UNIVERSIDAD NACIONAL DE LA MATANZA

DEPARTAMENTO DE INGENIERÍA E INVESTIGACIONES TECNOLÓGICAS

INGENIERIA EN INFORMATICA

BASE DE DATOS

Práctica de Transacciones

Jefe de Cátedra: Ing. Verónica Ichazo

Docentes a cargo de curso:

Ing. Alfonso Palomares Ing. Natalia Crespo Ing. Guillermo Giannotti

Docentes a cargo de práctica:

Ing. Matías López Ing. Fernando Ybarra Ing. Javier Rebagliatti Ing. Sebastián Deuteris Ing. Hernán Jalil

EJERCICIO 1

Realice el Grafo de Precedencia. Indique si la planificación es serializable. Justifique.

	Transacción 1	Transacción 2	Transacción 3	Transacción 4
1				LL(A)
2	LE(B)			
3			LL(C)	
4			LL(B)	
5		LE(B)		
6		LL(A)		
7				LE(B)
8	LL(A)			

EJERCICIO 2

Dada la siguiente ejecución entrelazada, indique si es serializable. Justificar.

	Transacción A	Transacción B	Transacción C
1	LL(E)		
2			LL(E)
3	LE(D)		
4			LE(F)
5		LL(F)	
6			LE(D)
7		LE(E)	

EJERCICIO 3

Indique si el siguiente plan es serializable por conflictos: Arme el grafo de precedencia.

	T1	T2	Т3
1		LL(Z)	

2		LL(Y)	
3		LE(Y)	
4			LL(Y)
5			LL(Z)
6	LL(X)		
7	LE(X)		
8			LE(Y)
9			LE(Z)
10		LL(X)	
11	LL(Y)		
12	LE(Y)		
13		LE(X)	

EJERCICIO 4

Indique si el siguiente plan es serializable por conflictos: Arme el grafo de precedencia.

	T1	T2	Т3
1			LL(Y)
2			LL(Z)
3	LL(X)		
4	LE(X)		
5			LE(Y)
6			LE(Z)
7		LL(Z)	
8	LL(Y)		
9	LE(Y)		
10		LL(Y)	
11		LE(Y)	
12		LL(X)	

13		LE(X)	
----	--	-------	--

EJERCICIO 5

Realice el Grafo de Precedencia completo e indique si la planificación es serializable. Justifique.

	T1	T2	T3	T4
1				LL(A)
2	LL(A)			
3	LL(C)			
4	LE(A)			
5		LL(B)		
6		LL(C)		
7		LE(D)		
8				LL(F)
9				LE(F)
10			LL(A)	
11			LE(B)	
12			LL(C)	
13			LE(F)	
14		LL(C)		
15		LL(F)		
16		LE(C)		
17				LL(D)
18				LL(F)
19				LE(A)

EJERCICIO 6

Realice el Grafo de Precedencia completo e indique si la planificación es serializable. Justifique.

	T1	T2	Т3	T4
1				LL(A)
2				LI(A)
3	LL(A)			
4	LL(C)			

5	LE(A)			
6	LI(A)			
7	LI(C)			
8		LL(B)		
9		LL(C)		
10		LE(D)		
11		LI(D)		
12		LI(C)		
13		LI(B)		
14				LL(F)
15				LE(F)
16				LI(F)
17			LL(A)	
18			LE(B)	
19			LL(C)	
20			LE(F)	
21			LI(F)	
22			LI(C)	
23			LI(B)	
24			LI(A)	
25		LL(C)		
26		LL(F)		
27		LE(C)		
28		LI(C)		
29		LI(F)		
30				LL(D)
31				LL(F)
32				LE(A)
33				LI(A)
34				LI(F)
35				LI(D)

Ejercicio 7

Dadas las siguientes dos transacciones concurrentes, indique con cuál de las tres opciones de niveles de aislamiento se produciría Deadlock.

Transacción 1	Transacción 2
SET TRANSACTION ISOLATION LEVEL;	DN
LL V LL,	SET TRANSACTION ISOLATION LEVEL;
BEGIN TRANSACTION;	BEGIN TRANSACTION;

SELECT *
FROM Producto

WHERE precio > 30;

SELECT *

FROM Empleado WHERE salario > 20000;

UPDATE Empleado

SET salario = salario * 1.15;

INSERT INTO Producto (codigo, descripcion, precio) VALUES (223, 'Pepsi 3 litros', 42);

COMMIT TRANSACTION;

COMMIT TRANSACTION:

Opciones de aislamiento:

	T1	T2
Opcion 1	Repeatable read	Serializable
Opcion 2	Serializable	Repeatable read
Opcion 3	Repeatable read	Repeatable read

Ejercicio 8

Dadas las siguientes transacciones concurrentes, explique qué problema se presenta y en cuál de las transacciones. Luego indique qué cambio haría (solo uno) para solucionarlo.

<u>Transacción 1</u> <u>Transacción 2</u> <u>Transacción 3</u>

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

BEGIN TRANSACTION;

BEGIN TRANSACTION;

BEGIN TRANSACTION;

SELECT *

FROM Producto

WHERE precio_venta > precio_costo;

SELECT *

FROM Producto

WHERE precio_venta < precio_costo;

INSERT INTO Producto

(cod_prod, nom_prod,

precio_costo, precio_venta)

VALUES (101,'Pringles', 35,

48);

COMMIT TRANSACTION;

SELECT *

FROM Producto

WHERE precio_venta < precio_costo;

COMMIT TRANSACTION;

SELECT *

FROM Producto

WHERE precio_venta > precio_costo;

COMMIT TRANSACTION;

Ejercicio 9

Dadas las siguientes transacciones concurrentes, explique qué problema se presenta y en cuál de las transacciones. Luego indique qué cambio haría (solo uno) para solucionarlo.

<u>Transacción 1</u> <u>Transacción 2</u> <u>Transacción 3</u>

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

SET TRANSACTION

ISOLATION

LEVEL READ COMMITTED;

BEGIN TRANSACTION;

BEGIN TRANSACTION;

BEGIN TRANSACTION;

SELECT count(*)
FROM Cliente
WHERE categoria = 2;

SELECT *

FROM Cliente

WHERE categoría = 5;

UPDATE Cliente SET categoria = 5

WHERE categoria = 4; COMMIT TRANSACTION;

SELECT *

FROM Cliente
WHERE categoría = 5;
COMMIT TRANSACTION;

SELECT count(*)
FROM Cliente
WHERE categoria = 2;
COMMIT TRANSACTION;

Ejercicio 10

1) Dadas las siguientes transacciones:

```
T1:
    begin tran
T1S1          update estudiante set carrera='INGE' where carrera='ING'
    commit tran
    T2:
    begin tran
T2S1     insert into estudiante values(1,'Juan','ING')
```

```
T2S2 insert into estudiante values(2,'Pedro','ING') commit tran
```

Indicar si las siguientes afirmaciones son V ó F y justifique su respuesta:

a) Luego del commit, Juan y Pedro pueden tener diferentes valores en carrera, relativo al momento en que se hayan ejecutado las sentencias.

- b) El proceso provoca Deadlock, ya que no se puede insertar y actualizar en la misma tabla en el mismo momento.
- c) La T1 siempre se queda esperando a que finalice la T2, ya que sin insertar no tendría ninguna fila para poder actualizar.
- d) Esto sólo funcionaria si se utilizara el nivel de Isolation Read Uncommitted.