# 浙江大学 20\_17\_ - 20\_18\_学年\_春夏\_学期

# 《 大学物理甲1 》课程期末考试试卷(A)

课程号: \_\_761T0010\_\_, 开课学院: \_\_物理系\_\_\_

考试试卷: A√卷、B卷(请在选定项上打√)

考试形式:闭√、开卷(请在选定项上打√)

允许带\_无存储功能的计算器\_入场

考试日期: \_\_2018\_年\_07\_月\_6\_日, 考试时间: \_\_120\_\_分钟

诚信考试,沉着应考,杜绝违纪。

| 考生姓名_       | 学                                                        | 号                                        | 所                              | 属院系                     |                                      | 任课老师                 |      | 序号                                              |
|-------------|----------------------------------------------------------|------------------------------------------|--------------------------------|-------------------------|--------------------------------------|----------------------|------|-------------------------------------------------|
| 题序          | 填空                                                       | 计1                                       | 计2                             | 计3                      | 计4                                   | 计 5                  | 计6   | 总 分                                             |
| 得分          |                                                          |                                          |                                |                         |                                      |                      |      |                                                 |
| 评卷人         |                                                          |                                          |                                |                         |                                      |                      |      |                                                 |
| 真空介电        | 常量 $R =$ 常数 $\varepsilon_0 =$ 质量 $m_e$ <b>题</b> : (12.5) | $= 8.85 \times 10$<br>$= 9.11 \times 10$ | $(C^2 \cdot N^{-12})^{-12}$    | $N^{-1} \cdot m^{-2}$ ) |                                      | 兹曼常量<br>中光速 <i>c</i> |      | $\times 10^{-23} \mathrm{J \cdot K^{-1}}$ (m/s) |
| 轴正向,大<br>   | m的物体<br>小为 F=<br>一·<br>分) 0123<br>质点的设                   | kx. 物体/<br>速度为 ō                         | 人原点运动<br>= 4 <del>i</del> + 3t | 効到坐标 $ar{j}$ (SI) ,     | 为 x <sub>0</sub> 的点<br>则在 <i>t</i> = | 的过程中                 | 所受外力 | 是外力方向沿 $x$ 冲量的大小为                               |
|             | 分) 0691<br> 火车以 10<br>迹偏离竖                               | 0 m/s 的词                                 | <b></b><br>車率向东行               | <sub>下驶时,</sub> 若       |                                      |                      |      | 在列车的窗子<br> 对于列车的速                               |
| 过其中点且 桌面上有两 | 水平桌面 垂直于杆 个质量均                                           | 的竖直光:<br>为 m 的小                          | 滑固定轴<br>球,各自                   | O 自由转在垂直于               | 动,起初杆的方向                             | 杆静止.<br>上,正对         | がある。 | で<br>の<br>俯视图                                   |

弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为

| 5. | (本题 | 4分)   | 5615 |
|----|-----|-------|------|
| 0. | 1   | 7 / / | 2012 |

一门宽为 a. 今有一固有长度为  $l_0$  ( $l_0 > a$ ) 的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动. 若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率 u 至少为

# 6. (本题 4分) 4500

#### 7. (本题 4分) 3029

一物块悬挂在弹簧下方作简谐振动,设平衡位置处势能为零,总能量为 E. 当这物块相对于平衡位置的位移等于振幅的一半时,其动能为\_\_\_\_\_. 当这物块在平衡位置时,弹簧的长度比原长长 $\Delta I$ ,这一振动系统的周期为\_\_\_\_.

# 8. (本题 4分) 3443

设沿弦线传播的一入射波的表达式为

 $y_1 = A\cos(\omega t - 2\pi x/\lambda),$ 

波在 x = L 处 (B点)发生反射,反射点为自由端 (如图所示),设波在传播和反射过程中振幅不变,则反射波的表达式为  $y_2 =$ \_\_\_\_\_.



# 9. (本题 4分) 4272

#### 10. (本题 4分) 3601

设某种气体的分子速率分布函数为f(v),请写出速率在 $v_1 \sim v_2$ 区间内的分子的平均速率的表达式:

# 11. (本题 4分) 4665

假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,并且氧气和氧原子其速率分布遵循麦克斯韦速率分布,则这些氧原子的方均根速率是原来氧分子方均根速率的 倍.

#### 12. (本题 4分) 1045

如图所示,一无限长均匀带电细线,电荷线密度 $\lambda_l$ . 另有一均匀带电细棒,长为 l,电荷线密度 $\lambda_2$ ,同无限长细线共面并垂直放置. 棒的一端距细线距离 l. 则细棒所受的静电场力大小为\_\_\_\_\_\_.



# 二、计算题: (6题, 共52分)

#### 1. (本题 8分) 0560

一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和 2m的重物,如图所示。绳与滑轮间无相对滑动,滑轮轴光滑。将由两个定滑轮以及质量为m和 2m的重物组成的系统从静止开始释放,求两滑轮之间绳内的张力。

# 2. (本题 10分) t001

如图所示,均匀细杆质量为m、长为l,上端连接一个质量为m的小球,可绕通过下端并与杆垂直的水平轴转动。设杆最初静止于竖直位置,受微小干扰而往下转动。求转到水平位置时,(1)杆的角速度;(2)杆的角加速度;(3)轴对杆的作用力。



m,r

2m

m,r

m

# 3. (本题 8分) 3476

一平面简谐波沿 Ox 轴正方向传播,波的表达式为  $y = A\cos 2\pi (u - x/\lambda)$ , 而另一平面简谐波沿 Ox 轴负方向传播,波的表达式为  $y = 2A\cos 2\pi (u + x/\lambda)$ .

求: (1)  $x = \lambda/4$  处介质质点的合振动方程;

(2)  $x = \lambda/4$  处介质质点的速度表达式.

# 4. (本题 8分) Y001

已知一沿x轴正向传播的平面余弦波,t=1/3 s 时的波形图如图所示,且周期 T=2s. 求:(1)原点的振动方程;(2)该波的表达式;(3)C 点离原点的距离.



# 5. (本题 10分) 4943

气缸内有一定量的氧气(视为刚性分子的理想气体),作如图所示的循环过程,其中 ab 是等温过程,bc 为等体过程,ca 是绝热过程.已知 a 点状态参量为  $p_a$ 、 $V_a$ 、 $T_a$ ,b 点的体积  $V_b=3V_a$ . 试求:(1)ab、bc、ca 过程中氧气吸收的热量;(2)该循环的效率  $\eta$ ;(3)从状态 b 到状态 c,氧气的熵变  $\Delta S$ .



#### 6. (本题 8分) 1503

如图所示,一厚为 b 的 "无限大" 带电平板, 其电荷体密度分布为 $\rho=kx^2$  ( $0\le x\le b$ ),式中 k 为一正的常量. 求:

- (1) 平板外两侧任一点  $P_1$ 和  $P_2$ 处的电场强度大小;
- (2) 平板内坐标为 x 任一点 P 处的电场强度大小.

