Making Sense of March Madness

Victor Ramirez
Springboard
Capstone Project 2
May 2018

Problem

- The NCAA Tournament is unpredictable.
- The casinos are very good at placing borderline betting lines
- Profiting off of sports betting is extremely difficult.

Objective: Create a Model and Profitable Betting Strategy

The goal of this project is to create a model that can:

- 1. Accurately predict the outcome of games, then
- 2. Using the predicted outcome, develop a profitable betting strategy

Clients

- Sports bettors looking to make good bets
- Sports analytics companies looking to gain an edge over the competition
- The casino looking to keep their advantage

Data

- Basketball Data:
 - Contains box score results and basic statistics since 2003
 - From 2018 March Madness competition hosted by Kaggle
- Betting Data:
 - Contains score results for each game and historic betting lines
 - From The Prediction Tracker

Data Cleaning

- Basketball Data:
 - Calculate advanced stats
- Betting Data:
 - Assigning Team ID's to teams with inconsistent spellings
 - Dropping unreliable betting lines from various platforms

Approach: Predict Win Margins With Regression

- Betting lines are defined by predicted win margins
- Apply regression models to predict win margins
- Compare predictions with actual results and betting lines
- Bets are profitable if model predictions are closer to actual results than betting line

Betting Lines Are Closely Related to Actual Results

A Naive Betting Strategy is Profitable... If you choose the right one

Machine Learning Methods

- Linear Regression
 - 1st model (baseline) uses just Elo Ratings.
 - 2nd model extended to include advanced stats
- Linear SVR
 - 1st model uses just Elo Ratings
 - 2nd model extended to include advanced stats
- Decision Tree
 - Default parameters
 - Prediction mechanism similar to how analysts make prediction

Features

Elo Ratings:

- Singular measure of strength of team
- Accounts for decisiveness of games and strength of teams faced

Advanced Stats:

- In general, measures of how well a team is at one aspect of the game
- Example: Shooting eFG%, Passing Assist Rate, Rebounding Rebound%, etc.

Results: Linear Regression

Elo Ratings + Advanced Stats

Results: Linear SVR

Elo Ratings + Advanced Stats

Results: Decision Tree Regressor

Elo Ratings + Advanced Stats

Results: Betting Simulation

Takeaways:

- DTR is most profitable
- Advanced stats improved SVR, did not improve LR
- Difficult to improve upon baseline model, LR with Elo Ratings

Conclusions / Recommendations

Regression Models are Generally Profitable

Every model except LR with advanced stats were profitable

Decision Tree Regressors Are The Most Profitable

DTR predict outcomes similarly to how games are actually predicted

Identify Key Bets

• For clients with less capital, focus on what makes a profitable bet.

Future Work

- Confidence Based Betting
 - Current model assumes all bets are made equal
 - Adjust bet sizes based on confidence by model
- Betting on Different Platforms
 - Some platforms are more accurate than others
- Add Non-Statistical Features
 - Game location, injuries, coach's ability