

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-7

A verificação da presença de radiação em determinados compostos nucleares pode ser feita por intermédio da análise da concentração de duas variáveis definidas por x_1 e x_2 . A partir de 50 situações conhecidas, resolveu-se então treinar uma RBF para a execução da tarefa de classificação de padrões neste processo, cuja topologia está ilustrada na figura seguinte.

A padronização para a saída, a qual representa a presença ou ausência de sinais de radiação, ficou definida da seguinte forma:

Status de Radiação	Saída (y)
Presença	1
Ausência	-1

Utilizando os dados de treinamento apresentados no Apêndice, execute o treinamento de uma RBF (2 entradas e 1 saída) que possa classificar, em função apenas dos valores medidos de x_1 e x_2 , se determinado composto possui radiação. Para tanto, faça as seguintes atividades:

1. Execute o treinamento da camada escondida por meio do algoritmo de clusterização "k-means" (vizinhos mais próximos). Em se tratando de um problema de classificação de padrões, compute os centros dos dois clusters levando-se em consideração apenas aqueles padrões com presença de radiação. Após o treinamento, forneça os valores das coordenadas do centro de cada cluster e sua respectiva variância.

Cluster	Centro	Variância
1		
2		

2. Após o treinamento da camada intermediária execute o treinamento da camada de saída usando a regra delta generalizada. Utilize uma taxa de aprendizado $\eta=0.01$ e precisão de $\epsilon=10^{-7}$. No final da convergência forneça os valores dos pesos referentes ao neurônio da camada de saída.

Peso	Valor
$W_{1,0}^{(2)}$	
$W_{1,1}^{(2)}$	
$W_{1,2}^{(2)}$	

3. Dado que o problema se configura como um típico processo de classificação de padrões, implemente a rotina que faz o pós-processamento das saídas fornecidas pela rede (números reais) para números inteiros. Utilize a função sinal, ou seja:

$$y^{\text{pós}} = \begin{cases} 1, & \text{se } y \geq 0 \\ -1, & \text{se } y < 0 \end{cases} \text{, função utilizada apenas no pós-processamento do conjunto de teste.}$$

4. Faça a validação da rede aplicando o conjunto de teste fornecido na tabela abaixo. Forneça a taxa de acerto (%) entre os valores desejados e os valores fornecidos pela rede (após o pós-processamento) em relação a todas as amostras de teste.

	1				
Amostra	x_1	x_2	d	у	y ^{pós}
1	0.8705	0.9329	-1		
2	0.0388	0.2703	1		
3	0.8236	0.4458	-1		
4	0.7075	0.1502	1		
5	0.9587	0.8663	-1		
6	0.6115	0.9365	-1		
7	0.3534	0.3646	1		
8	0.3268	0.2766	1		
9	0.6129	0.4518	-1		
10	0.9948	0.4962	-1		
Taxa de A	Taxa de Acerto (%):				

5. Se for o caso, explique quais estratégias se pode adotar para tentar aumentar a taxa de acerto desta *RBF*.

Apêndice

Amostra	x_1	x_2	d	
1	0.2563	0.9503	-1	
2	0.2405	0.9018	-1	
3	0.1157	0.3676	1	
4	0.5147	0.0167	1	
5	0.4127	0.3275	1	
6	0.2809	0.583	1	
7	0.8263	0.9301	-1	
8	0.9359	0.8724	-1	
9	0.1096	0.9165	-1	
10	0.5158	0.8545	-1	
11	0.1334	0.1362	1	
12	0.6371	0.1439	1	
13	0.7052	0.6277	-1	
14	0.8703	0.8666	-1	
15	0.2612	0.6109	1	
16	0.0244	0.5279	1	
17	0.9588	0.3672	-1	
18	0.9332	0.5499	-1	
19	0.9623	0.2961	-1	
20	0.7297	0.5776	-1	
21	0.456	0.1871	1	
22	0.1715	0.7713	1	
23	0.5571	0.5485	-1	
24	0.3344	0.0259	1	
25	0.4803	0.7635	-1	
26	0.9721	0.485	-1	
27	0.8318	0.7844	-1	
28	0.1373	0.0292	1	
29	0.366	0.8581	-1	
30	0.3626	0.7302	-1	
31	0.6474	0.3324	1	
32	0.3461	0.2398	1	
33	0.1353	0.812	1	
34	0.3463	0.1017	1	
35	0.9086	0.1947	-1	
36	0.5227	0.2321	1	
37	0.5153	0.2041	1	
38	0.1832	0.0661	1	
39	0.5015	0.9812 -1		
40	0.5024	0.5274	-1	