How to deal with data?

IFT6758, Fall 2020; Lecture 1

Data is variable

Data is variable

Data are the result of deliberate human intervention

Data is variable

- Data are the result of deliberate human intervention
- Data is varied across domains and within domains

Data (+ people who collect them) are varied

- Data (+ people who collect them) are varied
 - Some amount of preparation is always needed.

- Data (+ people who collect them) are varied
 - Some amount of preparation is always needed.
 - Example: tidying data, a small part of Data Cleaning process

- Data (+ people who collect them) are varied
 - Some amount of preparation is always needed.
 - Example: tidying data, a small part of Data Cleaning process
 - Reading: How to share data with a statistician

Tidy data

- Data (+ people who collect them) are varied
 - Some amount of preparation is always needed.
 - Example: tidying data, a small part of Data Cleaning process
 - Reading: How to share data with a statistician

<u>Tidy data</u>

<u>Tidy data in Python</u>

Understand what the variables are

- Understand what the variables are
- Manage column types

- Understand what the variables are
- Manage column types
- Handle missing values

- Understand what the variables are
- Manage column types
- Handle missing values
- Join, reorganize, and tidy

Understand the data: Metadata

- What do the tables mean?
- What do the columns mean?
- How were the data collected?

Understand the data: Metadata

- What do the tables mean?
- What do the columns mean?
- How were the data collected?

Data come in different "types"

- Data come in different "types"
 - Numeric, (ordered) categorical, dates, (positive) integers

- Data come in different "types"
 - Numeric, (ordered) categorical, dates, (positive) integers
- Type should be (made) consistent with the purpose

- Data come in different "types"
 - Numeric, (ordered) categorical, dates, (positive) integers
- Type should be (made) consistent with the purpose
 - Chicago Taxi Trips (BigQuery Dataset)
 - includes taxi trips (7000 licensed taxicabs) from 2013 to the present


```
In [6]:
taxi.dtypes
Out [6]:
unique_key
                           object
taxi_id
                           object
trip_start_timestamp
                           object
trip_end_timestamp
                           object
trip_seconds
                          float64
trip_miles
                          float64
pickup_census_tract
                          float64
dropoff_census_tract
                          float64
pickup_community_area
                          float64
dropoff_community_area
                          float64
fare
                          float64
tips
                          float64
tolls
                          float64
                          float64
extras
trip_total
                          float64
                           object
payment_type
                           object
company
pickup_latitude
                          float64
pickup_longitude
                          float64
pickup_location
                          float64
dropoff_latitude
                          float64
dropoff_longitude
                          float64
dropoff_location
                          float64
dtype: object
```

- Use <u>Python datetime package</u> and pandas' <u>timestamp</u> and <u>to_datetime</u>
- Lets you convert arbitrary strings into datetime objects

- Use <u>Python datetime package</u> and pandas' <u>timestamp</u> and <u>to_datetime</u>
- Lets you convert arbitrary strings into datetime objects

"22-01-2019T15:00:02" datetime.datetime(2019, 1, 22, 15, 0, 2)

- Use <u>Python datetime package</u> and pandas' <u>timestamp</u> and <u>to_datetime</u>
- Lets you convert arbitrary strings into datetime objects

"22-01-2019T15:00:02" datetime.datetime(2019, 1, 22, 15, 0, 2)

Once it is in datetime format, new attributes can be derived

- Use <u>Python datetime package</u> and pandas' <u>timestamp</u> and <u>to_datetime</u>
- Lets you convert arbitrary strings into datetime objects

"22-01-2019T15:00:02" datetime.datetime(2019, 1, 22, 15, 0, 2)

Once it is in datetime format, new attributes can be derived

import datetime

x = datetime.datetime(2018, 6, 1)

print(x.strftime("%B"))

June

- Use <u>Python datetime package</u> and pandas' <u>timestamp</u> and <u>to_datetime</u>
- Lets you convert arbitrary strings into datetime objects

"22-01-2019T15:00:02" datetime.datetime(2019, 1, 22, 15, 0, 2)

Once it is in datetime format, new attributes can be derived

import datetime

x = datetime.datetime.now()

print(x.year)
print(x.strftime("%A"))

2020 Friday

Common issues

Overwhelming number of levels

Common issues

Overwhelming number of levels

Common issues

A single categorical might encode multiple pieces of information

Common issues

A single categorical might encode multiple pieces of information

Common Issues

The levels might not be consolidated

Common Issues

The levels might not be consolidated

Common Issues

You might want to convert into numerical vectors

Common Issues

You might want to convert into numerical vectors

yes	no	maybe
1	0	0
1	0	0
0	1	0
0	0	1
0	1	0

- Real-world data can be missing due to various reasons: e.g., observations that were not recorded and data corruption.
- Handling missing values is important. Many machine learning algorithms do not support data with missing values.
- Many ways.

- Real-world data can be missing due to various reasons: e.g., observations that were not recorded and data corruption.
- Handling missing values is important. Many machine learning algorithms do not support data with missing values.
- Many ways.
 - Imputation and deletion

- Real-world data can be missing due to various reasons: e.g., observations that were not recorded and data corruption.
- Handling missing values is important. Many machine learning algorithms do not support data with missing values.
- Many ways.
 - Imputation and deletion

- Real-world data can be missing due to various reasons: e.g., observations that were not recorded and data corruption.
- Handling missing values is important. Many machine learning algorithms do not support data with missing values.
- Many ways.
 - Imputation and deletion
 - A useful tutorial

Data might be available in messy forms

- Data might be available in messy forms
 - Columns are stored across tables, relational data

- Data might be available in messy forms
 - Columns are stored across tables, relational data

- Data might be available in messy forms
 - Columns are stored across tables, relational data
 - Rows are written to different files

- Data might be available in messy forms
 - Columns are stored across tables, relational data
 - Rows are written to different files

- Data might be available in messy forms
 - Columns are stored across tables, relational data
 - Rows are written to different files
 - May need to link to nontabular signals

- Data might be available in messy forms
 - Columns are stored across tables, relational data
 - Rows are written to different files
 - May need to link to nontabular signals

Painful? Intriguing?

Persist. There are so many datesets to have fun with.

Painful? Intriguing?

Persist. There are so many datesets to have fun with.

Painful? Intriguing?

- Persist. There are so many datesets to have fun with.
- Embrace complexity and move forward