CS280 Spring 2025 Assignment 2 Part A

Convolutional Neural Network March 16, 2025

Name: Chen Xuanxin

Student ID: 2024233125

1. CNNs (10 points)

Answer the following questions about convolutional neural networks.

- 1. Consider a convolutional layer with 10 filters of size 6×6 , a stride of 2 and a padding of 1. Suppose the input of the layer has shape $64 \times 64 \times 10$ (with spatial size 64×64 and 10 channels). What is the output shape? What is the number of parameters of the layer (consider the weights and bias)?
- 2. Suppose there are two convolutional layers, each of which has a filter of size 5×5 , a stride of 1, a padding of 0. Is it possible to interpret the result of applying the two convolutional layers successively to an input as the result of applying a single convolutional layer to the input? If so, what is the filter size of the single convolutional layer?
- 3. Does pooling layers cause loss of information in the inputs? If so, why are pooling layers still used in CNNs (please give at least two reasons)?

Answer 1

1. The output shape is given by the formula:

$$\mbox{Output size} = \frac{\mbox{Input size} - \mbox{Filter size} + 2 \times \mbox{Padding}}{\mbox{Stride}} + 1$$

Thus, we have:

$$\frac{64 - 6 + 2 \times 1}{2} + 1 = \frac{60}{2} + 1 = 31$$

The output shape is $31 \times 31 \times 10$.

Number of parameters (weights + biases):

Each filter: $6 \times 6 \times 10 = 360$ parameters.

Total weights for 10 filters: $360 \times 10 = 3600$ parameters.

Biases for each filter: 10 parameters.

Therefore, total parameters: 3600 + 10 = 3610.

2. Yes, it is possible. Two successive convolutional layers, each with filter size 5×5 , stride 1 and padding 0, can be represented as a single convolutional layer. The equivalent single convolution filter size will be:

$$(5+5-1) \times (5+5-1) = 9 \times 9$$

Thus, the equivalent single filter size is 9×9 .

- **3.** Yes, pooling layers do cause loss of information because they aggregate local spatial information. However, pooling layers are still widely used because:
- (1) Pooling reduces the spatial dimension of feature maps, significantly decreasing computational cost and memory usage.
- (2) Pooling layers provide a form of spatial invariance, making the CNN less sensitive to small translations or variations in input.

2. Backpropagation of CNNs (10 points)

Let $f_w(z) = z * w$ be the forward model for a 2D convolutional layer with a single input channel and a single output channel, where w represents a 3×3 convolution kernel with no padding and a stride of 1, and z represents a single-channel 128×128 image.

The following two functions must be implemented in order to implement both the forward pass and backward pass for this single layer:

$$x = F(z, w),$$
$$(g_z, g_w) = G(\epsilon).$$

The figures below illustrate the functions graphically:

Answer the following questions:

- 1. Explain what the two functions F(z, w) and $G(\epsilon)$ do. For each function, explain why it is needed.
- 2. What are the shapes of each of the following: x, ϵ , g_z , g_w ?
- 3. What is the computational cost (the number of multiplications and additions) of the convolutional layer in forward pass? What is the computational cost (the number of multiplications and additions) of g_w in backward pass?

Answer 2

1. My answer is as follows:

Function F(z,w) is the forward convolution function that convolves input image z with kernel w to produce the output feature map x. It is necessary because it computes the output activations for forward propagation.

Function $G(\epsilon)$ is the backward convolution (gradient) function. It computes gradients of the loss with respect to inputs z (denoted as g_z) and weights w (denoted as g_w), given the upstream gradient ϵ . It is needed to perform the backward propagation (training) to update parameters using gradients.

2. Shapes are as follows:

- (1) x: (126, 126), since 128 3 + 1 = 126.
- (2) ϵ : Same as x, thus (126, 126).
- (3) g_z : Same shape as original input z, thus (128, 128).
- (4) g_w : Same shape as convolution kernel w, thus (3,3).

3. My answer is as follows:

• Forward pass computational cost:

Output dimension: 126×126 , each position involves a 3×3 convolution operation, thus:

Multiplications per output pixel: $3 \times 3 = 9$ Additions per output pixel: 9 - 1 = 8

Total multiplications: $126 \times 126 \times 9 = 142,884$ Total additions: $126 \times 126 \times 8 = 126,112$

• Backward pass computational cost for g_w :

Gradient g_w has size 3×3 . Each parameter of g_w is computed by convolution of input z (size 128×128) and gradient ϵ (size 126×126):

Total multiplications: same as forward pass, $126 \times 126 \times 9 = 142,884$ Total additions: $126 \times 126 \times 8 = 126,112$