Lab 1: Expressions, Statements, and Control structures

Name: University Number:		
Exercise 1: Surface Area and Volume of a Hexagonal Pyramid		
AIM:		
Write a Python program that prompts the user for side length l of the base and height h in cm of hexagonal pyramid (i.e. a pyramid with a hexagonal base and six isosceles triangular faces the intersect at the apex), computes the surface area A and volume V of the pyramid using the formula		
$A = 3l(\sqrt{3}l + \sqrt{3l^2 + 4h^2})/2$ and $V = \sqrt{3}hl^2/2$, and finally outputs the results. Here are the sampling input and output of this program:		
Enter the side length 1 of the base of the pyramid in cm: 3		
Enter the height h of the pyramid in cm: 4		
The surface area of the pyramid is 66.3099499659424 cm^2.		
The volume of the pyramid is 31.17691453623979 cm^3.		
ALGORITHM:		
PROGRAM:		

PHYS2160	Introductory Computational Physics	2022 Spring
OUTPUT:		

Exercise 2: Operation of Two Integers

AIM:

Write a Python program that prompts for two integer operands and one of the binary operators +, -, *, /, or % from the user, performs the operation on the operands with the operator using an if-elif-else statement, and finally prints the result. Your program should check whether the input operator is valid. Here are the sample input and output of this program:

```
Enter the integer A: 5
Enter the integer B: 4
Enter a binary operator (+,-,*,/,%): +
5 + 4 = 9
Enter the integer A: 2
Enter the integer B: 3
Enter a binary operator (+,-,*,/,%): =
Invalid input. The operator must be one of the followings: +,-,*,/,%.
ALGORITHM:
PROGRAM:
```

PHYS2160	Introductory Computational Physics	2022 Spring
OUTPUT:		

Exercise 3: Taylor Series of $x(1+x^2)^{1/2}$

AIM:

Write a Python program that prompts for a real number x in the open interval (-1, 1) and a positive integer n from the user, computes the sum of the first n terms of the Taylor series

$$x\sqrt{1+x^2} = \sum_{i=0}^{n-1} \frac{(-1)^{i-1}(2i)!}{4^i(i!)^2(2i-1)} x^{2i+1}$$

for any $x \in (-1, 1)$ using a for loop, and finally output the result. Your program should check whether the user input is valid. Here are the sample input and output of this program:

```
Enter a real number x in (-1, 1): 0.6

Enter a positive integer n: 5

The sum of first 5 terms of the Taylor series of x*(1+x^2)^(1/2)

for x = 0.6 is 0.6996359400000001

Enter a real number x in (-1, 1): 2.2

Enter a positive integer n: 7

Invalid input. x must have absolute value less than 1!

Enter a real number x in (-1, 1): -0.9

Enter a positive integer n: -5

Invalid input. n must be a positive integer!
```

ALGORITHM:

PROGRAM:		

PHYS2160	Introductory Computational Physics	2022 Spring
OUTPUT:		

Exercise 4: Greatest Common Divisor

AIM:

The Greatest Common Divisor (GCD) of two integers is the largest positive integer that divides both of them without leaving a remainder. An efficient way for finding the GCD of two natural numbers (i.e. non-negative integers) is the Euclidean algorithm which works as follows:

- (a) If one of the numbers is zero, then the GCD is the other number and we can stop.
- (b) Compute the remainder of the larger number divided by the smaller one and then replace the larger number by the remainder
- (c) Repeat step (b) until the remainder is zero. The GCD is the larger number in this case.

Write a Python program that prompts the user for two natural numbers, find their GCD with the Euclidean algorithm using a while loop, an if-else statement, and if-elif-else statements, and finally outputs the result. Your program should check whether the user input is valid. Here are the sample input and output of this program:

Enter a natural number x: 168
Enter another natural number y: 180
The GCD of 168 and 180 is 12
Enter a natural number x: 25
Enter another natural number y: -10
Invalid input. Both x and y must be integers $>= 0!$
Enter a natural number x: 18
Enter another natural number y: 18
Invalid input. x and y must be different numbers!
ALGORITHM:
PROGRAM:

PHYS2160	Introductory Computational Physics	2022 Spring
OUTPUT:		

Exercise 5: Displaying a Number Pattern

Δ	IM	•
1 A	TIAT	٠

Write a Python program that prompts the user for a line number n which is a positive integer < 10 and then displays a number pattern of 2n-1 lines with the following format:

using nested for loops. Your program should check whether the input value of n is valid.

ALGORITHM:		
PROGRAM:		

PHYS2160	Introductory Computational Physics	2022 Spring
OUTPUT:		