Date: August 29, 2018

Submission Deadline: September 12, 2018

All assignments will be marked out of 20. Assignments submitted after the deadline will be penalized with 5 marks for each week delay.

PART-I

1. Write a program for *cipher-text only* statistical cryptanalysis of an Affine Cipher, given the following statistics about the English language (Assume the length of cipher text is at least 100 characters):

Table-1

letter	probability	letter	probability
A	.082	N	.067
B	.015	0	.075
C	.028	P	.019
D	.043	Q	.001
E	.127	R	.060
F	.022	S	.063
G	.020	T	.091
H	.061	U	.028
I	.070	V	.010
J	.002	W	.023
K	.008	X	.001
L	.040	Y	.020
M	.024	Z	.001

Hence decrypt the following cipher text obtained by Affine Encryption (You may use the Affine Decryption program written by you in Assignment-1):

KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUP KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK IVKSCPICBRKIJPKABI

PART-II

(In this part of the assignment consider plaintext, ciphertext and key-streams as bit sequences.)

- A One-Time Pad (OTP) is a stream cipher which uses True Random Number Generator (TRNG) to generate its key-stream, hence the name OTP. It uses the XOR-operation as both encryption and decryption functions.
 - a) Implement an OTP stream cipher.
 (You may use any Pseudo-Random Number Generator (PRNG) to generate the keystream here considering that following a physical process is infeasible for this laboratory.)
 - b) Assuming the PRNG looks like:

$$S_0$$
 = seed
 $S_{i+1} \equiv AS_i + B \mod m$, where $i = 0,1,...$

where m = 26 is public, the secrets are A, B and the seed, where all A, B, S_i belong to Z_{26} , and an outsider is provided with the knowledge of only first 15 bits of plaintext, implement a way for (known-plaintext) cryptanalysis of the OTP.

[Hint: Note that $2^4 < 26 < 2^5$]