Hin. Van Trees Detection, Estimation, and medalation Theory: Part I Wiley 1968

Two particularly interesting curves are those for N=8, $\sigma_s^2/\sigma_n^2=1$ and N=2, $\sigma_s^2/\sigma_n^2=4$. In both cases the product $N\sigma_s^2/\sigma_n^2=8$. We see that when the desired P_F is greater than 0.3, P_D is higher if the available "signal strength" is divided into more components. This suggests that for each P_F

and product $N\sigma_s^2/\sigma_n^2$ there should be an optimum N. In Chapter 4 we shall see that this problem corresponds to optimum diversity in communication systems and the optimum energy per pulse in radar. In Figs. 2.35b and c we have sketched P_M as a function of N for $P_F = 10^{-2}$ and 10^{-4} , respectively, and various $N\sigma_s^2/\sigma_n^2$ products. We discuss the physical implications of these results in Chapter 4.

Fig. 2.35 a. Receiver operating characteristic: Gaussian variables with identical means and unequal variances on the two hypotheses.