Assignment 4+Smoothing (SNLP tutorial 4)

Vilém Zouhar, Awantee Deshpande, Julius Steuer

25th, 27th May 2021

Overview

- Task, Metrics
- Differential Privacy
- Homework

Assignment 4

- Exercise 1: Huffman encoding
- Exercise 2: Conditional entropy of DNA
- Bonus: Huffman encoding adaptations

OOV words

Corpus

• Train set:

Test set:

OOV words

Corpus

- Train set:
 - Test set:

Accumulate counts

Vilém Zouhar, Awantee Deshpande, Julius Steuer

OOV words

Corpus

- Train set:
- Test set:

Accumulate counts

- 6 2 5 3 2

OOV words

- What about and •?
- OOV rate: 2 + 1/4 + 2 + 2 + 1 + 1 + 1 = 27%
- Solutions? character-level subword units.

Additive smoothing (add- α -smoothing)

Unigrams

Add zero counts to frequency table

ullet Increase all counts by lpha=1

• Divide by N = 22

Perplexity

• Relative frequencies on test corpus:

Additive smoothing (add- α -smoothing)

Unigrams

- Add zero counts to frequency table

- $6 \geq 5 \qquad 3 \qquad 2 \qquad \bigcirc 0$

- ullet Increase all counts by lpha=1
- 6+1 > 5+1 3+1 2+1 0+1

- Divide by N = 22
- 0.32 \geqslant 0.27 \triangleright 0.18 $\stackrel{\triangleright}{\triangleright}$ 0.13 $\stackrel{\bigcirc}{\square}$ 0.05

Perplexity

• Relative frequencies on test corpus:

 $PP = 2^{(0.33 \cdot 0.32 + 0.27 \cdot 0.17 + 0.18 \cdot 0.17 + 0.13 \cdot 0.17 + 2 \cdot (0.05 \cdot 0.08))} = 1.4$

Recall the additive smoothing formula for unigrams:

$$p_{smoothed}(w_i) = \frac{C(w_i) + \alpha}{N + \alpha |V|}$$
(1)

Recall the additive smoothing formula for unigrams:

$$p_{smoothed}(w_i) = \frac{C(w_i) + \alpha}{N + \alpha |V|} \tag{1}$$

• What is *N*? What is *V*?

Remember from Assignment 2 that:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$
(2)

Recall the additive smoothing formula for unigrams:

$$p_{smoothed}(w_i) = \frac{C(w_i) + \alpha}{N + \alpha |V|}$$
(1)

• What is *N*? What is *V*?

Remember from Assignment 2 that:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$
(2)

- Smoothe the bigram count: $C(w_{i-1}, w_i) \rightarrow C(w_{i-1}, w_i) + \alpha$
- Normalization: $p_{smoothed}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i) + \alpha}{?}$

Additive smoothing: Bigrams: bigram counts

• Collect bigram counts & condtional probabilities for history A

Bigram	$C(w_i, w_{i-1})$	$C(w_{i-1})$	$\frac{C(w_{i-1},w_i)}{C(w_{i-1})}$
AE	3	6	1/2
AA	2	6	1/3
AB	1	6	1/6

Additive smoothing: Bigrams: add alpha

• We encounter an unknown bigram AF

Bigram	$C_{\alpha}(w_{i-1},w_i)$	$C(w_{i-1})$	$rac{C_{lpha}(w_{i-1},w_i)}{C(w_{i-1})}$
AE	3+1	6	4/6
AA	2 + 1	6	3/6
AB	1 + 1	6	2/6
ightarrow AF	0 + 1	6	1/6

Additive smoothing: Bigrams: add alpha

• We encounter an unknown bigram AF

Bigram	$C_{\alpha}(w_{i-1},w_i)$	$C(w_{i-1})$	$rac{C_{lpha}(w_{i-1},w_i)}{C(w_{i-1})}$
AE	3+1	6	4/6
AA	2+1	6	3/6
AB	1 + 1	6	2/6
\rightarrow AF	0 + 1	6	1/6

• Not a probability distribution!

Additive smoothing: Bigrams: add alpha

• We encounter an unknown bigram AF

Bigram	$C_{\alpha}(w_{i-1},w_i)$	$C(w_{i-1})$	$rac{C_{lpha}(w_{i-1},w_i)}{C(w_{i-1})}$
AE	3+1	6	4/6
AA	2 + 1	6	3/6
AB	1 + 1	6	2/6
ightarrow AF	0 + 1	6	1/6

- Not a probability distribution!
- Solution: We need to adjust the divisor a tiny bit. But how tiny?

- add $\alpha \cdot 4$ to history count!
- Pretend that we have seen the history |V| = 4 times more.

- add $\alpha \cdot 4$ to history count!
- Pretend that we have seen the history |V| = 4 times more.

Bigram	$C_{\alpha}(w_{i-1}) + \alpha V $	$rac{C_{lpha}(w_{i-1},w_i)}{C(w_{i-1})+lpha V }$
AE	6 + 4	4/10
AA	6 + 4	3/10
AB	6 + 4	2/10
\rightarrow AF	6 + 4	1/10

- add $\alpha \cdot 4$ to history count!
- Pretend that we have seen the history |V| = 4 times more.

Bigram	$C_{\alpha}(w_{i-1}) + \alpha V $	$rac{C_{lpha}(w_{i-1},w_i)}{C(w_{i-1})+lpha V }$
AE	6 + 4	4/10
AA	6 + 4	3/10
AB	6 + 4	2/10
\rightarrow AF	6 + 4	1/10

• Now the probabilities sum up to 1: 4/10 + 3/10 + 2/10 + 1/10 = 1

- We encounter another n-gram AD
- What is |V| now?

- We encounter another n-gram AD
- What is |V| now?

Bigram	$C_{\alpha}(w_{i-1}) + \alpha V $	$rac{C_{lpha}(w_{i-1},w_i)}{C(w_{i-1})+lpha V }$
AE	6 + 5	4/11
AA	6 + 5	3/11
AB	6 + 5	2/11
ightarrow AF	6 + 5	1/11
ightarrow AD	6 + 5	1/11

- We encounter another n-gram AD
- What is |V| now?

Bigram	$C_{\alpha}(w_{i-1}) + \alpha V $	$rac{C_{lpha}ig(w_{i-1},w_iig)}{Cig(w_{i-1}ig)+lpha V }$
AE	6 + 5	4/11
AA	6 + 5	3/11
AB	6 + 5	2/11
ightarrow AF	6 + 5	1/11
$\rightarrow AD$	6 + 5	1/11

- *C*(*A*) is constant, unsmoothed count
- Probabilities sum up to 1: 4/11 + 3/11 + 2/11 + 1/11 + 1/11 = 1

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(3)

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(3)

• What is V?

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(3)

- What is V?
- |V| = Number of bigram types starting with w_{i-1}

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(3)

- What is V?
- |V| = Number of bigram types starting with w_{i-1}

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V_{(w_{i-1}, \bullet)}|}$$
(4)

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(3)

- What is V?
- |V| = Number of bigram types starting with w_{i-1}

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V_{(w_{i-1}, \bullet)}|}$$
(4)

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(5)

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(6)

ullet We already now the shared (train + test) vocabulary V

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(6)

- ullet We already now the shared (train + test) vocabulary V
- $V_{(A,\bullet)}$ is then $AA, AB, AC, AD, AE, AF \Rightarrow |V_{(A,\bullet)}| = 6 = |V|$

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(6)

- ullet We already now the shared (train + test) vocabulary V
- $V_{(A,\bullet)}$ is then $AA, AB, AC, AD, AE, AF \Rightarrow |V_{(A,\bullet)}| = 6 = |V|$
- We find that the formula we found is identical to the one on the lecture slides!

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha|V|}$$
(7)

Cross-Validation

TODO

Estimating LOO Parameters

Count Trees

• remove infrequent nodes

TODO

Privacy

TODO differential privacy

Resources

- UdS SNLP Class, WSD: https://teaching.lsv.uni-saarland.de/snlp/
- Classical Statistical WSD: https://www.aclweb.org/anthology/P91-1034.pdf
- on-gram count trees: http://ssli.ee.washington.edu/WS07/notes/ngrams.pdf