Advanced Regression: 3a Variable selection - Part 2

Garyfallos Konstantinoudis

Epidemiology and Biostatistics, Imperial College London

7th March 2023

What are singularity and multicollinearity?

How to detect singularity and multicollinearity?

Correlation and covariance matrix

The rank of a matrix

Variance inflation factor

Singular value decomposition and condition number

How to prevent multicollinearity?

Grouping

Partial least squares

Pre-whitening

We consider again the diabetes outcome looking at the outcome disease progression y and we try to fit the following linear model

$$y = \alpha + age + male + female + map + ltg$$

- age: age of the subject
- male: binary indicator if male
- ▶ female: binary indicator if female
- map: blood pressure
- ► ltg: triglycerides

lm1=lm(y~age+male+female+map+ltg, data=x)

Visualise the correlation structure using corrplot()


```
> lm1=lm(y~age+male+female+map+ltg, data=x)
> summary(lm1)
Call:
lm(formula = v \sim age + male + female + map + ltg, data = x)
Residuals:
    Min
             10 Median
                              30
                                      Max
-166.017 -42.787 -5.523 41.751 185.752
Coefficients: (1 not defined because of singularities)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 158.855
                        4.029 39.430 < 2e-16 ***
          -31.454 65.564 -0.480 0.6317
age
          -14.353
                      6.000 -2.392 0.0172 *
male
female
                NA
                          NA
                                  NA
                                          NA
         460.104 69.384 6.631 9.84e-11 ***
map
        766.189 66.966 11.442 < 2e-16 ***
1tq
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 60.7 on 437 degrees of freedom
Multiple R-squared: 0.3856, Adjusted R-squared: 0.38
F-statistic: 68.57 on 4 and 437 DF, p-value: < 2.2e-16
```

- Option in Im() function: singular.ok = TRUE automatically removes 'female'.
- |> lm1=lm(y~age+male+female+map+ltg, data=x, singular.ok = FALSE)
 Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...):
 singular fit encountered

- ► The lm() function checks for singularities in the design matrix *x*, but not all methods have this safety check.
- Example: Ridge regression

```
> lm.ridge(y~age+male+female+map+ltg, data=x)

age male female map

6.725520e+15 -2.696407e+01 -6.136922e+14 -6.438113e+15 4.590936e+02

ltg

7.631561e+02
```

Example: Lasso regression

ltq 7.551437e+02

What are singularity and multicollinearity?

Singularity

One predictor variable in a multiple regression model can be exactly explained by the other p-1 predictor variables.

Multicollinearity

One predictor variable in a multiple regression model can be linearly explained by the other p-1 predictor variables with high accuracy.

What can cause singularity?

- Dummy-coding of categorical variables. Make sure not to add redundant information.
- ▶ Do not include multiple measurements that are measured on different scales (e.g. mol and mmol).

What is the impact of multicollinearity?

True biological processes

do not cause singularity (because they are random, not deterministic), but can cause multicollinearity.

- The computation of the ordinary least squares estimate requires an inversion of the $p \times p$ -dimensional correlation matrix $x^t x$.
- \triangleright $x^t x$ cannot be inverted when the $x^t x$ is singular.
- ▶ When there is multicollinearity, x^tx can be inverted, but the estimate will show a high variance and will be highly instable.
- Multicollinearity can distort a linear model and impact the interpretation.

How to inspect correlation structures?

Correlation and covariance matrix

How to detect singularity?

Rank of a matrix

How to detect multicollinearity?

- Variance inflation factor
- Condition number based on the ratio of largest over smallest singular value

Covariance matrix

Computing the sample covariance matrix using matrix multiplication

$$c\hat{o}v(x) = \frac{1}{n-1} \underbrace{x_c^t}_{p \times n} \underbrace{x_c}_{n \times p}$$

- $ightharpoonup x_c$ is centred (mean is zero) $x_c = x 1_n \bar{x} = cx$
 - where $\bar{x} = (\bar{x}_1, ..., \bar{x}_p)$ is the vector of means
 - \triangleright and 1_n is a vector of ones
 - ightharpoonup and $c = I_n \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^t$
 - ▶ and I_n is the $n \times n$ identity matrix with ones on the diagonal
- x predictor matrix of n rows and p columns
- \triangleright x^t transposed predictor matrix of p rows and n columns

Correlation and covariance matrix

Matrix multiplication

Matrix multiplication:
$$\underbrace{c}_{n \times p} = \underbrace{a}_{n \times m} \underbrace{b}_{m \times p}$$

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

- ightharpoonup a is a $n \times m$ and b is a $m \times p$ matrix
- ightharpoonup c is a $n \times m \times m \times p = n \times p$ matrix
- Make sure your matrices have the correct dimensions, number of columns of the left matrix must be equal to the number of rows on the right.
- Can be computed in R using the % * % command.

Correlation matrix

Computing the sample correlation matrix using matrix multiplication

$$c\hat{o}r(x) = \frac{1}{n-1} \underbrace{x_s^t}_{p \times n} \underbrace{x_s}_{n \times p}$$

where x_s is a centred and scaled matrix $x_s = cxd^{-1}$

- where d = diag(s) is a diagonal matrix
- with the sample standard deviation s on the diagonal.

This is equivalent to writing

$$\hat{cor}(x_j, x_k) = \frac{\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)}{\sqrt{\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2} \sqrt{\sum_{i=1}^{n} (x_{ik} - \bar{x}_k)^2}}$$

Correlation matrix

Correlation matrices are symmetric and have a vector of 1's on the diagonal.

```
> cor(x design)
                      male female
                                                      lta
             age
                                           map
      1.0000000 0.1737371 -0.1737371 0.3354267 0.2707768
age
male
    0.1737371 1.0000000 -1.0000000 0.2410132 0.1499176
female -0.1737371 -1.0000000
                           1.0000000 -0.2410132 -0.1499176
     0.3354267 0.2410132 -0.2410132 1.0000000 0.3934781
map
   0.2707768 0.1499176 -0.1499176 0.3934781
lta
                                                1.0000000
```

Note the following correlation matrix captures the correlation between the samples and is of dimension $n \times n$

$$c\hat{o}r(x^t) = \frac{1}{p-1} \underbrace{x_s}_{n \times p} \underbrace{x_s^t}_{p \times n}$$

Correlation and covariance matrix

Correlation matrix

R commands

- ► cov() sample covariance matrix
- ► cor() sample correlation matrix
- corrplot() to visualise

The rank of a matrix

The rank of a matrix

▶ Consider a matrix x of dimension $n \times p$.

$$X$$
 $n \times p$

- The rank of matrix x is the minimum of n and p.
- If we have more samples than variables (n > p) the rank is p.
- If we have less samples than variables (n < p) the rank is n.

The rank of the correlation matrix

Let us consider again the correlation matrix

$$c\hat{o}r(x) = \frac{1}{n-1} \underbrace{x_s^t}_{p \times n} \underbrace{x_s}_{n \times p}$$

- ► The theoretical rank of the correlation matrix is the minimum of *n* and *p*.
- ➤ To test the rank of a matrix in R: rankMatrix() in the Matrix package

If the rank of a correlation matrix is smaller than min(n, p) the correlation matrix is singular and thus cannot be inverted.

How to detect singularity and multicollinearity?

☐ The rank of a matrix

The rank of the correlation matrix in R

```
> cor(x_design)
                                 female
                        male
                                                map
                                                           ltg
              age
        1.0000000
                   0.1737371 - 0.1737371
age
                                          0.3354267
                                                     0.2707768
male 0.1737371 1.0000000 -1.0000000
                                          0.2410132
                                                     0.1499176
female -0.1737371 -1.0000000
                              1.0000000 -0.2410132 -0.1499176
        0.3354267 0.2410132 - 0.2410132
                                          1.0000000
                                                     0.3934781
map
ltg
        0.2707768 0.1499176 -0.1499176
                                          0.3934781
                                                     1,0000000
> dim(cor(x design))
[1] 5 5
> rankMatrix(cor(x design))
[1] 4
attr(,"method")
[1] "tolNorm2"
attr(, "useGrad")
[1] FALSE
attr(,"tol")
[1] 1.110223e-15
```

► Interpretation: The correlation matrix of the design matrix with 5 predictors is of dimension 5 × 5, yet the rank is 4 which indicates singularity. The rank of a matrix

Outlook: Big data (n << p)

Assume we are considering a big data set with much more variables than observations n << p

$$c\hat{o}r(x) = \frac{1}{n-1} \underbrace{x_s^t}_{p \times n} \underbrace{x_s}_{n \times p}$$

- The theoretical rank of the correlation matrix is the minimum of n and p (min(n, p)).
- ► In case of big data, the rank of the matrix is n, which is much smaller than p.
- Thus the correlation matrix (and also $x_s^t x_s$) are singular and cannot be inverted.
- ▶ It is not possible to compute the ordinary least squares estimate for big data.

Variance inflation factor (VIF)

- ▶ The VIF is the ratio of the variance of β_j when fitting the full model divided by the variance of $\beta_{UNI}(j)$ in a unvariable linear model.
- Lowest possible value is 1 (no collinearity).
- ► Rule of thumb: If VIF > 10, this indicates strong multicollinearity, but already smaller VIF can impact the analysis.
- It provides an indication how much the variance of an estimated regression coefficient is increased because of multicollinearity.

└─Variance inflation factor

Variance inflation factor (VIF)

Consider the following linear model including p predictors with inde $j \in 1,...,p$

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_j x_j + \dots + \beta_p x_p + \epsilon.$$

1. For the first variable j=1 fit a linear model, where x_1 is the outcome and all other variables x_{-1} are the predictors

$$x_1 = \alpha + \beta_2 x_2 + \dots + \beta_j x_j + \dots + \beta_p x_p + \epsilon.$$

- 2. Estimate $R_2(1)$, the proportion of variance of x_1 explained by the other predictors x_{-1} .
- 3. The VIF for variable 1 is defined as

$$VIF_1 = \frac{1}{1 - R_2(1)}$$

4. Repeat for the other $j \in 2, ..., p$.

Variance inflation factor

R commands

- ▶ vif() in the R-package car
- Computes variance-inflation and generalized variance-inflation factors for linear and generalized linear models.
 - > lm2=lm(y~age+male+map+ltg, data=x)
 - > vif(lm2)
 - age male map ltg 1.166584 1.075047 1.306446 1.216982
- ▶ Interpretation: No variable has a VIF > 10, with around 1 they are rather low and there is no indication of multicollinearity.

How to detect singularity and multicollinearity?

[└]Variance inflation factor

Singular value decomposition and condition number

Singular value decomposition of a matrix m (dimension $n \times p$) is defined as

$$m = u \Sigma v$$

- \triangleright Σ : Matrix of singular values (dimension $n \times p$)
- ightharpoonup u: Left-singular vectors (dimension $n \times n$)
- \triangleright v: Right-singular vectors (dimension $p \times p$)

Singular value decomposition and condition number

Singular value decomposition and condition number

Singular value decomposition and condition number

- A singular value decomposition of the sample correlation matrix produces p singular values d_1 to d_p .
- ▶ After sorting the eigenvalues in decreasing order

$$d_{[1]} > ... > d_{[j]} > ... > d_{[p]}$$

- \diamond $d_{[1]}$ is the largest singular value
- \diamond $d_{[p]}$ is the smallest singular value

Condition number

Ratio of largest over smallest singular value.

$$\kappa = d_{[1]}/d_{[p]}$$

Singular value decomposition in R

- Singular value decomposition: svd()
 Value \$d extracts the singular values
- Condition number: kappa()
 Use argument exact=TRUE

```
> x_design2=cbind(x$age, x$male, x$map, x$ltg)
> colnames(x_design2) = c("age", "male","map","ltg")
> svd(cor(x_design2))$d
[1] 1.8032508 0.8764318 0.7354638 0.5848536
> svd(cor(x_design2))$d[1]/svd(cor(x_design2))$d[4]
[1] 3.083251
> kappa(cor(x_design2),exact=TRUE)
[1] 3.083251
```

▶ Interpretation: The condition number is far below 30, which is often used as a rule of thumb. There is no sign of multicollinearity.

Example: Diabetes data

- age: age of the subject
- male: binary indicator if male
- female1: binary indicator if female, but one sample is wrongly annotated
- \rightarrow cor(male,female1) = -0.9954659
- map: blood pressure
- Itg: triglycerides

Correlation matrix

```
> x_design1=cbind(x$age, x$male, x$female1, x$map, x$ltg)
> colnames(x_design1) = c("age", "male", "female1", "map", "ltg")
> cor(x design1)
                         male
                                 female1
               age
                                                 map
                                                            lta
         1.0000000 0.1737371 -0.1701584
                                           0.3354267
                                                      0.2707768
age
         0.1737371
male
                    1.0000000 -0.9954659
                                           0.2410132
                                                      0.1499176
female1 -0.1701584 -0.9954659
                                1.0000000 -0.2389995 -0.1480640
         0.3354267 0.2410132 -0.2389995
                                           1,0000000
                                                      0.3934781
map
         0.2707768
                    0.1499176 - 0.1480640
                                           0.3934781
                                                      1,0000000
lta
```


How to detect singularity and multicollinearity?

Singular value decomposition and condition number

Example: Diabetes data

Correlation matrix corrplot

Advanced Regression: 3a Variable selection - Part 2

Example: Diabetes data

```
> summary(lm1)
Call:
lm(formula = v \sim age + male + female1 + map + ltg, data = x)
Residuals:
     Min
              10
                  Median
                               30
                                       Max
-166.011 -42.825 -5.231
                          41.766
                                   185.769
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
             176.58
                        61.09 2.891 0.00404 **
(Intercept)
            -30.94
                        65.66 - 0.471 0.63772
age
male
           -32.00
                    60.98 -0.525 0.59999
female1
         -17.72 60.94 -0.291 0.77132
            460.09
                      69.46 6.624 1.03e-10 ***
map
             766.29
                        67.04 11.431 < 2e-16 ***
lta
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 60.77 on 436 degrees of freedom
Multiple R-squared: 0.3857, Adjusted R-squared: 0.3787
F-statistic: 54.76 on 5 and 436 DF, p-value: < 2.2e-16
```

How to detect singularity and multicollinearity?

Singular value decomposition and condition number

Example: Diabetes data

- The linear model can be calculated now since there is no exact collinearity.
- Note that male and female have both a negative regression coefficient.
- VIF()

- ► Interpretation: VIF for male and female1 is highly inflated and indicates strong multicollinearity.
- ► This inflation distorts the linear model and hinders the interpretation of the male and female1 regression coefficients.

Example: Diabetes data

Singular value decomposition and condition number

```
> x_design2=cbind(x$age, x$male, x$female1, x$map, x$ltg)
> colnames(x_design2) = c("age", "male","female1","map","ltg")
> svd(cor(x_design2))$d
[1] 2.323503750 1.346325644 0.736162810 0.589481033 0.004526764
> svd(cor(x_design2))$d[1]/svd(cor(x_design2))$d[5]
[1] 513.2814
> kappa(cor(x_design2),exact=TRUE)
[1] 513.2814
```

► Interpretation: The condition number is very high (>> 30) and indicates strong multicollinearity.

Singular value decomposition and condition number

How to prevent multicollinearity?

- Grouping
- ► Partial least squares
- ▶ Pre-whitening

Grouping

- When there is biological knowledge of pre-defined groups of variables (e.g. genes within a pathways, lipid characteristics of specific subfractions), it is advised to group them and use only one variable within the group as representative.
- Group structures can be defined using unsupervised learning approaches such as clustering.
- ▶ Projections into a lower-dimensional space
 - Principle component analysis (PCA)
 - Independent component analysis
 - ♦ Non-negative matrix factorisation

Partial least squares

- PLS is a dimension reduction approach that is coupled with a regression model.
 - 1. Create latent components t as a linear transformation of x (dimension $n \times p$)
 - 2. Create latent components u as a linear transformation of y (dimension $n \times k$)

$$\underbrace{x}_{n \times p} = \underbrace{t}_{n \times l} \underbrace{q_{x}^{t}}_{l \times p} + \epsilon_{x}$$

$$\underbrace{y}_{n \times k} = \underbrace{u}_{n \times l} \underbrace{q_{y}^{t}}_{l \times k} + \epsilon_{y}$$

- 3. Idea: The latent components have a smaller dimension l < p.
- 4. Aim: Find decompositions of both x and y that maximise the covariance between the latent components t and u.
- R-package: pls

Pre-whitening

- Prewhitening transformations are matrix operations that 'remove' correlation.
- ▶ Suppose x has a mean vector of 0 and covariance matrix Σ .
- There exists a whitening matrix w that satisfies $w^t w = \Sigma^{-1}$.
- ▶ The prewhitened data x^* is defined as

$$x^* = wx$$
,

where the covariance of x^* is diagonal.

- There are several algorithms to compute w
 - \diamond Mahalanobis transformation $w = \Sigma^{-1/2}$
 - Cholesky decomposition of Σ
 - PCA based
- R-package: whitening

Take away: Variable selection with correlated predictors

- Exact correlation between predictors can cause singularity of the correlation and covariance matrix.
- Strong correlation between predictors can cause multicollinearity.
- Multicollinearity can distort linear regression models and inflate the variance of the estimate.
- How to detect singularity?
 - Rank of the between predictor correlation matrix
- ► How to detect multicollinearity?
 - Variance inflation factor
 - Condition number based on the ratio of largest over smallest singular value