

Universidade Federal de Sergipe Centro de Ciências Exatas e Tecnologia Departamento de Engenharia Elétrica

Disciplina: Circuitos Digitais

ELET0076

Período: 2022.2

Carga horária: 90h

Créditos: 6

Professor: Carlos Alberto

Dupla: Guilherme Franco e Raissa Mello Relatório Experimento 07

1. Diagrama de Transição de Estados

2. Tabelas Verdades

Na tabela a seguir há:

- Tabela de transição de estados (Estado Atual | Estado Futuro)
- Tabela verdade dos Flip Flops J's e K's
- Tabela verdade do circuito implementado

B0	B1	Q1	Q2	Q3	Q1F	Q2F	Q3F	Л	Ю	J2	К2	J3	К3
0	0	0	0	0	0	0	1	0	Х	0	Х	1	Х
0	0	0	0	1	0	1	0	0	X	1	X	X	1
0	0	0	1	0	0	1	1	0	X	X	0	1	X
0	0	0	1	1	1	0	0	1	X	X	1	X	1
0	0	1	0	0	0	0	0	X	1	0	X	0	X
0	0	1	0	1	x	x	X	X	X	X	X	X	X
0	0	1	1	0	х	X	X	X	X	X	X	X	X
0	0	1	1	1	x	x	X	X	X	X	X	X	X
0	1	0	0	0	0	0	0	0	X	0	X	0	X
0	1	0	0	1	0	0	0	0	X	0	X	X	1
0	1	0	1	0	0	0	0	0	X	X	1	0	X
0	1	0	1	1	0	0	0	0	X	X	1	X	1
0	1	1	0	0	0	0	0	Х	1	0	X	0	X
0	1	1	0	1	x	x	X	х	Х	Х	X	X	X
0	1	1	1	0	x	x	X	х	Х	Х	X	X	X
0	1	1	1	1	x	x	X	х	Х	Х	X	X	X
1	0	0	0	0	1	0	0	1	Х	0	Х	0	X
1	0	0	0	1	0	0	0	0	х	0	Х	Х	1
1	0	0	1	0	0	0	1	0	х	Х	1	1	X
1	0	0	1	1	0	1	0	0	x	Х	0	X	1
1	0	1	0	0	0	1	1	х	1	1	x	1	Х
1	0	1	0	1	x	x	x	х	x	Х	x	X	Х
1	0	1	1	0	x	x	x	х	x	Х	x	X	Х
1	0	1	1	1	x	x	х	х	x	Х	x	X	Х
1	1	0	0	0	1	0	0	1	x	0	x	0	Х
1	1	0	0	1	1	0	0	1	x	0	x	X	1
1	1	0	1	0	1	0	0	1	Х	Х	1	0	Х
1	1	0	1	1	1	0	0	1	Х	Х	1	Х	1
1	1	1	0	0	1	0	0	х	0	0	Х	0	Х
1	1	1	0	1	x	х	х	х	Х	х	Х	х	Х
1	1	1	1	0	x	х	х	х	Х	Х	Х	Х	Х
1	1	1	1	1	х	х	х	х	Х	х	Х	х	Х

2.1 Tabelas verdades dos Multiplexadores

В0	B1	Q2	Q3	J1	MUX J1	В0	B1	Q3	Q1	J2	MUX J2	В0	B1	Q3	K2	MUX K2	В0	B1	Q1	Q2	J3	MUX J3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	1	0		0	0	0	1	0		0	0	1	1	1	0	0	0	1	1	
0	0	1	0	0	Q3	0	0	1	0	1	1	0	1	0	1	1	0	0	1	0	0	Q2
0	0	1	1	1		0	0	1	1	1		0	1	1	1	1	0	0	1	1	1	
0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	1	1	0	1	0	0	0	0
0	1	0	1	0		0	1	0	1	0		1	0	1	0	0	0	1	0	1	0	
0	1	1	0	0	0	0	1	1	0	0	0	1	1	0	1	1	0	1	1	0	0	0
0	1	1	1	0		0	1	1	1	0		1	1	1	1	1	0	1	1	1	0	
1	0	0	0	1	/Q3	1	0	0	0	0	Q1						1	0	0	0	0	Q2
1	0	0	1	0		1	0	0	1	1							1	0	0	1	1	
1	0	1	0	0	0	1	0	1	0	0	Q1						1	0	1	0	1	1
1	0	1	1	0		1	0	1	1	1							1	0	1	1	1	
1	1	0	0	1	1	1	1	0	0	0	0						1	1	0	0	0	0
1	1	0	1	1		1	1	0	1	0							1	1	0	1	0	
1	1	1	0	1	1	1	1	1	0	0	0						1	1	1	0	0	0
1	1	1	1	1		1	1	1	1	0							1	1	1	1	0	

3. Diagramas lógicos do circuito

3.1 Diagrama dos Multiplexadores

3.2 Diagrama dos Flips Flops JK's

3.3 Diagrama das outras saídas

4. Explicação do circuito e justificativa das simplificações

- O objetivo do circuito é a Projetar um contador síncrono de números ímpares, de módulo 5, que opere nos modos crescente e decrescente.
- No modo crescente ele contará a sequência 1-3-5-7-9-1...
- No modo decrescente ele contará a sequência 9-7-5-3-1-9...
- Ele possui dois botões, o botão B0 é utilizado para alternar os sentidos entre crescente e decrescente.
 Quando B0 = 0 então o circuito é crescente, quando B0 = 1 o circuito é decrescente.
- O botão B1 é usado como reset do circuito. Quando B1 = 0 o circuito funciona normalmente, quando B1 = 1 então ele reseta para o número inicial da contagem, Caso o circuito esteja no modo crescente(B0 = 0) ele reseta para 1, quando o circuito estiver no modo decrescente(B0 = 1) ele reseta para 9.
- Para a montagem de um circuito contador síncrono é necessário que se crie uma tabela verdade, e que nela contenha dois estados, o Estado Atual e o Estado Futuro, com base nessa transição de estados, que serão definidas as entradas J e K de cada estado do circuito.
- Depois da criação da Tabela verdade e de todas as entradas e saídas definidas, é preciso simplificar as saídas <u>J1 k1</u>, <u>J2 K2</u>, <u>J3 k3</u>.
- As simplificações foram feitas diretamente no programa de simulação de circuitos digitais Logisim e são as seguintes:
- -> J1: ~B0 ~B1 Q2 Q3 + B0 ~Q2 ~Q3 + B0 B1 | K1: ~B0 + ~B1 | J2: ~B0 ~B1 Q3 + B0 ~B1 Q1 | K2: ~B0 Q3 + B1 + B0 ~Q3 | J3: ~B0 ~B1 ~Q1 + ~B1 Q2 + B0 ~B1 Q1 | K3: 1
- Depois de simplificadas as expressões, elas ainda seriam muito grandes e usariam muitos componentes para apenas uma saída na hora da montagem, portanto, foi optado por usar para cada uma das saídas que fossem necessárias, a implementação de um multiplexador (J1, J2, K2 e K3 foram as saídas que foram implementadas em multiplexadores)
- Foram usados 4 multiplexadores, e cada um deles foi conectado às entradas J's e K's respectivos.
- As saídas K1 e K3 são simples demais, a ponto de não precisarem de um multiplexador para serem simplificadas, na hora de conectá-las nos FF, basta que fiquem sempre em nível alto.