

Week 4: Data Link Layer

EE3017/IM2003 Computer Communications

School of Electrical and Electronic Engineering

Dr. SHAO Xuguang, Michelle

Email: XGSHAO@ntu.edu.sg

Room: S1-B1a-10

Phone: 6513-7648

Topic Outline

Learning Objectives

By the end of this topic, you should be able to:

- Describe the major services that the data link layer offers.
- Describe the framing and stuffing method in High-Level Data Link Control (HDLC) and Point-to-Point Protocol (PPP).
- Familiarise with the terminology used in Data Link Layer with the example of HDLC protocol.
- Describe the Stop-and-Wait and Sliding Window flow control techniques.
- Construct the comprehensive delay model by using various flow control techniques acquired based on different scenarios.

Data Link Layer Overview

Where are we?

Terminology (in this topic):

- Communication channels that connect adjacent nodes along communication path are links
 - o Wired, Wireless, LANs, etc.
- Two types of link layer channels:
 - o Point-to-point (e.g. HDLC)
 - o Broadcast (e.g. LAN segment)
- Layer-2 PDU (Protocol Data Unit) is a frame, encapsulates datagram (packet)

Data-link layer has the responsibility of transferring datagram from one node to physically adjacent node over a link.

Data Link Layer Overview

- A layer of logic added above the Physical layer, which provides services to network layer.
- Implemented in "adaptor" (NIC).
 - o e.g., Ethernet card, PCMCIA card.
- Basic service:
 - Moves a datagram from one node to an adjacent node over a single communication link.
- Datagram transferred by different link protocols over different links from end to end.
 - o e.g., Ethernet on first link, frame relay on intermediate links, WiFi on last link.
- Different data link protocols provide different services.

Data Link Layer Services

- Framing
 - Encapsulate datagram into frame, adding overhead (header and/or trailer)
- Flow control
 - Pacing between adjacent sending and receiving nodes
- Error control
 - Receiver detects presence of errors
 - Receiver drops frame and/or signals sender for retransmission
- Link access (Prof. Cheng's part)
 - Medium Access Control (MAC) protocol specify the rule for channel access

Framing and Stuffing

Framing and Bit Stuffing in HDLC

HDLC frame

- Frame delineated by flag character (i.e. octet/byte)
- HDLC uses bit stuffing to prevent occurrence of flag pattern 01111110 inside the frame
- Transmitter inserts extra 0 after each consecutive five 1's inside the frame
- Receiver checks for five consecutive 1's
 - o if next bit = 0, the '0' is then removed
 - o if next two bits are 10, then flag is detected
 - o If next two bits are 11, error indication

Example: Bit Stuffing and De-stuffing

a) Data to be sent 011011111111100 After stuffing and framing? 01111110 011011111<u>0</u>111111<u>0</u>00 01111110 b) Data received 011111100001110111110<mark>111110</mark>11001111110 After destuffing and deframing? *000111011111-1111-110*

Framing and Byte Stuffing in PPP

- Point-to-Point Protocol (PPP) is a character-oriented version of HDLC and uses similar frame structure as HDLC
- PPP uses the same flag, but uses byte stuffing
- Flag is 0x7E (01111110)
- Control escape 0x7D (01111101)
- Any occurrence of flag or control escape <u>inside</u> of frame is replaced with 0x7D followed by original octet XORed with 0x20 (00100000)

Example of Byte-Stuffing in PPP

After stuffing and framing?

Example of Byte-Stuffing in PPP

After byte destuffing and deframing

High-level Data Link Control (HDLC)

HDLC Data Transfer Modes

- Response Mode
 - Used in polling multidrop lines.

- Asynchronous <u>Balanced</u> Mode (ABM)
 - Used in full-duplex point-to-point links.

Mode is selected during connection establishment

HDLC Frame Format

- Flag: delineate frame boundaries (01111110)
- Address: identify secondary station
- Control: purpose and functions of frame
- Information: contains user data
- Frame Check Sequence: 16- or 32-bit CRC

Control Field

- Control field defines three types of frames
- First one or two bits of control field identify frame type

Legend			
N(R):	Receive Sequence Number	M:	Unnumbered Function Bits
N(S):	Send Sequence Number	P/F:	Poll/final bit used in interaction between primary and secondary
S:	Supervisory Function Bits:		

Information Frames

1	2-4	5	6-8
0	N(S)	P/F	N(R)

- Each I-frame contains 'send' sequence number N(S)
- Positive ACK piggybacked
 - o 'receive' sequence number = N(R) = Sequence number of *next* frame expected acknowledges all frames up to and including N(R)-1
- 3 or 7 bit sequence numbering
- Poll/Final Bit
 - NRM: Primary polls station by setting P = 1; Secondary sets F = 1 in last I-frame in response
 - o Primaries and secondaries always interact via paired P/F bits

Supervisory Frames

Used for error control and flow control:

- Receive Ready (RR), SS = 00
 - \circ ACKs frame up to N(R)-1 when piggybacked ACK not available
- *REJECT* (**REJ**), SS = 01
 - Negative ACK indicating N(R) is first frame not received correctly; Transmitter must resend N(R) and later frames
- Receive Not Ready (RNR), SS = 10
 - o ACKs frame N(R)-1 and request that no more I-frames be sent
- Selective REJECT (SREJ), SS = 11
 - Negative ACK for N(R) requesting that N(R) be selectively retransmitted

Example: HDLC in ABM

Flow Control

Information Frames

- Receiver has limited buffering to store arriving frames.
- If the sender sends data faster than the receiver can process, then buffer over-flow will occur.
- Flow control is a technique for preventing the sender from overwhelming the receiver with data.
- **Assumption**: all frames are successfully received without lost frames or erroneous frames (for the study of flow control part).

Stop and Wait (S&W) Scheme

- Simplest flow control protocol
- By this protocol:
 - o Source transmits a frame
 - O When the destination receives the frame:
 - sends an ACK to sender
 - may withhold the ACK until it is ready to accept another frame
 - Source sends another frame only upon receipt of ACK
- Works well for a message sent in a few large frames
 - Inadequate if large block of data is split into small frames by source (why?)

Stop and Wait Model (comprehensive)

$$T_D=2t_{prop}+2t_{proc}+t_{frame}+t_{ack}$$
 info frame length
$$=2t_{prop}+2t_{proc}+\frac{L_{frame}}{R}+\frac{L_a}{R}$$
 ACK frame length channel transmission rate

25

Performance of S&W

• Let t_{prop} be the propagation delay, t_{frame} be the frame transmission time, t_{ack} be the acknowledgement transmission time, t_{proc} be the nodal processing delay

Performance of S&W

• Of this time T_D only t_{frame} is actually used to transmit data. Therefore, the efficiency or utilisation U is:

U: fraction of time sender busy sending information data

$$U = \frac{t_{frame}}{T_D}$$

Effective data rate (throughput in bps)

$$R_{eff} = \frac{L_{frame}}{T_D}$$

If Header needs to be excluded, L_{frame} needs to be replaced with payload length.

$$U = \frac{R_{eff}}{R(\text{channel rate})}$$

Performance of S&W (Simplified Model)

- Of this time T_D only t_{frame} is actually used to transmit data.
 - Therefore, the efficiency or utilisation U is:

$$U = \frac{t_{frame}}{T_D}$$

- Ignoring t_{ack} , t_{proc} the total delay T_D is $2t_{prop} + t_{frame}$
- If we define $a = t_{prop}/t_{frame}$, then $U = \frac{1}{1 + 2a}$

$$U = \frac{1}{1 + 2a}$$

• If d is the link length, V the velocity of propagation, R the data rate, and L the frame length, then $a = \frac{d/V}{L/R} = \frac{Rd}{LV}$

Effective data rate

$$R_{eff} = \frac{L_{frame}}{T_D}$$

$$U = \frac{R_{eff}}{R(\text{channel rate})}$$

Assumption: ACK transmission time, node processing time, queuing time is negligible. Header bits in data frame is ignored.

A link has a data rate of 4 Mbps, and a distance of 1000 km. The propagation delay is 5 μ s/km. How long does it take a frame of 1000 bytes to get to the other end of the link?

Transmission time = frame length/data rate $= (1000 \times 8)/(4 \times 10^6) = 2 \text{ ms}$ Propagation time = $5 \mu \text{s/km} \times 1000 \text{km} = 5 \text{ ms}$ Total delay = Transmission time + Propagation time = 7 ms

Compare the value $a = t_{prop}/t_{frame}$ of Example 1 with another of lower data rate at 1 Mbps.

From Example 1:

$$R = 4$$
 Mbps, $d = 1000$ Km, $V = 2 \times 10^8$ m/s, $L = 1000$ bytes = 8000 bits

$$a = \frac{R}{L} \times \frac{d}{V}$$

For
$$R = 4$$
 Mbps, $a = 2.5$

For
$$R = 1$$
 Mbps, $a = 0.625$

- \Rightarrow For a given frame size, reducing the transmission rate can increase the transmission time. This reduces 'a'.
- ⇒ If S&W is used for flow control, this will lead to increased link utilisation.

In Example 1, if S&W flow control is used, what is the link utilisation?

Recall that: t_{frame} = 2 ms, t_{prop} = 5 ms Link utilisation: $U = t_{frame}/(2t_{prop} + t_{frame})$ = 2/(10 + 2) = 0.17 or alternatively, a = 2.5 U = 1/(1 + 2a) = 0.17

What if the frame size is increased from 1000 bytes to 5000 bytes?

$$t_{frame}$$
 = (5000 x 8)/(4 x 10⁸) = 10 ms
 $U = t_{frame}/(2t_{prop} + t_{frame})$ = 10/(10 + 10) = 0.5
or alternatively, a = 0.5 U = 1/(1 + 2 a) = 0.5

⇒ Increasing frame size will increase the link utilisation.

S&W 1st page

Sliding Window Scheme

- Allow multiple frames to be in transit
- Transmitter can send up to W frames without receiving ACK
- Each (data) frame carries a sequence number
- Sequence number bounded by size of sequence number field (k bits)
 - o Frames are numbered modulo 2k
 - \triangleright E.g. 3-bit sequence number implies frames and ACKs are numbered as 0,1,2,3,4,5,6,7
- ACK includes the sequence number of the next frame expected
- Cumulative Acknowledgment frame RR i indicates that up to i-1th frame received and receiver is expecting the ith frame.

Sliding Window Diagram

Example: W = 7, up to 7 consecutive frames can be sent without getting ACK

Sliding Window Diagram

Example: W = 7, up to 7 consecutive frames can be sent without getting ACK

Sliding Window (Simplified Model)

Assumption:

Only consider information frame transmission time, and propagation time. Ignore the headers in the information frame.

Assume: ACK is sent out for every frame received by the receiver.

Sliding Window (Simplified Model)

Assumption:

Only consider information frame transmission time, and propagation time. Ignore the headers in the information frame.

Assume: ACK is sent out for every frame received by the receiver.

Sliding Window Link Utilisation (Simplified Model)

- ullet Assume only t_{frame} and t_{prop} are considered, and overhead in data frame is ignored
- link utilisation depends on the window size W and the value of a.

$$a = \frac{t_{prop}}{t_{frame}} = \frac{d/V}{L/R} = \frac{Rd}{LV}$$
 d: distance of link V: signal speed L: frame Length in bits R: data rate

$$U = \begin{cases} 1 & W \ge 2a + 1 \\ \frac{W}{2a + 1} & W < 2a + 1 \end{cases}$$
 frame 1 ACK reaches source before window exhausted window exhausted at $t = W$ out of $2a + 1$ period

period

• Sliding Window link efficiency is at most W times that of Stop-and-Wait (= 1/(2a+1))

Sliding Window Link Utilisation (In General)

- Link utilisation depends on the window size W and total delay upon receipts of the ACK of the first frame by the source (T_1) .
- Ignore the overhead bits in the information frame, still assume ACK is sent for every frame received:
 - o If $W \times t_{frame} >= T_1 \Rightarrow$ frame 1 ACK reaches source before window exhausted $\Rightarrow U = 1$
 - o If $W \times t_{frame} < T_1 \Rightarrow$ window exhausted at $t = Wt_{frame}$ out of T_1 period $V = W \times t_{frame} / T_1$
- Sliding Window link efficiency is at most W times that of Stop-and-Wait.

Consider an error-free 64 kbps satellite channel used to send 512-byte data frames in one direction, with a very short ACK in the other direction. What is the maximum utilisation for window sizes of 1, 7, 15, and 128? Round trip propagation delay is 540 ms.

$$t_{frame}$$
 = (512 x 8)/64000 = 64 ms
 $2t_{prop}$ = 540 ms
 T_1 = t_{frame} + $2t_{prop}$ = 604 ms
604ms/64ms = 9.43 => Need a window size of at least 10 frames to keep the channel busy.
 $W = 1$, $U = t_{frame}/T_1 = 10.6\%$
 $W = 7$, $U = 7$ x t_{frame}/T_1 = 7 x10.6% = 74.2%
 $W = 15$ or 128, $U = 100\%$

Consider an error-free 64 kbps satellite channel used to send 512-byte data frames in one direction, with a very short ACK in the other direction. What is the maximum utilisation for window sizes of 1, 7, 15, and 128? Round trip propagation delay is 540 ms.

A 512 byte frame occupies the channel for $(512 \times 8)/64000 = 64 \text{ ms}$

Round trip propagation delay is 540 ms, 2a = 540/64 = 8.43

Need a window size of at least 2a + 1 = 10 frames to keep the channel busy.

$$W = 1$$
, $U = 1/(2a + 1) = 10.6\%$

$$W = 7$$
, $U = 7 \times 10.6\% = 74.2\%$

Summary

Summary

Key points discussed in this topic:

- The major services that the data link layer offers include framing, flow control, error control and link access.
- HDLC uses bit stuffing to prevent occurrence of flag pattern 01111110 inside the frame.
- PPP is a character-oriented version of HDLC and uses similar frame structure as HDLC. It uses
 the same flag, but uses byte stuffing.
- Flow control is a technique for preventing the sender from overwhelming the receiver with data. The two flow control techniques discussed are:
 - o Stop-and-Wait
 - Sliding Window