Задание 1

- 1. [6 баллов] Пусть $X_1, \ldots, X_n \sim F$, где F функция распределения. Обозначим через \hat{F}_n эмпирическую функцию распределению, подсчитанную по выборке.
 - а) Пусть $x, y, x \neq y$ произвольные точки на действительной оси. Подсчитать ковариацию между $\hat{F}_n(x)$ и $\hat{F}_n(y)$.
 - b) Пусть a < b фиксированные числа. Определим параметр $\theta = T(F) = F(b) F(a)$. Пусть $\hat{\theta} = T\left(\hat{F}_n\right) = \hat{F}_n(b) \hat{F}_n(a)$ используется в качестве оценки этого параметра. Найти значение стандартной ошибки для $\hat{\theta}$. Получить выражение для приближенного доверительного интервала размера (1α) для θ .
 - с) На странице курса скачайте данные об амплитудах землетрясений вблизи Фиджи. Построить график для \hat{F}_n . Подсчитать и построить приближенные 95% доверительный интервал для F. Подсчитать и построить приближенный 95% доверительный интервал для значения F(4.9) F(4.3).
- 2. [2 балла] 100 людям давали стандартный антибиотик для лечения инфекции, а другим 100 людям давали новый антибиотик. В первой группе 90 человек выздоровели. Во второй группе выздоровели 85 человек. Пусть p_1 вероятность выздороветь, принимая стандартное лекарство, а p_2 вероятность выздороветь, принимая новое лекарство. Необходимо оценить параметр $\theta = p_1 p_2$. Подсчитать оценку этого параметра, стандартную ошибку оценки, 80% и 95% доверительные интервалы для параметра θ .
- 3. [З балла] Провести моделирование, чтобы сравнить различные типы доверительных интервалов, построенные с помощью бутстрепа. Пусть $n=50,\ T(F)=\frac{\int (x-\mu)^3 dF(x)}{\sigma^3}$ эксцесс, где F логнормальное распределение. Выборка из логнормального распределения генерируется следующим образом. Сначала необходимо сгенерировать простую выборку $Y_1,\ldots,Y_n\sim N(0,1)$, после чего положить $X_i=e^{Y_i},\ i=1,2,\ldots,n$. Построить 95% доверительные интервалы для T(F) (под F понимается распределение элементов выборки X_1,\ldots,X_n) по данным X_1,\ldots,X_n , используя три подхода на основе бутстрепа.
- 4. [5 баллов] Пусть $X_1,\dots,X_n\sim U(0,\theta),\ \hat{\theta}=X_{(n)}=\max\{X_1,\dots,X_n\}.$ Сгенерировать выборку объема n=50 для случая $\theta=1.$
 - а) Найти распределение $\hat{\theta}$. Сравнить плотность настоящего распределения θ с гистограммой, полученной с помощью бутстрепа.
 - b) В рассматриваемом случае бутстреп работает плохо. Выясните причины этого, показав, что $P\left(\hat{\theta}=\theta\right)=0$, однако $P\left(\hat{\theta}^*=\hat{\theta}\right)\approx$

- 0.632, поскольку Р $\left(\hat{\theta}^* = \hat{\theta}\right) = 1 \left(1 \frac{1}{n}\right)^n$, где $\hat{\theta}^*$ оценка, полученная с помощью бутстрепа.
- 5. [6 баллов] Пусть $T_n=\overline{X}_n^2,\ \mu=\mathbb{E}(X_1),\ \alpha_k=\int (x-\mu)^k dF(x)$ и $\hat{\alpha}_k=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X}_n)^k$. Доказать, что оценка дисперсии функционала T с помощью бутстрепа (при подсчете дисперсии функционала T_n используется "бутстрепное усреднение", то есть усреднение по эмпирической функции распределения F_n) равна

$$v_{boot} = \frac{4\overline{X}_{n}^{2}\hat{\alpha}_{2}}{n} + \frac{4\overline{X}_{n}\hat{\alpha}_{3}}{n^{2}} + \frac{\hat{\alpha}_{4}}{n^{3}} + \frac{\hat{\alpha}_{2}^{2}(2n-3)}{n^{3}}.$$