

Лабораторная работа по системе моделирования **Salome**

Модуль создания сетки "Mesh"

1. Цели лабораторной работы

Целью данной лабораторной работы является изучение интерфейса и основных возможностей модуля отвечающего за создание сетки системы моделирования Salome.

2. Введение

В процессе работы планируется изучить создание и модифицирование разбиения объектов на конечные элементы (сетку). Выполнение работы требует умения строить твердые тела разбивать их на составные элементы. В работе необходимо создать несколько двумерных и трехмерных сеток по разным алгоритмам. Требуется изучить способы непосредственной модификации сеток и создания локальных разбиений, как для двумерных, так и для трехмерных сеток.

Тел.: 8 (495) 991-88-97 8 (8482) 51-09-84 Факс: 8 (8482) 51-09-84

3. План работы

- 1. Создание поверхностных сеток
- 2. Создание объемных сеток
- 3. Использование разных алгоритмов разбиения и параметров.
- 4. Работа с поверхностными локальными параметрами разбиений.
- 5. Работа с пространственными локальными параметрами разбиений.
- 6. Ручное редактирование сетки.
- 7. Слияние разбиений.
- 8. Получение статистической информации о полученных разбиениях.

4. Исходные данные

Mesh1.hdf – файл с начальной геометрией.

5. Лабораторная работа

Файлы разбиений могут быть импортированы и экспортированы из Salome. Для доступа к этим функциям необходимо зайти в меню File и выбрать там соответственно Import или Export.

1. Для начала работы с сетками потребуется несколько геометрических объектов. Необходимо загрузить файл Mesh1.hdf или в модуле редактирования геометрии создать следующие объекты:

2. В панели инструментов выбрать выпадающее меню и выбрать модуль Mesh. В меню выбираем Mesh – Create Mesh. В качестве объекта выбираем Box_1, во вкладке 2D – Algorithm: Triangle (Mefisto), Hypothesis: Length from edges. Во вкладке 1D Algorythm: Wire discretisation, Hypothesis: Average length (0.5). Нажимаем Apply и в контекстном меню появившегося объекта Mesh 1 выбираем Compute. Должны получить следующий вид:

3. Снова выбираем Create Mesh. В качестве объекта выбираем Translation_1, во вкладке 2D – Algorithm: Quadrangle (Mapping), Hypothesis: Length from edges. . Во вкладке 1D Algorythm: Wire discretisation, Hypothesis: Average length (0.5).. Нажимаем Apply и в контекстном меню появившегося объекта Mesh_2 выбираем Compute. Должны получить следующий вил:

4. Применим ко всем объектам Clipping plane (контекстное меню - clipping).

Получим следующий вид:

5. Для объекта Translation_2 создадим Mesh подобный Mesh_1, но с добавлением Algorithm: Tetrahedron во вкладке 3D. Применяем Clipping plane.

6. Для объекта Translation_3 создадим Mesh подобный Mesh_2, но с добавлением Algorithm: Hexahedron во вкладке 3D. Также применяем Clipping plane.

7. В геометрическом модуле создадим еще четыре параллелепипеда под существующими.

8. Для Translation_4 создать разбиение с параметрами 2D: Netgen 1D-2D, Netgen params: Max size: 0.3, Finess: Very Fine.

9. Для Translation_5 создать разбиение с параметрами 2D: Netgen 1D-2D, Netgen params: Max size: 1, Finess: Custom, Allow Quadrangles См. скриншот:

10. Для Translation_5 создать разбиение с параметрами 2D: Netgen 1D-2D, Netgen params: Max size: 1, Finess: Custom, Allow Quadrangles См. скриншот:

11. Должен быть получен следующий вид (применен clipping):

12. Для Translation_6 создать разбиение с параметрами 3D: Netgen 1D-2D-3D, Netgen params: по умолчанию.

Для Translation_7 создать разбиение с параметрами 3D: Netgen 1D-2D-3D, Netgen params: Max.Size:0.5, Fineness: Fine, Optimize: Выключено.

13. Создать два дополнительных параллелограмма в промежутках между существующими, как показано на скриншоте.

14. Объединить правые пять из них в единый объект.

15. Объединить оставшиеся левые пять в единый объект.

16. Для левого получившегося объекта создать поверхностное разбиение (Average Length = 0.5).

17. Должен быть получен следующий вид:

18. Создать четыре группы отрезков, как показано на изображении:

19. Для каждой из групп создать Sub Mesh указывая Average Length в соответствии со значением в названии группы.

20. Рассчитать разбиение. Должен быть получен следующий вид:

21. Для второго треугольного объекта создать следующие группы отрезков:

22. Для второго треугольного объекта создать трехмерное разбиение, как указано на изображении:

23. Должен быть получен следующий вид:

24. Для каждой из созданных до этого групп создать Sub Mesh указывая Average Length в соответствии со значением в названии группы. Должен получиться следующий вид:

25. Отредактировать Mesh 4 таким образом, чтобы средний размер элемента был равен 2:

26. С помощью инструментов в меню Modification привести Mesh 4 к указанному виду:

27. С помощью пункта меню Mesh – Create Compound объединить Mesh_4 и Mesh_10:

28. В результате работы должен получиться вот такой объект:

29. Информацию о полученной сетке можно получить через контекстное меню или в меню Mesh:

