

A model of urban evolution based on innovation diffusion

J. Raimbault^{1,2,3}*

*j.raimbault@ucl.ac.uk

¹CASA, UCL ²UPS CNRS 3611 Complex Systems Institute Paris ³UMR CNRS 8504 Géographie-cités

> ALife 2020 July 18th 2020

Urban systems and ALife

Urban Evolution

Innovation diffusion

Research objective

_

Research objective:

Model rationale

Model description

Model formalization

Model indicators

Model parameters

Parameter	Not.	Process	Range	Def.
Number of cities	Ν	Spatial scale	10;100	30
Initial hierarchy	$lpha_0$	System of cities	0.5; 2.0	1
Initial population	P_{max}	System of cities	10 ⁴ ; 10 ⁷	10 ⁵
Simulation steps	t_f	Temporal scale	10; 100	50
Growth rate	w_I	Pop. growth	0.001; 0.01	0.005
Gravity range	d_G	Crossover	0;2	1
Innovation range	d_{l}	Crossover	0;2	1
Innovation rate	β	Mutation	0; 1	0.5
Innovation hierarchy	α_{l}	Mutation	0;2	1
Innov. utility std.	σ_{U}	Mutation	[0.7;2]	1
Penetration rate	r_0	Mutation	0.1;0.9	0.5
Utility type	-	Mutation	{n;ln}	In

 \rightarrow integration into the OpenMOLE model exploration open source software \cite{black}

Enables seamlessly (i) model embedding; (ii) access to HPC resources; (iii) exploration and optimization algorithms

Synthetic configuration

Statistical consistency

Model exploration

Correlations

Model optimization

Discussion

Conclusion

- \rightarrow

Open repositories for

- Model and results: https://github.com/JusteRaimbault/UrbanEvolution
- Simulation data: https://doi.org/10.7910/DVN/IRHMQK

Acknowledgments: thanks to the *European Grid Infrastructure* for access to the infrastructure.

Reserve Slides

Macroscopic interactions

$$P_{i}(t+1) = P_{i}(t)\left(1 + \Delta t \cdot \left(g_{i} + \frac{w_{i}}{N} \cdot \sum_{j} \frac{V_{ij}}{\langle V_{ij} \rangle}\right)\right)$$
(1)

where the gravity interaction potential is given by

$$V_{ij} = \left(\frac{P_i P_j}{\sum_k p_k^2}\right)^{\gamma_G} \cdot \exp\left(-\frac{d_{ij}}{d_i}\right)$$
 (2)

References I

