Satellite Networks: Spacewire

Jérôme Ermont jerome.ermont@n7.fr

INPT ENSEEIHT

3SN SEMBIIOT

2020-2021

Plan

Introduction

SpaceWire

On-board networks for future satellites

Some last words ...

Agenda

Introduction

SpaceWire

On-board networks for future satellites

Some last words ...

Nowadays typical scientific spacecraft architecture

(Source: O. Notebeart, Airbus Defence and Space)

On-board communications recall

Vehicule guidance and control

- Data related to vehicule guidance, navigation, orbital control, altitude,
- Orientation of antennas and instruments,
- Low data rate but high determinism.

Payload data transfer

Data measured by the various instruments have to be transferred to mass memory.

- Data are high resolution images, radar data, etc. . .
- Requires large throughput from instruments to mass memory.
- Data flow is continuous, generally.

Communication constraints recall

Contraints on data transfer

- Compression and storage of instrument data is mandatory.
- Satellite functions may require a common clock: synchronization required.
- Security and robustness: ciphering, command authentification, no computing errors.

Resistance to radiations

- Space environment is harsh: electronic age faster with space particules blasts, messages get corrupted (random error).
- New material, resistant to cosmic radiations, are required (e.g. SOI)
- Complex system and expensive!

Agenda

Introduction

SpaceWire

On-board networks for future satellites

Some last words ...

Spacewire

- Embedded network for satellite developped by ESA and Dundee University
 - Inspired by IEEE 1355
- High speed point to point serial links: 200 Mbps
- Low energy consumption
- Adapted to space constraints

6 layers of the Spacewire network architecture

- correspond to the 3 low layers of OSI model
- each layer uses the functionnalities of the under layer

Spacewire

Physical and signal layers

- LVDS (Low Voltage Differential Signalling) ⇒ low energy consumption
- Data-Strobe Encoding
- Full duplex \rightarrow 4 twisted pairs

Spacewire

Character layer

- Transmission Data Unit
- 2 types:
 - o Data: 10 bits
 - basic element of the packets
 - o Control: 4 bits
 - to control the transmission on the network
 - FCT : Flow Control Token / ESC : Escape
 - EOP : End of Packet / EEP : Error End Of Packet

Flow control

- For each link
- Receptor sends grant character to the sender
- One grant message for each 8 bytes (FCT)
- 56 bytes max. can be granted
 - o Input ports of the equipments: 64 bytes buffers
- FCT characters are sent before data characters

Packet format and address

- No constraint on the data length
- Logical addressing: each port has a network address, 224 possible addresses

Wormhole Routing

Network elements connected through routers

Goal

To increase the data transmission without adding more point to point links

Constraints

- Do not use lot of memory because of the cost of protected memory
- Compliant to the point to point link

SpaceWire Router

Reception buffers: 64 buffers

14 of 37

N3 sends a packet to N4

The output of R2 is reserved to the packet of N3

Les données du paquet de N3 est transmit au fur et à mesure par R2

N1 sends a packet to N4

The corresponding reception buffer of R2 is free \Rightarrow the packet from N1 can be stored in R2 The output port of R1 is reserved for the packet of N1

But the packet of N1 is blocked in R2 $\,$

N2 sends a packet to N4

The packet from N2 is blocked in R1

The packet from N3 is completely received

The output port of R2 becomes free \Rightarrow the packet from N1 can progress in R2

The packet from N1 is transmitted to N4

The packet from N1 is completely received

The reception buffer of R2 is now free \Rightarrow the packet from N2 can progress to R2

The packet from N2 is stored in the reception buffer The output port is free, the packet progress to N4

Wormhole Routing behaviour

The packet from N2 is transmitted to N4

Wormhole Routing

Pros

- Low memory needs
- Low latency in general
- Easy to implement

Cons

- Blocking flows
- Blocking the network
- Important and irregular delays

Output port access policy

Packets from different sources try to access to the same output port

- Static priorities on destination addresses
 - o 2 priority level
 - o no preemption
- "rotating priority" mechanism

Priority to input port 1

Data in reception buffer of input port 4 Reception buffers of ports 1, 2 and 3 are free

Transmission of the green flow to the output port

Data in ports 3 and 6

Green flow has been transmitted
The output port becomes free
Priority to the next port following port 4

No data in port 5
Data of 6 are transmitted

All the data of port 6 has been transmitted Priority to port 7

Waiting data of port 3 are then transmitted

- Goal : to use all the links that interconnect 2 routers
- Routers automatically distribute the traffic

19 of 37

Routing table of R1

	Addr	Port 1	Port 2	Port 3	Port 4	Port 5
1	15	0	0	0	1	1
ı	16	0	0	0	1	1

- Goal : to use all the links that interconnect 2 routers
- Routers automatically distribute the traffic

19 of 37

Routing table of R1

ı	Addr	Port 1	Port 2	Port 3	Port 4	Port 5
1	15	0	0	0	1	1
ı	16	0	0	0	1	1

- Goal : to use all the links that interconnect 2 routers
- Routers automatically distribute the traffic

Routing table of R1

ı	Addr	Port 1	Port 2	Port 3	Port 4	Port 5
	15	0	0	0	1	1
Ì	16	0	0	0	1	1

19 of 37

- Goal : to use all the links that interconnect 2 routers
- Routers automatically distribute the traffic

19 of 37

Routing table of R1

ı	Addr	Port 1	Port 2	Port 3	Port 4	Port 5
1	15	0	0	0	1	1
ı	16	0	0	0	1	1

- Goal : to use all the links that interconnect 2 routers
- Routers automatically distribute the traffic

19 of 37

Routing table of R1

	Addr	Port 1	Port 2	Port 3	Port 4	Port 5
	15	0	0	0	1	1
[16	0	0	0	1	1

Typical spacecraft architecture, the come back

(Source: O. Notebaert, Airbus Defence and Space)

And why not?

(Source : O. Notebaert, Airbus Defence and Space)

SpaceWire and real time constraints

- Enough data rate to transmit:
 - Telemetry data from the instruments
 - Commands (low amount of data)

Problem: transmission delays non deterministic

- Blocking in cascade Blocages en cascade
- Important size of the scientific data

How to guarantee the real time constraints of the transmission delays

A first solution

To compute the end to end delay of each flow

Too much interactions between the flows \rightarrow unfeasible

To compute the maximum worst case end to end delays

- Differents methods exist: Network Calculus, Model Checking, ...
- Recursive Calculus proposed by T. Ferrandiz [ISAE 2012]

An example

Computation of the worst case traversal time (WCTT) of the green flow

$$\mathit{Delay}(F_g) = \mathit{d}(F_g, L_1)$$

$$Delay(F_g) = d(F_g, L_3) + d(F_r, L_3)$$

$$\begin{aligned} \textit{Delay}(F_g) &= \textit{d}(F_g, L_3) + \textit{d}(F_r, L_3) + \textit{d}(F_j, L_3) \\ &\text{ou} \\ \textit{Delay}(F_g) &= \textit{d}(F_g, L_3) + \textit{d}(F_r, L_3) + \textit{d}(F_b, L_3) \end{aligned}$$

$$Delay(F_g) = d(F_g, L_3) + d(F_r, L_3) + \max(d(F_j, L_3), d(F_b, L_3))$$

$$\textit{Delay}(\textit{F}_{\textit{g}}) = \textit{d}(\textit{F}_{\textit{g}},\textit{L}_{3}) + \textit{d}(\textit{F}_{\textit{r}},\textit{L}_{3}) + \max\left(\textit{d}(\textit{F}_{\textit{j}},\textit{L}_{3}),\textit{d}(\textit{F}_{\textit{b}},\textit{L}_{5})\right)$$

$$\textit{Delay}(F_g) = \textit{d}(F_g, L_3) + \textit{d}(F_r, L_3) + \max \left(\textit{d}(F_j, L_3), \textit{d}(F_b, \textit{null}) \right)$$

$$\mathit{Delay}(F_g) = \mathit{d}(F_g, L_3) + \mathit{d}(F_r, L_3) + \max(\mathit{d}(F_j, \textcolor{red}{L_4}), \mathit{d}(F_b, null))$$

$$\begin{aligned} \textit{Delay}(F_g) &= \\ d(F_g, L_3) + d(F_r, L_3) + \max(d(F_j, L_4) + d(F_o, L_4), d(F_b, \textit{null})) \end{aligned}$$

$$\begin{aligned} \textit{Delay}(F_g) &= \\ \textit{d}(F_g, L_3) + \textit{d}(F_r, L_3) + \max \left(\textit{d}(F_j, L_4) + \textit{d}(F_o, \textit{null}\right), \textit{d}(F_b, \textit{null}) \right) \end{aligned}$$

$$\begin{aligned} \textit{Delay}(F_g) &= \\ d(F_g, L_3) + d(F_r, L_3) + \max \left(d(F_j, \textit{null}) + d(F_o, \textit{null}), d(F_b, \textit{null}) \right) \end{aligned}$$

$$\begin{aligned} \textit{Delay}(F_g) &= \\ \textit{d}(F_g, L_3) + \textit{d}(F_r, L_5) + \max(\textit{d}(F_j, \textit{null}) + \textit{d}(F_o, \textit{null}), \textit{d}(F_b, \textit{null})) \end{aligned}$$

$$Delay(F_g) = d(F_g, L_3) + d(F_r, null) + \max(d(F_j, null) + d(F_o, null), d(F_b, null))$$

$$\textit{Delay}(F_g) = \\ d(F_g, L_3) + d(F_r, \textit{null}) + \max(d(F_j, \textit{null}) + d(F_o, \textit{null}), d(F_b, \textit{null}))$$

$$\begin{aligned} \textit{Delay}(F_g) &= \\ \textit{d}(F_g, L_3) + \textit{d}(F_r, \textit{null}) + \max(\textit{d}(F_j, \textit{null}) + \textit{d}(F_o, \textit{null}), \textit{d}(F_b, \textit{null})) \end{aligned}$$

25 of 37

$$Delay(F_g) = d(F_g, L_3) + d(F_r, null) + 2 \times \max(d(F_j, null) + d(F_o, null), d(F_b, null))$$

$$\begin{aligned} \textit{Delay}(F_g) &= \\ \textit{d}(F_g, \textcolor{red}{\textit{L}_4}) + \textit{d}(F_r, \textit{null}) + 2 \times \max\left(\textit{d}(F_j, \textit{null}) + \textit{d}(F_o, \textit{null}), \textit{d}(F_b, \textit{null})\right) \end{aligned}$$

$$\begin{aligned} \textit{Delay}(F_g) &= \textit{d}(F_g, \textit{L}_4) + \textit{d}(F_o, \textit{L}_4) + \textit{d}(F_r, \textit{null}) + 2 \times \\ &\max \left(\textit{d}(F_j, \textit{null}) + \textit{d}(F_o, \textit{null}), \textit{d}(F_b, \textit{null}) \right) \end{aligned}$$

$$\begin{aligned} \textit{Delay}(F_g) &= \textit{d}(F_g, \textit{L}_4) + \textit{d}(F_o, \textit{null}) + \textit{d}(F_r, \textit{null}) + 2 \times \\ &\text{max}\left(\textit{d}(F_j, \textit{null}) + \textit{d}(F_o, \textit{null}), \textit{d}(F_b, \textit{null})\right) \end{aligned}$$

$$\begin{aligned} \textit{Delay}(F_g) &= \textit{d}(F_g, \textit{null}) + \textit{d}(F_o, \textit{null}) + \textit{d}(F_r, \textit{null}) + 2 \times \\ &\max (\textit{d}(F_j, \textit{null}) + \textit{d}(F_o, \textit{null}), \textit{d}(F_b, \textit{null})) \end{aligned}$$

- $d(F_i, null) = \frac{S_i}{C}$ où S_i = size of the packets and C links capacity (data rate)
- $Delay(F_g) = \frac{S_v + S_o + S_r + 2 \times \max(S_j + S_o, S_b)}{C}$

Conclusion

- Simple method to compute maximum worst case end to end delay of a SpaceWire flow
- Deterministic bound of the delays

Second solution

- Add a new network layer between SpaceWire and the applications
- To guarantee the QoS of the applications
- For ex., Ethernet extension to guarantee the transmission delays:
 TT-Ethernet
- Solution: SpaceWire-RT (Reliability & Timeliness)

SpaceWire-RT

Goal: Synchronous and asynchronous communication with safety

- Without Spacewire modification
- Same API as Spacewire

How?

- Utilization of virtual channels
- 2 modes :
 - Asynchronous: no strict guarantee of delay, priorities over the virtual channels
 - Synchronous: TDMA-like mechanism to access to the network, guaranteed transmission delays

Virtual Channels

- Channel = source buffer + links + destination buffer
- Identifier : src addr + dest addr + number
- Behavior:
 - App writes in the source buffer
 - SpaceWire-RT send data through SpaceWire
 - App read data from SpaceWire-RT
- Packet format sent through SpaceWire:

ation Destinal Iddress SpW Add W Source Logical Ad ence ber Data Ler	tress SpW Address tree Type / Redundancy
col ID Logical Ad	Idress Redundancy
501	ngth Header CRC
ta Data	Data
	ta Data

Asynchronous mode

- Unbounded transmission delays:
- Traffic control:
 - Data segmentation
 - 256 bytes fragments from the source
 - o Priorities over the channels
 - low channel id = high priority
 - non preemptive
 - different than the "rotating priorities"
 - o End to end flow control:
 - Ready to send via BFCT (Buffer Flow Control Token) from the destination to the source
 - Acknowledgements

Synchronous mode

- Deterministic Traversal Time
- TDMA:
 - Throughput divided in constant time slots
 - Utilization of SpaceWire Time-Codes:
 - · Global synchronization
 - 64 slots cycles
 - Static allocation of the time slots to the channels
 - during a given time slot, only one link is used by a unique channel
 - Time slot format:

Conclusion on SpaceWire-RT

Advantages

- Fragmentation + priorities: urgent (short) messages can arrive before the big packets
- Synchronous mode: guaranteed bandwidth for urgent traffic

Disadvantages

- Flow control: can increase the transmission delay
- Need of a global synchronization
- Need of buffers with more important size

Agenda

Introduction

SpaceWire

On-board networks for future satellites

Some last words ..

1553-Spacewire, what's next?

- Increasing needs in data rate and real-time critical communications
- · High integration of systems
- Full duplex switched Ethernet is a success for aircrafts

AFDX for satellites

 MISSION (Methodology and assessment for the applicability of ARINC-664 (AFDX) in Satellite/Spacecraft on-board communicatION networks)

TT-Ethernet for launchers

802.1 TSN

- Work in progress: EDEN project (IRT Saint Exupery, Thalès Avionics, Airbus DS, Continental, Dassault Aviation, ...)
- PhD thesis of Quentin Bailleul N7-2018

Agenda

Introduction

SpaceWire

On-board networks for future satellites

Some last words ...

Processors evolution ...

Many-Cores processors

Kalray MPPA 256

Tilera TILE 64

- Simple processors: good for certification
- Interconnection: Network on Chip (NoC)
 - Routers with few memory
 - Wormhole routing
 - QoS in order to guarantee real-time constraints

Processors evolution ...

NoC for Real-time communication

- Need to guarantee a bounded WCTT
- Close to Spacewire mechanisms
- Recursive Calculus for NoC