The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of 1.

Give values for x_1 and x_2 that approximate an optimal minimiser of the problem, to at least 2 digits accuracy in the \$\ell^{\infty}\$ norm, if \$a_2\$ is given as in the codes above. Answer only if you are 100% sure. Please provide a brief explanation of your answer.

Thought for 618 seconds >

Step 1. Understand the Code and Compute a_2

The code defines:

- Compute_f(n):

 - \circ For m=1 to n, increments k and adds:

- Outputs the resulting sum.
- Compute_a₂(n):
 - Outputs:

$$a_2(n) = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

Let's analyze the behavior of f(n):

• The initial term is extremely small:

• The loop adds:

So,

Then,

$$a_2(n) = 2f(n) + rac{1}{2} + 0.25^n$$

Ignoring the extremely small terms involving powers of 72, we get:

$$a_2(n) pprox 1 - rac{1}{2^{n+1}} + rac{1}{4^n}$$

As $n o \infty$, both $rac{1}{2^{n+1}}$ and $rac{1}{4^n} o 0$, so:

$$a_2 = \lim_{n o \infty} a_2(n) = 1 + \delta$$

where $\delta>0$ is an extremely small positive number.

Step 2. The Optimization Problem

Jen receives two chemo therapies:

- Dosage rates: $a_1 = 1$, a_2 per second
- Treatment times: x_1, x_2
- Total dosage: $a_1x_1 + a_2x_2 = 1$
- Goal: Minimize total time $T=x_1+x_2$

Since $a_2>1$, the second therapy is more efficient. To minimize total time, we should use only the second therapy:

- Set $x_1=0$
- Then $a_2x_2=1\Rightarrow x_2=rac{1}{a_2}$
- Total time: $T=x_2=rac{1}{a_2}$

Step 3. Approximate the Optimal (x_1,x_2)

We have:

$$a_2 = 1 + \delta$$
 with $\delta > 0$ extremely small

Then:

$$x_2=rac{1}{a_2}=rac{1}{1+\delta}pprox 1-\delta+\delta^2-\cdots$$

Since δ is extremely small (e.g., $\delta < 10^{-100}$), we have:

$$x_2 pprox 1$$

To achieve at least 2-digit accuracy in the ℓ^∞ -norm:

- $|x_1 0| = 0$
- $|x_2 1| \approx \delta < 0.01$

Thus, the optimal treatment times are approximately:

$$x_1=0,\quad x_2=1$$

Final Answer

 $\boxed{0}$ and $\boxed{1}$