Two-way crossed classification

 $\underline{\text{Example 7.1}}$ Days to first germination of three varieties of carrot seed grown in two types of potting soil.

Soil		Variety	
Type	1	2	3
1		$Y_{121} = 13$ $Y_{122} = 15$	101
2	$Y_{211} = 12$ $Y_{212} = 15$ $Y_{213} = 19$ $Y_{214} = 18$	$Y_{221} = 31$	$Y_{231} = 18$ $Y_{232} = 9$ $Y_{233} = 12$

This might be called an unbalanced factorial experiment.

Sample sizes:

Soil	Variety				
type	1	2	3		
1	$n_{11} = 3$	$n_{12} = 2$	$n_{13} = 2$		
2	$n_{21} = 4$	$n_{22} = 1$	$n_{23} = 3$		

In general we have

 $i = 1, 2, \dots, a$: levels for the first factor

 $j = 1, 2, \dots, b$: levels for the second factor

 $n_{ij} > 0$: observations at the *i*-th level of the first factor and the *j*-th level of the second factor

We will restrict our attention to normal-theory Gauss-Markov models.

Cell means model:

$$Y_{ijk} = \mu_{ij} + \epsilon_{ijk}$$

where

$$\epsilon_{ijk} \sim \textit{NID}(0, \sigma^2) \quad \left\{ egin{array}{l} i = 1, \ldots, a \\ j = 1, \ldots, b \\ k = 1, \ldots, n_{ij} \end{array}
ight.$$

Clearly, $E(Y_{ijk}) = \mu_{ij}$ is estimable if $n_{ij} > 0$.

Overall mean response:

$$\bar{\mu}_{\cdot\cdot} = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \mu_{ij}$$

Mean response at i-th level of factor 1, averaging across the levels of factor 2.

$$\bar{\mu}_{i.} = \frac{1}{b} \sum_{j=1}^{b} \mu_{ij}$$

Mean response at j-th level of factor 2, averaging across the levels of factor 1

$$\bar{\mu}_{.j} = \frac{1}{a} \sum_{i=1}^{a} \mu_{ij}$$

Contrasts of interest:

Main effects for factor 1:

$$ar{\mu}_{i.} - ar{\mu}_{..} \qquad i = 1, 2, \ldots, a$$

$$\bar{\mu}_{i.} - \bar{\mu}_{k.}$$
 $i \neq k$

Main effects for factor 2:

$$\bar{\mu}_{.j} - \bar{\mu}_{..}$$
 $j = 1, 2, ..., b$

$$\bar{\mu}_{.j} - \bar{\mu}_{.\ell}$$
 $j \neq \ell$

Conditional effects:

$$\mu_{ij} - \mu_{kj}$$
 $\left\{ egin{array}{l} i
eq k \\ j = 1, 2, \dots, b \end{array}
ight.$ $\mu_{ij} - \mu_{i\ell}$ $\left\{ egin{array}{l} j
eq \ell \\ i = 1, 2, \dots, a \end{array}
ight.$

Interaction contrasts:

$$(\mu_{ij} - \mu_{kj}) - (\mu_{i\ell} - \mu_{k\ell}) = (\mu_{ij} - \mu_{i\ell}) - (\mu_{kj} - \mu_{k\ell})$$
$$= \mu_{ij} - \mu_{kj} - \mu_{i\ell} + \mu_{k\ell}$$

All of these contrasts are estimable when

$$n_{ij} > 0$$
 for all (i, j)

because

- $E(\bar{Y}_{ij.}) = \mu_{ij}$
- Any linear function of estimable functions is estimable

An effects model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

where

$$\epsilon_{ijk} \sim NID(0, \sigma^2)$$

$$i=1,2,\ldots,a$$

$$j = 1, 2, ..., b$$

$$k=1,2,\ldots,n_{ij}>0$$

$\begin{bmatrix} Y_{111} \end{bmatrix}$		1	1	0	1	0	0	1	0	0	0	0	0]	$\lceil \epsilon_{111} \rceil$
Y ₁₁₂		1	1	0	1	0	0	1	0	0	0	0	0	l r ,, ¬	ϵ_{112}
Y ₁₁₃		1	1	0	1	0	0	1	0	0	0	0	0	$\begin{bmatrix} \mu \\ \alpha \end{bmatrix}$	ϵ_{113}
Y_{121}		1	1	0	0	1	0	0	1	0	0	0	0	α_1	ϵ_{121}
Y ₁₂₂		1	1	0	0	1	0	0	1	0	0	0	0	$\left \begin{array}{c c} \alpha_2 \\ \beta \end{array}\right $	ϵ_{122}
Y ₁₃₁		1	1	0	0	0	1	0	0	1	0	0	0	$\begin{vmatrix} \beta_1 \\ \beta \end{vmatrix}$	ϵ_{131}
Y ₁₃₂		1	1	0	0	0	1	0	0	1	0	0	0	β_2	ϵ_{132}
Y ₂₁₁	=	1	0	1	1	0	0	0	0	0	1	0	0	β_3 +	ϵ_{211}
Y ₂₁₂		1	0	1	1	0	0	0	0	0	1	0	0	γ_{11}	ϵ_{212}
Y ₂₁₃		1	0	1	1	0	0	0	0	0	1	0	0	γ_{12}	ϵ_{213}
Y ₂₁₄		1	0	1	1	0	0	0	0	0	1	0	0	γ_{13}	ϵ_{214}
Y ₂₂₁		1	0	1	0	1	0	0	0	0	0	1	0	γ_{21}	ϵ_{221}
Y ₂₃₁		1	0	1	0	0	1	0	0	0	0	0	1	γ_{22}	ϵ_{231}
Y ₂₃₂		1	0	1	0	0	1	0	0	0	0	0	1	[γ ₂₃]	ϵ_{232}
Y ₂₃₃		1	0	1	0	0	1	0	0	0	0	0	1		$\left[\begin{array}{c}\epsilon_{233}\end{array}\right]$

The resulting restricted model is

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

where

$$\epsilon_{ijk} \sim \textit{NID}(0, \sigma^2) \quad \left\{ egin{array}{l} i = 1, \ldots, a \\ j = 1, \ldots, b \\ k = 1, \ldots, n_{ij} \end{array}
ight.$$

and

$$egin{array}{lll} lpha_a &=& 0 \\ eta_b &=& 0 \\ \gamma_{ib} &=& 0 \ \ \mbox{for all} \ \ i=1,\ldots,a \\ \gamma_{aj} &=& 0 \ \ \mbox{for all} \ \ j=1,\ldots,b \end{array}$$

We will call these the "baseline" restrictions.

				55
Soil				Туре
Type	Variety 1	Variety 2	Variety 3	Means
1	$\mu_{11} = \mu + \alpha_1$	$\mu_{12} = \mu + \alpha_1$	$\mu_{13} = \mu + \alpha_1$	$\mu + \alpha_1$
	$+\beta_1 + \gamma_{11}$	$+\beta_{2} + \gamma_{12}$		$+\frac{\beta_{1}+\beta_{2}}{3}$
				$+\frac{\gamma_{11}+\gamma_{12}}{3}$
2	$\mu_{21} = \mu + \beta_1$	$\mu_{22} = \mu + \beta_2$	$\mu_{23} = \mu$	
				$\mu + \frac{\beta_1 + \beta_2}{3}$
Var.				
means	$\mu + \frac{\alpha_1}{2} + \beta_1 + \frac{\gamma_{11}}{2}$	$\mu + \frac{\alpha_1}{2} + \beta_2 + \frac{\gamma_{12}}{2}$	$\mu + \frac{\alpha_1}{2}$	

Interpretation:

$$\mu = \mu_{ab} = E(Y_{abk})$$

the mean response when factor 1 is at level a and factor 2 is at level b.

$$\alpha_i = \mu_{ib} - \mu_{ab} = E(Y_{ibk}) - E(Y_{abk})$$

is a difference in mean responses between levels i and a of factor 1 when factor 2 is at its highest level.

Soil

				Soil
Soil				Type
Type	Variety 1	Variety 2	Variety 3	Means
1	$\mu_{11} = \mu + \alpha_1$	$\mu_{12} = \mu + \alpha_1$	$\mu_{13} = \mu + \alpha_1$	$\mu + \alpha_1$
	$+\beta_1 + \gamma_{11}$	$+\beta_2 + \gamma_{12}$		$+\frac{\beta_1+\beta_2}{3}$
				$+\frac{\gamma_{11}+\gamma_{12}}{3}$
2	$\mu_{21} = \mu + \beta_1$	$\mu_{22} = \mu + \beta_2$	$\mu_{23} = \mu$	
				$\mu + \frac{\beta_1 + \beta_2}{3}$
Var.				
means	$\mu + \frac{\alpha_1}{2} + \beta_1 + \frac{\gamma_{11}}{2}$	$\mu + \frac{\alpha_1}{2} + \beta_2 + \frac{\gamma_{12}}{2}$	$\mu + \frac{\alpha_1}{2}$	

Interpretation:

$$eta_j = \mu_{\mathsf{a}j} - \mu_{\mathsf{a}b} = \mathsf{E}(\mathsf{Y}_{\mathsf{a}jk}) - \mathsf{E}(\mathsf{Y}_{\mathsf{a}bk}) \quad \mathsf{for} j = 1, 2, \dots, b$$

is the difference in the mean responses for levels j and b of factor 2 when factor 1 is at its highest level.

				55
Soil				Type
Type	Variety 1	Variety 2	Variety 3	Means
1	$\mu_{11} = \mu + \alpha_1$	$\mu_{12} = \mu + \alpha_1$	$\mu_{13} = \mu + \alpha_1$	$\mu + \alpha_1$
	$+\beta_1 + \gamma_{11}$	$+\beta_{2} + \gamma_{12}$		$+\frac{\beta_{1}+\beta_{2}}{3}$
				$+\frac{\gamma_{11}+\gamma_{12}}{3}$
2	$\mu_{21} = \mu + \beta_1$	$\mu_{22} = \mu + \beta_2$	$\mu_{23} = \mu$	
				$\mu + \frac{\beta_1 + \beta_2}{3}$
Var.				
means	$\mu + \frac{\alpha_1}{2} + \beta_1 + \frac{\gamma_{11}}{2}$	$\mu + \frac{\alpha_1}{2} + \beta_2 + \frac{\gamma_{12}}{2}$	$\mu + \frac{\alpha_1}{2}$	

Interaction:

$$\gamma_{ij} = (\mu_{ij} - \mu_{ib}) - (\mu_{aj} - \mu_{ab})$$

$$= (\mu_{ij} - \mu_{aj}) - (\mu_{ib} - \mu_{ab})$$

Note that

$$\gamma_{ij} - \gamma_{i\ell} - \gamma_{kj} + \gamma_{k\ell} = \mu_{ij} - \mu_{i\ell} - \mu_{kj} + \mu_{k\ell}$$

for any (i,j) and (k,ℓ)

Soil

Matrix formulation:

$$\begin{bmatrix} Y_{111} \\ Y_{112} \\ Y_{113} \\ Y_{121} \\ Y_{122} \\ Y_{131} \\ Y_{132} \\ Y_{211} \\ Y_{212} \\ Y_{213} \\ Y_{214} \\ Y_{221} \\ Y_{231} \\ Y_{232} \\ Y_{233} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \beta_1 \\ \beta_2 \\ \gamma_{11} \\ \gamma_{12} \end{bmatrix} + \epsilon,$$

where $\mathbf{Y} \sim N(X\boldsymbol{\beta}, \sigma^2 I)$.

Least squares estimation: $\mathbf{b} = (X^T X)^{-1} X^T \mathbf{Y}$

$$\mathbf{b} = \begin{bmatrix} \hat{\mu} \\ \hat{\alpha}_1 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\gamma}_{11} \\ \hat{\gamma}_{12} \end{bmatrix} = \begin{bmatrix} n_{\bullet\bullet} & n_{1\bullet} & n_{\bullet1} & n_{\bullet2} & n_{11} & n_{12} \\ n_{1\bullet} & n_{1\bullet} & n_{11} & n_{12} & n_{11} & n_{12} \\ n_{\bullet1} & n_{11} & n_{\bullet1} & 0 & n_{11} & 0 \\ n_{\bullet2} & n_{12} & 0 & n_{\bullet2} & 0 & n_{12} \\ n_{11} & n_{11} & n_{11} & 0 & n_{11} & 0 \\ n_{12} & n_{12} & 0 & n_{12} & 0 & n_{12} \end{bmatrix}^{-1} \begin{bmatrix} Y_{\bullet\bullet\bullet} \\ Y_{1\bullet\bullet} \\ Y_{11\bullet} \\ Y_{\bullet2\bullet} \\ Y_{11\bullet} \\ Y_{12\bullet} \end{bmatrix}$$

$$=\begin{bmatrix} \bar{Y}_{23\bullet} \\ \bar{Y}_{13\bullet} - \bar{Y}_{23\bullet} \\ \bar{Y}_{21\bullet} - \bar{Y}_{23\bullet} \\ \bar{Y}_{22\bullet} - \bar{Y}_{23\bullet} \\ \bar{Y}_{11\bullet} - \bar{Y}_{13\bullet} - \bar{Y}_{21\bullet} + \bar{Y}_{23\bullet} \\ \bar{Y}_{12\bullet} - \bar{Y}_{13\bullet} - \bar{Y}_{22\bullet} + \bar{Y}_{23\bullet} \end{bmatrix}$$

Comments:

Imposing a set of restrictions on the parameters in the effects model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

to obtain a model matrix with full column rank.

- (i) Avoids the use of a generalized inverse in least squares estimation.
- (ii) Is equivalent to choosing a generalized inverse for

$$\mathbf{b} = (X^T X)^- X^T \mathbf{Y}$$

in the unrestricted effects model.

(iii) Restrictions must involve *non-estimable* quantities for the unrestricted *effects* model.

Baseline restrictions: (SAS)

$$egin{array}{lll} lpha_a &=& 0 \\ eta_b &=& 0 \\ \gamma_{ib} &=& 0 & ext{for all } i=1,\ldots,a \\ \gamma_{aj} &=& 0 & ext{for all } j=1,\ldots,b \end{array}$$

Baseline restrictions: (R)

$$egin{array}{lll} lpha_1 &=& 0 \\ eta_1 &=& 0 \\ \gamma_{i1} &=& 0 & ext{for all } i=1,\ldots,a \\ \gamma_{1i} &=& 0 & ext{for all } j=1,\ldots,b \end{array}$$

Σ -restrictions:

$$Y_{ijk} = \underline{\omega + \gamma_i + \delta_j + \eta_{ij}} + \epsilon_{ijk}$$

$$\kappa \qquad \qquad \mu_{ij} = E(Y_{ijk})$$

where

$$\epsilon_{ijk} \sim \textit{NID}(0, \sigma^2), \quad \sum_{i=1}^{a} \gamma_i = 0, \quad \sum_{j=1}^{b} \delta_j = 0$$

$$\sum_{i=1}^{a}\eta_{ij}=0$$
 for each $j=1,\ldots,b$

$$\sum_{i=1}^b \eta_{ij} = 0 \quad \text{ for each } i = 1, \dots, a$$

	Variety 1	Variety 2	Variety 3	Means
Soil	$\mu_{11} = \omega + \gamma_1$	$\mu_{12} = \omega + \gamma_1$	$\mu_{13} = \omega + \gamma_1$	$\bar{\mu}_{1.} = \omega + \gamma_1$
type 1	$+\delta_1+\eta_{11}$	$+\delta_{2} + \eta_{12}$	$+\delta_{3} + \eta_{13}$	
Soil	$\mu_{21} = \omega + \gamma_2$	$\mu_{22} = \omega + \gamma_2$	$\mu_{23} = \omega + \gamma_2$	$\bar{\mu}_{2.} = \omega + \gamma_2$
type 2	$+\delta_1 + \eta_{21}$	$+\delta_{2} + \eta_{22}$	$+\delta_3 + \eta_{23}$	
means	$\bar{\mu}_{.1} = \omega + \delta_1$	$\bar{\mu}_{.2} = \omega + \delta_2$	$\bar{\mu}_{.3} = \omega + \delta_3$	

Interpretation:

$$\omega = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \mu_{ij}$$

is the overall mean germination time, averaging across all soil types and all varieties used in this study.

	Variety 1	Variety 2	Variety 3	Means
Soil	$\mu_{11} = \omega + \gamma_1$	$\mu_{12} = \omega + \gamma_1$	$\mu_{13} = \omega + \gamma_1$	$\bar{\mu}_{1.} = \omega + \gamma_1$
type 1	$+\delta_1+\eta_{11}$	$+\delta_{2} + \eta_{12}$	$+\delta_{3} + \eta_{13}$	
Soil	$\mu_{21} = \omega + \gamma_2$	$\mu_{22} = \omega + \gamma_2$	$\mu_{23} = \omega + \gamma_2$	$\bar{\mu}_{2.} = \omega + \gamma_2$
type 2	$+\delta_1 + \eta_{21}$	$+\delta_{2} + \eta_{22}$	$+\delta_3 + \eta_{23}$	
means	$\bar{\mu}_{.1} = \omega + \delta_1$	$\bar{\mu}_{.2} = \omega + \delta_2$	$\bar{\mu}_{.3} = \omega + \delta_3$	

Interpretation:

$$\omega + \delta_j = \bar{\mu}_{.j}, \quad \delta_j = \bar{\mu}_{.j} - \bar{\mu}_{.i}$$

and

$$\delta_{j} - \delta_{k} = (\bar{\mu}_{.j} - \bar{\mu}_{..}) - (\bar{\mu}_{.k} - \bar{\mu}_{..})$$

= $\bar{\mu}_{.j} - \bar{\mu}_{.k}$

is the difference between mean germination times for varieties j and k, averaging across soil types.

	Variety 1	Variety 2	Variety 3	Means
Soil	$\mu_{11} = \omega + \gamma_1$	$\mu_{12} = \omega + \gamma_1$	$\mu_{13} = \omega + \gamma_1$	$\bar{\mu}_{1.} = \omega + \gamma_1$
type 1	$+\delta_1 + \eta_{11}$	$+\delta_{2} + \eta_{12}$	$+\delta_{3} + \eta_{13}$	
Soil	$\mu_{21} = \omega + \gamma_2$	$\mu_{22} = \omega + \gamma_2$	$\mu_{23} = \omega + \gamma_2$	$\bar{\mu}_{2.} = \omega + \gamma_2$
type 2	$+\delta_{1} + \eta_{21}$	$+\delta_{2} + \eta_{22}$	$+\delta_3 + \eta_{23}$	
means	$\bar{\mu}_{.1} = \omega + \delta_1$	$\bar{\mu}_{.2} = \omega + \delta_2$	$\bar{\mu}_{.3} = \omega + \delta_3$	

Similarly,

$$\gamma_1 - \gamma_2 = \bar{\mu}_{1.} - \bar{\mu}_{2.}$$

is the difference in the mean germination times for different soil types, averaging across varieties.

	Variety 1	Variety 2	Variety 3	Means
Soil	$\mu_{11} = \omega + \gamma_1$	$\mu_{12} = \omega + \gamma_1$	$\mu_{13} = \omega + \gamma_1$	$\bar{\mu}_{1.} = \omega + \gamma_1$
type 1	$+\delta_1+\eta_{11}$	$+\delta_{2} + \eta_{12}$	$+\delta_{3} + \eta_{13}$	
Soil	$\mu_{21} = \omega + \gamma_2$	$\mu_{22} = \omega + \gamma_2$	$\mu_{23} = \omega + \gamma_2$	$\bar{\mu}_{2.} = \omega + \gamma_2$
type 2	$+\delta_1 + \eta_{21}$	$+\delta_{2} + \eta_{22}$	$+\delta_3 + \eta_{23}$	
means	$\bar{\mu}_{.1} = \omega + \delta_1$	$\bar{\mu}_{.2} = \omega + \delta_2$	$\bar{\mu}_{.3} = \omega + \delta_3$	

For a model that includes the Σ -restrictions:

$$\eta_{ij} = \mu_{ij} - (\omega + \gamma_i + \delta_j)$$

is a deviation from an additive model. Then,

$$\eta_{ij} - \eta_{kj} - \eta_{i\ell} + \eta_{k\ell}$$

$$= \mu_{ij} - \mu_{kj} - \mu_{i\ell} + \mu_{k\ell}$$

Matrix formulation:

This uses the Σ -restrictions to obtain

$$\begin{array}{ll} \gamma_2 = -\gamma_1 & \delta_3 = -\delta_1 - \delta_2 \\ \eta_{21} = -\eta_{11} & \eta_{13} = -\eta_{11} - \eta_{12} \\ \eta_{22} = -\eta_{12} & \eta_{23} = -\eta_{13} = \eta_{11} + \eta_{12} \end{array}$$

Least squares estimation:

4□ → 4億 → 4 重 → 4 重 → 9 Q @

If restrictions are placed on *non-estimable* functions of parameters in the unrestricted *effects* model, then

• The resulting models are reparameterizations of each other.

•
$$\hat{\mathbf{Y}} = P_X \mathbf{Y}$$

• $\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = (I - P_X) \mathbf{Y}$
 $SSE = \mathbf{e}^T \mathbf{e} = \mathbf{Y}^T (I - P_X) \mathbf{Y}$
• $\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} = \mathbf{Y}^T P_X \mathbf{Y}$
 $SS_{\text{model}} = \mathbf{Y}^T (P_X - P_1) \mathbf{Y}$

are the same for any set of restrictions.

The solution to the normal equations

$$\mathbf{b} = (X^T X)^{-1} X^T \mathbf{Y}$$

and interpretations of the corresponding parameters will not be the same for all such sets of restrictions.

If you were to place restrictions on estimable functions of parameters in

$$Y_{ijk} = \mu + \alpha_1 + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

then you would change

- rank(X)
- space spanned by the columns of X
- $\hat{\mathbf{Y}} = X(X^TX)^-X^T\mathbf{Y}$ and OLS estimators of other estimable quantities.

Normal Theory Gauss-Markov Model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

Analysis of variance:

$$\mathbf{Y}^{T}\mathbf{Y} = \mathbf{Y}^{T}P_{\mu}\mathbf{Y} + \mathbf{Y}^{T}(P_{\mu,\alpha} - P_{\mu})\mathbf{Y} + \mathbf{Y}^{T}(P_{\mu,\alpha,\beta} - P_{\mu,\alpha})\mathbf{Y}$$
$$+ \mathbf{Y}^{T}(P_{X} - P_{\mu,\alpha,\beta})\mathbf{Y} + \mathbf{Y}^{T}(I - P_{X})\mathbf{Y}$$
$$= R(\mu) + R(\alpha|\mu) + R(\beta|\mu,\alpha) + R(\gamma|\mu,\alpha,\beta) + SSE$$

By Cochran's Theorem, these quadratic forms (or sums of squares) have independent chi-square distributions with 1, a-1, b-1, (a-1)(b-1), and $n_{\bullet\bullet}-ab$ degrees of freedom, respectively, (if $n_{ij}>0$ for all (i,j))

Define:

$$X_{\mu} = X_{\mu},$$
 $P_{\mu} = X_{\mu} (X_{\mu}^{T} X_{\mu})^{-1} X_{\mu}^{T}$

$$X_{\mu,\alpha} = [X_{\mu}|X_{\alpha}],$$
 $P_{\mu,\alpha} = X_{\mu,\alpha}(X_{\mu,\alpha}^T X_{\mu,\alpha})^- X_{\mu,\alpha}^T$

$$X_{\mu,\alpha,\beta} = [X_{\mu}|X_{\alpha}|X_{\beta}], \quad P_{\mu,\alpha,\beta} = X_{\mu,\alpha,\beta} \left(X_{\mu,\alpha,\beta}^{\mathsf{T}} X_{\mu,\alpha,\beta}\right)^{-} X_{\mu,\alpha,\beta}^{\mathsf{T}}$$

$$X = [X_{\mu}|X_{\alpha}|X_{\beta}|X_{\gamma}], \qquad P_X = X(X^TX)^-X^T$$

The following three model matrices correspond to reparameterizations of the same model:

$R(\mu) = \mathbf{Y}^T P_{\mu} \mathbf{Y}$ is the same for all three models

 $R(\mu, \alpha) = \mathbf{Y}^T P_{\mu, \alpha} \mathbf{Y}$ is the same for all three models and so is $R(\alpha | \mu) = R(\mu, \alpha) - R(\mu)$

г 1	1	1	0	1	0	٦
1	1	1	0	1	0	-
1	1	1	0	1	0	1
1	1	0	1	0	1	-
1	1	0	1	0	1	-
1	1	0	0	0	0	-
1	1	0	0	0	0	-
1	0	1	0	0	0	1
1	0	1	0	0	0	1
1	0	1	0	0		1
1	0	1	0	0	0	İ
1	0	0	1	0	0	İ
1	0	0	0	0	0	١
1	0	0	0	0	0	İ
1	ln	Λ	Λ	Λ	Λ	- 1

Γ	1	1 1	1 1	0	1 1	0 -
	1	1	1	0	1	0
l	1	1	0	1	0	1
l	1	1	0	1	0	1
l	1	1	-1	-1	-1	-1
l	1	1	-1	-1	-1	-1
1	1	-1	1	0	-1	0
1	1	-1	0	1	-1	0
1	1	-1	1	0	-1	0
İ	1	-1	1	0	-1	0
İ	1	-1	0	1	0	-1
l	1	-1	-1	-1	1	1
i	1	-1	-1	-1	1	1
L	1	-1	-1	-1	1	1 -
			4 🖂	N 4 4	B 🔺 B	苦 ト オ

 $R(\mu, \alpha, \beta) = \mathbf{Y}^T P_{\mu,\alpha,\beta} \mathbf{Y}$ is the same for all three models and so is $R(\beta|\alpha) = R(\mu, \alpha, \beta) - R(\mu, \alpha)$

 $R(\mu, \alpha, \beta, \gamma) = \mathbf{Y}^T P_X \mathbf{Y}$ is the same for all three models and so is $R(\gamma | \mu, \alpha, \beta) = R(\mu, \alpha, \beta, \gamma) - R(\mu, \alpha, \beta)$

35 / 85

Consequently, the partition

$$\mathbf{Y}^{T}\mathbf{Y} = \mathbf{Y}^{T}P_{\mu}\mathbf{Y} + \mathbf{Y}^{T}(P_{\mu,\beta} - P_{\mu})\mathbf{Y}$$

$$+\mathbf{Y}^{T}(P_{\mu,\alpha,\beta} - P_{\mu,\beta})\mathbf{Y}$$

$$+\mathbf{Y}^{T}(P_{X} - P_{\mu,\alpha,\beta})\mathbf{Y}$$

$$+\mathbf{Y}^{T}(I - P_{X})\mathbf{Y}$$

$$= R(\mu) + R(\beta|\mu) + R(\alpha|\mu,\beta) + R(\gamma|\mu,\alpha,\beta) + SSE$$

is the same for all three models.

By Cochran's Theorem, these quadratic forms (or sums of squares) have independent chi-square distributions with 1, b-1, a-1, (a-1)(b-1), and $n_{\bullet\bullet}-ab$ degrees of freedom, respectively, when $n_{ij}>0$ for all (i,j).

Using result 4.7, we have also shown earlier that

SSE =
$$\mathbf{Y}^T (I - P_X) \mathbf{Y}$$

= $\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (Y_{ijk} - \bar{Y}_{ij\bullet})^2$
 $\sim \chi^2_{n_{\bullet\bullet}-ab}$

What null hypotheses are tested by F-tests derived from such ANOVA tables (Type I sums of squares in SAS)?

$$R(\mu) = \mathbf{Y}^T P_1 \mathbf{Y}$$

$$= \mathbf{Y}^T P_1 P_1 \mathbf{Y}$$

$$= (P_1 \mathbf{Y})^T (P_1 \mathbf{Y})$$

$$= (\bar{Y}_{...} \mathbf{1})^T (\bar{Y}_{...} \mathbf{1}) = n_{...} \bar{Y}_{...}^2$$

$$rac{1}{\sigma^2} R(oldsymbol{\mu}) \sim \chi_1^2(\delta^2)$$
 and

$$F = \frac{R(\mu)}{SSE/(n_{\cdot \cdot} - ab)} \sim F_{(1,n_{\cdot \cdot} - ab)}(\delta^2)$$

where

$$\delta^{2} = \frac{1}{\sigma^{2}} \beta^{T} X^{T} P_{1} X \beta$$

$$= \frac{1}{\sigma^{2}} (\beta^{T} X^{T} P_{1}) (P_{1} X \beta)$$

$$= \frac{1}{\sigma^{2}} (P_{1} X \beta)^{T} (P_{1} X \beta)$$

For the carrot seed germination study:

$$P_{1}X\beta = \frac{1}{n_{..}}\mathbf{1}\mathbf{1}^{T}X\beta$$

$$= \frac{1}{n_{..}}\mathbf{1}[n_{..}, n_{1.}, n_{2.}, n_{.1}, n_{.2}, n_{.3}, n_{11}, n_{12}, n_{13}, n_{21}, n_{22}, n_{23}] \beta$$

$$= \frac{1}{n_{..}}\mathbf{1}\left(n_{..}\mu + \sum_{i=1}^{a} n_{i.}\alpha_{i} + \sum_{i=1}^{b} n_{.j}\beta_{j} + \sum_{i=1}^{a} \sum_{i=1}^{b} \gamma_{ij}\right)$$

The null hypothesis is

$$H_0: 0 = n_{..} \mu + \sum_{i=1}^{a} n_{i.} \alpha_i + \sum_{j=1}^{b} n_{.j} \beta_j + \sum_{i} \sum_{j} n_{ij} \gamma_{ij}$$

With respect to the cell means $E(Y_{ijk}) = \mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}$, this null hypothesis is

$$H_0: 0 = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{n_{ij}}{n_{..}} \mu_{ij}$$

Consider

$$R(\boldsymbol{\alpha}|\boldsymbol{\mu}) = \mathbf{Y}^T (P_{\mu,\alpha} - P_{\mu}) \mathbf{Y}$$

and

$$F = \frac{R(\alpha|\mu)/(a-1)}{MSE} \sim F_{(a-1,n..-ab)}(\delta^2)$$

Here,

$$\frac{1}{\sigma^2} R(\alpha|\mu) \sim \chi_{\mathsf{a}-1}^2(\delta^2)$$

where $a-1=\mathsf{rank}(X_{\mu,oldsymbol{lpha}})-\,\mathsf{rank}(X_{\mu})$ and

$$\delta^{2} = \frac{1}{\sigma^{2}} \beta^{T} X^{T} (P_{\mu,\alpha} - P_{\mu}) X \beta$$
$$= \frac{1}{\sigma^{2}} \left[(P_{\mu,\alpha} - P_{\mu}) X \beta \right]^{T} \left[(P_{\mu,\alpha} - P_{\mu}) X \beta \right]$$

For the general effects model for the carrot seed germination study:

$$P_{\mu,\alpha} X = X_{\mu,\alpha} (X_{\mu,\alpha}^T X_{\mu,\alpha})^- X_{\mu,\alpha}^T X = X_{\mu,\alpha} \begin{bmatrix} n_{..} & n_{1.} & n_{2.} \\ n_{1.} & n_{1.} & 0 \\ n_{2.} & 0 & n_{2.} \end{bmatrix}^-$$

$$= X_{\mu,lpha} \left[egin{array}{cccc} 0 & 0 & 0 & 0 \ 0 & rac{1}{n_{1.}} & 0 \ 0 & 0 & rac{1}{n_{2.}} \end{array}
ight] \, \left[egin{array}{cccc} \end{array}
ight]$$

Then, the first seven rows of $(P_{\mu,\alpha}-P_{\mu})X\beta$ are

$$\left[\mu + \alpha_{1} + \sum_{j=1}^{b} \frac{n_{1j}}{n_{1.}} (\beta_{j} + \gamma_{1j})\right] - \left[\mu + \sum_{i=1}^{a} \frac{n_{i.}}{n_{..}} \alpha_{i} + \sum_{j=1}^{b} \frac{n_{.j}}{n_{..}} \beta_{j} + \sum_{i} \sum_{j} \frac{n_{ij}}{n_{..}} \gamma_{ij}\right]$$

The last eight rows of $(P_{\mu,\alpha}-P_{\mu})X\beta$ are

$$\left[\mu + \alpha_2 + \sum_{j=1}^{b} \frac{n_{2j}}{n_{2.}} (\beta_j + \gamma_{2j})\right] - \left[\mu + \sum_{i=1}^{a} \frac{n_{i.}}{n_{..}} \alpha_i + \sum_{j=1}^{b} \frac{n_{.j}}{n_{..}} \beta_j + \sum_{i} \sum_{j} \frac{n_{ij}}{n_{..}} \gamma_{ij}\right]$$

4□ > 4□ > 4□ > 4□ > 4□ > 6

The null hypothesis is

$$H_0: lpha_i + \sum_{j=1}^b rac{n_{ij}}{n_{i.}} ig(eta_j + \gamma_{ij}ig)$$
 are all equal $(i=1,\ldots,a)$.

with respect to the cell means model,

$$\mu_{ij} = E(Y_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_{ij} ,$$

this null hypothesis is

$$H_0: \sum_{i=1}^{b} rac{n_{ij}}{n_{i.}} \ \mu_{ij}$$
 are all equal $(i=1,\ldots,a)$.

Comments:

For $R(\alpha|\mu)$,

- (i) $\sum_{j=1}^b \frac{n_{ij}}{n_{i.}} \; \mu_{ij}$ may not be equal for all $i=1,\ldots,a$, even though $\frac{1}{b} \sum_{j=1}^b \mu_{ij}$ are equal for all $i=1,\ldots,a$.
- (ii) $\sum_{j=1}^b \frac{n_{ij}}{n_{i.}} \mu_{ij}$ may be equal for all $i=1,\ldots,a$, even though $\frac{1}{b} \sum_{j=1}^b \mu_{ij}$ are not equal for some $i=1,\ldots,a$.

Consider $R(\beta|\mu,\alpha) = \mathbf{Y}^T (P_{\mu,\alpha,\beta} - P_{\mu,\alpha}) \mathbf{Y}$ and the corresponding F-statistic $F = \frac{R(\beta|\mu,\alpha)/(b-1)}{MSF} \sim F_{(b-1,n_{..}-ab)}(\delta^2)$

Here.

$$\frac{1}{\sigma^2}R(\beta|\mu,\alpha) \sim \chi^2_{\mathrm{rank}(\mathrm{X}_{\mu,\alpha,\beta})-\mathrm{rank}(\mathrm{X}_{\mu,\alpha})}(\delta^2)$$

$$[1+(a-1)+(b-1)]-[1+(a-1)]$$

$$=b-1 \text{ degrees of freedom}$$

and

$$\delta^2 = rac{1}{2\sigma^2} \Big[(P_{\mu,lpha,eta} - P_{\mu,lpha}) X oldsymbol{eta} \Big]^T \Big[(P_{\mu,lpha,eta} - P_{\mu,lpha}) X oldsymbol{eta} \Big]$$

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} A^{-1}B \\ I \end{bmatrix} [C - B^T A^{-1}B]^{-1} [-B^T A^{-1} | I]$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & C^{-1} \end{bmatrix} + \begin{bmatrix} I \\ -C^{-1}B^T \end{bmatrix} [A - BC^{-1}B^T]^{-1} [I | - BC^{-1}]$$

$$= \begin{bmatrix} W & -WBC^{-1} \\ -C^{-1}B^T W & C^{-1} + C^{-1}B^T WBC^{-1} \end{bmatrix}$$

where $W = [A - BC^{-1}B^T]^{-1}$

- 4 ロ ト 4 周 ト 4 ヨ ト - ヨ - り Q O

The null hypothesis is

$$H_0: \sum_{i=1}^{a} \frac{n_{ij}}{n_{.j}} (\beta_j + \gamma_{ij}) - \sum_{i=1}^{a} \frac{n_{ij}}{n_{.j}} \left(\sum_{k=1}^{b} \frac{n_{ik}}{n_{i.}} (\beta_k + \gamma_{ik}) \right) = 0$$

for all $j = 1, \ldots, b$

With respect to the cell means,

$$E(Y_{ijk}) = \mu_{ij},$$

this null hypothesis is

$$H_0: \sum_{i=1}^{a} \frac{n_{ij}}{n_{.j}} \ \mu_{ij} - \sum_{i=1}^{a} \frac{n_{ij}}{n_{.j}} \left(\sum_{k=1}^{b} \frac{n_{ik}}{n_{i.}} \ \mu_{ik} \right) = 0$$

for all
$$j = 1, 2, ..., b$$
.

Consider

$$R(\boldsymbol{\gamma}|\mu, \boldsymbol{lpha}, oldsymbol{eta}) = \mathbf{Y}^{T}[P_{X} - P_{\mu, lpha, eta}]\mathbf{Y}^{T}$$

and the associated F-statistic

$$F = \frac{R(\gamma|\mu,\alpha,\beta)/[(a-1)(b-1)]}{MSE}$$
$$\sim F_{(a-1)(b-1),n_{..}-ab}(\delta^2)$$

The null hypothesis is:

$$H_0: \ (\mu_{ij}-\mu_{i\ell}-\mu_{kj}+\mu_{k\ell})=(\gamma_{ij}-\gamma_{i\ell}-\gamma_{kj}+\gamma_{k\ell})=0$$
 for all (i,j) and (k,ℓ) .

Type I sums of squares

	Source					
	of		sums of	Mean		
	variat.	d.f.	squares	square	F	p-value
	Soil					
	types	a - 1 = 1	$R(\boldsymbol{\alpha} \boldsymbol{\mu}) = 52.5$	52.5	3.94	.0785
	Var.	b - 1 = 2	$R(\boldsymbol{\beta} \mu, \boldsymbol{\alpha}) = 124.73$	62.4	4.68	.0405
	vai.	D I - 2	$\mathcal{N}(\beta \mu,\alpha) = 124.73$	02.4	4.00	.0403
	Inter-					
	action	(a-1)(b-1)=2	$R(\boldsymbol{\gamma} \mu,\boldsymbol{\alpha},\boldsymbol{\beta}) = 222.76$	111.38	8.35	.0089
	Resid.	$n_{\bullet \bullet} - ab = 9$	$Y^{T}(I - P_{Y})Y = 120$	13.33		
			()			
-	Corr.					
	total	$n_{\bullet \bullet} - 1 = 14$	$Y^{T}(I - P_1)Y = 520$			
			. (1)			
	Corr.					
	for					
	the					
	mean	1	$R(\mu) = 3375$			

ANOVA Summary:

Sums of Squares	Associated null hypothesis
$R(\mu)$	$H_{0}: \mu + \sum_{i=1}^{a} \frac{n_{i.}}{n_{}} \alpha_{i} + \sum_{j=1}^{b} \frac{n_{.j}}{n_{}} \beta_{j}$ $+ \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{n_{ij}}{n_{}} \gamma_{ij} = 0 \left(\text{or } H_{0}: \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{n_{ij}}{n_{}} \mu_{ij} = 0 \right)$
$R(oldsymbol{lpha} \mu)$	$ extstyle H_0: lpha_i + \sum_{j=1}^b rac{n_{ij}}{n_{i.}}(eta_j + \gamma_{ij})$ are equal $\left(ext{or } extstyle H_0: \sum_{j=1}^b rac{n_{ij}}{n_{i.}} \mu_{ij} ext{ are equal} ight. ight)$
$R(oldsymbol{eta} \mu,oldsymbol{lpha})$	$H_0: \beta_j + \sum_{i=1}^a rac{n_{ij}}{n_{.j}} \gamma_{ij} = \sum_{i=1}^a rac{n_{ij}}{n_{.j}} \sum_{k=1}^b rac{n_{ik}}{n_{k.}} (\beta_k + \gamma_{ik})$ for all $j = 1, \ldots, b$
	$\left(\text{or } H_0: \sum_{i=1}^a \frac{n_{ij}}{n_{.j}} \mu_{ij} = \sum_{i=1}^a \frac{n_{ij}}{n_{.j}} \sum_{k=1}^b \frac{n_{ik}}{n_{i.}} \mu_{ik} \text{ for all } j = 1, \dots, b\right)$
$R(oldsymbol{\gamma} \mu,oldsymbol{lpha},oldsymbol{eta})$	$H_0: \gamma_{ij} - \gamma_{kj} - \gamma_{i\ell} + \gamma_{k\ell} = 0$ for all (i, j) and (k, ℓ)
	(or $H_0: \mu_{ii} - \mu_{ki} - \mu_{i\ell} + \mu_{k\ell} = 0$ for all (i, i) and (k, ℓ)

Associated null hypothesis

$$R(\mu) H_0: \mu + \sum_{i=1}^{s} \frac{n_{i.}}{n_{..}} \alpha_i + \sum_{j=1}^{b} \frac{n_{.j}}{n_{..}} \beta_j + \sum_{i=1}^{s} \sum_{j=1}^{b} \frac{n_{ij}}{n_{..}} \gamma_{ij} = 0$$

$$\left(\text{or } H_0: \sum_{i=1}^{s} \sum_{j=1}^{b} \frac{n_{ij}}{n_{..}} \mu_{ij} = 0 \right)$$

$$R(\beta|\mu)$$
 $H_0: \beta_j + \sum_{i=1}^a rac{n_{ij}}{n_{.j}} (lpha_j + \gamma_{ij})$ are equal for all $j=1,\ldots,b$
$$\left(ext{or } H_0: \sum_{i=1}^a rac{n_{ij}}{n_{.j}} \mu_{ij} ext{ are equal for all } j=1,\ldots,b
ight)$$

$$\begin{split} R(\boldsymbol{\alpha}|\boldsymbol{\mu},\boldsymbol{\beta}) &\qquad H_0: \sum_{j=1}^b \frac{n_{ij}}{n_{i.}} (\alpha_{ij} + \gamma_{ij}) = \sum_{j=1}^b \frac{n_{ij}}{n_{i.}} \sum_{k=1}^a \frac{n_{kj}}{n_{.j}} (\alpha_k + \gamma_{kj}) \text{ for all } i = 1,\dots, a \\ \left(\text{or } H_0: \sum_{j=1}^b \frac{n_{ij}}{n_{i.}} \mu_{ij} = \sum_{j=1}^b \frac{n_{ij}}{n_{i.}} \left[\sum_{k=1}^a \frac{n_{kj}}{n_{.j}} \mu_{kj} \right] \text{ for all } i = 1,\dots, a \right) \end{split}$$

$$R(\gamma|\mu, \alpha, \beta)$$
 $H_0: \gamma_{ij} - \gamma_{kj} - \gamma_{i\ell} + \gamma_{k\ell} = 0 \text{ for all } (i, j) \text{ and } (k, \ell)$
$$\left(\text{or } H_0: \mu_{ij} - \mu_{kj} - \mu_{i\ell} + \mu_{k\ell} = 0 \text{ for all } (i, j) \text{ and } (k, \ell) \right)$$

Type I sums of squares

Source of variat.	d.f.	sums of squares	Mean square	F	p-value
"Soils"	a - 1 = 1	$R(\boldsymbol{\alpha} \boldsymbol{\mu}) = 52.50$	52.5	3.94	.0785
"Var."	b - 1 = 2	$R(\boldsymbol{eta} \mu, oldsymbol{lpha}) = 124.73$	62.4	4.68	.0405
Inter- action	(a-1)(b-1)=2	$R(\boldsymbol{\gamma} \mu,\boldsymbol{lpha},\boldsymbol{eta})=222.76$	111.38	8.35	.0089
"Res."	$\Sigma\Sigma(n_{ij}-1)=9$	$\mathbf{Y}^T(I-P_X)\mathbf{Y}=120.00$	13.33		
Corr. total	n 1 = 14	$\mathbf{Y}^T(I-P_1)\mathbf{Y}=520.00$			
Source of variat.	d.f.	sums of squares	Mean square	F	p-value
	d.f.			F	p-value
	d.f. $b - 1 = 2$			F 3.50	p-value .0751
variat.		squares	square		
variat. "Var."	b - 1 = 2	squares $R(oldsymbol{eta} \mu)=93.33$	square 46.67	3.50	.0751
variat. "Var." "Soils" Inter-	b - 1 = 2 $a - 1 = 1$	squares $R(\boldsymbol{\beta} \boldsymbol{\mu}) = 93.33$ $R(\boldsymbol{\alpha} \boldsymbol{\mu},\boldsymbol{\beta}) = 83.90$ $R(\boldsymbol{\gamma} \boldsymbol{\mu},\boldsymbol{\alpha},\boldsymbol{\beta}) = 222.76$	square 46.67 83.90	3.50 6.29	.0751

Type II sums of squares: (SAS)

Source of variat.	d.f.	sums of squares	Mean square	F	p-value
"Soils"	a - 1 = 1	$R(\boldsymbol{\alpha} \boldsymbol{\mu},\boldsymbol{\beta}) = 83.90$	83.90	6.3	.0339
"Var."	b - 1 = 2	$R(\boldsymbol{eta} \mu, \boldsymbol{lpha}) = 124.73$	62.37	4.7	.0405
Inter- action	(a-1)(b-1)=2	$R(\boldsymbol{\gamma} \mu,\boldsymbol{lpha},\boldsymbol{eta})=222.76$	111.38	8.4	.0089
"Res."	$n_{ullet ullet} - ab = 9$	$\mathbf{Y}^T(I-P_X)\mathbf{Y}=120$	13.33		
Corr. total	$n_{ullet ullet} - 1$	$\mathbf{Y}^T (I - P_1)\mathbf{Y} = 520$			

Time to Carrot Seed Germination

Examine the soil type effect on time to germination for each variety:

Time to Germination

	Soil T	ype 1	Soil Type 2			
Variety	$ar{Y}_{ij}$	$S_{ar{Y}_{ii}}$	$ar{Y}_{2j.}$	$S_{ar{Y}_{2i}}$	t	<i>p</i> -value
j=1	9.0	2.11	16.0	1.83	-2.51	.0333
j = 2	14.0	2.58	31.0	3.65	-3.80	.0042
<i>j</i> = 3	18.0	2.58	13.0	2.11	1.50	.1679

- Time to germination for variety 2 is shorter in soil type 1.
- Time to germination for variety 1 may also be shorter in soil type 1.
- For variety 3 there is no significant difference in average germination times for the two soil types.

In the previous analysis:

$$\bar{Y}_{ij.} = \hat{\mu}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\gamma}_{ij}$$

is the OLS estimator (b.l.u.e.) for

$$\mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij},$$

where

$$S_{\bar{Y}_{ij.}} = \sqrt{\frac{MSE}{n_{ij}}}$$

for $i = 1, \ldots, a$, and $j = 1, \ldots, b$ and

$$t = \frac{Y_{1j.} - Y_{2j.}}{\sqrt{MSE(\frac{1}{n_{1j}} + \frac{1}{n_{2j}})}}$$

for $j = 1, \ldots, b$

Method of Unweighted Means

(Type III sums of squares in SAS when $n_{ij} > 0$ for all (i, j)).

Use the cell means reparameterization of the model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$
$$= \mu_{ij} + \epsilon_{ijk}$$

The model is

$$\mathbf{Y} = D\boldsymbol{\mu} + \boldsymbol{\epsilon}$$

The least squares estimator (b.l.u.e.) for μ is

$$\hat{\mu} = (D^T D)^{-1} D^T \mathbf{Y}$$

$$= \begin{bmatrix} n_{11}^{-1} & & & & \\ & n_{12}^{-1} & & & \\ & & n_{21}^{-1} & & \\ & & & n_{21}^{-1} & \\ & & & & n_{23}^{-1} \end{bmatrix} \begin{bmatrix} Y_{11} & & \\ Y_{12} & & \\ Y_{12} & & \\ Y_{21} & & \\ Y_{22} & & \\ Y_{23} & & \end{bmatrix}$$

$$= \begin{bmatrix} \bar{Y}_{11} \\ \bar{Y}_{12} \\ \bar{Y}_{13} \\ \bar{Y}_{21} \\ \bar{Y}_{22} \\ \bar{Y}_{23} \end{bmatrix}$$

Test the null hypothesis

$$H_0: \frac{1}{b} \sum_{j=1}^{b} \mu_{ij} = \frac{1}{b} \sum_{j=1}^{b} \mu_{2j} = \dots = \frac{1}{b} \sum_{j=1}^{b} \mu_{aj}$$

VS.

$$H_A: \frac{1}{b}\sum_{j=1}^b \mu_{ij} \neq \frac{1}{b}\sum_{j=1}^b \mu_{kj} \text{ for some } i \neq k$$

The OLS estimator (b.l.u.e.) for $\frac{1}{b}\sum_{i=1}^{b}\mu_{ij}$ is

$$ilde{Y}_{i..}=rac{1}{b}\sum_{i=1}^{b}ar{Y}_{ij.}$$

with

$$\textit{Var}(\tilde{Y}_{i..}) = \frac{1}{b^2} \sum_{j=1}^b \frac{\sigma^2}{n_{ij}} = \sigma^2 \bigg(\frac{1}{b^2} \sum_{j=1}^b \frac{1}{n_{ij}} \bigg)$$

Express the null hypothesis in matrix form: $H_0: C_1\mu = \mathbf{0}$, where

$$C_1 \mu = \left(\left[I_{a-1} \middle| -\mathbf{1}_{a-1} \right] \otimes \mathbf{1}_b^T \right) \mu$$

$$= \begin{bmatrix} \mathbf{1}_b^T & & -\mathbf{1}_b^T \\ & \mathbf{1}_b^T & & -\mathbf{1}_b^T \\ & & \ddots & \vdots \\ & & & \mathbf{1}_b^T - \mathbf{1}_b^T \end{bmatrix} \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1b} \\ \mu_{21} \\ \vdots \\ \mu_{2b} \\ \vdots \\ \mu_{ab} \end{bmatrix}$$

$$= \left[\begin{array}{c} \sum_{j} \mu_{1j} - \sum_{j} \mu_{aj} \\ \vdots \\ \sum_{j} \mu_{a-1,j} - \sum_{j} \mu_{aj} \end{array}\right]$$

Then

$$C_{1}\mathbf{b} = C_{1}(D^{T}D)^{-1}D^{T}\mathbf{Y} = \begin{bmatrix} \sum_{j} \bar{Y}_{1j.} - \sum_{j} \bar{Y}_{aj.} \\ \vdots \\ \sum_{j} \bar{Y}_{a-1,j.} - \sum_{j} \bar{Y}_{aj.} \end{bmatrix}$$

is the OLS estimator (b.l.u.e.) of $C_1\mu$, and

$$Var(C_{1}\mathbf{b}) = Var(C_{1}(D^{T}D)^{-1}D^{T}\mathbf{Y})$$

$$= C_{1}(D^{T}D)^{-1}D^{T}(\sigma^{2}I)D(D^{T}D)^{-1}C_{1}^{T}$$

$$= \sigma^{2}C_{1}(D^{T}D)^{-1}D^{T}D(D^{T}D)^{-1}C_{1}^{T}$$

$$= \sigma^{2}C_{1}(D^{T}D)^{-1}C_{1}^{T}$$

Compute

$$SS_{H_0} = (C_1 \mathbf{b} - \mathbf{0})^T [C_1 (D^T D)^{-1} C_1^T]^{-1} (C_1 \mathbf{b} - \mathbf{0})$$

$$= \mathbf{Y}^T D (D^T D)^{-1} C_1^T [C_1 (D^T D)^{-1} C_1^T]^{-1} C_1 (D^T D)^{-1} D^T \mathbf{Y}$$

Use result 4.7 to show

$$\frac{1}{\sigma^2} SS_{H_0} \sim \chi^2_{(a-1)}(\delta^2)$$

Check that

$$A\Sigma = \frac{1}{\sigma^2} D(D^T D)^{-1} C_1^T \Big[C_1 (D^T D)^{-1} C_1^T \Big]^{-1}$$
$$C_1 (D^T D)^{-1} D^T (\sigma^2 I)$$

is idempotent and that

$$a-1 = \mathsf{rank}(C_1(D^T D)^{-1}C_1^T)$$

Compute:

$$SSE = \mathbf{Y}^T (I - P_D) \mathbf{Y}$$

where

$$P_D = D(D^T D)^{-1} D^T$$

Use result 4.7 to show

$$rac{1}{\sigma^2} \textit{SSE} \sim \chi^2_{\Sigma\Sigma(\textit{n}_{ij}-1)}$$

Use result 4.8 to show that

$$SSE = \mathbf{Y}^T (I - P_D) \mathbf{Y}$$

 \nwarrow call this A_1

is distributed independently of

$$SS_{H_0} = \mathbf{Y}^T D(D^T D)^{-1} C_1^T [C_1(D^T D)^{-1} C_1^T]^{-1} C_1(D^T D)^{-1} D^T \mathbf{Y}$$

 \nwarrow call this A_2

Check that

$$A_{1}\Sigma A_{2} = A_{1}(\sigma^{2}I)A_{2}$$

$$= \sigma^{2}A_{1}A_{2}$$

$$= \sigma^{2}(I - P_{D})(D(D^{T}D)^{-1}C_{1}^{T}(C_{1}(D^{T}D)^{-1}C_{1}^{T})^{-1}C_{1}(D^{T}D)^{-1}D^{T}$$

$$= 0$$

This is true because $(I - P_D)D = 0$.

Then

$$F = \frac{SS_{H_0}/(a-1)}{SSE/_{(\Sigma\Sigma(n_{ii}-1))}} \sim F_{(a-1,\Sigma\Sigma(n_{ij}-1))}(\delta^2)$$

where

$$\delta^2 = \frac{1}{\sigma^2} \mu^T C_1^T \left[C_1 (D^T D)^{-1} C_1^T \right]^{-1} C_1 \mu$$

Reject

$$H_0: \frac{1}{b} \sum_{j=1}^{b} \mu_{1j} = \frac{1}{b} \sum_{j=1}^{b} \mu_{2j} = \dots = \frac{1}{b} \sum_{j=1}^{b} \mu_{aj}$$

if

$$F = \frac{SS_{H_0}/(a-1)}{SSE/(\Sigma\Sigma(n_{ij}-1))} > F_{(a-1,\Sigma\Sigma(n_{ij}-1))}, \alpha$$

or if

$$p$$
 - value $= Pr \left\{ F_{(a-1,\Sigma\Sigma(n_{ij}-1))} > F \right\}$

Test

$$H_0: \frac{1}{a} \sum_{i=1}^{a} \mu_{i1} = \frac{1}{a} \sum_{i=1}^{a} \mu_{i2} = \dots = \frac{1}{a} \sum_{i=1}^{a} \mu_{ib}$$

VS.

$$H_A: \frac{1}{a}\sum_{i=1}^a \mu_{ij} \neq \frac{1}{a}\sum_{i=1}^a \mu_{ik}$$
 for some $j \neq k$

Write the null hypothesis in matrix form as H_0 : $C_2\mu=\mathbf{0}$, where

$$C_2 = \mathbf{1}_a^T \otimes \left[I_{b-1} \middle| - \mathbf{1}_{b-1} \right]$$

then

$$C_{2}\mu = C_{2}\begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1b} \\ \mu_{21} \\ \vdots \\ \mu_{ab} \end{bmatrix} = \begin{bmatrix} \frac{1}{a} \sum_{i=1}^{a} \mu_{i1} - \frac{1}{a} \sum_{i=1}^{a} \mu_{ib} \\ \vdots \\ \frac{1}{a} \sum_{i=1}^{a} \mu_{i,b-1} - \frac{1}{a} \sum_{i=1}^{a} \mu_{ib} \end{bmatrix}$$

Compute

$$SS_{H_{0,2}} = \mathbf{Y}^T D(D^T D)^{-1} C_2^T [C_2(D^T D)^{-1} C_2^T]^{-1} C_2(D^T D)^{-1} D^T \mathbf{Y}$$

and reject H_0 if

$$F = \frac{SS_{H_{0,2}}/(b-1)}{SSE/_{(\Sigma\Sigma(n_{ij}-1))}} > F_{(b-1,\Sigma\Sigma(n_{ij}-1)),\alpha}$$

Test for Interaction:

Test

$$H_0: \mu_{ij} - \mu_{i\ell} - \mu_{kj} + \mu_{k\ell} = 0$$

for all (i, j) and (k, ℓ)

VS.

$$H_A: \mu_{ij} - \mu_{i\ell} - \mu_{kj} + \mu_{k\ell} \neq 0$$

for all (i, k) and $(j \neq \ell)$.

Write the null hypothesis in matrix form as

$$H_0: C_3 \mu = \mathbf{0}$$

where

$$C_3 = \left[I_{a-1} | -\mathbf{1}_{a-1} \right] \otimes \left[I_{b-1} | -\mathbf{1}_{b-1} \right]$$

Compute

$$\mathbf{b} = (D^T D)^{-1} D^T \mathbf{Y} = \begin{bmatrix} \bar{Y}_{11.} \\ \vdots \\ \bar{Y}_{ab.} \end{bmatrix}$$

$$SS_{H_{0,3}} = (C_3 \mathbf{b} - \mathbf{0})^T [C_3 (D^T D)^{-1} C_3^T]^{-1} (C_3 \mathbf{b} - \mathbf{0})$$

= $\mathbf{Y}^T D (D^T D)^{-1} C_3^T [C_3 (D^T D)^{-1} C_3^T]^{-1} C_3 (D^T D)^{-1} D^T \mathbf{Y}$

and reject H_0 if

$$F = \frac{SS_{H_{0,3}}/((a-1)(b-1))}{SSE/(\Sigma\Sigma(n_{ij}-1))}$$
$$> F_{((a-1)(b-1),\Sigma\Sigma(n_{ij}-1)),\alpha}$$

PROC GLM is SAS reports this as Type III sums of squares.

Source of variation	Sum of d.f.	Mean Squares	Square	F	<i>p</i> -value
Soils	a-1=1	$SS_{H_0} = 123.77$	123.77	9.28	.0139
Var.	b-1=2	$SS_{H_{0,2}} = 192.13$	96.06	7.20	.0135
Inter.	(a-1)(b-1)=2	$SS_{H_{0,3}} = 222.76$	111.38	8.35	.0089

Note that

$$\mathbf{Y}^{T} P_{1} \mathbf{Y} + \mathbf{Y}^{T} D (D^{T} D)^{-1} [C_{1} (D^{T} D)^{-1} C_{1}^{T}]^{-1} C_{1} (D^{T} D)^{-1} D^{T} \mathbf{Y}$$

$$+ \mathbf{Y}^{T} D (D^{T} D)^{-1} C_{2}^{T} [C_{2} (D^{T} D)^{-1} C_{2}^{T}]^{-1} C_{2} (D^{T} D)^{-1} D^{T} \mathbf{Y}$$

$$+ \mathbf{Y}^{T} D (D^{T} D)^{-1} C_{3}^{T} [C_{3} (D^{T} D)^{-1} C_{3}^{T}]^{-1} C_{3} (D^{T} D)^{-1} D^{T} \mathbf{Y}$$

$$+ \mathbf{Y}^{T} (I - P_{D}) \mathbf{Y}$$

do not necessarily sum to $\mathbf{Y}^T\mathbf{Y}$, nor do the middle three terms $(SS_{H_0}, SS_{H_0,2}, SS_{H_0,3})$ necessarily sum to

$$SS_{\text{model,corrected}} = \mathbf{Y}^T (P_D - P_1) \mathbf{Y}$$
,

nor are $(SS_{H_0}, SS_{H_0,2}, SS_{H_0,3})$ necessarily independent of each other.

Note that

$$SS_{H_0} = \sum_{i=1}^{a} w_i \left[\tilde{Y}_{i.} - \frac{\sum_{k=1}^{a} w_k \tilde{Y}_{k.}}{\sum_{k=1}^{a} w_k} \right]^2$$

where

$$\tilde{Y}_{i.} = \frac{1}{b} \sum_{j=1}^{b} \bar{Y}_{ij.}, \quad w_i = \left[\frac{1}{b^2} \sum_{j=1}^{b} \frac{a}{n_{ij}} \right]^{-1} = \sigma^2 \left[Var(\tilde{Y}_{i.}) \right]^{-1}$$

and $\tilde{Y}_{i.}$ is not necessarily equal to

$$\bar{Y}_{i.} = \frac{\sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} Y_{ijk}}{\sum_{j=1}^{b} n_{ij}} = \frac{\sum_{j=1}^{b} n_{ij} \bar{Y}_{ij.}}{\sum_{j=1}^{b} n_{ij}}$$

Furthermore,

$$SS_{H_0,2} = \sum_{j=1}^b w_j \left[\widetilde{Y}_{.j} - rac{\sum_{\ell=1}^a w_\ell \widetilde{Y}_{.\ell}}{\sum_{\ell=1}^a w_\ell}
ight]^2$$

where

$$\tilde{Y}_{.j} = \frac{1}{a} \sum_{i=1}^{a} \bar{Y}_{ij.} w_j = \left[\frac{1}{a^2} \sum_{i=1}^{a} \frac{a}{n_{ij}} \right]^{-1} = \sigma^2 \left[Var(\tilde{Y}_{.j}) \right]^{-1}$$

and $\tilde{Y}_{.j}$ is not necessarily equal to

$$\bar{Y}_{.j} = \frac{\sum_{i=1}^{a} \sum_{k=1}^{n_{ij}} Y_{ijk}}{\sum_{i=1}^{a} n_{ij}} = \frac{\sum_{i=1}^{a} n_{ij} \bar{Y}_{ij.}}{\sum_{i=1}^{a} n_{ij}}$$

Balanced factorial experiments

$$n_{ij} = n$$
 for $i = 1, \ldots, a, j = 1, \ldots, b$

Example 8.2: Sugar Cane Yields (from Snedecor and Cochran)

Nitrogem Level

	150 lb/acre	210 lb/acre	270 lb/acre
Variety 1	$Y_{111} = 70.5$	$Y_{121} = 67.3$	$Y_{131} = 79.9$
	$Y_{112} = 67.5$	$Y_{122} = 75.9$	$Y_{132} = 72.8$
	$Y_{113} = 63.9$	$Y_{123} = 72.2$	$Y_{133} = 64.8$
	$Y_{114} = 64.2$	$Y_{124} = 60.5$	$Y_{134} = 86.3$
Variety 2	$Y_{211} = 58.6$	$Y_{221} = 64.3$	$Y_{231} = 64.4$
	$Y_{212} = 65.2$	$Y_{222} = 48.3$	$Y_{232} = 67.3$
	$Y_{213} = 70.2$	$Y_{223} = 74.0$	$Y_{233} = 78.0$
	$Y_{214} = 51.8$	$Y_{224} = 63.6$	$Y_{234} = 72.0$
Variety 3	$Y_{311} = 65.8$	$Y_{321} = 64.1$	$Y_{331} = 56.3$
	$Y_{312} = 68.3$	$Y_{322} = 64.8$	$Y_{332} = 54.7$
	$Y_{313} = 72.7$	$Y_{323} = 70.9$	$Y_{331} = 66.2$
	$Y_{314} = 67.6$	$Y_{324} = 58.3$	$Y_{334} = 54.4$

For a balanced experiment $(n_{ij} = n)$, Type I, Type II, and Type III sums of squares are the same:

$$R(\alpha|\mu) = R(\alpha|\mu,\beta) = SS_{H_0}$$
$$= nb\sum_{i=1}^{a} (\bar{Y}_{i..} - \bar{Y}_{...})^2$$

$$R(\beta|\mu) = R(\beta|\mu, \alpha) = SS_{H_0,2}$$

= $n a \sum_{j=1}^{b} (\bar{Y}_{.j.} - \bar{Y}_{...})^2$

$$R(\gamma|\mu,\alpha,\beta) = SS_{H_{0,3}}$$

= $n\sum_{i=1}^{a}\sum_{j=1}^{b}(\bar{Y}_{ij.}-\bar{Y}_{i..}-\bar{Y}_{j..}+\bar{Y}_{...})^2$

ANOVA

Sum of Squares

Associated null hypothesis

$$R(\mu) = \mathbf{Y}^T P_1 \mathbf{Y}$$

$$= a b n \bar{Y}^2...$$

$$R(\alpha | \mu) = R(\alpha | \mu, \beta)$$

$$= n b \sum_{i=1}^{a} (\bar{Y}_{i..} - \bar{Y}_{...})^2$$

$$R(\beta | \mu) = R(\beta | \mu, \alpha)$$

$$= n a \sum_{i=1}^{b} (\bar{Y}_{i..} - \bar{Y}_{...})^2$$

$$H_0: \mu + \frac{1}{a} \sum_{i=1}^a \alpha_i + \frac{1}{b} \sum_{j=1}^b \beta_j + \frac{1}{ab} \sum_{i=1}^a \sum_{j=1}^b \gamma_{ij} = 0$$

$$\left(H_0: \frac{1}{ab} \sum_{i=1}^a \sum_{j=1}^b \mu_{ij} = 0\right)$$

$$H_0: \alpha_i + \frac{1}{b} \sum_{j=1}^b (\beta_j + \gamma_{ij}) \text{ are equal}$$

$$\left(H_0: \frac{1}{b} \sum_{j=1}^b \mu_{ij} \text{ are equal}\right)$$

$$H_0: \beta_j + \frac{1}{a} \sum_{i=1}^a (\alpha_i + \gamma_{ij}) \text{ are equal}$$

$$\left(H_0: \frac{1}{a} \sum_{i=1}^a \mu_{ij} \text{ are equal}\right)$$

$$R(\gamma|\mu,\alpha,\beta) = n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{Y}_{ij.} - \bar{Y}_{i..} - \bar{Y}_{.j.} + \bar{Y}_{...})^{2}$$

$$H_0: \gamma_{ij} - \gamma_{kj} - \gamma_{i\ell} + \gamma_{k\ell} = 0$$
 for all (i,j) and (k,ℓ)

$$\left(H_0: \mu_{ij} - \mu_{kj} - \mu_{i\ell} + \mu_{k\ell} = 0 \quad \text{ for all } (i,j) \text{ and } (k,\ell)\right)$$

Refer Slide7_r1.pdf and Slide7_ r2

Two factor experiments with empty cells:

Data from Littell, Freund, and Spector, 1991,

SAS System for Linear Models, 3rd edition, SAS Institute, Cary, N.C.

		Factor B	
Factor A	j = 1	j = 2	j = 3
	$Y_{111} = 5$	$Y_{121} = 2$	
	$Y_{112} = 6$	$Y_{122} = 3$	_
i = 1		$Y_{123} = 5$	
		$Y_{124} = 6$	
		$Y_{125} = 7$	
	$Y_{211} = 2$	$Y_{221} = 8$	$Y_{231} = 4$
	$Y_{212} = 3$	$Y_{222} = 8$	$Y_{232} = 4$
i = 2		$Y_{223} = 9$	$Y_{233} = 6$
			$Y_{234} = 6$
			$Y_{235} = 7$

Sample sizes:

Factor B

Factor A
$$j = 1$$
 $j = 2$ $j = 3$
 $i = 1$ $n_{11} = 2$ $n_{12} = 5$ $i = 2$ $n_{21} = 2$ $n_{22} = 3$ $n_{23} = 5$

Effects model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}, \text{ for } (i,j) \neq (1,3) \text{ and } k = 1, \dots, n_{ij}$$

$$\mu_{ij} = E(\bar{Y}_{ij.}) = \mu + \alpha_i + \beta_j + \gamma_{ij}$$

is estimable for all $(i,j) \neq (1,3)$.

Functions of parameters that are <u>not</u> estimable include:

$$\mu_{13} = \mu + \alpha_1 + \beta_3 + \gamma_{13}$$

$$\bar{\mu}_{..} = \frac{1}{6} \sum_{i=1}^{2} \sum_{j=1}^{3} \mu_{ij} = \mu + \frac{1}{2} (\alpha_1 + \alpha_2) + \frac{1}{3} (\beta_1 + \beta_2 + \beta_3) + \frac{1}{6} (\gamma_{11} + \gamma_{12} + \gamma_{13} + \gamma_{21} + \gamma_{22} + \gamma_{23}).$$

$$\bar{\mu}_{1.} = \frac{1}{3} \sum_{i=1}^{3} \mu_{1j}, \quad \bar{\mu}_{.3} = \frac{1}{2} (\mu_{13} + \mu_{23})$$

Two factor classifications with empty cells:

- No single best or correct analysis.
- Analysis of variance
 - ► Test for interaction is useful
 - ▶ Use SSE to estimate the error variance σ^2 .
 - ► Tests for *main effects* may not be meaningful, especially in the presence of interaction.
- Compute *F*-tests and sums of squares for meaningful contrasts.
- Compare estimated means for different combinations of factor levels.
- It may be most convenient to consider the various combinations of factor levels as levels of a single combined factor.
 - one-way ANOVA
 - contrasts
 - compare means

Refer Slide7_ r3