

278.478: Mechatronics

Lecture 3 – Stepper Motors

Dr. Khalid Arif

Contents

- Introduction
- Application examples
- Types of stepper motors
- Stepper motor wirings
- Stepper drive techniques
- Phase current waveforms
- Stepper mathematical model
- Torque characteristics
- Stepper dynamics
- Stepper resonance

Stepper motor (Cleverness with magnets and coils)

- Stepping motors convert switched excitation changes to precise increments of rotation
- This property allows stepping motors to be used in positioning systems without the need for feedback
- Rotor positioning is achieved by magnetic alignment of rotor and stator poles

Stepper motor (Six pole rotor, two electromagnets)

How many steps are required for one complete revolution?

Stepper motor applications

Stepping Motor to move read-write head

Rotor Coils

CNC Stepping Motor

Stepper motor applications

Paper feeder on printers

Lavet stepper motor used in clocks

Types of stepper motors

- Permanent magnet stepper motor
- Variable reluctance stepper motor
- Hybrid stepper motor
- Lavet type stepper motor

Permanent magnet (PM) stepper motor

Variable reluctance (VR) stepper motor

VR stepper motor relies upon magnetic flux seeking the lowest reluctance path through a magnetic circuit.

- The rotor is a soft iron cylinder with salient (protruding) poles.
- This is the least complex, most inexpensive stepper motor.
- The only type of stepper with <u>no detent</u> torque in hand rotation of a deenergized motor shaft.
- Large step angle

VR stepper motor – stepping sequence

Hybrid stepper motor

Hybrid stepper motor

Offset teeth in hybrid rotor

Hybrid stepper motor – stepping sequence

Lavet type stepper motor

Comparison of motor types

- Permanent-magnet stepping motors are inferior in performance to hybrid motors, and are only used in specialised applications
- Hybrid motors have a smaller step size and a higher torque than a similar VR motor
- Hybrid motors also have a detent torque
- Hybrid motors have 2, rather than 3/4, windings
- VR motors have a lower rotor inertia than hybrid motors

Stepper motor wiring

Winding direction is important

Stepper motor wiring – bifilar windings

Comparison of conventional and bifilar windings

Driving stepper motors

Bipolar drive

Unipolar drive

Stepper drive circuits – L/R & L/nR drive

Ic = Vs/(Rc+Rs)t = L/(Rc+Rs)

Stepper drive circuits – Chopper drive

L/R drive - Stator winding excitation and de-excitation

Stator winding excitation

$$R.I + L.\frac{dI}{dt} = V_0$$

$$I = I_0.\left\{1 - \exp\frac{-t}{T_0}\right\} \quad \text{where :} \quad I_0 = \frac{V_0}{R} \quad T_0 = \frac{L}{R}$$

Stator winding de-excitation

$$R.I + L.\frac{dI}{dt} = -V_0$$

$$I = I_0.\left\{2\exp{\frac{-t}{T_0}} - 1\right\} \quad \text{where}: \quad I_0 = \frac{V_0}{R} \quad T_0 = \frac{L}{R}$$

L/R drive - Current waveforms

Chopper drive - Current waveform

When stator current reaches nominal current the chopper drives goes into freewheel mode

$$T_0 \approx \frac{I_0.L}{V_0}$$
 $T_0 = \frac{L}{R}$

Current waveforms for L/R, L/nR and switch mode drive

Current

Example (current controller for stepping motors)

Example (L6207: dual full bridge driver with PWM current controller)

Unipolar drive circuit

- - - freewheeling/flyback current path

Bipolar drive circuit

One phase of a transistor bridge bipolar drive circuit
- - - freewheeling/flyback current path after T1 and T4 turn off

Phase current waveforms (or drive sequences)

Coils

- 1. Wave drive
- 2. Full step drive
- 3. Half step drive
- 4. Micro-stepping

Unipolar motor

WAVE DRIVE

Wave drive

Step	φ ₁	φ ₂	ф ₃	ϕ_4
1	ON	OFF	OFF	OFF
2	OFF	ON	OFF	OFF
3	OFF	OFF	ON	OFF
4	OFF	OFF	OFF	ON

This sequence repeats after 4 steps

Unipolar full-step phase sequence

Standard unipolar stepper motor field coil schematic

Step	ϕ_1	ф2	ф ₃	ϕ_4
1	ON	OFF	ON	OFF
2	ON	OFF	OFF	ON
3	OFF	ON	OFF	ON
4	OFF	ON	ON	OFF

Unipolar half-step phase sequence

Bipolar full-step phase sequence

CW

CCW

Standard bipolar stepper motor field coil schematic

Bipolar full-step phase sequence

Step	φ_1 and φ_4	φ_2 and φ_3	φ_5 and φ_8	ϕ_6 and ϕ_7
1	ON	OFF	ON	OFF
2	ON	OFF	OFF	ON
3	OFF	ON	OFF	ON
4	OFF	ON	ON	OFF

Bipolar half-step phase sequence

Step	φ_1 and φ_4	φ_2 and φ_3	φ_5 and φ_8	ϕ_6 and ϕ_7
1	ON	OFF	ON	OFF
1.5	ON	OFF	OFF	OFF
2	ON	OFF	OFF	ON
2.5	OFF	OFF	OFF	ON
3	OFF	ON	OFF	OFF
3.5	OFF	ON	OFF	OFF
4	OFF	ON	ON	OFF
4.5	OFF	OFF	ON	OFF

Current waveform to reduce half-step torque ripple

Full and half stepping (re-visit)

Half-step sequence

- Micro-stepping involves interpolating between full or half-step positions
- This is achieved by linear control of the stator winding drive currents
- Micro-stepping provides greater precision and smoother operation at low speeds, and eliminates resonance
- Micro-stepping requires complex linear drives together with DACs to set the winding currents

In sine-cosine micro-stepping the currents in the A and B stator windings are given by:

$$i_a = i_0 \sin \alpha$$

$$i_b = i_0 \cos \alpha$$

where varying α from 0 to $\pi/2$ moves the rotor position by one full step

- In principle there is no limit to the number to the number of micro-step precision
- In practice there is little point in using more than 256 micro-steps between full steps

Square path

Circular path

Arbitrary path

- The apparent superior precision of micro-stepping is only realised in practice in the absence of significant coulomb friction and load torque
- The actual shape of the static torque curve is not exactly sinusoidal; this results in the micro steps being non-uniformly spaced
- DAC quantisation will also result in non-uniformly spaced micro steps
- Very high step rates are necessary to achieve normal rotation speeds

General stepper motor driver architecture

EXAMPLE

L6506 + L298

L297 + L298

Generating the drive (practical way)

- Numerous stepper motor controllers with serial, USB or PCI interfaces are available.
- Design engineers (including mechatronics engineers) usually only select appropriate controllers for their designs.

Get Your Motor Motor Motor Motor Running!

Full featured 4 Axis motor controller with power drivers

- Four 1 Amp chopper (PWM) drives
- Fully independent acceleration ramps, speeds and positions
- · RS232, RS485 or USB based communications

