GENERALISERADE DUBBELINTEGRALER

Dubbelintegralen (Riemannintegral) $\iint_D f(x, y) dx dy$ är definierad om följande två krav är uppfyllda:

V1. Integrationsområdet D är begränsat,

V2. Funktionen f(x, y) är definierad och begränsad i D.

Definition. Om minst en av ovanstående villkor V1, V2 **inte är uppfylld** säger vi att integralen $\iint_{\Omega} f(x, y) dx dy$ är en **generaliserad dubbelintegral**.

Vi betraktar generaliserade integraler med icke-negativ integrand dvs $f(x, y) \ge 0$.

1. Generaliserade integraler med obegränsat integrationsområdet D

(vi antar den här gången att integranden f(x, y) är begränsad icke-negativ integrand f(x, y))

För att beräkna $I = \iint_D f(x, y) dx dy$ på ett obegränsat område D beräknar vi först

$$I_n = \iint_{Dn} f(x, y) dx dy$$

där $\,D_n\,$ är en begränsad, kvadrerbar delmängd till $\,D\,$ sådan att $\,D_n\,\to\,D\,$ om $\,n\to\infty\,$

Mer precis
$$D_1 \subseteq D_2 \subseteq \cdots \supseteq D_n \subseteq \cdots \subseteq D$$
 och $\bigcup_n D_n = D$)

Därefter beräknar vi $\lim_{n\to\infty} I_n$.

(Man kan visa att man får samma gränsvärdet oberoende på vilket sätt vi väljer D_n under ovanstående förutsättningar om D_n .)

Eftersom vi betraktar endast **icke-negativa integrander** kan gränsvärdet vara antingen ett tal eller ∞ .

DEFINITION

* Om gränsvärdet $\lim_{n\to\infty}I_n$ är **ett tal** (säg A) säger vi att integralen $\iint_D f(x,y)dxdy$ **konvergerar** och har värdet A.

** Om $\lim_{n\to\infty}I_n=\infty$ säger vi att integralen **divergerar**.

Anmärkning: Talfäljden I_n är en växande talföljd. Därför, för att visa att I_n konvergerar, räcker det att visa att I_n är begränsad talföljd.

2. Generaliserade integraler med obegränsad icke-negativ integrand f(x, y)

(Vi antar den här gången att integrationsområdet D är begränsat)

Om vi har en singularitet i en punkt $P(x_0,y_0)$ som ligger i D eller på randen till D beräknar vi integralen på följande sätt.

Vi "isolerar" punkten P (x_0,y_0) med en cirkel K_ϵ med centrum i P och radien $\mathcal E$ (eller en annan mängd med diameter ϵ) och beräknar integralen

$$\iint\limits_{\mathrm{D}\varepsilon} f(x,y) dx dy \qquad \text{på mängden} \quad \mathrm{D}_{\varepsilon} = \mathrm{D} \backslash \mathrm{K}_{\varepsilon}$$

Därefter

$$\iint\limits_{D} f(x, y) dx dy = \lim_{\varepsilon \to 0} \iint\limits_{D\varepsilon} f(x, y) dx dy.$$

Anmärkning: På liknade sätt beräknar vi generaliserade integraler om integranden har singulariteter längs ett linjestycke.

För att bestämma om integral konvergerar eller divergerar (utan att beräkna integralen) kan vi (på liknande sätt som i envariabelanalys) jämföra integranden med en annan enklare funktion.

Jämförelsekriterium:

Låt
$$0 \le f_1(x, y) \le f_2(x, y)$$
 för $(x, y) \in D$

Då gäller

- i) Om ("den större") integralen $\iint_D f_2(x,y) dx dy$ konvergerar så konvergerar också ("den mindre") integralen $\iint_D f_1(x,y) dx dy$.
- ii) Om ("den mindre") integralen $\iint_D f_1(x,y) dx dy$ divergerar så divergerar också ("den större") integralen $\iint_D f_2(x,y) dx dy$.

I samband med jämförelsekriterium använder vi oftast följande resultat

A) Följande generaliserade (obegränsat integrationsområde) dubbelintegral

$$\iint_{D} \frac{1}{(x^2 + y^2)^a} dx dy , \qquad \text{där } D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\}.$$

konvergerar om och endast om a > 1.

B) Följande generaliserade (obegränsad integrand i (0,0)) dubbelintegral

$$\iint_{D} \frac{1}{(x^2 + y^2)^a} dx dy , \qquad \text{där } D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} .$$

konvergerar om och endast om a < 1.

Anmärkning: Vi vet från envariabelanalys att

1. $\int_{1}^{\infty} \frac{1}{x^{p}} dr$ konvergerar om och endast om **p>1**,

2. $\int_{0}^{1} \frac{1}{x^{p}} dr$ konvergerar om och endast om **p<1**,

Uppgift 1. Bestäm om följande generaliserade dubbelintegral konvergerar eller divergerar.

(Ange också varför integralen är generaliserad.)

a)
$$\iint_{D} \frac{1}{3+x^2+y^2} dxdy$$

där området $D = \{(x, y) \in R^2 : x > 0, 0 \le y \le x\}$.

Lösning:

Integral är generaliserad eftersom området D är obegränsat.

Först integrerar över begränsade området

$$D_n = \{(x, y) \in \mathbb{R}^2 : x > 0, \quad 0 \le y \le x,, \quad x^2 + y^2 \le n^2 \}$$

(Lägg märke till att $D_n \to D$ då $n \to \infty$)

a)

$$I_n = \iint_{D_n} \frac{1}{3 + x^2 + y^2} dx dy =$$
 (Vi byter till polära koordinater $x = r \cos \theta$, $y = r \sin \theta$, $J = r$):

$$= \int_{0}^{\pi/4} d\theta \int_{0}^{n} \frac{r}{3+r^{2}} dr = \frac{\pi}{4} \left[\frac{1}{2} \ln(3+r^{2}) \right]_{0}^{n} = \frac{\pi}{8} \ln(3+n^{2}) - \frac{\pi}{8} \ln(3)$$

Om $n \to \infty$ har vi att $I_n \to \infty$

Därmed divergerar integralen $\iint_{D} \frac{1}{3+x^2+y^2} dx dy.$

Uppgift 2. Bestäm om följande generaliserade dubbelintegral konvergerar eller divergerar.

$$\iint_{D} \frac{1}{(x^2 + y^2)^2} dx dy , \qquad \text{där } D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1, \quad 0 \le y \le x\} .$$

Lösning:

Integral är generaliserad eftersom området D är obegränsat.

(Uttrycket $\frac{1}{(x^2+y^2)^2}$ är inte definierad i punkten (0,0)men denna punkt ligger ej i D)

Först integrerar över begränsade området

$$D_n = \{(x, y) \in \mathbb{R}^2 : x > 0, \quad 0 \le y \le x, \quad x^2 + y^2 \ge 1, \quad x^2 + y^2 \le n^2 \}$$

$$I_n = \iint_{D_n} \frac{1}{(x^2 + y^2)^2} dxdy =$$

(Polära koordinater $x = r \cos \theta$, $y = r \sin \theta$, J = r, $med\ gr\"{a}nser$ $0 \le \theta \le \pi/4$ och $1 \le r \le n$):

$$= \int_{1}^{\pi/4} d\theta \int_{1}^{n} \frac{r}{r^{4}} dr = \int_{1}^{\pi/4} d\theta \int_{1}^{n} \frac{1}{r^{3}} dr = \frac{\pi}{4} \left[\frac{r^{-2}}{-2} \right]_{1}^{n} = \left[-\frac{\pi}{8r^{2}} \right]_{1}^{n} = -\frac{\pi}{8n^{2}} + \frac{\pi}{8}$$

Om
$$n \to \infty$$
 har vi att $I_n \to \frac{\pi}{8}$

Därmed integralen $\iint_{D} \frac{1}{(x^2 + y^2)^2} dxdy$ konvergerar och har värdet $\frac{\pi}{8}$.

Uppgift 3. Visa att följande generaliserade dubbelintegral konvergerar om och endast om a > 1.

$$\iint_{D} \frac{1}{(x^2 + y^2)^a} dx dy , \qquad \text{där } D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\}.$$

Lösning:

Integral är generaliserad eftersom området D är obegränsat.

Först integrerar vi över begränsade området .

Låt
$$D_n = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le n^2 \}$$

$$I_n = \iint_{D_n} \frac{1}{(x^2 + y^2)^a} dxdy = (\text{polära koordinater})$$

$$I_{n} = \int_{1}^{2\pi} d\theta \int_{1}^{n} \frac{r}{r^{2a}} dr = 2\pi \int_{1}^{n} \frac{1}{r^{2a-1}} dr$$

Kvarstår att undersöka enkelintegralen $\int_{1}^{n} \frac{1}{r^{2a-1}} dr$ om $n \to \infty$, dvs att undersöka för vilka a integralen $\int_{1}^{\infty} \frac{1}{r^{2a-1}} dr$ konvergerar.

Vi vet från envariabelanalys att $\int_{1}^{\infty} \frac{1}{x^p} dr$ konvergerar om och endast om p>1,

därför $\int_{1}^{\infty} \frac{1}{r^{2a-1}} dr$ konvergerar om och endast om 2a-1>1 dvs om a>1, vad skulle bevisas.

Anmärkning: Ovanstående resultat kan användas i samband med jämförelsesatsen.

Uppgift 4. Bestäm om den generaliserade dubbelintegralen

a)
$$\iint_{D} \frac{2 + \arctan(xy) + \sin^2 x}{(x^2 + y^2)^2} dxdy$$
,

b)
$$\iint_{D} \frac{2 + \arctan(xy) + \sin^{2} x}{(x^{2} + y^{2})^{1/3}} dxdy ,$$

$$d\ddot{a}r \ D = \{(x, y) \in R^2 : x^2 + y^2 \ge 1, \}.$$

konvergerar eller divergerar.

Tips. Använd jämförelsekriterium.

Lösning

a) Eftersom

$$0 \le \frac{2 + \arctan(xy) + \sin^2 x}{(x^2 + y^2)^2} \le \frac{2 + \frac{\pi}{2} + 1}{(x^2 + y^2)^2} \le \frac{5}{(x^2 + y^2)^2}$$

och
$$\iint_{D} \frac{5}{(x^2 + y^2)^2} dxdy = 5 \iint_{D} \frac{1}{(x^2 + y^2)^2} dxdy$$
 konvergerar (eftersom a=2 >1)

så (enligt jämförelsesatsen konvergerar också ("den mindre") integralen

$$\iint_{D} \frac{2 + \arctan(xy) + \sin^2 x}{(x^2 + y^2)^2} dxdy.$$

b) Eftersom

$$0 \le \frac{2 - \pi/2}{(x^2 + y^2)^{1/3}} \le \frac{2 + \arctan(xy) + \sin^2 x}{(x^2 + y^2)^{1/3}}$$

och
$$\iint_{D} \frac{2 - \pi/2}{(x^2 + y^2)^{1/3}} dx dy = (2 - \pi/2) \iint_{D} \frac{1}{(x^2 + y^2)^{1/3}} dx dy \text{ divergerar (eftersom a=1/3 < 1)}$$

så (enligt jämförelsekriterium) divergerar också ("den större") integralen

$$\iint_{D} \frac{2 + \arctan(xy) + \sin^{2} x}{(x^{2} + y^{2})^{1/3}} dxdy.$$

Uppgift 5. Bestäm om den generaliserade dubbelintegralen

a)
$$\iint_D \frac{y}{x^2} dx dy$$
, b) $\iint_D e^{y-x} dx dy$

c)
$$\iint_D \frac{y}{x^{1/3}} dx dy$$
, d) $\iint_D e^{x-y} dx dy$, e) $\iint_D \frac{y}{x^2 + 3x + 5} dx dy$

$$d\ddot{a}r \ D = \{(x, y) \in \mathbb{R}^2 : x \ge 1, \quad 0 \le y \le 1\}.$$

konvergerar eller divergerar

Lösning:

a) Integral är generaliserad eftersom området D är obegränsat.

Först integrerar vi över begränsade området.

Låt
$$D_n = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le n, 0 \le y \le 1\}$$

$$I_n = \iint_D \frac{y}{x^2} dx dy = \int_0^1 dy \int_1^n \frac{y}{x^2} dx = \int_0^1 y dy \int_1^n \frac{1}{x^2} dx = \frac{1}{2} \left[-\frac{1}{x} \right]_1^n = \frac{1}{2} (1 - \frac{1}{n})$$

Om $n \to \infty$ har vi att $I_n \to \frac{1}{2}$

Därmed är integralen $\iint_{D} \frac{y}{x^2} dx dy$ konvergent och har värdet $\frac{1}{2}$.

b) Svar. Integralen konvergerar och har värdet $1 - e^{-1}$

c)

$$I_n = \iint_{D_n} \frac{y}{x^{1/3}} dx dy = \int_0^1 dy \int_1^n \frac{y}{x^{1/3}} dx = \int_0^1 y dy \int_1^n \frac{1}{x^{1/3}} dx = \frac{1}{2} \left[\frac{x^{2/3}}{2/3} \right]_1^n = \frac{1}{2} \left(\frac{n^{2/3}}{2/3} - \frac{1}{2/3} \right)$$

Om $n \to \infty$ har vi att $I_n \to \infty$

därmed är integralen $\iint_D \frac{y}{x^{1/3}} dx dy$ divergent.

Anmärkning: Vi kunde använda kunskap från envariabelanalys:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dr$$
 konvergerar om **p>1**, och divergerar om **p**≤**1**

och inse direkt att $\int_{-\infty}^{\infty} \frac{1}{x^{1/3}} dx$ divergerar (för p=1/3 < 1).

- **d**) integralen divergerar
- e) Integralen konvergerar. Tips $\frac{y}{x^2 + 3x + 5} \le \frac{y}{x^2}$ på D.

Några exempel där integranden är obegränsad

Uppgift 6. Bestäm om följande generaliserade dubbelintegral konvergerar eller divergerar.

(Ange också varför integralen är generaliserad.)

a)
$$\iint_D \frac{1}{(x^2 + y^2)^3} dx dy$$
 b) $\iint_D \frac{1}{(x^2 + y^2)^{1/3}} dx dy$ **c)** $\iint_D \frac{1}{x^2 + y^2} dx dy$

där området $D = \{(x, y) \in R^2 : x^2 + y^2 \le 1\}$.

Lösning a)

Integralen är generaliserad eftersom integranden är obegränsad (i närheten av punkten (0, 0).

Vi byter till polära koordinater $x = r \cos \theta$, $y = r \sin \theta$, J = r,

$$\iint_{D} \frac{1}{(x^{2} + y^{2})^{3}} dxdy = \int_{0}^{2\pi} d\theta \int_{0}^{1} \frac{r}{r^{6}} dr = 2\pi \int_{0}^{1} \frac{1}{r^{5}} dr$$

Vi kan enkelt beräkna $\int_0^1 \frac{1}{r^5} dr = \lim_{\varepsilon \to 0} \int_\varepsilon^1 \frac{1}{r^5} dr = \lim_{\varepsilon \to 0} \left[-\frac{1}{4} + \frac{1}{4\varepsilon^4} \right] = \infty$ och inse att integralen divergerar.

(Vi kan även använda kunskap från envariabelanalys:

$$\int_{0}^{1} \frac{1}{x^{p}} dr$$
 konvergerar om och endast om **p<1**, och divergerar om **p ≥ 1**)

Därför divergerar
$$\iint_{D} \frac{1}{(x^2 + y^2)^3} dx dy$$

Svar a) Divergerar

Lösning b)

Vi byter till polära koordinater och får (den här gången en enkel icke-generaliserad integral):

$$\iint_{D} \frac{1}{(x^{2} + y^{2})^{1/3}} dxdy = \int_{0}^{2\pi} d\theta \int_{0}^{1} \frac{r}{r^{2/3}} dr = 2\pi \int_{0}^{1} r^{1/3} dr = 2\pi \left[\frac{r^{4/3}}{4/3} \right]_{0}^{1} = \frac{3\pi}{2}$$

Svar b) Konvergerar och har värdet $\frac{3\pi}{2}$

Svar c) Divergerar

Uppgift 7. Visa att följande generaliserade dubbelintegral konvergerar om och endast om a < 1.

$$\iint_{D} \frac{1}{(x^2 + y^2)^a} dx dy , \qquad \text{där } D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Lösning

$$\iint_{D} \frac{1}{(x^2 + y^2)^a} dxdy$$
 (polära koordinater)

$$= \int_{1}^{2\pi} d\theta \int_{0}^{1} \frac{r}{r^{2a}} dr = 2\pi \int_{0}^{1} \frac{1}{r^{2a-1}} dr$$

Sista integralen konvergerar (envariabelanalys eller direkt beräkning) om och endast om 2a-1<1 dvs a<1 vad skulle bevisas.

Ett exempel där både integranden och integrationsområde och integranden är obegränsade

När vi i integralen $\iint_D f(x, y) dxdy$ har både, en singulär punkt och obegränsat område D då delar vi område D i två delar D_1 och D_2 där D_1 är begränsat område men innehåller singularitet. då är

$$\iint\limits_D f(x,y) \, dxdy = \iint\limits_{D1} f(x,y) \, dxdy + \iint\limits_{D2} f(x,y) \, dxdy \, .$$

 $\iint\limits_D f(x,y)\,dxdy \text{ är konvergent om och endast om både } \iint\limits_{D1} f(x,y)\,dxdy \text{ och } \iint\limits_{D2} f(x,y)\,dxdy$ konvergerar.

Uppgift 8. Bestäm om följande generaliserade dubbelintegral konvergerar eller divergerar.

a)
$$\iint_{D} \frac{1}{(x^2 + y^2)^2} dx dy$$
 b) $\iint_{D} \frac{1}{(x^2 + y^2)^{2/5}} dx dy$ c) $\iint_{D} \frac{e^{-x^2 - y^2}}{(x^2 + y^2)^{2/5}} dx dy$

 $d\ddot{a}r D = R^2$

Lösning:

Vi har(för alla tre integraler) obegränsad integrand (singularitet i punkten (0, 0)) och obegränsat område D.

Vi delar område D i två delar

$$D_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \text{ och } D_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\}.$$

a)

$$\iint_{D} \frac{1}{(x^2 + y^2)^2} dxdy = \iint_{D1} \frac{1}{(x^2 + y^2)^2} dxdy + \iint_{D2} \frac{1}{(x^2 + y^2)^2} dxdy.$$

Eftersom den första integralen $\iint_{D1} \frac{1}{(x^2 + y^2)^2} dxdy$ divergerar (se upp 7) så **divergerar** också $\iint_{D1} \frac{1}{(x^2 + y^2)^2} dxdy.$

b)
$$\iint_{D} \frac{1}{(x^2 + y^2)^{2/5}} dxdy = \iint_{D} \frac{1}{(x^2 + y^2)^{2/5}} dxdy + \iint_{D} \frac{1}{(x^2 + y^2)^{2/5}} dxdy.$$

Eftersom den andra integralen $\iint_{D2} \frac{1}{(x^2 + y^2)^{2/5}} dxdy$ divergerar (se upp 3) så **divergerar** också $\iint_{C} \frac{1}{(x^2 + y^2)^{2/5}} dxdy$

c)
$$\iint_{D} \frac{e^{-x^2 - y^2}}{(x^2 + y^2)^{2/5}} dxdy = \iint_{D1} \frac{e^{-x^2 - y^2}}{(x^2 + y^2)^{2/5}} dxdy + \iint_{D2} \frac{e^{-x^2 - y^2}}{(x^2 + y^2)^{2/5}} dxdy$$

i) Område D₁:

ii) Område D₂:

Eftersom $\frac{e^{-x^2-y^2}}{(x^2+y^2)^{2/5}} \le e^{-x^2-y^2}$ och $\iint_{D_2} e^{-x^2-y^2} dx dy$ konvergerar (visa själv genom byte till polära koord.) på området $D_2 = \{(x,y) \in R^2 : x^2+y^2 \ge 1\}$ så , enligt jämförelsekriterium, konvergerar också den andra integralen $\iint_{D_2} \frac{e^{-x^2-y^2}}{(x^2+y^2)^{2/5}} dx dy$.

Eftersom båda integraler konvergerar så **konvergerar** också $\iint_{D} \frac{e^{-x^2-y^2}}{(x^2+y^2)^{2/5}} dxdy$