

Jaskinia

Dostępna pamięć: 256 MB.

Grupa speleologów planuje zbadać odkrytą niedawno jaskinię. Jaskinia składa się z n komnat ponumerowanych od 1 do n. Komnaty są połączone za pomocą n-1 korytarzy w taki sposób, że z dowolnej komnaty można przejść do dowolnej innej. Każdy korytarz łączy dokładnie dwie komnaty.

Badanie jaskini przeprowadzi grupa m speleologów, których dla uproszczenia ponumerujemy od 1 do m. Każdy speleolog przedstawił wymagania dotyczące obszaru jaskini, który będzie badać. Speleolog i chciałby rozpocząć badanie w komnacie a_i , zakończyć je w komnacie b_i , a po drodze przemierzyć co najwyżej d_i korytarzy (każde przebycie tego samego korytarza liczymy osobno). Bajtazar, kierownik wyprawy, chciałby, by w pewnym momencie wszyscy badacze mogli spotkać się i wymienić swoimi spostrzeżeniami. Z tego powodu zastanawia się, czy może wybrać jedną z komnat jaskini i tak wytyczyć trasy speleologów, by wszystkie prowadziły przez wybraną komnatę. Oczywiście wytyczone trasy muszą spełniać wymagania postawione przez badaczy.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita t ($1 \le t \le 1000$) określająca liczbę zestawów testowych. Dalej następują opisy poszczególnych zestawów. Opis jednego zestawu rozpoczyna się od wiersza z dwiema liczbami całkowitymi n i m ($2 \leqslant n, m \leqslant 300\,000$), które opisują, odpowiednio, liczbę komnat w jaskini oraz liczbę speleologów. W kolejnych n-1 wierszach opisane są korytarze jaskini. Każdy z nich zawiera dwie liczby całkowite u_i , w_i ($1 \le u_i$, $w_i \le n$), które oznaczają, że komnaty u_i oraz w_i są bezpośrednio połączone korytarzem.

Następne m wierszy opisuje wymagania speleologów. W i-tym z tych wierszy nich znajdują się trzy liczby całkowite a_i, b_i, d_i ($1 \le a_i, b_i \le n, 1 \le d_i \le 600\,000$). Oznaczają one, że speleolog i rozpocznie badanie w komnacie a_i , zakończy je w komnacie b_i , a po drodze co najwyżej d_i razy przejdzie korytarzem. Możesz założyć, że da się przejść z komnaty a_i do komnaty b_i przemierzając nie więcej niż d_i korytarzy. Zarówno suma wartości n po wszystkich zestawach testowych, jak i suma wartości m nie przekraczają 300 000.

Wyjście

Twój program powinien wypisać na wyjście dokładnie t wierszy. W i-tym wierszu powinna znaleźć się odpowiedź dla i-tego zestawu testowego z wejścia. Jeśli da się tak poprowadzić trasy speleologów, by wszystkie przebiegały przez jedną komnatę, należy wypisać TAK, a następnie numer komnaty, w której może dojść do spotkania. W przeciwnym razie, należy wypisać jedynie słowo NIE. Jeśli istnieje wiele poprawnych odpowiedzi, Twój program powinien wypisać dowolną z nich.

Przykład

Dla danych wejściowych:

5 3

1 2

2 3

2 4

3 5

1 4 2 5 5 5

3 2 1

3 2

1 2

2 3

3 3 1

1 1 2

poprawnym wynikiem jest:

TAK 2 NIE

JAS 2/2

