Математическая логика. Домашнее задание №8

Горбунов Егор Алексеевич

18 апреля 2016 г.

Задание №1 Определите формулы, удовлетворяющие следующим описаниям. Для первых двух заданий мы предполагаем, что в сигнатуре есть преди- катный символ ≤.

- (a) $\exists x \le t \ \psi$ («Существует x, меньше либо равный t, такой что верно ψ »)
- (b) $\forall x \le t \psi$ («Для любого x, меньше либо равного t, верно ψ »)
- (c) «Существует не менее двух элементов, удовлетворяющих $\phi(x)$ »
- (d) «Существует ровно два элемента, удовлетворяющие $\phi(x)$ »
- (e) «Существует по крайней мере один, но не более двух элементов, удовлетворяющих $\phi(x)$ »
- (f) «Существует не более одного элемента, удовлетворяющего $\phi(x)$ »

Решение: Сокращённо пишем вместо $\phi[y/x] := \phi(y)$, как я понимаю.

```
(a) \exists x ((x \le t) \land \psi)
```

(b) $\forall x ((x \le t) \rightarrow \psi)$

(c)
$$\exists x (\exists y ((x = y) \rightarrow \bot \land \varphi(x) \land \varphi(y)))$$

$$\text{(d) } \gamma \coloneqq \exists x \left(\left(\exists y \left(\left(x = y \right) \to \bot \land \phi(x) \land \phi(y) \right) \right) \land \forall z \left(\phi(z) \to \left(x = z \lor y = z \right) \right)$$

(e)
$$\gamma \vee \exists x (\phi(x) \wedge \forall y (\phi(y) \rightarrow (x = y)))$$

(f)
$$(\exists x (\varphi(x) \land \forall y (\varphi(y) \rightarrow (x = y))) \lor (\forall x (\varphi(x) \rightarrow \bot))$$

Задание №2 Напишите на хаскелле функцию, аналогичную конструкции case для пар, используя fst и snd. Укажите ее тип (вам нужно будет использовать функции высшего порядка вместо расширения контекста). Реализуйте функции fst' и snd', эквивалентные обычным fst и snd, через эту функцию.

Решение:

```
caseI :: (a, b) -> (a -> b -> c) -> c
caseI p f = f (fst p) (snd p)

fst' :: (a, b) -> a
fst' p = caseI p const

snd' :: (a, b) -> b
snd' p = caseI p (flip const)
```

Задание №3 Пусть у нас есть несколько формул:

(a)
$$x \neq y$$

(b)
$$\exists x(x \neq y)$$

(c)
$$\forall x(x \neq y)$$

(d)
$$\exists x \exists y (x \neq y)$$

(e)
$$\exists x \forall y (x \neq y)$$

(f)
$$\forall x \exists y (x \neq y)$$

(g)
$$\forall x \forall y (x \neq y)$$

И несколько интерпретаций:

$$M_0 = \emptyset$$

$$M_1 = \{7\}$$

$$M_2 = \{13, 28\}$$

Какие из этих формул верны в каких моделях?

Решение:

	M_0	M_1	M_2
(a)	√	×	×
(b)	×	×	\checkmark
(c)	\checkmark	×	×
(d)	×	×	\checkmark
(e)	×	×	×
(f)	\checkmark	×	\checkmark
(g)	✓	×	×

Задание №4 Докажите, что формулы $\forall x \forall y (x \neq y)$ и $\neg \exists x \top$ эквивалентны, написав лямбда терм типа $((\forall x \forall y (x \neq y)) \rightarrow \neg \exists x \top) \land ((\neg \exists x \top) \rightarrow \forall x \forall y (x \neq y)).$

Решение:

 (\Rightarrow) Терм типа $(\forall x \forall y (x \neq y)) \rightarrow \neg \exists x \top)$:

$$t_{\Rightarrow} := \lambda f. (\lambda p. f (fst p) (fst p) (refl (fst p)))$$

Тут f имеет тип $x \to y \to (x = y) \to \bot$, а p имеет тип $(x, \bot \to \bot)$

(⇐) Терм типа (¬∃х ⊤) → ∀х∀у(х ≠ y), тип можно переписать так:

$$((x, \bot \to \bot) \to \bot) \to (x \to y \to (x = y) \to \bot)$$

Тогда искомый терм таков:

$$t = \lambda g. (\lambda a. \lambda b. \lambda e. g (a, leib(x, x = y, e, e)))$$

У нас получается, что α имеет тип x, b имеет тип y, а e имеет тип x=y, тогда, соответственно, можно считать, что e имеет тип x=y[x/x], а значит leib(x,x=y,e,e) будет иметь тип y=y, что эквивалентно $\top=\bot\to\bot$

Требуемый итоговый терм: $(t_\Rightarrow,t_\Leftarrow)$