Mathematics of Signals and **Systems**

- Tools of signals and systems are based on some fundamental mathematical concepts and operations such as:
 - Complex Numbers
 - Complex Variables
 - Trigonometric Functions and Identities
 - Arithmetic Operations on Complex Numbers and Variables

Copyright © 2015, S. K. Mitra

Mathematics of Signals and **Systems**

- Polynomials
- Series
- Modulo Operation
- Greatest Common Divisor
- Least Common Multiple
- Decibel

Copyright © 2015, S. K. Mitra

Complex Numbers

- A complex number is defined using two real numbers
- It can be written in one of two different forms
- Both forms make use of the symbol "j" defined by the equation

$$j^2 = -1$$

ntly by $j = \sqrt{-1}$

or, equivalently by $j = \sqrt{-1}$

Complex Numbers

• It follows from the definition that

$$\frac{1}{i} = -j$$

 $\frac{1}{j} = -j$ • It also follows from the definition that

$$j^3 = -j, \quad j^4 = 1$$

• In general

$$j^{2k+1} = -j, \quad j^{2k} = 1$$

where k is a positive integer

Complex Numbers

Rectangular Form of Representation

• Also known as the Cartesian form, a complex number n_o is written as

$$n_o = \alpha_o + j\beta_0$$
real number

• α_o is called the real part of n_o , denoted as

$$\alpha_o = \mathcal{R}e(n_o)$$

Copyright © 2015, S. K. Mitra

Complex Numbers

• β_o is called the imaginary part n_o , denoted

$$\beta_o = Im(n_o)$$

- Example: $n_o = -2.5 + j4.3301$ is a complex number in rectangular form
- Its real part is -2.5 and its imaginary part is 4.3301

Complex Numbers

Polar Form of Representation

• Here a complex number n_0 is written as

$$n_{O} = r_{O}e^{j\theta_{O}}$$
real number

• where *e* is the base of the natural logarithm

• Example: $n_o = 5e^{j2\pi/3}$ is a complex number in polar form

7

Copyright © 2015, S. K. Mitra

Complex Numbers

• In the polar form of representation,

$$r_o = |n_o|$$

is called the magnitude of the complex number, and

$$\theta_o = \arg(n_o) = \angle(n_o)$$

is called the argument or angle of the complex number

8

Copyright © 2015, S. K. Mitra

Complex Numbers

• The magnitude of the complex number $n_0 = 5e^{j2\pi/3}$ is 5 and its angle is $2\pi/3$

• As we shall show later

$$e^{j2\pi k}=1$$

for all integer values of k

• Hence, we can add any multiples of 2π to the angle of a complex number in polar form without changing its value

9

Converight © 2015 S. K. Mitra

Complex Numbers

· Thus,

$$r_o e^{j(\theta_o + 2\pi k)} = r_o e^{j\theta_o} e^{j2\pi k} = r_o e^{j\theta_o} = n_o$$

• Example:

$$5e^{j(14\pi/3)} = 5e^{j(4\pi + \frac{2\pi}{3})} = 5e^{j4\pi}e^{j2\pi/3}$$
$$= 5e^{j2\pi/3}$$

10

Copyright © 2015, S. K. Mitra

Complex Numbers

Complex Conjugate of a Complex Number

- Complex conjugate of a complex number n_o is denoted as n_o*
- Obtained by replacing "j" with "-j"
- Complex conjugate of a complex number in rectangular form $n_o = \alpha_o + j\beta_0$ is

$$n_o^* = \alpha_o - j\beta_0$$

11

Copyright © 2015, S. K. Mitra

Complex Numbers

• Complex conjugate of a complex number in polar form $n_o = r_o e^{j\theta_o}$ is

$$n_o^* = r_o e^{-j\theta_o}$$

Graphical Representations

• Two forms of representations depending on the mathematical representation of the complex number

12

Graphical Representation

Rectangular Form

- Here a complex number is shown as a point in the complex plane, a two-dimensional rectangular coordinate system
- The origin, usually shown as 0, represents the complex number whose real and imaginary parts are zeros, that is $n_o = 0 + j0$

13

Copyright © 2015, S. K. Mitra

Graphical Representation

- Real part of the complex number is the distance from the origin in the horizontal direction, usually called the *x*-axis
- Imaginary part of the complex number is the distance from the origin in the vertical direction, usually called the y-axis

14

Copyright © 2015, S. K. Mitra

Graphical Representation

• Figure below illustrates the location of the complex number $n_o = -2.5 + j4.3301$ in the complex plane

15

17

Copyright © 2015, S. K. Mitra

Graphical Representation

 The complex plane can be divided into 4 parts, called quadrants, as shown below

16

Copyright © 2015, S. K. Mitra

Graphical Representation

- First quadrant is the region defined by
 - $0 \le \Re\{n_o\} < \infty, \ 0 \le Im\{n_o\} < \infty$
- Second quadrant is the region defined by $-\infty < \Re\{n_o\} \le 0$, $0 \le Im\{n_o\} < \infty$
- Third quadrant is the region defined by

$$0 \le \mathcal{R}e\{n_o\} < \infty, -\infty < Im\{n_o\} \le 0$$

• Fourth quadrant is the region defined by

$$-\infty < \Re e\{n_o\} \le 0, -\infty < Im\{n_o\} \le 0$$

Copyright © 2015, S. K. Mitra

• Example: The complex number

$$n_o = -2.5 + j4.3301$$

is located in the 2nd quadrant

18

Graphical Representation

Polar Form

• Here, the complex number $n_o = r_o e^{j\theta_o}$ is represented as a vector of length r_o with θ_o being the angle of the vector with respect to the positive x-axis, usually specified in radians

19

Copyright © 2015, S. K. Mitra

Graphical Representation

• Figure below illustrates the vector representation of the complex number

$$n_o = 5e^{j2\pi/3}$$

20

Copyright © 2015, S. K. Mitra

Angle of a Complex Number

Principal Value of the Angle

- Angle θ_o can be either positive or negative
- Usually specified to be in the range

$$-\pi < \theta_o \le \pi$$

called the principal value

21

Copyright © 2015, S. K. Mitra

Angle of a Complex Number

- If the specified angle is outside the above range, then 2πk, where k is a positive or negative integer, is added to the angle to bring the result to the range
- Example: The angle of $5e^{j14\pi/3}$ is $\theta_o = 14\pi/3$ which is outside the range
- To bring the angle to the range, we add -4π which results in the new value of the angle $2\pi/3$ that is in the range

22

Copyright © 2015, S. K. Mitra

Angle of a Complex Number

• Alternate way to bring the angle to the range from $-\pi$ to π , is to rewrite the complex number as shown below

$$5e^{j(\frac{14\pi}{3})} = 5e^{j(\frac{2\pi}{3}+4\pi)} = 5e^{j(\frac{2\pi}{3})}$$

23

Copyright © 2015, S. K. Mitra

Angle of a Complex Number

- Often, it is more convenient to express the principal value of the angle in degrees
- To convert an angle θ given in radians to degrees, we multiply it with 180 and divide by π , that is

angle =
$$\frac{\theta \times 180}{\pi}$$
 degrees

24

Angle of a Complex Number

- Example: We determine the angle θ in degrees of the complex number $5e^{j14\pi/3}$
- The principal value of the angle is $2\pi/3$ radians
- Hence, the angle in degrees is given by

angle =
$$\frac{(2\pi/3) \times 180}{\pi}$$
 = $\frac{2 \times 180}{3}$ = 120°

25

Copyright © 2015, S. K. Mitra

Complex Numbers in MATLAB

- In MATLAB an imaginary number is written using either the symbol "i" or "j"
- Example: The complex number in rectangular form $n_o = -2.5 + j4.3301$ is entered as

```
n = -2.5+4.3301*i
or n = -2.5+4.3301*j
```

26

Copyright © 2015, S. K. Mitra

Complex Numbers in MATLAB

- Example: The complex number in polar form $n_o = 5e^{j2\pi/3}$ is entered as
 - n = 5*exp(2*pi*i/3)
- Real and imaginary parts of a complex number are computed using the MATLAB functions real and imag
- Complex conjugate of a complex number is computed using the function conj

27

Copyright © 2015, S. K. Mitra

Complex Numbers in MATLAB

• Example: The code fragments
n = -2.5+4.3301*j;
nreal = real(n);
nimag = imag(n);
nconj(n);

28

yield

Converight © 2015 S. K. Mitra

Complex Numbers in MATLAB

```
nreal =
-2.5000
nimag =
4.3301
nconj =
-2.5-4.3301i
```

29

Copyright © 2015, S. K. Mitra

Complex Numbers in MATLAB

 In the case of a complex number entered in polar form, the functions real and imag return, respectively, the real and imaginary parts of the equivalent complex number in rectangular form

30

Complex Variables

- The values of a real variable are real numbers
- The complex variable is an extension of the concept of a real variable
- Like the complex number, a complex variable can be mathematically represented in one of two forms

31

Copyright © 2015, S. K. Mitra

Complex Variables

Rectangular Form

• A complex variable η is written as

$$\eta = c + jd$$

where c and d are real variables

• Here c is the real part of η , denoted as

$$c = \mathcal{R}e(\eta)$$

and d is the imaginary part of η , denoted as

$$d = Im(\eta)$$

32

Copyright © 2015, S. K. Mitra

Complex Variables

• In the processing of continuous-time signals, the complex variable is denoted as *s* and is represented in rectangular form as

$$s = \sigma + j\Omega$$

where σ and Ω are real variables

33

Copyright © 2015, S. K. Mitra

Complex Variables

PolarForm

• A complex variable η is written as

$$\eta = \gamma e^{j\phi}$$

where γ and ϕ are real variables

• Here, γ is called the magnitude of η , denoted as $\gamma = |\eta|$

and ϕ is the argument or phase of η , denoted as $\phi = \arg(\eta)$

34

Copyright © 2015, S. K. Mitra

Complex Variables

• In the processing of discrete-time signals, the complex variable is denoted as z and is represented in polar form as

$$z = re^{j\omega}$$

where r and ω are real variables

35

Copyright © 2015, S. K. Mitra

Trigonometric Functions

Basic Trigonometric Functions

- The sine and cosine of an argument θ , are written as $\sin(\theta)$ and $\cos(\theta)$, respectively
- The argument θ, usually called the angle, is a real number and is specified in radians, a dimensionless quantity

36

Trigonometric Functions

• If θ is a real variable, then $\sin(\theta)$ and $\cos(\theta)$ are real functions of the real variable θ usually defined for the range

$$-\infty < \theta < +\infty$$

• Plots of $sin(\theta)$ and $cos(\theta)$ are shown on the next slide

37

Copyright © 2015, S. K. Mitra

Trigonometric Functions

• Commonly used identities in signal processing are as follows:

$$\sin(\theta \pm \frac{\pi}{2}) = \pm \cos(\theta)$$
$$\cos(\theta \pm \frac{\pi}{2}) = \mp \sin(\theta)$$

• A generalizations of the above identities

$$\sin(\theta \pm \psi) = \sin(\theta)\cos(\psi) \pm \cos(\theta)\sin(\psi)$$
$$\cos(\theta \pm \psi) = \cos(\theta)\cos(\psi) \mp \sin(\theta)\sin(\psi)$$

39

Copyright © 2015, S. K. Mitra

Trigonometric Functions

• It can be seen from these two plots that $-1 \le \sin(\theta) \le +1$

and

$$-1 \leq \cos(\theta) \leq +1$$

• In some applications, we may have a scaled trigonometric function, such as, $A\sin(\theta)$, where A is a real positive number and is called the peak amplitude

40

Copyright © 2015, S. K. Mitra

Trigonometric Functions

• Some typical values of $sin(\theta)$ and $cos(\theta)$ for certain specific values of θ are given below

$$\sin(0) = \sin(\pi) = 0$$

$$\sin(\pi/2) = 1, \quad \sin(3\pi/2) = -1$$

$$\cos(0) = 1, \quad \cos(\pi) = -1$$

$$\cos(\pi/2) = \cos(3\pi/2) = 0$$

$$\sin(\pi/6) = \frac{1}{2}, \quad \sin(\pi/4) = \frac{1}{\sqrt{2}}, \quad \sin(\pi/3) = \frac{\sqrt{3}}{2}$$

$$\cos(\pi/6) = \frac{\sqrt{3}}{2}, \quad \cos(\pi/4) = \frac{1}{\sqrt{2}}, \quad \cos(\pi/3) = \frac{1}{2}$$

Trigonometric Functions

- Another trigonometric function used in signal processing is the tangent function
- The tangent of an argument θ is written as $\tan(\theta)$
- This trigonometric function is related to the basic functions $sin(\theta)$ and $cos(\theta)$ as

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

42

Trigonometric Functions

Properties

- All trigonometric functions are periodic functions of their arguments with a period 2π
- Thus, if we replace the argument θ with $\theta + 2\pi k$, where k is an integer, we get back the same trigonometric function
- Example: $\sin(\theta + 2\pi k) = \sin(\theta)$

43

Copyright © 2015, S. K. Mitra

Trigonometric Functions

- The periodicity properties of sin(θ) and cos(θ) can be seen from their plots given in Slide No. 38
- Also, it can be seen from these plots that $sin(\theta)$ is an odd function of θ and $cos(\theta)$ is an even function of θ , that is,

$$\sin(-\theta) = -\sin(\theta)$$

$$\cos(-\theta) = \cos(\theta)$$

44

Copyright © 2015, S. K. Mitra

Trigonometric Identities

 Two commonly used identities are as follows:

$$\sin(\theta \pm \frac{\pi}{2}) = \pm \cos(\theta)$$
$$\cos(\theta \pm \frac{\pi}{2}) = \mp \sin(\theta)$$

• A generalization of the above are given by $\sin(\theta \pm \psi) = \sin(\theta)\cos(\psi) \pm \cos(\theta)\sin(\psi)$ $\cos(\theta \pm \psi) = \cos(\theta)\cos(\psi) \mp \sin(\theta)\sin(\psi)$

45

Copyright © 2015, S. K. Mitra

Trigonometric Identities

• From $cos(\theta \pm \psi) = cos(\theta)cos(\psi) \mp sin(\theta)sin(\psi)$ we obtain after setting $\psi = \theta$,

$$\cos^{2}(\theta) + \sin^{2}(\theta) = 1$$
$$\cos^{2}(\theta) - \sin^{2}(\theta) = \cos(2\theta)$$

• From $\sin(\theta \pm \psi) = \sin(\theta)\cos(\psi) \pm \cos(\theta)\sin(\psi)$ we obtain after setting $\psi = \theta$,

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

46

Copyright © 2015, S. K. Mitra

Trigonometric Identities

 Additional identities derived from the last two equations of Slide No. 45 are

$$\sin(\theta)\cos(\psi) = \frac{1}{2}[\sin(\theta + \psi) + \sin(\theta - \psi)]$$

$$\cos(\theta)\sin(\psi) = \frac{1}{2}[\sin(\theta + \psi) - \sin(\theta - \psi)]$$

$$\cos(\theta)\cos(\psi) = \frac{1}{2}[\cos(\theta + \psi) + \cos(\theta - \psi)]$$

$$\sin(\theta)\sin(\psi) = \frac{1}{2}[\cos(\theta + \psi) - \cos(\theta - \psi)]$$

47

Copyright © 2015, S. K. Mitra

Inverse of Trigonometric Functions

- Inverse of the sine function is denoted as \sin^{-1} or arcsin
- Inverse of the cosine function is denoted as \cos^{-1} or arcos
- Inverse of the tangent function is denoted as tan^{-1} or arctan

48

Inverse of Trigonometric Functions

• Examples: Inverse of $\alpha = \sin(\theta)$ is given by

$$\theta = \arcsin(\alpha) = \sin^{-1}(\alpha)$$

• Inverse of $\beta = \cos(\theta)$ is given by

$$\theta = \arccos(\beta) = \cos^{-1}(\beta)$$

• Inverse of $\gamma = \tan(\theta)$ is given by

$$\theta = \arctan(\gamma) = \tan^{-1}(\gamma)$$

49

Copyright © 2015, S. K. Mitra

Trigonometric Functions in **MATLAB**

- For computing the sine, cosine, and tangent functions, MATLAB functions are sin, cos, and tan, respectively
- For computing the inverses of sine, cosine, and tangent functions, MATLAB functions are asin, acos, and atan, respectively

50

Copyright © 2015, S. K. Mitra

Trigonometric Functions in **MATLAB**

• Example: The plot of the sine function shown in Slide No. 38 has been generated using the code fragments

51

Conversion Between Forms

• Makes use of the Euler's formula:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

• If we represent the complex number as the vertex of a right angle triangle as shown in the next slide

52

Conversion Between Forms

Then, $cos(\theta)$ is the length of the base, and $sin(\theta)$ is the length of the perpendicular

• From Pythagoras' theorem we have

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

53

Copyright © 2015, S. K. Mitra

Conversion Between Forms

From Polar to Rectangular Form

• Multiplying both sides of the Euler's formula with r we get

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

• If we write $s = re^{j\theta}$ in rectangular form as $s = \alpha + i\beta$

$$s = \alpha + jp$$

• Then it follows that $\alpha = \Re\{re^{j\theta}\} = r\cos(\theta)$ and $\beta = Im\{re^{j\theta}\} = r\sin(\theta)$

Conversion Between Forms

- Example: Consider the complex number $n_o = 5e^{j2\pi/3}$ in polar form
- Its real and imaginary parts are thus given by $\Re e\{n_o\} = 5\cos(2\pi/3) = -2.5$
 - $Im\{n_o\} = 5\sin(2\pi/3) = 4.3301$
- Hence, the rectangular form of representation of n_o is given by

$$n_o = -2.5 + j4.3301$$

55

Copyright © 2015, S. K. Mitra

Conversion Between Forms

From Rectangular to Polar Form

• From $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ we note that its complex conjugate is given by

$$(e^{j\theta})^* = e^{-j\theta} = \cos(\theta) - j\sin(\theta)$$

· Adding these two equations we get

$$2\cos(\theta) = e^{j\theta} + e^{-j\theta}$$

and hence,

$$\cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$$

56

Converight © 2015 S. K. Mitro

Conversion Between Forms

- Likewise, subtracting the conjugate of Euler's formula from the Euler's formula we get $2\sin(\theta) = e^{j\theta} e^{-j\theta}$ and hence,
 - $\sin(\theta) = \frac{1}{2} (e^{j\theta} e^{-j\theta})$
- The expressions for cos(θ) and sin(θ) in terms of the exponential functions are known as the Inverse Euler's formula

57

Copyright © 2015, S. K. Mitra

Conversion Between Forms

• By squaring both sides of $\alpha = r\cos(\theta)$ and $\beta = r\sin(\theta)$ we get

$$\alpha^2 + \beta^2 = r^2 \cos^2(\theta) + r^2 \sin^2(\theta)$$
$$= r^2 \left(\cos^2(\theta) + \sin^2(\theta)\right) = r^2$$

• From the above equation we have

$$r = \sqrt{\alpha^2 + \beta^2}$$

58

Copyright © 2015, S. K. Mitra

Conversion Between Forms

• Next dividing $\beta = r \sin(\theta)$ by $\alpha = r \cos(\theta)$ we get

$$\frac{r\sin(\theta)}{r\cos(\theta)} = \tan(\theta) = \frac{\beta}{\alpha}$$

• Hence, $\theta = \tan^{-1}(\frac{\beta}{\alpha})$ radians

59

Copyright © 2015, S. K. Mitra

Conversion Between Forms

- Example: We develop the polar form of representation of the complex number $n_0 = 2.2 j6.4$ in rectangular form
- From $r = \sqrt{\alpha^2 + \beta^2}$ we have $r = \sqrt{(2.2)^2 + (6.4)^2} = 6.7676$ and from $\theta = \tan^{-1}(\frac{\beta}{\alpha})$ we have

$$\theta = \tan^{-1}\left(-\frac{6.4}{2.2}\right) = -1.2397$$
 radians

60

Ambiguity in the Conversion

- The formula $\theta = \tan^{-1}(\frac{\beta}{\alpha})$ for computing the angle θ_o of a complex number n_o in rectangular form can lead to wrong result if not applied correctly
- Consider for example $n_1 = -2.5 + j4.3301$ and $n_2 = 2.5 - j4.3301$

61

Copyright © 2015, S. K. Mitra

Ambiguity in the Conversion

• The angle θ_1 of the number n_1 is given by $\theta_1 = \tan^{-1} \left(\frac{-2.5}{4.3301} \right) = -1.0472$

radians or -60°

and the angle θ_2 of the number n_2 is given by

$$\theta_2 = \tan^{-1} \left(\frac{2.5}{-4.3301} \right) = -1.0472$$

radians or -60°

62

Copyright © 2015, S. K. Mitra

Ambiguity in the Conversion

• Note from the graphical representations

the vector representing n_1 is in the 2nd quadrant with an angle 120° and the vector representing n_2 is in the 4th quadrant with an angle -60°

Converight © 2015 S. K. Mitro

Ambiguity in the Conversion

Correct Formula for Conversion

$$\theta_o = \begin{cases} \tan^{-1}(\beta_o/\alpha_o), & \alpha_o \ge 0 \\ \tan^{-1}(\beta_o/\alpha_o) \pm \pi, & \alpha_o < 0 \end{cases}$$

- Note from the polar representation of a complex number $n_o = -1$ is $e^{\pm j\pi}$
- Hence, if the real part is negative, then π should be either added or subtracted to bring the computed angle to the range -π to π

64

Copyright © 2015, S. K. Mitra

Conversion Using MATLAB

- The magnitude r and the angle θ of a complex number n = α + jβ can be determined using the functions abs and angle
- The code fragments

$$n = -2.5+4.3301*j;$$

 $r = abs(n);$

theta = angle(n);

65

Copyright © 2015, S. K. Mitra

Conversion Using MATLAB

yield

r =

5

theta =

2.0944

The angle given above is precisely equal to $2\pi/3$

66

Conversion Using MATLAB

- The correct value of the argument can also be computed using the MATLAB function atan2
- The pertinent MATLAB code is theta=atan2(imag(n),real(n));

67