PRD: ATF - Circulation fitting

Document Log

Contributor	Date	Status
Mahmoud	Jan 1, 2023	Documentation, logic, usecase scenarios In progress •

Contents

Document Log	1
Contents	1
Overview	2
Problem statement	2
Definitions	3
Proposed Solution	6
Basic calculations	6
Standards and guidelines	8
Example of existing standards and guidelines:	8
Circulation constraints from IBC standard.	8
Double loaded and single loaded circulation guidelines	9
Double loaded corridor	9
Single loaded corridor (less efficient)	10
The first line of spaces	10
Circulation ATF solution architecture	11
Inputs	11
Core	11
Core points of interest	11
Zone/Block proximity.	12
Shell	12
Shell point of interest	12
Shell-zone proximity	12
Structural system	13
Understanding Structural System Constraints	13

Case1.	14
Case2.	14
Case3.	14
Scoring system	15
Proposed circulation design logic	15
First line of spaces algorithm	15
Problem definition	16
Solution	16
Examples and use cases:	18
Key User Requirement	19
Target User Profiles	19
Key Dates/Timelines	20

Overview

Performing an automated testfit for a floor plan typically begins with calculating and determining the right circulation area and locations. This document provides a calculating guideline and logic of circulation design in office buildings.

Problem statement

The first step to start the auto Testfit is to calculate the circulation requirements and layout in the floor plan.

- The circulation layout is done manually by domain expertise (designers, space planners)
 through experience, regulations (fire exit), and constraints (points of interest, columns,
 walls, core). Although there are many research attempts to define step-by-step algorithms
 (or workflow) for circulation layout planning, there is no universally accepted guideline for
 that.
- Circulation layout planning is a first step in the testfit process. However, it keeps evolving with every design stage.

Definitions

Table 1.

Term	Definition	Example
Building design efficiency	The effectiveness and efficiency of the layout, design, and use of spaces on the floor	Factors such as circulation multiplier, circulation factor, and the relationship between net area, circulation area, and usable area.
Circulation area (CA)	Primary and secondary circulation areas on the floor, such as elevators, stairwells, and hallways	Total square footage of all elevators, stairwells, and hallways on the floor

Term	Definition	Example
Circulation Factor	The ratio of circulation area to usable area, used to measure the proportion of the floor's area that is dedicated to circulation	Circulation Area / Usable Area
	= Circulation area / Usable area	
Circulation Multiplier	The ratio of net area to circulation area, used to measure the efficiency of the layout and design of the floor = Net area / Circulation area	Net Area / Circulation Area
Gross area (GA)	All areas on the floor, including vertical circulation areas	Total square footage of all the offices, elevators, stairwells, and hallways on the floor
Net Floor Area (NFA)	Area of spaces on the floor that exclude circulation and core areas	Total square footage of all the offices on the floor
Primary circulation		
Rentable Square Feet (RSF)		
Secondary circulation	The aisles between individual spaces on the floor, such as offices or classrooms	Hallway connecting individual offices to a conference room
Usable Square Feet (USF)	Sum of the net area and circulation area on the floor, the total area available for use by occupants or tenants = Net area + Circulation area	Total square footage of all the offices, elevators, stairwells, and hallways on the floor
Dead-end length	Where more than one exit or exit access doorway is required, the exit access shall be arranged such that dead-end corridors do not exceed 20 feet (6096 mm) in length. Video illustration	DEAD END CORRIDOR BY DEFINECIVIL.COM

Term	Definition	Example
A common path of travel exists in the initial portion of the exit access where a space is arranged so that occupants within that space can travel in only one direction to reach any of the exits or to reach the point at which they have the choice of two paths of travel to two different remote exits. When an occupant is provided only one direction before reaching a point at which he travels in an independent direction, all that travel is considered a common path.		COMMON PATH OF TRAVEL
structural module	0	
Passing place	A passing place in corridor design refers to an area within a corridor that is specifically designated for people to pass each other. It's usually wider than the rest of the corridor to allow for more space for people to move around. It is often used in areas where the corridor is too narrow for two people to pass each other comfortably, and it is used to overcome this problem by giving people space to pass each other.	
Turning point	A turning point in corridor design refers to an area within a corridor that is specifically designated for people to change direction. It is often used in areas where the corridor is too narrow to make a 180-degree turn and it is used to overcome this problem by giving people space to change direction. The turning point may also be used to create a visual interest, to break up a long corridor or to lead people to a specific area. It is also called a turning radius or a turning area.	
Double loaded	A double-loaded corridor is a type of corridor design	

Term	Definition	Example
and single loaded corridors	where rooms or offices are located on both sides of the corridor. This means that there are rooms or offices facing each other across the corridor. A single-loaded corridor, on the other hand, is a type of corridor design where rooms or offices are located on one side of the corridor. This means that there is only one row of rooms or offices along the length of the corridor.	

DEFINING

A common language about office space.

The area of each identified program space. For example, the Net Area of an 8'x 8' workstation is 64 NSF. It includes individual workspaces, dedicated and shared support spaces, and special mission-critical spaces.

Primary circulation is the main circulation route connecting to the building core and common spaces, such as elevators and exit stairs. Secondary circulation includes the aisles between individual spaces, such as offices and cubicles, and support spaces.

USABLE AREA (USABLE SQUARE FEET - USF)*

Area of a floor occupiable by a tenant where personnel or furniture are normally housed.

RENTABLE AREA (RENTABLE SQUARE FEET - RSF)*

Total Usable Area plus a prorated allocation of the floor and building common areas within a building.

GROSS AREA (GROSS SQUARE FEET - GSF)*

Total area of a building enclosed by the exterior face of the perimeter walls, calculated on a floor-by-floor basis.

Proposed Solution

In this document, we propose a step by step workflow for circulation calculations and layout planning for a single floor plan.

- 1. Basic calculations: to determine the minimum required circulation area.
- 2. Constraints: driven from different standards, such as the maximum travel distance, the minimum and maximum corridor width.

^{*} Definitions per ANSI/BOMA Z65.1 - 1996, "Standard Method for Measuring Floor Area in Office Buildings"

Basic calculations

Net Square Footage (NSF) = Usable Square Footage (USF) - Circulation Area (CA).

Circulation Multiplier (CM) = NSF/CA

Circulation Factor = CA/USF

Closed to Open space ratio = Closed space Area: Open spaces Area

Example:

EXAMPLE REQUIREMENT: 45,000 USF

PERSONNEL + SUPPORT = ~ 28,000 NSF

CIRCULATION AREA = ~ 17,000 NSF

NSF + CIRCULATION AREA = USF

28,000 + 17,000 = 45,000

NSF ÷ CIRCULATION AREA = CIRCULATION MULTIPLER (CM)

 $28,000 \div 17,000 = 1.65$

CIRCULATION ÷ USF = CIRCULATION FACTOR (CF)

 $17,000 \div 45,000 = 37.8\%$

1.65

37.8% FACTOR

Recommended Circulation factor and Circulation Multiplier values based on the closed to open space ratios:

Standards and guidelines

Example of existing standards and guidelines:

- 1. The International Organization for Standardization (ISO)
- 2. Occupational Safety and Health Administration (OSHA)
- 3. The National Fire Protection Association (NFPA)
- International Building Code (IBC)
- 5. Society of Facility Engineers (SFE)
- 6. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
- 7. Building Owners and Managers Association International (BOMA)
- 8. The National Electrical Code (NEC)
- 9. The American Institute of Architects (AIA)
- 10. Americans with Disabilities Act (ADA)
- 11. Leadership in Energy and Environmental Design (LEED)
- 12. The National Institute of Building Sciences (NIBS)
- 13. The American Society of Testing and Materials (ASTM)
- 14. Uniform Building Code (UBC)
- 15. The Universal Building Code (UBC)

Circulation constraints from IBC standard.

Table 2.

item	value	variables	scope
Circulation area	Basic calculations		
Maximum walking distance for employees to reach key areas	15m	key_areas, point_of_interest	
Minimum corridor width	1.2m	corridor_width	
Maximum corridor width	2.5m	corridor_width	
Minimum corridor length	25m	corridor_length	
Maximum corridor length	80m	corridor_length	
Minimum width for doors	0.9m		out of scope
Maximum width for doors	1.2m		out of scope
Maximum length of escape route to nearest stairs/fire exit	30m	travel_distance	
Minimum width for escape routes to staircase or fire exit	1.2m	corridor_width	
Number of evacuation stairs needed as per building height and occupancy load: 1 Evacuation Staircase/1000 occupants or 40 meters whichever is lower	1: 1000 occupants Or 1: 40 building height		out of scope
Minimum width at turns and intersections	1.5m	corridor_width	
Maximum egress route travel distance to exit door/opening	30m	travel_distnace	
Maximum walking distance to elevator or stairs	40m	travel_distance	
Maximum dead-end length: 7.5m	7.5m	travel_distance	
Maximum common path of travel	30m	travel_distance	
Corridors and routes longer than 15 m must have a passing place for two wheelchair users of at least 1.80 m width and depth.	1.8m * 1.8 m /15m	travel_distnace	

Double loaded and single loaded circulation guidelines

The choice between a single-loaded corridor and a double-loaded corridor depends on the specific needs of the building and its occupants. For example, if the building requires a large number of rooms or offices to be located in a smaller area, a double-loaded corridor may be more appropriate. In addition, some factors such as fire safety, noise control, and privacy should also be considered.

Circulation loading choice criteria:

• Minimize the circulation area.

- Single-loaded circulation is generally considered more efficient than double-loaded circulation in office buildings.
- Each space should have easy access to it.

Note: The above points are general rules of thumb, and the efficiency of circulation design depends on the specific needs of the building and its occupants. Factors such as natural light, views, fire safety, noise control, and privacy should also be considered.

Double loaded corridor

Single loaded corridor (less efficient)

The first line of spaces

The "first line of spaces" refers to the spaces that are closest to the "points of interest" of the building core and shell, such as the main entrance, elevators, staircases, windows, and other frequently used areas. These spaces can either be located directly next to the walls that contain these "points of interest" (called "core" and "shell walls") or they can be located after a short corridor that is next to these walls.

The criteria for deciding whether the first line of spaces should be directly adjacent to the core/shell walls depend on various factors such as the number of openings in the core walls, the depth of the spaces, and the distance to the nearest structural element (See Algorithm 1).

The following figure shows the first line of spaces next to the core walls.

Circulation ATF solution architecture

Inputs

This section consists of the following input items.

- 1. Core
- 2. Shell

- 3. Constraints
 - a. Structural system.
 - b. Guidelines and regulations.
- 4. Scoring system

Core

There may be one or more cores in the floor. The core here refers to a central part of a building or structure. It typically includes functional spaces such as elevators, stairwells, and bathrooms, and is often designed to be the structural backbone of the building.

Core points of interest

List of points of interest on the core walls:

- 1. Entry/Exit points
 - a. Main entry:

The main level entry/ies

- b. Fire exit.
 - Opening that is used for fire escape.
- c. Secondary entries.

Any opening on the core other than main entries and fire exits (example: electrical room, shafts, storage openings...).

2. Others

Such as plumbing, shafts, HVAC ...

Zone/Block proximity.

The proximity matrix between the core points of interest and zones should be inputted to decide which zones/blocks will be connected to the core.

Example:

In the following example, the proximity between the entry point (red) and the pantry and the server room is indicated:

Proximity matrix

	Entry point 1
Pantry	[1, 10]
Server	[0,5]
Storage	[0,10]

Shell

Shell point of interest

A list of shell points of interest:

- 1. Windows
- 2. Corners

Shell-zone proximity

Example: Open workpoints are closest to the windows in the following proximity matrix. Thus, the auto testfit should allocate them in conjunction with the windows since the distance is 0.

Structural system

The structural design of a building plays a crucial role in determining the location, direction, and orientation of circulation routes. Specifically, the placement of columns within the structural system greatly influences the layout of these pathways.

In architectural design and construction, it is common to use a standard unit of measurement called the **structural module**. This module is used to determine the distance between columns in a building. The structural module can also be used to define the distance between other structural elements such as beams and walls.

It's worth mentioning that in some designs, the horizontal and vertical distances between the columns may differ, but the most important is that each column must be defined by at least two structural axes.

Understanding Structural System Constraints

It is crucial to keep in mind that the corridor must be completely clear of any obstructions, including structural elements. The following use cases show the correct and incorrect ways of allocating structural elements within columns.

Case1.

The corridor has closed rooms (fully or partially) on both sides, The columns should not distract the corridor at any point. They should be placed inside the rooms (preferred towards the side with open space.

Case2.

There are columns inside the corridor, but the corridor doesn't have any closed spaces on one of its sides (all open spaces without walls or any fencing)

Case3.

The columns are located inside the corridor and the corridor has closed doors on both sides.

Scoring system

The scoring system for corridors shall comply with the standards and regulations mentioned in table 2. There are some variables that need to be considered to score circulation:

- 1. **Corridor width** from both sides and this is defined by the narrowest point on the corridor.
- 2. Walking distance. Between any two points.

Proposed circulation design logic

General overview

First line of spaces algorithm

Flowchart link

Problem definition

Should we place corridors or rooms on the core walls?

Generally, we try to minimize the corridor areas by:

- · reducing redundant circulation areas.
- · Try to make each circulation double loaded as possible

In this problem, we are making trade-off between the circulation and the room location on the core walls.

Solution

Step		illustration
1.	Collect the proximity matrix to get spaces that should be nearest to the core points of interest.	
2.	Divide the core walls into segments (Example, rectangular core W1, W2, W3, and W4)	wa Core walls WZ
3.	Iterate through core walls	
-	If the wall is solid without openings, add spaces then corridor.	Rooms Double loaded circulation Rooms wall Core Wall
-	Else if the wall has openings, calculate the outer distance between each adjacent openings.	
	 If the outer distance between two adjacent openings <= 2.4 (the minimum module length), merge them and create a joint space (joint_space) 	24m 30m 30m 20m Joint space space space
	 Else add a vertical corridor (vertical_corridor) at each opening. 	2.4 m 2.4 m 2.4 m
-	Calculate the total corridors area (the vertical_corridors + joint_spaces) \rightarrow (A)	(A)

Step	illustration
 Calculate the total area of corridor adjacent to the core wall → (B) 	Joint space Joint space corridor (B) Corridor on the core
Compare area(A) and area(B)	
 If area(A) < area(B), the first line of spaces will be adjacent to the core walls 	Rooms Bouble loaded corridor Rooms Joint space doo corridor CORE
- Else, add a corridor next to the core wall then add spaces.	Rooms Rooms Corridor to the core

Examples and use cases:

Use case scenario

image

Use case 1:

W1 is solid, so, the first line of spaces id directly adjacent to it.

W2 has two openings and the distance between them is greater than the minimum modular unit. So, vertical corridors have been created from each opening.

Use case 2

W1 has one opening, so a vertical corridor from the opening is created.

W2 and W3 each one has one opening, however, the reception space has been allocated in front of the door at W3 and then merged with the corridor next to it.

Use case scenario	image
Use case 3 W1 and W2 share only one opening at the corner. So a corridor created vertical to the door wall W3 and W4 share one opening at the corner, however, the reception has a high proximity to the door, thus, the reception is located next to the door and the first line of spaces are also located next to the core wall (W3).	W1 W2 W3 W4
More use case scenarios can be found here	

Key User Requirement

Target User Profiles

The following user profiles will be referred to as user

- Designers.
- Workplace planners.

User stories

S.N	User Story	Priority

Key Dates/Timelines

	Sprint2 Jan 30, 2023	Sprint3 Feb 13, 2023	Sprint4 Feb 27, 2023	Sprint5 Mar 13, 2023	Sprint6 Mar 27, 2023
Circulation Fitting (Jira)					
Logic and algorithm					
Backend					
Frontend					
QA and UAT					
Deploy to SIT					
Documentation					