TRANSFORMADA DE LAPLACE

Transformada de Laplace. Transformada inversa. Transformación de problemas con condiciones iniciales.

Manuel Carlevaro

Departamento de Ingeniería Mecánica

Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

Transformada de Laplace

Motivación:

Transformada de Laplace

Motivación:

Definición: Transformada de Laplace.

Sea f(t) definida para todo $t \ge 0$. Su transformada de Laplace se define:

$$F(s) = \mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt$$

Transformada de Laplace

Motivación:

Definición: Transformada de Laplace.

Sea f(t) definida para todo $t \ge 0$. Su transformada de Laplace se define:

$$F(s) = \mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt$$

Teorema: Existencia.

Si f(t) está definida y es continua a tramos en cada intervalo finito de \mathbb{R}^+ , y satisface la condición

$$|f(t)| \le Me^{kt}$$

para algunas constantes, M y k, entonces existe $\mathcal{L}(f), \ \forall s > k$.

Caso general:

$$(Tf)(u) = \int_{t_1}^{t_2} f(t) K(t, u) dt = F(u)$$

donde K(t, u) es la función **núcleo** o **kernel**.

Cuando K tiene asociado un $kernel\ inverso\ K^{-1}(u,t)$, se puede definir (más o menos) la transformación inversa:

$$f(t) = \int_{u_1}^{u_2} (Tf)(u) K^{-1}(u, t) dt$$

Si el kernel es **simétrico**: $K(t,u)=K(u,t)\mapsto$ operadores auto-adjuntos.

CASO GENERAL: EJEMPLOS

Transformada	Símbolo	K	(t_1, t_2)	K^{-1}	(u_1, u_2)
Fourier	F	$\frac{e^{-iut}}{\sqrt{2\pi}}$	$(-\infty, \infty)$	$\frac{e^{+iut}}{\sqrt{2\pi}}$	$(-\infty,\infty)$
Fourier seno	${\mathscr F}_s$	$\sqrt{\frac{2}{\pi}}\operatorname{sen}(ut)$	$(0,\infty)$	$\sqrt{\frac{2}{\pi}}\operatorname{sen}(ut)$	$(0,\infty)$
Fourier coseno	\mathscr{F}_c	$\sqrt{\frac{2}{\pi}}\cos(ut)$	$(0,\infty)$	$\sqrt{\frac{2}{\pi}}\cos(ut)$	$(0,\infty)$
Laplace	\mathscr{L}	e^{-ut}	$(0,\infty)$	$\frac{e^{+ut}}{2\pi i}$	$(c-i\infty, c+i\infty)$
Laplace bilateral	${\mathscr B}$	e^{-ut}	$(-\infty,\infty)$	$\frac{e^{+ut}}{2\pi i}$	$(c-i\infty, c+i\infty)$
Hilbert	$\mathcal{H}il$	$\frac{1}{\pi} \frac{1}{u-t}$	$(-\infty,\infty)$	$\frac{1}{\pi} \frac{1}{u-t}$	$(-\infty,\infty)$
Legendre	\mathcal{J}	$P_n(t)$	(-1,1)	(_{alc})	$(0,\infty)$

(*)
$$\mathcal{J}[f(x)] = \tilde{f}(n) = \int_{-1}^{1} P_n(x) f(x) dx$$

 $\mathcal{J}^{-1}[\tilde{f}(n)] = f(t) = \sum_{n=0}^{\infty} \frac{2n+1}{2} \tilde{f}(n) P_n(x)$

EJEMPLOS

$$f(t) = 1, t \ge 0$$

$$\mathcal{L}(f) = \mathcal{L}(1) = \int_0^\infty e^{-st} dt$$

$$= \lim_{T \to \infty} \int_0^\infty 1 \cdot e^{-st} dt$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-st} \right]_0^T$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-sT} + \frac{1}{s} e^0 \right]$$

$$= \frac{1}{s}$$

$$\mathcal{L}(1) = \frac{1}{s}$$

$$f(t) = 1, t \ge 0$$

$$\mathcal{L}(f) = \mathcal{L}(1) = \int_0^\infty e^{-st} dt$$

$$= \lim_{T \to \infty} \int_0^\infty 1 \cdot e^{-st} dt$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-st} \right]_0^T$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-sT} + \frac{1}{s} e^0 \right]$$

$$= \frac{1}{s}$$

$$\mathscr{L}(1) = \frac{1}{s}$$

$$f(t) = e^{at}, t > 0$$

$$\mathcal{L}(e^{at}) = \int_0^\infty e^{-st} e^{at} dt$$

$$= \frac{1}{a-s} e^{-(s-a)t} \Big|_0^\infty$$

$$= \frac{1}{s-a}$$

$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$

cuando
$$s - a > 0$$
.

LECTURAS RECOMENDADAS I

- ▶ E. Kreyszig, H. Kreyszig y E.J. Norminton. *Advanced Engineering Mathematics*. Hoboken, USA: John Wiley & Sons, Inc, 2011. Capítulo 11 (11.7 11.9).
- ▶ Peter V O'Neil. *Matemáticas avanzadas para ingenieria*. 7.ª ed. México, DF: CENGAGE Learning Custom Publishing, 2012. Capítulo 3.
- ▶ K A Stroud y Dexter J Booth. *Advanced Engineering Mathematics*. 6.ª ed. London, England: Bloomsbury Academic, 2020. Capítulos 9.