МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Измерение характеристик динамической сложности программ с
помощью профилировщика SAMPLER»

Студент гр. 7304	Моторин Е.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Задание

- 1. Ознакомиться с документацией на монитор SAMPLER и выполнить под его управлением тестовые программы test_cyc.c и test_sub.c с анализом параметров повторения циклов, структуры описания циклов, способов профилирования процедур и проверкой их влияния на точность и чувствительность профилирования.
- 2. Скомпилировать и выполнить под управлением SAMPLER'а программу на С, разработанную в 1-ой лабораторной работе. Выполнить разбиение программы на функциональные участки и снять профили для двух режимов:
 - 1 измерение только полного времени выполнения программы;
 - 2 измерение времен выполнения функциональных участков (ФУ). Убедиться, что сумма времен выполнения ФУ соответствует полному времени выполнения программы.
- 3. Выявить "узкие места", связанные с ухудшением производительности программы, ввести в программу усовершенствования и получить новые профили. Объяснить смысл введенных модификаций программ.

Ход работы

Программы транслировались с использованием компилятора Borland C++ v. 3.1. Профилирование выполнялось с помощью sampler_old, который запускался на 64-разрядной виртуальной машине под управлением ОС Windows 10.

Тестовые программы

Код программы test_cyc.c с нумерацией строк представлен в приложении A.

Результаты профилирования программы test_cyc.c:

Таблица с результатами измерений (используется 13 из 416 записей)

Исх.Поз.	. Прием	.Поз.	Общее время(мкс)	Кол-во прох.	Среднее время(мкс)
1: 8	3 1:	10	4336.31	1	4336.31
1 : 16	1:	12	8668.43	1	8668.43
1 : 12	2 1:	14	21672.34	1	21672.34
1 : 14	1 1 :	16	43348.03	1	43348.03
1 : 16	5 1:	19	4334.64	1	4334.64
1: 19) 1:	22	8670.11	1	8670.11
1 : 22	2 1:	25	21676.53	1	21676.53
1 : 25	5 1:	28	43348.03	1	43348.03
1 : 28	3 1:	34	4336.31	1	4336.31
1: 34	1 1 :	40	8669.27	1	8669.27
1 : 46) 1:	46	21673.18	1	21673.18
1 : 46	5 1:	52	43348.03	1	43348.03
					

Исходя из результата, на время выполнения влияет только количество итераций цикла (линейная зависимость). Циклы с одинаковым количеством итераций демонстрируют почти одно и то же время выполнения.

Код программы test_sub.c с нумерацией строк представлен в приложении Б.

Результаты профилирования программы test_sub.c:

Таблица с результатами измерений (используется 5 из 416 записей)

Исх.	Тоз.	Приє	ем.Поз	. Общее время(мкс)	•	Среднее время(мкс)
1:	24	1:	26	433698.18	1	433698.18
1:	26	1:	28	867392.18	1	867392.18
1:	28	1:	30	2168467.46	1	2168467.46
1:	30	1:	32	4336936.59	1	4336936.59

Результаты демонстрируют линейную зависимость времени выполнения функции от количества итераций цикла внутри функции. Время выполнения на два порядка больше, чем в предыдущей программе, не смотря на меньшее количество итераций, — это связано с тем, что в основном цикле каждую итерацию выполняется вложенный цикл.

Программа из первой лабораторной работы

Код программы из первой лабораторной работы с нумерацией строк представлен в приложениях В (для измерения полного времени) и Г (для измерения времен выполнения ФУ) при различных входных параметрах.

1) X = 5, ordr = 1:

Результаты профилирования с измерением полного времени:

Таблица с результатами измерений (используется 2 из 416 записей)

Исх.Поз. Прием.Поз. Общее время(мкс) Кол-во прох. Среднее время(мкс)
1: 82 1: 84 2722.98 1 2722.98

Результаты профилирования с измерением времен ФУ:

Таблица с результатами измерений (используется 20 из 416 записей)

	•		Общее время(мкс)	•	Среднее время(мкс)
1: 17	1:	19	70.40	1	70.40
1: 19	1:	27	252.27	1	252.27
1: 27	1:	29	0.00	1	0.00
1: 29	1:	31	15.92	10	1.59
1 : 31 1 : 31	1 : 1 :	37 33	1.68 10.90	1	1.68 1.21
1: 33			113.98	9	12.66
1: 35			5.87	9	0.65
1: 37			508.72	10	50.87

1 : 41 1 : 1 : 41 1 :	43	222.10 9.22	9 1	24.68 9.22
1: 43 1:		106.44	1	106.44
1: 48 1:	50	0.84	1	0.84
1 : 50 1 :	56	781.94	12	65.16
1 : 56 1 : 1 : 56 1 :	58	212.04 10.06	11 1	19.28 10.06
1: 58 1:		156.72	1	156.72
1: 61 1:	68	88.00	1	88.00
1: 68 1:	70	88.84	1	88.84
1: 70 1:	72	2.51	1	2.51
1: 72 1:	92	1.68	1	1.68
1: 92 1:	94	0.84	1	0.84
1: 94 1:	119	0.84	1 	0.84

Суммарное время всех ФУ (2661,81 мкс) не сильно отличается (примерно 2.3%) от полного времени выполнения функции (2722,98 мкс).

2) X = 12, ordr = 1

Результаты профилирования с измерением полного времени:

Таблица с результатами измерений (используется 2 из 416 записей)

Исх.Поз. Прием.Поз. Общее время(мкс) Кол-во прох. Среднее время(мкс)
1 : 82 1 : 84 553.14 1 553.14

Результаты профилирования с измерением времен ФУ:

Таблица с результатами измерений (используется 3 из 416 записей)

Исх.Поз. Прием.Поз.	Общее время(мкс)	Кол-во прох. Средн	ее время(мкс)
1: 17 1: 98	70.40	1	70.40
1 : 98 1 : 119	491.39	1	391.39

Суммарное время всех ФУ (561.79 мкс) немного отличается (примерно 1.5%) от полного времени выполнения функции (553.14 мкс).

3) X = 5, ordr = 3

Результаты профилирования с измерением полного времени:

Таблица с результатами измерений (используется 2 из 416 записей)

		Кол-во прох. Среднее	
1: 82 1: 84	3209.07	1	3209.07

Результаты профилирования с измерением времен ФУ:

Таблица с результатами измерений (используется 20 из 416 записей)

Исх.Поз. Прием.По	з. Общее время(мкс)	Кол-во прох.	Среднее время(мкс)
1: 17 1: 19	69.56	1	69.56
1 : 19 1 : 27	251.43	1	251.43
1 : 27 1 : 29	0.00	1	0.00
1 : 29 1 : 31	6.70	10	0.67
1: 31 1: 37		1	0.00
1: 31 1: 33	3.35	9	0.37
1: 33 1: 35	106.44	9	11.83
1: 35 1: 37	0.00	9	0.00
1 : 37 1 : 41	501.18	10	50.12
1: 41 1: 29		9	23.93
1: 41 1: 43	9.22	1	9.22
1: 43 1: 48	106.44	1	106.44
1 : 48 1 : 50	0.00	1	0.00
1 : 50 1 : 56	771.89	12	64.32
1 : 56 1 : 56	201.98	11	18.36
1 : 56 1 : 58	9.22	1	9.22
1 : 58 1 : 61	155.89	1	155.89
1 : 61 1 : 68	88.00	1	88.00

1: 68 1:	76 8	7.16	1	87.16
1 : 76 1 :	80 7	1.24	1	71.24
1: 80 1:	83 28	8.31	1 2	88.31
1: 83 1:	87 11	5.66	2	57.83
1 : 87 1 : 1 : 87 1 :		0.95 0.95		20.95
1: 89 1:	92	1.68	1	1.68
1 : 92 1 :	94	0.00	1	0.00
1: 94 1:	119 	0.00	1	0.00

Суммарное время всех ФУ (3102,64 мкс) не сильно отличается (примерно 3.3%) от полного времени выполнения функции (3209,07 мкс).

Измененная программа из первой лабораторной работы

В программу были добавлены улучшения: упрощены записи некоторых выражений, убраны лишние переменные. Измененный код программы из первой лабораторной работы с нумерацией строк представлен в приложениях Д (для измерения полного времени) и Е (для измерения времени выполнения ФУ).

Результаты профилирования с измерением полного времени:					
Таблица с результата	ми измерений (исп	ользуется 2 из 416	записей)		
Исх.Поз. Прием.Поз.	Общее время(мкс)	Кол-во прох. Средн	ее время(мкс)		
1 : 79 1 : 81	2621.57	1	2621.57		

Общее время выполнения функции уменьшилось на 101.41 мкс или на 3.7%.

Результаты профилирования с измерением времен ФУ:

Таблица с результатами измерений (используется 20 из 416 записей)

Исх.Поз. Прием.Поз.	Общее время(мкс)	Кол-во прох.	Среднее время(мкс)
1 : 20 1 : 22	71.24	1	71.24
1 : 22 1 : 30	251.43	1	251.43
1: 30 1: 32	0.84	1	0.84
1 : 32 1 : 34	9.22	10	0.92
1 : 34 1 : 40 1 : 34 1 : 36	0.84 5.03	1 9	0.84 0.56
1: 36 1: 38	107.28	9	11.92
1: 38 1: 40	0.00	9	0.00
1 : 40 1 : 44	502.02	10	50.20
1 : 44 1 : 32 1 : 44 1 : 46	215.39 8.38	9	23.93 8.38
1: 46 1: 51	105.60	1	105.60
1: 51 1: 53	0.00	1	0.00
1: 53 1: 59	769.37	12	64.11
1 : 59 1 : 53 1 : 59 1 : 61	198.63 9.22	11 1	18.06 9.22
1: 61 1: 64	155.89	1	155.89
1: 64 1: 71	87.16	1	87.16
1: 71 1: 73	87.16	1	87.16
1: 73 1: 75	0.84	1	0.84
1 : 75 1 : 95	0.00	1	
1: 95 1: 97	0.00	1	

Общее время на каждом из участков стало меньше (ФУ: было – 2655.94, стало – 2585.84, время выполнения уменьшилось на 2.5%, измерение полного времени: было - 2722.98, стало – 2621.57, время выполнения уменьшилось на 3.7%).

Выводы

В ходе лабораторной работы изучен монитор SAMPLER. Выполнено профилирование тестовых программ test_cyc.c и test_sub.c, которое показало линейную зависимость между временем выполнения программы и количеством итераций цикла.

Проанализировано полное время выполнения программы, разработанной в 1-ой лабораторной работе, и время выполнения её ΦY , за счет чего удалось частично усовершенствовать производительность.

ПРИЛОЖЕНИЕ А

TEST CYC.C

```
#include <stdlib.h>
    #include "Sampler.h"
2
3
    #define Size 10000
4
    int i, tmp, dim[Size];
5
6
    void main()
7
    {
8
       SAMPLE;
9
       for(i=0;i<Size/10;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
10
       SAMPLE;
       for(i=0;i<Size/5;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
11
12
       SAMPLE;
13
       for(i=0;i<Size/2;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
14
       SAMPLE;
       for(i=0;i<Size;i++) { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
15
16
       SAMPLE;
17
       for(i=0;i<Size/10;i++)</pre>
       { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
18
19
       SAMPLE;
20
       for(i=0;i<Size/5;i++)</pre>
21
       { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
22
       SAMPLE;
23
       for(i=0;i<Size/2;i++)</pre>
24
       { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
25
       SAMPLE;
26
       for(i=0;i<Size;i++)</pre>
27
       { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
28
       SAMPLE;
29
       for(i=0;i<Size/10;i++)</pre>
30
       { tmp=dim[0];
31
       dim[0]=dim[i];
32
       dim[i]=tmp;
33
       };
34
       SAMPLE;
35
       for(i=0;i<Size/5;i++)</pre>
36
       { tmp=dim[0];
37
       dim[0]=dim[i];
38
       dim[i]=tmp;
39
       };
40
       SAMPLE;
41
       for(i=0;i<Size/2;i++)</pre>
42
       { tmp=dim[0];
43
       dim[0]=dim[i];
44
       dim[i]=tmp;
45
       };
46
       SAMPLE;
47
       for(i=0;i<Size;i++)</pre>
       { tmp=dim[0];
48
49
       dim[0]=dim[i];
50
       dim[i]=tmp;
51
       };
52
       SAMPLE;
53 }
```

ПРИЛОЖЕНИЕ Б

TEST_SUB.C

```
1 #include "Sample.h"
2 const unsigned Size = 1000;
3
5
    void TestLoop(int nTimes)
6
7
    static int TestDim[Size];
8
    int tmp;
9
    int iLoop;
10
       while (nTimes > 0)
11
12
       nTimes --;
13
14
15
        iLoop = Size;
16
        while (iLoop > 0)
17
18
        iLoop --;
19
        tmp = TestDim[0];
        TestDim[0] = TestDim[nTimes];
20
21
        TestDim[nTimes] = tmp;
22
        }
23
        } /* TestLoop */
24
25
26
27
     void main()
28
     {
29
     SAMPLE;
     TestLoop(Size / 10); // 100 * 1000
30
31
     SAMPLE;
     TestLoop(Size / 5); // 200 * 1000
32
     SAMPLE;
33
     TestLoop(Size / 2); // 500 * 1000
34
35
     SAMPLE;
     TestLoop(Size / 1); // 1000* 1000
36
     SAMPLE;
37
38
     }
```

приложение в

Полное время LAB1.СРР

```
1. #include <math.h>
2. #include <stdio.h>
3. #include "Sampler.h"
5. float bessy (float x, float n) {
6.
          const float small = 1.0E-8;
          const float euler = 0.57721566;
7.
8.
          const float pi
                            = 3.1415926;
          const float pi2 = 0.63661977;
9.
10.
11.
          int
                  j;
12.
          float x2,sum,sum2,t,t2,
13.
                ts, term, xx, y0, y1,
14.
                ya,yb,yc,ans,a,b,
15.
                sina, cosa;
16.
17.
          if (x<12) {
18.
                xx = 0.5 * x;
19.
                x2 = xx * xx;
20.
                t= log(xx) + euler;
21.
                sum = 0.0;
22.
                term = t;
23.
                y0 = t;
24.
                i = 0;
25.
                do{
26.
                       j=j+1;
27.
                       if (j != 1) \{sum = sum + 1 / (j - 1);\}
28.
                       ts = t - sum;
29.
                       term = -x2 * term / (j * j)*(1 - 1/(j * ts));
                       y0 = y0 + term;
30.
                }while ( fabs(term) >= small);
31.
32.
                term = xx * (t - 0.5);
33.
                sum = 0.0;
34.
                y1 = term;
35.
                j = 1;
36.
                do{
37.
                       j = j + 1;
38.
                       sum = sum + 1.0 / (j - 1);
39.
                       ts = t - sum;
                       term = (-x2 * term)/(j * (j - 1))*((ts - 0.5/j)/(ts +
40.
   0.5/(j - 1));
41.
                       y1 = y1 + term;
42.
                 }while (fabs(term) >= small);
43.
                y0 = pi2 * y0;
                y1 = pi2 * (y1 - 1/x);
44.
45.
                if (n==0.0) {ans = y0;}
                else {
46.
47.
                       if (n==1.0) {ans = y1;}
                       else
48.
49.
                       {
50.
                              ts = 2.0 / x;
51.
                              ya = y0;
52.
                              yb = y1;
```

```
53.
                               for (j=2; j<ceil(n+0.01);j+1)</pre>
54.
55.
                                      yc = ts * (j - 1) * yb - ya;
56.
                                      ya = yb;
57.
                                      yb = yc;
58.
                               }
59.
                               ans = yc;
                        }
60.
61.
                 }
62.
                 return ans;
63.
          }
          else
                                sqrt(2 /(pi * x)) * sin(x - pi/4 - n * pi/2);
64.
                  return
65.}
66.
67. void main (void)
68.{
69.
          float
                  х;
70.
          float
                  ordr;
71.
          int
                  done;
          float ans;
72.
73.
          done = 0;
          ordr = 1;
74.
75.
          do{
                 if (ordr<0.0) {done = 1;}</pre>
76.
77.
                 else
78.
                 {
79.
                        do{
80.
                               x = 5;
81.
                        }while (x < 0.0);
82.
                        SAMPLE;
83.
                        ans = bessy(x,ordr);
84.
                        SAMPLE;
85.
                        ordr = -1;
                 }
86.
87.
          }while (done == 0)
88.}
```

ПРИЛОЖЕНИЕ Г Время ФУ LAB1.CPP

```
1. #include <math.h>
2. #include <stdio.h>
#include "Sampler.h"
5. float bessy (float x, float n) {
          const float small = 1.0E-8;
6.
7.
          const float euler = 0.57721566;
          const float pi
8.
                             = 3.1415926;
9.
          const float pi2
                            = 0.63661977;
10.
11.
          int
                  j;
          float x2,sum,sum2,t,t2,
12.
13.
                ts, term, xx, y0, y1,
14.
                ya,yb,yc,ans,a,b,
15.
                sina, cosa;
16.
17.
          SAMPLE;
18.
          if (x<12) {
19.
                SAMPLE;
20.
                xx = 0.5 * x;
21.
                x2 = xx * xx;
22.
                t= log(xx) + euler;
23.
                sum = 0.0;
24.
                term = t;
25.
                y0 = t;
26.
                j = 0;
27.
                SAMPLE;
28.
                do{
29.
                       SAMPLE;
30.
                       j=j+1;
                       SAMPLE;
31.
32.
                       if (j != 1) {
33.
                              SAMPLE;
34.
                              sum = sum + 1 / (j - 1);
35.
                              SAMPLE;
36.
                       }
37.
                       SAMPLE;
38.
                       ts = t - sum;
                       term = -x2 * term / (j * j)*(1 - 1/(j * ts));
39.
40.
                       y0 = y0 + term;
41.
                       SAMPLE;
42.
                }while ( fabs(term) >= small);
43.
                SAMPLE;
                term = xx * (t - 0.5);
44.
45.
                sum = 0.0;
46.
                y1 = term;
47.
                j = 1;
48.
                SAMPLE;
49.
                do{
50.
                       SAMPLE;
51.
                       j = j + 1;
52.
                       sum = sum + 1.0 / (j - 1);
```

```
53.
                        ts = t - sum;
                        term = (-x2 * term)/(j * (j - 1))*((ts - 0.5/j)/(ts +
54.
   0.5/(j - 1));
                        y1 = y1 + term;
                 SAMPLE;
56.
57.
                 }while (fabs(term) >= small);
58.
                 SAMPLE;
59.
                 y0 = pi2 * y0;
                 y1 = pi2 * (y1 - 1/x);
60.
61.
                 SAMPLE;
62.
                 if (n==0.0) {
63.
                        SAMPLE;
64.
                        ans = y0;
65.
                        SAMPLE;
                 }
66.
67.
                 else {
68.
                        SAMPLE;
69.
                        if (n==1.0) {
70.
                               SAMPLE;
71.
                               ans = y1;
72.
                               SAMPLE;
73.
                        }
74.
                        else
75.
                        {
76.
                               SAMPLE;
77.
                               ts = 2.0 / x;
78.
                               ya = y0;
79.
                               yb = y1;
80.
                               SAMPLE;
81.
                               for (j=2; j<ceil(n+0.01);j+1)
82.
                               {
83.
                                      SAMPLE;
                                      yc = ts * (j - 1) * yb - ya;
84.
85.
                                      ya = yb;
86.
                                      yb = yc;
87.
                                      SAMPLE;
88.
                               }
89.
                               SAMPLE;
90.
                               ans = yc;
91.
                        }
92.
                        SAMPLE;
93.
                 }
                 SAMPLE;
94.
95.
                 return ans;
96.
          }
97.
          else
                   SAMPLE;
98.
                                sqrt(2 /(pi * x)) * sin(x - pi/4 - n * pi/2);
99.
                   return
100.
                   }
          }
101.
102.
          void main (void)
103.
104.
          {
                 float
105.
                          х;
106.
                 float
                          ordr;
107.
                 int
                          done;
108.
                 float ans;
```

```
109.
                done = 0;
                ordr = 1;
110.
111.
                do{
                       if (ordr<0.0) {done = 1;}
112.
                       else
113.
114.
                       {
115.
                             do{
116.
                                    x = 5;
                             }while (x < 0.0);
117.
                             ans = bessy(x,ordr);
118.
119.
                             SAMPLE;
120.
                             ordr = -1;
121.
                }while (done == 0)
122.
123.
         }
```

приложение д

Полное время измененной LAB1.C

```
1. #include <math.h>
2. #include <stdio.h>
3. #include "Sampler.h"
5. Float ordr = 1, x, ans1;
6. Int done = 0;
7.
8. float bessy () {
          const float small = 1.0E-8;
10.
          const float euler = 0.57721566;
11.
          const float pi
                            = 3.1415926;
12.
          const float pi2
                            = 0.63661977;
13.
14.
          int
15.
          float x2,sum,sum2,t,t2,
16.
                ts, term, xx, y0, y1,
17.
                ya,yb,yc,ans,a,b,
18.
                sina, cosa;
19.
          if (x<12) {
20.
21.
                xx = 0.5 * x;
22.
                x2 = xx * xx;
23.
                t= log(xx) + euler;
24.
                sum = 0.0;
25.
                term = t;
26.
                y0 = t;
27.
                j = 0;
28.
                do{
29.
                       J+=1;
                       if (j != 1) \{sum = sum + 1 / (j - 1);\}
30.
31.
                       ts = t - sum;
                       term = -x2 * term / (j * j)*(1 - 1/(j * ts));
32.
33.
                       y0 += + term;
34.
                }while ( fabs(term) >= small);
35.
                term = xx * (t - 0.5);
36.
                sum = 0.0;
37.
                y1 = term;
38.
                j = 1;
39.
                do{
40.
                       j += 1;
41.
                       sum += 1.0 / (j - 1);
42.
                       ts = t - sum;
                       term = (-x2 * term)/(j * (j - 1))*((ts - 0.5/j)/(ts +
43.
   0.5/(j-1));
44.
                       y1 += term;
                }while (fabs(term) >= small);
45.
46.
                y0 = pi2 * y0;
47.
                y1 = pi2 * (y1 - 1/x);
```

```
if (ordr == 0.0) \{ans = y0;\}
48.
49.
                 else {
50.
                        if (ordr ==1.0) {ans = y1;}
51.
                        else
52.
                        {
53.
                               ts = 2.0 / x;
54.
                               ya = y0;
55.
                               yb = y1;
56.
                               for (j=2; j<ceil(ordr +0.01);j+1)</pre>
57.
                                      yc = ts * (j - 1) * yb - ya;
58.
59.
                                      ya = yb;
60.
                                      yb = yc;
                               }
61.
                               ans = yc;
62.
63.
                        }
64.
                 }
                 return ans;
65.
66.
          }
                                sqrt(2 /(pi * x)) * sin(x - pi/4 - ordr * pi/2);
67.
          else
                  return
68.}
69.
70. void main (void)
71. {
72.
          do{
73.
                 if (ordr<0.0) {done = 1;}</pre>
74.
                 else
75.
                 {
76.
                        do{
77.
                               x = 5;
78.
                        while (x < 0.0);
79.
                        SAMPLE;
80.
                        ans1 = bessy();
                        SAMPLE;
81.
82.
                        ordr = -1;
83.
                 }
84.
          }while (done == 0)
85.}
```

приложение е

Время ФУ измененной LAB1.С

```
1. #include <math.h>
2. #include <stdio.h>
3. #include "Sampler.h"
4.
5. float ordr = 1, x, ans1;
6. int done = 0;
7.
8. float bessy () {
9.
           const float small
                                   = 1.0E-8;
10.
            const float euler
                                   = 0.57721566;
11.
            const float pi = 3.1415926;
12.
            const float pi2 = 0.63661977;
13.
14.
            int j;
15.
            float
                   x2,sum,sum2,t,t2,
16.
                   ts,term,xx,y0,y1,
17.
                   ya,yb,yc,ans,a,b,
18.
                   sina,cosa;
19.
20.
            SAMPLE;
21.
            if (x<12) {
22.
                   SAMPLE;
                   xx = 0.5 * x;
23.
24.
                   x2 = xx * xx;
25.
                   t= log(xx) + euler;
26.
                   sum = 0.0;
27.
                   term = t;
28.
                   y0 = t;
29.
                   j = 0;
                   SAMPLE;
30.
31.
                   do{
32.
                           SAMPLE;
33.
                           j+=1;
34.
                           SAMPLE;
35.
                           if (j != 1) {
36.
                                   SAMPLE;
37.
                                   sum = sum + 1 / (j - 1);
38.
                                   SAMPLE;
39.
                           }
40.
                           SAMPLE;
41.
                           ts = t - sum;
42.
                           term = -x2 * term / (j * j)*(1 - 1/(j * ts));
43.
                           y0 += term;
44.
                           SAMPLE;
```

```
45.
                    }while ( fabs(term) >= small);
46.
                    SAMPLE;
47.
                    term = xx * (t - 0.5);
48.
                    sum = 0.0;
49.
                    y1 = term;
50.
                   j = 1;
                    SAMPLE;
51.
52.
                    do{
53.
                            SAMPLE;
54.
                            j = j + 1;
                            sum = sum + 1.0 / (j - 1);
55.
56.
                            ts = t - sum;
57.
                            term = (-x2 * term)/(j * (j - 1))*((ts - 0.5/j)/(ts + 0.5/(j - 1)));
58.
                            y1 = y1 + term;
59.
                            SAMPLE;
60.
                    }while (fabs(term) >= small);
61.
                    SAMPLE;
62.
                    y0 *= pi2;
63.
                    y1 = pi2 * (y1 - 1/x);
64.
                    SAMPLE;
65.
                    if (ordr==0.0) {
66.
                            SAMPLE;
67.
                            ans = y0;
68.
                            SAMPLE;
69.
                    }
                    else {
70.
71.
                            SAMPLE;
72.
                            if (ordr==1.0) {
73.
                                    SAMPLE;
74.
                                    ans = y1;
75.
                                    SAMPLE;
                            }
76.
77.
                            else
78.
                            {
79.
                                    SAMPLE;
80.
                                    ts = 2.0 / x;
81.
                                    ya = y0;
82.
                                    yb = y1;
83.
                                    SAMPLE;
84.
                                    for (j=2; j<ceil(ordr+0.01);j+1)
85.
                                    {
86.
                                            SAMPLE;
87.
                                            yc = ts * (j - 1) * yb - ya;
88.
                                            ya = yb;
89.
                                            yb = yc;
90.
                                            SAMPLE;
91.
                                    }
92.
                                    SAMPLE;
93.
                                    ans = yc;
```

```
94.
                          SAMPLE;
95.
96.
                   }
97.
                   SAMPLE;
98.
                   return ans;
           }
99.
                           return sqrt(2/(pi * x)) * sin(x - pi/4 - ordr * pi/2);
100.
                   else
           }
101.
102.
           void main (void)
103.
104.
           {
                   do{
105.
106.
                           if (ordr<0.0) {done = 1;}
                           else
107.
108.
                          {
109.
                                  do{
110.
                                          x = 5;
111.
                                  while (x < 0.0);
112.
                                  ans1 = bessy();
113.
                                  ordr = -1;
114.
                   }while (done == 0);
115.
116.
           }
```