模块三 几何问题篇

第1节射影定理、几何计算(★★★)

内容提要

1. 射影定理: 在 ΔABC 中, $\begin{cases} a = b\cos C + c\cos B \\ b = a\cos C + c\cos A. \\ c = a\cos B + b\cos A \end{cases}$

提醒:大题不建议直接使用射影定理,可先证明再使用,下面给出 $a=b\cos C+c\cos B$ 的证明.

因为 $\sin A = \sin[\pi - (B+C)] = \sin(B+C) = \sin B \cos C + \cos B \sin C$,所以 $a = b \cos C + c \cos B$.

上式的图形解释如下图,另外两个式子可类似证明,本节后续解答过程若用到此定理,不再证明.

$$a = CD - BD = b\cos C - (-c\cos B) = b\cos C + c\cos B$$

2. 几何计算: 遇到不便于直接解的解三角形问题,往往可设长度或角度为参数,用设的参数表示目标,或通过分析图形的几何关系来建立方程,求解问题.

典型例题

类型 I:射影定理的应用

【例 1】 $\triangle ABC$ 的内角 $A \setminus B \setminus C$ 的对边分别为 $a \setminus b \setminus c$, $2b\cos B = a\cos C + c\cos A$,则 B =_____.

解法 1: 所给等式每项都有齐次的边,可边化角分析,

因为 $2b\cos B = a\cos C + c\cos A$, 所以 $2\sin B\cos B = \sin A\cos C + \sin C\cos A = \sin(A+C) = \sin(\pi-B) = \sin B$ ①,

又 $0 < B < \pi$, 所以 $\sin B > 0$, 故在式①中约去 $\sin B$ 可得 $\cos B = \frac{1}{2}$, 所以 $B = \frac{\pi}{3}$.

解法 2: 看到所给等式中的 $a\cos C + c\cos A$, 想到射影定理,

由射影定理, $a\cos C + c\cos A = b$, 代入 $2b\cos B = a\cos C + c\cos A$ 可得 $2b\cos B = b$,

所以 $\cos B = \frac{1}{2}$,结合 $0 < B < \pi$ 知 $B = \frac{\pi}{3}$.

答案: $\frac{\pi}{3}$

【**反思**】出现 $a\cos B + b\cos A$, $a\cos C + c\cos A$, $b\cos C + c\cos B$ 这些结构,除了常规的边化角、角化边的处理方法外,还可以考虑用射影定理来速解.

【变式】在 ΔABC 中,角A,B,C所对的边分别为a,b,c,且 $a=b\cos C+\sqrt{3}c\sin B$,则B=______.

解法 1: 所给等式每一项都有齐次的边,可考虑边化角,

因为 $a = b\cos C + \sqrt{3}c\sin B$,所以 $\sin A = \sin B\cos C + \sqrt{3}\sin C\sin B$ ①,

注意到右侧有 $\sin B\cos C$,故拆左侧的 $\sin A$,可进一步化简,

代入式①得: $\sin B \cos C + \cos B \sin C = \sin B \cos C + \sqrt{3} \sin C \sin B$, 所以 $\cos B \sin C = \sqrt{3} \sin C \sin B$ ②,

因为 $0 < C < \pi$,所以 $\sin C > 0$,在式②中约去 $\sin C$ 可得 $\cos B = \sqrt{3} \sin B$,故 $\tan B = \frac{\sqrt{3}}{3}$,

又 $0 < B < \pi$,所以 $B = \frac{\pi}{6}$.

解法 2: 右侧有 $b\cos C$,若将左侧的a用射影定理代换掉,可抵消一部分,

由射影定理, $a = b\cos C + c\cos B$,代入题干所给等式可得 $b\cos C + c\cos B = b\cos C + \sqrt{3}c\sin B$,

所以
$$c\cos B = \sqrt{3}c\sin B$$
,故 $\tan B = \frac{\sqrt{3}}{3}$,又 $0 < B < \pi$,所以 $B = \frac{\pi}{6}$.

答案: $\frac{\pi}{6}$

【反思】不一定非要出现 $b\cos C + c\cos B$ 这种整体结构才能用射影定理,有时看到 $b\cos C$ 或 $c\cos B$ 这种局部结构,也能用射影定理速解问题.

类型II:几何综合计算 《一数• 高考数学核心方法》

【例 2】在 $\triangle ABC$ 中, $B = \frac{\pi}{4}$, BC 边上的高等于 $\frac{1}{3}BC$,则 $\cos A = ($

(A)
$$\frac{3\sqrt{10}}{10}$$
 (B) $\frac{\sqrt{10}}{10}$ (C) $-\frac{\sqrt{10}}{10}$ (D) $-\frac{3\sqrt{10}}{10}$

解析: 题干涉及 BC 边上的高, 先画出图形, 分析几何关系,

如图, $B = \frac{\pi}{4} \Rightarrow \Delta ABD$ 为等腰直角三角形 $\Rightarrow AD = BD$,又 BC 边上的高 $AD = \frac{1}{3}BC$,故 CD = 2AD ,

分析图形可知所有线段的长都能用 AD 来表示,故将其设为 x,

设
$$AD = x$$
,则 $BD = x$, $CD = 2x$, $AB = \sqrt{2}x$, $AC = \sqrt{AD^2 + CD^2} = \sqrt{5}x$, $BC = 3x$,

所以
$$\cos A = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC} = \frac{2x^2 + 5x^2 - 9x^2}{2\sqrt{2}x \cdot \sqrt{5}x} = -\frac{\sqrt{10}}{10}$$

答案: C

【**反思**】对于几何计算问题,当出现未知长度或角度时,可以设出对应边长或者角度作为参数,再把其它量用参数表示,最后利用几何关系算出要求的几何问题.

【变式1】如图,半径为1的扇形 OPQ 的圆心角为 $\frac{\pi}{3}$,点 C 在劣弧 PQ 上运动, ABCD 是扇形的内接矩形, 则矩形 ABCD 面积的最大值为 .

解析: 矩形 ABCD 的面积由点 C 的位置决定,而点 C 的位置由 $\angle POC$ 决定,故可引入 $\angle POC$ 为变量,

设
$$\angle POC = \alpha(0 < \alpha < \frac{\pi}{3})$$
,则 $BC = OC \cdot \sin \alpha = \sin \alpha$, $AD = BC = \sin \alpha$, $OB = OC \cdot \cos \alpha = \cos \alpha$,

$$OA = \frac{AD}{\tan \angle AOD} = \frac{\sin \alpha}{\tan \frac{\pi}{3}} = \frac{\sqrt{3}}{3} \sin \alpha , \quad \text{fill } AB = OB - OA = \cos \alpha - \frac{\sqrt{3}}{3} \sin \alpha ,$$

故矩形的面积
$$S = AB \cdot BC = (\cos \alpha - \frac{\sqrt{3}}{3} \sin \alpha) \sin \alpha = \frac{1}{2} \sin 2\alpha - \frac{\sqrt{3}}{3} \cdot \frac{1 - \cos 2\alpha}{2} = \frac{\sqrt{3}}{3} \sin(2\alpha + \frac{\pi}{6}) - \frac{\sqrt{3}}{6}$$

因为
$$0 < \alpha < \frac{\pi}{3}$$
,所以 $\frac{\pi}{6} < 2\alpha + \frac{\pi}{6} < \frac{5\pi}{6}$,故当 $2\alpha + \frac{\pi}{6} = \frac{\pi}{2}$ 时, S 取最大值 $\frac{\sqrt{3}}{6}$.

答案: $\frac{\sqrt{3}}{c}$

【反思】变量函数思想是求最值的基本思想之一,引入变量的方法不是唯一的,例如本题设的是角度,其 实也可设BC=x,但由此得出的面积表达式较复杂,不易求最值,所以在选取变量时,应预判计算量.

【变式 2】(2021•全国乙卷)魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测 量海岛的高,如图,点 $E \setminus H \setminus G$ 在水平线 $AC \perp DE$ 和 FG 是两个垂直于水平面且等高的测量标杆的高 度,称为"表高",EG称为"表距",GC和 EH都称为"表目距",GC与 EH的差称为"表目距的差", 则海岛的高 AB = ()

$$(C)$$
 表高×表距
表目距的差

解法 1: 为了方便观察, 先把题干涉及到的线段设成字母, 并在图中标注出来,

如图,设表目距CG = x,表目距EH = y,表距EG = z,表高DE = FG = h,

从图形来看,有两组三角形相似,可用相似比建立这些边长的关系,

因为
$$\Delta FGC \hookrightarrow \Delta BAC$$
,所以 $\frac{FG}{AB} = \frac{CG}{AC}$,故 $\frac{h}{AB} = \frac{x}{x+z+AE}$ ①,

四个选项都涉及表目距的差x-y,故将上式变形成" $x=\cdots$ "的形式,用于和接下来的y作差,

所以
$$x = \frac{h \cdot (x + z + AE)}{AB}$$
 ②,

又
$$\Delta DEH$$
 $\hookrightarrow \Delta BAH$,所以 $\frac{DE}{AB} = \frac{EH}{AH}$,从而 $\frac{h}{AB} = \frac{y}{y + AE}$ ③,故 $y = \frac{h \cdot (y + AE)}{AB}$ ④,

所以②-④得:
$$x-y = \frac{h(x+z-y)}{AB}$$
, 故 $AB = \frac{h(x-y+z)}{x-y} = h + \frac{hz}{x-y}$, 即 $AB = 表高 + \frac{表高 \times 表距}{表目距的差}$.

解法 2: 按解法 1 得到式①和式③后,若熟悉等比性质($\frac{a}{b} = \frac{c}{d} = k \Rightarrow k = \frac{a \pm c}{b \pm d}$),则可直接消 AE,

由①和③可得
$$\frac{h}{AB} = \frac{x-y}{(x+z+AE)-(y+AE)} = \frac{x-y}{x+z-y}$$
,

所以
$$AB = \frac{h(x+z-y)}{x-y} = h + \frac{hz}{x-y}$$
,即 $AB = 表高 + \frac{表高 \times 表距}{表目距的差}$.

答案: A

强化训练

- 1. (★) 在 $\triangle ABC$ 中,角 $A \setminus B \setminus C$ 所对的边分别为 $a \setminus b \setminus c$,已知 $b\cos C + c\cos B = 2b$,则 $\frac{a}{b} =$ _____.
- 2. ($\star\star$) 在 ΔABC 中, 已知 $b=\sqrt{3}$, $(3-c)\cos A=a\cos C$,则 $\cos A=$ _____.

答案:
$$\frac{\sqrt{3}}{3}$$

- 3. (★★★) 已知 $\triangle ABC$ 中,AB = AC = 4,BC = 2,D 为 AB 延长线上一点,BD = 2,连接 CD,则 $\triangle BDC$ 的面积是____, $\cos \angle BDC =$ ____.
- 4. $(2022 \cdot 大连期末 \cdot ★★★)如图,小明同学为测量某建筑物 <math>CD$ 的高度,在它的正东方向找到一座建

筑物 AB,高为 12m,在地面上的点 M(B, M, D) 三点共线)处测得楼顶 A、建筑物顶部 C 的仰角分别为 15°和60°,在楼顶 A处测得建筑物顶部 C的仰角为30°,则小明测得建筑物 CD的高度为()(精确到 1m, 参考数据: $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$)

- (A) 42m
- (B) 45m (C) 51m
- (D) 57m

- 5. (★★★) 如图,在 $\triangle ABC$ 中,D 是边 AC 上的点,且 AB = AD, $2AB = \sqrt{3}BD$, BC = 2BD ,则 $\sin C$ 的 值为() (A) $\frac{\sqrt{3}}{3}$ (B) $\frac{\sqrt{3}}{6}$ (C) $\frac{\sqrt{6}}{3}$ (D) $\frac{\sqrt{6}}{6}$

- 6. (2023・河南郑州模拟・★★★) 如图,在 $\triangle ABC$ 中, $AB = AC = \frac{\sqrt{3}}{3}BC$,点 D 在 AB 延长线上,且 $AD = \frac{5}{2}BD$.
 - (1) 求 $\frac{\sin \angle ACD}{\sin \angle BCD}$;
 - (2) 若 $\triangle ABC$ 的面积为 $\sqrt{3}$,求 CD.

- 7. (2023 四川模拟 ★★★★)如图,在扇形 MON 中,ON=3, $\angle MON=\frac{2\pi}{3}$, $\angle MON$ 的平分线交扇形弧于点 P,点 A 是扇形弧 PM 上一点 (不包括端点),过 A 作 OP 的垂线交扇形弧于另一点 B,分别过 A,B 作 OP 的平行线,交 OM,ON 于点 D,C.
- (1) 若 $\angle AOB = \frac{\pi}{3}$, 求AD;
- (2) 设 $\angle AOP = x$, $x \in (0, \frac{\pi}{3})$, 求四边形 ABCD 的面积的最大值.

《一数•高考数学核心方法》