Big-Data-Technologien

Kapitel 10: Eigenschaften verteilter Datenbanksysteme

Hochschule Trier Prof. Dr. Christoph Schmitz

Wiederholung: ACID

- Transaktionen (nicht nur) in relationalen Datenbanken sind:
 - A atomar
 - C konsistenzerhaltend
 - I isoliert
 - D dauerhaft

... theoretisch :-(

Principles of Transaction-Oriented Database Recovery

1983

THEO HAERDER

Fachbereich Informatik, University of Kaiserslautern, West Germany

ANDREAS REUTER1

IBM Research Laboratory, San Jose, California 95193

In this paper, a terminological framework is provided for describing different transactionoriented recovery schemes for database systems in a conceptual rather than an implementation-dependent way. By introducing the terms materialized database, propagation strategy, and checkpoint, we obtain a means for classifying arbitrary implementations from a unified viewpoint. This is complemented by a classification scheme for logging techniques, which are precisely defined by using the other terms. It is shown that these criteria are related to all relevant questions such as speed and scope of recovery and amount of redundant information required. The primary purpose of this paper, however, is to establish an adequate and precise terminology for a topic in which the confusion of concepts and implementational aspects still imposes a lot of problems.

ACID in der Praxis

 ANSI SQL definiert verschiedene Isolationsebenen:

ANSI isolation level	Dirty reads	Non-repeatable reads	Phantom reads
Serializable	No	No	No
Repeatable read	No	No	Yes
Read committed	No	Yes	Yes
Read uncommitted	Yes	Yes	Yes

- Gründe
 - Performance
 - Deadlocks

Anforderungen an verteilte Datenbanksysteme

- Konsistenz (Consistency)
 - jede Leseoperation liefert den aktuellsten Zustand
- Verfügbarkeit (Availability)
 - jede Anfrage wird beantwortet
- Partitionstoleranz (Partition Tolerance)
 - System kann mit verlorenen Nachrichten umgehen

Achtung, zwei verschiedene Konsistenzbegriffe!

 Relationale DB, ACID: Verteilte DB, NoSQL:

fachlich sinnvoller Zustand

Übereinstimmung über Zustand

CAP-Theorem (Brewer, 2000)

Ein verteiltes System kann höchstens zwei der drei Eigenschaften Konsistenz, Verfügbarkeit und Partitionstoleranz garantieren.

CAP-Theorem

- Netzwerkausfälle sind unvermeidbar
 - → Partitionstoleranz muss sein

Verfügbarkeit

- Hinnehmen von "unsauberen"Schreiboperationen
- Reparieren zu einem späteren Zeitpunkt
 - → Konsistenz aufgeben

Konsistenz

 Protokolle zur Absicherung von Schreiboperationen

- Im Zweifelsfall Operation zurückweisen
 - → Verfügbarkeit aufgeben

CAP-Theorem: Einschränkungen

- Eng definierte Begriffe von C, A und P
- Eingeschränktes Datenmodell (ein Register)
- Nur bestimmte Art von Fehlern

• ...

→ die Realität ist viel komplizierter!

Noch ein Buzzword: BASE

- Basically Available, Soft state, Eventually consistent
- Basically Available: System antwortet auf jeden Fall "irgendetwas"
- Soft State: Zustand kann sich spontan ändern,
 z. B. bei Reparaturoperationen
- Eventually Consistent: im Ruhezustand wird das System irgendwann konsistent

ACID

Wünschenswert, aber teuer.

In verteilten Systemen schwer

zu reali

Verhinder Verfüg **CAP-Theorem**

"Du kannst nicht alles haben!"

Netzwerkausfälle nicht zu meiden.

komplizierter.

Bei jedem einzelnen System prüfen, welche Garantien es bietet!

Abgeschwächter Konsistenzbegriff.

Reparaturoperationen.

Verfügbarkeit gerettet!

NoSQL

Ressourcen

Dynamo: Amazon's Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels

Amazon.com

Building reliable distributed systems at a worldwide scale demands trade-offs between consistency and availability.

BY WERNER VOGELS

Eventually Consistent

COMMUNICATIONS OF THE ACM | JANUARY 2009 | VOL. 52 | NO. 1