Homework 6

1 Calculate the integrals of the form $\omega = xdy - ydx$ over the following three curves. Compare answers.

$$C_1: \mathbf{r}(t) \begin{cases} x = R \cos t \\ y = R \sin t \end{cases}, \ 0 < t < \pi, \quad C_2: \mathbf{r}(t) \begin{cases} x = R \cos 4t \\ y = R \sin 4t \end{cases}, \ 0 < t < \frac{\pi}{4}$$

and
$$C_3$$
: $\mathbf{r}(t)$ $\begin{cases} x = Rt \\ y = R\sqrt{1 - t^2}, -1 \le t \le 1. \end{cases}$

(this exercise was done during the XIV-th lecture (Tuesday, VII-th week): see the last example in subsection 2.4 "Integration of differential forms over curves" in Lecture notes)

2 Consider an arc of parabola $x = 2y^2 - 1$, 0 < y < 1.

Give examples of two different parameterisations of this curve such that these parameterisations have the opposite orientation.

Calculate the integral of the form 1-form $\omega = \sin y dx$ over this curve.

How does the answer depend on a parameterisation?

- **3** Calculate the integral of the form $\omega = xdy$ over the following curves
- a) closed curve $x^2 + y^2 = 12y$
- b) arc of the ellipse $x^2 + y^2/9 = 1$ defined by the condition $y \ge 0$.

How does your answer depend on a choice of parameterisation?

- 4 a) Calculate the integrals $\int_{C_1} \omega$ and $\int_{C_2} \omega$ of the 1-form $\omega = xdy ydx$ over the curves C_1 : $x^2 + y^2 = 9$ and C_2 : $x^2 + y^2 = 6y$.
 - b) Perform the calculations of integrals $\int_{C_1} \omega$ and $\int_{C_2} \omega$ in polar coordinates.

Hint Performing the calculations for the curve C_2 one may use the polar coordinates r', φ' with the centre at the point (a,b): $\begin{cases} x = a + r' \cos \varphi' \\ y = b + r' \sin \varphi' \end{cases}$.

Exact forms

- **5** Calculate the integral $\int_C \omega$ where $\omega = xdx + ydy$ and C is
- a) the straight line segment $x = t, y = 1 t, 0 \le t \le 1$
- b) the segment of parabola x = t, $y = 1 t^n$, $0 \le t \le 1$, $n = 2, 3, 4, \dots$
- c) for an arbitrary curve starting at the point (0,1) and ending at the point ((1,0).
- **6** Show that the form 1-form $\omega = 3x^2ydx + x^3dy$ is an exact 1-form.

Calculate integral of this form over the curves considered in exercises 2) and 3).

- 7. Consider in \mathbf{E}^2 1-forms
- a) xdx, b) xdy c) xdx + ydy, d)xdy + ydx, e) xdy ydx
- f) $x^4dy + 4x^3ydx$.
- a) Show that 1-forms a), c), d) and f) are exact forms

b) Why are 1-forms b) and e) not exact?

8 Consider 1-form

$$\omega = \frac{xdy - ydx}{x^2 + y^2} \tag{1}$$

This form is defined in $\mathbf{E}^2 \setminus 0$, i.e. in all the points except origin: $x^2 + y^2 \neq 0$.

Write down this form in polar coordinates

- 9^{\dagger} Consider again 1-form defined in equation (1).
- a) † Does there exist a (smooth) function defined in $\mathbf{E}^2 \setminus 0$ such that $\omega = dF$? This proves that ω is a closed form.
- b) † What values can take the integral $\int_C \omega$ for the 1-form ω considered in equation (1) if C is an arbitrary curve starting at the point (0,1) and ending at the point ((1,0) (we suppose that the curve C does not pass trough the origin)

 $\mathbf{10}^{\dagger}$ Let $\omega = a(x,y)dx + b(x,y)dy$ be a closed form in \mathbf{E}^2 , $d\omega = 0$. Consider the function

$$f(x,y) = x \int_0^1 a(tx, ty)dt + y \int_0^1 b(tx, ty)dt$$
 (2)

† Show that

$$\omega = df$$
.

(This proves that an arbitrary closed form in \mathbf{E}^2 is an exact form.

† Why we cannot apply the formula (2) to the form ω defined by the expression (1)?