ST2334 Summary Notes

AY23/24 Sem 1, github.com/gerteck

1. Basic Probability Concepts

- Sample Space: S All possible outcomes of stat. expt.
- Null Event: Event that contains no element, empty set, \varnothing
- Axioms of Probability:

For any event X, $0 \le P(X) \le 1$. P(S) = 1. If $A \cap B = \emptyset$ (Mut Excl), $P(A \cup B) = P(A) + P(B)$.

• Finite sample space with equally likely outcomes: $P(A) = (\frac{\#samplepointsA}{\#totalsamplepointsS})$. (e.g. birthday problem)

Event Operation & Relationships

- Event Operations: Union, Intersection, Complement.
- Event Relationships: Contained: $A \subset B$ Equivalence: $A \subset B$ with $A \supset B \to A = B$
- Mutually Exclusive: $A \cap B = \emptyset$.
- De Morgan's Law: $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$

Counting Methods

- Multiplication Principle: (Sequential Events)
- Addition Principle: (Pairwise Disjoin sets)
- **Permutation**: ${}_{n}P_{r} = \frac{n!}{(n-r)!}$
- Combination: $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Conditional Probability

• Understand conditional as reduced sample space.

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

Independence

$$A \perp B \leftrightarrow P(A \cap B) = P(A)P(B)$$
$$A \perp B \leftrightarrow P(A|B) = P(A)$$

Law of Total Probability

- **Partition:** If A_1, \dots, A_n mutually exclusive, $\bigcup_{i=1}^n A_i = S$, then A_1, \dots, A_n are partitions.
- If A_1, \dots, A_n are partitions of S, then for any event B:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Bayes' Theorem

Let A_1, \dots, A_n be partitions of S. For any event B:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_k)P(A_i)}$$

For when n = 2, $\{A, A'\}$ becomes a partition of S.

$$P(A|B) = \frac{P(A)P(B|A))}{P(A)P(B|A) + P(A')P(B|A')}$$

2. Random Variables

A function X, which assigns a real number to every $s \in S$ is called a random variable.

- Range space: $Rx = \{x | x = X(s), s \in S\}$
- Likewise, the set $X \in A$, for A being a subset of R, is also a subset of $S : s \in S : X(s) \in A$.

Probability Distribution

Two main types of RV used in practice: discrete and continuous.

- \bullet Probability assigned to each possible X
- Given RV X with range of R_x :

Discrete: Numbers in R_x are finite or countable **Continuous:** R_x is interval

(Discrete) Probability Mass Function f(x):

$$f(x) \begin{cases} P(X=x), & \text{for } x \in R_X \\ 0, & \text{for } x \notin R_X \end{cases}$$

- 1. $f(x_i) = P(X = x_i) \ge 0$ for $x_i \in R_x$
- 2. $f(x_i) = 0$ for $x_i \notin R_x$
- 3. $\sum_{i=1}^{\infty} f(x_i) = 1$ (PSum = 1)
- 4. $\forall B \subseteq \mathbb{R}, P(X \in B) = \sum_{x_i \in B \cap R_x} f(x_i)$

(Continuous) Probability Density Function f(x):

- Given R_x is interval. Quantifies probability that X is in some range.
- p.f. must satisfy:
 - 1. $f(x) \geq 0$, f(x) = 0 for $x \notin R_x$
 - 2. No need $f(x) \leq 1$ (Concerned with area)
 - 3. $\int_{R_x} f(x)dx = 1$ (Integration over $R_X = 1$)
 - 4. $\forall a, b \text{ s.t. } a \leq b, P(a \leq X \leq b) = \int_a^b f(x) dx$
- Note: $P(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$
- Hence, to check if a function is a pdf,
- 1. $f(x) \ge 0$ for $x \in R_x$, f(x) = 0 for $x \notin R_x$
- 2. $\int_{R_x} f(x) dx = 1$.

Cumulative Distribution Function

Describes distribution of a RV X: cumulative distribution function (cdf), applicable for discrete or continuous RV.

$$F(x) = P(X \le x)$$

F(x) is non-decreasing and $0 \le F(x) \le 1$

 Probability fn & cumulative distribution fn have one-to-one correspondence. For any probability fn given, the cdf is uniquely determined, vice versa.

CDF Discrete RV: Step Function F(x)

$$F(x) = \sum_{t \in R_x; t \le x} f(t)$$

- $P(a \le X \le b) = P(X \le b) P(X < a)$
- $P(a \le X \le b) = F(b) F(a-)$
- $P(a \le X \le b) = F(b) \lim_{x \to a^-} F(x)$
- $0 \le f(x) \le 1$
- c.d.f has to be **right continuous** (• —)

CDF Continuous RV: F(x)

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

$$impt: f(x) = \frac{d(F(x))}{dx}$$

- $P(a \le X \le b) = P(a < X < b) = F(b) F(a)$
- $0 \le f(x)$.
- e.g. $f(x) = 3x^2$ is a valid p.f. since $\int_{R_x} f(x)dx = 1$

Expectation μ & Variance σ

Expectation of Random Variable: μ

• Mean of discrete RV:

$$\mu = E(X) = \sum_{x \in R_x} x_i f(x_i)$$

- E.g.: X discrete RV with p.m.f. f(x) and range R_X $\mu = E(g(x)) = \sum_{x \in R_x} g(x) f(x)$
- Mean of continuous RV:

$$\mu = E(X) = \int_{x \in R_x} x f(x) dx$$

- E.g.: X continuous RV with p.d.f. f(x) and range R_X $\mu = E(g(x)) = \int_{x \in R_n} g(x) f(x) dx$
- Properties of Expectation:
- E(aX + b) = aE(X) + b
- Linearity of expectation: E(X + Y) = E(X) + E(Y)

Variance of Random Variable: σ

$$\sigma_X^2 = V(X) = E[(X - \mu_X)^2]$$

• Variance of discrete RV:

$$V(X) = \sum_{x \in R_x} (x - \mu_X)^2 f(x)$$

• Variance of continuous RV:

$$V(X) = \int_{x \in R_x} (x - \mu_X)^2 f(x) dx$$

- $V(X) \ge 0$ and V(X) = 0 when X is a constant
- $V(aX + b) = a^2V(X)$
- alt. form: $V(X) = E(X^2) (E(X))^2$
- Standard Deviation: $\sigma_X = \sqrt{V(X)}$

3. Joint Distributions

- Consider more than 1 RV simultaneously,
- Given sample space S. Let X and Y be functions mapping $s \in S \to \mathbb{R}$: (X,Y) is 2D random vector.

Range spc:
$$R_{X,Y} = \{(x,y)|x = X(s), y = Y(s), s \in S\}$$

• Discrete 2D RV:

 $\mbox{\# of possible values of } (X(s),Y(s)) \mbox{ finite / countable}$

- Continuous 2D RV:
 - # of possible values of (X(s),Y(s)) assume any value in some region of the Euclidean space \mathbb{R}^2
- If both X and Y are discrete/continuous, then (X, Y) is discrete/continuous respectively.

Joint Probability Function

• Joint Probability (mass) function, 2D discrete RV:

$$f_{X,Y}(x,y) = P(X = x, Y = y)$$

- $f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$
- $-f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$
- $-\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_i) = 1$
- Let $A \subseteq R_{X,Y}$.

$$P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y)$$

• Joint Probability (density) function, 2D cont. RV:

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx$$

- $-f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$
- $f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$
- $-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$ or equivalently:
- $-\int \int_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y) dx dy = 1$

Marginal Probability Function

Marginal distribution of X is individual distribution of X, ignoring the value of Y. "Projection" of 2D function $f_{X,Y}(x,y)$ to 1D function.

Let (X, Y) be 2D RV with joint probability function $f_{X,Y}(x,y)$:

If Y is discrete,
$$f_X(x) = \sum_y f_{X,Y}(x,y)$$

If Y is **continuous**,
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

- $f_Y(y)$ defined similarly
- $f_X(x)$ is a p.f., satisfies all properties of prob. fn.

Conditional Distribution

Let (X,Y) be 2D RV with joint probability function $f_{X,Y}(x,y)$. Then $\forall x$ s.t. $f_X(x) > 0$: (X marg prob fn.) Conditional probability function of Y given X = x:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

- Intuition: Distribution of Y given X = x
- Only defined for x s.t. $f_X(x) > 0$
- $f_{Y|X}(y|x)$ is a p.f. if we fix x, satisfies prop. of prob.fn.
- But, $f_{Y|X}(y|x)$ is not a p.f. for x: No need for sum / integral over x = 1. Hence,

If
$$f_X(x) > 0$$
: $f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$
If $f_Y(y) > 0$: $f_{X,Y}(x,y) = f_Y(y)f_{X|Y}(x|y)$

- Probability $Y \le y$, Average Y given X = x
- $P(Y \le y|X = x) = \int_{-\infty}^{y} f_{Y|X}(y|x)dy$
- $E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$

Independent Random Variables

$$X \perp Y : \forall x, y, f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

• Necessary condition: $R_{X,Y}$ must be a product space. i.e. $R_{X,Y}=\{(x,y)|x\in R_X;y\in R_y\}=R_X\times R_Y$ Else, dependent.

Properties of Independent RV

For X, Y independent RV:

• If $A, B \subseteq \mathbb{R}$, then events $X \in A$ and $Y \in B$ are independent:

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B)$$

$$P(X \le x; Y \le y) = P(X \le x)P(Y \le y)$$

- Then, $g_1(X)$ and $g_2(Y)$ are **independent**, for arbitrary g.
- Conditional distribution given Independence:

$$f_X(x) > 0 \to f_{Y|X}(y|x) = f_Y(y)$$

$$f_Y(y) > 0 \to f_{X|Y}(x|y) = f_X(x)$$

To check independence

- 1. $R_{X,Y}$ is a product space. i.e. R_X does not depend on Y, vice versa. (e.g. 0 < y < x is NOT a product space)
- 2. Additionally, $f_{X,Y}(x,y) =$ some $C * g_1(x)g_2(y)$ where g_1 depends on x only and g_2 depends on y only.

Marginal Distribution under Independence

- Since, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for independent RV, we derive marginal distribution by standardising $g_1(x)$ and $g_2(y)$.
- For discrete: $f_X(x) = \frac{g_1(x)}{\sum_{t \in R_X} g_1(t)}$
- For continuous: $f_X(x) = \frac{g_1(x)}{\int_{t \in R_X} g_1(t)dt}$

Expectation of a Random Vector

Given 2 variable function g(x, y):

• If (X, Y) is discrete:

$$E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y)$$

• If (X, Y) is continuous:

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$$

• If $X \perp Y$:

$$E(XY) = E(X)E(Y)$$

• (If $X \perp Y$, follows that cov(X, Y) = 0). However, converse not always true.

Covariance

• For random variables X, Y:

$$cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

• If (X, Y) both **discrete**:

$$cov(X,Y) = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y)$$

• If (X, Y) both **continuous**:

$$cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) dx dy$$

- Alt: cov(X, Y) = E(XY) E(X)E(Y)
- Hence, for $X \perp Y \rightarrow cov(X, Y) = 0$. (However, converse not always true).
- Properties of covariance:
- cov(aX + b, cY + d) = (ac)cov(X, Y)
- $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab * cov(X, Y)$
- $X \perp Y \rightarrow V(X \pm Y) = V(X) + V(Y)$

4. Special Probability Distributions

• **Discrete Distributions**: Study whole classes of discrete RVs that arise frequently in applications.

Discrete Uniform Distribution

• If X has values x_1, x_2, \dots, x_k with equal probability

$$f(x) \begin{cases} \frac{1}{k}, & \text{for } x = x_1, x_2, ..., x_k \\ 0, & \text{otherwise} \end{cases}$$

• Expectation:

$$\mu_X = E(X) = \sum_{i=1}^{k} x_i f_X(x_i) = \frac{1}{k} \sum_{i=1}^{k} x_i$$

• Variance:

$$\sigma_X^2 = V(X) = E(X^2) - (E(X))^2 = \frac{1}{k} \sum x_i^2 - \mu_X^2$$

Bernoulli

- **Bernoulli Trial**: Random experiment has 2 possible outcomes (success and failure).
- **Bernoulli Random Variable**: *X* represents number of success in a single Bernoulli Trial. X has only two possible values: 1, or 0.
- Probability mass function: Let $0 \le p \le 1$ be the probability of success in Bernoulli trial

$$f_X(x) = P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & otherwise \end{cases}$$

- $f_X(x) = p^x (1-p)^{1-x}$ for x = 0 or 1
- Bernoulli distr. is case of binomial distr. where n=1.
- Notation: $X \sim Ber(p)$ and q = 1 p

$$f_x(1) = p, f_x(0) = q$$

- Expectation: $\mu_X = E(X) = p$
- Variance: $\sigma_X^2 = V(X) = p(1-p)$
- **Bernoulli Process**: Sequence of repeatedly performed independent and identical Ber. trials.
- Generates sequence of independent and identically distributed (i.i.d.) Ber. RVs: X_1, X_2, \cdots

Binomial Distribution

- **Binomial RV:** counts **number of successes** in *n* trials in a Ber. process.
- Given n independent trials with each trial having same probability p of success:

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

- Notation: $X \sim B(n, p)$
- E(X) = np, V(X) = np(1-p)

The probability distribution of a Binomial random variable

Negative Binomial Distribution (k^{th} success)

- Let X = no. of independent identical distributed Bernoulli(p) trials until k^{th} success occurs.
- Probability mass function of X:

$$P(X = x) = {x - 1 \choose k - 1} p^k (1 - p)^{x - k}$$

- Notation: $X \sim NB(k, p)$
- $E(X) = \frac{k}{p}$ and $V(X) = \frac{(1-p)k}{p^2}$

Geometric Distribution (till 1^{st} success)

• Let X = no. of i.i.d. Bernoulli(p) trials until 1st success occurs.

$$P(X = x) = p(1 - p)^{x-1}$$

- Notation: $X \sim G(p)$
- $E(X) = \frac{1}{p}$ and $V(X) = \frac{1-p}{p^2}$

Poisson Distribution

• Poisson RV: Denotes number of events occurring in fixed period of time or fixed region, k = no. of occurrences.

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

- Notation: $X \sim Poisson(\lambda)$ where $\lambda > 0$ is expected number of occurrences during given period/region
- $E(X) = \lambda$ and $V(X) = \lambda$

The probability distribution of a Poisson random variable

The number of infections *X* in a hospital each week has been shown to follow a Poisson distribution with a mean of 3 infections per week. What is the probability that

- (a) there is no infection for a week?
- (b) there are less than 4 infections for a week?

We are given than $X \sim \text{Poisson}(3)$. Then required probabilities are

- (a) $P(X=0)=e^{-3}$.
- (b) $P(X \le 3) = e^{-3} \left(1 + 3 + \frac{3^2}{2!} + \frac{3^3}{3!} \right).$

Poisson Process

- Continuous time process, count number of occurrences within some interval of time. (given **rate** α)
- Properties of **Poisson process with rate parameter** α :
 - Expected no. of occurrences in interval length T: αT
 - No simultaneous occurrences, and no. of occurrences in disjoint intervals independent.
- Number of occurrences in any interval T of Poisson process follows $Poisson(\alpha T)$ distribution. (Apply $X \ Poisson(\alpha T)$ directly)

Poisson Approximation of Binomial Distribution

- Let $X \sim B(n,p)$. Suppose $n \to \infty$ and $p \to 0$ s.t. $\lambda = np$ remains constant.
- Then, approximately, $X \sim Poisson(\lambda)$.

$$\lim_{p \to 0; n \to \infty} P(X = x) = \frac{e^{-np}(np)^x}{x!}$$

• Approximation is good when $(n \ge 20 \text{ and } p \le 0.05)$, or $(n \ge 100 \text{ and } np \le 10)$

Special Probability Distributions

• Continuous Distributions: Many "natural" RVs whose set of possible values **uncountable**. Model with classes of continuous random variables.

Continuous Uniform Distribution

RV X follows uniform distribution over interval (a, b) if p.d.f. given by:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & otherwise \end{cases}$$

- Notation: $X \sim U(a,b)$
- $E(X) = \frac{a+b}{2}$ and $V(X) = \frac{(b-a)^2}{12}$ (derive by integration).
- Cumulative distr. func. c.d. f. is given by:

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Exponential Distribution

X follows exponential distribution with parameter $\lambda > 0$ if p.f. is given by:

$$f_x(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

- Notation: $X \sim Exp(\lambda)$
- $E(X) = \frac{1}{X}$ and $V(X) = \frac{1}{X^2}$
- c.d. f. is given by:

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

• Suppose X has exponential distribution with parameter $\lambda > 0$. Then for any positive numbers s and t, we have:

$$P(X > s + t | X > s) = P(X > t)$$

Normal Distribution

X follows normal distribution with mean μ and variance σ^2 if p. f. is given by:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

- Notation: $X \sim N(\mu, \sigma^2)$
- $E(X) = \mu$ and $V(X) = \sigma^2$
- p. f. is bell-shaped curve and symmetric about $x = \mu$
- Total area under curve is 1
- 2 normal curves are identical in shape if they have same σ^2 . They differ in location by $\mu_1 - \mu_2$.
- As σ increases, curve becomes more spread out
- If $X \sigma N(\mu, \sigma^2)$ and let $Z = \frac{X \mu}{\sigma}$

Standardized Normal Distribution

If $X \sim N(\mu, \sigma^2)$ and let

$$Z = \frac{X - \mu}{\sigma}$$

- then $Z \sim N(0,1)$ E(Z) = 0 and V(Z) = 1
- p.f. is given by:

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

- Importance of standardizing normal distribution is that it allows us to use tables to find probabilities
- Let $X \sim N(\mu, \sigma^2)$. We can compute $P(x_1 < X < x_2)$ by standardization:

$$x_1 < X < x_2 \leftrightarrow \frac{x_1 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{x_2 - \mu}{\sigma}$$

• *c.d. f.* is given by:

$$\phi(z) = F_Z(z) = \int_{-\infty}^z f_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} dt$$

- $P(Z > 0) = P(Z < 0) = \phi(0) = 0.5$
- For any z, $\phi(z) = P(Z \le z) = P(Z \ge -z) = 1 - \phi(-z)$

- $-Z \sim N(0,1)$
- If $Z \sim N(0,1)$, then $\sigma Z + \mu \sim N(\mu, \sigma^2)$
- Upper QuantileGiven α is upper-tail percentage. The α th upper quantile is x_{α} that satisfies:

$$P(X \ge x_{\alpha}) = \alpha$$

e.g. The 0.05th (upper) quantile of $Z \sim N(0, 1)$ is 1.645, i.e. $z_{0.05} = 1.645$.

- $P(Z > z_{\alpha}) = P(Z < -z_{\alpha}) = \alpha$
- Upper $z_{\alpha} = \text{Lower } z_{1-\alpha}$

Normal Approximation to Binomial Distribution

Let $X \sim B(n, p)$, then as $n \to \infty$:

$$Z = \frac{X - E(X)}{\sqrt{V(X)}} = \frac{X - np}{\sqrt{np(1 - p)}} \sim N(0, 1)$$

• Approximation is good when np > 5 and n(1-p) > 5