eventually become misaligned to cause reading errors. The present underlying inventive concept is to have the reference levels also reflect the same cycling suffered by the memory cells. This is achieved by the implementation of local reference cells in addition to the master reference cells. The local reference cells are subjected to the same program/erase cycling as the memory cells. Every time after an erase operation, the reference levels in the master reference cells are re-copied into the corresponding set of local reference cells. Memory cells are then read with respect to the reference levels of the closely tracking local reference cells. In this way, the deviation in cell characteristics after each program/erase cycle is automatically compensated for. The proper partitioning of the transforming threshold window is therefore maintained so that the memory states can be read correctly even after many cycles.

5

10

15

20

25

TP

TP

30

Figure 18 illustrates the local cells referencing implementation for Flash EEprom. In the Flash EEprom array 1060 (Fig. 12), each group of memory cells which is collectively erased or programmed is called a sector. The term "Flash sector" is analogous to the term "sector" used in magnetic disk storage devices and they are used interchangeably here. The EEprom array is grouped into Flash sectors such as 1501, 1503 and 1505. While all memory cells in a Flash sector suffer the same cycling, different Flash sectors may undergo different cycling. In order to track each Flash sector properly, a set of memory cells in each Flash sector is set aside for use as local reference cells. For example, after the Flash sector 1503 has been erased, the reference levels in the master reference cells 1507 are reprogrammed into the local reference cells associated with the Flash sector 1503. Until the next erase cycle, the read circuits 1513 will continue to read the memory cells within the Flash sector 1503 with respect to the re-programmed reference levels.

Figures 19(1)-19(7) illustrates the algorithm to re-program a sector's reference cells. In particular, figures 19(1)-19(3) relate to erasing the sector's local reference cells to their "erased states". Thus in figure 19(1), a pulse of erasing voltage is applied to all the sector's memory cells including the local reference cells

In figure 19(2), all the local reference cells are then read with respect to the master references cells to verify if they have all been erased to the "erased state". As long as one cell is found to be otherwise, another pulse of erasing voltage will be applied to all the cells. This process is repeated until all the local reference cells in the sector are verified to be in the "erased" state (figure 19(3)).

Figures 19(4)-19(7) relate to programming the local reference cells in the sector. After all the local reference cells in the sector have been verified to be in the "erased" state, a pulse of programming voltage is applied in figure 19(4) only to all the local reference cells. This is followed in figure 19(5) by reading the local reference cells with respect to the master reference cells to verify if every one of the local reference cells is programmed to the same state as the corresponding master reference cell. For those local reference cells not so verified, another pulse of programming voltage is selectively applied to them alone (figure 19(6)). This process is repeated until all the local reference cells are correctly verified (figure 19(7)) to be programmed to the various breakpoint threshold levels in the threshold window.

Once the local reference cells in the sector have been re-programmed, they are used directly or indirectly to erase verify, program verify or read the sector's addressed memory cells.

Figure 20A illustrates one embodiment in which the local reference cells are used directly to read or program/erase verify the sector's memory cells. Thus, during those operations, a parallel pair of switches 1525 is enabled by a READ signal and the sense amplifier 1440 will read the sector's addressed memory cells 1523 with respect to each of the sector's local reference cells 1525. During program/erase verify of the local reference cells (as illustrated in figure 19), another parallel pair of switches 1527 enables reading of the local reference cells 1525 relative to the master reference cells 1529.

Figure 20B illustrates the algorithm for using the local reference cells directly to read or program/erase verify the sector's addressed memory cells.

Figure 21A illustrates an alternative embodiment in which the local

TP

TP 5

TP 10

TP

15

20

25

30