ant = $\frac{a_0 + b_0}{2}$, $b_{n+1} = \sqrt{a_n \cdot b_n}$

rusing AM-EM inequality:

4n: n>1 => bn = an

 $\therefore ant1 = \underbrace{an + bn}_{2} \leq \underbrace{an + an}_{2} = an$

: $\{an3n\in\mathbb{N} \text{ is non-increasing}\}$ Since $a_0,b_0>0$: $a_n,b_n>0$ \text{ non-increasing and bounded below \Rightarrow lim an exist $n\to\infty$

call it as.

similarly, $b_{n+1} = \sqrt{a_n \cdot b_n}$ $7/\sqrt{b_n^2} = b_n$

: {bn} is non-decreasing

but since In: bn = an 1 an 191,

{bn} is bounded above by as and is non-deckasing.

... {bn} also converges

The suffices to show that sup $bn = \inf an$. consider $L = \sup bn$ i.e. $\forall n \in N : bn \leq L$

and we know by £ an

assume that I me N: am< L
then am is another upper bound
on {bn}.

But this is a contradiction since L is the least upon bound ... $\forall n \in \mathbb{N}$: $b_n \stackrel{?}{=} L \stackrel{?}{=} a_n$

assume ne nave a smaller bour bound L'on {an} s+

.. L= inf (an3.

(I) We need to prove that f is a construction map. Let $x,y \in \mathbb{R}^+$

$$\left|\begin{array}{cc} \frac{1}{2}(x) - \frac{1}{2}(\lambda) \right| = \left| \begin{array}{cc} \frac{1+\lambda_{\mu}}{1} - \frac{1+\lambda_{\mu}}{1} \end{array} \right| = \left| \begin{array}{cc} \frac{1+\lambda_{\mu}}{1+\lambda_{\mu}-(1+\lambda_{\mu})} \end{array} \right| = \left| \begin{array}{cc} \frac{1+\lambda_{\mu}}{\lambda_{\mu}-\lambda_{\mu}} \end{array} \right|$$

WLOG, let
$$x \leq y$$

$$y^{n} - x^{n} \leq n(y-x)y^{n-1}$$

$$\leq |y-x| \cdot \frac{ny^{n-1}}{(1+x^{n})(1+y^{n})}$$

where
$$C = \frac{hy^{n-1}}{(1+y^n)(1+y^n)} \stackrel{?}{=} \frac{hy^{n-1}}{(1+y^n)^2} \stackrel{!}{=} \frac{hy^{n-1}}{1+2y^n+1}$$

K do w need countaide as in infinite??

(B) We need A = R totally bounded and closed such that its limit points form a courtable set.

let A= { \(\text{\text{Mnn}} \), n \(\text{NN} \) \(\text{V} \) \(\text{V} \) which is closed.

It is totally bounded since \(\text{Y70} \), \(B(0, r) \) contains all but finishly many elements \(\text{g} \times \). Then \(\{ a \in A \\ B(0, r) \} \) is finik so it can be easily correct by \(B(a, r) \).

This set is finik and corres \(A \cdots \cdots \) A is compact and has \(\{ 0 \) is a limit point \(\boldsymbol{\text{M}} \).

OI let $A_n:=(\frac{1}{n+2},\frac{1}{n})$ for n=1 let $x\in(0,1)$. Then $\exists m\in\mathbb{N}: \frac{1}{m+2}<\infty<\frac{1}{m}$ by auchimedown priociple. Therefore $\{A_n\}_{n=1}$ covers $\{0,1\}$.

Let $\{An\}_{n\in I}$ be a finite subcollection i.e. $|I|<\infty$. Sup (I) exists and call it k. But then $\frac{1}{k+3}$ is not contained in the subcollection. If is not a subcore $\{(0,1),\dots,(0,1)\}$.

(Q5) we use diagonalization to slow it's not countable. Assume there exist some enumerations $\{x_n\}_{n\in\mathbb{N}}$, $x_n=0$ -dm dn2... where dij $\{x_n\}_{n\in\mathbb{N}}$

Construct another sequence $dn = \begin{cases} u & \text{if } dnn = 7 \\ 7 & \text{otherwise} \end{cases}$

now consider $x = q_1 q_2 q_3 \cdots$, $x \in E$

however we cannot have $x \notin \{x_n : n \in \mathbb{N}\}$ as it differ from x_n at n^{n} algit. So we get a construction i.e E is not constructe.

- ii) if E dense in [0,1] then I a sequence that conveyes to 0. But for E=0.4 $ue cannot find any <math>x\in E$ s.t. |x-0|< E $i.e \ \ \forall x\in E \ \ |x-0|>i \in E$ $\therefore E \text{ is not dense}.$
- iii) Let $E' \subset E$ be infinite. Since E' is bounded, it has a limit point x. : even both B(x, x) has infinitely mark points $g \in E'$.

 Let $\mathfrak{F}_n = \frac{1}{10^n}$, $\forall x \in E'$ set $|x x_n| < \mathfrak{F}_n$.

- iv) we need to show that E is closed with no isolated points.

 Novem it is clear that 0-4 E is isolated so it is not perfect.
- (Q6) Let X be separable i.e. it has a countrible dense subset A set $\overline{A} = X$ the natural next step is to consider $\{Va\}$ the calculation of open balls in X with reliconal radius and centers in D. It is countrible as A countrible and A countrible.

let $0 \in X$ be open; let $x \in X$. Consider an open bout B(x,r) s.t $B \in V$. Also consider $B' \in B$ with bodies T/2.

By density of A, B'NA $\neq \emptyset$, so let $z \in D \cap B'$.

we can find rational q: 0 < p(x,z) < q < r/2.

Consider B''(p(m,x),q) . Then $u \in B'' \subset O$ and $B'' \in \{Va\}$ so we are done \blacksquare

OF) Let X be a compact metric space. Using the hint: Fix $n \in \mathbb{N}$ and A consider the cover $\{U_n\}_{n \neq 1}$ where $U_n := B(x_n, V_n)$ for some $x_n \in X$.

By corresponding, for each $n \in \mathbb{N}$, we can also find a finile subcorn V_n of X.

Consider the correction $B = \{V_n : n \in \mathbb{N}\}$ which is constable since each Y_n finile and there are correctly many.

We are done if we show B in a basis.

let $x \in X$ and $O \subseteq X$ open s.4 $x \in O$. Then , we can find some $N \in \mathbb{N}$, such that $B(x, V_n) \subseteq G$ and since $V_m > n$: $V_m = V_m =$

It is clear that if X is how a corrutable basis, it is suppressible. Let B be a constable basis $B = \{0: i \in \mathbb{N}\}$ Set $A = \{a_i: a_i \in 0:\}$ which is constable subset and dense

 $\forall x \in X$, $\exists 0x \in B$ $\Rightarrow x \in 0x$ by defining a basis and them $\exists ax \in 0x$ so. $0x \cap A \neq \emptyset$

- (18) Using the hint, \times has a countable basis. Let $\{V_n\}_{n\in\mathbb{N}}$ be an open cover s.t. for all $x\in G_n$, $\exists V_n$ s.t. $x\in V_n\subseteq G_n$. The can we take to show every cover has a countable subcover.
 - Let $\{G_n\}_{n\in\mathbb{N}}$ be the constable subscribe. Assum, by water $\not\ni$ finite subscribed fake $F_n=(G_1V\cdots VG_n)^C$ then for each $n\in\mathbb{N}$, F_n is non-empty and $F_1\supset F_2\supset\cdots$ is nested. But since $\bigvee_{n=1}^\infty G_n$ were X, $\bigcap_{n=1}^\infty F_n=\emptyset$.

Considur an infin subout $E \subseteq X$ s.4 $E = \{x_n \in F_n : n \in \mathbb{N} \}$. Let $x \in X$ be a limit point of E. Then $x \in G_n$ for some $n \in \mathbb{N}$. Since G_n open, $\exists r : B(x,r) \in G_n$.

Chuse m>n, then xm & Fm = (6, V ... V & , V ... am) imple xm & Blx C).

 $B(x, \varepsilon)$. has may finished many possess $E' < \varepsilon$ s. if $B(x, \varepsilon') \cap E = \emptyset$ which conducted $x \in \mathbb{R}$ to \mathbb{R}

:X how a finite subcom.

Qq)
$$S_1 = 0$$
, $S_2 = 1/2$
 $S_3 = 1/4$, $S_4 = 3/8$
 $S_5 = 3/8$, $S_6 = 7/8$

it seems as the $\{S_{2mil}\} \rightarrow 1/2$ and $\{S_{2mil}\} \rightarrow 1$

By substitution $S_{2m} = \frac{1}{2} \left(\frac{1}{2} + \frac{S_{2(m-1)}}{2} \right)$ clavim: $S_{2m} = \frac{1}{2} \left(\frac{1}{2^m} \right)$

cleable time for m=0 assume for m.

We show for $S_{2m+2} = \frac{1}{2} \left(\frac{1}{2} + S_{2m} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(1 - \frac{1}{2^{n}} \right) \right)$

$$=\frac{1}{2}\left(1-\frac{1}{2^{n+1}}\right)$$

 $\lim_{n\to\infty} \inf s_n = \lim_{n\to\infty} \frac{1}{2} \left(1 - \frac{1}{2^n}\right) = \frac{1}{2}$

By substitution, also $S_{2m+1} = \frac{1}{2} + \frac{1}{2} S_{2m-1}$

daim: $S_{2m-1} = 1 - \frac{1}{2m}$

dealy the for m=1

assume m.

$$S_{2m+1} = \frac{1}{2} + \frac{1}{2} S_{2n-1} = \frac{1}{2} + \frac{1}{2} \left(1 - \frac{1}{2n}\right)$$

$$= 1 - \frac{1}{2^{m+1}}$$

:. Lim sup
$$S_n = \lim_{n \to \infty} \left(1 - \frac{1}{2^n} \right) = \frac{1}{2^n}$$

... we have upper Umit 1, bown limit 1/2.

: sup{an+bn} & sup{an}+ sup{bn}

Then 4mm, we have

:. Lim sup {ant bn} < limsup ant lim sup bn.