force-resisting system of structures, the response modification factor, R, shall be permitted to be taken as $1^{1}/_{2}$, the deflection amplification factor, $C_{\rm d}$, shall be permitted to be taken as $1^{1}/_{2}$ and the system overstrength factor, $\Omega_{\rm o}$, shall be permitted to be taken as $2^{1}/_{2}$. Ordinary plain (unreinforced) AAC masonry shear walls shall not be limited in height for buildings assigned to *Seismic Design Category* B and are not permitted for buildings assigned to *Seismic Design Categories* C, D, E and F.

1613.6.5 Seismic controls for elevators. Seismic switches in accordance with Section 8.4.10 of ASME A17.1 shall be deemed to comply with Section 13.6.10.3 of ASCE 7.

1613.6.6 Steel plate shear wall height limits. Modify Section 12.2.5.4 of ASCE 7 to read as follows:

12.2.5.4 Increased building height limit for steel- braced frames, special steel plate shear walls and special reinforced concrete shear walls. The height limits in Table 12.2-1 are permitted to be increased from 160 feet (48 768 mm) to 240 feet (75 152 mm) for structures assigned to *Seismic Design Category* D or E and from 100 feet (30 480 mm) to 160 feet (48 768 mm) for structures assigned to *Seismic Design Category* F that have steel-braced frames, special steel plate shear walls or special reinforced concrete cast-in-place shear walls and that meet both of the following requirements:

- 1. The structure shall not have an extreme torsional irregularity as defined in Table 12.2-1 (horizontal structural irregularity Type 1b).
- 2. The braced frames or shear walls in any one plane shall resist no more than 60 percent of the total seismic forces in each direction, neglecting accidental torsional effects.

1613.6.7 Minimum distance for building separation. All buildings and structures shall be separated from adjoining structures. Separations shall allow for the maximum inelastic response displacement (δ_M). δ_M shall be determined at critical locations with consideration for both translational and torsional displacements of the structure using Equation 16-44.

$$\delta_{M} = \frac{C_{d}\delta_{max}}{I}$$
 (Equation 16-44)

where:

 $C_{\rm d}$ = Deflection amplification factor in Table 12.2-1 of ASCE 7.

 δ_{max} = Maximum displacement defined in Section 12.8.4.3 of ASCE 7.

I = Importance factor in accordance with Section 11.5.1 of ASCE 7.

Adjacent buildings on the same property shall be separated by a distance not less than δ_{MT} , determined by Equation 16-45.

$$\delta_{MT} = \sqrt{\left(\delta_{M1}\right)^2 + \left(\delta_{M2}\right)^2}$$
 (Equation 16-45)