BRAC University

Department of Computer Science and Engineering

Final Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 40 minutes
Date: 2nd May 2023

Semester: **Spring 2023**Course Code: **CSE460**Course Title: **VLSI Design**

Set B

Student ID: Name: Section:

[Answer any **THREE** questions out of **FOUR**. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

	ii. Find the maximum gain of swapping a pair of nodes (Δg_i) iii. Swap the pair and draw the updated graph	
(d)	Finish the first pass by computing the maximum positive gain, G_m . Suggest how many swaps should be actually executed in the first pass.	[4]
(e)	Should you perform subsequent passes of the algorithm? Why or why not?	[1]

Observe the figure and the truth table and answer the following questions. Assume the effective rise and fall resistances of all the components are equal to that of a unit inverter (**R**) in the worst case.

Figure: Two-input CMOS gate 'X' is driving another 'X' gate and an inverter.

Truth Table for node N				
A	В	N		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

L	(a)	Identify gate 'X'.	[2]
	(b)	Calculate the capacitances of nodes A, B, and M with the necessary figures.	[6]
	(c)	Calculate 'propagation delay fall (t _{pdf})' at node M.	[4]
		'N and O nodes have identical outputs but the N node is faster' - do you agree with the	[3]
ı		statement? Explain qualitatively.	i

3. (CO1)

The Circuit above has the following specifications:

nMOS specifications: $W_n = 2 \mu m, L_n = 0.36 \mu m, \mu_n C_{ox} = 25 \mu A/V^2, V_{tn} = 0.6V$

• **pMOS specifications:** $W_p = 4 \ \mu m, L_p = 0.36 \ \mu m, \mu_p C_{ox} = 50 \mu A/V^2, V_{tp} = -0.6V$ • **Other specifications:** $I_2 = 1.5 mA, I_3 = 1 mA, R_2 = 1 k\Omega, R_3 = 2 k\Omega, V_{dd} = 4V,$ $V_{ss} = 0V$

(a)	Calculate the current constants (β_p, β_n) for both of the transistors.	[3]
(b)	Find the voltage across the R_3 resistance.	[3]
(c)	Determine the operating mode of the nMOS transistor.	[5]
(d)	Identify the value of R_1 in order to keep the pMOS transistor in the "Linear"	[4]
	operating mode.	

