

#### Theoretische Informatik

Prof. Dr. Juraj Hromkovič Prof. Dr. Emo Welzl

## 1. Zwischenklausur

Zürich, 5. November 2013

#### Aufgabe 1

(a) Konstruieren Sie einen (deterministischen) endlichen Automaten, der die Sprache

$$L = \{w \in \{0, 1\}^* \mid (|w|_0 + 2 \cdot |w|_1) \mod 3 = 0 \text{ und } |w|_1 \le 1\}$$

akzeptiert. Es reicht aus, die graphische Darstellung des Automaten anzugeben.

(b) Geben Sie für jeden Zustand q Ihres konstruierten Automaten die Klasse Kl[q] an.

6+4 Punkte

## Aufgabe 2

Zeigen Sie, dass die folgenden Sprachen nicht regulär sind.

- (a)  $L_1 = \{0^n 1^m 0^m 1^n \mid n, m \in \mathbb{N}\},\$
- (b)  $L_2 = \{0^{n!} \mid n \in \mathbb{N}\}.$

Hierfür dürfen Sie sich jeweils eine der folgenden drei Beweismethoden aussuchen, jedoch nicht dieselbe für beide Aufgabenteile.

- (i) Mit Hilfe eines angenommenen endlichen Automaten (Verwendung von Lemma 3.3 aus dem Buch oder direkt über den Automaten),
- (ii) mit Hilfe des Pumping-Lemmas, oder
- (iii) mit der Methode der Kolmogorov-Komplexität.

Bitte beachten Sie, dass bei Lösungen, die dieselbe Methode für beide Teilaufgaben verwenden, nur Teilaufgabe (a) bewertet wird. 5+5 Punkte

## Aufgabe 3

Sei  $n_1, n_2, n_3, \ldots$  eine steigende unendliche Folge von natürlichen Zahlen mit  $K(n_i) \ge \lceil \log_2 n_i \rceil / 2$ . Sei für  $i \in \mathbb{N} - \{0\}$  die Zahl  $q_i$  die grösste Primzahl, die  $n_i$  teilt. Zeigen Sie, dass die Menge  $Q = \{q_i \mid i \in \mathbb{N} - \{0\}\}$  unendlich ist. **10 Punkte** 

# Aufgabe 4

- (a) Geben Sie eine formale Definition der Sprachen  $L_{\rm diag}$  und  $L_{\rm H}$  an.
- (b) Zeigen Sie, dass  $L_{\text{diag}} \leq_{\mathbf{R}} L_{\mathbf{H}}$  gilt, indem Sie explizit eine Reduktion angeben.
- (c) Erläutern Sie, wie man aus  $L_{\rm H} \notin \mathcal{L}_{\rm R}$  schliessen kann, dass  $(L_{\rm H})^{\complement} \notin \mathcal{L}_{\rm RE}$  gilt.

2+6+2 Punkte