

# 組合電路 (Combinational Circuits) 1

i≣ Notes done

# 參考資料

 Fundamentals of Digital Logic With Verilog Design (2013/02/12), Brown, Stephen/ Vranesic, Zvonko







# 課程設計

#### 2-to-1 Multiplexers (Mux)

#### Brown, Stephen/ Vranesic, Zvonko p.190



 $\begin{array}{c|c}
s & f \\
\hline
0 & w_0 \\
1 & w_1
\end{array}$ 

(a) Graphical symbol

(b) Truth table



(c) Sum-of-products circuit

#### 4-to-1 Multiplexers (Mux)

Brown, Stephen/ Vranesic, Zvonko pp.191、192



(a) Graphical symbol

(b) Truth table



Figure 4.2 A 4-to-1 multiplexer.

$$f = \bar{s}_1 \bar{s}_0 w_0 + \bar{s}_1 s_0 w_1 + s_1 \bar{s}_0 w_2 + s_1 s_0 w_3$$



Figure 4.3 Using 2-to-1 multiplexers to build a 4-to-1 multiplexer.

#### A 2x2 Crossbar Switch

Brown, Stephen/ Vranesic, Zvonko p.193





(b) Implementation using multiplexers

### 3-input XOR Implemented with 2-to-1 Mux

#### Brown, Stephen/ Vranesic, Zvonko p.196



## 3-input XOR Implemented with 4-to-1 Mux

Brown, Stephen/ Vranesic, Zvonko p.196





(a) Truth table

(b) Circuit

