# Preliminary results for Fake Rate measurements using 2018 & 2017 data





Marcello Maggi, INFN, Bari Kalpanie Liyanage University of Ruhuna Sri Lanka

## \*Fake rate technique

- Objects falsely identified as prompt muons passing the entire Z' selection criteria could contribute the background in the di-muon invariant mass spectrum of the Z' analysis. These objects are referred as "fake" muons.
- The main sources :
  - Events with non-isolated muons in jets, mostly originated in secondary vertices and produced in the B-mesons (and D- mesons) decay
  - Real muons from decays of light-flavor bound states (pions and kaons)
  - Charged hadron "punching through" the calorimeter giving a signature of a muon with hits in the tracker and muon systems, so contributing to the rate of "fake muon" as hadrons mis-identified as muons
- The statistics of the simulated events is typically not enough to study and estimate this background, therefore a data-driven technique is used.

<sup>\*</sup> With reference to AN\_2018\_011 and AN\_2016\_391

## \*Fake rate technique cont ..

- > Fake rate technique technique is based on the following conceptual steps:
  - Loosening some reconstruction and/or identification criteria for the muons in order to create a phase space enriched with "fake muons" candidates (hereafter referred to as fakeable object);
  - Defining a control region where to check and define the "fake muon" contribution;
  - Measuring the probability that a fakeable object passes the High  $p_T$  muon selection used for the current analysis, referred to as "fake rate" (FR);
  - Using that probability to evaluate the contribution of those "fake muon" in the signal region defined by the current selection analysis chain.

<sup>\*</sup> With reference to AN\_2018\_011 and AN\_2016\_391

## **Method** used

- The selection criteria on muons were loosened as detailed in the Table 01; the cut on the error on the transverse momentum measurement is removed together with the isolation cut. No cut on the number of muon stations matched by the track is requested.
- Dimuon events passing the trigger selection used in the Z' baseline selection (using HLT\_Mu50 in conjunction with HLT\_OldMu100 and HLT\_TkMu100) with muons fulfilling the cuts in Table 01 are used to study fake muons.

| Variable                              | Cut value |                              |
|---------------------------------------|-----------|------------------------------|
| Is GlobalMu and is TrackerMu          | True      | Removed! This constraint     |
| $ d_z $                               | < 1.0     | is not included in Z'        |
| $ d_{xy} $                            | < 0.2     | baseline selection criterion |
| Nb. of Tracker Layers with Measuremen | t  > 5    |                              |
| Nb. of Valid Pixel Hits               | > 0       |                              |
|                                       |           |                              |

## Table 01 **Definition of Fake Rate**

FR = Nb. Of muon objects passing the High  $p_T$  muon ID selection & hlt trigger Nb. Of muon objects passing the FR pre-selection

• The contamination of the electroweak processes, apart from QCD events, is evaluated from MC and the relative fraction of that contribution is subtracted from the data.

## Combined FR measurement and parameterization for 2017 and 2018

- Binning has been changed in a way that the last  $p_T$  bin contain at least 100 events and FR parametrization is done as a function of muon  $p_T$  separately for Muon Barrel & Endcap.
- FR is taken as 0.2 above the  $p_T$  of 1200GeV in the Endcap region. But this made a negligible change on the final results.





- FR estimation done by Sherif in the past can be found here.
- Earlier version of  $p_T$  binning can be found <u>here</u>.

## \*Jet background estimation using FR measurements

- The fake rate is measured with respect to the muon candidates passing the fake rate pre-selection (Table 01) chosen from the dimuon events passing the trigger selection used in the main analysis (using HLT\_Mu50 in conjunction with HLT\_OldMu100 and HLT\_TkMu100).
- The fake rate at a given  $p_T$  is therefore the probability of a misidentified jet to pass the High  $p_T$  muon selection.

#### Estimate of the dijet contribution

- The dijet contribution can be estimated by using events with two muons both failing to pass the High  $p_T$  muon ID requirements (as given in the backup), while passing the pre-selection given in Table 01, selected using the primary analysis trigger.
- These events are weighted by a factor FR1/(1 FR1) \* FR2/(1 FR2).

<sup>\*</sup> With reference to AN\_2018\_011 and AN\_2016\_391

## \*Jet background estimation using FR measurements cont...

#### Estimate of the muon+jet contribution

- The muon+jet background is estimated by using muon pairs passing the primary analysis trigger with one muon passing and one muon failing the High  $p_T$  muon ID requirements, but both passing the pre-selection given in Table 01.
- These events are weighted by a factor of FR/(1 FR).
- The distribution of the dimuon invariant mass reweighted in this way provides the expected dimuon contribution from "fakes", once the contribution from all the electroweak processes, excluding those coming from QCD simulated events, is subtracted.
- The dijet estimate is subtracted from the muon+jet estimate to get the total jet background without double counting.

<sup>\*</sup> With reference to AN\_2018\_011 and AN\_2016\_391

## Dijet background estimation using FR measurements



## Dijet background estimation using FR measurements cont..



## <u>Dijet background estimation using FR measurements – Comparison with QCD</u>



## <u>Dijet background estimation using FR measurements – Comparison with QCD</u>



## **Dijet background estimation using FR measurements**



## Muon + jet background estimation using FR measurements



## Muon + jet background estimation using FR measurements cont..



## Muon + jet background estimation using FR measurements – Comparison with QCD



## Muon + jet background estimation using FR measurements – Comparison with QCD



## Muon + jet background estimation using FR measurements



## Jet background estimation using FR measurements



## Jet background estimation using FR measurements



## **Summary**

- A data-driven technique is used to estimate the background to the invariant mass spectrum of Z' coming from "fake" muons.
- The dijet contribution is estimated by using events with two muons both failing to pass the High  $p_T$  muon ID requirements (given in the backup), while passing the pre-selection, selected using the primary analysis trigger.
- The muon+jet background is estimated by using muon pairs passing the primary analysis trigger with one muon passing and one muon failing the High  $p_T$  muon ID requirements, but both passing the preselection.
- The total background from non-prompt muons(jets) is estimated using both dijet and muon+jet background estimations.

## Backup

## Data sets and run selection

| Data set                          | Run range       |  |  |
|-----------------------------------|-----------------|--|--|
| 2017                              |                 |  |  |
| /SingleMuon/Run2017B-31Mar2018-v1 | 297050 – 299329 |  |  |
| /SingleMuon/Run2017C-31Mar2018-v1 | 299368 – 302029 |  |  |
| /SingleMuon/Run2017D-31Mar2018-v1 | 302031 – 302663 |  |  |
| /SingleMuon/Run2017E-31Mar2018-v1 | 303824 – 304797 |  |  |
| /SingleMuon/Run2017F-31Mar2018-v1 | 305045 – 306460 |  |  |
| 2018                              |                 |  |  |
| /SingleMuon/Run2018A-17Sep2018-v2 | 315257 – 316995 |  |  |
| /SingleMuon/Run2018B-17Sep2018-v1 | 317080 – 319077 |  |  |
| /SingleMuon/Run2018C-17Sep2018-v1 | 319337 – 320065 |  |  |
| /SingleMuon/Run2018D-22Jan2019-v2 | 320673 – 325172 |  |  |

Table 01

- Integrated luminosity up to 42.1 fb<sup>-1</sup> and 61.3 fb<sup>-1</sup> for 2017 and 2018 runs, respectively calculated with the normtags using the corresponding Collisions17/13TeV/Final/Cert 294927-306462 13TeV PromptReco Collisions17 JSON MuonPhys.txt and Collisions18/13TeV/ReReco/Cert 314472-325175\_13TeV\_17SeptEarlyReReco2018ABC\_PromptEraD\_Collisions18\_JSON\_MuonPhys.txt
- The HLT path used: OR between three paths: HLT\_Mu50, HLT TkMu100 and HLT OldMu100

| QCD Sample                                                                                                     | *Cross-section[pb] |
|----------------------------------------------------------------------------------------------------------------|--------------------|
| /QCD_Pt_15to30_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15_ext1-v2/MINIAODSIM    | 1246000000.0       |
| /QCD_Pt_30to50_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM         | 106900000.0        |
| /QCD_Pt_50to80_TuneCP5_13TeV_pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM         | 15710000.0         |
| /QCD_Pt_80to120_TuneCP5_13TeV_pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM        | 2336000.0          |
| /QCD_Pt_120to170_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM       | 407300.0           |
| /QCD_Pt_170to300_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM       | 103500.0           |
| /QCD_Pt_300to470_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM       | 6830.0             |
| /QCD_Pt_470to600_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM       | 552.1              |
| /QCD_Pt_600to800_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM       | 156.5              |
| /QCD_Pt_800to1000_TuneCP5_13TeV_pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15_ext1-v2/MINIAODSIM | 26.28              |
| /QCD_Pt_1000to1400_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM     | 7.47               |
| /QCD_Pt_1400to1800_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM     | 0.6484             |
| /QCD_Pt_1800to2400_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM     | 0.08743            |
| /QCD_Pt_2400to3200_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM     | 0.005236           |
| /QCD_Pt_3200toInf_TuneCP5_13TeV_pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM      | 0.0001357          |

#### Table 02

<sup>\*</sup> Xsec values are from XSDB, also manually calculated using GenXSecAnalyzer tool

| Other background samples                                                                                                              | *Cross-section[pb] |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| /WJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM                       | 61526.7            |
| /DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM                  | 6077.22            |
| /ZZ_TuneCP5_13TeV-pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM                                           | 16.523             |
| /WZ_TuneCP5_13TeV-pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v3/MINIAODSIM                                           | 50.2               |
| /WW_TuneCP5_13TeV-pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM                                           | 118.7              |
| /ST_tW_antitop_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15_ext1-v1/MINIAODSIM | 35.6               |
| /ST_tW_top_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8/RunlIAutumn18MiniAOD-<br>102X_upgrade2018_realistic_v15_ext1-v1/MINIAODSIM | 35.6               |
| /TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM                             | 88.29              |

#### Table 03

<sup>\*</sup>Xsec values were cross checked and validated. Values in blue have been changed after the discussion with Alexander

| Drell-Yan samples                                                                                           | *Cross-<br>section[pb] |
|-------------------------------------------------------------------------------------------------------------|------------------------|
| /ZToMuMu_NNPDF31_13TeV-powheg_M_50_120/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM    | 2112.904               |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_120_200/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM   | 20.553                 |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_200_400/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM   | 2.866                  |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_400_800/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM   | 0.2517                 |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_800_1400/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM  | 0.01707                |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_1400_2300/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM | 0.001366               |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_2300_3500/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM | 0.00008178             |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_3500_4500/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM | 3.19E-06               |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_4500_6000/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM | 2.79E-07               |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_6000_Inf/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM  | 9.57E-09               |

#### Table 04

• Moved to "RunllFall17MiniAODv2-MUOTrackFix\_12Apr2018\_94X\_mc2017\_realistic\_v14\_ext1-v1" data set from "RunllFall17MiniAODv2-PU2017\_12Apr2018\_94X\_mc2017\_realistic\_v14-v2".

<sup>\*</sup>Xsec values were cross checked and validated. Values in blue have been changed after the discussion with Alexander

| QCD Sample                                                                                                            | *Cross-section[pb] |
|-----------------------------------------------------------------------------------------------------------------------|--------------------|
| /QCD_Pt_15to30_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM     | 1246000000.0       |
| /QCD_Pt_30to50_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM     | 106900000.0        |
| /QCD_Pt_50to80_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM     | 15710000.0         |
| /QCD_Pt_80to120_TuneCP5_13TeV_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM    | 2336000.0          |
| /QCD_Pt_120to170_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM   | 407300.0           |
| /QCD_Pt_170to300_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM   | 103500.0           |
| /QCD_Pt_300to470_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM   | 6830.0             |
| /QCD_Pt_470to600_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM   | 552.1              |
| /QCD_Pt_600to800_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM   | 156.5              |
| /QCD_Pt_800to1000_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM  | 26.28              |
| /QCD_Pt_1000to1400_TuneCP5_13TeV_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM | 7.47               |
| /QCD_Pt_1400to1800_TuneCP5_13TeV_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM | 0.6484             |
| /QCD_Pt_1800to2400_TuneCP5_13TeV_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM | 0.08743            |
| /QCD_Pt_2400to3200_TuneCP5_13TeV_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM | 0.005236           |
| /QCD_Pt_3200toInf_TuneCP5_13TeV_pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM  | 0.0001357          |

#### Table 05

<sup>\*</sup> Xsec values are from XSDB, also manually calculated using GenXSecAnalyzer tool

| Other background samples                                                                                      | *Cross-section[pb] |
|---------------------------------------------------------------------------------------------------------------|--------------------|
| /WJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14- | 61526.7            |
| v3/MINIAODSIM                                                                                                 |                    |
| /TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-       |                    |
| v2/MINIAODSIM                                                                                                 | 88.29              |
| /WW_TuneCP5_13TeV-pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM        | 118.7              |
| /WZ_TuneCP5_13TeV-pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM        | 50.2               |
| /ZZ_TuneCP5_13TeV-pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM        | 16.523             |
| /ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8/RunIIFall17MiniAODv2-                        | 35.6               |
| PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM                                                       |                    |
| /ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8/RunIIFall17MiniAODv2-                    | 35.6               |
| PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM                                                       |                    |
| /DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8/RunIIFall17MiniAODv2-                                      | 6077.22            |
| PU2017RECOSIMstep_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM                                            |                    |

Table 06

<sup>\*</sup>Xsec values were cross checked and validated. Values in blue have been changed after the discussion with Alexander

| Drell-Yan samples (MUOTrackFix)                                   | *Cross-section[pb] |
|-------------------------------------------------------------------|--------------------|
| /ZToMuMu_NNPDF31_13TeV-powheg_M_50_120/RunIIFall17MiniAODv2-      |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 2112.904           |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_120_200/RunIIFall17MiniAODv2-     |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 20.553             |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_200_400/RunIIFall17MiniAODv2-     |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 2.866              |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_400_800/RunIIFall17MiniAODv2-     |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 0.2517             |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_800_1400/RunIIFall17MiniAODv2-    |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 0.01707            |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_1400_2300/RunIIFall17MiniAODv2-   |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 0.001366           |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_2300_3500/RunIIFall17MiniAODv2-   |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 0.00008178         |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_3500_4500/RunIIFall17MiniAODv2-   |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 3.19E-06           |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_4500_6000/RunIIFall17MiniAODv2-   |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 2.79E-07           |
| /ZToMuMu_NNPDF31_13TeV-powheg_M_6000_Inf/RunIIFall17MiniAODv2-    |                    |
| MUOTrackFix_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM | 9.57E-09           |

#### Table 07

• Moved to "RunlIFall17MiniAODv2-MUOTrackFix\_12Apr2018\_94X\_mc2017\_realistic\_v14\_ext1-v1" data set from "RunlIFall17MiniAODv2-PU2017\_12Apr2018\_94X\_mc2017\_realistic\_v14-v2".

<sup>\*</sup>Xsec values were cross checked and validated. Values in blue have been changed after the discussion with Alexander 8/29/20

## High p<sub>T</sub> muon ID selection

```
fabs(lep_eta[n])<2.4 &&</li>
```

- lep\_pt[n]>=53. &&
- lep isTrackerMuon[n]==1 &&
- lep isGlobalMuon[n]==1 &&
- (lep\_glb\_numberOfValidMuonHits[n]>0 | lep\_TuneP\_numberOfValidMuonHits[n]>0) &&
- lep\_glb\_numberOfValidPixelHits[n]>0 &&
- lep\_glb\_numberOfValidTrackerLayers[n]>5 &&
- lep\_sumPt[n]/lep\_tk\_pt[n]<0.10 &&</li>
- lep\_pt\_err[n]/lep\_pt[n]<0.3 &&</li>
- lep\_triggerMatchPt[n]>50

## Z' baseline event selection cuts

```
GoodVtx
                                      // A "good" offline-reconstructed primary vertex
   fabs(lep eta[0])<2.4 && fabs(lep eta[1])<2.4
                                                                                                                                                                                                          // Detector acceptance
    lep pt[0]>53. && lep pt[1]>53.0
                                                                                                                                                                                                          // Offline muon reconstruction p_T threshold
                                                                                                                                                                                                  // Both muons in the dimuon event should be "tracker"
    lep isTrackerMuon[0]==1 && lep isTrackerMuon[1]==1
    lep isGlobalMuon[0]==1 && lep isGlobalMuon[1]==1
                                                                                                                                                                                                            // Both muons in the dimuon event should be "global"
   fabs(lep dB[0]) < 0.2 && fabs(lep dB[1]) < 0.2
    (lep\_numberOfMatchedStations[0] > 1 | | (lep\_numberOfMatchedStations[0] == 1 && (lep\_expectedNnumberOfMatchedStations[0] > 1 | | (lep\_numberOfMatchedStations[0] == 1 && (lep\_expectedNnumberOfMatchedStations[0] > 1 | | (lep\_numberOfMatchedStations[0] == 1 && (lep\_expectedNnumberOfMatchedStations[0] > 1 | | (lep\_numberOfMatchedStations[0] == 1 && (lep\_expectedNnumberOfMatchedStations[0] > 1 | | (lep\_numberOfMatchedStations[0] == 1 && (lep\_expectedNnumberOfMatchedStations[0] == 1 && (lep\_expectedNnumberOfMatchedStations[0]
    < 2 | | !(lep stationMask[0] == 1 | lep stationMask[0] == 16) | lep numberOfMatchedRPCLayers[0] > 2)))
   (lep_numberOfMatchedStations[1] > 1 || (lep_numberOfMatchedStations[1] == 1 && (lep_expectedNnumberOfMatchedStations[1]
    < 2 || !(lep_stationMask[1] == 1 || lep_stationMask[1] == 16) || lep_numberOfMatchedRPCLayers[1] > 2)))
   (lep glb numberOfValidMuonHits[0]>0 | lep TuneP numberOfValidMuonHits[0]>0) && (lep glb numberOfValidMuonHits[1]>0 | lep g
    lep TuneP numberOfValidMuonHits[1]>0)
   lep_glb_numberOfValidPixelHits[0]>=1 && lep_glb_numberOfValidPixelHits[1]>=1
   lep glb numberOfValidTrackerLayers[0]>5 && lep glb numberOfValidTrackerLayers[1]>5
    lep sumPt[0]/lep tk pt[0]<0.10 && lep sumPt[1]/lep tk pt[1]<0.10 // Relative tracker-only isolation cut
    lep pt err[0]/lep pt[0]<0.3 && lep pt err[1]/lep pt[1]<0.3 // Relative p_T error
                                                                                                 // 3-D angle between the two muons' momenta should be less than (\pi - 0.02) rad
cos angle>-0.9998
   lep id[0]*lep id[1]<0
    (lep_triggerMatchPt[0]>50 | lep_triggerMatchPt[1]>50)
                                                                                                                                                                                                     //Trigger p<sub>⊤</sub> threshold
vertex chi2 < 20
```

If there are more than one opposite-sign dimuon pair passing all the above requirements, first select a pair with invariant mass closest to the Z boson mass if the mass is within  $\pm 20$  GeV of Z boson mass, and then the two muons with highest  $p_{T}$  are selected.

## <u>Dimuon Mass - 2018</u>

#### Using Z' baseline selection



## Dimuon Mass - 2017

#### Using Z' baseline selection



## <u>Transverse mass(m<sub>T</sub>) and Missing</u> <u>Trannsverse Energy distributions</u>

• The traverse mass( $m_T$ ) of the leading- $p_T$  muon passing the high  $p_T$  muopn ID selection and the reconstructed missing transverse energy (MET), where  $\Delta \varphi$  is the difference in  $\varphi$  between the muon and the MET vector is calculated as follows;

#### • $m_T = sqrt[2p_T * MET (1 - cos(\Delta \phi))]$

• According to AN\_2018\_011 and AN\_2016\_391, to reduce the contribution of W+jets events to the control region, a  $m_T$  cut ( $m_T$  < 35GeV) has been imposed on the leading- $p_T$  muon passing the high  $p_T$  muon ID selection. I have studied this cut and I saw that this largely reduces the statistics of the control region. So, this cut is not applied for the moment.









#### Using FR denominator and numerator definition for Barrel





- Comparatively better Data/MC ratio is seen in low  $p_T$  bins after applyling latest SFs
- The large contribution of QCD events in the distribution of the denominator is clearly visible and provides us with confidence that the control region defined above is enriched in fakeable objects.

#### Using FR denominator and numerator definition for Endcap





- Comparatively better Data/MC ratio is seen in low  $p_T$  bins after applyling latest SFs
- The large contribution of QCD events in the distribution of the denominator is clearly visible and provides us with confidence that the control region defined above is enriched in fakeable objects.

#### Using FR denominator and numerator definition for Barrel





- Comparatively better Data/MC ratio is seen in all  $p_T$  bins after applyling latest SFs
- The large contribution of QCD events in the distribution of the denominator is clearly visible and provides us with confidence that the control region defined above is enriched in fakeable objects.

#### Using FR denominator and numerator definition for Endcap





- Comparatively better Data/MC ratio is seen in all  $p_T$  bins after applyling latest SFs
- The large contribution of QCD events in the distribution of the denominator is clearly visible and provides us with confidence that the control region defined above is enriched in fakeable objects.