Le produit scalaire dans le plan.

- I. Les quatre expressions du produit scalaire.
- 1. Dans le plan, une unité de longueur étant choisie, le produit scalaire des vecteurs \vec{u} et \vec{v} est le réel noté $\vec{u} \cdot \vec{v}$ défini par:

$$\vec{u} \cdot \vec{v} = \frac{1}{2} [||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2]$$

2. Si \vec{u} et \vec{v} sont deux vecteurs non nuls, alors: $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u} \cdot \vec{v})$.

- 3. Si, dans un repère orthogonal, \vec{u} et \vec{v} ont pour coordonnées respectives (x; y) et (x'; y'), alors: $\vec{u} \cdot \vec{v} = xx' + yy'$.
- 4. Si $\overline{C'D'}$ est le projeté orthogonal de \overline{CD} sur la droite (AB), alors $\overline{AB} \cdot \overline{CD} = \overline{AB} \cdot \overline{C'D'}$.

II. Orthogonalité et distance.

Propriété: Les vecteurs \vec{u} et \vec{v} sont orthogonaux si $\vec{u} \cdot \vec{v} = 0$.

 $\vec{u} \cdot \vec{u}$ est noté \vec{u} et est appelé carré scalaire de \vec{u} . On a \vec{u} = $||\vec{u}||^2$ et \overrightarrow{AB} = AB². III. Exercices.

Exercice 1:

On considère la figure ci-dessous.

Calculer les produits scalaires.

a.
$$\overrightarrow{DC} \cdot \overrightarrow{DE}$$
 b. $\overrightarrow{FC} \cdot \overrightarrow{FA}$ c. $\overrightarrow{EC} \cdot \overrightarrow{BF}$ d. $\overrightarrow{DA} \cdot \overrightarrow{FB}$

Exercice 2: Dans chaque cas, calculer $\vec{u} \cdot \vec{v}$.

a.
$$\|\vec{u}\| = 5$$
, $\|\vec{v}\| = 3$ et $\|\vec{u} - \vec{v}\| = 6$
b. $\|\vec{u}\| = 3$, $\|\vec{v}\| = 2$ et $\|\vec{u} + \vec{v}\| = 4$

Exercice 3: Soit un parallélogramme ABCD tel que AB=6, AD=3 et AC=8. Calculer \overrightarrow{AB} . \overrightarrow{AC} .

Exercice 4 : P et Q sont deux points d'un demi-cercle de diamètre [AB]. Les droites (AP) et (BQ) se coupent en un point M.

- 1. Démontrer que \overrightarrow{AP} . $\overrightarrow{AM} = \overrightarrow{AB}$. \overrightarrow{AM} et que \overrightarrow{BQ} . $\overrightarrow{BM} = \overrightarrow{BA}$.
- 2. En déduire que \overrightarrow{AP} . \overrightarrow{AM} + \overrightarrow{BQ} . \overrightarrow{BM} = AB².

Exercice 5: Dans le repère orthonormé (O; \vec{i} , \vec{j}), on a: A(2;-1), B(4;2), C(4;0) et D(1;2).

- 1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{CD}$.
- 2. Qu'en déduit-on pour les droites (AB) et (CD)?

Exercice 6: Dans le repère orthonormé (O; \vec{i} , \vec{j}), soit A(2;1), B(6;-1), C(7;1) et D(3;3) 4 points.

- 1. Quelle est la nature du triangle ABC?
- 2. Quelle est la nature du quadrilatère ABCD?