Deep Learning Seq2- Hight Dimensionnal Data CNN

Previously

Few little things and concepts to keep in mind

- Regression vs. Classification
- Data normalization
- Training and validation
- Epochs and Batchs
- Activation functions
- Loss function
- Optimization and gradient descent
- Metrics
- Softmax and Argmax function
- Numpy shape

Roadmap

- What is a Convolutional Neuron Network (CNN)?
 - → Understanding what a CNN is
 - → Identify use cases
- Example 1: MNIST
 - → Implementation of a simple case

Hight
Dimensionnal
Data
CNN

- → The devil is also hiding in the data
- → How to work with «large » dataset
- → Monitoring the training phase and managing our models
- → Improve our results with data augmentation
- → Datasets and models: how to automat testing
- → How to go from notebook to HPC

Roadmap

2

Hight **Dimensionnal** Data CNN

What is a Convolutional Neuron Network (CNN)?

- → Understanding what a CNN is
- → Identify use cases
- Example 1: MNIST
 - → Implementation of a simple case

Example 2:GTSRB

- The devil is also hiding in the data
- How to work with « large » dataset Monitoring the training phase and managing our models
- Improve our results with data augmentation
- Datasets and models: how to automate testing
- → How to go from notebook to HPC

For a fully connected layer of (only) 1000 neurons, we would need to

0.0008 M pixels 28x28,8 bits

784.000 params

24 M pixels 72.10E9 params...

One neuron is good... but more than one is better!

One neuron is good... but more than one is better!

CNN for what?

- These networks are used mainly for cases involving image or video
- Main applications using C N N are:
 - face recognition
 - image classification
- Bai Du, Snapchat use CNN for face recognition/identification

What is convolution for?

- The name "convolution" comes from a mathematical operation: convolution between functions
- The convolution applies a filter to the input image
- The filter parameters are learned through the learning
- A learnt filter will be able of detecting features in an image; for example angles, and use them to classify at best the image

The image is decomposed into 3 channels (R, G, B)

Example of a convolution with a **6 x 6** size matrix

lmage piece				Ker	nel 3	x3			
	5	2	1		1	0	1		
	4	3	2	\otimes	0	1	0		10
	0	2	1		1	0	1	•	
		Χ				ω			у
		_	4			4	1		

$$y = 5x1 + 2x0 + 1x1 + 4x0 + 3x1 + 2x0 + 0x1 + 2x0 + 1x1 = 10$$

$$y = \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} \cdot \omega_{i,j}$$
 with $\begin{cases} n & \text{kernel width} \\ m & \text{kernel height} \end{cases}$

2D convolution

 5	2	1	3	5
 4	3	2	3	4
 0	2	1	2	2
 3	3	2	3	2

	lmage piece						
	5	2	1				
	4	3	2				
	0	2	1				
Х							

	Ker	nel 3	x3			
	1	0	1			
)	0	1	0	_	10	
	1	0	1			
		ω			у	

Q	We can perform convolutions in 1,2,3 or n-dimensional
	spaces!

5	2	1	3	5	-
4	3	2	3	4	
0	2	1	2	2	
 3	3	2	3	2	-

lmage piece							
ż	2	1	3				
	3	2	3				
1	2	1	2				
X							

Ker	nei 3	X3				
1	0	1				
0	1	0		10	11	
1	0	1	-			
	ω			у		

5	2	1	3	5	
4	3	2	3	4	
0	2	1	2	2	
 3	3	2	3	2	

Image piece							
	1	3	5				
	2	3	4				
	1	2	2				
X							

	Ker	nel 3	x3					
	1	0	1					
\otimes	0	1	0	=	10	11	12	
	1	0	1					
		ω			у			

3D convolution

3D convolution

Some parameters of a convolution:

padding

padding = 'same'

The use of a padding allows to keep the size of the image.

Means no padding

strides

$$strides = (dx, dy)$$

Strides of the convolution along the height and width

Convolutional layers

Reminder: Principle of a fully connected layer

Number of parameters for a convolutional layer: n (m + 1)

Convolutional layers

Number of parameters for a convolutional layer: $kx \cdot ky + 1$

Convolutional layers

Number of parameters for a convolutional layer: $n \cdot kx \cdot Ky + 1$

If we want to generate m convolutional layers, we will need m convolutional neurons

Principle of MaxPooling:

It is possible to set the window size, padding mode and strides.

By default, the strides correspond to the size of the window.

A window (2,2) generates an image twice as small.

Illustration credit

Roadmap

Episode:S01E01

2

Hight **Dimensionnal** Data CNN

- What is a Convolutional 2.1 Neuron Network (CNN)?
 - → Understanding what a CNN is
 - Identify use cases
- Example 1:MNIST

→ Implementation of a simple case

- The devil is also hiding in the data
- How to work with « large » dataset Monitoring the training phase and managing our models
- Improve our results with data augmentation
- Datasets and models: how to automate
- → testing How to go from notebook to HPC

Image classification with CNN

Notebook: [MNIST2]

Objective:

Recognizing handwritten numbers

Dataset:

Modified National Institute of Standards and Technology (MNIST)

97.7%

handwritten numbers (MNIST dataset) via a CNN

Number of parameters for a convolutional layer: $n \cdot kx \cdot Ky + 1$

If we want to generate m convolutional layers, we will need m convolutional neurons

Understand how it works by understanding where the parameters are...

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	26, 26, 8)	80
max_pooling2d (MaxPooling2D)	(None,	13, 13, 8)	0
dropout (Dropout)	(None,	13, 13, 8)	0
conv2d_1 (Conv2D)	(None,	11, 11, 16)	1168
max_pooling2d_1 (MaxPooling2	(None,	5, 5, 16)	0
dropout_1 (Dropout)	(None,	5, 5, 16)	0
flatten (Flatten)	(None,	400)	0
dense (Dense)	(None,	100)	40100
dropout_2 (Dropout)	(None,	100)	0
dense_1 (Dense)	(None,	10)	1010

Understand how it work where the parameters a

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 8)	80 80
max_pooling2d (MaxPooling2D)	(None, 13, 13, 8)	0
dropout (Dropout)	(None, 13, 13, 8)	0
conv2d_1 (Conv2D)	(None, 11, 11, 16)	1168
max_pooling2d_1 (MaxPooling2	(None, 5, 5, 16)	0
dropout_1 (Dropout)	(None, 5, 5, 16)	0
flatten (Flatten)	(None, 400)	0
dense (Dense)	(None, 100)	40100
dropout_2 (Dropout)	(None, 100)	0
dense_1 (Dense)	(None, 10)	1010
_		

Total params: 42,358

Trainable params: 42,358 Non-trainable params: 0

Roadmap

Episode:S01E01

Hight Dimensionnal Data CNN

- → Understanding what a CNN is
- Identify use cases

Example 2:GTSRB 2.3

- → The devil is also hiding in the data
 → How to work with « large » dataset
- → Monitoring the training phase and managing our models
- Improve our results with data augmentation
- Datasets and models: how to automate testing
- → How to go from notebook to HPC

CNN with GTSRBdataset

Notebooks: [GTSRB1-7]

Recognizing traficsigns

Dataset:

German Traffic Sign Recognition Benchmark (GTSRB) is a dataset with more than 50,000 photos of road signs from about 40 classes

CNNwith GTSRBdataset

Notebooks: [GTSRB1-7]

GTSRB1: Data analysis and creation of a usable dataset

GTSRB2: First convolutions and first results

GTSRB3: Monitoring training, managing checkpoints

GTSRB4: Improving the results with data augmentation

GTSRB5: Combine lots of models and lots of datasets

GTSRB6: Run Full convolution notebook as a batch

GTSRB7: Displaying the reports of the different jobs

Calculation scale:

scale

scale = 1
Use 100% of the dataset!

scale = 0.1 Use 10% of the dataset:-)

Enhanced dataset location:

output
enhanced_dir

./data

f'{datasets_dir}/GTSRB/enhanced'

Notebooks outputs (run_dir):

./run

Calculation scale:

scale

Enhanced dataset location:

output
enhanced_dir

./data

f'{datasets dir}/GTSRB/enhanced'

Notebooks outputs (run_dir):

./run

Roadmap

Episode:S01E01

Hight Dimensionnal Data CNN

- What is a Convolutional 2.1 Neuron Network (CNN)?
 - → Understanding what a CNN is
 - Identify use cases
- Example 1:MNIST

2.3

Example 2:GTSRB

- → The devil is also hiding in the data
 → How to work with « large » dataset
- → Monitoring the training phase and managing our models
- Improve our results with data augmentation
- Datasets and models: how to automate testing
- → How to go from notebook to HPC

While wetalk...

First of all, let's prepare data with the GTSRB1 notebook.

```
With: scale = .2 output = ./data
```


Principle of a fully connected layer

Number of parameters for a convolutional layer: n(m+1)

Number of parameters for a convolutional layer: $kx \cdot ky + 1$

Number of parameters for a convolutional layer: n . kx . Ky + 1

If we want to generate m convolutional layers, we will need m convolutional neurons

Roadmap

Episode:S01E01

Hight Dimensionnal Data CNN

- → Understanding what a CNN is
- Identify use cases

Example 2:GTSRB 2.3

- → The devil is also hiding in the data
 → How to work with « large » dataset
- → Monitoring the training phase and managing our models
- Improve our results with data augmentation
- Datasets and models: how to automate testing
- → How to go from notebook to HPC

CNNwith GTSRBdataset

Notebook: [GTS1-7]

GTSRB1: Data analysis and creation of a usable dataset

GTSRB2: First convolutions and first results

GTSRB3: Monitoring training, managing checkpoints

GTSRB4: Improving the results with data augmentation

GTSRB5: Combine lots of models and lots of datasets

GTSRB6: Run Full convolution notebook as a batch

GTSRB7: Displaying the reports of the different jobs

al network

checkpoints.

don't have

more!

Objectives:

switch from

notebookto

How do I

HPC?

\$ jupyter nbconvert (...) --to notebook --execute <notebook> How to run a notebook in a command line? START Step1 Step2 **END** How to run a notebook in a batch? jupyter nbconvert --to script <notebook>

Objectives:

Display of the run reports of our batches

...and last but not least ;-)

...and Last but not least ;-)

Little things and concepts to keep in mind

- Understand the data!
- Organize and prepare our data
- Lots of small data = big problems
- Store our data, h5 files
- Finding the right model isn't easy
- Principle of hyperparameters
- Follow the training (Tensorboard...)
- Saving, retrieving and using recovery points
- Data augmentation
- Automate tests
- Batch mode submission

References

- [JGRAY] Gray, J. (2001), from «The FourthParadigm: Data-Intensive Scientific Discovery »Tony Hey, Stewart Tansley, Kristin Tolle (2009). Published by Microsoft Research. ISBN:978-0-9825442-0-4
- [MCPIT] McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of IdeasImmanent in NervousActivity". Bulletin of Mathematical Biophysics. 5 (4):115-133.doi:10.1007/BF02478259
- [DHEBB] Hebb, D.O. (1949). «The Org anization of Behavior: A Neuropsychological Theory.» New York: Wiley and Sons. ISBN 9780471367277.
- [FROS] Rosenblatt, Frank. (1958). «The perceptron: Aprobabilistic model for information storage and organization in the brain.» Psychological Review, 65(6), 386-408.
- [MIPA] Minsky, Marvin; Papert, Seymour. (1969). « Perceptrons : An Introduction to Computational Geometry », MITPress
- [DRUM] Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986). « Learning representations by back-propagating errors ».Nature.323 (6088):533-536.doi:10.1038/323533a0.
- [YLEC1] Y.LeCun, B.Boser, J. S. Denker, D.Henderson, R.E.Howard, W. Hubbard, L. D.Jackel, « Backpropagation Applied to Handwritten Zip Code Recognition», AT&TBell Laboratories
- [LRDN] Dominique Cardon, Jean-Philippe Cointet, Antoine Mazieres. (2018). «La revanche des neurones », Réseaux, La Découverte, 5 (211), <10.3917/res. 211.0173>. <hal-01925644>

- [AMAZ] Antoine Mazieres (2016) Thèse: «Cartographie de l'apprentissage artificiel et de ses algorithmes » Université Paris 7 Denis Diderot, <hal-01771655>
- [TOP500] Statistics on top 500 high-performance computers. (2018)

 « Exponential growth of supercomputing power as recorded by the TOP500 list ». https://www.top500.org
- [WKP1] Wikipedia/en. (2018) « List of datasets for machine-learning research ».https://en.wikipedia.org
- [WOS1] Core database :TS=("support vector machine*" OR("SVM" AND "classification") OR("SVM" AND"regression") OR("SVM" AND "classifier") OR"support vector network*" OR("SVM"AND"kernel trick*"))
- [WOS2] Coredatabase:TS=("deep learning" OR "deep neural network*" OR ("DNN" AND "neural network*") OR "convolutional neural network*" OR ("CNN" AND "neural network*") OR "recurrent neural network*" OR ("LSTM" AND "neural network*") OR ("RNN*" AND "neural network*"))
- [ALEX] A.Krizhevsky, I. Sutskever, G.Hinton. (2012). « ImageNet Classification with Deep Convolutional Neural Networks » doi:10.1145/3065386
- [ILSVRC] ImageNet Large Scale Visual Recognition Challenges http://image-net.org/challenges/LSVRC/<2012..2017>/results https://en.wikipedia.org/wiki/ImageNet
- [MOBIN] Howard, Andrew G. et al. (2017) "MobileNets: Efficient Convolutional Neural NetworksforMobileVisionApplications." https://arxiv.org/abs/1704.04861

References

[W2VEC]	Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean (2013), « Distributed Representations of Words and Phrases and their Compositionality », https://arxiv.org/abs/1310.4546	[GAN]	lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, (2014), « Generative Adversarial Networks » https://arxiv.org/abs/1406.2661
[GLOVE]	Jeffrey Pennington, Richard Socher, Christopher D. Manning (2014) « GloVe: Global Vectors for WordRepresentation », http://nlp.stanford.edu/projects/glove/	[WOS3]	Core database: TS=('material' and ('design' or 'discovery' or 'optimization') and ('deep learning' or 'machine learning' or 'neurons'))
[P2VEC]	Ehsaneddin Asgari, Mohammad R.K. Mofrad, (2016), « ProtVec: AContinuous Distributed Representation of Biological Sequences », https://arxiv.org/abs/1503.05140	[AIDEX]	AI Index. « Astarting point for informed conversations about progress in artificial intelligence. The report aggregates a diverse set of metrics, and makes the underlying data easily accessible to the general public». https://aiindex.org
[LSTM]	Sepp Hochreiter, Jürgen Schmidhuber, (1997), «Long Short- Term Memory, https://doi.org/10.1162/neco.1997.9.8.1735	[DLPW]	Jeff Hale, « Deep Learning Framework Power Scores 2018 » http://bit.ly/33Wp14y and http://bit.ly/2NagcgH Comment permettre à l'homme de garder la main?
[GRU]	Cho, Kyunghyun; van Merrienboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua (2014), « Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation ». https://arxiv.org/abs/1406.1078	[CNIL1]	Synthèse du débat public animé parla cnil dans le cadre de la mission de réflexion éthique confiée par la loi pour une république numérique. https://www.gil.fr/fr/comment-permettre/homme-de-garder-la-main-rapport-sur-les-enjeux-ethiques-des-algorithmes-et-de
[Cartp]	AGBarto, RS Sutton and CWAnderson, (1983), « Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problem », IEEE Transactions on Systems, Man, and Cybernetics, 1983	[CNIL2]	Reconnaissance faciale:pour un débat à la hauteur des enjeux 15 novembre 2019 https://www.cnil.fr/fr/reconnaissance-faciale-pour-un-debat-la-ha uteur-des-enjeux

Illustrations

From Die Giftpflanzen Deutschlands, Peter Esser, 1910, [POTATO]

via iconspng.com

[CONVO]

An Introduction to different Types of Convolutions in Deep Learning https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

Wikimedia Commons, the free media repository. [NEURON]

pixels.com **Photos**

thenounproject.com Icons

https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle

@(•)(**©**(**=**)

Attribution-NonCommercial-NoDerivatives 4.0 International (CCBY-NC-ND4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/