Types of scheduler, Context switching

every process has a process control black & attributes

- 1. Which I how many processors in hard disk should be moved into the RAM? by Long term scheduler
- 2. which processor in RAM should access the CPU first? by Short term scheduler (= scheduler
- 3 which thow many processors in RAM should be moved back into the H.D? by Medium term schedulet

· Context switching

CPUnin 性短过 process皆中語 prioritye processi RAMINI % 四

(2 हा केपर अपना स्पाप गाम process रिक्षितिस भाग (context मिर्ड गमार) मेरा प्रा रिक्षितिहर्दे)

Various times of a process

- 1. Arrival time : time when process has arrived RAM
- 2. Burst time (= execution time)
- 3. Completion time: time when process has completed execution & can be removed from RAM
- 4. Turn around time : time between arrival time to completion time
- 5. Waiting time : waiting time for execution or I/O (process is ide at this moment)
 - O completion time arrival time
 - 2 burst time + waiting time + I/o time
- 6. Response time : 4501 07 7
- 7. Ilo time : amount of time spent in reading 4 writing Ilo
 - ex) Various times for process 1

 1AM Pl P2 P1 P3 P1 AAN

 arrival burst time completing time

(cf)

point in time

Orrival time, completion time

duration in time

burst time, turn-around time waiting time, response time

Types of scheduling algorithms

CPU scheduling algorithms

Preemtive scheduling algorithms: preempt the process

Non - preemitive scheduling algorithms: CPUIDIN Process = execute the Fig ton, RAMINI higher priority

CPU scheduling algorithms are applied only to processes which are in ready state

Process which are in I/O state will be "blocked" and will not be considered by scheduling algorithms

I/O state = black state

PI - running state / pz.ps - ready state / p4 - I/o state 275

P49 priority 7. P2、P3 b4 並GEVS P1 的如是4月 P2、P3 省11. Priority 7. 毙. process 7.1 性質的

SJF scheduling algorithm

Shortest Job First scheduling algorithm : Among the arrived phocess, process with the least burst time will be given preemptive scheduling & priority based algorithm process Id Q) Find the average TAT, WT, Through put arrival time burst time 0 117-012-101 arrive to process = + WT (TAT-BT) 0 L in this case we don't assume I/o time · Schedule length = CT of last process - AT of first process Throughput: number of processed executed in unit time = Number of processes / schedule length = 5/11 = Processes/unit time · process Id Q) Find the average TAT, WT, Through put arrival time burst time through put

SRTF Scheduling algorithm

SJF & SRTF may cause statuation when the long process is in ready state and shorter processes keeps coming

Shortest Remaining time first scheduling algorithm : preemptive version of SJF

이이 Process 7+ 당한 것이더라도 M로운(RAMON 있는) processed 당성이 직용하는 혹 Hotel Hear process NIM 낮은 Hotel 다 쌓다면, 이와 양성 단, 모든 process 7+ ready queue on 있다며 SJF4 앞 바닷크 Hey

- (於 N76) 张键 跨 识的 arrive 記 好,through put and schedule length
- S) P1 P2 P3 P4 P5 P3 P6 P5 P2 P1
- A). CT 19 B 6 4 9 7 + last completed process 47 71 4th 3ct.

.. TAT (CT-AT) 19 12 4 1 5 2 ... avg = 43/6

L in this case we don't assume I/o time

- Schedule length = CT of last process - AT of first process = 19

Throughput: number of processed executed in unit time = Number of processes / schedule length

= 6/19 = Processes/unit time

* Response time waiting time of certain process until it gets to the CPU for the first time

process Id	1	2	3 .	Ψ.
arribal time	0	15.	30°	45
burst time	20	ZJ .	10	15

WT (TAT-BT)

SJF	· PI	· P2	P3	· P4	
	0 · · 2				
SRTF	PI PI	P2 P3	P2 P2	· PÝ	•
	a IT .				

SJF kT | D 5 15 10 SRTF RT | O 5 0 10

In any non-preemptive scheduling algorithm. Response time = waiting time,
but it may not be true in preemptive scheduling algorithm.

Problem :

Consider the following CPU processes with arrival times (in milliseconds) and length of CPU bursts (in milliseconds) as given below:

If the pre-emptive shortest remaining time first scheduling algorithm is used to schedule the processes, then the average waiting time across all processes is _________ milliseconds.

An operating system uses shortest remaining time first scheduling algorithm for pre-emptive scheduling of processes. Consider the following set of processes with their arrival times and CPU burst times (in milliseconds):

miniscoonas).							Ī	p, l	P2	P2	P3	183	74	
Process	Arrival Time	Burst Time	CT	TAT	WT	RT	L	1	1-	100	1 12			1
P1	0	12 10 0	27	27	15	0	0	2	- 3	3 (6 8	3 1	2 (٦
P2	2	4 30	6	4	D	0								
P3	3	6° 40	12	9	3	3								
P4	8	S 0	12	9	4	4								

FCFS scheduling algorithm

First Come First Served Scheduling Algorithm . Cause long waiting times, especially when .

The process which has the least arrival time will be scheduled first the first job takes too much CPU. time

non-preemptive # not priority based (not depending on a property of a process & burst time

process Id	1	ž	3	Ÿ	Ĭ.		PI	P ₂	. 83	F	94	Pt	l :	٠
arrival time	0.	Ĺ	2	3.	Ļ									
burst time.	4	3.	ŀ	2	5		٠	٠						

Priority based algorithmer UNE 4字可写好

Context Switching: preempt the process and schedule some other process

HE context switching in Myor 20% > decreases the efficiency of CPU = slower

decreases the efficiency of CPU = Slower | CPU efficiency = Total time (degrade the performance)

process Id.	1	. 2	.3	.4	J.	6.		Con	text	Swītc	hīng) .: (cpu	آج	idle							C DU	- Ar	Trien	cia
arrival time	D	. ,	. 2	. 3	ψ.	5	٠	-	T	bi.	c°	P2.	2 · F	23- 0		P4	C.	PS	-0	. -	P6-1		ine	effici	iek
burst time	.3	,2	. 1	. 4	5	2		0	ŀ	.4	5	.7	8	9	(0	. 14	[5		Zo	21	23				
· · CT · [.4	. 7	. 9	. 14	20	23																			