Process Dominance

Data Science for Quality Management: Understanding Process Variation with Wendy Martin

Learning objective:

Identify sources of variation with respect to process dominance

Process Control

 To control a process you must identify the sources of variation affecting the process.

 Identifying the sources of variation allows you to implement appropriate countermeasures.

Process Control

 Effective countermeasures are difficult to apply to unknown sources of variation.

Given:
$$Y = f(X_1, X_2 \dots X_n)$$

- Where Y is some Product or Process Characteristic
 - ✓ Where n is a large number
 - ✓ Each X_a is a random variable
- The function (f) probably cannot be exactly defined

Given:
$$Y = f(X_1, X_2 \dots X_n)$$

- The Variables could:
 - ✓ Be Continuous or Discrete
 - ✓ Vary in terms of how they change through time
 - ✓ Vary in terms of Importance or effect on Y
 - ✓ Combine Additively or Interactively
 - ✓ Influence Y directly or indirectly

Given:
$$Y = f(X_1, X_2 \dots X_n)$$

- Control of Y will involve manipulation of the Xs
- Variation in the Xs generate variation in Y

Given:
$$Y = f(X_1, X_2 \dots X_n)$$

- Most Xs vary within some natural bounds
 - ✓ The variation in the Xs may be slow, through-time changes or abrupt rapid changes
 - ✓ Many small-effect X variables generate small differences in each observation of Y
 - ✓ Enough small differences can sometimes add up to large amounts of variability in the Y distribution
 - ✓ Large-effect X variables generate large shifts in Y

Process Variation Through Time

Slow through time

Many small-effect X variables

Abrupt, rapid change

Identifying Sources of Variation With Respect to Process Dominance

- Setup-dominant process
- Machine-dominant process
- Fixture- or pallet-dominant process
- Tooling-dominant process
- Operator-dominant process

Identifying Sources of Variation With Respect to Process Dominance

- Material- or component-dominant process
- Preventive maintenance-dominant process
- Climate-dominant process
- Stability, Control or Time-based dominant process

Identifying Sources of Variation With Respect to Process Dominance

Example:

Type of Dominance	Primary Cause of Output Variability	Primary Controls	Measurement Recommendations
Setup	Set-up to Set-up Differences	Set-up limits (+/- 10% of tolerance from target) SOP, data verification and error/mistake proofing	Statistical verification with consideration for α , β , σ , and Δ , relative to target deviation

Process Control Technologies

 Various technologies can be applied to achieve your quality goals.

 Control charts are only one of many tools that can be employed.

The Process Control Cycle – Phase 3

AQP Tools / Control Methods

- Robust Product and Process Design
 Achieved Through the Use of Experimental Design Methods
- Mistake-Proofing
- Automatic Control Systems

AQP Tools / Control Methods

- Adjustment Charts
- Standardized Operations and Procedures
- Reliability Methods

Sources

The material used in the PowerPoint presentations associated with this course was drawn from a number of sources. Specifically, much of the content included was adopted or adapted from the following previously-published material:

- Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982
- Luftig, J. Advanced Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1984.
- Luftig, J. A Quality Improvement Strategy for Critical Product and Process Characteristics. Luftig & Associates, Inc. Farmington Hills, MI, 1991
- Luftig, J. Guidelines for Reporting the Capability of Critical Product Characteristics. Anheuser-Busch Companies, St. Louis, MO. 1994
- Spooner-Jordan, V. Understanding Variation. Luftig & Warren International, Southfield, MI 1996
- Luftig, J. and Petrovich, M. Quality with Confidence in Manufacturing. SPSS, Inc. Chicago, IL 1997
- Littlejohn, R., Ouellette, S., & Petrovich, M. Black Belt Business Improvement Specialist Training, Luftig & Warren International, 2000
- Ouellette, S. Six Sigma Champion Training, ROI Alliance, LLC & Luftig & Warren, International, Southfield, MI 2005