Lecture Notes of Multivariate Statistics Lecture 01

Weizhong Zhang

School of Data Science, Fudan University

February 22, 2023

1 Review of Linear Algebra

Theorem 1.1 (QR Factorization). Prove the following results for Gram-Schmidt orthogonalization

- 1. $r_{jj} \neq 0 \text{ for all } i = 1, ..., n$
- 2. $\|\mathbf{q}_i\|_2 = 1$ for all i = 1, ..., n
- 3. $\mathbf{q}_i^{\mathsf{T}} \mathbf{q}_j = 0$ for all $i = 1, \ldots, n$ and j < i.

Proof. Part 1: Since each \mathbf{q}_i is a linear combination of $\{\mathbf{a}_1, \cdots, \mathbf{a}_i\}$, the entry r_{jj} is zero means

$$r_{jj} = \left\| \mathbf{a}_j - \sum_{i=1}^{j-1} r_{ij} \mathbf{q}_i \right\|_2 = 0,$$

then \mathbf{a}_j must be a linear combination of $\{\mathbf{a}_1,\cdots,\mathbf{a}_{j-1}\}$, which validates the full rank assumption on \mathbf{A} .

Part 2: Just use the expression of r_{ij} .

Part 3: Recall that $r_{ij} = \mathbf{q}_i^{\top} \mathbf{a}_j$ for any $i \neq j$. We can verify

$$\mathbf{q}_{1}^{\top}\mathbf{q}_{2} = \frac{\mathbf{q}_{1}^{\top}(\mathbf{a}_{2} - r_{12}\mathbf{q}_{1})}{r_{22}} = \frac{\mathbf{q}_{1}^{\top}(\mathbf{a}_{2} - (\mathbf{q}_{1}^{\top}\mathbf{a}_{2})\mathbf{q}_{1})}{r_{22}} = \frac{\mathbf{q}_{1}^{\top}\mathbf{a}_{2} - (\mathbf{q}_{1}^{\top}\mathbf{a}_{2})\mathbf{q}_{1}^{\top}\mathbf{q}_{1}}{r_{22}} = 0$$

Suppose for $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $i = 1, \dots, n' - 1$ and j < i. Then for all $k = 1, 2, \dots, n' - 1$, we have

$$\mathbf{q}_{k}^{\top}\mathbf{q}_{n'} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - \sum_{i=1}^{n'-1} r_{in'}\mathbf{q}_{k}^{\top}\mathbf{q}_{i}}{r_{n'n'}} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - r_{kn'}\mathbf{q}_{k}^{\top}\mathbf{q}_{k}}{r_{n'n'}} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - r_{kn'}}{r_{n'n'}} = 0$$

Then we prove the result by induction.

Theorem 1.2. *Prove* $\|\mathbf{A}\|_{2} = \sigma_{1}$.

Proof. Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ be full SVD of \mathbf{A} . Then

$$\left\|\mathbf{A}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{A}\mathbf{x}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{x}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{x}\right\|_2$$

Then let $\mathbf{y} = \mathbf{V}^{\top}\mathbf{x}$. Since \mathbf{V} is orthogonal matrix, we have $\|\mathbf{y}\|_2 = \|\mathbf{V}^{\top}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 = 1$. Hence,

$$\sup_{\|\mathbf{x}\|_2=1} \|\mathbf{\Sigma}\mathbf{V}^{\top}\mathbf{x}\|_2 = \sup_{\|\mathbf{y}\|_2=1} \|\mathbf{\Sigma}\mathbf{y}\|_2 = \sup_{\|\mathbf{y}\|_2=1} \sqrt{\sum_{i=1}^r (\sigma_i y_i)^2} \leq \sigma_1.$$

We attain the maximum by taking $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ and the corresponding \mathbf{x} is $\mathbf{V} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Theorem 1.3 (Cholesky Factorization). The symmetric positive-definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has the decomposition of the form

$$\mathbf{A} = \mathbf{L} \mathbf{L}^{\top}$$

where $\mathbf{L} \in \mathbb{R}^{\times n}$ is a lower triangular matrix with real and positive diagonal entries.

Proof. For n=1, it is trivial. Suppose it holds for n-1, then any $\widetilde{\mathbf{A}} \in \mathbb{R}^{(n-1)\times (n-1)}$ can be written as

$$\widetilde{\mathbf{A}} = \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}^{\top}$$

where $\widetilde{\mathbf{L}} \in \mathbb{R}^{(n-1)\times (n-1)}$ is a lower triangular matrix with real and positive diagonal entries. Consider the case of n such that

$$\mathbf{A} = \begin{bmatrix} \widetilde{\mathbf{A}} & \mathbf{a} \\ \mathbf{a}^\top & \alpha \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{L}} \widetilde{\mathbf{L}}^\top & \mathbf{a} \\ \mathbf{a}^\top & \alpha \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad \text{where } \mathbf{a} \in \mathbb{R}^{n-1}, \quad \alpha \in \mathbb{R}.$$

Let

$$\mathbf{L}_1 = \begin{bmatrix} \widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

We have

$$\mathbf{L}_1^{-1}\mathbf{A}\mathbf{L}_1^{-\top} = \begin{bmatrix} \widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}^{\top} & \mathbf{a} \\ \mathbf{a}^{\top} & \alpha \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{L}}^{-\top} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{b} \\ \mathbf{b}^{\top} & \alpha \end{bmatrix} \triangleq \mathbf{B} \in \mathbb{R}^{n \times n} \quad \text{where } \mathbf{b} \in \widetilde{\mathbf{L}}^{-1}\mathbf{a} \in \mathbb{R}^{n-1}.$$

Let

$$\mathbf{L}_2 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{b}^{\top} & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

Then

$$\mathbf{L}_2^{-1}\mathbf{B}\mathbf{L}_2^{-\top} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{b}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{b} \\ \mathbf{b}^{\top} & \alpha \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \alpha - \mathbf{b}^{\top}\mathbf{b} \end{bmatrix}.$$

Since A is positive-definite, we have

$$\alpha - \mathbf{b}^{\mathsf{T}} \mathbf{b} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{L}}^{-\mathsf{T}} \widetilde{\mathbf{L}}^{-1} \mathbf{a} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{L}}^{-\mathsf{T}} \widetilde{\mathbf{L}}^{-1} \mathbf{a} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{A}}^{-1} \mathbf{a} > 0$$

Let $\alpha - \mathbf{b}^{\top} \mathbf{b} = \lambda^2$, where $\lambda > 0$. Hence, we have

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \alpha - \mathbf{b}^{\top} \mathbf{b} \end{bmatrix} = \mathbf{L}_{3} \mathbf{L}_{3}^{\top}, \quad \text{where } \mathbf{L}_{3} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \lambda \end{bmatrix}$$

which means $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top} \in \mathbb{R}^{n \times n}$ where $\mathbf{L} = \mathbf{L}_1\mathbf{L}_2\mathbf{L}_3 \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with real and positive diagonal entries.

Theorem 1.4. Suppose $\nabla^2 f(\mathbf{x})$ is continuous in an open neighborhood of \mathbf{x}^* and that $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$. Then \mathbf{x}^* is a strict local minimizer of f.

Proof. Because the Hessian is continuous and positive definite at x^* , we can choose a radius r > 0 so that $\nabla^2 f(\mathbf{x})$ remains positive definite for all \mathbf{x} in the open ball $\mathcal{D} = \{\mathbf{z} : \|\mathbf{z} - \mathbf{x}^*\|_2 < r\}$. Taking any nonzero vector \mathbf{p} with $\|\mathbf{p}\|_2 < r$, we have $\mathbf{x}^* + \mathbf{p} \in \mathcal{D}$ and so

$$f(\mathbf{x}^* + \mathbf{p}) = f(\mathbf{x}^*) + \mathbf{p}^\top \nabla f(\mathbf{x}^*) + \frac{1}{2} \mathbf{p}^\top \nabla^2 f(\mathbf{z}) \mathbf{p} = f(\mathbf{x}^*) + \frac{1}{2} \mathbf{p}^\top \nabla^2 f(\mathbf{z}) \mathbf{p},$$

where $\mathbf{z} = \mathbf{x}^* + t\mathbf{p}$ for some $t \in (0, 1)$. Since $\mathbf{z} \in \mathcal{D}$, we have $\mathbf{p}^\top \nabla^2 f(\mathbf{z}) \mathbf{p} > 0$, and therefore $f(\mathbf{x}^* + \mathbf{p}) > f(\mathbf{x}^*)$, giving the result.

Theorem 1.5. Suppose \mathbf{x}^* is a local minimizer of twice differentiable $f(\mathbf{x})$ and $\nabla^2 f(\mathbf{x})$ is continuous in an open neighborhood of \mathbf{x}^* , then $\nabla^2 f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

Proof. Suppose for contradiction that $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Define the vector $p = -\nabla f(\mathbf{x}^*)$, which leads to that $\mathbf{p}^{\top} \nabla f(\mathbf{x}^*) < 0$. Because ∇f is continuous near \mathbf{x}^* , there is a scalar T > 0 such that

$$\mathbf{p}^{\top} \nabla f(\mathbf{x}^* + t\mathbf{p}) < 0,$$

for all for any $t \in [0,T]$. We have by Taylor's theorem that

$$f(\mathbf{x}^* + \bar{t}\mathbf{p}) = f(\mathbf{x}^*) + \bar{t}\mathbf{p}^{\top}\nabla f(x^* + t\mathbf{p}),$$

for some $t \in (0, \bar{t})$. Therefore, $f(x^* + \bar{t}\mathbf{p}) < f(x^*)$ for all $\bar{t} \in (0, T]$. We have found a direction leading away from x^* along which f decreases, so x^* is not a local minimizer, and we have $\nabla^2 f(\mathbf{x}) = \mathbf{0}$.

For contradiction, assume that $\nabla^2 f(\mathbf{x}^*)$ is not positive semidefinite. Then we can choose a vector \mathbf{p} such that $\mathbf{p}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{p} < 0$. Because $\nabla^2 f(\mathbf{x})$ is continuous near \mathbf{x}^* , there is a scalar T > 0 such that

$$\mathbf{p}^{\top} \nabla^2 f(\mathbf{x}^* + t\mathbf{p}) \mathbf{p} < 0$$

for all $t \in [0, T]$. By doing a Taylor series expansion around x^* , we have for all $\bar{t} \in (0, T]$ and some $t \in (0, \bar{t})$ that

$$f(\mathbf{x}^* + \bar{t}\mathbf{p}) = f(\mathbf{x}^*) + \bar{t}\mathbf{p}^\top \nabla f(\mathbf{x}^*) + \frac{1}{2}\bar{t}^2\mathbf{p}^\top \nabla^2(\mathbf{x}^* + t\mathbf{p})\bar{t}^2\mathbf{p} < f(\mathbf{x}^*).$$

We have found a direction from \mathbf{x}^* along which f is decreasing, and so again, \mathbf{x}^* is not a local minimizer. \square

Theorem 1.6. Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, the solution of minimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \triangleq \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

is $\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{y}$, where $\mathbf{y} \in \mathbb{R}^n$

Proof. The Hessian of $f(\mathbf{x})$ is $\mathbf{A}^{\top} \mathbf{A} \succeq \mathbf{0}$, which means $f(\mathbf{x})$ is convex. Let $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^{\top}$ be the condense SVD, where r is the rank of \mathbf{A} . Since $\nabla f(\mathbf{x}) = \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b}$, we only needs to solve the linear system

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0}.$$

We denote the solution of $\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0}$ be

$$\mathcal{X} = \left\{ \mathbf{x} : \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0} \right\}.$$

We can verify that $\hat{\mathbf{x}} = \mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{y}$ is the solution of the linear system because

$$\begin{split} &\mathbf{A}^{\top}\mathbf{A}\hat{\mathbf{x}} - \mathbf{A}^{\top}\mathbf{b} \\ &= &\mathbf{A}^{\top}\mathbf{A}\left(\mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{y}\right) - \mathbf{A}^{\top}\mathbf{b} \\ &= &\mathbf{A}^{\top}(\mathbf{A}\mathbf{A}^{\dagger} - \mathbf{I})\mathbf{b} + \mathbf{A}^{\top}\mathbf{A}\left(\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A}\right)\mathbf{y} \\ &= &\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}(\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{-1}\mathbf{U}_{r}^{\top} - \mathbf{I})\mathbf{b} + \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\left(\mathbf{I} - \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{-1}\mathbf{U}_{r}^{\top}\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\right)\mathbf{y} \end{split}$$

$$\begin{split} &= & \mathbf{V}_r \mathbf{\Sigma}_r \mathbf{U}_r^\top (\mathbf{U}_r \mathbf{U}_r^\top - \mathbf{I}) \mathbf{b} + \mathbf{V}_r \mathbf{\Sigma}_r^2 \mathbf{V}_r^\top \left(\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^\top \right) \mathbf{y} \\ &= & \mathbf{V}_r \mathbf{\Sigma}_r (\mathbf{U}_r^\top - \mathbf{U}_r^\top) \mathbf{b} + \mathbf{V}_r \mathbf{\Sigma}_r^2 \left(\mathbf{V}_r^\top - \mathbf{V}_r^\top \right) \mathbf{y} \\ &= & \mathbf{0}. \end{split}$$

Hence, we have $\mathcal{X}_1 \subseteq \mathcal{X}$, where $\mathcal{X}_1 = \left\{ \mathbf{x} : \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{y}, \ \mathbf{y} \in \mathbb{R}^n \right\}$. We also have

$$\begin{split} \mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \mathbf{A}^{\top}\mathbf{b} &= \mathbf{0} \\ \Longleftrightarrow & \mathbf{V}_r \mathbf{\Sigma}_r^2 \mathbf{V}_r^{\top}\mathbf{x} - \mathbf{V}_r \mathbf{\Sigma}_r \mathbf{U}_r^{\top}\mathbf{b} = \mathbf{0} \\ \Longleftrightarrow & \mathbf{\Sigma}_r^2 \mathbf{V}_r^{\top}\mathbf{x} - \mathbf{\Sigma}_r \mathbf{U}_r^{\top}\mathbf{b} = \mathbf{0} \\ \Longleftrightarrow & \mathbf{V}_r^{\top}\mathbf{x} = \mathbf{\Sigma}_r^{-1}\mathbf{U}_r^{\top}\mathbf{b} \\ \Longleftrightarrow & \mathbf{V}_r \mathbf{V}_r^{\top}\mathbf{x} = \mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^{\top}\mathbf{b} \\ \Longleftrightarrow & \mathbf{x} - (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{\top})\mathbf{x} = \mathbf{A}^{\dagger}\mathbf{b} \\ \Longleftrightarrow & \mathbf{x} = \mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{\top})\mathbf{x} \end{split}$$

Hence, we have $\mathcal{X} = \left\{ \mathbf{x} : \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{\top}) \mathbf{x} \right\} \subseteq \mathcal{X}_1$. In conclusion, we have $\mathcal{X} = \mathcal{X}_1$.