Information Retrieval

A personalized Search Engine for microblog content

Matteo Angelo Costantini - 795125 Dario Gerosa - 793636 Michele Perrotta - 795152

Goal

- Crawl tweets dealing with different topics using Twitter APIs
- Create a Search Engine
 - Must support both personalized and not personalized search
 - At least five user profiles with three topic of interest
 - Interest extracted from documents given by the user

Crawler

- Python script using tweepy APIs wrapper
- Multiprocess approach to speed up the crawling process
- Online PostgreSQL database for persistence
- 10 topics

Dataset

- ~ 36 000 000 tweet
- ~ 16 000 users
- Up to 3 200 tweet for each user
- 60 GB of data
- Tweets only in English
- JSON Format

Percentile	Follower
5	226
10	391
20	746
30	1,210
40	1,879
50	2,954
60	4,625
70	7,851
80	14,563
90	39,785
95	105,922
97	231,844
99	1,262,254
99.5	3,120,360
100	104,683,236

Search Engine

Overview

The Search Engine uses Lucene **TF- IDF similarity** to index the documents crawled from Twitter.

Query **personalization** is achieved using *Query Expansion* and **bag-of-words** model.

The final output is the product of a **re-ranking** phase using a combination of the Lucene matching algorithms with other custom scores followed by a **Near Duplicate Detection** step.

A Web App is used to interact with the Search Engine and visualize the results

Indexing

Analyzer:

- Based on Lucene's Classic Analyzer
 - Preserves URLs, emails and numbers separated with hyphens
- Porter's Stemmer
- Removal of URLs and emails
- Stopword removal using Lucene default list
- Tokens normalized to lowercase

Indexer:

- Lucene's Classic Similarity
 - Refinement of the cosine-similarity based on TF-IDF
- Indexed Fields:
 - Text, Hashtags for text search
 - Date for range queries
 - Retweet count, author's data and other for scoring

Queries

Two main types of queries:

- Based on recent information
 Focused on new tweets
- Based on the whole information available in the dataset

Characteristics:

- Both queries support personalization based on user interests
- Re-Scoring based on Twitter's nature
- Near Duplicates Detection
- Range queries on Date

Queries - 1

- Boolean Model retrieves relevant documents and chronological ordering of the results
- Selection of *n* most recent documents
- Scoring of the subset of documents using the Vector Space Model with Lucene's Classic
 Similarity and other Twitter-related factors such as:
 - Retweet rate
 - User's influence
 - Presence of URL

Nagmoti, Rinkesh, Ankur Teredesai, and Martine De Cock. "Ranking approaches for microblog search." *Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Volume 01*. IEEE Computer Society, 2010.

Queries - 2

- Default Lucene's approach: Boolean Model followed by Vector Space Model to score the documents
- Select the n most relevant documents
- Re-score & Re-rank the subset using a linear combination of the Similarity Score and other Twitter-related factors such as:
 - Retweet rate
 - User's influence
 - Presence of URL

Nagmoti, Rinkesh, Ankur Teredesai, and Martine De Cock. "Ranking approaches for microblog search." *Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Volume 01*. IEEE Computer Society, 2010.

Scoring

To Re-Score the documents we took into account the score given using the revised cosine similarity computed by Lucene but also other factors such as:

- The number of followers of the author of a tweet
- The number of retweets
- The length of the text
- The presence/absence of an URL
- The tweet being a quote/retweet or not

Scoring - Equations

Base Lucene Score

$$bS = lw \cdot \frac{s_d}{max_{i \in R} \ s_i}$$

Follower Score

$$fS = fw \cdot \frac{ufi_d}{ufi_d + ufo_d}$$

Retweet Score

$$rS = rw \cdot \frac{r_d + fav_d}{max_{i \in R} \ r_i + fav_i}$$

Quote Score

$$qrS = q_d \cdot qw + r_d \cdot rw$$

Length Score

$$lS = lw \cdot \frac{l_d}{max_{i \in R} \ l_i}$$

URL Score

$$uS = uw \cdot u_d$$

Final Score: S = bS + fS + rS + qrS + lS + uS

Personalization

Outline

- Document based personalization
- Bag-of-Words model for each topic
 - Topic dependent
- The bag is computed indexing the given documents and either using the whole set or using a subset of most informative (based on TF-IDF) terms
- Query expansion to include the terms defining the interests of the user

Profiles:

- Five users with different topics of interest
- At least three topics for each user
- At least 10 documents for each topic
- A customizable user using the web app

Near Duplicate Detection

- We chose to use the Overlap coefficient since the Jaccard coefficient led to a lot more false negatives when one tweet overlaps with another
- The set used to compare the documents consists of the bi-grams extracted from the text of the tweet.
- Not much slower that Jaccard coefficient approach on a limited number of documents (tested with about 150 documents)
- Threshold at 80% of overlap

Interface

Supports:

- Interactive tweets
- Personalization based on user profile and topic
- Range queries on the Date Fields
- Duplicates detection and filter
- URL scoring
- User profile creation

Query Personalization - Examples

Query Personalization - Examples

Query Personalization - Examples

Thanks for your attention

User 1:

cs: java programmer cinema: avengers superheroes morricone sergio leone tech: intel amd ryzen nvidia politics: trump intel top secret russia finance: nvidia amd apple microsoft stock

User 2:

tech: apple music: motorhead ace of spades metallica soad cars: tesla bmw

User 3:

sport: federer serena williamsscience: physics higgscars: audi volkswagen

User 4:

sport: golf francesco molinarimusic: madonna 50 centsfood: fruit pasta

User 5:

tech: lollipop android **food**: lollipop candy marshmallows **sport**: manchester united premier league chelsea arsenal