

CCNA 200-301 Day 13

Subnetting (Part 1)

Things we'll cover

- CIDR (Classless Inter-Domain Routing)
- The process of subnetting

Class	First octet (binary)	First octet range (decimal)	
А	0xxxxxxx	0 - 127	0.0.0.0 ~ 127.255.255.255
В	10xxxxxx	128 - 191	128.0.0.0 ~ 191.255.255.255
С	110xxxxx	192 - 223	192.0.0.0 ~ 223.255.255.255
D	1110xxxx	224 - 239	224.0.0.0 ~ 239.255.255.255
E	1111xxxx	240 - 255	240.0.0.0 ~ 255.255.255.255

Class	First octet	First octet numeric range	Prefix Length
A	0xxxxxxx	0-127	/8
В	10xxxxxx	128-191	/16
С	110xxxxx	192-223	/24

Class	Leading bits	Size of <i>network number</i> bit field	Size of rest bit field	Number of networks	Addresses per network
Class A	0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)
Class B	10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)
Class C	110	24	8	2,097,152 (2 ²¹)	256 (2 ⁸)

- The IANA (Internet Assigned Numbers Authority) assigns IPv4 addresses/networks to companies based on their size.
- For example, a very large company might receive a class A
 or class B network, while a small company might receive a
 class C network.
- · However, this led to many wasted IP addresses.

New York

203.0.113.0/24

256 addresses

- -1 network address (203.0.113.0)
- -1 broadcast address (203.0.113.255)
- -1 R1's address (203.0.113.1)
- -1 R2's address (203.0.113.2)

=252 addresses

WASTED

- · Company X needs IP addressing for 5000 end hosts.
- A class C network does not provide enough addresses, so a class B network must be assigned.
- · This will result in about 60000 addresses being wasted.

CIDR (Classless Inter-Domain Routing)

- When the Internet was first created, the creators did not predict that the Internet would become as large as it is today.
- This resulted in wasted address space like the examples I showed you (there are many more examples).
- The IETF (Internet Engineering Task Force) introduced CIDR in 1993 to replace the 'classful' addressing system.

CIDR (Classless Inter-Domain Routing)

- With CIDR, the requirements of...
- Class A = /8
- Class B = /16
- Class C = /24
- ...were removed.
- This allowed larger networks to be split into smaller networks, allowing greater efficiency.
- These smaller networks are called 'subnetworks' or 'subnets'.

CIDR

number of host bits

CIDR Practice!

How many usable addresses are there in each network?

- 203.0.113.0/25
- 203.0.113.0/26
- 203.0.113.0/27
- 203.0.113.0/28
- 203.0.113.0/29
- 203.0.113.0/30
- 203.0.113.0/31
- 203.0.113.0/32

 $2^{n} - 2 = usable addresses$

n = number of host bits

CIDR (/25)

 $2^{7} - 2 = 126$ usable addresses.

CIDR (/26)

 $2^6 - 2 = 62$ usable addresses.

CIDR (/27)

 $2^5 - 2 = 30$ usable addresses.

CIDR (/28)

- - $2^4 2 = 14$ usable addresses.

CIDR (/29)

 $2^3 - 2 = 6$ usable addresses.

CIDR (/30)

 $2^2 - 2 = 2$ usable addresses.

CIDR (/30)

203.0.113.0/30

= 203.0.113.0 - 203.0.113.3

The remaining addresses in the 203.0.113.0/24 address block (203.0.113.4 - 203.0.113.255) are now available to be used in other subnets!

CIDR (/31)

 $2^{1} - 2 = 0$ usable addresses.

CIDR (/31)

203.0.113.0/30~

= 203.0.113.0 - 203.0.113.1

Router(config-if)#ip address 203.0.113.0 255.255.255.254
% Warning: use /31 mask on non point-to-point interface cautiously
Router(config-if)#

The remaining addresses in the 203.0.113.0/24 address block (203.0.113.2 - 203.0.113.255) are now available to be used in other networks!

CIDR (/32)

- 203 . 0 . 113 . 0
- - 255 · 255 · 255 · 255
 - $2^{\circ} 2 = -1$ usable addresses?

CIDR Notation

Dotted Decimal	CIDR Notation		
255.255.255.128	/25		
255.255.255.192	/26		
255.255.255.224	/27		
255.255.255.240	/28		
255.255.255.248	/29		
255.255.252	/30		
255.255.254	/31		
255.255.255	/32		

Subnetting

Subnetting

192.168.1.0/24

Divide the 192.168.1.0/24 network into four subnets that can accommodate the number of hosts required.

$$2^2 - 2 = 2$$
 usable addresses

$$2 * 2 = 4$$

$$2^3 - 2 = 6$$
 usable addresses

$$2^4 - 2 = 14$$
 usable addresses

$$2^5 - 2 = 30$$
 usable addresses

$$2^6 - 2 = 62$$
 usable addresses

QUIZ

The first subnet (Subnet 1) is 192.168.1.0/26. What are the remaining subnets?

HINT: Find the broadcast address of Subnet 1. The next address is the network address of Subnet 2. Repeat the process for Subnets 3 and 4.

192.168.1.0/24

Things we covered

- CIDR (Classless Inter-Domain Routing)
- The process of subnetting (basics!)

Supplementary Materials

Review flash cards
 (link in the description)

JCNP-Level Channel Members

JCNP-Level Channel Members

