

Page: 1 of 7

University of Texas at Austin

Problem Set #6

European put options.

DISTRACTION

Problem 6.1. The initial price of the market index is \$900. After 3 months the market index is priced at \$915. The nominal rate of interest convertible monthly is 4.8%. The premium on the put, with a strike price of \$930. is \$8.00. What is the profit at expiration for a long put?

- (a) \$15.00 loss
 - (b) \$6.90 <u>loss</u>
 - (c) \$6.90 gain
- (d) \$15.00 gain
 - (e) None of the above.

(12)

П

=> effective monthly $i = \frac{i^{(n)}}{n} = 0.004$

 $FV_{0,T}(Y_{P}(0)) = 8(1.004)^{3}$

Payoff= (K-S(T)) = (930-915) = 15

Page: 2 of 7

Problem 6.2. Sample FM(DM) #12

Consider a European put option on a stock index without dividends, with 6 months to expiration, and a strike price of 1,000. Suppose that the nominal annual risk-free rate is 4% convertible semiannually, and that the put costs 74.20 now. What price must the index be in 6 months so that being long the put would produce the same profit as being short the put?

Problem 6.3. Farmer Shaun is producing sweet potatoes. He intends to harvest 10,000—cartons' worth in six months. His total costs are \$12.00 per carton.

He wishes to hedge using European put options. There are two puts on sweet potatoes with the exercise date in six months available: one with the strike price of \$13 per carton and another with the strike price of \$15 per carton. Their premiums are \$0.15 and \$0.18, respectively.

Assume that the prevailing risk-free interest rate is 4% effective for the half-year period.

At harvest time, in six months, it turns out that the sweet-potato spot price equals \$14. What would Farmer Shaun's profit be if he had decided to hedge using the \$13-strike put versus his profit if he had decided to use the \$15-strike put to hedge?