Fig. 1

Fig. 2

a. Me $_2$ SO $_4$, KOH, Bu $_4$ N $^+$ HSO $_4$, THF, 78%; b. H $_2$, Pd/C , 99%; c. MeOH, SOCI $_2$ 95%; d. Boc $_2$ O, Et $_3$ N, CH $_2$ CI $_2$, 85%; e. NaBH $_4$, LiCl, THF/EtOH,85%; f. SO $_3$.Pyr complex, DMSO, Et $_3$ N, CH $_2$ CI $_2$ g. Na(AcO) $_3$ BH, AcOH, CH $_2$ CI $_2$, 88%; h. HCl in dioxane, 90%; i. pyruvic acid BOP, NMM, CH $_2$ CI $_2$, 70%; j. LiOH.H $_2$ O, THF/H $_2$ O

Fig. 3

43

a. Li_2CO_3 , BnBr, DMF, 85%; b. MeI, NaHMDS, CH_2CI_2 78%; c. TFA/CH $_2CI_2$, 90% d. Na(AcO) $_3$ BH, AcOH, CH $_2CI_2$, 88%; e. HCl in dioxane, 90%; f. pyruvic acid, BOP, NMM, CH $_2CI_2$, 70%; g. H $_2$, Pd/C, 99%; h. didemnin macrocycle salt, DIEA, HATU, CH $_2CI_2$, 72%

12

Fig. 4

a. Li_2CO_3 , BnBr, DMF, 85%; b. Mel, NaHMDS, CH_2Cl_2 78%; c. HCl in dioxane, 98% d. Na(AcO)₃BH, AcOH, CH₂Cl₂, 88%; e. HCl in dioxane, 98%; f. lactic acid, BOP, NMM, CH₂Cl₂,61%; g. H₂, Pd/C; h. didemnin macrocycle salt, DIEA, HATU, CH₂Cl₂, 72%

72a

Fig. 5

a. EtOH, SOCl₂, 95%; b.Boc₂O, Et₃N, CH $_2$ Cl₂, 75%; c. MsCl, pyr.,CH $_2$ Cl₂, 86%; d. Se₂Ph₂, NaBH₄, EtOH, 86%; e.Pyr., H $_2$ O₂, CH $_2$ Cl₂, 82%; f. LiOH.H $_2$ O, THF/H $_2$ O, 95%; g. *N*-Me-D-Leucine methyl ester, BOP, NMM, CH $_2$ Cl $_2$, 75%; h. HCl.dioxane; i. DB macrocycle salt, DIEA, HATU, CH $_2$ Cl $_2$, 72%; j. HCl gas; k. NaHCO $_3$, ethyl acetate

Fig. 6

Fig. 7

Fig. 8