Stubborn consensus for multi robots' control

Master's Degree in Artificial Intelligence and Robotics

Paradiso Emiliano (1940454) Piccione Brian (1889051) Pisapia Vittorio (1918590)

Introduction

- ► Introduction
- Proposed Approach
- Experiments
- Conclusions

Problem Introduction

Introduction

- In standard consensus, agents eventually agree on a constant state, which for **rendez-vous** problem correspond to a common position
- For undirected graphs it correspond to the arithmetic mean of the agent's initial conditions
- The arithmetic mean gives the same weight to all agents, so each initial state influences the final agreement equally
- But what if there are **large outliers** (e.g. located much farther from the origin than the majority)?.....
- ... the final agreement is **pulled away** from the majority because of the outliers!

How to neglect large outliers?

Introduction

 Two different approaches have been explored to reduce the influence of agents that behave as large outliers

WEIGHTED CONSENSUS

 assign a weight to each agent making them converge to a weighted average of their initial conditions

STUBBORN CONSENSUS

 make the agents converse to the harmonic mean of the initial conditions thus neglecting the large outliers

Proposed Approach

- Introduction
- ► Proposed Approach
- Experiments
- Conclusions

Stubborn consensus

Proposed Approach

- Objective: design a consensus protocol so that all agents converge to the harmonic mean of their initial states
- introducing a **state transformation** for each agent :

$$\begin{cases} y_i(t) = \frac{1}{x_i(t)} \\ \dot{y}_i = -\frac{\dot{x}_i}{x_i^2} \end{cases}$$

- then we can apply the classic consensus protocol to the transformed states with the Laplacian L = D A
- the explicit solution is:

$$y(t) = e^{-Lt}y(0)$$

• therefore, in the original variables we obtain:

$$x_i(t) = \frac{1}{\left[e^{-Lt}\frac{1}{x(0)}\right]_i}$$

• our goal is to make the denominator of x to converge to the arithmetic mean, thus x will converge to the harmonic mean

Stubborn consensus

Proposed Approach

FOR UNDIRECTED GRAPHS

- *L* is symmetric, positive semidefinite
- if the graph is connected:

$$\lambda_1 = 0$$
 and $0 < \lambda_2 \le \cdots \le \lambda_N$

• by diagonalizing L by an orthogonal matrix U

$$e^{-Lt} \frac{1}{x(0)} = u_1 u_1^T \frac{1}{x(0)} + \sum_{i=2}^N u_i u_i^T e^{-\lambda_i t} \frac{1}{x(0)}$$

• considering the limit for $t \to \infty$:

$$x_i(t) = \frac{1}{\left[e^{-Lt}\frac{1}{x(0)}\right]_i} \to \frac{1}{\frac{1}{N}\sum_{k=1}^N \frac{1}{x_k(0)}}$$

FOR DIRECTED GRAPHS

- L is no longer symmetric, but $L \mathbf{1} = 0$
- if the graph is **balanced** $\mathbf{1}^T L = 0$
- assuming that rank(L) = N 1, with N the number of agents:

$$\lambda_1 = 0$$
 and $0 < Re(\lambda_2) \le \cdots \le Re(\lambda_N)$

• by applying the **Jordan decomposition** of L and analysing the limit as $t \to \infty$:

$$x_i(t) = \frac{1}{\left[e^{-Lt}\frac{1}{x(0)}\right]_i} \to \frac{1}{\frac{1}{N}\sum_{k=1}^N \frac{1}{x_k(0)}}$$

$$\forall i$$

Weighted consensus

Proposed Approach

- Objective: consensus protocol that enables all agents to converge to a weighted average of their initial states
- By defining the non-symmetric weighted adjacency matrix W as

$$W(i,j) = A(i,j) \cdot w(j)$$

and the weights as the **absolute value of the inverse of the agents' initial conditions**, the corresponding graph Laplacian becomes:

$$L = D - W$$

• If rank(L) = N - 1, where N is the number of agents:

$$\lambda_1 = 0$$
 and $0 < Re(\lambda_2) \le \cdots \le Re(\lambda_N)$

• By using **Jordan decomposition** and imposing as $t \to \infty$, one finds that:

$$\lim_{t\to\infty} x(t) = (p_1 \cdot q_1^T) \cdot x(0)$$

With p_1 and q_1 being right and left eigenvectors of L associated to $\lambda_1 = 0$

• Imposing normalization condition $q_1^T \cdot p_1 = 1$ and π (normalized version of q_1):

$$\lim_{t\to\infty} x(t) = (\pi \cdot x(0)) \cdot \mathbf{1}$$

Experiments

- Introduction
- Proposed Approach
- ► Experiments
- Conclusions

Experiment I

Experiments

Setup

- Agent dimension: 1D $x_0 = [1 \ 1.2 \ 0.9 \ 1.1 \ 1.3 \ 27 \ 23 \ 19]$
- **Dynamics:** simple integrator
- Topology: fully connected, undirected graph

$$\lambda_2^{wgt} = 1.0083$$

Experiment II

Experiments

Setup

• Agent dimension: 1D

 $x_0 = [-1 \quad -1.2 \quad -0.9 \quad -1.1 \quad 0.3 \quad 8]$

- **Dynamics:** simple integrator
- Topology: fully connected, undirected graph

Experiment III

Experiments

Setup

- Agent dimension: 1D $x_0 = [0.5 \ 0.2 \ 0.4 \ 0.1 \ 0.35 \ 20]$
- **Dynamics:** simple integrator
- Topology: Balanced, directed graph (rooted-out branching)

$$\lambda_2^{std} = 1.5000 - 0.8660i$$

$$\lambda_2^{wgt} = 1.0000 - 0.0928i$$

Experiment IV

Experiments

Setup

- Agent dimension: 1D
 x_0=[1 1.2 0.9 1.1 1.3 12]
 v_0=[1 1.1 1.4 0.8 0.1 0.8]
- **Dynamics:** double integrator
- **Topology:** fully connected, undirected graph

Experiment IV

Experiments

Setup

- •Agent dimension: 1D x_0=[1 1.2 0.9 1.1 1.3 12] v_0=[-1 -1 -1 -1 -1]
- **Dynamics:** double integrator
- **Topology:** fully connected, undirected graph

• Behaviour 2: Travel together at same velocity

Conclusions

- Introduction
- Proposed Approach
- Experiments
- **▶** Conclusions

From the previous analysis we can conclude that:

- Stubborn Consensus:
 - Converges to harmonic mean
 - Faster convergence
 - For directed graphs requires balance
 - Harmonic mean not defined for **mixed values** (positive/negative initial state)
- Weighted Consensus:
 - Allows mixed values
 - Slower convergence (due to smaller connectivity eigenvalue)

Both this approaches have a **more robust behaviour** in the presence of outliers wrt the Standard approach.

- Extend to **higher-dimensional states**.
- Consider **non-holonomic** constraints.
- Improve outlier definition (RANSAC strategy).
- Apply homogeneous transformations for **robustness**.

Thanks for your attention!

Reference

[1] R. Olfati-Saber, R. M. Murray, "Consensus Problems in Networks of Agents With Switching Topology and Time-Delays", IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEPTEMBER 2004.