### **ROAR III**

Ricerca Operativa: Applicazione Reali

Alessandro Gobbi Alice Raffaele Gabriella Colajanni Eugenia Taranto IIS Antonietti, Iseo (BS) 5 novembre 2022

Introduzione

# Chi siamo e i nostri contatti



Alessandro Gobbi (UniBS) alessandro.gobbi@unibs.it



Alice Raffaele (UniVR) alice.raffaele@univr.it



Gabriella Colajanni (UniCT) gabriella.colajanni@unict.it



Eugenia Taranto (UniCT) eugenia.taranto@unict.it

# Funzionalità più avanzate

Parte 1:

di Python e PuLP

# Assegnazione di incarichi

Una compagnia finanziaria deve decidere chi assumere fra i tre candidati C1, C2 e C3. In base ai loro differenti curriculum, l'azienda sa che, in caso di assunzione, dovrà assicurare loro uno stipendio mensile fisso, rispettivamente di 1450, 1600 e 1300 euro. Inoltre, nel mese corrente, la compagnia ha necessità di portare a termine tre progetti (LAV1, LAV2, LAV3) che richiedono diverse abilità ed esperienza. Al progetto LAV1 dovranno essere assegnate almeno 2 persone, agli altri due progetti almeno 1 persona ciascuno. In base all'assegnazione dei lavori ai candidati, la compagnia finanziaria dovrà retribuire i dipendenti con uno o più bonus in busta paga. La stima di tale bonus (in €), riferito a ciascun candidato se fosse assegnato a ciascuno dei tre lavori, è riportata nella tabella seguente:

|    | LAV1 | LAV2 | LAV3 |
|----|------|------|------|
| C1 | 150  | 230  | 110  |
| C2 | 100  | 90   | 150  |
| C3 | 350  | 410  | 210  |

Costruire un modello di Programmazione Lineare che decida quali persone assumere e come assegnare gli incarichi, minimizzando i costi che l'azienda dovrà sostenere nel mese corrente.

# Variabili (I)

$$y_1 = \begin{cases} 1 \text{ se il candidato 1 viene assunto} \\ 0 \text{ se il candidato 1 non viene assunto} \end{cases}$$

$$y_2 = \begin{cases} 1 \text{ se il candidato 2 viene assunto} \\ 0 \text{ se il candidato 2 non viene assunto} \end{cases}$$

$$y_3 = \begin{cases} 1 \text{ se il candidato 3 viene assunto} \\ 0 \text{ se il candidato 3 non viene assunto} \end{cases}$$

3

# Variabili (II)

$$x_{11} = \begin{cases} 1 \text{ se il candidato 1 svolge il lavoro 1} \\ 0 \text{ se il candidato 1 non svolge il lavoro 1} \end{cases}$$

$$x_{12} = \begin{cases} 1 \text{ se il candidato 1 svolge il lavoro 2} \\ 0 \text{ se il candidato 1 non svolge il lavoro 2} \end{cases}$$

. . .

$$x_{ij} = \begin{cases} 1 \text{ se il candidato } i \text{ svolge il lavoro } j \\ 0 \text{ se il candidato } i \text{ non svolge il lavoro } j \end{cases}$$

Quante variabili in totale sono necessarie?

4

#### Modello

$$\begin{aligned} & \min \quad 1450y_1 + 1600y_2 + 1300y_3 + \\ & + 150x_{11} + 230x_{12} + 110x_{13} + 100x_{21} + 90x_{22} + 150x_{23} + 350x_{31} + 410x_{32} + 210x_{33} \\ & x_{11} + x_{21} + x_{31} \geq 2 \\ & x_{12} + x_{22} + x_{32} \geq 1 \\ & x_{13} + x_{23} + x_{33} \geq 1 \\ & x_{11} + x_{12} + x_{13} \leq 3y_1 \\ & x_{21} + x_{22} + x_{23} \leq 3y_2 \\ & x_{31} + x_{32} + x_{33} \leq 3y_3 \\ & x_{ij} \in \{0, 1\}, \forall i \in \{1, 2, 3\}, \forall j \in \{1, 2, 3\} \end{aligned}$$

# Dizionari (I)

L'indicizzazione delle liste in Python è numerica e progressiva, dove il primo elemento è identificato dall'indice  $\theta$ . Per esempio, definendo la lista  $V = [45, 89, 29, 101], V[\theta]$  corrisponde all'elemento in prima posizione (45) e V[3] all'elemento in quarta posizione (101).

Talvolta, è però utile creare un'indicizzazione personalizzata di una lista, associando a ogni elemento una chiave univoca:

```
D = {chiave1: elem1, chiave2: elem2, ..., chiaveN: elemN}
```

- · Questo tipo particolare di lista è detto dizionario.
- Ogni elemento di un dizionario è accessibile tramite la sua chiave e non tramite la classica indicizzazione numerica da 0 a len(D)-1.
- · Le chiavi di un dizionario possono essere numeri o stringhe.

Facciamo qualche esempio!

# Dizionari (II)

```
costanti = {"pigreco": 3.14, "nepero": 2.71, "accelerazione": 9.8}
```

In questo caso, abbiamo utilizzato le tre stringhe *pigreco*, *nepero* e *accelerazione* come chiavi. Per accedere agli elementi del dizionario *costanti*, ossia 3.14, 2.71 e 9.8, scriveremo, rispettivamente, *costanti*["pigreco"], *costanti*["nepero"] e *costanti*["accelerazione"].

costanti["pigreca"] non esiste! Non c'è alcun elemento associato alla chiave
"pigreca": KeyError

# Dizionari (III)

```
diz1 = {4: 100, 3: 34, 1: 101, 10: 33}
diz2 = {1: 63, 2: 89, 3: 11, 4: 102}
```

In questi ultimi due casi, si utilizzano delle chiavi numeriche. Per accedere agli elementi di *diz1* utilizzeremo le chiavi 4, 3, 1 e 10: per esempio, *diz1[1]* corrisponderà all'elemento 101.

Per accedere agli elementi di *diz2*, si usano invece le chiavi 1, 2, 3, 4. **Nota**: con questa particolare scelta di chiavi, abbiamo di fatto introdotto un'indicizzazione numerica progressiva che parte da 1 fino a *len(diz2)*:

diz2[1] corrisponderà all'elemento 63
diz2[2] corrisponderà all'elemento 89
diz2[3] corrisponderà all'elemento 11
diz2[4] corrisponderà all'elemento 102

diz2[0] non esiste! Non c'è alcun elemento associato alla chiave 0: KeyError

# Dizionari (IV)

È possibile definire anche dizionari bidimensionali, dove ogni elemento è identificato da una coppia di chiavi. Supponiamo per esempio di voler definire la seguente matrice bidimensionale

come un dizionario bidimensionale. Una possibile soluzione potrebbe essere:

## Dizionari (V)

```
d = {1: {1: 80, 2: 75, 3: 85, 4: 90, 5: 95},
2: {1: 75, 2: 80, 3: 75, 4: 85, 5: 100},
3: {1: 80, 2: 80, 3: 80, 4: 90, 5: 95}}
```

Così facendo, avremo che, per esempio:

```
d[1][1] corrisponderà all'elemento 80d[2][5] corrisponderà all'elemento 100d[3][3] corrisponderà all'elemento 80
```

e così via

d[5][3] non esiste! Non c'è alcun elemento associato alla coppia di chiavi (5,3): KeyError

Nota: m[2][4] non indicizza lo stesso elemento di d[2][4]

#### dicts

Per creare un *dizionario* (un raggruppamento) di variabili, ciascuna identificata da una **chiave univoca**, ma accomunate dalla stessa tipologia e dallo stesso limite inferiore e superiore, in PuLP si può usare *dicts*:

```
dicts(name, indices=None, lowBound=None,
upBound=None, cat='...')
```

- name = prefisso comune al nome delle variabili.
- indices = lista di chiavi (stringhe), una per ogni variabile.
- · lowBound = limite inferiore delle variabili.
- upBound = limite superiore delle variabili.
- cat = categoria delle variabili.

```
# Variabili
#y_1 = LpVariable("y_1", lowBound=0, cat=LpBinary)
#y_2 = LpVariable("y_2", lowBound=0, cat=LpBinary)
#y_3 = LpVariable("y_3", lowBound=0, cat=LpBinary)
var_y = LpVariable("x_11", lowBound=0, cat=LpBinary)

#x_11 = LpVariable("x_11", lowBound=0, cat=LpBinary)
#x_12 = LpVariable("x_12", lowBound=0, cat=LpBinary)
#x_13 = LpVariable("x_13", lowBound=0, cat=LpBinary)
#x_21 = LpVariable("x_21", lowBound=0, cat=LpBinary)
#x_22 = LpVariable("x_22", lowBound=0, cat=LpBinary)
#x_23 = LpVariable("x_23", lowBound=0, cat=LpBinary)
#x_31 = LpVariable("x_31", lowBound=0, cat=LpBinary)
#x_32 = LpVariable("x_31", lowBound=0, cat=LpBinary)
#x_33 = LpVariable("x_33", lowBound=0, cat=LpBinary)
#x_33 = LpVariable("x_33", lowBound=0, cat=LpBinary)
yar_x = LpVariable("x_33", lowBound=0, cat=LpBinary)
yar_x = LpVariable(dots("x", (indici candidati, indici lavori), 0, 1, LpBinary);
```

## lpSum

Per calcolare la somma di una lista di espressioni lineari, si può usare la funzione *lpSum*:

pulp.lpSum(vector)

• vector = lista di espressioni lineari

```
# Funzione obiettivo
\# model += y_1 * 1450 + y_2 * 1600 + y_3 * 1300 + x_{11} * 150 + x_{12} * 230 + x_{13} * 110 +
    x 21 * 100 + x 22 * 90 + x 23 * 150 + x 31 * 350 + x 32 * 410 + x 33 * 210
model += lpSum(var y[i] * stipendi[i] for i in indici candidati) + lpSum(var x[i][j] *
    bonus[i][j] for i in indici_candidati for j in indici_lavori)
# Vincoli
\# model += x 11 + x 12 + x 13 <= 3 * v 1
\# model += x 21 + x 22 + x 23 <= 3 * v 2
\# model += x 31 + x 32 + x 33 <= 3 * y 3
for i in indici candidati:
   model += lpSum(var x[i][i] for i in indici lavori) <= 3 * var v[i]
\# model += x_11 + x_21 + x_31 >= 2
\# model += x 12 + x 22 + x 32 >= 1
\# model += x 13 + x 23 + x 33 >= 1
for j in indici_lavori:
   model += lpSum(var_x[i][j] for i in indici_candidati) >= num_min_candidati_lavori[j]
```

# Lavoro di gruppo (40 minuti)

Parte 2:

# La dieta mediterranea (I)

Secondo un nutrizionista sostenitore della dieta mediterranea, le quantità minime di nutrienti che devono essere assunte ogni giorno sono 1700 chilocalorie, 200 g di carboidrati, 70 g di proteine, 60 g di grassi e 0,7 g di calcio. Generalmente, il nutrizionista è solito prescrivere una dieta composta da otto alimenti: pane, pasta, latte, uova, pollo, tonno, cioccolato e verdure. La seguente tabella mostra quante calorie (in Kcal), carboidrati, proteine, grassi (in grammi) e calcio (in mg) fornisce una porzione di ogni alimento:

|                 | Pane | Pasta | Latte | Uova | Pollo | Tonno | Cioccolato | Verdure |
|-----------------|------|-------|-------|------|-------|-------|------------|---------|
| Calorie (kcal)  | 150  | 390   | 70    | 70   | 150   | 150   | 112        | 45      |
| Carboidrati (g) | 30   | 75    | 5     | 0    | 2     | 0     | 7          | 8       |
| Proteine (g)    | 5    | 11    | 5     | 6    | 36    | 25    | 2          | 3       |
| Grassi (g)      | 2    | 3     | 3     | 6    | 5     | 15    | 10         | 2       |
| Calcio (mg)     | 52   | 5     | 150   | 50   | 22    | 4     | 11         | 50      |

### La dieta mediterranea (II)

Il nutrizionista raccomanda anche almeno due porzioni di verdura al giorno, mentre il numero massimo di porzioni per ogni alimento è riportato nella tabella seguente:

|                    | Pane | Pasta | Latte | Uova | Pollo | Tonno | Cioccolato | Verdure |
|--------------------|------|-------|-------|------|-------|-------|------------|---------|
| N° max di porzioni | 2    | 2     | 2     | 1    | 1     | 2     | 2          | 6       |

Il numero di porzioni di pane e pasta non può essere maggiore di 3, mentre quello delle porzioni di latte, pollo e tonno deve essere almeno 4. Inoltre, il nutrizionista vuole che nella dieta ci siano esattamente 7 degli otto alimenti proposti. Il costo (in €) di una porzione di ogni alimento è il seguente:

|                    |      |      |      |      |      |      | Cioccolato |      |
|--------------------|------|------|------|------|------|------|------------|------|
| Costo per porzione | 0,50 | 3,50 | 1,00 | 1,50 | 4,50 | 2,00 | 1,50       | 4,00 |

Determinare quali alimenti dovranno essere mangiati in un giorno per rispettare tutte le prescrizioni della dieta indicata dal nutrizionista, in modo tale da minimizzare il costo totale.

# Variabili, vincoli e funzione obiettivo (I)

#### Variabili:

- X<sub>PAN</sub>, X<sub>PAS</sub>, X<sub>LAT</sub>, X<sub>UOV</sub>, X<sub>POL</sub>, X<sub>TON</sub>, X<sub>CIO</sub>, X<sub>VER</sub> ≥ 0: rappresentano il numero di porzioni di ogni alimenti da inserire nella dieta;
- y<sub>PAN</sub>, y<sub>PAS</sub>, y<sub>LAT</sub>, y<sub>UOV</sub>, y<sub>POL</sub>, y<sub>TON</sub>, y<sub>CIO</sub>, y<sub>VER</sub> ∈ {0,1}: ogni variabile binaria indica se l'alimento corrispondente è inserito o no nella dieta.

#### Vincoli:

- · Calorie:
  - $150x_{PAN} + 390x_{PAS} + 70x_{LAT} + 70x_{UOV} + 150x_{POL} + 150x_{TON} + 112x_{CIO} + 45x_{VER} \ge 1700$
- · Carboidrati:
  - $30x_{PAN} + 75x_{PAS} + 5x_{LAT} + 0x_{UOV} + 2x_{POL} + 0x_{TON} + 7x_{CIO} + 8x_{VER} \ge 200$
- · Proteine:
  - $5x_{PAN} + 11x_{PAS} + 5x_{LAT} + 6x_{UOV} + 36x_{POL} + 25x_{TON} + 2x_{CIO} + 3x_{VER} \ge 70$
- Grassi:  $2x_{PAN} + 3x_{PAS} + 3x_{LAT} + 6x_{UOV} + 5x_{POL} + 15x_{TON} + 10x_{CIO} + 2x_{VER} \ge 60$
- · Calcio:
  - $52x_{PAN} + 5x_{PAS} + 150x_{LAT} + 50x_{UOV} + 22x_{POL} + 4x_{TON} + 11x_{CIO} + 50x_{VER} \ge 700$

## Variabili, vincoli e funzione obiettivo (II)

- Numero massimo di porzioni:  $x_{PAN} \le 2y_{PAN}$ ;  $x_{PAS} \le 2y_{PAS}$ ;  $x_{LAT} \le 2y_{LAT}$ ;  $x_{UOV} \le 1y_{UOV}$ ;  $x_{POL} \le 1y_{POL}$ ;  $x_{TON} \le 2y_{TON}$ ;  $x_{CIO} \le 2y_{CIO}$ ;  $x_{VER} \le 6y_{VER}$ .
- · Porzioni e alimenti:
  - Verdure:  $x_{VFR} > 2$ :
  - Pane e pasta:  $x_{PAN} + x_{PAS} \le 3$ ;
  - Pollo e tonno:  $X_{LAT} + X_{POL} + X_{TON} \ge 4$ .
- Varietà:  $y_{PAN} + y_{PAS} + y_{LAT} + y_{UOV} + y_{POL} + y_{TON} + y_{CIO} + y_{VER} = 7$ .

#### Funzione obiettivo: minimizzare i costi totali

$$0,50x_{PAN}+3,50x_{PAS}+1x_{LAT}+1,50x_{UOV}+4,50x_{POL}+2x_{TON}+1,50x_{CIO}+4x_{VER}.$$

# Modello completo

```
\min 0.50x_{PAN} + 3.50x_{PAS} + 1x_{IAT} + 1.50x_{IIOV} + 4.50x_{POI} + 2x_{TON} + 1.50x_{CIO} + 4x_{VER}
150x_{PAN} + 390x_{PAS} + 70x_{IAT} + 70x_{IJOV} + 150x_{POJ} + 150x_{TON} + 112x_{CIO} + 45x_{VFR} \ge 1700
        30x_{PAN} + 75x_{PAS} + 5x_{IAT} + 0x_{IIOV} + 2x_{POI} + 0x_{TON} + 7x_{CIO} + 8x_{VER} > 200
        5x_{PAN} + 11x_{PAS} + 5x_{IAT} + 6x_{IIOV} + 36x_{POI} + 25x_{TON} + 2x_{CIO} + 3x_{VER} > 70
         2x_{PAN} + 3x_{PAS} + 3x_{IAT} + 6x_{IIOV} + 5x_{POI} + 15x_{TON} + 10x_{CIO} + 2x_{VER} > 60
    52x_{PAN} + 5x_{PAS} + 150x_{LAT} + 50x_{UOV} + 22x_{POL} + 4x_{TON} + 11x_{CIO} + 50x_{VFR} \ge 700
                                               XPAN < 2VDAN
                                               XDAS < 2VDAS
                                               X_{IAT} \leq 2y_{IAT}
                                               x_{UOV} \leq 1y_{UOV}
                                              x_{POL} \leq 1,5y_{POL}
                                              x_{TON} < 1.5 v_{TON}
                                               x_{CIO} < 1y_{CIO}
                                               XVFR < 5VVFR
                                                  \chi_{VFR} > 2
                                             X_{P\Delta N} + X_{P\Delta S} < 3
                                        XIAT + XPOI + XTON > 4
                 V_{PAN} + V_{PAS} + V_{IAT} + V_{IIOV} + V_{POI} + V_{TON} + V_{CIO} + V_{VER} = 7
```

Implementare e risolvere il modello matematico del problema con PuLP+Python, utilizzando le nuove funzionalità introdotte.

# Parte 3: Lavoro di gruppo (1 ora e 15)

# "Buongiornissimo! Kaffè?"

Una catena di bar ha stipulato un contratto commerciale con un'industria di torrefazione per la fornitura esclusiva di caffè. L'industria deve decidere quali dei suoi quattro impianti di torrefazione  $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$  aprire per rifornire i tre bar  $B_1$ ,  $B_2$  e  $B_3$  della catena. Vista la differente distanza tra gli impianti e i bar e i differenti mezzi di trasporto utilizzati, i costi di trasporto euro/chilogrammo di caffè da un impianto ad un bar risultano differenti e sono riassunti nella seguente tabella:

|       | $B_1$ | $B_2$ | $B_3$ |
|-------|-------|-------|-------|
| $T_1$ | 0,4   | 0,3   | 0,2   |
| $T_2$ | 0,2   | 0,3   | 0,5   |
| $T_3$ | 0,1   | 0,6   | 0,2   |
| $T_4$ | 0,5   | 0,1   | 0,3   |

#### Sapendo che:

- · il costo fisso per l'apertura di ciascun impianto è di 1350 euro;
- · non si vogliono attivare più di 3 impianti di torrefazione;
- gli impianti di torrefazione  $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$  possono produrre giornalmente al massimo 75, 90, 80 e 65 Kg di caffè, rispettivamente;
- i tre bar necessitano di 60, 75 e 80 Kg di caffè, rispettivamente;

qual è la quantità da trasportare da ogni impianto a ogni bar per minimizzare i costi totali?

# Lavoro di gruppo

- 1. Elaborare un modello di Programmazione Lineare Mista Intera per il problema.
- 2. Implementare il modello ideato tramite la libreria PuLP in Python e risolverlo, stampando:
  - · il valore ottimo di tutte le variabili;
  - · la produzione effettiva di caffè per ogni impianto;
  - · il numero di impianti di torrefazione aperti.

# Conclusione

# Compiti per lunedì 14 novembre 2022

- Finire di implementare e risolvere con Python+PuLP il problema Buongiornissimo! Kaffè? v2 del secondo lavoro di gruppo.
- Implementare e risolvere con Python+PuLP il problema Un treno da prendere (Problema del cammino minimo – ROAR II, Lezione 3 slide 40 e Lezione 4 slide 8).

Consegnare alla Prof.ssa Picchi gli script di Python sviluppati **entro giovedì 10 novembre**.

# Sondaggio finale



www.menti.com - Codice: 2672 5790