Quiz 1: MA2107 Prog. Workshop

Instructions

- a. Questions may have multiple answers. You will get the marks only if you tick all the correct answers.
- b. You can submit the form only once. Before submitting make sure everything is fine.
- c. Do not use an R engine.
- d. While reading the questions you should concentrate on the values and not the formats. For example '2 4' and '2 4' are same.
- e. Use of books/notes are allowed.
- f. Do not discuss the answers with your classmates.

* R	Required	
* TI	This form will record your name, please fill your name.	
	1	
	ID number (in capitals) *	

```
What does the following code do:
for (i in 1:10000000) {
 cat("Current values of i=",i,".\b")
(2 Points)
 Prints nothing
 Prints 10000000 sentences.
 It shows an error message because for loop has not been used appropriately.
 Prints all the numbers between 1 and 10000000 in bold.
 3
Which of the following statements are true?
(2 Points)
 abline function is defined in the R-base environment.
 polygon function is defined in the R-base environment.
 ggplot function is defined in the R-base environment.
 qplot function is defined in the R-base environment.
```

Pick the correct statement(s). $X \leftarrow Norm(mean = 0, sd = 1)$ Y < -3*X+2 $Z1 \leftarrow Norm(mean = 2, sd = sqrt(3))$ $Z2 \leftarrow Norm(mean = 2, sd = 3)$ $Z3 \leftarrow Norm(mean = 0, sd = sqrt(3))$ (2 Points) distrEx library is used. Y and Z1 have the same distribution. Y and Z2 have the same distribution. Y and Z3 have the same distribution. None of the above 5 What does the following code prints: S <- rolldie(2, makespace = TRUE) $S \leftarrow addrv(S, FUN = max, invars = c("X1", "X2"),$ name = "U") $S \leftarrow addrv(S, FUN = sum, invars = c("X1", "X2"),$ name = "V") marginal(S, vars = c("U", "V"))(2 Points) Note: Necessary package from our syllabus is used. Marginal distribution of the random variable U+V. Joint distribution of the random variables U, V. Marginal distribution of the random variable max(U,V).

Marginal distribution of the random variable UV.

What happens to the pdf graph of t-distribution if we increase the number of degrees of freedom.
(2 Points)
The curves become taller.
☐ The curves with more degrees of freedom have thinner tails.
The curves with more degrees of freedom are more like a N(0,1) distribution
The curves become non-symmetric about mean

Look at the figure and pick the correct line of code which is a possible part of the main code to generate this figure.

(2 Points)

- segments($x0=c(5,5),y0=c(15,5),x1=c(15,15),y1=c(15,5),\ col=4,lty=4,lwd=2$)
- segments(x0=c(5,15),y0=c(15,15),x1=c(5,15),y1=c(5,5),col=4,lty=4,lwd=2)
- segments(x0=c(5,5),y0=c(5,5),x1=c(15,15),y1=c(15,5),col=4,lty=4,lwd=2)
- segments(x0=c(5,15,5,5),y0=c(15,15,15,5),x1=c(5,15,15,15),y1=c(5,5,15,5), col=4,lty=4,lwd=2)

Suppose x is any vector. What are the possible output of the following? $rep(x=x,each=length(x))-x$
(2 Points)
[1]0000
[1] 0 1 2 0 1 2 0
[1] 0 3 -2 -3 -3 0 -5 -6 2 5 0 -1 3 6 1 0
[1] 0 -2 2 0
9
Suppose the output of value <- c(m,n) ifelse (test=value^2==c(4,100), yes=1, no=0) is [1] 1 1.
What is the value of m and n? (2 Points)
Type the answer as $3,9$ if m=3 and n=9. You may lose marks unless you write in this format.
10
Explain 3!=6 . (2 Points)
The output is TRUE as factorial of 3 is 6.
Output is FALSE.
3!=6 is not a logical value.
None of the above.

Which of the following could be a output of sample(12, size = 10, replace = TRUE)?
(2 Points)
[1] 8 4 1 1 2 4 4 3 5 4 3 5
[1] 9 4 3 1 2 7 10 8 5 11
[1] 7 11 9 4 10 7 1 3 1 12
[1] 10 5 9 6 9 9 4 5 6 8 3 6
12
If A is a 5×5 matrix which of the following best matches the output of $A\%*\%solve(A)$?
(2 Points)
☐ Error message
An identity matrix
A column vector of length 16.
A row vector of length 16.

The following is used to generate a graph:

k = seq(0, 20, 1)

 $dbin \leftarrow data.frame(N=k,D=dbinom(k, size = 20, p = 0.7))$

ggplot(data=dbin, aes(x=N, y=D)) +

geom_bar(stat="identity", width=0.9, fill="steelblue") +

scale_x_continuous(breaks=k)

Then choose the correct statement(s).

(2 Points)

This is the graph of the cdf of the binomial distribution.

This is the graph of the pdf of the binomial distribution.

 \Box This is the graph of the pdf of a normal distribution.

All of the above.

```
Suppose we have the following dataframe:
my data <-
data.frame(person=c("Ramesh","Priyanka","Vinodh","Ravi","Palak"),
age=c(22,19,17,19,20),
sex=c("M","F","M","M","F")
Then which of the following are true.
(2 Points)
 my_data$person[my_data$age==17] prints the name of the person whose age is 17.
 The sex attribute of my_data is a character vector.
 The sex attribute of my_data is a factor with levels M and F.
 my_data is a not a dataframe.
 15
What is the dimension of the following matrix M?
M \leftarrow matrix(runif(16, min = 0, max = 1), nrow = 4)
(2 Points)
16×4
4×4×16
 4×16
4×4
```

Which of the following are acceptable scalar variable name in R? (2 Points)

1plusdata_averageBigData

data.mean

17

Pick the correct statement(s).

(2 Points)

This is the graph of the cdf of a normal variate.This is the graph of the pdf of a normal variate.

This is a graph of a valid cdf.

This could be a graph of a valid pdf.

Suppose A is a vector of length 8. Then which of the following is a valid output of $sort(x=A, decreasing = FALSE)$?
(2 Points)
[1] -7 -6 -5 -4 -3 -2 -1 0
[1] 0 3 5 3 8 9 5 2
[1] 1 2 3 4 5 6 7
[1] 9 7 5 3 2 1 0 -1
19
Look at the following code and pick the correct statement(s): X <- Norm(mean = 0, sd = 1)
Y <- X^2 Z <- Chisq(df = 1)
(2 Points)
distrEx library is used.
Y and Z have same distribution.
\square p(Z)(0.6) gives that value of pdf of Z at 0.6.
\square p[Z](0.6) gives that value of pdf of Z at 0.6.
\square p(Z)(0.6) gives that value of cdf of Z at 0.6.

The following are the first few lines of the file **somefile.txt**:

```
Name;Sex;Age;Height;Weight
Alex; M;41;74;170
Bert; M;42;68;166
Carl; M;32;70;155
Dave; M;39;72;167
Elly; F;30;66;124
Fran; F;33;66;115
The data was written from a dataframe having five columns Name, Sex, Age,
Height, Weight. Find out the correct command used to write the file.
(2 Points)
  write.table(x=my.csvtable,file="somenewfile.txt", sep=" ",row.names=F,quote = F,col.names =
  T)
  write.table(x=my.csvtable,file="somenewfile.txt", sep=",",row.names=F,quote = F,col.names =
  write.table(x=my.csvtable,file="somenewfile.txt", sep=";",row.names=F,quote = F,col.names =
  write.table(x=my.csvtable,file="somenewfile.txt", sep=";",row.names=T,quote = F,col.names =
 21
Suppose m and n are integers. Then which of the following is the output of:
 seq(m,n,by=4)?
(2 Points)
[1] -2 2
 [1] 64 16 4 1
 [1] 1 4 16 64
[1] 1 0.25 0.0625 0.015625
```

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms