Rigged Hilbert Space とブラケット記法

北野 正雄

京都大学工学研究科

2014年1月11-12日

第 3 回 QUATUO 研究会 高知工科大学 20140113

Dirac のブラケット記法 $\langle \psi | \hat{A} | \chi \rangle$

前回の復習

- 量子論における標準言語
- 基底に依存しない記述が可能(成分より実体)
- スペクトルが離散. 連続どちらの場合も統一的に扱える
- 式の見通しがよく、計算が簡単になる
- 双対構造との親和性 (内積ではなく)

Dirac

In mathematical thoeries the question of notation, while not of primary importance, is yet worthy of careful consideration, since a good notation can be of great value in helping the development of a theory, by making it easy to write down those quantities or combination of quantities that are important, and difficult or impossible to write down those that are unimportant.

P.A.M. Dirac: "A new notation for quantum mechanics," Math. Proc. Cambridge Phil. Soc. **35**, 416 (1939)

離散 vs 連続

• ブラケット記法は、離散、連続スペクトルを統一的に扱える

$$\hat{A}|e_i
angle = a_i|e_i
angle$$
 $\hat{A}|a
angle = a|a
angle$ 固有値問題 $|\psi
angle = \sum_{i\in I} c_i|e_i
angle$ $|\psi
angle = \int_A \mathrm{d} a\,\psi(a)|a
angle$ 展開 $c_i = \langle e_i|\psi
angle$ $\psi(a) = \langle a|\psi
angle$ 確率振幅 $\langle e_i|e_j
angle = \delta_{ij}$ $\langle a|b
angle = \delta(a-b)$ 正規直交性 $\sum_{i\in I} |e_i
angle\langle e_i| = \hat{1}$ $\int_A \mathrm{d} a\,|a
angle\langle a| = \hat{1}$ 完全性 $\sum_{i\in I} |e_i
angle\langle e_i| = \hat{A}$ $\int_A \mathrm{d} a\,|a
angle\langle a| = \hat{A}$ スペクトル分解

デルタ関数の存在が気にかかるが、Dirac は正にこの目的のために導入した。

量子論の2つの道 — von Neumann vs Dirac

- von Neumann
 - 無限次元 Hilbert 空間論の精密化— 作用素のスペクトル分解
 - 関数論から演算子代数へ
- Dirac
 - デルタ関数の導入 非数学的後に Schwartz らによって超関数として正当化
 - ブラケット記法 ― 線形代数、双対性

von Neumann 流

- 量子力学の数学的基礎 ヒルベルト空間 (無限次元)の線形作用素の一般固有値問題 (1932) 数学的厳密性
- 自己共役作用素 \hat{A} に対して、射影演算子の族 $\{\hat{E}(\lambda)|\lambda\in\mathbb{R}\}$ (単位の分解) が存在して

$$\hat{A} = \int_{-\infty}^{\infty} \lambda \, \mathrm{d}\hat{E}(\lambda), \quad (連続 + 離散スペクトル)$$

$$\mathsf{Domain}(\hat{A}) = \left\{ f \in \mathcal{L}^2(\mathbb{R}) \left| \int_{-\infty}^{\infty} |\lambda|^2 ||\mathrm{d}\hat{E}(\lambda)f||^2 < \infty \right. \right\}$$

- "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more."
 (von Neumann to Birkhoff, 1935)
- ヒルベルト空間を棚上げし、代数的アプローチに転換

Dirac 流

- Principles of Quantum Mechanics (1930, 1935, 1947, 1958)
 - デルタ関数の導入 (連続スペクトル) 物理的考察
 - ブラケット記法 (連続+離散スペクトル、双対構造)
- デルタ関数の数学的正当化
 - L. Schwartz, 超関数の理論 (1957–59)
 急減少関数空間 S とその双対空間 S* 超関数は S* のメンバー
 - I.M. Gel'fand et al., 一般化関数 (1960)
 Rigged Hilbert space, Gel'fand triplet: Φ ⊂ H ⊂ Φ*, Φ: 核型空間
- 超関数の理論は関数解析の言葉で語られており、ブラケット記法と の融合は未完
- 試みはいくつかあるがいずれも説得性に乏しい

今日の話題

- ブラケット記法と Rigged Hilbert Space の融合を目指す
- 準備が全くできていないので、その前段でお茶を濁します。
- 連続スペクトルの系の問題点を眺めるために
 - 離散(無限)系から連続系への移行 スケーリング、物理次元
 - 波束 vs 特異関数(平面波、デルタ関数) 現実と理想の関係

素朴な連続化

ullet 1 次元空間を幅 Δx で離散化し、各区間に離散的な基底 |n
angle を割当

$$|\psi\rangle = \sum_{n=-\infty}^{\infty} u_n |n\rangle, \quad \sum_{-\infty}^{\infty} |u_n|^2 = 1$$

 $\Delta x \to 0$, $x_n = n\Delta x \to x$ に対して、 $u_n \to 0$ だが、 ψ_n は有限

$$\psi_n := rac{u_n}{\sqrt{\Delta x}} \quad o \quad \psi(x) \quad \stackrel{ ext{SI}}{\sim} rac{1}{\sqrt{ ext{m}}}$$

• 基底 |n
angle もとりあえず同様にスケールさせる (発散することに注意)

$$|x_n\rangle := \frac{|n\rangle}{\sqrt{\Delta x}} \quad \to \quad |x\rangle \quad \stackrel{\text{SI}}{\sim} \frac{1}{\sqrt{\mathrm{m}}}$$

• $\psi_n|x_n\rangle\stackrel{ ext{SI}}{\sim}1/ ext{m}$ が長さあたりの量となり、状態 $|\psi\rangle$ は積分で表される

$$|\psi\rangle = \sum_{n=-\infty}^{\infty} \psi_n |x_n\rangle \Delta x \quad \to \quad \int_{-\infty}^{\infty} \psi(x) |x\rangle \mathrm{d}x \quad \stackrel{\text{SI}}{\sim} 1$$

素朴な連続化 — デルタ関数

基底の完備性

$$\hat{1} = \sum_{n = -\infty}^{\infty} |n\rangle\langle n| = \sum_{n = -\infty}^{\infty} |x_n\rangle\langle x_n|\Delta x \quad \to \quad \int_{-\infty}^{\infty} |x\rangle\langle x| dx$$

基底の正規直交性

$$\langle x_{n'}|x_n\rangle = \frac{\langle n'|n\rangle}{\Delta x} = \frac{\delta_{n',n}}{\Delta x} \rightarrow \langle x'|x\rangle = \delta(x'-x) \sim \text{m}^{-1}$$

これは、次のようにして確かめられる。

$$\int_{-\infty}^{\infty} \langle x'|x\rangle \mathrm{d}x' \sim \sum_{n'=-\infty}^{\infty} \langle x_{n'}|x_n\rangle \Delta x = \sum_{n'=-\infty}^{\infty} \delta_{n',n} = 1$$

スケーリングの重要性

素朴な連続化 — 位置の演算子

離散系における番地の演算子

$$\hat{n} = \sum_{n = -\infty}^{\infty} n |n\rangle\langle n|$$

位置の演算子

$$\hat{n}\Delta x = \sum_{n=-\infty}^{\infty} (n\Delta x)|x_n\rangle\langle x_n|\Delta x \quad \to \quad \hat{x} = \int_{-\infty}^{\infty} x|x\rangle\langle x|\mathrm{d}x$$

素朴な連続化 — 2準位系との対応

• パウリ演算子との対応

$$\hat{\sigma}_3 = |+\rangle\langle +|-|-\rangle\langle -| \qquad \qquad \hat{n} = \hat{k}_3 = \sum_{n=-\infty}^{\infty} n|n\rangle\langle n|$$

$$\hat{\sigma}_1 = |+\rangle\langle -|+|-\rangle\langle +| \qquad \qquad \hat{k}_1 = \frac{1}{2} \sum_{n=-\infty}^{\infty} (|n+1\rangle\langle n|+|n\rangle\langle n+1|)$$

$$\hat{\sigma}_2 = \frac{1}{\mathrm{i}} (|+\rangle\langle -|-|-\rangle\langle +|) \qquad \hat{k}_2 = \frac{1}{2\mathrm{i}} \sum_{n=-\infty}^{\infty} (|n+1\rangle\langle n|-|n\rangle\langle n+1|)$$

• $\Delta x \rightarrow 0$ の極限

$$\hat{k}_3 \Delta x = \hat{n} \Delta x \quad o \quad \hat{x}$$

$$\hat{k}_1 \quad o \quad \hat{1}$$

$$\hat{k}_2 / \Delta x \quad o \quad \mathrm{i} \frac{\widehat{\mathrm{d}}}{\mathrm{d} x} \quad 微分演算子$$

素朴な連続化 — 微分演算子

• $\hat{k}_2/\Delta x$ の極限を求める。任意の $|\psi
angle=\int \psi(x)|x
angle \mathrm{d}x$ に作用させると、

$$\begin{split} \frac{\hat{k}_2}{\Delta x} |\psi\rangle &= \frac{\mathrm{i}}{2\Delta x} \sum_{n'} \sum_{n} |n'\rangle \left(\delta_{n'+1,n} - \delta_{n',n+1}\right) \langle n|\psi\rangle \\ &= \mathrm{i} \sum_{n'} |x_{n'}\rangle \frac{\psi_{n'+1} - \psi_{n'-1}}{2\Delta x} \Delta x \\ &\to \mathrm{i} \int \frac{\mathrm{d}\psi}{\mathrm{d}x} |x\rangle \mathrm{d}x \end{split}$$

すなわち、

$$\frac{\hat{k}_2}{\Delta x} \rightarrow i \frac{\widehat{d}}{dx} = i \int dx' \int dx |x'\rangle \delta'(x'-x)\langle x| = -\frac{\hat{p}}{\hbar}$$

• 素朴な連続化は初等的だが有用である。ただし、スケーリングや次元に配慮が必要である。

素朴な連続化 — 交換関係

 $\hat{k}_1 o \hat{1}$ なので、考慮すべき交換関係は $[\hat{n},\hat{k}_2]$ のみである。簡単な計算から、

$$[\hat{n}\Delta x, \hat{k}_2/\Delta x] = [\hat{n}, \hat{k}_2] = \frac{1}{i}\hat{k}_1$$
$$\rightarrow [\hat{x}, \widehat{d/dx}] = \frac{1}{i}\hat{1}$$

正準交換関係が得られた

素朴な連続化 ― まとめ

- 素朴な連続化はそれなりに有効である
- ただし、スケーリング、次元に対する配慮が必要

$$|\psi\rangle \stackrel{\rm SI}{\sim} 1, \quad \langle \psi| \stackrel{\rm SI}{\sim} 1, \quad |x\rangle \stackrel{\rm SI}{\sim} \frac{1}{\sqrt{\rm m}}, \quad \langle x| \stackrel{\rm SI}{\sim} \frac{1}{\sqrt{\rm m}},$$

であることから、次のような関係が得られる

$$\psi(x) = \langle x | \psi \rangle \stackrel{\text{SI}}{\sim} \frac{1}{\sqrt{\mathbf{m}}}, \quad \langle x' | x \rangle = \delta(x' - x) \stackrel{\text{SI}}{\sim} \frac{1}{\mathbf{m}},$$
$$\int \mathrm{d}x \, |x\rangle \langle x| \stackrel{\text{SI}}{\sim} 1$$

波束と平面波

- 平面波 $\mathrm{e}^{-\mathrm{i}\omega t}\mathrm{e}^{\mathrm{i}kx}$ はよい性質 (並進対称性) をもっている
- ullet その空間部分 $\{{
 m e}^{ikx}\}$ は波動関数の展開基底として利用される
 - 本来 1 に正規化されるべき 2 乗積分が発散 $\notin \mathcal{L}^2(\mathbb{R})$
 - 空間的に無限の広がりは非現実
- 空間的なサイズが有限な波,すなわち波束を考える波束は波数がやや 異なった波の重ね合わせ
- 2乗積分が1になるように正規化することができる。

波束の導入

• 波束の元になる関数 $g(\cdot) \in \mathcal{L}^2(\mathbb{R})$:

$$\xi \in \mathbb{R} \mapsto g(\xi) \in \mathbb{C}$$

原点付近 ±1 程度の広がりと正規化条件

$$\int_{-\infty}^{\infty} |g(\xi)|^2 \mathrm{d}\xi = 1$$

• 波数の次元をもつ量 K, κ に対して

$$h_{\kappa}(K) := \frac{1}{\sqrt{\kappa}} g\left(\frac{K}{\kappa}\right) \stackrel{\text{SI}}{\sim} \sqrt{\mathrm{m}}$$

は波数空間の原点を中心として $\pm \kappa$ 程度に広がった関数を与える. 係数を $1/\sqrt{\kappa}$ とすることによって, 正規化

$$\int_{-\infty}^{\infty} |h_{\kappa}(K)|^2 \mathrm{d}K = 1$$

波束の構成

フーリエ変換

$$H_{1/\kappa}(x) = \int_{-\infty}^{\infty} h_{\kappa}(K) e^{iKx} dK \stackrel{\text{sl}}{\sim} 1/\sqrt{m}$$

実空間で、 $1/\kappa$ 程度広がり、正規化されている;

$$\int_{-\infty}^{\infty} |H_{1/\kappa}(x)|^2 \mathrm{d}x = 1$$

 $H_{1/\kappa}(x)$ は実空間における波動関数の次元をもっている.

$$H_w(x) = \frac{1}{\sqrt{w}} G\left(\frac{x}{w}\right), \quad w = 1/\kappa, \quad G = \mathcal{F}g$$

位置と運動量の固有関数と波束

w は波束の空間拡がりを表す.

	\hat{x} の固有状態 $ x' angle$	一般的波束 $ \psi angle$	\hat{k} の固有状態 $ k' angle$
空間拡がり Δx	0	w	∞
波数拡がり Δk	∞	1/w	0
x 表示成分	$\delta(x-x')$	$\psi(x)$	$(2\pi)^{-1/2}e^{\mathrm{i}k'x}$
x 成分の大きさ	$\infty (\sim 1/w)$	$1/\sqrt{w}$	1
k 表示成分	$(2\pi)^{-1/2}e^{-ix'k}$	$\phi(k)$	$\delta(k-k')$
k成分の大きさ	1	\sqrt{w}	$\infty (\sim w)$

波束のスケーリングと特異関数

長さに関するスケーリングを考慮した波束

$$\psi_w(x) = \tilde{\psi}_w(x)e^{ikx}, \quad \tilde{\psi}_w(x) = \frac{1}{\sqrt{w}}G(x/w) \stackrel{\text{SI}}{\sim} \frac{1}{\sqrt{m}}$$

正規化条件:
$$\int_{-\infty}^{\infty} |\psi_w(x)|^2 dx = \int_{-\infty}^{\infty} |G(\eta)|^2 d\eta = 1.$$

幅の狭い波束 ≠ デルタ関数

• 波束の幅を小さくする極限 w o 0: 波束の高さ(振幅) $\sim 1/\sqrt{w}$

面積:
$$\int_{-\infty}^{\infty} |\tilde{\psi}_w(x)| dw \sim \frac{1}{\sqrt{w}} w = \sqrt{w} \to 0 \quad (\neq 1)$$

• 波束の幅 w を単純に小さくした極限はデルタ関数ではない!

$$\tilde{\psi}_w(x) \to 0 \quad (w \to 0)$$

• デルタ関数にするためには、余分に因子 $1/\sqrt{w}$ をかける必要がある.

$$\frac{1}{\sqrt{w}}\tilde{\psi}_w(x) \to \delta(x) \stackrel{\text{SI}}{\sim} 1/\text{m} \quad (w \to 0).$$

幅の広い波束 ≠ 平面波

- 波束の幅 w を大きくする極限 $w \to \infty$: 波束の高さ $\sim 1/\sqrt{w}$
- 波束の幅 w を単純に広げた極限は平面波ではない!

$$\tilde{\psi}(x) \to 0 \quad (w \to \infty)$$

平面波に近づけるためには、 余分に因子 \sqrt{w} をかける必要がある

$$\sqrt{w}\,\tilde{\psi}_w(x) \to \mathrm{e}^{\mathrm{i}kx} \stackrel{\mathrm{SI}}{\sim} 1 \quad (w \to \infty)$$

波束 — まとめ

- 基底関数として標準的な $\delta(x)$, $\mathrm{e}^{\mathrm{i}kx}$ はいずれも、波束の単純な極限ではない。
- これらの (特異) 関数は \hat{x} , \hat{p} の固有関数であるという性質を充足する代償として、波束がつくる線形空間 (2乗可積分) の外にはみ出している。
- 展開の足場(基底)が空間の外にある。

2乗可積分関数

• 一般に波動関数は2乗可積分: $\psi(x) \in \mathcal{L}^2(\mathbb{R}) \ (=\mathcal{H})$,

$$\int_{-\infty}^{\infty} |\psi(x)|^2 \mathrm{d}x < \infty$$

• 確率解釈

$$\mathsf{Prob}\{a < x < b\} = \int_a^b |\psi(x)|^2 \mathrm{d}x$$

- 問題点
 - 各点の値が一意に決まらない。 測度 0 の集合上で値を変えても、確率 に影響はない — 関数の同値類
 - 微分できるとは限らない。運動量演算子を作用できない場合がある。
 - $x\psi(x)$ が 2 乗可積分とは限らない。位置演算子に関して閉じていない。

連続スペクトル系の困難

• 定義域が限定: $\mathsf{Domain}(\hat{A}) \subset \mathcal{H}$

• 値域がはみ出る: $\mathcal{H} \subset \mathsf{Range}(\hat{A})$

cf. 有限次元の場合は、Domain $(\hat{A})=\mathcal{H}$, Range $(\hat{A})\subset\mathcal{H}$

Gelfand-Schwartz

- 急減少関数の空間 $\mathcal{S}(\mathbb{R})$
 - ― 無限回連続微分可能かつ、すべての導関数が急減少

すべての、
$$m,n \geq 0$$
 に対して、 $\sup_{x \in \mathbb{R}} |x|^m |f^{(n)}(x)| < \infty$

• $\mathcal{S}(\mathbb{R}) \subset \mathcal{L}^2(\mathbb{R})$ はベクトル空間であり、 $f \in \mathcal{S}(\mathbb{R})$ なら

$$f' = \frac{\mathrm{d}f}{\mathrm{d}x} \in \mathcal{S}(\mathbb{R}), \quad xf \in \mathcal{S}(\mathbb{R})$$

• つまり、有限次元の場合のように

$$\mathsf{Domain}(\hat{x}) = \mathsf{Domain}(\hat{\mathbf{d}}/\mathbf{d}\hat{x}) = \mathcal{S}(\mathbb{R}),$$

$$\mathsf{Range}(\hat{x}), \, \mathsf{Range}(\widehat{\mathrm{d}/\mathrm{d}x}) \subset \mathcal{S}(\mathbb{R})$$

が成り立ち、各点での値も定まるので、波動関数として望ましい性質を持つ — 滑らかな波束

急減少関数空間

- $\mathcal{S}(\mathbb{R})$ は $\mathcal{L}^2(\mathbb{R})$ で稠密
 - 近似可能性
- Fourier 変換: $f \in \mathcal{S}(\mathbb{R})$ なら $\mathcal{F}f \in \mathcal{S}(\mathbb{R})$
 - ― 波数 (運動量)空間の波束も急減少関数

ブラケット記法と Rigged Hilbert Space

J.-P. Antoine, Dirac Formalizem an Symmetry Problems in Quantum Mechanics. I., General Dirac Formalism, J. Math. Phys. **10**, 53 (1969).

来年はこの続きをお話できればと思います

