Emotional and cognitive stimulus processing: Stress, Learning and Memory

- Amygdala-Hypothalamic-Pituitary-Adrenal axis
- Neuroendocrine pathway
- CRF-ACTH-Corticosteroid
- Corticosteroid receptors
- Effects of corticosteroids on emotional behaviour, learning and memory
- Mechanisms of corticosteroid effects

The HPA axis is a major Stress response system

Localisation of the hypothalamus and pituitary in human and rat

Neuroendocrine system: Hypothalamic-Pituitary-Adrenal Axis

Paraventricular Nucleus Corticotropin Releasing Factor/Hormone

Neurohormone

Pituitary Gland Adrenocorticotropic Hormone

Hormone

Adrenal Gland Corticosterone/Cortisol

Hormone

Corticosteroid hormone release under control of ACTH

ACTH and Corticosterone response to stressor (blood sampling) in mouse

Psychosocial stress leads to increased blood levels of ACTH and Cortisol in Human

Trier Social Stress Test

Public speaking Mental arithmetic

The Amygdala/Hippocampus-Hypothalamic-Pituitary-Adrenal Stress response

Corticosteroid hormones have two transcription factor receptors: Mineralocorticoid Receptor and Glucocorticoid Receptor

Table 1. Two intracellular corticosteroid receptor types in the brain

1. Mineralocorticoid receptor (MR)

High affinity for corticosterone ($K_D \approx 0.5 \text{ nm}$)

In limbic brain structures

Agonist: aldosterone

Antagonist RU 26752, spironolactone

2. Glucocorticoid receptor (GR)

Lower affinity for corticosterone ($K_D \approx 5.0 \text{ nm}$)

Ubiquitous

Agonist: dexamethasone, RU 28362

Antagonist: RU 38486

GRE = Glucocorticoid responsive element

MR and GR: Transcription factors and also membrane-bound receptors

MR and GR affinities determine their state-dependent occupancy and transcription factor functioning

Glucocorticoid Receptor expressed in PVN neurosecretory cells and pituitary corticotrophs and mediates HPA axis negative feedback

Brain regions expressing Mineralocorticoid receptor and/or Glucocorticoid receptor

Expression of MR and GR in Temporal Cortex and Hippocampus of Marmoset monkey

Effects of high corticosterone on reward motivation (wanting) in rat

Corticosterone administered via drinking water for 14 days

Gourley et al (2008) Biol Psychiatry 64: 884

Effects of MR over-expression in basolateral amygdala on emotional reactivity

Evidence that MR sets the level of emotional responses

Viral vector over-expression

200 µm

30-min after 2-hr immobilization

Elevated plus maze

Sequence of processes that together make up (most) memory types

Effects of MR antagonism on contextual fear conditioning

CORT-MR is essential for learning but not for consolidation

Effects of GR antagonism on contextual fear conditioning

CORT-GR is not essential for learning or short-term consolidation CORT-GR is essential for long-term consolidation

Zhou et al (2010) Neurobiol Learn Memory 94: 530

GR regulation of signalling pathways of LTP in amygdala and hippocampus

MAPK = Mitogen-activated protein kinase (synaptic plasticity, memory)
ERK = Extracellular-signal regulated kinase (synaptic plasticity, memory)
Egr1 = early growth response gene 1 (IEG, synaptic plasticity, memory)

Revest et al. (2005) Nature Neuroscience 8: 664

Enhancing effects of corticosterone on memory depend on emotional arousal

Corticosterone administered after Sample-object exposure

de Quervain et al (2009) Front Neuroendocrinology 30: 358

The HPA axis is a major Stress response system

Interactions of Corticosteroids and Noradrenaline in emotional memory

Coincident emotion-induced corticosteroid and noradrenaline signalling in basolateral amygdala

de Quervain et al (2009) Front Neuroendocrinology 30: 358

Rat and Human evidence that corticosteroids inhibit recall of emotional memory

de Quervain et al (2009) Front Neuroendocrinology 30: 358 Schwegler et al (2010) Psychoneuroendocrinology 35: 1270

Summary of effects of Stress/Corticosteroid on emotional memory

Stress, Learning and Memory

- One of the emotional/stress responses controlled by the amygdala is the hypothalamic-pituitary-adrenal (HPA) axis
- CRF (CRH) is a neurohormone and ACTH and cortisol/corticosterone are hormones
- Basal cortisol/corticosterone (CORT) has important metabolic functions
- Following amygdala signalling, the HPA axis is stimulated
- There are 2 types of CORT receptor, mineralocorticoid receptor (MR) and glucocorticoid receptor (GR)
- MR and GR are intracellular transcription factors ("slow effects") and membrane-bound receptors (probably G protein-coupled) ("fast effects")
- MR has higher affinity for CORT than does GR
- GR in pituitary gland and hypothalamic PVN mediate HPA axis negative feedback (return to homeostasis)
- In CNS, GR is widely distributed and MR is localized
- CORT-MR effects on emotional behaviour include: decreasing anxiety, supporting fear learning (but not consolidation)
- CORT-GR effects on emotional behaviour include: supporting long-term fear memory (but not learning or short-term memory), inhibiting memory recall
- The signalling pathways activated by GR are involved in LTP, indicating common points at which CORT-GR can regulate memory

• The CORT-GR emotional memory effect is dependent on simultaneous noradrenaline signalling in the basolateral amygdala. This applies to both increased long-term memory and decreased long-term recall	