CMPS 101

Summer 2010

Homework Assignment 4

Solutions

1. (3 Points)

Consider the function T(n) defined by the recurrence formula

$$T(n) = \begin{cases} 6 & 1 \le n < 3 \\ 2T(\mid n/3 \mid) + n & n \ge 3 \end{cases}$$

a. (1 Points) Use the iteration method to write a summation formula for T(n).

Solution:

$$T(n) = n + 2T(\lfloor n/3 \rfloor)$$

$$= n + 2(\lfloor n/3 \rfloor + 2T(\lfloor \lfloor n/3 \rfloor/3 \rfloor))$$

$$= n + 2\lfloor n/3 \rfloor + 2^2T(\lfloor n/3^2 \rfloor)$$

$$= n + 2\lfloor n/3 \rfloor + 2^2 \lfloor n/3^2 \rfloor + 2^3T(\lfloor n/3^3 \rfloor) \quad \text{etc.}.$$

After substituting the recurrence into itself *k* times, we get

$$T(n) = \sum_{i=0}^{k-1} 2^i \left\lfloor \frac{n}{3^i} \right\rfloor + 2^k T(\left\lfloor n/3^k \right\rfloor).$$

This process terminates when the recursion depth k is chosen so that $1 \le \lfloor n/3^k \rfloor < 3$, which is equivalent to $1 \le n/3^k < 3$, whence $3^k \le n < 3^{k+1}$, so $k \le \log_3(n) < k+1$, and hence $k = \lfloor \log_3(n) \rfloor$. With this value of k we have $T(\lfloor n/3^k \rfloor) = T(1 \text{ or } 2) = 6$. Therefore

$$T(n) = \sum_{i=0}^{\lfloor \log_3(n) \rfloor - 1} 2^i \left| \frac{n}{3^i} \right| + 6 \cdot 2^{\lfloor \log_3(n) \rfloor}.$$

b. (1 Points) Use the summation in (a) to show that T(n) = O(n)

Solution:

Using the above summation, we have

$$T(n) \le n \left(\sum_{i=0}^{\lfloor \log_3(n) \rfloor - 1} (2/3)^i \right) + 6 \cdot 2^{\log_3(n)} \qquad \text{since } \lfloor x \rfloor \le x \text{ for any } x$$

$$\le n \left(\sum_{i=0}^{\infty} (2/3)^i \right) + 6n^{\log_3(2)} \qquad \text{adding } \infty \text{-many positive terms}$$

$$= n \left(\frac{1}{1 - (2/3)} \right) + 6n^{\log_3(2)} \qquad \text{by a well known formula}$$

$$= 3n + 6n^{\log_3(2)} = O(n) \qquad 2 < 3 \Rightarrow \log_3(2) < 1 \Rightarrow n^{\log_3(2)} = o(n)$$

1

Therefore T(n) = O(n).

c. (1 Points) Use the Master Theorem to show that $T(n) = \Theta(n)$

Solution:

Let $\varepsilon = 1 - \log_3(2) > 0$. Then $\log_3(2) + \varepsilon = 1$, and $n = n^{\log_3(2) + \varepsilon} = \Omega(n^{\log_3(2) + \varepsilon})$. Also for any c in the range $2/3 \le c < 1$, and any positive n, we have $2(n/3) = (2/3)n \le cn$, so the regularity condition holds. By case (3) of the Master Theorem $T(n) = \Theta(n)$.

2. (6 Points)

Use the Master theorem to find asymptotic solutions to the following recurrences.

a. (1 Point) T(n) = 7T(n/4) + n

Solution:

 $4 < 7 \implies 1 < \log_4(7) \implies \log_4(7) - 1 > 0 \,. \quad \text{Let } \varepsilon = \log_4(7) - 1 \,. \quad \text{Then } \varepsilon > 0 \,, \text{ and } 1 = \log_4(7) - \varepsilon \,,$ whence $n = n^{\log_4(7) - \varepsilon} = O(n^{\log_4(7) - \varepsilon})$. By case (1) we have $T(n) = \Theta(n^{\log_4(7)})$.

b. (1 Point) $T(n) = 9T(n/3) + n^2$ Observe that $n^2 = n^{\log_3(9)} = \Theta(n^{\log_3(9)})$, and therefore $T(n) = \Theta(n^2 \log(n))$ by case (2).

c. (1 Point) $T(n) = 6T(n/5) + n^2$

Solution:

Observe $6 < 25 \Rightarrow \log_5(6) < 2 \Rightarrow 2 - \log_5(6) > 0$. Let $\varepsilon = 2 - \log_5(6)$. Then $\log_5(6) + \varepsilon = 2$, and $n^2 = \Omega(n^{\log_5(6) + \varepsilon})$. Also for any c in the range $6/25 \le c < 1$, and for any positive n, we have $6(n/5)^2 = (6/25)n^2 \le cn^2$, so the regularity condition holds. Therefore $T(n) = \Theta(n^2)$ by case (3) of the Master Theorem.

d. (1 Point) $T(n) = 6T(n/5) + n\log(n)$

Solution:

Observe $\log_5(6) > 1$, so letting $\varepsilon = \frac{\log_5(6) - 1}{2}$, we have $\varepsilon > 0$ and $1 + \varepsilon = \log_5(6) - \varepsilon$. Therefore by l'Hopital's rule

$$\lim_{n\to\infty} \frac{n\log(n)}{n^{\log_5(6)-\varepsilon}} = \lim_{n\to\infty} \frac{n\log(n)}{n^{1+\varepsilon}} = \lim_{n\to\infty} \frac{\log(n)}{n^{\varepsilon}} = 0,$$

showing that $n\log(n) = o(n^{\log_5(6)-\varepsilon}) \subseteq O(n^{\log_5(6)-\varepsilon})$. Case (1) now gives $T(n) = \Theta(n^{\log_5(6)})$.

e. (1 Point) $T(n) = 7T(n/2) + n^2$

Solution:

Observe that $7 > 4 \Rightarrow \log_2(7) > 2$, so upon setting $\varepsilon = \log_2(7) - 2$ we have $\varepsilon > 0$. It follows that $2 = \log_2(7) - \varepsilon$, whence $n^2 = n^{\log_2(7) - \varepsilon} = O(n^{\log_2(7) - \varepsilon})$. Case 1 now gives $T(n) = \Theta(n^{\log_2(7)})$.

f. (1 Point) $S(n) = aS(n/4) + n^2$ (Note: your answer will depend on the parameter a.)

Solution:

We have three cases to consider corresponding to the three cases of the Master Theorem:

Case 1:
$$a > 16 \Rightarrow \log_4(a) > 2 \Rightarrow \varepsilon = \log_4(a) - 2 > 0 \Rightarrow n^2 = O(n^{\log_4(a) - \varepsilon})$$
, so $S(n) = \Theta(n^{\log_4(a)})$.

Case 2: $a = 16 \Rightarrow \log_4(a) = 2 \Rightarrow n^2 = \Theta(n^{\log_4(a)})$, whence $S(n) = \Theta(n^2 \log(n))$.

Case 3: $1 \le a < 16 \Rightarrow \log_4(a) < 2 \Rightarrow \varepsilon = 2 - \log_4(a) > 0 \Rightarrow n^2 = \Omega(n^{\log_4(a) + \varepsilon})$. Further, for any c in the range $a/16 \le c < 1$ we have $a(n/4)^2 = (a/16)n^2 \le cn^2$, showing that the regularity condition holds. Therefore $S(n) = \Theta(n^2)$.

3. (1 Point) p.75: 4.3-2

The recurrence $T(n) = 7T(n/2) + n^2$ describes the running time of an algorithm A. A competing algorithm B has a running time of $S(n) = aS(n/4) + n^2$. What is the largest integer value for a such that B is a faster algorithm than A (asymptotically speaking)? In other words, find the largest integer a such that S(n) = o(T(n)).

Solution:

We seek the largest integer a for which S(n) = o(T(n)). Using parts (e) and (f) of the previous problem, we find that S(n) = o(T(n)) in cases 2 and 3 since $4 < 7 \Rightarrow 2 < \log_2(7)$ and hence $n^2 = o(n^{\log_2(7)})$, and $n^2 \log(n) = o(n^{\log_2(7)})$. In case 1 we have S(n) = o(T(n)) if and only if $n^{\log_4(a)} = o(n^{\log_2(7)})$, i.e. if and only if $\log_4(a) < \log_2(7)$. Thus we seek the largest integer a such that $a < 4^{\log_2(7)} = 7^{\log_2(4)} = 7^2 = 49$. The largest such integer is a = 48.

4. (1 Point)

Let G be an acyclic graph with n vertices, m edges, and k connected components. Show that m = n - k. (Hint: use the fact that |E(T)| = |V(T)| - 1 for any tree T, from the induction handout.)

Proof:

Let $T_1, T_2, ..., T_k$, be the connected components of G, each of which is necessarily a tree. Let $n_i = |V(T_i)|$, and $m_i = |E(T_i)|$, for $1 \le i \le k$. By a theorem proved in the induction handout, we have $m_i = n_i - 1$, for $1 \le i \le k$. Therefore

$$m = \sum_{i=1}^k m_i = \sum_{i=1}^k (n_i - 1) = \sum_{i=1}^k n_i - \sum_{i=1}^k 1 = n - k.$$

///

5. (1 Point) (Appendix B.4 problem 3)

Show that any connected graph G satisfies $|E(G)| \ge |V(G)| - 1$. (Hint: use induction on the number of **edges**. Note: this hint wrongly said "induction on the number of vertices" in the original statement of the problem.)

Proof:

Let G = (V, E) be a connected graph, and suppose |E| = 0. Since G is connected we must have |V| = 1, whence $|E| \ge |V| - 1$, and so the base case is satisfied.

Now suppose |E| > 0 and assume the result holds for any graph with fewer than |E| edges. In other words, we assume that for all graphs G' = (V', E') with |E'| < |E| that $|E'| \ge |V'| - 1$. Now pick any edge e in G and remove it, and let G - e denote the resulting graph. We have two cases to consider.

Case 1: G-e is connected. In this case we apply the induction hypothesis to G-e=(V,E-e) which has fewer edges than G. We conclude that $|E-e| \ge |V|-1$, so that $|E|-1 \ge |V|-1$, and therefore $|E| \ge |V| > |V|-1$, as required.

<u>Case 2</u>: G-e is disconnected. In this case G-e consists of two connected components. (**See the claim and proof below, which are not necessary for full credit on this problem.) Call them $H_1 = (V_1, E_1)$ and $H_2 = (V_2, E_2)$. Note that both H_1 and H_2 have fewer edges than G, so we may apply the induction hypothesis to obtain $|E_1| \ge |V_1| - 1$ and $|E_2| \ge |V_2| - 1$. Therefore

$$|E| = |E_1| + |E_2| + 1$$

$$\geq (|V_1| - 1) + (|V_2| - 1) + 1 \qquad \text{(by the induction hypothesis)}$$

$$= |V_1| + |V_2| - 1$$

$$= |V| - 1 \qquad \text{(no vertices were removed so } |V_1| + |V_2| = |V|).$$

///

The result now holds for all connected graphs by induction.

Claim**: Let G be a connected graph and $e \in E(G)$, and suppose that G - e is disconnected. (Such an edge e is called a bridge). Then G - e has exactly two connected components.

Proof: Since G-e is disconnected, it has at least two components. We must show that it also has at most two components. Let e have end vertices u, and v. Let C_u and C_v be the connected components of G-e that contain u and v respectively. Choose $x \in V(G)$ arbitrarily, and let P be an x-u path in G. Either P includes the edge e, or it does not. If P does not contain e, then P remains intact after the removal of e, and hence P is an x-u path in G-e, whence $x \in C_u$. If on the other hand P does contain the edge e, then e must be the last edge along P from x to u.

In this case P-e is an x-v path in G-e, whence $x \in C_v$. Since x was arbitrary, every vertex in G-e belongs to either C_u or C_v , and therefore G-e has at most two connected components.