IoT Projekte mit Mynewt OS

Band 1: Calliope Mini als Einstieg

Programmieren mit C und CLion

Von Alfred Schilken

Inhaltsverzeichnis

Vorwort	1
Für wen ist dieses Buch?	2
Was hier zu finden ist	3
Was wird gebraucht?	5
Was nicht in diesem Buch steht	6
Schreibstil	6
Quellcode	7
Webseiten zum Buch	7
Typographische Vereinbarungen	8
Kapitel 1 – Die Maker	9
Vom Mikroprozessor zum Mikrocontroller	9
Arduino	10
ARM mbed	11
Raspberry Pi	13
Internet of Things (IoT)	13
Kapitel 2 – BBC micro:bit	15
Die technischen Daten	15
LED-Matrix und Buttons	15
Vergleich mit Arduino und Raspberry Pi	16
Kapitel 3 – Der Calliope	17
Die Platine	
Zielgruppe: nicht nur für Grundschüler	20
BBC-micro:bit kompatibel – und mehr	21
Ein Blockschaltbild	22
Die RGB-LED	23
Die Tonausgabe – "Buzzer"	23
Der Motortreiber	24
Das Miniatur-Mikrofon	25
Die Grove-Buchsen	26

Ein externer Speicherchip (optional)	26
Der Erweiterungsport für Maker	27
Kapitel 4 – Laufzeitumgebungen	29
Bare Metal	
MikroPython	29
RTOS – Real-Time-Operating-System	30
Kapitel 5 – Entwicklungsumgebungen	31
Calliope mini, PXT Editor und Open Roberta Lab	31
MicroPython	34
Die Grove-Buchsen	26
Yotta – mbed offline	37
mbed-cli	44
Segger Embedded Studio – SES-IDE	44
Keil µVision IDE	46
Eclipse + GCC	46
Visual Studio Code	47
CLion + Yotta	47
CLion + newt	47
Fazit – Vergleich der Entwicklungstools	47
Kapitel 6 – Betriebssysteme für Calliope	49
ARM mbed OS	49
Lancaster Runtime	50
RIOT	52
Zephyr	53
Apache Mynewt	54
Fazit – Vergleich der Betriebssysteme	55
Kapitel 7 – Apache Mynewt	56
Pures C anstatt C++	56
Projekte und Repositories	58
Packages	59
Apps	60

BSP – Board Support Package	60
HAL – Hardware Abstraction Layer	65
Architektur	67
Target = App + BSP + Profil	67
Bootloader	69
Aufteilung des Flash-Speichers	70
Die Flash-Map	71
BSP für den Single-Image-Modus	73
Konventionen	75
Treiber für Kommunikation und Sensoren	75
OS Tasks	79
OS Queues	80
Timer – "callout"	81
Statistiken	81
Logging	84
Systemkonfiguration – syscfg-Parameter	84
Config-Variablen	87
Konsole	87
Shell	88
Kapitel 8 – Installation auf macOS	90
Installation des newt-Tools	90
Installation ARM Toolchain, OpenOCD und CoolTerm	91
Installation der "nativen" Toolchain	93
CLion installieren	95
Kapitel 9 – Installation auf Windows 10	96
MinGW Shell für Windows installieren	96
Ausführbare Version des newt-Tools installieren	
Git für Windows installieren	99
Installation ARM Toolchain, OpenOCD, CoolTerm	
CLion installieren	
Kapitel 10 – Apps bauen mit dem newt-Tool	103

Überblick newt – Subkommandos	103
Ein neues Projekt anlegen	104
"blinky" bauen und auf Mac oder Linux ausführen	108
Debuggen eines nativen Targets	112
"blinky" Bauen und auf Calliope ausführen	113
Kapitel 11 – CLion + newt: ein gutes Gespann	118
Mynewt-Projekt für CLion vorbereiten	118
Ein Mynewt Projekt in CLion öffnen	
Projekt in CLion aktualisieren	122
Debuggen mit gdb und OpenOCD	
Kapitel 12 – Die App mydrivertest	129
Ein externes Repository einbinden	129
Auf Buttons reagieren	135
Der Button-Treiber	137
Die Shell aktivieren	142
Shell-Commands	143
CoolTerm konfigurieren	144
Die Shellkommandos der App	146
Test des Sound-Treibers	149
Die GPIOs des Calliope	152
GPIO – den digitalen Status eines Pins einlesen	154
GPIO-Scanner	157
GPIO Ausgabelevel schalten	158
Der I2C Bus	159
I2C probe	160
I2C Scanner	160
Analog-Digital-Wandler	163
Zusätzliche Repositories für den ADC-Treiber	164
ADC testen	168
LED-Matrix testen	171
OLED-Display testen	173
LED-Balken testen	174

LED-Balken testen	174
15x7-LED-Matrix von Adafruit testen	176
Kapitel 13 – Das Seeedstudio Grove-System	178
Verschiedene Steckerbelegungen	180
Digitale GPIOs	180
Analoger Input	181
UART – Serielle Schnittstelle	181
I2C – Bus für bis zu 112 Geräte	182
Eigene Grove-Module löten	183
Grove PROTOSHIELD	183
Potenziometer am Grove-Kabel	184
Grove LED-Balken	184
LEDs direkt am Grove-Kabel	185
Kapitel 14 – Interessante Chips und Boards	186
I2C OLED-Display	187
I2C 15x7 LED-Matrix – Adafruit CharliePlex	189
I2C pcf8591-Board A/D und D/A-Wandler mit Sensoren	190
I2C MCP3008 ADC 10BIT A/D-Wandler	191
I2C RTC Echtzeit-Uhren	191
I2C 24FC128 128Kbit EEPROM	192
I2C Port-Expander mit MCP23017	194
Port-Expander sx1509 I2C-Breakout	197
Port Expander pcf8574 I2C-Breakout	198
Temperaturmessung mit I2C	
Kapitel 15 – Projekt Lügendetektor – stresstest-App	200
Seedstudio Grove-Modul	201
ADC konfigurieren	201
Der Quelltext der stresstest-App	
Feedback über eine Plotter-Kurve in der Arduino-IDE	205
Kapitel 16 – Projekt Herzschlag-Monitor	210
Grove Ohrclip Herzfrequenz Sensor – GRV HEART RATE3	210

Grove Finger-Clip Herzschlag-Sensor – GRV HEART RATE1	215
Pulsesensor Kickstarter Projekt von 2011	215
Kapitel 17 – Schaltschwelle der Digital-Eingänge bestimmen	216
Kapitel 18 – Konfigurierbarer iBeacon	218
iBeacon – ein Beacon von Apple	218
Konfigurieren mit Systemkonfiguration in syscfg.yml	223
Konfigurationsvariablen in der Shell	225
Major und Minor in der Shell konfigurieren	226
Statistik-Zähler auswerten	233
Eigene Zähler für die Statistik	237
Drei Logging-Varianten	237
Logging auf die Konsole	238
Logging im Flash für die spätere Analyse	242
Eddystone Beacon – Googles Beacon-Variante	245
Hybrid-Beacon – iBeacon + Eddystone	
Kapitel 19 – Die App bleadc	250
BLE-Grundbegriffe: Central, Peripheral, Service, Characteristic	250
Service und Characteristics initialisieren	
Auf READ- und WRITE-Zugriffe reagieren	253
NOTIFY- und INDICATE-Nachrichten auslösen	256
Der GAP-Layer	258
Advertising	258
Auf GAP-Events reagieren	260
Kapitel 20 – Die App ble_uart	266
Ein Chat über Bluetooth	
Eine Minimal-Shell über Bluetooth	270
Bluefruit App für iOS und Android	275
Kapitel 21 – MI-Band fernauslösen – blemib-App	278
Bluetooth-Discovery – auf Advertising-Pakete reagieren	280
Der GAP-Event-Handler	

Verbindungskandidaten selektieren über Bluetooth-Adresse	284
Die Peer-Bibliothek	286
Scannen und Speichern der GATT-Details eines Peripherals	287
Schreibzugriff auf ein Characteristic des Peripherals	289
Logging von Connect, Discovery und write	291
Kapitel 22 – Das newtmgr-Tool	293
Kapitel 23 – Troubleshooting	297
Prüfen, ob das Programm mit einer Reboot-Loop crasht	297
Quelltext einer Assert-Adresse mit gdb analysieren	298
Absturz-Adresse in Map-Datei suchen	298
Keine Reaktion in CoolTerm trotz aktivierter Shell	299
Reboot stoppt nicht bei Breakpoint	299
Breakpoints funktionieren nicht	301
Selten – aber möglich: USB-Kabel defekt	301
Laufzeit-Daten des OS-Moduls in der Shell	309
Kapitel 24 – Ausblick	303
Weitere Projekte mit Grove-Modulen	303
Weitere Bluetooth-Projekte	303
Es muss nicht immer Bluetooth sein	304
Dateisystem für die Speicherung von Messreihen nutzen	304
Kapitel 25 – Anhang	306
Übergangslösung falls newt target cmake nicht funktioniert	306
newt selbst bauen	306
Laufzeit-Daten des OS-Moduls in der Shell	309
Speicherbedarf reduzieren	312
Linux als Entwicklungsrechner	313
Alle Tools prüfen	315
macOS GDB signieren	316
Die 5x5 LED-Matrix	317
newt vals – yml-Werte für bsp, app, target auflisten	
Upgrade auf die nächste Mynewt-Version	320

Git für die Codeverwaltung benutzen	322
Grove LED-Balken	184
Bootloader aus dem Repository bauen und installieren	324
Target für Bootloader mit newt erzeugen	325
Source-Level-Debuggen in CLion	327
Funktionen, Symbole, Dateien finden	334
Änderungen vorangegangener Versionen wiederfinden	334
GDB Kommandos	335
Die wichtigsten GDB und OpenOCD Kommandos	337
Sublime Text Editor für die Suche	338
JLogicanalyzer benutzen	338
Meilensteine Hard- und Software	341
Bezugsquellen	342
Links ins Internet	345
Literaturverzeichnis	347
Glossar	349