Reação de Substituição em Alcanos

1.1. Definição

Alcanos (ou hidrocarbonetos parafínicos) são hidrocarbonetos acíclicos e saturados, isto é, que têm cadeias abertas e apresentam apenas ligações simples entre seus carbonos.

1.2. Fórmula Geral

$$C_nH_{2n+2}$$

2 REAÇÕES DE SUBSTITUIÇÃO NOS ALCANOS

EXERCÍCIOS DE APLICAÇÃO

- 01 (FAAP-SP) Com relação aos alcanos, é correto afirmar que:
- a) podem sofrer reações de adição.
- b) aumentando o número de átomos de carbono, aumenta a tendência ao estado sólido.
- c) a maioria deles é formada por compostos insaturados.
- d) são produzidos industrialmente através do gás dos pântanos.
- e) são compostos bastantes reativos.
- 02 Complete as reações:
- a) monobromação do metano.
- b) tetracloração do metano.
- c) monocloração do propano.
- 03 (FUVEST-SP) A reação do propano com cloro gasoso, em presença de luz, produz dois compostos monoclorados.

$$2 \text{ CH}_3 \text{ CH}_2 \text{ CH}_3 + 2 \text{ Cl}_2 \xrightarrow{\text{luz}} \text{ CH}_3 \text{ CH}_2 \text{ CH}_2 \text{-Cl} + \text{CH}_3 - \overset{\text{Cl}}{\text{C}} - \text{CH}_3 + 2 \text{ HCl}$$

Na reação do cloro gasoso com 2,2-dimetilbutano, em presença de luz, o número de compostos monoclorados que podem ser formados e que não possuem, em sua molécula, carbono assimétrico é:

- a) 1
- b) 2
- c) 3
- d) 4 e) 5
- 04 Qual o principal composto formado na reação entre 1 mol de butano e 1 mol de cloro? Explique por quê.
- 05 (FCC-PE) Numa reação de 2-metilbutano com $C\ell_2$, ocorreu a substituição de hidrogênio. Qual o composto clorado obtido em maior quantidade?
- a) 1,2,3-tricloropentano.
- b) 1-cloro-2-metilbutano.
- c) 1-cloro-3-metilbutano.
- d) 2-cloro-2-metilbutano.
- e) 2,2-dicloropentano.
- 06 (UFPB-PB) Dada a reação

$$-\stackrel{|}{C}-H + X_2 \xrightarrow{calor} -\stackrel{|}{C}-X + HX$$

Onde: $X_2 = F_2$, $C\ell_2$, Br_2 , I_2

a ordem decrescente de reatividade dos halogênios é:

- a) $C\ell_2$, Br_2 , F_2 e I_2
- b) F_2 , $C\ell_2$, I_2 e Br_2
- c) F_2 , $C\ell_2$, $Br_2 e I_2$
- d) I_2 , Br_2 , $C\ell_2$ e F_2
- e) Br₂, F₂, C ℓ_2 e I₂

07 (Mackenzie-SP) Em relação à equação:

$$CH_4 + Cl_2 \xrightarrow{\text{ultra-}} H_3C - Cl + HCl_2$$

Podemos afirmar que:

- a) ocorre reação de adição;
- b) inicialmente, ocorre homólise da molécula de cloro;
- c) a molécula H₃C Cℓ é apolar;
- d) a ligação entre carbono e hidrogênio é do tipo sigma s-p;
- e) o número de oxidação do carbono no H₃C Cℓ é -3.
- 08 (FCC-PE) Abaixo são dadas algumas etapas da reação entre bromo e hidrocarboneto:

$$Br:Br+energia \rightarrow 2Br$$

$$Br \cdot +R : H \rightarrow R \cdot +H : Br$$

$$R \cdot + Br : Br \rightarrow R : Br + Br \cdot$$

A análise dessas etapas revela que o hidrocarboneto R:H está sofrendo:

- a) despolimerização;
- b) substituição;
- c) eliminação;
- d) craqueamento;
- e) adição.
- 09 (INATEL-MG) Pretende-se fazer a cloração do propano (C₃H₈). Qual o produto obtido (haleto) em maior quantidade?
- a) cloreto de n-propila;
- b) cloreto de isopropila;
- c) a reação ocorre, mas não se obtém haleto;
- d) 1-cloropropano;
- e) a reação não ocorre.

10 Estão corretas as reações:

(Leve em consideração a ordem de reatividade em função da posição do carbono.)

3)
$$H_3C$$
- C - C - C + I_2 \rightarrow I - C - C - C - C - C + H_3 + H_1
 C H_2 I
 C H_3

4)
$$H_3C - C - C - CH_3 + F_2 \rightarrow H_3C - C - C - CH_3 + HF$$

 $H_2 \mid CH_3 \mid CH_3$

5)
$$H_3C-C-CH_3 + Br_2 \rightarrow H_3C-CH-CH_3 + HBr$$
 H_2
 H_3

11 Sabendo-se que os alcanos devem fazer, principalmente, reações de substituição do tipo:

$$R - H + A - B \rightarrow R - B + HA$$

qual o produto que devemos esperar na reação do etano com ácido nítrico (HONO₂)?

12 (FESP-PE) A atração ou repulsão dos elétrons, numa ligação simples, caracteriza o efeito I (indutivo). Sendo assim, em qual dos compostos orgânicos abaixo o carbono com asterisco tem menor densidade eletrônica?

b)
$$CH_3 - \mathring{C}H_2 - CH_3$$

13 (UFRJ-RJ) Os radicais livres, grandes inimigos da pele, são formados quando há exposição excessiva ao sol. A formação desses radicais envolve um diferente ganho de energia, e, por isso, eles apresentam estabilidades diferentes. O gráfico a seguir apresenta a comparação da energia potencial dos radicais t-butila e isobutila formados a partir do isobutano:

- a) Qual dos dois radicais é o mais estável? Justifique sua resposta.
- b) Qual é a fórmula estrutural do composto resultante da união dos radicais t-butila e isobutila?

14 Qual dos radicais abaixo é o mais estável?

Sugestão: O radical é instável porque o átomo de carbono tem menos de 8 elétrons na camada de valência. Lembre-se de que o radical alquila (R -) é elétron repelente.

- Metil, H₃C•
- II) Tercbutil, $H_3C-\overset{\bullet}{C}-CH_3$ CH₃

 H
 III) Isobutil, $H_3C-\overset{\bullet}{C}-\overset{\bullet}{C}-\overset{\bullet}{C}$
- 15 (FAAP-SP) Uma mistura de 2-metilbutano e cloro é irradiada com luz solar. Há formação de HC ℓ e de uma mistura de compostos de fórmula molecular $C_5H_{11}C\ell$. Escreva as fórmulas estruturais e os nomes dos possíveis compostos formados.
- 16 (Cesgranrio-RJ) Identifique o número de produtos monoclorados obtidos pela substituição de qualquer átomo de hidrogênio em 2,4-dimetil-pentano por um átomo de cloro.
- a) 2
- b) 3
- c)4
- d) 5
- e) 6
- 17 (Fesp-SP) Quantos derivados monobromados se obtêm durante a bromação do 2-metil-pentano a 300 °C?
- a) 2
- b) 4
- c) 3
- d) 6
- e) 5
- 18 (PUC-MG) O produto principal da reação de substituição

- a) cloreto de n-propila.
- b) 1,1-dicloro-butano.
- c) 1,2-dicloro-butano.
- d) metil-1-cloro-propano.
- e) metil-2-cloro-propano.
- 19 (Fesp-PE) Na halogenação do composto 3-metil-pentano, em reação de substituição, o átomo de hidrogênio mais facilmente substituível pelo halogênio se situa no carbono:
- a)1
- b) 2
- c) 3
- d)4
- e) 5

20 Determine o número de compostos diferentes formados pela substituição de 1 H por 1 C ℓ nos seguintes alcanos:

21 A reação entre A orgânico e B inorgânico produziu, além de HCℓ, uma mistura dos seguintes compostos: 1-clorobutano e 2-clorobutano.

A respeito dessa reação:

- I Escreva as fórmulas estruturais planas dos produtos orgânicos.
- II Indique qual dos compostos orgânicos apresenta carbono quiral.
- III Identifique o tipo de isomeria plana existente entre os produtos orgânicos.
- IV Escreva as fórmulas dos reagentes.
- V Sabendo que a facilidade de substituição do H é C_{terciário} > C_{secundário} > C_{primário}, indique o produto orgânico formado em maior quantidade e equacione a reação de formação desse produto.
- 22 Equacione as reações a seguir, indicando a fórmula estrutural do **principal produto orgânico** formado.
- a) (mono) bromação do metilpropano;
- b) (mono) nitração do propano;
- 23 (Unisantos-SP) Considere a reação de substituição do butano:

O nome do composto X é:

- a) cloreto de hidrogênio.
- b) 1-cloro-butano.
- c) 2-cloro-butano.

- d) 1, 1-dicloro-butano.
- e) 2, 2-dicloro-butano.
- 24 (Cesgranrio-RJ) No 3-metil-pentano, cuja estrutura está representada a seguir:

$$\begin{array}{c} {\rm 1} & {\rm 2} & {\rm 3} & {\rm 4} & {\rm 5} \\ {\rm H_3C} - {\rm CH_2} - {\rm CH_2} - {\rm CH_3} \\ {\rm - CH_3} \\ {\rm CH_3} \end{array}$$

o hidrogênio mais facilmente substituível por halogênio está situado no carbono de número:

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 6.

- 25 (UC-BA) Para obter tetracloreto de carbono a partir do metano, deve-se fazer reagir esse gás com: a) cloro. b) cloreto de hidrogênio.
 - c) cloreto de sódio.

 - d) dicloro-metano.
 - e) 1, 2-dicloro-etano.
 - 26 Equacione a reação devidamente balanceada que permita obter tetracloreto de carbono e calcule a massa de gás cloro utilizada para se obter 1 mol de tetracloreto de carbono.

(Dado: massa molar de $C\ell_2 = 71 \text{ g/mol}$)

- 27 (UFV-MG) A monocloração de um alcano, em presença de luz ultravioleta, produziu os compostos 2-cloro-2metilpropano e 1-cloro-2-metilpropano. O nome do alcano é:
- a) isopropano.
- b) metilbutano.
- c) pentano.
- d) butano.
- e) metilpropano.
- 28 A monocloração do 2-metilbutano pode originar vários produtos orgânicos. Dois desses produtos apresentam atividade óptica. Os nomes desses produtos são:
- a) 1-cloro-2-metilbutano e 2-cloro-3-metilbutano.
- b) 1-cloro-2-metilbutano e 3-cloro-2-metilbutano.
- c) 2-cloro-2-metilbutano e 4-cloro-2-metilbutano.
- d) 3-cloro-2-metilbutano e 4-cloro-2-metilbutano.
- e) 2-cloro-2-metilbutano e 3-cloro-2-metilbutano.
- 29 (FCC-CE) Numa reação de 2-metilbutano com C ℓ_2 (g), ocorreu substituição de hidrogênio. Qual o composto clorado obtido em maior quantidade?
- a) 1,2,3-tricloropentano.
- b) 1-cloro-2-metilbutano.
- c) 1-cloro-3-metilbutano.
- d) 2-cloro-2-metilbutano.
- e) 2,2-dicloropentano.

30 (FUVEST-SP) Alcanos reagem com cloro, em condições apropriadas, produzindo alcanos monoclorados, por substituição de átomos de hidrogênio por átomos de cloro, como esquematizado:

$$C\ell_2 + CH_3CH_2CH_3 \xrightarrow{luz} C\ell - CH_2CH_2CH_3 + CH_3CHCH_3$$

$$C\ell = CH_2CH_2CH_3 + CH_3CHCH_3$$

$$C\ell = C\ell$$

$$43\%$$

Considerando os rendimentos percentuais de cada produto e o número de átomos de hidrogênio de mesmo tipo (primário, secundário ou terciário), presentes nos alcanos acima, pode-se afirmar que, na reação de cloração, efetuada a 25ºC,

- um átomo de hidrogênio terciário é cinco vezes mais reativo do que um átomo de hidrogênio primário.
- um átomo de hidrogênio secundário é quatro vezes mais reativo do que um átomo de hidrogênio primário.

Observação: Hidrogênios primário, secundário e terciário são os que se ligam, respectivamente, a carbonos primário, secundário e terciário.

A monocloração do 3-metilpentano, a 25°C, na presença de luz, resulta em quatro produtos, um dos quais é o 3-cloro-3-metilpentano, obtido com 17% de rendimento.

Escreva a fórmula estrutural de cada um dos quatro produtos formados.

- b) Com base na porcentagem de 3-cloro-3-metilpentano formado, calcule a porcentagem de cada um dos outros três produtos.
- 31 (Cesgranrio-RJ) Sem considerar a isomeria óptica, o alcano de peso molecular 86, que apresenta apenas três derivados monobromados, é o:
- a) 2,2-dimetil-butano.
- b) 2,3-dimetil-butano.
- c) 2-etil-butano.
- d) 3-metil-pentano.
- e) 2-metil-pentano.
- 32 (UCSaI-BA) Para obter tetracloreto de carbono a partir de metano deve-se fazer reagir esse gás com:
- a) cloro.
- b) cloreto de hidrogênio.
- c) cloreto de sódio.
- d) diclorometano.
- e) 1,2-dicloro-etano.

I) II) III)	É isômero de d	cloro por meio d cadeia do metil- total, treze ligad	propano.	•	
b) somento c) somento d) somento	mações, e I está correta. e II e III estão cor e I e II estão cor e I e III estão cor estão corretas.	retas.			
a) propandb) butanoc) pentanod) metil-pr		no)	sperados na rea	ação de monoclo	ração (substituição de um H por um Cℓ) do:
					oção produziu, uma mistura de três isômeros desse composto.
36 Repres	ente a fórmula (de todos os bron	netos isômeros	planos que se e	spera obter na monobromação do hexano.
37 Quanto	os produtos orgá	ânicos diferentes	s podem ser ob	tidos na monobr	romação do dimetil-propano?
aquecimer			•	•	opano) com Br2, na presença de luz solar ou ão, é correto afirmar que o número de produtos
pelo uso ir A partir da	ndiscriminado do n reação de mon	e certas substân	cias pertencent ,4-dimetil-penta	es a essa classe o ano, podem-se o	cia, devido aos problemas ambientais causados de compostos orgânicos. obter diferentes produtos halogenados. Quantos
-	=	•	•	rnecer vários co bono quiral ou a e) 3	mpostos, em proporções diferentes. ssimétrico?
Portal da	Estudos om Our	ímica (DEO) v	www.profpc.com	m hr	Dágina 10

33 (Mackenzie-SP) Do butano, gás utilizado para carregar isqueiros, fazem-se as seguintes afirmações.

- 41 Quatro alcanos isômeros de cadeia ramificada e com seis carbonos na molécula são designados por A, B, C e D. Sabe-se, por evidências experimentais, que quando submetidos à monocloração:
- . A produz dois monocloretos isômeros constitucionais;
- . B produz três monocloretos isômeros constitucionais;
- . C produz quatro monocloretos isômeros constitucionais;
- . D produz cinco monocloretos isômeros constitucionais.

Represente a fórmula estrutural de cada um desses alcanos.

42 A experiência esquematizada a seguir mostra uma mistura de metano e cloro, ambos gasosos, contida em um tubo de ensaio, sob a qual faz incidir luz.

Após a incidência de luz, ocorre uma considerável redução de volume da mistura, o que é evidenciado pelo aumento do nível de água dentro do tubo. Explique por que acontece essa redução de volume.

- 43 (Unimontes-MG) O pentano (C_5H_{12}) reage com o gás cloro ($C\ell_2$), na presença de luz, para fornecer três produtos monoclorados, dos quais apenas um apresenta atividade óptica. O nome oficial desse composto é:
- a) 2-cloropentano.
- b) 1-cloropentano.
- c) 3-cloropentano.
- d) 2-cloro-2-metilbutano.
- **(UESPI-PI)** O metano é um composto que reage sob condições vigorosas com halogênios. Observando-se o comportamento de reações entre moléculas de metano com moléculas de um tipo de halogênio bromo, cloro, flúor e iodo, respectivamente sob aquecimento e na presença de luz, é correto afirmar que:
- a) o l₂ é o que possui maior tendência para reagir.
- b) ocorrem reações de adição nucleofílica.
- c) o meio reacional ficará mais ácido com o andamento das reações.
- d) o alcano será transformado em alceno.
- e) serão formados haloalcanos isoméricos.
- 45 (**UFAM-AM**) O 2-metil-propano, ao reagir com gás cloro, na presença de luz, e a 25 °C, dará dois compostos isômeros de proporções diferentes. São eles:
- a) Cloreto de butila e cloreto de terc-butila
- b) Cloreto de isobutila e cloreto de terc-butila
- c) Cloro-butano e 2-cloro-butano
- d) Cloreto de isopropila e cloreto de metil-propila
- e) 1-cloro-1-metil-propano e 2-cloro-2metil-propano

46 (MACKENZIE-SP) Da halogenação abaixo equacionada, considere as afirmações I, II, III e IV.

(a)
$$CH_4 + (b) C\ell_2 \xrightarrow{\lambda} CHC\ell_3 + (c) X$$

I. Representa uma reação de adição.

II. Se o coeficiente do balanceamento (a) é igual a 1, então (b) e (c) são iguais a 3.

III. O produto X tem fórmula molecular $HC\ell$.

IV. Um dos reagentes é o metano.

Das afirmações feitas, estão corretas

- a) I, II, III e IV.
- b) I e IV, somente.
- c) II, III, e IV, somente.
- d) II e III, somente.
- e) I, II e III, somente.

47 (UFRN-RN) Em um laboratório de química, foram realizados dois experimentos, ambos sob aquecimento, utilizando hexano e hex-2-eno, conforme mostrado no quadro abaixo:

Experimento I: hexano + $Br_2(g) \rightarrow produtos$

Experimento II: hex-2-eno + Br₂ /CC ℓ_4 \rightarrow produtos

- a) Especifique em qual dos experimentos haverá formação de HBr. Classifique a reação ocorrida nesse experimento como reação de adição, de substituição ou de eliminação.
- b) Escreva a fórmula estrutural de um isômero geométrico do tipo cis para o reagente no experimento II.
- **48 (UNESP-SP)** O composto orgânico 2,2-dimetil-3-metilbutano é um hidrocarboneto saturado que apresenta cadeia orgânica acíclica, ramificada e homogênea. Escreva a reação de cloração desse hidrocarboneto, considerando apenas a obtenção do produto formado em maior quantidade.
- 49 **(UFG-GO)** Os hidrocarbonetos saturados apresentam pouca reatividade, sendo, por isso, chamados parafínicos. Podem, entretanto, sofrer reação de substituição radicalar, como a halogenação.
- a) escreva a equação de substituição radicalar entre o alcano de menor massa molar e o cloro molecular.
- b) escreva os nomes IUPAC dos possíveis produtos dessa reação.
- 50 (PUC-RJ) A reação abaixo foi realizada na presença de luz:

$$(CH_3)_2CHCH_3 + Br_2 \rightarrow$$

Seus principais produtos são:

- a) $(CH_3)_2CHCH_2Br + HBr$
- b) $(CH_3)_2CHCHBr + H_2$
- c) (CH_3) (CH_2Br) $CHCH_3 + HBr$
- d) $(CH_3)_2CBrCH_3 + HBr$
- e) $(CH_2Br)_2CHCH_3 + H_2$

GABARITO

01- Alternativa B

As moléculas dos hidrocarbonetos alcanos ligam-se entre si através de ligações Intermoleculares dipolo induzido.

O aumento do número de átomos de carbono na cadeia carbônica aumenta o tamanha da cadeia e consequentemente aumenta o ponto de fusão.

Cadeias carbônicas com 1 a 4 carbonos: gases, 5 a 17 carbonos: líquidos e 18 carbonos acima: sólidos.

02-

a)
$$H = \begin{pmatrix} H & H \\ -C - H + Br - Br \longrightarrow HBr + H - C - Br \\ H & H \end{pmatrix}$$

b)
$$H$$
 C
 H
 C
 H

c)
$$H_{3}C - C - CH_{3} + CI - CI$$

$$HCI + H_{3}C - C - CH_{3}$$

$$CI$$

$$HCI + H_{2}C - CH_{2} - CH_{3}$$

$$CI$$

03- Alternativa B

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_3 + 3 \text{ Cl}_2 & \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_3 + 3 \text{ Cl}_2 & \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 + \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_3 + \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_2 + 3 \text{ HCl} \\ \text{CH}_3 - \text{$$

04-

Nas reações de substituição, a ordem de reatividade dos átomos de carbono é 3º > 2º > 1º. Logo teremos a principalmente a reação:

$$H_3C - C - C - CH_3 + Cl_2 \xrightarrow{\lambda} HCl - H_3C - C - C - CH_3$$
 $H_2 H_2 H_2$

2 - clorobutano

05- Alternativa D

2 -cloro-2 metilbutano

06- Alternativa C

A ordem de reatividade dos halogênios, segue a ordem de eletronetavidade da família 7A, ou seja, de baixo para cima, e com isso ficamos com: $F_2 > CI_2 > Br_2 > I_2$.

07- Alternativa B

O mecanismo da reação de substituição ocorre em três fases:

Na 1ª fase da reação ocorre a cisão homolítica da molécula de cloro: $C\ell$ - $C\ell$ \to $C\ell$ • + $C\ell$ •

Na 2ª fase da reação o radical livre formado reage com a molécula de CH_4 : $CH_4 + C\ell \bullet \rightarrow H_3C \bullet + HC\ell$

Na 3ª fase ocorre a combinação entre os dois radicais formados nas fases anteriores: $H_3C^{\bullet} + C\ell^{\bullet} \rightarrow H_3C - C\ell$

08- Alternativa B

O mecanismo indicado é referente à reação de substituição dos alcanos (halogenação).

09- Alternativa B

Nas reações de substituição, a ordem de reatividade dos átomos de carbono é 3º > 2º > 1º. Logo teremos a principalmente a reação:

$$H_3C-C-CH_3+Cl_2 \xrightarrow{\lambda} HCl-H_3C-C-CH_3$$

Cloreto de isopropila

10-

Itens verdadeiros: 1, 4 e 5

Justificativa: Nas reações de substituição, a ordem de reatividade dos átomos de carbono é 3º > 2º > 1º.

11-

12- Alternativa C

Efeito Indutivo negativo

É o efeito apresentado por grupos que atraem elétrons ("puxam" elétrons): -F, -Cℓ, -Br, -I, -OH, -NO₂, -C₀H₂

Efeito Indutivo positivo

É o efeito apresentado por alguns grupos que repelem elétrons ("empurram" elétrons): metil, etil, propil, butil ...

Aumenta o efeito + Is

13-

a) O radical t-butila é o mais estável pois apresenta menor energia.

b)

14- II

Pelo fato do carbono ser mais eletronegativo que o hidrogênio, na ligação C-H ele apresenta uma carga parcial negativa. Por este motivo, o radical Alquila (R-), representado na figura abaixo, irá repelir elétrons.

$$\begin{array}{c}
H\delta + \\
\delta + \\
H \longrightarrow C
\end{array}$$
repele elétron
$$H\delta + \\
H\delta + \\$$

Caso o radical apresente átomos de carbono, contendo menos de oito elétrons na camada de valência, ele se tornará instável, pois quanto maior o número de radicais alquilas ligados a esse átomo de carbono, mais estável será o radical. Observe na figura abaixo a ordem crescente de estabilidade:

15-

1-cloro-3-metilbutano

17- Alternativa E

18- Alternativa E

19- Alternativa C

Nas reações de substituição, a ordem de reatividade dos átomos de carbono é 3º > 2º > 1º. Logo teremos a principalmente a reação:

$$\begin{array}{c} \mathsf{C}\ell_2 + \mathsf{H}_3\mathsf{C} - \mathsf{C}\mathsf{H}_2 - \mathsf{C}\mathsf{H} - \mathsf{C}\mathsf{H}_2 - \mathsf{C}\mathsf{H}_3 & \xrightarrow{\mathsf{Iuz}} \\ \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_2 - \mathsf{C}\mathsf{H}_2 - \mathsf{C}\mathsf{H}_2 - \mathsf{C}\mathsf{H}_3 \\ \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_3 \end{array}$$

I — Escreva as fórmulas estruturais planas dos produtos orgânicos.

Resposta na reação acima.

II — Indique qual dos compostos orgânicos apresenta carbono quiral.

Nenhum.

III — Identifique o tipo de isomeria plana existente entre os produtos orgânicos.

Isomeria plana de posição.

IV — Escreva as fórmulas dos reagentes.

Resposta na reação acima.

V — Sabendo que a facilidade de substituição do H é Cterciário > Csecundário > Cprimário, indique o produto orgânico formado em maior quantidade e equacione a reação de formação desse produto. 2-clorobutano. a) (mono) bromação do metilpropano;

b) (mono) nitração do propano;

$$H_{3}C \longrightarrow CH_{2} \longrightarrow CH_{3} + OH \ NO_{2} \longrightarrow \begin{cases} CH_{2} \longrightarrow CH_{2} \longrightarrow CH_{3} + H_{2}O \\ NO_{2} \\ H_{3}C \longrightarrow CH \longrightarrow CH_{3} + H_{2}O \\ NO_{2} \\ 2-nitro-propano \end{cases}$$

23- Alternativa C
$$H_3C \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3 + Cl_2 \longrightarrow H_3C \longrightarrow CH \longrightarrow CH_2 \longrightarrow CH_3 + HCl$$

$$Cl$$

$$Cl$$

$$2 close but ano$$

24- Alternativa C

Nas reações de substituição, a ordem de reatividade dos átomos de carbono é 3º > 2º > 1º.

25- Alternativa A

 $CH_4 + 4 C\ell_2 \rightarrow CC\ell_4 + 4 HC\ell$

 $CH_4 + 4 C\ell_2 \rightarrow CC\ell_4 + 4 HC\ell$

Cálculo da massa de gás cloro consumida a partir da formação de 1mol de CC ℓ_4 :

$$1 \text{mol } \frac{\text{CC}\ell_4}{\text{CC}\ell_4} \cdot \frac{4 \text{mol } \frac{\text{CC}\ell_2}{\text{1}}}{1 \text{mol } \frac{\text{CC}\ell_4}{\text{CC}\ell_4}} \cdot \frac{71 \text{g } \frac{\text{C}\ell_2}{\text{1}}}{1 \text{mol } \frac{\text{CC}\ell_2}{\text{C}\ell_2}} = 284 \text{g } \frac{\text{C}\ell_2}{\text{C}\ell_2}$$

27- Alternativa E

28- Alternativa A

$$\begin{array}{c|ccccc} & \text{Cl} & \text{Cl} \\ & \text{I} & \text{I} \\ & \text{H}_3\text{C} - \text{CH}_2 - \overset{\bullet}{\text{CH}} - \text{CH}_2 & \text{H}_3\text{C} - \overset{\bullet}{\text{CH}} - \text{CH} - \text{CH}_3 \\ & \text{CH}_3 & \text{CH}_3 \\ & \text{1-cloro-2-metilbutano} & \text{2-cloro-3-metilbutano} \end{array}$$

29- Alternativa D

$$\begin{array}{c} \text{Cl} & \text{Cl} \\ \text{H}_{3}\text{C} - \text{CH}_{2} - \overset{\text{C}}{\text{C}} - \text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

2-cloro-2-metilbutano

Nas reações de substituição, a ordem de reatividade dos átomos de carbono é $3^{\circ} > 2^{\circ} > 1^{\circ}$.

$$\begin{array}{c} C\ell \\ H_{3}C-CH_{2}-CH-CH_{2}-CH_{2} \\ CH_{3} \\ C\ell \\ H_{3}C-CH_{2}-CH-CH-CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ C\ell \\ H_{3}C-CH_{2}-CH-CH_{2}-CH_{3} \\ C\ell \\ H_{3}C-CH_{2}-CH-CH_{2}-CH_{3} \\ C\ell \\ H_{3}C-CH_{2}-C-CH_{2}-CH_{3} \\ CH_{3} \\$$

O rendimento na formação do 3-cloro-3-metilpentano é de 17% e corresponde à possibilidade de substituição de um único hidrogênio de carbono terciário. Isso permite concluir que o rendimento para cada hidrogênio de carbono terciário é 17%.

Podemos, assim, calcular o rendimento para os outros hidrogênios.

- Cada hidrogênio de carbono primário: $\frac{17\%}{5} = 3,4\%$
- Cada hidrogênio de carbono secundário: 3,4% · 4 = 13,6%

Com esses dados podemos calcular o rendimento dos demais produtos.

• Na formação do

$$\begin{array}{c} \mathsf{C}\ell \\ \mathsf{H}_{3}\mathsf{C} - \mathsf{C}\mathsf{H}_{2} - \mathsf{C}\mathsf{H} - \mathsf{C}\mathsf{H}_{2} - \mathsf{C}\mathsf{H}_{2} \\ \mathsf{I} \\ \mathsf{C}\mathsf{H}_{3} \end{array}$$

a substituição pode ocorrer em seis hidrogênios de carbono primário

Então: rendimento = 6.3,4% = 20,4%

• Na formação do

$$\begin{array}{c} \mathsf{C}\ell \\ | \\ \mathsf{H_3C} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{CH} - \mathsf{CH}_3 \\ | \\ \mathsf{CH_3} \end{array}$$

a substituição pode ocorrer em quatro hidrogênios de carbono secundário.

Então: rendimento = 4.13,6% = 54,4%

• Na formação do

$$\begin{array}{c} \mathrm{H_3C} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_3} \\ | \\ \mathrm{H_2C} - \mathrm{C}\ell \end{array}$$

a substituição pode ocorrer em três hidrogênios de carbono primário.

Então: rendimento = 3.3,4% = 10,2%

Observação: A soma das porcentagens é maior do que 100% porque os valores utilizados são aproximados.

31- Alternativa A

A fórmula geral dos alcanos é C_nH_{2n+2} . Utilizando a massa molecular fornecida e os dados da tabela periódica, podemos calcular n: $12n + (2n + 2) = 86 \rightarrow n = 6$

Assim, o alcano tem seis carbonos na molécula e sua fórmula molecular é C_6H_{14} . No entanto, à exceção da alternativa C, que fornece um nome incorreto, todas as outras apresentam alcanos C_6H_{14} .

Vejamos quantas possibilidades diferentes de monossubstituição há em cada caso:

a) três possibilidades (resposta correta)

b) duas possibilidades

d) quatro possibilidades

e) cinco possibilidades

32- Alternativa A $CH_4 + 4 C\ell_2 \rightarrow CC\ell_4 + 4 HC\ell$

33- Alternativa E

I. Verdadeiro

Reação de substituição: CH_3 - CH_2 - CH_3 + $C\ell_2$ \rightarrow CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 -

II. Verdadeiro

Butano: cadeia aberta, metilpropano: cadeia ramificada.

III. Verdadeiro

1ª Possibilidade=

 H_3C —

– CH₃

Ta Possibilidade

38- Alternativa C

39- Alternativa B

40- Alternativa E

Os compostos monoclorados resultantes da reação descrita que apresentam carbono quiral, são:

3 - cloro - 2 - metil - pentano

2 - cloro - 4 - metil - pentano

1 - cloro - 2 - metil -pentano

41-

. A produz dois monocloretos isômeros constitucionais.

. B produz três monocloretos isômeros constitucionais.

$$\begin{array}{c} CH_{3} \\ | \\ C-C-CH_{2}-CH_{3} \\ | \\ CH_{3} \end{array}$$

. C produz quatro monocloretos isômeros constitucionais.

$$H_3C$$
 — CH_2 — CH_2 — CH_3 — CH_3

. D produz cinco monocloretos isômeros constitucionais.

42-

Sob a ação da luz, ocorre a cloração do metano: $CH_4(g) + C\ell_2(g) \rightarrow CH_3C\ell(g) + HC\ell(g)$

Como o HC ℓ se solubiliza na água, podemos afirmar que, ao final, haverá menor quantidade em mols de gás dentro do tubo, e isso explica a redução de volume.

43- Alternativa A

44- Alternativa C

 $CH_4 + C\ell_2 \rightarrow CH_3C\ell + HC\ell$

A reação de substituição leva a formação de ácido.

45- Alternativa B

$$H_{3}C \xrightarrow{CH} CH_{3} + Cl_{2} \xrightarrow{CH} CH_{3} + HBr$$

$$Cl CH_{3}$$

$$1-cloro-metilpropa no$$

$$Cl$$

$$CH_{3}$$

$$metilpropano$$

$$H_{3}C \xrightarrow{CH} CH_{3} + HBr$$

$$CH_{3}$$

$$CH$$

46- Alternativa C

 $CH_4 + 3 C\ell_2 \rightarrow CHC\ell_3 + 3 HC\ell$

I. Falso. Reação de substituição.

II. Verdadeiro.

III. Verdadeiro.

IV. Verdadeiro.

47-

Reação de substituição

b)

48-

49-

a) essa reação ocorre em presença de luz ultravioleta:

$$CH_4 + C\ell_2 \rightarrow CH_3C\ell + HC\ell$$

$$CH_4 + 2 C\ell_2 \rightarrow CH_2C\ell_2 + 2 HC\ell$$

$$CH_4 + 3 C\ell_2 \rightarrow CHC\ell_3 + 3 HC\ell$$

$$CH_4 + 4 C\ell_2 \rightarrow CC\ell_4 + 4 HC\ell$$

b) Clorometano - Diclorometano - Ticlorometano - Tetraclorometano

50- Alternativa D