-----파이썬 자료구조

파이썬이란?

AI와 빅데이터의 부상과 함께 최근 각광받고 있는 언어

- 인터프리터 방식 ←→ 컴파일 방식
- 스크립트 모드 지원
- 통합개발환경: IDLE, 주피터 노트북, 파이참, 비주얼 스튜디오
- 파이썬 공식 홈페이지의 다운로드 페이지 (http://www.python.org/downloads)에서 윈도우용 파이썬 언어 패 키지를 다운로드

파이썬 특징

- 파이썬은 문법이 쉬워 빠르게 배울 수 있다
- 파이썬은 간결하다
- 파이썬은 개발 속도가 빠르다
- 확장성이 좋아 여러 응용분야의 프로그래밍에 유리하다

파이썬 참고용 교재

• 점트 투 파이썬, 박응용 (https://www.wikidocs.net/book/1)

•

자료형, 리터럴과 변수

• 리터럴과 자료형

분류	내장 자료형	리터럴			
수치	정수(int)	10 -	·30	0xfffe	073
	실수(float)	3.14		-0.45	123.032E-13
	복소수(complex)	complex(1,2)		1+2j	4+5j
	부울(bool)	True		False	
시퀀스	문자열(str)	'game'		"over"	"C"
	리스트(list)	[]		[0, 1, 2, 3]	[0, 'hello', 3.14]
	튜플(tuple)	(0, 1, 2, 3)	('hello', 'world', 'game')		
매핑	딕셔너리(dict)	{ 3.14 : "phi", 4.5 : "score" }			
집합	집합(set, frozenset)	{ 1, 2, 3 } {'one', 'two', 'three' }			

변수(variable)

```
number = 132 # 변수 생성 및 사용 문장
number = number + 8 # 변수 사용 문장
pi = 3.14 # float 변수
comp = 1 + 2j # complex 변수
isValid = True # bool 변수
msg = 'game over !!!' # str 변수
A = [0, 1, 1, 2, 3, 5, 8, 13] # list 변수
```

• 변수 이해하기

- 파이썬에서는 모든 자료가 클래스로부터 만들어진 객체이다.
- 변수는 다른 객체를 참조하는 참조자 또는 포인터의 역할을 한다.

• 변수의 동작 정확히 이해하기

number = 132 score = 3.85 name = "아이돌"

number = 99

student = name

number = None

number

파이썬 자료형

- 기본 자료형 정수, 실수, 문자, 부울
- 정수: int 10진수 (15, -30), 8진수(0o177), 16진수(0x8ff) x = 0o123
- 실수: float 12.5, -50,2
- 부울: bool True, False

파이썬 자료형

• 문자열 : str

```
"seoul", 'seoul', """seoul""", ''seoul'''
```

• 여러 줄인 문자열: "' 혹은 """ 사용

Life is too short. You need python.

""" Life is too short. You need python.

파이썬으로 쉽게 풀어쓴

111

11 11 11

파이썬 자료형 확인

type 함수type(자료)

파이썬 주석

- 한 줄 주석: # 으로 시작
- 여러 줄 주석: """ 로 시작 """ 로 끝남

```
** ** **
```

• • • • •

• • • • •

11 11 11

파이썬 출력 (기초)

• (화면) 출력: print() 함수 정해진 양식으로 출력 print(a, b, c) print(2, "3", sep= " ") // print(2, "3") print(a, b, sep=":") print(a, b, end=" ") a = 10;print(type(a))

파이썬 출력 (기초)

- (화면) 출력: print() 함수
- 원하는 출력 양식에 맞게 출력: %
- 문자열 % (출력값1, 출력값2, ...) 형식
- 출력값에 대응하는 형식을 문자열에 포함
- %d, %3d, %f, %5.2f, %s, %+10s

```
price = 24
item = "banana"
print(" %s %d" % (item, price))
```

파이썬 입력 (기초)

- (키보드) 입력: input() 함수
- input()는 입력되는 한 줄 자료를 문자열로 반환 n = input() // 12 13 "12 13" name = input("Input your name") score = int(input()) print(n, name, score)
- 숫자를 입력해도 문자열로 반환하기 때문에, 변수에 숫자로 저장하려면 type 변환을 하는 것이 필요함

파이썬 입력 (기초)

- input().split() 함수: 한 줄로 입력되는 자료를 분리함
- input()는 입력되는 한 줄 자료를 문자열로 반환
- a, b = input().split() // 기본적으로 공백을 기준으로 분리 12 13

x, y = input().split(":")

x, y = int(x), int(y)

입출력 연습

```
1 출력문 (print 문).
a = 20
b = 30
print(a, b)
print("a = ", a, "b= ", b)
2. 입력문 (input 문)
(1)
score = input("점수 입력: ")
print(score) # 문자열
(2)
score = int(score)
print(score) # 정수(2)
score = int(input())
print(score)
```

```
(3)
name = input()
print(name)
(4)
lastName, firstName =
input().split()
print(lastName, firstName)
(5)
name = input()
score = int(input())
print(name,score)
(6)
name, score =input().split()
score = int(score)
print(name,score)
```

파이썬의 연산자

- 나눗셈 연산자 변경
 - 연산자 / : 실수의 나눗셈 (결과가 실수)
 - 연산자 //: 정수 연산(floor division)
- 이항 연산자 ** (예: 2**3) 2^3
- 단항 연산자 ++, -- 제공 않음
 x += 1
- 관계 연산자 >, <, >=, <=, ==, !=
- 부울 연산자: or, and, not
- in과 not in 연산자

```
'a' in 'banana' # True
'seed' in 'banana' # False
```

A = [0, 1, 1, 2, 3, 5, 8, 13] if 3 in A: while 4 in A:

조건문

• if, if else, if elif

조건문 if

- 조건문: if, if else, if elif
- if 조건:

문장들 (indentation 들여쓰기)

예:

$$temp = a$$

$$a = b$$

$$b = temp$$

if 문 연습 – 세 수 정렬

1. 세 수 정렬하기

```
x,y,z = input().split()
# print(x+y+x) 출력결과 확인해보기
x = int(x)
y = int(y)
z = int(z)
# x, y, z = int(x), int(y), int(z)
if x>y: # x가 y보다 크면
temp = x # x와 y 교환
x = y
y = temp
```

```
if y>z: # y가 z보다 크면
temp = y # y와 z 교환
y = z
z = temp
```

```
if x>y: # x가 y보다 크면
# x와 y 교환
```

print(x,y,z)

조건문 if else

- if else 문 if 조건: 문장들1 else: 문장들2
- 예 if a > b: largest = a else: largest = b

조건문 if elif

if elif

if 조건1:

문장1

elif 조건2:

문장2

elif 조건3:

• • •

elif 조건n:

문장n

else:

문장0

if elif 문 연습

уу년도가 윤년인지 판별

yy가 400으로 나누어지면 윤년 그렇지않고 yy가 100으로 나누어지면 평년 그렇지않고 yy가 4로 나누어지면 윤년 그렇지않으면 평년

```
yy = int(input())
if yy % 400 == 0:
    isLeap = True
elif yy % 100 == 0:
    isLeap = False
elif yy % 4 == 0:
    isLeap = True
else:
    isLeap = False
if isLeap: # if isLeap == True
    print("The year %d is a leap year" % (yy))
else:
    print("The year %d is not leap a year" % (yy))
```

반복문

• while, for

반복문 while

• while 문

while 조건: 문장들

• 예: 두 수 a,b의 최대공약수 출력

```
유클리드 알고리즘
gcd(a,b) = b if a%b = 0
gcd(b,a%b) otherwise
```

```
a,b = input().split()

a,b = int(a), int(b)

while(a%b != 0)

temp = a%b

a = b

b = temp
```

print(b)

• 예: 양의 정수 n의 자릿수 개수와 자릿수 합 구하기

```
n = int(input())

sum = 0
count = 0

while n!= 0:
    count += 1
    sum = sum + n % 10
    n = n // 10

print(count, sum)
```


• 예: 양의 정수 n의 약수 개수 출력

```
n = int(input())
i = 1
count = 0
while i <=n:
    if n%i == 0:
        count += 1
    i += 1
print(count)</pre>
```



```
# 소수(prime number) 판별 1
  소수: 약수로 1과 자기 자신만을 가지는 양의 정수
n = int(input())
isPrime = True
i = 2
while i < n:
  if n \% i == 0:
     isPrime = False
     break
  else:
    i += 1
if isPrime:
  print(n, " is a prime number")
else:
  print(n, " is not a prime number")
```

for 문

• for 변수 in range (또는 리스트, 튜플, 문자열): 문장들

range 함수

- range(2,10) # range(2,10,1)
 2부터 10 미만의 숫자를 포함하는 range 객체
- range(10) # range(0,10)
 0부터 10 미만의 숫자를 포함하는 range 객체
- range(2,10,3)2, 5, 8을 포함하는 range 객체

range 연습


```
for i in range(5): print(i)
```

```
for i in range(1,5): print(i)
```

for 문 연습

• yy1 년도부터 yy2 년도 까지 윤년 수 구하기

```
yy1, yy2 = input().split()
yy1, yy2 = int(yy1), int(yy2)
count = 0
for yy in range(____, ____):
   if yy \% 400 == 0:
      isLeap = True # bool 형
   elif yy \% 100 == 0:
      isLeap = False
   elif yy \% 4 == 0:
      isLeap =True
   else:
      isLeap = False
   if isLeap:
      count += 1
print(count)
```

for 문 연습

• 약수 판별

```
n = int(input())
isPrime = True
for i in range(2,n):
   if n \% i == 0:
      isPrime = False
      break
if isPrime:
   print(n, " is a prime number")
else:
   print(n, " is not a prime number")
```

소수 판별하는 효율적 방법

• 양의 정수 n이 2이상이고 root(n)보다 작은 약수가 없으면 소수이다

```
n = int(input())
isPrime = True
i = 2
while i*i <= n: # while i <= root(n)
   if n \% i == 0:
      isPrime = False
      break
   else:
      i += 1
if isPrime:
   print(n, " is a prime number")
else:
   print(n, " is not a prime number")
```

문자열, 리스트, 튜플, 집합, 딕셔너리

• 여러 개의 자료를 가질 수 있는 자료형

문자열(str)

• 문자열

```
hobby = "테니스"
age = 21
score = 4.5
msg1 = " 당신의 학점은 %4.1f입니다" % score
msg2 = " 취미=%s, 나이=%d, 학점=%f" % (hobby, age, score)
```

문자열(str)

• 문자열 msg = "game over"

- 문자열 길이 함수 len(msg)
- 문자열 특정 위치 문자 접근: 인덱스 이용 문자열변수이름[인덱스] : 인덱스 0~문자열길이-1 예: msg[i]
- 문자열은 변경 불가 (immutable 자료형)
 msg[0] = 'G' # 오류

리스트(list)

- 순서가 있는 원소(element, 요소, item:항목)들의 모임
- score = [80,90,85,95,70]
- print(score) # score 리스트 전체를 출력
- 리스트 원소를 접근할 때 인덱스를 사용: 리스트이름[인덱스] 가장 앞에 있는 원소의 인덱스 0부터 가장 마지막에 있는 원소 인덱스는 (리스트 길이-1)

```
예: score[0] # 80
score[4] # 70
score[-1]도 가능 # score[4]
```

리스트는 원소들의 자료형이 달라도 된다
 L = [1, "momkey", 2, "hippo", 3, "tiger"]

리스트(list)

• 스마트한 배열

메소드	설명	big3.append("알라딘")
s.append(item)	항목 item을 리스트 s의 맨 뒤에 추가한다.	big3.append("엘사")
s.extend(Ist)	리스트 lst를 s에 추가한다.	big3.append("안나")
s.count(item)	리스트에서 항목 item의 개수를 세고 그 개수를 반환한다.	
s.index(item,[시작],[종료])	리스트에서 항목 item을 찾아 가장 작은 인덱스를 반환한다. 탐색의 시작 위 치와 종료 위치를 지정할 수도 있다.	
s.insert(pos, item)	pos 위치에 항목 item을 삽입한다.	
s.pop(pos)	pos 위치의 항목을 s에서 꺼내고 반환한다.	
s.remove(item)	항목 item을 s에서 제거한다.	
s.reverse()	리스트 항목의 순서를 뒤집는다.	
s.sort([key], [reverse])	항목을 정렬한다.	

- score = [80,90,85,95,70,80,99]
- 슬라이싱 (slicing)

score[2:5] # score[2]부터 score[4]까지 원소들 리스트 [90,85]

score[0:2] score[:2] score[2:]

• 문자열 슬라이싱 (slicing)

string1 = "seoul" String2 = string1[2:4]

- score = [80,90,85,95,70]
- 리스트 원소 수정 예: score[0] = 82
- 두 리스트 더하기(+) a = [10,30,20]b = [30,60,10]c = a+b # [10,30,20,30,60,10]

- score = [80,90,85,95,70]
- 리스트 반복하기 *예: score*2
- 리스트 길이 구하는 함수 len
 a = [10,30,20, 80, 25]
 l = len(a)

- score = [80,90,85,95,70]
- 리스트 수정 score[2] = 87

- score = [80,90,85,95,70]
- 리스트 변수 이름 뒤에 .을 붙여서 사용하는 함수
- 리스트의 마지막에 원소 추가: 함수 append score.append(20)
- a = []
 a.append(20)
 a.append(30)
 a.append(25)
- 리스트에서 원소 삽입 함수 insert score.insert(pos, element) # pos 번째에 element 삽입 score.insert(0,50)

- score = [80,90,85,95,70]
- 리스트에서 원소 삭제 함수 remove score.remove(element) # 리스트에서 처음으로 나오는 원소 삭제 score.remove(85)
- 리스트에서 원소 삭제 함수 pop score.pop() # 마지막 원소 삭제 score.pop(2) # 2번째 원소 (index가 2인 원소)
- 리스트의 원소 삭제 함수 del del score[3] # index 3의 원소 삭제: [80,90,85,70] del score[:2] # slicing 사용 가능

- score = [80,90,85,95,70]
- 리스트 변수 이름 뒤에 .을 붙여서 사용하는 함수
- 리스트에서 원소 삭제 함수 pop score.pop() # 마지막 원소 삭제

score.pop(2) # 2번째 원소 (index가 2인 원소)

- score = [80,90,85,95,70]
- 리스트에서 원소의 인덱스 score.index(85)
- 리스트에서 원소 개수 세기 함수 count score.count(85)

- score = [80,90,85,95,70]
- 리스트 확장 함수 extend score.extend([30,50]) # score = score +[30,50]

- score = [80,90,85,95,70]
- 리스트 변수 이름 뒤에 .을 붙여서 사용하는 함수
- 리스트 원소들을 정렬하는 함수 sort score.sort()
- 리스트의 원소들을 역순으로 바꾸는 함수 reverse score.reverse()

리스트에서 평균 구하기

리스트 scores에서 원소들 평균 구하기

```
for x in scores:

sum = sum + x
```

avr = sum / n
print(avr)

리스트 이용 평균 관련 문제


```
• 입력
```

5 # 점수 개수 n

60 # 점수1

70 # 점수2

80 # 점수3

90 # 점수4

85 # 점수5

평균 이상 점수 개수 구하기

```
n = int(input())
scores = []
sum = 0
for i in range(n):
    scores.append(int(input()))
    sum = sum + scores[i]
# print(scores)
```

avr = sum / n
print(avr)

cnt = 0

• • • • •

튜플

- 리스트와 유사하게 순서가 있는 원소들 모임
- t = (80,90,85,95,70)
- 인덱싱, 슬라이싱 가능
- 생성, 삭제 가능하지만 그 값을 바꿀 수 없다 (immutable 자료형)

튜플 연산

- t = (80,90,85,95,70)
- 두 튜플 더하기
 t1 = (20, 30)
 t2 = (40, 10, 50)

t = t1 + t2 # (20,30,40,10,50)

- 튜플 곱하기
 t3 = t*2 # t3 = t1 + t1
- 튜플 길이 구하기 함수 len
 len(t1)