Real Random Variables

Flydexo

February 20, 2023

Contents

1	Real random variables	1
2	Expectation - Variance - Standard gap 2.1 Definitions	
1	Real random variables	
	We consider a random experience of universe $\Omega = \{e_1; e_2; e_3;; e_r\}$ is finite a law of probability p over Ω	nd

<u>Definition</u>: Real random variable (discrete) An RRV X over Ω is a function that associates a real for each issue of Ω . We note $\{X = a\}$ the event X taking the value a and p(X = a) its probability.

<u>Definition</u>: Let X a RRV over Ω with the values $x_1, x_2, ..., x_n$. When each value x_i , we associate the probability $p_i = p(X = x_i)$ we define the law of probability of X.

2 Expectation - Variance - Standard gap

2.1 Definitions

<u>Definition</u>: Expectation of X is the Real noted E(X) defined by:

$$E(X) = p_1 x_1 + p_2 x_2 + \dots + p_n x_n$$

<u>Definition</u>: Variance of X noted V(X) defined by:

$$V(X) = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + \dots + p_n(x_n - E(X))^2$$

<u>Definition</u>: Standard gap of X is the real noted $\sigma(X)$ defined by:

 $\sigma(X) = \sqrt{V(X)}$

2.2 Properties of the indicators

Property: Formula of König-Huygens

$$V(X) = p_1(x_1)^2 + p_2(x_2)^2 + \dots + p_n(x_n)^2 - (E(X))^2$$

<u>Definition</u>: Random variable aX+b For every real a and b, we can associate a new random variable by associating each issue giving the value x_i , the real $ax_i + b$. Named aX + b

Property: E(aX+b) and V(aX+b) Let a and b be two reals. We have:

- E(aX + b) = aE(X) + b
- $V(aX + b) = a^2V(X)$
- $\sigma(aX + b) = |a|\sigma(X)$

Property: Expectation and simulation With a sufficiently big sample of values taken by a random variable, the average of its values is close to the value of the expectation of this random variable.