

Separatoren in planaren Graphen

Tamara Mchedlidze

SOMMERSEMESTER 2015

Dorothea Wagner - Thomas Bläsius

Separator $S \subset V$ **von** G = (V, E)

Separator $S \subset V$ **von** G = (V, E)

Separator $S \subset V$ **von** G = (V, E)

 V_1

 V_2

Separator $S \subset V$ **von** G = (V, E)

Warum Separatoren?

Separator $S \subset V$ **von** G = (V, E)

Warum Separatoren?

- Divide-and-Conquer Algorithmen
- Approximation in polynomieller Zeit für NP-schwere Probleme
- Datenkompressions-Algorithmen
- Graphlayout-Algorithmen . . .

Separator $S \subset V$ **von** G = (V, E)

Warum Separatoren?

- Divide-and-Conquer Algorithmen
- Approximation in polynomieller Zeit für NP-schwere Probleme
- Datenkompressions-Algorithmen
- Graphlayout-Algorithmen . . .

Separator $S \subset V$ **von** G = (V, E)

Warum Separatoren?

- Divide-and-Conquer Algorithmen
- Approximation in polynomieller Zeit für NP-schwere Probleme
- Datenkompressions-Algorithmen
- Graphlayout-Algorithmen . . .

Welcher Separator?

"Klein"

Separator $S \subset V$ **von** G = (V, E)

Warum Separatoren?

- Divide-and-Conquer Algorithmen
- Approximation in polynomieller Zeit für NP-schwere Probleme
- Datenkompressions-Algorithmen
- Graphlayout-Algorithmen . . .

Welcher Separator?

- "Klein"
- Etwa gleich große Teilgraphen

Separator $S \subset V$ **von** G = (V, E)

Warum Separatoren?

- Divide-and-Conquer Algorithmen
- Approximation in polynomieller Zeit für NP-schwere Probleme
- Datenkompressions-Algorithmen
- Graphlayout-Algorithmen . . .

Welcher Separator?

- "Klein"
- Etwa gleich große Teilgraphen

Minimum-Balanced-Separator-Problem

Gegeben sei ein Graph G=(V,E). Finde eine Partition von V in drei Mengen V_1 , V_2 und S, wobei der Separator S minimale Kardinalität hat und V_1 von V_2 trennt mit $|V_1|, |V_2| \leq \alpha \cdot |V|$ und $\frac{1}{2} \leq \alpha < 1$ konstant.

Minimum-Balanced-Separator-Problem

Gegeben sei ein Graph G = (V, E). Finde eine Partition von V in drei Mengen V_1 , V_2 und S, wobei der Separator S minimale Kardinalität hat und V_1 von V_2 trennt mit $|V_1|, |V_2| \leq \alpha \cdot |V|$ und $\frac{1}{2} \leq \alpha < 1$ konstant.

Minimum-Balanced-Separator-Problem

Gegeben sei ein Graph G = (V, E). Finde eine Partition von V in drei Mengen V_1 , V_2 und S, wobei der Separator S minimale Kardinalität hat und V_1 von V_2 trennt mit $|V_1|, |V_2| \leq \alpha \cdot |V|$ und $\frac{1}{2} \leq \alpha < 1$ konstant.

Das Problem is NP-schwer

Minimum-Balanced-Separator-Problem

Gegeben sei ein Graph G = (V, E). Finde eine Partition von V in drei Mengen V_1 , V_2 und S, wobei der Separator S minimale Kardinalität hat und V_1 von V_2 trennt mit $|V_1|, |V_2| \leq \alpha \cdot |V|$ und $\frac{1}{2} \leq \alpha < 1$ konstant.

- Das Problem is NP-schwer
- Ist $\alpha = \frac{1}{2}$ MIMINUM-BISECTION-PROBLEM \mathcal{NP} schwer auch für planare Graphen

3

Minimum-Balanced-Separator-Problem

Gegeben sei ein Graph G = (V, E). Finde eine Partition von V in drei Mengen V_1 , V_2 und S, wobei der Separator S minimale Kardinalität hat und V_1 von V_2 trennt mit $|V_1|, |V_2| \leq \alpha \cdot |V|$ und $\frac{1}{2} \leq \alpha < 1$ konstant.

- Das Problem is NP-schwer
- Ist $\alpha = \frac{1}{2}$ MIMINUM-BISECTION-PROBLEM \mathcal{NP} schwer auch für planare Graphen
- In linearer Laufzeit ein Separator mit Garantie

Minimum-Balanced-Separator-Problem

Gegeben sei ein Graph G=(V,E). Finde eine Partition von V in drei Mengen V_1 , V_2 und S, wobei der Separator S minimale Kardinalität hat und V_1 von V_2 trennt mit $|V_1|, |V_2| \leq \alpha \cdot |V|$ und $\frac{1}{2} \leq \alpha < 1$ konstant.

- Das Problem is NP-schwer
- Ist $\alpha = \frac{1}{2}$ MIMINUM-BISECTION-PROBLEM \mathcal{NP} schwer auch für planare Graphen
- In linearer Laufzeit ein Separator mit Garantie

Satz (Planar-Separator-Theorem) Die Knotenmenge eines zusammenhängenden, planaren Graphen G = (V, E), $n = |V| \ge 5$, kann so in drei Mengen $V_1, V_2, S \subseteq V$ partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- S ist ein Separator, der V_1 von V_2 trennt,
- $|S| \leq 4 \cdot \sqrt{n}$

Lipton & Tarjan 1977

Aufspannender Baum T von G

Aufspannender Baum T von G

Wurzel w von T

Aufspannender Baum *T* **von** *G*

Wurzel w von T

Level oder Höhe eines Knotens *v*, level(*v*)

Aufspannender Baum *T* **von** *G*

Wurzel w von T

Level oder Höhe eines Knotens v, level(v)

Höhe des Baumes

Aufspannender Baum *T* **von** *G*

Wurzel w von T

Level oder Höhe eines Knotens v, level(v)

Höhe des Baumes

Triangulierung von planare Graph *G*: alle Facetten sind Dreiecke

Aufspannender Baum *T* **von** *G*

Wurzel w von T

Level oder Höhe eines Knotens V, level(V)

Höhe des Baumes

Triangulierung von planare Graph *G*: alle Facetten sind Dreiecke

Aufspannender Baum *T* **von** *G*

Wurzel w von T

Level oder Höhe eines Knotens V, level(V)

Höhe des Baumes

Triangulierung von planare Graph *G*: alle Facetten sind Dreiecke

Für eingebettete Graphen : O(n) Zeit (Übung)

Inhalt

- Wichtiges Lemma
 - Beweis
 - Implementierung mit linearer Laufzeit
- Beweis von Planar-Separator-Theorem
- Separator-Algorithmus

Inhalt

- Wichtiges Lemma
 - Beweis
 - Implementierung mit linearer Laufzeit
- Beweis von Planar-Separator-Theorem
- Separator-Algorithmus

Lemma Sei G = (V, E) ein planarer, zusammenhängender Graph mit $|V| = n \ge 5$ und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel W und Höhe W. Die Knotenmenge von W0 kann so in drei Mengen W1, W2 und W3 partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- S Separator, der V_1 von V_2 trennt,
- $|S| \le 2 \cdot h + 1$

Lemma Sei G = (V, E) ein planarer, zusammenhängender Graph mit $|V| = n \ge 5$ und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel W und Höhe W. Die Knotenmenge von W0 kann so in drei Mengen W1, W2 und W3 partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- S Separator, der V_1 von V_2 trennt,
- $|S| \le 2 \cdot h + 1$

Beweis

Lemma Sei G = (V, E) ein planarer, zusammenhängender Graph mit $|V| = n \ge 5$ und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel W und Höhe W. Die Knotenmenge von W kann so in drei Mengen W1, W2 und W3 partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- S Separator, der V_1 von V_2 trennt,
- $|S| \le 2 \cdot h + 1$

Beweis

Wir konstruieren eine Triangulierung von G

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Lemma Sei G = (V, E) ein planarer, zusammenhängender Graph mit $|V| = n \ge 5$ und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel W und Höhe H. Die Knotenmenge von H0 kann so in drei Mengen H1, H2 und H3 partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- S Separator, der V_1 von V_2 trennt,
- $|S| \le 2 \cdot h + 1$

Beweis

- Wir konstruieren eine Triangulierung von G
- Der neue Graph hat 3n 6 Kanten und 2n 4 Facetten (Euler)

Lemma Sei G = (V, E) ein planarer, zusammenhängender Graph mit $|V| = n \ge 5$ und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel W und Höhe W. Die Knotenmenge von W kann so in drei Mengen W1, W2 und W3 partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- S Separator, der V_1 von V_2 trennt,
- $|S| \le 2 \cdot h + 1$

Beweis

- Wir konstruieren eine Triangulierung von G
- Der neue Graph hat 3n 6 Kanten und 2n 4 Facetten (Euler)
- Ein aufspannender Baum T von G ist aufspannender Baum des
- triangulierten Graphen

Baumkanten - E(T) und **Nichtbaumkanten** - $E \setminus E(T)$

Baumkanten - E(T) und **Nichtbaumkanten** - $E \setminus E(T)$

Baumkanten - E(T) und **Nichtbaumkanten** - $E \setminus E(T)$

Baumkanten - E(T) und **Nichtbaumkanten** - $E \setminus E(T)$

Baumkanten - E(T) und **Nichtbaumkanten** - $E \setminus E(T)$

Jede Nichtbaumkante $\{x, y\}$ induziert einen Kreis $K_{x,y}$ mit $\leq 2 \cdot h + 1$ Knoten

Notation: Inneres($K_{x,y}$), Äußeres($K_{x,y}$) und $|\text{Inneres}(K_{x,y})|$, $|\text{Äußeres}(K_{x,y})|$

Baumkanten - E(T) und **Nichtbaumkanten** - $E \setminus E(T)$

- Notation: Inneres($K_{x,y}$), Äußeres($K_{x,y}$) und $|\text{Inneres}(K_{x,y})|$, $|\text{Äußeres}(K_{x,y})|$
- Wir wählen eine Nichtbaumkane $\{x, y\}$ aus, wobei $|\operatorname{Inneres}(K_{x,y})| \ge |\ddot{\operatorname{A}}\operatorname{uBeres}(K_{x,y})|$

Baumkanten - E(T) und **Nichtbaumkanten** - $E \setminus E(T)$

- Notation: Inneres($K_{x,y}$), Äußeres($K_{x,y}$) und |Inneres($K_{x,y}$)|, |Äußeres($K_{x,y}$)|
- Wir wählen eine Nichtbaumkane $\{x, y\}$ aus, wobei $|\operatorname{Inneres}(K_{x,y})| \ge |\ddot{\operatorname{Au}}\operatorname{Beres}(K_{x,y})|$
- Wenn zusätzlich gilt $|\operatorname{Inneres}(K_{x,y})| \leq \frac{2}{3}n$ fertig!

Sei $|\operatorname{Inneres}(K_{x,y})| > \frac{2}{3}n$, dann $|\operatorname{\ddot{A}ußeres}(K_{x,y})| < \frac{1}{3}n$

- Sei $|\mathrm{Inneres}(K_{x,y})| > \frac{2}{3}n$, dann $|\mathrm{\ddot{A}uBeres}(K_{x,y})| < \frac{1}{3}n$
- Wir ersetzen die ausgewählte Kante $\{x,y\}$ mit einer anderen Nichtbaumkante, sodass das Innere kleiner wird und das Äußere nicht über $\frac{2}{3}n$ wächst

- Sei $|\mathrm{Inneres}(K_{x,y})| > \frac{2}{3}n$, dann $|\mathrm{\ddot{A}uBeres}(K_{x,y})| < \frac{1}{3}n$
- Wir ersetzen die ausgewählte Kante $\{x, y\}$ mit einer anderen Nichtbaumkante, sodass das Innere kleiner wird und das Äußere nicht über $\frac{2}{3}n$ wächst
- *G* ist ein eingebetteter Graph. Die Kante $\{x, y\}$ begrenzt zwei Dreiecke, von denen eins im $Inneren(K_{x,y})$ liegt Dreieck xyt

- Sei $|\operatorname{Inneres}(K_{x,y})| > \frac{2}{3}n$, dann $|\operatorname{\ddot{A}uBeres}(K_{x,y})| < \frac{1}{3}n$
- Wir ersetzen die ausgewählte Kante $\{x, y\}$ mit einer anderen Nichtbaumkante, sodass das Innere kleiner wird und das Äußere nicht über $\frac{2}{3}n$ wächst
- *G* ist ein eingebetteter Graph. Die Kante $\{x, y\}$ begrenzt zwei Dreiecke, von denen eins im $Inneren(K_{x,y})$ liegt Dreieck xyt
- Zwei Fälle:
 - 1. Eine der $\{x, t\}$, $\{t, y\}$ ist eine Baumkante,
 - 2. $\{x, t\}$ und $\{t, y\}$ sind beides Nichtbaumkanten

- Sei $|\mathrm{Inneres}(K_{x,y})| > \frac{2}{3}n$, dann $|\mathrm{\ddot{A}uBeres}(K_{x,y})| < \frac{1}{3}n$
- Wir ersetzen die ausgewählte Kante $\{x, y\}$ mit einer anderen Nichtbaumkante, sodass das Innere kleiner wird und das Äußere nicht über $\frac{2}{3}n$ wächst
- *G* ist ein eingebetteter Graph. Die Kante $\{x, y\}$ begrenzt zwei Dreiecke, von denen eins im $Inneren(K_{x,y})$ liegt Dreieck xyt
- Zwei Fälle:
 - 1. Eine der $\{x, t\}$, $\{t, y\}$ ist eine Baumkante,
 - 2. $\{x, t\}$ und $\{t, y\}$ sind beides Nichtbaumkanten
- Fall 1: Eine der $\{x, t\}$, $\{t, y\}$ ist eine Baumkante x

Fall 1: Eine der $\{x, t\}$, $\{t, y\}$ ist eine Baumkante. Erzetzte $\{x, y\}$ durch $\{x, t\}$.

Falls $t \in K_{x,y}$: $|\ddot{\mathrm{A}}\mathrm{u}\mathrm{Beres}(K_{x,t}) = |\ddot{\mathrm{A}}\mathrm{u}\mathrm{Beres}(K_{x,y}) + 1$ $|\mathrm{Inneres}(K_{x,t})| = |\mathrm{Inneres}(K_{x,y})|$

Fall 2: $\{x, t\}$ und $\{t, y\}$ sind beides Nichbaumkanten

Sei $|\mathrm{Inneres}(K_{x,t})| \geq |\mathrm{Inneres}(K_{t,y})|$

Fall 2: $\{x, t\}$ und $\{t, y\}$ sind beides Nichbaumkanten

Sei $|\mathrm{Inneres}(K_{x,t})| \geq |\mathrm{Inneres}(K_{t,y})|$

- Sei $|\operatorname{Inneres}(K_{x,t})| \geq |\operatorname{Inneres}(K_{t,y})|$
- Ersetze $\{x, y\}$ durch $\{x, t\}$

- Sei $|\operatorname{Inneres}(K_{x,t})| \geq |\operatorname{Inneres}(K_{t,y})|$
- Ersetze $\{x, y\}$ durch $\{x, t\}$
- $|\ddot{\mathbf{A}}\mathbf{u}\ddot{\mathbf{B}}\mathbf{eres}(K_{x,t})| \leq n (|\mathbf{Inneres}(K_{x,t})| + P) \leq n \frac{1}{2}|\mathbf{Inneres}(K_{x,y})| < n \frac{1}{2}\frac{2}{3}n = \frac{2}{3}n$

- Sei $|\operatorname{Inneres}(K_{x,t})| \geq |\operatorname{Inneres}(K_{t,y})|$
- Ersetze $\{x, y\}$ durch $\{x, t\}$

- Sei $|\operatorname{Inneres}(K_{x,t})| \geq |\operatorname{Inneres}(K_{t,y})|$
- Ersetze $\{x, y\}$ durch $\{x, t\}$

- $|\operatorname{Inneres}(K_{x,t})| \le |\operatorname{Inneres}(K_{x,y})| 1$
- In beiden Fällen, verkleinern wir $|\operatorname{Inneres}(K_{x,y})|$ und lassen $|\ddot{\operatorname{Au}}\operatorname{Beres}(K_{x,y})| \leq \frac{2}{3}n$ unverändert

- Sei $|\operatorname{Inneres}(K_{x,t})| \geq |\operatorname{Inneres}(K_{t,y})|$
- Ersetze $\{x, y\}$ durch $\{x, t\}$

- $|\operatorname{Inneres}(K_{x,t})| \le |\operatorname{Inneres}(K_{x,y})| 1$
- In beiden Fällen, verkleinern wir $|\operatorname{Inneres}(K_{x,y})|$ und lassen $|\ddot{\operatorname{Au}}\operatorname{Beres}(K_{x,y})| \leq \frac{2}{3}n$ unverändert
- Dies kann nun so lange widerholt werden, bis auch
 - $|\operatorname{Inneres}(K_{x,y})| \leq \frac{2}{3}n \operatorname{gilt}$

Lemma Sei G = (V, E) ein planarer, zusammenhängender Graph mit $|V| = n \ge 5$ und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel W und Höhe W. Die Knotenmenge von W kann so in drei Mengen W1, W2 und W3 partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- S Separator, der V_1 von V_2 trennt,
- $|S| \le 2 \cdot h + 1$

Lemma Sei G = (V, E) ein planarer, zusammenhängender Graph mit $|V| = n \ge 5$ und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel W und Höhe W. Die Knotenmenge von W kann so in drei Mengen W1, W2 und W3 partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- Separator, der V_1 von V_2 trennt,
- $|S| \le 2 \cdot h + 1$
- Ersetzung einer Nichbaumkante durch eine andere, welche die Anzahl der Deiecke im Inneren reduziert 2n 4 Schritte

Lemma Sei G = (V, E) ein planarer, zusammenhängender Graph mit $|V| = n \ge 5$ und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel W und Höhe H. Die Knotenmenge von H0 kann so in drei Mengen H1, H2 und H3 partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- Separator, der V_1 von V_2 trennt,
- $|S| \le 2 \cdot h + 1$
- Ersetzung einer Nichbaumkante durch eine andere, welche die Anzahl der Deiecke im Inneren reduziert 2n 4 Schritte
- in jedem Schritt wollen wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ berechnen

In Fall 1 können wir das in konstanter Zeit realisieren

Fall 1: Eine der $\{x, t\}$ und $\{t, y\}$ ist eine Baumkante. Ersetzte $\{x, y\}$ durch $\{x, t\}$.

■ Falls $t \notin K_{x,y}$: $|\text{Außeres}(K_{x,t})| = |\text{Außeres}(K_{x,y})|$ und $|\text{Inneres}(K_{x,t})| = |\text{Inneres}(K_{x,y})| - 1$

Falls $t \in K_{x,y}$: $|\ddot{\mathrm{A}}\mathrm{u}\mathrm{Beres}(K_{x,t}) = |\ddot{\mathrm{A}}\mathrm{u}\mathrm{Beres}(K_{x,y}) + 1$ und $\mathrm{Inneres}(K_{x,t}) = \mathrm{Inneres}(K_{x,y})$

- Sei $|\operatorname{Inneres}(K_{x,t})| \geq |\operatorname{Inneres}(K_{t,y})|$
- Ersetze $\{x, y\}$ durch $\{x, t\}$

- $|\operatorname{Inneres}(K_{x,t})| \leq |\operatorname{Inneres}(K_{x,y})| 1$
- In beiden Fällen, verkleinern wir $|\operatorname{Inneres}(K_{x,y})|$ und lassen $|\operatorname{\ddot{A}uBeres}(K_{x,y})| \leq \frac{2}{3}n$
- Dies kann nun so lange widerholt werden, bis auch
 - $|\operatorname{Inneres}(K_{x,y})| \leq \frac{2}{3}n \operatorname{gilt}$

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2

Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2

Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2

Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

AWBCDE

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Wir durchlaufen T von den Blättern zur Wurzel und speichern für jede Kante:

AWBCDE

 $|\operatorname{Inneres}(K_{x,t})| = D + B$ $|\operatorname{Inneres}(K_{y,t})| = A - D - B - W$

Implementierung mit linearer Laufzeit

- In Fall 1 können wir $|\operatorname{Inneres}(K_{x,y})|$ und $|\operatorname{Außeres}(K_{x,y})|$ in konstanter Zeit berechnen
- Im Folgenden berechnen wir $|\operatorname{Inneres}(K_{x,t})|$ und $|\operatorname{Inneres}(K_{t,y})|$ für Fall 2
- Die Anzahl der Operationen in einem Schritt ist proportional zu der Anzahl der Knoten in dem Teil von $K_{x,y}$, der nicht weiter

AWBCDE

 $\begin{aligned} |\mathrm{Inneres}(K_{x,t})| &= D + B \\ |\mathrm{Inneres}(K_{y,t})| &= A - D - B - W \end{aligned}$

Inhalt

- Wichtiges Lemma
 - Beweis
 - Implementierung mit linearer Laufzeit
- Beweis von Planar-Separator-Theorem
- Separator-Algorithmus

Inhalt

- Wichtiges Lemma
 - Beweis
 - Implementierung mit linearer Laufzeit

- Beweis von Planar-Separator-Theorem
- **Separator-Algorithmus**

Satz (Planar-Separator-Theorem) Die Knotenmenge eines zusammenhängenden, planaren Graphen G = (V, E), $n = |V| \ge 5$, kann so in drei Mengen $V_1, V_2, S \subseteq V$ partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- S Separator, der V_1 von V_2 trennt,
- $|S| \le 4 \cdot \sqrt{n}$

Satz (Planar-Separator-Theorem) Die Knotenmenge eines zusammenhängenden, planaren Graphen G = (V, E), $n = |V| \ge 5$, kann so in drei Mengen $V_1, V_2, S \subseteq V$ partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- Separator, der V_1 von V_2 trennt,
- $|S| \leq 4 \cdot \sqrt{n}$

BFS-Lemma Sei T = (V, E(T)) ein BFS-Baum von G = (V, E). Für eine Nichtbaumkante $\{u, v\}$ gilt $|\text{level}(u) - \text{level}(v)| \le 1$.

Satz (Planar-Separator-Theorem) Die Knotenmenge eines zusammenhängenden, planaren Graphen G = (V, E), $n = |V| \ge 5$, kann so in drei Mengen $V_1, V_2, S \subseteq V$ partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- Separator, der V_1 von V_2 trennt,
- $|S| \leq 4 \cdot \sqrt{n}$

BFS-Lemma Sei T = (V, E(T)) ein BFS-Baum von G = (V, E). Für eine Nichtbaumkante $\{u, v\}$ gilt $|\text{level}(u) - \text{level}(v)| \le 1$.

Satz (Planar-Separator-Theorem) Die Knotenmenge eines zusammenhängenden, planaren Graphen G = (V, E), $n = |V| \ge 5$, kann so in drei Mengen $V_1, V_2, S \subseteq V$ partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n,$
- Separator, der V_1 von V_2 trennt,
- $|S| \leq 4 \cdot \sqrt{n}$

BFS-Lemma Sei T = (V, E(T)) ein BFS-Baum von G = (V, E). Für eine Nichtbaumkante $\{u, v\}$ gilt $|\text{level}(u) - \text{level}(v)| \leq 1$.

Wir konstruieren eine Triangulierung von G und ein BFS-Baum T mit beliebiger Wurzel.

Wir konstruieren eine Triangulierung von G und ein BFS-Baum T mit beliebiger Wurzel.

Wir konstruieren eine Triangulierung von G und ein BFS-Baum T mit beliebiger Wurzel.

Wir konstruieren eine Triangulierung von G und ein BFS-Baum T mit beliebiger Wurzel.

- $|\text{level }\mu| \leq 4\sqrt{n}$ Fertig!
- Level μ ist Separator S

Wir konstruieren eine Triangulierung von *G* und ein BFS-Baum *T* mit beliebiger Wurzel.

Sei |level μ | > 4 \sqrt{n}

Wir konstruieren eine Triangulierung von G und ein BFS-Baum T mit beliebiger Wurzel.

Sei $|\text{level }\mu| > 4\sqrt{n}$

- Sei $|\text{level }\mu| > 4\sqrt{n}$
- $|| \text{level } m| < \sqrt{n}$

- Sei $|\text{level }\mu| > 4\sqrt{n}$
- $|| \text{level } m| < \sqrt{n}$

Wir konstruieren eine Triangulierung von G und ein BFS-Baum T mit beliebiger Wurzel.

- Sei $|\text{level }\mu| > 4\sqrt{n}$
- $|| level M| < \sqrt{n}$

- Sei |level μ | > 4 \sqrt{n}
- $||\text{level } m| < \sqrt{n}$
- $|\text{level } M| < \sqrt{n}$ $|A_1| \le \frac{n}{2}, |A_3| \le \frac{n}{2}$

- Sei $|\text{level }\mu| > 4\sqrt{n}$
- $|\text{level } m| < \sqrt{n}$
- $|\text{level } M| < \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

- Sei $|\text{level }\mu| > 4\sqrt{n}$
- $|\text{level } m| < \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 1:
$$|A_2| \leq \frac{2}{3}n$$

Wir konstruieren eine Triangulierung von G und ein BFS-Baum T mit beliebiger Wurzel.

- Sei $|\text{level } \mu| > 4\sqrt{n}$
- $|\text{level } m| < \sqrt{n}$
- $|\text{level } M| < \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 1: $|A_2| \leq \frac{2}{3}n$

S = level $m \cup$ level M ist Separator

- Sei $|\text{level }\mu| > 4\sqrt{n}$
- $|\text{level } M| < \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2} \leftarrow$

Fall 1:
$$|A_2| \leq \frac{2}{3}n$$

- S = level $m \cup$ level M ist Separator
- $V_1 = \max\{A_1, A_2, A_3\}, |V_1| \leq \frac{2}{3}n^{-1}$

- Sei $|\text{level }\mu| > 4\sqrt{n}$
- $|\text{level } m| < \sqrt{n}$
- $|| \text{level } M| < \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2} \leftarrow$

Fall 1:
$$|A_2| \leq \frac{2}{3}n$$

- S = level $m \cup$ level M ist Separator
- $V_1 = \max\{A_1, A_2, A_3\}, |V_1| \leq \frac{2}{3}n$
- $V_2 = V \setminus (S \cup V_1)$

- Sei $|\text{level }\mu| > 4\sqrt{n}$
- $|| level m| < \sqrt{n}$
- $|| \text{level } M| < \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2} \leftarrow$

Fall 1:
$$|A_2| \leq \frac{2}{3}n$$

- S = level $m \cup$ level M ist Separator
- $V_1 = \max\{A_1, A_2, A_3\}, |V_1| \leq \frac{2}{3}n^{-1}$
- $V_2 = V \setminus (S \cup V_1) , |V_2| < \frac{2}{3}n$

- | rote level|> $4\sqrt{n}$, | level m| $<\sqrt{n}$, | level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- | rote level|> $4\sqrt{n}$, |level m| $<\sqrt{n}$, |level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- | rote level|> $4\sqrt{n}$, | level m| $<\sqrt{n}$, | level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- | rote level|> $4\sqrt{n}$, | level m| $<\sqrt{n}$, | level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- | rote level|> $4\sqrt{n}$, | level m| $<\sqrt{n}$, | level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- | rote level|> $4\sqrt{n}$, | level m| $<\sqrt{n}$, | level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

BFS-Baum T induziert BFS-Baum T' in G'

- | rote level|> $4\sqrt{n}$, |level m| $<\sqrt{n}$, |level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- BFS-Baum T induziert BFS-Baum T' in G'
- $\leq \sqrt{n}$ rote levels

21

- | rote level|> $4\sqrt{n}$, |level m| $<\sqrt{n}$, |level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

- BFS-Baum T induziert BFS-Baum T' in G'
- $\leq \sqrt{n}$ rote levels
- T' hat $\leq \sqrt{n}$ levels

- | rote level|> $4\sqrt{n}$, |level m| $<\sqrt{n}$, |level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

- BFS-Baum T induziert BFS-Baum T' in G'
- $\leq \sqrt{n}$ rote levels
- T' hat $\leq \sqrt{n}$ levels
- Wir wenden das wichtige Lemma auf G' und T' an und bekommen S', U_1 , U_2

- | rote level|> $4\sqrt{n}$, |level m| $<\sqrt{n}$, |level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

- BFS-Baum T induziert BFS-Baum T' in G'
- $\leq \sqrt{n}$ rote levels
- T' hat $\leq \sqrt{n}$ levels
- Wir wenden das wichtige Lemma auf G' und T' an und bekommen S', U_1 , U_2

- $|\text{rote level}| > 4\sqrt{n}$, $|\text{level } m| < \sqrt{n}, |\text{level } M| < \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- BFS-Baum T induziert BFS-Baum T' in G'
- $\leq \sqrt{n}$ rote levels
 - T' hat $\leq \sqrt{n}$ levels

Wir wenden das wichtige **Lemma** auf G' und T' an und bekommen S', U_1 , U_2

- | rote level|> $4\sqrt{n}$, | level m| $<\sqrt{n}$, | level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2:
$$|A_2| > \frac{2}{3}n$$

Sei $S = S' \cup \text{level } m \cup \text{level } M$

- | rote level| > $4\sqrt{n}$, | level m| < \sqrt{n} , | level M| < \sqrt{n}
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

- Sei $S = S' \cup \text{level } m \cup \text{level } M$
- Nach wichtigem Lemma, $|S'| \le 2\sqrt{n} + 1$, dann $S \le 4\sqrt{n}$

- $|\text{rote level}| > 4\sqrt{n}$, $|\text{level } m| < \sqrt{n}, |\text{level } M| < \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

- Sei $S = S' \cup \text{level } m \cup \text{level } M$
- Nach wichtigem Lemma, $|S'| \leq 2\sqrt{n} + 1$, dann $S \leq 4\sqrt{n}$
 - Sei $V_1 = \max\{U_1, U_2\}$. Nach wichtigem Lemma, $|V_1| \leq \frac{2}{3}n$.

- | rote level|> $4\sqrt{n}$, | level m| $<\sqrt{n}$, | level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

- Sei $S = S' \cup \text{level } m \cup \text{level } M$
- Nach wichtigem Lemma, $|S'| \le 2\sqrt{n} + 1$, dann $S \le 4\sqrt{n}$
 - Sei $V_1 = \max\{U_1, U_2\}$. Nach wichtigem Lemma, $|V_1| \le \frac{2}{3}n$.

- | rote level|> $4\sqrt{n}$, | level m| $< \sqrt{n}$, | level M| $< \sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- Sei $S = S' \cup \text{level } m \cup \text{level } M$
- Nach wichtigem Lemma, $|S'| \le 2\sqrt{n} + 1$, dann $S \le 4\sqrt{n}$
 - Sei $V_1 = \max\{U_1, U_2\}$. Nach wichtigem Lemma, $|V_1| \leq \frac{2}{3}n$.
 - $|V_1| + |S| > |V_1| + |S'| > \frac{1}{2}|A_2|.$

21

- | rote level|> $4\sqrt{n}$, |level m| $<\sqrt{n}$, |level M| $<\sqrt{n}$
- $|A_1| \leq \frac{n}{2}, |A_3| \leq \frac{n}{2}$

Fall 2: $|A_2| > \frac{2}{3}n$

- Sei $S = S' \cup \text{level } m \cup \text{level } M$
- Nach wichtigem Lemma, $|S'| \le 2\sqrt{n} + 1$, dann $S \le 4\sqrt{n}$
 - Sei $V_1 = \max\{U_1, U_2\}$. Nach wichtigem Lemma, $|V_1| \le \frac{2}{3}n$.
 - $|V_1| + |S| > |V_1| + |S'| > \frac{1}{2}|A_2|.$
 - $V_2 = V \setminus (S \cup V_1), |V_2| = n |V_1| |S| < n \frac{1}{2}|A_2| < \frac{2}{3}n$

21

Beweis des Planar-Separator-Theorem liefert einen Algorithmus

- Beweis des Planar-Separator-Theorem liefert einen Algorithmus
- Jeder Schritt des Algorithmus kann in O(n) Zeit realisiert werden (inkl. der Anwendung des wichtigen Lemmas)

- Beweis des Planar-Separator-Theorem liefert einen Algorithmus
- Jeder Schritt des Algorithmus kann in O(n) Zeit realisiert werden (inkl. der Anwendung des wichtigen Lemmas)
- Die Anzahl der Schritten ist eine Konstante. Das gibt uns einen O(n) Algorithmus.

- Beweis des Planar-Separator-Theorem liefert einen Algorithmus
- Jeder Schritt des Algorithmus kann in O(n) Zeit realisiert werden (inkl. der Anwendung des wichtigen Lemmas)
- Die Anzahl der Schritten ist eine Konstante. Das gibt uns einen O(n) Algorithmus.

Vielen Dank für ihre Aufmerksamkeit und Geduld!

- Beweis des Planar-Separator-Theorem liefert einen Algorithmus
- Jeder Schritt des Algorithmus kann in O(n) Zeit realisiert werden (inkl. der Anwendung des wichtigen Lemmas)
- Die Anzahl der Schritten ist eine Konstante. Das gibt uns einen O(n) Algorithmus.

Vielen Dank für ihre Aufmerksamkeit und Geduld! ?????