

HANDS ON AI: DÉFI 1

QUELQUES PISTES POUR LE PROBLÈME DE CLASSIFICATION

& ARCHITECTURES DE LOCALISATION

Sidi Ahmed Mahmoudi

Rappel: énoncé défi 1

Date de remise : 07/11/2019

Défi 1 : grille d'évaluation

Partie	Taux dévaluation
Partie 1 : classification	40 %
Partie 2 : localisation	20 %
Partie 3 : traitement temps réel (<u>facultatif</u>)	20 %
Qualité rapport	20 %
Qualité code + données	20 %
TOTAL	120 %

PLAN

- Préparation et division des données
- II. Paramètres d'entrainement
- III. Architectures de localisation
- IV. Exemple de localisation avec Yolo
- V. Accès à la plateforme Floydhub

PLAN

- I. Préparation et division des données
- II. Paramètres d'entrainement
- III. Architectures de localisation
- IV. Exemple de localisation avec Yolo
- V. Accès à la plateforme Floydhub

Préparation et division des données

Training Set

```
# Model 2
model=Sequential()
model.add (Dense(200,input_dim=trainX.shape[1], activation='sigmo
model.add (Dense(100, input_dim=200, activation='sigmoid'))
model.add (Dense(60, input_dim=100, activation='sigmoid'))
model.add (Dense(30, input_dim=60, activation='sigmoid'))
model.add(Dense(nb_classes, activation='softmax'))
```

Training Set

Peut-on évaluer ce modèle ?

Training Set

Validation Set

Ou se trouve la différence ? Est-ce suffisant ?

Model 2

Avec le Dropout

Training Set

Validation Set

Test Set

- Données de test: soit téléchargés au début
- Données de test : split des données d'entrainement

```
trainX, testX, trainY, testY=train_test_split(x_train, y_train, test_size=0.25, random_state=42)
```

Training Set

Validation Set

Test Set

Entrainement

Après entrainement

```
train_accuracy=model.evaluate(trainX, trainY)[1]
print ("Train accuracy = ", train_accuracy)
valid_accuracy=model.evaluate(validX, validY)[1]
print ("Valid accuracy = ", valid_accuracy)
test_accuracy=model.evaluate(x_test, y_test)[1]
print ("Test accuracy = ", test_accuracy)
```

La validation

PLAN

- Préparation et division des données
- II. Paramètres d'entrainement
- III. Architectures de localisation
- IV. Exemple de localisation avec Yolo
- V. Accès à la plateforme Floydhub

Epocs

1 époque : l'ensemble entier des données est passé dans le réseau 1 fois

Batch_size

- Nombre de données d'entrainement présents dans un batch
- Données divisés en plusieurs batchs

<u>Itérations</u>

Nombre de batchs par époques : tailles des données/batch_size

Model.fit

- Tableau d'entités sous forme de valeurs x et de cible sous forme de valeurs y.
- Passe tous ensemble de données à la fois dans le réseau (données en RAM)
- Si toutes les données peuvent être chargées en mémoire (petit datasets).

Fit generator

- Pas de transmission directe des données, passage par un générateur
- Génération de données : data augmentation
- Lors de l'utilisation de grand jeu de données.

Model.fit

history=model.fit(x_train, y_train, validation_split=0.2, epochs=5)

```
history=model.fit generator(
    generator=generate from paths and labels(
        input paths=train input paths,
        labels=train labels,
        batch size=nbr batch size,
        input size=(224,224,3)
    steps per epoch=math.ceil(len(train input paths) / nbr batch size),
    epochs=epochs,
    validation_data=generate_from_paths_and_labels(
        input paths=val input paths,
        labels=val labels,
        batch size=nbr batch size,
        input size=(224,224,3)
    validation_steps=math.ceil(len(val_input_paths) / nbr_batch_size),
    verbose=1
```

```
def generate from paths and labels(input paths, labels, batch size, input size=(299,299)):
    num samples = len(input paths)
    while 1:
        perm = np.random.permutation(num samples)
        input paths = input paths[perm]
        labels = labels[perm]
        for i in range(0, num_samples, batch_size):
            inputs = list(map(
                lambda x: image.load_img(x, target_size=input_size),
                input paths[i:i+batch size]
            inputs = np.array(list(map(
                lambda x: image.img to array(x),
                inputs
            )))
            inputs = preprocess input(inputs)
            yield (inputs, labels[i:i+batch size])
```

Transfer Learning

TRAINING FROM SCRATCH

TRANSFER LEARNING

Pour ceux qui souhaitent démarrer la partie localisation

- Commencer le travail sur Google Colab
- Passer à vos comptes Floydhub lors du lancement des entraînements
- Attention : arrêter après la fin des entrainements (utiliser des jobs)
- Architectures de localisation : décrites ci-après (présentées le 24/10)
- Dossier de démarrage: base de données, code Yolo, paramètres,
- Dossier de démarrage : https://github.com/belarbi2733/keras_yolov3
- But : développer un modèle maximisant la précision des résultats
- <u>Test:</u> préparer une base de test assez diversifiée

Travailler avec Floydhub

- Instruction d'utilisation de Floydhub: (voir Moodle (Partie 2)
 - 1. Connexion/création de projet
 - 2. Chargement de base de données sur Floydhub
 - 3. Attacher le projet à une base de données existante
 - 4. Création de jobs

PLAN

- Préparation et division des données
- II. Paramètres d'entrainement
- III. Architectures de localisation
- IV. Exemple de localisation avec Yolo
- V. Accès à la plateforme Floydhub

Architectures de localisation d'objets

Comparison between image classification, object detection and instance segmentation.

https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852

Université de Mons

Figure copyright Ross Girshick, 2015.

Métriques

IOU – Intersection Over Union

Bases de données

Pascal VOC: 2005 / 2012

- http://host.robots.ox.ac.uk/pascal/VOC/
- M. Everingham et al.: The PASCAL Visual Object Classes Challenge: A Retrospective
- 2005 : 4 classes (1578 images 2209 objets) 2006 : 10 classes... 2012 : 20 classes (11,530 images 27,450 objets)

COCO: 2015 - ...

- http://cocodataset.org/#home
- Détection & segmentation
- 80 classes (200,000 images 500,000 objets)

ImageNet - 2012

- http://www.image-net.org/
- 1000 classes (1,2 millions d'images)

YOUTUBE (vidéos) - 2017

- https://research.google.com/youtube-bb/
- 23 classes, 5.6m bounding boxes

Détection d'objets comme une classification: Fenêtre glissante

Appliquer un CNN à plusieurs parties de l'image, le CNN classifie chaque partie comme objet ou background.

Dog? NO Cat? NO Background? YES

Détection d'objets comme une classification: Fenêtre glissante

Appliquer un CNN à plusieurs parties de l'image, le CNN classifie chaque partie comme objet ou background.

Dog? YES Cat? NO Background? NO

Détection d'objets comme une classification: Fenêtre glissante

Appliquer un CNN à plusieurs parties de l'image, le CNN classifie chaque partie comme objet ou background.

Dog? NO Cat? YES Background? NO

Détection d'objets comme une classification: Fenêtre glissante

Appliquer un CNN à plusieurs parties de l'image, le CNN classifie chaque partie comme objet ou background.

Dog? NO Cat? YES Background? NO

Problème: Besoin d'appliquer des CNN à un grand nombre de parties de l'image, grand nombre de tailles... Beaucoup de calcul!

Region Proposals (Propositions de régions)

- Trouver des régions de l'image qui sont susceptibles de contenir un objet
- Relativement rapide. Selective Search donne 1000 régions en quelques secondes sur CPU

Alexe et al, "Measuring the objectness of image windows", TPAMI 2012
Uijlings et al, "Selective Search for Object Recognition", IJCV 2013
Cheng et al, "BING: Binarized normed gradients for objectness estimation at 300fps", CVPR 2014
Zitnick and Dollar, "Edge boxes: Locating object proposals from edges", ECCV 2014

R-CNN

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; $\underline{\text{source}}$.

R-CNN

Regions of Interest (RoI) from a proposal method (~2k)

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; source.

R-CNN

Warped image regions

Regions of Interest (RoI) from a proposal method (~2k)

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; source.

R-CNN

Université de Mons

R-CNN

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; source.

R-CNN

Régression Linéaire pour les Bounding Box

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; source.

Fast R-CNN

Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source.

Fast R-CNN

Fast R-CNN

Fast R-CNN

Fast R-CNN

Figure copyright Ross Girshick, 2015; source.

Fast R-CNN

Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source.

Faster R-CNN

Laisser le CNN chercher lui-même les propositions

Détection sans Propositions : YOLO / SSD

Input image 3 x H x W

Divide image into grid 7 x 7

Un ensemble de **B boxes de base** centrées à chaque
cellule de la grille
lci **B = 3**

Dans chaque grille:

- Régression à partir de chacune des B boxes de base à une box finale de 5 paramètres: (dx, dy, dh, dw, confidence)
- Prédire les scores pour chacune des C classes (Background inclue)

Output: 7 x 7 x (5 * B + C)

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016

Détection sans Propositions : YOLO / SSD

Aller d'une image d'entrée à un vecteur de scores avec un seul réseau conv.

Input image 3 x H x W

Divide image into grid 7 x 7

Un ensemble de **B boxes de base** centrées à chaque
cellule de la grille
lci **B = 3**

Dans chaque grille:

- Régression à partir de chacune des B boxes de base à une box finale de 5 paramètres: (dx, dy, dh, dw, confidence)
- Prédire les scores pour chacune des C classes (Background inclue)

Output: 7 x 7 x (5 * B + C)

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016

YOLO

YOLO

On divise l'image en grille (ex: 7*7)

YOLO

Chaque cellule prédit des boxes (ex: 2) et des scores: P(Objet)

YOLO

Chaque cellule prédit des boxes (ex: 2) et des scores: P(Objet)

YOLO

Chaque cellule prédit des boxes (ex: 2) et des scores: P(Objet)

YOLO

Chaque cellule prédit des boxes (ex: 2) et des scores: P(Objet)

YOLO

Chaque cellule prédit des boxes (ex: 2) et des scores: P(Objet)

YOLO

Chaque cellule prédit des boxes (ex: 2) et des scores: P(Objet)

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016

YOLO

Chaque cellule prédit aussi des probabilités de classes

YOLO

Chaque cellule prédit aussi des probabilités de classes (P(Car | Objet)

YOLO

Ensuite on combine les deux prédictions (boxes & classe)

YOLO

Finalement on ajoute un seuillage de détection (NMS – Non-Maximum Suppression)

YOLO

Un seul réseau est entrainé à faire tout le travail de détection

YOLO

Très rapide, mais pas assez précis

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	63.4	45 FPS	22 ms/img

Comment annoter les données ?

Annotation Sortie : fichier txt

Comment annoter les données?

x=x*(1/image.width) w=w*(1/image.width) y=y*(1/image.height) h=h*(1/image.height)

Outils d'annotation manuelle :

- a. <u>LabelMe. http://labelme.csail.mit.edu/Release3.0/</u>
- b. labelimg: https://github.com/tzutalin/labelimg
- **C.** Supervisely: https://supervise.ly/
- d. https://www.pyimagesearch.com/2017/12/04/how-to-create-a-deep-learning-dataset-using-google-images/
- e. Power IA (Semi-Automatique) : https://github.com/IBM/powerai-vision vision-object-detection#2-login-to-powerai-vision

Détection d'objets :

- a. https://arxiv.org/pdf/1611.10012.pdf
- b. https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
- **C.** https://medium.com/comet-app/review-of-deep-learning-algorithms-for-image-classification-5fdbca4a05e2
- SSD: https://github.com/tensorflow/models/tree/master/research/object_detection
- Yolo: https://pjreddie.com/darknet/yolo/

Anaconda pour ceux qui souhaitent travailler sur leurs PCs

Anaconda sous Windows :
 https://medium.com/@GalarnykMichael/install-python-on-

windows-anaconda-c63c7c3d1444

Anaconda sous Ubuntu 16.04 :

https://www.digitalocean.com/community/tutorials/how-to-install-the-anaconda-python-distribution-on-ubuntu-16-04

Encore plus...

- DCN (Deformable Conv. Networks) 2017 : https://arxiv.org/abs/1703.06211
- DSSD (Deformable Conv. Networks) 2017 : https://arxiv.org/abs/1701.06659
- Fast YOLO: https://arxiv.org/abs/1709.05943
- FSSD: https://arxiv.org/abs/1712.00960
- Feature-Fused SSD: https://arxiv.org/abs/1709.05054
- Learning Transferable Architectures for Scalable Image Recognition 2017:
 RNN learn CNN: https://arxiv.org/abs/1707.07012
- RetinaNet 2018 : https://arxiv.org/abs/1708.02002
- YOLO V3 2018 : https://arxiv.org/abs/1804.02767

PLAN

- Préparation et division des données
- II. Paramètres d'entrainement
- III. Architectures de localisation
- IV. Exemple de localisation avec Yolo
- V. Accès à la plateforme Floydhub

Exemple de localisation avec Yolo

PLAN

- Préparation et division des données
- II. Paramètres d'entrainement
- III. Architectures de localisation
- IV. Exemple de localisation avec Yolo
- V. Accès à la plateforme Floydhub

Manuel partagé via Moodle (Partie 2)

