POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI

KIERUNEK: AUTOMATYKA I ROBOTYKA

SPECJALNOŚĆ: ROBOTYKA

PRACA DYPLOMOWA INŻYNIERSKA

Fuzja sygnałów na potrzeby sterowania robotem balansującym

Sensor fusion applied to controlling a balancing robot

AUTOR:

Michał Nowak

PROWADZĄCY PRACĘ: dr inż. Janusz Jakubiak, Wo4/K7

OCENA PRACY:

Spis treści

1.	Wst	ęp		11
	1.1.	Cel i za	akres pracy	11
	1.2.	Zadani	a do wykonania	11
	1.3.	Przebie	eg realizacji projektu	11
2.	Ana	liza ruc	hu robota	13
	2.1.	Model	dynamiki robota balansującego	13
	2.2.	Sterow	anie	13
3.	Akv	vizycja i	wykorzystanie danych z czujników ruchu	15
	3.1.	Żyrosk	op	15
	3.2.	Przysp	ieszeniomierz	15
	3.3.	Magne	tometr	15
			Kompensacja efektu "Soft Iron" i "Hard Iron"	15
		3.3.2.	Kompensacja kąta wychylenia magnetometru	15
	3.4.	Metody	y numeryczne pozwalające uzyskać orientację czujnika	15
			Katy Eulera	15
			Proces całkowania	15
			Funkcje cyklometryczne	15
4.	Wyl	orane m	etody fuzji sygnałów	17
	•		omplementarny	17
			Filtr dolnoprzepustowy	17
		4.1.2.	Filtr górnoprzepustowy	17
			Równanie filtru komplementarnego	17
		4.1.4.	Testy symulacyjne	17
	4.2		almana	17
		4.2.1.		17
		4.2.2.	Równanie filtru Kalmana	17
		4.2.3.	Testy symulacyjne	17
	4 3		adgwicka	17
	1.5.		Kwaterniony	17
		4.3.2.	Zasada działania algorytmu	18
		4.3.3.	Testy symulacyjne	18
5.	Bud		ukołowego robota balansującego i implementacja algorytmów	19
	5.1.		ukcja mechaniczna	19
	5.2.		elektroniczny	19
			Zasilanie	19
		5.2.2.	Jednostka inercyjna MPU9250	19

		5.2.3.	Moduł Bluetooth HC-05	19
		5.2.4.	Silniki krokowe oraz sterowniki A4988	19
	5.3.	Konfig	uracja mikrokontrolera i peryferiów	19
		5.3.1.	ADC	19
		5.3.2.	PWM	19
		5.3.3.	I^2C	20
		5.3.4.	USART	20
		5.3.5.	System czasu rzeczywistego FreeRTOS	20
	5.4.	Oprogr	ramowanie	20
		5.4.1.	Struktura programu i algorytm sterowania	20
		5.4.2.	Implementacja akwizycji danych z czujników ruchu	20
		5.4.3.	Implementacja fuzji sygnałów	20
		5.4.4.	Pojedynczy regulator PID	20
		5.4.5.	Kaskada regulatorów PID	20
		5.4.6.	Obsługa silników krokowych	20
		5.4.7.	Pomiar stanu akumulatora	20
		5.4.8.	Komunikacja bezprzewodowa z komputerem	20
	5.5.	Testy e	eksperymentalne	20
		_		
6.	Apl	ikacja d	o wizualizacji danych sensorycznych i komunikacji z robotem	21
	6.1.	Struktı	ıra programu	21
	6.2.		onalności programu	21
	6.3.	Interfe	js graficzny	21
_	_			
7.	Test	y ekspe	rymentalne	23
T ;+	orotu	*0		25
LI	eratui	ia		23
A.	Tyt	uł dodat	:ku	27
•	1) (ur doddi		
B.	Opi	s załącz	conej płyty CD/DVD	29
	-	•		
Ind	leks r	zeczowy	v.	30

Spis rysunków

Spis tabel

Skróty

IMU (ang. Inertial Measurement Unit) AHRS (ang. Attitude and Heading Reference System)

Wstęp

- 1.1. Cel i zakres pracy
- 1.2. Zadania do wykonania
- 1.3. Przebieg realizacji projektu

Analiza ruchu robota

- 2.1. Model dynamiki robota balansującego
- 2.2. Sterowanie

Akwizycja i wykorzystanie danych z czujników ruchu

3.1. Żyroskop 3.2. Przyspieszeniomierz ••• Magnetometr 3.3. Kompensacja efektu "Soft Iron"i "Hard Iron" 3.3.1. 3.3.2. Kompensacja kata wychylenia magnetometru Metody numeryczne pozwalające uzyskać orientację czujnika 3.4.1. Katy Eulera 3.4.2. Proces całkowania 3.4.3. Funkcje cyklometryczne

Wybrane metody fuzji sygnałów

```
4.1.
      Filtr komplementarny
     Filtr dolnoprzepustowy
4.1.1.
4.1.2. Filtr górnoprzepustowy
4.1.3. Równanie filtru komplementarnego
     Testy symulacyjne
4.1.4.
      Filtr Kalmana
4.2.
4.2.1.
      Równanie stanu obiektu
4.2.2. Równanie filtru Kalmana
     Testy symulacyjne
4.2.3.
      Filtr Madgwicka
4.3.
```

4.3.1. Kwaterniony

4.3.2. Zasada działania algorytmu

•••

4.3.3. Testy symulacyjne

. . .

5.3.2. PWM

Budowa dwukołowego robota balansującego i implementacja algorytmów

5.1. Konstrukcja mechaniczna
5.2. Układ elektroniczny
5.2.1. Zasilanie
...

5.2.2. Jednostka inercyjna MPU9250
...

5.2.3. Moduł Bluetooth HC-05
...

5.2.4. Silniki krokowe oraz sterowniki A4988
...

5.3. Konfiguracja mikrokontrolera i peryferiów
5.3.1. ADC

5. Budo	wa dwukołowego robota balansującego i implementacja algorytmów
5.3.3.	I^2C
5.3.4. 	USART
5.3.5. 	System czasu rzeczywistego FreeRTOS
5.4.	Oprogramowanie
5.4.1.	Struktura programu i algorytm sterowania
5.4.2. 	Implementacja akwizycji danych z czujników ruchu
5.4.3. 	Implementacja fuzji sygnałów
5.4.4. 	Pojedynczy regulator PID
5.4.5. 	Kaskada regulatorów PID
5.4.6. 	Obsługa silników krokowych
5.4.7. 	Pomiar stanu akumulatora
5.4.8. 	Komunikacja bezprzewodowa z komputerem
5.5. 	Testy eksperymentalne

Aplikacja do wizualizacji danych sensorycznych i komunikacji z robotem

6.1. Struktura programu

•••

6.2. Funkcjonalności programu

•••

6.3. Interfejs graficzny

...

Testy eksperymentalne

Literatura

- [1] M. Bickley, C. Slominski. A MySQL-based data archiver: preliminary results. Proceedings of ICALEPCS07, Paz. 2007. http://www.osti.gov/scitech/servlets/purl/922267 [dostęp dnia 20 czerwca 2015].
- [2] J. Jędrzejczyk, B. Śródka. Segmentacja obrazów metodą drzew decyzyjnych. Raport instytutowy, Politechnika Wrocławska, Wydział Elektroniki, 2007.

Dodatek A

Tytuł dodatku

Zasady przyznawania stopnia naukowego doktora i doktora habilitowanego w Polsce określa ustawa z dnia 14 marca 2003 r. o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz.U. nr 65 z 2003 r., poz. 595 (Dz. U. z 2003 r. Nr 65, poz. 595). Poprzednie polskie uregulowania nie wymagały bezwzględnie posiadania przez kandydata tytułu zawodowego magistra lub równorzędnego (choć zasada ta zazwyczaj była przestrzegana) i zdarzały się nadzwyczajne przypadki nadawania stopnia naukowego doktora osobom bez studiów wyższych, np. słynnemu matematykowi lwowskiemu – późniejszemu profesorowi Stefanowi Banachowi.

W innych krajach również zazwyczaj do przyznania stopnia naukowego doktora potrzebny jest dyplom ukończenia uczelni wyższej, ale nie wszędzie.

Dodatek B

Opis załączonej płyty CD/DVD

Tutaj jest miejsce na zamieszczenie opisu zawartości załączonej płyty. Należy wymienić, co zawiera.