M202 - Maîtriser les techniques d'analyse de données

PARTIE 1: Approfondir les Bases de l'analyse des données

CHAPITRE 1: Revisiter les concepts clés en analyse de données

1.PRÉREQUIS de la compétence

- 2. Méthodes de nettoyage des données
 - o Traitement des valeurs manquantes
 - Normalisation et standardisation
 - Codage des variables catégorielles

Prérequis de la compétence :

- Un bon niveau en Python.
- Un bon niveau en R.
- Se comprend mieux si vous maitrisez la compétence:
 - Introduction à l'apprentissage machine.
 - Introduction à l'apprentissage profond.

- 1.PRÉREQUIS de la compétence
- 2. Méthodes de nettoyage des données
 - o Traitement des valeurs manquantes
 - Normalisation et standardisation
 - o Codage des variables catégorielles

Différence entre valeur manquante et valeur absente:

Valeur manquante: la valeur était censée être présente, mais n'a pas été fournie pour diverses raisons.

valeur absente: la valeur n'était pas censée être présente, la variable n'est pas pertinente.

Nom	Role	Age	Note
YOUSEF	stagiaire	20	16.5
SARA	stagiaire	17	
MOHAMED	formateur	30	

Dans le domaine de l'analyse des données, il est courant de faire face à des informations non capturées (données manquantes).

=> Quelles sont les causes qui entraînent des valeurs manquantes dans l'acquisition des données?

- Causes des valeurs manquantes :
 - o Erreurs de saisie : Erreurs humaines lors de la collecte de données.

<u>Exemple</u>: Lors d'une collecte de données pour une étude sur les habitudes alimentaires, un enquêteur peut accidentellement ignorer de saisir le poids d'un participant dans le formulaire. Cela crée une valeur manquante pour ce participant.

O Problèmes techniques : Pannes de système ou erreurs de transmission de données.

<u>Exemple</u>: Une panne de serveur peut entraîner la perte de données pendant la transmission d'une enquête en ligne. Si certains participants remplissent le questionnaire, mais que leurs réponses ne sont pas enregistrées à cause de cette panne, cela crée des valeurs manquantes.

- Causes des valeurs manquantes :
 - Non-réponse : Les participants d'une étude peuvent choisir de ne pas répondre à certaines questions.

<u>Exemple</u>: Dans une enquête sur la santé, les participants peuvent choisir de ne pas répondre à des questions sensibles, comme celles concernant leur consommation d'alcool ou leur état de santé mental. Cela résulte en valeurs manquantes pour ces questions spécifiques.

- Impact des valeurs manquantes :
 - O Biais dans les résultats : Si les valeurs manquantes ne sont pas gérées correctement, elles peuvent fausser les résultats de l'analyse.
 - O Perte d'information : Plus il y a de valeurs manquantes, plus l'analyse peut être limitée.

- Types de valeurs manquantes :
 - MCAR (Missing Completely At Random) : Valeurs manquantes complètement aléatoires :

<u>Exemple</u>: Lors d'une enquête sur la satisfaction client, certaines réponses sont perdues à cause d'un problème informatique aléatoire. Ces valeurs manquantes ne sont liées ni aux réponses des participants ni à leurs caractéristiques (âge, genre, etc.). Elles sont donc aléatoires.

==> Ces valeurs manquantes n'introduisent pas de biais dans les résultats, car leur absence est indépendante des autres variables.

- Types de valeurs manquantes :
 - MAR (Missing At Random) : Valeurs manquantes aléatoires conditionnées :

<u>Exemple</u>: Dans une étude sur l'activité physique, les participants plus âgés peuvent être plus susceptibles de ne pas répondre aux questions sur la fréquence des exercices physiques. Les valeurs manquantes concernant la fréquence de l'exercice dépendent de l'âge des participants.

==> Puisque l'absence de réponse dépend d'une autre variable (l'âge), on peut utiliser cette information pour estimer ou imputer les valeurs manquantes.

- Types de valeurs manquantes :
 - MNAR (Missing Not At Random) : Valeurs manquantes non aléatoires :

Exemple: Dans une étude sur la consommation de cigarettes, les personnes qui fument beaucoup peuvent ne pas répondre à des questions sur leur consommation de tabac. Les valeurs manquantes sont donc plus fréquentes chez les gros fumeurs. Ici, l'absence de réponse est directement liée à la variable (le nombre de cigarettes fumées par jour).

==> Les valeurs manquantes ne sont pas aléatoires et dépendent directement de la variable que l'on cherche à mesurer (la consommation de tabac). Cela peut introduire un biais important.

Sans corriger ce biais, l'analyse risque de sous-estimer la consommation moyenne de cigarettes dans l'étude.

- Imputation des valeurs manquantes :
 - Imputation avec la Moyenne:

Cas d'utilisation:

- Distribution symétrique.
- Nombre très faible de données manquantes < 15%. Sinon, il peut modifier la corrélation entre les variables et biaiser les modèles d'estimation.

Histogramme et Courbe de Densité des Âges des Stagiaires (18-30 ans)

- Imputation avec la Moyenne:

Distribution symétrique.

25

Données complètes

Scores

90

- Imputation avec la Moyenne:

Distribution symétrique.

Exemple: distribution normale des âges des stagiaires.

- Imputation avec la Moyenne:

Imputer les valeurs manquantes dans le jeu de données ci-dessous.

ville	age
casa	25
agadir	27
tanger	29
casa	26
fes	24
oujda	28
oujda	27
casa	30
rabat	31
tanger	32
nador	29
casa	28
fes	26
casa	NaN
rabat	NaN

- Imputation des valeurs manquantes :
 - Imputation avec la Médiane :

Cas d'utilisation:

- Distribution asymétrique (skewed distribution): c'est une distribution qui contient des valeurs extrêmes (outliers) qui peuvent affecter de manière significative la moyenne, mais pas la médiane.
- Nombre très faible de données manquantes < 15%. Sinon, il peut modifier la corrélation entre les variables et biaiser les modèles d'estimation.

- Imputation avec la Médiane:

Distribution asymétrique avant imputation.

- Imputation avec la Médiane:

Distribution asymétrique après imputation.

- Imputation avec la Médiane :

Le skewness d'une distribution peut être calculé avec la formule suivante

- Skewness > 0 : asymétrie positive.
- Skewness < 0 : asymétrie négative.
- Skewness ≈ 0 : distribution symétrique (comme une distribution normale).

- Imputation avec la Médiane:
 - Exemple d'application:
 - Importer le fichier revenu_annuel.csv et imputer les valeurs manquantes.

- NP: si le nombre des valeurs manquantes dépasse ~15 % il faut utiliser d'autres méthodes d'imputation.

- Imputation des valeurs manquantes :
 - Imputation avec la Régression :

Cas d'utilisation:

- Existence de relations: Utilisez l'imputation par régression lorsque vous avez une ou plusieurs variables indépendantes (prédicteurs) qui sont corrélées avec la variable ayant des valeurs manquantes.
- Si la proportion de valeurs manquantes est modérée (par exemple, moins de 30 % des données), l'imputation par régression peut fournir de bonnes estimations. Une proportion plus élevée de valeurs manquantes pourrait nécessiter d'autres approches.
- "La corrélation n'implique pas toujours la causalité"

- Imputation avec la Régression :

"La corrélation n'implique pas toujours la causalité":

- Même si une corrélation positive est visible sur le graphique, il est important de rappeler que cela n'implique pas nécessairement que posséder plus de téléviseurs augmente l'espérance de vie.
- Il s'agit plutôt d'une coïncidence basée sur d'autres facteurs, comme la richesse d'un pays.

- Imputation avec la Régression :

Exemple d'application:

Taille (cm)	Poids(kg)	Age
170	65	30
160	58	25
180	NaN	40
175	75	35
165	NaN	28
185	85	42

- Type de valeurs manquantes: MAR (c'est-à-dire manquantes de manière aléatoire mais dépendant d'autres variables observées dans le jeu de données.)
- Nombre de valeurs manquantes vaut 33%.

==> Etudier la corrélation entre les variables indépendantes (taille et age) et la variable poids

- Imputation avec la Régression :

Exemple d'application:

Taille (cm)	Poids(kg)	Age
170	65	30
160	58	25
180	NaN	40
175	75	35
185	NaN	50
161	64	26

- Type de valeurs manquantes: MAR (c'est-à-dire manquantes de manière aléatoire mais dépendant d'autres variables observées dans le jeu de données.)
- Nombre de valeurs manquantes vaut 33%.

==> Etudier la corrélation entre les variables indépendantes (taille et age) et la variable poids

Imputation avec la Régression :

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
```

```
# représenter les données en dictionnaire
data = {
    'Taille': [170, 160, 180, 175, 185,161],
    'Poids': [65, 58, None, 75, None,64],
    'Âge': [30, 25, 40, 35, 45, 26]
}
```

```
# Création d'un DataFrame
df = pd.DataFrame(data)
```

	Taille	Poids	Age
0	170	65.0	30
1	160	58.0	25
2	180	NaN	40
3	175	75.0	35
4	185	NaN	45
5	161	64.0	26

Taille (cm)	Poids(kg)	Age
170	65	30
160	58	25
180	NaN	40
175	75	35
185	NaN	45
161	64	26

- Imputation avec la Régression :
 - Calcul de la corrélation
 - Visualisation de la matrice de corrélation avec un heatmap

Taille (cm)	Poids(kg)	Age
170	65	30
160	58	25
180	NaN	40
175	75	35
185	NaN	45
161	64	26

- Imputation avec la Régression :
 - Création de de graphe en paire (Pairplot)

Taille (cm)	Poids(kg)	Age
170	65	30
160	58	25
180	NaN	40
175	75	35
185	NaN	45
161	64	26

=> On observe une corrélation linéaire entre le poids et (Taille, Age).

- Imputation avec la Régression:
 - Les étapes d'imputation par la régression linéaire :
 - ✓ Séparer les lignes avec et sans poids manquant: train_data test data
 - ✓ Variables indépendantes et dépendante:
 X_train --> train_data[['Taille', 'Âge']]
 y_train --> train_data[['Poids']]
 - ✓ Création et entraînement du modèle de régression: model = LinearRegression() model.fit(X_train, y_train)
 - ✓ Prédire les poids manquants: X_test = test_data[['Taille', 'Âge']] predictions = model.predict(X_test)
 - ✓ Imputation des valeurs manquantes

Taille (cm)	Poids(kg)	Age
170	65	30
160	58	25
180	NaN	40
175	75	35
185	NaN	45
161	64	26

	Taille	Poids	Âge
0	170	65.000000	30
1	160	58.000000	25
2	180	86.153846	40
3	175	75.000000	35
4	185	96.923077	45
5	161	64.000000	26

Exemple d'application:

• Analyser les méthodes d'imputation à utiliser dans le jeu de données ci-dessous:

	prix_m2	age_batiment	distance_metro
0	3000.0	10.0	500
1	3200.0	15.0	700
2	3100.0	12.0	600
3	3500.0	20.0	800
4	3300.0	18.0	750
5	NaN	25.0	900
6	3400.0	NaN	650
7	3700.0	NaN	550
8	NaN	5.0	400

- Imputation des valeurs manquantes :
 - Imputation avec K-Nearest Neighbors (KNN):

Cas d'utilisation:

- Il y a des relations complexes entre les variables : Si vous avez des variables qui sont liées de manière non linéaire ou complexe, KNN peut capturer ces relations sans avoir besoin de modélisation explicite.
- Le dataset n'est pas trop grand : KNN peut être coûteux en termes de calcul, surtout pour de grands ensembles de données, car il nécessite de calculer les distances entre chaque observation avec des données manquantes et tous les autres points du dataset.
- Si la proportion de valeurs manquantes est modérée (par exemple, moins de 30 % des données).

- Rappel: K-Nearest Neighbors (KNN):

- Imputation avec KNN:

Exemple d'application (cas d'utilisation)

- Exemple d'application::

- Analyser l'imputation à utiliser dans le jeu de données ci-dessous:
- Pour KNN utiliser la bibliothèque from sklearn.impute import KNNImputer

- 1.PRÉREQUIS de la compétence
- 2. Méthodes de nettoyage des données
 - o Traitement des valeurs manquantes
 - Normalisation et standardisation
 - Codage des variables catégorielles

Normalisation:

- Implémentation: from sklearn.preprocessing import MinMaxScaler import numpy as np

```
# Exemple de données
data = np.array([[10, 2], [20, 3], [30, 5]])
# Appliquer la normalisation (Min-Max scaling)
scaler = MinMaxScaler()
normalized_data = scaler.fit_transform(data)
print(normalized_data)
```

Standardisation:

- Transformer les caractéristiques pour qu'elles aient une moyenne de 0 et un écart-type de 1.
- o approprié lorsque les données suivent une distribution normale.
- souvent utilisée pour les algorithmes ML comme la régression linéaire, les modèles bayésiens, réseaux de neurones.

Formule de la standardisation : $X' = (X - \mu) \int \int \sigma$. où μ est la moyenne et σ est l'écart-type.

Standardisation:

Exemple de données

- Implémentation: from sklearn.preprocessing import StandardScaler import numpy as np

```
data = np.array([[10, 2], [20, 3], [30, 5]])
# Appliquer la standardisation
scaler = StandardScaler()
standardized_data = scaler.fit_transform(data)
print("Données standardisées :\n", standardized_data)
```

Standardisation:

- Utiliser le jeu de données "Breast Cancer" de scikit-learn, et standardiser les données numériques.

```
from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
X = data.data
y = data.target
```

- 1.PRÉREQUIS de la compétence
- 2. Méthodes de nettoyage des données
 - o Traitement des valeurs manquantes
 - Normalisation et standardisation
 - Codage des variables catégorielles

Type des variables catégorielles:

O **Une variable nominale:** une variable catégorielle sans ordre naturel entre les catégories. Les catégories sont distinctes, mais aucune n'est supérieure ou inférieure à une autre.

Exemples:

- Couleur : [Rouge, Bleu, Vert]
- Ville : [Paris, Lyon, Marseille]
- Genre : [Homme, Femme]
- o les variables ordinales: Ce sont des variables catégorielles où les catégories ont un ordre naturel. Les catégories peuvent être classées selon une hiérarchie.

Exemples:

- Niveau d'éducation : [Baccalauréat, Licence, Master, Doctorat]
- Taille de vêtements : [Petit, Moyen, Grand]
- Satisfaction client : [Très insatisfait, Insatisfait, Neutre, Satisfait, Très satisfait]

Codage des variables nominales:

- One-Hot Encoding: une technique où chaque catégorie est transformée en une nouvelle colonne (ou plusieurs colonnes) avec des valeurs binaires (0 ou 1).
 - Couleur : [Rouge, Bleu, Vert, Rouge]

Codage des variables nominales:

"One-hot encoding peut générer de très nombreuses colonnes "
==> augemente la complexité du modèle + rendre les données difficiles à traiter.

- Target encoding :

 une technique où chaque catégorie est remplacée par la moyenne de la colonne cible.

Grand nombre de catégories.

Calculer la moyenne de la cible (Achat) pour chaque Marque
target_mean = df.groupby('Marque')['Achat'].mean()

Appliquer le target encoding en remplaçant la colonne Marque df['Marque_encoded'] = df['Marque'].map(target_mean)

	Client_ID	Marque	Achat
0	1	Marque_52	0
1	2	Marque_93	1
2	3	Marque_15	0
3	4	Marque_72	0
4	5	Marque_61	0
95	996	Marque_10	1
96	997	Marque_67	1
97	998	Marque_18	1
98	999	Marque_100	0
99	1000	Marque 86	0

Codage des variables ordinales:

Ordinal Encoding: utilisé lorsque les catégories ont un ordre naturel.


```
# Appliquer le codage ordinal pour 'Taille'
ordinal_encoder = OrdinalEncoder(categories=[['Petit', 'Moyen', 'Grand']])
df encoded['Taille encoded'] = ordinal encoder.fit transform(df encoded[['Taille']])
```

- 1. PRÉREQUIS de la compétence
- 2. Méthodes de nettoyage des données
 - Traitement des valeurs manquantes
 - Normalisation et standardisation
 - Codage des variables catégorielles
- 3. Analyse exploratoire des données
 - Analyse univariée
 - Analyse bivariée et corrélation
 - Techniques de visualisation de données

1. Histogrammes: Représenter la distribution d'une variable continue

Exemple: Un histogramme montrant la distribution des âges dans une entreprise permet de voir si la population est jeune, âgée ou bien répartie.

```
ages = [25, 32, 29, 30, 45, 33, 28, 35, 26, 40, 38, 32, 29, 36, 27, 41] plt.hist(ages, bins=5, color='skyblue', edgecolor='black') plt.xlabel('Âge') plt.ylabel('Nombre d\'employés') plt.title('Distribution des âges des employés') plt.show()
```


- 1. Graphiques en barres: une comparaison entre différents groupes
 - <u>Exemple</u>: Taux de satisfaction de différents services d'une entreprise

```
services = ['Service Client', 'Support Technique', 'Livraison', 'Qualité Produit']
satisfaction_scores = [78, 85, 90, 88]

# Création du graphique en barres
plt.figure(figsize=(8, 5))
plt.bar(services, satisfaction_scores, color=['skyblue', 'salmon', 'lightgreen', 'orange'])
plt.xlabel('Services')
plt.ylabel('Taux de satisfaction (%)')
plt.title('Taux de satisfaction par service')
plt.ylim(0, 100)

# Affichage des valeurs sur chaque barre
for i, score in enumerate(satisfaction_scores):
    plt.text(i, score + 1, f"{score}%", ha='center')
plt.show()
```


- 1. Graphiques en barres: une comparaison entre différents groupes
 - <u>Exemple</u>: Comparer les ventes mensuelles par produit pour identifier le produit le plus populaire.

```
months = ['Janvier', 'Février', 'Mars']

product_a = [500, 600, 550]

product_b = [300, 350, 320]

product_c = [450, 400, 420]

plt.bar(months, product_a, label='Produit A', color='blue')

plt.bar(months, product_b, bottom=product_a, label='Produit B', color='orange')

plt.bar(months, product_c, bottom=np.array(product_a)+np.array(product_b), label='Produit C', color='green')

plt.xlabel('Mois')

plt.ylabel('Ventes')

plt.title('Ventes mensuelles par produit')

plt.legend()
```

plt.show

- 1. Graphiques en secteurs: Montrer la proportion des différentes catégories dans un ensemble
 - Exemple : la répartition du chiffre d'affaires par région

regions = ['Nord', 'Sud', 'Est', 'Ouest']
sales = [200000, 150000, 120000, 100000]

plt.pie(sales, labels=regions, autopct='% 1.1f%%', colors=['blue', 'orange', 'green', 'red'])

plt.title('Répartition des ventes par région')
plt.show()

Répartition des ventes par région

- 1. Diagramme en ligne (Line plot): Visualiser les tendances temporelles ou les évolutions dans le temps.
 - Exemple: Suivre l'évolution des actions d'une entreprise sur plusieurs années.

```
months = ['Janvier', 'Février', 'Mars', 'Avril', 'Mai', 'Juin', 'Juillet', 'Août', 'Septembre', 'Octobre', 'Novembre', 'Décembre'] stock_prices = [150, 155, 160, 165, 160, 158, 170, 175, 180, 190, 185, 195]
```

```
plt.plot(months, stock_prices, marker='o', color='purple')
plt.xlabel('Mois')
plt.ylabel('Cours de l\'action')
plt.title('Evolution du cours de l\'action sur un an')
plt.xticks(rotation=45)
plt.show()
```


- 1. Nuages de points (Scatter plots): Analyser la relation entre deux variables continues
 - Exemple: Comparer la taille et le poids d'un groupe d'individus.

```
height = [160, 170, 180, 175, 165, 155, 168, 172, 185, 190] weight = [55, 65, 75, 70, 60, 50, 63, 68, 80, 85] plt.scatter(height, weight, color='blue') plt.xlabel('Taille (cm)') plt.ylabel('Poids (kg)') plt.title('Relation entre taille et poids') plt.show()
```


- 1. Carte de chaleur (Heatmap): Montrer des valeurs dans une matrice de données à l'aide de couleurs
 - <u>Exemple</u>: Fréquentation d'une bibliothèque.

- 1. Graphique en boîte (Box plot): Résumer la distribution d'une variable avec des informations sur la médiane, les quartiles et les valeurs extrêmes.
 - <u>Exemple</u>: Comparer la répartition des salaires dans différentes équipes d'une entreprise pour repérer les écarts.

- 1. Diagrammes en radar: Comparer plusieurs variables pour différents individus ou groupes sur un graphique à plusieurs axes
 - Exemple: Évaluer les compétences d'employés en fonction de plusieurs critères.

```
from math import pi
data = { 'Metrics': ['Communication', 'Technique', 'Leadership', 'Créativité'],
        'Alice': [8, 6, 7, 5],
        'Bob': [7, 8, 5, 6],
        'Clara': [6, 5, 8, 7] }
df = pd.DataFrame(data)
categories = list(df['Metrics'])
N = len(categories)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
for name, values in df.drop('Metrics', axis=1).items():
   values = values.tolist()
   values += values[:1]
   ax.plot(angles, values, label=name)
   ax.fill(angles, values, alpha=0.25)
   ax.set_xticks(angles[:-1])
   ax.set_xticklabels(categories)
plt.title('Évaluation des compétences des employés')
plt.legend()
plt.show()
```


- 1. PRÉREQUIS de la compétence
- 2. Méthodes de nettoyage des données
 - Traitement des valeurs manquantes
 - Normalisation et standardisation
 - Codage des variables catégorielles
- 3. Analyse exploratoire des données
 - Analyse univariée
 - Analyse bivariée et corrélation
- 4. Techniques de visualisation de données
 - Maîtriser la visualisation avancée des données
 - Graphiques 3D et interactifs
 - Visualisations complexes

Maîtriser la visualisation avancée des données:

- 1. Graphiques multi-axes et combinés : Utile pour comparer plusieurs séries de données ayant des échelles différentes.
 - Exemple: les ventes mensuelles de glaces et la météo.

	Mois	Ventes (k€)	Température (°C)	Précipitations (mm)
0	Jan	20	5	78
1	Feb	22	7	65
2	Mar	25	10	58
3	Apr	30	14	70
4	May	50	18	55
5	Jun	70	22	40
6	Jul	80	25	35
7	Aug	78	24	45
8	Sep	60	20	50
9	Oct	40	15	60
10) Nov	30	10	80
11	L Dec	25	7	85

Ventes de Glaces, Température et Précipitations par Mois


```
import matplotlib.pyplot as plt
import pandas as pd
# Jeu de données
data = {
'Mois': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], 'Ventes (k€)': [20, 22,
25, 30, 50, 70, 80, 78, 60, 40, 30, 25],
'Température (°C)': [5, 7, 10, 14, 18, 22, 25, 24, 20, 15, 10, 7],
'Précipitations (mm)': [78, 65, 58, 70, 55, 40, 35, 45, 50, 60, 80, 85]
df = pd.DataFrame(data)
# Configuration du graphique
fig, ax1 = plt.subplots(figsize=(10, 6))
# Graphique à barres pour les ventes
ax1.bar(df['Mois'], df['Ventes (k€)'], color='skyblue', label='Ventes (k€)')
ax1.set_ylabel("Ventes (k€)", color='skyblue')
ax1.set_ylim(0, 100)
```

Formateur: Berradi Yassine

59

```
# Deuxième axe pour la température
ax2 = ax1.twinx()
ax2.plot(df['Mois'], df['Température (°C)'], color='tomato', marker='o', linestyle='-', linewidth=2, label='Température (°C)')
ax2.set ylabel("Température (°C)", color='tomato')
ax2.set ylim(0, 30)
# Graphique en aires pour les précipitations
ax3 = ax1.twinx()
ax3.fill between(df['Mois'], df['Précipitations (mm)'], color='lightblue', alpha=0.3, label='Précipitations (mm)')
ax3.spines['right'].set position(('outward', 60)) # Décale l'axe des précipitations
ax3.set ylabel("Précipitations (mm)", color='lightblue')
ax3.set ylim(0, 100)
# Ajouter des légendes et un titre
fig.suptitle("Ventes de Glaces, Température et Précipitations par Mois")
fig.tight_layout()
fig.legend(loc="upper left", bbox_to_anchor=(0.1, 0.9))
plt.show()
```

Formateur: Berradi Yassine

60

Maîtriser la visualisation avancée des données:

- 2. Cartographie et géovisualisation: Utile pour des analyses géospatiales, en utilisant des bibliothèques comme Folium ou GeoPandas.
 - <u>Exemple</u>: Taux de Criminalité par Ville.

Ville	Latitude	Longitude	Taux de Criminalité
Paris	48.8566	2.3522	650
Lyon	45.7640	4.8357	480
Marseille	43.2965	5.3698	700
Lille	50.6292	3.0573	300
Bordeaux	44.8378	-0.5792	450
Toulouse	43.6047	1.4442	520
Nice	43.7102	7.2620	680

import folium from folium import plugins

```
# Créer une carte centrée sur la France
map france = folium.Map(location=[46.603354, 1.888334], zoom_start=5)
# Jeu de données
data = {
'Ville': ['Paris', 'Lyon', 'Marseille', 'Lille', 'Bordeaux', 'Toulouse', 'Nice'],
'Latitude': [48.8566, 45.7640, 43.2965, 50.6292, 44.8378, 43.6047, 43.7102],
'Longitude': [2.3522, 4.8357, 5.3698, 3.0573, -0.5792, 1.4442, 7.2620],
'Taux de Criminalité': [650, 480, 700, 300, 450, 520, 680] }
# Afficher la carte
map_france
```

```
# Couleur et taille du cercle selon le taux de criminalité
  folium.CircleMarker( location=[lat, lon],
                        radius=crime_rate / 100,
                       # Taille proportionnelle au taux de criminalité
                        color='crimson',
                        fill=True,
                        fill_color='crimson',
                        fill_opacity=0.6,
                       popup=f"{ville}: {crime_rate} crimes"
                       ).add_to(map_france)
# Afficher la carte
map_france
```

Maîtriser la visualisation avancée des données:

- **3. Diagrammes en réseau**: Utile pour visualiser les relations complexes entre les entités, par exemple pour des données de réseau social.
 - Exemple : Réseau de Collaboration entre Chercheurs.

	Chercheur 1	Chercheur 2	Nombre de publications ensemble
0	Alice	Bob	3
1	Alice	Charlie	1
2	Bob	Charlie	2
3	Bob	David	1
4	Charlie	David	4
5	Alice	Eve	2
6	Eve	Frank	1
7	David	Frank	3
8	Charlie	Eve	2

```
import networkx as nx
import matplotlib.pyplot as plt
# Jeu de données des collaborations
data = [ ('Alice', 'Bob', 3), ('Alice', 'Charlie', 1), ('Bob', 'Charlie', 2), ('Bob', 'David', 1), ('Charlie', 'David', 4), ('Alice', 'Eve', 2), ('Eve', 'Frank', 1), ('David', 'Frank', 3), ('Charlie', 'Eve', 2) ]
# Création du graphe
G = nx.Graph()
# Ajout des arêtes et des poids (nombre de publications)
for chercheur1, chercheur2, publications in data:
   G.add edge(chercheur1, chercheur2, weight=publications)
# Définir la position des nœuds pour une disposition claire
pos = nx.spring layout(G)
# Dessiner le graphe
plt.figure(figsize=(10, 8))
nx.draw_networkx_nodes(G, pos, node_size=1000, node_color='skyblue')
nx.draw_networkx_labels(G, pos, font_size=10, font_family="sans-serif")
plt.title("Réseau de Collaboration entre Chercheurs")
plt.show()
                                                  Formateur: Berradi Yassine
                                                                                                              66
```

Réseau de Collaboration entre Chercheurs


```
# Dessiner les arêtes avec des largeurs en fonction du nombre de publications
edges = nx.draw_networkx_edges(G, pos, width=[G[u][v]['weight'] for u, v in G.edges()])
# Ajouter une étiquette pour le poids de chaque arête (optionnel)
edge labels = {(u, v): f"{G[u][v]['weight']}" for u, v in G.edges()}
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_color='red')
plt.title("Réseau de Collaboration entre Chercheurs")
plt.show()
```

Réseau de Collaboration entre Chercheurs


```
# Ajouter une étiquette pour le poids de chaque arête (optionnel)
edge_labels = {(u, v): f"{G[u][v]['weight']}" for u, v in G.edges()}
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_color='red')
plt.title("Réseau de Collaboration entre Chercheurs")
plt.show()
```

Réseau de Collaboration entre Chercheurs

- 1. PRÉREQUIS de la compétence
- 2. Méthodes de nettoyage des données
 - Traitement des valeurs manquantes
 - Normalisation et standardisation
 - Codage des variables catégorielles
- 3. Analyse exploratoire des données
 - Analyse univariée
 - Analyse bivariée et corrélation
- 4. Techniques de visualisation de données
 - Maîtriser la visualisation avancée des données
 - Graphiques 3D et interactifs
 - Visualisations complexes

Maîtriser la visualisation avancée des données:

- 1. **Graphiques 3D et interactifs**: Utile pour explorer des relations entre trois variables.
 - Exemple: les revenus en fonction de l'age et les années d'études.

age	revenu	années	d'études
23	3000		12
45	7000		18
31	5000		15
35	8000		17
40	9000		20
29	4500		14
22	3200		12
34	5600		16

import plotly.express as px import pandas as pd

Exemple de données

data = pd.DataFrame({

'age': [23, 45, 31, 35, 40, 29, 22, 34],

'revenu': [3000, 7000, 5000, 8000, 9000, 4500, 3200, 5600],

'années d\'études': [12, 18, 15, 17, 20, 14, 12, 16] })

Création d'un nuage de points 3D interactif

fig = px.scatter_3d(data, x='age', y='revenu', z='années d\'études', color='revenu', title='Relation entre Âge, Revenu et Années d\'études')

fig.show()

- 1. PRÉREQUIS de la compétence
- 2. Méthodes de nettoyage des données
 - Traitement des valeurs manquantes
 - Normalisation et standardisation
 - Codage des variables catégorielles
- 3. Analyse exploratoire des données
 - Analyse univariée
 - Analyse bivariée et corrélation
- 4. Techniques de visualisation de données
 - Maîtriser la visualisation avancée des données
 - Graphiques 3D et interactifs
 - Visualisations complexes

Les hypothèses des modèles linéaires

Un modèle linéaire classique repose sur les hypothèses suivantes :

- O Normalité des résidus : Les erreurs doivent suivre une distribution normale.
- o Homoscédasticité: La variance des résidus doit être constante.

Normalité des résidus

Une courbe en cloche centrée sur zéro est un bon indicateur de normalité.

Normalité des résidus

Exemple jeu de données: cas de régression de la fonction 2*sin(x)

Les résidus ne suivent pas une distribution normale. ==> régression linéaire n'est pas valide

Homoscédasticité

Homoscédasticité : Les erreurs ont une variance constante indépendamment de la vitesse.

Hétéroscédasticité : La variance des erreurs augmente avec la vitesse.==> régression linéaire n'est pas valide

5. Analyser les données Time Series (Forcasting)

- Introduction
- O Que peut-on prévoir ?
- Technique d'analyse Time Series
- Méthode de prédiction (forcasting) ARIMA
- Méthode de prédiction (forcasting) SARIMA
- Méthode de prédiction (forcasting) LSTM

5. Analyser les données Time Series (Forcasting)

- Introduction
- O Que peut-on prévoir ?
- Technique d'analyse Time Series
- Méthode de prédiction (forcasting) ARIMA
- Méthode de prédiction (forcasting) SARIMA
- Méthode de prédiction (forcasting) LSTM

Introduction

La prévision est nécessaire dans de nombreuses situations :

- planifier le personnel dans un centre d'appels pour la semaine prochaine exige des prévisions du volume d'appels
- gérer un stock nécessite des prévisions des besoins en inventaire.
- Prévoir les conditions météorologiques pour optimiser les récoltes ou prévenir les catastrophes naturelles.
- Les prévisions peuvent être nécessaires:
 - o plusieurs années à l'avance (pour les investissements en capital)
 - o seulement quelques minutes à l'avance (pour le routage des télécommunications).

==> Quelles que soient les circonstances ou les horizons temporels concernés, la prévision est un outil essentiel pour une planification efficace et efficiente.

Qu'Est-ce qu'on peut prédire au futur?

Certaines choses sont plus faciles à prévoir que d'autres. :

- L'heure du lever du soleil demain matin (très facile)
- Ventes mensuelles d'un produit de grande consommation (modérée)
- les numéros du loto de demain (très difficile)

==> Quelles sont les facteurs qui désignent qu'une prédiction soit facile ou difficile ?

Les facteurs de prédire de futur (forcasting)

La prédiction d'un événement ou d'une quantité dépend de quatre facteurs:

- La compréhension des facteurs qui y contribuent : Plus nous comprenons les facteurs qui influencent un phénomène, plus il est facile de le prévoir.
- La quantité de données disponibles : Plus il y a de données historiques, plus il est possible de construire des modèles de prévision précis.
- La similarité entre le futur et le passé : Si le futur est susceptible de ressembler au passé, les prévisions seront plus fiables.
- L'impact des prévisions sur ce que l'on cherche à prévoir : Parfois, les prévisions elles-mêmes peuvent influencer le résultat, ce qui rend la prévision plus complexe.

Les facteurs de prédire de futur (forcasting)

La prédiction d'un événement ou d'une quantité dépend de quatre facteurs:

- La compréhension des facteurs qui y contribuent : Plus nous comprenons les facteurs qui influencent un phénomène, plus il est facile de le prévoir.
- La quantité de données disponibles : Plus il y a de données historiques, plus il est possible de construire des modèles de prévision précis.
- La similarité entre le futur et le passé : Si le futur est susceptible de ressembler au passé, les prévisions seront plus fiables.
- L'impact des prévisions sur ce que l'on cherche à prévoir : Parfois, les prévisions elles-mêmes peuvent influencer le résultat, ce qui rend la prévision plus complexe.

Exemple:

les prévisions à court terme de la demande en électricité résidentielle peuvent être très précises, car ces quatre conditions sont généralement remplies :

- Compréhension des facteurs : La demande en électricité est largement influencée par les températures, avec des effets secondaires liés aux variations calendaires (comme les vacances) et aux conditions économiques.
- Disponibilité des données : Il existe généralement plusieurs années de données sur la demande en électricité et des décennies de données sur les conditions météorologiques.
- Similarité entre le futur et le passé : Pour des prévisions à court terme (jusqu'à quelques semaines), on peut supposer que le comportement de la demande sera similaire à ce qui a été observé par le passé.
- Impact des prévisions : Pour la plupart des utilisateurs résidentiels, le prix de l'électricité ne dépend pas de la demande, donc les prévisions de demande n'ont que peu ou pas d'effet sur le comportement des consommateurs.

==>si ces facteurs sont validés on peut dire que la prédiction est facile?

Exercice1:

En tant que Data Analyst, une entreprise X vous a demandé d'analyser s'il est possible de concevoir un modèle de prédiction pour les taux de change des devises.

- 1. Quel est le type de ce problème?
- 2. Quels sont les facteurs valides pour la prédiction des taux de change des devises? Justifiez votre réponse.
- 3. qu'elle votre réponse à la demande de l'entreprise.

Exercice2:

Classez les prévisions futur (forcasting) ci-dessous, le plus facile au plus difficile. Justifiez votre réponse en vérifiant les quatre facteurs:

- Lever du soleil.
- Numéros gagnants du loto.
- Ventes mensuelles d'un produit de grande consommation.
- Prix des actions en bourse.
- Demande en électricité à court terme.

"Tout ce qui est observé de manière **séquentielle au fil du temps** est une **série temporelle**."

Des exemples de données de séries temporelles incluent :

- Les profits annuels de Google.
- Les résultats **trimestriels** des ventes d'Amazon.
- Les précipitations mensuelles.
- Les ventes au détail hebdomadaires.
- La demande en électricité horaire.

==> Dans ce cours, Nous ne considérerons que les séries temporelles observées à intervalles de temps réguliers (par exemple, toutes les heures, quotidiennement, hebdomadairement, mensuellement, trimestriellement, annuellement).

- Lors de la prévision des données de séries temporelles, l'objectif est d'estimer comment la séquence d'observations évoluera dans le futur.
- Quel est l'intervalle de temps régulier des valeurs observées au passé?
- Quel est l'intervalle de temps régulier des valeurs estimées au futur?

La figure montre la production de boissons. [2000, 2010+]

- Lors de la prévision des données de séries temporelles, l'objectif est d'estimer comment la séquence d'observations évoluera dans le futur.
- Quel est l'intervalle de temps régulier des valeurs observées au passé? trimestrielle
- Quel est l'intervalle de temps régulier des valeurs estimées au futur? 2 ans

La figure montre la production de boissons. [2000, 2010+]

 Que peut-on conclure sur la prédiction (forcasting) selon la figure?

La figure montre la production de boissons. [2000, 2010+]

- Que peut-on conclure sur la prédiction (forcasting) selon la figure?
- Les prévisions ont capturé le modèle saisonnier (pattern) observé dans les données historiques et l'ont reproduit pour les deux prochaines années.

La figure montre la production de boissons. [2000, 2010+]

 Que représentent la ligne blue, la region blue ombrée foncée et la region blue ombrée claire?

La figure montre la production de boissons. [2000, 2010+]

- Que représentent la ligne blue, la region blue ombrée foncée et la region blue ombrée claire?
- La région ombrée foncée représente les intervalles de prédiction à 80 %.
- chaque valeur future est censée se situer dans cette région avec une probabilité de 80 %.
- La région ombrée claire représente les intervalles de prédiction à 95 %.
- Ces intervalles de prédiction sont un moyen utile de visualiser l'incertitude des prévisions.
- Dans ce cas, les prévisions sont supposées être précises, ce qui explique pourquoi les intervalles de prédiction sont relativement étroits.

La figure montre la production de boissons. [2000, 2010+]

Les motifs des séries temporelles (Time Series Patterns)

" un bon modèle de prédiction du futur (forcasting) doit **capturer** tous les **motifs (patterns)** observés dans les données du passé."

Quels sont les types des motifs qui caractérisent une Time Series?

Les motifs des séries temporelles (Time Series Patterns)

Les types des motifs qui caractérisent une Time Series:

- Tendance (Trend):

Une augmentation ou une diminution progressive des valeurs au fil du temps.

- Saisonnalité (Seasonality) :

- Un motif récurrent qui se répète à des intervalles fixes (mois, trimestre, année, etc.).
- Exemple : L'augmentation des ventes de la glace chaque été.

- Cycle:

 Un cycle se produit lorsque les données présentent des hausses et des baisses qui ne suivent pas une fréquence fixe.

- Bruit (Noise):

Des fluctuations aléatoires qui n'ont pas de structure prévisible.

==> remarque: Si l'on élimine la **tendance** et la **saisonnalité**, il ne reste que le **bruit**.

Tendance (trend) & saisonnalité

Selon la figure, interpréter l'évolution des ventes de médicaments antidiabétiques.

Les ventes mensuelles de médicaments antidiabétiques en Australie.

Tendance (trend)& saisonnalité

Interprétation de la figure:

- Tendance claire et croissante.
- Fort pattern saisonnier dont l'amplitude augmente lorsque la série s'élève.
- Chute soudaine au début de chaque année: causée par un programme de subvention gouvernemental qui incite les patients à faire des stocks de médicaments à la fin de l'année.

==> Toute prévision de cette série devrait capturer le pattern saisonnier ainsi que le fait que la tendance évolue lentement.

Les ventes mensuelles de médicaments antidiabétiques en Australie.

Exemples:

Interpréter les figures ci-après

Exemples:

- Les ventes mensuelles de logements (**en haut à gauche**) présentent une forte saisonnalité au sein de chaque année, ainsi qu'un comportement cyclique marqué avec une période d'environ 6 à 10 ans. Aucune tendance apparente ne se dégage des données sur cette période.
- Les contrats de bons du Trésor américain (en haut à droite) montrent les résultats du marché de Chicago sur 100 jours de trading consécutifs en 1981. Ici, il n'y a pas de saisonnalité, mais une tendance baissière évidente. Il est possible que, sur une période beaucoup plus longue, cette tendance à la baisse fasse en réalité partie d'un cycle plus large. Cependant, lorsqu'on observe seulement ces 100 jours, elle apparaît simplement comme une tendance.
- La production trimestrielle d'électricité en Australie (en bas à gauche) présente une tendance haussière marquée, ainsi qu'une forte saisonnalité. Il n'y a cependant aucune indication de comportement cyclique.
- La variation quotidienne du cours de clôture de l'action Google (**en bas à droite**) ne présente ni tendance, ni saisonnalité, ni comportement cyclique. Les fluctuations sont aléatoires et ne semblent pas prévisibles, sans motifs clairs pouvant être exploités pour le développement d'un modèle de prévision.

Les motifs des séries temporelles (Time Séries Patterns)

- Analyse Exploratoire des séries temporelles:

Les étapes à suivre pour analyser une série temporelle:

- 1. Visualiser la série temporelle et interpréter la figure.
- 2. Décomposition de la série temporelle (Trend, saisonnalité, résidus).
- 3. Étudier la Stationnarité (visuellement où Utiliser le graphique ACF (autocorrélation))

Nombre de passagers aériens par mois

 Visualiser la série temporelle et interpréter la figure.

- 2. Décomposition de la série temporelle:
 - Trend
 - Saisonnalité
 - résidus

from statsmodels.tsa.seasonal import seasonal_decompose

sd = seasonal_decompose(data, model='multiplicative')

sd.plot()

plt.show()

3. Étudier la **Stationnarité**

Qu'est-ce que la stationnarité ?

Une série temporelle est dite stationnaire si ses propriétés statistiques (moyenne, variance, autocorrélation) restent constantes dans le temps. Concrètement, cela signifie :

- La moyenne de la série ne change pas au fil du temps.
- La variance est constante (pas d'hétéroscédasticité).
- o L'autocorrélation entre les observations est faible.

Nombre de passagers aériens par mois

3. Étudier la Stationnarité:

Est-ce que cette série temporelle est stationnaire?

Nombre de passagers aériens par mois

3. Étudier la Stationnarité:

Est-ce que cette série temporelle est stationnaire?

n'est pas stationnaire:

- Moyenne n'est pas stable.
- Variance n'est pas stable.

Comment mesurer l'autocorrélation?

l'autocorrélation:

la corrélation entre une série temporelle à un temps t et à un temps t+1 (c'est-à-dire avec un **décalage** de 1..n, ou **lag** = 1..n),

$$Lag = 1$$

116

$$Lag = 2$$

$$Lag = 5$$

- l'autocorrélation:

$$Lag = 30$$

119

- l'autocorrélation:

Qu'est-ce que vous remarquez?

- l'autocorrélation:

On peut résumer toutes les étapes avant par l'application de la méthode ACF (AutoCorrelation Function)

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(data)

plt.show()

Lag = 1-->25

L'autocorrélation entre les observations est forte:

- Trend.
- Saisonnalité. n'est pas stationnaire

- l'autocorrélation:

Les graphiques temporels et les graphiques ACF suivants correspondent à quatre séries temporelles différentes. Votre tâche consiste à associer chaque graphique temporel de la première ligne à l'un des graphiques ACF de la deuxième ligne.

Nombre de passagers aériens par mois

- comment éliminer la tendance dans une série temporelle?

 comment éliminer la tendance dans une série temporelle?

_ Appliquer une Différenciation:

La différenciation permet d'éliminer la tendance en soustrayant chaque valeur de la valeur précédente.

- comment éliminer la tendance dans une série temporelle?

_ Appliquer une Différenciation:

La différenciation permet d'éliminer la tendance en soustrayant chaque valeur de la valeur précédente.

différenciation de l'ordre 1:

data_diff =data.diff(1)

Visualiser la série différenciée plt.figure(figsize=(18, 16)) data_diff.plot(title='Ventes différenciées') plt.show()

==>est ce que la série devient stationnaire?il faut appliquer le test statistique adfuller

Ventes différenciées

from statsmodels.tsa.stattools import adfuller

```
result = adfuller(data_diff.dropna())
```

```
print("Statistique du test ADF :", result[0])
print("p-value :", result[1])
print("Valeurs critiques :", result[4])
```

```
if result[1] > 0.05:
```

print("La série n'est pas stationnaire.")

else:

print("La série est stationnaire.")

==>est ce que la série devient stationnaire?

La série n'est pas stationnaire

Il faut passer à l'ordre suivant de différenciation

Différenciation de l'ordre 2: data diff = data.diff(2)

Visualiser la série différenciée plt.figure(figsize=(18, 16)) data_diff.plot(title='Ventes différenciées') plt.show()

test statistique adfuller:

La série est stationnaire.

==>est ce que la **variance** est constante?

==>est ce que la **variance** est constante?**non**

il faut appliquer une transformation logarithmique:

ts_log = np.log(data)

il faut appliquer une transformation logarithmique avant d'appliquer la différenciation

- La stationnarité est essentielle en analyse des séries temporelles, notamment pour utiliser des modèles comme ARIMA, qui supposent que la série est stationnaire pour faire des prévisions fiables.
 - o ARIMA est adapté aux séries temporelles non stationnaires sans saisonnalité.
 - SARIMA (Saisonnière ARIMA) prend en compte la saisonnalité en ajoutant des composantes saisonnières au modèle ARIMA.

- La stationnarité est essentielle en analyse des séries temporelles, notamment pour utiliser des modèles comme ARIMA, qui supposent que la série est stationnaire pour faire des prévisions fiables.
 - ARIMA est adapté aux séries temporelles non stationnaires sans saisonnalité.
 - SARIMA (Saisonnière ARIMA) prend en compte la saisonnalité en ajoutant des composantes saisonnières au modèle ARIMA.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from pmdarima import auto arima
# Trouver le meilleur modèle SARIMA
model = auto arima(data["Passengers"], seasonal=True, m=12, trace=True, stepwise=True)
# Afficher les paramètres optimaux
print(model.summary())
# Ajuster le modèle SARIMA optimal
sarima_model = sm.tsa.statespace.SARIMAX(data["Passengers"], order=model.order,
seasonal order=model.seasonal order)
sarima_result = sarima_model.fit()
# Prévision: methode 1
Prédiction data["Prévision"] = sarima_result.predict(start=len(data), end=len(data)+24, dynamic=True)
```

```
1961-02-01
                                                                                                          420.395024
                                                                                             1961-03-01
                                                                                                          449.198348
# Prévision: methode 2
                                                                                             1961-04-01
                                                                                                          491.839976
                                                                                             1961-05-01
                                                                                                          503.394502
n_periods = 24 # Nombre de mois à prédire
                                                                                              1961-06-01
                                                                                                          566.862471
forecast = sarima_result.get_forecast(steps=n_periods)
                                                                                              1961-07-01
                                                                                                          654.260189
                                                                                              1961-08-01
                                                                                                          638.597493
predictions = forecast.predicted mean
                                                                                             1961-09-01
                                                                                                          540.883739
                                                                                             1961-10-01
                                                                                                          494.126610
```


Formateur: Berradi Yassine

1961-01-01

445.634934

