Started on	Wednesday, 24 April 2019, 7:40 AM
State	Finished
Completed on	Wednesday, 24 April 2019, 8:11 AM
Time taken	30 mins 41 secs

Grade 100.00 out of 100.00

Question 1

Correct

Mark 100.00 out of 100.00

Quiz 10c

Given:
$$R_{in} = 10 \text{ k}\Omega$$
 (kilo Ohm) $C_{in} = 0.05 \text{ }\mu\text{F}$ (micro F) $R_{f} = 10 \text{ }k\Omega$ (kilo Ohm) $R_{out} = 1 \text{ }k\Omega$ (kilo Ohm) $V_{in} = 20 \cos(\omega t)$ Volts

You can assume the opamp is ideal and has power input rails at +20V and -20V.

In your answers below, report the magnitude as positive and the angle between -180 $\leq \theta \leq 0^{\circ}$.

a) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency ω = zero rad/sec.

$$V_{Rout}(\omega = 0) = \boxed{0}$$
 at angle -90 \checkmark o (Degrees) Volts

b) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega = 50$ rad/sec.

$$V_{Rout}$$
 ($\omega = 50$) = .5 \checkmark at angle -91.43 \checkmark ° (Degrees) Volts

c) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega = 1,000$ rad/sec.

d) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega = 5,000$ rad/sec.

Correct

Marks for this submission: 100.00/100.00.