ÎNCERCĂRI DE OBOSEALĂ. CONCENTRAREA TENSIUNILOR

Scopul lucrării

Aprecierea experimentală a coeficientului de concentrare a tensiunilor.

2. Factori de influentă asupra rezistentei la oboseală

Ruperea la oboseală a organelor de maşini solicitate variabil în timp depinde de mai mulți factori care pot fi grupați în următoarele categorii:

- factori de material (structură şi granulație), tehnologie de fabricație şi tratament termic;
- factori constructivi: dimensiunile piesei, forma şi concentratorii de tensiuni, rugozitatea suprafeței;
- factori de exploatare (condițiile de lucru): natura, frecvența şi mărimea solicitării, temperatura, mediul.

Cercetările experimentale dar şi analizele numerice (FEM) au arătat că în locurile de variație bruscă a secțiunilor se produc concentrări de tensiune, [1]-[4]. Se defineşte coeficientul teoretic de concentrare ca raportul dintre tensiunea maximă din zona concentratorului şi tensiunea nominală:

$$\alpha_{K} = \frac{\sigma_{\text{max}}}{\sigma_{\text{p}}} \tag{1}$$

Coeficientul global de concentrare K_{σ_d} este definit prin relația:

$$K_{\sigma_{cl}} = \frac{\beta_{k\sigma}}{\varepsilon_{\sigma} \cdot \beta_{1} \cdot \beta_{2}} \tag{2}$$

în care:

 $\beta_{k\sigma}$ – coeficientul dependent de tipul concentratorului geometric,

 ε_{σ} – coeficientul dimensional,

 β_1 – coeficientul dependent de calitatea suprafeței,

 eta_2 – coeficientul dependent de tratamentul termic superficial.

Coeficienții denumiți anterior se determină din tabele și nomograme.

Rezistența la oboseală a piesei reale se determină cu relația:

$$\sigma_{R_{\text{piesă}}} = \frac{\sigma_{R}}{K_{\sigma_{cl}}} \tag{3}$$

unde: σ_R – limita de rezistență la oboseală a epruvetei solicitată variabil după un ciclu cu caracteristica R.

Prin creşterea temperaturii piesei scade rezistența la oboseală. La temperaturi ridicate curba Wöhler nu mai prezintă o asimptotă orizontală, ci coboară continuu la nivele tot mai mici de solicitare.

Frecvența variației sarcinilor are influență mică asupra ruperii la oboseală, de aceea la calculul obișnuit al organelor de mașini nu se ține seama de aceasta. Pentru frecvențe foarte mari de 103...104 cicluri pe secundă se constată o creștere a rezistenței la oboseală.

3. Concentratori geometrici de tensiuni

Orice schimbare a secțiunii transversale constituie un concentrator geometric de tensiuni, câteva exemple fiind reprezentate în tabelul 1.

Schimbările bruşte ale secțiunii transversale produc în zona lor modificarea legii de distribuție atât a tensiunilor cât și a deformațiilor specifice. Tensiunile au valori cu atât mai mari cu cât schimbarea de secțiune este mai bruscă. La materialele ductile, în zona de valoare maximă a tensiunilor (rădăcina concentratorului) poate apărea curgerea plastică. Influența concentratorilor asupra distribuției de tensiuni se manifestă la ambele tipuri de solicitări (statice și variabile). În figura 1 este reprezentată distribuția tensiunilor în zona concentratorului (degajare între două tronsoane) pentru diferite solicitări: tracțiune (a), încovoiere (b), torsiune (c).

Tensiunile calculate cu relațiile uzuale (înscrise pe figură) sunt tensiuni nominale, iar valorile maxime care apar la rădăcina concentratorului sunt date de una din relațiile:

$$\sigma_{\text{max}} = \alpha_k \cdot \sigma_n; \qquad \tau_{\text{max}} = \alpha_k \cdot \tau_n$$
 (4)

în care α_k este coeficientul teoretic de concentrare, care depinde de elementele geometrice ale concentratorului. Valorile lui α_k sunt cuprinse între 1 și 3, dar pot ajunge la 5 – 8.

Tabelul 1 Tipuri de concentratori geometrici

Fig. 1 Distribuția de tensiuni în dreptul concentratorului la solicitarea de: a – tracțiune, b – torsiune, c – încovoiere

În cazul solicitărilor variabile epruveta cu concentrator are o rezistență la oboseală σ_{Rk} mai mică decât valoarea σ_R a epruvetei de aceleași dimensiuni fără concentrator. Pe baza celor două mărimi se definește coeficientul efectiv de concentrare a tensiunilor (specific solicitării variabile) dat de relația:

$$\beta_{k\sigma} = \frac{\sigma_R}{\sigma_{Rk}} \tag{5}$$

care este o mărime mult mai complexă decât coeficientul teoretic de concentrare a tensiunilor, fiind influențat și de alți factori decât cei geometrici. Valorile lui $\beta_{k\sigma}$ sunt ceva mai mici decât cele ale lui α_k folosindu-se relația de recurență, după [4]:

$$\beta_{k\sigma} = 1 + \eta \cdot (\alpha_k - 1) \tag{6}$$

unde η este coeficientul de sensibilitate al materialului.

Exemple de rupere prin oboseală a pieselor care au concentratori de tensiuni sunt indicate în figura 2 și figura 5, [5].

Fig. 2 Ruperea prin oboseală în zona concentratorilor de tensiuni: a – canal de pană, b – filet

4. Instalatia experimentală

Încercările de oboseală pe epruvete cu concentratori de tensiuni se efectuează pe maşina marca MEFETRM – Ungaria (reprezentată în figura 9 din Lucrarea 2 "Încercări de oboseală la încovoiere. Diagrama Wöhler". Determinarea limitei de rezistență la oboseală) care asigură turația constantă şi încărcarea de încovoiere după un ciclu de solicitare variabilă alternant-simetric, [6].

Epruvetele încercate au avut prelucrate, pe porțiunea centrală, diferite tipuri de concentratori geometrici, reprezentați în tabelul 1.

5. Prelucrarea rezultatelor experimentale

Încercările la oboseală pe loturi de epruvete cu diverși concentratori de tensiuni au fost efectuate după metodologia prezentată în Lucrarea 1. Tabelul din ANEXA 2 cuprinde rezultatele experimentale pentru aceleași oțeluri din care au fost executate și epruvetele fără concentratori de tensiuni.

Pentru exemplificare este utilizat lotul 1 cu epruvetele din 1C45 (OLC 45) normalizat având concentrator de tensiune filet (tabelul 2).

Tabelul 2 Rezultate experimentale – Epruveta cu filet metric

σ _{-1N} [MPa]	280	210	166	157	149	140	132	123	116	115	111	106
N [106]	0,001	0,02	0,15	0,29	0,48	0,82	1,44	2,62	4,46	4,99	6,62	10,0

Fig. 3 Diagrame Wöhler în coordonate normale

Fig. 4 Diagrame Wöhler în coordonate dublu logaritmice

Rezultatele obtinute se prelucrează în următoarea succesiune:

- a) se trasează diagrama Wöhler în coordonate rectangulare şi dublu logaritmice ca în figura 3, respectiv figura 4, [7], [8];
- b) se determină limita de rezistență la oboseală σ_{-1k} pentru piesa cu concentrator de tensiuni;
- c) se determină coeficientul efectiv de concentrare a tensiunilor:

$$\beta_{k\sigma} = \frac{\sigma_{-1}}{\sigma_{-1k}} \tag{7}$$

- d) se stabilește coeficientul $\beta_{k\sigma}$ prin utilizarea nomogramelor din ANEXA 3 și se compară cu valoarea determinată experimental;
- e) se determină coeficientul global de concentrare a tensiunilor K_{σ_d} adoptând coeficienții ε_{σ} din figura A 3.7, β_1 din figura A 3.8 și β_2 din tabelul A 3.1 (ANEXA 3 "Valori pentru coeficienții de concentrare a tensiunilor la oboseală").

Fig. 5 Rupere prin oboseală: a - tijă de şurub, b - arbore cu canal de pană

6. Interpretarea rezultatelor

- Influenta tipului de concentrator asupra rezistentei la oboseală.
- ii. Influența calității oțelului şi a tratamentului termic asupra rezistenței la oboseală.

Bibliografie

- Collins, J.A., 2003, Mechanical Design of Machine Elements and Machines. A Failure Prevention Perspective, John Wiley & Sons. Inc., USA.
- Gafițanu, M., Crețu, S., Pavelescu, D., ş.a., 1981, Organe de maşini, vol. I, Ed. Tehnică, Bucureşti.
- 3. Mocanu, F., 2011, Rezistența materialelor, vol. 2, Editura Tehnopress, Iași.
- 4. Rusu, O., Teodorescu, M., Laşcu-Simion, N., 1992, Oboseala materialelor, I, II, Ed. Tehnică, București.
- 5. van Beek, A., 2009, Advanced engineering design. Life time performance and reliability, Technical University Delft, Netherland.
- Gafițanu, M., Crețu, S., Bariz, Gh., Olaru, D., Racocea, C., Hagiu, Gh., Oancea, I., Ştirbu, C., Ivănică, Grigoraş, Ş., 1985, Organe de maşini. Îndrumar de laborator, Rotaprint, Iași.
- 7. http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
- 8. http://www.mathworks.com/academia/student_center/tutorials/launchpad.html