Inference for multiple proportions

Stat 120

May 15 2023

Tests for One Categorical Variable

Goodness-of-fit test

- Test a claim about the distribution of one categorical variable
- E.g. are 6 M&M colors equally likely?
- E.g. is Biden's approval rating 50%?

Tests for One Categorical Variable

Seen single proportion tests before

• Example : Test if the proportion of Reese's Pieces that are orange is different from 1/3.

$$H_0: p=1/3 \ H_a: p
eq 1/3$$

What if we want to test proportions for several categories at once?

• Example: Are the three colors (orange, yellow, brown) of Reese's Pieces equally likely?

 H_0 specifies a proportion, p_i , for each category.

Test for one categorical variable

The proportions do not have to be the same. e.g. Grade distribution

$$H_0: p_A=0.2, \quad p_B=0.3, \quad p_C=0.3, \quad p_D=0.1, \quad p_F=0.1$$

 H_a : at least one proportion different

Rock-Paper-Scissors

ROCK	PAPER	SCISSORS	TOTAL
36	[12]	[37]	85

How would we test whether all of these categories are equally likely?

Conduct a hypothesis test

- State Hypothesis
- Calculate a test statistic, based on your sample data
- Create a distribution of this statistic, as it would be observed if the null hypothesis were true
- Measure how extreme your test statistic is, as compared to the distribution generated under null

Test Statistic

Why can't we use the familiar formula to get the test statistic?

sample statistic - null value
SE

- More than one sample statistic
- More than one null value

We need something a bit more complicated ...

Observed Counts

The observed counts are the actual counts observed in the study

ROCK	PAPER	SCISSORS	TOTAL
36	[12]	37	85

- The expected counts are the expected counts if the null hypothesis were true
- ullet For each cell, the expected count is the sample size n times the null proportion, p_o

	ROCK	PAPER	SCISSORS	TOTAL
(Observed)	36	12	37	85
[Expected]	28.33	28.33	28.33	85

Chi-Square Statistic

- A test statistic is one number, computed from the data, which we can use to assess the null hypothesis
- The chi-square statistic is a test statistic for categorical variables:

$$\chi^2 = \sum rac{(observed-expected)^2}{expected} = \sum rac{(O-E)^2}{E}$$

Rock-Paper-Scissors

	ROCK	PAPER	SCISSORS	TOTAL
(Observed)	36	12	37	85
[Expected]	28.33	28.33	28.33	85

$$\chi^2 = rac{(36-28.33)^2}{28.33} + \cdots + \cdots \ pprox 2.076 + \cdots + \cdots$$

What next?

We have a test statistic. What else do we need to perform the hypothesis test?

ullet A distribution of the test statistic assuming H_0 is true

How do we get this? Two options:

- 1. Simulation
- 2. Theoretical Distribution

Simulation

- 1. Take 3 scraps of paper and label them Rock, Paper, Scissors. Fold or crumple them so they are indistinguishable. Choose one at random and record the result.
- 2. Repeat a number of times to match the original sample size and get a table of observed counts.
- 3. Calculate the χ^2 -statistic.
- 4. Repeat this many times to get a randomization distribution of many χ^2 -statistics.
- 5. How extreme is the actual test statistic in this randomization distribution?

Statkey: Chi-Square Distribution

Chi-Square Distribution

If each of the expected counts are at least 5, AND if the null hypothesis is true, then the χ^2 statistic follows a χ^2 distribution, with degrees of freedom equal to

df = number of categories - 1

Rock-Paper-Scissors:

df = 3 - 1 = 2 # degrees of freedom

Chi-Square Distribution

Statkey: p-value using Chi-square distribution

Goodness of Fit

- A χ^2 test for goodness of fit test determines whether the distribution of a categorical variable is the same as some null hypothesized distribution
- The null hypothesized proportions for each category do not have to be the same

Chi-Square Test for Goodness of Fit

- State null hypothesized proportions for each category, pi.
 Alternative is that at least one of the proportions is different than specified in the null.
- Calculate the expected counts for each cell as $n \cdot p_i$. Make sure they are all greater than 5 to proceed.
- ullet Calculate the χ^2 statistic: $\chi^2 = \sum rac{(observed-expected)^2}{expected}$
- Compute the p-value as the area in the tail above the χ^2 statistic, for a χ^2 distribution with $df=({
 m number\ of\ categories\ -1})$.
- Interpret the p-value in context.

Between 1856 and 1863 Gregor Mendel cultivated and tested roughly 29,000 pea plants. This study showed that one in four pea plants was pure-bred recessive, two out of four were hybrid and one out of four were pure-bred dominant.

Mendel's work was rejected at first and was not widely accepted until after he died. He is now known as the "father of modern genetics

Y = yellow seed

y =green seed

S =round shape

s = wrinkly shape

		6	
SSYY	SSYy	SSYY	SsYy
SSyY	SSyy	SsyY	Ssyy
SSYY	sSYy	SSYY	ss Y y
sSyY	sSyy	ssyY	ssyy

S, Y: **Dominant** and s, y: **Recessive**

Mate SSYY with ssyy: 1st Generation: all Ss Yy

Mate 1st Generation: \rightarrow 2nd Generation

Phenotype	Theoretical Proportion
Round, Yellow	9/16
Round, Green	3/16
Wrinkled, Yellow	3/16
Wrinkled, Green	1/16

Phenotype	Theoretical Proportion	Observed Counts
Round, Yellow	9/16	315
Round, Green	3/16	101
Wrinkled, Yellow	3/16	108
Wrinkled, Green	1/16	32

Let's test this data against the null hypothesis of each p_i equal to the theoretical value, based on genetics

$$H_0: p_1 = 9/16, p_2 = 3/16, p_3 = 3/16, p_4 = 1/16$$

 H_a : At least one p_i is not as specified in H_0

What is the expected count for round green peas?

A. 0.182

B. 108

C. 104.25

D. 139

Phenotype	Theoretical Proportion	Observed Counts
Round, Yellow	9/16	315
Round, Green	3/16	101
Wrinkled, Yellow	3/16	108
Wrinkled, Green	1/16	32

▶ Click for answer

Phenotype	Theoretical Proportion	Observed Counts
Round, Yellow	9/16	315
Round, Green	3/16	101
Wrinkled, Yellow	3/16	108
Wrinkled, Green	1/16	32

The χ^2 statistic is the sum of 4 components (because there are 4 categories). What is the contribution to the χ^2 statistic from the "Round, Yellow" category?

- 1. 0.016
- 2. 1.05
- 3. 5.21
- 4. 107.2
- ▶ Click for answer

Mendel's Pea Experiment: $\chi^2=0.47$

Two options:

- Simulate a randomization distribution
- ullet Compare to a χ^2 distribution with df=4-1

Does this prove Mendel's theory of genetics? Or at least prove that his theoretical proportions for pea phenotypes were correct?

1. Yes

2. No

▶ Click for answer

图 YOUR TURN1

- Go over to the in class activity file
- Complete the activity as much as possible