S

දකුණු පළාත් අධනාපන දෙපාර්තමේන්තුව බුනු மாகாணக் கல்வித் திணைக்களம் Southern Provincial Department of Education

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය (නව විෂය නිර්දේශය) General Certificate (Adv. Level) Examination (New Syllabus)

පළමු වාර පරීකෂණය - 2022

13 ශේණිය

සංයුක්ත ගණිතය - I Combined Mathematics - I

පැය **03** 03 hours

(අමතර කියවීම් කාලය මිනිත්තු 10)

විභාග අංකය					ශුේණිය	
						-

නම

අයදුම්කරුවන් සඳහා උපදෙස් :-

★ මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

 ${f A}$ කොටස (පුශ්න 1 - 10) සහ ${f B}$ කොටස (පුශ්න 11 - 17)

⋆ A කොටස :

සියලුම පුශ්න සඳහා පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැකිය.

* Bකොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය, **B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාරදෙන්න.
- \star මෙම පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරිකෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

	(10) യായ്യയാ യാള	5000 I
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	

(10) සංයක්ත ඉණිතය I

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාෘ	ා ලකුණු
ඉලක්කමෙන්	
අකුරින්	

සංකේත අං	කය
උත්තර පතු පරීඤක	
පරීකෂා කළේ	1.
අධීකුෂණය කළේ	

${f A}$ කොටස

$x - \frac{4}{x}$	≤ 3 අසමා	නතාව සපුර	ාලන සියලු	ෘු තාත්වික	<i>x</i> හි අගයප	ත් සොයන්න	•		
•••••			•••••						
			•••••					•••••	
••••••		•••••	•••••				•••••	•••••	•••••
•••••			•••••		•••••		••••••	•••••	•••••
••••••									
			•••••						
•••••		••••••	•••••				•••••	•••••	•••••
•••••			•••••				•••••		•••••
			•••••					•••••	•••••
•••••			•••••						•••••
••••••		•••••••••	•••••				•••••	•••••	••••••
•••••		•••••••••	•	••••••	•••••	•••••	•••••	•••••	••••
gw <i>b</i> 30 1	භාවතයෙන්,	x - 3	$\leq 2 + x$	අසමානන	ාාව තෘප්ත	කරන x හි	සියලු තාත්	වික අගයන්	හි කුලඃ
	හාවතයෙන, න. ඒ නයිප				තාව තෘප්ත	කරන <i>x</i> හි	සියලු තාත්	වික අගයන්	හි කුලඃ
					තාව තෘප්ත	කරන <i>x</i> හි	සියලු තාත්	වික අගයන්	හි කුලඃ
					තාව තෘප්ත	කරන <i>x</i> හි	සියලු තාත්	වික අගයන්	හි කුලඃ
මසායන් 	න. ඒ නයිප	$ x + 3 \le x + 3 $	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	$ x \le x+3 \le x+3 $	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	$ x \le x+3 \le x+3 $	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	ವೆ, 2 x+3 ≤	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	ವೆ, 2 x+3 ≤	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	ವೆ, 2 x+3 ≤	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	$ x+3 \le x+3 \le x+3 $	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	$ x+3 \le x+3 \le x+3 $	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	5, 2 x+3 ≤	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	5, 2 x+3 ≤	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	ವೆ, 2 x+3 ≤	2-x විස	දන්න.					
මසායන් 	න. ඒ නයිප	ವೆ, 2 x+3 ≤	2-x විස	දන්න.					

03.	$\lim_{x \to 0} \frac{[(8+x)^{1/3}-2]}{x^2} \sin 2x = \frac{1}{6}$ බව මපන්වන්න.
)4.	$P=(4\cos\theta\ , 3\sin\theta\)$ ලක්ෂායෙහි දී $\frac{x^2}{16}+\frac{y^2}{9}=1$ ඉලිප්සයට අදිනු ලබන ස්පර්ශකයේ සමීකරණය
	$\frac{x}{4}\cos \theta + \frac{y}{3}\sin \theta = 1$ බව ලපන්වන්න.
	$\frac{x}{4}\cos \theta + \frac{y}{3}\sin \theta = 1$ බව පෙන්වන්න. P හි දී ඉහත ඉලිප්සයට අඳිනු ලබන අභිලම්බය $\left(0, -\frac{7}{6}\right)$ ලක්ෂාය හරහා යන පරිදි $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ හි අගර
	$\frac{x}{4}\cos \theta + \frac{y}{3}\sin \theta = 1$ බව පෙන්වන්න. P හි දී ඉහත ඉලිප්සයට අදිනු ලබන අභිලම්බය $\left(0, -\frac{7}{6}\right)$ ලක්ෂාය හරහා යන පරිදි $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ හි අගර
	$\frac{x}{4}\cos \theta + \frac{y}{3}\sin \theta = 1$ බව පෙන්වන්න. P හි දී ඉහත ඉලිප්සයට අඳිනු ලබන අභිලම්බය $\left(0, -\frac{7}{6}\right)$ ලක්ෂාය හරහා යන පරිදි $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ හි අගර
	$\frac{x}{4}\cos \theta + \frac{y}{3}\sin \theta = 1$ බව පෙන්වන්න. P හි දී ඉහත ඉලිප්සයට අඳිනු ලබන අභිලම්බය $\left(0, -\frac{7}{6}\right)$ ලක්ෂාය හරහා යන පරිදි $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ හි අගර
	$\frac{x}{4}\cos \theta + \frac{y}{3}\sin \theta = 1$ බව පෙන්වන්න. P හි දී ඉහත ඉලිප්සයට අඳිනු ලබන අභිලම්බය $\left(0, -\frac{7}{6}\right)$ ලක්ෂාය හරහා යන පරිදි $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ හි අගර
	$rac{x}{4}\cos\ heta+rac{y}{3}\sin\ heta=1$ බව පෙන්වන්න. P හි දී ඉහත ඉලිප්සයට අඳිනු ලබන අභිලම්බය $\left(0,-rac{7}{6} ight)$ ලක්ෂාය හරහා යන පරිදි $\theta\left(0<\theta<rac{\pi}{2} ight)$ හි අගර
	$\frac{x}{4}\cos \theta + \frac{y}{3}\sin \theta = 1$ බව පෙන්වන්න. P හි දී ඉහත ඉලිප්සයට අඳිනු ලබන අභිලම්බය $\left(0, -\frac{7}{6}\right)$ ලක්ෂාය හරහා යන පරිදි $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ හි අගර
	$\frac{x}{4}\cos \theta + \frac{y}{3}\sin \theta = 1$ බව පෙන්වන්න. P හි දී ඉහත ඉලිප්සයට අඳිනු ලබන අභිලම්බය $\left(0, -\frac{7}{6}\right)$ ලක්ෂාය හරහා යන පරිදි $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ හි අගර

05.	$\tan^{-1}(2x) - \cot^{-1}(3x) = \pi/4$ විසඳන්න.
06	$V = \frac{x}{x}$ වනුලෙන් ද $x = 3$ සරල ඉර්බාව හා x අත්සය මගින් ද ආවෘත
00.	$y = \frac{x}{\sqrt{x^2 + 9}}$ වකුයෙන් ද $x = 3$ සරල රේඛාව හා x අක්ෂය මගින් ද ආවෘත
	වූ පෙදෙස S යයි ගනිමු. (රූපය බලන්න.) x අක්ෂය වටා රේඩියන 2π
	වලින් S භුමණය කිරීමෙන් ජනනය වන ඝන වස්තුවේ පරිමාව 0 3 x
	$3~\pi\left(1-rac{\pi}{4} ight)$ බව පෙන්වන්න.
	4) 600 603,03,35.
	ක්ත ගණිතය - දකුණු පළාත 4 පිටුව

07.	අනුකුමණය -3 වූ l සරල රේඛාව, $\mathrm{A}(2,1)$ ලක්ෂාය හරහා ගමන් කරයි. B යනු AB දුර $3\sqrt{10}$ වන පරිදි l රේඛාව
	මත පිහිටි ලක්ෂායකි. ${ m B}$ ලක්ෂාය සඳහා තිබිය හැකි ඛණ්ඩාංක සොයන්න.
08	$x=2{ m t}^3$, $y=2$ - $4{ m t}+{ m t}^2$ මගින් දෙනු ලබන පරාමිතික වකුයට ඇඳි ස්පර්ශකවල අනුකුමණය -1 වන ලක්ෂායන්
00.	ංසායන්න.
	GC1C2121.

$y = x^2 $	· y 2 ws o						
•••••	•••••	•••••	••••••	•••••	•••••	•••••	
		•••••	•••••		•••••	•••••	
		•••••	••••••	•••••	•••••	•••••	
	••••	•••••	•••••	•••••	••••		
•••••	•••••	•••••	•••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••			••••••	•••••			•••••
				•••••			
•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
			•••••	•••••		•••••	•••••
			•••••				

•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
		•••••		••••	••••		
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
	x යන්න R co cos 2x - sin 2			ාශ කරන්න. මේ දන්න.	මහි R>0 හ	$0 < \alpha < \frac{\pi}{2}$	ෙ ව්.
					මහි R>0 හ	$0 < \alpha < \frac{\pi}{2}$	ම ව්.
					මහි R≥0 හ	$0 < \alpha < \frac{\pi}{2}$	වේ.
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස				
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් <u>J3</u>	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			
ඒ නයින් 13	cos 2x - sin 2	x+1=0 සමී	කරණය විස	දන්න.			

B කොටස

- ⋆ පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
- 11. (a) $k \neq 0$ යනු තාත්වික නියතයක් යයි ගනිමු. $2kx^2 + 12x + 2k 5 = 0$ යන වර්ගජ සමීකරණයට තාත්වික මූල ඇති බව දී ඇත. $2k^2 5k 18 \leq 0$ බව පෙන්වන්න. $k \supset$ තිබිය හැකි අගයන්හි උපරිමය හා අවමය සොයන්න. α හා β යනු $2kx^2 + 12x + 2k 5 = 0$ යන සමීකරණයේ මූල යයි ගනිමු.
 - 2(lpha+eta) හා 3lphaeta මුල වන වර්ගජ සමීකරණය සොයන්න.
 - (b) $f(x) = x^3 + px^2 + q$ හා $g(x) = x^3 + qx^2 p$ යයි ගනිමු. මෙහි p හා q තාත්වික සංඛාහ වේ. (x+2) යන්න f(x) හි සාධකයක් ද g(x) යන්න (x+1) න් බෙදූ විට ශේෂය -8 ක් ද බව දී ඇත. p හා q හි අගයන් සොයන්න.
 - ${f p}$ හා ${f q}$ හි මෙම අගයන් සඳහා f(x) ${f g}(x)$ හි අඩුතම අගය සොයන්න.
- 12. (a) $x \in \mathbb{R}$ සඳහා $f(x) = x^3 + 1$ හා g(x) = ax + b යැයි ගනිමු. මෙහි a හා b තාත්වික නියත වේ. f(g(0)) = 2 හා g(f(0)) = 3 බව දී ඇත. a හා b හි අගයන් සොයන්න. a හා b සඳහා මෙම අගයන් ඇතිව $g^{-1}(x)$ සොයන්න.
 - (b) සියළු $x \in \mathbb{R}$ සඳහා $x^4 + 3x^3 + 4x^2 + 3x + 1 = A(x^2 + 1)^2 + Bx(x^2 + 1) + Cx^2$ වන පරිදි A, B හා C නියතයන් හි අගයන් සොයන්න. එනයින්, $\frac{x^4 + 3x^3 + 4x^2 + 3x + 1}{x(x^2 + 1)^2}$ යන්න හින්න භාග වලින් ලියා දක්වන්න.
 - (c) x හා y සඳහා $2\log_9 x + \log_3 y = 3$ හා $2^{x+3} 8^{y+1} = 0$ යන සමගාමී සමීකරණය විසඳන්න.
 - (d) $A \equiv (0,3)$ ලක්ෂාය හරහා යන්නා වූ ද අනුකුමණය -2 ක් වූ ද l සරල රේඛාවේ සමීකරණය ලියා දක්වන්න. l රේඛාව, y = mx රේඛාව B ලක්ෂායේ දී හමුවේ. මෙහි $m \, (m \neq -2)$ යනු නියතයක් වේ. B හි ඛණ්ඩාංකය ඇසුරින් m සොයන්න. OAB තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට m ට තිබිය හැකි අගයන් සොයන්න. මෙහි O යනු මූල ලක්ෂාය වේ.
- 13. (a) $\cos A, \cos B, \sin A$ හා $\sin B$ ඇසුරෙන් $\cos (A+B)$ හා $\cos (A-B)$ ලියා දක්වන්න.

එනයින්,
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\,\cos\left(\frac{C-D}{2}\right)$$
 බව පෙන්වන්න.
$$\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\,\sin\left(\frac{C-D}{2}\right)\,$$
 බව අපෝහනය කරන්න.

- (b) $p \in R$ හා $f(x) = x^2 + (7 + p)x + p$ යයි ගනිමු. p හි ඕනෑම තාත්වික අගයන් සඳහා f(x) = 0 සමීකරණයට තාත්වික පුභින්න මූල 2 ක් තිබෙන බව පෙන්වන්න.
 - f(x) = 0 හි මූල දෙකෙහි අන්තරය අවම වන විට ${f p}$ හි අගය සොයන්න.
 - f(x) = 0 හි මූල දෙකෙහි අවම අන්තරය $2\sqrt{6}$ බව පෙන්වන්න.

g(x) යනු ඉහත සොයාගන්නා ලද p හි අගයට අනුරූප f(x) යයි ගනිමු. g(x) යන්න $g(x) = (x - a)^2 + b$ ආකාරයට ලියා දක්වන්න. a,b නිර්ණය කළ යුතු නියත වේ.

එනයින්, y = g(x) හි පුස්ථාරයේ ගුණ පුකාශ කරන්න.

y = g(x) හි දල සටහනක් අඳින්න.

- 14. (a) $x \neq -2$ සඳහා $f(x) = \frac{x+1}{(x+2)^2}$ යයි ගනිමු. f(x) හි වහුත්පන්නය වූ f'(x) යන්න $x \neq -2$ සඳහා $f'(x) = \frac{-x}{(x+2)^3}$ බව දී ඇත. f''(x) සොයන්න. f''(x), f(x) හි දෙවනි වහුත්පන්නය දක්වයි. ස්පර්ශෝන්මුඛ, හැරුම් ලක්ෂාය හා නතිවර්තන ලක්ෂාය දක්වමින් y = f(x) හි පුස්තාරයේ දල සටහනක් අඳින්න.
 - (b) O කේන්දුය වන වෘත්තාකාර වැවක් රූපයේ ආකාරයේ වේ. එහි අරය $2 \, \mathrm{km}$ වේ. එහි AB ජහායකි. AC විෂ්කම්භයක්ද වේ. AB දිගේ මිනිසෙකුට පිහිනිය හැකි නියත පුවේගය $2 \, \sqrt{3} \, \mathrm{kmh}^{-1}$ වේ.

B සිට C ට වැව් කණ්ඩිය දිගේ $4\ kmh^{-1}$ නියත පුවේගයකින් ගමන් කළ හැකිය.

 $\stackrel{\wedge}{\mathrm{BAC}}=\theta$ වේ. $\stackrel{\wedge}{\mathrm{A}}$ සිට $\stackrel{\wedge}{\mathrm{C}}$ දක්වා රූපයේ පරිදි යාමට ගතවන කාලය $\stackrel{\wedge}{\mathrm{T}}(\theta)$ පැය වලින් සොයන්න.

 $rac{dT}{d heta}$ හි ලකුණ පරීකෂා කිරීමෙන් සිට C ට යාමට ගතවන කාලය උපරිම වීමට අවශs heta හි අගය සොයන්න.

- 15. (a) සුදුසු ආදේශයක් හා කොටස් වශයෙන් අනුකලනය භාවිතයෙන් $\int\limits_{1}^{13} \frac{1}{x^2} \tan^{-1} \left(\frac{1}{x}\right) \mathrm{d}x$ අගයන්න.
 - (b) $\int (7^{2x}-3)^2 dx$ සෙවීම සඳහා $t=7^x$ යන ආදේශය යොදාගන්න.
 - (c) භින්න භාග භාවිතයෙන් අනුකලනය කරන්න.

$$\int \frac{(4x^3 + 2x^2 + 2x)}{x^4 - 1} \, \mathrm{d}x$$

(d) $\int\limits_a^b f(x) \, \mathrm{d}x = \int\limits_a^b f(a+b-x) \, \mathrm{d}x$ බව පෙන්වන්න. එමගින් පහත අනුකලනයන් අගයන්න.

$$\int_{1}^{6} \frac{\sqrt{7-x}}{\sqrt{x} + \sqrt{7-x}} \, \mathrm{d}x$$

16. $A \equiv (1,1)$ හා $B \equiv (5,9)$ යයි ගනිමු.

AB සරල රේඛාවේ සමීකරණය සොයා $C\equiv (4,2)$ ලක්ෂාය AB රේඛාව මත නොපිහිටන බව පෙන්වන්න.

C හරහා යන AB ට ලම්බ රේඛාව D ලක්ෂායේ දී AB ඡේදනය කරයි. D හි ඛණ්ඩාංක සොයා AD:DB=1:3 බව පෙන්වන්න.

තවද ADCE සෘජුකෝණාසුයක් වන පරිදි වූ E ලක්ෂායේ ඛණ්ඩාංක සොයන්න.

AB රේඛාවේ හා x+y=k රේඛාවේ ඡේදන ලක්ෂාය F යයි ගනිමු. F ලක්ෂාය හරහා යන AC රේඛාවට සමාන්තර රේඛාව E ලක්ෂාය හරහා යයි. k නියතයෙහි අගය සොයන්න.

- 17. (a) A,B හා C යනු තිකෝණයක කෝණ නම් $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ බව ඔප්පු කරන්න.
 - (b) $3-2\cos x-4\sin x-\cos 2x+\sin 2x=0$ සමීකරණයේ සාධාරණ විසඳුම ලබාගන්න.
 - (c) සුපුරුදු අංකනයට අනුව ඕනෑම ABC තිකෝණයක් සඳහා සයින හා කෝසයින නීති පුකාශ කරන්න. සුපුරුදු අංකනයට අනුව ABC තිකෝණයක් සඳහා $b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$ බව ඔප්පු කරන්න.
 - (d) $2\cos^2\theta 2\cos^22\theta = \cos 2\theta \cos 4\theta$ බව සාධනය කර $\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{2}$ බව අපෝහනය කරන්න.