Data Analytics EEE 4774 & 6777

Module 4 - Classification

Generative Models

Spring 2022

Classification Problem & Approaches Forum 1 Model

1. Generative Models: (Likelihood, Prior, Posterior) modeling to first obtain

likelihood and prior, and then posterior was $p(C_n|x_n) = \max_{C_n} \frac{p(x_n|C_n)p(C_n)}{p(x_n)}$

2. Discriminative Models: (Posterior) modeling to directly discriminate classes

poterior
$$p(C_n|x_n) = y(x_n) = f(\mathbf{w}^T x_n + w_0)$$

Generative Models

$$p(C_n|\mathbf{x}_n) = \frac{p(\mathbf{x}_n|C_n)p(C_n)}{p(\mathbf{x}_n)}$$

$$\max p(C_n|\mathbf{x}_n) = \max p(\mathbf{x}_n|C_n) \ p(C_n)$$

e.g.,

→ Gaussian mixture model, Naïve Bayes,

Deep Generative Models:

Variational autoencoder (VAE), Generative adversarial network (GAN)

Naïve Bayes

• Assumption: Conditioned on the class C_n input variables $x_{n1}, ..., x_{nd}$ are independent

$$p(\mathbf{x}_n|C_n) = \prod_{i=1}^{d} p(\mathbf{x}_{ni}|C_n)$$

$$p(\boldsymbol{x}_n) \neq \prod_{i=1}^d p(x_{ni})$$

- Simplified analysis: Univariate models instead of multivariate (esp. for large d)
- Limitation: Assumption does not hold in general

Example: Burglary-Alarm-Earthquake

Sally's burglar Alarm is sounding.

Has she been Burgled, or was the alarm triggered by an Earthquake?

Bayesian Model Causal relationship between observed and latent variables

Binary r.v.s

Alarm, $An \in \{0,1\}$

Good: Compute posterier P(B|A) to decide whether BED P(B|A,E) whether BED ar BEI

Training & Model Building

Fit a Bernoulli distribution for each alarm case (4 cases) using training data

noulli distribution for each alarm case (4 cases) using training data					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Alarm = 1	Burglar	Earthquake	training	
	0.9999	1	1	2 data	
	0.99	1	0		
	0.99	0	1		
	0.0001	0	0		

Prior probabilities for Burglary and Earthquake estimated from training data

$$p(B = 1) = 0.01$$
 and $p(E = 1) = 0.000001$

Testing
$$p(B=1|A=1,E=0) = \frac{p(B=1,A=1,E=0)}{\sum_{B} p(B,A=1,E=0)} \approx 0.99$$

$$p(B=1|A=1,E=0) = \frac{p(B=1,A=1,E=0)}{\sum_{B} p(B,A=1,E=0)} \approx 0.99$$

$$p(B=1|A=1,E=1) = \frac{p(B=1,A=1,E=1)}{\sum_{B} p(B,A=1,E=1)} \approx 0.01$$

$$p(B = 1|A = 1) = p(B = 1|A = 1, E = 1)p(E = 1)$$

 $+p(B = 1|A = 1, E = 0)p(E = 0)$

 ≈ 0.99

Earthquake explains away the fact that alarm is ringing.