Pure Mathematics 2

Solution Bank

Exercise 3D

1 a
$$2^{x} = 75$$

 $\log 2^{x} = \log 75$
 $x \log 2 = \log 75$
 $x = \frac{\log 75}{\log 2}$
 $= 6.23 \text{ (3 s.f.)}$

$$3^{x} = 10$$

$$\log 3^{x} = \log 10$$

$$x \log 3 = \log 10$$

$$x = \frac{\log 10}{\log 3}$$

$$= 2.10 (3 \text{ s.f.})$$

c
$$5^{x} = 2$$
$$\log 5^{x} = \log 2$$
$$x \log 5 = \log 2$$
$$x = \frac{\log 2}{\log 5}$$
$$= 0.431 (3 \text{ s.f.})$$

d
$$4^{2x} = 100$$

 $\log 4^{2x} = \log 100$
 $2x \log 4 = \log 100$
 $x = \frac{\log 100}{2 \log 4}$
= 1.66 (3 s.f.)

e
$$9^{x+5} = 50$$

 $\log 9^{x+5} = \log 50$
 $(x+5)\log 9 = \log 50$
 $x\log 9 + 5\log 9 = \log 50$
 $x\log 9 = \log 50 - 5\log 9$
 $x = \frac{\log 50 - 5\log 9}{\log 9}$
 $= -3.22 (3 \text{ s.f.})$

1 f
$$7^{2x-1} = 23$$

 $\log 7^{2x-1} = \log 23$
 $(2x-1)\log 7 = \log 23$
 $2x\log 7 - \log 7 = \log 23$
 $2x\log 7 = \log 23 + \log 7$
 $x = \frac{\log 23 + \log 7}{2\log 7}$
 $= 1.31 (3 \text{ s.f.})$

g
$$11^{3x-2} = 65$$
$$\log 11^{3x-2} = \log 65$$
$$(3x-2)\log 11 = \log 65$$
$$3x-2 = \frac{\log 65}{\log 11}$$
$$= 1.740855$$
$$x = 1.25 (3 \text{ s.f.})$$

h
$$2^{3-2x} = 88$$
$$\log 2^{3-2x} = \log 88$$
$$(3-2x)\log 2 = \log 88$$
$$\log_2 88 = 3-2x$$
$$3-2x = 6.45943$$
$$x = -1.73 (3 \text{ s.f.})$$

2 a Let
$$y = 2^{x}$$

 $y^{2} - 6y + 5 = 0$
 $(y-1)(y-5) = 0$
So $y = 1$ or $y = 5$
If $y = 1$, $2^{x} = 1$, $x = 0$
If $y = 5$, $2^{x} = 5$
 $\log 2^{x} = \log 5$
 $x \log 2 = \log 5$
 $x = \frac{\log 5}{\log 2}$
 $x = 2.32$ (3 s.f.)

1

Pure Mathematics 2

Solution Bank

2 b Let
$$y = 3^x$$

$$y^2 - 15y + 44 = 0$$

$$(y-4)(y-11)=0$$

So
$$y = 4$$
 or $y = 11$

If
$$v = 4$$
, $3^x = 4$

$$\log 3^x = \log 4$$

$$x \log 3 = \log 4$$

$$x = \frac{\log 4}{\log 3}$$

$$x = 1.26 (3 \text{ s.f.})$$

If
$$y = 11$$
, $3^x = 11$

$$\log 3^x = \log 11$$

$$x \log 3 = \log 11$$

$$x = \frac{\log 11}{\log 3}$$

$$x = 2.18$$
 (3 s.f.)

So
$$x = 1.26$$
 or $x = 2.18$

c Let $y = 5^x$

$$y^2 - 6y - 7 = 0$$

$$(y+1)(y-7)=0$$

So
$$y = -1$$
 or $y = 7$

If
$$y = -1$$
, $5^x = -1$. No Solution.

If
$$v = 7$$
, $5^x = 7$

$$\log 5^x = \log 7$$

$$x \log 5 = \log 7$$

$$x = \frac{\log 7}{\log 5}$$

$$x = 1.21$$
 (3 s.f.)

2 d Let
$$y = 3^x$$

$$(3^x)^2 + (3^x \times 3) - 10 = 0$$

$$y^2 + 3y - 10 = 0$$

$$(y+5)(y-2)=0$$

So
$$y = -5$$
 or $y = 2$

If
$$y = -5$$
, $3^x = -5$. No Solution.

If
$$y = 2$$
, $3^x = 2$

$$\log 3^x = \log 2$$

$$x \log 3 = \log 2$$

$$x = \frac{\log 2}{\log 3}$$

$$x = 0.631$$
 (3 s.f.)

e Let $y = 7^x$

$$\left(7^x\right)^2 + 12 = 7^x \times 7$$

$$y^2 + 12 = 7y$$

$$y^2 - 7y + 12 = 0$$

$$(y-3)(y-4)=0$$

So
$$y = 3$$
 or $y = 4$

If
$$y = 3$$
, $7^x = 3$

$$x \log 7 = \log 3$$

$$x = \frac{\log 3}{\log 7}$$

$$x = 0.565$$
 (3 s.f.)

If
$$v = 4$$
, $7^x = 4$

$$x \log 7 = \log 4$$

$$x = \frac{\log 4}{\log 7}$$

$$x = 0.712$$
 (3 s.f.)

So
$$x = 0.565$$
 or $x = 0.712$

f Let $y = 2^x$

Then
$$v^2 + 3v - 4 = 0$$

So
$$(y+4)(y-1)=0$$

So
$$y = -4$$
 or $y = 1$

$$2^x = -4$$
 has no solution.

Therefore
$$2^x = 1$$

So x = 0 is the only solution.

Pure Mathematics 2

Solution Bank

2 g Let
$$y = 3^x$$

Then
$$3y^2 - 26y - 9 = 0$$

So
$$(3y+1)(y-9)=0$$

So
$$y = -\frac{1}{3}$$
 or $y = 9$

$$3^x = -\frac{1}{3}$$
 has no solution.

Therefore
$$3^x = 9$$

So x = 2 is the only solution.

h Let
$$y = 3^x$$

Then
$$12y^2 + 17y - 7 = 0$$

So
$$(3y-1)(4y+7)=0$$

So
$$y = \frac{1}{3}$$
 or $y = -\frac{7}{4}$

$$3^x = -\frac{7}{4}$$
 has no solution.

Therefore
$$3^x = \frac{1}{3}$$

So x = -1 is the only solution.

3 **a**
$$3^{x+1} = 2000$$

$$\log_{3} 2000 = x + 1$$

$$x + 1 = 6.9186$$

$$x = 5.92$$
 (3 s.f.)

b
$$5^{-1} = x - 3$$

$$x-3=\frac{1}{5}$$

$$x = 3.2$$

4 a
$$(0,1)$$

b Let
$$v = 4^x$$

$$4^{2x} - 10(4^x) + 16 = 0$$

$$y^2 - 10y + 16 = 0$$

$$(y-2)(y-8)=0$$

$$y = 2$$
 or $y = 8$
Therefore, $4^x = 2$ or $4^x = 8$

$$\log_4 2 = x \text{ or } \log_4 8 = x$$

$$x = \frac{1}{2} \text{ or } x = \frac{3}{2}$$

5 a
$$5^{x} = 2^{x+1}$$

 $\log 5^{x} = \log 2^{x+1}$
 $x \log 5 = (x+1) \log 2$
 $x \log 5 = x \log 2 + \log 2$
 $x \log 5 - x \log 2 = \log 2$

$$x(\log 5 - \log 2) = \log 2$$
$$x = \frac{\log 2}{\log 5 - \log 2}$$

$$x = 0.7565 (4 \text{ d.p.})$$

b
$$3^{x+5} = 6^x$$

 $\log 3^{x+5} = \log 6^x$
 $(x+5)\log 3 = x\log 6$
 $x\log 3 + 5\log 3 = x\log 6 - x\log 3$
 $5\log 3 = x(\log 6 - \log 3)$

$$x = \frac{5\log 3}{\log 6 - \log 3}$$

$$x = 7.9248 \text{ (4 d.p.)}$$

c
$$7^{x+1} = 3^{x+2}$$

$$\log 7^{x+1} = \log 3^{x+2}$$

$$(x+1)\log 7 = (x+2)\log 3$$

$$x\log 7 + \log 7 = x\log 3 + 2\log 3$$

$$x\log 7 - x\log 3 = 2\log 3 - \log 7$$

$$x(\log 7 - \log 3) = 2\log 3 - \log 7$$

$$x = \frac{2\log 3 - \log 7}{\log 7 - \log 3}$$

$$x = 0.2966 \text{ (4 d.p.)}$$