2-Wire Serial CMOS E²PROM

Особенности

• Напряжение низкого уровня и напряжение, соответствующее стандартным операциям переключения питания:

5.0 (vcc = 4.5V - 5.5V) 2.7 (vcc = 2.7V - 5.5V) 2.5 (vcc = 2.5V - 5.5V) 1.8 (vcc = 1.8V - 5.5V)

- Внутреннее ПЗУ 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K)
- 2-проводной последовательный интерфейс
- Двунаправленный протокол передачи данных
- Совместимость по частоте 100 кГц (1.8V, 2.5V, 2.7V) and 400 кГц (5V)
- Вывод защиты записи, обеспечивающий аппаратную защиту данных
- Поддержка страничной записи в 8-байтовом (1K, 2K), и 16-байтовом (4K, 8K, 16K) режимах
- Поддержка неполной страничной записи
- Самосинхронизирующийся цикл записи (максимум 10 мс)
- Высокая надежность:

Продолжительность работы: 1 миллион циклов Сохранение данных в памяти: в течение 100 лет

- Автоматическая градуировка и возможность работы в широком диапазоне температур
- 8-штырьковый and 14-штырьковый модуль JEDEC SOIC, 8-штырьковый модуль PDIP

Описание

АТ24C01A/02/04/08/16 содержит 1024/2048/4096/8192/16384 бит последовательной памяти EEPROM (состоящей из 128/256/512/1024/2048-битных слов), которая может быть перезаписана с помощью электрических сигналов и считана программным образом. Данной устройство разработано для использования в промышленных и коммерческих областях, где важным условием являются невысокие значения мощности и напряжения.

AT24C01A/02/04/08/16 включает 8-штырьковый модуль PDIP, 8- и 14-штырьковый модуль SOIC, доступ осуществляется через 2-проводной последовательный интерфейс. Кроме того, разработано несколько вариантов микросхем данного семейства: 5.0V (4.5V - 5.5V), 2.7V (2.7V -- 5.5V), 2.5V (2.5V - 5.5V) и 1.8V (1.8V - 5.5V).

Конфигурации выходов

Назначение ножек микросхемы:

Выход	Функция
A0 – A2	Адресные входы
SDA	Последовательная передача данных
SCL	Линия синхронизации
WP	Защита от записи
NC	Нет контакта

Номинальные значения*

Диапазон рабочих температур	-55°C - +125°C
Условия хранения	-65°C - +150°C
Напряжение на ножках с учетом заземления	-0.1V - +7.0V
Максимальное рабочее напряжение	6.25V
Постоянный ток выхода	5.0 mA

^{*} Примечание. Использование нагрузок, превышающих номинальные, может привести к ухудшению качества работы устройства. В таблице приведены нагрузки, рассчитанные на стандартные условия использования (также приведенные в таблице), за использование в иных условиях разработчик ответственности не несет. Если устройство в течение длительного периода времени испытывает максимальные нагрузки, это может отразиться на надежности его работы.

Start-stop logic – логика "пуск-останов"

Device Address Comparator – блок сравнения адреса

Serial Control Logic – последовательная логика управления

Data Word Addr/Counter – счетчик/адрес слова данных

H.V. Pump/Timing – генератор подкачки заряда/тактирование

Data Recovery – восстановление данных

Serial Mux – мультиплексор последовательной передачи

Dout/ACK Logic – логика подтверждения передачи сигнала

Описание выводов

SERIAL CLOCK (SCL) – Линия синхронизации:

Вход SCL используется при передаче в E^2 PROM (положительный фронт) и отправке данных на любое внешнее устройство (отрицательный фронт).

SERIAL DATA (SDA): Линия последовательной передачи данных

SDA – вывод для двунаправленной последовательной передачи данных. Это вывод со свободным стоком, к нему можно подключать любое количество открытых коллекторов или коллекторов со свободным стоком.

Адреса страниц/устройства (А2, А1, А0):

Штырьки A2, A1 и A0 – это адресные входы устройств, разработанные для микросхем AT24C01A и AT24C02. На одинарную систему шин может быть адресовано до 8 1К/2К - устройств (адресация устройств более подробно обсуждается в разделе "Адресация устройств").

Микросхема AT24C04 использует выводы A2 и A1 для фиксированной адресации, и на одинарную систему шин может быть адресовано четыре 4К-устройств. Вывод A0 не используется.

Микросхема AT24C08 использует для фиксированной адресации только вывод A2, и на одинарную систему шин может быть адресовано два 8-К устройства. Выводы A0 и A1 не используются.

Микросхема AT24C16 не использует адресные выводы, через которые к одинарной шине можно подключить только одно устройство. Не использует выводы A0, A1 и A2.

Защита от записи (WP): Схемы семейства AT24C01A/02/04/16 имеют вывод защиты от записи, с помощью которых можно защитить аппаратные данные. Этот вывод используется для обычных операций чтения/записи в случае, если он подключен к заземлению (GND). Когда на этот вывод подается напряжение, свойство защиты от записи проявляется так, как показано в таблице ниже.

Состояние	Защита массива данных						
вывода	24C01A	24C02	24C04	24C08	24C16		
Напряжение	Полностью (1K)	Полностью (2К)	Полностью (4K)	Обычные операции чтения/записи	Верхняя половина массива (8K)		
Земля	Обычные операции чтения/записи						

Организация памяти

AT24C01A, 1К последовательный E2PROM: Внутренняя память, состоящая из 128 1-байтовых страниц общим объемом в 1К, для произвольного доступа к которой требуются 7-битные адреса.

AT24C02, 2К последовательный E2PROM: Внутренняя память, состоящая из 256 1-байтовых страниц общим объемом в 2К, для произвольного доступа к которой требуются 8-битные адреса.

AT24C04, 4К последовательный E2PROM: Внутренняя память объемом в 4К, состоящая из 256 страниц, каждая по 2 байта. Для произвольного доступа к данным требуются 9-битные адреса.

AT24C08, **8К последовательный E2PROM**: Внутренняя память объемом в 8К, состоит из 4 блоков, в каждом из которых по 256 4-байтных страниц. Для произвольного доступа к данным требуется 10-битная адресация.

AT24C16, 16К последовательный E2PROM: Внутренняя память объемом в 16К, состоит из 8 блоков. Каждый блок содержит 256 8-байтных страниц. Для произвольного доступа к данным необходима 11-битная адресация.

Емкостные характеристики выводов⁽¹⁾

Характеристики описаны для следующих условий: t = 25°C, f = 1.0 MHz, Vcc = +1.8V.

Обозначение	Описание	Максимум	Единицы	Условие
CI/O	Емкость	8	pF	VI/O = 0V
	ввода/вывода(SDA)			
CIN	Входная емкость(А0,	6	pF	VIN = 0V
	A1, A2, SCL)		-	

⁽¹⁾Примечание: Данные характеристики носят описательный характер и не были полностью протестированы.

Электрические характеристики

Характеристики описаны для рекомендуемых условий эксплуатации:

tai = -40°C - +85°C, VCC = +1.8V - +5.5V, tac = 0°C - +70°C, VCC = +1.8V - +5.5V (если не

указаны другие значения).

Обозначение	Параметр	Условия	Мин	Тур	Макс	Единицы
		тестирования				
Vcc1	Напряжение		1.8		5.5	V
VCC2	Напряжение		2.5		5.5	V
VCC3	Напряжение		2.7		5.5	V
VCC4	Напряжение		4.5		5.5	V
Icc	Ток питания, Vcc = 5.0V	Чтение на частоте 100 кГц		0.4	1.0	мА
Icc	Ток питания, Vcc = 5.0V	Запись на частоте 100 кГц		2.0	3.0	мА
ISB1	Ток холостого хода, Vcc = 1.8V	VIN = VCC или Vss		0.6	3.0	мкА
ISB2	Ток холостого хода, Vcc =	Vin = Vcc или Vss		1.4	4.0	мкА

	2.5V					
ISB3	Ток холостого хода, Vcc = 2.7V	VIN = VCC или Vss		1.6	4.0	мкА
ISB4	Ток холостого хода, Vcc = 5.0V	VIN = VCC или Vss		8.0	18.0	мкА
ILI	Входной ток утечки	VIN = VCC или Vss		0.1	3.0	мкА
ILO	Выходной ток утечки	Vout = Vcc или Vss		0.05	3.0	мкА
VIL	Входное напряжение низкого уровня ⁽¹⁾		-1.0		Vcc x 0.3	V
VIH	Входное напряжение высокого уровня ⁽¹⁾		VCC x 0.7		Vcc + 0.5	V
VOL2	Выходное напряжение низкого уровня, Vcc = 3.0V	IOL = 2.1 MA			0.4	V
VOL1	Выходное напряжение низкого уровня, Vcc = 1.8V	IOL = 0.15 MA			0.2	V

⁽¹⁾Примечание: VIL min и VIн мах представляют собой справочные значения и не проверялись на практике.

Значения переменного тока

Обозначение	Параметр	2.7-, 2.5-, 1.8- B		5.0-B		Единицы
fscl	Частота синхронизации SCL	Мин	Макс	Мин	Макс	
	·		100		400	кГц
tLOW	Синхронизация импульса низкого уровня	4.7		1.2		МКС
thigh	Синхронизация импульса высокого уровня	4.0		0.6		МКС
tı	Время подавления шумов (1)		100		50	HC
tAA	Низкий уровень синхронизации, в течение которого возможна передача	0.1	4.5	0.1	0.9	МКС
tbuf	Время перед очередной передачей, в течение которого шина должна быть свободна	4.7		1.2		МКС
thd.sta	Старт-сигнал удержания	4.0		0.6		МКС
tsu.sta	Старт-сигнал установки	4.7		0.6		МКС
thd.dat	Передача сигнала	0		0		МКС
tsu.dat	Начало передачи сигнала	200		100		нс
tR	Время нарастания сигнала (1)		1.0		0.3	МКС
tF	Время спада сигнала (1)		300		300	нс
tsu.sto	Время установки стоп-сигнала	4.7		0.6		МКС
tDH	Удержание сигнала	100		50		HC
twr	Цикл записи		10		10	MC

⁽¹⁾ Примечание: Данные характеристики не были полностью оттестированы.

Работа с устройствами

Синхронизация и передача данных:

Вывод SDA обычно соединяется с внешним устройством. Данные могут быть переданы по SDA только тогда, когда на SCL подан сигнал низкого уровня (см. таблицу). Если на линии SCL – сигнал высокого уровня, то изменение уровня на SDA будет означать выдачу сигналов стар-стопных состояний, как описано ниже.

Состояние "старт": Изменение уровня сигнала с высокого на низкий на SDA при условии сигнала высокого уровня на линии SCL означает, что линия SDA находится в состоянии "старт", что должно предшествовать выполнению любой другой команды (см. обозначения Start, Stop на временной диаграмме).

Состояние "стоп": Изменение уровня сигнала с низкого на высокий на линии SDA при условии наличия на линии SCL сигнала высокого уровня свидетельствует о том, что линия SDA находится в состоянии "стоп". После чтения данных и получения команды "стоп" E_2 PROM перейдет в режим резервного питания (см. обозначения Start, Stop на временной диаграмме).

Подтверждение приема: Все адреса и данные последовательно передаются с E_2 PROM и на него в виде 8-битовых слов. После получения каждого слова E_2 PROM выдает "0". Это происходит в процессе передачи 9 импульсов синхронизации. **Режим ожидания:** Режим ожидания для схем семейства AT24C01A/02/04/08/16 доступен: после включения питания и получения стопового бита, а также после завершения любых внутренних операций.

Временная диаграмма работы шины: SCL – линия синхронизации, SDA – линия последовательной передачи данных

Временная диаграмма цикла записи: SCL – линия синхронизации, SDA – линия последовательной передачи данных

Примечание: Время записи twn -- это промежуток времени с того момента, когда линия находится в состоянии "стоп" при записи последовательных данных, до момента окончания внутреннего цикла очистки/записи.

Адресация устройств

Устройства E2PROM с объемом памяти 1K, 2K, 4K, 8K и 16K после перехода в состояние "старт" должны получать слово (8 бит) с адресом устройства – только тогда микросхема сможет произвести операцию чтения или записи (см. рис 1). Первые четыре бита слова адреса представляют собой обязательную последовательность "10". Данная последовательность идентична для всех устройств E2PROM. Следующие 3 бита представляют собой адреса устройств A2, A1 и A0 – для 1K/2K E2PROM. Эти биты соответствуют входам с аналогичными названиями. E2PROM с объемом памяти 4K использует только биты адресов A2 и A1, а следующий за ними бит представляет собой адрес страницы памяти. Оба бита адресов устройств соответствуют выходам на микросхеме с аналогичными названиями. Вывод A0 не подключен.

Адресный байт для E2PROM с объемом памяти 8К имеет только бит устройства A2, а следующие 2 бита используются для адресации страницы памяти. Бит A2 соответствует выводу A2 на микросхеме. Выводы A1 и A0 не подключены. E2PROM с 16К памяти не использует никаких устройств, и следующие 3 бита представляют собой адрес страницы памяти. Следует обратить особое внимание на эти биты, используемые для адресации страниц памяти в устройствах 4К, 8К и 16К. Выводы A0, A1 и A2 не подключены.

Восьмой бит адреса устройств используется для выбора режима чтения/записи. Если бит равен 1, происходит чтение, иначе запись. После сравнения адресов устройств E2PROM выдает 0. Если сравнение не было произведено, микросхема возвращается в режим ожидания.

Операция записи

Запись байта: После того, как E2PROM получит адресный байт и подтвердит возможность приема, должна происходить операция записи. Получив адрес и ответив выдачей "0", устройство примет первые 8 бит данных. Затем E2PROM выдает "0" и адресующее устройство, например, микроконтроллер, должен остановить процесс записи путем выдачи стоп-сигнала. В этот момент E2PROM начинает цикл записи в постоянную память. До тех пор, пока запись не будет завершена, отключаются все входы и E2PROM не реагирует ни на какие сигналы (см. рис. 2).

Страничная запись: 1К/2К E2PROM может производить страничную запись (по 8 байт), а устройства с объемом памяти в 4К, 8К и 16К производят 16-байтную запись. Процесс страничной записи инициируется также, как запись одного байта, отличие в том, что микроконтроллер после передачи первого слова не выдает стоп-сигнал. Вместо этого, как только E2PROM подтвердит получение первого слова данных, микроконтроллер может передать ему еще до 7(1К/2К) или 15 (4К, 8К, 16К) слов данных. После получения каждого слова E2PROM будет выдавать на линии "0". Микроконтроллер прекращает страничную запись, выдавая стоп-сигнал (см. рис. 3). Каждый раз, получив слово данных, E2PROM инкрементирует младшие 3 (1К/2К) или 4 (4К, 8К, 16К) адресных бита. Старшие адресные биты не инкрементируются. Если в E2PROM передается больше 8 (1К/2К) или 16 (4К, 8К, 16К) слов данных, адрес слова данных вернется на начало и предыдущие данные будут перезаписаны.

Опрос устройства: Как только E2PROM начнет внутренне тактируемый цикл записи и отключит свои входы, можно инициировать запрос на подтверждение получения данных. Этот процесс включает отправку слова с адресом устройства, а затем выдачу стоп-сигнала. Бит чтения/записи устанавливается в зависимости от требуемой операции. E2PROM выставит "0", позволяющий продолжить запись или чтение, только после завершения своего внутреннего цикла.

Операции чтения

Операция чтения инициируется точно также, как и операция записи, за тем исключением, что бит чтения/записи в слове адреса устройства устанавливается равным 1. Существует 3 операции чтения: чтение текущего адреса, произвольная выборка адреса и последовательное чтение.

Чтение текущего адреса: Внутренний счетчик адреса содержит последний адрес, к которому производилось обращение во время операции чтения или записи, увеличенный на 1. Этот адрес остается корректным в промежутке между операциями до тех пор, пока к микросхеме подключено питание. Во время чтения адреса "перепрыгивают" с последнего байта последней страницы памяти на первый байт первой страницы. Во время записи адреса "перепрыгивают" с последнего байта текущей страницы на первый байт той же самой страницы. Как только байт адреса устройства с битом чтения/записи, установленным 1, будет синхронизирован и принят E2PROM, то слово с текущим адресом данных обновляется. Микроконтроллер выдаст на вход не "0", а стоп-сигнал (см. рис. 4).

Чтение в режиме произвольного доступа: Чтение в режиме произвольного доступа означает холостую загрузку байта в адрес слова данных. Как только слово адреса устройства и адрес данных будут приняты E2PROM, микроконтроллер должен сгенерировать еще один старт-сигнал. Он инициирует чтение текущего адреса путем отправки адреса устройства с битом чтения/записи, установленным в 1. E2PROM подтверждает получение адреса устройства и последовательно считывает слово данных. Микроконтроллер отвечает не выдачей "0", а генерацией стоп-сигнала (см. рис. 5).

Чтение в режиме последовательного доступа: Последовательное чтение данных инициируется в процессе либо чтения текущего адреса, либо чтения произвольного адреса.

После того, как микроконтроллер получит слово данных, он подтверждает их получение. Пока E2PROM получает сигнал о подтверждении, он будет продолжать наращивать адрес слова данных и последовательно считывать слова данных. Когда счетчик достигнет верхнего адреса памяти, он "перепрыгнет" на начало и последовательное чтение будет продолжено. Операция последовательного чтения будет остановлена в том случае, если контроллер не выдает на линию "0", а генерирует стоп-сигнал (см. рис. 6).

Рис. 1 Адреса устройств

Рис 2. Запись байта

Рис 3. Запись страницы

^{*} Этот бит для устройства 1К может быть любым.

Рис 4. Чтение текущего адреса

Рис 5. Чтение произвольного адреса

^{*}Эти биты для устройства 1К могут быть любыми.

Подписи к рисункам:

READ - чтение
WRITE — запись
ACK — сигнал подтверждения
SDA LINE — линия передачи данных SDA
DATA — данные
DEVICE ADDRESS — адрес устройства
WORD ADDRESS — адрес слова данных
DUMMY WRITE — холостая запись