1 Simplicial Complexes.

1.1 Definitions and Preliminaries.

Definition 1.1.1. Let $V = \{v_0, \dots, v_n\}$ be a finite set. An abstract simplicial complex K on V is a collection of nonempty finite subsets of V such that

- (a) for each $v_i \in V$, $\{v_i\} \in K$.
- (b) for any $\sigma \in K$, if $\emptyset \neq \tau \subseteq \sigma$ then $\tau \in K$.

The set V(K) = V is said to be the *vertex* set of K.

Remark. Abstract simplicial complexes are combinatorial representations of geometric simplicial complexes. In particular, any geometric simplicial complex can be expressed as an abstract simplicial complex, and every abstract simplicial complex K has a geometric realization |K|: choose an affinely independent embedding $f: V(K) \longrightarrow \mathbf{R}^n$, and identify each simplex $\sigma \in K$ with the geometric simplex spanned by $f(\sigma)$. For example,

$$K = \{\{v_0\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}, \{v_0, v_1\}, \{v_0, v_2\}, \{v_1, v_2\}, \{v_3, v_4\}, \{v_0, v_1, v_2\}\}\}$$

Definition 1.1.2. Let K and L be simplicial complexes. A function $f: V(K) \longrightarrow V(L)$ is a simplicial map if for any simplex $\sigma = \{v_0, \ldots, v_n\} \in K$, the images $\{f(v_0), \ldots, f(v_n)\}$ is a simplex in L. That is, $f(\sigma) \in L$. A bijective simplicial map is a simplicial isomorphism, and we say K and L are isomorphic, $K \cong L$, if there is a simplicial isomorphism between them.

Remark. The collection of simplicial complexes together with simplicial maps forms the category **SCpx** of simplicial complexes. Note that even though we are only considering finite simplicial complexes, the collection of simplicial complexes is a proper class.

Definition 1.1.3. A set σ with $|\sigma| = n+1$ is said to be an n-simplex. The dimension $\dim(K)$ of a simplicial complex K is the maximum of the dimension of its simplices. The n-skeleton $K^{(n)}$ of K is the set of all n-simplices in K (in particular $V(K) = K^{(0)}$), and the c-vector of K is the tuple $c_K := (|K^{(0)}|, \ldots, |K^{(\dim(K))}|)$. A simplicial complex $L \subseteq K$ is said to be a subcomplex of K, and for a simplex $\sigma \in K$ we denote by $\bar{\sigma}$ the subcomplex generated by σ (note that $\bar{\sigma} = \mathcal{P}(\sigma)$). For two simplices $\sigma, \tau \in K$ with $\tau \subseteq \sigma$, we say that τ is a face of σ and σ is a coface of τ .

Definition 1.1.4. Let K be a simplicial complex. Then $\sigma^{(n)}$ denotes an n-simplex in K, and write $\tau < \sigma^{(n)}$ to mean $\tau \subseteq \sigma^{(n)}$; $\dim(\sigma) - \dim(\tau)$ is the codimension of τ with respect to σ . The boundary of a simplex σ is $\partial_K(\sigma) := \partial(\sigma) = \{\tau \in K^{(\dim(\sigma)-1)} : \tau < \sigma\}$. A maximal simplex in K, that is, a simplex σ which is not properly contained in any other simplex in K, is said to be a facet of K.

Proposition 1.1.5. Let K be a simplicial complex and let σ be an n-simplex in K. Then $|\partial(\sigma)| = \dim(\sigma) + 1$.

Proof. Recall that $|\sigma| = n + 1$. Each face $\tau \in \partial(\sigma)$ is precisely a subset of σ with $|\tau| = |\sigma| - 1 = n$, of which there are $\binom{n+1}{n} = n + 1 = \dim(\sigma) + 1$.

Definition 1.1.6. Let V be a finite set and $\mathcal{H} \subseteq \mathcal{P}(V) \setminus \{\emptyset\}$. The simplicial complex generated by \mathcal{H} , denoted by $\langle \mathcal{H} \rangle$, is the smallest simplicial complex containing \mathcal{H} .

Proposition 1.1.7. If \mathcal{H} is a simplicial complex then $\langle \mathcal{H} \rangle = \mathcal{H}$.

¹Wikipedia. Abstract simplicial complex — Wikipedia, The Free Encyclopedia. 2021. URL: https://en.wikipedia.org/wiki/Abstract_simplicial_complex.

Proof. By definition, $\mathcal{H} \subseteq \langle \mathcal{H} \rangle$. Since \mathcal{H} is a simplicial complex containing \mathcal{H} , $\langle \mathcal{H} \rangle \subseteq \mathcal{H}$. Thus $\langle \mathcal{H} \rangle = \mathcal{H}$. \square

Proposition 1.1.8. If K is a simplicial complex and $\sigma \in K$, then $\bar{\sigma} = \langle \{\sigma\} \rangle$.

Proof. By definition, $\bar{\sigma} \subseteq \langle \{\sigma\} \rangle$, since $\langle \{\sigma\} \rangle$ is a simplicial complex which contains σ . Similarly, $\bar{\sigma}$ is a simplicial complex containing σ , and hence $\langle \{\sigma\} \rangle \subseteq \bar{\sigma}$. Thus $\bar{\sigma} = \langle \{\sigma\} \rangle$.

Some Examples.

Let $V_n = \{v_0, \dots, v_n\}$ throughout.

Example 1.1.9. We will (through some abuse of notation) denote by 0 the *trivial simplicial complex* $\langle \{V_0\} \rangle$. We may further abuse notation by identifying the simplicial complex 0 with its point 0.

Example 1.1.10. The simplicial complex $\Delta^n := \mathcal{P}(V_n) \setminus \{\emptyset\}$ is the (combinatorial) *n-simplex*.

The simplicial complex $\Delta S^n := \Delta^{n+1} \setminus V_{n+1}$ is the *simplicial n-sphere*. Its geometric realization is homeomorphic to the usual *n*-sphere S^n ; it may be convenient to identify ΔS^n with S^n

Example 1.1.11. Any simplicial complex K of dimension 1 forms a graph $(V(K), K^{(1)})$.

Definition 1.1.12. Given a simplicial complex K, let $v \notin V(K)$ and define the cone over K by

$$CK \coloneqq K \cup \{v\} \cup \{\sigma \cup \{v\} : \sigma \in K\}.$$

Proposition 1.1.13. The cone over a simplicial complex K is a simplicial complex.

Proof. Let $\sigma \in CK$. We wish to show that any subset $\tau \subseteq \sigma$ is an element of CK. If $v \notin \sigma$, then $\sigma \in K$ and so $\tau \in K \subseteq CK$. If $v \in \sigma$, then let $\sigma' = \sigma \setminus \{v\} \in K$. If $v \notin \tau$, then $\tau \subseteq \sigma'$ and hence $\tau \in CK$. If $v \notin \tau$, then $\tau \subseteq \sigma' \in K$, so $\tau \setminus \{v\} \in K$ and hence $\tau = (\tau \setminus \{v\}) \cup \{v\} \in CK$.

Example 1.1.14. As with the *n*-sphere, common topological spaces can be *triangulated* and represented as simplicial complexes:

The torus T^2 , $c_{T^2} = (9, 27, 18)$

The Klein bottle K, $c_K = (9, 27, 18)$

Definition 1.1.15. Let K be a simplicial complex and let $n = \dim(K)$, and put $c_i = |K^{(i)}|$. The Euler characteristic $\chi(K)$ of K is given by

$$\chi(K) = \sum_{i=0}^{n} (-1)^{i} c_{i}(K).$$

1.2 Simple Homotopy.

Definition 1.2.1. Let K be a simplicial complex and suppose we have $\sigma^{(d-1)} < \tau^{(d)} \in K$ such that τ is the only coface of σ . Then the simplicial complex $K \setminus \{\sigma, \tau\}$ is an elementary collapse of K, denoted by $K \setminus \{\sigma, \tau\}$. Now suppose $\sigma^{(d-1)} < \tau^{(d)} \notin K$, where every other face of τ is in K. Then $K \nearrow K \cup \{\sigma, \tau\}$ in an elementary expansion of K. The pair $\{\sigma, \tau\}$ is a free pair of simplices. Two simplicial complexes K and L are said to be simple homotopy equivalent or of the same simple homotopy type, denoted K Kern.05pt \land L if there is a series of elementary collapses and expansions from K to L. If K Kern.05pt \land 0, K is said to have the simple homotopy type of a point.

Remark. This is a refinement of the typical notion of homotopy equivalence. ²

Proposition 1.2.2. Let $\{\sigma, \tau\}$ be a free pair of a simplicial complex K. Then $K \setminus \{\sigma, \tau\}$ is a simplicial complex.

Proof. Since τ is the only coface of σ , it must be that τ is a facet of K (for otherwise σ would have another coface), so we may remove τ ; we may also remove σ because τ is the only coface of σ , so σ is a facet of $K \setminus \{\tau\}$, hence $K \setminus \{\sigma, \tau\}$ is a simplicial complex.

Proposition 1.2.3. Simple homotopy equivalence of simplicial complexes is an equivalence relation.

Proof. Let K be a simplicial complex. Of course K is simple homotopy equivalent to itself, since doing no collapses or expansions preserves K. Now let L be a simplicial complex and K $K^{\text{ern.05pt}} \land L$. Then each elementary collapse can be undone by an elementary expansion and vice versa, so L $K^{\text{ern.05pt}} \land K$. Finally, let K be a simplicial complex and suppose K $K^{\text{ern.05pt}} \land L$ and $K^{\text{ern.05pt}} \land K$. Then there is a series of elementary collapses from K to K, and from K to K so simply concatenating these yields a series of elementary collapses and expansions from K to K. Hence K $K^{\text{ern.05pt}} \land K$ and so simple homotopy equivalence is an equivalence relation.

Definition 1.2.4. A property $\alpha(K)$ of a simplicial complex K is a *simple homotopy invariant* if for any L Kern.05pt \wedge K, we have $\alpha(L) = \alpha(K)$.

Proposition 1.2.5. Th Euler characteristic $\chi(K)$ is a simple homotopy invariant.

Proof. Let $\{\sigma^{(d-1)}, \tau^{(d)}\}$ be a free pair in K and let $K' = K \setminus \{\sigma, \tau\}$. Then if $c_K = (c_0, \dots, c_n)$ then the elementary collapse $K \setminus K'$ has $c_{\xi}K'\} = (c_0, \dots, c_{d-1} - 1, c_d - 1, \dots, c_n)$ so $\chi(K') = \chi(K) + (-1)^{d-1} + (-1)^d = \chi(K) + 1 - 1 = \chi(K)$. Similarly, if K' is the result of an elementary expansion then $\chi(K') = \chi(K)$. By induction, $\chi(K)$ is invariant under any finite number of elementary collapses and expansions, so χ is a simple homotopy invariant.

Definition 1.2.6. A simplicial complex K is *collapsible* if there is a sequence of elementary collapses

$$K = K_0 \searrow \cdots \searrow K_n = 0.$$

Definition 1.2.7. Let K and L be (disjoint) simplicial complexes. Their join K*L is the simplicial complex

$$K * L := K \sqcup \mathcal{L} \sqcup \{ \sigma \sqcup \tau : \sigma \in K, \tau \in L \}.$$

Remark. The cone over K is a special case of a join: $CK \cong K * 0$.

Definition 1.2.8. Let $v, w \notin K$, $v \neq w$. The suspension of a simplicial complex K is defined by $\Sigma K := K * \{v, w\}$.

Proposition 1.2.9. Let σ be a facet of a simplicial complex K. Let $CK = K * \{v\}$. Then $CK \setminus \{\sigma, \sigma \cup \{v\}\} = C(K \setminus \{\sigma\})$.

²More details (and generality) can be found in Marshall M. Cohen's A Course in Simple-Homotopy Theory.

Proof.

$$\begin{split} CK \setminus \{\sigma, \sigma \cup \{v\}\} &= (K * \{v\}) \setminus \{\sigma, \sigma \cup \{v\}\} \\ &= (K \cup \{v\} \cup \{\tau \cup \{v\} : \tau \in K\}) \setminus \{\sigma, \sigma \cup \{v\}\} \\ &= (K \setminus \{\sigma\}) \cup \{v\} \cup \{\tau \cup \{v\} : \tau \in (K \setminus \{\sigma\})\} \\ &= (K \setminus \{\sigma\}) * \{v\} \\ &= C(K \setminus \{\sigma\}) \end{split}$$

Proposition 1.2.10. The cone over any simplicial complex is collapsible.

Proof. By induction on n = |K|. Of course for n = 0, CK = C0 is collapsible. Now suppose that for some $n \ge 1$, any cone over n simplices is collapsible. Then let K be a simplicial complex with n + 1 simplices, and consider $CK = K * \{v\}$. Notice that if σ is a facet of K then $\{\sigma, \sigma \cup \{v\}\}$ is a free pair in CK, so $CK \setminus CK \setminus \{\sigma, \sigma \cup \{v\}\}$. But $CK \setminus \{\sigma, \sigma \cup \{v\}\} = C(K \setminus \{\sigma\})$ is a cone over n simplices and hence is contractible by the inductive hypothesis. Thus $CK \setminus C(K \setminus \{\sigma\}) \setminus 0$ so by induction every cone is collapsible.

Proposition 1.2.11. If $K \setminus H$ and $H \setminus L$, then $K \text{ Kern.05pt} \land H \text{ Kern.05pt} \land L$.

Proof. Simple homotopy involves expansions and collapses.

Remark. There exist simplicial complexes with the simple homotopy type of a point but are not collapsible, one example being the *dunce hat* complex.³

³Bruno Benedetti and Frank H. Lutz. "The dunce hat in a minimal non-extendably collapsible 3-ball". In: *Electronic Geometry Models* 2013.10.001 (2013).