

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS AVANZADAS

Sistemas de Visión Artificial

SVAPF. "Detector de calidad para latas de refresco".

Profesor: Erick Huitrón Ramírez

Grupo: 4MV5

Alumno:

Álvarez Huerta Mario Ignacio

• Escárcega Corona Luis

• Vanegas García David

Fecha de entrega: 17 de junio de 2022

TABLA DE CONTENIDO

Programa	4
Inicio:	4
Captura:	4
Procesamiento:	
Reporte:	
·	
SubVI:	
Panel frontal:	
lmágenes	15
Descripción de pruebas	15
Exposición de resultados	15
Referencias	18
TABLA DE IMÁGENES	
llustración 1. Inicio.	4
llustración 2. Procesamiento	
llustración 3. Procesamiento principal	
llustración 4. Cambio de valore en botón "OK"	
llustración 5. Cambio de valor de botón "OK"	
llustración 6. Cambio de valor botón "Stop".	
Ilustración 7. Cambio de valor en condiciones de paro	
Ilustración 8. Estado Reporte	
llustración 9. SubVl01llustración 10. SubVl01	
Ilustración 11. SubVI01	
llustración 12. SubVIO2	
llustración 13. SubVI02	
llustración 14. SubVI03	
llustración 15. SubVI03	
llustración 16. SubVI03	
llustración 17. SubVI04	11
llustración 18. SubVI04	12
llustración 19. SubVI04	12
llustración 20. SubVI05	12

Ilustración 21. SubVI05	12
Ilustración 22. SubVI05	13
Ilustración 23. SubVI06	13
Ilustración 24. SubVI06	
Ilustración 25. SubVI06	
Ilustración 26. Latas de prueba	
Ilustración 27. Entorno de captura de imágenes.	

Programa

La detección y evaluación de imágenes de esta práctica, mediante LabVIEW consiste en seguir la secuencia de una máquina de estados por evento. Los eventos son Inicio, Captura, Procesamiento y Reporte.

Inicio:

Este evento permite posicionar una lata enfocada por un par de cámaras controladas a través de la paquetería de Adquisición de Visión IMAQ. Las imágenes que se presentan en el panel frontal de LabVIEW son las vistas superior y frontal de la lata.

Ilustración 1. Inicio.

Captura:

Mediante el botón de "Capturar" se logra tomar dos fotografías, una para cada vista. Se utiliza un SubVI para desplegar el elemento RGB de mayor ponderación y se parte para el evento procesamiento.

Ilustración 2. Procesamiento.

Procesamiento:

Ilustración 3. Procesamiento principal.

Ilustración 4. Cambio de valore en botón "OK".

Ilustración 5. Cambio de valor de botón "OK".

Ilustración 6. Cambio de valor botón "Stop".

Ilustración 7. Cambio de valor en condiciones de paro.

Reporte:

La generación de reporte en formato .txt comienza tomando los valores de linealidad, circularidad, radio, altura, control y error.

Ilustración 8. Estado Reporte.

SubVI:

Se utilizan seis SubVI en la implementación del estado "Procesamiento".

Ilustración 9. SubVI01.

Ilustración 10. SubVI01.

Ilustración 11. SubVIO1.

Ilustración 12. SubVIO2.

Ilustración 13. SubVIO2.

Ilustración 14. SubVI03.

Ilustración 15. SubVI03.

Ilustración 16. SubVI03.

Ilustración 17. SubVIO4.

Ilustración 18. SubVIO4.

Ilustración 19. SubVIO4.

Ilustración 20. SubVI05.

Ilustración 21. SubVI05.

Ilustración 22. SubVI05.

Ilustración 23. SubVIO6.

Ilustración 24. SubVI06

Ilustración 25. SubVI06.

Panel frontal:

El panel frontal contiene un Tab Control para los procesos de Captura y Reporte. En la Captura se aprecia el reconocimiento del color de la lata a través de un Frame Color Box. El botón "OK" es el elemento que permite el cambio de estado de captura a procesamiento, al tomar la imagen que disponga cada cámara.

Finalmente, en la sección Reporte se determina el tipo de lata, color y si aprueba o no con las condiciones de calidad en la integridad de la lata. La aprobación se muestra con el comparador booleano.

Imágenes

Dadas la resolución de 1280x720 pixeles de las cámaras se pretende generar una imagen de referencia (template) para cada producto enlatado; con esta referencia se parte para el análisis de calidad en la región de interés en cada producto.

Ilustración 26. Latas de prueba.

Descripción de pruebas

El entorno se acondicionó con cartulina para mostrar un fondo color blanco en ambas vistas superior e inferior.

Ilustración 27. Entorno de captura de imágenes.

Exposición de resultados.

ok 🖓

Referencias

[1] Richard Szeliski. (2011). Computer Vision Algorithms and Applications. Nueva York: Springer.