Método Congruencial Lineal

El método congruencial lineal genera una secuencia de números enteros por medio de la siguiente ecuación recursiva:

$$X_{i+1} = (a.X_i + c) mod(m)$$
 $i = 0, 1, 2, 3, ..., n$

Donde:

- X₀ es la semilla
- **a** es la constante multiplicativa
- c es una constante aditiva
- **m** es el módulo

Todos estos valores deben ser enteros y mayores a cero. La ecuación genera una secuencia de números enteros, para obtener números pseudo aleatorios en el intervalo (0, 1) se debe complementar la secuencia obtenida con la siguiente ecuación:

$$rnd_i = \frac{x_i}{m-1}$$
 $i = 1,2,3,...,n$

Para que el algoritmo pueda lograr el período máximo N, los parámetros deben cumplir ciertas condiciones:

 $m = 2^g$ (con g un número entero positivos) a = 1 + 4.k (con k un número entero positivos) c debe ser relativamente primo a m

Bajo estas condiciones, puede lograrse un periodo máximo $N = m = 2^g$. [1]

Ejercicio 1: $X_0 = 6$ k = 3 g = 3 c = 7

i	a.X _i +c	X i+1	(X _{i+1})/(m-1)
1	85	5	0,7142
2	72	0	0,0000
3	7	7	1,0000
4	98	2	0,2857
5	33	1	0,1428
6	20	4	0,5714
7	59	3	0,4285
8	46	6	0,8571

Si arbitrariamente se rompe alguna de estas condiciones:

Ejercicio 2: $X_0 = 6$ a = 12 g = 3 c = 7 (completar la tabla hasta agotar el periodo)

i	a.Xi+c	Xi+1	(Xi+1)/(m-1)
1			
2			
3			
4			
5			
6			
7			
8			

[1] Banks J, Carson JS, Nelson BL, Nicol DM: "Simulación de Sistemas de Eventos Discretos"

Método congruencial multiplicativo

El método congruencial multiplicativo surge del método congruencial lineal cuando la constante c = 0. Entonces su ecuación recursiva es:

$$X_{i+1} = (a.X_i) mod(m)$$
 $i = 0, 1, 2, 3, ..., n$

Donde:

- X₀ es la semilla
- **a** es la constante multiplicativa
- m es el módulo

Este método tiene la ventaja de que implica una operación menos a realizar que el método congruencial lineal. Al igual que el otro método, los parámetros deben ser números enteros y mayores a cero. También deben transformarse los números obtenidos para que estén en el intervalo (0,1).

$$rnd_i = \frac{X_i}{m-1}$$
 $i = 1,2,3,...,n$

Para que el algoritmo pueda lograr el período máximo N, los parámetros deben cumplir ciertas condiciones:

 $m = 2^g$ (con g un número entero) a = 3 + 8.k ó a = 5 + 8.k (con k = 0,1, 2, 3,...) X_0 debe ser un número impar

Bajo estas condiciones, puede lograrse un periodo máximo $N = m/4 = 2^{g-2}$. [1]

Ejercicio 1: $X_0 = 17$ k = 2 g = 5 (completar la tabla hasta agotar el periodo)

i	a.Xi	Xi+1	(Xi+1)/(m-1)
1	323	3	0,0968
2	57	25	0,8065
3	475	27	0,8710
4	513	1	0,0323
5	19	19	0,6129
6	361	9	0,2903
7	171	11	0,3548
8	209	17	0,5484

Si arbitrariamente se rompe alguna de estas condiciones:

Ejercicio 2: $X_0 = 12$ a = 12 g = 5 (completar la tabla hasta agotar el periodo)

i	a.Xi	Xi+1	(Xi+1)/(m-1)
1			
2			
3			
4			
5			
6			
7			
8			

[1] Banks J, Carson JS, Nelson BL, Nicol DM: "Simulación de Sistemas de Eventos Discretos"