Peter Hess

Problem 3.1.6. Let $[m] = \{0, \ldots, m\}$. Suppose $f : [m] \to [m]$. Fix $X_0 \in [m]$ and define the sequence $\langle X_n \rangle_{n \geq 0}$ by $X_n = X_{n-1}$ for $n \geq 1$.

By Pigeonhole, there exist an integer $\mu + p$ such that $X_0, \ldots, X_{\mu+p-1}$ are distinct but $X_{n+p} = X_n$ for $n \ge \mu$. That is, the sequence is p-periodic starting at μ .

Claim. For a > b, $X_a = X_b$ iff $a \ge \mu$ and p divides b - a.

Proof. The reverse direction is obvious. For the forward direction, suppose $a < \mu$. By definition of μ , we require $b > \mu + p$ (otherwise, $X_a = X_{\mu}$). But then $X_{b-kp} = X_a$ for some k such that $\mu \leq b - kp < \mu + p$. A contradiction as $X_0, \ldots, X_{\mu+p-1}$ are distinct.

So WLOG say $\mu \le a < \mu + p$. Suppose b-a is not a multiple of p. Thus b-a = pk+r for some 0 < r < p. Then

$$X_b = X_{a+pk+r} = X_{a+r} = X_a.$$

If $a+r \ge \mu+p$, then $X_{a+r-p}=X_a$ where $a+r-p<\mu+p$, so in any case this is a contradiction.

Thus $X_{2n} = X_n$ iff n is a multiple of p and $n \ge \mu$. So taking n to be the smallest multiple of p bigger than μ , it follows $X_n = X_{2n}$. Furthermore, if there is an r such that $X_r = X_{2r}$, then either n = r or $r \ge \mu$ and $n \equiv r \mod p$; hence $X_n = X_r$.

Problem 3.1.7. Let $\ell(n)$ be the largest power of 2 less than or equal to n. That is, if $\ell(n) = 2^q$, we can write $n = \ell(n) + r$ where $0 \le r < 2^q$.

Now, if $X_n = X_{\ell(n)-1}$, then by the claim above, $\ell(n) \ge \mu + 1$ and $n - \ell(n) + 1 \le \ell(n)$ is a positive multiple of p. Hence $\ell(n) \ge p$. Therefore,

$$q \ge \lg(\max\{\mu + 1, p\}).$$

Thus, the smallest n such that $X_n = X_{\ell(n)-1}$ is $n = 2^{\lceil \lg \max\{\mu+1,p\} \rceil} + p - 1$.