ELECENG 3EJ4 Lab 3

Raeed Hassan hassam41 McMaster University

December 12, 2020

Part 1

Q1. 1. The relationship between I_o and I_{REF} is dependent on the EBJ area of the two BJTs. As the two BJTs are the same, they have the same EBJ area and the relationship between I_o and I_{REF} can be described as:

$$I_o = I_{REF}$$

- 2. When I_{REF} is 1 mA, I_o is equal to 0.975 mA, or 0.975 I_{REF} .
- 3. The values of I_o at $I_{REF}=0.1$ mA and 1 mA are $1.04I_{REF}$ and $0.975I_{REF}$. The theoretical prediction and simulated results are similar, as the simulated results show that $I_o\approx I_{REF}$.
- **Q2.** 1. The input impedance R_{in} is 389.12 Ω . The current gain A_i is 1.042.
 - 2. The output resistance R_o is 1.58 M Ω .
 - 3. The linear two-port network for the current mirror is shown in Figure 1.

Figure 1: Linear two-port network for the current mirror using its h-parameters

Part 2

- **Q3.** 1. The voltage gain A_d is 70.07 dB.
 - 2. The measured voltage gain A_d is 58.1 dB. There was a slight mismatch. The offset voltage applied at V_2 was 1 mV.
- **Q4.** The upper 3-dB frequency $f_{\rm H}$ is approximately 11.2 kHz.
- Q5. The upper 3-dB frequency f_{3dB} of the differential amplifier using resistive loads in Lab 2 was 8.4 MHz, much greater than the differential amplifier with a current mirror in this lab. The differential amplifier with the current mirror load has a smaller f_{3dB} due to the internal capacitive effects of the BJTs used in the current mirror load.
- **Q6.** The gain-bandwidth product of the differential amplifier with the current mirror load is 151.1, while the gain-bandwidth product of the differential amplifier with the resistive load is 152.0.

Appendix

Figure 2: Step 1.2

Figure 3: Step 1.3

Figure 4: Bode plots for Part 2A

Figure 5: Waveforms Window for Part 2B

Figure 6: Circuit for Part 2B