1. Find disjunctive and conjunctive normal forms.

(i)
$$a1 = (x1 \land x2) \lor ((\neg x3 \lor x1) \land \neg x2) \lor x2 \\ x1x2x3$$

X1	X2	Х3	(x1 ^ x2)	((¬x3 ∨ x1) ∧ ¬x2)	x2	(x1 \(\times x2\) \(\tau \) ((\(\tau x3 \cdot x1\) \(\tau \ta x2\) \cdot x2
1	1	1	1	0	1	1
1	1	0	1	0	1	1
1	0	1	0	1	0	1
1	0	0	0	1	0	1
0	1	1	0	0	1	1
0	1	0	0	0	1	1
0	0	1	0	0	0	0
0	0	0	0	1	0	1

DNF

 $E = x1x2x3 + x1x2\bar{x}3 + x1\bar{x}2x3 + x1\bar{x}2\bar{x}3 + \bar{x}1x2x3 + \bar{x}1x2\bar{x}3 + \bar{x}1\bar{x}2\bar{x}3$

CNF

 $\neg E = \bar{x}1\bar{x}2x3$

 $E=\neg\neg E=\bar{x}1\bar{x}2x3$

 $E = \neg \neg E = x1x2\bar{x}3$

(ii) $a2 = (x1 \lor ((x1 \land x2) \lor (\neg x1 \land \neg x2 \land \neg x3))) \land x3$

(11) 42 (11)	$(11) 42 - (X1 \vee (X1 \wedge X2) \vee (X1 \wedge X2))) \wedge X3$						
X1	X2	X3	x1	x1 ^ x2	¬x1 ∧ ¬x2 ∧ ¬x3	x3	(x1 v ((x1 ∧ x2) v (¬x1 ∧ ¬x2 ∧ ¬x3))) ∧ x3
1	1	1	1	1	0	1	1
1	1	0	1	1	0	0	0
1	0	1	1	0	0	1	1
1	0	0	1	0	0	0	0
0	1	1	0	0	0	1	0
0	1	0	0	0	0	1	0
0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	0

 $E=x1x2x3 + x1\bar{x}2x3$

CNF

$$\neg E = x1x2\bar{x}3 + x1\bar{x}2\bar{x}3 + \bar{x}1x2x3 + \bar{x}1x2\bar{x}3 + \bar{x}1\bar{x}2x3 + \bar{x}1\bar{x}2\bar{x}3$$

$$E = \neg \neg E = x1x2\bar{x}3 + x1\bar{x}2\bar{x}3 + \bar{x}1x2x3 + \bar{x}1x2\bar{x}3 + \bar{x}1\bar{x}2x3 + \bar{x}1\bar{x}2\bar{x}3$$

$$E = \neg \neg E = (\bar{x}1 + \bar{x}2 + x3)(\bar{x}1 + x2 + x3)(x1 + \bar{x}2 + \bar{x}3)(x1 + \bar{x}2 + x3)(x1 + x2 + \bar{x}3)(x1 + x2 + x3)$$

(iii)
$$a3 = (x1 \lor x2) \land \neg (x1 \land x2)$$

 $a3 = (x1 \lor x2) \land (\neg x1 \lor \neg x2)$

X1	X2	x1 v x2	¬x1 v ¬x2	(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)
1	1	1	0	0
0	0	0	1	0
1	0	1	1	1
0	1	1	1	1

DNF

 $E = x1\bar{x}2 + \bar{x}1x2$

CNF

$$\neg E = \bar{x}1\bar{x}2 + x1x2$$

$$E = \neg \neg E = \bar{x}1\bar{x}2 + x1x2$$

$$E = \neg \neg E = (x1 + x2)(\bar{x}1 + \bar{x}2)$$

2. Prove that nor is functionally complete. That is if we let p * q mean $\neg(p \lor q)$ show that the other connectives, \land , \lor , \neg and \rightarrow are expressible in terms of *.

$$p \wedge q = \neg(\neg p \vee \neg q)$$

$$p \vee q = \neg(\neg(p \vee q))$$

$$\neg p = \neg (p \lor q)$$

$$p \rightarrow q = \neg(\neg p \lor q)$$

3. Negate and simplify

(i)
$$\forall x(p \rightarrow \forall y(q \land By)) \land r$$

$$\neg(\forall x(p \to \forall y(q \land By)) \land r)$$

$$\exists x \neg (p \rightarrow \forall y (q \land By)) \land r$$

$$\exists x(p \land \neg \forall y(q \land By)) \land r$$

$$\exists x(p \land \exists y \neg (q \land By)) \land r$$

$$\exists x(p \land \exists y(\neg q \lor \neg By)) \land r$$

```
(ii) \forall x \exists y \exists z \forall t (r \lor \forall m(p \le q))

= \neg (\forall x \exists y \exists z \forall t (r \lor \forall m(p \le q)))

= \exists x \neg (\exists y \exists z \forall t (r \lor \forall m(p \le q)))

= \exists x \forall y \neg (\exists z \forall t (r \lor \forall m(p \le q)))

= \exists x \forall y \forall z \neg (\forall t (r \lor \forall m(p \le q)))

= \exists x \forall y \forall z \exists t \neg (r \lor \forall m(p \le q)))

= \exists x \forall y \forall z \exists t (\neg r \land \neg (\forall m(p \le q))))

= \exists x \forall y \forall z \exists t (\neg r \land (\exists m \neg (p \le q))))

= \exists x \forall y \forall z \exists t (\neg r \land (\exists m \neg (p \le q))))

= \exists x \forall y \forall z \exists t (\neg r \land (\exists m \neg (p \le q))))
```

3. Using the properties of logical equivalence, prove that $(P \land (P \rightarrow (Q \rightarrow R))) \rightarrow (Q \rightarrow R)$ is a tautology.

```
\begin{split} &(P \land (P \rightarrow (Q \rightarrow R))) \rightarrow (Q \rightarrow R) \\ &(P \land (\neg P \lor (\neg Q \lor R))) \rightarrow (\neg Q \lor R) \\ &\neg (P \land (\neg P \lor (\neg Q \lor R))) \lor (\neg Q \lor R) \\ &\neg (P \land (\neg P \lor (\neg Q \lor R))) \lor (\neg Q \lor R) \\ &(\neg P \lor (\neg P \lor (\neg Q \lor R))) \lor (\neg Q \lor R) \\ &(\neg P \lor (P \land (\neg Q \lor R))) \lor (\neg Q \lor R) \\ &(\neg P \lor (P \land (Q \land \neg R))) \lor (\neg Q \lor R) \\ &(\neg P \lor (P \land Q) \land \neg R))) \lor (\neg Q \lor R) \\ &(\neg P \lor P) \land (\neg P \lor Q) \land \neg R))) \lor (\neg Q \lor R) \\ &1 \land (\neg P \lor Q) \land \neg R))) \lor (\neg Q \lor R) \\ &(\neg P \lor Q) \land \neg R))) \lor (\neg Q \lor R) \\ &(\neg P \land \neg R) \lor (Q \land \neg R) \lor (\neg Q \lor R) \\ &(\neg P \land \neg R) \lor 1 \\ &=1 \end{split}
```

- 5. Let P xy mean that "x prefers y". Let Ox mean that "x is old" and Nx mean that "x is new", and Qx mean that "x is a person" and Hx mean that "x is a house". Let a be Adam and b be Betty. Using only this dictionary translate the following into predicate logic.
- (i) Betty is old.

Ob

(ii) All old people prefer new houses.

 $\forall x \forall y (((Qx \land Ox) \land (Hy \land Ny)) \rightarrow Pxy)$

(iii) Some young (i.e. not old) people prefer new houses.

 $\exists x \forall y (((Qx \land \neg Ox) \land (Hy \land Ny)) \rightarrow Pxy)$

(iv) Every old person prefers some old house.

 $\forall x \exists y (((Qx \land Ox) \land (Hy \land Ny)) \rightarrow Pxy)$

6. Prove by a direct argument that if x and y are odd integers, then x + y is even. E.g Direct proof argue from the premisses to the conclusion by a direct chain of reasoning

```
x=2n+1

Y=2m+1

X+Y=2p

X+Y=(2n+1)+(2m+1)

x+y=2n+2m+2
```

```
x+y=2(n+m+1)
x+y=2p
p=n+m+1
```

7. Let x be an integer. Prove by contrapositive that if x^2 is odd, then x is odd.

Claim x^2 is odd, then x is odd.

Contrapositive RTP: $\neg q \rightarrow \neg p$

x^2 is even

x is even

x = 2n

 $x^2 = (2n)^2$

 $x^2 = 4n^2$

 $x^2=2(2n^2)$

 $x^2=2m$

 $m=2n^2$