Jerrold E. Marsden and Anthony J. Tromba

Vector CalculusFifth Edition

Chapter 6: The Change of Variables Formula and Applications of Integration

6.4 Improper Integrals

6.4 Improper Integrals

Key Points in this Section.

1. Improper integrals occur when either (a) the function being integrated is unbounded in an elementary region D or (b) the region itself is unbounded. In case (a), if $f:D\to\mathbb{R}$ is unbounded at parts of the boundary of D, then we find a sequence of smaller regions, say $D_{\eta,\delta}$ obtained by "backing off" by an amount η from the sides and δ from the top and bottom. Then we define

$$\iint_D f \, dA = \lim_{(\eta, \delta) \to (0, 0)} \iint_{D_{\eta, \delta}} f \, dA$$

if the limit exists. For y-simple regions,

$$\iint_{D_{\eta,\delta}} f \, dA = \int_{a+\eta}^{b-\eta} \int_{\phi_1(x)+\delta}^{\phi_2(x)-\delta} f(x,y) \, dy \, dx.$$

In case (b) one similarly finds a family of bounded regions expanding to the given region and again takes the limit of the integrals over the bounded regions. 2. **Fubini's Theorem.** If f is a function, satisfying $f \geq 0$, continuous except possibly on the boundary of a y-simple region D, and if the iterated (improper) integral

$$\int_{a}^{b} \int_{\phi_1(x)}^{\phi_2(x)} f(x, y) \, dy \, dx$$

exists, then f itself is integrable and $\iint_D f dA$ equals the iterated integral. Here, for each x,

$$g(x) = \int_{\phi_1(x)}^{\phi_2(x)} f(x, y) \, dy = \lim_{\alpha \to 0^+} \int_{\phi_1(x) + \alpha}^{\phi_2(x) - \alpha} f(x, y) \, dy,$$

and $\int_a^b g(x) dx = \lim_{\beta \to 0^+} \int_{a+\beta}^{b-\beta} g(x) dx$, as in one variable calculus. There is a similar statement for x-simple regions.

The subtlety here is that for positive functions, two $single\ limits$ can be replaced by one $double\ limit$. Exercise 18 shows that positivity of f is essential, or this result is not true.

Integrals impròpies

Cas 1: funció no fitada a la vora de la regió D

THEOREM 3: Fubini's Theorem Let D be an elementary region in the plane and $f \ge 0$ a function continuous except for points possibly on the boundary of D. If either of the integrals

$$\iint_{D} f(x, y) dA,$$

$$\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) dy dx, \quad \text{for } y\text{-simple regions}$$

$$\int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) dx dy \quad \text{for } x\text{-simple regions}$$

exist as improper integrals, f is integrable and they are all equal.

Integrals impròpies

Cas 2: funció no fitada en un punt aïllat (x_0, y_0) de l'interior de la regió D

$$D_{\delta} = D_{\delta}(x_0, y_0)$$

$$\lim_{\delta \to 0} \iint_{D \setminus D_{\delta}} f \, dA$$

Integrals impròpies

Cas 3: funció fitada en una regió D no fitada

$$D_1 \subset D_2 \subset \cdots \subset D_n \subset \cdots \subset D$$

$$\lim_{n\to\infty} D_n = D$$

$$\iint_D f(x,y) \, dx dy = \lim_{n \to \infty} \iint_{D_n} f(x,y) \, dx dy$$

Exercici

Demostrar que el valor de la integral gaussiana és

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

Passos:

- Calcular $\iint_{D_a} e^{-(x^2+y^2)} dx dy$ on D_a és el disc $x^2 + y^2 \le a^2$
- Fer el límit $a \to \infty$
- Fer la mateixa integral doble en un domini $D_a = [-a, a]^2$