Plan

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

Regulære udtryk og endelige automater

- Regulære udtryk: deklarative dvs. ofte velegnede til at specificere regulære sprog
- Endelige automater: operationelle dvs. bedre egnet til at afgøre om en given streng er i sproget
- Ethvert regulært udtryk kan oversættes til en endelig automat – og omvendt (bevises næste seminar...)

En endelig automat

En endelig automat, der genkender strenge over alfabetet
 □={0,1} med ulige antal 1'er:

- Automaten læser strengen ét tegn ad gangen, fra venstre mod højre
- Hvis automaten ender i en accept-tilstand, så accepteres(=genkendes) strengen

At køre en streng på en automat

- Eksempel: vi vil vide om strengen 1010 accepteres
- Vi starter i starttilstanden og læser strengen

1010

 Vi ender i en ikke-accept tilstand, så strengen accepteres ikke

Hvad repræsenterer tilstandene?

 Hver tilstand repræsenterer en viden om den hidtil læste delstreng

Eksempel:

- X: "der er læst et lige antal 1'er"
- Y: "der er læst et ulige antal 1'er"

Formel definition af endelige automater

En *endelig automat* (finite automaton/FA) er et 5-tupel (Q, \Box , q_0 , A, \Box) hvor

- Q er en endelig mængde af tilstande
- alfabet
- q₀□Q er en starttilstand
- A □Q er accepttilstande
- □ Q×□ Q er en transitionsfunktion

Eksempel

Denne grafiske repræsentation af en automat:

- svarer til 5-tuplet (Q, \square , q_0 , A, \square) hvor
 - $Q = \{X, Y\}$
 - $\Box = \{0,1\}$
 - $q_0 = X$
 - $A = \{Y\}$
 - □ Q×□ Q er denne funktion:

input

٠.		/	//
		0	1
	X	X	Y
	Y	Y	X

tilstand

Hvorfor en formel definition?

- Den formelle definition viser kort og præcist hvad en FA er
- For eksempel,
 - en FA har endeligt mange tilstande
 - den har præcis én starttilstand
 - en vilkårlig delmængde af tilstandene kan være accepttilstande
 - for enhver tilstand q og alfabetsymbol a er der én udgående transition (til tilstanden □(q,a))
 - der er ikke noget krav om, at alle tilstande kan nås fra starttilstanden

Sproget af en automat

- 5-tupel-definitionen fortæller hvad en FA er
- Vi vil nu definere hvad en FA kan:
- En FA accepterer en streng, hvis dens kørsel fra starttilstanden ender i en accepttilstand
- Sproget L(M) af en FA M er mængden af strenge, den accepterer
- M genkender sproget L(M)

Formel definition af L(M)

Givet en FA M=(Q, □, q₀, A, □), definer
 den udvidede transitionsfunktion □*: Q×□*□ Q
 ved

$$\Box^*(q, x) = \begin{cases} q & \text{hvis } x = \Box \\ \Box(\Box^*(q, y), a) & \text{hvis } x = ya \text{ hvor } y \in \Box^* \text{ og } a \in \Box \end{cases}$$

• $x \in \Box^*$ accepteres af M hvis og kun hvis $\Box^*(q_0, x) \Box A$

■ Definer $L(M) = \{ x \in \square^* \mid x \text{ accepteres af } M \}$

Quiz!

Lad □={a,b}. Konstruér en FA M så...

1.
$$L(M) = \Box^* \longrightarrow \bigcirc \bigcirc a,b$$

1.
$$L(M) = \{a\}$$

$$b = \{a,b\}$$

$$(a,b)$$

1. $L(M) = \{ x \in \square^* \mid n_a(x) \text{ lige og} \xrightarrow{b} \xrightarrow{a} \xrightarrow{b}$ $n_b(x) \text{ ulige } \}$

Øvelser:

- [Martin] Opg. 3.17 (e)
- [Martin] Opg. 3.18
- [Martin] Opg. 3.19 (a-c)

Plan

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

Skelnelighed

- Givet et sprog L, hvor mange tilstande er nødvendige i en FA M hvis L(M)=L?
- To strenge, x og y, skal ende i forskellige tilstande, hvis der er behov for at kunne skelne dem

• dvs.,
$$\Box^*(q_0, x) \Box \Box^*(q_0, y)$$

hvis $\Box z \in \Box^*: (xz\Box L \Box yz\Box L) \lor (xz\Box L \Box yz\Box L)$

Definition af skelnelighed

Lad
$$L\subseteq \Box^*$$
 og $x,y\in \Box^*$

- Kvotientsproget L/x defineres som $L/x = \{ z \in \Box^* \mid xz\Box L \}$
- x og y er skelnelige mht. L hvis L/x □L/y
- z **skelner** x og y mht. L hvis $z \square L/x$ L/y eller $z \square L/y$ L/x

Eksempel

Hvis

- $L = \{ s \square \{0,1\}^* \mid s \text{ ender med } 10 \}$
- x = 00
- y = 01

så er x og y skelnelige mht. L

Bevis:

z = 0 skelner x og y

- dvs. hvis (Q, \Box , q_0 , A, \Box) genkender L så er $\Box^*(q_0, x)$ \Box $\Box^*(q_0, y)$

Nødvendigt antal tilstande i en FA

Antag $x_1, x_2, ..., x_n \in \square$ og for ethvert par $x_i, x_j, i \subseteq J$ er x_i og x_j skelnelige mht. L

Enhver FA der genkender *L* har mindst *n* tilstande

- Bevis (skitse):
 - antag FA'en har færre tilstande
 - det medfører at $\Box i \Box j$: $\Box^*(q_0, x_i) = \Box^*(q_0, x_j)$
 - modstrid med at x_i og x_j er skelnelige mht. L

Eksempel 1: en stor automat

Lad
$$L_{42} = \{ x \square \{0,1\}^* \mid |x| \square 42 \text{ og det } 42. \text{ symbol} \}$$
 fra højre i x er et 1 $\}$

- Lad x₁, x₂, ..., x₂42 være alle strenge af længde 42 over alfabetet {0,1}
- Disse strenge er alle parvist skelnelige mht. L_{42}
- En automat der genkender L_{42} har derfor mindst 2⁴² tilstande
- (...hvis den overhovedet findes)

Bevis:

x≠y må være forskellige i i'te tegn fra venstre. Strengen z som skelner kan være 0i-1

Eksempel 2: palindromer

Lad $pal = \{ x \square \{0,1\}^* \mid x = reverse(x) \}$

- Lad x og y være vilkårlige forskellige strenge over {0,1}
- x og y er skelnelige mht. pal (bevis: se bogen...)
- Vi kan altså finde en vilkårligt stor mængde parvist skelnelige strenge, så pal er ikke regulært

Forening af regulære sprog

Givet to regulære sprog, L₁ og L₂
 er L₁ L₂ også regulært?

Ja! (dvs. klassen af regulære sprog er *lukket under forening*)

Eksempel

$$M_{1}:$$
(strenge med lige antal 0'er)

$$L(M) = L(M_1) \square L(M_2)$$

Produktkonstruktionen

Antag vi har to FA'er:

- $M_1 = (Q_1, \Box, q_1, A_1, \Box)$
- $M_2 = (Q_2, \Box, q_2, A_2, \Box_2)$

Definer en ny FA:

$$M = (Q, \square, q_0, A, \square)$$
 hvor

- $Q = Q_{1 \square} Q_2$ produktmængden af tilstande
- $q_0 = (q_1, q_2)$
- $A = \{ (p, q) \mid p \square A_1 \square q \square A_2 \}$
- $\square((p, q), a) = (\square(p, a), \square(q, a))$

Der gælder nu:

$$L(M) = L(M_1) - L(M_2)$$

Konstruktivt bevis for korrekthed

Lemma:

$$\Box x \in \Box^*$$
: $\Box^*((p, q), x) = (\Box_i^*(p, x), \Box_i^*(q, x))$
(Bevis: opgave 3.32, induktion i x)

■ Brug lemmaet samt definitionerne af M og L(•)

Nøjes med opnåelige tilstande

- Produktkonstruktionen bruger $Q = Q_{1\square}Q_{2}$
- I praksis er hele tilstandsrummet sjældent nødvendigt

Kun tilstande, der er opnåelige fra starttilstanden er relevante for sproget!

Snitmængde og differens

Givet to regulære sprog, L_1 og L_2

- 1. er $L_1 \square L_2$ også regulært?
- 2. er L_1 - L_2 også regulært?
- Ja! (dvs. klassen af regulære sprog er lukket under snit og differens)
- Bevis: produktkonstruktion som ved □ men
 - for \square , vælg $A = \{ (p, q) \mid p \square A_1 \square q \square A_2 \}$
 - for -, vælg $A = \{ (p, q) \mid p \square A_1 \square q \square A_2 \}$

Komplement

Givet et regulære sprog *R* er *R'* (*R*s komplement) også regulært?

- Ja! (dvs. klassen af regulære sprog er lukket under komplement)
- Bevis 1:
 - Vælg $L_1 = \Box^*$ og $L_2 = R$, hvorved $R' = L_1 L_2$
- Bevis 2:
 - Givet en FA $M = (Q, \square, q_0, A, \square)$ hvor L(M)=R
 - Definer $M' = (Q, \square, q_0, \mathbf{Q} \mathbf{A}, \square)$
 - Derved gælder at L(M')=R'

Eksempel

M:

(strenge med lige antal 0'er eller ender med 0)

M':

L(M') = (L(M))'

(strenge med ulige antal 0'er og ender ikke med 0)

Øvelser:

[Martin] 3.33 (a-c)

dRegAut Java-pakken

Udleverede programdele:

FA.java:
repræsentation af FA'er

```
Alphabet.java,
State.java,
StateSymbolPair.java,
AutomatonNotWellDefinedException.java:
hjælpeklasser til FA.java
```

FA. java

- et Alphabet objekt indeholder mængde af Character objekter
- et StateSymbolPair objekt består af et State objekt og et Character objekt

Nyttige metoder i FA. java

- FA() konstruerer uinitialiseret FA objekt
- FA (Alphabet a) konstruerer FA for det tomme sprog
- clone() kloner et FA objekt
- checkWellDefined() undersøger om FA objektet
 repræsenterer en veldefineret FA
- getNumberOfStates() returnerer størrelsen af states
- setTransition(State q, char c, State p)
 tilføjer en c transition fra q til p
- toDot() konverterer FA objekt til 'Graphviz dot' input (til grafisk repræsentation)

Automater til modellering og verifikation

Eksempel: en jernbaneoverskæring

- Tre komponenter:
 - et tog
 - krydser vejen
 - kommunikerer med kontrolsystemet
 - et kontrolsystem
 - styrer bommen
 - en bom
- Sikkerhedsegenskab:

bommen er altid nede, når toget krydser vejen

Modellering af systemet

TOG

KONTROLSYSTEM

BOM

Begivenheder:

approach: toget nærmer sig

cross: toget krydser vejen

exit: toget forlader området

lower: besked til bommen om at gå ned raise: besked til bommen om at gå op

down: bommen går ned

up: bommen går op

Modellering som FA'er

Eksempel:

lower, raise.

lower, raise,

- definer accepttilstande
- tilføj loop-transitioner så komponenterne får samme alfabet
- tilføj crash-tilstand og ekstra transitioner så transitionsfunktionen bliver total

Kombination af komponenterne

- Vi er interesseret i de sekvenser af begivenheder, der opfylder alle komponenterne
- Produktkonstruktion:

$$L(M) = L(M_{TOG}) \square L(M_{KONTROL}) \square L(M_{BOM})$$

Modellering af sikkerhedsegenskaben

bommen er altid nede, når toget krydser vejen

Verifikation

- Korrekthed: $L(M) \square (L(S))' = \emptyset$
- dvs. vi skal bruge
 - produktkonstruktion (igen)
 - komplement
 - algoritme til at afgøre om sproget for en given FA er tomt (3. seminar)
- hvis L(M) \((L(S))' \(\overline{\Omega} \):
 enhver streng i \(L(M) \(\overline{\Omega} \) (L(S))' svarer til
 et modeksempel (algoritme: 3. seminar)

Verifikation med dRegAut-pakken

- Opbyg FA-objekter svarende til M_{TOG}, M_{KONTROL}, M_{BOM}, og S
- Kombiner med FA.intersection() og FA.complement()
- Brug FA.isEmpty() og FA.getAShortestExample()
- Resultat:

modeksempel:

approach · lower · down · up · cross

Resume

- Definition af endelige automater og deres sprog
- Skelnelighed, hvad repræsenterer tilstandene, nødvendigt antal tilstande
- Produktkonstruktionen, komplement (konstruktive beviser)
- dRegAut.FA klassen, Java-repræsentation af FA'er
- Eksempel: automater til modellering og verifikation

Plan

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

Første del af java projekt:

- Studér udleverede programdele:
 - repræsentation af FA'er
 - ekstra udleverede metoder: delta, deltaStar, complement
- Implementér FA metoder:
 - accepts, intersection, union, minus
- Opbyg en FA og vis den grafisk