Biologia Systemów 2024/25: Analiza danych czasoprzestrzennych

Anna Korczyńska

Zad 1 Porównanie aktywności szlaków sygnałowych między mutacjami

Średnie przebiegi aktywności dla każdej mutacji w czasie:

Szlak AKT jest średnio bardziej aktywny dla każdej mutacji. Największe różnice aktywności między szlakami występują dla mutacji AKT1_E17K (niebieski) przez pierwsze 1000 minut. Na końcu pomiaru wyniki zbliżają się nieco do siebie.

Tabelka ze statystykami uzyskana za pomocą testu Manna–Whitneya i korekty Bonferroniego

	Mutation	Signal	p_value	p_adj
0	AKT1_E17K	ERKKTR_ratio	6.589212e-02	5.271370e-01
1	AKT1_E17K	FoxO3A_ratio	2.439027e-124	1.951222e-123
2	PIK3CA_E545K	ERKKTR_ratio	1.979419e-186	1.583535e-185
3	PIK3CA_E545K	FoxO3A_ratio	7.608408e-106	6.086727e-105
4	PIK3CA_H1047R	ERKKTR_ratio	0.000000e+00	0.000000e+00
5	PIK3CA_H1047R	FoxO3A_ratio	1.925506e-01	1.000000e+00
6	PTEN_del	ERKKTR_ratio	3.564764e-237	2.851811e-236
7	PTEN_del	FoxO3A_ratio	2.772225e-15	2.217780e-14

Powyższe wyniki pokazują, że nie ma statystycznie istotnej różnicy (w porównaniu z typem dzikim) przy mutacji AKT1_E17K i sygnale ERKKTR_ratio (wiersz 0) oraz w parze PIK3CA_H1047R, FoxO3A_ratio (wiersz 5). Przy pozostałych mutacjach i szlakach (reszta wierszy) obserwujemy znaczącą zmianę aktywności. Szczególną uwagę należy zwrócić na wiersz 4, gdzie statystyczna istotność różnicy jest ekstremalnie wysoka.

Podsumowanie biologiczne:

AKT1_E17K: wpływa głównie na aktywność FoxO3A, ale nie na ERK.

PIK3CA_E545K: silnie zmienia oba szlaki (ERK i FoxO3A) – może działać wielotorowo.

PIK3CA_H1047R: wpływa tylko na ERK, ale nie na FoxO3A.

PTEN_del: silnie wpływa na oba szlaki – zgodnie z rolą PTEN jako inhibitora PI3K/AKT.

Przeprowadzona analiza statystyczna wykazała, że większość badanych mutacji istotnie wpływa na aktywność jednego lub obu mierzonych szlaków sygnałowych. Mutacja PIK3CA_E545K oraz PTEN_del znacząco podnoszą poziomy zarówno ERKKTR_ratio, jak i FoxO3A_ratio, co sugeruje ich silny, wielotorowy wpływ na sygnalizację. W przeciwieństwie do tego, mutacja PIK3CA_H1047R wpływa jedynie na aktywność ERK, natomiast AKT1_E17K selektywnie zwiększa sygnał FoxO3A, bez istotnego wpływu na ERK. Wyniki te mogą odzwierciedlać różnice w mechanizmach działania poszczególnych mutacji i ich wpływ na sieci sygnałowe komórki.

Zad 2

Przyjęłam określenie komórki jako aktywna na podstawie przekroczenia baseline. Mój baseline wyliczany jest jako 10% dolnych wartości z przebiegu. Aby komórka była aktywna w danym czasie musi przekroczyć ten próg o jedno odchylenie standardowe.

Niestety zarówno w jupiterze, u mnie lokalnie jak i na collabie kod się przerywał i nie udało mi się dokończyć analiz. W pliku jest załączony kod, ale bez wyników.

Czy rozmiar jądra komórkowego wpływa na poziom aktywności szlaków ERK i AKT?

Zakładamy, że wielkość jądra komórkowego może być powiązana z aktywnością sygnalizacji wewnątrzkomórkowej – większe jądra mogą sugerować wyższy poziom aktywności metabolicznej, a przez to wyższy poziom sygnalizacji AKT lub ERK.

Metoda:

Dane z przedziału czasowego 200–1000 minut (aby uniknąć początkowych i końcowych wahań widocznych na wykresach z zadania 1) zostały zagregowane na poziomie pojedynczych komórek (średnia z obserwacji dla każdej komórki track_id). Obliczyłam korelację pomiędzy średnią wielkością jądra (Nuclear_size) a średnią aktywnością szlaków sygnałowych (ERKKTR_ratio oraz Fox03A_ratio). Korelacje zostały obliczone na dwa sposoby: z użyciem współczynnika korelacji Pearsona (dla zależności liniowych) oraz Spearmana (dla ogólnej monotoniczności zależności).

Wyniki:

Szlak	Korelacja (Pearson)	p-wartość	Korelacja (Spearman)	p-wartość
ERK	-0.047	0.0006	-0.008	0.5626
AKT	0.366	<0.001	0.386	<0.001

Poniższe wykresy pokazują regresję liniową zależności pomiędzy wielkością jądra a poziomem sygnału (ERK i AKT).

 W przypadku szlaku AKT zaobserwowano umiarkowaną dodatnią korelację z wielkością jądra (Spearman r = 0.386, p < 0.001), co sugeruje, że większe jądra są skorelowane z wyższą aktywnością szlaku AKT. Dla szlaku ERK nie stwierdzono istotnej korelacji – współczynniki korelacji były bliskie zeru (Spearman r = –0.008, p = 0.56), mimo niewielkiej, statystycznie istotnej ujemnej korelacji Pearsona, co może być wynikiem dużej liczby danych, ale małej siły efektu.

Interpretacja biologiczna:

Zależność między wielkością jądra a aktywnością AKT może wynikać z roli tego szlaku w promowaniu wzrostu komórki, metabolizmu i proliferacji. Komórki o wyższej aktywności AKT mogą przechodzić przez cykl komórkowy intensywniej, co może wiązać się z większym jądrem. Brak podobnej zależności dla szlaku ERK sugeruje, że jego aktywność jest regulowana innymi mechanizmami niezależnie od rozmiaru jądra.