Termodinâmica Aula 10 — Processos em gases ideais

Prof. Diego J. Raposo

Universidade de Pernambuco, Escola Politécnica de Pernambuco (UPE-POLI)

Semestre 2025.1

Processos isocóricos (V = cte.)

- $\delta w = 0$ (não há expansão ou compressão: sem trabalho realizado ou absorvido);
- $H = U + pV \Rightarrow dH = dU + p \underbrace{dV}_{=0} + Vdp = C_VdT + Vdp$

dV = 0	$\delta w = 0$	dp > 0	dT > 0
dV = 0	$\delta w = 0$	dp < 0	dT < 0

Processos adiabáticos (dq = 0)

- $ightharpoonup \delta q = 0;$
- $\blacktriangleright \delta w = \delta w_{ad}$ (possível compressão e expansão);
- ightharpoonup d $U = \delta q + \delta w = \delta w_{ad} = -p dV$;
- $dH = \underbrace{dU}_{n\overline{C}_V dT} + \underbrace{d(pV)}_{nRdT} = n(\overline{C}_V + R)dT = n\overline{C}_p dT$
- Detalhando o trabalho:

$$w_{\rm ad} = \int_{i}^{r} \delta w_{\rm ad} = -\int_{i}^{r} p dV \xrightarrow{pV^{\gamma} = k} w_{\rm ad} = -k \int_{i}^{r} \frac{dV}{V^{\gamma}}$$

$$w_{\text{ad}} = -\frac{kV^{1-\gamma}}{1-\gamma}\Big]_{i}^{f} = -\frac{kV_{f}^{1-\gamma} - kV_{i}^{1-\gamma}}{1-\gamma} = \frac{kV_{f}^{1-\gamma} - kV_{i}^{1-\gamma}}{\gamma - 1}$$

$$w_{\text{ad}} = \frac{pV_f^{\gamma}V_f^{1-\gamma} - pV_i^{\gamma}V_i^{1-\gamma}}{\gamma - 1} = \frac{p_fV_f - p_iV_i}{\gamma - 1} = \frac{nR(T_f - T_i)}{\gamma - 1}$$

Note que é possível mostrar que o $\Delta U = C_V \Delta T$ em processos adiabáticos assim como em isocóricos, dado que $\Delta U = w_{\rm ad}$, e que:

$$w_{ad} = \frac{nR\Delta T}{\frac{C_p}{C_V} - 1} = \frac{nRC_V\Delta T}{C_p - C_V} \xrightarrow{C_p - C_V = nR} w_{ad} = C_V\Delta T$$

Expansão	dV > 0	$\delta w < 0$	d <i>p</i> < 0	dT < 0
Compressão	dV < 0	$\delta w > 0$	dp > 0	dT > 0

Processos isotérmicos (T = cte.)

- ightharpoonup dU=0, $\delta q=-\delta w$
- $dH = dU + d(pV) = \underbrace{dU}_{=0} + nR \underbrace{dT}_{=0} = 0$
- Detalhando o trabalho:

$$w = \int_{i}^{f} \delta w = -\int_{i}^{f} p dV \xrightarrow{pV = nRT^{*} = k'} w = -k' \int_{i}^{f} \frac{dV}{V}$$
$$w = -k' \ln\left(\frac{V_{f}}{V_{i}}\right) = -nRT^{*} \ln\left(\frac{V_{f}}{V_{i}}\right)$$

Expansão	dV > 0	$\delta w < 0$	dp < 0	d I = 0
Compressão	dV < 0	$\delta w > 0$	dp > 0	dT = 0

Processos isotérmicos (T = cte.)

Processos isobáricos (p = cte.)

- Detalhando o trabalho:

$$w = \int_{i}^{f} \delta w = -p_{\text{ext}} \int_{i}^{f} dV = -p_{\text{ext}} (V_{f} - V_{i}) = -p_{\text{ext}} \Delta V$$

Expansão	dV > 0	$\delta w < 0$	dp = 0	dT > 0
Compressão	dV < 0	$\delta w > 0$	dp = 0	dT < 0

Processos isobáricos (p = cte.)

► Note que:

Expansão:
$$p_{\text{ext}} \leq p = \frac{nRT^*}{V}$$

Compressão:
$$p_{\text{ext}} \ge p = \frac{nRT^*}{V}$$

Sumário

Caminho	q	W	ΔU	ΔH
Isocórico	$C_V \Delta T$	0	$C_V \Delta T$	$C_V \Delta T + V \Delta p$
Adiabático	0	$C_V \Delta T$	$C_V \Delta T$	$C_p\Delta T$
Isotérmico	$nRT \ln \left(rac{V_f}{V_i} ight)$	$-nRT \ln \left(\frac{V_f}{V_i} \right)$	0	0
Isobárico	$C_p\Delta T$	$-p\Delta V$	$C_p\Delta T - p\Delta V$	$C_p\Delta T$

(a) Four basic thermodynamic processes; (b) A cyclic process.

Processos cíclicos (i = f)

Considere a expansão isobárica de V_i a V_f , seguida de uma compressão isobárica, de um gás ideal. Dado que o gás retorna ao estado inicial, chamamos esse processo de cíclico.

O trabalho total em tal ciclo é maior do que zero (demanda energia da vizinhança) porque o trabalho é uma função de caminho, e o caminho da expansão é diferente do da compressão nos processos isobáricos:

$$\oint \delta w = w_{\rm e} + w_{\rm c} = -p_{\rm ext} \Delta V + p'_{\rm ext} \Delta V = \underbrace{(p'_{\rm ext} - p_{\rm ext})}_{>0} \underbrace{\Delta V}_{>0} > 0$$

Nessas condições temos o comportamento usual de variáveis de estado e de caminho:

$$\oint dU = 0, \qquad \oint dH = 0, \qquad \oint \delta q \neq 0, \qquad \oint \delta w \neq 0$$

- ▶ A diferença entre caminhos opostos no ciclo apresentado torna o ciclo isobárico um processo irreversível. Isto é, ele não pode ser revertido sem um custo energético, por exemplo, na forma de trabalho;
- Por outro lado, um processo reversível pode ser revertido sem custo adicional de trabalho. Portanto, uma vez que o caminho de ida e de volta são os mesmos, um processo cíclico ocorre sem a necessidade de energia adicional. Nesses casos, a integral cíclica de variáveis de caminho comporta-se como se elas independessem do caminho (pois a ida e volta se cancelam), exibindo característica de variáveis de estado. Então:

$$\oint \delta q_{\text{rev}} = 0, \qquad \oint \delta w_{\text{rev}} = 0$$

- Vejamos um exemplo de como um processo irreversível pode se tornar reversível se conduzido quasi-estaticamente, na ausência de qualquer atrito;
- ► Imagine um cilindro que contém um gás, e acima dele há um pistão que pode subir (aumentar o volume do gás) ou descer (diminuir o volume do gás) sem atrito.
- ightharpoonup O gás inicialmente ocupa um volume V_i , e sofre uma pressão externa igual a interna p_i (está em equilíbrio mecânico).

- Perturbamos esse estado ao adicionar um objeto com massa m acima do pistão. A pressão externa é agora igual à $p_j = mg/A$ que, sendo maior que p_i , força o gás a ter seu volume reduzido para V_j . A temperatura também aumenta, pois o sistema é adiabaticamente isolado.
- A remoção da massa torna a pressão externa igual a p_i novamente, e a pressão do gás, sendo agora p_j > p_i, leva o sistema a expandir, diminuir sua temperatura, até que a pressão decresça para p_i novamente, e o volume volte à magnitude original, V_i.

Se considerarmos esse processo usando frações cada vez menores da massa original, notaremos que a área, correspondente ao trabalho em um ciclo, reduzirá a zero. De fato, para ir de um estado inicial a um intermediário e de volta ao inicial, reversivelmente, não demanda trabalho algum para a vizinhança (área do trabalho num ciclo nula).

Relação entre compressão/expansão reversível e irreversível

Das observações feitas anteriormente, é fácil concluir que o custo energético associado a um processo cíclico é maior que o associado a um processo reversível, dado que ele é nulo:

$$\oint \delta w_{irr} > 0 \Rightarrow \oint \delta w_{irr} > \oint \delta w_{rev}$$

Além disso, é possível mostrar que o trabalho irreversível de compressão/expansão é sempre maior que o reversível, mesmo quando o processo não é cíclico.

$$w_{\rm irr} > w_{\rm rev}$$
 (expansão/compressão)

Relação entre compressão/expansão reversível e irreversível

Para isso voltemos aos trabalhos adiabáticos de expansão e compressão. Agora delimitamos a área abaixo da curva e assumimos a variação de volume é pequena o suficiente para que a área abaixo da isoterma seja adequadamente representada pela área de retângulos e triângulos retângulos (método do trapezóide).

Na expansão: o retângulo correponde ao trabalho irreversível de expansão (w_{irr}^e) , e o trabalho reversível (w_{rev}^e) é aproximadamente a soma desta área com a do triângulo representado, $\Delta p \Delta V/2$:

$$w_{\mathsf{rev}}^e = w_{\mathsf{irr}}^e + \Delta p \Delta V/2$$

Como $\Delta p < 0$ e $\Delta V > 0$, $\Delta p \Delta V / 2 < 0$, de modo que:

$$w_{\rm irr}^e > w_{\rm rev}^e$$

Na compressão: neste caso o trabalho reversível de compressão (w^c_{rev}) equivale a área correspondente ao retângulo, do trabalho irreversível (w^c_{irr}) subtraída da área do triângulo.

$$w_{\mathsf{irr}}^c = w_{\mathsf{rev}}^c - \Delta p \Delta V/2$$

Desta vez $\Delta p > 0$ e $\Delta V < 0$, e sendo $\Delta p \Delta V / 2$ negativo, dado o sinal de menos, torna-se uma contribuição positiva. Assim fica claro que:

$$w_{\rm irr}^c > w_{\rm rev}^c$$

Assim, como $w_{\text{irr}}^e > w_{\text{rev}}^e$ e $w_{\text{irr}}^c > w_{\text{rev}}^c$, conclui-se o prometido:

$$w_{\rm irr} > w_{\rm rev}$$

- Outra forma de expor essas conclusões é afirmar que uma expansão irreversível produz menos trabalho que a reversível, e que a compressão demanda mais trabalho que a reversível;
- ▶ É claro que no limite quasi-estático, $\Delta p \Delta V/2 \rightarrow \mathrm{d} p \mathrm{d} V$ (metade de um número muito pequeno é quase igualmente pequeno), e:

$$\delta w_{\rm irr} = \delta w_{\rm rev} + dpdV > \delta w_{\rm rev}$$

• Quando d $pdV \rightarrow 0$, torna-se o trabalho irreversível lento o suficiente para ser considerado reversível ($\delta w_{irr} \rightarrow \delta w_{rev}$). Esse produto, considerando a equação dos gases ideais, é proporcional a dT, de modo que no limite reversível d $T \rightarrow 0$. Por isso a temperatura do gás não muda, e a pressão do gás segue a isoterma (mesmo que a temperatura não esteja sendo controlada por um banho térmico).

- As vezes o trabalho irreversível é tão grande que tratamos o processo como ocorrendo em apenas um sentido. Tais processos são extremamente irreversíveis;
- Sobre trabalhos reversíveis, de expansão/compressão como exemplo, ainda podemos notar que, dados os pontos inicial e final do estado do gás (p_i, V_i, T_i) e (p_i, V_i, T_i) , apenas uma curva (p_i, V_i, T_i) corresponde a um tipo de processo (p_i, V_i, T_i) adiabático, por exemplo) passa por esses dois pontos.
- Ou seja, o processo só depende dos estados inicial e final, já que há apenas um caminho. É nesse sentido que trabalho ou calor reversível se comportam como uma variável de estado: só dependem dos estados e a integral cíclica, por consequência, é nula.
- Observe que podemos fazer um ciclo completamente reversível se seguirmos apenas adiabáticas e isotérmas (ciclo de Carnot).

Sumário

Caminho	q	W	ΔU	ΔΗ
Isocórico	$C_V \Delta T$	0	$C_V \Delta T$	$C_V \Delta T + V \Delta p$
Adiabático	0	$C_V \Delta T$	$C_V \Delta T$	$C_p\Delta T$
Isotérmico	$nRT \ln \left(rac{V_f}{V_i} ight)$	$-nRT \ln \left(\frac{V_f}{V_i} \right)$	0	0
Isobárico	$C_p\Delta T$	$-p\Delta V$	$C_p\Delta T - p\Delta V$	$C_p\Delta T$
Cíclico	$-\oint \delta w$	$-\oint \delta q$	$\oint d U = 0$	$\oint dH = 0$

Referências adicionais

- Nash, L., Elements of Chemical Thermodynamics, 2nd Edition, Dover, 2013;
- Nussenzveig, H.M., Curso de Física Básica: Fluidos, Oscilações e Ondas, Calor (Volume 2), 5a. edição, 2014;
- (elementos de físico-química).