### Генерация речи

#### Виктор Китов

v.v.kitov@yandex.ru



# Содержание

- 1 Введение
- 2 Объединяющий синтез речи
- ③ Параметрический синтез речи

#### Введение

- Задача генерация речи по тексту (speech synthesis, text-to-speech, TTS)
- Применения:
  - объявления в аэропортах, на вокзалах
  - интеллектуальные колонки (Яндекс.Станция)
  - виртуальные ассистенты в машинах, играх
  - чтение книг
  - обучение иностранному языку
  - помощь слепым, больным дислексией

# Требования к выходу

- Выходная речь должна
  - быть понятной
  - не содержать шумов и артефактов
    - качество: опросы респондентов
  - быть выразительной, эмоционально насыщенной
    - качество: опросы респондентов
- Доп. возможности:
  - изменения типа голоса
    - спокойный, восторженный, шепот (есть в Алисе), ...
  - изменение спикера

### Качество генерации

• Распознаваемость информации в речи:

WER(SpeechRecognizer(Generator(text)), text)

- Оценка качества речи респондентами
  - Mean Opinion Score<sup>1</sup> средняя оценка качества
    - большая дисперсия из-за особенностей респондентов
  - MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor)
    - респондентам дают прослушать эталонную запись (реальным голосом) и эталон
    - в число оцениваемых озвучиваний также вставляется скрытно эталон (можно проводить парный t-test)
  - SBS (side-by-side comparison) респонденты сопоставляют 2 синтеза бок о бок (относит. шкала)
    - достаточно небольшого #данных для сопоставления

MOS, MUSHRA - абсолют. шкалы (можно сравнивать)

<sup>&</sup>lt;sup>1</sup>CrowdMOS - оценка доверит. интервалов, верификация респондентов.

# Скорость генерации

- Частота CD, mp3 44гГц: нужно выдавать 44100 значений в секунду.
- Метрики производительности TTS:
  - latency задержка между получением данных и началом генерации
  - real-time factor (RTF) сколько секунд занимает генерация 1 сек речи
    - ullet для онлайн-приложений д. быть  $\leq 1$ .

### Датасеты

- Популярные датасеты:
  - LJ Speech, VCTK, M-AILABS, CommonVoice, OpenTTS
- В коммерческих применениях записывают много часов целевого спикера
  - текст должен широко покрывать фонетические конструкции, разные интонации
  - хорошая студия, без шумов (важно для сужения неоднозначностей генерации)
    - т.к. генерация речи one-to-many, и так много неоднозначности

### Лингвистическое представление<sup>2</sup>

- Перед озвучиванием текст нормализуется в лингвистическое представление:
  - текст разбивается на предложения
  - цифры в текст (5->"пять", "пятерых", "пятый")
  - раскрытие аббревиатур (кв.м.-> квадратный метр, квадратных метров)
  - раскрытие неоднозначности (зАмок замОк)
  - разметка частей речи (для ударений: IMpact imPACT)
  - ударения (по словарю, но иногда зависят от контекста зАмок/замОК)
  - e -> e/ë
- Решается seq2seq или трансформером.

<sup>&</sup>lt;sup>2</sup>Neural Models for Text Normalization for Speech Applications.

### Лингвистическое представление

- Преобразование графем в фонемы (яблоня->[й][а][б][л][о][нь][а])
  - не всегда нужна, можно интегрировать в акустическую модель
  - ищем слово в словаре, если нет то модель предсказывает
    - модель можно тоже на словаре обучить
- Возможна расстановка пауз, длительностей, интонаций.
- Стандарт разметки Speech Synthesis Markup Language.
  - нормализация текста, расстановка ударений, специйфикация спикеров, интонаций.

# Содержание

- 1 Введение
- 2 Объединяющий синтез речи
- Параметрический синтез речи

# Объединяющий синтез³,⁴

- Объединяющий синтез (concatenative synthesis) генерация речи предзаписанными блоками.
  - блоки-слова: бОльшая естественность, применимо в ограниченных доменах
    - например, объявления в аэропорту
  - блоки-фонемы (42-в русском, 44 в английском)
    - возможность произнести любое слово, но артефакты на стыках
  - блоки-дифоны (дифон-участок речи между серединами соседних фонем)
    - компромисс между универсальностью и естественностью
    - можно использовать трифоны

<sup>&</sup>lt;sup>3</sup>Hunt, Black (1996).

<sup>&</sup>lt;sup>4</sup>Deep Learning for Siri's Voice.

# Схема работы

- Шаги объединяющего синтеза:
  - перевести текст в фонемы с разметкой
    - разметка: длительность, высота, громкость, интонация
  - сопоставление дифонам звуков (unit selection)
  - постпроцессинг: сглаживание на стыках



#### Стоимости сопоставления

- Обозначим:
  - $t_i$  фонема в момент i, i = 1, 2...N
  - $u_i$  выбираемый звук в момент i (юнит), всего S юнитов.
  - ullet C(u|t) цена за выбор звука u для известной фонемы t
    - соответствие длительности, смысла, высоты, громкости, интонации
  - ullet C(u,u') цена за выбор u' следующим звуком после u

#### Генерация синтеза - критерий

• Выбор наиболее естественного озвучивания  $t_1, ... t_N$  :

$$u_1^*, \dots u_N^* = \operatorname*{arg\ min}_{u_1, \dots u_N} \left\{ \underbrace{\sum_{i=1}^N C(u_i|t_i)}_{\mathsf{CMAICA}} + \underbrace{\sum_{i=1}^{N-1} C(u_{i-1}, u_i)}_{\mathsf{COYETAEMOCTL}} \right\}$$



### Генерация синтеза - алгоритмы

- Полный перебор путей непрактично.
- ullet можно решить за  $O(S^2N)$  алгоритмом Витерби
  - можно ↓ S оставляя u :  $C(u|t_i) \le threshold$
- Приближенное решение: лучевой поиск.
  - обеспечивает real-time TTS

# Алгоритм Витерби - обозначения

- $v_t(j) = \min_{u_1,...u_{t-1}} C(u_1,...u_{t-1}u_t = j|x_1,...x_{t-1})$  мин. возможная цена, если последний звук j
- ullet  $p_t(j)$  индекс оптимального звука в момент t-1, если в t был звук j.
- ullet  $k_t$  индекс оптимального звука в момент t

$$u_1^* = k_1, \ u_2^* = k_2, \ ... \ u_N^* = k_N$$

# Алгоритм Витерби - шаги

```
Инициализация: v_1(j) = C(u_1 = j|t_1)
для t = 2, 3, ...N:
    v_t(j) = \min_{u_1,...u_{t-2},u_{t-1}} C(u_1,...u_{t-2},u_{t-1},u_t=j|x_1,...x_t)
            = \min_{i} \min_{u_{t-1}, \dots, u_{t-1} = i} \{ C(u_1, \dots u_{t-2}, u_{t-1} = i) \}
                                 + C(u_{t-1} = i, u_t = i) + C(u_t = i|x_t)
            = \min \{ v_{t-1}(i) + C(u_{t-1} = i, u_t = j) + C(u_t = j|x_t) \}
    p_t(j) = \arg\min_{i} \left\{ v_{t-1}(i) + C(u_{t-1} = i, u_t = j) + C(u_t = j|x_t) \right\}
\min_{u_1,...,u_N} C(u_1,...u_N|x_1,...x_N) = \min_i v_N(j)
k_N = \arg \min_i v_N(j);
                              для t = N, N - 1, ...2:
```

16/41

 $k_{t-1} = p_t(k_t)$ 

# Обсуждение

- +: простота, интерпретируемость
- +: расширяемость
  - новые спикеры и манеры говорить
  - -: стыки фонем нельзя полностью удалить
  - высокие требования по памяти
    - хранение звуков в разных интонациях/контекстах
  - -: учитывает лишь попарные, а не долгосрочные зависимости в интонации
    - монотонная речь
  - -: для изменения спикера, стиля, интонаций нужно всё перезаписывать

# Содержание

- 1 Введение
- ② Объединяющий синтез речи
- 3 Параметрический синтез речи
  - WaveNet
  - Tacotron 2
  - FastSpeech

# Параметрическая генерация речи

- Параметрическая генерация речи (statistical parametric speech synthesis, SPSS)
- Использует DL модель для превращения текста в голос.
  - нет проблем со стыками
  - гибкость варьировать спикера, стиль, интонацию
- Линг. признаки нормализованный текст из фонем
- Акустическая модель: фонемы->звуковые признаки для кажд. фрейма 10мс
  - спектрограмма, мел-спектрограмма, МГСС
  - ↑ размерности
- Вокодер это переводит в итоговый звук (↑ размерности)



# Объединение шагов в моделях



# Обучение

#### Отдельно обучаются:

- модель нормализации текста (например по ASR от прочитывания текста)
- акустическая модель (по нормализованному тексту и мел-спектрограмме речи)
  - задает спикера, стиль, интонации, темп
- вокодер (по мел-спектрограмме и звуку)
- Акустическая модель обучается на (нормализованный текст, мел-спектрограмма)
- Вокодер обучается на (мел-спектрограмма, звук)
  - можно использовать неразмеченную речь

# Скрытая модель Маркова

- Одна из первых акустических моделей скрытая модель Маркова смеси Гауссиан (НММ-GMM)
  - ullet s фонемы,  $P(s_t|s_{t-1})$  оцениваем по живой речи
  - выходн. речевые признаки  $p(y|s) \sim \sum_k \phi_{k,s} \mathcal{N}(x|\mu_{k,s}, \Sigma_{k,s})$ •  $\hat{y}$  сэмплируем или  $\hat{y} = \arg\max_{v} P(y)$
  - длительность фонемы сколько пробыли в состоянии
    - или отдельная модель длительности (duration model)



# Особенности генерации речи

- Генерация текст->звук напрямую не используют:
  - слишком сильное ↑ размерности.
- Даже на 2х шагах:
  - Акустическая модель может по-разному произнести текст
  - вокодер по разному восстановить фазы
- Вокодеру нужно "додумать":
  - информацию о фазах (теряется при переходе к спектру)
  - полный спектр по усредненным спектрам меl-спектрограммы

# Алгоритм Гриффина-Лима

Алгоритм Гриффина-Лима<sup>5</sup> - вокодер без параметров.

- не содержит параметров
- итеративная схема восстановления спектра (компоненты, фазы) по его модулям
- плохо работает на мел-спектрограмме ("металлический" голос)

<sup>&</sup>lt;sup>5</sup>Griffin, Lim (1984).

Генерация речи - Виктор Китов Параметрический синтез речи WaveNet

- ③ Параметрический синтез речи
  - WaveNet
  - Tacotron 2
  - FastSpeech

#### WaveNet<sup>6</sup>

• WaveNet - генеративная модель для звука:

$$p(x_t x_{t-1}, ... x_1) = p(x_t | x_{1:t-1}) p(x_{t-1} | x_{1:t-2}) ... p(x_1)$$

• Упрощение - смотрим только на К шагов назад:

$$p(x_t x_{t-1}, ... x_1) = p(x_t | x_{t-1} - K_{:t-1}) p(x_{t-1} | x_{t-2} - K_{:t-2}) ... p(x_1)$$

- Вход/выход 8-битная интенсивность сигнала, квантизованного по  $\mu$ -закону.
- Вход: эмбеддинг  $x_t$ , выход SoftMax-вероятности.

#### Dilated convolution

- Для моделирования  $p(x_t|x_{t-1},...x_{t-K})$  используется свёртка по истории (causal conv).
- У обычной свёртки малая область видимости:



#### Dilated convolution

- Для моделирования  $p(x_t|x_{t-1},...x_{t-K})$  используется свёртка по истории (causal conv).
- Поэтому используется свёртка с прореживанием:



• Обучение-параллельное по t (знаем таргеты), генерация-последовательная (зато можно переиспользовать ранее посчитанные активации).



• Блоки из прореженных свёрткой наслаиваются k раз, образуя области видимости блока:

$$1, 2, 4, ..., 512, 1, 2, 4, ..., 512, 1, 2, 4, ..., 512$$

• Прогноз - по сумме выходов из нескольких веток.

# Условная генерация

 В свёрточном блоке безусловной генерации вместо ReLU используется (\* - свёртка, ⊙ - поэлем. умножение)

$$\mathbf{z} = \mathsf{tangh}\left(\mathbf{W} * \mathbf{x}\right) \odot \sigma \left(\tilde{\mathbf{W}} * \mathbf{x}\right)$$

 В <u>глобально условной генерации</u> (h - эмбеддинг глоб. условия (напр. спикера))

$$\mathbf{z} = \mathsf{tangh}\left(\mathbf{W} * \mathbf{x} + \mathbf{V} \mathbf{h}\right) \odot \sigma \left(\tilde{\mathbf{W}} * \mathbf{x} + \tilde{\mathbf{V}} \mathbf{h}\right)$$

- В локально условной генерации (у эмбеддинг лок. условия (напр. произносимой сейчас фонемы))
  - Upsample(y) повторенная нужно #раз фонема
  - В\* и В\* 1х1 свёртки

$$\mathbf{z} = \mathsf{tangh}\left(W * \mathbf{x} + B * \mathsf{Upsample}(\mathbf{y})\right) \odot \sigma \left(\tilde{W} * \mathbf{x} + \tilde{B} * \mathsf{Upsample}(\mathbf{y})\right)$$

Генерация речи - Виктор Китов Параметрический синтез речи Tacotron 2

- 3 Параметрический синтез речи
  - WaveNet
  - Tacotron 2
  - FastSpeech

#### Tacotron 27,8

- WaveNet требует лингвистические признаки,  $F_0$ , длительности фонем.
- Tacotron 2 генерирует по тексту сразу мел-спетрограмму, озвучиваемую условным WaveNet
  - качество звука выше, чем у WaveNet напрямую
- Архитектура: кодировщик рекуррентный декодировщик с вниманием.

<sup>&</sup>lt;sup>7</sup>https://arxiv.org/pdf/1712.05884.pdf

 $<sup>^{\</sup>bf 8} \rm https://habr.com/ru/company/nix/blog/436312/$ 



#### Кодировщик:

- ullet входные символы -> эмбеддинги  $\in \mathbb{R}^{512}$
- ② 3 свёртки  $5 \times 1$  (каждая смотрит на 5 соседних символов)
  - после каждой: батч-нормализация, затем ReLU
- Двунаправленная LSTM -> выходы кодировщика

#### Декодировщик:

- Две однонаправленные LSTM+внимание, учитывающее локацию
- Выход LSTM подаётся 2м полносвязным слоям с малым #нейронов (information bottleneck)

#### Регуляризации декодировщика:

- dropout свёрточных слоёв (при inference тоже для вариабельности выходов)
- пересчёт состояния LSTM zoneout (с опр. вероятностью передаём состояние 2 шага назад)

#### Location sensitive attention

#### Правильно и неправильно обученное внимание:



### Внимание, учитывающее локацию

- В декодере Tacotron 2 для содействия обучению используется внимание, учитывающее локацию (location-sensitive attention)<sup>9</sup>.
- учитывает, куда смотрели на предыдущем шаге • По входам  $x_1,...x_N$  извлечем признаки  $f_1,...f_N$  ( $F \in \mathbb{R}^{D \times N}$ )
- Внимание, учитывающее локацию:

$$\begin{aligned} e_{tj} &= \mathsf{score}\left(s_{t-1}, h_j,\right) \\ &= w^T \mathsf{tangh}\left(Ws_{t-1} + Vh_j + UF\alpha_{t-1} + b\right) \\ \alpha_{ti} &= \exp(e_{ti}) / \sum_j \exp(e_{tj}) \\ c_t &= \sum_j \alpha_{tj} h_j \\ s_t &= f\left(s_{t-1}, y_{t-1}, c_t\right) \end{aligned}$$

<sup>&</sup>lt;sup>9</sup>https://arxiv.org/pdf/1506.07503.pdf/<sub>41</sub>

### Вокодер

- В качестве вокодера использовался WaveNet
- Ho WaveNet предсказывал интенсивность не через SoftMax, а через смесь 10 логистических распределений (ф-ция распределения  $\sigma(\cdot)$ ).
- Tacotron 2+WaveNet показал лучше качество по MOS, чем WaveNet на лингвистических признаках.



| System                  | MOS               |
|-------------------------|-------------------|
| Parametric              | $3.492 \pm 0.096$ |
| Tacotron (Griffin-Lim)  | $4.001 \pm 0.087$ |
| Concatenative           | $4.166 \pm 0.091$ |
| WaveNet (Linguistic)    | $4.341 \pm 0.051$ |
| Ground truth            | $4.582 \pm 0.053$ |
| Tacotron 2 (this paper) | $4.526 \pm 0.066$ |

Генерация речи - Виктор Китов Параметрический синтез речи FastSpeech

- ③ Параметрический синтез речи
  - WaveNet
  - Tacotron 2
  - FastSpeech

### FastSpeech<sup>10</sup>

- FastSpeech акустическая модель параллельной генерации мел-спектрограммы.
  - вокодер WaveGlow



<sup>10</sup> https://arxiv.org/pdf/1905.09263.pdf

### FastSpeech

- Параллельная генерация мел-спектрограммы.
- Каждая фонема дублируется через duration predictor
  - нельзя пропустить фонемы и немонотонно по ним пройти
  - можно вручную контролировать:
    - общий темп речи
    - длительность пауз между словами и предложениями
- Duration предиктор обучается через внимание др. авторегрессионной TTS модели с вниманием.

# FastSpeech

#### Ускорение за счёт параллельной генерации мел-спектрограммы:

| Method                                                            | Latency (s)                                                          | Speedup      |
|-------------------------------------------------------------------|----------------------------------------------------------------------|--------------|
| Transformer TTS [14] (Mel)<br>FastSpeech (Mel)                    | $ \begin{vmatrix} 6.735 \pm 3.969 \\ 0.025 \pm 0.005 \end{vmatrix} $ | /<br>269.40× |
| Transformer TTS [14] (Mel + WaveGlow) FastSpeech (Mel + WaveGlow) | $ \begin{vmatrix} 6.895 \pm 3.969 \\ 0.180 \pm 0.078 \end{vmatrix} $ | 38.30×       |



Inference time (second) vs. mel-spectrogram length for FastSpeech and Transformer TTS.