SAR Test Report

Report No.: AGC00529141101FH01

FCC ID : Y7WPLUMZ513

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: Might LTE

BRAND NAME : plum

MODEL NAME : Z513

CLIENT: CLC Hong Kong Limited

DATE OF ISSUE: Nov. 28,2014

IEEE Std. 1528:2003

STANDARD(S) : 47CFR § 2.1093

IEEE/ANSI C95.1

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 225

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Nov. 28,2014	Valid	Original Report

The test plans were performed in accordance with IEEE Std. 1528:2003; 47CFR § 2.1093; IEEE/ANSI C95.1 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v05r02
- KDB 648474 D04 SAR Handsets Multi Xmiter and Ant v01
- KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- KDB 941225 D01 SAR test for 3G devices v03
- KDB 941225 D06 Hot Spot SAR v02
- KDB 248227 D01 SAR meas for 802 11 a b g v01r02
- KDB 941225 D05 SAR for LTE Devices v02r03

		Test Report Certification
Applicant Name	:	CLC Hong Kong Limited
Applicant Address	:	1011A, 10/F., Harbour Centre Tower 1, No.1 Hok Cheung St., Hung Hom Kowloon, Hong Kong
Manufacturer Name	:	CLC Technology Co., Ltd.
Manufacturer Address	:	Room 6G, Block C, NEO Building, Chegongmiao, Futian District, Shenzhen P.R.China
Product Designation	:	Might LTE
Brand Name	:	plum
Model Name	:	Z513
Different Description		N/A
EUT Voltage	:	DC3.7V by battery
Applicable Standard	:	IEEE Std. 1528:2003 47CFR § 2.1093 IEEE/ANSI C95.1
Test Date	:	Nov. 21,2014-Nov. 26,2014
		Attestation of Global Compliance(Shenzhen) Co., Ltd.
Performed Location		2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen, China
Report Template		AGCRT-US-3G3/SAR (2014-04-01)

Tested By

Bobby Wang

Nov. 28,2014

Checked By

Angela Li

Nov. 28,2014

Authorized By

Solger Zhang

Nov. 28,2014

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
2.2. Test Procedure	8
2.3. TEST ENVIRONMENT	
3. SAR MEASUREMENT SYSTEM	
3.1. SPECIFIC ABSORPTION RATE (SAR)	
3.3. DASY5 System Description	
3.4. DASY5 E-FIELD PROBE	
3.5. ISOTROPIC E-FIELD PROBE SPECIFICATION	
3.7. LIGHT BEAM UNIT	
3.8. Device Holder	
3.9. Measurement Server	
4. TISSUE SIMULATING LIQUID	
4.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	_
4.3. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
5. SAR MEASUREMENT PROCEDURE	21
5.1. SAR SYSTEM VALIDATION PROCEDURES	
5.2. SAR SYSTEM VALIDATION	
6.1. Define Two Imaginary Lines on the Handset	
6.3. TITLE POSITION	
6.4. Body Worn Position	26
7. SAR EXPOSURE LIMITS	27
8. TEST EQUIPMENT LIST	
9. MEASUREMENT UNCERTAINTY	
10. CONDUCTED POWER MEASUREMENT	31
11. TEST RESULTS	45
11.1. SAR TEST RESULTS SUMMARY	45
APPENDIX A. SAR SYSTEM VALIDATION DATA	58
APPENDIX B. SAR MEASUREMENT DATA	64
APPENDIX C. TEST SETUP PHOTOGRAPHS & EUT PHOTOGRAPHS	170
APPENDIX D. PROBE CALIBRATION DATA	182
APPENDIX E. DAE CALIBRATION DATA	
APPENDIX F. DIPOLE CALIBRATION DATA	196

Report No.:AGC00529141101FH01 Page 5 of 225

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows: Highest tested and scaled SAR Summary

Exposure Position	Frequency Band	Highest Tested 1g-SAR(W/Kg)	Highest Scaled Maximum SAR(W/Kg)
	GSM 835	0.478	0.629
	PCS 1900	1.140	1.145
Head	WCDMA Band II	0.945	0.983
Head	WCDMA Band V	0.341	0.367
	WCDMA Band IV	0.208	0.230
	LTE Band 4	0.712	1.001
	GSM 835	0.555	0.730
	PCS 1900	0.513	0.532
Dady warn	WCDMA Band II	0.442	0.465
Body- worn	WCDMA Band V	0.385	0.414
	WCDMA Band IV	0.511	0.565
	LTE Band 4	0.499	0.702

Highest Simultaneous transmission SAR Summary

Exposure Position	Frequency Band	Highest Simultaneous 1g-SAR(W/Kg)	
	GSM 835+ WLAN	1.043	
	PCS 1900 +WLAN	1.559	
	WCDMA Band II + WLAN	1.397	
Head	WCDMA Band V + WLAN	0.781	
	WCDMA Band IV + WLAN	0.644	
	LTE+ WLAN	1.126	
	GSM 835+ WLAN	0.937	
	PCS 1900 +WLAN	0.713	
Dody war	WCDMA Band II + WLAN	0.672	
Body- worn	WCDMA Band V + WLAN	0.621	
	WCDMA Band IV + HOTSPOT	0.772	
	LTE+ WLAN	0.909	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1, and had been tested in accordance with measurement methods and procedures specified in IEEE 1528-2003 and the relevant KDB files like KDB 941225 D01 ,KDB 865664 D02....etc.

Report No.:AGC00529141101FH01 Page 6 of 225

2. GENERAL INFORMATION

2.1. EUT Description

General Information		
Product Designation	Might LTE	
Test Model	Z513	
Hardware Version	Q850	
Software Version	N/A	
Device Category	Portable	
RF Exposure Environment	Uncontrolled	
Antenna Type	Internal	
GSM and GPRS& EGPRS		
Support Band	☑GSM 850☑PCS 1900 (U.S. Bands)☑GSM 900☑DCS 1800 (Non-U.S. Bands)	
GPRS & EGPRS Type	Class B	
GPRS&EGPRS Class	Class 33(1Tx+5Rx, 2Tx+4Rx, 3Tx+3Rx, 4Tx+2Rx)	
TX Frequency Range	GSM 850 : 824.2~848.8MHz; PCS 1900: 1850.2~1909.8MHz;	
RX Frequency Range	GSM 850 : 869~894MHz PCS 1900: 1930~1990MHz	
Release Version	R99	
Type of modulation	GMSK for GSM/GPRS; GMSK & 8-PSK for EGPRS	
Antenna Gain	-1.0dBi(GSM 850), -0.8dBi (GSM 1900)	
Max. Average Power (Max. Peak Power)	GSM850: 31.89dBm(32.53dBm- Peak Power) PCS1900: 28.78dBm(29.46dBm-Peak Power)	
WCDMA		
Support Band	U.S. Bands: ☑UMTS FDD Band II ☑UMTS FDD Band V ☑UMTS FDD Band IV Non-U.S. Bands: ☐UMTS FDD Band II ☐UMTS FDD Band VIII	
HS Type	HSPA(HSUPA/HSDPA)	
TX Frequency Range	WCDMA FDD Band II: 1852.4 -1907.6MHz WCDMA FDD Band V: 826.4-846.6MHz WCDMA FDD Band IV: 1710-1755MHz	
RX Frequency Range	WCDMA FDD Band II: 1930-1990MHz WCDMA FDD Band V: 869-894MHz WCDMA FDD Band IV: 2110.4-2155MHz	
Release Version	Rel-6	
Type of modulation	QPSK	
Antenna Gain	-1.0dBi(WCDMA 850), -0.8dBi (WCDMA 1900),-0.8dBi (WCDMA 1700)	

Report No.:AGC00529141101FH01 Page 7 of 225

Max. Average Power (Max. Peak Power)	Band II: 22.83dBm (23.44dBm- Peak Power) Band V: 22.79dBm (23.38dBm- Peak Power) Band IV: 22.59dBm (23.23dBm- Peak Power)		
LTE	, , , , , , , , , , , , , , , , , , ,		
Support Band	□Band 2 1900MHz ☑ Band 4 1700MHz □ Band 5 850MHz □Band 12 700MHz □ Band 13 700MHz □ Band 17 700MHz □ Band 25 1900MHz □ Band 26 850MHz □ Band 28 700MHz		
TX Frequency Range	LTE FDD Band IV: 1710-1755MHz		
RX Frequency Range	LTE FDD Band IV: 2110.4-2155MHz		
Release Version	Rel-8		
Type of modulation	QPSK, 16QAM		
Antenna Gain	-1.0dBi		
Max. Average Power	Band IV: 22.04dBm		
Bluetooth			
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+HS □V4.0		
Operation Frequency	2402~2480MHz		
Type of modulation	⊠GFSK ⊠Π/4-DQPSK ⊠8-DPSK		
Avg. Burst Power	1.11dBm		
Antenna Gain	0.8dBi		
WIFI			
WIFI Specification	□802.11a ⊠802.11b ⊠802.11g ⊠802.11n(20) ⊠802.11n(40)		
Operation Frequency	2412~2462MHz		
Avg. Burst Power	11b:9.88dBm,11g:7.5dBm,11n(20):7.47dBm,11n(40):4.46dBm		
Antenna Gain	0.8dBi		
Accessories			
Battery	Brand name: plum Model No. : PMB43 Voltage and Capacitance: 3.7 V & 2000mAh		
Adapter	Brand name: plum Model No. : PMC43 Input: AC 100-240V, 50/60Hz, 0.15A Output: DC 5V, 1A		
Earphone	Brand name: N/A Model No. : N/A		
Note:CMU200 can measure the average power and Peak power at the same time			
Product	Type ☐ Identical Prototype		

Report No.:AGC00529141101FH01 Page 8 of 225

2.2. Test Procedure

1	Setup the EUT and simulators as shown on above.
2	Turn on the power of all equipment.
3	EUT Communicate with 8960, and test them respectively at U.S. bands

2.3. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual	
Temperature (°C)	18-25	21± 2	
Humidity (%RH)	30-70	55±2	

2.4. Test Configuration and setting

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS/EGPRS, WCDMA/HSPA, LTE, BT, WIFI, and support hotspot mode.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location:

EUT Top Edge

EUT Bottom Edge

For WWAN& LTE mode:

Test Configurations	Antenna to edges/surface	SAR required
Back	<25mm	Yes
Front	<25mm	Yes
Edge 1 (Top)	128	Yes
Edge 2 (Right)	20	Yes
Edge 3 (Bottom)	1	Yes
Edge 4 (Left)	1	Yes

Note: SAR is not required for the distance between the antenna and the edge is <25mm as per KDB 941225D06 Hotspot SAR

Page 10 of 225

For WLAN mode:

Test Configurations	Antenna to edges/surface	SAR required
Back	<25mm	Yes
Front	<25mm	Yes
Edge 1 (Top)	2	Yes
Edge 2 (Right)	22	Yes
Edge 3 (Bottom)	133	No
Edge 4 (Left)	30	No

The simultaneous transmission possibilities are listed as below:

Simultaneous TX Combination	Configuration	Head	Body	Hotspot
1	GSM835(Voice)+WLAN/BT	Yes	Yes	Yes
2	PCS 1900(Voice)+WLAN/BT	Yes	Yes	Yes
3	WCDMA Band II+WLAN/BT	Yes	Yes	Yes
4	WCDMA Band IV +WLAN/BT	Yes	Yes	Yes
5	WCDMA Band V +WLAN/BT	Yes	Yes	Yes
6	LTE Band 4 +WLAN/BT	Yes	Yes	Yes

Page 11 of 225

3. SAR MEASUREMENT SYSTEM

3.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume (dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

σ is the conductivity of the tissue in siemens per metre;

is the density of the tissue in kilograms per cubic metro;

 ρ is the density of the tissue in kilograms per cubic metre;

c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t=0 is the initial time derivative of temperature in the tissue in kelvins per second

Report No.:AGC00529141101FH01 Page 12 of 225

3.2. SAR Measurement Procedure

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the SAM twin phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

When multiple peak SAR location were found during the same configuration or test mode, Zoom scan shall performed on each peak SAR location, only the peak point with maximum SAR value will be reported for the configuration or test mode.

3.3. DASY5 System Description

DASY5 System Configurations

The DASY system for performing compliance tests consists of the following items:

- (1) A standard high precision 6-axis robot with controller, teach pendant and software.
- (2)A data acquisition electronics (DAE) which attached to the robot arm extension. The DAE consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.
- (3) A dosimetric probe equipped with an optical surface detector system.
- (4)The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital Communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server..\
- (5) A Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- (6) A computer running WinXP.
- (7) DASY software.
- (8)Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- (9) Phantoms, device holders and other accessories according to the targeted measurement.

3.3.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, ANSI C95.1 and others.

3.3.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments. When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, ANSI C95.1 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

3.3.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

3.3.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Post processor, DASY allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

3.4. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dissymmetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, ANSI C95.1 etc.) The calibration data are in Appendix D.

3.5. Isotropic E-Field Probe Specification

Model	EX3DV4				
Manufacture	SPEAG				
frequency	0.3GHz-6 GHz Linearity:±0.2dB(300 MHz-6 GHz)				
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.2dB				
Dimensions	Overall length:337mm Tip diameter:2.5mm Typical distance from probe tip to dipole centers:1mm				
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.				

3.6. Robot

The DASY system uses the high precision robots (DASY5:TX60) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from is used.

The XL robot series have many features that are important for our application:

High precision (repeatability 0.02 mm)

High reliability (industrial design)

Jerk-free straight movements

Low ELF interference (the closed metallic construction shields against motor control fields)

6-axis controller

3.7. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

3.8. Device Holder

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon{=}3$ and loss tangent $\delta=0.02.$ The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.9. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip-disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DAYS I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Report No.:AGC00529141101FH01 Page 17 of 225

3.10. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- □ Left head
- ☐ Right head
- ☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Page 18 of 225

4. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 4.2

4.1. The composition of the tissue simulating liquid

			<u> </u>			
Ingredient	835MHz	835MHz	1750MHz	1750MHz	1900MHz	1900MHz
(% Weight)	Head	Body	Head	Body	Head	Body
Water	40.45	52.4	55.2	70.2	54.90	40.5
Salt	1.42	1.40	0.3	0.4	0.18	0.50
Sugar	57.6	45.0	0	0	0.00	58.0
HEC	0.40	1.00	0.00	0.00	0.00	0.50
Preventol	0.10	0.20	0.00	0.0	0.00	0.50
DGBE	0.00	0.00	44.5	29.4	44.92	0.00
TWEEN	0.00	0.00	0.00	0.00	0.00	0.00

4.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and R&S Network Analyzer ZVL6 .

<u> </u>	Biologillo Filodo Fili di la Fila Fila Fila Fila Fila Fila Fila								
	Tissue Stimulant Measurement for 835MHz								
		Dielectric Para	meters (±5%)						
Fr.	he	ead	bo	dy	Tissue				
(MHz)	٤r	δ[s/m]	εr	δ[s/m]	Temp	Test time			
, ,	41.5	0.90	55.20	0.97	[°C]				
	39.425-43.575	0.855-0.945	52.44-57-96	0.9215-1.0185					
824.2	41.03	0.90	55.43	0.99	21	Nov. 21,2014			
826.4	41.13	0.92	55.39	0.95	21	Nov. 21,2014			
836.6	41.96	0.92	54.67	0.96	21	Nov. 21,2014			
846.6	41.89	0.88	55.74	0.96	21	Nov. 21,2014			
848 8	42 00	0.89	55 95	0.97	21	Nov 21 2014			

	Tissue Stimulant Measurement for 1750MHz							
		Dielectric Para	meters (±5%)					
Fr.	hea	ad	bo	dy	Tissue			
(MHz)	٤r	δ[s/m]	٤r	δ[s/m]	Temp [°C]	Test time		
	40.10	1.37	53.40	1.49	[0]			
	38.095-42.105	1.302-1.439	50.73-56.07	1.416-1.565				
1712.4	40.18	1.37	53.34	1.48	21	Nov. 26,2014		
1720	40.16	1.35	53.81	1.52	21	Nov. 26,2014		
1732.6	40.88	1.40	53.47	1.50	21	Nov. 26,2014		
1745	40.46	1.42	53.45	1.49	21	Nov. 26,2014		
1752.6	39.56	1.38	53.61	1.47	21	Nov. 26,2014		

	Tissue Stimulant Measurement for 1900MHz								
		Dielectric Para	meters (±5%)						
Fr.	he	ead	bo	ody	Tissue				
(MHz)	εr 40.00 38.00-42.00	δ[s/m] 1.40 1.33-1.47	εr 53.30 50.635-55.965	δ[s/m] 1.52 1.444-1.596	Temp [°C]	Test time			
1850.2	39.48	1.42	53.25	1.53	21	Nov. 24,2014			
1852.4	40.82	1.39	53.16	1.52	21	Nov. 24,2014			
1880	40.05	1.41	53.77	1.49	21	Nov. 24,2014			
1907.6	40.25	1.35	53.75	1.50	21	Nov. 24,2014			
1909.8	39.22	1.38	53.67	1.51	21	Nov. 24,2014			

4.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	h	ead	bo	ody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1750	40.10	1.37	53.40	1.49
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

($\epsilon r = relative permittivity$, $\sigma = conductivity$ and $\rho = 1000 \text{ kg/m}3$)

5. SAR MEASUREMENT PROCEDURE

5.1. SAR System Validation Procedures

Each DASY5 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY5 software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

Report No.:AGC00529141101FH01 Page 22 of 225

5.2. SAR System Validation5.2.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835 MHz	161.0	89.8	3.6
1800MHz	75.3	304.0	3.5
1900MHz	68	39.5	3.6

Report No.:AGC00529141101FH01 Page 23 of 225

5.2.2. Validation Result

	System Performance Check at 835 MHz &1750MHz&1900MHz for Head								
	Validation Kit: SN 46/11DIP 0G835-190 & SN 46/11DIP 1G800-186& SN 46/11DIP 1G900-187&D1750V2-SN:1108								
Frequency		get W/Kg)		ce Result 0%)	Tested Value(W/Kg)		Tissue Temp.	Test time	
[MHz]	1g	10g	1g	10g	1g	10g	[°C]		
835	9.60	6.20	8.64-10.56	5.58-6.82	10.400	6.768	21	Nov. 21,2014	
1750	37.32	19.14	41.052-33.588	21.054-17.226	39.680	20.320	21	Nov. 26,2014	
1900	39.65	20.24	35.685-43.615	18.216-22.264	41.120	21.120	21	Nov. 24,2014	

	System Performance Check at 835 MHz &1750MHz&1900MHz for Body Validation Kit: SN 46/11DIP 0G835-190 & SN 46/11DIP 1G800-186& SN 46/11DIP 1G900-187 D1750V2-SN:1108								
Validation K	it: SN 46/1	1DIP 0G8	35-190 & SN 46/	11DIP 1G800-18	6& SN 46	/11DIP 16	900-187 D1	750V2-SN:1108	
Frequency	Frequency		Reference Result		Tested		Tissue Temp.		
[MHz]	Value(W/Kg)	(± 1	0%)	Value	Value(W/Kg)		Test time	
[IVII IZ]	1g	10g	1g	10g	1g	10g	[°C]		
835	9.90	6.39	8.91-10.89	5.75-7.03	10.832	7.024	21	Nov. 21,2014	
1750	37.32	20.04	41.052-33.588	22.044-18.036	35.680	18.240	21	Nov. 26,2014	
1900	40.74	21.43	36.666-44.814	19.287-23.573	40.000	20.640	21	Nov. 24,2014	

6. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face and 4 edges.

6.1. Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

6.2. Cheek Position

- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

6.3. Title Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.

6.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to **10mm**. (Hotspot mode the distance of **10mm**).

General Note: Referring KDB941225 D06 v02, when the overall device length and width are \geq 9cm *5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna within 25mm from that surface or edge.

Page 27 of 225

7. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg

8. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date
Stäubli Robot	Stäubli-TX60	F13/5Q2UD1/A/01	N/A	N/A
Robot Controller	Stäubli-CS8	139522	N/A	N/A
TISSUE Probe	SATIMO	SN 45/11 OCPG45	11/14/2013	11/13/2015
E-Field Probe	Speag-EX3DV4	3953	11/06/2014	11/05/2015
SAM Twin Phantom	Speag-SAM	1790	N/A	N/A
Device Holder	Speag-SD 000 H01 KA	SD 000 H01 KA	N/A	N/A
DAE4	Speag-SD 000 D04 BM	1398	10/27/2014	10/26/2015
SAR Software	Speag-DASY5	DASY52.8	N/A	N/A
Liquid	SATIMO	-	N/A	N/A
Radio Communication Tester	R&S-CMU200	069Y7-158-13-712	02/17/2014	02/16/2015
Dipole	SATIMO SID835	SN46/11 DIP 0G835-190	10/02/2014	10/01/2017
Dipole	Speag-D1750V2	1108	01/09/2014	01/08/2017
Dipole	SATIMO SID1900	SN46/11 DIP 1G900-187	11/14/2013	11/13/2016
Signal Generator	Agilent-E4438C	MY44260051	02/23/2014	02/22/2015
Power Sensor	NRP-Z23	US38261498	02/17/2014	02/16/2015
Spectrum Analyzer E4440	Agilent	US41421290	05/27/2014	05/26/2015
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	02/17/2014	02/16/2015

Note: Per KDB 865664Dipole SAR Validation Verification, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Page 29 of 225

9. MEASUREMENT UNCERTAINTY

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 12.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor(a)	1/k(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 13.1 Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

DAYS5 Measurement Uncertainty									
Measurement uncertainty for 30 MHz to 3GHz averaged over 1 gram / 10 gram.									
Francis Documention	Uncertainty	Probability	Divisor	(Ci)	(Ci)	Standard	Standard		
Error Description	value(±10%)	Distribution	Divisor	Ì1g	10ģ	Uncertainty (1g)	Uncertainty (10g)		
Measurement System									
Probe Calibration	6.0	Normal	1	1	1	±6.0%	±6.0%		
Axial Isotropy	4.7	Rectangular	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%		
Hemispherical Isotropy	9.6	Rectangular	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%		
Linearity	4.7	Rectangular	$\sqrt{3}$	1	1	±2.7%	±2.7%		
Probe Modulation Response	2.4	Rectangular	$\sqrt{3}$	1	1	±1.4%	±1.4%		
System Detection Limits	1.0	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%		
Boundary Effects	2.0	Rectangular	$\sqrt{3}$	1	1	±1.2%	±1.2%		
Readout Electronics	0.3	Normal	$\sqrt{3}$	1	1	±0.3%	±0.3%		
Response Time	0.8	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%		
Integration Time	2.6	Rectangular	$\sqrt{3}$	1	1	±1.5%	±1.5%		
RF Ambient Noise	3.0	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%		
RF Ambient Reflection	3.0	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%		
Probe Positioner	0.8	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%		
Probe Positioning	6.7	Rectangular	$\sqrt{3}$	1	1	±0.5% ±3.9%	±0.5% ±3.9%		
Post-processing	4.0	Rectangular	$\sqrt{3}$	1	1	±3.9 % ±2.3%	±3.9 % ±2.3%		
Test Sample Related	4.0	Rectarigular	ν3		ı	±2.5 /0	±2.370		
Device Positioning	3.6	Normal	1	1	1	±3.6%	±2.3%		
Device Positioning Device Holder	2.9	Normal	1	1	1	±3.6% ±2.9%	±2.3% ±2.3%		
Measurement SAR Drift	5.0			1	1		±2.3% ±2.3%		
	0.0	Rectangular	$\sqrt{3}$	1	1	±2.9% ±0.0%	±2.3% ±2.3%		
Power Scaling	0.0	Rectangular	$\sqrt{3}$		l	±0.0%	±2.3%		
Phantom and Setup	4.0	Destanantan	<u></u>	1 4	4	-0.00/	-0.00/		
Phantom Uncertainty	4.0	Rectangular	$\sqrt{3}$	1	1	±2.3%	±2.3%		
Liquid Conductivity(Meas.)	2.5	Normal	1	0.78	0.71	±2.0%	±2.0%		
Liquid Conductivity(Target)	5.0	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8%	±1.8%		
Liquid Permittivity(Meas.)	2.5	Normal	<u></u>	0.26	0.26	±0.7%	±0.7%		
Liquid Permittivity((Target)	5.0	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%		
Liquid Conductivity-temperature uncertainty	1.7	Rectangular	$\sqrt{3}$	0.78	0.71	±0.8%	±0.7%		
Liquid Permittivity-temperature uncertainty	0.3	Rectangular	$\sqrt{3}$	0.23	0.26	±0.0%	±0.0%		
Combined Standard Uncertainty ±12.2% ±11.9%									
Coverage Factor for 95%	Coverage Factor for 95%								
Expanded Uncertainty	±22.0%	±21.5%							

10. CONDUCTED POWER MEASUREMENT GSM BAND

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)	
Maximum Power <1>		1 ower (abili)	T dotor (dBill)	1 ower (abin)	
Waximani i owei <i></i>	824.2	31.89	-9	22.89	
GSM 850	836.6	31.81	-9	22.81	
COIVI 000	848.8	31.79	-9	22.79	
	824.2	31.65	-9	22.65	
GPRS 850	836.6	31.63	-9	22.63	
(1 Slot)	848.8	31.59	-9	22.59	
	824.2	28.89	-6	22.89	
GPRS 850	836.6	28.85	-6	22.85	
(2 Slot)	848.8	28.82	-6	22.82	
	824.2	26.88	-4.26	22.62	
GPRS 850	836.6	26.83	-4.26	22.57	
(3 Slot)	848.8	26.77	-4.26	22.51	
	824.2	25.91	-3	22.91	
GPRS 850	836.6	25.84	-3	22.84	
(4 Slot)	848.8	25.76	-3	22.76	
	824.2	26.31	-9	17.31	
EGPRS 850	836.6	26.24	-9	17.24	
(1 Slot)	848.8	26.21	-9	17.21	
	824.2	24.86	-6	18.86	
EGPRS 850 (2 Slot)	836.6	24.78	-6	18.78	
(2 3101)	848.8	24.74	-6	18.74	
50DD0.056	824.2	23.21	-4.26	18.95	
EGPRS 850	836.6	23.26	-4.26	19.00	
(3 Slot)	848.8	23.12	-4.26	18.86	
E0000	824.2	22.28	-3	19.28	
EGPRS 850 (4 Slot)	836.6	22.27	-3	19.27	
(4 3101)	848.8	22.16	-3	19.16	

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
	1850.2	28.78	-9	19.78
PCS1900	1880	28.75	-9	19.75
	1909.8	28.72	-9	19.72
ODD 04000	1850.2	28.62	-9	19.62
GPRS1900 (1 Slot)	1880	28.59	-9	19.59
(1000)	1909.8	28.53	-9	19.53
ODD 04000	1850.2	25.89	-6	19.89
GPRS1900 (2 Slot)	1880	25.85	-6	19.85
(2 300)	1909.8	25.81	-6	19.81
00004000	1850.2	23.87	-4.26	19.61
GPRS1900 (3 Slot)	1880	23.83	-4.26	19.57
(3 3101)	1909.8	23.82	-4.26	19.56
00004000	1850.2	22.92	-3	19.92
GPRS1900 (4 Slot)	1880	22.84	-3	19.84
(4 0101)	1909.8	22.83	-3	19.83
E00004000	1850.2	25.31	-9	16.31
EGPRS1900 (1 Slot)	1880	25.25	-9	16.25
(1000)	1909.8	25.21	-9	16.21
EODD 04000	1850.2	24.35	-6	18.35
EGPRS1900 (2 Slot)	1880	24.26	-6	18.26
(2 0101)	1909.8	24.23	-6	18.23
E00004000	1850.2	22.18	-4.26	17.92
EGPRS1900 (3 Slot)	1880	22.13	-4.26	17.87
(3 0101)	1909.8	22.15	-4.26	17.89
FODD 04000	1850.2	21.16	-3	18.16
EGPRS1900 (4 Slot)	1880	21.09	-3	18.09
(4 0101)	1909.8	21.03	-3	18.03

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) -9 dB

Frame Power = Max burst power (2 Up Slot) – 6 dB
Frame Power = Max burst power (3 Up Slot) – 4.26 dB
Frame Power = Max burst power (4 Up Slot) – 3 dB

Page 33 of 225

UMTS BAND HSDPA Setup Configuration:

- •The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- •The RF path losses were compensated into the measurements.(1)
- ·A call was established between EUT and Based Station with following setting:
- (1) Set Gain Factors(βc and βd)parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC(H-set 1,QPSK
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle(k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- ·The transmitted maximum output power was recorded.

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	β _c (Note5)	β_d	β _d (SF)	β_c/β_d	β _{HS} (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note 4)	15/15 <i>(Note</i> <i>4)</i>	64	12/15(Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .

Note 2:For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and Δ_{CQI} = 24/15 with β_{hs} = 24/15 * β_c .

Note 3:CM = 1 for β_c/β_d =12/15, $_{hs}/_{c}$ =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $_{\rm c}$ / $_{\rm d}$ ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $_{\rm c}$ = 11/15 and $_{\rm d}$ = 15/15.

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting *:
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (β c and β d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3)Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI
- (8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βς	βa	β _d (SF)	β₀/β _d	β _{HS} (Note1	eta_{ec}	β _{ed} (Note 4) (Note 5)	β _{ed} (SF)	β _{ed} (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed} 1: 47/15 eta_{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

- Note 1: For sub-test 1 to 4, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 5/15 with β_{hs} = 5/15 * β_c .
- Note 2: CM = 1 for β_c/β_d =12/15, $_{hs}/_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the $_{c}/_{d}$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $_{c}$ = 10/15 and $_{d}$ = 15/15.
- Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 5: β_{ed} can not be set directly; it is set by Absolute Grant Value.
- Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

UMTS BAND II

Frequency	Avg. Burst Power		
` '	(dBm)		
	22.83		
1880	22.78		
1907.6	22.73		
1852.4	22.35		
1880	22.33		
1907.6	22.31		
1852.4	22.26		
1880	22.23		
1907.6	22.21		
1852.4	22.18		
1880	22.15		
1907.6	22.12		
1852.4	22.19		
1880	22.17		
1907.6	22.23		
1852.4	22.26		
1880	22.16		
1907.6	22.13		
1852.4	22.17		
1880	22.14		
1907.6	22.08		
1852.4	22.28		
1880	22.23		
1907.6	22.21		
1852.4	22.26		
1880	22.17		
1907.6	22.14		
	22.19		
1880	22.13		
	22.12		
	22.15		
	22.08		
	22.11		
	(MHz) 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6 1852.4 1880 1907.6		

UMTS BAND V

Mode	Frequency	Avg. Burst Power		
Wode	(MHz)	(dBm)		
MCDMA 950	826.4	22.79		
WCDMA 850	836.6	22.68		
RMC	846.6	22.62		
WCDMA 050	826.4	22.28		
WCDMA 850	836.6	22.26		
AMR	846.6	22.21		
HODDA	826.4	22.38		
HSDPA	836.6	22.27		
Subtest 1	846.6	22.24		
LIODEA	826.4	22.25		
HSDPA	836.6	22.18		
Subtest 2	846.6	22.14		
HODDA	826.4	22.31		
HSDPA	836.6	22.19		
Subtest 3	846.6	22.14		
LIODEA	826.4	22.35		
HSDPA	836.6	22.26		
Subtest 4	846.6	22.21		
LIGUEA	826.4	22.38		
HSUPA	836.6	22.25		
Subtest 1	846.6	22.19		
HOUDA	826.4	22.23		
HSUPA	836.6	22.17		
Subtest 2	846.6	22.11		
LICLIDA	826.4	22.35		
HSUPA	836.6	22.31		
Subtest 3	846.6	22.29		
LICLIDA	826.4	22.36		
HSUPA	836.6	22.33		
Subtest 4	846.6	22.18		
1101124	826.4	22.12		
HSUPA	836.6	22.11		
Subtest 5	846.6	22.08		

UMTS BAND IV

Mode	Frequency	Avg. Burst Power
Mode	(MHz)	(dBm)
WCDMA 4700	1712.4	22.59
WCDMA 1700	1732.6	22.56
RMC -	1752.6	22.53
WODAA 4700	1712.4	22.24
WCDMA 1700	1732.6	22.21
AMR -	1752.6	22.18
LIODDA	1712.4	22.32
HSDPA	1732.6	22.14
Subtest 1	1752.6	22.12
LICODA	1712.4	22.19
HSDPA	1732.6	22.15
Subtest 2	1752.6	22.12
LIODDA	1712.4	22.22
HSDPA	1732.6	22.16
Subtest 3	1752.6	22.12
LICDDA	1712.4	22.32
HSDPA	1732.6	22.24
Sublest 4	1752.6	22.23
HSUPA -	1712.4	22.33
Subtest 1	1732.6	22.16
Sublest 1	1752.6	22.12
LICLIDA	1712.4	22.17
HSUPA - Subtest 2 -	1732.6	22.14
Sublest 2	1752.6	22.09
HSUPA -	1712.4	22.37
Subtest 3	1732.6	22.33
Sublest 3	1752.6	22.31
HCLIDA	1712.4	22.38
HSUPA	1732.6	22.19
Sublest 4	1752.6	22.13
HCLIDA	1712.4	22.09
HSUPA	1732.6	22.13
Subtest 5	1752.6	22.12

Page 38 of 225

According to 3GPP 25.101 sub-clause 6.2.2 , the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)				
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)				
Note: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.For all of	Note: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.For all other combinations of DPDCH, DPCCH, HS-DPCCH,					
E-DPDCH and E-DPCCH the MPR is based on the rela	ative CM difference.					

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

LTE Band 4

	Conducted Power of LTE Band 4										
Dan duridéh	Madulation	DR cite	RB	Target	Channel	Channel	Channel				
Bandwidth	Modulation	RB size	offset	MPR	19957	20175	20393				
			0	0	21.53	21.23	21.67				
		1	3	0	21.68	21.43	21.59				
			5	0	21.55	21.39	21.71				
	QPSK		0	0	21.40	21.10	21.40				
		3	2	0	21.57	21.12	21.42				
			3	0	21.44	21.10	21.35				
1.4MHz		6	0	1	20.69	20.91	20.83				
1.4101112			0	1	20.78	20.91	20.89				
		1	3	1	20.77	20.87	20.88				
			5	1	20.85	20.70	20.77				
	16QAM	3	0	1	20.82	20.59	20.92				
			2	1	20.88	20.42	20.87				
			3	1	20.81	20.50	21.00				
		6	0	2	20.05	19.49	19.92				
Bandwidth	Modulation	RB size	RB	Target	Channel	Channel	Channel				
Barrawiatri	Modulation	ND 0120	offset	MPR	19965	20175	20385				
			0	0	21.42	21.29	21.48				
		1	7	0	21.50	21.48	21.55				
		1			21.50 21.49	21.48 21.37					
	QPSK	1	7	0			21.55				
	QPSK	8	7 14	0	21.49	21.37	21.55 21.54				
	QPSK		7 14 0	0 0 1	21.49 20.64 20.60 20.62	21.37 20.79 20.78 20.61	21.55 21.54 20.75				
3МН2	QPSK		7 14 0 4	0 0 1 1	21.49 20.64 20.60	21.37 20.79 20.78	21.55 21.54 20.75 20.83				
3MHz	QPSK	8	7 14 0 4 7	0 0 1 1 1	21.49 20.64 20.60 20.62	21.37 20.79 20.78 20.61	21.55 21.54 20.75 20.83 20.92				
3MHz	QPSK	8	7 14 0 4 7 0	0 0 1 1 1 1	21.49 20.64 20.60 20.62 20.67	21.37 20.79 20.78 20.61 20.79	21.55 21.54 20.75 20.83 20.92 20.82				
ЗМНz	QPSK	8 15	7 14 0 4 7 0	0 0 1 1 1 1 1 1	21.49 20.64 20.60 20.62 20.67 20.97	21.37 20.79 20.78 20.61 20.79 20.62	21.55 21.54 20.75 20.83 20.92 20.82 20.60				
3MHz	QPSK 16QAM	8 15	7 14 0 4 7 0 0 7	0 0 1 1 1 1 1 1	21.49 20.64 20.60 20.62 20.67 20.97 21.06	21.37 20.79 20.78 20.61 20.79 20.62 20.52	21.55 21.54 20.75 20.83 20.92 20.82 20.60 20.65				
3MHz		8 15	7 14 0 4 7 0 0 7 14	0 0 1 1 1 1 1 1	21.49 20.64 20.60 20.62 20.67 20.97 21.06 20.96	21.37 20.79 20.78 20.61 20.79 20.62 20.52 20.83	21.55 21.54 20.75 20.83 20.92 20.82 20.60 20.65 20.52				
3MHz		8 15 1	7 14 0 4 7 0 0 7 14 0	0 0 1 1 1 1 1 1 1 1 2	21.49 20.64 20.60 20.62 20.67 20.97 21.06 20.96 19.80	21.37 20.79 20.78 20.61 20.79 20.62 20.52 20.83 19.79	21.55 21.54 20.75 20.83 20.92 20.82 20.60 20.65 20.52 19.88				

		(Conducted Po	wer of LTE E	Band 4		
Donahuialth	Madulation	RB size	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	KB Size	offset	MPR	19975	20175	20375
			0	0	21.54	21.49	21.33
		1	13	0	21.41	21.54	21.35
			24	0	21.37	21.46	21.21
	QPSK		0	1	20.79	20.45	20.80
		12	6	1	20.67	20.67	20.85
			13	1	20.64	20.75	20.86
5MHz		25	0	1	20.35	20.64	20.69
ЭМПС			0	1	21.01	20.70	20.83
		1	13	1	21.07	20.66	20.86
			24	1	21.07	20.57	20.84
	16QAM		0	2	20.75	19.83	19.59
		12	6	2	20.62	19.62	19.53
			13	2	20.64	19.75	19.47
		25	0	2	20.67	19.51	19.43
Bandwidth	Modulation	RB size	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	ND 3126	offset	MPR	20000	20175	20350
			0	0	21.61	21.34	21.48
		1	25	0	21.45	21.42	21.58
			49	0	21.15	21.66	21.80
	QPSK		0	1	20.82	20.82	20.88
		25	13	1	20.77	20.79	20.99
			25	1	20.66	20.88	20.75
10MHz		50	0	1	20.81	20.82	20.90
1011112			0	1	21.04	20.60	20.93
		1	25	1	20.98	20.56	20.91
			49	1	20.99	20.48	20.99
	16QAM		0	2	20.31	20.09	20.64
		25	13	2	20.29	19.81	20.75
			25	2	20.36	19.91	20.74
		50	0	2	20.34	19.91	20.38

		(Conducted Po	wer of LTE E	Band 4		
Bandwidth	Modulation	RB size	RB	Target	Channel	Channel	Channel
Bandwidth	wodulation	KB Size	offset	MPR	20025	20175	20325
			0	0	21.47	21.20	21.34
		1	38	0	21.35	21.19	21.50
			74	0	21.11	21.44	21.47
	QPSK		0	1	20.44	20.56	20.63
		36	18	1	20.25	20.54	20.59
			39	1	20.03	20.48	20.61
15MHz		75	0	1	20.33	20.41	20.65
ISIVIEZ			0	1	20.50	20.95	20.37
		1	38	1	20.49	20.81	20.66
			74	1	20.40	20.95	20.71
	16QAM		0	2	19.97	20.26	20.30
		36	18	2	20.02	20.17	20.26
			39	2	20.10	20.20	20.32
		75	0	2	19.54	19.50	19.95
Bandwidth	Modulation	RB size	RB Targe		Channel	Channel	Channel
Bandwidth	Wodulation	ND SIZE	offset	MPR	20050	20175	20300
		4	0	0	21.83	21.92	21.60
		1	50	0	21.90	22.04	21.89
			99	0	21.88	21.86	21.60
	QPSK		0	1	21.01	21.14	20.93
		50	25	1	21.16	21.21	20.90
			50	1	21.08	21.18	20.94
20MHz		100	0	1	21.03	21.02	20.68
201411 12			0	1	21.13	21.01	20.86
		1	50	1	21.11	21.05	20.93
			99	1	21.14	20.84	20.84
	16QAM		0	2	20.15	20.39	20.16
		50	25	2	20.12	20.43	20.24
			50	2	20.04	20.55	20.31
		100	0	2	20.06	20.54	20.65

Page 42 of 225

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3.3-1 of the 3GPP TS36.101.

Table 6.2.3.3-1 Maximum Power Reduction (MPR) for Power class3

Modulation	Maximum Power Reduction (MPR) for Power[RB]								
Modulation	1.4MHz	3.0 MHz	5MHz	10MHz	15MHz	20MHz	MPR(dB)		
QPSK	>5	>4	>8	>12	>16	>18	≤1		
16QAM	≤5	≤4	≤8	≤12	≤16	≤18	≤1		
16QAM	>5	>4	>8	>12	>16	>18	≤2		

The allowed A-MPR values specified below in Table 6.2.4.3-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".3

Report No.:AGC00529141101FH01 Page 43 of 225

Table 6.2.4.3-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Network Signaling	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth	Resources Blocks	A-MPR (dB)
value	` '		(MHz)	(<i>N</i> _{RB})	
NS_01	6.6.2.1.1	Table 5.2-1	1.4,3,5,10,15,20	Table 5.4.2-1	N/A
			3	>5	≤ 1
		2,4,10, 23,	5	>6	≤ 1
NS_03	6.6.2.2.3.1	25,35,36	10	>6	≤ 1
		23,33,30	15	>8	≤ 1
			20	>10	≤ 1
NS_04	6.6.2.2.3.2	41	5	>6	≤1
_	0.0.2.2.3.2	41	10, 15, 20		.2.4.3-4
NS_05	6.6.3.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.4.2-1	N/A
NS_07	6.6.2.2.3.3 6.6.3.3.3.2	13	10	Table 6.2.4.3-2	Table 6.2.4.3-2
NS_08	6.6.3.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2
NS_10		20	15, 20	Table 6.2.4.3-3	Table 6.2.4.3-3
	6.6.2.2.1	_	1.4, 3, 5,	14016 0.2.4.3-3	14016 0.2.4.3-3
NS_11	6.6.3.3.13	231	10,15,20	Table 6.2.4.3-5	Table 6.2.4.3-5
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table 6.2.4.3-6	Table 6.2.4.3-6
NS_13	6.6.3.3.6	26	5	Table 6.2.4.3-7	Table 6.2.4.3-7
NS_14	6.6.3.3.7	26	10, 15	Table 6.2.4.3-8	Table 6.2.4.3-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	Table 6.2.4.3-9	Table 6.2.4.3-9,
110_13	0.0.3.3.0	20	1.4, 0, 0, 10, 10	Table 6.2.4.3-10	Table 6.2.4.3-10
NS_16	6.6.3.3.9	27	3, 5, 10	•	Table 6.2.4.3-12,
110_10					2.4.3-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.4.2-1	N/A
	6.6.3.3.11	28	5	≥ 2	≤1
NS_18			10, 15, 20	≥1	≤ 4
NS_19			10, 15, 20	Table 6.2.4.3-15	Table 6.2.4.3-15
NS_20			5, 10, 15, 20	Table 6.2.4.3-14	Table 6.2.4.3-14
NS_20	-	-	-	-	-

WIFI

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
		01	2412	9.88
802.11b	1	06	2437	9.8
		11	2462	9.66
		01	2412	7.5
802.11g	6	06	2437	7.39
		11	2462	7.35
		01	2412	7.47
802.11n(20)	6.5	06	2437	7.34
		11	2462	7.3
		03	2422	4.46
802.11n(40)	13.5	06	2437	4.4
		09	2452	4.33

Bluetooth V3.0

Modulation	Channel	Frequency(MHz)	Average Power (dBm)
	0	2402	1.03
GFSK	39	2441	1.11
	78	2480	0.75
	0	2402	0.17
π /4-DQPSK	39	2441	0.32
	78	2480	-0.09
	0	2402	0.13
8-DPSK	39	2441	0.23
	78	2480	-0.2

Page 45 of 225

11. TEST RESULTS

11.1. SAR Test Results Summary 11.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528, and Body SAR was performed with the device 10mm from the phantom; The overall device length and width(14.2×7.1cm) are >9cm×5cm.

11.1.2. Operation Mode

- According to KDB 447498 D01 v05r03 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- Per KDB 865664 D01, for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
- (1) When the original highest measured SAR is ≥ 0.8 W/Kg, repeat that measurement once.
- (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is >1.45 W/Kg.
- (3) Perform a third repeated measurement only if the original, first and second repeated measurement is \geq 1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is \geq 1.20.
- Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- According to KDB 648474 D04, when the reported SAR for a body-worn accessory measured without
 a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- •According to 941225 D06, when the overall device length and width are >9cm×5cm, Hotspot mode with a test separation distance of 10mm. For device with form factors smaller than 9cm×5cm, Hotspot mode with a test separation distance of 5mm. Body SAR was also performed with the headset attached and without. Hotspot mode SAR is measured for all edges and surfaces of the device within a transmitting antenna located within 25 mm from that surface or edge; for the data modes, wireless technologies and frequency bands supporting hotspot mode.
- According to 248227 D01, SAR is not required for 802.11g channels when the maximum average output power is less than 1/4dB higher than measured on the corresponding 802.11b channels.

Page 46 of 225

11.1.3. Test Result

SAR MEASUREM	ENT								
Ambient Temperat	ure (°C) : 21 ± 2			Relative Humidity (%): 55					
Liquid Temperature	e (°C) : 21 ± 2			Depth of Liquid (cm):>15					
Product: Might LTE									
Test Mode: GSM83	35 with GMSK modulate	on							
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
SIM 1 Card	•		•	•	•		•		
voice									
Left Cheek	voice	190	836.6	0.02	0.405	33.0	31.81	0.533	1.6
Left Tilt	voice	190	836.6	0.05	0.187	33.0	31.81	0.246	1.6
Right Cheek	voice	190	836.6	-0.03	0.478	33.0	31.81	0.629	1.6
Right Tilt	voice	190	836.6	0.18	0.209	33.0	31.81	0.275	1.6
Body back	voice	190	836.6	-0.05	0.555	33.0	31.81	0.730	1.6
Body front	voice	190	836.6	-0.10	0.472	33.0	31.81	0.621	1.6
VolP	•								
Left Cheek	GPRS 4 slot	190	836.6	0.20	0.293	26.00	25.84	0.304	1.6
Left Tilt	GPRS 4 slot	190	836.6	-0.02	0.147	26.00	25.84	0.153	1.6
Right Cheek	GPRS 4 slot	190	836.6	0.17	0.310	26.00	25.84	0.322	1.6
Right Tilt	GPRS 4 slot	190	836.6	0.20	0.165	26.00	25.84	0.171	1.6
Body back	GPRS 4 slot	190	836.6	-0.17	0.487	26.00	25.84	0.505	1.6
Body front	GPRS 4 slot	190	836.6	0.06	0.469	26.00	25.84	0.487	1.6
Edge 1 (Top)	GPRS 4 slot	190	836.6	0.02	0.179	26.00	25.84	0.186	1.6
Edge 2(Right)	GPRS 4 slot	190	836.6	0.18	0.047	26.00	25.84	0.049	1.6
Edge 3(Bottom)	GPRS 4 slot	190	836.6	0.03	0.00558	26.00	25.84	0.006	1.6
Edge 4(Left)	GPRS 4 slot	190	836.6	-0.05	0.070	26.00	25.84	0.073	1.6

- When the reported1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498
 The test separation for body is 10mm of all above table.

Page 47 of 225

SAR MEASUREM	ENT									
Ambient Temperat	ure (°C) : 21 ± 2			Relative Humidity (%): 55						
Liquid Temperatur	e (°C) : 21 ± 2			Depth of L	Depth of Liquid (cm):>15					
Product: Might LTE										
Test Mode: PCS19	000 with GMSK modulat	ion								
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg	
SIM 1 Card			_							
Left Cheek	voice	661	1880.0	-0.19	0.700	28.80	28.75	0.708	1.6	
Left Tilt	voice	661	1880.0	0.07	0.052	28.80	28.75	0.053	1.6	
Right Cheek	voice	512	1850.2	0.18	1.140	28.80	28.78	1.145	1.6	
Right Cheek	voice	661	1880.0	0.15	0.997	28.80	28.75	1.009	1.6	
Right Cheek	voice	810	1909.8	0.06	0.882	28.80	28.72	0.898	1.6	
Right Tilt	voice	661	1880.0	0.09	0.065	28.80	28.75	0.066	1.6	
Body back	voice	661	1880.0	-0.05	0.283	28.80	28.75	0.286	1.6	
Body front	voice	661	1880.0	-0.14	0.281	28.80	28.75	0.284	1.6	
VoIP	·									
Left Cheek	GPRS 4 slot	661	1880.0	-0.05	0.392	23.00	22.84	0.407	1.6	
Left Tilt	GPRS 4 slot	661	1880.0	-0.06	0.170	23.00	22.84	0.176	1.6	
Right Cheek	GPRS 4 slot	661	1880.0	0.10	0.323	23.00	22.84	0.335	1.6	
Right Tilt	GPRS 4 slot	661	1880.0	0.10	0.179	23.00	22.84	0.186	1.6	
Body back	GPRS 4 slot	661	1880.0	0.01	0.513	23.00	22.84	0.532	1.6	
Body front	GPRS 4 slot	661	1880.0	-0.20	0.488	23.00	22.84	0.506	1.6	
Edge 1 (Top)	GPRS 4 slot	661	1880.0	0.11	0.506	23.00	22.84	0.525	1.6	
Edge 2(Right)	GPRS 4 slot	661	1880.0	0.01	0.081	23.00	22.84	0.084	1.6	
Edge 3(Bottom)	GPRS 4 slot	661	1880.0	0.04	0.101	23.00	22.84	0.105	1.6	
Edge 4(Left)	GPRS 4 slot	661	1880.0	-0.12	0.153	23.00	22.84	0.159	1.6	

- When the reported1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body is 10mm of all above table.

Page 48 of 225

SAR MEASURE	MENT								
Ambient Tempera	ature (°C) : 21 ± 2			Relative Humidity (%): 55					
Liquid Temperatu	ıre (°C) : 21 ± 2			Depth of L	iquid (cm):>	- 15			
Product: Might LT	ГЕ								
Test Mode: WCDMA Band II with QPSK modulation									
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
SIM 1 Card									
Left Cheek	RMC 12.2kbps	9262	1852.4	0.05	0.945	23.0	22.83	0.983	1.6
Left Cheek	RMC 12.2kbps	9400	1880	0.13	0.806	23.0	22.78	0.848	1.6
Left Cheek	RMC 12.2kbps	9538	1907.6	0.07	0.660	23.0	22.73	0.702	1.6
Left Tilt	RMC 12.2kbps	9400	1880	-0.19	0.090	23.0	22.78	0.095	1.6
Right Cheek	RMC 12.2kbps	9400	1880	-0.11	0.455	23.0	22.78	0.479	1.6
Right Tilt	RMC 12.2kbps	9400	1880	0.04	0.162	23.0	22.78	0.170	1.6
Body back	RMC 12.2kbps	9400	1880	0.06	0.442	23.0	22.78	0.465	1.6
Body front	RMC 12.2kbps	9400	1880	-0.01	0.372	23.0	22.78	0.391	1.6
Edge 1 (Top)	RMC 12.2kbps	9400	1880	0.12	0.391	23.0	22.78	0.411	1.6
Edge 2(Right)	RMC 12.2kbps	9400	1880	0.10	0.070	23.0	22.78	0.074	1.6
Edge 3(Bottom)	RMC 12.2kbps	9400	1880	0.01	0.074	23.0	22.78	0.078	1.6
Edge 4(Left)	RMC 12.2kbps	9400	1880	-0.01	0.146	23.0	22.78	0.154	1.6

- When the reported 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- •The test separation for body is 10mm of all above table.

Page 49 of 225

SAR MEASURE	MENT									
Ambient Tempera	ature (°C) : 21 ± 2			Relative Humidity (%): 55						
Liquid Temperatu	re (°C) : 21 ± 2			Depth of L	iquid (cm)::	>15				
Product: Might LT	ΓE									
Test Mode: WCD	MA Band V with QPSI	C modulation								
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg	
SIM 1 Card										
Left Cheek	RMC 12.2kbps	4183	836.6	-0.01	0.315	23.0	22.68	0.339	1.6	
Left Tilt	RMC 12.2kbps	4183	836.6	0.08	0.156	23.0	22.68	0.168	1.6	
Right Cheek	RMC 12.2kbps	4183	836.6	0.16	0.341	23.0	22.68	0.367	1.6	
Right Tilt	RMC 12.2kbps	4183	836.6	-0.11	0.159	23.0	22.68	0.171	1.6	
Body back	RMC 12.2kbps	4183	836.6	-0.04	0.385	23.0	22.68	0.414	1.6	
Body front	RMC 12.2kbps	4183	836.6	-0.05	0.317	23.0	22.68	0.341	1.6	
Edge 1 (Top)	RMC 12.2kbps	4183	836.6	0.15	0.260	23.0	22.68	0.280	1.6	
Edge 2(Right)	RMC 12.2kbps	4183	836.6	0.15	0.051	23.0	22.68	0.055	1.6	
Edge 3(Bottom)	RMC 12.2kbps	4183	836.6	0.05	0.073	23.0	22.68	0.079	1.6	
Edge 4(Left)	RMC 12.2kbps	4183	836.6	0.02	0.127	23.0	22.68	0.137	1.6	

- When the reported 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to K KDB 447498.
- •The test separation for body is 10mm of all above table.

Page 50 of 225

SAR MEASUREN	MENT									
Ambient Tempera	ture (°C) : 21 ± 2			Relative Humidity (%): 55						
Liquid Temperatu	re (°C) : 21 ± 2			Depth of L	iquid (cm):>	·15				
Product: Might LT	E									
Test Mode: WCDI	MA Band IV with QPSK	modulation								
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg	
SIM 1 Card	•									
Left Cheek	RMC 12.2kbps	1413	1732.6	-0.06	0.208	23.0	22.56	0.230	1.6	
Left Tilt	RMC 12.2kbps	1413	1732.6	0.15	0.117	23.0	22.56	0.129	1.6	
Right Cheek	RMC 12.2kbps	1413	1732.6	-0.01	0.197	23.0	22.56	0.218	1.6	
Right Tilt	RMC 12.2kbps	1413	1732.6	0.17	0.119	23.0	22.56	0.132	1.6	
Body back	RMC 12.2kbps	1413	1732.6	-0.06	0.295	23.0	22.56	0.326	1.6	
Body front	RMC 12.2kbps	1413	1732.6	-0.04	0.218	23.0	22.56	0.241	1.6	
Edge 1 (Top)	RMC 12.2kbps	1413	1732.6	-0.01	0.093	23.0	22.56	0.103	1.6	
Edge 2(Right)	RMC 12.2kbps	1413	1732.6	0.13	0.049	23.0	22.56	0.054	1.6	
Edge 3(Bottom)	RMC 12.2kbps	1413	1732.6	0.11	0.511	23.0	22.56	0.565	1.6	
Edge 4(Left)	RMC 12.2kbps	1413	1732.6	-0.00	0.149	23.0	22.56	0.165	1.6	

When the reported 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body is 10mm of all above table.

Page 51 of 225

SAR MEASUREMENT							
Ambient Temperature (°C): 21 ± 2	Relative Humidity (%): 55						
Liquid Temperature (°C): 21 ± 2	Depth of Liquid (cm):>15						

Product: Might LTE

Test Mode: LTE Band 4

			Test	Mode			Power	SAR	Max.	Meas.	Scaled	
BM (MHz)	Modu lation	Position	RB Alloc ation	RB Start	Channel	Freq. (MHz)	Drift (<±0.2)	(1g) (W/kg)	Turn-up Power (dBm)	output Power (dBm)	SAR (W/Kg)	Limit (W/kg)
		Left Cheek	1	0	20175	1732.5	0.07	0.617	22.50	22.04	0.686	1.6
		Left Tilt	1	0	20175	1732.5	0.12	0.076	22.50	22.04	0.084	1.6
		Right Cheek	1	0	20175	1732.5	0.17	0.263	22.50	22.04	0.292	1.6
		Right Tilt	1	0	20175	1732.5	0.11	0.068	22.50	22.04	0.076	1.6
		Left Cheek	50	0	20050	1720	0.06	0.624	22.50	21.14	0.853	1.6
		Left Cheek	50	0	20175	1732.5	-0.14	0.684	22.50	21.21	0.921	1.6
		Left Cheek	50	0	20300	1745	0	0.678	22.50	21.18	0.919	1.6
		Left Tilt	50	0	20175	1732.5	0.12	0.080	22.50	21.21	0.108	1.6
		Right Cheek	50	0	20175	1732.5	0.10	0.288	22.50	21.21	0.388	1.6
		Right Tilt	50	0	20175	1732.5	0.01	0.071	22.50	21.21	0.096	1.6
		Left Cheek	100	0	20050	1720	-0.11	0.708	22.50	21.02	0.995	1.6
		Left Cheek	100	0	20175	1732.5	0.01	0.712	22.50	21.02	1.001	1.6
		Left Cheek	100	0	20300	1745	-0.06	0.709	22.50	21.02	0.997	1.6
20	QPSK	Left Tilt	100	0	20175	1732.5	- 0.20	0.084	22.50	21.02	0.118	1.6
		Right Cheek	100	0	20175	1732.5	0.03	0.280	22.50	21.02	0.394	1.6
		Right Tilt	100	0	20175	1732.5	0.06	0.077	22.50	21.02	0.108	1.6
		Body back	1	0	20175	1732.5	-0.05	0.462	22.50	22.04	0.514	1.6
		Body front	1	0	20175	1732.5	-0.01	0.392	22.50	22.04	0.436	1.6
		Body back	50	0	20175	1732.5	-0.05	0.492	22.50	21.21	0.662	1.6
		Body front	50	0	20175	1732.5	0.11	0.462	22.50	21.21	0.622	1.6
		Body back	100	0	20175	1732.5	-0.02	0.499	22.50	21.02	0.702	1.6
		Body front	100	0	20175	1732.5	-0.10	0.420	22.50	21.02	0.591	1.6
		Edge 1 (Top)	100	0	20175	1732.5	0.12	0.391	22.50	21.02	0.550	1.6
		Edge 2(Right)	100	0	20175	1732.5	0.01	0.119	22.50	21.02	0.167	1.6
		Edge 3(Bottom)	100	0	20175	1732.5	-0.01	0.089	22.50	21.02	0.125	1.6
		Edge 4(Left)	100	0	20175	1732.5	0.08	0.150	22.50	21.02	0.211	1.6

- Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1RB allocation using the RB offset and required test channel combination with highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941125 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941125 D05v02r03. For QPSK with 100% RB allocation. SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1RB allocation and the highest reported SAR is >1.45 W/Kg, the remaining required test channels must also be tested.

Page 52 of 225

4. Per KDB 941125 D05v02r03. 16QAM output power for each RB allocation configuration is not 1/2 dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤1.45W/Kg, Per KDB 941225 D05v02r02, 16QAM SAR testing is not required.

5. Per KDB 941125 D05v02r03. Smaller bandwidth output power for each RB allocation configuration is >not 1/2 dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤1.45W/Kg. Per KDB 941125 D05v02r03, smaller bandwidth SAR testing is not required.

Repeated SAR												
Ambient Tempe	erature (°C) : 21 ± 2			Relative I	Humidity (%): 55	;						
Liquid Temperature (°C): 21 ± 2 Depth of Liquid (cm):>15												
Product: Might LTE												
Test Mode: PC	S1900 with GMSK modula	tion &WC	DMA Band II	with QPSK	modulation							
Position	Position Mode Ch. Fr. Power Once SAR Twice SAR Third SAR Limit (MHz) (State of the content of th											
Right Cheek voice 512 1850.2 -0.15 0.662 1.6												
Left Cheek	RMC 12.2kbps	9262	1852.4	-0.12	0.681			1.6				

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

NO	Simultaneous state	P	ortable Hands	Note	
NO	Simultaneous State	Head	Body-worn	Hotspot	Note
1	GSM(voice)+WLAN 2.4GHz (data)	Yes	Yes	-	
2	WCDMA(voice)+WLAN 2.4GHz (data)	Yes	Yes	-	
3	LTE+WLAN 2.4GHz (data)	Yes	Yes		
4	GSM(voice)+Bluetooth(data)	-	Yes	-	-
5	WCDMA(voice)+Bluetooth(data)	-	Yes	-	-
6	LTE+ Bluetooth(data)	-	Yes		
7	GSM(voice)+WLAN 2.4GHz (data)	Yes	Yes	Yes	2.4GHz Hotspot
8	WCDMA(voice)+WLAN 2.4GHz (data)	No	Yes	Yes	2.4GHz Hotspot
9	LTE+WLAN 2.4GHz (data)	No	Yes	Yes	2.4GHz Hotspot

NOTE:

- 1. WLAN and BT share the same antenna, and cannot transmit simultaneously.
- 2. Simultaneous with every transmitter must be the same test position.
- 3. Based upon KDB 447498 D01 v05, BT SAR is excluded as below table.
- 4. Based upon KDB 447498 D01 v05, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 10mm for body-worn SAR.
- 5. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 6. For minimum test separation distance \leq 50mm, Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm) $\cdot [\sqrt{f(GHz)/x}] \leq 3.0$ for 1-g SAR and \leq 7.5 for 10-g extremity SAR
- 7. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:
 - a) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f} (GHz)/x]$ W/kg for test separation distances 50 mm; Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm.

Estimated SAR		Maximum Average Power		Antenna	SAR exclusion	SAR testing	Head	Body
		dBm	mW	to user (mm)	threshold (mW)	required (Yes/No)	(0mm gap)	(10mm gap)
ВТ	Head	2	1 505	0	10	NO	0.066	0.033
ы	Body	2	1.585	0	10	NO	W/kg	W/kg
WIFI	Head	10	10	0	10	NO	0.414	0.207
VVIFI	Body	10	10	0	10	NO	W/kg	W/kg

Maximum test results (WWAN) with BT and WIFI/ HOTSPOT SAR:

BT: Head (0 cm gap): 0.066 W/kg and Body (1.0 cm gap): 0.033 W/kg **WIFI:** Head (0 cm gap): 0.414W/kg and Body (1.0 cm gap): 0.207 W/kg

Page 54 of 225

Sum of the SAR for GSM 850 &Wi-Fi & BT:

RF Exposure	Test	Simultane	eous Transmission	Σ1-g SAR	SPLSR	
Conditions	Position	GSM 850 Band	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.533	0.414		0.947	No
Head	Left Tilt	0.246	0.414		0.660	No
(voice)	Right Touch	0.629	0.414		1.043	No
	Right Tilt	0.275	0.414		0.689	No
	Rear	0.730	0.207		0.937	No
Dady war	Real	0.730		0.033	0.763	No
Body-worn	Front	0.621	0.207		0.828	No
	Front	0.621		0.033	0.654	No
	Left Touch	0.304	0.414		0.718	No
Head	Left Tilt	0.153	0.414		0.567	No
(VoIP)	Right Touch	0.322	0.414		0.736	No
	Right Tilt	0.171	0.414		0.585	No
	Rear	0.505		0.033	0.538	No
	Real	0.505	0.207		0.712	No
	Front	0.487		0.033	0.520	No
Hotonot	FIOR	0.487	0.207		0.694	No
Hotspot	Edge 1	0.186	0.207		0.393	No
	Edge 2	0.049	0.207		0.256	No
	Edge 3	0.006	0.207		0.213	No
	Edge 4	0.073	0.207		0.280	No

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 55 of 225

Sum of the SAR for GSM 1900 &Wi-Fi & BT:

RF Exposure	Test	Simultane	ous Transmission	Σ1-g SAR	SPLSR	
Conditions	Position	GSM 1900 Band	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.708	0.414		1.122	No
Head	Left Tilt	0.053	0.414		0.467	No
(voice)	Right Touch	1.145	0.414		1.559	No
	Right Tilt	0.066	0.414		0.480	No
	Rear	0.286	0.207		0.493	No
Dody worn	Real	0.286		0.033	0.319	No
Body-worn	Front	0.284	0.207		0.491	No
	Front	0.284		0.033	0.317	No
	Left Touch	0.407	0.414		0.821	No
Head	Left Tilt	0.176	0.414		0.590	No
(VoIP)	Right Touch	0.335	0.414		0.749	No
	Right Tilt	0.186	0.414		0.600	No
	Rear	0.532		0.033	0.565	No
	Near	0.532	0.207		0.739	No
	Front	0.506		0.033	0.539	No
Hotenot	Front	0.506	0.207		0.713	No
Hotspot	Edge 1	0.525	0.207		0.732	No
	Edge 2	0.084	0.207		0.291	No
	Edge 3	0.105	0.207		0.312	No
	Edge 4	0.159	0.207		0.366	No

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 56 of 225

Sum of the SAR for WCDMA Band II &Wi-Fi & BT:

RF Exposure	Test	Simultane	ous Transmission	Scenario	Σ1-g SAR	SPLSR
Conditions	Position	WCDMA Band II	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.983	0.414		1.397	No
Usad	Left Tilt	0.095	0.414		0.509	No
Head	Right Touch	0.479	0.414		0.893	No
	Right Tilt	0.170	0.414		0.584	No
	Rear	0.465	0.207		0.672	No
		0.465		0.033	0.498	No
	Front	0.391	0.207		0.598	No
Body-worn		0.391		0.033	0.424	No
	Edge 1	0.411	0.207		0.618	No
	Edge 2	0.074	0.207		0.281	No
	Edge 3	0.078	0.207		0.285	No
	Edge 4	0.154	0.207		0.361	No

Note:

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Sum of the SAR for WCDMA Band V &Wi-Fi & BT:

RF Exposure	Test	Simultane	ous Transmission	n Scenario	Σ1-g SAR	SPLSR
Conditions	Position	WCDMA Band V	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.339	0.414		0.753	No
Head	Left Tilt	0.168	0.414		0.582	No
пеац	Right Touch	0.367	0.414		0.781	No
	Right Tilt	0.171	0.414		0.585	No
	Rear	0.414	0.207		0.621	No
		0.414		0.033	0.447	No
	F 1	0.341	0.207		0.548	No
Dody wom	Front	0.341		0.033	0.374	No
Body-worn	Edge 1	0.280	0.207		0.487	No
	Edge 2	0.055	0.207		0.262	No
	Edge 3	0.079	0.207		0.286	No
	Edge 4	0.137	0.207		0.344	No

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 57 of 225

Sum of the SAR for WCDMA Band IV &Wi-Fi & BT:

RF Exposure	Test	Simultane	ous Transmission	Scenario	Σ1-g SAR	SPLSR
Conditions	Position	WCDMA Band IV	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.230	0.414		0.644	No
Head	Left Tilt	0.129	0.414		0.543	No
пеац	Right Touch	0.218	0.414		0.632	No
	Right Tilt	0.132	0.414		0.546	No
	Rear	0.326	0.207		0.533	No
		0.326		0.033	0.359	No
	Front	0.241	0.207		0.448	No
Body warn		0.241		0.033	0.274	No
Body-worn	Edge 1	0.103	0.207		0.310	No
	Edge 2	0.054	0.207		0.261	No
	Edge 3	0.565	0.207		0.772	No
	Edge 4	0.165	0.207		0.372	No

Note:

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Sum of the SAR for LTE Band 4 &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			Σ1-g SAR	SPLSR
		LTE Band 4	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
Head	Left Touch	1.001	0.414		1.415	No
	Left Tilt	0.118	0.414		0.532	No
	Right Touch	0.394	0.414		0.808	No
	Right Tilt	0.108	0.414		0.522	No
Body-worn	Rear	0.702	0.207		0.909	No
		0.702		0.033	0.735	No
	Front	0.591	0.207		0.798	No
		0.591		0.033	0.624	No
	Edge 1	0.550	0.207		0.757	No
	Edge 2	0.167	0.207		0.374	No
	Edge 3	0.125	0.207		0.332	No
	Edge 4	0.211	0.207		0.418	No

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 58 of 225

APPENDIX A. SAR SYSTEM VALIDATION DATA

Test Laboratory: AGC Lab Date: Nov. 21,2014

System Check Head 850 MHz

DUT: Dipole 850 MHz Type: SID 850

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;

Frequency: 850MHz; Medium parameters used: f = 850 MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon r = 41.96$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm Ambient temperature ($^{\circ}$ C): 21, Liquid temperature ($^{\circ}$ C): 21

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 850MHz Head/Area Scan (9×17×1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.803 W/kg

Configuration/System Check 850MHz Head/Zoom Scan (7×7×7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.902 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.960 W/kg

SAR(1 g) = 0.650 W/kg; SAR(10 g) = 0.423 W/kg Maximum value of SAR (measured) = 0.823 W/kg

Date: Nov. 21,2014

Page 59 of 225

Test Laboratory: AGC Lab System Check Body850 MHz

DUT: Dipole 850 MHz Type: SID 850

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;

Frequency: 850 MHz; Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 54.67$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm Ambient temperature ($^{\circ}$ C): 21, Liquid temperature ($^{\circ}$ C): 21

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 10/27/2014

• Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 850MHz Body/Area Scan (9×17×1): dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.854 W/kg

Configuration/System Check 850MHz Body/Zoom Scan (7×7×7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 29.021V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) =0.98 W/kg

SAR(1 g) = 0.677 W/kg; SAR(10 g) = 0.439 W/kg Maximum value of SAR (measured) = 0.860W/kg

Date: Nov. 26,2014

Page 60 of 225

Test Laboratory: AGC Lab System Check Head 1750MHz

DUT: Dipole 1750 MHz; Type: D1750V2

Communication System: CW; Communication System Band: D1750 (1750.0 MHz); Duty Cycle: 1:1;

Frequency: 1750 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 40.88$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C): 21, Liquid temperature (°C): 21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 1750MHz Head/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.18 W/kg

Configuration/System Check 1750MHz Head/Zoom Scan (7×7×7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 49.750 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 4.54 W/kg

SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.27 W/kg Maximum value of SAR (measured) = 3.58 W/kg

Date: Nov. 26,2014

Page 61 of 225

Test Laboratory: AGC Lab System Check Body 1750MHz

DUT: Dipole 1750 MHz; Type: D1750V2

Communication System: CW; Communication System Band: D1750 (1750.0 MHz); Duty Cycle: 1:1;

Frequency: 1750 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 53.47$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C): 21, Liquid temperature (°C): 21

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(7.93, 7.93, 7.93); Calibrated: 11/06/2014;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 10/27/2014

• Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 1750MHz Body/Area Scan Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.88 W/kg

Configuration/System Check 1750MHz Body/Zoom Scan (7×7×7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 47.134 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 4.15 W/kg

SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.14 W/kg Maximum value of SAR (measured) = 3.24 W/kg

Date: Nov. 24,2014

Page 62 of 225

Test Laboratory: AGC Lab System Check Head 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;

Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C): 21, Liquid temperature (°C): 21

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 10/27/2014

• Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 1900MHz Head/Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.45 W/kg

Configuration/System Check 1900MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 52.427 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 5.02 W/kg

SAR(1 g) = 2.57 W/kg; SAR(10 g) = 1.32 W/kg Maximum value of SAR (measured) = 3.74 W/kg

Page 63 of 225

Test Laboratory: AGC Lab
System Check Body 1900MHz
Date: Nov. 24,2014

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;

Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C): 21, Liquid temperature (°C): 21

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 10/27/2014

• Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 1900MHz Body/Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.38 W/kg

Configuration/System Check 1900MHz Body//Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.625 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 4.88 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.29 W/kg Maximum value of SAR (measured) = 3.64 W/kg

Page 64 of 225

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Nov. 21,2014

GSM 850 Mid-Touch-Left <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.519 W/kg

LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.141 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.571 W/kg

SAR(1 g) = 0.405 W/kg; SAR(10 g) = 0.286 W/kg Maximum value of SAR (measured) = 0.486 W/kg

Page 65 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

GSM 850 Mid-Tilt-Left <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.226 W/kg

LEFT HEAD/L-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.334 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.234 W/kg

SAR(1 g) = 0.187 W/kg; SAR(10 g) = 0.143 W/kg

Maximum value of SAR (measured) = 0.214 W/kg

Page 66 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

GSM 850 Mid-Touch-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.558 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.362 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.617 W/kg

SAR(1 g) = 0.478 W/kg; SAR(10 g) = 0.352 W/kg

Maximum value of SAR (measured) = 0.550 W/kg

Date: Nov. 21,2014

Page 68 of 225

Test Laboratory: AGC Lab GSM 850 Mid-Tilt-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.235 W/kg

RIGHT HEAD/R-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.364 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.261 W/kg

SAR(1 g) = 0.209 W/kg; SAR(10 g) = 0.159 W/kg

Maximum value of SAR (measured) = 0.240 W/kg

Page 69 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

GSM 850 Mid- Body- Back DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon = 54.67$;

 ρ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.631 W/kg

BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.820 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.696 W/kg

SAR(1 g) = 0.555 W/kg; SAR(10 g) = 0.428 W/kg Maximum value of SAR (measured) = 0.638 W/kg

Page 71 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

GSM 850 Mid- Body- Front DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.67$;

 ρ = 1000 kg/m³ ;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.541 W/kg

BODY/FRONT/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.617 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.587 W/kg

SAR(1 g) = 0.472 W/kg; SAR(10 g) = 0.364 W/kg

Maximum value of SAR (measured) = 0.539 W/kg

Page 72 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

GPRS 850 Mid-Touch-Left <SIM 1> DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.346 W/kg

LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.137 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.440 W/kg

SAR(1 g) = 0.293 W/kg; SAR(10 g) = 0.197 W/kg

Maximum value of SAR (measured) = 0.356 W/kg

Date: Nov. 21,2014

Page 73 of 225

Test Laboratory: AGC Lab GPRS 850 Mid-Tilt-Left <SIM 1> DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.176 W/kg

LEFT HEAD/L-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.249 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.184 W/kg

SAR(1 g) = 0.147 W/kg; SAR(10 g) = 0.110 W/kg

Maximum value of SAR (measured) = 0.168 W/kg

Page 74 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

GPRS 850 Mid-Touch-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.342 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.539 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.421 W/kg

SAR(1 g) = 0.310 W/kg; SAR(10 g) = 0.221 W/kg

Maximum value of SAR (measured) = 0.369 W/kg

Date: Nov. 21,2014

Page 75 of 225

Test Laboratory: AGC Lab GPRS 850 Mid-Tilt-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$;

 ρ = 1000 kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.182 W/kg

RIGHT HEAD/R-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.375 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.206 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.123 W/kg

Maximum value of SAR (measured) = 0.188 W/kg

Page 76 of 225

Test Laboratory: AGC Lab

Date: Nov. 21,2014

GPRS 850 Mid- Body- Back

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.67$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.0, Liquid temperature ($^{\circ}$): 21.0

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK-4ST/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.535 W/kg

BODY/BACK-4ST/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.221 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.828 W/kg

SAR(1 g) = 0.487 W/kg; SAR(10 g) = 0.358 W/kg

Maximum value of SAR (measured) = 0.534 W/kg

Page 77 of 225

Test Laboratory: AGC Lab

Date: Nov. 21,2014

GPRS 850 Mid- Body- Front

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.67$;

 ρ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.0, Liquid temperature ($^{\circ}$): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT-4ST/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.516 W/kg

BODY/FRONT-4ST/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.965 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.469 W/kg; SAR(10 g) = 0.356 W/kg

Maximum value of SAR (measured) = 0.540 W/kg

Page 78 of 225

Test Laboratory: AGC Lab

Date: Nov. 21,2014

GPRS 850 Mid- Edge 1

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:2.1; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ= 0.96mho/m; εr = 54.67;

 ρ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 1 (Top)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.318 W/kg

BODY/Edge 1 (Top)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.384 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.461 W/kg

SAR(1 g) = 0.179 W/kg; SAR(10 g) = 0.079 W/kg

Maximum value of SAR (measured) = 0.312 W/kg

Page 79 of 225

Test Laboratory: AGC Lab

Date: Nov. 21,2014

GPRS 850 Mid- Edge 2

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:2.1; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ= 0.96mho/m; εr = 54.67;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 2(Right)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0668 W/kg

BODY/Edge 2(Right)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.444 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.105 W/kg

SAR(1 g) = 0.047 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.0715 W/kg

Page 80 of 225

Test Laboratory: AGC Lab

Date: Nov. 21,2014

GPRS 850 Mid- Edge 3

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:2.1; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.67$;

 ρ = 1000 kg/m³ ;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 3(Bottom)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.00780 W/kg

BODY/Edge 3(Bottom)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.891 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.00891 W/kg

SAR(1 g) = 0.00558 W/kg; SAR(10 g) = 0.00382 W/kg Maximum value of SAR (measured) = 0.00808 W/kg

Page 81 of 225

Test Laboratory: AGC Lab

Date: Nov. 21,2014

GPRS 850 Mid- Edge 4

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 850 (824.2 – 848.8 MHz); Duty Cycle:

1:2.1; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ= 0.96mho/m; εr = 54.67;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 4(Left)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0824 W/kg

BODY/Edge 4(Left)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.095 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.0930 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.0832 W/kg

Page 82 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

PCS 1900 Mid-Touch-Left <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.0, Liquid temperature ($^{\circ}$): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.01 W/kg

LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.099 V/m; Power Drift = -0.79 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.700 W/kg; SAR(10 g) = 0.353 W/kg

Maximum value of SAR (measured) = 1.02 W/kg

Page 83 of 225

Test Laboratory: AGC Lab

Date: Nov. 24,2014

PCS 1900 Mid-Tilt-Left <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0664 W/kg

LEFT HEAD/L-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.659 V/m; Power Drift = 0.47 dB

Peak SAR (extrapolated) = 0.0840 W/kg

SAR(1 g) = 0.052 W/kg; SAR(10 g) = 0.031 W/kg

Maximum value of SAR (measured) = 0.0681 W/kg

Page 84 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

PCS 1900 Low-Touch-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1852.4 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon = 39.48$;

 ρ = 1000 kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.0, Liquid temperature ($^{\circ}$): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C-L/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.33 W/kg

RIGHT HEAD/R-C-L/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.498 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 2.44 W/kg

SAR(1 g) = 1.140 W/kg; SAR(10 g) = 0.555 W/kg

Maximum value of SAR (measured) = 1.66 W/kg

Page 86 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

PCS 1900 Mid-Touch-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.20 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.032 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 0.997 W/kg; SAR(10 g) = 0.478 W/kg

Maximum value of SAR (measured) = 1.44 W/kg

Page 87 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

PCS 1900 High-Touch-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1907.6 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon r = 39.22$

 ρ = 1000 kg/m³ ;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.0, Liquid temperature ($^{\circ}$): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C-H/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.07 W/kg

RIGHT HEAD/R-C-H/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.455 V/m; Power Drift = 0.26 dB

Peak SAR (extrapolated) = 1.96 W/kg

SAR(1 g) = 0.882 W/kg; SAR(10 g) = 0.418 W/kg

Maximum value of SAR (measured) = 1.29 W/kg

Page 88 of 225

Test Laboratory: AGC Lab

Date: Nov. 24,2014

PCS 1900 Mid-Tilt-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0806 W/kg

RIGHT HEAD/R-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.549 V/m; Power Drift = 0.39 dB

Peak SAR (extrapolated) = 0.134 W/kg

SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.034 W/kg

Maximum value of SAR (measured) = 0.0926 W/kg

Page 89 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

PCS 1900 Mid-Body- Back DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

• Probe: EX3DV4 - SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.348 W/kg

BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.462 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.523 W/kg

SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.153 W/kg

Maximum value of SAR (measured) = 0.398 W/kg

Page 91 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

PCS 1900 Mid-Body -Front DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.311 W/kg

BODY/FRONT/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.927 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.520 W/kg

SAR(1 g) = 0.281 W/kg; SAR(10 g) = 0.146 W/kg

Maximum value of SAR (measured) = 0.398 W/kg

Page 92 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

GPRS 1900 Mid-Touch-Left <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GPRS (0); Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$:

 ρ = 1000 kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.479 W/kg

LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.625 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.538 W/kg

SAR(1 g) = 0.392 W/kg; SAR(10 g) = 0.275 W/kg

Maximum value of SAR (measured) = 0.460 W/kg

Date: Nov. 24,2014

Page 93 of 225

Test Laboratory: AGC Lab GPRS 1900 Mid-Tilt-Left <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GPRS (0); Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$:

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.204 W/kg

LEFT HEAD/L-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.368 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.220 W/kg

SAR(1 g) = 0.170 W/kg; SAR(10 g) = 0.124 W/kg

Maximum value of SAR (measured) = 0.199 W/kg

Page 94 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

GPRS 1900 Mid-Touch-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GPRS (0); Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$:

 ρ = 1000 kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.0, Liquid temperature ($^{\circ}$): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.382 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.098 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.498 W/kg

SAR(1 g) = 0.323 W/kg; SAR(10 g) = 0.209 W/kg

Maximum value of SAR (measured) = 0.409 W/kg

Page 95 of 225

Test Laboratory: AGC Lab

Date: Nov. 24,2014

GPRS 1900 Mid-Tilt-Right <SIM 1>

DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GPRS (0); Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$:

 ρ = 1000 kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.0, Liquid temperature ($^{\circ}$): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.197 W/kg

RIGHT HEAD/R-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.521 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.229 W/kg

SAR(1 g) = 0.179 W/kg; SAR(10 g) = 0.134 W/kg Maximum value of SAR (measured) = 0.206 W/kg

Date: Nov. 24,2014

Page 96 of 225

Test Laboratory: AGC Lab GPRS 1900 Mid-Body- Back DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ= 1.49 mho/m; εr =53.77;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK-4ST/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.628 W/kg

BODY/BACK-4ST/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.352 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.88 W/kg

SAR(1 g) = 0.513W/kg; SAR(10 g) = 0.362 W/kg

Maximum value of SAR (measured) = 0.630 W/kg

Date: Nov. 24,2014

Page 97 of 225

Test Laboratory: AGC Lab GPRS 1900 Mid-Body -Front DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ= 1.49 mho/m; εr =53.77;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT-4ST/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.560 W/kg

BODY/FRONT-4ST/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.312 V/m; Power Drift = -0.20 dB

Peak SAR (extrapolated) = 0.69 W/kg

SAR(1 g) = 0.488 W/kg; SAR(10 g) = 0.273 W/kg

Maximum value of SAR (measured) = 0.565 W/kg

Page 98 of 225

Test Laboratory: AGC Lab

Date: Nov. 24,2014

GPRS 1900 Mid- Edge 1

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 1 (Top)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.658 W/kg

BODY/Edge 1 (Top)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.218 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 0.506 W/kg; SAR(10 g) = 0.178 W/kg

Maximum value of SAR (measured) = 1.11 W/kg

Page 99 of 225

Test Laboratory: AGC Lab

Date: Nov. 24,2014

GPRS 1900 Mid- Edge 2

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ mho/m}$; $\epsilon r = 53.77$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 2(Right)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0934 W/kg

BODY/Edge 2(Right)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.913 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.081 W/kg; SAR(10 g) = 0.058 W/kg

Maximum value of SAR (measured) = 0.0977 W/kg

Page 100 of 225

Test Laboratory: AGC Lab

Date: Nov. 24,2014

GPRS 1900 Mid- Edge 3

DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ mho/m}$; $\epsilon r = 53.77$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 3(Bottom)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.129 W/kg

BODY/Edge 3(Bottom)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.863 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.226 W/kg

SAR(1 g) = 0.101 W/kg; SAR(10 g) = 0.049 W/kg

Maximum value of SAR (measured) = 0.163 W/kg

Page 101 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

GPRS 1900 Mid- Edge 4 DUT: Might LTE; Type: Z513

Communication System: GPRS -4 Slot; Communication System Band: GPRS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ= 1.49 mho/m; εr =53.77;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 4(Left)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.184 W/kg

BODY/Edge 4(Left)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.320 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.232 W/kg

SAR(1 g) = 0.153 W/kg; SAR(10 g) = 0.099 W/kg

Maximum value of SAR (measured) = 0.197 W/kg

Page 102 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Low-Touch-Left DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II UTRA/FDD; Duty Cycle:1:1; Frequency: 1852.4 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon r = 40.82 \text{ mho/m}$

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C-L/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.34 W/kg

LEFT HEAD/L-C-L/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.565 V/m; Power Drift = 0.05dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 0.945 W/kg; SAR(10 g) = 0.498 W/kg

Maximum value of SAR (measured) = 1.36 W/kg

Page 104 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid-Touch-Left DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band $\,$ II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.13 W/kg

LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.064 V/m; Power Drift = 0.13dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.806 W/kg; SAR(10 g) = 0.425 W/kg Maximum value of SAR (measured) = 1.17 W/kg

> 0.936 0.705 0.473 0.242

Page 105 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II High-Touch-Left DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II UTRA/FDD; Duty Cycle:1:1; Frequency: 1907.6MHz; Medium parameters used: f = 1900 MHz; σ = 1.35 mho/m; ϵ r =40.25;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C-H/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.02 W/kg

LEFT HEAD/L-C-H/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.353 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.660 W/kg; SAR(10 g) = 0.348 W/kg Maximum value of SAR (measured) = 0.957 W/kg

Date: Nov. 24,2014

Page 106 of 225

Test Laboratory: AGC Lab
WCDMA Band II Mid-Tilt-Left
DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band $\:$ II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ r =40.05; ρ = 1000 kg/m³;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.113 W/kg

LEFT HEAD/L-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.650 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.149 W/kg

SAR(1 g) = 0.090 W/kg; SAR(10 g) = 0.053 W/kg Maximum value of SAR (measured) = 0.122 W/kg

Page 107 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid-Touch-Right DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band $\:$ II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ r =40.05; ρ = 1000 kg/m³;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.632 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.625 V/m; Power Drift = -0.11dB

Peak SAR (extrapolated) = 0.803 W/kg

SAR(1 g) = 0.455 W/kg; SAR(10 g) = 0.260 W/kg

Maximum value of SAR (measured) = 0.633 W/kg

Page 108 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid-Tilt-Right DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band $\:$ II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.05$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.150 W/kg

RIGHT HEAD/R-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.983 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.530 W/kg

SAR(1 g) = 0.162 W/kg; SAR(10 g) = 0.039 W/kg Maximum value of SAR (measured) = 0.148 W/kg

Page 109 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid -Body-Towards Grounds

DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band: II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/1/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.563 W/kg

BODY/1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.517 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.811 W/kg

SAR(1 g) = 0.442 W/kg; SAR(10 g) = 0.239 W/kg Maximum value of SAR (measured) = 0.608 W/kg

Page 111 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid-Body-Towards Phantom

DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band: II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/2/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.457 W/kg

BODY/2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.432 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.681 W/kg

SAR(1 g) = 0.372 W/kg; SAR(10 g) = 0.195 W/kg Maximum value of SAR (measured) = 0.483 W/kg

0.483

0.388

0.293

0.198

0.103

Page 112 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid-Edge 1 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band: II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 1 (Top)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.433 W/kg

BODY/Edge 1 (Top)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.201 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.150 W/kg

Maximum value of SAR (measured) = 0.600 W/kg

Page 113 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid-Edge 2 **DUT: Might LTE**; **Type: Z513**

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ=1.49 mho/m; εr =53.77; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 2(Right)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0837 W/kg

BODY/Edge 2(Right)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.116 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.0940 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.0836 W/kg

Page 114 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid-Edge 3 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band: II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 21.0, Liquid temperature (°C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 3(Bottom)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0965 W/kg

BODY/Edge 3(Bottom)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.864 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.152 W/kg

SAR(1 g) = 0.074 W/kg; SAR(10 g) = 0.038 W/kg

Maximum value of SAR (measured) = 0.103 W/kg

Page 115 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Mid-Edge 4 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band: II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 4(Left)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.177 W/kg

BODY/Edge 4(Left)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.264 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.146 W/kg; SAR(10 g) = 0.099 W/kg

Maximum value of SAR (measured) = 0.181 W/kg

Page 116 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid-Touch-Left DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.96$

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.397 W/kg

LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.763 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.452 W/kg

SAR(1 g) = 0.315 W/kg; SAR(10 g) = 0.218 W/kg Maximum value of SAR (measured) = 0.384 W/kg

Page 117 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid-Tilt-Left DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.92 mho/m; ϵ r =41.96

 ρ = 1000 kg/m³;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.184 W/kg

LEFT HEAD/L-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.402 V/m; Power Drift = 0.68 dB

Peak SAR (extrapolated) = 0.195 W/kg

SAR(1 g) = 0.156 W/kg; SAR(10 g) = 0.118 W/kg Maximum value of SAR (measured) = 0.179 W/kg

Page 118 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid-Touch-Right DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon r = 41.96$

 ρ = 1000 kg/m³;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.383 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.667 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.443 W/kg

SAR(1 g) = 0.341 W/kg; SAR(10 g) = 0.245 W/kg Maximum value of SAR (measured) = 0.400 W/kg

Page 120 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid-Tilt-Right DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon r = 41.96$

 ρ = 1000 kg/m³ ;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.177 W/kg

RIGHT HEAD/R-T/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.054 V/m; Power Drift = -0.41 dB

Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.121 W/kg

Page 121 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid-Body-Towards Grounds

DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.67$;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/1/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.425 W/kg

BODY/1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.097 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.487 W/kg

SAR(1 g) = 0.385 W/kg; SAR(10 g) = 0.297 W/kg Maximum value of SAR (measured) = 0.443 W/kg

Page 123 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid-Body - Towards Phantom

DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.96 mho/m; ϵr =54.67;

 ρ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.355 W/kg

BODY/FRONT/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.855 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.400 W/kg

SAR(1 g) = 0.317 W/kg; SAR(10 g) = 0.243 W/kg

Maximum value of SAR (measured) = 0.364 W/kg

Page 124 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid- Edge 1 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.96 mho/m; ϵr =54.67;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 1 (Top)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.526 W/kg

BODY/Edge 1 (Top)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.370 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.808 W/kg

SAR(1 g) = 0.260 W/kg; SAR(10 g) = 0.105 W/kg

Maximum value of SAR (measured) = 0.503 W/kg

Page 125 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid- Edge 2 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.96 mho/m; ϵr =54.67;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 4(Left) 2/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0598 W/kg

BODY/Edge 4(Left) 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.366 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.113 W/kg

SAR(1 g) = 0.051 W/kg; SAR(10 g) = 0.024 W/kg

Maximum value of SAR (measured) = 0.0804 W/kg

Page 126 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid- Edge 3 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.96 mho/m; ϵr =54.67;

 ρ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 3(Bottom)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0687 W/kg

BODY/Edge 3(Bottom)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.495 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.148 W/kg

SAR(1 g) = 0.073 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.0951 W/kg

Page 127 of 225

Test Laboratory: AGC Lab Date: Nov. 21,2014

WCDMA Band V Mid- Edge 4 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.96 mho/m; ϵr =54.67;

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 4(Left)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.146 W/kg

BODY/Edge 4(Left)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.711 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.174 W/kg

SAR(1 g) = 0.127 W/kg; SAR(10 g) = 0.089 W/kg

Maximum value of SAR (measured) = 0.154 W/kg

Page 128 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

WCDMA Band IV Mid-Touch-Left DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND IV UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; σ =1.41 mho/m; ϵ r =40.05

 ρ = 1000 kg/m³ ;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (10x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.237 W/kg

LEFT HEAD/L-C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.381 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.256 W/kg

SAR(1 g) = 0.208W/kg; SAR(10 g) = 0.152 W/kg Maximum value of SAR (measured) = 0.231 W/kg

Page 130 of 225

Test Laboratory: AGC Lab

Date: Nov. 26,2014

WCDMA Band IV Mid-Tilt-Left DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND $\, {\rm IV} \,$ UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; $\, \sigma$ =1.41 mho/m; $\, {\rm er} = 40.05 \,$ p= 1000 kg/m³;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T/Area Scan (10x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.135 W/kg

LEFT HEAD/L-T/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.328 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.137 W/kg

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.093 W/kg Maximum value of SAR (measured) = 0.129 W/kg

Page 131 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

WCDMA Band IV Mid-Touch-Right DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND $\, {
m IV} \,$ UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; $\, \sigma$ =1.41 mho/m; $\, {
m cr} =$ 40.05 $\, {
m p} =$ 1000 kg/m³;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (10x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.226 W/kg

RIGHT HEAD/R-C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.008 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.245 W/kg

SAR(1 g) = 0.197 W/kg; SAR(10 g) = 0.149 W/kg Maximum value of SAR (measured) = 0.225 W/kg

Page 132 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

WCDMA Band IV Mid-Tilt-Right DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND $\, {
m IV} \,$ UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; $\, \sigma$ =1.41 mho/m; $\, {
m cr} =$ 40.05 $\, {
m p} =$ 1000 kg/m³;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T/Area Scan (10x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.133 W/kg

RIGHT HEAD/R-T/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.961 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.139 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.094 W/kg Maximum value of SAR (measured) = 0.132 W/kg

Page 133 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

WCDMA Band IV Mid-Body-Towards Grounds

DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND $\,\mathrm{IV}\,$ UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: $f = 1700\,$ MHz; $\sigma = 1.49\,$ mho/m; $\,\epsilon r = 53.77;$ $\rho = 1000\,$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (18x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.359 W/kg

BODY/BACK/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.151 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.222 W/kg Maximum value of SAR (measured) = 0.364 W/kg

Page 135 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

WCDMA Band IV Mid-Body - Towards Phantom

DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND IV UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$; $\epsilon r = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT/Area Scan (18x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.268 W/kg

BODY/FRONT/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.526 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.218 W/kg; SAR(10 g) = 0.165 W/kg Maximum value of SAR (measured) = 0.272 W/kg

Page 136 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

WCDMA Band IV Mid- Edge 1 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND $\, {\rm IV} \,$ UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; $\, \sigma$ =1.49 mho/m; $\, \epsilon r$ =53.77; $\, \rho$ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/1/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.138 W/kg

BODY/1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.633 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.191 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.048 W/kg

Maximum value of SAR (measured) = 0.142 W/kg

Test Laboratory: AGC Lab Date: Nov. 26,2014

Report No.:AGC00529141101FH01 Page 137 of 225

WCDMA Band IV Mid- Edge 2 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND IV UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.77$; $\epsilon r = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/2/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.069 W/kg

BODY/2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.451 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.049 W/kg; SAR(10 g) = 0.025 W/kg

Maximum value of SAR (measured) = 0.074 W/kg

Page 138 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

WCDMA Band IV Mid- Edge 3 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND $\, {\rm IV} \,$ UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; $\, \sigma$ =1.49 mho/m; $\, \epsilon r$ =53.77; $\, \rho$ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/3/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) =1.119 W/kg

BODY/3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.225 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 0.511 W/kg; SAR(10 g) = 0.183 W/kg

Maximum value of SAR (measured) = 1.125 W/kg

Page 139 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

WCDMA Band IV Mid- Edge 4 DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1700 (0); Communication System Band: BAND $\, {\rm IV} \,$ UTRA/FDD; Duty Cycle:1:1; Frequency: 1700 MHz; Medium parameters used: f = 1700 MHz; $\, \sigma$ =1.49 mho/m; $\, \epsilon r$ =53.77; $\, \rho$ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/4/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.178 W/kg

BODY/4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.271 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.213 W/kg SAR(1 g) = 0.149 W/kg; SAR(10 g) = 0.102 W/kg

Maximum value of SAR (measured) = 0.184 W/kg

Page 140 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Touch-Left (1RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C 1RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.790 W/kg

LEFT HEAD/L-C 1RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.721 V/m; Power Drift = 0.07dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.617 W/kg; SAR(10 g) = 0.339 W/kg Maximum value of SAR (measured) = 0.861 W/kg

Page 141 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Tilt-Left (1 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C):21, Liquid temperature ($^{\circ}$ C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T 1RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0984 W/kg

LEFT HEAD/L-T 1RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.536 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.076 W/kg; SAR(10 g) = 0.047 W/kg Maximum value of SAR (measured) = 0.0987 W/kg

Page 142 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Touch-Right (1 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C 1RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.352 W/kg

RIGHT HEAD/R-C 1RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.799 V/m; Power Drift = 0.17dB

Peak SAR (extrapolated) = 0.453 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.359 W/kg

Page 143 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Tilt-Right (1 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T 1RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0833 W/kg

RIGHT HEAD/R-T 1RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.351 V/m; Power Drift =0.11 dB

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.042 W/kg Maximum value of SAR (measured) = 0.0932 W/kg

Page 144 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Low-Touch-Left(50RB#0)
DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD ;Duty Cycle:1:1; Frequency: 1720 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 40.18$ $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C 50RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.801 W/kg

LEFT HEAD/L-C 50RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value =3.871 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.624 W/kg; SAR(10 g) = 0.347 W/kg Maximum value of SAR (measured) = 0.869 W/kg

Page 145 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Touch-Left(50RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C):21, Liquid temperature ($^{\circ}$ C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C 50RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.828 W/kg

LEFT HEAD/L-C 50RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.068 V/m; Power Drift =-0.14 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.684 W/kg; SAR(10 g) = 0.371 W/kg Maximum value of SAR (measured) = 0.926 W/kg

Page 146 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 High-Touch-Left(50RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD ;Duty Cycle:1:1; Frequency: 1745 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.38 \text{mho/m}$; $\epsilon r = 39.56 \rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C 50RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.815 W/kg

LEFT HEAD/L-C 50RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.954 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.678 W/kg; SAR(10 g) = 0.366 W/kg Maximum value of SAR (measured) = 0.916 W/kg

Page 147 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Tilt-Left (50 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C):21, Liquid temperature ($^{\circ}$ C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T 50RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.121 W/kg

LEFT HEAD/L-T 50RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.968 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.137 W/kg

SAR(1 g) = 0.080 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.108 W/kg

Page 148 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Touch-Right (50 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C 50RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.384 W/kg

RIGHT HEAD/R-C 50RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.725 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.531 W/kg

SAR(1 g) = 0.288 W/kg; SAR(10 g) = 0.164 W/kg Maximum value of SAR (measured) = 0.395 W/kg

Page 149 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Tilt-Right (50 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD ;Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T 50RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0944 W/kg

RIGHT HEAD/R-T 50RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.288 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.071 W/kg; SAR(10 g) = 0.044 W/kg Maximum value of SAR (measured) = 0.0956 W/kg

Page 150 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Low-Touch-Left(100RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD ;Duty Cycle:1:1; Frequency: 1720 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.35$ mho/m; $\epsilon r = 40.16$ $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C):21, Liquid temperature ($^{\circ}$ C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C 100RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.857 W/kg

LEFT HEAD/L-C 100RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.325 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.708 W/kg; SAR(10 g) = 0.383 W/kg Maximum value of SAR (measured) = 0.993 W/kg

Page 151 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Touch-Left(100RB#0)
DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C):21, Liquid temperature ($^{\circ}$ C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C 100RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.864 W/kg

LEFT HEAD/L-C 100RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.544 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.712 W/kg; SAR(10 g) = 0.387 W/kg Maximum value of SAR (measured) = 1.03 W/kg

Page 153 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 High-Touch-Left (100RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD ;Duty Cycle:1:1; Frequency: 1745 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.42 \text{mho/m}$; $\epsilon r = 40.46 \rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C 100RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.860 W/kg

LEFT HEAD/L-C 100RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.042V/m; Power Drift =-0.06 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.709 W/kg; SAR(10 g) = 0.385 W/kg Maximum value of SAR (measured) = 1.00 W/kg

Page 154 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Tilt-Left (100 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-T 100RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.118 W/kg

LEFT HEAD/L-T 100RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.559 V/m; Power Drift =- 0.20 dB

Peak SAR (extrapolated) = 0.132 W/kg

SAR(1 g) = 0.084 W/kg; SAR(10 g) = 0.053 W/kg Maximum value of SAR (measured) = 0.109 W/kg

Page 155 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Touch-Right (100 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 10/27/2014

Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C 100RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.366 W/kg

RIGHT HEAD/R-C 100RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.645 V/m; Power Drift = 0.03dB

Peak SAR (extrapolated) = 0.487 W/kg

SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.162 W/kg Maximum value of SAR (measured) = 0.393 W/kg

Page 156 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Tilt-Right (100 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.40 \text{mho/m}$; $\epsilon r = 40.88 \text{ p} = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(8.00, 8.00, 8.00); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-T 100RB/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.105 W/kg

RIGHT HEAD/R-T 100RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.000 V/m; Power Drift = 0.06dB

Peak SAR (extrapolated) = 0.131 W/kg

SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.047 W/kg Maximum value of SAR (measured) = 0.104 W/kg

Page 157 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Body-Towards Grounds(1 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.47$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK 1RB/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.530 W/kg

BODY/BACK 1RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.677 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.802 W/kg

SAR(1 g) = 0.462 W/kg; SAR(10 g) = 0.247 W/kg

Maximum value of SAR (measured) = 0.624 W/kg

Page 158 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid- Body - Towards Phantom(1 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.47$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT 1RB/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.501 W/kg

BODY/FRONT 1RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.968 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.687 W/kg

SAR(1 g) = 0.392 W/kg; SAR(10 g) = 0.220 W/kg Maximum value of SAR (measured) = 0.558 W/kg

Page 159 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Body-Towards Grounds (50 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.47$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK 50RB/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.597 W/kg

BODY/BACK 50RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.156 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.828 W/kg

SAR(1 g) = 0.492 W/kg; SAR(10 g) = 0.270 W/kg

Maximum value of SAR (measured) = 0.681 W/kg

Page 160 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid- Body - Towards Phantom(50 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz;σ=1.50 mho/m; εr =53.47;ρ= 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

Probe: EX3DV4 - SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 10/27/2014

Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT 50RB/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.622 W/kg

BODY/FRONT 50RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.048 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.833 W/kg

SAR(1 g) = 0.462 W/kg; SAR(10 g) = 0.256 W/kg Maximum value of SAR (measured) = 0.664 W/kg

Page 161 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid-Body-Towards Grounds (100 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.47$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK 100RB/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.673 W/kg

BODY/BACK 100RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.081 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.832 W/kg

SAR(1 g) = 0.499 W/kg; SAR(10 g) = 0.273 W/kg Maximum value of SAR (measured) = 0.687 W/kg

0.553

0.418

0.284

0.150

Page 163 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid- Body - Towards Phantom (100 RB#0)

DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.47$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):21, Liquid temperature ($^{\circ}$ C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/FRONT 100RB/Area Scan (12x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.548 W/kg

BODY/FRONT 100RB/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.770 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.797 W/kg

SAR(1 g) = 0.420 W/kg; SAR(10 g) = 0.233 W/kg Maximum value of SAR (measured) = 0.623 W/kg

Page 164 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid- Edge 1 (100 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.47$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 1 (Top)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.433 W/kg

BODY/Edge 1 (Top)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.201 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.150 W/kg

Maximum value of SAR (measured) = 0.600 W/kg

Page 165 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid- Edge 2 (100 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz;σ=1.50 mho/m; εr =53.47;ρ= 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 2(Right)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.144 W/kg

BODY/Edge 2(Right)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.672 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.165 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.146 W/kg

Page 166 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid- Edge 3 (100 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz; \u03c3=1.50 mho/m; \u03c3 r = 53.47; \u03c6 = 1000 kg/m^3;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 3(Bottom)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.114 W/kg

BODY/Edge 3(Bottom)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.621 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.185 W/kg

SAR(1 g) = 0.089 W/kg; SAR(10 g) = 0.044 W/kg Maximum value of SAR (measured) = 0.139 W/kg

Page 167 of 225

Test Laboratory: AGC Lab Date: Nov. 26,2014

LTE Band 4 Mid- Edge 4 (100 RB#0) DUT: Might LTE; Type: Z513

Communication System: UMTS; Communication System Band: LTE Band 4 UTRA/FDD; Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: f = 1700 MHz;σ=1.50 mho/m; εr =53.47;ρ= 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.93,7.93, 7.93); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/Edge 4(Left)/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.178 W/kg

BODY/Edge 4(Left)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.875 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.227 W/kg

SAR(1 g) = 0.150 W/kg; SAR(10 g) = 0.098 W/kg Maximum value of SAR (measured) = 0.191 W/kg

Page 168 of 225

Repeated SAR

Test Laboratory: AGC Lab Date: Nov. 24,2014

PCS 1900 Low-Touch-Right <SIM 1> DUT: Might LTE; Type: Z513

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1852.4 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 39.48$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

REPEATED/R-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.883 W/kg

REPEATED/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.869 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.662 W/kg; SAR(10 g) = 0.335 W/kg

Maximum value of SAR (measured) = 0.964 W/kg

Page 169 of 225

Test Laboratory: AGC Lab Date: Nov. 24,2014

WCDMA Band II Low-Touch-Left DUT: Might LTE; Type: Z513

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II UTRA/FDD; Duty Cycle:1:1; Frequency: 1852.4 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 39.48$

 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature (°C):21, Liquid temperature (°C):21

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 10/27/2014
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

REPEATED/L-C/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.963 W/kg

REPEATED/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.064 V/m; Power Drift =-0.12 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.681 W/kg; SAR(10 g) = 0.364 W/kg

Maximum value of SAR (measured) = 0.967 W/kg

