

⑤ Int. CI.⁷:

F 16 H 7/08

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND **MARKENAMT**

Offenlegungsschrift

® DE 100 44 125 A 1

② Aktenzeichen:

100 44 125.4

Anmeldetag:

6. 9. 2000

Offenlegungstag:

14. 3. 2002

(7) Anmelder:

INA Wälzlager Schaeffler oHG, 91074 Herzogenaurach, DE

(72) Erfinder:

Petri, Werner, Dipl.-Ing., 91058 Erlangen, DE; Bogner, Michael, Dipl.-Ing., 90542 Eckental, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 35 46 901 C2 DE 32 08 184 C1 DE 198 49 886 A1 DE 196 09 420 A1 DE 44 27 683 A1 DE 43 06 360 A1 DE 42 02 167 A1 DE 295 08 244 U1 DE 690 02 258 T2 US 44 72 162 A

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlägen entnommen

- Mechanische Riemenspanneinheit mit hydraulischer Unterstützung
- Die Erfindung betrifft ein Spannsystem (1) für einen Zugmitteltrieb, bei dem eine hydraulische Spannvorrichtung (2) mit einer mechanischen Spannvorrichtung (3) kombiniert ist zur Erzielung einer Vorspannkraft, mit der eine Spannrolle (10) an einem Zugmittel (11) abgestützt ist.

Beschreibung

Anwendungsgebiet der Erfindung

[0001] Die vorliegende Erfindung betrifft eine Spannvorrichtung, insbesondere für einen Riemen eines Zugmitteltriebs, vorzugsweise eingesetzt zum Antrieb von Aggregaten einer Brennkraftmaschine. Die Spannvorrichtung umfasst ein Basisteil sowie einen schwenkbar angeordneten Spannrollenträger, welcher in einer Einbaulage über eine 10 Spannrolle kraftschlüssig an dem Zugmittel abge-Stützt ist.

Hintergrund der Erfindung

[0002] Aus dem US-Patent 44 72 162 ist eine Spannvor- 15 richtung bekannt, bei der zwischen einem als Gehäuse gestalteten Basisteil und einem Spannrollenträger eine Torsionsseder eingesetzt ist. Die teilweise ineinandergreisenden und durch die Kraft der Torsionsfeder axial aneinandergedrückten Bauteile, das Gehäuse und der Spannrollenträger. 20 sind mittels einer beide Bauteile zentrisch durchsetzenden, in einer Hülse geführten Schraube an einer Brennkraftmaschine besestigt. Zur Schwingungsdämpfung des Spannrollenträgers zeigt die bekannte Vorrichtung eine aus einem Thermoplast oder einem Elastomer hergestellte Reibbuchse, 25 die einerseits am Spannrollenträger und andererseits mit dem Gehäuse verbunden ist.

[0003] Die DE 196 09 420 A1 zeigt eine Spannvorrichtung mit einem mechanischhydraulischen Betätigungselement versehen mit einem Gehäuse, in dem zentrisch ein Zy- 30 linder ausgebildet ist, in dem ein Kolben geführt ist. In axialer Verlängerung des Kolbens ist endseitig ein Befestigungsauge vorgesehen, mit dem das Hydraulikelement schwenkbar an dem Spannrollenträger zu befestigen ist. Ein weiteres Besestigungsauge ist am Gehäuse angeordnet, mit 35 dem die Spannvorrichtung beispielsweise ortsfest, aber schwenkbar an der Brennkrastmaschine zu besestigen ist. Diese bekannte Spannvorrichtung ist mit einem federkraftbeaufschlagten, in dem Zylinder längsverschiebbar geführversehen. Eine Kolbenbewegung bewirkt einen Volumenaustausch des Hydrauliksluids zwischen dem Druckraum und dem Gehäuse.

[0004] Die rein mechanische Spannvorrichtung in Verbindung mit der Dämpfungseinrichtung ermöglicht eine Grund- 45 dämpfung unabhängig von der Geschwindigkeit der Stellbewegungen des Spannrollenträgers und ermöglicht dabei vorrangig eine Dämpfung niederfrequenter Schwingungen des Spannrollenträgers. Die weitere Spannvorrichtung, versehen mit einem mechanischhydraulischen Betätigungsele- 50 ment, bei der die Vorspannkraft auf den Spannrollenträger mittels einer im Hydraulikelement integrierten Druckfeder, in Verbindung mit einem wirksamen Hebelarm erfolgt, ermöglicht eine geschwindigkeitsabhängige Dämpfung. Dabei steigt die Dämpfungskraft bei höheren Frequenzen und/ 55 oder großen Schwingungsamplituden an. Beide Spannvorrichtungen haben sich bewährt und verfügen über eine hohe Funktionssicherheit. Bedingt durch die unterschiedliche Wirkungsweise ist jede Anwendung dieser bekannten Spannvorrichtungen ein Kompromiss hinsichtlich der 60 Dämpfungscharakteristik. Weiterhin ist jede dieser Spannvorrichtungen begrenzt hinsichtlich der Vorspannkrast. Für zum Antrieb großdimensionierter Generatoren oder Statergenerator-Konzepte vorgesehene Zugmitteltriebe werden hohe Vorspannkräfte benötigt. Eine rein mechanische 65 Spannvorrichtung hat den Nachteil, dass der Federdrahtdurchmesser der Torsionsfeder zur Erzeugung einer ausreichenden Vorspannkraft sehr groß dimensioniert werden

muss, wodurch aufgrund der größeren Steifigkeit die Montage erschwert und weiterhin ein nachteilig großer Bauraum erforderlich ist. Eine ausschließlich hydraulische Spannvorrichtung besitzt dagegen nachteilig eine ausschließlich geschwindigkeitsproportionale Dämpfungscharakteristik.

Zusammenfassung der Erfindung

[0005] Der Erfindung liegt die Aufgabe zu Grunde, eine Spannvorrichtung mit einer erhöhten Vorspannkraft zu realisieren, die gleichzeitig eine ausreichende Dämpfungseigenschaft besitzt, die kostengünstig darstellbar und einfach zu montieren ist.

[0006] Diese Problemstellung wird erfindungsgemäß durch ein Spannsystem gelöst, das sowohl eine mechanische als auch eine hydraulische Komponente umfasst. Gemäß der Erfindung ist das Spannsystem mit zwei voneinander getrennten Vorrichtungen, einer mechanischen Spannvorrichtung sowie einer hydraulischen Spannvorrichtung kombiniert, die eine Einheit bilden, um gemeinsam eine erhöhte Vorspannkrast zu realisieren. Der kombinierte Ausbau ermöglicht eine Addition der von den Spanneinrichtungen erzeugten Momente, d. h. einerseits dem von der Torsionsseder der mechanischen Spannvorrichtung erzeugten, in den Spannrollenträger eingeleiteten Moment und andererseits dem von der Druckfeder der hydraulischen Spannvorrichtung in Verbindung mit dem wirksamen Hebelarm, d. h. dem Anlenkpunkt dieser Spannvorrichtung am Spannrollenträger erzeugten Moment.

[0007] Zur Dämpfung von Stellbewegungen der Spannrolle bzw. des Spannarms, verursacht durch die Drehungleichförmigkeit der Brennkrastmaschine, die zu Schwingungen des Zugmittels und damit der Spannrolle führen, besitzt jede Spannvorrichtung des erfindungsgemäßen Spannsystems eine Dämpfungseinrichtung. Eine Grunddämpfung zwischen dem Spannrollenträger und dem Basisteil der mechanischen Spannungsvorrichtung erfolgt mittels eines eingesetzten Reibelementes. Die hydraulische Spannvorrichtung bewirkt eine Dämpfung, indem eine gegen die Federten und einen Druckraum im Zylinder begrenzenden Kolben 40 krast wirkende Krast des Zugmittels das Hydrauliksluid aus dem Druckraum über einen Leckspalt verdrängt.

[0008] In vorteilhafter Weise dämpft das in der mechanischen Spannvorrichtung eingesetzte Reibelement unabhängig von der Geschwindigkeit der Stellbewegung niederfrequente Schwingungen des Spannrollenträgers und sorgt damit für eine wirkungsvolle Grunddämpfung. Dagegen ermöglicht die hydraulische Spannvorrichtung eine geschwindigkeitsabhängige Dämpfung der Stellbewegungen des Spannrollenträgers, wobei sich bei höheren Frequenzen und/oder großen Schwingungsamplituden die Dämpfungskraft vergrößert.

[0009] Die Ersindung erfüllt gleichzeitig die Anforderungen hinsichtlich einer erhöhten Vorspannkraft des Zugmitteltriches, beispielsweise zum Antrieb eines großdimensionierten Generators.

[0010] Weitere vorteilhaste Ausgestaltungen der Ersindung sind Gegenstand der abhängigen Ansprüche 2 bis 9. [0011] Das erfindungsgemäße Spannsystem eignet sich vorzugsweise für ein riemengetriebenes Startergeneratorkonzept von Brennkrastmaschinen. Der Startergenerator übernimmt dabei sowohl die Funktion des Generators als auch die des Starters einer Brennkraftmaschine. Die von dem Spannsystem erzeugte hohe Vorspannkraft ist dabei für einen Startergeneratorantrieb ausreichend, bei dem sich zwischen dem Startbetrieb und dem Normalbetrieb ein Richtungswechsel des Drehmomentes einstellt. Während des Startbetriebs wird von dem Startergenerator ein Drehmoment in das Zugmittel eingeleitet, während bei dem Nor-

malbetrieb das Drehmoment von der Kurbelwellen-Riemenscheibe der Brennkraftmaschine in das Zugnüttel eingeleitet wird. Damit verbunden ist ein Wechsel des Zugtrums und des Leertrums. Die kombinierte mechanische und hydraulische Spannvorrichtung des erfindungsgemäßen Spannsystems erzeugt vorteilhaft eine Vorspannkraft des Zugmittels, die unabhängig von dem Start- oder Normalbetrieb einen schlupffreien Antrieb aller Aggregate einschließlich des Startergenerators ermöglicht.

[0012] Der bevorzugte Aufbau des erfindungsgemäßen 10 die Zeichnungen verwiesen, Spannsystems umfasst ein Basisteil sowie einen Spannrollenträger, die teilweise konzentrisch zueinander angeordnet sind, wobei die Spannrolle an einem stirnseitig des Spannrollenträgers angeordneten Schwenkarm befestigt ist. Die mechanische Spannvorrichtung verfügt weiterhin über eine 15 als Schraubenseder gestaltete Torsionsseder, die eine zylindrische Nabe des Spannrollenträgers umschließt und deren Federenden am Basisteil bzw. am Spannrollenträger besestigt sind. Dabei ist die Feder so gewickelt, dass der Schwenkarm und die dazugehörige Spannrolle des Spann- 20 rollenträgers im eingebauten Zustand kraftschlüssig an dem Zugmittel abgestützt sind.

[0013] Die weitere hydraulische Spannvorrichtung des erfindungsgemäßen Spannsystems umfasst ein mechanischhydraulisches Betätigungselement, das mit einem Ende orts- 25 ist; fest, beispielsweise am Gehäuse der Brennkrastmaschine besestigt ist und mit dem weiteren Ende an dem Schwenkarm des Spannrollenträgers angreift. Der Aufbau der hydraulischen Spannvorrichtung schließt einen federkraftbeaufschlagten, in einem Zylinder geführten Kolben ein, der 30 einen Druckraum begrenzt. Dabei ist der Druckraum durch ein Einwegventil von einem den Zylinder umgebenden, teilweise mit einem Hydraulikshuid gefüllten Innenraum getrennt, der sich in einem den Zylinder umschließenden Gehäuse bildet. Ein Volumenaustausch des Hydrauliksluids 35 zwischen dem Druckraum und dem Innenraum, bedingt durch eine Kolbenbewegung, erfolgt abhängig von der Bewegungsrichtung des Kolbens über das Einwegventil oder über einen Leckspalt, der sich zwischen dem Kolben und der Zylinderwand einstellt. Das von der hydraulischen 40 [0026] Ein in den Fig. 1 und 2 dargestelltes Spannsystem Spannvorrichtung erzeugte Moment wird bestimmt durch die Krast der auf den Kolben wirkenden Feder in Verbindung mit dem Hebelarm, mit dem die hydraulische Spannvorrichtung an dem Spannrollenträger angreift.

[0014] Sowohl die mechanische Spannvorrichtung als 45 auch die hydraulische Spannvorrichtung des ersindungsgemäßen kombinierten Spannsystems bewirken eine Dämpfung der Stellbewegungen der Spannrolle. Eine vom Zugmittel auf die Spannrolle und damit auf die hydraulische Spannvorrichtung ausgelöste Kraft führt zu einer Verdrän- 50 gung des Hydrauliksluids aus dem Druckraum über den Leckspalt zwischen dem Kolben und der Zylinderwandung, wobei sich durch die Scherkräfte der Druckmittelverdrängung eine Dämpfung der Spannrollen-Stellbewegung einstellt. Die weitere mechanische Spannvorrichtung verfügt. 55 über ein ausschließlich von einer Axialkraft beaufschlagtes Reibelement, vorzugsweise ausgebildet als eine kreisringförmige Reibscheibe, die zwischen dem Basisteil und dem Spannrollenträger angeordnet ist.

[0015] Vorteilhaft ist das Reibelement zwischen einem 60 Boden des Basisteils und einem drehfest mit dem Spannrollenträger verbundenen Ringslansch angeordnet. Der Ausbau sieht vor, dass der drehfest mit dem Basisteil verbundene Ringflansch sich über das Reibelement an dem Spannrollenträger abstützt. Alternativ dazu eignet sich eine mechanische 65 Spannvorrichtung, deren drehfest mit dem Spannrollenträger verbundener Ringslansch sich über das Reibelement an dem Basisteil abstützt. Die Anordnung des Reibelementes

in der mechanischen Spannvorrichtung stellt eine Grunddämpfung sicher, mit der insbesondere niederfrequente Schwingungen des Spannrollenträgers wirksam gedämpft werden. Die unterschiedlichen Dämpfungscharakteristika der mechanischen und der hydraulischen Spannvorrichtung ergänzen sich und bewirken eine in allen Betriebssituationen wirksame Dämpfung des erfindungsgemäßen Spannsystems.

[0016] Zur weiteren Erläuterung der Erfindung wird auf

Kurze Beschreibung der Zeichnungen

[**0017**] Es zeigen:

[0018] Fig. 1 in einer Ansicht das ersindungsgemäße Spannsystem;

[0019] Fig. 2 die Schnittdarstellung des in Fig. 1 abgebildeten Spannsystems entlang der Linie II-II, die den Aufbau der mechanischen Spannvorrichtung verdeutlicht;

[0020] Fig. 3 in einem vergrößerten Maßstab in einem Längsschnitt die hydraulische Spannvorrichtung des erfindungsgeniäßen Spannsystems;

[0021] Fig. 4 eine Prinzipdarstellung eines Zugmitteltriebs, in dem das erfindungsgemäße Spannsystem integriert

[0022] Fig. 5 ein Kennseld, das die Wirkungsweise der mechanischen Spannvorrichtung verdeutlicht;

[0023] Fig. 6 die Abhängigkeit der Dämpfungskraft von der Frequenz, dargestellt in einem Kennfeld für eine hydraulische Spannvorrichtung;

[0024] Fig. 7 das Kennfeld des erfindungsgemäßen Spannsystems, das sowohl eine mechanische als auch eine hydraulische Spannvorrichtung beinhaltet;

[0025] Fig. 8 das Kennfeld einer kombinierten mechanisch-hydraulisch wirkenden Spannvorrichtung gemäß Fig. 7 bezogen auf eine geänderte Frequenz.

Detaillierte Beschreibung der Zeichnungen

1 umfasst eine hydraulische Spannvorrichtung 2 sowie eine mechanische Spannvorrichtung 3. Das Spannsystem 1 umfasst ein Basisteil 4, in dessen Tragrohr 6 eine Verschraubung 5 eingesetzt ist, mit der das Spannsystem 1 beispielsweise an dem Gehäuse einer Brennkraftmaschine ortsfest angeordnet sind. Auf einer Manttelsläche des Tragrohres 6 ist ein Spannrollenträger 7 über eine Nabe 8 drehbar geführt. Stirnseitig bildet der Spannrollenträger 7 einen Spannarm 9, an dem endseitig eine drehbare Spannrolle 10 angeordnet ist, die im eingebauten Zustand krastbeausschlagt an einem Zugmittel 11, insbesondere einem Riemen abgestützt ist. [0027] Die kraftschlüssige Abstützung der Spannrolle 10 · an dem Zugmittel 11 wird durch die erfindungsgemäße Kombination der hydraulischen Spannvorrichtung 2 mit der mechanischen Spannvorrichtung 3 erzielt. Der Aufbau der mechanischen Spannvorrichtung 3 umfasst eine Torsionsfeder 12, die mit einem Federende an dem Basisteil 4 und mit dem weiteren Federende an dem Schwenkarm 9 lagefixiert ist. Die hydraulische Spannvorrichtung 2, deren Aufbau und v Wirkungsweise in Fig. 3 dargestellt ist, besitzt ein erstes Befestigungsauge 13a, mit dem die Spannvorrichtung 2 beispielsweise an der Brennkraftmaschine befestigt ist. Mit dem weiteren Befestigungsauge 13b ist die Spannvorrichtung 2 an dem Schwenkarm 9 des Spannrollenträgers 7 angekoppelt. Die Spannvorrichtungen 2, 3 sind so gestaltet und ausgelegt, dass deren Federkräfte sich addieren, um so eine hohe Vorspannkraft des Zugmittels 11 zu realisieren. Ein derartiges Spannsystem 1 kann beispielsweise für ein

Startergeneratorkonzept eingesetzt werden, bei dem sich ein Richtungswechsel des Drehmoments im Zugmittel 11 einstellt, abhängig von der Startfunktion bzw. Betriebsfunktion des Startergenerators.

[0028] Jede Spannvorrichtung des erfindungsgemäßen Spannsystems 1 verfügt weiterhin über eine Dämpfung, wobei die mechanische Spannvorrichtung 3 ein zwischen dem Basisteil 4 und dem Spannrollenträger 7 eingesetztes Reibelement 14 umfasst. Als Reibelement 14 dient dazu eine kreisringförmig gestaltete Scheibe, die zwischen einem 10 drehstarr am Tragrohr 6 des Basisteils 4 angeordneten Ringflansch 15 und einer Stirnseite des Spannrollenträgers 7 eingesetzt ist. Das Reibelement 14 wird dabei ausschließlich von einer Axialkrast der Torsionsseder 12 beansprucht und bewirkt eine Grunddämpfung, unabhängig von der Stellge- 15 schwindigkeit des Schwenkarms 9. Die Dämpfung der hydraulischen Spannvorrichtung 2 wird in der Beschreibung der Fig. 3 erläutert. Die Vorspannkraft, mit der die Spannrolle 10 am Zugmittel 11 abgestützt ist, ist beeinflussbar durch die Gestaltung der Torsionsseder 12, beispielsweise 20 durch den Drahtdurchmesser sowie durch die Anlenkung der hydraulischen Spannvorrichtung 2 an dem Schwenkarm 9, mit dem der wirksame Hebelarm sestgelegt wird, der das aufzubringende Moment bestimmt.

[0029] Die Fig. 3 zeigt die hydraulische Spannvorrichtung 25 2 in einem Längsschnitt. Das weitestgehend zylindrisch gestaltete besitzt ein topfartiges Gehäuse 16, das endseitig ein Besestigungsauge 13a umfasst. Öffnungsseitig ist zentrisch in das Gehäuse 16 ein Zylinder 17 eingebracht, in dem längsverschiebbar ein Kolben 18 geführt ist. Der Kolben 18 30 begrenzt den mit einem Hydraulikfluid gefüllten Druckraum 19. Ein Volumenaustausch des Hydrauliksluids zwischen dem Druckraum 19 und einem kreisringförmig gestalteten Innenraum 20, welcher sich zwischen dem Gehäuse 16 und dem Zylinder 17 einstellt, wird durch eine Kolbenbewegung 35 ausgelöst. Der Kolben 18 ist an dem vom Druckraum 19 abgewandten Ende mit dem Befestigungsauge 13b an dem Schwenkarm 9 des Spannrollenträgers 7 verbunden, wie die Fig. 1 zeigt. Vom Zugmittel 11 in das Spannsystem 1 eingeleitete Schwingungen werden auf den Kolben 18 übertragen, 40 1 Spannsystem verbunden mit einem Volumenaustausch des Hydraulikfluids. Abhängig von der Bewegungsrichtung des Kolbens 18 wird dabei Hydrauliksluid über einen Leckspalt 22, welcher sich zwischen dem Kolben 18 und dem Zylinder 17 einstellt, verdrängt und gelangt in den Innenraum 20, oder 45 das Hydrauliksluid strömt vom Innenraum 20 über das Einwegventil 21 in den Druckraum 19. Die Kolbenbewegung, die den Druckraum 19 verkleinert und das Hydrauliksluid über den Leckspalt 22 verdrängt, bewirkt eine wirksame Schwingungsdämpfung, wobei bei höheren Frequenzen 50 11 Zugmittel und/oder großen Schwingungsamplituden die Dämpfungskraft ansteigt. Die Vorspannkraft der hydraulischen Spannvorrichtung 2 wird verursacht durch eine im Gehäuse 16 eingesetzte Schraubenfeder 23, deren weiteres Ende an einer am Kolben 18 lagefixierten Haltescheibe 24 abgestützt ist. 55 15 Ringflansch [0030] In Fig. 4 ist in einer Prinzipdarstellung ein Zugmitteltrieb, versehen mit dem erfindungsgemäßen Spannsystem 1 dargestellt. Das mit dem Spannsystem 1 verbundene Dreieck verdeutlicht mit "a" den durch die Verschraubung 5 festgelegten Drehpunkt des Spannsystems 1; mit "b" ist der 60 Punkt definiert, an dem die hydraulische Spannvorrichtung 2 an dem Schwenkarm 9 des Spannsystems 1 angreift. Der Drehpunkt der Spannrolle 10 ist mit "c" gekennzeichnet. Das Zugmittel 11 des in Fig. 4 abgebildeten Zugmitteltriebs 25 einer Brennkraftmaschine verbindet verschiedene Ag- 65 gregate bzw. Riemenscheiben. Im Einzelnen verbindet das Zugmittel 11 Riemenscheiben, die mit der Kurbelwelle 26, dem Klimakompressor 27, der Lenkhilfspumpe 28 sowie

dem Startergenerator 29 verbunden sind. Zwischen der Kurbelwelle 26 und dem Startergenerator 29 ist zur Erzielung eines vergrößerten Umschlingungswinkel dieser Bauteile die Umlenkrolle 30 angeordnet. Das Spannsystem 1 stützt sich an dem Zugmittel 11 zwischen der Lenkhilfspumpe 28 und dem Startergenerator 29 ab. Aufgrund der erfindungsgemäßen erhöhten Vorspannkraft, mit der das Spannsystem 1 das Zugmittel 11 beaufschlagt, ist das Spannsystem 1 auch für einen Startergeneratorbetrieb geeignet, bei dem sich ein Richtungswechsel des Drehmoments, abhängig vom Startoder Normalbetrieb einstellt. Aufgrund der doppelten Funktion des Startergenerators wechseln Lasttrum und Leertrum im Zugmittel 11, je nach dem Betriebsmodus des Startergenerators.

[0031] Die Fig. 5 und 6 zeigen die unterschiedlichen Dämpfungscharakteristiken zwischen der mechanischen Spannvorrichtung 3 (Fig. 5) und der hydraulischen Spannvorrichtung 2 (Fig. 6). Dem Kennfeld gemäß Fig. 5 ist zu entnehmen, dass sich bereits nach einer geringen Stellbewegung des Spannrollenträgers 7 der mechanischen Spannvorrichtung 3 eine hohe Dämpfungskrast einstellt, d. h. eine Grunddämpfung unabhängig von der Stellgeschwindigkeit des Spannrollenträgers 7. Die mechanische Spannvorrichtung 3 eignet sich daher insbesondere zur Dämpfung von niederfrequenten Schwingungen. Das in Fig. 6 abgebildete Kennfeld verdeutlicht die Abhängigkeit der Dämpfungskrast von der Frequenz der hydraulischen Spannvorrichtung 2. Die Dämpfungskraft steigt danach mit der Frequenzzunahme und/oder den Schwingungsamplituden.

[0032] In den Fig. 7 und 8 ist das Kennfeld einer kombinierten mechanischhydraulischen Spannvorrichtung dargestellt. Das für die Frequenz "f," geltende Kennfeld (Fig. 7) zeigt eine Dämpfung mit einem deutlich höheren Kraftanstieg über den Weg im Vergleich zu dem Kennfeld der Fig. 8, bestimmt für die Frequenz "f2". Dabei ist die Frequenz " f_2 " > " f_1 " ausgelegt.

Bezugszahlenliste

- 2 hydraulische Spannvorrichtung
- 3 mechanische Spannvorrichtung
- 4 Basisteil
- 5 Verschraubung
- 6 Tragrohr
- 7 Spannrollenträger
- 8 Nabe
- 9 Schwenkarm
- 10 Spannrolle
- 12 Torsionsfeder
- 13a Befestigungsauge
- 13b Besestigungsauge
- 14 Reibelement
- 16 Gehäuse
- 17 Zylinder
- 18 Kolben
- 19 Druckraum
- 20 Innenraum
- 21 Einwegventil
- 22 Leckspalt
- 23 Schraubenfeder
- 24 Haltescheibe
- 25 Zugmitteltrich
 - 26 Kurbelwelle
 - 27 Klimakompressor
 - 28 Lenkhilfspumpe

5

35

55

29 Startergenerator 30 Umlenkrolle

rollenträger (7) abstützt.

Patentansprüche

- 1. Spannsystem (1) für einen Zugmitteltrieb (25), uml'assend ein ortsl'estes Basisteil (4), dem ein schwenkbarer Spannrollenträger (7) zugeordnet ist, wobei ein einstückig mit dem Spannrollenträger (7) verbundener Schwenkarm (9) mittels einer endseitig angeordneten 10 Spannrolle (10) an einem Zugmittel (11) des Zugmitteltriebs (25) anliegt, zur Erzielung einer kraftbeaufschlagten Abstützung der Spannrolle (10) an dem Zugmittel (11) ist das Spannsystem (1) mit einer hydraulischen Spannvorrichtung (2) und einer mechanischen 15 Spannvorrichtung (3) kombiniert, die zur Dämpfung von Stellbewegungen des Spannrollenträgers (7) Dämpfungseinrichtungen aufweisen.
- 2. Spannsystem nach Anspruch 1, vorgesehen für ein Startergeneratorkonzept, bei dem das Drehmoment 20 wahlweise von einer Kurbelwelle einer Brennkraftmaschine oder einem Startergenerator (29) in das Zugmittel eingeleitet wird.
- 3. Spannsystem nach Anspruch I, wobei der Spannrollenträger (7) und das Basisteil (4) teilweise konzen- 25 trisch zueinander angeordnet sind und die Spannrolle (10) an dem stirnseitig mit dem Spannrollenträger (7) verbundenen Schwenkarm (9) befestigt ist.
- 4. Spannsystem nach Anspruch 1, dessen mechanische Spannvorrichtung (2) eine als Schraubenfeder gestal- 30 tete Torsionsfeder (12) umfasst, die eine zylindrische Nabe (8) des Spannrollenträgers (7) umschließt und deren erstes Federende mit dem Basisteil (4) und deren zweites Federende mit dem Spannrollenträger (7) drehfest verbunden ist.
- 5. Spannsystem nach Anspruch 1, wobei die hydraulische Spannvorrichtung (2) mit einem Ende ortsfest schwenkbar, beispielsweise an der Brennkraftmaschine befestigt ist und deren weiteres Ende mittelbar oder unmittelbar an dem Schwenkarm (9) des Spannrollenträ- 40 gers (7) angekoppelt ist.
- 6. Spannsystem nach Anspruch 5, deren hydraulische Spannvorrichtung (2) einen sederkrastbeaufschlagten, in einem Zylinder (17) geführten und einen Druckraum (19) begrenzenden Kolben (18) umfasst, wobei der mit 45 einem Hydrauliksluid gefüllte Druckraum (19) durch ein Einwegventil (21) von einem den Zylinder (17) umgebenden, teilweise mit Hydrauliksluid gefüllten Innenraum (20) eines Gehäuses (16) getrennt ist und ein durch die Kolbenbewegung bedingter Volumenaus- 50 tausch zwischen dem Druckraum (19) und dem Innenraum (20), abhängig von der Bewegungsrichtung des Kolbens (18) über das Einwegventil (21) oder über einen Leckspalt (22) zwischen dem Kolben (18) und dem Zylinder (17) erfolgt.
- 7. Spannsystem nach Anspruch 1, bei der ein von einer Axialkrast der Torsionsseder (12) beaufschlagtes, kreisringsörmig gestaltetes Reibelement (14) zwischen dem Basisteil (4) und dem Spannrollenträger (7) eingesetzt ist.
- 8. Spannsystem nach Anspruch 7, wobei das Reibelement (14) zwischen einem Boden des Basisteils (4) und einem drehfest mit dem Spannrollenträger (7) verbundenen Ringflansch (15) angeordnet ist.
- 9. Spannsystem nach Anspruch 8, wobei der Ring- 65 flansch sich über das Reibelement (14) an dem Spann-

Hierzu 7 Seite(n) Zeichnungen

Nummer: Int. Cl./: Offenlegungstag:

Nummer: Int. Cl./:

Offenlegungstag:

DE 100 44 125 A1 F 16 H 7/08 14. März 2002

Fig. 5

Nummer: Int. Cl.⁷; Offenlegungstag:

101 710/788

Nummer: Int. Cl./: Offenlegungstag:

Nummer: Int. Cl./; Offenlegungstag:

