UNIVERSITE DE BORDJ BOU ARRERIDJ

FACULTE DE MATHEMATIQUES ET D'INFORMATIQUE

L†cence informatique, 2ème année - 2015-2016

Théorie des Langages

Examen du 23 janvier 2016 - Durée 1h30 - Aucun document n'est autorisé

Exercice 2 (6 points) - Soit $\Sigma = \{a, b\}$. Soit l'automate M suivant :

- 1. Donner le système d'équations de l'automate M
- 2. Déterminiser l'automate M
- 3. Caractériser le langage L (M) reconnu par M
- 4. Donner une grammaire linéaire à droite qui engendre L (M)
- 5. Construire l'automate complémentaire à M

Exercice 2 (6 points) - Soit la grammaire $G = (V, \Sigma, P, S)$, avec $V = \{a, b, S, X, Z, T, R, M\}$, $\Sigma = \{a, b\}$ et P contenant les règles suivantes :

 $S \rightarrow aSbSX \mid Z \mid \epsilon$

 $X \rightarrow ab \mid Xb \mid XT$

 $Z \rightarrow M \mid \epsilon$

 $T \rightarrow XYT$

 $R \rightarrow SX \mid a \mid \epsilon$

 $M \rightarrow b$

- 1. Transformez la grammaire G en une grammaire G équivalente propre et réduite.
- 2. Cette grammaire G est-elle sous forme normale de Greibach? Justifiez.
- 3. Mettez la grammaire G sous forme normale de Chomsky.

Exercice 3 (8 points) - Soit $\Sigma = \{a, b\}$. Soient les deux automates M_1 et M_2 suivant :

- Automate M₁

Automate M₂

- 1. Construire l'automate qui reconnaît le langage L (M₁) +L (M₂)
- 2. En utilisant le théorème d'Arden, donnez l'expression régulière caractérisant le langage $L(M_1)$. Simplifiez autant que possible cette expression régulière.
- 3. Par la méthode d'élimination des états, donnez l'expression régulière caractérisant le langage L (M₂), sans chercher à la simplifier.