Chapitre 18

Espaces vectoriels

Sommaire

I	Généralités
	1) Définition
	2) Exemples de référence
	3) Règles de calculs
	4) Sous-espaces vectoriels d'un espace vectoriel
II	Applications linéaires
	1) Définition, noyau
	2) Propriétés
	3) S.e.v. et applications linéaires
III	S.e.v. d'un espace vectoriel
	1) Sous-espace engendré
	2) Somme de sous-espaces vectoriels
	3) Sommes directes
	4) S.e.v. supplémentaires
IV	Projections, symétries
	1) Projecteurs
	2) Symétries
V	Généralisation
	1) Sous espace engendré
	2) Sommes de s.e.v
VI	Solution des exercices

Dans ce chapitre, $\mathbb K$ désigne un sous-corps de $\mathbb C$.

I GÉNÉRALITÉS

1) Définition

AI

Définition 18.1

Soit E un ensemble non vide, on dit que E est un $\mathbb K$ - espace vectoriel (ou $\mathbb K$ -e.v.) lorsque E possède une addition et un produit par les scalaires (loi de composition externe, notée « . », c'est une application :

$$\mathbb{K} \times \mathbb{E} \to \mathbb{E}$$
 $(\lambda, x) \mapsto \lambda.x$), avec les propriétés suivantes :

- (E, +) est un groupe abélien (l'élément neutre est noté 0_E ou $\overrightarrow{0_E}$ et appelé **vecteur nul** de E).
- La loi . (ou produit par les scalaires) doit vérifier : $\forall \lambda, \mu \in \mathbb{K}, \forall x, y \in E$:
 - 1.x = x
 - $\lambda . (x + y) = \lambda . x + \lambda . y$
 - $(\lambda + \mu).x = \lambda.x + \mu.x$
 - $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$

Si ces propriétés sont vérifiées, on dit que (E, +, .) est un $\mathbb K$ - e.v., les éléments de $\mathbb K$ sont appelés **les** scalaires et les éléments de E sont appelés vecteurs (parfois notés avec une flèche).

Exemples de référence

Exemples:

- Un corps K est un K-e.v..
- ℝ est un ℚ-e.v., ℂ est un ℚ-e.v., ℂ est un ℝ-e.v. Plus généralement si K est corps inclus dans un autre corps L, alors L est un K-e.v..
- L'ensemble \mathbb{K}^n muni des opérations suivantes :

$$(x_1,...,x_n) + (y_1,...,y_n) = (x_1 + y_1,...,x_n + y_n) \text{ et } \lambda.(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n),$$

est un \mathbb{K} -e.v., le vecteur nul est le n-uplet : $(0, \dots, 0)$.

- Si I est un ensemble non vide, alors l'ensemble des applications de I vers $\mathbb{K}: \mathscr{F}(I,\mathbb{K})$, pour les opérations usuelles (addition de deux fonctions et produit par un scalaire) est un K-e.v., le vecteur nul étant l'application nulle. En particulier ($\mathscr{C}^n(I,\mathbb{K}),+,.$) sont des \mathbb{K} -e.v., ainsi que l'espace des suites à valeurs

Plus généralement, si E est un \mathbb{K} -e.v., l'ensemble des applications de I vers $\mathbb{E}: \mathscr{F}(I,\mathbb{E})$, pour les opérations usuelles sur les fonctions, est un \mathbb{K} -e.v..

- $(\mathbb{K}[X], +, .)$, $(\mathbb{K}(X), +, .)$ sont des \mathbb{K} -espaces vectoriels.
- Espace produit: Soient E et F deux K-e.v., on définit sur E \times F l'addition: (x, y) + (x', y') = (x + x', y + y'), et un produit par les scalaires : λ . $(x, y) = (\lambda . x, \lambda . y)$. On peut vérifier alors que $(E \times F, +, .)$ est un \mathbb{K} -e.v., le vecteur nul étant $(0_E, 0_F)$. Cela se généralise au produit cartésien d'un nombre fini de \mathbb{K} -e.v.

3) Règles de calculs

Soit E un K-e.v.

- $\forall \overrightarrow{x} \in E, 0.\overrightarrow{x} = \overrightarrow{0}, \text{ et } \forall \lambda \in \mathbb{K}, \lambda.\overrightarrow{0} = \overrightarrow{0}.$
- $\forall \overrightarrow{x} \in E, \forall \lambda \in \mathbb{K}, -(\lambda \cdot \overrightarrow{x}) = (-\lambda) \cdot \overrightarrow{x} = \lambda \cdot (-\overrightarrow{x}).$
- $\forall \vec{x} \in E, \forall \lambda \in \mathbb{K}, \lambda . \vec{x} = \vec{0} \implies \lambda = 0 \text{ ou } \vec{x} = \vec{0}.$

4) Sous-espaces vectoriels d'un espace vectoriel

Définition 18.2

Soit E un K-e.v. et soit H un ensemble, on dit que H est un sous-espace vectoriel de E (ou s.e.v de E) lorsque:

- H ⊂ E, H $\neq \emptyset$.
- ∀ x, $y \in H$, $x + y \in H$ (H est stable pour l'addition).
- − $\forall x \in H, \forall \lambda \in K, \lambda.x \in H$ (H est stable pour la loi .).

Si c'est le cas, alors il est facile de vérifier que (H, +, .) est lui-même un K-e.v.

Exemples:

- $\mathcal{L}(E, F)$ est un s.e.v. de $\mathcal{F}(E, F)$.
- L'ensemble des fonctions paires (respectivement impaires, bornées, T-périodiques, lipschitziennes) définies sur \mathbb{R} est un s.e.v. de $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- L'ensemble ($\mathscr{C}^n(I,\mathbb{C}),+,...$) est un sous-espace vectoriel de ($\mathscr{F}(I,\mathbb{C}),+,...$).
- L'ensemble ($\mathbb{K}_n[X], +, ...$) est un sous-espace vectoriel de ($\mathbb{K}[X], +, ...$).
- L'ensemble des suites complexes de limite nulle et un s.e.v de l'espace des suites complexes convergentes, qui est lui-même un s.e.v de l'espace de suites complexes bornées, qui est lui-même un s.e.v de l'espace des suites complexes.
- Soient $a, b, c \in \mathbb{K}$, F = { $(x, y, z) \in \mathbb{K}^3 / ax + by + cz = 0$ } est un s.e.v de \mathbb{K}^3 .

Théorème 18.1 (intersection de sous-espaces vectoriels)

Soit $(H_i)_{i \in I}$ une famille de s.e.v de E (I est un ensemble d'indices), alors $\bigcap H_i$ est un s.e.v de E.

Preuve : Celle-ci est simple et laissée en exercice.

APPLICATIONS LINÉAIRES П

Définition, noyau

Définition 18.3

Soient E et F deux \mathbb{K} -e.v. et soit $f: E \to F$ une application, on dit que f est une application linéaire (ou morphisme de K-espaces vectoriels), lorsque :

$$\forall x, y \in E, \forall \lambda \in \mathbb{K}, f(x+y) = f(x) + f(y) \text{ et } f(\lambda.x) = \lambda.f(x).$$

Si de plus, f est bijective, alors on dit que f est un isomorphisme (d'espaces vectoriels). L'ensemble des applications linéaires de E vers F est noté $\mathcal{L}(E,F)$.

Remarque 18.1 – Les applications linéaires de \mathbb{K} dans \mathbb{K} sont les applications de la forme f(x) = ax ($a \in \mathbb{K}$), car f(x) = x f(1).

Exemples:

- L'application nulle (notée 0) de E vers F est linéaire.
- L'application identité de E : id_E : E → E définie par $id_E(x) = x$, est linéaire bijective (et $(id_E)^{-1} = id_E$).
- Soit $\lambda \in \mathbb{K}^*$, l'homothétie de rapport $\lambda : h_{\lambda} : E \to E$, définie par $h_{\lambda}(x) = \lambda . x$, est linéaire et bijective. Sa réciproque est l'homothétie de rapport 1/λ. L'ensemble des homothéties de E est un groupe pour la loi o car c'est un sous-groupe du groupe des permutations de E.
- L'application $f: \mathbb{K}^2 \to \mathbb{K}^2$ définie par f(x, y) = (x; -y) est un isomorphisme de \mathbb{K}^2 sur lui-même.

√A retenir

 $f \in \mathcal{L}(E, F)$ alors $f(0_E) = 0_F$ et $\forall x \in E$, f(-x) = -f(x).

Définition 18.4 (vocabulaire)

- Une application linéaire de E vers E est appelée un endomorphisme de E. L'ensemble des endomorphismes de E est noté $\mathcal{L}(E)$ (on a donc $\mathcal{L}(E) = \mathcal{L}(E, E)$).
- Un isomorphisme de E vers E est appelé un automorphisme de E. L'ensemble des automorphismes de E est noté GL(E) et appelé groupe linéaire de E.
- Une application linéaire de E vers K est appelée une forme linéaire sur E. L'ensemble des formes linéaires sur E est noté E* et appelé dual de E (on a donc E* = $\mathcal{L}(E, \mathbb{K})$).

Exemples:

- id_E ∈ GL(E), \forall λ ∈ \mathbb{K}^* , h_{λ} ∈ GL(E).
- Soit E = \mathscr{C}^0 ([0;1], ℝ) et ϕ : E → ℝ définie par $\phi(f) = \int_0^1 f(t) \, dt$, alors ϕ est une forme linéaire sur E.
- Soit E = { $u \in \mathcal{F}(\mathbb{N}, \mathbb{C}) / (u_n)$ converge} est un ℂ-e.v. et l'application φ : E → ℂ définie par φ(u) = lim u_n , est une forme linéaire sur E.
- Soient $a, b, c \in \mathbb{K}$, l'application $\phi : \mathbb{K}^3 \to \mathbb{K}$ définie par $\phi(x, y, z) = ax + by + cz$, est une forme linéaire sur \mathbb{K}^3 . En exercice, montrer la réciproque, c'est à dire que toutes les formes linéaires sur \mathbb{K}^3 sont de ce type.

Définition 18.5 (Noyau d'une application linéaire)

Soit $f \in \mathcal{L}(E,F)$, on appelle noyau de f l'ensemble noté $\ker(f)$ et défini par :

$$\ker(f) = \{ x \in E / f(x) = 0_F \}$$

Le noyau de f contient toujours 0_E .

Exemples:

- Le noyau d'une application linéaire bijective est {0_E}.
- Le noyau de l'application linéaire $d: \mathbb{K}[X] \to \mathbb{K}[x]$ définie par d(P) = P' est $\ker(d) = \mathbb{K}$.
- Le noyau de l'application linéaire $f: \mathbb{K}^3 \to \mathbb{K}^2$ définie par f(x, y, z) = (x + y + z, x 2y z) est $\ker(f) =$ $\{(x, 2x, -3x) \mid x \in \mathbb{K}\}.$

2) Propriétés

Il est facile de vérifier les propriétés suivantes :

- f ∈ $\mathcal{L}(E,F)$ est injective si et seulement si ker(f) = $\{0_E\}$.
- La composée de deux applications linéaires est linéaire. On en déduit que GL(E) est stable pour la loi ∘.
- Si $f \in \mathcal{L}(E, F)$ est un isomorphisme, alors $f^{-1} \in \mathcal{L}(F, E)$. On en déduit que GL(E) est stable par symétrisation, *i.e.* si $f \in GL(E)$, alors $f^{-1} \in GL(E)$.
- (GL(E), ∘) est un groupe (non abélien en général), c'est en fait un sous-groupe du groupe des permutations de $E:(S_E,\circ)$.
- − Si $f, g \in \mathcal{L}(E, F)$ et si $\lambda \in \mathbb{K}$, alors f + g et λf sont linéaires. On en déduit que $(\mathcal{L}(E, F), +, .)$ est un \mathbb{K} -e.v. (s.e.v. de $\mathscr{F}(E,F)$).
- $-(\mathcal{L}(E), +, \circ)$ est un anneau, la loi \circ jouant le rôle d'une multiplication.

Remarque 18.2 -

- En général, l'anneau $\mathcal{L}(E)$ n'est pas commutatif. Le groupe des inversibles de cet anneau est GL(E).
- La loi ∘ jouant le rôle d'une multiplication, on adopte les notations usuelles des anneaux pour les puissances, i.e. si $u \in \mathcal{L}(E)$ et si n est entier, alors :

$$u^{n} = \begin{cases} id_{E} & si \ n = 0 \\ u \circ \cdots \circ u & n \ fois \ si \ n > 0 \\ u^{-1} \circ \cdots \circ u^{-1} & -n \ fois \ si \ u \ est \ inversible \ et \ n < 0 \end{cases},$$

de plus si $u, v \in \mathcal{L}(E)$ commutent (i.e. $u \circ v = v \circ u$), alors on peut utiliser le binôme de Newton :

$$(u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k \circ v^{n-k}$$

- Soit $E = \mathbb{K}^2$ et $f: (x; y) \mapsto (y; 0)$, on vérifie facilement que $f \in \mathcal{L}(E)$ et que $f^2 = 0$ (application nulle), pourtant $f \neq 0$. Cet exemple montre qu'en général $\mathcal{L}(E)$ n'est pas un anneau intègre.

3) S.e.v. et applications linéaires

Théorème 18.2 (noyau et image d'une application linéaire)

Si $f \in \mathcal{L}(E,F)$ alors $\ker(f)$ est un s.e.v de E et $\operatorname{Im}(f)$ est un s.e.v de F.

Preuve : Celle-ci est simple et laissée en exercice.

🥱 - À retenir

Soit $f \in \mathcal{L}(E,F)$ alors f est un isomorphisme si et seulement si $\ker(f) = \{0_E\}$ et $\operatorname{Im}(f) = F$.

Théorème 18.3 (image d'un s.e.v par une application linéaire)

Soit H un s.e.v de E et $f \in \mathcal{L}(E,F)$, alors f(H) (ensemble des images par f des éléments de H) est un s.e.v de F.

Preuve: Il suffit de considérer la restriction de f à $H:g:H\to F$ définie par $\forall x\in H, g(x)=f(x)$, il est clair que g est linéaire et que f(H) = Im(g), on peut appliquer alors le théorème précédent.

Théorème 18.4 (image réciproque d'un s.e.v par une application linéaire)

Soit H un s.e.v de F et soit $f \in \mathcal{L}(E,F)$ alors $f^{-1}(H)$ (ensemble des antécédents des éléments de H par f) est un s.e.v de E.

Preuve : Celle-ci est simple et laissée en exercice.

Exemples:

- H = $\{f \in \mathcal{C}^0([a;b],\mathbb{R}) / \int_0^b f = 0\}$ est un s.e.v de $\mathcal{C}^0([a;b],\mathbb{R})$, car c'est le noyau de la forme linéaire
- H = {(x, y, z) ∈ \mathbb{K}^3 / ax+by+cz=0} est un s.e.v de \mathbb{K}^3 car c'est le noyau de la forme linéaire ϕ : (x, y, z) \mapsto ax + by + cz.
- $-H = \{(x, y, z) \in \mathbb{K}^3 / 2x + y z = 0 \text{ et } 3x 2z = 0\}$ est un s.e.v de \mathbb{K}^3 car c'est l'intersection des noyaux des deux formes linéaires : ϕ_1 : $(x, y, z) \mapsto 2x + y - z$ et ϕ_2 : $(x, y, z) \mapsto 3x - 2z$.

🛂 Théorème 18.5

Soient $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(E, G)$, alors : $v \circ u = 0 \iff \operatorname{Im}(u) \subset \ker(v)$.

Preuve : Celle-ci est simple et laissée en exercice.

Définition 18.6 (hyperplan)

Soit H un s.e.v de E, on dit que H est un hyperplan de E lorsqu'il existe une forme linéaire φ sur E, non identiquement nulle, telle que $H = \ker(\phi)$.

S.E.V. D'UN ESPACE VECTORIEL

1) Sous-espace engendré

Définition 18.7 (combinaisons linéaires d'un nombre fini de vecteurs)

Soit E un \mathbb{K} -e.v et soit x_1, \dots, x_n des vecteurs de E. On appelle combinaison linéaire de la famille $(x_i)_{1 \le i \le n}$, tout vecteur x de E pour lequel il existe des scalaires $\lambda_1, \ldots, \lambda_n$ tels que :

$$x = \sum_{i=1}^{n} \lambda_i x_i$$

 $x = \sum_{i=1}^n \lambda_i x_i.$ L'ensemble des combinaisons linéaires de la famille $(x_i)_{1\leqslant i\leqslant n}$ est noté $\text{Vect}\,[x_1,\ldots,x_n].$

Deux vecteurs x et y de E sont dits colinéaires lorsque l'un des deux est combinaison linéaire de *l'autre, i.e.* $\exists \lambda \in \mathbb{K}, x = \lambda y \text{ ou } y = \lambda x.$

Théorème 18.6 (sous-espace engendré)

Soit $(x_i)_{1 \le i \le n}$ une famille de vecteurs de E, Vect $[x_1, ..., x_n]$ est un s.e.v de E. C'est même le plus petit (pour l'inclusion) s.e.v de E qui contient tous les vecteurs de cette famille. On l'appelle s.e.v engendré $par(x_1,...,x_n).$

Preuve : Celle-ci est simple et laissée en exercice.

Exemples:

- $Vect[0_E] = \{0_E\}.$
- Si $x \in E \setminus \{0_E\}$, alors Vect $[x] = \{\lambda x / \lambda \in \mathbb{K}\}$, c'est un s.e.v de E appelé droite vectorielle engendrée par x. On dit que x est un vecteur directeur de cette droite. Les autres vecteurs directeurs sont les vecteurs de la forme λx avec $\lambda \neq 0$.
- Soient x, y ∈ E deux vecteurs non nuls, si les deux vecteurs sont colinéaires, alors Vect [x, y] = Vect [x] = Vect [y] (droite vectorielle). Si ces deux vecteurs sont non colinéaires, alors :

$$Vect[x, y] = \{\alpha x + \beta y / \alpha, \beta \in \mathbb{K}\}\$$

c'est un s.e.v de E, on l'appelle plan vectoriel engendré par x et y, il contient (strictement) les deux droites engendrées par x et y.

- Dans \mathbb{K}^3 déterminer une équation cartésienne du plan vectoriel engendré par les vecteurs x = (1,1,1)et y = (0, -1, 1).

Remarque 18.3 – Un s.e.v. de E est stable par combinaisons linéaires.

🎮 Théorème 18.7 (image d'une combinaison linéaire par une application linéaire)

Soit E un \mathbb{K} -e.v et soit $(x_i)_{1 \le i \le n}$ une famille de vecteurs de E. Soit $f \in \mathcal{L}(E,F)$, alors l'image par f d'une combinaison linéaire de la famille $(x_i)_{1 \le i \le n}$ est une combinaison linéaire de la famille $(f(x_i))_{1 \le i \le n}$ (dans F) avec les mêmes coefficients.

Preuve: Par récurrence sur n: pour n = 1 il n'y a rien à démontrer. Supposons le théorème vrai au rang n, et soit $x = \lambda_1 x_1 + \dots + \lambda_{n+1} x_{n+1}$, f étant linéaire, on peut écrire $f(x) = f(\lambda_1 x_1 + \dots + \lambda_n x_n) + \lambda_{n+1} f(x_{n+1})$, on applique alors l'hypothèse de récurrence pour conclure.

Exemples:

- Soit $E = \mathbb{K}^n$ pour $i \in [1; n]$ on pose $e_i = (\delta_{i,1}, \dots, \delta_{i,n})$, on a alors $E = \text{Vect}[e_1, \dots, e_n]$.
- Soit H = { $u \in \mathbb{K}^3 / \exists \alpha, \beta, \gamma \in \mathbb{K}, u = (\alpha \beta, 2\alpha 2\beta + \gamma, -\alpha + \beta + 2\gamma)$ }. Posons $e_1 = (1, 2, -1), e_2 = (-1, -2, 1)$ et $e_3 = (0, 1, 2)$, on a alors $H = \text{Vect}[e_1, e_2, e_3]$, ce qui prouve que H est un s.e.v de \mathbb{K}^3 . On remarque que $e_2 = -e_1$, donc finalement H = Vect $[e_1, e_3]$, et comme e_1 et e_3 ne sont pas colinéaires, H est un plan vectoriel.
- Soit $E=\mathcal{F}(\mathbb{R},\mathbb{R})$, les deux fonctions $id_{\mathbb{R}}$ et 1 sont non colinéaires, donc elles engendrent un plan vectoriel dans E : P = Vect [id_R, 1]. $f \in P$ équivaut à $\exists a, b \in \mathbb{R}, f = a.id_{\mathbb{R}} + b.1$, et donc $f : x \mapsto ax + b$, P est donc l'ensemble des applications affines.

2) Somme de sous-espaces vectoriels

Définition 18.8 (somme de s.e.v)

Soient F et G deux s.e.v de E, on appelle somme de F et G l'ensemble noté F + G et défini par : $F + G = \{x \in E \mid \exists u \in F, v \in G, x = u + v\}.$

🌉 Théorème 18.8

Une somme de s.e.v de E est un s.e.v de E.

Preuve: F + G est inclus dans E et contient le vecteur nul puisque celui-ci est dans F et dans G. Si x et y sont dans F+G alors on peut écrire $x = x_F + x_G$ et $y = y_F + y_G$ avec $x_F, y_F \in F$ et $X_G, y_G \in G$, on a $x + y = (x_F + y_F) + (x_G + y_G)$ et $\lambda x = \lambda x_F + \lambda x_G$, comme F et G sont stables pour l'addition et le produit par les scalaires, on voit que x + y et λx sont dans F+G.

Remarque 18.4 – F + G est un s.e.v. de E qui contient à la fois F et G.

Exemples:

- Dans \mathbb{K}^3 , posons i = (1,0,0), j = (0,1,0), k = (0,0,1), on peut vérifier que $\mathbb{K}^3 = \text{Vect}[i] + \text{Vect}[j,k] = (0,0,1),$ Vect[i, j] + Vect[k] = Vect[i, k] + Vect[j].
- Soient x, y ∈ E deux vecteurs, on a Vect [x] + Vect [y] = Vect [x, y]. Plus généralement, on peut remplacer x et y par deux familles de vecteurs de E.

Sommes directes

Définition 18.9 (somme directe)

Soient F, G deux s.e.v de E, on dit que la somme F + G est directe lorsque tout vecteur x de cette somme s'écrit **de manière unique** sous la forme $x = x_F + x_G$ avec $x_F \in F$, et $x_G \in G$. Si c'est le cas, la somme est notée F ⊕ G.

Théorème 18.9 (caractérisation des sommes directes)

Soient F et G deux s.e.v de E, les assertions suivantes sont équivalentes :

- a) la somme F + G est directe.
- b) $\forall (x_F, x_G) \in F \times G$, $si \ x_F + x_G = 0_E \ alors \ x_F = x_G = 0_E$.
- c) $F \cap G = \{0_E\}.$
- d) l'application linéaire $\phi \colon F \times G \to E$ définie par $\phi(x_F, x_G) = x_F + x_G$ est injective.

Preuve : Celle-ci est simple et laissée en exercice.

Exemples:

- Dans $\mathscr{F}(\mathbb{R},\mathbb{R})$ le s.e.v des fonctions paires et le s.e.v des fonctions impaires sont en somme directe.
- Dans \mathbb{K}^3 le plan P d'équation x + y + z = 0 et la droite engendrée par le vecteur i = (1, 1, 1) sont en somme directe, mais P n'est pas en somme directe avec le plan P' engendré par i et j = (1, -1, 1).

S.e.v. supplémentaires

Définition 18.10 (s.e.v supplémentaires)

Soient F et G deux s.e.v de E, on dit que F et G sont supplémentaires lorsque $F \oplus G = E$. Ce qui signifie que E = F + G et la somme F + G est directe, ou encore : tout vecteur de E s'écrit de manière unique comme somme d'un vecteur de F et d'un vecteur de G.

Exemples:

- Dans ℱ(ℝ,ℝ) le s.e.v des fonctions paires et le s.e.v des fonctions impaires sont supplémentaires.
- Dans E = $\mathscr{C}^0([a;b],\mathbb{R})$ le s.e.v H = { $f \in \mathbb{E} / \int_a^b f = 0$ } et le s.e.v G = Vect [id_ℝ] sont supplémentaires.

🙀 Théorème 18.10 (caractérisations des hyperplans)

Soit H un s.e.v de E, les assertions suivantes sont équivalentes :

- a) H est un hyperplan de E (i.e. le noyau d'une forme linéaire sur E non nulle).
- b) $\forall x_0 \in E \setminus H, H \oplus Vect[x_0] = E.$
- c) $\exists x_0 \in E \setminus H \text{ tel que } H \oplus \text{Vect } [x_0] = E.$

Preuve: Montrons que a) $\Longrightarrow b$): soit $x_0 \in E \setminus H$, comme x_0 n'est pas dans H, il est facile de voir que H et $Vect[x_0]$ sont en somme directe. Soit ϕ une forme linéaire (non nulle) telle que $\ker(\phi) = H$, on a $\phi(x_0) = \alpha \neq 0$, soit $x \in E$ et $\lambda = \phi(x)$, posons $y = x - \frac{\lambda}{\alpha}x_0$, on a $\phi(y) = 0$, donc $y \in H$ et de plus $x = y + \frac{\lambda}{\alpha}x_0$, ce qui prouve que $E = H + \text{Vect}[x_0]$.

Montrons que b) $\implies c$): rien à faire.

Montrons que c) $\implies a$): Pour $x \in E$, il existe $y \in H$ et $\lambda \in K$, uniques tels que $x = y + \lambda x_0$. Posons $\phi(x) = \lambda$. On définit ainsi une application non nulle de E vers \mathbb{K} , on peut vérifier ensuite que ϕ est bien linéaire (laissé en exercice), $x \in \ker(\Phi) \iff \lambda = 0 \iff x = y \iff x \in H$, donc $\ker(\Phi) = H$, ce qui prouve que H est un hyperplan.

PROJECTIONS, SYMÉTRIES IV

Projecteurs 1)

Définition 18.11

Soit E un \mathbb{K} -e.v, une projection dans E (ou un projecteur de E) est un endomorphisme p de E tel que $p^2 = p \ (i.e. \ p \circ p = p).$

Exemples:

- $E = \mathbb{K}^2$ et p(x, y) = (x, 0).
- E = $\mathscr{F}(\mathbb{R}, \mathbb{R})$ et p qui à $f \in E$ associe $p(f) : x \mapsto \frac{f(x) + f(-x)}{2}$.

Remarque 18.5 – *Invariants d'un endomorphisme* : $si\ f \in \mathcal{L}(E)$, $alors\ x \in E$ est invariant par f (ou un point fixe de f) si et seulement si f(x) = x, ce qui équivaut à $(f - id_E)(x) = 0_E$, ou encore $x \in \ker(f - id_E)$. L'ensemble des points fixes de f est donc le s.e.v ker $(f - id_E)$.

Théorème 18.11 (caractérisation des projections)

 $p \in \mathcal{L}(E)$ est un projecteur \iff $E = \ker(p) \oplus \ker(p - \mathrm{id}_E)$. Si c'est le cas, alors $\mathrm{Im}(p) = \ker(p - \mathrm{id}_E)$ et on dit que p est la projection sur Im(p) parallèlement à ker(p). Tout vecteur x de E se décompose de la manière suivante : x = (x - p(x)) + p(x), avec $x - p(x) \in \ker(p)$ et $p(x) \in \ker(p - id_F)$.

Preuve: Si p est un projecteur, soit $x \in \ker(p) \cap \ker(p - \mathrm{id}_E)$, alors $p(x) = 0_E = x$, donc la somme est directe. Soit $x \in E$, alors $p(x - p(x)) = p(x) - p^2(x) = 0_E$, donc $x - p(x) \in \ker(p)$, on a alors x = (x - p(x)) + p(x) et $p(x) \in \ker(p - id_E)$, donc $E = \ker(p) \oplus \ker(p - id_E)$. De la définition, il découle que $\operatorname{Im}(p) \subset \ker(p - id_E)$, l'inclusion étant évidente, on a $\operatorname{Im}(p) = \ker(p - i d_{\mathrm{E}}).$

Réciproque : si E = $\ker(p) \oplus \ker(p - \mathrm{id}_E)$, soit $x \in E$, alors x = y + z avec $y \in \ker(p)$ et $z \in \ker(p - \mathrm{id}_E)$, d'où p(x) = x + zp(y) + p(z) = p(z) = z, et donc $p^2(x) = p(z) = z = p(x)$, ce qui prouve que p est un projecteur.

Exemples:

- Dans le premier exemple, p est la projection sur la droite Vect[(1,0)] et parallèlement à la droite
- Dans le deuxième exemple, p est la projection sur le s.e.v des fonctions paires, parallèlement au s.e.v des fonctions impaires.

Théorème 18.12 (projection associée à une décomposition)

Si F et G sont deux s.e.v de E supplémentaires (E = F \oplus G), alors il existe une unique projection p telle que Im(p) = F et ker(p) = G, i.e. qui soit la projection sur F parallèlement à G.

Preuve: Pour $x \in E$, il existe $x_F \in F$ et $x_G \in G$, uniques tels que $x = x_F + x_G$, on pose alors $p(x) = x_F$, ce qui définit une application de E dans E. On vérifie facilement que p est linéaire, et comme $x_F \in F$, on a par définition même de p, que $p^2(x) = x_F = p(x)$, donc p est bien un projecteur. On a $p(x) = 0_E \iff x_F = 0_E \iff x = x_G \iff x \in G$, donc $\ker(p) = G$, d'autre part, $p(x) = x \iff x = x_F \iff x \in F$, donc $\ker(p - \mathrm{id}_E) = F$, ce qui termine la preuve.

★Exercice 18.1

If $X = \mathbb{R}^3$, $Y = \{(x, y, z) \in \mathbb{R} \mid z = 0\}$ et $Y = \mathbb{R}^3$. Here, $Y = \mathbb{R}^3$ is a soft supplementaire, et déterminer l'expression analytique de la projection sur F parallèlement à G.

2/ Soit p un projecteur de E, montrer que $q = id_E - p$ est un projecteur, préciser ses éléments caractéristiques.

2) **Symétries**

Définition 18.12

Soit E un \mathbb{K} -e.v, une symétrie de E est un endomorphisme s tel que $s^2 = \mathrm{id}_{\mathrm{E}}$ (involution linéaire).

Exemples:

- Dans E = \mathbb{K}^2 , l'application s définie par s(x, y) = (y, x) est une symétrie.
- Dans E = $\mathcal{F}(\mathbb{R},\mathbb{R})$ l'application *s* définie par *s*(*f*) est la fonction qui à *s*(*f*) : *x* → *f*(−*x*), est une symétrie.

Théorème 18.13 (caractérisation des symétries)

Soit $s \in \mathcal{L}(E)$, s est une symétrie \iff $E = \ker(s - \mathrm{id}_E) \oplus \ker(s + \mathrm{id}_E)$. Ce qui revient à dire que l'application $p = \frac{1}{2}(id_E + s)$ est une projection. Si c'est le cas, on dit que s est la symétrie par rapport à $\ker(s - id_E)$ (ensemble des invariants) et parallèlement à $\ker(s + id_E)$, et on dit que p est la projection associée à s. Tout vecteur x de E se décompose de la manière suivante :

$$x = \frac{1}{2}(x + s(x)) + \frac{1}{2}(x - s(x)),$$

$$avec \frac{1}{2}(x + s(x)) \in \ker(s - id_E) \text{ et } \frac{1}{2}(x - s(x)) \in \ker(s + id_E).$$

Preuve: Posons $p = \frac{1}{2}(id_E + s)$, s est une symétrie équivaut à $s^2 = id_E$, c'est à dire $(2p - id_E)^2 = id_E$, ou encore $p^2 = p$, ce qui équivaut à dire que $E = \ker(p) \oplus \ker(p - \mathrm{id}_E)$, et donc $E = \ker(s + \mathrm{id}_E) \oplus \ker(s - \mathrm{id}_E)$.

Théorème 18.14 (symétrie associée à une décomposition)

Si F et G sont deux s.e.v de E supplémentaires (E = $F \oplus G$), alors il existe une unique symétrie s telle que $\ker(s - id_E) = F$ et $\ker(s + id_E) = G$, i.e. qui soit la symétrie par rapport à F et parallèlement à G.

Preuve: Soit p la projection sur F parallèlement à G, posons $s = 2p - id_E$, on sait alors que s est une symétrie et $\ker(s - \mathrm{id}_E) = \ker(p - \mathrm{id}_E) = F$ et $\ker(s + \mathrm{id}_E) = \ker(p) = G$, donc s existe. Réciproquement, si s existe, alors la projection associée est nécessairement la projection sur F parallèlement à G, or celle-ci est unique, c'est p, donc s est unique. \Box

Exemples:

- Dans le premier exemple ci-dessus, s est la symétrie par rapport à la droite Vect [(1,1)] et parallèlement à la droite Vect[(1,-1)].
- Dans le deuxième exemple, s est la symétrie par rapport au s.e.v des fonctions paires, et parallèlement au s.e.v des fonctions impaires.

GÉNÉRALISATION

Sous espace engendré

Définition 18.13 (généralisation)

Soit $(x_i)_{i \in I}$ une famille de vecteurs de E. On appelle combinaison linéaire de la famille, tout vecteur de E pouvant s'écrire comme combinaison linéaire d'un **nombre fini** de vecteurs de la famille. Notation : Vect [(x_i)_{i∈I}] = { $\sum_{j∈J} α_j x_j$ / J partie finie de I et ∀ j ∈ J, $α_j$ ∈ \mathbb{K} }.

Remarque 18.6 - Si X est une partie de E, on notera Vect [X] l'ensemble des combinaisons linéaires des vecteurs de X. On peut écrire :

 $\operatorname{Vect}\left[X\right] = \left\{ \sum_{x \in X} \alpha_x x \mid (\alpha_x)_{x \in X} \text{ est une famille de scalaires tous nuls sauf un nombre fini} \right\}.$ De telles familles de scalaires sont appelées **familles à support fini**. Le théorème 18.7 se généralise alors

ainsi:

 $Si\ f \in \mathcal{L}(E,F)\ alors\ f(\sum_{x\in X}\alpha_x x) = \sum_{x\in X}\overline{\alpha_x f(x)},\ pour\ toute\ famille\ de\ scalaires\ (\alpha_x)_{x\in X}\ \grave{a}\ support\ fini.$

Théorème 18.15 (sous-espace engendré)

Soit $(x_i)_{i \in I}$ une famille de vecteurs de E, Vect $[(x_i)_{i \in I}]$ est un s.e.v de E. C'est même le plus petit (pour l'inclusion) s.e.v de E qui contient tous les vecteurs de cette famille. On l'appelle s.e.v engendré par $(x_i)_{i\in I}$.

Preuve : Celle-ci est simple et laissée en exercice.

 \blacksquare Exemple : $\mathbb{K}[X] = \text{Vect}[(X^n)_{n \in \mathbb{N}}].$

Sommes de s.e.v.

Définition 18.14 (somme de s.e.v)

 $Si F_1, ..., F_p$ sont des s.e.v. de E, la somme de ces s.e.v. est :

$$F_1 + \cdots + F_p = \{x \in E \mid \exists u_1 \in F_1, \dots, u_p \in F_p, x = u_1 + \cdots + u_p\}.$$

Maria de la composição de la composição

Une somme de s.e.v de E est un s.e.v de E.

Preuve: F_1, \ldots, F_p sont des s.e.v de E, donc ce sont en particulier des K-e.v, par conséquent le produit cartésien $F_1 \times \cdots \times F_p$ est lui-même un \mathbb{K} -e.v. On considère alors l'application $f: F_1 \times \cdots \times F_p \to \mathbb{E}$ définie par $f(u_1, \dots, u_p) = \mathbb{E}$ $u_1 + \cdots + u_p$. On vérifie facilement que f est linéaire, il est clair d'après la définition que $F_1 + \cdots + F_p = \text{Im}(f)$, et donc c'est un s.e.v de E.

Exemple: $\mathbb{K}^3 = \text{Vect}[(1,0,0)] + \text{Vect}[(0,1,0)] + \text{Vect}[(0,0,1)].$

Définition 18.15 (somme directe)

Soient F_1, \dots, F_p des s.e.v de E, on dit que la somme $F_1 + \dots + F_p$ est directe lorsque tout vecteur de cette somme s'écrit **de manière unique** sous la forme $u_1 + \cdots + u_p$ avec $u_i \in F_i$, $1 \le i \le p$. Si c'est le cas, la somme est notée $F_1 \oplus \cdots \oplus F_p$.

Théorème 18.17 (caractérisation des sommes directes)

Soient $F_1, ..., F_p$ des s.e.v de E, les assertions suivantes sont équivalentes :

- a) la somme $F_1 + \cdots + F_n$ est directe.
- b) $\forall (x_1,...,x_p) \in F_1 \times \cdots \times F_p$, $si x_1 + \cdots + x_p = 0_E$ alors $x_1 = \cdots = x_p = 0_E$.
- c) $\forall i \in [1; p]$, l'intersection entre F_i et la somme des autres s.e.v. est réduite à $\{0_E\}$.
- d) l'application linéaire $\phi: F_1 \times \cdots \times F_p \to E$ définie par $\phi(x_1, \dots, x_p) = x_1 + \cdots + x_p$ est injective.

Preuve: Montrons a) \Longrightarrow b): soient $x_i \in F_i$ tels que $\sum_{i=1}^p x_i = 0_E$, alors $\sum_{i=1}^p x_i = \sum_{i=1}^p 0_E$, or 0_E est dans chaque F_i , l'unicité permet de conclure que $x_i = 0_E$.

Montrons que $b) \implies c$: soient $x_1 \in F_1 \cap (F_2 + \cdots + F_p)$ alors il existe $x_2 \in F_2, \dots, x_p \in F_p$ tels que $x_1 = x_2 + \cdots + x_p$, alors $x_1 - x_2 - \dots - x_p = 0_E$ avec $-x_i \in F_i$, et donc chacun de ces vecteurs est nul, en particulier x_1 . Le raisonnement est le même si on permute les indices.

Montrons c) $\Longrightarrow d$): si $(x_1, \dots, x_p) \in \ker(\Phi)$ alors $x_1 + \dots + x_p = 0_E$ et donc $x_1 = -x_2 - \dots - x_p$, or ce vecteur est dans $F_2 + \cdots + F_p$, donc $x_1 = 0_E$, le même façon on montre que les autres sont nuls et donc que ϕ est injective.

Montrons que d) $\Longrightarrow a$): Si $x_1 + \cdots + x_p = y_1 + \cdots + y_p$ avec $x_i, y_i \in F_i$, alors $(x_1 - y_1) + \cdots + (x_p - y_p) = 0_E$, donc $(x_1 - y_1, \dots, x_p - y_p) \in \ker(\phi)$ (car $x_i - y_i \in F_i$), ϕ étant injective il vient que $x_i - y_i = 0_E$ d'où l'unicité de la décomposition, la somme est donc directe.

Attention!

 $Si F_i \cap F_j = \{0_E\}$, pour $i \neq j$ dans [1; p], cela ne prouve pas que la somme $F_1 + \cdots + F_p$ est directe. Par exemple, soit $F_1 = Vect[(1,0,0)], F_2 = Vect[(0,1,0)] \ et \ F_3 = Vect[(1,1,0)], \ alors \ F_1 \cap F_2 = F_2 \cap F_3 = F_1 \cap F_3 = \{0_E\}, \ mais \ la \ somme$ $F_1 + F_2 + F_3$ n'est pas directe puisque $F_1 + F_2 = F_3$.

Exemple: $\mathbb{K}[X] = F_0 \oplus F_1 \oplus F_2 \text{ avec } F_i = \text{Vect}[(X^{3n+i})_{n \in \mathbb{N}}], i \in [0;2].$

VI SOLUTION DES EXERCICES

Solution 18.1

1/ Soit $(x, y, z) \in E$, alors (x, y, z) = (z, z, z) + (x - z, y - z, 0), le premier triplet est dans G, et le second dans F, donc E = G + F. $Si(x, y, z) \in F \cap G$ alors x = y = z et z = 0 donc $F \cap G = \{(0, 0, 0)\}$ d'où $E = F \oplus G$ et le projeté de (x, y, z) sur $F \cap G = \{(0, 0, 0)\}$ d'où $E \cap G = \{(0,$ parallèlement à G est p(x, y, z) = (x - z, x - z, 0) (composante sur F dans la décomposition).

2/ On sait que p est la projection sur $F = Im(p) = ker(p - id_F)$ et parallèlement à G = ker(p), on a $E = F \oplus G$ et pour tout x de E, x = p(x) + x - p(x) avec $x - p(x) \in G$ et $p(x) \in F$, donc par définition, x - p(x) est le projeté de x sur Gparallèlement à F, autrement dit, $q = id_E - p$ est la projection sur G parallèlement à F.