

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA INGENIERÍA EN COMPUTACIÓN

BASES DE DATOS (1644)

PROFESOR: ING FERNANDO ARREOLA FRANCO

TAREA NORMALIZACIÓN

NOMBRE: DE LA CRUZ MUNGUIA ARELY

FECHA DE ENTREGA: 17 DE ABRIL DE 2022

GRUPO 01

SEMESTRE 2022-2

De acuerdo a la tarea 20 explicar por qué la relación (M,1) del caso 1 y la relación (M,M) del caso 2 es equivalente para los 2 casos analizados

A B C D E F G

staffNo	name	position	salary	branchNo	branchAddress	telNo
S1500	Tom Daniels	Manager	46000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0003	Sally Adams	Assistant	30000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
50010	Mary Martinez	Manager	50000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
\$3250	Robert Chin	Supervisor	32000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S2250	Sally Stern	Manager	48000	B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
S0415	Art Peters	Manager	41000	B003	14 - 8th Avenue, New York, NY 10012	212-371-3000

Resultado caso 1

Tomando como pk:{A} analizamos lo siguiente para saber si cumple 1FN

¿Hay atributos multivaluados? No ¿Hay grupos de repetición? No ¿Los atributos son atómicos? Si Por lo que si cumple 1FN

Analizamos la dependencia funcional

$$\{A\} \rightarrow B$$
, C, D, E, F, G

2FN

¿La pk es simple? Sí

Al tener un solo atributo como llave principal podemos decir que ya está en 2FN

3FN

Ahora buscamos dependencias transitivas

$$\{A\} \rightarrow \{B, C, D, E, F, G\}$$

 $\{A\} \rightarrow \{B, C, D, E\}$
 $E \rightarrow \{F, G\}$

¿Hay transitividad entre atributos no principales? Si hay transitividad → No cumple 3FN

staffNo	Name	position	salary	branchNo
S1500	Tom Daniels	Manager	46000	B001
S0003	Sally Adams	Assistant	30000	B001
S0010	Mary Martinez	Manager	50000	B002
S3250	Robert Chin	Supervisor	32000	B002
S2250	Sally Stern	Manager	48000	B004
S0415	Art Peters	manager	41000	B003

PΚ

branchNo	branchAddress	telNo	
B001	8 Jefferson Way, portland, OR 97201	503-555-3618	
B002	City Center Plaza, Seattle, WA 98122	206-555-6756	
B003	14-8th Avenue, New York, NY 10012	212-371-3000	
B004	16- 14th Avenue, Seattle, WA 98128	206-555-3131	

Para el caso 1 como podemos observar, cubre el escenario en el cual un empleado solo puede trabajar en una sola sucursal y en una sucursal pueden trabajar muchos empleados, por lo que la cardinalidad es de (M,1)

Resultado caso 2

Considerando PK: {A, E}

¿Se encuentra en 1FN?

¿Hay atributos multivaluados? No ¿Los valores son atómicos? Si ¿Hay grupos de repetición? No Por lo que sí está en 1FN

2FN

¿La llave primaria es simple? No, está compuesta por 2 atributos Buscamos dependencias funcionales

 $\{A, E\} \rightarrow \{B, C, D, F, G\}$

$$\{A\} \rightarrow \{B, C, D\}$$

 $\{E\} \rightarrow \{F, G\}$

 $\{A, E\} \rightarrow \{\}$ $\rightarrow *Cruce de tablas$

Por lo que podemos concluir que no cumple con 2FN

staffNo	Name	position	salary
S1500	Tom Daniels	Manager	46000
S0003	Sally Adams	Assistant	30000
S0010	Mary Martinez	Manager	50000
S3250	Robert Chin	Supervisor	32000
S2250	Sally Stern	Manager	48000
S0415 Art Peters		manager	41000

branchNo	branchAddress	telNo
B001	8 Jefferson Way, portland, OR 97201	503-555-3618
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B003	14-8th Avenue, New York, NY 10012	212-371-3000
B004	16- 14th Avenue, Seattle, WA 98128	206-555-3131

staffNo	branchNo
S1500	B001
S0003	B001
S0010	B002
S3250	B002
S2250	B004
S0415	B003

Para 3FN

¿Hay dependencias transitivas? No, por lo tanto, ya está en tercera forma normal.

Para el caso 2 podemos observar que al tener {A, E} no llegamos a ningún atributo como tal, más bien nos representa la relación que hay entre las 2 tablas que son A Y E, por lo tanto la relación es de M,M debido a que un empleado puede trabajar en muchas sucursales y en una sucursal pueden trabajar muchos empleados.

Ahora para analizar si son equivalentes los resultados agregaremos un trabajador que este trabajando en otra sucursal a nuestra tabla original para ver que sucede en el caso 1

	staffNo	Name	position	salary	branchNo
	S1500	Tom Daniels	Manager	46000	B001
Ī	S0003	Sally Adams	Assistant	30000	B001, B002
Ī	S0010	Mary Martinez	Manager	50000	B002

9	S3250	Robert Chin	Supervisor	32000	B002
	S2250	Sally Stern	Manager	48000	B004
9	S0415	Art Peters	manager	41000	B003

branchNo	branchAddress	telNo
B001	8 Jefferson Way, portland, OR 97201	503-555-3618
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B003	14-8th Avenue, New York, NY 10012	212-371-3000
B004	16- 14th Avenue, Seattle, WA 98128	206-555-3131

Para 1FN

¿Hay atributos multivaluados? Si, en la tabla 1 ¿Hay grupos de repetición? No ¿Los atributos son atómicos? Si Por lo tanto no cumple la 1FN

Normalizamos

PK

staffNo	Name	position	salary
S1500	Tom Daniels	Manager	46000
S0003	Sally Adams	Assistant	30000
S0010	Mary Martinez	Manager	50000
S3250	Robert Chin	Supervisor	32000
S2250	Sally Stern	Manager	48000
S0415	Art Peters	manager	41000

FK PK

staffNo	branchNo
S1500	B001
S0003	B001
S0003	B002
S0010	B002
S3250	B002
S2250	B004
S0415	B003

branchNo	branchAddress	telNo
B001	8 Jefferson Way, portland, OR 97201	503-555-3618
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B003	14-8th Avenue, New York, NY 10012	212-371-3000
B004	16- 14th Avenue, Seattle, WA 98128	206-555-3131

¿Cumple la 2FN? ¿La pk es simple? Si Por lo que cumple 2FN

¿Cumple 3FN? ¿Hay dependencias transitivas? No Por lo tanto cumple 3FN

Las tablas quedan asi

PΚ

staffNo	Name	position	salary
S1500	Tom Daniels	Manager	46000
S0003	Sally Adams	Assistant	30000
S0010	Mary Martinez	Manager	50000
S3250	Robert Chin	Supervisor	32000
S2250	Sally Stern	Manager	48000
S0415	Art Peters	manager	41000

FK PK

staffNo	branchNo
S1500	B001
S0003	B001
S0003	B002
S0010	B002
S3250	B002
S2250	B004
S0415	B003

branchNo	branchAddress	telNo
B001	8 Jefferson Way, portland, OR 97201	503-555-3618
B002	City Center Plaza, Seattle, WA 98122	206-555-6756
B003	14-8th Avenue, New York, NY 10012	212-371-3000
B004	16- 14th Avenue, Seattle, WA 98128	206-555-3131

Y al ver estos resultados podemos observar que obtenemos el mismo resultado que en el caso 2, por lo que concluimos que estos son equivalentes. Es importante destacar que el caso 1 es un caso particular del caso 2, por eso es que logramos llegar a este resultado.

Parte 2

- ANALIZAR PARA LOS SIGUIENTES CASOS:
 - CASO $1 \rightarrow PK:\{A\}$
 - CASO $2 \rightarrow PK:\{A,F\}$
- Dibujar el diagrama de dependencias
- Obtener hasta 3FN

A B C D E F G H

-	10000-		
•	rd	-	-

Id_orden	Fecha	Id_cliente	Nom_cliente	Estado	Num_art	nom_art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00

DEPENDENCIAS

 ${A}\rightarrow{B, C, D, E, F, G, H, I}$ $A\rightarrow{B, C}$ $C\rightarrow{D, E}$ $F\rightarrow{G, I}$ ${A, F}\rightarrow{H}$

Diagrama de dependencias

CASO 1

1FN

¿Hay atributos multivaluados? Si ¿Hay grupos de repetición? No ¿Los atributos son atómicos? Si

Por lo que no cumple la primera forma normal

Id_orden	Fecha	Id_cliente	Nom_cliente	Estado
<u>2301</u>	23/02/11	101	Martin	Caracas
<u>2302</u>	25/02/11	107	Hernan	Coro
<u>2303</u>	27/02/11	110	Pedro	Maracay

Pk PK

<u>Id_orden</u>	<u>Num_art</u>	Nom_art	cant	precio
<u>2301</u>	<u>3786</u>	Red	3	35.00
<u>2301</u>	<u>4011</u>	Raqueta	6	65.00
<u>2301</u>	<u>9132</u>	Paq-3	8	4.75
<u>2302</u>	<u>5794</u>	Paq-6	4	5.00
<u>2303</u>	<u>4011</u>	Raqueta	2	65.00
<u>2303</u>	<u>3141</u>	Funda	2	10.00

Por lo tanto, ya se encuentra en 1FN

Para 2FN tabla 1

¿La pk es simple? Si, por lo tanto, ya está en 2FN

Para 2FN tabla 2

¿La pk es simple? No, por lo tanto no esta en 2FN

Buscamos las dependencias funcionales

 ${A,F} \rightarrow G, H, I$ $F \rightarrow G, I$ $A,F \rightarrow H$ Tabla 1

Num_art	Nom_art	precio
3786	Red	35.00
4011	Raqueta	65.00
9132	Paq-3	4.75
5794	Paq-6	5.00
3141	Funda	10.00

Tabla 2

ld_orden	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

Tabla 3

Id_orden	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Hernan	Coro
2303	27/02/11	110	Pedro	Maracay

Para 3FN tabla 1

¿Cumple 2FN? Si ¿Hay dependencias transitivas? No Cumple 3FN

Para 3FN tabla 2

¿Cumple 2FN? Si ¿Hay dependencias transitivas? No Cumple 3FN

Para 3FN tabla 3

¿Cumple 2FN? Si ¿Hay dependencias transitivas? Si No cumple 3FN C→{D,E}

Pk FK

<u>Id_orden</u>	Fecha	Id_cliente
<u>2301</u>	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

PΚ

<u>Id_cliente</u>	Nom_cliente	Estado
<u>101</u>	Martin	Caracas
<u>107</u>	Hernan	Coro
<u>110</u>	Pedro	Maracay

Pk FK

Id_orden	Fecha	Id_cliente
2301	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

PK

Id_cliente	Nom_cliente	Estado
101	Martin	Caracas
107	Hernan	Coro
110	Pedro	Maracay

Pk

Num_art	Nom_art	precio
3786	Red	35.00
4011	Raqueta	65.00
9132	Paq-3	4.75
5794	Paq-6	5.00
3141	Funda	10.00

PK

Id_orden	Num_art	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

CASO $2\rightarrow PK:\{A,F\}$

DEPENDENCIAS

 ${A, F} \rightarrow {B, C, D, E, F, G, H, I}$ $A \rightarrow {B, C}$ $C \rightarrow {D, E}$ $F \rightarrow {G, I}$ ${A, F} \rightarrow H$

A B C D E F G H I

Ordenes

Id_orden	Fecha	Id_cliente	Nom_cliente	Estado	Num_art	nom_art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00

¿Cumple 1FN?

¿Hay atributos multivaluados? No ¿Hay grupos de repetición? No ¿Los atributos son atómicos? Si Por lo que cumple 1FN

¿Cumple 2FN?

Tenemos una llave compuesta, por lo que debemos analizar las dependencias funcionales

$${A, F} \rightarrow {B, C, D, E, G, H, I}$$

 $A \rightarrow {B, C, D, E}$
 $F \rightarrow {G, I}$
 ${A, F} \rightarrow H$

Tabla 1

PK

<u>Id_orden</u>	Fecha	Id_cliente	Nom_cliente	Estado
<u>2301</u>	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Hernan	Coro
2303	27/02/11	110	Pedro	Maracay

Tabla 2

PΚ

Num_articulo	nom_art	Precio
<u>3786</u>	Red	35.00
<u>4011</u>	Raqueta	65.00
<u>9132</u>	Paq-3	4.75
<u>5794</u>	Paq-6	5.00
<u>3141</u>	Funda	10.00

Tabla 3

PK PK

<u>Id_orden</u>	<u>Num_art</u>	Cantidad
<u>2301</u>	<u>3786</u>	3
<u>2301</u>	<u>4011</u>	6
<u>2301</u>	<u>9132</u>	8
2302	<u>5794</u>	4
<u>2303</u>	<u>4011</u>	2
2303	<u>3141</u>	2

Por lo que ahora ya cumple 2FN

¿Cumple 3FN? Tabla 1

¿Cumple 2FN? Si ¿Hay dependencias transitivas? Si No cumple 3FN

 $C \rightarrow \{D, E\}$

PΚ

Id_orden	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Hernan	Coro
2303	27/02/11	110	Pedro	Maracay

Normalizamos

PK FK

<u>Id_orden</u>	Fecha	Id_cliente
<u>2301</u>	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

PΚ

<u>Id_cliente</u>	Nom_cliente	Estado
<u>101</u>	Martin	Caracas
<u>107</u>	Hernan	Coro
<u>110</u>	Pedro	Maracay

Ahora la tabla 1 cumple 3FN

¿Cumple 3FN? Tabla 2

¿Cumple 2FN? Si ¿Hay dependencias transitivas? No Cumple 3FN

¿Cumple 3FN? Tabla 3

¿Cumple 2FN? Si ¿Hay dependencias transitivas? No Cumple 3FN

Por lo que el resultado final es el siguiente:

PK FK

Id_orden	Fecha	Id_cliente
2301	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

Id_cliente	Nom_cliente	Estado
101	Martin	Caracas
107	Hernan	Coro
110	Pedro	Maracay

PK

Num_articulo	nom_art	Precio
3786	Red	35.00
4011	Raqueta	65.00
9132	Paq-3	4.75
5794	Paq-6	5.00
3141	Funda	10.00

PK PK

<u>Id_orden</u>	Num_art	Cantidad
<u>2301</u>	<u>3786</u>	3
<u>2301</u>	<u>4011</u>	6
<u>2301</u>	<u>9132</u>	8
<u>2302</u>	<u>5794</u>	4
2303	<u>4011</u>	2
2303	<u>3141</u>	2