5. Codage des nombres entiers relatifs

Principes de fonctionnement des ordinateurs

Jonas Lätt Centre Universitaire d'Informatique

Trouvé une erreur sur un transparent? Envoyez-moi un message

- sur Twitter @teachjl ou
- par e-mail jonas.latt@unige.ch

Contenu du cours

Partie I: Introduction

Partie II: Codage de l'information

Partie III: Circuits logiques

Partie IV: Architecture des ordinateurs

- 1. Introduction
- 2. Histoire de l'informatique
- 3. Information digitale et codage de l'information
- 4. Codage des nombres entiers naturels
- 5. Codage des nombres entiers relatifs
- 6. Codage des nombres réels
- 7. Codage de contenu média
- 8. Portes logiques
- 9. Circuits logiques combinatoires et algèbre de Boole
- 10. Réalisation d'un circuit combinatoire
- 11. Circuits combinatoires importants
- 12. Principes de logique séquentielle
- 13. Réalisation de la bascule DFF
- 14. Architecture de von Neumann
- 15. Réalisation des composants
- 16. Code machine et langage assembleur
- 17. Réalisation d'un processeur
- 18. Performance et micro-architecture
- 19. Du processeur au système

PARTIE I: PRINCIPES DU CODAGE DES NOMBRES RELATIFS

Les nombres entiers relatifs

$$\mathbb{Z} = \{...-2, -1, 0, 1, 2, ...\}$$

$code_{\mathbb{N}_{(4)}}$		
15		
14		
13		
12		
11		
10		
9		
8		
7		
6		
5		
4		
3		
2		
1		
0		

$code_{\mathbb{N}_{(4)}}$	Signe-Norme
15	-7
14	-6
13	-5
12	-4
11	-3
10	-2
9	-1
8	-0
7	7
6	6
5	5
4	4
3	3
2	2
1	1
0	0

Problèmes ...

$code_{\mathbb{N}_{(4)}}$	Signe-Norme
15	-7
14	-6
13	-5
12	-4
11	-3
10	-2
9	-1
8	-0
7	7
6	6
5	5
4	4
3	3
2	2
1	1
0	0

Meilleure idée: Codage par complément à 2

Rappel sur $\mathbb{N}_{(k)}$:

$$\mathbb{N}_{(k)} = \left\{ x \in \mathbb{N} | \ 0 \le x < 2^k \right\}$$

$$\mathbb{Z}_{(k)}$$
: «On décale $\mathbb{N}_{(k)}$ à gauche»

$$\mathbb{Z}_{(k)} = \{ x \in \mathbb{Z} | -2^{k-1} \le x < 2^{k-1} \}.$$

$$\mathbb{Z}_{(8)} = \{-128 \dots 127\}.$$

A l'aide de la règle du complément à 2, on peut représenter tous les nombres dans l'intervalle $\mathbb{Z}_{(k)}$ par un *mot* à k bits.

PARTIE II: COMPLÉMENT À 2 – RÈGLES DE CODAGE ET DÉCODAGE

Codage par complément à 2

Codage par complément à 2: $\mathbf{code}_{\mathbb{Z}_{(k)}}$

$$\operatorname{\mathsf{code}}_{\mathbb{Z}_{(k)}}: x \longmapsto \begin{cases} \operatorname{\mathsf{code}}_{\mathbb{N}_{(k)}}(x) & \operatorname{si} \ 0 \leq x < 2^{k-1} \\ \operatorname{\mathsf{code}}_{\mathbb{N}_{(k)}}(x+2^k) & \operatorname{si} \ -2^{k-1} \leq x < 0 \end{cases}$$

Codage et Décodage: Exemples

Plaçons-nous dans l'espace $\mathbb{Z}_{(8)}$, dans lequel les nombres de -128 ... 127 sont codés sur des mots d'un octet (8 bits).

$$\mathsf{code}_{\mathbb{Z}_{(8)}}(80) =$$

$$\mathsf{code}_{\mathbb{Z}_{(8)}}(-80) =$$

$$decode_{\mathbb{Z}_{(8)}}(1010\ 0101) =$$

Décodage en $\mathbb{Z}_{(k)}$

Interprétation: du décodage en $\mathbb{Z}_{(k)}$: le bit de poids élevé possède un poids négatif:

Décodage en
$$\mathbb{N}_{(k)}$$
: $x = a_0 2^0 + a_1 2^1 + \dots + a_{N-2} 2^{N-2} + a_{N-1} 2^{N-1}$
Décodage en $\mathbb{Z}_{(k)}$: $x = a_0 2^0 + a_1 2^1 + \dots + a_{N-2} 2^{N-2} - a_{N-1} 2^{N-1}$

Il s'agit d'une manière intéressante d'interpréter, et donner une signification, à la règle de codage par complément à 2.

PARTIE III: ADDITION DE NOMBRES RELATIFS

Idée

- On n'informe pas le processeur de l'ordinateur si les données représentées sont en $\mathbb{N}_{(k)}$ ou en $\mathbb{Z}_{(k)}$.
- Le même circuit additionneur s'utilise dans les deux cas.
- Tour de magie: ça marche en $\mathbb{N}_{(k)}$ et en $\mathbb{Z}_{(k)}$!

Equivalence de l'addition / soustraction entre $\mathbb{N}_{(4)}$ et $\mathbb{Z}_{(4)}$

Entiers naturels $\mathbb{N}_{(4)}$

Entiers relatifs $\mathbb{Z}_{(4)}$ (complément à 2)

En représentation interne, une fonction logique lit une séquence de bits et produit une séquence de bits.

11 + 3 = 14

 $0xB \rightarrow 0xE$

-5 + 3 = -2

L'opération effectuée peut s'interpréter comme une addition en $\mathbb{N}_{(4)}$...

... ou alors, comme une addition en $\mathbb{Z}_{(4)}$.

Equivalence de l'addition / soustraction entre $\mathbb{N}_{(4)}$ et $\mathbb{Z}_{(4)}$

Entiers naturels $\mathbb{N}_{(4)}$

$$6 + 3 = 9$$

0x6 -> 0x9

Entiers relatifs $\mathbb{Z}_{(4)}$ (complément à 2)

$$6 + 3 = 9 (Overflow) -> -7$$

Equivalence de l'addition / soustraction entre $\mathbb{N}_{(4)}$ et $\mathbb{Z}_{(4)}$

Entiers naturels $\mathbb{N}_{(4)}$

$$14 + 3 = 17$$
 (overflow) -> 1

0xB -> 0xE

Entiers relatifs $\mathbb{Z}_{(4)}$ (complément à 2)

$$-5 + 3 = -2$$

Addition en
$$\mathbb{Z}_{(k)}$$
: $x,y \mapsto \begin{cases} x+y+2^k & \text{si } x+y < -2^{k-1} \\ x+y-2^k & \text{si } x+y \geq 2^{k-1} \\ x+y & \text{sinon} \end{cases}$

Avantages du complément à 2

- 1. Le circuit add peut effectuer des additions pour des valeurs en $\mathbb{N}_{(k)}$ tout comme en $\mathbb{Z}_{(k)}$: le circuit n'a même pas besoin de savoir lequel des deux codages est utilisé.
- 2. A voir dans la prochaine partie: le circuit add permet d'effectuer non seulement des additions, mais aussi des soustractions, en $\mathbb{N}_{(k)}$ tout comme en $\mathbb{Z}_{(k)}$.

PARTIE IV: SOUSTRACTION DE NOMBRES RELATIFS

Rappel: algorithme de soustraction de nombres

- Technique classique: l'emprunt de retenues.
- Exemple: La soustraction z = x y = 4321 1234.

	4	3	2	1
-	1	2	3	4

Cet algorithme peut être réalisé dans un ordinateur, mais mène à un circuit complexe. On cherche une solution techniquement plus simple pour l'ordinateur.

Soustraction de nombres entiers

Le circuit add peut être réutilisé pour la soustraction de nombres (on peut utiliser add pour réaliser le circuit de soustraction sub)!

- Si les arguments de sub sont des représentations de nombres relatifs: Pour tout argument Y qui représente un nombre y, on peut trouver une séquence binaire Y₀ qui représente la valeur opposée – y.
- La soustraction z = x y peut s'écrire z = x + (-y): Il est possible d'effectuer la soustraction à l'aide du circuit additionneur add.
- Si les arguments sub sont des représentations de nombres entiers naturels, il suffit de les *interpréter* comme des entiers relatifs, et l'argument ci-dessus reste valable. Comme nous l'avons vu au chapitre précédent, le circuit add ne fait pas la difference entre entiers naturels et relatifs.

Comment calculer la valeur opposée de y?

Y est la representation de y.

Comment trouver \mathbf{Y}_0 , qui est la représentation de -y, en manipulant les bits de \mathbf{Y} ? Tout ça doit se faire au niveau d'un circuit, donc en représentation interne.

Codage en complément à 2

"Passage d'une valeur x vers son opposé":

- Calculer 16 x
- Calculer $2^k x$

Comment calculer la valeur opposée de y?

Y est la representation de y.

Comment trouver \mathbf{Y}_0 , qui est la représentation de -y, en manipulant les bits de \mathbf{Y} ?

En représentation externe $\mathbb{N}_{(k)}$, c'est facile:

• On cherche la valeur $decode_{N_k}(Y_0) = 2^k - y$

Mais en représentation interne ??

Mais en représentation interne? Astuce:

$$decode_{N_k}(Y_0) = 2^k - y = 1 + (2^k - 1) - y$$

Astuce: représentation de -y

Entrée: Codage de y, Y

Sortie: Codage de -y, Y_0

11111111₍₂₎ • • • On aligne k fois le "1".

Astuce: $2^k - y = 1 + (2^k - 1) - y$

Il n'y a pas de retenue!

Il suffit d'inverser tous les bits de x.

Ce procédé en deux étapes s'appelle le calcul du complément à 2:

- 1. Inversion de tous les bits
- 2. Addition de la valeur 1 au résultat

Règle:

- On inverse tous les bits de x.
- On ajoute 1 au résultat.

Exemple. Entrée: La valeur 3 codée en $\mathbb{Z}_{(4)}$.

1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0

Le circuit C2_(k)

- Inverse tous les bits
- Rajoute la valeur 1 au résultat

Cela permet de soustraire deux nombres, z = x - y, à l'aide du circuit add:

$$Z = add_{(k)}(X, C2(Y))$$

Terminologie: Complément à 2

Le terme "complément à 2" s'utilise de différentes manières:

- Un nombre relatif est codé selon la règle du complément à 2 lorsqu'on applique le codage $code_{\mathbb{Z}_{(k)}}$
- On calcule le complément à 2 d'un séquence de bits en appliquant l'opérateur C2_(k): inversion des bits, calcul +1.
- La **méthode du complément** est une méthode qui permet de soustraire deux nombres en n'effectuant que des additions.