

it is observed that the impurity states take up 1/3rd of the bond gap

Use have the fermi level at the mid bond of band gap - at Eg

end we are shifting this Eq

Ot equilibrium in the M-s Junction, the System must maintain Charge neutrality and herce some of the conduction e-(free e-) go to the metal side after the fermi level converts the valence e- to conduction e-when coming down.

Mose e-that leave Ef ord fill the upper positions, due to them the Ef thinks it is filled ord here Ef Gols up 1

Due to this, the femi level is restricted

Homojunction

) , (
					1 P +	Spe	75	type				
H	QC	W	il	2	Dί	5P	ed	_		LS C	2	
					Jor	J	୧ବ	u	LIB	RI	UM)
		E	.0									
			Ec									Eq.
			Erp Ev									E
		ε	0			રવ	Lu 1	JBK	?l <i>u</i>	\sim		
			Exp Ev									E F
							\					

moderately doped casa

N	9	۶ د	<u>_</u> QL	ИL	BR	lur	η

E. _____

Ec — Ec

Esp _____Efn

EQUILIBRIUM

E. _____

Ec

Esp _____Esp

Ev Ev

The heavily doped one will have a higher \overline{E} and drift current because of more band bending

In the case of Ms Justion, heavily doped -> bond bending 1 -> ET ->

drift current 1 (leasily to drift to the SC side)

L) high amount of force on e-on metal side

V

Instead of all e-passing the potential barrier from above, some "turne"
Twough barrier

Homojuncions usually dont have dongling bonds and here no impurity is lesser probability of observing fermi level pinning

\$ GaAs - 3,5 system

Us too much impurity livels

Us not ideal

		<u> </u>	MOV	'em	e	•						
		ري ر	rif	~t								
		لہ ط			^							
		لى .	tunk	M	ng.							
	7	ner	dio	le:	J	UN	ese	bi	ias			
					hs	avi	15	dop	ed			
									bord	be	din	2
								Sh			,)
								s,				
									dou	ام د د ما		•
					٠,٠		71 66	ربر ا	باری	<i>,</i> , ,	عيراد	On
	equi	libri	um									
non	27									Er		
	Ec									Ef:	2	
										E 2		
	5									Ev		
	Ex											

due to the high E the free e- so toward the ptypes' empty states

goes down

von linear characteristics

absolute Resistance = $\frac{V}{T}$

differential Resistance = du dI

for the above characteristic, we have a region where current is reducing with increase in potential

SO, we get R = du (+) dI (-)

= NGGative Differential Resistance = NDR dide

useful for emplifiers