Some Pre-Concepts:

Before starting going through functions and implementations, I would like to emphasize the importance of Understanding the Axis and the Inplace parameter.

1) Understanding "Axis"

A DataFrame object has two axes: "axis 0" and "axis 1":

- axis 0: Wherever you see this -> it represents rows
- axis 1: Wherever you see this -> it represents columns
- 2) Understanding "Inplace"
 - Understanding the "inplace" parameter can help us a lot of time and memory!
 - When inplace = False -> which is the default, then the operation is performed and it returns a copy of the object. You then need to save it to something.

```
1 temp=df.set_index('CustomerId')# here by Default inplace = False
```

- 2 temp
- # While , When inplace = True -> the data is modified in place, which means it will return nothing and the dataframe is now updated.

```
1 df.set_index('CustomerId',inplace=True)
```

2 df

Data Manipulation with Pandas

Pandas is the most widely used library of python for data science. It is incredibly helpful in manipulating the data so that you can derive better insights and build great machine learning models.

Table of Contents

- 1. Sorting dataframes
- 2. Merging dataframes

Loading dataset

***In this notebook use the Big Mart Sales Data. You can download the data from : https://www.kaggle.com/brijbhushannanda1979/bigmart-sales-data?select=Test.csv (<a href="https://www.kaggle.com/brijbhushannanda1979/bigmart-

```
In [1]:
         1 import pandas as pd
           import numpy as np
         3
           # read the dataset
           data_BM = pd.read_csv('bigmart_data.csv')
           # drop the null values
         7 data BM = data BM.dropna(how="any")
           # view the top results
         9 data BM.head()
Out[1]:
          0
                FDA15
                          9.300
                                      Low Fat
                                                0.016047
                                                           Dairy
                                                                 249.8092
                                                                              OUT049
                                                                                                    1999
                                                                                                           Medium
               DRC01
                          5.920
                                                0.019278 Soft Drinks
                                                                              OUT018
                                                                                                    2009
                                                                                                           Medium
        1
                                      Regular
                                                                  48.2692
        2
               FDN15
                          17.500
                                      Low Fat
                                                0.016760
                                                                 141.6180
                                                                              OUT049
                                                                                                    1999
                                                                                                           Medium
                                                           Meat
               NCD19
                          8.930
                                      Low Fat
                                                                              OUT013
                                                0.000000
                                                        Household
                                                                  53.8614
                                                                                                    1987
                                                                                                              High
                                                           Baking
        5
                FDP36
                          10.395
                                                0.000000
                                                                  51.4008
                                                                              OUT018
                                                                                                    2009
                                                                                                           Medium
                                      Regular
                                                           Goods
```

1. Sorting dataframes

Pandas data frame has two useful functions

- sort_values(): to sort pandas data frame by one or more columns
- sort_index(): to sort pandas data frame by row index

Each of these functions come with numerous options, like sorting the data frame in specific order (ascending or descending), sorting in place, sorting with missing values, sorting by specific algorithm etc.

Suppose you want to sort the dataframe by "Outlet_Establishment_Year" then you will use sort_values

Out[2]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size
2812	FDR60	14.30	Low Fat	0.130307	Baking Goods	75.7328	OUT013	1987	High
5938	NCJ06	20.10	Low Fat	0.034624	Household	118.9782	OUT013	1987	High
3867	FDY38	13.60	Regular	0.119077	Dairy	231.2300	OUT013	1987	High
1307	FDB37	20.25	Regular	0.022922	Baking Goods	240.7538	OUT013	1987	High
5930	NCA18	10.10	Low Fat	0.056031	Household	115.1492	OUT013	1987	High
4									•

- Now sort_values takes multiple options like:
 - ascending: The default sorting order is ascending, when you pass False here then it sorts in descending order.
 - inplace : whether to do inplace sorting or not

```
In [3]:
           1 # sort in place and descending order
             data_BM.sort_values(by='Outlet_Establishment_Year', ascending=False, inplace=True)
              data_BM[:5]
Out[3]:
                Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_Identifier Outlet_Establishment_Year Outlet_Size
                                                                             Frozen
                       FDL16
                                     12.85
                                                    Low Fat
                                                                                       46.4060
                                                                                                      OUT018
          2825
                                                                 0.169139
                                                                                                                                  2009
                                                                                                                                           Medium
                                                                              Foods
                                                                          Health and
                                                                0.012689
          7389
                       NCD42
                                     16.50
                                                    Low Fat
                                                                                       39.7506
                                                                                                      OUT018
                                                                                                                                  2009
                                                                                                                                           Medium
                                                                            Hygiene
          2165
                       DRJ39
                                     20.25
                                                    Low Fat
                                                                 0.036474
                                                                                                      OUT018
                                                                                                                                  2009
                                                                                      218.3482
                                                                                                                                           Medium
                                                                              Dairy
                                                                             Baking
                                     14.30
                                                                                       76.7328
          2162
                       FDR60
                                                    Low Fat
                                                                 0.130946
                                                                                                      OUT018
                                                                                                                                  2009
                                                                                                                                           Medium
                                                                             Goods
                                                                              Snack
          2158
                       FDM58
                                     16.85
                                                    Regular
                                                                0.080015
                                                                                      111.8544
                                                                                                      OUT018
                                                                                                                                           Medium
                                                                                                                                  2009
                                                                              Foods
```

You might want to sort a data frame based on the values of multiple columns. We can specify the columns we want to sort by as a list in the argument for sort values().

Out[4]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	1
43	FDC02	21.35	Low Fat	0.069103	Canned	259.9278	OUT018	2009	Medium	
2803	FDU51	20.20	Regular	0.096907	Meat	175.5028	OUT018	2009	Medium	
641	FDY51	12.50	Low Fat	0.081465	Meat	220.7798	OUT018	2009	Medium	
2282	NCX30	16.70	Low Fat	0.026729	Household	248.4776	OUT018	2009	Medium	
2887	FDR25	17.00	Regular	0.140090	Canned	265.1884	OUT018	2009	Medium	

- Note that when sorting by multiple columns, pandas sort_value() uses the first variable first and second variable next.
- We can see the difference by switching the order of column names in the list.

Out[5]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size
4888	FDF39	14.850	Regular	0.019495	Dairy	261.2910	OUT013	1987	High
4289	NCM05	6.825	Low Fat	0.059847	Health and Hygiene	262.5226	OUT046	1997	Small
6409	FDA21	13.650	Low Fat	0.035931	Snack Foods	184.4924	OUT013	1987	High
4991	NCQ53	17.600	Low Fat	0.018905	Health and Hygiene	234.6590	OUT046	1997	Small
5752	FDI15	13.800	Low Fat	0.141326	Dairy	265.0884	OUT035	2004	Small

- We can use **sort_index()** to sort pandas dataframe to sort by row index or names.
- In this example, row index are numbers and in the earlier example we sorted data frame by 'Item_Outlet_Sales', 'Outlet_Establishment_Year' and therefore the row index are jumbled up.
- We can sort by row index (with inplace=True option) and retrieve the original dataframe.

```
In [6]:
        1 # sort by index
          data_BM.sort_index(inplace=True)
          data_BM[:5]
Out[6]:
          FDA15
        0
                         9.300
                                     Low Fat
                                              0.016047
                                                              249.8092
                                                                           OUT049
                                                                                                1999
                                                                                                       Medium
                                                         Dairy
        1
               DRC01
                         5.920
                                     Regular
                                              0.019278 Soft Drinks
                                                               48.2692
                                                                           OUT018
                                                                                                2009
                                                                                                       Medium
               FDN15
                                                                           OUT049
                                                                                                1999
        2
                         17.500
                                     Low Fat
                                              0.016760
                                                              141.6180
                                                                                                       Medium
                                                         Meat
               NCD19
                         8.930
                                     Low Fat
                                              0.000000 Household
                                                               53.8614
                                                                           OUT013
                                                                                                1987
                                                                                                         High
                                                        Baking
        5
               FDP36
                                                                           OUT018
                                                                                                       Medium
                         10.395
                                              0.000000
                                                               51.4008
                                                                                                2009
                                     Regular
                                                        Goods
```

2. Merging dataframes

- Joining and merging DataFrames is the core process to start with data analysis and machine learning tasks.
- It is one of the toolkits which every Data Analyst or Data Scientist should master because in almost all the cases data comes from multiple source and files.
- Pandas has two useful functions for merging dataframes:
 - concat()
 - merge()

Creating dummy data

```
In [7]:
          1 # create dummy data
            df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                                   'B': ['B0', 'B1', 'B2', 'B3'],
                                   'C': ['C0', 'C1', 'C2', 'C3'],
                                  'D': ['D0', 'D1', 'D2', 'D3']},
          5
          6
                                 index=[0, 1, 2, 3])
          7
             df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
         10
                                   'B': ['B4', 'B5', 'B6', 'B7'],
                                   'C': ['C4', 'C5', 'C6', 'C7'],
         11
                                   'D': ['D4', 'D5', 'D6', 'D7']},
         12
         13
                                 index=[4, 5, 6, 7])
         14
         15
             df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
         16
         17
                                   'B': ['B8', 'B9', 'B10', 'B11'],
                                   'C': ['C8', 'C9', 'C10', 'C11'],
         18
                                   'D': ['D8', 'D9', 'D10', 'D11']},
         19
                                 index=[8, 9, 10, 11])
         20
```

a. concat() for combining dataframes

- Suppose you have the following three dataframes: df1, df2 and df3 and you want to combine them **"row-wise"** so that they become a single dataframe like the given image:
- You can use **concat()** here. You will have to pass the names of the DataFrames in a list as the argument to the concat().

Out[8]:

	Α	В	С	D	_
0	A0	В0	C0	D0	
1	A1	В1	C1	D1	
2	A2	B2	C2	D2	
3	А3	В3	C3	D3	
4	A4	B4	C4	D4	
5	A5	B5	C5	D5	
6	A6	В6	C6	D6	
7	A7	B7	C7	D7	
8	A8	В8	C8	D8	
9	A9	В9	C9	D9	
10	A10	B10	C10	D10	
11	A11	B11	C11	D11	

- pandas also provides you with an option to label the DataFrames, after the concatenation, with a key so that you may know which data came from which DataFrame.
- You can achieve the same by passing additional argument keys specifying the label names of the DataFrames in a list.

Out[9]:

		Α	В	CO DO C1 C1 D1 C2 C2 D2 C3 C3 D3 C4 C4 D4 C5 C5 D5 C6 C6 D6 C7 C7 D7 C8 C8 D8	
	0	A0	В0	C0	D0
v	1	A1	B1	C1	D1
X	2	A2	B2	C2	D2
	3	А3	В3	C3	D3
	4	A4	B4	C4	D4
v	4 A4 B4 C4 C 5 A5 B5 C5 C	D5			
у	6	A6	В6	C6	D6
	7	A7	B7	C7	D7
	8	A8	В8	C8	D8
7	9	A9	В9	C9	D9
Z	10	A10	B10	C10	D10
	11	A11	B11	C11	D11

- Mentioning the keys also makes it easy to retrieve data corresponding to a particular DataFrame.
- You can retrieve the data of DataFrame df2 which had the label y by using the loc method.

Out[10]:

	Α	В	С	D
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	A6	В6	C6	D6
7	Α7	В7	C7	D7

- When gluing together multiple DataFrames, you have a choice of how to handle the other axes (other than the one being concatenated). This can be done in the following three ways:
 - Take the union of them all, join='outer'. This is the default option as it results in zero information loss.
 - Take the intersection, join='inner'.
 - Use a specific index, as passed to the join axes argument.
- Here is an example of each of these methods. First, the default join='outer' behavior:

```
In [11]:
             df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],
                                      'D': ['D2', 'D3', 'D6', 'D7'],
           2
                                      'F': ['F2', 'F3', 'F6', 'F7']},
           3
                                     index=[2, 3, 6, 7])
           5
              result = pd.concat([df1, df4], axis=1, sort=False)
             result
Out[11]:
                    В
                         C
                                   В
                                        D
                                             F
                              D
```

A0 B0 C0 D0 NaN NaN NaN Α1 B1 C1 D1 NaN NaN NaN A2 B2 C2 D2 B2 D2 F2 **A3** B3 C3 D3 B3 D3 F3 NaN NaN NaN B6 D6 F6 7 NaN NaN NaN NaN B7 D7 F7

• Here is the same thing with join='inner':

```
2 A2 B2 C2 D2 B2 D2 F2
3 A3 B3 C3 D3 B3 D3 F3
```

b. merge() for combining dataframes using SQL like joins

- Another ubiquitous operation related to DataFrames is the merging operation.
- Two DataFrames might hold different kinds of information about the same entity and linked by some common feature/column.
- We can use merge() to combine such dataframes in pandas.

Creating dummy data

```
In [13]:
           1 # create dummy data
           2 df a = pd.DataFrame({
                      'subject_id': ['1', '2', '3', '4', '5'],
           3
                      'first name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
           4
                      'last name': ['Anderson', 'Ackerman', 'Ali', 'Aoni', 'Atiches']})
           5
           6
             df b = pd.DataFrame({
                      'subject_id': ['4', '5', '6', '7', '8'],
           8
                      'first name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
           9
                      'last name': ['Bonder', 'Black', 'Balwner', 'Brice', 'Btisan']})
          10
          11
          12 df c = pd.DataFrame({
                      'subject_id': ['1', '2', '3', '4', '5', '7', '8', '9', '10', '11'],
          13
          14
                      'test id': [51, 15, 15, 61, 16, 14, 15, 1, 61, 16]})
```

Now these are our dataframes:

• Let's start with a basic join, we want to combine df a with df c based on the subject id column.

```
In [14]:
            1 pd.merge(df a, df c, on='subject id')
Out[14]:
              subject_id first_name last_name test_id
           0
                     1
                             Alex Anderson
                                                51
           1
                     2
                             Amy Ackerman
                                                15
                                         Ali
                             Allen
                                                15
                             Alice
                                       Aoni
                                                61
                     5
                           Ayoung
                                     Atiches
                                                16
```

Now that we have done a basic join, let's get into some commmon SQL joins.

Merge with outer join

• "Full outer join produces the set of all records in Table A and Table B, with matching records from both sides where available. If there is no match, the missing side will contain null."

In [15]:	1 pd.merg	e(df_a, df_b	o, on='subje	ct_id', how	='outer')
Out[15]:	subject_id	first_name_x	last_name_x	first_name_y	last_name_y
0	1	Alex	Anderson	NaN	NaN
1	2	Amy	Ackerman	NaN	NaN
2	3	Allen	Ali	NaN	NaN
3	4	Alice	Aoni	Billy	Bonder
4	5	Ayoung	Atiches	Brian	Black
5	6	NaN	NaN	Bran	Balwner
6	7	NaN	NaN	Bryce	Brice
7	8	NaN	NaN	Betty	Btisan

Merge with inner join

• "Inner join produces only the set of records that match in both Table A and Table B."

Merge with right join

• "Right outer join produces a complete set of records from Table B, with the matching records (where available) in Table A. If there is no match, the left side will contain null."

In [17]:	1	pd.merge	e(df_a, df_b	o, on='subje	ect_id', how	='right')
Out[17]:		subject_id	first_name_x	last_name_x	first_name_y	last_name_y
	0	4	Alice	Aoni	Billy	Bonder
	1	5	Ayoung	Atiches	Brian	Black
	2	6	NaN	NaN	Bran	Balwner
	3	7	NaN	NaN	Bryce	Brice
	4	8	NaN	NaN	Betty	Btisan

Merge with left join

• "Left outer join produces a complete set of records from Table A, with the matching records (where available) in Table B. If there is no match, the right side will contain null."

```
1 pd.merge(df_a, df_b, on='subject_id', how='left')
In [18]:
Out[18]:
               subject_id first_name_x last_name_x first_name_y last_name_y
            0
                      1
                                                           NaN
                                 Alex
                                          Anderson
                                                                        NaN
                       2
                                                           NaN
                                 Amy
                                         Ackerman
                                                                        NaN
                       3
                                Allen
                                               Ali
                                                           NaN
                                                                        NaN
            3
                       4
                                 Alice
                                              Aoni
                                                           Billy
                                                                      Bonder
                       5
                               Ayoung
                                           Atiches
                                                          Brian
                                                                       Black
```

Merge OR Concat: Which to use when?

- 1. After learning both of the functions in detail, chances are that you might be confused which to use when.
- 2. One major difference is that merge() is used to combine dataframes on the basis of values of **common columns**. While concat() is used to **append dataframes** one below the other (or sideways, depending on whether the axis option is set to 0 or 1).
- 3. Exact usage depends upon the kind of data you have and analysis you want to perform.

3. Apply Function

- Apply function can be used to perform pre-processing/ data -manupulation on both rows and columns.
- It is faster method than simple using a for loop over dataframe.
- Almost everytime i need to itrate over a dataframe or it's rows/columns. I will think of using the apply
- It is used in feature engineering code

In [19]:

1 # accessing row wise

2

3 data_BM.apply(lambda x:x)

Out[19]:

:	Item_	_ldentifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size
	0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium
	1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium
	2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium
	4	NCD19	8.930	Low Fat	0.000000	Household	53.8614	OUT013	1987	High
	5	FDP36	10.395	Regular	0.000000	Baking Goods	51.4008	OUT018	2009	Medium
851	17	FDF53	20.750	reg	0.083607	Frozen Foods	178.8318	OUT046	1997	Small
851	18	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	OUT013	1987	High
852	20	NCJ29	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	OUT035	2004	Small
852	21	FDN46	7.210	Regular	0.145221	Snack Foods	103.1332	OUT018	2009	Medium
852	22	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	OUT046	1997	Small

4650 rows × 12 columns


```
In [20]:
           1 # access first row
           3 data_BM.apply(lambda x:x[0])
Out[20]: Item Identifier
                                                   FDA15
         Item Weight
                                                     9.3
         Item Fat Content
                                                 Low Fat
         Item Visibility
                                               0.0160473
         Item Type
                                                   Dairy
         Item MRP
                                                 249.809
         Outlet Identifier
                                                  OUT049
         Outlet_Establishment_Year
                                                   1999
         Outlet Size
                                                 Medium
         Outlet Location Type
                                                  Tier 1
         Outlet Type
                                      Supermarket Type1
         Item Outlet Sales
                                                 3735.14
         dtype: object
           1 # accessing first column by index
In [21]:
           3 data BM.apply(lambda x:x[0],axis=1)
Out[21]: 0
                 FDA15
                 DRC01
         1
                 FDN15
         2
                 NCD19
                 FDP36
         5
                 . . .
         8517
                 FDF53
         8518
                 FDF22
                 NCJ29
         8520
         8521
                 FDN46
         8522
                 DRG01
         Length: 4650, dtype: object
```

```
In [22]:
           1 # accessing by column name
           3 data_BM.apply(lambda x:x["Item_Weight"],axis=1)
Out[22]: 0
                  9.300
                  5.920
         2
                 17.500
                  8.930
         4
         5
                 10.395
                  . . .
         8517
                 20.750
         8518
                  6.865
         8520
                 10.600
         8521
                  7.210
         8522
                 14.800
         Length: 4650, dtype: float64
```

- we can also apply to implement a **condtion** individually on every row and column of our dataframe.
- SUppose i want to clio Item MRP to 200 and not consider any value greater than that.

```
1 | # clip price if it is greater than 200
In [24]:
             def clip_price(price):
                  if price > 200:
                      price = 200
           5
           6
                 return price
In [25]:
           1 # after clipping
           3 data BM["Item MRP"].apply(lambda x:clip price(x))[:5]
Out[25]: 0
              200.0000
               48.2692
              141.6180
               53.8614
               51.4008
         Name: Item MRP, dtype: float64
```

• Suppose i want to label encode Outlet_Location_Type as 0 ,1,2 for Tier 1, Tier2, Tier 3 city. so my logic would be :

```
In [26]:
           1 # label encode city type
           2
              def label encode(city):
                  if city== "Tier 1":
                      label = 0
           5
                  elif city== "Tier 2":
           6
                      label = 1
           7
           8
                  else:
                      label = 2
           9
                  return label
          10
          11
```

• Now i will use apply to operate label_encode logic on evry row of the Outlet_Location_Type column

```
In [27]:
           1 # before label encoding
           3 data_BM["Outlet_Location_Type"][:5]
Out[27]: 0
              Tier 1
              Tier 3
              Tier 1
              Tier 3
              Tier 3
         Name: Outlet Location Type, dtype: object
In [28]:
           1 # after label encoding
           3 data_BM["Outlet_Location_Type"].apply(lambda x : label_encode(x))[:5]
Out[28]: 0
              2
              2
         Name: Outlet Location Type, dtype: int64
```

Types of Aggregations in Pandas

An essential piece of analysis of large data is efficient summarization: computing aggregations like sum(), mean(), median(), min(), and max(), in which a single number gives insight into the nature of a potentially large dataset.

explore aggregations in Pandas namely the following functions:

- 1. Crosstab
- 2. Groupby
- 3. Pivot Table

```
In [29]:
           1 import pandas as pd
             import numpy as np
             data = pd.read_csv("bigmart_data.csv")
             # droping the null values
             data = data.dropna(how="any")
          10
             # reset index after dropping
          11
             data = data.reset_index(drop= True)
          12
          13
          14 #view data
          15
          16 data.head()
Out[29]:
```

•		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Out
	0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium	
	1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium	
	2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium	
	3	NCD19	8.930	Low Fat	0.000000	Household	53.8614	OUT013	1987	High	
	4	FDP36	10.395	Regular	0.000000	Baking Goods	51.4008	OUT018	2009	Medium	
	4										•

1. Aggregating data

• after looking at the data, there are few questions poped-up. I will answer it using 1. groupby, crosstab, pivotable.

a. What is the mean price for each item type? :groupby

-Groupby is basically taking data and grouping it into bucket.

Out[30]:

	_				_		_	_
Item_Type								
Baking Goods	FDP36	10.395	Regular	0.000000	51.4008	OUT018	2009	Medium
Breads	FDW11	12.600	Low Fat	0.048981	61.9194	OUT018	2009	Medium
Breakfast	FDP49	9.000	Regular	0.069089	56.3614	OUT046	1997	Small
Canned	FDC02	21.350	Low Fat	0.069103	259.9278	OUT018	2009	Medium
Dairy	FDA15	9.300	Low Fat	0.016047	249.8092	OUT049	1999	Medium
Frozen Foods	FDR28	13.850	Regular	0.025896	165.0210	OUT046	1997	Small
Fruits and Vegetables	FDY07	11.800	Low Fat	0.000000	45.5402	OUT049	1999	Medium
Hard Drinks	DRJ59	11.650	low fat	0.019356	39.1164	OUT013	1987	High
Health and Hygiene	NCB42	11.800	Low Fat	0.008596	115.3492	OUT018	2009	Medium
Household	NCD19	8.930	Low Fat	0.000000	53.8614	OUT013	1987	High
Meat	FDN15	17.500	Low Fat	0.016760	141.6180	OUT049	1999	Medium
Others	NCM43	14.500	Low Fat	0.019472	164.8210	OUT035	2004	Small

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	O
Item_Type									
Seafood	FDH21	10.395	Low Fat	0.031274	160.0604	OUT049	1999	Medium	
Snack Foods	FDO10	13.650	Regular	0.012741	57.6588	OUT013	1987	High	
Soft Drinks	DRC01	5.920	Regular	0.019278	48.2692	OUT018	2009	Medium	
Starchy Foods	FDB11	16.000	Low Fat	0.060837	226.8404	OUT035	2004	Small	
4									>

- it has group the rows by it's item type by showing as index
- next step would be to calculate the mean of Item_MRP

```
In [31]:
           1 # mean price by its item
           3 group_price.Item_MRP.mean()
Out[31]: Item Type
         Baking Goods
                                  125.795653
         Breads
                                  141.300639
                                  134.090683
         Breakfast
         Canned
                                  138.551179
         Dairy
                                  149.481471
         Frozen Foods
                                  140.095830
         Fruits and Vegetables
                                  145.418257
         Hard Drinks
                                  140.102908
         Health and Hygiene
                                  131.437324
         Household
                                  149.884244
         Meat
                                  140.279344
         Others
                                  137.640870
         Seafood
                                  146.595782
         Snack Foods
                                  147.569955
         Soft Drinks
                                  130.910182
         Starchy Foods
                                  151.256747
         Name: Item_MRP, dtype: float64
```

groupby using multiple columns

Out[32]:

		Item_Identifier	Item_Weight	Item_Visibility	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet _.
Item_Type	Item_Fat_Content								
Baking Goods	Regular	FDP36	10.395	0.000000	51.4008	OUT018	2009	Medium	
Dairy	Low Fat	FDA15	9.300	0.016047	249.8092	OUT049	1999	Medium	
	Regular	FDA03	18.500	0.045464	144.1102	OUT046	1997	Small	
Fruits and	Low Fat	FDY07	11.800	0.000000	45.5402	OUT049	1999	Medium	
Vegetables	Regular	FDX32	15.100	0.100014	145.4786	OUT049	1999	Medium	
Household	Low Fat	NCD19	8.930	0.000000	53.8614	OUT013	1987	High	
Meat	Low Fat	FDN15	17.500	0.016760	141.6180	OUT049	1999	Medium	
Snack Foods	Regular	FDO10	13.650	0.012741	57.6588	OUT013	1987	High	
Soft Drinks	Regular	DRC01	5.920	0.019278	48.2692	OUT018	2009	Medium	

4

b. How are outlet sizes distributed based on the city type? : crosstab

- will tier 1 city have bigger outlet size?
- here, crosstab does is, it builts the cross tabulation table, that shows the frequency with which certain group of data appear.
- For example, in this case, "Outlet_Location_Type" is expected to affect the "Outlet_size" significantly.

Out[33]:	Outlet_Location_Type	Tier 1	Tier 2	Tier 3	All
	Outlet_Size				
	High	0	0	932	932
	Medium	930	0	928	1858
	Small	930	930	0	1860
	All	1960	030	1960	4650

- tier 3 is highest outlet size, and the highest outlet size is not present in tier1 amd tier 2 cities.
- and 50% of medium size Outlet are present only on tier 1 and tier 3 cities

c. How are the sales changing per year? : pivottable

- pivot_table requires a data and an index parameter
- data is the Pandas dataframe you pass to the function
- index is the feature that allows you to group your data. The index feature will appear as an index in the resultant table

Out[34]:

Item_Outlet_Sales

Outlet_Establishment_Year						
1987	2298.995256					
1997	2277.844267					
1999	2348.354635					
2004	2438.841866					
2009	1995.498739					

- the mean of the each year is shown
- Multiple colums using pivot table

```
In [35]: 1 pd.pivot_table(data,index=["Outlet_Establishment_Year","Outlet_Location_Type","Outlet_Size"],values="Item_Outlet_Sal
```

Out[35]: Item_Outlet_Sales

	Outlet_Size	Outlet_Location_Type	Outlet_Establishment_Year
2298.995256	High	Tier 3	1987
2277.844267	Small	Tier 1	1997
2348.354635	Medium	Tier 1	1999
2438.841866	Small	Tier 2	2004
1995.498739	Medium	Tier 3	2009

- This makes it easier to see that Tier 1 cities have good sales irrespective of year and outlet size.
- Tier 2 & Tier 3 cities dominate during the later year. This might mean both are performing beteer or we gave less data of later

Out[36]:		mean median min max
		→
	3	pd.pivot_table(data,index=["Outlet_Establishment_Year","Outlet_Location_Type","Outlet_Size"],values="Item_Outlet_Sai
23-	2	handa a garanta a garanta a an yan a a a a a a a a a a a a a a a
In [36]:	1	# performing multiple agg. like mean, median,min,max etc in pivot using aggfunc parameter

•				mean	median	min	шах	
				Item_Outlet_Sales	Item_Outlet_Sales	Item_Outlet_Sales	Item_Outlet_Sales	Item_Outlet
	Outlet_Establishment_Year	Outlet_Location_Type	Outlet_Size					
	1987	Tier 3	High	2298.995256	2050.6640	73.2380	10256.6490	1533.
	1997	Tier 1	Small	2277.844267	1945.8005	101.8674	9779.9362	1488.4
	1999	Tier 1	Medium	2348.354635	1966.1074	111.8544	7646.0472	1513.2
	2004	Tier 2	Small	2438.841866	2109.2544	113.8518	8479.6288	1538.
	2009	Tier 3	Medium	1995.498739	1655.1788	69.2432	6768.5228	1375.9
	4							•

^{1 ***}Note : For detail study follow full documentation in Pandas.