

DIRECCIÓN GENERAL DE EDUCACIÓN TECNOLÓGICA INDUSTRIAL

"Francisco I. Madero" Carrera: Mecatrónica

Reporte de la Actividad 1. Semaforo

NOMBRE: Orlando Contreras Reyes

NL: 7

Título: Semaforo

- a) El enunciado del problema. Escríbelo de forma digital
 Diseñar un circuito o diagrama electrónico junto con su programa para un Semáforo de un crucero con doble circulación cada uno.
- b) El croquis (si es que se usó). Dibújalo de forma digital
- c) La tabla de verdad (si es que se usó). Realízala de forma digital.

		Valor						
.7	.6	.5	.4	.3	.2	.1	.0	Hex
<-	>	Α	R	<-	٧	Α	R	
1	0	0	1	0	0	0	1	91H
0	1	0	0	0	0	0	1	41H
0	0	1	0	0	0	0	1	21H
0	0	0	1	1	0	0	1	19H
0	0	0	1	0	1	0	0	14H
0	0	0	1	0	0	1	0	12H
1	0	0	1	0	0	0	1	91H

d) El diagrama electrónico. Realízalo a mano.

e) El diagrama de flujo (con sus respectivas etiquetas en color rojo). Realízalo a mano.

f) El listado del programa. Realízalo a mano.

- g) Descripción del DF (Diagrama de Flujo). Realízalo a mano.
 - 1.-Primero se inicia el programa y el primer movimiento es declarar las variables que en este caso serán Tiempo 1, tiempo 2 y tiempo 3 (T1,T2 y T3) y las almacenamos en los valores 21H,22H,23H además de que llamamos a la subrutina configurar puntos que básicamente pondrá todo el puerto C en 0's (Outputs)
 - 2.-Moveremos el primer valor (91H) de nuestra tabla de verdad al WREG para después llevarlo al puerto C (recordemos que el puerto WREG va a ser el intermediario entre cada acción
 - 3.-Llamamos a la subrutina Delay_3S que prácticamente nos hará esperar 3 siguientes
 - 4.-Moveremos el segundo valor (41H) de nuestra tabla de verdad al puerto WREG y después al PORTC
 - 5.-Llamamos a la subrutina Delay_3S
 - 6.-Moveremos el siguiente valor (21H) de nuestra tabla de verdad al puerto WREG y después al PORTC
 - 7.-Llamamos a la subrutina Delay_3S
 - 8.-Moveremos el siguiente valor (19H) de nuestra tabla de verdad al puerto WREG y después al PORTC
 - 9.-Llamamos a la subrutina Delay_3S
 - 10.-Moveremos el siguiente valor (14H) de nuestra tabla de verdad al puerto WREG y después al PORTC
 - 11.-Llamamos a la subrutina Delay_3S
 - 12.-Moveremos el siguiente valor (12H) de nuestra tabla de verdad al puerto WREG y después al PORTC
 - 13.- Llamaremos por últimamente a la subrutina Delay 3 segundos y saltaremos con BRANG al inicio para repetir el ciclo

Delay_3S

- 1.- Moveremos el valor 10H al WREG y de ahí lo almacenamos en T3
- 2.- Moveremos el valor 30H al WREG y de ahí lo almacenamos en T2
- 3.- Moveremos el valor 80H al WREG y de ahí lo almacenamos en T1
- 4.- Decrementamos el archivo T1
- 5.- Comparamos para ver si el T1 es igual a 0,
 - Si no salta a la etiqueta L1
 - Si si avanzar al siguiente paso
- 6.-Decrementamos el archivo T2
- 7.- Comparamos para ver si el T2 es igual a 0,
 - Si no salta a la etiqueta L2
 - Si si avanzar al siguiente paso
- 8.-Decrementamos el archivo T3
- 9.- Comparamos para ver si el T3 es igual a 0,
 - Si no salta a la etiqueta L3
 - Si si termina la función

h) Observaciones (si es que hubo). Realízalo a mano.