THÉORÈME DE GIRSANOV

Dans cette feuille, $(B_t)_{t\geq 0}$ désigne un mouvement brownien réel sur l'espace filtré $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P}).$

Exercice 1 (Dérive). Soit a > 0. On rappelle que $T := \inf\{t \ge 0 \colon B_t \ge a\}$ a pour densité

$$f_T(x) = \frac{a}{\sqrt{2\pi x^3}} \exp\left(-\frac{a^2}{2x}\right) \mathbf{1}_{\mathbb{R}_+}(x).$$

Étant donné $b \in \mathbb{R}$, on pose $\widetilde{B}_t := B_t - bt$ et on s'intéresse à $\widetilde{T} := \inf\{t \geq 0 \colon \widetilde{B}_t \geq a\}$.

- 1. Trouver une probabilité \mathbb{Q} sur \mathcal{F}_{∞} sous laquelle $\{\widetilde{B}_t\}_{t\geq 0}$ est un mouvement brownien.
- 2. En déduire, sous la mesure $\mathbb P$, la fonction de répartition de $\widetilde T$ puis la loi de $Z:=\sup_{t>0}\widetilde{B_t}.$

Exercice 2 (Examen 2015). Étant donné $x \in \mathbb{R}$, on considère l'EDS

$$dX_t = dB_t - \frac{X_t}{1 + X_t^2} dt, \qquad X_0 = x.$$

- 1. Justifier que cette équation différentielle stochastique admet une unique solution $(X_t)_{t\geq 0}$.
- 2. Justifier que le processus $(Z_t)_{t\geq 0}$ est une martingale, où

$$Z_t := \exp\left\{ \int_0^t \frac{X_s}{1 + X_s^2} dB_s - \frac{1}{2} \int_0^t \frac{X_s^2}{(1 + X_s^2)^2} ds \right\}.$$

3. Calculer la différentielle stochastique de $(\ln(1+X_t^2))_{t>0}$ et en déduire que pour $t\geq 0$,

$$\frac{1+X_t^2}{1+x^2} = Z_t^2 \exp\left\{ \int_0^t \frac{1-2X_s^2}{(1+X_s^2)^2} ds \right\}.$$

- 4. Construire une probabilité \mathbb{Q} sous laquelle $(X_s x)_{s>0}$ est un mouvement brownien.
- 5. On fixe $t \geq 0$. En déduire que pour $h \colon \mathbb{R} \to \mathbb{R}_+$ mesurable, on a $\mathbb{E}[h(X_t)] = \widehat{h}(x)$ avec

$$\widehat{h}(x) := \mathbb{E}\left[h(x+B_t)\left(\frac{1+x^2}{1+(x+B_t)^2}\right)^{\frac{1}{2}} \exp\left\{\frac{1}{2} \int_0^t \frac{1-2(x+B_s)^2}{\left(1+(x+B_s)^2\right)^2} ds\right\}\right].$$

- 6. Soit ζ une variable aléatoire indépendante de $(B_s)_{s\geq 0}$, de densité $x\mapsto (\pi(1+x^2))^{-1}$. On note $(X_s^\star)_{s\geq 0}$ la solution de l'EDS ci-dessus avec $X_0^\star=\zeta$. Ainsi, on a $\mathbb{E}\left[h(X_t^\star)|\zeta\right]=\widehat{h}\left(\zeta\right)$.
 - (a) Vérifier que le processus $(B_{t-s} B_t)_{s \in [0,t]}$ est un mouvement brownien restreint à [0,t].
 - (b) En déduire que pour tout $h \colon \mathbb{R} \to \mathbb{R}_+$ mesurable,

$$\int_{\mathbb{R}} \frac{\widehat{h}(x)}{1+x^2} dx = \int_{\mathbb{R}} \frac{h(x)}{1+x^2} dx.$$

(c) Pour $t \ge 0$, quelle est la loi de X_t^* ?

Exercice 3 (Fonctionnelles quadratiques du brownien). Pour $a, b, t \ge 0$, on cherche ici à calculer

$$I(a,b) := \mathbb{E}\left[\exp\left\{-aB_t^2 - \frac{b^2}{2} \int_0^t B_s^2 ds\right\}\right].$$

- 1. Calculer I(a, 0) pour tout a. On supposer désormais b > 0.
- 2. Trouver $\psi \in M^1_{\mathrm{loc}}$ tel que le processus $(Z_t)_{t \geq 0}$ défini ci-dessous soit une martingale locale :

$$Z_t := \exp\left\{-b\int_0^t B_s dB_s - \int_0^t \psi(s) ds\right\}.$$

3. Exprimer Z_t en fonction de b, t, B_t et $\int_0^t B_s^2 ds$ seulement, et en déduire que

$$I(a,b) = \mathbb{E}\left[Z_t \exp\left\{\left(\frac{b}{2} - a\right)B_t^2\right\}\right] \exp\left(-\frac{bt}{2}\right).$$

- 4. Construire une probabilité \mathbb{Q} sur $(\Omega, \mathcal{F}_{\infty})$ sous laquelle le processus $(W_t)_{t\geq 0}$ défini par $W_t := B_t + b \int_0^t B_s \, ds$ soit un mouvement brownien.
- 5. Montrer que pour tout $t \geq 0$,

$$B_t = \int_0^t e^{b(s-t)} dW_s.$$

6. Pour $t \geq 0$ fixé, expliciter la loi de B_t sous la mesure $\mathbb Q$ et en déduire la formule suivante :

$$I(a,b) = \left\{\cosh(bt) + \frac{2a}{b}\sinh(bt)\right\}^{-\frac{1}{2}}.$$

Exercice 4 (Condition de Novikov). Étant donné $\phi \in M^2_{loc}$, on pose pour tout $t \ge 0$,

$$Z_{\phi}(t) := \exp\left\{ \int_{0}^{t} \phi(s) dB_{s} - \frac{1}{2} \int_{0}^{t} \phi^{2}(s) ds \right\}.$$

Le but est de démontrer que $(Z_{\phi}(t))_{t>0}$ est une martingale sous la condition de Novikov :

$$\forall t \ge 0, \qquad \mathbb{E}\left[\exp\left\{\frac{1}{2}\int_0^t \phi^2(s)\,ds\right\}\right] < \infty.$$
 (*)

- 1. Que peut-on dire du processus $(Z_{\phi}(t))_{t\geq 0}$ en général? Et si $\mathbb{E}[Z_{\phi}(t)]=1$ pour tout $t\geq 0$?
- 2. Soit $0 < \lambda < 1$. Trouver p > 1 et $0 < \theta < 1$ tels que pour tout $t \ge 0$,

$$Z_{\lambda\phi}^{p}(t) = Z_{\phi}^{\theta}(t) \exp\left\{\frac{1-\theta}{2} \int_{0}^{t} \phi^{2}(s) ds\right\}.$$

- 3. En déduire que sous la condition (*), on a $\mathbb{E}[Z_{\lambda\phi}(t)] = 1$ pour tout $t \geq 0$.
- 4. Montrer par ailleurs que pour tout $t \ge 0$,

$$\mathbb{E}[Z_{\lambda\phi}(t)] \leq \mathbb{E}\left[Z_{\phi}(t)\right]^{\lambda^2} \mathbb{E}\left[\exp\left\{\frac{1}{2}\int_0^t \phi(s)\,dB_s\right\}\right]^{2\lambda(1-\lambda)}.$$

5. Vérifier que le membre droit est fini sous la condition (\star) , et conclure.