UNIT – II		
CO- 3 – Vector Differential Calculus		
1.	If $\varphi = x^3 + y^3 - 2z$ then $\nabla \varphi$ at $(1, -1, 1)$ is	
	$a) 3\hat{\imath} + 3\hat{\jmath} - 2\hat{k}$	b) 4
	c) $3\hat{\imath} + 3\hat{\jmath}$	$\mathrm{d})\hat{\imath} + \hat{\jmath} - \hat{k}$
2.	\vec{F} is said to be solenoidal if	
	a) $\nabla \vec{F} = 0$	b) $\nabla \cdot \vec{F} = 0$
	$c) \nabla \times \vec{F} = \vec{0}$	$\mathrm{d})\overline{v}\left(\overline{v}\overrightarrow{F}\right) = 0$
3.	If $f(x,y) = 2xy + y^2$ then Hessian of f is	
	$\begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix}$	$b)\begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$
	$c)\begin{bmatrix}0 & 0\\ 2 & 2\end{bmatrix}$	$d)\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$
4.	If $\vec{F} = ax\hat{\imath} + b\hat{\jmath}$ where a, b are constants, is irrotational	l, then which of the following is true?
	a) $\nabla \times \vec{F} = a$	b) $\nabla \times \vec{F}$ is a scalar quantity
	c) $\nabla \times \vec{F} = \vec{0}$	d) $\nabla \times \vec{F} \neq \vec{0}$
5.	\vec{F} is said to be irrotational if	
	$a) \nabla \left(\nabla \vec{F} \right) = 0$	b) $\nabla \vec{F} = 0$
	$c) \nabla \cdot \vec{F} = 0$	d) $\nabla \times \vec{F} = \vec{0}$
6.	If $\varphi = x^2 + y^2 - z$ then $\nabla \varphi$ at $(1, 1, 1)$ is	
	$a) \ 2\hat{\imath} + 2\hat{\jmath} - \hat{k}$	b) $2\hat{\imath} + 2\hat{\jmath}$
	$c) \hat{i} + \hat{j} + \hat{k}$	d) 3
7.	If $\vec{F} = ax\hat{\imath} + by\hat{\jmath}$ where a, b are constants, is solenoidal	al then which of the following is false?
	a) a + b = 0	b) $\nabla \cdot \vec{F} = 0$
	c) $\nabla \cdot \vec{F}$ is a scalar quantity	d) $\nabla \cdot \vec{F}$ is a vector quantity
8.	If $f(x,y) = xy + x^2$ then Hessian of f is	
	$\begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$	$b)\begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}$
	$c)\begin{bmatrix}0&0\\2&2\end{bmatrix}$	$d)\begin{bmatrix}1 & 2\\ 2 & 2\end{bmatrix}$
9.	If $\vec{F} = 2x\hat{\imath} + 3y^2\hat{\jmath} + 4z^3\hat{k}$ then divergence of \vec{F} at $(1,1,1)$ is	

	$a) \ 2\hat{\imath} + 6\hat{\jmath} + 12\hat{k}$	b) 20
	c) $2\hat{i} + 3\hat{j} + 4\hat{k}$	$\mathrm{d})x\hat{\imath}+y\hat{\jmath}$
10.	If $f(x,y) = xy - x^4$ then Hessian of f is	
	$a)\begin{bmatrix} -12x^2 & 1\\ 1 & 0 \end{bmatrix}$	$b)\begin{bmatrix} -12 & 0 \\ 2 & 1 \end{bmatrix}$
	$c)\begin{bmatrix} x^2 & 0 \\ 1 & 2 \end{bmatrix}$	$d)\begin{bmatrix} 1 & 1 \\ x & 2 \end{bmatrix}$
11.	If $\vec{F} = x\hat{\imath} + z\hat{\jmath} + y\hat{k}$ then curl of \vec{F} is	
	a) 0	b) $\hat{\imath} + \hat{\jmath} + \hat{k}$
	c) $\hat{i} + \hat{k}$	d) $\hat{\imath} + \hat{\jmath}$
12.	If $\vec{F} = a^2 x \hat{\imath} - b^2 y \hat{\jmath}$ where a, b are constants, is solenous	oidal, then which of the following is
	false?	
	a) $\nabla \cdot \vec{F} = 0$	b) $\nabla \cdot \vec{F}$ is a scalar quantity
	c) $a^2 - b^2 = 0$	d) $a^2 + b^2 = 0$
13. If $\varphi = x^2 + y - z - 1$ then $ \nabla \varphi $ at $(1, 0, 0)$ is:		
	a) 2	b) √6
	c) 6	d) 6√6
14.	If $\vec{F} = xyz\hat{\imath} + 3x^2y\hat{\jmath} + (xz^2 - y^2z)\hat{k}$ then divergence of \vec{F} at the point $(2, -1, 1)$ is:	
	a) 16	$b) - \hat{\imath} + 12\hat{\jmath} + 5\hat{k}$
	c) $\hat{i} + 2\hat{j} + 5\hat{k}$	d) 14
15.	A vector field which has a vanishing curl is called	
	a) an irrotational vector field	b) solenoidal vector field
	c) scalar field	d) none of these
16.	If $\vec{F} = ax\hat{\imath} + b\hat{\jmath}$ where a, b are constants, is irrotation	al, then which of the following is true?
	a) $\nabla \times \vec{F} = a$	b) $\nabla \times \vec{F}$ is a scalar quantity
	c) $\nabla \times \vec{F} = \vec{0}$	d) $\nabla \times \vec{F} = \vec{0}$
17.	The gradient of $\varphi = xyz$ is	
	a) $yz\hat{\imath} + xz\hat{\jmath} + xy\hat{k}$	b) $yz\hat{\imath} + xy\hat{\jmath} + xz\hat{k}$
	c) $x\hat{i} + y\hat{j} + z\hat{k}$	$\mathrm{d})x\hat{\imath}+y\hat{\jmath}-z\hat{k}$
18.	A vector field with vanishing divergence is called	
	a) an irrotational vector field	b) solenoidal vector field

	c) scalar field	d) none of these
19.	If $f(x,y) = 2xy + 7x^2$ then Hessian of f is	
	a) $\begin{bmatrix} 14 & 2 \\ 2 & 0 \end{bmatrix}$	b) $\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$
	$c)\begin{bmatrix} 7 & 1 \\ 1 & 0 \end{bmatrix}$	$d)\begin{bmatrix} 2 & 1 \\ 7 & 0 \end{bmatrix}$
20.	If $\vec{F} = ax\hat{\imath} - by\hat{\jmath} - cz\hat{k}$ where a, b, c are constant	s, is solenoidal then which of the following
	is false?	
	a) $a = b + c$	b) $\nabla \cdot \vec{F} = 0$
	c) $\nabla \cdot \vec{F} \neq 0$	d) $\nabla \cdot \vec{F}$ is a scalar quantity
21.	Which of the following statement is true?	
	i) The divergence and curl of vector fields are scala	ar quantities.
	ii) The divergence and curl of vector fields are scal	ar and vector quantities respectively.
	iii) The divergence and curl of a vector fields are v	ector and scalar quantities respectively.
	iv) The divergence and curl of a vector fields are ve	ector quantities.
	a) i	b) ii
	c) iii	d) iv
22.	If $f(x, y, z) = x^2 - xy + yz^3 - 6z$ then $\nabla f(x, y, z)$	r) is
	a) $(2x - y, -x + z^3, 3yz^2)$	b) $(2x - y, -x + z^3, 3yz^2 - 6)$
	c) $(2x - y, -x + z^3, yz^2)$	d) $(2x, -x - z^3, 3yz^2 - 6)$
23.	If $F(x, y, z) = (x^2 + y^2 + z^2 - 1, 2x^2 + 2y^2 - 1)$ then $F'(x, y, z)$ is	
	a) $\begin{pmatrix} 2x & 2y & 2z \\ 4x & 4y & 0 \end{pmatrix}$	b) $\begin{pmatrix} x & 2y & 2z \\ x & 4y & 0 \end{pmatrix}$
	$c)\begin{pmatrix} 2x & y & z \\ 4x & y & 0 \end{pmatrix}$	$d)\begin{pmatrix} x & 0 & z \\ 4x & y & 0 \end{pmatrix}$
24.	If $\vec{F} = 4ax\hat{\imath} + 8by\hat{\jmath}$ is solenoidal then which of the following is false?	
	a) $\nabla \cdot \vec{F} = 0$	b) $\nabla \cdot \vec{F}$ is a scalar quantity
	c) $a = 2b$	d) a = -2b
25.	If $\vec{F} = 3x\hat{\imath} + y^2\hat{\jmath} + xz\hat{k}$ then divergence of \vec{F} at the	he point (1,2,3) is
	a) 8	b) 10
	c) 6	d) 12
26.	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ then $curl(\vec{r})$ is	
	a) 1	b) 3

	$ c)\overrightarrow{0}$	$d) \hat{i} + \hat{j} + \hat{k}$
27.	A vector field which has a vanishing curl is called:	
	a) an irrotational vector field	b) solenoidal vector field
	c) scalar field	d) none of these
28.		
	a) $\hat{\imath} + 3\hat{\jmath} + \hat{k}$	$b) \hat{\imath} + 3\hat{\jmath} + 5\hat{k}$
	c) $\hat{i} + 2\hat{j} + \hat{k}$	$\mathrm{d}))2\hat{\imath}+2\hat{\jmath}+\hat{k}$
29.	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ then $div(\vec{r})$ is	
	a) 1	b) 3
	c) $\hat{i} + \hat{j} + \hat{k}$	d) 0
30.	If $f(x, y) = 5xy + 2x^2$ then Hessian of f is	
	$a)\begin{bmatrix}2 & 1\\1 & 0\end{bmatrix}$	$b)\begin{bmatrix}1 & 1\\1 & 0\end{bmatrix}$
	$c)\begin{bmatrix} 4 & 5 \\ 5 & 0 \end{bmatrix}$	$d)\begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix}$
31.	If $\vec{F} = ax\hat{\imath} - by\hat{\jmath}$ is solenoidal then which of the following is true?	
	a) $a = b$	b) $\nabla \cdot \vec{F}$ is a vector quantity
	c) a + b = 0	d) $a^2 + b^2 = 0$
32	If $\vec{F} = 6\hat{\imath} + \hat{\jmath} + by\hat{k}$ is an irrotational vector, then	
	a) $b = 2$	b) $b = -1$
	c) b = 0	d) b = 1
33.	If $\varphi = 2x + 2y + 2z$ then $curl(grad\varphi)$ is	
	a) 0	b) $2\hat{i} + 2\hat{j} + 2\hat{k}$
	c) $x\hat{i} + y\hat{j} + z\hat{k}$	d) $\hat{i} + \hat{j} + \hat{k}$
34.	If $\vec{F} = 2ax\hat{\imath} + 6by\hat{\jmath}$ is solenoidal then which of the	he following is false?
	a) a + 3b = 0	b) $\nabla \cdot \vec{F} = 0$
	c) $\nabla \cdot \vec{F}$ is a scalar quantity	d) $\nabla \cdot \vec{F}$ is a vector quantity
35.	If $\vec{F} = bz\hat{\imath} + 3\hat{\jmath} + 4\hat{k}$ is an irrotational vector, the	n
	a) $b = 0$	b) b = 1
	c) $b = 5$	d) b = -1
36.	If $\vec{F} = x\hat{\imath} - y\hat{\jmath} + z\hat{k}$ then divergence of \vec{F} is	
	a) $\hat{i} - \hat{j} + \hat{k}$	b) 1
L		

of the following
of

	CO- 4 – Ordinary and Partial Differential equations		
1. If two roots of the auxiliary equation of a second order linear diffe		order linear differential equation with	
	constant coefficients are real and equal, then the complementary solution is of the form:		
	a) $y_c = Ae^{m_1x} + Be^{m_2x}$	b) $y_c = Ae^{mx} + Bxe^{mx}$	
	c) $y_c = Ae^{mx} + Be^{mx}$	$d) y_c = Ae^m + Bxe^m$	
2.	Which of the following function is not a solution	of the differential equation $y'' + y = 0$?	
	$a) y = \sin 2x$	b) $y = 2\sin x$	
	c) $y = \cos x$	$d) y = 15\cos x$	
3.	The partial differential equation of the expression $z = ax + by$, where a and b are arbitrary		
	constants, is:		
	a) z = px - qy	b) z = p + q	
	c) $z = pq$	d) z = px + qy	
4.	Which of the following equation is a parabolic partial differential equation?		
	$a) \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$	
	c) $a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$	$d) \frac{\partial^2 u}{\partial x^2} = 4 \frac{\partial^2 u}{\partial t^2}$	

5.	Which of the following function is the solution of the differential equation $y' + 2y = 0$.	
	$a) y = e^{2x}$	b) $y = e^x$
	c) $y = e^{-x}$	$d) y = e^{-2x}$
6.	The order of a differential equation whose ge (where <i>A</i> , <i>B</i> are arbitrary constants) is:	eneral solution is $y = A \sin x + B \cos x$
	a) 4	b) 1
	c) 3	d) 2
7.	The partial differential equation of the expres	ssion $2z = ax^2 + by^2$ where a and b are
	arbitrary constants, is:	
	a) 2z = px + qy	b) z = p + q
	c) z = py + qx	d) z = px - qy
8.	The following second order partial differential	al equation is: $2x \frac{\partial^2 u}{\partial x^2} + 3x \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$
	a) parabolic	b) hyperbolic
	c) elliptic	d) circular
9.	The solution of differential equation $x dx +$	y dy = 0 represents:
	a) Hyperbola	b) Lines passing through the origin
	c) Parabola whose vortex is the origin	d) A circle with origin as center
10.	The complementary function of the differential	ial equation $(D^2 + 3D - 4)y = x$ is:
	a) $y_c = C_1 e^{-2x} + C_2 e^{2x}$	b) $y_c = C_1 e^x + C_2 e^{3x}$
	c) $y_c = C_1 e^x + C_2 e^{-4x}$	d) $y_c = C_1 e^{-x} + C_2 e^{4x}$
11.	The partial differential equation of the expression $z = f(x)$, where $f(x)$ is an arbitrary function, is:	
	$a) z = \frac{\partial z}{\partial x}$	$b)\frac{\partial z}{\partial y} = 0$
	$c)\frac{\partial z}{\partial x} + \frac{\partial z}{\partial x} = 0$	$d) z = \frac{\partial z}{\partial y}$
12.	The following second order partial differential equation is: $x \frac{\partial^2 u}{\partial x^2} - x^2 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$	
	a) parabolic	b) hyperbolic
	c) elliptic	d) circular
13.	The differential equation of the circles whose	e centers are origin is:
	$a) x + \frac{dy}{dx} = 0$	$b) x + y \frac{dy}{dx} = 0$
	$c) x + \frac{dy}{dx} = a$	$d) x - y \frac{dy}{dx} = 0$

14.	. If two roots of the auxiliary equation of a second order linear differential equation with		
	constant coefficients are purely imaginary, then the complementary solution is of the form:		
	a) $y_c = A\cos\beta x + B\sin\beta x$	b) $y_c = A\cos \beta x$	
	c) $y_c = A \sin \beta x$	$d) y_c = e^{\alpha x} (A\cos \beta + B\sin \beta)$	
15.	The partial differential equation of the expression	z = f(x + y), where $f(x + y)$ is an	
	arbitrary function, is:		
	a) $p - q = 0$	b) p + q = 0	
	c) z = p + q	d) z = p - q	
16.	The following second order partial differential eq	uation is:	
	$xy \frac{\partial^2 u}{\partial x \partial y} - x^2 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \cos(2x + 3y)$		
	a) parabolic	b) hyperbolic	
	c) elliptic	d) circular	
17.	The particular integral of the differential equation	$(D^2 - 2)y = 2e^{2x}$ is:	
	$a) y_p = x^2 e^{2x}$	b) $y_p = xe^{2x}$	
	$c) y_p = e^{2x}$	$d) y_p = \frac{e^{2x}}{2}$	
18.	The solution of the differential equation $2x \frac{dx}{dy} - y = 0$ represents:		
	a) parabola	b) circle	
	c) ellipse	d) hyperbola	
19.	The partial differential equation of the expression $z = ae^x - be^y$, where a and b are		
arbitrary constants, is:			
	a) z = p + q	b) $z = p - q$	
	c) p + q = 0	d) p - q = 0	
20.	Which of the following equation is a hyperbolic partial differential equation?		
	$a) \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$	
	c) $a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$	$d) \frac{\partial^2 u}{\partial x^2} = 4 \frac{\partial^2 u}{\partial t^2}$	
21.	Which of the following function is a solution of the differential equation $\left(\frac{dy}{dx}\right)^2 = 0$?		
	a) $y = e^x$	b) $y = x^2$	
	c) $y = 25x$	$d) y = \cos \cos x$	
22.	If two roots of the auxiliary equation of a second	order linear differential equation with	

	constant coefficients are real and distinct, then the complementary solution is of the form:	
	$a) y_c = Ae^{m_1x} + Be^{m_2x}$	b) $y_c = Ae^{mx} + Bxe^{mx}$
	c) $y_c = Ae^{mx} + Be^{mx}$	$d) y_c = Ae^{m_1} + Bxe^{m_2}$
23.	The partial differential equation of the exp	pression $z = ax + be^y$, where a and b are
	arbitrary constants, is:	
	a) $z = p + q$	b) z = px + q
	c) $z = p + qy$	d) z = p - q
24.	Which of the following partial differential	equation is not an elliptic partial differential
	equation?	
	a) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$
	c) $a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$	d) $x^2 \frac{\partial^2 u}{\partial x^2} + 4y^2 \frac{\partial^2 u}{\partial t^2} = 4xy$
25.	The particular integral of the differential ed	quation
	$(D^2 + 2)y = 2\cos x \text{is:}$	
	a) $y_p = -2\cos x$	b) $y_p = 2\cos x$
	c) $y_p = 2\sin x$	$d) y_p = -2x \sin x$
26.	Which of the following equation is not a first order linear differential equation in y ?	
	$a) \frac{dy}{dx} + x^2 y = x$	$b)\frac{dy}{dx} + yx = e^x$
	$c)\frac{dy}{dx} + x^2y^2 = \tan x$	$d)\frac{dy}{dx} + yx = x^3$
27.	The partial differential equation of the expression $z = xe^a - by$, where a and b are	
	arbitrary constants, is:	
	a) $z = px - qy$	b) $z = px + qy$
	c) $z = p + q$	d) px + qy = 0
28.	The following second order partial differen	ntial equation is:
$y^{2} \frac{\partial^{2} u}{\partial x^{2}} - 2xy \frac{\partial^{2} u}{\partial x \partial y} + x^{2} \frac{\partial^{2} u}{\partial y^{2}} - x^{2} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$		$-\frac{\partial u}{\partial y} = 0$
	a) parabolic	b) hyperbolic
	c) elliptic	d) circular
29.	Which of the following function is not a so	olution of the differential equation $\frac{dy}{dx} = y$?
	a) $y = 2e^x$	$b) y = e^{2x}$
	c) $y = 3e^x$	$d) y = e^x$

30.	If the roots of the auxiliary equation of a differential equation are 0, 1, 0 then the	
	differential equation is:	
	$a) (D^3 - D)y = 0$	b) $(D^3 - D^2)y = 0$
	c) $(D^3 - 1)y = 0$	$d) D^3 y = 0$
31.	The partial differential equation of the expressio	$z = e^y g(x)$, where $g(x)$ an arbitrary
	function, is:	
	a) $z = \frac{\partial z}{\partial y}$	b) $z = \frac{\partial z}{\partial x}$
	$c)\frac{\partial z}{\partial x} = 0$	$d) \frac{\partial z}{\partial y} = 0$
32.	Which of the following equation is not a hyperbo	olic partial differential equation?
	$a) -2\frac{\partial^2 u}{\partial x^2} - x^2 \frac{\partial^2 u}{\partial y^2} = 0$	$b)\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$
	c) $xy \frac{\partial^2 u}{\partial x^2} - 3xy \frac{\partial^2 u}{\partial y^2} = 0$	$d)\frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0$
33.	The particular integral of the differential equation	$n (D^2 + 6)y = 2 \sin \sin 2x$ is:
	a) $y_p = \cos 2x$	b) $y_p = 2x\cos 2x$
	c) $y_p = \sin 2x$	$d) y_p = -\sin 2x$
34.	If the roots of the auxiliary equation of a differential equation are $2i$, $-2i$ then the	
differential equation is:		
	a) $(D^2 - 4)y = 0$	b) $(D^2 + 4)y = 0$
	c) $(D^2 - 2)y = 0$	d) $(D^2 + 2)y = 0$
35.	The partial differential equation of the expression $2z = ax^2 + by$, where a and b are	
arbitrary constants, is:		
	a) 2z = px + 2qy	b) z = px + qy
	c) z = 2px + qy	d) z = px - qy
36.	The following second order partial differential equation is:	
	$y^{2} \frac{\partial^{2} u}{\partial x^{2}} - 4xy \frac{\partial^{2} u}{\partial x \partial y} - 4x^{2} \frac{\partial^{2} u}{\partial y^{2}} - xy = 0$	
	a) parabolic	b) hyperbolic
	c) elliptic	d) circular
37.	Which of the following differential equation is f	irst order linear differential equation in y?
	$a) x^2 y^2 + \frac{dy}{dx} = 0$	$b) x + y \frac{dy}{dx} = y^3$
	c) $x^4 + \frac{dy}{dx} = ay$	$d) x^2 y - y \frac{dy}{dx} = \sin \sin y$

38.	The function $y = C_1 e^{-2x} + C_2 e^{3x}$ is the general solution of the equation:		
	a) $(D^2 + D - 6)y = 0$	b) $(D^2 - D + 6)y = 0$	
	c) $(D^2 + D + 6)y = 0$	d) $(D^2 - D - 6)y = 0$	
39.	The partial differential equation of the expression $z = ay + bx$, where a and b are arbitrar		
	constants, is:		
	a) z = px + qy	b) $z = qx + py$	
	c) z = p + q	d) z = px - qy	
40.	Which of the following partial differential equation is an elliptic partial differential		
	equation?		
	$a) -2\frac{\partial^2 u}{\partial x^2} - x^2 \frac{\partial^2 u}{\partial y^2} = 0$	$b)\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$	
	c) $xy \frac{\partial^2 u}{\partial x^2} - 3xy \frac{\partial^2 u}{\partial y^2} = 0$	$d)\frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0$	