Information diffusion as a control model

November 2, 2014

- 1. Consider the discrete time step. Let $X_t = [p_1^{(t)}, \dots, p_n^{(t)}]^\top$, where each $p_i^{(t)}$ denote the probability that node i has been activated by time step t.
- 2. For all pair of nodes $i, j, \alpha_{j,i}$ is a parameter modeling how frequent information spread from j to i. $\alpha_{j,i} = 0$ means no link.
- 3. Let $f(t_i|t_j;\alpha_{j,i})$ be the conditional likelihood of transmission from j to i. e.g., f can be the pdf of exp, pow, ray distributions.
- 4. $p_i^{(t+1)} = p_1^{(t)} + (1 p_1^{(t)})\delta_i^{t+1}$, where δ_i^{t+1} denote the probability that node i is activated during t to t+1.
- 5. Let $F_i^{(t+1)}(t_j; \alpha_{j,i}) = \int_t^{t+1} f(t_i | t_j; \alpha_{j,i}) dt_i$. Notice these $F_i^{(t+1)}(t_j; \alpha_{j,i})$ can be precomputed. Let $F_i^{(t+1)}(j; \alpha_{j,i}) = \sum_{t_j=1}^t F_i^{(t+1)}(t_j; \alpha_{j,i}) \cdot Pr(j$ is activated at t_j). Then, $\delta_i^{(t+1)} = 1 \prod_{j \neq i} (1 F_i^{(t+1)}(j; \alpha_{j,i}))$.
- 6. $Pr(j \text{ is activated at } t_j)$ can be calculated from X_1, \ldots, X_t . Specifically, $Pr(j \text{ is activated at } t_j) = p_j^{t_j} \Pi_{t < t_j} (1 p_j^t)$.
- 7. Control inputs can be (1) observing some nodes be activated; (2) modifying $\alpha_{j,i}$.
- 8. Evaluation