DPS AND COORDINATED MUTING

Pranav Sakulkar

Contents

- Introduction
- Motivation for CoMP
- Techniques for cell-edge rate improvement
 - Dynamic point selection (DPS)
 - Coordinated muting
- How to optimally combine the two?
- Simulation results
- Conclusion

Introduction

- Every cell serves its users by allocating various resource blocks to them over time
- Schedulers have different objectives
 - Max-rate scheduler
 - Max-min fair scheduler
 - Equal rates for all the users
 - Proportionally fair (PF) scheduler
 - Equi-partition of time and resource blocks

$$\max \sum_{i} \log R_{i}$$

$$\max \sum_{i} R_{i}$$

$$\max \min_{i} R_{i}$$

Motivation

- Cell-edge users have higher path loss than the cellcentre users and hence lower signal strengths
- Proximity to neighboring cells causes higher interference
- Lower SINR values imply lower rates
- Cell-edge users form a bottleneck
- □ To improve the cell-edge performance
 - DPS
 - Coordinated muting

Dynamic Point Selection

- Cell-edge user could be served by a neighboring cell if that channel is better
- Heavily loaded cell can offload some cell-edge users to its neighbor

Coordinated Muting

- Muting the neighboring cell removes the dominant interferer and boosts SINR
- Improvement in rates is higher for edge users
- Lightly loaded can be muted often for fairness across cells
- Muting patterns could be different for different resource blocks (RB)

Comparison of Schedulers

Non-CoMP system

- No coordination among cells
- Independent proportionally fair (PF) schedulers
- Scheduled user is

$$i^* = \operatorname*{arg\,max}_{i \in U} \frac{r_i}{R_i}$$

- Here
 - \square i^* is the scheduled user
 - $lue{}$ U is the set of all users in the cell
 - $lacksquare r_i$ and R_i are the instantaneous and average rates of i h

Coordinated Muting

- Muting decision and the scheduling decision are taken simultaneously
- For scheduling two coordinating cells, the joint PF scheduler-

$$\{i^*, j^*\} = \underset{i \in U_1, j \in U_2}{\operatorname{arg max}} \begin{cases} \frac{r_i}{R_i} + \frac{r_j}{R_j} & \text{Both cells 'on'} \\ 0 + \frac{\tilde{r}_j}{R_j} & \text{Cell-1 'muted'} \\ \frac{\tilde{r}_i}{R_i} + 0 & \text{Cell-2 'muted'} \end{cases}$$

- Here
 - $\hfill\Box \, \tilde{r}_i$ and \tilde{r}_j are the boosted instantaneous rates due to muting of the other cell

DPS

- User association and the scheduling decisions are taken simultaneously at every TTI
- □ The 2-cell joint PF scheduler:

$$\{i^*, j^*\} = \underset{i, j \in (U_1 \cup U_2)}{\operatorname{arg max}} \left\{ \frac{r_{i,1}}{R_i} + \frac{r_{j,2}}{R_j} \right\}$$

 \square When $i^*=j^*=k$, conflict is resolved as follows:

$$\{i^*, j^*\} = \arg\max_{i, j} \left\{ \begin{array}{l} \max_{i \in (U1 \cup U2 \setminus k)} \left\{ \frac{r_i}{R_i} \right\} + \frac{r_k}{R_k} \\ \frac{r_k}{R_k} + \max_{j \in (U1 \cup U2 \setminus k)} \left\{ \frac{r_j}{R_j} \right\} \end{array} \right.$$

DPS with Coordinated Muting

- User association, muting and scheduling decisions taken all at once
- Joint scheduler is:

$$\{i^*, j^*\} = \arg\max_{i, j} \begin{cases} \frac{r_{i_{DPS}^*}}{R_{i_{DPS}^*}} + \frac{r_{j_{DPS}^*}}{R_{j_{DPS}^*}} & \text{Both cells 'on'} \\ 0 + \max_{j \in (U_1 \cup U_2)} \frac{\tilde{r}_j}{R_j} & \text{Cell-1 'muted'} \\ \max_{i \in (U_1 \cup U_2)} \frac{\tilde{r}_i}{R_i} + 0 & \text{Cell-2 'muted'} \end{cases}$$

Simulation Parameters

Parameter	Value
Cells	19
ISD	500 m
Noise PSD	-174 dBm/Hz
Tx power	46 dBm
Channel realizations	1000
User drops	50
Path loss model (dB)	128.1 + 37.6 * log(d (km))

Cluster Design

- □ 19 cell cluster consisting of
 - □ Tier-0: 1 cell
 - □ Tier-I: 6 cells
 - □ Tier-II: 12 cells
- Rates analyzed for tier-0
 and tier-l cells
- Tier-II cells used for modeling interference

Case 1 - Imbalanced Load

Oth cell

10 centre users

4 edge users

Tier-I and tier-II cells

10 centre users

Average Rates

- Assigning the RBs according to max-PF criterion and not the max-rate criterion decreases average rate
- 2.2% decrease from static to DPS with muting

Cell Edge User Rates

Average cell edge rate (b/s/Hz)

- Improved rates for the intended beneficiaries, i.e.
 the cell-edge users
- 43.3% improvement in rate for the cell-edge users

Geometric Mean of the Rates

Geometric mean of user rates (b/s/Hz)

- Maximization of the geometric mean (GM) of the rates is equivalent to maximization of sum-PF metric
- Muting techniques benefit from the rate-boosts in tier-II cells

Empirical CDFs

- Low-rate users are critical
- Any improvement in rate for these users is significant

Empirical CDFs - Zoomed

Case 2 - Balanced Load

All Cells have

10 centre users

4 edge users

Average Rates

- DPS benefits from contributions from tier-II cells
- □ 1.8% decrease from static to DPS with muting

Cell Edge User Rates

Increase in cell-edge rates seen for all the cells

Cell Edge User Rates

□ 27.3 % increase from static to DPS with muting

Geometric Mean of the Rates

Geometric mean of user rates (b/s/Hz)

□ 5.5 % increase from static to DPS with muting

Empirical CDFs

- Improvement in the rates in the critical region
- Gains not pronounced due to edge-users in all cells

Conclusion

- DPS and coordinated muting independently improve the cell-edge user rates substantially
- DPS and muting can be combined to improve the cell-edge rates further
- Gains for joint scheme are still less than the sum of the individual gains

Questions?

Backup Slides

