### Functional Analysis

#### Hoyan Mok

#### December 8, 2023



# Preface

Preface.

# Contents

| Pr | reface                                                 | i             |
|----|--------------------------------------------------------|---------------|
| Co | ontents                                                | ii            |
| 1  | Topological Vector Spaces §1 Topological Vector Spaces | <b>1</b><br>1 |
| 2  | Normed and Banach Spaces                               | 3             |
| 3  | Inner Product and Hilbert Spaces                       | 4             |
| 4  | Linear Operators                                       | 5             |
| 5  | Duality and Hahn-Banach Theorem§2Sublinear Functionals | <b>6</b> 6 7  |
| 6  | Linear Operators on Hilbert Spaces                     | 8             |
| 7  | Compact Operators                                      | 9             |
| 8  | Integral and Differential Equations                    | 10            |
| A  | Appendix                                               | 11            |

| CONTENTS     | iii |
|--------------|-----|
| Bibliography | 12  |
| Index        | 13  |

iv Contents

# Topological Vector Spaces

#### §1 Topological Vector Spaces

If not specified,  $\mathbb{K}$  is either  $\mathbb{R}$  or  $\mathbb{C}$ , V is a vector space over  $\mathbb{K}$ .

**Definition 1.1** (Topological Vector Space). A *topological vector space* is a vector space V over field  $\mathbb{K}$  ( $\mathbb{K} = \mathbb{R} \vee \mathbb{K} = \mathbb{C}$ ) s.t. the vector addition  $+: V \times V \to V$  and the scalar multiplication  $\cdot: \mathbb{K} \times V \to V$  are both continuous.

**Definition 1.2** (Balanced set). A subset C of V over  $\mathbb{K}$  is **balanced** if  $\forall \lambda \in \mathbb{K}$ ,  $\forall x \in C$ , if  $|\lambda| \leq 1$ , then  $\lambda x \in C$ .

It means that, if  $x \in C$ , the disk with x on its boundary and centered at 0 is also contained in C.

**Definition 1.3** (Locally convexity). A topological vector space V is  $\boldsymbol{locally\ convex}$  if there exists a local base of balanced, convex sets at 0.

# Normed and Banach Spaces

# Inner Product and Hilbert Spaces

# **Linear Operators**

# Duality and Hahn-Banach Theorem

#### §2 Sublinear Functionals

**Definition 2.1** (Sublinear functional). Let V be a vector space over  $\mathbb{K}$  ( $\mathbb{K} = \mathbb{R} \vee \mathbb{K} = \mathbb{C}$ ). A *sublinear functional* on V is a function  $p \colon V \to \mathbb{R}$  s.t.

- 1.  $\forall v \in V, \ \forall \lambda \in \mathbb{R}, \ \text{if} \ \lambda \geq 0, \ \text{then} \ p(\lambda v) = \lambda p(v) \ (\textbf{non-negative homogeneity});$
- 2.  $p(v+w) \le p(v) + p(w)$  for all  $v, w \in V$  (subadditivity or triangle inequality).

**Definition 2.2** (Semi-norm). A *semi-norm* on a vector space V over  $\mathbb{K}$  ( $\mathbb{K} = \mathbb{R} \vee \mathbb{K} = \mathbb{C}$ ) is a function  $p: V \to \mathbb{R}$  s.t.

- 1.  $\forall v \in V, \forall \lambda \in \mathbb{K}, p(\lambda v) = |\lambda|p(v)$  (absolute homogeneity);
- 2.  $p(v+w) \le p(v) + p(w)$  for all  $v, w \in V$  (subadditivity).

The definition implies that a semi-norm is also non-negative  $(p(v) \ge 0)$ .

By comparing definition, we can tell that a semi-norm is a sublinear functional, and a norm is a semi-norm with p(v)>0 for non-zero v.

#### §3 The Hahn-Banach Theorem

**Definition 3.1** (Extension). An *extension* of a linear functional  $f_W \colon W \to \mathbb{K}$  on a subspace W of a vector space V over  $\mathbb{K}$  is a linear functional  $f \colon V \to \mathbb{K}$  s.t.

$$\forall w \in W, \ f(w) = f_W(w).$$

**Theorem 3.1** (Hahn-Banach). Let V be a vector space over  $\mathbb{K}$   $(\mathbb{K} = \mathbb{R} \vee \mathbb{K} = \mathbb{C})$ .  $p: V \to \mathbb{R}$  is a seminorm.  $W \subset V$  is a subspace of V.

If  $f_W: W \to \mathbb{K}$  is a linear functional s.t.

$$\forall w \in W, |f_W(w)| \le p(w),$$

then there exists an extension  $f: V \to \mathbb{K}$  s.t.

$$\forall v \in V, |f(v)| \le p(v).$$

# Linear Operators on Hilbert Spaces

# **Compact Operators**

# Integral and Differential Equations

# Appendix A

Appendix

# **Bibliography**

[1] Bryan P. Rynne and Martin A. Youngson. *Linear Functional Analysis*. Springer Undergraduate Mathematics Series. London: Springer, 2008. ISBN: 978-1-84800-004-9 978-1-84800-005-6. DOI: 10.1007/978-1-84800-005-6. URL: http://link.springer.com/10.1007/978-1-84800-005-6 (visited on 12/07/2023).

# Index

Here listed the important symbols used in this notes.

| absolute homogeneity, 7       | positive homogeneity, 6          |
|-------------------------------|----------------------------------|
| balanced, 1                   |                                  |
| extension, 7                  | semi-norm, 6 subadditivity, 6, 7 |
| Hahn-Banach theorem, 7        | sublinear functional, $6$        |
| locally convex, 2             | topological vector space, 1      |
| non-negative homogeneity, $6$ | triangle inequality, 6           |