Chemotactic Network Designing

Yichen Lu

May 30, 2025

Contents

_	Models 1.1 Thinking Process	2
2	Behaviors	9
3	Continuum model	3

1 Models

1.1 Thinking Process

$$\dot{\mathbf{r}}_i(t) = \alpha_c \nabla c - \nabla_{\mathbf{r}_i} V + \sqrt{2D_p} \boldsymbol{\eta}_i \tag{1a}$$

$$\dot{c}(\mathbf{r},t) = D_c \nabla^2 c - k_c c + \beta_c \sum_{j} \delta(\mathbf{r} - \mathbf{r}_j^*)$$
(1b)

for $i=1,2,\cdots,N$ and $j=1,2,\cdots,M$. Here, $\mathbf{r}_i,\mathbf{r}_j^*$ is the position of the *i*-th particle, *j*-th target node, respectively, c is the concentration of the signal chemical released by the node, $\alpha_c<0$ is the chemotactic sensitivity, V is the potential field of short-range repulsion, D_p is the intensity of thermal noise, s_i is the internal state of the *i*-th particle, D_c is the diffusion coefficient, k_c is the decay rate of the chemical, and β_c is the production rate of the target nodes.

Figure 1: The simulation of the above model with $\alpha_c = -5$, $D_c = 2$, $k_c = 0.001$ and $\beta_c = 0.3$. When the horizontal distance of nodes d_n is small, the nodes are connected by the particles. While, when d_n is large, the particles are not connected.

The above model have initially realized the network formation, but it does not solve the problem when the distance between nodes is large. To address this, we introduce a convection term $\mathbf{v} \cdot \nabla c$ in the chemical equation, which represents the influence of the particles' active transport on the chemical field. The updated model is as follows:

$$\dot{\mathbf{r}}_i(t) = \alpha_c \nabla c - \nabla_{\mathbf{r}_i} V + \sqrt{2D_p} \boldsymbol{\eta}_i, \qquad (2a)$$

$$\dot{c}(\mathbf{r},t) = D_c \nabla^2 c - \mathbf{v} \cdot \nabla c - k_c c + \beta_c \sum_{j} \delta\left(\mathbf{r} - \mathbf{r}_j^*\right), \qquad (2b)$$

where $\mathbf{v} = v_c \sum_{i=1}^N \delta(\mathbf{r} - \mathbf{r}_i) \left(\cos \phi_{\mathbf{r}}, \sin \phi_{\mathbf{r}}\right)^{\top}$ is the convection velocity of the chemical field, v_c is the convection speed, and

$$\phi_{\mathbf{r}} = \tan^{-1} \left(\frac{y_{\rm cm} - y_i}{x_{\rm cm} - x_i} \right) \tag{3}$$

is the angle toward the particle's center of mass at position \mathbf{r} , where $(x_{\rm cm}, y_{\rm cm})^{\top} = N^{-1} \sum_{i} \mathbf{r}_{i}$.

$$\dot{\mathbf{r}}_i(t) = \alpha_c \nabla c - \nabla_{\mathbf{r}_i} V + \sqrt{2D_p} \boldsymbol{\eta}_i , \qquad (4a)$$

$$\dot{c}(\mathbf{r},t) = D_c \nabla^2 c - k_c c + \sum_{j} s_j \delta(\mathbf{r} - \mathbf{r}_j^*), \qquad (4b)$$

$$\dot{s}_j(t) = (1 + s_j)(1 - s_j)\left(s_{\text{th}} - \sum_i \delta\left(\mathbf{r}_i - \mathbf{r}_j^*\right)\right) \tag{4c}$$

- 2 Behaviors
- 3 Continuum model