

Bypass Back-propagation: Optimization-based Structural Pruning

for Large Language Models via Policy Gradient

Yuan Gao*, Zujing Liu*, Weizhong Zhang*, Bo Du, Gui-Song Xia† Wuhan University, Fudan University

https://github.com/ethanygao/backprop-free_LLM_pruning

Introduction

Large Language Models (LLMs) face efficiency challenges for deployment due to their massive parameters.

- Existing LLM metric-based pruning relies on heuristic metrics, which is computationally inexpensive, but often leads to suboptimal performance, especially at high pruning rates.
- Pre-LLM optimization-based methods require backpropagation, which can lead to better performance, but is computationally expensive for LLMs.

Can we attain the performance of optimization-based methods while preserving a similar inexpensive resources with the metrics-based methods?

1. Pruning is a Binary-Optimization Problem

$$\mathbf{m} = \{\mathbf{m}_i\}_{i=1}^n \in \{0, 1\}^n \qquad \mathbf{w} = \{\mathbf{w}_i\}_{i=1}^n$$

$$\min_{\mathbf{m}} \mathcal{L}(\mathcal{D}; \mathbf{w} \odot \mathbf{m}) := \frac{1}{N} \sum_{i=1}^N \ell(f(\mathbf{x}_i; \mathbf{w} \odot \mathbf{m}), \mathbf{y}_i),$$
s.t. $\|\mathbf{m}\|_1 \le rn$ and $\mathbf{m} \in \{0, 1\}^n$.

2. Pruning via Probabilistic Mask Modeling

$$\mathbf{s} = \{\mathbf{s}_i\}_{i=1}^n \in [0, 1]^n \quad p(\mathbf{m}|\mathbf{s}) = \prod_{i=1}^n (s_i)^{m_i} (1 - s_i)^{1 - m_i}.$$

$$\min_{\mathbf{s}} \mathbb{E}_{p(\mathbf{m}|\mathbf{s})} \mathcal{L}(\mathcal{D}; \mathbf{w} \odot \mathbf{m}),$$

$$\mathbf{s.t.} \ \mathbf{1}^\top \mathbf{s} \leq rn \ \text{ and } \ \mathbf{s} \in [0, 1]^n.$$

Optimization Object in Expectation

$$\Phi(\mathbf{s}) = \mathbb{E}_{p(\mathbf{m}|\mathbf{s})} \mathcal{L}(\mathbf{m}) = \int p(\mathbf{m}|\mathbf{s}) \mathcal{L}(\mathbf{m}) d\mathbf{m},$$
 $\mathbf{s.t.} \ \mathbf{1}^{\top} \mathbf{s} \leq rn \ \text{and} \ \mathbf{s} \in [0, 1]^n.$

Method

3. Policy Gradient Optimization

$$\nabla_{\mathbf{s}}\Phi(\mathbf{s}) = \int \mathcal{L}(\mathbf{m})\nabla_{\mathbf{s}}p(\mathbf{m}|\mathbf{s}) + \underbrace{p(\mathbf{m}|\mathbf{s})\nabla_{\mathbf{s}}\mathcal{L}(\mathbf{m})}_{=0} d\mathbf{m}$$

$$= \int \mathcal{L}(\mathbf{m})p(\mathbf{m}|\mathbf{s})\nabla_{\mathbf{s}}\log(p(\mathbf{m}|\mathbf{s}))d\mathbf{m}$$

$$= \mathbb{E}_{p(\mathbf{m}|\mathbf{s})}\mathcal{L}(\mathbf{m})\nabla_{\mathbf{s}}\log(p(\mathbf{m}|\mathbf{s})).$$

Stochastic Gradient Descent Algorithm

$$\mathbf{s} \leftarrow \mathbf{proj}_{\mathcal{C}}(\mathbf{z}),$$

$$\mathcal{C}(\mathcal{D}_{\mathbf{P}}; \mathbf{w} \odot \mathbf{m}) \nabla_{\mathbf{z}} \log(n(\mathbf{m})\mathbf{s})$$

$$\mathbf{z} := \mathbf{s} - \eta \mathcal{L}(\mathcal{D}_B; \mathbf{w} \odot \mathbf{m}) \nabla_{\mathbf{s}} \log(p(\mathbf{m}|\mathbf{s})).$$

Variance Reduction via Moving Average Baseline $\mathbf{s} \leftarrow \mathbf{proj}_{\mathcal{C}}(\mathbf{z}) \text{ with } \mathbf{z} := \mathbf{s} - \eta \left| \frac{1}{N_{e}} \right|$

$$\sum_{i=1}^{N_s} \left(\mathcal{L}(\mathcal{D}_B; \mathbf{w} \odot \mathbf{m}^{(i)}) - \boldsymbol{\delta} \right) \nabla_{\mathbf{s}} \log(p(\mathbf{m}^{(i)}|\mathbf{s})) \right].$$

$$\delta \leftarrow \frac{T-1}{T}\delta + \frac{1}{N_sT}\sum_{i=1}^{N_s} \mathcal{L}(\mathcal{D}_B; \mathbf{w}\odot\mathbf{m}^{(i)}).$$

Experiments

Method	PruneRate	LLaMA		LLaMA-2		LLaMA-3	Vicuna	
		7B	13B	7B	13B	8B	7B	13B
Dense	0%	12.62	10.81	12.19	10.98	14.14	16.24	13.50
LLM-Pruner	30%	38.41	24.56	38.94	25.54	40.18	48.46	31.29
SliceGPT		-	-	40.40	30.38	183.94	52.23	57.75
Bonsai		30.49	26.24	39.01	24.23	80.89	44.28	54.16
Wanda-sp		98.24	25.62	49.13	41.57	92.14	57.60	80.74
Ours		25.61	19.70	28.18	21.99	38.99	34.51	26.42
LLM-Pruner		72.61	36.22	68.48	37.89	70.60	88.96	46.88
SliceGPT	4007	-	-	73.76	52.31	353.09	89.79	130.86
Bonsai	40%	60.65	58.17	69.18	50.97	204.61	95.32	272.10
Wanda-sp		110.10	165.43	78.45	162.50	213.47	85.51	264.22
Ours		42.96	28.12	39.81	31.52	63.85	51.86	43.59
LLM-Pruner		147.83	67.94	190.56	72.89	145.66	195.85	91.07
SliceGPT	50%	-	-	136.33	87.27	841.20	160.04	279.33
Bonsai		275.63	148.92	216.85	146.38	440.86	180.75	424.33
Wanda-sp		446.91	406.60	206.94	183.75	413.86	242.41	373.95
Ours		72.02	49.08	65.21	52.23	119.75	71.18	68.13

Table 1. Results (perplexity) on channels and heads pruning. Our method is initialized by Wanda-sp. All the methods are calibrated using the C4 dataset and validated on the WikiText2 dataset w.r.t. perplexity.

Method	PruneRate	Perplexity	PruneRate	Perplexity	PruneRate	Perplexity
LLM-Pruner		38.94		68.48		190.56
SliceGPT	30%	40.40	40%	73.76	50%	136.33
Bonsai		39.01	4070	69.18		216.85
Wanda-sp		49.13		78.45		206.94
Ours (Random Init)	30%	37.24	40%	60.16	50%	160.75
Ours (Random-Prog. Init)	3070	<u>31.43</u>	4070	<u>49.86</u>	3070	<u>86.55</u>
Ours (LLM-Pruner Init)	30%	35.75	40%	65.32	50%	116.80
Ours (Wanda-sp Init)	3070	28.18	4070	39.81	3070	65.21

Table 3: Channels and heads pruning results with different initializations on LLaMA-2-7B. Bold and

Underscored denote the first and second best results, respectively.

Method	PruneRate	PPL↓	PIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	Average
Dense	0%	14.14	79.71	60.19	72.61	80.09	50.34	68.59
LLM-Pruner		40.18	71.38	37.84	55.64	57.78	27.21	49.97
SliceGPT		183.94	68.34	53.92	57.22	49.41	28.07	51.39
Bonsai	30%	80.89	64.53	36.10	55.09	47.64	22.52	45.18
Wanda-sp		92.14	59.74	31.46	52.64	44.02	19.88	41.55
Ours		38.99	72.25	43.56	59.04	59.85	29.44	52.83
LLM-Pruner		70.60	66.26	31.90	54.06	49.74	22.52	44.90
SliceGPT		353.09	61.53	39.98	52.80	36.66	25.17	43.23
Bonsai	40%	204.61	58.81	29.43	48.93	33.21	18.15	37.71
Wanda-sp		213.47	56.58	27.46	50.35	32.07	17.06	36.70
Ours		63.85	67.63	37.36	56.91	50.67	24.91	47.50
LLM-Pruner		145.65	61.15	29.10	51.93	39.98	19.36	40.30
SliceGPT		841.20	56.37	32.66	48.38	32.45	22.10	38.39
Bonsai	50%	440.86	55.66	26.94	50.51	30.64	17.83	36.32
Wanda-sp		413.86	55.39	27.07	49.72	29.59	18.26	36.01
Ours		119.75	62.51	30.89	51.85	41.12	20.65	41.40

Table2. Perplexity (PPL) and zero-shot accuracies (%) of LLaMA-3-8B for 5 zero-shot tasks.

Figure 3: Comparison of Policy Gradient and Gumbel Softmax.

Figure 4: Global vs. local pruning.