KARL: Fast Kernel Aggregation Queries

Tsz Nam Chan^{1,2}, Man Lung Yiu², and Leong Hou U³

¹The University of Hong Kong, ²Hong Kong Polytechnic University, ³University of Macau

¹tnchan2@hku.hk, ²{cstnchan,csmlyiu}@comp.polyu.edu.hk and ³ryanlhu@umac.mo

What is Kernel Aggregation Queries?

Kernel Aggregation Function

$$\mathcal{F}_P(\mathbf{q}) = \sum_{\mathbf{p_i} \in P} w_i \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

Type of weighting	Used in model	
Type I: identical, positive w_i (most specific)	Varnal dansity	
(most specific)	Kerner density	
Type II: positive w_i	1-class SVM	
(subsuming Type I)		
Type III: no restriction on w_i	2-class SVM	
(subsuming Types I, II)	2-Class 5 V IVI	

Approximate Kernel Aggregation Query (ε -KAQ)

- Input: query vector \mathbf{q} , dataset P, relative error ε
- Output: value \hat{F}

Threshold Kernel Aggregation Query (τ -KAQ)

- Input: query vector \mathbf{q} , dataset P, threshold τ
- Output: 1 (if $\mathcal{F}_P(\mathbf{q}) \ge \tau$) or -1 (if $\mathcal{F}_P(\mathbf{q}) < \tau$)

Applications of Kernel Aggregation Queries

Kernel Density Estimation

Black dots (Crimes)

- Aggravated assault
- Robbery
- Commercial burglary
- Motor vehicle theft Goal:
- Crime rates prediction

Kernel Support Vector Machine Classification

State-of-the-art Method and its Weakness

0.8

0.6

0.4

How to speed up?

$\mathcal{F}_P(\mathbf{q}) = \sum w \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$ $UB(\mathbf{q})$ $O(|P| \times d)$ time $LB(\mathbf{q})$ $LB(\mathbf{q}) \le \mathcal{F}_P(\mathbf{q}) \le UB(\mathbf{q})$

Much smaller than $O(|P| \times d)$ time

0.8

0.6

0.4

0.2

0.0

2.0

0.2 existing bound: $exp(-x_{max})$ 0.0 0.5 1.0 1.5

function

$LB_R(\mathbf{q}) = w \cdot R. \operatorname{count} \cdot \exp(-\gamma \cdot maxdist(\mathbf{q}, R)^2)$ X_{max}

Our techniques

0.8 the tangent line (at x_{max}): 0.6 $E^L(x) = m_l x + c_l$ 0.4 function function exp(-x)exp(-x)0.2 optimized tangent line (at t). existing bound: $E^L(x)=m_lx+c_l$ $exp(-x_{max})$

0.5

2.0

0.0

 $\mathcal{FL}_P(\mathbf{q}, Lin_{m,c}) = \sum w(m(\gamma dist(\mathbf{q}, \mathbf{p_i})^2) + c)$ $= wm\gamma(|P|||\mathbf{q}||^2 - 2\mathbf{q} \cdot \mathbf{a_P} + b_P) + wc|P|$ O(d) O(d)where $\mathbf{a}_P = \sum_{\mathbf{p}_i \in P} \mathbf{p}_i$ and $b_P = \sum_{\mathbf{p}_i \in P} ||\mathbf{p}_i||^2$

1.0

0.5

1.0

1.5

Experimental Results

Too loose

Type	Datasets	SCAN	LIBSVM	Scikit	SOTA	KARL
Ι-ε	miniboone	36.1	n/a	36	16.5	301
	home	15.2	n/a	11.9	36.2	187
	susy	2.02	n/a	1.17	0.77	13.2
Ι-τ	miniboone	36.1	34	n/a	102	510
	home	15.2	14.1	n/a	93.2	258
	susy	2.02	1.86	n/a	3.58	83.4
II-τ	nsl-kdd	283	481	n/a	748	20668
	kdd99	260	520	n/a	1269	11324
	covtype	158	462	n/a	448	6022
III- $ au$	ijcnn1	903	1170	n/a	1119	826928
	a9a	162	610	n/a	546	6885
	covtype-b	13	38.4	n/a	33.9	274

