N THE UNITED STATES PATENT AND TRADEMARK OFFICE

La Habilication of

Masafumi HAYASHI et al.

Serial No.: 09/921,005

August 3, 2001 Filed:

For: IMAGE FORMING METHOD

2852 Group Art Unit:

Examiner: Unassigned

CLAIM FOR PRIORITY

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

3

The benefits of the filing dates of the following prior foreign applications filed in the following foreign country/countries is hereby requested for the above-identified application and the prior ty provided in 35 U.S.C. 119 is hereby claimed:

Japanese Patent Appl. 2000-237990 filed on August 7, 2000. Japanese Patent Appl. 2001-110411 filed on April 9, 2001. Japanese Patent Appl. 2001-110412 filed on April 9, 2001.

In support of this claim, a certified copies of said original foreign applications are filed herewith.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. 119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of these documents.

Respectfully submitted,

PARKHURST & WENDEL, L.L.P.

November 13, 2001 Date

Attorney Docket No. DAIN: 645

PARKHURST & WENDEL, L.L.P. 1421 Prince Street, Suite 210 Alexandria, Virginia 22314-2805 Telephone: (703) 739-0220 (rev. 10/97)

Roger W. Parkhurst

Registration No. 25,177

RECEIVEL TC 1700

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 8月 7日

出 願 番 号 Application Number:

特願2000-237990

出 願 人 Applicant(s):

大日本印刷株式会社

RECEIVED NOV 21 2001 TECHNOLOGY CENTER 2800

RECEIVED

APR 2 3 2002

TC 1700

2001年 9月 6日

特許庁長官 Commissioner, Japan Patent Office

特2000-237990

【書類名】

特許願

【整理番号】

P001536

【提出日】

平成12年 8月 7日

【あて先】

特許庁長官殿

【国際特許分類】

G03G 8/00

B41M 7/00

【発明者】

【住所又は居所】

東京都新宿区市谷加賀町一丁目1番1号 大日本印刷株

式会社内

【氏名】

林 雅史

【発明者】

【住所又は居所】

東京都新宿区市谷加賀町一丁目1番1号 大日本印刷株

式会社内

【氏名】

池内 伸穗

【特許出願人】

【識別番号】

000002897

【氏名又は名称】 大日本印刷株式会社

【代表者】

北島 義俊

【代理人】

【識別番号】

100111659

【弁理士】

【氏名又は名称】

金山 聡

【手数料の表示】

【予納台帳番号】

013055

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9808512

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像形成方法、それに使用される保護層転写シート及びその記録物

【特許請求の範囲】

【請求項1】 非銀塩写真方式のカラーハードコピー記録方式を用いて出力した印画物に、基材シート上に少なくとも1層以上からなる熱転写性保護層を剥離可能に設けた保護層転写シートを用いて、印画物と保護層転写シートを重ね、印画物の画像上に、保護層を少なくとも印画された部分を覆うように熱転写し、その後に基材シートを剥離することを特徴とする画像形成方法。

【請求項2】 前記の非銀塩写真方式のカラーハードコピー記録方式が、電子写真記録方式、インクジェット記録方式、熱転写記録方式のいずれかによるものであることを特徴とする請求項1に記載する画像形成方法。

【請求項3】 前記の保護層転写シートが、基材シート上に少なくとも1層以上の熱転写性離型層、少なくとも1層以上の熱転写性保護層をこの順に積層していることを特徴とする請求項1または2に記載する画像形成方法。

【請求項4】 前記の保護層転写シートが、基材シート上に少なくとも1層以上の熱転写性離型層、少なくとも1層以上の熱転写性保護層、少なくとも1層以上の熱転写性接着層をこの順に積層していることを特徴とする請求項1または2に記載する画像形成方法。

【請求項5】 前記の保護層転写シートの基材シートは、厚みが2~100 μmのプラスチックフィルムであることを特徴とする請求項1~4のいずれかーつに記載する画像形成方法。

【請求項6】 前記のプラスチックフィルムの45°における鏡面光沢度が100%以下であることを特徴とする請求項5に記載する画像形成方法。

【請求項7】 前記の保護層転写シートの転写される層全体の塗布量が、3 \sim 30g/m²であることを特徴とする請求項 $1\sim$ 6のいずれか一つに記載する画像形成方法。

【請求項8】 前記の熱転写性保護層に使用する材料が、熱可塑性樹脂であ

ることを特徴とする請求項1~7のいずれか一つに記載する画像形成方法。

【請求項9】 前記の熱可塑性樹脂のTgが $40\sim100$ ℃で、110℃における貯蔵弾性率が 1×10^5 Pa以下であることを特徴とする請求項8に記載する画像形成方法。

【請求項10】 前記の請求項1~9のいずれか一つに記載する画像形成方法を達成するために使用することを特徴とする保護層転写シート。

【請求項11】 前記の請求項1~9のいずれか一つに記載する画像形成方法により、印画物の画像上に保護層が設けられたことを特徴とする記録物。

【請求項12】 前記の請求項1~9のいずれか一つに記載する画像形成方法により、得られた記録物の45°における鏡面光沢度が70~110%の範囲であることを特徴とする記録物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、電子写真記録方式、インクジェット記録方式、熱転写記録方式等の 非銀塩写真方式のカラーハードコピー記録方式で、特に電子写真方式や溶融転写 方式で得られた記録物の画像を保護し、耐候性等をもたせ、表面光沢性を高め、 画像鮮明性が高く、銀塩写真に匹敵する画像品質を有する記録物を作製する画像 形成方法及びそれによって得られる記録物に関するものである。

[0002]

【従来の技術】

最近のデジタルカメラやカラーハードコピー技術の進歩により、電子写真記録方式、インクジェット記録方式、熱転写記録方式等の非銀塩写真方式で、フルカラーの画像形成された印画物を、現像所に依頼して後で受け取るようなものでなく、必要な時に、その場で、即時に作製できるようになってきた。

しかし、これらのカラーコピーの印画物は、身近にある水や薬品等との接触により画像が滲んだり、また硬い材質の物と擦れたりすると、画像が剥がれたり汚れたりしてしまう。また、上記の印画物は特に電子写真方式や溶融転写方式の場合は、記録された部分が盛り上がって、表面に凹凸が生じて、適度な光沢性や鮮

明性を有した写真画質とは言えないものであった。

[0003]

例えば、電子写真記録方式では、受像体にトナー像を転写し、熱ロールにより 該トナーを溶融し、自然冷却で受像体に接着固定するものであり、定着された像 の表面に凹凸が生じ、平滑性が低く、適度な光沢性や鮮明性が得られていない。

それに対して、特開昭61-29852号公報では電子写真プロセスにより形成された画像上にアクリル変性アルキド樹脂溶液を塗布し乾燥することで光沢のある定着画像を得る提案がなされている。

また、特開平4-278967号公報では、転写材上に透明トナーを用いて被 覆することにより深みのある画像形成方法が提案されている。

さらに、特開昭58-224779号公報では、熱溶融性接着剤からなるラミネート材を被記録材と加熱して貼り付ける記録装置の提案が行われている。

このように、過去種々の提案がなされているが、特に印画物の表面が盛り上がっている電子写真記録方式や溶融転写方式による出力物では、いずれにせよ、前記後処理を行っても、写真画質は達成されていない点が現状である。

[0004]

【発明が解決しようとする課題】

したがって、本発明は、上記のような問題点に鑑みてなされたものであり、非 銀塩写真方式のカラーハードコピー記録方式で即時に得られる記録物の画像を保 護し、耐候性等をもたせ、表面光沢性を高め、画像鮮明性が高く、銀塩写真に匹 敵する画像品質を有する記録物を作製する画像形成方法及びそれによって得られ る記録物を提供することを目的とする。

[0005]

【課題を解決するための手段】

上述の目的を達成するために、本発明の画像形成方法は、非銀塩写真方式のカラーハードコピー記録方式を用いて出力した印画物に、基材シート上に少なくとも1層以上からなる熱転写性保護層を剥離可能に設けた保護層転写シートを用いて、印画物と保護層転写シートを重ね、印画物の画像上に、保護層を少なくとも印画された部分を覆うように熱転写し、その後に基材シートを剥離することを特

徴とする。

前記の非銀塩写真方式のカラーハードコピー記録方式が、電子写真記録方式、 インクジェット記録方式、熱転写記録方式のいずれかによるものであることが好ましい。

また、前記の保護層転写シートが、基材シート上に少なくとも1層以上の熱転写性離型層、少なくとも1層以上の熱転写性保護層をこの順に積層していることが望ましい。

[0006]

前記の保護層転写シートが、基材シート上に少なくとも1層以上の熱転写性離型層、少なくとも1層以上の熱転写性保護層、少なくとも1層以上の熱転写性接着層をこの順に積層していることが好ましい。

また、前記の保護層転写シートの基材シートは、厚みが 2 ~ 1 0 0 μ mのプラスチックフィルムであることが好ましい。

前記のプラスチックフィルムの45°における鏡面光沢度が100%以下であることが好ましい。

但し、その鏡面光沢度は、JIS Z 8741に規定している方法に準じて測定した条件である。

前記の保護層転写シートの転写される層全体の塗布量が、3~30g/m²であることが望ましく、それによって、画像表面の凹凸を平滑化して、高光沢性をもたせることができる。但し、上記塗布量は、乾燥時における塗布量である。

また、前記の熱転写性保護層に使用する材料が、熱可塑性樹脂であることが望ましい。

[0007]

前記の熱可塑性樹脂のTgが $40\sim100$ Cで、110Cにおける貯蔵弾性率が 1×10^5 Pa以下であることが好ましい。

本発明の保護層転写シートは、上記のいずれか一つに記載する画像形成方法を達成するために使用することを特徴とする。

また、上記のいずれか一つに記載する画像形成方法により、得られた記録物は 、印画物の画像上に保護層が設けられていることを特徴とする。 上記のいずれか一つに記載する画像形成方法により、得られた記録物の45°における鏡面光沢度が70~110%の範囲であることを特徴とする。但し、この鏡面光沢度はJIS Z 8741に規定している方法に準じて測定した条件である。

[0008]

【作用】

非銀塩写真方式のカラーハードコピー記録方式を用いて出力した印画物に、基材シート上に熱転写性保護層を剥離可能に設けた保護層転写シートを用いて、印画物と保護層転写シートを重ね、印画物の画像上に、保護層を熱転写し、その後に基材シートを剥離する画像形成方法によって、画像表面の凹凸を、転写された保護層により平滑化して、高光沢性をもたせることができる。また、フィルムラミネートのように記録物の厚さが著しく大きくなることもなく、銀塩写真に匹敵する画像品質を有する記録物が得られる。

[0009]

【発明の実施の形態】

以下、本発明の画像形成方法及びそれによって得られる記録物について、図面を参照しながら説明する。

図1は、本発明における画像形成方法の一つの実施形態を示す説明図である。 非銀塩写真方式のカラーハードコピー記録方式を用いて出力した印画物1に、 基材シート4上に熱転写性保護層5を剥離可能に設けた保護層転写シート3を用いて、印画物1と保護層転写シート3を重ね、印画物1の画像2上に、ヒートロールの熱転写手段6により、保護層5を熱転写し、その後に基材シート4を剥離するプロセスである。

[0010]

(印画物)

本発明で使用する印画物1は、電子写真記録方式、インクジェット記録方式、 熱転写記録方式のいずれかによる非銀塩写真方式のカラーハードコピー記録方式 を用いて出力したものであり、基材上に直接、画像を形成してもよいし、必要に 応じて、記録材を受容、定着しやすいように、用いる記録方式に適する受容層を 基材上に設けたものでもよい。

[0011]

印画物の基材としては、例えば、合成紙(ポリオレフィン系、ポリスチレン系等)、上質紙、アート紙、コート紙、キャストコート紙、壁紙、裏打ち用紙、合成樹脂又はエマルジョン含浸紙、合成ゴムラテックス含浸紙、合成樹脂内添紙、板紙等のセルロース繊維紙、ポリオレフィン、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリメタクリレート等の各種のプラスチックフィルムまたはシート等が使用でき、また、これらの合成樹脂に白色顔料や充填剤を加えて成膜した白色不透明フィルム、あるいは基材内部に微細空隙(ミクロボイド)を有するフィルム等も使用でき、特に限定されない。また、上記基材の任意の組合せによる積層体も使用できる。

これらの基材の厚みは任意でよく、例えば、10~300μm程度の厚みが一般的である。

[0012]

上記の印画物に画像を形成する際に用いる記録方式の一つに電子写真記録方式があり、この記録方式は、感光体が帯電器を通過するとき、コロナ放電で発生するイオンを一様に感光体面に帯電させ、露光部で感光体表面を画像状に露光し、光導電現象により光の当たった部分の帯電電荷を除去し、光の当たらない部分の電荷で潜像を形成させる。次に、現像部で潜像に帯電したトナーを静電的に付着させ可視像を得て、転写部でその可視像を印画物に転写し、定着部の熱と圧力で転写像を印画物に定着させるものである。

そして、フルカラーの画像形成を行うには、上記のトナーをイエロー、マゼン タ、シアン、ブラックの4色のトナーを用いて、各々のトナーで上記に説明した 工程を繰り返し行う。

[0013]

また、印画物への画像形成する記録方式の一つとして、インクジェット記録方式を用いることができ、この方式は、インク液滴を記録媒体に直接吹き付けて文字や画像を形成するもので、例えば、画像信号に対応してインクを液滴化し記録を行うオンデマンド型では、ピエゾ素子に通電することにより、インク室の体積

を変化させ、ノズルよりインクを噴射する電気・機械変換型と、ノズル内に発熱素子を埋め込み、これに通電することによりインクを瞬時に加熱・沸騰させて、インク中に泡をつくり、急激な体積変化によって、インクをノズルから噴出させる電気・熱変換方式等がある。フルカラーの画像形成を行うには、上記のインクをイエロー、マゼンタ、シアン、ブラックの4色のインクを用いて、各々のインクで上記に説明した工程を繰り返し行う。

[0014]

さらに、印画物への画像形成する記録方式の一つとして、熱転写記録方式が挙げられ、この方式は、画像信号により制御された熱エネルギーをサーマルヘッドで発生させ、インク等の記録材料の活性化エネルギーとして用いて記録する方式で、インクリボンを記録紙に重ね、適度な加圧状態にあるサーマルヘッドとプラテンとの間を通し、通電により昇温したサーマルヘッドにより、記録材は活性化され、プラテンの圧力に助けられて、記録紙に転写される。この方式の転写記録方式には、熱溶融型と熱昇華型があり、いずれのものでも、本発明の印画物の画像形成に用いることができる。

以上説明してきた非銀塩写真方式のカラーハードコピー記録方式である電子写真記録方式、インクジェット記録方式、熱転写記録方式のいずれか、一つの記録方式で記録紙に画像形成したり、あるいは上記の記録方式を複数組合わせて、例えば、階調画像部を電子写真記録方式で行い、文字部分を熱溶融型熱転写記録方式で行う等を実施することができる。

[0015]

以下、特に表面凹凸の著しい電子写真記録方式の印画物を、写真画質にするよ う検討していく手法を中心に、詳細に説明する。

本発明で使用する印画物において、特に電子写真方式で画像形成する場合、基材上に受容層を設け、トナー粒子界面と受容層界面とを相溶させることで、トナーの粒状性を減少させても良い。その受容層としては、トナー定着性を有し、特にフルカラー電子写真方式では、カラートナーの濡れ性に優れた樹脂が好ましく用いられる。受容層を形成する樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル

、塩化ビニルー酢酸ビニル共重合体、ポリアクリル酸エステル、ポリスチレン等のビニル樹脂、ポリエステル系樹脂、ポリアミド系樹脂、エチレンやプロピレン等のオレフィンと他のビニルモノマーとの共重合体、アイオノマー、エチルセルロース、酢酸セルロース等のセルロース系樹脂、ポリカーボネート樹脂、フェノキシ樹脂等が挙げられ、特に好ましくは、ビスフェノールA骨格を有するポリエステル系樹脂が用いられる。

上記の樹脂は単独でも、混合してもよいが、受容層が透明性を必要とする場合は、相溶性の良い樹脂を選択して用いる必要がある。受容層は、上記のような樹脂に必要に応じて添加剤を加え、適当な溶剤に溶解または分散して調整した塗工液を、基材上に、グラビア印刷、シルクスクリーン印刷等の公知の印刷手段、あるいは、グラビアコート等の公知の塗工手段により形成し、厚さは乾燥時で0.5~10μm程度である。

また、必要に応じて、有機及び/または無機フィラーを受容層塗工液に混合しても良い。更には、電子写真方式で画像形成する印画物の表裏には帯電防止剤を 塗布しておき、良好な転写領域を実現する必要がある。

[0016]

(保護層転写シート)

本発明で使用する保護層転写シート3は、基材シート4上に熱転写保護層5を 剥離可能に形成したもので、必要に応じて、基材シート4の裏面、すなわち熱転 写保護層5の設けてある面と反対面に、熱転写手段6としてのサーマルヘッドや ヒートロール等の熱によるスティッキングやシワなどの悪影響を防止するため、 耐熱滑性層7を設けたり、基材シート4と熱転写保護層5との間に、離型層8を 設け、熱転写保護層5が熱転写時に基材シート4から剥離しやすくすることがで き、また熱転写保護層5の印画物への転写性、易接着性等の向上のために、保護 層転写シート3の熱転写保護層5の上に、接着層9を設けることができる。(図 2参照)

但し、印画物の画像上に熱転写される保護層は、下に位置する熱転写画像を観察する際に、支障の無いような透明性を有することが必要である。

[0017]

上記の耐熱滑性層 7 を形成する樹脂としては、従来公知のものであればよく、例えば、ポリビニルブチラール樹脂、ポリビニルアセトアセタール樹脂、ポリエステル樹脂、塩化ビニルー酢酸ビニル共重合体、ポリエーテル樹脂、ポリブタジエン樹脂、スチレンーブタジエン共重合体、アクリルポリオール、ポリウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、エポキシアクリレート、ウレタン又はエポキシのプレポリマー、ニトロセルロース樹脂、セルロースナイトレート樹脂、セルロースアセテートブチレート樹脂、セルロースアセテートドロジエンフタレート樹脂、酢酸セルロース樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、塩素化ポリオレフィン樹脂等が挙げられる。

[0018]

これらの樹脂からなる耐熱滑性層に添加、あるいは上塗りする滑り性付与剤としては、燐酸エステル、シリコーンオイル、グラファイトパウダー、シリコーン系グラフトポリマー、フッ素系グラフトポリマー、アクリルシリコーングラフトポリマー、アクリルシロキサン、アリールシロキサン等のシリコーン重合体が挙げられるが、好ましくは、ポリオール、例えば、ポリアルコール高分子化合物とポリイソシアネート化合物及び燐酸エステル系化合物からなる層であり、更に充填剤を添加することがより好ましい。

耐熱滑性層は、上記に記載した樹脂、滑り性付与剤、更に充填剤を、適当な溶剤により、溶解又は分散させて、耐熱滑性層形成用インキを調製し、これを、上記の基材シートの裏面に、例えば、グラビア印刷法、スクリーン印刷法、グラビア版を用いたリバースコーティング法等の形成手段により塗布し、乾燥して形成することができる。

[0019]

保護層転写シートにおける基材シート4としては、従来から公知のある程度の 耐熱性と強度を有するものであれば、いずれのものでもよく、例えば、グラシン 紙、コンデンサ紙、パラフイン紙等の薄葉紙、ポリエチレンテレフタレート、ポ リエチレンナフタレート等のポリエステル、ポリプロピレン、セロハン、ポリカ ーボネート、酢酸セルロース、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ナイロン、ポリイミド、ポリ塩化ビニリデン、アイオノマー等のプラスチック或いはこれらと前該紙とを複合した基材シート等が挙げられる。この基材シートの厚さは、その強度及び耐熱性等が適切になる様に、材料に応じて適宜変更することが出来るが、その厚さは、2~100μm、好ましくは、10~80μm程度である。

転写後の記録物の表面光沢性を調整するために、マットタイプのポリエチレンテレフタレートフィルムを基材シートとして使用しても良い。そのマット化の形成手段としては、サンドブラスト、練り込み、内部発泡等が挙げられる。そして、そのマット化されたフィルムの、45°における鏡面光沢度(JIS Z 8 741に準じた測定方法による)は100%以下が好ましく、下限は10%程度である。

[0020]

本発明の保護層転写シートでは、基材シートと熱転写保護層との間に、離型層 8を形成することができる。離型層は、ワックス類、シリコーンワックス、シリコーン樹脂、弗素樹脂等の如く離型性に優れた材料、或はヒートロール等の熱によって溶融しない比較的高軟化点の樹脂、例えば、セルロース系樹脂、アクリル樹脂、ポリウレタン樹脂、ポリビニルアセタール樹脂、あるいはこれらの樹脂にワックス等の熱離型剤を含有させたものから形成できる。また、離型層はフィラーを添加することで、剥離力を適宜調整することが可能である。

離型層の形成方法は前記耐熱滑性層の形成方法と同様でよく、その厚みは $0.5 \approx 5 \text{ g/m}^2$ 程度で十分である。

[0021]

本発明で使用する保護層転写シートの基材シート上に設ける熱転写性保護層 5 は、従来から保護層形成用樹脂として知られている各種の樹脂で形成することができる。保護層形成用樹脂としては、例えば、熱可塑性樹脂として、ポリエステル樹脂、ポリスチレン樹脂、アクリル樹脂、ポリウレタン樹脂、アクリルウレタン樹脂、エポキシ系樹脂、フェノキシ樹脂、これらの各樹脂をシリコーン変性させた樹脂、これらの各樹脂の混合物や、電離放射線硬化性樹脂、紫外線遮断性樹

脂等を例示することができる。このほかに必要に応じて、紫外線吸収剤、有機フィラー及び/又は無機フィラーを適宜添加することが出来る。

[0022]

電離放射線硬化性樹脂を含有する保護層は、耐可塑剤性や耐擦過性が特に優れている。電離放射線硬化性樹脂としては公知のものを使用することができ、例えば、ラジカル重合性のポリマー又はオリゴマーを電離放射線照射により架橋、硬化させ、必要に応じて光重合開始剤を添加し、電子線や紫外線によって重合架橋させたものを使用することができる。尚、上記の電離放射線硬化性樹脂は、保護層転写シートの離型層や接着層にも、添加することができる。

紫外線遮断性樹脂や、紫外線吸収剤を含有する保護層は、印画物に耐光性を付与することを主目的とする。紫外線遮断性樹脂としては、例えば、反応性紫外線吸収剤を熱可塑性樹脂又は上記の電離放射線硬化性樹脂に反応、結合させて得た樹脂を使用することができる。より具体的には、サリシレート系、フェニルアクリレート系、ベンゾフェノン系、ベンゾトリアゾール系、クマリン系、トリアジン系、ニッケルキレート系の様な従来公知の非反応性の有機系紫外線吸収剤に、付加重合性二重結合(例えばビニル基、アクリロイル基、メタアクリロイル基など)、アルコール性水酸基、アミノ基、カルボキシル基、エポキシ基、イソシアネート基のような反応性基を導入したものを例示することができる。

[0023]

紫外線吸収剤は、従来公知の非反応性の有機系紫外線吸収剤で、サリシレート系、フェニルアクリレート系、ベンゾフェノン系、ベンゾトリアゾール系、クマリン系、トリアジン系、ニッケルキレート系が挙げられる。

また、上記の紫外線遮断性樹脂や、紫外線吸収剤を保護層転写シートの離型層や接着層にも、添加することができる。

有機フィラー及び/又は無機フィラーとしては、具体的にはポリエチレンワックス、ビスアマイド、ナイロン、アクリル樹脂、架橋ポリスチレン、シリコーン樹脂、シリコーンゴム、タルク、炭酸カルシウム、酸化チタン、マイクロシリカ、コロイダルシリカ等のシリカ微粉末等が挙げられるが、特に限定はされず何でも使用できる。但し、滑り性が良く、粒径は、10μm以下好ましくは0.1~

3 μmの範囲のものが好ましい。フィラーの添加量は、上記のような樹脂分100質量部に対して、0~100質量部の範囲で、保護層の転写した時に透明性が保たれる程度が好ましい。

[0024]

上記の保護層形成用樹脂として、特に好ましくはビスフェノール骨格を有するポリエステル樹脂、エポキシ樹脂、フェノキシ樹脂等である。これらは、被転写体に対する転写性等が良好であり、また画像が電子写真記録方式で形成された際のトナーとの相溶性の点で好ましい。そして、上記の性能の点で、本出願人が特願平6-36609号で開示した特定のポリエステル樹脂が好ましく用いられる。すなわち、ポリエステル樹脂として、下記化学式1で表されるエチレングリコールまたはプロピレングリコールで変性した変性ビスフェノールAを、ジオール成分として用いたポリエステル樹脂が好ましい。

また、下記化学式2は係る変性ビスフェノールAの具体的化合物である。プロピレングリコール変性ビスフェノールAを表す。

[0025]

【化1】

$$H - (OR)_x - O - O - OR)_y - H$$
 CH_3
 CH_3
 CH_3
 CH_3

(式中Rはエチレンまたはプロピレン基、x、yは1以上5以下の整数かつxとyの平均値が $1\sim3$ である。)

[0026]

【化2】

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8

[0027]

使用するポリエステル樹脂として、エチレングリコールまたはプロピレングリコールで変性したピスフェノールAをジオール成分として用いたポリエステル樹脂が優れたトナーとの相溶性を有し、トナー画像との優れた接着性を有する。ポリエステル樹脂の酸成分としては、特に制限はなく、例えば、フマル酸、フタル酸、テレフタル酸、イソフタル酸、マレイン酸、コハク酸、アジピン酸、シトラコン酸、イタコン酸、セバシン酸、マロン酸、ヘキサカルボン酸、トリメリット酸等を用いることができる。係るポリエステル樹脂の中でも前記化学式1で表すプロピレングリコールあるいはエチレングリコール変性ビスフェノールAをジオール成分として用い、フマル酸、マレイン酸、テレフタル酸、トリメリット酸を酸成分として用いた樹脂が、特にトナーのバインダー樹脂との相溶性が良く、トナー定着性及びトナー濡れ性が良く、良好な品質の画像を与える。上記のようなポリエステル樹脂を水分散性にするには、ポリエステル樹脂をケトン系溶剤に溶解し、分散剤と水を加えた後に、その溶剤を除去する手法が一般的である。

[0028]

上記のポリエステル樹脂のガラス転移温度(Tg)は、40~80℃程度が好ましく、それによって熱転写時の加熱により、保護層の柔軟性が発揮でき、画像形成された表面の凹凸に対し、保護層がその凹凸形状に追従でき、また画像の被膜として、優れた光沢性をもたせることができる。上記のTgが低すぎると、保護層の転写された記録物を積み重ねた時などに、保護層が接触面と接着する、いわゆるブロッキングが生じやすく好ましくない。一方、上記のTgが高すぎると、樹脂の加熱時の柔軟性が不足し、印画物の画像との密着性が低下し、好ましく

ない。

[0029]

また、熱転写保護層の形成樹脂としてのポリエステル樹脂は、質量平均分子量 M_Wが30,000以下のものが好ましく用いられる。このポリエステル樹脂の 質量平均分子量を30,000以下にすることで、樹脂の加熱時における柔軟性 を高くすることができ、印画物の画像表面の凹凸に追従した熱転写保護層を形成 することができる。また、その質量平均分子量は、下限値が5,000程度であり、質量平均分子量が低すぎると、樹脂が柔すぎるため、保護層の転写された記録物を積み重ねた時に保護層が接触面と接着する、いわゆるブロッキングが生じ やすくなる。また、その質量平均分子量が30,000を越えると、保護層形成 樹脂としては硬すぎるため、印画物の画像との密着性が低下し、好ましくない。

上記の質量平均分子量の測定には、ゲル浸透クロマトグラフィー(GPC)を用いた。カラムはWaters製ULTRA STYRAGELPLUSMX1000A、溶媒はテトラヒドロフラン(THF)、検量線はポリスチレンを使用し、流量は1m1/minとした。

[0030]

また、熱転写保護層の形成樹脂として用いるエポキシ樹脂は、分子内にエポキシ基を2個以上含有するポリマー及びそのエポキシ基の開環反応により生成する樹脂であり、主にエピクロルヒドリンと活性水素を有する化合物とを反応させた後、脱塩酸反応を行って得られる。エポキシ樹脂の中でも、エポキシ当量が450g~5000gのビスフェノールA型エポキシ樹脂が好ましく、エピクロルヒドリンとビスフェノールAとの縮合反応で得られ、耐熱性、耐摩耗性等の点で優れている。

さらに、熱転写保護層バインダー樹脂として、フェノキシ樹脂も好ましく用いることができる。フェノキシ樹脂は、主にエピクロルヒドリンとビスフェノールから合成され、末端に反応性のエポキシ基をもたない。詳しくは、高純度ビスフェノールAとエピクロルヒドリンを1:1のモル比、または高純度ビスフェノールAジグリシジルエーテルとビスフェノールAを1:1のモル比の反応で合成される。

[0031]

また、熱転写保護層の形成樹脂としての熱可塑性樹脂は、110℃における貯蔵弾性率が1×10⁵Pa以下であることが好ましい。このように熱可塑性樹脂の110℃における貯蔵弾性率が1×10⁵Pa以下であると、熱転写時に保護層が軟化しやすく、印画物の画像表面の凹凸に、滑らかに追従した熱転写保護層を形成することができる。

また、その110℃における貯蔵弾性率の下限値は、1×10¹Pa程度であり、貯蔵弾性率が低すぎると、樹脂が柔すぎるため、保護層の転写された記録物を積み重ねた時に保護層が接触面と接着する、いわゆるブロッキングが生じやすくなる。さらに、上記熱可塑性樹脂の110℃における貯蔵弾性率が2×10⁵Paより大きいと、樹脂としては硬すぎるため、印画物の画像との密着性が低下し、好ましくない。

上記の貯蔵弾性率の測定には、Rheometric Scientific 社製の粘弾性測定装置(ARES)を用い、測定条件は周波数1rads $^{-1}$ とした。

[0032]

熱転写保護層は、上記に記載した保護層形成用樹脂と必要に応じて、紫外線吸収剤、有機フィラー及び/又は無機フィラー等の添加剤を加え、適当な溶剤により、溶解又は分散させて、熱転写保護層形成用インキを調製し、これを、上記の基材シートに、例えば、グラビア印刷法、スクリーン印刷法、グラビア版を用いたリバースコーティング法等の形成手段により塗布し、乾燥して形成することができる。

本発明で使用する保護層転写シートの転写される層全体の塗布量が、 $3\sim30$ g/ m^2 程度、好ましくは $5\sim20$ g/ m^2 に、形成するものである。

[0033]

本発明で使用する保護層転写シートは、上記の熱転写性保護層の表面に、被転写体である印画物への転写性、接着性を良好にするために、接着剤層 9 を設けることができる。これらの接着剤層は、従来公知の粘着剤や感熱接着剤がいずれも使用できるが、ガラス転移温度(Tg)が50℃~80℃の熱可塑性樹脂から形

特2000-237990

成することがより好ましく、例えば、ポリエステル樹脂、塩化ビニルー酢酸ビニル共重合体樹脂、アクリル樹脂、紫外線吸収剤樹脂、ブチラール樹脂、エポキシ樹脂、ポリアミド樹脂、塩化ビニル樹脂等の如く熱時接着性の良好な樹脂から、適当なガラス転移温度を有するものを選択することが好ましい。特に、接着剤層は、ポリエステル樹脂、塩化ビニルー酢酸ビニル共重合体樹脂、アクリル樹脂、紫外線吸収剤樹脂、ブチラール樹脂、エポキシ樹脂の少なくとも一つを含有していることが好ましい。又、接着性や、サーマルヘッド等の加熱手段にて全面ではなく一部がパターン形成される場合には、前記に挙げたような樹脂は分子量の小さい方が好ましい。

[0034]

上記の紫外線吸収剤樹脂は、反応性紫外線吸収剤を熱可塑性樹脂又は電離放射線硬化性樹脂に反応、結合させて得た樹脂を使用することができる。具体的には、サリシレート系、フェニルアクリレート系、ベンゾフェノン系、ベンゾトリアゾール系、クマリン系、トリアジン系、ニッケルキレート系の様な従来公知の非反応性の有機系紫外線吸収剤に、付加重合性二重結合(例えばビニル基、アクリロイル基、メタアクリロイル基など)、アルコール性水酸基、アミノ基、カルボキシル基、エポキシ基、イソシアネート基のような反応性基を導入したものを例示することができる。

上記のような接着剤層を構成する樹脂に必要に応じて、無機または有機フィラー等の添加剤を加えた塗工液を塗布及び乾燥することによって、好ましくは 0.5 ~ 1.0 g/m 2 程度の厚みに形成する。

[0035]

(保護層の熱転写手段)

本発明の画像形成方法において、非銀塩写真方式のカラーハードコピー記録方式で画像形成された印画物に、基材シート上に熱転写性保護層を剥離可能に設けた保護層転写シートを用いて、印画物の画像上に、保護層を熱転写する手段は、サーマルヘッドとプラテンの間に印画物と保護層転写シートを挟み込み、サーマルヘッドからの加熱を行ったり、図1に示すようなヒートロール方式(市販されているラミネーターがこのタイプのものが多く、一対のヒートロールで熱プレス

する方式)や、加熱した平板と平板で挟み込んだり、加熱した平板とロールで挟んで、熱プレスしたりすることができる。また、レーザー照射による加熱の熱転 写手段でも適用可能である。

[0036]

本発明の画像形成方法は、上記に説明した電子写真記録方式、インクジェット記録方式、熱転写記録方式の非銀塩写真方式のカラーハードコピー記録方式による印画物の画像形成手段と、基材シート上に熱転写性保護層を剥離可能に設けた保護層転写シートを用いて、印画物の画像上に、保護層を熱転写する手段とが、インラインで実施されたり、オフラインで行ったり、自由に指定することができる。また、上記の手段をインラインで行うにも、画像形成手段と保護層熱転写手段を同一の装置で行ったり、別個の装置を連結して行うことも可能である。

[0037]

但し、本発明の画像形成方法では、電子写真記録方式で印画物の画像形成を行い、オフラインで保護層の熱転写手段を用いて、印画物のトナー画像上に保護層を形成することが好ましい。それは、以下の理由から言えるものである。

トナーに用いているバインダー樹脂が、エチレングリコールまたはプロピレングリコールで変性した変性ビスフェノールAを、ジオールとして用いたポリエステル樹脂で、アルコール成分と共縮重合する酸成分は、マレイン酸、フマール酸、シトラコン酸、イタコン酸、グルタコン酸、フマル酸、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、マロン酸等である。特開平5-80586号等に記載しているように、例えば線状または側鎖を有する線状ポリエステルと、3価以上のカルボン酸及び/または3価以上のアルコールとを共縮重合させたポリエステル樹脂がよく用いられているので、そのトナーバインダー樹脂と、熱転写保護層のバインダー樹脂のエチレングリコールまたはプロピレングリコールで変性したビスフェノールAをジオール成分として用いたポリエステル樹脂とが、相溶性が非常に高いため、トナー画像と熱転写保護層とが密着して、強固に接着できるからである。

[0038]

【実施例】

次に実施例を挙げて、本発明を更に具体的に説明する。尚、文中、部または% とあるのは、特に断りの無い限り、質量基準である。

(実施例1)

厚さ12μmのポリエチレンテレフタレートフィルム(ルミラー、東レ(株) 製)を基材シートとし、その一方の面に下記組成の熱転写性保護層用塗工液をグラビアコート法で塗布し、乾燥時の塗布量が20.0g/m²の熱転写性保護層を形成し、実施例1の保護層転写シートを作製した。

[0039]

<熱転写性保護層用塗工液>

ポリエステル樹脂

40部

(フマル酸とPO変性ビスフェノールAからなる共重合物、Tg:58℃、Mw:15000、110℃における貯蔵弾性率G':1.5×10²Pa)

シリカ粒子(平均粒径15 μm)

0. 2部

メチルエチルケトン

3 0部

トルエン

30部

[0040]

(実施例2)

厚さ25 μ mのポリエチレンテレフタレートフィルム(ルミラー、東レ(株)製)を基材シートとし、その一方の面に下記組成の離型層用塗工液をグラビアコート法で塗布して乾燥時の塗布量が3.0 g/m^2 の離型層を形成し、その離型層の上に、下記組成の熱転写性保護層塗工液をグラビアコート法で塗布し、乾燥時の塗布量が10.0 g/m^2 の熱転写性保護層を形成し、実施例2の保護層転写シートを作製した。

[0041]

<離型層用塗工液>

アクリル樹脂(BR-87、三菱レイヨン(株)製)

30部

メチルエチルケトン

35部

トルエン

3 5部

[0042]

<熱転写性保護層用塗工液>

エポキシ樹脂(1007、油化シェルエポキシ(株)製)

30部

(Tg:82℃、110℃における貯蔵弾性率G':1.0×10⁴Pa)

メチルエチルケトン

35部

トルエン

35部

[0043]

(実施例3)

厚さ50μmのポリエチレンテレフタレートフィルム(ルミラー、東レ(株)製)を基材シートとし、その一方の面に実施例2で使用した離型層用塗工液をグラビアコート法で塗布して乾燥時の塗布量が3.0g/m²の離型層を形成し、一方、背面側には下記組成の耐熱滑性層塗工液を乾燥時の塗工量が2.0g/m²の耐熱滑性層をグラビアコート法で予め形成しておいた。但し、耐熱滑性層は塗工後、加熱熟成して硬化処理を行った。

[0044]

<耐熱滑性層用塗工液>

ポリビニルブチラール樹脂

3. 6部

(積水化学工業(株)製、エスレックBX-1)

ポリイソシアネート

19. 2部

(大日本インキ化学工業(株)製、バーノックD750-45)

リン酸エステル系界面活性剤

2. 9部

(第一工業製薬(株)製、プライサーフA208S)

リン酸エステル系界面活性剤

0.3部

(東邦化学(株)製、フォスファノールRD720)。

タルク (日本タルク (株) 製)

0. 2部

メチルエチルケトン

33部

トルエン

33部

[0045]

次に、形成された離型層の上に、実施例2で使用した熱転写性保護層用塗工液をグラビアコート法で塗布し、乾燥時の塗布量が10.0g/m²の熱転写性保

護層を形成し、更に熱転写性保護層の上に、下記組成の接着層塗工液をグラビア コート法で塗布して乾燥時の塗布量が5.0g/m²の接着層を形成し、実施例 3の保護層転写シートを作製した。

[0046]

<接着層用塗工液>

ポリエステル樹脂 (バイロン220、東洋紡績 (株) 製)30部メチルエチルケトン35部トルエン35部

[0047]

(実施例4)

実施例2で作製した保護層転写シートにおいて、熱転写性保護層用塗工液を下 記組成に変更した以外は、実施例2と同様にして、実施例4の保護層転写シート を作製した。

<熱転写性保護層用塗工液>

エポキシ樹脂(1007、油化シェルエポキシ(株)製) 15部 (Tg:82℃、110℃における貯蔵弾性率G':1.0×10⁴Pa) 酸化セリウム(セリウム系紫外線吸収剤) 15部 (ニードラールW-100、多木化学製) 35部 トルエン 35部

(実施例5)

実施例2で作製した保護層転写シートにおいて、基材シートを25μm厚みのマットPET (表面をマット処理したポリエチレンテレフタレートフィルム、ルミラーX44、東レ(株)製、鏡面光沢度45%)に変更した以外は、実施例2と同様にして、実施例5の保護層転写シートを作製した。

[0049]

[0048]

(実施例6)

実施例2で作製した保護層転写シートにおいて、基材シートを19μm厚みの

マットPET (表面をマット処理したポリエチレンテレフタレートフィルム、ルミラーX42、東レ(株)製、鏡面光沢度19%)に変更した以外は、実施例2と同様にして、実施例6の保護層転写シートを作製した。

[0050]

(実施例7)

実施例2で作製した保護層転写シートにおいて、基材シートを26μm厚みのマットPET (表面をマット処理したポリエチレンテレフタレートフィルム、ルミラー、東レ(株)製、鏡面光沢度80%)に変更した以外は、実施例2と同様にして、実施例7の保護層転写シートを作製した。

[0051]

次に、以下の条件にて、評価用の印画物を用意した。

- (a) キャノン(株) 製力ラーPPC(PIXEL)を用いて、電子写真方式で テストパターンを、キャストコート紙に画像形成し、この出力物を a とする。
- (b) アルプス電気(株) 製マイクロドライ(MD-5500) を用いて、溶融 転写方式でテストパターンを、キャストコート紙に画像形成し、この出力物を b とする。
- (c) アルプス電気(株) 製マイクロドライ(MD-5500) を用いて、昇華 転写方式でテストパターンを、専用紙に画像形成し、この出力物を c とする。
- (d) セイコーエプソン(株) 製インクジェットプリンター(MC-2000) を用いて、インクジェット方式でテストパターンを、専用紙に画像形成し、この出力物をdとする。

[0052]

上記に作製した実施例の保護層転写シートを用いて、上記の印画物の画像上に、熱転写性保護層を転写した。転写条件は、ヒートロール方式のラミネーターを用いて、ロール温度120℃、ロール圧力1.5 kg/cm、ラミネート速度1 cm/secとした。

[0053]

(評価結果)

実施例1の保護層転写シートを用いて、印画物a、b、c、dに保護層を熱転

写したところ、全ての印画物について、表面が平滑化して、高光沢性をもたせることができ、画像鮮明性が高く、特に印画物a、cは銀塩写真に匹敵する画像品質を有するものであった。さらに、得られた記録物は、画像表面が熱転写保護層で被覆されているため、耐候性等の耐久性に優れたものであった。

実施例2の保護層転写シートを用いて、印画物 a、 b に保護層を熱転写したところ、全ての印画物について、表面が平滑化して、高光沢性をもたせることができ、画像鮮明性が高く、特に印画物 a は銀塩写真に匹敵する画像品質を有するものであった。さらに、得られた記録物は、画像表面が熱転写保護層で被覆されているため、耐候性等の耐久性に優れたものであった。

[0054]

実施例3の保護層転写シートを用いて、印画物 c、 d に保護層を熱転写したところ、全ての印画物について、表面が平滑化して、高光沢性をもたせることができ、画像鮮明性が高く、特に印画物 c は銀塩写真に匹敵する画像品質を有するものであった。さらに、得られた記録物は、画像表面が熱転写保護層で被覆されているため、耐候性等の耐久性に優れたものであった。

実施例4の保護層転写シートを用いて、印画物 c に保護層を熱転写したところ、印画物表面が平滑化して、高光沢性をもたせることができ、画像鮮明性が高く、銀塩写真に匹敵する画像品質を有するものであった。さらに、得られた記録物は、画像表面が熱転写保護層で被覆されているため、耐候性等の耐久性に優れたものであった。

[0055]

実施例5及び実施例6の保護層転写シートを用いて、印画物 a 、 b に保護層を 熱転写したところ、全ての印画物について、表面が艶消し状態で、画像鮮明性が 高く、特に印画物 a は銀塩写真(艶消しタイプ)に匹敵する画像品質を有するも のであった。さらに、得られた記録物は、画像表面が熱転写保護層で被覆されて いるため、耐候性等の耐久性に優れたものであった。

実施例7の保護層転写シートを用いて、印画物 a、 b に保護層を熱転写したところ、印画物は比較的光沢感を有する、表面が少し艶消し状態であり、画像鮮明性が高く、特に印画物 a は銀塩写真に匹敵する画像品質を有するものであった。

さらに、得られた記録物は、画像表面が熱転写保護層で被覆されているため、耐候性等の耐久性に優れたものであった。

[0056]

上記の各実施例の保護層転写シートを用いて、印画物に保護層を熱転写して、 その得られた記録物の45°における鏡面光沢度をJIS Z 8741に準じ た測定方法で、測定した結果を下記の表1に示す。

【表1】

•	記録物表面の光沢度	印画物
実施例1	9 9 %	d
実施例2	103%	а
実施例3	1 0 2 %	b
実施例4	100%	С
実施例5	5 1 %	a
実施例6	3 0 %	а
実施例7	8 5 %	а

[0057]

(比較例1)

厚さ50μmのポリエチレンテレフタレートフィルム (ルミラー、東レ (株) 製)を基材として、その一方の面に下記組成のラミネート接着層用塗工液をグラビアコート法で塗布し、乾燥時の塗布量が2.0g/m²でラミネート接着層を形成して、ラミネートシートを作製した。

[0058]

<ラミネート接着層用塗工液>

塩化ビニルー酢酸ビニル共重合体

30部

(#1000ALK、電気化学工業(株)製)

トルエン

3 5部

メチルエチルケトン

3 5部

[0059]

以上の比較例で用意したラミネートシートを用いて、上記に示した条件と同様 の印画物の画像上に、画像形成手段とはオフラインで、ヒートロール方式のラミ ネーターでラミネートシートを印画物全面に貼り合せた。得られたラミネートシート付き記録物は、表面光沢性、画像鮮明性はあるが、一部にシワが生じており、また記録物の厚さが著しく大きく、手触り感等が損なわれ、取扱いにくいものであった。

[0060]

【発明の効果】

以上説明したように、本発明では非銀塩写真方式のカラーハードコピー記録方式を用いて出力した印画物に、基材シート上に熱転写性保護層を剥離可能に設けた保護層転写シートを用いて、印画物と保護層転写シートを重ね、印画物の画像上に、保護層を熱転写し、その後に基材シートを剥離する画像形成方法によって、画像表面の凹凸を、転写された保護層により平滑化して、高光沢性をもたせることができる。また、フィルムラミネートのように記録物の厚さが著しく大きくなることもなく、銀塩写真に匹敵する画像品質を有する記録物が得られる。

【図面の簡単な説明】

【図1】

本発明における画像形成方法の一つの実施形態を示す説明図である。

【図2】

本発明で使用する保護層転写シートの一つの実施形態を示す概略断面図である

【符号の説明】

- 1 印画物
- 2 画像
- 3 保護層転写シート
- 4 基材シート
- 5 熱転写性保護層
- 6 熱転写手段
- 7 耐熱滑性層
- 8 離型層
- 9 接着層

【書類名】

図面

【図1】

【図2】

【書類名】

要約書

【要約】

【課題】 非銀塩写真方式のカラーハードコピー記録方式で即時に得られる記録物の画像を保護し、耐候性等をもたせ、表面光沢性を高め、画像鮮明性が高く、銀塩写真に匹敵する画像品質を有する記録物を作製する画像形成方法及びそれによって得られる記録物を提供することを目的とする。

【解決手段】 非銀塩写真方式のカラーハードコピー記録方式を用いて出力した 印画物1に、基材シート4上に熱転写性保護層5を剥離可能に設けた保護層転写 シート3を用いて、印画物1と保護層転写シート3を重ね、印画物1の画像2上 に、保護層5を熱転写し、その後に基材シート4を剥離する画像形成方法によっ て、画像表面の凹凸を、転写された保護層5により平滑化して、高光沢性をもた せることができる。また、フィルムラミネートのように記録物の厚さが大きくな ることもなく、銀塩写真に匹敵する画像品質を有する記録物が得られる。

【選択図】

図 1

識別番号

[000002897]

1. 変更年月日 1990年 8月27日

[変更理由] 新規登録

住 所 東京都新宿区市谷加賀町一丁目1番1号

氏 名 大日本印刷株式会社