## FILTRAGEM ESPACIAL

# Filtros Digitais no domínio do espaço

#### Definição

- Também conhecidos como operadores locais ou filtros locais
- Combinam a intensidade de um certo número de pixels, para gerar a intensidade da imagem de saída.



# Filtros Digitais no domínio do espaço



# Filtros Digitais no domínio do espaço

- Uma grande variedade de filtros digitais podem ser implementados através da convolução no domínio do espaço
  - São os operadores locais mais utilizados em processamento de imagens, com diversas aplicações
    - Pré-processamento
    - Eliminação de ruídos
    - Suavização
    - Segmentação

# Filtros Digitais no domínio do espaço

□ Exemplo: remoção de ruído





# Filtragem Espacial

- Refere-se ao plano da imagem
  - Envolve a manipulação direta dos pixels da imagem utilizando uma máscara espacial (kernels, templates, janelas)

|                 | 1 | 1 | 1 |
|-----------------|---|---|---|
| $\frac{1}{9}$ × | 1 | 1 | 1 |
|                 | 1 | 1 | 1 |

| -1 | 0 | 1 |  |
|----|---|---|--|
| -2 | 0 | 2 |  |
| -1 | 0 | 1 |  |

- □ Valores uas mascaras são chamacos de coeficientes
  - O processo de filtragem é similar a um operação matemática denominada convolução

# Filtragem Espacial

- Processo de filtragem
  - Cada elemento da máscara é multiplicado pelo valor
    - do pixel correspondente na imagem f
  - A soma desses resultados é o novo valor do nível de cinza na nova imagem g
  - Exemplo: w é uma janela de n x n = k pixels. O processo de filtragem para cada pixel na imagem g(x,y) será dada por,

$$g(x,y)$$
 será dada por  
 $g(x,y) = \sum_{i=1}^{k} w_i f(x,y)$ 

# Filtragem Espacial

- □ Processo de filtragem
  - □ (a,b,c,d,e,f,g,h,i): são os valores dos níveis de cinza na vizinhança de f(x,y)
  - □ (w₁ a w₂): são os coeficientes da máscara
  - $\Box$  O valor do pixel g(x,y) é dado por

$$g(x,y) = w_1 \cdot a + w_2 \cdot b + w_3 \cdot c + w_4 \cdot d + w_5 \cdot e + w_6 \cdot f + w_7 \cdot g + w_8 \cdot h + w_9 \cdot i$$

| Imagem f(x,y |   |   |   |  |
|--------------|---|---|---|--|
|              |   |   |   |  |
|              | а | Ь | С |  |
|              | d | e | f |  |
|              | g | h | i |  |
|              |   |   |   |  |

| $k = 3 \times 3 = 9$ |                       |                  |                       |  |
|----------------------|-----------------------|------------------|-----------------------|--|
|                      | $\mathbf{w}_1$        | w <sub>2</sub>   | <b>w</b> <sub>3</sub> |  |
|                      | <b>W</b> <sub>4</sub> | $\mathbf{w}_{5}$ | <b>W</b> <sub>6</sub> |  |
|                      | W <sub>7</sub>        | w <sub>8</sub>   | <b>W</b> <sub>9</sub> |  |

## Filtragem Espacial

□ Processo de filtragem



# Correlação e Convolução

- Existem dois conceitos matemáticos importantes e que estão relacionados com a filtragem espacial: correlação e convolução
- Correlação
  - Desloca-se a máscara sobre a imagem e calculase a soma dos produtos em cada local
- Convolução
  - Mesmo processo que a correlação, exceto que a máscara é antes espelhada (rotacionada em 180º)

# Correlação e Convolução

- Equações para máscaras de tamanho m x n
  - Correlação

$$w(x, y) \circ f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

■ Convolução

$$w(x,y)*f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$
 Espelhamento ou rotação, feito na imagem

# Correlação e Convolução

- Observações
  - As equações devem ser avaliadas para todas as posições x e y da imagem
  - Se a máscara for simétrica, os resultados da convolução e da correlação são os mesmos
    - No geral, em aplicações de processamento de imagens, as máscaras são simétricas sendo correlação e convolução consideradas como a mesma coisa

# Convoluir uma máscara com uma imagem

#### Seguintes conjunto de operações

#### Desloca, Multiplica, Soma

# máscara 1 0

| Imagem |   |   |   |   |  |  |
|--------|---|---|---|---|--|--|
| 1      | 1 | 3 | 3 | 4 |  |  |
| 1      | 1 | 4 | 4 | 3 |  |  |
| 2      | 1 | 3 | 3 | 3 |  |  |
| 1      | 1 | 1 | 4 | 4 |  |  |

| 11 | İ | 10  | <b>0</b> 3 | Ĭ | <b>10</b> 3 | <b>0</b> 4 | 0 |
|----|---|-----|------------|---|-------------|------------|---|
| 01 |   | 011 | <b>0</b> 4 |   | 014         | <b>0</b> 3 | 1 |
| 2  |   | 1   | 3          |   | 3           | 3          |   |
| 1  |   | 1   | 1          |   | 4           | 4          |   |

| Resultado |   |   |   |   |  |  |
|-----------|---|---|---|---|--|--|
| 2         | 5 | 7 | 6 | * |  |  |
| 2         | 4 | 7 | 7 | * |  |  |
| 3         | 2 | 7 | 7 | * |  |  |
| *         | * | * | * | * |  |  |

A imagem resultado é menor do que a imagem original. Os valores marcados com \* não podem ser calculados.

# Convolução

- Convenção
  - Nas máscaras de organização par (2 x 2, 4 x 4 , ...) o resultado é colocado sobre o primeiro pixel
  - Nas máscaras de organização ímpar (3 x 3, 5 x 5, ...) o resultado é colocado sobre o pixel de centro
  - A imagem resultado da convolução não necessita obrigatoriamente ser menor que a imagem original.
    - Convolução aperiódica
    - Gabarito truncado
    - Convolução periódica

# Convolução aperiódica

 O valor 0 é atribuído aos resultados não calculáveis



## Gabarito truncado

 Centra-se a máscara com o primeiro pixel da imagem atribuindo o valor 0 aos valores inexistentes na imagem



## Convolução periódica

 A máscara é deslocada sobre todos os pixels da imagem original como se esta fosse adjacente em suas extremidades



# Convolução

- □ O custo computacional da convolução é alto
  - Em um imagem de tamanho M x M e máscara N x N, o número de multiplicações é de M²N²
  - Exemplo: imagem de 512 x 512 e máscara de 16 x 16 = 67.108.864 multiplicações.
- Alternativa: domínio da frequência (Fourier)
  - Só é justificável se a máscara for maior do que 32 x 32
  - Custo da Transformada de Fourier

# Máscaras de convolução

- O tamanho da máscara e os valores de seus coeficientes definem o tipo de filtragem produzido
- Exemplos
  - □ Passa Baixa e média espacial (suavização)
  - □ Filtragem mediana
  - Passa Alta (realce)
  - Passa banda
  - Gradientes (robert, sobel, etc): detectores de borda

# Filtros de Suavização

- Também chamados de filtros passa-baixa
  - Utiliza uma máscara que realiza a média da vizinhança.
  - Numa máscara de média, os coeficiente são positivos e a soma deles é igual a 1
  - Quanto maior a máscara maior efeito de borramento
- Exemplos de máscaras

$$\frac{1}{5} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{32} \begin{bmatrix} 1 & 3 & 1 \\ 3 & 16 & 3 \\ 1 & 3 & 1 \end{bmatrix} \qquad \frac{1}{8} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

# Filtros de Suavização

□ São filtros usados para o borramento



# Filtros de Suavização

□ São filtros usados para a redução de ruídos





# Filtros de Suavização

#### Filtro Gaussiano

 Utiliza a função gaussiana para o cálculo dos coeficientes da máscara

$$G(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$$



| Máscara | (sigma = 1) |
|---------|-------------|
|---------|-------------|

|                 | 1 | 4  | 7  | 4  | 1 |
|-----------------|---|----|----|----|---|
|                 | 4 | 16 | 26 | 16 | 4 |
| <u>1</u><br>273 | 7 | 26 | 41 | 26 | 7 |
|                 | 4 | 16 | 26 | 16 | 4 |
|                 | 1 | 4  | 7  | 4  | 1 |

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

# Filtros de Suavização

#### Gerando a máscara do filtro Gaussiano

result ~=

# Filtros de Suavização

- □ Filtro de mediana
  - Mediana: valor que ocupa a posição central de um conjunto
  - Trata-se de um filtro não linear: não é feita a convolução de uma máscara
  - A intensidade de cada pixel é substituída pela mediana das intensidades na vizinhança daquele pixel.
    - Ex: o ponto de valor 51 é um ruído:

# Filtros de Suavização

□ Filtro de mediana



Original

Filtro de média 3x3

Filtro de mediana 3x3

- Também chamados de filtros passa-alta
  - O realce (sharpening) tem como objetivo destacar as transições de intensidade na imagem
  - Utiliza um tipo de máscara que tende a realçar as diferenças de níveis de cinza na imagem





- Analogias
  - □ Filtro de média (suavização)⇔ Integração
  - Realce ⇔ Derivação
- As derivadas de uma função digital são definidas em termos de diferenças entre os pixels

- Derivadas são proporcionais ao grau de descontinuidade na imagem
  - Enfatizam as regiões de bordas e os ruídos
  - Não enfatizam regiões constantes ou com variações de intensidade suaves
- Filtros
  - Laplaciano
  - Unsharp masking e highboost filtering
  - Derivativos

- □ Filtro Laplaciano
  - □ Utiliza derivadas de segunda ordem
    - Resposta mais acentuada a detalhes finos como pontos isolados e linhas

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- É um filtro isotrópico
  - A resposta é independente da direção da descontinuidade na imagem em que o filtro é aplicado (invariante à rotação);

- Máscaras para o filtro Laplaciano
  - Centro negativo: remove bordas exteriores
  - Centro positivo: remove bordas interiores

|   | 0  | 1  | 0  | 1  | 1  | 1  |
|---|----|----|----|----|----|----|
|   | 1  | -4 | 1  | 1  | -8 | 1  |
|   | 0  | 1  | 0  | 1  | 1  | 1  |
| ) | 0  | -1 | 0  | -1 | -1 | -1 |
|   | -1 | 4  | -1 | -1 | 8  | -1 |
|   | 0  | -1 | 0  | -1 | -1 | -1 |

- □ Filtro Laplaciano
  - Realça bordas ou descontinuidades na imagem, porém ameniza regiões com nível de cinza constante





- □ Note que o fundo da imagem foi "perdido"
  - O fundo pode ser "reconstruído", preservando as descontinuidades, somando a imagem Laplaciana à imagem original

$$g(x, y) = f(x, y) + c[\nabla^2 f(x, y)]$$

- □ c é uma constante
  - c = -1 se o centro da mascara é negativo
  - c = 1, caso contrário

## Filtros de Realce

"Recuperando" o fundo da imagem

$$g(x, y) = f(x, y) + c[\nabla^2 f(x, y)]$$



- Como o filtro Laplaciano é linear, existem máscaras que já combinam as duas operações
  - □ Realce + reconstrução do fundo da imagem

| 0  | -1 | 0  |
|----|----|----|
| -1 | 5  | -1 |
| 0  | -1 | 0  |

| -1 | -1 | -1 |
|----|----|----|
| -1 | 9  | -1 |
| -1 | -1 | -1 |

- Um processo para aumentar a nitidez das imagens consiste em subtrair uma versão não nítida (suavizada) de uma imagem da imagem original
- Passos
  - Borrar a imagem original
  - Subtrair a imagem borrada da original a diferença resultante é chamada de máscara
  - □ Adicionar a *máscara* à imagem original

- Unsharp masking (máscara de nitidez) e filtragem highboost
  - $\Box$  Seja s(x,y) uma suavização da imagem f(x,y)

$$g_{mask}(x, y) = f(x, y) - s(x, y)$$
  
 $g(x, y) = f(x, y) + g_{mask}(x, y)$ 

- Generalizando
  - □ k = 1 → unsharp masking
  - □ *K* > 1 → highboost filtering (filtragem alto-reforço)
  - □ K < 1 → atenua a contribuição da máscara de nitidez

$$g_{mask}(x, y) = f(x, y) - s(x, y)$$
$$g(x, y) = f(x, y) + k.g_{mask}(x, y)$$

Exemplo unidimensional para entender o



## Filtros de Realce

Unsharp masking e filtragem highboost







Unsharp masking e filtragem highboost

Resultado usando unsharp mask



Resultado usando filtragem highboost (k=2)



- □ São filtros derivativos
  - Utilizam derivadas de primeira ordem
  - Utilizam a magnitude do gradiente
- Gradiente
  - Vetor que indica a direção de maior variação de uma função

$$\nabla f \equiv \operatorname{grad}(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

- Magnitude
  - Comprimento do vetor gradiente
  - A magnitude do vetor gradiente de  $\nabla f$ ( ), denotado por M(x,y) é dado por

$$M(x, y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

- M(x,y) indica, no ponto (x,y), a taxa de mudança na direção do vetor gradiente
  - A imagem gradiente tem o mesmo tamanho que a imagem original

- Observações
  - As componentes do vetor gradiente são derivadas e portanto são operadores lineares
  - A magnitude não é linear por causa da exponenciação e da radiciação
  - As derivadas parciais não são invariantes à rotação (isotrópicas), mas a magnitude do gradiente é

 Em algumas implementações é apropriado obter o gradiente de f como:

$$M(x, y) \approx |g_x| + |g_y|$$

- Esta representação preserva as mudanças relativas na intensidade, mas a propriedade isotrópica é perdida, de uma maneira geral
  - As máscaras mais populares para aproximar o gradiente são isotrópicas em rotações múltiplas de 90º

- Cálculo da derivada para funções discretas
  - Devemos construir máscaras
  - Convolução
- Máscaras Propostas na literatura
  - Operador gradiente cruzado de Roberts
    - Ou, detector de Bordas de Roberts
  - Operador de Prewitt
    - Ou, detector de Bordas de Prewitt
  - Operador de Sobel
    - Ou, detector de Bordas de Sobel

- Operador gradiente-cruzado de Roberts
  - Máscaras

$$h_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad h_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Gradiente

$$|\nabla f(x, y)| \approx \sqrt{(f * h_1)^2 + (f * h_2)^2}$$

## Detectores de Bordas

Operador gradiente-cruzado de Roberts





- Operador de Prewitt
  - Máscaras

$$h_1 = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Gradiente

$$|\nabla f(x, y)| \approx \sqrt{(f * h_1)^2 + (f * h_2)^2}$$

## Detectores de Bordas

Operador de Prewitt





- Operador de Sobel
  - Máscaras

$$h_1 = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

■ Gradiente

$$|\nabla f(x, y)| \approx \sqrt{(f * h_1)^2 + (f * h_2)^2}$$

## Detectores de Bordas

Operador de Sobel









