Tareas de Cómputo Científico para Probabilidad y Estadística

Alumnos del curso, Ago-Dic 2017 ${\rm Ago2018}$

Índice

1. Descomposición LU y Cholesky	2
2. Descomposición QR y mínimos cuadrados	2
3. Estabilidad	3
4. Cálculo de eigenvalores	4
5. Simulación Estocástica, introducción	5
6. MCMC: Metropolis-Hastings	5
7. MCMC: Metropolis-Hastings II	6
8. MCMC: MH con Kerneles Híbridos y Gibbs Sampler	7
9. MCMC: Tarea Final	10
10.Optimización Clásica	12
11.Métodos de remuestreo	13

1. Descomposición LU y Cholesky

- 1. Implementar los algoritmos de Backward y Forward substitution.
- 2. Implementar el algoritmo de eliminación gaussiana con pivotteo parcial LUP, 21.1 del Trefethen (p. 160).
- 3. Dar la descomposición LUP para una matriz aleatoria de entradas U(0,1) de tamaño 5×5 , y para la matriz

4. Usando la descomposición LUP anterior, resolver el sistema de la forma

$$Dx = b (2)$$

donde D son las matrices del problema 3, para 5 diferentes b aleatorios con entradas U(0,1). Verificando si es o no posible resolver el sistema.

- 5. Implementar el algoritmo de descomposición de Cholesky 23.1 del Trefethen (p. 175).
- 6. Comparar la complejidad de su implementación de los algoritmos de factorización de Cholesky y LUP mediante la medición de los tiempos que tardan con respecto a la descomposición de una matriz aleatoria hermitiana definida positiva. Graficar la comparación.

2. Descomposición QR y mínimos cuadrados

- 1. Implementar el algoritmo de Gram-Schmidt modificado 8.1 del Trefethen (p. 58) para generar la descomposición QR.
- 2. Implementar el algoritmo que calcula el estimador de mínimos cuadrados en una regresión usando la descomposición QR.

3. Generar **Y** compuesto de $y_i = sen(x_i) + \epsilon_i$ donde $\epsilon_i \sim N(0, \sigma)$ con $\sigma = 0.11$ para $x_i = \frac{4\pi i}{n}$ para $i = 1, \ldots, n$.

Hacer un ajuste de mínimos cuadrados a \mathbf{Y} , con descomposición QR, ajustando un polinomio de grado p-1.

- Considerar los 12 casos: p = 3, 4, 6, 100 y n = 100, 1000, 10000.
- Graficar el ajuste en cada caso.
- Medir tiempo de ejecución de su algoritmo, comparar con descomposición QR de scipy y graficar los resultados.
- 4. Hacer p = 0.1n, o sea, diez veces más observaciones que coeficientes en la regresión, ¿Cual es la n máxima que puede manejar su computadora?

3. Estabilidad

1. Sea A una matriz de tamaño 20×50 creenla aleatoreamente, fíjenla y calculen su descomposición QR. Sean $\lambda_1 > \lambda_2 > \dots \geq \lambda_{20} = 1 > 0$ y

$$B = Q^* diag(\lambda_1, \lambda_2, ..., \lambda_{20}) Q \text{ y } B_{\varepsilon} = Q^* diag(\lambda_1 + \varepsilon_1, \lambda_2 + \varepsilon_2, ..., \lambda_{20} + \varepsilon_{20}) Q,$$

$$\operatorname{con} \varepsilon_i \sim N(0, \sigma), \operatorname{con} \sigma = 0.01 \lambda_2 0 = 0.01.$$

- a) Comparar la descomposición de Cholesky de B y de B_{ε} usando el algoritmo de la tarea 1. Considerar los casos cuando B tiene un buen número de condición y un mal número de condición.
- b) Con el caso mal condicionado, comparar el resultado de su algoritmo con el del algoritmo de Cholesky de scipy.
- c) Medir el tiempo de ejecución de su algoritmo de Cholesky con el de scipy.
- 2. Resolver el problema de mínimos cuadrados,

$$y = X\beta + \varepsilon, \ \varepsilon_i \sim N(0, \sigma)$$

usando su implementación de la descomposición $QR; \beta$ es de tamaño $n \times 1$ y X de tamaño $n \times d$.

Sean
$$d = 5, n = 20, \beta = (5, 4, 3, 2, 1)'$$
 y $\sigma = 0.15$.

- a) Hacer X con entradas aleatorias U(0,1) y simular y. Encontrar $\hat{\beta}$ y compararlo con el obtenido $\hat{\beta}_p$ haciendo $X + \Delta X$, donde las entradas de ΔX son $N(0, \sigma = 0.01)$. Comparar a su vez con $\hat{\beta}_c = ((X + \Delta X)'(X + \Delta X))^{-1}(X + \Delta X)y$ usando el algoritmo genérico para invertir matrices scipy.linalg.inv .
- b) Lo mismo que el anterior pero con X mal condicionada (ie. con casi colinealidad).

4. Cálculo de eigenvalores

1. Dado el siguiente

Teorema (Gershgorin):

Dada una matriz $A = a_{ij}$ de $m \times m$, cada eigenvalor de A está en al menos uno de los discos en el plano complejo con centro en a_{ii} y radio $\sum_{j\neq i} |a_{ij}|$. Además, si n de estos discos forman un dominio conexo, disjunto de los otros m-n discos, entonces hay exactamente n eigenvalores en ese dominio.

Deduce estimaciones de los eigenvalores de

$$A = \begin{pmatrix} 8 & 1 & 0 \\ 1 & 4 & \epsilon \\ 0 & \epsilon & 1 \end{pmatrix}$$

- 2. Implementa la iteración QR con shift. Aplícala a la matriz A del Ejercicio 1 con $\epsilon=10^N$ para N=1,...,5.
- 3. Determina todos los eigenvalores y eigenvectores de una matriz de Householder.
- 4. Demuestra que no es posible construir la transformación de similaridad del teorema de Schur con un número finito de transformaciones de similaridad de Householder.
- 5. ¿Qué pasa si aplicas la iteración QR sin shift a una matriz ortogonal?

5. Simulación Estocástica, introducción

- 1. Definir la cdf inversa generalizada F_X^- y demostrar que en el caso de variables aleatorias continuas esta coincide con la inversa usual. Demostrar además que en general para simular de X podemos simular $u \sim U(0,1)$ y $F_X^-(u)$ se distribuye como X.
- 2. Implementar el siguiente algoritmo para simular variables aleatorias uniformes:

$$x_i = 107374182x_{i-1} + 104420x_{i-5} \mod 2^{31} - 1$$

regresa x_i y recorrer el estado, esto es $x_{j-1} = x_j$; j = 1, 2, 3, 4, 5; ¿parecen U(0, 1)?

- 3. ¿Cuál es el algoritmo que usa *scipy.stats.uniform* para generar números aleatorios? ¿Cómo se pone la semilla? ¿y en R?
- 4. ¿En *scipy* que funciones hay para simular una variable aleatoria genérica discreta? ¿tienen preproceso?
- 5. Implementar el algoritmo Adaptive Rejection Sampling y simular de una Gama(2,1) 10,000 muestras. ¿cuando es conveniente dejar de adaptar la envolvente?

6. MCMC: Metropolis-Hastings

- 1. Simular n=5 y n=35 v.a Bernoulli Be(1/3); sea r el número de éxitos en cada caso.
- 2. Implementar el algoritmo Metropolis-Hastings para simular de la posterior

$$f(p|\bar{x}) \propto p^r (1-p)^{n-r} \cos(\pi p) I_{[0,\frac{1}{2}]}(p),$$

con los dos casos de n y r de arriba. Para ello poner la propuesta $(p'|p)=p'\sim Beta(r+1,n-r+1)$ y la distribución inicial de la cadena $\mu\sim U(0,\frac{1}{2})$.

3. Argumentar porque la cadena es f-irreducible y porque es ergódica. Implementar el algoritmo con los datos descritos y discutir los resultados.

4. Implementar el algoritmo Metropolis-Hastings con la posterior de arriba tomando una propuesta diferente.

7. MCMC: Metropolis-Hastings II

Con el algoritmo Metropolis-Hastings (MH), simular lo siguiente:

1. Sean $x_i \sim Ga(\alpha, \beta)$; i = 1, 2, ..., n. Simular datos x_i con $\alpha = 3$ y $\beta = 100$ considerando los casos n = 3 y 30.

Con $\alpha \sim U(1,4)$, $\beta \sim \exp(1)$ distribuciones a priori, se tiene la posterior

$$f(\alpha, \beta | \bar{x}) \propto \frac{\beta^{n\alpha}}{\Gamma(\alpha)^n} r_1^{\alpha - 1} e^{-\beta(r_2 + 1)} 1 (1 \le \alpha \le 4) 1(\beta > 1),$$

con
$$r_2 = \sum_{i=1}^n x_i \ y \ r_1 = \prod_{i=1}^n x_i.$$

En ambos casos, grafica los contornos para visualizar dónde está concentrada la posterior.

Utilizar la propuesta

$$q\left(\begin{pmatrix} \alpha_p \\ \beta_p \end{pmatrix} \mid \begin{pmatrix} \alpha \\ \beta \end{pmatrix}\right) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix},$$

donde

$$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} \sim \mathcal{N}_2 \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix} \end{pmatrix}.$$

2. Simular de la distribución $Gamma(\alpha,1)$ con la propuesta $Gamma([\alpha], 1)$, donde $[\alpha]$ denota la parte entera de α .

Además, realizar el siguiente experimento: poner como punto inicial $x_0 = 1,000$ y graficar la evolución de la cadena, es decir, $f(X_t)$ vs t.

3. Implementar Random Walk Metropolis Hasting (RWMH) donde la distribución objetivo es $\mathcal{N}_2(\mu, \Sigma)$, con

$$\mu = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}.$$

Utilizar como propuesta $\varepsilon_t \sim \mathcal{N}_2(\mathbf{0}, \sigma I)$. ¿Cómo elegir σ para que la cadena sea eficiente? ¿Qué consecuencias tiene la elección de σ ?

Como experimento, elige como punto inicial $x_o = \begin{pmatrix} 1000 \\ 1 \end{pmatrix}$ y comenta los resultados.

Para todos los incisos del ejercicio anterior:

- Establece cual es tu distribución inicial.
- Grafica la evolución de la cadena.
- Indica cuál es el Burn-in.
- Comenta qué tan eficiente es la cadena.
- Implementa el algoritmo MH considerando una propuesta diferente.

8. MCMC: MH con Kerneles Híbridos y Gibbs Sampler

1. Aplique el algoritmo de Metropolis-Hastings considerando como función objetivo la distribución normal bivariada:

$$f_{X_1,X_2}(\bar{x}) = \frac{1}{2\pi} |\Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\bar{x}-\mu)'\Sigma^{-1}(\bar{x}-\mu)\right\}$$

donde,

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

Así, se tienen las siguientes distribuciones condicionales:

$$X_1|X_2 = x_2 \sim N\left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2), \ \sigma_1^2(1 - \rho^2)\right)$$

$$X_2|X_1 = x_1 \sim N\left(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 - \mu_1), \ \sigma_2^2(1 - \rho^2)\right)$$

Considere las siguientes propuestas:

$$q_1((x'_1, x'_2)|(x_1, x_2)) = f_{X_1|X_2}(x'_1|x_2)1(x'_2 = x_2)$$

$$q_2((x'_1, x'_2)|(x_1, x_2)) = f_{X_2|X_1}(x'_2|x_1)1(x'_1 = x_1)$$

A partir del algoritmo MH usando Kerneles híbridos simule valores de la distribución normal bivariada, fijando $\sigma_1 = \sigma_2 = 1$, considere los casos $\rho = 0.8$ y $\rho = 0.99^1$

2. Consideré los tiempos de falla $t_1, \ldots t_n$ con distribución $Weibull(\alpha, \lambda)$:

$$f(t_i|\alpha,\lambda) = \alpha \lambda t_i^{\alpha-1} e^{-t_i^{\alpha} \lambda}$$

Se asumen como a priori $\alpha \sim exp(c)$ y $\lambda | \alpha \sim Gama(\alpha, b)$, por lo tanto, $f(\alpha, \lambda) = f(\lambda | \alpha) f(\alpha)^2$. Así, para la disitribución posterior se tiene:

$$f(\alpha, \lambda | \bar{t}) \propto f(\bar{t} | \alpha, \lambda) f(\alpha, \lambda)$$

A partir del algoritmo MH usando Kerneles híbridos simule valores de la distribución posterior $f(\alpha, \lambda | \bar{t})$, considerando las siguientes propuestas:

Propuesta 1:

$$\lambda_p | \alpha, \bar{t} \sim Gama\left(\alpha + n, b + \sum_{i=1}^n t_i^{\alpha}\right)$$
 y dejando α fijo.

Propuesta 2:

¹Ver la tesis de Cricelio Montesinos para una explicación más extensa del Gibbs, Montesinos, C (2016) "Distribución de Direcciones en el Gibbs Sampler Generalizado", MSc Dissertation, CIMAT. https://www.cimat.mx/es/Tesis_digitales/. También vean la Enciclopedia de Estadística de Wiley, la entrada de Gibbs Sampler: https://www.cimat.mx/~jac/2016WileytStatsRef_GibbsSampling.pdf.

²Este ejemplo aparece en Kundu, D. (2008), "Bayesian Inference and Life Testing Plan for the Weibull Distribution in Presence of Progressive Censoring", *Technometrics*, **50**(2), 144–154

$$\alpha_p|\lambda,\bar{t}\sim Gama\left(n+1\,,\,-\log(b)-\log(r_1)+c\right)$$
, con $r_1=\prod_{i=1}^n t_i$ y dejando λ fijo.

Propuesta 3:

$$\alpha_p \sim exp(c) \text{ y } \lambda_p | \alpha_p \sim Gama(\alpha_p, b).$$

Propuesta 4 (RWMH):

 $\alpha_p = \alpha + \epsilon$, con $\epsilon \sim N(0, \sigma)$ y dejando λ fijo.

Simular datos usando $\alpha=1$ y $\lambda=1$ con n=20. Para la a priori usar c=1 y b=1.

3. Considere el ejemplo referente al número de fallas de bombas de agua en una central nuclear³, donde p_i representa el número de fallas en el tiempo de operación t_i , con i = 1, ... n.

Se considera el modelo $p_i \sim Poisson(\lambda_i t_i)$, (las λ_i son independientes entre si), con distribuciones a priori $\lambda_i | \beta \sim Gama(\alpha, \beta)$ y $\beta \sim Gama(\gamma, \delta)$, por lo tanto:

$$f(\lambda_1, \dots, \lambda_n, \beta) = f(\lambda_1 | \beta) f(\lambda_2 | \beta) \dots f(\lambda_n | \beta) f(\beta)$$

Para la distribución posterior se tiene:

$$f(\lambda_1,\ldots,\lambda_n,\beta|\bar{p}) \propto L(\bar{p},\bar{\lambda},\beta)f(\lambda_1,\ldots,\lambda_n,\beta)$$

Simule valores de la distribución posterior $f(\lambda_1, \ldots, \lambda_n, \beta | \bar{p})$, usando un kernel híbrido, considerando las propuestas:

$$\lambda_i | \bar{\lambda}_{-i}, \beta, \bar{t} \sim Gama(t_i p_i + \alpha, \beta + 1)$$

³Este ejemplo fué usado en el artículo original del Gibbs sampler del Gelfand y Smith (1990). Vea también Norton, R.A., Christen, J.A. y Fox, C. (2017), "Sampling hyperparameters in hierarchical models: improving on Gibbs for high-dimensional latent fields and large data sets" *Communications in Statistics - Simulation and Computation*, http://dx.doi.org/10.1080/03610918.2017.1353618.

Bomba (i)	1	2	3	4	5	6	7	8	9	10
T. de uso (t_i)	94.32	15.72	62.88	125.76	5.24	31.44	1.05	1.05	2.1	10.48
$\#$ de fallas (p_i)	5	1	5	14	3	18	1	1	4	22

Cuadro 1: Datos de bombas de agua en centrales nucleares (Robert y Casella, p. 385) para el ejemplo 8.3.

$$\beta | \bar{\lambda}, \bar{t} \sim Gama\left(n\alpha + \gamma, \delta + \sum_{i=1}^{n} \lambda_i\right).$$

Verifique que estas son propuestas Gibbs.

Use los datos del Cuadro 1 con los parámetros a priori $\alpha=1.8, \gamma=0.01$ y $\delta=1.$

9. MCMC: Tarea Final

1. (Problema en ecología) Sean $X_1, ... X_m$ variables aleatorias donde X_i denota el número de individuos de una especie en cierta región. Suponga que $X_i|N,p \sim \text{Binomial}(N,p)$, entonces

$$f(\bar{x}|N,p) = \prod_{i=1}^{m} \frac{N!}{x_i!(N-x_i)!} p^{x_i} (1-p)^{N-x_i}.$$

Asumiendo la distribución a priori $p \sim \text{Beta}(\alpha, \beta)$ y $N \sim h(\cdot)$, donde h es una dist. discreta en $\{0, 1, 2, \dots, N_{max}\}$, se tiene definida la distribución posterior $f(N, P|\bar{x})$.

A partir del algoritmo MH, simule valores de la distribución posterior usando un kernel híbrido. Para ello considere **como sugerencia** la siguiente distribución inicial para el MCMC

$$p \sim U(0,1)$$
 y $N \sim U_d \left\{ \max_{i \in \{1,...m\}} (x_i), \max_{i \in \{1,...m\}} (x_i) + 1, ..., N_{max} \right\}$

y las propuestas

• Propuesta 1: De la condicional total de *p* (kernel Gibbs).

- Propuesta 2: De la a priori.
- Propuesta 3: Propuesta hipergeométrica (¿?).
- Propuesta 4: Poisson: $N_p \sim \max_{i \in \{1,...m\}} (x_i) + \text{Poisson}(?)$.
- Propuesta 5: Caminata aleatoria

$$N_p = N + \epsilon$$
, $\mathbb{P}(\epsilon = 1) = \frac{1}{2} = \mathbb{P}(\epsilon = -1)$.

Los datos son estos: 6, 4, 9, 7, 8, 2, 8, 7, 5, 5, 3, 9, 4, 5, 9, 8, 7, 5, 3, 2; m = 20. A priori, esperamos que sea difícil observar a los individuos entonces $\alpha = 1, \beta = 20$. La especie no es muy abundante y entonces $N_{max} = 1000 \text{ y } h(N) = 1/(N_{max} + 1); N \in \{0, 1, 2, ..., N_{max}\}.$

Las propuestas y distribución inicial para el MCMC de arriba son **solamente sugerencia**, propongan otras propuestas, experimenten y comenten.

2. (**Estudio de mercado**) Se tiene un producto y se realiza una encuesta con el fin de estudiar cuánto se consume dependiendo de la edad. Sea Y_i el monto de compra y X_i la covariable la cual representa la edad.

Suponga que $Y_i \sim Po(\lambda_i)$ (distribución Poisson con intensidad λ_i)

$$\lambda_i = cg_b(x_i - a)$$

para g_b la siguiente función de liga

$$g_b(x) = \exp\left(-\frac{x^2}{2b^2}\right).$$

O sea, se trata de regresión Poisson con una función liga no usual. Si $\lambda_i = 0$ entonces $P(Y_i = 0) = 1$. a =años medio del segmento (años), c =gasto promedio (pesos), b = "amplitud" del segmento (años).

Considere las distribuciones a priori

$$a \sim N(35, 5), \quad c \sim Gama(3, 3/950), \quad b \sim Gama(2, 2/5).$$

El segundo parámetro de la normal es desviación estandard y el segundo parámetro de las gammas es taza (rate).

Usando MH simule de la distribución posterior de a, c y b.

Los datos son estos, n = 100:

 $\begin{array}{l} X = \operatorname{array}([\ 28,\ 17,\ 14,\ 51,\ 16,\ 59,\ 16,\ 54,\ 52,\ 16,\ 31,\ 31,\ 54,\ 26,\ 19,\ 13,\ 59,\ 48,\ 54,\ 23,\ 50,\ 59,\ 55,\ 37,\ 61,\ 53,\ 56,\ 31,\ 34,\ 15,\ 41,\ 14,\ 13,\ 13,\ 32,\ 46,\ 17,\ 52,\ 54,\ 25,\ 61,\ 15,\ 53,\ 39,\ 33,\ 52,\ 65,\ 36,\ 52,\ 65,\ 36,\ 54,\ 16,\ 47,\ 14,\ 42,\ 47,\ 48,\ 25,\ 15,\ 46,\ 31,\ 50,\ 42,\ 23,\ 17,\ 47,\ 32,\ 65,\ 45,\ 28,\ 12,\ 22,\ 30,\ 36,\ 33,\ 16,\ 39,\ 50,\ 13,\ 23,\ 50,\ 34,\ 19,\ 46,\ 43,\ 56,\ 52,\ 42,\ 48,\ 55,\ 37,\ 21,\ 45,\ 64,\ 53,\ 16,\ 62,\ 16,\ 25,\ 62]) \ \# \ a \ nos \end{array}$

3. Investiga y describe muy brevemente los softwares OpenBugs, Nimble, JAGS, DRAM, Rtwalk, Mcee Hammer, PyMCMC.

10. Optimización Clásica

1. EM: Considere que se tienen los siguientes datos

$$x = (y_{(1)}, y_{(2)}, \dots, y_{(m)}, z)$$

donde $z = (a, ..., a)_{n-m}$. $x_i \sim N(\theta, 1)$ si $x_i < a$, $(z_i | a, \theta$ tiene distribución Normal truncada).

$$f(z_i|a,\theta) = \frac{1/\sqrt{2\pi}exp\{-1/2(z_i-\theta)^2\}}{1-\Phi(a-\theta)}I_{(a,\infty)}(z_i).$$

El logaritmo de la distribución conjuta es

$$\log (f(x, z|\theta)) \propto -\frac{1}{2} \sum_{i=1}^{m} (x_i - \theta)^2 - \frac{1}{2} \sum_{i=m+1}^{n} (z_i - \theta)^2$$

y la función de verosimilitud es

$$L(\theta|x) = \frac{1}{(2\pi)^{m/2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{m} (x_i - \theta)^2\right\} [1 - \Phi(a - \theta)]^{n-m}$$

donde $\Phi(\cdot)$ es la función de distribución de una normal estándar. Implementar el algoritmo EM para obtener el estimador máximo verosímil de θ .

Los datos son:

$$n = 20, m = 15, a = 21.$$

2. MCMC: Bajo el mismo esquema de datos del ejercicio anterior, poner la distribución a priori para $\theta \sim N(18,1)$ e implementar un MCMC cuya función objetivo es

$$f(\theta, z_{m+1}, \dots, z_n | x).$$

Es decir, se agregan parámetros espurios z para salvar el problema de la censura; la misma idea de EM. Utilice solamente kérneles Gibbs. Para simular de las condicionales totales $f(z_i|\theta,x)$ utilice el método de la Transformada Inversa.

3. Método de Newton-Raphson: Bajo el mismo esquema de EM, implementar el método de Newton-Raphson para encontrar a $\hat{\theta}$ que maximice la log-verosimilitud log $L(x|\theta)$ (MLE).

11. Métodos de remuestreo

Por definir.