Corso di Laurea in Informatica - A.A. 2016 - 2017 Esame di Fisica - 16/06/2017

Esercizio 1

In un sistema di assi cartesiano (x, y) siano dati i punti A=(0,7) e B=(12,2). Scrivere il vettore \vec{r}_{AB} che va dal punto A al punto B e determinarne il modulo.

Esercizio 2

Consideriamo lo spazio tridimensionale di coordinate x, y, z Nel piano xy vi è una carica puntiforme q > 0 posta in (-a, 0) ed una carica puntiforme q posta in (a, 0). Risolvere i seguenti quesiti.

- a) Calcolare il vettore campo elettrico \vec{E} nel punto (0, h).
- b) Per quale valore di $h \in \vec{E} = 0$?
- c) Calcolare il lavoro necessario per portare la carica q dall'infinito a (a,0) supponendo che la carica in (-a,0) sia già presente.
- d) Supponiamo che le due cariche ruotino attorno all'asse z nel piano xy con modulo della velocità angolare $\omega > 0$ costante. Calcolare il vettore velocità della carica q quando essa si trova nel punto (a,0).
- e) Calcolare il vettore campo magnetico generato dalle cariche in moto nell'origine degli assi.

Esercizio 3

Nel circuito in figura $R=10~\Omega$ e $\varepsilon_1=\varepsilon,~\varepsilon_2=2\varepsilon$ con $\varepsilon=10~\mathrm{V}$. Determinare:

- a) la corrente che percorre il circuito;
- b) la differenza di potenziale $V_A V_B$;
- c) il valore della f.e.m. V_0 che deve essere posta tra i punti A e C in modo che $V_A = V_B$ (disegnare la f.e.m. sul circuito in modo che si capisca la polarità);
- d) la corrente i che scorre nel resistore posto nel ramo centrale del circuito (vedi figura) qualora tra A e C sia presente la f.e.m. V_0 calcolata nel quesito c).

(Sostituire i valori numerici solo alla fine dello svolgimento).

