МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Факультет систем управления и робототехники

ОТЧЁТ по лабораторной работе 'В', вариант - 24

Теория автоматического управления

по теме:

 $\mathcal{H}_2, \mathcal{H}_{\infty}$

Студент:

Группа R3336 Поляков А.А.

Предподаватель:

к.т.н., доцент Пашенко А.В.

Санкт-Петербург 2025

СОДЕРЖАНИЕ

СИНТЕЗ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ТЕЛЕЖКИ					
СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО СОСТОЯНИЮ					
2.1					
2.2					
	2.2.1		8		
	2.2.2	, ,	10		
	2.2.3	Второе гармоническое возмушение	11		
	2.2.4	•	12		
	2.2.5		13		
	2.2.6	Второе гармоническое возмушение	14		
	2.2.7	Вывод	14		
СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО ВЫХОДУ					
3.1					
	3.2.1	Первый набор (C_{Z1}, D_{Z1})	17		
	3.2.2	Первое гармоническое возмушение	18		
	3.2.3	Второе гармоническое возмушение	19		
	3.2.4	Второй набор (C_{Z2}, D_{Z2})	20		
	3.2.5	Первое гармоническое возмушение	21		
	3.2.6	Второе гармоническое возмушение	22		
	3.2.7	Вывод	22		
СИНТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО СОСТОЯНИЮ					
4.1	Услові	ие задачи	23		
			24		
	4.2.1		25		
	4.2.2		26		
	4.2.3	Второе гармоническое возмушение	27		
	4.2.4	Первое гармоническое возмушение	29		
	4.2.5	· · · · · · · · · · · · · · · · · · ·	30		
	4.2.6	Вывод	30		
	СИН 2.1 2.2 СИН 3.1 3.2	СИНТЕЗ Н 2.1 Услов 2.2 Решен 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 СИНТЕЗ Н 3.1 Услов 3.2 Решен 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 СИНТЕЗ Н 4.1 Услов 4.2 Решен 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.5	СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО СОСТОЯНИЮ 2.1 Условие задачи 2.2.1 Первый набор (C_{Z1},D_{Z1}) . 2.2.2 Первое гармоническое возмушение 2.2.3 Второе гармоническое возмушение 2.2.4 Второй набор (C_{Z2},D_{Z2}) . 2.2.5 Первое гармоническое возмушение 2.2.6 Второе гармоническое возмушение 2.2.7 Вывод. СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО ВЫХОДУ 3.1 Условие задачи 3.2.1 Первый набор (C_{Z1},D_{Z1}) . 3.2.2 Первое гармоническое возмушение 3.2.3 Второе гармоническое возмушение 3.2.4 Второй набор (C_{Z2},D_{Z2}) . 3.2.5 Первое гармоническое возмушение 3.2.6 Второе гармоническое возмушение 3.2.7 Вывод. СИНТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО СОСТОЯНИЮ 4.1 Условие задачи 4.2 Решение задачи 4.2.1 Первый набор (C_{Z1},D_{Z1}) . 4.2.2 Первое гармоническое возмушение 4.3.3 Второе гармоническое возмушение		

5	СИНТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО ВЫХОДУ				
	5.1	5.1 Условие задачи			
	5.2	Решение задачи			
		5.2.1	Первый набор (C_{Z1}, D_{Z1})	33	
		5.2.2	Первое гармоническое возмушение	34	
		5.2.3	Второе гармоническое возмушение	35	
		5.2.4	Первое гармоническое возмушение	36	
		5.2.5	Второе гармоническое возмушение	37	
		5.2.6	Вывод	37	
6	ОБЩИЕ ВЫВОДЫ				

1 СИНТЕЗ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ТЕЛЕЖКИ

Рассмотрим систему:

$$\begin{cases} \dot{x} = Ax + Bu + B_w w \\ y = Cx + D_w w \end{cases}$$

и сформируем математическую модель такого объекта:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

В качестве измеряемого выхода мы имеем y(t), в формировании которого нам будут мешать внешние возмущение w, которое будет формироваться посредством матриц B_w, D_w .

Эти возмущения в общем виде мы зададим следующим образом, меняться будет только частота f и фазовый сдвиг $\phi=\frac{7\pi}{2}$ (везде он будет оставаться постоянным) внутри :

$$w(t) = \sin(2\pi \cdot f \cdot t + \phi)$$

$$B_w = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \qquad D_w = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Зададим варианты регулируемого выхода, не менее 2-х штук:

$$z(t) = C_Z x + D_Z u$$

Пусть:

$$C_{Z1} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \qquad D_{Z1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C_{Z2} = \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix} \qquad D_{Z2} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

Для выбранных матричных пар можно сразу проверить два условия - "невырожденности" и "независимости":

$$C_{Z1}^T D_{Z1} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \qquad B_w D_w^T = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$D_w D_w^T = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1, \qquad D_{Z1}^T D_{Z1} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1,$$

$$C_{Z2}^T D_{Z2} = \begin{bmatrix} 3 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \qquad D_{Z2}^T D_{Z2} = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 4,$$

Как можно заметить, у обеих пар выполняется оба условия.

2 СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО СОСТОЯНИЮ

2.1 Условие задачи

- Синтезировать соответствующий \mathcal{H}_2 -регулятор вида u = Kx по состоянию путем решения матричного уравнения Риккати.
- Найти передаточную функцию (матрицу) $Ww \rightarrow z(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- Построить для $W_{w\to z}(s)$ графики покомпонентных АЧХ.
- Построить для $W_{w\to z}(s)$ график сингулярных чисел.
- Найти \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
- Задаться не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.
- Для каждого из выбранных вариантов внешнего возмущения w выполнить моделирование при нулевых начальных условиях на объекте управления и построить графики компонент регулируемого выхода z(t).
- Сравнить полученные результаты для различных вариантов внешнего возмущения, сделать выводы.

2.2 Решение задачи

Найдём передаточную матрицу $W_{w \to z}(s)$ замкнутой системы в общем виде:

Уравнение системы состояния после замыкания и z(t) с учётом регулятора:

$$\begin{cases} \dot{x} = (A + BK)x + B_w x \\ z = (C_Z + D_Z K)x \end{cases}$$

Возьмём преобразование Лапласа от обеих частей:

$$\begin{cases} sX = (A + BK)X + B_wX, & \to & X(s) = (sI - A - BK)^{-1}B_wW(s) \\ Z(s) = (C_Z + D_ZK)X(s) \end{cases}$$

Получаем:

$$Z(s) = (C_Z + D_Z K)(sI - A - BK)^{-1} B_w W(s)$$

$$W_{w\to z}(s) = \frac{Z(s)}{W(s)} = (C_Z + D_Z K) * (sI - A - BK)^{-1} B_w$$

Будем синтезировать \mathcal{H}_2 -регулятор, решая матричное уравнение Риккати:

$$A^{T}Q + QA + C_{Z}^{T}C_{Z} - QB(D_{Z}^{T}D_{Z})^{-1}B^{T}Q = 0, K = -(D_{Z}^{T}D_{Z})^{-1}B^{T}Q$$

Если $C_Z^T D_Z = 0$, $D_Z^T D_Z$ - обратима, а также пары (A, B_w) - стабилизируема, (C_Z, A) - обнаруживаема, то существует решение Q>0 уравнения Риккати, и соответствующий регулятор делает замкнутую систему устойчивой и доставляет минимум ёё \mathcal{H}_2 -норме.

2.2.1 Первый набор (C_{Z1}, D_{Z1})

Получим следующую матрицу регулятора:

$$K = \begin{bmatrix} -0.5 & -1 \end{bmatrix}$$

Получим следующую передаточную матрицу системы:

$$W_{w\to z}(s) = \begin{bmatrix} \frac{1}{s^2 + 1s + 0.5} & \frac{-2s^3 - 3s^2 - 2s - 0.5}{s^4 + 2s^3 + 2s^2 + 1s + 0.25} \end{bmatrix}^T$$

Построим для $W_{w o z}(s)$ графики покомпонентных АЧХ: Теперь постро-

Рисунок 1 — Покомпонентные АЧХ

им для $W_{w\to z}(s)$ график сингулярных чисел: Нормы будем считать по следующим лекционным формулам, однако в MATLAB есть готовые реализации через функцию norm:

$$||W||_{\mathcal{H}_2} = \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} trace(W^*(j\omega)W(j\omega))d\omega\right)^{\frac{1}{2}} \approx 2$$

$$||W||_{\mathcal{H}_{\infty}} = \sup_{\omega} \sigma_{max}(W(j\omega)) \approx 3.1$$

Рисунок 2 — Сингулярные числа

На основании графиков АЧХ, выберем хорошую и плохую частоту f_1, f_2 . Хорошей частотой для нас будет являться та, которая меньше увеличивает сигнал по амплитуде, и наоборот.

$$f_1 = 3Hz, \qquad f_2 = 0.55Hz$$

2.2.2 Первое гармоническое возмушение

Рисунок 3 — Моделирование - регулируемый выход z(t)

2.2.3 Второе гармоническое возмушение

Рисунок 4 — Моделирование - регулируемый выход z(t)

Как можно заметить, амплитуды возмущений в выходном сигнале z(t) различаются по своему абсолютному значению, в плохом случае действительно сигнал увеличился почти в 4 раза больше по сравнению с "хорошей" частотой. \mathcal{H}_2 -регулятор не решает задачу компенсации внешнего возмущения, и поэтому по итогу на выходе мы имеем некоторые колебания.

Также можно заметить, что пиковое сингулярное число системы действительно равняется $||W||_{\mathcal{H}_{\infty}}.$

2.2.4 Второй набор (C_{Z2}, D_{Z2})

Получим следующую матрицу регулятора:

$$K = \begin{bmatrix} -0.5 & -2.69 \end{bmatrix}$$

Получим следующую передаточную матрицу системы:

$$W_{w\to z}(s) = \begin{bmatrix} \frac{5s^3 + 14.46s^2 + 5.19s + 0.5}{s^4 + 5.38s^3 + 8.25s^2 + 2.69s + 0.25} & \frac{-5.38s^3 - 15.5s^2 - 5.38s - 0.5}{s^4 + 5.38s^3 + 8.25s^2 + 2.69s + 0.25} \end{bmatrix}^T$$

Построим для $W_{w\to z}(s)$ графики покомпонентных АЧХ: Теперь постро-

Рисунок 5 — Покомпонентные АЧХ

им для $W_{w\to z}(s)$ график сингулярных чисел: Нормы будем считать по следующим лекционным формулам, однако в MATLAB есть готовые реализации через функцию norm:

$$||W||_{\mathcal{H}_2} \approx 3.28$$

$$||W||_{\mathcal{H}_{\infty}} \approx 2.89$$

На основании графиков АЧХ, выберем хорошую и плохую частоту f_1, f_2 . Хорошей частотой для нас будет являться та, которая меньше увеличивает сигнал по амплитуде, и наоборот.

$$f_1 = 10Hz, \qquad f_2 = 0.42Hz$$

Рисунок 6 — Сингулярные числа

2.2.5 Первое гармоническое возмушение

Рисунок 7 — Моделирование - регулируемый выход z(t)

2.2.6 Второе гармоническое возмушение

Рисунок 8 — Моделирование - регулируемый выход z(t)

Можно сделать аналогичные выводы, как и в первом наборе. Во втором возмущении сигнал приобрел нежелательную бОльшую амплитуду в связи с "неудачным" выбором частоты. Помимо этого, можно заметить, что выбор (C_Z, D_Z) матриц регулируемого выхода не меняет общей картины, амплитуда возмущений при разных частота показывают одну и ту же тенденцию.

2.2.7 Вывод

В этом задании мы синтезировали \mathcal{H}_2 -регулятор по состоянию и с помощью него убедились в справедливости воздейсвия АЧХ на амплитуду выходного сигнала регулируемого выхода z(t), а также независимости общей тенденции сигнала от выбора матриц (C_Z, D_Z) .

3 СИНТЕЗ \mathcal{H}_2 -РЕГУЛЯТОРА ПО ВЫХОДУ

3.1 Условие задачи

- Рассмотреть математическую модель «тележки» и для каждого из выбранного в Задании 1 наборов матриц (C_Z, D_Z) , определяющих регулируемый выход z(t) выполнить следующие шаги:
 - Синтезировать соответствующий \mathcal{H}_2 -регулятор вида $u = K\hat{x}$ по выходу.
 - Синтезировать соответствующий \mathcal{H}_2 -наблюдатель путем решения матричного уравнения Риккати.
 - Найти передаточную функцию (матрицу) $Ww \rightarrow z(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
 - Построить для $W_{w\to z}(s)$ графики покомпонентных АЧХ.
 - Построить для $W_{w\to z}(s)$ график сингулярных чисел.
 - Найти \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
 - Задаться не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.
 - Для каждого из выбранных вариантов внешнего возмущения w выполнить моделирование при нулевых начальных условиях на объекте управления и построить графики компонент регулируемого выхода z(t).
 - Сравнить полученные результаты для различных вариантов внешнего возмущения, сделать выводы.

3.2 Решение задачи

В нашем случае система с наблюдателем будет выглядеть следующим образом:

$$\begin{cases} \dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y), \\ \hat{y} = C\hat{x}, \\ \hat{z} = C_Z\hat{x} \end{cases}$$

Как можно заметить, наш наблюдатель никак не учитывается внутри себя внешнее возмущение, он просто его игнорирует.

Теперь синтезируем \mathcal{H}_2 -регулятор аналогично прошлому заданию, для наблюдателя будем решать похожее матричное уравнение Риккати:

$$AP + PA^{T} + B_{w}B_{w}^{T} - PC^{T}(D_{w}D_{w}^{T})^{-1}CP = 0, \qquad L = -PC^{T}(D_{w}D_{w}^{T})^{-1}$$

Если $B_w D_w^T = 0$, $D_Z^T D_Z$ - обратима, а также пары (A, B_w) - стабилизируема, (C_Z, A) - обнаруживаема, то существует решение Q>0 уравнения Риккати, и соответствующий наблюдатель имеет устойчивую динамику ошибки, также соответствующая ёй \mathcal{H}_2 -норма минимальна.

3.2.1 Первый набор (C_{Z1}, D_{Z1})

Получим следующую матрицу регулятора и матрицу коррекции наблюдателя:

$$K = \begin{bmatrix} -1 & -2.45 \end{bmatrix}, \qquad L = \begin{bmatrix} -2.24 \\ -2 \end{bmatrix}$$

Получим следующую передаточную матрицу системы:

$$W_{w\to z}(s) = \begin{bmatrix} \frac{2s^3 + 5.9s^2 + 4.45s + 1}{1s^4 + 4.9s^3 + 8s^2 + 4.9s + 1} & \frac{-2.45s^3 - 7s^2 - 4.9s - 1}{1s^4 + 4.9s^3 + 8s^2 + 4.9s + 1} \end{bmatrix}^T$$

Рисунок 9 — Покомпонентные АЧХ

Нормы будем считать по следующим лекционным формулам, однако в MATLAB есть готовые реализации через функцию norm:

$$||W||_{\mathcal{H}_2} \approx 1.56$$

$$||W||_{\mathcal{H}_{\infty}} \approx 1.47$$

Выберем хорошую и плохую частоту f_1, f_2 . Хорошей частотой для нас будет являться та, которая меньше увеличивает сигнал по амплитуде, и наоборот.

$$f_1 = 5.2Hz, \qquad f_2 = 0.6Hz$$

Рисунок 10 — Сингулярные числа

3.2.2 Первое гармоническое возмушение

Рисунок 11 — Моделирование - регулируемый выход z(t)

3.2.3 Второе гармоническое возмушение

Рисунок 12 — Моделирование - регулируемый выход z(t)

Как и в прошлых случаях, амплитуда регулируемого выхода z(t) различаются по своему абсолютному значению в зависимости от выбранной частоты внешних возмущений, наблюдатель в целом показывает те же результаты, что и в прошлом задании мы получили от наблюдения непосредственно за объектом. При синтезе такого наблюдателя мы гарантировали минимальность $||W||_{\mathcal{H}_2}$, также как и в прошлых экспериментах - пиковое сингулярное число системы действительно равняется $||W||_{\mathcal{H}_\infty}$.

3.2.4 Второй набор (C_{Z2}, D_{Z2})

Получим следующую матрицу регулятора и матрицу коррекции наблюдателя:

$$K = \begin{bmatrix} -1.5 & -1.8 \end{bmatrix}, \qquad L = \begin{bmatrix} -1.46 \\ -0.34 \end{bmatrix}$$

Получим следующую передаточную матрицу системы:

$$W_{w\to z}(s) = \begin{bmatrix} \frac{1s^3 + 4.8s^2 + 6.91s + 4.5}{1s^4 + 3.61s^3 + 6.25s^2 + 5.41s + 2.25} & \frac{-3.61s^3 - 9.5s^2 - 10.82s - 4.5}{1s^4 + 3.61s^3 + 6.25s^2 + 5.41s + 2.25} \end{bmatrix}^T$$

Рисунок 13 — Покомпонентные АЧХ

Нормы будем считать по следующим лекционным формулам, однако в MATLAB есть готовые реализации через функцию norm:

$$||W||_{\mathcal{H}_2} \approx 2.68$$

$$||W||_{\mathcal{H}_{\infty}} \approx 3.09$$

Выберем хорошую и плохую частоту f_1, f_2 . Хорошей частотой для нас будет являться та, которая меньше увеличивает сигнал по амплитуде, и наоборот.

$$f_1 = 3.5Hz, \qquad f_2 = 0.85Hz$$

Рисунок 14 — Сингулярные числа

3.2.5 Первое гармоническое возмушение

Рисунок 15 — Моделирование - регулируемый выход z(t)

3.2.6 Второе гармоническое возмушение

Рисунок 16 — Моделирование - регулируемый выход z(t)

Можно сделать выводы, аналогичные первому набору, только сейчас мы изменили немного "угол обзора" на ситуацию, поменяв матрицы (C_Z, D_Z) регулируемого выхода.

3.2.7 Вывод

В этом задании мы синтезировали \mathcal{H}_2 -регулятор по выходу, который нам позволил уменьшить АЧХ передаточной матрицы системы "в среднем поэтому в результате мы не получили значительного приглушения z(t) сигнала по амплитуде при выборе "плохой" частоты. Мы смогли удостовериться в этом при помощи моделирования.

4 СИНТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО СОСТОЯНИЮ

4.1 Условие задачи

- Рассмотреть математическую модель «тележки», синтезированную в Задании 1. Выбрать один из заданных в Задании 0 наборов матриц (C_Z, D_Z) , определяющих регулируемый выход и выполнить следующие шаги...
- Задаться не менее, чем двумя значениями ограничивающего параметра $\gamma>0$. Постараться выбрать так, чтобы одно из этих значений было приближенным к минимальному, при котором задача еще будет иметь решение. Для каждого из выбранных γ :
 - Синтезировать соответствующий \mathcal{H}_{∞} -регулятор по состоянию, путём решения матричного уравнения типа Риккати.
 - Найти передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
 - Построить для $W_{w \to z}(s)$ графики покомпонентных АЧХ.
 - Построить для $W_{w\to z}(s)$ график сингулярных чисел.
 - Найти \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
 - Для каждого из выбранных вариантов внешнего возмущения w выполнить моделирование при нулевых начальных условиях на объекте управления и построить графики компонент регулируемого выхода z(t).
 - Сравнить полученные результаты для различных вариантов внешнего возмущения, сделать выводы.
- Сравнить полученные результаты для различных вариантов ограничивающего параметра γ и сделать выводы.

4.2 Решение задачи

Будем синтезировать \mathcal{H}_{∞} -регулятор вида u=Kx, решая матричное уравнение Риккати:

$$\begin{cases} A^T Q + QA + C_Z^T C_Z - QB(D_Z^T D_Z)^{-1} B^T Q + \gamma^{-2} Q B_w B_w^T Q = 0, \\ K = -(D_Z^T D_Z)^{-1} B^T Q \end{cases}$$

Если $C_Z^T D_Z = 0$, $D_Z^T D_Z$ - обратима, а также пары (A, B_w) - стабилизируема, (C_Z, A) - обнаруживаема, то существует решение Q>0 уравнения Риккати, и соответствующий регулятор делает замкнутую систему устойчивой и гарантирует $||W||_{\mathcal{H}_\infty} \leq \gamma$.

Как можно заметить, от прошлого \mathcal{H}_2 -регулятора его отличает дополнительная компонента с γ слагаемым.

4.2.1 Первый набор (C_{Z1}, D_{Z1})

Выберем параметр $\gamma = 100$, получим следующую матрицу регулятора:

$$K = \begin{bmatrix} -1 & -2.45 \end{bmatrix}$$

Получим следующую передаточную матрицу системы:

$$W_{w\to z}(s) = \begin{bmatrix} \frac{2s^3 + 5.9s^2 + 4.45s + 1}{1s^4 + 4.9s^3 + 8s^2 + 4.9s + 1} & \frac{-2.45s^3 - 7s^2 - 4.9s - 1}{1s^4 + 4.9s^3 + 8s^2 + 4.9s + 1} \end{bmatrix}^T$$

Рисунок 17 — Покомпонентные АЧХ

$$||W||_{\mathcal{H}_2} \approx 1.56$$

$$||W||_{\mathcal{H}_{\infty}}1.47$$

Выберем хорошую и плохую частоту f_1, f_2 . Хорошей частотой для нас будет являться та, которая меньше увеличивает сигнал по амплитуде, и наоборот.

$$f_1 = 7$$
Hz, $f_2 = 0.5$ Hz

Рисунок 18 — Сингулярные числа

4.2.2 Первое гармоническое возмушение

Рисунок 19 — Моделирование - регулируемый выход z(t)

4.2.3 Второе гармоническое возмушение

Рисунок 20 — Моделирование - регулируемый выход z(t)

Теперь для сравнения, минимизируем вручную параметр "итеративно пока система будет иметь решения.

В моём случае мне удалось снизить до $\gamma = 1.5$, матрица регулятора:

$$K = \begin{bmatrix} -1.34 & -3.47 \end{bmatrix}$$

Передаточная матрица системы:

$$W_{w\to z}(s) = \begin{bmatrix} \frac{2s^3 + 7.94s^2 + 6.15s + 1.34}{1s^4 + 6.94s^3 + 14.71s^2 + 9.31s + 1.8} & \frac{-3.47s^3 - 13.37s^2 - 9.31s - 1.8}{1s^4 + 6.94s^3 + 14.71s^2 + 9.31s + 1.8} \end{bmatrix}^T$$

Построим для $W_{w\to z}(s)$ графики покомпонентных АЧХ: Теперь построим для $W_{w\to z}(s)$ график сингулярных чисел: Нормы будем считать по следующим лекционным формулам, однако в MATLAB есть готовые реализации через функцию norm:

$$||W||_{\mathcal{H}_2} \approx 1.61$$

$$||W||_{\mathcal{H}_{\infty}}1.27$$

Рисунок 21 — Покомпонентные АЧХ

Выберем хорошую и плохую частоту f_1, f_2 . Хорошей частотой для нас будет являться та, которая меньше увеличивает сигнал по амплитуде, и наоборот.

$$f_1 = 7 \mathrm{Hz}, \qquad f_2 = 0.7 \mathrm{Hz}$$

Рисунок 22 — Сингулярные числа

4.2.4 Первое гармоническое возмушение

Рисунок 23 — Моделирование - регулируемый выход z(t)

4.2.5 Второе гармоническое возмушение

Рисунок 24 — Моделирование - регулируемый выход z(t)

Сделаем промежуточные выводы, при минимизации γ мы действительно получили мЕньшую \mathcal{H}_{∞} -норму, потому что при дальнейший попытках понижения γ - уравнения Риккати уже не имеют решения. При этом любопытно, что \mathcal{H}_2 -норма ведёт себя произвольным образом, это и понятно - синтезированный нами регулятор отвечает за минимазацию только пиков на АЧХ.

Здесь же и видно - теперь при попытке выбрать "плохую" частоту, итоговая амплитуда z(t) будет выходить много меньше, чем при аналогичном случае, но с \mathcal{H}_2 -регулятором, причины упоминались выше.

4.2.6 Вывод

В этом задании мы синтезировали \mathcal{H}_{∞} -регулятор по состоянию, который нам позволил сосредоточиться на пиках АЧХ передаточной матриц системы и уменьшать амплитуду z(t) именно там. Мы смогли удостовериться в этом при помощи моделирования.

5 СИНТЕЗ \mathcal{H}_{∞} -РЕГУЛЯТОРА ПО ВЫХОДУ

5.1 Условие задачи

- Рассмотреть математическую модель «тележки» и для одного из наборов матриц (C_Z, D_Z) , выполнить следующие шаги:
- Задаться не менее, чем двумя значениями ограничивающего параметра $\gamma>0$. Постараться выбрать так, чтобы одно из этих значений было приближенным к минимальному, при котором задача еще будет иметь решение. Для каждого из выбранных γ :
 - Синтезировать соответствующий \mathcal{H}_{∞} -регулятор вида $u=K\hat{x}$ по выходу.
 - Синтезировать соответствующий \mathcal{H}_{∞} -наблюдатель.
 - Найти передаточную функцию (матрицу) $Ww \rightarrow z(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
 - Построить для $W_{w \to z}(s)$ графики покомпонентных АЧХ.
 - Построить для $W_{w\to z}(s)$ график сингулярных чисел.
 - Найти \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
 - Задаться не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.
 - Для каждого из выбранных вариантов внешнего возмущения w выполнить моделирование и построить графики компонент регулируемого выхода z(t).
 - Сравнить полученные результаты для различных вариантов внешнего возмущения, сделать выводы.
- Сравнить полученные результаты для различных вариантов ограничивающего па раметра γ и сделать выводы.

5.2 Решение задачи

Теперь синтезируем \mathcal{H}_{∞} -регулятор по выходу, отличаться он как минимум будет тем, что separation principle в нём не выполняется и два уравнения Риккати нужно решать вместе:

$$\begin{cases} A^T \mathbf{Q} + \mathbf{Q} A + C_Z^T C_Z - \mathbf{Q} B (D_Z^T D_Z)^{-1} B^T \mathbf{Q} + \gamma^{-2} Q B_w B_w^T \mathbf{Q} = 0, \\ K = -(D_Z^T D_Z)^{-1} B^T \mathbf{Q}, \\ A \mathbf{P} + \mathbf{P} A^T + B_w B_w^T - \mathbf{P} C^T (D_w D_w^T)^{-1} C \mathbf{P} + \gamma^{-2} \mathbf{P} C_Z^T C_Z \mathbf{P} = 0, \\ L = -\mathbf{P} (I - \gamma^2 \mathbf{Q} \mathbf{P})^{-1} (C + \gamma^{-2} D_w B_w^T \mathbf{Q})^T (D_w D_w^T)^{-1} \end{cases}$$

Помимо отсутствия separation principle, теперь нужно также проверять дополнительное условия согласованности, мы будем по-умолчанию при каждом синтезе проверять:

$$max(\sigma(PQ)) < \gamma^2$$

5.2.1 Первый набор (C_{Z1}, D_{Z1})

Выберем $\gamma = 20$ и получим следующую матрицу регулятора и матрицу коррекции наблюдателя:

$$K = \begin{bmatrix} -0.5 & -1.01 \end{bmatrix}, \qquad L = \begin{bmatrix} -1.45 \\ -1.04 \end{bmatrix}$$

Получим следующую передаточную матрицу системы:

$$W_{w\to z}(s) = \begin{bmatrix} \frac{1}{1s^2 + 1s + 0.5} & \frac{-2s^3 - 3s^2 - 2s - 0.5}{1s^4 + 2s^3 + 2s^2 + 1s + 0.25} \end{bmatrix}^T$$

Рисунок 25 — Покомпонентные АЧХ

Нормы будем считать по следующим лекционным формулам, однако в MATLAB есть готовые реализации через функцию norm:

$$||W||_{\mathcal{H}_2} \approx 2.00$$

$$||W||_{\mathcal{H}_{\infty}} \approx 3.09$$

Выберем хорошую и плохую частоту f_1, f_2 . Хорошей частотой для нас будет являться та, которая меньше увеличивает сигнал по амплитуде, и наоборот.

$$f_1 = 5.2Hz, \qquad f_2 = 0.51Hz$$

Рисунок 26 — Сингулярные числа

5.2.2 Первое гармоническое возмушение

Рисунок 27 — Моделирование - регулируемый выход z(t)

5.2.3 Второе гармоническое возмушение

Рисунок 28 — Моделирование - регулируемый выход z(t)

Теперь вручную минимизируем $\gamma=6$ и получим следующую матрицу регулятора и матрицу коррекции наблюдателя:

$$K = \begin{bmatrix} -0.53 & -1.09 \end{bmatrix}, \qquad L = \begin{bmatrix} -2.1 \\ -1.71 \end{bmatrix}$$

Получим следующую передаточную матрицу системы:

$$W_{w\to z}(s) = \begin{bmatrix} \frac{1}{1s^2 + 1.09s + 0.53} & \frac{-2.18s^3 - 3.45s^2 - 2.32s - 0.56}{1s^4 + 2.18s^3 + 2.25s^2 + 1.16s + 0.28} \end{bmatrix}^T$$

Нормы будем считать по следующим лекционным формулам, однако в MATLAB есть готовые реализации через функцию norm:

$$||W||_{\mathcal{H}_2} \approx 2$$

$$||W||_{\mathcal{H}_{\infty}} \approx 2.97$$

Выберем хорошую и плохую частоту f_1, f_2 . Хорошей частотой для нас будет являться та, которая меньше увеличивает сигнал по амплитуде, и наоборот.

$$f_1 = 3.5Hz, \qquad f_2 = 0.44Hz$$

Рисунок 29 — Покомпонентные АЧХ

5.2.4 Первое гармоническое возмушение

Рисунок 30 — Сингулярные числа

5.2.5 Второе гармоническое возмушение

Амплитуда регулируемого выхода z(t) различаются по своему абсолютному значению в зависимости от выбранной частоты внешних возмущений, наблюдатель в целом показывает те же результаты, что и в прошлом задании мы получили от наблюдения непосредственно за объектом. При синтезе такого наблюдателя мы гарантировали $||W||_{\mathcal{H}_\infty} \leq \gamma$, также как и в прошлых экспериментах - пиковое сингулярное число системы действительно равняется $||W||_{\mathcal{H}_\infty}$.

5.2.6 Вывод

В этом задании мы синтезировали \mathcal{H}_{∞} -регулятор по выходу, который нам позволил уменьшить значительно "приглушить" АЧХ передаточной матрицы системы в самом нежелательном месте, поэтому в результате мы получили приглушение амплитуды лишь в "плохих" частотах у выбранного z(t).

Рисунок 31 — Моделирование - регулируемый выход z(t)

Рисунок 32 — Моделирование - регулируемый выход z(t)

6 ОБЩИЕ ВЫВОДЫ

В ходе выполнения лабораторной работы мы рассмотрели синтез \mathcal{H}_2 и \mathcal{H}_∞ регулятора по состоянию/по выходу в виде решения соответствующих матричных уравнений Риккати.

Синтезированные компоненты системы проверялись при помощи компьютерного моделирования, все полученные регуляторы и наблюдатели в целом проявляли необходимые свойства по изменению АЧХ объекта управления.

Использовал связку Live-script + Matlab, все исходные материалы, использованные в работе можно найти в репозитории.