Verificación Formal - Tarea 1

Ciro Iván García López

Octubre 2020

1. Árbol Binario.

Definición 1. Se define una lista (arreglo) inductivamente de la siguiente manera:

- \blacksquare Existe una lista vacía notada por NL.
- Si $x \in \mathbb{N}$ y L es una lista, entonces [x, L] es una lista. Para una lista de esta forma, se llamará a x la cabeza de la lista y a L la cola.

Ejemplo 1. La lista [1,2,3] está representada por $[1\ [2\ [3\ NL]]]$.

Definición 2. Se define un árbol binario de manera inductiva por:

- \blacksquare Existe un árbol vacío notado por NA.
- Si $e \in \mathbb{N}$ y AI, AD son árboles binarios, entonces A = (e, AI, AD) es un árbol binario. Al elemento e se le llamará raíz de A.

Ejemplo 2. A = (0 (1 (3 NA NA) NA) (2 NA NA)) representa el siguiente árbol:

Definición 3. Se define la concatenación de dos listas L_1, L_2 como la operación que pega al final de la lista L_1 los elementos de la lista L_2 . Se notará por $L_1 + L_2$.

Definición 4. Aplanamiento de un árbol binario. Sea A un árbol binario, entonces:

$$Aplan(A) = \begin{cases} NL & \text{Si } A = NA \\ [e] + +Aplan(AI) + +Aplan(AD) & \text{Si } A = (e, AI, AD) \end{cases}$$

Observe que Aplan es una función de los árboles binarios a las listas

Lema 1. Sea L una lista tal que $L = L_1 + +L_2$ para un par de listas no vacías L_1, L_2 . $x \in L$ si y solo si $x \in L_1$ o $x \in L_2$.

Demostración. Dado que $L = L_1 + L_2$, los elementos de L son distribuidos entre L_1 y L_2 por lo que un elemento aparece en L si y solo si aparece en L_1 o en L_2 .

Definición 5. Se llama altura de un árbol a la longitud de la trayectoria más larga en el árbol desde la raíz.

Teorema 1. Dado un árbol $A, x \in A$ si y solo si $x \in Aplan(A)$.

Demostración. Se procede a demostrar la afirmación por inducción sobre la altura del árbol. Para el caso en que la altura es cero, entonces A = NA y se sigue la afirmación por vacuidad.

Suponga que para todos los árboles con altura menor a n se cumple la afirmación y sea A = (e, AI, AD) un árbol con altura n. Luego hay dos casos a considerar:

- Si x = e entonces por la definición de aplanamiento se sigue el resultado, pues en este caso x es la cabeza de Aplan(A).
- Si $x \neq e$ entonces de la estructura del árbol y la hipótesis de inducción, se da alguno de los siguientes casos,

- $x \in AI$ si y solo si $x \in Aplan(AI)$
- $x \in AD$ si y solo si $x \in Aplan(AD)$

y del lema 1 se sigue el resultado.

2. Ordenes 1 y 2.

Definición 6. Se define la relación binaria \leq_1 sobre \mathbb{N} de la siguiente manera:

$$U_0 = \{(n, m) \in \mathbb{N} \times \mathbb{N} : n = m\}$$

$$U_1 = \{(n, m + 1) \in \mathbb{N} \times \mathbb{N} : (n, m) \in U_0\}$$

$$\vdots$$

$$U_{n+1} = \{(n, m + 1) \in \mathbb{N} \times \mathbb{N} : (n, m) \in U_n\}$$

$$\vdots$$

$$\leq_1 = \bigcup_{n \in \mathbb{N}} U_n$$

Además se notará $n \leq_1 m$ si y solo si existe $k \in \mathbb{N}$ tal que $(n, m) \in U_k$, sin pérdida de generalidad siempre se puede tomar k mínimo. También se dirá que $n <_1 m$ si y solo si $n + 1 \leq_1 m$.

Definición 7. Se define la relación binaria $<_2$ sobre $\mathbb N$ de la siguiente manera:

$$V_{0} = \{(n, m) \in \mathbb{N} \times \mathbb{N} : n = 0 \text{ y } m \neq 0\}$$

$$V_{1} = \{(n + 1, m + 1) \in \mathbb{N} \times \mathbb{N} : (n, m) \in V_{0}\}$$

$$\vdots$$

$$V_{n+1} = \{(n + 1, m + 1) \in \mathbb{N} \times \mathbb{N} : (n, m) \in V_{n}\}$$

$$\vdots$$

$$<_{2} = \bigcup_{n \in \mathbb{N}} V_{n}$$

Se dirá que $n <_2 m$ si y solo si existe $l \in \mathbb{N}$ tal que $(n,m) \in V_l$, sin pérdida de generalidad siempre se puede tomar l mínimo. Además se notara $n \leq_2 m$ si y solo si n = m o $n <_2 m$.

Observe que las definiciones dadas son equivalentes a las definiciones por reglas, para el caso del orden 1 se cumple que $n \leq_1 m$ hay dos posibles casos dados por las reglas:

- $n \leq_1 n$ por la regla o1refl, en este caso $(n,n) \in U_0$.
- Inductivamente, si $n \leq_1 m+1$ por la regla o1s, entonces $(n, m+1) \in U_{k+1}$ con $k \in \mathbb{N}$ que está dada por la hipótesis $n \leq_1 m$.

Observar que el orden 2 corresponde con las reglas, es análogo.

Teorema 2. Dados $n, m \in \mathbb{N}$ tales que $(n, m) \in U_k$, existen $k', s \in \mathbb{N}$ y una sucesión (n, n), ..., (n, n + s) tales que:

- k = k' + s.
- m = n + s
- $\bullet (n,n) \in U_{k'}, (n,n+1) \in U_{k'+1}, ..., (n,m) \in U_k.$

Demostración. La prueba se realiza por inducción sobre k. En el caso que $(n, m) \in U_0$ entonces se tiene que n = m y se puede tomar entonces k' = k y s = 0.

Suponga ahora que el resultado se cumple para $k \neq 0$ y sea $(n,m) \in U_{k+1}$, luego por la definición de U_{k+1} se sigue que $(n,m-1) \in U_k$ y por lo tanto existen k'_0, s_0 y la sucesión (n,n), ..., (n,n+s) que cumplen las condiciones. Es así que si $k' = k'_0, s = s_0 + 1$ y la sucesión (n,n), ..., (n,n+s), (n,n+s+1) se cumple que:

- $k+1=k'+s=k'_0+s_0+1=k+1$.
- $m = n + s = n + s_0 + 1 = m 1 + 1.$
- $(n,n) \in U_{k'}, (n,n+1) \in U_{k'+1}, ..., (n,m-1) \in U_k, (n,m) \in U_{k+1}.$

Concluyendo que la afirmación es cierta para todo k por inducción y en consecuencia para toda pareja $n \leq_1 m$.

Lema 2. Para $n, m, p \in \mathbb{N}$, si $n \leq_1 m$ y $m \leq_1 p$, entonces $n \leq_1 p$.

Demostración. Sea $k_m, k_p \in \mathbb{N}$ dados por el teorema 2 para $n \leq_1 m$ y $m \leq_1 p$ respectivamente. Luego $(n, p) \in U_{k_m + k_p}$.

Lema 3. No existe $n \in \mathbb{N}$ tal que $n <_2 n$.

Demostración. Suponga que existe un $n \in \mathbb{N}$ (se puede suponer mínimo) tal que $n <_2 n$, luego existe un $l \in \mathbb{N}$ tal que $(n, n) \in V_l$, luego hay dos casos según sea l:

- l=0, en este caso necesariamente n=0 y $n\neq 0$ lo cual es contradictorio.
- $l \neq 0$ en este caso $(n-1, n-1) \in V_{l-1}$. Lo cual contradice que n era mínimo.

En ambos casos se contradice que existe l, por contradicción se sigue el resultado.

Teorema 3. Para todos $n, m \in \mathbb{N}$, $n \leq_1 m$ si y solo si $n \leq_2 m$.

Demostración. Sean $n, m \in \mathbb{N}$ y suponga que $n \leq_1 m$, luego existe un $k \in \mathbb{N}$ tal que $(n, m) \in U_k$. Si k = 0 entonces n = m y por lo tanto $n \leq_2 m$ por definición del orden 2. En el caso que $k \neq 0$ entonces del teorema 2 existe $s \in \mathbb{N}$ tal que m = n + s, además como $m \neq n$ entonces $s \neq 0$ y por lo tanto $(0, s) \in V_0$ y en consecuencia $(n, m) \in V_n$.

En la otra dirección, suponga que $n \leq_2 m$. Entonces hay dos casos, si n=m entonces se tiene que $(n,m) \in U_0$ y por lo tanto $n \leq_1 m$. En el segundo caso $n <_2 m$ y por lo tanto existe $l \in \mathbb{N}$ tal que $(n,m) \in V_l$, si l=0 entonces se cumple que $(n,m)=(0,l) \in U_l$ y por lo tanto $n \leq_1 m$. En el caso que $l \neq 0$ entonces se puede suponer que l=n y por lo tanto tomando k=m-l entonces se tiene que $(n,m) \in U_k$ pues $(n,n) \in U_0$.

Teorema 4. Dados $n, m \in \mathbb{N}$, $n <_1 m$ si y solo si $n <_2 m$.

Demostración. Suponga que $n <_1 m$, luego la definición indica que $n + 1 \le_1 m$, por el teorema anterior existe un $l \in \mathbb{N}$ tal que $(n + 1, m) \in V_l$ además se cumple que $l \ne 0$ ya que $n + 1 \ne 0$, por lo que entonces $(n, m) \in V_{l-1}$, i.e. $n <_2 m$.

En la otra dirección suponga que $n <_2 m$, luego existe $l \in \mathbb{N}$ tal que $(n, m) \in V_l$ y hay dos casos:

- Si l=0, entonces $(n,m) \in U_m$ ya que $(0,0) \in U_0$.
- Si $l \neq 0$, entonces se puede suponer sin perdida de generalidad que l = n y que existe $p \neq 0$ tal que $(0, p) \in V_0$ y p + l = m. Entonces $(n, m) \in U_p$, ya que n + p = l + p = m y $(n, n) \in U_0$.

3. Propiedades del orden.

Para esta parte se ha preferido el orden uno en las pruebas.

Lema 4. Dados $n, m \in \mathbb{N}$ tales que $n, m \neq 0$ y $n \leq_1 m$ entonces $n - 1 \leq_1 m - 1$.

Demostración. Del hecho que $n \leq_1 m$ y la definición de \leq_1 se tiene que existe un $k \in \mathbb{N}$ tal que $(n,m) \in U_k$, luego hay dos casos:

- k = 0, en este caso como $n, m \neq 0$, entonces n 1 = m 1 y por lo tanto $(n 1, m 1) \in U_0$, es decir que $n 1 \leq_1 m 1$.
- $k \neq 0$, en este caso usando el teorema 2 que $(n-1,n-1) \in U_{k'}$ y por lo tanto por la definición de $\leq_1 (n-1,m-1) \in U_k$. Concluyendo que $n-1 \leq_1 m-1$.

Lema 5. No existe $n \in \mathbb{N}$ tal que $n + 1 \leq_1 0$.

Demostración. Suponga que existe $n \in \mathbb{N}$ tal que $n+1 \leq_1 0$. Por la definición de \leq_1 existe un $k \in \mathbb{N}$ tal que $(n+1,0) \in U_k$. Pero, para $k \neq 0$ se cumple que los elementos de U_k tiene segunda componente no cero, y como $1 \neq 0$ tampoco se da el caso que k = 0, lo cual contradice que (n+1,0) está en algún U_k . Por reducción al absurdo se sigue el resultado.

Teorema 5. Para todos $n, m \in \mathbb{N}$, si $n \leq_1 m$ entonces min(n, m) = n.

Demostración. Se procede por inducción sobre n, en el caso que n=0 entonces min(n,m)=n=0 y entonces se sigue la afirmación para cualquier m. Suponga ahora cierta la afirmación para n y tome $m \in \mathbb{N}$ tal que $n+1 \le_1 m$. Así de la definición de \le_1 existe $k \in \mathbb{N}$ tal que $(n+1,m) \in U_k$ y hay dos casos:

- k=0, por lo que entonces $n+1=m=\min(n,m)$ y en este caso se cumple la afirmación.
- $k \neq 0$, en este caso se tiene que necesariamente $m \neq 0$ y por lo tanto min(n+1, m) = 1 + min(n, m-1) = 1 + n = n + 1, ya que $n \leq_1 m 1$ por el lema 4.

Así, por inducción matemática se sigue la afirmación.

Teorema 6. Para todos $n, m \in \mathbb{N}$, si $m \leq_1 n$ entonces min(n, m) = m.

Demostración. La prueba es análoga al teorema anterior, al aplicar la conmutatividad en el mínimo¹. \Box

Teorema 7. Para todos $n, m \in \mathbb{N}$ se tiene que $n \leq_1 n + m$.

Demostración. Se procede por inducción sobre m. Para el caso que m=0 entonces se cumple que n+0=n y por lo tanto $n \leq_1 n+m$ ya que $(n,n) \in U_0$. Suponga ahora que $m \neq 0$ y que para m se cumple la afirmación, por lo tanto existe $k \in \mathbb{N}$ tal que $(n,n+m) \in U_k$, pero entonces $(n,n+m+1) \in U_{k+1}$ y por lo tanto se puede concluir que $n \leq_1 n+m+1$. Por el principio de inducción se sigue el teorema.

Teorema 8. Para todos $n, m \in \mathbb{N}$, se cumple que $n \leq_1 m + n$.

Demostraci'on. La prueba es análoga a la del teorema anterior, dado que la suma es conmutativa.

Teorema 9. Para $n, m, p \in \mathbb{N}$, si $n \leq_1 m$ entonces $n + p \leq_1 m + p$.

Demostración. Se hace la demostración por inducción sobre p. Para el caso p=0 por hipótesis $n \leq_1 m$. Suponga ahora que el resultado se cumple para p, por lo que entonces existe un $k \in \mathbb{N}$ tal que $(n+p,m+p) \in U_k$ y por lo tanto son dos los casos a considerar:

■ k=0, se cumple que n+p=m+p y por lo tanto n+p+1=m+p+1. Concluyendo entones que $n+p+1 \le_1 m+p+1$.

¹No sucede lo mismo en Coq, ya que el sistema no sabe que el mínimo conmuta.

■ $k \neq 0$, usando el teorema 2 se cumple que existe $k' \in \mathbb{N}$ tal que $(n+p+1,n+p+1) \in U_{k'}$ y por lo tanto $(n+p+1,m+p+1) \in U_k$

Por inducción sobre p se sigue el resultado.

Teorema 10. Para todos $n, m \in \mathbb{N}$, se tiene que $n \leq_1 m$ o $m \leq_1 n$.

Demostración. La prueba se hace por inducción sobre n. Para el caso que n=0 entonces se cumple que $(0,0)\in U_0$ y para cualquier otro m no cero, $(0,m)\in U_m$. Por lo que entonces $0\leq_1 m$ para cualquier $m\in\mathbb{N}$. Suponga que la afirmación es cierta para n, por lo que entonces dado cualquier $m\in\mathbb{N}$ se cumple que $n\leq_1 m$ o $m\leq_1 n$ y hay dos casos:

- En el primer caso, suponga que $(n,m) \in U_k$ para cierto $k \in \mathbb{N}$. Entonces si k = 0 se tiene que $(m,n+1) \in U_1$ y en el caso que $k \neq 0$ entonces por el teorema 2 se cumple que existe $k' \in \mathbb{N}$ tal que $(n+1,n+1) \in U_{k'}$ y $(n+1,m) \in U_{k-1}$. Por lo que se da que $n \leq_1 m$ o $m \leq_1 n$.
- En el segundo caso se tiene que $(m,n) \in U_k$ para algún $k \in \mathbb{N}$ y por lo tanto $(m,n+1) \in U_{k+1}$.

Por lo que se concluye para n+1 que se tiene alguno de los dos casos y por inducción se sigue el resultado.

Teorema 11. Para todos $n, m \in \mathbb{N}$, $n \leq_1 m$ si y solo si existe $p \in \mathbb{N}$ tal que m = n + p.

Demostración. La suficiencia es consecuencia inmediata del teorema 2. Para la necesidad, basta con observar que si existe $p \in \mathbb{N}$ tal que m = n + p, entonces $(n, m) \in U_p$ pues $(n, n) \in U_0$.

4. Función take.

Definición 8. Sea L una lista, se define la función longitud φ de la siguiente manera:

$$\varphi(L) = \begin{cases} 0 & \text{Si } L = NL \\ 1 + \varphi(L_0) & \text{Si } L = [x, L_0] \end{cases}$$

Definición 9. take Sea L una lista y $n \in \mathbb{N}$, luego:

$$take(n, L) = \begin{cases} L & \text{Si } \varphi(L) \leq n \\ [x_1, ..., x_n] & \text{Si } n < \varphi(L) \text{ y } L = [x_1, ..., x_n, ...] \end{cases}$$

es decir, take toma los primeros n elementos de L.

Lema 6. Sea $n \in \mathbb{N}$ y $L = [x, L_0]$ una lista no vacía. Luego take $(n + 1, L) = [x] + take(n, L_0)$.

Demostración. Por la definición de la función take se cumple que al tomar n+1 elementos siempre se tomará la cabeza de la lista, por lo que tomar n+1 elementos de L es lo mismo que tomar la cabeza y n elementos de L_0 .

Teorema 12. Para toda lista L y $n, m \in \mathbb{N}$, take(n, take(m, L)) = take(min(n, m), L).

Demostración. La prueba se realiza por doble inducción sobre n y m. Para comenzar considere el caso en que n = 0 o m = 0. En este caso take(m,L) = NL o take(n,take(m,L)) = NL, a su vez en cualquiera de los dos casos se cumple que min(n,m) = 0 y take(min(n,m),L) = NL, por lo que se cumple el caso base.

Suponga ahora que la afirmación es cierta para los naturales menores a n > 0 y los naturales menores a m > 0. Se tienen dos casos según sea L:

■ En caso que L = NL, entonces take(m, L) = NL y take(n, take(m, L)) = NL = take(min(n, m), L) por la definición de take.

■ Suponga ahora que $L=[x,L_0]$, por el lema 6 se cumple que $take(m,L)=[x]+take(m-1,L_0)$ y por lo tanto $take(n,take(m,L))=[x]+take(n-1,take(m-1,L_0))$. Por otro lado como min(n,m)>0 pues n,m>0, min(n-1,m-1)+1=min(n,m) y es así que $take(min(n,m),L)=take(min(n-1,m-1)+1,L)=[x]+take(min(n-1,m-1),L_0)$. Por la hipótesis de inducción se cumple que $take(min(n-1,m-1),L_0)=take(m-1,take(n-1,L_0))$. Concluyendo la igualdad para este caso.

Concluyendo a la afirmación para n,m y por lo tanto por inducción matemática para todos $n,m\in\mathbb{N}.$