Лабораторна робота №6

Наївний Байєс в Python

Mema роботи: набути навичок працювати з даними і опонувати роботу у Python з використанням теореми Байэса.

Література

Supervised learning - https://scikit-learn.org/stable/user_guide.html
Naive Bayes Tutorial: Naive Bayes Classifier in Python
https://dzone.com/articles/naive-bayes-tutorial-naive-bayes-classifier-in-pyt

Наивный баейсовский классификатор - http://datascientist.one/naive-bayes/

Зміст роботи

Завдання 1. Ретельно опрацювати теоретичні відомості:

- теорему Байєса;
- які типи наївного байєсівського класифікатора ϵ ;
- де використовується Наївний Байєс.

Завдання 2. Ретельно розібрати приклад: прогнозування з використанням теореми Байєса.

Опис даних.

Вхідні дані включають день, прогноз, вологість і вітрові умови. Останній стовпець (цільова змінна) - «Гра» (play) позначає можливість проведення матчу.

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

На основі погодних умов необхідно визначити, чи відбудеться матч. Для цього необхідно:

Крок 1. Перетворити набір даних в частотну таблицю (frequency table), використовуючи кожен атрибут набору даних.

Frequency Table		Play	
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	2

Frequency Table		Play		
		Yes	No	
Humidity	High	3	4	
	Normal	6	1	

Frequency Table		Play	
		Yes	No
Wind	Strong	6	2
	Weak	3	3

Крок 2. Для кожної частотної таблиці створити таблицю правдоподібності (likelihood table), розрахувавши відповідні ймовірності. Наприклад, ймовірність хмарної погоди (overcast) становить 0,29, а ймовірність того, що матч відбудеться (yes) - 0,64.

• Ймовірність «**Yes**'» для «**Sunny**» ϵ :

 $P(c|x) = P(Yes|Sunny) = P(Sunny|Yes)* P(Yes) / P(Sunny) = (0.3 \times 0.71) / 0.36 = 0.591$

• Ймовірність «**No**» для «**Sunny**» складає:

Таким же чином нам потрібно створити таблицю правдоподібності і для інших атрибутів:

Likelihood table for Humidity

Likelihood Table		Play		
		Yes	No	
Humidity	High	3/9	4/5	7/14
	Normal	6/9	1/5	7/14
		9/14	5/14	

Likelihood table for Wind

Likelihood Table		Play		
		Yes	No	
Wind	Weak	6/9	2/5	8/14
Willia	Strong	3/9	3/5	6/14
		9/14	5/14	

$$P(Yes|High) = 0.33 \times 0.6 / 0.5 = 0.42$$

$$P(Yes/Weak) = 0.67 \times 0.64 / 0.57 = 0.75$$

$$P(No|High) = 0.8 \times 0.36 / 0.5 = 0.58$$

$$P(No/Weak) = 0.4 \times 0.36 / 0.57 = 0.25$$

Завдання. Чи відбудеться матч при наступних значеннях:

 $Outlook = Rain (\partial out)$

Humidity (Вологість) = High (висока)

Wind (*Bimep*) = Weak (*Слабкий*)

Play ($\Gamma pa\ відбудеться) = ?$

Ймовірність «Yes» в цей день = P(Outlook = Rain|Yes)*P(Humidity= High|Yes)* <math>P(Wind=Weak|Yes)*P(Yes)= 2/9*3/9*6/9*9/14=0.0199

Імовірність негативної відповіді «No» в цей день = P(Outlook = Rain|No)*P(Humidity= High|No)* P(Wind= Weak|No)*P(No)= 2/5 * 4/5 * 2/5 * 5/14 = 0.0166

Тепер, коли ми нормалізуємо значення, ми отримуємо:

P(Yes) = 0.0199 / (0.0199 + 0.0166) = 0.55

 $P(N_0) = 0.0166 / (0.0199 + 0.0166) = 0.45$

Модель передбачає, що ймовірність 55%, що завтра буде гра.

Завдання 3. Використовуя данні з пункту 2 визначити відбудеться матч при наступних погодних умовах чи ні: Розрахунки провести з використанням Python.

Варіант	Умова		
1, 6, 11	Outlook = Overcast	Перспектива = Похмуро	
	Humidity = High	Вологість = Висока	
	Wind = Weak	Вітер = Слабкий	
2, 7, 12	Outlook = Overcast	Перспектива = Похмуро	
	Humidity = High	Вологість = Висока	
	Wind = Strong	Вітер = Сильний	
3, 8, 13	Outlook = Sunny	Перспектива = Сонячно	
	Humidity = High	Вологість = Висока	
	Wind = Weak	Вітер = Слабкий	
4, 9, 14	Outlook = Sunny	Перспектива = Сонячно	
	Humidity = Normal	Вологість = Нормальна	
	Wind = Strong	Вітер = Сильний	
5, 10, 15	Outlook = Rain	Outlook = Дощ	
	Humidity = High	Вологість = Висока	
	Wind = Strong	Вітер = Сильний	

Завдання 4. Застосуєте методи байєсівського аналізу до набору даних про ціни на квитки на іспанські високошвидкісні залізниці.

– Bхідні дані: https://raw.githubusercontent.com/susanli2016/Machine-Learning-with-Python/master/data/renfe small.csv

Методичні рекомендації

Теорема Байєса.

У статистиці і теорії ймовірностей теорема Байєса описує ймовірність події, гуртуючись на попередньому знанні умов, які можуть бути пов'язані з подією, тобто служить способом визначення умовної ймовірності.

3 огляду на гіпотезу (H) і доказ (E), теорема Байєса стверджує, що зв'язок між ймовірністю гіпотези до отримання доказу - P(H), і ймовірністю гіпотези після отримання підтвердження - P(H|E), це:

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

3 цієї причини P(H) називається апріорною ймовірністью, а P(H|E) називається апостеріорною ймовірністью. Коефіцієнт, який пов'язує P(H|E)/P(E), називається відношенням правдоподібності. Використовуючи ці терміни, теорема Байєса може бути перефразована наступним чином:

«Апостеріорна ймовірність дорівнює попередньої ймовірності, помноженої на відношення правдоподібності».

Приклад

Припустимо, у нас є колода карт, і ми хочемо з'ясувати ймовірність того, що обрана нами карта випадковим чином виявиться королем, враховуючи, що це лицьова карта. Для початку нам потрібно з'ясувати ймовірність:

- P (король) 4/52, так як в колоді карт 4 короля.
- Р (особа король) дорівнює 1, так як всі королі є лицьовими картами.
- Р (особа) одно 12/52, так як в масті з 3 карт 3 карти і всього 4 масті.

Тепер, склавши всі значення в рівнянні Байєса, отримуємо результат 1/3.

Класифікація та прогнозування - два найбільш важливих аспекти машинного навчання, а Naive Bayes - простий, але потужний алгоритм прогнозного моделювання.

Наївний байєсівський класифікатор обчислює ймовірність приналежності об'єкта до якогось класу. Ця ймовірність обчислюється з шансу, що якась подія відбудеться, з опорою на події, які вже відбулися. Кожен параметр об'єкта, що підлягає класифікації, вважається незалежним від інших параметрів.

Типи наївного байєсівського класифікатора:

- поліноміальний: тут вектори ознак представляють собою значення частотності, тобто частоту, з якою генеруються ті чи інші події за допомогою поліноміального розподілу. Це модель подій, зазвичай використовувана для класифікації документів;
- *Бернуллі*: в багатовимірної моделі подій Бернуллі характеристики є незалежними логічними значеннями (двійковими змінними), якими описуються вхідні дані. Подібно поліноміальний моделі, ця модель широко застосовується в задачах класифікації документів, де використовується не частотність терміну, а бінарні характеристики тієї, термінів що зустрічаються (зустрічається слово в документі так чи ні);
- *Гаусса*: передбачається, що безперервні значення всіх характеристик мають розподіл Гаусса (нормальний розподіл). При нанесенні на графік виходить дзвіноподібна крива.

Наївні байєсовські алгоритми часто використовуються при аналізі емоційного забарвлення текстів, фільтрації спаму, в рекомендаційних системах тощо. Вони легко і швидко впроваджуються, але їх найбільший недолік полягає в складності дотримання вимоги про незалежність предикторов.

 Φ ільтрація спаму. Наївні байєсівській класифікатори є популярним статистичним методом фільтрації електронної пошти. Як правило, використовується пакет слів / функцій для ідентифікації спаму в електронній пошті - підхід, що часто використовується в класифікації тексту.

RSS-канали. Категоризація новин, наївний байєсівский класифікатор застосовується для класифікації новинного контенту на основі новинного коду. Компанії використовують веб-сканер для вилучення корисного тексту з HTML-сторінок новинних статей для створення повнотекстового RSS. Вміст кожної новинний статті маркується (класифікується).

Прогноз погоди. Використовується байєсівська модель для прогнозування погоди, де апостеріорні ймовірності використовуються для обчислення ймовірності кожної мітки класу для примірника вхідних даних, а отримана з максимальною ймовірністю вважається підсумковою.

Медичний діагноз. При роботі з медичними даними наївний байєсівский класифікатор враховує докази з багатьох атрибутів, щоб зробити остаточний прогноз, і дає прозорі пояснення своїх рішень, і тому він вважається одним з найбільш корисних класифікаторів для підтримки рішень лікарів.

Контрольні запитання

- 1. Де застосовується наївний Байес?
- 2. Поясніть теорему Байеса?
- 3. Які типи наївного байєсівського класифікатора існують?