PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS SOCIALES ESPECIALIDAD DE ECONOMÍA

PRÁCTICA DIRIGIDA No. 5

CURSO: EST 241 Estadística Inferencial

PROFESOR: Arturo Calderón G.

HORARIO: 0621

FECHA: 15 de junio de 2019

SEMESTRE: 2019-1

Los problemas del 1 a 3 serán tratados durante la práctica. El resto es para el trabajo personal del alumno.

Problema 1

Debido a factores fortuitos, el precio de un bien A puede sufrir una variación aleatoria X que está alrededor del precio de equilibrio y para la cual se asume distribución normal $X \sim N(0, \sigma_X^2)$. Análogamente, otro bien B experimenta una variación aleatoria $Y \sim N(0, \sigma_Y^2)$. que es independiente de lo que pase con A. Para un estudio de la estabilidad de los precios de estos bienes se ha pensado tomar muestras aleatorias de tamaños 6 y 8 respectivamente.

- a) Si para identificar variaciones grandes en X se desea hallar un valor c tal que $P\left(\frac{|\bar{X}|}{S_X} \le c\right) = 0.95$, halle c
- b) Si $\sigma_X^2 = 4$ halle c tal que $W = c\overline{X}^2$ tenga distribución Ji-cuadrado
- c) Si $\sigma_X^2 = \sigma_Y^2 = 4$ ¿Existen constantes a y b tales que $W = a(\sum_{i=1}^8 X_j^2) + b\overline{Y}^2$ tiene distribución Ji-cuadrado?
- d) Si $\sigma_X^2 = \sigma_Y^2$ usando la distribución F de Fisher halle c tal que $P(S_X / S_Y \le c) = 0.95$

Solución:

- a) Sabemos que en general $t = \frac{(\bar{X} \mu)}{\frac{S_X}{\sqrt{n}}} \sim t(k = n 1) \Leftrightarrow \sqrt{n} \frac{(\bar{X} \mu)}{S_X} \sim t(k = n 1)$ y en este caso n = 6 y $\mu = 0 \Rightarrow \sqrt{6} \frac{\bar{X}}{S_X} \sim t(k = 5)$ y $0.95 = P\left(\frac{|\bar{X}|}{S_X} \le c\right) = P\left(-c \le \frac{\bar{X}}{S_X} \le c\right) = P\left(-\sqrt{6}c \le \sqrt{6}\frac{\bar{X}}{S_X} \le \sqrt{6}c\right) \Rightarrow P\left(t \le \sqrt{6}c\right) = 0.975 \Rightarrow \sqrt{6}c = t_{0.975}(k = 5) = 2.5706$, etc.
- b) Lo que se cumple siempre es que $\bar{X} \sim N\left(\mu_X, \frac{\sigma_X^2}{n}\right) \Rightarrow (Z_{\bar{X}})^2 = \left(\frac{(\bar{X} \mu)}{\frac{\sigma_X}{\sqrt{n}}}\right)^2 \sim \chi^2(k = 1) \Rightarrow \left(\frac{\bar{X}}{\frac{2}{\sqrt{6}}}\right)^2 = \frac{\sqrt{6}}{2}\bar{X}^2 \sim \chi^2(1)$ comparando $W = c\bar{X}^2 \sim \chi^2(k)$ se ve que $c = \frac{\sqrt{6}}{2}$, k = 1. c) Como W es suma de dos variables y se pide que W tenga distribución Ji-cuadrado, aplicando la propiedad
- c) Como W es suma de dos variables y se pide que W tenga distribución Ji-cuadrado, aplicando la propiedad reproductiva, hay que buscar a y b tales que cada sumando tenga distribución Ji-cuadrado: **En el caso de a:** $X_j \sim N(N(\mu_X, \sigma_X^2) = N(0,4) \Rightarrow Z_j = \frac{X_j}{2} \sim N(0,1)$. Entonces la variable que de todos modos tiene distribución Ji-cuadrado es $Z_j^2 = \frac{X_j^2}{4} \sim \chi^2(k=1)$ y sumando: $\sum_{j=1}^6 \left(\frac{X_j^2}{4}\right) \sim \chi^2(k=6)$ o equivalentemente $\frac{1}{4} \sum_{j=1}^6 X_j^2 \sim \chi^2(k=6)$. Comparando con $a \sum_{j=1}^6 X_j^2$, se ve que $a = \frac{1}{4}$. **En el caso de b:** $\bar{Y} \sim N\left(0, \frac{4}{8}\right)$ o sea $Z_{\bar{Y}} = \frac{\bar{Y}}{\frac{2}{3}} = \sqrt{2}\bar{Y} \sim N(0,1) \Rightarrow (Z_{\bar{X}})^2 = 2(\bar{Y})^2 \sim \chi^2(k=1)$ y se ve que b = 2.
- d) $P\left(\frac{S_X}{S_Y} \le c\right) = 0.95$; como es cociente, tratemos de pasarlo a una variable F. Lo que sabemos tiene distribución F de Fisher es $F = \frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F(k_1 = 5, k_2 = 7)$. En este caso, como $\sigma_X^2 = \sigma_Y^2$: $F = \frac{S_X^2}{S_Y^2} \sim F(5,7)$ y $0.95 = P\left(\frac{S_X}{S_Y} \le c\right) = P\left(\frac{S_X^2}{S_Y^2} \le c^2\right) = P(F(5,7) \le c^2) \Rightarrow$ de la Tabla F: $c^2 = 4 \Rightarrow c = 2$

						Tabla d	le la distrib	ución F de	Fisher co	n k1 y k2 ç	rados de l	ibertad				
								∟a tabla da	c tal que F	P(F < c) = p	ı					
								Nι	umerador	k1						
р	Denominador k2	1	2			5	6	7	8	9			15			120
0.050		0.01	0.05	0.10	0.13	0.15	0.17	0.18		0.20	0.20	0.21	0.22	0.23	0.24	0.26
0.025	1	0.00	0.03	0.06	0.08	0.10	0.11	0.12		0.14	0.14	0.15	0.16	0.17	0.18	0.19
0.950		161.4	199.5	215.7	224.6	230.2	234.0	236.8		240.5	241.9	243.9	245.9	248.0	250.1	253.3
0.975		647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.6	963.3	968.6	976.7	984.9	993.1	1001.4	1014.0
0.050		0.01	0.05	0.10	0.14	0.17	0.19	0.21	0.22	0.23	0.24	0.26	0.27	0.29	0.30	0.33
0.025	-	0.00	0.03	0.06	0.09	0.12	0.14	0.15	0.17	0.17	0.18	0.20	0.21	0.22	0.24	0.26
0.010		0.00	0.01	0.03	0.06	0.08	0.09	0.10	0.12	0.12	0.13	0.14	0.16	0.17	0.19	0.21
0.005	2	0.00	0.01	0.02	0.04	0.05	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.16	0.18
0.950	-	18.51	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5
0.975		38.5	39.0	39.2	39.2	39.3	39.3	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.5	39.5
0.990		98.5	99.0	99.2	99.3	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.5
0.995		198.5	199.0	199.2	199.2	199.3	199.3	199.4	199.4	199.4	199.4	199.4	199.4	199.4	199.5	199.5
															7	
0.050		0.00	0.05	0.11	0.16	0.21	0.24	0.26	0.29	0.30	0.32	0.34	0.37	0.40	0.43	0.48
0.025		0.00	0.03	0.07	0.11	0.15	0.18	0.20	0.22	0.24	0.25	0.28	0.30	0.33	0.36	0.42
0.010		0.00	0.01	0.04	0.07	0.10	0.12	0.14	0.16	0.18	0.19	0.22	0.24	0.27	0.30	0.36
0.005	7	0.00	0.01	0.02	0.05	0.07	0.09	0.11	0.13	0.15	0.16	0.18	0.21	0.23	0.27	0.32
0.950	,	5.6	4.7	4.3	4.1	4.0	3.9	3.8	3.7	3.7	3.6	3.6	3.5	3.4	3.4	3.3
0.975		8.1	6.5	5.9	5.5	5.3	5.1	5.0	4.9	4.8	4.8	4.7	4.6	4.5	4.4	4.2
0.990		12.2	9.5	8.5	7.8	7.5	7.2	7.0	6.8	6.7	6.6	6.5	6.3	6.2	6.0	5.7
0.995		16.2	12.4	10.9	10.1	9.5	9.2	8.9	8.7	8.5	8.4	8.2	8.0	7.8	7.5	7.2
					_											

En un modelo sobre rentabilidades de fondos mutuos, se propone como modelo de datos que la rentabilidad X de un fondo tiene distribución uniforme $X \sim U(x; \alpha = 1, \beta = \theta)$, donde θ es la máxima rentabilidad lograble sobre un piso de 1%. Se desea estimar θ a partir de una m.a. de n rentabilidades. Como general $E(\overline{X}) = \mu_X$, esto es, \overline{X} es estimador insesgado de μ_X , le piden hallar alguna estadística $\hat{\theta}$ que sea función lineal de \overline{X} (o sea $\hat{\theta} = a + b\overline{X}$) y que sea estimador insesgado de θ . Halle $\hat{\theta}$, verifique que es estimador insesgado de θ y calcule $V(\hat{\theta})$. ¿También sería estimador consistente? Use insesgamiento y varianza asintóticos. ¿Si usa el Plim qué resulta? Halle el error estándar de estimación $e.e.(\hat{\theta})$ de $\hat{\theta}$ como estimador de θ y si la muestra es "grande" halle la probabilidad de que $\hat{\theta}$ difiera de θ en menos un 25% del $e.e.(\hat{\theta})$

Solución:

• De $\hat{\theta} = a + b\bar{X}$, queremos hallar $a \ y \ b$ tales que $E(\hat{\theta}) = \theta \Leftrightarrow E(a + b\bar{X}) = \theta \Leftrightarrow a + bE(\bar{X}) = \theta$. Como sabemos $E(\bar{X}) = \mu_X \ y \ X \sim U(x; \alpha, \beta) \Rightarrow \mu_X = \frac{\alpha + \beta}{2} = \frac{1 + \theta}{2}$, entonces: $a + bE(\bar{X}) = \theta \Leftrightarrow a + b\left(\frac{1 + \theta}{2}\right) = \theta \Leftrightarrow a + \frac{b}{2} + \left(\frac{b}{2}\right)\theta = \theta = 0 + 1\theta \Leftrightarrow a + \frac{b}{2} = 0 \ y\left(\frac{b}{2}\right) = 1 \Rightarrow b = 2 \ y \ a = -1 \ \text{son los valores buscados, esto es, si definimos } \hat{\theta} = -1 + 2\bar{X} \ \text{entonces } E(\hat{\theta}) = \theta \ y \ \hat{\theta} \ \text{resulta estimador insesgado de } \theta$. En efecto $E(\hat{\theta}) = E(-1 + 2\bar{X}) = -1 + 2E(\bar{X}) = -1 + 2\frac{1 + \theta}{2} = -1 + 1 + \theta = \theta$. En relación con la varianza del estimador:

$$V(\hat{\theta}) = V\left(\underbrace{-1}_{constante} + 2\bar{X}\right) = V(2\bar{X}) = 2^2V(\bar{X}) = 4\frac{\sigma_X^2}{n} = \frac{4}{n}\frac{(\beta - \alpha)^2}{12} = \frac{(\theta - 1)^2}{3n}$$

• Para la Consistencia, usando Insesgamiento y Varianza asintóticos junto con la propiedad: Si $\lim_{n\to\infty} E(\hat{\theta}) = \theta$ y también $\lim_{n\to\infty} V(\hat{\theta}) = 0$, entonces $\hat{\theta}$ es estimador consistente de θ . Es directo (hagan el cálculo porfa) que ambas condiciones se cumple, por tanto el estimador hallado sí es consistente.

Si usamos el Plim, es más sencillo pues sabemos que $Plim(\bar{X}) = \mu_X$ siempre, y aplicando esto último, junto con las propiedades del límite en probabilidad Plim, en particular el Teorema de Slustsky:

$$Plim(\hat{\theta}) = Plim(-1 + 2\bar{X}) = Plim(-1) + Plim(2\bar{X}) = -1 + 2Plim(\bar{X}) = -1 + 2\mu_X = -1 + 2\frac{1+\theta}{2} = \theta$$
, o sea $Plim(\hat{\theta}) = \theta$. Como se cumple la condición anterior, podemos decir que $\hat{\theta}$ sí es estimador consistente de θ .

• El "error estándar de estimación" de $\hat{\theta}$ como estimador (como aproximación) de θ es:

$$e.e.(\hat{\theta}) \coloneqq \sqrt{V(\hat{\theta})} = \sqrt{\frac{(\theta-1)^2}{3n}} = \frac{\theta-1}{\sqrt{3n}}.$$

Si n es "grande" (n > 30), entonces $\bar{X} \sim N(\mu_X = \frac{1+\theta}{2}, \frac{\sigma_X^2}{n} = \frac{(\theta-1)^2}{12n})$ y como $\hat{\theta} = -1 + 2\bar{X}$ es función lineal de \bar{X} y \bar{X} tiene distribución normal, entonces (**propiedad de la distribución normal, ver Apuntes Cap2**) $\hat{\theta}$ también

tiene distribución normal:

$$\hat{\theta} \sim N(E(\hat{\theta}), V(\hat{\theta}))$$
. Como ya vimos $E(\hat{\theta}) = \theta$ y $V(\hat{\theta}) = \frac{(\theta-1)^2}{3n} \Rightarrow \hat{\theta} \sim N(\theta, \frac{(\theta-1)^2}{3n})$.

Nos piden calcular
$$P(|\hat{\theta} - \theta| < 0.25e.e.(\hat{\theta})) = P(|\hat{\theta} - \theta| < 0.25e.e.(\hat{\theta}))$$
, pero como $e.e.(\hat{\theta}) := \sqrt{V(\hat{\theta})} = \sqrt{\frac{(\theta - 1)^2}{3n}} = \frac{\theta - 1}{\sqrt{3n}}$, reemplazando en la probabilidad:

$$P(|\hat{\theta} - \theta| < 0.25e. e.(\hat{\theta})) = P(|\hat{\theta} - \theta| < 0.25\sqrt{V(\hat{\theta})}) = P(\frac{Z}{|\hat{\theta} - \theta|} < 0.25) = P(|Z| < 0.25) = P(|Z| < 0.25) = P(|Z| < 0.25) = 0.5987 - 0.4013 = 0.1974$$

Problema 3

Sean X v.a. con distribución gamma $\Gamma(x; \alpha = 1, \beta)$ e Y otra v.a. independiente de X, tal que Y tiene distribución $\Gamma(y; \alpha = 2, \beta)$. Se toman muestras aleatorias independientes $(X_1, X_2, ..., X_n)$ e $(Y_1, Y_2, ..., Y_m)$ de tamaños n y m de las distribuciones de X e Y respectivamente, para estimar β .

- a) Halle el MELI de β si se usara sólo la muestra de X ¿Sería estimador consistente?
- Usando simultáneamente las dos muestras, halle el MELI de β definido según: $\hat{\beta} = \sum_{i=1}^{n} a_i X_i + \sum_{j=1}^{m} b_j Y_j$ y determine si resulta un estimador consistente.

Solución:

- a) Sea $\widetilde{\beta}$ el MELI de β con sólo la muestra de X, entonces:
- (1) $\widetilde{\beta}$ debe ser lineal, y como dice el enunciado $\widetilde{\beta} = \sum_{i=1}^{n} c_i X_i$ (2) $\widetilde{\beta}$ debe ser insesgado, luego $\widetilde{\beta} = \beta \Rightarrow E(\sum_{i=1}^{n} c_i X_i) = \sum_{i=1}^{n} a_i E(X_i) = \sum_{i=1}^{n} c_i \beta = \beta \Rightarrow \sum_{i=1}^{n} c_i = 1$ es una restricción que debe cumplirse.
- (3) $V(\widetilde{\beta}) = Min$; y $V(\widetilde{\beta}) = V(\sum_{i=1}^{n} c_i X_i) = \sum_{i=1}^{n} c_i^2 V(X_i) = \sum_{i=1}^{n} c_i^2 \beta^2 = \beta^2 \sum_{i=1}^{n} c_i^2 = Min \Leftrightarrow \sum_{i=1}^{n} c_i^2 = Min$ (pues $\beta^2 > 0$ es constante, luego minimizar el producto $\beta^2 \sum_{i=1}^{n} c_i^2$ equivale a minimizar el factor $\sum_{i=1}^{n} c_i^2$).

Hallar el MELI $\widetilde{\beta}$ equivale, entonces, a resolver el problema $Min(\sum_{i=1}^{n} c_i^2)$ s. a. $\sum_{i=1}^{n} c_i = 1$. Aplicando Lagrange

$$L(c_1, c_2, ..., c_n, \lambda) = \sum_{i=1}^{n} c_i^2 + \lambda \left(1 - \sum_{i=1}^{n} c_i \right)$$

$$\frac{\partial L}{\partial c_k} = 0 \Leftrightarrow \frac{\partial}{\partial c_k} \left[\sum_{i=1}^n c_i^2 + \lambda \left(1 - \sum_{i=1}^n c_i \right) \right] = \sum_{i=1}^n \frac{\partial}{\partial c_k} c_i^2 - \lambda \sum_{i=1}^n \frac{\partial}{\partial c_k} c_i = 0 \Leftrightarrow 2c_k - \lambda = 0 \ k = 1, 2, \dots, n.$$

$$\Rightarrow c_k = \frac{\lambda}{2} \quad k = 1, 2, \dots, n \text{ (Note que } \frac{\partial}{\partial c_k} c_i^2 = 2c_k \text{ si } i = k \text{ y } \frac{\partial}{\partial c_k} c_i^2 = 0 \text{ si } i \neq k \text{ y análogamente } \frac{\partial}{\partial c_k} c_i = 1 \text{ si } i = k \text{ o } 0 \text{ en caso contrario)}$$

$$\frac{\partial L}{\partial \lambda} = 0 \Leftrightarrow 1 - \sum_{i=1}^{n} c_i = 0 \text{ y como } c_k = \frac{\lambda}{2} \Rightarrow c_k = \frac{\lambda}{2} \Rightarrow 1 - \sum_{i=1}^{n} \frac{\lambda}{2} = 0 \Rightarrow n \frac{\lambda}{2} = 1 \Rightarrow \lambda = \frac{2}{n} \Rightarrow c_i = \frac{1}{n}.$$

Luego, asumiendo que se cumplen las Condiciones de segundo orden para un mínimo, tenemos que el MELI de β sería $\widetilde{\beta} = \sum_{i=1}^{n} \frac{1}{n} X_i = \overline{X}$ el cual resulta estimador consistente, pues cumple las condiciones asintóticas:

- (i) $\lim_{n\to\infty} E(\widetilde{\beta}) = \lim_{n\to\infty} \beta = \beta$ (pues por construcción y en general, el MELI $\widetilde{\beta}$ es insesgado, i.e. $E(\widetilde{\beta}) = \beta \ \forall n$, por tanto también es "asintóticamente insesgado").
- (ii) Para el $\lim_{n\to\infty}V(\widetilde{\beta})$, como $V(\widetilde{\beta})=\beta^2\sum_{i=1}^nc_i^2$ y $c_i=\frac{1}{n}\Rightarrow V(\widetilde{\beta})=\beta^2\sum_{i=1}^n\left(\frac{1}{n}\right)^2=\beta^2n\left(\frac{1}{n}\right)^2=\frac{\beta^2}{n}\Rightarrow\lim_{n\to\infty}V(\widetilde{\beta})=0$, esto es, $\widetilde{\beta}$ también es "asintóticamente eficiente". De (i) y (ii), se cumplen las condiciones que garantizan la consistencia del MELI $\tilde{\beta}$.

Nota: Como $\widetilde{\beta} = \overline{X}$, también se puede usar el *Plim* para estudiar la consistencia, en efecto, $Plim(\widetilde{\beta}) = Plim(\overline{X}) = \mu_X = \beta \Rightarrow El MELI \widetilde{\beta}$ es estimador consistente de β .

- b) Usando simultáneamente las dos muestras: Sea $\hat{\beta}$ el MELI de β , entonces,
- (1) $\hat{\beta}$ debe ser lineal, y como dice el enunciado $\hat{\beta} = \sum_{i=1}^{n} a_i X_i + \sum_{j=1}^{m} b_j Y_j$
- (2) $\hat{\beta}$ debe ser insesgado, luego $\hat{\beta} = \beta \Rightarrow E\left(\sum_{i=1}^{n} a_i X_i + \sum_{j=1}^{m} b_j Y_j\right) = \sum_{i=1}^{n} a_i E(X_i) + \sum_{j=1}^{m} b_j E(Y_j) = \sum_{i=1}^{n} a_i E(X_i) + \sum_{j=1}^{m} b_j E(X_i)$ $\sum_{i=1}^{n} a_i \beta + \sum_{j=1}^{m} b_j 2\beta = \beta \Rightarrow \sum_{i=1}^{n} a_i + 2 \sum_{j=1}^{m} b_j = 1 \text{ es una restricción}$
- (3) $V(\hat{\beta}) = Min; \ y V(\hat{\beta}) = V(\sum_{i=1}^{n} a_i X_i + \sum_{j=1}^{m} b_j Y_j) = \sum_{i=1}^{n} a_i^2 V(X_i) + \sum_{j=1}^{m} b_j^2 V(Y_j) = \sum_{i=1}^{n} a_i^2 \beta^2 + \sum_{j=1}^{m} b_j^2 2\beta^2 = \beta^2 (\sum_{i=1}^{n} a_i^2 + \sum_{j=1}^{m} 2b_j^2) = Min \Leftrightarrow \sum_{i=1}^{n} a_i^2 + \sum_{j=1}^{m} 2b_j^2 = Min.$

Hallar el MELI equivale a resolver el problema:

$$Min(\sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{m} 2b_i^2)$$
 s. a. $\sum_{i=1}^{n} a_i + 2\sum_{i=1}^{m} b_i = 1$. Aplicando Lagrange

$$Min\left(\sum_{i=1}^{n} a_i^2 + \sum_{j=1}^{m} 2b_j^2\right) s. a. \sum_{i=1}^{n} a_i + 2\sum_{j=1}^{m} b_j = 1. \text{ Aplicando Lagrange}$$

$$L(a_1, a_2, ..., a_n, b_1, b_2, ..., b_m, \lambda) = \sum_{i=1}^{n} a_i^2 + \sum_{j=1}^{m} 2b_j^2 + \lambda(1 - \sum_{i=1}^{n} a_i - 2\sum_{j=1}^{m} b_j)$$

Condiciones de primer orden ∇L

$$\frac{\partial L}{\partial a_k} = 0 \Leftrightarrow 2a_k - \lambda = 0 \ k = 1, 2, \dots, n. \Rightarrow a_k = \frac{\lambda}{2} \quad k = 1, 2, \dots, n$$

$$\frac{\partial L}{\partial b_l} = 0 \Leftrightarrow 4b_l - 2\lambda = 0 \quad l = 1, 2, \dots, m. \Rightarrow b_l = \frac{\lambda}{2} \quad l = 1, 2, \dots, m$$

$$\frac{\partial L}{\partial \lambda} = 0 \Leftrightarrow 1 - \sum_{i=1}^n a_i - 2\sum_{j=1}^m b_j = 0 \text{ y como } a_k = \frac{\lambda}{2}, b_l = \frac{\lambda}{2} \Rightarrow a_k = b_l = \frac{\lambda}{2} \Rightarrow 1 - \sum_{i=1}^n \frac{\lambda}{2} - 2\sum_{j=1}^m \frac{\lambda}{2} = 0 \Rightarrow$$

$$n\frac{\lambda}{2} + m\lambda = 1 \Rightarrow n\lambda + 2m\lambda = 2 \Rightarrow \lambda = \frac{2}{n+2m} \Rightarrow a_i = b_j = \frac{1}{n+2m}. \text{ Luego, asumiendo que se cumplen las Condiciones}$$

$$\mathbf{de segundo orden } \text{ para un mínimo, tenemos que el MELI de } \beta \text{ sería}$$

$$\hat{a} = \sum_{i=1}^n \sum_{k=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{j=1}^n \sum_$$

$$\hat{\beta} = \sum_{i=1}^{n} a_i X_i + \sum_{j=1}^{m} b_j Y_i = \sum_{i=1}^{n} \left(\frac{1}{n+2m}\right) X_i + \sum_{j=1}^{m} \left(\frac{1}{n+2m}\right) Y_j = \frac{1}{n+2m} \sum_{i=1}^{n} X_i + \frac{1}{n+2m} \sum_{j=1}^{n} Y_j = \frac{n\bar{X}+m\bar{Y}}{n+2m}$$

En cuanto a la Consistencia del MELI $\hat{\beta}$, es más sencillo usar el *Plim*

$$Plim(\hat{\beta}) = Plim\left(\frac{n\bar{X} + m\bar{Y}}{n + 2m}\right) = \left(\frac{1}{n + 2m}\right) Plim(n\bar{X} + m\bar{Y}) = \left(\frac{1}{n + 2m}\right) \left(Plim(n\bar{X}) + Plim(m\bar{Y})\right) = \left(\frac{1}{n + 2m}\right) \left(nPlim(\bar{X}) + mPlim(\bar{Y})\right) = \left(\frac{1}{n + 2m}\right) \left(n\mu_X + m\mu_Y\right) = \left(\frac{1}{n + 2m}\right) \left(n\beta + m2\beta\right) = \beta, \text{ luego } Plim(\hat{\beta}) = \beta, \text{ es decir el MELI } \hat{\beta} \text{ (construido usando ambas muestras simultáneamente) es estimador consistente de } \beta.$$

Problema 4

Si X es v.a.c. con densidad $f_X(x; \alpha) = \begin{cases} \alpha & \text{si } 0 < x \le 1 \\ 1 - \alpha & \text{si } 1 < x \le 2 \end{cases}$ y dada una m.a. de tamaño n, se define la estadística $\hat{\alpha} = a + b \sum_{i=1}^{n} X_i$. Halle a y b tales que $\hat{\alpha}$ sea estimador insesgado de α . ¿Es $\hat{\alpha}$ estimador consistente de α ? ¿Cuál sería el estimador que obtendría si aplicara el "Método de Momentos"?

Solución:

$$\alpha = E(\alpha) = E(a + b\sum_{i=1}^{n} X_i) = a + b\sum_{i=1}^{n} \underbrace{E(X_i)}_{\mu_X} = a + nb\mu_X \quad Y$$

$$\mu_X = \int_0^1 x \alpha dx + \int_1^2 x (1 - \alpha) dx = \alpha \left[\frac{x^2}{2} \right]_0^1 + (1 - \alpha) \left[\frac{x^2}{2} \right]_1^2 = \frac{\alpha}{2} + (1 - \alpha) \left[2 - \frac{1}{2} \right] = \frac{\alpha}{2} + \frac{3}{2} (1 - \alpha) = \frac{3}{2} - \frac{1}{2} \alpha \text{ es fun-}$$

ción de α . Reemplazando en $\alpha = E(\hat{\alpha})$

$$\alpha = E(\alpha) \Leftrightarrow \alpha = a + nb\left(\frac{3}{2} - \frac{1}{2}\alpha\right) = \left(a + \frac{3n}{2}b\right) - \frac{nb}{2}\alpha = 0 + 1\alpha \Leftrightarrow \left(a + \frac{3n}{2}b\right) = 0 \land -\frac{nb}{2} = 1 \Rightarrow 0 \land -\frac{nb}{2} = 0 \land -\frac{nb}{2}$$

$$b = -\frac{2}{n}$$
 y $a = -\frac{3n}{2}b = -\frac{3n}{2} \times -\frac{2}{n} = 3$, así: $\alpha = 3 + -\frac{2}{n}\sum_{i=1}^{n}X_i = 3 - 2\overline{X}$ es estimador insesgado de α

Para ver consistencia usamos la propiedad:

Proposición: Sea $\hat{\theta}$ un estimador de θ tal que

(1)
$$\lim_{n \to \infty} E(\hat{\theta}) = \theta$$
 ($\hat{\theta}$ es "asintóticamente insesgado") y (2) $\lim_{n \to \infty} V(\hat{\theta}) = 0$ ($\hat{\theta}$ es "asintóticamente eficiente") $n \to \infty$

Entonces $\hat{\theta}$ un estimador consistente de θ .

La parte (1) se cumple automáticamente porque el estimador $\hat{\alpha}$ es insesgado para todo n.

Para la parte (2):
$$V(\hat{\alpha}) = V(3 - 2\overline{X}) = 4V(\overline{X}) = 4\frac{\sigma_X^2}{n}$$
 y $\lim_{n \to \infty} V(\alpha) = \lim_{n \to \infty} (4\frac{\sigma_X^2}{n}) = 0$; sólo faltaría hallar

 σ_x^2 y verificar que <u>no</u> depende de *n*, eso queda para el alumno.

Como se cumplen las dos condiciones, entonces $\hat{\alpha}$ es estimador consistente de α

Aplicando el Método de Momentos: Aquí hay p = 1 parámetro por estimar, basta una ecuación

Ec. Estructural:
$$m_1 = E(X) = \int_0^2 x f_X(x) dx = \int_0^1 x \alpha dx + \int_1^2 x (1 - \alpha) dx = \frac{3}{2} - \frac{\alpha}{2}$$

Ec. De Estimación: $M_1 = \frac{3}{2} - \frac{\hat{\alpha}}{2}$. Resolviendo la ec. De estimación tenemos $\hat{\alpha} = 3 - 2M_1 = 3 - 2\bar{X}$ es el estimador de α obtenido con el Método de Momentos.

Problema 5

En un modelo econométrico se escribe el consumo mensual C_i de la i-ésima familia de una muestra, como función de su ingreso mensual disponible y_i , ya dado y fijo, en un modelo de datos $C_i \sim N(c y_i, \sigma^2)$, generando la muestra aleatoria de n parejas $(C_1, y_1), (C_2, y_2), \dots, (C_n, y_n)$. En este contexto, halle el MELI del parámetro c y compárelo con otro estimador de c dado por $\tilde{c} = \frac{\bar{c}}{\bar{y}}$.

Solución:

Aquí tenemos un caso especial donde la muestra de n observaciones es una muestra de n parejas donde los ingresos y_i no son aleatorios (C_1, y_1) , (C_2, y_2) , ..., (C_n, y_n) pero los consumos $C_i \sim N(c y_i, \sigma^2)$ sí lo son, siendo v.a. independientes aunque ya no con distribución <u>idéntica</u>, en particular del dato $C_i \sim N(c y_i, \sum_{i=1}^n \alpha_i^2 V(C_i))$ se tiene que $E(C_i) = c y_i$ y también que $V(C_i) = \sigma^2$.

Sea \hat{c} el tal MELI de c, entonces:

- (1) \hat{c} debe ser función lineal de la muestra (en verdad, función de la "parte aleatoria" C_i de la muestra de parejas (C_i, y_i)) $\Rightarrow \hat{c} = \sum_{i=1}^n \alpha_i C_i$ donde los coeficientes $\alpha_1, \alpha_2, \dots, \alpha_n$ son las incógnitas por hallar.
- (2) \hat{c} debe ser estimador *insesgado* del parámetro $\Rightarrow E(\hat{c}) = c \Rightarrow E(\sum_{i=1}^{n} \alpha_i C_i) = \sum_{i=1}^{n} \alpha_i E(C_i) = \sum_{i=1}^{n} \alpha_i c y_i = c \sum_{i=1}^{n} \alpha_i y_i = c \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 1$ es la restricción con "condición de insesgamiento" que deben satisfacer los coeficientes $\alpha_1, \alpha_2, ..., \alpha_n$ del MELI.
- (3) \hat{c} debe ser más eficiente que cualquier otro estimador que sea *lineal e insesgado*, o sea que debe tener varianza mínima dentro del conjunto de estimadores *lineal e insesgado*. Esto se consigue tomando los coeficientes $\alpha_1, \alpha_2, \ldots, \alpha_n$ de modo que minimicen $V(\sum_{i=1}^n \alpha_i C_i)$ sujetos a la restricción $\sum_{i=1}^n \alpha_i y_i = 1$. Como $V(\sum_{i=1}^n \alpha_i C_i) = \sum_{i=1}^n \alpha_i^2 V(C_i) = \sum_{i=1}^n \alpha_i^2 \sigma^2 = \sigma^2 \sum_{i=1}^n \alpha_i^2 \ y \ \sigma^2$ es constante positiva, entonces: $\min_{\alpha_i} \sigma^2 \sum_{i=1}^n \alpha_i^2 \ s. \ a. \ \sum_{i=1}^n \alpha_i y_i = 1$ equivale a $\min_{\alpha_i} \sum_{i=1}^n \alpha_i^2 \ s. \ a. \ \sum_{i=1}^n \alpha_i y_i = 1$.

El último problema se puede resolver aplicando Lagrange, por ejemplo

$$L(\alpha_1,\alpha_2,\ldots,\alpha_n,\lambda) = \underset{\alpha_i}{\min} \sum_{i=1}^n \alpha_i^2 + \lambda (1-\sum_{i=1}^n \alpha_i y_i) \Rightarrow \begin{cases} \frac{\partial L}{\partial \alpha_k} = 2\alpha_k - \lambda y_k = 0 \\ \frac{\partial L}{\partial \alpha_k} = 1-\sum_{i=1}^n \alpha_i y_i = 0 \end{cases} \text{ y resolviendo estas } (n+1)$$
 ecuaciones resulta $\hat{c}_{MELI} = \frac{\sum_{i=1}^n c_i y_i}{\sum_{i=1}^n y_i^2}.$ Para comparar con $\tilde{c} = \frac{\bar{c}}{\bar{y}},$ primero veamos el insesgamiento: $\hat{c}_{MELI} = \frac{\sum_{i=1}^n c_i y_i}{\sum_{i=1}^n y_i^2}$ es insesgado por construcción; $E(\tilde{c}) = E\left(\frac{\bar{c}}{\bar{y}}\right) = \frac{1}{\bar{y}}E(\bar{C}),$ pues según el enunciado, el ingreso y_i es dado y fijo para cada familia. Por otra parte $E(\bar{C}) = E\left(\frac{\sum_{i=1}^n c_i}{n}\right) = \frac{1}{n}E\left(\sum_{i=1}^n C_i\right) = \frac{1}{n}\left(\sum_{i=1}^n E(C_i)\right) = \frac{1}{n}\left(\sum_{i=1}^n cy_i\right) = \frac{1}{n}c\left(\sum_{i=1}^n y_i\right) = c\bar{y} \Rightarrow E(\tilde{c}) = \frac{1}{\bar{y}}E(\bar{C}) = \frac{1}{\bar{y}}c\bar{y} = c,$ así que \tilde{c} también es insesgado. Pero como \tilde{c} también es estimador lineal, pues $\tilde{c} = \frac{\bar{c}}{\bar{y}} = \frac{1}{\bar{y}}\bar{C} = \frac{1}{\bar{y}}\left(\frac{\sum_{i=1}^n c_i}{n}\right) = \sum_{i=1}^n \left(\frac{1}{n\bar{y}}\right)C_i,$ y es insesgado según ya probamos, entonces, por construcción, tiene mayor varianza que \hat{c}_{MELI} . Por tanto \hat{c}_{MELI} es mejor estimador.

Si el valor de la producción de una empresa es una v.a. $X \sim N(\mu, \sigma^2)$ y para estudiar este sector se piensa tomar una muestra de *n* empresas para registrar el valor de su producción y calcular \overline{X} y S^2 para aproximar μ y σ^2 .

- a) ¿Qué tamaño de muestra garantiza que $P(|\bar{X} \mu| < 0.25\sigma) = 0.95$
- b) Si $\sigma^2 = 16$ y n = 31, halle c tal que P(S² < c) = 0.95

Sugerencia: Problema similar a uno visto en clase y también en la presentación de clase, en Intranet.

Problema 7

cambio en enunciado

- a) Si X es N(0,1) y se toma una m.a. de tamaño n = 8, halle c tal que $P(\Sigma X_i^2 > c) = 0.95$
- b) En a) halle c tal que $P(S^2 \le c) = 0.90$
- c) En a) halle c de modo que se cumpla la designaldad: P ($\Sigma X_j/S < c$)=0.95
- d) De una distribución N(0,4) se toma una m.a. de tamaño 8: Halle c de modo que $F=c(\Sigma Xj)^2/S^2$ tenga distribución F de Fisher, si la primera sumatoria se hace sobre las 3 primeras observaciones y S^2 es la varianza del resto.

Solución:

a) De $X \sim N(0,1) \Rightarrow X^2 \sim \chi^2(k=1) \Rightarrow$ (propiedad reproductiva de la distribución $\chi^2(k)$) $\Rightarrow \sum_{j=1}^8 X_j^2 \sim \chi^2(k=8) \Rightarrow 0.95 = P(\sum_{j=1}^8 X_j^2 > c) \Rightarrow P(\sum_{j=1}^8 X_j^2 \le c) = 0.05 \Rightarrow \text{ de la tabla Chi}^2$: c = 2.733

	Tabla de la distribución Ji cuadrado con k grados de libertad												
	W tiene di	stribuciór	ı Ji-cuadr	ado con k	grados d	el libertad	y la tabla	da c tal	que P(W <	c)=p			
				p = Pr	obabilida	d acumula	ada		4)			
k	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.995			
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879			
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597			
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838			
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860			
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	16.750			
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548			
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278			
8	1.344	1.647	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955			
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589			
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188			
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757			

b) De $X \sim N(\mu = 0, \sigma^2 = 1)$ y sabiendo que en general para una muestra de tamaño n tomada de una distribución normal, se cumple: $W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(k=n-1)$, en este caso $W = 7S^2 \sim \chi^2(k=7)$ y $0.90 = P(S^2 < c) = P(7S^2 < 7c) \Rightarrow$ de la tabla Chi²: $7c = 12.017 \Rightarrow c = 1.717$

		Ta	bla de la c	listribució	n Ji cuad	rado con	k grados d	de liberta	t			
	W tiene d	W tiene distribución Ji-cuadrado con k grados del libertad y la tabla da c tal que P(W < c) = p										
	p = Probabilidad acumulada											
k	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.995		
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879		
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597		
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838		
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860		
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	16.750		
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548		
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278		
8	1.344	1.647	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955		
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589		

c) $0.95 = P\left(\frac{\sum_{j=1}^{8} X_j}{S} < c\right) = P\left(\frac{8\overline{X}}{S} < c\right) = P\left(\frac{\overline{X}}{S} < \frac{C}{8}\right)$ y sabiendo que en general para una mu

estra de tamaño n tomada de una distribución normal, se cumple $t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t(k = n - 1)$, en este caso $t = \frac{\overline{X} - \mu}{\sqrt{n}} \sim t(k = n - 1)$

$$\frac{\overline{X}}{\frac{S}{\sqrt{8}}} \sim t(k = 7) \text{ y por tanto: } \mathbf{0.95} = P\left(\frac{\overline{X}}{S} < \frac{c}{8}\right) = P\left(\sqrt{8}\frac{\overline{X}}{S} < \sqrt{8}\frac{c}{8}\right) = P\left(t < \frac{c}{\sqrt{8}}\right) \Rightarrow \text{ de la tabla } t\text{-Student } \frac{c}{\sqrt{8}} = \frac{c}{\sqrt{8}}$$

 $1.8946 \Rightarrow c = 5.359$

	Tabla de la distribución t de Student con k grados de libertad											
	Tiene distribución t-Student con k grados del libertad y la tabla da c tal que P(T < c) =											
	p = Probabilidad acumulada											
k	0.75	0.8	0.85	0.90	0.95	0.975	0.99	0.995				
1	1.0000	1.3764	1.9626	3.0777	6.3137	12.7062	31.8210	63.6559				
2	0.8165	1.0607	1.3862	1.8856	2.9200	4.3027	6.9645	9.9250				
3	0.7649	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.8408				
4	0.7407	0.9410	1.1896	1.5332	2.1318	2.7765	3.7469	4.6041				
5	0.7267	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.0321				
6	0.7176	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074				
7	0.7111	0.8960	1.1192	1.4149	1.8946	2.3646	2.9979	3.4995				
8	0.7064	0.8889	1.1081	1.3968	1.8595	2.3060	2.8965	3.3554				
9	0.7027	0.8834	1.0997	1.3830	1.8331	2.2622	2.8214	3.2498				

d) De $X \sim N(\mu = 0, \sigma^2 = 9)$ y sabiendo que la m.a. es $(X_1, X_2, X_3, X_4, ..., X_8)$, entonces se ha dividido ésta en dos "submuestras": "Las tres primeras observaciones" (X_1, X_2, X_3) y "el resto de la muestra" $(X_4, ..., X_8)$. Queremos c tal que $\mathbf{F} = \mathbf{c} \left(\frac{\sum_{j=1}^{3} X_{j}^{2}}{S^{2}} \right)$ tenga distribución F:

Construyamos primero, a partir de los datos, una variable que tenga la estructura de la "Variable F de Fisher", esto es, que sea cociente de dos variables Chi². Sabemos que $X \sim N(0,9) \Rightarrow X_i \sim N(0,9) \Rightarrow Z_i = \frac{X_i}{3} \sim N(0,1)$

$$\Rightarrow Z_i^2 = \frac{X_i^2}{9} \sim \chi^2(k=1) \Rightarrow \sum_{i=1}^3 Z_i^2 = \sum_{i=1}^3 \frac{X_i^2}{9} = \frac{1}{9} \sum_{i=1}^3 X_i^2 \sim \chi^2(k=3)$$

 $\Rightarrow Z_i^2 = \frac{X_i^2}{9} \sim \chi^2(k=1) \Rightarrow \sum_{i=1}^3 Z_i^2 = \sum_{i=1}^3 \frac{X_i^2}{9} = \frac{1}{9} \sum_{i=1}^3 X_i^2 \sim \chi^2(k=3)$ Por otra parte, apliquemos al "resto de la muestra" (X_4, \dots, X_8) , que es una submuestra de tamaño n=5, la distribución asociada a su varianza muestral: $W = \frac{(n-1)S^2}{\sigma^2} = \frac{4S^2}{9} \sim \chi^2(k=4)$.

Entonces la variable que de todos modos tiene la estructura de una variable F es $\mathbf{F} = \begin{pmatrix} \frac{\overline{g} \Sigma \overline{l} = 1 X_{\overline{l}}}{3} \\ \frac{3}{4S^2} \\ \frac{9}{9} \end{pmatrix} =$

 $\frac{1}{3} \frac{\sum_{i=1}^{3} X_i^2}{S^2} \sim F(3,4) \text{ y comparando con } c\left(\frac{\sum_{j=1}^{3} X_j^2}{S^2}\right) \text{ se ve que } c = \frac{1}{3} \text{ hace que la variable originalmente propuesta}$ tenga distribución F de Fisher.

Problema 8

En un modelo sobre determinación de precios de comerciantes minoristas se propone que el comerciante agrega una cantidad X de soles al precio mínimo sugerido por el fabricante, con X v.a.c. con función de densidad:

$$f_X(x) = \begin{cases} \theta x & 0 < x \le 1 \\ 1 - \frac{\theta}{2} & 1 < x \le 2 \end{cases}$$
 donde $\theta > 0$ es parámetro por estimar.

Dada $(X_1, X_2, ..., X_n)$ m.a., halle el estimador $\hat{\theta}$ de θ mediante el método de momentos y determine si se trata de un estimador insesgado y consistente.

Solución:

Hay p=1 parámetro por estimar, necesitamos una ecuación estructural: $m_1 = E(X) = \int_0^1 x \theta x \, dx + \int_1^2 x \left(1 - \frac{\theta}{2}\right) dx$ $= \frac{\theta}{3} + \left(1 - \frac{\theta}{2}\right) \frac{3}{2} = \frac{3}{2} - \frac{5}{12}\theta \implies m_1 = \frac{3}{2} - \frac{5}{12}\theta$

$$\widehat{m_1} = \frac{3}{2} - \frac{5}{12}\widehat{\theta}$$
 donde $\widehat{m_1} = M_1 = \overline{X}$, por tanto $\overline{X} = \frac{3}{2} - \frac{5}{12}\widehat{\theta} \Rightarrow \widehat{\theta} = \frac{18}{5} - \frac{12}{5}\overline{X}$ es el estimador pedido.

 $\widehat{m_1} = \frac{3}{2} - \frac{5}{12}\widehat{\theta} \text{ donde } \widehat{m_1} = M_1 = \bar{X}, \text{ por tanto } \bar{X} = \frac{3}{2} - \frac{5}{12}\widehat{\theta} \Rightarrow \widehat{\theta} = \frac{18}{5} - \frac{12}{5}\bar{X} \text{ es el estimador pedido.}$ $\mathbf{Insesgamiento: } E(\widehat{\theta}) = E\left(\frac{18}{5} - \frac{12}{5}\bar{X}\right) = \frac{18}{5} - \frac{12}{5}E(\bar{X}) = \frac{18}{5} - \frac{12}{5}E(X) = \frac{18}{5} - \frac{12}{5}\left(\frac{3}{2} - \frac{5}{12}\theta\right) = \theta, \ \widehat{\theta} \text{ es estimador}$ insesgado de θ .

Consistencia: Además de por definición, tenemos otras dos maneras adicionales de estudiar la consistencia: Una es con Insesgamiento asintótico (lo que ya se tiene garantizado, porque $\hat{\theta}$ ya es insesgado) y la Eficiencia

$$\frac{\text{asintótica}}{5} \text{ (o sea ver si } \lim_{n \to \infty} V(\hat{\theta}) = 0 \text{). Esto último se puede hacer con } V(\hat{\theta}) = V\left(\frac{18}{5} - \frac{12}{5}\,\bar{X}\right) = \left(\frac{12}{5}\right)^2 V(\bar{X}) = \left(\frac{12}{5}\right)^2 \frac{\sigma^2}{n} \text{ y } \lim_{n \to \infty} V(\hat{\theta}) = \lim_{n \to \infty} \left(\left(\frac{12}{5}\right)^2 \frac{\sigma^2}{n}\right) = \left(\frac{12}{5}\right)^2 \lim_{n \to \infty} \left(\frac{\sigma^2}{n}\right) = 0 \text{, luego } \hat{\theta} \text{ es estimador consistente de } \theta.$$

La segunda manera, más sencilla, es aplicando el límite en probabilidad, o sea "el operador Plim", pues el estimador $\hat{\theta}$ es función continua de una estadística cuyo *Plim* ya conocemos. Tomando el límite en probabilidad *Plim* a $\hat{\theta}$:

$$Plim(\hat{\theta}) = Plim(\frac{18}{5} - \frac{12}{5} \bar{X}) = \frac{18}{5} - \frac{12}{5} Plim(\bar{X}) = \frac{18}{5} - \frac{12}{5} \mu = \frac{18}{5} - \frac{12}{5} (\frac{3}{2} - \frac{5}{12} \theta) = \theta$$
, o sea $\hat{\theta}$ es estimador consistente de θ .

Hace un mes el precio de un bien tenía distribución $N(100,10^2)$ y en la actualidad se sabe que ha aumentado en θ unidades monetarias, pero se desconoce el valor de θ , por lo que se tomó una m.a. de n comerciantes del bien para registrar sus precios actuales y estimar el parámetro. Halle $\hat{\theta}_{MOM}$ y $\hat{\theta}_{MV}$ y vea en cada caso si es estimador consistente de θ .

Solución:

Si con X denotamos el precio hace un mes y con Y el precio actual, entonces $Y = X + \theta$, y en particular Y es **función lineal de** X.

Cálculo de $\hat{ heta}_{MOM}$

Planteamos $m_1 = E(Y) = E(X + \theta) = E(X) + E(\theta) = 100 + \theta$ y reemplazando parámetros por estimadores tenemos la ecuación de estimación $\overline{Y} = M_1 = 100 + \hat{\theta}_{MOM}$ y despejando obtenemos: $\hat{\theta}_{MOM} = 100 - \overline{Y}$.

Sobre la consistencia

Nótese que:

Frocese que:
$$E(\hat{\theta}_{MOM}) = E(100 - \bar{Y}) = 100 - E(\bar{Y}) = 100 - E(Y) = 100 - E(X + \theta) = 100 - 100 - \theta = \theta$$
 y $V(\hat{\theta}_{MOM}) = V((100 - \bar{Y})) = V(\bar{Y}) = \frac{10^2}{n}$; luego como $\lim_{n \to \infty} E(\hat{\theta}_{MOM}) = \lim_{n \to \infty} \theta = \theta$ y $\lim_{n \to \infty} V(\hat{\theta}_{MOM}) = 0$ se cumplen las dos condiciones (insesgamiento asintótico y eficiencia asintótica) para que $\hat{\theta}_{MOM}$ se estimador consistente de θ .

Cálculo de $\hat{\theta}_{\scriptscriptstyle MV}$

Si con X denotamos el precio hace un mes y con Y el precio actual, entonces $Y = X + \theta$, y en particular Y es **función lineal de una variable normal**, de modo que podemos aplicar la **Propiedad Reproductiva** de la distribución Normal: "Funciones lineales de variables normales, también tienen distribución normal, pero con su respectiva media y varianza" (esto se probó usando la función generatriz de momentos). Esto es, $X \sim N(100,10^2)$ y $Y = X + \theta \Rightarrow Y \sim N(\mu_Y, \sigma_Y^2)$ donde $\mu_Y = E(Y) = E(X + \theta) = E(X) + E(\theta) = 100 + \theta$ y $\sigma_Y^2 = V(Y) = E[(Y - \mu_Y)^2] = E[(X + \theta - 100 - \theta)^2] = E[(X - 100)^2] = V(X) = 10^2 \Rightarrow Y \sim N(100 + \theta, 10)$

Escribiendo la función de verosimilitud en términos de la muestra de valores actuales Y_j (pues esos son los datos que tenemos y no los de X_i):

$$L(\theta) = \prod_{j=1}^n f_{Y_j}(y_j;\theta) = \prod_{j=1}^n \frac{e^{-(y_j - \mu_Y)^2/2\sigma_Y^2}}{\sqrt{2\pi}\sigma_Y} = \prod_{j=1}^n \frac{e^{-(y_j - 100 - \theta)^2/2*10^2}}{\sqrt{2\pi}*10} = \frac{e^{-\frac{1}{2*10^2}\sum_{j=1}^n(y_j - 100 - \theta)^2}}{(\sqrt{2\pi}*10)^n}.$$
 Tomando logaritmo neperiano:

 $\ln[L(\theta)] = -\frac{1}{2*10^2} \sum_{j=1}^{n} (y_j - 100 - \theta)^2 - \ln(\sqrt{2\pi}*10)^n$, que es función derivable, así que podemos aplicar cálculo diferencial para maximizar:

$$\frac{\partial \ln \left[L(\theta)\right]}{\partial \theta} = 0 \Rightarrow -\frac{1}{2*10^2} \sum_{j=1}^n 2(y_j - 100 - \theta)(-1) = 0 \Rightarrow \sum_{j=1}^n (y_j - 100 - \theta) = 0 \Rightarrow \sum_{j=1}^n y_j - n100 - n\theta = 0$$

$$\Rightarrow \theta = \overline{Y} - 100 \text{ y verificando el máximo, se llega a } \hat{\theta}_{MV} = \overline{Y} - 100 \text{ . Nótese que al coincidir } \hat{\theta}_{MV} \text{ con } \hat{\theta}_{MOM}$$
comparten las mismas propiedades, en particular $\hat{\theta}_{MV}$ también es insesgado y consistente.

- a) Si X tiene función de densidad $f_X(x;\theta) = e^{-(x-\theta)}$ $x \ge \theta$; $\theta > 0$. Estime θ con Máxima verosimilitud.
- b) Si X es la rentabilidad de una inversión, con $X \sim LogN(\mu, \sigma_0^2)$ siendo σ_0^2 conocido. Estime μ mediante el Método de Momentos y use el Plim para probar que μ es estimador consistente de μ .
- Si $X \sim U(x;0.2\theta)$, halle estimadores de θ mediante los métodos de momentos y de máxima verosimilitud.

Solución:

- a) $f_X(x;\theta) = e^{-(x-\theta)}$ $\theta \le x \Rightarrow \text{dada una m.a. } (X_1,X_2,\dots,X_n) \text{ se tiene: } f_{X_i}(x_i;\theta) = \begin{cases} e^{-(x_i-\theta)} & \text{si } \theta \le x_i \ \forall i \text{ y} \end{cases}$ por tanto: $L(\theta) = \prod_{i=1}^n f_{X_i}(x_i;\theta) = \begin{cases} e^{-\sum_{i=1}^n (x_i-\theta)} & \text{si } \theta \le x_i \ \forall i = \begin{cases} e^{n\theta-n\bar{X}} & \text{si } \theta \le Min\{x_i\} \le x_i \ \text{y aqui} \end{cases}$ $\frac{dL(\theta)}{d\theta} \ge 0$, no se obtiene el máximo derivando, recurrimos a métodos heurísticos: la función de verosimilitud $L(\theta)$ es función no decreciente de θ y para maximizarla hay que hacer que θ "tienda a $+\infty$ ", dentro de lo posible, pero como ocurre la restricción $\theta \leq M in\{x_i\}$ entonces el mayor valor aceptable para θ es $\theta =$ $Min\{x_i\}$, así que es $\hat{\theta}_{MV} = Min\{x_i\}$.
- Tenemos p=1 parámetro por estimar, entonces planteamos p = 1 "ecuación estructural", que es $m_1 = E(X)$. Como en el caso de la distribución lognormal se cumple que $E(X^t) = e^{t\mu + \frac{t^2}{2}\sigma^2}$, entonces $m_1 = E(X) = e^{\mu + \frac{1}{2}\sigma_0^2}$ y la correspondiente "ecuación de estimación" es $M_1 = e^{\frac{\hat{\mu} + \frac{1}{2}\sigma_0^2}}$. Pasando al despeje de μ : $\overline{X} = e^{\mu + \frac{1}{2}\sigma_0^2} \iff \ln(\overline{X}) = \mu + \frac{1}{2}\sigma_0^2 \iff \hat{\mu} = \ln(\overline{X}) - \frac{1}{2}\sigma_0^2 \text{ sería el estimador de Momentos de } \mu.$

Para la consistencia, como $\hat{\mu}$ es función de \overline{X} y para \overline{X} conocemos su límite en probabilidad Plim, mejor usamos Plim y el Teorema de Slutsky:

$$P \lim \hat{\mu} = P \lim \left(\ln(\overline{X}) - \frac{1}{2}\sigma_0^2\right) = P \lim \left(\ln(\overline{X})\right) - P \lim \left(\frac{1}{2}\sigma_0^2\right) = P \lim \left(\ln(\overline{X})\right) - \frac{1}{2}\sigma_0^2 = \ln(P \lim \overline{X}) - \frac{1}{2}\sigma_0^2$$

$$= \ln\left(\underbrace{P \lim \overline{X}}_{\mu_x}\right) - \frac{1}{2}\sigma_0^2 = \ln\left(e^{\mu + \frac{1}{2}\sigma_0^2}\right) - \frac{1}{2}\sigma_0^2 = \mu + \frac{1}{2}\sigma_0^2 - \frac{1}{2}\sigma_0^2 = \mu, \text{ o sea } \hat{\mu} \text{ es estimador consistente de } \mu$$

 $X \sim U(x; 0.2\theta)$ y hay que estimar el parámetro θ por Momentos y por Máxima Verosimilitud:

Estimación por Método de Momentos $\hat{\theta}_{MOM}$:

Tenemos p=1 parámetro, entonces tomamos una ecuación; $m_1 = E(X) = h(\theta) = \frac{0+2\theta}{2} = \theta$ es la ecuación

La correspondiente ecuación de estimación es $\widehat{m_1} = h(\widehat{\theta}) \Rightarrow M_1 = \widehat{\theta} \Leftrightarrow \overline{X} = \widehat{\theta}$: El estimador de momentos de θ es $\hat{\theta}_{MOM} = \bar{X}$.

Estimación por Máxima Verosimilitud $\hat{\theta}_{MV}$: $X \sim U(x; 0, 2\theta) \Rightarrow f_X(x; \theta) = \frac{1}{2\theta} \quad 0 < x \le 2\theta$, donde en el rango de X, ésta es acotada por el parámetro; dada una m.a. (X_1, X_2, \dots, X_n) se tiene: $f_{X_i}(x_i; \theta) = \begin{cases} \frac{1}{2\theta} & \text{si } 0 < x_i \leq 2\theta \ \forall i \\ 0 & \text{en otro caso} \end{cases}$ y por tanto: $L(\theta) = \prod_{i=1}^n f_{X_i}(x_i; \theta) = \begin{cases} \left(\frac{1}{2\theta}\right)^n & \text{si } 0 < x_i \leq 2\theta \ \forall i = \begin{cases} \left(\frac{1}{2\theta}\right)^n & \text{si } 0 < Min\{x_i\} \leq x_i \leq Max\{x_i\} \leq 2\theta \\ 0 & \text{en otro caso} \end{cases}$

Como $\frac{dL(\theta)}{d\theta} \le 0$, no se obtiene el máximo derivando, recurrimos a métodos heurísticos: Como $\frac{dL(\theta)}{d\theta} \le 0$, la función de verosimilitud $L(\theta)$ es función no creciente de θ y para maximizarla hay que hacer que θ "tienda a cero" dentro de lo posible, pero como ocurre la restricción $M \acute{a} x \{x_i\} \leq 2\theta$, entonces el menor valor aceptable para θ es $\theta = \frac{M \acute{a} x \{x_i\}}{2}$, así que es $\hat{\theta}_{MV} = \frac{M \acute{a} x \{x_i\}}{2}$.

Problema 11

Asuma que el gasto mensual X en cabinas de Internet, es una v.a. con distribución $U(x; \alpha = 0, \beta = \theta)$ y se piensa tomar una m.a. **grande** de n usuarios de cabinas para aproximar el valor de θ

- a) Halle el MELI de θ
- b) ¿Qué tamaño de muestra garantizaría que con 95% de probabilidad, $\hat{\theta}_{MELI}$ de la muestra diferirá de θ en menos de un 20% de θ ? Si sólo hay dinero para tomar una muestra de n = 30 usuarios, calcule la probabilidad de lograr lo deseado. ¿Cuál es la máxima diferencia $|\hat{\theta}_{MELI} \theta|$ (como % de θ) que se puede garantizar con 95% de probabilidad?

Sugerencias:

- a) Hallar el MELI de θ ya es ejercicio de rutina, sale $\hat{\theta}_{MELI} = 2\overline{X}$
- b) Como n es grande se puede usar el Teorema del Límite central $\overline{X} \sim N(\mu_X = \frac{\theta}{2}, \frac{\sigma_X^2}{n} = \frac{\theta^2/12}{n})$ y proceder como en el problema 1 de la PD4.

Problema 12

Si *X* es v.a.c. con densidad
$$f_X(x;\alpha) = \begin{cases} \alpha & si \quad 0 < x \le 2 \\ 1 - 2\alpha & si \quad 2 < x \le 3 \end{cases}$$

- a) Halle el estimador de α mediante el método de momentos
- b) Pruebe que el estimador obtenido en a) es insesgado
- c) Estudie la consistencia del estimador obtenido en a)

Solución:

Es un problema similar al problema 4 de esta P.D.

Problema 13

Para el precio X que un minorista <u>cobra</u> por un bien, se asumió como modelo de datos que $X \sim U(p,(1+\theta)p)$, donde p es el precio (<u>conocido</u>) que el minorista paga por el bien y θ es parámetro por estimar. Si se tiene una m.a. de precios de n casos $(X_1,X_2,...X_n)$

- a) Construya el estimador de momentos $\hat{\theta}_{MOM}$
- b) Una medida del error promedio de estimación de un estimador $\hat{\theta}$ es el Error Estándar de estimación, denotado e.e. y definido $e.e. := \sqrt{V(\hat{\theta})}$. Halle el e.e. en el caso del estimador $\hat{\theta}$ de θ .
- c) Si p=1 y una muestra resultó (1.2, 1.15, 1.3, 1.10, 1.6) halle el valor estimado de θ y estime también su e.e. en este caso.
- d) Si se toma una m.a. de tamaño n=49, use el T.L.C para ver con qué probabilidad diferirá $\hat{\theta}_{MOM}$ del verdadero valor de θ en menos de un e.e.

Solución:

a) Brevemente: $m_1 = E(X) = \frac{p + (1 + \theta)p}{2} = p + \frac{p}{2}\theta \Rightarrow \bar{X} = p + \frac{p}{2}\hat{\theta} \Rightarrow \hat{\theta} = \frac{2(\bar{X} - p)}{p}$ es el estimador de Momentos de θ

b)
$$V(\hat{\theta}) = V\left(\frac{2(\bar{X}-p)}{p}\right) = \frac{4}{p^2}V(\bar{X}) = \frac{4}{p^2}\frac{\sigma_X^2}{n} = \frac{4}{p^2}\frac{p^2\theta^2}{12n} = \frac{\theta^2}{3n} \Rightarrow e.e.(\hat{\theta}) = \sqrt{\frac{\theta^2}{3n}} = \frac{\theta}{\sqrt{3n}}$$

c) Reemplazar p = 1 y hallar \bar{X} , luego reemplazar el valor de \bar{X} en la fórmulas de $\hat{\theta}$ y de . e. $(\hat{\theta})$.

d) $n = 49 > 30 \Rightarrow \bar{X} \sim N(\mu_X = p + \frac{p}{2}\theta, \frac{\sigma_X^2}{n} = \frac{p^2\theta^2}{12n})$ y como $\hat{\theta} = \frac{2(\bar{X} - p)}{p} = \frac{2}{p}\bar{X} - 2$ es función lineal de una v.a. con distribución normal (en este caso función de \bar{X}) entonces $\hat{\theta}$ también tendrá distribución normal

$$\widehat{\theta} \sim N(E(\widehat{\theta}), V(\widehat{\theta})) \text{ donde } E(\widehat{\theta}) = E\left(\frac{2}{p}\overline{X} - 2\right) = \frac{2}{p}\left(p + \frac{p}{2}\theta\right) - 2 = \theta \text{ y } V(\widehat{\theta}) \text{ ya se tiene de b), o sea}$$

$$\widehat{\theta} \sim N(\theta, \frac{\theta^2}{3n} = \frac{\theta^2}{147}), \text{ como } \widehat{\theta} \text{ es insesgado, entonces su "error estándar de estimación" } e. e. (\widehat{\theta}) \text{ es } e. e. (\widehat{\theta}) = \sqrt{V(\widehat{\theta})}. \text{ De lo anterior se puede calcular } P\left(\left|\widehat{\theta} - \theta\right| < e. e. (\widehat{\theta})\right) = P\left(\frac{\left|\widehat{\theta} - \theta\right|}{\sqrt{\frac{\theta^2}{147}}} < \frac{\sqrt{\frac{\theta^2}{147}}}{\sqrt{\frac{\theta^2}{147}}}\right) = P(|Z| < 1) = 0.6827$$

- a) Si X es la rentabilidad de una inversión con $X \sim LogN(\mu_0, \sigma^2)$ siendo μ_0 conocido, estime σ^2 mediante Momentos y vea si se obtiene un estimador $\hat{\theta}_{MOM}$ consistente.
- b) Tenemos una v.a. X con función de densidad $f_X(x;\theta) = \frac{2}{\theta}xe^{-\frac{x^2}{\theta}}$ $0 \le x$, $\theta > 0$. Estime θ mediante máxima verosimilitud y determine si $\hat{\theta}_{MV}$ es insesgado.

Solución:

- a) $X \sim LogN(\mu_0, \sigma^2)$ tenemos p=1 parámetro, entonces tomamos una ecuación; $m_1 = E(X) = h(\sigma^2) = e^{\mu_0 + \frac{\sigma^2}{2}} \Rightarrow \bar{X} = e^{\mu_0 + \frac{\sigma^2}{2}} \Rightarrow \ln(\bar{X}) = \mu_0 + \frac{\widehat{\sigma^2}}{2} \Rightarrow \widehat{\sigma^2} = 2(\ln(\bar{X}) \mu_0)$ es el estimador de momentos de σ^2 . Para la consistencia, usemos el Plim y sus propiedades, en particular el Teorema de Slutsky: $Plim(\widehat{\sigma^2}) = Plim(2(\ln(\bar{X}) \mu_0)) = 2\ln(Plim(\bar{X})) 2Plim(\mu_0) = 2\ln(Plim(\bar{X})) 2\mu_0 = 2\ln(e^{\mu_0 + \frac{\sigma^2}{2}}) 2 = 2\mu_0 + 2\frac{\sigma^2}{2} 2\mu_0 = \sigma^2$, pues por la Ley de Grandes Números $Plim(\bar{X}) = \mu_X$ y se comprueba así que el estimador es consistente
- b) $f_X(x;\theta) = \frac{2}{\theta}xe^{-\frac{x^2}{\theta}} \quad 0 < x < \infty \Rightarrow L(\theta) = \prod_{j=1}^n f_{X_j}(x_j;\theta) = \prod_{j=1}^n \frac{2}{\theta}x_je^{-\frac{x_j^2}{\theta}} = \left(\frac{2}{\theta}\right)^n \left(\prod_{j=1}^n x_j\right)e^{-\frac{\sum_{j=1}^n x_j^2}{\theta}}$ que debemos maximizar (con respecto a θ), pero como $L(\theta)$ y $l(\theta) := \ln(L(\theta))$ toman valores extremos en los mismos puntos, es mejor maximizar $l(\theta)$ que es más sencilla: $l(\theta) = nln\left(\frac{2}{\theta}\right) + \ln\left(\left(\prod_{j=1}^n x_j\right)\right) \frac{\sum_{j=1}^n x_j^2}{\theta} \Rightarrow \frac{dl(\theta)}{d\theta} = \frac{d}{d\theta}\left[nln\left(\frac{2}{\theta}\right) + \ln\left(\left(\prod_{j=1}^n x_j\right)\right) \frac{\sum_{j=1}^n x_j^2}{\theta}\right] = -\frac{n}{\theta} + \frac{\sum_{j=1}^n x_j^2}{\theta^2} = 0 \Rightarrow \hat{\theta} = \frac{\sum_{j=1}^n x_j^2}{n}$ es el punto crítico de la función de verosimilitud y, asumiendo el máximo, sería el estimador MV de θ : $\hat{\theta}_{MV} = \frac{\sum_{j=1}^n x_j^2}{n}$. El insesgamiento lo estudiamos directamente:

$$E(\widehat{\theta}_{MV}) = E\left(\frac{\sum_{j=1}^{n} X_{j}^{2}}{n}\right) = \frac{1}{n} \sum_{j=1}^{n} \widetilde{E(X_{j}^{2})} = \frac{1}{n} n E(X^{2}) = E(X^{2}) \text{ y } E(X^{2}) = \int_{0}^{\infty} x^{2} \left(\frac{2}{\theta} x e^{-\frac{x^{2}}{\theta}}\right) dx =$$

$$\frac{2}{\theta} \int_{0}^{\infty} x^{3} e^{-\frac{x^{2}}{\theta}} dx = \frac{2}{\theta} \int_{0}^$$

Problema 15

- a) Si X es v.a. con distribución de Poisson, $X \sim P(x; \lambda)$, halle los estimadores de λ con el método de momentos y de máxima verosimilitud. ¿Se trata de estimadores insesgados?
- b) Si X es v.a. con distribución Gamma, $X \sim \Gamma(x; \alpha = 4, \beta)$, halle los estimadores de β con el método de momentos y de máxima verosimilitud. ¿Son estimadores consistentes?
- c) Asuma que el gasto mensual X en cabinas de Internet, es una v.a. con distribución $U(x;\alpha=0,\beta=2\theta)$ y se piensa tomar una m.a. de n usuarios de cabinas para estimar el valor de θ . Halle el MELI de θ y use la Desigualdad de Tchebychev para verificar que el MELI además es estimador consistente de θ .

Solución:

a) Si X es v.a. con distribución de Poisson, X~P(x; λ) basta plantear m₁ = E(X) = λ ⇒ X̄ = λ̄ es el estimador de λ con el método de momentos y es fácil verificar que sí resulta insesgado.
 El estimador máximo verosímil, se obtiene de

$$(1) \ X \sim P(x;\lambda) \Rightarrow \ X_i \sim P(x_i;\lambda) \ \forall \ x_i \Rightarrow (2) \ L(\lambda) = \prod_{i=1}^n P(x_i;\lambda) = P(x_1;\lambda) \times P(x_2;\lambda) \times ... \times P(x_n;\lambda) = P(x_n;\lambda)$$

$$e^{-\lambda} \frac{\lambda^{x_1}}{x_1!} \times e^{-\lambda} \frac{\lambda^{x_2}}{x_2!} \times ... \times e^{-\lambda} \frac{\lambda^{x_2}}{x_2!} = e^{-n\lambda} \frac{\lambda^{\sum_{j=1}^n x_j}}{\prod_{j=1}^n x_j!} \Rightarrow l(\lambda) = \ln(L(\lambda)) = -n\lambda + (\sum_{j=1}^n x_j) \ln(\lambda) - \ln(\prod_{j=1}^n x_j!)$$

 $\Rightarrow (3) \quad \underbrace{M\acute{a}x}_{\lambda} l(\lambda) \quad s. \, a. \quad 0 < l(\lambda) < \infty \Rightarrow \frac{dl(\lambda)}{d\lambda} = 0 \Rightarrow -n + (\sum_{j=1}^n x_j) \frac{1}{\lambda} = 0 \Rightarrow \lambda = \frac{\sum_{j=1}^n x_j}{n} = \overline{X} \text{ es el punto crítico}$
de la log-verosimilitud $l(\lambda)$ y asumiendo condiciones de 2do. Orden, o sea asumiendo el máximo, el estimador máximo-verosímil de λ es $\hat{\lambda} = \overline{X}$ que, en este caso, coincide con el estimador de momentos y como ya se probó antes, este estimador es estimador insesgado de λ .

Estimador de momentos: Hay p = 1 parámetro por estimar, necesitamos una ecuación Ec. Estructural $m_1 = E(X) = \alpha\beta = 4\beta \Rightarrow$ Ec. de estimación $M_1 = \bar{X} = 4\hat{\beta} \Rightarrow$ Despejamos $\hat{\beta} = \frac{X}{4}$ que es el estimador de momentos de β o sea $\hat{\beta}_{MOM} = \frac{X}{4}$

Sobre la consistencia, basta aplicar el "operador Plim" y resulta que $Plim(\widehat{\beta}_{MOM}) = Plim(\overline{X}) = \frac{1}{4}Plim(\overline{X}) = \beta$, y de ahí, se obtiene que $\widehat{\beta}$ sí es estimador consistencia. y de ahí, se obtiene que $\hat{\beta}$ sí es estimador consistente.

Estimador máximo verosímil:

$$(1) \ X \sim \Gamma(x; \alpha = 4, \beta) \Rightarrow \ X_i \sim \Gamma(x_i; \alpha = 4, \beta) \ \forall \ x_i \Rightarrow (2) \ L(\beta) = \prod_{i=1}^n \frac{(x_i)^3 e^{-\frac{x_i}{\beta}}}{\beta^4 \Gamma(4)} \Rightarrow l(\beta) = \ln(L(\beta)) = \ln\left(\prod_{i=1}^n \frac{(x_i)^3 e^{-\frac{x_i}{\beta}}}{\beta^4 \Gamma(4)}\right) = \sum_{i=1}^n \ln\left(\frac{(x_i)^3 e^{-\frac{x_i}{\beta}}}{\beta^4 \Gamma(4)}\right) = \sum_{i=1}^n \left(\ln(x_i)^3 - \frac{x_i}{\beta} - 4\ln(\beta) - \ln(\Gamma(4))\right) = \sum_{i=1}^n \ln(x_i)^3 - \sum_{i=1}^n \frac{x_i}{\beta} - 4n\ln(\beta) - n\ln(\Gamma(4)) \Rightarrow (3) \text{ Maximizamos } l(\beta) : \frac{dl(\beta)}{d\beta} = 0 \Rightarrow \sum_{i=1}^n \frac{x_i}{\beta^2} - 4n\frac{1}{\beta} = 0 \Rightarrow \hat{\beta}_{MV} = \frac{\bar{X}}{4} \text{ que coincide con } \hat{\beta}_{MOM} \text{ y por tanto es estimador consistente.}$$

c) $U(x; \alpha = 0, \beta = 2\theta)$; hallar el MELI es algo ya visto y se obtiene $\hat{\theta}_{MELI} = \overline{X}$ que resulta insesgado y como $V(\bar{X}) = \frac{\sigma_X^2}{n}$ es sencillo aplicar la desigualdad citada y probar, usando la definición de consistencia, que $\hat{\theta}_{MELI}$ sí es estimador consistente de θ .

Problema 16

El número de búsquedas por Internet que hace un consumidor en t unidades de tiempo, es una v.a. X con distribución de Poisson $X \sim P(x; \omega t)$ y para estimar ω , antes de tomar una muestra de n usuarios, se predeterminaron n valores t_j y luego se registró en cada caso j de una muestra el tiempo t_j y la cantidad correspondiente de búsquedas X_j . En este contexto se desea encontrar el MELI de ω . Halle el MELI. ¿Es consistente $\widehat{\omega}_{MELI}$?

Solución:

Sea \hat{w} el MELI de w, entonces aplicando la definición:

- \widehat{w} es función <u>lineal de la muestra</u> $\Rightarrow \widehat{w} = \sum_{i=1}^{n} \alpha_{j} X_{j}$ \widehat{w} debe ser <u>insesgado</u> $\Rightarrow E(\widehat{w}) = w \Leftrightarrow E(\sum_{i=1}^{n} \alpha_{j} X_{j}) = w \Leftrightarrow \sum_{i=1}^{n} \alpha_{j} E(X_{j}) = w \Leftrightarrow \sum_{i=1}^{n} \alpha_{j} t_{j} w = w \Leftrightarrow \sum$
- \widehat{w} debe ser de <u>varianza mínima</u> $\Rightarrow V[\widehat{w}] = V[\sum_{i=1}^{n} \alpha_{j} X_{j}] = \sum_{i=1}^{n} \alpha_{j}^{2} V[X_{j}] = \sum_{i=1}^{n} \alpha_{j}^{2} t_{j} w = w \sum_{i=1}^{n} \alpha_{j}^{2} t_{j} = M i n$

Luego construir \widehat{w} equivale a **resolver el problema** Min $w \sum_{j=1}^{n} \alpha_{j}^{2} t_{j}$ s.a. $\sum_{j=1}^{n} t_{j} \alpha_{j} = 1$

Pero como w > 0, minimizar $w \sum_{j=1}^{n} \alpha_{j}^{2} t_{j}$ equivale a minimizar $\sum_{j=1}^{n} \alpha_{j}^{2} t_{j}$, por tanto, basta con resolver:

Min $\sum_{j=1}^{n} \alpha_j^2 t_j$ s.a. $\sum_{j=1}^{n} t_j \alpha_j = 1$. Aplicando Multiplicadores de Lagrange:

 $L(\alpha_1,\alpha_2,...,\alpha_n,\lambda) = \sum_{i=1}^n \alpha_j^2 t_j + \lambda (1 - \sum_{i=1}^n t_j \alpha_j) \text{ es el "Lagrangiano" y minimizando:}$

Condiciones de primer orden $\nabla L = 0$

$$\frac{\partial L}{\partial \alpha_{j}} = 0 \Leftrightarrow 2\alpha_{j}t_{j} - \lambda t_{j} = 0 \Rightarrow \alpha_{j} = \frac{\lambda}{2} \quad j = 1, 2, ..., n$$

$$\frac{\partial L}{\partial \lambda} = 0 \iff (1 - \sum_{j=1}^{n} t_j \alpha_j) = 0 \iff (1 - \sum_{j=1}^{n} t_j \frac{\lambda}{2}) = 0 \implies \lambda = \frac{2}{\sum_{j=1}^{n} t_j}$$

Despejando y reemplazando $\alpha_j = \frac{\lambda}{2}$ j = 1, 2, ..., n, se obtiene $\alpha_j = \frac{1}{\sum_{i=1}^n t_j}$

Asumiendo que las condiciones de segundo orden se cumplen, tenemos que el MELI de w es

$$\hat{w}_{MELI} = \sum_{j=1}^{n} \alpha_j X_j = \sum_{j=1}^{n} (\frac{1}{\sum_{j=1}^{n} t_j}) X_j = \frac{\sum_{j=1}^{n} X_j}{\sum_{j=1}^{n} t_j} = \frac{\overline{X}}{\overline{t}}.$$

Para estudiar la consistencia, usemos la misma propiedad aplicada en a):

Insegamiento asintótico:

Como \widehat{w} es MELI, en particular, ya es insesgado: $E(\widehat{w}) = w$ y esto se cumple para todo tamaño de muestra n, es decir $\lim_{n \to \infty} E(\widehat{w}) = \lim_{n \to \infty} w = w$

Eficiencia asintótica:

$$V(\widehat{w}) = V\left(\frac{\sum_{j=1}^{n} X_{j}}{\sum_{j=1}^{n} t_{j}}\right) = \left(\frac{1}{\sum_{j=1}^{n} t_{j}}\right)^{2} \sum_{j=1}^{n} \underbrace{V(X_{j})}_{wt_{j}} = \left(\frac{1}{\sum_{j=1}^{n} t_{j}}\right)^{2} w \sum_{j=1}^{n} t_{j} = \frac{w}{\sum_{j=1}^{n} t_{j}}$$

$$\lim_{n \to \infty} V(\widehat{w}) = \lim_{n \to \infty} \frac{w}{\sum_{j=1}^{n} t_{j}} = \frac{w}{+\infty} = 0$$

El MELI \widehat{w} cumple la dos condiciones necesarias para ser estimador Consistente, por tanto lo es.