08. 3. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 3月20日

出願番号 Application Number:

特願2003-076772

[ST. 10/C]:

[JP2003-076772]

出 願 人 Applicant(s):

出光興産株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 1月22日

【書類名】

特許願

【整理番号】

IK1503

【提出日】

平成15年 3月20日

【あて先】

特許庁長官 殿

【国際特許分類】

H05B 33/00

【発明の名称】

芳香族アミン誘導体及びそれを用いた有機エレクトロル

ミネッセンス素子

【請求項の数】

6

【発明者】

【住所又は居所】 千葉県袖ケ浦市上泉1280番地

【氏名】

舟橋 正和

【特許出願人】

【識別番号】

000183646

【氏名又は名称】 出光興産株式会社

【代理人】

【識別番号】

100078732

【弁理士】

【氏名又は名称】 大谷 保

【選任した代理人】

【識別番号】

100081765

【弁理士】

【氏名又は名称】 東平 正道

【手数料の表示】

【予納台帳番号】

003171

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0000937

【包括委任状番号】 0000761

【プルーフの要否】 要

【発明の名称】 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

【特許請求の範囲】

【請求項1】 下記一般式(I)で表される芳香族アミン誘導体。 【化1】

$$\left(\begin{array}{c} \left(A_{1} \right)_{m} \\ \left(A_{2} \right)_{n} \end{array} \right)_{p}$$
 (I)

(式中、Rは、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数5~50のアリール基、置換もしくは無置換の炭素数1~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシル基、置換もしくは無置換の炭素数1~50のアルコキシル基、置換もしくは無置換の炭素数5~50のアリールオキシ基、置換もしくは無置換の炭素数5~50のアリールアミノ基、置換もしくは無置換の炭素数1~20のアルキルアミノ基又はハロゲン原子を表わす。kは1~9の整数であり、kが2以上の場合、複数のRは互いに同一でも異なっていてもよい。

A¹ 及びA² は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 1~50のアルキル基、置換もしくは無置換の炭素数 5~50のアリール基、置換もしくは無置換の炭素数 1~50のアラルキル基、置換もしくは無置換の炭素数 3~50のシクロアルキル基、置換もしくは無置換の炭素数 1~50のアルコキシル基、置換もしくは無置換の炭素数 5~50のアリールオキシ基、置換もしくは無置換の炭素数 5~50のアリールアミノ基、置換もしくは無置換の炭素数 1~20のアルキルアミノ基又はハロゲン原子を表わす。m及びnはそれぞれ 0~5の整数である。mが2以上の場合、複数のA¹ は、それぞれ互いに同一でも異

なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。 nが 2 以上の場合、複数の A^2 は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。

ただし、A¹ 及びA² のうち、少なくとも一方は、置換もしくは無置換の炭素数 2 以上のアルキル基、置換もしくは無置換の炭素数 2 以上のアラルキル基、置換もしくは無置換の炭素数 3 以上のシクロアルキル基、置換もしくは無置換の炭素数 2 以上のアルコキシル基及び置換もしくは無置換の炭素数 2 以上のアルキルアミノ基のうちのいずれかの基を有する。

pは $1\sim9$ の整数であり、pが2以上の場合、複数の()p内の基は互いに同一でも異なっていてもよい。k+pは10以下の整数である。)

【請求項2】 下記一般式(II)で表される芳香族アミン誘導体。 【化2】

$$\left(\begin{array}{c} \left(A_{1} \right)_{m} \\ \left(A_{2} \right)_{n} \end{array} \right)_{2}$$

(式中、Rは、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数5~50のアリール基、置換もしくは無置換の炭素数1~50のアシカロアルキル基、置換もしくは無置換の炭素数3~50のシカロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシル基、置換もしくは無置換の炭素数5~50のアリールオキシ基、置換もしくは無置換の炭素数5~50のアリールアミノ基、置換もしくは無置換の炭素数1~20のアルキルアミノ基又はハロゲン原子を表わす。kは1~9の整数であり、kが2以上の場合、複数のRは互いに同一でも異なっていてもよい。

 A^1 及び A^2 は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 1 ~ 5 0 のアルキル基、置換もしくは無置換の炭素数 5 ~ 5 0 のアリール基、置換

もしくは無置換の炭素数 $1\sim50$ のアラルキル基、置換もしくは無置換の炭素数 $3\sim50$ のシクロアルキル基、置換もしくは無置換の炭素数 $1\sim50$ のアルコキシル基、置換もしくは無置換の炭素数 $5\sim50$ のアリールオキシ基、置換もしくは無置換の炭素数 $5\sim50$ のアリールアミノ基、置換もしくは無置換の炭素数 $1\sim20$ のアルキルアミノ基又はハロゲン原子を表わす。m及びnはそれぞれ $0\sim5$ の整数である。mが2以上の場合、複数の1は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。nが2以上の場合、複数の12は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。

ただし、A¹ 及びA² のうち、少なくとも一方は、置換もしくは無置換の炭素数 2 以上のアルキル基、置換もしくは無置換の炭素数 2 以上のアラルキル基、置換もしくは無置換の炭素数 3 以上のシクロアルキル基、置換もしくは無置換の炭素数 2 以上のアルコキシル基及び置換もしくは無置換の炭素数 2 以上のアルキルアミノ基のうちのいずれかの基を有する。

複数の()2内の基は互いに同一でも異なっていてもよい。)

【請求項3】 下記一般式(III) で表される芳香族アミン誘導体。

【化3】

$$(A_1)_m$$

$$(A_2)_n$$
(III)

(式中、Rは、水素原子、置換もしくは無置換の炭素数 $1\sim50$ のアルキル基、置換もしくは無置換の炭素数 $5\sim50$ のアリール基、置換もしくは無置換の炭素数 $1\sim50$ のアラルキル基、置換もしくは無置換の炭素数 $3\sim50$ のシクロアルキル基、置換もしくは無置換の炭素数 $1\sim50$ のアルコキシル基、置換もしくは無置換の炭素数 $5\sim50$ のアリールオキシ基、置換もしくは無置換の炭素数 $5\sim50$ のアリールオキシ基、置換もしくは無置換の炭素数 $5\sim50$ 0のアリールオキシ基、置換もしくは無置換の炭素数 $5\sim50$ 00アリールオキシ基、

50のアリールアミノ基、置換もしくは無置換の炭素数1~20のアルキルアミノ基又はハロゲン原子を表わす。 kは1~9の整数であり、 kが2以上の場合、複数のRは互いに同一でも異なっていてもよい。

A¹ 及びA² は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数5~50のアリール基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシル基、置換もしくは無置換の炭素数5~50のアリールオキシ基、置換もしくは無置換の炭素数5~50のアリールオキシ基、置換もしくは無置換の炭素数5~50のアリールアミノ基、置換もしくは無置換の炭素数1~20のアルキルアミノ基又はハロゲン原子を表わす。m及びnはそれぞれ0~5の整数である。mが2以上の場合、複数のA¹は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。nが2以上の場合、複数のA²は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。

ただし、A¹ 及びA² のうち、少なくとも一方は、置換もしくは無置換の炭素数2以上のアルキル基、置換もしくは無置換の炭素数2以上のアラルキル基、置換もしくは無置換の炭素数3以上のシクロアルキル基、置換もしくは無置換の炭素数2以上のアルコキシル基及び置換もしくは無置換の炭素数2以上のアルキルアミノ基のうちのいずれかの基を有する。)

【請求項4】 陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、請求項1~3のいずれかに記載の芳香族アミン誘導体を単独又は混合物の成分として含有する有機エレクトロルミネッセンス素子。

【請求項5】 陰極と陽極間に少なくとも発光層を含む二層以上からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、陽極と発光層との間に請求項1~3のいずれかに記載の芳香族アミン誘導体を主成分とする有機層を有する有機エレクトロルミネッセンス素子。

【請求項6】 陰極と陽極間に少なくとも発光層を含む一層又は複数層から

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は壁掛テレビの平面発光体やディスプレイのバックライト等の光源として使用され、寿命が長く、高発光効率な有機エレクトロルミネッセンス素子及び それを実現する新規な芳香族アミン誘導体に関するものである。

[0002]

【従来の技術】

有機物質を使用した有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般にEL素子は、発光層及び該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象である。

従来の有機EL素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近の有機EL素子は徐々に改良されているものの、さらなる高発光効率、長寿命が要求されている。

例えば、単一のモノアントラセン化合物を有機発光材料として用いる技術が開示されている(特許文献 1)。しかしながら、この技術においては、例えば電流密度 $165\,\mathrm{mA/c\,m^2}$ において、 $1650\,\mathrm{c\,d/m^2}$ の輝度しか得られておらず、効率は $1\,\mathrm{c\,d/A}$ であって極めて低く、実用的ではない。また、単一のビスアントラセン化合物を有機発光材料として用いる技術が開示されている(特許文献 2)。しかしながら、この技術においても、効率は $1\sim3\,\mathrm{c\,d/A}$ 程度で低く、実用化のための改良が求められていた。また、モノもしくはビスアントラセン

化合物とジスチリル化合物を有機発光媒体層として用いた技術が開示されている (特許文献3)。しかしながら、この素子は、半減寿命が十分長くなく、さらな る改良が求められていた。

[0003]

【特許文献1】

特開平11-3782号公報

【特許文献2】

特開平8-12600号公報

【特許文献3】

国際公開W〇00/06402号公報

[0004]

【発明が解決しようとする課題】

本発明は、前記の課題を解決するためになされたもので、寿命が長く、高発光 効率な有機EL素子及びそれを実現する芳香族アミン誘導体を提供することを目 的とするものである。

[0005]

【課題を解決するための手段】

本発明者らは、前記の好ましい性質を有する芳香族アミン誘導体及びそれを使用した有機EL素子を開発すべく鋭意研究を重ねた結果、下記一般式(I)~(III)のいずれかで表されるピレン構造に置換基を有するジフェニルアミノ基が結合した芳香族アミン誘導体を利用することによりその目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。

すなわち、本発明は、下記一般式(I) \sim (III) のいずれかで表される芳香族アミン誘導体を提供するものである。

[0006]

【化4】

[0007]

(式中、Rは、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数5~50のアリール基、置換もしくは無置換の炭素数1~50のアクロアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシル基、置換もしくは無置換の炭素数5~50のアリールオキシ基、置換もしくは無置換の炭素数5~50のアリールアミノ基、置換もしくは無置換の炭素数1~20のアルキルアミノ基又はハロゲン原子を表わす。kは1~9の整数であり、kが2以上の場合、複数のRは互いに同一でも異なっていてもよい。

A¹ 及びA² は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 1~50のアルキル基、置換もしくは無置換の炭素数 5~50のアリール基、置換もしくは無置換の炭素数 3~50のシクロアルキル基、置換もしくは無置換の炭素数 1~50のアルコキシル基、置換もしくは無置換の炭素数 5~50のアリールオキシ基、置換もしくは無置換の炭素数 5~50のアリールオキシ基、置換もしくは無置換の炭素数 1~20のアルキルアミノ基又はハロゲン原子を表わす。m及びnはそれぞれ 0~5の整数である。mが2以上の場合、複数の A¹ は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。nが2以上の場合、複数の A² は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。

ただし、 A^1 及び A^2 のうち、少なくとも一方は、置換もしくは無置換の炭素

数2以上のアルキル基、置換もしくは無置換の炭素数2以上のアラルキル基、置

換もしくは無置換の炭素数3以上のシクロアルキル基、置換もしくは無置換の炭 素数2以上のアルコキシル基及び置換もしくは無置換の炭素数2以上のアルキル アミノ基のうちのいずれかの基を有する。

pは1~9の整数であり、pが2以上の場合、複数の () p 内の基は互いに 同一でも異なっていてもよい。 k+pは10以下の整数である。)

[0008]

【化5】

$$(R)_{k}$$

$$(II)$$

(式中、R、 A^1 及び A^2 、k,m及びnは前記と同じである。複数の () $_2$ 内の基は互いに同一でも異なっていてもよい。)

[0009]

【化6】

$$(A_1)_m$$

$$(A_2)_n$$
(III)

(式中、R、 A^1 及び A^2 、k, m及びnは前記と同じである。)

[0010]

また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層から

なる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも1層が、前記一般式(I)~(III)のいずれかで表される芳香族アミン誘導体を単独又は混合物の成分として含有する有機EL素子、

陰極と陽極間に少なくとも発光層を含む二層以上からなる有機薄膜層が挟持されている有機EL素子において、陽極と発光層との間に一般式 (I) ~(III) のいずれかで表される芳香族アミン誘導体を主成分とする有機層を有する有機EL素子、

陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が 挟持されている有機EL素子において、該発光層が、一般式(I) \sim (III) のい ずれかで表される芳香族アミン誘導体を $0.1\sim20$ 重量%含有する有機エレク トロルミネッセンス素子を提供するものである。

[0011]

【発明の実施の形態】

本発明の芳香族アミン誘導体は、上記一般式(I)~(III) のいずれかで表される芳香族アミン誘導体からなるものである。

一般式(I)~(III)において、Rは、水素原子、置換もしくは無置換の炭素数 $1\sim50$ (好ましくは、炭素数 $1\sim20$)のアルキル基、置換もしくは無置換の炭素数 $5\sim50$ (好ましくは、炭素数 $5\sim20$)のアリール基、置換もしくは無置換の炭素数 $1\sim50$ (好ましくは、炭素数 $9\sim20$)のアラルキル基、置換もしくは無置換の炭素数 $3\sim50$ (好ましくは、炭素数 $5\sim12$)のシクロアルキル基、置換もしくは無置換の炭素数 $1\sim50$ (好ましくは、炭素数 $1\sim6$)のアルコキシル基、置換もしくは無置換の炭素数 $5\sim50$ (好ましくは、炭素数 $5\sim18$)のアリールオキシ基、置換もしくは無置換の炭素数 $5\sim50$ (好ましくは、炭素数 $5\sim18$)のアリールアミノ基、置換もしくは無置換の炭素数 $1\sim20$ (好ましくは、炭素数 $1\sim6$)のアルキルアミノ基又はハロゲン原子を表わす。

[0012]

前記Rのアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、secーブチル基、tertーブチル基、ペンチル基

、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、 $2-フェニルイソプロピル基、トリクロロメチル基、トリフルオロメチル基、ベンジル基、<math>\alpha-フェノキシベンジル基、 \alpha$, $\alpha-ジメチルベンジル基、 \alpha$, $\alpha-メチルフェニルベンジル基、 <math>\alpha$, $\alpha-ジトリフルオロメチルベンジル基、トリフェニルメチル基、 <math>\alpha-$ ベンジルオキシベンジル基等が挙げられる。

前記Rのアリール基としては、例えば、フェニル基、2ーメチルフェニル基、3ーメチルフェニル基、4ーメチルフェニル基、4ーエチルフェニル基、ビフェニル基、4ーメチルビフェニル基、4ーシクロヘキシルビフェニル基、ターフェニル基、3,5ージクロロフェニル基、ナフチル基、5ーメチルナフチル基、アントリル基、ピレニル基等が挙げられる。

[0013]

前記Rのアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基 、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロ ピル基、フェニルー t ーブチル基、 α ーナフチルメチル基、 $1-\alpha$ ーナフチルエ チル基、 $2-\alpha-$ ナフチルエチル基、 $1-\alpha-$ ナフチルイソプロピル基、 $2-\alpha$ ーナフチルイソプロピル基、 β ーナフチルメチル基、 $1-\beta$ ーナフチルエチル基 、 $2-\beta$ ーナフチルエチル基、 $1-\beta$ ーナフチルイソプロピル基、 $2-\beta$ ーナフ チルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、 p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-ク ロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベ ンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル 基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基 、mーヒドロキシベンジル基、oーヒドロキシベンジル基、pーアミノベンジル 基、mーアミノベンジル基、oーアミノベンジル基、pーニトロベンジル基、m ーニトロベンジル基、 o ーニトロベンジル基、 p ーシアノベンジル基、 mーシア ノベンジル基、 o ーシアノベンジル基、1-ヒドロキシー2-フェニルイソプロ ピル基、1-クロロ-2-フェニルイソプロピル基等が挙げられる。

[0014]

前記Rのシクロアルキル基としては、例えば、シクロプロピル基、シクロブチ

ル基、シクロペンチル基、シクロヘキシル基、ノルボルネン基、アダマンチル基 等が挙げられる。

前記Rのアルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、secーブトキシ基、tertーブトキシ基、各種ペンチルオキシ基、各種ペキシルオキシ基等が挙げられる。

前記Rのアリールオキシ基としては、例えば、フェノキシ基, トリルオキシ基, ナフチルオキシ基等が挙げられる。

前記Rのアリールアミノ基としては、例えば、ジフェニルアミノ基,ジトリルアミノ基,イソプロピルジフェニルアミノ基,tーブチルジフェニルアミノ基,ジイソプロピルジフェニルアミノ基,ジーtーブチルジフェニルアミノ基,ジナフチルアミノ基,ナフチルフェニルアミノ基等が挙げられる。

前記Rのアルキルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジヘキシルアミノ基等が挙げられる。

前記Rのハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。

kは $1\sim9$ の整数であり、 $1\sim3$ であると好ましく、kが2以上の場合、複数のRは互いに同一でも異なっていてもよい。

[0015]

一般式(I)~(III)において、 A^1 及び A^2 は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 $1\sim50$ (好ましくは、炭素数 $1\sim20$)のアルキル基、置換もしくは無置換の炭素数 $5\sim50$ (好ましくは、炭素数 $5\sim20$)のアリール基、置換もしくは無置換の炭素数 $1\sim50$ (好ましくは、炭素数 $9\sim20$)のアラルキル基、置換もしくは無置換の炭素数 $3\sim50$ (好ましくは、炭素数 $5\sim12$)のシクロアルキル基、置換もしくは無置換の炭素数 $1\sim50$ (好ましくは、炭素数 $1\sim6$)のアルコキシル基、置換もしくは無置換の炭素数 $1\sim6$)のアルコキシル基、置換もしくは無置換の炭素数 $1\sim6$)のアリールアミノ基、置換もしくは無置換の炭素数 $1\sim20$ (好ましくは、炭素数 $1\sim6$)のアルキルアミノ

基又はハロゲン原子を表わす。

[0016]

前記A¹ 及びA² のアルキル基、アリール基、アラルキル基、シクロアルキル基、アルコキシル基、アリールオキシ基、アリールアミノ基、アルキルアミノ基及びハロゲン原子の具体例としては、前記Rで挙げたものと、それぞれ同様のものが挙げられる。

m及びnはそれぞれ0~5の整数であり、0~2であると好ましい。

mが 2以上の場合、複数の A^1 は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。n が 2以上の場合、複数の A^2 は、それぞれ互いに同一でも異なっていてもよく、互いに連結して飽和もしく不飽和の環を形成してもよい。

[0017]

ただし、A¹ 及びA² のうち、少なくとも一方は、置換もしくは無置換の炭素数 2 以上のアルキル基、置換もしくは無置換の炭素数 2 以上のアラルキル基、置換もしくは無置換の炭素数 3 以上のシクロアルキル基、置換もしくは無置換の炭素数 2 以上のアルコキシル基及び置換もしくは無置換の炭素数 2 以上のアルキルアミノ基のうちのいずれかの基を有する。

また、一般式(I)において、pは $1\sim9$ の整数であり、 $1\sim4$ であると好ましく、 $1\sim2$ であるとさらに好ましく、pが2以上の場合、複数の()p内の基は互いに同一でも異なっていてもよい。また、k+pは10以下の整数であり、 $2\sim7$ であると好ましい。一般式(II)において、()2内の基は互いに同一でも異なっていてもよい。

また、本発明の一般式(I)で表される芳香族アミン誘導体のうち、特に一般式(II)及び(III)で表されるものが好ましい。

[0018]

本発明の一般式(I)~(III)で表される芳香族アミン誘導体の具体例を以下に示すが、これら例示化合物に限定されるものではない。なお、Meはメチル基を示す。

【化7】

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(9)$$

[0019]

$$(11)$$

$$(12)$$

$$(13)$$

$$(13)$$

$$(13)$$

$$(13)$$

$$(13)$$

$$(14)$$

$$(15)$$

$$(18)$$

$$(18)$$

$$(18)$$

$$(18)$$

$$(18)$$

[0020]

$$(19)$$

$$(20)$$

$$(21)$$

$$(21)$$

$$(22)$$

$$(23)$$

$$(24)$$

$$(25)$$

$$(26)$$

$$(26)$$

$$(26)$$

$$(20)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(21)$$

$$(22)$$

$$(22)$$

$$(24)$$

$$(25)$$

$$(26)$$

$$(26)$$

$$(26)$$

$$(27)$$

[0021]

【化11】

[0023]

本発明の一般式(I)~(III)のいずれかで表される芳香族アミン誘導体は、ピレン構造に置換基を有するジフェニルアミノ基が連結していることにより、化合物同士の会合が防止されるため、寿命が長くなる。また、固体状態で強い蛍光性を持ち、電場発光性にも優れ、蛍光量子効率が0.3以上である。さらに、金属電極又は有機薄膜層からの優れた正孔注入性及び正孔輸送性、金属電極又は有

機薄膜層からの優れた電子注入性及び電子輸送性を併せて持ち合わせているので、有機EL素子用発光材料として有効に用いられ、さらに、他の正孔輸送性材料、電子輸送性材料又はドーピング材料を使用してもさしつかえない。

[0024]

本発明の有機EL素子は、陽極と陰極間に一層又は多層の有機薄膜層を形成した素子である。一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔、又は陰極から注入した電子を発光材料まで輸送させるために、正孔注入材料又は電子注入材料を含有しても良い。一般式(I)~(III)の芳香族アミン誘導体は、高い発光特性を持ち、優れた正孔注入性、正孔輸送特性及び電子注入性、電子輸送特性を有しているので、発光材料として発光層に使用することができる。

本発明の有機EL素子においては、発光層が、本発明の芳香族アミン誘導体を 0.1~20重量%含有すると好ましく、1~10重量%含有するとさらに好ましい。また、本発明の一般式(I)~(III)の芳香族アミン誘導体は、極めて高い蛍光量子効率、高い正孔輸送能力及び電子輸送能力を併せ持ち、均一な薄膜を 形成することができるので、この芳香族アミン誘導体のみで発光層を形成することも可能である。

また、本発明の有機EL素子は、陰極と陽極間に少なくとも発光層を含む二層以上からなる有機薄膜層が挟持されている有機EL素子において、陽極と発光層との間に一般式(I)~(III)のいずれかで表される芳香族アミン誘導体を主成分とする有機層を有すると好ましい。この有機層としては、正孔注入層、正孔輸送層等が挙げられる。

多層型の有機EL素子としては、(陽極/正孔注入層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/ 陰極)等の多層構成で積層したものが挙げられる。

[0025]

発光層には、必要に応じて、本発明の芳香族アミン誘導体に加えてさらなる公知の発光材料、ドーピング材料、正孔注入材料や電子注入材料を使用することもできる。有機EL素子は、多層構造にすることにより、クエンチングによる輝度

や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング材料、 正孔注入材料や電子注入材料を組み合わせて使用することができる。また、ドーピング材料により、発光輝度や発光効率の向上、赤色や青色の発光を得ることもできる。また、正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成により形成されても良い。その際には、正孔注入層の場合、電極から正孔を注入する層を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電子注入層の場合、電極から電子を注入する層を電子注入層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、材料のエネルギー準位、耐熱性、有機層又は金属電極との密着性等の各要因により選択されて使用される。

[0026]

一般式(I)~(III)の芳香族アミン誘導体と共に発光層に使用できる発光材料又はドーピング材料としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、オフタロペリレン、ナフタロペリレン、ナフタロペリノン、ナフタロペリノン、オーローン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるものではない。

[0027]

正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層又は発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層又は電子注入材料への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾール、イミダゾーン、ピラゾリン、ピラゾロン、

テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、及びポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料が挙げられるが、これらに限定されるものではない。

[0028]

本発明の有機EL素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、芳香族三級アミン誘導体及びフタロシアニン誘導体である。

芳香族三級アミン誘導体としては、例えば、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N, N'ージフェニルーN, N'ー(3-x チルフェニル)ー1, 1'ービフェニルー4, 4'ージアミン、N, N, N', N'ー(4-x チルフェニル)ー1, 1'ーフェニルー4, 4'ージアミン、N, N, N', N', N', N', N'ー(4-x チルフェニル)ー1, 1'ービフェニルー4, 4'ージアミン、N, N'ージフェニルーN, N'ージナフチルー1, 1'ービフェニルー4, 4'ージアミン、N, N'ージフェニルーN, N'ージナフチルー1, 1'ービフェニルー4, 4'ージアミン、N, N'ー(x チルフェニル)ーN, N'ー(x ールー4, x ージアミン、N, N'ー(x ールー2、N, Nービス(x ージー4ートリルアミノフェニル)ー4ーフェニルーシクロヘキサン等、又はこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマーであるが、これらに限定されるものではない。

[0029]

フタロシアニン(Pc)誘導体としては、例えば、H2 Pc、CuPc、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2 SiPc、(HO) AlPc、(HO) GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPc等のフタロシアニン誘導体及びナフタロシアニン誘導体でがあるが、これらに限定されるものではない。

また、本発明の有機EL素子は、発光層と陽極との間に、これらの芳香族三級アミン誘導体及び/又はフタロシアニン誘導体を含有する層、例えば、前記正孔

[0.030]

電子注入材料としては、電子を輸送する能力を持ち、陰極からの電子注入効果、発光層又は発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体が挙げられるが、これらに限定されるものではない。また、正孔注入材料に電子受容物質を、電子注入材料に電子供与性物質を添加することにより増感させることもできる。

[0031]

本発明の有機EL素子において、さらに効果的な電子注入材料は、金属錯体化 合物及び含窒素五員環誘導体である。

金属錯体化合物としては、例えば、8-ヒドロキシキノリナートリチウム、ビス (8-ヒドロキシキノリナート) 亜鉛、ビス (8-ヒドロキシキノリナート) 朝、ビス (8-ヒドロキシキノリナート) マンガン、トリス (8-ヒドロキシキノリナート) アルミニウム、トリス (2-メチルー8-ヒドロキシキノリナート) アルミニウム、トリス (8-ヒドロキシキノリナート) ガリウム、ビス (10-ヒドロキシベンゾ [h] キノリナート) ベリリウム、ビス (10-ヒドロキシベンゾ [h] キノリナート) 亜鉛、ビス (2-メチルー8ーキノリナート) クロロガリウム、ビス (2-メチルー8ーキノリナート) (0-クレゾラート) ガリウム、ビス (2-メチルー8ーキノリナート) (1-ナフトラート) アルミニウム、ビス (2-メチルー8ーキノリナート) (2-ナフトラート) ガリウム等が挙げられるが、これらに限定されるものではない。

[0032]

また、含窒素五員誘導体としては、例えば、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール誘導体が好ましい。具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、ジメチルPOPO

P、2, 5-ビス (1-フェニル) -1, 3, 4-チアゾール、2, 5-ビス (1-フェニル) -1, 3, 4-オキサジアゾール、2-(4' -tert-ブチルフェニル) -5-(4" -ビフェニル) 1, 3, 4-オキサジアゾール、1, 4-ビス [2-ビス (1-ナフチル) -1, 3, 4-オキサジアゾール、1, 4-ビス [2-(5-フェニルオキサジアゾリル)] ベンゼン、1, 4-ビス [2-(5-フェニルオキサジアゾリル) -4-tert-ブチルベンゼン]、2-(4'-tert-ブチルフェニル) -5-(4" -ビフェニル) -1, 3, 4-チアジアゾール、1, 4-ビス [2-(5-フェニルチアジアゾリル)] ベンゼン、2-(4'-tert-ブチルフェニル) -5-(4" -ビフェニル) -1, 3, 4-トリアゾール、1, 4-ビス [2-(5-フェニルチアジアゾリル)] ベンゼン、2-(4'-tertert-ブチルフェニル) -5-(4" -ビフェニル) -1, 3, 4-トリアゾール、1, 4-ビス [2-(5-フェニルトリアゾリル)] ベンゼン等が挙げられるが、これらに限定されるものではない。

[0033]

本発明の有機EL素子においては、発光層中に、一般式(I)~(III)の芳香族アミン誘導体の他に、発光材料、ドーピング材料、正孔注入材料及び電子注入材料の少なくとも1種が同一層に含有されてもよい。また、本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。

[0034]

有機EL素子の陽極に使用される導電性材料としては、4 e Vより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。陰極に使用される導電性物質としては、4 e Vより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びそれらの合

[0035]

有機EL素子では、効率良く発光させるために、少なくとも一方の面は素子の 発光波長領域において充分透明にすることが望ましい。また、基板も透明である ことが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリ ング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透 過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透 明性を有するものであれば限定されるものではないが、ガラス基板及び透明性樹 脂フィルムがある。透明性樹脂フィルムとしては、ポリエチレン、エチレン一酢 酸ビニル共重合体、エチレンービニルアルコール共重合体、ポリプロピレン、ポ リスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコ ール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサ ルホン、ポリエーテルサルフォン、テトラフルオロエチレンーパーフルオロアル キルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレ ンーエチレン共重合体、テトラフルオロエチレンーへキサフルオロプロピレン共 重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリ エステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド 、ポリイミド、ポリプロピレン等が挙げられる。

[0036]

本発明に係わる有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分

[0037]

湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解又は分散させて薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリーNービニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げられる。

[0038]

以上のように、有機EL素子の有機薄膜層に本発明の芳香族アミン誘導体を用いることにより、寿命が長く、高発光効率な有機EL素子を得ることができる。

本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。また、本発明の材料は、有機EL素子だけでなく、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。

[0039]

【実施例】

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。

合成例1 (化合物 (8) の合成)

アルゴン気流下冷却管付き300ミリリットル三口フラスコ中に、1,6ージブロモピレン3.6g(10mmo1)、4ーイソプロピルジフェニルアミン5. 2g(25mmo1)、酢酸パラジウム0.03g(1.5mo1%)、トリ

ー t ープチルホスフィン0.06g(3mo1%)、 t ープトキシナトリウム2.4g(25mmo1)、乾燥トルエン100ミリリットルを加えた後、100 ℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、トルエン50ミリリットル、メタノール100ミリリットルにて洗浄し、淡黄色粉末5.5gを得た。このものは、NMRスペクトル(図1)及びFD-MS(フィールドディソープションマススペクトル)の測定により、化合物(8)と同定した(収率89%)。

なお、NMRスペクトルは、溶媒がCDC1 $_3$ 、(株)日立製作所製 R-1900(90MHz)フーリエ変換核磁気共鳴装置にて測定した。

[0040]

合成例2 (化合物 (9) の合成)

アルゴン気流下冷却管付き 300 ミリリットル三口フラスコ中に、1, 6 ージブロモピレン 3. 6 g(10 mm o l)、4 ー t ープチルジフェニルアミン 5. 6 g(25 mm o l)、酢酸パラジウム 0. 0 3 g(1. 5 m o l %)、トリーt ープチルホスフィン 0. 0 6 g(3 m o l %)、t ープトキシナトリウム 2. 4 g(25 mm o l)、乾燥トルエン 100 ミリリットルを加えた後、100 ℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、トルエン 50 ミリリットル、メタノール 100 ミリリットルにて洗浄し、淡黄色粉末 5. 1 gを得た。このものは、NMRスペクトル(図 2)及びFD-MSの測定により、化合物(9)と同定した(収率 7 9 %)。なお、NMRスペクトルは、合成例 1 と同様の条件にて測定した。

[0041]

合成例3 (化合物 (12) の合成)

アルゴン気流下冷却管付き 300ミリリットル三口フラスコ中に、1,6ージプロモピレン 3.6 g(10 mm o l)、4ーイソプロピルフェニルーpートリルアミン 4.9 g(25 mm o l)、酢酸パラジウム 0.03 g(1.5 mol%)、トリー tーブチルホスフィン 0.06 g(3 mol%)、tーブトキシナトリウム 2.4 g(25 mm o l)、乾燥トルエン 100 ミリリットルを加えた後、100 ℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、トル

エン50ミリリットル、メタノール100ミリリットルにて洗浄し、淡黄色粉末5.7gを得た。このものは、NMRスペクトル(図3)及びFD-MSの測定により、化合物(12)と同定した(収率93%)。なお、NMRスペクトルは、合成例1と同様の条件にて測定した。

[0042]

合成例4 (化合物 (13) の合成)

アルゴン気流下冷却管付き 300 ミリリットル三口フラスコ中に、1, 6 ージブロモピレン 3. 6 g(10 mm o 1)、p、p, p, e ージイソプロピルアミン 6. 3 g(25 mm o 1)、酢酸パラジウム 0. 0 3 g(1. 5 m o 1%)、トリーセーブチルホスフィン 0. 0 6 g(3 m o 1%)、t ーブトキシナトリウム 2. 4 g(25 mm o 1)、乾燥トルエン 100 ミリリットルを加えた後、100 でにて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、トルエン 50 ミリリットル、メタノール 100 ミリリットルにて洗浄し、淡黄色粉末 7. 1 gを得た。このものは、10 NMRスペクトル(図 10 及び 10 及び 10 の測定により、化合物(10 3)と同定した(収率 10 7%)。なお、10 NMRスペクトルは、合成例 10 と同様の条件にて測定した。

[0043]

実施例1

25×75×1.1mmサイズのガラス基板上に、膜厚120nmのインジウムスズ酸化物からなる透明電極を設けた。このガラス基板に紫外線及びオゾンを照射して洗浄したのち、真空蒸着装置にこの基板を設置した。

まず、正孔注入層として、N', N', N'

次に、電子注入層として、トリス (8-ヒドロキシキノリナト) アルミニウム

を10nmの厚さに蒸着した。次に、トリス(8-ヒドロキシキノリナト)アルミニウム:リチウムを重量比10:0.3で10nmの厚さに蒸着し、次いでアルミニウムを150nmの厚さに蒸着した。このアルミニウムは陰極として機能する。このようにして有機EL素子を作製した。

得られた有機EL素子に通電試験を行ったところ、電圧 6.9 V、電流密度 10 mA/cm^2 にて発光輝度 938 cd/cm^2 の青色発光(発光極大波長:476 nm)が得られた。初期輝度 $3,000 \text{ cd/cm}^2$ で直流の連続通電試験を行ったところ、半減寿命は 2,000 時間であった。

[0044]

実施例2

実施例1において、化合物(12)の代わりに化合物(13)を用いた以外は 同様にして有機EL素子を作製した。

得られた有機EL素子に通電試験を行ったところ、電E6.9V、電流密度 $10mA/cm^2$ にて発光輝度 $970cd/cm^2$ の青色発光(発光極大波長:477nm)が得られた。初期輝度 $3,000cd/cm^2$ で直流の連続通電試験を行ったところ、半減寿命は2,100時間であった。

[0045]

比較例1

実施例1において、化合物(12)の代わりに1,6-ビス(p,p'-ジトリルアミノ)ピレンを用いて、有機EL素子を作製した。

得られた有機EL素子に通電試験を行ったところ、電圧6.8V、電流密度 $10mA/cm^2$ にて $976cd/cm^2$ の青色発光(発光極大波長:477nm)が得られた。初期輝度3, $000cd/cm^2$ で直流の連続通電試験を行ったところ、半減寿命は900時間と短かった。

[0046]

比較例 2

実施例 1 において、化合物(1 2)の代わりに 1 , 4 - ビス [(2 - 4 - ジフェニルアミノ] フェニル ビニル] ベンセンを用いて、有機 E L 素子を作製した。

得られた有機EL素子に通電試験を行ったところ、電E6.4V、電流密度 $10mA/cm^2$ にて $809cd/cm^2$ の青色発光(発光極大波長:468nm)が得られた。初期輝度 3, $000cd/cm^2$ で直流の連続通電試験を行ったところ、半減寿命は 1, 000 時間と短かった。

[0047]

【発明の効果】

本発明の一般式(I)~(III)のいずれかで表される芳香族アミン誘導体を使用した有機EL素子は、低い印加電圧で実用上充分な発光輝度が得られ、発光効率が高く、長時間使用しても劣化しづらく寿命が長い。

【図面の簡単な説明】

- 【図1】 本発明の芳香族アミン誘導体である化合物(8)のNMRスペクトルを示す図である。
- 【図2】 本発明の芳香族アミン誘導体である化合物(9)のNMRスペクトルを示す図である。
- 【図3】 本発明の芳香族アミン誘導体である化合物(12)のNMRスペクトルを示す図である。
- 【図4】 本発明の芳香族アミン誘導体である化合物(13)のNMRスペクトルを示す図である。

【書類名】

図面

【図1】

【図2】

【図3】

[図4]

【書類名】 要約書

【要約】

【課題】 寿命が長く、高発光効率な青色発光が得られる有機エレクトロルミネッセンス素子用材料及びそれを実現する芳香族アミン誘導体を提供する。

【解決手段】 ピレン構造に置換基を有するジフェニルアミノ基が結合した特定構造の芳香族アミン誘導体、並びに陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、前記有機エレクトロルミネッセンス素子用材料を単独又は混合物の成分として含有する有機エレクトロルミネッセンス素子である。

【選択図】 なし

特願2003-076772

出願人履歴情報

識別番号

[000183646]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月 8日 新規登録 東京都千代田区丸の内3丁目1番1号 出光興産株式会社