgccttc cggtttcag ttctgtccaa 50

gccatcagct ctttggact gatgaacaga gtcagaagcc caaaggaatt 100

gcactgtggc agcatnagac gtacttgtta taagttagag gcgtgttgt 150

actgattgac ccagcgctt ggaaataaat ggcagtgcctt tgttcantta 200

aagggaccaa gctaaatttg tattggttca tgttagtgaag tcaaactgtt 250

attcagagat gtttaatgca tatttaantt atttaatgtt tttnatntca 300

tgtttctta ttgtcacaag agtacagtta atgctgcgtg ctgctgaant 350

ntgttgggtg aactggtatt gctgctggag ggctgtggc tcctctgtct 400

ttggagagtc tggcatgtg gaggtggg 428

<210> 289

<211> 320

<212> DNA

<213> Homo sapiens

<400> 289

tgcttcgt gtctcagt ctgtccaagc catcagctcc ttggacttg 50

atgaacagag tcagaagccc aaaggaattt cactgtggca gcatcagacg 100

tactcgcat aagttagagg cgtgttgta ctgattgacc cagcgcttg 150

gaaataaatg gcagtgcgtt gttcacttaa agggaccaag ctaaatttg 200

attggttcat gtatgttgtt caaactgtta ttcatgtat ttatgtat 250

atttaaactta ttatgttat ttcatctcat gtttcttat tgtcacaaga 300

gtacagttaa tgctgcgtgc 320

<210> 290

<211> 609

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 57, 60, 186, 235, 244, 304, 339, 355, 359, 361, 387, 432, 441,
447, 481, 513, 532, 584, 598

<223> unknown base

<400> 290

aaacctttaa aagttgagg gaaaagaatg atcctttatt aatgacaagg 50

gaaaccntgn gtaatgccac aatggcatat tgtaatgtc atttaaaca 100

ttggtaggcc ttggtagatg atgctggatt acctctctta aatgacacc 150

cttcctcgcc tgggtgtct ggccctggg gagctngagc ccagcatgct 200

ggggagtgcg gtctgcgtcca cacagtagtc cccangtggc ccantccgg 250

cccaggctgc ttccgtgtc ttcagttctg tccaagccat cagctcctg 300
ggantgatga acagagttag aagccaaag gaattgcant gtggcagcat 350
cagangtnt ngtcataagt gagagggcgtg tggtgantga ttgacccagc 400
gctttggaaa taaatggcag tgctttgtc anttaaaggg nccaagncaa 450
atttgtattt gttcatgttag tgaagtcaaa ntgttattca gagatgtta 500
atgcataattt aanttattta atgtatttca tntcatgttt tcatttgc 550
acaagggtac agttaatgct gcgtgctgct gaantctgtt gggtaantg 600
gtattgctg 609

<210> 291
<211> 493
<212> DNA
<213> Homo sapiens

<400> 291
ggcccttggg gagctggagc ccagcatgct gggagtgcg gtcagctcca 50
cacagtagtc cccacgtggc ccactccgg cccaggctgc ttccgtgtc 100
ttcagttctg tccaagccat cagtccttg ggactgatga acagagttag 150
aagccaaag gaattgcact gtggcagcat cagacgtact cgtcataagt 200
gagaggcgtg tgitgactga ttgacccagc gctttggaaa taaatggcag 250
tgctttgttc acttaaagg accaagctaa atttgtattt gttcatgttag 300
tgaagtcaaa ctgttattca gagatgtta atgcataattt aacttattta 350
atgtatttca tctcatgttt tcatttgc 400
gcgtgctgct gaactctgtt gggtaactg gtattgctgc tggagggctg 450
tgggctcctc tgtctctgga gagtctggc atgtggaggt ggg 493

<210> 292
<211> 27
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 292

gcaccaccgt aggtacitgt gtgaggc 27

<210> 293

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 293

aaccaccaga gccaaagagcc ggg 23

<210> 294

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 294

cagcgaaatc atcgatgcag gggcctcaat taatgtatct gtgatgttac 50

<210> 295

<211> 2530

<212> DNA

<213> Homo sapiens

<400> 295

gcgagctccg ggtgctgtgg cccggccctg gcggggcggc ctccggctca 50

ggctggctga gaggctccca gctgcagcgt ccccgccccgc ctctcgaaa 100

gctctgatct cagctgacag tgccctcgaa gaccaaacaa gcctggcagg 150

gtctcacttt gttggcccagg ctggagttca gtgccatgtatcatgtttac 200

tgcagcccttg acctcctggg ttcaagcgat cctgctgagt agctggact 250

acaggacaaa attagaagat caaaatggaa aatatgctgc tttgggttcat 300
attttcacc cctgggtgga ccctcattga tggatctgaa atggaatggg 350
attttatgtg gcacttgaga aaggtacccc ggattgtcag tgaaaggact 400
ttccatctca ccagccccgc atttgggca gatgctaaga tggatggtaaa 450
tacagtgtgt ggcacatcgaa gccagaaaaga actcccaact cccagccctt 500
ctgaatttggaa ggattatctt tcctatgaga ctgtcttgc gaatggcacc 550
cgaaccttaa ccagggtgaa agttcaagat ttgggtcttg agccgactca 600
aaatatcacc acaaaggggag tatctgttag gagaaagaga caggtgtatg 650
gcacccgacag cagggtcagc atcttggaca aaagggttctt aaccaattc 700
cctttcagca cagctgtgaa gctttccacg ggctgttagtgc gcattctcat 750
ttccccctcag catgttctaa ctgctgccca ctgtgttcat gatggaaagg 800
actatgtcaa agggagtaaa aagctaaggg taggggttgtt gaagatgagg 850
aataaaagtg gaggcaagaa acgtcgaggt tctaagagga gcaggagaga 900
agcttagtggt ggtgaccaaaa gagagggtac cagagagcat ctgcaggaga 950
gagcgaaggg tgggagaaga agaaaaaaat ctggccgggg tcagaggatt 1000
gccgaagggaa ggccttcctt tcagtgacc cgggtcaaga atacccacat 1050
tccgaagggc tgggcacgag gaggcatggg ggacgctacc ttggactatg 1100
actatgtct tctggagctg aagcgtgctc acaaaaagaa atacatggaa 1150
cttggaaatca gcccacgat caagaaaatg cctgggtgaa tgatccactt 1200
ctcaggattt gataacgata gggctgatca gttggctat cggtttgca 1250
gtgtgtccga cgaatccaaat gatctccctt accaatactg cgatgctgag 1300
tcgggctcca ccgggtcggg ggtctatctg cgtctgaaag atccagacaa 1350
aaagaattgg aagcgcacaaa tcattgcggt ctactcaggc caccagtggg 1400

tggatgtcca cggggttcag aaggactaca acgttgctgt tcgcacact 1450
cccctaaaat acgcccagat ttgcctctgg attcacggga acgatgccaa 1500
tttgcttac ggctaacaga gacctgaaac agggcggtgt atcatctaaa 1550
tcacagagaa aaccagctc gcttaccgta gtgagatcac ttcataggtt 1600
atgcctggac ttgaactctg tcaatagcat ttcaacattt ttcaaaatca 1650
ggagattttc gtccatttaa aaaatgtata ggtgcagata ttgaaactag 1700
gtgggcacctt caatgccaag tatatactct tctttacatg gtgatgagtt 1750
tcattttagt aaaaattttg ttgccttc tt aaaaatttgc cacacttaa 1800
accttcaaac aggtattata aataacatgt gactccttaa tggacttatt 1850
ctcagggtcc tactctaaga agaatctaagttt aggtgctgg ttgtgtatta 1900
aatgtgaaat tgcatagata aaggttagatg gtaaagcaat tagtatcaga 1950
atagagacag aaagtacaa cacagtttgc actactctga gatggatcca 2000
ttcagctcat gccctcaatg tttatattgt gttatctgtt gggctggga 2050
catttagttt agtttttttg aagaattaca aatcagaaga aaaagcaagc 2100
attataaaca aaactaataa ctgtttact gcttaagaaataacaatta 2150
caatgtgtat tatttaaaaa tgggagaaat agtttggct atgaaataaa 2200
cctagtttag aaatagggaa gctgagacat tttaagatct caagtttta 2250
tttaactaat actcaaaata tggacttttc atgtatgcat aggaaagaca 2300
cttcacaaat tatgaatgtat catgtgtga aagccacatt atttatgct 2350
atacattcta tgtatgaggt gctacattt taggacaaag aattctgtaa 2400
tcttttcaa gaaagagtct ttttcttc gacaaaatcc agctttgtt 2450
tgaggactat agggtaattt ctctgattttg taatttttaga tatgtccctt 2500
cctaaaaatg aataaaatgtatgaaat 2530

<210> 296

<211> 413

<212> PRT

<213> Homo sapiens

<400> 296

Met Glu Asn Met Leu Leu Trp Leu Ile Phe Phe Thr Pro Gly Trp

1 5 10 15

Thr Leu Ile Asp Gly Ser Glu Met Glu Trp Asp Phe Met Trp His

20 25 30

Leu Arg Lys Val Pro Arg Ile Val Ser Glu Arg Thr Phe His Leu

35 40 45

Thr Ser Pro Ala Phe Glu Ala Asp Ala Lys Met Met Val Asn Thr

50 55 60

Val Cys Gly Ile Glu Cys Gln Lys Glu Leu Pro Thr Pro Ser Leu

65 70 75

Ser Glu Leu Glu Asp Tyr Leu Ser Tyr Glu Thr Val Phe Glu Asn

80 85 90

Gly Thr Arg Thr Leu Thr Arg Val Lys Val Gln Asp Leu Val Leu

95 100 105

Glu Pro Thr Gln Asn Ile Thr Thr Lys Gly Val Ser Val Arg Arg

110 115 120

Lys Arg Gln Val Tyr Gly Thr Asp Ser Arg Phe Ser Ile Leu Asp

125 130 135

Lys Arg Phe Leu Thr Asn Phe Pro Phe Ser Thr Ala Val Lys Leu

140 145 150

Ser Thr Gly Cys Ser Gly Ile Leu Ile Ser Pro Gln His Val Leu

155 160 165

Thr Ala Ala His Cys Val His Asp Gly Lys Asp Tyr Val Lys Gly

170 175 180

Ser Lys Lys Leu Arg Val Gly Leu Leu Lys Met Arg Asn Lys Ser

185 190 195

Gly Gly Lys Lys Arg Arg Gly Ser Lys Arg Ser Arg Arg Glu Ala
200 205 210

Ser Gly Gly Asp Gln Arg Glu Gly Thr Arg Glu His Leu Gln Glu
215 220 225

Arg Ala Lys Gly Gly Arg Arg Arg Lys Lys Ser Gly Arg Gly Gln
230 235 240

Arg Ile Ala Glu Gly Arg Pro Ser Phe Gln Trp Thr Arg Val Lys
245 250 255

Asn Thr His Ile Pro Lys Gly Trp Ala Arg Gly Gly Met Gly Asp
260 265 270

Ala Thr Leu Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Arg Ala
275 280 285

His Lys Lys Lys Tyr Met Glu Leu Gly Ile Ser Pro Thr Ile Lys
290 295 300

Lys Met Pro Gly Gly Met Ile His Phe Ser Gly Phe Asp Asn Asp
305 310 315

Arg Ala Asp Gln Leu Val Tyr Arg Phe Cys Ser Val Ser Asp Glu
320 325 330

Ser Asn Asp Leu Leu Tyr Gln Tyr Cys Asp Ala Glu Ser Gly Ser
335 340 345

Thr Gly Ser Gly Val Tyr Leu Arg Leu Lys Asp Pro Asp Lys Lys
350 355 360

Asn Trp Lys Arg Lys Ile Ile Ala Val Tyr Ser Gly His Gln Trp
365 370 375

Val Asp Val His Gly Val Gln Lys Asp Tyr Asn Val Ala Val Arg
380 385 390

Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Leu Trp Ile His Gly
395 400 405

Asn Asp Ala Asn Cys Ala Tyr Gly
410

<210> 297
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 297
gcatctgcag gagagagcga aggg 24

<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 298
catcggtccc gtgaatccag aggc 24

<210> 299
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 299
gaagggaggc cttccttca gtggaccgg gtcaagaata cccac 45

<210> 300
<211> 1869
<212> DNA
<213> Homo sapiens

<400> 300
aatgtgagag gggctgatgg aagctgatag gcaggactgg agtgttagca 50
ccagtactgg atgtgacagc aggtagagga gcacttagca gcttattcag 100
tgtccgattc tgattccggc aaggatccaa gcatgaaatg ctgccgtcgg 150

gcaactcccg gcacactgct cctttctg gcttccctgc tcctgagttc 200
caggaccgca cgctccgagg aggaccggga cggcctatgg gatgcctggg 250
gcccatggag tgaatgctca cgcacctgct ggggaggggc ctcctactct 300
ctgaggcgct gcctgagcag caagagctgt gaaggaagaa atatccgata 350
cagaacatgc agtaatgtgg actgcccacc agaagcaggt gattccgag 400
ctcagcaatg ctcagctcat aatgatgtca agcaccatgg ccagtttat 450
gaatggcttc ctgtgtctaa tgacctgac aacccatgtt cactcaagtg 500
ccaagccaaa ggaacaaccc tggttgtga actagcacct aaggtcttag 550
atggtacgctg ttgctataca gaatctttgg atatgtcat cagtggttta 600
tgccaaattt tggtctgcga tcaccagctg ggaagcaccg tcaaggaaga 650
taactgtggg gtctgcaacg gagatgggtc cacctgcccgg ctggtccgag 700
ggcagtataa atcccagctc tccgcaacca aatcggatga tactgtggtt 750
gcacttccct atgaaagtag acatattcgc cttgtctaa aaggcctga 800
tcacttataat ctggaaacca aaaccctcca ggggactaaa ggtaaaaaca 850
gtctcagctc cacaggaact ttccttgtgg acaattctag tgtggacttc 900
cagaaatttc cagacaaaga gatactgaga atggctggac cactcacagc 950
agatttcatt gtcaagattc gtaactcggt ctccgctgac agtacagtcc 1000
agttcatctt ctatcaaccc atcatccacc gatggaggga gacggattc 1050
tttccttgct cagcaaccctg tggaggaggt tatcagctga catggctga 1100
gtgctacgat ctgaggagca accgtgtggt tgctgaccaa tactgtcact 1150
attacccaga gaacatcaa cccaaacccca agcttcagga gtgcaacttg 1200
gatccttgtc cagccagtga cggatacaag cagatcatgc cttatgaccc 1250
ctaccatccc ctccctcggt gggaggccac cccatggacc gcgtgctcct 1300

cctcgtgtgg ggggggcatc cagagccggg cagtttcctg tgtggaggag 1350
gacatccagg ggcatgtcac ttcaagtggaa gagtgaaat gcatgtacac 1400
ccctaagatg cccatcgcg c agccctgcaa cattttgac tgccctaaat 1450
ggctggcaca ggagtggctt ccgtgcacag tgacatgtgg ccagggcctc 1500
agataccgtg tggcctctg catcgaccat cgaggaatgc acacaggagg 1550
ctgttagccca aaaacaaagc cccacataaa agaggaatgc atcgtaccca 1600
ctccctgcta taaacccaaa gagaaacttc cagtcgaggc caagtggca 1650
tggtaaac aagctcaaga gctagaagaa ggagctgctg tgtcagagga 1700
gccctcgtaa gttgtaaaag cacagactgt tctatattt 1750
gtttaaagaa agcagtgtct cactggtgt agcttcatg ggttctgaac 1800
taagtgtaat catctcacca aagcttttg gctctcaa at taaagattga 1850
ttagttcaa aaaaaaaaa 1869

<210> 301
<211> 525
<212> PRT
<213> Homo sapiens

<400> 301
Met Glu Cys Cys Arg Arg Ala Thr Pro Gly Thr Leu Leu Leu Phe
1 5 10 15

Leu Ala Phe Leu Leu Ser Ser Arg Thr Ala Arg Ser Glu Glu
20 25 30

Asp Arg Asp Gly Leu Trp Asp Ala Trp Gly Pro Trp Ser Glu Cys
35 40 45

Ser Arg Thr Cys Gly Gly Ala Ser Tyr Ser Leu Arg Arg Cys
50 55 60

Leu Ser Ser Lys Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr
65 70 75

Cys Ser Asn Val Asp Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala
80 85 90

Gln Gln Cys Ser Ala His Asn Asp Val Lys His His Gly Gln Phe
95 100 105

Tyr Glu Trp Leu Pro Val Ser Asn Asp Pro Asp Asn Pro Cys Ser
110 115 120

Leu Lys Cys Gln Ala Lys Gly Thr Thr Leu Val Val Glu Leu Ala
125 130 135

Pro Lys Val Leu Asp Gly Thr Arg Cys Tyr Thr Glu Ser Leu Asp
140 145 150

Met Cys Ile Ser Gly Leu Cys Gln Ile Val Gly Cys Asp His Gln
155 160 165

Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly Val Cys Asn Gly
170 175 180

Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr Lys Ser Gln
185 190 195

Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Leu Pro Tyr
200 205 210

Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His Leu
215 220 225

Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser
230 235 240

Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp
245 250 255

Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro
260 265 270

Leu Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala
275 280 285

Asp Ser Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg
290 295 300

Trp Arg Glu Thr Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly
305 310 315

Gly Tyr Gln Leu Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn
320 325 330

Arg Val Val Ala Asp Gln Tyr Cys His Tyr Tyr Pro Glu Asn Ile
335 340 345

Lys Pro Lys Pro Lys Leu Gln Glu Cys Asn Leu Asp Pro Cys Pro
350 355 360

Ala Ser Asp Gly Tyr Lys Gln Ile Met Pro Tyr Asp Leu Tyr His
365 370 375

Pro Leu Pro Arg Trp Glu Ala Thr Pro Trp Thr Ala Cys Ser Ser
380 385 390

Ser Cys Gly Gly Gly Ile Gln Ser Arg Ala Val Ser Cys Val Glu
395 400 405

Glu Asp Ile Gln Gly His Val Thr Ser Val Glu Glu Trp Lys Cys
410 415 420

Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys Asn Ile Phe
425 430 435

Asp Cys Pro Lys Trp Leu Ala Gln Glu Trp Ser Pro Cys Thr Val
440 445 450

Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile Asp
455 460 465

His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro
470 475 480

His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro
485 490 495

Lys Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln
500 505 510

Ala Gln Glu Leu Glu Glu Gly Ala Ala Val Ser Glu Glu Pro Ser
515 520 525

<210> 302
<211> 1533
<212> DNA
<213> Homo sapiens

<400> 302
cgcacgcgtg ggccggcggct gcggaaactcc cgtggagggg ccgggtgggcc 50
ctcggccctg acagatggca gtggccactg cggcggcagt actggccgct 100
ctgggcgggg cgctgtggct ggcggccgc cggttcgtgg ggcccagggt 150
ccagcggctg cgcagaggcg gggaccccg cctcatgcac ggaaagactg 200
tgctgatcac cggggcgaac agcggcctgg gccgcgccac ggccgcccag 250
ctactgcgcc tgggagcgcg ggtgatcatg ggctgccggg accgcgcgcg 300
cgccgaggag gcggcgggtc agctccgcg cgagctccgc caggccgcgg 350
agtgcggccc agagcctggc gtcagcgggg tggcgagct catagtccgg 400
gagctggacc tcgcctcgct ggcgtcggtg cgccgcgttct gccagggaaat 450
gctccaggaa gagcctaggc tggatgtctt gatcaataac gcagggatct 500
tccagtgcggcc ttacatgaag actgaagatg ggtttgagat gcagttcgga 550
gtgaaccatc tggggcactt tctactcacc aatcttctcc ttggactcct 600
caaaggatcca gctcccagca ggatttgtgt agtttctcc aaactttata 650
aatacggaga catcaattt gatgacttga acagtgaaca aagctataat 700
aaaagctttt gttatagccg gagcaaactg gctaacattc ttttaccag 750
ggaactagcc cgccgccttag aaggcacaaa tgtcaccgtc aatgtgttgc 800
atcctggat tgcacggaca aatctgggaa ggcacataca cattccactg 850
ttggtcaaac cactctcaa ttgggtgtca tggcgtttt tcaaaactcc 900
agttagaaggt gcccagactt ccatttattt ggcctctca cctgaggtag 950
aaggagtgta aggaagatac ttggggatt gtaaagagga agaactgttgc 1000

cccaaagcta tggatgaatc ttttgcaga aaactctggg atatcagtga 1050

agtatgggtt ggcctgctaa aataggaaca aggagtaaaa gagctttta 1100

taaaactgca tatcagttat atctgtgatc aggaatggtg tggattgaga 1150

acttgttact tgaagaaaaa gaattttgat attgaaatag cctgctaaga 1200

ggtacatgtg ggtatggg agttactgaa aaattatgg tggataaga 1250

gaatttcagc aaagatgtt taaatatata tagtaagtat aatgaataat 1300

aagtacaatg aaaaatacaa ttatattgtt aaattataac tggcaagca 1350

tggatgacat attaatatgg tgcagaatta agtgactcaa agtgctatcg 1400

agagggtttt caagtatctt tgagttcat gccaaatgt ttaacttagtt 1450

ttactacaat gttgggttt tgtgtggaaa ttatctgcctt ggtgttgca 1500

cacaagtctt acttggata aatttactgg tac 1533

<210> 303

<211> 336

<212> PRT

<213> Homo sapiens

<400> 303

Met Ala Val Ala Thr Ala Ala Ala Val Leu Ala Ala Leu Gly Gly

1 5 10 15

Ala Leu Trp Leu Ala Ala Arg Arg Phe Val Gly Pro Arg Val Gln

20 25 30

Arg Leu Arg Arg Gly Gly Asp Pro Gly Leu Met His Gly Lys Thr

35 40 45

Val Leu Ile Thr Gly Ala Asn Ser Gly Leu Gly Arg Ala Thr Ala

50 55 60

Ala Glu Leu Leu Arg Leu Gly Ala Arg Val Ile Met Gly Cys Arg

65 70 75

Asp Arg Ala Arg Ala Glu Glu Ala Ala Gly Gln Leu Arg Arg Glu

80 85 90

Leu Arg Gln Ala Ala Glu Cys Gly Pro Glu Pro Gly Val Ser Gly
95 100 105

Val Gly Glu Leu Ile Val Arg Glu Leu Asp Leu Ala Ser Leu Arg
110 115 120

Ser Val Arg Ala Phe Cys Gln Glu Met Leu Gln Glu Glu Pro Arg
125 130 135

Leu Asp Val Leu Ile Asn Asn Ala Gly Ile Phe Gln Cys Pro Tyr
140 145 150

Met Lys Thr Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His
155 160 165

Leu Gly His Phe Leu Leu Thr Asn Leu Leu Gly Leu Leu Lys
170 175 180

Ser Ser Ala Pro Ser Arg Ile Val Val Val Ser Ser Lys Leu Tyr
185 190 195

Lys Tyr Gly Asp Ile Asn Phe Asp Asp Leu Asn Ser Glu Gln Ser
200 205 210

Tyr Asn Lys Ser Phe Cys Tyr Ser Arg Ser Lys Leu Ala Asn Ile
215 220 225

Leu Phe Thr Arg Glu Leu Ala Arg Arg Leu Glu Gly Thr Asn Val
230 235 240

Thr Val Asn Val Leu His Pro Gly Ile Val Arg Thr Asn Leu Gly
245 250 255

Arg His Ile His Ile Pro Leu Leu Val Lys Pro Leu Phe Asn Leu
260 265 270

Val Ser Trp Ala Phe Phe Lys Thr Pro Val Glu Gly Ala Gln Thr
275 280 285

Ser Ile Tyr Leu Ala Ser Ser Pro Glu Val Glu Gly Val Ser Gly
290 295 300

Arg Tyr Phe Gly Asp Cys Lys Glu Glu Glu Leu Leu Pro Lys Ala
305 310 315

Met Asp Glu Ser Val Ala Arg Lys Leu Trp Asp Ile Ser Glu Val
320 325 330

Met Val Gly Leu Leu Lys
335

<210> 304
<211> 521
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 20, 34, 62, 87, 221, 229
<223> unknown base

<400> 304
ggggattgta aagaggaagn actgtgccca aagntatgga tgaatctgtt 50
gcaagaaaat tntgggatat cagtgaagt atggtngcc tgctaaaata 100
ggaacaagga gtaaaagagc ttttataaa actgcatac agttatatct 150
gtgatcagga atggtgtgaa ttgagaactt gttactgaa gaaaaagaat 200
tttgatattt gaatagcctg ntaagaggna catgtggta tttggagtt 250
actgaaaaat ttttttggg ataagagaat ttccagcaaag atgtttaaa 300
tatatatagt aagtataatg aataataagt acaatgaaaa atacaattat 350
attgtaaaat tataactggg caagcatgga tgacatatta atattgtca 400
gaattaaatg actcaaagtg ctatcgagag gttttcaag tatcttgag 450
tttcatggcc aaagtgttaa ctatgtttac tacaatgtt ggtgtttgt 500
tggaaattat ctgcctggct t 521

<210> 305
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 305

ccaggaaatg ctccaggaag agcc 24

<210> 306

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 306

gcccatgaca ccaaattgaa gagtg 26

<210> 307

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 307

aacgcaggga tcttccagtg cccttacatg aagactgaag atggg 45

<210> 308

<211> 1523

<212> DNA

<213> Homo sapiens

<400> 308

gagaggacga gggtccgcgtg cctggagaat cctccgcgtgc cgtcggctcc 50

cggagccca g cccttccta acccaaccca acctagccca gtcccagccg 100

ccagcgccgtg tccctgtcac ggacccca ggttaccatgc atcctggcgt 150

cttccttatcc ttacccgacc tcagatgctc ccttcgtcgtc ctggtaactt 200

gggttttac tcctgtaca actgaaataa caagtctgc tacagagaat 250

atagatgaaa tttaaacaa tgctgatgtt gcttttagtaa attttatgc 300

tgactggtgt cgttcagtc agatgttgca tccaatttt gaggaagctt 350
ccgatgtcat taaggaagaa ttccaaatg aaaatcaagt agtggcc 400
agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 450
caaataccca accctcaaata tggatcgtaa tggatcgatg atgaagagag 500
aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggcaa 550
caaaaaagtgc accccattca agaaattcgg gacttagcag aaatcaccac 600
tcttgcgc agcaaaagaa atatcattgg atattttgag caaaaggact 650
cggaacta tagagttttt gaacgactg cgaatattt gcatgatgac 700
tgtgccttc ttctgcatt tggatgtt tcaaaaccgg aaagatata 750
tggcacaac ataatctaca aaccaccagg gcattctgct ccggatattg 800
tgtactggg agctatgaca aattttgatg tgacttacaa ttggattcaa 850
gataaatgtt ttcctctgt ccgagaaata acattgaaa atggagagga 900
attgacagaa gaaggactgc ctttctcat actcttcac atgaaagaag 950
atacagaaag tttagaaata ttccagaatg aagtagctg gcaattaata 1000
agtaaaaag gtacaataaa cttttacat gccgattgtg acaaatttg 1050
acatccctt ctgcacatac agaaaactcc agcagattgt cctgtatcg 1100
ctattgacag cttaggcat atgtatgtt ttggagactt caaagatgt 1150
ttaattccgt gaaaactcaa gcaattcgta ttgacttac attctggaaa 1200
actgcacaga gaattccatc atggacctga cccaaactgat acagccccag 1250
gagagcaagc ccaagatgtt gcaaggactgc cacctgagag ctccttcag 1300
aaactagcac ccagtgaata tagtatact ctattgaggg atcgagatgt 1350
gctttaaaaa citgaaaaac agtttgcgtt ctttcaaca gcagcatcaa 1400
cctacgtggt gaaaatagta aacctataattt ttcataattc tatgtgtatt 1450

tttattttga ataaacagaa agaaatttaa aaaaaaaaaaaa aaaaaaaaaa 1500

aaaaaaaaaaaa aaaaaaaaaaa aaa 1523

<210> 309

<211> 406

<212> PRT

<213> Homo sapiens

<400> 309

Met His Pro Ala Val Phe Leu Ser Leu Pro Asp Leu Arg Cys Ser

1 5 10 15

Leu Leu Leu Leu Val Thr Trp Val Phe Thr Pro Val Thr Thr Glu

20 25 30

Ile Thr Ser Leu Ala Thr Glu Asn Ile Asp Glu Ile Leu Asn Asn

35 40 45

Ala Asp Val Ala Leu Val Asn Phe Tyr Ala Asp Trp Cys Arg Phe

50 55 60

Ser Gln Met Leu His Pro Ile Phe Glu Ala Ser Asp Val Ile

65 70 75

Lys Glu Glu Phe Pro Asn Glu Asn Gln Val Val Phe Ala Arg Val

80 85 90

Asp Cys Asp Gln His Ser Asp Ile Ala Gln Arg Tyr Arg Ile Ser

95 100 105

Lys Tyr Pro Thr Leu Lys Leu Phe Arg Asn Gly Met Met Met Lys

110 115 120

Arg Glu Tyr Arg Gly Gln Arg Ser Val Lys Ala Leu Ala Asp Tyr

125 130 135

Ile Arg Gln Gln Lys Ser Asp Pro Ile Gln Glu Ile Arg Asp Leu

140 145 150

Ala Glu Ile Thr Thr Leu Asp Arg Ser Lys Arg Asn Ile Ile Gly

155 160 165

Tyr Phe Glu Gln Lys Asp Ser Asp Asn Tyr Arg Val Phe Glu Arg

170 175 180

Val Ala Asn Ile Leu His Asp Asp Cys Ala Phe Leu Ser Ala Phe
185 190 195

Gly Asp Val Ser Lys Pro Glu Arg Tyr Ser Gly Asp Asn Ile Ile
200 205 210

Tyr Lys Pro Pro Gly His Ser Ala Pro Asp Met Val Tyr Leu Gly
215 220 225

Ala Met Thr Asn Phe Asp Val Thr Tyr Asn Trp Ile Gln Asp Lys
230 235 240

Cys Val Pro Leu Val Arg Glu Ile Thr Phe Glu Asn Gly Glu Glu
245 250 255

Leu Thr Glu Glu Gly Leu Pro Phe Leu Ile Leu Phe His Met Lys
260 265 270

Glu Asp Thr Glu Ser Leu Glu Ile Phe Gln Asn Glu Val Ala Arg
275 280 285

Gln Leu Ile Ser Glu Lys Gly Thr Ile Asn Phe Leu His Ala Asp
290 295 300

Cys Asp Lys Phe Arg His Pro Leu Leu His Ile Gln Lys Thr Pro
305 310 315

Ala Asp Cys Pro Val Ile Ala Ile Asp Ser Phe Arg His Met Tyr
320 325 330

Val Phe Gly Asp Phe Lys Asp Val Leu Ile Pro Gly Lys Leu Lys
335 340 345

Gln Phe Val Phe Asp Leu His Ser Gly Lys Leu His Arg Glu Phe
350 355 360

His His Gly Pro Asp Pro Thr Asp Thr Ala Pro Gly Glu Gln Ala
365 370 375

Gln Asp Val Ala Ser Ser Pro Pro Glu Ser Ser Phe Gln Lys Leu
380 385 390

Ala Pro Ser Glu Tyr Arg Tyr Thr Leu Leu Arg Asp Arg Asp Glu
395 400 405

Leu

<210> 310
<211> 182
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 36, 48
<223> unknown base

<400> 310
attaaggaag aatttccaaa tgaaaatcaa gtagtnnnccagatnng 50
ttgtgatcg cactctgaca tagcccagag atacaggata agcaaataacc 100
caaccctcaa attgttcgt aatggatga tcatgaagag agaatacagg 150
ggtcagcgt cagtgaaagc attggcagat ta 182

<210> 311
<211> 598
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 38, 59, 140, 169, 174, 183, 282-283, 294-295, 319, 396
<223> unknown base

<400> 311
agaggcctct ctggaagtttgc tccccgggtgt tcgcccngg agcccccgggtc 50
gagaggacna ggtgccgctg cctggagaat cctccgctgc cgccggctcc 100
cgagcccgccag cccttccta acccaaccca acctagcccn gtcccgcccg 150
ccagcgccctg tccctgtcnc ggancggcagc gtnaccatgc atcctgcccgt 200
cttccttatcc ttacccgacc tcagatgctc ccttctgctc ctggtaactt 250
gggttttac tcctgtaaca actgaaataa cnngtcttga tacnnagaat 300

atagatgaaa tttaaacna tgctgatgtg gccttagtca attttatgc 350
tgactggtgt cgttcagtc agatgtggca tccaatttt gaggangtt 400
ccgatgtcat taaggaagaa ttccaaatg aaaatcaagt agtggcc 450
agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 500
caaataccca accctcaaat tgttcgtaa tggatgatg atgaagagag 550
aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggc 598

<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 312
tgagaggcct ctctggaagt tg 22

<210> 313
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 313
gtcagcgatc agtggaaagc 19

<210> 314
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 314
ccagaatgaa gtagctcggc 20

<210> 315
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 315
ccgactcaaa atgcattgtc 20

<210> 316
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 316
cattggcag gaattgtcc 19

<210> 317
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 317
ggtgctatag gccaagg 18

<210> 318
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 318
ctgtatctc gggctatgtc agag 24

<210> 319

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 319

ctacatataa tggcacatgt cagcc 25

<210> 320

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 320

cgttcccta tccttacccg acctcagatg ctccctctg ctccctg 46

<210> 321

<211> 1333

<212> DNA

<213> Homo sapiens

<400> 321

ccccacgcgt ccgatggcgt tcacgttcgc ggccttctgc tacatgctgg 50

cgctgctgct cactgccgcg ctcatttct tcgcccatttg gcacattata 100

gcatttgatg agctgaagac tgattacaag aatcctatag accagtgtaa 150

taccctgaat ccccttgtac tcccagatgtt ctcatccac gctttcttct 200

gtgtcatgtt tcttttgca gcagagtggc ttacactggg tctcaatatg 250

ccctcttgg catatcatat ttggaggat atgagtagac cagtgtatgag 300

tggcccagga ctctatgacc ctacaaccat catgaatgca gatattctag 350

catattgtca gaaggaagga tggtgcaaat tagctttta tcttcttagca 400

tttttttact acctatatgg catgatctat gttttggta gctcttagaa 450

caacacacag aagaattggc ccagttaagt gcatgcaaaa agccacccaaa 500

tgaagggatt ctatccagca agatcctgtc caagagtagc ctgtggaatc 550

tgcgttta cttaaaaaaa tgactccta tttttaaat gttccacat 600

ttttgcgtgtt gaaaagactg ttatcatatg ttatactcg ataaagattt 650

taaatggtat tacgtataaa ttaatataaa atgattacctt ctgggttga 700

cagggttcaa cttgcacttc ttaaggaaca gccataatcc tctgaatgtat 750

gcattaatta ctgactgtcc tagtacattt gaagctttt tttataggaa 800

ctttagggc tcatttttgtt ttcattgaaa cagttatctaa ttataaatta 850

gctgttagata tcaggtgtttt ctgtatgtt gaaaatgtat atctgactat 900

tggaaactt catgggttc ctcatctgtc atgtcgatga ttatatatgg 950

atacatttac aaaaataaaaaa agcgggaattt ttcccttcgc ttgaatatta 1000

tccctgtata ttgcatgaat gagagatttc ccatatttcc atcagagtaa 1050

taaatataact tgcttaattt ctttaagcata agtaaacatg atataaaaaat 1100

atatgctgaa ttacttgtga agaatgcatt taaagctattt ttaatgtgt 1150

tttttttgtt aagacattac ttattaagaa attgggttattt atgcttactg 1200

ttctaatctg gtggtaaagg tattcttaag aatttgcagg tactacagat 1250

tttcaaaactt gaatgagaga aaattgtata accatccgtc tgccctta 1300

gtcaataaca ataaaactctt gaaattaaga ctc 1333

<210> 322

<211> 144

<212> PRT

<213> Homo sapiens

<400> 322

Met Ala Phe Thr Phe Ala Ala Phe Cys Tyr Met Leu Ala Leu Leu

1

5

10

15

Leu Thr Ala Ala Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala
20 25 30

Phe Asp Glu Leu Lys Thr Asp Tyr Lys Asn Pro Ile Asp Gln Cys
35 40 45

Asn Thr Leu Asn Pro Leu Val Leu Pro Glu Tyr Leu Ile His Ala
50 55 60

Phe Phe Cys Val Met Phe Leu Cys Ala Ala Glu Trp Leu Thr Leu
65 70 75

Gly Leu Asn Met Pro Leu Leu Ala Tyr His Ile Trp Arg Tyr Met
80 85 90

Ser Arg Pro Val Met Ser Gly Pro Gly Leu Tyr Asp Pro Thr Thr
95 100 105

Ile Met Asn Ala Asp Ile Leu Ala Tyr Cys Gln Lys Glu Gly Trp
110 115 120

Cys Lys Leu Ala Phe Tyr Leu Leu Ala Phe Phe Tyr Tyr Leu Tyr
125 130 135

Gly Met Ile Tyr Val Leu Val Ser Ser
140

<210> 323

<211> 477

<212> DNA

<213> Homo sapiens

<400> 323

attatagcat ttgtatgagct gaagactgtat tacaagatcc tatagaccag 50

tgtataacctt tgaatccctt tgtactccca gaggacctca tccacgcttt 100

cttctgtgtc atgtttcttt gtgcagcaga gtggcttaca ctgggtctca 150

atatgccccctt cttggccatcat catatttggaa ggttatgtatg tagaccagt 200

atgagtggcc caggactcta tgaccctaca accatcatga atgcagat 250

tcttagccatcatat tgcagaagg aaggatggtg caaatttagct ttttatcttc 300

tagcattttt ttactaccta tatggcatga tctatgtttt ggtgagctct 350

tagacaaca cacagaagaa ttggccagt taagtgcattg caaaaagcca 400

ccaaatgaag ggattctatc cagcaagatc ctgtccaaga gtagcctgtg 450

gaatctgatc agttacttta aaaaaatg 477

<210> 324

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 324

tgtaaaacga cggccagttt aatagaccctg caattattaa tct 43

<210> 325

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 325

caggaaacag ctagaccac ctgcacacacct gcaaattcat t 41

<210> 326

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 326

gtgcagcaga gtggcttaca 20

<210> 327

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 327

actggaccaa ttcttctgtg 20

<210> 328

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 328

gatattctag catattgtca gaaggaagga tggtgcaaat tagct 45

<210> 329

<211> 1174

<212> DNA

<213> Homo sapiens

<400> 329

cggacgcgtg gggaaaccc ttccgagaaa acagcaacaa gctgagctgc 50

tgtgacagag gggacaaga tggcgccgcc gaaggggagc ctctgggtga 100

ggacccaact gggctcccg ccgctgctgc tgctgaccat gccctggcc 150

ggagggttcgg ggaccgcttc ggctgaagca ttgactcgg tcttggtga 200

tacggcgtct tgccaccggg cctgtcagtt gacacctcccc ttgcacacct 250

accctaagga agaggagttg tacgcatgtc agagaggtt caggctgttt 300

tcaatttgtc agtttgtgga tcatggaaatt gacttaatc gaactaaatt 350

ggaatgtgaa tctgcatgta cagaagcata ttcccaatct gatgagcaat 400

atgcttgcct tcttgggtgc cagaatcagc tgccattcgc tgaactgaga 450

caagaacaac ttatgtccct gatgccaaaa atgcacacctac tcttcctct 500

aactctggtg aggtcattct ggagtgacat gatggactcc gcacagagct 550

tcataacctc ttcatggact ttttatctc aagccgatga cgaaaaata 600
gttatattcc agtctaagcc agaaatccag tacgcaccac atttgagca 650
ggagcctaca aattttagag aatcatctc aagcaaaatg tcctatctgc 700
aaatgagaaa ttcacaagcg cacaggaatt ttcttgaaga tggagaaagt 750
gatggcttt taagatgcct ctctcttaac tctgggtgga ttttaactac 800
aactcttgtc ctctcggtga tggatttgct ttggatttgt tgtgcaactg 850
ttgctacagc tggtggaggcag tatgttccct ctgagaagct gagtatctat 900
ggtgacttgg agtttatgaa tgaacaaaag ctaaacagat atccagcttc 950
ttctcttgtg gtttgttagat ctaaaactga agatcatgaa gaagcagggc 1000
ctctacctac aaaagtgaat ctgtgttgcatt ctgaaattta agcattttc 1050
ttttaaaaga caagtgtaat agacatctaa aattccactc ctcataagac 1100
ttttaaaatg gtttcattgg atataggcct taagaaatca ctataaaatg 1150
caaataaaatg tactcaaatc tgtg 1174

<210> 330
<211> 323
<212> PRT
<213> Homo sapiens

<400> 330
Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr Gln Leu Gly
1 5 10 15

Leu Pro Pro Leu Leu Leu Leu Thr Met Ala Leu Ala Gly Gly Ser
20 25 30

Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp Thr
35 40 45

Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr
50 55 60

Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg

65 70 75

Leu Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn
80 85 90

Arg Thr Lys Leu Glu Cys Glu Ser Ala Cys Thr Glu Ala Tyr Ser
95 100 105

Gln Ser Asp Glu Gln Tyr Ala Cys His Leu Gly Cys Gln Asn Gln
110 115 120

Leu Pro Phe Ala Glu Leu Arg Gln Glu Gln Leu Met Ser Leu Met
125 130 135

Pro Lys Met His Leu Leu Phe Pro Leu Thr Leu Val Arg Ser Phe
140 145 150

Trp Ser Asp Met Met Asp Ser Ala Gln Ser Phe Ile Thr Ser Ser
155 160 165

Trp Thr Phe Tyr Leu Gln Ala Asp Asp Gly Lys Ile Val Ile Phe
170 175 180

Gln Ser Lys Pro Glu Ile Gln Tyr Ala Pro His Leu Glu Gln Glu
185 190 195

Pro Thr Asn Leu Arg Glu Ser Ser Leu Ser Lys Met Ser Tyr Leu
200 205 210

Gln Met Arg Asn Ser Gln Ala His Arg Asn Phe Leu Glu Asp Gly
215 220 225

Glu Ser Asp Gly Phe Leu Arg Cys Leu Ser Leu Asn Ser Gly Trp
230 235 240

Ile Leu Thr Thr Thr Leu Val Leu Ser Val Met Val Leu Leu Trp
245 250 255

Ile Cys Cys Ala Thr Val Ala Thr Ala Val Glu Gln Tyr Val Pro
260 265 270

Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn Glu
275 280 285

Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Val Arg

290

295

300

Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys
305 310 315

Val Asn Leu Ala His Ser Glu Ile
320

<210> 331
<211> 350
<212> DNA
<213> Homo sapiens

<400> 331
ttgggtata cggcgtcttg ccaccgggcc tgcagttga cctaccctt 50
gcacacccatc cctaaggaag aggagttgta cgcatgtcag agaggttgca 100
ggctgttttc aatttgtcag ttgtggatg atgaaattga cttaaatcga 150
actaaattgg aatgtgaatc tgcatgtaca gaagcatatt cccaatctga 200
tgagcaatat gcttgccatc ttgggtgcca gaatcagctg ccattcgctg 250
aactgagaca agaacaactt atgtccctga tgccaaaaat gcacccatctc 300
ttccctctaa ctctggtag gtcattctgg agtgacatga tggactccgc 350

<210> 332
<211> 562
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 47
<223> unknown base

<400> 332
cacactggcc ggatcttta gagtcctttg accttgacca agggtcngga 50
aaacagcaac aagctgagct gctgtgacag agggacaacag atggcggcgc 100
cgaaggggagc ctttgggtga ggacccaaact ggggctcccg ccgctgctgc 150

tgctgaccat ggccttggcc ggagggttcgg ggaccgcctc ggctgaagca 200

tttactcggtt tcttgggtga tacggcgctt tgccaccggg cctgtcagg 250

gacctacccc ttgcacaccc accctaagga agaggagttg tacgcatgtc 300

agagagggtt caggctgtt tcaatttgtc agtttgtgaa ttagtggatt 350

gacttaaatc gaactaaatt ggaatgtgaa tctgcatgtc cagaagcata 400

ttcccaatct gatgagcaat atgcttgcca tcttgggtgc cagaatcagc 450

tgccattcgc tgaactgaga caagaacaac ttatgtccct gatgccaaaa 500

atgcacccatc tcttcctct aactctggtg aggtcattct ggagtgacat 550

gatggactcc gc 562

<210> 333

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 333

acaagctgag ctgctgtgac ag 22

<210> 334

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 334

tgattctggc aaccaagatg gc 22

<210> 335

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 335

atggccttgg ccggagggttc ggggaccgct tcggctgaag 40

<210> 336

<211> 1885

<212> DNA

<213> Homo sapiens

<400> 336

gcgagggtggc gatcgctgag aggcaaggagg gccgaggcgg gcctgggagg 50

cggcccgagg gtggggcgcc gctggggccg gcccgacgg gttcatctg 100

aggcgacg gcccgcgacc gagcgtgcgg actggctcc caagcgtggg 150

gcgacaagct gccggagctg caatggccg cggctggga ttcttgttg 200

gcctcctggg cgccgtgtgg ctgctcagct cggccacgg agaggagcag 250

ccccggaga cagcggcaca gaggtgcttc tgccaggta gtggttactt 300

ggatgattgt acctgtgatg ttgaaaccat ttagatattt aataactaca 350

ggctttccc aagactaca aaacttctt aagtgacta ctttaggtat 400

tacaaggtaa acctgaagag gccgtgtcct ttctggaatg acatcagcca 450

gtgtggaaga agggactgtg ctgtcaaacc atgtcaatct gatgaagttc 500

ctgatggaat taaatctgcg agctacaagt attctgaaga agccaataat 550

ctcattgaag aatgtgaaca agctgaacga ctggagcag tggatgaatc 600

tctgagtgag gaaacacaga aggctttct tcagtggacc aagcatgtg 650

attcttcaga taacttctgt gaagctgtatc acattcagtc ccctgaagct 700

gaatatgttag atttgcttct taatcctgag cgctacactg gttacaagg 750

accagatgtc tggaaaatat ggaatgtcat ctacgaagaa aactgtttta 800

agccacagac aattaaaaga cttttaaatc cttggcttc tggcaaggg 850

acaagtgaag agaacacttt tacagttgg ctagaaggc tctgtgtaga 900
aaaaagagca ttctacagac ttatatctgg cctacatgca agcattaatg 950
tgcatttgag tgcaagatat cttaacaag agacctggg agaaaagaaa 1000
tggggacaca acattacaga attcaacag cgatttgaig gaattttgac 1050
tgaaggagaa ggtccaagaa ggcttaagaa ctgtatccc ctctactaa 1100
tagaactaag ggcttatcc aaagtgttac cattttcgat gcgcaggat 1150
tttcaactct ttactggaaa taaaattcag gatgaggaaa acaaaatgtt 1200
acttctggaa atacttcatg aaatcaagtc atttccttg cattttgatg 1250
agaattcatt tttgctggg gataaaaaaag aagcacacaa actaaaggag 1300
gactttcgac tgcattttag aaatattca agaattatgg attgtgttgg 1350
ttgtttaaa tgtcgctgt gggaaagct tcagactcag ggttggca 1400
ctgctctgaa gatcttattt tctgagaaat tgatagcaaa tatgccagaa 1450
agtggaccta gttatgaatt ccatctaacc agacaagaaa tagtatttattt 1500
attcaacgc tttggaaagaa ttctacaag tgtgaaagaa ttagaaaact 1550
tcaggaacctt gttacagaat attcattaaa gaaaacaagc tgatatgtgc 1600
ctgttctgg acaatggagg cgaaagagt gaaatttattt caaaggcata 1650
atagcaatga cagtcattttt ccaaacattt tatataaagt tgctttgtt 1700
aaggagaattt atattgtttt aagtaaacac atttttaaaa attgtgtt 1750
gtctatgtat aatactactg tgagtaaaag taatactttt ataatgtgg 1800
acaaatttttta aagtttaata ttgataaaaa ggaggattt caaataaaa 1850
aaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaa 1885

<210> 337

<211> 468

<212> PRT

<213> Homo sapiens

<400> 337

Met Gly Arg Gly Trp Gly Phe Leu Phe Gly Leu Leu Gly Ala Val
1 5 10 15

Trp Leu Leu Ser Ser Gly His Gly Glu Glu Gln Pro Pro Glu Thr
20 25 30

Ala Ala Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp
35 40 45

Cys Thr Cys Asp Val Glu Thr Ile Asp Arg Phe Asn Asn Tyr Arg
50 55 60

Leu Phe Pro Arg Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg
65 70 75

Tyr Tyr Lys Val Asn Leu Lys Arg Pro Cys Pro Phe Trp Asn Asp
80 85 90

Ile Ser Gln Cys Gly Arg Arg Asp Cys Ala Val Lys Pro Cys Gln
95 100 105

Ser Asp Glu Val Pro Asp Gly Ile Lys Ser Ala Ser Tyr Lys Tyr
110 115 120

Ser Glu Glu Ala Asn Asn Leu Ile Glu Glu Cys Glu Gln Ala Glu
125 130 135

Arg Leu Gly Ala Val Asp Glu Ser Leu Ser Glu Glu Thr Gln Lys
140 145 150

Ala Val Leu Gln Trp Thr Lys His Asp Asp Ser Ser Asp Asn Phe
155 160 165

Cys Glu Ala Asp Asp Ile Gln Ser Pro Glu Ala Glu Tyr Val Asp
170 175 180

Leu Leu Leu Asn Pro Glu Arg Tyr Thr Gly Tyr Lys Gly Pro Asp
185 190 195

Ala Trp Lys Ile Trp Asn Val Ile Tyr Glu Glu Asn Cys Phe Lys
200 205 210

Pro Gln Thr Ile Lys Arg Pro Leu Asn Pro Leu Ala Ser Gly Gln
215 220 225

Gly Thr Ser Glu Glu Asn Thr Phe Tyr Ser Trp Leu Glu Gly Leu
230 235 240

Cys Val Glu Lys Arg Ala Phe Tyr Arg Leu Ile Ser Gly Leu His
245 250 255

Ala Ser Ile Asn Val His Leu Ser Ala Arg Tyr Leu Leu Gln Glu
260 265 270

Thr Trp Leu Glu Lys Lys Trp Gly His Asn Ile Thr Glu Phe Gln
275 280 285

Gln Arg Phe Asp Gly Ile Leu Thr Glu Gly Glu Gly Pro Arg Arg
290 295 300

Leu Lys Asn Leu Tyr Phe Leu Tyr Leu Ile Glu Leu Arg Ala Leu
305 310 315

Ser Lys Val Leu Pro Phe Phe Glu Arg Pro Asp Phe Gln Leu Phe
320 325 330

Thr Gly Asn Lys Ile Gln Asp Glu Glu Asn Lys Met Leu Leu Leu
335 340 345

Glu Ile Leu His Glu Ile Lys Ser Phe Pro Leu His Phe Asp Glu
350 355 360

Asn Ser Phe Phe Ala Gly Asp Lys Lys Glu Ala His Lys Leu Lys
365 370 375

Glu Asp Phe Arg Leu His Phe Arg Asn Ile Ser Arg Ile Met Asp
380 385 390

Cys Val Gly Cys Phe Lys Cys Arg Leu Trp Gly Lys Leu Gln Thr
395 400 405

Gln Gly Leu Gly Thr Ala Leu Lys Ile Leu Phe Ser Glu Lys Leu
410 415 420

Ile Ala Asn Met Pro Glu Ser Gly Pro Ser Tyr Glu Phe His Leu
425 430 435

Thr Arg Gln Glu Ile Val Ser Leu Phe Asn Ala Phe Gly Arg Ile
440 445 450

Ser Thr Ser Val Lys Glu Leu Glu Asn Phe Arg Asn Leu Leu Gln
455 460 465

Asn Ile His

<210> 338

<211> 507

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 101, 263, 376, 397, 426

<223> unknown base

<400> 338

gctggaaata tggatgtcat ctacgagaaa ctgtttaag ccacagacaa 50

ttaaaagacc tttaaatcct ttggcttcgt gtcaaggac aagtgaagag 100

nacactttt acagttggct agaaggtctc tgtgtagaaa aaagaggcatt 150

ctacagactt atatctggcc tacatgcaag cattaatgtc catttgatgc 200

caagatatct ttacaagag acctggtag aaaagaaatg gggacacaac 250

attacagaat ttnaacagcg atttgatgga attttgactg aaggagaagg 300

tccaagaagg cttagaact tgtatttct ctacttaata gaactaagg 350

ctttatccaa agtgttacca ttctngagc gcccagattt tcaactnttt 400

actggaaata aaattcagga tgaggnaac aaaatgtac tttggaaat 450

acttcatgaa atcaagtcat ttcccttgca ttttgatgag aattcatttt 500

tttgctg 507

<210> 339

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 339

aagctgccgg agctgcaatg 20

<210> 340

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 340

ttgcttctta atcctgagcg c 21

<210> 341

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 341

aaaggaggac ttgcactgc 20

<210> 342

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 342

agagattcat ccactgctcc aagtgc 26

<210> 343

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 343

tgtccagaaa caggcacata tcagc 25

<210> 344

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 344

agacagcggc acagagggtgc ttctgccagg ttagtggta ctggatgat 50

<210> 345

<211> 1486

<212> DNA

<213> Homo sapiens

<400> 345

cggacgcgtg ggcggacgct tggcggtacg cgtgggtgg gagggggcag 50

gatgggaggg aaagtgaaga aaacagaaaa ggagagggac agaggccaga 100

ggacttctca tactggacag aaaccgtatca ggcatttgcac tccccttcgt 150

cactcacctg ttcttgcccc tgggtttcct gacaggcttc tgctccccct 200

ttaaccttggaa tgaacatcac ccacgcctat tcccaggggcc accagaagct 250

gaatttggat acagtgtttt acaacatgtt ggggggtggac agcgatggat 300

gctgggtggc gccccctggg atgggccttc aggccgtccgg aggggggacg 350

tttatcgctg ccctgttaggg gggccacaca atgccccatg tgccaagggc 400

cacttaggtg actaccaact gggaaattca tctcatctg ctgtaatat 450

gcacctgggg atgtctctgt tagagacaga tgggtatggg ggattcatgg 500

tgagctaagg agagggtggt ggcagtgtct ctgaagggtcc ataaaagaaa 550

aaagagaagt gtggtaaggg aaaatggct gtgtggaggg gtcaggagt 600
taaaaaccct agaaagcaaa agtaggtaa tgcagggag tagtcttcat 650
gcctcctca actggagca tttctgagg gtccccc aagctggga 700
gtactattt cccccatccc caggcctgtg cccctctcg gtctcgct 750
tgtggcagct ctgtttcag ttctggata tgtcccgta tggatgctc 800
attccagcct cagggaaagcc tggcacccac tgcccaacgt gagccagagg 850
aaggctgagt acitggttcc cagaaggaga tactgggtgg gaaaaagatg 900
ggcaaagcg gtatgatgcc tggcaaaggc cctgcatggc tatttcatt 950
gctaccta atgtttgca aagctccatg ttccataaca gattcagact 1000
cctggccagg tgtggtgcc cacacctgtt attctagcac ttgggaggc 1050
caaggtggc agatcaactt aggtcaggag ttcaagacca gcctggccaa 1100
catggtaaa ctccatctt actaaaaaaaaaaaataca aaaatttagct 1150
gggtgcgcta gtgcattgcct gtaatctcat ctactggga ggctaaagaca 1200
ggagactctc acttcaaccc aggagggtggaa gggtgcgggtg agccaagatt 1250
gtgcctctgc actctagcgt gggtgacaga gtaagcgaga ctccatctca 1300
aaaataataa taataataat tcagactcct tatcaggagt ccatgatctg 1350
gcctggcaca gtaactcatg cctgtaatcc caacatttg ggaggccaac 1400
gcaggaggat tgcttgaggcttggagggtt gagaccagcc tggcaacat 1450
agaaagaccc catctctaaa taaatgttt aaaaat 1486

<210> 346
<211> 124
<212> PRT
<213> Homo sapiens

<400> 346
Met Glu Leu Pro Phe Val Thr His Leu Phe Leu Pro Leu Val Phe

1 5 10 15

Leu Thr Gly Leu Cys Ser Pro Phe Asn Leu Asp Glu His His Pro
20 25 30

Arg Leu Phe Pro Gly Pro Pro Glu Ala Glu Phe Gly Tyr Ser Val
35 40 45

Leu Gln His Val Gly Gly Gln Arg Trp Met Leu Val Gly Ala
50 55 60

Pro Trp Asp Gly Pro Ser Gly Asp Arg Arg Gly Asp Val Tyr Arg
65 70 75

Cys Pro Val Gly Gly Ala His Asn Ala Pro Cys Ala Lys Gly His
80 85 90

Leu Gly Asp Tyr Gln Leu Gly Asn Ser Ser His Pro Ala Val Asn
95 100 105

Met His Leu Gly Met Ser Leu Leu Glu Thr Asp Gly Asp Gly Gly
110 115 120

Phe Met Val Ser

<210> 347

<211> 509

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 22

<223> unknown base

<400> 347

cacagttccc caccatcaact cntcccatc cttccaacctt tatttttagc 50

ttgccatgg gagggggcag gatgggagg aaagtgaaga aaacagaaaa 100

ggagagggac agaggccaga ggacttctca tactggacag aaaccgatca 150

ggcatggaac tccccttcgt cactcacctg ttcttgcccc tggtgttcct 200

gacaggctc tgcctccct ttaacctgga tgaacatcac ccacgcctat 250
tcccagggcc accagaagct gaatttggat acagtgtctt acaacatgtt 300
gggggtggac agcgatggat gctggtggc gcccccgtt atgggccttc 350
aggcgaccgg aggggggacg ttatcgctg ccctgttaggg ggggcccaca 400
atgccccatg tgccaagggc cacttaggtg actaccaact gggaaattca 450
tctcatcctg ctgtgaatat gcacctgggg atgtctctgt tagagacaga 500
tggtgatgg 509

<210> 348
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 348
aggcacagag gccagaggac ttc 23

<210> 349
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 349
caggtgcata ttcacagcag gatg 24

<210> 350
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 350

ggaactcccc ttgtcactc acctgttctt gcccctgggt ttcct 45

<210> 351

<211> 2056

<212> DNA

<213> Homo sapiens

<400> 351

aaagttacat ttctctgga actctcttag gccactccct gctgatgcaa 50

catctgggtt tggcgagaaa ggagggtgct tcggagcccg cccttctga 100

gcttcctggg ccggctctag aacaattcag gcttcgtgc gactcagacc 150

tcaagctccaa catatgcatt ctgaagaaag atggctgaga tggacagaat 200

gctttatTTT gaaaagaaac aatgttctag gtcaaactga gtctacaaa 250

tgcagacttt cacaatggtt ctgaagaaa tctggacaag tctttcatg 300

tggTTTTCT acgcattgtat tccatgttg ctcacagatg aagtggccat 350

tctgcctgcc cctcagaacc tctctgtact ctcaaccaac atgaagcata 400

tcttgtatgtg gagcccagtg atcgcgcctg gagaacagt gtactattct 450

gtcgaataacc agggggagta cgagagcctg tacacgagcc acatctggat 500

ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550

atgacatcac ggccactgtg ccatacaacc ttctgtcag ggccacattg 600

ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650

ctcaaccatc cttacccgac ctggatgga gatcacaaa gatggcttcc 700

acctggttat tgagctggag gacctggggc cccagttga gttccitgtg 750

gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtgag 800

gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850

actgtgtgaa ggcccgagaca ttctgtgaagg ccattggag gtacagcgcc 900

ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccctgg 950

actggccctg ttgccttg ttggcattcat gctgatcctt gtggcgtgc 1000
cactgttcgt ctggaaaatg ggccggctgc tccagtaactc ctgtgcccc 1050
gtgggtgtcc tcccagacac ctgaaaata accaattcac cccagaagtt 1100
aatcagctgc agaaggaggagg aggtggatgc ctgtgccacg gctgtatgt 1150
ctcctgagga actcctcagg gcctggatct catagtttgc cgaaaggccc 1200
caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250
aagttagttt tctgtttcc gccacggaca agggatgaga gaagtaggaa 1300
gagcctgttgc tctacaagtc tagaagcaac catcagaggc aggggtgttt 1350
gtctaacaga acactgactg aggcttaggg gatgtgaccc ttagactggg 1400
ggctgccact tgctggctga gcaaccctgg gaaaagtgc ttcatccctt 1450
cggtcctaag tttctcatc tgtaatgggg gaattaccta cacacctgct 1500
aaacacacac acacagagtc tctctctata tatacacacg tacacataaa 1550
tacacccagc acttgcaagg ctagagggaa actggtgaca ctctacagtc 1600
tgactgattc agtgtttctg gagagcagga cataaatgtt tgatgagaat 1650
gatcaaggac tctacacact ggggtggctg gagagccac ttcccagaa 1700
taatccctga gagaaaagga atcatgggag caatgggtt gagttcactt 1750
caagccaaat gcccgtgcag agggaaatgg cttagcgagc tctacagtag 1800
gtgacctgga ggaaggtcac agccacactg aaaatggat gtgcataac 1850
acggaggatc catgaactac tgtaaagtgt tgacagtgt tgacacactgc 1900
agacagcagg taaaaatgtat gtgtgcaatg cgacgagaat gcagaagtca 1950
gtaacatgtc catgtttgtt gtgcctttt ttctgttgg taaagtacag 2000
aattcagcaa ataaaaaggccacccgttgc caaaagcggt aaaaaaaaaaa 2050
aaaaaa 2056

<210> 352

<211> 311

<212> PRT

<213> Homo sapiens

<400> 352

Met Gln Thr Phe Thr Met Val Leu Glu Glu Ile Trp Thr Ser Leu
1 5 10 15

Phe Met Trp Phe Phe Tyr Ala Leu Ile Pro Cys Leu Leu Thr Asp
20 25 30

Glu Val Ala Ile Leu Pro Ala Pro Gln Asn Leu Ser Val Leu Ser
35 40 45

Thr Asn Met Lys His Leu Leu Met Trp Ser Pro Val Ile Ala Pro
50 55 60

Gly Glu Thr Val Tyr Tyr Ser Val Glu Tyr Gln Gly Glu Tyr Glu
65 70 75

Ser Leu Tyr Thr Ser His Ile Trp Ile Pro Ser Ser Trp Cys Ser
80 85 90

Leu Thr Glu Gly Pro Glu Cys Asp Val Thr Asp Asp Ile Thr Ala
95 100 105

Thr Val Pro Tyr Asn Leu Arg Val Arg Ala Thr Leu Gly Ser Gln
110 115 120

Thr Ser Ala Trp Ser Ile Leu Lys His Pro Phe Asn Arg Asn Ser
125 130 135

Thr Ile Leu Thr Arg Pro Gly Met Glu Ile Thr Lys Asp Gly Phe
140 145 150

His Leu Val Ile Glu Leu Glu Asp Leu Gly Pro Gln Phe Glu Phe
155 160 165

Leu Val Ala Tyr Trp Arg Arg Glu Pro Gly Ala Glu Glu His Val
170 175 180

Lys Met Val Arg Ser Gly Gly Ile Pro Val His Leu Glu Thr Met
185 190 195

Glu Pro Gly Ala Ala Tyr Cys Val Lys Ala Gln Thr Phe Val Lys
200 205 210

Ala Ile Gly Arg Tyr Ser Ala Phe Ser Gln Thr Glu Cys Val Glu
215 220 225

Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe
230 235 240

Val Gly Phe Met Leu Ile Leu Val Val Val Pro Leu Phe Val Trp
245 250 255

Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val Val
260 265 270

Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile
275 280 285

Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met
290 295 300

Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser
305 310

<210> 353

<211> 864

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 654, 711, 748, 827

<223> unknown base

<400> 353

tcctgctat gcacatctgg gtttggcaaa aggaggttgc ttcgagccgc 50

cctttcttagc ttccctggcccg gctctagaac aattcaggct tcgctgcgac 100

tagacctcag ctccaacata tgcattctga agaaagatgg ctgagatgac 150

agaatgcttt attttggaaa gaaacaatgt tctaggtcaa actgagtcta 200

ccaaatgcag actttcacaa tggttctaga agaaatctgg acaagtcttt 250

tcatgtggtt ttctacgca ttgattccat gtttgctcac agatgaagt 300
gccattctgc ctgcccccta gaacctctct gtactctcaa ccaacatgaa 350
gcatctcttg atgtggagcc cagtgatcgc gcctggagaa acagtgtact 400
attctgtcga ataccagggg gagtacgaga gcctgtacac gagccacatc 450
tggatccccca gcagctggtg ctcactcact gaaggcctcg agtgtatgt 500
cactgatgac atcacggcca ctgtgccata caacccttgc gtcaggccca 550
cattgggctc acagacactca gcctggagca tcctgaagca tcccttaat 600
agaaaactcaa ccacccctac ccgacctggg atggagatca ccaaagatgg 650
cttncacctg gttattgagc tggaggacct gggggcccaag tttgagttcc 700
ttgtggccta ntggaggagg ggcgaacccc ttggcgcgca aggggttngc 750
gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggcccaata 800
tgacccacat actcaaatatg gacgaantgc tattgtccac ctgtttgagt 850
ggcgctgggt tgat 864

<210> 354

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 354

aggcttcgct gcgactagac ctc 23

<210> 355

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 355
ccaggtcggg taaggatggt tgag 24

<210> 356
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 356
ttctacgca ttgattccat gtttgcac agatgaagt gccattctgc 50

<210> 357
<211> 1670
<212> DNA
<213> Homo sapiens

<400> 357
cccacgcgtc cccccacgac tccgagggac aagagagaag agagactgaa 50
acagggagaa gaggcaggag aggaggagggt ggggagagca cgaagctgga 100
ggccgacact gagggaggc gggaggagggt gaagaaggag agaggggaga 150
agaggcagga gctggaaagg agagagggag gaggaggagg agatgcggga 200
tggagacctg gagtttagtg gcttgggaga gcttaatgaa aagagaacgg 250
agaggagggtg tgggttagga accaagaggt agccctgtgg gcagcagaag 300
gctgagagga gtaggaagat caggagctg agggagactg gagggttcg 350
ggaaaagagc agagggaaaga ggaaagacac agagagacgg gagagagaag 400
aagagtgggt ttgaagggcg gatctcagtc cctggctgct ttggcatttg 450
gggaactggg actccctgtg gggaggagag gaaagctgga agtcctggag 500
ggacagggtc ccagaaggag gggacagagg agctgagaga gggggcagg 550
gcgttggca ggggtccctc ggaggcctcc tggggatggg ggctgcagct 600
cgtctgagcg cccctcgagc gctggtaactc tgggctgcac tggggcagc 650

agctcacatc ggaccagcac ctgaccccgaa ggactgggtgg agctacaagg 700
ataatctcca gggaaacttc gtgccaggc ctccttctg gggctggtg 750
aatgcagcgt ggagtctgtg tgctgtgggg aagcggcaga gccccgtgga 800
tgtggagctg aagagggttc ttatgaccc ctttctgccc ccattaaggc 850
tcagcactgg aggagagaag ctccggggaa ccttgtacaa caccggccga 900
catgtctcct tcctgcctgc accccgacct gtggtaatg tgtctggagg 950
tcccctcct tacagccacc gactcagtga actgcggctg ctgtttggag 1000
ctcgcgacgg agccggctcg gaacatcaga tcaaccacca gggcttctct 1050
gctgaggtgc agtcattca cttcaaccag gaactctacg ggaatttcag 1100
cgctgcctcc cgccggccca atggcctggc catttcagc ctctttgtca 1150
acgttgccag tacctctaac ccattcctca gtgcctcct taaccgcgac 1200
accatcactc gcatctccta caagaatgt gcctacttgc ttcaagacct 1250
gagcctggag ctccgttcc ctgaatccctt cggcttcatc acctatcagg 1300
gctctctcag caccccgcccc tgctccgaga ctgtcacctg gatcctcatt 1350
gaccgggccc tcaatatcac ctcccttcag atgcactccc tgagactcct 1400
gagccagaat cctccatctc agatttcca gagcctcagc ggttaacagcc 1450
ggcccttgca gcccttggcc cacaggcac tgagggcaa cagggacccc 1500
cgccaccccg agaggcgctg ccgaggcccc aactaccgccc tgcatgtgga 1550
tggtgtcccc catggtcgtc gagactcccc ttcgaggatt gcacccgcccc 1600
gtcctaagcc tccccacaag gcgagggggag ttacccctaa aacaaagcta 1650
ttaaaggac agaatactta 1670

<210> 358

<211> 328

<212> PRT

<213> Homo sapiens

<400> 358

Met Gly Ala Ala Ala Arg Leu Ser Ala Pro Arg Ala Leu Val Leu
1 5 10 15

Trp Ala Ala Leu Gly Ala Ala Ala His Ile Gly Pro Ala Pro Asp
20 25 30

Pro Glu Asp Trp Trp Ser Tyr Lys Asp Asn Leu Gln Gly Asn Phe
35 40 45

Val Pro Gly Pro Pro Phe Trp Gly Leu Val Asn Ala Ala Trp Ser
50 55 60

Leu Cys Ala Val Gly Lys Arg Gln Ser Pro Val Asp Val Glu Leu
65 70 75

Lys Arg Val Leu Tyr Asp Pro Phe Leu Pro Pro Leu Arg Leu Ser
80 85 90

Thr Gly Gly Glu Lys Leu Arg Gly Thr Leu Tyr Asn Thr Gly Arg
95 100 105

His Val Ser Phe Leu Pro Ala Pro Arg Pro Val Val Asn Val Ser
110 115 120

Gly Gly Pro Leu Leu Tyr Ser His Arg Leu Ser Glu Leu Arg Leu
125 130 135

Leu Phe Gly Ala Arg Asp Gly Ala Gly Ser Glu His Gln Ile Asn
140 145 150

His Gln Gly Phe Ser Ala Glu Val Gln Leu Ile His Phe Asn Gln
155 160 165

Glu Leu Tyr Gly Asn Phe Ser Ala Ala Ser Arg Gly Pro Asn Gly
170 175 180

Leu Ala Ile Leu Ser Leu Phe Val Asn Val Ala Ser Thr Ser Asn
185 190 195

Pro Phe Leu Ser Arg Leu Leu Asn Arg Asp Thr Ile Thr Arg Ile
200 205 210

Ser Tyr Lys Asn Asp Ala Tyr Phe Leu Gln Asp Leu Ser Leu Glu
215 220 225

Leu Leu Phe Pro Glu Ser Phe Gly Phe Ile Thr Tyr Gln Gly Ser
230 235 240

Leu Ser Thr Pro Pro Cys Ser Glu Thr Val Thr Trp Ile Leu Ile
245 250 255

Asp Arg Ala Leu Asn Ile Thr Ser Leu Gln Met His Ser Leu Arg
260 265 270

Leu Leu Ser Gln Asn Pro Pro Ser Gln Ile Phe Gln Ser Leu Ser
275 280 285

Gly Asn Ser Arg Pro Leu Gln Pro Leu Ala His Arg Ala Leu Arg
290 295 300

Gly Asn Arg Asp Pro Arg His Pro Glu Arg Arg Cys Arg Gly Pro
305 310 315

Asn Tyr Arg Leu His Val Asp Gly Val Pro His Gly Arg
320 325

<210> 359

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 359

tctgctgagg tgcagctcat tcac 24

<210> 360

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 360

gaggctctgg aagatctgag atgg 24

<210> 361
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 361
gcctcttgt caacgttgcc agtacctcta acccattcct cagtcgcctc 50

<210> 362
<211> 3038
<212> DNA
<213> Homo sapiens

<400> 362
ggcgccctgg tctgcgcgta ctggctgtac ggagcaggag caagaggtcg 50
ccgccagcct ccggccgcga gcctcggtcg tgtccccgcc cctcgctcct 100
gcagctactg ctcagaaacg ctggggcgcc caccctggca gactaacgaa 150
gcagctccct tcccacccca actgcagggtc taatttggta cgctttgcct 200
gccatttcctt ccaggttgag ggagccgcag aggccggaggc tcgcgtattc 250
ctgcagtcag cacccacgtc gccccggac gctcggtgtc caggcccttc 300
gcgagcgggg ctctccgtct gcgggtccctt gtgaagggtc tggcggctg 350
cagaggccgg ccgtccggtt tggctcacct ctcccaggaa acttcacact 400
ggagagccaa aaggagtggta agagcctgtc ttggagattt tcctggggaa 450
atcctgaggt cattcattat gaagtgtacc gcgcgggagt ggctcagagt 500
aaccacagtg ctgttcatgg ctagagcaat tccagccatg gtggttccca 550
atgccactt attggagaaa ctttggaaaa aatacatggta tgaggatgg 600
gagtgggtgga tagccaaaca acgaggggaaa agggccatca cagacaatga 650
catcagagt atttggacc ttcataataa attacgaagt caggtgtatc 700

caacagcctc taatatggag tatatgacat gggatgtaga gctggaaaga 750
tctgcagaat cctgggctga aagttgcttg tggaaacatg gaccctgcaag 800
cttgcttcca tcaattggac agaatttggg agcacactgg ggaagatata 850
ggcccccggac gttcatgtca caatcggtt atgtatgtt gaaagacttt 900
agctacccat atgaacatga atgcaaccca tattgtccat tcaggtttc 950
tggccctgtta tgtacacatt atacacaggt cgtgtggca actagtaaca 1000
gaatcggttg tgccattaat ttgtgtcata acatgaacat ctggggcag 1050
atatggccca aagctgtcta cctggtgtgc aattactccc caaaggaaa 1100
ctgggtgggc catgccccctt acaaacatgg gcggccctgt tctgcttgcc 1150
cacctagttt tggagggggc tgttagagaaa atctgtgcta caaagaaggg 1200
tcagacaggt attatcccc tcgagaagag gaaacaaaatg aaatagaacg 1250
acagcagtca caagtccatg acacccatgt ccggacaaga tcagatgata 1300
gtagcagaaa tgaagtcata agcgcacagc aaatgtccca aattgtttct 1350
tgtgaagtaa gattaagaga tcagtgcaaa ggaacaacct gcaataggta 1400
cgaatgtcct gctggctgtt tggatagtaa agctaaagtt attggcagt 1450
tacattatga aatgcaatcc agcatctgtca gagctgcaat tcattatggt 1500
ataatagaca atgatggtgg ctgggttagat atcaactagac aaggaagaaa 1550
gcattatttc atcaagtcca atagaaatgg tattcaaaca attggcaa 1600
atcagtctgc taattccttc acagtctcta aagtaacagt tcaggctgt 1650
acttgtgaaa caactgtgga acagctctgt ccatttcata agcctgcttc 1700
acattgccccca agagtatact gtcctcgtaa ctgtatgcaa gcaaattccac 1750
attatgctcg tgtaattgga actcgagttt attctgatct gtccagtgatc 1800
tgcagagcag cagtagatgc tggagtggtt cgaaatcagc gtggttatgt 1850

tgtatgtaatg cctgtggaca aaagaaaagac ctacattgtc tctttcaga 1900
atggaatctt ctcagaaagt ttacagaatc ctccaggagg aaaggcattc 1950
agagtgttg ctgttgtgtg aaactgaata ctttgaagag gaccataaag 2000
actattccaa atgcaatatt tctgaatttt gtataaaact gtaacattac 2050
tgtacagagt acatcaacta tttcagccc aaaaagggtgc caaatgcata 2100
taaatcttga taaacaaaagt ctataaaata aaacatggga cattagctt 2150
ggaaaaagta atgaaaatat aatggttta gaaacctgt gttaaatatt 2200
gctatatttt cttagcagtt atttctacag ttaattacat agtcatgatt 2250
gttctacgtt tcataatatta tatggcgctt tgtatatgcc actaataaaa 2300
tgaatctaaa cattgaatgt gaatggccct cagaaaatca tctgtgcatt 2350
ttaaaaataa tcgactctaa aactgaaaga aaccttatca cattttcccc 2400
agttcaatgc tatgccattt ccaactccaa ataatctcaa ataatttcc 2450
acttaataac tgaaaagttt tttctgtta atttaggcatt atagaatatt 2500
aaattctgtt attgcacttc ttatattata taaaataatc cttaatatc 2550
caaatgaatc tgtaaaaatg ttgattccct tggaaatggc cttaaaaata 2600
aatgtatataa agtcagagtg gtggatgaa aacattccta gtgtatgt 2650
agtaaatgtt gggtaagca tggacagcca gagcttctta tgtactgtt 2700
aaattgaggt cacatatttt ctttgcattc ctggcaataa ctccctgcagg 2750
ccaggaagta taatagcaaa aagttgaaca aagatgaact aatgtattac 2800
attaccatttgc ccactgattt ttttaaaatg gttaatgacc ttgtatataa 2850
atattgccat atcatggtac ctataatggt gatatatttgc ttgtatgtt 2900
aaatgtatttgc tgcttgata cttaaaaatct gttaatgtt agttttggta 2950
attttttttc tgctgggttgc ttacatatttgc aaatttttc tgctgggttgc 3000

taaacattaa attaatcat gtttcaaaaa aaaaaaaaa 3038

<210> 363

<211> 500

<212> PRT

<213> Homo sapiens

<400> 363

Met Lys Cys Thr Ala Arg Glu Trp Leu Arg Val Thr Thr Val Leu
1 5 10 15

Phe Met Ala Arg Ala Ile Pro Ala Met Val Val Pro Asn Ala Thr
20 25 30

Leu Leu Glu Lys Leu Leu Glu Lys Tyr Met Asp Glu Asp Gly Glu
35 40 45

Trp Trp Ile Ala Lys Gln Arg Gly Lys Arg Ala Ile Thr Asp Asn
50 55 60

Asp Met Gln Ser Ile Leu Asp Leu His Asn Lys Leu Arg Ser Gln
65 70 75

Val Tyr Pro Thr Ala Ser Asn Met Glu Tyr Met Thr Trp Asp Val
80 85 90

Glu Leu Glu Arg Ser Ala Glu Ser Trp Ala Glu Ser Cys Leu Trp
95 100 105

Glu His Gly Pro Ala Ser Leu Leu Pro Ser Ile Gly Gln Asn Leu
110 115 120

Gly Ala His Trp Gly Arg Tyr Arg Pro Pro Thr Phe His Val Gln
125 130 135

Ser Trp Tyr Asp Glu Val Lys Asp Phe Ser Tyr Pro Tyr Glu His
140 145 150

Glu Cys Asn Pro Tyr Cys Pro Phe Arg Cys Ser Gly Pro Val Cys
155 160 165

Thr His Tyr Thr Gln Val Val Trp Ala Thr Ser Asn Arg Ile Gly
170 175 180

Cys Ala Ile Asn Leu Cys His Asn Met Asn Ile Trp Gly Gln Ile

185

190

195

Trp Pro Lys Ala Val Tyr Leu Val Cys Asn Tyr Ser Pro Lys Gly
200 205 210

Asn Trp Trp Gly His Ala Pro Tyr Lys His Gly Arg Pro Cys Ser
215 220 225

Ala Cys Pro Pro Ser Phe Gly Gly Cys Arg Glu Asn Leu Cys
230 235 240

Tyr Lys Glu Gly Ser Asp Arg Tyr Tyr Pro Pro Arg Glu Glu Glu
245 250 255

Thr Asn Glu Ile Glu Arg Gln Gln Ser Gln Val His Asp Thr His
260 265 270

Val Arg Thr Arg Ser Asp Asp Ser Ser Arg Asn Glu Val Ile Ser
275 280 285

Ala Gln Gln Met Ser Gln Ile Val Ser Cys Glu Val Arg Leu Arg
290 295 300

Asp Gln Cys Lys Gly Thr Thr Cys Asn Arg Tyr Glu Cys Pro Ala
305 310 315

Gly Cys Leu Asp Ser Lys Ala Lys Val Ile Gly Ser Val His Tyr
320 325 330

Glu Met Gln Ser Ser Ile Cys Arg Ala Ala Ile His Tyr Gly Ile
335 340 345

Ile Asp Asn Asp Gly Gly Trp Val Asp Ile Thr Arg Gln Gly Arg
350 355 360

Lys His Tyr Phe Ile Lys Ser Asn Arg Asn Gly Ile Gln Thr Ile
365 370 375

Gly Lys Tyr Gln Ser Ala Asn Ser Phe Thr Val Ser Lys Val Thr
380 385 390

Val Gln Ala Val Thr Cys Glu Thr Thr Val Glu Gln Leu Cys Pro
395 400 405

Phe His Lys Pro Ala Ser His Cys Pro Arg Val Tyr Cys Pro Arg

410 415 420

Asn Cys Met Gln Ala Asn Pro His Tyr Ala Arg Val Ile Gly Thr
425 430 435

Arg Val Tyr Ser Asp Leu Ser Ser Ile Cys Arg Ala Ala Val His
440 445 450

Ala Gly Val Val Arg Asn His Gly Gly Tyr Val Asp Val Met Pro
455 460 465

Val Asp Lys Arg Lys Thr Tyr Ile Ala Ser Phe Gln Asn Gly Ile
470 475 480

Phe Ser Glu Ser Leu Gln Asn Pro Pro Gly Gly Lys Ala Phe Arg
485 490 495

Val Phe Ala Val Val
500

<210> 364

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 364

ggacagaatt tgggagcaca ctgg 24

<210> 365

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 365

ccaagagtat actgtccctcg 20

<210> 366

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 366

agcacagatt ttctctacag ccccc 25

<210> 367

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 367

aaccactcca gcatgtactg ctgc 24

<210> 368

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 368

ccattcagg tttctggccc tgtatgtaca cattatacac aggtcggtg 50

<210> 369

<211> 1685

<212> DNA

<213> Homo sapiens

<400> 369

gccccggccaa gcgcagagcg cagcgacgg ccacagacag cccggggcat 50

ccaccgacgg cgccggccga gccagcagag ccggaggcg cgccccggc 100

agagaaagcc gagcagagct gggtggcgtc tccggccgc cgctccgacg 150

ggccagcgcc ctccccatgt ccctgctccc acgcccgcgc cctccggta 200

gcatgaggct cctggccggcc gcgcgtgtcc tgctgtgtc ggcgcgttac 250

accgcgcgtg tggacgggtc caaatgcaag tgctccggaa agggacccaa 300
gatccgctac agcgacgtga agaagctgga aatgaagcca aagtacccgc 350
actgcgagga gaagatggtt atcatcacca ccaagagcgt gtccaggtac 400
cgaggtcagg agcactgcct gcaccccaag ctgcagagca ccaagcgctt 450
catcaagtgg tacaacgcct ggaacgagaa gcgcagggtc tacgaagaat 500
agggtgaaaa acctcagaag ggaaaactcc aaaccagttg ggagacttgt 550
gcaaaggact ttgcagatta aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 600
aaaaaaaaaa aaagccttc ttctcacag gcataagaca caaattatat 650
attttatga agcactttt accaacggtc agttttaca ttttagct 700
gcgtgcggaaa ggcttcaga tgggagaccc atctctcttg tgctccagac 750
ttcatcacag gctgtttt atcaaaaagg ggaaaactca tgccttcct 800
ttttaaaaaa tgcttttg tatttgtcca tacgtcacta tacatctgag 850
ctttataagc gcccgagg aacaatgagc tggggaca catttcattt 900
cagtgttgc ccattcctag ctggaaagc ttccgcttag aggtcctggc 950
gcctcggcac agctgccacg ggctctcctg ggcttatggc cggcacagc 1000
ctcagtgttgc ctccacagtgc gcccctgttag ccgggcaagc aggagcagg 1050
ctctctgcat ctgttctctg aggaactcaa gttgggtgc cagaaaaatg 1100
tgcttcattc cccccgggtt aattttaca caccctagga aacattcca 1150
agatcctgttgc atggcgagac aaatgatcct taaagaaggt gtgggtctt 1200
tcccaacctg aggattctg aaagggtcac aggtcaata tttatgctt 1250
cagaagcatg tgagggtccc aacactgtca gcaaaaacct taggagaaaa 1300
ctaaaaaata tatgaataca tgcgcaatac acagctacag acacacattc 1350
tgttgacaag ggaaaacctt caaagcatgt ttcttcctt caccacaaca 1400

gaacatgcag tactaaagca atatatttgt gattccccat gtaattttc 1450
aatgttaaac agtgcagtcc tcttcgaaa gctaagatga ccatgcgcc 1500
ttcctctgt acatataccc ttaagaacgc cccctccaca cactgcccc 1550
cagtatatgc cgcatgtac tgctgttta tatgctatgt acatgtcaga 1600
aaccattagc attgcattca ggtttcatat tctttctaag atggaaagta 1650
ataaaatata ttgaaatgt aaaaaaaaaa aaaaa 1685

<210> 370

<211> 111

<212> PRT

<213> Homo sapiens

<400> 370

Met Ser Leu Leu Pro Arg Arg Ala Pro Pro Val Ser Met Arg Leu
1 5 10 15

Leu Ala Ala Ala Leu Leu Leu Leu Leu Ala Leu Tyr Thr Ala
20 25 30

Arg Val Asp Gly Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys
35 40 45

Ile Arg Tyr Ser Asp Val Lys Lys Leu Glu Met Lys Pro Lys Tyr
50 55 60

Pro His Cys Glu Glu Lys Met Val Ile Thr Thr Lys Ser Val
65 70 75

Ser Arg Tyr Arg Gly Gln Glu His Cys Leu His Pro Lys Leu Gln
80 85 90

Ser Thr Lys Arg Phe Ile Lys Trp Tyr Asn Ala Trp Asn Glu Lys
95 100 105

Arg Arg Val Tyr Glu Glu
110

<210> 371

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 371

cagcgccctc cccatgtccc tg 22

<210> 372

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 372

tcccaactgg tttggagttt tccc 24

<210> 373

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 373

ctccggtcag catgaggctc ctggcgccg ctgctcctgc tgctg 45

<210> 374

<211> 3113

<212> DNA

<213> Homo sapiens

<400> 374

cccccaggga ctgctatggc ttcccttgtt gttcaccccg gtctgcgtca 50

tgttaaactc caatgtcctc ctgtggtaa ctgctctgc catcaagtgc 100

accctcattg acagccaagc acagtatcca gttgtcaaca caaattatgg 150

caaaatccgg ggcctaagaa caccgttacc caatgagatc ttgggtccag 200

tggagcagta ctttaggggtc ccctatgcct caccccccac tggagagagg 250

cggttcagc cccagaacc cccgtctcc tggactggca tccgaaatac 300
tactcagttt gctgctgtgt gccccagca cctggatgag agatcctac 350
tgcatgacat gctgcccattc tggttaccg ccaatttggta tacttgatg 400
acctatgttc aagatcaaaa tgaagactgc cttaactaa acatctacgt 450
gcccacggaa gatggagcca acacaaagaa aaacgcagat gatataacga 500
gtaatgaccg tggtaagac gaagatattc atgatcagaa cagtaagaag 550
cccgcatgg tctatatcca tgggggatct tacatggagg gcaccggcaa 600
catgattgac ggcagcattt tggcaagcta cgaaacgtc atcgtgatca 650
ccattaacta ccgtctggaa atactagggt tttaagtac cggtaaccag 700
gcagcaaaag gcaactatgg gctcctggat cagattcaag cactgcggtg 750
gattgaggag aatgtgggag ccttggcg ggaccccaag agagtgacca 800
tcttggctc gggggctggg gcctcctgtc tcagcctgtt gaccctgtcc 850
caactactcg aaggctctt ccagaaggcc atcattcaga gcggcaccgc 900
cctgtccagc tggcagtga actaccagcc gccaagttac actcggatat 950
tggcagacaa ggtcggtgc aacatgctgg acaccacgga catggtagaa 1000
tgccctgcgga acaagaacta caaggagctc atccagcaga ccatcacccc 1050
ggccacctac cacatagcct tcggccggat gatgcacggc gacgtcatcc 1100
cagacgaccc ccagatcctg atggagcaag gcgagttcct caactacgac 1150
atcatgctgg ggcgtcaacca aggggaaggc ctgaagttcg tggacggcat 1200
cgtggataac gaggacggtg tgacgcccggaa cgactttgac ttctccgtgt 1250
ccaacttcgt ggacaaccctt tacggctacc ctgaagggaa agacactttg 1300
cgggagacta tcaagttcat gtacacagac tggccgata aggaaaaccc 1350
ggagacgcgg cgaaaaaccc tgggtggctct cttaactgac caccagtgg 1400

tggcccccgc cgtggccgcc gacctgcacg cgcaatgcgg ctccccacc 1450
tacttctatg ccttctatca tcactgcca agcgaaatga agcccagctg 1500
ggcagattcg gcccatggtg atgaggccc ctatgtttc ggcatcccc 1550
tgatcggtcc caccgagctc ttcaatgtta acttttccaa gaacgacgtc 1600
atgctcagcg ccgtggcat gacctactgg acgaaactcg cccaaaactgg 1650
tgatccaaat caaccagttc ctcaggatac caagttcatt cacacaaaac 1700
ccaaccgcgt tgaagaagtg gcctggtcca agtataatcc caaagaccag 1750
ctctatctgc atattggcgtt gaaacccaga gtgagagatc actaccggc 1800
aacgaaagtg gctttctggc tggaactcg tccatccatgg cacaacttga 1850
acgagatatt ccagtatgtt tcaacaacca caaagggtcc tccaccagac 1900
atgacatcat ttccctatgg cacccggcga tctccggcca agatatggcc 1950
aaccaccaaa cggccagcaa tcactcctgc caacaatccc aaacactcta 2000
aggaccctca caaaacaggg cctgaggaca caactgtcct cattgaaacc 2050
aaacgagatt attccaccga attaagtgtc accattggcc tcggggcg 2100
gctcctcttc ctcaacatct tagctttgc ggccgtgtac tacaaaaagg 2150
acaagaggcg ccatgagact cacaggcgcc ccagtcggcc gagaaacacc 2200
acaatgata tcgctcacat ccagaacgaa gagatcatgt ctctgcagat 2250
gaagcagctg gaacacgatc acgagtgtga gtcgctgcag gcacacgaca 2300
cactgaggct cacctggcccg ccagactaca ccctcacgct ggcgggtcg 2350
ccagatgaca tcccacttat gacgccaac accatcacca tgattccaaa 2400
cacactgacg gggatgcagc cttgcacac tttaacacc ttcagtggag 2450
gacaaaaacag tacaaattta ccccacggac attccaccac tagagtatag 2500
cttgcctta ttcccttcc tatccctctg ccctacccgc tcagcaacat 2550

agaagaggga aggaaagaga gaagaaaaga gagagagaaa gaaagtctcc 2600
agaccaggaa tggtttgtc ccactgactt aagacaaaaa tgcaaaaagg 2650
cagtcatccc atccggcag acccttatcg ttggtgttt ccagtattac 2700
aagatcaact tctgaccctg tgaaatgtga gaagtacaca tttctgttaa 2750
aataactgct ttaagatctc taccactcca atcaatgttt agtgtgatag 2800
gacatcacca ttcaaggcc ccgggtgtt ccaacgtcat ggaaggcagct 2850
gacacttctg aaactcagcc aaggacactt gatattttt aattacaatg 2900
gaagttaaa cattcttgc tgccacac aatggatggc tctcccttaag 2950
tgaagaaaga gtcaatgaga tttgccag cacatggagc tctaattccag 3000
agagaaggaa acgttagaaat ttattattaa aagaatggac tgtgcagcga 3050
aatctgtacg gttctgtgca aagagggttt ttgccagcct gaactatatt 3100
taagagactt tgt 3113

<210> 375
<211> 816
<212> PRT
<213> Homo sapiens

<400> 375
Met Leu Asn Ser Asn Val Leu Leu Trp Leu Thr Ala Leu Ala Ile
1 5 10 15

Lys Phe Thr Leu Ile Asp Ser Gln Ala Gln Tyr Pro Val Val Asn
20 25 30

Thr Asn Tyr Gly Lys Ile Arg Gly Leu Arg Thr Pro Leu Pro Asn
35 40 45

Glu Ile Leu Gly Pro Val Glu Gln Tyr Leu Gly Val Pro Tyr Ala
50 55 60

Ser Pro Pro Thr Gly Glu Arg Arg Phe Gln Pro Pro Glu Pro Pro
65 70 75

Ser Ser Trp Thr Gly Ile Arg Asn Thr Thr Gln Phe Ala Ala Val
80 85 90

Cys Pro Gln His Leu Asp Glu Arg Ser Leu Leu His Asp Met Leu
95 100 105

Pro Ile Trp Phe Thr Ala Asn Leu Asp Thr Leu Met Thr Tyr Val
110 115 120

Gln Asp Gln Asn Glu Asp Cys Leu Tyr Leu Asn Ile Tyr Val Pro
125 130 135

Thr Glu Asp Gly Ala Asn Thr Lys Lys Asn Ala Asp Asp Ile Thr
140 145 150

Ser Asn Asp Arg Gly Glu Asp Glu Asp Ile His Asp Gln Asn Ser
155 160 165

Lys Lys Pro Val Met Val Tyr Ile His Gly Gly Ser Tyr Met Glu
170 175 180

Gly Thr Gly Asn Met Ile Asp Gly Ser Ile Leu Ala Ser Tyr Gly
185 190 195

Asn Val Ile Val Ile Thr Ile Asn Tyr Arg Leu Gly Ile Leu Gly
200 205 210

Phe Leu Ser Thr Gly Asp Gln Ala Ala Lys Gly Asn Tyr Gly Leu
215 220 225

Leu Asp Gln Ile Gln Ala Leu Arg Trp Ile Glu Glu Asn Val Gly
230 235 240

Ala Phe Gly Gly Asp Pro Lys Arg Val Thr Ile Phe Gly Ser Gly
245 250 255

Ala Gly Ala Ser Cys Val Ser Leu Leu Thr Leu Ser His Tyr Ser
260 265 270

Glu Gly Leu Phe Gln Lys Ala Ile Ile Gln Ser Gly Thr Ala Leu
275 280 285

Ser Ser Trp Ala Val Asn Tyr Gln Pro Ala Lys Tyr Thr Arg Ile
290 295 300

Leu Ala Asp Lys Val Gly Cys Asn Met Leu Asp Thr Thr Asp Met
305 310 315

Val Glu Cys Leu Arg Asn Lys Asn Tyr Lys Glu Leu Ile Gln Gln
320 325 330

Thr Ile Thr Pro Ala Thr Tyr His Ile Ala Phe Gly Pro Val Ile
335 340 345

Asp Gly Asp Val Ile Pro Asp Asp Pro Gln Ile Leu Met Glu Gln
350 355 360

Gly Glu Phe Leu Asn Tyr Asp Ile Met Leu Gly Val Asn Gln Gly
365 370 375

Glu Gly Leu Lys Phe Val Asp Gly Ile Val Asp Asn Glu Asp Gly
380 385 390

Val Thr Pro Asn Asp Phe Asp Phe Ser Val Ser Asn Phe Val Asp
395 400 405

Asn Leu Tyr Gly Tyr Pro Glu Gly Lys Asp Thr Leu Arg Glu Thr
410 415 420

Ile Lys Phe Met Tyr Thr Asp Trp Ala Asp Lys Glu Asn Pro Glu
425 430 435

Thr Arg Arg Lys Thr Leu Val Ala Leu Phe Thr Asp His Gln Trp
440 445 450

Val Ala Pro Ala Val Ala Ala Asp Leu His Ala Gln Tyr Gly Ser
455 460 465

Pro Thr Tyr Phe Tyr Ala Phe Tyr His His Cys Gln Ser Glu Met
470 475 480

Lys Pro Ser Trp Ala Asp Ser Ala His Gly Asp Glu Val Pro Tyr
485 490 495

Val Phe Gly Ile Pro Met Ile Gly Pro Thr Glu Leu Phe Ser Cys
500 505 510

Asn Phe Ser Lys Asn Asp Val Met Leu Ser Ala Val Val Met Thr
515 520 525

Tyr Trp Thr Asn Phe Ala Lys Thr Gly Asp Pro Asn Gln Pro Val
530 535 540

Pro Gln Asp Thr Lys Phe Ile His Thr Lys Pro Asn Arg Phe Glu
545 550 555

Glu Val Ala Trp Ser Lys Tyr Asn Pro Lys Asp Gln Leu Tyr Leu
560 565 570

His Ile Gly Leu Lys Pro Arg Val Arg Asp His Tyr Arg Ala Thr
575 580 585

Lys Val Ala Phe Trp Leu Glu Leu Val Pro His Leu His Asn Leu
590 595 600

Asn Glu Ile Phe Gln Tyr Val Ser Thr Thr Lys Val Pro Pro
605 610 615

Pro Asp Met Thr Ser Phe Pro Tyr Gly Thr Arg Arg Ser Pro Ala
620 625 630

Lys Ile Trp Pro Thr Thr Lys Arg Pro Ala Ile Thr Pro Ala Asn
635 640 645

Asn Pro Lys His Ser Lys Asp Pro His Lys Thr Gly Pro Glu Asp
650 655 660

Thr Thr Val Leu Ile Glu Thr Lys Arg Asp Tyr Ser Thr Glu Leu
665 670 675

Ser Val Thr Ile Ala Val Gly Ala Ser Leu Leu Phe Leu Asn Ile
680 685 690

Leu Ala Phe Ala Ala Leu Tyr Tyr Lys Asp Lys Arg Arg His
695 700 705

Glu Thr His Arg Arg Pro Ser Pro Gln Arg Asn Thr Thr Asn Asp
710 715 720

Ile Ala His Ile Gln Asn Glu Glu Ile Met Ser Leu Gln Met Lys
725 730 735

Gln Leu Glu His Asp His Glu Cys Glu Ser Leu Gln Ala His Asp
740 745 750

Thr Leu Arg Leu Thr Cys Pro Pro Asp Tyr Thr Leu Thr Leu Arg
755 760 765

Arg Ser Pro Asp Asp Ile Pro Leu Met Thr Pro Asn Thr Ile Thr
770 775 780

Met Ile Pro Asn Thr Leu Thr Gly Met Gln Pro Leu His Thr Phe
785 790 795

Asn Thr Phe Ser Gly Gly Gln Asn Ser Thr Asn Leu Pro His Gly
800 805 810

His Ser Thr Thr Arg Val
815

<210> 376

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 376

ggcaagctac ggaaacgtca tcgtg 25

<210> 377

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 377

aacccccc gag ccaaaagatg gtcac 25

<210> 378

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 378

gtaccggta ccaggcagca aaaggcaact atgggctcct ggatcag 47

<210> 379

<211> 2461

<212> DNA

<213> Homo sapiens

<400> 379

ggaaagatg gcggcgactc tgggacccct tgggtcggtgg cagcagtggc 50

ggcgatgtt gtcggctcggtt gatgggtcca ggtgttact ccttcttctt 100

tttgtgggt ctgggcaggg gccacagcaa gtcggggcgg gtcaaacgtt 150

cgagtacttg aaacgggagc actcgctgtc gaagccctac caggggtgtgg 200

gcacaggcag ttccctactg tggaatctga tggcaatgc catggtgatg 250

acccagtata tccgccttac cccagatatg caaagtaaac aggggcctt 300

gtgaaaccgg gtgccatgtt tcctgagaga ctgggagttt caggtgcact 350

tcaaaatcca tggacaaggg aagaagaatc tgcatgggta tggcttggca 400

atctggtaca caaaggatcg gatgcagcca gggctgtgt ttggaaacat 450

ggacaaattt gtggggctgg gaggattttt agacacctac cccaatgagg 500

agaagcagca agagcgggta ttccctaca tctcagccat ggtgaacaac 550

ggctccctca gctatgatca tgagcgggat gggcggcta cagagctggg 600

aggctgcaca gccattgtcc gcaatcttca ttacgacacc ttctggta 650

ttcgctacgt caagaggcat ttgacgataa tggatggat tggcaag 700

catgagtggaa gggactgcat tgaagtcccc ggagtccgccc tgccccgcgg 750

ctactacttc ggcacccctt ccatcactgg ggatctctca gataatcatg 800

atgcatttc ttgaaaggatgg ttgaaactga cagtggagag aaccccgaaa 850

gaggaaaagc tccatcgaga tgtgtcttg ccctcagtgg acaatatgaa 900

gctgcctgag atgacagctc cactgccgcc cctgagtggt ctggccctct 950
tcctcatcgat cttttctcc ctgggtttt ctgtatttgc catagtcatt 1000
ggtatcatac tctacaacaa atggcaggaa cagagccgaa agcgcttcta 1050
ctgagccctc ctgctgccac cactttgtg actgtcaccc atgaggtatg 1100
gaaggagcag gcactggcct gagcatgcag cctggagagt gttcttgtct 1150
ctagcagctg gttggggact atattctgtc actggagttt tgaatgcagg 1200
gaccggcat tcccatgggt gtgcattggg acatctaact ctggctggg 1250
aagccaccca ccccaggca atgctgctgt gatgtgcctt tccctgcagt 1300
ccttccatgt gggaggcagag gtgtgaagag aatttacgtg gttgtatgc 1350
caaaatcaca gaacagaatt tcatagccca ggctgcccgtt ttgttgact 1400
cagaaggccc ttctacttca gtttgaatc cacaagaat taaaaactgg 1450
taacaccaca ggcttctga ccatccattc gttgggtttt gcatttgacc 1500
caaccctctg cttacactgag gagcttcctt tgaaaccag gatggaaact 1550
tctccctgc cttacacttcc ttctactcca ttcatgtcc tctctgtgt 1600
caacctgagc tggaaaggc atttggatgc ctctctgtt gggcctgggg 1650
ctgcagaaca cacctgcgtt tcactggcct tcatttaggtg gccctaggga 1700
gatggcttgc tgctttggat cactgttccc tagcatgggt ctgggtctta 1750
ttggcatgtc catggcccttc ccaatcaagt ctctcaggc ctcagtgaa 1800
gttggctaa aggttgggtt aaaaatcaag agaaggctgg aagacatcat 1850
ggatgccatg gattagctgt gcaactgacc agctccaggt ttgatcaaç 1900
caaaagcaac atttgcattt tggctgttgc accatggat gtttctggac 1950
ttgcttaggc ctgcttagct gcatgtttt tagttacgtt ttttggatc 2000
ccactttgag tgctgaaagt gtaaggaagc ttcttctta cacctgggc 2050

ttggatattg cccagagaag aaatttggct tttttttct taatggacaa 2100
gagacagttg ctgttctcat gttccaagtc tgagagcaac agaccctcat 2150
catctgtgcc tggaagagtt cactgtcatt gagcagcaca gcctgagtgc 2200
tgccctctgt caacccttat tccactgcct tatttgacaa gggttacat 2250
gctgctcacc ttactgccct gggattaaat cagttacagg ccagagtctc 2300
cttggagggc ctggaactct gagtccctc atgaacctct gtgcctaaa 2350
tgaattctt aaaatcaccg atggaaccaa aaaaaaaaaa aaaaaggcgc 2400
gcccgactc tagatcgac ctgcagtagg gataacaggg taataagctt 2450
ggccgcccattg g 2461

<210> 380

<211> 348

<212> PRT

<213> Homo sapiens

<400> 380

Met Ala Ala Thr Leu Gly Pro Leu Gly Ser Trp Gln Gln Trp Arg
1 5 10 15

Arg Cys Leu Ser Ala Arg Asp Gly Ser Arg Met Leu Leu Leu
20 25 30

Leu Leu Leu Gly Ser Gly Gln Gly Pro Gln Gln Val Gly Ala Gly
35 40 45

Gln Thr Phe Glu Tyr Leu Lys Arg Glu His Ser Leu Ser Lys Pro
50 55 60

Tyr Gln Gly Val Gly Thr Gly Ser Ser Ser Leu Trp Asn Leu Met
65 70 75

Gly Asn Ala Met Val Met Thr Gln Tyr Ile Arg Leu Thr Pro Asp
80 85 90

Met Gln Ser Lys Gln Gly Ala Leu Trp Asn Arg Val Pro Cys Phe
95 100 105

Leu Arg Asp Trp Glu Leu Gln Val His Phe Lys Ile His Gly Gln
110 115 120

Gly Lys Lys Asn Leu His Gly Asp Gly Leu Ala Ile Trp Tyr Thr
125 130 135

Lys Asp Arg Met Gln Pro Gly Pro Val Phe Gly Asn Met Asp Lys
140 145 150

Phe Val Gly Leu Gly Val Phe Val Asp Thr Tyr Pro Asn Glu Glu
155 160 165

Lys Gln Gln Glu Arg Val Phe Pro Tyr Ile Ser Ala Met Val Asn
170 175 180

Asn Gly Ser Leu Ser Tyr Asp His Glu Arg Asp Gly Arg Pro Thr
185 190 195

Glu Leu Gly Gly Cys Thr Ala Ile Val Arg Asn Leu His Tyr Asp
200 205 210

Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu Thr Ile Met
215 220 225

Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile Glu Val
230 235 240

Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser Ser
245 250 255

Ile Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys
260 265 270

Leu Phe Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Lys Leu
275 280 285

His Arg Asp Val Phe Leu Pro Ser Val Asp Asn Met Lys Leu Pro
290 295 300

Glu Met Thr Ala Pro Leu Pro Pro Leu Ser Gly Leu Ala Leu Phe
305 310 315

Leu Ile Val Phe Phe Ser Leu Val Phe Ser Val Phe Ala Ile Val
320 325 330

Ile Gly Ile Ile Leu Tyr Asn Lys Trp Gln Glu Gln Ser Arg Lys
335 340 345

Arg Phe Tyr

<210> 381

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 381

ccttgggtcg tggcagcagt gg 22

<210> 382

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 382

cactctccag gctgcatgct cagg 24

<210> 383

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 383

gtcaaacgtt cgagtacttg aaacgggagc actcgctgtc gaagc 45

<210> 384

<211> 3150

<212> DNA

<213> Homo sapiens

<400> 384

ccgagccggg cgccgcaggca cggagctggg gccggcctgg gaccatggc 50
gtgagtgcaa tctacggatc agtctctgat ggtgggtcgtaaacctcagt 100
ggggactcca agattccat gaagaaaatc agttgtcttc attcaagaat 150
tggggctgg ctcagaattc ctgcagctgg tgaaaatctg tttcttagaa 200
gagggttaat taatgcctgc agtctgacat gttcccgatt tgaggtaaa 250
ccatgaagag aaaatagaat acttaataat gctttccgc aaccgcttct 300
tgctgctgct ggccctggct gcgctgctgg ccttttgag cctcagcctg 350
cagttctcc acctgatccc ggtgtcgact cctaagaatg gaatgagtag 400
caagagtcga aagagaatca tgcccgaccc tgtgacggag cccctgtga 450
cagaccccg ttagtggact cttttgtact gcaacatccc cagtgtggcc 500
gagcgcagca tggaaggta tgccccgcat catttaagc tggctcagt 550
gcatgtgttc attcgccacg gagacaggta cccactgtat gtcattccca 600
aaacaaagcg accagaaatt gactgcactc tggggctaa cagggaaaccg 650
tatcacccaa aactggaagc ttccatttgt cacatgtcaa aaggatccgg 700
agccttttc gaaagccct tgaactcctt gcctctttac ccaaattcacc 750
cattgtgtga gatgggagag ctcacacaga caggagttgt gcagcatttg 800
cagaacggtc agctgctgag ggatatctat ctaaagaaac acaaactcct 850
gcccaatgtatggctcag accagctcta tttagagacc actggaaaa 900
gccggaccct acaaagtggg ctggccttgc ttatggctt tctccagat 950
tttgcgttga agaagattta ttccaggcac cagccaagtgcgtgttctg 1000
ctctggaaagc tgctattgcc cggttggaaa ccagtatctg gaaaaggagc 1050
agcgtcgta gtacccctta cggttggaaa acagccagct ggagaagacc 1100
tacggggaga tggccaaatgtatggatgtc cccaccaagc agcttagagc 1150

tgccaacccc atagactcca tgctctgcca cttctgccac aatgtcagct 1200
ttccctgtac cagaaatggc tgtgttgaca tggaggactt caaggtaatt 1250
aagaccatc agatcgagga tgaaaggaa agacgggaga agaaattgt 1300
cttcgggtat tctctccctgg gtgcccaccc catcctgaac caaaccatcg 1350
gccggatgca gcgtgccacc gagggcagga aagaagagct ctttgcctc 1400
tactctgctc atgatgtcac tctgtcacca gttctcagtg ctttggcct 1450
ttcagaagcc aggttcccaa ggttgcagc cagttgatc tttagcttt 1500
ggcaagacag agaaaagccc agtgaacatt ccgtccggat tctttacaat 1550
ggcgtcgatg tcacattcca cacctcttc tgccaagacc accacaagcg 1600
ttctcccaag cccatgtgcc cgcttgaaaa ctggccgc ttgtgaaaa 1650
gggacatgtt tgtagccctg ggtggcagtg gtacaaatta ttatgatgca 1700
tgtcacaggg aaggattcta aaaggatgc agtacagcag tatagaatcc 1750
atgccaatac agagcatagg gaaaggcaca cttctagttt tgtctgtac 1800
taagggtaga agattattgc ttttaaagg ctaaatattt ttgtggaa 1850
ccacagatgg ttgggttga acagtaagca cattgctgca atgtggtagc 1900
tgaattgctt ggtacaaaat ggccagttca cagaggaata gaaggtactt 1950
tatcatagcc agacttcgct tagaatgcca gaataatata gttcaagacc 2000
tgaagttgcc aatccaagtt tgcactcttc tggcctgccc catgttacta 2050
tgtgatggaa ccagcacacc tcaacccaaa ttttttaat cttagacatt 2100
tttaccttgt ctttgttaag aattcttga agtgatttat ctaaaataaa 2150
ggttggcaaa cttttctgt aaaggccag attgtaaata ttgcagactg 2200
tgtggacca aaggccacat acagtcttg tcataactac tcaactctgt 2250
ttctgaagca ggaaagccac cacagacagt acataaagga atatgttag 2300

ctgggttccc aggccagaca aaacagatgg tgaccagact tggccctgg 2350

gctgttagttt gctgaccct catctaaaaa ataggctata ctacaattgc 2400

acttccagca ctttgagaac gagttgaata ccaagaatta ttcaatggtt 2450

cctccagtaa cttcgtctag aaacacagaa ttggctgt atctgacact 2500

agaacaaaac ttgagggtaa ataaacattg aattagaatg aatcatagaa 2550

aactgattag aagaatactt gatgttatg atgattgtgg tacaagatag 2600

tttaagtat gtctaaata ttgtctgt gtatctatt tgctgtatat 2650

gctgaaattt ttgtatgcca tttagtattt ttatagttt ggaaaatatt 2700

ttctaagacc agtttagat gactcttatt cctgttagtaa tattcaattt 2750

gctgtacctg ctggfgggtt agaaggaggc tagaagatga attcaggcac 2800

tttcctccaa taaaactaat tatggctcat tcccttgac aagctgtaga 2850

actggattca ttttaaacc atttcatca gtttcaaattg gtaaattctg 2900

attgattttt aaatgcgttt ttgagaagaac ttgctattt ggtagttac 2950

agatctttat aaggtgtttt atatattaga agcaattata attacatctg 3000

tgatttctga actaatggtg ctaattcaga gaaatggaaa gtgaaagtga 3050

gattctctgt tgtcatcgcc attccaactt ttctctttt ttttgtcca 3100

gtgtgcatt tgaatatgtc tggctata aataaatttt ttaagaataa 3150

<210> 385

<211> 480

<212> PRT

<213> Homo sapiens

<400> 385

Met Leu Phe Arg Asn Arg Phe Leu Leu Leu Ala Leu Ala Ala

1 5 10 15

Leu Leu Ala Phe Val Ser Leu Ser Leu Gln Phe Phe His Leu Ile

20 25 30

Pro Val Ser Thr Pro Lys Asn Gly Met Ser Ser Lys Ser Arg Lys
35 40 45

Arg Ile Met Pro Asp Pro Val Thr Glu Pro Pro Val Thr Asp Pro
50 55 60

Val Tyr Glu Ala Leu Leu Tyr Cys Asn Ile Pro Ser Val Ala Glu
65 70 75

Arg Ser Met Glu Gly His Ala Pro His His Phe Lys Leu Val Ser
80 85 90

Val His Val Phe Ile Arg His Gly Asp Arg Tyr Pro Leu Tyr Val
95 100 105

Ile Pro Lys Thr Lys Arg Pro Glu Ile Asp Cys Thr Leu Val Ala
110 115 120

Asn Arg Lys Pro Tyr His Pro Lys Leu Glu Ala Phe Ile Ser His
125 130 135

Met Ser Lys Gly Ser Gly Ala Ser Phe Glu Ser Pro Leu Asn Ser
140 145 150

Leu Pro Leu Tyr Pro Asn His Pro Leu Cys Glu Met Gly Glu Leu
155 160 165

Thr Gln Thr Gly Val Val Gln His Leu Gln Asn Gly Gln Leu Leu
170 175 180

Arg Asp Ile Tyr Leu Lys Lys His Lys Leu Leu Pro Asn Asp Trp
185 190 195

Ser Ala Asp Gln Leu Tyr Leu Glu Thr Thr Gly Lys Ser Arg Thr
200 205 210

Leu Gln Ser Gly Leu Ala Leu Leu Tyr Gly Phe Leu Pro Asp Phe
215 220 225

Asp Trp Lys Lys Ile Tyr Phe Arg His Gln Pro Ser Ala Leu Phe
230 235 240

Cys Ser Gly Ser Cys Tyr Cys Pro Val Arg Asn Gln Tyr Leu Glu
245 250 255

Lys Glu Gln Arg Arg Gln Tyr Leu Leu Arg Leu Lys Asn Ser Gln
260 265 270

Leu Glu Lys Thr Tyr Gly Glu Met Ala Lys Ile Val Asp Val Pro
275 280 285

Thr Lys Gln Leu Arg Ala Ala Asn Pro Ile Asp Ser Met Leu Cys
290 295 300

His Phe Cys His Asn Val Ser Phe Pro Cys Thr Arg Asn Gly Cys
305 310 315

Val Asp Met Glu His Phe Lys Val Ile Lys Thr His Gln Ile Glu
320 325 330

Asp Glu Arg Glu Arg Arg Glu Lys Lys Leu Tyr Phe Gly Tyr Ser
335 340 345

Leu Leu Gly Ala His Pro Ile Leu Asn Gln Thr Ile Gly Arg Met
350 355 360

Gln Arg Ala Thr Glu Gly Arg Lys Glu Glu Leu Phe Ala Leu Tyr
365 370 375

Ser Ala His Asp Val Thr Leu Ser Pro Val Leu Ser Ala Leu Gly
380 385 390

Leu Ser Glu Ala Arg Phe Pro Arg Phe Ala Ala Arg Leu Ile Phe
395 400 405

Glu Leu Trp Gln Asp Arg Glu Lys Pro Ser Glu His Ser Val Arg
410 415 420

Ile Leu Tyr Asn Gly Val Asp Val Thr Phe His Thr Ser Phe Cys
425 430 435

Gln Asp His His Lys Arg Ser Pro Lys Pro Met Cys Pro Leu Glu
440 445 450

Asn Leu Val Arg Phe Val Lys Arg Asp Met Phe Val Ala Leu Gly
455 460 465

Gly Ser Gly Thr Asn Tyr Tyr Asp Ala Cys His Arg Glu Gly Phe
470 475 480

<210> 386
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 386
ccaaggcagct tagagctccca gacc 24

<210> 387
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 387
ttccctatgc tctgtattgg catgg 25

<210> 388
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 388
gccacttctg ccacaatgtc agctttccct gtaccagaaa tggctgtgtt 50

<210> 389
<211> 3313
<212> DNA
<213> Homo sapiens

<400> 389
aaaaaaagctc actaaagttt ctattagagc gaatacggtt gattccatc 50

ccctttgaa gaacagtact gtggagctat ttaagagata aaaacgaaat 100
atcccttctg ggagttcaag attgtgcagt aattggtagt gactctgagc 150

gccgctgttc accaatcggg gagagaaaaag cgagatcct gtcgccttg 200
cacgcgcctg aagcacaaag cagatagcta ggaatgaacc atccctggga 250
gtatgtggaa acaacggagg agctctgact tcccaactgt cccattctat 300
ggcgaagga actgctcctg acttcagtgg ttaagggcag aattgaaaat 350
aattctggag gaagataaga atgattcctg cgcgactgca cgggactac 400
aaaggccttg tcctgctggg aatcctcctg gggactctgt gggagaccgg 450
atgcacccag atacgctatt cagttccgga agagctggag aaaggctcta 500
gggtggcga catctccagg gacctggggc tggagccccg ggagctcgcg 550
gagcgcggag tccgcatcat ccccagaggt aggacgcagc tttcgccct 600
gaatccgcgc agcggcagct tggtcacggc gggcaggata gaccgggagg 650
agctctgtat gggggccatc aagtgtcaat taaatctaga cattctgatg 700
gaggataaag taaaaatata tggagtagaa gttagaagtaa gggacattaa 750
cgacaatgcg ctttactttc gtgaaagtga attagaaata aaaatttagt 800
aaaatgcagc cactgagatg cggttccctc tacccacgc ctggatccg 850
gatatcggga agaactctct gcagagctac gagctcagcc cgaacactca 900
cttctccctc atcgtgcaaa atggagccga cggttagtaag taccccaat 950
tggtgctgaa acgcgcctg gaccgcgaag aaaaggctgc tcaccacctg 1000
gtccttacgg cctccgacgg gggcgaccccg gtgcgcacag gcaccgcgc 1050
catccgcgtg atggttctgg atgcgaacga caacgcacca gcgtttgctc 1100
agcccgagta ccgcgcgagc gttccggaga atctggcctt gggcacgcag 1150
ctgctttagt tcaacgctac cgaccctgac gaaggagtca atgcggaagt 1200
gaggtattcc ttccggatg tggacgacaa ggcggccaa gtttcaaac 1250
tagattgtaa ttcaaggaca atatcaacaa tagggagtt ggaccacgag 1300

gagtcaggat tctaccagat ggaagtcaa gcaatggata atgcaggata 1350
ttctgcgcga gccaaagtcc tgatcactgt tctggacgtg aacgacaatg 1400
ccccagaagt ggtcctcacc tctctcgcca gctcggttcc cgaaaactct 1450
cccagaggga cattaattgc ccctttaaat gtaaatgacc aagattctga 1500
ggaaaacgga caggtgatct gttcatcca agggaaatctg ccctttaaat 1550
tagaaaaatc ttacggaaat tactatagtt tagtcacaga catagtcttg 1600
gatagggAAC aggttcctag ctacaacatc acagtgaccg ccactgaccg 1650
gggaaccccg cccctatcca cggaaactca tatctcgctg aacgtggcag 1700
acaccaacga caacccgccc gtctccctc aggccctcta ttccgcttat 1750
atcccagaga acaatcccAG aggagttcc ctcgtcttg tgaccgccc 1800
cgaccccgac tgtgaagaga acgcccAGAT cacttattcc ctggctgaga 1850
acaccatcca aggggcaAGC ctatcgctt acgtgtccat caactccgac 1900
actgggtac tgtatgcgcgt gagctccctc gactacgagc agttccgaga 1950
cttgcaagtg aaagtgtatgg cgcgggacAA cgggcaccccg cccctcagca 2000
gcaacgtgtc gttgagcctg ttctgtgttgg accagaacga caatgcgc 2050
gagatcctgt accccgcctt ccccacggac gggtccactg gcgtggagct 2100
ggctccccgc tccgcagagc cggctacct ggtgaccaag gtgggtggcgg 2150
tggacagaga ctccggccag aacgcctggc tgccttaccg tctgctcaag 2200
gccagcgagc cgggactctt ctgggtgggt ctgcacacgg gcgagggtgc 2250
cacggcgcga gcccgtgttgg acagagacgc gctcaaggcag agcctcgtag 2300
tggccgtcca ggaccacggc cagccccctc tctccgcac tgcacgttc 2350
accgtggccg tggccgacag catcccccaa gtccgtggcgg acctcgccag 2400
cctcgagtc tccagctaact ctgaaacctc agacactact ctgtacctgg 2450

tggtagcggt ggccgcggtc tcctgcgtct tcctggcctt cgtcatcttg 2500
ctgctggcgc tcaggctgctg ggcgtggcac aagtacgccc tgctgcaggc 2550
ttcaggaggc ggcttgacag gagcgccggc gtgcacattt gtggcggtgg 2600
acggggtgca ggctttccctg cagacattt cccacgaggat ttccctcacc 2650
acggactcgc ggaagagtc aactgatcttccccagccca actatgcaga 2700
catgctcgta agccaggaga gcttgaaaaa aagcgagccc cttttgctgt 2750
caggtgattt ggtattttctt aaagacatgc atggtaat tgaggtaatg 2800
ttatatcaaa tcttccttctt tttttttt aattgctctg tctcccaagc 2850
tggagtgcag cggtacgatc atagctcaact gcggcctcaa actccttaggc 2900
tcaagcaatt atcccaccctt tgccctcggt gtaacaggaa ctacaggatgc 2950
aagccaccta ctgtctgcctt atctatctat ctatctatctt atctatctat 3000
ctatctatctt atctatctat tttttttt tacagacggg agtctcacgc 3050
ctgtatccc agtactttgg gaggccgagg cgggtggatc acctgaggtt 3100
gggagtttga gaccagcctg accaacatgg agaaaaccccg tctataactaa 3150
aaaaatacaa aattagccgg gcgtgggtgt gcatgtctgt aatcccagct 3200
acttggagg ctgagtcagg agaattgtt taacctggga ggtggaggtt 3250
gcaatgagct gagattgtgc cattgcactc cagcctgggc aacaagagt 3300
aaactctatc tca 3313

<210> 390
<211> 916
<212> PRT
<213> Homo sapiens

<400> 390
Met Ile Pro Ala Arg Leu His Arg Asp Tyr Lys Gly Leu Val Leu

1 5 10 15

Leu Gly Ile Leu Leu Gly Thr Leu Trp Glu Thr Gly Cys Thr Gln
20 25 30

Ile Arg Tyr Ser Val Pro Glu Glu Leu Glu Lys Gly Ser Arg Val
35 40 45

Gly Asp Ile Ser Arg Asp Leu Gly Leu Glu Pro Arg Glu Leu Ala
50 55 60

Glu Arg Gly Val Arg Ile Ile Pro Arg Gly Arg Thr Gln Leu Phe
65 70 75

Ala Leu Asn Pro Arg Ser Gly Ser Leu Val Thr Ala Gly Arg Ile
80 85 90

Asp Arg Glu Glu Leu Cys Met Gly Ala Ile Lys Cys Gln Leu Asn
95 100 105

Leu Asp Ile Leu Met Glu Asp Lys Val Lys Ile Tyr Gly Val Glu
110 115 120

Val Glu Val Arg Asp Ile Asn Asp Asn Ala Pro Tyr Phe Arg Glu
125 130 135

Ser Glu Leu Glu Ile Lys Ile Ser Glu Asn Ala Ala Thr Glu Met
140 145 150

Arg Phe Pro Leu Pro His Ala Trp Asp Pro Asp Ile Gly Lys Asn
155 160 165

Ser Leu Gln Ser Tyr Glu Leu Ser Pro Asn Thr His Phe Ser Leu
170 175 180

Ile Val Gln Asn Gly Ala Asp Gly Ser Lys Tyr Pro Glu Leu Val
185 190 195

Leu Lys Arg Ala Leu Asp Arg Glu Glu Lys Ala Ala His His Leu
200 205 210

Val Leu Thr Ala Ser Asp Gly Gly Asp Pro Val Arg Thr Gly Thr
215 220 225

Ala Arg Ile Arg Val Met Val Leu Asp Ala Asn Asp Asn Ala Pro
230 235 240

Ala Phe Ala Gln Pro Glu Tyr Arg Ala Ser Val Pro Glu Asn Leu
245 250 255

Ala Leu Gly Thr Gln Leu Leu Val Val Asn Ala Thr Asp Pro Asp
260 265 270

Glu Gly Val Asn Ala Glu Val Arg Tyr Ser Phe Arg Tyr Val Asp
275 280 285

Asp Lys Ala Ala Gln Val Phe Lys Leu Asp Cys Asn Ser Gly Thr
290 295 300

Ile Ser Thr Ile Gly Glu Leu Asp His Glu Glu Ser Gly Phe Tyr
305 310 315

Gln Met Glu Val Gln Ala Met Asp Asn Ala Gly Tyr Ser Ala Arg
320 325 330

Ala Lys Val Leu Ile Thr Val Leu Asp Val Asn Asp Asn Ala Pro
335 340 345

Glu Val Val Leu Thr Ser Leu Ala Ser Ser Val Pro Glu Asn Ser
350 355 360

Pro Arg Gly Thr Leu Ile Ala Leu Leu Asn Val Asn Asp Gln Asp
365 370 375

Ser Glu Glu Asn Gly Gln Val Ile Cys Phe Ile Gln Gly Asn Leu
380 385 390

Pro Phe Lys Leu Glu Lys Ser Tyr Gly Asn Tyr Tyr Ser Leu Val
395 400 405

Thr Asp Ile Val Leu Asp Arg Glu Gln Val Pro Ser Tyr Asn Ile
410 415 420

Thr Val Thr Ala Thr Asp Arg Gly Thr Pro Pro Leu Ser Thr Glu
425 430 435

Thr His Ile Ser Leu Asn Val Ala Asp Thr Asn Asp Asn Pro Pro
440 445 450

Val Phe Pro Gln Ala Ser Tyr Ser Ala Tyr Ile Pro Glu Asn Asn
455 460 465

Pro Arg Gly Val Ser Leu Val Ser Val Thr Ala His Asp Pro Asp
470 475 480

Cys Glu Glu Asn Ala Gln Ile Thr Tyr Ser Leu Ala Glu Asn Thr
485 490 495

Ile Gln Gly Ala Ser Leu Ser Ser Tyr Val Ser Ile Asn Ser Asp
500 505 510

Thr Gly Val Leu Tyr Ala Leu Ser Ser Phe Asp Tyr Glu Gln Phe
515 520 525

Arg Asp Leu Gln Val Lys Val Met Ala Arg Asp Asn Gly His Pro
530 535 540

Pro Leu Ser Ser Asn Val Ser Leu Ser Leu Phe Val Leu Asp Gln
545 550 555

Asn Asp Asn Ala Pro Glu Ile Leu Tyr Pro Ala Leu Pro Thr Asp
560 565 570

Gly Ser Thr Gly Val Glu Leu Ala Pro Arg Ser Ala Glu Pro Gly
575 580 585

Tyr Leu Val Thr Lys Val Val Ala Val Asp Arg Asp Ser Gly Gln
590 595 600

Asn Ala Trp Leu Ser Tyr Arg Leu Leu Lys Ala Ser Glu Pro Gly
605 610 615

Leu Phe Ser Val Gly Leu His Thr Gly Glu Val Arg Thr Ala Arg
620 625 630

Ala Leu Leu Asp Arg Asp Ala Leu Lys Gln Ser Leu Val Val Ala
635 640 645

Val Gln Asp His Gly Gln Pro Pro Leu Ser Ala Thr Val Thr Leu
650 655 660

Thr Val Ala Val Ala Asp Ser Ile Pro Gln Val Leu Ala Asp Leu
665 670 675

Gly Ser Leu Glu Ser Pro Ala Asn Ser Glu Thr Ser Asp Leu Thr
680 685 690

Leu Tyr Leu Val Val Ala Val Ala Ala Val Ser Cys Val Phe Leu
695 700 705

Ala Phe Val Ile Leu Leu Leu Ala Leu Arg Leu Arg Arg Trp His
710 715 720

Lys Ser Arg Leu Leu Gln Ala Ser Gly Gly Gly Leu Thr Gly Ala
725 730 735

Pro Ala Ser His Phe Val Gly Val Asp Gly Val Gln Ala Phe Leu
740 745 750

Gln Thr Tyr Ser His Glu Val Ser Leu Thr Thr Asp Ser Arg Lys
755 760 765

Ser His Leu Ile Phe Pro Gln Pro Asn Tyr Ala Asp Met Leu Val
770 775 780

Ser Gln Glu Ser Phe Glu Lys Ser Glu Pro Leu Leu Leu Ser Gly
785 790 795

Asp Ser Val Phe Ser Lys Asp Ser His Gly Leu Ile Glu Val Ser
800 805 810

Leu Tyr Gln Ile Phe Phe Leu Phe Phe Asn Cys Ser Val Ser
815 820 825

Gln Ala Gly Val Gln Arg Tyr Asp His Ser Ser Leu Arg Pro Gln
830 835 840

Thr Pro Arg Leu Lys Gln Leu Ser His Leu Cys Leu Arg Cys Asn
845 850 855

Arg Asp Tyr Arg Cys Lys Pro Pro Thr Val Cys Leu Ser Ile Tyr
860 865 870

Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Leu Leu
875 880 885

Ser Cys Thr Asp Gly Ser Leu Thr Pro Val Ile Pro Val Leu Trp
890 895 900

Glu Ala Glu Ala Gly Gly Ser Pro Glu Val Gly Ser Leu Arg Pro
905 910 915

Ala

<210> 391

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 391

tccgtctctg tgaaccggccc cac 23

<210> 392

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 392

ctcgggcgca ttgtcggtct ggtc 24

<210> 393

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 393

ccgactgtga aagagaacgc cccagatcca cttgtcccc 40

<210> 394

<211> 999

<212> DNA

<213> Homo sapiens

<400> 394

cccaggctct agtgcaggag gagaaggagg aggagcagga ggtggagatt 50

cccagttaaa aggctccaga atcgtgtacc aggcagagaa ctgaagtact 100

gggcctcct ccactgggtc cgaatcagta ggtgaccccg cccctggatt 150
cttgaagacc tcaccatggg acgccccga cctcggtcg ccaagacgtg 200
gatgttcctg ctcttgctgg ggggagcctg ggcaggacac tccagggcac 250
aggaggacaa ggtgctgggg ggtcatgagt gccaaaccca ttgcagcc 300
tggcaggcgg ccttgttcca gggccagcaa ctactctgtg gcggtgttct 350
tgttagtgttgc aactgggtcc ttacagctgc ccactgtaaa aaaccgaaat 400
acacagtacg cctgggagac cacagctac agaataaaga tggcccagag 450
caagaataac ctgtggttca gtccatccca cacccctgct acaacagcag 500
cgatgtggag gaccacaacc atgatctgat gcttctcaa ctgcgtgacc 550
aggcatccct ggggtccaaa gtgaagccca tcagcctggc agatcatgc 600
acccagcctg gccagaagtg caccgtctca ggctggggca ctgtcaccag 650
tccccgagag aattttcctg acactctcaa ctgtgcagaa gtaaaaatct 700
ttccccagaa gaagtgtgag gatgttacc cggggcagat cacagatggc 750
atggtctgtg caggcagcag caaagggct gacacgtgcc agggcgattc 800
tggaggcccc ctgggtgtg atgggtcact ccagggcatc acatcctggg 850
gctcagaccc ctgtgggagg tccgacaaac ctggcgtcta taccaacatc 900
tgccgctacc tggactggat caagaagatc ataggcagca agggctgatt 950
ctaggataag cactagatct cccttaataa actcacaact ctctggttc 999

<210> 395

<211> 260

<212> PRT

<213> Homo sapiens

<400> 395

Met Gly Arg Pro Arg Pro Arg Ala Ala Lys Thr Trp Met Phe Leu

1

5

10

15

Leu Leu Leu Gly Gly Ala Trp Ala Gly His Ser Arg Ala Gln Glu
20 25 30

Asp Lys Val Leu Gly Gly His Glu Cys Gln Pro His Ser Gln Pro
35 40 45

Trp Gln Ala Ala Leu Phe Gln Gly Gln Gln Leu Leu Cys Gly Gly
50 55 60

Val Leu Val Gly Gly Asn Trp Val Leu Thr Ala Ala His Cys Lys
65 70 75

Lys Pro Lys Tyr Thr Val Arg Leu Gly Asp His Ser Leu Gln Asn
80 85 90

Lys Asp Gly Pro Glu Gln Glu Ile Pro Val Val Gln Ser Ile Pro
95 100 105

His Pro Cys Tyr Asn Ser Ser Asp Val Glu Asp His Asn His Asp
110 115 120

Leu Met Leu Leu Gln Leu Arg Asp Gln Ala Ser Leu Gly Ser Lys
125 130 135

Val Lys Pro Ile Ser Leu Ala Asp His Cys Thr Gln Pro Gly Gln
140 145 150

Lys Cys Thr Val Ser Gly Trp Gly Thr Val Thr Ser Pro Arg Glu
155 160 165

Asn Phe Pro Asp Thr Leu Asn Cys Ala Glu Val Lys Ile Phe Pro
170 175 180

Gln Lys Lys Cys Glu Asp Ala Tyr Pro Gly Gln Ile Thr Asp Gly
185 190 195

Met Val Cys Ala Gly Ser Ser Lys Gly Ala Asp Thr Cys Gln Gly
200 205 210

Asp Ser Gly Gly Pro Leu Val Cys Asp Gly Ala Leu Gln Gly Ile
215 220 225

Thr Ser Trp Gly Ser Asp Pro Cys Gly Arg Ser Asp Lys Pro Gly
230 235 240

Val Tyr Thr Asn Ile Cys Arg Tyr Leu Asp Trp Ile Lys Lys Ile
245 250 255

Ile Gly Ser Lys Gly
260

<210> 396

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 396

cagcctacag aataaagatg gccc 24

<210> 397

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 397

ggtgcaatga tctgccaggc tgat 24

<210> 398

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 398

agaaaataacct gtggttcagt ccatccaaa cccctgctac aacagcag 48

<210> 399

<211> 2236

<212> DNA

<213> Homo sapiens

<400> 399

ggcgccggtg caccgggccc gctgagcgcc tcctgcggcc cggccgtgc 50
gccccggccc gccgcgcccgc ccacgccccca accccggccc gcgcggcccta 100
gcccccgccc gggcccgccgc ccgcgcccgc gcccaggta gcgctccgcc 150
cgccgcgagg ccccggcccg gccccggccc gccccggccc ggccggccgg 200
ggaaccgggc ggattcctcg cgcttcaaacc cacctgatcc cataaaacat 250
tcatccccc ggccggccgc gctgcgagcg ccccgccagt ccgcggccgc 300
gccgcctcg ccctgtgcgc cctgcgcgc ctgcgcaccc gcggcccgag 350
cccagccaga gccggggcggga gcggagcgcg ccgagcctcg tcccgcggcc 400
gggcccggggc cggggccgtag cggccggcgcc tggatgcgga cccggccgcg 450
gggagacggg cggccggcc gaaacgactt tcagtcggcc acgcgcggcc 500
cccaaccct acgttataaga gggcgccgc tggagggagc cggctgtgg 550
catgggtgt gtggctgcag gcctggcagg tggcagcccc atgcccaggt 600
gcctgcgtat gctacaatga gccaaggta acgacaagct gccccagca 650
gggcctgcag gctgtggcccg tggcatccc tgctgccagc cagcgcatct 700
tcctgcacgg caaccgcatt tcgcatgtgc cagctgccag ctccgtgcc 750
tgccgcaacc tcaccatcct gtggctgcac tcgaatgtgc tggcccaat 800
tgtatgcggct gccttcactg gcctggccct cctggagcgag ctggacctca 850
gcgataatgc acagctccgg tctgtggacc ctgccacatt ccacggccgt 900
ggccgcctac acacgctgca cctggaccgc tgccgcgtgc aggagctggg 950
cccgccggctg ttccgcggcc tggctggccct gcagttacctc tacctgcagg 1000
acaacgcgct gcaggcactg cctgtatgaca cttccgcga cctggcaac 1050
ctcacacacc tccttcctgca cggcaaccgc atctccagcg tgcccgagcg 1100
cgcccttcgt gggctgcaca gcctcgaccg tctctactg caccagaacc 1150

gcgtggccca tgcacccg catgccttcc gigaccttgg ccgcctcatg 1200
acactctatc ttttgccaa caatctatca gcgctggccaa ctgaggccct 1250
ggccccctg cgtgccctgc agtacctttag gctcaacgac aacccttggg 1300
tgtgtactg ccgggcacgc ccactcttggg cctggctgca gaagtccgc 1350
ggctcccttcc cgaggtgcc ctgcagccctc ccgcaacgccc tggctggccg 1400
tgacctcaaa cgccttagctg ccaatgacct gcaggctgc gctgtggcca 1450
ccggccctta ccatccatc tggaccggca gggccaccga tgaggagccg 1500
ctggggcttc ccaagtgtcg ccagccagat gccgctgaca aggccctcagt 1550
actggaggct ggaagaccag cttcgccagg caatgcgtg aaggacgacg 1600
tgccgccccgg tgacagcccg ccggcaacg gctctggccc acggcacatc 1650
aatgactcac ccttgggac tctgcctggc tctgctgagc ccccgctcac 1700
tgcaagtgcgg cccgaggctt ccgagccacc agggttcccc acctcgcc 1750
ctcgccggag gccaggctgt tcacgcaaga accgcaccccg cagccactgc 1800
cgctctggcc aggcaggcag cgggggtggc gggactggtg actcagaagg 1850
ctcagggtgcc ctacccagcc tcacctgcag cctcacccccc ctggccctgg 1900
cgctgggtct gtggacagtgt ctggggccct gctgacccccc agcggacaca 1950
agagcgtgct cagcagccag gtgtgtgtac atacggggtc tctctccacg 2000
ccgccaagcc agccggccgg ccgacccgtg gggcaggcca ggccaggcc 2050
tccctgatgg acgcctgccc cccgccaccc ccatctccac cccatcatgt 2100
ttacagggtt cggccggcagc gtttgtcca gaacggccccc tcccaacccag 2150
atgcggtat atagagatat gcattttatt ttacttgtt aaaaatatcg 2200
gacgacgtgg aataaagagc tctttctta aaaaaa 2236

<211> 473

<212> PRT

<213> Homo sapiens

<400> 400

Met Lys Arg Ala Ser Ala Gly Gly Ser Arg Leu Leu Ala Trp Val

1 5 10 15

Leu Trp Leu Gln Ala Trp Gln Val Ala Ala Pro Cys Pro Gly Ala

20 25 30

Cys Val Cys Tyr Asn Glu Pro Lys Val Thr Thr Ser Cys Pro Gln

35 40 45

Gln Gly Leu Gln Ala Val Pro Val Gly Ile Pro Ala Ala Ser Gln

50 55 60

Arg Ile Phe Leu His Gly Asn Arg Ile Ser His Val Pro Ala Ala

65 70 75

Ser Phe Arg Ala Cys Arg Asn Leu Thr Ile Leu Trp Leu His Ser

80 85 90

Asn Val Leu Ala Arg Ile Asp Ala Ala Ala Phe Thr Gly Leu Ala

95 100 105

Leu Leu Glu Gln Leu Asp Leu Ser Asp Asn Ala Gln Leu Arg Ser

110 115 120

Val Asp Pro Ala Thr Phe His Gly Leu Gly Arg Leu His Thr Leu

125 130 135

His Leu Asp Arg Cys Gly Leu Gln Glu Leu Gly Pro Gly Leu Phe

140 145 150

Arg Gly Leu Ala Ala Leu Gln Tyr Leu Tyr Leu Gln Asp Asn Ala

155 160 165

Leu Gln Ala Leu Pro Asp Asp Thr Phe Arg Asp Leu Gly Asn Leu

170 175 180

Thr His Leu Phe Leu His Gly Asn Arg Ile Ser Ser Val Pro Glu

185 190 195

Arg Ala Phe Arg Gly Leu His Ser Leu Asp Arg Leu Leu His

200 205 210

Gln Asn Arg Val Ala His Val His Pro His Ala Phe Arg Asp Leu
215 220 225

Gly Arg Leu Met Thr Leu Tyr Leu Phe Ala Asn Asn Leu Ser Ala
230 235 240

Leu Pro Thr Glu Ala Leu Ala Pro Leu Arg Ala Leu Gln Tyr Leu
245 250 255

Arg Leu Asn Asp Asn Pro Trp Val Cys Asp Cys Arg Ala Arg Pro
260 265 270

Leu Trp Ala Trp Leu Gln Lys Phe Arg Gly Ser Ser Ser Glu Val
275 280 285

Pro Cys Ser Leu Pro Gln Arg Leu Ala Gly Arg Asp Leu Lys Arg
290 295 300

Leu Ala Ala Asn Asp Leu Gln Gly Cys Ala Val Ala Thr Gly Pro
305 310 315

Tyr His Pro Ile Trp Thr Gly Arg Ala Thr Asp Glu Glu Pro Leu
320 325 330

Gly Leu Pro Lys Cys Cys Gln Pro Asp Ala Ala Asp Lys Ala Ser
335 340 345

Val Leu Glu Pro Gly Arg Pro Ala Ser Ala Gly Asn Ala Leu Lys
350 355 360

Gly Arg Val Pro Pro Gly Asp Ser Pro Pro Gly Asn Gly Ser Gly
365 370 375

Pro Arg His Ile Asn Asp Ser Pro Phe Gly Thr Leu Pro Gly Ser
380 385 390

Ala Glu Pro Pro Leu Thr Ala Val Arg Pro Glu Gly Ser Glu Pro
395 400 405

Pro Gly Phe Pro Thr Ser Gly Pro Arg Arg Arg Pro Gly Cys Ser
410 415 420

Arg Lys Asn Arg Thr Arg Ser His Cys Arg Leu Gly Gln Ala Gly

425 430 435

Ser Gly Gly Gly Thr Gly Asp Ser Glu Gly Ser Gly Ala Leu
440 445 450

Pro Ser Leu Thr Cys Ser Leu Thr Pro Leu Gly Leu Ala Leu Val
455 460 465

Leu Trp Thr Val Leu Gly Pro Cys
470

<210> 401

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 401

tggctgccct gcagtacctc tacc 24

<210> 402

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 402

ccctgcaggt cattggcagc tagg 24

<210> 403

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 403

aggcactgcc tcatgcaccc ttccgcgacc tggcaacct cacac 45

<210> 404

<211> 2738

<212> DNA

<213> Homo sapiens

<400> 404

ggaagtccac ggggagcttg gatgc当地 ag ggaggacggc tgggtcctct 50

ggagaggact actcaactggc atatttctga ggtatctgta gaataaccac 100

agcctcagat actggggact ttacagtccc acagaaccgt cctccagga 150

agctgaatcc agcaagaaca atggaggcca gcgggaagct catttgcaga 200

caaaggcaag tccttttttc ct当地 ctggcttat ctctggcggg 250

cgcggcggaa cctagaagct attctgttgtt ggaggaaact gagggcagct 300

cctttgtcac caatttagca aaggacctgg gtctggagca gaggaaattc 350

tccaggcggg gggtagggt tgttccaga ggaaacaaac tacatttgca 400

gctcaatcag gagaccgcgg atttttgtctt aaatgagaaa ttggaccgtg 450

aggatctgtg cggcacaca gagccctgtg tgctacgtttt ccaagtgttg 500

ctagagagtc cttcgagtt tttcaagct gagctgcaag taatagacat 550

aaacgaccac tctccagttt ttctggacaa acaaatgttg gtgaaagtat 600

cagagagcag tcctcctggg actacgtttc ctctgaagaa tgccgaagac 650

ttagatgttag gccaacaaacaa tattgagaac tatataatca gccccaaactc 700

ctattttcgg gtcctcaccc gcaaacgcag tgatggcagg aaatacccg 750

agctggtgct ggacaaagcg ctggaccgag aggaagaagc tgagctcagg 800

ttaacactca cagcactgga tgggtggctct cc当地 cggcactgc 850

tcaggtctac atcgaagtcc tggatgtcaa cgataatgcc cctgaatttg 900

agcagcctt ctatagagtg cagatctctg aggacagtcc ggtaggcttc 950

ctgggttgtga aggtctctgc cacggatgtaa gacacaggag tcaacggaga 1000

gattcctat tcactttcc aagttcaga agagattgc aaaaccta 1050
agatcaatcc ttgtacagga gaaattgaac taaaaaaaca actcgattc 1100
gaaaaacttc agtcttatga agtcaatatt gaggcaagag atgctggaac 1150
ctttctgga aaatgcaccg ttctgattca agtgatagat gtgaacgacc 1200
atgccccaga agttaccatg tctgcattta ccagccaat acctgagaac 1250
gcgcctgaaa ctgtggttgc actttcagt gttcagatc ttgattcagg 1300
agaaaaatggg aaaatttagtt gtcattca ggaggatcta cccttcctcc 1350
tgaaatccgc gaaaaacttt tacaccctac taacggagag accactagac 1400
agagaaagca gagcggata caacatcaat atcactgtca ctgacttggg 1450
gaccctatg ctgataaacac agtcaatat gaccgtgctg atcgccgatg 1500
tcaatgacaa cgctccgccc ttccacccaaa ctcctacac cctgttcgtc 1550
cgcgagaaca acagccccgc cctgcacatc cgcatgtca gcgtacaga 1600
cagagactca ggcaccaacg cccaggcac ctactcgctg ctgccgcccc 1650
aggacccgca cctgcccctc acatccctgg tctccatcaa cgggacaac 1700
ggccacctgt tgccctcag gtctctggac tacgaggccc tgcaagggtt 1750
ccagttccgc gtggcgctt cagaccacgg ctcccccggcg ctgagcagcg 1800
aggcgctggc ggcgtgggt gtgcgtggacg ccaacgacaa ctgccttc 1850
gtgcgttacc cgctgcagaa cggctccgcg ccctgcaccc agctgggtcc 1900
ccggccggcc gagccggctt acctgggtac caagggtggc gcggtggacg 1950
gcgactcggg ccagaacgccc tggctgtcgaccagctgtcaaggccacg 2000
gagctcggtc tggtcggcgt gtggcgac aatggcgagg tgccacccgc 2050
caggctgctg agcgagcgcg acgcggccaa gcacaggctg gtggctgg 2100
tcaaggacaa tggcgagcct ccgcgcgtcg ccaccgcccac gtcgcacgtg 2150

ctcctggtgg acggcttc tc ccagccctac ctgcctc cc cggaggcggc 2200
cccgacccag gcccaggccg acttgctcac cgtctacctg gtggtggcgt 2250
tggcctcggt gtctcgctc ttccctttt cggtgctcct gttcgtggcg 2300
gtgcggctgt gttaggaggag cagggcggcc tcggtggc tc gctgcgttgt 2350
gcccgagggc cccctccag ggcatttgtt ggacatgagc ggcaccagga 2400
ccctatccca gagctaccag tatgaggtgt gtctggcagg aggctcaggg 2450
accaatgagt tcaagttcct gaagccgatt atccccact tccctcccc 2500
gtgccctggg aaagaataac aaggaaattt tacctcccc aataacttg 2550
ggtcaatat tcagtgacca tagttgactt ttacattcca taggtat 2600
attttgtggc atttccatgc caatgttat ttccccaat ttgtgtgtat 2650
gtaatattgt acggatttac tcttgatttt tctcatgttc ttctccctt 2700
tgtttaaag tgaacattta ccttattcc tggttctt 2738

<210> 405
<211> 798
<212> PRT
<213> Homo sapiens

<400> 405
Met Glu Ala Ser Gly Lys Leu Ile Cys Arg Gln Arg Gln Val Leu
1 5 10 15

Phe Ser Phe Leu Leu Leu Gly Leu Ser Leu Ala Gly Ala Ala Glu
20 25 30

Pro Arg Ser Tyr Ser Val Val Glu Glu Thr Glu Gly Ser Ser Phe
35 40 45

Val Thr Asn Leu Ala Lys Asp Leu Gly Leu Glu Gln Arg Glu Phe
50 55 60

Ser Arg Arg Gly Val Arg Val Val Ser Arg Gly Asn Lys Leu His
65 70 75

Leu Gln Leu Asn Gln Glu Thr Ala Asp Leu Leu Asn Glu Lys
80 85 90

Leu Asp Arg Glu Asp Leu Cys Gly His Thr Glu Pro Cys Val Leu
95 100 105

Arg Phe Gln Val Leu Leu Glu Ser Pro Phe Glu Phe Phe Gln Ala
110 115 120

Glu Leu Gln Val Ile Asp Ile Asn Asp His Ser Pro Val Phe Leu
125 130 135

Asp Lys Gln Met Leu Val Lys Val Ser Glu Ser Ser Pro Pro Gly
140 145 150

Thr Thr Phe Pro Leu Lys Asn Ala Glu Asp Leu Asp Val Gly Gln
155 160 165

Asn Asn Ile Glu Asn Tyr Ile Ile Ser Pro Asn Ser Tyr Phe Arg
170 175 180

Val Leu Thr Arg Lys Arg Ser Asp Gly Arg Lys Tyr Pro Glu Leu
185 190 195

Val Leu Asp Lys Ala Leu Asp Arg Glu Glu Glu Ala Glu Leu Arg
200 205 210

Leu Thr Leu Thr Ala Leu Asp Gly Gly Ser Pro Pro Arg Ser Gly
215 220 225

Thr Ala Gln Val Tyr Ile Glu Val Leu Asp Val Asn Asp Asn Ala
230 235 240

Pro Glu Phe Glu Gln Pro Phe Tyr Arg Val Gln Ile Ser Glu Asp
245 250 255

Ser Pro Val Gly Phe Leu Val Val Lys Val Ser Ala Thr Asp Val
260 265 270

Asp Thr Gly Val Asn Gly Glu Ile Ser Tyr Ser Leu Phe Gln Ala
275 280 285

Ser Glu Glu Ile Gly Lys Thr Phe Lys Ile Asn Pro Leu Thr Gly
290 295 300

Glu Ile Glu Leu Lys Lys Gln Leu Asp Phe Glu Lys Leu Gln Ser
305 310 315

Tyr Glu Val Asn Ile Glu Ala Arg Asp Ala Gly Thr Phe Ser Gly
320 325 330

Lys Cys Thr Val Leu Ile Gln Val Ile Asp Val Asn Asp His Ala
335 340 345

Pro Glu Val Thr Met Ser Ala Phe Thr Ser Pro Ile Pro Glu Asn
350 355 360

Ala Pro Glu Thr Val Val Ala Leu Phe Ser Val Ser Asp Leu Asp
365 370 375

Ser Gly Glu Asn Gly Lys Ile Ser Cys Ser Ile Gln Glu Asp Leu
380 385 390

Pro Phe Leu Leu Lys Ser Ala Glu Asn Phe Tyr Thr Leu Leu Thr
395 400 405

Glu Arg Pro Leu Asp Arg Glu Ser Arg Ala Glu Tyr Asn Ile Thr
410 415 420

Ile Thr Val Thr Asp Leu Gly Thr Pro Met Leu Ile Thr Gln Leu
425 430 435

Asn Met Thr Val Leu Ile Ala Asp Val Asn Asp Asn Ala Pro Ala
440 445 450

Phe Thr Gln Thr Ser Tyr Thr Leu Phe Val Arg Glu Asn Asn Ser
455 460 465

Pro Ala Leu His Ile Arg Ser Val Ser Ala Thr Asp Arg Asp Ser
470 475 480

Gly Thr Asn Ala Gln Val Thr Tyr Ser Leu Leu Pro Pro Gln Asp
485 490 495

Pro His Leu Pro Leu Thr Ser Leu Val Ser Ile Asn Ala Asp Asn
500 505 510

Gly His Leu Phe Ala Leu Arg Ser Leu Asp Tyr Glu Ala Leu Gln
515 520 525

Gly Phe Gln Phe Arg Val Gly Ala Ser Asp His Gly Ser Pro Ala
530 535 540

Leu Ser Ser Glu Ala Leu Val Arg Val Val Val Leu Asp Ala Asn
545 550 555

Asp Asn Ser Pro Phe Val Leu Tyr Pro Leu Gln Asn Gly Ser Ala
560 565 570

Pro Cys Thr Glu Leu Val Pro Arg Ala Ala Glu Pro Gly Tyr Leu
575 580 585

Val Thr Lys Val Val Ala Val Asp Gly Asp Ser Gly Gln Asn Ala
590 595 600

Trp Leu Ser Tyr Gln Leu Leu Lys Ala Thr Glu Leu Gly Leu Phe
605 610 615

Gly Val Trp Ala His Asn Gly Glu Val Arg Thr Ala Arg Leu Leu
620 625 630

Ser Glu Arg Asp Ala Ala Lys His Arg Leu Val Val Leu Val Lys
635 640 645

Asp Asn Gly Glu Pro Pro Arg Ser Ala Thr Ala Thr Leu His Val
650 655 660

Leu Leu Val Asp Gly Phe Ser Gln Pro Tyr Leu Pro Leu Pro Glu
665 670 675

Ala Ala Pro Thr Gln Ala Gln Ala Asp Leu Leu Thr Val Tyr Leu
680 685 690

Val Val Ala Leu Ala Ser Val Ser Ser Leu Phe Leu Phe Ser Val
695 700 705

Leu Leu Phe Val Ala Val Arg Leu Cys Arg Arg Ser Arg Ala Ala
710 715 720

Ser Val Gly Arg Cys Leu Val Pro Glu Gly Pro Leu Pro Gly His
725 730 735

Leu Val Asp Met Ser Gly Thr Arg Thr Leu Ser Gln Ser Tyr Gln
740 745 750

Tyr Glu Val Cys Leu Ala Gly Gly Ser Gly Thr Asn Glu Phe Lys
755 760 765

Phe Leu Lys Pro Ile Ile Pro Asn Phe Pro Pro Gln Cys Pro Gly
770 775 780

Lys Glu Ile Gln Gly Asn Ser Thr Phe Pro Asn Asn Phe Gly Phe
785 790 795

Asn Ile Gln

<210> 406

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 406

ctgagaacgc gcctgaaact gtg 23

<210> 407

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 407

agcggtgtca ttgacatcgg cg 22

<210> 408

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 408

ttagttgctc cattcaggag gatctaccct tcctcctgaa atccgcggaa 50

<210> 409
<211> 1379
<212> DNA
<213> Homo sapiens

<400> 409
accacacgcgt ccgcccacgc gtccgcccac gcgtccgccc acgcgtccgc 50
gcgtagccgt gcgccgattt ccttcggcc tggcaatgg tcccggtgc 100
cggtcgacga ccgccccgct tcatcggtc cctcggtgg tggcaagtat 150
tgctgtgggt gctgggactt cccgtccgct gcgtggaggt tgcagaggaa 200
agtggtcgt tatggtcaga ggagcagcct gctcacccctc tccaggtggg 250
ggctgtgtac ctgggtgagg aggagctcct gcatgacccg atgggccagg 300
acagggcagc agaagaggcc aatgcggtgtc tggggctgga caccaaggc 350
gatcacatgg ttagtgcgtc tgtgattcct gggaaagctg aggacaaaagt 400
gagttcagag cctagcggcg tcacctgtgg tgctggagga gcggaggact 450
caagggtcaa cgtccgagag agcctttct ctctggatgg cgctggagca 500
cacttccctg acagagaaga ggagtattac acagagccag aagtggcgga 550
atctgacgca gccccgacag aggactccaa taacactgaa agtctgaaat 600
ccccaaaggt gaactgtgag gagagaaaca ttacaggatt agaaaatttc 650
actctgaaaa tttaaatat gtcacaggac cttatggatt ttctgaaccc 700
aaacggtagt gactgtactc tagtcctgtt ttacaccccg tggtgccgct 750
ttctgccag ttggccctt cacttaact ctctgccccg ggcattcca 800
gctttcaact tttggact ggatgcatac cagcacagca gccttctac 850
caggtttggc accgtagctg ttcctaataat tttattttt caaggagcta 900
aaccaatggc cagatttaat catacagatc gaacactgga aacactgaaa 950
atcttcattt ttaatcagac aggtatagaa gccaaagaaga atgtgggtgg 1000

aactcaagcc gaccaaatacg cccctttcc cagcacttgc ataaaaagt 1050

tggactgggtt gcttgttattt tccttattct tttaatttag ttttattatg 1100

tatgctacca ttcaactga gaggattcgg tggctaattc caggacaaga 1150

gcaggaacat gtggagtagt gatggctga aagaagtgg aaagaggaac 1200

ttcaatcctt cggttcagaa attagtgcta cagtttcata cattttctcc 1250

agtgacgtgt tgacttgaaa ctccaggcag attaaaagaa tcatttttg 1300

aacaactgaa tgtataaaaa aattataaac tggtgtttt actagtattg 1350

caataagcaa atgcaaaaat attcaatacg 1379

<210> 410

<211> 360

<212> PRT

<213> Homo sapiens

<400> 410

Met Val Pro Ala Ala Gly Arg Arg Pro Pro Arg Val Met Arg Leu
1 5 10 15

Leu Gly Trp Trp Gln Val Leu Leu Trp Val Leu Gly Leu Pro Val
20 25 30

Arg Gly Val Glu Val Ala Glu Glu Ser Gly Arg Leu Trp Ser Glu
35 40 45

Glu Gln Pro Ala His Pro Leu Gln Val Gly Ala Val Tyr Leu Gly
50 55 60

Glu Glu Glu Leu Leu His Asp Pro Met Gly Gln Asp Arg Ala Ala
65 70 75

Glu Glu Ala Asn Ala Val Leu Gly Leu Asp Thr Gln Gly Asp His
80 85 90

Met Val Met Leu Ser Val Ile Pro Gly Glu Ala Glu Asp Lys Val
95 100 105

Ser Ser Glu Pro Ser Gly Val Thr Cys Gly Ala Gly Gly Ala Glu
110 115 120

Asp Ser Arg Cys Asn Val Arg Glu Ser Leu Phe Ser Leu Asp Gly
125 130 135

Ala Gly Ala His Phe Pro Asp Arg Glu Glu Glu Tyr Tyr Thr Glu
140 145 150

Pro Glu Val Ala Glu Ser Asp Ala Ala Pro Thr Glu Asp Ser Asn
155 160 165

Asn Thr Glu Ser Leu Lys Ser Pro Lys Val Asn Cys Glu Glu Arg
170 175 180

Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met
185 190 195

Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys
200 205 210

Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser
215 220 225

Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu
230 235 240

His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr
245 250 255

Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly
260 265 270

Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu
275 280 285

Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys
290 295 300

Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro
305 310 315

Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu
320 325 330

Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu
335 340 345

Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu
350 355 360

<210> 411

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 411

cacagagcca gaagtggcgg aatc 24

<210> 412

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 412

ccacatgttc ctgctttgt cctgg 25

<210> 413

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 413

cggtagtgac tgtactctag tcctgtttta caccccgtag tgccg 45.

<210> 414

<211> 1196

<212> DNA

<213> Homo sapiens

<400> 414

ccggctccg ctccctctgc cccctcgaaaa tcgcgcggcc acgatgctgc 50

aggcccctgg ctgcgtgctg ctgctttcc tcgcctcgca ctgctgcctg 100

ggctcgccgc gcgggctttt cctcttggc cagccccact tctcttacaa 150
gcgcagcaat tgcaagccca tcccggtaa cctgcagctg tgccacggca 200
tcgaatacca gaacatgcgg ctgcccacc tgctggcca cgagaccatg 250
aaggaggtgc tggagcaggc cggcgcttgg atcccgctgg tcatgaagca 300
gtgccacccg gacaccaaga agttcctgtg ctcgccttc gcccccgtct 350
gcctcgatga cctagacgag accatccagc catgccactc gctctgcgtg 400
caggtaagg accgctgcgc cccggcatg tccgccttg gcttccctg 450
gccccgacatg cttagtgcgc accgtttccc ccaggacaac gaccttgca 500
tccccctcgc tagcagcgcac cacccctgc cagccaccga ggaagctcca 550
aaggatgtg aagcctgcaa aaataaaaat gatgtgaca acgacataat 600
ggaaacgctt tgtaaaaatg atttgcact gaaaataaaa gtgaaggaga 650
taacctacat caaccgagat accaaaaatca tcctggagac caagagcaag 700
accatttaca agctgaacgg tgtgtccgaa agggacctga agaaatcggt 750
gctgtggctc aaagacagct tgcaagtgcac ctgtgaggag atgaacgaca 800
tcaacgcgcc cttatctggtc atgggacaga aacagggtgg ggagctggtg 850
atcacctcgg tgaagcggtg gcagaagggg cagagagagt tcaagcgcat 900
ctcccgccagc atccgcaagc tgcaagtgcata gtcccgcat cctgatggct 950
ccgacaggcc tgctccagag cacggctgac catttctgct ccggatctc 1000
agctcccggtt ccccaaggcac actcctagct gctccagtct cagcctggc 1050
agcttccccc tgcccttgc acgtttgcatt ccccaaggcatt tcctgagtt 1100
taaggccaca ggagtggata gctgtttca cctaaaggaa aagcccaccc 1150
gaatcttgta gaaatattca aactaataaa atcatgaata ttttaa 1196

<211> 295

<212> PRT

<213> Homo sapiens

<400> 415

Met Leu Gln Gly Pro Gly Ser Leu Leu Leu Phe Leu Ala Ser
1 5 10 15

His Cys Cys Leu Gly Ser Ala Arg Gly Leu Phe Leu Phe Gly Gln
20 25 30

Pro Asp Phe Ser Tyr Lys Arg Ser Asn Cys Lys Pro Ile Pro Val
35 40 45

Asn Leu Gln Leu Cys His Gly Ile Glu Tyr Gln Asn Met Arg Leu
50 55 60

Pro Asn Leu Leu Gly His Glu Thr Met Lys Glu Val Leu Glu Gln
65 70 75

Ala Gly Ala Trp Ile Pro Leu Val Met Lys Gln Cys His Pro Asp
80 85 90

Thr Lys Lys Phe Leu Cys Ser Leu Phe Ala Pro Val Cys Leu Asp
95 100 105

Asp Leu Asp Glu Thr Ile Gln Pro Cys His Ser Leu Cys Val Gln
110 115 120

Val Lys Asp Arg Cys Ala Pro Val Met Ser Ala Phe Gly Phe Pro
125 130 135

Trp Pro Asp Met Leu Glu Cys Asp Arg Phe Pro Gln Asp Asn Asp
140 145 150

Leu Cys Ile Pro Leu Ala Ser Ser Asp His Leu Leu Pro Ala Thr
155 160 165

Glu Glu Ala Pro Lys Val Cys Glu Ala Cys Lys Asn Lys Asn Asp
170 175 180

Asp Asp Asn Asp Ile Met Glu Thr Leu Cys Lys Asn Asp Phe Ala
185 190 195

Leu Lys Ile Lys Val Lys Glu Ile Thr Tyr Ile Asn Arg Asp Thr

200 205 210

Lys Ile Ile Leu Glu Thr Lys Ser Lys Thr Ile Tyr Lys Leu Asn
215 220 225

Gly Val Ser Glu Arg Asp Leu Lys Ser Val Leu Trp Leu Lys
230 235 240

Asp Ser Leu Gln Cys Thr Cys Glu Glu Met Asn Asp Ile Asn Ala
245 250 255

Pro Tyr Leu Val Met Gly Gln Lys Gln Gly Gly Glu Leu Val Ile
260 265 270

Thr Ser Val Lys Arg Trp Gln Lys Gly Gln Arg Glu Phe Lys Arg
275 280 285

Ile Ser Arg Ser Ile Arg Lys Leu Gln Cys
290 295

<210> 416

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 416

cctggctcgc tgctgctgct c 21

<210> 417

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 417

cctcacaggt gcactgcaag ctgtc 25

<210> 418

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 418

ctctccctct ttggccagcc cgacttctcc tacaaggcga gaattgc 47

<210> 419

<211> 1830

<212> DNA

<213> Homo sapiens

<400> 419

gtggaggccg ccgacgatgg cggggccgac ggaggccgag acggggttgg 50

ccgagccccg ggccctgtgc gcgcagcggg gccaccgcac ctacgcgcgc 100

cgcgtgggtgt tcctgctcgc gatcagccctg ctcaactgct ccaacgccac 150

gctgtggctc agctttgcac ctgtggctga cgtcattgct gaggacttgg 200

tcctgtccat ggagcagata aactggctgt cactggctta cctcgtggta 250

tccacccat ttggcgtggc ggccatctgg atcctggact ccgtcggtt 300

ccgtgcggcg accatcctgg gtgcgtggct gaacttgcc gggagtgtgc 350

tacgcatggt gccctgcata gttgttggga cccaaaaccc attgccttc 400

ctcatgggtg gccagagcct ctgtgccctt gcccagagcc tggcatctt 450

ctctccagcc aagctggctg ccttgtgggtt cccagagcac cagcgagcca 500

cggccaacat gctgccacc atgtcgaacc ctctggcggt ctttgtggcc 550

aatgtgctgt cccctgtct ggtcaagaag ggtgaggaca ttccgttaat 600

gctcgggtgc tataccatcc ctgctggcggt cgtctgcctg ctgtccacca 650

tctgcctgtg ggagagtggtg ccccccaccc cgccctctgc cggggctgcc 700

agctccacct cagagaaggct cctggatggg ctcaagctgc agctcatgtg 750

gaacaaggcc tatgtcatcc tggctgtgtg cttggggggga atgatcggga 800

tctctgccag ctctcagcc ctccggcgc agatccctcg tgcaaggcgc 850
cactccagtg ggtttccgg cctctgtggc gctcttca tcacgttgg 900
gatcctgggg gcactggctc tcggcccta tgtggaccgg accaagcact 950
tcactgaggc caccaagatt ggcctgtgcc tggctctct ggcctgcgtg 1000
cccttgccc tgggtcccc gctgcaggga cagacccttg ccctggctgc 1050
cacctgctcg ctgctcgggc tggctggc ttctggc cccgtggcca 1100
tggagttggc ggctcgagtgt tcctcccg tgggggaggg ggctgccaca 1150
ggcatgatct ttgtgctggg gcaggccgag ggaatactca tcatgctggc 1200
aatgacggca ctgactgtgc gacgctcgga gccgtcccttgc tccacactg 1250
agcaggggga ggatccactt gactggacag tgcgtctgt gctgatggcc 1300
ggcctgtgca ccttctcag ctgcattctg gcggtctct tccacacccc 1350
ataccggcgc ctgcaggccg agtctgggga gccccctcc acccgtaacg 1400
ccgtggcgg cgcaactca gggccgggtg tggaccgagg gggaggcagga 1450
aggcgtgggg tcctggggcc cagcacggcg actccggagt gcacggcag 1500
gggggcctcg ctagaggacc ccagaggccg cgggagccccc cacccagcct 1550
gccaccgagc gactccctgt gcgcaggcc cagcagccac cgacgcgccc 1600
tcccgccccc gcagactcgc aggcaaggcgc caagcgtcca ggtttattga 1650
cccggtggg tctcactcct ccttccttc cccgtgggtg atcacgtac 1700
tgagcgcctt gtatccagg ttggccgca catcgatggaa ggcgaactgg 1750
aacatctggt ccacctgcgg gcgggggcga aagggtccct tgcgggtcc 1800
gggagcgaat tacaagcgcg cacctgaaaa 1830

<210> 420

<211> 560

<212> PRT

<213> Homo sapiens

<400> 420

Met Ala Gly Pro Thr Glu Ala Glu Thr Gly Leu Ala Glu Pro Arg
1 5 10 15

Ala Leu Cys Ala Gln Arg Gly His Arg Thr Tyr Ala Arg Arg Trp
20 25 30

Val Phe Leu Leu Ala Ile Ser Leu Leu Asn Cys Ser Asn Ala Thr
35 40 45

Leu Trp Leu Ser Phe Ala Pro Val Ala Asp Val Ile Ala Glu Asp
50 55 60

Leu Val Leu Ser Met Glu Gln Ile Asn Trp Leu Ser Leu Val Tyr
65 70 75

Leu Val Val Ser Thr Pro Phe Gly Val Ala Ala Ile Trp Ile Leu
80 85 90

Asp Ser Val Gly Leu Arg Ala Ala Thr Ile Leu Gly Ala Trp Leu
95 100 105

Asn Phe Ala Gly Ser Val Leu Arg Met Val Pro Cys Met Val Val
110 115 120

Gly Thr Gln Asn Pro Phe Ala Phe Leu Met Gly Gly Gln Ser Leu
125 130 135

Cys Ala Leu Ala Gln Ser Leu Val Ile Phe Ser Pro Ala Lys Leu
140 145 150

Ala Ala Leu Trp Phe Pro Glu His Gln Arg Ala Thr Ala Asn Met
155 160 165

Leu Ala Thr Met Ser Asn Pro Leu Gly Val Leu Val Ala Asn Val
170 175 180

Leu Ser Pro Val Leu Val Lys Lys Gly Glu Asp Ile Pro Leu Met
185 190 195

Leu Gly Val Tyr Thr Ile Pro Ala Gly Val Val Cys Leu Leu Ser
200 205 210

Thr Ile Cys Leu Trp Glu Ser Val Pro Pro Thr Pro Pro Ser Ala
215 220 225

Gly Ala Ala Ser Ser Thr Ser Glu Lys Phe Leu Asp Gly Leu Lys
230 235 240

Leu Gln Leu Met Trp Asn Lys Ala Tyr Val Ile Leu Ala Val Cys
245 250 255

Leu Gly Gly Met Ile Gly Ile Ser Ala Ser Phe Ser Ala Leu Leu
260 265 270

Glu Gln Ile Leu Cys Ala Ser Gly His Ser Ser Gly Phe Ser Gly
275 280 285

Leu Cys Gly Ala Leu Phe Ile Thr Phe Gly Ile Leu Gly Ala Leu
290 295 300

Ala Leu Gly Pro Tyr Val Asp Arg Thr Lys His Phe Thr Glu Ala
305 310 315

Thr Lys Ile Gly Leu Cys Leu Phe Ser Leu Ala Cys Val Pro Phe
320 325 330

Ala Leu Val Ser Gln Leu Gln Gly Gln Thr Leu Ala Leu Ala Ala
335 340 345

Thr Cys Ser Leu Leu Gly Leu Phe Gly Phe Ser Val Gly Pro Val
350 355 360

Ala Met Glu Leu Ala Val Glu Cys Ser Phe Pro Val Gly Glu Gly
365 370 375

Ala Ala Thr Gly Met Ile Phe Val Leu Gly Gln Ala Glu Gly Ile
380 385 390

Leu Ile Met Leu Ala Met Thr Ala Leu Thr Val Arg Arg Ser Glu
395 400 405

Pro Ser Leu Ser Thr Cys Gln Gln Gly Glu Asp Pro Leu Asp Trp
410 415 420

Thr Val Ser Leu Leu Leu Met Ala Gly Leu Cys Thr Phe Phe Ser
425 430 435

Cys Ile Leu Ala Val Phe Phe His Thr Pro Tyr Arg Arg Leu Gln
440 445 450

Ala Glu Ser Gly Glu Pro Pro Ser Thr Arg Asn Ala Val Gly Gly
455 460 465

Ala Asp Ser Gly Pro Gly Val Asp Arg Gly Gly Ala Gly Arg Ala
470 475 480

Gly Val Leu Gly Pro Ser Thr Ala Thr Pro Glu Cys Thr Ala Arg
485 490 495

Gly Ala Ser Leu Glu Asp Pro Arg Gly Pro Gly Ser Pro His Pro
500 505 510

Ala Cys His Arg Ala Thr Pro Arg Ala Gln Gly Pro Ala Ala Thr
515 520 525

Asp Ala Pro Ser Arg Pro Gly Arg Leu Ala Gly Arg Val Gln Ala
530 535 540

Ser Arg Phe Ile Asp Pro Ala Gly Ser His Ser Ser Phe Ser Ser
545 550 555

Pro Trp Val Ile Thr
560

<210> 421

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 421

agcttctcag ccctcctgga gcag 24

<210> 422

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 422
cgggtcaata aacctggacg cttgg 25

<210> 423
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 423
tatgtggacc ggaccaagca cttaactgag gccaccaaga ttg 43

<210> 424
<211> 4313
<212> DNA
<213> Homo sapiens

<400> 424
gtccccacatc ctgctcaact gggtcaggc cctcttagac cagctctgt 50
ccatcatttg ctgaagtgga ccaacttagt ccccaagtagg gggctcccc 100
tggcaattct tgcgtggcggt ttggacatct cagatcgctt ccaatgaaga 150
tggccttgcc ttggggcct gcttgttca taatcatcta actatggac 200
aagggtgtgc cggcagctct ggggaaagga gcacgggct gatcaagcca 250
tccaggaaac actggaggac ttgtccagcc ttgaaagaac tcttagggtt 300
tctgaatcta gcccacttgg cggtaagcat gatgcaactt ctgcaacttc 350
tgctgggct ttggggcca ggtggctact tatttcattt agggattgt 400
caggaggta ccactctcac ggtgaaatac caagtgtcag aggaagtgcc 450
atctggtaca gtgatcgaaa agctgtccca ggaactgggc cgggaggaga 500
ggcggaggca agctggggcc gccttccagg tggcagct gcctcaggcg 550
ctccccattc aggtggactc tgaggaaggc ttgctcagca caggcaggcg 600
gctggatcga gagcagctgt gccgacagtg ggatccctgc ctggttcct 650

ttatgtgct tgccacaggg gattggctc tgcgtatgt ggagatccaa 700
gtgctggaca tcaatgacca ccagccacgg ttcccggaaag gcgagcagga 750
gctggaaatc tctgagagcg cctctctgcg aaccggatc cccctggaca 800
gagctcttga cccagacaca ggccctaaca ccctgcacac ctacactctg 850
tctcccagtgc agcactttgc cttggatgtc attgtgggcc ctgtatgagac 900
caaacatgca gaactcatag tggtaagga gctggacagg gaaatccatt 950
catttttga tctgggttta actgcctatg acaatggaa ccccccaag 1000
tcaggtacca gcttggtcaa ggtcaacgtc ttggactcca atgacaatag 1050
ccctgcgttt gctgagagtt cactggcact ggaaatccaa gaagatgctg 1100
cacctggtag cttctcata aaactgaccg ccacagaccc tgaccaaggc 1150
cccaatgggg aggtggagtt cttcctcagt aagcacatgc ctccagaggt 1200
gctggacacc ttcagtatttgc atgccaagac aggccaggc attctgcgtc 1250
gacctctaga ctatgaaaag aaccctgcct acgggtgga tggcaggca 1300
agggacctgg gtcccaatcc tatcccagcc cattgcaag ttctcatcaa 1350
ggttctggat gtcaatgaca acatccaaag catccacgtc acatgggcct 1400
cccagccatc actgggtgtca gaagctttc ccaaggacag ttttttgct 1450
cttgcgtatgg cagatgactt ggattcagga cacaatggtt tggccactg 1500
ctggctgagc caagagctgg gccacttcag gctgaaaaga actaatggca 1550
acacatacat gttgctaacc aatgccacac tggacagaga gcagtggccc 1600
aaatatatccc tcactctgtt agcccaagac caaggactcc agcccttatac 1650
agccaaagaaa cagctcagca ttcagatcag tgacatcaac gacaatgcac 1700
ctgtgtttga gaaaaggcagg tatgaagtct ccacgcggga aaacaactta 1750
ccctcttttc acctcattac catcaaggct catgtgcag acttggccat 1800

taatggaaaa gtctcatacc gcatccagga ctccccagtt gtcacttag 1850
tagctattga ctccaacaca ggagaggta ctgctcagag gtcactgaac 1900
tatgaagaga tggccggctt tgagttccag gtgatcgca aggacagcgg 1950
gcaaccatg ctgcatacca gtgtcttgt gtgggtcagc ctctggatg 2000
ccaatgataa tgccccagag gtggccagc ctgtgctcag cgatggaaaa 2050
gccagcctct ccgtgcctgt gaatgcctcc acaggccacc tgctgggcc 2100
catcgagact cccaatggct tggcccccagc gggcactgac acacctccac 2150
tgcccactca cagctcccgg ccattccctt tgacaaccat tgtggcaaga 2200
gatgcagact cgggggcaaa tggagagccc ctctacagca tccgcaatgg 2250
aaatgaagcc cacctctica tcctcaaccc tcatacgggg cagctgtcg 2300
tcaatgtcac caatgccagc agcctcattt ggagtggatg ggagctggag 2350
atagtagtag aggaccaggg aagccccccc ttacagaccc gagccctgtt 2400
gagggtcatg ttgtcacca gtgtggacca cctgaggac tcagcccgca 2450
agcctggggc cttgagcatg tcgatgctga cggtgatctg cctggctgta 2500
ctgttgggca tcctcgggtt gatcctggct ttgttcatgt ccatctgccc 2550
gacagaaaaag aaggacaaca gggctacaa ctgtcgggag gccgagtcac 2600
cctaccgcca gcagcccaag aggccccaga aacacattca gaaggcagac 2650
atccacacccg tgcctgtgct caggggtcag gcaggtgagc ctgtgaagt 2700
cgggcagtcac cacaagatg tggacaagga ggcgtatgtt gaagcaggct 2750
gggacccctg cctgcaggcc cccttccacc tcaccccgac cctgtacagg 2800
acgctgcgtatcaaggcaa ccagggagca ccggcggaga gccgagaggt 2850
gctgcaagac acggtaacc tcctttcaa ccatcccagg cagaggaatg 2900
cctcccgaaa gaacctgaac ctccccagc cccagcctgc cacaggccag 2950

ccacgttcca ggcctctgaa ggttgcaggc agccccacag ggaggctggc 3000
tggagaccag ggcagtgagg aagccccaca gaggccacca gcctcctctg 3050
caaccctgag acggcagcga catctcaatg gcaaagtgtc ccctgagaaa 3100
gaatcagggc cccgtcagat cctgcggagc ctggtccggc tgctgtggc 3150
tgccctcgcc gagcggAACCC cctgtggagga gtcactgtg gattctcctc 3200
ctgttcagca aatctcccag ctgctgtcct tgctgcatca gggccaattc 3250
cagccccaaac caaaccaccc aggaaataag tacttggcca agccaggagg 3300
cagcaggagt gcaatcccag acacagatgg cccaaatgtca agggctggag 3350
gccagacaga cccagaacag gaggaaggc ctttggatcc tgaagaggac 3400
ctctctgtga agcaactgct agaagaagag ctgtcaagtc tgctggaccc 3450
cagcacaggt ctggccctgg accggctgag cgccctgac ccggcctgga 3500
tggcgagact ctcttgccc ctcaccacca actaccgtga caatgtgatc 3550
tccccggatg ctgcagccac ggaggagccg aggacccitcc agacgttcgg 3600
caaggcagag gcaccagagc tgagccaaac aggcacgagg ctggccagca 3650
cctttgtctc ggagatgagc tcactgctgg agatgctgct ggaacagcgc 3700
tccagcatgc ccgtggaggc cgccctccgag gcgcgtcgcc ggctctcggt 3750
ctgcgggagg accctcagtt tagacttggc caccagtgtca gcctcaggca 3800
tgaaagtgtca aggggaccca ggtggaaaga cggggactga gggcaagagc 3850
agaggcagca gcagcagcag caggtgcctg tgaacatacc tcagacgcct 3900
ctggatccaa gaaccagggg cctgaggatc tgtggacaag agctggttc 3950
taaaaatcttg taactcacta gctagcggcg gcctgagaac tttaggggtga 4000
ctgatgctac ccccacagag gaggcaagag ccccaggact aacagctgac 4050
tgaccaaagc agcccttgt aagcagctt gagtctttg gaggacaggg 4100

acggttgtg gctgagataa gtgttcctg gcaaaacata tgtggagcac 4150

aaagggtcag tcctctggca gaacagatgc cacggagtat cacaggcagg 4200

aaagggtggc cttcttgggt agcaggagtc agggggctgt accctgggg 4250

tgccaggaaa tgctctctga cctatcaata aaggaaaagc agtaaaaaaaa 4300

aaaaaaaaaa aaa 4313

<210> 425

<211> 1184

<212> PRT

<213> Homo sapiens

<400> 425

Met Met Gln Leu Leu Gln Leu Leu Leu Gly Leu Leu Gly Pro Gly
1 5 10 15

Gly Tyr Leu Phe Leu Leu Gly Asp Cys Gln Glu Val Thr Thr Leu
20 25 30

Thr Val Lys Tyr Gln Val Ser Glu Glu Val Pro Ser Gly Thr Val
35 40 45

Ile Gly Lys Leu Ser Gln Glu Leu Gly Arg Glu Glu Arg Arg Arg
50 55 60

Gln Ala Gly Ala Ala Phe Gln Val Leu Gln Leu Pro Gln Ala Leu
65 70 75

Pro Ile Gln Val Asp Ser Glu Glu Gly Leu Leu Ser Thr Gly Arg
80 85 90

Arg Leu Asp Arg Glu Gln Leu Cys Arg Gln Trp Asp Pro Cys Leu
95 100 105

Val Ser Phe Asp Val Leu Ala Thr Gly Asp Leu Ala Leu Ile His
110 115 120

Val Glu Ile Gln Val Leu Asp Ile Asn Asp His Gln Pro Arg Phe
125 130 135

Pro Lys Gly Glu Gln Glu Leu Glu Ile Ser Glu Ser Ala Ser Leu
140 145 150

Arg Thr Arg Ile Pro Leu Asp Arg Ala Leu Asp Pro Asp Thr Gly
155 160 165

Pro Asn Thr Leu His Thr Tyr Thr Leu Ser Pro Ser Glu His Phe
170 175 180

Ala Leu Asp Val Ile Val Gly Pro Asp Glu Thr Lys His Ala Glu
185 190 195

Leu Ile Val Val Lys Glu Leu Asp Arg Glu Ile His Ser Phe Phe
200 205 210

Asp Leu Val Leu Thr Ala Tyr Asp Asn Gly Asn Pro Pro Lys Ser
215 220 225

Gly Thr Ser Leu Val Lys Val Asn Val Leu Asp Ser Asn Asp Asn
230 235 240

Ser Pro Ala Phe Ala Glu Ser Ser Leu Ala Leu Glu Ile Gln Glu
245 250 255

Asp Ala Ala Pro Gly Thr Leu Leu Ile Lys Leu Thr Ala Thr Asp
260 265 270

Pro Asp Gln Gly Pro Asn Gly Glu Val Glu Phe Phe Leu Ser Lys
275 280 285

His Met Pro Pro Glu Val Leu Asp Thr Phe Ser Ile Asp Ala Lys
290 295 300

Thr Gly Gln Val Ile Leu Arg Arg Pro Leu Asp Tyr Glu Lys Asn
305 310 315

Pro Ala Tyr Glu Val Asp Val Gln Ala Arg Asp Leu Gly Pro Asn
320 325 330

Pro Ile Pro Ala His Cys Lys Val Leu Ile Lys Val Leu Asp Val
335 340 345

Asn Asp Asn Ile Pro Ser Ile His Val Thr Trp Ala Ser Gln Pro
350 355 360

Ser Leu Val Ser Glu Ala Leu Pro Lys Asp Ser Phe Ile Ala Leu
365 370 375

Val Met Ala Asp Asp Leu Asp Ser Gly His Asn Gly Leu Val His
380 385 390

Cys Trp Leu Ser Gln Glu Leu Gly His Phe Arg Leu Lys Arg Thr
395 400 405

Asn Gly Asn Thr Tyr Met Leu Leu Thr Asn Ala Thr Leu Asp Arg
410 415 420

Glu Gln Trp Pro Lys Tyr Thr Leu Thr Leu Leu Ala Gln Asp Gln
425 430 435

Gly Leu Gln Pro Leu Ser Ala Lys Lys Gln Leu Ser Ile Gln Ile
440 445 450

Ser Asp Ile Asn Asp Asn Ala Pro Val Phe Glu Lys Ser Arg Tyr
455 460 465

Glu Val Ser Thr Arg Glu Asn Asn Leu Pro Ser Leu His Leu Ile
470 475 480

Thr Ile Lys Ala His Asp Ala Asp Leu Gly Ile Asn Gly Lys Val
485 490 495

Ser Tyr Arg Ile Gln Asp Ser Pro Val Ala His Leu Val Ala Ile
500 505 510

Asp Ser Asn Thr Gly Glu Val Thr Ala Gln Arg Ser Leu Asn Tyr
515 520 525

Glu Glu Met Ala Gly Phe Glu Phe Gln Val Ile Ala Glu Asp Ser
530 535 540

Gly Gln Pro Met Leu Ala Ser Ser Val Ser Val Trp Val Ser Leu
545 550 555

Leu Asp Ala Asn Asp Asn Ala Pro Glu Val Val Gln Pro Val Leu
560 565 570

Ser Asp Gly Lys Ala Ser Leu Ser Val Leu Val Asn Ala Ser Thr
575 580 585

Gly His Leu Leu Val Pro Ile Glu Thr Pro Asn Gly Leu Gly Pro
590 595 600

Ala Gly Thr Asp Thr Pro Pro Leu Ala Thr His Ser Ser Arg Pro
605 610 615

Phe Leu Leu Thr Thr Ile Val Ala Arg Asp Ala Asp Ser Gly Ala
620 625 630

Asn Gly Glu Pro Leu Tyr Ser Ile Arg Asn Gly Asn Glu Ala His
635 640 645

Leu Phe Ile Leu Asn Pro His Thr Gly Gln Leu Phe Val Asn Val
650 655 660

Thr Asn Ala Ser Ser Leu Ile Gly Ser Glu Trp Glu Leu Glu Ile
665 670 675

Val Val Glu Asp Gln Gly Ser Pro Pro Leu Gln Thr Arg Ala Leu
680 685 690

Leu Arg Val Met Phe Val Thr Ser Val Asp His Leu Arg Asp Ser
695 700 705

Ala Arg Lys Pro Gly Ala Leu Ser Met Ser Met Leu Thr Val Ile
710 715 720

Cys Leu Ala Val Leu Leu Gly Ile Phe Gly Leu Ile Leu Ala Leu
725 730 735

Phe Met Ser Ile Cys Arg Thr Glu Lys Lys Asp Asn Arg Ala Tyr
740 745 750

Asn Cys Arg Glu Ala Glu Ser Thr Tyr Arg Gln Gln Pro Lys Arg
755 760 765

Pro Gln Lys His Ile Gln Lys Ala Asp Ile His Leu Val Pro Val
770 775 780

Leu Arg Gly Gln Ala Gly Glu Pro Cys Glu Val Gly Gln Ser His
785 790 795

Lys Asp Val Asp Lys Glu Ala Met Met Glu Ala Gly Trp Asp Pro
800 805 810

Cys Leu Gln Ala Pro Phe His Leu Thr Pro Thr Leu Tyr Arg Thr
815 820 825

Leu Arg Asn Gln Gly Asn Gln Gly Ala Pro Ala Glu Ser Arg Glu
830 835 840

Val Leu Gln Asp Thr Val Asn Leu Leu Phe Asn His Pro Arg Gln
845 850 855

Arg Asn Ala Ser Arg Glu Asn Leu Asn Leu Pro Glu Pro Gln Pro
860 865 870

Ala Thr Gly Gln Pro Arg Ser Arg Pro Leu Lys Val Ala Gly Ser
875 880 885

Pro Thr Gly Arg Leu Ala Gly Asp Gln Gly Ser Glu Glu Ala Pro
890 895 900

Gln Arg Pro Pro Ala Ser Ser Ala Thr Leu Arg Arg Gln Arg His
905 910 915

Leu Asn Gly Lys Val Ser Pro Glu Lys Glu Ser Gly Pro Arg Gln
920 925 930

Ile Leu Arg Ser Leu Val Arg Leu Ser Val Ala Ala Phe Ala Glu
935 940 945

Arg Asn Pro Val Glu Glu Leu Thr Val Asp Ser Pro Pro Val Gln
950 955 960

Gln Ile Ser Gln Leu Leu Ser Leu Leu His Gln Gly Gln Phe Gln
965 970 975

Pro Lys Pro Asn His Arg Gly Asn Lys Tyr Leu Ala Lys Pro Gly
980 985 990

Gly Ser Arg Ser Ala Ile Pro Asp Thr Asp Gly Pro Ser Ala Arg
995 1000 1005

Ala Gly Gly Gln Thr Asp Pro Glu Gln Glu Glu Gly Pro Leu Asp
1010 1015 1020

Pro Glu Glu Asp Leu Ser Val Lys Gln Leu Leu Glu Glu Leu
1025 1030 1035

Ser Ser Leu Leu Asp Pro Ser Thr Gly Leu Ala Leu Asp Arg Leu
1040 1045 1050

Ser Ala Pro Asp Pro Ala Trp Met Ala Arg Leu Ser Leu Pro Leu
1055 1060 1065

Thr Thr Asn Tyr Arg Asp Asn Val Ile Ser Pro Asp Ala Ala Ala
1070 1075 1080

Thr Glu Glu Pro Arg Thr Phe Gln Thr Phe Gly Lys Ala Glu Ala
1085 1090 1095

Pro Glu Leu Ser Pro Thr Gly Thr Arg Leu Ala Ser Thr Phe Val
1100 1105 1110

Ser Glu Met Ser Ser Leu Leu Glu Met Leu Leu Glu Gln Arg Ser
1115 1120 1125

Ser Met Pro Val Glu Ala Ala Ser Glu Ala Leu Arg Arg Leu Ser
1130 1135 1140

Val Cys Gly Arg Thr Leu Ser Leu Asp Leu Ala Thr Ser Ala Ala
1145 1150 1155

Ser Gly Met Lys Val Gln Gly Asp Pro Gly Gly Lys Thr Gly Thr
1160 1165 1170

Glu Gly Lys Ser Arg Gly Ser Ser Ser Ser Arg Cys Leu
1175 1180

<210> 426

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 426

gtaagcacat gcctccagag gtgc 24

<210> 427

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 427
gtgacgtgga tgcttggat gttg 24

<210> 428
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 428
tggacacctt cagtattgtat gccaaagacag gccaggcat tctgcgtcga 50

<210> 429
<211> 2037
<212> DNA
<213> Homo sapiens

<400> 429
cgAACGCGTG GCGGGACGCG TGGGGAGAG CCAGTCCC GGCTGCAGCA 50
CCTGGAGAA GGCAGACCGT GTGAGGGGGC CTGTGGCCCC AGCGTGCTGT 100
GGCCTCGGGG AGTGGGAAGT GGAGGCAGGA GCCTTCCTTA CACTTCGCCA 150
TGAGTTCCCT CATCGACTCC AGCATCATGA TTACCTCCCA GATACTATTT 200
TTGGATTG GGTGGCTTT CTTCATGCGC CAATTGTTA AAGACTATGA 250
GATACGTCAG TATGTGTAC AGGTGATCTT CTCCGTGACG TTGCACTTT 300
CTTGCACCAT GTTGAGCTC ATCATCTTG AAATCTTAGG AGTATTGAAT 350
AGCAGCTCCC GTTATTTCA CTGGAAAATG AACCTGTGTG TAATTCTGCT 400
GATCCCTGGTT TTCATGGTGC CTTTTACAT TGGCTATTT ATTGTGAGCA 450
ATATCCGACT ACTGCATAAA CAACGACTGC TTTTCCCTG TCTCTATGG 500
CTGACCTTA TGTATTCTT CTGGAAACTA GGAGATCCCT TTCCCATCT 550
CAGCCCCAAA CATGGGATCT TATCCATAGA ACAGCTCATC AGCCGGGTG 600
GTGTGATTGG AGTGACTIONC ATGGCTCTTC TTCTGGATT TGGTGTGTC 650

aactgcccac acacttacat gtcttacttc ctcaggaatg tgactgacac 700
ggatattcta gccctggaac ggcgactgct gcaaaccatg gatatgtca 750
taagcaaaaaaaa gaaaaggatg gcaatggcac ggagaacaat gttccagaag 800
ggggaaagtgc ataacaaacc atcaggtttc tgggaatga taaaaagtgt 850
taccacttca gcatcaggaa gtgaaaatct tactcttatt caacaggaag 900
tggatgcttt ggaagaatta agcaggcagc ttttctgga aacagctgat 950
ctatacgcta ccaaggagag aatagaatac tccaaaacct tcaagggaa 1000
atatttaat ttcttggtt acttttctc tatttactgt gttggaaaa 1050
tttcatggc taccatcaat attgttttg atcgagttgg gaaaacggat 1100
cctgtcacaa gaggcattga gatcactgtg aattatctgg gaatccaatt 1150
tgtatgtgaag ttgtgtccc aacacatttc ctcttattt gttggaaataa 1200
tcatcgac atccatcaga ggattgctga tcactttac caagttctt 1250
tatgccatct ctgcgtttaa gtcctccaaat gtcattgtcc tgctatttagc 1300
acagataatg ggcgtgtact ttgtctcctc tgtgtgtctg atccgaatga 1350
gtatgccttt agaataccgc accataatca ctgaagtcct tggagaactg 1400
cagttcaact tctatcaccg ttggtttgat gtgtatcc ttgtcagcgc 1450
tctctctagc atactctcc tctatttggc tcacaaacag gcaccagaga 1500
accaaatggc accttgaact taaggctact acagactgtt agaggccagt 1550
ggtttcaaaa tttagatata agagggggga aaaatggaaac cagggcctga 1600
cattttataa acaaacaaaaaa tgctatggta gcattttca cttcatagc 1650
atactccttc cccgtcaggt gatactatga ccatgagtag catcagccag 1700
aacatgagag ggagaactaa ctcaagacaa tactcagcag agagcatccc 1750
gtgtggatat gaggctggtg tagaggcggaa gaggagccaa gaaaactaaag 1800

gtgaaaaata cactggaaact ctggggcaag acatgtctat ggttagctgag 1850

ccaaacacgt aggattccg ttttaagggtt cacatggaaa agttatagc 1900

tttgccctga gattgactca taaaatcag agactgtaac aaaaaaaaaa 1950

aaaaaaaaaa agggcggccg cgactctaga gtgcacctgc agaagctgg 2000

ccgccatggc ccaacttgtt tattgcagct tataatg 2037

<210> 430

<211> 455

<212> PRT

<213> Homo sapiens

<400> 430

Met Ser Phe Leu Ile Asp Ser Ser Ile Met Ile Thr Ser Gln Ile

1 5 10 15

Leu Phe Phe Gly Phe Gly Trp Leu Phe Phe Met Arg Gln Leu Phe

20 25 30

Lys Asp Tyr Glu Ile Arg Gln Tyr Val Val Gln Val Ile Phe Ser

35 40 45

Val Thr Phe Ala Phe Ser Cys Thr Met Phe Glu Leu Ile Ile Phe

50 55 60

Glu Ile Leu Gly Val Leu Asn Ser Ser Arg Tyr Phe His Trp

65 70 75

Lys Met Asn Leu Cys Val Ile Leu Leu Ile Leu Val Phe Met Val

80 85 90

Pro Phe Tyr Ile Gly Tyr Phe Ile Val Ser Asn Ile Arg Leu Leu

95 100 105

His Lys Gln Arg Leu Leu Phe Ser Cys Leu Leu Trp Leu Thr Phe

110 115 120

Met Tyr Phe Phe Trp Lys Leu Gly Asp Pro Phe Pro Ile Leu Ser

125 130 135

Pro Lys His Gly Ile Leu Ser Ile Glu Gln Leu Ile Ser Arg Val

140 145 150

Gly Val Ile Gly Val Thr Leu Met Ala Leu Leu Ser Gly Phe Gly
155 160 165

Ala Val Asn Cys Pro Tyr Thr Tyr Met Ser Tyr Phe Leu Arg Asn
170 175 180

Val Thr Asp Thr Asp Ile Leu Ala Leu Glu Arg Arg Leu Leu Gln
185 190 195

Thr Met Asp Met Ile Ile Ser Lys Lys Lys Arg Met Ala Met Ala
200 205 210

Arg Arg Thr Met Phe Gln Lys Gly Glu Val His Asn Lys Pro Ser
215 220 225

Gly Phe Trp Gly Met Ile Lys Ser Val Thr Thr Ser Ala Ser Gly
230 235 240

Ser Glu Asn Leu Thr Leu Ile Gln Gln Glu Val Asp Ala Leu Glu
245 250 255

Glu Leu Ser Arg Gln Leu Phe Leu Glu Thr Ala Asp Leu Tyr Ala
260 265 270

Thr Lys Glu Arg Ile Glu Tyr Ser Lys Thr Phe Lys Gly Lys Tyr
275 280 285

Phe Asn Phe Leu Gly Tyr Phe Phe Ser Ile Tyr Cys Val Trp Lys
290 295 300

Ile Phe Met Ala Thr Ile Asn Ile Val Phe Asp Arg Val Gly Lys
305 310 315

Thr Asp Pro Val Thr Arg Gly Ile Glu Ile Thr Val Asn Tyr Leu
320 325 330

Gly Ile Gln Phe Asp Val Lys Phe Trp Ser Gln His Ile Ser Phe
335 340 345

Ile Leu Val Gly Ile Ile Ile Val Thr Ser Ile Arg Gly Leu Leu
350 355 360

Ile Thr Leu Thr Lys Phe Phe Tyr Ala Ile Ser Ser Ser Lys Ser
365 370 375

Ser Asn Val Ile Val Leu Leu Ala Gln Ile Met Gly Met Tyr
380 385 390

Phe Val Ser Ser Val Leu Leu Ile Arg Met Ser Met Pro Leu Glu
395 400 405

Tyr Arg Thr Ile Ile Thr Glu Val Leu Gly Glu Leu Gln Phe Asn
410 415 420

Phe Tyr His Arg Trp Phe Asp Val Ile Phe Leu Val Ser Ala Leu
425 430 435

Ser Ser Ile Leu Phe Leu Tyr Leu Ala His Lys Gln Ala Pro Glu
440 445 450

Lys Gln Met Ala Pro
455

<210> 431

<211> 407

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 78, 81, 113, 157, 224, 297

<223> unknown base

<400> 431

catgggaagt ggagccggag ctttccttac actcgccatg agtttcctca 50

tcgactccag catcatgatt acctcccnga nactatttt tggatttggg 100

tggctttct tcngcgccaa tgtttaaaga ctatgagata cgtcagtatg 150

ttgtacnggt gatttctcc gtgacgtttg ccatttcttg caccatgtt 200

gagctcatca tcttgaaat ctnggagta ttgaatagca gctcccgta 250

tttcactgg aaaatgaacc tgtgtgtaat tctgctgatc ctggttntca 300

tggtgccttt ttacattggc tattttattg tgagcaatat ccgactactg 350

cataaacaac gactgctttt ttccctgtctc ttatggctga cctttatgta 400

tttccag 407

<210> 432

<211> 457

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 31, 66, 81-82, 84, 122, 184, 187, 232, 241, 400, 424, 427, 434

<223> unknown base

<400> 432

gtgtgccct tggggagggg aaggggagcc nggccttc ctaaaatttg 50

gcccaagggtt tccttnttga attccgggtt nnngnataacct tcccagaaaa 100

tatTTTGGG atTTGGGGta gNTTTTTC atgcGCCat tgTTAAAGA 150

cTATGAGATA CGTCAGTATG ttGTACAGGT gATNTNTCC gtGACGTTG 200

cATTTCCTG CACCATGTTT gagCTCATCA TNTTGAAAT ntTAGGAGTA 250

ttGAATAGCA GCTCCCGTTA TTTCACTGG AAAATGAACC TGTGTGTA 300

tCTGCTGATC CTGGTTTCA TGGTGCCTTT TtACATTGGC TATTTATTG 350

TGAGCAATAT CCgACTACTG CATAAACAAc GACTGCTTT TtCCTGTCTN 400

ttATGGCTGA CCTTTATGTA TTNTNTGG AAANTAGGAG ATCCCTTCC 450

catttc 457

<210> 433

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 433

aagtggagcc ggagccttcc 20

<210> 434

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 434
tcgttgtta tgcagtagtc gg 22

<210> 435
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 435
attttaaa gactatgaga tacgtcagta tgggtacag g 41

<210> 436
<211> 3951
<212> DNA
<213> Homo sapiens

<400> 436
ctcgccagg gatcgcccc tggccggggc tcggagccgc gacccttggg 50
gggcctccgg gatttgctac cttttggct ccctgcttgt cgaactgctc 100
tttcacggg ctgtcgccctt caatctggac gtgatgggtg ccttgcgcaa 150
ggagggcgag ccagggcagcc tcttcggctt ctctgtggcc ctgcaccggc 200
agtgcagcc ccgaccccag agctggctgc tgggtgggtgc tccccaggcc 250
ctggctcttc ctggccagca ggcgaatcgc actggaggcc tcttcgcttg 300
cccggtgagc ctggaggaga ctgactgcta cagagtggac atcgaccagg 350
gagctgatat gcaaaaggaa agcaaggaga accagtggtt gggagtcagt 400
gttcggagcc aggggcctgg gggcaagatt gttacctgtg cacaccgata 450

tgaggcaagg cagcgagtgg accagatcct ggagacgccc gatatgattg 500
gtcgctgc ttgtgctcagc caggacctgg ccatccggga tgagttggat 550
ggtggggaaat ggaagttctg tgagggacgc ccccaaggcc atgaacaatt 600
tgggttctgc cagcagggca cagctgccgc ctctccccct gatagccact 650
acccctcttt tggggcccca ggaacctata attggaaggg cacggccagg 700
gtggagctct gtgcacaggg ctcagccggac ctggcacacc tggacgacgg 750
tccctacgag gcggggggag agaaggagca ggaccccccgc ctcatccgg 800
tccctgcca cagctacttt ggcttctcta ttgactcggg gaaaggctg 850
gtgcgtgcag aagagctgag ctttgtggct ggagcccccc ggcaccaacca 900
caagggtgct gtggcatcc tgcgcaagga cagcgccagt cgccctggc 950
ccgagggtat gctgtctggg gagcgccctga cctccggctt tggctactca 1000
ctggctgtgg ctgaccaa cagtgtggc tggccagacc tgatagtggg 1050
tgccccctac ttcttgagc gccaagaaga gctgggggt gctgtgtatg 1100
tgtactgaa ccaggggggt cactgggctg ggatctcccc tctccggctc 1150
tgccggctccc ctgactccat gttcgggatc agcctggctg tcctggggga 1200
cctcaaccaa gatggcttc cagatattgc agtgggtgcc cccttgatg 1250
gtgatggaa agtcttcatc taccatggga gcagccctggg ggttgcgcc 1300
aaacccac aggtgctgga gggcgaggct gtggcatca agagctcgg 1350
ctactccctg tcaggcagct tggatatgga tggaaaccaa taccctgacc 1400
tgctggtggg ctccctggct gacaccgcag tgctttcag gcccagaccc 1450
atcctccatg tctccatga ggtcttatt gctccacgaa gcatcgacct 1500
ggagcagccc aactgtgtcg gcgccactc ggtctgtgtg gacctaagg 1550
tctgtttcag ctacattgca gtccccagca gctatagccc tactgtggcc 1600

ctggactatg tggtagatgc ggacacagac cggaggctcc ggggccagg 1650
tccccgtgt acgttcctga gccgtaacct ggaagaaccc aagcaccagg 1700
cctcggcac cgtgtggctg aagcaccaggc atgaccgagt ctgtggagac 1750
gccatgtcc agctccagga aaatgtcaaa gacaagctc gggccattgt 1800
agtgacccctg tcctacagtc tccagacccc tcggctccgg cgacaggctc 1850
ctggccaggg gctgcctcca gtggccccc tcctcaatgc ccaccagccc 1900
agcacccagc gggcagagat ccactcctg aagcaaggct gtggtaaga 1950
caagatctgc cagagcaatc tgcatgttgtt ccacgcccgc ttctgtaccc 2000
gggtcagcga cacggaattc caacctctgc ccatggatgt ggtatgaaaca 2050
acagccctgt ttgcactgag tgggcagcca gtcattggcc tggagctgat 2100
ggtcaccaac ctgccatcgg acccagccca gccccaggct gatggggatg 2150
atgcccattga agcccaagctc ctggcatgc ttccctgactc actgcactac 2200
tcaggggtcc gggccctgga ccctgcggag aagccactct gcctgtccaa 2250
tgagaatgcc tcccatgttg agtgtgagct gggaaacccc atgaagagag 2300
gtgcccaggt caccttctac ctcatccta gcacccctgg gatcagcatt 2350
gagaccacgg aactggaggt agagctgctg ttggccacga tcagtgagca 2400
ggagctgcat ccagtctctg cacgagcccg tgtttcatt gagctgccac 2450
tgtccattgc aggaatggcc attccccaggc aactcttctt ctctgggttg 2500
gtgagggcg agagagccat gcagtcgttgg cggatgtgg gcagcaagg 2550
caagtatgag gtcacggttt ccaaccaagg ccagtcgctc agaaccctgg 2600
gctctgcctt cctcaacatc atgtggccctc atgagattgc caatggaaag 2650
tgggtgtt acccaatgca ggttggatgttgg gagggcgggc aggggcctgg 2700
gcagaaaggc ctttgtctc ccaggcccaa catcctccac ctggatgtgg 2750

acagtaggga taggaggcg cgggagctgg agccacctga gcagcaggag 2800
cctggtgagc ggcaggagcc cagcatgtcc tggtgccag tgtcctctgc 2850
tgagaagaag aaaaacatca ccctggactg cgcccgggc acggccaact 2900
gtgtggtgtt cagctgccca ctctacagct ttgaccgcgc ggctgtgctg 2950
catgtctggg gccgtctctg gaacagcacc ttctggagg agtactcagc 3000
tgtgaagtcc ctggaagtga ttgtccggc caacatcaca gtgaagtct 3050
ccataaaagaa cttgatgctc cgagatgcct ccacagtgtat cccagtgtat 3100
gtatacttgg accccatggc tgtggtgca gaaggagtgc cctggtggt 3150
catcctcctg gctgtactgg ctgggctgct ggtgcttagca ctgctggtgc 3200
tgctcctgtg gaagatggga ttcttcaaacc gggcgaagca ccccgaggcc 3250
accgtcccc agtaccatgc ggtgaagatt cctcggaag accgacagca 3300
gttcaaggag gagaagacgg gcaccatcct gaggaacaac tggggcagcc 3350
cccgccggga gggcccgat gcacacccca tcctggctgc tgacggcat 3400
cccgagctgg gccccgatgg gcatccaggg ccaggcaccg cctaggttcc 3450
catgtcccag cctggcctgt ggctgccctc catccctcc ccagagatgg 3500
ctccttggga tgaagagggt agagtggct gctggtgctc catcaagatt 3550
tggcaggatc ggcttcctca ggggcacaga cctctccac ccacaagaac 3600
tcctcccacc caactcccc ttagagtgtc gtgagatgag agtggtaaa 3650
tcagggacag ggcctatgggg tagggtgaga agggcagggg tgcctgtat 3700
caaagggtggg gagaagggat cctaattccct tcctctccca ttcacccctgt 3750
gtaacaggac cccaaaggacc tgcctccccg gaagtgcctt aacctagagg 3800
gtcggggagg aggttgtgtc actgactcag gctgctccctt ctctagttc 3850
ccctctcatc tgacccttagt ttgctgccat cagtctagtg gttcgtgg 3900

ttcgctatt tattaaaaaa tatttgagaa caaaaaaaaaaaa aaaaaaaaaaaa 3950

a 3951

<210> 437

<211> 1141

<212> PRT

<213> Homo sapiens

<400> 437

Met Ala Gly Ala Arg Ser Arg Asp Pro Trp Gly Ala Ser Gly Ile
1 5 10 15

Cys Tyr Leu Phe Gly Ser Leu Leu Val Glu Leu Leu Phe Ser Arg
20 25 30

Ala Val Ala Phe Asn Leu Asp Val Met Gly Ala Leu Arg Lys Glu
35 40 45

Gly Glu Pro Gly Ser Leu Phe Gly Phe Ser Val Ala Leu His Arg
50 55 60

Gln Leu Gln Pro Arg Pro Gln Ser Trp Leu Leu Val Gly Ala Pro
65 70 75

Gln Ala Leu Ala Leu Pro Gly Gln Gln Ala Asn Arg Thr Gly Gly
80 85 90

Leu Phe Ala Cys Pro Leu Ser Leu Glu Glu Thr Asp Cys Tyr Arg
95 100 105

Val Asp Ile Asp Gln Gly Ala Asp Met Gln Lys Glu Ser Lys Glu
110 115 120

Asn Gln Trp Leu Gly Val Ser Val Arg Ser Gln Gly Pro Gly Gly
125 130 135

Lys Ile Val Thr Cys Ala His Arg Tyr Glu Ala Arg Gln Arg Val
140 145 150

Asp Gln Ile Leu Glu Thr Arg Asp Met Ile Gly Arg Cys Phe Val
155 160 165

Leu Ser Gln Asp Leu Ala Ile Arg Asp Glu Leu Asp Gly Gly Glu
170 175 180

Trp Lys Phe Cys Glu Gly Arg Pro Gln Gly His Glu Gln Phe Gly
185 190 195

Phe Cys Gln Gln Gly Thr Ala Ala Ala Phe Ser Pro Asp Ser His
200 205 210

Tyr Leu Leu Phe Gly Ala Pro Gly Thr Tyr Asn Trp Lys Gly Thr
215 220 225

Ala Arg Val Glu Leu Cys Ala Gln Gly Ser Ala Asp Leu Ala His
230 235 240

Leu Asp Asp Gly Pro Tyr Glu Ala Gly Gly Glu Lys Glu Gln Asp
245 250 255

Pro Arg Leu Ile Pro Val Pro Ala Asn Ser Tyr Phe Gly Phe Ser
260 265 270

Ile Asp Ser Gly Lys Gly Leu Val Arg Ala Glu Glu Leu Ser Phe
275 280 285

Val Ala Gly Ala Pro Arg Ala Asn His Lys Gly Ala Val Val Ile
290 295 300

Leu Arg Lys Asp Ser Ala Ser Arg Leu Val Pro Glu Val Met Leu
305 310 315

Ser Gly Glu Arg Leu Thr Ser Gly Phe Gly Tyr Ser Leu Ala Val
320 325 330

Ala Asp Leu Asn Ser Asp Gly Trp Pro Asp Leu Ile Val Gly Ala
335 340 345

Pro Tyr Phe Phe Glu Arg Gln Glu Glu Leu Gly Gly Ala Val Tyr
350 355 360

Val Tyr Leu Asn Gln Gly Gly His Trp Ala Gly Ile Ser Pro Leu
365 370 375

Arg Leu Cys Gly Ser Pro Asp Ser Met Phe Gly Ile Ser Leu Ala
380 385 390

Val Leu Gly Asp Leu Asn Gln Asp Gly Phe Pro Asp Ile Ala Val
395 400 405

Gly Ala Pro Phe Asp Gly Asp Gly Lys Val Phe Ile Tyr His Gly
410 415 420

Ser Ser Leu Gly Val Val Ala Lys Pro Ser Gln Val Leu Glu Gly
425 430 435

Glu Ala Val Gly Ile Lys Ser Phe Gly Tyr Ser Leu Ser Gly Ser
440 445 450

Leu Asp Met Asp Gly Asn Gln Tyr Pro Asp Leu Leu Val Gly Ser
455 460 465

Leu Ala Asp Thr Ala Val Leu Phe Arg Ala Arg Pro Ile Leu His
470 475 480

Val Ser His Glu Val Ser Ile Ala Pro Arg Ser Ile Asp Leu Glu
485 490 495

Gln Pro Asn Cys Ala Gly Gly His Ser Val Cys Val Asp Leu Arg
500 505 510

Val Cys Phe Ser Tyr Ile Ala Val Pro Ser Ser Tyr Ser Pro Thr
515 520 525

Val Ala Leu Asp Tyr Val Leu Asp Ala Asp Thr Asp Arg Arg Leu
530 535 540

Arg Gly Gln Val Pro Arg Val Thr Phe Leu Ser Arg Asn Leu Glu
545 550 555

Glu Pro Lys His Gln Ala Ser Gly Thr Val Trp Leu Lys His Gln
560 565 570

His Asp Arg Val Cys Gly Asp Ala Met Phe Gln Leu Gln Glu Asn
575 580 585

Val Lys Asp Lys Leu Arg Ala Ile Val Val Thr Leu Ser Tyr Ser
590 595 600

Leu Gln Thr Pro Arg Leu Arg Arg Gln Ala Pro Gly Gln Gly Leu
605 610 615

Pro Pro Val Ala Pro Ile Leu Asn Ala His Gln Pro Ser Thr Gln
620 625 630

Arg Ala Glu Ile His Phe Leu Lys Gln Gly Cys Gly Glu Asp Lys
635 640 645

Ile Cys Gln Ser Asn Leu Gln Leu Val His Ala Arg Phe Cys Thr
650 655 660

Arg Val Ser Asp Thr Glu Phe Gln Pro Leu Pro Met Asp Val Asp
665 670 675

Gly Thr Thr Ala Leu Phe Ala Leu Ser Gly Gln Pro Val Ile Gly
680 685 690

Leu Glu Leu Met Val Thr Asn Leu Pro Ser Asp Pro Ala Gln Pro
695 700 705

Gln Ala Asp Gly Asp Asp Ala His Glu Ala Gln Leu Leu Val Met
710 715 720

Leu Pro Asp Ser Leu His Tyr Ser Gly Val Arg Ala Leu Asp Pro
725 730 735

Ala Glu Lys Pro Leu Cys Leu Ser Asn Glu Asn Ala Ser His Val
740 745 750

Glu Cys Glu Leu Gly Asn Pro Met Lys Arg Gly Ala Gln Val Thr
755 760 765

Phe Tyr Leu Ile Leu Ser Thr Ser Gly Ile Ser Ile Glu Thr Thr
770 775 780

Glu Leu Glu Val Glu Leu Leu Ala Thr Ile Ser Glu Gln Glu
785 790 795

Leu His Pro Val Ser Ala Arg Ala Arg Val Phe Ile Glu Leu Pro
800 805 810

Leu Ser Ile Ala Gly Met Ala Ile Pro Gln Gln Leu Phe Phe Ser
815 820 825

Gly Val Val Arg Gly Glu Arg Ala Met Gln Ser Glu Arg Asp Val
830 835 840

Gly Ser Lys Val Lys Tyr Glu Val Thr Val Ser Asn Gln Gly Gln
845 850 855

Ser Leu Arg Thr Leu Gly Ser Ala Phe Leu Asn Ile Met Trp Pro
860 865 870

His Glu Ile Ala Asn Gly Lys Trp Leu Leu Tyr Pro Met Gln Val
875 880 885

Glu Leu Glu Gly Gly Gln Gly Pro Gly Gln Lys Gly Leu Cys Ser
890 895 900

Pro Arg Pro Asn Ile Leu His Leu Asp Val Asp Ser Arg Asp Arg
905 910 915

Arg Arg Arg Glu Leu Glu Pro Pro Glu Gln Gln Glu Pro Gly Glu
920 925 930

Arg Gln Glu Pro Ser Met Ser Trp Trp Pro Val Ser Ser Ala Glu
935 940 945

Lys Lys Lys Asn Ile Thr Leu Asp Cys Ala Arg Gly Thr Ala Asn
950 955 960

Cys Val Val Phe Ser Cys Pro Leu Tyr Ser Phe Asp Arg Ala Ala
965 970 975

Val Leu His Val Trp Gly Arg Leu Trp Asn Ser Thr Phe Leu Glu
980 985 990

Glu Tyr Ser Ala Val Lys Ser Leu Glu Val Ile Val Arg Ala Asn
995 1000 1005

Ile Thr Val Lys Ser Ser Ile Lys Asn Leu Met Leu Arg Asp Ala
1010 1015 1020

Ser Thr Val Ile Pro Val Met Val Tyr Leu Asp Pro Met Ala Val
1025 1030 1035

Val Ala Glu Gly Val Pro Trp Trp Val Ile Leu Leu Ala Val Leu
1040 1045 1050

Ala Gly Leu Leu Val Leu Ala Leu Leu Val Leu Leu Leu Trp Lys
1055 1060 1065

Met Gly Phe Phe Lys Arg Ala Lys His Pro Glu Ala Thr Val Pro
1070 1075 1080

Gln Tyr His Ala Val Lys Ile Pro Arg Glu Asp Arg Gln Gln Phe
1085 1090 1095

Lys Glu Glu Lys Thr Gly Thr Ile Leu Arg Asn Asn Trp Gly Ser
1100 1105 1110

Pro Arg Arg Glu Gly Pro Asp Ala His Pro Ile Leu Ala Ala Asp
1115 1120 1125

Gly His Pro Glu Leu Gly Pro Asp Gly His Pro Gly Pro Gly Thr
1130 1135 1140

Ala

<210> 438

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 438

ggctgacacc gcagtgcct tcag 24

<210> 439

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 439

gctgctgggg actgcaatgt agct 24

<210> 440

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 440
catcctccat gtctccatg aggtctctat tgctccacga agcatc 46

<210> 441
<211> 1964
<212> DNA
<213> Homo sapiens

<400> 441
cgcgccgggc gcagggagct gagtggacgg ctcgagacgg cggcgctgc 50
agcagctcca gaaagcagcg agttggcaga gcagggctgc atttccagca 100
ggagctgcga gcacagtgt ggctcacaac aagatgctca aggtgtcaggc 150
cgtactgtgt gtgtgtcag ccgcgtggc cagtcgtct ctcgcagctg 200
ccgcggcggt ggctgcagcc gggggcggt cggacggcgg taatttctg 250
gatgataaac aatggctcac cacaatctct cagtatgaca aggaagtcgg 300
acagtggAAC aaattccgag acgaagtaga ggatgattat ttccgcactt 350
ggagtccagg aaaacccttc gatcaggcgt tagatccagc taaggatcca 400
tgcttaaaga tgaaatgtag tcgccataaa gtatgcattt ctcaagattc 450
tcagactgca gtctgcatta gtcaccggag gcttacacac aggtgaaag 500
aagcaggagt agaccatagg cagtggaggg gtcccatatt atccacctgc 550
aagcagtgcc cagtggctta tcccagccct gtttgggtt cagatggta 600
tacctactct tttcagtgca aactagaata tcaggcatgt gtcttagaa 650
aacagatctc agtcaaatgt gaaggacatt gcccattgtcc ttcagataag 700
cccaccagta caagcagaaa tgttaagaga gcatgcaggc acctggagtt 750
cagggaaagtg gcaaacagat tgcggactg gttcaaggcc cttcatgaaa 800
gtgaaagtca aaacaagaag acaaaaaacat tgctgaggcc tgagagaagc 850
agattcgata ccagcatctt gccaatttc aaggactcac ttggctggat 900

gtttaacaga ctgatacaa actatgacct gctattggac cagtcagagc 950
tcagaagcat ttaccttgat aagaatgaac agtgtaccaa ggcattctc 1000
aattcttg acacatacaa ggacagttt atatctaata atgagtggt 1050
ctactgcttc cagagacagc aagaccacc ttgccagact gagctagca 1100
atattcagaa gcggcaaggg gtaaagaagc tcctaggaca gtatatcccc 1150
ctgtgtgatg aagatggta ctacaagcca acacaatgtc atggcagtgt 1200
tggacagtgc tgggtgttg acagatatgg aaatgaagtc atgggatcca 1250
gaataaatgg tggcgagat tggctatag attttgagat ctccggagat 1300
tttgcttagt gcgatttca tgaatggact gatgatgagg atgatgaaga 1350
cgatattatg aatgatgaag atgaaattga agatgatgat gaagatgaag 1400
gggatgatga tggatgggt gatgaccatg atgtatacat ttgattgatg 1450
acagttgaaa tcaataaatt ctacattct aatattaca aaaatgatag 1500
cctatttaaa attatcttct tccccaaataa caaaatgatt ctaaacctca 1550
catatatttt gtataattat ttgaaaaattt gcagctaaag ttatagaact 1600
ttatgtttaa ataagaatca ttgcttga gttttatat cccttacaca 1650
aaaagaaaaat acatatgcag tctagtcaga caaaataaag tttgaagt 1700
ctactataat aaattttca cgagaacaaa cttgtaaat ctccataag 1750
caaaatgaca gctagtgc ttggatcgatc atgttaattt ttgaaagat 1800
aattctaagt gaaatttaaa ataaataaat tttaatgac ctgggttta 1850
aggatttagg aaaaatatgc atgcttaat tgcatttcca aagtagcatc 1900
ttgctagacc tagatgagtc aggataacag agagatacca catgactcca 1950
aaaaaaaaaaa aaaa 1964

<211> 436

<212> PRT

<213> Homo sapiens

<400> 442

Met Leu Lys Val Ser Ala Val Leu Cys Val Cys Ala Ala Ala Trp
1 5 10 15

Cys Ser Gln Ser Leu Ala Ala Ala Ala Val Ala Ala Gly
20 25 30

Gly Arg Ser Asp Gly Gly Asn Phe Leu Asp Asp Lys Gln Trp Leu
35 40 45

Thr Thr Ile Ser Gln Tyr Asp Lys Glu Val Gly Gln Trp Asn Lys
50 55 60

Phe Arg Asp Glu Val Glu Asp Asp Tyr Phe Arg Thr Trp Ser Pro
65 70 75

Gly Lys Pro Phe Asp Gln Ala Leu Asp Pro Ala Lys Asp Pro Cys
80 85 90

Leu Lys Met Lys Cys Ser Arg His Lys Val Cys Ile Ala Gln Asp
95 100 105

Ser Gln Thr Ala Val Cys Ile Ser His Arg Arg Leu Thr His Arg
110 115 120

Met Lys Glu Ala Gly Val Asp His Arg Gln Trp Arg Gly Pro Ile
125 130 135

Leu Ser Thr Cys Lys Gln Cys Pro Val Val Tyr Pro Ser Pro Val
140 145 150

Cys Gly Ser Asp Gly His Thr Tyr Ser Phe Gln Cys Lys Leu Glu
155 160 165

Tyr Gln Ala Cys Val Leu Gly Lys Gln Ile Ser Val Lys Cys Glu
170 175 180

Gly His Cys Pro Cys Pro Ser Asp Lys Pro Thr Ser Thr Ser Arg
185 190 195

Asn Val Lys Arg Ala Cys Ser Asp Leu Glu Phe Arg Glu Val Ala

200 205 210

Asn Arg Leu Arg Asp Trp Phe Lys Ala Leu His Glu Ser Gly Ser
215 220 225

Gln Asn Lys Lys Thr Lys Thr Leu Leu Arg Pro Glu Arg Ser Arg
230 235 240

Phe Asp Thr Ser Ile Leu Pro Ile Cys Lys Asp Ser Leu Gly Trp
245 250 255

Met Phe Asn Arg Leu Asp Thr Asn Tyr Asp Leu Leu Leu Asp Gln
260 265 270

Ser Glu Leu Arg Ser Ile Tyr Leu Asp Lys Asn Glu Gln Cys Thr
275 280 285

Lys Ala Phe Phe Asn Ser Cys Asp Thr Tyr Lys Asp Ser Leu Ile
290 295 300

Ser Asn Asn Glu Trp Cys Tyr Cys Phe Gln Arg Gln Gln Asp Pro
305 310 315

Pro Cys Gln Thr Glu Leu Ser Asn Ile Gln Lys Arg Gln Gly Val
320 325 330

Lys Lys Leu Leu Gly Gln Tyr Ile Pro Leu Cys Asp Glu Asp Gly
335 340 345

Tyr Tyr Lys Pro Thr Gln Cys His Gly Ser Val Gly Gln Cys Trp
350 355 360

Cys Val Asp Arg Tyr Gly Asn Glu Val Met Gly Ser Arg Ile Asn
365 370 375

Gly Val Ala Asp Cys Ala Ile Asp Phe Glu Ile Ser Gly Asp Phe
380 385 390

Ala Ser Gly Asp Phe His Glu Trp Thr Asp Asp Glu Asp Asp Glu
395 400 405

Asp Asp Ile Met Asn Asp Glu Asp Glu Ile Glu Asp Asp Asp Glu
410 415 420

Asp Glu Gly Asp Asp Asp Asp Gly Gly Asp Asp His Asp Val Tyr

425

430

435

Ile

<210> 443

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 443

cagcaatatt cagaaggcggc aaggg 25

<210> 444

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 444

catcatggtc atcaccacca tcatcatc 28

<210> 445

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 445

ggttactaca agccaaacaca atgtcatggc agtgttggac agtgctgg 48

<210> 446

<211> 3617

<212> DNA

<213> Homo sapiens

<400> 446

cagactccag atttccctgt caaccacgag gagtccagag aggaaacgcg 50

gagcggagac aacagtacct gacgcctctt tcagcccgaa atcgccccag 100
cagggatggg cgacaagatc tggctgccct tccccgtgct ccttctggcc 150
gctctgcctc cggtgctgct gcctggggcg gccggcttca cacctccct 200
cgatagcgac ttcaccctta cccttcccgc cggccagaag gagtgctct 250
accagcccat gcccctgaag gcctcgctgg agatcgagta ccaagttta 300
gatggaggcag gattagatat tgatttccat cttgcctctc cagaaggcaa 350
aaccttagtt ttgaacaaa gaaaatcaga tggagttcac actgttagaga 400
ctgaagttgg tgattacatg ttctgcttg acaatacatt cagcaccatt 450
tctgagaagg tgattttctt tgaattaatc ctggataata tgggagaaca 500
ggcacaagaa caagaagatt ggaagaataa tattactggc acagatata 550
tggatataa actggaagac atcctggaaat ccatcaacag catcaagtcc 600
agactaagca aaagtggca catacaaatt ctgcttagag catttgaagc 650
tcgtgatcga aacatacaag aaagcaactt tgatagagtc aatttctgg 700
ctatggtaa tttagtggc atgggggtgg tgtcagccat tcaagttat 750
atgctgaaga gtctgttga agataagagg aaaagtagaa cttaaaactc 800
caaactagag tacgtacat tgaaaaatga ggcataaaaaa tgcaataaac 850
tgttacagtc aagaccatta atggcttct cccaaatatt ttgagatata 900
aaagtaggaa acaggataaa tttaatgtg aaaattaatg cttcacttc 950
tgtgcaagta atcctgctga tccagttgtc cttaagtgtg taacaggaat 1000
atttgcaga atatagggtt aactgaatga agccatatta ataactgcat 1050
ttcctaact ttgaaaaatt ttgcaaatgt cttaggtgat ttaataat 1100
gagtattggg cctaattgca acaccagtct gtttttaaca gggttcttata 1150
cccagaacctt tttgttaat gcggcagttt caaattaact gtggaaagttt 1200

tcagtttaa gttataaatac acctgagaat tacctaatac tggattgaat 1250
aaatctttag actacaaaag cccaaacttt ctctattac atatgcata 1300
ctcctataat gtaaatagaa taatagctt gaaatacaat taggttttg 1350
agattttat aaccaaatac atttcagtgt aacatattag cagaaggcat 1400
tagtcgttgc actttgctta cattccaaa agctgacatt ttcacgattc 1450
ttaaaaaacac aaagttcacac ttactaaaaat taggacatgt tttcttttg 1500
aaatgaagaa tatagtttaa aagcttcctc ctccataggg acacatttc 1550
tctaaccctt aactaaagtgt taggatttaa aaattaaatg tgaggtaaaa 1600
taagtttatt ttaatagta tctgtcaagt taatatctgt caacagttaa 1650
taatcatgtt atgttaattt taacatgatt gctgacttgg ataattcatt 1700
attaccagca gttatgaagg aaatattgtc aaaatgtct gggctacca 1750
taaataaata tctcctttc tgagctctaa gaattatcg aaaacaggaa 1800
agaatttaga aaaacctgag aaaacctaatt cccaaataaa attcacttaa 1850
gtagaactat aaataaataat ctagaatctg actggctcat catgacatcc 1900
tactcataac ataaatcaaa ggagatgatt aatttccagt tagctggaaag 1950
aaactttggc tgttaggttt tatttctac aagaattctg gttgaatta 2000
tttttgtaag caggtacatt ttataaaatg taagccctac tgtaaggttt 2050
agcactgggt gtacatattt ataaaaattt tttattataa caacttttat 2100
taaaatggcc ttctgaaca ctttatttt tgatgttcaa gtaaggatta 2150
gaaacataga ctcccaagtt ttaaacacctt aaatgtgaat aacccatata 2200
tacaacaaag ttctgccat ctagttttt gaagtctatg ggggtttac 2250
tcaagtacta gtaatttaac ttcatcatga atgaactata atttttaagt 2300
tatgcccttataacgttg ttatgacta cattgtgagt tagaaacaaa 2350

ctaaaaattt ggggtataga acccctaacc aggttagtaa tgctggaatt 2400
cttgatgagc aataatgata accagagagt gatttcattt acactcatag 2450
tagtataaaa agagatacat ttcccttta ggcccctggg agaagagcag 2500
cttagatttc cctactggca aggttttaa aatgaggta aatgccgtat 2550
atgatcaattt acctaattt gccaagaaaa tgcttcaggt gtctagggt 2600
atcctctgca acacttgcag aacaaaggc aataagatcc ttgcctatga 2650
atacccctcc cttttgcgct gttaaatttgc caatgagaag caaatttaca 2700
gtaccataac taataaagca gggtagat ataaactact gcatctttc 2750
tataaaactg tgattaagaa ttctacctt cctgtatggc tgttactgta 2800
ctgtactctc tgactcccttta cctaacaatg aattttgtac ataaactct 2850
acatgtatga ttgtgccac tgatctaaa cctatgattc agtaacttct 2900
taccatataa aaacgataat tgcttttattt ggaaaagaat ttaggaatac 2950
taaggacaat tattttata gacaaagtaa aaagacagat attaagagg 3000
cataaccaaa aaagcaaaac ttgtaaacag agtaaaaatc tttaatattt 3050
ctaaagacat actgtttatc tgcttcataat gctttttta atttcactat 3100
tccatttcataa aattaaagtt atgctaaattt gagaatgtt gttatctt 3150
aacagctcat ttgtctttt tcaatataca aattttaaaa atactacaat 3200
attnaactaa ggcccaaccg atttccataa tgtgcgtt accgtgttca 3250
cctcacacta aggcccttagag ttgcctgtatgcatttgc gatgatataat 3300
gttatgctgt tctttcatgtt gaatgtcaag acatggagggtt gttttgtat 3350
tttatggtaa aattaatcct tcttacacat aatgggttct taaaatttgc 3400
aaaaaatgag cacttacaat tgcgttctc ctcaaatgaa gattctttat 3450
gtgaaatttt aaaagacattt gattccgcat gtaaggattt ttcatctgaa 3500

gtacaataat gcacaatcag tggctcaa actgctttt acitataaac 3550

agccatctta aataagcaac gtattgtgag tactgatatg tatataataa 3600

aaattatcaa aggaaaa 3617

<210> 447

<211> 229

<212> PRT

<213> Homo sapiens

<400> 447

Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Ala
1 5 10 15

Ala Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro
20 25 30

Ser Leu Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys
35 40 45

Glu Cys Phe Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile
50 55 60

Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His
65 70 75

Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe Glu Gln Arg Lys
80 85 90

Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly Asp Tyr Met
95 100 105

Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys Val Ile
110 115 120

Phe Phe Glu Leu Ile Leu Asp Asn Met Gly Glu Gln Ala Gln Glu
125 130 135

Gln Glu Asp Trp Lys Lys Tyr Ile Thr Gly Thr Asp Ile Leu Asp
140 145 150

Met Lys Leu Glu Asp Ile Leu Glu Ser Ile Asn Ser Ile Lys Ser
155 160 165

Arg Leu Ser Lys Ser Gly His Ile Gln Ile Leu Leu Arg Ala Phe
170 175 180

Glu Ala Arg Asp Arg Asn Ile Gln Glu Ser Asn Phe Asp Arg Val
185 190 195

Asn Phe Trp Ser Met Val Asn Leu Val Val Met Val Val Val Ser
200 205 210

Ala Ile Gln Val Tyr Met Leu Lys Ser Leu Phe Glu Asp Lys Arg
215 220 225

Lys Ser Arg Thr

<210> 448

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 448

cccagcagg ctgggcaca aga 23

<210> 449

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 449

gtcttccagt ttcatatcca ata 23

<210> 450

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 450

ccagaaggag cacgggaaag ggcagccaga tcttgcgcc cat 43

<210> 451

<211> 859

<212> DNA

<213> Homo sapiens

<400> 451

ccatccctga gatctttta taaaaaaaccc agtcttgct gaccagacaa 50

agcataccag atctcaccag agagtcgcag acactatgct gcctccatg 100

gccctgccca gtgtgtcctg gatgctgcctt tcctgcctca ttctcctgtg 150

tcaggttcaa ggtgaagaaa cccagaagga actgcccctt ccacggatca 200

gctgtcccaa aggctccaag gcctatggct cccccctgcta tgccttgtt 250

ttgtcaccaa aatcctggat ggatgcagat ctggcttgcc agaagcggcc 300

ctctggaaaa ctgggtgtcg tgctcagtgg ggctgaggga tcctcgtgt 350

cctccctggc gaggagcatt agtaacagct actcatacat ctggattggg 400

ctccatgacc ccacacaggg ctctgagcct gatggagatg gatggagtg 450

gagtagcact gatgtgatga attacttgc atggagaaa aatccctcca 500

ccatctaaa ccctggccac tgtggagcc tgtcaagaag cacaggattt 550

ctgaagtgga aagattataa ctgtgatca aagttaccct atgtctgcaa 600

gttcaaggac tagggcaggt gggaaatcgag cagcctcagc ttggcgtgca 650

gctcatcatg gacatgagac cagtgtgaag actcaccctg gaagagaata 700

ttctccccaa actgccctac ctgactacct tgtcatgatc ctcctcttt 750

ttcccttttc ttcacccatca ttccaggctt ttctctgtct tccatgtctt 800

gagatctcg agaataataa taaaaatgtt actttataaa aaaaaaaaaa 850

aaaaaaaaaa 859

<210> 452
<211> 175
<212> PRT
<213> Homo sapiens

<400> 452
Met Leu Pro Pro Met Ala Leu Pro Ser Val Ser Trp Met Leu Leu
1 5 10 15

Ser Cys Leu Ile Leu Leu Cys Gln Val Gln Gly Glu Thr Gln
20 25 30

Lys Glu Leu Pro Ser Pro Arg Ile Ser Cys Pro Lys Gly Ser Lys
35 40 45

Ala Tyr Gly Ser Pro Cys Tyr Ala Leu Phe Leu Ser Pro Lys Ser
50 55 60

Trp Met Asp Ala Asp Leu Ala Cys Gln Lys Arg Pro Ser Gly Lys
65 70 75

Leu Val Ser Val Leu Ser Gly Ala Glu Gly Ser Phe Val Ser Ser
80 85 90

Leu Val Arg Ser Ile Ser Asn Ser Tyr Ser Tyr Ile Trp Ile Gly
95 100 105

Leu His Asp Pro Thr Gln Gly Ser Glu Pro Asp Gly Asp Gly Trp
110 115 120

Glu Trp Ser Ser Thr Asp Val Met Asn Tyr Phe Ala Trp Glu Lys
125 130 135

Asn Pro Ser Thr Ile Leu Asn Pro Gly His Cys Gly Ser Leu Ser
140 145 150

Arg Ser Thr Gly Phe Leu Lys Trp Lys Asp Tyr Asn Cys Asp Ala
155 160 165

Lys Leu Pro Tyr Val Cys Lys Phe Lys Asp
170 175

<210> 453
<211> 550
<212> DNA

<213> Homo sapiens

<400> 453

ccagtctgac gccacacac ttgggtctg ctgtccccgc caggcaagcc 50

tgggtgaga gcacagagga gtggccggg accatgcggg ggacgcggct 100

ggcgctcctg gcgctggc tggctgcctg cgagagactg ggcggccccc 150

tgcgctgcta cgtctgtccg gagcccacag gagtgcggc ctgtgtcacc 200

atcgccacct gcaccaccaa cgaaaccatg tgcaagacca cactctactc 250

ccgggagata gtgtacccct tccaggggta ctccacgggtg accaagtct 300

gtgccagcaa gtgttaagccc tcggatgtgg atggcatcgcc ccagaccctg 350

cccggtgcct gctgcaatac tgagctgtgc aatgttagacg gggcgccgc 400

tctgaacacgc ctccactgcg gggccctcac gctccctcca ctcttgagcc 450

tccgactgta gagtccccgc ccaccccat ggccctatgc ggcccagccc 500

cgaatgcctt gaagaagtgc cccctgcacc aggaaaaaaaaaaaaaaa 550

<210> 454

<211> 125

<212> PRT

<213> Homo sapiens

<400> 454

Met Arg Gly Thr Arg Leu Ala Leu Leu Ala Leu Val Leu Ala Ala

1 5 10 15

Cys Gly Glu Leu Ala Pro Ala Leu Arg Cys Tyr Val Cys Pro Glu

20 25 30

Pro Thr Gly Val Ser Asp Cys Val Thr Ile Ala Thr Cys Thr Thr

35 40 45

Asn Glu Thr Met Cys Lys Thr Thr Leu Tyr Ser Arg Glu Ile Val

50 55 60

Tyr Pro Phe Gln Gly Asp Ser Thr Val Thr Lys Ser Cys Ala Ser

65 70 75

Lys Cys Lys Pro Ser Asp Val Asp Gly Ile Gly Gln Thr Leu Pro
80 85 90

Val Ser Cys Cys Asn Thr Glu Leu Cys Asn Val Asp Gly Ala Pro
95 100 105

Ala Leu Asn Ser Leu His Cys Gly Ala Leu Thr Leu Leu Pro Leu
110 115 120

Leu Ser Leu Arg Leu
125

<210> 455

<211> 1518

<212> DNA

<213> Homo sapiens

<400> 455

ctgcagtcag gactctggga ccgcaggggg ctcccgacc ctgactctgc 50

agccgaaccg gcacggittc gtggggaccc aggcttgcaa agtgacggc 100

atttctctt tcttctccc tcttgagtcc ttctgagatg atggctctgg 150

gcgcagcggg agctacccgg gtcttgtcg cgatggtagc ggccggcttc 200

ggcggccacc ctctgctggg agtgagcgcc accttgaact cggttctcaa 250

ttccaacgct atcaagaacc tgccccacc gctggcggc gctgcggggc 300

acccaggctc tgcagtcagc gccgcgccgg gaatctgtt cccggcggg 350

aataagtacc agaccattga caactaccag ccgtacccgt ggcagagga 400

cgaggagtgc ggcactgtt agtactgcgc tagtcccacc cgccggagggg 450

acgcaggcgt gcaaattgtt ctcgcctgca ggaagcgccg aaaacgctgc 500

atgcgtcacg ctatgtctgt ccccgaaat tactgcaaaa atgaaatatg 550

tgtgtttctt gatcaaaatc atttccgagg agaaattttag gaaaccatca 600

ctgaaagctt tggtaatgtt catagcacct tggatgggta ttccagaaga 650

accacccgtt cttcaaaaat gtatcacacc aaaggacaag aaggttctgt 700

ttgtctccgg tcatcagact gtgcctcagg attgttgtt gctagacact 750
tctggtccaa gatctgtaaa cctgtcctga aagaaggta agtgtgtacc 800
aagcatagga gaaaaggctc tcatggacta gaaatattcc agcgttgta 850
ctgtggagaa ggtctgtttt gccggataca gaaagatcac catcaagcca 900
gtaattcttc taggctcac acttgcaga gacactaac cagctatcca 950
aatgcagtga actcctttta tataatagat gctatgaaaa cctttatga 1000
ccttcataa ctcataatcata aggatataca agttctgtgg ttcagttaa 1050
gcattccaaat aacacctcc aaaaacctgg agttaagag cttgtttct 1100
ttatggaact cccctgttat tgcatgttt tactgtattt taaattctca 1150
gtgtggcact tacctgtaaa tgcatgaaa cttaattttt ttttctaaa 1200
ggtgctgcac tgcctatccc tcctctgtt atgtaaattt ttgtacacat 1250
tgattgttat ctgtactgac aaatattcta tattgaactg aagtaatca 1300
ttcagctta tagttctta aagcataacc cttaatcccc ttaattctta 1350
gagtcttagaa cgcaaggatc tcttggatg acataatgata ggtacctaaa 1400
atgttaacatg aaaatactag cttatccc taaatgtact atcttaatgc 1450
ttaaattata ttcccttta ggctgtata gttttgaaa taaaatttaa 1500
catttaaaaa aaaaaaaaaa 1518

<210> 456
<211> 266
<212> PRT
<213> Homo sapiens

<400> 456
Met Met Ala Leu Gly Ala Ala Gly Ala Thr Arg Val Phe Val Ala
1 5 10 15

Met Val Ala Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser
20 25 30

Ala Thr Leu Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu
35 40 45

Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val
50 55 60

Ser Ala Ala Pro Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln
65 70 75

Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu
80 85 90

Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp
95 100 105

Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Arg Lys Arg
110 115 120

Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn
125 130 135

Gly Ile Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile
140 145 150

Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu
155 160 165

Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His
170 175 180

Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys
185 190 195

Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys
200 205 210

Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg
215 220 225

Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly
230 235 240

Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser
245 250 255

Asn Ser Ser Arg Leu His Thr Cys Gln Arg His

260

265

<210> 457

<211> 638

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 30, 123, 133, 139, 180, 214, 259, 282, 308, 452, 467, 471, 473,
509, 556

<223> unknown base

<400> 457

tgtttcccg tgcagtcaga atttggacn gcaggggttc ccggacctga 50

tttgca cgcg gaacgggaag gtttgtgg acccagggtt aaatgacggt 100

cattttttt tccttccttc tcnggagtcc ttntgagang atggtttgg 150

gcgcagcggg agctaaccgg gtgttgttgcgatggtag cggcggttt 200

cggcgccac cttntgctgg gagtgagcgc cacctgaat cggtttcaa 250

ttccaacgnt atcaagaacc tgccccacc gntggcgcc gctgcggggc 300

accagggnntt tgcagtcagc gccgcgccgg gaatctgtt cccggcgccc 350

aataagtacc agaccattga caattaccag ccgtaccgt ggcagagga 400

cgaggagtgc ggcactgtatg agtactgcgc tagtcccacc cggcgagggg 450

angcggcggt gcaaatttgt ntngcctgca ggaagcgccg aaaacgctgc 500

atgcgtcang ctatgtgctg ccccgaaat tactgaaaa atgaaatatg 550

tgtgtttctt gatcaaaaatc atttccgagg agaaatttag gaaaccatca 600

ctgaaagctt tggtaatgtat catagcacct tggatggg 638

<210> 458

<211> 4040

<212> DNA

<213> Homo sapiens

<400> 458
gaggaaccta ccggtaccgg ccgcgcgcgtg gtagtcggcg gtgtggctgc 50
acctcaccaa tcccggtgcgc cgcggctggg ccgtcggaga gtgcgtgtgc 100
ttctctccgt cacgggggtgc ttgggctcgcc agaggcgaaa tccggcccca 150
gggtttgagg atgggggagt agctacagga agcgaccccg cgatggcaag 200
gtatattttt gtggaaatgaa aaggaagtat tagaaatgag ctgaagacca 250
ttcacagatt aatatttttg gggacagatt tggatgcctt gattcaccc 300
tgaagtaatg tagacagaag ttctcaaatt tgcatattac atcaactgga 350
accagcagt aatcttaatg ttcaactaaa tcagaacttg cataagaaaag 400
agaatggag tctggtaaa taaagatgac tatatcagag acttgaaaag 450
gatcattctc tgtttctga tagtgttat ggcattta gtgggcacag 500
atcaggattt ttacagttta cttggagtgt ccaaaactgc aagcagtaga 550
gaaataagac aagcttcaa gaaattggca ttgaagttac atcctgataa 600
aaacccgaat aacccaaatg cacatggcga tttttaaaaa ataaatagag 650
catatgaagt actcaaagat gaagatctac ggaaaaagta tgacaaatat 700
ggagaaaaagg gacttgagga taatcaaggt ggccagttatg aaagctggaa 750
ctattatcgt tatgatttttg gtatttatga tgatgtcct gaaatcataa 800
cattggaaaag aagagaattt gatgctgctg ttaattctgg agaactgtgg 850
tttgtaaatt ttactcccc aggctgttca cactgccatg atttagctcc 900
cacatggaga gactttgcta aagaagtggta tgggttactt cgaattggag 950
ctgttaactg tggtgtatg agaatgctt gccgaatgaa aggagtcaac 1000
agctatccccca gtctttcat tttcggtctt ggaatggccc cagtgaaata 1050
tcatggagac agatcaaagg agagtttagt gagtttgca atgcagcatg 1100

ttagaagtac agtgcacagaa cttggacag gaattttgt caactccata 1150
caaactgctt ttgctgctgg tattggctgg ctgatcactt tttgtcaaa 1200
aggaggagat tgtttgactt cacagacacg actcaggctt agtggcatgt 1250
tgtttctcaa ctcattggat gctaaagaaa tatatttggta agtaatacat 1300
aatcttccag atttgaact acttcggca aacacactag aggatcgaaa 1350
ggctcatcat cggtggctgt tatttttca tttggaaaa aatggaaaatt 1400
caaatgatcc tgagctgaaa aaactaaaaa ctctacttaa aaatgatcat 1450
attcaagttg gcagggttga ctgttcctct gcaccagaca tctgttagtaa 1500
tctgtatgtt ttccagccgt ctctagcagt atttaaaggaa caaggaacca 1550
aagaatatga aattcatcat ggaaagaaga ttctatatga tatacttgcc 1600
tttgc当地 aaagtgtgaa ttctcatgtt accacgctt gacctcaaaa 1650
tttccctgcc aatgacaaag aaccatggct tggtgatttc ttgc当地 1700
gggtccacc atgtcgagct ttactaccag agttacgaag agcatcaat 1750
cttc当地atg gtcagcttaa gtttgtaca ctagattgtt cagttcatgtt 1800
gggactctgt aacatgtata acattcaggc ttatccaaca acagtggat 1850
tcaaccagtc caacattcat gagtatgaag gacatcactc tgctgaacaa 1900
atcttggagt tcatagagga tc当地atgat cttcagttgg tctcccttac 1950
acccaccacc ttcaacgaac tagttacaca aagaaaacac aacgaagtct 2000
ggatgggtga ttcttattct ccgtgggttc atccttgc当地 agtcttaatg 2050
ccagaatggaa aagaatggc ccggacatta actggactga tcaacgtggg 2100
cagtatagat tgccaaacagt atcattctt ttgtgcccag gaaaacgttc 2150
aaagataaccc tgagataaga tttttcccc caaaatcaaa taaagctt 2200
cagtatcaca gttacaatgg ttggaaatagg gatgcttatt ccctgagaat 2250

ctgggtctt ggattttac ctcaagtatc cacagatcta acacctcaga 2300
cttcagtga aaaagtctt caaggaaaa atcattgggt gattgattc 2350
tatgctccctt ggtgtggacc ttgccagaat tttgctccag aatttgagct 2400
cttggctagg atgattaaag gaaaagtcaa agctggaaaa gtagactgtc 2450
aggcttatgc tcagacatgc cagaaagctg ggatcaggc ctatccaact 2500
gttaagttt atttctacga aagagcaaag agaaatttc aagaagagca 2550
gataaatacc agagatgcaa aagcaatcgc tgccttaata atgaaaaat 2600
tggaaactct ccgaaatcaa ggcaagagga ataaggatga actttgataa 2650
tgttgaagat gaagaaaaag tttaaaagaa attctgacag atgacatcag 2700
aagacaccta tttagaatgt tacatttatg atggaaatga atgaacatta 2750
tcttagactt gcagttgtac tgccagaatt atctacagca ctgggtaaa 2800
agaagggtct gcaaacttt tctgtaaagg gccggttat aaatattta 2850
gactttgcag gctataatat atggttcaca catgagaaca agaatagagt 2900
catcatgtat tctttgttat ttgctttaa caacccttaa aaaatattaa 2950
aacgattctt agtcagagc cataaaaaag taggctggat tcagtccatg 3000
gaccatagat tgctgtcccc ctcgacggac ttataatgtt tcaggtggct 3050
ggcttgaaca tgagtctgct gtgctatcta cataaatgtc taagttgtat 3100
aaagtccact ttccctcac gtttttggc tgacctgaaa agaggtaact 3150
tagttttgg tcacttgttc tcctaaaaat gctatccctt accatatatt 3200
tatatttcgt tttaaaaaca cccatgatgt ggcacagtaa acaaaccctg 3250
ttatgctgta ttattatgag gagatttttc attgtttctt ttccttctca 3300
aagggtgaaa aaatgcttt aattttcac agccgagaaaa cagtgcagca 3350
gtatatgtgc acacagtaag tacacaaatt tgagcaacag taagtgcaca 3400

aattctgtat tttgctgtat catccagggaa aaccctgaggg aaaaaaaatta 3450
tagcaattaa ctgggcattt tagagtatcc taaatatgtt atcaagtattt 3500
tagagttcta tattttaaag atatatgtgt tcatgtattt tctgaaattt 3550
ctttcataga aattttccca ctgatagttt attttgagg catctaata 3600
ttacatattt gccttctgaa ctttgtttt acctgtatcc tttatttaca 3650
ttgggtttt ctttcatagt tttgggtttt cactcctgtc cagtctattt 3700
attattcaaa tagaaaaat tactttacag gttgtttac tgtagcttat 3750
aatgatactg tagttattcc agttactagt ttactgtcag agggctgcct 3800
tttcagata aatattgaca taataactga agttatttt ataagaaaat 3850
caagttatata aatcttagaa agggatcttc tagttctgt gttgtttaga 3900
ctcaaagaat cacaaatttg tcagtaacat gttagtttt agttataatt 3950
cagagtgtac agaatggtaa aaattccaaat cagtcaaaag aggtcaatga 4000
attaaaaggc ttgcaacttt ttcaaaaaaaaaaaaaaaa 4040

<210> 459
<211> 747
<212> PRT
<213> Homo sapiens

<400> 459
Met Gly Val Trp Leu Asn Lys Asp Asp Tyr Ile Arg Asp Leu Lys
1 5 10 15

Arg Ile Ile Leu Cys Phe Leu Ile Val Tyr Met Ala Ile Leu Val
20 25 30

Gly Thr Asp Gln Asp Phe Tyr Ser Leu Leu Gly Val Ser Lys Thr
35 40 45

Ala Ser Ser Arg Glu Ile Arg Gln Ala Phe Lys Lys Leu Ala Leu
50 55 60

Lys Leu His Pro Asp Lys Asn Pro Asn Asn Pro Asn Ala His Gly

65 70 75

Asp Phe Leu Lys Ile Asn Arg Ala Tyr Glu Val Leu Lys Asp Glu
80 85 90

Asp Leu Arg Lys Lys Tyr Asp Lys Tyr Gly Glu Lys Gly Leu Glu
95 100 105

Asp Asn Gln Gly Gly Gln Tyr Glu Ser Trp Asn Tyr Tyr Arg Tyr
110 115 120

Asp Phe Gly Ile Tyr Asp Asp Asp Pro Glu Ile Ile Thr Leu Glu
125 130 135

Arg Arg Glu Phe Asp Ala Ala Val Asn Ser Gly Glu Leu Trp Phe
140 145 150

Val Asn Phe Tyr Ser Pro Gly Cys Ser His Cys His Asp Leu Ala
155 160 165

Pro Thr Trp Arg Asp Phe Ala Lys Glu Val Asp Gly Leu Leu Arg
170 175 180

Ile Gly Ala Val Asn Cys Gly Asp Asp Arg Met Leu Cys Arg Met
185 190 195

Lys Gly Val Asn Ser Tyr Pro Ser Leu Phe Ile Phe Arg Ser Gly
200 205 210

Met Ala Pro Val Lys Tyr His Gly Asp Arg Ser Lys Glu Ser Leu
215 220 225

Val Ser Phe Ala Met Gln His Val Arg Ser Thr Val Thr Glu Leu
230 235 240

Trp Thr Gly Asn Phe Val Asn Ser Ile Gln Thr Ala Phe Ala Ala
245 250 255

Gly Ile Gly Trp Leu Ile Thr Phe Cys Ser Lys Gly Gly Asp Cys
260 265 270

Leu Thr Ser Gln Thr Arg Leu Arg Leu Ser Gly Met Leu Phe Leu
275 280 285

Asn Ser Leu Asp Ala Lys Glu Ile Tyr Leu Glu Val Ile His Asn

290 295 300

Leu Pro Asp Phe Glu Leu Leu Ser Ala Asn Thr Leu Glu Asp Arg
305 310 315

Leu Ala His His Arg Trp Leu Leu Phe Phe His Phe Gly Lys Asn
320 325 330

Glu Asn Ser Asn Asp Pro Glu Leu Lys Lys Leu Lys Thr Leu Leu
335 340 345

Lys Asn Asp His Ile Gln Val Gly Arg Phe Asp Cys Ser Ser Ala
350 355 360

Pro Asp Ile Cys Ser Asn Leu Tyr Val Phe Gln Pro Ser Leu Ala
365 370 375

Val Phe Lys Gly Gln Gly Thr Lys Glu Tyr Glu Ile His His Gly
380 385 390

Lys Lys Ile Leu Tyr Asp Ile Leu Ala Phe Ala Lys Glu Ser Val
395 400 405

Asn Ser His Val Thr Thr Leu Gly Pro Gln Asn Phe Pro Ala Asn
410 415 420

Asp Lys Glu Pro Trp Leu Val Asp Phe Phe Ala Pro Trp Cys Pro
425 430 435

Pro Cys Arg Ala Leu Leu Pro Glu Leu Arg Arg Ala Ser Asn Leu
440 445 450

Leu Tyr Gly Gln Leu Lys Phe Gly Thr Leu Asp Cys Thr Val His
455 460 465

Glu Gly Leu Cys Asn Met Tyr Asn Ile Gln Ala Tyr Pro Thr Thr
470 475 480

Val Val Phe Asn Gln Ser Asn Ile His Glu Tyr Glu Gly His His
485 490 495

Ser Ala Glu Gln Ile Leu Glu Phe Ile Glu Asp Leu Met Asn Pro
500 505 510

Ser Val Val Ser Leu Thr Pro Thr Phe Asn Glu Leu Val Thr

515 520 525

Gln Arg Lys His Asn Glu Val Trp Met Val Asp Phe Tyr Ser Pro
530 535 540

Trp Cys His Pro Cys Gln Val Leu Met Pro Glu Trp Lys Arg Met
545 550 555

Ala Arg Thr Leu Thr Gly Leu Ile Asn Val Gly Ser Ile Asp Cys
560 565 570

Gln Gln Tyr His Ser Phe Cys Ala Gln Glu Asn Val Gln Arg Tyr
575 580 585

Pro Glu Ile Arg Phe Phe Pro Pro Lys Ser Asn Lys Ala Tyr Gln
590 595 600

Tyr His Ser Tyr Asn Gly Trp Asn Arg Asp Ala Tyr Ser Leu Arg
605 610 615

Ile Trp Gly Leu Gly Phe Leu Pro Gln Val Ser Thr Asp Leu Thr
620 625 630

Pro Gln Thr Phe Ser Glu Lys Val Leu Gln Gly Lys Asn His Trp
635 640 645

Val Ile Asp Phe Tyr Ala Pro Trp Cys Gly Pro Cys Gln Asn Phe
650 655 660

Ala Pro Glu Phe Glu Leu Leu Ala Arg Met Ile Lys Gly Lys Val
665 670 675

Lys Ala Gly Lys Val Asp Cys Gln Ala Tyr Ala Gln Thr Cys Gln
680 685 690

Lys Ala Gly Ile Arg Ala Tyr Pro Thr Val Lys Phe Tyr Phe Tyr
695 700 705

Glu Arg Ala Lys Arg Asn Phe Gln Glu Glu Gln Ile Asn Thr Arg
710 715 720

Asp Ala Lys Ala Ile Ala Ala Leu Ile Ser Glu Lys Leu Glu Thr
725 730 735

Leu Arg Asn Gln Gly Lys Arg Asn Lys Asp Glu Leu

740

745

<210> 460

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 460

actccccagg ctgttcacac tgcc 24

<210> 461

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 461

gatcagccag ccaataccag cagc 24

<210> 462

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 462

tggtgtatga tagaatgctt tgccgaatga aaggagtcaa cagctatccc 50

<210> 463

<211> 1818

<212> DNA

<213> Homo sapiens

<400> 463

agacagtacc tcctccctag gactcaccaa ggactgaacc agaaggaaga 50

ggacagagca aagccatgaa catcatccta gaaatccttc tgcttctgat 100

caccatcatc tactcctact tggagtcgtt ggtgaagttt ttcattcctc 150
agaggagaaa atctgtggct ggggagattt ttctcattac tggagctggg 200
catggaatag gcagggcagac tacttatgaa ttgc当地aaac gacagagcat 250
attggttctg tgggatatta ataagcgcgg tgtggagggaa actgcagctg 300
agtgccgaaa actaggcgctc actgcgcatt cgtatgtggt agactgcagc 350
aacagagaag agatctatcg ctctctaaat caggtgaaga aagaagtggg 400
tgatgttaaca atcgtggtaataatgctgg gacagtataccagccgatc 450
ttctcagcac caaggatgaa gagattacca agacatttga ggtcaacatc 500
ctaggacatt ttggatcac aaaagcactt cttccatcga tgatggagag 550
aaatcatggc cacatcgta cagtgccctc agtgtgcggc cacgaaggga 600
ttcccttacct catccatat tggccagca aatttgcgcg tggccctt 650
cacagaggc tgacatcaga acttcaggcc ttggaaaaaa ctggatcaa 700
aacctcatgt ctctgcccag ttttgtgaa tactgggttc accaaaaatc 750
caagcacaag attatggcct gtattggaga cagatgaaatc cgtaagaatc 800
ctgatagatg gaatacttac caataagaaa atgatttttgc tccatcgta 850
tatcaatatc ttctgagac tacagaagtt tcttcgttgc cgcgcctc 900
cgattttaaa tcgtatgcag aatattcaat ttgaaggcgtt gggtggccac 950
aaaatcaaaa tgaaatgaat aaataagctc cagccagaga tgtatgcatt 1000
ataatgatataatc gaatagtttgc gaatcaatgc tgcaagtttatttcacat 1050
tttttcagtc ctgataatataatc taaaacatttgc ggttggccac tagcagcgtt 1100
caaacgaaca agattaatcca cctgtttcc tggccatcaaaatc 1150
gtgttttc ataggtctgt tttcccttc atgcctttaaaaacttgc 1200
tgcttacata aacatactta aaagggttttc tttaagatataatc 1250

catttaagg tggacaaaag ctacccctt aaaagttaat acaaagagaa 1300
cttatttaca cagggaaggt ttaagactgt tcaagtagca ttccaatctg 1350
tagccatgcc acagaatac aacaagaaca cagaatgagt gcacagctaa 1400
gagatcaagt ttcagcaggc agcttatct caacctggac atatttaag 1450
attcagcatt taaaagattt ccctagcctc ttccttttc attagccaa 1500
aacggtgcaa ctctattctg gactttatta ctgattctg tcttctgtat 1550
aactctgaag tccaccaaaa gtggaccctc tatattcct cccttttat 1600
agtcttataa gatacattat gaaaggtgac cgactctatt ttaaatctca 1650
gaattttaag ttctagcccc atgataacct tttctttgt aatttatgt 1700
ttcatatatc ctggccc gagatgtta gacaattta ggctaaaaa 1750
ttaaagctaa cacaggaaaaa ggaactgtac tggcttattac ataagaaaca 1800
atggacccaa gagaagaa 1818

<210> 464

<211> 300

<212> PRT

<213> Homo sapiens

<400> 464

Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Ile Thr Ile Ile
1 5 10 15

Tyr Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg
20 25 30

Arg Lys Ser Val Ala Gly Glu Ile Val Leu Ile Thr Gly Ala Gly
35 40 45

His Gly Ile Gly Arg Gln Thr Thr Tyr Glu Phe Ala Lys Arg Gln
50 55 60

Ser Ile Leu Val Leu Trp Asp Ile Asn Lys Arg Gly Val Glu Glu
65 70 75

Thr Ala Ala Glu Cys Arg Lys Leu Gly Val Thr Ala His Ala Tyr
80 85 90

Val Val Asp Cys Ser Asn Arg Glu Glu Ile Tyr Arg Ser Leu Asn
95 100 105

Gln Val Lys Lys Glu Val Gly Asp Val Thr Ile Val Val Asn Asn
110 115 120

Ala Gly Thr Val Tyr Pro Ala Asp Leu Leu Ser Thr Lys Asp Glu
125 130 135

Glu Ile Thr Lys Thr Phe Glu Val Asn Ile Leu Gly His Phe Trp
140 145 150

Ile Thr Lys Ala Leu Leu Pro Ser Met Met Glu Arg Asn His Gly
155 160 165

His Ile Val Thr Val Ala Ser Val Cys Gly His Glu Gly Ile Pro
170 175 180

Tyr Leu Ile Pro Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe
185 190 195

His Arg Gly Leu Thr Ser Glu Leu Gln Ala Leu Gly Lys Thr Gly
200 205 210

Ile Lys Thr Ser Cys Leu Cys Pro Val Phe Val Asn Thr Gly Phe
215 220 225

Thr Lys Asn Pro Ser Thr Arg Leu Trp Pro Val Leu Glu Thr Asp
230 235 240

Glu Val Val Arg Ser Leu Ile Asp Gly Ile Leu Thr Asn Lys Lys
245 250 255

Met Ile Phe Val Pro Ser Tyr Ile Asn Ile Phe Leu Arg Leu Gln
260 265 270

Lys Phe Leu Pro Glu Arg Ala Ser Ala Ile Leu Asn Arg Met Gln
275 280 285

Asn Ile Gln Phe Glu Ala Val Val Gly His Lys Ile Lys Met Lys
290 295 300

<210> 465

<211> 1547

<212> DNA

<213> Homo sapiens

<400> 465

cggcggcggc tgcgggcgcg aggtgagggg cgcgaggtga ggggcgcgag 50

gttcccagca ggatgccccg gctctgcagg aagctgaagt gagaggcccg 100

gagagggccc agcccgcccg gggcaggatg accaaggccc ggctgttccg 150

gctgtggctg gtgctgggtt cggtgttcat gatcctgctg atcatcggt 200

actgggacag cgcaggcgcc gcgcacttct acttgcacac gtccttctct 250

aggccgcaca cggggccgcc gctgcccacg cccggccgg acagggacag 300

ggagctcacg gccgactccg atgtcgacga gtttctggac aagttctca 350

tgctggcgt gaagcagagc gacctccca gaaaggagac ggagcagccg 400

cctgcgcggg ggagcatgga ggagagcgtg agaggctacg actggtcccc 450

gcgcgacgcc cggcgcagcc cagaccaggg ccggcagcag gcggagcgg 500

ggagcgtgct gcggggcttc tgcccaact ccagcctggc cttccccacc 550

aaggagcgcg cattcgacga catcccaac tcggagctga gccacctgat 600

cgtggacgac cggcacgggg ccatctactg ctacgtgccc aagggtggcct 650

gcaccaactg gaagcgcgtg atgatcggtc tgagcggaaag cctgctgcac 700

cgcggcgcgc cctaccgcga cccgctgcgc atccgcgcg agcacgtgca 750

caacgcgcgc gcgcaccta cttcaacaa gttctggcgc cgctacggga 800

agctctcccg ccacctcatg aaggtaagc tcaagaagta caccaagttc 850

ctcttcgtgc gcgacccctt cgtgcgcctg atctccgcct tccgcagcaa 900

gttcgagctg gagaacgagg agttctaccg caagttcgcc gtgcccattgc 950

tgcggctgta cgccaaccac accagcctgc ccgcctggc ggcgcaggcc 1000

ttccgcgctg gcccaagggt gtcctcgcc aacttcatcc agtacctgct 1050
ggacccgcac acggagaagc tggcccccctt caacgagcac tggcggcagg 1100
tgtaccgcct ctgccaccccg tgccagatcg actacgactt cgtgggaag 1150
ctggagactc tggacgagga cgccgcgcag ctgctgcgc tactccaggt 1200
ggaccggcag ctccgcitcc cccccgagcta ccggAACAGG accggccagca 1250
gctgggagga ggactggttc gccaagatcc ccctggcctg gaggcagcag 1300
ctgtataaac tctacgaggc cgactttgtt ctcttcgctt accccaagcc 1350
cgaaaacctc ctccgagact gaaagcttc gcgttgctt ttctcgctg 1400
cctggAACCT gacgcacgcg cactccagtt ttttatgac ctacgattt 1450
gcaatctggg cttcttgttc actccactgc ctctatccat tgagtactgt 1500
atcgatattg ttttttaaga ttaatatatt tcaggtattt aatacga 1547

<210> 466
<211> 414
<212> PRT
<213> Homo sapiens

<400> 466
Met Thr Lys Ala Arg Leu Phe Arg Leu Trp Leu Val Leu Gly Ser
1 5 10 15

Val Phe Met Ile Leu Leu Ile Ile Val Tyr Trp Asp Ser Ala Gly
20 25 30

Ala Ala His Phe Tyr Leu His Thr Ser Phe Ser Arg Pro His Thr
35 40 45

Gly Pro Pro Leu Pro Thr Pro Gly Pro Asp Arg Asp Arg Glu Leu
50 55 60

Thr Ala Asp Ser Asp Val Asp Glu Phe Leu Asp Lys Phe Leu Ser
65 70 75

Ala Gly Val Lys Gln Ser Asp Leu Pro Arg Lys Glu Thr Glu Gln
80 85 90

Pro Pro Ala Pro Gly Ser Met Glu Glu Ser Val Arg Gly Tyr Asp
95 100 105

Trp Ser Pro Arg Asp Ala Arg Arg Ser Pro Asp Gln Gly Arg Gln
110 115 120

Gln Ala Glu Arg Arg Ser Val Leu Arg Gly Phe Cys Ala Asn Ser
125 130 135

Ser Leu Ala Phe Pro Thr Lys Glu Arg Ala Phe Asp Asp Ile Pro
140 145 150

Asn Ser Glu Leu Ser His Leu Ile Val Asp Asp Arg His Gly Ala
155 160 165

Ile Tyr Cys Tyr Val Pro Lys Val Ala Cys Thr Asn Trp Lys Arg
170 175 180

Val Met Ile Val Leu Ser Gly Ser Leu Leu His Arg Gly Ala Pro
185 190 195

Tyr Arg Asp Pro Leu Arg Ile Pro Arg Glu His Val His Asn Ala
200 205 210

Ser Ala His Leu Thr Phe Asn Lys Phe Trp Arg Arg Tyr Gly Lys
215 220 225

Leu Ser Arg His Leu Met Lys Val Lys Leu Lys Lys Tyr Thr Lys
230 235 240

Phe Leu Phe Val Arg Asp Pro Phe Val Arg Leu Ile Ser Ala Phe
245 250 255

Arg Ser Lys Phe Glu Leu Glu Asn Glu Glu Phe Tyr Arg Lys Phe
260 265 270

Ala Val Pro Met Leu Arg Leu Tyr Ala Asn His Thr Ser Leu Pro
275 280 285

Ala Ser Ala Arg Glu Ala Phe Arg Ala Gly Leu Lys Val Ser Phe
290 295 300

Ala Asn Phe Ile Gln Tyr Leu Leu Asp Pro His Thr Glu Lys Leu
305 310 315

Ala Pro Phe Asn Glu His Trp Arg Gln Val Tyr Arg Leu Cys His
320 325 330

Pro Cys Gln Ile Asp Tyr Asp Phe Val Gly Lys Leu Glu Thr Leu
335 340 345

Asp Glu Asp Ala Ala Gln Leu Leu Gln Leu Leu Gln Val Asp Arg
350 355 360

Gln Leu Arg Phe Pro Pro Ser Tyr Arg Asn Arg Thr Ala Ser Ser
365 370 375

Trp Glu Glu Asp Trp Phe Ala Lys Ile Pro Leu Ala Trp Arg Gln
380 385 390

Gln Leu Tyr Lys Leu Tyr Glu Ala Asp Phe Val Leu Phe Gly Tyr
395 400 405

Pro Lys Pro Glu Asn Leu Leu Arg Asp
410

<210> 467

<211> 1071

<212> DNA

<213> Homo sapiens

<400> 467

tcgggccaga attcggcacg aggcggcacg agggcgacgg cctcacgggg 50

ctttggaggt gaaagaggcc cagatgttag agagagagag accgacgtac 100

acgggatggc tacgggaacg cgctatgccg ggaagggttgtt ggtcggtacc 150

gggggcgggc gcggcatcgg agctggatgc gtgcgcgcct tcgtgaacag 200

cggggcccga gtggttatct gcgacaagga tgagtctggg ggccgggccc 250

tggagcagga gctccctgga gctgtctta tcctctgtga tgtgactcag 300

gaagatgtt tgaagaccctt ggtttctgag accatccgcc gatttggccg 350

cctggattgt gttgtcaaca acgctggcca ccacccaccc ccacagaggc 400

ctgaggagac ctctgcccag ggattccgcc agctgctgga gctgaaccta 450

ctggggacgt acacctgac caagctgcc ctccttacc tgccgaagag 500
tcaagggaat gtcatcaaca tctccagcct ggtggggca atcgccagg 550
cccaggcagt tccctatgtg gccaccaagg gggcagtaac agccatgacc 600
aaagctttgg ccctggatga aagtccatat ggtgtccgag tcaactgtat 650
ctccccagga aacatctgga ccccgctgtg ggaggagctg gcagcctaa 700
tgccagaccc tagggccaca atccgagagg gcatgctggc ccagccactg 750
ggccgcattgg gccagccgc tgaggtcggg gctgcggcag tggccctggc 800
ctccgaagcc aacttctgca cgggcattga actgctcgtg acggggggtg 850
cagagctggg gtacgggtgc aaggccagtc ggagcacccc cgtggacgcc 900
cccgatatcc cttccgtatt tctctcattt ctacttggg ccccttcct 950
aggactctcc caccccaaac tccaacctgt atcagatgca gcccccaagc 1000
ccttagactc taagcccagt tagcaaggtg ccgggtcacc ctgcagggttc 1050
ccataaaaac gatttgcagc c 1071

<210> 468
<211> 270
<212> PRT
<213> Homo sapiens

<400> 468
Met Ala Thr Gly Thr Arg Tyr Ala Gly Lys Val Val Val Val Thr
1 5 10 15

Gly Gly Gly Arg Gly Ile Gly Ala Gly Ile Val Arg Ala Phe Val
20 25 30

Asn Ser Gly Ala Arg Val Val Ile Cys Asp Lys Asp Glu Ser Gly
35 40 45

Gly Arg Ala Leu Glu Gln Glu Leu Pro Gly Ala Val Phe Ile Leu
50 55 60

Cys Asp Val Thr Gln Glu Asp Asp Val Lys Thr Leu Val Ser Glu

65 70 75

Thr Ile Arg Arg Phe Gly Arg Leu Asp Cys Val Val Asn Asn Ala
80 85 90

Gly His His Pro Pro Pro Gln Arg Pro Glu Glu Thr Ser Ala Gln
95 100 105

Gly Phe Arg Gln Leu Leu Glu Leu Asn Leu Leu Gly Thr Tyr Thr
110 115 120

Leu Thr Lys Leu Ala Leu Pro Tyr Leu Arg Lys Ser Gln Gly Asn
125 130 135

Val Ile Asn Ile Ser Ser Leu Val Gly Ala Ile Gly Gln Ala Gln
140 145 150

Ala Val Pro Tyr Val Ala Thr Lys Gly Ala Val Thr Ala Met Thr
155 160 165

Lys Ala Leu Ala Leu Asp Glu Ser Pro Tyr Gly Val Arg Val Asn
170 175 180

Cys Ile Ser Pro Gly Asn Ile Trp Thr Pro Leu Trp Glu Glu Leu
185 190 195

Ala Ala Leu Met Pro Asp Pro Arg Ala Thr Ile Arg Glu Gly Met
200 205 210

Leu Ala Gln Pro Leu Gly Arg Met Gly Gln Pro Ala Glu Val Gly
215 220 225

Ala Ala Ala Val Phe Leu Ala Ser Glu Ala Asn Phe Cys Thr Gly
230 235 240

Ile Glu Leu Leu Val Thr Gly Gly Ala Glu Leu Gly Tyr Gly Cys
245 250 255

Lys Ala Ser Arg Ser Thr Pro Val Asp Ala Pro Asp Ile Pro Ser
260 265 270

<210> 469

<211> 687

<212> DNA

<213> Homo sapiens

<400> 469

aggcgggcag cagctgcagg ctgaccctgc agcttggcgg aatggactgg 50
cctcacaacc tgctgtttct tcttaccatt tccatcttcc tggggctggg 100
ccagcccagg agccccaaaa gcaagaggaa ggggcaagggg cggcctggc 150
ccctggcccc tggccctcac caggtgccac tggacctggt gtcacggatg 200
aaaccgtatg cccgcatgga ggagtatgag aggaacatcg aggagatgg 250
ggcccagctg aggaacagct cagagctggc ccagagaaag tgtgaggtca 300
acttgcagct gtggatgtcc aacaagagga gcctgtctcc ctggggctac 350
agcatcaacc acgaccccaag ccgtatcccc gtggacctgc cggaggcacg 400
gtgcctgtgt ctggctgtg tgaaccctt caccatgcag gaggaccgca 450
gcatggtgag cgtgcccggtg ttcagccagg ttccctgtcg ccgcccgcctc 500
tgcccgccac cgcccccgcac agggcctgc cgccagcgcg cagtcatgga 550
gaccatcgct gtgggctgca cctgcattt ctgaatcacc tggccagaa 600
gccaggccag cagcccgaga ccatttcct tgcacccctt tgccaagaaa 650
ggcctatgaa aagttaaacac tgactttga aagcaag 687

<210> 470

<211> 180

<212> PRT

<213> Homo sapiens

<400> 470

Met Asp Trp Pro His Asn Leu Leu Phe Leu Leu Thr Ile Ser Ile
1 5 10 15

Phe Leu Gly Leu Gly Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys
20 25 30

Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val
35 40 45

Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu

50 55 60

Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn
65 70 75

Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu
80 85 90

Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile
95 100 105

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg
110 115 120

Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp
125 130 135

Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg
140 145 150

Arg Arg Leu Cys Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln
155 160 165

Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe
170 175 180

<210> 471

<211> 2368

<212> DNA

<213> Homo sapiens

<400> 471

gcggccgccag gcgtaggcgg ggtggccctt gcgtctcccg cttccttgaa 50

aaacccggcg ggcgagcggag gctgcgggcc ggccgctgcc cttccccaca 100

ctccccggcg agaaggctcg ctggcgcccc aacatggcgg gtggcgctg 150

cggcccgccag ctaacggcgc tcctggccgc ctggatcgcg gctgtggcgg 200

cgacggcagg ccccggaggag gccgcgcgtgc cgccggagca gagccgggtc 250

cagcccatga ccgcctccaa ctggacgctg gtgatggagg gcgagtggat 300

gctgaaattt tacgccccat ggtgtccatc ctgccagcag actgattcag 350

aatgggaggc tttgcaaag aatggtaaaa tacttcagat cagtgtgggg 400
aaggtagatg tcattcaaga accaggtttg agtggccgct tccttgcac 450
cactctcca gcatttttc atgcaaagga tggatattc cgccgttac 500
gtggcccagg aatcttcgaa gacctgcaga attatatctt agagaagaaa 550
tggcaatcag tcgagcctct gactggctgg aaatccccag ctctctaac 600
gatgtctgga atggctggc tttagcat ctctggcaag atatggcata 650
ttcacacaacta ttcacagtg actcttggaa ttcctgcitg gtgttcttat 700
gtgttttcg tcatagccac ctgggtttt gccctttta tgggtctgg 750
cttggtggtt atatcagaat gttctatgt gccacttcca aggcatat 800
ctgagcggtc tgagcagaat cggagatcag aggaggctca tagagctgaa 850
cagttgcagg atgcggagga ggaaaaagat gattcaaatg aagaagaaaa 900
caaagacagc cttgttagatg atgaagaaga gaaagaagat cttggcgatg 950
aggatgaagc agaggaagaa gaggaggagg acaacttggc tgctgggtgt 1000
gatgaggaga gaagtggaggc caatgatcag gggcccccag gagaggacgg 1050
tgtgaccgg gaggaagttag agcctgagga ggctgaagaa ggcattctg 1100
agcaaccctg cccagctgac acagagggtgg tggaaagactc cttgaggcag 1150
cgtaaaagtc agcatgctga caagggactg tagatttaat gatgcgttt 1200
caagaataca caccaaaaca atatgtcagc ttcccttgg cctgcagtt 1250
gtaccaaatac cttaaattttt cctgaatgag caagcttc ttaaaagatg 1300
ctctctagtc atttggtctc atggcagtaa gcctcatgta tactaaggag 1350
agtcttccag gtgtgacaat caggatatac aaaaacaaac gtatgttgg 1400
gatctgtttg gagactggga tggaaacaag ttcatttact taggggtcag 1450
agagtctcga ccagaggagg ccattccag tcctaattcag caccttccag 1500

agacaaggct gcaggccctg tgaaatgaaa gccaagcagg agccitggct 1550
cctgagcatc cccaaagtgt aacgtagaag ccttgcattcc tttcttggt 1600
taaagtattt atttttgtca aattgcagga aacatcaggc accacagtgc 1650
atgaaaaatc ttccacagct agaaattgaa agggccttgg gtatagagag 1700
cagctcagaa gtcatcccag ccctctgaat ctccctgtct atgtttattt 1750
tcttacctt aattttcca gcatttccac catggcatt caggctctcc 1800
acactcttca ctattatctc ttggtcagag gactccaata acagccaggt 1850
ttacatgaac tgtgtttgtt cattctgacc taaggggttt agataatcag 1900
taaccataac ccctgaagct gtgactgcc aacatctcaa atgaaatgtt 1950
gtggccatca gagactcaaa aggaagtaag gattttacaa gacagattaa 2000
aaaaaaaaattt ttttgtccaa aatatagttt tggttgattt ttttttaagt 2050
tttctaagca atattttca agccagaagt cctctaagtc ttgccagtac 2100
aaggtagtct tgtgaagaaa agtgaatac tgttttgtt tcattcaag 2150
gggttccctg ggtcttgaac tacttaata ataactaaaa aaccactct 2200
gattttccctt cagtgtatgtc cttttggta aagaattaat gaactccagt 2250
acctgaaagt gaaagattt attttgttcc catcttctgt aatcttccaa 2300
agaatttat ctttgtaaat ctctcaatac tcaatctact gtaagtaccc 2350
agggaggctt atttcttt 2368

<210> 472
<211> 349
<212> PRT
<213> Homo sapiens

<400> 472
Met Ala Gly Gly Arg Cys Gly Pro Gln Leu Thr Ala Leu Leu Ala
1 5 10 15

Ala Trp Ile Ala Ala Val Ala Ala Thr Ala Gly Pro Glu Glu Ala
20 25 30

Ala Leu Pro Pro Glu Gln Ser Arg Val Gln Pro Met Thr Ala Ser
35 40 45

Asn Trp Thr Leu Val Met Glu Gly Glu Trp Met Leu Lys Phe Tyr
50 55 60

Ala Pro Trp Cys Pro Ser Cys Gln Gln Thr Asp Ser Glu Trp Glu
65 70 75

Ala Phe Ala Lys Asn Gly Glu Ile Leu Gln Ile Ser Val Gly Lys
80 85 90

Val Asp Val Ile Gln Glu Pro Gly Leu Ser Gly Arg Phe Phe Val
95 100 105

Thr Thr Leu Pro Ala Phe Phe His Ala Lys Asp Gly Ile Phe Arg
110 115 120

Arg Tyr Arg Gly Pro Gly Ile Phe Glu Asp Leu Gln Asn Tyr Ile
125 130 135

Leu Glu Lys Lys Trp Gln Ser Val Glu Pro Leu Thr Gly Trp Lys
140 145 150

Ser Pro Ala Ser Leu Thr Met Ser Gly Met Ala Gly Leu Phe Ser
155 160 165

Ile Ser Gly Lys Ile Trp His Leu His Asn Tyr Phe Thr Val Thr
170 175 180

Leu Gly Ile Pro Ala Trp Cys Ser Tyr Val Phe Phe Val Ile Ala
185 190 195

Thr Leu Val Phe Gly Leu Phe Met Gly Leu Val Leu Val Val Ile
200 205 210

Ser Glu Cys Phe Tyr Val Pro Leu Pro Arg His Leu Ser Glu Arg
215 220 225

Ser Glu Gln Asn Arg Arg Ser Glu Glu Ala His Arg Ala Glu Gln
230 235 240

Leu Gln Asp Ala Glu Glu Glu Lys Asp Asp Ser Asn Glu Glu Glu
245 250 255

Asn Lys Asp Ser Leu Val Asp Asp Glu Glu Glu Lys Glu Asp Leu
260 265 270

Gly Asp Glu Asp Glu Ala Glu Glu Glu Glu Asp Asn Leu
275 280 285

Ala Ala Gly Val Asp Glu Glu Arg Ser Glu Ala Asn Asp Gln Gly
290 295 300

Pro Pro Gly Glu Asp Gly Val Thr Arg Glu Glu Val Glu Pro Glu
305 310 315

Glu Ala Glu Glu Gly Ile Ser Glu Gln Pro Cys Pro Ala Asp Thr
320 325 330

Glu Val Val Glu Asp Ser Leu Arg Gln Arg Lys Ser Gln His Ala
335 340 345

Asp Lys Gly Leu

<210> 473

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 473

gtccagcccc tgaccgcctc caac 24

<210> 474

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 474

ctctcctcat ccacaccaggc agcc 24

<210> 475
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 475
gtggatgctg aaattttacg ccccatggtg tccatcctgc cagc 44

<210> 476
<211> 2478
<212> DNA
<213> Homo sapiens

<400> 476
atctgggtga actacttaag cttaatttgt taaactccgg taagtacct 50
gcccacatga ttgactcg agattctctt ttgtccacag acagtcatct 100
caggggcaga aagaaaagag ctcccaaatg ctatatctat tcaggggctc 150
tcaagaacaa tggaatatca tcctgattta gaaaatttgg atgaagatgg 200
atatactcaa ttacacttcg actctcaaag caataccagg atagctgttg 250
ttcagagaa aggatcgtgt gctgcatctc ctccctggcg cctcattgct 300
gtaattttgg gaatcctatg cttggtaata ctggtgatag ctgtggcct 350
gggtaccatg ggggttcttt ccagcccttg tcctcctaatt tggattatata 400
atgagaagag ctgttatcta ttcagcatgt cactaaattc ctggatgg 450
agtaaaaagac aatgctggca actggctct aatctcctaa agatagacag 500
ctcaaatgaa ttgggattta tagaaaaaca agtgcctcc caacctgata 550
attcattttg gataggccctt tctcgcccc agactgaggt accatggctc 600
tggaggatg gatcaacatt ctcttctaaac ttatttcaga tcagaaccac 650
agctacccaa gaaaacccat ctccaaattg tgtatggatt cacgtgtcag 700

tttttttagt agagacaggg tttctccatg tcggtcaggg tagtcccgaa 1900
ctcctgacct caagtgatct gcctgcctcg gcctcccaag tgctggatt 1950
acaggcgtga gccactgcac ccagcctaga atcttgtata atatgttaatt 2000
gtagggaaac tgctctcata ggaaagttt ctgctttta aatacaaaaa 2050
tacataaaaaa tacataaaaat ctgatgatga atataaaaaa gtaaccaacc 2100
tcattggaac aagtattaac attttggaaat atgttttatt agtttgta 2150
tgtactgttt tacaattttt accattttt tcagtaatta ctgtaaaatg 2200
gtattattgg aatgaaaacta tattcctca tgtgctgatt tgtcttattt 2250
tttcatact ttcccactgg tgctattttt attccaatg gatattctg 2300
tattactagg gaggcattta cagtcctcta atgttgatta atatgtaaa 2350
agaaattgta ccaattttac taaattatgc agttaaaaat ggtatgtttt 2400
atgttatgtg gatttcattt caataaaaaa aaactttat caaaaaaaaa 2450
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2478

<210> 477
<211> 201
<212> PRT
<213> Homo sapiens

<400> 477
Met Glu Tyr His Pro Asp Leu Glu Asn Leu Asp Glu Asp Gly Tyr
1 5 10 15

Thr Gln Leu His Phe Asp Ser Gln Ser Asn Thr Arg Ile Ala Val
20 25 30

Val Ser Glu Lys Gly Ser Cys Ala Ala Ser Pro Pro Trp Arg Leu
35 40 45

Ile Ala Val Ile Leu Gly Ile Leu Cys Leu Val Ile Leu Val Ile
50 55 60

Ala Val Val Leu Gly Thr Met Gly Val Leu Ser Ser Pro Cys Pro

65 70 75

Pro Asn Trp Ile Ile Tyr Glu Lys Ser Cys Tyr Leu Phe Ser Met
80 85 90

Ser Leu Asn Ser Trp Asp Gly Ser Lys Arg Gln Cys Trp Gln Leu
95 100 105

Gly Ser Asn Leu Leu Lys Ile Asp Ser Ser Asn Glu Leu Gly Phe
110 115 120

Ile Val Lys Gln Val Ser Ser Gln Pro Asp Asn Ser Phe Trp Ile
125 130 135

Gly Leu Ser Arg Pro Gln Thr Glu Val Pro Trp Leu Trp Glu Asp
140 145 150

Gly Ser Thr Phe Ser Ser Asn Leu Phe Gln Ile Arg Thr Thr Ala
155 160 165

Thr Gln Glu Asn Pro Ser Pro Asn Cys Val Trp Ile His Val Ser
170 175 180

Val Ile Tyr Asp Gln Leu Cys Ser Val Pro Ser Tyr Ser Ile Cys
185 190 195

Glu Lys Lys Phe Ser Met
200

<210> 478

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 478

gtccacagac agtcatctca ggagcag 27

<210> 479

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 479

acaagtgtct tcccaacctg 20

<210> 480

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 480

atcctcccg agccatggta cctc 24

<210> 481

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 481

ccaaggatag ctgttgttc agagaaagga tcgttgctg catctctcc 50

t 51

<210> 482

<211> 3819

<212> DNA

<213> Homo sapiens

<400> 482

ggaaggggag gagcaggcca cacaggcaca ggccggtag ggacctgccc 50

agacctggag ggtctcgctc tgacacacag gctggagtgc agtggtgtga 100

tcttggctca tcgtaacctc cacctccgg gtcaagtga ttctcatgcc 150

tca gccctccc gagtagctgg gattacaggt ggtgacttcc aagagtgact 200

ccgtcgagg aaaatgactc cccagtcgct gctgcagacg acactgttcc 250

tgctgagtc gctttctg gtccaagggtg cccacggcag gggcacagg 300
gaagacttgcag ccagcggAAC cagacacaca ggagcagcct 350
ccactacaaa cccacaccAG acctgcgcat ctccatcgag aactccgaag 400
aggccctcac agtccatgcc ctttccctg cagcccACCC tgcttcccga 450
tccttccctg accccaggGGG cctctaccAC ttctgcctCT actggaaccg 500
acatgctggg agattacatC ttctctatgg caagcgtgac ttcttgctga 550
gtgacAAAGC ctctagcctc ctctgcttcc agcaccAGGA ggagagcctg 600
gctcaggGCC ccccgtgtT agccacttCT gtcacctCT ggtggagccc 650
tcagaacatC agcctgccccA gtgcccAGAG cttcacCCtC tccttccaca 700
gtcctccca cacggccgct cacaatgcct cggtggacat gtgcgagctc 750
aaaaggGACC tccagctgct cagccagtTC ctgaagcatC cccagaaggC 800
ctcaaggagg ccctcggtG ccccccGCCAG ccagcagtTG cagagcctgg 850
agtgcAAACT gacctctgtG agattcatgg gggacatggT gtccttcgag 900
gaggacGGGA tcaacGCCAC ggtgtggaaAG ctccagccccA cagccggcct 950
ccaggacctg cacatccact cccggcagGA ggaggaggcag agcgagatca 1000
tggagtactc ggtgctgctG cctcgaacac tcttccagAG gacgaaaggc 1050
cgagacggGG aggctgagaa gagactcctc ctgggtggact tcagcagccA 1100
agccctgttc caggacaaga attccagCCA agtcctgggt gagaaggTct 1150
tggggattgt ggtacagaAC accaaAGTAG ccaacctCAC ggagccctg 1200
gtgctcaTT tccagcacCA gctacAGCCG aagaatgtGA ctctgcaatG 1250
tgtgttctgg gttGAAGACC ccacattgag cagccccGGG cattggagca 1300
gtgctgggtG tgagaccgTC aggagagAAA cccaaacatC ctgcttctGC 1350
aaccacttGA cctactttGC agtgctgatG gtctcctcgg tggaggtgGA 1400

cgccgtgcac aagcactacc tgaggctcct ctcctacgtg ggctgtgtcg 1450
tctctgccct ggcctgcctt gtcaccatig ccgcctacct ctgctccagg 1500
gtgccccgtc cgtgcaggag gaaacctcgga gactacacca tcaaggtgca 1550
catgaacctg ctgctggccg tcttcctgct ggacacgagc ttccctgctca 1600
gcgagccggt ggccctgaca ggctctgagg ctggctgccc agccagtgcc 1650
atcttcctgc acttctccct gtcacactgc ctttcctgga tgggcctcga 1700
gggttacaac ctctaccgac tcgtggtgga ggtctttggc acctatgtcc 1750
ctggctacct actcaagctg agcgccatgg gctggggctt ccccatctt 1800
ctggtgacgc tggtgccct ggtggatgtg gacaactatg gccccatcat 1850
cttggctgtg cataggactc cagagggcgt catctaccct tccatgtgct 1900
ggatccggga ctccctggc agctacatca ccaacctggg cctcttcagc 1950
ctgggtttc tggtaaacat ggccatgcta gccaccatgg tggtgagat 2000
cctgcggctg cgcccccaca cccaaaagtg gtcacatgtg ctgacactgc 2050
tgggcctcag cctggtcctt ggcctgcctt gggccttgat cttcttc 2100
tttgcctctg gcaccttcca gcttgcgtc ctctaccctt tcagcatcat 2150
cacctccttc caaggcttcc tcatacttcat ctggtaactgg tccatgcggc 2200
tgcaaggcccg gggggccccccc tccctctga agagcaactc agacagcgcc 2250
aggctccccca tcagctcggg cagcacctcg tccagccgca tctaggcctc 2300
cagccccaccc gcccattgtga tgaaggcagag atgcggccctc gtgcacact 2350
gcctgtggcc cccgagccag gcccagcccccc aggccagtca gcccagact 2400
ttggaaagcc caacgaccat ggagagatgg gccgttgcca tggtgacgg 2450
actcccgggc tgggttttgc aattggccctt ggggactact cggctctcac 2500
tcagctccca cgggactcag aagtgcgccc ccatgctgcc tagggtactg 2550

tccccacatc tgcccaacc cagctggagg cctggctct cttacaacc 2600
cctgggcca gccctcattg ctggggcca gccttgat ttgagggtc 2650
tggcacatcc ttaatcctgt gcccctgcct gggacagaaa tgtggctcca 2700
gttgcctgt ctctcggtt caccctgagg gcactctgca tcctctgtca 2750
tttaacctc agtggcacc cagggcgaat gggcccagg gcagacctc 2800
agggccagag ccctggcgga ggagaggccc ttgccagga gcacagcagc 2850
agtcgccta cctctgagcc caggccccct ccctccctca gccccccagt 2900
cctccctcca tttccctgg gtttccttc ctctccagg gcctccctgc 2950
tcctcgttc acagctgggg gtcccccattt ccaatgtgt ttttggga 3000
gtggttcca ggagctgcct ggtgtctgct gttaatgttt gtctactgca 3050
caagcctcgg cctgccccctg agccaggctc ggtaccgatg cgtggctgg 3100
gctaggccc tctgtccatc tggcccttg tatgagctgc attgcccttg 3150
ctcaccctga ccaagcacac gcctcagagg gcctcagc ctctcctgaa 3200
gcctcttgt ggcaagaact gtggaccatg ccagtccctgt ctggttcca 3250
tcccaccact ccaaggactg agactgacct cctctggta cactggccta 3300
gagcctgaca ctctcctaag aggttcttc caagccccca aatagctcca 3350
ggcccccctcg gcccctcatc atggtaatt ctgtccaaca aacacacacg 3400
ggtagattgc tggcctgttg taggtggtag ggacacagat gaccgacactg 3450
gtcactcctc ctgccaacat tcagtcgtt atgtgaggcg tgcgtgaagc 3500
aagaactcct ggagctacag ggacagggag ccatcattcc tgcctggaa 3550
tcctggaaga cttcctgcag gagtcagcgt tcaatctga ccttgaagat 3600
ggaaaggatg ttcttttac gtaccaattc tttgtcttt tgatattaaa 3650
aagaagtaca tggcattgt agagaatttg gaaactgttag aagagaatca 3700

agaagaaaaaa taaaaatcag ctgttgaat cgccctagcaa aaaaaaaaaaa 3750

aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 3800

aaaaaaaaaaa aaaaaaaaaaa 3819

<210> 483

<211> 693

<212> PRT

<213> Homo sapiens

<400> 483

Met Thr Pro Gln Ser Leu Leu Gln Thr Thr Leu Phe Leu Leu Ser
1 5 10 15

Leu Leu Phe Leu Val Gln Gly Ala His Gly Arg Gly His Arg Glu
20 25 30

Asp Phe Arg Phe Cys Ser Gln Arg Asn Gln Thr His Arg Ser Ser
35 40 45

Leu His Tyr Lys Pro Thr Pro Asp Leu Arg Ile Ser Ile Glu Asn
50 55 60

Ser Glu Glu Ala Leu Thr Val His Ala Pro Phe Pro Ala Ala His
65 70 75

Pro Ala Ser Arg Ser Phe Pro Asp Pro Arg Gly Leu Tyr His Phe
80 85 90

Cys Leu Tyr Trp Asn Arg His Ala Gly Arg Leu His Leu Leu Tyr
95 100 105

Gly Lys Arg Asp Phe Leu Leu Ser Asp Lys Ala Ser Ser Leu Leu
110 115 120

Cys Phe Gln His Gln Glu Glu Ser Leu Ala Gln Gly Pro Pro Leu
125 130 135

Leu Ala Thr Ser Val Thr Ser Trp Trp Ser Pro Gln Asn Ile Ser
140 145 150

Leu Pro Ser Ala Ala Ser Phe Thr Phe Ser Phe His Ser Pro Pro
155 160 165

His Thr Ala Ala His Asn Ala Ser Val Asp Met Cys Glu Leu Lys
170 175 180

Arg Asp Leu Gln Leu Leu Ser Gln Phe Leu Lys His Pro Gln Lys
185 190 195

Ala Ser Arg Arg Pro Ser Ala Ala Pro Ala Ser Gln Gln Leu Gln
200 205 210

Ser Leu Glu Ser Lys Leu Thr Ser Val Arg Phe Met Gly Asp Met
215 220 225

Val Ser Phe Glu Glu Asp Arg Ile Asn Ala Thr Val Trp Lys Leu
230 235 240

Gln Pro Thr Ala Gly Leu Gln Asp Leu His Ile His Ser Arg Gln
245 250 255

Glu Glu Glu Gln Ser Glu Ile Met Glu Tyr Ser Val Leu Leu Pro
260 265 270

Arg Thr Leu Phe Gln Arg Thr Lys Gly Arg Ser Gly Glu Ala Glu
275 280 285

Lys Arg Leu Leu Leu Val Asp Phe Ser Ser Gln Ala Leu Phe Gln
290 295 300

Asp Lys Asn Ser Ser Gln Val Leu Gly Glu Lys Val Leu Gly Ile
305 310 315

Val Val Gln Asn Thr Lys Val Ala Asn Leu Thr Glu Pro Val Val
320 325 330

Leu Thr Phe Gln His Gln Leu Gln Pro Lys Asn Val Thr Leu Gln
335 340 345

Cys Val Phe Trp Val Glu Asp Pro Thr Leu Ser Ser Pro Gly His
350 355 360

Trp Ser Ser Ala Gly Cys Glu Thr Val Arg Arg Glu Thr Gln Thr
365 370 375

Ser Cys Phe Cys Asn His Leu Thr Tyr Phe Ala Val Leu Met Val
380 385 390

Ser Ser Val Glu Val Asp Ala Val His Lys His Tyr Leu Ser Leu
395 400 405

Leu Ser Tyr Val Gly Cys Val Val Ser Ala Leu Ala Cys Leu Val
410 415 420

Thr Ile Ala Ala Tyr Leu Cys Ser Arg Val Pro Leu Pro Cys Arg
425 430 435

Arg Lys Pro Arg Asp Tyr Thr Ile Lys Val His Met Asn Leu Leu
440 445 450

Leu Ala Val Phe Leu Leu Asp Thr Ser Phe Leu Leu Ser Glu Pro
455 460 465

Val Ala Leu Thr Gly Ser Glu Ala Gly Cys Arg Ala Ser Ala Ile
470 475 480

Phe Leu His Phe Ser Leu Leu Thr Cys Leu Ser Trp Met Gly Leu
485 490 495

Glu Gly Tyr Asn Leu Tyr Arg Leu Val Val Glu Val Phe Gly Thr
500 505 510

Tyr Val Pro Gly Tyr Leu Leu Lys Leu Ser Ala Met Gly Trp Gly
515 520 525

Phe Pro Ile Phe Leu Val Thr Leu Val Ala Leu Val Asp Val Asp
530 535 540

Asn Tyr Gly Pro Ile Ile Leu Ala Val His Arg Thr Pro Glu Gly
545 550 555

Val Ile Tyr Pro Ser Met Cys Trp Ile Arg Asp Ser Leu Val Ser
560 565 570

Tyr Ile Thr Asn Leu Gly Leu Phe Ser Leu Val Phe Leu Phe Asn
575 580 585

Met Ala Met Leu Ala Thr Met Val Val Gln Ile Leu Arg Leu Arg
590 595 600

Pro His Thr Gln Lys Trp Ser His Val Leu Thr Leu Leu Gly Leu
605 610 615

Ser Leu Val Leu Gly Leu Pro Trp Ala Leu Ile Phe Phe Ser Phe
620 625 630

Ala Ser Gly Thr Phe Gln Leu Val Val Leu Tyr Leu Phe Ser Ile
635 640 645

Ile Thr Ser Phe Gln Gly Phe Leu Ile Phe Ile Trp Tyr Trp Ser
650 655 660

Met Arg Leu Gln Ala Arg Gly Gly Pro Ser Pro Leu Lys Ser Asn
665 670 675

Ser Asp Ser Ala Arg Leu Pro Ile Ser Ser Gly Ser Thr Ser Ser
680 685 690

Ser Arg Ile

<210> 484

<211> 516

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 68, 70, 84, 147

<223> unknown base

<400> 484

tgcctggcct gccttgcaa caatgccgt tactctgctt ccaggttgcc 50

ctgccttgca gaggaaancn tcgggactac accntcaagt gcacatgaac 100

ctgctgctgg ccgtcttcct gctggacacg agcttcctgc tcagcgnagc 150

cggtggccct gacaggctct gaaggctggc tgccgagcca gtgccatctt 200

cctgcacttc tccctgctcac ctgcctttcc tggatgggcc tcgagggta 250

caacctctac cgactcgtgg tggaggtctt tggcacctat gtccctggct 300

acctactcaa gctgagcgcc atgggctggg gcttccccat ctttctggtg 350

acgctggtgg ccctggtgga tgtggacaac tatggcccca tcatctggc 400

tgtgcatagg actccagagg gcgtcatcta cccttccatg tgctggatcc 450

gggactccct ggtcagctac atcaccaacc tggccctttt cagcctggtg 500

tttctgttca acatgg 516

<210> 485

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 485

ggcattggag cagtgcgtgg tg 22

<210> 486

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 486

tggaggccta gatgcggctg gacg 24

<210> 487

<211> 2849

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 2715

<223> unknown base

<400> 487

cggacgcgtg ggccggacgcg tggccggacg cgtgggcggaa cgcggtggct 50

ggttcaggcgtc caggtttgc ttgtatcctt ttcaaaaact ggagacacag 100

aagaggcgtc tagaaaaaag tttggatgg gattatgtgg aaactaccct 150

gcgattctct gctgccagag caggctcggc gctccaccc cagtgcagcc 200
ttcccctggc ggtggtaaa gagactcggg agtcgtgct tccaaagtgc 250
ccgcccgtgag tgagctctca ccccagtcag ccaaattgagc ctcttcgggc 300
ttctccctgct gacatctgcc ctggccggcc agagacaggg gactcaggcg 350
gaatccaacc tgagtagtaa attccagttt tccagcaaca aggaacagaa 400
cgaggatcaa gatcctcagc atgagagaat tattactgtg tctactaatg 450
gaagtattca cagcccaagg ttcctcata cttatccaag aaatacggtc 500
ttggtatgga gatttagtagc agtagagggaa aatgtatgga tacaacttac 550
gtttgtatgaa agatttggc ttgaagaccc agaagatgac atatgcaagt 600
atgattttgt agaagtttgag gaacccagtg atggaactat attagggcgc 650
tgggtgtggtt ctggtaactgt accagggaaa cagattcta aaggaaatca 700
aattaggata agatttgtat ctgatgaata tttccttct gaaccagggt 750
tctgcattcca ctacaacatt gtcattccac aattcacaga agctgtgagt 800
ccttcagtgc taccccttc agcttgcac ctggaccctgc ttaataatgc 850
tataactgcc ttttgttacct tggaagacct tattcgatat cttgaaccag 900
agagatggca gttggactta gaagatctat ataggccaaac ttggcaactt 950
cttggcaagg cttttgtttt tggaagggaaa tccagagtgg tggatctgaa 1000
ccttctaaca gaggaggtaa gattatacag ctgcacaccc cgttaacttct 1050
cagtgtccat aagggaagaa ctaaagagaa ccgataccat ttctggcca 1100
ggttgtctcc tggtaaacg ctgtgggtgg aactgtgcct gttgtctcca 1150
caattgcaat gaatgtcaat gtgtcccaag caaagttact aaaaaatacc 1200
acgagggtcct tcagttgaga ccaaagaccc gtttcagggg attgcacaaa 1250
tcactcaccg acgtggccct ggagcaccat gaggagtgtg actgtgtgtg 1300

cagagggagc acaggaggat agccgcata ccaccagcag ctctgccca 1350
gagctgtgca gtgcagtggc tgattctatt agagaacgta tgcgttatct 1400
ccatcctaa ttcagttgt ttgctcaag gacccatcat cttcaggatt 1450
tacagtgcata tcgaaaagag gagacatcaa acagaattag gagtttgca 1500
acagctctt tgagaggagg cctaaaggac aggagaaaag gtctcaatc 1550
gtggaaagaa aattaaatgt tgtattaaat agatcaccag ctagtttcag 1600
agttaccatg tacgtattcc actagctggg ttctgtattt cagtttttc 1650
gatacggctt agggtaatgt cagtcagga aaaaaactgt gcaagtggc 1700
acctgattcc gttgccttgc ttaactctaa agctccatgt cctgggccta 1750
aaatcgata aaatctggat tttttttt tttttgctc atattcacat 1800
atgtaaacca gaacattcta tgtactacaa acctgggttt taaaaaggaa 1850
ctatgttgc atgaattaaa cttgtgtcat gctgatagga cagactggat 1900
tttcatatt tcttattaaa atttctgcca tttagaagaa gagaactaca 1950
ttcatgggtt ggaagagata aacctgaaaa gaagagtggc cttatcttca 2000
ctttatcgat aagtcagttt atttgttca ttgtgtacat ttttatattc 2050
ccctttgac attataactg ttggctttc taatcttgtt aaatatatct 2100
attttacca aaggtatttta atattctttt ttatgacaac ttatgatcaac 2150
tatttttagc ttggtaaatt ttctaaaca caattgttat agccagagga 2200
acaaagatga tataaaat tttgtgtctg aaaaaatac atgtattca 2250
ttctcgatg gtgcttaggt tagattaatc tgcattttaa aaaactgaat 2300
tggaaatagaa ttggtaagtt gcaaagactt ttgaaaata attaaattt 2350
catacttcc attcctgtta ttggagatga aaataaaaag caacttatga 2400
aagtagacat tcagatccag ccattactaa cctattccctt tttggggaa 2450

atctgagcct agctcagaaa aacataaaagc accttggaaa agacttggca 2500

gcttcctgat aaagcgtgct gtgctgtgca gtaggaacac atcctattta 2550

ttgtgatgtt gtggtttat tatcttaaac tctgttccat acacttgtat 2600

aaatacatgg atattttat gtacagaagt atgtctctt accaggcac 2650

ttattgtact ctggcaattt aaaagaaaaat cagtaaaata tttgctgt 2700

aaaatgctta atatngtgcc taggttatgt ggtgactatt tgaatcaaaa 2750

atgtattgaa tcatcaaata aaagaatgt gctatttgg ggagaaaatt 2800

aaaaaaaaaaaa aaaaaaaaaaa aggtttaggg ataacagggt aatgcggcc 2849

<210> 488

<211> 345

<212> PRT

<213> Homo sapiens

<400> 488

Met Ser Leu Phe Gly Leu Leu Leu Leu Thr Ser Ala Leu Ala Gly
1 5 10 15

Gln Arg Gln Gly Thr Gln Ala Glu Ser Asn Leu Ser Ser Lys Phe
20 25 30

Gln Phe Ser Ser Asn Lys Glu Gln Asn Gly Val Gln Asp Pro Gln
35 40 45

His Glu Arg Ile Ile Thr Val Ser Thr Asn Gly Ser Ile His Ser
50 55 60

Pro Arg Phe Pro His Thr Tyr Pro Arg Asn Thr Val Leu Val Trp
65 70 75

Arg Leu Val Ala Val Glu Glu Asn Val Trp Ile Gln Leu Thr Phe
80 85 90

Asp Glu Arg Phe Gly Leu Glu Asp Pro Glu Asp Asp Ile Cys Lys
95 100 105

Tyr Asp Phe Val Glu Val Glu Glu Pro Ser Asp Gly Thr Ile Leu
110 115 120

Gly Arg Trp Cys Gly Ser Gly Thr Val Pro Gly Lys Gln Ile Ser
125 130 135

Lys Gly Asn Gln Ile Arg Ile Arg Phe Val Ser Asp Glu Tyr Phe
140 145 150

Pro Ser Glu Pro Gly Phe Cys Ile His Tyr Asn Ile Val Met Pro
155 160 165

Gln Phe Thr Glu Ala Val Ser Pro Ser Val Leu Pro Pro Ser Ala
170 175 180

Leu Pro Leu Asp Leu Leu Asn Asn Ala Ile Thr Ala Phe Ser Thr
185 190 195

Leu Glu Asp Leu Ile Arg Tyr Leu Glu Pro Glu Arg Trp Gln Leu
200 205 210

Asp Leu Glu Asp Leu Tyr Arg Pro Thr Trp Gln Leu Leu Gly Lys
215 220 225

Ala Phe Val Phe Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu
230 235 240

Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe
245 250 255

Ser Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe
260 265 270

Trp Pro Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala
275 280 285

Cys Cys Leu His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys
290 295 300

Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr
305 310 315

Gly Val Arg Gly Leu His Lys Ser Leu Thr Asp Val Ala Leu Glu
320 325 330

His His Glu Glu Cys Asp Cys Val Cys Arg Gly Ser Thr Gly Gly
335 340 345

<210> 489
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 489
acttctcagt gtccataagg g 21

<210> 490
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 490
gaactaaaga gaaccgatac cattttctgg ccaggttgtc 40

<210> 491
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 491
caccacagcg tttaaccagg 20

<210> 492
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 492
acaacaggca cagttcccac 20

<210> 493

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 493

ggcggaatcc aacctgagta g 21

<210> 494

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 494

gcggctatcc tccttgctc 20

<210> 495

<211> 3283

<212> DNA

<213> Homo sapiens

<400> 495

cccatctcaa gctgatcttg gcacctctca tgctctgctc tcttcaacca 50

gacctctaca ttccattttg gaagaagact aaaaatggtg tttccaatgt 100

ggacactgaa gagacaaatt cttatccctt ttaacataat cctaattcc 150

aaactcccttg gggctagatg gtttcctaaa actctgccct gtgatgtcac 200

tctggatgtt ccaaagaacc atgtgatcggt ggactgcaca gacaaggatt 250

tgacagaaat tcctggaggt attcccacga acaccacgaa cctcaccctc 300

accattaacc acataccaga catctccccca gcttccttc acagactgga 350

ccatctggta gagatcgatt tcagatgcaa ctgtgtacct attccactgg 400

ggtaaaaaaa caacatgtgc atcaagaggc tgcagattaa acccagaagc 450

tttagtggac tcacttattt aaaatccctt tacctggatg gaaaccagct 500
actagagata ccgcagggcc tcccgccctag cttacagctt ctcagccctg 550
aggccaacaa catctttcc atcagaaaag agaatctaac agaactggcc 600
aacatagaaa tactctacct gggccaaaac tggttattatc gaaatccttg 650
ttatgttca tattcaatag agaaagatgc cttccctaaac ttgacaaagt 700
taaaagtgtct ctccctgaaa gataacaatg tcacagccgt ccctactgtt 750
ttgccatcta cttaacaga actatatctc tacaacaaca tgattgcaaa 800
aatccaagaa gatgattta ataacctcaa ccaattacaa attcttgacc 850
taagtggaaa ttgcccctcggt tggtataatg cccccatttcc ttgtgcgcgg 900
tgtaaaaata attctccct acagatccct gtaaatgctt ttgtgcgcgt 950
gacagaatta aaagtttac gtctacacag taactcttt cagcatgtgc 1000
ccccaaagatg gttaagaac atcaacaaac tccaggaact ggatctgtcc 1050
caaaaacttct tggccaaaga aattggggat gctaaatttc tgcattttct 1100
ccccagccct atccaattgg atctgtctt caattttgaa cttcagggtct 1150
atcgtgcatt tatgaatcta tcacaaggcat ttcttcact gaaaaggcctg 1200
aaaattctgc ggatcagagg atatgtctt aaagagttga aaagctttaa 1250
cctctcgcca ttacataatc ttcaaaaatct tgaagttctt gatcttggca 1300
ctaactttat aaaaattgtt aacccatcgca tggtaaaaca attttaaaaga 1350
ctgaaagtca tagatcttc agtgaataaa atatcacctt caggagattc 1400
aagtgaagtt ggcttcgtt cttttttttt gaaagttatg 1450
aaccccccagggt ccttggacaa ttacattatt tcagatatga taagtatgca 1500
aggagttgca gattcaaaaa caaagaggct tctttcatgt ctgttaatga 1550
aagctgctac aagtatgggc agaccccttggaa tcttaagttaa aatagtatata 1600

ttttgtcaa gtctctgat tttcagcatc ttctttccct caaatgcctg 1650
aatctgtcag gaaatctcat tagccaaact cttaatggca gtgaattcca 1700
acctttagca gagctgagat atttggactt ctccaacaac cggttgatt 1750
tactccattc aacagcattt gaagagctc acaaactgga agttctggat 1800
ataaggcagta atagccatta tttcaatca gaaggaaatta ctcatatgct 1850
aaactttacc aagaacctaa aggttctgca gaaactgatg atgaacgaca 1900
atgacatctc ttccctccacc agcaggacca tggagagtga gtcctttaga 1950
actctggaat tcagaggaaa tcacttagat gtttatgga gagaaggta 2000
taacagatac ttacaattat tcaagaatct gctaaaatta gaggaattag 2050
acatctctaa aaattcccta agtttcttgc cttctggagt tttgatgg 2100
atgcctccaa atctaaagaa tctcttttg gccaaaaatg ggctcaaatc 2150
ttcagttgg aagaaactcc agtgtctaaa gaacctggaa actttggacc 2200
tcagccacaa ccaactgacc actgtccctg agagattatc caactgtcc 2250
agaaggctca agaatctgat tcttaagaat aatcaaatca ggagtctgac 2300
gaagtattt ctacaagatg cttccagtt gcgatatctg gatctcagct 2350
caaataaaat ccagatgatc caaaagacca gttcccaga aaatgtcctc 2400
aacaatctga agatgttgc ttgcacatcat aatcggtttc tgtgcacctg 2450
tgatgctgtg tggttgtct ggtgggttaa ccatacggag gtgactattc 2500
cttacctggc cacagatgtg acttgtgtgg ggcaggagc acacaagggc 2550
caaagtgtga tctccctgga tctgtacacc tgtgagttag atctgactaa 2600
cctgattctg ttctcacttt ccatatctgt atctctttt ctcatggta 2650
tgatgacagc aagtcaccc tatttctggg atgtgtggta tatttaccat 2700
ttctgttaagg ccaagataaa gggtatcag cgtctaataat caccagactg 2750

ttgctatgtatgccttttatttg tgtatgacac taaagaccca gctgtgaccg 2800
agtgggttt ggctgagctg gtggccaaac tggaagaccc aagagagaaa 2850
catttaatt tatgtctcgaa gaaaggac tggttaccag ggcagccagt 2900
tctggaaaac cttcccaaga gcatacagct tagaaaaaag acagtgttg 2950
tgtatgacaga caagtatgca aagactgaaa atttaagat agcatttac 3000
ttgtccccatc agaggctcat ggatgaaaaa gttgatgtga ttatcttgat 3050
atttcgttag aagcccttc agaagtccaa gttcctccag ctccggaaaa 3100
ggctctgtgg gagttctgtc cttagtggc caacaaaccc gcaagctcac 3150
ccatacttcttgcagttgtctt aaagaacgcc ctggccacag acaatcatgt 3200
ggcctatagt caggtgtca aggaaacggg ctagcccttc tttgcaaaac 3250
acaactgcct agtttaccaa ggagaggcct ggc 3283

<210> 496

<211> 1049

<212> PRT

<213> Homo sapiens

<400> 496

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu
1 5 10 15

Phe Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe
20 25 30

Pro Lys Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn
35 40 45

His Val Ile Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro
50 55 60

Gly Gly Ile Pro Thr Asn Thr Asn Leu Thr Leu Thr Ile Asn
65 70 75

His Ile Pro Asp Ile Ser Pro Ala Ser Phe His Arg Leu Asp His
80 85 90

Leu Val Glu Ile Asp Phe Arg Cys Asn Cys Val Pro Ile Pro Leu
95 100 105

Gly Ser Lys Asn Asn Met Cys Ile Lys Arg Leu Gln Ile Lys Pro
110 115 120

Arg Ser Phe Ser Gly Leu Thr Tyr Leu Lys Ser Leu Tyr Leu Asp
125 130 135

Gly Asn Gln Leu Leu Glu Ile Pro Gln Gly Leu Pro Pro Ser Leu
140 145 150

Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile Phe Ser Ile Arg Lys
155 160 165

Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile Leu Tyr Leu Gly
170 175 180

Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser Tyr Ser Ile
185 190 195

Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val Leu Ser
200 205 210

Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro Ser
215 220 225

Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile
230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp
245 250 255

Leu Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys
260 265 270

Ala Pro Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala
275 280 285

Phe Asp Ala Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn
290 295 300

Ser Leu Gln His Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys
305 310 315

Leu Gln Glu Leu Asp Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile
320 325 330

Gly Asp Ala Lys Phe Leu His Phe Leu Pro Ser Leu Ile Gln Leu
335 340 345

Asp Leu Ser Phe Asn Phe Glu Leu Gln Val Tyr Arg Ala Ser Met
350 355 360

Asn Leu Ser Gln Ala Phe Ser Ser Leu Lys Ser Leu Lys Ile Leu
365 370 375

Arg Ile Arg Gly Tyr Val Phe Lys Glu Leu Lys Ser Phe Asn Leu
380 385 390

Ser Pro Leu His Asn Leu Gln Asn Leu Glu Val Leu Asp Leu Gly
395 400 405

Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met Phe Lys Gln Phe
410 415 420

Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro
425 430 435

Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr
440 445 450

Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr
455 460 465

Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys
470 475 480

Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly
485 490 495

Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser
500 505 510

Ser Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser
515 520 525

Gly Asn Leu Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro
530 535 540

Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp
545 550 555

Leu Leu His Ser Thr Ala Phe Glu Glu Leu His Lys Leu Glu Val
560 565 570

Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile
575 580 585

Thr His Met Leu Asn Phe Thr Lys Asn Leu Lys Val Leu Gln Lys
590 595 600

Leu Met Met Asn Asp Asn Asp Ile Ser Ser Ser Thr Ser Arg Thr
605 610 615

Met Glu Ser Glu Ser Leu Arg Thr Leu Glu Phe Arg Gly Asn His
620 625 630

Leu Asp Val Leu Trp Arg Glu Gly Asp Asn Arg Tyr Leu Gln Leu
635 640 645

Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp Ile Ser Lys Asn
650 655 660

Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly Met Pro Pro
665 670 675

Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe
680 685 690

Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp
695 700 705

Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn
710 715 720

Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile
725 730 735

Arg Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg
740 745 750

Tyr Leu Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr
755 760 765

Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu
770 775 780

His His Asn Arg Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val
785 790 795

Trp Trp Val Asn His Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr
800 805 810

Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val
815 820 825

Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu
830 835 840

Ile Leu Phe Ser Leu Ser Ile Ser Val Ser Leu Phe Leu Met Val
845 850 855

Met Met Thr Ala Ser His Leu Tyr Phe Trp Asp Val Trp Tyr Ile
860 865 870

Tyr His Phe Cys Lys Ala Lys Ile Lys Gly Tyr Gln Arg Leu Ile
875 880 885

Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys
890 895 900

Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu Val Ala Lys
905 910 915

Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu
920 925 930

Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser Gln
935 940 945

Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys
950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His
965 970 975

Gln Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe
980 985 990

Leu Glu Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys
995 1000 1005

Arg Leu Cys Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln
1010 1015 1020

Ala His Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr
1025 1030 1035

Asp Asn His Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val
1040 1045

<210> 497

<211> 4199

<212> DNA

<213> Homo sapiens

<400> 497

gggtaccatt ctgcgctgct gcaagttacg gaataaaaaa ttagaacaac 50

agaaaacatgg aaaacatgtt ctttcagtcg tcaatgctga cctgcatttt 100

cctgctaata tctggccct gtgagttatg cgccgaagaa aattttctta 150

gaagctatcc ttgtgtatgag aaaaagcaaa atgactcagt tattgcagag 200

tgcagcaatc gtcgactaca ggaagttccc caaacggtgg gcaaataatgt 250

gacagaacta gacctgtctg ataattcat cacacacata acgaatgaat 300

cattcaagg gctgcaaaat ctcactaaaa taaatctaaa ccacaacccc 350

aatgtacagc accagaacgg aaatcccggt atacaatcaa atggcttgaa 400

tatcacagac gggcattcc tcaacctaaa aaacctaagg gagttactgc 450

ttgaagacaa ccagttaccc caaataccct ctgggttgcc agagtcttg 500

acagaactta gtctaattca aaacaatata tacaacataa ctaaagaggg 550

cattcaaga cttataaact tgaaaaatct ctattggcc tggaactgct 600

attttaacaa agtttgcgag aaaactaaca tagaagatgg agtattgaa 650

acgctgacaa atttggagtt gctatcacta tctttcaatt ctctttcaca 700

cgtgccaccc aaactgccaa gctccctacg ccaaactttt ctgagcaaca 750
cccagatcaa atacattagt gaagaagatt tcaagggatt gataaattta 800
acattactag atttaagcgg gaactgtccg aggtgcttca atgccccatt 850
tccatgcgtg ccttgtatg gtggtgcttc aattaatata gatcgtttg 900
ctttcaaaa ctgacccaa cttcgatacc taaacctctc tagcacttcc 950
ctcaggaaga ttaatgctgc ctggttaaa aatatgcctc atctgaaggt 1000
gctggatctt gaattcaact atttagtggg agaaatagtc tctggggcat 1050
tttaacgt gctgccccgc ttagaaatac ttgacttgtc tttaactat 1100
ataaaagggga gttatccaca gcataattaa atttccagaa acttctctaa 1150
acttttgtct ctacggcat tgcatttaag agttatgtg ttccaggaac 1200
tcagagaaga tgatttccag cccctgatgc agcttccaaa cttatcgact 1250
atcaacttgg gtattaattt tattaagcaa atcgatttca aactttcca 1300
aaatttctcc aatctggaaa ttatttactt gtcagaaaac agaatatcac 1350
cgttggtaaa agatacccg cagagttatg caaatagttc ctctttcaa 1400
cgtcatatcc ggaaacgacg ctcAACAGAT tttgagttt acccacattc 1450
gaacttttat catttcaccc gtccttaat aaagccacaa tgtgctgctt 1500
atggaaaagc ctttagattt agcctcaaca gtattttctt cattgggcca 1550
aaccaatttggaaaatctcc tgacattgcc tgttaaatc tgtctgcaaa 1600
tagcaatgtt caagtgttaa gtggaaactga atttcagcc attcctcatg 1650
tcaaataattt ggatttgaca aacaatagac tagactttga taatgttagt 1700
gctcttactg aattgtccga ctggaaagtt cttagatctca gctataattc 1750
acactatttca agaatacgacg gcgtAACACAA tcattcttagaa tttattcaaa 1800
atttcacaaaa tctaaaagtt ttaaacttga gccacaacaa catttataact 1850

ttaacagata agtataacct ggaaagcaag tccctggtag aattagttt 1900
cagtggcaat cgccttgaca ttttgtgaa tcatgtatgac aacaggata 1950
tctccattt caaaggcttc aagaatctga cacgtctgga ttatccctt 2000
aataggctga agcacatccc aaatgaagca ttcctaatt tgccagcgag 2050
tctcactgaa ctacatataa atgataatat gttaaagttt tttaactgga 2100
cattactcca gcagttcct cgtctcgagt tgcttgactt acgtggaaac 2150
aaactactct tttaactga tagcctatct gactttacat cttccctc 2200
gacactgctg ctgagtcata acaggattc ccacccatcc tctggcttc 2250
ttctgaagt cagtagtctg aagcacctcg atttaagttc caatctgcta 2300
aaaacaatca acaaattccgc acttggaaact aagaccacca ccaaattatc 2350
tatgtggaa ctacacggaa acccccttga atgcacctgt gacattggag 2400
atttccgaag atggatggat gaacatctga atgtcaaaat tcccagactg 2450
gtagatgtca ttgtgccag tcctggggat caaagaggga agagtattgt 2500
gagtctggag ctaacaactt gtgtttcaga tgcactgca gtgatattat 2550
tttcttcac gtttttac accaccatgg ttatgtggc tgccctggct 2600
caccatttgt ttactggga tggtttttt atatataatg tggttttagc 2650
taaggtaaaa ggctacaggc ctctttccac atcccaaact ttctatgatg 2700
cttacatttc ttatgacacc aaagatgcct ctgttactga ctgggtgata 2750
aatgagctgc gctaccaccc tgaagagagc cgagacaaaa acgttctcct 2800
ttgtcttagag gagagggatt gggaccggg attggccatc atcgacaacc 2850
tcatgcagag catcaaccaa agcaagaaaa cagtattgt tttaaccaaa 2900
aaatatgcaa aaagctggaa ctttaaaaca gcttttact tggcttgca 2950
gaggctaattt gatgagaaca tggatgtat tatatttac ctgctggagc 3000

cagtgttaca gcattctcag tatttgggc tacggcagcg gatctgttaag 3050
agctccatcc tccagtggcc tgacaacccg aaggcagaag gcttgtttg 3100
gcaaactctg agaaatgtgg tcttgactga aaatgattca cggataaca 3150
atatgtatgt cgattccatt aagcaatact aactgacgtt aagtcatgtat 3200
ttcgcgccat aataaagatg caaaggaatg acattctgtt attagttatc 3250
tattgctatg taacaaatta tccaaaact tagtggtta aaacaacaca 3300
tttgctggcc cacagttttt gagggtcagg agtccaggcc cagcataact 3350
gggtccctctg ctcagggtgt ctcagaggct gcaatgttagg tggtcaccag 3400
agacataggc atcactgggg tcacactcat gtgggtttt tctggattca 3450
attcctccctg ggctattggc caaaggctat actcatgtaa gccatgcgag 3500
cctctccac aaggcagctt gcttcatcag agctagcaaa aaagagaggt 3550
tgcttagcaag atgaagtcac aatctttgtt aatcgaatca aaaaagtgtat 3600
atctcatcac ttggccata ttctatttgtt tagaagtaaa ccacaggcc 3650
caccagctcc atgggagtga ccacctcagt ccagggaaaa cagctgaaga 3700
ccaagatggt gagctctgat tgcttcagtt ggtcatcaac tattttccct 3750
tgactgcgtt cctggatgg cctgctatct tggatgataga ttgtatata 3800
caggaggcag ggatcactgt ggaccatctt agcagttgac ctaacacatc 3850
ttctttcaa tatctaagaa ctggccac tgtgactaat ggtcctaata 3900
ttaagctgtt gtttatattt atcatatatac tggctaca tggttatattt 3950
atgctgtggt tgcgttcggt ttatattaca gttgtttta caaatatttg 4000
ctgtaacatt tgacttctaa ggttagatg ccatttaaga actgagatgg 4050
atagctttta aagcatctt tacttcac catttttaa aagtatgcag 4100
ctaaattcga agctttgggt ctatattgtt aattgccatt gctgtaaatc 4150

ttaaaatgaa tgaataaaaaa tgtttcattt tacaaaaaaaaaaa aaaaaaaaaa 4199

<210> 498

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 498

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe

1 5 10 15

Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe

20 25 30

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val

35 40 45

Ile Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr

50 55 60

Val Gly Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile

65 70 75

Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr

80 85 90

Lys Ile Asn Leu Asn His Asn Pro Asn Val Gln His Gln Asn Gly

95 100 105

Asn Pro Gly Ile Gln Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala

110 115 120

Phe Leu Asn Leu Lys Asn Leu Arg Glu Leu Leu Leu Glu Asp Asn

125 130 135

Gln Leu Pro Gln Ile Pro Ser Gly Leu Pro Glu Ser Leu Thr Glu

140 145 150

Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn Ile Thr Lys Glu Gly

155 160 165

Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr Leu Ala Trp Asn

170 175 180

Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly

185

190

195

Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu Ser Phe
200 205 210

Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu Arg
215 220 225

Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu
230 235 240

Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly
245 250 255

Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys
260 265 270

Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn
275 280 285

Leu Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg
290 295 300

Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val
305 310 315

Leu Asp Leu Glu Phe Asn Tyr Leu Val Gly Glu Ile Val Ser Gly
320 325 330

Ala Phe Leu Thr Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser
335 340 345

Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser
350 355 360

Arg Asn Phe Ser Lys Leu Leu Ser Leu Arg Ala Leu His Leu Arg
365 370 375

Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu
380 385 390

Met Gln Leu Pro Asn Leu Ser Thr Ile Asn Leu Gly Ile Asn Phe
395 400 405

Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu

410 415 420

Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys
425 430 435

Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Phe Gln Arg His
440 445 450

Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser
455 460 465

Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala
470 475 480

Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe
485 490 495

Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu
500 505 510

Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu
515 520 525

Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn
530 535 540

Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp
545 550 555

Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile
560 565 570

Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn
575 580 585

Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr
590 595 600

Asp Lys Tyr Asn Leu Glu Ser Lys Ser Leu Val Glu Leu Val Phe
605 610 615

Ser Gly Asn Arg Leu Asp Ile Leu Trp Asn Asp Asp Asn Arg
620 625 630

Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp

635 640 645

Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu
650 655 660

Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met
665 670 675

Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro Arg Leu
680 685 690

Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp
695 700 705

Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser
710 715 720

His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val
725 730 735

Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr
740 745 750

Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser
755 760 765

Met Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile
770 775 780

Gly Asp Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile
785 790 795

Pro Arg Leu Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg
800 805 810

Gly Lys Ser Ile Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp
815 820 825

Val Thr Ala Val Ile Leu Phe Phe Thr Phe Phe Ile Thr Thr
830 835 840

Met Val Met Leu Ala Ala Leu Ala His His Leu Phe Tyr Trp Asp
845 850 855

Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr

860 865 870

Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser
875 880 885

Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu
890 895 900

Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu
905 910 915

Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp
920 925 930

Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val
935 940 945

Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
950 955 960

Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile
965 970 975

Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu
980 985 990

Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro
995 1000 1005

Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn
1010 1015 1020

Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val
1025 1030 1035

Asp Ser Ile Lys Gln Tyr
1040

<210> 499

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 499
taaagaccca gctgtgaccg 20

<210> 500
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 500
atccatgagc ctctgatgg 20

<210> 501
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 501
atttatgtct cgagggaaagg gactggttac cagggcagcc agttc 45

<210> 502
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 502
gccgagacaa aaacgttctc c 21

<210> 503
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 503

catccatgtt ctcatccatt agcc 24

<210> 504

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 504

tcgacaacct catgcagaggc atcaacccaaa gcaagaaaaac agtatt 46

<210> 505

<211> 1738

<212> DNA

<213> Homo sapiens

<400> 505

ccaggtccaa ctgcacctcg gttctatcga ttgaattccc cggggatcct 50

ctagagatcc ctgcacctcg acccacgcgt ccgc当地 agct ggccctgcac 100

ggctgcaagg gaggctcctg tggacaggcc aggccagggtgg gcctcaggag 150

gtgc当地 ccaggtccag gccc当地 ctagcaagg gctagggtcc 200

atctccagtc ccaggacaca gcagc当地 ccatggccac gc当地ggc当地 250

cagc当地 cagcccccc aggaccgggg aggc当地 aggt ggccccacc 300

acccggagga gcagctcctg cccctgtccg ggggatgact gattctc当地 350

cgccaggcca cccagaggag aaggccaccc cgc当地ggagg cacaggccat 400

gaggggctct caggagggtgc tgctgatgtg gcttctggtg ttggc当地gtgg 450

gc当地ggcacaga gcacgc当地 cggccggcc gtagggtgtg tgctgtccgg 500

gctcacgggg accctgtctc cgagtgc当地 gtgc当地gggtg tgtaccagcc 550

cttc当地tacc acctgcgacg ggc当地ccggc ctgc当地ggcacc taccgaacca 600

tctataggac cgc当地taccgc cgc当地ggctg ggctggccccc tgccaggcct 650

cgctacgcgt gctgccccgg ctggaagagg accagcgggc ttccctggggc 700
ctgtggagca gcaatatgcc agccgccatg ccggaacgga gggagctgtg 750
tccagcctgg ccgctgccgc tgccctgcag gatggcgggg tgacacttgc 800
cagtcagatg tggatgaatg cagtgcattt agggggcggt gtcccccagcg 850
ctgcatcaac accgcccggca gttactggtg ccagtgttgg gaggggcaca 900
gcctgtctgc agacggtaca ctctgtgtc ccaagggagg gccccccagg 950
gtggcccca acccgacagg agtggacagt gcaatgaagg aagaagtgca 1000
gaggctgcag tccagggtgg acctgctgga ggagaagctg cagctggtgc 1050
tggcccaact gcacagcctg gcctcgcagg cactggagca tgggctcccg 1100
gaccggcga gcctcctggt gcactccttc cagcagctcg gccgcatcga 1150
ctccctgagc gagcagattt cttcctgga ggaggcagctg gggcctgct 1200
cctgcaagaa agactcgtga ctgcccagcg ccccaggctg gactgagccc 1250
ctcacggcgc cctgcagccc ccatggccct gcccaacatg ctgggggtcc 1300
agaagccacc tcggggtgac tgagcggaaag gccaggcagg gccttcctcc 1350
tcttcctctt cccttccctt gggaggctcc ccagaccctg gcatggatg 1400
ggctgggatc ttctctgtga atccacccctt ggttacccccc accctggcta 1450
cccccaacggc atcccaaggc caggtgggcc ctcagctgag ggaaggtagc 1500
agctccctgc tggagcctgg gacccatggc acaggccagg cagcccggag 1550
gctgggtggg gcctcagtgg gggctgctgc ctgacccccc gcacaataaa 1600
aatgaaaacgt gaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1650
aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1700
gcccaacttg ttattgcag ctataatgg ttacaaat 1738

<211> 273

<212> PRT

<213> Homo sapiens

<400> 506

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu
1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val
20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val
35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg
65 70 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro
80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala
95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro
110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln
125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln
140 145 150

Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu
155 160 165

Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly
170 175 180

Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala
185 190 195

Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu

200 205 210

Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala
215 220 225

Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu
230 235 240

Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu
245 250 255

Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys
260 265 270

Lys Asp Ser

<210> 507

<211> 1700

<212> DNA

<213> Homo sapiens

<400> 507

gccaggcagg tgggcctcag gaggtgcctc caggcgcca gtgggcctga 50

ggccccagca agggctaggg tccatctcca gtcccaggac acagcagcgg 100

ccaccatggc cacgcctggg ctccagcagc atcagagcag cccctgtggt 150

tggcagcaaa gttcagcttg gctgggccccg ctgtgagggg cttcgcgcta 200

cgcctgcgg tgtcccgagg gctgaggtct cctcatttc tccctagcag 250

tggatgagca acccaacggg ggcccgaaaa ggggaactgg ccccgaggga 300

gaggaacccc aaagccacat ctgtagccag gatgagcagt gtgaatccag 350

gcagccccc ggaccgggaa ggcacaggtg gccccacca cccggaggag 400

cagctcctgc ccctgtccgg gggatgactg attctccctcc gccaggccac 450

ccagaggaga aggccacccc gcctggaggc acaggccatg aggggctctc 500

aggaggtgct gctgatgtgg cttctgggtt tggcagtggg cggcacagag 550

cacgcctacc ggccggccg tagggtgtgt gctgtccggg ctcacggga 600
ccctgtctcc gagtcgttcg tgcagcgtgt gtaccagccc ttccaccca 650
cctgcgacgg gcaccggcc tgcagcacct accgaaccat ctataggacc 700
gcctaccgcc gcagccctgg gctggccct gccaggccctc gctacgcgtg 750
ctgccccggc tggaagagga ccagcggcgt tcctgggccc tgtggagcag 800
caatatgccca gcccgcattgc cggaacggag ggagctgtgt ccagcctggc 850
cgctgcccgt gccctgcagg atggcggggt gacacttgcc agtcagatgt 900
ggatgaatgc agtgcgttagga gggcggctg tccccagcgc tgcataaca 950
ccgcccggcag ttactggtgc cagtgttggg aggggcacag cctgtctgca 1000
gacggtacac tctgtgtgcc caagggaggg ccccccagggg tggccccc 1050
cccgacagga gtggacagtgc caatgaagga agaagtgcag aggctgcagt 1100
ccagggtgga cctgcgtggag gagaagctgc agctggtgcg gccccactg 1150
cacagcctgg cctcgcaggc actggagcat gggctccgg accccggcag 1200
cctccctggtg cactccctcc agcagctcgg ccgcattgcac tccctgagcg 1250
agcagatttc cttccctggag gagcagctgg ggtcctgctc ctgcaagaaa 1300
gactcgtgac tgcccagcgc tccaggctgg actgagcccc tcacgcccgc 1350
ctgcagcccc catgccccctg cccaaacatgc tgggggtcca gaagccaccc 1400
cggggtgact gagcggagg ccaggcaggc cttccctcct cttccctcctc 1450
cccttcctcg ggaggctccc cagaccctgg catggatgg gctggatct 1500
tctctgtgaa tccacccctg gctaccccca ccctggctac cccaaacggca 1550
tcccaaggcc aggtggaccc tcagctgagg gaaggtacga gctccctgct 1600
ggagcctggg acccatggca caggccaggc agcccgagg ctgggtgggg 1650
cctcagtggg ggctgctgcc tgaccccccag cacaataaaa atgaaacgtg 1700

<210> 508
<211> 1538
<212> DNA
<213> Homo sapiens

<400> 508
cccacgcgtc cgaagctggc cctgcacggc tgcaagggag gtcctgtgg 50
acaggccagg caggtgggcc tcaggaggtg cctccaggcg gccagtggc 100
ctgaggcccc agcaagggtt agggtccatc tccagtccca ggacacagca 150
gcggccacca tggccacgcc tggcgtccag cagcatcagc agccccagg 200
accggggagg cacagtggtc ccccaccacc cggaggagca gtcctgccc 250
ctgtccgggg gatgactgtat ttcctccgc cagggccaccc agaggagaag 300
gccaccccgac ctggaggcac aggccatgag gggctctcag gaggtgctgc 350
tgcgtggct tctgggtttg gcagtggtcg gcacagagca cgcctaccgg 400
cccgccgta ggggtgtgc tgtccggct cacggggacc ctgtctccga 450
gtcggtcgta cagcgtgtgt accagccctt ctcaccacc tgcgacggc 500
accgggcctg cagcacctac cgaaccatct ataggaccgc ctaccggc 550
agccctgggc tggccctgc caggcctcgc tacgcgtgct gccccggctg 600
gaagaggacc agcgggcattc ctggggcctg tggagcagca atatgccagc 650
cgccatggcg gaacggaggg agctgtgtcc agcctggccg ctgcccgtgc 700
cctgcaggat ggcgggggtga cacttgccag tcagatgtgg atgaatgcag 750
tgcttaggagg ggcggctgc cccagcgctg cgtcaacacc gccggcagg 800
actgggtgcca gtgtggag gggcacagcc tgcgtgcaga cggtaacactc 850
tgtgtgccccca agggaggggcc ccccagggtg gcccccaacc cgacaggagt 900
ggacagtgcata atgaaggaag aagtgcagag gctgcagtcc aggggtggacc 950

tgctggagga gaagctgcag ctggtgctgg cccactgca cagcctggcc 1000
tcgcaggcac tggagcatgg gctcccgac cccggcagcc tcctggtgca 1050
ctcctccag cagctcgccc gcatcgactc cctgagcgag cagattcct 1100
tcctggagga gcagctgggg tcctgctcct gcaagaaaga ctctgtactg 1150
cccagcgcac caggctggac tgagccccct acgcccgcct gcagccccca 1200
tgccccctgcc caacatgctg ggggtccaga agccacctcg gggtgactga 1250
gcggaaaggcc aggcaaggcc ttccctctt ccctccccc ctccctcggg 1300
aggctccccca gaccctggca tggatgggc tggatcttc tctgtgaatc 1350
cacccctggc taccccccacc ctggctaccc caacggcatc ccaaggccag 1400
gtggccctc agctgagggaa agtacgagc tccctgctgg agcctggac 1450
ccatggcaca ggccaggcag cccggaggct gggggggcc tcagtgggg 1500
ctgctgcctg acccccagca caataaaaaat gaaacgtg 1538

<210> 509

<211> 273

<212> PRT

<213> Homo sapiens

<400> 509

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu
1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val
20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val
35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg
65 70 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro
80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala
95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro
110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln
125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln
140 145 150

Arg Cys Val Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu
155 160 165

Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly
170 175 180

Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala
185 190 195

Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu
200 205 210

Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala
215 220 225

Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu
230 235 240

Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu
245 250 255

Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys
260 265 270

Lys Asp Ser

<210> 510

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 510

tggaggcagca atatgccagc c 21

<210> 511

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 511

ttttccactc ctgtcggtt gg 22

<210> 512

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 512

ggtgacactt gccagtcaga tgtggatgaa tgcagtgcta ggaggg 46

<210> 513

<211> 2690

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 2039-2065

<223> unknown base

<400> 513

ggtgtccaca gctggtttag ggcccccggacc actggggcccc ctgtcagga 50

ggagacagcc tcccgcccg gggaggacaa gtcgctgcc a ctttggctg 100

ccgacgtat tccctggac ggtccgttc ctgccgtcag ctgccggccg 150
agtgggtct ccgtttca ggccggctcc cccttctgg tctccctct 200
cccgctggc cggttatcg ggaggagatt gtctccagg gctagcaatt 250
ggactttga tgatgttga cccagcggca ggaatagcag gcaacgtat 300
ttcaaagctg ggctcagcct ctgttcttc ttcgtgtaa tcgaaaacc 350
catttggag caggaattcc aatcatgtct gtgatggtgg tgagaaagaa 400
ggtagacacgg aaatggaga aactcccagg caggaacacc ttttgctgtg 450
atggccgcgt catgatggcc cgccaaaagg gcatttcta cctgaccctt 500
ttcctcatcc tggggacatg tacactcttc ttgccttg agtgcgcata 550
cctggctgtt cagctgttc ctgccccccc tgtatttgct gccatgtct 600
tcctttctc catggctaca ctgttggagga ccagcttcag tgaccctgga 650
gtgattcctc gggcgctacc agatgaagca gcttcataagaaatggagat 700
agaagctacc aatggtgccg tgccccaggg ccagcgacca ccgcctcgta 750
tcaagaattt ccagataaac aaccagattt tgaaactgaa atactgttac 800
acatgcaaga tcttccggcc tccccggcc tcccattgca gcatctgtga 850
caactgttgtt gagcgcttcg accatcactg cccctgggtg gggaaatgtg 900
ttggaaagag gaactaccgc tacttctacc tcttcaccc ttctctctcc 950
ctcctcacaa tctatgtctt cgccatcaac atcgctatg tggccctcaa 1000
atcttggaaa attggctctt tggagacatt gaaagaaaact cctggaaatgt 1050
ttctagaagt cctcatttgc ttcttacac tctggccgt cgtggactg 1100
actggatttc atacttcct cgtggcttc aaccagacaa ccaatgaaga 1150
catcaaagga tcatggacag ggaagaatcg cgtccagaat ccctacagcc 1200
atggcaatat tggaaatgttgc tggatgttgc tggatgttgc 1250

cccaagtgtgc tggatcgaag gggtatttg ccactggagg aaagtggaa 1300
tcgacacctcc agtactcaag agaccagtag cagcctctg ccacagagcc 1350
cagcccccac agaacacaccc aactcaaatg agatgccgga ggacagcagc 1400
actcccgaag agatgccacc tccagagccc ccagagccac cacaggaggc 1450
agctgaagct gagaagtagc ctatctatgg aagagacttt tgtttgttt 1500
taatttagggc tatgagagat ttcaggtgag aagttaaacc tgagacagag 1550
agcaagtaag ctgtcccttt taactgtttt tccttggtct ttagtcaccc 1600
agttgcacac tggcattttc ttgctgcaag ctttttaaa tttctgaact 1650
caaggcagtgc gcagaagatg tcagtcacct ctgataactg gaaaaatggg 1700
tctctggc cctggcactg gttctccatg gcctcagcca cagggcccc 1750
ttggacccccc tctctccct ccagatccca gccctcctgc ttggggtcac 1800
tggtctcatt ctggggctaa aagttttga gactggctca aatcctccca 1850
agctgctgca cgtgctgagt ccagaggcag tcacagagac ctctggccag 1900
gggatcctaa ctgggttctt ggggtttca ggactgaaga ggagggagag 1950
tggggtcaga agattctcct ggccaccaag tgccagcatt gcccacaaat 2000
ccttttagga atgggacagg tacctccac ttgttgann nnnnnnnnnn 2050
nnnnnnnnnn nnnnnntgtt ttccctttt actcctgctc ccattaggag 2100
caggaatggc agtaataaaa gtctgcactt tggtcatttc tttcctcag 2150
aggaagcccg agtgctcact taaacactat cccctcagac tccctgtgt 2200
aggcctgcag aggccctgaa tgcacaaatg ggaaaccaag gcacagagag 2250
gctctcctct cctctcctct ccccgatgt accctaaaaaaa aaaaaaaaaat 2300
gctaaccagt tcttccatta agcctcggtt gagtgaggga aagcccagca 2350
ctgctgccct ctcggtaac tcaccctaag gcctcggccc acctctggct 2400

atggtaacca cactggggc ttccccaag ccccccttt ccagcactc 2450
caccggcaga gtcccagagc cactcaccc tgggggtggg ctgtggccc 2500
cagtcagctc tgctcaggac ctgctctatt tcagggaaaga agatttatgt 2550
attatatgtg gctatatttc ctagagcacc tgtgtttcc tctttctaag 2600
ccagggcct gtctggatga cttatcggtt gggggagtgt aaaccggaac 2650
tttcatcta ttgaaggcg attaaactgt gtctaattgca 2690

<210> 514
<211> 364
<212> PRT
<213> Homo sapiens

<400> 514
Met Ser Val Met Val Val Arg Lys Lys Val Thr Arg Lys Trp Glu
1 5 10 15

Lys Leu Pro Gly Arg Asn Thr Phe Cys Cys Asp Gly Arg Val Met
20 25 30

Met Ala Arg Gln Lys Gly Ile Phe Tyr Leu Thr Leu Phe Leu Ile
35 40 45

Leu Gly Thr Cys Thr Leu Phe Phe Ala Phe Glu Cys Arg Tyr Leu
50 55 60

Ala Val Gln Leu Ser Pro Ala Ile Pro Val Phe Ala Ala Met Leu
65 70 75

Phe Leu Phe Ser Met Ala Thr Leu Leu Arg Thr Ser Phe Ser Asp
80 85 90

Pro Gly Val Ile Pro Arg Ala Leu Pro Asp Glu Ala Ala Phe Ile
95 100 105

Glu Met Glu Ile Glu Ala Thr Asn Gly Ala Val Pro Gln Gly Gln
110 115 120

Arg Pro Pro Pro Arg Ile Lys Asn Phe Gln Ile Asn Asn Gln Ile
125 130 135

Val Lys Leu Lys Tyr Cys Tyr Thr Cys Lys Ile Phe Arg Pro Pro
140 145 150

Arg Ala Ser His Cys Ser Ile Cys Asp Asn Cys Val Glu Arg Phe
155 160 165

Asp His His Cys Pro Trp Val Gly Asn Cys Val Gly Lys Arg Asn
170 175 180

Tyr Arg Tyr Phe Tyr Leu Phe Ile Leu Ser Leu Ser Leu Leu Thr
185 190 195

Ile Tyr Val Phe Ala Phe Asn Ile Val Tyr Val Ala Leu Lys Ser
200 205 210

Leu Lys Ile Gly Phe Leu Glu Thr Leu Lys Glu Thr Pro Gly Thr
215 220 225

Val Leu Glu Val Leu Ile Cys Phe Phe Thr Leu Trp Ser Val Val
230 235 240

Gly Leu Thr Gly Phe His Thr Phe Leu Val Ala Leu Asn Gln Thr
245 250 255

Thr Asn Glu Asp Ile Lys Gly Ser Trp Thr Gly Lys Asn Arg Val
260 265 270

Gln Asn Pro Tyr Ser His Gly Asn Ile Val Lys Asn Cys Cys Glu
275 280 285

Val Leu Cys Gly Pro Leu Pro Pro Ser Val Leu Asp Arg Arg Gly
290 295 300

Ile Leu Pro Leu Glu Glu Ser Gly Ser Arg Pro Pro Ser Thr Gln
305 310 315

Glu Thr Ser Ser Ser Leu Leu Pro Gln Ser Pro Ala Pro Thr Glu
320 325 330

His Leu Asn Ser Asn Glu Met Pro Glu Asp Ser Ser Thr Pro Glu
335 340 345

Glu Met Pro Pro Pro Glu Pro Pro Glu Pro Pro Gln Glu Ala Ala
350 355 360

Glu Ala Glu Lys

<210> 515

<211> 255

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 36, 38, 88, 118, 135, 193, 213, 222

<223> unknown base

<400> 515

aaaaccctgt atttttaca atgcaaatacg acaatnanc tggaggtctt 50

tgaatttaggt attataggaa tgggggggtt gattttntt cctggaggct 100

tttgcttgc gactctcnct ttctcccaca gagcncttcg accatcaactg 150

cccccgggtt gggatttgtt ttggaaagag gaactaccgc tanttctacc 200

tcttcatcct ttntcttcn cncctcacaa tctatgtctt cgccctcaac 250

atcg 255

<210> 516

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 516

caacgtgatt tcaaagctgg gctc 24

<210> 517

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 517
gcctcgatc aagaattcc 20

<210> 518
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 518
agtggaaagtc gacccccc 18

<210> 519
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 519
ctcacctgaa atctctcata gcccc 24

<210> 520
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 520
cgcaaaaaccc attttgggag caggaattcc aatcatgtct gtgtatgggg 50

<210> 521
<211> 1679
<212> DNA
<213> Homo sapiens

<400> 521
gttgttcct tcagcaaaaac agtggattta aatctccttg cacaaggctg 50

agagcaacac aatcttatcag gaaagaaga aagaaaaaaa ccgaacctga 100

caaaaaagaa gaaaaagaag aagaaaaaaaa atcatgaaaa ccatccagcc 150
aaaaatgcac aattctatct ctgggcaat cttcacgggg ctggctgctc 200
tgtgtcttccaaggagtg cccgtgcga gcggagatgc cacccccc 250
aaagctatgg acaacgtgac ggtccggcag gggagagcg ccaccctcag 300
gtgcactatt gacaaccggg tcacccgggt ggcctggcta aaccgcagca 350
ccatcctcta tgctggaat gacaagtggt gcctggatcc tcgcgtggtc 400
cttctgagca acacccaaac gcagtgacgc atcgagatcc agaacgtgga 450
tgtgtatgac gagggccctt acacctgctc ggtgcagaca gacaaccacc 500
caaagacctc tagggtccac ctcattgtgc aagtatctcc caaaattgta 550
gagatttctt cagatatctc catatatgaa ggaaacaata ttagcctcac 600
ctgcatagca actggtagac cagagcctac ggtaacttgg agacacatct 650
ctcccaaagc ggtaatggctt gtgagtgaag acgaatactt ggaaattcag 700
ggcatcaccc gggagcagtc agggactac gagtgcatgt cctccatga 750
cgtggccgcg cccgtggtaac ggagagtaaa ggtcaccgtg aactatccac 800
catacatttc agaagccaag ggtacaggtg tccccgtggg acaaaagggg 850
acactgcagt gtgaagccctc agcagtcctt tcagcagaat tccagtggta 900
caaggatgac aaaagactga ttgaaggaaa gaaaggggtg aaagtggaaa 950
acagacctt cctctcaaaa ctcatcttct tcaatgtctc tgaacatgac 1000
tatgggaact acacttgcgt ggcctccaaac aagctggcc acaccaatgc 1050
cagcatcatg ctatggtc caggcgccgt cagcgagggtg agcaacggca 1100
cgtcgaggag ggcaggctgc gtctggctgc tgcccttctt ggtcttgac 1150
ctgcttctca aattttgatg tgagtgccac ttccccaccc gggaaaggct 1200
gccgccacca ccaccaccaa cacaacagca atggcaacac cgacagcaac 1250

caatcagata tatacaaatg aaattagaag aaacacagcc tcatggaca 1300
gaaatttgag ggaggggaac aaagaatact ttgggggaa aagagttta 1350
aaaaagaaaat tgaaaattgc cttgcagata tttaggtaca atggagttt 1400
ctttcccaa acgggaagaa cacagcacac ccggcttggc cccactgca 1450
gctgcacatgt gcaacctctt tgggccagt gtggcaagg gctcagcctc 1500
tctgcccaca gagtgcccccc acgtggaaca ttctggagct gccatccca 1550
aattcaatca gtccatagag acgaacagaa tgagaccctc cgccccaaagc 1600
gtggcgctgc gggcactttg ttagactgtg ccaccacggc gtgttgttg 1650
aacacgtgaaa taaaaagagc aaaaaaaaaa 1679

<210> 522

<211> 344

<212> PRT

<213> Homo sapiens

<400> 522

Met Lys Thr Ile Gln Pro Lys Met His Asn Ser Ile Ser Trp Ala
1 5 10 15

Ile Phe Thr Gly Leu Ala Ala Leu Cys Leu Phe Gln Gly Val Pro
20 25 30

Val Arg Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val
35 40 45

Thr Val Arg Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp
50 55 60

Asn Arg Val Thr Arg Val Ala Trp Leu Asn Arg Ser Thr Ile Leu
65 70 75

Tyr Ala Gly Asn Asp Lys Trp Cys Leu Asp Pro Arg Val Val Leu
80 85 90

Leu Ser Asn Thr Gln Thr Gln Tyr Ser Ile Glu Ile Gln Asn Val
95 100 105

Asp Val Tyr Asp Glu Gly Pro Tyr Thr Cys Ser Val Gln Thr Asp
110 115 120

Asn His Pro Lys Thr Ser Arg Val His Leu Ile Val Gln Val Ser
125 130 135

Pro Lys Ile Val Glu Ile Ser Ser Asp Ile Ser Ile Asn Glu Gly
140 145 150

Asn Asn Ile Ser Leu Thr Cys Ile Ala Thr Gly Arg Pro Glu Pro
155 160 165

Thr Val Thr Trp Arg His Ile Ser Pro Lys Ala Val Gly Phe Val
170 175 180

Ser Glu Asp Glu Tyr Leu Glu Ile Gln Gly Ile Thr Arg Glu Gln
185 190 195

Ser Gly Asp Tyr Glu Cys Ser Ala Ser Asn Asp Val Ala Ala Pro
200 205 210

Val Val Arg Arg Val Lys Val Thr Val Asn Tyr Pro Pro Tyr Ile
215 220 225

Ser Glu Ala Lys Gly Thr Gly Val Pro Val Gly Gln Lys Gly Thr
230 235 240

Leu Gln Cys Glu Ala Ser Ala Val Pro Ser Ala Glu Phe Gln Trp
245 250 255

Tyr Lys Asp Asp Lys Arg Leu Ile Glu Gly Lys Lys Gly Val Lys
260 265 270

Val Glu Asn Arg Pro Phe Leu Ser Lys Leu Ile Phe Phe Asn Val
275 280 285

Ser Glu His Asp Tyr Gly Asn Tyr Thr Cys Val Ala Ser Asn Lys
290 295 300

Leu Gly His Thr Asn Ala Ser Ile Met Leu Phe Gly Pro Gly Ala
305 310 315

Val Ser Glu Val Ser Asn Gly Thr Ser Arg Arg Ala Gly Cys Val
320 325 330

Trp Leu Leu Pro Leu Leu Val Leu His Leu Leu Leu Lys Phe
335 340

<210> 523

<211> 503

<212> DNA

<213> Homo sapiens

<400> 523

gaaaaaaaaat catgaaaacc atccagccaa aaatgcacaa ttctatctct 50

tggcaatct tcacggggct ggctgctctg tgtctttcc aaggagtgcc 100

cgtgcgcagc ggagatgcca cttccccaa agctatggac aacgtgacgg 150

tccggcaggg ggagagcgcc accctcaggt gcactattga caaccgggtc 200

acccgggtgg cctggctaaa ccgcagcacc atcctctatg ctggaatga 250

caagtggtgc ctggatcctc gcgtggcct tctgagcaac acccaaacgc 300

agtacagcat cgagatccag aacgtggatg tgtatgacga gggccctac 350

acctgctcgg tgcagacaga caaccaccca aagacctcta gggccaccc 400

catttgcaa gtatctcca aaattttaga gatttctca gataatctcca 450

ttaatgaagg gaacaatatt agcctcacct gcatagcaac tggtagacca 500

gag 503

<210> 524

<211> 2602

<212> DNA

<213> Homo sapiens

<400> 524

atggctggtg acggcggggc cggcagggg accggggccg cggcccgga 50

cgccccccgc tgccgggagc cctgaatcac cgccctggccc gactccacca 100

tgaacgtcgc gctgcaggag ctgggagctg gcagcaacgt gggattccag 150

aaggggacaa gacagctgtt aggctcacgc acgcagctgg agctggctt 200

agcaggtgcc tctctactgc tggctgcact gcttctggc tgccctgtgg 250
cccttaggggt ccagtaccac agagacccat cccacagcac ctgccttaca 300
gaggcctgca ttcgagtggc tggaaaaatc ctggagtccc tggaccgagg 350
ggtagcccc tgtgaggact ttaccagtt ctccctgtggg ggctggattc 400
ggaggaaccc cctgcccgtat gggcggttc gctggaacac cttcaacagc 450
ctctgggacc aaaaccagggc catactgaag cacctgcttg aaaacaccac 500
cttcaactcc agcagtgaag ctgagcagaac gacacagcgc ttctacctat 550
cttgcctaca ggtggagcgc attgaggagc tgggagccca gccactgaga 600
gacctcattt agaagattgg tggttggAAC attacggggc cctgggacca 650
ggacaacttt atggaggtgt tgaaggcagt agcagggacc tacagggcca 700
ccccattctt caccgtctac atcagtggccg actctaagag ttccaacagc 750
aatgttatcc aggtggacca gtctgggctc ttctgcctt ctcggattta 800
ctactaaac agaactgcca atgagaaagt gctcaactgccc tatctggatt 850
acatggagga actggggatg ctgctgggtg ggcggccac ctccacgagg 900
gagcagatgc agcaggtgct ggagttggag atacagctgg ccaacatcac 950
agtccccag gaccagcgcc gcgacgagga gaagatctac cacaagatga 1000
gcatttcgga gctgcaggct ctggcgccct ccatggactg gcttgagttc 1050
ctgtcttct tgcgttcacc attggagttt agtgactctg agcctgtgg 1100
ggtgtatggg atggattatt tgcagcagggt gtcagagctc atcaaccgca 1150
cggaaccaag catcctgaac aattacctga tctggAACt ggtgcaaaag 1200
acaacctcaa gcctggaccc acgcatttgag tctgcacaag agaagctgct 1250
ggagaccctc tatggcacta agaagttcg tgcgtggagg tggcagaccc 1300
gcatctccaa cacggatgac gccctggct ttgctttggg gtcactttc 1350

gtgaaggcca cgtttgaccg gcaaagcaaa gaaattgcag agggatgtat 1400
cagcgaaatc cggaccgcac ttgaggaggc cctggacag ctggtttgg 1450
tggatgagaa gacccgccag gcagccaagg agaaagcaga tgccatctat 1500
gataatgattt gtttcccaga ctttatccctg gagcccaaag agctggatgtat 1550
tgtttatgac gggtacgaaa tttctgaaga ttctttcttc caaaacatgt 1600
tgaatttgta caacttctct gccaaaggta tggctgacca gctccgcaag 1650
cctcccgcc gagaccagtg gagcatgacc cccagacag tgaatgccta 1700
ctaccttcca actaagaatg agatgtctt ccccgctggc atcctgcagg 1750
cccccttcta tgcccgcaac caccccaagg ccctgaactt cggtggcatc 1800
ggtgtggtca tgggcccattt gttgacgcac gcccatttgc accaaggcg 1850
cgagttatgac aaagaaggaa acctgcggcc ctggtggcag aatgagtccc 1900
tggcagccctt ccggaaaccac acggccctgca tggaggaaca gtacaatcaa 1950
taccaggta atggggagag gctcaacggc cgccagacgc tgggggagaa 2000
cattactgac aacggggggc tgaaggctgc ctacaatgct tacaaagcat 2050
ggctgagaaa gcatggggag gagcagcaac tgccagccgt ggggctcacc 2100
aaccaccaggc tcttcttcgtt gggatttgc cagggtggt gctcggtccg 2150
cacaccagag agctctcactg aggggctggt gaccgacccc cacagccctg 2200
cccgcttcccg cgtgctggc actctctcca actccctgta cttccctgccc 2250
cacttcggctt gccctgtcggtt ctccccatg aacccaggc agctgtgtat 2300
ggtgtggtag acctggatca ggggagaaat ggccagctgtt caccagacct 2350
ggggcagctc tcctgacaaa gctgtttgtt cttgggttgg gaggaagcaa 2400
atgcaagctg ggctgggtctt agtccctccc cccacaggt gacatgagta 2450
cagaccctcc tcaatcacca cattgtgcctt ctgttttggg ggtgccccctg 2500

cctccagcag agccccacc attcaactgtg acatcttcc gtgtcaccct 2550

gcctggaga ggtctgggtg gggaggccag ttcccatagg aaggagtctg 2600

cc 2602

<210> 525

<211> 736

<212> PRT

<213> Homo sapiens

<400> 525

Met Asn Val Ala Leu Gln Glu Leu Gly Ala Gly Ser Asn Val Gly
1 5 10 15

Phe Gln Lys Gly Thr Arg Gln Leu Leu Gly Ser Arg Thr Gln Leu
20 25 30

Glu Leu Val Leu Ala Gly Ala Ser Leu Leu Ala Ala Leu Leu
35 40 45

Leu Gly Cys Leu Val Ala Leu Gly Val Gln Tyr His Arg Asp Pro
50 55 60

Ser His Ser Thr Cys Leu Thr Glu Ala Cys Ile Arg Val Ala Gly
65 70 75

Lys Ile Leu Glu Ser Leu Asp Arg Gly Val Ser Pro Cys Glu Asp
80 85 90

Phe Tyr Gln Phe Ser Cys Gly Gly Trp Ile Arg Arg Asn Pro Leu
95 100 105

Pro Asp Gly Arg Ser Arg Trp Asn Thr Phe Asn Ser Leu Trp Asp
110 115 120

Gln Asn Gln Ala Ile Leu Lys His Leu Leu Glu Asn Thr Thr Phe
125 130 135

Asn Ser Ser Ser Glu Ala Glu Gln Lys Thr Gln Arg Phe Tyr Leu
140 145 150

Ser Cys Leu Gln Val Glu Arg Ile Glu Glu Leu Gly Ala Gln Pro
155 160 165

Leu Arg Asp Leu Ile Glu Lys Ile Gly Gly Trp Asn Ile Thr Gly
170 175 180

Pro Trp Asp Gln Asp Asn Phe Met Glu Val Leu Lys Ala Val Ala
185 190 195

Gly Thr Tyr Arg Ala Thr Pro Phe Phe Thr Val Tyr Ile Ser Ala
200 205 210

Asp Ser Lys Ser Ser Asn Ser Asn Val Ile Gln Val Asp Gln Ser
215 220 225

Gly Leu Phe Leu Pro Ser Arg Asp Tyr Tyr Leu Asn Arg Thr Ala
230 235 240

Asn Glu Lys Val Leu Thr Ala Tyr Leu Asp Tyr Met Glu Glu Leu
245 250 255

Gly Met Leu Leu Gly Gly Arg Pro Thr Ser Thr Arg Glu Gln Met
260 265 270

Gln Gln Val Leu Glu Leu Glu Ile Gln Leu Ala Asn Ile Thr Val
275 280 285

Pro Gln Asp Gln Arg Arg Asp Glu Glu Lys Ile Tyr His Lys Met
290 295 300

Ser Ile Ser Glu Leu Gln Ala Leu Ala Pro Ser Met Asp Trp Leu
305 310 315

Glu Phe Leu Ser Phe Leu Leu Ser Pro Leu Glu Leu Ser Asp Ser
320 325 330

Glu Pro Val Val Val Tyr Gly Met Asp Tyr Leu Gln Gln Val Ser
335 340 345

Glu Leu Ile Asn Arg Thr Glu Pro Ser Ile Leu Asn Asn Tyr Leu
350 355 360

Ile Trp Asn Leu Val Gln Lys Thr Thr Ser Ser Leu Asp Arg Arg
365 370 375

Phe Glu Ser Ala Gln Glu Lys Leu Leu Glu Thr Leu Tyr Gly Thr
380 385 390

Lys Lys Ser Cys Val Pro Arg Trp Gln Thr Cys Ile Ser Asn Thr
395 400 405

Asp Asp Ala Leu Gly Phe Ala Leu Gly Ser Leu Phe Val Lys Ala
410 415 420

Thr Phe Asp Arg Gln Ser Lys Glu Ile Ala Glu Gly Met Ile Ser
425 430 435

Glu Ile Arg Thr Ala Phe Glu Glu Ala Leu Gly Gln Leu Val Trp
440 445 450

Met Asp Glu Lys Thr Arg Gln Ala Ala Lys Glu Lys Ala Asp Ala
455 460 465

Ile Tyr Asp Met Ile Gly Phe Pro Asp Phe Ile Leu Glu Pro Lys
470 475 480

Glu Leu Asp Asp Val Tyr Asp Gly Tyr Glu Ile Ser Glu Asp Ser
485 490 495

Phe Phe Gln Asn Met Leu Asn Leu Tyr Asn Phe Ser Ala Lys Val
500 505 510

Met Ala Asp Gln Leu Arg Lys Pro Pro Ser Arg Asp Gln Trp Ser
515 520 525

Met Thr Pro Gln Thr Val Asn Ala Tyr Tyr Leu Pro Thr Lys Asn
530 535 540

Glu Ile Val Phe Pro Ala Gly Ile Leu Gln Ala Pro Phe Tyr Ala
545 550 555

Arg Asn His Pro Lys Ala Leu Asn Phe Gly Gly Ile Gly Val Val
560 565 570

Met Gly His Glu Leu Thr His Ala Phe Asp Asp Gln Gly Arg Glu
575 580 585

Tyr Asp Lys Glu Gly Asn Leu Arg Pro Trp Trp Gln Asn Glu Ser
590 595 600

Leu Ala Ala Phe Arg Asn His Thr Ala Cys Met Glu Glu Gln Tyr
605 610 615

Asn Gln Tyr Gln Val Asn Gly Glu Arg Leu Asn Gly Arg Gln Thr
620 625 630

Leu Gly Glu Asn Ile Thr Asp Asn Gly Gly Leu Lys Ala Ala Tyr
635 640 645

Asn Ala Tyr Lys Ala Trp Leu Arg Lys His Gly Glu Glu Gln Gln
650 655 660

Leu Pro Ala Val Gly Leu Thr Asn His Gln Leu Phe Phe Val Gly
665 670 675

Phe Ala Gln Val Trp Cys Ser Val Arg Thr Pro Glu Ser Ser His
680 685 690

Glu Gly Leu Val Thr Asp Pro His Ser Pro Ala Arg Phe Arg Val
695 700 705

Leu Gly Thr Leu Ser Asn Ser Arg Asp Phe Leu Arg His Phe Gly
710 715 720

Cys Pro Val Gly Ser Pro Met Asn Pro Gly Gln Leu Cys Glu Val
725 730 735

Trp

<210> 526

<211> 4308

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1478, 3978, 4057-4058, 4070

<223> unknown base

<400> 526

gccccggccct ccgcgcctccg cactcccgcc tccctccctc cgcccgctcc 50

cgcgcctcc tccctccctc ctcccccagct gtcccggtcg cgtcatgccc 100

agcctcccgcc ccccgccggc cccgctgctg ctcctcgggc tgctgctgct 150

cggctcccgcc cggccccggc gcgccggccc agagcccccc gtgctgcccc 200

tccgttctga gaaggagccg ctgcccgtc ggggagcggc agtaggtgg 250
gcgcgggggg gaggcgcccc cggggagtgc ggctcgcccc gagtcagcgc 300
cagccccggag gggcgccccg ggcgcagggtgg ctcggcgcccc cgggcggccc 350
ggagggtggg cggggggcaga agggcgccgt gcctgggacc cgggacccgc 400
ggcagcccc cggggcgca cacggcgca gctggcagc ggcctccagc 450
caagccccgtc cccgcaggct gcacccgtgg cggaaggta tatgccttg 500
acgagacgtg gcacccggac ctaggggagc cattgggggt gatgcgtgc 550
gtgctgtgcg cctgcgaggc gcagtggggt cgccgtacca gggccctgg 600
cagggtcagc tgcaagaaca tcaaaccaga gtgccaacc ccggcctgtg 650
ggcagccgca ccagctgccg ggacactgct gccagacctg ccccccaggac 700
ttcgtggcgc tgctgacagg gccgagggtcg caggcgggtgg cacgagcccg 750
agtctcgctg ctgcgtcta gcctccgtt ctctatctcc tacaggcggc 800
tggaccgccc taccaggatc cgcttcgtcg actccatgg cagtgtcctg 850
tttggcacc ctgcagcccc caccaagat ggcctggct gtgggggtgtg 900
gcgggcagtgc cctcggtgt ctctgcggct ccttagggca gaacagctgc 950
atgtggcact tggacactc actcaccctt caggggaggt ctggggccct 1000
ctcatccggc accggggccct gtccccagag accttcgtgc ccatcctgac 1050
tctagaaggc cccaccaggc agggcgtagg gggcatcacc ctgctcactc 1100
tcagtgacac agaggactcc ttgcatttt tgctgctttt ccgaggccctt 1150
gcaggactaa cccagggtcc ctggaggctc cagattctac accaggggca 1200
gctactgcga gaacctcagg ccaatgtc agcccaggaa ccaggcttg 1250
ctgagggtgc gcccacccgt acagtccagg agatggactg gctgggtgtg 1300
ggggagctgc agatggccct ggagtggca ggcaggccag ggctgcgcata 1350

cagtggacac attgctgcc a ggaagagctg cgacgtcctg caaagtgtcc 1400
tttgtgggc taatgccctg atcccagtcc aaacgggtgc tgccggctca 1450
gccagcctca ctctgctagg aaatggcncc ctgatcctcc aggtgcaatt 1500
ggtagggaca accagtgagg tggtgccat gacactggaa accaaggcctc 1550
agcggaggga tcagcccact gtcctgtgcc acatggctgg cctatcctcc 1600
cctgccccca ggccgtgggt atctgccctg ggctgggggtc cccgaggggc 1650
tcatatgctg ctgcagaatg agctcttcct gaacgtggc accaaggact 1700
tcccagacgg agagcttcgg gggcaacgtg gctgccctgc cctactgtgg 1750
ggcatagcgc ccgcctgcc cgtcccccta gcaggagccc tggtgctacc 1800
ccctgtgaag agccaagcag cagggcacgc ctggcttcc ttggataccc 1850
actgtcacct gcactatgaa gtgctgtgg ctggcttgg tggctcagaa 1900
caaggcactg tcaactgccc a cctcccttggg cctcctggaa cggccaggccc 1950
tcggcggctg ctgaagggtat tctatggctc agaggcccag ggtgtggta 2000
aggaccttgg a gccggaaactg ctgcggcacc tggcaaaagg catggcttcc 2050
ctgatgatca ccaccaaggt agccccagag gggagctccg agggcagcct 2100
ctcctccag gtgcacatag ccaaccaatg tgagggtggc ggactgcgcc 2150
tggaggcggc cggggcccgag ggggtgcggg cgctgggggc tccggataca 2200
gcctctgctg cgccgcctgt ggtgcctgg t ccccgccccc tagcgcccgc 2250
caaacctggt ggtcctggc ggccccgaga ccccaacaca tgcttcttcg 2300
aggggcagca ggcggccac ggggctcgct gggcgccaa ctacgaccgc 2350
ctctgctcac tctgcacccctg ccagagacga acggtgatct gtgaccgggt 2400
ggtgtgccc a cccgcctgt ggtgcaggct cccgaccagg 2450
gctgccctgt ttgccctggc tgctatggt atggtgaccg gagctggcgg 2500

gcagcggta cgccgtggca ccccgttgtg ccccccattt gcttaattaa 2550
gtgtgtgtc tgcacctgca agcagggggg cactggagag gtgcactgtg 2600
agaaggtgca gtgtccccgg ctggcctgtg cccagcctgt gcgtgtcaac 2650
cccaccgact gctgcaaaca gtgtccaggt gaggcccacc cccagctggg 2700
ggaccccatg caggctgatg ggccccgggg ctggcgttt gctgggcagt 2750
ggttcccaga gagtcagagc tggcacccct cagtcccccc gtttggagag 2800
atgagctgta tcacctgcag atgtgggta agtggggagc agaggcttgt 2850
gtgaggtggg tactgggagc ctggctgga gttagggagac ctcccaggg 2900
aggtcctga agaagctgaa ggtcaactgtg tcccagtgcc tctggggac 2950
actcagtgtc tgctctgtct tgtaccaggc aggggtgcct cactgtgagc 3000
gggatgactg ttcaactgcca ctgtcctgtg gtcggggaa ggagagtcta 3050
tgctgttccc gtcacccggc ccaccggcgg cgtaagttag ggagtccagg 3100
gtcagcagct gtgagtgtag ggctcacctg cctgtgggac tcctgatcag 3150
ggaagggagc actcactgtg tgcaggaaca gtgcagcctg ctcacaagt 3200
gccattccaa tccaccctca cagcaacctg gtggatttgt tatttatgac 3250
ctttcttta caaatgagat ttctgaagct cagagaaatt aagcaacgag 3300
atgaaggtca cccagctgtg tgcactgacc tgtttagaaa atactggct 3350
ttctgggacc aaggcagggta tgctttgccc tgccctctat gcctctgt 3400
gcctctccac tccctctccc ctccctcaac attccctccc ttctgtctcc 3450
agcagccccca gagaccagaa ctgatccaga gctggagaaa gaagccgaag 3500
gctcttaggg agcagccaga gggccaagtg accaagagga tggggcctga 3550
gctggggaaag gggtggcatc gaggacccctc ttgcattctc ctgtgggaag 3600
cccagtgcctt tgctccct tgcctgcctc tactcccacc cccactacct 3650

ctggaaacca cagctccaca aggggagag gcagctggc cagaccgagg 3700
tcacagccac tccaagtccct gccctgccac cctcgccctc tgtcctggaa 3750
gccccacccc ttcttcctg tacataatgt cactggctg ttgggatttt 3800
taatttatct tcactcagca ccaagggccc cggacactcc actcctgctg 3850
cccctgagct gagcagagtc attattggag agtttgtat ttattaaaac 3900
atttcctttt cagtcttgg gcatgagggt ggctcttgc ggccaggaac 3950
ctgagtgggg cctgggtggag aaggggcnga gagtaggagg tgagagagag 4000
gagctctgac acttggggag ctgaaagaga cctggagagg cagaggatag 4050
cgtggcnntt ggctggcatn cctgggtcc gcagagggc tggggatgg 4100
tcttgagatg gtctagagac tcaagaattt aggaaagtag aagcaggatt 4150
ttgactcaag tttagttcc cacatcgctg gcctgttgc tgacttcatg 4200
tttgaagttg ctccagagag agaatcaaag gtgtcaccag cccctctc 4250
cctccttccc ttcccttccc ttctttccc tcccctcccc tcccctcccc 4300
tcccctcc 4308

<210> 527
<211> 1285
<212> DNA
<213> Homo sapiens

<400> 527
ggcgagcgg gggtgctgcg cggcgccgt gatggctggt gacggcgggg 50
ccgggcaggg gaccggggcc gcggccccc agcgggccag ctgccggag 100
ccctgaatca ccgcctggcc cgactccacc atgaacgtcg cgctgcagga 150
gctgggagct ggcagcaacg tgggattcca gaagggaca agacagctgt 200
taggctcacg cacgcagctg gagctggct tagcaggtgc ctctctactg 250
ctggctgcac tgcttctggg ctgccttggt gcccctaggg tccagtacca 300

cagagaccca tcccacagca cctgccttac agaggcctgc attcgagtgg 350
ctgaaaaat cctggagtcc ctggaccgag gggtagcccc ctgtgaggac 400
tttaccagt tctctgtgg gggctggatt cggaggaacc ccctgcccga 450
tggcggtct cgctggaaca cctcaacag cctctggac caaaaccagg 500
ccatactgaa gcacctgctt gaaaacacca cctcaactc cagcagtgaa 550
gctgagcaga agacacagcg cttctaccta tctgcctac aggtggagcg 600
cattgaggag ctgggagccc agccactgag agacacttattt gagaagattt 650
gtggttggaa cattacgggg ccctgggacc aggacaactt tatggaggtg 700
ttgaaggcag tagcagggac ctacagggcc accccattct tcaccgtcta 750
catcagtgcc gactctaaga gtccaaacag caatgttac caggtggacc 800
agtctggct cttctgccc tctcggatt actactaaa cagaactgcc 850
aatgagaaag taaggaacat cttccgaacc cccatcccta cccctggctg 900
agctggctg atccctgttg acctttccct ttgccaagg tcagagcagg 950
gaaggtgagc ctatcctgtc acctagtgaa caaactgccc ctcccttctt 1000
tcttctttc ttccctccctc cctccctttc ttccccctttt cttcccttcc 1050
ttccctttat tcttcttagta ggtttcatag acacctactt tgccaggt 1100
ccagtggggg aattcggaga tataaggttc cgagccattt ccacaggaag 1150
cgttcagtgt cgatgggttc atggacctag ataggctgtt aacaagctc 1200
acaagagggtt cctgaggattt caggagagac ttatggagcc agcaaagtct 1250
tcctgaagag attgcatttg agccagggtcc tgttag 1285

<210> 528
<211> 1380
<212> DNA
<213> Homo sapiens

<400> 528

atgcctacta cttccaact aagaatgaga tcgtctccc cgctggcatc 50

ctgcaggccc ctttatgc ccgaaccac cccaggccc tgaacttcgg 100

tggcatcggt gtggcatgg gccatgagtt gacgcattgc ttgtatgacc 150

aaggcgcgaa gtatgacaaa gaaggaaacc tgccgcctg gtggcagaat 200

gagtccctgg cagccatccg gaaccacacg gcctgcattgg aggaacagta 250

caatcaatac caggtcaatg gggagaggct caacggccgc cagacgctgg 300

gggagaacat tgctgacaac gggggctga aggctgccta caatgcttac 350

aaagcatggc tgagaaagca tggggaggag cagcaactgc cagccgtgg 400

gctcaccaac caccagctct tttcggtgg atttgccag gtgtggtct 450

cggccgcac accagagagc ttcacgagg ggctggtagac cgacccccac 500

agccctgccc gctccgcgt gctggcact ctctccaact cccgtactt 550

cctgcggcac ttggctgcc ctgtcgctc cccatgaac ccagggcagc 600

tgtgtgaggt gtggtagacc tggatcaggg gagaaatggc cagctgtcac 650

cagacctggg gcagctctcc tgacaaagct gtttgtctt gggtgggag 700

gaagcaaatg caagctggc tgggtctagt ccctcccccc cacaggtgac 750

atgagtagac accctcctca atcaccacat tgtgcctctg ctttgggggt 800

gccctgcct ccagcagagc cccaccatt cactgtgaca tcttccgtg 850

tcacctgccc tggaagaggt ctgggtgggg aggccagttc ccataggaag 900

gagtctgcct ttctgtccc caggctact cagcctggcg gccatggggc 950

ctggccgtgcc tgccccactg tgacccacag gcctgggtgg tgtacctct 1000

ggacttctcc ccaggctcac tcagtgcgca cttaggggtg gactcagtc 1050

tgtctggctc accctcacgg gctacccca ctcaccctg tgctccctgt 1100

gccactgctc ccagtgcgtc tgctgaccct cactgacagc tccttagtgga 1150
agcccaaggg cctctgaaag cctcctgctg cccactgttt ccctgggctg 1200
agaggggaag tgcataatgtg tagcggtac tggttcctgt gtcttagggc 1250
acaaggccita gcaaatttgcattt gatttccctt ggacaaagca ggaaaggcaga 1300
tagagcaggg aaaaggaaga acagagttta tttttacaga aaagagggtg 1350
ggagggtgtg gtcttggccc ttataggacc 1380

<210> 529

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 529

gaagcagtgc agccagcagt agagaggcac ctgctaaga 39

<210> 530

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 530

acgcagctgg agctggctt agca 24

<210> 531

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 531

ggtaactggac cccttagggcc acaa 24

<210> 532
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 532
cctcccaagcc gagaccagggtg g 21

<210> 533
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 533
ggtcctataa gggccaagac c 21

<210> 534
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 534
gactagttct agatcgcgag cggccgcctt tttttttt tttt 44

<210> 535
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 535
cggacgcgtg ggtcga 16

<210> 536

<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 536
cggccgtat ggctggtgac g 21

<210> 537
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 537
ggcagactcc ttcctatggg 20

<210> 538
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 538
ggcacttcat ggtccttgaa a 21

<210> 539
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 539
cgatgtgt tgaggccatg cc 22

<210> 540
<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 540

gaaagtaacc acggaggta agat 24

<210> 541

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 541

cctcctccga gactgaaagc t 21

<210> 542

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 542

tgcgttgct ttttctcgcg tg 22

<210> 543

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 543

gcgtgcgtca gggtcca 17

<210> 544

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 544

cgttcgtgca gcgtgtgta 19

<210> 545

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 545

cttcctcacc acctgcgacg gg 22

<210> 546

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 546

ggtaggcggt cctatagatg gtt 23

<210> 547

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 547

agatgtggat gaatgcagtg cta 23

<210> 548

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 548

atcaacacccg ccggcagttt ctgg 24

<210> 549

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 549

acagagtgtt ccgtctgcag aca 23

<210> 550

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 550

agcctccctgg tgcactcct 19

<210> 551

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 551

cgactccctg agcgagcaga ttccc 25

<210> 552

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 552

gctgggcagt cacgagtctt 20

<210> 553

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 553

aatcctccat ctcagatctt ccag 24

<210> 554

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 554

cctcagcggtaacagccggc c 21

<210> 555

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 555

tggccaagg gctgc 15

<210> 556

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 556
tggtgataa ccaacaagat gg 22

<210> 557
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 557
gagtctgcat ccacaccact cttaaaggtc tcaa 34

<210> 558
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 558
caggtgctct ttccatgtcat gttt 24

<210> 559
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 559
tggccattct caggacaaga g 21

<210> 560
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide probe

<400> 560

cagtaatgcc atttgctgc ctgcat 26

<210> 561

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 561

tgcctggaaat cacatgaca 19

<210> 562

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide probe

<400> 562

tgtggcacag acccaatcct 20

<210> 563

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 563

gaccctgaag gcctccggcc t 21

<210> 564

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 564

gagagaggga aggcagctat gtc 23

<210> 565
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 565
cagccccctct ctttcaccctg t 21

<210> 566
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 566
ccatccctgtg cagctgacac acaggc 25

<210> 567
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 567
gccaggctat gaggctcctt 20

<210> 568
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 568
ttcaagttcc tgaagccgat tat 23

<210> 569

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 569
ccaacttccc tccccagtgc cct 23

<210> 570
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 570
ttggggaagg tagaattcc ttgtat 26

<210> 571
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 571
cccttctgcc tcccaattct 20

<210> 572
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 572
tctcctccgt ccccttcctc cact 24

<210> 573
<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 573

tgagccactg ctttgcatta 20

<210> 574

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 574

tctgcagacg cgatggataa 20

<210> 575

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 575

ccgaaaataa aacatcgccc cttctg 26

<210> 576

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 576

cacgtggcct ttcacactga 20

<210> 577

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 577

acttgtgaca gcagtagtgcgt gtctt 25

<210> 578

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 578

aagcttctgt tcaatcccgag cgggcc 26

<210> 579

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 579

atgcacaggc ttttctggtaaa 22

<210> 580

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 580

gcaggaaacc ttcaaatctg ag 22

<210> 581

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 581

acacctgagg caccctgagag aggaactct 29

<210> 582

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 582

gacagccca g tacaccctgca a 21

<210> 583

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 583

gacggctgga tctgtgagaa a 21

<210> 584

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 584

cacaactgct gaccccgccc a 21

<210> 585

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 585

ccaggatacg acatgctgca 20

<210> 586

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 586

aaactccaac ctgtatcaga tgca 24

<210> 587

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 587

cccccaagcc cttagactct aagcc 25

<210> 588

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 588

gaccggcac cttgctaac 19

<210> 589

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 589
ggacggtcag tcaggatgac a 21

<210> 590
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 590
ttcggcatca tctcttccct ctccc 25

<210> 591
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 591
acaaaaaaaaaa ggaaacaaaa tacga 25

<210> 592
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 592
ctttgaatag aagacttctg gacaattt 28

<210> 593
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 593

ttgcaactgg gaatatacca cgacatgaga 30

<210> 594

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 594

taggttgcta atttgtgcta taacct 26

<210> 595

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 595

ggctctgagt ctctgcttga 20

<210> 596

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 596

tccaaacaacc atttcctct ggtcc 25

<210> 597

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 597

aagcagtagc cattaacaag tca 23

<210> 598
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 598
caagcgtcca ggtttattga 20

<210> 599
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 599
gactacaagg cgctcagcta 20

<210> 600
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 600
ccggctgggt ctcactcctc c 21

<210> 601
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 601
cgttcgtgca gcgtgtgta 19

<210> 602

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 602
cttcctcacc acctgcgacg gg 22

<210> 603
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 603
ggtaggcggt cctatagatg gtt 23

<210> 604
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 604
agatgtggat gaatgcagtg cta 23

<210> 605
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 605
atcaaacaccg ccggcagttt ctgg 24

<210> 606
<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 606

acagagtgt a ccgtctgcag aca 23

<210> 607

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 607

agcctccctgg tgcactcct 19

<210> 608

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 608

cgactccctg agcgagcaga ttccc 25

<210> 609

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 609

gctgggcagt cacgagtctt 20

<210> 610

<211> 2840

<212> DNA

<213> Homo Sapien

<400> 610

cccacgcgtc cgagccgccc gagaattaga cacactccgg acgcggccaa 50

aagcaaccga gaggagggga ggcaaaaaca ccgaaaaaca aaaagagaga 100

aacaacaccc aacaactggg gtggggggaa gaaagaaaga aaagaaaccc 150

acccacccac caaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaatc 200

ctgtggcgcg cgcctggtt cccgggaaga ctgcgcagca ccaggggtg 250

ggggagtgcg agctgaaagc tgctggagag tgagcagccc tagcaggat 300

ggacatgatg ctgttgtgc agggtgcctt ttgctcgaac cagtggctgg 350

cggcggtgct ctcagcctg tgctgcctgc taccctcctg ctcggcgt 400

ggacagagtg tggacttccc ctggcggcc gtggacaaca tgatggtcag 450

aaaagggac acggcggtgc ttagtgtta ttggaaagat ggagcttcaa 500

agggtgcctg gctgaaccgg tcaagtatta ttttgcggg aggtgataag 550

tggcagtgg atcctcgagt ttcaattca acattgaata aaaggacta 600

cagcctccag atacagaatg tagatgtgac agatgatggc ccatacacgt 650

gttctgttca gactcaacat acacccagaa caatgcaggt gcatctaact 700

gtgcaagttc ctccaaatg atatgacatc tcaaattata tgaccgtcaa 750

tgaaggaacc aacgtcactc ttacttgtt ggccactggg aaaccagagc 800

cttcatttc ttggcgacac atctccccat cagcaaaacc atttggaaat 850

ggacaatatt tggacattta tggaattaca agggaccagg ctgggaaata 900

tgaatgcagt gcgaaaaatg ctgtgtcatt cccagatgtg agggaaatgg 950

aagtgttgtt caactttgtc cctactattc agggaaatgg atctggcacc 1000

gtgacccccc gacgcagtgg cctgataaga tgtgaaggtg caggtgtgcc 1050

gcctccagcc tttaaatgggt acaaaggaga gaagaagctc ttcaatggcc 1100
aacaaggaat tattattcaa aatttttagca caagatccat ttcactgtt 1150
accaacgtga cacaggagca ctccgcaat tatacctgtg tggctgcca 1200
caagcttaggc acaaccaatg cgagcctgcc tcttaaccct ccaagtacag 1250
cccagtagtg aattaccggg agcgctgatg ttctttctc ctgctggta 1300
cttgtgttga cactgtcctc ttccaccagc atattctacc tgaagaatgc 1350
cattctacaa taaattcaaa gaccataaa aggctttaa ggattctcg 1400
aaagtgtga tggctggatc caatctggta cagttgtta aaagcagcgt 1450
ggatataat cagcagtgc tacatggga tgatgcctt ctgtagaatt 1500
gctcattatg taaaatactt aattctactc tttttgatt agctacatta 1550
ccttgtgaag cagtacacat tgtcctttt ttaagacgtg aaagctctga 1600
aattactttt agaggatatt aattgtgatt tcatgtttgt aatctacaac 1650
tttcaaaag cattcagtca tggctgcta ggtgcaggc tgttagttac 1700
aaaaacgaat attgcagtga atatgtgatt cttaaggct gcaatacaag 1750
cattcagttc cctgttcaa taagagtcaa tccacattt caaagatgca 1800
ttttttctt ttttgataaa aaagcaaata atattgcctt cagattttt 1850
cttcaaaata taacacatat ctagatttt ctgcttgcat gatattcagg 1900
tttcaggaat gagccttgta atataactgg ctgtgcagct ctgcttcct 1950
ttcctgtaaag ttcagcatgg gtgtgccttc atacaataat attttctct 2000
ttgtctccaa ctaatataaa atgttttgct aaatcttaca atttgaaagt 2050
aaaaataaac cagagtgtac aagttaaacc atacactatc tctaagtaac 2100
gaaggagcta ttggactgtaa aaaatctt cctgcactga caatgggtt 2150
tgagaatttt gccccacact aactcagttc ttgtgtatgag agacaattt 2200

ataacagtat agtaaatata ccatatgatt tcttagttg tagctaaatg 2250
ttagatccac cgtggaaat cattccctt aaaatgacag cacagtccac 2300
tcaaaggatt gcctagcaat acagcatctt ttcccttcac tagtccaagc 2350
caaaaattt aagatgattt gtcagaaagg gcacaaagtc ctatcaccta 2400
atattacaag agttggtaag cgctcatcat taattttatt ttgtggcagg 2450
tattatgaca gtcgacctgg agggtatgga tatggatatg gacgttccag 2500
agactataat ggcagaaacc agggtggtt tgaccgctac tcaggagaa 2550
attacagaga caattatgac aactgaaatg agacatgcac ataatataga 2600
tacacaagga ataattctg atccaggatc gtccttccaa atggctgtat 2650
ttataaaggt tttggagct gcactgaagc atcttattt atagtatatc 2700
aacctttgt ttttaattt acctgccaag gtagctgaag acctttttaga 2750
cagttccatc tttttttta aatttttct gcctatttaa agacaaatta 2800
tgggacgtt gtcaaaaaaa aaaaaaaaaa aaaaaaaaaa 2840

<210> 611
<211> 352
<212> PRT
<213> Homo Sapien

<400> 611
Met Met Leu Leu Val Gln Gly Ala Cys Cys Ser Asn Gln Trp Leu
1 5 10 15
Ala Ala Val Leu Leu Ser Leu Cys Cys Leu Leu Pro Ser Cys Leu
20 25 30

Pro Ala Gly Gln Ser Val Asp Phe Pro Trp Ala Ala Val Asp Asn
35 40 45

Met Met Val Arg Lys Gly Asp Thr Ala Val Leu Arg Cys Tyr Leu
50 55 60

Glu Asp Gly Ala Ser Lys Gly Ala Trp Leu Asn Arg Ser Ser Ile

65 70 75

Ile Phe Ala Gly Gly Asp Lys Trp Ser Val Asp Pro Arg Val Ser
80 85 90

Ile Ser Thr Leu Asn Lys Arg Asp Tyr Ser Leu Gln Ile Gln Asn
95 100 105

Val Asp Val Thr Asp Asp Gly Pro Tyr Thr Cys Ser Val Gln Thr
110 115 120

Gln His Thr Pro Arg Thr Met Gln Val His Leu Thr Val Gln Val
125 130 135

Pro Pro Lys Ile Tyr Asp Ile Ser Asn Asp Met Thr Val Asn Glu
140 145 150

Gly Thr Asn Val Thr Leu Thr Cys Leu Ala Thr Gly Lys Pro Glu
155 160 165

Pro Ser Ile Ser Trp Arg His Ile Ser Pro Ser Ala Lys Pro Phe
170 175 180

Glu Asn Gly Gln Tyr Leu Asp Ile Tyr Gly Ile Thr Arg Asp Gln
185 190 195

Ala Gly Glu Tyr Glu Cys Ser Ala Glu Asn Ala Val Ser Phe Pro
200 205 210

Asp Val Arg Lys Val Lys Val Val Asn Phe Ala Pro Thr Ile
215 220 225

Gln Glu Ile Lys Ser Gly Thr Val Thr Pro Gly Arg Ser Gly Leu
230 235 240

Ile Arg Cys Glu Gly Ala Gly Val Pro Pro Ala Phe Glu Trp
245 250 255

Tyr Lys Gly Glu Lys Lys Leu Phe Asn Gly Gln Gln Gly Ile Ile
260 265 270

Ile Gln Asn Phe Ser Thr Arg Ser Ile Leu Thr Val Thr Asn Val
275 280 285

Thr Gln Glu His Phe Gly Asn Tyr Thr Cys Val Ala Ala Asn Lys

290

295

300

Leu Gly Thr Thr Asn Ala Ser Leu Pro Leu Asn Pro Pro Ser Thr
305 310 315

Ala Gln Tyr Gly Ile Thr Gly Ser Ala Asp Val Leu Phe Ser Cys
320 325 330

Trp Tyr Leu Val Leu Thr Leu Ser Ser Phe Thr Ser Ile Phe Tyr
335 340 345

Leu Lys Asn Ala Ile Leu Gln
350

<210> 612

<211> 1797

<212> DNA

<213> Homo Sapien

<400> 612

agtggttcga tggaaaggat ctttctccaa gtggttcctc ttgaggggag 50

catttctgct ggctccagga ctttggccat ctataaagct tggcaatgag 100

aaataagaaa attctcaagg aggacgagct cttagtgag acccaacaag 150

ctgcctttca ccaaattgca atggagccct tcgaaatcaa tggccaaag 200

cccaagagga gaaatgggggt gaacttctcc ctatgtgtgg tggcatcta 250

cctgatcctg ctcaccgctg gcgctgggct gctgggtggc caagttctga 300

atctgcaggc gcggctccgg gtcctggaga tgtatttcct caatgacact 350

ctggcggctg aggacagccc gtccttctcc ttgctgcagt cagcacaccc 400

tggagaacac ctggctcagg gtgcattcagc gctcaagtc ctgcaggccc 450

aactcacctg ggtccgcgtc agccatgagc acttgctgca gcgggttagac 500

aacttcactc agaacccagg gatgtcaga atcaaagggtg aacaaggcgc 550

cccaggctt caaggtcaca agggggccat gggcatgcct ggtgccccctg 600

gccccccggg accacactgct gagaagggag ccaagggggc tatggacga 650

gatggagcaa caggcccctc gggaccccaa ggcccaccgg gagtcaaggg 700
agaggcgggc ctccaaggac cccagggtgc tccagggaag caaggagcca 750
ctggcacccc aggaccccaa ggagagaagg gcagcaaagg cgatgggggt 800
ctcattggcc caaaagggga aactggaact aaggagaga aaggagacct 850
gggtctccca ggaagcaaag gggacagggg catgaaagga gatgcagggg 900
tcatgggcc tcctggagcc cagggagta aaggtgactt cgggaggcca 950
ggcccaccag gtttggctgg tttcctgga gctaaaggag atcaaggaca 1000
acctggactg caggggttgc cgggcccctcc tggtgcagtg ggacacccag 1050
tgcccaaggg tgagcctggc agtgctggct cccctggcg agcaggactt 1100
ccagggagcc ccgggagtcc aggagccaca ggcctgaaag gaagcaaagg 1150
ggacacagga cttcaaggac agcaaggaag aaaaggagaa tcaggagttc 1200
caggccctgc aggtgtgaag ggagaacagg ggagcccagg gctggcaggt 1250
cccaagggag cccctggaca agctggccag aagggagacc agggagtgaa 1300
aggatcttct ggggagcaag gagtaaagg agaaaaaggta gaaagaggtg 1350
aaaactcagt gtccgtcagg attgtcgca gtagtaaccg aggccggct 1400
gaagtttact acagtggta cttggggaca atttgcgtat acgagtggca 1450
aaattctgtat gccattgtct tctggccat gctgggttac tccaaaggaa 1500
gggccctgta caaagtggga gctggcactg ggcagatctg gctggataat 1550
gttcagtgtc ggggcacggc gaggatccctg tggagctgca ccaagaatag 1600
ctggggccat catgactgca gccacgagga ggacgcaggc gtggagtgca 1650
cggtctgacc cgaaaccct ttcaacttctc tgctcccgag gtgtccctgg 1700
gctcatatgt ggaaaggcag aggatctctg aggagttccc tggggacaac 1750
tgagcagcct ctggagaggg gccattaata aagctcaaca tcattga 1797

<210> 613

<211> 520

<212> PRT

<213> Homo Sapien

<400> 613

Met Arg Asn Lys Lys Ile Leu Lys Glu Asp Glu Leu Leu Ser Glu
1 5 10 15

Thr Gln Gln Ala Ala Phe His Gln Ile Ala Met Glu Pro Phe Glu
20 25 30

Ile Asn Val Pro Lys Pro Lys Arg Arg Asn Gly Val Asn Phe Ser
35 40 45

Leu Ala Val Val Val Ile Tyr Leu Ile Leu Leu Thr Ala Gly Ala
50 55 60

Gly Leu Leu Val Val Gln Val Leu Asn Leu Gln Ala Arg Leu Arg
65 70 75

Val Leu Glu Met Tyr Phe Leu Asn Asp Thr Leu Ala Ala Glu Asp
80 85 90

Ser Pro Ser Phe Ser Leu Leu Gln Ser Ala His Pro Gly Glu His
95 100 105

Leu Ala Gln Gly Ala Ser Arg Leu Gln Val Leu Gln Ala Gln Leu
110 115 120

Thr Trp Val Arg Val Ser His Glu His Leu Leu Gln Arg Val Asp
125 130 135

Asn Phe Thr Gln Asn Pro Gly Met Phe Arg Ile Lys Gly Glu Gln
140 145 150

Gly Ala Pro Gly Leu Gln Gly His Lys Gly Ala Met Gly Met Pro
155 160 165

Gly Ala Pro Gly Pro Pro Gly Pro Pro Ala Glu Lys Gly Ala Lys
170 175 180

Gly Ala Met Gly Arg Asp Gly Ala Thr Gly Pro Ser Gly Pro Gln
185 190 195

Gly Pro Pro Gly Val Lys Gly Glu Ala Gly Leu Gln Gly Pro Gln
200 205 210

Gly Ala Pro Gly Lys Gln Gly Ala Thr Gly Thr Pro Gly Pro Gln
215 220 225

Gly Glu Lys Gly Ser Lys Gly Asp Gly Gly Leu Ile Gly Pro Lys
230 235 240

Gly Glu Thr Gly Thr Lys Gly Glu Lys Gly Asp Leu Gly Leu Pro
245 250 255

Gly Ser Lys Gly Asp Arg Gly Met Lys Gly Asp Ala Gly Val Met
260 265 270

Gly Pro Pro Gly Ala Gln Gly Ser Lys Gly Asp Phe Gly Arg Pro
275 280 285

Gly Pro Pro Gly Leu Ala Gly Phe Pro Gly Ala Lys Gly Asp Gln
290 295 300

Gly Gln Pro Gly Leu Gln Gly Val Pro Gly Pro Pro Gly Ala Val
305 310 315

Gly His Pro Gly Ala Lys Gly Glu Pro Gly Ser Ala Gly Ser Pro
320 325 330

Gly Arg Ala Gly Leu Pro Gly Ser Pro Gly Ser Pro Gly Ala Thr
335 340 345

Gly Leu Lys Gly Ser Lys Gly Asp Thr Gly Leu Gln Gly Gln Gln
350 355 360

Gly Arg Lys Gly Glu Ser Gly Val Pro Gly Pro Ala Gly Val Lys
365 370 375

Gly Glu Gln Gly Ser Pro Gly Leu Ala Gly Pro Lys Gly Ala Pro
380 385 390

Gly Gln Ala Gly Gln Lys Gly Asp Gln Gly Val Lys Gly Ser Ser
395 400 405

Gly Glu Gln Gly Val Lys Gly Glu Lys Gly Glu Arg Gly Glu Asn
410 415 420

Ser Val Ser Val Arg Ile Val Gly Ser Ser Asn Arg Gly Arg Ala
425 430 435

Glu Val Tyr Tyr Ser Gly Thr Trp Gly Thr Ile Cys Asp Asp Glu
440 445 450

Trp Gln Asn Ser Asp Ala Ile Val Phe Cys Arg Met Leu Gly Tyr
455 460 465

Ser Lys Gly Arg Ala Leu Tyr Lys Val Gly Ala Gly Thr Gly Gln
470 475 480

Ile Trp Leu Asp Asn Val Gln Cys Arg Gly Thr Glu Ser Thr Leu
485 490 495

Trp Ser Cys Thr Lys Asn Ser Trp Gly His His Asp Cys Ser His
500 505 510

Glu Glu Asp Ala Gly Val Glu Cys Ser Val
515 520

<210> 614
<211> 647
<212> DNA
<213> Homo Sapien

<400> 614
cccacgcgtc cgaaggcaga caaaggttca tttgtaaaga agtccttcc 50
agcacctcct ctcttcctt tttgcccaaa ctcacccagt gagtgtgagc 100
attnaagaag catcctctgc caagaccaaa aggaaagaag aaaaagggcc 150
aaaagccaaa atgaaactga tggtaactgt tttcaccatt gggctaactt 200
tgctgctagg agttcaagcc atgcctgcaa atgcctctc ttgtacaga 250
aagatactaa aagatcacaa ctgtcacaac cttccggaag gagtagctga 300
cctgacacag attgatgtca atgtccagga tcatttctgg gatgggaagg 350
gatgtgagat gatctgttac tgcaacttca gcgaattgct ctgctgccc 400
aaagacgtt tcttgacc aaagatctt ttcgtgattc cttgcaacaa 450

tcaatgagaa tttcatgtt ttctggagaa caccattcct gatttccac 500

aaactgcact acatcagtat aactgcattt ctatgttcta tatagtgcaa 550

tagaggcatag attctataaa ttcttacttg tctaagacaa gttaatctgt 600

gttaaacaag tagtaataaa agttaattca atctaaaaaa aaaaaaaa 647

<210> 615

<211> 98

<212> PRT

<213> Homo Sapien

<400> 615

Met Lys Leu Met Val Leu Val Phe Thr Ile Gly Leu Thr Leu Leu
1 5 10 15

Leu Gly Val Gln Ala Met Pro Ala Asn Arg Leu Ser Cys Tyr Arg
20 25 30

Lys Ile Leu Lys Asp His Asn Cys His Asn Leu Pro Glu Gly Val
35 40 45

Ala Asp Leu Thr Gln Ile Asp Val Asn Val Gln Asp His Phe Trp
50 55 60

Asp Gly Lys Gly Cys Glu Met Ile Cys Tyr Cys Asn Phe Ser Glu
65 70 75

Leu Leu Cys Cys Pro Lys Asp Val Phe Phe Gly Pro Lys Ile Ser
80 85 90

Phe Val Ile Pro Cys Asn Asn Gln
95

<210> 616

<211> 2558

<212> DNA

<213> Homo Sapien

<400> 616

cccacgcgtc cgccggacgcg tgggctggac cccaggtctg gagcgaattc 50

cagcctgcag ggctgataag cgaggcatta gtgagattga gagagacttt 100

accggccgt ggtggttgga gggcgccgcag tagaggcagca gcacaggcgc 150
gggtccccggg aggccggctc tgctcgccgc gagatgtgga atctccttca 200
cgaaaccgac tcggctgtgg ccaccgcgcg ccgcccgcgc tggctgtgcg 250
ctggggcgct ggtgctggcg ggtggcttct ttctcctcgg cttcccttc 300
gggtggttta taaaatcctc caatgaagct actaacattt ctccaaagca 350
taatatgaaa gcattttgg atgaattgaa agctgagaac atcaagaagt 400
tcttacataa ttttacacag ataccacatt tagcaggaac agaacaac 450
ttcagcttg caaagcaaattt tcaatcccag tggaaagaat ttggcctgga 500
ttctgttgag cttagctcattt atgatgtcctt gtgtcctac ccaataaga 550
ctcatccaa ctacatctca ataattaatg aagatggaaa tgagatttc 600
aacacatcat tatttgaacc acctcctcca ggatatgaaa atgttcgg 650
tattgtacca cctttcagtg ctttcttcc tcaaggaatg ccagagggcg 700
atctagtgttataactat gcacgaactg aagacttctt taaattggaa 750
cgggacatga aaatcaatttgc ctctggaaa attgtatgg ccagatatgg 800
gaaagttttc agagggaaata aggttaaaaaa tgcccgctg gcagggccca 850
aaggagtcattt tcttactcc gaccctgctg actacttgc ttctgggtg 900
aagtcctatc cagacggtttgc gaatcttccctt ggaggtgggtg tccagcgtgg 950
aaatatccata aatctgaatg gtgcaggaga ccctctcaca ccaggttacc 1000
cagcaaatttgc atatgcattt aggcgtggaa ttgcagaggc ttttgttctt 1050
ccaagtatttc ctgttcatcc aattggatac tatgtatgcac agaagctcctt 1100
agaaaaaaatg ggtggctcag caccaccaga tagcagctgg agagggaaatgc 1150
tcaaagtgccttccatgtt ggacccctggctt tttactggaaa cttttctaca 1200
caaaaagtca agatgcacat ccactctacc aatgtatgg cgagaattta 1250

caatgtgata ggtactctca gaggagcagt ggaaccagac agatatgtca 1300
ttctgggagg tcacccggac tcatgggtgt ttgggtgtat tgacccttag 1350
agtggagcag ctgttgtca tgaaatttg aggagcttg gaacactgaa 1400
aaaggaaggg tggagaccta gaagaacaat ttgttgca agctgggatg 1450
cagaagaatt tggtcttc ttgtctactg agtggcaga ggagaattca 1500
agactccttc aagagcgtgg cgtggcttat attaatgctg actcatctat 1550
agaaggaaac tacactctga gagttgattg tacaccgctg atgtacagct 1600
tggcacacaa cctaacaaaaa gagctgaaaaa gccctgatga aggcttgaa 1650
ggcaaattctc ttatgaaag ttggactaaa aaaagtcctt ccccagagtt 1700
cagtggcatg cccaggataa gcaaattggg atctggaaat gattttgagg 1750
tggtcttcca acgacttgga attgcttcag gcagagcacf gtatactaaa 1800
aattggaaaa caaacaaatt cagcggttat ccactgtatc acagtgtcta 1850
tgaaacatat gagttggtgg aaaagttta tgatccaatg tttaaatatc 1900
acctcactgt gccccaggtt cgaggaggga tggtgttga gctagccat 1950
tccatagtgc tccctttga ttgtcgagat tatgctgtatc tttaagaaaa 2000
gtatgctgac aaaatctaca gtattctat gaaacatcca cagggaaatga 2050
agacatacag tgtatcattt gattcacttt ttctgcagt aaagaatttt 2100
acagaaaattg cttccaagtt cagtgagaga ctccaggact ttgacaaaag 2150
caacccaata gtattaagaa tgatgaatga tcaactcatg ttctggaaaa 2200
gagcatttat tgatccattt gggttaccag acaggcattt ttataggcat 2250
gtcatctatg ctccaagcag ccacaacaag tatgcagggg agtcattccc 2300
aggaatttat gatgctctgt ttgatattga aagcaaagtg gacccttcca 2350
aggcctgggg agaagtgaag agacagattt atgtgcagc ctccacagt 2400

caggcagctg cagagactt gagtgaagta gcctaagagg atttttaga 2450

gaatccgtat tgaatttg tggtatgtca ctcagaaaga atcgtaatgg 2500

gtatattgat aaattttaaa attggatat ttgaaataaa gttgaatatt 2550

atatataa 2558

<210> 617

<211> 750

<212> PRT

<213> Homo Sapien

<400> 617

Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala

1 5 10 15

Arg Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly

20 25 30

Gly Phe Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser

35 40 45

Ser Asn Glu Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala

50 55 60

Phe Leu Asp Glu Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu His

65 70 75

Asn Phe Thr Gln Ile Pro His Leu Ala Gly Thr Glu Gln Asn Phe

80 85 90

Gln Leu Ala Lys Gln Ile Gln Ser Gln Trp Lys Glu Phe Gly Leu

95 100 105

Asp Ser Val Glu Leu Ala His Tyr Asp Val Leu Leu Ser Tyr Pro

110 115 120

Asn Lys Thr His Pro Asn Tyr Ile Ser Ile Ile Asn Glu Asp Gly

125 130 135

Asn Glu Ile Phe Asn Thr Ser Leu Phe Glu Pro Pro Pro Pro Gly

140 145 150

Tyr Glu Asn Val Ser Asp Ile Val Pro Pro Phe Ser Ala Phe Ser

155 160 165

Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr Val Asn Tyr Ala
170 175 180

Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met Lys Ile Asn
185 190 195

Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val Phe Arg
200 205 210

Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly Val
215 220 225

Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys
230 235 240

Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Val Gln Arg
245 250 255

Gly Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro
260 265 270

Gly Tyr Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu
275 280 285

Ala Val Gly Leu Pro Ser Ile Pro Val His Pro Ile Gly Tyr Tyr
290 295 300

Asp Ala Gln Lys Leu Leu Glu Lys Met Gly Gly Ser Ala Pro Pro
305 310 315

Asp Ser Ser Trp Arg Gly Ser Leu Lys Val Pro Tyr Asn Val Gly
320 325 330

Pro Gly Phe Thr Gly Asn Phe Ser Thr Gln Lys Val Lys Met His
335 340 345

Ile His Ser Thr Asn Glu Val Thr Arg Ile Tyr Asn Val Ile Gly
350 355 360

Thr Leu Arg Gly Ala Val Glu Pro Asp Arg Tyr Val Ile Leu Gly
365 370 375

Gly His Arg Asp Ser Trp Val Phe Gly Gly Ile Asp Pro Gln Ser

380 385 390

Gly Ala Ala Val Val His Glu Ile Val Arg Ser Phe Gly Thr Leu
395 400 405

Lys Lys Glu Gly Trp Arg Pro Arg Arg Thr Ile Leu Phe Ala Ser
410 415 420

Trp Asp Ala Glu Glu Phe Gly Leu Leu Gly Ser Thr Glu Trp Ala
425 430 435

Glu Glu Asn Ser Arg Leu Leu Gln Glu Arg Gly Val Ala Tyr Ile
440 445 450

Asn Ala Asp Ser Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val Asp
455 460 465

Cys Thr Pro Leu Met Tyr Ser Leu Val His Asn Leu Thr Lys Glu
470 475 480

Leu Lys Ser Pro Asp Glu Gly Phe Glu Gly Lys Ser Leu Tyr Glu
485 490 495

Ser Trp Thr Lys Ser Pro Ser Pro Glu Phe Ser Gly Met Pro
500 505 510

Arg Ile Ser Lys Leu Gly Ser Gly Asn Asp Phe Glu Val Phe Phe
515 520 525

Gln Arg Leu Gly Ile Ala Ser Gly Arg Ala Arg Tyr Thr Lys Asn
530 535 540

Trp Glu Thr Asn Lys Phe Ser Gly Tyr Pro Leu Tyr His Ser Val
545 550 555

Tyr Glu Thr Tyr Glu Leu Val Glu Lys Phe Tyr Asp Pro Met Phe
560 565 570

Lys Tyr His Leu Thr Val Ala Gln Val Arg Gly Gly Met Val Phe
575 580 585

Glu Leu Ala Asn Ser Ile Val Leu Pro Phe Asp Cys Arg Asp Tyr
590 595 600

Ala Val Val Leu Arg Lys Tyr Ala Asp Lys Ile Tyr Ser Ile Ser

605 610 615

Met Lys His Pro Gln Glu Met Lys Thr Tyr Ser Val Ser Phe Asp
620 625 630

Ser Leu Phe Ser Ala Val Lys Asn Phe Thr Glu Ile Ala Ser Lys
635 640 645

Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser Asn Pro Ile Val
650 655 660

Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu Arg Ala Phe
665 670 675

Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg His Val
680 685 690

Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser Phe
695 700 705

Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
710 715 720

Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala
725 730 735

Ala Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala
740 745 750

<210> 618

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 618

agatgtgaag gtgcagggtg gccg 24

<210> 619

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 619

gaacatcagc gctcccggtta attcc 25

<210> 620

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 620

ccagccttg aatggtacaa aggagagaag aagctttca atggcc 46

<210> 621

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 621

ccaaactcac ccagtgagtg tgagc 25

<210> 622

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 622

tggaaatca ggaatggtgt tctcc 25

<210> 623

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide probe

<400> 623

c_ttgg_{ttt}c_a ccattgggct aactttgctg ctaggagg_{tc} aagccatgcc 50