

# Prüfungsvorbereitung Physik: Optik II



Hier wird nur aufgeführt, was *neu* hinzukommt. Die Prüfung baut auf dem bereits behandelten Stoff auf. (Das heisst, das «Alte» kurz repetieren!)

Theoriefragen: Diese Begriffe musst du in ein bis zwei Sätzen erklären können.

- a) Physikalische Grösse
- b) Formel
- c) Bezeichnungen beim Hohlspiegel (Skizze): Wo befinden sich die optische Achse, Brennpunkt, Brennweite, Mittelpunkt, Scheitelpunkt?
- d) Wo kommen die Lichtstrahlen tatsächlich her bei einem reellen Spiegelbild? Wo befindet sich ein reelles Spiegelbild?
- e) Wo kommen die Lichtstrahlen scheinbar her bei einem virtuellen Spiegelbild? Wo befindet sich ein virtuelles Spiegelbild?
- f) Hohlspiegel/Wölbspiegel
- g) Brechung
- h) Bezeichnungen bei der Brechung (Skizze): Wo befindet sich das Lot, Einfallswinkel, Brechungswinkel, Reflexionswinkel?
- i) Was bedeutet: Ein Stoff ist «optisch dichter» als ein anderer?
- j) Totalreflexion
- k) Grenzwinkel für Totalreflexion
- I) Linse, Konkav-/Konvexlinse
- m) Bezeichnungen bei der Linse (Zeichnung): Wo befinden sich die optische Achse, Brennpunkt, Brennweite, optischer Mittelpunkt, Mittelebene?

<u>Physikalische Grössen:</u> Diese physikalischen Grössen musst du kennen, mit Symbolen und Einheiten.

|                    | Symbol | Einheit |                   | Symbol | Einheit |
|--------------------|--------|---------|-------------------|--------|---------|
| Einfallswinkel     |        |         | Reflexionswinkel  |        |         |
| Brechungswinkel    |        |         |                   |        |         |
| Bildgrösse         |        |         | Gegenstandsgrösse |        |         |
| Bildweite          |        |         | Gegenstandsweite  |        |         |
| Abbildungsmassstab |        |         | Brennweite        |        |         |

<u>Formeln:</u> Diese Formeln musst du umformen und anwenden können. Die Formeln sowie das Diagramm zur Bestimmung der Brechungswinkel stehen auf dem Prüfungsblatt.

$$\alpha = \alpha'$$

$$A = \frac{B}{G}$$

$$\frac{B}{G} = \frac{b}{a}$$

Fähigkeiten: Diese Fähigkeiten musst du beherrschen:

- > Formeln umformen und nach der gesuchten Grösse auflösen
- > Zahlenwerte mit Einheiten in Formeln einsetzen und richtig ausrechnen
- > Diagramme ablesen und zeichnen
- > Brechungswinkel mit Hilfe eines Diagramms bestimmen
- > Konstruktion von:
- Schattenbildern
- Abbildungen mit der Lochkamera
- Reflexion am flachen Spiegel und am Hohlspiegel
- Abbildung am flachen, Hohl- und Wölbspiegel
- Brechung von Lichtstrahlen mit Hilfe des Diagramms
- Strahlengang durch konkave und konvexe Linsen
- Abbildung durch konkave und konvexe Linsen

<u>Übungsaufgaben:</u> Bei allen Aufgaben muss der Lösungsweg klar ersichtlich sein (d.h. die Formel, mit der gerechnet wurde, gehört auch dazu).

Resultate müssen unterstrichen sein (Einheiten nicht vergessen!).

## Alle Arbeitsblätter, Praktikumsblätter und Aufgabenblätter

#### Internet

Gehe zur Website www.leifiphysik.de und wähle unter Inhalte nach Teilgebieten der Physik

- → Optik
- → Lichtbrechung
- → Optische Linsen

## Weitere Aufgaben

- 1. Abbildung am Hohlspiegel
- a) Konstruiere die Abbildung des kleinen Pfeils. Ist das Bild reell oder virtuell?
- b) Konstruiere die Abbildung des grossen Pfeils. Ist das Bild reell oder virtuell?

Hinweis: Du musst bei beiden Pfeilen sowohl die Pfeilspitze als auch den Pfeilanfang abbilden.



- 2. Löse die Gleichung  $\frac{3 \cdot r}{p} = \frac{2 \cdot w}{k}$  nach verschiedenen Grössen auf.
  - a) nach p
- b) nach k
- 3. Ein Lichtstrahl tritt von Luft in Glas über. Auf welcher Seite (oben oder unten) befindet sich das Glas?



- 4. Ein Lichtstrahl kommt aus dem Glas und trifft auf die Grenzfläche zwischen Glas und Luft.
- a) Ist es möglich, dass in diesem Fall Totalreflexion auftritt? Begründe deine Antwort.
- b) Wenn ja: Unter welchen Bedingungen tritt Totalreflexion auf?
- c) Wenn ja: Wie gross ist der Grenzwinkel für Totalreflexion?
- Zeichne den weiteren Verlauf der Lichtstrahlen.
  Schreibe an, wie viel Grad jeweils die Winkel betragen.



- 6. Löse durch Konstruktion auf Häuschenpapier: Eine 3.0 cm hohe Kerze steht in 12 cm Abstand vor einer Sammellinse der Brennweite 3.0 cm.
- a) Wo befindet sich das Bild?
- b) Wie gross ist das Bild?
- c) Ist das Bild reell oder virtuell?
- 7. Löse durch Konstruktion auf Häuschenpapier: Eine 2.0 cm hohe Kerze steht in 12 cm Abstand vor einer Zerstreuungslinse der Brennweite 9.0 cm.
- a) Wo befindet sich das Bild?
- b) Wie gross ist das Bild?
- c) Ist das Bild reell oder virtuell?
- 8. Mit einer Lochkamera wird ein 6.0 m hoher Baum aufgenommen. Die Photoplatte befindet sich 4.3 cm hinter der Lochblende, das Bild wird 24 mm hoch.
- a) Wie gross ist der Abbildungsmassstab?
- b) Aus welcher Entfernung wurde fotografiert?
- Ein Mädchen, das 1.40 m gross ist, steht vor einem Teich und sieht vor sich einen 8.40 m hohen Baum. Im Teich sieht es das Spiegelbild des Baumes.
- a) Zeichne das Spiegelbild des Baumes.
- Zeichne den Verlauf des Lichtstrahls, der von der Baumspitze in die Augen des M\u00e4dchens gelangt.
- c) Der Lichtstrahl, der von der Baumspitze ins Auge des M\u00e4dchens gelangt, trifft 12.0 m vom Baum entfernt auf der Wasseroberfl\u00e4che auf. Wie weit ist der Baum vom M\u00e4dchen entfernt?



### Lösungen:



2. 
$$\frac{3 \cdot r}{p} = \frac{2 \cdot w}{k} \Rightarrow \frac{p}{3 \cdot r} = \frac{k}{2 \cdot w}$$
 a)  $p = \frac{3 \cdot r \cdot k}{2 \cdot w}$  b)  $k = \frac{2 \cdot w \cdot p}{3 \cdot r}$ 

- oben (der Winkel in Glas ist kleiner als der Winkel in Luft)
- a) Ja. Totalreflexion kann nur im optisch dichteren Stoff auftreten. Glas ist optisch dichter als
  - b) Wenn der Lichtstrahl flach genug auf die Grenzfläche trifft (unter einem Winkel, der grösser als der Grenzwinkel für Totalreflexion ist). c) 41°



- a) 4.0 cm von der Linse entfernt auf der anderen Seite wie der Gegenstand
  - b) 1.0 cm
  - c) reell

(Abb. Massstab 1:2)

- 7. a) 5.0 cm von der Linse entfernt auf der gleichen Seite wie der Gegenstand
  - b) 0.83 cm
  - c) virtuell

(Abb. Massstab 1:2)



b) 
$$g = \frac{b \cdot G}{B} = \frac{43 \text{ mm} \cdot 6'000 \text{ mm}}{24 \text{ mm}} = 10'750 \text{ mm} = \underline{10.75 \text{ m}}$$

9. a) und b)



c) 8.40 m ist 6mal mehr als 1.40 m. Also ist die Auftreffstelle des Lichtstrahls 6mal weiter vom Baum entfernt als vom Mädchen. Der Abstand Mädchen - Auftreffstelle ist ein Sechstel von 12.0 m = 2.0 m, macht insgesamt 14.0 m.