

第五章存储系统

第二讲存储系统性能量化分析

谢长生

武汉光电国家研究中心 华中科技大学计算机科学与技术学院

5.2.1 存储系统的多级层次结构

 \succ T_i

 $\mathbf{C}_{\mathbf{j}}$

- \Box 访问时间: $T_1 < T_2 < ... < T_n$
- 容量: $S_1 < S_2 < \ldots < S_n$
- □ 平均每位价格: $C_1 > C_2 > ... > C_n$

- ➤ 整个存储系统要达到的目标:从CPU来看,该存储系统的速度接近于M₁的,而容量和每位价格都接近于M_n的。
 - □ 存储器越靠近CPU,则CPU对它的访问频度越高, 而且最好大多数的访问都能在M₁完成。

5.2.2 存储层次的性能参数

下面仅考虑由M₁和M₂构成的两级存储层次:

- □ M₁的参数: S₁, T₁, C₁
- □ M₂的参数: S₂, T₂, C₂

1. 存储容量S

- 一般来说,整个存储系统的容量即是第二级存储 $8M_2$ 的容量,即 $S=S_2$ 。
- 2. 每位价格C

$$C = \frac{C_1 S_1 + C_2 S_2}{S_1 + S_2}$$

当 S_1 << S_2 时, $C \approx C_2$ 。

3. 命中率H 和不命中率F

ho 命中率: CPU访问存储系统时,在 M_1 中找到所需信息的概率。 M_2

$$H = \frac{N_1}{N_1 + N_2}$$

- ➤ 不命中率: F=1-H

命中率:
$$H = \frac{N_1}{N_1 + N_2}$$

4. 平均访问时间 **T**_A

$$T_A = HT_1 + (1-H) (T_1+T_M)$$
 $= T_1 + (1-H) T_M$
或 $T_A = T_1+FT_M$

分两种情况来考虑CPU的一次访存:

- □ 当不命中时,情况比较复杂。

不命中时的访问时间为:
$$T_2+T_B+T_1=T_1+T_M$$

$$T_{M} = T_{2} + T_{B}$$

- 传送一个信息块所需的时间为T_B。

谢谢大家!

