

GEOMETRÍA

Capítulo 21

ÁREA DE REGIONES CÍRCULARES ® SACO OLIVEROS

MOTIVATING | STRATEGY

Uno de los grandes inventos del hombre fue la rueda (la que denominamos círculo) cuya mayor aplicación era en el transporte; hoy en día se fabrican en serie, círculos que tienen infinitas aplicaciones y para generar dicha producción se diseñan moldes llamados matrices utilizando para ello las fórmulas de cálculo de áreas de círculo.

HELICO | THEORY AREAS DE REGIONES CIRCULARES

Es Círculo.unión de la la circunferencia y su región interior.

O: Centro

S: Área del círculo

$$S = \pi r^2$$

_: longitud de la circunferencia

$$L = 2\pi .r$$

región circular.-Es la Corona comprendida dos entre circunferencias concéntricas.

O: Centro

$$S = \pi \left(R^2 - r^2 \right)$$

$$S = \pi a^2$$

S: Área de la corona circular

$$S = \frac{\pi(AB)^2}{4}$$

Sector circular

Es una parte del círculo limitada por dos radios y su arco correspondiente.

O: Centro

$$S = \frac{\theta \cdot r^2 \cdot \pi}{360^\circ}$$

Semicírculo

O: Centro

$$S = \frac{r^2 \cdot \pi}{2}$$

O: Centro

$$S = \frac{r^2 \cdot \pi}{4}$$

1. Con una plancha metálica, José, fábrica un letrero de forma circular para evitar que otros autos se estacionen en la puerta de su garaje. ¿Qué área tendrá dicho letrero?

Resolución

Piden: S

$$S = \pi r^2$$

• En la figura:

$$2r = 40 \text{ cm}$$

 $r = 20$

Calculando S

$$S = \pi . 20^2$$

$$S = 400\pi \text{ cm}^2$$

2. Determine el área de la región limitada por dos circunferencias interiores, cuyos radios miden 4 m y 6 m.

Resolución

• Piden: S_x

$$S_x = S_{(mayor)} - S_{(menor)}$$

Reemplazando

$$S_x = \pi(6)^2 - \pi(4)^2$$

$$S_x = 36\pi - 16\pi$$

$$S_{x} = 20\pi \,\mathrm{m}^{2}$$

3. En la figura, calcule el área de la región limitada por el sector circular AOB.

Resolución

Piden: S_{AOB}

$$S_{AOB} = \frac{\pi \cdot r^2}{4}$$

△ODC: Notable de 37° y 53°

$$r = 10$$

• Calculando S. A $\frac{10^2}{4}$ $\frac{10^2}{4}$ $\frac{10^2}{37^\circ}$ $\frac{10^2}{5_{AOB}}$ $\frac{10^2}{4}$ $\frac{10^2}$ $\frac{10^2}{4}$ $\frac{10^2}{4}$ $\frac{10^2}{4}$ $\frac{10^2}{4}$ $\frac{10^$

4. En los semicírculos mostrados, calcule el área de la región sombreada.

Resolución

• Piden: S_x

$$S_x = S_{(mayor)} - S_{(menor)}$$

Reemplazando:

$$S_x = \frac{\pi(6)^2}{2} - \frac{\pi(4)^2}{2}$$

$$S_x = 18\pi - 8\pi$$

$$S_x = 10\pi u^2$$

5. En la figura, calcule el área de la región sombreada AOB.

01

6. En el cuadrado ABCD, determine el área de la región sombreada.

Resolución

• Piden: S_x

$$S_x = S_{ABCD} - S_{CÍRCULO}$$

$$S_x = 2^2 - \pi(1)^2$$

$$S_v = 4 - \pi$$

$$S_x = (4 - \pi) \text{ m}^2$$

7. Dos circunferencia concéntricas son la base para construir una hélice, sobre cada circunferencia se ubican seis puntos equidistantes dos a dos. ¿Qué cantidad de plancha metálica será necesario para realizar dicho trabajo?

Resolución

Piden: $S_1 + S_2$.

$$S_1 + S_2 = \frac{\pi . 30^2}{2} + \frac{\pi . 6^2}{2}$$

$$S_1 + S_2 = \frac{\pi.900}{2} + \frac{\pi.36}{2}$$

$$S_1 + S_2 = 450\pi + 18\pi$$

$$S_1 + S_2 = 468\pi \text{ cm}^2$$

6. En el cuadrado ABCD, determine el área de la región sombreada.

• Piden: S_x

$$S_x = S_{ABCD} - S_{CÍRCULO}$$

$$S_x = 2^2 - \pi(1)^2$$

$$S_v = 4 - \pi$$

$$S_x = (4 - \pi) \text{ m}^2$$

