Chapter 3 Relational Data Model

Content

- Introduction
- Concepts
- Constraints
- From E/R diagram to relational design

Introduction

- Was first introduced by E. F. Codd
 - "A Relation Model for Large Shared Data Banks", Communications of ACM, 1970
- Commercial implementation
 - By IBM
 - System R (1974), SQL/DS (1981), DB2 (1983)
 - Oracle (1979)
 - By Sybase
 - SQL Server (1987), Adaptive Server Enterprise (1996)
 - By Microsoft
 - SQL Server (1989)
 - Access (1992)

Introduction

- Open source implementation
 - MySQL
 - By MySQL AB, 1995
 - PostgreSQL
 - Ingres project at the University of California, Berkeley, 1980s
 - By many developers, released in 1996
 - SQLite
 - By D. Richard Hipp working for General Dynamics, 2000

Introduction

- Provide a simple way to represent data
 - The relation: a two-dimensional table
- The theoretical background
 - Set theory of mathematical logic

Content

- Introduction
- Concepts
 - Relation
 - Attribute
 - Schema
 - Tuple
 - Domain
 - Characteristics of relation
 - Notations
- Contraints
- From E/R diagram to relational design

Relation

- Relational model presents the DB as a collection of relations
 - A relation = a two-dimensional table

Each column is one of the attributes of the entity set **FName BirthDate** Salary **LName** Address Sex DNo 638 NVC Q5 5 Tung Nguyen 12/08/1955 Nam 40000 Bui 07/19/1968 332 NTH Q1 25000 4 Hang Nu 06/20/1951 291 HVH QPN 43000 4 Nhu Le Nu 09/15/1962 5 Hung Nguyen Ba Ria VT 38000 Nam

Each row is one employee entity

Relation name is EMPLOYEE

Relation

- Includes
 - Name
 - Set of columns
 - Fixed
 - Named
 - Has data types
 - Set of rows
 - Changed by time
- A row ~ A real-world entity or relationship
- A relation ~ An entity set or relationship

Attribute

- The names for columns of the relation
- Describes the meaning of entries in the column below

Attributes									
FName LName BirthDate Address Sex Salary DNo									
Tung	Nguyen	12/08/1955	638 NVC Q5	Nam	40000	5			
Hang	Bui	07/19/1968	332 NTH Q1	Nu	25000	4			
Nhu	Le	06/20/1951	291 HVH QPN	Nu	43000	4			
Hung	Nguyen	09/15/1962	Ba Ria VT	Nam	38000	5			

All values in a column are of the same data type

Schema

- Schema of a relation
 - Name
 - Set of attributes

Schema

- Database schema
 - A design consist of one or more relational schemas

```
Database schema
```

EMPLOYEE(SSN, FName, LName, BirthDate, Address, Sex, Salary, DNo)

DEPARTMENT(DNumber, DName, MgrSSN, MgrStartDate)

DEPT_LOCATION(DNumber, DLocation)

DEPENDENT(SSN, Dependent_Name, Sex, BDate, Relationship)

PROJECT(PName, PNumber, PLocation, DNum)

Tuple

- Row of a relation
 - Except the header row containing the attribute names
- Contains many components
 - One component for each attributes of the relation

Domain

- Each attribute of a relation associates with a domain
 - A particular elementary type
 - Domain ~ Data type
- A component of each tuple
 - Is **atomic**:
 - String, Number, Date/time, ...
 - Has a *value* that belongs to the domain of the corresponding attribute
- Example
 - FName: string, DOM(FName): the set of strings
 - Salary: integer, DOM(Salary): the set of integers

Characteristics of relation

The order of tuples in a relation is not important

LName	FName	BirthDate	Address	dress Sex		DNo
Nguyen	Tung	12/08/1955	638 NVC Q5	Nam	40000	5
Bui	Hang	07/19/1968	332 NTH Q1	Nu	25000	4
Le	Nhu	06/20/1951	291 HVH QPN	Nu	43000	4
Nguyen	Hung	09/15/1962	null	Nam	38000	5

The order of values in a tuple is important

<Nguyen, Tung, 12/08/1955, 638 NVC Q5, *Nam, 40000*, 5>

Differs from

<Nguyen, Tung, 12/08/1955, 638 NVC Q5, 40000, Nam, 5>

Characteristics of relation

- Each value of components in a tuple
 - Atomic or
 - NULL
- Relations are sets of tuples, not lists of tuples
 - There are no identical tuples

Relational model notation

- Relation schema
 - Given A₁, A₂, ..., A_n are attributes
 - Has domains D₁, D₂, ..., D_n respectively
 - Is denoted by $R(A_1:D_1, A_2:D_2, ..., A_n:D_n)$
 - Example
 - EMPLOYEE(SSN:DOM(integer), FName:DOM(string), LName:DOM(string), Birthday:DOM(date), Address:DOM(string), Sex:DOM(string), Salary:DOM(integer), DNo:DOM(integer))
- The degree of a relation is the number of attributes of its relation schema
 - EMPLOYEE is a relation schema of degree 8

Relational model notation

Relation instances

- A relation instance r of relation schema R(A₁, A₂, ..., A_n),
 denoted by r(R), is a set of tuples r = {t₁, t₂, ..., t_k}
- Where each t_i is an ordered list of n values t_i=<v₁, v₂, ...,
 v_n>
 - Each v_j is a member of DOM(A_j) or NULL value

	FName	LName	BirthDate	Address	Sex	Salary	DNo	
$t_{\scriptscriptstyle 1}$	Tung	Nguyen	12/08/1955	638 NVC Q5	Nam	40000	5	
t_2	Hang	Bui	07/19/1968	332 NTH Q1	Nu	25000	4	
t ₃	Nhu [`] \	Le	06/20/1951	291 HVH QPN	Nu	43000	4	
$t_{\scriptscriptstyle{4}}$	Hung `\	Nguyen	09/15/1962	null	Nam	38000	5	
	'							

Introduction2DB - FIT - HCMUS

 V_i

Summary of denotations

- The relation schema R of the degree n
 - $R(A_1, A_2, ..., A_n)$
- The attribute set of R
 - R⁺
- Relations
 - R, S, P, Q
- Tuples
 - t, u, v
- The domain of the attribute A
 - DOM(A)
- The value at the attribute A of the tth tuple
 - t.A or t[A]

Content

- Introduction
- Concepts
- Constraints
 - Superkey
 - Key
 - Primary key
 - Reference
 - Foreign key
- From E/R diagram to relational design

Constraint

- Integrity constraint
 - Rules, conditions need to satisfy for all of instances of relational database

Constraints

- Defined when the relation schema is modeled
- Checked when the data in relations are modified

Superkey

Definition

- Assume SK is a subset of attributes of R, SK ≠ Ø
- SK is the super key if

$$\forall r, \forall t1,t2 \in r, t1 \neq t2 \implies t1[SK] \neq t2[SK]$$

Any two distinct tuples have the different values at the superkey

Remark

- No two tuples in any state r of R can have the same value for superkey
- Every relation has at least one default superkey

Example

Find all superkeys of R

R	A	В	С	D			
	Х	1	10	а			
	Х	2	20	а			
	У	1	40	b			
	У	1 40		С			
	Z	1	50	d			

Key

Definition

- Assume K is a subset of attributes of R, K ≠ Ø
- K is a key if
 - K is a superkey of R and
 - \forall K' \subset K, K' \neq K, K' is not the superkey of R

A key is the minimal superkey

Remark

- The value of a key identifies uniquely each tuple in the relation
- A key is a property of the relation schema
 - Time-invariant: a constraint should hold on every valid state
- A key is determined from the meaning of attributes
- A relation has more than one key

Primary key

- Designate one of the key as the primary key (PK)
 - The value for PK is constrained to be not null
 - Underline the attributes of PK when displaying its relation schema
- The choice of PK
 - Influence some implementation issues
 - Usually with a single attribute or a small number of attributes

Reference

- R refers to S when
 - An attribute A of a tuple in relation R receives a value from an attribute B of relation S
 - Must refer to an existing tuple

S		DNam	ne	DNumber	DNumber				
		Nghien o	Nghien cuu						
		Dieu ha	Dieu hanh						
		Quan	ly	1					
		I	I	1		ı	I	I	
	FName	LName	BirthDate	A	ddress	Sex	Salary	DNo	<i>)</i>
R	Tung	Nguyen	12/08/1955	638	NVC Q5	Nam	40000	5	
	Hang	Bui	07/19/1968	332	NTH Q1	Nu	25000	4	
	Nhu	Le	06/20/1951	291 HVH QPN		Nu	43000	4	
	Hung	Nguyen	09/15/1962	Ва	Ria VT	Nam	38000	5	

25

Foreign key

- Examine two relation schemas R and S
 - Assume FK is a set of attributes of R, FK ≠ Ø
 - FK is a foreign key of R if
 - Attributes in FK have the same domains as the primary key attributes PK of S
 - A value of FK in a tuple t₁∈R
 - * Either is a value of PK for some tuple t₂∈S
 - * Or is null

Example

EMPLOYEE(SSN, FName, LName, BirthDate, Address, Sex, Salary, DNo)

DEPARTMENT(DName, <u>DNumber</u>)

Foreign key

Primary key

Foreign key

Remark

- An attribute can both participate in PK and participate in FK
- A FK can refer to its own relation
- Many FKs might refer to the same primary key
- Referential constraint = Foreign key constraint

Content

- Introduction
- Concepts
- Constraints
- From E/R diagrams to relational design
 - Rules

- (1) Entity set
 - Turn each entity set (except weak entity set) into a relation with the same set of attributes

EMPLOYEE(SSN, FName, LName, BirthDate, Address, Sex, Salary)

- (2) Relationship
 - (2a) Many-Many
 - Create a new relation
 - Relation name is the name of the relationship
 - Attributes are the key attributes of connected entity sets

- (2) Relation
 - (2b) One-Many
 - Adding the key of the many-relation to the one-relation

EMPLOYEE(SSN, FName, LName, BirthDate, Address, Sex, Salary, **DNumber**)

- (2) Relationship
 - (2c) One-One
 - Either adding the key of a relation to another relation
 - Or adding the key to both relations

- (3) Weak entity set
 - Turn into a relation
 - Has the same name
 - Add the key of related entity sets

DEPENDENT(**SSN, Name**, Sex, BirthDate, Relationship)

- (4) Subclass
 - Turn into a relation
 - Has the same name
 - Add the key of the superclass

