Architecture des ordinateurs Cours 2

Responsable de l'UE : Karine Heydemaann

Contact: prenom.nom@lip6.fr

Plan du cours 2

- Rappels
- Arithmétique sur entiers naturels
- Représentations des entiers relatifs en complément à 2
- Représentation des entiers relatifs et arithmétique entière
- 5 Représentation des caractères alphanumériques

Codage des entiers naturels en base 2

Interprétation d'un mot binaire comme un entier naturel (codage entiers naturels)

$$(a_{n-1}...a_1a_0)_b = N_d = (\sum_{i=0}^{n-1} a_i 2^i)_d$$

Intervalle de représentation (codage entiers naturels)

• Sur *n* bits, on peut représenter les entiers compris dans [0, 2ⁿ-1]

Extension d'un mot binaire représentant un entier naturel (codage entiers naturels)

• Extension de $n \ge p > n$ bits en recopiant les n bits de poids faible et en mettant 0 sur les p - n bits de poids fort :

$$a_{n-1}...a_1a_0 \rightarrow 0...0a_{n-1}...a_1a_0$$

- Rappels
- Arithmétique sur entiers naturels
 - En base 2
 - En base 16
 - Addition de mots
 - Circuit logique pour l'addition de 2 mots de 1 bit
 - Additionneur n bits
- Représentations des entiers relatifs en complément à 2
- Représentation des entiers relatifs et arithmétique entière
- 6 Représentation des caractères alphanumériques

Addition d'entiers naturels : en décimal

Principe et règles

- Addition des chiffres de même rang, en commençant par la droite
- Quand l'addition de deux chiffres dépasse 10, propagation d'une retenue à gauche
- La retenue entrante (sortante du rang précédent) est à sommer avec les chiffres du rang courant

Exemple

$$7^{1}$$
 5 + 1 7 9 2

- Pour les unités : "7 + 5 = 12 : je pose 2 et je retiens 1"
- Pour les dizaines : il faut intégrer la retenue
 "7 + 1 + 1 = 9 : je pose 9 (et je retiens 0)"

Addition en base 2

Principe (1)

Addition des bits de même rang

Règle sur les bits

- \bullet 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1
- 1 + 1 = 2_d = 10_b donc "je pose 0 et je retiens 1"

Principe (2)

- Lorsqu'il y a une retenue, il faut l'intégrer dans le calcul sur les bits de gauche
- On a donc non pas 2 mais 3 chiffres à sommer

Règle supplémentaire sur les bits

• Addition de trois 1, et 1 + 1 + 1 = 3_d =11_b, soit "je pose 1 et je retiens 1"

Premier exemple

- Les 2 opérandes s'écrivent sur 8 et 6 bits respectivement
- Extension implicite du 2ème opérande pour réaliser des opérations sur 2 mots de 8 bits
- Le résultat s'écrit sur 8 bits

Deuxième exemple

- Les 2 opérandes s'écrivent sur 4 et 3 bits respectivement
- Extension implicite du 2ème opérande pour réaliser des opérations sur des mots de 4 bits
- Le résultat s'écrit sur 5 bits : il n'est pas représentable sur 4 bits

Addition en base 16

Principe

- Addition réalisée en sommant les chiffres/symboles de même rang
- Propagation d'une retenue lorsque le résultat est strictement supérieur à F_h = 15

Exemples

Addition de mots

Principe

- On définit l'addition sur des mots binaires pour que l'interprétation du résultat comme entier naturel corresponde à la somme des interprétations des opérandes
- Cela correspond à l'addition binaire

- Flèches bleues et rouge : définition de l'addition de mots binaires
- Flèche orange : ce qu'on veut faire
- Flèches vertes : calcul réalisé

Addition de mots

Problème : dépassement de capacité

- On dit qu'il y a un dépassement de capacité sur entiers naturels quand l'addition de 2 mots binaires ne donnent pas le bon résultat lorsque l'on interprète ceux-ci comme des entiers naturels
- Exemple: 0b1001 + 0b1000 correspond à 9 + 8 = 17; or 17 n'est pas représentable sur un mot de 4 bits
- Equivalence avec le fait que le résultat appartiennent à l'intervalle représentable : lorsque le résultat théorique de l'opération appartient à l'intervalle de représentation, l'addition de mots est toujours correcte
- Si dépassement : la retenue sortante est ignorée
- \Rightarrow Correspond à une arithmétique modulaire sur 2^n pour un mot de n bits
- Exemple: $0b1001 + 0b1000 = 0b0001 \rightarrow 1 = 17 \% 16$

Circuit logique pour l'addition de 2 mots de 1 bit

Additionneur 1 bit

- 3 entrées : a_i , b_i et c_{in_i} la retenue entrante (sortant de l'addition des bits de droite)
- Deux fonctions à calculer (2 sorties)
 - s_i pour le bit de somme
 - *c_{out_i}* pour le bit de retenue

Interface d'un additionneur 1 bit avec 1 bit de retenue entrante

Table de vérité des fonctions somme et retenue

Addition 1 bit : fonctions somme et retenue

ai	bi	Cini	somme s _i	retenue cout;
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Table de vérité des fonctions somme et retenue

Addition 1 bit : fonctions somme et retenue

ai	bi	C _{ini}	somme s _i	retenue couti
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

En TD/TME : circuit logique pour les fonctions s_i et c_{out_i} à partir d'une expression logique : cf. cours 1 pour traduire une fonction en une expression algébrique puis en circuit.

Additionneur n bits

 Un additionneur n bits est obtenu en connectant n additionneurs 1 bit de telle sorte que la retenue sortante du rang i soit la retenue entrante du rang i + 1

- Le circuit final a 2n bits d'entrées (n pour A + n pour B) et (n + 1) sorties (n bits pour la somme + la retenue sortante du dernier rang)
- Il y a un dépassement de capacité lors de l'addition de deux entiers naturels si $c_{out_{n-1}} = 1$

Multiplication et division

Opérations de multiplication et division de 2 entiers complexes
 ⇒ circuits les réalisant pas dans l'ALU

Multiplication et division par une puissance de 2 en binaire

- Multiplier ou diviser par $2^n \equiv$ décalage à gauche ou à droite de n bits
 - $N_d = (a_{p-1}...a_1a_0)_b \Rightarrow 2N_d = (a_{p-1}...a_1a_00)_b$
 - $N_d = (a_{p-1}...a_1a_0)_b \Rightarrow (N/2)_d = (0a_pa_{p-1}...a_1)_b$

Multiplication et division par une puissance de B en base B

- Décaler à gauche de 1 (respectivement n) revient à multiplier par la base B (respectivement par B^n)
- Décaler à droite de 1 (respectivement n) à diviser par la base B (respectivement par B^n).

Décalage et multiplication/division

Exemple en base 10

- 1024/10 = 102 décalage à droite de 1 (division par 10¹)
- 1024/100 = 10 : décalage à droite de 2 (division par 10²)
- 1024 × 10 = 10240 : décalage à gauche de 1

Exemple en base 2

- \bullet 1100_b >> 1_d = 110_b = 6_d = 12_d/2_d
- \bullet 110_b >> 2_d = 1_b = 1_d = 6_d/4_d
- $11_b << 1_d = 110_b = 6_d = 3_d \times 2_d$
- $11_b << 2_d = 1100_b = 12_d = 3_d \times 4_d$

Décalage de mots binaires de 4 bits

- \bullet 0b1100 >> 1_d = 0b0110 = 6_d = 12_d/2_d
- \bullet 0*b*0110 >> 2_d = 0*b*0001 = 1_d = 6_d/4_d
- ullet 0b0011 << 1_d = 0b0110 = 6_d = 3_d × 2_d
- \bullet 0b0011 << 2_d = 0b1100 = 12_d = 3_d × 4_d

- Rappels
- Arithmétique sur entiers naturels
- Représentations des entiers relatifs en complément à 2
- Représentation des entiers relatifs et arithmétique entière
 - Représentation des entiers relatifs
 - Codage entiers relatifs en complément à 2
 - Addition (et soustraction) d'entiers relatifs
- 5 Représentation des caractères alphanumériques

Représentation usuelle des entiers relatifs

Définition

- C'est la représentation courante qui utilise un signe et une valeur absolue: +3, -3, +2, -2, ...
- Un bit code le signe, les autres bits la valeur absolue

Addition/soustraction

- Complexe
- Il faut déterminer le signe pour savoir s'il faut faire une addition ou une soustraction

Autre problème

- Il y a deux représentations pour la valeur 0 : rend la comparaison de deux mots compliquée
- ullet \Rightarrow il faut interdire une des deux valeurs (-0)

Représentation en complément à 1

Complément à 1

• En complément à 1 si $N_b = n_d$ alors $-n_d = \overline{N_b}$.

Conséquences

- L'opposé en binaire est simplement le complément
- Il y a deux zéros (que des 1 et que des 0) à gérer
- Les opérations d'addition et de soustraction sont encore plus complexes

Représentation en complément à 2

En complément à 2

- Un seul zéro
- Les traitements à appliquer pour réaliser une addition sont identiques que les nombres soient positifs ou négatifs

Utilisation

- C'est la représentation adoptée dans tous les processeurs pour représenter les entiers relatifs
- C'est la seule "bonne" représentation : désormais, on n'utilisera plus que celle-là
- Appelée dans la suite représentation ou codage entiers relatifs en complément à 2 ou simplement entiers relatifs

Représentation entiers relatifs

Codage

En complément à deux, tout nombre est représenté par deux parties :

- un terme négatif constant ou nul
- une correction positive

Interprétation de $a_{n-1}...a_1a_{0b}$

$$a_{n-1}...a_1 a_{0b} = -a_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

$$a_{n-1}...a_1 a_{0b} = -a_{n-1} 2^{n-1} + a_{n-2} 2^{n-2} + ... + a_1 2 + a_0$$

Codage entiers relatifs

$$(a_{n-1}...a_1a_0)_b = (-a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + ... + a_12 + a_0)_d$$

- $-a_{n-1}2^{n-1}$ valeur négative constante ou nulle $\Rightarrow a_{n-1}$ appelé bit de signe : sa valeur indique le signe de l'entier
- $\sum_{i=0}^{\infty} a_i 2^i$ correspond à la correction positive
- Différence des interprétations entiers naturels et relatifs

Codage entiers relatifs

Exemple

- Sur 4 bits, le mot 0b1001 s'interprète comme la valeur 9 selon le codage entiers naturels, et 9 = 1001_b
- Sur 4 bits, le mot 0b1001 s'interprète comme la valeur -7 selon le codage entiers relatifs

Exemple sur 3 bits

$$-a_2 \times 2^2 + a_1 \times 2 + a_0$$

$$N = 0b000 = 0_0$$

$$N = 0b101 = -2^2 + 1 = -3$$

$$N = 0b110 = -2^2 + 2 = -2$$

$$N = 0b111 = -2^2 + 2 + 1 = -1$$

$$N = 0b011 = 2 + 1 = 3$$

- Repérer
 - Entier positif ⇔ le bit de signe a₂ vaut 0
 - Entier négatif ⇔ le bit de signe a₂ vaut 1

Exemple sur 3 bits

$$-a_2 \times 2^2 + a_1 \times 2 + a_0$$

•
$$N = 0b000 = 0_d$$

$$N = 0b101 = -2^2 + 1 = -3$$

$$N = 0b110 = -2^2 + 2 = -2$$

$$N = 0b111 = -2^2 + 2 + 1 = -1$$

$$N = 0b011 = 2 + 1 = 3$$

- Repérer
 - Entier positif ⇔ le bit de signe a₂ vaut 0
 - Entier négatif ⇔ le bit de signe a₂ vaut 1

Exemple sur 3 bits

$$-a_2 \times 2^2 + a_1 \times 2 + a_0$$

•
$$N = 0b000 = 0_d$$

•
$$N = 0b101 = -2^2 + 1 = -3$$

$$N = 0b110 = -2^2 + 2 = -2$$

$$N = 0b111 = -2^2 + 2 + 1 = -1$$

$$N = 0b011 = 2 + 1 = 3$$

- Repérer
 - Entier positif ⇔ le bit de signe a₂ vaut 0
 - Entier négatif ⇔ le bit de signe a₂ vaut 1

Exemple sur 3 bits

$$-a_2 \times 2^2 + a_1 \times 2 + a_0$$

•
$$N = 0b000 = 0_d$$

$$N = 0b101 = -2^2 + 1 = -3$$

•
$$N = 0b110 = -2^2 + 2 = -2$$

•
$$N = 0b111 = -2^2 + 2 + 1 = -1$$

$$N = 0b011 = 2 + 1 = 3$$

- Repérer
 - Entier positif ⇔ le bit de signe a₂ vaut 0
 - Entier négatif ⇔ le bit de signe a₂ vaut 1

Exemple sur 3 bits

$$-a_2 \times 2^2 + a_1 \times 2 + a_0$$

•
$$N = 0b000 = 0_d$$

$$N = 0b101 = -2^2 + 1 = -3$$

•
$$N = 0b110 = -2^2 + 2 = -2$$

•
$$N = 0b111 = -2^2 + 2 + 1 = -1$$

$$N = 0b011 = 2 + 1 = 3$$

- Repérer
 - Entier positif ⇔ le bit de signe a₂ vaut 0
 - Entier négatif ⇔ le bit de signe a₂ vaut 1

Exemple sur 3 bits

$$-a_2 \times 2^2 + a_1 \times 2 + a_0$$

•
$$N = 0b000 = 0_d$$

$$N = 0b101 = -2^2 + 1 = -3$$

•
$$N = 0b110 = -2^2 + 2 = -2$$

$$N = 0b111 = -2^2 + 2 + 1 = -1$$

•
$$N = 0b011 = 2 + 1 = 3$$

- Repérer
 - Entier positif ⇔ le bit de signe a₂ vaut 0
 - Entier négatif ⇔ le bit de signe a₂ vaut 1

Exemple sur 3 bits

$$-a_2 \times 2^2 + a_1 \times 2 + a_0$$

•
$$N = 0b000 = 0_d$$

$$N = 0b101 = -2^2 + 1 = -3$$

•
$$N = 0b110 = -2^2 + 2 = -2$$

$$N = 0b111 = -2^2 + 2 + 1 = -1$$

•
$$N = 0b011 = 2 + 1 = 3$$

- Repérer
 - Entier positif ⇔ le bit de signe a₂ vaut 0
 - Entier négatif ⇔ le bit de signe a₂ vaut 1

Intervalle de représentation

Intervalle de représentation sur *n* bits

Sur n bits, en complément à 2, l'intervalle de représentation est :

$$[-2^{n-1}, 2^{n-1} - 1]$$

- Si $a_{n-1} = 0 \Rightarrow$ entier naturel sur n-1 bits \Rightarrow dans l'intervalle $[0, 2^{n-1} 1]$ (cf. cours 1)
- Si $a_{n-1} = 1$: $N = -2^{n-1} + corr$ avec corr la correction et $corr \in [0, 2^{n-1} 1]$
 - si $corr = 0 \Rightarrow$ c'est le plus petit entier négatif possible, il vaut -2^{n-1}
 - si corr = 2ⁿ⁻¹ 1 valeur entiere maximale ⇒ c'est le plus grand entier négatif possible, il vaut -1
- Ainsi, l'ensemble des entiers relatifs représentés est en complément à 2 sur n bits est bien $[-2^{n-1}, 2^{n-1} 1]$

Opposé d'un entier en complément à 2

- L'opposé de N_b représenté en complément à 2 est $\overline{N_b} + 1$
- $\overline{N_b}$ + 1 est appelé le *complément à 2* (Cà2) de N
- Il ne faut pas confondre le calcul du complément à 2 d'un nombre avec la représentation en complément à 2

Détermination/preuve

• Pour tout bit
$$a_i$$
, $a_i + \overline{a_i} = 1$
• $N_b + \overline{N_b} = \frac{a_{n-1}..a_1a_0}{a_{n-1}...a_1a_0}$
• $= \frac{1...11_b}{a_{n-1}...a_1a_0}$

$$-N_b = 1 + \overline{N_b}$$

Remarques

- L'intervalle de définition des nombres représentables en complément à 2 sur n bits n'est pas symétrique
- On ne peut pas déterminer l'opposé de -2^{n-1} sur n bits.

Opposé d'un entier en complément à 2

- L'opposé de N_b représenté en complément à 2 est $\overline{N_b} + 1$
- N_b + 1 est appelé le complément à 2 (Cà2) de N
- Il ne faut pas confondre le calcul du complément à 2 d'un nombre avec la représentation en complément à 2

Détermination/preuve

• Pour tout bit a_i , $a_i + \overline{a_i} = 1$

$$N_b + \overline{N_b} = \underbrace{a_{n-1} ... a_1 a_0}_{+ a_{n-1} ... a_1 a_0}$$

= 1...1 1_b

 $-N_b = 1 + \overline{N_b}$

Remarques

- L'intervalle de définition des nombres représentables en complément à 2 sur n bits n'est pas symétrique
- On ne peut pas déterminer l'opposé de -2^{n-1} sur n bits.

Opposé d'un entier en complément à 2

- L'opposé de N_b représenté en complément à 2 est $\overline{N_b} + 1$
- $\overline{N_b}$ + 1 est appelé le *complément à 2* (Cà2) de N
- Il ne faut pas confondre le calcul du complément à 2 d'un nombre avec la représentation en complément à 2

Détermination/preuve

• Pour tout bit a_i , $a_i + \overline{a_i} = 1$

$$N_b + \overline{N_b} = \underbrace{\begin{array}{c} a_{n-1} ... a_1 a_0 \\ + \overline{a_{n-1} ... a_1 a_0} \\ = 1 ... 1 1_b \\ = -1_d \end{array}}$$

 $-N_b = 1 + \overline{N_b}$

Remarques

- L'intervalle de définition des nombres représentables en complément à 2 sur n bits n'est pas symétrique
- On ne peut pas déterminer l'opposé de -2^{n-1} sur n bits.

Opposé d'un entier en complément à 2

- L'opposé de N_b représenté en complément à 2 est $\overline{N_b} + 1$
- $\overline{N_b}$ + 1 est appelé le *complément à 2* (Cà2) de N
- Il ne faut pas confondre le calcul du complément à 2 d'un nombre avec la représentation en complément à 2

Détermination/preuve

• Pour tout bit
$$a_i$$
, $a_i + \overline{a_i} = 1$
• $N_b + \overline{N_b} = \underbrace{\frac{a_{n-1} ... a_1 a_0}{a_{n-1} ... a_1 a_0}}_{= 1...1 1_b}$
• $a_{n-1} ... a_1 a_0$
• $a_{n-1} ... a_1 a_0$
• $a_{n-1} ... a_1 a_0$

$$-N_b = 1 + \overline{N_b}$$

Remarques

- L'intervalle de définition des nombres représentables en complément à 2 sur n bits n'est pas symétrique
- On ne peut pas déterminer l'opposé de -2^{n-1} sur n bits.

K. Heydemann LU3IN029 : cours 2 2021/2022

Extension de la représentation d'un entier relatif

Extension de p à n bits

- Soit un mot de p bits contenant une valeur v, interprété selon le codage entier relatif par le nombre d
- Pour que le mot v' de n bits (n > p) encode également le nombre d, il faut :
 - Copier les bits de poids faible de v dans v'
 - Mettre les bits de poids fort restant à la valeur du bit de poids fort de v
- Si $N = a_{p-1}a_{p-2}...a_1a_0$ sur p bits, alors sur n bits $N = a_{p-1}...(n-p \text{ fois})...a_{p-1}a_{p-1}a_{p-2}...a_1a_0$

Exemple

 $N = 1000_b = 11000_b = 111000_b = 1111000_b$

Extension de la représentation d'un entier relatif

Preuve : extension de $p \grave{a} p + 1$ bit

• N_p représentant N codé sur p bits $(a_{p-1}a_{p-2}...a_1a_0)$:

$$N_p = -a_{p-1}2^{p-1} + \sum_{i=0}^{p-2} a_i 2^i$$

• N_{p+1} correspondant à l'extension de N_p sur p+1 bit :

$$\begin{array}{rcl} N_{p+1} & = & -\mathbf{a_{p-1}}2^p & + & \sum_{i=0}^{p-1}a_i2^i \\ & = & -a_{p-1}2^p + \mathbf{a_{p-1}}\mathbf{2^{p-1}} & + & \sum_{i=0}^{p-2}a_i2^i \end{array}$$

Factorisation des premiers termes par a_{p-1}:

$$N_{p+1} = \mathbf{a}_{p-1}(-2^p + 2^{p-1}) + \sum_{i=0}^{p-2} a_i 2^i$$

• Comme $-2^p + 2^{p-1} = -2^{p-1}$ on obtient :

$$N_{p+1} = a_{p-1}(-2^{p-1}) + \sum_{i=0}^{p-2} a_i 2^i$$

= N_p

Extension de 4 à 8 bits

- \bullet $N_1 = 0b1001 = 0b111111001$
- $N_2 = 0b0110 = 0b00000110$

Extension de 16 à 32 bits en hexadécimal

- $N_3 = 0x1110 = 0x00001110$
- $N_4 = 0x90B2 = 0xFFFF90B2$

Extension de 4 à 8 bits

- $N_1 = 0b1001 = 0b111111001$
- $N_2 = 0b0110 = 0b00000110$

Extension de 16 à 32 bits en hexadécimal

- $N_3 = 0x1110 = 0x00001110$
- $N_4 = 0x90B2 = 0xFFFF90B2$

Extension de 4 à 8 bits

- \bullet $N_1 = 0b1001 = 0b111111001$
- $N_2 = 0b0110 = 0b00000110$

Extension de 16 à 32 bits en hexadécimal

- \bullet $N_3 = 0x1110 = 0x00001110$
- $N_4 = 0x90B2 = 0xFFFF90B2$

Extension de 4 à 8 bits

- \bullet $N_1 = 0b1001 = 0b111111001$
- $N_2 = 0b0110 = 0b00000110$

Extension de 16 à 32 bits en hexadécimal

- \bullet $N_3 = 0x1110 = 0x00001110$
- $N_4 = 0x90B2 = 0xFFFF90B2$

Extension de 4 à 8 bits

- \bullet $N_1 = 0b1001 = 0b111111001$
- $N_2 = 0b0110 = 0b00000110$

Extension de 16 à 32 bits en hexadécimal

- \bullet $N_3 = 0x1110 = 0x00001110$
- $N_4 = 0x90B2 = 0xFFFF90B2$

Addition et soustraction d'entiers relatifs

Propriété

- L'addition sur les mots binaires peut être utilisée pour sommer des entiers relatifs
 - Cela revient à sommer les parties négatives et à sommer les corrections positives
- Seule la condition de débordement change
- Propriété du codage des relatifs en complément à 2

Addition et soustraction d'entiers relatifs

Soustraction

- On réaliser un circuit soustracteur, mais en réalité pas besoin
- On tire partie du fait que A B = A + (-B), avec -B = Cà2(B)
- On calcule -B, et on réutilise l'additionneur comme pour l'addition des entiers relatifs

Exemples d'addition et soustraction

Exemples

Dépassement de capacité

Résultat représentable

- Le résultat d'une addition/soustraction de 2 mots de n bits est dit représentable sur n bits si l'interprétation des bits n - 1 à 0 dans la même représentation représente bien le résultat théorique de l'opération.
- Si ce n'est pas le cas : dépassement de capacité
- Remarque : le fait qu'il y ait un dépassement ou non dépend de l'interprétation des mots

Addition de A et B et dépassement de capacité en entiers relatifs

Il y a 4 cas à analyser en fonction du signe de A et B

- A < 0 et B > 0 : signes différents, A négatif
- A > 0 et B < 0: signes différents, B négatif
- A > 0 et B > 0 : même signe et positifs
- A < 0 et B < 0 : même signe et négatifs

Détermination d'un dépassement de capacité

A et B de signe différent, A négatif

On a

$$-2^{n-1} < A < -1$$

• 0
$$\leq B \leq 2^{n-1} - 1$$

$$-2^{n-1} < A + B < 2^{n-1} - 2$$

Le résultat est toujours représentable, il n'y a pas de dépassement de capacité

$$\begin{array}{rcl}
 & 1a_{n-2}...a_1a_0 \\
+ & 0b_{n-2}...b_1b_0 \\
= & s_{n-1}s_{n-2}...s_1s_0
\end{array}$$

- Si l'addition des corrections positives \geq à 2^{n-1} on a $c_{out_{n-2}}=1$ et donc forcément $c_{out_{n-1}}=1$
- Si l'addition des corrections positives est < à 2ⁿ⁻¹ on a c_{out_{n-2}} = 0 et donc forcément c_{out_{n-1}} = 0
- On a toujours : résultat correct et cout_{n-1} = cout_{n-2}

Détermination d'un dépassement de capacité

A et B de même signe et négatif

```
\begin{array}{rcl}
 & 1 a_{n-2} ... a_1 a_0 \\
+ & 1 b_{n-2} ... b_1 b_0 \\
= & s_{n-1} s_{n-2} ... s_1 s_0
\end{array}
```

- On a toujours $c_{out_{n-1}} = 1$
- Si l'addition des corrections positives est < 2ⁿ⁻¹ on a c_{out_{n-2}} = 0 et le résultat est positif, et donc incorrect
- Si l'addition des corrections positives est $\geq 2^{n-1}$ on a $c_{out_{n-2}} = 1$, le résultat est négatif $(s_{n-1} = 1)$, et donc correct
- On a donc résultat correct et $c_{out_{n-1}} = c_{out_{n-2}}$ ou alors résultat incorrect et $c_{out_{n-1}} \neq c_{out_{n-2}}$

Détermination d'un dépassement de capacité

A et B de même signe et positif

$$\begin{array}{rcl} & 0a_{n-2}...a_1a_0 \\ + & 0b_{n-2}...b_1b_0 \\ = & s_{n-1}s_{n-2}...s_1s_0 \end{array}$$

- On a toujours $c_{out_{n-1}} = 0$
- Si l'addition des corrections positives est $< 2^{n-1}$ on a $c_{out_{n-2}} = 0$, le résultat est positif et correct : il reste dans l'intervalle de représentation des valeurs positives
- Si l'addition des corrections positives est $\geq 2^{n-1}$ on a $c_{out_{n-2}} = 1$, le résultat n'est pas dans l'intervalle de représentation des valeurs positives, le résultat sera négatif $(s_{n-1} = 1)$, et donc incorrect
- On a donc résultat correct et $c_{out_{n-1}} = c_{out_{n-2}}$ ou alors résultat incorrect et $c_{out_{n-1}} \neq c_{out_{n-2}}$

Détermination d'un dépassement de capacité lors d'une addition

Synthèse de l'analyse des différents cas

Le résultat d'une addition sur entiers relatifs est correct ssi $c_{out_{n-1}} = c_{out_{n-2}}$

Détection de dépassement

Il y a dépassement de capacité sur entiers relatifs ssi $c_{out_{n-1}}
eq c_{out_{n-2}}$

Attentior

La détection d'un dépassement de capacité lors de l'addition sur entiers relatifs est différente de celle lors de l'addition d'entiers naturels.

Détermination d'un dépassement de capacité lors d'une addition

Synthèse de l'analyse des différents cas

Le résultat d'une addition sur entiers relatifs est correct ssi $c_{out_{n-1}} = c_{out_{n-2}}$

Détection de dépassement

Il y a dépassement de capacité sur entiers relatifs ssi $c_{out_{n-1}} \neq c_{out_{n-2}}$.

Attention

La détection d'un dépassement de capacité lors de l'addition sur entiers relatifs est différente de celle lors de l'addition d'entiers naturels.

Détermination d'un dépassement de capacité lors d'une addition

Synthèse de l'analyse des différents cas

Le résultat d'une addition sur entiers relatifs est correct ssi $c_{out_{n-1}} = c_{out_{n-2}}$

Détection de dépassement

Il y a dépassement de capacité sur entiers relatifs ssi $c_{out_{n-1}} \neq c_{out_{n-2}}$.

Attention

La détection d'un dépassement de capacité lors de l'addition sur entiers relatifs est différente de celle lors de l'addition d'entiers naturels.

Exemples d'addition et illustration des différents cas

Exemples d'addition avec les différents cas

Exemples

Résultat négatif!

$$c_{out_{n-1}} \neq c_{out_{n-2}}$$

Résultat positif!

$$c_{out_{n-1}} = c_{out_{n-2}}$$

Résultat négatif!

$$c_{out_{n-1}} = c_{out_{n-2}}$$

Résultat positif!

$$c_{out_{n-1}} \neq c_{out_{n-2}}$$

Addition de nombres de signes différents

$$c_{out_{n-1}} = c_{out_{n-2}}$$

Addition de nombres de signes différents

$$c_{out_{n-1}} = c_{out_{n-2}}$$

Détection d'un dépassement de capacité dans l'ALU

Soustractions d'entiers non signés

Soustraction d'entiers non signés

- A priori, pour faire une soustraction d'entiers non signés sur n bits, si on ne veut pas rajouter un soustracteur a, il faut un additionneur n+1 bits :
 - Sur n+1 bits en complément à 2, on peut représenter les valeurs de -2^n à 2^n-1
 - \Rightarrow inclut l'intervalle $[0; 2^n 1]$ des entiers naturels sur n bits (avec le bit de signe = 0)
 - On peut ainsi calculer l'opposé des nombres et faire l'addition A + (-B) = A B
- ...ou pas : exemple avec 15 10

a. On peut réaliser un circuit réalisant la soustraction de mot binaire de n bits à partir d'un soustracteur 1 bit — on réalise alors la soustraction comme à l'école mais pour la base 2 et non 10

Conclusion

- Pour faire une soustraction d'entiers non signés sur n bits, on peut utiliser le même additionneur/soustracteur n bits que pour les signés en faisant le calcul A -B = A + Cà2(B)
- La condition de débordement n'est pas la même que pour les relatifs...
- a. Question : comment détecter un dépassement de capacité lors d'une soustraction sur 2 entiers non signés ?

Instructions d'addition et soustraction MIPS

Instructions d'addition et de soustraction MIPS

- add r_d , r_s , r_t ou addu r_d , r_s , r_t avec r_i des registres et réalisant $r_d \leftarrow r_s + r_t$
- addi r_d , r_s , imm₁₆ ou addiu r_d , r_s , imm₁₆ avec r_i des registres et imm₁₆ un immédiat sur 16 bits réalisant $r_d \leftarrow r_s + \text{imm}_{16 \rightarrow 32}$ avec l'immédiat étendu sur 32 bits (de manière signée)
- sub r_d , r_s , r_t ou subu r_d , r_s , r_t avec r_i des registres et réalisant $r_d \leftarrow r_s$ r_t

Détection de capacité et interprétation des valeurs

- \bullet Sémantique : lorque le nom se termine par u il n'y a pas de détection de dépassement de capacité, en représentation complément à 2
- L'immédiat et les valeurs contenues dans les registres sont toujours interprétés en complément à 2 et vus comme des valeurs signées, qu'il y ait ou non détection de dépassement de capacité
- Comment ca marche alors?

Instructions d'addition et soustraction MIPS

Conclusion

- Extrait de la doc Mips officielle (addu, subu, addiu): The term "unsigned" in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environments that ignore overflow, such as C language arithmetic.
- En C, il n'y a pas de débordement d'entiers, même pour les signés ⇒
 Utilisation des instructions addu et subu pour les signés et les non signés
- En Mips, si on veut détecter un débordement lors d'une addition/soustraction d'entiers non signés, il faut le faire en logiciel (i.e. rajouter des instructions qui font des tests sur les opérandes/le résultat)
- Attention: cette remarque n'est pas valable pour les autres instructions (ex:slt,lb,...) pour lesquelles le u est indispensable!

- Rappels
- Arithmétique sur entiers naturels
- Représentations des entiers relatifs en complément à 2
- Représentation des entiers relatifs et arithmétique entière
- 5 Représentation des caractères alphanumériques
 - Codage ASCII
 - Codage de chaines

Représentation des caractères alphanumériques

Utilité

Les caractères alphanumériques sont utilisés pour les mots en langage naturel/écrits par utilisateur (texte, programme, commande, email,...)

Codage des caractères

- Les caractères sur un clavier sont désignés par leur position
- Une table de codage associe à chaque position (éventuellement en combinaison avec d'autres touches) un caractère
- Ce caractère lorsqu'il est rangé en mémoire ou lorsqu'il est manipulé par un programme est codé suivant un codage
- Il existe plusieurs codages différents (UTF8, ASCII, etc.)

Codage ASCII

Dans ce codage, un caractère est codé sur 1 octet, une table donne le codage Seul 7 des 8 bits sont utilisés, le bit de poids fort vaut toujours 0

Hex	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	"	#	S	%	&	,	()	*	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	a	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z		١]	٨	
6	,	a	b	С	d	e	f	g	h	i	j	k	l	m	n	0
7	p	q	r	s	t	u	V	W	X	y	1	{		}	~	DEL

Quartet de poids fort

Extension du codage ASCII

Extension du codage ASCII

- Des extensions de codage incorporant le 8ème bit de poids fort permettent d'avoir un sous ensemble commun (caractères codés de 00_h à 7F_h) puis des caractères spécifiques à une langue (codé de 80_h à FF_h)
- L'extension pour les caractères français (accents, cédille) est latin-1 (ISO 8859-1)

Extension iso-latin

Codage de chaines

Codage d'une chaine de caractères

- Une chaine de caractère est composée de plusieurs lettres et symboles
- Codage d'une chaine = codage de chacune des lettres et symboles la composant + caractère de fin de chaine : "\0' (code 0x00)

Codage de chaines en ASCII

- "Lundi" = 0x4C ('L') 0x75 ('u') 0x6E ('n') 0x64 ('d') 0x69 ('i') et 0x00 ('\0').
- "123" = 0x31 ('1') 0x32 ('2') 0x33 ('3') 0x00 ('\0').

Attention

 $123_d = 64 + 32 + 16 + 8 + 2 + 11$

Donc sur 8 bits, $123_g = 0b011111011 = 0x7B$, et sur 32 bits, $123_g = 0x0000007B$. $123_g \neq "123"$

Codage de chaines

Codage d'une chaine de caractères

- Une chaine de caractère est composée de plusieurs lettres et symboles
- Codage d'une chaine = codage de chacune des lettres et symboles la composant + caractère de fin de chaine : '\0' (code 0x00)

Codage de chaines en ASCII

- "Lundi" = 0x4C ('L') 0x75 ('u') 0x6E ('n') 0x64 ('d') 0x69 ('i') et 0x00 ('\0').
- "123" = 0x31 ('1') 0x32 ('2') 0x33 ('3') 0x00 ('\0').

Attention

```
123_d = 64 + 32 + 16 + 8 + 2 + 1
Donc sur 8 bits, 123_d = 0b01111011 = 0x7B, et sur 32 bits, 123_d = 0x0000007B
123_d \neq "123"
```

K. Heydemann LU3IN029 : cours 2 2021/2022

Codage de chaines

Codage d'une chaine de caractères

- Une chaine de caractère est composée de plusieurs lettres et symboles
- Codage d'une chaine = codage de chacune des lettres et symboles la composant + caractère de fin de chaine : '\0' (code 0x00)

Codage de chaines en ASCII

- "Lundi" = 0x4C ('L') 0x75 ('u') 0x6E ('n') 0x64 ('d') 0x69 ('i') et 0x00 ('\0').
- "123" = 0x31 ('1') 0x32 ('2') 0x33 ('3') 0x00 ('\0').

Attention

```
123_d = 64 + 32 + 16 + 8 + 2 + 1
Donc sur 8 bits, 123_d = 0b01111011 = 0x7B, et sur 32 bits, 123_d = 0x0000007B 123_d \neq "123"
```

K. Heydemann LU3IN029 : cours 2 2021/2022

Conclusion

On a vu:

- addition (et soustraction) sur entiers naturels
- additionneur de mots binaires et dépassement de capacité sur naturels
- représentation en complément à 2
- addition et soustraction sur entiers relatif, dépassement de capacité
- représentation des caractères alphanumériques, codage ASCII

Nota bene:

- Tous les supports + infos sont sur Moodle et sur le site de l'UE
- site UE :

```
https://www-licence.ufr-info-p6.jussieu.fr/lmd/licence/2021/ue/LU3IN029-2021oct/
```

 Accès Moodle indispensable d'ici un mois... accès dès que l'inscription pédagogique est validée (inutile de me demander un par un)