Minimum Spanning Trees

Minimum Spanning Tree

• Problem: given a connected, undirected, weighted graph:

Minimum Spanning Tree

• Problem: given a connected, undirected, weighted graph, find a *spanning tree* using edges that minimize the total weight

Minimum Spanning Tree

• Which edges form the minimum spanning tree (MST) of the below graph?

Minimum Spanning Tree

• Answer:

Minimum Spanning Tree

- MSTs satisfy the *optimal substructure* property: an optimal tree is composed of optimal subtrees
 - Let T be an MST of G with an edge (u,v) in the middle
 - Removing (u,v) partitions T into two trees T_1 and T_2
 - Claim: T_1 is an MST of $G_1 = (V_1, E_1)$, and T_2 is an MST of $G_2 = (V_2, E_2)$ (Do V_1 and V_2 share vertices? Why?)
 - Proof: $w(T) = w(u,v) + w(T_1) + w(T_2)$ (There can't be a better tree than T_1 or T_2 , or T would be suboptimal)

Minimum Spanning Tree

- Theorem:
 - Let T be MST of G, and let $A \subseteq T$ be subtree of T
 - Let (u,v) be min-weight edge connecting A to V-A
 - Then $(u,v) \in T$

Minimum Spanning Tree

- Theorem:
 - Let T be MST of G, and let $A \subseteq T$ be subtree of T
 - Let (u,v) be min-weight edge connecting A to V-A
 - Then $(u,v) \in T$
- Proof: in book (see Theorem 23.1)