

ENGENHARIA INFORMÁTICA (deslizante) – 1º ano ANÁLISE MATEMÁTICA I

Teste 1

29-junho-2016 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a função $f(x) = \frac{3}{\pi} arcotg(-\sqrt{3}) 4cos(3x \frac{\pi}{6})$.
 - a. Determine o domínio da função.
 - b. Calcule $f(\frac{3\pi}{4})$.
 - c. Determine os zeros da função.
 - d. Caracterize a função inversa de f, indicando domínio, contradomínio e expressão analítica.
 - e. Comente a afirmação: $\frac{8\pi}{3} 2arcotg(2x-1) = 0$
- 2. Considere a região *E* representada na figura seguinte:

- a. Usando integrais, calcule a área de E.
- b. Usando integrais, <u>indique expressões simplificadas</u> que lhe permitam calcular os volumes dos sólidos de revolução obtidos a partir da rotação da região E em torno:
 - I. do eixo OX;
 - II. do eixo OY.
- 3. Considere a região $B = \{(x, y) \in \Re^2 : (x-1)^2 + (y+1)^2 \le 1 \land x \le -y-1\}$.
 - a. Represente graficamente a região B.
 - b. Reescreva o domínio plano na forma: $B = \{(x, y) \in \Re^2 : g(x) \le y \le f(x) \land a \le x \le b\}$.
 - c. Utilizando o cálculo integral identifique, <u>sem calcular</u>, uma expressão simplificada que lhe permita determinar:
 - i. a medida da área do domínio B.
 - ii. a medida do volume do sólido de revolução que se obtém por rotação da região *B* em torno do eixo das abcissas.

- iii. a medida do perímetro da região B.
- 4. Considere os seguintes integrais:

$$I. \int_{0}^{+\infty} \frac{e^{x}}{4 + e^{2x}} dx$$

II.
$$\int_{1/2}^{1} \frac{e}{x \ln^2(x)} dx$$

- a. Identifique, justificando, cada um dos integrais.
- b. Qual o valor lógico das seguintes afirmações? Justifique.
 - i. "A natureza do integral de primeira espécie é convergente"
 - ii. "O integral impróprio de segunda espécie é convergente"
- c. Considere a seguinte região $A = \left\{ (x, y) \in \Re^2 : 0 \le y \le \frac{e^x}{4 + e^{2x}} \land x \ge -1 \right\}$. Determine a área da região A, caso seja possível.

(<u>Cotação</u>												
	1a	1b	1c	1d	1e	2a	2b	3a	3b	3c	4a	4b	4c
	0,5	1	0,75	1,25	0,5	1,5	3	1	1	4,5	1	2,5	1,5

ENGENHARIA INFORMÁTICA (deslizante) – 1º ano ANÁLISE MATEMÁTICA I

Teste 2

29-junho-2016 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a seguinte equação diferencial cos(x)y' sen(x)y = 3sen(x) 2
 - a. Justifique que se trata de uma equação linear de 1ª ordem e resolva-a.
 - b. Determine a solução particular que satisfaz a condição $y(\pi) = 1$.
 - c. Verifique se y = -3 2xsec(x) é solução da equação dada.
- 2. Resolva a seguinte equação diferencial $\frac{1}{t}x' \sqrt{\frac{1-4x^2}{1+t^2}} = 0$.
- 3. Complete [..] com expressões por forma a obter primitivas imediatas, justificando quais as regras que foram aplicadas:

i.
$$\int \frac{sen[]}{\sqrt{sec^3(2x)}} dx$$
 ii.
$$\int \frac{e^{2x+1}}{\sqrt{4-e^{[.]}}} dx$$

ii.
$$\int \frac{e^{2x+1}}{\sqrt{4-e^{[..]}}} dx$$

- 4-Resolva primitiva $\int \frac{(1+e^{-x})^2}{e^{2x}} dx$ utilizando a técnica da decomposição e a primitivação imediata.
- 5-Calcule $\int \frac{\sqrt[6]{\ln x}}{x(\sqrt[3]{\ln x} 1)} dx$ recorrendo à mudança de variável $\ln x = t^6$ com $x \in [1, +\infty[$.
- 6-Resolva a primitiva $\int \frac{x^3}{\sqrt[6]{1+x^2}} dx$ utilizando para o efeito a técnica de primitivação por partes.
- 7-Determine as seguintes primitivas:

a.
$$\int \frac{2tg(\sqrt{x})}{\sqrt{x}} dx$$

b.
$$\int tg^3(x) \sec(x) dx$$

b.
$$\int tg^3(x) \sec(x) dx$$
 c. $\int \frac{2}{(x-1)(x^2+2x-3)} dx$

Cotação

1a	1b	1c	2a	3	4	5	6	7a	7b	7c
1,5	0,5	1	1	3	2	3	2	2	2	2

ENGENHARIA INFORMÁTICA (deslizante) – 1º ano ANÁLISE MATEMÁTICA I

Exame

29-junho-2016 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a função $f(x) = \frac{3}{\pi} arcotg(-\sqrt{3}) 4cos(3x \frac{\pi}{6})$.
 - a. Calcule $f(\frac{3\pi}{4})$.
 - b. Caracterize a função inversa de f, indicando domínio, contradomínio e expressão analítica.
- 2. Considere a região $B = \{(x, y) \in \Re^2 : (x-1)^2 + (y+1)^2 \le 1 \land x \le -y 1\}$.
 - a. Represente graficamente a região B.
 - b. Reescreva o domínio plano da forma: $B = \{(x, y) \in \Re^2 : g(x) \le y \le f(x) \land a \le x \le b\}$.
 - c. Utilizando o cálculo integral identifique, <u>sem calcular</u>, uma expressão simplificada que lhe permita determinar:
 - i. a medida da área do domínio B.
 - ii. a medida do volume do sólido de revolução que se obtém por rotação da região *B* em torno do eixo das abcissas.
 - iii. a medida do perímetro da região B.
- 3. Considere os seguintes integrais:

$$I. \quad \int_0^{+\infty} \frac{e^x}{4 + e^{2x}} dx$$

II.
$$\int_{1/2}^{1} \frac{e}{x \ln^2(x)} dx$$

- a. Identifique, justificando, cada um dos integrais.
- b. Justifique o valor lógico da seguinte afirmação: "A natureza do integral de primeira espécie é convergente"
- 4. Resolva a seguinte equação diferencial cos(x)y' sen(x)y = 3sen(x) 2, sujeita à condição inicial $y(\pi) = 1$.
- 5. Calcule $\int \frac{\sqrt[6]{\ln x}}{x(\sqrt[3]{\ln x} 1)} dx$ recorrendo à mudança de variável $\ln x = t^6$ com $x \in [1, +\infty[$.
- 6. Determine as seguintes primitivas:

a.
$$\int \frac{(1+e^{-x})^2}{e^{2x}} dx$$

b.
$$\int \frac{x^3}{\sqrt[6]{1+x^2}} dx$$

c.
$$\int tg^3(x) \sec(x) dx$$

d.
$$\int \frac{2}{(x-1)(x^2+2x-3)} dx$$

<u>Cotação</u>												
	1a	1b	2a	2b	2c	3	4	5	6a	6b	6c	6d
	0,75	1,25	1	1	4	2	2	2	1,5	1,5	1,5	1,5