Gibbs Sampling for Bayesian Mixture

Carl Edward Rasmussen

November 27th, 2018

Key concepts

- General Bayesian mixture model
- We derive the Gibbs sampler
- Marginalize out mixing proportions: collapsed Gibbs sampler

Bayesian document mixture model

Our mixture model has observations \mathbf{w}_d the words in document d = 1, ..., D. The parameters are β_k and θ , and latent variables \mathbf{z} .

The mixture model has K components, so the parameters are $\underline{\beta}_k$, k = 1, ... K. Each $\underline{\beta}_k$ is the parameter of a categorical over possible words, with prior $p(\underline{\beta})$. The discrete latent variables z_d , d = 1, ... D take on values 1, ... K.

Note, that in this model the observations are (the word counts of) entire documents.

Bayesian mixture model

The conditional likelihood is for each observation is

prob of the word sequence given that the doc has topic k.

$$p(\mathbf{w_d}|z_d = k, \beta) = p(\mathbf{w_d}|\underline{\beta}_k) = p(\mathbf{w_d}|\underline{\beta}_{z_d}),$$

and the prior

$$p(\underline{\beta}_k)$$
. ~ Dir(gamma)

The categorical latent component assignment probability

$$p(z_d = k | \underline{\theta}) = \underline{\theta_k},$$

with a Dirichlet prior

$$p(\underline{\theta}|\underline{\alpha}) = Dir(\underline{\alpha}).$$

Therefore, the latent conditional posterior is prior likelihood

$$p(z_{\mathbf{d}} = \mathbf{k} | \mathbf{w}_{\mathbf{d}}, \underline{\theta}, \underline{\beta}) \propto p(z_{\mathbf{d}} = \mathbf{k} | \underline{\theta}) p(\mathbf{w}_{\mathbf{d}} | z_{\mathbf{d}} = \mathbf{k}, \beta) \propto \underline{\theta}_{\mathbf{k}} p(\mathbf{w}_{\mathbf{d}} | \beta_{z_{\mathbf{d}}}),$$

which is just a discrete distribution with K possible outcomes.

Gibbs Sampling

Iteratively, alternately, sample the three types of variables:

Component parameters

$$\begin{array}{ll} \text{posterior} & \text{prior} & \text{likelihood of beta_k} \\ p(\underline{\boldsymbol{\beta}_k}|\mathbf{w},\mathbf{z}) & \propto & p(\underline{\boldsymbol{\beta}_k}) \prod_{d:\mathbf{z}_d=k} p(\mathbf{w}_d|\underline{\boldsymbol{\beta}_k}), \end{array}$$

which is now a categorical model, the mixture aspect having been eliminated.

The posterior latent conditional allocations

$$p(\textbf{z}_d = \textbf{k}|\textbf{w}_d, \theta, \beta) \ \propto \theta_k p(\textbf{w}_d|\underline{\beta}_{\textbf{z}_d}), \ \text{ from last page}.$$

are categorical and mixing proportions

posterior prior likelihood of theta_
$$p(\theta|\mathbf{z},\alpha) \propto p(\theta|\alpha)p(\mathbf{z}|\theta) \propto \text{Dir}(\mathbf{c}+\underline{\alpha}).$$

where $c_k = \sum_{d:z_d=k} 1$ are the counts for mixture k.

Hence c_1, ..., c_K sum up to N, the total no of documents.

孠

Collapsed Gibbs Sampler

The parameters are treated in the same way as before.

If we marginalize over θ

prior
$$p(z_d=k|\mathbf{z_{-d}},\alpha) = \frac{\alpha+c_{-d,k}}{\sum_{j=1}^{K}\alpha+c_{-d,j}}, \text{ given by the posterior mean of } z_{j-d}, \text{ which equals a fraction defined by the }$$

where index -d means all except d, and c_k are counts; we derived this result when discussing pseudo counts.

Predicted prob of z_d given the categories of all the other documents, z_{-d}, is given by the posterior mean of z_{-d}, which equals a fraction defined by the Dirichlet parameters alpha and c as shown.

The collapsed Gibbs sampler for the latent assignements

$$\begin{array}{ll} \text{posterior} & \text{likelihood} & \text{prior} \\ p(z_d = k | \mathbf{w}_d, z_{-d}, \boldsymbol{\beta}, \boldsymbol{\alpha}) & \propto p(\mathbf{w}_d | \boldsymbol{\beta}_k) \frac{\alpha + c_{-d,k}}{\sum_{j=1}^K \alpha + c_{-d,j}}, \end{array}$$

where now all the z_d variables have become dependent (previously they were conditionally independent given θ).

Notice, that the Gibbs sampler exhibits the *rich get richer* property.