LINGUAGEM DE PROGRAMAÇÃO 2 01- EMENTA

Francisco Barretto — francisco.barretto@udf.edu.br

Ementa

 Estudo da linguagem para o desenvolvimento de aplicações utilizando os conceitos de linguagem orientada a objetos

Objetivos

Cognitivos:

- Conhecer os objetivos e características de uma linguagem orientada a objetos;
- Desenvolver programas utilizando a orientação a objetos (encapsulamento, herança e polimorfismo).

Objetivos

- □ Habilidades:
- Conhecer os fundamentos de uma linguagem orientada a objetos;
- Caracterizar o desenvolvimento de algoritmos e sistemas com orientação a objetos;
- Desenvolver algoritmos e sistemas de computador utilizando a linguagem de programação Java;
- Desenvolver algoritmos e sistemas trabalhando com pacotes;
- Aprender os conceitos de coleções, exceções e documentação.

Objetivos

Atitudes:

Aprender a diferenciar a programação estruturada da programação orientada a objetos. Saber quando é mais útil cada abordagem de programação para solucionar os problemas de um domínio.

Conteúdo

21120702000	1000 House			
UNID.	C/H	Conteúdo		
1	4	Características da linguagem de programação Java Introdução aos conceitos básicos da linguagem Java.		
II	4	Máquina Virtual Java O que é a JVM. Para que serve uma máquina virtual.		
III	8	Programação Orientada a Objetos Introdução à POO. Linguagens de programação orientada a objetos. Exercícios.		
IV	8	Classe, Objeto, Atributo, Método e Construtor. Conceitos da programação orientada a objetos (parte I). Exercícios.		
٧	8	Modificadores de acesso. Conceitos da programação orientada a objetos (parte II). Exercícios.		
VI	8	Conceitos da programação orientada a objetos (parte II). Exercícios. Conceitos da programação orientada a objetos (parte III). Exercícios.		
VII	4	Convenções de linguagem. Convenções de codificação para classes, interfaces, métodos, variáveis, constantes, e estruturas do controle.		
VIII	4	Definição de classe. Conceitos da programação orientada a objetos (parte IV)		
IX	8	Declarar variáveis de Classe. Conceitos da programação orientada a objetos (parte V). Exercícios.		
Х	4	Expressões e controle de fluxo. Conceitos da programação orientada a objetos (parte VI). Exercícios.		
XI	8	Reconhecer, Descrever, e Usar operadores. Conceitos da programação orientada a objetos (parte VII)		
XII	4	Conceitos de Encapsulamento, Polimorfismo, e Herança. Conceitos avançados da programação orientada a objetos (parte I)		
XIII	4	Arrays e Coleções. Conceitos avançados da programação orientada a objetos (parte II)		
XIV	4	Exceções Conceitos avançados da programação orientada a objetos (parte III)		

Estratégia

- □ Aula teórica em sala de aula;
- Estímulo a pesquisa;
- Exercícios de fixação de aprendizagem;
- □ Práticas em laboratório de informática.

Avaliação (s/ PRI)

- Sistema avaliativo institucional é composto de cinco avaliações, totalizando 10 (dez) pontos:
 - Avaliação docente (A1 e A2): Total de 10,0 (dez) pontos.
 - □ 3 avaliações (prático-teóricas) valendo 3,0 pontos cada.
 - □ Listas de exercício valendo 1,0 pontos no total.
- Todas as avaliações possuem conteúdos cumulativos.
- A Nota FINAL (NF) do processo avaliativo será soma simples das 03 (três) avaliações do semestre + listas de exercicio
- Para aprovação o estudante deverá obter NF igual ou superior a 6,0 (seis) e, no mínimo, 75% (setenta e cinco por cento) de presenças.
- Se a NF for inferior a 6,0 (seis) e o estudante tiver obtido ao menos 1,0 (um) na A1 ou na A2, poderá realizar uma Avaliação Final (AF), correspondente a 5,0 (cinco). Neste caso, a AF substituirá a menor nota lançada no sistema, seja A1 ou A2.
- É considerado APROVADO o aluno que tenha obtido a média final igual ou superior a 6,0 (seis).
- Reposição: Será permitido ao aluno repor 01 (uma) avaliação. A reposição será realizada no dia (25/11). Independente da avaliação que será reposta, o conteúdo abordado será todo o conteúdo da disciplina.

Plano de Aulas

Aula	Data	Unidade
1	12/08	Apresentação da Disciplina/Metodologia
2	19/08	Introdução Java
3	26/08	Variáveis/Estruturas de Controle e Repetição/Operadores
4	02/09	Exercícios de Fixação
5	09/09	Sem Aula - Congresso
6	16/09	P00
7	23/09	Classes/Objetos (construtores/atributos/métodos)
8	30/09	Exercícios
9	07/10	Avaliação 01
10	14/10	Encapsulamento/Polimorfismo
11	21/10	Herança/Composição
12	28/10	Congresso de IC
13	04/11	Interfaces/Classes Abstratas
14	11/11	Arrays/Coleções
15	18/11	Avaliação 02
16	25/11	Reposição
17	02/12	Exercícios
18	09/12	Exercícios
19	16/12	Avaliação Final

Bibliografia

Básica:

- DEITEL, H. M.; DEITEL, P. J. Java: Como Programar. 8.
 ed. São Paulo: Pearson Education, 2010
- MANZANO, José Augusto N. G.; COSTA JUNIOR,
 Roberto Afonso da. JAVA II: programação e
 computadores guia básico de introdução, orientação
 e desenvolvimento. 1. ed. São Paulo: Érica, 2006
- SANTOS, R. Introdução à Programação Orientada a Objetos Usando Java. 1. Ed. Rio de Janeiro: Campus, 2003.

Bibliografia

Complementar:

- ARNOLD, Ken; GOSLING, James; HOLMES, David. A linguagem de programação Java. 4. ed. Porto Alegre: Bookman, 2007. xiii, 799 p. ISBN 9788560031641
- RODRIGUES FILHO, R. Desenvolva aplicativos com Java 2.
 São Paulo: Érica, 2005
- ROMAN, Ed; AMBLER, Scott W.; JEWELL, Tyler. Dominando Enterprise Javabeans. 2. ed. Porto Alegre: Grupo A, 2014
- RUTTER, Jake. Smashing ¡Query: Interatividade Avançada com JavaScript Simples. Porto Alegre: Grupo A, 2012
- □ SIERRA, K.; BATES, B. Use a Cabeça! Java. 2. ed. Rio de Janeiro: Alta Books, 2007.

Teste

Crie uma classe capaz de imprimir na tela o padrão abaixo ilustrado. Considere a utilização de loops FOR (aninhados) para gerar os padrões. Todos os asteriscos (*) deverão ser impressos por uma única instrução na forma printf('*'); o que faz com que os asteriscos sejam impressos lado a lado. Uma instrução printf("\n"); pode ser utilizada para mover-se para próxima linha.

Contato

francisco.barretto@udf.edu.br