Voltage converter

Patent number:

FR2686749

Publication date: .

1993-07-30

Inventor:

DERMOT O'SULLIVAN; ALFRED PEROL PHILIPPE;

ALAN WEINBERG

Applicant:

EUROP AGENCE SPATIALE (FR)

Classification:

- international:

H02M1/15; H02M7/5387; H02M7/5395

- european:

H02M7/48; H02M7/48L1; H02M7/5387

Application number: FR19930002212 19930226 Priority number(s): FR19930002212 19930226

Report a data error here

Abstract of FR2686749

The invention relates to a voltage converter intended to be used with a non-regulated voltage source. This converter includes a generator of non-regulated alternating current powered by the said non-regulated voltage source and powering, in series, the primary of a first transformer (T), the secondary of which feeds a load, and the secondary of a second transformer (T2), the primary of which is connected to a regulation circuit which is itself powered by the said non-regulated voltage source, in such a way that the primary of the second transformer (T2) exhibits, at its terminals, a regulation voltage which is a fraction of the voltage of the non-regulated voltage (VS) of the source (S).

Data supplied from the esp@cenet database - Worldwide

(à n'utiliser que pour les commandes de reproduction)

21) N° d'enregistrement national:

93 02212

(51) Int Cl⁵ : H 02 M 7/538, 7/539, 1/15

(12)

DEMANDE DE BREVET D'INVENTION

A1

- (22) Date de dépôt : 26.02.93.
- (30) Priorité :

- 71 Demandeur(s): AGENCE SPATIALE EUROPEENNE Organisation intergouvementale FR.
- 43 Date de la mise à disposition du public de la demande : 30.07.93 Bulletin 93/30.
- 56 Liste des documents cités dans le rapport de recherche: Le rapport de recherche n'a pas été établi à la date de publication de la demande.
- Références à d'autres documents nationaux apparentés :
- 172 Inventeur(s): O'Sullivan Dermot, Perol Philippe Alfred et Weinberg Alan.
- 73) Titulaire(s) :
- 74 Mandataire : Cabinet Claude Rodhain.

54 Convertisseur de tension.

57) L'invention concerne un convertisseur de tension destine à être utilisé avec une source de tension non régulée.

Ce convertisseur comporte un générateur de courant alternatif non régulé alimenté par ladite source de tension non régulée et alimentant en série le primaire d'un premier transformateur (T) dont le secondaire alimente une charge et le secondaire d'un deuxième transformateur (T2) dont le primaire est connecté à un circuit de régulation lui-même alimenté par ladite source de tension non régulée, de telle sorte que le primaire du deuxième transformateur (T2) présente à ses bornes une tension de régulation qui est une fraction de la tension de la source (S) de tension (V_s) non régulée.

FR 2 686 749 - A1

CONVERTISSEUR DE TENSION

5

10

15

20

25

35

L'invention a pour objet un convertisseur de tension destiné à être utilisé avec une source de tension non régulée.

la puissance conversion optimale de électrique entre une source de tension continue ou alternative et une source de tension régulée peut être réalisée avec un commutateur inverseur pour une source de tension continue ou bien un simple transformateur pour une source de courant alternative. Dans les deux cas, le rapport de tension du transformateur peut être optimisé pour correspondre au rapport de tension entre la sortie et l'entrée de manière à fournir la tension désirée sur la charge. Par contre, lorsque la tension d'entrée ou le courant de sortie varie par rapport à sa valeur nominale, l'ajustage en tension n'est conservé et il faut disposer d'une compensation pour maintenir la tension désirée en sortie. Ceci peut être réalisé de manière classique à l'aide d'un régulateur de tension additionnelle qui permet de maintenir constante la tension de sortie. Cependant, de tels convertisseurs présentent l'inconvénient de traiter toute la puissance électrique, ce qui correspond à une perte de rendement élevée.

La présente invention a pour objet un 30 convertisseur de tension ne présentant pas l'inconvénient précité.

L'invention concerne ainsi un convertisseur de tension destiné à être utilisé avec une source de tension non régulée, caractérisé en ce qu'il comporte un générateur de courant alternatif non régulé alimenté

par ladite source de tension non régulée et alimentant en série le primaire d'un premier transformateur (ou transformateur principal) dont le secondaire alimente deuxième charge et ·le secondaire d'un transformateur (ou transformateur auxiliaire) dont le primaire est connecté à un circuit de régulation luimême alimenté par ladite source de tension non régulée, de telle sorte que le secondaire du transformateur présente à ses bornes une tension de régulation qui est une fraction de la tension de la source de tension non réqulée.

5

10

15

20

25

30

35

De la sorte, le deuxième transformateur fournit juste la tension de courant nécessaire pour réaliser la compensation, et de ce fait il n'est pas nécessaire de commuter la totalité de la puissance du convertisseur ni d'agir sur la totalité de sa puissance.

Le circuit de régulation peut comporter un régulateur bi-directionnel et le générateur de courant alternatif non régulé peut comporter un pont inverseur présentant quatre commutateurs aux bornes desquelles sont respectivement connectées quatre diodes. convertisseur peut alors comporter deux commutateurs aux bornes desquelles sont respectivement connectées deux diodes et qui sont eux-mêmes connectés chacun à une borne du primaire du deuxième transformateur et synchronisme avec fonctionnent lesdits en commutateurs du pont inverseur. Le convertisseur peut comporter un dispositif de mesure de la tension aux bornes de la charge et un détecteur de 0 permettant d'actionner l'un ou l'autre des deux commutateurs du primaire du deuxième transformateur. Le régulateur bidirectionnel peut être en particulier un générateur de signaux en dents de scie.

Selon un mode de réalisation préféré, le premier transformateur comporte un deuxième secondaire

connecté en série avec le primaire du deuxième transformateur à travers un régulateur de commutation agencé pour contrôler la tension à ses bornes à une donnée. La valeur donnée peut avantageusement réglable entre une valeur nulle et une valeur maximale prédéterminée de telle sorte que la tension aux bornes du secondaire du deuxième transformateur puisse varier continuement entre une valeur positive et une valeur négative par rapport à la primaire tension aux bornes du du transformateur. Le régulateur de commutation peut comporter un pont redresseur à diodes.

5

10

15

20

35

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui va suivre donnée à titre d'exemple non limitatif, en liaison avec les dessins qui représentent:

- la figure 1, un schéma de principe d'un convertisseur de tension selon l'invention,
- la figure 2, un premier mode de réalisation d'un convertisseur de tension selon l'invention,
- la figure 3 étant un mode de réalisation préféré de la figure 2,
- la figure 4 est une variante de la figure 25 3,
 - la figure 5 est un schéma de principe d'un convertisseur de tension selon un mode de réalisation préféré de l'invention,
- la figure 6, un mode de réalisation du
 convertisseur de la figure 5, la figure 7, en constituant un mode de réalisation préféré.

Selon la figure 1, un générateur 1 de tension alternative est alimenté par une source de tension S délivre une tension V_S susceptible de varier entre une valeur minimale V_{MIN} et une valeur maximale V_{MAX} . La

5

10

15

20

25

30

35

tension $v_{\rm S}$ est appliquée à deux transformateurs ${\bf T}_1$ et T2, le primaire du transformateur principal T2 étant connecté en série avec le secondaire du transformateur auxiliaire T2. Le secondaire du transformateur principal T₁ alimente une charge CH à une tension V_{AV}. Le secondaire du transformateur T2 présente, à ses bornes, une tension V_S - V_{AV} . En choisissant V_{AV} = $(V_{MAX} + V_{MIN})/2$, la fonction de régulation consomme une puissance minimale pour cette valeur médiane (V_S = $V_{\lambda V}$). Lorsque la tension de la source de tension est supérieure à VAV, la fonction de régulation soustrait cette valeur en excès de manière à fonctionner en mode de récupération et à recycler la puissance excédentaire à la source S. Cette puissance excédentaire a pour valeur (V_S - V_{AV}) x I_{AV} , I_{AV} désignant le courant traversant les primaires des transformateurs \mathbf{T}_1 et \mathbf{T}_2 . Cette puissance est en général une faible fraction de la puissance V_{AV} x I_{AV} fournie par le transformateur T_1 en supposant que la source S fournisse la tension VS a ses variations limitées à des valeurs raisonnables données à + et - 25% de la valeur de VAV.

De la même manière, lorsque la tension V_S est inférieure à V_{AV} , la tension différentielle de la valeur absolue V_{AV} - V_S est fournie par le régulateur avec le courant I_{AV} de telle sorte que le convertisseur fonctionne en mode d'alimentation en fournissant une puissance additionnelle égale à $(V_{AV} - V_S) \times I_{AV}$.

En choissant $V_{\rm AV}$ à ladite valeur médiane entre $V_{\rm MIN}$ et $V_{\rm MAX}$, la puissance maximale qui est susceptible d'intéresser le convertisseur que ce soit en mode d'alimentation ou en mode de récupération est égale à $(V_{\rm MAX}-V_{\rm MIN})/2~I_{\rm AV}$.

La figure 2 représente un mode de réalisation de la figure 1, dans lequel régulateur est un convertisseur bi-directionnel dans lequel le générateur 1 présente un montage en pont. Le montage en pont met en oeuvre quatre interrupteurs S5, S6, S7, S8 aux bornes desquels sont connectées des diodes en inverse D5, D6, D7, D8. Le rôle du convertisseur est de maintenir constante la tension aux bornes de la charge CH lorsque la tension V_S de la source S varie. L_1 et C_1 représentent la self et le condensateur du filtre d'entrée de l'inverseur.

10

15

20

25

30

35

Le convertisseur bi-directionnel deux interrupteurs S1 et S2, en parallèle avec lesquels sont connectées des diodes D1 et D2 en inverse, ainsi qu'une self L, connectée entre le point milieu commun aux interrupteurs S1 et S2 et le point milieu du primaire du transformateur T2. Un condensateur (facultatif) est connecté entre le point milieu du primaire du transformateur T2 et la masse. convertisseur bi-directionnel étant ainsi connecté au point central de potentiel $V_{\mathbf{X}}$ du primaire transformateur T2, on réalise un étage de commutation de type push-pull, et dans ce but, les interrupteurs S3 et S₄ présentent en parallèle, des diodes en inverse D₃ et D₄ connectées entre les bornes extrêmes du primaire de T2 et la masse. La tension du secondaire du transformateur T2 est alors ajoutée ou soustraite à la tension d'alimentation V_S , ce qui permet à la tension primaire du transformateur T1 d'être augmentée ou diminuée de manière désirée de manière à obtenir une certaine régulation de la tension de charge V_{CH} aux bornes de la charge CH. Le rapport de transformation du transformateur T_1 est choisi de manière à fournir la tension de charge V_{CH} désirée lorsque la source de tension V_S est à sa valeur médiane égale à V_{AV} tel que défini ci-dessus.

Le mode de fonctionnement peut être alors décrit de la manière suivante.

On suppose tout d'abord que la tension V_S est supérieure à V_{AV} . Dans ce cas, la tension aux bornes du

primaire de T_1 tend à être trop élevée. Le convertisseur doit créer en synchronisme la commutation du pont (paires d'interrupteurs S_5 , S_6 ; S_7 , S_8), une tension V_S - V_{AV} aux bornes du secondaire du transformateur T_2 de telle sorte que la tension du primaire du transformateur T_1 soit maintenue à la valeur V_{AV} . Si l'on suppose qu'il existe un rapport k entre le nombre de tours de chacun des demi-primaires du transformateur T_2 , c'est-à-dire chaque moitié du bobinage de primaire en push-pull, et son secondaire qui est en série avec le primaire du transformateur T_1 , la tension V_X doit avoir une valeur maintenue égale k x $(V_S - V_{AV})$. On choisit k de telle sorte que, pour la plus faible valeur V_{MIN} de la tension V_S , on ait k x $(V_{AV} - V_{MIN}) \leq V_{MIN}$.

Etant donné que la tension V_S est supposée supérieure à $V_{\rm AV}$, la régulation est obtenue en faisant fonctionner le convertisseur en mode de recyclage, le point milieu de T_2 dans la source du convertisseur, et l'alimentation V_S étant la sortie. La topologie du convertisseur doit être telle que les interrupteurs S_1 et S_2 opèrent en modulation par largeur d'impulsion de manière à stocker de l'énergie dans la self L_2 lorsque S_2 est fermé et à restituer de l'énergie à l'entrée lorsque S_1 est fermée. Le courant circule alors depuis V_X vers V_S d'où un fonctionnement en mode de récupération.

Les interrupteurs S_3 et S_4 fonctionnent en synchronisme avec les paires S_5 et S_6 et S_7 , S_8 , et de telle sorte qu'il existe sur le secondaire de T_2 une tension qui se soustrait à V_S de manière à maintenir sur le primaire de T_1 une tension V_{AV} .

Lorsque la tension V_S est inférieure à $V_{\rm AV}$, la phase de l'interrupteur S_3 et S_4 est inversée par l'intermédiaire d'un détecteur de 0 et d'une porte de telle sorte que le schéma de régulation est inversé et

que la tension transformée qui est présente sur le secondaire du transformateur T_2 est maintenant une tension additive en série avec V_S . Le convertisseur fonctionne alors en mode de fourniture selon lequel les interrupteurs S_1 et S_2 sont modulés par largeur d'impulsion de manière à stocker de l'énergie L_2 lorsque l'interrupteur S_1 est fermé et permettra à l'énergie stockée d'être fournie au point milieu du transformateur T_2 lorsque l'interrupteur S_2 est fermé. Le courant fonctionne maintenant depuis V_S vers V_X , c'est-à-dire en mode d'alimentation.

5

10

15

20

25

30

35

La figure 3, montre un circuit de commande permettant de commander les interrupteurs S3 à S8 selon les modes de fonctionnement précités. On suppose que la tension V_{CH} de la charge est mesurée par un enroulement supplémentaire (non représenté) du transformateur T1. Cette valeur est comparée avec une valeur de référence et amplifiée par un amplificateur d'erreur A1 dont la sortie peut être négative ou positive selon que $\mathbf{V}_{\mathbf{S}}$ est supérieur ou inférieur à VAV. Le signal de sortie de A1 est utilisé pour commander directement le convertisseur bi-directionnel dans un mode de commande conductance. La détection de la polarité en sortie de l'amplificateur A₂ cascadé avec A₁ commande de passage par 0 constitué un détecteur amplificateur A3 dont la borne d'entrée non inverseuse est à la masse. L'amplificateur A3 présente un gain unitaire (contre-réaction par deux résistances valeur R₁ avec interposition d'une diode L'aplificateur A_3 permet de déterminer la phase à appliquer aux interrupteurs S3 et S4. Le changement de phase est obtenu en comparant la sortie du circuit de passage par 0 avec des signaux d'horloge carrés. Une diode Zener Z (ici de 12 V) est disposée en série entre et une entrée de deux portes OU la sortie de A₃ exclusives inverseuses 3 et 4 dont l'autre entrée

reçoit des signaux carrés en opposition de phase (sortie Q et Q du diviseur par deux 5). Le changement de phase intervient lorque le courant de régulation est égal à 0 et lorsque $V_X = 0$ Volt. L'amplificateur A_3 remplit également la fonction d'amplificateur de gain à unité (résistance R1; réaction) de manière à amplifier les signaux d'entrée positifs et négatifs Ceci permet de même gain. deux modes de fonctionnement automatiquement les précités.

5

10

15

20

25

30

35

De la sorte, lorsque la tension régulée est faible, la sortie de l'amplificateur d'erreur est positive, la sortie du circuit de passage par 0 est positive étant donné que la sortie de l'amplificateur A_3 est négative et actionne la logique de l'inversion de phase S_3 et S_4 . Cette action augmente le rapport cyclique de fonctionnement de fermeture de S_1 et par conséquent permet à la self L_2 de fournir au point milieu de tension V_X un courant proportionnel à la tension de sortie de l'amplificateur de manière à produire sur le secondaire de T_2 une tension qui s'ajoute à la tension d'entrée V_S .

Lorsque la tension régulée est élevée, la sortie de l'amplificateur d'erreur est négative, le circuit de passage par 0 à sa sortie est également négative, mais la sortie de l'amplificateur \mathbf{A}_3 devient positive en raison de la contre-réaction à travers la diode \mathbf{D}_{10} . La tension augmente le rapport cyclique de \mathbf{S}_1 et de la sorte la self \mathbf{L}_2 extrait du courant de \mathbf{V}_X de manière à produire la tension du secondaire du transformateur \mathbf{T}_2 qui se soustrait à la tension d'alimentation \mathbf{V}_S .

La sortie de l'amplificateur A_3 présente une diode D_{10} dont la cathode est connectée à l'entrée non inverseuse d'un amplificateur A_4 dont l'entrée inverseuse reçoit un signal en dents de scie. La sortie

de A_3 est ainsi comparée à ce signal de référence en dents de scie de manière à produire à sa sortie des signaux modulés en largeur d'impulsion, de manière à commander en alternance les interrupteurs S_1 et S_2 (inverseur 6).

5

10

15

20

25

30

35

La tension de sortie de l'amplificateur A2 est tout d'abord à sa valeur maximale positive étant donné que V_S a une faible valeur et demande un courant maximal de telle sorte que le convertisseur travaille en mode d'alimentation. Lorsque la valeur de V_S se rapproche de la valeur nominale, la sortie de A2 se rapproche de la valeur 0 et le cycle de fonctionnement diminue vers 0 et une énergie est fournie au point milieu de tension V_X du primaire du transformateur T_2 . Le courant positif dans la self L_2 tend à devenir égal à 0. La sortie de l'amplificateur d'erreur A1 change également de polarité et lorsque le courant atteint la valeur 0, la phase de S3 et S4 est inversée de telle sorte que la circulation du courant s'inverse. La tension $V_{\mathbf{Y}}$ tend à augmenter mais est contrôlée par le fait que l'appel de courant négatif à la sortie de A1 augmente, ce qui à son tour modifie progressivement le fonctionnement de S₁ et S₂ en modulation de largeur d'impulsion pour augmenter le courant négatif dans la jusqu'à ce qu'un nouveau Lo fonctionnement correspondant à la nouvelle valeur de Vs soit obtenu.

La figure 4 représente une variante simplifiée de la figure 3 dans laquelle l'inverseur fonctionne en push-pull et ne comporte que les interrupteurs S_6 et S_8 et leurs diodes D_6 et D_8 . Le fonctionnement en est par ailleurs, substantiellement identique au mode de réalisation de la figure 3.

Selon la figure 5, le secondaire du transformateur auxiliaire $T_{\hbox{\scriptsize A}}$ (correspondant au transformateur T_2 de la figure 1) de rapport de

transformateur N_A est en série avec un autre secondaire de rapport de transformateur N_M du transformateur principal T_M . Ils sont alimentés par un circuit de commande de commutation SVC (tension V_C).

5 .

10

15

20

25

30

35

La figure 6 représente un inverseur à pont convertisseur bi-directionnel un associé avec correspondant au principe de la figure 5. La source de tension continue V_S est hâchée par le circuit en pont comportant les interrupteurs S'1, S'2, S'3 et S'4 en parallèle desquels sont disposées les diodes en inverse D'1, D'2, D'3 et D'4. Le circuit en pont génère une tension alternative en signaux carrés entre les points A et B dont les valeurs de crête sont égales à ${
m V}_{
m S}$. Cette tension alternative est appliquée à la connexion en série du primaire du transformateur principal T_{M} et du secondaire de Ta. La tension à travers le primaire de T_M , qui est égale à V_M est, par conception, bien plus grande que celle à travers le secondaire principal du transformateur auxiliaire T_A . Par exemple $10V_M = V_A$. La tension du secondaire du transformateur $\mathbf{T}_{\mathbf{M}}$ ($\mathbf{L}_{\mathbf{M}}$, $\mathbf{V}_{\mathbf{M}})$ est choisie de manière à être approximativement égale à la moitié de la tension maximale de V_C. Etant donné que cette valeur maximale est égale à V_S l'interrupteur S'5 est ouvert, alors le rapport de transformation N_M du transformateur T_M approximativement à 1/2 et M_M V_M = 0,5 V_S .

La self L'2, l'interrupteur S'5, et la diode D'5 forment un régulateur. En contrôlant le modulateur à largeur d'impulsion PWM, commandant l'interrupteur S'5, la tension $V_{\rm C}$ à travers le condensateur C'2 peut être maintenue à une valeur donnée, ce qui fait que $V_{\rm C}$ peut varier entre une valeur égale à 0 lorsqu'un rapport cyclique est égal à 1 à une valeur $V_{\rm S}$ lorsque le rapport cyclique du régulateur VWM est égal à 0. En faisant varier la tension $V_{\rm R}$, aux bornes de C'2, la tension $V_{\rm R}$, aux bornes du primaire de $T_{\rm N}$ et du

secondaire de T_A en série entre A et B peut également varier entre 0 et V_S en négligeant la chute de tension dans les diodes $D^{"}_1$ à $D^{"}_4$ qui forment un pont redresseur. De cette sorte, la tension à travers le primaire du transformateur T_A peut varier d'une valeur positive jusqu'à une valeur nulle, puis ensuite une valeur négative par rapport à la tension à travers le transformateur T_M . Par conséquent, la tension primaire du transformateur T_M peut être augmentée ou diminuée selon la valeur de V_C conformément à l'équation n°5 cidessus.

La figure 7 représente un mode de réalisation de la figure 6 avec un convertisseur en push-pull dans lequel seuls les interrupteurs S'1, S'2 sont conservés.

15 En considérant seulement les valeurs en courant alternatif, on a :

$$V_{M} = V_{S} + V_{A} \tag{1}$$

$$N_{A} = N_{M}V_{M} - V_{C}$$
 (2)

$$N_{A}(V_{M} - V_{S}) = N_{M}V_{M} - V_{C}$$
soit

5

10

25

$$V_M = (N_A V_S - V_C) / (N_A - N_M)$$

d'où

$$V_{\underline{M}}/V_{S} = (N_{\underline{A}} - V_{\underline{C}}/V_{S}) / (N_{\underline{A}}-N_{\underline{M}})$$
 (3)

Posons $V_{M} = (1 + \triangle) V_{S}$ (4)

l'équation (3) devient :

30
$$\triangle = N_{M}/(N_{A} - N_{M}) - (V_{C}/V_{S})/N_{A} - N_{M})$$
 (5)

$$\Delta_{\text{MAX}} = N_{\text{M}} / (N_{\text{A}} - N_{\text{M}}) \tag{6}$$

soit
$$N_A = N_M (1 + \triangle_{MAX}) / \triangle_{MAX}$$
 (7)

pour $\triangle = 0$, on a la condition :

$$V_{C}'/V_{S} = N_{M}$$
 (8)

VC' désignant la tension de commande permettant d'obtenir la valeur nominale de VM, \triangle MIN

désigne la valeur de \triangle donnant à V_M sa valeur minimale, et en supposant $\triangle_{MIN} = - \triangle_{MAX}$, on déduit de l'équiation (6):

 V_C " désignant la tension de commande permettant d'obtenir la valeur minimale de V_M . Le rapport de transformation dépend de la valeur choisie par V_C " et \triangle_{MAX} .

Si par exemple \triangle MAX = 0,5 et V_C " = V_S , alors on déduit de l'équation (8):

15
$$N_{M} = 0.5$$
 et de l'équation (6):

$$N_{\lambda} = 0.5 (1 + 0.05) / 0.05 = 10.5$$

- Pour VM variant de \pm 5% autour d'une valeur nominale, le transformateur T_A transmet 5% de la puissance et le régulateur de tension V_C 10% de celleci, d'où une efficacité élevée.
- Le fonctionnement en est par ailleurs sensiblement identique au mode de réalisation de la figure 6.

REVENDICATIONS

5

15

30

- Convertisseur de tension destiné à être utilisé avec une source de tension non régulée, caractérisé en ce qu'il comporte un générateur de courant alternatif non régulé alimenté par ladite source de tension non régulée et alimentant en série le primaire d'un premier transformateur (T1) 10 : secondaire alimente une charge et le secondaire d'un deuxième transformateur (T2) dont le primaire est connecté à un circuit de régulation lui-même alimenté par ladite source de tension non régulée, de telle sorte que le secondaire du deuxième transformateur (T_2) présente à ses bornes une tension de régulation qui est une fraction de la tension de la source de tension non régulée.
- Convertisseur selon la revendication 1, caractérisé en ce que le circuit de régulation comporte 20 régulateur bi-directionnel et en générateur de courant alternatif non régulé comporte un pont inverseur présentant quatre commutateurs (55, 56, 57, 58) aux bornes desquelles sont respectivement connectées quatre diodes (D5, D6, D7, D8). 25
 - Convertiseur selon la revendication 2, caractérisé en ce qu'il comporte deux commutateurs (53, bornes desquelles sont respectivement connectées deux diodes (D1, D2) et qui sont eux-mêmes connectés chacun à une borne du primaire du deuxième transformateur (T_2) et fonctionnent en synchronisme avec lesdits quatre commutateurs du pont inverseur.
- Convertisseur selon la revendication 3, 35 caractérisé en ce qu'il comporte un dispositif de

mesure de la tension aux bornes de la charge et un détecteur de zéro permettant d'actionner l'un ou l'autre des deux commutateurs (53, 54) du primaire du deuxième transformateur (T_2) .

5

5. Convertisseur selon la revendication 3, caractérisé en ce que le régulateur bi-directionnel est un générateur de signaux en dents de scie.

10

6. Convertisseur selon la revendication 1, caractérisé en ce que le premier transformateur (T_1) comporte un deuxième secondaire connecté en série avec le secondaire du deuxième transformateur (T_2) à travers un régulateur de commutation agencé pour contrôler la tension à ses bornes à une valeur donnée Vc.

15

20

7. Convertisseur selon la revendication 6, caractérisé en ce que ladite valeur donnée est réglable entre une valeur 0 et une valeur maximale $V_{\mathbb{C}}$ de telle sorte que la tension aux bornes du secondaire du deuxième transformateur (T_2) puisse varier continuement entre une valeur positive et une valeur négative par rapport à la tension aux bornes du primaire du premier transformateur (T_1) .

25

8. Convertisseur selon une des revendications 6 ou 7, caractérisé en ce que le régulateur de commutation comporte un pont redresseur à diodes.

1/4

4/4

