

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Modelado y Programación

Clave:	Semestre:	Eje temático:				No. Créditos:
1323	3	Programación				10
Carácter: Obligatoria			Horas		Horas por semana	Total de Horas
Tipo: Teórico- Práctica			Teoría:	Práctica:		
			3	4	7	112
Modalidad: Curso			Duración del programa: Semestral			

Asignatura con seriación obligatoria antecedente: Ninguna

Asignatura con seriación obligatoria subsecuente: Inteligencia Artificial; Sistemas Operativos; Ingeniería de Software

Asignatura con seriación indicativa antecedente: Estructuras de Datos

Asignatura con seriación indicativa subsecuente: Fundamentos de Bases de Datos; Organización y Arquitectura de Computadoras

Objetivos generales:

Conocer lo necesario y obtener la experiencia para integrar las habilidades de programación y de modelado aplicando los conocimientos adquiridos en los primeros semestres.

Conocer aspectos sofisticados de la programación para incursionar en temas de actualidad como la graficación por computadora, patrones de diseño y cómputo concurrente.

Índice te	mático		
Unidad	T	Horas	
	Temas	Teóricas	Prácticas
[Lenguajes de programación	6	8
[]	Estructuras de datos avanzadas	6	8
III	Buenas prácticas de programación	9	12
IV	Interfaces hombre/máquina	6	8
V	Programación concurrente	6	8
VI	Graficación por computadora	9	12
VII	Emulación de máquinas virtuales	6	8
	Total de horas:	48	64
	Suma total de horas:	1	12

Contenido temático					
Unidad	Tema				
I Lenguaje	Lenguajes de programación				
I.1	Programación imperativa.				
1.2	Programación declarativa.				
1.3	Programación estructurada.				
1.4	Programación orientada a objetos.				
1.5	Programación funcional.				
1.6	Programación lógica.				
1.7	Tecnologías de compiladores e intérpretes.				
II Estructur	as de datos avanzadas				
II.1	Tablas de dispersión.				
II.2	Árboles B.				
II.3	Árboles black/red.				
III Buenas	prácticas de programación				
III.1	Definición de patrones de diseño.				
III.2	Patrones de diseño de uso común: Factory method, Singleton, Adapter, Composite.				
III.3	Pruebas unitarias (<i>Junit</i>).				
III.4	Estrategia de desarrollo: desarrollo guiado por pruebas.				
III.5	Programación en pares.				
IV Interface	es hombre/máquina				
IV.1	Eventos.				
V Program	ación concurrente				
V.1	Introducción y contexto.				
V.2	Conceptos básicos y Ley de Amdahl.				
V.3	Candados.				
V.4	Primitivas de sincronización por hardware.				
V.5	Semáforos.				
V.6	Monitores.				
V.7	Problemas de sincronización				
VI Graficad	ción por computadora				
VI.1	Descripción.				
VI.2	Arquitectura.				
VI.3	El algoritmo de ray-tracing.				
VI.4	Elementos soportados en el proyecto.				
VI.5	Construcción del sistema de álgebra lineal.				
VI.6	Construcción del módulo de lectura.				
VI.7	Implementación del algoritmo.				
VI.8	Sombras, reflexión y refracción.				
VI.9	Posición de la cámara y relación de aspecto.				
VI.10	Multimuestreo y sombras suaves.				

VII Emulación de máquinas virtuales			
VII.1	Descripción de una máquina virtual.		
VII.2	Arquitectura.		
VII.3	Construcción de la máquina virtual.		
VII.4	Definición del lenguaje ensamblador.		
VII.5	Construcción del analizador léxico.		
VII.6	Construcción del analizador sintáctico.		
VII.7	Construcción del back End.		

Bibliografía básica:

1. Monterrubio Gutiérrez Maximiliano, *Propuesta de tercer curso de programación para la Licenciatura en Ciencias de la Computación*, tesis de licenciatura, Facultad de Ciencias, UNAM, 2009.

Bibliografía complementaria:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliffor Stein, *Introduction to Algorithms*, Second Edition, MIT Press, 2001.
- 2. John L. Hennesy, David A. Patterson, David Goldberg, *Computer Architecture: A quantitative approach, Third Edition*, Morgan Kaufmann, 2002.
- 3. Maurice Herlihy, Nir Shavit, *The Art of Multiprocessor Programming*, Morgan Kaufmann, 2008.
- 4. Abraham Silverschatz, Peter Baer Galvin, Greg Gagne, *Operating System Concepts with Java, 7th Edition*, John Wiley & Sons, 2007.
- 5. Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides, *Design Patterns: Elements of Reusable Object-Oriented Software*, Addison-Wesley Professional, 1994.
- 6. Peter Shirley, Realistic Raytracing, A K Peters, 2000.
- 7. Cem Kaner, Jack Falk, Hung Q. Nguyen, *Testing Computer Software, 2nd Edition*, John Wiley & Sons, 1999.
- 8. Keith Cooper, Linda Torczon, Engineering a Compiler, Morgan Kaufmann, 2003.

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o Matemático con especialidad en Computación con amplia experiencia de programación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.