Discovering social circles in a directed social network using node, structure and edge features

Group 4: Joyce Yang, Muneeb Shahid

Outline

- Introduction
- Problem Definition
- Proposed Method
- Experiments
- Conclusion and Future Work

Introduction

- Social Circles Discovery Problem
- Applications of Social Circles Discovery
- Motivation for our idea

Problem Definition

- Input: User's Signed Social Network (directed)
- Determine best number of active centers
- Discover best set of active centers
- Form social circles around each of the selected active center
- Difference with traditional community detection problem

Node-Edge K-Means Clustering

Social circle detection

- Node features
- Network structures
- Link feature

K-Means Clustering

P1: existence of link from active center to node

P2: existence of link from node to active center

P3: profile similarities

P4_1: strength of ties between active center and node

P4_2: strength of ties between node and active center

P5_1: trust level that active center have to node

P5_2: trust level that node have to active center

```
Algorithm 1: Assign social circles for each node
 Input: A chromosome consists of k active centers
           X = x_1, x_2, ... x_k, and set of users U = (V - X) to be
           clustered.
 Output: set of predicted circles \{\hat{C}_1, \hat{C}_2, ..., \hat{C}_k\}
 while U \neq \emptyset do
      pick up a node u \in U initialize: max_s = 0, AC = -1
      for i = 1 to k do
           x_i \in X
           initialize: p_1 = 0, p_2 = 0, p_3 = 0, p_{4_1} = 0, p_{4_2} = 0
                         0, p_{5_1} = 0, p_{5_2} = 0
           Compute values of p_1, p_2, p_3, p_{4_1}, p_{4_2}, p_{5_1}, p_{5_2}
            between u and the active centre x_i
           if max_s \le p_3 + p_{4_1} + p_{4_2} + p_{5_1} + p_{5_2} then max_s = p_3 + p_{4_1} + p_{4_2} + p_{5_1} + p_{5_2}
               AC = x_i
           end
      end
      if AC \neq -1 then
          Add node u in the cluster of AC
      end
 end
```

K-Means Clustering

Profile similarities

$$prof_sim(x, j) = \frac{\sum_{i=1}^{p} \delta_i(x, j)}{(p)},$$

$$\delta_i(x, j) = \frac{1}{\sqrt{\sum_{i=1}^{p} (x_i - j_i)^2}},$$

Algorithm 1: Assign social circles for each node

```
Input: A chromosome consists of k active centers
         X = x_1, x_2, ...x_k, and set of users U = (V - X) to be
         clustered.
Output: set of predicted circles \{\hat{C}_1, \hat{C}_2, ..., \hat{C}_k\}
while U \neq \emptyset do
    pick up a node u \in U initialize: max_s = 0, AC = -1
    for i = 1 to k do
         x_i \in X
         initialize: p_1 = 0, p_2 = 0, p_3 = 0, p_{4_1} = 0, p_{4_2} =
                      0, p_{5_1} = 0, p_{5_2} = 0
         Compute values of p_1, p_2, p_3, p_{4_1}, p_{4_2}, p_{5_1}, p_{5_2}
           between u and the active centre x_i
         if max_s \le p_3 + p_{4_1} + p_{4_2} + p_{5_1} + p_{5_2} then

max_s = p_3 + p_{4_1} + p_{4_2} + p_{5_1} + p_{5_2}
         end
     end
    if AC \neq -1 then
     Add node u in the cluster of AC
    end
end
```

K-Means Clustering

Strength of Ties

$$str(x, u) = \frac{1}{deg_{out}(x) + deg_{in}(u) - 1}$$

Algorithm 1: Assign social circles for each node **Input:** A chromosome consists of *k* active centers $X = x_1, x_2, ...x_k$, and set of users U = (V - X) to be clustered. Output: set of predicted circles $\{\hat{C}_1, \hat{C}_2, ..., \hat{C}_k\}$ while $U \neq \emptyset$ do pick up a node $u \in U$ initialize: $max_s = 0$, AC = -1for i = 1 to k do $x_i \in X$ initialize: $p_1 = 0$, $p_2 = 0$, $p_3 = 0$, $p_{4_1} = 0$, $p_{4_2} = 0$ $0, p_{5_1} = 0, p_{5_2} = 0$ Compute values of $p_1, p_2, p_3, p_{4_1}, p_{4_2}, p_{5_1}, p_{5_2}$ between u and the active centre x_i if $max_s \le p_3 + p_{4_1} + p_{4_2} + p_{5_1} + p_{5_2}$ then $max_s = p_3 + p_{4_1} + p_{4_2} + p_{5_1} + p_{5_2}$ end end if $AC \neq -1$ then Add node u in the cluster of AC end

Objective Functions

- deg_cen^C_k(x) and deg_cen^R_k(x) means the average connectivity coefficient of x with the members of C^[k] and R^[k] respectively.
- prof_sim_k^C(x) and prof_sim_k^R(x) means the average profile similarity of x with the members of C^[k] and R^[k] respectively.
- $str_k^C(x)$ and $str_k^R(x)$ means the average strength of ties of x with the members of $C^{[k]}$ and $R^{[k]}$ respectively.
- $trust_k^C(x)$ and $trust_k^R(x)$ means the average trust level between x and members of $C^{[k]}$ and $R^{[k]}$ respectively.

Algorithm 2: Calculate fitness value for a set of k active centers

```
Input: Two N x k matrices [x_{ij}]_{Nxk} and [\hat{C}_{ij}]_{Nxk}, N:
        number of population, k: number of circles
Output: Best possible set of k seeds x_1, x_2, ..., x_k for Ego
          network segmentation
for 1 to N do
    initialize: fitness = 0
    pick up the i^{th} row from [x_{ij}]_{Nxk} and [\hat{C}_{ij}]_{Nxk} for 1
      to k do
         initialize: ob j = 0
        Obj(j) = [deg\_cen_i^C(x_i) - deg\_cen_i^R(x_i) +
         prof\_sim_i^C(x_i) - prof\_sim_i^R(x_i) + str_i^C(x_i) -
         str_i^R(x_i) + trust_i^C(x_i) - trust_i^R(x_i)
    end
    fitness = f(X_i) = \frac{\sum_{j=1}^{k} Obj(j)}{L}
```

Objective Functions

Core area: members of the circle

 Residual area: the immediate neighbor of any of the member of the circle and provide interaction information with members of the circle.

Objective Functions

Degree Centrality

$$deg_cen_x^c = \frac{(\# of \ Link_{in}^c(x) + \# of \ Link_{out}^c(x))}{(n-1)}$$

Algorithm 2: Calculate fitness value for a set of k active centers

```
Input: Two N x k matrices [x_{ij}]_{Nxk} and [\hat{C}_{ij}]_{Nxk}, N:
         number of population, k: number of circles
Output: Best possible set of k seeds x_1, x_2, ..., x_k for Ego
           network segmentation
for 1 to N do
    initialize: fitness = 0
    pick up the i^{th} row from [x_{ij}]_{Nxk} and [\hat{C}_{ij}]_{Nxk} for 1
      to k do
         initialize: obj = 0
         Obj(j) = [deg\_cen_i^C(x_i) - deg\_cen_i^R(x_i) +
         prof\_sim_j^C(x_i) - prof\_sim_j^R(x_i) + str_j^C(x_i) - str_i^R(x_i) + trust_i^C(x_i) - trust_i^R(x_i)]
    end
    fitness = f(X_i) = \frac{\sum_{j=1}^{k} Obj(j)}{k}
end
```

Find best objective value

Crossover and Mutation

Figure 1: Example of Crossover

Algorithm 3: Find the best set of active centers for social circles discovery (ideal)

Consider population matrix $pop(X) = [X_i]_{Nx1} = [x_{ij}]_{Nxk}$ and fitness matrix $F = [f(X_i)]_{1xN}$ and generate an augmented matrix $Q = [X_i|f(X_i)]_{Nx(k+1)}$

Then sort matrix Q in descending order of fitness value $f(X_i)$ while changes in highest fitness value during 10 consecutive iterations appears **do**

for 1 to N do

1. Randomly select two parent chromosomes with relative high fitness value. For example, from top 10 of the descending *Q*.

2.[CROSSOVER]:

Generate a random (integer) number $randc_pos$ from the range [1,k], and exchange the alleles of chromosomes X_1 and X_2 at random position($randc_pos$) to produce two new chromosomes X_1^{new} and X_2^{new}

compare the fitness of X_1 , X_2 , X_1^{new} , X_2^{new} and feed the one with best fitness value to mutation

3.[MUTATION]:

Generate a random position $randm_pos$ in the range [1,k] and $rand_id$ in the range [1,n], then mutate the allele which is at $randm_pos$ by $rand_id$.

Compare the X^{new} 's fitness value with the Q_i 's fitness value.

 $Q_i \leftarrow X^{new}$ if X^{new} has a better fitness value end

Sort matrix Q in descending order of fitness value $f(X_i)$ again for next round.

Summary

Algorithm 1: Assign social circles for each node

```
Input: A chromosome consists of k active centers
         X = x_1, x_2, ... x_k, and set of users U = (V - X) to be
         clustered.
Output: set of predicted circles \{\hat{C}_1, \hat{C}_2, ..., \hat{C}_k\}
while U \neq \emptyset do
    pick up a node u \in U initialize: max_s = 0, AC = -1
    for i = 1 to k do
         x_i \in X
         initialize: p_1 = 0, p_2 = 0, p_3 = 0, p_{4_1} = 0, p_{4_2} =
                       0, p_{5_1} = 0, p_{5_2} = 0
         Compute values of p_1, p_2, p_3, p_{4_1}, p_{4_2}, p_{5_1}, p_{5_2}
          between u and the active centre x_i
         if max_s \le p_3 + p_{4_1} + p_{4_2} + p_{5_1} + p_{5_2} then max_s = p_3 + p_{4_1} + p_{4_2} + p_{5_1} + p_{5_2}
              AC = x_i
         end
    end
    if AC \neq -1 then
     Add node u in the cluster of AC
    end
end
```

Algorithm 2: Calculate fitness value for a set of k active centers

Input: Two N x k matrices $[x_{ij}]_{Nxk}$ and $[\hat{C}_{ij}]_{Nxk}$, N:

```
number of population, k: number of circles

Output: Best possible set of k seeds x_1, x_2, ..., x_k for Ego network segmentation

for 1 to N do

initialize: fitness = 0

pick up the i^{th} row from [x_{ij}]_{Nxk} and [\hat{C}_{ij}]_{Nxk} for 1 to k do

initialize: obj = 0

Obj(j) = [deg\_cen_j^C(x_i) - deg\_cen_j^R(x_i) + prof\_sim_j^C(x_i) - prof\_sim_j^R(x_i) + str_j^C(x_i) - str_j^R(x_i) + trust_j^C(x_i) - trust_j^R(x_i)]

end

fitness = f(X_i) = \frac{\sum_{j=1}^k Obj(j)}{k}
```

end

Algorithm 3: Find the best set of active centers for social circles discovery (ideal)

Consider population matrix $pop(X) = [X_i]_{Nx1} = [x_{ij}]_{Nxk}$ and fitness matrix $F = [f(X_i)]_{1xN}$ and generate an augmented matrix $Q = [X_i|f(X_i)]_{Nx(k+1)}$

Then sort matrix Q in descending order of fitness value $f(X_i)$ while changes in highest fitness value during 10 consecutive iterations appears do

for 1 to N do

1. Randomly select two parent chromosomes with relative high fitness value. For example, from top 10 of the descending *Q*.

2.[CROSSOVER]:

Generate a random (integer) number $randc_pos$ from the range [1,k], and exchange the alleles of chromosomes X_1 and X_2 at random position($randc_pos$) to produce two new chromosomes X_1^{new} and X_2^{new}

compare the fitness of X_1 , X_2 , X_1^{new} , X_2^{new} and feed the one with best fitness value to mutation

3.[MUTATION]:

Generate a random position *randm_pos* in the range [1,k] and *rand_id* in the range [1,n], then mutate the allele which is at *randm_pos* by *rand_id*.

Compare the X^{new} 's fitness value with the Q_i 's fitness value.

 $Q_i \leftarrow X^{new}$ if X^{new} has a better fitness value end

Sort matrix Q in descending order of fitness value $f(X_i)$ again for next round.

Optimization

 Parallel computing through multiprocessing package in python

Calculating fitness value for new populations

Algorithm 3: Find the best set of active centers for social circles discovery (ideal)

Consider population matrix $pop(X) = [X_i]_{Nx1} = [x_{ij}]_{Nxk}$ and fitness matrix $F = [f(X_i)]_{1xN}$ and generate an augmented matrix $Q = [X_i|f(X_i)]_{Nx(k+1)}$

Then sort matrix Q in descending order of fitness value $f(X_i)$ while changes in highest fitness value during 10 consecutive iterations appears **do**

for 1 to N do

1. Randomly select two parent chromosomes with relative high fitness value. For example, from top 10 of the descending *Q*.

2.[CROSSOVER]:

Generate a random (integer) number $randc_pos$ from the range [1,k], and exchange the alleles of chromosomes X_1 and X_2 at random position($randc_pos$) to produce two new chromosomes X_1^{new} and X_2^{new}

compare the fitness of X_1 , X_2 , X_1^{new} , X_2^{new} and feed the one with best fitness value to mutation

3.[MUTATION]:

Generate a random position $randm_pos$ in the range [1,k] and $rand_id$ in the range [1,n], then mutate the allele which is at $randm_pos$ by $rand_id$.

Compare the X^{new} 's fitness value with the Q_i 's fitness value.

 $Q_i \leftarrow X^{new}$ if X^{new} has a better fitness value end

Sort matrix Q in descending order of fitness value $f(X_i)$ again for next round.

Experiments: Slashdot Dataset

Table 1: Dataset Statistics

Property	Value
No. of Nodes	82140
No. of Edges	549202
Avg. Clustering co-efficient	0.0588
Diameter	12
No. of features for each node	100

Configurable Parameters Choosen

• Recall:

- K number of active centers = 7
- **N** number of populations = 20
- Relatively high fitness value in Algorithm = 10

Net Object Values of properties

Table 2: Net values of the properties

Property	No Trust	Trust
Net Degree Centrality for Social Circle	1.35	1.20
Net Degree Centrality for Residual	0.22	1.17
Net Strength of Ties for Social Circle	0.20	0.05
Net Strength of Ties for Residual	0.0008	0.02
Net Profile Similarity for Social Circle	0.06	0.06
Net Profile Similarity for Residual	0.009	0.05
Net Objective Value (overall difference)	1.38	0.07

Silhouette Coefficient Index

Table 3: Silhouette Coefficient index scores

Property	No Trust	Trust
Silhouette Coefficient Score	-0.20	-0.20

Davies Bouldin Index

Table 4: Davies Bouldin index scores

Property	No Trust	Trust
Davies Bouldin Score	6.80	6.03

Calinski Harabasz Index

Table 5: Calinski Harabasz index scores

Property	No Trust	Trust
Calinski Harabasz Score	36.6	57.02

Conclusion and Future work

- Lessons learned
- Future Work
 - Social behavior theory, such as "enemy of my enemy is my friend". Triad relationship
 - Determining different weightages for the features based on the given application
 - Graph summarization of the social circles for generating labels

Thanks! Questions?

Page of all resources

Table 2: Net values of the properties

Property	No Trust	Trust
Net Degree Centrality for Social Circle	1.35	1.20
Net Degree Centrality for Residual	0.22	1.17
Net Strength of Ties for Social Circle	0.20	0.05
Net Strength of Ties for Residual	0.0008	0.02
Net Profile Similarity for Social Circle	0.06	0.06
Net Profile Similarity for Residual	0.009	0.05
Net Objective Value (overall difference)	1.38	0.07

Property	No Trust	Trust
Davies Bouldin Score	6.80	6.03

Table 3: Silhouette Coefficient index scores

 $R_{ij} = \frac{s_i - s_j}{d_{ii}}$

Property	No Trust	Trust
Silhouette Coefficient Score	-0.20	-0.20

$$DB = \frac{1}{K} \sum_{i=1}^{K} max(R_{ij})$$

$$s = \frac{tr(B_K)}{tr(W_K)} \frac{n_E - K}{k - 1}$$

$$W_K = \sum_{q=1}^K \sum_{x \in C_q} (x - c_q)(x - c_q)^T$$

$$B_K = \sum_{q=1}^{K} (n_q)(c_q - c_E)(c_q - c_E)^T$$

Table 5: Calinski Harabasz index scores

Property	No Trust	Trust
Calinski Harabasz Score	36.6	57.02