特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年7 月8 日 (08.07.2004)

PCT

(10) 国際公開番号 WO 2004/057419 A2

(51) 国際特許分類7:

G03C

(21) 国際出願番号:

PCT/JP2003/016179

(22) 国際出願日:

2003年12月17日(17.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-370447

2002年12月20日(20.12.2002) JP

特願 2002-370103

2002年12月20日(20.12.2002) JP 2003年1月22日(22.01.2003) ЛР 特願2003-13794 特願2003-24500 2003年1月31日(31.01.2003) ЛР 2003年2月4日(04.02.2003) JР 特願2003-27186 特願2003-68375 2003年3月13日(13.03.2003) Ъ JP 2003年7月15日(15.07.2003) 特願2003-274842

(71) 出願人 (米国を除く全ての指定国について): 三菱レイヨン株式会社 (MITSUBISHI RAYON CO.,LTD.) [JP/JP]; 〒108-8506 東京都港区港南一丁目 6番4 1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 伊藤 弘一 (ITO,Hirokazu) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛 川通四丁目 1番地の 2 三菱レイヨン株式会社 豊 橋事業所内 Aichi (JP). 杉浦 将 (SUGIURA,Masaru) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番地の2 三菱レイヨン株式会社 豊橋事業所内 Aichi (JP). 原田 陽子 (HARADA,Yoko) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番地の2 三菱レイョン株式会社 豊橋事業所内 Aichi (JP). 近藤 晃史 (KONDOU,Akifumi) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番地の2 三菱レイョン株式会社 豊橋事業所内 Aichi (JP). 大和真哉 (YAMATO,Shinya) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番地の2 三菱レイョン株式会社 豊橋事業所内 Aichi (JP).

- (74) 代理人: 青木 篤、外(AOKI,Atsushi et al.); 〒105-8423 東京都港区虎ノ門 三丁目 5番 1 号 虎ノ門 3 7 森ビ ル 青和特許法律事務所 Tokyo (JP).
- (81) 指定国 (国内): CN, KR, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

添付公開書類:

国際調査報告書なし;報告書を受け取り次第公開される。

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: POLYESTER RESIN COMPOSITION FOR TONER AND TONER

(54) 発明の名称: トナー用ポリエステル樹脂組成物およびトナー

A resin composition for a toner which comprises (A) a linear polyester resin containing an aliphatic diol component having three to ten carbon atoms and (B) a linear polyester resin containing an aliphatic diol component having three to ten carbon atoms, which is different from said linear polyester resin (A); the resin composition for a toner which further comprises (C) a vinyl resin; and a toner comprising the resin composition for a toner as a binder resin. The toner is excellent in low temperature fixing characteristics, non-offset property, gloss characteristics and the like, and also is excellent with respect to the temperature width for the fixing thereof.

Characteristics, non-offset property, both the fixing thereof.

(57) 要約: 炭素数3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂(A)と、炭素数3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂であって該線状ポリエステル樹脂(A)とは異なる線状ポリエステル樹脂(B)とを含有し、またはさらにビニル系樹脂(C)を含有するトナー用樹脂組成物、およびこのトナー用樹脂組成物を結着樹脂として含有するトナー。低温定着性、非オフセット性、光沢性等に優れ、定着温度幅に優れたトナーを得ることができる。

明 細 書

トナー用ポリエステル樹脂組成物およびトナー

技術分野

本発明は、トナー用ポリエステル樹脂および樹脂組成物、並びにこれらを結着樹脂として含有するトナーに関する。特に、本発明は、電子写真法、静電記録法や静電印刷法等において、静電荷像または磁気潜像の現像に用いられ、低温定着性、非オフセット性、光沢性等に優れたトナーを提供するものである。

背景技術

電子写真印刷法および静電荷現像法により画像を得る方法においては、感光体上に形成された静電荷像をあらかじめ摩擦により帯電させたトナーによって現像したのち、定着が行われる。定着方式については、現像によって得られたトナー像を加圧および加熱されたローラーを用いて定着すると、電気オーブがあませる。これらのプロセスを問題なく通過するためには、トナーは、まりである必要がある。また、装置は加熱体である定着がしたが、まである。またが、ないの定着であり、次に紙を育っている。最近では、省エネ化が必須となり、というである。最近では、省エネ化が必須となり、というである。最近では、つまり低温定着性が強くたい温度で紙に定着する性能、つまり低温定着性が強くあらようになってきた。さらに、最近では、フルカラー電子システムの普及に伴い、光沢のある画像を形成することができるト

ナーが求められている。

トナー用バインダー樹脂は、上述のようなトナー特性に大きな影響を与えるものであり、ポリスチレン樹脂、スチレンアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂等が知られているが、最近では、透明性と定着性のバランスが取りやすく、かつ、透明性に優れ、フルカラートナーに好適な特性を有することから、ポリエステル樹脂が特に注目されている。

しかし、ポリエステル系樹脂をバインダー樹脂とするトナーについては、定着性を良好とするため、特開平4-12367号公報や特開昭59-128558号公報に記載されているように、モノマーによる定着性の改良が提案されているが、得られる樹脂は分子量が高く、目標とする定着性能が得られないという問題がある。

また、特開平7-。140714号公報、特開2002-2874 27号公報、特開2002-202634号公報、特開平4-31 3760号公報等に記載のように軟化温度、分子量の異なるポリエステル樹脂をブレンドすることが提案されているが、この方法では定着性と非オフセット性のバランス調整が難しいことのほか、高分子量成分とビスフェノールA誘導体成分や不飽和脂肪酸の如きモノマー成分と光沢性とのバランス調整が難しいという問題がある。

また、特開平4-362956号公報、特開平8-320593 号公報等では、非線状ポリエステルに低融点の線状ポリエステルを 混合して低温定着性を改良する試みがなされている。 さらに、特開 平10-339969号公報、特開2000-305316号公報 等では、線状ポリエステルを用いた検討がなされている。

さらに、特開平8-30027号公報には、低温定着性を良好とした樹脂が提案されているが、粉砕性とのバランスが充分でなく、長期耐刷性を目標とする耐久性が不足するという問題がある。

これらの技術等により、定着性能の改良されたトナー用樹脂が開発されてきているが、定着性能に対する市場の要求はさらに厳しくなってきており、上述の技術では、耐ブロッキング性、非オフセット性等の必要物性を保持しつつ、市場要求を満足させ得る低温定着性や光沢性を有する樹脂の開発には至っていなかった。

さらに最近では、省エネ化が必須となり、ヒートローラー方式に おいて定着部の低温化が進んできた。そのため、トナーにはより低 い温度で紙に定着する性能、つまり低温定着性が強く求められるよ うになってきている。また、より広いワーキングレンジが要求され ることから、トナーの定着温度幅としても、より広い幅のものが要 求されるようになってきている。

例えば、特開平4-362956号公報では、非線状ポリエステルと線状ポリエステルとを併用した結着樹脂が検討されている。具体的には、軟化温度が110~116℃の非線状ポリエステルと軟化点が85~102℃の線状ポリエステルとを併用した、定着温度幅が50℃以上であるトナーが開示されている。しかしながら、特開平4-362956号公報に記載されているトナーは、定着温度幅は広いものの、最低定着温度が150℃以上と高く、低温定着性がまだ十分でない。

特開平4-313760号公報では、軟化点の異なる2種の線状ポリエステルを併用した結着樹脂が検討されている。具体的には、軟化点が112~123℃である高軟化点の線状ポリエステルと軟化点が89~92℃である低軟化点の線状ポリエステルとを併用した、定着温度幅が30℃以上であるトナーが開示されている。しかしながら、特開平4-313760号公報に記載されているトナーは、最低定着温度が150℃以上と高く、低温定着性がまだ十分でない。

従って、最近の複写機の高速化、小型化、省エネルギー化に鑑みれば、更なる低温定着性および定着温度幅の拡幅が望まれる。

発明の開示

したがって、本発明の目的は、上記の如き従来技術の問題点を解決し、低温定着性、非オフセット性、光沢性等に優れ、また定着温度幅に優れたトナーを与えることのできるトナー用ポリエステル樹脂および樹脂組成物、並びにそれらを用いたトナーを提供することにある。

すなわち、本発明に係る第1の発明は、炭素数3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂(A)と、炭素数3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂であって該線状ポリエステル樹脂(A)とは異なる線状ポリエステル樹脂(B)とを含有し、各樹脂の全酸成分を100モル部とした場合の(線状ポリエステル樹脂(B)中における炭素数3~10の脂肪族ジオール成分のモル部)/(線状ポリエステル樹脂(A)中における炭素数3~10の脂肪族ジオール成分のモル部)が0.5~10の範囲にあるトナー用樹脂組成物、並びに該トナー用樹脂組成物を結着樹脂として含有するトナーである。

また、本発明に係る第2の発明は、炭素数3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂(A)と、炭素数3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂であって該線状ポリエステル樹脂(A)とは異なる線状ポリエステル樹脂(B)と、ビニル系樹脂(C)とを含有し、各樹脂の全酸成分を100モル部とした場合の(線状ポリエステル樹脂(B)中における炭素数3~10の脂肪族ジオール成分のモル部)/(線状ポリエステル樹脂(A)中における炭素数3~10の脂肪族ジオール成分のモル部)が

0.5~10の範囲にあるトナー用樹脂組成物、並びに該トナー用樹脂組成物を結着樹脂として含有するトナーである。

また、本発明に係る第3の発明は、炭素数3~10の脂肪族ジオール成分を全カルボン酸成分100モル部に対して10~60モル部含有し、ガラス転移温度が50~75℃の範囲にあり、質量平均分子量Mwが25,000~100,000範囲にあり、融点を持たない樹脂であり、軟化温度が150~220℃の範囲にあり、酸価が10mgKOH/g以下であるトナー用線状ポリエステル樹脂(a1)、並びに該トナー用線状ポリエステル樹脂を結着樹脂として含有するトナーである。

また、本発明に係る第4の発明は、ジカルボン酸成分とジオール成分とからなる線状ポリエステル樹脂であって、芳香族ジカルボン酸を全カルボン酸成分中50モル%以上、および炭素数4~8の脂肪族ジオールを全カルボン酸成分100モル部に対して60モル部以上含有し、ガラス転移温度が40~70℃の範囲にあり、質量平均分子量Mwが4,000~10,000の範囲にあり、融点を持たない樹脂であり、軟化温度が90~120℃の範囲にあるトナー用線状ポリエステル樹脂を結着樹脂として含有するトナーである。

また、本発明に係る第5の発明は、結着樹脂および着色剤を含有するトナーであって、結着樹脂の主成分がポリエステル樹脂からなり、このポリエステル樹脂はポリエステル樹脂(X)とポリエステル樹脂(Y)とを含み、ポリエステル樹脂(X)とポリエステル樹脂(Y)の配合比率が5/95~95/5(質量比)であり、ポリエステル樹脂(X)は質量平均分子量Mwが25,000~100,000で軟化温度が150~220℃の線状ポリエステル樹脂であり、またポリエステル樹脂(Y)は質量平均分子量Mwが2,0

00~10,000の線状ポリエステル樹脂であり、最低定着温度が130℃以下で定着温度幅が40℃以上であることを特徴とするトナー、並びに該トナーにおいて用いられる結着樹脂である。

本発明によれば、低温定着性、非オフセット性、光沢性等に優れ 、定着温度幅に優れたトナーを与えることのできるトナー用ポリエ ステル樹脂および樹脂組成物を得ることができ、このトナー用樹脂 組成物を用いることにより、低温定着性、非オフセット性、光沢性 に優れ、定着温度幅に優れたトナーを得ることができる。

発明を実施するための最良の形態

はじめに、第1~第4の発明について説明する。

本発明に係る第1~第4の発明において用いる線状ポリエステル 樹脂(A)および線状ポリエステル樹脂(B)には、炭素数3~1 0の脂肪族ジオール成分が必須成分として含有される。

この成分を含有することによって、得られるトナーの紙への定着性を優れたものとすることができる。炭素数 3 ~ 1 0 の脂肪族ジオール成分は、必要に応じて適宜選択して使用することができるが、なかでもネオペンチルグリコール、プロピレングリコールおよびシクロヘキサンジメタノールから選ばれる少なくとも 1 種の成分であるのが好ましい。これらの成分は、それぞれ単独で用いられてもよく、2 種以上の併用であってもよい。

線状ポリエステル樹脂(A)と線状ポリエステル樹脂(B)における、炭素数3~10の脂肪族ジオール成分の含有量は、各樹脂の全酸成分を100モル部とした場合に、(線状ポリエステル樹脂(B)中における炭素数3~10の脂肪族ジオール成分のモル部)/(線状ポリエステル樹脂(A)中における炭素数3~10の脂肪族ジオール成分のモル部)が0.5~10の範囲にあることが必要で

ある。これは、この値が 0.5未満の場合には、トナーの非オフセット性が不良となる傾向にあるためである。好ましくは 0.9以上であり、さらに好ましくは 1以上である。また、 10を超える場合にも、トナーの非オフセット性が不良となる傾向にあるためである。好ましくは 7以下であり、さらに好ましくは 6以下である。

線状ポリエステル樹脂(A)は、全酸成分を100モル部とした場合に、炭素数3~10の脂肪族ジオール成分を10~60モル部の量で含有するのが好ましい。これは、この成分を10モル部以上とすることによって、トナーの定着性が良好となる傾向にあるためである。より好ましくは15モル部以上である。また、60モル部以下とすることによって、トナーの非オフセット性が良好となる傾向にあるためである。より好ましくは、55モル部以下である。

線状ポリエステル樹脂 (B) は、全酸成分を100モル部とした 場合に、炭素数3~10の脂肪族ジオール成分を55~100モル 部の量で含有するのが好ましい。これは、この成分を55モル部以 上とすることによって、トナーの定着性が良好となる傾向にあるた めである。より好ましくは60モル部以上である。また、100モ ル部以下とすることによって、トナーの非オフセット性が良好とな る傾向にあるためである。より好ましくは、95モル部以下である

線状ポリエステル樹脂(A)や線状ポリエステル樹脂(B)の構成成分として有用な他のジオール成分としては、例えば、ポリオキシエチレンー(2.0)-2,2ービス(4ーヒドロキシフェニル)プロパン、ポリオキシプロピレンー(2.0)-2,2ービス(4ーヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.2)-ポリオキシエチレンー(2.0)-2,2ービス(4ーヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)-2,2

ービス(4-ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.2) -2, 2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシプロピレンー(2.4) -2, 2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3.3) -2, 2-ビス(4-ヒドロキシフェニル)プロパン等の芳香族ジオール成分が挙げられ、これらはそれぞれ単独でまたは2 種以上の混合で使用することができる。芳香族ジオール成分は、樹脂のガラス転移温度を上げる効果があるため、これを構成成分として使用すると、得られるトナーの耐ブロッキング性が向上する傾向にある。特に、ポリオキシプロピレン単位もしくはポリオキシエチレン単位の数 n が $2.1 \le n \le 8$ であるポリオキシプロピレンに n) - 2, 2-ビス(4-ヒドロキシフェニル)プロパンおよび/または $2.0 \le n$ ≤ 3.0 であるポリオキシエチレン(n) - 2, 2-ビスにロキシフェニル)プロパンが好ましい。

一方、これらの芳香族ジオール成分は、得られるトナーの光沢性に悪影響を及ぼす可能性があるため、その使用量は、全酸成分を100モル部とした場合に、線状ポリエステル樹脂(A)では10モル部以下であるのが好ましく、線状ポリエステル樹脂(B)では50モル部以下であるのが好ましい。

さらに、有用な他のジオール成分の例としては、例えば、エチレングリコール、水添ビスフェノールAなどを挙げることができる。 これらはそれぞれ単独でまたは2種以上の混合で使用することができる。

線状ポリエステル樹脂(A)や線状ポリエステル樹脂(B)の構成成分として有用なジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸またはそれらの低級アルキルエステルなどからの成分を挙げることができる。テレフタル酸もしくはイソフタル酸

の低級アルキルエステルの具体例として、テレフタル酸ジメチル、イソフタル酸ジメチル、テレフタル酸ジエチル、イソフタル酸ジエチル、イソフタル酸ジエチル、イソフタル酸ジエチル、イソフタル酸ジブチル等を挙げることができるが、ハンドリング性およびコストの点でテレフタル酸やイソフタル酸が好ましい。これらのジカルボン酸またはその低級アルキルエステルは、それぞれ単独でまたは2種以上を組み合わせて用いることができる。

他の有用なジカルボン酸成分としては、例えば、フタル酸、セバシン酸、イソデシルコハク酸、ドデセニルコハク酸、マレイン酸、フマル酸、アジピン酸、またはそれらのモノメチル、モノエチル、ジメチルもしくはジエチルエステルまたはそれらの酸無水物からの成分が挙げることができる。これらのジカルボン酸成分は、トナーの定着性や耐ブロッキング性といった基本特性に関係するため、本発明の目的を損なわない範囲内において、要求性能に応じて適宜に使用することができる。

線状ポリエステル樹脂(A)は、軟化温度が $150\sim220$ $\mathbb C$ の範囲であるのが好ましい。これは、軟化温度を150 $\mathbb C$ 以上とすることによって、トナーの非オフセット性が良好となる傾向にあるためである。より好ましくは160 $\mathbb C$ 以上であり、さらに好ましくは170 $\mathbb C$ 以上である。また、軟化温度を220 $\mathbb C$ 以下とすることによって、トナーの定着性が良好となる傾向にあるためである。より好ましくは210 $\mathbb C$ 以下であり、さらに好ましくは200 $\mathbb C$ 以下である。

また、線状ポリエステル樹脂(A)は、ガラス転移温度(以下Tgという)が50~75℃の範囲であるのが好ましい。Tgを50 ℃以上とすることによって、トナーの耐ブロッキング性が良好となる傾向にある。より好ましくは52℃以上である。一方、Tgを7

5 ℃以下とすることによって、トナーの定着性が良好となる傾向に ある。より好ましくは73 ℃以下である。

また、線状ポリエステル樹脂(A)は、質量平均分子量Mwが25,000~100,000範囲であるのが好ましい。質量平均分子量Mwを25,000以上とすることによって、トナーの非オフセット性が良好となる傾向にある。より好ましくは29,000以上である。質量平均分子量Mwを100,000以下とすることによって、トナーの定着性が良好となる傾向にある。より好ましくは90,000以下である。

また、線状ポリエステル樹脂(A)は、融点を持たないのが好ま しい。線状ポリエステル樹脂(A)が融点を持たないことによって 、トナーの定着性や光沢性が向上する傾向にある。

また、線状ポリエステル樹脂(A)の酸価は、10mgKOH/ g以下であるのが好ましい。これによって、トナーの画像濃度が低 下しにくくなる傾向にある。

特に、炭素数 $3 \sim 1$ 0 の脂肪族ジオール成分を 1 0 ~ 6 0 モル部含有し、ガラス転移温度が 5 0 ~ 7 5 $^{\circ}$ であり、質量平均分子量 M wが 2 5, 000 ~ 1 00, 00 であり、融点を持たない線状ポリエステル樹脂(a)であることが好ましい。

さらに、炭素数 $3 \sim 1$ 0 の脂肪族ジオール成分を1 0 ~ 6 0 モル 部含有し、ガラス転移温度が5 0 ~ 7 5 $\mathbb C$ の範囲にあり、質量平均 分子量Mwが2 5 , 000 ~ 1 00,00の範囲にあり、融点を持たない樹脂であり、軟化温度が150 ~ 2 20 $\mathbb C$ の範囲にあり、酸価が10 mg KOH/g以下であるトナー用線状ポリエステル樹脂 (a1) であることが最も好ましい。

線状ポリエステル樹脂 (a1)を用いることによって、定着面が 平滑で、定着性の良好なトナーを提供できる樹脂を得ることができ

る。

線状ポリエステル樹脂 (a 1) における炭素数 3~10の脂肪族ジオールとしては、特に制限されないが、ネオペンチルグリコール、プロピレングリコールおよびシクロヘキサンジメタノールから選ばれる少なくとも1種であることが好ましい。

線状ポリエステル樹脂 (a 1) の軟化温度は、非オフセット性の面から160℃以上がより好ましく、170℃以上がさらに好ましい。また、線状ポリエステル樹脂 (a 1) の軟化温度は、定着性の面から210℃以下がより好ましく、200℃以下がさらに好ましい。

また、線状ポリエステル樹脂 (a 1) のガラス転移温度は、耐ブロッキング性の面から52℃以上であることが好ましく、定着性の面から73℃以下であることが好ましい。

また、線状ポリエステル樹脂(a1)の質量平均分子量Mwは、 非オフセット性の面から29,000以上であることがより好まし く、定着性の面から90,000以下であることがより好ましい。

また、線状ポリエステル樹脂(a 1)の酸価は、画像濃度安定性の面から8mgKOH/g以下であることが特に好ましい。

線状ポリエステル樹脂(B)は、軟化温度を $70 \sim 110 \sim 0$ 節 囲とするのが好ましい。軟化温度を $70 \sim 0$ 以上とすることによって、トナーの非オフセット性が良好となる傾向にある。より好ましくは $80 \sim 0$ 以上であり、さらに好ましくは $90 \sim 0$ 以上である。軟化温度を $110 \sim 0$ 以下とすることによって、トナーの定着性が良好となる傾向にある。より好ましくは $105 \sim 0$ 以下である。

また、線状ポリエステル樹脂(B)は、質量平均分子量Mwを2,000~10,000の範囲とするのが好ましい。質量平均分子

量Mwを2,000以上とすることによって、トナーの非オフセット性が良好となる傾向にある。より好ましくは3,000以上である。質量平均分子量Mwを10,000以下とすることによって、トナーの定着性が良好となる傾向にある。

また、線状ポリエステル樹脂 (B) は融点を持たないのが好ましい。線状ポリエステル樹脂 (B) が融点を持たないことによって、トナーの定着性や光沢性が向上する傾向にある。

線状ポリエステル樹脂(B)は、 $Tgを40\sim70$ $\mathbb C$ の範囲とするのが好ましい。Tgを40 $\mathbb C$ 以上とすることによって、トナーの耐ブロッキング性が良好となる傾向にある。より好ましくは45 $\mathbb C$ 以上である。一方、Tgを70 $\mathbb C$ 以下とすることによって、トナーの定着性が良好となる傾向にある。より好ましくは67 $\mathbb C$ 以下である。

また、線状ポリエステル樹脂(B)の酸価は、30mg KOH/g以下であるのが好ましい。これによって、トナーの画像濃度が低下しにくくなる傾向にある。より好ましくは、20mg KOH/g以下である。特に、トナー中の荷電制御剤(荷電制御樹脂)の分散性を高め、画像濃度の安定性を良好とするためには、線状ポリエステル樹脂(B)の酸価を線状ポリエステル樹脂(A)の酸価よりも高くするのが好ましい。

特に、線状ポリエステル樹脂(B)としては、炭素数 $3 \sim 10$ の脂肪族ジオール成分を $55 \sim 100$ モル部含有し、ガラス転移温度が $40 \sim 70$ $\mathbb C$ であり、質量平均分子量M W が 2 , $000 \sim 10$, 000 であり、融点を持たない線状ポリエステル樹脂(b)であることが好ましい。

さらに、線状ポリエステル樹脂(B)は、ジカルボン酸成分とジオール成分とからなる線状ポリエステル樹脂であって、芳香族ジカ

ルボン酸成分を全カルボン酸成分中50モル%以上、および炭素数4~8の脂肪族ジオールを全カルボン酸成分100モル部に対して60モル部以上含有し、ガラス転移温度が40~70℃の範囲にあり、質量平均分子量Mwが4,000~10,000範囲にあり、融点を持たない樹脂であり、軟化温度が90~120℃の範囲にある線状ポリエステル樹脂(b1)であることが最も好ましく、この場合に低温定着性が最も良好となり、この線状ポリエステル樹脂(b1)の場合には単独で用いることができ、他の線状ポリエステル樹脂(A)を併用しなくても本発明の目的を達成することができる傾向にある。

この場合、芳香族ジカルボン酸成分としては、テレフタル酸、イソフタル酸またはそれらの低級アルキルエステルなどからの成分等が挙げられる。これらの成分はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。

線状ポリエステル樹脂(b1)においては、ジカルボン酸成分として芳香族ジカルボン酸を全カルボン酸成分中50モル%以上、好ましくは90モル%以上の量で用いる。これは、芳香族ジカルボン酸成分を50モル%以上とすることにより、得られる樹脂の定着性、耐ブロッキング性等の物性バランスが良好となる傾向にあるためである。

また、炭素数 4~8の脂肪族ジオール成分を構成するジオールとしては、ネオペンチルグリコール、1,2ーブタンジオール、1,3ーブタンジオール、1,4ーブタンジオール、2,3ーブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5ーペンタンジオール等が挙げられる。なかでも、ネオペンチルグリコールは、紙との親和性が高く、低温定着性に優れる樹脂が得られるため、特に好ましい。

線状ポリエステル樹脂(b 1)で用いるジオール成分は、炭素数4~8の脂肪族ジオールを全カルボン酸成分100モル部に対して60モル部以上含有するものである。これは、炭素数が4以上の成分を60モル部以上用いることによりポリエステル樹脂の結晶化を抑制でき、透明性、光沢性に有効である傾向にあるためであり、炭素数8以下とすることにより得られる樹脂の柔軟性が増し、トナーの定着性が良好となる傾向にあるためである。炭素数4~8の脂肪族ジオールの含有量は、好ましくは70モル部以上である。

また、線状ポリエステル樹脂(b1)は、質量平均分子量(Mw)が4,000~10,000範囲である。これは、Mwを4,000以上とすることで樹脂の強度が十分となる傾向にあるためである。好ましくは、5,000以上である。また、Mwを10,00以下とすることで低温定着性が良好となる傾向にあるためである。好ましくは、8,000以下である。

また、線状ポリエステル樹脂(b 1)は、軟化温度が $90 \sim 12$ $0 \sim 0$ の範囲である。これは、軟化温度を $90 \sim 0$ 以上とすることで、トナーの耐ブロッキング性が良好となる傾向にあるためである。好ましくは、 $95 \sim 0$ 以上である。また、軟化温度を $120 \sim 0$ 以下とすることで、トナーの低温定着性が良好となる傾向にあるためである。好ましくは、 $110 \sim 0$ 以下である。

また、線状ポリエステル樹脂(b 1)は、ガラス転移温度が40~70℃の範囲である。これは、ガラス転移温度を40℃以上とすることで、トナーの耐ブロッキング性が良好となる傾向にあるためである。好ましくは、50℃以上である。また、ガラス転移温度を70℃以下とすることで、トナーの低温定着性が良好となる傾向にあるためである。好ましくは65℃以下である。

また、線状ポリエステル樹脂 (b1) は、酸価が0.5~30m

gKOH/gの範囲であることが好ましい。これは、酸価が0.5m gKOH/g未満である樹脂はその生産性が低い傾向にあるためである。より好ましくは、1 m gKOH/g以上である。また、酸価が30m gKOH/gを超えると得られるトナー画像の安定性が低下する傾向にあるためである。より好ましくは、25m gKOH/g以下である。

また、本発明においては、線状ポリエステル樹脂(A)の軟化温度が、線状ポリエステル樹脂(B)の軟化温度よりも20 \mathbb{C} 以上高いことが好ましい。これによって、トナーの非オフセット性が良好となる傾向にある。40 \mathbb{C} 以上高いことがより好ましく、50 \mathbb{C} 以上高いことがさらに好ましい。

線状ポリエステル樹脂(A)や線状ポリエステル樹脂(B)は、上述のジカルボン酸等の酸成分とジオール等のアルコール成分を、エステル化反応またはエステル交換反応、および縮合反応を経て重合することによって得ることができる。重合に際しては、例えば、チタンテトラブトキシド、ジブチルスズオキシド、酢酸スズ、酢酸亜鉛、2硫化スズ、3酸化アンチモン、2酸化ゲルマンニウム等の重合触媒を用いることができる。また、重合温度は、180~290℃の範囲とするのが好ましい。

また、ポリエステル樹脂の製造時おける重合反応の進行は、反応 系内の樹脂の分子量(粘度、軟化温度)増加に応じて上昇する、重 合容器中の攪拌翼(一定速度で回転)のトルク値から確認可能であ る。この場合は、所望する樹脂の軟化温度に対応するトルク値に達 した時を重合の終点とすることができる。

特に、線状ポリエステル樹脂 (a 1) の製造条件としては、ジカルボン酸成分とジオール成分とを250~280℃の範囲の温度、及び200~500k P a の範囲の圧力下でエステル化反応させた

後、250~300℃の範囲であるとともにエステル化反応温度よりも5℃以上高い温度、及び1kPa以下の圧力下で縮重合するのが、特に好ましい。

これは、エステル化反応温度を250℃以上とすることによって、ジカルボン酸成分とジオール成分との反応性が良好となり、未反応モノマー量を減少させることができる傾向にあるためである。より好ましくは260℃以上である。また、エステル化反応温度を280℃以下とすることによって、反応中の低沸点モノマー(ジオール成分等)の蒸発を抑制することができ、未反応モノマー量を減少させることができる傾向にあるためである。より好ましくは270℃以下である。

また、エステル化反応中の圧力を200kPa以上とすることによって、反応中の低沸点モノマーの反応系外への留出を抑制することができ、未反応モノマー量を減少させることができる傾向にあるためである。より好ましくは、250kPa以上である。一方、500kPa以下とすることによって、特にエステル化反応末期に生じる水の反応系外への留出が容易となり、ジカルボン酸成分とジオール成分との反応率を高めることができる傾向にあるためである。より好ましくは450kPa以下である。

さらに、エステル化反応に続く縮重合時における反応温度を250℃以上とすることによって、重縮合反応性が良好となり、軟化温度が高く、非オフセット性に優れたトナー用樹脂を得ることができる傾向にあるためである。より好ましくは、260℃以上である。また、縮重合時における反応温度を300℃以下とすることによって、樹脂の熱分解が抑制され、軟化温度が高く、非オフセット性に優れたトナー用樹脂を得ることができる傾向にあるためである。より好ましくは、290℃以下である。

また、縮重合時の圧力を1kPa以下とすることによって、重縮合反応性が良好となり、軟化温度が高く、非オフセット性に優れたトナー用樹脂を得ることができる傾向にあるためである。より好ましくは、0.8kPa以下である。

さらに、本発明においては、エステル化反応温度より5℃以上高い温度で、縮重合を行うのが特に好ましい。5℃以上高い温度で縮重合することで、オリゴマーや未反応成分の留出が抑制され、重縮合反応性が良好となることによって、軟化温度が高く、非オフセット性に優れたトナー用樹脂を得ることができる傾向にあるためである。より好ましくは7℃以上である。

また、重合触媒としては、アンチモン、チタン、スズ、亜鉛およびマンガンから選ばれる少なくとも一種以上の金属原子が、全酸成分に対して50~5000ppmとなる量を使用するのが好ましい。これは、金属原子が50ppm以上となる量の重合触媒を使用することによって、軟化温度が高く、非オフセット性に優れたトナー用樹脂を得ることができる傾向にあるためである。より好ましくは、80ppm以上である。また、5000ppm以下となる量を使用することによって、光沢性に優れ、着色のないトナー用樹脂を得ることができる傾向にあるためである。より好ましくは、4800ppm以下である。

本発明のトナー用樹脂組成物は、線状ポリエステル樹脂(A)を 3~50質量%含有するのが好ましく、線状ポリエステル樹脂(B))を50~97質量%含有するのが好ましい。

これは、線状ポリエステル樹脂(A)を3質量%以上とすることによって、トナーの非オフセット性が良好となる傾向にあるためである。より好ましくは5質量%以上である。一方、50質量%以下とすることによって、トナーの定着性が良好となる傾向にあるため

である。より好ましくは45質量%以下である。

また、線状ポリエステル樹脂(B)を50質量%以上とすることによって、トナーの定着性が良好となる傾向にあるためである。より好ましくは55質量%以上である。一方、97質量%以下とすることによって、トナーの非オフセット性が良好となる傾向にあるためである。より好ましくは95質量%以下である。

本発明のトナーは、上述のトナー用樹脂組成物を結着樹脂として 含有するものである。結着樹脂の80~100質量%がこのトナー 用樹脂組成物からなるのが好ましく、その他ビニル系樹脂、環状オ レフィン樹脂、エポキシ樹脂等と併用してもよい。

なかでも、特に印刷速度を低下させ、HOSオフセット性が良好となる傾向にあることから、ビニル系樹脂 (C) を併用することが好ましい。

ビニル系樹脂 (C) を併用する場合には、本発明のトナー用樹脂 組成物は、線状ポリエステル樹脂 (A) を3~50質量%、線状ポリエステル樹脂 (B) を10~96質量%、ビニル系樹脂 (C) を1~40質量%含有するのが好ましい。

ビニル系樹脂 (C) としては、スチレン系樹脂、(メタ)アクリル系樹脂、スチレン-アクリル系樹脂等を挙げることができるが、

なかでも非オフセット性と帯電性を良好とする点から、スチレン - アクリル系樹脂、 (メタ) アクリル系系樹脂が好ましい。

ードデシルスチレン、pーフェニルスチレン、3、4ージシクロスチレン等のスチレン系単量体や、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ローブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2ーエチルへキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル系単量体や、(メタ)アクリル酸、ケイヒ酸等の不飽和モノカルボン酸や、マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸系単量体や、マレイン酸モノメチル、マレイン酸モノエチル、フマル酸モノブチル、フマル酸モノメチル、フマル酸モノエステル系単量体や、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチル、マレイン酸ジエチル、フマル酸ジブチル、フマル酸ジエチル、フマル酸ジブチル、フマル酸ジエステル系単量体を挙げることができる。

これらは、1種類以上を適宜選択して使用することができるが、 帯電性と粉砕性の点からスチレン系単量体が好ましく、なかでもス チレンが好ましい。特に、スチレンのビニル系樹脂 (C) における 使用比率の上限を85質量%とすることによって、トナーの画像性 をさらに向上させることができる。

また、定着性の点から、(メタ) アクリル酸メチル、(メタ) アクリル酸 n ーブチル、(メタ) アクリル酸 2 ーエチルヘキシル、(メタ) アクリル酸ステアリル等の(メタ) アクリル酸アルキルエステル系単量体が好ましい。

ビニル系樹脂 (C) は、実質的にゲル分を有さないのが好ましい。このゲル分はTHF (テトラヒドロフラン) 不溶分のことを意味する。ビニル系樹脂 (C) がゲル分を有さないことによって、トナ

.一の定着性が良好となる傾向にあるためである。

また、ビニル系樹脂(C)は、軟化温度が $115\sim180$ $\mathbb C$ の範囲であるのが好ましい。これは、軟化温度を115 $\mathbb C$ 以上とすることによって、トナーの非オフセット性が良好となる傾向にあるためである。より好ましくは120 $\mathbb C$ 以上である。また、軟化温度を180 $\mathbb C$ 以下とすることによって、トナーの定着性が良好となる傾向にあるためである。より好ましくは170 $\mathbb C$ 以下である。

さらに、ビニル系樹脂(C)は、Tgが $50\sim70$ $\mathbb C$ の範囲であるのが好ましい。Tgを50 $\mathbb C$ 以上とすることによって、トナーの耐ブロッキング性が良好となる傾向にある。より好ましくは52 $\mathbb C$ 以上である。Tgを70 $\mathbb C$ 以下とすることによって、トナーの定着性が良好となる傾向にある。より好ましくは68 $\mathbb C$ 以下である。

また、ビニル系樹脂 (C) は、質量平均分子量Mwが40,000~400,000範囲であるのが好ましい。質量平均分子量Mwを40,000以上とすることによって、トナーの非オフセット性が良好となる傾向にある。より好ましくは50,000以上である。質量平均分子量Mwを400,000以下とすることによって、トナーの定着性が良好となる傾向にある。より好ましくは60,000以下である。

さらに、ビニル系樹脂(C)の酸価は、40mg KOH/g以下とするのが好ましい。これによって、トナーの画像濃度が低下しにくくなる傾向にある。より好ましくは30mg KOH/g以下である。

ビニル系樹脂(C)は、上述のビニル系単量体を懸濁重合、乳化 重合、塊状重合、溶液重合等の方法で重合することによって得るこ とができる。重合時に使用する開始剤としては、過酸化物系開始剤 、アゾ系開始剤、レドックス系開始剤等を挙げることができ、乳化

剤、分散剤、分散助剤、そして溶剤などの重合助剤を、必要に応じ て選択して用いることができる。

本発明のトナーは、さらに、離型剤、着色剤、荷電制御剤、流動 改質剤、磁性体等を含有することができる。

離型剤としては、例えば、融点が60~100 $\mathbb C$ の範囲であるものが好ましい。これは、融点が60 $\mathbb C$ 以上のものを使用することによって、トナーの耐ブロッキング性が良好となる傾向にあるためである。より好ましくは65 $\mathbb C$ 以上である。また、融点が100 $\mathbb C$ 以下のものを使用することによって、トナーの低温定着性が良好となる傾向にあるためである。より好ましくは、95 $\mathbb C$ 以下である。

融点が $60\sim100$ \mathbb{C} の離型剤としては、ライスワックス(融点79 \mathbb{C})、カルナバワックス(融点83 \mathbb{C})、パラフィンワックス(融点 $60\sim90$ \mathbb{C})、蜜蝋(融点64 \mathbb{C})等を挙げることができる。

これらは、必要に応じて1種以上を適宜選択して使用することができるが、なかでも25℃における針入度が3以下であるものが好ましい。これは、25℃における針入度が3以下であるものを使用するとトナーの画像安定性が良好となる傾向にあるためである。

離型剤は、上述の線状ポリエステル樹脂(A)や線状ポリエステル樹脂(B)の添加剤として、あらかじめ配合しておくことができ、離型剤の存在下でこれらのポリエステル樹脂を重合することもできる。特に、アルコール成分を含有する離型剤の存在下で重合を行うと、アルコール成分の一部がモノマー成分と反応し、重合体成分と離型剤成分との相溶性が向上する。これによって、本発明のトナー中に含有される、離型剤成分の分散径をより小さくすることができ、トナーの非オフセット性が向上する傾向にある。

25℃における針入度が3以下であり、アルコール成分を含有す

る離型剤成分としては、例えば、ライスワックスやカルナバワックス等を挙げることができ、なかでもカルナバワックスが定着性を良好とする点で特に好ましい。

また、本発明のトナーには、必要に応じて、その他の離型剤を配合することができる。その他の離型剤としては、ポリプロピレン系ワックス、ポリエチレン系ワックス、合成エステル系ワックス、脂肪酸アミド、シリコーン系ワックス等を挙げることができる。

これらの離型剤は、本発明のトナー中に1~10質量%の範囲で含有されるのが好ましい。これは、離型剤成分の含有量を1質量%以上とすることによって、トナーの非オフセット性が良好となる傾向にあるためである。より好ましくは1.5質量%以上である。また、含有量を10質量%以下とすることによって、トナーの光沢性や画像安定性が良好となる傾向にあるためである。より好ましくは9質量%以下である。

本発明のトナーに使用できる着色剤としては、カーボンブラック、ニグロシン、アニリンブルー、フタロシアニンブルー、フタロシアニングリーン、ハンザイエロー、ローダミン系染顔料、クロムイエロー、キナクリドン、ベンジジンイエロー、ローズベンガル、トリアリルメタン系染料、モノアゾ系、ジスアゾ系、縮合アゾ系染料もしくは顔料などを挙げることができる。これらの染料や顔料はそれぞれ単独でまたは2種以上を混合して使用することができる。フルカラートナーの場合には、イエローとしてベンジジンイエロー、モノアゾ系染顔料、縮合アゾ系染顔料など、マゼンタとしてキナクリドン、ローダミン系染顔料、モノアゾ系染顔料など、シアンとしてフタロシアニンブルーなどが挙げられる。着色剤は、トナーの色調や画像濃度、熱特性の点から、トナー中に2~10質量%程度の量で使用されるのが好ましい。

本発明のトナーに使用できる荷電制御剤としては、正帯電制御剤として4級アンモニウム塩や、塩基性もしくは電子供与性の有機物質等が挙げられ、負帯電制御剤として金属キレート類、含金属染料、酸性もしくは電子求引性の有機物質等が挙げられる。カラートナーの場合、帯電制御剤が無色ないし淡色で、トナーへの色調障害がないことが重要であり、例としてはサリチル酸またはアルキルサリチル酸のクロム、亜鉛、アルミニウム等との金属塩、金属錯体、アミド化合物、フェノール化合物、ナフトール化合物等が挙げられる。さらに、スチレン系重合体、アクリル酸系重合体、メタクリル酸系重合体、スルホン酸基を有するビニル重合体を荷電制御剤として用いてもよい。これらの荷電制御剤は、トナー中に0.5~5質量%の量で使用するのが好ましい。これは、荷電制御剤を0.5質量%以上とすることによって方電制御剤の凝集による帯電量の低下が抑制される傾向にあるためである。

本発明のトナーに使用できる流動改質剤などの添加剤としては、 微粉末のシリカ、アルミナ、チタニア等の流動性向上剤、マグネタ イト、フェライト、酸化セリウム、チタン酸ストロンチウム、導電 性チタニア等の無機微粉末、スチレン樹脂、アクリル樹脂などの抵 抗調節剤、滑剤などが挙げられ、これらは内添剤または外添剤とし て使用することができる。これらの添加剤は、トナー中に 0.05 ~10質量%の量で使用できる。これらの添加剤の使用量を 0.0 5質量%以上とすることによってトナーの性能改質効果が十分に得 られる傾向にあり、10質量%を以下とすることによってトナーの 画像安定性が良好となる傾向にある。

本発明のトナーは、磁性1成分現像剤、非磁性1成分現像剤、2 成分現像剤の何れの現像剤としても使用することができる。磁性1

成分現像剤として用いる場合には、磁性体を含有し、磁性体として は、例えば、フェライト、マグネタイト等をはじめとする、鉄、コ バルト、ニッケル等を含む強磁性の合金の他、化合物や強磁性元素 を含まないが、適当に熱処理することによって強磁性を示すように なる合金、例えば、マンガン-銅-アルミニウム、マンガン-銅-スズ等のマンガンと銅とを含むいわゆるホイスラー合金、二酸化ク ロム等が挙げられる。これらの磁性体は、好ましくはトナー中に 4 0~60質量%の範囲で使用することができる。磁性体の使用量を 40質量%以上とすることによってトナーの帯電量が十分なレベル となる傾向にあり、60質量%以下とすることによってトナーの定 着性が良好となる傾向にある。また、2成分現像剤として用いる場 合、キャリアと併用して用いられる。キャリアとしては、鉄粉、マ グネタイト粉、フェライト粉などの磁性物質、それらの表面に樹脂 コーティングを施したもの、磁性キャリア等の公知のものを使用す ることができる。樹脂コーティングキャリアのための被覆樹脂とし ては、一般に知られているスチレン系樹脂、アクリル系樹脂、スチ レンアクリル共重合系樹脂、シリコーン系樹脂、変性シリコーン系 樹脂、フッ素系樹脂、それらの樹脂の混合物などを使用することが できる。

本発明のトナーは、例えば、上述のトナー用組成物、および離型剤、着色剤、荷電制御剤、流動改質剤、磁性体等を混合した後、2軸押出機などで溶融混練し、粗粉砕、微粉砕、分級を行い、必要に応じて無機粒子の外添処理等を行って製造することができる。特に、混練工程においては、押出機のシリンダー内温度がポリエステル系樹脂の軟化温度よりも高い温度で混練するのが好ましい。また、上記工程において、微粉砕乃至分級後にトナー粒子を球形にするなどの処理を行ってもよい。

本発明のトナーにおいては、これが含有するトナー用樹脂組成物のTgが $45\sim70$ $\mathbb C$ の範囲であるのが好ましい。Tgを45 $\mathbb C$ 以上とすることによって、トナーの耐ブロッキング性が良好となる傾向にあるためである。より好ましくは47 $\mathbb C$ 以上である。Tgを70 $\mathbb C$ 以下とすることによって、トナーの定着性が良好となる傾向にある。より好ましくは50 $\mathbb C$ 以下である。

また、本発明のトナーは、これが含有するトナー用樹脂組成物の軟化温度が $90\sim140$ $\mathbb C$ の範囲であるのが好ましい。軟化温度を90 $\mathbb C$ 以上とすることによって、トナーの非オフセット性が良好となる傾向にある。より好ましくは95 $\mathbb C$ 以上であり、さらに好ましくは100 $\mathbb C$ 以上である。軟化温度を140 $\mathbb C$ 以下とすることによって、トナーの定着性が良好となる傾向にある。より好ましくは130 $\mathbb C$ 以下、さらに好ましくは120 $\mathbb C$ 以下である。

さらに、本発明のトナーは、これが含有するトナー用樹脂組成物の120℃での溶融粘度が100~5000PaSの範囲であるのが好ましい。溶融粘度を100PaS以上とすることによって、トナーの非オフセット性が良好となる傾向にある。より好ましくは200PaS以上である。溶融粘度を5000PaS以下とすることによって、トナーの定着性や光沢性が良好となる傾向にある。より好ましくは4600PaS以下である。

また、本発明のトナーは、これが含有するトナー用樹脂組成物の質量平均分子量Mwが8,000~60,000範囲であるのが好ましい。質量平均分子量Mwを8,000以上とすることによって、トナーの非オフセット性が良好となる傾向にある。より好ましくは、10,000以上である。質量平均分子量Mwを60,000以下とすることによって、トナーの定着性が良好となる傾向にある。より好ましくは50,000以下である。

さらに、本発明のトナーは、光沢度が10~40の範囲であるのが好ましい。光沢度を10以上とすることによってトナーの発色が良好となり、得られる画像の光沢性が良好となる傾向にある。より好ましくは20以上であり、さらに好ましくは30以上である。また、光沢度を40以下とすることによって、過剰なトナーの発色を抑え、画質が良好となる傾向にあり好ましい。

また、本発明のトナーは、平均粒径が7μm以下であるのが好ましい。これは、トナーの平均粒径が7μm以下であることによって、非オフセット性に優れるとともに、光沢性や解像度に優れた画像が得られる傾向にあるためである。

次に、第5の発明について説明する。

本発明に係る第5の発明おいては、ポリエステル樹脂(X)として、質量平均分子量Mwが25,000~100,000で軟化温度が150~220 $\mathbb C$ の線状ポリエステルを用い、ポリエステル樹脂(Y)として、質量平均分子量Mwが2,000~10,000の線状ポリエステルを用い、ポリエステル樹脂(X)とポリエステル樹脂(Y)の質量比が5:95~95:5の範囲で併用することによって、最低定着温度が130 $\mathbb C$ 以下で低温定着幅が40 $\mathbb C$ 以上であるトナーを得ることができる。

一般に、定着温度幅は、ローラー速度が遅くなる程狭くなる傾向にある。従って、低速機では、低温定着幅が狭くなる傾向にあり、本発明に係る第5の発明は、低速機においても十分な定着温度幅を確保できるトナーに関するものである。第5の発明でいう、最低定着温度とは、複写機「PAGEPREST N4-612II」(カシオ電子工業社製)を改造した装置を用い、熱ローラー設定温度を順次下げながら、A4普通紙の上部に印刷した画像がローラーに付着し、紙の下余白部分を汚すかどうかを目視にて確認し、汚れの

生じない最低の設定温度である。また、定着温度幅とは、最高定着温度と最低定着温度の差であり、最高定着温度とは、前記熱ローラーの設定温度を順次上昇させながら定着画像の光沢度を測定し、光沢度が最大を示す温度である。

トナーの最低定着温度が130℃を超える場合は、熱ローラーの 設定温度が高くなり、プリンターの消費電力が増大するため、好ま しくない。

また、トナーの定着温度幅が40℃未満の場合は、熱ローラー温度が変動する際にオフセット現象が起こり易いため、好ましくない

本発明に係る第5の発明においては、ポリエステル樹脂(X)は、質量平均分子量Mwが25,000~100,000で軟化温度が150~220Cの線状ポリエステルであればよく、特に制限されないが、前述したポリエステル樹脂(A)とすることが好ましい。また、ポリエステル樹脂(Y)は、質量平均分子量Mwが2,00~10,00の線状ポリエステル樹脂であれば、特に制限されないが、前述のポリエステル樹脂(B)とすることが好ましい。

また、ポリエステル樹脂(Y)として、組成、重量平均分子量、 軟化温度、Tgの少なくとも1つが異なる2種以上のポリエステル を併用すると、特に最低定着温度と定着温度幅とのバランスが良好 となる傾向にあることから、ポリエステル樹脂(Y)として少なく とも2種のポリエステルを用いることが好ましい。

また、ポリエステル樹脂(Y)として少なくとも2種のポリエステルを用いる場合、それらの2種のポリエステルの軟化温度差が5 ℃以上あることが好ましい。ポリエステル樹脂(Y)として、軟化 温度の差が5℃以上あるポリエステルを少なくとも2種含む場合に 、定着温度幅を広くすることができる傾向にある。この軟化温度の

差の上限値は、特に制限されないが、20℃以下であることが好ま しい。この軟化温度の差が20℃以下の場合に、トナーの定着温度 幅が良好となる傾向にある。

ポリエステル樹脂(X)とポリエステル樹脂(Y)との配合比率は、 $5:95\sim95:5$ (質量比)である。本発明においては、ポリエステル樹脂(X)とポリエステル樹脂(Y)とを併用し、その配合比率を上記比率とすることによって、最低定着温度が 130° 以下であり、定着温度幅が 40° 以上であるトナーを得ることができる。この配合比率は、 $10:90\sim90:10$ であることがより好ましく、 $15:85\sim85:15$ であることが特に好ましい。

また、ポリエステル樹脂 (X) とポリエステル樹脂 (Y) の含有量については、特に制限されないが、その合計量が結着樹脂中 5 0 質量%以上であることが好ましい。

以下に本発明の実施例を示すが、本発明はこれらの例により何ら 限定されるものではない。

また、これらの例で示される樹脂やトナーの評価方法は以下の通 りである。

樹脂/トナー評価方法

1) 軟化温度

島津製作所(株)製フローテスターCFT-500を用い、1mm $\phi \times 10$ mmのノズルにより、荷重294N(30Kgf)、昇温速度3 $\mathbb{C}/$ 分の等速昇温下で測定した時、サンプル1.0g中の1/2が流出したときの温度。

2)酸価

KOH溶液を用いた滴定法による測定値。

3) 質量平均分子量

質量平均分子量の測定は、ゲルパーミエーションクロマトグラフ

ィー(東ソー社製HCL-8200)を用いて以下の測定条件で行ったものである。

カラム条件 : G4000Hx1×G2000Hx1

オーブン温度:40℃

溶離剤 : テトラヒドロフラン

流速 : 1 m l / 分

試料濃度 : 0.4質量%

注入量 : 100 μ 1

検出器 : R I

4)融点

示差走差熱量計を用いて、昇温速度 5 ℃/分で測定した時の吸熱 ピークを融点とした。

5) ガラス転移温度

示差走差熱量計を用いて、昇温速度5℃/分で測定した時のチャートのベースラインとTg近傍にある吸熱カーブの接線との交点の温度。

6)溶融粘度

REOLOGICA社製レオメーターDynalyser DAR-100を用い、サンプル1gを固め、 $25mm\phi$ の平行平板にはさみこみ、150 \mathbb{C} の温度で厚さ0. $5\sim1$.0mmに調整したのち、 $80\sim250$ \mathbb{C} まで3 \mathbb{C} /分で昇温し、周波数1 Hz、ストレイン1%の条件下で測定した。

- 7) 非オフセット性の評価法
- 7) -1. 評価法1 (中速度プリンター用評価方法)

シリコーンオイルが塗布されていない定着ローラーを有し、ローラー速度100mm/秒に設定した温度変更可能であるプリンター (カシオ電子工業社製複写機「PAGEPREST N4-612

II」を改造した装置)を用いて印刷を行い、非オフセット性の評価を行った。また、定着時に定着ローラーにトナーが移行するときの最高温度をオフセット発生温度と定め、以下の基準を用いて非オフセット性を判断した。

◎ (非常に良好) :オフセット発生温度が230℃以上

○ (良好) : オフセット発生温度が 2 2 0 ℃以上 2 3

0℃未満

△ (使用可能) : オフセット発生温度が200℃以上22 0℃未満

× (劣る) : オフセット発生温度が200℃未満

7) - 2. 評価法2 (中速度、低温プリンター用評価方法)

シリコーンオイルが塗布されていない定着ローラーを有し、ローラー速度100mm/秒に設定した温度変更可能であるプリンター(カシオ電子工業社製複写機「PAGEPREST N4-612 II」を改造した装置)を用いて印刷を行い、非オフセット性の評価を行った。また、定着時に定着ローラーにトナーが移行するときの最高温度をオフセット発生温度と定め、以下の基準を用いて非オフセット性を判断した。

◎ (非常に良好): HOS発生温度が200℃以上

○ (良好) : HOS発生温度が185℃以上200℃

未満

△ (使用可能) : HOS発生温度が175℃以上185℃ 未満

× (劣る) : HOS発生温度が175℃未満

7) - 3. 評価法3 (低速度プリンター用評価方法)

シリコーンオイルが塗布されていない定着ローラーを有し、ローラー速度 5 0 m m / s に設定した温度変更可能であるプリンター (

カシオ電子工業社製複写機「PAGEPREST N4-612I I」を改造した装置)を用いて印刷を行い、非オフセット性の評価 を行った。また、定着時に定着ローラーにトナーが移行するときの 最高温度をオフセット発生温度と定め、以下の基準を用いて非オフ セット性を判断した。

◎ (非常に良好):オフセット発生温度が230℃以上

○ (良好) : オフセット発生温度が220℃以上23

0℃未満

△ (使用可能) : オフセット発生温度が200℃以上22 0℃未満

× (劣る) : オフセット発生温度が200℃未満

7) -4. 評価法4 (低中速度プリンター用評価方法)

複写機「PAGEPREST N4-612II」(カシオ電子工業社製)を改造した装置を用い、未定着画像を画出し、定着温度領域のテストを行った。ここで用いた定着ローラーは、シリコーンオイルが塗布されていない定着ローラーであり、ニップ幅3mm、線速70mm/sに設定したものである。熱ローラー設定温度を5℃ずつ上昇させながら、A4普通紙(大昭和製紙製BM64T)の上部に印刷した画像がローラーに付着し、紙の下余白部分を汚すかどうかを目視にて確認する作業を200℃まで繰り返し、この定着画像について日本電色工業株式会社製のグロスメーターPG-1を用い、入射角75度のときの光沢度測定値を測定した。光沢度は設定温度の上昇に伴い増加するが、ある温度を境に低下する。このように光沢度が低下し始める設定温度をホットオフセット発生温度とみなし、光沢度が最大を示す温度を最高定着温度とした。

- 8) 定着性の評価法
- 8) -1. 評価法1 (中速度プリンター用評価方法)

非オフセット性の評価法1と同一の条件でトナーを紙に定着させたときに、トナーが紙に定着し始めるときの最低温度を定着温度とし、以下の基準で判定した。

◎ (非常に良好):定着温度が120℃未満

○(良好) : 定着温度が120℃以上130℃未満

△ (使用可能) :定着温度が130℃以上160℃未満

×(劣る):定着温度が160℃以上

8) - 2. 評価法2 (中速度、低温プリンター用評価方法)

非オフセット性の評価法2と同一の条件でトナーを紙に定着させたときに、コールドオフセットの発生しない最低ローラー温度を定着開始温度とし、以下の基準にて低温定着性を判断した。

◎ (非常に良好):定着開始温度が125℃以下

○(良好) : 定着開始温度が125℃を超え、135℃以下

△ (使用可能) : 定着開始温度が135℃を超え、145 ℃以下

× (劣る) : 定着開始温度が145℃を超える

8) - 3. 評価法3 (低速度プリンター用評価方法)

非オフセット性の評価法3と同一の条件でトナーを紙に定着させたときに、トナーが紙に定着し始めるときの最低温度を定着温度とし、以下の基準で判定した。

◎ (非常に良好):定着温度が120℃未満

〇(良好) :定着温度が120℃以上130℃未満

△ (使用可能) : 定着温度が130℃以上160℃未満

×(劣る) : 定着温度が160℃以上

8) -4. 評価法4 (低中速度プリンター用評価方法)

非オフセット性の評価法4の測定に準じ、トナー像を転写して上

述の熱ローラー定着機により定着処理を行い、熱ローラー設定温度を5℃ずつ下げながら、A4普通紙(大昭和製紙製BM64T)の上部に印刷した画像がローラーに付着し、紙の下余白部分を汚すかどうかを目視にて確認し、汚れの生じない最低の設定温度を最低定着温度とした。

9) 定着温度幅

最高定着温度と最低定着温度の差を定着温度幅とした。

10) 耐ブロッキング性

トナーを約5g秤量してサンプル瓶に投入し、これを50℃に保温された乾燥機に約24時間放置し、トナーの凝集程度を評価して耐ブロッキング性の指標とした。評価基準を以下の通りとした。

◎ (良好) : サンプル瓶を逆さにするだけで分散する

○ (使用可能):サンプル瓶を逆さにし、2~3回叩くと分 散する

× (劣る) : サンプル瓶を逆さにし、4回以上叩くと分 散する

11) 光沢度

150℃で画像をトナーに定着させ、日本電色工業株式会社製の グロスメーターPG-1を用いて測定を行い、入射角75度のとき の測定値により、以下の基準で評価した。

◎ (非常に良好):光沢度が30以上40以下

〇 (良好) : 光沢度が20以上30未満

△ (使用可能) :光沢度が10以上20未満

×(劣る) : 光沢度が10未満

12)145℃定着性

• 1 4 5 ℃ 定着性

定着ローラーの温度を145℃に設定して定着させた画像を、J

IS512の砂消しゴムにて9回擦り、試験前後の画像濃度をマクベス社製画像濃度計にて測定し、定着率を

(試験後の画像濃度/試験前の画像濃度)×100(%)として算出し、以下の基準により評価した。

◎ (非常に良好):80%以上の定着率

〇(良好):75%以上80%未満の定着率

△ (使用可能) : 70%以上75%未満の定着率

× (劣る) : 70%未満の定着率または145℃でCO

Sが発生し、測定不可

製造例1 線状ポリエステル樹脂(A)の製造例

表1に示す仕込み組成のモノマー成分と、全酸成分に対して20 00ppmの三酸化アンチモンを蒸留塔備え付けの反応容器に投入 した。次いで、反応容器中の攪拌翼の回転数を120rpmに保ち 、昇温を開始し、反応系内の温度が265℃になるように加熱し、 この温度を保持した。反応系から水が留出し、エステル化反応が開始してから約7時間後、水の留出がなくなり、反応を終了した。次いで、反応系内の温度を下げて285℃に保ち、反応容器内を約40分かけて減圧し、真空度を1.0mmHgとし、反応系からジオール成分を留出させながら縮合反応を行った。反応とともに反応系の粘度が上昇し、粘度上昇とともに真空度を上昇させ、攪拌翼のトルクが所望の軟化温度を示す値となるまで縮合反応を実施した。そして、所定のトルクを示した時点で反応系を常圧に戻し、加熱を停止し、窒素により加圧して約40分間かけて反応物を取り出し、樹脂HA~HLを得た。

このようにして得られた樹脂HA~HLを液体ガスクロマトグラフィーにより組成分析した結果、表1に示す樹脂組成となっていた。また、樹脂の特性値を同じく表1に示す。

表1 ポリエステル樹脂 (A)

	機能時	台		椒脂IA	整節田	極語IIC	極脂田	極脂形	鐵脂肝	樹脂IIC	樹脂田	機能加	樹脂的	橄脂胚	椒脂化
#	酸成分		テレフタル酸	86	99	83	75	8	09	09	69	89	29	89	20
`	(安報)		イソフタル酸	93	9	. 8	82	40	07	07	40	20	82	83	8
Þ			アジアン数	,	,	1	5	1	-	1		15	13	20	5
_			無水トリメリット酸	,	,	,	1	•	-	1	•	1	-	•	5
#		7ゕュール 炭素数 3~10 の脂肪 ネオペンチルグ	ネオペンチャグリコード	1	82	1	-	1	_	1	ı	,	,	88	1
込		族ジャール成分	プロピレングリコール	1	ı	1	-	ı	1	೫	1	,		•	,
盔	(安静)		シクロヘキサンジメタノール	99	32	30	15	15	10	1	ı	15	15	ı	13
桜		上記じ外の成分	エチレングリコール	80	72	110	125	125	130	105	140	125	125	8	125
			ジオールA	1	1	1	1	1	-	5	1	'	1	,	1
極	酸成分		テレフタル酸	83.8	60.3	60.2	75.0	59.6	0.09	59.6	. 60.0	65.0	67.2	60.0	70.2
疆			イソフタル酸	10.2	39.7	39.8	19.9	40.4	40.0	40.4	40.0	19.9	20.1	19.9	20.0
盔			アジアン類	,	•	,	5.1	1	-	1	1	15.1	12.7	20.1	4.8
松			トリメリット酸	,	'	,	,	,	-	•	1	1	•	,	5.0
_	712-1	7/レコール 炭素数 3~10 の脂肪 ネオペンチルグ	ネオペンチルグリコール	,	19.8		1.	1	-	1	1	1	1	79.5	1
	珠	板ジャーン成分	プロピレングリコール	,	1	1	ı	1	ı	29.8	1	,	1	•	1
	(安建)		シクロヘキサンジメタノール	59.9	35.1	30.5	15.2	15.3	10.1	1	1	15.1	15.0	1	15.1
		上記じ外の成分	エチレングリコール	39.9	46.1	70.5	85.8	85.8.	91.2	66.0	101	85.9	86.0	21.5	85.9
			ジオールA	ı	1	1	•	1	,	5.2	ı	ı	'	'	,
極	軟(公園板(°C)	() (C)		.160	180	190	175	210	219	150	335	161	133	83	178
噩	Tg (C)	១		65.1	67.1	62.1	58.1	73.0	75.0	65.1	78.0	50.2	52.5	46.0	54.0
李	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	KOH/g)		3.5	5.0	2.5	5.1	1.0	0.1	3.0	0.1	4.2	5.3	83	11.5
和		重量平均分子型Mw		29,000	54,000	72,000	39,000	89,000	98,000	26,000	120,000	40,000	40,000	20,000	210,000
	四級	D		なし	ない	74	74	なし	なし	がと	230	なし	なし	なし	なし
	1		T												

2ービス (4ーヒドロキシフェニル) プロパン ・ ジオールA:ポリオキシプロピレン(2.3)-2,

製造例2 線状ポリエステル樹脂(B)の製造例

表2に示す仕込み組成のモノマー成分、添加剤と、全酸成分に対して1000ppmのジブチル錫オキサイドを蒸留塔備え付けの反応容器に投入した。次いで、反応容器中の攪拌翼の回転数を120rpmに保ち、昇温を開始し、反応系内の温度が260℃になるように加熱し、この温度を保持した。反応系から水が留出し、エステル化反応が開始してから約8時間後、水の留出がなくなり、反応を終了した。次いで、反応系内の温度を下げて235℃に保ち、反応容器内を約40分かけて減圧し、真空度を1.0mmHgとし、反応系からジオール成分を留出させながら縮合反応を行った。反応をおに反応系の粘度が上昇し、サンプリングを繰り返しながら所望の軟化温度を示す値となるまで縮合反応を実施した。そして、所定の軟化温度を示した時点で反応系を常圧に戻し、加熱を停止し、窒素により加圧して約40分かけて反応物を取り出し、樹脂LA~LNを得た。

このようにして得られた樹脂LA~LNを液体ガスクロマトグラフィーにより組成分析した結果、表2に示す樹脂組成となっていた。また、樹脂の特性値を同じく表2に示す。

表2 ポリエステル樹脂 (B)

梅間LN	ğ	,	8	2		2			8	,	6.9	10.1		20					22	0%	8, O	なし
機間 LM 相	88	15	8	1		15		1	84.5	15.5	89.1	,	-	14.5	-	,	, ;	8	ا ا	32.0	1,500	なし
\vdash	100	_						_	130	,	2				0	-	\dashv	+	+	2		\dashv
棚間1	1		₩ 	١	_	10	40				18		_	7.1	40.0	_	<u>'</u>	7	\dashv	হয়	2100	74
機能LK	09	9	•	1	1	140	١	-	9	8	1	,	_	임	1	'	1	뙲	820	40	5,400	121
機能し	05	06	52	1	ı	115	1	1	50.1	49.9	24.9	1	1	88.1	ı	1	1	Ħ	St. 0	180	8,900	Ž,
機器LI	20	20	55	1	55	1	1	1	50.8	49.2	50.2	ı	54.8	ı	1	-	1	113	<u>ස</u>	50	12,000	なしな
梅龍山	8	8	1	25	æ	89	-	1	60.2	39.8	,	25.0	30.0	46.2				133	57.0	17.5	8,200	7
整語に	8	\$	1	25	क्ष	45	1	1	60.1	39.9	25.1	1	34.9	41.0	-	1	1	æ	45.0	25.0	3000	7
機器に	8	83	8	1	,	æ	1	1	80.1	19.8	69.8	1	1	31.2	1	,	-	100	52.0	22.0	2400	がし
機能压	æ	15	8	,	'	п	1	3.5	84.5	15.5	89.1	. 1	-	11.1	,	,	4.1	102	48.0	23.0	6,500	なり
を開け	æ	15	8	,	,	13	,	0.8	84.9	15.1	88.1	1	1	12.8	,		1.1	104	54.5	20.1	7,100	なし
機能に	88	15	8	1	,	15		,	84.8	15.2	88.2	,	,	13.7	,		-	105	58.0	18.0	8,500	なし
整品	æ	15	88	,	ı	10	,	'	0.88	15.0	94.5	,	1	7.5	,		,	108	0.79	17.0	9,500	7%
整LA	88	15	8	91	,	rc.	,	,	678	15.1	89.3	10.7	1	2.2	,		,	97	69.5	16.0	08'6	72
	テレフタル酸	イソフタル酸	ネオペンチルグリコール	プロピレングリコール	シクロヘキサンジェケノーア	エチレングリコー	ジオールA	カルナバワックス	テレフタル酸	イソフタル酸	ネオペンチルグリコール	プロピレングリコール	ンクロヘキサンジメタノーブ	エチレングリコー	ジャーバA		カルナパワックス					
機能時	1	_	W			上記がか成分		1 (質量的)			*			上記述的成分			然内型(衛星部)	軟(V温库(°C)	Ç	数值(melCDH/g)	重型平均分子型Mw	3
L	翻印	(金)		(金) (金)				整整	発売分	(E)	7.83-8	(安)					を存	数が温	ᅩ		<u>. </u>	融点
L	L		ት	~ P	− #:	込組	桜					發	田祖	怪					桑	: 温	年 年	<u>4</u>

ジオールA:ポリオキシプロピレン(2.3)-2,2-ビス(4-ヒドロキシフェニル)プロペン

(樹脂組成) 得られた樹脂の質量100部に対する質量部 統加剤:(仕込み組成)仕込みモノマーの質量100部に対する質量部、

上記で得られた樹脂を用いて、それぞれトナー化を行った。トナーの配合には、表3に示す量の線状ポリエステル樹脂(A)、線状ポリエステル樹脂(B)とともに、キナクリドン顔料(クラリアント社製EO2)5質量部、カルナバワックス(東洋ペトロライド社製)5質量部、負帯電性の荷電制御剤(オリエント化学社製E-84)2質量部を使用し、ヘンシェルミキサーで30分間混合した。次いで、得られた混合物を2軸混練機で2回溶融混練した。溶融混練は内温を180℃に設定して行った。混練後、冷却してトナー塊を得、ジェットミル微粉砕機で微粉砕し、分級機でトナーの粒径を整え、粒径を5μmとした。得られた微粉末に対して、0・25%のシリカ(日本アエロジル社製R-972)を加え、ヘンシェルミキサーで混合して付着させ、最終的にトナー1~18を得た。

得られたトナー1~18について前述の評価方法(ただし、非オフセット性の評価方法および定着性の評価方法は、ともに評価法1による評価方法)を用いてトナー評価を行った。これらのトナーの評価結果を表3に示した。

類

00

4000

00

		(総分式リエステル権脂品の							
権間の配合比	7	以素数3~10 の間功族ジオー	重量平均分子量	軟化溫度差	軟化温度	120℃の存職	Ig	20年	非オフセッ
(質量部)	路	ル成分)/ (設大ボリエスアン 樹脂Aの炭素数3~10 の間が 粧ジャーンが注)	Ww	වි	ව	粘度 (PaS)	(Ç)	(摩鹿術1)	學面积1
梅帽 IF: 梅帽 LA=3:97	1	9.90	12450	109	113	724	69.7	0	0
権間 IE: 樹脂 IB=5:95	2	6.18	13480	102	113	212	68.6	0	0
樹脂 HC: 樹脂 LC=20:80	3	2.89	21200	98	122	1352	58.8	0	0
樹脂旧: 樹脂 IC=30:70	4	5.80	17650	02	126	1800	58.0	0	0
極間田: 極間 IC-20:80	5	5.80	14600	02	119	1090	58.0	0	0
格腊 IA: 樹脂 IG-45:55	9	1.00	14700	8	116	088	54.0	0	0
楼間 HG: 樹脂 LL=50:50	7	1.85	14050	8	110	572	54.6	0	0
極脂 胚: 樹脂 1.6-45:55	∞	3.92	41700	130	139	4405	57.6	◁	0
樹脂 IA: 樹脂 IB-45:55	6	1.58	18280	25	131	2650	66. 1	۵	
樹脂 HG: 樹脂 LA=50:50	22	3.36	17900	40	130	2397	67.3	0	0
樹脂 胚: 樹脂 1.0=5:95	11	3.92	8300	130	91	147	46.4	0	◁
樹脂 HG:樹脂 LA=3:97	12	3.36	10290	40	111	624	69.4	0	0
樹脂 HA: 樹脂 LB=5:95	13	1.58	10480	52	111	298	6.9	0	0
樹脂川:樹脂1/5-20:80	14	4.00	10400	83	26	219	46.5	0	0
梅脂HI:梅脂LG=20:80	15	3.97	10400	81	96	213	46.0	0	0
樹脂 IB: 梅脂 LH=30: 70	16	1.00	21940	75	128	2004	60.0	0	0
梅種 IA: 棒脂 LH=30: 70	17	0.92	14440	55	122	1304	59.4	۵	0
樹脂 即: 樹脂 IF=20:80	82	4.59	12120	75	115	819	53.2	0	

表3

トナーの配合において表4に示す量のポリエステル樹脂を用いた 以外は実施例1と同様にしてトナー19~20を得た。

得られたトナー19~20について前述の評価方法(ただし、非 オフセット性の評価方法および定着性の評価方法は、ともに評価法 1による評価方法)を用いてトナー評価を行った。これらのトナー の評価結果を表4に示した。

表4 実施例2

		店着在 非オフセット性 振ブロッキング性 光沢	(野雷光1) (野宿光1)			0 0		
-						55.2	0	
		1一ン成分)/ 重量平均分子 軟化温度 軟化温度 120°Cの溶解粘 To(PC)	差(C) (C) 度 (PaS)			1030	9	2
		較公温度	වු			118		
		較公温度	悪の			71 118		
		重量平均分子	量學			13480		
(線大ポリエスアル樹	脂Bの炭素数3~10の	脂肪族ジャーア政治)/	線状ポリエスアル樹	服Aの炭素数3~10の	間で扱うとして成分)	5.80		
		£	より で より に より			61	2	
		極語の第合的	(質量部)			表記 ID・発記 ID-20・80	מיים שי שוואן יחי שוואן	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

トナーの配合において表 5 で示す量のポリエステル樹脂を用い、 カルナバワックスの使用量を 1 5 質量部に変更した以外は実施例 1 と同様にしてトナー 2 1 ~ 2 3 を得た。

得られたトナー21~23について前述の評価方法(ただし、非オフセット性の評価方法および定着性の評価方法は、ともに評価法1による評価方法)を用いてトナー評価を行った。これらのトナーの評価結果を表5に示した。

表5 実施例3

	1		
茶	0	0	٥
非オフセット性 耐ブロッキング性 光沢 (評価法1)	0	0	0
非オフセット性 (評価法1)	0	0	©
· 危衛在	0	0	٥
Tg(°C)	57.5	69.7	69
120°Cの容器粘 度 (PaS)	1560	2467	4632
軟(公温度 (C)	124	130	138
軟化温度差(で)	150	102	100
重量平均分子	20000	45280	53900
(総状ポリエステル樹 脂Bの炭素数3~10の 脂肪族ジオール成分) / (総状ポリエステル樹 脂Aの炭素数3~10の	5.50	6.20	06.6
金紹一七十	21	77	8
機脂の混合比(質量部)	報告 旧・報告 11 = 50・50	横昭 IF・横昭 I B=45:55	被記 旧・権間 1 A=50・50

比較例1

トナーの配合において表 6 で示す量の線状ポリエステル樹脂 (A)、線状ポリエステル樹脂 (B)を用いた以外は実施例 1 と同様にしてトナー C 1 ~ C 4 を得た。

得られたトナーC1~C4について前述の評価方法(ただし、非 オフセット性の評価方法および定着性の評価方法は、ともに評価法 1による評価方法)を用いてトナー評価を行った。これらのトナー の評価結果を表6に示した。

1.444 Til. 1		
1	Ë	ζ,
c	c	
+	k	*

樹脂の混合比(質量部)	下十一記号	(線状ポリエステル樹脂 Bの炭素数3~10 の間肪 株ジオール成分)/ (線 大ポリエステル樹脂Aの 炭素数3~10 の間が族ジ オールポック	重量平均分子量上的	軟化温度 差(C)	軟KAB度: (C)	軟化温度 120°Cの溶解粘 (*C) 度 (PaS)	Tg(°C)	定着在 (評価先1)	非オフセット性 (評価法1)	耐ブロッキング布	光光
02・02=1 1=30・20	5	0.31	12000	17	117	882	51.6	×	×	0	0
WM IN: AM IN: 1 = 3・97	5 2	10.40	11940	156	116	891	63.5	0	×	0	0
Mulia 1. 1. 1. 1. 1. 1. 1. 1	8 2	1	37470	152	83	1188	51.8	×	0	0	0
	3 2	0	11580	45	119	1052	56.2	×	0	0	0

比較例2

トナーの配合において表7で示す量の線状ポリエステル樹脂(A)、線状ポリエステル樹脂(B)を用いた以外は実施例3と同様にしてトナーC5~C6を得た。

得られたトナーC5~C6について前述の評価方法(ただし、非オフセット性の評価方法および定着性の評価方法は、ともに評価法1による評価方法)を用いてトナー評価を行った。これらのトナーの評価結果を表7に示した。

光	0	×
耐ブロッキング性、光沢	◁	0
ポインセット在(評価税1)	×	© :
定潜性 (評価法1)	0	×
Ig(°C)	45.0	67.1
軟化温度 120°Cの溶配粘 (*C) 度 (PaS)	33 45.0	85990
軟(2温度 (°C)	88	152
軟(K温度 港 (C)	1	-
· · · · · · · · · · · · · · · · · · · ·	2100	2400
(線状ポリエステル権間 Bの炭素数3~10 の間が 株ジオール成分) / (線 重 大ナー記号 状ポリエステル権間Aの 炭素数3~10 の間が族ジ オール成分)		1
- 十一記号	હ	ع
樹脂の混合比 (質量部)	株11 =100	機能 HE-100

製造例3 ビニル系樹脂(C)の製造例

撹拌機、温度計、還流凝縮機を備えた重合反応器に、脱イオン水200質量部とポリビニルアルコール0.2質量部を入れて攪拌し、ポリビニルアルコールを溶解させた後、表8に示されるモノマー成分と開始剤の混合物を投入した。攪拌回転数を200rpmに保ち、約10分間で重合反応器内の温度を80℃に昇温させ、80℃を維持できるように重合反応器の外壁温度をコントロールし、外壁温度が重合反応器内の温度よりも高くなった時点から約2時間反応を継続し、次いで重合反応器内の温度が90℃になるまで昇温し約1時間保持した。その後、重合反応器内の温度を40℃以下になるまで冷却し、樹脂を重合反応器から取り出し、脱イオン水で充分洗浄し、ビニル系樹脂M1~M5を得た。得られた樹脂M1~M5の特性値を表8に示す。

c	¥	า
i	ĺ	3
Į	ij	4

横脂記号 メタクリル酸メチル メタクリル酸nーブチル メタクリル酸 アクリル酸2エチルヘキシル	M1 1 19 80	M2 40 60	M3 . 58 40 2	M4	M2
ν酸メチル ν酸n −ブチル ν酸 戦2エチルヘキシル	19 19	40	2	1	1
v酸nーブチル v酸 戦2エチルヘキシル	1 19 8	1 1 1 09	40		
v酸 戦2エチルヘキシル	19	1 1 09	2	ı	1
毀2エチルヘキシル	19	09	1	1	1
	08	09		20	20
				80	80
ジビニルベンゼン	l	1	1	0.45	1
アゾビスブチルニトリル	0.3	0.2	0.2	1	ì
過酸たくソゾイグ	I	1		3.0	8.0
軟化温度 (°C)	120	163	170	185	110
	59.0	90.3	68.0	65.3	54.0
酸価 (mgKOH/g)	7.5	0.1	14.0	1.0	3.0
ゲル分率 (%)	0 .	0	0	40.3	0
重量平均分子量 Mw	40,000	65,000	200,000	900,000	10,000
がドニアイ アゾアメリ 財産を 要合。 での アアカタ がア分略 新一個KI	:ンゼン ・チルニトリル ・グイル (%) (%)	¥ J J J	トリル 0.3 120 59.0 59.0 0 0	トリル 0.3 0.2 120 163 59.0 90.3 7.5 0.1 0 0 0	トリル 0.3 0.2 0.2

上記で得られた樹脂を用いて、それぞれトナー化を行った。トナーの配合には、表9に示す量の線状ポリエステル樹脂(A)、線状ポリエステル樹脂(B)、ビニル系樹脂(C)とともに、キナクリドン顔料(クラリアント社製EO2)5質量部、カルナバワックス(東洋ペトロライド社製)5質量部、負帯電性の荷電制御剤(オリエント化学社製E-84)2質量部を使用し、ヘンシェルミキサーで30分間混合した。次いで、得られた混合物を2軸混練機で2回溶融混練した。溶融混練は内温を180℃に設定して行った。混練後、冷却してトナー塊を得、ジェットミル微粉砕機で微粉砕し、分級機でトナーの粒径を整え、粒径を5μmとした。得られた微粉末に対して、0.25%のシリカ(日本アエロジル社製R-972)を加え、ヘンシェルミキサーで混合して付着させ、最終的にトナー24~35を得た。

得られたトナー24~35について前述の評価方法(ただし、非 オフセット性の評価方法および定着性の評価方法は、ともに評価法 3による評価方法)を用いてトナー評価を行った。これらのトナー の評価結果を表9に示した。

wo	2004/057419

表9 実施例4

/05741	9 ,		D).	,										
	光	0	0	0	◁	◁	0	0	0	0	0	0	0	
がログボ		0	0	0	0	0	0	0	0	0	0	٥	0	
ポインケット体	(野面洗3)	V	0	0	0	0	0	0	0	0	۵	٥	0	
小 小 中 子	(野角形3)	©	0	Ö	0	۵	0	0	0	0	0	0	0	
14	Tg (°C)	59.3	64.5	68.0	58.0	61.0	64.5	64.0	63.5	52.2	63.0	47.0	54.5	
141	容融粘度 (120°C、PaS)	1452	1510	1699	1400	4500	2100	1800	1450	1030	710	220	880	
1 47	軟化温度 (°C)	125	130	134	121	139	127	135	130	118	113	26	116	
(A)-(B)	W.f.c 温度差 (°C)	85	85	85	88	70	70	75	55	17	105	23	55	
	組成比	2.89	2.89	2.89	2.89	5.80	5.80	1.00	0.92	5.80	5.88	5.87	0.92	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	極脂(C) (質量部)	椒脂M3:5	椒脂M2:20	樹脂M2:30	椒脂M1:40	樹脂M3:30	林脂似2:20	樹脂M2:20	樹脂N2:20	株 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· 林脂M1:10	椒脂M1:10	林昭M1:5	>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	瀬脂(B) (質量部)	樹脂LC:76	樹脂LC: 64	樹脂LC:56	樹脂LC: 48	樹脂LC: 49	数暗LC: 64	華町H .56		· A · C · C · A · A · A · A · A · A · A	梅間で 85.5	梅脂LD:72	幸福! H・50	120 / 121 HW
	阉脂(A) (質量部)	梅脂IC:19	樹脂HC:16	林脂IC:21	樹脂HC:12	華語田・21	華配田・16	を記して、2.4 を記して、2.4	PG·VH端棘	21 · 四二華	被胎形·4.5	林暗HT: 18	松肥HA · 45	ANDRIES - TO
8	予	22	25	38	27	×	g	3 8	3 8	8	3 8	3 8	, K	ر م

・組成比:全酸成分の合計量を100モル部とした場合の、

(線状ポリエステル樹脂(B)中における炭素数3~10の脂肪族ジオール成分のモル部)/ (ポリエステル樹脂 (A) 中における炭素数3~10の脂肪族ジオール成分のモル部)の値

比較例3

トナーの配合において表 1 0 で示す量の線状ポリエステル樹脂(A)、線状ポリエステル樹脂(B)、ビニル系樹脂(C)を用いた以外は実施例 5 と同様にしてトナー C 1 0 を得た。

得られたトナーC10について実施例4と同じ評価方法(ただし、非オフセット性の評価方法および定着性の評価方法は、ともに評価法3による評価方法)を用いてトナー評価を行った。このトナーの評価結果を表10に示した。

表10 比較例3

(
土	機脂(A) (質量部)	樹脂(B) (質量部)	機脂(C) (質量部)	組成比	(A)-(B) 軟化 温度差 (°C)	トナー 軟化温度 (°C)	トナー 溶融粘度 (120°C、PaS)	トナー Tg (℃)	定着性 (評価法3)	非オフセット性(評価法3)	彫プロッキング存	光资
C10	C10 樹脂田: 55	做脂LH:35 做脂M1:10	椒脂M1:10	1	130	170	95000	72.0	×	0	0	×

・組成比:全酸成分の合計量を100モル部とした場合の、

(線状ポリエステル樹脂(B)中における炭素数3~10の脂肪族ジオール成分のモル部)/ (ポリエステル樹脂 (A) 中における炭素数3~10の脂肪族ジオール成分のモル部)の値

製造例4 線状ポリエステル樹脂(B)の製造例

表11に示す仕込み組成のモノマー成分等と、全酸成分に対して 500ppmの三酸化アンチモンを蒸留塔備え付けの反応容器に投 入した。次いで、反応容器中の攪拌翼の回転数を120rpmに保 ち、昇温を開始し、反応系内の温度が260℃になるように加熱し 、この温度を保持した。反応系から水が留出し、エステル化反応が 開始してから約8時間後、水の留出がなくなり、反応を終了した。 次いで、反応系内の温度を下げて230℃に保ち、反応容器内を約 40分かけて減圧し、真空度を1.0mmHgとし、反応系からジ オール成分を留出させながら縮合反応を行った。反応とともに反応 系の粘度が上昇し、反応系内の樹脂の軟化温度を追跡して所望の軟 化温度を示す値となるまで縮合反応を実施した。そして、所定の軟 化温度を示した時点で反応系を常圧に戻し、加熱を停止し、窒素に より加圧して約2時間かけて反応物を取り出し、さらに2時間かけ て徐々に冷却し、樹脂LO~LVを得た。得られた樹脂の液体ガス クロマトグラフィーによる組成分析の結果および樹脂物性値を同じ く表11に示す。

1 1 5									
		極肥1	極間1	越脂1	極脂	極脂	極肥1	極脂	極温
		2	LP	27	E.	LS	LT	LU	LV
	テレフタル酸	85	85	82	82	20	50	85	85
	イソフタル酸	15	15	15	15	20	50	15	15
仕込み	ネオペンチルグリコール	06	06	88	70	30		80	08
超成	エチレングリコール	15	30	40	40	90	70	40	40
(七/型)	プロピレングリコール						50		
	カルナバワックス (質量%)	0.86	•						
	テレフタル酸	82	82	85	85	50	20	85	85
	イソフタル酸	15	15	15	15	20	50	15	15
極温	ネオペンチルグリコール	88	87	22	89	28		77	77
超效	エチレングリコール	12	15	25	33	74	53	24	25
(中/地)	プロピレングリコール						49		
	カルナバワックス (質量%)	1							
	Mw	0099	6400	2200	7000	7200	6400	15000	3500
:	Ig	53.8	50.7	46.3	56.9	49.5	53.1	60.7	35
	軟化温度	104	100	97	109	107	103	124	85
	酸価 (mgKOH/g)	20	1.1	2.3	6.8	1.1	1.2	0.7	5.5

カルナバワックス:(仕込み組成)モノマー成分を合わせた仕込み成分中の含有比率(樹脂組成)得られた樹脂中の含有比率

上記で得られたポリエステル樹脂LO~LRを用いて、トナー化を行った。トナーの配合には、ポリエステル樹脂を93質量部、キナクリドン顔料(クラリアント社製E02)を3質量部、カルナバワックス(東洋ペトロライド社製)3質量部、負帯電性の荷電制御剤(オリエント化学社製E-84)1質量部を使用し、ヘンシェルミキサーで30分間混合した。次いで、得られた混合物を2軸混練機で2回溶融混練した。溶融混練は内温を樹脂の軟化温度に設定して行った。混練後、冷却してトナー魂を得、ジェットミル微粉砕機で微粉砕し、分級機でトナーの粒径を整え、粒径を5μmとした。得られた微粉末に対して、0.25%のシリカ(日本アエロジル社製R- 972)を加え、ヘンシェルミキサーで混合して付着させ、トナー36~39を得た。得られたトナーについて前述の評価方法(ただし、非オフセット性の評価方法および定着性の評価方法は、ともに評価法2による評価方法)を用いてトナー評価を行った。これらの評価結果を表12に示す。

比較例 4

ポリエステル樹脂を樹脂LS~LVに変更した以外は実施例5と同様にしてトナーC11~C14を製造した。評価結果を表12に示す。

両ブロッキング性 0 0 \triangleleft 0 0 \triangleleft \triangleleft 145℃定着性 0 0 4 0 0 × × × (評価決2) 耐HOS性 \triangleleft \triangleleft \triangleleft \triangleleft \triangleleft \triangleleft 0 × (評価法2) 定着性 0 0 0 0 0 0 0 4 使用バインダー樹脂 **極脂 10** 実施例5、比較例4 橄脂 LP **樹脂 LQ** 梅脂 LR 樹脂 LS 極脂 口 樹脂 LU 樹脂 LV 表12 トナー C12 C13**C14** C11 38 36 33 37

製造例5 線状ポリエステル樹脂(X)の製造例

表13に示される仕込み組成のモノマー成分と、全酸成分に対して1500ppmの三酸化アンチモンを蒸留塔を備え付けた反応容器に投入した。次いで昇温を開始し、反応系内の温度が265℃になるように加熱し、この温度を保持し、反応系からの水の留出がなくなるまで反応を継続した。次いで、反応系内の温度を285℃とし、反応容器内を減圧し、反応系からジオール成分を留出させながら縮合反応を行った。反応とともに反応系の粘度が上昇し、攪拌翼のトルクが所望の軟化温度を示す値となるまで縮合反応を実施した。そして、所定のトルクを示した時点で反応物を取り出し、冷却して、樹脂1a~1fを得た。各ポリエステル樹脂の特性値を表13に示す。

表13 線状ポリエステル樹脂(X)

		樹脂	樹脂	樹脂	樹脂	樹脂	極調
		la	119	1c	1d	1e	1f
	テレフタル酸	22	77	77	77	75	72
仕込み	イソフタル酸	20	20	20	20	20	20
組成	アジピン酸	3	3	က	က		∞
(mol 部)	エチレングリコール	105	105	105	105	105	105
	シクロヘキサンジメタノール	15	15	15	15	15	15
	質量平均分子量(Mw)	23000	40000	53000	00099	26000	00099
	ガラス転移温度(℃)	57	09	62	65	59	55
初年	軟化温度(°C)	148	161	175	183	173	175
_	酸(価(mgKOH/g)	2	2	.2	2	2	3

製造例 6 線状ポリエステル樹脂 (Y) の製造例

表14に示される仕込み組成のモノマー成分、離型剤成分(カルナバワックス)、全酸成分に対して1000ppmのジプチル錫オキサイドを蒸留塔備え付けの反応容器に投入した。次いで昇温を開始し、反応系内の温度が265℃になるように加熱し、この温度を保持し、反応系からの水の留出がなくなるまで反応を継続した。次いで、反応系内の温度を235℃に保ち、反応容器内を減圧し、反応系からジオール成分を留出させながら縮合反応を行った。反応とともに系の粘度が上昇し、サンプリングを繰り返しながら所望の軟化温度を示す値となるまで縮合反応を実施した。所定の軟化温度を示した時点で反応物を取り出し、冷却して、樹脂2a~2gを得た。樹脂の特性値を表14に示す。

表14 線状ポリエステル樹脂 (Y)

ジオールA:ポリオキシプロピレンー(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロペン

ジオールB:ポリオキシエチレン-(2.0)-2,2-ビス(4-ヒドロキシフェニル)プロペン

結着樹脂として表15に示す組合せおよび配合量のポリエステル樹脂の合計93質量部と、キナクリドン顔料(クラリアント社製E 0 2)3質量部、カルナバワックス(東洋ペトロライド社製)3質量部、負帯電性の荷電制御剤(日本カーリット社製LR-147)1質量部を予備混合し、得られた混合物を2軸混練機を用いて160℃で溶融混練し、粗粉砕後、ジェットミル微粉砕機で微粉砕し、分級機でトナーの粒径を整え、平均粒径を5μmとした。得られた微粉末に対して、0.2質量%のシリカ(日本アエロジル社製Rー972)を加え、ヘンシェルミキサーで混合し付着させ、最終的にトナー40~47を得た。このトナーを非磁性1成分乾式複写機に実装し、初期画像を得、その性能を評価(ただし、非オフセット性の評価方法および定着性の評価方法は、ともに評価法4による評価)した。得られたトナー40~47の評価結果を表16に示した。

以上の結果から理解されるように、本発明のトナー40~47は、線速70mm/sという低中速度においても、いずれも130℃以下の良好な低温定着性を発現すると同時に、高いホットオフセット温度および最高定着温度を発現するため、40℃以上の広い定着温度幅を示した。

比較例5

結着樹脂として表15に示す組合せおよび配合量のポリエステル 樹脂の合計93質量部を用いること以外は、実施例6と同様の方法 で、トナーC15~C17を得た。その性能を評価(ただし、非オ フセット性の評価方法および定着性の評価方法は、ともに評価法4 による評価)した結果を表16に示した。

トナーC15はポリエステル樹脂(X)の軟化温度が150℃未満、質量平均分子量が25,000未満であるため、ホットオフセ

ット温度および最高定着温度が低くなり、その結果、定着温度幅は 35℃と狭いものとなった。

トナーC16は、ポリエステル樹脂(X)の配合量が5質量部未満であるため、ホットオフセット温度および最高定着温度が低くなり、その結果、定着温度幅は10℃と狭いものとなった。

トナーC 1 7 は、ポリエステル樹脂(X)として質量平均分子量が 1 0, 0 0 0 を越えるものを使用したため、最低定着温度が 1 5 0 ℃と高くなり、低温定着性に劣るものであった。

表15 トナー用結着樹脂

		1					-		
	# 1	ポリエステル樹脂	旨 (X)	ポリ	ポリエステル樹脂 (Y)	肾 (Y)	长	ポリエステル (Y)	(X)
	No.	軟化点	配合量	. •oN	軟化点	配合量	No.	軟化点	配合量
		(C)	(質量部)		(2)	(質量部)		(2)	(質量部)
トナー40	1c	175	20	2e	97	40	2a	108	40
17-41	1e	173	20	2e	97	40	2a ·	108	40
17-42	1c	175	20	2c	100	40	2a	108	40
トナー43	1f	175	20	2g	92	40	2b	103	40
17-44	11	175	20	2e	97	40	2a	108	40
17-45	1b	161	30	2e	97	70	ı	I	1
17-46	1c	175	30	2f	92	70	·	1	ı
17-41	1d	183	30	2f	92	70	ì	ı	l
17-C15	la	148	30	2e	97	20	ì	1	l
17-C16	1c	175	သ	2e	97	26	ı	-	1
17-C17	1c	175	20	pZ	115	80	_	1	1

定着温度幅 <u>ည</u> 뗭 33 45 8 45 ය 40 120 2 22 ध्य 最高定着温度(°C) (評価法4) ×280 188 175 8 165 185 175 175 170 165 140 かわか(温度 (C) (評価税4) ×200 185 175 185 170 185 175 8 165 140 185 最低定着温度(°C) (評価法4) 130 130 130 125 130 125 130 130 130 130 150 トナー評価結果 トナーC15 17-C16 トナーC17 トナー42 トナー45 トナー46 トナー40 トナー43 17-44 トナー41 トナー47 表16

産業上の利用可能性

本発明は、電子写真法、静電記録法や静電印刷法等における静電 荷像または磁気潜像の現像技術に有用である。

請求の範囲

- 1. 炭素数 3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂(A)と、炭素数 3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂であって該線状ポリエステル樹脂(A)とは異なる線状ポリエステル樹脂(B)とを含有し、各樹脂の全酸成分を100モル部とした場合の(線状ポリエステル樹脂(B)中における炭素数 3~10の脂肪族ジオール成分のモル部)/(線状ポリエステル樹脂(A)中における炭素数 3~10の脂肪族ジオール成分のモル部)/(線状ポリエステル樹脂(A)中における炭素数 3~10の脂肪族ジオール成分のモル部)が0.5~10の範囲にあるトナー用樹脂組成物。
- 2. 炭素数 3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂(A)と、炭素数 3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂であって該線状ポリエステル樹脂(A)とは異なる線状ポリエステル樹脂(B)と、ビニル系樹脂(C)とを含有し、各樹脂の全酸成分を100モル部とした場合の(線状ポリエステル樹脂(B)中における炭素数 3~10の脂肪族ジオール成分のモル部)/(線状ポリエステル樹脂(A)中における炭素数 3~10の脂肪族ジオール成分のモル部)が0.5~10の範囲にあるトナー用樹脂組成物。
- 3. 線状ポリエステル樹脂(A)を3~50質量%の量で含有する、請求項1記載のトナー用樹脂組成物。
- 4.線状ポリエステル樹脂(A)を3~50質量%、線状ポリエステル樹脂(B)を10~96質量%、ビニル系樹脂(C)を1~40質量%含有する、請求項2記載のトナー用樹脂組成物。
- 5. 線状ポリエステル樹脂(A)の軟化温度が、150~220 ℃の範囲にある、請求項1~4のいずれかに記載のトナー用樹脂組成物。

- 6.線状ポリエステル樹脂 (A)の軟化温度が、線状ポリエステル樹脂 (B)の軟化温度より20℃以上高い、請求項1~5のいずれかに記載のトナー用樹脂組成物。
- 7. 炭素数 3~10の脂肪族ジオール成分が、ネオペンチルグリコール、プロピレングリコールおよびシクロヘキサンジメタノールから選ばれる少なくとも1種のジオールを含有する成分である、請求項1~6のいずれかに記載のトナー用樹脂組成物。
- 8.線状ポリエステル樹脂(A)は、全酸成分を100モル部とした場合に、炭素数3~10の脂肪族ジオール成分を10~60モル部含有し、ガラス転移温度が50~75℃であり、質量平均分子量Mwが25,000~100,000であり、融点を持たない線状ポリエステル樹脂(a)であり、線状ポリエステル樹脂(B)は、全酸成分を100モル部とした場合に、炭素数3~10の脂肪族ジオール成分を55~100モル部含有し、ガラス転移温度が40~70℃であり、質量平均分子量Mwが2,000~10,000であり、融点を持たない線状ポリエステル樹脂(b)である、請求項1~7のいずれかに記載のトナー用樹脂組成物。
- 9.トナー化後に測定したガラス転移温度が45~70℃であり、軟化温度が90~140℃であり、120℃における溶融粘度が100~5000Pa・sであり、質量平均分子量Mwが8,000~60,000である、請求項1~8のいずれかに記載のトナー用樹脂組成物。
- 10.請求項1~9のいずれかに記載したトナー用樹脂組成物を結着樹脂として含有するトナー。
- 11. 炭素数 $3\sim1$ 0 の脂肪族ジオール成分を全カルボン酸成分 100 モル部に対して $10\sim6$ 0 モル部含有し、ガラス転移温度が $50\sim7$ 5 $\mathbb C$ の範囲にあり、質量平均分子量Mwが 25 , $000\sim$

100,000範囲にあり、融点を持たない樹脂であり、軟化温度が150~220℃の範囲にあり、酸価が10mgKOH/g以下であるトナー用線状ポリエステル樹脂(a1)。

12. 炭素数3~10の脂肪族ジオール成分が、ネオペンチルグ リコール、プロピレングリコールおよびシクロヘキサンジメタノー ルから選ばれる少なくとも1種である、請求項11に記載のトナー 用線状ポリエステル樹脂(a1)。

13.ジカルボン酸成分とジオール成分とを250~280℃の範囲の温度および200~500kPaの範囲の圧力下でエステル化反応させた後、250~300℃の範囲でありかつエステル化反応温度よりも5℃以上高い温度および1kPa以下の圧力下で縮重合して得られる、請求項11または12に記載のトナー用線状ポリエステル樹脂(a1)。

14. 請求項11~13のいずれかに記載したトナー用線状ポリエステル樹脂(a1)をバインダー樹脂として含有するトナー。

15.ジカルボン酸成分とジオール成分とを250~280℃の 範囲の温度および200~500kPaの範囲の圧力下でエステル 化反応させた後、250~300℃の範囲でありかつエステル化反 応温度よりも5℃以上高い温度および1kPa以下の圧力下で縮重 合する、トナー用線状ポリエステル樹脂(a1)の製造方法。

16.ジカルボン酸成分とジオール成分とからなる線状ポリエステル樹脂であって、芳香族ジカルボン酸を全カルボン酸成分中50モル%以上、および炭素数4~8の脂肪族ジオールを全カルボン酸成分100モル部に対して60モル部以上含有し、ガラス転移温度が40~70℃の範囲にあり、質量平均分子量Mwが4,000~10,000の範囲にあり、融点を持たない樹脂であり、軟化温度が90~120℃の範囲にあるトナー用線状ポリエステル樹脂(b

1).

17. 炭素数 4~8の脂肪族ジオールが、ネオペンチルグリコールである、請求項16に記載のトナー用線状ポリエステル樹脂(b)。

18.酸価が0.5~30mgKOH/gの範囲にある、請求項 16または17に記載のトナー用線状ポリエステル樹脂(b1)。

19. 請求項16~18のいずれかに記載したトナー用線状ポリエステル樹脂(b1)をトナー中に5質量%以上の量で含有するトナー。

20. 結着樹脂および着色剤を含有するトナーであって、結着樹脂の主成分がポリエステル樹脂からなり、このポリエステル樹脂はポリエステル樹脂(X)とポリエステル樹脂(Y)とを含み、ポリエステル樹脂(X)とポリエステル樹脂(Y)の配合比率が5/95~95/5(質量比)であり、ポリエステル樹脂(X)は質量平均分子量Mwが25,000~1000で軟化温度が150~220℃の線状ポリエステル樹脂であり、またポリエステル樹脂(Y)は質量平均分子量Mwが2,000~10,000の線状ポリエステル樹脂であり、またポリエステル樹脂(Y)は質量平均分子量Mwが2,000~10,000の線状ポリエステル樹脂であり、最低定着温度が130℃以下で定着温度幅が40℃以上であることを特徴とするトナー。

21. ポリエステル樹脂 (Y) が、軟化温度が100℃以下のポリエステル樹脂を含有する、請求項20に記載のトナー。

23. 請求項20~22のいずれかに記載のトナーにおいて用いられる結着樹脂。

(43) 国際公開日 2004 年7 月8 日 (08.07.2004)

PCT

(10) 国際公開番号 WO 2004/057419 A3

(51) 国際特許分類7: G03G 9/087, C08L 67/00, C08G 63/16

РСТ/JP2003/016179

(22) 国際出願日:

(21) 国際出願番号:

2003年12月17日(17.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

JP

(30) 優先権データ: 特願 2002-370447

2002年12月20日(20.12.2002) JP

特願 2002-370103

2002 年12 月20 日 (20.12.2002) JP 特願2003-13794 2003 年1 月22 日 (22.01.2003) JP 特願2003-24500 2003 年1 月31 日 (31.01.2003) JP

特願2003-24500 2003 年1 月31 日 (31.01.2003) 特願2003-27186 2003 年2 月4 日 (04.02.2003) 特願2003-68375 2003 年3 月13 日 (13.03.2003) JP 特願2003-274842 2003 年7 月15 日 (15.07.2003) JP

(71) 出願人 (米国を除く全ての指定国について): 三菱 レイヨン株式会社 (MITSUBISHI RAYON CO.,LTD.) [JP/JP]; 〒108-8506 東京都港区港南一丁目6番41号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 伊藤 弘一 (ITO,Hirokazu) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番地の2 三菱レイヨン株式会社 豊橋事業所内 Aichi (JP). 杉浦 将 (SUGIURA,Masaru) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番地の2 三菱レイヨン株式会社 豊橋事業所内 Aichi (JP). 原田 陽子 (HARADA,Yoko) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番地の2 三菱レイヨン株式会社 豊橋事業所内 Aichi (JP). 近藤 晃史 (KONDOU,Akifumi) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番地の2 三菱レイョン株式会社

/続葉有/

(54) Title: POLYESTER RESIN COMPOSITION FOR TONER AND TONER

(54) 発明の名称: トナー用ポリエステル樹脂組成物およびトナー

(57) Abstract: A resin composition for a toner which comprises (A) a linear polyester resin containing an aliphatic diol component having three to ten carbon atoms and (B) a linear polyester resin containing an aliphatic diol component having three to ten carbon atoms, which is different from said linear polyester resin (A); the resin composition for a toner which further comprises (C) a vinyl resin; and a toner comprising the resin composition for a toner as a binder resin. The toner is excellent in low temperature fixing characteristics, non-offset property, gloss characteristics and the like, and also is excellent with respect to the temperature width for the fixing thereof.

(57) 要約:

炭素数3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂(A)と、炭素数3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂であって該線状ポリエステル樹脂(A)とは異なる線状ポリエステル樹脂(B)とを含有し、またはさらにビニル系樹脂(C)を含有するトナー用樹脂組成物、およびこのトナー用樹脂組成物を結着樹脂として含有するトナー。低温定着性、非オフセット性、光沢性等に優れ、定着温度幅に優れたトナーを得ることができる。

WO 2004/057419 A3

豊橋事業所内 Aichi (JP). 大和 真哉 (YAMATO,Shinya) [JP/JP]; 〒440-8601 愛知県 豊橋市 牛川通四丁目 1 番 地の2 三菱レイヨン株式会社 豊橋事業所内 Aichi (JP).

- (74) 代理人: 青木 篤、外(AOKI,Atsushi et al.); 〒105-8423 東京都港区虎ノ門 三丁目 5 番 1 号 虎ノ門 3 7 森ビ ル 青和特許法律事務所 Tokyo (JP).
- (81) 指定国 (国内): CN, KR, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

添付公開書類:

- 一 国際調査報告書
- 補正書・説明書

(88) 国際調査報告書の公開日:

2004年10月7日

補正されたクレーム・説明書の公開日: 2005年3月17日

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

[2004年7月21日 (21.07.04) 国際事務局受理:出願当初の請求の範囲1及び2は補正された; 他の請求の範囲は変更なし。]

- 1. (補正後) 炭素数 3~10の脂肪族ジオール成分を含み軟化温度が150~220℃の範囲にある線状ポリエステル樹脂(A) と、炭素数 3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂であって該線状ポリエステル樹脂(A) とは異なる線状ポリエステル樹脂(B) とを含有し、各樹脂の全酸成分を100モル部とした場合の(線状ポリエステル樹脂(B) 中における炭素数 3~10の脂肪族ジオール成分のモル部) / (線状ポリエステル樹脂(A) 中における炭素数 3~10の脂肪族ジオール成分のモル部) が0.5~10の範囲にあるトナー用樹脂組成物。
- 2. (補正後) 炭素数 3~10の脂肪族ジオール成分を含み軟化温度が150~220℃の範囲にある線状ポリエステル樹脂(A)と、炭素数 3~10の脂肪族ジオール成分を含む線状ポリエステル樹脂であって該線状ポリエステル樹脂(A)とは異なる線状ポリエステル樹脂(B)と、ビニル系樹脂(C)とを含有し、各樹脂の全酸成分を100年ル部とした場合の(線状ポリエステル樹脂(B)中における炭素数 3~10の脂肪族ジオール成分のモル部)/(線状ポリエステル樹脂(A)中における炭素数 3~10の脂肪族ジオール成分のモル部)が0.5~10の範囲にあるトナー用樹脂組成物。
- 3.線状ポリエステル樹脂 (A)を3~50質量%の量で含有する、請求項1記載のトナー用樹脂組成物。
- 4.線状ポリエステル樹脂(A)を3~50質量%、線状ポリエステル樹脂(B)を10~96質量%、ビニル系樹脂(C)を1~40質量%含有する、請求項2記載のトナー用樹脂組成物。
 - 5. 線状ポリエステル樹脂 (A) の軟化温度が、150~220

℃の範囲にある、請求項1~4のいずれかに記載のトナー用樹脂組成物。

条約19条に基づく説明書

差替え用紙に記載した請求の範囲は最初に提出した請求の範囲と 以下のように関連する。

- (1) 請求項1および2を補正した。
- (2) 他の請求の範囲は補正しない。