Problem Set #1

Introduction to Measure Theory, Jan Ertl Martina Fraschini

Exercise 1.3

Which of the following are algebras? Which are σ -algebras?

- $\mathcal{G}_1 = \{A : A \subset \mathbb{R}, A \text{ open}\}$
 - 1. $\emptyset \in \mathcal{G}_1$, as the empty set is a subset of the field of real numbers.
 - 2. Given $A \in \mathcal{G}_1$, then $A^c \notin \mathcal{G}_1$, as A^c is a closed set by definition (a closed set is defined as the complement set of an open set).

Therefore, \mathcal{G}_1 is neither an algebra or a σ -algebra.

- $\mathcal{G}_2 = \{A : A \text{ is a finite union of intervals of the form } (a, b], (-\infty, b], (a, \infty)\}$
 - 1. If we assume that a = b gives the empty set, then $\emptyset \in \mathcal{G}_2$.
 - 2. Given $A \in \mathcal{G}_2$, then A^c is a finite union of intervals of the form (a, b], $(-\infty, b]$, (a, ∞) as well. Thus, $A^c \in \mathcal{G}_2$.
 - 3. \mathcal{G}_2 is, by definition, closed under finite unions (but not under countable unions).

Therefore, \mathcal{G}_2 is an algebra but not a σ -algebra.

- $\mathcal{G}_3 = \{A : A \text{ is a countable union of } (a, b], (-\infty, b], (a, \infty)\}$
 - 1. As before, if we assume that a = b gives the empty set, then $\emptyset \in \mathcal{G}_3$.
 - 2. Given $A \in \mathcal{G}_3$, then A^c is a countable union of intervals of the form (a, b], $(-\infty, b]$, (a, ∞) as well. Thus, $A^c \in \mathcal{G}_3$.
 - 3. \mathcal{G}_3 is, by definition, closed under countable unions.

Therefore, \mathcal{G}_3 is a σ -algebra, and consequently an algebra.

Exercise 1.7

If X is a nonempty set and \mathcal{A} is any σ -algebra, then why $\{\emptyset, X\} \subset \mathcal{A} \subset \mathcal{P}(X)$? By definition, X is nonempty and therefore it cannot be a σ -algebra. If we add the empty set to obtain $\{\emptyset, X\}$, then it is trivial to see how this is the smallest combination of sets that generates a σ -algebra.

The power set $\mathcal{P}(X)$ is defined as the sets of all the possible subsets of X. Thus, all the possible σ -algebras are already contained in the in $\mathcal{P}(X)$ and there is no subset that can be added.

Exercise 1.10

Prove that the intersection of σ -algebras $\bigcap_{\alpha} S_{\alpha}$ is a σ -algebra as well.

- 1. Since each S_{α} is a σ -algebra by definition, it means that each family of subsets contains the empty set. Therefore, the intersection of all the S_{α} contains as well the empty set: $\emptyset \in \bigcap_{\alpha} S_{\alpha}$.
- 2. $A \in \bigcap_{\alpha} \mathcal{S}_{\alpha} \Rightarrow A \in \mathcal{S}_{\alpha} \ \forall \alpha$. Since each \mathcal{S}_{α} is a σ -algebra, we have that also $A^c \in \mathcal{S}_{\alpha} \ \forall \alpha$. Therefore, it is also true that $A^c \in \bigcap_{\alpha} \mathcal{S}_{\alpha}$.
- 3. Let $A_i \in \bigcap_{\alpha} \mathcal{S}_{\alpha}$ for $i \neq \alpha$. Then $A_i \in \mathcal{S}_{\alpha} \ \forall i, \alpha$. By definition of σ -algebra, we also have that $\bigcup_i A_i \in \mathcal{S}_{\alpha} \ \forall \alpha$. Thus, $\bigcup_i A_i \in \bigcap_{\alpha} \mathcal{S}_{\alpha}$.

Exercise 1.22

Prove the following:

- μ is monotone. Let $A \subset B$, then we can consider B as the union of two disjoint sets: $B = A \cup (B \setminus A)$. Therefore, since the measure is a positive and addictive function, we have that $\mu(B) = \mu(A) + \underbrace{\mu(B \setminus A)}_{>0} \ge \mu(A)$.
- μ is countably addictive. $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) - \underbrace{\sum \mu(\text{all possible intersections})}_{\geq 0} \leq \sum_{i=1}^{\infty} \mu(A_i).$

Exercise 1.23

Show that $\lambda(A) = \mu(A \cap B)$ is a measure.

- 1. $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0$.
- 2. $\lambda(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} A_i \cap B) = \mu(\bigcup_{i=1}^{\infty} (A_i \cap B)) = \sum_{i=1}^{\infty} \mu(A_i \cap B) = \sum_{i=1}^{\infty} \lambda(A_i),$ where $A_i \neq A_j$ for $i \neq j$.

Exercise 1.26

Prove that $(A_1 \supset A_2 \supset A_3 \supset \cdots, A_i \in \mathcal{S}, \mu(A_1) < \infty) \Rightarrow (\lim_{n \to \infty} \mu(A_n) = \mu(\bigcap_{i=1}^{\infty} A_i)).$ Let $B_i = A_1 \setminus A_i$ and $\mu(B_i) = \mu(A_1) - \mu(A_i).$ We have that $\mu(\bigcup_{n=1}^{\infty} B_n) = \mu(A_1 \setminus \bigcap_{n=1}^{\infty} A_n) = \mu(A_1) - \mu(\bigcap_{n=1}^{\infty} A_n).$ We also know (Thm 1.25) that $\mu(\bigcup_{n=1}^{\infty} B_n) = \lim_{n \to \infty} \mu(B_n) = \mu(A_1) - \lim_{n \to \infty} \mu(A_n).$ It follows that $\lim_{n \to \infty} \mu(A_n) = \mu(\bigcap_{n=1}^{\infty} A_n).$