

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB) Faculty of Science and Technology (FST) Department of Mathematics Undergraduate Program

COURSE PLAN

SUMMER 2021-2022 SEMESTER

I. Course Core and Title

Mat 1205: Integral Calculus and Ordinary Differential Equations

II. Credit

3 credit hours (3 hours of theory per week)

III. Nature

Core Course for CS and Engineering

IV. Prerequisite

Differential Calculus and Coordinate Geometry.

V. Vision:

Our vision is to be the preeminent Department of Mathematics through creating recognized professionals who will provide innovative solutions by leveraging contemporary research methods and development techniques of computing that is in line with the national and global context.

VI. Mission:

The mission of the Department of Mathematics of AIUB is to educate students in a student-centric dynamic learning environment; to provide advanced facilities for conducting innovative research and development to meet the challenges of the modern era of computing, and to motivate them towards a life-long learning process.

I - Course Description:

- Idea about Indefinite and definite integrals.
- Comprehend numerical integrations.
- Comprehend improper integrals and application of integration.
- Define and explain multiple integrals.
- Solutions of different types of ordinary differential equations and their applications.
- Comprehend System of linear ordinary differential equations.

II – Course Outcomes (CO) Matrix:

By the end of this course, students should be able to:

COs*	CO Description	Level of Domain**		PO		
		C	P	A	S	Assessed***
CO1	Know different techniques of integrations and ODE.	2				PO-a-2
	Use definite integrals multiple integrals in different applications.		3			PO-b-2
	Formulate and solve different types of ordinary differential equations, system of linear differential equations.			4		PO-b-2

C: Cognitive; P: Psychomotor; A: Affective; S: Soft-skills (CT: Critical Thinking, TS: Teamwork)

- * CO assessment method and rubric of COs assessment is provided in Appendix section
- ** The numbers under the 'Level of Domain' columns represent the level of Bloom's Taxonomy each CO corresponds to
- ** The film to the film to the first of the

III – Topics to be covered in Theory class*:

	TOPICS	Specific Objective(s)	Time Frame	Teaching Activities	Assessment Strategy(s)	CO mapped
	Introduction, Indefinite integrals	Introducing students, the Introduction, standard integrals, integration by substitution.	Week 1	Lecture delivery, Board work, Solving exercises, Discussion	Lecture notes, question- answer session.	CO1
University-Bangladesh (AIUB)	Definite integrals	Riemann sum, Fundamental theorem of calculus, definite integrals and its properties, numerical integration by Trapezoidal rule and application.	Week 2	Lecture delivery, Board work, Solving exercises, Discussion	Quiz 1 Lecture notes, question- answer session	CO1, CO2
	Application of integration	Area between two curves in Cartesian and Polar coordinates. Volume of a solid obtained by rotation, center of mass.	Week 3 & 4	Lecture delivery, Board work, Solving exercises, Discussion	Quiz 2 Lecture notes, question- answer session.	CO1, CO2
	Improper integrals	Introduction. Beta function and Gamma function.	Week 5	Lecture delivery, Board work, Solving exercises, Discussion	Lecture notes, question- answer session.	CO1
al Universit	Methods of Integration	Integration by parts, Integration of trigonometric functions, rational and irrational functions, integration by trigonometric substitution.	Week 6	Lecture delivery, Board work, Solving exercises, Discussion	Quiz 3 Lecture notes, question- answer session.	CO1
Q	Midterm Week					

Week 7

1994 SILTY 1994 SHITTY

	·				1
Multiple	Iterated integrals, Double and		Lecture	Lecture notes,	
integrals	triple integrals. Applications of	Week 8	delivery, Board	question-	
	double and triple integrals (area,		work, Solving	answer session.	CO2
	volume and surface area, center		exercises,		
	of mass)		Discussion		
Ordinary	Definition, order, degree of DE.			Quiz 1	
Differential		Week 9	Lecture	Lecture notes,	
Equations	- 1	& 10	delivery, Board	question-	
	ERI	IALI	work, Solving	answer session.	CO3
	17 51.		exercises,		
	111	CCID	Discussion		
Solution of	Separation of variables, Exact	COIL	1010	Lecture notes,	
first-order	DE, Integrating factors, linear		Lecture	question-	
differential	and Bernoulli equations, and		delivery, Board	answer session.	CO1, CO3
Equations	initial value problem with its		work, Solving	1-1	,
•	application.		exercises,	160	
	/ QC / 11		Discussion	1-01	
Solution of	Complementary function,	Week 11	Lecture	Quiz 2	CO1, CO3
Higher-order	particular integral, Inverse	& 12	delivery, Board	Lecture notes,	,
differential	operator method, method of	7	work, Solving	question-	
equations	undetermined coefficients,		exercises,	answer session.	
	variation of parameters and		Discussion		
1	applications			1 "	
System of	Definition, homogeneous	Week 13	Lecture	Quiz 3	CO1, CO3
linear first-	system of two linear first order		delivery, Board	Lecture notes,	
order	equations, the general solution,		work, Solving	question-	
differential	solution for initial value		exercises,	answer session.	
equation	problem, nonhomogeneous	400000	Discussion		
-1	system of DE, general solution		/ ~ >	/ /	
	and application.		5		
Final term Week					
Week 14					

The faculty reserves the right to change, amend, add or delete any of the contents.

IV- Course Requirements

- 1. Attending at least 80% of the classes.
- 2. Attending the midterm and final term exams.

V – Evaluation & Grading System

The tentative marks distributions for course evaluation are as follows:

1.	Attendance & Performance	20%
2.	Quiz (at least two)	40%
	Midterm/ Final assessment	
T	. •	100

Final Grading: 40% of Mid assessment + 60% of Final assessment

Letter	Grade Point	Numerical %		
A+	4.00	90-100		
A	3.75	85-<90		
B+	3.50	80-<85		
В	3.25	75-<80		
C+	3.00	70-<75		
C	2.75	65-<70		
D+	2.50	60-<65		
D	2.25	50-<60		
F	0.00	<50(Failed)		
I	Incom	Incomplete		
W	Withd	Withdrawal		
UW	Unofficially Withdrawal			

The evaluation system will be strictly followed as par the AIUB grading policy.

VI - Textbook/ References

- 1. Calculus- J. Stewart, 8th edition, Cengage Learning, Inc.
- 2. Differential Equations P. Blanchard, R. L. Devaney, G. R. Hall.
- 3. Calculus-H. Anton, I.C. Bivens and S. Davis.-10th edition, John Wiley & Sons Inc.
- 4. Differential Equations S.L. Ross.- 3rd edition, John Wiley & Sons Inc.
- 5. Calculus with Analytical Geometry –G.B. Thomas and R.L. Finny.- 9th edition, Addison-Wesley Publishing Company
- 6. Differentials and Integral Calculus F. Ayres (Schaum's Outline Series).-2nd edition, McGraw Hill.

VII- List of Faculties Teaching the Course

Prof. Dr. Mohammed Jashim Uddin (**HEAD**) 0008-087-2
Prof. Dr. Madhabi Islam 0805-708-2
Prof. Dr. Khondaker Abdul Maleque 9610-011-2

Dr. M. Mostafizur Rahman

Dr. Fatema-Tuz-Zohra

Dr. Dilruba Yasmin

2003-2077-2

Tanzia Zerin Khan

1001-1010-2

Prodip Kumar Ghose

1005-1068-2

Md. Mahfuzur Rahman

Khadiza Akter Mitu 1805-1884-2

Zasmin Haque Shanta Deb

VIII - Verification:

Prepared by :	Moderated by :	Moderated by :
Ayesha Siddiqua	Dr. M. Mostafizur Rahman	Md. Mahfuzur Rhaman
Date:	Date:	Date:
Checked by:	Certified by:	Approved by:
Dr. Mohammed Jashim Uddin	Dr. Dip Nandi	Mr. Mashiour Rahman
Head, Department of Mathematics	Director, Faculty of Science &	Associate Dean, Faculty of Science &
Department of Mathematics	Technology	Technology
Date:	Date:	Date:

BANGLADESH