# Klausurübungen

#### SS2009/1d)

Die Bildpunkte des nachfolgenden Bildausschnittes (8-bit-Grauwertbild) werden mit der Konstanten C=3 XOR-verknüpft. Skizzieren Sie das Histogramm des Ergebnisbildausschnitts.





## SS2009/3)

Gegeben ist ein Bild der Größe 201x 201.

Im Bild ist eine Gerade **G** abgebildet, welche die Bildränder in den folgenden Punkten schneidet:  $P_1$ =(0, 100) und  $P_2$ =(150, 200).

- a) Bestimmen Sie die Parameter A und B der Gerade G: Ax + By = 1
- b) Geben Sie die Hessesche Normalform der Gerade G an  $(r, \theta)$ .



- c) Gegeben ist ein Punkt P=(150, 150) neben der Gerade G. Geben Sie die Hessesche Normalform (r', θ') einer zu G parallelen Gerade an, welche durch den Punkt P verläuft.
   Hinweis: Welche Gemeinsamkeit haben parallele Geraden in der Hesseschen Normalform?
- d) Wie groß ist der Abstand d des Punktes **P** von der Geraden **G**. <u>Hinweis</u>: Mit dem Ergebnis aus c) sehr einfach bestimmbar.

### WS2009/2)

Die Linsenverzeichnungen eines Bildes sollen korrigiert werden.





Hierzu wird das Bildkoordinatensystem so umnormiert, dass der Ursprung in der Bildmitte liegt, und die Koordinatenwerte im Zahlenbereich [-1, +1] liegen (s. Bild).



Die Verzeichnung wird beschrieben durch die folgenden Gleichungen: (Index **k**: korrigiert, Index **v**: verzeichnet)

$$x_{v} = x_{k} \cdot (1 + a_{1}r_{k}^{2} + a_{2}r_{k}^{4}) \qquad \text{mit} \quad r_{k} = \sqrt{x_{k}^{2} + y_{k}^{2}}$$
$$y_{v} = y_{k} \cdot (1 + b_{1}r_{k}^{2} + b_{2}r_{k}^{4})$$

Die Parameter a<sub>1</sub> und a<sub>2</sub> sollen berechnet werden, so dass die angegebenen korrigierten Punkte auf die folgenden verzeichneten Punkte abgebildet werden:

| Nr. |                        | korrigierter Punkt    | $r^2$ | $r^4$      |
|-----|------------------------|-----------------------|-------|------------|
|     | (Index v: verzeichnet) | (Index k: korrigiert) | ' k   | <b>'</b> k |
| 1   | (0.55, 0.52)           | (0.50, 0.50)          |       |            |
| 2   | (1.20, 0.27)           | (1.00, 0.25)          |       |            |

**Anm**.: Die Parameter  $\underline{b_1}$  und  $\underline{b_2}$  müssen nicht berechnet werden.

## WS2009/7)

Ein Formularleser benötigt ein Modul, mit dem die Orientierung der gescannten <u>horizontalen</u> Formularlinien bestimmt werden kann.

Dies soll mit Hilfe der Houghtransformation erfolgen.

Das Dokument kann bis zu +/-10° verkippt auf dem Scanner aufgelegt worden sein.

Die Bildauflösung beträgt 1200x800 Pixel.

Die Winkelauflösung im Houghraum soll 0.5° betragen.



ScanBild

a) Welcher Bereich des Houghraumes muss berechnet werden.

$$r \in [$$
 , ]

$$\Theta \in [$$
 , ]

b) Geben Sie den auf die Aufgabenstellung adaptierten Hough-Algorithmus an.

for y=0 ..... maxcol-1 do // für alle Bildpunkte  
for x=0 ..... maxrow-1 do 
$$g[x,y]= Invertiere(ScanBild[x,y]) // Invertiere Bildpunkte if  $g[x,y] > K$ antenschwelle then$$

endif

endfor

#### endfor

Kippwinkel = sucheMaximalwinkelImHoughraum(A)

## SS2009/7)

Gegeben ist das folgende Kohonennetz:

Neuron d

Neuron b

Neuron a

Die Gewichtsvektoren der Neuronen a...d haben die folgenden Werte:



Der Eingangsvektor hat den Wert:  $\vec{X} = (0.8, 0.7)$ 

- a) Welches Neuron ist das Gewinnerneuron
- b) Welchen Gewichtsvektor hat das Gewinnerneuron nach einem Trainingsschritt?  $\eta = 0.5$   $\sigma = 1$
- c) Welchen Gewichtsvektor hat das Neuron c nach einem Trainingsschritt?

## SS2011/6)

Mit Hilfe von radialen Basisfunktionen soll eine Linsenverzeichnungskorrektur realisiert werden. Der Funktionsapproximator soll für jede Bildposition (x,y) einen Korrekturwert  $(\Delta x, \Delta y)$  ausgeben. Fünf Stützpunkte sind gegeben:

| Bildposit | ion           | Korrekturwert |
|-----------|---------------|---------------|
| (30, 20)  | $\rightarrow$ | (-10, -10)    |
| (90, 20)  | $\rightarrow$ | (+9, -11)     |
| (60, 50)  | $\rightarrow$ | ( -1, +2)     |
| (30, 80)  | $\rightarrow$ | (-12, +8)     |
| (90, 80)  | $\rightarrow$ | ( +7, +12)    |

Geben Sie die Approximationsfunktionen  $\Delta x = f_1(x,y)$  und  $\Delta y = f_2(x,y)$  an  $(\sigma=1)$ .



#### WS2011/5)

Der Klassifikator einer automatischen Fischsortieranlage soll mit Hilfe von Fuzzy-Logic realisiert werden.

Zur Unterscheidung der unterschiedlichen Fischtypen werden die Merkmale "Länge" und "Helligkeit" des Fisches verwendet



Die Zugehörigkeitsfunktionen der Merkmale sind gegeben:

Helligkeit (0...10)



Länge (14....22 cm)



Die Zugehörigkeit ZG zu einer Fischklasse wird durch folgende Ausgangsgrößen beschrieben:

*klein* = 0, *mittel* =0.5, *hoch*=1.0

Für die Klasse "Lachs" gelten die folgenden Regeln:

```
(R1) WENN Helligkeit = niedrig UND Länge = klein DANN ZG_{Lachs} = hoch (R2) WENN Helligkeit = niedrig UND Länge = gross DANN ZG_{Lachs} = hoch (R3) WENN Helligkeit = hoch UND Länge = klein DANN ZG_{Lachs} = mittel (R4) WENN Helligkeit = hoch UND Länge = gross DANN ZG_{Lachs} = klein
```

Methodenfestlegung; Eingangsaggregation: Minimum,

Ausgangsaggregation: Maximum, Defuzzyfizierung: Singelton.

Der Merkmalsvektor (Helligkeit, Länge) habe den Wert (5, 17.5cm).

- a) Geben Sie die Erfüllungsgrade  $\mu_{Hn}$ ,  $\mu_{Hh}$ ,  $\mu_{Lk}$ ,  $\mu_{Lg}$  der Zugehörigkeitsfunktionen an.
- b) Welche Regeln sind erfüllt?
- c) Wie sind der Erfüllungsgrade  $\varepsilon_{nk}$ ,  $\varepsilon_{ng}$ ,  $\varepsilon_{hk}$ ,  $\varepsilon_{hg}$  der Regeln?
- d) Geben Sie die Erfüllungsgrade der Ausgangsgrößen  $\alpha_k$  ,  $\alpha_m$  ,  $\alpha_g$  an.
- e) Welchen Wert β gibt der Klassifikator für die Klasse "Lachs" aus?

#### Anmerkungen zu den Indizes:

**H**=Helligkeit, **L**=Länge, **n**=niedrig, **h**=hoch, **k**=klein, **g**=groß, **m**=mittel

## WS2012/5)

Gegeben ist die folgende Bildtransformation  $(x,y) \rightarrow (u,v)$ :

$$u = \frac{ax + 4y - 5}{x + by + 1} \tag{1}$$

Die folgenden korrespondierenden Bildkoordinatenpaare sind gegeben:

$$v = \frac{2x + cy + 4}{3x + dy + 1}$$
 (2)

| X | y | u | V |
|---|---|---|---|
| 1 | 1 | 2 | 0 |
| 2 | 1 | 1 | 1 |
| 1 | 2 | 1 | 4 |

Bestimmen Sie die Parameter a und b mit Hilfe der Ausgleichsrechnung. Verwenden Sie zur Lösung des Gleichungssystems die Determinantenmethode.

#### WS2012/9)

In einem Bild sollen kollineare (auf einer Gerade liegende) Punkte gefunden werden. Die Steigung der gesuchten Geraden liegt im Bereich **m=+/-1**.

Es soll <u>eine Variante</u> der Houghtransformation verwendet werden, die <u>nicht auf der Hesseschen</u> Normalform basiert (also den Parametern r und  $\theta$ ), sondern auf der Geradengleichung y=mx+b (also den Parametern m und b).

Das zu untersuchende Bild hat die Größe (100, 100).

- a) In welchem Bereich kann der Parameter b liegen?
- b) Skizzieren Sie die Spuren, die durch die markierte Bildpunkte (0, 50) und (50, 50) im Parameterraum erzeugt werden.
- c) Geben Sie den Hough-Algorithmus dieser Variante an.

