

Przetwarzanie danych masowych

Wykład 2 – Taksonomia metod przetwarzania danych masowych

dr hab. inż. Tomasz Kajdanowicz, Piotr Bielak, Roman Bartusiak

October 12, 2021

Overview

Typy przetwarzania danych

Taksonomia Flynn'a

Plan wykładu

Typy przetwarzania danych

Taksonomia Flynn's

- sekwencyjne
- rozproszone
- równoległe
- współbieżne

Przetwarzanie sekwencyjne

- przetwarzanie, które odbywa się w kolejności, w jakiej jest otrzymywane do wykonania
- procesor wykonuje ten sam program

Przetwarzanie rozproszone

- przetwarza więcej niż jeden komputer (lub procesor)
- pamięć jest rozproszona!
- obejmuje przetwarzanie równoległe, w którym jeden komputer wykorzystuje więcej niż jeden procesor do wykonywania programów

- węzły wykonują operacje, które dekomponują oryginalny duży problem na mniejsze przetwarzanie
- operacje w węźle są szybkie; komunikacja między węzłami jest powolna
- węzły działają na własnych zegarach

Przetwarzanie równoległe

- Programy wykorzystują sprzęt równoległy do szybszego wykonywania obliczeń
- Możliwy sprzęt:
 - procesory wielordzeniowe
 - symetryczne multiprocesory
 - procesory graficzne (GPU)
 - programowalne macierze bramek (field-programmable gate arrays FPGAs)
 - klastry obliczeniowe
- Programowanie równoległe wymaga przemyślenia:
 - Jak kod dzieli oryginalny duży problem na mniejsze podproblemy?
 - Jakie jest optymalne wykorzystanie sprzętu równoległego?

Architektura podsystemu pamięci

CPU vs GPU vs TPU

Typy przetwarzania danych

Obliczanie prymitywów

CPU - GPU - TPU

- Wymiar danych:
 - ► CPU: 1 X 1
 - ► GPU: 1 X N
 - ► TPU: N X N
- Wydajność
 - CPU dziesiatki operacji na cykl
 - GPU dziesiątki tysięcy operacji na cykl
 - ► TPU obecnie* do 128000 operacji na cykl
- ► Cel
 - CPU programowanie ogólnego przeznaczenia
 - ► GPU rendrowanie grafiki
 - ► TPU przyspieszenie uczenia głębokiego (TensorFlow)

Przetwarzanie współbieżne

- współbieżność ma miejsce, gdy wiele sekwencji operacji jest uruchamianych w nakładających się okresach czasu
- zadanie A i zadanie B muszą zachodzić niezależnie od siebie, A zaczyna działać, a następnie B rozpoczyna się przed zakończeniem A
- rozwiązuje problem ograniczonych zasobów
- taksonomia:
 - wielozadaniowość (multitasking)
 - wieloprocesowość (multiprocessing)

Przykład przetwarzania współbieżnego

Przetwarzanie współbieżne a równoległe

Plan wykładu

by przetwarzania danych

Taksonomia Flynn'a

Kompilato

Przypomnienie architektury komputerów

Taksonomia Flynn'a

	Architektura	
Kryterium	(a)	(b)
Pamięć/Szyna danych	jedna	dwie
Złożoność	niska	wysoka
Pojedyncza instrukcja	cykle 2-taktowe	cykle 1-taktowe
Wydajność	niska	wysoka (potokowanie)
Koszt	niski	wysoki

Przesyła danych i instrukcji

Taksonomia Flynn'a

W taksonomii Flynna używamy następujących kryteriów do zdefiniowania architektury systemu:

- liość instrukcji pojedyncze (single) lub wielokrotne (multiple),
- liość strumieni danych pojedyncze (single) lub wielokrotne (multiple),

Akronimy: (S/M) I (S/M) D

Architektury

Taksonomia Flynn'a

- ► SISD komputer sekwencyjny; architektura von Neumanna; wiele komputerów PC przed 2010 r. i komputerów mainframe
- SIMD GPU; nowe CPUs z wektoryzacją
- MISD komputer systoliczny; systemy odporne na awarie
- ► MIMD klaster, w którym każdy procesor jest programowany osobno; wielordzeniowe procesory superskalarne; systemy rozproszone

Plan wykładu

Tyny przetwarzania danych

Taksonomia Flynn'a

Proces kompilacji, optymizacja

- nie rozważamy szczegółów kompilacji,
- języki programowania:
 - interpretowane (np. Python, JavaScript),
 - kompilowane (np. C, C++, Rust),
 - mieszane (np. Java Bytecode+JVM, Python w niektórych przypadkach),
- ► interpretowane języki są generalnie wolniejsze niż skompilowane
- jest to spowodowane dużymi optymalizacjami, które są stosowane w procesie kompilacji, m.in.
 - usunięcie nieużywanego kodu jeśli kompilator wykryje, że jakaś zmienna, funkcja itp. jest zadeklarowana, ale nigdy nie jest używana, to wszystkie instrukcje dotyczące tej zmiennej są usuwane (może to być problematyczne w niektórych przypadkach, np. w systemach wbudowanych; patrz: volatile w C/C++)
 - rozwijanie pętli w operacje wektorowe ...

Wektoryzacja

- 32/64-bit CPUs używa rejestry ogólnego przeznaczenia o pojemności 32/64 bitów każdy,
- istnieją pewne *specjalne rejestry* o rozmiarze równym wielokrotności rozmiaru architektury (wielokrotność 32/64 bitów),
- operacje na tych rejestrach zajmują jeden cykl CPU,
- dzięki temu możemy przyspieszyć obliczenia

Rejestry wektorowe

Rejestry wektorowe

Przetwarzanie danych masowych

Wykład 2 – Taksonomia metod przetwarzania danych masowych

dr hab. inż. Tomasz Kajdanowicz, Piotr Bielak, Roman Bartusiak

October 12, 2021