

معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امیر خورسندی

بهار ۱۴۰۰

كامپيوتر پايه

اجزای اصلی کامپیوتر پایه

ساختار CPU

برنامه

• مجموعه ای از دستورات که در خانه های متوالی حافظه قرار می گیرند.

• دستور یک مجموعه از بیت ها است که تعیین می کند چه کاری انجام شود.

• واحد کنترل با دریافت دستور به واحدهای سخت افزاری فرامین لازم را می دهد.

۵ امیر خورسندی

سیکل کلی دستورالعمل

Fetch Decode Execute

ساختار حافظه

آدرس دهی غیر مستقیم

آدرس دهی غیر مستقیم

ثبات ها

عملكرد	اندازه (بیت)	نام
ثبات اصلی پردازنده	16	AC
ذخيره داده خروجي حافظه	16	DR
ذخيره آدرس حافظه	12	AR
ذخيره دستور	16	IR
آدرس دستور	12	PC
ذخيره داده موقت	16	TR
ذخيره داده ورودى	8	INPR
ذخيره داده خروجي	8	OUTR

گذرگاه مشترک

ll large degrains.

انواع دستورات

- كار با حافظه (Mem. Ref.): كد دستور مخالف ۷ است.
 - آدرس مستقیم
 - آدرس غير مستقيم
- کار با ثبات (Reg. Ref.): کد دستور برابر با ۷ و بیت ا برابر صفر است.
 - کار با I/O (.IO Ref.) اکد دستور برابر با ۷ و بیت ا برابر یک است.

۱۲ امیر خورسندی

دسته بندي دستورات

- ۱. دستورات ریاضی، منطقی و شیفت
 - ۲. دستورات انتقال به یا از حافظه
 - ۳. دستورات کنترل روند برنامه
 - شرطی
 - غير شرطي
 - ۰.۴ دستورات ورودی / خروجی

مجموعه دستورات

Hexadecimal code

I = 0	I = 1	Description	
0xxx	8xxx	AND memory word to AC	
1xxx	9xxx	Add memory word to AC	
2xxx	Axxx	Load memory word to AC	
3xxx	Bxxx	Store content of AC in memory	
4xxx	Cxxx	Branch unconditionally	
5xxx	Dxxx	Branch and save return address	
6xxx	Exxx	Increment and skip if zero	
78	00	Clear AC	
74	00	Clear E	
72	.00	Complement AC	
71	00	Complement E	
70	80	Circulate right AC and E	
70	40	Circulate left AC and E	
70	20	Increment AC	
7010		Skip next instruction if AC positive	
7008		Skip next instruction if AC negative	
7004		Skip next instruction if AC zero	
7002		Skip next instruction if E is 0	
7001		Halt computer	
INP F800		Input character to AC	
F4	100	Output character from AC	
F200		Skip on input flag	
F100		Skip on output flag	
F080		Interrupt on	
F F040		Interrupt off	
	0xxx 1xxx 2xxx 3xxx 4xxx 5xxx 6xxx 78 74 72 71 70 70 70 70 70 70 70 70 70	0xxx 8xxx 1xxx 9xxx 2xxx Axxx 3xxx Bxxx 4xxx Cxxx 5xxx Dxxx 6xxx Exxx 7800 7400 7200 7100 7080 7040 7020 7010 7088 7004 7002 7010 7008 7004 7002 7001 F800 F400 F200 F100 F200 F100 F080	

واحد كنترل

• تولید سیگنال های کنترل و زمان بندی

• بر دو دسته می باشد:

• سخت افزاری

• نرم افزاری (میکرو پروگرام)

واحد كنترل (ادامه)

مثال کنترل زمان بندی

سيكل دستورالعمل كامپيوتر پايه

واكشى دستور

 T_0 : AR \leftarrow PC

 $T_1: IR \leftarrow M[AR], PC \leftarrow PC + 1$

دیکد دستور

١٥٠٠ ١٥٠ امير خورسندى

سیکل آدرس غیر مستقیم

 $T_3D_7'I: AR \leftarrow M[AR]$

T₃D₇'I': NOP

T₃D₇I': Execute Reg. Ref. Instruction

T₃D₇I: Execute I/O Instruction

اجراي دستور

۱. اجرای دستور مراجعه به حافظه، ثبات و یا ورودی اخروجی

SC مفر کردن .۲

اجرای دستور کار با ثبات

```
D_7I'T_3 = r (common to all register-reference instructions)

IR(i) = B_i [bit in IR(0-11) that specifies the operation]
```

```
SC \leftarrow 0
                                                                 Clear SC
CLA rB_{11}: AC \leftarrow 0
                                                                 Clear AC
CLE rB_{10}: E \leftarrow 0
                                                                 Clear E
CMA rB_9: AC \leftarrow \overline{AC}
                                                                 Complement AC
CME rB_8: E \leftarrow \overline{E}
                                                                 Complement E
CIR rB_7: AC \leftarrow \text{shr } AC, AC(15) \leftarrow E, E \leftarrow AC(0)
                                                                 Circulate right
CIL
       rB_6: AC \leftarrow \text{shl } AC, AC(0) \leftarrow E, E \leftarrow AC(15)
                                                                 Circulate left
INC rB_5: AC \leftarrow AC + 1
                                                                 Increment AC
SPA rB_4: If (AC(15) = 0) then (PC \leftarrow PC + 1)
                                                                 Skip if positive
SNA rB_3: If (AC(15) = 1) then (PC \leftarrow PC + 1)
                                                                 Skip if negative
SZA rB_2: If (AC = 0) then PC \leftarrow PC + 1
                                                                 Skip if AC zero
SZE rB_1: If (E = 0) then (PC \leftarrow PC + 1)
                                                                 Skip if E zero
        rB_0: S \leftarrow 0 (S is a start-stop flip-flop)
HLT
                                                                 Halt computer
```

دستورهای کار با حافظه

Symbol	Operation decoder	Symbolic description		
AND	D_0	$AC \leftarrow AC \land M[AR]$		
ADD	D_1	$AC \leftarrow AC + M[AR], E \leftarrow C_{out}$		
LDA	D_2	$AC \leftarrow M[AR]$		
STA	D_3	$M[AR] \leftarrow AC$		
BUN	D_4	$PC \leftarrow AR$		
BSA	Ds	$M[AR] \leftarrow PC, PC \leftarrow AR + 1$		
ISZ	D_6	$M[AR] \leftarrow M[AR] + 1,$		
		If $M[AR] + 1 = 0$ then $PC \leftarrow PC + 1$		

دستور AND

 D_0T_4 : DR \leftarrow M[AR] .

 D_0T_5 : AC \leftarrow AC \land DR, SC \leftarrow 0 . \checkmark

امیر خورسندی ۲۵

دستور ADD

$$D_1T_4$$
: DR \leftarrow M[AR] .

$$D_1T_5$$
: AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0 . \uparrow

امير خورسندي ماريخورسندي المير خورسندي المي

دستور LDA

 D_2T_4 : DR \leftarrow M[AR] .

 D_2T_5 : AC \leftarrow DR, SC \leftarrow 0 . \uparrow

دستور STA

 D_3T_4 : M[AR] \leftarrow AC, SC \leftarrow 0 .

دستور BUN

 D_4T_4 : PC \leftarrow AR, SC \leftarrow 0 .

امیر خورسندی ۲۹

SA دستور

 D_5T_4 : M[AR] \leftarrow PC, AR \leftarrow AR + 1 .

 D_5T_5 : PC \leftarrow AR, SC \leftarrow 0 . \checkmark

SA دستور

 D_5T_4 : M[AR] \leftarrow PC, AR \leftarrow AR + 1 .

 D_5T_5 : PC \leftarrow AR, SC \leftarrow 0 . \checkmark

دستور SZ

$$D_6T_4$$
: DR \leftarrow M[AR] .

$$D_6T_5$$
: DR \leftarrow DR + 1 . \checkmark

$$D_6T_6$$
: M[AR] \leftarrow DR, SC \leftarrow 0 . \sim D₆T₆Z: PC \leftarrow PC + 1

ورودي/خروجي

امير خورسندي PT

اجرای دستور کار ورودی/خروجی

```
D_7IT_3 = p (common to all input-output instructions)

IR(i) = B_i [bit in IR(6-11) that specifies the instruction]
```

	p:	SC ←0	Clear SC
INP	pB_{11} :	$AC(0-7) \leftarrow INPR, FGI \leftarrow 0$	Input character
OUT	pB ₁₀ :	$OUTR \leftarrow AC(0-7), FGO \leftarrow 0$	Output character
SKI	pB_9 :	If $(FGI = 1)$ then $(PC \leftarrow PC + 1)$	Skip on input flag
SKO	pB_8 :	If $(FGO = 1)$ then $(PC \leftarrow PC + 1)$	Skip on output flag
ION	pB_7 :	<i>IEN</i> ←1	Interrupt enable on
IOF	pB_6 :	<i>IEN</i> ←0	Interrupt enable off

انواع روش های سرویس دهی به ورودی/خروجی

۱. سرکشی

۲. وقفه

سيكل وقفه

سيكل وقفه (ادامه)

 $T_0' T_1' T_2' (IEN) (FGI + FGO): R \leftarrow 1 \bullet$

 RT_0 : AR \leftarrow 0, TR \leftarrow PC .

 $RT_1: M[AR] \leftarrow TR, PC \leftarrow 0$.

 RT_2 : $PC \leftarrow PC + 1$, $IEN \leftarrow 0$, $SC \leftarrow 0$, $R \leftarrow 0$.

۳۷ امیر خورسندی

مدار کنترل AR

امیر خورسندی ۳۸

مدار کنترل AC

ساختار یک طبقه از ALU

