Optimisation

Janvier 2020

Documents autorisés

Toute affirmation intuitive non argumentée sera à éviter

Exercice 1. Multiplicateurs de Lagrange, cas égalité. 6 points

On considère les deux problèmes à deux variables suivants :

$$\mathcal{P}_1$$
: $\min_{x_1=0} (x_1-1)^2 + 2(x_2-1)^2$ et \mathcal{P}_2 : $\min_{x_1^2=0} (x_1-1)^2 + 2(x_2-1)^2$

- (1) Dessiner pour chaque problème les lignes de niveau de la fonction et représenter les contraintes. Chercher graphiquement la solution de ces problèmes.
- (2) Démontrer l'existence de solution pour ces deux problèmes.
- (2) Former le Lagrangien pour chacun de ces problèmes. Appliquer la méthode des multiplicateurs de Lagrange pour retrouver les solutions obtenues en (1).

Exercice 2. Un problème aux valeurs propres. 6 points

Soit A une matrice symétrique et $y \in \mathbb{R}^2$ tel que $||y||_2 = 1$. On s'intéresse à

$$\begin{cases} \min & \frac{1}{2}x^TAx. \\ y^Tx = 0 \end{cases}$$

- (1) Ce problème admet-il une solution?
- (2) Ecrire le Lagrangien associé à ce problème.
- (3) Appliquer les conditions d'optimalité KKT au 1er ordre.
- (4) Montrer que toute solution du problème est un vecteur propre associé à la matrice $(I-yy^T)A$.
- (5) Bonus : traiter le cas où A n'est pas symétrique.

Problème. Résolution par pénalisation extérieure. 10 points

Soit f une fonction de \mathbb{R}^d dans \mathbb{R} continue et dérivable sur \mathbb{R}^d . Soit C un sous-ensemble fermé non vide de \mathbb{R}^d .

On appelle pénalité extérieure (PE) associée à C toute fonction p de \mathbb{R}^d dans \mathbb{R} vérifiant les propriétés suivantes

- i) p est continue sur \mathbb{R}^d
- ii) $\forall x \in \mathbb{R}^d, \ p(x) \ge 0$
- iii) $p(x) = 0 \iff x \in C$.

Pour $n \in \mathbb{N}$ on définit sur \mathbb{R}^d la fonction Φ_n par $\Phi_n(x) = f(x) + n p(x)$, et on suppose dans cet exercice que $\exists n_0 \in \mathbb{N}, \forall x \in \mathbb{R}^d, \lim_{\|x\|_2 \to +\infty} \Phi_{n_0}(x) = +\infty$.

On s'intéresse aux problèmes d'optimisation

$$\mathcal{P}$$
: $\min_{x \in C} f(x)$ et \mathcal{P}_n : $\min_{x \in \mathbb{R}^d} \Phi_n(x)$.

On désire étudier le problème de l'approximation de minima sous contrainte (s'ils existent) de \mathcal{P} par la suite des minima sans contrainte de \mathcal{P}_n (à nouveau, s'ils existent).

- (1) On considère $p_1(x) = (\|x\|_2^2 1)^2$, $p_2(x) = \|g(x)\|_2^2$ (ici, g est une application continue de \mathbb{R}^d dans \mathbb{R}^m), $p_3 = \|\max(-x, 0)\|_2^2$ (ici, $\max(-x, 0)$ est le vecteur de composantes $\max(-x, 0)$). Ces fonctions sont-elles des PE. Dans l'affirmative, préciser l'ensemble C associé.
- (2) Montrer que $\forall n \geq n_0$, $\lim_{\|x\|_2 \to +\infty} \Phi_n(x) = +\infty$. En déduire que l'on peut définir une suite $(x_n)_{n \geq n_0}$ dont le terme de rang n, x_n , est un minimum sur \mathbb{R}^d de la fonction Φ_n .
- (3) Montrer que $\forall x \in C$, $\forall n \geq n_0$, $\Phi_{n_0}(x_n) \leq \Phi_n(x_n) \leq f(x)$. En déduire que la suite $(x_n)_{n \geq n_0}$ est bornée.
- (4) Montrer que la suite $(x_n)_{n\geq n_0}$ admet au moins une valeur d'adhérence. On appelle alors $(y_j)_{j\in J}$ une sous-suite de $(x_n)_{n\geq n_0}$ convergent vers une telle valeur d'adhérence noté \bar{x} . On pose notamment $y_j = x_{\theta(j)}$, où θ est la fonction strictement croissante de J dans \mathbb{N} permettant d'extraire la sous-suite.
- (5) Montrer que pour tout $x \in C$, $\Phi_{n_0}(y_j) + (\theta(j) n_0)p(y_j) = \Phi_{\theta(j)}(y_j) \leq f(x)$, puis que

$$p(y_j) \le \frac{f(x) - \inf_{z \in \mathbb{R}^n} \Phi_{n_0}(z)}{\theta(j) - n_0}.$$

En déduire que toute valeur d'adhérence \bar{x} de $(x_n)_{n\geq n_0}$, on a $p(\bar{x})=0$, et puis que $\bar{x}\in C$.

(6) Prendre $x \in C$ et rappeler pourquoi $\forall j \in \mathbb{N}, f(y_j) \leq f(x)$. En déduire que $\forall x \in C$, $f(\bar{x}) \leq f(x)$. Conclure grâce aux questions précédentes que tout point d'accumulation de la suite $(x_n)_{n\geq n_0}$ est une solution de \mathcal{P} .