Introduction to Generalized Linear Models

Part 3: Poisson Regression

Linear Regression - Continuous Target

 $Y|\vec{x}$ follows a

$$\mu = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Linear Regression - Continuous Target

 $Y|ec{x}$ follows a normal distribution with mean

$$\mu = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

 $Y|\vec{x}$ follows a

$$\mu = (\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

 $Y|\vec{x}$ follows a

Bernoulli

$$\mu = (\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

 $Y|\vec{x}$ follows a Bernoulli

$$\mu = \operatorname{logistic}(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

 $Y|\vec{x}$ follows a

Bernoulli

$$\mu = \operatorname{logistic}(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

$$= \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)}}$$

What if our target

variable is a count?

1 doctor_visits.head()

	visits	gender	age	income	illness	reduced	health
0	1	female	72.0	0.25	4	7	3
1	0	male	72.0	0.35	0	0	(
2	0	female	47.0	0.75	1	0	(
3	0	female	62.0	0.25	0	0	(
4	4	female	72.0	0.35	4	0	(

1	doctor_visits.head()										
	visits	gender	age	income	illness	reduced	healt				
0	1	female	72.0	0.25	4	7	1				
1	0	male	72.0	0.35	0	0	i i				
2	0	female	47.0	0.75	1	0)				
3	0	female	62.0	0.25	0	0					
4	4	female	72.0	0.35	4	0					

Since this is count data, we can try using a **Poisson distribution** to model the target variable.

Since this is count data, we can try using a **Poisson distribution** to model the target variable.

We just need to estimate the mean of this distribution.

visits	gendei	age	ncome	illness	reduced	health
1	female	72.0	0.25	4	7	3
0	male	72.0	0.35	0	0	(
0	female	47.0	0.75	1	0	(
0	female	62.0	0.25	0	0	(
4	female	72.0	0.35	4	0	(
	1 0 0	1 female 0 male 0 female 0 female	1 female 72.0 0 male 72.0 0 female 47.0 0 female 62.0	1 female 72.0 0.25 0 male 72.0 0.35 0 female 47.0 0.75 0 female 62.0 0.25	1 female 72.0 0.25 4 0 male 72.0 0.35 0 0 female 47.0 0.75 1 0 female 62.0 0.25 0	1 female 72.0 0.25 4 7 0 male 72.0 0.35 0 0 0 female 47.0 0.75 1 0 0 female 62.0 0.25 0 0

We'll estimate the number of visits based on the *age* variable.

We are modeling the target variable as a following a Poisson distribution.

poisreg_age.summary()

De	p. Variable	e:	visits No. Observ		rvations:	100			
	Mode	d:	C	BLM	Df Re	98			
Мо	del Famil	y:	Pois	son	D	1			
Lin	k Function	n:		log		Scale:	1.0000		
	Method	d:	IRLS Log-Lik			elihood:	-88.646		
	Date	e: Thu,	u, 16 Sep 2021		D	120.45			
	Time	e:	11:26:18		Pearson chi2:		221.		
No.	Iteration	s:		5					
Covari	ance Type	e:	nonrol	bust					
	coef	std err	z	P> z	[0.025	0.975]			
const	-1.8280	0.441	-4.143	0.000	-2.693	-0.963			
age	0.0187	0.008	2.396	0.017	0.003	0.034			

poisreg_age.summary()

Dep	o. Variable	e:	V	isits	No. Obsei	100	
	Mode	l:	C	BLM	Df Re	98	
Mo	del Family	y :	Pois	son	D	1	
Link	(Function	1:	log Scale:			1.0000	
	Method	d:	II	RLS	Log-Lik	-88.646	
	Date	e: Thu,	16 Sep 2	021	D	120.45	
	Time	e :	11:26	6:18	Pears	221.	
No.	Iterations	s:		5			
Covari	ance Type	e:	nonrol	bust			
	coef	std err	z	P> z	[0.025	0.975]	
const	-1.8280	0.441	-4.143	0.000	-2.693	-0.963	
age	0.0187	0.008	2.396	0.017	0.003	0.034	

For a person whose age is *t*, the estimated value of the mean is

$$exp(-1.8280 + 0.0187t)$$

= $e^{(-1.8280 + 0.0187t)}$

and Poisson Regression

Summary - Linear, Logistic,

Linear Regression

 $Y|\vec{x}$ follows a normal

$$\mu = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Logistic Regression

 $Y|\vec{x}$ follows a

Bernoulli

$$\mu = \operatorname{logistic}(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

Logistic Regression

 $Y|\vec{x}$ follows a

Bernoulli

$$\mu = \operatorname{logistic}(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

$$= \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)}}$$

$$Y|\vec{x}$$
 follows a

$$\mu = (\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

 $Y|\vec{x}$ follows a Poisson

$$\mu = (\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

 $Y|\vec{x}$ follows a

Poisson

$$\mu = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

 $Y|\vec{x}$ follows a Poisson

$$\mu = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

$$= e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}$$

To Be Continued