Obstructions to deforming curves on a 3-fold, I

– a generalization of Mumford's example to a uniruled 3-fold–

向井 茂(京大・数理研)・那須 弘和(京大・数理研)

Mumford[2] は射影空間の Hilbert 概型 Hilb ℙ³ の生成的に非被約 (generically non-reduced) な既約成分を発見した. 具体的には次のとおりである.

例. $S_3\subset\mathbb{P}^3$ は非特異 3 次曲面で E はその中の直線, $C\subset S_3$ は S_3 上の線形系 $|4h+2E|\simeq\mathbb{P}^{37}$ に属する非特異曲線とする. このような C は $\mathrm{Hilb}\,\mathbb{P}^3$ の局所閉既約部分集合 $W=W^{56}$, $(|3H|\simeq\mathbb{P}^{19}$ 上の \mathbb{P}^{37} -束の開部分集合)によりパラメータづけられる. ただし,H は平面で h はそれの S_3 への制限である. このとき, $\mathrm{Hilb}\,\mathbb{P}^3$ は W に沿って生成的に非被約である.

ここでは次の 2 条件をみたす単線織 (uniruled) な 3-fold V にこれを拡張する .

- (A) V は有理曲線 $E\simeq \mathbb{P}^1\subset V$ とその変形でもって覆われる.(よって , 法束 $N_{E/V}$ は大域切断で生成される.)
- (B) $V\supset S\supset E$ なる非特異曲面 S でもって $(E^2)_S=-1$ と $h^1(\mathcal{O}_S(S))=p_q(S)=0$ をみたすものが存在する .

上の例 $(V = \mathbb{P}^3)$ 以外にも cubic 3-fold や \mathbb{P}^1 束 (底曲面は $p_g = 0$) 等がこの 2 条件をみたす.

定理. 非特異射影的3次元多様体Vが上の2条件をみたすなら,その上の非特異曲線のHilbert 概型は生成的に非被約な既約成分 \tilde{W} をもつ.

 $ilde{W}$ の一般元 $C\subset V$ に対して,C を含む S の変形が一意的に存在する.しかし,そこから脱出しようとする C の 1 位無限小変形 $^*\alpha$ があるた $ilde{^*\mathrm{Spec}\,k[t]/(t^2)}$ 上の変形.法束 $N_{C/V}$ の大域切断と同一視する.

めに対応する点 [C] における Hilbert 概型の接空間は \tilde{W} の次元より大きい、このような 1 位無限小変形 α がすべて $\mathrm{obstructed}^\dagger$ であるために \tilde{W} が Hilbert 概型の生成的に非被約な成分になる.

 $\operatorname{Curtin}[1]$ や $\operatorname{Nasu}[3]$ による $C\subset S_3$ の \mathbb{P}^3 内での 1 位無限小変形 α に対する障害類 $\operatorname{ob}(\alpha)\in H^1(N_{C/V})$ の計算 (実質的には法束の射影 $\pi:N_{C/V}\to N_{S/V}\big|_C$ による像 $\pi(\operatorname{ob}(\alpha))$)を一般の 3-fold V 内での変形に拡張することによって定理を証明する.

- (1) $C \subset S$ をうまく選ぶ.
- (2) $C\subset V$ の 1 位無限小変形 α の射影 $\pi(\alpha)$ が $N_{S/V}(E)$ の大域切断 v $(S\subset V$ の極付き 1 位無限小変形)に持ち上がる.
- (3) vの「障害類」のEへの制限に相当するもの $(\mathrm{ob}(v)\big|_E$ で表す) があって,カップ積の等式 $\pi(\mathrm{ob}(lpha))\cup\mathbf{k}_C=\mathrm{ob}(v)\big|_E\cup\mathbf{k}_E$ をみたす. ‡
- (4) $\operatorname{ob}(v)\big|_E\in H^1(\mathcal{O}_E(2E))$ は法束の完全列

$$0 \longrightarrow N_{E/S} \longrightarrow N_{E/V} \longrightarrow N_{S/V}|_E \longrightarrow 0$$

(条件 (A) より分裂しない) の拡大類と交わり $C\cap E$ から計算でき、零でない. さらに , C の選び方より , $\operatorname{ob}(v)\big|_E\cup \mathbf{k}_E$ も零でない.

(5) よって, α の障害類 $ob(\alpha)$ が零でない.

References

- [1] D. J. Curtin, Obstructions to deforming a space curve, *Trans. Amer. Math. Soc.* **267**(1981), 83–94.
- [2] D. Mumford, Further pathologies in algebraic geometry, *Amer. J. Math.* **84**(1962), 642–648.
- [3] H. Nasu, Obstructions to deforming space curves and non-reduced components of the Hilbert scheme, *Publ. Res. Inst. Math. Sci.*, **42**(2006), 117–141.

 $^{^\}dagger 2$ 位無限小変形, すなわち $\operatorname{Spec} k[t]/(t^3)$ 上の変形に持ち上がらない.

 $^{{}^{\}ddagger}{f k}_C,{f k}_E$ は構造層のイデアル層による拡大類を表す.