Recitation #20: Properties of power series

Warm up:

Suppose that $\sum_{k=0}^{\infty} c_k (x+5)^k$ converges when x=-9 and diverges when x=-1. What can be said about the convergence and divergence of the following series?

(a)
$$\sum_{k=0}^{\infty} c_k$$

(a)
$$\sum_{k=0}^{\infty} c_k$$
 (b) $\sum_{k=0}^{\infty} c_k (-5)^k$ (c) $\sum_{k=0}^{\infty} c_k (5)^k$

(c)
$$\sum_{k=0}^{\infty} c_k(5)^k$$

Group work:

Problem 1 If the series $\sum_{k=0}^{\infty} a_k (x-2)^k$ has an interval of convergence of [-4,8), determine the interval of convergence of the following series:

(a)
$$\sum_{k=200}^{\infty} a_k (x-2)^k$$

(b)
$$\sum_{k=0}^{\infty} a_k x^k$$

(a)
$$\sum_{k=300}^{\infty} a_k (x-2)^k$$
 (b) $\sum_{k=0}^{\infty} a_k x^k$ (c) $\sum_{k=0}^{\infty} \left(a_k (x-2)^k + \left(\frac{1}{7}\right)^k x^k \right)$

Problem 2 For each of the following, find the domain of f(x) (i.e. find the interval of convergence).

(a)
$$f(x) = \sum_{k=1}^{\infty} \frac{(3x-2)^k}{k \cdot 3^k}$$
 (c) $f(x) = \sum_{k=2}^{\infty} \frac{x^{3k+2}}{(\ln k)^k}$

(c)
$$f(x) = \sum_{k=2}^{\infty} \frac{x^{3k+2}}{(\ln k)^k}$$

(b)
$$f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{k^2 + 1}} x^k$$

Recitation #20: Properties of power series

Problem 3 In each of the following, give a power series (with an interval of convergence) for the given function. Assume that we know $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ on (-1,1).

(a)
$$f(x) = \frac{3}{5x - 2}$$

(b)
$$f(x) = \frac{3x^4}{5x^3 - 2}$$

Problem 4 Consider $f(x) = \sum_{k=0}^{\infty} \frac{2^k x^k}{(k+1)^3}$.

- (a) Write out $p_3(x)$, the cubic polynomial which is the first three terms of this power series.
- (b) Find $p'_3(x)$ and f'(x) and compare your answers.
- (c) Find $\int p_3(x) dx$ and $\int f(x) dx$ and compare your answers.

Problem 5 Give a power series (with interval of convergence) for the given functions.

(a)
$$f(x) = \frac{1}{1+x^2}$$
 (b) $f(x) = \tan^{-1}(x)$ (c) $f(x) = \tan^{-1}(3x^2)$

(b)
$$f(x) = \tan^{-1}(x)$$

(c)
$$f(x) = \tan^{-1}(3x^2)$$