Les décideurs politiques devraient-ils se concentrer sur le revenu, la santé ou l'éducation pour augmenter l'espérance de vie ?

Aissaoui Younes

Statistiques et data science

Analyse économétrique

Introduction

Ce projet vise à tester et à déterminer quel est le facteur le plus important à l'heure actuelle entre le revenu, la santé et l'éducation sur lequel les décideurs politiques devraient se concentrer pour augmenter l'espérance de vie à la naissance.

Notre modèle est dérivé de la courbe de Preston et nous utilisons également des données plus récentes et intégrons les recommandations des chercheurs qui ont critiqué la courbe d'origine en abordant également les facteurs de qualité de la santé et de l'éducation dans notre modèle.

Littérature

La courbe de Preston est une théorie proposée par l'économiste Samuel H. Preston qui suggère qu'il existe une relation entre le revenu et l'espérance de vie, les individus des pays riches ayant généralement une espérance de vie plus longue que ceux des pays pauvres. Preston a fondé sa théorie sur des études menées dans les années 1900, 1930 et 1960 et a constaté que la relation était vraie pour chacune de ces décennies. Cependant, il a également noté que la relation pourrait potentiellement changer en raison de nouvelles influences.

Malgré son utilisation généralisée par les décideurs politiques, il existe peu de théories spécifiques sur les déterminants socioéconomiques de l'espérance de vie, et il y a un manque d'accord sur les variables qui devraient être utilisées dans l'estimation empirique. Cela signifie que la courbe de Preston devrait être revisitée et réexaminée afin de prendre des décisions éclairées sur les moyens d'augmenter l'espérance de vie.

Plusieurs travaux de recherche ont tenté d'expliquer la variation de l'espérance de vie en prenant en compte des variables socioéconomiques supplémentaires en plus du revenu par habitant. Par exemple, dans une étude publiée en 1981, Som a analysé les données de 70 pays en développement et 25 pays développés au milieu des années 1970 et a constaté qu'il existait une forte corrélation entre le taux d'alphabétisation et l'espérance de vie à la naissance. Cela suggère que d'autres facteurs, tels que l'éducation et l'alphabétisation, peuvent également jouer un rôle dans la détermination de l'espérance de vie.

Une étude menée par Day, Pearce et Dorling a comparé l'espérance de vie à une variété d'indicateurs du système de santé au sein et entre des groupes de pays. L'étude a révélé qu'il existe des inégalités importantes d'espérance de vie et que les zones où l'espérance de vie est plus élevée ont tendance à avoir une meilleure qualité et disponibilité des soins de santé. Cela suggère que les systèmes de santé jouent un rôle dans la détermination de l'espérance de vie et que l'amélioration de l'accès et de la qualité des soins de santé peut être un moyen d'augmenter l'espérance de vie.

L'une des limites de la représentation par la courbe de Preston de la relation entre le revenu et l'espérance de vie est qu'elle ne démontre pas nécessairement que le revenu cause une bonne santé. Il est possible que la relation opère dans le sens opposé, une meilleure santé conduisant à des revenus plus élevés. Cela pourrait être dû au fait que les personnes en bonne santé sont plus productives, car elles ont plus d'énergie et sont mieux en mesure de se concentrer sur le travail. Cela suggère que la causalité entre le revenu et la santé peut être plus complexe que ce que montre la courbe de Preston, et des recherches supplémentaires sont nécessaires pour bien comprendre la relation entre ces variables.

Hypothèse

Nous suggérons que le revenu par habitant pourrait ne plus être un prédicteur fiable de l'espérance de vie. Cette hypothèse est étayée par le fait que de nombreux pays en développement ont atteint des niveaux d'espérance de vie similaires ou même supérieurs à ceux des pays développés, malgré des revenus par habitant inférieurs. Cela suggère que

d'autres facteurs, tels que la santé et l'éducation, ou d'autres variables non incluses dans notre modèle, peuvent être responsables de cette augmentation.

I. Données et Méthodologie.

Nous utiliserons la régression multiple pour examiner la relation entre le revenu, la santé et l'éducation sur l'espérance de vie afin d'évaluer l'effet du revenu et si les variables ajoutées s'avèrent importantes ou non.

Espérance de vie = f(Revenu, l'éducation, la santé)

J'ai choisi une analyse en coupe instantanée puis que l'espérance de vie en tant montre un degré très élevé de persistance dans le temps. En d'autres termes, il faut beaucoup de temps pour modifier le niveau d'espérance de vie dans un pays. Cependant, cela varie beaucoup d'un pays à l'autre, il y a aussi le problème de la disponibilité des données si on devait choisir des données chronologiques L'analyse en coupe instantanée de l'espérance de vie est donc très instructive.

Choix des variables :

Revenu:

Le produit intérieur brut par habitant est une bonne mesure du revenu des individus dans chaque pays en relation au l'espérance de vie à la naissance.

La santé :

Universal Health Coverage (UHC) ou La couverture maladie universelle consiste à garantir que toutes les personnes puissent accéder aux services de santé dont elles ont besoin - sans faire face à des difficultés financières - est essentielle pour améliorer le bien-être de la population d'un pays, on peut dire que c'est une mesure de l'accessibilité des services de santé et c'est mesuré par **L'indice UHC** est présenté sur une échelle de 0 à 100 qui mesure si un pays a atteint ou non la couverture UHC.

Les dépenses de santé peuvent être un indicateur de la qualité globale des soins de santé dans un pays. Les pays où les dépenses de santé sont plus élevées ont tendance à avoir d'espérance de vie plus élevés.

L'éducation :

Le taux d'alphabétisation : Des études ont montré qu'il existait une forte corrélation entre le taux d'alphabétisation et l'espérance de vie, nous l'incluons donc dans notre régression.

Taux de scolarisation dans l'enseignement supérieur : Des niveaux d'éducation plus élevés ont été associés à une espérance de vie plus longue dans de nombreuses études. L'enseignement supérieur est souvent considéré comme le plus haut niveau d'éducation et peut avoir une incidence particulièrement forte sur l'espérance de vie.

Abréviations des variables qui seront utilisées dans ce projet :

L'espérance de vie = LE

Le produit intérieur brut par habitant = PNBPC

L'indice UHC 'La couverture maladie universelle' = UHC

Les dépenses de santé = HX

Le taux d'alphabétisation = ALP

Taux de scolarisation dans l'enseignement supérieur = ES

Modèle à estimer

$$LE = B_1 + B_2 log(PNBPC) + B_3 UHC + B_4 HX + B_5 ALP + B_6 ES + U$$

Dans notre analyse, le revenu par habitant sera en "log" selon la courbe de Preston. Nous considérerons également l'indice UHC comme une variable catégorielle, car il s'agit d'un indice sans unité. En convertissant l'indice UHC variable catégorique 1 si un pays est UHC atteint 0 s'il n'est pas, nous pourrons interpréter plus facilement les résultats de notre analyse.

La courbe de Preston avec notre base de données.

Statistiques descriptives

vars	n	mean	Sd	median	min	max	unit	source
LE	121	71.54	7.36	73.10	52.91	83.83	années	world bank
UHC	121	63.30	14.82	67.00	28	88.00	sans unité	world bank
нх	121	6.08	2.46	5.73	2.08331	16.77	% De pib	world bank
ALP	121	88.78	14.93	96.45	30.965		% De population	world bank
PNBPC	121	17595.2	17649.3	11820.0	760		PPA (dollar international courant)	world bank
ES	121	41.37	30.94	35.88	1.72362	148.5	pourcentage	world bank

II. Hypothèses de Gauss-Markov

Dans notre modèle, nous pensons avoir satisfait aux cinq hypothèses de Gauss-Markov.

La première hypothèse stipule que le modèle doit fonctionner sous des paramètres linéaires, ce que nous avons réalisé en utilisant la théorie économique et la littérature pour justifier la relation entre nos variables explicatives et le revenu et l'espérance de vie.

La deuxième hypothèse exige que les points de données de notre échantillon soient sélectionnés au hasard, la méthode de collecte des données est conforme à l'hypothèse, tous les pays ont été inclus, à l'exception de ceux qui avaient des valeurs manquantes. Afin de collecter les données, l'année 2019 a été sélectionnée et tous les pays ont été inclus, au mieux de nos capacités. Tous les pays qui n'étaient pas inclus ont été exclus en raison de valeurs manquantes.

La troisième hypothèse, nous n'avons pas inclus de variables parfaitement corrélées en ce qui concerne la multi-colinéarité que nous verrons après l'estimation, mais cela ne semble pas être un problème.

	LE	UHC	HX	ALP	PNBPC	ES
LE	1					
UHC	0.481384	1				
НХ	0.338843	0.389601	1			
ALP	0.712528	0.176366	0.160544	1		
PNBPC	0.722118	0.535501	0.300906	0.461756	1	
ES	0.791074	0.407016	0.383637	0.590834	0.692087	1

Autocorrélation et hétéroscédasticité

Nous les testerons après estimation, il est bon de noter que l'hétéroscédasticité se produit le plus souvent dans les données transversales. Et pour l'autocorrélation, nous pourrions avoir une autocorrélation spatiale

III. Estimation et tests

Nous estimons le modèle de régression multiple

$$LE = 30.41 + 2.96 \log \log (PNBPC) + 3.4 UHC + 0.1 HX ++ 0.11 ALP + 0.05 ES + u$$
 (7.685626) (5.499160) (3.083952) (0.773708) (3.026389) (4.080788) T-STATS ()

Avant d'interpréter quoi que ce soit, nous devons tester si nous violons des hypothèses

L'hétéroscédasticité:

Test visuel

Il semble qu'il y ait une variation qui peut impliquer une variance instable mais nous devons encore la tester formellement

Breusch-Pagan Test

H_{0:} homoscédasticité

H₁ hétéroscédasticité

BP = 11.233, df = 5, p-value = 0.04695

Nous rejetons l'hypothèse nulle, il y a donc hétéroscédasticité, mais comme elle était proche de 5%, nous voulons nous en assurer, donc je ferai également le test de white

White test

H₀. homoscédasticité

H_{1:} heteroscédasticité

Obs*R-squared=36.01278 Prob. Chi-Square (19) =0.0105

White test nous conduit aussi à l'hétéroscédasticité donc c'est confirmé et il faut corriger

L'autocorrélation :

Pour l'autocorrélation puisque nous traitons des données en coupe instantanée sur les pays, nous n'aurons pas l'autocorrélation classique basée sur le temps (serial autocorrélation), nous aurons un autre type qui s'appelle l'autocorrélation spatiale, ce qui signifie que les pays qui sont géographiquement proches les uns des autres leurs termes d'erreur pourraient être corrélés, les tests comme durbin watson, breusch godfrey rendent inutiles, si nous voulons tester l'autocorrélation spatiale, nous pourrions utiliser "Moran's i".

J'ai essayé d'exécuter le test "Moran's i", mais je ne suis pas certain de l'avoir fait correctement. Je n'ai pas eu le temps d'apprendre à corriger l'autocorrélation spatiale, de toute façon Les résultats du test et la méthode que j'ai utilisée ne sont pas destinés à faire partie de ce le projet, mais j'ai inclus une page supplémentaire qui traite le test et la méthode que j'ai utilisée pour l'implémenter ainsi que des résultats, c'est après la conclusion

Multi-colinéarité:

Pour la multi-colinéarité, nous avons vu plus tôt que la matrice de corrélation était bonne, maintenant après l'estimation, nous pouvons voir que toutes les variables sont significatives sauf HX et que les VIF sont tous inférieurs à 5, donc notre modèle ne souffre pas de multi-colinéarité.

Variable	VIF
Log(PNBPC)	3.572
UHC	1.608
HX	2.349
ALP	2.404
ES	3.548

Normalité des résidus

Skewness: -1.009151, Kurtosis: 5.177908

Mes résidus ne sont pas complètement distribués normalement, cela peut être dû à l'éventuelle autocorrélation spatiale dont je n'ai pas tenu compte.

IV. Correction et résultats finale

Modelé finale

Nous avons utilisé la correction du White « White-Hinkley (HC1) heteroskedasticity consistent standard errors and Covariance »

$$LE = 30.41 + 2.96 \log \log (PNBPC) + 3.4 UHC + 0.1 HX ++ 0.11 ALP + 0.05 ES + u$$
 (9.228826) (7.088611) (5.538733) (0.569591) (3.218108) (4.041418)

T-STATS ()

Interprétation des résultats

- Toutes les variables sont statistiquement significatives à un niveau de 1 %, à l'exception de HX, et le modèle explique 80 % de la variance des données (comme indiqué par la valeur R au carré de 0,8).
- En termes pratiques ou économiques, toutes les variables ont les signes attendus.
- le revenu ait la statistique t la plus élevée parmi les variables du modèle, Mais son coefficient de 2,96 est relativement faible. Cela signifie qu'une augmentation de 1 % du revenu est associée à une augmentation de seulement 2,96 % de l'espérance de vie, soit environ 10 jours. Cette petite taille d'effet peut ne pas être significative dans les applications du monde réel, Par exemple, si un décideur souhaite augmenter l'espérance de vie dans un pays d'un an, il devra trouver un moyen d'augmenter le revenu national brut (PNB) par habitant d'environ 34 %. Ce serait un défi de taille, car le taux de croissance du PNB par habitant en Algérie l'année dernière n'était que de 1,7 %. Augmenter le PNB par habitant de 34 % serait une tâche inimaginable.
- Le taux d'alphabétisation et les Taux de scolarisation dans l'enseignement supérieur ont des statistiques t significatives et coefficients plus élevés que le revenu et un effet pratique plus important (40 jours d'augmentation à la suite d'une variation de 1 % de ALP et 18 jours pour ES)
- Selon les résultats, l'UHC a le plus grand impact sur l'espérance de vie. On estime que la réalisation de la UHC augmenterait l'espérance de vie de 3,4 ans en moyenne pour un pays.

- Les dépenses de santé m'ont vraiment surpris d'être statistiquement insignifiantes, surtout lorsque l'UHC est la variable la plus importante dans la régression, je veux dire que l'UHC parle de la santé et de l'accessibilité des services de santé et cela s'est avéré important, peut-être que les dépenses de santé ne sont pas significatives car le choix de la variable pour les représenter en pourcentage du PIB Si la majorité des pays ont des niveaux de dépenses de santé similaires en pourcentage , il peut être difficile de détecter une relation statistiquement significative.

Conclusion

Notre analyse a soutenu notre hypothèse et a constaté que le logarithme du revenu avait un petit coefficient positif et était significatif à tous les niveaux. Cela suggère que le revenu est positivement lié à l'espérance de vie, comme le suggère la courbe de Preston. Mais la relation entre le revenu et l'espérance de vie n'est pas aussi forte que le suppose la courbe de Preston, nous avons constaté que UHC, le taux d'alphabétisation et le taux de scolarisation dans l'enseignement supérieur étaient également des facteurs importants dans la détermination de l'espérance de vie. Ces résultats suggèrent que ces facteurs peuvent être tout aussi importants que le revenu pour influencer l'espérance de vie. Pour ce que les décideurs politiques devraient faire, sur la base de cette analyse empirique, atteindre l'UHC (pour les pays qui ne l'ont pas encore atteint) devrait être une priorité, et ils devraient le faire de toute façon puisque la réalisation de UHC est l'un des objectifs que les nations du monde se sont fixées lorsqu'elles ont adopté les objectifs de développement durable « (SDG) 2030 » en 2015.

Travail Supplémentaire, autocorrélation spatiale et "Moran's I"

Pour tester l'autocorrélation spatiale, j'ai obtenu les données pour la longitude et la latitude moyennes de chaque pays de mon ensemble de données et j'ai généré une matrice de pondérations de distance. Dans la matrice, les entrées pour les paires de points proches sont plus élevées que pour les paires de points éloignés et j'ai traité la latitude et la longitude comme des valeurs sur un plan plutôt que sur une sphère puis j'ai utilisé un package dans R qui n'a besoin de cette matrice de distance et de la valeur des résidus pour calculer "morans i" et voici les résultats que j'ai obtenus

Moran. I

H₀: absence d l'autocorrélation spatiale

H₁ présence d l'autocorrélation spatiale

> Moran.I(data.mco\$resid, matrice.inv)

\$0bxerved[1] **0.0868996**3

\$expected [1] -0.009433962

\$3d [1] **0.01684048**

\$p.value [1] 1.062983e-08

nous rejetons donc l'hypothèse nulle et concluons que les résidus sont spatialement auto corrélés la présence d'autocorrélation spatiale dans mes données peut avoir des implications importantes pour l'analyse et l'interprétation de mes résultats.

Références

Preston, S. H (1975). <u>"The Changing Relation between Mortality and Level of Economic Development"</u> Bloom, D. E; Canning, D. (2007). <u>"Commentary: The Preston Curve 30 years on: still sparking fires"</u>

Country			ш		ALP	DNDDC	- C
Country	LE UHC		HX				10 F63F3
Afghanistan	63.565	37		3.2422	46.59772		10.56252
Algeria	76.474	75		43371	77.71892		52.61994
Angola 	62.448	39		53336	77.555		9.33626
Argentina	77.284	73		10071	99.2547		95.44791
Armenia	75.439	69		33526	99.83121		54.57048
Austria	81.89512	82		43403	98		86.68835
Azerbaijan	73.102	65		03829	99.86496		35.24844
Bangladesh	72.806	51	2.4	83576	84.88566	5930	24.01689
Belarus	74.22683	74	5.	86134	99.87342	19510	93.54328
Benin	60.454	38	3 2.3	88429	55.44	3260	15.96484
Bhutan	71.391	62	3.6	07616	84.125	11180	16.44733
Bosnia and Herzegovina	77.241	65	9.0	49099	98.91	15390	50.78257
Brazil	75.338	75	9.5	91271	96.85	14890	55.1363
Brunei Darussalam	74.748	77	7 2.1	60314	98.68	65730	33.56496
Bulgaria	75.1122	70	7.1	26114	98.24	23720	73.37917
Burkina Faso	60.039	43	5.4	64942	55.76	2080	7.84373
Burundi	62.351	44	1 7.9	90914	83.645	760	5.13304
Cabo Verde	76.004	69	4.9	36217	94.73	6970	24.3977
Cambodia	70.692	61	6.9	89083	89.775	4380	14.89007
Cameroon	61.584	44	3.5	95395	82.235	3830	16.96239
Central African Republic	55.025	32	2 7.7	53009	37.915	960	3.13708
Chad	53.259	28	3 4.3	53632	30.965	1600	3.43384
Chile	80.326	80	9.3	32724	98.07	24260	93.10113
China	77.968	82	2 5.3	50278	98.48	16610	58.4201
Colombia	76.752	78	3 7.7	09436	97.32407	15380	56.43403
Comoros	64.068	44	5.1	70303	71.6	3450	8.99478
Congo, Dem. Rep.	60.276	39	3.5	36261	83.96	1040	8.26458
Congo, Rep.	62.747	40	2.0	83311	81.485	3430	12.66688
Costa Rica	79.427	78	7.2	73932	98.785	21130	57.67482
Cote d'Ivoire	59.319	45	5 3.	29863	86.75994	5200	9.9526
Croatia	78.42439	7 3	6.9	78618	99.605		67.86556
Cyprus	81.397	79	7.0	09032	99.63		88.48533
Dominican Republic	73.577	66		29142	97.055	18070	61.16123
Ecuador	77.297	80	7.8	18247	96.74432	11520	47.94523
Egypt, Arab Rep.	71.358	70	4.7	39974	82.3		38.90495
El Salvador	72.559	76		65784	94.25234		29.92442
Estonia	78.64634	78		30449	99.93		74.23199

Eswatini	60.549	58	6.780691	92.585	7970	7.72675
Gabon	66.603	49	2.768362	87.95	13870	21.06587
Gambia, The	63.755	48	3.821711	65.74	2140	3.03408
Georgia	73.47	65	6.657443	99.63132	14930	66.68922
Ghana	64.74	45	3.418589	86.93	5340	18.68745
Greece	81.63902	78	7.837886	98.54798	30080	148.5309
Guatemala	73.129	57	6.21161	89.58	8870	22.1422
Guinea	59.72	37	3.9839	52.83	2520	11.55931
Guyana	69.124	74	4.930487	93.405	13240	12.1633
Honduras	72.881	63	7.283918	92.51163	5390	26.16422
Hungary	76.31951	73	6.350022	98.9	32630	68.28498
India	70.91	61	3.014147	83.01852	6820	29.44133
Indonesia	70.518	59	2.904936	97.88926	11980	36.44444
Iran, Islamic Rep.	76.103	77	6.710617	93.73	14710	72.96105
Italy	83.49756	83	8.668569	99.63955	44750	66.68297
Jordan	76.044	60	7.582469	98.92	9960	41.82672
Kazakhstan	73.18	76	2.787457	99.85	24030	70.67794
Kenya	62.943	56	4.591827	85.66	4720	11.46471
Korea, Rep.	83.22683	87	8.164166	99.4	43370	104.2781
Kuwait	79.685	70	5.496012	97.88043	55930	61.13387
Kyrgyz Republic	71.6	70	4.494541	99.675	5000	47.48235
Lao PDR	68.138	50	2.598524	90.665	7700	19.02277
Latvia	75.3878	72	6.578142	99.855	31410	94.86453
Lesotho	54.173	48	11.26946	85.18	2990	11.45209
Lithuania	76.28293	70	7.006004	99.89	37200	89.25217
Madagascar	65.882	35	3.687284	78.88	1590	5.52721
Malawi	64.119	48	7.393412	71.775	1560	1.723626
Malaysia	75.76	76	3.825142	95.91073	28090	46.7621
Maldives	80.116	69	8.040011	98.645	19300	34.12194
Mali	59.664	42	3.893898	42.80424	2220	7.06071
Malta	82.85854	81	8.214443	97.195	43780	64.87291
Mauritania	65.687	40	3.303297	71.725	5670	5.87462
Mauritius	74.23585	65	6.199437	95.725	25260	44.39153
Mexico	74.202	74	5.433053	97.34918	19660	42.8307
Moldova	70.935	67	6.377946	99.65	14290	57.97578
Mongolia	71.822	63	3.766078	99.12881	11550	68.75352
Montenegro	76.68293	67	8.329832	99.045	23330	58.18562
Morocco	74.27	73	5.308451	87.145	8440	40.62208
Mozambique	61.166	47	7.833511	67.95	1320	7.31255
Myanmar	66.61	61	4.678564	92.24253	4860	18.81594
, Namibia	63.075	62	8.497005	93.9	10180	24.1016
T-						

NI I	60.550	= ^	4.445454	02.05	4426	47.444
Nepal 	69.558	53	4.445151	83.065	4130	17.11177
Niger 	62.897	37	5.668631	42.25	1320	4.41435
Nigeria 	52.91	44	3.02666	68.52238	5120	12.10082
Norway	82.95854	86	10.52135	99	68860	83.23069
Oman	78.002	69	4.071902	97.13468	32880	45.48008
Pakistan	66.756	45	3.379927	65.35121	5280	12.22064
Panama	77.81	77	7.584058	97.41758	30750	47.79936
Paraguay	73.621	61	7.17281	96.59463	13770	36.67165
Peru	76.156	78	5.215069	96.96715	12790	71.13299
Philippines	71.865	55	4.076766	97.33134	10010	40.41587
Poland	77.90488	74	6.446825	99.85	32320	74.75525
Portugal	81.67561	84	9.53146	98.245	35230	68.51029
Romania	75.60732	71	5.744478	99.2	31610	68.59246
Russian Federation	73.0839	75	5.648491	99.71503	29120	86.40015
Rwanda	66.437	54	6.410667	81.4	2210	7.66732
Samoa	72.157	53	6.363094	99.11174	6350	17.20774
Sao Tome and Principe	68.523	60	5.529762	95.95	4170	18.10054
Saudi Arabia	77.304	73	5.688288	98.54174	47310	70.90088
Senegal	68.526	49	4.132269	66.35	3480	14.03411
Serbia	75.93659	71	8.672065	99.74099	17800	68.14311
Seychelles	74.04634	70	5.190291	97.65	28650	19.72288
Singapore	83.59512	86	4.081529	98.70461	89630	91.08899
South Africa	66.175	67	9.109355	96.71625	14080	23.86656
Spain	83.83171	86	9.132132	99.15501	41790	92.88235
Sri Lanka	76.008	67	4.079797	95.67513	13820	21.61237
Sudan	65.876	44	4.573566	66.84859	4090	17.67452
Tanzania	66.989	46	3.827693	84.95	2720	7.83072
Thailand	78.975	83	3.789121	96.45	18070	52.2557
Timor-Leste	68.268	53	7.158506	77.5	5240	17.75373
Togo	60.901	44	5.726069	77.21426	2170	15.40007
Tonga	70.871	56	4.9815	99.42774	7150	18.40024
Tunisia	75.993	70	6.958459	90.2	11250	35.87718
Turkiye	77.832	79	4.344098	98.32468	26360	115.0421
Uganda	62.991	50	3.825224	84.9	2120	5.22475
Ukraine	71.82732	73	7.098602	99.95	13510	82.67118
United Arab Emirates	79.726	78	4.275049	98.89451	75180	53.71602
United Kingdom	81.20488	88	10.15403	86.3	48760	65.77336
United States	78.7878	83	16.76706	79	66120	88.88941
Uruguay	77.508	79	9.347832	98.8955	23070	65.15686
Uzbekistan	71.344	71	5.617604	99.99994	7750	15.92048
Vietnam	74.093	70	5.249656	97.18966	10150	30.7155

Zambia	62.793	55	5.312203	90.35	3450	4.16887
Zimbabwe	61.292	55	7.703565	90.2	2260	10.00655

Dependent Variable: LE Method: Least Squares Date: 01/06/23 Time: 14:55

Sample: 1 121

Included observations: 121

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(PNBPC) UHC HX ALP ES	30.41297 2.968789 3.406894 0.107090 0.117842 0.051733	3.957123 0.539862 1.104717 0.138411 0.028877 0.017094	7.685626 5.499160 3.083952 0.773708 4.080788 3.026389	0.0000 0.0000 0.0026 0.4407 0.0001 0.0031
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.809123 0.800824 3.285280 1241.202 -312.5383 97.49658 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		71.53670 7.361293 5.265096 5.403730 5.321401 1.896656

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic	2.353709	Prob. F(5,115)	0.0449
Obs*R-squared	11.23302	Prob. Chi-Square(5)	0.0470
Scaled explained SS	21.19583	Prob. Chi-Square(5)	0.0007

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 01/06/23 Time: 14:57

Sample: 1 121

Included observations: 121

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-7.020802	24.67350	-0.284548	0.7765
LOG(PNBPC)	1.720281	3.366155	0.511052	0.6103
UHC	-7.382692	6.888144	-1.071797	0.2861
HX	1.672579	0.863023	1.938047	0.0551
ALP	0.023085	0.180055	0.128211	0.8982
ES	-0.241731	0.106584	-2.267976	0.0252
R-squared	0.092835	Mean depend	lent var	10.25787
Adjusted R-squared	0.053393	S.D. depende	ent var	21.05420
S.E. of regression	20.48442	Akaike info cr	iterion	8.925521
Sum squared resid	48255.30	Schwarz crite	rion	9.064155
Log likelihood	-533.9940	Hannan-Quinn criter.		8.981826
F-statistic	2.353709	Durbin-Watson stat		1.896496
Prob(F-statistic)	0.044887			

Heteroskedasticity Test: White

F-statistic	36.01278	Prob. F(19,101)	0.0050
Obs*R-squared		Prob. Chi-Square(19)	0.0105
Scaled explained SS	67.95329	Prob. Chi-Square(19)	0.0000

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 01/06/23 Time: 14:58

Sample: 1 121

Included observations: 121

Collinear test regressors dropped from specification

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(PNBPC)*2 LOG(PNBPC)*UHC LOG(PNBPC)*HX LOG(PNBPC)*ALP LOG(PNBPC)*ES LOG(PNBPC) UHC*2 UHC*ALP UHC*ALP UHC*ES HX*2 HX*ALP HX*ES HX ALP*2 ALP*ES ALP ES*2	-317.4652 -6.657982 -1.559031 -1.287896 0.280877 0.200724 101.4742 23.93569 2.388927 -0.393061 0.161540 0.934803 0.278190 -0.157066 -16.84099 -0.012942 -0.008850 -1.800230 0.003767	321.3833 4.459633 15.37129 1.942325 0.609479 0.270812 63.38037 223.5637 3.538459 1.961804 0.502210 0.306332 0.083082 0.065515 15.03400 0.015027 0.024231 3.642158 0.003209	-0.987809 -1.492944 -0.101425 -0.663069 0.460848 0.741194 1.601035 0.107064 0.675132 -0.200357 0.321659 3.051597 3.348395 -2.397416 -1.120194 -0.861262 -0.365240 -0.494276 1.173902	0.3256 0.1386 0.9194 0.5088 0.6459 0.4603 0.1125 0.9150 0.5011 0.8416 0.7484 0.0029 0.0011 0.0183 0.2653 0.3911 0.7157 0.6222 0.2432
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	-0.779710 0.297626 0.165497 19.23326 37361.73 -518.5146 2.252531 0.005050	2.654732 -0.293706 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.7696 10.25787 21.05420 8.901067 9.363181 9.088749 1.812575

Dependent Variable: LE Method: Least Squares Date: 01/06/23 Time: 14:59

Sample: 1 121

Included observations: 121

White-Hinkley (HC1) heteroskedasticity consistent standard errors and

covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(PNBPC) UHC HX ALP	30.41297 2.968789 3.406894 0.107090 0.117842	3.295432 0.418811 0.615103 0.188012 0.029159	9.228826 7.088611 5.538733 0.569591 4.041418	0.0000 0.0000 0.0000 0.5701 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.051733 0.809123 0.800824 3.285280 1241.202 -312.5383 97.49658 0.000000 0.000000	0.016076 Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quini Durbin-Watso Wald F-statist	nt var terion ion n criter. n stat	71.53670 7.361293 5.265096 5.403730 5.321401 1.896656 150.5033

Variance Inflation Factors Date: 01/06/23 Time: 15:14

Sample: 1 121

Included observations: 121

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C	10.85987	213.3240	NA
LOG(PNBPC)	0.175403	332.8224	3.572491
UHC	0.378352	2.586651	1.608133
HX	0.035348	33.12714	2.349730
ALP	0.000850	150.3543	2.404186
ES	0.000258	21.99222	3.548426

