Tarea 10

Nombre: Univ. Mamani Chavez Carla Vanesa	CI: 9124602 LP	
	Paralelo: Martes	
Docente : Lic. Gallardo Portanda Franz Ramiro	Fecha: 04/05/2020	

Diseño de un esquema de direccionamiento

1. Establecimiento de las subredes

DR: Dirección de Red

DB: Dirección de Broadcast

IP: Dirección del Host

DG: Dirección de Gateway

2. Documente el esquema de direccionamiento

Dispositivo	Interfaz	Dirección IP	Mascara de Subred	Gateway Predeterminado
HQ	Fa0/0	192.168.1.129	26	N/C
	S0/0/0	192.168.1.226	30	N/C
	S0/0/1	192.168.1.229	30	N/C
B1	Fa0/0	192.168.1.1	25	N/C
	S0/0/0	192.168.1.225	30	N/C
B2	Fa0/0	192.168.1.193	27	N/C
	S0/0/1	192.168.1.230	30	N/C
PC1	NIC	192.168.1.126	25	192.168.1.1
PC2	NIC	192.168.1.190	26	192.168.1.129
PC3	NIC	192.168.1.222	27	192.168.1.193

3. Trabajo en Packet Tracer

a) Pruebe la conectividad de forma que se pueda hacer ping entre todas las PCs.

✓ PC1

```
Command Prompt
                                                                                          X
Packet Tracer PC Command Line 1.0
PC>ping 192.168.1.190
Pinging 192.168.1.190 with 32 bytes of data:
Reply from 192.168.1.190: bytes=32 time=2ms TTL=126
Reply from 192.168.1.190: bytes=32 time=1ms TTL=126
Reply from 192.168.1.190: bytes=32 time=1ms TTL=126
Reply from 192.168.1.190: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.1.190:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 2ms, Average = 1ms
PC>ping 192.168.1.222
Pinging 192.168.1.222 with 32 bytes of data:
Reply from 192.168.1.222: bytes=32 time=3ms TTL=125
Reply from 192.168.1.222: bytes=32 time=11ms TTL=125
Reply from 192.168.1.222: bytes=32 time=9ms TTL=125
Reply from 192.168.1.222: bytes=32 time=3ms TTL=125
Ping statistics for 192.168.1.222:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 3ms, Maximum = 11ms, Average = 6ms
PC>
```

✓ PC2

```
PC>ping 192.168.1.126

Pinging 192.168.1.126 with 32 bytes of data:

Reply from 192.168.1.126: bytes=32 time=2ms TTL=126
Reply from 192.168.1.126: bytes=32 time=1ms TTL=126

Ping statistics for 192.168.1.126:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 2ms, Average = 1ms

PC>ping 192.168.1.222

Pinging 192.168.1.222 with 32 bytes of data:

Reply from 192.168.1.222: bytes=32 time=6ms TTL=126
Reply from 192.168.1.222: bytes=32 time=1ms TTL=126
Reply fr
```

✓ PC3

```
## PC>ping 192.168.1.126

Pinging 192.168.1.126 with 32 bytes of data:

Reply from 192.168.1.126: bytes=32 time=2ms TTL=125

Ping statistics for 192.168.1.126:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 2ms, Maximum = 2ms, Average = 2ms

### PC>ping 192.168.1.190

Pinging 192.168.1.190 with 32 bytes of data:

Reply from 192.168.1.190: bytes=32 time=2ms TTL=126

Reply from 192.168.1.190: bytes=32 time=2ms TTL=126

Reply from 192.168.1.190: bytes=32 time=2ms TTL=126

Reply from 192.168.1.190: bytes=32 time=1ms TTL=126

Minimum = 1ms, Maximum = 2ms, Average = 1ms

PC>

PC>

Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

b) Utilice enrutamiento estático para resolver los problemas que se presenten hasta que los pings tengan éxito.

CONFIGURACION DE LAS PC'S

CONFIGURACION FASTETHERNET DEL ROUTER

ROUTER B1

```
Equivalent IOS Commands
```

```
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface FastEthernet0/0
Router(config-if)#ip address 192.168.1.1 255.255.255.0
Router(config-if)#ip address 192.168.1.1 255.255.255.128
Router(config-if)#no shutdown

Router(config-if)#
```

ROUTER B2

```
Equivalent IOS Commands

Router>enable

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface FastEthernet0/0

Router(config-if)#ip address 192.168.1.193 255.255.255.0

Router(config-if)#ip address 192.168.1.193 255.255.255.224

Router(config-if)#no shutdown

Router(config-if)#
```

ROUTER HQ

```
Equivalent IOS Commands

Router(config-if) #

Router(config-if) #exit

Router(config) #interface FastEthernet0/0

Router(config-if) #ip address 192.168.1.129 255.255.255.0

Router(config-if) #ip address 192.168.1.129 255.255.255.192

Router(config-if) #no shutdown

Router(config-if) #

$LINK-5-CHANGED: Interface FastEthernet0/0 changed state to up
```

CONFIGURACION SERIAL DEL ROUTER

ROUTER B1

Equivalent IOS Commands Router(config=if)# Router(config=if)#exit Router(config=if)#interface Serial0/0/0 Router(config=if)#ip address 192.168.1.225 255.255.255.128 Router(config=if)#ip address 192.168.1.225 255.255.255.252 Router(config=if)#no shutdown %LINK-5-CHANGED: Interface Serial0/0/0, changed state to down Router(config=if)#

ROUTER B2

```
Equivalent IOS Commands

Router(config) #interface FastEthernet0/1
Router(config-if) #ip address 192.168.1.230 255.255.255.224
Router(config-if) #ip address 192.168.1.230 255.255.255.252
Router(config-if) #no shutdown

Router(config-if) #
%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up
```

ROUTER HQ

```
Equivalent IOS Commands
%LINK-5-CHANGED: Interface Serial0/0/1, changed state to down
Router(config-if)#
#Router(config-ir)#exit
Router(config)#interface Serial0/0/1
Router(config-if)#ip address 192.168.1.230 255.255.252
Router(config-if)#
Router(config-if)#
Router(config-if)#exit
```

o Seriel0/0/1

ROUTER HQ

Equivalent IOS Commands

```
Router(config-if) #exit

Router(config) #interface Serial0/0/0

Router(config-if) #ip address 192.168.1.226 255.255.255.224

Router(config-if) #ip address 192.168.1.226 255.255.255.252

Router(config-if) #no shutdown

%LINK-5-CHANGED: Interface Serial0/0/0, changed state to down

Router(config-if) #
```

Equivalent IOS Commands

```
Router(config) #interface Serial0/0/1
Router(config-if) #ip address 192.168.1.229 255.255.255.224
% 192.168.1.224 overlaps with Serial0/0/0
Router(config-if) #ip address 192.168.1.229 255.255.252
Router(config-if) #no shutdown
%LINK-5-CHANGED: Interface Serial0/0/1, changed state to down
Router(config-if) #
```

ENRUTAMIENTO

ROUTER B1

Equivalent IOS Commands

```
Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip route 192.168.1.128 255.255.255.192 192.168.1.226
Router(config)#ip route 192.168.1.192 255.255.255.224 192.168.1.226
Router(config)#
```

ROUTER B2

Equivalent IOS Commands

```
Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip route 192.168.1.0 255.255.255.128 192.168.1.229
Router(config)#ip route 192.168.1.128 255.255.255.192 192.168.1.229
Router(config)#
```

ROUTER HQ

Equivalent IOS Commands

```
Router*configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)*ip route 192.168.1.0 255.255.255.128 192.168.1.225
Router(config)*ip route 192.168.1.228 255.255.255.224 192.168.1.230
%Inconsistent address and mask
Router(config)*ip route 192.168.1.192 255.255.255.224 192.168.1.230
Router(config)*
```

c) Explique la configuración de los routers usando el comando show ip route

Para Router B1

En la imagen se ve la parte segmentada la misma contiene la conexión del router mediante Fa0/0 con la dirección 192.168.1.0/25 y su enrutamiento estático pertenecientes las direcciones 192.168.1.128/26 y 192.168.1.192/27 con el que esta conectada serial0/0/0

Para el router B2 esta directamente conectadas el Fa0/0 con la dirección 192.168.192/27 y el S0/0/1 con la dirección 192.168.1.228/30 el enrutamiento estático 192.168.1.0/25 y 192.168.1.128 via 192.168.1.229

Para el router HQ está conectada directamente con los seriales SO/0/0 y SO/0/1(B1 y B2) con las direcciones 192.168.1.224/30 y 192.168.1.228/30 a su vez también con Fa0/0 con DR 192.168.1.128/26

Finalmente con su enrutamiento estático 192.168.1.162/27 para el serial de B2

4. Simulación conmutación de paquetes

 a) Utilice el botón Agregar PDU simple para crear un ping desde PC1 a PC3. Se sugiere utilizar la opción "Editar filtros" para que solamente se simule ICMP. Ejecute la simulación y registre la información solicitada en los siguientes incisos. b) Direcciones en la PC1. Registre las direcciones utilizadas por la PC1 para enviar el paquete ping a B1:

Origen de Capa 3: 192.168.1.126

Destino de Capa 3: 192.168.1.222

Origen de Capa 2: 00E0.F7ED.0D99

Destino de Capa 2: 0002.167E.6A01

c) Direcciones en B1. Registre las direcciones utilizadas por B1 par conmutar el paquete ping a HQ:

Origen de Capa 3: 192.168.1.126

Destino de Capa 3: 192.168.1.222

Origen de Capa 2: HDLC

Destino de Capa 2: HDLC

d) Direcciones en HQ. Registre las direcciones utilizadas por HQ para conmutar el paquete ping a B2:

Origen de Capa 3: 192.168.1.126

Destino de Capa 3: 192.168.1.222

Origen de Capa 2: HDLC

Destino de Capa 2: HDLC

e) Direcciones en B2. Registre las direcciones utilizadas por B2 para conmutar el paquete ping a PC3:

Origen de Capa 3: 192.168.1.126

Destino de Capa 3: 192.168.1.222

Origen de Capa 2: 0060.704D.BB01

Destino de Capa 2: 0009.7C0C.C626

5. Redacción Informe del trabajo

En el presente trabajo se realizó como primer punto el establecimiento de las subredes con un bloque de direcciones identificada como 192.168.1.0/24 en el cual se diseñó y se registró las direcciones de Red, Host, Brodcast y Gateway.

Como segundo punto documentamos el esquema de direccionamiento el cual era para las LAN y enlaces WAN, con los dispositivos como ser:

Router's -> HQ, B1, B2

Swich's -> 2940

Pc's -> PC1, PC2, PC3

En el tercer punto trabajamos en Cisco Packet Tracer en el cual utizamos el enrutamiento estático y configuramos los router's mencionados usando el comando show ip route. Además de hacer la prueba de conectividad usando el comando ping y verificando la conectividad entre todas.

Finalizando hicimos las simulación conmutación de paquetes utilizando el botón PDU para así poder obtener las direcciones del origen de cap 3 >> Destino de capa 3 y Origen de Capa 2 >> Destino de Capa 2 para cada uno de los incisos requeridos. Como podemos ver en las imágenes que tenemos a continuación configuramos los router's usando IOS Command Line Interface y detallaremos por segmentamos cada uno de ellos.

```
_ _ _ X
🌉 B1
                    CLI
 Physical Config
                            IOS Command Line Interface
  interface FastEthernet0/0
   ip address 192.168.1.1 255.255.255.128
   duplex auto
  interface FastEthernet0/1
   no ip address
   duplex auto
   speed auto
   shutdown
  interface Serial0/0/0
   ip address 192.168.1.225 255.255.255.252
   clock rate 2000000
  interface Serial0/0/1
   no ip address
clock rate 2000000
   shutdown
  interface Vlan1
  no ip address
  ip route 192.168.1.128 255.255.255.192 192.168.1.226
  ip route 192.168.1.192 255.255.255.224 192.168.1.226
  ip flow-export version 9
                                                                       Copy
                                                                                   Paste
```

Como podemos ver en la imagen tenemos los siguientes puntos a detalle:

Interface FastEthernet 0/0 : Conexión con la PC que está Conectada ya que contiene su ip address.

Interface Serial 0/0/0: Serial Activo.

Interface Vlanl: Esta esta desactivada ya que no existe redes virtuales.

ip classless: Es el enrutamiento que se realizo.

Como podemos ver en la imagen tenemos los siguientes puntos a detalle:

Interface FastEthernet 0/0 : Conexión con la PC que está conectada ya que contiene su ip address.

Interface Serial0/0/1: Serial Activo.

Interface Vlanl: Esta esta desactivada ya que no existe redes virtuales.

ip classless: Es el enrutamiento que se realizo.

Como podemos ver en la imagen tenemos los siguientes puntos a detalle:

Interface FastEthernet 0/0 : Es la conexión con la PC que está conectada ya que contiene su ip address.

En este caso los seriales tiene conexión tanto a la derecha como la izquierda es decir: Interface Serial0/0/0 y Interface Serial0/0/1 la cual es la configuración de los seriales para la conexion de los router's.

Interface Vlanl: Esta esta desactivada ya que no existe redes virtuales.

ip classless : Es el enrutamiento que se realizó.