Computer System Architecture

DR. Howida Youssry

REGISTER TRANSFER LANGUAGE

- A digital system is an interconnection of digital hardware modules that accomplish a specific information processing task.
- The various modules are interconnected with common data and control paths to form a digital computer system.

General Computer organization

Hardware Organization of Digital Computer

Hardware organization of a digital computer is defined by specifying:

- The set of register it contains and their function.
- The sequence of micro-operations performed on the binary information stored in the registers.
- The control that initiates the sequence of microoperations

Digital Computer = Registers + Microoperations Hardware + Control Functions

MICROOPERATION

An elementary operation performed during one clock pulse, on the information stored in one or more registers

 $R \leftarrow f(R, R)$

f: shift, count, clear, load, add,...

MICRO-OPERATIONS

Four types of microoperations

- Register transfer microoperations
- Arithmetic microoperations
- Logic microoperations
- Shift microoperations

REGISTER TRANSFER LANGUAGE (RTL)

- This is a hardware description language for digital system design.
- It allows you to specify the data transfers and data manipulation that can take place in a digital system.
- The symbolic notation used to describe the microoperation transfer among registers provides an organized and concise manner

Register Transfer

Basic Symbols for Register Transfers

Symbol	Description	Examples
Letters& numerals	Denotesaregister	MAR,R2
Parenthesis()	Denotesapartofa register	R2(0-7),R2(L)
Arrow←	Denotestransferof information	R2←R1
Comma,	Separatestwo microoperations	R2←R1,R1←R2

- Computer registers are designated by capital letters (sometimes followed by numerals) to denote the function of the register
 - R1: processor register
 - MAR: Memory Address Register (holds an address for a memory unit)
 - PC: Program Counter
 - IR: Instruction Register
 - SR: Status Register

• The individual flip-flops in an n-bit register are numbered in sequence from 0 to n-1 (from the right position toward the left position)

R1

Register R1

7 6 5 4 3 2 1 0

Showing individual bits

A block diagram of a register

Other ways of drawing the block diagram of a register:

Register Notation

- Information transfer from one register to another is described by a replacement operator: $R2 \leftarrow R1$
- This statement denotes a transfer of the content of register R1 into register R2
- The transfer happens in one clock cycle
- The content of the R1 (source) does not change
- The content of the R2 (destination) will be lost and replaced by the new data transferred from R1

- Conditional transfer occurs only under a control condition
- Representation of a (conditional) transfer If (P=1) then $R2 \leftarrow R1$
- A binary condition (P equals to 0 or 1) determines when the transfer occurs
- The content of R1 is transferred into R2 only if P is 1

Hardware implementation of a controlled transfer:

 $P: R2 \leftarrow R1$

Block diagram:

Timing diagram Clock _

Synchronized with the clock

Basic Symbols for Register Transfers				
<u>Symbol</u>	<u>Description</u>	<u>Examples</u>		
Letters& numerals	Denotesaregister	MAR,R2		
Parenthesis()	Denotesapartofa register	R2(0-7),R2(L)		
Arrow←	Denotestransferof information	R2←R1		
Comma,	Separatestwo microoperations	R2←R1,R1←R2		

- Paths must be provided to transfer information from one register to another
- A Common Bus System is a scheme for transferring information between registers in a multiple-register configuration
- A bus: set of common lines, one for each bit of a register, through which binary information is transferred one at a time
- Control signals determine which register is selected by the bus during each particular register transfer

Solution: Common Bus Solution

Common bus: is a set of common lines ,one for each bit of a register.

Control signals determine which register is the source, and which is the destination

B← A

Dest ← Source

means that: Bus \leftarrow Source, then Dest \leftarrow Bus \leftarrow Bus \leftarrow Bus

• Bus selection: two selection lines S1 and S0 are connected to the selection inputs of all four multiplexers.

S ₁	$oxed{\mathbf{S}_0}$	Registerselected
0	0	A
0	1	В
1	0	C
1	1	D

- The transfer of information from a bus into one of many destination registers is done:
 - By connecting the bus lines to the inputs of all destination registers and then:
 - activating the load control of the particular destination register selected

BUS
$$\leftarrow$$
C, R1 \leftarrow BUS

- The content of register C is placed on the bus
- content of bus is loaded into register R1
- It is equivalent to: $R1 \leftarrow C$ Transfer from bus to a destination register.

From bus to register : R ← bus

From bus to register : R ← bus

Memory Transfer

Read operation: The transfer of information from a memory word to outside environment.

> Read : DR \leftarrow M[AR] (Bus \leftarrow M[AR], DR \leftarrow Bus)

Write operation: The transfer of new information to be stored in memory.

> Write : $M[AR] \leftarrow R1$ (Bus \leftarrow R1, $M[AR] \leftarrow$ Bus)

Note:

AR: address register

DR: data register

4-3 Bus and Memory Transfers: Memory Transfer

- Memory read : Transfer from memory
- Memory write: Transfer to memory
- Data being read or wrote is called a memory word (called M)
- It is necessary to specify the address of M when writing /reading memory
- This is done by enclosing the address in square brackets following the letter M
- Example: M[0016] : the memory contents at address 0x0016

Bus and Memory Transfers: Memory Transfer

- Assume that the address of a memory unit is stored in a register called the Address Register AR
- Lets represent a Data Register with DR, then:
 - Read: $DR \leftarrow M[AR]$
 - Write: $M[AR] \leftarrow DR$

4-3 Bus and Memory Transfers: Memory Transfer

