Physics 110 Biological physics

Dr Alaa S Hamid professor of Physics

Deanship of Educational Services

Qassim university

2018-2019

Physics 110

* 1st midterm

- Chapter 1 Kinematics
- * Chapter 8 waves
- Chapter 9 sound and Hearing
- Chapter 11 pressure

- 2nd midterm
 - Chapter 14 non viscous fluid
- Chapter 15 viscous fluid
- Chapter 22 thermodynamics
- Chapter 29 the nature of light
- Chapter 38 medical imaging

Physics 110 Kinematics

Units and dimensions

Prefixes

vector and scaler quantities

Units and Dimensions

* Basic units	MKS unit	symbol
1. Length	meter	m * The first three
2. Mass	kilogram	Kg units are called
3. Time	second	s [MKS] unit

4. Illumination	candela	cd
4. manimation	Carracia	

- 5. Electric current ampere A
- 6. Temperature kelvin K
- 7. Quantity of

Substance mole mol

Derived units

- Derived units
- Have more than one unit

* Area	m^2

- * Volume m³
- * Speed ms⁻¹
- * Velocity ms⁻¹
- * Acceleration ms⁻²
- * Gravity ms⁻²
- * Momentum kg·m.s⁻¹
- * Force (N) Kg.m.s⁻²
- * Energy (J) $\operatorname{Kg} m^2 s^{-2}$
- * Pressure (Pa) $Kg m^{-1} s^{-2}$

example: show what is the following units

kg m s⁻²

1. The force $F = mass x gravity = kg x m s^{-2}$

kg $(m s^{-1})^2$

2. The energy= $\frac{1}{2}$ x mass x (velocity)² = kg x m² s⁻² kg x ms⁻² / m²

3. The pressure= force / area = $kg \times ms^{-2}/m^2$ = $kg \times ms^{-2}/m^2$

kg m s⁻¹

4. The momentum = mass x velocity = kg m s⁻¹

example: show what is the following units

Viscosity = force/(velocity x distance)

* Surface tension = force /length

* Refractive index = angle /angle

* Frequency = velocity / length

SI Prefixes

Big prefixes		Little	Little prefixes		
kilo	k	10 ³	pico	p	10 ⁻¹²
mega	M	10 ⁶	nano	n	10 ⁻⁹
giga	G	10 ⁹	micro	μ	10 ⁻⁶
tera	Т	10 ¹²	milli	m	10 ⁻³
			centi	С	10 ⁻²

Vector and scalar quantities

Vector - quantity that defined by both magnitude (size)

and direction

Scalar - quantity that defined by magnitude only

Vectors:

- Displacement
- Velocity
- Acceleration
- Momentum
- Force

Scalars:

- Distance
- Speed
- Time
- Mass
- Energy

Mass vs. Weight

<u>Mass</u>

- Scalar (no direction)
- Measures the amount of matter in an object

Weight

- Vector (points toward center of Earth)
- Force of gravity on an object

On the moon, your mass does not change, but the magnitude of your weight would be less.

Chapter 1 kinematics

* Is that part of mechanics which is concerned with he description of motion

In this chapter we will study the following topics

- * Distance and displacement
- * Speed and velocity
- * Acceleration
- * Average velocity or speed
- * Acceleration due to gravity
- * Exercises

kinematics

Kinematics:

* It is that part of mechanics which is concerned with the description of motion.

- * Distance & Displacement
- * Speed & Velocity
- * Acceleration & gravity

Kinematics definitions

Position (x)

* where you are located at spacial points

* Distance (d)

* The distance of path between two points

* Or

* How far you have traveled, regardless of direction

Displacement (Δx)

The vector equivalent for distance

* Or

* It specifies the distance and direction of one point relative to another

* Or

* where you are in relation to where you started

Distance vs. Displacement

- You drive the path, and your odometer goes up by 6 miles (your distance).
- * Your displacement is the shorter <u>directed</u> distance from start to stop (green arrow).

Speed, Velocity, & Acceleration

Speed
$$(V) = V$$

- * How fast you go
- * A scaler measure of the rate of motion

* Velocity
$$(v) = \overrightarrow{v}$$

- * how fast and which way; the rate at which position changes
- * A vector measure of rate of motion
 - * Units of speed velocity is m/s

Average speed (v)

- * distance/time
- * Total distance /total time

$$* \mathbf{v}_{av} = (\mathbf{v}_i + \mathbf{v}_f)/2$$

* Average velocity V_{av}

* Initial velocity V_i

* Final velocity v_f

Speed vs. Velocity

Speed is a scalar

- * (how fast something is moving regardless of its direction).
 - Ex: v = 20 m/s
- * Speed is the magnitude of velocity.
- * Velocity is a combination of speed and direction.
- * Ex: $\mathbf{v} = 20 \text{ m/s at } 15^{\circ} \text{ south of west}$
- * The symbol for speed is v.
- * The symbol for velocity is type written in bold: v or hand written with an arrow: v

Speed vs. Velocity

- During your 8 meters trip, which took 2 second.,
 your <u>speedometer</u> displays your <u>instantaneous</u>
 speed, which varies throughout the trip.
- * Your average speed is= 8/2 = 4 m/s.
- * Your average velocity is 4 m/s in a SE direction.
- * At any point in time, your velocity vector points tangent to your path.
- * The faster you go, the longer your velocity vector.

Acceleration

Acceleration – how fast you speed up, slow down, or change direction; it's the rate at which velocity changes. Two examples:

Acceleration = (final velocity – initial velocity)/time

<i>t</i> (s)	v (mph)
0	55
1	57
2	59
3	61

t(s)	v (m/s)	
0	34	
1	31	
2	28	
3	25	

$$a = +2 \frac{\text{m/s}}{\text{s}} = +2 \text{ m/s}^2$$
 $a = -3 \frac{\text{m/s}}{\text{s}} = -3 \text{ m/s}^2$

Velocity & Acceleration Sign Chart

Different cases of acceleration

- 1. As the velocity increases the acceleration is +ve
- * 2. As the velocity decreases the acceleration is -ve
- * 3. If the speed is constant the acceleration = zero
- * 4. In the case of the circular motion the acceleration is not equal to zero
- (This is due to the fact that even if the speed is constant but the velocity is not constant)

Acceleration due to Gravity

Near the surface of the Earth, all objects accelerate at the same rate (ignoring air resistance).

$$a = -g = -9.8 \text{ m/s}^2$$

= -10 m/s²

This acceleration vector is the same on the way up, at the top, and on the way down!

Interpretation: Velocity decreases by 9.8 m/s each second, meaning velocity is becoming less positive or more negative. Less positive means slowing down while going up. More negative means speeding up while going down.

Kinematics Formula Summary

For 1-D motion with *constant* acceleration:

Average velocity

•
$$\nabla = (V_0 + V_f)/2$$

The height

•
$$\Delta h = v_0 t + \frac{1}{2} a t^2$$

(derivations to follow)

Kinematics Derivations

$$g = \Delta v / \Delta t$$
 (by definition)

$$\Delta v = g \times \Delta t$$

$$t = \sqrt{\frac{2h}{g}}$$

1. A ball is dropped from a high tower in 4 seconds. Calculate the height of the tower.

$$h = V_0 t + \frac{1}{2} g t^2$$

$$V_0 = 0$$

$$h = \frac{1}{2} \times 10 \times 4^2$$

= 80 m

2. A ball is dropped from tower of 20 m height. Calculate the time required to the ball to reach the ground

$$t = \sqrt{\frac{2h}{g}} t = \sqrt{\frac{2 \times 20}{10}}$$
$$t = 2 \text{ s}$$

A car starts moving at 6 Km from the origin it reaches point 15 Km after 10 min. Calculate the velocity

- * Answer
- * X_f=15x 1000=15000 m
- * X_i = 6x 1000 = 6000 m
- * T = 10x60 = 600 s

*
$$v = \frac{\Delta x}{\Delta t} = \frac{15000 - 6000}{600} = 9 \text{ m/s}$$

A car is moving with velocity 5 m/s it increases its velocity to be 15 m/s in 5 s. calculate the acceleration

* Answer

*
$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} = \frac{15 - 5}{5} = 2 \text{ ms}^{-2}$$

Exercise 3

A car is moving with velocity 15 m/s it decreases its velocity to be 5m/s in 5 s. calculate the acceleration

Answer

$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} = \frac{5 - 15}{5} = -2 \text{ ms}^{-2}$$

- If you through a cricket ball straight up at 12 m/s, how high it will go?
- * Answer

*
$$t = -12/-10 = 1.2 \text{ s}$$

* $v = (v_0 + v_f)/2 = 6 \text{m/s}$
* $d = v \times t$
* $d = 6 \times 1.2 = 7.2 \text{ m}$

How long does it take the above ball to fall to the ground?

Answer

$$t = \sqrt[2]{\frac{2d}{g}} = \sqrt{\frac{2 \times -7.2}{-10}} = 1.2 \text{ second}$$

Exercise 6

What is velocity of the ball in the above example
 Answer

$$\Delta V = g.t$$

= 10 x 1.2 = 12 m/s

Of the ball fall from 8.4 m to the ground what is its velocity just before to hit the ground?

* Answer

$$t = \sqrt[2]{\frac{2d}{g}} = \sqrt{\frac{2 \times -8.4}{-10}} = 1.3 \text{ s}$$

$$\Delta v = g.t$$

$$= 10 \times 1.3$$

$$13 \text{ m/s}$$

Kinematics Derivations (cont.)

$$V_f = V_0 + at \implies t = (V_f - V_0)/a$$

$$\Delta x = V_0 t + \frac{1}{2} a t^2 \implies$$

$$\Delta x = V_0 \left[(V_f - V_0)/a \right] + \frac{1}{2} a \left[(V_f - V_0)/a \right]^2$$

$$\implies V_f^2 - V_0^2 = 2 a \Delta x$$

Note that the top equation is solved for t and that expression for t is substituted twice (in red) into the Δx equation. You should work out the algebra to prove the final result on the last line.

MCQ

1. [Kg m⁻¹ s⁻²] is the dimensional formula of

- (A) force
- (B) coefficient of friction (C) pressure (D) energy

2. The dimensional formula of coefficient of pressure

* (A) Pa

- (B) N/m (C) Pa.s

3. The total distance covered in total time taken is termed as

a. instantaneous speed

b. average speed

c. uniform speed

d. acceleration

4. Velocity is the

- a. distance covered per unit time
- c. time taken per unit distance

- b. displacement covered per unit time
- d. time taken per unit displacement

5. speed is the

- a. distance covered per unit time
- c. time taken per unit distance

- b. displacement covered per unit time
- d. time taken per unit displacement

6. The speed of the truck is 40 ms⁻¹, after 10 seconds its speed decreases to 20 ms⁻¹, its acceleration is

a. -1 ms⁻¹

b. -2 ms⁻²

c. -4 ms⁻¹ d. -5 ms⁻¹

7. When speed of the object changes, the velocity

remains same c. decreases

b. also changes

d. increases

8. A car stops and then starts accelerating uniformly at the rate of 3 ms⁻². The speed of the car after 20 seconds is

a. 40 ms⁻² b. 60 ms⁻¹

c. 100 ms⁻²

d. 30 ms⁻²

9 Deceleration is also known as

a. Retardation b. acceleration

c. opposite velocity d. inertia

10. Air resistance is a

a. frictional force

b. gravitational force

c. backward force

d. balanced force

11. The change of distance in a specified direction per unit time is termed as

- Acceleration b. Velocity c. Speed d. Directional Speed

12. When the speed remains constant, the velocity

- a. may change d. slightly increases
- b. remain constant
- c. must changes

13. In symbols the formula of acceleration is

$$a. a = v/t$$

b.
$$a = v_f - v_i/t$$

c.
$$a = v_i - v_f/t$$

a.
$$a = v/t$$
 b. $a = v_f - v_i/t$ c. $a = v_i - v_f/t$ d. $a = v_i/v_f-t$

14. The speed remains constant and the velocity changes when the motion is

- a. Linear motion b. circular motion c. constant acceleration

model questions on chapter 1 kinematics

1.	The time interval between two events	Elapsed time
2.	The length of the path between two special positions	Distance
3.	A vector equivalent of distance	Displacement
	- It specifies the distance and direction of one point in space relative to another	
4.	A scalar measure of the rate of motion	Speed
5.	The change of displacement with respect to time	Velocity
	- A vector measure of the rate of motion	
	- It specifies both the magnitude and direction of the rate of motion	
6.	The SI unit of speed (velocity) is	m/s ms ⁻¹
7.	A measure rate of the velocity	Acceleration
	- Acceleration is a vector quantity	

m/s ² ms ⁻²
Displacement
Velocity - Acceleration
Distance - Speed
Time - energy
3 m/s
24 m
(5-3)/5
0.4 m/s ²
Zero

The end of chapter 1