

FIG. S1. HEMF production capacity of the $adh1\Delta$ mutant of various S. cerevisiae strains. The ADH1 gene-deletion in X2180 (provided by the American Type Culture Collection as ATCC26109) and Kyokai no. 7 (provided by the Brewing Society of Japan) were performed in the same way as that in BY4743 using primers listed in Table S1. The HEMF production capacities of the resulting deletion mutants were determined. The light gray box shows the result for each wild type strain; black box shows the result for each $adh1\Delta$ mutant. The bars indicate the standard deviations of four independent experiments.

0 mM22.5 mM 100 mM BY4743 YPD X2180 medium Kyokai no.7 S. cerevisiae BY4743 **HEMF** production X2180 medium Kyokai no.7 NBRC1130 NBRC0506 YPD NBRC0740 medium **Z**3 Z. rouxii NBRC1130 **HEMF** NBRC0506 production NBRC0740 medium **Z**3

Acetaldehyde concentrations

FIG. S2. The coexistence of acetaldehyde and HEMF production medium components influences the growth of the yeast cells. The yeast cells were precultured in $2 \times \text{YPD}$ to stationary phase, and the cell cultures were diluted up to an OD600 of 1.0. Equal amount of cells were spotted in a 1:10 dilution series on a YPD or HEMF production medium plate [2% (w/v) agar] with or without an acetaldehyde coating (22.5 or 100 mM) for *S. cerevisiae* (upper panels) and *Z. rouxii* (lower panels). The spotted cells were grown

at 30° C for 3-4 days and photographed. *Z. rouxii* NBRC1130, 0506, and 0740 were provided by the Biological Resource Center, NITE (Japan), and *Z. rouxii* Z3 was isolated from the flor of yeasts grown on the surface of soy sauce mash (1).

1. Watanabe J, Uehara K, Mogi Y, Suzuki K, Watanabe T, Yamazaki T. 2010. Improved transformation of the halo-tolerant yeast *Zygosaccharomyces rouxii* by electroporation. Biosci. Biotechnol. Biochem. 74:1092-1094.

TABLE S1 Primers used in this study

	s used in this study Sequence	Use (corresponding figure)
pADH1 F	5'-GCGGCCGCAAGGTGAGACGCGCATAACC-3'	Construction of pADH1 vector (Fig. 3)
pADH1 R	5'-GCGGCCGCAATTGGGTGAAATGGGGAGC-3'	Construction of pADH1 vector (Fig. 3)
pYC150conf F	5'-CCACACACGAAAATCCTGTG-3'	Confirmation of pADH1 transformation (Fig. 3)
pYC150conf R	5'-TGGTAACCGTATTACCGCC-3'	Confirmation of pADH1 transformation (Fig. 3)
ADH1∆ F	5'-GCACAATATTTCAAGCTATACCAAGCATACAATCAACTATCTCATATACA	Construction of ADH1, ADH2, ADH3 triple gene-deletion
_	AGCTGAAGCTTCGTACGC-3'	mutant (Fig. 6)
ADH1∆ R	5'-AGCAACCTGACCTACAGGAAAGAGTTACTCAAGAATAAGAATTTTCGTTT	Construction of ADH1, ADH2, ADH3 triple gene-deletion
_	TATAGGGAGACCGGCAGATC-3'	mutant (Fig. 6)
ADH2Δ F	5'-ACAAAAAGCATACAATCAACTATCAACTATTAACTATATCGTAATACACA	Construction of ADH1, ADH2, ADH3 triple gene-deletion
_	AGCTGAAGCTTCGTACGC-3'	mutant (Fig. 6)
ADH2Δ R	5'-GGCATACTTGATAATGAAAACTATAAATCGTAAAGACATAAGAGATCCGC	Construction of ADH1, ADH2, ADH3 triple gene-deletion
_	TATAGGGAGACCGGCAGATC-3'	mutant (Fig. 6)
ADH3Δ F	5'-TCTGTTCACAGTTAAAACTAGGAATAGTATAGTCATAAGTTAACACCATC	Construction of ADH1, ADH2, ADH3 triple gene-deletion
_	AGCTGAAGCTTCGTACGC-3'	mutant (Fig. 6)
ADH3Δ_R	5'-ATCATTATAAACAAAGACTTTCATAAAAAGTTTGGGTGCGTAACACGCTA	Construction of ADH1, ADH2, ADH3 triple gene-deletion
	TATAGGGAGACCGGCAGATC-3'	mutant (Fig. 6)
ADH1Δ conf_F	5'-AAGGTGAGACGCGCATAACC-3'	Confirmation of <i>ADH1</i> gene deletion (Fig. 6)
ADH1Δ conf_R	5'-AATTGGGTGAAATGGGGAGC-3'	Confirmation of <i>ADH1</i> gene deletion (Fig. 6)
ADH2Δ conf F	5'- ACACTCGAAATACTCTTACTACTGCTC-3'	Confirmation of <i>ADH2</i> gene deletion (Fig. 6)
ADH2Δ conf_R	5'- CGTGAAACTTCGAACACTGTCATC-3'	Confirmation of <i>ADH2</i> gene deletion (Fig. 6)
ADH3Δ conf_F	5'- GTTTCTGCGTCCGTACACTGTC-3'	Confirmation of <i>ADH3</i> gene deletion (Fig. 6)
ADH3Δ conf_R	5'- GGCTCGATGCTTGATGGTGATAATG-3'	Confirmation of <i>ADH3</i> gene deletion (Fig. 6)
ZrADH1∆ F	5'-TATACACCCTTTAGTACCGGCAGATGAGCTCAAAATGAGTGCAAGCCCTTTTGTAT	Construction of <i>ZrADH1</i> single gene-deletion mutant, and
	ATAAGAGGGCAATGATGTCTTGAGTGTGGAAAATACGATTTGG <u>TTCGTACGCTGCAG</u>	ZrADH1, ZrADH2 double gene-deletion mutant (Fig. 7)
	GTCG-3'	
ZrADH1∆_R	5'-TATAATCGTTATTATATCTATATTGGTTTACACTTTATATTAAAAAAACTTGCACTT	Construction of ZrADH1 single gene-deletion mutant, and
	CAGAAACAAACTATCATGACTCATGAAATCCATTACCAATC <u>CACTAGTGGATCTGAT</u>	ZrADH1, ZrADH2 double gene-deletion mutant (Fig. 7)
	ATCACC-3'	
ZrADH2∆_F	5'-GGAAAACTGCTTAGGCTCTTCCAATAGCGTCCTTCTAAACGGGCCAAGCGTCAGT	Construction of ZrADH2 single gene-deletion mutant, and
	TCAAGCCTTCAGTATTATCTCCGCTATTATATATAAAATTTTGCTAG <u>TTTCGTACGCTG</u>	ZrADH1, ZrADH2 double gene-deletion mutant (Fig. 7)
	<u>CAGGTCG</u> -3'	
ZrADH2∆_R	5'-ATCGTATAGTTGAATGGGTTCATTACAATGCTTGTGGGAAGATGGTGGTA	Construction of ZrADH2 single gene-deletion mutant, and
	TCAATGAGAGTGAGGATGTAGATGTAACAGATGTAACGAAAACG <u>CACTAGTGGATC</u>	ZrADH1, ZrADH2 double gene-deletion mutant (Fig. 7)
	TGATATCACC-3'	
	5'-AGCTACTTGTCCACTGATTG-3'	Confirmation of ZrADH1 gene deletion (Fig. 7)
	5'-ACTAGTAGCTCGATTGAAAG -3'	Confirmation of ZrADH1 gene deletion (Fig. 7)
	5'-CGGATTCCGAAACTCTTGTC-3'	Confirmation of ZrADH2 gene deletion (Fig. 7)
	5'-TGTGATAGGATCGTTGGCG-3'	Confirmation of ZrADH2 gene deletion (Fig. 7)
ZeoMX intra R	5'-TTCCATAGGATGGTCAGTCC-3'	Confirmation of ZrADH2 gene deletion (Fig. 7)

Underline indicates the annealing sequence to the plasmid.

TABLE 2 Summary of genes that increase the HEMF production capacities by deletion

ORF	Gene	growth	HEMF yield ×10 ⁴	HEMF production	PR [2] [†]	Description
		(OD_{600})	(μAU)	capacity*		•
Metabolism						
YOL086C	ADH1	2.76 ± 0.01	19.17 ± 0.88	6.95 ± 0.36	10.7	Alcohol dehydrogenase required for the reduction of acetaldehyde to ethanol
YGR204W	ADE3	1.59 ± 0.03	6.52 ± 0.39	4.10 ± 0.06	6.3	Cytoplasmic trifunctional enzyme involved in amino acid and nucleotide biosynthesis
YAR015W	ADE1	0.96 ± 0.13	2.89 ± 0.15	3.03 ± 0.25	4.7	Rrequired for 'de novo' purine nucleotide biosynthesis
YGR061C	ADE6	1.34 ± 0.11	3.87 ± 0.40	2.90 ± 0.28	4.5	Rrequired for 'de novo' purine nucleotide biosynthesis
YMR300C	ADE4	6.36 ± 0.45	7.94 ± 0.24	1.25 ± 0.05	1.9	Rrequired for 'de novo' purine nucleotide biosynthesis
YDR408C	ADE8	5.67 ± 0.53	6.98 ± 0.19	1.24 ± 0.08	1.9	Rrequired for 'de novo' purine nucleotide biosynthesis
Cellular transp	port, transpo	rt facilities and tro	ansport routes			
YMR038C	CCS1	3.90 ± 0.02	10.6 ± 0.75	2.73 ± 0.18	4.2	Copper chaperone for superoxide dismutase Sod1p, involved in oxidative stress protection
YGL095C	VPS45	2.74 ± 0.16	5.69 ± 0.02	2.08 ± 0.11	3.2	Essential for vacuolar protein sorting
YNL297C	MON2	1.53 ± 0.08	2.19 ± 0.01	1.44 ± 0.08	2.2	Peripheral membrane protein with a role in endocytosis and vacuole integrity
YPR139C	LOA1	5.77 ± 0.52	7.64 ± 0.74	1.32 ± 0.01	2.0	Lysophosphatidic acid acyltransferase involved in triacelglyceride homeostasis
Transcription						
YDR138W	HPR1	3.56 ± 0.03	5.97 ± 0.50	1.68 ± 0.13	2.6	Subunit of THO/TREX complexes that couple transcription elongation with mitotic
						recombination and with mRNA metabolism and export
YDR392W	SPT3	4.83 ± 0.12	6.12 ± 0.03	1.27 ± 0.03	2.0	Subunit of the SAGA and SAGA-like transcriptional regulatory complexes
Protein synthe.						First Games Joseph Fred Committee Fr
YAL035W	FUN12	3.66 ± 0.16	6.87 ± 0.40	1.88 ± 0.03	2.9	GTPase required for general translation initiation
		fication, destination			**	· · · · · · · · · · · · · · · · ·
YGL058W	RAD6	3.26 ± 0.27	4.29 ± 0.07	1.32 ± 0.13	2.0	Ubiquitin-conjugating enzyme (E2) involved in protein degradation

 $^{^*} HEMF$ production capacity : [HEMF yield $\times 10^4 \, (\mu AU) \, / \, Growth \, (OD_{600})$]

Data are expressed as mean values \pm SD. Number of independent experiment = 2.

Values of Growth, HEMF yield, and HEMF production capacity in control wild type strain are 5.91 ± 0.38 , 3.84 ± 0.35 , and 0.65 ± 0.04 , respectively.

 $^{^\}dagger\,PR~[2]$: HEMF production capacity ratio [2] (see Materials and Methods)

TABLE S3 Effects of deleting genes necessary for activating transcription of SAGA-dependent *ADH1* promoter

ORF	Gene	PR [1]*	Description
YLR055C	SPT8	1.63	Subunit of the SAGA and/or SAGA-like transcriptional regulatory complexes
YDR392W	SPT3	1.83	Subunit of the SAGA and/or SAGA-like transcriptional regulatory complexes
YBR081C	SPT7	1.75	Subunit of the SAGA and/or SAGA-like transcriptional regulatory complexes
YOL148C	SPT20	1.57	Subunit of the SAGA and/or SAGA-like transcriptional regulatory complexes
YPL254W	HFI1	1.49	Adaptor protein required for structural integrity of the SAGA complex

^{*}PR [1] = HEMF production ratio [1] (see Materials and Methods)

TABLE S4 Metabolite analysis of *Z. rouxii*, *Candida versatilis*, and *C. etchellsii*

		Carbon source : Acetaldehyde		
strain	HEMF production capacity (mg L ⁻¹ OD ₆₀₀ ⁻¹)	Extracellular acetaldehyde $(\mu M OD_{600}^{-1})$	Ethanol yield (%)	HEMF production capacity (mg L ⁻¹ OD ₆₀₀ ⁻¹)
Z. rouxii NBRC0506	34.5 ± 2.2	525.9 ± 33.7	1.84 ± 0.29	50.5 ± 5.1
C. versatilis NBRC10038	5.3 ± 0.6	26.3 ± 12.1	1.83 ± 0.15	21.5 ± 1.1
C. etchellsii NBRC10037	1.8 ± 0.2	12.4 ± 2.2	1.70 ± 0.25	34.3 ± 2.4

NBRC0506, NBRC10038, and NBRC10037 were provided by the Biological Resource Center, NITE (Tokyo, Japan).

TABLE S5 Summary of genes that decrease the HEMF production capacities by deletion

		growth	HEMF vield ×10 ⁴	HEMF production			
ORF	Gene	(OD ₆₀₀)	(μAU)	capacity*	$PR[2]^{\dagger}$	Localization [‡]	Description
Metabolism		. 0007	(10)	_F ,			
YNR041C	COQ2	9.04 ± 0.48	2.46 ± 0.20	0.27 ± 0.04	0.30	Mitochondrion	Transferase involved in ubiquinone (coenzyme Q) biosynthesis
YBR003W	COQ1	8.81 ± 0.14	2.10 ± 0.18	0.24 ± 0.02	0.27	Mitochondrion	Transferase involved in ubiquinone (coenzyme Q) biosynthesis
YDR204W	COQ4	8.80 ± 0.19	2.09 ± 0.24	0.24 ± 0.03	0.26	Mitochondrion	Protein with a role in ubiquinone (Coenzyme Q) biosynthesis
YML110C	COQ5	9.39 ± 0.01	2.05 ± 0.18	0.22 ± 0.02	0.24	Mitochondrion	Transferase involved in ubiquinone (Coenzyme Q) biosynthesis
Energy	~						
YDR375C	BCS1	8.55 ± 0.18	2.03 ± 0.06	0.24 ± 0.01	0.26	Mitochondrion	Mitochondrial protein of the AAA ATPase family
YDR231C	COX20	8.36 ± 0.03	2.02 ± 0.24	0.24 ± 0.03	0.27	Mitochondrion	Mitochondrial inner membrane protein, involved in the maturation and assembly of cytochrome oxidase subunit
YDR298C	ATP5	9.11 ± 0.11	2.22 ± 0.10	0.24 ± 0.01	0.27	Mitochondrion	Subunit 5 of the stator stalk of mitochondrial F1F0 ATP synthase
YJR121W	ATP2	7.90 ± 0.25	2.85 ± 0.36	0.36 ± 0.06	0.40	Mitochondrion	Beta subunit of the F1 sector of mitochondrial F1F0 ATP synthase
YDR079W	PET100	8.40 ± 0.49	2.22 ± 0.28	0.27 ± 0.05	0.30	Mitochondrion	Chaperone that specifically facilitates the assembly of cytochrome c oxidase
YBL099W	ATPI	8.56 ± 0.28	2.25 ± 0.05	0.26 ± 0.00	0.29	Mitochondrion	Alpha subunit of the F1 sector of mitochondrial F1F0 ATP synthase
YLR295C	ATP14	8.96 ± 0.14	2.50 ± 0.15	0.28 ± 0.01	0.31	Mitochondrion	Subunit h of the F0 sector of mitochondrial F1F0 ATP synthase
YPL271W	ATP15	9.08 ± 0.54	1.92 ± 0.11	0.21 ± 0.02	0.24	Mitochondrion	Epsilon subunit of the F1 sector of mitochondrial F1F0 ATP synthase
YJL003W	COX16	8.95 ± 0.42	2.52 ± 0.23	0.28 ± 0.04	0.31	Mitochondrion	Mitochondrial inner membrane protein, required for assembly of cytochrome c oxidase
YML129C	COX14	8.23 ± 0.35	2.14 ± 0.16	0.26 ± 0.03	0.29	Mitochondrion	Mitochondrial membrane protein, involved in translational regulation of Cox1p and assembly of cytochrome c oxidase
YPR191W	QCR2	8.19 ± 0.55	2.19 ± 0.00	0.27 ± 0.02	0.30	Mitochondrion	Subunit 2 of the ubiquinol cytochrome-c reductase complex
YOR065W	CYTI	8.67 ± 0.43	2.39 ± 0.28	0.28 ± 0.05	0.31	Mitochondrion	Cytochrome c1, component of the mitochondrial respiratory chain
Cell cycle and Di	NA processing						
YDR507C	GIN4	8.24 ± 0.08	2.16 ± 0.08	0.26 ± 0.01	0.29	Cytoplasm	Protein kinase involved in bud growth and assembly of the septin ring
YDL056W	MBPI	8.40 ± 0.28	2.30 ± 0.17	0.27 ± 0.03	0.31	Nucleus	Transcription factor involved in regulation of cell cycle progression from G1 to S phase
YCR028C-A	RIMI	8.34 ± 0.18	2.45 ± 0.44	0.29 ± 0.05	0.33	Mitochondrion	Single-stranded DNA-binding protein essential for mitochondrial genome maintenance
YJR144W	MGM101	8.69 ± 0.13	2.09 ± 0.15	0.24 ± 0.01	0.27	Mitochondrion	Protein involved in mitochondrial genome maintenance
YDR296W	MHR1	8.89 ± 0.12	2.29 ± 0.27	0.26 ± 0.03	0.29	Mitochondrion	Protein involved in homologous recombination in mitochondria
YOR330C	MIP1	8.31 ± 0.11	1.99 ± 0.03	0.24 ± 0.00	0.27	Mitochondrion	Catalytic subunit of the mitochondrial DNA polymerase
Transcription							
YMR228W	MTF1	8.58 ± 0.08	2.08 ± 0.17	0.24 ± 0.02	0.27	Mitochondrion	Mitochondrial RNA polymerase specificity factor
YJL209W	CBP1	9.03 ± 0.08	2.06 ± 0.09	0.23 ± 0.01	0.25	Mitochondrion	Mitochondrial protein with a role in COB mRNA stability and translation
YER028C	MIG3	7.29 ± 0.23	2.33 ± 0.04	0.32 ± 0.02	0.36	Nucleus	Probable transcriptional repressor involved in response to toxic agents
YDL044C	MTF2	8.73 ± 0.15	2.35 ± 0.25	0.27 ± 0.03	0.30	Mitochondrion	Mitochondrial matrix protein couples RNA processing and translation to transcription
YKL109W	HAP4	8.89 ± 0.54	2.46 ± 0.13	0.28 ± 0.03	0.31	Mitochondrion	Subunit of the heme-activated, glucose-repressed transcriptional activator and global regulator of respiratory gene expression
YIR021W	MRS1	7.98 ± 0.21	2.33 ± 0.06	0.29 ± 0.00	0.33	Mitochondrion	Protein required for the splicing of two mitochondrial group I introns
YOR201C	MRMI	9.38 ± 0.30	2.31 ± 0.11	0.25 ± 0.02	0.27	Mitochondrion	Ribose methyltransferase in mitochondrial 21S rRNA
Protein synthesis							
YHR168W	MTG2	8.01 ± 0.42	2.42 ± 0.47	0.30 ± 0.07	0.34	Mitochondrion	Putative GTPase required for mitochondrial translation, possibly via a role in ribosome assembly
YLR203C	MSS51	8.61 ± 0.57	2.56 ± 0.42	0.30 ± 0.07	0.33	Mitochondrion	Specific translational activator for the mitochondrial COX1 mRNA
YMR188C	MRPS17	8.94 ± 0.36	2.19 ± 0.14	0.24 ± 0.01	0.27	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YOL023W	IFM1	9.57 ± 0.43	2.25 ± 0.12	0.24 ± 0.00	0.26	Mitochondrion	Mitochondrial translation initiation factor 2
YOL033W	MSE I	9.43 ± 0.11	1.97 ± 0.07	0.21 ± 0.01	0.23	Mitochondrion	Mitochondrial glutamyl-tRNA synthetase
YPL013C	MRPS16	9.06 ± 0.02	1.89 ± 0.04	0.21 ± 0.00	0.23	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YBL038W	MRPL16	8.73 ± 0.08	2.48 ± 0.20	0.28 ± 0.03	0.32	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YBL080C	PET112	8.66 ± 0.05	2.18 ± 0.12	0.25 ± 0.01	0.28	Mitochondrion	Subunit of the trimeric GatFAB AmidoTransferase(AdT) complex involved in the formation of Q-tRNAQ
YDR115W		8.86 ± 0.05	2.18 ± 0.04	0.25 ± 0.00	0.27	Mitochondrion	Putative mitochondrial ribosomal protein of the large subunit
YDR175C	RSM24	9.08 ± 0.01	2.31 ± 0.04	0.25 ± 0.00	0.28	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YDR237W	MRPL7	9.01 ± 0.21	2.41 ± 0.25	0.27 ± 0.02	0.30	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YDR337W	MRPS28	9.30 ± 0.37	2.20 ± 0.23	0.24 ± 0.02	0.26	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YEL050C	RML2	8.55 ± 0.15	2.36 ± 0.00	0.28 ± 0.01	0.31	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YER050C	RSM18	7.79 ± 0.59	2.29 ± 0.19	0.30 ± 0.05	0.33	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YGR165W	MRPS35	7.72 ± 0.01	1.94 ± 0.03	0.25 ± 0.00	0.28	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YGR171C	MSM1	8.18 ± 0.21	2.20 ± 0.06	0.27 ± 0.00	0.30	Mitochondrion	Mitochondrial methionyl-tRNA synthetase (MetRS)
YIL093C	RSM25	8.53 ± 0.04	2.19 ± 0.00	0.26 ± 0.00	0.29	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YCR071C	IMG2	8.07 ± 0.21	2.60 ± 0.17	0.32 ± 0.03	0.36	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YDR462W	MRPL28	8.33 ± 0.29	2.52 ± 0.03	0.30 ± 0.01	0.34	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YPL104W	MSD1	7.87 ± 0.84	2.24 ± 0.28	0.29 ± 0.07	0.32	Mitochondrion	Mitochondrial aspartyl-tRNA synthetase

TABLE S5 Continued

TABLE 35 CON	muea						
YBL090W	MRP21	8.29 ± 0.14	2.00 ± 0.01	0.24 ± 0.00	0.27	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YBR251W	MRPS5	8.65 ± 0.04	1.65 ± 0.18	0.19 ± 0.02	0.21	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YDL202W	MRPL11	8.24 ± 0.30	2.18 ± 0.08	0.26 ± 0.00	0.29	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YDR197W	CBS2	8.49 ± 0.40	2.13 ± 0.25	0.25 ± 0.04	0.28	Mitochondrion	Mitochondrial translational activator of the COB mRNA
YDR405W	MRP20	8.98 ± 0.26	2.30 ± 0.03	0.26 ± 0.00	0.29	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YER087W	AIM10	8.06 ± 0.13	2.37 ± 0.32	0.29 ± 0.04	0.33	Mitochondrion	Protein with similarity to tRNA synthetases; null mutant is viable and displays elevated frequency of mitochondrial genome loss
YJR113C	RSM7	8.56 ± 0.13	2.73 ± 0.38	0.32 ± 0.05	0.36	Mitochondrion	Mitochondrial ribosomal protein of the small subunit
YJL023C	PET130	9.36 ± 0.50	2.20 ± 0.01	0.24 ± 0.01	0.26	Mitochondrion	Protein required for respiratory growth
YNL081C	SWS2	8.85 ± 0.64	2.47 ± 0.05	0.28 ± 0.03	0.31	Mitochondrion	Putative mitochondrial ribosomal protein of the small subunit
YNL005C	MRP7	9.51 ± 0.14	2.64 ± 0.03	0.28 ± 0.00	0.31	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YNR037C	RSM19	8.31 ± 0.19	2.48 ± 0.22	0.30 ± 0.02	0.33	Mitochondrion	Mitochondrial ribosomal protein of the small subunit, has similarity to E. coli S19 ribosomal protein
YLR382C	NAM2	8.54 ± 0.16	2.59 ± 0.05	0.30 ± 0.00	0.34	Mitochondrion	Mitochondrial leucyl-tRNA synthetase, indirectly required for mitochondrial genome maintenance
YGL143C	MRFI	9.06 ± 0.25	2.43 ± 0.09	0.27 ± 0.00	0.30	Mitochondrion	Mitochondrial translation release factor; lack of MRF1 causes mitochondrial genome instability
Protein fate (foldi	ing, modificatio	on, destination)					
YMR089C	YTA12	8.28 ± 0.16	2.17 ± 0.14	0.26 ± 0.02	0.29	Mitochondrion	Component of the mitochondrial inner membrane m-AAA protease involved in degradation of misfolded or unassembled
							proteins and correct assembly of mitochondrial enzyme complexes
YDL107W	MSS2	8.30 ± 0.75	2.50 ± 0.30	0.30 ± 0.06	0.34	Mitochondrion	Peripherally bound inner membrane protein involved in membrane insertion of C-terminus of Cox2p
YJL180C	ATP12	8.42 ± 0.36	2.64 ± 0.18	0.31 ± 0.04	0.35	Mitochondrion	Conserved protein required for assembly of alpha and beta subunits into the F1 sector of mitochondrial F1F0 ATP synthase
YMR035W	IMP2	9.46 ± 0.45	2.36 ± 0.06	0.25 ± 0.02	0.28	Mitochondrion	Catalytic subunit of the mitochondrial inner membrane peptidase complex, required for maturation of mitochondrial
							proteins of the intermembrane space
YKL134C	OCT1	9.01 ± 0.28	2.09 ± 0.07	0.23 ± 0.00	0.26	Mitochondrion	Mitochondrial intermediate peptidase, cleaves N-terminal residues of a subset of proteins upon import
Cellular transpor	t, transport fac	ilities and transpot r	outes				
YDL198C	GGCI	7.73 ± 0.03	2.27 ± 0.07	0.29 ± 0.01	0.33	Mitochondrion	Mitochondrial GTP/GDP transporter, essential for mitochondrial genome maintenance
Cell rescue, defen	ise and virulenc	ce					
YOL151W	GRE2	8.84 ± 0.16	3.87 ± 0.79	0.44 ± 0.10	0.49	Nucleus, Cytoplasm	Reductase induced by stress (osmotic, ionic, oxidative, heat shock and heavy metals)
Biogenesis of cell	ular componen	ts					
YOL027C	MDM38	6.87 ± 0.03	2.57 ± 0.08	0.37 ± 0.01	0.42	Mitochondrion	Mitochondrial inner membrane protein, involved in membrane integration of a subset of mitochondrial proteins
YDR322W	MRPL35	8.04 ± 0.01	1.78 ± 0.04	0.22 ± 0.01	0.25	Mitochondrion	Mitochondrial ribosomal protein of the large subunit
YBR179C	FZO1	9.00 ± 0.72	2.24 ± 0.09	0.25 ± 0.03	0.28	Mitochondrion	Mitofusin, mitochondrial integral membrane protein involved in mitochondrial fusion and mitochondrial genome maintenance
YOR211C	MGM1	8.40 ± 0.43	2.01 ± 0.10	0.24 ± 0.00	0.27	Mitochondrion	Mitochondrial GTPase related to dynamin required for normal morphology of cristae
Unclassified prote	ein						
YDR065W	RRG1	8.79 ± 0.38	2.12 ± 0.06	0.24 ± 0.00	0.27	Mitochondrion	Protein of unknown function, required for vacuolar acidification and mitochondrial genome maintenance
YGL107C	RMD9	8.96 ± 0.01	2.39 ± 0.10	0.27 ± 0.01	0.30	Mitochondrion	Mitochondrial protein required for respiratory growth
YMR098C	ATP25	8.73 ± 0.15	1.88 ± 0.08	0.22 ± 0.01	0.24	Mitochondrion	Mitochondrial protein required for the stability of Oli1p (Atp9p) mRNA and for the Oli1p ring formation
YLR091W	GEP5	8.54 ± 0.08	2.30 ± 0.02	0.27 ± 0.01	0.30	Mitochondrion	Protein of unknown function, required for mitochondrial genome maintenance
YER077C		9.74 ± 0.02	2.21 ± 0.03	0.23 ± 0.00	0.25	Mitochondrion	Putative protein of unknown function; null mutation results in a decrease in plasma membrane electron transport
YGR150C	CCM1	7.70 ± 0.01	2.34 ± 0.35	0.30 ± 0.04	0.34	Mitochondrion	Mitochondrial 15s rRNA-binding protein; mutant is respiratory deficient and has defective plasma membrane electron transport
YPL137C	GIP3	9.02 ± 0.50	2.40 ± 0.43	0.27 ± 0.06	0.30	Cytoplasm	Cytoplasmic protein that regulates protein phosphatase 1 Glc7p
YOR305W	RRG7	9.80 ± 0.71	2.24 ± 0.00	0.23 ± 0.02	0.26	Mitochondrion	Protein of unknown function
YPL005W	AEP3	8.24 ± 0.68	2.04 ± 0.21	0.25 ± 0.05	0.28	Mitochondrion	Peripheral mitochondrial inner membrane protein; stabilizes the bicistronic mRNA encoding subunits 6 and 8 of
							the ATP synthase complex
YPL183C	RTT10	8.61 ± 0.30	2.83 ± 0.07	0.33 ± 0.00	0.37	Cytoplasm	Cytoplasmic protein with a role in regulation of Ty1 transposition
YPR116W	RRG8	8.07 ± 0.20	2.13 ± 0.05	0.26 ± 0.00	0.29	Mitochondrion	Putative protein of unknown function, required for mitochondrial genome maintenance
YLR149C		8.71 ± 0.13	2.30 ± 0.14	0.26 ± 0.02	0.29	Unknown	Putative protein of unknown function; null mutation results in a decrease in plasma membrane electron transport
YOR205C	GEP3	9.07 ± 0.13	2.05 ± 0.03	0.23 ± 0.00	0.25	Mitochondrion	Protein of unknown function; null mutant is defective in respiration
YDR114C		8.65 ± 0.10	2.01 ± 0.07	0.23 ± 0.01	0.26	Unknown	Putative protein of unknown function; deletion mutant exhibits poor growth at elevated pH and calcium
*		TELES : 11 404 /					

^{*}HEMF production capacity : [HEMF yield $\times 10^4$ (μAU) / Growth (OD₆₀₀)]

Data are expressed as mean values \pm SD. Number of independent experiment = 2.

Values of Growth, HEMF yield, and HEMF production capacity in control wild type strain are 6.41 ± 0.36, 5.76 ± 1.37, and 0.90 ± 0.21, respectively.

 $^{^\}dagger PR~[2]$: HEMF production capacity ratio [2] (see Materials and Methods)

[‡]Localization was determined based on Saccharomyces Genome Database (http://www.yeastgenome.org/)