p13 思考题

1. 设 $f:\mathbb{R}\to\mathbb{R}$, 记 $f_1(x)=f(x)$, $f_n(x)=f(f_{n-1}(x))(n=2,3,\cdots)$. 若存在 n_0 , 使得 $f_{n_0}(x)=x$, 则 f 是 \mathbb{R} 到 $f(\mathbb{R})$ 上的 — 映射

证明: 要证明一一映射, 就得证明单射和满射

单射: 如果不单射, 则存在 $x_1 \neq x_2$ 使得 $f_n(x_1) = f_n(x_2)$

当 $n > n_0$ 时

$$f(x_1) = x_1$$

$$f(x_2) = x_2$$

而这与不单射冲突, 所以单射

满射: 即证明 f(x) 可以映射回 x

$$f_{n_0}(x) = f_{n_0}(f_{n_0-1}(x))$$

$$\diamondsuit f_{n_0-1}(x) = y$$

$$\mathbb{N} f_{n_0}(y) = x$$

所以满射

2. 不存在 Q 上的连续函数 f, 它在无理数集 $\mathbb{R} \setminus \mathbb{Q}$ 上是一一映射,而在 \mathbb{Q} 上则不是一一映射证明:连续函数要么单调,要么不单调。如果单调。那么在有理数集上就双射了,不满足在有理数上不是双射这个条件。所以这个函数肯定不是单调的。既然不是单调的,那么就肯定有最值 $a,b \in \mathbb{Q}$, f(a) = f(b) 这个是满足在 QQ 上不是一一映射。根据 Rolle's Theorem,极值点左边一个无理数 x1 的值肯定可以在极值点右边找到对因一个 x2 使得 x1 = x2 这里 x2 不能是无理数,因为 x2 如果是无理数的话就和无理数单射冲突了,所以这里 x2 必须得是有理数 但是在这个区间中,有理数的势是远小于无理数的势的。所以总是有无理数找不到对应的有理数。但是这个无理数总是需要有东西对应。所以只能对因一个无理数,和单射冲突

3. $f: X \to Y$ 是满射当且仅当对任意的真子集 $B \subset Y$ 有 $f(f^{-1}(B)) = B$

先证明单射: 如果不是单射,那么我们可以在 B 中找到两个数 x1, x2 使得 $f(x_1) = f(x_2)$ 但是 $f^{-1}(f(x_1))$ 就会对应两个值了,要么 x1 要么 x2 所以和 $f^{-1}(f(B)) = B$ 矛盾,得到f(x) 是单 射

再证明满射

如果 f(x) 不是满射,我们取 $A = Y \setminus B$ 既然不是满射,我们可以得到 $\forall y \in A$ $f^{-1}(y) \in X$ 不 妨令 $y_1 \in A$ 则 $f^{-1}(y_1) = x_1, x_1 \in A$ 由于不满射,所以 $f(x_1) = y_2, y_2 \in B$ 即 $f^{-1}(f(y_1)) = y_2, y_1 \in A, y_2 \in B$ 直接和后面的矛盾了。所以 $f: X \to Y$ 是满射

但是我整个写完, 也没感觉证明这个单射的必要

老师在讲这道题之前还讨论了几个有意思的问题

 $f: \mathbb{R} \to \mathbb{R}$

 $A_i \subset \mathbb{R}$

$$f\bigl(\bigcup_{i\in N}A_i\bigr)=\bigcup_{i\in N}f(A_i)$$

这个东西成立吗? 只要 f 是一个映射, 这个结论一定成立。 可以证明一下。要证明两个集合

相等。就是要证明两个集合互为子集 老师说是 $f(\bigcup_{i\in N}A_i)\supset\bigcup_{i\in N}f(A_i)$ 容易证明,那么我们就先说明左边包含右边 因为可以把右边拆出来,每一个 $f(A_i)$ 都被 $f(\bigcup_{i\in N}A_i)$ 包含,所以它们的并,肯定也被包含 那么反过来呢?

存在 $y\in\bigcup_{i\in N}f(A_i)$ 一定能找到一个 x 使得 $x\in\bigcup_{i\in N}A_i$ 当 $x\in A_i$ 时,对应的 $y\in f(A_i)$ 而 $f(A_i)\in\bigcup_{i\in N}f(A_i)$

但是这个交集的结论转成交集就不一定成立了 对任意的 $A, B \subset X$, 有 $f(A \cap B) = f(A) \cap f(B)$ 可以让左边交为空,而右边有交集。只要这个函数不是单射就好了

好,现在继续看思考题第 4 题。老师在第 4 题前讲这些内容就是为了第 4 题做铺垫的 这里由 $i \rightarrow ii$ 其实条件过强了。其实只要满足 f 是单射就可以证明了。

首先,我们可以得到的一个结论就是 $f(A \cap B) \subset f(A) \cap f(B)$ 这个是无论是否单射都能成立的。只要是个映射,都能成立 我先把这个的结论证明一下。 let

$$y\in f(A\cap B)$$

this means there exists an $x \in A \cap B$ such that

$$y = f(x)$$

since $x \in A$, we know $y = f(x) \in f(A)$ since $x \in B$, we know $y = f(x) \in f(B)$ Because y is in both f(A) and f(B), we have

$$y \in f(A) \cap f(B)$$

Therefore, $f(A \cap B) \subset f(A) \cap f(B)$ is always true

其实就是说,不管从左边取哪一个元素,那个元素一定可以在右边找到。在 windows 上写中文太痛苦了。我以后会尽量用英文和符号来表达。除非由大段的文字要写 由此 $i \to ii$ 就被证明了 iii 这里可以直接使用ii 的结论

Of course, you can prove by contradiction. If the right side is not \varnothing When you say "y in f(A) inter f(B) ", this still means there's an $x_1 \in A$ and an $x_2 \in B$ with $f(x_1) = y \land f(x_2) = y$

Because the function is injective, we know that x_1 and x_2 must be the same elemen. Therefore, the single pre-image x must belong to both A and B, which means $x \in A \cap B$.

这个iv其实更加好证明了

 $B \setminus A = (B \setminus A) \cap X$

 $f(B) \setminus f(A) = (f(B) \setminus f(A)) \cap Y$

直接就可以套用ii 中的式子 这个从 $iv \rightarrow i$ 其实也是可以直接反证法,如果不是单射,这个等式就不成立了。

1.14 幂集 🎤

这个例一有点抽象 如果 $A \subset B$ 那么 $f(A) \subset f(B)$ 难道不是一定成立的吗? 直接把 B 看成 A 并上余集 不就好了 直接就是 $A \cup A^c = B$ and $f(A) \subset (f(A) \cup f(A^c))$ 感觉这个条件给了和没一样 但是我问了 ai 说是集合的映射和函数的映射是不一样的,在幂集上是从集合到集合的映射。 这个 S 我直观上知道是对的,这个东西会需要专门说明是对的吗? 这个证明看懂了.我之只能说值得多看几遍

思考题:

第一个单射直接用 x1 x2 让他们对应的 y 相同,那么 g(y) 唯一,所以 x1 = x2 这个满射也很容易证明。在 X 中找一个点,不在 g 的值域上,使得映射不成立就好了

1.15 对等关系

 $A \sim B \Rightarrow ?A \cup C \sim B \cup C$

only if $C \cap A = \emptyset$, $C \cap B = \emptyset$

 $A \sim B \Rightarrow ?A \cap C \sim B \cap C$

p15 引理 1.4 若有 可以直接分解,不使用 Cantor-Bernstein 来证明 老师的方法,我等下看视频再自己理解一下,我现在用不动点先证明一遍 因为题目是存在,所以我们的目标就是找到这么一个函数。 这个题目条件满足 Knaster-Tarski 定理,所以可以找到那么一个函数,使得 $f(S) = X \setminus g(Y \setminus f(S))$

定理 1.5 (Cantor-Bernstein 定理) 若集合X与Y 的某个真自己对等,Y与 X 的某个真子集对等,则 $X \sim Y$

p17

3. 若 $A \subset B$ 且 $A \sim (A \cup C)$, 试证明 $B \sim (B \cup C)$.

 $B \cup C = B \cup (C \setminus B)$

 $B = A \cup (B \setminus A)$

 $A \cup C = A \cup (A \setminus C)$

 $:: B \cup C = A \cup (B \setminus A) \cup C \setminus B$

 $: B \cup C = (B \setminus A) \cup A \cup C \setminus B$

 $\because C \setminus B$

关于集合大小的讨论, 看老师视频

引入基数是为了在无限的情况下两个集合比大小 在集合中的元素有限的情况下,两个集合 A 与 B 的关系,我们总是认为 A > B A = B A < B 这三件事情是一定发生的。那是当然了,毕竟数量可以直接数出来 但是到了无限的情况下,情况就不一样了 这三件事情中的某一件并不会一定发生的

例 10 还是不会证明

定理 1.10 的证明, 我并不满意,这只能说明, 他这种排法不行, 没能证明其他的排法不行 1.12 的证明我不是很能理解, 先记下来吧

可数和可列看书本 p20, 例 10 上面那句话

书本 p11 他这里例一,为什么有这个结论 书本 p11 md 这个论文在第 93 卷,不在第 78 卷书上的标记是有误的 他这个例 2 为什么上积分和下积分不同,难道无理数就是比有理数小吗?

13 页的这个 V.Volterra 做出的可微函数是哪一个 同一元这个我也不理解