Electronic supplementary information

RING-OPENING METATHESIS POLYMERIZATION OF 5-ETHYL-2-NORBORNENE IN THE PRESENCE OF DIMETHYL MALEATE AS A CHAIN TRANSFER AGENT

V. R. Nazemutdinova, K. S. Sadovnikov, A. I. Wozniak,*
A. A. Morontsev,* and M. V. Bermeshev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow, 119991 Russia

Table of contents

Experimental section

- **Figure S1**. ¹H NMR spectrum of telechelic poly(EtNB) characterized by $M_n^{GPC} = 6.2 \text{ kDa}$, D = 2.7.
- Figure S2. ¹³C NMR spectrum of telechelic poly(EtNB) characterized by $M_n^{\rm GPC} = 6.2$ kDa, D = 2.7.
- **Figure S3**. ${}^{1}\text{H}-{}^{13}\text{C}$ HSQC (DEPT-135) spectrum of telechelic poly(EtNB) characterized by $M_{n}^{GPC} = 6.2$ kDa, D = 2.7.
- Figure S4. ${}^{1}\text{H}-{}^{13}\text{C}$ H2BC spectrum of telechelic poly(EtNB) characterized $M_{n}^{\text{GPC}}=6.2$ kDa, D=2.7.
- **Figure S5**. ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC spectrum of telechelic poly(EtNB) characterized by $M_{n}^{GPC}=6.2$ kDa, D=2.7.
- Figure S6. ${}^{1}\text{H}-{}^{1}\text{H COSY}$ spectrum of telechelic poly(EtNB) characterized by $M_{n}^{GPC}=6.2$ kDa, D=2.7.
- **Figure S7**. IR spectrum of telechelic poly(EtNB) characterized by $M_n^{GPC} = 6.2 \text{ kDa}$, D = 2.7.
- Figure S8. DSC curves of telechelic poly(EtNB) characterized by different molar masses.
- **Figure S9**. TGA curve of telechelic poly(EtNB) (in Ar).

Experimental section

General remarks

Chloroform (reagent grade, OOO Komponent-Reaktiv) and dimethyl maleate (at least 98%, Jiangsu Ambition New Materials) were distilled over CaH₂ in an argon flow and stored under argon. Ethyl alcohol (reagent grade, KHIMMED), deuterochloroform (the fractions of deuterobenzene and tetramethylsilane 99.60 and 0.03%, respectively; Shandong Zhi Shang Chemical), oxidation inhibitor 2,2'-methylene-bis(6-tert-butyl-4-methylphenol) (at least 96%, Sigma-Aldrich), the second-generation Grubbs catalysts (at least 98%, Shaanxi Dideu Medichem), dicyclopentadiene (at least 96%, Jiangsu Juming Chemical Process Technology), and ethyl vinyl ether (at least 98%, Jiangsu Ambition New Materials) were used as received. 5-Ethyl-2-norbornene was synthesized by the Diels-Alder reaction at 180 °C according to the published procedure [S1]. The fraction of the exo-isomer was 18% [S2].

Ring-opening metathesis polymerization of 5-ethyl-2-norbornene was carried out in a 4 mL vial as a result of adding 0.1 mL of a solution of 1.1 mg (0.00129 mmol) of the second-generation Grubbs catalyst (Gr2) in chloroform to a mixture of 0.35 mL (0.31 g, 2.547 mmol) of 5-ethyl-2-norbornene (EtNB), 0.16 mL (0.18 g, 1.254 mmol) of dimethyl maleate (DMM), and 0.43 mL of chloroform. After that the vial was placed in a shaker. The reaction was carried out at 60 °C and quenched by adding vinyl ethyl ether in 6 h. The product was isolated by quadruple precipitation of the polymer solution in chloroform in ethanol filled with oxidation inhibitor and drying under vacuum at 90 °C until constant weight. Yield: 0.129 g (40%). $M_n^{GPC} = 6.2 \text{ kDa}$, D = 2.7; $M_n^{NMR} = 3.9 \text{ kDa}$; $T_g = 35 \text{ °C}$.

¹H NMR (400 MHz, CDCl₃): δ 7.01–6.88 (br. m, 6.2H, –C**H**=CH–(C=O)–), 5.84–5.72 (br. m, 5.56H, –CH=C**H**–(C=O)–), 5.45–5.05 (br. m, 200.00H, cis/trans –C**H**=C**H**– main chain), 3.73–3.71 (br. m, 17.97H, -CH=CH(C=O)OC**H**₃), 3.00–2.68 (br. m, 112.94H, *cis*-CH=CH-), 2.67–2.29 (br. m, 78.55H, *trans*-CH=CH-), 2.10–1.74 (br. m, 247.80H, C**H**₂ and C**H**), 1.71–1.29 (br. m, 126.45H, C**H**₂ and C**H**), 1.23–0.96 (br. m, 265.54H, C**H**₃ and C**H**), 0.95–0.78 (br. m, 371.93H, C**H**₃ and C**H**) ppm. The molar fraction of *cis*-C=C bonds was 59%.

¹³C NMR spectrum (101 MHz, CDCl₃): δ 167.46, 167.22 (C=O), 154.17, 154.06, 152.03 (–CH=CH–(C=O)–), 135.54, 135.27, 134.73, 134.65, 134.57, 134.45, 134.07, 133.44, 133.06, 132.86, 132.46, 131.73, 131.64, 131.17, 131.06, 130.93, 130.80, 130.44, 129.99, 129.84, 129.55, 129.46 (*cis/trans* -CH=CH– main chain), 120.02, 119.01, 118.97, 118.79, 117.65 (-CH=CH–(C=O)–), 51.46 (–(C=O)OCH₃), 51.06, 50.72, 50.48, 50.28, 47.85, 47.73, 47.67, 47.56, 47.04, 47.00, 46.87, 46.82, 45.79, 45.66, 45.58, 45.44, 45.26, 45.20, 45.08 (CH), 42.92 (CH₂), 42.50 (CH), 42.41, 42.14, 41.92, 41.73, 41.61, 41.29, 41.00, 40.57 (CH₂), 40.05 (CH₂ or CH), 39.97, 39.91, 39.84, 39.74, 39.70, 39.56, 39.42, 38.96, 38.77, 38.63, 38.30, 38.22, 38.12, 38.09 (CH₂), 37.62, 37.41, 37.37, 37.29, 37.14, 36.42, 36.16, 35.95 (CH), 29.80, 27.74, 27.62, 27.54, 27.38, 27.23, 24.79, 24.75, 24.68, 24.58, 24.50, 24.45 (CH₂), 13.28, 13.17, 13.13, 13.09, 12.97, 12.89, 12.84 (CH₃) ppm.

The molar ratio of the initial reagents was calculated based on the Mayo equation:

$$\overline{P} = \frac{[EtNB]}{[Gr2] + [DMM]'} \tag{1}$$

where \overline{P} is the average degree of polymerization, [EtNB] is the concentration of 5-ethyl-2norbornene, [Gr2] is the concentration of the second-generation Grubbs catalyst, [DMM] is the concentration of dimethyl maleate. The initial concentration ratio of the reactants is equal to the molar one.

If $\overline{P} = 2$, then

$$\frac{[EtNB]}{[Gr2] + [DMM]} = 2,$$

$$[EtNB] = 2[Gr2] + 2[DMM],$$
(3)

$$[EtNB] = 2[Gr2] + 2[DMM], \tag{3}$$

$$[Gr2] = \frac{[EtNB] - 2[DMM]}{2},$$
 (4) Примем, что $\frac{[EtNB] + [DMM]}{[Gr2]} = 3000,$ (5)

Примем, что
$$\frac{[EtNB] + [DMM]}{[Gr2]} = 3000$$
, (5)

$$\frac{2([EtNB] + [DMM])}{[EtNB] - 2[DMM]} = 3000 \tag{6}$$

$$\frac{[EtNB]}{[DMM]} = \frac{3001}{1499} \approx 2 \tag{7}$$

Consequently,
$$[EtNB] / [DMM] / [Gr2] = 2000 / 1000 / 1 mol / mol / mol (8).$$

Characterization

The ¹H and ¹³C NMR spectra of poly(EtNB) solutions in deuterated CDCl₃ were recorded with a Bruker Avance DRX 400 spectrometer operating at 400.1 MHz for ¹H and 100.6 MHz for ¹³C. The chemical shifts were determined relative to the signals of residual or deuterated chloroform (7.26 ppm for ¹H, 77.16 ppm for ¹³C). Each sample was prepared by dissolving ~40 mg of the copolymer in 0.6 mL of the deuterated solvent. About 100 mg of poly(EtNB) in 0.5 mL CDCl₃ was required for ¹³C NMR and two-dimensional ¹H–¹³C HSQC (pulse sequence hsqcedetgpsisp2.3), ¹H–¹³C H2BC (pulse sequence h2bcetgpl3), ¹H–¹³C HMBC (pulse sequence hmbcetgpl3nd), and ¹H-¹H COSY (pulse sequence cosygpmfqf) NMR spectra. To obtain the ¹H NMR spectrum, four scans of the dissolved sample with the relaxation delay of 10 s were recorded. To obtain the ¹³C NMR spectrum, 2048 scans of the dissolved sample with the relaxation delay of 2 s were recorded. The signal assignments were made based on the ¹H–¹³C HSQC, ¹H-¹³C H2BC, ¹H-¹³C HMBC, and ¹H-¹H COSY 2D experiments.

Gel permeation chromatography of the copolymers was performed with an Agilent 1280 Infinity II installation with three series-connected 250 × 4.6 mm PLgel 10 µm MiniMIX-B columns using a refractometer detector. Tetrahydrofuran (no less than 99.9%, Panreac Química SLU) was used as an eluent; the flow rate was 0.3 mL·min⁻¹, the sample volume was 50 μL, and the sample concentration was 1 $\text{mg}\cdot\text{mL}^{-1}$. The molecular mass and polydispersity were calculated from the calibration dependence of the molecular mass on the retention time, constructed using monodisperse polystyrene standards (Sigma-Aldrich): $M_{\rm w} = 1.1$ kDa (catalog no. 81402), $M_w = 2.8$ kDa (catalog no. 327719), $M_w = 9.8$ kDa (catalog no. 81406), $M_{\rm w} = 27.1 \; \rm kDa$ (catalog no. 81408), $M_{\rm w} = 67.6 \; \rm kDa$ (catalog no. 81409), $M_{\rm w} = 269.5 \; \rm kDa$ (catalog no. 81413), $M_w = 482$ kDa (catalog no. 327794), $M_w = 729.5$ kDa (catalog no. 327808), $M_{\rm w} = 1074 \text{ kDa}$ (catalog no. 81416), $M_{\rm w} = 1956 \text{ kDa}$ (catalog no. 327816), and $M_{\rm w} = 9260 \text{ kDa}$ (catalog no. 81419). The dependence was linear in the range of 0.001-9 MDa. The chromatograms were processed using the Agilent GPC/SEC software.

The IR spectra were measured with an IFS-66 v/s Fourier spectrometer (Bruker) using attenuated total reflection technique. The spectra were recorded on a ZnSe crystal in the range from 4000 to 600 cm⁻¹ with 2 cm⁻¹ resolution, 15 IR absorption scans were taken.

Differential scanning calorimetry (DSC) was performed with a Mettler TA 4000 device at the temperature variation rate of 20 deg/min in the range from -5 to 160 °C under argon (99.99%, Argon, Russia; gas flow rate 70 mL/min). The glass transition temperature (T_g) was determined from the data obtained after the repeated heating of the sample. The measurement results were processed using the STARe service program supplied with the device. The measurement accuracy was as follows: $\Delta T = \pm 0.3$ °C and $\Delta H = \pm 1$ J/g.

Figure S1. ¹H NMR spectrum of telechelic poly(EtNB) characterized by $M_n^{\text{GPC}} = 6.2 \text{ kDa}$, D = 2.7.

Figure S2. ¹³C NMR spectrum of telechelic poly(EtNB) characterized by $M_n^{\rm GPC} = 6.2$ kDa, D = 2.7.

Figure S3. $^{1}\text{H}-^{13}\text{C}$ HSQC (DEPT-135) spectrum of telechelic poly(EtNB) characterized by $M_{\rm n}^{\rm GPC}=6.2~{\rm kDa},\, D=2.7.$

Figure S4. $^{1}\text{H}-^{13}\text{C}$ H2BC spectrum of telechelic poly(EtNB) characterized by $M_{\text{n}}^{\text{GPC}} = 6.2 \text{ kDa}$, D = 2.7.

Figure S5. ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC spectrum of telechelic poly(EtNB) characterized by $M_{n}^{\text{GPC}}=6.2 \text{ kDa}$, D=2.7.

Figure S6. ${}^{1}\text{H}-{}^{1}\text{H COSY}$ spectrum of telechelic poly(EtNB) characterized by $M_{n}^{\text{GPC}}=6.2 \text{ kDa}$, D=2.7.

Figure S7. IR spectrum of telechelic poly(EtNB) characterized by $M_n^{\rm GPC} = 6.2$ kDa, D = 2.7.

Figure S8. DSC curves of telechelic poly(EtNB) characterized by different molar masses.

Figure S9. TGA curve of telechelic poly(EtNB) (in Ar).

References

- A. I. Wozniak, E. V. Bermesheva, I. L. Borisov, A. V. Volkov, D. I. Petukhov, N. N. Gavrilova, V. P. Shantarovich, A. F. Asachenko, M. A. Topchiy, E. S. Finkelshtein, M. V. Bermeshev, *J. Membr. Sci.*, 2022, 641, 119848. DOI: 10.1016/j.memsci.2021.119848
- S2. J. D. Hatjopoulos, R. A. Register, *Macromolecules*, **2005**, *38*, 10320–10322. DOI: 10.1021/ma0515331