1 GCD Theorems

1.1 GCD WR

If a and b are integers not both zero, and q and r are integers such that a = qb + r, then gcd(a,b) = gcd(b,r)

1.2 GCD CT (GCD characterization theorem)

If d is a positive common divisor of the integers a and b, and there exist integers x and y so that ax + by = d, then d = qcd(a, b).

1.3 Coprimeness and Divisibility

If a,b, and c are integers and $c \mid ab$ and gcd(a,c) = 1, then $c \mid b$

1.4 Primes and Divisibility

If p is a prime and $p \mid ab$ then $p \mid a$ or $p \mid b$

1.5 GCD of One

Let a and b be integers. Then $gcd(a,b) = 1 \iff ax + by = 1$ where x and y are integers.

1.6 Division by the GCD

Let a and b be integers. If $gcd(a,b)=d\neq 0$, then $gcd(\frac{a}{d},\frac{b}{d})=1$.

2 EEA

2.1 Extended Euclidean Algorithm

If a > b > 0 are positive integers, then d = gcd(a, b) can be computed and there exist integers x and y so that ax + by = d.

3 Linear Diophatine Equations

Equations with integer co-efficients for which integer solutions are sought.

3.1 Linear Diophatine Equation Theorem, Part 1 LDET1

Let gcd(a,b)=d. The linear Diophatine equation ax + by = c has a solution iff $d \mid c$

3.2 Linear Diophatine Equation Theorem 2, LDET2

Let gcd(a,b) = d where both a and b are not zero. If $x = x_0$ and $y = y_0$ is one particular integer solution to the equation ax + by = d then the complete solution is $x = x_0 + \frac{b}{d}n$, $y = y_0 - \frac{a}{d}n \forall \epsilon Z$

4 Congruence

Let m be a fixed positive integer. If $a, b \in \mathbb{Z}$ we say that a is congruent to b modulo m. $a \equiv b \mod m$ if $m \mid (a - b)$. If m(a - b) then $a \neq m \mod m$

4.1 Equivalence relation

 $a \equiv b mod m$

If $a \equiv b mod m$ then $b \equiv a mod m$

If $a \equiv b mod m$ and $b \equiv c mod m$ then $a \equiv c mod m$

4.2 properties of congruence

 $a + b \equiv a' + b' mod m$

 $a - b \equiv a' - b' mod m$

 $ab \equiv a'b'modm$

4.3 Congruences and Division

If $ac \equiv bcmodm$ and gcd(c, m) = 1 then $a \equiv bmodm$

4.4 Congruent IFF Same remainder

 $a \equiv b mod m$ iff a and b have the same remainder when divided by m.

4.5 Modular Arithmetic

4.5.1 Congruence class

 $[a] = x \in \mathbb{Z} \mid x \equiv a \mod m$ \mathbb{Z}_m is the set of m congruence classes. [a] + [b] = [a+b] and [a] * [b] = [a*b]

4.5.2 Identity

Something that does nothing. $\forall a \in S, a * e = a$

4.5.3 Inverse

a * b = b * a = e Subtraction is the addition of inverse. Division is multiplication with inverse.

4.6 Fermat's Little Theorem

If p is a prime number that does not divide the integer a, then $a^{p-1} \equiv 1 mod p$ For any integer a and any prime p $a^p \equiv a mod p$

4.6.1 Existence of Inverse

Let p be a prime. if [a] is any non zero element in Z_p then there exists an element $[b] \epsilon Z_p$ so that [a] * [b] = 1

4.7 Linear Congruences

 $ax \equiv cmodm$ is a linear congruence. solution if x so that congruence is true.

4.7.1 Linear congruence Theorem 1 LCT1

Let $gcd(a, m) = d \neq 0$ The linear congruence $ax \equiv cmodm$ has a solution iff $d \mid c$. Also if x_0 is a solution then complete solution is $x \equiv x_0 mod \frac{m}{d}$

4.7.2 Linear Congruence Theorem 2, LCT2

Let $gcd(a, m) = d \neq 0$. The equation [a][c] = [c] in \mathbb{Z}_m has a solution iff $d \mid c$

4.8 Chinese Remainder Theorem

Let $a_1, a_2 \in \mathbb{Z}$ If $gcd(m_1, m_2) = 1$ then the simultaneous linear congruences $n \equiv a_1 mod m_1$ and $n \equiv a_2 mod m_2$ have a unique solution modulo $m_1 m_2$ Thus is $n=n_0$ is one integer solution then the complete solution is $n \equiv n_0 mod m_1 m_2$

5 RSA