Software Engineering (IT314) LAB-8

Name: Kaival Hemanshu Mehta ID: 202201009

<u>Q1)</u>

1) Equivalence Class Partitioning (EP):

Equivalence partitioning divides the input domain into several classes that are expected to behave similarly

Valid Equivalence Classes:

- Day: $(1 \le day \le 31)$
- Month: $(1 \le month \le 12)$
- Year: (1900 ≤ year ≤ 2015)

Invalid Equivalence Classes:

- Day<1 or Day>31
- Month <1 or Month > 12
- Year < 1900 or Year > 2015

2) Boundary Value Analysis (BV):

BVA tests values at the boundaries between partitions.

Boundaries for Day:

Minimum value:1

Maximum value:31

Boundaries for Month:

Minimum value:1

Maximum value:12

Boundaries for Year:

Minimum Value:1900

Maximum Value:2015

3) Test Cases:

Input Data	Expected Outcome	Туре
4,7,2000	Previous date: 3/7/2000	EP
6,4,2015	Previous date: 5/4/2015	EP
32,5,2000	Error	EP
15,13,2000	Error	EP
15,10,1899	Error	EP
1,1,1900	Error	BV
1,2,1900	Previous date:31/1/1900	BV
1,1,2015	Previous date: 31/12/2014	BV
31/12/2015	Previous date: 30/12/2015	BV

-Code

```
#include <iostream>
#include <vector>
#include <string>
```

using namespace std;

```
// Function to check if a year is a leap year
bool isLeapYear(int year) {
    return (year % 4 == 0 && (year % 100 != 0 || year % 400
== 0));
}
// Function to get the number of days in a given month of a
given year
int daysInMonth(int month, int year) {
    vector<int> days = {31, 28, 31, 30, 31, 30, 31, 30,
31, 30, 31};
    if (month == 2 && isLeapYear(year)) {
        return 29;
    }
    return days[month - 1];
}
// Function to calculate the previous date
string previousDate(int day, int month, int year) {
    if (!(1 <= month && month <= 12 && 1900 <= year && year
<= 2015)) {
        return "Invalid Input Format";
    }
    int maxDays = daysInMonth(month, year);
```

```
if (!(1 <= day && day <= maxDays)) {
        return "Invalid Input Format";
    }
    if (day > 1) {
        return to_string(day - 1) + ", " + to_string(month)
+ ", " + to_string(year);
    } else if (month > 1) {
        int prevMonth = month - 1;
        return to_string(daysInMonth(prevMonth, year)) + ",
" + to_string(prevMonth) + ", " + to_string(year);
    } else {
        return "31, 12, " + to_string(year - 1);
    }
}
// Function to run the test cases
void runTests() {
    vector<pair<vector<int>, string>> testCases = {
        {{2, 5, 2000}, "1, 5, 2000"},
        \{\{1, 3, 2015\}, "28, 2, 2015"\},
        {{32, 5, 2000}, "Invalid Input Format"},
        {{15, 13, 2000}, "Invalid Input Format"},
        {{15, 10, 1899}, "Invalid Input Format"},
        \{\{1, 1, 1900\}, "31, 12, 1899"\},
        \{\{1, 2, 1900\}, "31, 1, 1900"\},
```

```
\{\{1, 1, 2015\}, "31, 12, 2014"\},
       {{31, 12, 2015}}, "30, 12, 2015"},
   };
   for (int i = 0; i < testCases.size(); i++) {</pre>
       vector<int> input = testCases[i].first;
       string expected = testCases[i].second;
       string result = previousDate(input[0], input[1],
input[2]);
       cout << "Test " << i + 1 << " " << (result ==
expected ? "PASS" : "FAIL") << endl;</pre>
                   Input: " << input[0] << ", " <<</pre>
       cout << "
input[1] << ", " << input[2] << endl;</pre>
       cout << endl;</pre>
   }
}
int main() {
   runTests();
   return 0;
}
Question-2
P1:
int linearSearch(int v, int a[])
```

Wecan divide the inputs into valid and invalid equivalence classes.

- Valid Equivalence Classes:
 - v is present in the array a.
 - v is not present in the array a.
 - The array a contains one or more elements.
- Invalid Equivalence Classes:
 - The array a is empty.

2. Boundary Value Analysis:

Test boundary values for the size of the array a:

- Empty array (a with size 0).
- Array with one element.
- Array with two elements (minimum non-trivial size).

• Array with a large number of elements.

Boundary for the element v to be found:

- v is at the first index (index 0).
- v is at the last index (index a.length-1).

3.Test Cases

Input Data	Expected Outcome	Туре
[1, 2, 3, 4, 5], 3	Return index: 2	EP
[10, 20, 30,40], 10	Return index: 10	EP
[9, 8, 7, 6],5	Error (Not Found)	EP
[], 5	Error (Array is empty)	EP
[3], 3	Return index: 0	BV
[1, 2], 2	Return index: 1	BV
[4, 5, 6], 6	Return index: 2	BV
[10, 20, 30, 40,, 1000], 1000	Return index: 999	BV
[10, 20, 30, 40,, 1000], 1	Error (Not Found)	BV

P2:

```
int countItem(int v, int a[])
{
   int count = 0;
```

```
for (int i = 0; i < a.length; i++)
{
     if (a[i] == v)
        count++;
}
return (count);
}</pre>
```

Wecan divide the inputs into valid and invalid equivalence classes.

- Valid Equivalence Classes:
 - v appears one or more times in the array a.
 - V does not appear in the array a.
 - The array a contains one or more elements.
- Invalid Equivalence Classes:
 - The Array a is empty.

2. Boundary Value Analysis:

Test boundary values for the size of the array a:

- Empty Array(a with size 0).
- Array With One Element.
- Array With Two Elements.
- Array With Large Number of elements.

Boundary For the element v Occurrence:

• v appears once.

- v appears multiple times.
- v does not appear at all.

Test Cases:

Input Data	Expected Outcome	Туре
[1, 2, 3, 4, 5], 3	Return count: 1	EP
[10, 20, 30,40], 10	Return count: 1	EP
[9, 8, 7, 6],5	Error (Not Found)	EP
[], 5	Error (Array is empty)	EP
[3], 3	Return count: 1	BV
[1, 2], 2	Return count: 1	BV
[4, 5, 6], 6	Return count: 3	BV
[10, 20, 30, 40,, 1000], 1000	Return count: 1	BV
[10, 20, 30, 40,, 1000], 1	Error (Not Found)	BV

P3:

```
int binarySearch(int v, int a[])
{
    int low,mid,high;
    low = 0;
    high = a.length-1;
    while (low<= high)
    {</pre>
```

```
mid = (low+high)/2;
if (v == a[mid])
        return (mid);
else if (v < a[mid])
        high= mid-1;
else
        low = mid+1;
}
return(-1);
}</pre>
```

Wecan divide the inputs into valid and invalid equivalence classes.

- Valid Equivalence Classes:
 - v is present in the array a.
 - v is not present in the array a.
 - The array a contains one or more elements, and is sorted.
- Invalid Equivalence Classes:
 - The array a is empty.
 - Thearray a is unsorted.

2. Boundary Value Analysis:

Test boundary values for the size of the array a:

- Empty array (a with size 0).
- Array with one element.

- Array with two elements.
- Array with a large number of elements.

Boundary for the element v to be found:

- v is at the first index (index 0).
- v is at the last index (index a.length-1).
- v is not in the array at all.

Test Cases:

Input Data	Expected Outcome	Туре
[1, 2, 3, 4, 5], 3	Return index: 2	EP
[10, 20, 30,40], 10	Return index: 10	EP
[9, 8, 7, 6],5	Error (Array is Unsorted)	EP
[5, 10, 15, 20], 25	Error (Not Found)	EP
[], 5	Error (Array is empty)	EP
[3], 3	Return index: 0	BV
[1, 2], 2	Return index: 1	BV
[4, 5, 6], 6	Return index: 2	BV
[10, 20, 30, 40,, 1000], 1000	Return index: 999	BV
[10, 20, 30, 40,, 1000], 1	Error (Not Found)	BV

```
final int EQUILATERAL = 0;
final int ISOSCELES = 1;
final int SCALENE = 2;
final int INVALID = 3;
int triangle(int a, int b, int c)
{
    if (a >= b+c || b >= a+c || c >= a+b)
        return (INVALID);
    if (a == b && b == c)
        return (EQUILATERAL);
    if (a == b || a == c || b == c)
        return(ISOSCELES);
    return (SCALENE);
}
```

Wecan divide the inputs into valid and invalid equivalence classes.

- Valid Equivalence Classes:
 - Equilateral triangle (all three sides are equal).
 - Isosceles triangle (two sides are equal).
 - Scalene triangle (all sides are different).
- Invalid Equivalence Classes:
 - Theside lengths do not satisfy the triangle inequality:

Oneormore sides are non-positive (i.e., a <= 0, b <= 0, c <=0).

2. Boundary Value Analysis:

Test boundary values for the lengths of the sides of the triangle:

- Minimal positive length (1).
- Equal side lengths for equilateral and isosceles.
- Slight variations in side lengths for scalene and invalid cases.
- Triangle inequality boundary conditions.

3. Test Cases:

Input Data	Expected Outcome	Туре
(3, 3, 3)	Return: Equilateral(0)	EP
(5, 5, 9)	Return: Isosceles(1)	EP
(4, 5, 6)	Return: Scalene(2)	EP
(10, 5, 4)	Error: (Triangular Inequality) (3)	EP
(0, 5, 5)	Error: (Non-positive Side Value) (3)	EP
(1, 1, 1)	Return: Equilateral(0)	BV
(2, 2, 3)	Return: Isosceles(1)	BV
(3, 4, 5)	Return: Scalene(2)	BV
(1, 2, 3)	Error: (Triangular	BV

	Inequality) (3)	
(-2, 2, 3)	Error: (Non-positive Side Value) (3)	BV

P5:

```
public static boolean prefix(Strings1,Strings2)
 {
     if(s1.length()>s2.length())
     {
         return false;
     }
     for(int i=0; i<s1.length(); i++)</pre>
     {
          if(s1.charAt(i)!=s2.charAt(i))
          {
               return false;
         }
     }
     return true;
 }
```

1. Equivalence Class Partitioning:

Wecan divide the inputs into valid and invalid equivalence classes.

- Valid Equivalence Classes:
 - S1 is a valid prefix of s2.
 - S1 is not a prefix of s2.
 - S1 is an empty string (an empty string is a prefix of any string).
 - S1 is longer than s2.

2. Boundary Value Analysis:

Test boundary values for the lengths of s1 and s2:

- s1 and s2 are both empty strings.
- s1 is an empty string and s2 is non-empty.
- s1 has one character and s2 has the same character at the start.
- s1and s2 have the same length and are equal.
- s1 is longer than s2.

Test Cases:

Input Data	Expected Outcome	Туре
("pre, "prefix")	Return: true	EP
("fix", "prefix")	Return: false	EP
("longer", "short")	Return: false	EP
("prefix", "prefix")	Return: true	EP
("a", "abc")	Return: true	BV
("abc", "abc")	Return: true	Bv
("abcdef", "abc")	Return: false	BV
("abc", "abx")	Return: False	BV

Consider again the triangle classification program (P4) with a slightly different specification: The program reads floating values from the standard input. The three values A, B, and C are interpreted as representing the lengths of the sides of a triangle. The program then prints a message to the standard output that states whether the triangle, if it can be formed, is scalene, isosceles, equilateral, or right angled.

a) Identify the equivalence classes for the system:

Equivalence Classes:

Wecan identify different equivalence classes based on the properties of a triangle.

Valid Equivalence Classes:

- Equilateral Triangle: All sides are equal (A = B = C).
- Isosceles Triangle: Two sides are equal (A = B or A = C or B = C).
- Scalene Triangle: No sides are equal (A ≠ B ≠ C).
- Right-Angled Triangle: The sides satisfy the Pythagorean theorem (A² + B² = C²).

❖ Invalid Equivalence Classes:

- Thesides do not satisfy the triangle inequality (A + B ≤ C or A + C ≤ BorB + C ≤ A).
- Oneormore sides are non-positive (A \leq 0 or B \leq 0 or C \leq 0).
- **b)** Identify test cases to cover the identified equivalence classes.

Also, explicitly mention which test case would cover which equivalence class.

Test Cases:

Input Data	Expected Outcome	Equivalence Class
(3.0, 3.0, 3.0)	Equilateral	Equilateral(A=B=C)
(6.0, 6.0, 8.0)	Isosceles	Isosceles(A=B,A≠C)
(3.0, 4.0, 6.0)	Scalene	Scalene(A≠B≠C)
(3.0, 4.0, 5.0)	Right Angled	Right Angled (A^2 + B^2 = C^2)
(1.0, 2.0, 3.0)	Error	Invalid
(0.0, 4.0, 5.0)	Error	Invalid
(-1.1, 2.0, 2.0)	Error	Invalid
(4.0, 4.0, 7.0)	Error	Invalid

c) For the boundary condition A + B > C case (scalene triangle), identify test cases to verify the boundary.

This condition ensures that the sum of two sides is greater than the third.

Test Case 1:

- Input: (3.0, 4.0, 7.0) (Boundary value where A + B = C)
- Expected Outcome: Invalid Triangle (fails triangle inequality).

Test Case 2:

- Input: (4.0, 4.0, 7.0) (Boundary value where A + B = C)
- Expected Outcome: Isosceles Triangle.

d) For the boundary condition A = C case (isosceles triangle), identify test cases to verify the boundary.

This condition checks whether two sides of the triangle are equal.

Test Case:

- Input: (5.0, 7.0, 5.0) (Two sides are equal at the boundary).
- Expected Outcome: Isosceles Triangle.
- **e)** For the boundary condition A = B = C case (equilateral triangle), identify test cases to verify the boundary.

This checks for cases where all three sides are equal.

Test Case 1:

- Input: (6.0, 6.0, 6.0) (All sides are equal at the boundary).
- Expected Outcome: Equilateral Triangle.

Test Case 2:

- Input: (7.0, 6.0, 6.0).
- Expected Outcome: Not an Equilateral Triangle.
- **f)** For the boundary condition A2 + B2 = C2 case (right-angle triangle), identify test cases to verify the boundary.

This checks if the triangle satisfies the Pythagorean theorem.

Test Case:

- Input: (3.0, 4.0, 5.0) (Classic Pythagorean triplet).
- Expected Outcome: Right-Angled Triangle.
- **g)** For the non-triangle case, identify test cases to explore the boundary.

This tests the triangle inequality where the sum of two sides is not greater than the third side.

Test Case:

• Input: (1.0, 2.0, 3.0) (Boundary value where A + B = C).

- Expected Outcome: Invalid Triangle.
- **h)** For non-positive input, identify test points.

This tests cases where one or more sides are non-positive.

Test Case 1:

- Input: (0.0, 3.0, 4.0) (Zero side length).
- Expected Outcome: Invalid Triangle.

Test Case 2:

- Input: (-1.0, 3.0, 3.0) (Negative side length).
- Expected Outcome: Invalid Triangle