```
In [1]:
```

```
from UniAnalysis import Univariate
import pandas as pd
```

In [2]:

```
obj=Univariate()
```

In [3]:

```
dataset=pd.read_csv("Placement.csv")
```

In [4]:

```
qual,quan=obj.QuanQual(dataset)
```

In [5]:

```
qual
```

Out[5]:

```
['gender',
  'ssc_b',
  'hsc_b',
  'hsc_s',
  'degree_t',
  'workex',
  'specialisation',
  'status']
```

In [6]:

quan

Out[6]:

```
['sl_no', 'ssc_p', 'hsc_p', 'degree_p', 'etest_p', 'mba_p', 'salary']
```

In [7]:

obj.AnalysisTable(dataset,quan)

Out[7]:

	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
Mean	67.3034	66.3332	66.3702	72.1006	62.2782	198702
Median	67	65	66	71	62	240000
Mode	62	63	65	60	56.7	0
25th-Percentile	60.6	60.9	61	60	57.945	0
50th-Percentile	67	65	66	71	62	240000
75th-Percentile	75.7	73	72	83.5	66.255	282500
90th-Percentile	82	79	77.12	92	70.678	356000
99th-Percentile	87	91.86	83.86	97	76.1142	629000
100th-Percentile	89.4	97.7	91	98	77.89	940000
IQR	15.1	12.1	11	23.5	8.31	282500
IQR*1.5	22.65	18.15	16.5	35.25	12.465	423750
Lesser Boundary	37.95	42.75	44.5	24.75	45.48	-423750
Greater Boundary	98.35	91.15	88.5	118.75	78.72	706250
Min value	40.89	37	50	50	51.21	0
Max value	89.4	97.7	91	98	77.89	940000
Outlier	Not Present	Present	Present	Not Present	Not Present	Present

Here outlier Present does not make any big difference so no worries about Outliers row

In [8]:

obj.frequency(dataset,"hsc_p")

Out[8]:

	UniqueValues	Frequency	Relative-Freq	Cumulative-Freq
0	37.00	1	1.030928	1.030928
1	39.00	1	1.030928	2.061856
2	40.00	1	1.030928	3.092784
3	42.00	1	1.030928	4.123711
4	42.16	1	1.030928	5.154639
92	90.90	1	1.030928	217.525773
93	91.00	1	1.030928	218.556701
94	92.00	1	1.030928	219.587629
95	97.00	1	1.030928	220.618557
96	97.70	1	1.030928	221.649485

97 rows × 4 columns

In []: