TRIGONOMETRIC IDENTITIES

The six trigonometric functions:

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{y}{r}$$

$$\cos \theta = \frac{\text{hyp}}{\text{opp}} = \frac{r}{y} = \frac{1}{\sin \theta}$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{x}{r}$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{r}{x} = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{x}{y} = \frac{1}{\tan \theta}$$

Sum or difference of two angles:

$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$

$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

$$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$$

Double angle formulas:

uble angle formulas:
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$
 $\sin 2\theta = 2 \sin \theta \cos \theta$ $\cos 2\theta = 2 \cos^2 \theta - 1$ $\cos 2\theta = 1 - 2 \sin^2 \theta$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$

Pythagorean Identities:

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\cot^2 \theta + 1 = \csc^2 \theta$$

Half angle formulas:

$$\sin^{2}\theta = \frac{1}{2}(1 - \cos 2\theta)$$

$$\cos^{2}\theta = \frac{1}{2}(1 + \cos 2\theta)$$

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1 - \cos\theta}{2}}$$

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1 + \cos\theta}{2}}$$

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}} = \frac{\sin\theta}{1 + \cos\theta} = \frac{1 - \cos\theta}{\sin\theta}$$

Sum and product formulas:

$$\sin a \cos b = \frac{1}{2} [\sin (a+b) + \sin (a-b)]$$

$$\cos a \sin b = \frac{1}{2} [\sin (a+b) - \sin (a-b)]$$

$$\cos a \cos b = \frac{1}{2} [\cos (a+b) + \cos (a-b)]$$

$$\sin a \sin b = \frac{1}{2} [\cos (a-b) - \cos (a+b)]$$

$$\sin a + \sin b = 2 \sin \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$$

$$\sin a - \sin b = 2 \cos \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$$

$$\cos a + \cos b = 2 \cos \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$$

$$\cos a - \cos b = -2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$$

Law of cosines:

side a.

w of cosines:
$$a^2 = b^2 + c^2 - 2bc \cos A$$

where A is the angle of a scalene triangle opposite

Radian measure: 8.1 p420
$$1^{\circ} = \frac{\pi}{180}$$
 radians

$$1 \text{ radian} = \frac{180^{\circ}}{\pi}$$

Reduction formulas:

$$sin(-\theta) = -\sin \theta \qquad cos(-\theta) = \cos \theta
sin(\theta) = -\sin(\theta - \pi) \qquad cos(\theta) = -\cos(\theta - \pi)
tan(-\theta) = -\tan \theta \qquad tan(\theta) = tan(\theta - \pi)
\mp \sin x = cos(x \pm \frac{\pi}{2}) \qquad \pm \cos x = \sin(x \pm \frac{\pi}{2})$$

Complex Numbers:

mplex Numbers:
$$e^{\pm j\theta} = \cos \theta \pm j \sin \theta$$

 $\cos \theta = \frac{1}{2} (e^{j\theta} + e^{-j\theta})$ $\sin \theta = \frac{1}{22} (e^{j\theta} - e^{-j\theta})$

TRIGONOMETRIC VALUES FOR COMMON ANGLES

Degrees	Radians	sin q	cos q	tan q	cot q	sec q	csc q
0°	0	0	1	0	Undefined	1	Undefined
30°	π/6	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	$\sqrt{3}$	$2\sqrt{3}/3$	2
45°	π/4	$\sqrt{2}/2$	$\sqrt{2}/2$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	π/3	$\sqrt{3}/2$	1/2	$\sqrt{3}$	$\sqrt{3}/3$	2	$2\sqrt{3}/3$
90°	π/2	1	0	Undefined	0	Undefined	1
120°	2π/3	$\sqrt{3}$ / 2	-1/2	$-\sqrt{3}$	$-\sqrt{3}/3$	-2	$2\sqrt{3}/3$
135°	3π/4	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	5π/6	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/3$	$-\sqrt{3}$	$-2\sqrt{3}/3$	2
180°	π	0	-1	0	Undefined	-1	Undefined
210°	7π/6	-1/2	$-\sqrt{3}/2$	$\sqrt{3}/3$	$\sqrt{3}$	$-2\sqrt{3}/3$	-2
225°	5π/4	$-\sqrt{2}/2$	$-\sqrt{2}/2$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
240°	4π/3	$-\sqrt{3}/2$	-1/2	$\sqrt{3}$	$\sqrt{3}/3$	-2	$-2\sqrt{3}/3$
270°	3π/2	-1	0	Undefined	0	Undefined	-1
300°	5π/3	$-\sqrt{3}/2$	1/2	$-\sqrt{3}$	$-\sqrt{3}$	2	$-2\sqrt{3}/3$
315°	7π/4	$-\sqrt{2}/2$	$\sqrt{2}/2$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$
330°	11π/6	-1/2	$\sqrt{3}/2$	$-\sqrt{3}/3$	$-\sqrt{3}$	$2\sqrt{3}/3$	-2
360°	2π	0	1	0	Undefined	1	Undefined

Expansions for sine, cosine, tangent, cotangent:

$$\sin y = y - \frac{y^3}{6} + \frac{y^5}{5!} - \frac{y^7}{7!} + \cdots$$

$$\cos y = 1 - \frac{y^2}{2} + \frac{y^4}{4!} - \frac{y^6}{6!} + \cdots$$

$$\tan y = y + \frac{y^3}{3} + \frac{2y^5}{15} + \cdots$$

$$\cot y = \frac{1}{y} - \frac{y}{3} - \frac{y^3}{45} - \frac{2y^5}{945} - \cdots$$

Hyperbolic functions:

$$\sinh y = \frac{1}{2} (e^{y} - e^{-y}) \qquad \sinh jy = j \sin y$$

$$\cosh y = \frac{1}{2} (e^{y} + e^{-y}) \qquad \cosh jy = j \cos y$$

$$\tanh jy = j \tan y$$

Expansions for hyperbolic functions:

$$\sinh y = y + \frac{y^3}{6} + \cdots$$

$$\cosh y = 1 + \frac{y^2}{2} + \cdots$$

$$\operatorname{sech} y = 1 - \frac{y^2}{2} + \frac{5y^4}{24} - \cdots$$

$$\operatorname{ctnh} y = \frac{1}{y} + \frac{y}{3} - \frac{y^3}{45} + \cdots$$

$$\operatorname{csch} y = \frac{1}{y} - \frac{y}{6} + \frac{7y^3}{360} - \cdots$$

$$\tanh y = y - \frac{y^3}{3} + \frac{2y^5}{15} - \cdots$$