Dependência Funcional e Normalização

Prof. Bruno Travençolo

Roteiro

- Dependência Funcional
- Introdução aos conceitos de normalização
 - 1 FN
 - 2 FN
 - 3 FN
 - BCNF

Dependência Funcional e Normalização

- Cada esquema de relação consiste de um número de atributos e o esquema do banco de dados relacional consiste de um número de esquemas de relação
- É necessário uma maneira formal para mensurar o quanto um esquema de relação é melhor do que outro
 - Dependências funcionais
 - Formas normais

Dependência Funcional e Normalização

- Processo de normalização
 - oferece mecanismos para analisar o projeto do BD
 - identificação de erros
 - oferece métodos para corrigir problemas
- Erros encontrados
 - repetição de informação
 - perda de informações
 - inabilidade de representar certas informações

- É uma restrição entre dois conjuntos de atributos de um esquema de relação R
 - restrição → impõe uma limitação nos valores possíveis de tuplas que formem um estado da relação r de R
- É uma propriedade da semântica ou do significado dos atributos
 - são derivadas pelo projetista do BD na análise da especificação de requisitos

relaçãoR (atributoA, atributoB, atributoC)

- Um atributo B de um esquema de relação R é funcionalmente dependente de um outro atributo A de R se um valor para A determina um único valor para B em qualquer momento
- Notação: A → B
- Se B é <u>funcionalmente dependente</u> de A, então A <u>determina funcionalmente</u> B

Observações

- As dependências funcionais são informações semânticas fornecidas pelo projetista
- Uma dependência funcional é uma propriedade do esquema da relação R, não de um estado particular válido da relação r de R
- \bullet Se X \rightarrow Y em R, isso não implica necessariamente que Y \rightarrow X em R

- Certas DF podem ser especificadas sem recorrer a uma relação específica, mas pelas propriedades de seus atributos
- Os exemplos abaixo deveriam ser válidos para qualquer advogado ou engenheiro no Brasil:
 - ♦ {ESTADO, OAB} → NOME_ADVOGADO
 - ◆ {ESTADO, CREA} → NOME_ENGENHEIRO

Também é possível que algumas DF possam deixar de existir

- Exemplo:
 - ◆ PRIMEIROS_QUATRO_DÍGITOS → OPERADORA_CELULAR
 - com a portabilidade essa DF passou a não ser mais verdadeira

- Exemplo:
 - ♦ SSN → ENOME
 - ◆ PNUMERO → {PNOME, PLOCALIZACAO}
 - ♦ {SSN, PNUMERO} → HORAS

Notação diagramática para DF

Exercício 1

Dada a seguinte relação cliente (nro_cliente, nome, endereço)

As seguintes dependências são corretas?

Não!

- nome → endereço

12

OK!

Exercício 2

Dada a seguinte relação (e suas instâncias) linha_pedido (nro_pedido, nro_peça qtidade_comprada, preço_cotado)

nro_pedido	nro_peça	qtidade_ comprada	preço_cotado
101	P01	3	30,00
101	P02	4	70,00
102	P01	8	80,00
102	P02	3	20,00

Exercício 2

nro_pedido	nro_peça	qtidade_ comprada	preço_cotado
101 101 102	P01 P02 P01	3 4 8	30.00 70,00 80,00
102	P02	3	20,00

Não!

- As seguintes dependências são verdadeiras?
 - nro_pedido → qtidade_comprada
 - nro_peça → qtidade_comprada
 - nro_pedido > preşo_quotado
 - nro_peça → preço_quotado.
 - {nro_pedido, nro_peça} → qtidade_comprada
- OK! { nro_pedido, nro_peça} → preço_cotado {nro_pedido, nro_peça} → {qtidade_comprada, preço_cotado}

Dependência Funcional e Normalização

Vantagens:

- garante relações sem redundância desnecessária
- oferece fácil recuperação das informações

Formas normais:

- Primeira Forma Normal (1FN)
- Segunda Forma Normal (2FN)
- Terceira Forma Normal (3FN)
- Forma Normal de Boyce-Codd (FNBC)
- 4FN, 5FN...

Uma superchave de uma relação R é um conjunto de atributos S contido em R

no qual não haverá duas tuplas t₁ e t₂ cujo
 t₁[S] = t₂[S]

Uma chave K é uma superchave com a propriedade adicional de que a remoção de qualquer atributo da chave fará com que K não identifique mais unicamente cada tupla da relação

 a diferença é que uma chave tem que ser mínima

EMPREGADO			chave estrangeira (f.k.)		
ENOME	SSN	DATANASC	ENDERECO	DNUMERO	

chave primária (p.k.)

Exemplo:

- {SSN} é uma chave de empregado
- Superchaves

 - {SSN, Enome, Datanasc}
 - {SSN, Enome, Datanasc, Endereço}
 - {SSN, Enome, Datanasc, DNumero}

- Chave candidata:
 - se um esquema de relação tiver mais de uma chave, cada uma delas é chamada chave candidata
 - uma delas é arbitrariamente designada para ser chave primária
- Um atributo de um esquema de relação R é chamado <u>atributo primário</u> se for membro de alguma chave candidata

EMPREGADO	40	chave estrangeira (f.k.)		
ENOME	SSN	DATANASC	ENDERECO	DNUMERO
	chave pr	imária (p.k.)		

Exemplo:

 {SSN} é a única chave candidata de empregado, portanto também é a chave primária

Revisão: Chave Primária

- Um atributo A (ou coleção de atributos) é a chave primária para um esquema de relação R se
 - todos os atributos em R são funcionalmente dependentes de A
 - não existe um subconjunto próprio de A que determina funcionalmente os atributos em R

Primeira Forma Normal (1FN)

Uma relação R está na 1FN se:

 todo valor em R for <u>atômico</u> e <u>monovalorado</u>

ou seja, R não contém grupos de repetição

Primeira Forma Normal (1FN)

Exemplo

repetição

cliente (nro_cli, nome, {end_entrega})

nro_cli	nome	end_entrega
124	João dos Santos	{Rua 10, 1024 Rua 24, 1356}
311	José Ferreira Neves	{Rua 46, 1344 Rua 98, 4456}

cliente nem mesmo pode ser qualificado como uma relação ...

Métodos para Corrigir o Problema

Método 1

Cliente_nome

nro_cli_	nome
124	João dos Santos
311	José Ferreira Neves

Cliente_entrega

nro_cli_	end_entrega
124	Rua 10, 1024
124	Rua 24, 1356
311	Rua 46, 1344
311	Rua 98, 4456

Métodos para Corrigir o Problema

- Método 2
 - substituir o grupo de repetição pelo número máximo de valores estabelecido para o grupo
 - abordagem menos genérica e que pode introduzir muitos valores null

nro_cli	nome	end_entrega1	end_entrega2
124	João dos Santos	Rua 10, 1024	Rua 24, 1356
311	José Ferreira Neves	Rua 46, 1344	Rua 98, 4456
025	Cecília Neves	Rua 77, 275	null

Primeira Forma Normal (1FN)

- Problema
- cliente (nro_cli, nome, {end_entrega})
 Corrigindo o problema ...
- Solução 1
 - cliente_nome (nro_cli, nome)
 - cliente_entrega (nro cli, end_entrega)
- Solução 2
 - cliente (nro_cli, nome, entrega1, entrega2)

- Uma relação R está na 2FN se:
 - está na 1FN
 - não existe <u>atributo não chave</u> que é dependente de somente uma parte da chave primária

Exemplo:

 pedido (nro-pedido, data, nro-peça, descrição, qtdade_comprada, preço_cotado)

```
nro-pedido → data

nro-peça → descrição

{nro-pedido, nro-peça} → {qtdade_comprada,

preço_cotado}
```

- Método para corrigir o problema:
 - para cada sub-conjunto do conjunto de atributos que constitui a chave primária, começar uma relação com esse sub-conjunto como sua chave primária
 - incluir os atributos da relação original na relação correspondente à chave primária apropriada, isto é, colocar cada atributo junto com a coleção mínima da qual ele depende, atribuindo um nome a cada relação

Problema: pedido (nro-pedido, data, nro-peça, descrição, qtdade_comprada, preço_cotado)

Corrigindo o problema ...

Solução:

```
pedido (<u>nro-pedido</u>, data)

peça (<u>nro_peça</u>, descrição)

pedido_peça (<u>nro_pedido</u>, <u>nro_peça</u>,

qtdade_comprada, preço_cotado)
```

Exercícios

- Diga em que forma normal (Nenhuma, 1 FN, 2 FN) está cada relação abaixo, justificando sua resposta. Depois, se necessário, indique os passos que devem ser realizados para normalizar para a 2ª forma normal.
- ◆ LIVROS = {<u>Título</u>, <u>Autor</u>, Tipo, Preço, {FiliaçãoDoAutor}, Editora}
 - Título → {Editora, Tipo}
 - Tipo → Preço
 - Autor → FiliaçãoDoAutor
- FORNECEDOR = {CNPJ, RazãoSocial, NomeFantasia, Contato}
 - CNPJ → {RazãoSocial, NomeFantasia, Contato}
- CLIENTE = {CPF, Nome, None, None,
 - CPF → {Nome, NroAgência, NroConta, TipoConta}
 - {NroAgência, NroConta} → {CPF, Nome, TipoConta}
 - TipoConta → NroAgência

Bibliografia e leitura complementar para casa

- Slides Prof. Humberto Luiz Razente
- Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados, 6ª edição.
 - Capitulo 15: "Fundamentos de dependências funcionais e normalização para bancos de dados relacionais"