1 Изоморфизм

Определение 1.1:

Изоморфизм - Пусть Σ - сигнатура, $\mathbf{A}=(A,I)$, $\mathbf{B}=(B,J)$ - универсальные алгебры сигнатуры Σ , тогда изоморфизм между \mathbf{A} и \mathbf{B} - это $h:\mathbf{A}\to\mathbf{B}$ - биективная функция, которая удовлетворяет следующему условию:

$$h(I(f_i)(a_1,...,a_n)) = J(f_i)(h(a_1),...,h(a_n))$$

для любых $a_1,...,a_n$ и $f_i \in \Sigma$

Пример 1.1:

Пример изоморфизма: пусть $\Sigma=(f^{(2)}),\ \mathbf{A}=(\mathbb{R},+),\ \mathbf{B}=(\mathbb{R},\cdot)$ Надо доказать:

$$h(a_1 + a_2) = h(a_1) \cdot h(a_2)$$

 $a_1, a_2 \in \mathbb{R}$

Пусть $h(x) = e^x$, тогда

$$h(a_1 + a_2) = e^{a_1 + a_2} = e^{a_1} \cdot e^{a_2} = h(a_1) \cdot h(a_2) \blacksquare$$

Теорема 1.1. h - изоморфизм между A и B, то h^{-1} - изоморфизм между B и A

Proof. пусть $b_1, ..., b_{n_i} \in B$, тогда надо доказать

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i}))$$

Так как $b_1 = h(a_1), ..., b_{n_i} = h(a_{n_i}),$

$$I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i})) = I(f_i)(h^{-1}(h(a_1)),...,h^{-1}(h(a_{n_i}))) = I(f_i)(a_1,...,a_{n_i})$$

По определению изоморфизма

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = h^{-1}(h(I(f_i)(a_1,...,a_{n_1}))) = I(f_i)(a_1,...,a_{n_1})$$

Из этих двух равенств следует то, что надо доказать

Определение 1.2:

Системы, между которыми существует изоморфизм называют **изо**морфными

$$\mathbf{A} \simeq \mathbf{B}$$

операции в изоморфных системах обладают одними и теми же свойствами

1

Определение 1.3:

 $t(x_1,...,x_n)$ - терм t не содержит других переменных кроме $x_1,...,x_n$

Определение 1.4:

Пусть **A** - алгебра, $a_1, ..., a_n$ - элементы алгебры **A**, тогда

$$t(a_1,...,a_n) = \sigma(t), \sigma(x_1) = a_1,...,\sigma(x_n) = a_n$$

Теорема 1.2. h - изоморфизм между $\mathbf{A} = (A, I)$ и $\mathbf{B} = (B, J)$, то для любого терма $t(x_1, ..., x_n)$ и любых $a_1, ..., a_n$ выполняется

3.
$$t = f(t_1, ..., t_k)$$

$$h(t^{\mathbf{A}}(a_1, ..., a_n)) = h(I(f)(t_1^{\mathbf{A}}(a_1, ..., a_n), ..., t_k^{\mathbf{A}}(a_1, ..., a_n))) = J(f)(h(t_1^{\mathbf{A}}(a_1, ..., a_n)), ..., h(t_k^{\mathbf{A}}(a_1, ..., a_n))) = J(f)(t_1^{\mathbf{B}}(h(a_1), ..., h(a_n)), ..., t_k^{\mathbf{B}}(h(a_1), ..., h(a_n)) = t^{\mathbf{B}}(h(a_1), ..., h(a_n))$$

Пример 1.2:

Доказать что $\mathcal{A} = (\mathbb{R}; \cdot) \ncong \mathcal{B} = (\mathbb{R}^+; \cdot)$

Proof. Предположим что существует изоморфизм $h: \mathcal{A} \to \mathcal{B},$ тогда $h(0) = x, x \in \mathbb{R}^+$

$$x = h(0) = h(0 \cdot 0) = h(0) \cdot h(0) = x^{2}$$

 $x = x^{2} \Rightarrow x = 1$

$$h(1) = y, y \in \mathbb{R}^+$$

$$y = h(1) = h(1 \cdot 1) = h(1) \cdot h(1) = y^{2}$$

 $y = y^{2} \Rightarrow y = 1$

h(0) = 1 = h(1) - противоречие (h не биективна). Утверждение не верно. \Box

Пример 1.3:

Доказать что $\mathcal{A} = (\mathbb{R}; +) \not\cong \mathcal{B} = (\mathbb{R}; \cdot)$

Proof. Предположим что существует изоморфизм
$$h: \mathcal{B} \to \mathcal{A}$$
, тогда $h(0) = x, h(1) = y; x, y \in \mathbb{R}$