Seminario 3: Resolución de problemas de capa de red en Internet

Fundamentos de Redes Grado en Ingeniería Informática Curso 2024/2025

Jonathan Prados Garzón (jpg@ugr.es)

Dept. Teoría de la Señal, Telemática y Comunicaciones Universidad de Granada

Índice

- Ejercicio 1
- Ejercicio 2
- ► Ejercicio 3
- ► Ejercicio 4
- ► Ejercicio 5

Background: Asignación de direcciones IP

Rango IDs #3 Rango IDs #1 Rango IDs #0 Las redes Rango IDs #2 Rango IDs #0

privadas pueden compartir el mismo rango de identificadores internamente.

> Asignar un identificador "único" de capa 3 a cada una de las interfaces de red.

Background: Asignación de direcciones IP

IPv4 Packet Header Format							
0	7	8	15	16	23	24	31
Version	IHL	DSCP	ECN		Total L	ength.	
Identification		Flags	Frag	ment Offset			
Time to Live Protocol		l		Header C	hecksum		
Source IP Address							
Destination IP Address							
Options (if IHL > 5)							
	Version	0 7 Version IHL Identifie	0 7 8 Version IHL DSCP Identification Time to Live Protoco	0 7 8 15 Version IHL DSCP ECN Identification Time to Live Protocol Source IF Destination	0 7 8 15 16 Version IHL DSCP ECN Identification Flags Time to Live Protocol Source IP Address Destination IP Address	0 7 8 15 16 23 Version IHL DSCP ECN Total L Identification Flags Frag Time to Live Protocol Header C Source IP Address Destination IP Address	0 7 8 15 16 23 24 Version IHL DSCP ECN Total Length Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address

¿Con qué propósito? Alcanzar las distintas interfaces de red de forma eficiente y escalable.

Background: Asignación de direcciones IP

Tabla 2: Clases de direcciones IP.

Clase	Rango	Rango (binario)	Rango privadas	Máscara de red
A	0.0.0.0 - 127.255.255.255	0000001.Z.Z.Z - 011111111.O.O.O	10.0.0.0 - 10.255.255.255	255.0.0.0 (/8)
В	128.0.0.0 - 191.255.255.255	10 <mark>000000.Z.Z.Z - 101111111.O.O.O</mark>	172.16.0.0 - 172.31.255.255	255.255.0.0 (/16)
С	192.0.0.0 - 223.255.255.255	110 <mark>00000.Z.Z.Z - 110111111.O.O.O</mark>	192.168.0.0 - 192.168.255.255	255.255.255.0 (/24)
D	224.0.0.0 - 239.255.255.255	1110 <mark>0000.Z.Z.Z - 111011111.O.O.O</mark>	-	-
Е	240.0.0.0 - 255.255.255.255	1111 <mark>0000.Z.Z.Z - 1111111111.O.O.O</mark>	-	-

^{*} Z = 00000000; O = 11111111.

Ejemplo

► Identifique la clase de dirección de las direcciones IP siguientes: 201.158.20.165, 129.176.32.24, 14.169.128.50, 150.214.35.1, 250.9.96.24.

Dirección IP	Clase
201.158.20.165	
129.176.32.24	
14.169.128.50	
150.214.35.1	
250.9.96.24	

Se dispone de una red con la siguiente topología. Cada una de las redes finales (redes A,..., H) está compuesta por el número de hosts indicado entre paréntesis. Además, se ha contratado el rango de direcciones públicas 168.168.168.0/22.

- a) Proponga un esquema de asignación de direcciones que cumpla con los siguientes requisitos:
 - Todos los hosts han de tener asignadas direcciones públicas.
 - La asignación de direcciones ha de minimizar el tamaño de las tablas de encaminamiento.
- b) Muestre las tablas de encaminamiento de todos los *routers*, suponiendo que se utiliza el esquema de asignación de direcciones del apartado anterior.

Nota: El *router* RO tiene una IP pública diferente en su interfaz hacia Internet, e.g., 33.33.33/24.

iii 14 Subredes en total!!!

Ejercicio 1

¿Cuántas subredes identificáis en la red representada en la figura?

Internet

Criterio FR: Si para alcanzar una interfaz de red, he de atravesar al menos un dispositivo de capa 3 (router), significará que mi interfaz y la interfaz destino están en subredes distintas.

¿Cuántas IPs demanda cada subred?¿Cuál es el número mínimo de Ips que podemos asignarle?

Ejercicio 1

RED #IPs requeridas #IPs min asignadas

10

Solución del apartado a)

Ejercicio 1

RED	#IPs min asignadas	Rango
Α	32	168.168.168.64/27
В	32	168.168.168.96/27
С	64	168.168.168.128/26
D	64	168.168.168.192/26
E	128	168.168.169.0/25
F	128	168.168.169.128/25
G	256	168.168.170.0/24
Н	256	168.168.171.0/24
R1↔R3	4	168.168.168.16/29
R1↔R4	4	168.168.168.24/29
R2↔R5	4	168.168.168.32/29
R2↔R6	4	168.168.168.40/29
R0↔R1	4	168.168.168.0/29
R0↔R2	4	168.168.168.8/29

- a) Proponga un esquema de asignación de direcciones que cumpla con los siguientes requisitos:
 - Todos los hosts han de tener asignadas direcciones públicas.
 - La asignación de direcciones ha de minimizar el tamaño de las tablas de encaminamiento.
- b) Muestre las tablas de encaminamiento de todos los *routers*, suponiendo que se utiliza el esquema de asignación de direcciones del apartado anterior.

Nota: El *router* RO tiene una IP pública diferente en su interfaz hacia Internet, e.g., 33.33.33.424.

Comparamos con valor red destino: 0.0.0.0

A genera un paquete destinado a C

Llega a R y este inspecciona su cabecera IP (IPv4H) y determina que la IP destino es la 200.200.200.3

R explora su tabla de rutas en busca de coincidencias (matches)

Tabla de rutas de R

R	ed Destino	GW
	0.0.0.0	10.10.10.1
,	10.0.0.0/8	*
20	0.20.0.0/16	*
30	.30.16.0/20	*
2	00.0.0.0/8	20.20.1.1

0000000.0000000.0000000.00000000

Comparamos el resultado anterior con el valor del parámetro red destino en la tabla de rutas.

0000000.0000000.0000000.0000000

¡¡¡Hay match!!!

Payload
| L4H
| IPv4H
| L2H
| R
| 10.0.0.0/8

200.200.200.3

Comparamos con valor red destino: 10.0.0.0

A genera un paquete destinado a C

Llega a R y este inspecciona su cabecera IP (IPv4H) y determina que la IP destino es la 200.200.200.3

R explora su tabla de rutas en busca de coincidencias (matches)

Tabla de rutas de R

Red Destino	GW
0.0.0.0	10.10.10.1
× 10.0.0.0/8	*
20.20.0.0/16	*
30.30.16.0/20	*
200.0.0.0/8	20.20.1.1

20.20.0.0/16

11001000.00000000.00000000.00000000

IP: 200.200.200.3

Comparamos el resultado anterior con el valor del parámetro red destino en la tabla de rutas.

00001010.00000000.00000000.00000000

¡¡¡No hay match!!!

200.200.200.3 & 255.255.0.0

Comparamos con valor red destino: 20.20.0.0

A genera un paquete destinado a C

Llega a R y este inspecciona su cabecera IP (IPv4H) y determina que la IP destino es la 200.200.200.3

R explora su tabla de rutas en busca de coincidencias (matches)

Tabla de rutas de R

Red Destino	GW
V 0.0.0.0	10.10.10.1
× 10.0.0.0/8	*
× 20.20.0.0/16	*
30.30.16.0/20	*
200.0.0.0/8	20.20.1.1

 $11001000.11001000.11001000.00000011 \\ 1111111.11111111.00000000.000000000$

IP: 200.200.200.3

11001000.11001000.00000000.00000000

Comparamos el resultado anterior con el valor del parámetro red destino en la tabla de rutas.

00010100.00010100.00000000.00000000

¡¡¡No hay match!!!

Payload
L4H
IPv4H
L2H
R
10.0.0.0/8
IP: 1.1.1.1

200.200.200.3 & 255.255.240.0 & 200.200.192.0

Comparamos con valor red destino: 30.30.16.0

A genera un paquete destinado a C

Llega a R y este inspecciona su cabecera IP (IPv4H) y determina que la IP destino es la 200.200.200.3

R explora su tabla de rutas en busca de coincidencias (matches)

Tabla de rutas de R

Red Destino	GW
0.0.0.0	10.10.10.1
× 10.0.0.0/8	*
× 20.20.0.0/16	*
× 30.30.16.0/20	*
200.0.0.0/8	20.20.1.1

 $11001000.11001000.11001000.00000011 \\ 1111111.11111111.11110000.000000000$

11001000.11001000.11000000.00000000

Comparamos el resultado anterior con el valor del parámetro red destino en la tabla de rutas.

00011110.00011110.00010000.00000000

¡¡¡No hay match!!!

200.200.200.3 & 255.0.0.0 200.0.0.0

Comparamos con valor red destino: 200.0.0.0

A genera un paquete destinado a C

Llega a R y este inspecciona su cabecera IP (IPv4H) y determina que la IP destino es la 200.200.200.3

R explora su tabla de rutas en busca de coincidencias (matches)

R escoge la coincidencia más específica (longest match), es decir, aquella con mayor máscara de red.

Tabla de rutas de R

Red Des	tino	GW
0.0.0	0	10.10.10.1
× 10.0.0.	0/8	*
× 20.20.0.	0/16	*
×30.30.16.0/20		*
200.0.0.	0/8	20.20.1.1

11001000.00000000.00000000.00000000

Comparamos el resultado anterior con el valor del parámetro red destino en la tabla de rutas.

11001000.00000000.00000000.00000000

¡¡¡Hay match!!!

Red Destino	GW
0.0.0.0	33.33.33.1
33.33.37.0/24	*
168.168.168.0/29	*
168.168.168.8/29	*
168.168.168.0/24	168.168.168.2
168.168.168.32/28	168.168.16
168.168.168.0/22	168.168.10

RED	#IPs min asignadas	Rango
Α	32	168.168.168.64/27
В	32	168.168.168.96/27
С	64	168.168.168.128/26
D	64	168.168.168.192/26
Е	128	168.168.169.0/25
F	128	168.168.169.128/25
G	256	168.168.170.0/24
Н	256	168.168.171.0/24
R1↔R3	4	168.168.168.16/29
R1↔R4	4	168.168.168.24/29
R2↔R5	4	168.168.168.32/29
R2↔R6	4	168.168.168.40/29
R0↔R1	4	168.168.168.0/29
R0↔R2	4	168.168.168.8/29

Red Destino	GW
0.0.0.0	168.168.168.1
168.168.168.0/29	*
168.168.16/29	*
168.168.168.24/29	*
168.168.168.64/26	168.168.168.18
168.168.168.128/25	168.168.168.26

Red Destino	GW
0.0.0.0	168.168.168.9
168.168.168.8/29	*
168.168.168.32/29	*
168.168.168.40/29	*
168.168.169.0/24	168.168.168.34
168.168.168.170/23	168.168.168.42

RED	#IPs min asignadas	Rango
Α	32	168.168.168.64/27
В	32	168.168.168.96/27
С	64	168.168.168.128/26
D	64	168.168.168.192/26
E	128	168.168.169.0/25
F	128	168.168.169.128/25
G	256	168.168.170.0/24
Н	256	168.168.171.0/24
R1↔R3	4	168.168.168.16/29
R1↔R4	4	168.168.168.24/29
R2↔R5	4	168.168.168.32/29
R2↔R6	4	168.168.168.40/29
R0↔R1	4	168.168.168.0/29
R0↔R2	4	168.168.168.8/29

Red Destino	GW
0.0.0.0	168.168.16
168.168.16/29	*
168.168.168.64/27	*
168.168.168.96/27	*

RED	#IPs min asignadas	Rango
Α	32	168.168.168.64/27
В	32	168.168.168.96/27
С	64	168.168.168.128/26
D	64	168.168.168.192/26
E	128	168.168.169.0/25
F	128	168.168.169.128/25
G	256	168.168.170.0/24
Н	256	168.168.171.0/24
R1↔R3	4	168.168.168.16/29
R1↔R4	4	168.168.168.24/29
R2↔R5	4	168.168.168.32/29
R2↔R6	4	168.168.168.40/29
R0↔R1	4	168.168.168.0/29
R0↔R2	4	168.168.168.8/29

Tabla de rutas de host en red H

Red Destino	GW
0.0.0.0	168.168.171.1
168.168.171.0/24	*

200		_
RED	#IPs min asignadas	Rango
A	32	168.168.168.64/27
В	32	168.168.168.96/27
С	64	168.168.168.128/26
D	64	168.168.168.192/26
E	128	168.168.169.0/25
F	128	168.168.169.128/25
G	256	168.168.170.0/24
Н	256	168.168.171.0/24
R1↔R3	4	168.168.168.16/29
R1↔R4	4	168.168.168.24/29
R2↔R5	4	168.168.168.32/29
R2↔R6	4	168.168.168.40/29
R0↔R1	4	168.168.168.0/29
R0↔R2	4	168.168.168.8/29

La siguiente figura muestra la topología de una empresa, que tiene contratado con su ISP el rango de direcciones 15.16.17.0/24. El número de ordenadores conectados a las redes A, B y C están indicados en la figura entre paréntesis.

- Realice la asignación de direcciones IP tanto de equipos como de routers (incluyendo las redes entre los routers), utilizando direcciones públicas siempre que sea posible.
- b) Indique las tablas de encaminamiento de todos los *routers* de forma que, para el tráfico entre las redes A, B y C, se encamine de acuerdo con las flechas en la figura. Debe haber conectividad completa entre estas redes y hacia Internet.

La siguiente figura muestra la topología de una empresa, que tiene contratado con su ISP el rango de direcciones 15.16.17.0/24. El número de ordenadores conectados a las redes A, B y C están indicados en la figura entre paréntesis.

¿Cuántas IPs demanda cada subred?¿Cuál es el número mínimo de Ips que podemos asignarle?

RED #IPs requeridas #IPs min asignadas

27

¿Cuántas subredes identificamos en la estructura topológica de la figura?

9 subredes

RED	#IPs min asignadas	Rango IPs
Α	$2^6 = 64$	15.16.17.64/26
В	$2^5 = 32$	15.16.17.32/27
С	$2^7 = 128$	15.16.17.128/25
RA↔R1	$2^2 = 4$	15.16.17.0/30
RA↔R2	$2^2 = 4$	15.16.17.4/30
RA↔R3	$2^2 = 4$	15.16.17.8/30
R1↔R2	$2^2 = 4$	15.16.17.12/30
R2↔R3	$2^2 = 4$	15.16.17.16/30
R3↔R1	$2^2 = 4$	15.16.17.20/30

Tabla de rutas de R_A

Red Destino	GW
0.0.0.0	150.150.150.1
15.16.17.0/30	*
15.16.17.4/30	*
15.16.17.8/30	*
15.16.17.0/24	15.16.17.2

RED	#IPs min asignadas	Rango IPs
Α	$2^6 = 64$	15.16.17.64/26
В	$2^5 = 32$	15.16.17.32/27
С	$2^7 = 128$	15.16.17.128/25
RA⇔R1	$2^2 = 4$	15.16.17.0/30
RA↔R2	$2^2 = 4$	15.16.17.4/30
RA⇔R3	$2^2 = 4$	15.16.17.8/30
R1↔R2	$2^2 = 4$	15.16.17.12/30
R2↔R3	$2^2 = 4$	15.16.17.16/30
R3↔R1	$2^2 = 4$	15.16.17.20/30

Tabla de rutas de R_1

Red Destino	GW
0.0.0.0	15.16.17.1
15.16.17.0/30	*
15.16.17.12/30	*
15.16.17.20/30	*
15.16.17.64/26	*
15.16.17.0/24	15.16.17.14

RED	#IPs min asignadas	Rango IPs
Α	$2^6 = 64$	15.16.17.64/26
В	$2^5 = 32$	15.16.17.32/27
С	$2^7 = 128$	15.16.17.128/25
RA⇔R1	$2^2 = 4$	15.16.17.0/30
RA↔R2	$2^2 = 4$	15.16.17.4/30
RA⇔R3	$2^2 = 4$	15.16.17.8/30
R1↔R2	$2^2 = 4$	15.16.17.12/30
R2↔R3	$2^2 = 4$	15.16.17.16/30
R3↔R1	$2^2 = 4$	15.16.17.20/30

Tabla de rutas de R_2

_	
Red Destino	GW
0.0.0.0	15.16.17.6
15.16.17.4/30	*
15.16.17.12/30	*
15.16.17.16/30	*
15.16.17.32/27	*
15.16.17.0/24	15.16.17.17

RED	#IPs min asignadas	Rango IPs
Α	$2^6 = 64$	15.16.17.64/26
В	$2^5 = 32$	15.16.17.32/27
С	$2^7 = 128$	15.16.17.128/25
RA↔R1	$2^2 = 4$	15.16.17.0/30
RA↔R2	$2^2 = 4$	15.16.17.4/30
RA↔R3	$2^2 = 4$	15.16.17.8/30
R1↔R2	$2^2 = 4$	15.16.17.12/30
R2↔R3	$2^2 = 4$	15.16.17.16/30
R3↔R1	$2^2 = 4$	15.16.17.20/30

Tabla de rutas de R_3

Red Destino	GW
0.0.0.0	15.16.17.9
15.16.17.8/30	*
15.16.17.16/30	*
15.16.17.20/30	*
15.16.17.128/25	*
15.16.17.0/24	15.16.17.21

Dada la siguiente topología, que representa la red una empresa, asigne direcciones IP a los diferentes equipos y redes, minimizando el número de entradas en las tablas de encaminamiento. El ISP sólo nos proporciona la dirección IP pública 44.44.44. Ajustar en lo posible las asignaciones al número de ordenadores.

Red WiFi

(visitantes)

Ordenador visitante

Red Destino	GW
0.0.0.0	44.44.44.1
44.44.44.0/24	*
192.168.4.0	*
192.168.0.0/22	192.168.4.2

Red WiFi

(visitantes)

Ordenador visitante

Red Destino	GW
0.0.0.0	192.168.4.1
192.168.4.0/24	*
192.168.3.0/24	*
192.168.0.0/24	192.168.3.4
192.168.1.0/24	192.168.3.3
192.168.2.0/24	192.168.3.2

Red WiFi

Ordenador visitante

Red Destino	GW
0.0.0.0	192.168.3.1
192.168.0.0/24	*
192.168.3.0/24	*

Red WiFi

(visitantes)

Ordenador visitante

Red Destino	GW
0.0.0.0	192.168.3.1
192.168.1.0/24	*
192.168.3.0/24	*

Dada la topología de la figura, explique qué ruta se utilizaría para mandar información entre el host A y el host B suponiendo:

a) Que los routers implementan RIP. En el caso de que haya varias rutas posibles, explique cómo se elegiría la ruta a seguir en un caso real.

Nos quedamos con cualquier ruta de 4 saltos.

$$A \rightarrow R1 \rightarrow R2 \rightarrow R4 \rightarrow R5 \rightarrow B$$

$$A \rightarrow R1 \rightarrow R6 \rightarrow R4 \rightarrow R5 \rightarrow B$$

$$A \rightarrow R1 \rightarrow R6 \rightarrow R7 \rightarrow R5 \rightarrow B$$

b) Que los routers implementan OSPF. En el caso de que haya varias rutas posibles, explique cómo se elegiría la ruta a seguir en un caso real.

1) Calculamos el coste de cada enlace. Por defecto en OSPF:

$$C = \frac{10^8}{BW}$$

donde BW es el ancho de banda del enlace expresado en bps.

> 2) Usando el algoritmo de Dijkstra, buscamos la ruta con menor coste.

$$A \rightarrow R1 \rightarrow R6 \rightarrow R4 \rightarrow R5 \rightarrow B$$

Nodo origen = R5 6°

Nodos no visitados = R2, R3, R4

Ejercicio 4

Distancias:

It0 lt1 lt2 lt3 R1:∞ R1:∞ R1:∞ R2:∞ R2:∞ R2:∞ R2:∞ R3:∞ R3:∞ R3:40 R3:40 R4:∞ R4:20 R4:20 R4:20 R5:0 R5:0 R5:0 R5:0 **R6:**∞ **R6:**∞ **R6:**30 **R6:**30 R7:∞ R7:25 R7:24 R7:24

lt4 It5 R1:55 R1:55 R2:60 R2:60 R3:40 R3:40 R4:20 R4:20 R5:0 R5:0 R6:30 R6:30 R7:24 R7:24

La siguiente figura muestra la topología de red de una empresa conectada a Internet (parte izquierda), así como la red de un trabajador que se conecta desde casa (parte derecha). El ISP contratado por la empresa le asigna el rango 150.150.150.0/24.

- a) Realice la Asigne direcciones IP a todos los equipos de la empresa (incluyendo los routers) de forma que todas sean públicas.
- b) En la red C hay un servidor de FTP. El equipo PC (en casa del trabajador) quiere descargarse un fichero de este servidor. Suponga que se hace una petición con un datagrama IP y que se recibe una respuesta a dicha petición. Indique los valores de los diferentes campos (direcciones IP origen y destino; puerto origen y destino (21), identificador de paquete, offset, flag More Fragments). Suponga que tanto la petición como la respuesta tienen 1480 bytes de datos (incluyendo cabeceras de protocolos superiores, e.g. TCP). La cabecera IP tiene 20 bytes.

- Realice la Asigne direcciones IP a todos los equipos de la empresa (incluyendo los routers) de forma que todas sean públicas.
- b) En la red C hay un servidor de FTP. El equipo PC (en casa del trabajador) quiere descargarse un fichero de este servidor. Suponga que se hace una petición con un datagrama IP y que se recibe una respuesta a dicha petición. Indique los valores de los diferentes campos (direcciones IP origen y destino; puerto origen y destino (21), identificador de paquete, offset, flag More Fragments). Suponga que tanto la petición como la respuesta tienen 1480 bytes de datos (incluyendo cabeceras de protocolos superiores, e.g. TCP). La cabecera IP tiene 20 bytes.

¿Cómo conocer la MTU máxima?

▶ Dado el escenario de la figura, explique cómo y en qué secuencia utilizaría opciones IP y mensajes ICMP para determinar la MTU máxima de la ruta entre el host H1 y H2.

- ▶ Idea: Activar el flag "Don't Fragment" (DF) de IP.
- Si el tamaño del paquete excede la MTU máxima de alguna red, el router correspondiente (el que actúa de pasarela a la red) enviará un mensaje ICMP tipo 3 "Destination unreachable" (Destino Inalcanzable) con código 4 "Fragmentation needed" (Se precisa fragmentación).
- ▶ En Windows puede usarse la utilidad ping como sigue: ping -l <size> -f <url || IP>

Background: Fragmentación IPv4

LC: Longitud de cabecera expresada en número de palabras de 4 bytes.

MF: bit indicando si es el último fragmento (0) o no (1).

DF: bit indicando si se puede

fragmentar el datagrama (0) o no (1)

LT: Longitud total del fragmento (cabecera + payload) expresada en bytes.

El contenido de esta presentación sirve para ilustrar la resolución de algunos de los problemas propuestos en la relación de problemas de la asignatura FR de 3º de GII para el curso 2024/2025. En cualquier caso, la información aquí contenida es incompleta y su propósito es el de asistir a las explicaciones del seminario 3 de la citada asignatura.

