DAT630

Text Classification and Clustering

Search Engines, Chapters 4, 9

27/09/2016

Krisztian Balog | University of Stavanger

So far

- We worked with record data
 - Each record is described by a set of attributes
 - Often, we prefer to work with attributes of the same type
 - E.g., convert everything to categorical for Decision Trees, convert everything to numerical for SVM
- Handful of attributes (low dimensionality)
- Straighforward to compare records
 - E.g., Eucledian distance

Document Data

- Records (or objects) are documents
 - Web pages, emails, books, text messages, tweets, Facebook pages, MS Office documents, etc.
- Core ingredient for classification and clustering: **measuring similarity**
- Questions when working with documents:
 - How to represent documents?
 - How to measure the similarity between documents?

Issues

- Text is noisy
 - Variations in spelling
 - Morphological variations. E.g.,
 - car, cars, car's
 - take, took, taking, taken, ...
- Text is ambiguous
 - Many different ways to express the same meaning

Representing Documents

- Documents are represented as term vectors
 - Each term is a component (attribute) of the vector
 - Values correspond to the number of times the term appears in the document

	team	coach	pla y	ball	score	game	n wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Term-document (or document-term) matrix

Text Preprocessing

Preprocessing Pipeline

raw document text preprocessing Tokenization Stopping term vector Stemming Stopping Tokenization Stopping Tokenization Stopping Tokenization Stopping Tokenization Stopping Tokenization Stopping Tokenization

Tokenization

- Parsing a string into individual words (tokens)
- Splitting is usually done along white spaces, punctuation marks, or other types of content delimiters (e.g., HTML markup)
- Sounds easy, but can be surprisingly complex, even for English
 - Even worse for many other languages

Tokenization Issues

- Apostrophes can be a part of a word, a part of a possessive, or just a mistake
 - rosie o'donnell, can't, 80's, 1890's, men's straw hats, master's degree, ...
- Capitalized words can have different meaning from lower case words
 - Bush, Apple
- Special characters are an important part of tags, URLs, email addresses, etc.
 - C++, C#, ...

Tokenization Issues

- Numbers can be important, including decimals
 - nokia 3250, top 10 courses, united 93, quicktime
 6.5 pro, 92.3 the beat, 288358
- Periods can occur in numbers, abbreviations, URLs, ends of sentences, and other situations
 - I.B.M., Ph.D., www.uis.no, F.E.A.R.

Common Practice

- First pass is focused on identifying markup or tags; second pass is done on the appropriate parts of the document structure
- Treat hyphens, apostrophes, periods, etc. like spaces
- Ignore capitalization
- Index even single characters
 - o'connor => o connor

Text Statistics

Top-50 words from AP89

Word	Freq.	r	P_r (%)	$r.P_r$	Word	Freq	r	$P_r(\%)$	r.P
the	2,420,778	1	6.49	0.065	has	136,007	26	0.37	0.09
of	1,045,733	2	2.80	0.056	are	130,322	27	0.35	0.09
to	968,882	3	2.60	0.078	not	127,493	28	0.34	0.09
a	892,429	4	2.39	0.096	who	116,364	29	0.31	0.09
and	865,644	5	2.32	0.120	they	111,024	30	0.30	0.08
in	847,825	6	2.27	0.140	its	111,021	31	0.30	0.09
said	504,593	7	1.35	0.095	had	103,943	32	0.28	0.08
for	363,865	8	0.98	0.078	will	102,949	33	0.28	0.09
that	347,072	9	0.93	0.084	would	99,503	34	0.27	0.09
was	293,027	10	0.79	0.079	about	92,983	35	0.25	0.08
on	291,947	11	0.78	0.086	i	92,005	36	0.25	0.08
he	250,919	12	0.67	0.081	been	88,786	37	0.24	0.08
is	245,843	13	0.65	0.086	this	87,286	38	0.23	0.08
with	223,846	14	0.60	0.084	their	84,638	39	0.23	0.08
at	210,064	15	0.56	0.085	new	83,449	40	0.22	0.09
by	209,586	16	0.56	0.090	or	81,796	41	0.22	0.09
it	195,621	17	0.52	0.089	which	80,385	42	0.22	0.09
from	189,451	18	0.51	0.091	we	80,245	43	0.22	0.09
as	181,714	19	0.49	0.093	more	76,388	44	0.21	0.09
be	157,300	20	0.42	0.084	after	75,165	45	0.20	0.09
were	153,913	21	0.41	0.087	us	72,045	46	0.19	0.08
an	152,576	22	0.41	0.090	percent	71,956	47	0.19	0.09
have	149,749	23	0.40	0.092	up	71,082	48	0.19	0.09
his	142,285	24	0.38	0.092	one	70,266	49	0.19	0.09
but	140,880	25	0.38	0.094	people	68,988	50	0.19	0.09

Zipf's Law

- Distribution of word frequencies is very skewed
 - A few words occur very often, many words hardly ever occur
 - E.g., two most common words ("the", "of") make up about 10% of all word occurrences in text documents
- Zipf's law:
 - Frequency of an item or event is inversely proportional to its frequency rank
 - Rank (r) of a word times its frequency (f) is approximately a constant (k): r*f~k

Zip's law for AP89

Stopword Removal

- Function words that have little meaning apart from other words: the, a, an, that, those, ...
- These are considered *stopwords* and are removed
- A stopwords list can be constructed by taking the top n (e.g., 50) most common words in a collection

Stopword Removal

a	as	by	into	not	such	then	this	with
an	at	for	is	of	that	there	to	
and	be	if	it	on	the	these	was	
are	but	in	no	or	their	they	will	

Table 2: Standard English stopwords list.

- There are problematic cases...

"to be or not to be"

Stopword Removal

- Lists are customized for applications, domains, and even parts of documents
 - E.g., "click" is a good stopword for anchor text

Stemming

- Reduce the different forms of a word that occur to a common *stem*
 - inflectional (plurals, tenses)
 - derivational (making verbs nouns etc.)
- In most cases, these have the same or very similar meanings
- Two basic types of stemmers
 - Algorithmic
 - Dictionary-based

Stemming

- Suffix-s stemmer
 - Assumes that any word ending with an s is plural
 cakes => cake, dogs =>dog
 - Cannot detect many plural relationships (false negative)
 - centuries => century
 - In rare cases it detects a relationship where it does not exist (false positive)
 - is =>

Stemming

- Porter stemmer

- Most popular algorithmic stemmer
- Consists of 5 steps, each step containing a set of rules for removing suffixes
- Produces stems not words
- Makes a number of errors and difficult to modify

Porter Stemmer

- Example step (1 of 5)

Step 1a:

- Replace sses by ss (e.g., stresses \rightarrow stress).
- Delete s if the preceding word part contains a vowel not immediately before the s (e.g., gaps \to gap but gas \to gas).
- Replace ied or ies by i if preceded by more than one letter, otherwise by ie (e.g., ties \rightarrow tie, cries \rightarrow cri).
- If suffix is \boldsymbol{us} or \boldsymbol{ss} do nothing (e.g., stress \rightarrow stress).

Step 1b:

- Replace eed,~eedly by ee if it is in the part of the word after the first non-vowel following a vowel (e.g., agreed \rightarrow agree, feed \rightarrow feed).
- belte ed. edly, ing., ingly if the preceding word part contains a vowel, and then if the word ends in at, bl, or iz add e (e.g., fished \rightarrow fish, pirating \rightarrow pirate), or if the word ends with a double letter that is not ll, so r zz, remove the last letter (e.g., falling \rightarrow fall, dripping \rightarrow drip), or if the word is short, add e (e.g., hoping \rightarrow hope).
- Whew!

Porter Stemmer

should not have the same stem

False positives
organization/organ
generalization/generic
numerical/numerous
policy/police
university/universe
addition/additive
negligible/negligent
execute/executive
past/paste
ignore/ignorant
special/specialized
head/heading

should have the same stem

False negatives
european/europe
cylinder/cylindrical
matrices/matrix
urgency/urgent
create/creation
analysis/analyses
useful/usefully
noise/noisy
decompose/decomposition
sparse/sparsity
resolve/resolution
triangle/triangular

Stemming

- Krovetz stemmer

- Hybrid algorithmic-dictionary
- Word checked in dictionary
 - If present, either left alone or replaced with exception stems
 - If not present, word is checked for suffixes that could be removed
- After removal, dictionary is checked again
- Produces words not stems

Stemmer Comparison

Original text

Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales

Porter stemmer

market strateg carr compan agricultur chemic report predict market share chemic report market statist agrochem pesticid herbicid fungicid insecticid fertil predict sale stimul demand price cut volum sale

Krovetz stemmer

marketing strategy carry company agriculture chemical report prediction market share chemical report market statistic agrochemic pesticide herbicide fungicide insecticide fertilizer predict sale stimulate demand price cut volume sale

Stemming

- Generally a small (but significant) effectiveness improvement for English
- Can be crucial for some languages (e.g., Arabic, Russian)

Example

First pass extraction

The Transporter (2002)
PG-13 92 min Action, Crime, Thriller 11 October 2002 (USA)

Frank is hired to "transport" packages for unknown clients and has made a very good living doing so. But when asked to move a package that begins moving, complications arise.

Tokenization

the transporter 2002 pg 13 92 min action crime thriller 11 october 2002 usa

frank is hired to transport packages for unknown clients and has made a very good living doing so but when asked to move a package that begins moving complications arise

Stopwords removal

the transporter 2002
pg 13 92 min action crime thriller 11 october 2002 usa

frank is hired to transport packages for unknown clients and has made a very good living doing so but when asked to move a package that begins moving complications arise

transporter 2002

pg 13 92 min action crime thriller 11 october 2002 usa

frank hired transport packages unknown clients has made very good living doing so when asked move package begins moving complications arise

Stemming (Porter stemmer)

transporter 2002
pg 13 92 min action crime thriller 11 october 2002 usa

frank hired transport packages unknown clients has made very good living doing so when asked move package begins moving complications arise

transport 2002
pg 13 92 min action crime thriller 11 octob 2002 usa

frank hire transport packag unknown client ha made veri good live do so when ask move packag begin move complic aris

Exercise

- Task 1

Bag-of-words Model

- Simplifying representation
- Text (document) is represented as the bag (multiset) of its words
- Disregards word ordering, but keeps multiplicity
 - I.e., positional independence assumption is made

Text Classification

K-Nearest Neighbor

K-Nearest Neighbor (KNN)

 Instance-based classifier that uses the K "closest" points (nearest neighbors) for performing classification

KNN for Text Classification

- Represent documents as points (vectors)
- Define a similarity measure for pairwise documents
- Select the value of K
- Choose a voting scheme (e.g., majority vote) to determine the class label of an unseen document

Similarity Measures

- T₁ and T₂ are the set of terms in d₁ and d₂
- Number of overlapping words $|T_1 \cap T_2|$
 - Fails to account for document size
 - Long documents will have more overlapping words than short ones
- Jaccard similarity $\dfrac{|T_1\cap T_2|}{|T_1\cup T_2|}$
 - Produces a number between 0 and 1
 - Considers only presence/absence of terms, does not take into account actual term frequencies

Similarity Measures

- Cosine similarity
 - $\vec{d_1}$ and $\vec{d_2}$ are document vectors with term freqs.

$$cos(\vec{d_1}, \vec{d_2}) = \underbrace{(\vec{d_1} \cdot \vec{d_2})}_{(||\vec{d_1}||)(||\vec{d_2}||)} \underbrace{\sum_{t} n(t, d_1) n(t, d_2)}_{t}$$

$$\sqrt{\sum_{t} n(t, d_1)^2} \sqrt{\sum_{t} n(t, d_2)^2}$$

Example

	term 1	term 2	term 3	term 4	term 5
doc 1	1	0	1	0	3
doc 2	0	2	4	0	1

$$cos(\vec{d_1}, \vec{d_2}) = \underbrace{(\vec{d_1} \cdot \vec{d_2})}_{(||\vec{d_1}||)(||\vec{d_2}||)} \xrightarrow{\sum_{t} n(t, d_1)n(t, d_2)}_{t}$$

$$\sqrt{\sum_{t} n(t, d_1)^2} \qquad \sqrt{\sum_{t} n(t, d_2)^2}$$

Example

	term 1	term 2	term 3	term 4	term 5
doc 1	1	0	1	0	3
doc 2	0	2	4	0	1

Geometric Interpretation

	term 1	term 2
doc 1	1	0
doc 2	0	2
uoc 2	U	

Geometric Interpretation

	term 1	term 2
doc 1	4	2
doc 2	1	3

Geometric Interpretation

	term 1	term 2
doc 1	1	2
doc 2	2	4

Exercise

- Task 2

Naive Bayes

Naive Bayes

Naive Bayes

- Document is a sequence of terms

$$d = \langle t_1, \dots, t_{|d|} \rangle$$
$$P(c|d) \propto P(c) \prod_{i=1}^{|d|} P(t_i|c)$$

- Document is a bag of terms

$$P(c|d) \propto P(c) \prod_{t \in d} P(t|c) \xrightarrow{\text{$n(t,d)$}} \rightarrow \text{Number of times t}$$
 occurs in d

Naive Bayes

- Prior probability
 - Relative frequency of class c in the training data

Naive Bayes

- Term probability
 - Multinomial distribution is a natural way to model distributions over frequency vectors
 - Terms occur zero or more times

Naive Bayes

- Term probability
 - Multinomial distribution is a natural way to model distributions over frequency vectors
 - Terms occur zero or more times

$$P(c|d) \propto P(c) \prod_{t \in d} \underbrace{P(t|c)^{n(t,d)}}_{\text{Relative frequency of the term in the class}}$$
 What if this probability is zero?
$$\frac{n(t,c)}{\sum_{t'} n(t',c)}$$

Naive Bayes

- Term probability
 - Multinomial distribution is a natural way to model distributions over frequency vectors
 - Terms occur zero or more times

$$P(c|d) \propto P(c) \prod_{t \in d} P(t|c)^{n(t,d)}$$
 Size of the vocabulary (number of distinct terms)
$$n(t,c) + 1$$

$$\sum_{t'} n(t',c) + |V|$$

Example

	docID		target					
	docid	chinese	beijing	shanghai	macao	tokyo	japan	(in China?)
	1	2	1					Yes
training	2	2		1				Yes
set	3	1			1			Yes
	4	1				1	1	No
test set	5	3				1	1	?

Probability of Yes class

P(Yes) * P(chinese|Yes)^3 * P(tokyo|Yes) * P(japan|Yes)

Probability of No class

 $P(No) * P(chinese|No)^3 * P(tokyo|No) * P(japan|No)$

Example

class	N _c				n(t,c)			
Class	INC	chinese	beijing	shanghai	macao	tokyo	japan	SUM
c=Yes	3	5	1	1	1			8
c=No	1	1				1	1	3

Probability of Yes class

 $P(Yes) * P(chinese|Yes)^3 * P(tokyo|Yes) * P(japan|Yes)$

3/4 [(5+1)/(8+6)]^3=0.078 (0+1)/(8+6)=0.071 (0+1)/(8+6)=0.071 **=0.0003**

Probability of No class

P(No) * P(chinese|No)^3 * P(tokyo|No) * P(japan|No)

1/4 [(1+1)/(3+6)]^3=0.011 (1+1)/(3+6)=0.22 (1+1)/(3+6)=0.22

=0.0001

Exercise

- Task 3

Practical Issue

- Multiplying many small probabilities can result in numerical underflows
- In practice, log-probabilities are computed
 - Log is a monothonic transformation, does not change the outcome

$$P(c|d) \propto P(c) \prod_{t \in d} P(t|c)^{n(t,d)}$$

$$\log P(c|d) \propto \log P(c) + \sum_{t} n(t,d) \log P(t|c)$$

Classification in Search Engines

- SPAM detection
- Sentiment analysis
 - Movie or product reviews as positive/negative
- Online advertising
- Vertical search

Text Clustering

Text Clustering

- As before, but using the notion of document similarity (Jaccard or cosine similarity)
- K-Means Clustering
- Hierarchical Agglomerative Clustering

K-Means Clustering

- 1. Select K points as initial centroids
- repeat
 - 3. Form *K* clusters by assigning each point to its closest centroid
 - 4. Recompute the centroid of each cluster
- 5. until centroids do not change

K-Means Clustering

- 1. Select K points as initial centroids
- 2. repeat
 - 3. Form *K* clusters by assigning each point to its closest centroid
 - 4. Recompute the centroid of each cluster
- 5. until centroids do not change

er

Using Jaccard or cosine similarity

K-Means Clustering

- 1. Select K points as initial centroids
- 2. repeat
 - Form K clusters by assigning each point to its closest centroid
 - 4. Recompute the centroid of each cluster
- 5. until centroids do not change

Taking the average term frequencies

Hierarchical Agglomerative Clustering

- 1. Compute the proximity matrix
- 2. repeat
 - 3. Merge the closest two clusters
 - 4. Update the proximity matrix
- 5. until only one cluster remains

Hierarchical Agglomerative Clustering

- 1. Compute the proximity matrix
- 2. repeat
 - 3. Merge the closest two clusters
 - 4. Update the proximity matrix
- 5. until only one cluster remains

Using Jaccard or cosine similarity

Hierarchical Agglomerative Clustering

- 1. Compute the proximity matrix
- 2. repeat
 - 3. Merge the closest two clusters
 - 4. Update the proximity matrix
- 5. until only one cluster remains

Taking the sum of term frequencies

Exercise

- Tasks 4 and 5