William Frénée-Larose Gabriel-Andrew Pollo-Guilbert

Chimie Générale 202-NYA-05 Groupe 7

Laboratoire #7: Gravimétrie du Cuivre et Stoechiométrie

Travail présenté à André Cyr

Département de chimie Cégep de Trois-Rivières Remis le 21 Novembre 2015 La

Mesures et résultats

Tableau des mesures : masses de Zn et du montage incluant le Cu

	Filtration par gravité	Filtration sous vide
	Zinc limitant	Zinc en excès
Zn (g)	0,124	0,528
Montage (g)	90,109	150,639
Montage+Cu (g)	90,212	150,950

Volume de la solution de $CuSO_4$: $(50,00 \pm 0,05) \, ml$ Concentration de la solution de $CuSO_4$: $(0,150 \pm 0,001) \, mol/L$

Tableau des résultats : quantités de Zn, CuSO $_4$ et Cu, et % de rendement

· , , , , , , , , , , , , , , , , , , ,		
	Filtration par gravité	Filtration sous vide
	Zinc limitant	Zinc en excès
Quantité de Zn (mmol)	1,90	8,08
Quantité de CuSO ₄ (mmol)	7.50	
Quantité de Cu théorique (mmol)	1,90	7,50
Quantité de Cu expérimentale (mmol)	1,62	4,89
% de rendement	85,3	65,2

Calculs

Filtration sous vide

1. Nombre de mol de Zn

$$\begin{split} n_{Zn} &= \frac{m_{Zn}}{MM_{Zn}} \\ &= \frac{0,528\,\mathrm{g}}{65,38\,\mathrm{g/mol}} \\ &= 8,08\,\mathrm{mmol} \end{split}$$

2. Nombre de mol de CuSO₄

$$\begin{split} n_{CuSO_4} &= V_{CuSO_4} \cdot C_{CuSO_4} \\ &= 50,\!00\,\mathrm{ml} \cdot 0,\!150\,\mathrm{mol/L} \\ &= 7,\!50\,\mathrm{mmol} \end{split}$$

3. Nombre de mol de Cu théorique produite par le Zn

$$\begin{split} n_{Cu} &= n_{Zn} \cdot \frac{\mathrm{coef_{Cu}}}{\mathrm{coef_{Zn}}} \\ &= 8.08 \, \mathrm{mmol} \cdot \frac{1 \, \mathrm{mol}}{1 \, \mathrm{mol}} \\ &= 8.08 \, \mathrm{mmol} \end{split}$$

4. Nombre de mol de Cu théorique produite par le CuSO₄

$$\begin{split} n_{\mathrm{Cu}} &= n_{\mathrm{CuSO_4}} \cdot \frac{\mathrm{coef_{Cu}}}{\mathrm{coef_{CuSO_4}}} \\ &= 7{,}50\,\mathrm{mmol} \cdot \frac{1\,\mathrm{mol}}{1\,\mathrm{mol}} \\ &= 7{,}50\,\mathrm{mmol} \end{split}$$

5. Masse de Cu expérimentale

$$\begin{split} m_{Cu} &= m_{papier \; filtre+b\ddot{u}chner+capsule+Cu} - m_{papier \; filtre+b\ddot{u}chner+capsule} \\ &= 150,950 \, g - 150,639 \, g \\ &= 0,311 \, g \end{split}$$

6. Nombre de mol de Cu expérimental

$$\begin{split} n_{Cu} &= \frac{m_{Cu}}{MM_{Cu}} \\ &= \frac{0.311\,\mathrm{g}}{63.546\,\mathrm{g/mol}} \\ &= 4.89\,\mathrm{mmol} \end{split}$$

7. Rendement de la réaction

% de rendement =
$$\frac{n_{\text{Cu expérimental}}}{n_{\text{Cu théorique}}} \times 100$$

= $\frac{4,89 \, \text{mmol}}{7,50 \, \text{mmol}} \times 100$
= $65,2 \, \%$

Discussion

Conclusion