$12n_{0385} \ (K12n_{0385})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -2.29531 \times 10^{124} u^{55} - 5.17327 \times 10^{124} u^{54} + \dots + 4.70448 \times 10^{122} b + 9.01469 \times 10^{124}, \\ &- 7.90126 \times 10^{124} u^{55} + 1.78040 \times 10^{125} u^{54} + \dots + 4.70448 \times 10^{122} a - 3.09074 \times 10^{125}, \ u^{56} + 2 u^{55} + \dots - 15 u^{56} u^{56} + 2 u^{56} u^{56} + 2 u^{56} u^{5$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 76 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -2.30 \times 10^{124} u^{55} - 5.17 \times 10^{124} u^{54} + \dots + 4.70 \times 10^{122} b + 9.01 \times 10^{124}, \ 7.90 \times 10^{124} u^{55} + 1.78 \times 10^{125} u^{54} + \dots + 4.70 \times 10^{122} a - 3.09 \times 10^{125}, \ u^{56} + 2u^{55} + \dots - 15u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -167.952u^{55} - 378.447u^{54} + \cdots - 7319.21u + 656.977 \\ 48.7899u^{55} + 109.965u^{54} + \cdots + 2128.78u - 191.619 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -119.162u^{55} - 268.482u^{54} + \cdots - 5190.43u + 465.357 \\ 48.7899u^{55} + 109.965u^{54} + \cdots + 2128.78u - 191.619 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 50.7952u^{55} + 115.863u^{54} + \cdots + 2093.41u - 184.274 \\ -35.5785u^{55} - 80.8855u^{54} + \cdots - 1476.67u + 130.375 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -145.156u^{55} - 329.196u^{54} + \cdots - 6101.43u + 545.139 \\ 87.4444u^{55} + 197.890u^{54} + \cdots + 3716.70u - 332.270 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 21.0734u^{55} + 49.2382u^{54} + \cdots + 774.695u + 66.8772 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 332.270u^{55} + 751.984u^{54} + \cdots + 774.695u + 66.8772 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 332.270u^{55} + 751.984u^{54} + \cdots + 741.52.1u - 1267.35 \\ -185.312u^{55} - 419.091u^{54} + \cdots - 7917.98u + 708.943 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 21.0734u^{55} + 49.2382u^{54} + \cdots + 731.326u - 59.8342 \\ -21.9298u^{55} - 50.2637u^{54} + \cdots + 731.326u - 59.8342 \\ -21.9298u^{55} - 50.2637u^{54} + \cdots + 859.993u + 73.9686 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 20.4358u^{55} + 47.7320u^{54} + \cdots + 712.161u - 58.4629 \\ -21.2114u^{55} - 48.5599u^{54} + \cdots + 838.002u + 72.3663 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-217.435u^{55} 492.105u^{54} + \cdots 9258.95u + 822.622$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{56} + 13u^{55} + \dots + u + 1$
c_2, c_5	$u^{56} + 3u^{55} + \dots - 7u + 1$
<i>c</i> ₃	$u^{56} + 2u^{55} + \dots + 43738u + 6847$
c_4, c_{10}	$u^{56} + u^{55} + \dots + 130u + 43$
c_6, c_{11}	$u^{56} - 2u^{55} + \dots + 15u + 1$
	$u^{56} + u^{55} + \dots - 8u + 19$
c_8, c_{12}	$u^{56} + 8u^{55} + \dots + 25217681u + 3589991$
<i>c</i> ₉	$u^{56} + 21u^{55} + \dots + 36162u + 1849$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{56} + 67y^{55} + \dots - 305y + 1$
c_2, c_5	$y^{56} - 13y^{55} + \dots - y + 1$
<i>c</i> ₃	$y^{56} + 76y^{55} + \dots + 2879627170y + 46881409$
c_4, c_{10}	$y^{56} + 21y^{55} + \dots + 36162y + 1849$
c_6, c_{11}	$y^{56} + 6y^{55} + \dots - 25y + 1$
c_7	$y^{56} - 9y^{55} + \dots + 17302y + 361$
c_8,c_{12}	$y^{56} - 78y^{55} + \dots + 166741384065503y + 12888035380081$
<i>c</i> ₉	$y^{56} + 49y^{55} + \dots - 27712598y + 3418801$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.662954 + 0.763312I		
a = 0.109755 + 0.857727I	-0.01661 + 7.26026I	0 10.22253I
b = 0.710096 - 0.628504I		
u = 0.662954 - 0.763312I		
a = 0.109755 - 0.857727I	-0.01661 - 7.26026I	0. + 10.22253I
b = 0.710096 + 0.628504I		
u = -0.666863 + 0.770647I		
a = 0.887690 - 0.725522I	1.78699 - 2.38449I	0
b = -0.221964 + 0.922686I		
u = -0.666863 - 0.770647I		
a = 0.887690 + 0.725522I	1.78699 + 2.38449I	0
b = -0.221964 - 0.922686I		
u = 0.865491 + 0.431238I		
a = 0.37766 - 3.20632I	-1.50834 + 5.13908I	-1.64354 - 9.78620I
b = -0.415607 + 0.220395I		
u = 0.865491 - 0.431238I		
a = 0.37766 + 3.20632I	-1.50834 - 5.13908I	-1.64354 + 9.78620I
b = -0.415607 - 0.220395I		
u = -0.694616 + 0.641622I		
a = -0.163620 + 0.995740I	2.04092 - 2.37552I	3.14853 + 4.55601I
b = -0.598031 - 0.619979I		
u = -0.694616 - 0.641622I		
a = -0.163620 - 0.995740I	2.04092 + 2.37552I	3.14853 - 4.55601I
b = -0.598031 + 0.619979I		
u = 0.888013 + 0.699797I		
a = 0.138881 - 0.344888I	-0.60327 + 3.12252I	0
b = 0.838168 + 0.413727I		
u = 0.888013 - 0.699797I		
a = 0.138881 + 0.344888I	-0.60327 - 3.12252I	0
b = 0.838168 - 0.413727I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.190436 + 1.123830I		
a = 0.444310 + 0.527604I	-4.50386 - 1.21393I	0
b = -0.365972 + 0.069044I		
u = 0.190436 - 1.123830I		
a = 0.444310 - 0.527604I	-4.50386 + 1.21393I	0
b = -0.365972 - 0.069044I		
u = -0.855002 + 0.041630I		
a = -1.26036 + 1.03025I	1.51091 - 0.09931I	7.48576 - 0.57256I
b = -0.064318 - 0.244656I		
u = -0.855002 - 0.041630I		
a = -1.26036 - 1.03025I	1.51091 + 0.09931I	7.48576 + 0.57256I
b = -0.064318 + 0.244656I		
u = -1.154250 + 0.028922I		
a = -0.67805 + 1.69251I	4.21997 + 2.88917I	0
b = 0.898070 - 0.760890I		
u = -1.154250 - 0.028922I		
a = -0.67805 - 1.69251I	4.21997 - 2.88917I	0
b = 0.898070 + 0.760890I		
u = 0.298553 + 0.783068I		
a = 1.47696 + 1.31436I	-1.71963 + 1.34220I	1.33019 - 5.27887I
b = 1.216760 - 0.521960I		
u = 0.298553 - 0.783068I		
a = 1.47696 - 1.31436I	-1.71963 - 1.34220I	1.33019 + 5.27887I
b = 1.216760 + 0.521960I		
u = 0.236859 + 1.215390I		
a = -0.760833 - 0.660762I	-3.22157 - 1.15649I	0
b = 0.479782 + 0.683588I		
u = 0.236859 - 1.215390I		
a = -0.760833 + 0.660762I	-3.22157 + 1.15649I	0
b = 0.479782 - 0.683588I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.221310 + 0.412682I		
a = 0.141595 - 0.224601I	0.709733 + 0.991277I	0
b = -0.965402 + 0.220051I		
u = -1.221310 - 0.412682I		
a = 0.141595 + 0.224601I	0.709733 - 0.991277I	0
b = -0.965402 - 0.220051I		
u = 0.681846 + 0.011526I		
a = -3.05207 - 2.44743I	1.13214 - 4.01858I	5.94853 + 4.16003I
b = 0.446392 + 0.849165I		
u = 0.681846 - 0.011526I		
a = -3.05207 + 2.44743I	1.13214 + 4.01858I	5.94853 - 4.16003I
b = 0.446392 - 0.849165I		
u = 0.529724 + 0.424634I		
a = 0.48742 + 1.49607I	-3.17521 + 4.65332I	-7.74651 - 6.05847I
b = -0.811392 + 0.067619I		
u = 0.529724 - 0.424634I		
a = 0.48742 - 1.49607I	-3.17521 - 4.65332I	-7.74651 + 6.05847I
b = -0.811392 - 0.067619I		
u = -0.153495 + 1.312610I		
a = -1.18611 + 0.82511I	-6.82465 - 2.95148I	0
b = -0.994161 - 0.290702I		
u = -0.153495 - 1.312610I		
a = -1.18611 - 0.82511I	-6.82465 + 2.95148I	0
b = -0.994161 + 0.290702I		
u = 1.054190 + 0.817175I		
a = 1.74185 + 1.23072I	10.62210 + 1.04027I	0
b = -0.915264 - 1.067760I		
u = 1.054190 - 0.817175I		
a = 1.74185 - 1.23072I	10.62210 - 1.04027I	0
b = -0.915264 + 1.067760I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.716286 + 1.170940I		
a = -0.257562 + 1.315470I	-1.88294 - 7.50272I	0
b = -1.281030 - 0.421786I		
u = -0.716286 - 1.170940I		
a = -0.257562 - 1.315470I	-1.88294 + 7.50272I	0
b = -1.281030 + 0.421786I		
u = 1.085940 + 0.879913I		
a = 0.23842 - 2.61162I	10.09000 + 8.41326I	0
b = -1.07014 + 0.95854I		
u = 1.085940 - 0.879913I		
a = 0.23842 + 2.61162I	10.09000 - 8.41326I	0
b = -1.07014 - 0.95854I		
u = 0.87694 + 1.16695I		
a = 0.46590 - 1.84575I	9.48260 + 6.10181I	0
b = -0.910716 + 0.995484I		
u = 0.87694 - 1.16695I		
a = 0.46590 + 1.84575I	9.48260 - 6.10181I	0
b = -0.910716 - 0.995484I		
u = -0.201309 + 0.484082I		
a = 5.17876 - 2.75312I	0.36376 - 4.79110I	-12.4271 + 7.9106I
b = 0.764547 + 1.016520I		
u = -0.201309 - 0.484082I		
a = 5.17876 + 2.75312I	0.36376 + 4.79110I	-12.4271 - 7.9106I
b = 0.764547 - 1.016520I		
u = 0.41214 + 1.42834I		
a = 0.36344 + 1.45804I	-5.09935 + 3.68934I	0
b = 1.088950 - 0.558550I		
u = 0.41214 - 1.42834I		
a = 0.36344 - 1.45804I	-5.09935 - 3.68934I	0
b = 1.088950 + 0.558550I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.92562 + 1.19150I		
a = 0.86660 + 1.42318I	9.09077 - 0.96024I	0
b = -1.030690 - 0.930366I		
u = 0.92562 - 1.19150I		
a = 0.86660 - 1.42318I	9.09077 + 0.96024I	0
b = -1.030690 + 0.930366I		
u = 0.107311 + 0.465903I		
a = 0.942601 + 0.990213I	-1.82336 + 0.66526I	-4.71538 - 3.25851I
b = 0.847141 - 0.344738I		
u = 0.107311 - 0.465903I		
a = 0.942601 - 0.990213I	-1.82336 - 0.66526I	-4.71538 + 3.25851I
b = 0.847141 + 0.344738I		
u = -1.06310 + 1.14192I		
a = -1.29601 + 1.16872I	9.09155 - 8.12513I	0
b = 0.831104 - 1.076510I		
u = -1.06310 - 1.14192I		
a = -1.29601 - 1.16872I	9.09155 + 8.12513I	0
b = 0.831104 + 1.076510I		
u = -1.20609 + 1.00543I		
a = -0.48936 - 1.88232I	9.61530 - 0.06348I	0
b = 0.819158 + 1.011510I		
u = -1.20609 - 1.00543I		
a = -0.48936 + 1.88232I	9.61530 + 0.06348I	0
b = 0.819158 - 1.011510I		
u = -1.08874 + 1.16941I		
a = -0.13787 - 2.22801I	8.1820 - 15.3204I	0
b = 1.10246 + 0.90357I		
u = -1.08874 - 1.16941I		
a = -0.13787 + 2.22801I	8.1820 + 15.3204I	0
b = 1.10246 - 0.90357I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.27615 + 1.03922I		
a = -0.86060 + 1.41837I	8.74803 + 6.83361I	0
b = 1.082350 - 0.866720I		
u = -1.27615 - 1.03922I		
a = -0.86060 - 1.41837I	8.74803 - 6.83361I	0
b = 1.082350 + 0.866720I		
u = 0.219793 + 0.185855I		
a = -4.45335 - 0.50756I	-1.68718 - 0.25895I	-4.50240 - 0.85249I
b = 0.925176 + 0.237900I		
u = 0.219793 - 0.185855I		
a = -4.45335 + 0.50756I	-1.68718 + 0.25895I	-4.50240 + 0.85249I
b = 0.925176 - 0.237900I		
u = 0.261423 + 0.003508I		
a = 1.73394 - 2.85481I	4.59695 + 3.10196I	-6.56843 - 3.78158I
b = -0.905464 + 0.831639I		
u = 0.261423 - 0.003508I		
a = 1.73394 + 2.85481I	4.59695 - 3.10196I	-6.56843 + 3.78158I
b = -0.905464 - 0.831639I		

II.

$$I_2^u = \langle 1.26 \times 10^8 u^{19} - 4.38 \times 10^8 u^{18} + \dots + 5.93 \times 10^8 b + 6.02 \times 10^8, -1.02 \times 10^9 u^{19} + 1.68 \times 10^9 u^{18} + \dots + 5.93 \times 10^8 a + 2.28 \times 10^9, \ u^{20} - u^{19} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.72502u^{19} - 2.83710u^{18} + \dots - 5.51268u - 3.84780 \\ -0.212769u^{19} + 0.738528u^{18} + \dots + 1.78694u - 1.01535 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.51226u^{19} - 2.09857u^{18} + \dots - 3.72574u - 4.86315 \\ -0.212769u^{19} + 0.738528u^{18} + \dots + 1.78694u - 1.01535 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.41289u^{19} - 1.40554u^{18} + \dots - 12u - 6 \\ 1.41283u^{19} - 1.40554u^{18} + \dots - 0.857291u - 1.04241 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.41283u^{19} - 0.466556u^{18} + \dots + 7.01592u - 3.71394 \\ 0.650572u^{19} - 1.01233u^{18} + \dots - 0.860745u + 1.30063 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.263948u^{19} + 0.440918u^{18} + \dots + 0.0991862u - 1.14159 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.30063u^{19} + 1.95120u^{18} + \dots + 5.94534u + 0.439886 \\ 1.56096u^{19} - 3.14489u^{18} + \dots + 5.50991u + 2.86901 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{19} - 4u^{17} + \dots - 12u^{2} - 6u \\ -0.263948u^{19} + 0.440918u^{18} + \dots + 0.0991862u - 2.14159 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -0.870938u^{19} - 0.0534748u^{18} + \dots - 6.44092u - 0.823030 \\ -0.403352u^{19} + 0.575848u^{18} + \dots + 0.593579u - 1.24298 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{3555961983}{593361451}u^{19} + \frac{2757595505}{593361451}u^{18} + \cdots - \frac{5543396896}{593361451}u + \frac{1259815944}{593361451}u^{18} + \cdots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{20} - 10u^{19} + \dots - 11u + 1$
c_2	$u^{20} - 5u^{18} + \dots + u + 1$
c_3	$u^{20} + u^{19} + \dots - 18u + 29$
c_4	$u^{20} + 6u^{18} + \dots - 2u + 1$
c_5	$u^{20} - 5u^{18} + \dots - u + 1$
c_6	$u^{20} - u^{19} + \dots - u + 1$
c_7	$u^{20} + 2u^{19} + \dots + 2u + 1$
c_8	$u^{20} - u^{19} + \dots - u + 1$
c_9	$u^{20} - 12u^{19} + \dots - 12u + 1$
c_{10}	$u^{20} + 6u^{18} + \dots + 2u + 1$
c_{11}	$u^{20} + u^{19} + \dots + u + 1$
c_{12}	$u^{20} + u^{19} + \dots + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{20} + 6y^{19} + \dots + 5y + 1$
c_2, c_5	$y^{20} - 10y^{19} + \dots - 11y + 1$
<i>c</i> ₃	$y^{20} + 7y^{19} + \dots + 2576y + 841$
c_4, c_{10}	$y^{20} + 12y^{19} + \dots + 12y + 1$
c_6, c_{11}	$y^{20} + 9y^{19} + \dots + y + 1$
	$y^{20} - 18y^{19} + \dots - 16y + 1$
c_8, c_{12}	$y^{20} + y^{19} + \dots + 9y + 1$
<i>c</i> ₉	$y^{20} + 12y^{19} + \dots + 8y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.977898 + 0.441216I		
a = 0.11731 - 1.61850I	-1.72530 + 4.24965I	-3.26588 - 2.33166I
b = 0.674570 + 0.231745I		
u = 0.977898 - 0.441216I		
a = 0.11731 + 1.61850I	-1.72530 - 4.24965I	-3.26588 + 2.33166I
b = 0.674570 - 0.231745I		
u = -1.076060 + 0.058214I		
a = -0.160408 - 0.538138I	0.528220 + 0.140723I	-2.50468 + 1.63082I
b = -0.805721 + 0.086002I		
u = -1.076060 - 0.058214I		
a = -0.160408 + 0.538138I	0.528220 - 0.140723I	-2.50468 - 1.63082I
b = -0.805721 - 0.086002I		
u = -0.087264 + 1.114970I		
a = 0.667120 - 0.276565I	-3.84868 - 0.50039I	-4.16213 - 1.44471I
b = -0.609605 + 0.520631I		
u = -0.087264 - 1.114970I		
a = 0.667120 + 0.276565I	-3.84868 + 0.50039I	-4.16213 + 1.44471I
b = -0.609605 - 0.520631I		
u = 0.385593 + 1.095040I		
a = -0.892880 - 0.744846I	-4.07608 - 2.12478I	-4.95751 + 6.84383I
b = 0.614448 + 0.455281I		
u = 0.385593 - 1.095040I		
a = -0.892880 + 0.744846I	-4.07608 + 2.12478I	-4.95751 - 6.84383I
b = 0.614448 - 0.455281I		
u = -0.782687 + 0.053190I		
a = -0.68017 + 1.64534I	5.14619 + 3.00289I	9.39397 - 1.79457I
b = 0.901068 - 0.798573I		
u = -0.782687 - 0.053190I		
a = -0.68017 - 1.64534I	5.14619 - 3.00289I	9.39397 + 1.79457I
b = 0.901068 + 0.798573I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.781642 + 0.941987I		
a = 0.20384 + 1.85338I	-3.42619 + 7.04333I	-5.70410 - 7.29708I
b = 1.084510 - 0.387004I		
u = 0.781642 - 0.941987I		
a = 0.20384 - 1.85338I	-3.42619 - 7.04333I	-5.70410 + 7.29708I
b = 1.084510 + 0.387004I		
u = -0.283961 + 0.610275I		
a = -2.13713 + 3.17616I	-2.20020 - 1.12205I	-13.00820 + 1.65018I
b = -1.252840 - 0.458676I		
u = -0.283961 - 0.610275I		
a = -2.13713 - 3.17616I	-2.20020 + 1.12205I	-13.00820 - 1.65018I
b = -1.252840 + 0.458676I		
u = -0.20797 + 1.48001I		
a = -0.568940 + 1.193110I	-5.33797 - 4.70204I	-5.36335 + 8.18569I
b = -1.050630 - 0.501085I		
u = -0.20797 - 1.48001I		
a = -0.568940 - 1.193110I	-5.33797 + 4.70204I	-5.36335 - 8.18569I
b = -1.050630 + 0.501085I		
u = 0.312824 + 0.305189I		
a = -6.00260 - 1.71848I	0.75185 + 4.88757I	6.59227 - 12.27741I
b = -0.599146 + 0.975616I		
u = 0.312824 - 0.305189I		
a = -6.00260 + 1.71848I	0.75185 - 4.88757I	6.59227 + 12.27741I
b = -0.599146 - 0.975616I		
u = 0.47998 + 1.50322I		
a = 0.453856 + 1.329260I	-5.55104 + 1.76510I	-3.52040 - 0.02107I
b = 1.043350 - 0.471419I		
u = 0.47998 - 1.50322I		
a = 0.453856 - 1.329260I	-5.55104 - 1.76510I	-3.52040 + 0.02107I
b = 1.043350 + 0.471419I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^{20} - 10u^{19} + \dots - 11u + 1)(u^{56} + 13u^{55} + \dots + u + 1) $
c_2	$(u^{20} - 5u^{18} + \dots + u + 1)(u^{56} + 3u^{55} + \dots - 7u + 1)$
c_3	$(u^{20} + u^{19} + \dots - 18u + 29)(u^{56} + 2u^{55} + \dots + 43738u + 6847)$
c_4	$ (u^{20} + 6u^{18} + \dots - 2u + 1)(u^{56} + u^{55} + \dots + 130u + 43) $
<i>C</i> ₅	$(u^{20} - 5u^{18} + \dots - u + 1)(u^{56} + 3u^{55} + \dots - 7u + 1)$
c_6	$(u^{20} - u^{19} + \dots - u + 1)(u^{56} - 2u^{55} + \dots + 15u + 1)$
C ₇	$ (u^{20} + 2u^{19} + \dots + 2u + 1)(u^{56} + u^{55} + \dots - 8u + 19) $
c ₈	$(u^{20} - u^{19} + \dots - u + 1)(u^{56} + 8u^{55} + \dots + 2.52177 \times 10^7 u + 3589991)$
<i>c</i> 9	$(u^{20} - 12u^{19} + \dots - 12u + 1)(u^{56} + 21u^{55} + \dots + 36162u + 1849)$
c_{10}	$(u^{20} + 6u^{18} + \dots + 2u + 1)(u^{56} + u^{55} + \dots + 130u + 43)$
c_{11}	$(u^{20} + u^{19} + \dots + u + 1)(u^{56} - 2u^{55} + \dots + 15u + 1)$
c_{12}	$(u^{20} + u^{19} + \dots + u + 1)(u^{56} + 8u^{55} + \dots + 2.52177 \times 10^7 u + 3589991)$ 18

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{20} + 6y^{19} + \dots + 5y + 1)(y^{56} + 67y^{55} + \dots - 305y + 1)$
c_2, c_5	$(y^{20} - 10y^{19} + \dots - 11y + 1)(y^{56} - 13y^{55} + \dots - y + 1)$
c_3	$(y^{20} + 7y^{19} + \dots + 2576y + 841)$ $\cdot (y^{56} + 76y^{55} + \dots + 2879627170y + 46881409)$
c_4,c_{10}	$(y^{20} + 12y^{19} + \dots + 12y + 1)(y^{56} + 21y^{55} + \dots + 36162y + 1849)$
c_6, c_{11}	$(y^{20} + 9y^{19} + \dots + y + 1)(y^{56} + 6y^{55} + \dots - 25y + 1)$
c_7	$(y^{20} - 18y^{19} + \dots - 16y + 1)(y^{56} - 9y^{55} + \dots + 17302y + 361)$
c_8, c_{12}	$(y^{20} + y^{19} + \dots + 9y + 1)$ $\cdot (y^{56} - 78y^{55} + \dots + 166741384065503y + 12888035380081)$
<i>c</i> ₉	$(y^{20} + 12y^{19} + \dots + 8y + 1)$ $\cdot (y^{56} + 49y^{55} + \dots - 27712598y + 3418801)$