Markov Processes.
j. Recurrent, Long-Run Behavior => j Non-Recurrent: [/i, Pij(n) n-> 00
Pij (n) — Tij Exist? (on diff. states, prob. — freq. = length of the chain)
P ₁₀ [n) = P ₀₁ (n) = $\{1,0,1,0,\cdots\}$ does not converge (oscillating periodically) P ₀₀ (n) = P ₁₁ (n) = $\{0,1,0,1,\cdots\}$ B $\left[\frac{1}{2},\frac{1}{2}\right]$ B $\left[\frac{1}{2},\frac{1}{2}\right]$ B $\left[\frac{1}{2},\frac{1}{2}\right]$
Define a concept about the existence of $\overrightarrow{\Pi} = [\Pi_1, \dots, \Pi_n]^T \Rightarrow \text{Periodic Property}$ To incorporate
Define a concept encompassing the above example into long-term behavior.
Periodic Property: i, di = GCD {k: Pii (k) > 0} Greatest Common Divisor
$d_i = 1 \implies i = Non-Periodic$ $l_i \iff j \iff d_i = d_j \left(\text{S is irreducible} d \implies \text{S } \mid d \text{ is a property of } \text{SJ} \right)$
(c), Im, Pij(m>0, In, Pji(n>0. >) Pii (m+n)>0, Denote {k: Pii(k)>0} as Ri
(i) $P_{ii} (m+n) > 0 \Rightarrow m+n \in R_i \Rightarrow d_i (m+n)$
ii) YKERj, Pii (mtk+n)>0 > m+k+n E Ri > di (m+n+k)
iii) di (m+n+k)-(m+n), i.e. di k => t) k \in Rj, di k, di is a common divisor of Rj (di = CP \in Rj \in di)
iv) $di = CD[R_j]$. $dj = GCD[R_j]$ \Rightarrow $di[dj]$ Vice Versa $[dj di)$ \Rightarrow $[di]di$ \Rightarrow $[di]di$ \Rightarrow $[di]di$ \Rightarrow $[di]di$
Theorem. Markov Chain S irreducible, non-periodic (\(\) i \(\) [1,n], \(d \) = 1)
⇒ Pij In) — Tīj (Limit exists) 上阳和广门引于海解释了
periodic is not a general property unless 5 is irreducible. [if 5 is reducible, period is only a local property

$$= \sum_{k=1, P_{ke} \neq 0}^{N} \frac{dk}{\sum_{i}^{N} di} \frac{1}{dk} \left[P_{ke} = 0, \frac{1}{dk}, \text{ non-zero term } \# = de \right]$$

$$= de \cdot \frac{dk}{\sum_{i}^{N} di} \frac{1}{dk} = \frac{de}{\sum_{i}^{N} di} = TT_{e} \qquad \text{and of Proof.}$$

Detailed Balance Relation: II=IIIo, ..., Tk, ...), IIi Pij=IIj Pji

Σπ_kP_{kl} = Σπ_lP_{lk} = π_l, Mourkou Chain Monte Carlo

Construct P from TT:

i) $\forall P_{ij}$, $\Pi_{i} P_{ij}^{2} \Pi_{j} P_{ji}$ $\widetilde{P}_{ij} = P_{ij} min(1, \frac{\Pi_{j} P_{ji}}{\Pi_{i} P_{ij}}) \rightarrow Satisfy Detailed Balance Relation.$

 $T_{i} \hat{P}_{ij} = T_{i} P_{ij} \min(1, \frac{\pi_{i} P_{ij}}{\pi_{i} P_{ij}}) = \min[T_{i} P_{ij}, T_{j} P_{ji}) = T_{j} P_{ji} \min(1, \frac{\pi_{i} P_{ij}}{\pi_{j} P_{ji}}) = T_{j} P_{ji} Metropolis - Hastings Algorithms.$

MCMC

Next Lecture: Continuous - Time Markov Chain

Birth & Death Process