Computer Graphics
Assignment 1

Question 1

Changes in Code

Note:- All changes are done in the main.py file. The changes are wrapped by "Start" and "End" comments to denote changes. Search "Start" for the changes.

- 1. Change the number of triangles drawn in *glDrawArrays*. Increased the number of triangles to support the newly drawn surface.
- 2. Create a function to supply the coordinate points of the surface using its <u>parametric</u> equation (hardcoded) and parameters.
- 3. Added a <u>nested loop</u> in *createParametricObject*. Specify the number of horizontal lines and vertical lines into which the surface is divided. Using the number of lines, divide the range of parameters and create a constant step size to create rectangles. Divide the rectangles into two triangles.

<u>Output</u>

Note:- The code has the equation for cylinder hard coded, but it was changed to create multiple surfaces given below.

1. Cylinder. (Code in main.cpp)

Equation. x = R*cos(u); y = R*sin(u); z = v in (u, v)

Parameter Range: $0 \le u \le 2\pi$; $0 \le v \le 20$.

2. Helicoid

Equation. x = v*cos(u); y = v*sin(u); z = u;

Parameter Range: -10 <= v <= 10; - $\pi <= u <= \pi$.

```
▼ Information
16.668 ms/frame (60.0 FPS)
```


3. Deni's Surface

Parametric Equation: $(5\cos(u)\sin(v), 5\sin(u)\cos(v), 5(\cos(v) + \ln(\tan(v/2))) + 0.5u$; Parameter Range: $0 \le u \le 4\pi i$; $0.01 \le v \le 1$.

```
▼ Information
16.668 ms/frame (60.0 FPS)
```


4. Klien Bottle

```
▼ Information
16.666 ms/frame (60.0 FPS)
```


Question 2

Algorithm and Explanation

We aim to interpolate n given points using cubic Bezier curves.

To connect 2 consecutive points P_i and P_{i+1} we will create a cubic Bezier curve with P_i and P_{i+1} as the <u>initial and final control points</u>, respectively. Apart from the two points, we need 2 more points to create a cubic Bezier curve that requires 4 control points.

Like in the given image with points P_1 to P_{10} has 9 cubic Bezier curves, including C_1 to C_9 . Each curve C_i is a cubic Bezier curve starting from P_i and ending at P_{i+1} . For example, C_1 starts from P_1 and ends at P_2 .

We know to create a cubic Bezier curve, we need 4 control points with the equation $P(t) = K0 * (1-t)^3 + K1 * 3t(1-t)^2 + K2 * 3t^2(1-t) + K3 * t^3$ where K0, K1, K2, and K3 are the 4 control points. Here, K0 = P_i and K3 = P_{i+1}. We need to select points K1 and K2 such the C_i is continuous, and the curve between C_i and C_{i+1} is C¹.

To ensure that C_i and C_{i+1} are continuous and differentiable at P_{i+1} , we need to ensure that the 3rd control point for C_i and 2nd control point for C_{i+1} and P_{i+1} are collianer.

In other words,

If we create 2 ghost control points for each curve C_i namely, G_{i1} and G_{i2} then, G_{i2} , P_{i+1} , and $G_{(i+1)1}$ should be collinear.

This will ensure that C_i and C_{i+1} are differentiable as $G_{i2}P_{i+1}$ is a tangent to C_i (property of Bezier curve) and $P_{i+1}G_{(i+1)1}$ is a tangent to C_{i+1} (property of Bezier curve) and if the three points are collieaner then the line $G_{i2}G_{(i+1)1}$ is a tangent to both C_i and C_{i+1} at P_{i+1} . Hence, the final curve will be differentiable at P_{i+1} .

Thus, we can create G_{11} and G_{12} randomly, G_{21} will be found using G_{12} and G_{22} can be chosen again randomly.

We can continue with the process until we create a complete curve.

<u>Pseudocode</u>

```
Function PieceWiseCubicBezierCurve(Points):  
For P_k where k = 1 to n-1  
If k is 1  
Initialize G_{k1} randomly.  // RandomInitialization(P_k)  
Initialize G_{k2} randomly.  // RandomInitialization(P_{k+1})

Else  
Initialize G_{k1} as a point on G_{(k-1)2}P_k.  // CoPointInitialization(G_{(k-1)2}, P_k)  
Initialize G_{k2} randomly.  // RandomInitialization(P_{k+1})

Calculate P_k = CubicBezierCurve(P_k, P_k, P_k)

Return P_k where P_k = 1 to n-1
```

```
Function RandomInitialization(P_k):
    Initialize \epsilon {Small value to keep G near P} G_k = P_k + (/-) \epsilon Return G_k

Function CoPointInitialization(G_{(k-1)2}, P_k) {Using vector equations} Initialize \epsilon v = P_k - G_{(k-1)2} u = v/ ||v|| G_{k1} = P_k + \epsilon^* u Return G_{k1}

Function CubicBezierCurve(P_k, P_k, P_k, P_k) P_k (Punction CubicBezierCurve(P_k, P_k, P_k, P_k) P_k, P
```