VN7003ALH

High-side driver with CurrentSense analog feedback for automotive applications

Datasheet - production data

Features

Max transient supply voltage	Vcc	40 V	
Operating voltage range	Vcc	4 to 28 V	
Typ. on-state resistance (per Ch)	R _{ON}	3.5 mΩ	
Current limitation (typ)	Ішмн	135 A	
Stand-by current (max)	ISTBY	0.5 µA	
Minimum cranking supply voltage (Vcc decreasing)	Vusp_Cranking	3 V	

- AEC-Q100 qualified
- Extreme low voltage operation for deep cold cranking applications (compliant with LV124, revision 2013)
- General
 - Single channel smart high-side driver with CurrentSense analog feedback
 - Very low standby current
 - Compatible with 3 V and 5 V CMOS outputs
- Diagnostic functions
 - Overload and short to ground (power limitation) indication
 - Thermal shutdown indication
 - OFF-state open-load detection
 - Output short to V_{CC} detection
- Protections

- Undervoltage shutdown
- Overvoltage clamp
- Load current limitation
- Self limiting of fast thermal transients
- Loss of ground and loss of V_{CC}
- Configurable latch-off on overtemperature or power limitation
- Reverse battery
- Electrostatic discharge protection

Applications

Specially intended for Automotive smart power distribution, glow plugs, heating systems, DC motors, relay replacement and high power resistive and inductive actuators.

Description

The device is a single channel high-side driver manufactured using ST proprietary VIPower® technology and housed in the Octapak package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOScompatible interface, and to provide protection and diagnostics.

The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown.

A combination of INPUT and FR_DIAG pins latches the output in case of fault, disables the latch-off functionality and enables OFF-state diagnostic.

Table 1: Device summary

Pookogo	Order codes
Package	Tape and reel
Octapak	VN7003ALHTR

Contents

1	Block d	iagram ar	nd pin description	5
2		_	cation	
	2.1	-	maximum ratings	
	2.2		data	
	2.3	Electrica	l characteristics	8
	2.4	Electrica	characteristics curves	16
3	Protecti	ions		20
	3.1		nitation	
	3.2	Thermal	shutdown	20
	3.3	Current I	imitation	20
	3.4	Negative	voltage clamp	20
4	Applica	tion infor	mation	21
	4.1	GND pro	tection network against reverse battery	21
	4.2	-	against transient electrical disturbances	
	4.3	_	s protection	
	4.4	CS - ana	log current sense	23
		4.4.1	Principle of CurrentSense signal generation	24
		4.4.2	Short to VCC and OFF-state open-load detection	26
5	Maximu	ım demag	netization energy (VCC = 16 V)	28
6	Packag	e and PCI	3 thermal data	29
	6.1	Octapak	thermal data	29
7	Packag	e informa	tion	32
	7.1	Octapak	package information	32
	7.2		packing information	
	7.3	Octapak	marking information	35
8	Revisio	n history		36

VN7003ALH List of tables

List of tables

Table 1: Device summary	
Table 2: Pin functions	
Table 3: Suggested connections for unused and not connected pins	6
Table 4: Absolute maximum ratings	7
Table 5: Thermal data	
Table 6: Electrical characteristics during cranking	8
Table 7: Power section	
Table 8: Switching	10
Table 9: Logic Inputs	10
Table 10: Protections	11
Table 11: CurrentSense	11
Table 12: Truth table	15
Table 13: FR_DIAG functionality	
Table 14: ISO 7637-2 - electrical transient conduction along supply line	
Table 15: CurrentSense pin levels in off-state	26
Table 16: PCB properties	
Table 17: Thermal parameters	
Table 18: Octapak mechanical data	32
Table 19: Reel dimensions	34
Table 20: Document revision history	36

List of figures

Figure 1: Block diagram	5
Figure 2: Configuration diagram (top view)	
Figure 3: Current and voltage conventions	7
Figure 4: IOUT/ISENSE versus IOUT	13
Figure 5: Current sense precision vs. IOUT	14
Figure 6: Switching times and Pulse skew	14
Figure 7: TDSTKON	15
Figure 8: OFF-state output current	
Figure 9: Standby current	16
Figure 10: IGND(ON) vs. lout	
Figure 11: Logic input high level voltage	16
Figure 12: Logic input low level voltage	17
Figure 13: High level logic input current	
Figure 14: Low level logic input current	
Figure 15: Logic input hysteresis voltage	
Figure 16: Undervoltage shutdown	
Figure 17: On-state resistance vs. Tcase	
Figure 18: On-state resistance vs. VCC	
Figure 19: Turn-on voltage slope	
Figure 20: Turn-off voltage slope	
Figure 21: Won vs. Tcase	
Figure 22: Woff vs. Tcase	
Figure 23: ILIMH vs. Tcase	
Figure 24: Turn-off output voltage clamp	
Figure 25: OFF-state open-load voltage detection threshold	
Figure 26: Vs clamp vs. Tcase	
Figure 27: Vsenseh vs. Tcase	
Figure 28: Application diagram	
Figure 29: Simplified internal structure	21
Figure 30: CurrentSense and diagnostic – block diagram	
Figure 31: CurrentSense block diagram	
Figure 32: Analogue HSD – open-load detection in off-state	
Figure 33: Open-load / short to VCC condition	
Figure 34: Maximum turn off current versus inductance	
Figure 35: Octapak on two-layers PCB (2s0p to JEDEC JESD 51-5)	29
Figure 36: Octapak on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 37: Rthj-amb vs PCB copper area in open box free air conditions	30
Figure 38: Octapak thermal impedance junction ambient single pulse	30
Figure 39: Thermal fitting model for Octapak	31
Figure 40: Octapak package dimensions	
Figure 41: Octapack reel 13"	
Figure 42: Octapak carrier tape	
Figure 43: Octapak schematic drawing of leader and trailer tape	
Figure 44: Octapak marking information	35

Block diagram and pin description 1

Figure 1: Block diagram

Table 2: Pin functions

Name	Function
Vcc	Battery connection.
OUTPUT	Power outputs. All the pins must be connected together.
GND	Ground connection.
INPUT	Voltage controlled input pin with hysteresis. Compatible with 3 V and 5 V CMOS outputs. It controls output switch state.
CS	Analog current sense output pin delivers a current proportional to the load current.
FR_DIAG	It sets auto-restart and latch-off protection. Moreover, it enables OFF-state diagnostic.

Figure 2: Configuration diagram (top view)

Table 3: Suggested connections for unused and not connected pins

Connection / pin	cs	N.C.	Output	Input	FR_DIAG		
Floating	Not allowed	X (1)	Χ	X	X		
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor		

⁽¹⁾X: do not care.

2 Electrical specification

Figure 3: Current and voltage conventions

V_F = V_{OUT} - V_{CC} when V_{OUT} > V_{CC} and INPUT = LOW

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 4: "Absolute maximum ratings"* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Table 4: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vcc	DC supply voltage	38	
-Vcc	Reverse DC supply voltage	16	V
V _{ССРК}	Maximum transient supply voltage (ISO7637-2:2004 Pulse 5b level IV clamped to 40 V; RL = 4 Ω)	40	
-I _{GND}	DC reverse ground pin current	200	mA
Іоит	OUTPUT DC output current	Internally limited	Α
-l _{out}	Reverse DC output current	38	
lin	INPUT DC input current	-1 to 10	m ^
IFR_DIAG	FR_DIAG DC input current	-1 10 10	mA
1	CS pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	m Λ
ISENSE	CS pin DC output current in reverse (Vcc < 0 V)	-20	mA
E _{MAX}	Maximum switching energy (single pulse) (T _{DEMAG} = 0.13 ms; T _{jstart} = 150 °C)	105	mJ

Symbol	Parameter	Value	Unit
V _{ESD}	Electrostatic discharge (JEDEC 22A-114F) INPUT CurrentSense FR_DIAG OUTPUT Vcc	4000 2000 4000 4000 4000	>
V_{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 5: Thermal data

Symbol	Parameter	Typ. value	Unit
Rcase	Thermal resistance junction-case (1)	1.45	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) (2)	58.1	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) (1)	15.6	

Notes:

2.3 Electrical characteristics

 $7 \text{ V} < V_{CC} < 28 \text{ V}$; $-40^{\circ}\text{C} < T_{i} < 150^{\circ}\text{C}$, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 6: Electrical characteristics during cranking

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VUSD_Cranking	Minimum cranking supply voltage (Vcc decreasing)			_	3	٧
Ron	On-state resistance	IOUT = 4 A; Vcc = 3 V; Vcc decreasing		_	15	mΩ
T _{TSD} ⁽¹⁾	Shutdown temperature (Vcc decreasing)	Vcc = 3 V	140	_		°C

Notes:

⁽¹⁾Device mounted on four-layers 2s2p PCB

 $[\]ensuremath{^{(2)}}\mbox{Device}$ mounted on two-layers 2s0p PCB with 2 cm² heatsink copper trace

⁽¹⁾Parameter guaranteed by design and characterization; not subject to production test.

Table 7: Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vcc	Operating supply voltage		4	13	28	
Vusd	Undervoltage shutdown				3	
VusnReset	Undervoltage shutdown reset				5	V
VusDhyst	Undervoltage shutdown hysteresis			0.3		
		Iоит = 15 A; T _j = 25°С		3.5		
Ron	On-state resistance	IOUT = 15 A; T _j = 150°C			7	mΩ
		IOUT = 15 A; Vcc = 4 V; T _j = 25°C			5.25	
R _{ON_Rev}	R _{DSON} in reverse battery condition	$V_{CC} = -13 \text{ V; } I_{OUT} = -15 \text{ A;}$ $T_j = 25^{\circ}\text{C}$		3.5		mΩ
W.	Clamp voltage	Is = 20 mA; $T_j = -40$ °C	38			V
V_{clamp}	Clamp voltage	$I_S = 20 \text{ mA}; 25^{\circ}\text{C} < T_j < 150^{\circ}\text{C}$	41	46	52	V
		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR_DIAG} = 0 \text{ V};$ $T_j = 25^{\circ}\text{C}$			0.5	
Ізтву	Supply current in standby at $V_{CC} = 13 \text{ V}$	$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR_DIAG} = 0 \text{ V};$ $T_j = 85^{\circ}C$ (2)			1.4	μА
		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR_DIAG} = 0 \text{ V};$ $T_j = 125^{\circ}\text{C}$			11	
t _{D_STBY}	Standby mode blanking time	Vcc = 13 V; V _{IN} = 5 V; V _{FR_DIAG} = 0 V; I _{OUT} = 0 A	60	300	550	μs
I _{S(ON)}	Supply current	V _{CC} = 13 V; V _{FR_DIAG} = 0 V; V _{IN} = 5 V; I _{OUT} = 0 A		4	6.5	mA
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.	V _{CC} = 13 V; V _{FR_DIAG} = 5 V; V _{IN} = 5 V; I _{OUT} = 15 A			9	mA
li e es	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25^{\circ}\text{C}$	0	0.01	0.5	μΑ
I _{L(off)}	at Vcc = 13 V	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125^{\circ}\text{C}$	0		11	
VF	Output - Vcc diode voltage	Ιουτ = -15 A; T _j = 150°C			0.7	V

⁽¹⁾PowerMOS leakage included.

⁽²⁾Parameter specified by design; not subject to production test.

Table 8: Switching

$V_{CC} = 13 \text{ V}$; -40°C < T_j < 150°C, unless otherwise specified								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)} ⁽¹⁾	Turn-on delay time at T _j = 25 °C	R _L = 0.87 Ω	10	50	120			
t _{d(off)} ⁽¹⁾	Turn-off delay time at T _j = 25 °C	KL = 0.67 12	10	60	100	μs		
(dVout/dt)on ⁽¹⁾	Turn-on voltage slope at T _j = 25 °C	R _L = 0.87 Ω	0.075	0.28	0.7	V/µs		
(dVout/dt)off ⁽¹⁾	Turn-off voltage slope at $T_j = 25$ °C	RL = 0.67 12	0.075	0.33	0.7	V/µs		
Won	Switching energy losses at turn-on $R_L = 0.87 \Omega$		_	1.8	3.6 ⁽²⁾	mJ		
Woff	Switching energy losses at turn-off (twoff)	ergy losses at turn-off $R_L = 0.87 \Omega$		2	3.6 ⁽²⁾	mJ		
tskew ⁽¹⁾	Differential Pulse skew (tphl - tplh)	R _L = 0.87 Ω	-50	0	50	μs		

10/37

Table 9: Logic Inputs

$7 \text{ V} < \text{V}_{CC} < 28 \text{ V}; -40^{\circ}\text{C} < \text{T}_{j} < 150^{\circ}\text{C}$								
Symbol	Parameter Test conditions Min.				Max.	Unit		
INPUT charact	INPUT characteristics							
VIL	Input low level voltage				0.9	V		
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μΑ		
V _{IH}	Input high level voltage		2.1			V		
Іін	High level input current	V _{IN} = 2.1 V			10	μΑ		
V _{I(hyst)}	Input hysteresis voltage		0.2			V		
V	lanut alama valtaga	I _{IN} = 1 mA	5.3		7.5	V		
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V		
FR_DIAG char	acteristics (7 V $<$ V _{CC} $<$ 18 V)							
V _{FR_DIAGL}	Input low level voltage				0.9	V		
I _{FR_DIAGL}	Low level input current	V _{IN} = 0.9 V	1			μA		
Vfr_diagh	Input high level voltage		2.1			V		
I _{FR_DIAGH}	High level input current	V _{IN} = 2.1 V			10	μA		
VFR_DIAG(hyst)	Input hysteresis voltage		0.2			V		
V	lanut alama valtaga	I _{IN} = 1 mA	5.3		7.5	V		
Vfr_diagcl	Input clamp voltage	I _{IN} = -1 mA		-0.7		V		

⁽¹⁾See Figure 6: "Switching times and Pulse skew".

 $[\]ensuremath{^{(2)}}\mbox{Parameter guaranteed by design and characterization; not subject to production test.}$

Table 10: Protections

7 V < V _{CC} < 18 V; -40°C < T _j < 150°C							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
(1)	DC short circuit current	Vcc = 13 V	80	135	175		
I _{LIMH} ⁽¹⁾	DC short circuit current	4 V < V _{CC} < 18 V ⁽²⁾			175	Α	
ILIML	Short circuit current during thermal cycling	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		38		Α	
T _{TSD}	Shutdown temperature		150	175	200	°C	
T _R	Reset temperature ⁽²⁾		T _{RS} + 1	T _{RS} + 7		°C	
T _{RS}	Thermal reset of fault diagnostic indication	VFR_DIAG = 5 V;	135			°C	
T _{HYST}	Thermal hysteresis (T _{TSD} - T _R) ⁽²⁾			7		ů	
ΔT_{J_SD}	Dynamic temperature	V _{CC} = 13 V		60		K	
tLATCH_RST	Fault reset time for output unlatch ⁽²⁾	$V_{FR_DIAG} = 5 \text{ V to 0 V};$ $V_{IN} = 5 \text{ V}$	3	10	20	μs	
V	Turn-off output voltage	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = -40 ^{\circ}\text{C}$	V _{CC} - 38			V	
V _{DEMAG}	clamp	I _{OUT} = 2 A; L = 6 mH; T _j = 25°C to 150°C	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V	

Table 11: CurrentSense

$7 \text{ V} < \text{Vcc} < 18 \text{ V}; -40^{\circ}\text{C} < \text{T}_{j} < 150^{\circ}\text{C}$								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
Varuar a	CurrentSense clamp	V _{FR_DIAG} = 0 V; I _{SENSE} = 1 mA	-17		-12	V		
V SENSE_CL	voltage $V_{FR_DIAG} = 0 \text{ V; I}_{SENSE} = -1 \text{ mA}$			7		V		
CurrentSen	se characteristics							
K _{OL} ⁽¹⁾	Iout/Isense	I _{OUT} = 200 mA; V _{SENSE} = 0.5 V	8350	16800	25150			
K ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 1 A; V _{SENSE} = 0.5 V	9000	16650	24500			
$dK_0/K_0^{(2)(3)}$	Current sense ratio drift	I _{OUT} = 1 A; V _{SENSE} = 0.5 V	-30		30	%		
K ₁	I _{OUT} /I _{SENSE}	I _{OUT} = 10 A; V _{SENSE} = 4 V	13150	16450	19750			
dK ₁ /K ₁ ⁽²⁾⁽³⁾	Current sense ratio drift	IOUT = 10 A; VSENSE = 4 V	-10		10	%		
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 15 A; V _{SENSE} = 4 V	14200	16450	19100			
dK ₂ /K ₂ ⁽²⁾⁽³⁾	Current sense ratio drift	I _{OUT} = 15 A; V _{SENSE} = 4 V	-7		7	%		
K ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 45 A; V _{SENSE} = 4 V	14760	16450	18670			
dK ₃ /K ₃ ⁽²⁾⁽³⁾	Current sense ratio drift	I _{OUT} = 45 A; V _{SENSE} = 4 V	-5		5	%		

 $[\]ensuremath{^{(1)}}\mbox{\sc Parameter}$ guaranteed by an indirect test sequence.

 $[\]ensuremath{^{(2)}}\mbox{Parameter guaranteed by design and characterization; not subject to production test.}$

7 V < Vcc < 18 V; -40°C < T _j < 150°C							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
		CurrentSense disabled: VFR_DIAG = 0 V	0		0.5	μA	
I _{SENSE0}	CurrentSense leakage current	CurrentSense disabled: -1 V < V _{SENSE} < 5 (2)	-0.5		0.5	μA	
		CurrentSense enabled: V _{IN} = 5 V; I _{OUT} = 0 A	0		5	μA	
Vout_csd ⁽²⁾	Output Voltage for CurrentSense shutdown	$V_{FR_DIAG} = 5 \text{ V};$ $R_{SENSE} = 2.7 \text{ k}\Omega;$ $V_{IN} = 5 \text{ V}; \text{ lout} = 15 \text{ A}$		5		V	
V _{SENSE_SAT}	Multisense saturation voltage	$\label{eq:Vcc} \begin{split} V_{\text{CC}} &= 7 \text{ V}; \\ R_{\text{SENSE}} &= 10 \text{ K}\Omega; \\ V_{\text{FR_DIAG}} &= 5 \text{ V}; \text{ VIN} = 5 \text{ V}; \\ I_{\text{OUT}} &= 15 \text{ A}; T_{j} = -40^{\circ}\text{C} \end{split}$	5			V	
ISENSE_SAT ⁽²⁾	CS saturation current	$V_{CC} = 7 \text{ V}; V_{SENSE} = 4 \text{ V};$ $V_{IN} = 5 \text{ V}; V_{FR_DIAG} = 5 \text{ V};$ $T_j = -40 ^{\circ}\text{C}$	4			mA	
I _{OUT_SAT} ⁽²⁾	Output saturation current	$\begin{aligned} &V_{\text{CC}} = 7 \text{ V; } V_{\text{SENSE}} = 4 \text{ V;} \\ &V_{\text{IN}} = 5 \text{ V; } V_{\text{FR_DIAG}} = 5 \text{ V;} \\ &T_{j} = -40 ^{\circ}\text{C} \end{aligned}$	75			А	
OFF-state d	iagnostic						
VoL	OFF-state open-load voltage detection threshold	V _{IN} = 0 V; V _{FR_DIAG} = 5 V	2	3	4	V	
I _{L(off2)}	OFF-state output sink current	$V_{IN} = 0 \text{ V}; V_{OUT} = V_{OL};$ $T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	-100		-15	μΑ	
t dstkon	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 7: "TDSTKON")	V _{IN} = 5 V to 0 V; V _{FR_DIAG} = 5 V; I _{OUT} = 0 A; V _{OUT} = 4 V	100	350	700	μs	
t _{D_OL_V}	Settling time for valid OFF-state open load diagnostic indication from rising edge of FR_DIAG	V _{IN} = 0 V; V _{FR} = 0 V; V _{OUT} = 4 V; V _{FR_DIAG} = 0 V to 5 V			60	μs	
t _{D_VOL}	OFF-state diagnostic delay time from rising edge of Vout	V _{IN} = 0 V; V _{FR_DIAG} = 5 V; V _{OUT} = 0 V to 4 V		5	30	μs	
Fault diagno	ostic feedback (see <i>Table</i>	12: "Truth table")					
Vsenseh	CurrentSense output voltage in fault condition	V _{CC} = 13 V; V _{IN} = 0 V; V _{FR_DIAG} = 5 V; I _{OUT} = 0 A; V _{OUT} = 4 V; R _{SENSE} = 1 kΩ	5		6.6	V	
I _{SENSEH}	CurrentSense output	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	mA	

7 V < Vcc <	$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}; -40^{\circ}\text{C} < \text{T}_{j} < 150^{\circ}\text{C}$							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
tdsense2h	Current sense settling time from rising edge of INPUT	$\begin{aligned} V_{\text{IN}} &= 0 \text{ V to 5 V;} \\ V_{\text{FR_DIAG}} &= 5 \text{ V;} \\ R_{\text{SENSE}} &= 1 \text{ k}\Omega; \\ R_{L} &= 0.87 \Omega \end{aligned}$		100	380	μs		
Δt _D SENSE2H	Current sense settling time from rising edge of Iout (dynamic response to a step change of Iout)	$V_{\text{IN}} = 5 \text{ V; } V_{\text{FR_DIAG}} = 5 \text{ V;}$ $R_{\text{SENSE}} = 1 \text{ k}\Omega$ $I_{\text{SENSE}} = 90 \text{ % of }$ $I_{\text{SENSEMAX; }} R_{\text{L}} = 0.87 \Omega$			200	μs		
tdsense2L	Current sense turn-off delay time from falling edge of INPUT	$V_{IN} = 5 \text{ V to 0 V;}$ $V_{FR_DIAG} = 5 \text{ V;}$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 0.87 \Omega$		50	250	μs		

 $^{^{(4)}\}text{Transition}$ delay are measured up to ±10% of final conditions.

Figure 4: IOUT/ISENSE versus IOUT

⁽¹⁾Digital filtering is applied for testing

 $^{^{(2)}}$ Parameter guaranteed by design and characterization; not subject to production test.

 $^{^{(3)}\}text{All}$ values refer to Vcc = 13 V; T_j = 25°C, unless otherwise specified.

Figure 5: Current sense precision vs. IOUT

Figure 6: Switching times and Pulse skew

Figure 7: TDSTKON

Varput

Vout > Vout

Tostkon

GAPG26001411400FT

Table 12: Truth table

Mode	Conditions	IN	FR_DIAG	OUT	Current Sense	Comments
Stand by	All logic inputs low	L	L	L	Hi-Z	Low quiescent current consumption
		L	Н	L	0	OFF-state diagnostic enabled
Normal	Nominal load connected; T _i < 150°C	Н	L	Ι	I _{SENSE} = 1/K * I _{OUT}	Autorestart mode
	1) < 130 0	Н	Н	Н	I _{SENSE} = 1/K * I _{OUT}	Latch-off mode
	Overload or	Η	L	Н	Vsenseh	Autorestart mode
Overload	short to GND causing: $T_{j} > T_{TSD} \text{ or } \Delta T_{j} > \Delta T_{j_SD}$	Н	Н	Н	Vsenseh	Latch-off mode
Under- voltage	Vcc < Vusb (falling)	х	Х	L	Hi-Z	Re-start when Vcc > Vusp + Vusphyst (rising)
OFF-state	Short to Vcc	L	Н	Ι	V _{SENSEH}	
diagnostics	Open-load	L	Н	Н	V SENSEH	External pull-up
Negative output voltage	Inductive loads turn-off	L	Х	< 0 V	0	

Table 13: FR_DIAG functionality

FR_DIAG	Input	Diagnostic	Overload protection
0	0	Disabled	X ⁽¹⁾
0	1	Enabled	Auto-restart
1	0	Enabled (OFF-state diagnostic)	X ⁽¹⁾
1	1	Enabled	Latch-off

(1)X: do not care.

2.4 Electrical characteristics curves

Figure 13: High level logic input current

IIH, IFR_DIAGH [µA]

4
3.5
3
2.5
2
1.5
1
0.5
1
0.5
1
0.5
T [°C]

GADG1207161535SMD

Figure 18: On-state resistance vs. VCC

Ron [mOhm]

T = 150°C
T = 125°C

T = -40°C

T = -40°C

O 5 10 15 20 25 30 35 40

Vcc [V]

Figure 19: Turn-on voltage slope (dVout/dt)On [V/µs] 0.9 0.8 Vcc = 13V RI = 0.87Ω 0.7 0.6 0.5 0.3 0.2 0.1 0 ↓ -50 -25 50 75 100 125 T [°C] GADG1207161541SMD

Figure 20: Turn-off voltage slope

(dVout/dt)Off [V/µs]

1
0.9
0.8
0.7
RI = 0.87Ω
0.6
0.5
0.4
0.3
0.2
0.1
0.9
-50 -25 0 25 50 75 100 125 150 175
T [°C]

Figure 25: OFF-state open-load voltage detection threshold

VOL [V]

4
3.5
3
2.5
2
1.5
1
0.5
0
-50 -25 0 25 50 75 100 125 150 175
T [°C]

Protections VN7003ALH

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FR_DIAG pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FR_DIAG = Low) or remains off (FR_DIAG = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FR_DIAG pin, the device switches on again as soon as its junction temperature drops to T_R (FR_DIAG = Low) or remains off (FR_DIAG = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} , allowing the inductor energy to be dissipated without damaging the device.

4 Application information

Regrot Logic GND GAPG1607150817CFT

Figure 28: Application diagram

4.1 GND protection network against reverse battery

Figure 29: Simplified internal structure

577

The device does not need any external components to protect the internal logic in case of a reverse battery condition. The protection is provided by internal structures.

In addition, due to the fact that the output MOSFET turns on even in reverse battery mode, thus providing the same low ohmic path as in regular operating conditions, no additional power dissipation has to be considered.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in Table 14: "ISO 7637-2 electrical transient conduction along supply line".

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through Vcc and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test pulse severity Test Burst cycle / **Minimum** level with Status II Pulse duration and **Pulse** pulse repetition number of functional pulse generator 2011(E) time pulses or test performance status internal impedance time Us⁽¹⁾ Level min max Ш 0.5 s1 -112V 500 pulses 2ms. 10Ω Ш +55V 2a 500 pulses 0,2 s5 s 50µs, 2Ω IV 100 ms За -220V 1h 90 ms $0.1 \mu s$, 50Ω IV 3b +150V 1h 90 ms 100 ms $0.1 \mu s, 50 \Omega$ 4(2) IV -7V 1 pulse 100ms, 0.01Ω Load dump according to ISO 16750-2:2010 Test 40V 5 pulse 1 min 400ms, 2Ω $B^{(3)}$

Table 14: ISO 7637-2 - electrical transient conduction along supply line

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to prevent the microcontroller I/O pins from latch-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

⁽¹⁾Us is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

⁽²⁾Test pulse from ISO 7637-2:2004(E).

⁽³⁾With 40 V external suppressor referred to ground (-40°C < T_i < 150°C).

Equation

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = -150 V; I_{latchup} ≥ 20mA; V_{OHµC} ≥ 4.5V

 $7.5 \text{ k}\Omega \leq R_{prot} \leq 140 \text{ k}\Omega.$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 CS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CS) delivering the following signal:

Current monitor: current minitor of channel output current

Figure 30: CurrentSense and diagnostic - block diagram

4.4.1 Principle of CurrentSense signal generation

Figure 31: CurrentSense block diagram

Current sense

This output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, ISENSE, can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE}, allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault)

While device is operating in normal conditions (no fault intervention), VSENSE calculation can be done using simple equations

Current provided by CurrentSense output: Isense = Iout/K

Voltage on Rsense: Vsense = Rsense · Isense = Rsense · Iout/K

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- I_{SENSE} is current provided from CS pin in current output mode
- IOUT is current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the CS pin which is switched to a "current limited" voltage source, Vsenseh.

In any case, the current sourced by the CS in this condition is limited to I_{SENSEH}.

100nF Microcontrolle Logic OUTPUT Rsense2 _ 10nF/100v GND **丰10nF** GND GND GND GND GAPG1606150857CFT

Figure 32: Analogue HSD - open-load detection in off-state

Figure 33: Open-load / short to VCC condition

Table 15: CurrentSense pin levels in off-state

Condition	Output	CurrentSense	FR_DIAG
	Maria Mari	Hi-Z	L
Open lead	Vout > Vol	Vsenseh	Н
Open-load	V	Hi-Z	L
	Vout < Vol	0	Н
Chart to V	M · M	Hi-Z	L
Short to Vcc	Vout > Vol	Vsenseh	Н
Nominal	V 4 V	Hi-Z	L
inominai	V _{OUT} < V _{OL}	0	Н

4.4.2 Short to VCC and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

577

R_{PU} must be selected in order to ensure V_{OUT} > V_{OLmax} in accordance with the following equation:

Equation

$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

5 Maximum demagnetization energy (VCC = 16 V)

Figure 34: Maximum turn off current versus inductance

6 Package and PCB thermal data

6.1 Octapak thermal data

Figure 35: Octapak on two-layers PCB (2s0p to JEDEC JESD 51-5)

Figure 36: Octapak on four-layers PCB (2s2p to JEDEC JESD 51-7)

Table 16: PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	6.4 mm x 7 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

Figure 37: Rthj-amb vs PCB copper area in open box free air conditions

Pulse calculation formula

Equation

 $Z_{TH\delta} = R_{TH} \cdot + Z_{THtp} (1 - \delta)$

where $\delta = t_P/T$

Figure 39: Thermal fitting model for Octapak

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 17: Thermal parameters

Area/island (cm²)	Footprint	2	8	4L
R1 (°C/W)	0.01	0.01	0.01	0.01
R2 (°C/W)	0.5	0.5	0.5	0.5
R3 (°C/W)	1.6	1.6	1.6	1.6
R4 (°C/W)	10	10	10	2.5
R5 (°C/W)	28	20	12	5
R6 (°C/W)	36	26	18	6
C1 (W.s/°C)	0.001	0.001	0.001	0.001
C2 (W.s/°C)	0.0018	0.0018	0.0018	0.0018
C3 (W.s/°C)	0.11	0.11	0.11	0.11
C4 (W.s/°C)	0.6	0.6	0.6	0.8
C5 (W.s/°C)	0.8	1.4	2.2	3
C6 (W.s/°C)	3	6	9	25

Package information VN7003ALH

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

7.1 Octapak package information

Figure 40: Octapak package dimensions

Table 18: Octapak mechanical data

Cumhal	Millimeters				
Symbol	Min.	Тур.	Max.		
A	2.20	2.30	2.40		
A1	0.90	1.00	1.10		
A2	0.03		0.15		
b	0.38	0.45	0.52		

VN7003ALH Package information

Symbol	Millimeters		
	Min.	Тур.	Max.
b1			0.70
b4	5.20	5.30	5.40
С	0.45	0.50	0.60
c2	0.75	0.80	0.90
D	6.00	6.10	6.20
D1		5.15	
Е	6.40	6.50	6.60
E1		5.30	
е	0.85 BSC		
e1	1.60	1.70	1.80
e2	3.30	3.40	3.50
e3	5.00	5.10	5.20
Н	9.35	9.70	10.10
L	1.00		_
(L1)		2.80	
L2		0.80	
L3		0.85	
R	0.40 BSC		
V2	0°		8°

7.2 Octapak packing information

Access Hole at Slot Location (Ø 40 mm min.)

If present, tape slot in core for tape start:
2.5 mm min. width x
10.0 mm min. depth

TAPG20041516550FT

Figure 41: Octapack reel 13"

Table 19: Reel dimensions

Description	Value ⁽¹⁾
Base quantity	2500
Bulk quantity	2500
A (max)	330
B (min)	1.5
C (+0.5, -0.2)	13
D	20.2
N	100
W1 (+2 /-0)	16.4
W2 (max)	22.4

Figure 42: Octapak carrier tape

 $[\]ensuremath{^{(1)}}\mbox{All dimensions}$ are in mm.

VN7003ALH Package information

Embossed Carrier Punched Carrier 8 mm & 12 mm only Round Sprocket Holes START **END** Top Cover Tape Elongated Sprocket Holes (32 mm tape and wider) -100 mm Min. -Leader Trailer Components 400 mm Minimum, 160 mm minimum, -Top Cover Tape User direction of feed GAPG2004151511CFT

Figure 43: Octapak schematic drawing of leader and trailer tape

7.3 Octapak marking information

Figure 44: Octapak marking information

Parts marked as "&" are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Revision history VN7003ALH

8 Revision history

Table 20: Document revision history

Date	Revision	Changes	
21-Dec-2015	1	Initial release.	
18-Apr-2016	2	 Table 8: "Switching": tskEW: updated value Table 11: "CurrentSense": KoL: added row K₀, K₂, K₃, dK₃/K₃: updated values 	
23-May-2016	3	Table 11: "CurrentSense": ISENSE0: updated max current value of CurrentSense enabled test condition.	
02-Aug-2016	4	Doc status upgraded to production data Section "Features" added AEC-Q100 qualification limh: updated current limitation feature Figure 1: "Block diagram" updated figure Table 4: "Absolute maximum ratings" Emax: updated value and the Tdemag Table 5: "Thermal data" Rthi-board changed to Rthi-case All typ. values updated Table 8: "Switching" updated Min., Typ. and Max. columns Table 10: "Protections" limh: updated Typ. and Max. values Limi: updated Typ. value ATj_sd: removed temperature condition Table 11: "CurrentSense" Kol: added Typ. value all text conditions for K characteristics: removed Vsen condition Vsense_sat, Isense_sat and lout_sat: updated test conditions Added Figure 4: "IOUT/ISENSE versus IOUT" Added Figure 5: "Current sense precision vs. IOUT" Added Figure 34: "Maximum turn off current versus inductance" Updated Section 7.1: "Octapak thermal data"	
02-Nov-2016	5	Updated Applications section	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

