Algorithmic Matching

Mathematical approaches to optimally allocate topics to students

Frederik Heck
Coached by Simon Kramer

The Student-Topic-Assignment Problem

... want to be assigned to ...

Solution for Assignement Problems?

$$G = (V, E)$$

 $e = (v_1, v_2) = (v_2, v_1).$
 $e^{\rightarrow} = (v_1^{\rightarrow}, v_2).$

Mathematics!

$$0 \leq f(e^{\rightarrow}) \leq k(e^{\rightarrow})$$
$$(v_{IN}^{\rightarrow}, v_g)$$
$$(b^{\pm}, \triangle(q))$$

Most of the information bases on Allen Tuckers - *Applied Combinatorics*

https://www.wiley.com/en-us/Applied+Combinatorics%2C+6th+Edition-p-9781118210116

The Approach

Phase I: Model the Problem

Phase II: Solve the Model

First Step: Make a graph

A graph G consists of two sets V and E

$$G = (V, E)$$

V: VerticesE: Edges (connecting vertices)

This graph has 7 vertices and no edges

First Step: Make a graph

Edges represent topic wishes

This graph has 7 vertices and 6 edges

A graph G consists of two sets V and E

$$G=(V, E)$$

V: VerticesE: Edges (connecting vertices)

Second Step: Transform the graph into a network

Edges are directed now

Each edge has a capacity $k(e^{\rightarrow}) = 1$

A **network** N is a directed graph, where: Each edge e^{\rightarrow} has a capacity $k(e^{\rightarrow})$ Each edge e^{\rightarrow} has s flow $f(e^{\rightarrow})$ $0 \le f(e^{\rightarrow}) \le k(e^{\rightarrow})$

Second Step: Transform the graph into a network

We add a super-source and -sink

Each edge has a capacity $k(e^{\rightarrow}) = 1$

A **network** *N* is a directed graph, where:

Each edge e^{\rightarrow} has a capacity $k(e^{\rightarrow})$ Each edge e^{\rightarrow} has s flow $f(e^{\rightarrow})$

$$0 \le f(e^{\rightarrow}) \le k(e^{\rightarrow})$$

A network often has a super-source v_{IN} as well as a super-sink v_{OUT} :

 v_{IN} generates all flow v_{OUT} swallows all flow

First Step: Understand Matchings

Thick lines represent a matching

Every student is matched: Optimal!

A **matching** M is a set of independent edges in a graph G = (S, T, E), where:

S: First vertex set (Students)

T: Second vertex set (Topics)

E: Edges, that match vertices in S with vertices in E

Second Step: Develop an Algorithm

Augmenting Flow Algorithm

1. Give the super-source $v_{\it IN}$ the labels (-, ∞) INIT 2. Now scan a vertex. Let us call the vertex being scanned p and its second label $\triangle(p)$. Initially, $p=v_{IN}$. (a) Check each incoming edge $e=(q^{\rightarrow},\,p)$. If $f(e^{\rightarrow})>0$ and q is unlabeled, then label q with $(p^{-},\,\triangle(q))$, where $\triangle(q)=\min[\triangle(p),\,f(e^{\rightarrow})]$ LABEL (b) Check each outgoing edge $e=(p^{\rightarrow}, q)$. If $s(e^{\rightarrow})=k(e^{\rightarrow})-f(e^{\rightarrow})>0$ and q is unlabeled, then label q with $(p^+, \triangle(q))$, where $\triangle(q) = \min[\triangle(p), s(e^{\rightarrow})]$ 3. If v_{OUT} has been labeled, go to step 4. Otherwise choose another labeled vertex to be scanned (which was not yet scanned) and go to Step 2. If there are no more labled vertices to scan, let P be the set of labled vertices, and now (P, \overline{P}) form a saturated cut. The flow from P to \overline{P} will then be maximum. From this we can conclude that we have found the maximum flow of the network, since every cut must contain the whole flow of a network. Stop the algorithm. CHECK 4. Find a v_{IN} - v_{OUT} chain of vertices, where every $\triangle(q)$ of a vertex has a positive value. The minimal number of $\triangle(q)$ in the chain, tells us by how many flow-units the flow may be increased. We increase it by adding flow of this number on all forwardly-directed edges, and removing flow of this number on all backwardly-directed edges. 5. Start again at 1.

Second Step: Develop an Algorithm

Second Step: Develop an Algorithm

Augmenting Flow Algorithm

REPEAT

Start again with INIT

Second Step: Develop an Algorithm

Augmenting Flow Algorithm

INIT

Give v_{IN} a label

Second Step: Develop an Algorithm

Second Step: Develop an Algorithm

After-math: Improvements

We must think of two additional constraints

What about priorities?

We make use of a minimization algorithm. It will find the matching with the minimal priority-sum on all optimal matchings.

Not explictly treated in my work

After-math: Improvements

We must think of two additional constraints

Experts have a minimum pensum!

More complicated concepts are needed, explictly treated in my work

After-math: Programming

We're ready: Let's program!

CSV-File

JAVA-Algorithm

```
// start procedure
    for (i=1; i \le n; i++)
      if (sol[i] = head) {
        nn = 0;
        cwk2 = big;
        for (j=1; j \le n; j++) {
          min = i;
59
          max = i;
          if (i != j) {
61
             if (i > j) {
               max = i:
63
               min = j;
64
65
```

Optimal Matching

```
Optimal matching:
s1 -- t16 [P1]
s2 -- t36 [P1]
s3 -- t42 [P1]
s4 -- t10 [P1]
s5 -- t37 [P2]
s6 -- t22 [P1]
s7 -- t17 [P1]
s8 -- no matching possible
s9 -- t23 [P1]
s10 -- t26 [P3]
```

Mostly adopted from a library

Review: How to assign students to topics

1. Math gives us a model

2. We model some specific constraints

3. We implement an algorithm

Questions

