

IN THE CLAIMS

The current claims follow. For claims not marked as amended in this response, any difference in the claims below and the previous state of the claims is unintentional and in the nature of a typographical error.

1. (Previously Presented) For use in a wireless network, a distributed architecture for the reception of signals transmitted from one or more mobile stations, comprising:

a plurality of base transceiver stations for receiving said signals;

a Code Division Multiple Access (CDMA) detector in each said base transceiver station; and a combiner in each said base transceiver station for combining a first signal received from a first mobile station by a target base transceiver station with signals sent to said target base transceiver station by non-target ones of said plurality of base transceiver stations.

2-4. (Cancelled)

5. (Previously Presented) The distributed architecture as set forth in Claim 1 further comprising an error detector in each said base transceiver station for determining the error count when said first signal received from said first mobile station and said signals sent to said target base transceiver station by said non-target base transceiver stations are combined.

L:\SAMS01\00139 -2-

- 6. (Previously Presented) The distributed architecture as set forth in Claim 5, further comprising a reverse link power control for notifying said mobile station to increase power if error count is high.
- 7. (Previously Presented) The distributed architecture as set forth in Claim 5, further comprising a reverse link power control for notifying said mobile station to decrease power if error count is low.
 - 8. (Previously Presented) A wireless office network, comprising:

a mobile switching center;

a plurality of base stations each comprising a base station controller and at least one base transceiver station;

a backhaul network for connecting said mobile switching center with each said base station; and

a distributed architecture for the reception of signals transmitted from one or more mobile stations, comprising:

a plurality of base transceiver stations for receiving said signals;

a Code Division Multiple Access (CDMA) detector in each of said plurality of base transceiver stations; and

L:\SAMS01\00139 -3-

DOCKET NO. 2001.02.001.WS0
U.S. SERIAL NO. 09/752,875

a combiner in each said base transceiver station for combining a first signal received from a

first mobile station by a target base transceiver station with signals sent to said target base transceiver

station by non-target ones of said plurality of base transceiver stations.

9-11. (Cancelled)

12. (Previously Presented) The wireless office network as set forth in Claim 8 further

comprising an error detector in each said base transceiver station for determining the error count

when said first signal received from said first mobile station and said signals sent to said target base

transceiver station by said non-target base transceiver stations are combined.

13. (Previously Presented) The wireless office network as set forth in Claim 12, further

comprising a reverse link power control for notifying said mobile station to increase power if error

count is high.

14. (Previously Presented) The wireless office network as set forth in Claim 12, further

comprising a reverse link power control for notifying said mobile station to decrease power if error

count is low.

L:\SAMS01\00139 -4-

15. (Previously Presented) For use in a wireless network, a method for receiving signals transmitted from one or more mobile stations, comprising the steps of:

detecting a baseband signal from a mobile station at a plurality of base transceiver stations, one station being a target base transceiver station;

producing a symbol based on a detector output determined from said baseband signal received at each non-target base transceiver station;

combining said non-target base transceiver station symbols with said baseband signal received at said target base transceiver station; and sending a power adjustment signal to said mobile station.

- 16. (Original) The method as set forth in Claim 15, further comprising the step of: sending a code pattern for said mobile station to each non-target base transceiver station in said network.
- 17. (Original) The method as set forth in Claim 15, further comprising the step of: sending said symbol from each said non-target base transceiver station to said target base transceiver station.
 - 18. (Original) The method as set forth in Claim 15, further comprising: decoding said symbols received from each said non-target base transceiver station.

L:\SAMS01\00139 -5-

- 19. (Original) The method as set forth in Claim 15, further comprising: responsive to a high error count, prompting said mobile station to increase power.
- 20. (Original) The method as set forth in Claim 15, further comprising the step of: responsive to a low error count, prompting said mobile station to decrease power.
- 21. (Previously Presented) For use in a wireless network comprising a plurality of base transceiver stations capable of communicating with mobile stations accessing said wireless network, a first base transceiver station comprising:

a Code Division Multiple Access (CDMA) detector capable of receiving first CDMA signals transmitted by a first one of said mobile stations; and

a combiner capable of combining said first CDMA signals with second CDMA signals sent to said first base transceiver station from a second base transceiver station.

22. (Previously Presented) The first base transceiver station as set forth in Claim 21, further comprising an error detector capable of receiving a combined output signal from said combiner and outputting an error value corresponding to a number of errors detected in said combined output signal.

L:\SAMS01\00139 -6-

- 23. (Previously Presented) The first base transceiver station as set forth in Claim 22, further comprising power control circuitry capable of receiving said error value from said error detector and generating a power adjustment signal for transmission to said first mobile station.
- 24. (Previously Presented) The first base transceiver station as set forth in Claim 23, wherein said power control circuitry compares said error value to a threshold value and determines said power adjustment signal based on said comparison.
 - 25. (Previously Presented) A wireless network comprising:

a plurality of base transceiver stations capable of communicating with mobile stations accessing said wireless network, wherein a first one of said plurality of base transceiver stations comprises:

a Code Division Multiple Access (CDMA) detector capable of receiving first CDMA signals transmitted by a first one of said mobile stations; and

a combiner capable of combining said first CDMA signals with second CDMA signals sent to said first base transceiver station from a second one of said plurality of base transceiver stations.

26. (Previously Presented) The wireless network as set forth in Claim 25, further comprising an error detector capable of receiving a combined output signal from said combiner and

L:\SAMS01\00139 -7-

DOCKET NO. 2001.02.001.WS0 U.S. SERIAL NO. 09/752,875

PATENT

outputting an error value corresponding to a number of errors detected in said combined output

signal.

27. (Previously Presented) The wireless network as set forth in Claim 26, further

comprising power control circuitry capable of receiving said error value from said error detector and

generating a power adjustment signal for transmission to said first mobile station.

28. (Previously Presented) The wireless network as set forth in Claim 27, wherein said

power control circuitry compares said error value to a threshold value and determines said power

adjustment signal based on said comparison.

L:\SAMS01\00139 -8-