Time Series Forecasting

SUBMISSION

Contents

1.	Defi	ne the problem and perform Exploratory Data Analysis	7
1	l.1.	Read the data as an appropriate time series data	7
1	l.2.	Plot the data	8
1	1.3.	Perform EDA	9
1	L.4.	Perform Decomposition	12
2.	Data	a Pre-processing	13
2	2.1.	Missing value treatment	13
2	2.2.	Visualize the processed data	13
2	2.3.	Train-test split	14
3.	Мо	del Building - Original Data (Build forecasting models)	15
3	3.1.	Linear regression	15
3	3.2.	Simple Average	16
3	3.3.	Moving Average	17
3	3.4.	Exponential Models (Single, Double, Triple)	18
3	3.5.	Check the performance of the models built	18
4.	Che	ck for Stationarity	19
4	1.1.	Check for stationarity	19
4	1.2.	Make the data stationary (if needed)	19
5.	Мо	del Building - Stationary Data	20
į	5.1.	Generate ACF & PACF Plot and find the AR, MA values	20
į	5.2 Bu	ild different ARIMA models - Auto ARIMA - Manual ARIMA	21
į	5.2.	Build different SARIMA models - Auto SARIMA - Manual SARIMA	24
į	5.3.	Check the performance of the models built	25
6.	Con	pare the performance of the models	25

	6.1.	Compare the performance of all the models built	25
	6.2.	Choose the best model with proper rationale	.26
	6.3.	Rebuild the best model using the entire data	26
	0.0.		
	6.4.	Make a forecast for the next 12 months	.26
7.	Acti	onable Insights & Recommendations	.26
	7.1.	Conclude with the key takeaways (actionable insights and recommendations) for the	<u>)</u>
	busine	SS	26

Figure 1(Rose Wine Time series Data)	7
Figure 1(Rose Wine Time series Data)	7
Figure 2(Sparkling Wine Time series Data)	7
Figure 2(Sparkling Wine Time series Data)	7
Figure 3(Rose-Wine Sales Plot)	8
Figure 3(Rose-Wine Sales Plot)	Error! Bookmark not defined.
Figure 4(Sparkling-wine Sales Plot)	8
Figure 4(Sparkling-wine Sales Plot)	Error! Bookmark not defined.
Figure 5(Data Structure for the given rose wine dataset)	9
Figure 5(Data Structure for the given rose wine dataset)	Error! Bookmark not defined.
Figure 6(Dat Structure for the given sparkling wine dataset)	9
Figure 6(Dat Structure for the given sparkling wine dataset)	Error! Bookmark not defined.
Figure 7(Month wise Rose wine Sales Plot for every year)	9
Figure 7(Month wise Rose wine Sales Plot for every year)	9
Figure 8(Month wise Sparkling wine Sales Plot for every year)	10
Figure 8(Month wise Sparkling wine Sales Plot for every year)	10
Figure 9(Rose wine Sales plot Year wise)	10
Figure 9(Rose wine Sales plot Year wise)	10
Figure 10(Month wise Sparkling wine Sales plot for every year)	10
Figure 10(Month wise Sparkling wine Sales plot for every year)	10
Figure 11(Decomposed Rise- wine Time series)	12
Figure 11(Decomposed Rise- wine Time series)	12
Figure 12(Decomposed Sparkling-wine Time series)	12
Figure 12(Decomposed Sparkling-wine Time series)	12
Figure 13(Rose Wine Sales Processed)	13

Figure 13(Rose Wine Sales Processed)	13
Figure 14(Sparkling Wine Sales (Processed)	13
Figure 14(Sparkling Wine Sales (Processed)	13
Figure 15(Train_Test_Split for both wines)	14
Figure 15(Train_Test_Split for both wines) En	ror! Bookmark not defined.
Figure 16(Linear Regression for Rose wine)	15
Figure 16(Linear Regression for Rose wine)	15
Figure 17(Linear Regression Model for sparkling wine)	15
Figure 17(Linear Regression Model for sparkling wine)	15
Figure 18(SA for Rose Wine)	16
Figure 18(SA for Rose Wine)	16
Figure 19(SA for Sparkling wine)	16
Figure 19(SA for Sparkling wine)	16
Figure 20(Moving Average for Rose Wine)	17
Figure 20(Moving Average for Rose Wine)	17
Figure 21(Moving Average for Sparkling Wine)	17
Figure 21(Moving Average for Sparkling Wine)	17
Figure 22(Exponential Models for Rose wine)	18
Figure 22(Exponential Models for Rose wine)	18
Figure 23(Exponential Models for Sparkling Wine)	18
Figure 23(Exponential Models for Sparkling Wine)	18
Figure 24(ACF and PACF Plots for Rose Wine)	20
Figure 24(ACF and PACF Plots for Rose Wine)	20
Figure 25(ACF and PACF Plot for Sparkling Wine)	20
Figure 25(ACF and PACF Plot for Sparkling Wine)	20

Figure 26(Auto ARIMA for Rose Wine)	21
Figure 26(Auto ARIMA for Rose Wine)	21
Figure 27(Manual ARIMA for Rose Wine)	22
Figure 27(Manual ARIMA for Rose Wine)	22
Figure 28(AUTO ARIMA for sparkling Wine)	22
Figure 28(AUTO ARIMA for sparkling Wine)	22
Figure 29(Manual ARIMA for Sparkling wine)	23
Figure 29(Manual ARIMA for Sparkling wine)	23
Figure 30(Auto SARIMA for Rose Wine)	24
Figure 30(Auto SARIMA for Rose Wine)	24
Figure 31(AUTO SARIMA for sparkling wine)	24
Figure 31(AUTO SARIMA for sparkling wine)	24
Figure 32(Performance of various models build for Sparkling wine dataset)	25

1. Define the problem and perform Exploratory Data Analysis

Context

As an analyst at ABC Estate Wines, we are presented with historical data encompassing the sales of different types of wines throughout the 20th century. These datasets originate from the same company but represent sales figures for distinct wine varieties. Our objective is to delve into the data, analyze trends, patterns, and factors influencing wine sales over the course of the century. By leveraging data analytics and forecasting techniques, we aim to gain actionable insights that can inform strategic decision-making and optimize sales strategies for the future.

Objective

The primary objective of this project is to analyze and forecast wine sales trends for the 20th century based on historical data provided by ABC Estate Wines. We aim to equip ABC Estate Wines with the necessary insights and foresight to enhance sales performance, capitalize on emerging market opportunities, and maintain a competitive edge in the wine industry.

1.1. Read the data as an appropriate time series data

	Month	Year	Rose_wine-Sales
1980-01-01	Jan	1980	112.0
1980-02-01	Feb	1980	118.0
1980-03-01	Mar	1980	129.0
1980-04-01	Apr	1980	99.0
1980-05-01	May	1980	116.0

Figure 1(Rose Wine Time series Data)

	Month	Year	Sparkling_wine-Sales
1980-01-01	Jan	1980	1686
1980-02-01	Feb	1980	1591
1980-03-01	Mar	1980	2304
1980-04-01	Apr	1980	1712
1980-05-01	May	1980	1471

Figure 3(Sparkling Wine Time series Data)

1.2. Plot the data

Graph Description:

This plot shows downward Trend in sales in the years . Also it has some seasonality year wise.

Graph Description:

This plot has a trend upward from 1980 to 1988 and then a downward trend from 1988 to 1966.

This also has some peaks which indicates the presence of seasonality in it.

1.3. Perform FDA

```
DatetimeIndex: 187 entries, 1980-01-01 to 1995-07-01
Freq: MS
Data columns (total 3 columns):
                   Non-Null Count Dtype
    Column
                   -----
    -----
   Month
                  187 non-null object
    Year
                   187 non-null
                                 int32
 1
    Rose wine-Sales 185 non-null float64
dtypes: float64(1), int32(1), object(1)
memory usage: 5.1+ KB
```

Figure 7(Data Structure for the given rose wine dataset)

We see that this dataset has 2 missing values in it

```
DatetimeIndex: 187 entries, 1980-01-01 to 1995-07-01
Freq: MS
Data columns (total 3 columns):
 # Column
                          Non-Null Count Dtype
                                         object
 0
   Month
                          187 non-null
 1
    Year
                          187 non-null
                                          int32
    Sparkling_wine-Sales 187 non-null
                                         int64
dtypes: int32(1), int64(1), object(1)
memory usage: 5.1+ KB
```

Figure 8(Dat Structure for the given sparkling wine dataset)

We see that there are no missing values in this dataset.

Figure 11(Rose wine Sales plot Year wise)

Figure 15(Month wise Sparkling wine Sales plot for every year)

Insights from the EDA:

This is a data for 16 years from 1980 to 1995. So we observe that every year in the month of July there is a sudden rise of rose wine sales

1.4. Perform Decomposition

Figure 19(Decomposed Sparkling-wine Time series)

1988

1986

1984

1982

0 | 1980

Figure 20(Decomposed Sparkling-wine Time series)

As per observation the rose wine Sales data is showing downward trend so the sales have fallen gradually with years. Seasonality is multiplicative and residual has no pattern showing which

1990

1994

means they do not affect the time series. Now let's check Decomposed component of Sparklingwine Sales Data

As per observation we can see that the sparkling wine data increasing trend till 1988 and then the rend decreases. After that. Seasonality is yearly and additive. The residual has no particular pattern

2. Data Pre-processing

2.1. Missing value treatment

Rose data has 2 missing values which are filled and treated with forward fill technique and Sparkling wine dataset has no missing values, so missing values not needed to be treated.

2.2. Visualize the processed data

2.3. Train-test split

Training Data					
	Rose_wine-Sales				
1980-01-01	112.0				
1980-02-01	118.0	+1			
1980-03-01	129.0				
1980-04-01	99.0				
1980-05-01	116.0				
1992-08-01	52.0				
1992-09-01	46.0				
1992-10-01	51.0				
1992-11-01	58.0				
1992-12-01	91.0				
156 rows × 1	columns				

Test Data		
	Rose_wine-Sales	11.
1993-01-01	33.0	+1
1993-02-01	40.0	
1993-03-01	46.0	
1993-04-01	45.0	
1993-05-01	41.0	
1993-06-01	55.0	
1993-07-01	57.0	
1993-08-01	54.0	
1993-09-01	46.0	
1993-10-01	52.0	
1993-11-01	48.0	
1993-12-01	77.0	
1994-01-01	30.0	
1994-02-01	35.0	
1994-03-01	42.0	

Training Data		
Sp	oarkling_wine-Sales	H
1980-01-01	1686	11.
1980-02-01	1591	+0
1980-03-01	2304	
1980-04-01	1712	
1980-05-01	1471	
1992-08-01	1773	
1992-09-01	2377	
1992-10-01	3088	
1992-11-01	4096	
1992-12-01	6119	
156 rows × 1 colu	mns	

Test Data	Sparkling_wine-Sales	11.
1993-01-01	1494	+1
1993-02-01	1564	
1993-03-01	1898	
1993-04-01	2121	
1993-05-01	1831	
1993-06-01	1515	
1993-07-01	2048	
1993-08-01	2795	
1993-09-01	1749	
1993-10-01	3339	
1993-11-01	4227	
1993-12-01	6410	
1994-01-01	1197	
1994-02-01	1968	
1994-03-01	1720	
1994-04-01	1725	

Figure 25(Train_Test_Split for both wines)

3. Model Building- Original Data (Build forecasting models)

Figure 26(Linear Regression for Rose wine)

Figure 28(Linear Regression Model for sparkling wine)

3.1. Linear regression

Figure 30(SA for Rose Wine)

3.2. Simple Average

Figure 32(SA for Sparkling wine)

Figure 33(SA for Sparkling wine)

3.3. Moving Average

Figure 34(Moving Average for Rose Wine)

Figure 36(Moving Average for Sparkling Wine)

Figure 37(Moving Average for Sparkling Wine)

3.4. Exponential Models (Single, Double, Triple)

	Test RMSE
Alpha=0.99,SES	1294.706955
Alpha=1,Beta=0.0189:DES	4352.107605
Alpha=0.25,Beta=0.0,Gamma=0.74:TES	328.431198
Alpha=0.74,Beta=2.73e-06,Gamma=5.2e-07,Gamma=0:TES	322.969287

Figure 40(Exponential Models for Sparkling Wine)

Figure 41(Exponential Models for Sparkling Wine)

3.5. Check the performance of the models built

Performance of Exponential models for Rose Wine:

- **TES** with parameters **Alpha=0.74**, **Beta=2.73e-06**, **Gamma=5.2e-07**, **Gamma=0** has the lowest RMSE (9.95), suggesting it is the best-performing model.
- **DES** with **Alpha=1**, **Beta=0.0189** has an RMSE of 13.55, which is better than SES but not as good as the best TES model.
- TES with Alpha=0.25, Beta=0.0, Gamma=0.74 has an RMSE of 15.49, which is better than SES but not as good as the best TES model.
- **SES** with **Alpha=0.99** has the highest RMSE (19.84), indicating it performs the worst among the listed models.

In conclusion, the TES model with parameters Alpha=0.74, Beta=2.73e-06, Gamma=5.2e-07, Gamma=0 is the most accurate for the given dataset.

Performance of Exponential Models for Sparkling wine:

- TES with parameters Alpha=0.74, Beta=2.73e-06, Gamma=5.2e-07, Gamma=0 has the lowest RMSE (322.97), suggesting it is the best-performing model among the ones listed.
- SES with Alpha=0.99 also performs relatively well with an RMSE of 1294.71.

	Test RMSE
Alpha=0.99,SES	19.841992
Alpha=1,Beta=0.0189:DES	13.553460
Alpha=0.25,Beta=0.0,Gamma=0.74:TES	15.490694
Alpha=0.74,Beta=2.73e-06,Gamma=5.2e-07,Gamma=0:TES	9.945153

Figure 38(Exponential Models for Rose wine)

• **DES** appears to have the highest RMSE, indicating it might not be as suitable for this dataset.

The model with the lowest RMSE is generally considered the best in terms of accuracy for this specific test data.

4. Check for Stationarity 4.1. Check for stationarity

Rose Wine data: The data is not stationary as the p-value for the ADF test is greater than 0.05

Sparkling wine: The data is not stationary as the p-value for the ADF test is greater than 0.05

4.2. Make the data stationary (if needed)

Rose Wine data is made stationary with differencing of 7

Sparkling Wine data is made stationary using differencing 1

5. Model Building-Stationary Data

5.1. Generate ACF & PACF Plot and find the AR, MA values.

Insights:

For Rose wine:

AutoCorrelation Function (ACF): MA Process: For a Moving Average (MA) process of order q q, the ACF will show significant correlations up to lag q q and then cut off (drop to near zero) for higher lags. Identification: The ACF plot helps in identifying the order of the MA component by showing the number of significant lags.

Here the value of q is 2

Partial Auto-Correlation Function (PACF): AR Process: For an AutoRegressive (AR) process of order p p, the PACF will show significant correlations up to lag p p and then cut off for higher lags. Identification: The PACF plot helps in identifying the order of the AR component by showing the number of significant lags.

here the value of p is 3 and d =1

For Sparkling wine: From the above observation value of AR P=3 and value of MA q=2 and d=1

5.2 Build different ARIMA models- Auto ARIMA- Manual ARIMA

	: ARIMA(3,0,:	, , , , , ,]				
			IMAX Resul	lts			
Dep. Varia	ble:		y No.	Observations	:	175	
Model:	SA	RIMAX(3, 0,	1) Log	Likelihood		-817.221	
Date:	Sa	t, 17 Aug 2	024 AIC			1644.441	
Time:		10:51	:20 BIC			1660.265	
Sample:		01-01-1	981 HQIO			1650.860	
		- 07-01-1	995				
Covariance	Type:		opg				
========							
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	1.1875	0.060	19.780	0.000	1.070	1.305	
ar.L2	-0.3222	0.105	-3.076	0.002	-0.527	-0.117	
ar.L3	0.1343	0.082	1.646	0.100	-0.026	0.294	
ma.L1	-0.8910	0.054	-16.483	0.000	-0.997	-0.785	
sigma2	650.4739	59.891	10.861	0.000	533.091	767.857	
Ljung-Box Prob(Q): Heteroskeda	(L1) (Q):			Jarque-Bera Prob(JB): Skew:	(JB):		7.11 0.00 0.62
Prob(H) (t	wo-sided): =======			Kurtosis:			4.88

Figure 46(Auto ARIMA for Rose Wine)

Best model: ARIMA(0,0,1)(0,0,0)[0] intercept Total fit time: 5.153 seconds SARIMAX Results Dep. Variable: No. Observations: V SARIMAX(0, 0, 1) Log Likelihood Sat, 17 Aug 2024 AIC -1591.204 Model: Date: 3188.407 Time: 13:09:25 BIC 3198.100 Sample: 01-01-1980 HQIC 3192.335 - 07-01-1995 Covariance Type: opg ______ coef std err z P>|z| [0.025 ______ intercept 2314.3727 249.342 9.282 0.000 1825.671 2803.075 ma.L1 0.3739 0.095 3.950 0.000 0.188 0.559 sigma2 1.479e+06 1.5e+05 9.837 0.000 1.18e+06 1.77e+06 ______ Ljung-Box (L1) (Q): 0.18 Jarque-Bera (JB): 57.83 0.67 Prob(JB): 0.00 Prob(Q): Heteroskedasticity (H): 1.84 Skew:
Prob(H) (two-sided): 0.02 Kurtosis: 1.10 4.62 ______

Figure 50(AUTO ARIMA for sparkling Wine)

		SAR	MAX Resul	ts		
Dep. Variab	:====== :le:	First Order D	iff No	Observation	=======: c ·	175
Model:	ie.	ARIMA(2, 1,			٥.	-816.804
Date:		Sat, 17 Aug 2		LIKEIIIIOOU		1645.608
Time:		10:53				1664.562
Sample:		01-01-1		•		1653.297
	_	- 07-01-1				
Covariance	Type:		opg			
========						
=======						
	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	1.1046	0.073	15.071	0.000	0.960	1.248
ar.L2	-0.3432	0.065	-5.246	0.000	-0.471	-0.215
ma.L1	-2.9529	0.981	-3.009	0.003	-4.876	-1.030
ma.L2	2.9509	1.961	1.505	0.132	-0.893	6.794
ma.L3	-0.9976	0.994	-1.003	0.316	-2.946	0.951
sigma2	637.7621	612.261	1.042	0.298	-562.248	1837.773
========						

Figure 48(Manual ARIMA for Rose Wine)

Figure 49(Manual ARIMA for Rose Wine)

		SA	ARIMAX Resul	ts		
Dep. Variab	le: Spar	rkling_wine	-Sales No.	Observatio	ns:	18
Model:		ARIMA(3,	0, 3) Log	Likelihood		-1571.74
Date:		Sat, 17 Aug	g 2024 AIC			3159.49
Time:		13	:11:10 BIC			3185.30
Sample:		02-01	l-1980 HQI	С		3169.95
-		- 07-01	1-1995			
Covariance	Type:		opg			
	========					
	coef	std err	Z	P> z	[0.025	0.975]
const	1.9284	4.499	0.429	0.668	-6.890	10.747
ar.L1	0.4025	0.109	3.681	0.000	0.188	0.617
ar.L2	-0.9930	0.020	-49.506	0.000	-1.032	-0.954
			-49.506 4.067		-1.032 0.211	
ar.L3	0.4072	0.100	4.067	0.000		0.603
ar.L3 ma.L1	0.4072	0.100 0.263	4.067	0.000	0.211 -1.472	0.603
ar.L3 ma.L1 ma.L2	0.4072 -0.9560	0.100 0.263 0.211	4.067 -3.632	0.000 0.000 0.000	0.211 -1.472	0.603 -0.440 1.360

Figure 52(Manual ARIMA for Sparkling wine)

Figure 53(Manual ARIMA for Sparkling wine)

5.2. Build different SARIMA models- Auto SARIMA- Manual SARIMA

```
Best model: ARIMA(0,0,1)(0,1,1)[12] intercept
Total fit time: 37.229 seconds
                           SARIMAX Results
______
Dep. Variable:
                                  y No. Observations:
             SARIMAX(0, 0, 1)x(0, 1, 1, 12) Log Likelihood
Model:
                                                           -1284.819
                                                           2577.638
Date:
                       Sat, 17 Aug 2024 AIC
                                                            2590.297
                            16:19:27 BIC
01-01-1980 HQIC
Time:
Sample:
                                                             2582.773
                           - 07-01-1995
Covariance Type:
                               opg
______
          coef std err z P>|z| [0.025 0.975]
intercept 23.0819 16.754 1.378 0.168 -9.755 55.919 ma.L1 0.1302 0.070 1.855 0.064 -0.007 0.268 ma.S.L12 -0.5468 0.052 -10.520 0.000 -0.649 -0.445 sigma2 1.374e+05 1.04e+04 13.210 0.000 1.17e+05 1.58e+05
______
Ljung-Box (L1) (Q):
                           0.00 Jarque-Bera (JB):
                                                         77.19
Prob(Q):
                           1.00 Prob(JB):
                                                          0.00
Heteroskedasticity (H): 1.23 Skew: Prob(H) (two-sided): 0.43 Kurto
                                                          0.83
                                 Kurtosis:
                                                           5.80
______
```

Figure 56(AUTO SARIMA for sparkling wine)

Figure 57(AUTO SARIMA for sparkling wine)

Dep. Variab	le:			y No.	Observations:		175
Model:	SARI	MAX(3, 1, 3	l)x(1, 0, 1	, 12) Log	Likelihood		-741.480
Date:			Sat, 17 Aug	_			1496.960
Time:			10:	55:09 BIC			1519.073
Sample:			01-01	-1981 HQIC			1505.931
			- 07-01	-1995			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
 ar.L1	0.2006	0.073	2.761	0.006	0.058	0.343	
ar.L2	-0.1438		-1.900		-0.292		
ar.L3	-0.1407		-1.532		-0.321	0.039	
ma.L1	-0.8582	0.040	-21.255	0.000	-0.937	-0.779	
ar.S.L12	0.9696	0.014	67.930	0.000	0.942	0.998	
ma.S.L12	-0.6455	0.076	-8.475	0.000	-0.795	-0.496	
sigma2	265.2772	24.653	10.761	0.000	216.959	313.595	
 Ljung-Box (L1) (Q):	=======	0.00	Jarque-Bera	(JB):	26.	== 44
Prob(Q):			1.00	Prob(JB):		0.	99
Heteroskeda	sticity (H):		0.19	Skew:		0.	03
Prob(H) (tw	o-sided):		0.00	Kurtosis:		4.	91

Figure 54(Auto SARIMA for Rose Wine)

5.3. Check the performance of the models built

Performance of Sparkling Wine Models:

	Test RMSE	
	TEST NISE	
RegressionOnTime	1342.992772	
SimpleAverageModel	1258.178011	
2pointTrailingMovingAverage	769.337025	
4pointTrailingMovingAverage	1122.415154	
6pointTrailingMovingAverage	1298.119071	
9pointTrailingMovingAverage	1451.127211	
Alpha=1,Beta=0.0189:DES	4352.107605	
Alpha=0.25,Beta=0.0,Gamma=0.74:TES	328.431198	
Alpha=0.74,Beta=2.73e-06,Gamma=5.2e-07,Gamma=0:TES	322.969287	
Best Auto ARIMA Model : ARIMA(3,0,0)	1832.865189	
Best ARIMA Manual Model : ARIMA(3,0,2)	2265.774805	
Best Auto SARIMA Model : SARIMAX(0, 0, 1)x(0, 1, 1, 12)	2628.991902	

Figure 58(Performance of various models build for Sparkling wine dataset)

Performance of Rose Wine Models:

6. Compare the performance of the models 6.1. Compare the performance of all the models built

For Rose Wine

For sparkling Wine

The Auto SARIMA model (SARIMAX(0, 0, 1)x(0, 1, 1, 12)) has a lower RMSE of 2628.99, compared to the manual SARIMA model (SARIMAX(2, 0, 1)x(2, 1, 1, 12)) with an RMSE of 2645.55. This indicates that the Auto SARIMA model offers slightly better predictive accuracy. Therefore, the Auto SARIMA model is the better choice based on RMSE.

6.2. Choose the best model with proper rationale

For Rose Wine : Therefore, the Manual SARIMA model is the better choice based on RMSE

For sparkling wine: Therefore, the Auto SARIMA model is the better choice based on RMSE

6.3. Rebuild the best model using the entire data

Built in the IPYNB file.

- 6.4. Make a forecast for the next 12 months
- 7. Actionable Insights & Recommendations
 - 7.1. Conclude with the key takeaways (actionable insights and recommendations) for the business