

Gamma correction

of a PGM file using **openMP** and **openMP**!

Professors: Gianpaolo Cugola, Sam Guinea Authors: Riccardo Polvara, Giovanni Zingaro, Francesco Zoffoli

What is a PGM file

«Portable Greyscale Map»

HEADER

Format ID

	fee 4 7 5	р.р	gm		Comment Width and Height Max grey value																		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	3	3	3	3	0	0	7	7	7	7	0	0	11	11	11	11	0	0	15	15	15	15	0
0	3	0	0	0	0	0	7	0	0	0	0	0	11	0	0	0	0	0	15	0	0	15	0
0	3	3	3	0	0	0	7	7	7	0	0	0	11	11	11	0	0	0	15	15	15	15	0
0	3	0	0	0	0	0	7	0	0	0	0	0	11	0	0	0	0	0	15	0	0	0	0
0	3	0	0	0	0	0	7	7	7	7	0	0	11	11	11	11	0	0	15	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OpenMP

openMPI

Output

Gamma correction

P' = max_value*(P/max_value)g

0.4

Input

0.6

8.0

0.2

0

Key Ideas

- The image is a vector of integer
- Divide the img data into several chunks. Then send the chunks to all the "slaves" for them to compute. The master takes care of the last chunk, which will be the biggest, since it takes care to compute to the end of the vector in order to cover for approximations in the chunk_size computation

How it works

DEMO