GETARAN DAN GELOMBANG

STAF PENGAJAR FISIKA DEP. FISIKA IPB

Getaran (Osilasi): Gerakan berulang pada lintasan yang sama

Gelombang dihasilkan oleh getaran

Gelombang bunyi

Gelombang air

Gelombang tali

Gelombang laut

Tujuan Instruksional

- Menentukan besaran-besaran frekuensi, amplituda, perioda, dan energi pada getaran harmonis
- Menentukan besaran-besaran frekuensi, amplituda, perioda, panjang gelombang, kecepatan gelombang pada gelombang mekanik

GERAK HARMONIK SEDERHANA

- Ketika massa diujung pegas ditarik dengan gaya F = kx (k = konstanta pegas)
- Akan ada gaya pulih (restoring force) yang besarnya:

F = -kx

Beberapa Besaran dalam GHS

Simpangan (*x***)** : posisi benda terhadap titik setimbang

Amplitudo (A): simpangan maksimum

Periode (T): waktu yang diperlukan untuk menempuh satu getaran penuh

Frekuensi (f): banyak getaran yang dilakukan tiap satuan waktu

$$\omega = 2\pi f = \frac{2\pi}{T} = \sqrt{\frac{k}{m}}$$

Energi GHS

$$E_{Total} = \frac{1}{2} mv^2 + \frac{1}{2} kx^2$$

Pada

$$X = A \rightarrow E_{Total} = \frac{1}{2} kA^2$$

$$x = O \rightarrow E_{Total} = \frac{1}{2} mv^2_{max}$$

Energi total benda pada gerak harmonik sederhana sebanding dengan amplitudo kuadrat

Contoh Soal

- Sebuah balok bermassa 0,25 kg berada pada permukaan yang licin terhubungkan dengan pegas (k= 180 N/m). Jika pegas ditarik sejauh 15 cm dari posisi kestimbangan dan kemudian dilepaskan.
- a. tentukan energi total sistem.
- b. tentukan kecepatan balok ketika berada di titik kesetimbangan.
 - a. Energi Total = $\frac{1}{2}$ kA² = $\frac{1}{2}$ (180 N/m) (0.15 m)² = 2.0 J
 - b. Di titik kesetimbangan energi kinetik maksimum sehingga

$$\frac{1}{2}mv_{maks}^2 = E_{total}$$

$$v_{maks} = \sqrt{\frac{2E_{total}}{m}} = \sqrt{\frac{2(2)}{0.25}} \text{m/s} = 4 \text{ m/s}$$

Persamaan Gerak Harmonik Sederhana

$$x = A \cos (\omega t)$$

$$v = -A \omega \sin (\omega t)$$

$$a = -A \omega^{2} \cos (\omega t)$$

$$v_{\text{max}} = A \omega$$

 ω = kecepatan angular (rad/s)

$$\omega = 2\pi f = \frac{2 \pi}{T}$$

Getaran Teredam

piston

Amplitudo semua pegas atau pendulum yang berayun pada kenyataannya perlahan-lahan berkurang terhadap waktu

Silinder oli

Batangpiston

Oli

Getaran Paksa

Pada getaran yang dipaksakan, amplitudo getaran bergantung pada perbedaan frekuensi alami benda (fo) dan frekuensi eksternal (f) dan mencapai maksimum ketika f = fo.

→ Efek Resonansi

Contoh resonansi

- Runtuhnya jembatan Tacoma Narrows
- Hancurnya kristal karena suara

Gelombang

Gelombang:

Getaran / gangguan / energi yang menjalar.

Beberapa karakteristik khusus gelombang

- Jika melewati batas antara dua medium akan mengalami pemantulan dan pembiasan
- Jika dua gelombang bertemu dia mengalami interferensi
- Jika melewati suatu halangan (misalnya celah sempit) dia akan mengalami difraksi (lenturan)

Contoh Soal

- Suara orang yang sedang mengobrol di suatu ruang dapat terdengar oleh orang yang berada di luar ruangan manakala ruang tersebut tidak tertutup rapat
- (betul)
- SEBAB
- Bunyi merupakan suatu gelombang. Jika bunyi melewati suatu celah maka dia akan mengalami difraksi
- (betul)
- Pernyataan betul dan alasan betul dan berhubungan sebab akibat

JAWAB: A

(Soal UTS Fisika TPB semerter I tahun 2005/2006)

Persamaan penjalaran gelombang

$$y = A \sin (kx \pm \omega t)$$

$$A = \text{Amplitudo}$$
 $k = 2\pi / \lambda$ ($k = \text{bilangan gelombang}$)
 $\lambda = \text{Panjang gelombang}$
 $\omega = 2\pi f = \text{Frekuensi anguler}$

Kecepatan gelombang

$$v = \lambda f$$

Contoh Soal

Sebuah gelombang transversal memiliki periode 4 detik. Jika jarak antara dua buah titik yang berurutan dan sama fasenya adalah 8 cm, maka cepat rambat gelombang itu adalah;

A. 1 cm/s

B. 2 cm/s

C.3 cm/s

D.4 cm/s

E. 5 cm/s

JAWAB: B

Tipe Gelombang

1.Gelombang transversal:
arah gerak medium ⊥
arah gerak gelombang.
Contoh: gelombang tali

2. Gelombang longitudinal:
Arah gerak medium // arah gerak gelombang.

Contoh: gelombang bunyi, gelombang pada pegas.

Bunyi

- Sumber bunyi : Getaran /vibrasi
- Infrasonic : < 20 hertz
- Audiosonic : 20 20.000 hertz
- Ultrasonic: > 20.000 hertz

Intensitas yang dapat didengar:

 $10^{-12} - 1 \text{ W/m}^2$

Tingkat Intensitas bunyi

$$\beta(dalamdB) = 10\log\frac{I}{I_0}$$

I = Intensitas Sumber

 I_0 = Intensitas ambang

 $= 10^{-12} \text{ W/m}^2$

Decibel scale showing the intensity level of some familiar sounds.

$$I = 10^{-10} \text{ W/m2} \rightarrow \beta = 10 \log 100 = 20 \text{ dB}$$

Di udara terbuka, pengurangan intensitas

$$I \alpha 1/r^2 \rightarrow I_1 r_1^2 = I_2 r_2^2$$

(r jarak dengan sumber)

Tingkat intensitas sebuah pesawat jet pada jarak 30 m adalah 140 dB. Berapakah tingkat intensitasnya pada jarak 300 m?

Efek Doppler

Fenomena Frekuensi (f') yang didengar berbeda dengan frekuensi sumber (f) ketika sumber dan atau pendengar bergerak

$$f' = f\left(\frac{v \pm v_o}{v \mp v_s}\right)$$

Tanda atas ketika mendekat dan tanda bawah ketika menjauh

v_o = kecepatan pendengar

v_s = kecepatan sumber

v = kecepatan bunyi (=340 m/s)

Contoh Soal

Cepat rambat bunyi di udara pada suhu tertentu 300 m/s. Jika pendengar diam, sedangkan sumber bunyi bergerak menjauhi pendengar dengan kecepatan 60 m/s, frekuensi bunyi 108 hertz, maka frekuensi yang didengar pendengar,

A. 90 hertz

B. 91 hertz

C. 92 hertz

D. 93 hertz

E. 94 hertz

JAWAB:

TERIMAKASIH