工业大学 试 券 (A)

本页答题无效

课程名称 概率论与数理统计 学分 3 课程性质:必修 2021~2022 学年第 一 学期 课程代码 1400091B 考试形式:闭卷 专业班级(教学班)

考试日期 2022.1.20

命题教师 集体

系 (所或教研室) 主任审批签名

一、填空题(每小题3分,共15分)

- 1. 设 A, B 是两个事件,且 $P(A) = P(B) = 0.4, P(A|\overline{B}) = 0.5$,则 P(B-A) + P(A-B) =______.
- 2. 设随机变量 $X \sim B(1, 0.5)$, $Y \sim E(1)$, 且 X, Y 相互独立, Z = X + Y ,则 $P\{Z > 0\} =$ _______
- 3. 设随机变量 X 和 Y 独立同分布, $P\{X=k\} = \frac{k+1}{3}$, k=0,1, 则 $P\{X=Y\} = \underline{\hspace{1cm}}$.
- 4. 设随机变量 $X \sim N(1,4)$,则 $E[(X+3)^2] =$ ______.
- 5. 设随机变量 $X \sim P(5)$,由切比雪夫不等式得 $P\{1 < X < 9\} \ge$

二、选择题(每小题3分,共15分)

- 1. 设 (X_1, X_2, X_3) 是取自总体 $X \sim E(\frac{1}{\theta})$ 的简单随机样本,以下 θ 的点估计中,方差最小的的无偏估计是().

 - (A) $\frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$ (B) $\frac{1}{5}X_1 + \frac{2}{5}X_2 + \frac{2}{5}X_3$
 - (C) $\frac{1}{2}X_1 + \frac{1}{2}X_2 + \frac{1}{4}X_3$ (D) $\frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$
- 2. 设随机变量 *X* 的分布律为 $P\{X = i\} = \frac{k}{2^i}, i = 1, 2, \dots, 则 X 取奇数的概率为().$
 - (A) $\frac{2}{3}$ (B) $\frac{3}{4}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$
- 3. 设随机变量 X 和 Y 相互独立,下列结论错误的是(
 - (A) 若 $X \sim B(1, p), Y \sim B(1, q)$, 则 $X + Y \sim B(1, p + q)$
 - (B) 若 $X \sim P(\lambda_1), Y \sim P(\lambda_2)$,则 $X + Y \sim P(\lambda_1 + \lambda_2)$
 - (C) 若 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), \quad \text{则} X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
 - (D) 若 $X \sim \chi^2(m), Y \sim \chi^2(n)$, 则 $X + Y \sim \chi^2(m+n)$
- 4. 设 (X_1, X_2, \dots, X_n) 为来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本. 如果 μ 已知,则 σ^2 的置信度为 $1-\alpha$ 的置信区 间为().
 - (A) $(\frac{(n-1)S^2}{\chi_{\underline{\alpha}}^2(n)}, \frac{(n-1)S^2}{\chi_{\underline{\alpha}}^2(n)})$ (B) $(\frac{(n-1)S^2}{\chi_{\underline{\alpha}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{\underline{\alpha}}^2(n-1)})$
- - (C) $\left(\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\alpha}^{2}(n)}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\alpha}^{2}(n)}\right)$ (D) $\left(\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\alpha}^{2}(n-1)}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\alpha}^{2}(n-1)}\right)$
- **5**. 在假设检验中,下列说法正确的是().
 - (A) 一定会犯第一类错误
- (B) 一定会犯第二类错误
- (C) 可能同时犯两类错误
- (D) 不可能同时犯两类错误

三、(本题满分10分)设有两个盒子内装有同型号的电子元件,已知甲盒中有5个正品和3个次 品; 乙盒中有4个正品和3个次品. 现从甲盒中任取3个元件放入乙盒中, 然后再从乙盒中任取 一个元件.(1)求从乙盒中所取出的一个元件是正品的概率:(2)已知从乙盒中所取出的元件 是正品,求最先从甲盒中取出的3个元件都是正品的概率.

- 四、(本题满分 12 分) 设随机变量 $X \sim \begin{pmatrix} -1 & 0 & 1 \\ & & 1 \\ a & b & \frac{1}{\epsilon} \end{pmatrix}$, 且 $P\{|X|=1\} = P\{X=0\}$.
- (1) 求常数 a, b 的值; (2) 记 Y = |X| + X, 求 Y 的分布函数 $F_v(y)$.
- 五、(本题满分 14 分) 设随机变量 X, Y 独立同分布, 且 $X \sim U[0,1]$, 令 $U = \begin{cases} 1, & X \le 2Y, \\ 0, & X > 2Y, \end{cases} \quad V = \begin{cases} 1, & 2X \le Y, \\ 0, & 2X > Y, \end{cases}$
- (1) 求(U,V)的分布律; (2) 求U和V的相关系数 ρ_{UV} ; (3) 求 $P\{U+V\leq \frac{3}{2}|U=1\}$.
- 六、(本题满分 14 分)设二维随机变量(X,Y)的密度函数为

$$f(x,y) = \begin{cases} 3(x+y), & x \ge 0, y \ge 0, x+y \le 1, \\ 0, &$$
其他.

- (1) 分别求关于 X 和 Y 的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$; (2) 求 $P\{2X + Y \ge 1\}$;
- (3) 用分布函数法求Z = X + Y的密度函数 $f_Z(z)$.
- 七、(本题满分 14 分) 设总体 X 的密度函数为 $f(x,\theta) = \begin{cases} \frac{2\theta^2}{x^3}, & x \geq \theta, \\ 0, & x < \theta, \end{cases}$

于零, (X_1, X_2, \dots, X_n) 为来自总体 X 的简单随机样本

- (1) 求 θ 的矩估计量 $\hat{\theta}_M$; (2) 求 θ 的极大似然估计量 $\hat{\theta}_L$.
- 八、(本题满分 6 分)设 $(X_1, X_2, \dots, X_n, X_{n+1})$ 是来自总体 $N(\mu, \sigma^2)$ 的简单随机样本.记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$, 试求常数c , 使得 $c \frac{X_{n+1} - \overline{X}}{S}$ 服从t分布,并指出分布 的自由度.