

## DEPARTMENT OF THE NAVY NAVAL UNDERSEA WARFARE CENTER DIVISION NEWPORT OFFICE OF COUNSEL

PHONE: (401) 832-3653 FAX: (401) 832-4432 DSN: 432-3653



Attorney Docket No. 79479 Date: 15 August 2007

The below identified patent application is available for licensing. Requests for information should be addressed to:

PATENT COUNSEL NAVAL UNDERSEA WARFARE CENTER 1176 HOWELL ST. CODE 00OC, BLDG. 11 NEWPORT, RI 02841

Serial Number

11/183,313

Filing Date

11 July 2005

Inventor

C. Ray Dutton

If you have any questions please contact James M. Kasischke, Supervisory Patent Counsel, at 401-832-4230.

DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited

20070822114

| 1  | Attorney Docket No. 19419                                         |
|----|-------------------------------------------------------------------|
| 2  |                                                                   |
| 3  | FIELD PROGRAMMABLE GATE ARRAY BASED GLOBAL COMMUNICATION          |
| 4  | CHANNEL FOR DIGITAL SIGNAL PROCESSOR CHIPS                        |
| 5  |                                                                   |
| 6  | STATEMENT OF GOVERNMENT INTEREST                                  |
| 7  | The invention described herein may be manufactured and used       |
| 8  | by or for the Government of the United States of America for      |
| 9  | governmental purposes without the payment of any royalties        |
| 10 | thereon or therefor.                                              |
| 11 |                                                                   |
| 12 | BACKGROUND OF THE PRESENT INVENTION                               |
| 13 | (1) Field of the Invention                                        |
| 14 | The present invention relates to a method for networking,         |
| 15 | and a network of, digital signal processors via at least one      |
| 16 | field programmable gate array.                                    |
| 17 | (2) Description of the Prior Art                                  |
| 18 | With reference to FIG. 1, there is illustrated a typical          |
| 19 | network of digital signal processors (DSP) known in the art       |
| 20 | whereby a host DSP 11 is configured and programmed to globally    |
| 21 | broadcast data to a multitude of non-host DSPs 15. Each non-host  |
| 22 | DSP 15 is linked to the host DSP 11 by a connection between at    |
| 23 | least one communication port 17 located on the host DSP 11 and at |
| 24 | least one communication port 17 on each non-host DSP 15.          |
| 25 | Typically, such lines of communication are bidirectional.         |
| 26 | Connecting a host DSP 11 to a multitude of non-host DSPs 15 in    |
| 27 | the manner illustrated often times requires a complex and costly  |

- 1 patchwork of cables and connectors. Quite often, the data to be
- 2 transmitted from the host DSP 11 to each of the plurality of
- 3 non-host DSPs 15 is identical. In order to receive the data
- 4 broadcast from the host DSP 11, each non-host DSP 15 must be
- 5 physically connected via its communication port or ports 17 to a
- 6 communication port or ports 17 on the host DSP 11. This
- 7 requirement reduces the number of non-host DSPs 15 which may
- 8 receive the data from the host DSP 11 to a number no greater than
- 9 the number of communication port 17 located on the host DSP 11.
- 10 In addition to this restrictive requirement, the software which
- 11 is executed by the host DSP 11 in order to broadcast data to each
- 12 of the non-host DSPs 15 must be executed for each non-host DSP 15
- 13 connected to host DSP 11. This requirement mandates the
- 14 repetitive execution of software which is identical for each
- 15 non-host DSP 15 receiving the data communicated by host DSP 11.
- 16 What is therefore needed is a method of networking a host
- 17 DSP 11 with a plurality of non-host DSPs 15 which is neither
- 18 limited by the number of communication ports 17 located on the
- 19 host DSP 11, nor requiring the identical, repetitive execution of
- 20 software running on the host DSP 11.

21

22

## SUMMARY OF THE INVENTION

- Accordingly, it is an object of the present invention to
- 24 provide a method for networking, and a network of, digital signal
- 25 processors (DSP) via at least one field programmable gate array
- 26 so as to enable the simultaneous broadcast of data from a DSP to
- 27 a plurality of DSPs.

1 In accordance with the present invention, an apparatus 2 comprising a host digital signal processor (DSP), at least one 3 field programmable gate array (FPGA) in communication with the 4 host DSP for receiving a digital signal from the host DSP, and at 5 least one non-host DSP in communication with the at least one 6 FPGA for receiving the digital signal. 7 In further accordance with the present invention, a method 8 for connecting digital signal processors comprises the steps of 9 providing a host digital signal processor (DSP), providing at 10 least one field programmable gate array (FPGA) in communication 11 with the host DSP for receiving a digital signal from the host 12 DSP, and providing at least one non-host DSP in communication 13 with the at least one FPGA for receiving the digital signal. 14 15 BRIEF DESCRIPTION OF THE DRAWINGS 16 FIG. 1 is a diagram of a network of digital signal 17 processors (DSPs) known in the art; FIG. 2 is a diagram of a network of a host DSP in 18 communication with a plurality of non-host DSPs via a field 19 20 programmable gate array (FPGA) according to the present 21 invention; and 22 FIG. 3 is a diagram of an embodiment of the present 23 invention incorporating a plurality of slave/host DSPs. 24 DESCRIPTION OF THE PREFERRED EMBODIMENTS 25 26 It is therefore an aspect of the present invention to

3

provide a method for configuring a host digital signal processor

27

- 1 (DSP) 11 in communication with a plurality of non-host DSPs 15
- 2 wherein the number of non-host DSPs 15 receiving data broadcast
- 3 from the host DSP 11 may be greater than the number of
- 4 communication ports 17 located upon host DSP 11. Furthermore, the
- 5 method of the present invention does not require each non-host
- 6 DSP 15 to be physically connected to host DSP 11. This is
- 7 achieved by interposing a field programmable gate array (FPGA)
- 8 between the host DSP 11 and the non-host DSPs 15. The FPGA 13
- 9 serves to receive the broadcast data from the host DSP 11, to
- 10 buffer the data so received, and to handle the communication and
- 11 dissemination of the buffered broadcast data to a plurality of
- 12 non-host DSPs 15. In a preferred embodiment, host DSP 11 is
- 13 located within a host computer 33, preferably an IBM PC
- 14 compatible computer.
- With reference to FIG. 2, there is illustrated in detail a
- 16 preferred embodiment of the present invention. Host DSP 11 is in
- 17 communication with FPGA 13 via connection 19 which connects a
- 18 communication port 17 located on host DSP 11 to a communication
- 19 port 17 located on FPGA 13. Connection 19 therefore provides
- 20 bidirectional communication between host DSP 11 and FPGA 13. FPGA
- 21 13 has a plurality of additional communication ports 17 which are
- 22 utilized to communicate with a multitude of additional non-host
- 23 DSPs 15. FPGA 13 communicates with each non-host DSP 15 via a
- 24 connection 19 which connects a single communication port 17
- 25 located on FPGA 13 to a single communication port 17 located on a
- 26 non-host DSP 15. In this manner, bidirectional communication is
- 27 enabled between each non-host DSP 15 and the FPGA 13.

- In operation, host DSP 11 communicates a single stream of
- 2 data to FPGA 13 via a connection 19. It is a property of FPGAs
- 3 that they may be dynamically programmed to execute software
- 4 instructions. FPGA 13 is therefore programmed to buffer the
- 5 stream of data received by the host DSP 11 and to transmit the
- 6 received and buffered data out via the plurality of communication
- 7 ports 17 in communication with non-host DSPs 15. In addition to
- 8 transmitting the buffered data, the FPGA 13 is preferably
- 9 programmed to perform any and all initialization and data
- 10 synchronization activities required to facilitate the
- 11 communication of buffered data between the FPGA 13 and each and
- 12 every non-host DSP 15. Such communication may be either
- 13 synchronous or asynchronous. FPGA 13 is preferably constructed so
- 14 as to comprise an internal memory capable of storing, retrieving,
- 15 and returning upon request, digital data.
- In an alternative embodiment of the present invention, FPGA
- 17 13 may be in communication with an external storage device 21
- 18 wherein the data broadcast by host DSP 11 to FPGA 13 may be
- 19 buffered and stored in external storage device 21, and retrieved
- 20 by FPGA 13 as required for broadcast to the non-host DSPs 15.
- 21 External storage device 21 may be any device known in the art
- 22 capable of storing and retrieving digital data. In addition to
- 23 communicating with non-host DSPs 15, FPGA 13 may similarly
- 24 communicate with a peripheral device 23 via a communication port
- 25 17 located upon FPGA 13 and connected to the peripheral device 23
- 26 by a connection 19.
- 27 With reference to FIG. 3, there is illustrated an

- 1 alternative embodiment of the present invention. As noted above
- 2 with reference to FIG. 2, non-host DSPs 15 receive data broadcast
- 3 by host DSP 11 via FPGA 13. In such a configuration, non-host
- 4 DSPs 15 are referred to as operating in a "slave" modality with
- 5 respect to the operation of the host DSP 11. However, it is
- 6 certainly possible that one or more non-host DSPs 15 may, in
- 7 turn, act as a host DSP to one or more external devices. As
- 8 illustrated in FIG. 3, slave/host DSPs 31, 31' operate in such a
- 9 manner. There need be no physical difference between the
- 10 composition of slave/host DSPs 31, 31' and non-host DSPs 15 as
- 11 previously described. Rather, the designation of slave/host DSPs
- 12 31 by a unique reference number serve merely to differentiate the
- 13 operative roll of slave/host DSPs 31 as opposed to that of
- 14 non-host DSPs 15. Slave/host DSP 31 is connected via a connection
- 15 19 to a non-host DSP 15. Likewise, slave/host DSP 31' is
- 16 connected to an FPGA 13 via a connection 19 extending between a
- 17 communication port 17 located on slave/host DSP 31 and a
- 18 communication port 17 located on FPGA 13. It is evident that, in
- 19 this manner, the status of each non-host DSP 15 receiving data
- 20 broadcast from a host DSP 11 may be altered to that of a host DSP
- 21 11 thus earning the designation slave/host DSP 31.
- It is apparent that there has been provided in accordance
- 23 with the present invention a field programmable gate array based
- 24 global communication channel for digital signal processor chips
- 25 which fully satisfies the objects, means, and advantages set
- 26 forth hereinbefore. While the present invention has been
- 27 described in the context of specific embodiments thereof, other

- 1 alternatives, modifications, and variations will become apparent
- 2 to those skilled in the art having read the foregoing
- 3 description. Accordingly, it is intended to embrace those
- 4 alternatives, modifications, and variations as fall within the
- 5 broad scope of the appended claims.

| 1  | Attorney Docket No. 79479                                         |
|----|-------------------------------------------------------------------|
| 2  |                                                                   |
| 3  | FIELD PROGRAMMABLE GATE ARRAY BASED GLOBAL COMMUNICATION          |
| 4  | CHANNEL FOR DIGITAL SIGNAL PROCESSOR CHIPS                        |
| 5  |                                                                   |
| 6  | ABSTRACT OF THE DISCLOSURE                                        |
| 7  | An apparatus comprising a host digital signal processor           |
| 8  | (DSP), at least one field programmable gate array (FPGA) in       |
| 9  | communication with the host DSP for receiving a digital signal    |
| 10 | from the host DSP, and at least one non-host DSP in communication |
| 11 | with the at least one FPGA for receiving the digital signal.      |





FIG. 2



FIG. 3