МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Базы данных»

Тема: Нагрузочное тестирование БД

Студент гр. 1303	Коренев Д.А.
Преподаватель	Заславский М.М

Санкт-Петербург 2023

Цель работы.

Заполнить большим количеством тестовых данных, измерить время выполнения запросов. Измерить влияние (или его отсутствие) индексов на скорость выполнения запросов.

Текст задания

Вариант 11

- 1. Написать скрипт, заполняющий БД большим количеством тестовых данных.
 - 2. Измерить время выполнения запросов, написанных в ЛР3.

Проверить для числа записей:

100 записей в каждой табличке

1.000 записей

10.000 записей

100.000 записей

1.000.000 записей

Все запросы выполнять с фиксированным ограничением на вывод (LIMIT), т.к. запросы без LIMIT всегда будет выполняться O(n) от кол-ва записей.

Проверить влияние сортировки на скорость выполнения запросов.

Для измерения использовать фактическое (не процессорное и т.п.) время. Для node.js есть console.time и console.timeEnd.

3. Добавить в БД индексы (хотя бы 5 штук). Измерить влияние (или его отсутствие) индексов на скорость выполнения запросов.

Обратите внимание на:

Скорость сортировки больших табличек

Скорость JOIN

Выполнение работы

Для генерации данных использовалась библиотека faker-js. Таблицы были заполнены сгенерированными данными. Затем были сделаны запросы из лабораторной работы 3. Запросы выполнялись асинхронно, а общее время выполнения всех запросов засекалось от момента вызова первого запроса и заканчивалось, когда все запросы были выполнены.

В таблице 1 представлено время выполнения задач и общее время их выполнения в зависимости от количества записей в базе данных.

Объем	task1	task2	task3	task4	task5	task6	Общее
данных							время
100	38.87ms	47.528ms	55.548ms	25.454ms	71.745ms	67.662ms	77.596ms
1000	32.201ms	39.983ms	41.572ms	18.964ms	63.352ms	55.87ms	67.75ms
10000	28.117ms	33.604ms	35.199ms	18.947ms	96.289ms	71.413ms	99.935ms
100000	38.191ms	51.253ms	61.28ms	26.744ms	558.682ms	107.082ms	562.58ms
1000000	294.477ms	658.571ms	563.511ms	380.544ms	10.239s	569.824ms	10.247s

Таблица 1 время выполнения запросов без индексов

Затем для каждого отношения были добавлены индексы. В таблице 2 представлено время выполнения задач и общее время их выполнения в зависимости от количества записей в базе данных с индексами. На их основе можно сделать вывод: добавление инедексов ускоряет процесс выполнения запросов (по крайней мере в представленной работе).

Объем	task1	task2	task3	task4	task5	task6	Общее
данных							время
100	19.15ms	21.911ms	22.893ms	12.161ms	30.56ms	29.005ms	33.751ms
1000	17.371ms	19.77ms	20.578ms	11.299ms	32.364ms	29.212ms	34.812ms
10000	20.015ms	21.835ms	23.768ms	13.254ms	49.132ms	47.34ms	52.276ms
100000	26.469ms	28.546ms	29.623ms	19.529ms	249.019ms	78.24ms	251.559ms
1000000	113.599ms	117.206ms	117.117ms	113.299ms	3.167s	266.285ms	3.170s

Таблица 2 время выполнения запросов с индексами

В каждый запрос, в котором нет сортировки, добавлю сортировку по первому столбцу. В таблице 3 представлены данные выполнения запросов без индексов, а в таблице 4 с индексами.

Объем	task1	task2	task3	task4	task5	task6	Общее
данных							время
100	19.856ms	21.924ms	29.75ms	12.271ms	31.982ms	29.75ms	34.723ms
1000	18.929ms	21.677ms	22.574ms	12.328ms	33.956ms	29.717ms	36.687ms
10000	22.174ms	25.761ms	29.246ms	12.676ms	72.182ms	50.45ms	74.788ms
100000	63.894ms	71.636ms	84.185ms	20.44ms	502.584ms	89.78ms	505.19ms
1000000	137.813ms	227.871ms	254.448ms	264.491ms	348.843ms	6.436s	6.440s

Таблица 3 время выполнения запросов с сортировкой и без индексов

Объем	task1	task2	task3	task4	task5	task6	Общее
данных							время
100	24.303ms	26.412ms	27.269ms	15.226ms	36.231ms	34.134ms	39.094ms
1000	17.54ms	19.564ms	20.693ms	11.551ms	36.172ms	30.519ms	38.761ms
10000	30.731ms	37.101ms	38.157ms	17.299ms	83.632ms	59.411ms	86.421ms
100000	31.269ms	89.691ms	97.041ms	22.432ms	559.47ms	101.593ms	562.747ms
1000000	116.955ms	7.068s	117.634ms	127.025ms	7.678s	250.458ms	7.681s

Таблица 4 время выполнения запросов с сортировкой и индексами

Сортировка занимает больше ресурсов и, соответственно, с времени выполнения. Однако с время выполнения с индексами оказалось немного больше.

Выводы.

Таблицы заполнены большим количеством тестовых данных, измерено время выполнения запросов. Индексы значительно уменьшают время обработки обычных запросов.

приложение а

 $Pull\ request:\ https://github.com/moevm/sql-2023-1303/pull/55$