On the Zeros of Dirichlet Eta Function

Akhila Raman

University of California at Berkeley, CA-94720. Email: akhila.raman@berkeley.edu.

Abstract

Some ideas on Dirichlet Eta Function are derived.

Keywords:

1. Introduction

Let us consider $E_p(t) = \frac{e^{-e^t}}{1+e^{-e^t}}e^{Kt}$ which corresponds to the Eta function $\zeta_a(s) = \sum_{m=1}^{\infty} (-1)^{m-1} \frac{1}{m^s}$ where $E_p(t)$ is the inverse Fourier Transform of $E(s) = \Gamma(s)\zeta_a(s) = \int_0^{\infty} [\sum_{m=1}^{\infty} (-1)^{m-1} \frac{1}{m^s}]e^{-y}y^{s-1}dy$ where $s = \frac{1}{2} + \sigma - i\omega$ and $K = \frac{1}{2} + \sigma$. If we substitute y = mx, we have $E_p(s) = \int_0^{\infty} [\sum_{m=1}^{\infty} (-1)^{m-1}e^{-mx}]x^{s-1}dx = \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}}x^{s-1}dx$. If we substitute $x = e^t$, we have $E(s) = \int_{-\infty}^{\infty} \frac{e^{-e^t}}{1+e^{-e^t}}e^{st}dt = \int_{-\infty}^{\infty} \frac{e^{-e^t}}{1+e^{-e^t}}e^{Kt}e^{-i\omega t}dt = \int_{-\infty}^{\infty} E_p(t)e^{-i\omega t}dt$ where $K = \frac{1}{2} + \sigma$. Let us find the function P(t) which satisfies the equation $E_p(t) = \omega_0^2 P(t) + \frac{d^2 P(t)}{1+e^{-s}}$.

Let us use the Taylor series expansion of $E_p(t) = \sum_{n=1}^{\infty} (-1)^{n-1} \sum_{k=1}^{\infty} \frac{(-n)^k}{!k} e^{(k+\frac{1}{2}+\sigma)t}$ and use the shorthand notation $E_p(t) = \sum_{n,k} a_{nk} e^{(k+\frac{1}{2}+\sigma)t}$ where $a_{nk} = (-1)^{n-1} \frac{(-n)^k}{!k}$, and we can see that $P(t) = \sum_{n,k} a_{nk} \frac{e^{(k+\frac{1}{2}+\sigma)t}}{((k+\frac{1}{2}+\sigma)^2+\omega_0^2)}$.

If $E_p(\omega)$ has a zero at $\omega = \omega_0$, we require P(t) to tend to zero as $t \to \infty$ and $t \to -\infty$ because $P(t) = \frac{1}{\omega_0} [\sin(\omega_0 t) \int_{-\infty}^t E_p(t) \cos(\omega_0 \tau) d\tau - \cos(\omega_0 t) \int_{-\infty}^t E_p(t) \sin(\omega_0 \tau) d\tau]$. We require $P(t) = e^{-\Delta e^t} e^{Kt} g(t)$ where $0 < \Delta << 1$, for above condition to be satisfied, where g(t) is utmost of the order of e^{Rt} where R > -K.

2. Section 1

Without loss of generality, let $P(t) = e^{-e^t} e^{Kt} f(t)$ where $f(t) = e^{(1-\Delta)e^t} g(t)$. We can write $f(t) = f_0 + f_1 e^t + f_2 e^{2t} + \dots$ given that $P(t) = \sum_{n,k} a_{nk} \frac{e^{(k+\frac{1}{2}+\sigma)t}}{((k+\frac{1}{2}+\sigma)^2 + \omega_0^2)}$.

$$P(t) = e^{-e^{t}} e^{Kt} f(t)$$

$$\frac{dP}{dt} = e^{-e^{t}} e^{Kt} \left[\frac{df}{dt} + f(t)(K - e^{t}) \right]$$

$$\frac{d^{2}P}{dt^{2}} = e^{-e^{t}} e^{Kt} \left[\frac{d^{2}f}{dt^{2}} + 2\frac{df}{dt}(K - e^{t}) + f(t)(-e^{t} + (K - e^{t})^{2}) \right]$$

$$E(t) = \omega_{0}^{2} P(t) + \frac{d^{2}P(t)}{dt^{2}} = e^{-e^{t}} e^{Kt} \left[\frac{d^{2}f}{dt^{2}} + 2\frac{df}{dt}(K - e^{t}) + f(t)(\omega_{0}^{2} + K^{2} - (2K + 1)e^{t} + e^{2t}) \right] = \frac{e^{-e^{t}}}{1 + e^{-e^{t}}} e^{Kt}$$

$$\frac{d^{2}f}{dt^{2}} + 2\frac{df}{dt}(K - e^{t}) + f(t)(\omega_{0}^{2} + K^{2} - (2K + 1)e^{t} + e^{2t}) = \frac{1}{1 + e^{-e^{t}}} e^{Kt}$$

$$(1)$$

We see that $f(t) = e^{(1-\Delta)e^t}g(t)$ and that g(t) is utmost of the order of e^{Rt} , given by $O[e^{Rt}]$, where R > -K.

$$f(t) = e^{(1-\Delta)e^{t}}g(t)$$

$$\frac{df}{dt} = e^{(1-\Delta)e^{t}} \left[\frac{dg}{dt} + g(t)(1-\Delta)e^{t} \right]$$

$$\frac{d^{2}f}{dt^{2}} = e^{(1-\Delta)e^{t}} \left[\frac{d^{2}g}{dt^{2}} + 2\frac{dg}{dt}(1-\Delta)e^{t} + g(t)[(1-\Delta)e^{t} + (1-\Delta)^{2}e^{2t}] \right]$$

$$\frac{d^{2}f}{dt^{2}} + 2\frac{df}{dt}(K-e^{t}) + f(t)(\omega_{0}^{2} + K^{2} - (2K+1)e^{t} + e^{2t}) = \frac{1}{1+e^{-e^{t}}}$$

$$e^{(1-\Delta)e^{t}} \left[\frac{d^{2}g}{dt^{2}} + \frac{dg}{dt} [2(1-\Delta)e^{t} + 2(K-e^{t})] \right]$$

$$+g(t)[(1-\Delta)e^{t} + (1-\Delta)^{2}e^{2t} + 2(K-e^{t})(1-\Delta)e^{t} + (\omega_{0}^{2} + K^{2} - (2K+1)e^{t} + e^{2t})]] = \frac{1}{1+e^{-e^{t}}}$$

$$e^{(1-\Delta)e^{t}} \left[\frac{d^{2}g}{dt^{2}} + \frac{dg}{dt} [2(K-\Delta e^{t}) + g(t)[\omega_{0}^{2} + K^{2} + e^{t}(-\Delta(2K+1)) + e^{2t}\Delta^{2}] \right] = \frac{1}{1+e^{-e^{t}}}$$

$$(2)$$

We have following cases:

Case 1: $\lim_{t\to\infty} g(t) = O[e^{Rt}], R \ge 0$

Without loss of generality, we can write $g(t) = \sum_{r=0}^{R} g_r e^{rt} + h(t)$ where h(t) has terms of lesser order and may include terms of order $O[e^{-Rt}]$, $O[e^{-e^{Rt}}]$ and so on.

Given that $g(t) = \sum_{r=0}^{R} g_r e^{rt} + h(t)$ is of order $O[e^{Rt}]$, $\frac{dg}{dt} = \sum_{r=1}^{R} r g_r e^{rt} + \frac{dh}{dt}$ and $\frac{d^2g}{dt^2} = \sum_{r=1}^{R} r^2 g_r e^{rt} + \frac{d^2h}{dt^2}$, we can see that above equation Eq. 2 is of the order of $O[e^{(1-\Delta)e^t}e^{(R+2)t}]$ and hence we can write the order

of the left hand side (LHS) of above equation as $O[e^{(1-\Delta)e^t}e^{(R+2)t}]$ and $\lim_{t\to\infty} LHS = \infty$, while the right hand side (RHS) of above equation $\lim_{t\to\infty} = \frac{1}{1+e^{-e^t}} = 1$ which leads to a **contradiction**.

Hence we see that $g(t) = O[e^{Rt}]$ is **not possible**.

Case 2:
$$\lim_{t\to\infty} g(t) = e^{-Le^t} O[e^{Rt}], L <= (1-\Delta)$$

Without loss of generality, we can write $f(t) = O[e^{\Delta_2 e^t}]e^{Rt}$ where $0 \le \Delta_2 = 1 - \Delta - L << 1$.

Using results in above Cases 1 and 2, we can show that we can write the order of the left hand side (LHS) of above equation Eq. 2 as $O[e^{\Delta_2 e^t} e^{(R+2)t}]$ and $\lim_{t\to\infty} LHS = \infty$, while the right hand side (RHS) of above equation $\lim_{t\to\infty} = \frac{1}{1+e^{-e^t}} = 1$ which leads to a **contradiction**.

Hence we see that $g(t) = e^{-Le^t}O[e^{Rt}], L \le (1 - \Delta)$ is **not possible**.

.

Case 3:
$$\lim_{t\to\infty} g(t) = e^{-Le^t} O[e^{Rt}], L > (1-\Delta)$$

Without loss of generality, we can write $f(t) = O[e^{-Me^t}]e^{Rt}$ where $M = L - (1 - \Delta) > 0$.

We can show that we can write the order of the left hand side (LHS) of above equation Eq. 2 as $O[e^{-Me^t}e^{(R+2)t}]$ and $\lim_{t\to\infty} LHS = 0$, while the right hand side (RHS) of above equation $\lim_{t\to\infty} = \frac{1}{1+e^{-e^t}} = 1$ which leads to a **contradiction**.

Hence we see that $g(t) = e^{-Le^t}O[e^{Rt}], L > (1 - \Delta)$ is **not possible**.

Case 4:
$$\lim_{t\to\infty} g(t) = O[e^{-Rt}], R > 0$$

Without loss of generality, we can write $g(t) = \sum_{r=0}^{R} g_r e^{-rt} + h(t)$ where h(t) has terms of lesser order and may include terms of order $O[e^{-e^{Rt}}]$ and so on.

Given that
$$g(t) = \sum_{r=0}^{R} g_r e^{-rt} + h(t)$$
 is of order $O[e^{-Rt}]$, $\frac{dg}{dt} = -\sum_{r=1}^{R} r g_r e^{-rt} + \frac{dh}{dt}$ and $\frac{d^2g}{dt^2} = \sum_{r=1}^{R} r^2 g_r e^{-rt} + \frac{dh}{dt}$

 $\frac{d^2h}{dt^2}$, we can see that above equation Eq. 2 is of the order of $O[e^{(1-\Delta)e^t}e^{(-R+2)t}]$ and hence we can write the order of the left hand side (LHS) of above equation as $O[e^{(1-\Delta)e^t}e^{(-R+2)t}]$ and $\lim_{t\to\infty} LHS = \infty$, while the right hand side (RHS) of above equation $\lim_{t\to\infty} \frac{1}{1+e^{-e^t}} = 1$ which leads to a **contradiction**.

Hence we see that $g(t) = O[e^{-Rt}]$ is **not possible**.

.

Case 5:
$$\lim_{t\to\infty} g(t) = e^{-(1-\Delta)e^t} O[e^{-Rt}], R > 0$$

$$\frac{d^2f}{dt^2} + 2\frac{df}{dt}(K - e^t) + f(t)(\omega_0^2 + K^2 - (2K + 1)e^t + e^{2t}) = \frac{1}{1 + e^{-e^t}}$$

$$g(t) = e^{-(1 - \Delta)e^t}O[e^{-Rt}]$$

$$f(t) = e^{(1 - \Delta)e^t}g(t) = O[e^{-Rt}]$$
(3)

Without loss of generality, we can write $g(t) = e^{-(1-\Delta)e^t} [\sum_{r=0}^R g_r e^{-rt} + h(t)]$ where h(t) has terms of lesser order and may include terms of order $O[e^{-e^{Rt}}]$ and so on. So, we can write $f(t) = e^{(1-\Delta)e^t}g(t) = O[e^{-Rt}]$, hence $\lim_{t\to\infty} \frac{df}{dt} = 0$ and $\lim_{t\to\infty} \frac{d^2f}{dt^2} = 0$ and $\lim_{t\to\infty} f(t)(\omega_0^2 + K^2 - (2K+1)e^t + e^{2t}) = 0$ for R > 2 and $\lim_{t\to\infty} f(t)(\omega_0^2 + K^2 - (2K+1)e^t + e^{2t}) = \infty$ for R < 2 while the right hand side (RHS) of above equation Eq. $2\lim_{t\to\infty} \frac{1}{1+e^{-e^t}} = 1$ which leads to a **contradiction**.

Special case R=2

Let us consider the case when $\lim_{t\to\infty} f(t) = O[e^{-2t}]$ is a **possible solution** in Eq. 1. We can show that this solution is **NOT** possible as follows.

Let f(t) have a term $\frac{1}{1+e^{2t}}$ which is of order $O[e^{-2t}]$ as $\lim_{t\to\infty}$ and is a **possible solution** in Eq. 1. Given that P(t), f(t) are analytic functions, $P(t) = e^{-e^t}e^{Kt}f(t) = e^{-e^t}O[e^{(K-2)t}], \lim_{t\to-\infty}P(t)\to\infty$ which is **not possible** for $K=\frac{1}{2}+\sigma$ where $0\leq\sigma\leq\frac{1}{2}$.

$$\frac{d^2f}{dt^2} + 2\frac{df}{dt}(K - e^t) + f(t)(\omega_0^2 + K^2 - (2K + 1)e^t + e^{2t}) = \frac{1}{1 + e^{-e^t}}$$
(4)

we can see that the LHS of above equation tends to ∞ as $\lim_{t\to-\infty}$ and RHS tends to 1, thus leading to a contradiction.

In addition, f(t) is also allowed to have additional terms of the order of $O[e^{-e^{At}}e^{Bt}]$ which are of lower order than $O[e^{-2t}]$ as $\lim_{t\to\infty}$. These terms tend to zero as $t\to\infty$ in LHS of equation above. As $t\to-\infty$, these additional terms tend to zero for B>0 and tend to ∞ for B=0 in LHS of equation above, while RHS tends to 1, thus leading to a contradiction.

3. Section 2: Transcendental f(t) many terms

Let us consider $E_p(t) = \frac{e^{-e^t}}{1+e^{-e^t}}e^{Kt}$. Let $P(t) = e^{-\Delta e^t}e^{Kt}f(t)$ where $f(t) = \cos(g_1(t))h_1(t) + \cos(g_2(t))h_2(t)$ and that $h_1(t), h_2(t)$ is utmost of the order of O[1].

We have **replaced** f(t), g(t) in Section 1 with f'(t), f(t) respectively in this section.

Without loss of generality, let $P(t) = e^{-e^t} e^{Kt} f'(t)$ where $f'(t) = e^{(1-\Delta)e^t} f(t)$.

$$P(t) = e^{-e^{t}} e^{Kt} f'(t)$$

$$\frac{dP}{dt} = e^{-e^{t}} e^{Kt} \left[\frac{df'}{dt} + f'(t)(K - e^{t}) \right]$$

$$\frac{d^{2}P}{dt^{2}} = e^{-e^{t}} e^{Kt} \left[\frac{d^{2}f'}{dt^{2}} + 2\frac{df'}{dt}(K - e^{t}) + f'(t)(-e^{t} + (K - e^{t})^{2}) \right]$$

$$E(t) = \omega_{0}^{2} P(t) + \frac{d^{2}P(t)}{dt^{2}} = e^{-e^{t}} e^{Kt} \left[\frac{d^{2}f'}{dt^{2}} + 2\frac{df'}{dt}(K - e^{t}) + f'(t)(\omega_{0}^{2} + K^{2} - (2K + 1)e^{t} + e^{2t}) \right] = \frac{e^{-e^{t}}}{1 + e^{-e^{t}}} e^{Kt}$$

$$A(t) = \frac{d^{2}f'}{dt^{2}} + 2\frac{df'}{dt}(K - e^{t}) + f'(t)(\omega_{0}^{2} + K^{2} - (2K + 1)e^{t} + e^{2t}) = \frac{1}{1 + e^{-e^{t}}} e^{Kt}$$

$$(5)$$

We see that $f'(t) = e^{(1-\Delta)e^t} f(t)$. We can write as follows.

$$f'(t) = e^{(1-\Delta)e^{t}} f(t)$$

$$\frac{df'}{dt} = e^{(1-\Delta)e^{t}} \left[\frac{df}{dt} + f(t)(1-\Delta)e^{t} \right]$$

$$\frac{d^{2}f'}{dt^{2}} = e^{(1-\Delta)e^{t}} \left[\frac{d^{2}f}{dt^{2}} + 2\frac{df}{dt}(1-\Delta)e^{t} + f(t)[(1-\Delta)e^{t} + (1-\Delta)^{2}e^{2t}] \right]$$

$$A(t) = \frac{d^{2}f'}{dt^{2}} + 2\frac{df'}{dt}(K-e^{t}) + f'(t)(\omega_{0}^{2} + K^{2} - (2K+1)e^{t} + e^{2t}) = \frac{1}{1+e^{-e^{t}}}$$

$$A(t) = e^{(1-\Delta)e^{t}} \left[\frac{d^{2}f}{dt^{2}} + \frac{df}{dt} \left[2(1-\Delta)e^{t} + 2(K-e^{t}) \right] \right]$$

$$+f(t)[(1-\Delta)e^{t} + (1-\Delta)^{2}e^{2t} + 2(K-e^{t})(1-\Delta)e^{t} + (\omega_{0}^{2} + K^{2} - (2K+1)e^{t} + e^{2t})]] = \frac{1}{1+e^{-e^{t}}}$$

$$A(t) = e^{(1-\Delta)e^{t}} \left[\frac{d^{2}f}{dt^{2}} + \frac{df}{dt} 2(K-\Delta)e^{t} \right]$$

$$+f(t)[(\omega_{0}^{2} + K^{2} + e^{t}(1-\Delta - 2K-1 + 2K-2K\Delta) + e^{2t}(1+\Delta^{2} - 2\Delta + 1 - 2 + 2\Delta)]] = \frac{1}{1+e^{-e^{t}}}$$

$$A(t) = e^{(1-\Delta)e^{t}} \left[\frac{d^{2}f}{dt^{2}} + \frac{df}{dt} 2(K-\Delta)e^{t} + f(t)[(\omega_{0}^{2} + K^{2} + e^{t}(-\Delta(1 + 2K)) + e^{2t}\Delta^{2})] \right] = \frac{1}{1+e^{-e^{t}}}$$

$$A(t) = e^{(1-\Delta)e^{t}} \left[\frac{d^{2}f}{dt^{2}} + \frac{df}{dt} 2(K-\Delta)e^{t} + f(t)[(\omega_{0}^{2} + K^{2} + e^{t}(-\Delta(1 + 2K)) + e^{2t}\Delta^{2})] \right] = \frac{1}{1+e^{-e^{t}}}$$

$$A(t) = e^{(1-\Delta)e^{t}} \left[\frac{d^{2}f}{dt^{2}} + \frac{df}{dt} 2(K-\Delta)e^{t} + f(t)[(\omega_{0}^{2} + K^{2} + e^{t}(-\Delta(1 + 2K)) + e^{2t}\Delta^{2})] \right] = \frac{1}{1+e^{-e^{t}}}$$

Let us substitute $f(t) = \cos(g_1(t))h_1(t) + \cos(g_2(t))h_2(t)$ and that $h_1(t), h_2(t)$ is **utmost of the order** of O[1]. We can write $g_2(t) = g_1(t) + g_{\Delta_1}(t)$.

$$f(t) = \cos(g_1(t))h_1(t) + \cos(g_2(t))h_2(t)$$

$$f(t) = \cos(g_1(t))h_1(t) + \cos(g_1(t) + g_{\Delta_1}(t))h_2(t)$$

$$f(t) = \cos(g_1(t))[h_1(t) + \cos(g_{\Delta_1}(t))h_2(t)] - \sin(g_1(t))\sin(g_{\Delta_1}(t))h_2(t)$$

$$R(t) = h_1(t) + \cos(g_{\Delta_1}(t))h_2(t) \quad S(t) = \sin(g_{\Delta_1}(t))h_2(t)$$

$$f(t) = \cos(g_1(t))R(t) - \sin(g_1(t))S(t)$$
(7)

We know that f(t) is is utmost of the order of O[1], hence R(t), S(t) are of **utmost of the order** of O[1]. Hence we can write as follows.

$$f(t) = \cos(g_1(t))R(t) - \sin(g_1(t))S(t)$$

$$\frac{df}{dt} = \cos(g_1(t))R_1(t) - \sin(g_1(t))S_1(t)$$

$$R_1(t) = \frac{dR}{dt} - S(t)\frac{dg_1}{dt}; \quad S_1(t) = R(t)\frac{dg_1}{dt} + \frac{dS}{dt}$$

$$\frac{d^2f}{dt^2} = \cos(g_1(t))R_2(t) - \sin(g_1(t))S_2(t)$$

$$R_2(t) = \frac{d^2R}{dt^2} - S(t)\frac{d^2g_1}{dt^2} - R(t)(\frac{dg_1}{dt})^2 - 2\frac{dS}{dt}\frac{dg_1}{dt}$$

$$S_2(t) = \frac{d^2S}{dt^2} + R(t)\frac{d^2g_1}{dt^2} - S(t)(\frac{dg_1}{dt})^2 + 2\frac{dR}{dt}\frac{dg_1}{dt}$$
(8)

Hence we can write Eq. 6 as follows.

$$A(t) = e^{(1-\Delta)e^{t}} \left[\frac{d^{2}f}{dt^{2}} + \frac{df}{dt} 2(K-\Delta)e^{t} + f(t)[\omega_{0}^{2} + K^{2} + e^{t}(-\Delta(1+2K)) + e^{2t}\Delta^{2}] \right] = \frac{1}{1+e^{-e^{t}}}$$

$$\cos(g_{1}(t))I_{1}(t) - \sin(g_{1}(t))I_{2}(t) = \frac{1}{1+e^{-e^{t}}}$$

$$I_{1}(t) = e^{(1-\Delta)e^{t}} [R_{2}(t) + 2(K-\Delta)e^{t}R_{1}(t) + (\omega_{0}^{2} + K^{2} - \Delta(2K+1)e^{t} + \Delta^{2}e^{2t})R(t)]$$

$$I_{2}(t) = e^{(1-\Delta)e^{t}} [S_{2}(t) + 2(K-\Delta)e^{t}S_{1}(t) + (\omega_{0}^{2} + K^{2} - \Delta(2K+1)e^{t} + \Delta^{2}e^{2t})S(t)]$$

$$(9)$$

We can rewrite above equations as follows.

$$I_{1}(t) = e^{(1-\Delta)e^{t}}[I_{11}(t) + I_{12}(t)]$$

$$I_{2}(t) = e^{(1-\Delta)e^{t}}[I_{21}(t) + I_{22}(t)]$$

$$I_{11}(t) = R_{2}(t) + 2(K - \Delta)e^{t}R_{1}(t), I_{12}(t) = (\omega_{0}^{2} + K^{2} - \Delta(2K + 1)e^{t} + \Delta^{2}e^{2t})R(t)$$

$$I_{21}(t) = S_{2}(t) + 2(K - \Delta)e^{t}S_{1}(t), I_{22}(t) = (\omega_{0}^{2} + K^{2} - \Delta(2K + 1)e^{t} + \Delta^{2}e^{2t})S(t)$$

$$(10)$$

We require $\lim_{t\to\infty} I_1(t) = \frac{1}{2}\cos\left(g_1(t)\right)$ which is of order O[1] and $\lim_{t\to\infty} I_2(t) = -\frac{1}{2}\sin\left(g_1(t)\right)$ which is of order O[1] for above equation $\cos\left(g_1(t)\right)I_1(t) - \sin\left(g_1(t)\right)I_2(t) = \frac{1}{1+e^{-e^t}}$ to be satisfied.

This means that we **require the highest order term** in the equations for $I_1(t)$ and $I_2(t)$ to be of the order of $O[e^{-(1-\Delta)e^t}]$.

We see that the order of the term $I_{12}(t)$ is $O[e^{2t}]$ because R(t) is of **order 1**. Similarly, the order of the term $I_{22}(t)$ is $O[e^{2t}]$ because S(t) is of **order 1**. Hence the order of the terms $I_1(t)$ and $I_2(t)$ are **at least** of order $O[e^{(1-\Delta)e^t}]O[e^{2t}]$.

We can show that the terms $I_{12}(t)$, $I_{22}(t)$ are NOT cancelled by $I_{11}(t)$, $I_{21}(t)$ as follows.

Case 1:

 $I_{11}(t)$ and $I_{21}(t)$ are of the order of $O[e^{-(1-\Delta)e^t}]\frac{1}{2}\cos(g_1(t))$ as $\lim_{t\to\infty}$. It **cannot** cancel the respective terms $I_{12}(t)$, $I_{22}(t)$ which are of the order of $O[e^{2t}]$. We get the result $I_1(t)$, $I_2(t)$ of the order $O[e^{(1-\Delta)e^t}]O[e^{2t}]$, which is **not** what is required $\lim_{t\to\infty} I_1(t) = \frac{1}{2}\cos(g_1(t))$ and $\lim_{t\to\infty} I_2(t) = -\frac{1}{2}\sin(g_1(t))$.

Case 2:

 $I_{11}(t)$ and $I_{21}(t)$ are of the order of $O[e^{2t}]$ as $\lim_{t\to\infty}$. They **can cancel** the respective terms $I_{12}(t), I_{22}(t)$ which are of the order of $O[e^{2t}]$. But we get the result $I_1(t)=0, I_2(t)=0$, which is **not** what is required $\lim_{t\to\infty}I_1(t)=\frac{1}{2}\cos(g_1(t))$ and $\lim_{t\to\infty}I_2(t)=-\frac{1}{2}\sin(g_1(t))$.

Case 3:

 $I_{11}(t)$ and $I_{21}(t)$ are of order $O[e^{Rt}]$ where R > 2, as $\lim_{t \to \infty}$. They **cannot** cancel the respective terms $I_{12}(t), I_{22}(t)$ which are of the order of $O[e^{2t}]$. We get the result $I_1(t), I_2(t)$ of the order $O[e^{(1-\Delta)e^t}]O[e^{Rt}]$, which is **not** what is required $\lim_{t \to \infty} I_1(t) = \frac{1}{2}\cos(g_1(t))$ and $\lim_{t \to \infty} I_2(t) = -\frac{1}{2}\sin(g_1(t))$.

Case 4:

 $I_{11}(t)$ and $I_{21}(t)$ are of order $O[e^{Rt}]$ where R < 2, as $\lim_{t \to \infty}$. They **cannot** cancel the respective terms $I_{12}(t), I_{22}(t)$ which are of the order of $O[e^{2t}]$. We get the result $I_1(t), I_2(t)$ of the order $O[e^{(1-\Delta)e^t}]O[e^{2t}]$, which is **not** what is required $\lim_{t \to \infty} I_1(t) = \frac{1}{2}\cos(g_1(t))$ and $\lim_{t \to \infty} I_2(t) = -\frac{1}{2}\sin(g_1(t))$.

This means the assumption that $P(t) = e^{-\Delta e^t} e^{Kt} f(t)$ where $f(t) = \cos(g_1(t)) h_1(t) + \cos(g_2(t)) h_2(t)$ and that $h_1(t), h_2(t)$ is utmost of the order of O[1], leads to a **contradiction**.

Hence the assumption that $E_p(\omega)$ has a zero at $\omega = \omega_0$, leads to a contradiction.

4. Appendix A

Case 2: $\lim_{t\to\infty} g(t) = O[e^{-Rt}], R > 0$

Without loss of generality, we can write $g(t) = \sum_{r=0}^{R} g_r e^{-rt} + h(t)$ where h(t) has terms of lesser order and may include terms of order $O[e^{-e^{Rt}}]$ and so on.

Given that
$$g(t) = \sum_{r=0}^{R} g_r e^{-rt} + h(t)$$
 is of order $O[e^{-Rt}]$, $\frac{dg}{dt} = -\sum_{r=1}^{R} r g_r e^{-rt} + \frac{dh}{dt}$ and $\frac{d^2g}{dt^2} = \sum_{r=1}^{R} r^2 g_r e^{-rt} + \frac{dh}{dt}$

 $\frac{d^2h}{dt^2}$, we can see that above equation is of the order of $O[e^{(1-\Delta)e^t}e^{(-R+2)t}]$ and hence we can write the order of the left hand side (LHS) of above equation as $O[e^{(1-\Delta)e^t}e^{(-R+2)t}]$ and $\lim_{t\to\infty} LHS = \infty$, while the right hand side (RHS) of above equation $\lim_{t\to\infty} \frac{1}{1+e^{-e^t}} = 1$ which leads to a **contradiction**.

Hence we see that $g(t) = O[e^{-Rt}]$ is **not possible**.

.

Case 4: $\lim_{t\to\infty} g(t) = e^{-(1-\Delta)e^t}O[e^{-Rt}], R > 0$

$$\frac{d^2f}{dt^2} + 2\frac{df}{dt}(K - e^t) + f(t)(\omega_0^2 + K^2 - (2K + 1)e^t + e^{2t}) = \frac{1}{1 + e^{-e^t}}$$

$$g(t) = e^{-(1 - \Delta)e^t}O[e^{-Rt}]$$

$$f(t) = e^{(1 - \Delta)e^t}g(t) = O[e^{-Rt}]$$
(11)

Without loss of generality, we can write $g(t) = e^{-(1-\Delta)e^t} [\sum_{r=0}^R g_r e^{-rt} + h(t)]$ where h(t) has terms of lesser order and may include terms of order $O[e^{-e^{Rt}}]$ and so on. So, we can write $f(t) = e^{(1-\Delta)e^t}g(t) = O[e^{-Rt}]$, hence $\lim_{t\to\infty} \frac{df}{dt} = 0$ and $\lim_{t\to\infty} \frac{d^2f}{dt^2} = 0$ and $\lim_{t\to\infty} f(t)(\omega_0^2 + K^2 - (2K+1)e^t + e^{2t}) = 0$ for R > 2 and $\lim_{t\to\infty} f(t)(\omega_0^2 + K^2 - (2K+1)e^t + e^{2t}) = \infty$ for R < 2 while the right hand side (RHS) of above equation $\lim_{t\to\infty} \frac{1}{1+e^{-e^t}} = 1$ which leads to a **contradiction**.

Special case R=2

We see that $\lim_{t\to\infty} f(t)(\omega_0^2+K^2-(2K+1)e^t+e^{2t})=1$ for R=2. Given that P(t),f(t) are holomorphic functions, $P(t)=e^{-e^t}e^{Kt}f(t)=e^{-e^t}O[e^{(K-2)t}], \lim_{t\to-\infty}P(t)\to\infty$ which is **not possible** for $K=\frac{1}{2}+\sigma$ where $0\leq\sigma\leq\frac{1}{2}$.

[Check again: Given that f(t) is a holomorphic function with order $O[e^{-Rt}]$, this means it may have terms of lower order, for example $O[e^{-(R+S)t}]$ where S>0 and $e^{-O[e^{Rt}]}$ and so on. If we compute $\lim_{t\to -\infty} P(t)$, terms with order lower than $O[e^{-Rt}]$ would be significant at $t\to -\infty$. For example if the lowest order term in f(t) is $O[e^{-(R+S)t}]$, $\lim_{t\to -\infty} P(t) = \lim_{t\to -\infty} e^{-e^t} e^{Kt} O[e^{-(R+S)t}] = O[e^{K-(R+S)t}] \to \infty$, for R+S>K. This leads to a contradiction with RHS which tends to 1. Similarly, if the lowest order term in f(t) is $e^{-O[e^{Rt}]}$, $\lim_{t\to -\infty} P(t) = \lim_{t\to -\infty} e^{-e^t} e^{Kt} e^{-O[e^{Rt}]} = 0$. This leads to a contradiction with RHS

which tends to 1.

Hence we see that $g(t) = e^{-(1-\Delta)e^t}O[e^{-Rt}], R > 0$ is **not possible**.

Crossover Point: $f(t) = O(e^{-2t})$

The special case of R=2 above, is a cross-over point. For R>2, LHS tends to zero as $\lim_{t\to-\infty}$. For R<2, LHS tends to ∞ as $\lim_{t\to-\infty}$. The exception is the case below.]

Special Case:

Let us consider the case when $\lim_{t\to\infty} f(t) = O[e^{-2t}]$ is a **possible solution** in Eq. 1. We can show that this solution is **NOT** possible as follows. Let us consider $E_p'(t) = E_p(t-t_0)$ where $0 < t_0 < 1$ and we have corresponding $P'(t) = P(t-t_0) = e^{-e^{-t_0}e^t}e^{Kt}e^{-Kt_0}f(t-t_0)$ and we require $f(t-t_0) = O[e^{-2t}]$ to be of the same order as f(t). We can write $P'(t) = e^{-e^t}e^{Kt}e^{-Kt_0}f'(t)$ where $f'(t) = [e^{(1-e^{-t_0})e^t}f(t-t_0)]$ where $(1-e^{-t_0}) > 0$ and f'(t) is of order $O[e^{(1-e^{-t_0})e^t}]e^{-2t}$ and we can show that this leads to a contradiction in Eq. 1.

$$\frac{d^2f'}{dt^2} + 2\frac{df'}{dt}(K - e^t) + f'(t)(\omega_0^2 + K^2 - (2K + 1)e^t + e^{2t}) = \frac{1}{1 + e^{-e^{-t_0}e^t}}$$
(12)

we can see that the LHS of above equation tends to ∞ as $\lim_{t\to\infty}$ and RHS tends to 1, thus leading to a contradiction.