20 19~ 2020 学年第 2 学期

开课学院 电气与电子工程学院 课程名称 信号与系统	考核方式 闭卷 (闭卷/开卷)
考试时间 <u>120</u> 分钟 <u>B 卷</u> (A/B/C)	共 <u>4</u> 页第 <u>1</u> 页
考生姓名 考生班级	考生学号
一、填空题(每小题2分,共20分)	
1. 持续时间有限的非周期信号功率值是:	o
2. 函数式 $\operatorname{sgn}\left(\cos\frac{\pi}{2}t\right)$ 表示的信号波形为	•
3. $\int_{-\infty}^{\infty} f(t) \delta(t) dt = \underline{\qquad}; \int_{-\infty}^{\infty} f(t - t_0) \delta(t) dt$	<i>lt</i> =
4. 描述某连续系统的微分方程为 $\frac{dy(t)}{dt}$ + $2y(t) = f(t)$,则]其冲激响应 h(t)。
5. $\cos 3t * \delta(t) =; \cos 3t * \delta'(t) =$	о
6. 周期信号频谱的特点是。	0
7. 已知 $f(t)$ 的傅里叶变换为 $F(\omega)$,则 $f_1(t) = f(-t-2)$ 的	傅里变换为。
8. 若 $x(t)$ 的带宽是 $\Delta\omega$, $x\left(\frac{t}{2}\right)$ 的带宽是; $x(2t)$ 的	带宽。
9. 信号 $f(t) = A[\varepsilon(t) - \varepsilon(t - \tau)]$ 的收敛域为。	
10. 离散时间序列 $f[k] = A \sin \frac{\pi}{5} k + B \cos \frac{\pi}{3} k$ 是(A. 周期信号; B. 非周期信号)。若是周
期信号,则周期 $N = $ 。	
二、单项选择题(从每小题的四个备选答案中,选出一/	个正确的答案,每小题2分,共20分)
1. 下列各表达式中错误的是:。	
	f^{∞} and f^{t} and f^{t}
(A) $\delta'(t) = -\delta'(-t)$ (B) $\delta'(t-t_0) = \delta'(t_0-t)$ (C)	$\int_{-\infty} \delta'(t) dt = 0 \text{(D)} \int_{-\infty} \delta'(\tau) d\tau = \delta(t)$
2. 对信号 $f(t) = \frac{\sin 100t}{100t}$ 进行均匀抽样的奈奎斯特抽样间	隔 <i>T_s</i> 为:。
(A) $\frac{\pi}{200}s$ (B) $\frac{\pi}{100}s$ (C) $\frac{200}{\pi}s$ (I	$0) \ \frac{100}{\pi} s$

20 19~ 2020 学年第 2 学期

开课学院 <u>电气与电子工程学院</u> 课程名称 <u>信号与系统</u> 考核方式 <u>闭卷</u> (闭卷/开卷)
考试时间 <u>120</u> 分钟 <u>B 卷</u> (A/B/C) 共 <u>4</u> 页第 <u>2</u> 页
考生姓名 考生班级 考生学号
3. 已知 $f_1(t) = \varepsilon(t+1)$, $f_2(t) = \varepsilon(t) - \varepsilon(t-2)$, 设 $y(t) = f_1(t) * f_2(t)$, 则 $y(0)$ 为:
(A) 0 (B) 1 (C) 2 (D) 3
4. 已知: $f[k] \Leftrightarrow F(z), a < z < b$,如果 $Z[f[-k]]$ 存在,则其收敛域一定为。
(A) $a < z < b$ (B) $1/b < z < 1/a$ (C) $b < z < a$ (D) $1/a < z < 1/b$
5. 信号 $e^{-j2t}\delta(t)$ 的傅里叶变换为:。
(A) 1 (B) $j(\omega-2)$ (C) $j(\omega+2)$ (D) $2+j\omega$
6. 若 $f(t)$ 是实偶函数,则其傅里叶变换 $F(\omega)$ 是
(A) 实奇函数 (B) 实偶函数 (C) 虚奇函数 (D) 虚偶函数 7. 已知 $F(\omega) = 2\pi\delta(\omega - \omega_0)$,则信号 $f(t)$ 是
(A) 1 (B) $e^{-j\omega_0 t}$ (C) $e^{j\omega_0 t}$ (D) 2π
8. 单边拉氏变换 $F(s) = \frac{se^{-s}}{s^2 + 1}$ 的原函数等于。
(A) $\cos(t-\pi)\varepsilon(t)$ (B) $\cos(t-1)\varepsilon(t)$ (C) $\cos(t-\pi)\varepsilon(t-\pi)$ (D) $\cos(t-1)\varepsilon(t-1)$
9. 离散系统的单位序列响应 $h(n) = \left(-\frac{1}{2}\right)^n \varepsilon(n)$,则描述该系统的差分方程是
(A) $y(n) - \frac{1}{2}y(n-1) = f(n)$ (B) $y(n) + \frac{1}{2}y(n-1) = f(n)$
(C) $y(n) + \frac{1}{2}y(n-1) = f(n)$ (A) $y(n) + \frac{1}{2}y(n+1) = f(n)$
10. 信号 $f(t) = \varepsilon(t+1) - \varepsilon(t)$ 的单边拉氏变换 $F(s) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
(A) $\frac{1}{s}$ (B) $(e^s - 1)/s$ (C) $\frac{1}{s+1} - \frac{1}{s}$ (D) $\frac{e^s}{s}$

20 19~ 2020 学年第 2 学期

开课学院_	电气与电子工程学院		课程名称信号与系统_		考核方式_	闭卷	(闭卷/开卷)		
考试时间_	120	分钟	В	<u>卷</u> (A/B/C)	共	4	_页第_	3	_页
老牛姓名			老生班级		老生学号				

- 三、简单分析题(每小题5分,共25分)
- 1. 系统模型为: y(t) = f(1-t), 试分析系统是否线性、时不变及因果系统? 说明原因。
- 2. 某一线性系统有两个起始条件 x_1 和 x_2 ,输入为f(t),输出为y(t),并已知:

(1)
$$\stackrel{\text{def}}{=} x_1(0) = 5, x_2(0) = 2, f(t) = 0$$
 $\text{ if }, y(t) = e^{-t}(3t + 2)$

(3)
$$\triangleq x_1(0) = 1, x_2(0) = 1, f(t) = \varepsilon(t)$$
 by, $y(t) = e^{-t}(t+1)$

求: 当 $x_1(0) = 2$, $x_2(0) = 1$, $f(t) = 3\varepsilon(t)$ 时的y(t).

3. 已知信号 f(t)的波形如图所示,试画出信号 $y(t) = f(-2t-2)*\delta(t-1)$ 的波形。

4. $F(\omega)$ 的图形如图所示,求原函数 f(t)。

5. 简述周期矩形脉冲信号的频谱与周期 T 和脉冲持续时间 τ 的关系。

20 19~ 2020 学年第 2 学期

开课学院 电气与电子工程学院 课程名称 信号与系统 考核方式 闭卷 (闭卷/开卷)

考试时间<u>120</u>分钟 <u>B</u>卷(A/B/C.....) 共<u>4</u>页第<u>4</u>页

考生姓名______ 考生班级_____ 考生学号_____

四、已知系统函数 $H(s) = \frac{s^2}{s^2 + 4s + 3}$, 零输入响应初始值 $y(0_-) = 1$, $y'(0_-) = -2$ 。

今欲使系统的全响应 y(t)=0, 求: (15分)

- (1) 激励 f(t);
- (2) 系统的单位冲激响应 h(t);
- (3) 判断系统是否稳定,说明原因。

五、已知信号 f(t) 的幅度频谱 $F(\omega)$ 如图所示,(10 分)

- (1)若 y(t)=f(t)cos50t, 画出信号 y(t)的频谱 Y(ω);
- (2)若 $w(t)=y(t)\cos 50t$,画出信号 w(t)的频谱 $W(\omega)$;若用频谱 $W(\omega)$ 无失真的恢复出原信号 f(t)的频谱 $F(\omega)$,需要加什么样的滤波器? (注: 此题可以画图解答)

六、某离散系统的差分方程为 y[k]-3y[k-1]+2y[k-2]=e[k]-2e[k-1],已知 $e[k]=\varepsilon[k]$,初始条件 y[-1]=1,y[-2]=2,试求: (10 分)

- (1) 系统的零输入响应、零状态响应和全响应:
- (2) 判定该系统是否稳定;
- (3) 画出该系统的模拟图。