

eDreams Clustering

Unsupervised Learning

Internet Applications

Supervised Learning

Training data:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$$

Unsupervised learning

Training data:

$$\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$$

Examples of clustering applications

Market segmentation

Group related elements (News, products, websites,...)

Social network analysis

Analysis of astronomical data

Searches made on yellowpages.org organized by similarity (two searches are similar if, after the user has made it, she clicks on the same business category with high probability)

eDreams Clustering

K-means algorithm

Aplicaciones en Internet

Input:

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n
Repeat {
         for i = 1 to m
            c^{(i)}:=\operatorname{index} (from 1 to K) of cluster centroid
                    closest to x^{(i)}
         end for
         for k = 1 to K
             \mu_k := average (mean) of points assigned to cluster k
         end for
```

Example of index allocation

$$c^{(i)} \coloneqq \arg\min_{k} \left\| x^{(i)} - \mu_k \right\|^2$$

Example μ_k computation

$$\mu_k := \frac{1}{|C_k|} \sum_{i \in C_k} x^{(i)}$$

K-means for non-separated clusters

K-means optimization objective

 $c^{(i)}\!=\!$ index of cluster (1,2,..., $\!\!K\!\!$) to which example $\,x^{(i)}\!$ is currently assigned

 μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
       for i = 1 to m
          c^{(i)} := index (from 1 to K ) of cluster centroid
                 closest to x^{(i)}
       for k = 1 to K
           \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

Should have K < m

Randomly pick K training examples.

Set μ_1, \ldots, μ_K equal to these K examples.

Local optima

Random initialization

```
For i = 1 to 100 {
```

```
Randomly initialize K-means. Run K-means. Get c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K. Compute cost function (distortion) J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K) }
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Which of the following methods is suitable for initializing k-means?

- □ Choose an integer i randomly from $\{1,...,K\}$ and set $\mu_1 = \mu_2 = ... \mu_K = x^{(i)}$
- □ Choose K integers, i1, i2, ..., iK randomly from $\{1,...,K\}$ and set $\mu_1 = x^{(i1)}$, $\mu_2 = x^{(i2)}$,..., $\mu_K = x^{(iK)}$.
- Choose K integers, i1, i2, ..., iK randomly from $\{1,...,m\}$ and set $\mu_1 = x^{(i1)}$, $\mu_2 = x^{(i2)}$,..., $\mu_K = x^{(iK)}$.
- Choose m integers, i1, i2, ..., im randomly from $\{1,...,m\}$ and set $\mu_1=x^{(i1)}, \mu_2=x^{(i2)},..., \mu_K=x^{(im)}$.

What is the right value of K?

Choosing the value of K

Elbow method:

Suppose we run k-means using K=3 and K=5 and check that the cost function J is greater for K=5 than for K=3. What can we deduce from this?

- ☐ This is mathematically impossible. There must be a mistake in the code.
- \Box That the correct number of clusters is K=3.
- ☐ In the execution with K=5, k-means remained at a non-optimal local minimum. It is convenient to re-run with a larger number of random initials.
- ☐ In the execution with K=3, k-means was lucky. It is advisable to increase the random initializations for K=3 until it is no longer better than K=5.

Single-linkage hierachical clustering

K-means using polar coordinates

