Elektronikpraktikum Auswertung: Versuchstag 4 Operationsverstärker am Beispiel eines empfindlichen Messverstärkers zur Aufnahme eines Elektrokkardiogramms

Gruppe 01 Patrick Heuer Benjamin Lotter

Übersicht

- Einführung
 - Versuchseinführung
 - Operationsverstärker
- 2 Differenzverstärker
- Invertierender Verstärker
- 4 Aktiver Tiefpass 4. Ordnung
- 5 EKG-Verstärkerschaltung
- 6 Komparator
- Verstärkerschaltung mit Komperator

Übersicht

- Einführung
 - Versuchseinführung
 - Operationsverstärker
- 2 Differenzverstärker
- 3 Invertierender Verstärker
- 4 Aktiver Tiefpass 4. Ordnung
- 5 EKG-Verstärkerschaltung
- 6 Komparator
- Verstärkerschaltung mit Komperator

Versuchseinführung

Ziel:

Aufnahme eines Elektrokardiogramms am Oszillokops mithilfe von Operationsverstärkern

Versuchseinführung

Definition: EKG

Das Elektrokardiogramm (EKG) ist die Aufzeichnung der Summe der elektrischen Aktivitäten aller Herzmuskelfasern. Elektrokardiogramm heißt auf Deutsch Herzspannungskurve, gelegentlich wird es auch Herzschrift genannt. (Quelle: wikipedia.de)

Deshalb notwendig:

• Empfindlicher Messverstärker der Potenzialunteschiede von $10 \mu V$ herausfilter kann

 Potentialunterschiede sehr klein

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung
- Signal sehr schwach

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung
- Signal sehr schwach
 - Verstärker mit hohem Gesamtverstärkungsfaktor G = 10000

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung
- Signal sehr schwach
 - Verstärker mit hohem Gesamtverstärkungsfaktor G = 10000
- DC-Störung

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung
- Signal sehr schwach
 - Verstärker mit hohem Gesamtverstärkungsfaktor G = 10000
- DC-Störung
 - DC-Unterdrückung (Hochpass)

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung
- Signal sehr schwach
 - Verstärker mit hohem Gesamtverstärkungsfaktor G = 10000
- DC-Störung
 - DC-Unterdrückung (Hochpass)
- 50Hz-AC-Störung

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung
- Signal sehr schwach
 - Verstärker mit hohem Gesamtverstärkungsfaktor G = 10000
- DC-Störung
 - DC-Unterdrückung (Hochpass)
- 50Hz-AC-Störung
 - Tiefpass hoher Ordnung

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung
- Signal sehr schwach
 - Verstärker mit hohem Gesamtverstärkungsfaktor G = 10000
- DC-Störung
 - DC-Unterdrückung (Hochpass)
- 50Hz-AC-Störung
 - Tiefpass hoher Ordnung
- Visualisierung mit LED

- Potentialunterschiede sehr klein
 - Differenzverstärker mit hoher
 Gleichtaktunterdrückung
- Signal sehr schwach
 - Verstärker mit hohem Gesamtverstärkungsfaktor G = 10000
- DC-Störung
 - DC-Unterdrückung (Hochpass)
- 50*Hz*-AC-Störung
 - Tiefpass hoher Ordnung
- Visualisierung mit LED
 - Komparator

Gesamtschaltbild

Operationsverstärker

- Variables Bauteil f
 ür verschiedene Schaltungen
- Aufbau:
 - invertierender Eingang
 - nichtinvertierender Eingang
 - Ausgang
 - Versorgungseingänge
- Eigenschaften (ideal):
 - unendlich große
 Gegentaktverstärkung
 - perfekte Gleichtaktunterdrückung
 - unendliche Verstärkung

Operationsverstärker

Goldene Regeln:

Oer Ausgang wird stets Versuchen eine Spannung auszugeben so dass die Differenz der Eingansspannung 0 ist:

$$\Delta U = U_+ - U_- = 0$$

In die Eingänge + und – fließt kein Strom:

$$I_{\perp} = I_{-} = 0$$

Übersicht

- Einführung
 - Versuchseinführung
 - Operationsverstärker
- 2 Differenzverstärker
- 3 Invertierender Verstärker
- 4 Aktiver Tiefpass 4. Ordnung
- 5 EKG-Verstärkerschaltung
- 6 Komparator
- Verstärkerschaltung mit Komperator

Differenzverstärker

Differenzverstärker

- ähnelt dem invertiertem Verstärker
- bestimmt Potentialdifferenzen an den Anschlüssen

Versuchsaufbau

Versuch

- Aufbau wurde mit DAQ-Box Verbunden
- Bestimmung von Gegentaktverstärkung, Gleichtaktverstäkrung und Gleichtaktunterdrückung

Gleichtaktunterdrückung

Gegentaktverstärkung:

$$G_{diff} = \frac{\partial U_{out}}{\partial U_{diff}} = -\frac{R_3}{R_1} = -4.7$$

Gleichtaktverstärkung

$$G_{CM}=0$$

Gleichtaktunterdrückung

$$CMRR = \frac{|G_{diff}|}{|G_{CM}|} = \infty$$

CMRR

Gleichtaktunterdrückung

	Theorie	Messung
G_{diff}	-4.7	-4.704
G_{CM}	0 -0.0004	
CMRR	∞	11760

Versuchsaufbau mit Kondensator

Versuch

- Einbau von Kodensatoren und Erhöhung der Widerstände
- Analyse der Schaltung
- Analyse des EKG-Signals

Übertragfunktion

Übertragfunktion

$$|\frac{U_{in}}{U_{out}}| = \frac{1}{\sqrt{R_1^2 + \frac{1}{(2\pi f \cdot C_1}^2} \cdot \sqrt{\frac{1}{R_2^2} + (2\pi f \cdot C_3)^2}}$$

Bodediagramm

Ergebnis

- Werte Stimmen nicht mit erwartetem Verlauf Überein
- Wahrscheinlich Fehler bei Messung (Spannung falsch abgegriffen)

Einführung Differenzverstärker Invertierender Verstärker Aktiver Tiefpass 4. Ordnung EKG-Verstärkerschaltung Kom

Störungen im EKG

Herzschlag

- Herzschlag ist erkennber
- ullet Starkes Rauschen o noch keine Messungen möglich

Übersicht

- Einführung
 - Versuchseinführung
 - Operationsverstärker
- 2 Differenzverstärker
- 3 Invertierender Verstärker
- 4 Aktiver Tiefpass 4. Ordnung
- 5 EKG-Verstärkerschaltung
- 6 Komparator
- Verstärkerschaltung mit Komperator

Invertierender Verstärker

Invertierender Verstärker

- U_{in} liegt auf invertierendem Eingang
- Uout Rückgekoppelt mit Uin.
- Goldene Regel: OPV wird versuchen U_{out} so auszugeben dass Eingangsdifferenz = 0

Invertierender Verstärker

Technische Funktionsweise:

• OPV gibt Spannung U_{R_2} so aus dass $U_{diff} = 0$:

$$U_a = -U_{R_1}$$

• Da $I_{-} = 0$, muss $I_{R_1} = I_{R_2} = I$:

$$U_a = -U_{R_1} = -I \cdot R_2 = -\frac{U_e}{R_1} \cdot R_2 = -\frac{R_2}{R_1} \cdot U_e$$

• Also gilt für die Verstärkung:

$$V = \frac{U_a}{U_a} = -\frac{R_2}{R_1}$$

Versuchsaufbau

Versuch

- ullet Aufbau wurde mit Batteriespannung $\pm 9V$ betrieben
- Bestimmung der Spannungsverstärkung

Bestimmung der Verstärkung

Verstärkung

Theoretischer Wert:

$$V = -\frac{R_2}{R_1} = -\frac{-47k\Omega}{10k\Omega} = -4.7$$

• Ermittelter Wert (Fit):

$$V = -4.65$$

Bodediagramm

- Hohe Verstärkung bei niedrigen Frequenzen:
- Zusammenbruch bei hohen Frequenzen: Tiefpass mit 3dB-Frequenz: 690kHz Messgeräten

Versuchsaufbau mit Kondensator

Versuch

- Aufbau wurde mit Batteriespannung $\pm 9V$ betrieben
- Setze $R_6 = 1M\Omega$
- Einbau von Kondensator $C_5 = 22 \mu F$ vor R_5

Theoriewerte:

• für Impedanz an R₅ gilt:

$$R_5 \rightarrow R_5 + \frac{1}{i\omega \cdot C}$$

• also folgt für Verstärkung:

$$V = \frac{R_6}{R_5 + \omega \cdot C}$$

Verstärkung mit Kondensator

Messung

• Aus Theorie folgt mit $\omega = 800 \, mHz$, $R_2 = 1 \, M\Omega$, $R_1 = 10 \, k\Omega$, $C = 22 \, \mu F$:

$$V = -99.9$$

• Mit $A_2 = 3.75V$ und $A_1 = 49.1mV$ tatsächliche Verstärkung:

$$V = \frac{A_2}{A_1} \approx -83.3$$

- DC-Offset wird fast vollständig herausgefiltert
- ullet Phasenverschiebung um $\sim 143^\circ$

Erbenisse

Ergebnisse

- höherer Widerstand R₆ verbessert Verstärkung
- Kondensator filter Offset heraus
- Potential an invertierendem Eingang wird "virtuell" genannt da dort ein Massepotenzial ohne Verbindung zur Masse anliegt

Übersicht

- Einführung
 - Versuchseinführung
 - Operationsverstärker
- 2 Differenzverstärker
- Invertierender Verstärker
- 4 Aktiver Tiefpass 4. Ordnung
- 5 EKG-Verstärkerschaltung
- 6 Komparator
- Verstärkerschaltung mit Komperator

Aktiver Tiefpass

Aktiver Tiefpass 4. Ordnung (3dB-Tschebyscheff)

- starker Filter mit steil Abfallenden Flanken
- aufgebaut aus 2 Stufen

Versuchsaufbau

Versuch

- Analyse der einzelnen Stufen
- Analyse der Reihenschaltung

1.Stufe

Ergebnisse

• Theoretische Formeln sind lang und kompliziert, daher werden hier nur die Ergebnisse gezeigt

1.Stufe

1.Stufe		
	Theorie	Messung
Welligkeit	1.10	1.18
Dämpfung pro Dekade	-40.50	-40.47
Grenzfrequenz	13.91	15.24

2.Stufe

2.Stufe		
	Theorie	Messung
Welligkeit	15.05	12.34
Dämpfung pro Dekade	-46.29	-44.98
Grenzfrequenz	32.31	36.244

Gesamtschaltung

Gesamtschaltung		
	Theorie	Messung
Welligkeit	4.69	2.64
Dämpfung pro Dekade	-90.80	-89.63
Grenzfrequenz	23.48	25.0

Vergleich

Vergleich 20Hz und 50Hz

Übersicht

- Einführung
 - Versuchseinführung
 - Operationsverstärker
- 2 Differenzverstärker
- Invertierender Verstärker
- 4 Aktiver Tiefpass 4. Ordnung
- 5 EKG-Verstärkerschaltung
- 6 Komparator
- Verstärkerschaltung mit Komperator

EKG-Verstärkerschaltung

Versuch

- Verbinden aller Einzelbauteile
- Aufnahme eines EKGs
- Bodediagramm der Gesamtschaltung

Enstehung der Potentialdifferenz

Erzeugung

 Sinusknoten regt durch elektrische Signale verschiedene Teile der Herzmuskeln an

Wie entsteht die Differenz?

ullet Signale brauchen verschieden lang um zu verschiedenen Teilen des Körpers zu kommen o Potentialdifferenz

Bilder

QRS-Komplex (Erregungsausbreitung in den Kammern)

• PQ-Strecke: 90ns

• ST-Strecke: 240ms

Verfolgung des Signals

Signalmodulation:

- Gelb: Eingangssignal nach
 Differenzverstärker
- Grün: Verstärktes Signal nach Invertierendem Verstärker
- Lila: Gefilltertes
 Signal
 nach Tiefpassfilter

Bode-Diagramm

Übersicht

- Einführung
 - Versuchseinführung
 - Operationsverstärker
- 2 Differenzverstärker
- Invertierender Verstärker
- 4 Aktiver Tiefpass 4. Ordnung
- 5 EKG-Verstärkerschaltung
- **6** Komparator
- Verstärkerschaltung mit Komperator

Komparator

Komparator

- OPV vergleicht die Eingangspannungen U_{in} und U_{ref} am invertierenden bzw nichtinvertierden Eingang.
- $U_{in} > U_{ref}$: OPV gibt die an $V^+(7)$ angelegte Spannung aus, andernfalls $V^-(4)$.

Technische Funktionsweise:

- Differenzverstärker verstärkt $U_{in} U_{out}$
- zusätzlicher Verstärker $\rightarrow U_{out}$ erreicht sehr schnell die maximal mögliche Verstärkung (=Versorgungsspannung)

Versuchsaufbau

Aufbau

- ullet Komperator wurde ohne Last am Ausgang mit Spannung $\pm 9V$ betrieben
- \bullet U_{in} wurde in Abhängigkeit von U_{ref} untersucht
- besonder von Interesse: Umschaltpunkt

Ergebnisse

Auswertung

- Ergebnisse stimmen i.A gut mit Theorie überein
- U_{out} liegt nicht ganz bei $\pm 9\,V
 ightarrow$ Bauart des Komparators limitiert V_{out}
- Verstärkungsfaktor (gemittelt): V

Auffälligkeiten

negativer Sprung

• weiterer Sprung bei $U_{in} = -9.83V$

Auffälligkeiten

negativer Sprung

• weiterer Sprung bei $U_{in} = -9.83V$

Messungenauigkeit

- Sehr ungenaue Messung im Sprungbereich
- Überlagerung der x-Werte macht Fitten schwierig
- "An Schieber regeln" ist keine gute Messmethode

Versuchsaufbau mit LED

Aufbau

- LED mit Last (zum Schutz der LED) wurde eingebaut
- Betrieb mit sinusförmiger Wechselspannung
- Untersuchung des Verhaltens am Oszilloskop

Ergebnis

Betrachtung

- Komparator erzeugt verstärkte Rechteckspannung
- Komperator "schaltet" wenn $U_{in} > U_{ref}$
- Amplitude(U_{out}) < 18V
- LED blinkt regelmäßig

Erklärung:

- Verhalten erkärt sich direkt aus vorherigen Ergebnissen
- Komparator kann
 Rechtecksspannung erzeugen →
 Verwendung für Blinkschaltung

Gelb: Uin

Rosa : U_{ref}

Grün: Uout

Übersicht

- Einführung
 - Versuchseinführung
 - Operationsverstärker
- 2 Differenzverstärker
- Invertierender Verstärker
- Aktiver Tiefpass 4. Ordnung
- 5 EKG-Verstärkerschaltung
- 6 Komparator
- Verstärkerschaltung mit Komperator

LED

Optische Pulskontrolle

Durch den Anschluss des Komperators an die Schaltung konnte der Pulsschlag and der LED beobachtet werden.