Gradients, Phase and Magnetisation

FMRIB Graduate Course Mark Chiew mark.chiew@ndcn.ox.ac.uk

Outline

Simple model of magnetisation behaviour

Action of magnetisation in response to gradient magnetic fields

Fourier Transform intuition

Role of gradients in an imaging experiment

Magnetisation

B₀ Magnetic Field Direction

Precessing / Rotating
Magnetisation
within each voxel

Transverse (x-y) Magnetisation

Transverse Magnetisation Component in x-y plane 3D View

$$M = (a, b)$$

Angle / Rotation / Orientation / Direction of Magnetisation

Phase

$$M = a + ib$$

Can be represented using complex numbers

$$\omega = \gamma \times B$$

This equation describes the speed of rotation (precession) for the magnetisation

Frequency

Frequency is the speed of rotation

Gyromagnetic Ratio

Frequency

The gyromagnetic ratio is a physical constant $\gamma_{^{1}H} \approx 2\pi \cdot 42.5 \text{ MHz/T}$

Gyromagnetic Ratio

Frequency

Magnetic Field Strength

Strength of the total magnetic field

Frequency	Main Magnetic Field Strength
~64 MHz	1.5 T
~128 MHz	3.0 T
~300 MHz	7.0 T

Frequency	Main Magnetic Field Strength
Slower	Weaker
Faster	Stronger

Stronger Field Weaker Field Faster Precession Slower Precession

Stronger Field Weaker Field Faster Precession Slower Precession

Sources of Magnetic Fields

B₀ Main Magnetic Field Constant Strength Always On

Gradient Magnetic Fields (G_{x/y/z})
Spatially varying strength
Can turn on and off

Sources of Magnetic Fields

B₀ Main Magnetic Field Constant Strength Always On

Gradient Magnetic Fields (G_{x/y/z})
Spatially varying strength
Can turn on and off

Total Magnetic Field

Magnetic Field with Gradient **OFF**

Magnetisation Precession

Total Magnetic Field Magnetic Field with Gradient ON Stronger Weaker Magnetisation Precession Faster Slower

Stronger

Weaker

left (-x)

right (+x)

Slower

Faster

Gradients cause precession rate to change across space

"Wave-like" spatial patterns of phase emerge at any given time

Universal Ingredients

Waves with different wavelengths

Gradients and the Fourier Transform

Gradients and the Fourier Transform

Gradients and the Fourier Transform

Receive Coils Generate Weights

Summary

Every voxel's magnetisation points in some direction

Precession **rate** of magnetisation is controlled by the magnetic field **strength** it sees

Varying the field across space using a **gradient** generates **wave**-like patterns in the magnetisation

All signals/images can be **represented** by a combination of different **waves** (Fourier Transform)

Gradients and receive coils find the Fourier Transform representation of an object by setting up waves over it and evaluating their weights