University of Bayreuth

BACHELOR SEMINAR TREE AUTOMATA

Introduction to Ranked Tree Automata

Author:
Martin Braun

 $Supervisor: \\ Prof. Dr. Wim MARTENS$

Introduction to Tree Languages

Regular Tree Languages are a powerful tool when it comes to parsing data given in a textual form. However, they lack in the context of parsing hierarchical data. Using Tree Languages to define your data structure can help with this shortcoming. A good example for a tree language is the one consisting of all binary boolean expressions evaluating to true, for which an instance - if formatted in the right way - could look like this:

To simplify, the elements of the language are often represented as a tree in a graphical way:

Just like for regular word languages, it is of interest to know whether a given word (in this case a tree) is part of the (tree-)language. In order to describe an automaton that recognizes tree-languages we have to define what **ranked tree alphabets**, Σ -trees and (regular) **tree-languages** are, first.

Definition 1. ranked tree alphabet [2][5]

A ranked tree alphabet Σ of arity n is a refinement of an ordinary alphabet such that each symbol $\sigma \in \Sigma$ either has zero or exactly n arguments. Symbols with zero arguments are called **constants**.

Note: There also exists a definition for tree alphabets that dont have the restriction of arity. These are called **unranked tree alphabets**, but in this paper we will only take a look at the ranked case.

Definition 2. Σ -tree [1]

The set of Σ -trees T_{Σ} over the ranked tree alphabet Σ of arity n is inductively defined as follows:

1. every
$$\sigma \in \Sigma$$
 is a Σ -tree
2. $\sigma \in \Sigma$ and $t_1, ..., t_n \in T_{\Sigma} \iff \sigma(t_1, ..., t_n) \in T_{\Sigma}$

Definition 3. tree-language [1]

A tree language $L_{t\Sigma}$ over the alphabet Σ is defined as a subset of T_{Σ} :

$$L_{t\Sigma} \subseteq T_{\Sigma}$$

From that definition, we can see that T_{Σ} is already a tree-language. Next, we have to declare some terminology in the context of $\Sigma - trees$.

We can now define (Non-Deterministic) Finite Tree Automata (NFTA) for tree languages. One can get a good grasp of how they work if you consider them to be NFAs with the possibility to have multiple states in their transition rules.

Definition 4. NFTA [2]

A (Non-Deterministic) Finite Tree Automaton (NFTA) over the alphabet Σ of arity n is a tuple $A = (Q, \Sigma, Q_f, \Delta)$ where Q is a finite set of states, $Q_f \subseteq Q$ is a finite set of final states, and Δ is a finite set of transition rules of the type:

$$f(q_1,...,q_n) \to q_x$$
where $f \in \Sigma, q_x, q_1,...,q_n \in Q$

For constants, we write:

$$a \to q$$

where $a \in \Sigma, q \in Q$

Note: These rules transition into the initial states of a NFTA (that's why we call them initial rules rather informally)

These transition rules are applied from the bottom up to a given input tree. By doing so, the tree is reduced until no transition rule can be found. A tree $t \in T_{\Sigma \cup Q}$ can be reduced to another tree $t' \in T_{\Sigma \cup Q}$ iff they only differ in one sub-tree such that t contains $t_{sub} = \sigma(q_1, ..., q_n), \sigma \in \Sigma$ and t' contains $t'_{sub} = q, q \in Q$ (both being at the exact same spot respectively) and a transition rule $\delta \in \Delta, \delta = \sigma(q_1, ..., q_n) \to q$ exists.

Note: This definition also applies for reductions on constants. The only difference being that σ doesn't have any arguments in that case.

We denote such a relation with:

$$t \rightarrow_A t'$$

If one or more transition rules are applied, we write:

$$t \to_A^* t'$$

If a given input tree t_{input} can be reduced to a tree $t_{final} = q, q \in Q_f$, then it is accepted by A. The set of all input trees accepted by A is called the **Language** of A, which is denoted by L_A .

Our binary-boolean-expression NFTA can now be written as:

```
Example 1. binary-boolean-statement NFTA A = (Q, \Sigma, Q_f, \Delta) \Sigma = \{or, and, not, true, false\} Q = \{q_f, q_t\} Q_f = \{q_t\} \Delta = \{false \rightarrow q_f, true \rightarrow q_t, \\ and(q_t, q_t) \rightarrow q_t, and(q_t, q_f) \rightarrow q_f, and(q_f, q_t) \rightarrow q_f, and(q_f, q_f) \rightarrow q_f, \\ or(q_t, q_t) \rightarrow q_t, or(q_t, q_f) \rightarrow q_t, or(q_f, q_t) \rightarrow q_t, or(q_f, q_f) \rightarrow q_f, \\ not(q_f) \rightarrow q_t, not(q_t) \rightarrow q_f\}
```

We will now show how the above automaton processes the tree from the beginning of this chapter.

Example 2. running a NFTA

```
\begin{array}{l} and(or(false,true),or(true,true)) \\ \rightarrow_A and(or(q_f,true),or(true,true)) \\ \rightarrow_A and(or(q_f,q_t),or(true,true)) \\ \rightarrow_A and(or(q_f,q_t),or(q_t,true)) \\ \rightarrow_A and(or(q_f,q_t),or(q_t,q_t)) \\ \rightarrow_A and(q_t,or(q_t,q_t)) \\ \rightarrow_A and(q_t,q_t) \\ \rightarrow_A q_t \end{array}
```

We see that the tree can successfully be reduced to the accepting state $q_t \in Q_f$ and therefore that A accepts w and that w is in the language L_A recognized by the automaton.

This process can be represented in a graphical way as well. In order to keep things shorter, we condensed some of the steps together, but the general point is still visible.

rules, are reduced to q_f and q_t .

 q_t The final result.

Determinization

Non Deterministic Finite Tree Automata (NFTA) can be determinized just like Non Deterministic Automata (NFA) in the word case. By knowing that there exists a DFTA for every NFTA, definitions, proofs and algorithms become much easier, since we don't have to take special care of the properties of NFTAs. We will now take a look at how this is done. But first we have to define formally, what being deterministic means in the context of FTAs.

Definition 5. Deterministic Finite Tree Automaton

A tree automaton with no two rules of the type:

$$f(q_1, ..., q_n) \to q_x$$

$$f(q_1, ..., q_n) \to q_y$$

with $q_x \neq q_y$

with $n \geq 0, q_x, q_y, q_1, ...q_n \in Q, q_x \neq q_y, f \in \Sigma$ is called a **Deterministic Finite** Tree Automaton (DFTA).

Similar to the algorithm for Determinization in the word case, there exists a power set construction algorithm for determizing Tree Automata.

```
 \begin{array}{l} \textbf{Data: NFTA } A = (Q, \Sigma, Q_f, \Delta) \\ Q_d := \emptyset \\ \Delta_d := \emptyset \\ \textbf{repeat} \\ & | choose \ f \in \Sigma, \ s_1, ..., s_n \in Q_d \\ \\ & | f \ f \ is \ not \ constant \ \textbf{then} \\ & | \ s := \{q \in Q \mid \exists q_1 \in s_1, ..., \exists q_n \in s_n, f(q_1, ...q_n) \rightarrow q \in \Delta\} \\ & \textbf{else} \\ & | \ s := \{q \in Q \mid f \rightarrow q \in \Delta\} \\ & \textbf{end} \\ \\ & Q_d := Q_d \cup \{s\} \\ & \Delta_d := \Delta_d \cup f(s_1, ..., s_n) \rightarrow s \\ & \textbf{until } \ no \ rule \ can \ be \ added \ to \ \Delta_d; \\ & Q_{f_d} := \{s \in Q_d \mid \{s\} \cap Q_f \neq \emptyset\} \\ & \textbf{Result: } \ DFTA \ A_d = (Q_d, \Sigma, Q_{f_d}, \Delta_d) \\ \end{array}
```

It is easy to see that the algorithm produces a deterministic automaton A_d as we are automatically constructing meta-states for all reachable states and therefore eliminating all possible non-deterministic behaviour. However, we still have to prove $L(A) = L(A_d)$. For this, we have to show that the meta-states $s \in Q_d$ are "built correctly", or in formal terms:

For any tree
$$t \in T_{\Sigma \cup Q} : t \to_{A_d}^* s \iff s = \{q \in Q \mid t \to_A^* q\}$$

Proof. $L(A) = L(A_d)$ (Correctness of DET) [2] This proof is done via an induction over the structure of the symbols in Σ .

- **Base case:** For any tree $t = a \in \Sigma$ we only have the rule $a \to s \in \Delta_d$. Because of the way we defined s as the meta-state representing the set of all reachable states in a given situation this is inherently correct.
- induction step: $t = f(t_1, ..., t_n)$
 - $\bullet \ 1.: t \to_{A_d}^* s \Rightarrow s = \{q \in Q \mid t \to_A^* q\}$

Supposing $t \to_{A_d}^* f(s_1, ..., s_n) \to_{A_d} s$, by induction hypothesis, for each $i \in 1, ..., n$, we can see $s_i = \{q \in Q \mid q_i \to_A^* q\}$.

Because states $s_i \in Q_d$ and rules $f(s_1,...,s_n) \to s \in \Delta_d$ are added by the determinization algorithm and $s := \{q \in Q \mid q_1 \in s_1,...,q_n \in s_n, f(q_1,...q_n) \to q \in \Delta\}$, we learn $s = \{q \in Q \mid t \to_A^* q\}$.

• 2.: $s = \{q \in Q \mid t \to_A^* q\} \Rightarrow t \to_{A_d}^* s$

Considering $s = \{q \in Q \mid f(t_1,...,t_n) \to_A^* q\}$ with state sets s_i defined as $s_i := \{q \in Q \mid t_i \to_A^* q\}$, by induction hypothesis for each $i \in \{1,...,n\}$ we know $t_i \to_{A_d}^* s_i$. Thus $s = \{q \in Q \mid q_1 \in s_1,...,q_n \in s_n, f(q_1,...,q_n) \to q \in \Delta\}$.

By the definition of Δ_d in the determinization algorithm, $f(s_1,...,s_n) \in \Delta_d$ and thus $t \to_{A_d}^* s$.

Following is an example of how a NFTA can be determinized with this algorithm.

```
Example 3. Running the DET algorithm consider a non deterministic FTA given like this: A = (Q, \Sigma, Q_f, \Delta)
\Sigma = \{ul, li, text, empty\}
Q = \{q_{ul}, q_{li1}, q_{li2}, q_{text}, q_{empty}\}
Q_f = \{q_{ul}\}
\Delta = \{ul(q_{li1}, q_{li2}) \rightarrow q_{ul}, ul(q_{li2}, q_{li1}) \rightarrow q_{ul}, 
\mathbf{li}(\mathbf{q_{text}}) \rightarrow \mathbf{q_{li1}}, \mathbf{li}(\mathbf{q_{text}}) \rightarrow \mathbf{q_{li2}}, 
text \rightarrow q_{text}, empty \rightarrow q_{text}\}
```

This recognizes all trees that represent unordered lists (ul) in HTML notation, which contain 2 list items (li):

$$\begin{array}{c} <\!\!\mathrm{ul}\!\!> \\ <\!\!\!\mathrm{li}\!\!>\!\!\mathrm{text}\!<\!\!/\!\!\mathrm{li}\!\!> \\ <\!\!\!\mathrm{li}\!\!>\!\!\mathrm{empty}\!<\!\!/\!\!\mathrm{li}\!\!> \\ <\!\!/\!\!\mathrm{ul}\!\!> \end{array}$$

Or as a tree input:

If we start determinizing with the rules containing no state and then go "up in the hierarchy" and generate all the states on-the-fly, we get these new rules:

```
text \to \{q_{text}\} \\ empty \to \{q_{text}\} \\ li(\{q_{text}\}) \to \{q_{li1}, q_{li2}\} \\ li(\{q_{text}\}) \to \{q_{li1}, q_{li2}\} \\ ul(\{q_{li1}, q_{li2}\}, \{q_{li1}, q_{li2}\}) \to \{q_{ul}\})
```

And the set of final states is $Q_{f_d} = \{\{q_{ul}\}\}.$

As we can see, no un-deterministic behaviour can be found in this automaton anymore.

Minimization

Now that we can obtain a DFTA for each NFTA, we can take a look at how we can minimize these newly determinized automata.

Just like in the word case there exists a Myhill-Nerode theorem for Finite Tree Automata. But before we can use it, we have to define **Contexts**, **Congruence** and \equiv_L .

For the definition of a **Context** it is convenient to define a **Slot** first.

Definition 7. Slot (is this definition sufficient?)

A **Slot** $s \in S, S \cap \Sigma = \emptyset$ is a special token, that, if found in a tree $t_1 \in T_{\Sigma \cup S}$, can be replaced by any tree $t_1 \in T_{\Sigma \cup S}$ (t_2 can contains **slots** as well).

As an abstract representation, a tree with a slot is often drawn as a triangle with a marker for every slot:

Fig. 1: Tree with the slot x [3]

Defining a Context is straightforward now.

Definition 8. Context [2][3]

A tree with a slot is called a **Context**. Furthermore, if C is a context with the slots $s \in S$, then $C[t], t \in T_{\Omega}$ is known as a **context application**, with the slot s being replaced by the (sub-)tree $t \in T_{\Omega}, T_{\Omega} \supseteq T_{\Sigma \cup S}$.

Note: T_{Ω} can contain new slots.

Fig. 2: Context application [3]

Fig. 3: Context application with a new context [3]

Definition 9. Congruence [2]

An equivalence relation \equiv on T_{Σ} is a **congruence** on T_{Σ} if for every $f \in \Sigma$ with n arguments applies:

$$u_i \equiv w_i, u_i, w_i \in T_{\Sigma}, 1 \leq i \leq n \Rightarrow f(u_1, ..., u_n) \equiv f(w_1, ..., w_n)$$

number of \equiv -classes is finite $\Rightarrow \equiv$ is of finite index.

Additionally a congruence is an equivalence relation closed under context. This means that for any $C \in T_{\Sigma \cup V}$, if $u \equiv w \Rightarrow C[u] \equiv C[w]$.

Definition 10. \equiv_L /2/

For any given tree language $L \in T_{\Sigma}$, we define the congruence \equiv_L on T_{Σ} by: $u \equiv_L w, u, w \in T_{\Sigma}$, if for all Contexts $C \in T_{\Sigma \cup V}$ applies:

$$C[u] \in L \iff C[v] \in L$$

For the sake of easier proofs, we consider all following DFTAs to be ${\bf complete}$ and ${\bf reduced}$.

Definition 11. Completeness and reduction [5]

A FTA A is **complete** if there is at least one transition rule available for every possible symbol-states combination. A state q is **accessible** if there exists a tree t such that $t \to_A^* q$. A NFTA is **reduced** if all its states are accessible.

Note: All examples for Finite Tree Automata given in this paper are supposed to be complete and reduced. However, we do not add a capturing state for all impossible symbol-state combinations for the sake of simplicity. Let $q_c \in Q$ be the capturing state, then every transition rule that contained it state on the left side looks like $f(...,q_c,...) \to q_c$. This means, that once the capturing state is reached, there is no way of getting to a different state anymore.

We can now give the Myhill-Nerode theorem.

Theorem 1. Myhill-Nerode [2] These statements are equivalent:

- (i) L is a regular tree language
- (ii) L is the union of some congruence classes of finite index
- (iii) the relation \equiv_L is a congruence of finite index

Proof.

- (i) \Rightarrow (ii): Assume that the tree language L is recognized by some complete DFTA $A = (Q, \Sigma, Q_f, \delta)$ with δ being a transition function (i). Let us consider the relation \equiv_A defined on T_{Σ} by: $u \equiv v, u, v \in T_{\Sigma}$, if $\delta(u) = \delta(v)$. Since we know that Q only has a finite amount of states in it and the number of equivalence classes may at most be equal to the size of Q, we can deduce that \equiv_A is a congruence of finite index (ii).
- (ii) \Rightarrow (iii): By denoting the congruence of finite index as \cong and assuming that $u \cong v, u, v \in T_{\Sigma}$, it can be proven that $C[u] \cong C[v]$ for all contexts $C \in T_{\Sigma \cup V}$ by an easy induction on the structure of terms. Since L is the union of some equivalence classes of the congruence of finite index \cong (ii), we have $C[u] \in L \iff C[v] \in L$. Therefore we know that $u \equiv_L v$ and that \equiv_L contains the equivalence class of u in \cong . Furthermore we now know that $index(\equiv_L) \leq index(\cong) \Rightarrow index(\equiv_L)$ is finite (iii).
- (iii) \Rightarrow (i): By representing the set of equivalence classes of \equiv_L (iii) as the finite set of states Q_{min} with $|Q_{min}| = |\equiv_L|$, we know that every equivalence class has its own state. By denoting the equivalence class of a term $u \in T_{\Sigma}$ as [u] we define the transition function δ_{min} for every $f \in \Sigma$ with n arguments as:

$$\delta_{min}(f, [u_1], ..., [u_n]) = [f(u_1, ..., u_n)]$$

The definition of δ is consistent because \equiv_L is a congruence. With $Q_{min_f} := \{[u]|u \in L\}$ the resulting DFTA $A_{min} := (Q_{min}, \Sigma, Q_{min_f}, \delta_{min})$ recognizes the tree language L (i).

As a consequence of this theorem we can deduce the following:

Corollary 1. [2]

The minimum DFTA recognizing a tree language L is unique up to renaming the states and is given by A_{min} in the proof of the Myhill-Nerode Theorem.

This means that we can minimize a tree automaton by computing the congruence classes of the language it recognizes. But before we can put this to use, we have to prove the corollary first.

Proof. [2]

Assume that L is recognized by some DFTA $A = (Q, \Sigma, Q_f, \delta)$. Then the relation \equiv_A is a refinement of \equiv_L with $index(\equiv_A) \geq index(\equiv_L)$, thus $|Q| \geq |Q_{min}|$. We know that A is reduced (all states are accesible), because otherwise a state could be removed contradicting to the definition of \equiv_A . Let $q \in Q$ and $u \in T_{\Sigma}$, such that $\delta(u) = q$. Then the state q can be consistently identified with the state $\delta_{min}(u)$, since δ is a refinement of δ_{min} and we can see that every state $q \in Q$ has a corresponding state $q_{min} \in Q_{min}$.

By using this Corollary and the construction given in the Myhill-Nerode theorem we can deduce an algorithm to minimize Deterministic Finite Tree Automata:

```
Definition 12. Algorithm MIN for Tree Automata [4]
    Data: complete and reduced DFTA A = (Q, \Sigma, Q_f, \Delta)
    Set P = \{(q_f, q) \mid q_f \in Q_f, q \in Q \setminus Q_f\}
    Set P' = P
    while P' \neq P do
        P = P'
        \forall p_1, p_2 \in Q, p_1 \neq p_2
        define p_1P'p_2 \iff
             /* could distinguish in the last cycle */
             1.p_1Pp_2 or
             /* can distinguish p_1 from p_2, with: */
             2.\exists f \in \Sigma \text{ with } n \text{ arguments}, \exists q_1, ..., q_{i-1}, q_{i+1}, ..., q_n \in Q,
               r_1Pr_2, r_1, r_2 \in Q, where:
                 f(q_1,...,q_{i-1},p_1,q_{i+1},...,q_n) \to r_1 and
                 f(q_1, ..., q_{i-1}, p_2, q_{i+1}, ..., q_n) \to r_2
                 (Note: this works for multiple occurrences of p_1 and p_2 as well,
                  see the example on the next page)
    Q_{min} = set of equivalence classes of P
    \Delta_{min} = \{ f([q_1], ..., [q_n]) \rightarrow [q] \mid f(q_1, ..., q_n) \rightarrow q \in \Delta \}
    Q_{f_{min}} = \{ [q] \mid q \in Q_f \}
    Result: complete, reduced and minimal DFTA
               A_{min} = (Q_{min}, \Sigma, Q_{f_{min}}, \Delta_{min})
```

While we are not giving a complete proof for this algorithm, we can at least go over why it is correct for a given language L = L(A) and the automaton $A = (Q, \Sigma, Q_f, \Delta)$ [2]:

- In the while loop we are marking all tuples p_1, p_2 as distinguishable when they are added to the relation
- To get the equivalence classes for Q_{min} , we are merging all pairs of indistinguishable states to a new one representing both. After having done this incrementally for all not marked combinations, these "artificial" states have to be distinguishable to all other states and Q_{min} must therefore be minimal. This can easily be proven correct by contradiction.
- It isn't hard to see that the construction of $Q_{f_{min}}$ and Δ_{min} is correct.

Example 4. Running the MIN algorithm

After cleaning up the Automaton of our previous unordered list example by renaming the "set-states" to normal states, one might already see that it isn't minimal yet:

```
\begin{split} A &= (Q, \Sigma, Q_f, \Delta) \ \Sigma = \{ul, li, text, empty\} \\ Q &= \{q_{ul}, \mathbf{q_{text}}, \mathbf{q_{text_2}}, q_{li}\} \\ Q_f &= \{q_{ul}\} \\ \Delta &= \{text \rightarrow q_{text}, \\ empty \rightarrow q_{text_2}, \\ \mathbf{li}(\mathbf{q_{text}}) \rightarrow \mathbf{q_{li}}, \\ \mathbf{li}(\mathbf{q_{text_2}}) \rightarrow \mathbf{q_{li}}, \\ ul(q_{li}, q_{li}) \rightarrow q_{ul}\} \end{split}
```

While we should be able to fix this by hand, we are now using the MIN algorithm to minimize this automaton. In the following table, we are marking all tuples p_1, p_2 that are distinguishable in that cycle by the index of that cycle, so we can see the process in action.

	q_{text}	q_{text2}	q_{li}	q_{ul}
q_{text}	-	-	-	-
q_{text2}	(merge)	-	-	-
q_{li}	1	1	-	-
q_{ul}	0	0	0	-

As predicted q_{text} and q_{text2} have to be merged in order to minimize A. The resulting automaton is:

$$\begin{split} A &= (Q, \Sigma, Q_f, \Delta) \ \Sigma = \{ul, li, text, empty\} \\ Q &= \{q_{ul}, \mathbf{q_{text_{1\&2}}}, q_{li}\} \\ Q_f &= \{q_{ul}\} \\ \Delta &= \{text \rightarrow \mathbf{q_{text_{1\&2}}}, \\ empty &\rightarrow \mathbf{q_{text_{1\&2}}}, \\ \mathbf{li}(\mathbf{q_{text_{1\&2}}}) &\rightarrow \mathbf{q_{li}}, \\ ul(q_{li}, q_{li}) &\rightarrow q_{ul}\} \end{split}$$

References

- 1. Automata theory for XML researchers, Frank Neven, University of Limburg, frank, neven luc, ac. be, http://homepages.inf.ed.ac.uk/libkin/dbtheory/frank.pdf, 03/11/2015
- 2. Tree Automata and Techniques, Hubert Comon et. al, Pages 19-39
- Automata and Logic on Trees, Wim Martens, Stijn Vansummeren, http://lrb.cs.uni-dortmund.de/~martens/data/esslli07/lecture01.pdf, 03/17/2015
 Automata and Logic on Trees, Wim Martens, Stijn Vansummeren, http://lrb.cs.uni-dortmund.de/~martens/data/esslli07/lecture02.pdf, 03/21/2015
- 5. http://en.wikipedia.org/wiki/Tree_automaton, 03/20/2015