Week 1 Problems

- 1. An urn contains 10 red balls and 15 white balls. You pick two balls at random without replacement.
 - a) What is the probability that the first ball is red?
 - b) What is the probability that the second ball is red?
 - c) What is the probability that both balls are white?
 - d) What is the probability that the second ball is red given that the first ball is white?
 - e) What is the probability that the first ball is red given that the second ball is white?
- 2. (From Gelman 3.7) A student sits on a street corner for an hour and records the number of bicycles b and the number of other vehicles v that go by. Two models are considered:
 - The outcomes b and v have independent Poisson distributions, with unknown means θ_b and θ_v .
 - The outcome b has a binomial distribution, with unknown probability p and sample size b+v.

Show that the two models have the same likelihood if we define $p = \frac{\theta_b}{\theta_b + \theta_v}$.

Hints:

- Find the conditional distribution of b conditioning on information you know.
- If $X \sim \text{Poisson}(\theta_1)$ and $Y \sim \text{Poisson}(\theta_2)$, then $X + Y \sim \text{Poisson}(\theta_1 + \theta_2)$.
- 3. Let $X \sim \text{Uniform}(1,4)$. Use calculus to find E(X) and Var(X).
- 4. a) Suppose you have n independent observations X_i from an exponential distribution where

$$p(x_i|\lambda) = \lambda e^{-\lambda x_i}$$

Analytically find the maximum likelihood estimate of λ .

b) Now reparameterize the distribution for X_i in terms of τ where

$$\tau = \frac{1}{\lambda}$$

Find the MLE for τ .

- 5. Suppose that X follows a Gamma(α, β) distribution. Show that $\frac{1}{X}$ follows an Inv-Gamma(α, β) distribution.
 - Gamma PDF: $p(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha 1} e^{-\beta y}$
 - Inverse Gamma PDF: $p(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-(\alpha+1)} e^{-\beta/y}$
 - Change of Variables formula: Let Y = g(X) and $X = g^{-1}(Y)$. Then

$$p_Y(y) = p_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

1