Потоки

Задача

Даны узлы и соединяющие их ребра (трубы/дороги/кабели). Каждому ребру ставится в соответствие некоторое число - пропускная способность. Требуется определить максимальную величину пропускной способности сети из заданного источника (source) в сток (sink).

Определения (естественные, но неудобные)

Опр. Транспортной сетью называется граф G=(V,E) с выделенной парой вершин s (исток) и t (сток) и введенной на нем функцией пропускных способностей $c:V\times V\to \mathbb{R}_+$, причем $(v,u)\notin E\Leftrightarrow c(v,u)=0$.

Опр. *Потоком* в транспортной сети называется функция $f:V imes V o \mathbb{R}_+$:

1.
$$\forall v,u \in V: 0 \leq f(v,u) \leq c(v,u)$$

2.
$$orall v \in V \setminus \{s,t\}: \sum_{u \in V} f(v,u) = \sum_{u \in V} f(u,v)$$

Определения (естественные, но неудобные)

Опр. Величиной исходящего потока называется число $|f|_+ = \sum_{u \in V} f(s,u)$

Опр. Величиной входящего потока называется число $|f|_- = \sum_{u \in V} f(u,t)$

Очевидным утверждением (которое, тем не менее, докажем позже) является равенство исходящего и входящего потоков. Поэтому для упрощения будем просто говорить *величина потока* (|f|).

Задача поиска потока максимальной величины

Математически задача формуллируется так:

Для заданной транспортной сети найти $f^* = rg \max_f |f|$

План

Будем действовать жадно:

- 1. Найдем произвольный путь из истока в сток и пустим по нему "ручеек".
- 2. Повторяем 1. пока не останется доступных путей.

Изъян в плане

Будем действовать жадно:

- 1. Найдем произвольный путь из истока в сток и пустим по нему "ручеек".
- 2. Повторяем 1. пока не останется доступных путей.

К сожалению, возможна ситуация, когда пути исчерпаются раньше времени.

Проблема в том, что мы не умеем исправлять "плохие ручейки".

Симметризованный поток

Введем более удобное на практике определение потока:

Опр. *Потоком* в транспортной сети называется функция $f:V imes V o \mathbb{R}_+$:

1.
$$orall v,u\in V: f(v,u)=-f(u,v)$$

2.
$$orall v, u \in V: f(v,u) \leq c(v,u)$$

3.
$$orall v \in V \setminus \{s,t\}: \sum_{u \in V} f(v,u) = 0$$

Найдите 3 отличия от предыдущего определения.

Величина потока

Опр. Величиной исходящего потока называется число $|f|_+ = \sum_{u \in V} f(s,u)$

Опр. Величиной входящего потока называется число $|f|_- = \sum_{u \in V} f(u,t)$

Утверждение.
$$|f|_{+} = |f|_{-}$$

Доказательство.

$$0=\sum_{v\in V}\sum_{u\in V}f(v,u)=\sum_{u\in V}f(s,u)+\sum_{u\in V}f(t,u)+\sum_{\substack{v
eq s\ v
eq t}}\sum_{u\in V}f(v,u)=$$

$$\sum_{u \in V} f(s,u) + \sum_{u \in V} f(t,u) = \sum_{u \in V} f(s,u) - \sum_{u \in V} f(u,t)$$
 $lacksquare$

Почему симметризация решает проблему

Вернемся к плану:

- 1. Найдем произвольный путь из истока в сток и пустим по нему "ручеек".
- 2. Повторяем 1. пока не останется доступных путей.

Почему симметризация решает проблему

Вернемся к плану:

- 1. Найдем произвольный путь из истока в сток и пустим по нему "ручеек".
- 2. Повторяем 1. пока не останется доступных путей.

Теперь можем пускать потоки и в обратном направлении, то есть исправлять ошибки прошлого.

Почему это работает

Арифметика потоков

Опр. *Остаточной сетью* для сети G=(V,E,c) и потока f называется сеть $G_f=(V,E_f,c_f)$, где $c_f=c-f$.

Арифметика потоков

Лемма 1 (сложение потоков)

Пусть f - поток в G, а h - поток в G_f . Тогда f+h - поток в G, причем |f+h|=|f|+|h|.

Доказательство.

Проверим, что f+h является потоком.

1.
$$orall v, u : f(v,u) + h(v,u) = -f(u,v) - h(u,v) = -(f(u,v) + h(u,v))$$

2. Так как
$$h$$
 - поток в G_f : $orall v, u : h(v,u) \leq c(v,u) - f(v,u) \Rightarrow f+h \leq c$

3.
$$orall v
eq s,t: \sum_{u \in V} (f+h)(v,u) = \sum_{u \in V} f(v,u) + \sum_{u \in V} h(v,u) = 0 + 0 = 0$$

Лемма 2 (разность потоков)

Пусть f_1 и f_2 - потоки в G. Тогда f_2-f_1 - поток в G_{f_1} , причем $|f_2-f_1|=|f_2|-|f_1|.$

Алгоритм Форда-Фалкерсона

Так как потоки суммируются (лемма 1), можно построить следующий алгоритм:

- 0. Инициализируем $f\equiv 0$
- 1. Ищем в G_f путь из s в t (по ребрам с положительной остаточной пропускной способностью) с помощью DFS, пускаем по нему максимально возможный поток Δf .
- 2. Обновляем $f=f+\Delta f$
- 3. Повторяем 1-3 пока в G_f есть путь из s в t.

Кстати, путь найденный на шаге 2 называется дополняющим путем.

Время работы для целочисленных c: $O(E \cdot |f_{max}|)$. Неполиномиальненько

Теорема Форда-Фалкерсона

Teopeмa (L.Ford, D.Fulkerson, 1962).

Поток f в сети G максимален \iff В сети G_f нет дополняющего пути.

Доказательство.

 \Rightarrow Допустим нашли дополняющий путь h:|h|>0 в сети G_f . По лемме о сумме потоков (f+h) - поток в G и |f+h|=|f|+|h|>|f| !!! (f максимален). \Leftarrow Пусть f_{max} некоторый максимальный поток для сети G. По лемме о разности потоков $(f_{max}-f)$ - поток в G_f и $|f_{max}-f|=|f_{max}|-|f|\geq 0$. Но в G_f нет дополняющего пути, поэтому $|f_{max}-f|\leq 0$.

Таким образом $|f_{max}| = |f|$.

Алгоритм Эдмондса-Карпа

Алгоритм Эдмондса-Карпа

- Дашь списать домашку?
- Да, только не списывай точь-в-точь, чтобы не спалили.
- Ok:
 - 0. Инициализируем $f\equiv 0$
 - 1. Ищем в G_f путь из s в t (по ребрам с положительной остаточной пропускной способностью) с помощью BFS, пускаем по нему максимально возможный поток Δf .
 - 2. Обновляем $f=f+\Delta f$
 - 3. Повторяем 1-3 пока в G_f есть путь из s в t.

Работает за $O(VE^2)$. Придется доказывать.

Поиск потока максимальной величины: Алгоритм Эдмондса-Карпа

Лемма.

После каждой итерации алгоритма (шагов 1-2), длины кратчайших путей (в смысле **количества** ребер) из s не убывают.

Доказательство.

Что происходит с остаточной сетью после пропускания по некоторому пути дополняющего потока? 1) Некоторые ребра исчезают; 2) Могут появиться ребра в обратном направлении.

Лемма.

После каждой итерации алгоритма (шагов 1-2), длины кратчайших путей из s не убывают.

Доказательство (продолжение).

Покажем, что ни удаление ребер, ни добавление обратных не может привести к уменьшению кратчайших путей.

- 1. С удалением очевидно.
- 2. Пусть кратчайший путь из s в u проходит по ребру vu. Добавим ему обратное. Покажем, что путь из s в v не стал короче. $ho'(s,v)\stackrel{?}{=}
 ho'(s,u)+1 \geq
 ho(s,u)+1=
 ho(s,v)+1+1$!!!. \blacksquare

Поиск потока максимальной величины: Алгоритм Эдмондса-Карпа

Назовем ребро критическим, если поток его насытил (исчезло из сети).

Teopeмa (J.Edmonds, R.Karp, 1972).

В процессе работы алгоритма каждое ребро может стать критическим не более |V|/2 раз.

Доказательство.

Пусть ребро vu стало критическим в момент, когда расстояние от s до u было $ho(s,u)\stackrel{*}{=}
ho(s,v)+1$. Оно вернется, когда в обратном направлении uv пустим поток, то есть uv будет лежать на кратчайшем пути из s в v: ho'(s,v)= $ho'(s,u)+1\stackrel{\text{лемма}}{\geq}
ho(s,u)+1$.

Teopeмa (J.Edmonds, R.Karp, 1972).

В процессе работы алгоритма каждое ребро может стать критическим не более |V|/2 раза.

Доказательство (продолжение).

Имеем:

1.
$$ho(s, u) =
ho(s, v) + 1$$

2.
$$ho'(s,v) \geq
ho(s,u) + 1$$

Значит, когда ребро vu снова станет критическим расстояние до u будет

 $ho''(s,u) =
ho''(s,v) + 1 \overset{\text{лемма}}{\geq}
ho'(s,v) + 1 \overset{2}{\geq}
ho(s,u) + 2$, то есть между двумя последовательными "критическими" моментами для ребра vu расстояния до u увеличилось не менее чем на 2. Так как расстояние не может превышать |V|-1, ребро vu может стать критическим не более |V|/2 раз.

Алгоритм Эдмондса-Карпа: анализ

- 0. Инициализируем $f\equiv 0$
- 1. Ищем в G_f путь из s в t (по ребрам с положительной остаточной пропускной способностью) с помощью BFS, пускаем по нему максимально возможный поток Δf .
- 2. Обновляем $f=f+\Delta f$
- 3. Повторяем 1-3 пока в G_f есть путь из s в t.

Анализ времени работы. На каждой итерации (пункт 3) какое-то ребро становится критическим. Всего ребер E, каждое будет критическим не более V/2 раз. То есть $E \frac{V}{2}$ итераций. На каждой итерации запускается BFS (O(E)). Итого: $O(VE^2)$.

В чем проблема алгоритма Эдмондса-Карпа?

Слишком много раз вызываем BFS. Но ведь результат одного вызова BFS можно переиспользовать несколько раз!

Построим *слоистую сеть* (граф, где ребра vu удовлетворяют d[u]=d[v]+1)

- 0. Инициализируем $f\equiv 0$
- 1. Строим слоистую сеть по G_f
- 2. Пока возможно, ищем дополняющие пути из s в t в сл-й сети, обновляем f .
- 3. Повторяем 1-2 пока в G_f есть путь из s в t.

Для оценки времени работы, ответьте на следующие вопросы.

- Сколько раз нужно перестраивать слоистую сеть?
- Сколько времени занимает поиск пути в слоистой сети?
- Сколько всего путей можно найти в слоистой сети?

- Сколько раз нужно перестраивать слоистую сеть? < V раз. Так как после каждой итерации расстояние от s до t увеличивается.
- Сколько времени занимает поиск пути в слоистой сети? $\leq V$. Просто переходим от слоя к слою.
- ullet Сколько всего путей можно найти в слоистой сети? $\leq E$. Каждый путь находит хотя бы одно критическое ребро.

Итого: $O(V^2E)$ (+ O(E) на каждой итерации на удаление критических ребер, но это мелочь).

Поиск потока максимальной величины: что дальше?

- ullet Алгоритм Малхотра-Кумар-Махешвари, 1978. $O(V^3)$
- Алгоритм Орлин, 2013 (основан не на теореме Форда-Фалкерсона). O(VE)

