2 (a) Fig. 2.1 shows the velocity—time graph for an object moving in a straight line.

Fig. 2.1

(i) Determine an expression, in terms of u, v and t, for the area under the graph.

area =[1]
State the name of the quantity represented by the area under the graph.	
[1]

(b) A ball is kicked with a velocity of $15\,\mathrm{m\,s^{-1}}$ at an angle of 60° to horizontal ground. The ball then strikes a vertical wall at the instant when the path of the ball becomes horizontal, as shown in Fig. 2.2.

Fig. 2.2 (not to scale)

Assume that air resistance is negligible.

	(ii)	time = s [3] Explain why the horizontal component of the velocity of the ball remains constant as it
		moves to the wall.
	(iii)	Show that the ball strikes the wall with a horizontal velocity of 7.5 m s ⁻¹ .
		[1]
(c)		mass of the ball in (b) is $0.40\mathrm{kg}$. It is in contact with the wall for a time of $0.12\mathrm{s}$ and bunds horizontally with a speed of $4.3\mathrm{ms^{-1}}$.
	(i)	the information from (b)(iii) to calculate the change in momentum of the ball due to the collision.
		change in momentum = kg m s ⁻¹ [2]
	(ii)	Calculate the magnitude of the average force exerted on the ball by the wall.
		average force = N [1]
		[Total: 10]

(i) By considering the vertical motion of the ball, calculate the time it takes to reach the wall.