1 Постановка задачи

Задано множество объектов сложной структуры \mathcal{X} , класс функций распознавания \mathcal{F} . Требуется каждому объекту $x \in \mathcal{X}$ поставить в соответствие оптимальную функцию распознавания $f^* \in \mathcal{F}$, минимизирующую неизвестную функцию ошибки S(x, f):

$$f^* = \arg\min_{f \in \mathcal{F}} S(x, f). \tag{1}$$

Задана выборка $D = \{(x_i, f_i, S(x_i, f_i))\}_{i=1}^m$, состоящая из объектов x_i , функций распознавания f_i и значений функции ошибки $S(x_i, f_i)$. Предполагается, что каждая из функций f_i минимизирует функцию ошибки на объектах выборки:

$$f_i = \arg\min_{f \in \mathcal{F}} S(x_i, f).$$

Обозначим за L^* суммарную ошибку на элементах выборки:

$$L^* = \sum_{i=1}^{m} S(x_i, f_i).$$

Обозначим за $a: \mathcal{X} \to \mathcal{F}$ правило обучения, отображающее множество объектов X во множество функций распознавания \mathcal{F} . Обозначим за L(a) функцию суммарной ошибки правила обучения a на объектах выборки x_i :

$$L(a) = \sum_{i=1}^{m} S(x_i, a(x)).$$

Переформулируем задачу (1) следующим образом: требуется найти правило обучения $a:\mathcal{X}\to\mathcal{F}$, минимизирующее разность

$$L(a) - L^* \rightarrow \min(a).$$
 (2)

2 Структурное обучение

Для перехода от задачи (2) к структурному обучению, введем следующее предположение о связи функции ошибки и функций распознавания. Будем считать, что для всех объектов $x \in \mathcal{X}$ и всех функций $f_i, f_j \in \mathcal{F}$ выполнено неравенство

$$|S(x, f_i) - S(x.f_j)| \le c\Delta(f_i, f_j), \tag{3}$$

где c — константа, а $\Delta(f_i, f_j)$ — структурное расстояние между функциями f_i и f_j , которое будет определено в дальнейшем. В случае выполнения неравенства (3) автоматически выполняется ограничение сверху целевой функции разности (2):

$$L(a) - L^* = \sum_{i=1}^m |S(x_i, a(x_i)) - S(x_i, f_i)| \le c \sum_{i=1}^m \Delta(a(x_i), f_i).$$

Таким образом, при использовании предположения (3) задача поиска оптимального правила обучения (3) сводится к задаче *структурного обучения*:

$$\sum_{i=1}^{m} \Delta(a(x_i), f_i) \rightarrow \min(a). \tag{4}$$

Структура на множестве суперпозиций. В этом разделе зададим структуру на множестве суперпозиций для определения вида правила обучения a и расстояния между функциями Δ . Будем рассматривать функцию распознавания f в виде композиции базисных функций $f = h_0 \circ h_{k_1} \circ ... \circ h_{k_y}$, выбранных с возвращением из множества базисных функций $\mathcal{H} = \{h_0, h_1, ..., h_r\}$. Каждой базисной функции h_k соответствует арность $a_k \geq 0$. Крайним левым элементом суперпозиции f является функция $h_0 : h_0(x) = x$, имеющая арность $a_0 = 1$. Кроме того, предполагается, что существует непустое подмножество $\mathcal{H}_0 \subset \mathcal{H}$ функций нулевой арности, называемых свободными переменными.

Поставим в соответствие целевой переменной f крашеное дерево $\Gamma = (V, E)$. На множестве вершин задана функция раскраски $h: V \to \mathcal{H}$. Цвет h(v) вершины h(v) является базисной функцией и определяет количество дочерних вершин у v: оно совпадает с арностью функции h(v). Таким образом, допустимыми деревьями являются деревья, имеющие свои корнем вершину $v_0: h(v_0) = h_0$, в листьях содержащие функции нулевой арности, а количество дочерних вершин для всех остальных элементов совпадает с соответствующими арностями.

Определим расстояние между функциями f и \hat{f} как расстояние между деревьями Γ_f и $\Gamma_{\hat{f}}$, задающими суперпозиции f и \hat{f} . Другими словами, определим расстояние $\Delta(f,\hat{f})$ в виде количества несовпадающих элементов бинарных векторов \mathbf{f} и $\hat{\mathbf{f}}$:

$$\Delta(f,\hat{f}) = \sum_{i,j} |f_{ij} - \hat{f}_{ij}|, \tag{5}$$

где элемент вектора \mathbf{f} , индексируемый f_{ij} , равен 1 в случае, если последовательность цветов (h_i, h_j) принадлежит множеству ребер E_f дерева Γ_f , и равен 0 в противном случае.

Таким образом, согласно формулам (4) и (5) для произвольного объекта x будем искать функцию распознавания $\hat{f} = a(x)$ в виде

$$\sum_{i,j} |f_{ij} - a_{ij}(x)| \quad \to \quad \min(a), \tag{6}$$

где a_{ij} является элементом вектора **a** и равен 1 в случае, если последовательность цветов (h_i, h_j) принадлежит множеству ребер $E_{a(x)}$ дерева $\Gamma_{a(x)}$, и равен 0 в противном случае.

Отметим, что элементы оптимизируемого вектора **a** должны быть бинарными и удовлетворять условию корректности дерева $\Gamma_{a(x)}$. Для решения задачи (6) предложен следующим аппроксимационный алгоритм.

1. Оценка параметров $\theta_{ij} \in [0,1]$ с использованием выборки $(x_i, \Gamma_i)_{i=1}^m$ по правилу

$$\hat{\theta}_{ij} = \arg\min_{\theta_{ij}} \|f_{ij} - \theta_{ij}(x)\|.$$

2. Поиск оптимального вектора **a**, максимизирующего дискриминантную функцию

$$a(x) = \arg \max_{f \in \mathcal{F}} \prod_{(i,j) \in E_f} \hat{\theta}(h(v_i), h(v_j)).$$

Для решения первой задачи предлагается стандартный метод многоклассовой классификации.

Для решения второй задачи предлагается алгоритм на основе динамического программирования. Утверждается, что алгоритм находит оптимальное решение за $O(|\mathcal{H}|^3)$ вычислений.

Алгоритм максимизации дискриминантной функции. Алгоритм основывается на принципе динамического программирования. На шаге k алгоритм хранит массив из $|\mathcal{H}|$ элементов, элемент i которого содержит стоимость оптимального дерева Γ_i^k с корнем в вершине, раскрашенной h_i , с количеством вершин не более k.

На шаге k+1 для каждой базисной функции $h_{i'}$ выполняется процедура присоединения корня $(h_{i'}, \Gamma_i^k)$ для всех деревьев $\Gamma_i^k, i=1,..., |\mathcal{H}|$.

Если максимальная стоимость построенных деревьев превосходит стоимость дерева $\Gamma^k_{i'}$, то происходит замена оптимального дерева $\Gamma^k_{i'}$ на дерево $\Gamma^{k+1}_{i'} \equiv (h_{i'}, \Gamma^k_i)$ с максимальной стоимостью. Иначе дерево остается прежним, $\Gamma^{k+1}_{i'} \equiv \Gamma^k_i$.

Если после итерации k+1 не произошло ни одной замены дерева, то алгоритм останавливается, а его решением является наилучшее из деревьев с присоединенным корнем (h_0, Γ_i^k) . Утверждается, что количество шагов k на превосходит количество базисных функций $k \leq O(|\mathcal{H}|)$. На каждом шаге алгоритм выполняет $O(|\mathcal{H}|^2)$ проверок.