Meteorology and Atmospheric Physics

Vol. 49, 1992

Springer-Verlag Wien New York

Meteorology and Atmospheric Physics

formerly

Archives for Meteorology, Geophysics, and Bioclimatology, Series A

Honorary and Founding Editor: F. Steinhauser, Wien Managing Editor: E. R. Reiter, Boulder, Colo.

Editorial Board:

L. Bengtsson, Hamburg

D. W. Beran, Boulder, Colo.

H. C. Davies, Zürich

H. Dolezalek, Alexandria, Virg.

M. Hantel, Wien

F. Herbert, Frankfurt

M. Kaplan, Newport News, Virg.

K.-Y. Kondratyev, St. Petersburg

T. N. Krishnamurti, Tallahassee, Fla.

M. Kuhn, Innsbruck

L. Leslie, Melbourne, Vic.

K.-N. Liou, Salt Lake City, Utah

F. Mesinger, Washington, D.C.

T. Nitta, Tokyo

H. Pichler, Innsbruck

E. Smith, Tallahassee, Fla.

D. E. Stevens, Honolulu, Hawaii

N. Surgi, Miami, Fla.

Editorial Assistant: Ch. Bernhofer, Wien

The exclusive copyright for all languages and countries, including the right for photomechanical and any other reproductions including microform is transferred to the publisher

© 1992 by Springer-Verlag/Wien

Vol. 49, 1992

Anderson, J. R., Orf, L. G., Straka, J. M., A 3-D		Numerical Simulations of Terrain Drag-Induced	
Model System for Simulating Thunderstorm Mi-		Along-Stream Circulations. Part II: Concentra-	
croburst Outflows	125	tion of Potential Vorticity Within Dryline Bulges . 15	57
Boybeyi, Z., Raman, S., A Three-Dimensional Nu-		Lin, YL., Lin, NH., Weglarz, R. P., Numerical	
merical Sensitivity Study of Mesoscale Circula-		Modeling Studies of Lee Mesolows, Mesovor-	
tions Induced by Circular Lakes	19	tices and Mesocyclones with Application to the	
Brooks, H. E., Wilhelmson, R. B., Numerical Simu-		Formation of Taiwan Mesolows	13
lation of a Low-Precipitation Supercell Thun-		Pielke, R. A., Cotton, W. R., Walko, R. L., Trem-	
derstorm	3	back, C. J., Lyons, W. A., Grasso, L. D., Nicholls,	
Farley, R. D., Wang, S., Orville, H. D., A Compari-		M. E., Moran, M. D., Wesley, D. A., Lee, T. J.,	
son of 3D Model Results with Observations for		Copeland, J. H., A Comprehensive Meteorologi-	
an Isolated CCOPE Thunderstorm 1	187	cal Modeling System - RAMS 6	59
Kain, J. S., Fritsch, J. M., The Role of the Convec-		Proctor, F. H., Bowles, R. L., Three-Dimensional	
tive "Trigger Function" in Numerical Forecasts		Simulation of the Denver 11 July 1988 Micro-	
of Mesoscale Convective Systems	93	burst-Producing Storm	07
Kaplan, M. L., Introductory Comments - Special		Tripoli, G. J., An Explicit Three-Dimensional Non-	
Issue on Meso-Beta and Meso-Gamma Scale Nu-		hydrostatic Numerical Simulation of a Tropical	
merical Modeling	1	Cyclone 22	29
Kaplan, M. L., Karyampudi, V. M., Meso-Beta Scale		Warner, T. T., Kuo, YH., Doyle, J. D., Dudhia, J.,	
Numerical Simulations of Terrain Drag-Induced		Stauffer, D. R., Seaman, N. L., Nonhydrostatic,	
Along-Stream Circulations. Part I: Midtropos-		Mesobeta-Scale, Real-Data Simulations with the	
pheric Frontogenesis	133	Penn State University/National Center for	
Kaplan, M. L., Karyampudi, V. M., Meso-Beta Scale		Atmospheric Research Mesoscale Model 20	09