Ordered Pairs and Cartesian Products

Recorp

a
$$\leq b$$

Totervals: $[a,b]$, (a,b) , $[a,b)$, $(a,b]$

$$[c,\infty)$$
, (c,∞) , $(-\infty,c)$, $(-\infty,c]$, $(-\infty,\infty)$

If $a=b$, then
$$[a,b] = [a,a] = \{a\}$$

$$(a,b) = [a,b] = (a,b] = \emptyset$$

• A a set of sets
$$[1] A = [a,a] = \{a\}$$

$$[1] A = [a,a] = \{a\}$$

 "Finer points"

a &= (0 f2,33). Ust and Ost are undefined, because I is not a set of sits.

· P(A) is the set of all subsets of A.

script? Set This is an example of a set of sets.

Example Let A = 1, 23.

$$P(A) = \left\{ \emptyset, \left\{ 1 \right\}, \left\{ 2 \right\}, \left\{ 1, 2 \right\} \right\}$$

$$\# of elem. of $P(A) = \mathbb{Z}^{\# of elem. of A}$$$

•
$$UP(A) = \emptyset \cup \{1\} \cup \{2\} \cup \{1,2\} = \{1,2\} = A$$

$$\cdot \cap P(A) = \emptyset \cap \{i\} \cap \{2\} \cap \{i,2\} = \emptyset$$

In general, for a set S, When
$$S=\emptyset$$
, $P(\emptyset)=\emptyset$ }

 $VP(S)=S$ and $P(S)=\emptyset$

Ordered Pairs

Ordered Pairs

cf) Sets:
$$\{1,3\} = \{3,1\}$$

 $\{1,1\} = \{1\}$

We write (a, b) for the ordered pair whose first entry is a and whose second entry is b. Unlike sets, the order by which the entries are listed does matter.

Theorem 1 (Fundamental Property of Ordered Pairs)

Let a and b be any objects. We have (a, b) = (a', b') if and only if a = a' and b = b'.

Example.

- \bullet (1,1) = (1,1)
- $(3,8) \neq (8,3)$

Note Proof of (€) is toivial.

Assuming a=a' and b=b', it follows immediately that (a,b) = (a',b')

by substituting equals with equals.

Notes on Ordered Pairs

$$\{a, b\} = \{b, a\} \times \{a\}, \{b\}\} = \{b\}, \{a\}\} \times \{a\}, \{b\}\} = \{b\}, \{a\}\} \times \{a\}$$

The proof of the seemingly obvious statement in the theorem relies on a $(a, b) = \{b, a\}$ careful definition of the ordered pair (a, b).

Definition 2 (Ordered Pairs as Sets; Kuratowski)

Let a and b be any objects. The ordered pair (a, b) is the set $\{\{a\}, \{a, b\}\}$.

Notes on Ordered Pairs (cont')

• The ordered triple (a,b,c) can be defined as ((a,b),c). The analogue of the fundamental property of ordered pairs holds for ordered triples. Namely,

$$(a, b, c) = (a', b', c')$$
 iff $a = a'$, $b = b'$, and $c = c'$.

- The ordered quadruple (a,b,c,d) can be defined as ((a,b,c),d). We have (a,b,c,d)=(a',b',c',d') iff a=a',b=b',c=c', and d=d'.
- Continuing in the same fashion, the ordered n-tuple (a_1, a_2, \ldots, a_n) can be defined for each natural number $n \ge 2$. The fundamental property of ordered n-tuple states

$$(a_1, a_2, \dots, a_n) = (a'_1, a'_2, \dots, a'_n)$$
 iff for each $j \in \{1, 2, \dots, n\}, a_j = a'_j$.

Sketch of froof (Fund. Prop. of Ordered Pairs)

(a,b) = (a',b')

(b')

(b')

That
$$\overline{a}$$
, \overline{a} , \overline{a} , \overline{b} , \overline{a} , \overline{b} , \overline{a} , \overline{b} , \overline{a}

(b')

(b)

Assume \overline{a} and \overline{b} = \overline{b}

(b)

That \overline{a} , \overline{a} , \overline{a} , \overline{b} , \overline{a} = \overline{a}

(b)

(a,b) = (a',b')

Cartesian Products

Cartesian Products

Definition 3 (Cartesian Products)

Let A and B be sets. Then the <u>Cartesian product of A and B</u> (denoted $A \times B$) is the set of all ordered pairs (x,y) such that $x \in A$ and $y \in B$; in other words,

$$A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$$

Example.

- For a set A, the Cartesian product of A with itself, $A \times A$, is also denoted A^2
- $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, the Cartesian product of \mathbb{R} with itself. This is the coordinate plane in analytical geometry.
- $[1,4] \times [2,3]$ is a rectangle in \mathbb{R}^2 . Specifically, it is the set

$$\{(x,y): 1\leqslant x\leqslant 4 \text{ and } 2\leqslant y\leqslant 3\}.$$

Cartesian Products (cont')

Example 4

Let $A = \{1, 3\}$ and $B = \{2, 4, 6\}$. Find $A \times B$.

$$A \times B = \{ (x,y) : x \in A \text{ and } y \in B \}$$

$$= \{ (1,2), (1,4), (1,6), (3,2), (3,4), (3,6) \}$$

Cartesian Products of More Than Two Sets

The Cartesian product of three sets A, B, and C (denoted $A \times B \times C$) is defined in a similar way, namely,

$$A \times B \times C = \{(x, y, z) : x \in A, y \in B, \text{ and } z \in C\}.$$

In general:

Definition 5 (Cartesian Product of *n* Sets)

Let $n \in \mathbb{N}$ such that $n \geqslant 2$ and let A_1, \ldots, A_n be sets. Then the *Cartesian product of* A_1, A_2, \ldots, A_n (denoted $A_1 \times A_2 \times \cdots A_n$) is the set of all ordered n-tuples (x_1, x_2, \ldots, x_n) such that $x_1 \in A_1, x_2 \in A_2, \ldots, x_n \in A_n$; in other words,

$$A_1\times A_2\times \cdots \times A_n=\{(x_1,x_2,\ldots,x_n): \text{for each } j\in\{1,2,\ldots,n\}, \, x_j\in A_j\}.$$

Cartesian Products of More Than Two Sets (cont')

Example 6

Let $A = \{0, 1\}$. Find $A^3 = A \times A \times A$.