1 AP & GP

1.1 Series

Let $u_1, u_2, ... u_n$ be a sequence

then $S_n = u_1 + u_2 + u_3 + ... + u_n$

Result $u_1 = S_1$, $u_n = S_n - S_{n-1}$

In summation form: $S_n = \sum_{i=1}^n u_i$

1.2 Arithmetic Series

Arithmetic Progression: a, a + d, a + 2d, ...

Common Difference: $d = u_n - u_{n-1}$

Nth Term: $u_n = a + (n-1)d$

Sum of Sequence: $\frac{n}{2}(u_1 + u_n) = \frac{n}{2}[2a + (n-1)d]$

1.3 Geometric Series

Geometric Progression: $a, ar, ar^2, ar^3, ...$

Common Ratio: $r = \frac{u_2}{u_1} = \frac{u_3}{u_2} = ... = \frac{u_n}{u_n - 1}$

Nth Term: $u_n = ar^{n-1}$

Sum: $S_n = \frac{a}{1-r}(1-r^n), r \neq 1 \text{ when } r = 1, S_n = na$

Sum to infinite: for -1 < r < 1, $S_{\infty} = \frac{a}{1-r}$

1.4 Binomial Theorem

Coeff:
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Theorem: $(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + ... + \binom{n}{n}a^0b^n$

Generalized Coeff: $\binom{n}{r} = \frac{n(n-1)(n-2)...(n-r+1)}{r!}$

E.g.
$$\binom{\frac{1}{2}}{3} = \frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3!}$$

Generalized Theorem: $(1+a)^n = 1 + na + \frac{n(n-1)}{2!}a^2 + ...$ when n < 0 and -1 < a < 1

Telescoping Series: $\sum_{r=m}^{n} (a_r - a_{r\pm 1})$

Differentiation

Function	Differential
$(f(x))^n$	$nf'(x)(f(x))^{n-1}$
$\cos(x)$	$-\sin(x)$
sin(x)	$\cos(x)$
tan(x)	$\sec^2(x)$
sec(x)	$\sec(x)\tan(x)$
$\csc(x)$	$-\csc(x)\cot(x)$
$\cot(x)$	$-\csc^2(x)$
$e^{f(x)}$	$f'(x)e^{f(x)}$
ln(f(x))	$\frac{f'(x)}{f(x)}$
$\sin^{-1}(f(x))$	$\frac{f'(x)}{\sqrt{1-f(x)^2}}$
$\cos^{-1}(f(x))$	$-\frac{f'(x)}{\sqrt{1-f(x)^2}}$
$\tan^{-1}(f(x))$	$\frac{f'(x)}{1+f(x)^2}$

Product Rule: $\frac{d}{dx}(ab) = \frac{da}{dx}(b) + \frac{db}{dx}(a)$

Quotient Rule: $\frac{d}{dx}(\frac{a}{b}) = \frac{\frac{da}{dx}(b) - \frac{db}{dx}(a)}{b^2}$ Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

Implicit: $\frac{d}{dx}(y^n) = ny^{n-1}\frac{dy}{dx}$

 $y = f(x)^{g(x)}$

ln(y) = q(x) ln(f(x))

 $\frac{d}{dx}(a^x) = a^x ln(a) \times \frac{d}{dx}(x)$

 $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) \times \frac{du}{dx}$

Equation of tangent: $y - y_0 = m(x - x_0)$ Equation of normal: $y-y_0=-\frac{1}{m}(x-x_0)$

Tangent //x-axis, $\frac{dy}{dx} = 0$

Tangent // y-axis, $\frac{dy}{dx} = \pm \infty$

If $f \approx a$, $f(x) \approx f'(a)[x-a] + f(a)$ If f'(x) > 0 it is increasing, else decreasing If f''(x) > 0 it is concave up, else concave down

If f'(x) = 0 & f''(x) < 0 it is local maximum If f'(x) = 0 & f''(x) > 0 it is local minimum If f'(x) = 0 & f''(x) = 0 test fails

2.1 Trigonometric Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2\theta - \sin^2\theta$$

$$\cos 2\theta = 2\cos^2\theta - 1$$

$$\cos 2\theta = 1 - 2\sin^2\theta$$

$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

3 Integration

3.1 Standard Integrals

	· ·	
1	$\int (ax+b)^n dx$	$\frac{(ax+b)^{n+1}}{(n+1)a} + C$
2	$\int \frac{1}{ax+b} dx$	$\frac{1}{a} \ln ax + b + C$ $\frac{1}{2} e^{ax+b} + C$
3	$\int e^{ax+b} dx$	$\left(\frac{a}{a}e^{ax+b}+C\right)$
4	$\int \sin(ax+b) dx$	$\int_{-\frac{1}{a}}^{a} \cos(ax+b) + C$
5	$\int \cos(ax+b) dx$	$\frac{1}{a}\sin(ax+b)+C$
6	$\int \tan(ax+b) dx$	$\left \frac{a}{a} \ln \sec(ax+b) + C \right $
7	$\int \sec(ax+b) dx$	$\frac{q}{a} \ln \sec(ax+b) + \tan(ax+b) + C$
8	$\int \csc(ax+b) dx$	$\left -\frac{1}{a} \ln \left \csc(ax+b) + \cot(ax+b) \right + C$
9	$\int \cot(ax+b) dx$	$\left -\frac{a}{a} \ln \left \csc(ax+b) \right + C \right $
10	$\int \sec^2(ax+b) dx$	$\frac{1}{a} \tan(ax+b) + C$
11	$\int \csc^2(ax+b) dx$	$\int \frac{1}{a} \cot(ax+b) + C$
12	$\int \sec(ax+b) \cdot \tan(ax+b) dx$	$\frac{1}{a}\sec(ax+b)+C$
13	$\int \csc(ax+b) \cdot \cot(ax+b) \ dx$	$-\frac{1}{a}\csc(ax+b)+C$
14	$\int \frac{1}{a^2 + (x+b)^2} dx$	$\frac{1}{a} \tan^{-1}(\frac{x+b}{a}) + C$
15	$\int \frac{1}{a^2 + (x+b)^2} dx$ $\int \frac{1}{\sqrt{a^2 - (x+b)^2}} dx$	$\sin^{-1}(\frac{x+b}{a}) + C$
16	$\int \frac{-1}{\sqrt{a^2 - (x+b)^2}} dx$	$\cos^{-1}(\frac{x+b}{a}) + C$
17	$\int \frac{1}{a^2 - (x+b)^2} dx$	$\left \frac{1}{2a} \ln \left \frac{x+b+a}{x+b-a} \right + C \right $
18	$\int \frac{1}{(x+b)^2 - a^2} dx$	$\left \frac{1}{2a} \ln \left \frac{x+b-a}{x+b+a} \right + C \right $
19	$\int \frac{1}{\sqrt{(x+b)^2+a^2}} dx$	$\ln (x+b) + \sqrt{(x+b)^2 + a^2} + C$
20	$\int \frac{1}{\sqrt{(x+b)^2 - a^2}} dx$	$\ln (x+b) + \sqrt{(x+b)^2 - a^2} + C$
21	$\int \frac{1}{\sqrt{(x+b)^2 - a^2}} dx$	$\ln (x+b) + \sqrt{(x+b)^2 - a^2} + C$
21	$\int a^x dx$	$\frac{a^x}{\ln a} + C$

3.2 Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Rule for choosing \boldsymbol{u}

Logarithm	$\ln(ax+b)$
Inverse Trigo	$\sin^{-1}(ax+b)$
Algebraic	x, x^{10}
Trigo	$\sin(ax+b)$
Expo	$e^x, 19^x$

3.3 Area between 2 curves

$$A = \int_a^b g(x) - f(x)dx$$
, when $g(x)$ is above $f(x)$

3.4 Volume of Revolution

 $V=\pi\int_a^b (f(x)-a)^2\ dx$ when a is a line parallel to x or axis

$$V=\pi\int_a^b (f(x))^2\ dx - \pi\int_a^b (g(x))^2\ dx$$
 when $f(x)$ is higher than $g(x)$

4 Vectors

$$\overrightarrow{OA} = a = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}$$

$$\overrightarrow{OB} = b = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = x_2 \mathbf{i} + y_2 \mathbf{j} + z_2 \mathbf{k}$$

Magnitude =
$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix}$$

Unit Vector : $\hat{v} = \frac{1}{|v|}v$

Dot Product: $a \cdot b = x_1 x_2 + y_1 y_2 + z_1 z_2 = |a| |b| \cos \theta$

If $a \perp b$, $a \cdot b = 0$

 $\theta = \cos^{-1}\left(\frac{a \cdot b}{|a||b|}\right)$

Cross Product:
$$a \times b = \begin{pmatrix} y_1 z_2 - y_2 z_1 \\ -(x_1 z_2 - x_2 z_2) \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$$

Area of $\triangle ABC = \frac{1}{2} |\overrightarrow{CA} \times \overrightarrow{CB}|$

 $|a \times b| = |a||b|\sin\theta$

Line: $r = a + \lambda u \Leftrightarrow r = (x_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}) + t(a\mathbf{i} + b\mathbf{j} + c\mathbf{k})$ where a is a point and u is a direction vector

If Point $P \perp$ to line $r = a + s\overrightarrow{u}$, $Q = (a + \lambda \overrightarrow{u})$, $\overrightarrow{PQ} \cdot \overrightarrow{u} = 0$

Shortest distance = |PQ|

Plane: $(\overrightarrow{r}-\overrightarrow{a})\cdot n=0\Leftrightarrow \overrightarrow{r}\cdot \overrightarrow{n}=\overrightarrow{a}\cdot \overrightarrow{n}$, where a and r are 2 vectors on the plane and n is normal to the plane

Cartesian Eqn of plane: $r \cdot n = d \Leftrightarrow ax + by + cz = d$, where n = ai + bj + ck and r = xi + yj + zk

Angle between planes: $\cos \theta = \left| \frac{n_1 \cdot n_2}{|n_1| |n_2|} \right|$ Angle between line and plane: $\sin \theta = \left| \frac{u \cdot n}{|u| |n|} \right|$

Intersection of 2 planes: $r = a + \lambda(n_1 \times n_2)$