Big Data Computing

Master's Degree in Computer Science 2020-2021

Gabriele Tolomei

Department of Computer Science
Sapienza Università di Roma
tolomei@di.uniroma1.it

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Clustering

- Group together similar objects according to a specific distance function
- Formalized as an NP-hard optimization problem
- K-means and its variants as effective heuristics that work in practice

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Clustering

- Group together similar objects according to a specific distance function
- Formalized as an NP-hard optimization problem
- K-means and its variants as effective heuristics that work in practice

Principal Component Analysis (PCA)

- Reduce data dimensionality
- Automatically extract features from raw data
- Resort to computing the eigenvectors and eigenvalues of the covariance matrix

SUPERVISED LEARNING

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Example

Task/Problem: Find the maximum element of a list of 1 million unsorted numbers

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Example

- Task/Problem: Find the maximum element of a list of I million unsorted numbers
- Solution/Algorithm: Scan all the numbers in the set and keep track of the largest found "so far"

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Example

- Task/Problem: Find the maximum element of a list of I million unsorted numbers
- Solution/Algorithm: Scan all the numbers in the set and keep track of the largest found "so far"
- Code/Program: Encode the algorithm above into one specific programming language (e.g., C/C++, Java, Python)

Problem

Problem

Solution/Algorithm explicitly designed by human

Can We Always Do That?

Chihuahua or Muffin?

Chihuahua

Muffin

04/13/2021 20

Programming vs. "Training" a Computer

• There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly

Programming vs. "Training" a Computer

- There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly
- Hard to design an algorithm which is general enough to capture all the nuances of the problem and gives the correct output for any input

Programming vs. "Training" a Computer

- There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly
- Hard to design an algorithm which is general enough to capture all the nuances of the problem and gives the correct output for any input

Programming vs. "Training" a Computer

Problem

Eventually, the function f is **learned** by the learning algorithm from a (large) set of **labeled data**

• A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

"The field of study that gives computers the ability to learn without being explicitly programmed"

Arthur Samuel

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

"The field of study that gives computers the ability to learn without being explicitly programmed"

Arthur Samuel

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

Tom Mitchell

Machine Learning: Taxonomy

Machine Learning

Machine Learning: Taxonomy

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Machine Learning: Taxonomy

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Machine Learning: Taxonomy

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Reinforcement Learning

Use a Reward-Feedback loop to continuously learn and update the hidden behavior or pattern

Machine Learning: Taxonomy

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Reinforcement Learning

Use a Reward-Feedback loop to continuously learn and update the hidden behavior or pattern

Supervised Learning: What Do We Predict?

Supervised Learning

04/13/2021 40

Supervised Learning: What Do We Predict?

Supervised Learning

Regression

The target y we want to predict is a continuous real value

e.g., y = price of a house

Supervised Learning: What Do We Predict?

Regression

The target y we want to predict is a continuous real value

e.g., y = price of a house

Classification

The target y we want to predict is a discrete value

e.g., y = spam/non-spam

The Supervised Learning Pipeline

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e. there is no point in adopting any fancy ML solution if it can be solved "directly"!)

04/13/2021 44

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e. there is no point in adopting any fancy ML solution if it can be solved "directly"!)

I. Data collection: get data from your domain of interest

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e. there is no point in adopting any fancy ML solution if it can be solved "directly"!)

- I. Data collection: get data from your domain of interest
- 2. Feature engineering: represent data in a "machine-friendly" format

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e. there is no point in adopting any fancy ML solution if it can be solved "directly"!)

- I. Data collection: get data from your domain of interest
- 2. Feature engineering: represent data in a "machine-friendly" format
- 3. Model training: "build" one (or more) learning models

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e. there is no point in adopting any fancy ML solution if it can be solved "directly"!)

- I. Data collection: get data from your domain of interest
- 2. Feature engineering: represent data in a "machine-friendly" format
- 3. Model training: "build" one (or more) learning models
- 4. Model selection/evaluation: pick the best-performing model according to some quality metrics

Data Collection

• Any ML technique needs data to operate on!

04/13/2021 49

Data Collection

- Any ML technique needs data to operate on!
- Supervised Learning requires labeled data which may be even harder to get
 - e.g., emails + spam/non-spam tags

Data Collection

- Any ML technique needs data to operate on!
- Supervised Learning requires labeled data which may be even harder to get
 - e.g., emails + spam/non-spam tags
- Might involve combining multiple and heterogeneous data sources

04/13/2021 51

Domain Objects

Collected data need to be encoded with a machine-readable format

Domain Objects

Collected data need to be encoded with a machine-readable format

Each domain object is translated into a *n*-dimensional vector of features

04/13/2021 54

Collected data need to be encoded with a machine-readable format

Each domain object is translated into a *n*-dimensional vector of features

- Each feature is a property of an instance of our domain
 - e.g., number_of_bedrooms in the case our domain objects are "houses"

04/13/2021 56

- Each feature is a property of an instance of our domain
 - e.g., number_of_bedrooms in the case our domain objects are "houses"
- Each feature can be either derived locally from an instance
 - e.g., annual_income of a person

04/13/2021 57

- Each feature is a property of an instance of our domain
 - e.g., number_of_bedrooms in the case our domain objects are "houses"
- Each feature can be either derived locally from an instance
 - e.g., annual_income of a person
- Or it can be the result of more complex computation involving the whole data collection
 - e.g., **tf-idf** of a word of a document w.r.t. a corpus

• Traditionally done manually by human experts

- Traditionally done manually by human experts
- Require in-depth knowledge of the specific domain of application
 - e.g., text, images, finance, etc.

- Traditionally done manually by human experts
- Require in-depth knowledge of the specific domain of application
 - e.g., text, images, finance, etc.
- Tedious and time-consuming process

- Traditionally done manually by human experts
- Require in-depth knowledge of the specific domain of application
 - e.g., text, images, finance, etc.
- Tedious and time-consuming process
- Techniques to automatically learn data representation (i.e., features):
 - K-means clustering, PCA, autoencoders (unsupervised)
 - Neural Networks (supervised)

Collected (raw) data is far from being perfect!

Collected (raw) data is far from being perfect!

Many challenges need to be addressed <u>before</u> taking any further step down to the ML pipeline

Collected (raw) data is far from being perfect!

Many challenges need to be addressed <u>before</u> taking any further step down to the ML pipeline

Data Preprocessing

Challenge	Description	
Missing values	A feature value may not be available for one or more instances	

Challenge	Description	Solution
Missing values	A feature value may not be available for one or more instances	Replace missing values with the median (continuous) or the mode (categorical) of the existing values

Challenge	Description	
Sparsity	Most of the instances contain just a small subset of the features	

Challenge	Description	Solution
Sparsity	Most of the instances contain just a small subset of the features	Use "sparse-friendly" data structures (e.g., DOK)

Challenge	Description	
Outliers	One or more instances have out-of-range values for one or more features	

Challenge	Description	Solution
Outliers	One or more instances have out-of-range values for one or more features	Retention vs. Exclusion (trimming or winsorising)

Challenge	Description	
	Feature set contains both numerical and categorical values	

Challenge	Description	Solution
Mix of continuous and discrete values	Feature set contains both numerical and categorical values	Transform categorical features using one-hot encoding

Challenge	Description	
Multiple feature magnitudes	Feature set contains very wide range of values	

Challenge	Description	Solution
Multiple feature	Feature set contains very wide	Standardization (min-max,
magnitudes	range of values	z-scores)

Challenge	Description	
Class imbalance	Instances labeled with the class of interest represents a tiny fraction of the total	

Challenge	Description	Solution
Class imbalance	Instances labeled with the class of interest represents a tiny fraction of the total	Over-/Under-sampling, cost-sensitive learning

Challenge	Description	
Strong multicollinearity	Linear relationship between one or more features	

Challenge	Description	Solution
1 Strong multicollingarity	Linear relationship between one or more features	Dimensionality reduction (PCA)

$$\mathcal{X} \subseteq \mathbb{R}^n$$

input feature space

 $\mathcal{X}\subseteq\mathbb{R}^n$ \mathcal{Y}

input feature space output space

```
\mathcal{X} \subseteq \mathbb{R}^n
\mathcal{Y}
\mathcal{Y} \subseteq \mathbb{R}
\mathcal{Y} = \{1, \dots, k\}
```

```
input feature space

output space

real-value label of the i-th instance

(regression)

discrete-value label of the i-th instance

(k-ary classification)
```

```
\mathcal{X} \subseteq \mathbb{R}^n
\mathcal{Y}
\mathcal{Y} \subseteq \mathbb{R}
\mathcal{Y} = \{1, \dots, k\}
(\mathbf{x}_i, y_i)
```

```
input feature space

output space

real-value label of the i-th instance

(regression)

discrete-value label of the i-th instance

(k-ary classification)
```

i-th labeled instance

$$\mathcal{X} \subseteq \mathbb{R}^n$$
 \mathcal{Y}

$$\mathcal{Y} \subseteq \mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$
 (\mathbf{x}_i, y_i)
 $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$

```
input feature space
output space
real-value label of the i-th instance
(regression)
discrete-value label of the i-th instance
(k-ary classification)
```

i-th labeled instance

n-dimensional feature vector of the i-th instance

```
\mathcal{X} \subseteq \mathbb{R}^n
              \mathcal{Y} \subseteq \mathbb{R}
             \mathcal{Y} = \{1, \dots, k\}
(\mathbf{x}_i, y_i)
\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}
y_i \in \mathcal{Y}
```

```
input feature space
output space
real-value label of the i-th instance
            (regression)
discrete-value label of the i-th instance
          (k-ary classification)
i-th labeled instance
n-dimensional feature vector of the i-th instance
```

label of the *i*-th instance

$$\mathcal{X} \subseteq \mathbb{R}^n$$
 $\mathcal{Y} \subseteq \mathbb{R}$

$$\mathcal{Y} \subseteq \mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$
 (\mathbf{x}_i, y_i)
 $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$
 $y_i \in \mathcal{Y}$

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$$

input feature space

output space

real-value label of the i-th instance

(regression)

discrete-value label of the i-th instance

(k-ary classification)

i-th labeled instance

n-dimensional feature vector of the i-th instance

label of the i-th instance

dataset of m i.i.d. labeled instances

Each instance comes with the class label (classification) or the value (regression) we want to predict

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

$$f = X \rightarrow Y$$

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

$$f = X \rightarrow Y$$

Problem

We cannot write down an algorithm which just implements f

• Learning f means "finding" another function h^* which best approximates f using the data we observed

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:
 - loss function: measures the error of using h^* instead of the true f

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:
 - loss function: measures the error of using h^* instead of the true f
 - learning algorithm: explores the hypothesis space to pick the function which minimizes the loss on the observed data

• The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

• the harder will be for the learning algorithm to pick h^*

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

• the harder will be for the learning algorithm to pick h^*

Trade-off

Put some constraints on H, e.g., limit the search space only to linear functions

The Loss Function

• Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f

The Loss Function

- Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f
- It can be computed only on the data we observed, therefore depends on the hypothesis and the dataset

$$L: \mathcal{H} \times \mathcal{D} \mapsto \mathbb{R}$$

The Loss Function

- Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f
- It can be computed only on the data we observed, therefore depends on the hypothesis and the dataset

$$L: \mathcal{H} \times \mathcal{D} \mapsto \mathbb{R}$$

• This in-sample error (a.k.a. empirical loss) is an estimate of the out-of-sample error (a.k.a. expected loss or risk)

• Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)
- In other words, among all the hypotheses specified by H the learning algorithm will pick the one that minimizes L

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)
- In other words, among all the hypotheses specified by H the learning algorithm will pick the one that minimizes L

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} L(h, \mathcal{D})$$

$$f = X \rightarrow Y$$

$$f = X \rightarrow Y$$

$$f = X \rightarrow Y$$

Hypothesis Space H

candidate formulas

$$f = X \rightarrow Y$$

candidate formulas

$$f = X \rightarrow Y$$

• We define the supervised learning problem as an optimization one

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem
- Those choices are usually "mathematically convenient": e.g., convex objective functions are guaranteed to have a unique global minimum

)4/13/2021

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem
- Those choices are usually "mathematically convenient": e.g., convex objective functions are guaranteed to have a unique global minimum
- Even though closed-form solutions to the optimization problem rarely exist, there are numerical methods which work: e.g., gradient descent

• Minimizing the loss function on the observed data D just limits the insample error

- Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to unseen instances (i.e., minimize the out-of-sample error)

- Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to unseen instances (i.e., minimize the out-of-sample error)
- If we pick a hypothesis which just memorizes all the training instances, we will obtain a 0 in-sample error but this is not learning!

- Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to **unseen** instances (i.e., minimize the out-of-sample error)
- If we pick a hypothesis which just memorizes all the training instances, we will obtain a 0 in-sample error but this is not learning!
- At the same time we do not want h^* to perform poorly on D

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

low in-sample error high out-of-sample error

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

low in-sample error high out-of-sample error

- Regularization
- Get more data

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

high in-sample error high out-of-sample error

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

high in-sample error high out-of-sample error

- Increase model complexity
- Add more features

Bias-Variance Tradeoff

Regression

Classification

The hypothesis h^* is just right: the simplest one explaining the data

Occam's razor

Bias-Variance Tradeoff

Regression

Classification

The hypothesis h^* is just right: the simplest one explaining the data

Occam's razor

low in-sample error low out-of-sample error

Estimating Generalization Performance

• Measuring the generalization (i.e., out-of-sample) performance online may be too risky

Estimating Generalization Performance

- Measuring the generalization (i.e., out-of-sample) performance online may be too risky
- Example: Don't want to deploy your new spam classifier in production knowing only its training (i.e., in-sample) performance

Estimating Generalization Performance

- Measuring the generalization (i.e., out-of-sample) performance online may be too risky
- Example: Don't want to deploy your new spam classifier in production knowing only its training (i.e., in-sample) performance
- Solution: Estimate the generalization performance using training set
 - As long as it holds true the assumption that training and test instances are both drawn from the same probability distribution

How Much Data Do We Need?

In general, the more data we have the better we learn

04/13/2021 source: https://xkcd.com/1838/

• A generalization of the training/test splitting seen before

- A generalization of the training/test splitting seen before
- Pick a value for K (e.g., K=5 or 10)

- A generalization of the training/test splitting seen before
- Pick a value for K (e.g., K=5 or 10)
- Divide your dataset D into K distinct folds

- A generalization of the training/test splitting seen before
- Pick a value for K (e.g., K=5 or 10)
- Divide your dataset D into K distinct folds
- Perform K rounds where h* is:
 - leaned from K-1 training folds
 - evaluated on I remaining test fold

- A generalization of the training/test splitting seen before
- Pick a value for K (e.g., K=5 or 10)
- Divide your dataset D into K distinct folds
- Perform K rounds where h* is:
 - leaned from K-1 training folds
 - evaluated on I remaining test fold
- The estimate of generalization error is the average across the K test folds of all the K rounds

Round k = 1

Round k = 2

Round k = 10

Model Selection/Evaluation

Several different learning models to achieve the same task

Model Selection/Evaluation

Several different learning models to achieve the same task

Each learning model has its own set of hyperparameters (e.g., the number k of neighbours in kNN)

Model Selection/Evaluation

Several different learning models to achieve the same task

Each learning model has its own set of hyperparameters (e.g., the number k of neighbours in kNN)

How do we select the best model?

Model Selection/Evaluation: Validation Set

Separate hyperparameter selection from model evaluation

D_{valid} is used to validate hyperparameters

Model Selection/Evaluation: Example

Select which value of $k = \{2, 5, 10\}$ of a kNN gives the best performance

- I) Train a separate model for each value of k on the training set (e.g., 70%)
- 2) Measure the error of each model on the validation set (e.g., 10%)
- 3) Select the model whose value of k gives the best performance on the validation set (e.g., k = 5)
- 4) Re-train only this model on the training + validation set
- 5) Measure the performance on the test set (e.g., 20%)

Note:

The strategy above can also be extended to K-fold Cross Validation

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification
- Bias-Variance Tradeoff

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification
- Bias-Variance Tradeoff
- Model selection vs. Model evaluation

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification
- Bias-Variance Tradeoff
- Model selection vs. Model evaluation

Suggested reading: https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf