

Interrogación 1

27 de Septiembre de 2021 Profesores: Marco Bucchi - Gabriel Diéguez - Fernando Suárez

Instrucciones

- La duración de la interrogación es de 2 horas.
- Durante la evaluación **no puede** hacer uso de sus apuntes o slides del curso.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta **completamente en blanco**, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada.
- Escriba sus respuestas con lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.

Pregunta 1 - Lógica de predicados (vista en clases)

Sean $\varphi(x)$ y $\psi(x)$ fórmulas en lógica de predicados con una variable libre. Demuestre que:

- a) $\neg \forall x (\varphi(x)) \equiv \exists x (\neg \varphi(x))$
- b) $\exists x(\varphi(x) \lor \psi(x)) \equiv \exists x(\varphi(x)) \lor \exists x(\psi(x))$

Solución

a) Sea \mathcal{I} un interpretación cualquiera.

$$\mathcal{I} \models \neg \forall x (\varphi(x)) \Leftrightarrow \mathcal{I} \not\models \forall x (\varphi(x))$$

$$\Leftrightarrow \text{ existe } a \text{ en } \mathcal{I}(\text{dom}) \text{ tal que } \mathcal{I} \not\models \varphi(a)$$

$$\Leftrightarrow \text{ existe } a \text{ en } \mathcal{I}(\text{dom}) \text{ tal que } \mathcal{I} \models \neg \varphi(a)$$

$$\Leftrightarrow \mathcal{I} \models \exists x (\neg \varphi(x))$$

b) Sea \mathcal{I} un interpretación cualquiera.

$$\mathcal{I} \models \exists x (\varphi(x) \lor \psi(x)) \Leftrightarrow \text{ existe } a \text{ en } \mathcal{I}(\text{dom}) \text{ tal que } \mathcal{I} \models \varphi(a) \lor \psi(a)$$

$$\Leftrightarrow \text{ existe } a \text{ en } \mathcal{I}(\text{dom}) \text{ tal que } \mathcal{I} \models \varphi(a), \text{ o}$$

$$\text{ existe } b \text{ en } \mathcal{I}(\text{dom}) \text{ tal que } \mathcal{I} \models \psi(b)$$

$$\Leftrightarrow \mathcal{I} \models \exists x (\varphi(x)) \text{ o } \mathcal{I} \models \exists x (\psi(x))$$

$$\Leftrightarrow \mathcal{I} \models \exists x (\varphi(x)) \lor \exists x (\psi(x))$$

Pauta (6 pts.)

- a) 1.5 pts por demostrar la dirección (\Rightarrow) .
 - 1.5 pts por demostrar la dirección (⇐).
- b) 1.5 pts por demostrar la dirección (\Rightarrow) .
 - 1.5 pts por demostrar la dirección (\Leftarrow) .

Pregunta 2 - Lógica proposicional

Sea P un conjunto de variables proposicionales, $\Sigma \subseteq L(P)$ un conjunto de fórmulas en lógica proposicional, y $\varphi, \psi \in L(P)$ dos fórmulas en lógica proposicional. Demuestre que:

- a) Si $\Sigma \models \varphi \rightarrow \psi$, entonces $\Sigma \cup \{\varphi\} \models \psi$.
- b) Si φ es una tautología, se cumple que si $\Sigma \cup \{\varphi\} \models \psi$ entonces $\Sigma \models \psi$.

Solución

a) Por demostración directa, suponemos que $\Sigma \models \varphi \rightarrow \psi$, y buscamos demostrar que $\Sigma \cup \{\varphi\} \models \psi$.

Sea $\sigma: P \to \{0,1\}$ una valuación tal que $\sigma(\Sigma \cup \{\varphi\}) = 1$. Como $\sigma(\Sigma \cup \{\varphi\}) = 1$, se cumple que $\sigma(\Sigma) = 1$ y $\sigma(\varphi) = 1$.

Luego, de $\sigma(\Sigma) = 1$ y $\Sigma \models \varphi \rightarrow \psi$, obtenemos que $\sigma(\varphi \rightarrow \psi) = 1$.

Finalmente como $\sigma(\varphi) = 1$ y $\sigma(\varphi \to \psi) = 1$, necesariamente $\sigma(\psi) = 1$. Como σ es una valuación arbitraria, concluimos que $\Sigma \cup \{\varphi\} \models \psi$.

b) Por demostración directa, suponemos que φ es una tautología y que $\Sigma \cup \{\varphi\} \models \psi$. Buscamos demostrar que $\Sigma \models \psi$.

Sea $\sigma: P \to \{0,1\}$ una valuación tal que $\sigma(\Sigma) = 1$. Como φ es una tautología, necesariamente $\sigma(\varphi) = 1$.

Luego, como $\sigma(\Sigma) = 1$ y $\sigma(\varphi) = 1$, obtenemos que $\sigma(\Sigma \cup {\{\varphi\}}) = 1$.

Finalmente como $\Sigma \cup \{\varphi\} \models \psi$ y $\sigma(\Sigma \cup \{\varphi\}) = 1$, se debe cumplir que $\sigma(\psi) = 1$, y como σ es una valuación arbitraria, concluimos que $\Sigma \models \psi$.

Pauta (6 pts.)

- 3.0 pts por a).
- 3.0 pts por b).

Pregunta 3 - Inducción estructural

En clases definimos el conjunto de las listas enlazadas sobre los naturales $\mathcal{L}_{\mathbb{N}}$ como el menor conjunto que cumple las siguientes reglas:

- 1. $\varnothing \in \mathcal{L}_{\mathbb{N}}$.
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces $L \to k \in \mathcal{L}_{\mathbb{N}}$.

El operador de *concatenación* de listas, denotado por \circ , recibe dos listas y retorna la lista que resulta de agregar todos los números de la segunda lista al final de la primera. Por ejemplo:

$$(\rightarrow 3 \rightarrow 4 \rightarrow 10) \circ (\rightarrow 2 \rightarrow 6) = \rightarrow 3 \rightarrow 4 \rightarrow 10 \rightarrow 2 \rightarrow 6$$

Definimos entonces el operador $\circ: \mathcal{L}_{\mathbb{N}} \times \mathcal{L}_{\mathbb{N}} \to \mathcal{L}_{\mathbb{N}}$ inductivamente como:

- 1. $L \circ \emptyset = L$, con $L \in \mathcal{L}_{\mathbb{N}}$.
- 2. $L \circ (L' \to k) = (L \circ L') \to k$, con $L, L' \in \mathcal{L}_{\mathbb{N}}$.

Note que el operador de concatenación es asociativo: $(L_1 \circ L_2) \circ L_3 = L_1 \circ (L_2 \circ L_3)$.

Por otra parte, el operador reverso $()^r : \mathcal{L}_{\mathbb{N}} \to \mathcal{L}_{\mathbb{N}}$ recibe una lista y retorna la lista que resulta de invertir el orden de sus elementos. Por ejemplo:

$$(\rightarrow 3 \rightarrow 4 \rightarrow 10 \rightarrow 7)^r = \rightarrow 7 \rightarrow 10 \rightarrow 4 \rightarrow 3$$

- a) Defina inductivamente el operador reverso.
- b) Demuestre por inducción estructural que dadas dos listas L_1 y L_2 se cumple que

$$(L_1 \circ L_2)^r = L_2^r \circ L_1^r$$

Solución

- a) Definimos el operador reverso ()^r : $\mathcal{L}_{\mathbb{N}} \to \mathcal{L}_{\mathbb{N}}$ inductivamente como:
 - 1. $\varnothing^r = \varnothing$
 - 2. $(L \to k)^r = \to k \circ L^r$, con $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$.
- b) Para facilitar la demostración, considere el siguiente lema:

<u>Lema:</u> Para toda lista $L \in \mathcal{L}_{\mathbb{N}}$ se cumple que $\emptyset \circ L = L$.

 $\underline{\mbox{Demostración:}}$ Por inducción estructural sobre L:

BI: Si $L = \emptyset$, entonces: $\emptyset \circ L = \emptyset \circ \emptyset = \emptyset = L$.

HI: Sea $L \in \mathcal{L}_{\mathbb{N}}$ tal que $\emptyset \circ L = L$.

TI: Debemos demostrar que $\emptyset \circ (L \to k) = L \to k$:

$$\begin{array}{ll} \varnothing \circ L = L & \text{por hipótesis de inducción} \\ (\varnothing \circ L) \to k = L \to k & \to k \text{ a ambos lados} \\ \varnothing \circ (L \to k) = L \to k & \text{por definición de } \circ \end{array}$$

Ahora, sea $L_1 \in \mathcal{L}_{\mathbb{N}}$ una lista cualquiera. Demostraremos la propiedad por inducción estructural sobre $L_2 \in \mathcal{L}_{\mathbb{N}}$:

BI: Si $L_2 = \emptyset$, entonces:

$$(L_1 \circ L_2)^r = (L_1 \circ \varnothing)^r$$

 $= L_1^r$ por definición de \circ
 $= \varnothing \circ L_1^r$ por lema
 $= L_2^r \circ L_1^r$ por definición de $()^r$

HI: Sea $L_2 \in \mathcal{L}_{\mathbb{N}}$ tal que $(L_1 \circ L_2)^r = L_2^r \circ L_1^r$.

TI: Debemos demostrar que $(L_1 \circ (L_2 \to k))^r = (L_2 \to k)^r \circ L_1^r$:

$$(L_1 \circ L_2)^r = L_2^r \circ L_1^r \qquad \text{por hipótesis de inducción}$$

$$\to k \circ (L_1 \circ L_2)^r = \to k \circ (L_2^r \circ L_1^r) \qquad \to k \circ () \text{ a ambos lados}$$

$$((L_1 \circ L_2) \to k)^r = \to k \circ (L_2^r \circ L_1^r) \qquad \text{por definición de } ()^r$$

$$(L_1 \circ (L_2 \to k))^r = \to k \circ (L_2^r \circ L_1^r) \qquad \text{por definición de } \circ$$

$$= (\to k \circ L_2^r) \circ L_1^r \qquad \text{por asociatividad de } \circ$$

$$= (L_2 \to k)^r \circ L_1^r \qquad \text{por definición de } ()^r$$

Pauta (6 pts.)

- a) 1.0 pts por definición base.
 - 2.0 pts por definición inductiva.
- b) 0.5 pts BI.
 - 0.5 pts HI.
 - 2.0 pts TI.

Pregunta 4 - Conjuntos y Relaciones

Sea A un conjunto no vacío y $\mathcal{P}(A)$ el conjunto potencia de A. Considere el conjunto:

$$A^{\dagger} = \{ S \subseteq \mathcal{P}(A) \mid S \text{ es una partición de } A \}$$

Es decir, A^{\dagger} es el conjunto de todas las particiones de A.

Sea \leq una relación sobre A^{\dagger} tal que dos particiones están relacionadas si cada conjunto de la primera partición está contenido en algún conjunto de la segunda partición.

Formalmente, para $S \in A^{\dagger}$ y $S' \in A^{\dagger}$:

$$\mathcal{S} \preceq \mathcal{S}'$$
 si y solo si $(\forall X \in \mathcal{S})(\exists X' \in \mathcal{S}') \ X \subseteq X'$

Demuestre que la relación \leq es refleja, antisimétrica y transitiva.

Solución

Refleja: por demostrar que $\forall S \in A^{\dagger}, S \leq S$.

Sea $S \in A^{\dagger}$. Debemos demostrar que $(\forall X \in S)(\exists X' \in S) X \subseteq X'$. Sea entonces $X \in S$. Tomando X' = X, es claro que $X' \in S$ y que $X \subseteq X'$.

Antisimétrica: por demostrar que $\forall \mathcal{S}, \mathcal{S}' \in A^{\dagger} ((\mathcal{S} \leq \mathcal{S}' \wedge \mathcal{S}' \leq \mathcal{S}) \rightarrow \mathcal{S} = \mathcal{S}')$:

Sean S y S' dos elementos arbitrarios de A^{\dagger} , tal que $S \leq S'$ y $S' \leq S$. Debemos demostrar que S = S', o equivalentemente, $S \subseteq S'$ y $S' \subseteq S$:

 $\mathcal{S} \subseteq \mathcal{S}'$: Dado $X \in \mathcal{S}$, debemos demostrar que $X \in \mathcal{S}'$. Como $\mathcal{S} \preceq \mathcal{S}'$, sabemos que existe $X' \in \mathcal{S}'$ tal que $X \subseteq X'$. Demostraremos que $X' \subseteq X$, lo cual nos permite concluir que X = X' y por lo tanto que $X \in \mathcal{S}'$.

Dado que $\mathcal{S}' \preceq \mathcal{S}$, sabemos que existe un $X'' \in \mathcal{S}$ tal que $X' \subseteq X''$. Mostraremos que X = X''. Notemos que $X \neq \emptyset$, dado que \mathcal{S} es una partición, y además que $X \subseteq X''$, pues $X \subseteq X' \subseteq X''$. Estos últimos dos puntos implican que $X \cap X'' \neq \emptyset$, y por definición de partición, podemos concluir entonces que X = X'', demostrando así que $X' \subseteq X$, y más importante aún, que $X \in \mathcal{S}'$.

 $\mathcal{S}' \subseteq \mathcal{S}$: análoga a la anterior.

Con esto, hemos demostrado que S = S', concluyendo así que \prec es antisimétrica.

Transitiva:

Por demostrar que $\forall \mathcal{S}, \mathcal{S}', \mathcal{S}'' \in A^{\dagger} ((\mathcal{S} \leq \mathcal{S}' \wedge \mathcal{S}' \leq \mathcal{S}'') \rightarrow (\mathcal{S} \leq \mathcal{S}''))$:

Sean \mathcal{S} , \mathcal{S}' y \mathcal{S}'' tres elementos arbitrarios de A^{\dagger} tales que $\mathcal{S} \preceq \mathcal{S}'$ y $\mathcal{S}' \preceq \mathcal{S}''$. Debemos demostrar que $\mathcal{S} \preceq \mathcal{S}''$, o equivalentemente, $(\forall X \in \mathcal{S})(\exists X'' \in \mathcal{S}'') X \subseteq X''$.

Sea $X \in \mathcal{S}$. Dado que $\mathcal{S} \preceq \mathcal{S}'$, sabemos que existe un $X' \in \mathcal{S}'$ tal que $X \subseteq X'$. De igual forma, dado que $\mathcal{S}' \preceq \mathcal{S}''$, sabemos que existe un $X'' \in \mathcal{S}''$ tal que $X' \subseteq X''$. Dado que la relación \subseteq es transitiva, podemos concluir que $X \subseteq X''$, demostrando así que \preceq es transitiva.

Pauta (6 pts.)

• 2 pts. por demostrar cada una de las propiedades.