Examination on Statistical Signal Processing

June 2021

PROBLEM A

Consider the scalar (real) valued hidden Markov process defined by the following equations.

$$X_n = a_n X_{n-1} + U_n$$

$$Y_n = c_n X_n + \sqrt{\beta} W_n$$

where for integer $n \geq 0$, $\{X_0, U_n, W_n\}$ are independent $\mathcal{N}(0, 1)$, $\beta > 0$.

A.1 Recall Kalman equations in the context of this simplified model. Notation conventions are

$$X_n^- = E(X_n|Y_{0:n-1})$$

$$\hat{X}_n = E(X_n|Y_{0:n})$$

$$P_n^- = cov\left(X_n - X_n^-\right)$$

$$P_n = cov\left(X_n - \hat{X}_n\right)$$

All these quantities are scalars. (Matlab notation is used, for example $Y_{0:n} \equiv (Y_0, ..., Y_n)$).

A.2 Let $a_n = a$, 0 < a < 1, $c_n = c$. From the recursion relations between P_n and P_n^- , P_n^- and P_{n-1} deduce a relation between P_n and P_{n-1} .

A.3 To calculate the asymptotic expression of P_n take $P_n = P = const.$ in this equation and solve for P.

A.4 Describe the behavior of P with respect to the noise variance β and the dynamics $a_n = a$ and comment the result.

PROBLEM B

In this problem we view the beginning of the EM algorithm for the identification of a Markov chain. (X_n) , $n \ge 0$ is a Markov sequence with values in $\{1, -1\}$ and $p(X_0 = 1) = 1/2$. For $n \ge 1$, the transition probabilities $p(x_n|x_{n-1})$ are given by the matrix

$$A = \begin{bmatrix} \frac{1+\varepsilon}{2} & \frac{1-\varepsilon}{2} \\ \frac{1-\varepsilon}{2} & \frac{1+\varepsilon}{2} \end{bmatrix}$$

where $0 < \varepsilon < 1$ is a parameter to be estimated. The obszerved signal is $Y_n = X_n + \sqrt{\beta}W_n$, n = 0 : N, such that $W_n \sim \mathcal{N}(0, 1)$ is an additive noise independent of (X_n) and $\beta > 0$ is to be estimated. The vector of parameters is $\theta = (\varepsilon, \beta)$.

B.1. Check that $p(x_n|x_{n-1}) = (1 + \varepsilon x_{n-1}x_n)/2$.

B.2 Let $f_{0:N}(x_{0:N}) \equiv f_{0,...,N}(x_0,...,x_N)$ be any probability density on $\{x_{0:N}\}$. Argue from Jensen's inequality to show that

$$\log p\left(y_{0:N}|\theta\right) \ge H(\theta) + C_0$$

where

$$H(\theta) = \sum_{x_{0:N}} f_{0:N}(x_{0:N}) \log p(x_{0:N}, y_{0:N} | \theta)$$

and C_0 is a term independent of θ .

B.3 By conditioning $y_{0:N}$ on $x_{0:N}$ and using properties of Markov sequences and independent sequences show that

$$\log p(x_{0:N}, y_{0:N}|\theta) = -\frac{1}{2\beta} \sum_{n=0}^{N} (y_n - x_n)^2 - \frac{1}{2}\beta$$

$$+ \sum_{n=1}^{N} \log (1 + \varepsilon x_{n-1} x_n) + C_1$$

where C_1 is a term independent of θ .

B.4 Combinate this relation with the expression of $H(\theta)$ to show that $H(\theta)$ is maximized by the equations

$$\beta = \sum_{n=0}^{N} \sum_{\{x_n\}} f_n(x_n) (y_n - x_n)^2$$

and

$$\sum_{n=0}^{N} \sum_{\{x_{n-1}x_n\}} f_{n-1,n}(x_{n-1}, x_n) \frac{x_{n-1}x_n}{1 + \varepsilon x_{n-1}x_n} = 0$$

B.5 Solve this last equation in ε (consider that $x_{n-1}x_n$ takes only 2 values).

PROBLEM C

Let (S_n) , $n \ge 0$ a random sequence with ± 1 values and probability distributions p_N such that for $J_n > 0$

$$p_N(s_{1:N}) = q_N(s_{1:N})/Z_N$$

$$= \frac{\exp{-\frac{1}{2}\sum_{n=1}^N J_n s_{n-1} s_n}}{\sum_{\{s_{1:N}\}} \exp{-\frac{1}{2}\sum_{n=1}^N J_n s_{n-1} s_n}}$$

C.1 Compute the conditional distribution

$$p_N(s_n|\tilde{s}_n)$$

where \tilde{s}_n is the vector $(s_i, i \neq n)$, deduce that (S_n) is a Markov sequence and write its transitions matrix.

C2. Let (Y_n) , $n \ge 0$ be a sequence of random observations on S_n such that

$$Y_n = S_n + W_n$$

where the W_n are i.i.d $\mathcal{N}(0,\beta)$. Define the Hamiltonian

$$H(s_{1:N}) = -\frac{1}{2} \sum_{n=1}^{N} J_n s_{n-1} s_n + \sum_{n=1}^{N} y_n s_n$$

Show that maximizing (in $s_{1:N}$) the joint probability

$$p(s_{1:N}, y_{1:N})$$

is equivalent to compute the limit for $t \to \infty$ of the finite temperature estimates defined by

$$\hat{s}_n(t) = \frac{\sum_{s_n} s_n \exp t H(s_{1:N})}{\sum_{s_n} \exp t H(s_{1:N})}$$

C3. For fixed t calculate the expression for $\hat{s}_n(t)$ show that it takes the following form and interpret this result:

$$\hat{s}_n(t) = \tanh \left\{ t \left(y_n - \varphi_n \right) \right\}$$