Lekcja 9: Indukcja drzew decyzyjnych

S. Hoa Nguyen

1 Material

- a) Algorytm indukcji drzewa decyzyjnych Buduj-drzewo (T,D)
 - **Krok 1**: Jeśli *Kryterium-stopu (T,D)* to utwórz liść *l*; wyznacz *l.kategoria*; *D* := *l*;
 - Krok 2: Wyznacz najlepszy test t;
 - Krok 3: Niech t dzieli zbiór $T = T_1 \cup T_2 \cup ... \cup T_k$;
 - Krok 4: Dla i = 1...k { Buduj-drzewo (T_i,D_i) ; $D.syn_i := D_i$ }
- b) Kryterium stopu i ustalenie etykiet
- c) Rodzaje testów
 - Dla atrybutów symbolicznych: testy tożsamościowe, testy równoś-
 - Dla atrybutów ciągłych i porządkowych: testy nierównościowe
- d) Kryterium wyboru testu
 - Przyrost informacji (Entropia)
- e) Kryterium przycinania drzewa
 - Przycinanie podczas tworzenia drzewa (Pre-pruning)
 - Przycinanie po utworzeniu drzewa (Post-pruning)
- f) Znane algorytmy indukcji drzew decyzyjnych *ID3 (dla atrybutów symbolicznych)* i *C45 (dla atrybutów mieszanych)*

2 Zadania podstawowe

Zadanie 1. W tablicy danych *Federer-Nadal-Results.xls* są wyniki pojedynek między dwoma czołowymi tenisistami świata. Zastosować drzewo decyzyjne do przewidywania wyniku meczu z następującymi parametrami [evening, master, hard].

- a) Proponować formę testu dla atrybutów.
- b) Wyznaczyć dla każdego atrybutu najlepszy test, zakładając, że rodzaj testu jest tożsamościowy i Entropia jest stosowana jako funkcja oceniająca jakości testu. A potem wyznaczyć najlepszy podział (test w korzeniu drzewa decyzyjnego).
- c) Przeprowadzić zbiór danych do odpowiedniego formatu systemu Weka, skonstruować drzewo decyzyjne i skorzystać tego drzewa do przewidywania wyniku meczu z następującymi parametrami [noc, master, hard].

Zadanie 2. Generowanie drzewa decyzyjnego

W systemie Weka otwórz plik o nazwie weather.arff. Wygeneruj drzewo decyzyjne dla standardowych wartościach parametrów. Dokonaj analizy struktury wygenerowanego drzewa. Odpowiedz na pytania:

- a) Jaka jest struktura drzewa? Liczba węzłów?, Liczba liści?, Ile jest możliwych ścieżek "decyzyjnych" wychodzących z korzenia drzewa? Jak wygląda zestaw warunków z najdłuższej ścieżki?
- b) Czy mechanizm przycinania drzewa (ang. *pruning*) dokonał jakichkolwiek modyfikacji struktury drzewa
- c) Jakie są wyniki klasyfikowania obiektów za pomocą drzewa? Jak odczytać poziom błędów z macierzy błędów (ang. confusion matrix)?

Zadanie 3. Klasyfikowanie nowych obiektów.

Dla drzewa wygenerowanego w zadaniu 2 dokonaj klasyfikowania nowych obiektów.

a) Dokonać klasyfikacji przykładów z niekompletnym opisem oraz później przykładów, dla których wartości atrybutów są nieprecyzyjne. Mogą to być przykłady charakteryzujące się następującym opisem:

\mathbf{x}	$\mathbf{Outlook}$	Temprature	Humidity	Windy
1	overcast	75	85	yes
2	sunny	_	_	no
3	sunny:0.7			tak:0.9
	overcast:0.2	75 - 80	80 - 85	nie:0.1
	rainy:0.1			
4	sunny:0.8			tak:0.7
	overcast:0.1	80 - 85	brak	nie:0.3
	rainy:0.1			

Zadanie 4. Poszukiwanie właściwego stopnia uproszczenia drzew klasyfikujących (2 punkty)

Celem zadania jest sprawdzenie, w jakim stopniu parametr sterujący przycinanie drzewa w algorytmie C4.5 wpływa na jego zdolności klasyfikacyjne. Ocena skuteczności klasyfikowania powinna być dokonywana za pomocą opcji walidacji krzyżowej (10-fold cross validation). Zaleca się wykonanie wykresów ilustrujących podstawowe zależności między badanymi parametrami. Do analizy wybierzemy plik cars.arff.

- a) Przeprowadzić serię eksperymentów oceny drzew decyzyjnych wygenerowanych systemem C4.5 zmieniając wartość parametru confidence factor od 0.1 do 0.8 z krokiem co 0.1 i sporządzić wykres zależności pomiędzy wartością zmienianego parametru a średnią trafnością (lub błędem)) klasyfikowania drzew pełnego i uproszczonego na zbiorze testującym
- b) Wykonaj także wykres ilustrujący zależność średniego błędu klasyfikacji w zależności od średniego rozmiaru drzewa.
- c) Przeprowadzić serię eksperymentów oceny skuteczności klasyfikacyjnej drzew decyzyjnych zmieniając w systemie C4.5 wartość parametru *Prepruning* (ograniczającym minimalną liczność przykładów w węźle) od 1 do 5 z krokiem co 1 i sporządzić wykres zależności pomiędzy wartością zmienianego parametru a średnim rozmiarem drzewa uproszczonego, średnią trafności (błędem) klasyfikowania drzewa uproszczonego na zbiorze testującym. Oceń, jak zmienia się wartość błędu klasyfikacji w zależności od zmiany tego parametru. Czy drzewo uproszczone powyższą techniką jest skuteczniejszym klasyfikatorem niż pełne drzewo?