Report Summary

1. Column Analysis

The dataset consisted of 52 columns and 100 records (before outlier removal). These included:

• Text fields: CUSTOMER VERBATIM, CORRECTION VERBATIM

Dates: REPAIR_DATE

• Categorical: STATE, ENGINE, PLATFORM, TRANSMISSION

• Numerical: REPAIR AGE, KM, TOTALCOST, LBRCOST, etc.

Critical identifiers like VIN and TRANSACTION_ID were treated as primary keys.

2. Data Cleaning Summary

Missing Values: Addressed using:

Deletion for rows with too many missing critical fields

Simple imputation (like "Unknown") for non-critical categorical fields

• Inconsistencies:

Standardized categorical columns using .str.lower() and .str.strip()

Corrected typos and formatting (e.g., capitalization)

• Outlier Removal:

Outliers removed from key numerical fields (like KM, REPAIR_AGE, TOTALCOST, LBRCOST) using the **IQR method**, which resulted in a cleaner dataset of **69 records**.

3. Visualizations

Top 10 types of Complaints

One complaint was the most frequent one resulting in identifying root cause of QA defects or Manufacturing anomalies

• Top 10 States by Repair Volume

Bar chart showing geographic distribution. Post-outlier removal, states like FL and OH had higher representation.

• Average Cost Repairs by State

Gave insights into which state had the highest average of Total Cost in repairs.

4. Tags Generated (From Free Text Fields)

Tags were extracted from CUSTOMER_VERBATIM and CORRECTION_VERBATIM using a basic keyword-matching technique. Keywords were grouped into:

- Component Tags: e.g., steering wheel, transmission, engine
- Condition Tags: e.g., not working, loose, heating, peeling

Example Tags: "steering wheel", "heating", "replaced", "loose", "cover" These tags help summarize the repair in a structured format.

5. Key Takeaways & Recommendations

• Tag-based Insights:

Steering-related complaints are the most common.

Heating and cosmetic issues dominate failures.

Many replacements happened without error codes, implying possible quality gaps.

• Recommendations:

Perform root cause analysis for frequently tagged components.

Enhance pre-delivery checks for cosmetic/comfort features.

Consider sentiment analysis on verbatim fields for early failure signals.

• Discrepancies Found:

Foreign language text – considered for translation in future iterations. Encoding issues – handled using utf-8 and cleaned during preprocessing. Multiple representations for the same issue – normalized via tagging.

Deliverables Summary

- Cleaned file with tags
- Python script used for cleaning and analysis

Use Case for Tags:

ALL_TAGS column will support in future NLP or predictive modeling tasks — for example, predicting failure types based on symptoms.