LAB 03: POINTER

1 IN-CLASS

Use the Pointer technique to complete the following functions:

- 1. Input a n-element integer array with int *a is the pointer point to the allocated dynamic memory:
 - void InputArray(int* &a, int &n);
- 2. Remove allocated dynamic memory:
 - void DellocateArray(int* &a);
- 3. Output all elements of the array:
 - void PrintArray(int* a, int n);
- 4. Find the smallest value from the array:
 - int FindMin(int* a, int n);
- 5. Find the greatest absolute value from the array:
 - int FindMaxModulus(int* a, int n);
- 6. Check if the array is ascending:
 - bool IsAscending(int* a, int n);
- 7. Find the total value of all elements of the array:
 - int SumOfArray(int* a, int n);
- 8. Count the number of prime numbers in the array:
 - int CountPrime(int* a, int n);
- 9. Create a new dynamic array which is the reverse of the given array:
 - int ReverseArray(int* &a, int* b, int n);

From Ex 10. to Ex 12. are Searching Algorithms. Return the first position found, else, return -1.

- 10. Sequential Search:
 - int LinearSearch(int* a, int n, int key);
- 11. Sequential Search (using flag):
 - int SentinelLinearSearch(int* a, int n, int key);
- 12. Binary Search:
 - int BinarySearch(int* a, int n, int key);

2 HOMEWORK

3 PREPARING YOUR SUBMISSION

Create a new folder and name it with your Student ID, e.g. 19127001. This folder includes

- Code: a sub-folder that contains your source code (*.cpp, *.h, etc.). Do not forget to delete all intermediate files.
- Report (if required): a sub-folder that contains your written report (*.pdf).