

### Research Questions

 Where and when does timestamp mismatch occur in the Garmin dataset?

 What patterns can be revealed from using K-Means cluster across all cont. variables? (e.g BPM, Distance, Speed, and Altitude)



 How does time spent sleeping affect perceived workout intensity?

 For individuals that run the most, do they exhibit any changes in the spread of their heart rate the more they run?

# Data Cleaning

#### **Garmin Data**

Final dataframe consisted the following columns:

- Subject ID
- Datetime

Altitude

Distance

Speed

BPM

|   | SubjectID | Datetime            | Altitude | Distance | Speed | BPM  |
|---|-----------|---------------------|----------|----------|-------|------|
| 0 | 58        | 2018-09-16 00:00:00 | 1117.2   | 3.17     | 1.465 | 78.0 |
| 1 | 58        | 2018-09-16 00:00:02 | 1116.4   | 7.93     | 2.305 | 78.0 |
| 2 | 58        | 2018-09-16 00:00:03 | 1116.2   | 10.39    | 2.454 | 82.0 |
| 3 | 58        | 2018-09-16 00:00:04 | 1116.2   | 12.91    | 2.463 | 86.0 |
| 4 | 58        | 2018-09-16 00:00:05 | 1116.0   | 15.66    | 2.547 | 86.0 |



# Data Cleaning

#### **Survey Data**

|    | SubjectID | EventID | Intensity |
|----|-----------|---------|-----------|
| 4  | 58        | 2018811 | 3         |
| 9  | 58        | 2018609 | 4         |
| 14 | 58        | 2018526 | 3         |
| 29 | 58        | 2018704 | 4         |
| 35 | 58        | 2018818 | 3         |

|    | SubjectID | EventID | Sleep Time |
|----|-----------|---------|------------|
| 0  | 58        | 2018811 | 7.5        |
| 5  | 58        | 2018609 | 8.0        |
| 10 | 58        | 2018526 | 7.5        |
| 16 | 58        | 2017722 | 7.5        |
| 25 | 58        | 2018704 | 6.5        |





# A Jump in Time

|        | SubjectID | Datetime            | Altitude | Distance | Speed | BPM   | TimeDiff |
|--------|-----------|---------------------|----------|----------|-------|-------|----------|
| 697511 | 432       | 2017-09-02 00:23:31 | 1276.4   | 3545.84  | 1.521 | 126.0 | 00:00:01 |
| 697512 | 432       | 2017-09-02 00:23:32 | 1276.2   | 3547.45  | 1.521 | 129.0 | 00:00:01 |
| 697513 | 432       | 2017-09-02 00:23:33 | 1276.0   | 3549.15  | 1.521 | 129.0 | 00:00:01 |
| 697514 | 432       | 2017-09-02 00:23:34 | 1275.8   | 3550.93  | 1.521 | 129.0 | 00:00:01 |
| 697515 | 432       | 2017-09-02 00:23:35 | 1275.8   | 3552.63  | 1.530 | 129.0 | 00:00:01 |
| 697516 | 432       | 2017-09-02 01:04:17 | 1264.2   | 3554.61  | 1.642 | 100.0 | 00:40:42 |
| 697517 | 432       | 2017-09-02 01:04:18 | 1263.4   | 3556.99  | 1.885 | 100.0 | 00:00:01 |
| 697518 | 432       | 2017-09-02 01:04:19 | 1263.8   | 3559.52  | 2.258 | 100.0 | 00:00:01 |





# Missing Data

|                                | Multiple Times<br>In a Run<br>(63 rows) | One Time<br>In a Run<br>(158 rows) |
|--------------------------------|-----------------------------------------|------------------------------------|
| Median Altitude (m)            | 1065                                    | 1063                               |
| Median Distance (m)            | 8638                                    | 3589                               |
| Median Speed (m/s)             | 0.112                                   | 1.222                              |
| Median BPM                     | 108                                     | 100                                |
| Median Time Difference (H-M-S) | 00:03:05                                | 3:14:50                            |

#### **K-Means Cluster**

- K-means clustering with 2 clusters was performed
- From the two clusters we can infer that people in higher altitudes tend to run shorter distances when compared to those in lower altitudes



|               | Cluster 0 | Cluster 1 |
|---------------|-----------|-----------|
| Mean BPM      | 140.27    | 137.57    |
| Mean Altitude | 1094.62   | 149.46    |
| Mean Distance | 7101.39   | 12026.12  |
| Mean Speed    | 2.31      | 2.35      |



Average amount of sleep for different levels of workout intensity



# Associations between sleep and workout intensity:

- Survey data was used to determine the amount of sleep and workout intensity for every runner
- Average sleep was calculated for each level of workout intensity
- No strong relationship between sleep and workout intensity



#### Intrasubject Variability: Heart Rate Across 75 Runs





Intrasubject Variability: Heart Rate Standard Deviation Across 75 Runs







### Conclusion

#### **Missing Timestamps**

Shorter timestamp differences if it occurs multiple times on the same day.



#### **Sleep & Workout Intensity**

No relationships were found between average time spent sleeping and perceived workout intensity

#### **K-Means Cluster**

Subjects located in higher altitudes will tend to run for shorter distances, whereas individuals in lower altitudes tend to run farther.



#### **Top Runners**

For individuals that run the most, we did not observe huge changes in the spread of their heart rate as they run



# Further Research & Application



#### **Heart Rate Recovery & Injury Prediction**

Can data in heart rate recovery be used to improve injury prediction results?



#### Implementing a Cooldown Timer

Instead of stopping all measurements immediately after the end of the run, program it to continuously measure BPM for 1 minute afterwards.



#### **Understanding Missing Timestamps**

The cooldown timer also serves as a visual indicator to understand when a subject purposefully stops their run.



