Subreddit Classification & NLP

Distinguishing between r/TIFU & r/AITA

The Question

How well can we distinguish between post belonging to one of the two popular subreddits;

/r/TIFU

14.2m subs

/r/AmITheAsshole

632k subs

/r/TIFU

Short for 'Today, I F***ed Up', TIFU is always there for your daily dose of cringe, and a good laugh after it all.

→ Honest

Users share recent embarrassing experiences in painful detail

→ Humble

Posters understand their causal role in the catastrophe

→ Humorous

Playful banter and schadenfreude are the main attraction

/r/amithea**hole

Often abbreviated AITA, this subreddit serves as a court of public opinion to those desperate enough to seek the approval of random strangers on the internet.

- → Desperate If you're comin' here for help, this isn't the only kind you need.
- Judgemental Readers get to play judge Judy
- → Scandalous I'm just here for the trainwreck

Collecting the Data

- 1. Iteratively acquire .JSONs for each subreddit using the Reddit API
- 2. Extract the text portion from each post and assemble a corpus
- 3. Remove irrelevant HTML or markdown substrings (e.g. \n, 'www')
- 4. Tokenize strings and vectorize documents to obtain a bag of words
- 5. Bob has now become your uncle!

CountVectorizer vs TF-IDF

Using performance of a Logistic Regression Classifier for comparison:

```
cvec_params={
    'cvec_max_features':[3000,4000,5000],
    'cvec_max_df':[.9,.94,.98],
    'cvec_min_df':[2,4,6],
    'cvec_ngram_range':[(1,1),(1,2),(1,3)],
    'logreg_penalty':['ll','l2'],
    'logreg_C':[.4,.6,.8,1],
}
```

```
tfidf_params={
    'tfidf_max_features':[3000,4000,5000],
    'tfidf_max_df':[.9,.94,.98],
    'tfidf_min_df':[2,4,6],
    'tfidf_ngram_range':[(1,1),(1,2),(1,3)],
    'logreg_penalty':['ll','l2'],
    'logreg_C':[.4,.6,.8,1],
}
```

95.88% Accuracy

90.44% Accuracy

CountVectorizer vs TF-IDF

Using performance of a Logistic Regression Classifier for comparison:

```
cvec_params={
    'cvec_max_features':[3000,4000,5000],
    'cvec_max_df':[.9,.94,.98],
    'cvec_min_df':[2,4,6],
    'cvec_ngram_range':[(1,1),(1,2),(1,3)],
    'logreg__penalty':['11','12'],
    'logreg__C':[.4,.6,.8,1],
}
```

95.88% Accuracy

```
tfidf_params={
    'tfidf_max_features':[3000,4000,5000],
    'tfidf_max_df':[.9,.94,.98],
    'tfidf_min_df':[2,4,6],
    'tfidf_ngram_range':[(1,1),(1,2),(1,3)],
    'logreg_penalty':['11','12'],
    'logreg_C':[.4,.6,.8,1],
}
```

90.44% Accuracy

_

What is /r/TIFU saying?

	Word	AITA Count	TIFU Count	AITA Tf-Idf Position	TIFU Tf-Idf Position	difference
2018	forget	5	41	2672	561	2111
1920	grabbed	6	65	2437	361	2076
1918	finger	6	64	2434	365	2069
1930	tongue	6	47	2463	502	1961
2011	wet	5	26	2650	847	1803
1891	corner	6	37	2369	624	1745

_

What is /r/AITA saying?

20	Word	AITA Count	TIFU Count	AITA Tf-Idf Position	TIFU Tf-Idf Position	difference
470	comfortable	46	6	473	2673	-2200
471	cook	46	6	474	2653	-2179
774	advantage	26	5	791	2950	-2159
2018	forget	5	41	2672	561	2111
790	responsibility	25	5	808	2903	-2095
1920	grabbed	6	65	2437	361	2076

Relative Term Frequency

Modelling: Accuracy

Model:	Train:	Test:
Multinomial Naive Bayes	95.2%	91.3%
Logistic Regression	98.1%	95.2%
K Nearest Neighbours	100%	59.6%
AdaBoost (Decision Tree)	100%	96.1%
Random Forest	94.1%	94.4%
Support Vector Classifier	99.5%	95.0%
Bagging Classifier (Decision Tree)	99.5%	94.1%

Modelling: Accuracy

Model:	Train:	Test:
Multinomial Naive Bayes	95.2%	91.3%
Logistic Regression	98.1%	95.2%
K Nearest Neighbours	100%	59.6%
AdaBoost (Decision Tree)	100%	96.1%
Random Forest	94.1%	94.4%
Support Vector Classifier	00.50/	05.00/
	99.5%	95.0%

Winner Winner Chicken Dinner

An adaptively boosted decision tree classifier can differentiate between posts made to the subreddits /r/TIFU and /r/AmITheAsshole with ~96% accuracy. Great success!

AdaBoost (Decision Tree) Parameters:

Learning rate: 0.8

Number of Estimators: 60

Confusion Matrix:

	/r/TIFU post	/r/AITA post
Predicted /r/TIFU	190	4
Predicted /r/AITA	10	153

Thank You!