

POLITECNICO DI MILANO DEPARTMENT OF INFORMATION, ELECTRONICS AND BIOENGINEERING DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

On the Exploitation of Uncertainty to Improve Maximum Expected Value Estimate and Exploration in Reinforcement Learning

Doctoral Dissertation of: **Carlo D'Eramo**

Supervisor:

Prof. Marcello Restelli

Tutor:

Prof. Andrea Bonarini

The Chair of the Doctoral Program:

Prof. Marcello Restelli

Abstract	

BSTRACT goes here.

		Summa	ary

UMMARY goes here.

Contents

GI	ossary	XIII
1	Introduction 1.1 Perception and interaction	1 1 2 2 3 3
2	Preliminaries 2.1 Agent and environment 2.2 Markov Decision Processes 2.2.1 Value functions 2.3 Solving a MDP 2.3.1 Dynamic Programming 2.3.2 Reinforcement Learning	5 5 6 7 8 8
3	Maximum Expected Value estimate 3.1 Estimating the MEV 3.2 Related works	11 12 12 13 14 14
4	Exploration	19
5	Deep	21
6	Mushroom	23
7	Conclusion	25

Contents	
Bibliography	27

List of Figures

1.1	Reinforcement Learning problem scheme	2
	Reinforcement Learning problem scheme	5
2.2	Markov Decision Process	7
3.1	Comparison of the bias of the different estimators varying the difference	
	of the means	15
3.2	Comparison of the absolute bias of the different estimators varying the	
	difference of the means	15
3.3	Comparison of the variance of the different estimators varying the dif-	
	ference of the means	16
3.4	Comparison of the Mean Squared Error (MSE) of the different estima-	
	tors varying the difference of the means	16

List	of	Alc	ori	th	ms

1	Iterative Policy Evaluation													9
2	Iterative Policy Evaluation						_	_			_		_	9

Glossary

D

DL Deep Learning. 4

DRL Deep Reinforcement Learning. 4

 \mathbf{M}

MAB Multi-Armed Bandit. 3

MDP Markov Decision Process. 6, 7

ML Machine Learning. 2

R

RL Reinforcement Learning. 2–5

Introduction

VERYONE experiences the process of taking decisions during his life. As a matter of fact, drastically the life of an individual can be synthesized in its *perception* of the world and its *interaction* with it. The concepts of perception and interaction might seem quite straightforward to understand: for a human the perception of the world comes from its senses and the interaction comes from its possibility to change its surroundings. On the contrary, these concepts are actually absolutely hard to define and aroused, during the centuries, a strong debate between scientists, biologists, and even philosophers.

1.1 Perception and interaction

We start from the assumption that, by definition, an individual perceive the environment around it and acts on it in order to achieve *goals* expressed by its will. In other words, all the actions made by an individual are done to satisfy its will to obtain something from the world it lives in. This task is naturally performed by humans, but it implies some challenging problems that are hard, or unfeasible, to solve. One of them comes from the intrinsic *uncertainty* of the perception we have of the world around us. Indeed, the perception of the world consists in the interpretation of the information provided by senses, but the process of information retrieval by senses and the mental processes to understand them, inevitably introduce a certain level of noise that distorts the original true information. On the other hand, the interaction with the world deals with the will of the individual to perform actions to change the environment around it, but this apparently simple operation involves complex biologic mechanisms to coordinate the body according to the will and difficulties in the perception of the consequences of the interaction. Moreover, the concept of goal can be unclear and the individual may

Figure 1.1: The scheme of a RL model.

result in performing actions without being sure of what it wants. It is arguable that discussing about the concept of true information and the concept of will requires strong theoretical considerations since they are both hardly definable concepts. For many centuries scientists and philosophers debated about these topics, in particular trying to solve complex problems like the real nature of perceivable things and the concept of free will. However, to make the discussion of these concepts suitable for our purposes throughout all this thesis, we lighten the definition of them to the one provided by common sense.

1.2 Learn how to act with Reinforcement Learning

Reinforcement Learning (RL) [15] is a subfield of Machine Learning (ML) which aims to realize autonomous *agents* able to learn how to act in a certain *environment* in order to maximize an objective function; this is achieved providing the agent with the perception of its *state* in the environment and making it learn the appropriate *action* to perform, where an action can be seen as an atomic operation that brings the agent from a state to another one. The objective function represents a measure of how well the agent is accomplishing its task in the environment and it is usually formalized by a discounted sum of *rewards* obtained after each action (Figure 1.1). The sum is discounted to give more importance to the most recent rewards w.r.t. the ones further in the future. The reward function, i.e. the function returning the reward after each action, is not a concrete part of the environment, but it is often designed by a human which decides whether a certain behavior has to be reinforced (returning a positive reward) or inhibited (returning a negative reward).

1.2.1 Uncertainty in Reinforcement Learning

The major challenge of RL is represented by the uncertainty. In fact, initially, the agent is not provided with the knowledge of how the environment will react to its action, thus it does not know whether an action would be good or not to maximize its objective

function. In other words, before trying an action, it does not know if that action will get a positive or a negative reward, and it does not know if that action will let it go to the desired state or not. Thus, the former problem can be seen as uncertainty in the reward function and the latter as uncertainty in the transition (i.e. model) function. In some cases, also the uncertainty in the perception of the current state of the agent is considered, making the problem more complex.

The uncertainty issue results in the need of the agent to try actions in order to improve its knowledge of the environment. This process delays the collection of high rewards, but helps the agent to reduce its uncertainty. However, since the objective function is a sum of discounted rewards where later rewards worth less than recent ones, the agent also needs to learn fast in order to learn to perform the most rewarding actions as soon as possible. The need to explore and the need to exploit the actions believed to be good introduces an important problem known as exploration-exploitation dilemma.

1.2.2 Balancing exploration and exploitation

The exploration-exploitation dilemma has been broadly studied in the field of Multi-Armed Bandit (MAB), a particular case of the RL problem with a single state [8]. In this problem the goal is to find the sequence of optimal actions, i.e. the sequence of actions that allows to maximize the return. The simplistic setting of the MAB problem allows to theoretically study the balancing of exploratory and exploitative actions, for instance to derive upper confidence bounds on the *regret*, i.e. a measure of the return lost in performing non-optimal actions [1,6,22], and several algorithms to address this problem have been proposed such as UCB1 [2] and Thompson sampling [16].

The RL setting complicates the MAB problem because of the presence of multiple states. This makes the exploration-exploitation dilemma less tractable in terms of complexity and computational feasibility. Indeed, the quality of the actions must now be evaluated for each state, contrarily to the MAB case where the presence of a single state simplifies the problem. This issue is what makes RL so challenging and has been addressed for decades in the literature.

1.3 My research

The strong connection between uncertainty and the exploration-exploitation dilemma is highlighted by the previous considerations and it is intuitive how the effectiveness of a RL algorithm depends on its ability of reducing the uncertainty of the agent in a computationally and data-efficient way. The RL literature contains lots of algorithms and methodologies proposed to make the agent learn a good policy aiming at efficiency; however, despite addressing the reduction of uncertainty via experience, only few of them explicitly exploit uncertainty to learn.

During my Ph.D., I studied ways to develop algorithms that exploit uncertainty since the explicit consideration of uncertainty has been shown to be often helpful in order to improve the performance and efficiency of learning. One of the most common technique to explore is known as ε -greedy and consists in performing, at each state, a random action with probability ε and the action considered to be the best one with probability $1-\varepsilon$. This exploratory policy does not consider the uncertainty of the agent

and simply randomly moves it with the drawback of requiring a huge amount of experience to learn effective policies. This is shown especially in recent works on the field of Deep Reinforcement Learning (DRL) [9,21,23] which studies the application of Deep Learning (DL) models and methodologies to exploit their strong ability to generalize with the purpose to solve highly complex problems that were unfeasible before. Research on DRL, brought to the realization of groundbreaking works where authors have been able to reach the state-of-the-art in extremely complex games such as Go [10, 12] and chess [11].

The extraordinariness of these results is comparable to the amount of experience required by these algorithms to work. For instance, in [9] the experiments are performed using 50M samples corresponding to three days of computation and weeks of human play. This work does not address the problem of data-efficiency aiming more to other goals (e.g. maximizing the cumulative reward) and for this reason the previously described exploration policy of ε -greedy is used. However, data-efficiency can be pursued exploiting uncertainty in order to balance the knowledge of the agent of already known states and unknown ones, for instance letting it explore unknown states with higher probability. Moreover, the exploitation of uncertainty can also help to improve other aspect involved in learning algorithms which will explained more in details during the thesis.

My Ph.D. research brought to the publication of four conference papers, most of them focused on the previously described topic. I also developed, together with a colleague of mine, a RL Python library which had the initial purpose to facilitate my research, but which has become larger and larger allowing now to do RL research for general purposes. Other works are still ongoing and others have not been accepted for publications, still I think they worth to be mentioned in this thesis anyway. The whole document is composed of seven chapters, with this introduction being the first of them:

- second chapter resumes the main concepts of RL starting from the fundamental
 theory behind it and then giving a description of several methodologies related to
 this thesis. This chapter has the purpose to provide a general, but useful, overview
 of what is necessary to understand the following chapters;
- **third** chapter describes three publications I made about ways to exploit uncertainty in the context of Value-Based RL and more in particular in the famous algorithm of Q-Learning;
- **fourth** chapter deals with the description of novel algorithms that exploit uncertainty in order to improve exploration;
- **fifth** chapter extends the previous work to the DRL framework;
- sixth chapter provides a description of the RL Python library I developed;
- **seventh** chapter concludes the thesis resuming the previous chapters and providing my considerations about the research I made and the one I think will be interesting to pursue in the following years, by me or someone else!

Preliminaries

RL is intuitively describable as the process of learning from interaction with the environment, but this hasty explanation is only a very high level description of it; indeed, a more formal way to model the problem is required to properly analyze it. This chapter provides a description of the mathematical framework required to model RL. It also explains a selection of algorithms that are related to the work done in this thesis in order to provide enough knowledge about the literature I dealt with during my years of Ph.D. research.

2.1 Agent and environment

The interaction of an agent inside an environment can be seen as the execution of actions to move itself and observing the consequences of its actions (Figure 2.1). The temporal progress of the interaction is modeled in a set of discrete time steps $t \in [0,1,2,\ldots]$ where the agent sees a representation S_t of the environment, executes an

Figure 2.1: *The scheme of a RL model.*

action A_t and observes the new representation of the environment S_{t+1} . The problems about observation and interaction discussed in Chapter 1 are simplified by an explicit selection of data to observe from the environment and of the executable actions. In this way, only the relevant aspect of the sensory data acquired from the environment the agent are used. Together with S_{t+1} , the agent also sees a return R_t which is not given by the environment, but is a measure considered by the agent to evaluate the convenience of the consequences of the actions it executes. The total number of time steps is called *horizon* H and determines a first taxonomy of problems:

- finite time horizon: $t_i, \forall i \in [0, 1, 2, \dots, H)$;
- infinite time horizon: $t_i, \forall i \in [0, 1, 2, ..., \infty)$.

Some problems can terminate before reaching the horizon, which happens when the agent reaches special situations called *absorbing* states. These states are usually desirable or catastrophic states when the interaction of the agent with the environment is no more useful or impossible. The set of steps between the start of the interaction to the end is called *episode*.

The interaction of the agent with the environment is performed with the purpose to reach a goal for which the agent has been designed. The way to give the knowledge of the goal to the agent is to provide it with a measure of the quality of its behavior. This measure is called *reward* and is a function usually returning a real scalar value given the observation of the current state of the agent. The goal of the agent is to maximize a measure related to the collected rewards. In an infinite time horizon problem it can be:

• cumulative reward:

$$J = \sum_{t=0}^{\infty} r_t; \tag{2.1}$$

• average reward:

$$J = \lim_{n \to \infty} \frac{\sum_{t=0}^{n} r_t}{n}; \tag{2.2}$$

• discounted cumulative reward:

$$J = \sum_{t=0}^{\infty} \gamma^t r_t. \tag{2.3}$$

The measure in Equation 2.3 uses a real scalar $\gamma \in (0,1]$, called *discount factor*, which has the purpose to give different importance to rewards w.r.t. the time step they have been collected. If $\gamma = 1$ the equation reduces to 2.1, whereas the smaller it becomes the less the agent cares about rewards far in time.

2.2 Markov Decision Processes

The mathematical framework to study the interaction of the agent with the environment is provided by the theory behind Markov Decision Processes (MDPs). A MDP is defined as a 6-tuple where $\langle S, A, R, T, \gamma, \mu \rangle$:

• S is the set of states where the agent can be in the environment;

Figure 2.2: ...

- \bullet A is the set of actions that the agent can execute in the environment;
- \mathcal{R} is the set of rewards obtainable by the agent;
- \mathcal{T} is the *transition function* consisting in the probability of reaching a state s' executing action a in state s: $\mathcal{T}(s, a) = P(s'|s, a)$;
- γ is the discount factor;
- μ is the probability of each state to be the initial one: $\mu(s) = P(s_0 = s)$.

A MDP is called *finite*, or *discrete*, if the set of states S and set of actions A are finite; it is called *infinite*, or *continuous*, when the set of states S is infinite and/or the set of actions A is infinite. Two important properties of the MDPs:

- stationarity: the transition function \mathcal{T} does not change over time;
- Markovian assumption: the transition and reward function depend only on the current time step and not on the previous ones.

These two properties are taken as assumptions by most of the literature about MDPs and by the work presented in this thesis too.

2.2.1 Value functions

Recalling that the goal of the agent is to maximize the cumulative (discounted) reward obtained during an episode, a MDP is considered *solved* when the agent learns the actions to perform in each state which maximizes this measure. The function defining the probability of executing action a in a state s is called *policy*: $\pi(s) = P(a|s)$. An *optimal* policy π^* is the one which, when followed, allows the agent to solve the MDP. Considering the stochasticity in the transition function $\mathcal T$ and in the policy π , the expected value of the cumulative discounted reward obtainable following π is called *state value function*:

$$V_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0} \gamma^k R_{t+k} | S_t = s\right], \forall s \in \mathcal{S}.$$
 (2.4)

Chapter 2. Preliminaries

Then, an optimal policy can be defined also as the one which maximizes the value function of each state:

$$V^*(s) = \max_{\pi} V_{\pi}(s), \forall s \in \mathcal{S}. \tag{2.5}$$

Together with the state value function, the action value function is defined as:

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}\left[\sum_{k=0} \gamma^k R_{t+k} | S_t = s, A_t = a\right], \forall s \in \mathcal{S}, a \in \mathcal{A}.$$
 (2.6)

And subsequently the optimal policy maximizes also the action value function of each state-action tuple:

$$Q^*(s, a) = \max_{\pi} Q_{\pi}(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}.$$
(2.7)

2.3 Solving a MDP

Value functions are the main concept used by several algorithms to address the problem of solving MDPs. In the following, a description of algorithms exploiting value functions to solve MDPs is provided, from the easiest case to the hardest ones.

2.3.1 Dynamic Programming

When the transition function \mathcal{T} and reward function \mathcal{R} of a MDP are known, the full model of the environment is available. This is not the case in many real world problems where an agent does not know where the action would bring it and which return would obtain, but constitutes an interesting scenario to start studying the problem of solving a MDP. The theory behind the solving MDPs with full model available is known under the name of Dynamic Programming (DP) [3,4]. The main concept in the research on DP is the optimal Bellman equation, defined as

$$V^{*}(s) = \max_{a} \mathbb{E}[R_{t} + \gamma V^{*}(s')|S_{t} = s, A_{t} = a, S_{t+1} = s']$$

$$= \max_{a} \sum_{s'} p(s'|s, a)[r + \gamma V^{*}(s')]$$
(2.8)

for state value function, and

$$Q^{*}(s, a) = \mathbb{E}[R_{t} + \gamma \max_{a'} Q^{*}(s', a') | S_{t} = s, A_{t} = a, S_{t+1} = s']$$

$$= \sum_{a'} p(s'|s, a) [r + \gamma \max_{a'} Q^{*}(s', a')]$$
(2.9)

for action value function, for all $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}$. The optimal Bellman equation serves as a way to derive the optimal policy, but requires the optimal value functions to be known. Usually the optimal value functions are unknown and in order to learn them several algorithms change the Bellman equation in form of an assignment repeated iteratively.

Algorithm 1 Iterative Policy Evaluation

```
1: Inputs: policy \pi to evaluate, a small threshold \theta determining the accuracy of the estimate 2: Initialize: V(s), \forall s \in \mathcal{S} arbitrarily, V(s') = 0 for all terminal states s' 3: repeat 4: \Delta \leftarrow 0 5: for all s \in \mathcal{S} do 6: v \leftarrow V(s) 7: V(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s,a)[r+\gamma V(s')] 8: \Delta \leftarrow \max(\Delta, |v-V(s)|) 9: end for 10: until \Delta < \theta
```

Algorithm 2 Iterative Policy Evaluation

```
1: Initialize: \pi(s) \in \mathcal{A} arbitrarily for all s \in \mathcal{S}
 2: repeat
 3:
        Iteration policy evaluation
        Policy improvement:
 4:
        policy\_stable \leftarrow true
 5:
        for all s \in \mathcal{S} do
 6:
 7:
           old\_a \leftarrow \pi(s)
           \pi(s) \leftarrow arg \max_{a} \sum_{s'} P(s'|s, a) [r + \gamma V(s')]
 8:
           If old\_a \neq \pi(s), then policy\_stable \leftarrow false
 9.
10:
        end for
11: until policy-stable
```

Policy Iteration

The iterative application of the Bellman equation when following a policy π is called *iterative policy evaluation* (Algorithm 1) since it allows to compute the value functions of states and actions w.r.t. the policy π :

$$V_{t+1}(s) = \mathbb{E}_{\pi}[R_t + \gamma V_t(S_{t+1})|S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s} P(s'|s, a)[r + \gamma V_t(s')]$$
(2.10)

for all $s \in \mathcal{S}$. It can be shown that the iterative application of the Bellman equation always converges to a single fixed point V_{π} .

Once the value functions have converged, it is interesting to see if the current policy can be improved in order to make it closer to the optimal one or not. One way to do this consists in considering a state s and an action $a \neq \pi(s)$ and computing

$$Q_{\pi}(s, a) = \mathbb{E}[R_t + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

$$= \sum_{s'} P(s'|s, a) [r + \gamma V_{\pi}(s')]. \tag{2.11}$$

Whenever $Q_{\pi}(s, a) > Q_{\pi}(s, \pi(s))$ it is convenient to update the policy such as $\pi(s) = a$. This procedure is called *policy improvement*. The process of alternating steps of iterative policy evaluation and policy improvement brings to the estimation of the optimal value functions and is resumed in an algorithm called *Policy Iteration* (Algorithm 2).

Value Iteration

The alternation of policy evaluation and policy improvement is a drawback of Policy Iteration which may slowdown the learning. Among other algorithms, the algorithm of *Value Iteration* addresses this problem stopping policy evaluation after only one update of each state value function. The update is different from the one in policy evaluation since it combines the policy evaluation steps and the policy improvement:

$$V_{t+1}(s) = \max_{a} \mathbb{E}[R_t + \gamma V_t(S_{t+1}) | S_t = s]$$

$$= \max_{a} \sum_{s} P(s'|s, a) [r + \gamma V_t(s')]$$
(2.12)

for all $s \in \mathcal{S}$. Desirably, Value Iteration maintains the properties of Policy Iteration about convergence to the fixed point corresponding to the optimal value functions.

As stated at the beginning of the section, the previous methods can be applied only when the full model of the MDP is known. However, in most of real cases the full model is not available and the agent must move in the environment in order to understand it.

2.3.2 Reinforcement Learning

Online

Batch

Deep Reinforcement Learning

Maximum Expected Value estimate

In many machine learning problems it is necessary to estimate the Maximum Expected Value (MEV) of a set of random variables, given samples collected from each variable [19]. For instance, in RL, the optimal policy can be found by taking, in each state, the action that attains the maximum expected cumulative reward. The optimal value of an action in a state, on its turn, depends on the maximum expected values of the actions available in the reached states. Since errors propagate through all the state-action pairs, a bad estimator for the maximum expected value negatively affects the speed of learning [18]. Another example of the importance of producing accurate estimates for the maximum expected value is provided by sponsored search auctions, where the search engine needs to select which ad to show from a pool of candidates. To select the best ad, usually, one needs to estimate the probability that a random user will click on it. Since, each time an ad is clicked, the search engine charges to the advertiser a fee that depends on the click probabilities of the top two ads, a good estimate of the maximum expected value is essential to maximize the revenue of the search engine [24].

The most common estimator is the Maximum Estimator (ME), which consists of taking the maximum of the sample means. It is well known [13,17,18] that ME overestimates the maximum expected value. To avoid such positive bias, a common approach is the Double Estimator (DE), that consists in a cross-validatory approach where the sample set is split into two sample sets A and B [14]. DE results from the average of two estimates. For the first estimate, the sample set A is used to determine which is the variable with the largest mean, while sample set B is used to estimate the value of the variable. The second estimate is obtained by switching the roles of A and B. Although the absolute bias of DE can be larger than the one of ME [19], DE is negatively biased and this can be an advantage in some applications [18,20,24]. Unfortunately, an unbiased estimator for the maximum expected value *does not exist* for many common

distributions (e.g., Gaussian, Binomial, and Beta) [5,7]. On the other hand, having an unbiased estimator does not entail a small expected MSE, since also the variance of the estimator has to be considered.

In this paper we propose to estimate the maximum expected value using the Weighted Estimator (WE), that consists of a weighted average of the sample means, where the weights are obtained by estimating the probability that each variable has the largest expected value. To compute such probabilities we would need to know the distributions of the sample means. Relying on the central limit theorem, we approximate the distributions of the samples means with Gaussian distributions parameterized by the sample mean and sample variance. Such weighting mechanism reduces the bias w.r.t. ME without increasing the variance as DE does.

3.1 Estimating the MEV

We consider the problem of finding the maximum expected value of a finite set of $M \geq 2$ independent random variables $X = \{X_1, ..., X_M\}$. We denote with $f_i : \mathbb{R} \to \mathbb{R}$ the Probability Density Function (PDF), with $F_i : \mathbb{R} \to \mathbb{R}$ the Cumulative Density Function (CDF), with μ_i the mean, and with σ_i^2 the variance of variable X_i . The ME $\mu_*(X)$ is defined as

$$\mu_*(X) = \max_i \mu_i = \max_i \int_{-\infty}^{+\infty} x f_i(x) \, \mathrm{d}x.$$
 (3.1)

Assuming that the PDFs are unknown, $\mu_*(X)$ cannot be found analytically. Given a set of noisy samples $S = \{S_1, ..., S_N\}$ retrieved by the unknown distributions of each X_i , we are interested in finding an accurate estimator $\hat{\mu}_*(S) \approx \mu_*(X)$. These random samples have means $\hat{\mu}_1, ..., \hat{\mu}_N$ that are unbiased estimators of the true mean μ_i . The PDF and CDF of $\hat{\mu}_i(S)$ are denoted by \hat{f}_i^S and \hat{F}_i^S .

3.2 Related works

The maximum expected value can be approximated with the maximum of the sample means:

$$\hat{\mu}_*^{ME}(S) = \max_i \hat{\mu}_i(S) \approx \mu_*(X).$$
 (3.2)

This method is called ME and it is used, for instance, by Q-Learning to approximate the value of the following state by maximizing over the estimated action values in that state. Unfortunately, as proved in [13], this estimator is positively biased and this is critical in Q-Learning where the approximation error can increase step by step due to the overestimation of the state-action values. To understand the presence of this positive bias, consider the CDF $\hat{F}_{\max}(x)$ of the maximal estimator $\max_i \hat{\mu}_i$ that is the probability that ME is less than or equal to x. This probability is equal to the probability that all other estimates are less than or equal to x: $\hat{F}_{\max}(x) = P(\max_i \hat{\mu}_i \leq x) = \prod_{i=1}^M \hat{F}_i(x)$. Considering the PDF \hat{f}_{\max} , the expected value of the

ME is $E\left[\hat{\mu}_*^{ME}\right]=E[\max_i\hat{\mu}_i]=\int_{-\infty}^{\infty}x\hat{f}_{\max}(x)dx.$ This is equal to

$$E\left[\hat{\mu}_{*}^{ME}\right] = \int_{-\infty}^{\infty} x \frac{d}{dx} \prod_{j=1}^{M} \hat{F}_{j}(x) dx$$
$$= \sum_{i}^{M} \int_{-\infty}^{\infty} x \hat{f}_{i}(x) \prod_{i \neq j}^{M} \hat{F}_{j}(x) dx. \tag{3.3}$$

However, this is the expected value of the ME, not the MEV in (3.1). The positive bias can be explained by the presence of x in the integral which correlates with the monotonically increasing product $\prod_{i\neq j}^{M} \hat{F}_{j}(x)$.

In order to avoid this issue, an alternative method, called DE, has been proposed in [18] and theoretically analyzed in [19]. In this technique, like in the case of the maximum estimator, a sample set S retrieved by the true unknown distribution is used, but in this case it is divided in two disjoint subsets $S^A = \{S_1^A, ..., S_N^A\}$ and $S^B = \{S_1^B, ..., S_N^B\}$. If the sets are split in a proper way, for instance randomly, the sample means $\hat{\mu}_i^A$ and $\hat{\mu}_i^B$ are unbiased, like the means $\hat{\mu}_i$ in the case of the single estimator. An estimator a^* , such that $\hat{\mu}_{a^*}^A(X) = \max_i \hat{\mu}_i^A(X)$, is used to pick an estimator $\hat{\mu}_{a^*}^B$ that is an estimate for $\max_i E[\hat{\mu}_i^B]$ and for $\max_i E[X_i]$. Obviously, this can be done the opposite way, using an estimator b^* to retrieve the estimator value $\hat{\mu}_{b^*}^A$. DE takes the average of these two estimators. The bias of DE can be found in the same way as for ME with

$$E\left[\hat{\mu}_{*}^{DE}\right] = \sum_{i}^{M} E\left[\hat{\mu}_{i}^{B}\right] \int_{-\infty}^{\infty} \hat{f}_{i}^{A}(x) \prod_{i \neq j}^{M} \hat{F}_{j}^{A}(x) dx$$
(3.4)

when using an estimator a^* (the same holds by swapping A and B). This formula can be seen as a weighted sum of the expected values of the random variables where the weights are the probabilities of each variable to be the maximum. Since these probabilities sum to one, the approximation given by DE results in a value that is lower than or equal to the maximal expected value. Even if the underestimation does not guarantee better estimation than the ME, it can be helpful to avoid an incremental approximation error in some learning problems. For instance, Double Q-Learning [18] is a variation of Q-Learning that exploits this technique to avoid the previously described issues due to overestimation. Double Q-Learning has been tested in some very noisy environments and succeeded to find better policies than Q-Learning. Another remarkable application of DE is presented in [24] where it achieves better results than ME in a sponsored search auction problem.

3.3 The Proposed Method

Differently from ME and DE that output the sample average of the variable that is estimated to be the one with the largest mean, we propose to estimate the maximum expected value $\mu_*(X)$ with the WE that computes a weighted mean of all the sample averages:

$$\hat{\mu}_{*}^{WE}(S) = \sum_{i=1}^{M} \hat{\mu}_{i}(S) w_{i}^{S}.$$

Ideally, each weight w_i^S should be the probability of $\hat{\mu}_i(S)$ being larger than all other samples means:

$$w_i^S = P\left(\hat{\mu}_i(S) = \max_j \hat{\mu}_j(S)\right).$$

If we knew the PDFs \hat{f}_i^S for each $\hat{\mu}_i(S)$ we could compute the Distribution-Aware Weighted Estimator (DAWE):

$$\hat{\mu}_{*}^{DAWE}(S) = \sum_{i=1}^{M} \hat{\mu}_{i}(S) \int_{-\infty}^{+\infty} \hat{f}_{i}^{S}(x) \prod_{j \neq i} \hat{F}_{j}^{S}(x) dx.$$
 (3.5)

We know that the sample mean $\hat{\mu}_i(S)$ is a random variable whose expected value is μ_i and whose variance is $\frac{\sigma_i^2}{|S_i|}$. Unfortunately, its PDF \hat{f}_i^S depends on the PDF f_i of variable X_i that is assumed to be unknown. In particular, if X_i is normally distributed, then, independently of the sample size, the sampling distribution of its sample mean is normal too: $\hat{\mu}_i(S) \sim \mathcal{N}\left(\mu_i, \frac{\sigma_i^2}{|S_i|}\right)$. On the other hand, by the central limit theorem, the sampling distribution \hat{f}_i^S of the sample mean $\hat{\mu}_i(S)$ approaches the normal distribution as the number of samples $|S_i|$ increases, independently of the distribution of X_i . Leveraging on these considerations, we propose to approximate the distribution of the sample mean $\hat{\mu}_i(S)$ with a normal distribution, where we replace the (unknown) population mean and variance of variable X_i with their (unbiased) sample estimates $\hat{\mu}_i(S)$ and $\hat{\sigma}_i(S)$:

$$\hat{f}_i^S pprox \tilde{f}_i^S = \mathcal{N}\left(\hat{\mu}_i(S), \frac{\hat{\sigma}_i^2(S)}{|S_i|}\right),$$

so that WE is computed as:

$$\hat{\mu}_{*}^{WE}(S) = \sum_{i=1}^{M} \hat{\mu}_{i}(S) \int_{-\infty}^{+\infty} \tilde{f}_{i}^{S}(x) \prod_{j \neq i} \tilde{F}_{j}^{S}(x) dx.$$
 (3.6)

It is worth noting that WE is consistent with $\mu_*(X)$. In fact, as the number of samples grows to infinity, each sample mean $\hat{\mu}_i$ converges to the related population mean μ_i , and the variance of the normal distribution \tilde{f}_i tends to zero, so that the weights of the variables with expected value less than $\mu_*(X)$ go to zero, so that $\hat{\mu}_*^{WE} \to \mu_*(X)$.

3.4 Estimation Error

In this section, we theoretically analyze the estimation error of $\hat{\mu}_*^{WE}(S)$ in terms of bias and variance, comparing it with the results available for ME and DE. Although DAWE cannot be used in practice, we include it in the following analysis since it provides an upper limit to the accuracy of WE.

3.4.1 Bias

We start with summarizing the main results about the bias of ME and DE reported in [19]. For what concerns the direction of the bias, ME is positively biased, while DE is negatively biased. If we look at the absolute bias, there is no clear winner. For

Figure 3.1: Comparison of the bias of the different estimators varying the difference of the means

Figure 3.2: Comparison of the absolute bias of the different estimators varying the difference of the means.

instance, when all the random variables are identically distributed, DE is unbiased, while the same setting represents a worst case for ME. On the other hand, when the maximum expected value is sufficiently larger than the expected values of the other variables, the absolute bias of ME can be significantly smaller than the one of DE (see Section ??). The bias of ME is bounded by:

Bias
$$(\hat{\mu}_*^{ME}) \le \sqrt{\frac{M-1}{M} \sum_{i=1}^M \frac{\sigma_i^2}{|S_i|}}.$$

For the bias of DE, [19] conjectures the following bound (which is proved for two variables):

$$\operatorname{Bias}\left(\hat{\mu}_{*}^{DE}\right) \geq -\frac{1}{2} \left(\sqrt{\sum_{i=1}^{M} \frac{\sigma_{i}^{2}}{|S_{i}^{A}|}} + \sqrt{\sum_{i=1}^{M} \frac{\sigma_{i}^{2}}{|S_{i}^{B}|}} \right).$$

In the next theorem we provide a relationship between the bias of WE and the one of ME. For any given set X of M random variables:

$$\operatorname{Bias}(\hat{\mu}_*^{WE}) \le \operatorname{Bias}() \le \sqrt{\frac{M-1}{M} \sum_{i=1}^{M} \frac{\sigma_i^2}{|S_i|}}.$$

As we will see in Section \ref{ME} , this does not mean that the absolute bias of WE is necessarily smaller than the one of ME, since (as we will see later) the bias of WE can be also negative. In order to better characterize the bias of WE, we put it in relation with the bias of DE. For any given set X of M random variables:

$$\operatorname{Bias}(\hat{\mu}_*^{WE}) \ge \operatorname{Bias}(\hat{\mu}_*^{DE}).$$

Example In Figures 3.1 and 3.2 we visualize the bias of the different MEV estimators in a setting with two normally distributed random variables $(X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2))$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ as a function of the difference of their expected values. Both variables have variance equal to 10 $(\sigma_1^2 = \sigma_2^2 = 10)$ and we assume to have 100 samples

Figure 3.3: Comparison of the variance of the different estimators varying the difference of the means.

Figure 3.4: Comparison of the MSE of the different estimators varying the difference of the means.

for each variable ($|S_1| = |S_2| = 100$). Figure 3.1 confirms the previous theoretical analysis: the bias of ME is always positive, while the biases of DAWE and DE are always negative, with the latter always worse than the former. The bias of WE can be positive or negative according to the situation, but it always falls in the range identified by the biases of ME and DE. Looking at the absolute biases shown in Figure 3.2, we can notice that there is not a clear winner. As previously mentioned, when the variables have the same mean, both DE and DAWE are unbiased, while it represents a worst case for the bias of ME and WE. It follows that, when the difference of the two means is small (less than 0.5 in the example), DE suffers less absolute bias than ME and WE. For moderate differences of the means (between 0.5 and 1.8 in the example), WE has the minimum absolute bias, while ME is preferable for larger differences. Such results can be generalized as follows: DE suffers a small bias when there are several variables that have expected values close (w.r.t. their variances) to the maximum one, while ME provides the best estimate when there is one variable whose expected value is significantly larger (w.r.t. the variances) than all the expected values of all the other variables. In all the other cases, WE is less biased.

We cannot evaluate the goodness of an estimator by analyzing only its bias. In fact, since the MSE of an estimator is the sum of its squared bias and its variance, we need to take into consideration also the latter.

van2013estimating proved that both the variance of ME and the one of DE can be upper bounded with the sum of the variances of the sample means: $\operatorname{Var}\left(\hat{\mu}_{*}^{ME}\right) \leq \sum_{i=1}^{M} \frac{\sigma_{i}^{2}}{|S_{i}|}, \operatorname{Var}\left(\right) \leq \sum_{i=1}^{M} \frac{\sigma_{i}^{2}}{|S_{i}|}.$ The next theorem shows that the same upper bound holds also for the variance of WE. The variance of WE is upper bounded by

$$\operatorname{Var}\left(\hat{\mu}_{*}^{WE}\right) \leq \sum_{i=1}^{M} \frac{\sigma_{i}^{2}}{|S_{i}|}.$$

The bound in Theorem 3.4.1 is overly pessimistic; in fact, even if each weight w_i^S is correlated to the other weights and to the sample mean $\hat{\mu}_i(S)$, their sum is equal to one. For sake of comparison, we upper bound the variance of DAWE. The variance of

DAWE is upper bounded by

$$\operatorname{Var}\left(\hat{\mu}_{*}^{DAWE}\right) \leq \max_{i \in 1, \dots, M} \frac{\sigma_{i}^{2}}{|S_{i}|}.$$

Example As done for the bias, in Figure 3.3 we show the variance of the different estimators under the same settings described above. As the difference of the means of the two variables grows, the variance of all the estimators converges to the variance of the sample mean of the variable with the maximum expected value. DE is the estimator with the largest variance since its sample means are computed using half the number of samples w.r.t. the other estimators. WE exhibits a variance slightly larger than the one of ME, while, as expected, the variance of DAWE is always the smallest.

Finally, in Figure 3.4 we show the MSE (variance + bias²) of the different estimators. When the difference between the two means is less than one, WE suffers from a lower MSE than the other two estimators. On the other hand, ME is preferable when there is a variable with an expected value that is significantly larger than the other ones.

Exploration

Deep

Mushroom

	7
CHAPTER	

Conclusion

Bibliography

- [1] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem. In *Conference on Learning Theory*, pages 39–1, 2012.
- [2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47(2-3):235–256, 2002.
- [3] Richard Bellman. Dynamic programming. Courier Corporation, 2013.
- [4] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. *Dynamic programming and optimal control*, volume 1. Athena scientific Belmont, MA, 2005.
- [5] Saul Blumenthal and Arthur Cohen. Estimation of the larger of two normal means. *Journal of the American Statistical Association*, 63(323):861–876, 1968.
- [6] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. *Foundations and Trends*® *in Machine Learning*, 5(1):1–122, 2012.
- [7] Bhaeiyal Ishwaei D., Divakar Shabma, and K. Krishnamoorthy. Non-existence of unbiased estimators of ordered parameters. *Statistics*, 16(1):89–95, 1985.
- [8] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances in applied mathematics*, 6(1):4–22, 1985.
- [9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529, 2015.
- [10] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. *nature*, 529(7587):484, 2016.
- [11] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. *arXiv* preprint arXiv:1712.01815, 2017.
- [12] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. *Nature*, 550(7676):354, 2017.
- [13] James E Smith and Robert L Winkler. The optimizer's curse: Skepticism and postdecision surprise in decision analysis. *Management Science*, 52(3):311–322, 2006.
- [14] Mervyn Stone. Cross-validatory choice and assessment of statistical predictions. *Journal of the royal statistical society. Series B (Methodological)*, pages 111–147, 1974.
- [15] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT press, 1998.
- [16] William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

Bibliography

- [17] Eric Van den Steen. Rational overoptimism (and other biases). American Economic Review, pages 1141–1151, 2004.
- [18] Hado Van Hasselt. Double q-learning. In *Advances in Neural Information Processing Systems*, pages 2613–2621, 2010.
- [19] Hado Van Hasselt. Estimating the maximum expected value: an analysis of (nested) cross-validation and the maximum sample average. *arXiv preprint arXiv:1302.7175*, 2013.
- [20] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. *CoRR*, abs/1509.06461, 2015.
- [21] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In *AAAI*, volume 2, page 5. Phoenix, AZ, 2016.
- [22] Joannes Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and empirical evaluation. In *European conference on machine learning*, pages 437–448. Springer, 2005.
- [23] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas. Dueling network architectures for deep reinforcement learning. *arXiv preprint arXiv:1511.06581*, 2015.
- [24] Min Xu, Tao Qin, and Tie yan Liu. Estimation bias in multi-armed bandit algorithms for search advertising. In Burges C.j.c., Bottou L., Welling M., Ghahramani Z., and Weinberger K.q., editors, *Advances in Neural Information Processing Systems* 26, pages 2400–2408. 2013.