Second Semester 2015-2016

Course Handout Part II

Date: 05/01/2016

In addition to Part I (General Handout) for all courses (appended to the time table), this portion gives further specific details regarding the course.

Course No : PHY F343

Course Title : Nuclear & Particle Physics

Instructor-in-Charge / Other Instructor: BISWANATH LAYEK / MADHUKAR MISHRA

1. Scope and Objectives of the course

The course is designed to give a pedagogical overview and some working knowledge of theoretical (mainly) and experimental aspects of Nuclear & Particle Physics. Knowledge on quantum mechanics and basic (special) relativity are essential to understand the topics covered in this course. This course will prepare/motivate students to take advanced courses either in Nuclear and/or Particle Physics, later on, in their career in preparation for pursuing active research in these areas.

2. Text Books:

- (I) Theoretical Nuclear Physics; J. M. Blatt & V. F. Weisskopf, Dover Publications, New York
- (II) Introduction to Elementary Particle Physics, David J Griffiths, 2nd Revised Ed., Wiley, 2008
- 3. Ref. Books:
- (I) Nuclear Physics; S. N. Ghoshal, S. Chand Company Ltd.
- (II) Quarks and Leptons: An Introductory Course in Modern Particle Physics, F. Halzen and A.

Martin, Wiley, 2008

4. Course Plan: CN stands for Class Notes

Sl. No.	Topic & description of material covered	# of Lect	Reference to Textual Material
	Nuclear Physics (Total 23 lectures)	1	
1	General Properties of Nuclei: (Total 5 lectures)		
	Nuclear size, Nuclear Charge, Nuclear Spin, Nuclear magnetic moment	1	
	memono.	1	
	Electric multipole moments: Spherically and axially symmetric charge distribution, electric quadrupole moment		
	Bethe-Weizsacker mass formula & its applications in Fission	3	

	Particle Physics: (Total 22 lectures)	1	J.		
	Nuclear Reactors & its Applications				
	Nuclear Fission & Fusion, Criticality Condition	2			
7	Nuclear Energy (Total 2 lectures)				
	Nuclear ground state configurations and spins, Low-lying energy levels				
	Magic numbers, Independent particle model.	3			
6	The Nuclear Shell Models: (Total 3 lectures)				
	Nuclear transition: Fermi & Gamow-Teller transitions, Allowed & forbidden transitions	2			
	Fermi's theory: Density of final states	1			
5	Nuclear Beta Decay: (Total 3 lectures)				
	Emission of alpha particle: Coulomb potential barrier	1			
	The Q-value of alpha decay	1			
4	Nuclear Alpha Decay: (Total 2 lectures)				
	Spin dependence of n-p scattering				
	The scattering length				
	Partial Wave Analysis Method				
	Low energy nucleon-nucleon scattering:	2			
	Short range force, General form of the nucleon-nucleon potential, Types of Exchange forces	2			
3	II: Nucleon-Nucleon Low Energy Scattering: (Total 4 lectures)				
	Electric quadrupole moment & magnetic moment of Deuteron nucleus	2			
	Deuteron wave function, Using central potential, Radial wave function	2 2			
2	I: Two Body Nuclear Problem: Deuteron (Total 4 lectures)				
2	Nuclear Force & its Properties:				

1	Brief history of particles	3	Text (II): Ch1 & Self study	
2	Relativistic Kinematics	3	Text (II): Ch3	
3	Particle Classifications, Quantum Numbers & Conservation Laws, Resonances, Eightfold way, Quark Model	5	Text (II): Ch1, Ref.(II): Ch2	
4	Isospin/Flavor symmetries, Discrete symmetries (C, P, CPT)	3	Text (II): Ch4 and CN	
5	Quantum description of relativistic particles with spin. Klein-Gordan (K-G) Equation (spin-0), Dirac Equation (spin-1/2) and Maxwell's equation (spin-1)	6	Ref. (II): Ch3, Ch5	
6	Fundamental Interactions, (Pedagogical) Introduction of Feynman Diagrams	2	Text (II) :Ch2	
7	Dynamics of particle interaction : Time dependent perturbation theory, Transition Amplitude, Invariant amplitude, Crossing symmetry etc.	***	Ref.(II): Ch3, Ch4	
Total No. of Lecture Hours: 45 + Last topic depending on number of lectures available				

5. Evaluation Scheme

Component	Duration	Weightage(%)	Date & Time	Remarks
Mid-semester Test	90 Mins.	30 %	14/3 2:00 -3:30 PM	Closed Book
Tutorials		30%	Total 6 tutorial tests out of which the best will be taken into consideration.	
Comprehensive Exam.	180 Mins.	40 %	16/5 FN	Partly Open and partly Closed Book

6. Chamber Consultation Hours: To be announced in the lecture Class

7. Notices: In Nalanda

8. Make-up Policy: Make-up will be given only in genuine cases, that is, due to serious illness etc. There are no make-ups for the tutorials .

 ${\it Instructor-in-charge}$

