CelebrationNight

This project was released under GPL-3.0 License.

Scripts for transcriptome analysis.

- This project include some experiment coding for testing purpose.
- Use it at your own risk.
- I will try my best to complete and polish this documentation.

Type of process

CoFRIL

• Config First and Run It Later

Definition	Naming
1. Pack process code into python class (.py file with "lib" prefix)	
2. Run *-setConfig.py first to configure dependent variables (Initialization)	*-setConfig.py
	template: "*- configExample.py"
3. Run related python class in *-run.py	*-run.py
	template: "*- exampleRun.py"

ReRa

• Relay Race

Definition

- 1. Use script language to control the workflow
- 2. Use executable binary or script language or both to process information

RuDi

• Run Directly

Definition

- 1. Declare sample-dependent variables on the beginning of script
- 2. Derive downstream variables
- 3. Run code directly without class

Configuration

libConfig

For general-purpose storage of configuration

• Coming soon

cf-Branch

For experiment design

• Coming soon

cf-Command

For version management of executable

• Coming soon

cf-Parameter

For adjustment

• Coming soon

Database conversion (Preparation)

Extract information from Genome annotation

• Coming soon

Reconstruct information from functional annotation database

• Coming soon

Processing Stage (General usage)

Stage 01 - FASTQ Quality Report

List	Detail
Codename	01-fq-fastqc
Usage	Quality reports
Туре	ReRa
Binary	FastQC ¹
Language	Shell script & Python 3
Input	NGS reads, FASTQ format
Output	HTML reports

• Command:

bin/FastQC/fastqc -f fastq -o [largeData/04-hisat2/species/speciesDatabase-trimQ30/report]

Stage 02 - HISAT2 index

List	Detail
Codename	02-hisat2-index
Usage	Build HISAT2 index
Туре	CoFRIL
Class	libHISAT.indexer() indexer
Binary	hisat2-build from HISAT2 ²
Input	Genome sequences, FASTA format
Output	HISAT2 index of genome

Stage 03 - Trim

List	Detail
Codename	03-trim
Usage	Trim FASTQ files
Туре	CoFRIL
Class	libTrim.trimmer() indexer
Binary	Trimmomatic ³
Input	raw NGS reads, FASTQ format
Output	Trimmed reads, FASTQ format

Stage 04 - HISAT2

List	Detail
Codename	04-hisat2
Usage	Alignment and mapping
Туре	CoFRIL
Class	libHISAT.aligner() <u>aligner</u>
Binary	hisat2 from HISAT2 ²
	samtools from SAMtools 4
Input	HISAT2 index of genome (02-hisat2-index)
	Trimmed reads, FASTQ format (03-trim)
Output	Alignments, BAM format

Stage 05 - gffRead

List	Detail
Codename	05-gr-gffRead
Usage	Convert genome into transcriptome
Туре	CoFRIL
Class	libCuffdiff.converter() converter
Binary	gffread ⁵
Input	Genome annotation, GFF3 format
Output	Transcriptome annotation, GTF2 format

Stage 06 - Transcripts extraction

List	Detail
Codename	06-fn
Usage	Transcriptome extractor
Туре	ReRa
Binary	gffread ⁵
Language	Shell script & Python 3
Input	Genome sequences, FASTA format
	Transcriptome annotation, GTF2 format (05-gr-gffRead)
Output	Transcripts, FASTA format
	Transcripts table, TSV format

• Command:

o bin/cufflinks/gffread\ -g userData/dbgs-GenomeSequence/speciesDatabase/speciesDatabase.fn\ -w userData/06-grexportTranscript/speciesTreatment/speciesDatabase-trimQ30-transcript.fn\ userData/05-gr-transcriptomeConstruction/speciesTreatment/speciesDatabasetrimQ30-final.gtf

Stage 07 - Transcript abundances estimation

List	Detail
Codename	07-cd-CuffDiff
Usage	Estimate transcript abundances
Туре	CoFRIL
Class	libCuffdiff.differ() differ
Binary	cuffdiff from Cufflinks ⁶
Input	Alignments, BAM format (04-hisat2)
	Transcriptome annotation, GTF2 format (05-gr-gffRead)
Output	Abundances/Expression profile, DIFF format (TSV format)

Stage 08 - Homologous annotation

List	Detail
Codename	08-an
Usage	an1. Extract info of transcript-gene relation
	an2. Link transcript ID with gene ID and homologous ID
	(cont.) Further annotate with functional annotation databases
Туре	RuDi
Language	Python 3
Input	Abundances/Expression profile, DIFF format (TSV format) (07-cd-CuffDiff)
	Genome annotation, JSON format (dbga-GenomeAnnotation)
	Homolog, JSON format (dbga-GenomeAnnotation)
	GO Terms, JSON format (dbgo-GOdatabase)
	KEGG pathways, JSON format (dbkg-KEGG-hirTree)
	Other databases
Output	Homologous annotations, JSONs format (various files)

Stage 09 - Transcriptome information summarizer

List	Detail
Codename	09-cd
Usage	cd1. Convert the results of cuffdiff into SQLite3 form
	cd2. Annotate and seperate information into
	(cont.) sample-orientation Expression tables
Туре	RuDi
Language	Python 3
Input	Abundances/Expression profile, DIFF format (TSV format) (07-cd-CuffDiff)
	Homologous annotations, JSONs format (08-an)
Output	Annotated abundances/expression profile, SQLite3 format
	Annotated abundances/expression profile, TSV format

Stage 10 - Differential Expression Analysis (Haven't release)

List	Detail
Codename	10-grouping
Usage	Group and calculate the count of Differential Expressed Genes (DEGs) and Specifically Expressed Genes (SEGs)
Туре	RuDi
Language	Python 3
Input	Annotated abundances/expression profile, TSV format (09-cd)
	Homologous annotations, JSONs format (08-an)
Output	DEA result files, JSON format
	DEA result files, TSV format
	DEA count record, LOG format (TXT format)

Stage 11 - Gene set enrichment analysis (Haven't release)

List	Detail
Codename	11-ea-enrichAnaly
Usage	Compare and calculate the ratio of count of DEGs or SEGs
Туре	RuDi
Language	Python 3
Input	DEA result files, JSON format (10-grouping)
	Annotated abundances/expression profile, SQLite3 format (09-cd)
	Homologous annotations, JSONs format (08-an)
Output	GSEA result files, JSON format
	GSEA result files, TSV format

Stage 12 - Fisher's Exact Test and visualization (Haven't release)

List	Detail	
Codename	12-ft	
Usage	ft1. Do Fisher's Exact Test	
	ft2. Visualization	
Туре	RuDi	
Language	Python 3	
Input	GSEA result files, JSON format (11-ea-enrichAnaly)	
	Homologous annotations, JSONs format (08-an)	
Output	FET result files, PNG format	
	FET result files, SVG format	
	FET result files, TSV format	

Python Library (Module & Classes)

libHISAT

- Original Command:
 - libHISAT.indexer()
 - hisat2-build \ #Building HISAT2 Index -p [THREAD] <Path and Name of
 GENOME File> \ < prefix of HISAT2-build genome index (path+header)>
 - libHISAT.aligner()
 - hisat2 \ #Aligning and mapping -q [--dta/--dta-cufflinks] --phred <phred>
 -p <thread> \ |-x <prefix of HISAT2-build genome index> \ |-1 <forward
 fastq files of samples> \ |-2 <reverse fastq files of samples> \ |-S
 <output SAM files> \ |
 - samtools view -o <out.bam> -Su <in.sam> #Convert SAM to BAM
 - samtools sort -o <out-sorted.bam> <in.bam> #Sorting BAM for decreasing
 file size

libTrim

- Original Command:
 - libTrim.trimmer()
 - ipava -jar <bin>/trimmomatic-0.35.jar PE \ #Pair-End -phred33 -threads
 <threads \ input_forward.fq.gz input_reverse.fq.gz \
 output_forward_paired.fq.gz output_forward_unpaired.fq.gz \
 output_reverse_paired.fq.gz output_reverse_unpaired.fq.gz \
 <ILLUMINACLIP> <LEADING> \ <TRAILING> <SLIDINGWINDOW> <MINLEN>
 - in java -jar <bin>/trimmomatic-0.35.jar SE \ #Single-End -phred33 -threads
 <threads> \ input.fq.gz output.fq.gz \ | <ILLUMINACLIP> <LEADING> \ |
 <TRAILING> <SLIDINGWINDOW> <MINLEN>

libCuffdiff

- Original Command:
 - libCuffdiff.differ()
 - cuffdiff \``-p-o`(-L <label1,label2,...,labelN> <transcripts.gtf> \
 [[sample1_replicate1.sam,...] [...,sampleN_replicateM.sam]]
 - libCuffdiff.converter()
 - bin/cufflinks/gffread <inputFile> -T -o <outputFile>

References

- 1. [FastQC] https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
 - Andrews, S. (2018). FastQC: a quality control tool for high throughput sequence data (Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom).
- 2. [HISAT2] https://doi.org/10.1038/nprot.2016.095 (Article)
 - Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650-1667.
 - https://ccb.jhu.edu/software/hisat2/manual.shtml (Documentation & Binary)
- 3. [Trimmomatic] https://doi.org/10.1093/bioinformatics/btu170 (Article)
 - **Bolger, A.M., Lohse, M., and Usadel, B.** (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics **30,** 2114-2120.
 - http://www.usadellab.org/cms/?page=trimmomatic (Documentation & Binary)
- 4. [SAMtools] https://www.htslib.org/doc/samtools.html
- 5. [gffread] https://ccb.jhu.edu/software/stringtie/gff.shtml
- 6. [Cuffdiff] https://doi.org/10.1038/nbt.2450 (Article)
 - Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., and Pachter, L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31, 46-53.
 - https://cole-trapnell-lab.github.io/cufflinks/manual/ (Documentation)
 - https://cole-trapnell-lab.github.io/cufflinks/install/ (Binary)

Processing Stage (Distinctive usage)

The scripts under this catalogue may lose function as their development didn't stick to the current coding style.

Stage 04 - HISAT2 Summariser

List	Detail
Codename	04-hs
Usage	Analyse HISAT2 result
Туре	CoFRIL
Class	libHISAT.summariser()
Binary	samtools from SAMtools
Input	04-hisat2

Stage 07 - Comparing Genomic Annotation

List	Detail
Codename	07-cg
Usage	Get information of isoform under each gene model
Туре	RuDi
Input	07-st