Heart Disease Diagnostic Analysis

SHAM AMBADAS JOHARI

In [132]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

In [133]:

```
data = pd.read_csv("Heart Disease data.csv")
```

In [134]:

data

Out[134]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3

1025 rows × 14 columns

In [135]:

data.head(20) #Top 20

Out[135]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	tar
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
5	58	0	0	100	248	0	0	122	0	1.0	1	0	2	
6	58	1	0	114	318	0	2	140	0	4.4	0	3	1	
7	55	1	0	160	289	0	0	145	1	8.0	1	1	3	
8	46	1	0	120	249	0	0	144	0	8.0	2	0	3	
9	54	1	0	122	286	0	0	116	1	3.2	1	2	2	
10	71	0	0	112	149	0	1	125	0	1.6	1	0	2	
11	43	0	0	132	341	1	0	136	1	3.0	1	0	3	
12	34	0	1	118	210	0	1	192	0	0.7	2	0	2	
13	51	1	0	140	298	0	1	122	1	4.2	1	3	3	
14	52	1	0	128	204	1	1	156	1	1.0	1	0	0	
15	34	0	1	118	210	0	1	192	0	0.7	2	0	2	
16	51	0	2	140	308	0	0	142	0	1.5	2	1	2	
17	54	1	0	124	266	0	0	109	1	2.2	1	1	3	
18	50	0	1	120	244	0	1	162	0	1.1	2	0	2	
19	58	1	2	140	211	1	0	165	0	0.0	2	0	2	
4														•

In [201]:

```
data.info() #Checking the numerical and categorical features
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 15 columns):

υατα	columns (total	15 columns):	
#	Column	Non-Null Count	Dtype
0	age	1025 non-null	int64
1	ср	528 non-null	object
2	trestbps	1025 non-null	int64
3	chol	1025 non-null	int64
4	fbs	1025 non-null	int64
5	restecg	1025 non-null	int64
6	thalach	1025 non-null	int64
7	exang	1025 non-null	int64
8	oldpeak	1025 non-null	float64
9	slope	951 non-null	object
10	ca	1025 non-null	int64
11	thal	1025 non-null	object
12	Heart_Disease	1025 non-null	object
13	Sex	1025 non-null	object
14	Age_range	1025 non-null	object
dtype	es: float64(1),	int64(8), object	t(6)
memor	ry usage: 120.2-	+ KB	

In [137]:

data.describe() ## Checking the statistical values

Out[137]:

	age	sex	ср	trestbps	chol	fbs	re
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.00
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.52
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.52
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.00
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.00
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.00
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.00
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.00
4							•

In [138]:

data.columns #Full details about columns

Out[138]:

There are fourteen features in Dataset:

- 1) age:The person's age in years
- 2) sex: The person's sex (1 = male, 0 = female)
- 3) cp: The chest pain experienced (Value 1: typical angina, Value 2: atypical angina, Value 3: non-anginal pain, Value 4: asymptomatic)
- 4) trestbps: The person's resting blood pressure (mm Hg on admission to the hospital)
- 5) chol: The person's cholesterol measurement in mg/dl
- 6) fbs: The person's fasting blood sugar (> 120 mg/dl, 1 = true; 0 = false)
- 7) restecg: Resting electrocardiographic measurement (0 = normal, 1 = having ST-T wave abnormality, 2 = showing probable or definite left ventricular hypertrophy by Estes' criteria)
- 8) thalach: The person's maximum heart rate achieved
- 9) exang: Exercise induced angina (1 = yes; 0 = no)
- 10) oldpeak: ST depression induced by exercise relative to rest
- 11) slope: the slope of the peak exercise ST segment (Value 1: upsloping, Value 2: flat, Value 3: downsloping)
- 12) ca: The number of major vessels (0-3)
- 13) thal: A blood disorder called thalassemia (3 = normal; 6 = fixed defect; 7 = reversable defect)
- 14) target: Heart disease (0 = no, 1 = yes)

In [139]:

```
## Checking the Missing Values as we have to fill them
data.isnull().sum()
```

Out[139]:

```
0
age
             0
sex
             0
ср
trestbps
chol
             0
fbs
             0
             0
restecg
thalach
             0
exang
             0
oldpeak
slope
             0
             0
ca
             0
thal
target
dtype: int64
```

Changing the numerical values to cartegorical values for a clear understanding of reports

In [140]:

```
def cp(row):
    if row == 1:
        return ' typical angina'
    elif row == 2:
        return 'atypical angina'
    elif row == 3:
        return 'non-anginal pain'
    elif row == 4:
        return 'asymptomatic'
```

In [141]:

```
data['cp'] = data['cp'].apply(cp)
```

In [142]:

data

Out[142]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	th
0	52	1	None	125	212	0	1	168	0	1.0	2	2	
1	53	1	None	140	203	1	0	155	1	3.1	0	0	
2	70	1	None	145	174	0	1	125	1	2.6	0	0	
3	61	1	None	148	203	0	1	161	0	0.0	2	1	
4	62	0	None	138	294	1	1	106	0	1.9	1	3	
1020	59	1	typical angina	140	221	0	1	164	1	0.0	2	0	
1021	60	1	None	125	258	0	0	141	1	2.8	1	1	
1022	47	1	None	110	275	0	0	118	1	1.0	1	1	
1023	50	0	None	110	254	0	0	159	0	0.0	2	0	
1024	54	1	None	120	188	0	1	113	0	1.4	1	1	
1025 r	ows	× 14 (columns	;									

localhost:8888/notebooks/Twilearn Internship project/Heart Disease Diagnostic Analysis/Heart Disease Diagnostic Analysis.ipynb

```
In [143]:
```

```
def slope(row):
    if row == 1:
        return 'upsloping'
    elif row == 2:
        return 'flat'
    elif row == 3:
        return 'downsloping'
```

In [144]:

```
data['slope'] = data['slope'].apply(slope)
```

In [145]:

data

Out[145]:

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са
52	1	None	125	212	0	1	168	0	1.0	flat	2
53	1	None	140	203	1	0	155	1	3.1	None	0
70	1	None	145	174	0	1	125	1	2.6	None	0
61	1	None	148	203	0	1	161	0	0.0	flat	1
62	0	None	138	294	1	1	106	0	1.9	upsloping	3
59	1	typical angina	140	221	0	1	164	1	0.0	flat	0
60	1	None	125	258	0	0	141	1	2.8	upsloping	1
47	1	None	110	275	0	0	118	1	1.0	upsloping	1
50	0	None	110	254	0	0	159	0	0.0	flat	0
54	1	None	120	188	0	1	113	0	1.4	upsloping	1
	52 53 70 61 62 59 60 47 50	53 1 70 1 61 1 62 0 59 1 60 1 47 1 50 0	52 1 None 53 1 None 70 1 None 61 1 None 62 0 None 59 1 typical angina 60 1 None 47 1 None 50 0 None	52 1 None 125 53 1 None 140 70 1 None 145 61 1 None 148 62 0 None 138 59 1 typical angina 140 60 1 None 125 47 1 None 110 50 0 None 110	52 1 None 125 212 53 1 None 140 203 70 1 None 145 174 61 1 None 148 203 62 0 None 138 294 59 1 typical angina 140 221 60 1 None 125 258 47 1 None 110 275 50 0 None 110 254	52 1 None 125 212 0 53 1 None 140 203 1 70 1 None 145 174 0 61 1 None 148 203 0 62 0 None 138 294 1 59 1 typical angina 140 221 0 60 1 None 125 258 0 47 1 None 110 275 0 50 0 None 110 254 0	52 1 None 125 212 0 1 53 1 None 140 203 1 0 70 1 None 145 174 0 1 61 1 None 148 203 0 1 62 0 None 138 294 1 1 59 1 typical angina 140 221 0 1 60 1 None 125 258 0 0 47 1 None 110 275 0 0 50 0 None 110 254 0 0	52 1 None 125 212 0 1 168 53 1 None 140 203 1 0 155 70 1 None 145 174 0 1 125 61 1 None 148 203 0 1 161 62 0 None 138 294 1 1 106 59 1 typical angina 140 221 0 1 164 60 1 None 125 258 0 0 141 47 1 None 110 275 0 0 118 50 0 None 110 254 0 0 159	52 1 None 125 212 0 1 168 0 53 1 None 140 203 1 0 155 1 70 1 None 145 174 0 1 125 1 61 1 None 148 203 0 1 161 0 62 0 None 138 294 1 1 106 0 59 1 typical angina 140 221 0 1 164 1 60 1 None 125 258 0 0 141 1 47 1 None 110 275 0 0 118 1 50 0 None 110 254 0 0 159 0	52 1 None 125 212 0 1 168 0 1.0 53 1 None 140 203 1 0 155 1 3.1 70 1 None 145 174 0 1 125 1 2.6 61 1 None 148 203 0 1 161 0 0.0 62 0 None 138 294 1 1 106 0 1.9 59 1 typical angina 140 221 0 1 164 1 0.0 60 1 None 125 258 0 0 141 1 2.8 47 1 None 110 275 0 0 118 1 1.0 50 0 None 110 254 0 0 159 0 0.0	52 1 None 125 212 0 1 168 0 1.0 flat 53 1 None 140 203 1 0 155 1 3.1 None 70 1 None 145 174 0 1 125 1 2.6 None 61 1 None 148 203 0 1 161 0 0.0 flat 62 0 None 138 294 1 1 106 0 1.9 upsloping </th

1025 rows × 14 columns

```
←
```

In [146]:

```
def thal(row):
    if row == 3:
        return 'normal'
    elif row == 6:
        return 'fixed defect'
    elif row == 7:
        return 'reversable defect'
```

In [147]:

```
data['thal'] = data['thal'].apply(thal)
```

In [148]:

data

Out[148]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са
0	52	1	None	125	212	0	1	168	0	1.0	flat	2
1	53	1	None	140	203	1	0	155	1	3.1	None	0
2	70	1	None	145	174	0	1	125	1	2.6	None	0
3	61	1	None	148	203	0	1	161	0	0.0	flat	1
4	62	0	None	138	294	1	1	106	0	1.9	upsloping	3
1020	59	1	typical angina	140	221	0	1	164	1	0.0	flat	0
1021	60	1	None	125	258	0	0	141	1	2.8	upsloping	1
1022	47	1	None	110	275	0	0	118	1	1.0	upsloping	1
1023	50	0	None	110	254	0	0	159	0	0.0	flat	0
1024	54	1	None	120	188	0	1	113	0	1.4	upsloping	1
1025 r	ows	× 14 (columns									
4												•

Removing the outliers from the coumns

```
In [149]:
data['thal'].unique()
Out[149]:
array(['normal', None], dtype=object)

In [150]:
#Replacing the outliers (None with mode)
data['thal'].mode()[0]
Out[150]:
'normal'
In [151]:
data['thal'] = data['thal'].fillna('normal')
```

```
In [152]:
data['thal'].unique()
Out[152]:
array(['normal'], dtype=object)

In [153]:
data['ca'].unique()
Out[153]:
array([2, 0, 1, 3, 4], dtype=int64)

In [154]:
data['ca'] = data['ca'].replace(-100000, 0)

In [155]:
data['ca'].unique()
Out[155]:
array([2, 0, 1, 3, 4], dtype=int64)
```

Now Our data is clear & simple so we can continue with E.D.A

In [156]:

```
Person_having_Heart_Disease = data.age.where(data.target == 1)
sns.histplot(Person_having_Heart_Disease)
plt.title('No. of people having Heart disease');
```


Above plot shows that count of people having Heart Disease at different age, and people with age between 50-55 has highest count.

In [157]:

```
Healthy_Person = data.age.where(data.target == 0)
sns.histplot(Healthy_Person)
plt.title('No. of people having No Heart disease');
```


Above plot shows that count of people having No Heart Disease at different age, and people with age between 55-65 has highest count.

In [158]:

```
def heart_disease(row):
    if row == 0:
        return 'Absence'
    elif row==1:
        return 'Presence'
```

In [159]:

```
data.groupby('target').size()
```

Out[159]:

```
target
0 499
1 526
dtype: int64
```

In [160]:

```
data['Heart_Disease'] = data['target'].apply(heart_disease)
```

Here we have created a column named Heart_Disease for a better Visulisation

In [161]:

data.head()

Out[161]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	t
0	52	1	None	125	212	0	1	168	0	1.0	flat	2	norı
1	53	1	None	140	203	1	0	155	1	3.1	None	0	norı
2	70	1	None	145	174	0	1	125	1	2.6	None	0	norı
3	61	1	None	148	203	0	1	161	0	0.0	flat	1	norı
4	62	0	None	138	294	1	1	106	0	1.9	upsloping	3	norı
4													•

In [162]:

```
data.hist(figsize = (14,12))
```

Out[162]:

In [163]:

data.shape

Out[163]:

(1025, 15)

In [164]:

```
##Dropping the num column as we have Heart_Disease column
data.drop('target',axis=1,inplace=True)
```

In [165]:

data

Out[165]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са
0	52	1	None	125	212	0	1	168	0	1.0	flat	2
1	53	1	None	140	203	1	0	155	1	3.1	None	0
2	70	1	None	145	174	0	1	125	1	2.6	None	0
3	61	1	None	148	203	0	1	161	0	0.0	flat	1
4	62	0	None	138	294	1	1	106	0	1.9	upsloping	3
1020	59	1	typical angina	140	221	0	1	164	1	0.0	flat	0
1021	60	1	None	125	258	0	0	141	1	2.8	upsloping	1
1022	47	1	None	110	275	0	0	118	1	1.0	upsloping	1
1023	50	0	None	110	254	0	0	159	0	0.0	flat	0
1024	54	1	None	120	188	0	1	113	0	1.4	upsloping	1

1025 rows × 14 columns

localhost:8888/notebooks/Twilearn Internship project/Heart Disease Diagnostic Analysis/Heart Disease Diagnostic Analysis.ipynb

Calculating How Many People Have Heart Disease, And How Many Don't Have Heart Disease In This Dataset

In [166]:

sns.countplot(data['Heart_Disease'])

C:\Users\91883\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[166]:

<AxesSubplot:xlabel='Heart_Disease', ylabel='count'>

In [167]:

hd = data.groupby('Heart_Disease').size()

In [168]:

hd

Out[168]:

Heart_Disease Absence 499 Presence 526 dtype: int64

In [169]:

```
plt.figure(figsize=(10,7))
plt.pie(hd,labels=['Absence','Presence'],autopct='%0.0f%%')
plt.title("Heart Disease Population %age",fontsize=20)
plt.show()
```

Heart Disease Population %age

From the overall population, people having heart disease are 49% and those who doesn't have heart disease are 51%

Finding the Count of Male & Female in this Dataset

```
In [170]:
```

```
data['sex'].value_counts()

Out[170]:

1    713
0    312
Name: sex, dtype: int64

In [171]:

sns.countplot(data['sex'])
plt.xticks([0,1],['Female', 'Male'])
plt.show()
```

C:\Users\91883\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Finding the Gender distribution accoding to the

llaam Diaaaa

```
In [172]:
```

```
sns.countplot(x='sex',hue="Heart_Disease",data=data)
plt.xticks([1,0],['Male','Female'])
plt.legend(labels = ['No-Disease','Disease'])
plt.show()
```


Check Chest Pain Type

Value 1: typical angina

Value 2: atypical angina

Value 3: non-anginal pain

Value 4: asymptomatic

In [173]:

```
sns.countplot(data['cp'])
plt.xticks([0,1,2,3],["typical angina","atypical angina","non-anginal pain","asymptomati
plt.xticks(rotation=75)
plt.show()
```

C:\Users\91883\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Showing The Chest Pain Distribution As Per the Heart_Disease

In [174]:

```
sns.countplot(x="cp", hue="Heart_Disease", data=data)
plt.legend(labels = ['No-Disease','Disease'])
plt.show()
```


Show Fasting Blood Sugar Level Distribution According To Heart_Disease

In [175]:

sns.countplot(x="fbs", hue="Heart_Disease", data=data)
plt.legend(labels = ['No-Disease', 'Disease'])
plt.show()
No-Disease

Checking Resting Blood Pressure Distribution

In [176]:

data['trestbps'].hist()

Out[176]:

<AxesSubplot:>

Checking cholesterol measurement Distribution

In [177]:

```
data['chol'].hist()
```

Out[177]:

<AxesSubplot:>

Basic stats of the dataset

In [178]:

```
Min_age = data['age'].min()
Max_age = data['age'].max()
Mean_age = data['age'].mean()
print("Minimum age is: {0}\nMaximum age is: {1}\nMean of Age is: {2}".format(Min_age,Max)
```

Minimum age is: 29 Maximum age is: 77

Mean of Age is: 54.43414634146342

Converting the age column into three subclass

In [179]:

```
Young_age = data[(data['age']>=29) & (data['age']<40)]
Mid_age = data[(data['age']>=40) & (data['age'] <55)]
Old_age = data[(data['age']>=55)]
```

In [180]:

```
print("Number of Young age people are: {0}\nNumber of Middly age people are: {1}\nNumber
```

Number of Young age people are: 57 Number of Middly age people are: 419 Number of Elder age People are: 549

Showing the count of age distribution According To Heart_Disease

In [181]:

```
sns.barplot(x=['Young_age','Mid_age','Old_age'],y=[len(Young_age),len(Mid_age),len(Old_a
plt.title('Age Category',fontsize=17)
plt.xlabel(xlabel='Age Range',fontsize=15)
plt.ylabel(ylabel='Count',fontsize=17)
plt.show()
```


In [182]:

```
#Converting Numerical Data into Categorical Data
# Male = 1 and female = 0

def Sex(row):
    if (row==1):
        return 'Male'
    elif (row==0):
        return 'Female'
```

In [183]:

```
data['Sex']=data['sex'].apply(Sex)
```

In [184]:

data

Out[184]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са
0	52	1	None	125	212	0	1	168	0	1.0	flat	2
1	53	1	None	140	203	1	0	155	1	3.1	None	0
2	70	1	None	145	174	0	1	125	1	2.6	None	0
3	61	1	None	148	203	0	1	161	0	0.0	flat	1
4	62	0	None	138	294	1	1	106	0	1.9	upsloping	3
1020	59	1	typical angina	140	221	0	1	164	1	0.0	flat	0
1021	60	1	None	125	258	0	0	141	1	2.8	upsloping	1
1022	47	1	None	110	275	0	0	118	1	1.0	upsloping	1
1023	50	0	None	110	254	0	0	159	0	0.0	flat	0
1024	54	1	None	120	188	0	1	113	0	1.4	upsloping	1

1025 rows × 15 columns

→

In [185]:

```
#Dropping the sex column
data.drop('sex',axis=1,inplace=True)
```

In [186]:

```
data.head()
```

Out[186]:

	age	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	ı
0	52	None	125	212	0	1	168	0	1.0	flat	2	normal	
1	53	None	140	203	1	0	155	1	3.1	None	0	normal	
2	70	None	145	174	0	1	125	1	2.6	None	0	normal	
3	61	None	148	203	0	1	161	0	0.0	flat	1	normal	
4	62	None	138	294	1	1	106	0	1.9	upsloping	3	normal	
4												•	•

In [187]:

```
def Age_range(row):
    if (row>=29 and row <40):
        return 'Young age'
    elif(row >=40 and row <55):
        return 'Mid age'
    elif (row >= 55 and row <78):
        return 'Old age'</pre>
```

In [188]:

```
data['Age_range']=data['age'].apply(Age_range)
```

In [189]:

```
data.head()
```

Out[189]:

	age	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	I
0	52	None	125	212	0	1	168	0	1.0	flat	2	normal	_
1	53	None	140	203	1	0	155	1	3.1	None	0	normal	
2	70	None	145	174	0	1	125	1	2.6	None	0	normal	
3	61	None	148	203	0	1	161	0	0.0	flat	1	normal	
4	62	None	138	294	1	1	106	0	1.9	upsloping	3	normal	
4												•	>

Checking the Heart Disease based on age range

In [190]:

```
plt.figure(figsize=(15,7))
sns.countplot(x='Heart_Disease',hue='Age_range',data=data,order=['Presence','Absence'],h
plt.title("Heart Disease based on Age Range",fontsize=20)
plt.xlabel(xlabel='Heart Disease',fontsize=15)
plt.ylabel(ylabel='Count',fontsize=15)
plt.show()
```


Mid age people are more affected by Heart Disease compared to other ages and Old aged people are more free from Heart Disease compared to other ages

Chest pain based on gender

In [191]:

```
plt.figure(figsize=(15,7))
sns.countplot(x='Sex',hue='cp',data=data)
plt.title("Chest pain based on Gender",fontsize=15)
plt.xlabel(xlabel='Gender',fontsize=15)
plt.ylabel(ylabel='Count',fontsize=15)
plt.legend(labels=['Typical Angina','Atypical Angina','Non-Anginal pain','Asymptomatic']
plt.show()
```


We can see that a higher number of men are suffering from Asymptomatic type of Chest Pain

Checking the Chest pain based on Gender Category

In [192]:

```
plt.figure(figsize=(15,7),frameon=True)
sns.countplot(x='Age_range',hue='cp',data=data,order=['Young age','Mid age','Old age'])
plt.xlabel(xlabel='Age Category',fontsize=15)
plt.ylabel(ylabel='Count',fontsize=15)
plt.title("Chest pain based on Gender Category")
plt.legend(labels=['Typical Angina','Atypical Angina','Non-Anginal pain','Asymptomatic']
plt.show()
```


In [193]:

```
plt.figure()
sns.barplot(x='Heart_Disease',y='chol',data=data)
plt.xlabel(xlabel='Heart Disease',fontsize=15)
plt.ylabel(ylabel='Cholesterol level(mg/dl)',fontsize=15)
plt.title("Heart Disease v/s Cholesterol Level")
plt.show()
```


More Cholesterol means More chance of Heart Disease

Checking maximum Heart rate achived

In [194]:

```
fig = sns.histplot(data['thalach'], bins= 20)
fig.set(xlabel = 'maximum heart rate achieved')
```

Out[194]:

[Text(0.5, 0, 'maximum heart rate achieved')]

The maximum heart rate achieved seems to be between 150 - 170.

In [195]:

```
sns.barplot(x='Sex', y='oldpeak', data=data, palette='twilight_r')
plt.title('ST depression VS Gender', fontsize=17)
plt.xlabel('Gender', fontsize=15)
plt.ylabel('ST depression', fontsize=15)
plt.show()
```


Males are more prone to ST dipression

In [196]:

```
sns.barplot(x='Sex', y='exang', data=data, palette='binary_r')
plt.title('Exercise With Angina VS Gender', fontsize=17)
plt.xlabel('Gender', fontsize=15)
plt.ylabel('Exercise With Angina', fontsize=15)
plt.show()
```


Males have have high Exercise Angina

Angina is a type of chest pain caused by reduced blood flow to the heart.

Correlations

Now that we analyzed all the factors, let's see what the corrolation heatmap gives us:

In [197]:

```
corr = data.corr()
plt.subplots(figsize=(11, 9))
cmap = sns.diverging_palette(250, 30, as_cmap=True)
sns.heatmap(corr, cmap=cmap, center=0, square=True, linewidths=.5)
```

Out[197]:

<AxesSubplot:>

In [198]:

```
plt.figure(figsize=(16,9))
sns.heatmap(data.corr(), annot=True, linewidth=3)
```

Out[198]:

<AxesSubplot:>

Checking the dataset to check un-wanted values

In [199]:

data

Out[199]:

	age	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	tr
0	52	None	125	212	0	1	168	0	1.0	flat	2	norm
1	53	None	140	203	1	0	155	1	3.1	None	0	norm
2	70	None	145	174	0	1	125	1	2.6	None	0	norm
3	61	None	148	203	0	1	161	0	0.0	flat	1	norm
4	62	None	138	294	1	1	106	0	1.9	upsloping	3	norm
1020	59	typical angina	140	221	0	1	164	1	0.0	flat	0	norm
1021	60	None	125	258	0	0	141	1	2.8	upsloping	1	norm
1022	47	None	110	275	0	0	118	1	1.0	upsloping	1	norm
1023	50	None	110	254	0	0	159	0	0.0	flat	0	norm
1024	54	None	120	188	0	1	113	0	1.4	upsloping	1	norm
1025 rows × 15 columns												

In [200]:

data.to_csv('Heart Disease Final dataset.csv', index=False)

Conclusions:

- 1) From target value we can say that our dataset is amost balanced with 49% of patients having no heart disease and 51 % of patients having heart disease.
- 2) Males have higher chances of having heart disease than females.
- 3) Patients with age >55 years and having resting blood suger(i.e in diastolic state) in range 121-140 mm Hg have higher chances of heart disease. patients with age group 40 to 45 have little chances and age below 40 has negligiable cgances of having a heart disease.
- 4) Patients suffering from heart disease are mostly in age group of 50-55 years.
- 5) Higher cholesterol means higher chances of heart disease. it plays an important role in determining heart problems. With age cholesterol increases and level 200- 350 mg/dl are of concern.
- 6) Patients showing definite left ventricular hypertrophy in Resting electrocardiographic measurement are more likely to suffer from a heart disease.
- 7) Patients who are likely to suffer from heart disease have higher maximum heart rates(rate between 140-160) whereas patients who are not likely to suffer from heart disease are having lower maximum heart rates.
- 8) Exercise induced anginal pain slightly higher chances of getting heart disease than without exercise induced pain.

- 9) Patients having no thalassaemia can also suffer from heart disease, but patients having reversable effect thalassaemia have greater chances of suffering from heart disease. So thalassaemia plays an important role in detecting heart disease.
- 10) St_depression >0.5 mm in ECG indicates abnormality. Therefore the slope of the peak exercise ST segment showing downslope with st_depression>0.5 mm has greater chances of heart disease.

thank you!!

In []:			
In []:			
TH [].			