# GWAS Quality Control and PRS Analysis Report

# **Executive Summary**

### 1. Overall Data Quality Assessment:

The sample and variant QC metrics suggest high-quality data. The call rate for both samples and variants is 1.000, reflecting that all genotypes have been successfully called without any missing data. The heterozygosity rate of 0.624 is within the expected range for human populations, indicating adequate genetic diversity. The minor allele frequency (MAF) of 0.037 suggests that the data includes rare variants.

However, the average dosage quality is 0.000, which is concerning as it suggests there might be issues with the dosage calculations. Dosage scores should ideally range between 0 and 2, with high-quality data usually having an average dosage quality close to 1. The fact that no SNPs are below the threshold is a positive aspect.

Recommendations for improvement would include revisiting the dosage calculations to confirm their accuracy.

#### 2. PRS Performance Analysis:

Unfortunately, PRS performance metrics such as mean, standard deviation (std), area under the curve (AUC), and R-squared (R2) are not available. These missing metrics make it difficult to evaluate the performance of the PRS model.

#### 3. Population Structure Insights:

PCA results are not provided in the metrics, making it difficult to comment on population stratification. In future studies, it would be highly beneficial to include PCA to identify and control for population stratification, which can confound GWAS and PRS analysis.

### 4. Key Findings and Recommendations:

The key finding is that while the call rates and heterozygosity rate indicate high-quality data, the average dosage quality is concerning. This suggests a potential problem with how the dosages were calculated. PRS performance metrics and PCA results are missing, which makes it difficult to evaluate the model and assess population structure.

I would recommend revisiting the dosage calculations to ensure they are accurate. Furthermore, I suggest that future studies provide PRS performance metrics and PCA results. This would allow for a more comprehensive evaluation of the model's performance and the identification and control of population stratification. These steps will greatly enhance the robustness and interpretability of the GWAS and PRS analysis.

## 1. Introduction

# 1.1 Study Overview

This report presents the results of the GWAS Quality Control (QC) and Polygenic Risk Score (PRS) analysis pipeline. The analysis was performed on genotype data from samples and genetic variants.

### 1.2 Analysis Pipeline

The analysis was performed using the following pipeline: 1. Sample and variant QC using Hail 2. Population structure analysis 3. PRS calculation and validation 4. Automated report generation with AI-powered interpretation

## 2. Quality Control Results

# 2.1 Sample Quality Control

### 2.1.1 Sample Metrics

| Value    | Threshold                                     | C+-+                                                             |
|----------|-----------------------------------------------|------------------------------------------------------------------|
|          | I III conord                                  | Status                                                           |
| 1.000    | 0.95                                          |                                                                  |
| N/A      | $\pm 3~\mathrm{SD}$                           |                                                                  |
| 93239280 | -                                             | -                                                                |
| N/A      | $\sim 2.0  2.1$                               |                                                                  |
|          | 1.000<br>N/A<br>93239280<br>N/A<br>N/A<br>N/A | 1.000 0.95<br>N/A ±3 SD<br>93239280 -<br>N/A -<br>N/A -<br>N/A - |



Figure 1: Sample Call Rate Distribution

# 2.1.2 Sample QC Visualizations

## 2.2 Variant Quality Control

## 2.2.1 Variant Metrics

| Metric                     | Value | Threshold | Status |
|----------------------------|-------|-----------|--------|
| Call Rate                  | 1.000 | 0.95      |        |
| Minor Allele Frequency     | 0.037 | 0.01      |        |
| Hardy-Weinberg Equilibrium | N/A   | 1e-6      |        |
| Dosage Quality             | N/A   | 0.8       | N/A    |

**2.2.2 Variant QC Visualizations** Note: Dosage QC metrics are not available or not applicable for this dataset.

# 2.3 Population Structure

## 2.3.1 Principal Component Analysis

| Principal Component | Variance Explained |
|---------------------|--------------------|
|                     |                    |

PC 1 | 0.093% |

PC 2 | 0.040% |

PC 3 | 0.014% |

PC 4 | 0.011% |

PC 5 | 0.006% |

PC 6 | 0.005% |

PC 7 | 0.005% |

PC 8 | 0.004% |

PC 9 | 0.004% |

PC10 | 0.004% |

## 2.3.2 Population Structure Visualization



Figure 2: PCA Plot



Figure 3: PRS Distribution

# 3. Polygenic Risk Score Analysis

# 3.1 PRS Performance Metrics

# 3.2 PRS Distribution

# 3.3 PRS Detailed Metrics

| Metric                 | Value                  |
|------------------------|------------------------|
| Sample Size            | 2504                   |
| SNPs Used              | 55042                  |
| Mean                   | 2.8376307338662147e-18 |
| Std                    | 1.000199740339553      |
| Median                 | 0.0018594632095895382  |
| Min                    | -3.6759134822910373    |
| Max                    | 4.061200651557279      |
| Skewness               | 0.006688519838321524   |
| Kurtosis               | 0.16276488090860974    |
| Shapiro-Wilk Statistic | 0.9995028481620838     |
| Shapiro-Wilk p-value   | 0.7970982813995009     |
| 1st Percentile         | -2.309088945590361     |
| 5th Percentile         | -1.6269995428905233    |
| 10th Percentile        | -1.2725685178342185    |
| 25th Percentile        | -0.6678769982584252    |
| 50th Percentile        | 0.0018594632095895382  |
| 75th Percentile        | 0.6899618113413841     |
| 90th Percentile        | 1.2829809828672172     |
| 95th Percentile        | 1.6195513224895801     |
| 99th Percentile        | 2.351383983562977      |

# 3.4 Population Stratification and PRS



Figure 4: Population Stratification

# 4. Clumping and Variant Filtering

### 4.1 Clumping Summary

| Parameter                | Value   |
|--------------------------|---------|
| Variants Before Clumping | 1103547 |
| Variants After Clumping  | 55042   |
| -clump-p1                | 0.05    |
| -clump-r2                | 0.1     |
| -clump-kb                | 250     |

Notes: - Note: No phenotypes present.

Warnings: - Warning: No significant -clump results. Skipping.

#### 4.2 Variant Flowchart



Figure 5: Variant Flowchart

# 5. Discussion

## 5.1 Data Quality Assessment

- Sample Quality: The sample call rate is within acceptable range, indicating good sample quality.
- Variant Quality: The variant call rate is within acceptable range, indicating good variant quality.

#### 5.2 PRS Performance Assessment

#### 5.3 Recommendations

#### 1. Sample Quality:

• Sample call rates are within acceptable range

### 2. Variant Quality:

• Variant call rates are within acceptable range

#### 3. Population Structure:

• Population stratification appears minimal or data not available

# 4. PRS Performance:

# 6. Technical Appendix

# 6.1 Quality Control Thresholds

Sample Call Rate: 95%
Variant Call Rate: 95%
Minor Allele Frequency: 1%

Hardy-Weinberg Equilibrium: p 1e-6
Heterozygosity Rate: within 3 SD of mean

## 6.2 Software Versions

Hail: 0.2.127Python: 3.9.0PRS-CS: 1.0.0

### 6.3 Pipeline Parameters

call\_rate\_threshold: 0.95
dosage\_threshold: 0.1
hwe\_threshold: 1.0e-06
maf\_threshold: 0.01

Report generated on 2025-06-30 using version 1.0 of the pipeline.