Sektorenkopplung in der Stromnetzmodellierung

Welche Anforderungen bestehen an die Datenmodelle des Wärme- und Gassektors? Welche Zukunftstechnologien sollten in den Datenmodellen abgebildet werden?

DLR-Institut für Vernetzte Energiesysteme e. V., Europa-Universität Flensburg

1. Oktober 2020

Ablauf

Einführung (Clara Büttner, EUF)

Präsentation Daten-Modell Wärme (Eva Wiechers, EUF)

Verständnisfragen

Präsentation Daten-Modell Gas (Wilko Heitkötter, DLR VE)

Verständnisfragen

Zusammenfassung und Diskussion (Clara Büttner)

Einordnung ins Modellkonzept

Ergebnis Vorab-Umfrage

Für Daten aus welchen Bereichen interessieren Sie sich?

Ergebnis Vorab-Umfrage

Gliederung - Wärme

- 1 Ziele der Abbildung des Wärme-Sektors
- 2 Datenverfügbarkeit
- 3 Szenarien-Annahmen Wärme
- 4 Geografische und zeitliche Auflösung der Wärmebedarfe
- **5** Technologieauswahl und -verteilung

Ziele der Abbildung des Wärme-Sektors

- Abbildung neuer Strom-Nachfrager (durch Elektrifizierung) und Flexibilitäten (z.B. Wärmespeicher)
- Berücksichtigung der geographischen Bindung zwischen Bedarfen und Wärmeversorgungstechnologien bzw. Wärmequellen
- Darstellung des technisch-ökonomischen Potentiales für Wärmenetze

Datenverfügbarkeit

Wärme-Sektor ist heterogen, ohne flächendeckende, hochaufgelöste Datenerfassung, deshalb Modellierung.

- Wärmebedarfskartierung auf europäischer Ebene (z.B. Hotmaps, Heat Roadmap Europe), auf nationler Ebene (z.B. geomer), auf regionaler Ebene (z.B. Energiealtas NRW, Wärmeatlas Baden-Württemberg etc.) und lokaler Ebene
 - Wohngebäude (und Nicht-Wohngebäude): 100x100m, Baublöcke oder gebäudescharf
 - Industrie-Standorte (z.B. Hotmaps)
- Wärme-Erzeuger
 - KWK-Anlagen: Marktstammdatenregister (MaStR)
 - diverse Informationsquellen zur Fernwärme-Netzen
 - Zensus-Daten

Szenarien-Annahmen Wärme

Szenario NEP 2035

Annahmen aus:

- Szenariorahmen Netzentwicklungsplan (NEP) 2021 bzw. Genehmigung
- FfE-Kurzstudie zur Flexibilisierung der Kraft-Wärme-Kopplung
- BMWi-Zielszenario/Max-Szenario

Szenario 100% EE (+ Varianten)

- Szenarien-Generator: technisch-ökonomische Optimierung der installierten Leistungen
- Entwicklung der Wärmebedarfe: Annahmen oder Optimierung mit retrofitting-Branch

Szenarienübergreifend:

- Trennung öffentlicher Fernwärmeversorgung und industrieller KWK
- Abbildung des gesamten Endenergiebedarfs, Berücksichtigung von Prozesswärme

Überblick: Wärmebedarf

Haushalte und Gewerbe, Handel, Dienstleistung (GHD):

Zeitliche Auflösung

Geografische Verteilung der Wärmebedarfe

Haushalte und Gewerbe, Handel, Dienstleistung (GHD):

mithilfe von linearen Mehrfachregressionen auf Basis des dänischen Gebäude-Registers

- basierend auf der Methodik des Pan-European Thermal Altas (Peta) 4.3
- Verteilung zukünftiger Wärmebedarfe auf Basis des eGoⁿ-Bevölkerungsmodells (basierend auf DemandRegio)

Potentielle Wärmenetz-Gebiete (PSDs)

- szenarienunabhängig
- zusammenhängende Gebiete von Zellen mit einer
 Wärmebedarfsdichte von mindestens 200GJ/ha
- keine Modellierung von Leitungen

Konzept: 100%-Erneuerbare-Energien-Szenario

Haushalte und Gewerbe, Handel, Dienstleistung (GHD):

Zentrale Annahmen für Deutschland

Dekarbonisierungs-Optionen am Beispiel einer 40-prozentigen Verringerung des Endenergieverbrauchs an Wärme bei Gebäuden in TWh pro Jahr Abbildung 13

Schrafflerte Flächen symbolisieren Bandbreiten der Effizienz- und Erneuerbaren-Potenziale. Ein Teil der objektnahen Erneuerbare-Warme-Quellen kann auch in Form von Nahwärmenetzen zusammengefasst werden. Eigene Berechnung auf der Basis von Proprojo, eiler, UNU (2015); felbe (2016) und eigenen Annahmen zum Wärmepumpenstrom

Quelle: Wärmewende 2030 (Fraunhofer IWES/IBP Studie im Auftrag von Agora Energiewende, 2017, Seite 9)

Welchen Fernwärme-Anteil erwarten Sie in einem 100%-Erneuerbare-Energien-Szenario?

Der Fernwärme-Anteil am deutschen Gebäude-Wärmebedarf (Endenergie) beträgt 2.6

13 %

Abgrenzung der Wärmenetze

Der gewählte deutschlandweite Fernwärme-Anteil definiert die Ausdehnung der Fernwärmenetze innerhalb der potentiellen Wärmenetz-Gebiete.

Versorgungsstrategien: Wärmenetzgebiete und individuelle Wärmeversorgung

Welche Technologien im Wärme-Sektor sind Ihrer Meinung nach in einem 100%-Erneuerbare-Energien-Szenario zentral?

Technologieauswahl

Szenario NEP 2035

- Individuelle Wärmeversorgung
 - Wärmepumpen (7 Millionen)
 - kleinst KWK
 - Mix konventioneller Wärme
- Fernwärmenetze (ca. 72 TWh/a)
 - Wärmepumpen
 - Elektrodenheizkessel
 - Solar- und Geothermie
 - KWK-Anlagen
 - Mix konventioneller Wärme

basierend auf Szenariorahmen NEP 2021

Szenario 100% EE (+ Varianten)

- Individuelle Wärmeversorgung
 - Wärmepumpen
 - kleinst KWK
 - Solarthermie
 - Gasheizungen
- Fernwärmenetze
 - Wärmepumpen
 - Elektrodenheizkessel
 - Solar- und Geothermie
 - KWK-Anlagen
 - Gaskessel

basierend auf Szenariengenerator

Räumliche Verteilung der Wärme-Erzeuger

Sicherstellung der Lastdeckung unter der Berücksichtigung:

- der Größenordnung der Nachfrage
- lokaler Gegebenheiten (z.B. Müllverbrennungsanlagen, Geothermie-Potential, bestehende Kraftwerksstandorte usw.)

eGoⁿ Datenmodell Gas

Gliederung

- Datenverfügbarkeit
- Modellkonzept
- Bestimmung regionaler Power-to-Gas Einspeisekapazitäten
- Szenarioannahmen
- Räumliche und zeitliche Auflösung des Datenmodells
- · Ausblick: Gasflussberechnung

Institut für Vernetzte Energiesysteme **Deutsches Zentrum für Luft- und Raumfahrt** e. V. (DLR) Institut für Vernetzte Energiesysteme | Energiesystemanalyse M.Sc. **Wilko Heitkötter**

Telefon 0441 99906-113 | wilko.heitkoetter@dlr.de

Datenverfügbarkeit

Beispielhafte Datenquellen für das europäische Gassystem

Participant | Pa

ENTSO-G

Verschiedene Internetdaten

OpenStreetMap

- Informationen über: Leitungen, Kompressoren, Entry / Exit Punkte, Speicher, ...
- Datensätze sind teilweise nicht direkt nutzbar (z.B. nicht digitalisiert)
- Im SciGRID_gas Projekt (https://www.gas.scigrid.de, DLR) werden diese Datensätze:
 - nutzbar gemacht (z.B. Digitalisierung)
 - in einem einheitlichen Datenformat unter CC BY Lizenzen bereitgestellt

LKD-EU Gasdatensatz für Deutschland

LKD-EU Datensatz

- hohe Vollständigkeit für das deutsche Gassystem (teilweise muss Aktualität noch überprüft werden)
- · konvertiert in das SciGRID_gas Datenformat und breitgestellt unter CC BY Lizenz
- Nutzung als Eingangsdaten im eGon Projekt für die Modellierung des:
 - Gasnetzes
 - · Nicht-energetischen Gasbedarfs

Visualisierung Gasnetzdaten und Gasbedarfsdaten im LKD-EU Datensatz:

Quelle: Kunz, Friedrich, et al. Electricity, heat, and gas sector data for modeling the German system. No. 92. DIW Data Documentation, 2017.

Modellkonzept Gas: NEP 2035 Szenario

Szenario Quelle: NEP Strom 2035, Version 2021, Szenariorahmen

Bildquelle:eigene Darstellung

Modellkonzept Gas: NEP 2035 Szenario

Szenario Quelle: NEP Strom 2035, Version 2021, Szenariorahmen

Bildquelle:eigene Darstellung

Installierte PtG-Leistung im NEP 2035

Tabelle 20: Leistung von Power-to-Gas-Anlagen in den Szenarien

nabelle 20. 20.5tang von voner to out Antagen in den szenarien						
	A 2035	B 2035	C 2035	B 2040	Volllaststunden	
Power-to-Wasserstoff [GW]	2,5	4,5	7,5	7	-	
davon bekannte Planungen und weitere Anlagen an Industriestandorten mit Wasserstoffbedarf [GW]	2,5	4,5	4,5	7	3500 h	
davon netzorientierte Anlagen [GW]	0	0	3	0	1500 h	
Power-to-Methan [GW]	0,5	0,5	0,5	0,5	1000 h	
Summe [GW]	3,0	5,0	8,0	7,5	_	

- el. Energergieverbrauch: 20,8 TWh
- = 3 % des deutschen Gas Primärenergieverbrauchs (2018)
- ightarrow Lokal könnte Überschreitung der max. 5 % H2-Einspeisung auftreten
- → Regionalisierung der maximalen PtG-Einspeisekapazitäten

Quelle: NEP Strom 2035, Version 2021, Szenariorahmen

Regionalisierte PtG-Einspeisekapazitäten

Modellkonzept Gas: 100%-EE 2050 Szenario

Weitere Szenarioannahmen zum Gasbedarf

- Prognose für nicht-energetischen Verbrauch von Gas: NEP Gas 2019-2030
 - Lineare Extrapolation von 2030 bis 2035
 - Prognose f
 ür 2050 noch zu klären
- Prognose f\u00fcr andere Verbrauchssektoren: \u00dcbernahme der Daten aus Modellierung von Projektpartnern

Gasbedarf Deutschland - Szenario II Darstellung Brennwert (H _s)	Einheit	2017	2030	2050	Veränderung 2030 zu 2017	Veränderung 2050 zu 2020
Gasbedarf insgesamt	TWh H _s	968	894		-8 %	
Endenergiebedarf Gas	TWh H _s	656	525		-20 %	
Industrie	TWh H _s	261	204		-22 %	
Haushalte/ GHD	TWh H _s	394	313		-20 %	
Verkehr	TWh H _s	2	8		276 %	
Nichtenergetischer Verbrauch von Gas	TWh H _s	38	40		5 %	
Gaseinsatz im Umwandlungssektor*	TWh H _s	274	329		20 %	

*Der Gasverbrauch im Umwandlungssektor umfasst Kraftwerke, Fernheizwerke und den Eigenverbrauch Gas im Umwandlungssektor.

Quelle: FNB Gas, Szenariorahmen NEP Gas 2020-2030

Räumliche und zeitliche Auflösung

- Räumliche Auflösung:
 - Zur Bestimmung von PtG-Einspeisekapazitäten:
 - Gasfernleitungskapazitäten und regionaler Gasbedarf pro Versorgungsgebiet je HS-MS Umspannwerk
 - Modellierung des Gasflusses:
 - Zunächst: Abstraktion auf einen Knoten für Deutschland
 - Ggf. wenn im Projektumfang möglich: Gasflussberechnung anhand mehrerer Knoten (z.B. 10 für Deutschland)
- Zeitliche Auflösung:
 - stündlich

Ausblick: vereinfachte Gasflussmodellierung

- Falls im Rahmen des eGon Projektes zeitlich möglich, wird eine vereinfachte Gasflussberechnung implementiert
- Abstraktion des Gasflusses als Energiefluss
- Nutzung von Energiebilanzen an Knoten des verwendeten PyPSA Modells (mögliche Alternative ist Pandapipes, aber nutzt detailliertere Gasflussberechung)
- Gasleitungen werden als PyPSA Link Komponenten implementiert
- Anzahl von Gasnetzknoten muss festgelegt werden, die die Rechenzeit des eGon Modells nicht zu stark erhöht

Vgl. Gleichungen zur Modellierung des Gasflusses als Energiefluss im GAMMAMOD Model (TU Dresden)

$$\begin{split} 0 = -dem_{l,tt} - \sum_{j,l,map,l,l_{j,l,j} \times l \neq 0} \left(FLOW_{l,tt}^{pos} \times mapl.lJ_{l,l,j}\right) \\ - \sum_{j,l,map,l,l_{j,l,j} \times l \neq 0} \left(FLOW_{l,tt}^{neg} \times mapl.lJ_{l,j,l}\right) \\ - \sum_{st \in map,stl \times l} STORAGE_{st,tt}^{lN} + \sum_{pr \in map,prl \times l} PQ_{pr,stt} \\ + \sum_{j,l,map,l,l_{j,l,j} \times l \neq 0} \left(FLOW_{l,tt}^{neg} \times mapl.lJ_{l,l,j}\right) \\ + \sum_{j,l,map,l,l_{j,l,j} \times l \neq 0} \left(FLOW_{l,tt}^{pos} \times mapl.lJ_{l,j,l}\right) \\ + \sum_{st \in map,stl \times l} STORAGE_{st,tt}^{wtTH} + \sum_{\alpha} VOLL_{a,l,t} \\ + LoadCut_{l,tr} \end{split}$$

Quelle: Hauser, P.: A modelling approach for the German gas grid using highly resolved spatial, temporal and sectoral data (GAMAMOD-DE)

Wird es nach Ihrer Meinung in in einem 100%-Erneuerbare-Energien-Szenario für das Jahr 2050 ein deutschlandweites Wasserstoffnetz geben?

Welche Kopplungen zwischen dem Gas- und Wärme-Sektor sind iher Meinung nach in einem 100%-Erneuerbare-Energien-Szenario von zentraler Bedeutung?

Abwärme-Nutzung von Brennstoffzellen

Wasserstoff-betriebene Gastherme

Welche Anforderungen bestehen an die Datenmodelle des Wärme- und Gassektors?

Räumliche Auflösung

Wärme: 100×100m und in Wärmenetzgebieten, Ausnahme Industrie

Gas: national; Power-To-Gas Einspeisekapazitäten pro HS-MS Umspannwerk

Zeitliche Auflösung

Wärme und Gas: stündliche Zeitreihen

Verwertbarkeit

Open Data auf der OpenEnergyPlatform Open-Source-Bereitstellung der Methoden

Welche Zukunftstechnologien sollten in den Datenmodellen abgebildet werden?

Wärme-Sektor inkl. Gas-Schnittstelle

- Wärmepumpen
- Elektrodenheizkessel
- Solarthermie
- Geothermie
- Kraft-Wärme-Kopplungs-Anlagen
- Gasheizungen

Gas-Sektor

- Elektrolyse (Power-to-Hydrogen)
- Methanisierung
- Brennstoffzellen
- Biogaseinspeisung

Können Sie sich vorstellen, die vorgestellten Daten-Modelle zu benutzen?

Wofür möchten Sie die vorgestellten Datenmodelle nutzen?

- eigene Forschungen
- Berechnung von Betriebsstunden
- zukünftige Bedeutung von Elektrolyseuren
- Standortsuche für die Anlagenplanung (Elektrolyseure)

Warum werden Sie die vorgestellten Datenmodelle nicht nutzen?

keine Notwendigkeit

Kontaktdaten

Eva Wiechers Europa-Universität Flensburg +49 (0)461 805 2562 Eva.Wiechers@uni-flensburg.de

Clara Büttner Europa-Universität Flensburg +49 (0)461 805 3008 Clara.Buettner@uni-flensburg.de Wilko Heitkötter Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Vernetzte Energiesysteme +49 (0)441 99906 113 Wilko.Heitkoetter@dlr.de

Amélia Nadal Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Vernetzte Energiesysteme +49 (0)441 99906 164 Amelia.Nadal@dlr.de