Binary/Decade Up/Down Counter

The MC14029B Binary/Decade up/down counter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The counter consists of type D flip-flop stages with a gating structure to provide toggle flip-flop capability. The counter can be used in either Binary or BCD operation. This complementary MOS counter finds primary use in up/down and difference counting and frequency synthesizer applications where low power dissipation and/or high noise immunity is desired. It is also useful in A/D and D/A conversion and for magnitude and sign generation.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Speed
- Logic Edge—Clocked Design Count Occurs on Positive Going Edge of Clock
- Asynchronous Preset Enable Operation
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Pin for Pin Replacement for CD4029B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	- 0.5 to + 18.0	V
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	– 0.5 to V _{DD} + 0.5	V
l _{in} , l _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:

Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: – 12 mW/°C From 100°C To 125°C

TRUTH TABLE

Carry In	Up/Down	Preset Enable	Action
1	Х	0	No Count
0	1	0	Count Up
0	0	0	Count Down
X	Х	1	Preset

X = Don't Care

MC14029B

L SUFFIX CERAMIC CASE 620

P SUFFIX PLASTIC CASE 648

D SUFFIX SOIC CASE 751B

ORDERING INFORMATION

MC14XXXBCP Plastic
MC14XXXBCL Ceramic
MC14XXXBD SOIC

 $T_A = -55^{\circ}$ to 125°C for all packages.

PIN ASSIGNMENT

PE [1 ●	16	V _{DD}
Q3 [2	15	CLK
P3 [3	14	Q2
P0 [4	13	P2
C _{in} [5	12	P1
Q0 [6	11	Q1
C _{out} [7	10	U/D
V _{SS} [8	9	B/D
			•

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V _{DD}	- 5	5°C		25°C		125	i°C	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур #	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	VOL	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	V _I L	5.0 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	VIH	5.0 10 15	3.5 7.0 11	_ _ _	3.5 7.0 11	2.75 5.50 8.25	_ _ _	3.5 7.0 11	_ _ _	Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	lOH	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	 - - -	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 - 0.36 - 0.9 - 2.4	_ _ _ _	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	lOL	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package)		IDD	5.0 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20	_	150 300 600	μAdc
Total Supply Current**† (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outp buffers switching)	•	lΤ	5.0 10 15			$I_{T} = (1.$.58 μΑ/kHz) † .20 μΑ/kHz) † .70 μΑ/kHz) †	f + I _{DD}			μAdc

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} \leq (V_{in} or V_{out}) \leq V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

^{**}The formulas given are for the typical characteristics only at $25\,^{\circ}$ C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS* ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

				All Types		
Characteristic	Symbol	V _{DD}	Min	Typ #	Max	Unit
Output Rise and Fall Time t_{TLH} , t_{THL} = (1.5 ns/pF) C_L + 25 ns t_{TLH} , t_{THL} = (0.75 ns/pF) C_L + 12.5 ns t_{TLH} , t_{THL} = (0.55 ns/pF) C_L + 9.5 ns	tTLH, tTHL	5.0 10 15	_ _ _	100 50 40	200 100 80	ns
Propagation Delay Time Clk to Q tplH, tpHL = (1.7 ns/pF) CL + 230 ns tplH, tpHL = (0.66 ns/pF) CL + 97 ns tplH, tpHL = (0.5 ns/pF) CL + 75 ns	tPLH, tPHL	5.0 10 15	_ _ _	200 100 90	400 200 180	ns
Clk to $\overline{C_{Out}}$ t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 230 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 97 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 75 ns	^t PLH, ^t PHL	5.0 10 15	_ _ _	250 130 85	500 260 190	ns
$\overline{C_{in}}$ to $\overline{C_{out}}$ t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 95 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 47 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 35 ns	^t PLH, ^t PHL	5.0 10 15	_ _ _	175 50 50	360 120 100	ns
PE to Q t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 230 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 97 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 75 \text{ ns}$	^t PLH, ^t PHL	5.0 10 15	_ _ _	235 100 80	470 200 160	ns
PE to $\overline{C_{Out}}$ t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 465 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 192 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 125 \text{ ns}$	^t PLH [,] ^t PHL	5.0 10 15	_ _ _	320 145 105	640 290 210	ns
Clock Pulse Width	^t W(cl)	5.0 10 15	180 80 60	90 40 30	_ _ _	ns
Clock Pulse Frequency	f _{Cl}	5.0 10 15	_ _ _	4.0 8.0 10	2.0 4.0 5.0	MHz
Preset Removal Time The Preset Signal must be low prior to a positive—going transition of the clock.	t _{rem}	5.0 10 15	160 80 60	80 40 30	_ _ _	ns
Clock Rise and Fall Time	tr(cl) tf(cl)	5.0 10 1 5	_ _ _	_ _ _	15 5 4	μs
Carry In Setup Time	t _{su}	5.0 10 15	150 60 40	75 30 20	_ _ _	ns
Up/Down Setup Time		5.0 10 15	340 140 100	170 70 50	_ _ _	ns
Binary/Decade Setup Time		5.0 10 15	320 140 100	160 70 50	_ _ _	ns
Preset Enable Pulse Width	t _W	5.0 10 15	130 70 50	65 35 25	_ _ _	ns

^{*} The formulas given are for the typical characteristics only at 25°C.
#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. Switching Time Test Circuit and Waveforms

TIMING DIAGRAM

Figure 3. Divide by N BCD Down Counter and Timing Diagram (Shown for N = 123)

LOGIC DIAGRAM

OUTLINE DIMENSIONS

L SUFFIX CERAMIC DIP PACKAGE CASE 620-10 ISSUE V

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.750	0.785	19.05	19.93
В	0.240	0.295	6.10	7.49
С		0.200		5.08
D	0.015	0.020	0.39	0.50
Е	0.050	BSC	1.27	BSC
F	0.055	0.065	1.40	1.65
G	0.100	BSC	2.54	BSC
Н	0.008	0.015	0.21	0.38
K	0.125	0.170	3.18	4.31
L	0.300	0.300 BSC		BSC
М	0°	15°	0 °	15°
N	0.020	0.040	0.51	1.01

P SUFFIX PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MIN MAX		MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10 °
S	0.020	0.040	0.51	1.01

OUTLINE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ANSI
- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
М	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912: Phoenix. Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

