Niveau: Première année de PCSI

COLLE 12 = DIMENSIONS DES ESPACES VECTORIELS

Dimensions des espaces vectoriels:

Exercice 1.

Soit $E = \mathbb{C}_{n-1}[X]$ et soit $\alpha_1, ..., \alpha_n$ des nombres complexes deux à deux distincts. On pose, pour k = 1, ...n,

$$L_k = \frac{\prod_{\substack{i=1\\i\neq k}}^{n} (X - \alpha_i)}{\prod_{\substack{i=1\\i\neq k}} (\alpha_k - \alpha_i)}$$

Démontrer que $(L_k)_{k=1,\dots,n}$ est une base de E. Déterminer les coordonnées d'un élément $P\in E$ dans cette base.

Exercice 2.

Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E dans lui-même par

$$u(P) = P + (1 - X)P'$$

- 1. Montrer que u est un endomorphisme de E.
- 2. Déterminer une base de Im(u).
- 3. Déterminer une base de ker(u).
- 4. Montrer que ker(u) et Im(u) sont deux sous-espaces vectoriels supplémentaires de E.

Exercice 3.

Soient $\alpha \in \mathbb{R}$ et $F = \{P \in \mathbb{R}_n[X]; P(\alpha) = 0\}.$

Démontrer que $B = \{(X - \alpha)X^k; 0 \le k \le n - 1\}$ est une base de F. Quelle est la dimension de F? Donner les coordonnées de $(X - \alpha)^n$ dans cette base.

Exercice 4.

Démontrer que les familles suivantes sont libres dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$:

- 1. $(x \longmapsto e^{ax})_{a \in \mathbb{R}}$;
- 2. $(x \longmapsto |x-a|)_{a \in \mathbb{R}}$;
- 3. $(x \longmapsto \cos(ax))_{a \in \mathbb{R}}$;
- 4. $(x \longmapsto (\sin x)^n)_{n \in \mathbb{N}};$

Exercice 5.

Soit E l'ensemble des fonctions continues sur [-1,1] qui sont affines sur [-1,0] et sur [0,1]. Démontrer que E est un espace vectoriel et en donner une base.

Exercice 6.

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$.

- 1. Montrer que les conditions suivantes sont équivalentes :
 - $\square \ ker(f) = ker(f^2).$
 - $\square \ Im(f) \cap ker(f) = \{0\}.$
- 2. On suppose maintenant que E est de dimension finie. Montrer que les conditions suivantes sont équivalentes :
 - $\square \ ker(f) = ker(f^2).$
 - $\square \ ker(f) \oplus Im(f) = E.$
 - \square $Im(f) = Im(f^2).$

Exercice 7.

Démontrer que l'ensemble des suites arithmétiques complexes est un espace vectoriel. Quelle est sa dimension?

Exercice 8.

Soit $n \geq 1$, $E = \mathbb{R}_n[X]$ et $\phi \in \mathcal{L}(E)$ défini par $\phi(P) = P(X+1) - P(X)$. Déterminer le noyau et l'image de ϕ .

Exercice 9.

Soit E un espace vectoriel dans lequel tout sous-espace vectoriel admet un supplémentaire. Soit F un sous-espace vectoriel propre de E (c'est-à-dire que $F \neq \{0\}$ et que $E \neq F$). Démontrer que F admet au moins deux supplémentaires distincts.

1