Advances in Regularization:

Bridge Regression and Coordinate Descent Algorithms

Giovanni Seni, Ph.D.

Intuit – Applied Data Sciences Group

Santa Clara University

Mountain View, CA - June 4, 2012

Overview

- In a Nutshell & Timeline
- · Predictive Learning
- Regularization & Bridge Regression
- Path Finding by Generalized Gradient Descent
- Example: ~1M predictors

© 2012 G.Seni

Regularization In a Nutshell

- What is regularization?
 - "any part of model building which takes into account implicitly or explicitly – the finiteness and imperfection of the data and the limited information in it, which we can term 'variance' in an abstract sense" [Rosset, 2003]
- Forms of regularization
 - 1. Explicit via constraints on model complexity
 - 2. Implicit through incremental building of the model
 - 3. Choice of robust loss functions

© 2012 G.Se

Timeline

- Garotte (Breiman, 1995)
- Lasso (Tibshirani, 1996)
- LARS (Efron et al., 2004)
- Path Seeker (Friedman, 2004)
- Elastic Net (Zou, Hastie, 2005)
- GLMs via Coordinate Descent (Friedman et al., 2008)
- Generalized Path Seeker (Friedman, 2008)
- Penalized Matrix Decomposition (Witten et al., 2010)
- Bayesian Lasso (Hu, Rajaratnam, 2012)

© 2012 G.Ser

Overview

- In a Nutshell & Timeline
- > Predictive Learning
 - Procedure Summary
 - Model Complexity
- Regularization & Bridege Regression
- Path Finding by Generalized Gradient Descent
- Example: ~1M predictors

© 2012 G.Seni

Predictive Learning

Procedure Summary

- Given "training" data $D = \{y_i, x_{i1}, x_{i2}, \dots, x_{in}\}_1^N = \{y_i, \mathbf{x}_i\}_1^N$
 - -D is a random sample from some unknown (joint) distribution
- Build a functional model $\hat{y} = \hat{F}(x_1, x_2, \dots, x_n) = \hat{F}(\mathbf{x})$
 - Offers adequate and interpretable description of how the inputs affect the outputs
 - Parsimony is an important criterion: simpler models are preferred for the sake of scientific insight into the x y relationship
- Need to specify: < model, score criterion, search strategy >

© 2012 G.Sen

Predictive Learning

Procedure Summary (2)

• Model: underlying functional form sought from data

 $\bar{F}(\mathbf{x}) = \bar{F}(\mathbf{x}; \mathbf{a}) \in \mathcal{F}$ family of functions indexed by \mathbf{a}

- Score criterion: judges (lack of) quality of fitted model
 - Loss function $L(y,\bar{F})$: penalizes individual errors in prediction
 - Risk $R(\mathbf{a}) = E_{y,\mathbf{x}} L(y, \hat{F}(\mathbf{x}; \mathbf{a}))$: the expected loss over all predictions
- Search Strategy: minimization procedure of score criterion $\mathbf{a}^* = \arg\min R(\mathbf{a})$

© 2012 G.Ser

Predictive Learning

Procedure Summary (3)

- "Surrogate" Score criterion:
 - Training data: $\{y_i, \mathbf{x}_i\}_1^N \sim p(\mathbf{x}, y)$
 - $-p(\mathbf{x},y)$ unknown $\Rightarrow \mathbf{a}^*$ unknown
 - ⇒ Use approximation: *Empirical Risk*
 - $\widehat{R}(\mathbf{a}) = \frac{1}{N} \sum_{i=1}^{N} L(y, \widehat{F}(\mathbf{x}_i; \mathbf{a}))$ \Rightarrow $\widehat{\mathbf{a}} = \underset{\mathbf{a}}{\text{arg min }} \widehat{R}(\mathbf{a})$
 - If not N>>n, $R(\hat{\mathbf{a}})>>R(\mathbf{a}^*)$

D 2012 G.Seni

Predictive Learning

What is the "right" size of a model?

- Dilemma
 - If model (# of variables) is too small, then approximation is too crude (bias) ⇒ increased errors
 - If model is too large, then it fits the training data too closely (overfitting, increased variance) ⇒ increased errors

© 2012 G.Seni

Overview

- In a Nutshell & Timeline
- Predictive Learning

> Regularization

- Linear Regression
- "Constrained" vs. "Penalized" formulation
- Coefficient Paths and Model Selection
- Complexity Penalties
- Bridge Regression
- Path Finding by Generalized Gradient Descent
- Example: ~1M predictors

© 2012 G.Seni

- 11

Linear Regression

Overview

- Linear model: $F(\mathbf{x}) = a_0 + \sum_{i=1}^{n} a_i x_i$
- Standard coefficient estimation criterion (OLR):

$$\widehat{\mathbf{a}} = \arg\min_{\mathbf{x}} \sum_{i=1}^{N} L \left(y_i, \ a_0 + \sum_{j=1}^{n} a_j x_{ij} \right) \qquad \mathsf{E.g.}, \ \widehat{\mathbf{a}} = (\mathbf{X}^t \mathbf{X} + \mathbf{\mathcal{E}} \mathbf{I})^{-1} \mathbf{X}^t \mathbf{y}$$

- · OLR often unsatisfactory:
 - Prediction accuracy: high variance in coefficient estimates
 - Interpretation: desire for a smaller subset of predictors that exhibit the strongest effects
 - Subset Selection: can be extremely variable because of its discrete process
 - Regularized Regression: continuous process often preferred

© 2012 G.Seni

12

Regularized Linear Regression

Constrained Formulation

• Augmented coefficients estimation criterion:

$$\hat{\mathbf{a}} = \{\hat{a}_j\}_0^n = \arg\min_{\{a_j\}} \sum_{i=1}^N L(y_i, \ a_0 + \sum_{j=1}^n a_j x_{ij}) \text{ s.t. } P(\mathbf{a}) \le t$$

- "Constraining" function P(a):
 - Non-negative
 - $0 < t < P(\hat{\mathbf{a}})$: bias-variance tradeoff
 - Deterministic and independent of the particular random sample
 ⇒ provides a stabilizing influence on the criterion being minimized
 - Best $P(\mathbf{a})$ requires knowledge of \mathbf{a}^*
 - E.g., $\mathbf{a} \approx \mathbf{a}^* \implies sparsity(\mathbf{a}) \approx sparsity(\mathbf{a}^*)$

© 2012 G.Seni

13

Regularized Linear Regression

Penalized Formulation

• Equivalent penalized formulation:

$$\widehat{\mathbf{a}} = \{\widehat{a}_j\}_0^n = \arg\min_{\{a_i\}} \sum_{i=1}^N L(y_i, \ a_0 + \sum_{j=1}^n a_j x_{ij}) + \lambda \cdot P(\mathbf{a})$$
 (1)

- $\infty \ge \lambda \ge 0 \sim 0 < t < P(\hat{\mathbf{a}})$
- P(a) penalizes for the increased variance associated with more complex model
- Coefficient "paths" $\hat{\mathbf{a}}(\lambda)$:
 - For each value of λ , we have a different solution to (1)
 - $-\lambda = 0 \Rightarrow OLR solution$
 - $-\lambda = \infty \implies {\hat{a}_j}_1^n = 0; \quad \hat{a}_0 = \arg\min \sum_{i=1}^n L(y_i, a)$

© 2012 G.Seni

Regularized Linear Regression

Coefficient Paths

• Shrinkage factor: $s \approx \lambda_{\min}/\lambda$

© 2012 G.Ser

15

Regularized Linear Regression

Model Selection

• Given $L(y, \hat{y})$ and $P(\mathbf{a})$:

$$\hat{\lambda} = \underset{0 \le \lambda \le \infty}{\arg\min} \ \widetilde{R}(\hat{\mathbf{a}}(\lambda)) = \underset{\mathbf{a}}{\arg\min} \left[\widehat{R}(\mathbf{a}) + \lambda \cdot P(\mathbf{a}) \right]$$

- Selected model: $\hat{\mathbf{a}}(\bar{\lambda})$
- Cross-validation often used on a predefined grid in $[\lambda_{\min}, \lambda_{\max}]$
- Challenge: rapidly produce paths without repeatedly optimizing
 - ⇒ Direct Path Seeking algorithms
 - Forward Stagewise (Hastie et al., 2001), LARS (Efron et al., 2004), Path Seeker (Friedman, 2005), Coordinate Descent (Friedman, 2008)

© 2012 G.Seni

Regularized Linear Regression

Complexity Penalties

- Ridge: $P(\mathbf{a}) = \sum_{i=1}^{n} a_i^2$
 - Shrinks coefficients towards 0
 - "Dense" solutions
 - Best for large number of small effects
 - $-\,$ k identical predictors \Rightarrow each gets identical coefficient 1/kth the size
- Lasso: $P(\mathbf{a}) = \sum_{j=1}^{n} |a_j|$
 - $-\,$ "Sparse" solutions $-\,$ i.e., does variable selection
 - Best for small to moderate number of moderate-size effects
 - Somewhat indifferent to very correlated predictors; will tend to pick one and ignore the rest

... up to a limit: extreme correlations cause instability

© 2012 G.Seni

17

Bridge Regression

Overview

- Degree of Sparsity: $S(\mathbf{a}) = \#(a_j \cong 0)/n$
 - $S(\mathbf{a}) \cong 0 \Rightarrow \mathbf{a}$ is dense
- $S(\mathbf{a}) \cong 1 \implies \mathbf{a}$ is sparse
- We expect $\hat{\mathbf{a}}(\lambda^*) \approx \mathbf{a}^*$ implies $S(\hat{\mathbf{a}}(\lambda^*)) \approx S(\mathbf{a}^*)$
 - Choose a penalty that produces solutions $\,\widehat{a}(\lambda)$ with sparsity similar to that of a
 - Sparsity of \mathbf{a}^* is unknown \Rightarrow define family of penalties $P_a(\mathbf{a})$
- Jointly estimate α (sparsity) and λ (shrinkage):
 - $(\widehat{\alpha}, \widehat{\lambda}) = \arg\min_{\alpha} \left[\widehat{R}(\widehat{\mathbf{a}}_{\alpha}(\lambda)) \right] ; \quad \widehat{\mathbf{a}}_{\alpha}(\lambda) = \arg\min_{\alpha} \left[\widehat{R}(\mathbf{a}) + \lambda \cdot P_{\alpha}(\mathbf{a}) \right]$

Bridge Regression

Penalties

- Convex constraints
 - $P_{\alpha}(\mathbf{a}) = (1 \alpha) \frac{1}{2} \|\mathbf{a}\|_{L^{2}}^{2} + \alpha \|\mathbf{a}\|_{L^{1}} \quad \text{(Elastic Net)}$
 - "bridges" lasso ⇔ ridge
 - $\alpha = 0$: ridge-regression (dense)
 - $\alpha = 1$: lasso (sparse)
 - Often $\alpha = 1 \varepsilon$ preferred
 - Allows searching for a compromise between these two penalties
 - Model selection to jointly estimate α (sparsity) and λ (shrinkage)

Bridge Regression

Penalties (2)

- Non-Convex constraints
 - $P_{\alpha}(\mathbf{a}) = \sum_{j=1}^{n} \left| a_{j} \right|^{\alpha}$

(Power Family)

- $\alpha = 0$: all-subsets regression (sparsest)
- $\alpha = 1$: lasso (sparse)
- $\alpha = 2$: ridge-regression (dense)
- For $\alpha < 1$, $P_{\alpha}(\mathbf{a})$ is non-convex
 - ⇒ Path Finding by Generalized Gradient Descent

Overview

- In a Nutshell & Timeline
- Predictive Learning
- Model Complexity & Regularization
- Regularized Linear Regression
- > Path Finding by Generalized Gradient Descent
 - Coordinate Descent Algorithms
 - Least-Squares/Elastic-Net Case
- Example: ~1M predictors

Path Finding by Generalized Gradient Descent Overview

- One way to define a coefficient path:
 - i. Specify a starting and an ending point for the path e.g., $\bar{a}(\lambda=\infty)=0, \ \ \bar{a}(\lambda=0)=\bar{a}^{\it OLR}$
 - ii. Given any point on the path $\ \widehat{a}(\nu)$, have a prescription defining the next point $\ \widehat{a}(\nu+\Delta\nu)$
 - e.g., $\hat{\mathbf{a}}(\nu + \Delta \nu) = \hat{\mathbf{a}}(\nu) + \Delta \nu \cdot \mathbf{d}(\nu)$
 - $d(\ensuremath{\nu})$: vector characterizing a direction in the parameter space
 - $\Delta \nu$: specified distance along that direction
- Methods differ for d(ν), Δν
- All share monotonicity property: $\widetilde{R}(\widehat{\mathbf{a}}(\nu + \Delta \nu)) < \widetilde{R}(\widehat{\mathbf{a}}(\nu))$

© 2012 G.Seni

24

Path Finding by Generalized Gradient Descent Overview (2)

• Algorithm:

Initialize
$$v=0$$
; $\mathbf{a}(v)=0$
Loop {
// Get next path point
 $\widehat{\mathbf{a}}(v+\Delta v)=\widehat{\mathbf{a}}(v)+\mathbf{d}(v)\cdot \Delta v$
// Increment path length
 $v\leftarrow v+\Delta v$
}
Until $(\widetilde{\mathbf{R}}(\widehat{\mathbf{a}}(v))$ is min)

• Sample direction vector: $\mathbf{d}(v) = \{g_i(v)\}_0^n$

where
$$g_j(v) = -\left[\frac{\partial \widetilde{R}(\mathbf{a})}{\partial a_j}\right]_{\mathbf{a}=\mathbf{a}(v)}$$

eni

Path Finding by Generalized Gradient Descent Coordinate-wise Descent

- "One-at-a-time" method for minimizing a class of convex functions:
 - Repeat
 - minimize over x_1 , keeping x_2, \dots, x_n fixed
 - minimize over x_2 , keeping x_1, x_3, \ldots, x_n fixed
 - ...
- Computationally attractive when each coordinate minimization can be done quickly
- Class of functions where method works [Tseng, 2001]: $f(\mathbf{a}) = g(\mathbf{a}) + \sum_{j=1}^n h_j(a_j) \text{ , where } g(\cdot) \text{ is differentiable and convex and the } h_j(\cdot) \text{ are convex}$

© 2012 G.Seni

26

Coordinate-Wise Descent

 $L(\cdot)$: least-squares; $P(\mathbf{a})$: elastic-net

- Recall: $\widetilde{R}(\mathbf{a}; \alpha, \lambda) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i a_0 \mathbf{x}_i^{\dagger} \mathbf{a} \right)^2 + \lambda \cdot \sum_{j=1}^{N} \left[\frac{1}{2} (1 \alpha) \cdot a_j^2 + \alpha \cdot |a_j| \right]$ Risk Penalty
- Suppose we have estimates for ã₀ and ãᵢ; l≠j, and wish to optimize with respect to aᵢ
- Need $g_j = -\left[\frac{\partial \widetilde{R}}{\partial a_j}\right]_{\mathbf{a}=\bar{\mathbf{a}}}$
 - $\text{ Case } \widetilde{a}_j > 0 \colon \quad g_j = -\tfrac{1}{N} \sum_{i=1}^N x_{ij} \Bigg(y_i \widetilde{a}_0 \sum_{k \neq j} x_{ik} \widetilde{a}_k \Bigg) + a_j + \lambda (1 \alpha) a_j + \lambda \alpha$
 - Case $\tilde{a}_i < 0$: similar

Can be shown that, $g_j = 0 \Rightarrow \tilde{a}_j \leftarrow \frac{S_W^{\left(\frac{1}{N}\sum_{i=1}^N X_{ij}\left(y_i - \widetilde{y}_i^{(j)}\right), \ \lambda\alpha\right)}}{1 + \lambda(1 - \alpha)}$

© 2012 G.Ser

6

Coordinate-Wise Descent

 $L(\cdot)$: least-squares; $P(\mathbf{a})$: elastic-net (2)

- Efficient updates
 - Note that $\frac{1}{N}\sum_{i=1}^N x_{ij}(y_i \widetilde{y}_i^{(j)}) = \frac{1}{N}\sum_{i=1}^N x_{ij}(r_i + x_{ij}\widetilde{a}_j) = \widetilde{a}_j + \frac{1}{N}\sum_{i=1}^N x_{ij}r_i$
 - $$\begin{split} \text{ And } \sum\nolimits_{i=1}^{N} x_{ij} r_i &= \sum\nolimits_{i=1}^{N} x_{ij} \left(y_i \bar{y}_i \right) \\ &= < x_j, \, y > \sum\nolimits_{i=1}^{N} x_{ij} \cdot \left(\sum_{k: |\vec{a}_k| > 0} x_{ik} \widetilde{a}_k \right) \\ &= < x_j, \, y > \sum_{k: \vec{a}_i | > 0} < x_j, \, x_k > \widetilde{a}_k \end{split}$$
 - Compute and store inner products $\langle x_i, y \rangle$
 - First time a variable x_i enters the model, compute and store $\langle x_j, x_k \rangle$
 - Procedure stops after cycle with no new variable entering the model

D 2012 G.Seni

20

Coordinate-Wise Descent

 $L(\cdot)$: least-squares; $P(\mathbf{a})$: elastic-net (3)

- λ sequence
 - λ_{\max} : smallest λ for which $\widehat{\mathbf{a}} = 0$
 - $\bullet \ \, \widehat{a}_j \text{ will stay zero if } \ \, \underline{1}_N \Big| < x_j, y > \Big| < \lambda \alpha \quad \Rightarrow \quad \lambda_{\max} = \frac{1}{N\alpha} \max_l \Big| < x_l, y > \Big|$
 - $\ \lambda_{\min} = \varepsilon \cdot \lambda_{\max}$
 - Sequence of K values in $[\lambda_{\min},\lambda_{\max}]$ is constructed
- α sequence
 - Smaller sequence in $[0,1-\varepsilon]$
- Active set $-\{\tilde{a}_{k} \neq 0\}$
 - Iterate on this set until convergence; then one more pass...
 - Stop if active set does not change

© 2012 G.Seni

Overview

- In a Nutshell & Timeline
- Predictive Learning
- Model Complexity & Regularization
- Regularized Linear Regression
- Coordinate Descent Algorithms
- ➤ Example: ~1M predictors

© 2012 G.Se

Example

- ~1M Predictors
- · Document classification task
 - "Bag of words" representation
 - Feature vector for each document is very sparse
 - R session:

2012 G.Seni

Conclusions

- "Bridge Regression" allows for sparsity and shrinkage control
- New very fast algorithms for GLMs parameter estimation with convex penalties
 - Allows various loss-constraint combinations
 E.g., linear regression, logistic regression, multinomial regression
- Algorithm also available for non-convex penalties
- Speed of methods allow handling of very large problems
 - Ideally suited for sparse data

© 2012 G.Seni