This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

*						
						•
			, , , , , , , , , , , , , , , , , , ,			0.
			•			
· ·						
	*		*			
			•			
4						20
1.						
j.						
		• • ,				
		<i>*</i>			•	
ű.	•					
					1	
*		ī.,	*			
			5			
				τ.		
•						
				•	• 3	

HOPS EXTRACTS, METHOD FOR THE PRODUCTION AND USE

Patent number: WO03014287

Publication date: 2003-02-20

Inventor: KOCH EGON (DE); ERDELMEIER CLEMENS (DE)

SCHWABE WILLMAR GMBH & CO (DE); KOCH EGON (DE); ERDELMEIER CLEMENS (DE)

 Applicant:
 SCHWABE WILLMAR GMBH & CO (DI CASSIFICATION:

- international: C12C3/08; C12C3/10; A61K35/78

A61K35/78, C12C3/10, C12C9/02B

- european:

Application number: WO2002EP08943 20020809

Priority number(s): DE20011039479 20010810

■ DE10139479 (A1) Cited documents: ■ DE19939350 ■ US5972411 ■ US4490405 ■ US3891781

Also published aś:

Abstract of W003014287

The invention relates to novel hops extracts with an increased content in prenylated chalcones and flavones. The invention also relates to a method for producing the same, to pharmaceutical preparations comprising such hops extracts and to the use of the hops extracts in the prophylaxis and therapy of conditions that are caused by estrogen deficiency or by a dysregulation of the sex hormone metabolism.

Data supplied from the esp@cenet database - Worldwide

•

BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND **MARKENAMT** (7) Aktenzeichen:

101 39 479.9

② Anmeldetag:

10. 8.2001

(3) Offenlegungstag:

27. 2.2003

(71) Anmelder:

Dr. Willmar Schwabe GmbH & Co., 76227 Karlsruhe, DE

(74) Vertreter:

Patent- und Rechtsanwälte Kraus & Weisert, 80539 München

(72) Erfinder:

Erdelmeier, Clemens, Dr., 76139 Karlsruhe, DE; Koch, Egon, Dr., 76229 Karlsruhe, DE

66 Entgegenhaltungen:

199 39 350 A1

Datenbank FSTA bei STN, AN 2001 (02): H0457 zu: (Use of a xanthohumol rich hop product in brewing of beer) BIENDL, M. u.a., Brauwelt, (2000), 140 (46/47) 2006-2011 (recherchiert am 03.05.2002);

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Hopfenextrakte, Verfahren zu ihrer Herstellung und Verwendung
- **(57)** Beschrieben sind neue Hopfenextrakte mit erhöhtem Gehalt an prenylierten Chalkonen und Flavonen, Verfahren zur iher Herstellung, pharmazeutische Zubereitungen, umfassend solche Hopfenextrakte, sowie die Verwendung dieser Hopfenextrakte zur Prophylaxe und Therapie von Krankheitszuständen, die durch einen Mangel an Östrogenen oder durch Dysregulationen des Geschlechtshormonstoffwechsels hervorgerufen werden.

2 WO 002003 01 4287

Beschreibung

[0001] Die vorliegende Erfindung betrifft Hopfenextrakte, Verfahren zu ihrer Herstellung und die Verwendung von Hopfenextrakten zur Prophylaxe und Therapie von Krankheitszuständen, die durch einen Mangel an Östrogenen oder durch Dysregulationen des Geschlechtshormonstoffwechsels, insbesondere des Östrogenstoffwechsels, hervorgerufen werden.

[0002] Die größte Bedeutung des Hopfens liegt nach wie vor in seiner Verwendung bei der Bierherstellung. Aufgrund seiner Bitter- und Aromastoffe ist er für den Geschmack des Bieres ausschlaggebend. Darüber hinaus haben diese Stoffe wegen ihrer antimikrobiellen Eigenschaften eine gewisse Bedeutung bei der Konservierung des Bieres.

[0003] Das zu Beginn der achtziger Jahre vorliegende wissenschaftliche Erkenntnismaterial zum Hopfen führte zu einer positiven Monographie durch die Kommission E des damaligen Bundesgesundheitsamtes (Banz. vom 5. Dezember 1985 bzw. 13. März 1990). Damit ist die Verwendung des Hopfens bei Einschlafstörungen, Unruhe und Angstzuständen grundsätzlich zugelassen.

[0004] Der Hopfen besitzt schon seit langer Zeit eine arzneiliche Bedeutung als mildes Sedativum in der Volksmedizin. Verantwortlich für diese Wirkung sind wahrscheinlich die oxidationsempfindlichen α - und β -Bittersäuren. Für diese Inhaltsstoffe wurden in jüngerer Zeit auch Radikalfängereigenschaften sowie die Lipidperoxidation hemmenden Eigenschaften nachgewiesen (M. Tagashira et al., Biosci. Biotech. Biochem. 59, 740–742 (1995)). In der EP 0 677 289 A2 werden außerdem pharmazeutische Zusammensetzungen zur Behandlung der Osteoporose beschrieben, die Verbindungen aus der Gruppe der α -Bittersäuren und der α -iso-Bittersäuren enthalten.

[0005] In den letzten Jahren wurden neben den α- und β-Bittersäuren (J. Hölzl, Zeitschrift für Phytotherapie 13, 155–161 (1992)) verstärkt auch die phenolischen Inhaltsstoffe des Hopfens untersucht und es wurden neben dem schon länger bekannten Xanthohumol 1 zahlreiche weitere Verbindungen vom Flavontyp in der Hopfenpflanze gefunden (J. EX Stevens et al., Phytochemistry 44, 1575–1585 (1997), J. F. Stevens et al., J. Chromat. A 832 (1–2), 97–107 (1999)). Es handelt sich hierbei in erster Linie um isoprenylierte Flavonoide wie z. B. 6- oder 8-Prenylnaringenin 2 und 3 sowie Isoxanthohumol 4. Stevens et al. (Phytochemistry 53, 759–775 (2000)) untersuchten auch die Chemotaxonomie von Hopfenarten und -taxa.

2

1

4

55 3

[0006] Immer wieder wurde beobachtet, dass bei Hopfenpflückerinnen Menstruationsstörungen auftraten, die auf östrogene Substanzen im Hopfen zurückgeführt wurden, ohne dass diese Effekte aber eindeutig einem oder mehreren Inhaltsstoffen zugeordnet werden konnte. Inzwischen konnte diese östrogene Aktivität des Hopfens bestätigt werden. Dabei zeigte sich, dass 8-Prenylnaringenin 3 im wesentlichen für diese Wirkungen verantwortlich ist (S. R. Milligan et al., J. Clin. Endocrinol. Metab. 84, 2249–2252 (1999)). Die in-vitro östrogene Aktivität dieser Verbindung zeigte sich an ihrer relativen Bindungsaffinität an Östrogenrezeptoren und wurde insbesondere anhand der Stimulation der alkalischen Phosphatase in Ishikawa-Var-I-Zellen getestet. Dabei zeigte sich, dass 8-Prenylnaringenin wesentlich aktiver war als bisher bekannte Phytoöstrogene wie Coumestrol, Genistein oder Daidzein, und nur wenig schwächer wirkte als 17β-Östradiol. Milligan et al. (J. Endocrin. Metabol. 85, 4912–4915 (2000)) berichteten auch über die Bindung verschiedener phenolischer Hopfeninhaltsstoffe an einen von Hefezellen exprimierten humanen Östrogenrezeptor. Dabei zeigte wiederum 8-Prenylnaringenin die stärkste östrogene Aktivität. Schwächere östrogene Eigenschaften zeigten 6-Prenylnaringenin, 6,8-Diprenylnaringenin und 8-Geranylnaringenin. Miyamoto et al. (Planta Med. 64, 516–519 (1998)) konnten zeigen. dass

35

40

8-Prenylnaringenin das Uterusgewicht und die Knochendichte bei ovariectomierten Ratten normalisiert. Weiterhin wird in der JP 08 165238 (ref. CA 125: 158632) die Östrogen-agonistische Aktivität einer Reihe von 8-prenylierten Flavonderivaten, darunter auch 8-Prenylnaringenin, beschrieben.

[0007] In neueren Studien konnte nachgewiesen werden, dass einige Flavonoide des Hopfens, insbesondere Xanthohumol 1, auf den Stoffwechsel von Zellen einwirken können. Sie sind in der Lage, Enzymreaktionen, die bei der Entstehung von Tumorzellen eine wichtige Rolle spielen, positiv zu beeinflussen. Damit können diese Verbindungen als Krebspräventiva angesehen werden (Tagung der deutschen Gesellschaft für Hopfenforschung, Stand der Erkenntnisse zum Hopfeninhaltsstoff Xanthohumol, 24. März 1998, Aschheim). Miranda et al. (Food Chem. Tox. 37(4), 271–285 (1999)) berichteten über starke antiproliferative Aktivität von Xanthohumol 1 und Isoxanthohumol 4 an humanen MCF-7 Brustkrebszellen, sowie an HAT-29 Dickdarm- und A-2780 Ovar-Krebszelllinien.

ιυ

15

35

60

[0008] Darüber hinaus konnte gezeigt werden, dass Xanthohumol 1 Knochenschwund hemmend beeinflusst. Seine Verwendung als Therapeutikum gegen Osteoporose ist in der EP 0 679 393 B1 beschrieben. Obwohl die Erfinder östrogene Eigenschaften von Xanthohumol postulieren, werden diese aber nicht demonstriert. Im Gegenteil schlossen S. R. Milligan et al. (Pharm. Pharmacol. Lett 7, 83–86 (1997) eindeutig aus, dass die Osteoporose-hemmenden Aktivität von Xanthohumol auf einer östrogenen Wirkung beruht, da sie entsprechende Aktivitäten weder an der humanen Endometrium-Karzinomzellline Ishikawa noch in einem Hefe-Reportergen-Assay (S. R. Milligan et al., J. Clin. Endocrinol. Metabol. 84, 2249–2252 (1999)) nachweisen konnten. Entgegen diesen Untersuchungen wird in der vorliegenden Erfindung demonstriert, dass Xanthohumol 1 und Isoxanthohumol 4 mit vergleichbarer Aktivität an die Östrogenrezeptoren alpha und beta binden.

[0009] Kumai und Okamoto (Toxicology Letters 21, 203–207 (1984)) berichteten über hochmolekulare Kohlehydratfraktionen aus rein wässrigen Hopfenextrakten, die bei mit PMS-Gonadotropin vorbehandelten jungen Ratten das Ovargewicht verringerten. Okamoto und Kumai (Acta Endocrinologica 127, 371–377 (1992) bestätigten diese Befunde aufgrund der Beobachtung von erniedrigten 17β-Östradiol- und LH-Blutspiegeln, verursacht durch Gabe von rein wässrigem Hopfenextrakt.

[0010] In der DE 199 39 350 A1 wird ein Hopfenextrakt mit einem erhöhten Xanthohumolgehalt beschrieben. Dieser Extrakt soll Bier sowie fruchtsafthaltigen Erfrischungsgetränken zugesetzt werden. Über die Anwesenheit von prenylierten Naringeninen in diesem Extrakt ist nichts bekannt. Gemäß dem Ausführungsbeispiel wird das Xanthohumol mit 50 Gew.-% Ethanol aus dem Hopfen extrahiert. Dies führt aber nicht zu einer optimalen Extraktion des Xanthohumols, da dies erst mit hochprozentigem Ethanol (> 80% Gew.) mit hoher Wiederfindung in den Extrakt übergeht.

[0011] In der WO 83/00701 A1 wird ein Verfahren zur Gewinnung östrogenwirksamer Stoffe aus Hopfen beansprucht, dadurch gekennzeichnet, dass zunächst ein Kohlendioxid-Extrakt aus Hopfen unter Zusatz von Wasser als Schleppmittel hergestellt wird und anschließend daraus die östrogenwirksamen Stoffe mittels Etherextraktion oder chromatographischer Verfahren erhalten werden. Ferner wird die Verwendung dieser Stoffe als Zusatz zu Futtermitteln, für kosmetische Mitteln oder als Badezusatz beansprucht. Über die Natur dieser östrogenwirksamen Stoffe werden keinerlei Angaben gemacht.

[0012] In der WO 01/30961 A1 wird ein Verfahren zur Gewinnung von stabilen Bierbrauzusätzen beansprucht, dadurch gekennzeichnet, dass der Hopfentreber-Rückstand der Kohlendioxid-Extraktion mit einem polaren Lösungsmittel, vorzugsweise heißem Wasser, extrahiert wird, der Extrakt anschließend angesäuert, mit einem unpolaren Lösungsmittel, vorzugsweise Hexan, gewaschen und – ggf. nach Trocknung – als Brauzusatz verwendet wird. Der übrigbleibende Treber wird verworfen.

[0013] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Pflanzenextrakte bereitzustellen, die zur Herstellung von Arzneimitteln zur Prophylaxe und Therapie von Krankheitszuständen geeignet sind, die durch einen Mangel an Östrogenen oder durch Dysregulationen des Geschlechtshormonstoffwechsels, insbesondere des Östrogenstoffwechsels, verursacht werden.

[0014] Eine weitere Aufgabe der Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung solcher Extrakte sowie diese umfassende pharmazeutische Zubereitungen, die zur Behandlung der vorstehend genannten Krankheitszustände geeignet sind.

[0015] Diese Aufgaben werden erfindungsgemäß durch den Hopfenextrakt gemäß Patentanspruch 1 und 2, die Verfahren gemäß den Patentansprüchen 3–12, die pharmazeutische Zubereitung gemäß Patentanspruch 13 sowie die Verwendung der Extrakte oder der pharmazeutischen Zubereitung gemäß den Patentansprüchen 14–16 gelöst.

[0016] Die vorliegende Erfindung beruht unter anderem auf dem überraschenden Befund, dass aus Hopfendroge nach Entfernung von lipophilen und hydrophilen Ballaststoffen Extrakte erhalten werden, welche die phloroglucinolartigen Hopfenbittersäuren nach wie vor enthalten, gleichzeitig freie und/oder gebundene Chalkone und Flavone wie Xanthohumol, Isoxanthohumol sowie 6- und 8-Prenylnaringenin dagegen in angereicherter Form enthalten. Insbesondere überraschend ist die Tatsache, dass der Gehalt an 6- und 8-Prenylnaringenin von der Temperatur der Wasservorextraktion abhängt (s. Beispiel 3) und bis zu ca. einem Faktor 2 gesteigert werden kann.

[0017] Fig. 1 veranschaulicht die Abhängigkeit der Konzentration der analysierten Inhaltsstoffe von der Temperatur der Wasservorextraktion.

[0018] Ein solcher Extrakt kann durch ein- bis mehrmalige Extraktion mit einem C₅-C₇-Alkan oder mit überkritischem CO₂ (Entfettungsstufe), nachfolgende Extraktion des verbleibenden Drogenrückstandes mit Wasser und daran anschließende Extraktion des übrig bleibenden Drogenrückstandes mit einem mittelpolaren Lösungsmittel ausgewählt aus der Gruppe bestehend aus Alkoholen, wässrigen Alkoholen, Ketonen, wässrigen Ketonen, Estern und ggf. nachfolgende Flüssig-Flüssig-Verteilung erhalten werden. Überraschenderweise gehen die Hopfenbittersäuren nicht vollständig, sondern nur zu einem Teil in den lipophilen Extrakt über, während auf der anderen Seite die Chalkone und Flavone bei der Wasserextraktion nahezu vollständig im Drogenrückstand verbleiben. Dadurch ist es möglich, einen Hopfenextrakt zu erhalten, der alle pharmakologisch relevanten Inhaltsstoffe (Bittersäuren, Chalkone, Flavone) in einem ausgeglichenen Verhältnis enthält. Durch diese günstige Zusammensetzung aus mehreren therapeutischen Wirkprinzipien ist dieser Extrakt in idealer Weise bei Krankheitszuständen einsetzbar, die durch einen Mangel an Östrogenen oder durch andere hor-

monelle Dysregulationen verursacht werden.

[0019] Die erfindungsgemäßen Hopfenextrakte sind zur Prophylaxe und Behandlung von mit dem Klimakterium oder der Postmenopause bei Frauen einhergehenden Beschwerden geeignet, wobei die Symptome unter anderem Hitzewallungen, Depressionen, Angstzustände, geistige Verwirrtheit, Schlaflosigkeit sowie mit der Postmenopause zusammenhängende ernsthatte Gesundheitsprobleme wie Osteoporose, Herz-Kreislauferkrankungen, Schlaganfall, Demenz und Tumorerkrankungen umfassen. Andere Erkrankungen, die auf einer Dysregulation des Geschlechtshormonstoffwechsels beruhen und mit dem erfindungsgemäßen Extrakt behandelt werden können, sind z. B. Amenorrhoe, anovulatorische Zyklen, Menometrorragie, premenstruelle Beschwerden und postpartale Depressionen. Desgleichen können diese Extrakte zur Behandlung Geschlechtshormon-abhängiger Krankheiten beim Mann verwendet werden, wie z. B. der benignen Prostatahyperplasie oder dem Prostatakarzinom.

[0020] Die überraschend hohe östrogene Aktivität der erfindungsgemäßen Hopfenextrakte wurde sowohl mit einem kompetetiven Rezeptorbindungsassay für die humanen Östrogenrezeptoren alpha und beta als auch in einem rekombinanten Hefe-Assay im Vergleich zur Aktivität von 17β-Östradiol nachgewiesen. Im Gegensatz dazu zeigen herkömmliche Standard-Hopfenextrakte bei gleicher Dosierung wesentlich schwächere oder keinerlei Aktivität.

[0021] Fig. 2 zeigt die Aktivität eines Vergleichsextraktes und zweier erfindungsgemäßer Hopfenextrakte in einem

Hefe-Reportergenassay.

25

30

[0022] Erfindungsgemäß wird ein Hopfenextrakt mit einem gegenüber herkömmlichen, insbesondere wässrig-alkoholischen Extrakten erhöhtem Gehalt an freien und/oder gebundenen Chalkonen und Flavonen, insbesondere 6- und 8-Prenylnaringenin, Xanthohumol und Isoxanthohumol bereitgestellt, der gleichzeitig noch α- und eventuell β-Bittersäuren (Humulon bzw. Lupulon und dessen Derivate) enthält.

[0023] Weiter wird erfindungsgemäß ein Verfahren zur Herstellung dieser Hopfenextrakte bereitgestellt, umfassend die Schritte:

(a) ein- oder mehrmaliges Extrahieren einer Hopfendroge mit einem C5-C7-Alkan oder überkritischem CO2 und Abtrennen des Drogenrückstandes von der Extraktionslösung;

(b) ein- oder mehrmaliges Extrahieren des Drogenrückstandes aus Schritt (a) mit Wasser und Abtrennen des Dro-

(c) ein- oder mehrmaliges Extrahieren des Drogenrückstandes aus Schritt (b) mit einem Lösungsmittel ausgewählt aus der Gruppe bestehend aus Alkoholen, wässrigen Alkoholen, Ketonen, wässrigen Ketonen und Estern sowie Filtrieren der erhaltenen Extraktionslösung; und

(d) Entfernen des Lösungsmittels aus den in Schritt (c) erhaltenen vereinigten Extraktlösungen und Trocknen des erhaltenen Rückstands.

Das Verhältnis Droge zu Lösungsmittel liegt bei jedem Extraktionsschritt im Bereich von etwa 1:7 bis etwa 1:12.

[0024] Die Extraktion mit einem C₅-C₇-Alkan oder überkritischem CO₂ in Schritt (a) wird vorzugsweise ein-, zweioder dreimal, insbesondere dreimal, durchgeführt.

[0025] Die Extraktion mit überkritischem CO2 ist besonders bevorzugt.

[0026] Das C₅-C₇-Alkan in Schritt (a) ist vorzugsweise ein C₅-C₇-n-Alkan aus der Gruppe bestehend aus n-Pentan, n-Hexan und n-Heptan, wobei n-Heptan ganz besonders bevorzugt ist.

[0027] Die Extraktion in Schritt (b) wird vorzugsweise bei einer Temperatur zwischen 60 und 95°C, vorzugsweise bei 90°C, durchgeführt wobei die Extraktionsdauer 1 oder mehrere Stunden betragen kann.

[0028] Das Lösungsmittel in Schritt (c) ist vorzugsweise ausgewählt aus der Gruppe bestehend aus Ethanol, wässrigem Ethanol, Methanol, wässrigem Methanol, Aceton, wässrigem Aceton und Ethylacetat, wobei 80 bis 96% (g/g) Ethanol, 74 bis 99% (g/g) Methanol bzw. 60 bis 99% (g/g) Aceton bevorzugt ist und 92% (g/g) Ethanol besonders bevorzugt ist.

[0029] Der erfindungsgemäße Hopfenextrakt ist gekennzeichnet durch einen Gehalt an α -Bittersäuren von mindestens 0,5%, vorzugsweise mindestens 1%, an Xanthohumol von mindestens 2%, vorzugsweise mindestens 3% und insbesondere mindestens 4% und an prenylierten Flavonen von mindestens 0,5%, vorzugsweise mindestens 0,7%. Die prenylierten Flavone umfassen vorzugsweise 6-Prenylnaringenin, 8-Prenylnaringenin und Isoxanthohumol.

[0030] Die erhaltenen Extrakte können zusammen mit üblichen pharmazeutisch verträglichen Hilfsstoffen zu pharmazeutischen Zubereitungen wie Kapseln, Filmtabletten und Dragees verarbeitet werden. Als pharmazeutische Hilfsstoffe werden übliche Füll-, Binde-, Spreng-, Schmier- und Überzugsmittel für Filmtabletten und Dragees sowie Öle und Fette als Füllmassen für Weichgelatinekapseln verwendet.

[0031] Die erfindungsgemäßen Extrakte können zur Prophylaxe und Therapie von Krankheitszuständen verwendet werden, die durch einen Mangel an Östrogenen oder durch andere hormonelle Dysregulationen verursacht werden, wie insbesondere klimakterische Beschwerden, geschlechtshormonabhängige Krebserkrankungen, benigne Prostatahyperplasie, Osteoporose, Alzheimerische Krankheit und Herz-Kreislauferkrankungen. Im Falle der geschlechtshormonabhängigen Krebserkrankungen können die erfindungsgemäßen Extrakte insbesondere zur Prophylaxe und Therapie von Brustkrebs, Gebärmutterkrebs und Prostatakrebs verwendet werden.

[0032] Die Dosierung der erfindungsgemäßen Extrakte liegt im Bereich von 0.005 g bis 2 g Extrakt 1- bis 4mal täglich, vorzugsweise im Bereich von 0.02 g bis 1 g 1- bis 2mal täglich. Die Dosierung im Einzelfalle ist abhängig vom Krankheitsbild und den individuellen Umständen des Patienten und kann von dem behandelnden Fachmann entsprechend den jeweiligen Bedürfnissen angepasst werden.

[0033] Die nachstehend angegebenen Beispiele erläutern die Erfindung und sind nicht beschränkend aufzufassen. Alle Prozentangaben beziehen sich auf das Gewicht, falls nichts anders angegeben ist.

Vergleichsbeispiel

Herstellung eines 96% (g/g) Ethanolextraktes ohne vorherige Entfettung

[0034] 50 g der Hopfendroge (Sorte "Hallertauer Magnum") wurden mit 500 g 96% (g/g) Ethanol versetzt und mit dem Ultraturrax zerkleinen. Es wurde 1 h bei 60°C extrahiert. Anschließend wurde über einen Seitz 1500 Filter filtriert. Die Droge wurde noch weitere 2 Male auf dieselbe Weise extrahiert. Die vereinigten Extraktlösungen wurden am Rotationsverdampfer vom Ethanol befreit und über Nacht im Vakuumtrockenschrank bei 50°C getrocknet. Aus der Trockenmasse wird der Gehalt an charakteristischen Inhaltsstoffen per nachstehender HPLC-Methode ermittelt.

10

t5

20

25

30

35

45

50

55

60

Säule	LiChrospher 100 5 μm. 250 x 4 mm			
Eluens	A: 1000 ml bidest Wasser/ 3 ml Phosphorsaure (85%)/ 2 ml Triethylamin B: 1000 ml Acetonitril / 3 ml Phosphorsaure (85%) / 2 ml Triethylamin / 60 ml bidest Wasser			
Gradient	40% B auf 70% B in 30 min; 70% B auf 100% B in 10 min			
Fluß	1,2 ml/min			
Detektion	Detektion Diodenarray			

Ausbeute 96% (g/g) Ethanol-Extrakt): $18,38 \text{ g} \Rightarrow 36,8\%$

HPLC-Gehalt an Hopfen α-Bittersäuren: 19,8%

HPLC-Gehalt an Hopfen β-Bittersäuren: 4,2%

HPLC-Gehalt an Xanthohumol: 1,3%

HPLC-Gehalt an 6- und 8-Prenylnaringeninen, sowie an Isoxanthohumol: unterhalb der Nachweisgrenze (< 0.01%).

Beispiel 1a

Herstellung eines Hopfenextraktes (Extaktion mit CO2 und anschließend Wasservorextraktion bei 90°C)

Serielle Extraktion mit überkritischem CO₂, Wasser und 92% (g/g) Ethanol

[0035] 80,6 g einer Hopfendroge, die zuvor mit überkritischem CO₂ vorextrahiert worden war (Bedingungen: Vermahlung auf 10 mm Korngröße, Extraktion mit CO₂ bei 250 bar/50°C, Abtrennung des Extraktes mit einer Ausbeute von 30%), wurden mit 960 g Wasser zunächst 5 Min. am Ultra-Turrax, dann unter Rühren 1 Stunde bei 90°C extrahiert. Anschließend wurde der Wasserextrakt über ein Seitz Supra Filter 1500 abfiltriert. Der noch leicht feuchte Drogenrückstand wurde dann mit je 2 mal 800 g 92% (g/g) Ethanol jeweils 1 Stunde bei 60°C extrahiert. Es wurde dann über Seitz Supra 1500 abfiltriert und die Extraktlösung am Rotationsverdampfer bei einer Wasserbadtemperatur von 55–65°C von Ethanol befreit und im Trockenschrank bei 60°C getrocknet.

Ausbeuten

Rückstand aus Wasserextraktion: 18,96 g (23,5%)

Rückstand aus 92% (g/g) EtOH-Extraktion: 9,83 g (12,2%)

HPLC-Gehalt an Hopfen α-Bittersäuren: 2%

HPLC-Gehalt an Hopfen β-Bittersäuren: 0,5%

HPLC-Gehalt an Xanthohumol: 5,83%

HPLC-Gehalt an 6-Prenylnaringenin: 0,63%

HPLC-Gehalt an 8-Prenylnaringenin: 0,21%

HPLC-Gehalt an Isoxanthohumol: 0,42%

Beispiel 1b

Herstellung eines Hopfenextraktes (Extraktion mit CO2 und anschließend Wasservorextraktion bei 90°C)

Serielle Extraktion mit überkritischem CO₂, Wasser und 92% (g/g) Ethanol

[0036] 504,26 g einer Hopfendroge, die zuvor mit überkritischem CO₂ vorextrahiert worden war (Bedingungen: Vermahlung auf 10 mm Korngröße, Extraktion mit CO₂ bei 250 bar/50°C, Abtrennung des Extraktes mit einer Ausbeute von 30%), wurden mit 6 kg Wasser zunächst 5 Min. am Ultra-Turrax, dann unter Rühren 1 Stunde bei 90°C extrahiert. Anschließend wurde der Wasserextrakt über ein Seitz Supra Filter 1500 abfiltriert. Der noch leicht feuchte Drogenrückstand wurde dann mit je 2 mal 5 kg 92% (g/g) Ethanol jeweils 1 Stunde bei 60°C extrahiert. Es wurde dann über Seitz Supra 1500 abfiltriert und die Extraktlösung am Rotationsverdampfer bei einer Wasserbadtemperatur von 55–65°C von Ethanol befreit und im Trockenschrank bei 60°C getrocknet.

Ausbeuten

Rückstand aus Wasserextraktion: 105,9 g (21%)

Rückstand aus 92% (g/g) EtOH-Extraktion: 69,37 g (13,8%)

HPLC-Gehalt an Hopfen α-Bittersäuren: 1%

HPLC-Gehalt an Hopfen β-Bittersäuren: 0.5%

HPLC-Gehalt an Xanthohumol: 4,41% HPLC-Gehalt an 6-Prenylnaringenin: 0,49%

HPLC-Gehalt an 8-Prenylnaringenin: 0,15%

HPLC-Gehalt an Isoxanthohumol: 0,6%

Beispiel 2

Herstellung eines Hopfenextraktes (Extraktion mit CO₂ und anschließend Wasservorextraktion bei 60°C)

Serielle Extraktion mit überkritischem CO₂, Wasser und 92% (g/g) Ethanol

[0037] 80,36 g einer Hopfendroge, die zuvor mit überkritischem CO₂ vorextrahiert worden war (Bedingungen: Vermahlung auf 10 mm Korngröße, Extraktion mit CO₂ bei 250 bar/50°C, Abtrennung des Extraktes mit einer Ausbeute von 30%), wurden mit 964 g Wasser zunächst 5 Min. am Ultra-Turrax, dann unter Rühren 1 Stunde bei 60°C extrahiert. Anschließend wurde der Wasserextrakt über ein Seitz Supra Filter 1500 abfiltriert. Der noch leicht feuchte Drogenrückstand wurde dann mit je 2 mal 800 g 92% (g/g) Ethanol zunächst 5 Min. am Ultra-Turrax, dann unter Rühren jeweils 1 Stunde bei 60°C extrahiert. Es wurde dann über Seitz Supra 1500 abfiltriert und die Extraktlösung am Rotationsverdampfer bei einer Wasserbadtemperatur von 55–65°C von Ethanol befreit und im Trockenschrank bei 60°C getrocknet.

25

15

Ausbeuten

Rückstand aus Wasserextraktion: 17,91 g (22%)

Rückstand aus 92% (g/g) EtOH-Extraktion: 9.95 g (12,4%)

0 HPLC-Gehalt an Hopfen α-Bittersäuren: 1,58%

HPLC-Gehalt an Hopfen β-Bittersäuren: 0%

HPLC-Gehalt an Xanthohumol: 6,1%

HPLC-Gehalt an 6-Prenylnaringenin: 0,4%

HPLC-Gehalt an 8-Prenylnaringenin: 0,09%

HPLC-Gehalt an Isoxanthohumol: 0,21%

Beispiel 3

Herstellung eines Hopfenextraktes (Extraktion mit Heptan und anschließend Wasser bei 90°C)

40

[0038] 247,6 g Hopfendroge wurden mit dem 7fachen Gewicht zunächst 5 Min. am Ultra-Turrax, dann unter Rühren 1 Stunde extrahiert. Nach Abfiltrieren der heptanischen Extraktlösung über Seitz Supra 1500 wurde noch ein zweites Mal in der gleichen Weise extrahiert. Danach wurde der erhaltende Drogenrückstand im Vakuumtrockenschrank vom Heptan befreit. Der trockene Drogenrückstand (205 g) wurde sodann mit der 12fachen Gewichtsmenge Wasser versetzt und während 1 Stunde bei 90°C gehalten. Danach wurde erneut abfiltriert und der noch leicht feuchte Drogenrückstand mit der 10fachen Gewichtsmenge 92% (g/g) Ethanol unter Rühren zweimal extrahiert. Es wurde dann über Seitz Supra 1500 abfiltriert und die Extraktlösung am Rotationsverdampfer bei einer Wasserbadtemperatur von 55–65°C von Ethanol befreit und im Trockenschrank bei 60°C getrocknet.

50

Ausbeuten

Heptanextrakt: 26,4 g (10,7%)

Wasserextrakt: 41,1 g (16,6%)

92% (g/g) Ethanolextrakt: 52,0 g (21,0%)

55

Beispiel 4

Abhängigkeit des Gehaltes an 6-Prenyl-, 8-Prenylnaringenin und Isoxanthohumol von der Temperatur der Wasservorextraktion

60

Extraktion

[0039] Ca. 80 g einer mit CO₂ vorextrahierten Hopfendroge wurden mit dem 12fachen Gewicht an Wasser zunächst 5 Min. am Ultra-Turrax, dann unter Rühren 1 Stunde bei 60, 70, 80, 90 und 95°C extrahiert. Anschließend wurde der Wasserextrakt über ein Seitz Supra Filter 1500 abfiltriert. Der noch leicht feuchte Drogenrückstand wurde dann mit je 2 mal 800 g 92% (g/g) Ethanol zunächst 5 Min. am Ultra-Turrax, dann unter Rühren jeweils 1 Stunde bei 60°C extrahiert. Es wurde dann über Seitz Supra 1500 abfiltriert und die Extraktlösung am Rotationsverdampfer bei einer Wasserbadtemperatur von 55–65°C von Ethanol befreit und im Trockenschrank bei 60°C getrocknet.

[0040] Die in der Fig. 1 graphisch dargestellten Ergebnisse zeigen eine deutliche Abhängigkeit der Konzentration der analysierten prenylierten Inhaltsstoffe von der Temperatur der Wasservorextraktion.

Beispiel 5

5

10

20

30

35

40

45

50

65

Prüfung der Hopfenextrakte auf östrogene Aktivität

[0041] Zur Prüfung von individuellen Extraktinhaltsstoffen, einem Vergleichsextrakt und einem erfindungsgemäßen Extrakt auf Wechselwirkungen mit dem humanen Östrogenrezeptor alpha (ER-α) bzw. beta (ER-β) wurde ein kompetitiver Rezeporbindungsassay durchgeführt. Dabei wird zunächst radioaktiv markiertes Östradiol an den humanen Östrogenrezeptor gebunden und anschließend mit der zu untersuchenden Testsubstanz behandelt. Ein der östrogenen Potenz der Probe entsprechender Anteil an markiertem Östradiol wird dabei verdrängt. Überschüssiges Östradiol wird nach Bindung des Komplexes an Hydroxylapatit herausgewaschen. Die Östrogenrezeptor ER-a und ER-b wurden käuflich als rekombinante humane Rezeptoren erworben. Die Testansätze bestanden jeweils aus 1000 µl TEDG-Puffer (10 mM Tris, 1.5 mM EDTA, 10% Glycerol, pH 7,5), 5 µl Rezeptor (200 mM), 10 µl 3H-Östradiol und 10 µl Ethanol (Kontrollwert), 10 µl Diethylstilöstrol (100 mM, Positivkontrolle) oder 10 µl Extrakt bzw. Extraktinhaltsstoff. Die Ansätze werden vorsichtig durchmischt und für ca. 16 Stunden bei Raumtemperatur im Dunkeln inkubiert. Nach der Inkubation wird 250 ul Hydroxylapatit (HAP) zugefügt, um die Proteine zu adsorbieren. Während einer Inkubationsphase von 15 Minuten werden die Ansätze alle fünf Minuten mit der Hand durchmischt. Der Niederschlag wird bei 10 000 rpm für einige Sekunden scharf abzentrifugiert und der Überstand wird abpipettiert. Das Pellet wird dreimal mit je 1000 µl TEDG Puffer gewaschen und zur Messung mit 1000 µl Ethanol versetzt, aufgeschlämmt und in ein Szintillationsvial überführt. Nach Zugabe von 9 ml Szintillatorflüssigkeit (Ready Safe, Beckmann) erfolgt eine Messung über das gesamte 3H-Fenster in einem Beckmann Beta-Counter.

[0042] Die Charakterisierung der Bindungskapazitäten der Testsubstanzen erfolgt über die Bestimmung der ED_{50} -Werte aus den Dosis-Wirkungskurven der Östradiolverdrängung. Die Ergebnisse sind in der Tab. 1 zusammengestellt und demonstrieren für alle untersuchten Inhaltsstoffe potente Wechselwirkungen mit beiden Östrogenrezeptoren. Überraschenderweise erwies sich der erfindungsgemäße Extrakt als wesentlich stärker wirksam als anhand der Aktivitäten der einzelnen Inhaltsstoffe zu erwarten wäre. Im Gegensatz dazu zeigte der Vergleichsextrakt eine Aktivität an beiden Rezeptoren, die mindestens 10fach unterhalb der des erfindungsgemäßen Extraktes lag.

Tabelle 1

Bindung von Extraktinhaltsstoffen, einem erfindungsgemäßen Extrakt und einem Vergleichsextrakt an den humanen Östrogenrezeptor alpha (ER-α) bzw. Östrogenrezeptor-beta (ER-β)

Substanz	ED ₅₀ [pg/ml]		Relative Potenz		Rel. Potenz ER-α
	ER-α	ER-ß	ER-α	ER-ß	Rel. Potenz ER-ß
17β-Östradiol	507	400	1	1	1
8-Prenylnaringenin	4.6x10 ⁴	1.0x10 ⁵	1.1x10 ⁻²	4.0x10 ⁻³	2.72
6-Prenylnaringenin	1.6x10 ⁶	4.6x10 ⁵	3.2x10 ⁻⁴	8.7x10 ⁻⁴	0.37
Isoxanthohumol	2.0x10 ⁶	8.5x10 ⁵	2.5x10 ⁻⁴	4.7x10 ⁻⁴	0.54
Xanthohumol	2.0x10 ⁶	1.2x10 ⁶	2.5x10 ⁻⁴	3.3x10 ⁻⁴	0.78
Erfindungsgemäßer Extrakt	3.9x10 ⁵	2.7×10 ⁵	1.3x10 ⁻³	1.5x10 ⁻³	0.87
Vergleichsextrakt	4.0x10 ⁶	4.3x10 ⁶	1.3x10 ⁻⁴	9.4x10 ⁻⁵	1.33

[0043] Die Prüfung von Extrakten auf östrogene Eigenschaften erfolgte außerdem mit einem Reportergen-Assay unter Verwendung von Hefezellen (Saccharomyces). Die Zellen sind stabil mit dem humanen α-Östrogenrezeptor und einem Expressionsplasmid, das ein Östrogenresponse-Element und das Gen für das Enzym β-Galaktosidase enthält, transfiziert. Alle Proben wurden in einer Konzentration von 20 mg/ml in DMSO gelöst und unverdünnt oder nach Verdünnen mit DMSO im Verhältnis 1/10, 1/100 oder 1/1000 in einem Volumen von 1 μl zu 100 μl Kulturmedium in 96-Well Flachboden-Mikrotiterplatten gegeben. Anschließend wurden 100 μl Hefesuspension und das chromogene Substrat Chlorphenolrot-β-D-Galactopyranosid zugefügt. Auf jeder Platte wurden zur Kontrolle Wells vorbereitet, in die nur Kulturmedium bzw. das Lösungsmittel eingefüllt wurde oder die die Standardkonzentrationen von 17β-Östradiol enthielten. Die Hefezellen wurden 72 h bei 32°C inkubiert und dann wurde die Absorption des Mediums bei 540 nm in einem Mikrotitierplatten-Photometer gemessen. Die Proben wurden teilweise zweifach geprüft.

Ergebnisse

	Probe	Aktivität
5	96% (g/g) Ethanol-Extrakt	inaktiv
	gemäß Vergleichsbeispiel	
	92% (g/g) Ethanol-Extrakt	aktiv
10	gemäß Beispiel la	
	92% (g/g) Ethanol-Extrakt	aktiv
15	gemäß Beispiel 2	

[0044] Die Ergebnisse des Assays sind in Fig. 2 dargestellt. Als "aktiv" werden hierbei jene Extrakte bezeichnet, deren Aktivität im Vergleich zur 17β-Östradiol-Standardkurve signifikant oberhalb der Background-Werte (entspricht etwa 10% der maximalen Stimulation) lag.

Patentansprüche

- 1. Hopfenextrakt, gekennzeichnet durch einen Gehalt an α -Bittersäuren von mindestens 0,5%, vorzugsweise mindestens 1%, an Xanthohumol von mindestens 2%, vorzugsweise mindestens 3% und an prenylierten Flavonen von mindestens 0,5%, vorzugsweise mindestens 0,7%.
- 2. Hopfenextrakt nach Anspruch 1, dadurch gekennzeichnet, dass die prenylierten Flavone 6-Prenylnaringenin, 8-Prenylnaringenin und Isoxanthohumol umfassen.
- 3. Verfahren zur Gewinnung eines Hopfenextrakts, umfassend die Schritte:
 - (a) ein- oder mehrmaliges Extrahieren einer Hopfendroge mit einem C₅-C₇-Alkan oder überkritischem CO₂ und Abtrennen des Drogenrückstandes von der Extraktionslösung;
 - (b) ein- oder mehrmaliges Extrahieren des Drogenrückstandes aus Schritt (a) mit Wasser und Abtrennen des Drogenrückstandes;
 - (c) ein- oder mehrmaliges Extrahieren des Drogenrückstandes aus Schritt (b) mit einem Lösungsmittel ausgewählt aus der Gruppe bestehend aus Alkoholen, wässrigen Alkoholen, Ketonen, wässrigen Ketonen und Estern sowie Filtrieren der erhaltenen Extraktionslösung; und
 - (d) Entfernen des Lösungsmittels aus den in Schritt (c) erhaltenen vereinigten Extraktlösungen und Trocknen des erhaltenen Rückstands.
- 4. Verfahren gemäß Anspruch 3, wobei in Schritt (a) ein-, zwei- oder dreimal extrahiert wird.
- 5. Verfahren gemäß einem der Anspruche 3 oder 4, wobei das Lösungsmittel in Schritt (a) ausgewählt ist aus der Gruppe bestehend aus n-Pentan, n-Hexan und n-Heptan.
- 6. Verfahren gemäß Anspruch 5, wobei das Lösungsmittel in Schritt (a) n-Heptan ist.
- 7. Verfahren gemäß einem der Ansprüche 3 bis 6, wobei die Extraktion in Schritt (b) zwischen 60 und 95°C, vorzugsweise bei etwa 90°C erfolgt.
- 8. Verfahren gemäß einem der Ansprüche 3 bis 7, wobei das Lösungsmittel in Schritt (c) ausgewählt ist aus der Gruppe bestehend aus Methanol, wässrigem Methanol, Ethanol, wässrigem Ethanol, Aceton, wässrigem Aceton und Ethylacetat.
- 9. Verfahren gemäß Anspruch 8, wobei das Lösungsmittel in Schritt (c) ausgewählt ist aus der Gruppe bestehend aus 80–96% (g/g) Ethanol, 74–99% (g/g) Methanol und 60–99% (g/g) Aceton.
- 10. Verfahren gemäß Anspruch 8 oder 9, wobei das Lösungsmittel in Schritt (c) 92% (g/g) Ethanol ist.
- 11. Verfahren gemäß Anspruch 1, wobei das Lösungsmittel in Schritt (a) n-Heptan ist und das Lösungsmittel in Schritt (c) 92% (g/g) Ethanol ist.
 - 12. Verfahren gemäß Anspruch 1, wobei das Lösungsmittel in Schritt (a) überkritisches CO₂ ist und das Lösungsmittel in Schritt (c) 92% (g/g) Ethanol ist.
 - 13. Pharmazeutische Zubereitung, umfassend einen Extrakt gemäß Anspruch 1 oder 2 und übliche pharmazeutische verträgliche Hilfsstoffe.
 - 14. Verwendung eines Extrakts nach Anspruch 1 oder 2 oder einer pharmazeutischen Zubereitung nach Anspruch 13 zur Prophylaxe und Therapie von Krankheitszuständen, die durch einen Mangel an Östrogenen oder durch eine Dysregulation des Geschlechtshormonstoffwechsels, insbesondere Östrogenstoffwechsels verursacht werden.
 - 15. Verwendung nach Anspruch 14, wobei die Krankheitszustände aus der Gruppe bestehend aus klimakterischen Beschwerden, geschlechtshormonabhängigen Krebserkrankungen, benigner Prostatahyperplasle, Osteoporose, Alzheimerscher Krankheit und Herz-Kreislauferkrankungen ausgewählt sind.
 - 16. Verwendung nach Anspruch 15, wobei die geschlechtshormonabhängigen Krebserkrankungen aus der Gruppe bestehend aus Brustkrebs, Prostatakrebs und Gebärmutterkrebs ausgewählt sind.

Hierzu 2 Seite(n) Zeichnungen

65

20

25

30

35

40

45

50

55

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 101 39 479 A1 A 61 K 35/78**27. Februar 2003

FIGUR 1

