CS F364 Design & Analysis of Algorithms

COMPLEXITY — OPTIMIZATION PROBLEMS

Approximation Algorithms

- Relative Approximation
 - Design Techniques
 - Greedy Method
 - Sequencing
 - Randomization

RELATIVE APPROXIMATION

- Given an optimization problem π , for any input instance x and for any feasible solution y, the performance ratio of y is defined as:
 - $R(x,y) = max(m(x,y)/m^*(x), m^*(x)/m(x,y))$
- Given an optimization problem π , an algorithm A is said to be an r-approximate algorithm if there exists a constant r such that
 - i.e. for any x in I_{π} R(x,A(x)) <= r
- Example:
 - Greedy_Vertex_Cover is a 2-approximation algorithm

PROBLEM - BIN PACKING

- Problem Definition: BIN PACKING
 - Given a set of N items each with values S1, S2, ... Sn, distribute them into equal-sized bins such that the number of bins required is minimum.

O Application:

- Memory allocation problem (e.g.):
 - Memory is available as fixed-size blocks (i.e. bins)
 - Memory requests come in different sizes

O Note:

• As the bins are equal-sized, we can assume that they are of unit size and scale the values \$1, \$2, ... \$n accordingly.

[2]

- Formal Problem Definition: BIN PACKING
 - I = { S | S is a finite multi-set of n rational numbers in (0,1] }
 - $F(S) = a partition \{ B_1, B_2, ..., B_k \} of S$ s.t. $\Sigma_{a \text{ in } Bi} a <= 1 \text{ for each } j$
 - $m(S, \{B_1, B_2, ..., B_k\}) = k$
 - goal = min
- O Definition: Partition
 - $\{B_1, B_2, ..., B_k\}$ is said to be a partition of S if
 - \cup B_j = S and \cap B_j = {}

RELATIVE APPROXIMATION — EXAMPLE — BIN PACKING

- Lower Bound (on the optimal solution):
 - o Given input instance S, let $A = \sum_{a \in S} a$
 - Claim:

```
om*(x) >= ceil(A)
```

- Proof:
 - Trivial (Perfect packing)
- Algorithm Next_Fit (S)
 - 1. i=0;
 - 2. for each item a in S:

```
if ((a + \sum_{b \in B_i} b) \le 1) { assign a to B_i } else { assign a to B_{i+1} ; i = i+1; }
```

RELATIVE APPROXIMATION – EXAMPLE – BIN PACKING [2]

o Comments:

- The technique used by NEXT_FIT is referred to as Sequencing.
- NEXT_FIT is an online algorithm.

o Theorem:

- NEXT_FIT is a polynomial time 2-approximate algorithm for BIN PACKING.
- Proof:
 - o For each pair of consecutive bins
 - the sum of values assigned to these two bins is > 1
 - o i.e. # bins used / 2 <= A where A = $\sum_{a \in S} a$
 - o $m_{NEXT\ FIT}(S) \le 2 * ceil(A) \le 2 * m*(S)$

RELATIVE APPROXIMATION – EXAMPLE – BIN PACKING [3]

o Claim:

- The approximation ratio of 2 is asymptotically tight for NEXT_FIT
- Proof:
 - o Given any integer n, consider the instance with 4n items

$$S = \{ 1/2, 1/2n, 1/2, 1/2n, ..., 1/2, 1/2n \}$$

- o Optimal solution would require: n+1 bins
- o NEXT_FIT would require: 2*n bins

• Question:

What is the weakness of NEXT_FIT ?

RELATIVE APPROXIMATION — BIN PACKING - FIRST FIT

- Algorithm FIRST_FIT (S):
 - 1. j=0; // j+1 is the number of bins; initially there is 1 bin
 - 2. for each item a in S {

```
1. i = 0;
```

- 2. while (i<=j) {
 - if $((a + \sum_{b \in B_i} b) \le 1)$ { assign a to B_i ; break; }
 - else $\{ i = i+1; \}$

}

3. if (i>j) { j=j+1; assign a to B_j ; }

Exercise:

Compare the running time of NEXT_FIT w. that of FIRST_FIT.

RELATIVE APPROXIMATION — BIN PACKING — FIRST FIT [2]

- O Claim (w/o Proof):
 - $m_{FIRST_FIT}(S) \le 1.7 * m*(S) + 2$
 - •Question: When is this better than NEXT_FIT?
- o Comments:
 - FIRST_FIT is also an online algorithm
- Algorithm FIRST_FIT_DEC(S) // An offline algorithm
 - 1. Sort S in non-increasing order
 - 2. FIRST_FIT(S)
- O How does FIRST_FIT_DEC perform?

RELATIVE APPROXIMATION — BIN PACKING —FIRST FIT [3]

o Claim (w.o. proof):

• $m_{FIRST_FIT_DEC}$ (S) <= (11 * m*(S))/9 + 4

o Claim:

The bound given above is tight.

• Proof:

- For any +ve integer n, define an instance x_n of 5*n items:
 - a. n items of size $1/2 + \epsilon$
 - b. n items of size $1/4 + 2*\epsilon$
 - c. n items of size $1/4 + \epsilon$
 - d. 2*n items of size $1/4 2*\epsilon$

$$m_{FIRST_FIT_DEC}(x_n) = 11*n/6$$

 $m*(x) = 3*n/2$

Optimal Packing: ([3* n/2] bins)

- •n bins each w. one of a, c, and d
- \[n/2 \] bins each w. two of b and d

FIRST_FIT_DEC Packing:

- •n bins each w. one of a and b
- n/3 bins each w. three of c
- n/2] bins each w. four of d

RELATIVE APPROXIMATION — BIN PACKING — FIRST FIT [4]

- Question:
 - What is the weakness of FIRST_FIT (and that of FIRST_FIT_DEC)?
- BEST_FIT attempts to reduce fragmentation
- Algorithm BEST_FIT_DEC(S) // An offline algorithm
 - 1. Sort S in non-increasing order
 - 2. BEST_FIT(S)

RELATIVE APPROXIMATION - BIN PACKING - BEST FIT

• Algorithm BEST_FIT (S):

```
1. j=0;
  for each item a in S {
       i = 0; f = -1; minGap = MAX_INT;
     while (i<=j) {
     1. w = (a + \sum_{b \in Bi} b)
     if (w \le 1) { if (minGap > 1-w) { minGap = 1-w; f=i; }}
     i = i+1;
        if (f=-1) { j=j+1; assign a to B<sub>i</sub>; } else { assign a to B<sub>f</sub>; }
```

Compare the running time of BEST_FIT_DEC with that of FIRST_FIT_DEC.

RELATIVE APPROXIMATION – BIN PACKING – BEST FIT [2]

• Exercise:

 Compare the running time of BEST_FIT_DEC with that of FIRST_FIT_DEC.

o Claim:

For any instance S of BIN_PACKING,

Exercise: Prove this claim!

RELATIVE APPROXIMATION — BIN PACKING — BEST FIT [3]

o Claim:

- There exists instances S of BIN_PACKING such that $m_{FIRST\ FIT\ DEC}(S) > m_{BEST\ FIT\ DEC}(S) = m*(S)$:
 - o Construct such instances!

o Claim:

- The approximation ratio of BEST_FIT_DEC is the same as that of FIRST_FIT_DEC.
 - o The tight example works for this as well!
 - o Combine this with the claim on the measures of the two solutions (see previous slide)

Approximation By Randomization : Example - Maximum Satisfiability

o Definition:

- Instances: I = { C | C is a set of disjunctive clauses on a set of variables V }
- SOL(C) = f, s.t. f : V --> { 0,1 }
- m(C,f) = # clauses satisfied by f
- Goal = max
- Algorithm Random_Satisfiability (RS)
 - for each v in V,
 independently set f(v) = 1 with probability ½
 - return f;

Approximation By Randomization: Example - Maximum Satisfiability

- Algorithm Random_Satisfiability (RS)
 - for each v in V,
 - o independently set f(v) = 1 with probability $\frac{1}{2}$
 - return f;
- Measure of the Otpimal Solution:
 - The expected measure of a solution is given by

$$E[m_{RS}(C)] = (1-(1/2^k))^*|C|$$

where each clause in C has at least k literals.

- Exercises:
 - Prove the above claim.
 - Find an upper bound for m*(x) / E[m_{RS} (C)]
 - o A trivial upper bound for the optimal measure is |C|