10 класс.

Задача 1.

Сила трения скольжения \vec{F}_{mp} , действующая на шайбу в начальный момент времени, направлена против относительной скорости скольжения шайбы по транспортеру $\vec{\upsilon}_0'$, которая может быть найдена из преобразований Галилея

$$\vec{v}_0' = \vec{v}_0 - \vec{u} \implies v_0' = \sqrt{v_0^2 + u^2}$$
 (1)

Таким образом, в инерциальной системе отсчета, связанной с лентой транспортера, шайба будет двигаться равноускоренно по прямой до полной остановки с отрицательным ускорением

$$a = -\frac{F_{mp}}{m} = -\frac{\mu m g}{m} = -\mu g.$$
 (2)

треугольника
$$AOB$$
 находим $\upsilon_{min} = \upsilon_0 \frac{u}{\sqrt{\upsilon_0^2 + u^2}}$

Задача 2.

Peшениe: наименьшее значение ускорения свободного падения $g_{min}=0.938\ g_0$ на поверхности астероида достигается в точке, где верхний край полости подходит к поверхности астероида ближе всего. Следовательно, центр полости (точка C на рисунке) расположен на отрезке AO на некоторой неизвестной глубине AC=a, где точка O — центр однородного астероида.

Масса изъятой из астероида в процессе разработки породы $m=
ho \frac{4}{3}\pi \, r^3$, где ho — плотность вещества

