1 Density unit

In convection, we used to measure ρ in units of $\rho_0 = \langle \rho \rangle$ and T in units of $[u]^2/c_p$, but in the presence of radiation, we also have $\sigma_{\rm SB}$, and thus

$$\sigma_{\rm SB} ([u]^2/c_{\rm p})^4 = [\rho][u]^3,$$
 (1)

i.e.,

$$[\rho] = \sigma_{\rm SB}[u]^5 / c_{\rm p}^4. \tag{2}$$

Choosing $[u] = 1 \, \mathrm{km \, s^{-1}}$, and with $c_{\mathrm{p}} = 3.46 \times 10^{8}$ (cgs) and $\sigma_{\mathrm{SB}} = 5.67 \times 10^{-5}$ (cgs), we have $[rho] = 3.9 \times 10^{-14} \, \mathrm{g \, cm^{-3}}$.

2 $\sigma_{\rm SB}$ as a free parameter

Fixing instead $[\rho]$, we have,

$$\sigma_{\rm SB}^{\rm art} = c_{\rm p}^4 \left[\rho\right] / [u]^5. \tag{3}$$

Using now $[\rho] = 4 \times 10^{-4} \,\mathrm{g \, cm^{-3}}$ (BB14), we find

$$\sigma_{\rm SB}^{\rm art} = 5.76 \times 10^5 \,(\rm cgs). \tag{4}$$

which is 1.02×10^{10} times larger than the actual value.

3 KH time scale

$$\tau_{\rm KH} = \frac{E}{L} = \frac{[\rho]c_{\rm p}TR^3}{\sigma_{\rm SB}^{\rm art}T^4R^2} = \frac{[\rho]c_{\rm p}R}{\sigma_{\rm SB}^{\rm art}T^3}.$$
 (5)

If we replace T by gR/c_p we have

$$\tau_{\rm KH} = \frac{[\rho]c_{\rm p}R}{\sigma_{\rm SR}^{\rm art}(gR/c_{\rm p})^3} = \frac{[\rho]c_{\rm p}^4}{\sigma_{\rm SR}^{\rm art}g^3R^2}.$$
(6)

Replace $R = [u]^2/g$, then

$$\tau_{\rm KH} = \frac{[\rho]c_{\rm p}^4}{\sigma_{\rm SB}^{\rm art}g[u]^4}.$$
 (7)

Using $g = 274 \times 100 \,\mathrm{cm} \,\mathrm{s}^{-2}$, we have $\tau_{\mathrm{KH}} = 1200 \,\mathrm{yr}$. Decreasing τ_{KH} can be achieved by making larger than it is in reality, i.e., the same trend as found above.

References

Barekat, A., & Brandenburg, A., "Near-polytropic stellar simulations with a radiative surface," Astron. Astrophys. **571**, A68 (2014). (BB14)