Package 'lilikoi'

November 13, 2023

```
Type Package
```

Title Metabolomics Personalized Pathway Analysis Tool

Version 2.1.1

Description A comprehensive analysis tool for metabolomics data. It consists a variety of functional modules, including several new modules: a pre-processing module for normalization and imputation, an exploratory data analysis module for dimension reduction and source of variation analysis, a classification module with the new deeplearning method and other machine-learning methods, a prognosis module with cox-PH and neural-network based Cox-nnet methods, and pathway analysis module to visualize the pathway and interpret metabolite-pathway relationships. References: H. Paul Benton http://www.metabolomics-forum.com/index.php?topic=281.0 Jeff Xia https://github.com/cangfengzhe/Metabo/blob/master/MetaboAnalyst/website/name_match.
R> Travers Ching, Xun Zhu, Lana X. Garmire (2018) https://github.com/cangfengzhe/Metabo/blob/master/MetaboAnalyst/website/name_match.

biocViews

```
Depends R (>= 3.5.0)
```

Imports car, caret, dplyr, gbm, ggplot2, glmnet, h2o, impute, infotheo, limma, M3C, Metrics, MLmetrics, parallel, princurve, pathview, plyr, preprocessCore, pROC, RCy3, reticulate, reshape, RWeka, scales, stats, stringr, survminer, survival

License GPL-2

Encoding UTF-8

RoxygenNote 7.2.1

VignetteBuilder knitr

Suggests knitr, rmarkdown

NeedsCompilation no

Author Xinying Fang [aut],

Yu Liu [aut],

Zhijie Ren [aut],

Fadhl Alakwaa [aut],

Sijia Huang [aut],

Lana Garmire [aut, cre]

Maintainer Lana Garmire < lana.garmire.group@gmail.com>

2 lilikoi.explr

Repository CRAN

Date/Publication 2022-10-05 19:00:02 UTC

R topics documented:

lilikoi.explr	2
lilikoi.featuresSelection	3
lilikoi.KEGGplot	3
lilikoi.Loaddata	5
lilikoi.machine_learning	5
lilikoi.MetaTOpathway	7
lilikoi.meta_path	8
lilikoi.PDSfun	9
lilikoi.preproc_knn	9
lilikoi.preproc_norm	10
lilikoi.prognosis	11
	13

lilikoi.explr Exploratory analysis

Description

Performs source of variation test and build PCA and t-SNE plots to visualize important information.

Usage

Index

```
lilikoi.explr(data, demo.data, pca = FALSE, tsne = FALSE)
```

Arguments

data	is a input data frame for analysis with sample ids as row names and metabolite names or pathway names as column names.
demo.data	is a demographic data frame with sample ids as row names, sample groups and demographic variable names as column names.
рса	if TRUE, PCA plot will be out.
tsne	if TRUE, T-SNE plot will be out.

Value

Source of variation test results and PCA and t-SNE plot

Examples

```
# lilikoi.explr(data, demo.data, pca=TRUE, tsne=FALSE)
```

lilikoi.featuresSelection 3

```
lilikoi.featuresSelection
```

A featuresSelection Function

Description

This function allows you to reduce the pathway diemsion using xxxx

Usage

```
lilikoi.featuresSelection(PDSmatrix, threshold = 0.5, method = "info")
```

Arguments

PDSmatrix from PDSfun function threshold to select the top pathways

method information gain ("info") or gain ratio ("gain")

Value

A list of top metabolites or pathways.

Examples

```
dt <- lilikoi.Loaddata(file=system.file("extdata",
    "plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
dataSet <- dt$dataSet
# Metabolite_pathway_table=lilikoi.MetaTOpathway('name')
# PDSmatrix= lilikoi.PDSfun(Metabolite_pathway_table)
# selected_Pathways_Weka= lilikoi.featuresSelection(PDSmatrix,threshold= 0.50,method="gain")</pre>
```

lilikoi.KEGGplot lilikoi.KEGGplot

Description

Visualizes selected pathways based on their metabolites expression data.

4 lilikoi.KEGGplot

Usage

```
lilikoi.KEGGplot(
  metamat,
  sampleinfo,
  grouporder,
  pathid = "00250",
  specie = "hsa",
  filesuffix = "GSE16873",
  Metabolite_pathway_table = Metabolite_pathway_table
)
```

Arguments

metamat metabolite expression data matrix

sampleinfo is a vector of sample group, with element names as sample IDs.

grouporder grouporder is a vector with 2 elements, the first element is the reference group

name, like 'Normal', the second one is the experimental group name like 'Can-

cer'.

pathid character variable, Pathway ID, usually 5 digits. specie character, scientific name of the targeted species.

filesuffix output file suffix Metabolite_pathway_table

Metabolites mapping table

Value

Pathview visualization output

Examples

```
dt = lilikoi.Loaddata(file=system.file("extdata","plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
dataSet <- dt$dataSet
# convertResults=lilikoi.MetaTOpathway('name')
# Metabolite_pathway_table = convertResults$table

# data_dir=system.file("extdata", "plasma_breast_cancer.csv", package = "lilikoi")
# plasma_data <- read.csv(data_dir, check.names=FALSE, row.names=1, stringsAsFactors = FALSE)
# sampleinfo <- plasma_data$Label
# names(sampleinfo) <- row.names(plasma_data)

# metamat <- t(t(plasma_data[-1]))
# metamat <- log2(metamat)
# grouporder <- c('Normal', 'Cancer')
# make sure install pathview package first before running the following code.
# library(pathview)
# data("bods", package = "pathview")</pre>
```

lilikoi.Loaddata 5

```
# options(bitmapType='cairo')
#lilikoi.KEGGplot(metamat = metamat, sampleinfo = sampleinfo, grouporder = grouporder,
#pathid = '00250', specie = 'hsa',filesuffix = 'GSE16873',
#Metabolite_pathway_table = Metabolite_pathway_table)
```

lilikoi.Loaddata

A Loaddata Function

Description

This function allows you to load your metabolomics data.

Usage

```
lilikoi.Loaddata(filename)
```

Arguments

filename

file name.

Value

A data frame named Metadata.

Examples

```
lilikoi.Loaddata(file=system.file("extdata", "plasma_breast_cancer.csv", package = "lilikoi"))
```

lilikoi.machine_learning

A machine learning Function

Description

This function for classification using 8 different machine learning algorithms and it plots the ROC curves and the AUC, SEN, and specificty

Usage

```
lilikoi.machine_learning(
 MLmatrix = PDSmatrix,
 measurementLabels = Label,
  significantPathways = selected_Pathways_Weka,
  trainportion = 0.8,
  cvnum = 10,
  dlround = 50,
  nrun = 10,
 Rpart = TRUE,
 LDA = TRUE,
  SVM = TRUE,
 RF = TRUE,
 GBM = TRUE,
 PAM = TRUE,
 LOG = TRUE,
 DL = TRUE
)
```

Arguments

MLmatrix selected pathway deregulation score or metabolites expression matrix

measurementLabels

measurement label for samples

significantPathways

selected pathway names

trainportion train percentage of the total sample size

cvnum number of folds

dlround epoch number for the deep learning method

nrun denotes the total number of runs of each method to get their averaged perfor-

mance metrics

Rpart TRUE if run Rpart method
LDA TRUE if run LDA method
SVM TRUE if run SVM method

RF TRUE if run random forest method

GBM TRUE if run GBM method
PAM TRUE if run PAM method
LOG TRUE if run LOG method

DL TRUE if run deep learning method

Value

Evaluation results and plots of all 8 machine learning algorithms, along with variable importance plots.

Examples

```
dt = lilikoi.Loaddata(file=system.file("extdata","plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
# lilikoi.machine_learning(MLmatrix = Metadata, measurementLabels = Metadata$Label,
# significantPathways = 0,
# trainportion = 0.8, cvnum = 10, dlround=50,Rpart=TRUE,
# LDA=FALSE,SVM=FALSE,RF=FALSE,GBM=FALSE,LOG=FALSE,DL=FALSE)</pre>
```

lilikoi.MetaTOpathway A MetaTOpathway Function

Description

This function allows you to convert your metabolites id such as names, kegg ids, pubchem ids. into pathways. Metabolites which have not pathways will be excluded from any downstream analysis make sure that you have three database files which are used for exact and fuzzy matching: cmpd_db.rda, syn_nms_db.rda and Sijia_pathway.rda This function was modified version of the name.match function in the below link: https://github.com/cangfengzhe/Metabo/blob/master/MetaboAnalyst/website/name_t

Usage

```
lilikoi.MetaTOpathway(
  q.type,
  hmdb = TRUE,
  pubchem = TRUE,
  chebi = FALSE,
  kegg = TRUE,
  metlin = FALSE
)
```

Arguments

```
q. type The type of the metabolites id such as 'name', 'kegg', 'hmdb','pubchem' if TRUE, match metabolites id to the HMDB database.

pubchem if TRUE, match metabolites id to the PubChem database.

chebi if TRUE, match metabolites id to the ChEBI database.

kegg if TRUE, match metabolites id to the KEGG database.

metlin if TRUE, match metabolites id to the METLIN database.
```

Value

A table showing the convertion results from metabolites ids to ids in different metabolomics databases and pathway ids and names.

8 lilikoi.meta_path

Examples

```
dt <- lilikoi.Loaddata(file=system.file("extdata",
    "plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
dataSet <- dt$dataSet
# Metabolite_pathway_table=lilikoi.MetaTOpathway('name')</pre>
```

lilikoi.meta_path

Metabolite-pathway regression

Description

Performs single variate linear regression between selected pathways and each of their metabolites. Output the network plot between pathways and metabolites.

Usage

```
lilikoi.meta_path(
   PDSmatrix,
   selected_Pathways_Weka,
   Metabolite_pathway_table,
   pathway = "Pyruvate Metabolism"
)
```

Arguments

```
PDSmatrix Pathway deregulation score matrix
selected_Pathways_Weka
Selected top pathways from the featureSelection function
Metabolite_pathway_table
Metabolites mapping table
pathway
interested pathway name
```

Value

A bipartite graph of the relationships between pathways and their corresponding metabolites.

lilikoi.PDSfun 9

lilikoi.PDSfun

A PDSfun Function

Description

This function allows you to compute Pathway Desregulation Score deriving make sure that you have the below database for the metabolites and pathway list: meta_path.RData

Usage

```
lilikoi.PDSfun(qvec)
```

Arguments

qvec

This is the Metabolite_pathway_table from MetaTOpathway function. This table includes the metabolites ids and the its corssponding hmdb ids

Value

A large matrix of the pathway deregulation scores for each pathway in different samples.

References

Nygård, S., Lingjærde, O.C., Caldas, C. et al. PathTracer: High-sensitivity detection of differential pathway activity in tumours. Sci Rep 9, 16332 (2019). https://doi.org/10.1038/s41598-019-52529-3

Examples

```
dt <- lilikoi.Loaddata(file=system.file("extdata",
    "plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
dataSet <- dt$dataSet
convertResults=lilikoi.MetaTOpathway('name')
Metabolite_pathway_table = convertResults$table
# PDSmatrix= lilikoi.PDSfun(Metabolite_pathway_table)</pre>
```

lilikoi.preproc_knn

An imputation function.

Description

This function is used to preprocess data via knn imputation.

10 lilikoi.preproc_norm

Usage

```
lilikoi.preproc_knn(inputdata = Metadata, method = c("knn"))
```

Arguments

inputdata An expression data frame with samples in the rows, metabolites in the columns method The method to be used to process data, including

Value

A KNN imputed dataset with samples in the rows, metabolites in the columns.

Examples

```
dt <- lilikoi.Loaddata(file=system.file("extdata",
    "plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
dataSet <- dt$dataSet
lilikoi.preproc_knn(inputdata=Metadata, method="knn")</pre>
```

lilikoi.preproc_norm A Normalization function.

Description

This function is used to preprocess data via normalization. It provides three normalization methods: standard normalization, quantile normalization and median fold normalization. The median fold normalization is adapted from http://www.metabolomics-forum.com/index.php?topic=281.0.

Usage

```
lilikoi.preproc_norm(
  inputdata = Metadata,
  method = c("standard", "quantile", "median")
)
```

Arguments

inputdata method An expression data frame with samples in the rows, metabolites in the columns The method to be used to process data, including standard normalization (standard), quantile normalization (quantile) and median fold normalization (me-

dian).

Value

A normalized dataset with samples in the rows, metabolites in the columns.

lilikoi.prognosis 11

Examples

```
dt <- lilikoi.Loaddata(file=system.file("extdata",
   "plasma_breast_cancer.csv", package = "lilikoi"))
Metadata <- dt$Metadata
dataSet <- dt$dataSet
lilikoi.preproc_norm(inputdata=Metadata, method="standard")</pre>
```

lilikoi.prognosis

Pathway-based prognosis model

Description

Fits a Cox proportional hazards regression model or a Cox neural network model to predict survival results.

Usage

```
lilikoi.prognosis(
  event,
  time,
  exprdata,
  percent = NULL,
  alpha = 1,
  nfold = 5,
  method = "median",
  cvlambda = "lambda.1se",
  python.path = NULL,
  path = NULL,
  coxnnet = FALSE,
  coxnnet_method = "gradient"
)
```

Arguments

event	survival event
time	survival time
exprdata	dataset for penalization, with id in the rownames and pathway or metabolites names in the column names.
percent	train-test separation percentage
alpha	denote which penalization method to use.
nfold	fold number for cross validation
method	determine the prognosis index, "quantile", "quantile" or "ratio".
cvlambda	determine the lambda for prediction, "lambda.min" or "lambda.1se".

12 lilikoi.prognosis

python.path saved path for python3

path saved path for the L2cross_nopercent.py and L2cross.py files in lilikoi

coxnnet if TRUE, coxnnet will be used.

coxnnet_method the algorithm for gradient descent. Includes standard gradient descent ("gradi-

ent"), Nesterov accelerated gradient "nesterov" and momentum gradient descent

("momentum").

Value

A list of components:

c_index C-index of the Cox-PH model

difftest Test results of the survival curve difference test

survp Kaplan Meier plot

Examples

```
# inst.path = path.package('lilikoi', quiet = FALSE) # path = "lilikoi/inst/", use R to run
```

inst.path = file.path(inst.path, 'inst')

python.path = "/Library/Frameworks/Python.framework/Versions/3.8/bin/python3"

Prepare survival event, survival time and exprdata from your dataset.

lilikoi.prognosis(event, time, exprdata, percent=NULL, alpha=0, nfold=5, method="median",

cvlambda=NULL,python.path=NULL, path=inst.path, python.path=python.path,

coxnnet=FALSE,coxnnet_method="gradient")

Index

```
* \ Load
    lilikoi.Loaddata, 5
* \ Match
    lilikoi.MetaTOpathway, 7
* PDS
    lilikoi.PDSfun, 9
\ast classifcation
    lilikoi.machine_learning, 5
* features
    lilikoi.featuresSelection, 3
* selection
    lilikoi.featuresSelection, 3
lilikoi.explr, 2
lilikoi.featuresSelection, 3
lilikoi.KEGGplot, 3
lilikoi.Loaddata, 5
lilikoi.machine_learning, 5
lilikoi.meta_path, 8
lilikoi.MetaTOpathway, 7
lilikoi.PDSfun, 9
lilikoi.preproc_knn, 9
lilikoi.preproc_norm, 10
lilikoi.prognosis, 11
```