GCC 125 - Rede de Computadores

Integrantes: Luiz Eduardo Jacó Andrade 14A, Pedro Eduardo Garcia 14A

VMS: 192.168.1.34 e 192.168.1.35 (.35 sendo o servidor)

Serviço de sincronização de tempo (NTP):

SERVIDOR - 192.168.1.35:

Passo 1: Primeiro foi executado a atualização do apt para baixar a versão mais recente do pacote NTP.

Terminal:

```
$ sudo apt update
```

Passo 2: Intalação NTP no Servidor Host:

Terminal:

```
$ sudo apt install ntp
```

Passo 3: Para configurar o servidor NTP, é necessário dois elementos na máquina host: o arquivo /etc/ntp.conf e daemon ntpd . Primeiro, vamos configurar o arquivo ntp.conf.

Terminal:

```
$ sudo nano /etc/ntp.conf
```

Foi realizada a troca dos servidores NTP dos padrões debian, para os que seguem abaixo:

```
# You do need to talk to an NTP server or two (or three).
#server ntp.your-provider.example
server 1.br.pool.ntp.org prefer iburst
# pool.ntp.org maps to about 1000 low-stratum NTP servers. Your server will
# pick a different set every time it starts up. Please consider joining the
# pool: <http://www.pool.ntp.org/join.html>
pool 0.br.pool.ntp.org iburst
pool 1.br.pool.ntp.org iburst
pool 2.br.pool.ntp.org iburst
pool 3.br.pool.ntp.org iburst
```

Adicionamos um servidor preferencial, por fim de facilitar os testes.

Passo 4: Reiniciando o daemon NTP:

Terminal:

```
$ sudo service ntp restart
```

Para verificar se o servidor NTP está funcionando sem problemas temos o seguinte comando:

Terminal:

```
$ sudo service ntp status
```

```
[11:45:48] DEBIAN: aluno@debian [~]$ sudo service ntp restart
[11:46:08] DEBIAN: aluno@debian [~]$ sudo service ntp status
• ntp.service - Network Time Service
    Loaded: loaded (/lib/systemd/system/ntp.service; enabled; vendor preset: enabled)
    Active: active (running) since Sun 2022-07-31 11:46:08 -03; 22s ago
    Docs: man:ntpd(8)
```

Como descrito na imagem acima, o servidor ntp está funcionando.

CLIENTE 192.168.1.34:

Passo 1: Utilizamos ntpdate para sincronizar a hora do cliente NTP com o servidor NTP apenas uma vez. Para instalá-lo na máquina cliente, use o seguinte comando:

Terminal:

```
$ sudo ntpdate 192.168.1.35
```

```
[11:51:32] DEBIAN: aluno@debian [~]$ sudo ntpdate 192.168.1.35
31 Jul 11:52:21 ntpdate[36964]: the NTP socket is in use, exiting
```

Dificuldade encontrada: 'The NTP socket is in use, exiting'

Solução:

```
[11:56:37] DEBIAN: aluno@debian [~]$ sudo service ntp stop
[11:56:49] DEBIAN: aluno@debian [~]$ sudo ntpdate 192.168.1.35
31 Jul 11:57:15 ntpdate[36982]: adjust time server 192.168.1.35 offset -0.000819 sec
[11:57:15] DEBIAN: aluno@debian [~]$
```

Passo 2: Configuração do arquivo de hosts

Foi adicionada a seguinte entrada de nome host no arquivo /etc/hosts da máquina cliente. Esta etapa é necessária para resolver o servidor NTP por meio do nome do host.

Terminal:

\$ sudo nano /etc/hosts

```
GNU nano 5.4 /etc/hosts *
127.0.0.1 localhost
127.0.1.1 debian
192.168.1.35 ntp-host_
```

Como mostra a figura acima, foi adicionado a máquina servidor como "ntp-host".

Passo 4: Sincronizando o cliente NTP com o servidor NTP

Primeiro instalamos ntp na máquina cliente:

Terminal:

```
$ sudo apt install ntp
```

Com a instalação concluída, editamos o arquivo ntp.conf:

Terminal:

\$ sudo nano /etc/ntp.conf

```
# You do need to talk to an NTP server or two (or three).
#server ntp.your-provider.example
server 192.168.1.35 prefer iburst
# pool.ntp.org maps to about 1000 low-stratum NTP servers. Your server will
# pick a different set every time it starts up. Please consider joining the
# pool: <a href="http://www.pool.ntp.org/join.html">http://www.pool.ntp.org/join.html</a>>
pool 0.debian.pool.ntp.org iburst
pool 1.debian.pool.ntp.org iburst
pool 3.debian.pool.ntp.org iburst
```

Foi adicionado a máquina servidora com preferência, para fornecer o ntp.

```
# You do need to talk to an NTP server or two (or three).
#server ntp.your-provider.example
server 192.168.1.35 prefer iburst
```

E então reiniciamos o daemon NTP para aplicar as alterações de configuração:

Terminal:

```
$ sudo service ntp restart
```

Verificação de status de sincronização ntp:

Terminal:

```
$ ntpq -p
```

[13:54:02] DEBIAN	V: aluno <mark>@</mark> debian ∣ refid					reach	delay	offset	jitter
Elliote		===	==	wiieii	POII		uclay	011366	J10001
*ntp-host	110.170.126.104	2	u		64	1	0.129	-0.026	0.103
0.debian.pool.n	.POOL.	16	p		64	0	0.000	+0.000	0.000
1.debian.pool.n	.POOL.	16	p		64	0	0.000	+0.000	0.000
2.debian.pool.n	.POOL.	16	p		64	0	0.000	+0.000	0.000
3.debian.pool.n	.POOL.	16	p		64	0	0.000	+0.000	0.000
c.ntp.br	200.160.7.186	2	u	2	64	1	33.005	-16.633	0.024
any.time.nl	148.107.165.199	2	u	2	64	1	122.888	-19.226	0.000
lrtest1.ntp.ifs	.LRTE.	1	u	1	64	1	26.502	-15.007	1.331
1rtest2.ntp.ifs	143.107.229.211	2	u	1	64	1	29.695	-16.665	0.000
a.st1.ntp.br	.ONBR.	1	u		64	1	48.082	-0.287	0.343
192.36.143.130	.PPS.	1	u	1	64	1	259.460	-16.147	0.000

SERVIDOR WEB

Todos os passos apresentados a seguir foram executados na VM servidor.

Passo 1: Decidimos utilizar o próprio Apache.

Terminal:

\$ sudo apt install apache2

A instalação se deu normalmente.

Passo 2: O próximo passo, criar o nosso arquivo de configuração a partir de arquivo padrão, entramos na pasta site-available e criamos o arquivo.

Terminal:

\$ sudo cd /etc/apache2/sites-available

\$ sudo cp 000-default.conf grupoq-webserver.conf

Passo 3: No arquivo 'grupoq-webserver.conf' foram feitas as seguintes edições/adições:

"ServerName <u>www.grupoqserver.ufla.br</u>
ServerAlias grupoqserver.ufla.br

DocumentRoot /var/www/grupogserver"

Passo 4: Criamos a pasta para o domínio criado, como especificado no arquivo de configuração.

Terminal:

\$ sudo mkdir /var/www/grupoqserver

Passo 5: Navegamos para a pasta criada, afim de adicionar o nosso index.html

Terminal:

\$ cd /var/www/grupoqserver

\$ sudo vi index.html

Passo 6: Após criados os arquivos de configuração, pasta de domínio e arquivo html, terminamos a instalação do servidor com os seguintes comandos.

Terminal:

\$ sudo a2ensite grupoq-webserver.conf
\$ sudo a2dissite 000-default.conf
\$ sudo apache2ctl configtest
\$ sudo systemctl restart apache2

O primeiro comando adiciona o nosso arquivo de configuração na lista dos arquivos a serem carregados pelo Apache, o comando seguinte é usado para desabilitar o arquivo padrão. O terceiro comando faz o teste dessas configurações, recebemos de fato a mensagem de 'Syntax OK' e por último fazemos o restart do servidor.

Ainda, para acesso a página html que está no nosso servidor, basta estar conectado a rede via openVPN, acessar o browser e fornecer como link '192.168.1.35'.

A parte da instalação e configuração do necessário para o Servidor Web se deu sem problemas.