P-MIXUP: IMPROVING GENERALIZATION PERFORMANCE OF EVOLUTIONARY FEATURE CONSTRUCTION WITH PESSIMISTIC VICINAL RISK MINIMIZATION

HENGZHE ZHANG, QI CHEN, BING XUE, WOLFGANG BANZHAF, MENGJIE ZHANG

VICTORIA UNIVERSITY OF WELLINGTON

06/09/2024

TABLE OF CONTENTS

- 1 Background
- 2 Method
- 3 Experimental Settings
- 4 Results
- 5 Conclusions

BACKGROUND

AUTOMATED FEATURE CONSTRUCTION

■ **Objective:** Construct a set of new features, $\{\phi_1, \dots, \phi_m\}$, to enhance learning on the dataset $\{\{x_1, y_1\}, \dots, \{x_n, y_n\}\}$ compared to learning on the original features $\{x^1, \dots, x^p\}$.

■ Approaches:

- Kernel Methods: Black-box, non-parametric.
- Neural Networks: Black-box, gradient-based.
- Genetic Programming: Interpretable, gradient-free.

(b) New Feature Space

OVERFITTING

- **Challenge:** Overfitting is a significant issue in evolutionary feature construction.
- **Phenomenon:** Overfitted models perform well on training data but poorly on unseen data.
- Cause: Models may become too complex and fit noise in the training data, especially when:
 - ► Sample size is limited.
 - Data contains noise.

Objective

Mitigate overfitting to enhance generalization and robustness of constructed features.

EMPIRICAL RISK MINIMIZATION (ERM)

■ ERM (Empirical Risk Minimization):

$$\mathcal{L}(f) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x_i), y_i)$$
 (1)

■ Concept:

- ► ERM minimizes the average loss over the training data.
- **Focuses only on given data points** (x_i, y_i) without considering neighbors or unseen data.

VICINAL RISK MINIMIZATION (VRM)

■ VRM (Vicinal Risk Minimization):

$$VIC(f) = \frac{1}{n} \sum_{i=1}^{n} \int \mathcal{L}(f(\mathbf{x}), y_i) dP_{x_i}(\mathbf{x})$$
 (2)

■ Concept:

- VRM incorporates vicinal samples (neighbors of training points).
- ► It minimizes the expected loss over a distribution of neighboring samples P_{x_i} around each training point.

GAUSSIAN SYNTHESIS

■ Concept:

- Gaussian Synthesis generates vicinal samples by adding Gaussian noise to the original training data.
- ▶ The noise is sampled from a normal distribution $\mathcal{N}(\mathsf{o}, \sigma^2)$, where σ represents the standard deviation.

■ Limitation:

Gaussian noise may create synthetic samples that do not lie on the true data manifold.

METHOD

■ Concept:

- MixUp Synthesis generates new vicinal samples by linearly combining two training samples x_a and x_b .
- ► The formula for the synthesized sample is:

$$x_{\text{mixup}} = \lambda \cdot x_a + (1 - \lambda) \cdot x_b \tag{3}$$

where $\lambda \in [0,1]$ is a randomly sampled mixing ratio.

■ **Objective:** Create synthetic samples that lie between two real data points, helping the model generalize by learning from intermediate data.

PESSIMISTIC VICINAL RISK MINIMIZATION (P-VRM)

■ P-VRM (Pessimistic Vicinal Risk Minimization):

$$\mathcal{V}(f) = \frac{1}{n} \sum_{i=1}^{n} \max_{\mathbf{x} \in \mathbb{N}(x_i)} \mathcal{L}(f(\mathbf{x}), y_i)$$
 (4)

■ Concept:

- ▶ P-VRM minimizes the worst-case loss among the vicinal samples in the neighborhood $\mathbb{N}(x_i)$ of each training point.
- ► Focusing on the worst-case scenario, the model becomes more robust and stable, improving generalization to unseen samples.

KEY ALGORITHM COMPONENTS

- **Population Initialization:** GP trees are initialized using the ramped-half-and-half method.
- **Parent Selection:** Lexicase selection is used to select parents by iteratively eliminating poorly performing individuals on some instances.
- Offspring Generation: Random subtree crossover, mutation, and dynamic tree addition/deletion operators.
- **■** Objective Evaluation:
 - ► Vicinal data is synthesized using the mixup technique.
 - Pessimistic vicinal risk and cross-validation loss are evaluated.
- Final Model Selection: Based on the lowest vicinal risk.

PESSIMISTIC MIXUP: LOCAL LINEARITY PROMOTION

■ **Theorem:** Pessimistic MixUp encourages local linearity around each sample $x_a \in X$ by minimizing the objective:

$$\max_{\lambda, (x_b, y_b) \in \mathbb{N}(x_a)} (0.5 - |\lambda - 0.5|)^2 (y_b - y_a - \nabla f(x_a)^\top (x_b - x_a))^2$$

where $\lambda \sim \text{Beta}(\alpha, \beta)$ is the MixUp ratio.

■ The optimal gradient is:

$$\nabla f(x_a) = \frac{(y_b^* - y_a)}{\|\Delta x\|^2} \Delta x$$

where
$$\Delta x = (x_b^* - x_a)$$
.

OPTIMAL GRADIENT INTERPRETATION

■ The optimal gradient is:

$$\nabla f(x_a) = \frac{(y_b^* - y_a)}{\|\Delta x\|^2} \Delta x$$

where $\Delta x = (x_h^* - x_a)$.

- This is not $\nabla f(x_a) = x_a^2$ or $\nabla f(x_a) = x_a^3$. Instead, it is a constant vector.
- A **constant gradient** implies that the function f(x) behaves linearly in the local region around x_a .

EXPERIMENTAL SETTINGS

DATASETS

- **Source:** 58 real-world datasets from the Penn Machine Learning Benchmark (PMLB).
- Criteria: Excluded synthetic datasets.
- Focus: Emphasis on real-world applicability.

PARAMETER SETTINGS

Parameter Settings for GP

Parameter	Value
Maximum Population Size	200
Number of Generations	100
Crossover Rate	0.9
Mutation Rate	0.1
Tree Addition Rate	0.5
Tree Deletion Rate	0.5
Initial Tree Depth	0-3
Maximum Tree Depth	10
Initial Number of Trees	1

Parameter	Value
Maximum Number of Trees	10
Elitism (Number of Individuals)	1
Bandwidth of Gaussian Kernel	0.5
eta of Beta Distribution	1
Iterations of Risk Estimation (K)	10
Functions	+, -, *, AQ, Abs, Sqrt, Neg, Log, Max, Min, Sin, Cos, Square

BENCHMARK METHODS

Compared Methods:

- Standard GP without regularization
- Parsimonious Pressure (PP)
- Tikhonov Regularization (TK)
- Grand Complexity (GC)
- Rademacher Complexity (RC)
- Weighted MIC between Residuals and Variables (WCRV)
- Correlation between Input and Output Distances (IODC)

RESULTS

TRAINING PERFORMANCE

■ Training R²: Standard GP is the best.

Statistical comparison of training R^2 scores.

	VRM	PP	RC	GC
P-VRM	o(+)/14(~)/44(-)	28(+)/17(~)/13(-)	56(+)/2(~)/o(-)	46(+)/10(~)/2(-)
VRM	_	48(+)/10(∼)/o(-)	58(+)/o(∼)/o(-)	56(+)/2(~)/o(-)
PP	_	_	58(+)/o(∼)/o(-)	46(+)/12(~)/o(-)
RC	_	_	_	1(+)/4(~)/53(-)
	IODC	тк	WCRV	Standard GP
P-VRM	37(+)/15(~)/6(-)	36(+)/15(~)/7(-)	39(+)/13(~)/6(-)	1(+)/13(~)/44(-)
VRM	53(+)/5(~)/o(-)	53(+)/4(~)/1(-)	48(+)/8(∼)/2(-)	2(+)/38(~)/18(-)
PP	29(+)/23(~)/6(-)	32(+)/20(~)/6(-)	38(+)/15(~)/5(-)	o(+)/3(~)/55(-)
RC	1(+)/4(~)/53(-)	o(+)/1(~)/57(-)	2(+)/9(~)/47(-)	o(+)/o(~)/58(-)
GC	12(+)/27(~)/19(-)	11(+)/26(~)/21(-)	23(+)/25(~)/10(-)	o(+)/1(~)/57(-)
IODC	_	16(+)/19(~)/23(-)	27(+)/19(~)/12(-)	o(+)/o(~)/58(-)
TK	_	_	31(+)/12(~)/15(-)	o(+)/4(~)/54(-)
WCRV	_	_	_	o(+)/2(~)/56(-)

TEST PERFORMANCE

- Test R²: P-VRM significantly improves generalization compared to standard GP and other overfitting control methods.
- P-VRM outperforms VRM, indicating the effectiveness of pessimistic vicinal risk minimization.

	VRM	PP	RC	GC
P-VRM VRM PP RC	22(+)/29(~)/7(-) - - -	22(+)/31(~)/5(-) 11(+)/38(~)/9(-) — —	46(+)/10(~)/2(-) 38(+)/10(~)/10(-) 38(+)/13(~)/7(-) —	23(+)/32(~)/3(-) 16(+)/29(~)/13(-) 15(+)/34(~)/9(-) 5(+)/10(~)/43(-)
	IODC	тк	WCRV	Standard GP
P-VRM VRM PP RC GC IODC TK WCRV	31(+)/24(~)/3(-) 24(+)/25(~)/9(-) 23(+)/29(~)/6(-) 5(+)/21(~)/32(-) 25(+)/26(~)/7(-) —	44(+)/12(~)/2(-) 28(+)/29(~)/1(-) 25(+)/31(~)/2(-) 5(+)/20(~)/33(-) 23(+)/33(~)/2(-) 19(+)/24(~)/15(-) —	38(+)/18(~)/2(-) 27(+)/23(~)/8(-) 26(+)/26(~)/6(-) 11(+)/17(~)/30(-) 25(+)/30(~)/3(-) 15(+)/30(~)/13(-) 11(+)/33(~)/14(-)	31(+)/21(~)/6(-) 22(+)/34(~)/2(-) 25(+)/25(~)/8(-) 13(+)/14(~)/31(-) 24(+)/21(~)/13(-) 21(+)/16(~)/21(-) 10(+)/27(~)/21(-) 17(+)/22(~)/19(-)

TRAINING PERFORMANCE

■ Correlation between training and test R² scores: P-VRM method effectively controls overfitting.

Evolutionary plots of the training and test R² scores for VR.

TREE SIZE

■ **Tree sizes:** P-VRM does not significantly reduce tree size compared to standard GP.

Distribution of tree sizes across methods.

18

TRAINING TIME

■ **Training Time:** P-VRM method is computationally more intensive.

Distribution of training time (seconds) across methods.

FURTHER ANALYSIS OF P-VRM

■ Key Questions:

Is MixUp better than Gaussian perturbation for generating vicinal samples?

■ MixUp vs. Gaussian Noise:

- ► P-VRM outperforms P-GVRM on 23 datasets, worse on only 8.
- MixUp better aligns with the data manifold than Gaussian noise.

R² Score Comparison

	P-GVRM	GVRM
P-VRM	23(+)/27(~)/8(-)	30(+)/21(~)/7(-)
P-GVRM	—	22(+)/34(~)/2(-)

CONCLUSIONS

Key Takeaways

- P-VRM minimizes worst-case vicinal risks for improved robustness.
- MixUp-based vicinal samples help the model generalize between real data points.
- **Empirical results:** P-VRM reduces overfitting and outperforms traditional methods.

THANKS FOR LISTENING!

EMAIL: HENGZHE.ZHANG@ECS.VUW.AC.NZ

GITHUB PROJECT: HTTPS://GITHUB.COM/HENGZHE-ZHANG/EVOLUTIONARYFOREST