

CHANDIGARH UNIVERSITY UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Submitted by:	Submitted To: Ajay Kumar (E13141)
Subject Name:	Machine Learning Lab
Subject Code:	20CSP-317
Branch:	CSE
Semester:	5th

LAB INDEX

Sr.	Program	Date		Sign			
No			LW	VV	FW	Total	
			(12)	(8)	(10)	(30)	
1.							
2.							
3.							
4.							
5.							
1							

Experiment-2

Aim/Overview of the practical: To perform Data Visualization

Code and output:

Importing Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

Reading the data

Beijing=pd.read_csv("BeijingPM20100101_20151231.csv") Beijing.head()

```
In [2]: Beijing=pd.read_csv("BeijingPM20100101_20151231.csv")
Beijing.head()
```

Out[2]:

	No	year	month	day	hour	season	PM_Dongsi	PM_Dongsihuan	PM_Nongzhanguan	PM_US Post	DEWP	HUMI	PRES	TEMP	cbwd	lws	precipitation	lp
0	1	2010	1	1	0	4	NaN	NaN	NaN	NaN	-21.0	43.0	1021.0	-11.0	NW	1.79	0.0	
1	2	2010	1	1	1	4	NaN	NaN	NaN	NaN	-21.0	47.0	1020.0	-12.0	NW	4.92	0.0	
2	3	2010	1	1	2	4	NaN	NaN	NaN	NaN	-21.0	43.0	1019.0	-11.0	NW	6.71	0.0	
3	4	2010	1	1	3	4	NaN	NaN	NaN	NaN	-21.0	55.0	1019.0	-14.0	NW	9.84	0.0	
4	5	2010	1	1	4	4	NaN	NaN	NaN	NaN	-20.0	51.0	1018.0	-12.0	NW	12.97	0.0	
4																		-

Beijing.shape (52584, 18)

Beijing.columns

Calculating the percentage of NaN values in the Data set

Beijing.isnull().sum()

No	0
year	0
month	0
day	0
hour	0
season	0
PM_Dongsi	27532
PM_Dongsihuan	32076
PM_Nongzhanguan	27653
PM US Post	2197
DEWP	5
HUMI	339
PRES	339
TEMP	5
cbwd	5
IWS	5
precipitation	484
Iprec	484
dtype: int64	

Beijing.isnull().mean()*100

0.000000 No year 0.000000 month 0.000000 0.000000 day hour 0.000000 season 0.000000 PM_Dongsi 52.358132 PM_Dongsihuan 60.999544 PM_Nongzhanguan 52.588240 PM US Post 4.178077 DEWP 0.009509 HUMT 0.644683 PRES 0.644683 TEMP 0.009509 cbwd 0.009509 0.009509 precipitation 0.920432 Iprec 0.920432 dtype: float64

NaN_percentage = pd.DataFrame(Beijing.isnull().mean()*100,columns=["NaN %age"]).reset_index().sort_values(by='NaN %age',ascending=False)

NaN_percentage.rename(columns={"index":"Feature"},inplace=True)

Visualization for dropping NaN values

plt.figure(figsize=(8,3.5))
sns.barplot(x="Feature",y="NaN %age",data=NaN_percentage)
plt.xticks(rotation=90)

for f in Beijing.columns:

if(Beijing[f].isnull().mean()*100>30):

Beijing.drop(f,inplace=True,axis=1)

Beijing.dropna(inplace=True)

Beijing.shape

(49579, 15)

Beijing.reset_index(inplace=True)

#Dropping unecessary features

Beijing.drop(["index","No"],axis=1,inplace=True)
Beijing.head()

	year	month	day	hour	season	PM_US Post	DEWP	HUMI	PRES	TEMP	cbwd	lws	precipitation	Iprec
0	2010	1	1	23	4	129.0	-17.0	41.0	1020.0	-5.0	cv	0.89	0.0	0.0
1	2010	1	2	0	4	148.0	-16.0	38.0	1020.0	-4.0	SE	1.79	0.0	0.0
2	2010	1	2	1	4	159.0	-15.0	42.0	1020.0	-4.0	SE	2.68	0.0	0.0
3	2010	1	2	2	4	181.0	-11.0	63.5	1021.0	-5.0	SE	3.57	0.0	0.0
4	2010	1	2	3	4	138.0	-7.0	85.0	1022.0	-5.0	SE	5.36	0.0	0.0

#Data processing on numerical features

Beijing_numerical=Beijing.select_dtypes(exclude="object").copy()

Beijing_numerical.head()

	year	month	day	hour	season	PM_US Post	DEWP	HUMI	PRES	TEMP	lws	precipitation	Iprec
0	2010	1	1	23	4	129.0	-17.0	41.0	1020.0	-5.0	0.89	0.0	0.0
1	2010	1	2	0	4	148.0	-16.0	38.0	1020.0	-4.0	1.79	0.0	0.0
2	2010	1	2	1	4	159.0	-15.0	42.0	1020.0	-4.0	2.68	0.0	0.0
3	2010	1	2	2	4	181.0	-11.0	63.5	1021.0	-5.0	3.57	0.0	0.0
4	2010	1	2	3	4	138.0	-7.0	85.0	1022.0	-5.0	5.36	0.0	0.0

Visualizing the Time series data for Yearly trends

```
\begin{split} f &= \text{["year","hour","month","day","season"] sns.set()} \\ plt.figure(figsize=(20,20)) \text{ for i,c in} \\ enumerate(Beijing_numerical.drop(f,axis=1).columns): } &\text{ if c} \\ \text{not in f:} &\text{ plt.subplot(4,4,i+1)} \\ &\text{ plt.plot(Beijing_numerical.groupby("year").mean()[c])} \\ plt.xlabel(c) \end{split}
```


Preparing time series data for visulizing Monthly trends dates=[]

```
for i in range(Beijing.shape[0]):

lst=[str(Beijing["year"][i]),str(Beijing["month"][i])]

st="-" s=st.join(lst)

dates.append(s)
```

Beijing["Date"]=dates Beijing.head()

	year	month	day	hour	season	PM_US Post	DEWP	HUMI	PRES	TEMP	cbwd	lws	precipitation	Iprec	Date
0	2010	1	1	23	4	129.0	-17.0	41.0	1020.0	-5.0	cv	0.89	0.0	0.0	2010-1
1	2010	1	2	0	4	148.0	-16.0	38.0	1020.0	-4.0	SE	1.79	0.0	0.0	2010-1
2	2010	1	2	1	4	159.0	-15.0	42.0	1020.0	-4.0	SE	2.68	0.0	0.0	2010-1
3	2010	1	2	2	4	181.0	-11.0	63.5	1021.0	-5.0	SE	3.57	0.0	0.0	2010-1
4	2010	1	2	3	4	138.0	-7.0	85.0	1022.0	-5.0	SE	5.36	0.0	0.0	2010-1

Beijing["Date"]=pd.to_datetime(Beijing["Date"])
Beijing.head()

	year	month	day	hour	season	PM_US Post	DEWP	нимі	PRES	TEMP	cbwd	lws	precipitation	Iprec	Date
0	2010	1	1	23	4	129.0	-17.0	41.0	1020.0	-5.0	CV	0.89	0.0	0.0	2010-01-01
1	2010	1	2	0	4	148.0	-16.0	38.0	1020.0	-4.0	SE	1.79	0.0	0.0	2010-01-01
2	2010	1	2	1	4	159.0	-15.0	42.0	1020.0	-4.0	SE	2.68	0.0	0.0	2010-01-01
3	2010	1	2	2	4	181.0	-11.0	63.5	1021.0	-5.0	SE	3.57	0.0	0.0	2010-01-01
4	2010	1	2	3	4	138.0	-7.0	85.0	1022.0	-5.0	SE	5.36	0.0	0.0	2010-01-01

 $Beijing_dates = Beijing.group by (pd.Grouper (key = 'Date', axis = 0, axis$

freq='M')).mean() Beijing_dates.head()

	year	month	day	hour	season	PM_US Post	DEWP	нимі	PRES	TEMP	lws	precipitation	Iprec
Date													
2010-01-31	2010.0	1.0	15.649847	11.529052	4.0	90.403670	-16.770642	47.895260	1028.524465	-6.371560	39.191682	0.017125	0.202141
2010-02-28	2010.0	2.0	14.500745	11.515648	4.0	97.239940	-13.154993	47.630402	1023.769001	-1.915052	13.485529	0.007750	0.027273
2010-03-31	2010.0	3.0	15.328632	11.514810	1.0	94.046544	-8.629055	48.359661	1022.167842	2.997179	23.974090	0.028350	0.147109
2010-04-30	2010.0	4.0	15.540390	11.502786	1.0	80.072423	-3.289694	43.212396	1017.157382	10.807799	58.095836	0.027716	0.070752
2010-05-31	2010.0	5.0	15.922659	11.428765	1.0	87.071913	7.580733	47.890095	1007.850746	20.853460	21.582524	0.066486	0.282497

= ["day","month","year","hour","season"]

 $\begin{array}{lll} plt.figure(figsize=(20,20)) & for & i,c & in \\ enumerate(Beijing_dates.drop(f,axis=1).columns): & if c \ not \\ in \ f: & \end{array}$

plt.subplot(4,4,i+1)

plt.plot(Beijing_dates[c]) plt.xlabel(c)

