Questions:

1. Draw logic circuit and write truth table for an AND, OR and NOT gate.

i) AND GATE Circuit:

Truth Table:

A	В	y = A. B
0	0	0
0	1	0
1	0	0
1	1	1

ii) OR GATE Circuit:

A	В	y = A + B
0	0	0
0	1	1
1	0	1
1	1	1

iii) NOT GATE

Circuit:

Truth Table:

А	y = Ā
0	1
1	0

- 2. Draw logic circuit and write truth table for a NOR, NAND, XOR gate.
 - (i) NOR GATE:

Circuit:

A	В	A+B	$y = \overline{A + B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

(ii) NAND GATE:

Circuit:

Truth Table:

A	В	y = A.B
0	0	1
0	1	1
1	0	1
1	1	0

(ii) XOR GATE:

Circuit:

Α	В	y=A ⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

3. Draw logic circuit and write truth table for a De-Morgan's Theorem.

De-Morgan's First Theorem:

Circuit:

Truth Table:

A	В	(A•B)'	A'+B'
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

De-Morgan's Second Theorem:

Circuit:

A	В	(A+B)'	A' • B'
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

4. Draw logic circuit and write truth table for a Distributive Law. Circuit: orange: Circuit: or

Truth Table:

A	В	С	B+C	A(B+C)	AB	AC	AB+AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

5. Draw logic circuit and write truth table for following.

i.
$$A + 0 = A$$

i.
$$A + 0 = A$$

Circuit:

$$\begin{array}{c}
A=1 \\
0 \\
\end{array}$$

$$X=1 \\
0 \\
X=0$$

A+0=A

Truth Table:

A	В	A+B
0	0	0
1	0	1

ii. A + 1 = 1 Circuit:

$$X=A+1=1$$

Truth Table:

A	В	A+B
0	1	1
1	1	1

- 6. Draw logic circuit and write truth table for following.
 - i. $A \cdot 0 = 0$
 - ii. A 1 = A
 - i. $A \cdot 0 = 0$

Circuit:

$$A = \begin{cases} X = 0 \\ 0 \end{cases}$$

$$X = A \cdot 0 = 0$$

$$X = A \cdot 0 = 0$$

A	В	A∙B
0	0	0
1	0	0

$$X = A \cdot 1 = A$$

Truth Table:

A	В	A∙B
0	1	0
1	1	1

- 7. Draw logic circuit and write truth table for following.
 - i. A + A = A
 - ii. A + A' = 1
 - i. A + A = A Circuit:

$$\begin{array}{c}
A = 0 \\
A = 0
\end{array}$$

$$X = A + A = A$$

A	A	A+A
1	1	1
0	0	0

$$A = 0$$

$$\overline{A} = 1$$

$$X = A + \overline{A} = 1$$

$$X = A + \overline{A} = 1$$

Truth Table:

A	A'	A+A'
0	1	0
1	0	1

- 8. Draw logic circuit and write truth table for following.
 - i. A A = A
 - ii. A A' = 0

i. A • A = A Circuit:

Truth Table:

A	A	A•A
0	0	0
1	1	1

ii. A • A' = 0 Circuit:

$$A = 1$$

$$\overline{A} = 0$$

$$X = 0$$

$$\overline{A} = 1$$

$$X = 0$$

$$X = 0$$

A	A	A•A'
0	1	0
1	0	0

9. Draw logic circuit and write truth table for following.

$$A + A'B = A + B$$

A	B	ĀB	A + AB	A + B	$A \perp D$
0	0	0	0	0	B
0	1	1	1	1	
1	0	0	1	1	A — *
1	1	0	1 1	1	$B \longrightarrow -$
			tequ	al	

10. Draw logic circuit and write truth table for following.(A + B) (A + C) = A + BC

A	В	C	A + B	A+C	(A + B)(A + C)	BC	A + BC	11
0	0	0	0	0	0	0	0	$B + \mathcal{L}$
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	c————
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	A
1	1	0	1	1	1	0	1	$B - \bigcap_{i \in \mathcal{A}} \mathcal{A}_i$
1	1	1	1	1	1	1	1	c—L $)$