Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică

- Filiera vocațională, profilul militar, specializarea matematică-informatică
- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a = 3 + 2\sqrt{2} + \frac{3 - 2\sqrt{2}}{9 - 8} =$	3р
	$9-8$ $= 3 + 2\sqrt{2} + 3 - 2\sqrt{2} = 6$, care este număr natural	2p
2.	$(f \circ f)(1) = f(f(1)) = f(3) = 7$	3p
	$f(2) = 5$, deci $(f \circ f)(1) = f(2) + 2$	2 p
3.	$3^{2x^2} = 3^{x+1} \Leftrightarrow 2x^2 = x+1$	2 p
	$2x^2 - x - 1 = 0$, de unde obținem $x = -\frac{1}{2}$ sau $x = 1$	3 p
4.	Numărul submulțimilor cu două elemente ale mulțimii A este C_n^2	2p
	$\frac{n!}{2!(n-2)!} = 10 \Leftrightarrow n^2 - n - 20 = 0 \text{ si, cum } n \text{ este număr natural, obținem } n = 5$	3 p
5.	AM = AN, deci $a = 4$	3 p
	$A(4,3)$, deci $AO = \sqrt{3^2 + 4^2} = 5$	2 p
6.	$3\cos x - 2 = 4\cos^2 x - 2 \Leftrightarrow 4\cos^2 x - 3\cos x = 0 \Leftrightarrow \cos x (4\cos x - 3) = 0$	3 p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\cos x = \frac{3}{4}$	2p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$ $\begin{vmatrix} 1 & 2 & 0 \end{vmatrix}$	
	$A(0) = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & -5 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & -5 & -2 \end{vmatrix} =$	2 p
	=(-2)+0+0-0-(-5)-0=3	3 p
b)	$\det(A(a)) = \begin{vmatrix} a-1 & a-1 & 1-a \\ a & 2a-5 & a-2 \end{vmatrix} = (a-1)\begin{vmatrix} 1 & 1 & -1 \\ a & 2a-5 & a-2 \end{vmatrix} = (a-1)\begin{vmatrix} 1 & 0 & 0 \\ a & a-5 & 2a-2 \end{vmatrix} =$	2p
	$ = -(a-1)\begin{vmatrix} 1-a & a+1 \\ a-5 & 2a-2 \end{vmatrix} = (a-1)(3a^2-8a-3) = (a-1)(a-3)(3a+1), \text{ pentru orice număr} $ real a	3 p
c)	Sistemul are soluție unică $(x_0, y_0, z_0) \Leftrightarrow \det(A(a)) \neq 0$, deci, pentru $a \in \mathbb{N}$, obținem $a \in \mathbb{N} \setminus \{1, 3\}$ și, cum $x_0, y_0, z_0 \in \mathbb{N}$ și $ax_0 + y_0 + z_0 = 2 - a$, obținem $2 - a \in \mathbb{N}$	3p
	a = 2, care nu convine, $a = 0$ care convine	2 p
2.a)	$0*0 = \log_2(2^0 + 2^0) = \log_2(1+1) =$	3 p
	$= \log_2 2 = 1$	2p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

Varianta 1

b)	$x * y = \log_2(2^x + 2^y) = \log_2(2^y + 2^x) =$	3p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție ",*" este comutativă	2 p
c)	$(x*x)*x = \log_2(2^x + 2^x)*x = \log_2(2^{x+1})*x = (x+1)*x = \log_2(2^{x+1} + 2^x) = \log_2(2^x \cdot 3),$	3p
	unde x este număr real	_
	$\log_2(2^x \cdot 3) = 3 + \log_2 3$, de unde obținem $x = 3$	2p

SUBIECTUL al III-lea (30 de puncte)

3p 2p 2p 3p 3p R, f are pe 3p
2p 3p
3 p ℝ, f
\mathbb{R} , f
are pe 3p
orice 2p
3р
2p
3р
2p
∈ N* 2p
oținem 3p
•