Aufgaben zu LC- und LCR-Schwingkreisen

Lie.

- 1) An einem 680 nF 9 mH Schwingkreis wurde eine Schwingungsdauer von 0.6 ms gemessen. Alle Angaben sind auf 10% genau; passen sie zusammen?
- 2) Ein 100 nF Kondensator wird auf 6.0 V geladen und über eine Spule entladen. Der Strom schwingt dabei mit 8.30 kHz.
 - a) Wie gross ist die Induktivität der Spule?
 - b) Welche Stärke hat der Spitzenstrom? (Tipp: Die elektrostatische Kondensatorenergie werde vollständig in magnetische Spulenenergie verwandelt und umgek.)
- 3) Im LCR-Kreis werde die Spannung (Bild) über der 0.13 mH Spule gemessen.
 - a) Lesen Sie aus der Graphik möglichst genau die Schwingungsdauer T, die Dämpfungskonstante δ , die Startamplitude \hat{y} und die Anfangsphase φ_0 heraus.
 - b) Berechnen Sie die Kapazität im Schwingkreis (Dämpfung vernachlässigen).
 - c) Berechnen Sie aus der Dämpfung den Widerstand.
 - d) Ist diese Berechnungsart von Kapazität und Widerstand genügend genau?

- 4) Ein Oszillograph zeigt, dass fünf Schwingungen in einem 300 nF-9 mH Schwingkreis 1.68 ms dauern und dass dabei die Amplitude von 3.5 auf 2.3 V abnimmt.
 - a) Wie gross ist die Dämpfungskonstante?
 - b) Wie gross ist der Widerstand im Schwingkreis?
 - c) Welche Kreisfrequenz berechnet man aus der gemessenen Dauer?
 - d) Wie wäre die Kreisfrequenz im ungedämpften Schwingkreis?
 - e) Muss der Unterschied von c) und d) eher durch Messfehler/Toleranzen oder durch Einfluss der Dämpfung erklärt werden?

Lösungen

1) 0.49 ms ... 2a) 3.68 mH b) 31 mA 3a) 1.309 μ s, 0.190·10⁶ s⁻¹, 8.60 V, -1.10 rad 3b) 0.33 nF c) 49 Ω d) - 4a) 2.5·10² s⁻¹ b) 4.5 Ω c) 1.87·10⁴ s⁻¹ d) 1.92·10⁴ s⁻¹ e) -