MLFO Mid Semester Exam Feb 2022 (Div - G)

Department of Physics, SVNIT Surat 395007

* F	Required		
1.	Name *		
2.	Roll number *	*	
lns	structions	 Use Institute id for login. Multiple log in is not allowed. Once login from any device. Do not Switch the device in between the examination. Make sure the log in device is fully functioning during the examination with proper internet connection. Camera must be ON during the whole examination. All the questions are mandatory Submit the response in a given time frame. Late submission will not be considered in any circumstances. 	
3.	1. Ratio of pro	obabilities of spontaneous emission and stimulated emission is 1 poin	nt
	Mark only one	e oval.	
	proportion	onal to frequency v	
	Independ	dent of frequency v	
		onal to v2	
	proportion	onal to v3	

4.	2. Calculate the coherence length of a fluorescent lamp emitting white light (4000Å to 7000Å). *	1 point
	Mark only one oval.	
	5040Å	
	6000Å	
	4500 Å	
	4345 Å	
5.	3. Find the ratio of population of two states in a HeNe laser that produces a wavelength λ = 6328 Å at 27°C = 300 K. *	1 point
	Mark only one oval.	
	1.8x10 ⁻³³	
	1.1x10 ⁻³³	
	0.1x10 ⁻³³	
	2.1x10 ⁻³³	
6.	4. In a material at 400 K two energy levels have a wavelength separation of 2.5 μm. Determine the ratio of upper to lower energy level occupation densities (N2/N1) when the material is in thermal equilibrium *	1 point
	Mark only one oval.	
	1.4 x 10 ⁻²¹	
	5.5 x 10 ⁻⁷	
	1.4 x 10⁻⁻	
	5.5×10^{-21}	

7.	5. The optical feedback provided by the cavity mirrors *	1 point
	Mark only one oval.	
	Changes the wavelength of laser beam Increases the lifetime of emission Effectively increases the length of the optical medium All of the above	
8.	6. If there are 'N' atoms in a source, each emitting light with intensity 'l', then the total intensity produced by an ordinary source is proportional to 'NI', whereas in a laser source, it is proportional to *	1 point
	Mark only one oval.	
	(NI) ² 2NI NI ² N ² I	
9.	7. A laser source has a wavelength 7000Å and aperture 5 mm. The laser beam is sent to the moon, the distance of which from the earth is 4×108 m. what is the angular spread and area of spread when the beam reaches to the moon. *	1 point
	Mark only one oval.	
	3x10 ⁻⁴ rad, 4.45x10 ¹⁰ m ² 1.7x10 ⁻⁴ rad, 1.45x10 ¹⁰ m ² 2.3x10 ⁻⁶ rad, 3.45x10 ¹² m ² 5.3x10 ⁻⁶ rad, 6.45x10 ¹² m ²	
	3.5×10 144, 0. 10×10 111	

10.	8. A typical He-Ne laser emits radiation of λ = 6328Å. How many photons per second would be emitted by a one milli-watt He-Ne laser? *	
	Mark only one oval.	
	3 x 10 ²⁰	
	3 x10 ¹⁵	
	3x10 ¹⁹	
	None	
11.	9. He-Ne laser utilizes *	1 point
	Mark only one oval.	
	Three level pumping scheme	
	Four level pumping scheme	
	Two level pumping scheme	
	None	
12.	10. Sodium D1 line has wavelength 5890 Å with spectral width 0.1 Å. Determine its coherent length, coherent time and Q value. *	1 point
	Mark only one oval.	
	3.47 cm, 1.18 x 10 ⁻¹⁰ s, 58900	
	1.23 cm, 1.18 x 10 ⁻¹⁰ s, 5890	
	3.47 cm, 3.27×10^{-10} s, 589	
	6.67 cm, 1.18 x 10 ⁻²⁰ s, 58900	

13.	11. The Lagrangian function is defined by *	1 point
	Mark only one oval.	
	L= F + V	
	L= T - V	
	L = T + V	
	L = F − V	
14.	12. The generalized coordinates *	1 point
	Mark only one oval.	
	depend on each other	
	are independent of each other	
	are necessarily spherical co-ordinates	
	None of these	
15.	13. If the generalized coordinates had the dimension of velocity then generalized velocity has a dimension of *	1 point
	Mark only one oval.	
	Acceleration	
	Force	
	Torque	
	Momentum	

16.	14. Lagrange's equation of motion of an electrical circuit comprising an inductance L and capacitance C (the condenser is charged to q coulombs and the current owing in the circuit is I amperes) is *	1 point
	Mark only one oval.	
	q"+q/LC=0	
	q"+Lq/C=0	
	q"+Cq/L=0	
	q"+q²/LC=0	
17.	15. For Lagrangian of any system, which of the following is true *	1 point
	Mark only one oval.	
	\Box L=L(pk,qk,t)	
	$ L=L(qk,q^{\cdot}k,t) $	
	\Box L=L(pk,pk,t)	
	$ L=L(pk,p^{\cdot}k,t) $	
18.	16. Virtual displacement means in the sense that *	1 point
	Mark only one oval.	
	It occurs in a finite time interval	
	It occurs in absence of any external force	
	there is no passage of time during such displacement	
	none of the above is true	

19.	17. How many degrees of freedom does a particle have that is constrained to move on sphere? *	1 point
	Mark only one oval.	
	0123	
20.	18. Constraint in a rigid body is *	1 point
	Mark only one oval.	
	Holonomic	
	Non-holonomics	
	Rheonomic	
	None of these	
21.	19. A rigid body moving freely in space has degrees of freedom *	1 point
	Mark only one oval.	
	3	
	<u> </u>	
	9	
	<u>4</u>	
22.	20. Degree of freedom in Dumbbell moving in space is *	1 point
	Mark only one oval.	
	2	
	3	
	4	
	5	

23.	21. As the wavelength of the radiation decreases, the intensity of the black body radiations*	1 point
	Mark only one oval.	
	Increases	
	Decreases	
	First increases then decrease	
	First decreases then increase	
24.	22. If wavelength for which the maximum energy emitted by black body is 6590Å, the temperature of black body is *	1 point
	Mark only one oval.	
	4400 K	
	440K	
	44K	
	4.4K	
25.	23. An experiment shows that when electromagnetic radiation of wavelength 270nm falls on an aluminum surface, photoelectrons are emitted. The most energetic of these are stopped by a potential difference of 0.406 volts. What is the work function of aluminum in electron volts *	1 point
	Mark only one oval.	
	5.7 eV	
	2.2 eV	
	4.2 eV	
	10.3 eV	

26.	24. Which one of the following pairs of phenomena illustrates the particle aspect of wave particle duality? *	1 point
	Mark only one oval.	
	Compton effect and Bragg's law	
	Photoelectric effect and Compton effect	
	Compton effect and Pauli's principle	
	Bragg's law and Photoelectric effect	
27.	25. During Einstein's Photoelectric Experiment, what changes are observed when the frequency of the incident radiation is increased? *	1 point
	Mark only one oval.	
	The value of saturation current increases	
	No effect	
	The value of stopping potential increases	
	The value of stopping potential decreases	

28. 26. From the figure, what's the relation between T1, T2, and T3? *

1 point

Mark only one oval.

- T1 > T2 > T3
- T3 > T2 > T1
- T3 > T1 > T2
- T2 > T1 > T3
- 29. 27. The wavelength for which energy is maximum is *

1 point

Mark only one oval.

- directly proportional to the absolute temperature
- inversely proportional to absolute temperature
- unchanged with temperature
- cannot be predicted

30.	28. The number of oscillation modes per unit volume for em standing waves of frequency v in a blackbody cavity is proportional to *	1 point
	Mark only one oval.	
	\bigvee V_3	
	$\bigvee V^2$	
	v	
	hv/(exp[hv/kT]-1)	
31.	29. The unit of absorptive power is *	1 point
	Mark only one oval.	
	Т	
	☐ Ts ⁻¹	
	Ts	
	ono unit	
32.	30. In a photoelectric effect experiment, the frequency of the light is increased while keeping the intensity of the light constant. What effect does this have? *	1 point
	Mark only one oval.	
	fewer electrons will be ejected	
	more electrons will be ejected	
	the same number of electrons will be ejected	
	any of these is possible	

This content is neither created nor endorsed by Google.

Google Forms