Appendix. Online Supplement

A. Parameter Sensitivity Analysis

The enhanced late acceptance hill climbing (ELAHC) procedure reinforces the well-known late acceptance hill climbing (LAHC) method by a relaxed acceptance and replacement strategy (to increase the diversity of the search) and a fast incremental evaluation mechanism (to speed up the computation of cost function for the rank aggregation problem). The length of the history cost list ρ is the only parameter of both the LAHC and ELAHC methods, which strongly influences the convergence speed and solution quality.

To study the effect of the parameter ρ value, we experimentally compare the performance of both LAHC and ELAHC algorithms under different ρ values. Our experiments are conducted on ten representative instances, each solved ten times with $\hat{t}=1000$ seconds. Detailed comparative results of LAHC and ELAHC algorithms are summarized in Tables 1 and 2, respectively. In these two tables, column 1 presents the instance name (Instance), columns 2-4 report the result of the algorithm with $\rho=1$, identifying the best result (\hat{f}) , the average result (\bar{f}) and the computation time (\bar{t}) over 10 runs. Columns 5-7, 8-10, 11-13 present the corresponding results of the algorithm for other three ρ values.

A.1. Sensitivity of LAHC to ρ

Table 1 Comparisons among LAHC Algorithms with Different ρ Values (i.e., $\rho \in \{1,1000,3000,10000\}$)

	$\rho = 1$			$\rho = 1000$			$\rho = 3000$			$\rho = 10000$		
Instance	\hat{f}	\bar{f}	\bar{t}	\hat{f}	$ar{f}$	\bar{t}	\hat{f}	$ar{f}$	\bar{t}	\hat{f}	$ar{f}$	\bar{t}
MM050n0.001_02	575.780	576.170	0.303	575.680	575.802	3.376	575.620	575.730	9.755	575.560	575.706	31.835
${\rm MM050n0.001_11}$	561.720	561.968	0.258	561.520	561.668	3.450	561.500	561.588	10.233	561.520	561.578	33.134
$MM100n0.200_01$	416.000	416.050	1.329	416.000	416.040	16.694	416.000	416.012	48.043	416.000	416.014	159.280
$\rm MM100n0.200_05$	411.720	411.730	1.342	411.720	411.732	17.407	411.720	411.726	49.882	411.720	411.730	162.409
$\rm MM150n0.100_08$	1249.720	1249.876	7.092	1249.680	1249.836	43.814	1249.660	1249.736	120.153	1249.620	1249.706	392.398
$\rm MM150n0.100_17$	1266.190	1266.262	6.572	1266.110	1266.190	45.945	1266.130	1266.196	122.270	1266.110	1266.160	391.908
$MM200n0.010 _04$	7669.290	7670.330	32.744	7668.570	7668.916	101.805	7668.010	7668.366	267.294	7667.750	7668.006	850.411
$\rm MM200n0.010_13$	7706.640	7707.304	28.301	7705.140	7705.628	99.559	7704.820	7705.220	259.608	7704.720	7704.990	838.776
$MM250n0.001_01$	14358.490	14359.676	56.230	14354.470	14355.376	196.067	14353.650	14354.220	432.508	14359.390	14359.774	997.502
MM250n0.001_10	14446.360	14448.256	61.728	14443.260	14444.150	179.042	14442.300	14443.120	417.091	14448.260	14448.568	997.404
avg.value	4866.191	4866.762	19.590	4865.215	4865.534	70.716	4864.941	4865.191	173.684	4866.065	4866.223	485.506
avg.rank	3.500	3.650	_	2.500	2.800	_	1.900	1.700	_	2.100	1.850	

Table 1 summarizes the results of the LAHC algorithms with different ρ values $\{1,1000,3000,10000\}$. The bottom line gives the average value and average rank of each performance indicator. From this we observe that LAHC with a small ρ value (e.g., $\rho=1$) quickly becomes trapped in a local optimum, leading to poor performance (with smallest average value and average rank). For large values of ρ (e.g., $\rho=3000$), the search is less prone to becoming trapped but incurs the cost of a slower convergence speed. The solution quality can be poor if the computation time is not enough. To make a balance between the solution quality and computation time, a $\rho=3000$ is suitable for LAHC, which achieves the smallest average values in terms of both \hat{f} and \bar{f} . For the average rank, LAHC with $\rho=3000$ also obtains the smallest rank value in terms of \hat{f} and \bar{f} .

A.2. Sensitivity of ELAHC to ρ

Table 2 summarizes the results of the ELAHC algorithms with different ρ values $\{1,5,10,15\}$. The bottom line gives the average value and average rank of each performance indicator, disclosing that ELAHC with $\rho=1$ quickly converges to an unattractive local optimum, leading to poor performance (with smallest average value and average rank). For larger values of ρ (e.g., $\rho=5$), the search is less prone to becoming trapped but exhibits a slower convergence speed. The larger ρ value, the slower convergence speed. To make a balance between the solution quality and computation time, $\rho=5$ is suitable for ELAHC, achieving the smallest average values in terms of both \hat{f} and \bar{f} . For the average rank, ELAHC with $\rho=5$ also obtains the second smallest rank value in terms of both \hat{f} and \bar{f} .

	$\rho = 1$		$\rho = 5$			$\rho = 10$			$\rho = 15$			
Instance	\hat{f}	$ar{f}$	\bar{t}	\hat{f}	$ar{f}$	\bar{t}	\hat{f}	$ar{f}$	\bar{t}	ĵ	$ar{f}$	\bar{t}
MM050n0.001_02	575.900	576.194	0.160	575.640	575.728	1.861	575.600	575.688	8.723	575.540	575.670	18.766
${\rm MM050n0.001_11}$	561.700	561.922	0.130	561.500	561.574	1.940	561.480	561.554	9.326	561.480	561.518	22.007
MM100n0.200_01	416.000	416.048	0.675	416.000	416.012	19.953	416.000	416.004	110.484	416.000	416.000	278.871
$\rm MM100n0.200 _ 05$	411.720	411.736	0.738	411.720	411.730	20.690	411.720	411.724	126.336	411.720	411.724	302.653
$\rm MM150n0.100_08$	1249.800	1249.918	3.270	1249.580	1249.636	55.452	1249.580	1249.612	263.505	1249.580	1249.618	645.462
$\rm MM150n0.100_17$	1266.110	1266.202	4.579	1266.110	1266.140	48.320	1266.090	1266.110	249.941	1266.090	1266.110	599.331
$MM200n0.010_04$	7670.010	7670.356	15.841	7667.750	7667.952	262.215	7667.670	7667.776	983.677	7669.250	7669.456	991.769
$\rm MM200n0.010_13$	7706.240	7707.396	23.169	7704.580	7704.756	254.853	7704.600	7704.698	989.951	7706.120	7706.390	993.734
${\rm MM250n0.001_01}$	14358.130	14359.780	28.262	14352.570	14353.268	412.931	14353.970	14354.246	994.869	14358.850	14359.134	994.320
${\rm MM250n0.001_10}$	14447.120	14448.066	44.503	14441.640	14442.230	405.860	14442.880	14443.088	996.642	14447.480	14447.902	995.623
avg.value	4866.273	4866.762	12.133	4864.709	4864.903	148.408	4864.959	4865.050	473.345	4866.211	4866.352	584.254
avg.rank	3.450	4.000	-	2.150	2.400	-	1.900	1.600	-	2.500	2.000	_

Table 2 Comparisons among ELAHC Algorithms with Different ρ Values (i.e., $\rho \in \{1, 5, 10, 15\}$)

ELAHC is an enhanced version of LAHC. Due to the use of a relaxed acceptance and replacement strategy, more non-improving solutions are accepted and their cost values are updated in the list. Therefore, ELAHC requires a smaller ρ value than LAHC, as confirmed by the comparison between results summarized in Tables 1 and 2.

A.3. Sensitivity of HER to ρ

As indicated in the description of HER, the ELAHC method is used to perform local optimization during the search. To investigate the effect of ρ on the performance of HER, we run HER with four different ρ values $\{1,5,10,15\}$. Detailed results in terms of the best result (f_{best}) and average result (f_{avg}) are presented in Figure 1. The x-axis indicates the ρ values, and y-axis shows the performance gaps. By treating HER with $\rho = 1$ as a baseline, we calculate the performance gap as $(f - \tilde{f})/\tilde{f}$, where f is the result of the HER algorithm with $\rho = 1$. A performance gap smaller than zero means a better result for the corresponding instance.

From Figure 1, we observe that HER with a small $\rho \in \{1,5\}$ value demonstrates a significantly better performance than HER with a large $\rho \in \{10,15\}$. Taking the MM050n0.001_02 instance as an example,

Figure 1 Comparison among HER Algorithms with different ρ Values ($\rho \in \{1, 5, 10, 15\}$)

we see that HER with $\rho = 5$ achieves the best performance in terms of both the best result and average result. Similar observations apply to the other nine instances. These results confirm that $\rho = 5$ is a suitable parameter value for ELAHC used in HER.

B. Comparison Between Iterated Local Search and its Improved Version

The original iterated local search (ILS) method for the rank aggregation problem is a multi-start local search algorithm based on the hill climbing (HC) algorithm, which demonstrates the best performance when the algorithms are allowed to perform a large number of fitness evaluations. Note that ILS employs HC to perform local optimization, which causes it to achieve a bad performance. To remedy this, we implemented an improved ILS method by replacing HC with the enhance late acceptance hill climbing (ELAHC) with $\rho = 1$. We conducted a detailed performance comparison between the original ILS and improved ILS on both synthetic and real-world instances with complete rankings, whose outcomes are as follows.

B.1. Results on Synthetic Instances

Table 3 summarizes the detailed comparative results on synthetic instances. For each algorithm, we report the best result (\hat{f}) , the average result (\bar{f}) , and the average time in seconds (\bar{t}) . From Table 3, we observe that the improved ILS method performs better than the original method in all 20 cases in terms of both \hat{f} and \bar{f} .

וט	e 3	Com	parisons of	the Origin	ai iLS and	i improvea i	LS on Synth	ietic mstai			
Instance			Origin	al ILS (with	HC)	Improved ILS (with ELAHC)					
	θ	m	\hat{f}	$ar{f}$	\bar{t}	\hat{f}	$ar{f}$	\overline{t}			
	0.200	050	337.900	357.308	3164.665	183.140	187.913	723.482			
	0.100	050	417.180	426.984	3607.289	311.950	320.296	30.213			
	0.010	050	571.910	577.889	4331.544	550.970	559.797	333.231			
	0.001	050	579.480	584.879	4090.002	561.740	569.968	1137.292			
	0.200	100	1590.090	1663.185	4357.084	405.140	411.884	389.789			
	0.100	100	1697.160	1756.552	3571.267	776.020	787.745	1190.498			
	0.010	100	2303.440	2320.391	3074.636	2126.890	2153.107	3401.334			
	0.001	100	2376.530	2393.986	3547.358	2290.990	2306.096	3662.618			
	0.200	150	3911.680	4072.344	4091.270	629.410	636.948	152.134			
	0.100	150	4028.860	4164.913	3813.916	1245.730	1260.166	2464.411			
	0.010	150	5123.720	5188.640	3637.212	4533.430	4586.122	2082.753			
	0.001	150	5406.240	5431.022	4491.537	5144.480	5191.362	3788.802			
	0.200	200	7491.710	7628.279	2548.153	851.290	862.693	115.287			
	0.100	200	7535.900	7714.423	3483.566	1711.440	1734.231	2286.683			
	0.010	200	9070.050	9185.279	3625.224	7625.320	7698.460	3830.479			
	0.001	200	9667.810	9706.857	3599.662	9182.900	9240.152	3768.522			
	0.200	250	11819.520	12354.986	3268.002	1075.790	1087.684	456.757			
	0.100	250	11888.110	12359.140	4139.456	2186.420	2206.824	3190.976			
	0.010	250	14002.130	14276.435	3707.153	11182.830	11301.168	3641.871			
	0.001	250	15180.200	15219.913	3593.352	14337.260	14434.251	3097.111			
			,			'					

Table 3 Comparisons of the Original ILS and Improved ILS on Synthetic Instances

B.2. Results on Real-world Instances

Table 4 summarizes the detailed comparative results on real-world instances, leading to the same conclusion as in Table 3, that the improved ILS method significantly outperforms the original ILS method.

Original ILS (with HC) Improved ILS (with ELAHC)									
Instance	\hat{f}	$ar{f}$	$ar{t}$	\hat{f}	$ar{f}$	$ar{t}$			
Sushi	19.181	19.190	2772.938	19.181	19.181	1.003			
F1	77.450	79.930	3714.395	68.750	68.750	0.197			
Tour	4882.300	4913.240	4001.894	3480.100	3480.800	2938.547			
ATPWomen_50	353.481	361.592	3531.377	185.750	185.750	4.264			
ATPWomen_100	1693.558	1739.742	3072.500	715.019	715.019	954.638			
ATPWomen_200	7743.269	7858.192	4309.973	2823.423	2823.596	3467.266			
ATPMen_50	346.269	364.565	2777.543	197.962	197.962	7.795			
ATPMen_100	1746.250	1779.123	4194.137	862.365	862.365	1947.933			
ATPMen_200	7742.212	7899.108	4777.542	2810.519	2810.823	3543.888			

Table 4 Comparisons of the Original ILS and Improved ILS on Real-world Instances

^{*} The results of each combination of θ and m are averaged over 20 instances.