Цель лабораторной работы

Изучить линейные модели, SVM и деревья решений.

Задание

Требуется выполнить следующие действия:

- 1. Выбрать набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование в
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестову
- 4. Обучите одну из линейных моделей, SVM и дерево решений. Оцените качество модели с метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор одного гиперпараметра с использованием Gric
- 6. Повторите пункт 4 для найденных оптимальных значения гиперпараметров. Сравните ка с качеством моделей, полученных в пункте 4.

Ход выполнения работы

Подключим все необходимые библиотеки и настроим отображение графиков:

```
from datetime import datetime
import graphviz
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.linear_model import Lasso, LinearRegression
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import median_absolute_error, r2_score
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import NuSVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import export_graphviz, plot_tree
```

```
# Set plots formats to save high resolution PNG from IPython.display import set_matplotlib_formats set_matplotlib_formats("retina")

Зададим ширину текстового представления данных, чтобы в дальнейшем текст в отчёте влеза pd.set_option("display.width", 70)
```

▼ Предварительная подготовка данных

В качестве набора данных используется оценка качества белых вин по шкале с учетом химич

```
data = pd.read_csv("/content/whitew.csv")
```

Проверим полученные типы:

data.dtypes

₽	fixed acidity	float64
_	volatile acidity	float64
	citric acid	float64
	residual sugar	float64
	chlorides	float64
	free sulfur dioxide	float64
	total sulfur dioxide	float64
	density	float64
	pH	float64
	sulphates	float64
	alcohol	float64
	quality	int64
	dtype: object	

Посмотрим на данные в данном наборе данных:

```
data.head()
```

 \Box

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free su dio
0	7.4	0.70	0.00	1.9	0.076	
1	7.8	0.88	0.00	2.6	0.098	

df = data.copy()
df.head()

₽		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free su dio
	0	7.4	0.70	0.00	1.9	0.076	
	1	7.8	0.88	0.00	2.6	0.098	
	2	7.8	0.76	0.04	2.3	0.092	
	3	11.2	0.28	0.56	1.9	0.075	
	4	7.4	0.70	0.00	1.9	0.076	

df.dtypes

₽	fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol	float64 float64 float64 float64 float64 float64 float64 float64 float64
	quality	int64
	dtype: object	

Проверим размер набора данных:

df.shape

Проверим основные статистические характеристики набора данных:

df.describe()

_	
	7

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	s di
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.4
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.8
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0
	45 000000	4 500000	4 000000	4E E00000	0.644000	70 000000	200.0

Проверим наличие пропусков в данных:

```
df.isnull().sum()
```

Г⇒	fixed acidity	0
_	volatile acidity	0
	citric acid	0
	residual sugar	0
	chlorides	0
	free sulfur dioxide	0
	total sulfur dioxide	0
	density	0
	рН	0
	sulphates	0
	alcohol	0
	quality	0
	dtype: int64	

Разделение данных

Разделим данные на целевой столбец и признаки:

```
X = df.drop("density", axis=1)
y = df["density"]

print(X.head(), "\n")
print(y.head())
```

```
fixed acidity volatile acidity citric acid ... sulphates alcohol quality
0
            7.4
                             0.70
                                          0.00
                                                          0.56
                                                                    9.4
                                                . . .
                                                                               5
1
            7.8
                             0.88
                                                                    9.8
                                          0.00
                                                          0.68
                                                . . .
2
                                                                               5
            7.8
                             0.76
                                          0.04
                                                          0.65
                                                                    9.8
                                                . . .
                                                                               6
3
           11.2
                                          0.56 ...
                                                         0.58
                                                                    9.8
                             0.28
4
            7.4
                             0.70
                                          0.00 ...
                                                         0.56
                                                                    9.4
                                                                               5
```

[5 rows x 11 columns]

0 0.99781 0.9968

print(X.shape)
print(y.shape)

[→ (1599, 11) (1599,)

Предобработаем данные, чтобы методы работали лучше:

```
columns = X.columns
scaler = StandardScaler()
X = scaler.fit_transform(X)
pd.DataFrame(X, columns=columns).describe()
```

₽		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sul diox
	count	1.599000e+03	1.599000e+03	1.599000e+03	1.599000e+03	1.599000e+03	1.599000e
	mean	3.435512e-16	1.699704e-16	4.335355e-16	-1.905223e-16	4.838739e-16	1.432042€
	std	1.000313e+00	1.000313e+00	1.000313e+00	1.000313e+00	1.000313e+00	1.000313e
	min	-2.137045e+00	-2.278280e+00	-1.391472e+00	-1.162696e+00	-1.603945e+00	-1.422500e
	25%	-7.007187e-01	-7.699311e-01	-9.293181e-01	-4.532184e-01	-3.712290e-01	-8.487156€
	50%	-2.410944e-01	-4.368911e-02	-5.636026e-02	-2.403750e-01	-1.799455e-01	-1.793002€
	75%	5.057952e-01	6.266881e-01	7.652471e-01	4.341614e-02	5.384542e-02	4.901152€
	max	4.355149e+00	5.877976e+00	3.743574e+00	9.195681e+00	1.112703e+01	5.367284e

Разделим выборку на тренировочную и тестовую:

print(X_train.shape)
print(X_test.shape)

```
print(y_train.shape)
print(y_test.shape)

C→ (1199, 11)
        (400, 11)
        (1199,)
        (400,)
```

▼ Обучение моделей

Напишем функцию, которая считает метрики построенной модели:

▼ Линейная модель — Lasso

Попробуем метод Lasso с гиперпараметром lpha=1:

Проверим метрики построенной модели:

```
test_model(las_1)

    mean_absolute_error: 0.001460299999999988
    median_absolute_error: 0.0011639032527104298
    r2_score: -0.0004891762509915409
```

Видно, что данный метод без настройки гиперпараметров не справляется с задачей и сильно соседей.

```
Попробуем метод NuSVR с гиперпараметром \nu=0.5:
```

Проверим метрики построенной модели:

```
test_model(nusvr_05)

☐→ mean_absolute_error: 0.0006310052519759896
    median_absolute_error: 0.0004098770770791793
    r2 score: 0.7627761496166849
```

dt_none = DecisionTreeRegressor(max_depth=None)

Внезапно SVM показал хорошие результаты по всем показателям.

▼ Дерево решений

Попробуем дерево решений с неограниченной глубиной дерева:

Проверим метрики построенной модели:

```
test_model(dt_none)

☐→ mean_absolute_error: 0.00058325591786965
    median_absolute_error: 0.000398499999999683
    r2 score: 0.8074608236964143
```

Дерево решений показало прямо-таки очень хороший результат по сравнению с рассмотренн структуру получившегося дерева решений:

```
def stat_tree(estimator):
   n_nodes = estimator.tree_.node_count
   children left = estimator.tree .children left
    children_right = estimator.tree_.children_right
   node_depth = np.zeros(shape=n_nodes, dtype=np.int64)
   is_leaves = np.zeros(shape=n_nodes, dtype=bool)
   stack = [(0, -1)] # seed is the root node id and its parent depth
   while len(stack) > 0:
        node id, parent depth = stack.pop()
        node_depth[node_id] = parent_depth + 1
       # If we have a test node
        if (children_left[node_id] != children_right[node_id]):
            stack.append((children left[node id], parent depth + 1))
            stack.append((children_right[node_id], parent_depth + 1))
        else:
            is leaves[node id] = True
   print("Всего узлов:", n_nodes)
   print("Листовых узлов:", sum(is_leaves))
   print("Глубина дерева:", max(node_depth))
   print("Минимальная глубина листьев дерева:", min(node depth[is leaves]))
   print("Средняя глубина листьев дерева:", node_depth[is_leaves].mean())
stat_tree(dt_none)
Г⇒ Всего узлов: 599
     Листовых узлов: 300
     Глубина дерева: 15
     Минимальная глубина листьев дерева: 4
     Средняя глубина листьев дерева: 9.67
```

ullet Подбор гиперпараметра K

▼ Линейная модель — Lasso

Введем список настраиваемых параметров:

```
param_range = np.arange(0.001, 2.01, 0.1)
tuned parameters = [{'alpha': param range}]
```

```
[{'alpha': array([1.000e-03, 1.010e-01, 2.010e-01, 3.010e-01, 4.010e-01, 5.010e-01, 6.010e-01, 7.010e-01, 8.010e-01, 9.010e-01, 1.001e+00, 1.101e+00, 1.201e+00, 1.301e+00, 1.401e+00, 1.501e+00, 1.601e+00, 1.701e+00, 1.801e+00, 1.901e+00, 2.001e+00])}]
```

Запустим подбор параметра:

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данны

```
plt.plot(param range, gs.cv results ["mean train score"]);
```


Видно, что метод Lasso здесь не особо хорошо справляется, и здесь, скорее всего, было бы дс (в которую сходится Lasso при $\alpha=0$).

На тестовом наборе данных картина ровно та же:

```
plt.plot(param_range, gs.cv_results_["mean_test_score"]);
```


Будем считать, что GridSearch показал, что нам нужна обычная линейная регрессия:

```
reg = LinearRegression()
reg.fit(X_train, y_train)
test_model(reg)

    mean_absolute_error: 0.0005214481069142302
    median_absolute_error: 0.0004026293294535077
    r2_score: 0.870733752489801
```

В целом получили противоположный результат.

→ SVM

Введем список настраиваемых параметров:

plt.plot(param_range, gs.cv_results_["mean_train_score"]);

Видно, что метод NuSVR справляется лучше. При этом также видно, что разработчики библиот работу: получившееся оптимальное значение u=0,1 .

```
reg = gs.best_estimator_
reg.fit(X_train, y_train)
test_model(reg)

    mean_absolute_error: 0.0005955515674434054
        median_absolute_error: 0.00042228587287418407
        r2_score: 0.8160658178733636
```

▼ Дерево решений

Введем список настраиваемых параметров:

Запустим подбор параметра:

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данны

```
plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```


Видно, что на тестовой выборке модель легко переобучается.

На тестовом наборе данных картина такая же:

```
reg = gs.best_estimator_
reg.fit(X_train, y_train)
test_model(reg)

□→ mean_absolute_error: 0.0006442837077933552
median_absolute_error: 0.0004721302308799413
r2_score: 0.7835805795644413

□ □

Посмотрим статистику получившегося дерева решений.

□→

stat_tree(reg)

□→ Всего узлов: 381
Листовых узлов: 191
Глубина дерева: 9
Минимальная глубина листьев дерева: 4
Средняя глубина листьев дерева: 8.089005235602095

plot_tree(reg, filled=True);
□→
```


Вывод функции plot_tree выглядит весьма странно. Видимо, для настолько больших деревы Возможно, это со временем будет исправлено, так как эту функциональность только недавно

Такое дерево уже можно анал	изировать. Виді	но, что сгенерирс	валось огромное м	ножество ра
модель переобучена, но с друг	ой стороны дер	ево решений и н	е могло быть постр	оено иначе д
на тестовой выборке данное д	церево работает	также довольно	хорошо, так что, во	зможно, оно
бы стояла задача классифика	ции, то дерево р	ешений явно пон	казало бы себя про	сто отлично.