MSc Data Science for Business

Introduction to Machine Learning

Map 534

Julie Josse

Dealing with missing values

J. Josse

Previous lecture: dimensionality reduction and clustering

Today: Missing values

- PCA with missing values
- Matrix completion
- Inference with missing values
- Categorical/mixed data

Outline

- 1 Missing values
- 2 Single imputation with PCA
- 3 Multiple imputation with PCA
 - Multiple imputation based on normal distribution
- 4 Categorical data
- **5** Conclusion

Missing values

are everywhere: unanswered questions in a survey, lost data, damaged plants, machines that fail...

The best thing to do with missing values is not to have any" Gertrude Mary Cox.

 \Rightarrow Still an issue in the "big data" area

Public Assistance - Paris Hospitals

Traumabase: 15000 patients/ 250 variables

		Center Accident		Age	Sex	Weight Height		BM:	I BP	SBP	
1		Beaujon	F	all	54	m	85	NR	NR	180	110
2		Lille	(ther	33	m	80	1.8	24.69	130	62
3	Pitie	Salpetriere	(un	26	m	NR	NR	NR	131	62
4		Beaujon	AVE	moto	63	m	80	1.8	24.69	145	89
6	Pitie	Salpetriere	AVP bi	icycle	33	m	75	NR	NR	104	86
7	Pitie	Salpetriere	AVP pede	estrian	30	W	NR	NR	NR	107	66
9		HEGP	White	weapon	16	m	98	1.92	26.58	118	54
10		Toulon	White w	veapon	20	m	NR	NR	NR	124	73
11		Bicetre	I	all	61	m	84	1.7	29.07	144	105
	Sp02 Temperature Lactates Hb (Glas	gow :	[ransfu	sion					
1	97	35.6	<na></na>	12.7		12		yes			
2	100	36.5	4.8	11.1		15		no			
3	100	36	3.9	11.4		3		no			
4	100	36.7	1.66	13		15		yes			
6	100	36	NM	14.4		15		no			
7	100	36.6	NM	14.3		15		yes			
9	100	37.5	13	15.9		15					
10	100	36.9	NM	13.7		15		no			
11	100	36.6	1.2	14.2		14		no			

 \Rightarrow Predict the Glasgow score, whether to start a blood transfusion, to administer fresh frozen plasma, etc...

⇒ Logistic regressions/Random Forests with missing

Public Assistance - Paris Hospitals

Multi-blocks data set

L'OREAL: 100 000 women in different countries - 300 variables

- Self-assessment questionnaire: life style, skin and hair characteristics, care and consumer habits
- Clinical assessments by a dermatologist: facial skin complexion, wrinkles, scalp dryness, greasiness
- Hair assessments by a hair dresser: abundance, volume, breakage, curliness
- Skin and hair photographs and measurements: sebum quantity, etc.

Contingency tables with side information

National agency for wildlife and hunting management (ONCFS)

Data: Water-bird count data, 1990-2016 from 722 wetland sites in 5 countries in North Africa

Sites and years infp: meteorological, geographical (altitude, long)

- \Rightarrow Aims: Assess the effect of time on species abundances Monitor the population and assess wetlands conservation policies.
- \Rightarrow 70% of missing values in contingency tables

On going works

- François Husson (Agrocampus)
- Genevieve Robin (PhD student), B. Narasimhan (Stanford): distributed matrix completion for multilevel medical data
- Genevieve Robin (PhD student), R. Tibshirani (Stanford): imputation of contingency tables with side information
- Wei Jiang (PhD student): glm with missing values and variable selection
- Erwan Scornet (Polytechnique), N. Prost (PhD student), S. Wager, G. Varoquaux (INRIA): random forest with missing values and causal inference

Allstate ran a competition to predict a customer's purchase based on a limited amount of shopping history data.

Jobs • 1,429 teams airbnb Airbnb New User Bookings

Thu 11 Feb 2016 (40 hours to go)

Predict in which country a new user will make his first booking:

age: 42.4 %

date first booking: 6.7%first affiliate tracked: 2.2 %

gender: 46 %

Ozone data set

	maxO3	Т9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	Vx15	maxO3v
0601	NA	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	17	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0920	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	-5.1902	NA
0921	96	NA	NA	NA	3	3	3	NA	NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	-0.9597	-0.700	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0928	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA
0930	70	13.1	10.0	20.1	IVA	IVA	IVA	<u> </u>	-1.0419	-4	IVA

http://www.airbreizh.asso.fr/

Aim: regression with missing values

Missing values problematic

A very simple way: deletion (default 1m function in R) Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values

Missing values problematic

A very simple way: deletion (default 1m function in R) Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values

 $X = (X_{miss}, X_{obs})$. Let M with $M_{ik} = 1$ if X_{ik} is observed and 0 otherwise. M and X have distributions.

- MCAR: probability does not depend on any values $f(M|X_{obs}, X_{miss}; \phi) = f(M; |\phi)$ each entry has the same probability to be observed
- MAR: probability may depend on values on other variables $f(M|X_{obs}, X_{miss}; \phi) = f(M|X_{obs}; \phi)$
- MNAR: probability depends on the value itself $f(M|X_{obs}, X_{miss}; \phi) = f(M|X_{miss}; \phi)$ ⇒ Ex, Age Income.

Missing values problematic

A very simple way: deletion (default 1m function in R) Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values

 $X = (X_{miss}, X_{obs})$. Let M with $M_{ik} = 1$ if X_{ik} is observed and 0 otherwise. M and X have distributions.

- MCAR: probability does not depend on any values $f(M|X_{obs}, X_{miss}; \phi) = f(M; |\phi)$ each entry has the same probability to be observed
- MAR: probability may depend on values on other variables $f(M|X_{obs}, X_{miss}; \phi) = f(M|X_{obs}; \phi)$
- MNAR: probability depends on the value itself $f(M|X_{obs}, X_{miss}; \phi) = f(M|X_{miss}; \phi)$ ⇒ Ex, Age Income.
- \Rightarrow Assume MAR: ignore $f(M|X_{obs}, X_{miss}; \phi)$ when doing inference.

Visualization - Multiple Correspondence Analysis

Implemented in VIM, naniar (Matthias Templ, Nick Tierney) - FactoMineR (YouTube): visu pattern, mechanism

To get hint on the missing values pattern)

Recommended methods

⇒ Modify the estimation process to deal with missing values.

Maximum likelihood: EM algorithm to obtain point estimates +

Supplemented EM (Meng & Rubin, 1991) or Louis for their variability

Ex: Hypothesis $x_{i.} \sim \mathcal{N}(\mu, \Sigma)$, point estimates with EM:

```
> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)
```

Ex: Logistic regression with missing values SAEM algorithm

```
library(devtools)
install_github("wjiang94/misaem")
```

One specific algorithm for each statistical method...

Recommended methods

⇒ Modify the estimation process to deal with missing values.

Maximum likelihood: EM algorithm to obtain point estimates +

Supplemented EM (Meng & Rubin, 1991) or Louis for their variability

Ex: Hypothesis $x_{i.} \sim \mathcal{N}(\mu, \Sigma)$, point estimates with EM:

```
> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)
```

Ex: Logistic regression with missing values SAEM algorithm

```
library(devtools)
install_github("wjiang94/misaem")
```

One specific algorithm for each statistical method...

 \Rightarrow Imputation (multiple) to get a completed data set on which you can perform any statistical method (Rubin, 1976)

Dealing with missing values

 \Rightarrow Imputation to get a completed data set

$$\mu_y = 0$$

$$\sigma_y = 1$$

$$\rho = 0.6$$

$$\hat{\mu}_y = 0.01
\hat{\sigma}_y = 0.5
\hat{\rho} = 0.30$$

Dealing with missing values

Wright IJ, et al. (2004). The worldwide leaf economics spectrum. *Nature*, 69 000 species - LMA (leaf mass per area), LL (leaf lifespan), Amass (photosynthetic assimilation), Nmass (leaf

Imputation methods

Imputation methods

■ Impute by regression take into account the relationship: estimate β - impute $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \Rightarrow$ variance underestimated and correlation overestimated.

Imputation methods

- Impute by regression take into account the relationship: estimate β impute $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \Rightarrow$ variance underestimated and correlation overestimated.
- Impute by stochastic reg: estimate β and σ impute from the predictive $y_i \sim \mathcal{N}\left(x_i\hat{\beta},\hat{\sigma}^2\right) \Rightarrow$ preserve distribution

Imputation assuming a joint modeling with gaussian distribution

based on Gaussian assumption: $x_{i.} \sim \mathcal{N}\left(\mu, \Sigma\right)$

- Bivariate with missing on $x_{.1}$ (stochastic reg): estimate β and σ
- impute from the predictive $x_{i1} \sim \mathcal{N}\left(x_{i2}\hat{eta},\hat{\sigma}^2\right)$
- Extension to multivariate case: estimate μ and Σ from an incomplete data with EM impute by drawing from $\mathcal{N}\left(\hat{\mu},\hat{\Sigma}\right)$ equivalence conditional expectation and regression (Ex + lecture notes: complement Schur)

```
packages Amelia, mice (conditional)
```

```
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> rngseed(123)
> imp <- imp.norm(pre,thetahat,don)
# Same withres.amelia$imputations$imp1</pre>
```

Other single imputation methods

- k-nearest neighbor (package VIM, yaImpute, impute, etc)
- random forest (package missForest)
- ⇒ Stef van Buuren webpage (mice)
- ⇒ R miss-tatic Task View
- \Rightarrow Statistical Science issue (2018)

 \Rightarrow Imputation by PCA

Outline

- 1 Missing values
- 2 Single imputation with PCA
- 3 Multiple imputation with PCA
 - Multiple imputation based on normal distribution
- 4 Categorical data
- **5** Conclusion

PCA (complete)

Find the subspace that best represents the data

Figure: Camel or dromedary?

- \Rightarrow Best approximation with projection
- \Rightarrow Best representation of the variability \Rightarrow Do not distort the distances between individuals

PCA (complete)

Find the subspace that best represents the data

Figure: Camel or dromedary? source J.P. Fénelon

- ⇒ Best approximation with projection
- \Rightarrow Best representation of the variability \Rightarrow Do not distort the distances between individuals

PCA reconstruction

- \Rightarrow Minimizes distance between observations and their projection
- \Rightarrow Approx $X_{n \times p}$ with a low rank matrix S :

$$\operatorname{argmin}_{\mu}\left\{\|X-\mu\|_{2}^{2} : \operatorname{rank}\left(\mu\right) \leq S\right\}$$

PCA reconstruction

- ⇒ Minimizes distance between observations and their projection
- \Rightarrow Approx $X_{n \times p}$ with a low rank matrix S :

$$\operatorname{argmin}_{\mu}\left\{ \|X - \mu\|_{2}^{2} : \operatorname{rank}\left(\mu\right) \leq S \right\}$$

SVD X:
$$\hat{\mu}^{PCA} = U_{n \times S} \Lambda_{S \times S}^{\frac{1}{2}} V'_{p \times S}$$
 $F = U \Lambda^{\frac{1}{2}}$ PC - scores
$$= F_{n \times S} V'_{p \times S}$$
 V principal axes - loadings_{2/67}

Missing values in PCA

⇒ PCA: least squares

$$\operatorname{argmin}_{\mu}\left\{\left\|X_{\mathbf{n}\times\mathbf{p}}-\mu_{\mathbf{n}\times\mathbf{p}}\right\|_{2}^{2}:\operatorname{rank}\left(\mu\right)\leq S\right\}$$

⇒ PCA with missing values: weighted least squares

$$\mathrm{argmin}_{\mu} \left\{ \left\| \textit{W}_{\textit{n} \times \textit{p}} * (\textit{X} - \mu) \right\|_{2}^{2} : \mathrm{rank} \left(\mu \right) \leq \textit{S} \right\}$$

with $W_{ij} = 0$ if X_{ij} is missing, $W_{ij} = 1$ otherwise; * elementwise multiplication

Many algorithms: weighted alternating least squares (Gabriel & Zamir, 1979); iterative PCA (Kiers, 1997)

Initialization $\ell = 0$: X^0 (mean imputation)

PCA on the completed data set \to $(U^{\ell}, \Lambda^{\ell}, V^{\ell})$;

Missing values imputed with the fitted matrix $\hat{\mu}^\ell = U^\ell \Lambda^{1/2^\ell} V^{\ell \prime}$

The new imputed dataset is $\hat{X}^{\ell} = W * X + (\mathbf{1} - W) * \hat{\mu}^{\ell}$

Steps are repeated until convergence

PCA on the completed data set $\to (U^{\ell}, \Lambda^{\ell}, V^{\ell})$ Missing values imputed with the fitted matrix $\hat{u}^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell \ell}$

24 / 67

- 1 initialization $\ell = 0$: X^0 (mean imputation)
- 2 step ℓ :
 - (a) PCA on the completed data \to ($U^{\ell}, \Lambda^{\ell}, V^{\ell}$); S dimensions kept
 - (b) missing values are imputed with $(\hat{\mu}^S)^\ell = U^\ell \Lambda^{1/2^\ell} V^{\ell \prime}$ the new imputed data is $\hat{X}^\ell = W * X + (\mathbf{1} W) * (\hat{\mu}^S)^\ell$
- 3 steps of estimation and imputation are repeated

- 1 initialization $\ell = 0$: X^0 (mean imputation)
- 2 step ℓ :
 - (a) PCA on the completed data \to ($U^{\ell}, \Lambda^{\ell}, V^{\ell}$); S dimensions kept
 - (b) missing values are imputed with $(\hat{\mu}^S)^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell \prime}$ the new imputed data is $\hat{X}^{\ell} = W * X + (\mathbf{1} W) * (\hat{\mu}^S)^{\ell}$
- 3 steps of estimation and imputation are repeated
- $\Rightarrow \hat{\mu} \text{ from incomplete data: EM algo } X = \mu + \varepsilon, \ \varepsilon_{ij} \overset{\text{iid}}{\sim} \mathcal{N} \left(0, \ \sigma^2 \right)$ with μ of low rank $, \ x_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$
- ⇒ Completed data: good imputation (matrix completion, Netflix)

- 1 initialization $\ell = 0$: X^0 (mean imputation)
- 2 step ℓ :
 - (a) PCA on the completed data $\rightarrow (U^{\ell}, \Lambda^{\ell}, V^{\ell})$; S dimensions kept
 - (b) missing values are imputed with $(\hat{\mu}^S)^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell \prime}$ the new imputed data is $\hat{X}^{\ell} = W * X + (\mathbf{1} W) * (\hat{\mu}^S)^{\ell}$
- 3 steps of estimation and imputation are repeated
- $\Rightarrow \hat{\mu}$ from incomplete data: EM algo $X = \mu + \varepsilon$, $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0, \sigma^2\right)$ with μ of low rank , $x_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$
- \Rightarrow Completed data: good imputation (matrix completion, Netflix)

Reduction of variability (imputation by $U\Lambda^{1/2}V'$)

Selecting S? Generalized cross-validation (J. & Husson, 2012)

Soft thresholding iterative SVD

- \Rightarrow Overfitting issues of iterative PCA: many parameters ($U_{n\times S}$, $V_{S\times p}$)/observed values (S large many NA); noisy data
- ⇒ Regularized versions. Init estimation imputation steps:

imputation
$$\hat{\mu}_{ij}^{PCA} = \sum_{s=1}^{S} \sqrt{\lambda_s} u_{is} v_{js}$$
 is replaced by

a "shrunk" impute
$$\hat{\mu}_{ij}^{\mathsf{Soft}} = \sum_{s=1}^{p} \left(\sqrt{\lambda_s} - \lambda \right)_+ u_{is} v_{js}$$

$$\mathbf{X} = \boldsymbol{\mu} + \boldsymbol{\varepsilon} \qquad \operatorname{argmin}_{\boldsymbol{\mu}} \left\{ \| \mathbf{W} * (\mathbf{X} - \boldsymbol{\mu}) \|_2^2 + \lambda \| \boldsymbol{\mu} \|_* \right\}$$

SoftImpute for large matrices. T. Hastie, R. Mazumber, 2015, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares. *JMLR* Implemented in softImpute

Regularized iterative PCA

 \Rightarrow Init. - estimation - imputation steps. In missMDA (Youtube) The imputation step:

$$\hat{\mu}_{ij}^{\mathsf{PCA}} = \sum_{s=1}^{S} \sqrt{\lambda_s} u_{is} v_{js}$$

is replaced by a "shrunk" imputation step (Efron & Morris 1972):

$$\hat{\mu}_{ij}^{\text{rPCA}} = \sum_{s=1}^{S} \left(\frac{\lambda_s - \hat{\sigma}^2}{\lambda_s} \right) \sqrt{\lambda_s} u_{is} v_{js} = \sum_{s=1}^{S} \left(\sqrt{\lambda_s} - \frac{\hat{\sigma}^2}{\sqrt{\lambda_s}} \right) u_{is} v_{js}$$

 σ^2 small \to regularized PCA \approx PCA σ^2 large \to mean imputation

$$\hat{\sigma}^2 = \frac{RSS}{\text{ddl}} = \frac{n \sum_{s=S+1}^{p} \lambda_s}{np - p - nS - pS + S^2 + S} \qquad (X_{n \times p}; U_{n \times S}; V_{p \times S})$$

Properties

- \Rightarrow Results of PCA obtained from an incomplete data set: graph of observations and correlation circle. Missing values are skipped $||W*(X-\mu)||^2$
- \Rightarrow Very good quality of imputation. Using similarities between individuals and relationship between variables. Popular in machine learning with recommandation systems (Netflix: 99% missing).

 $\mbox{Model makes sense: Data} = \mbox{structure of rank S} + \mbox{noise}$

(Udell & Townsend Nice Latent Variable Models Have Log-Rank, 2017)

- ⇒ Different noise regime
 - low noise: iterative PCA (tuning *S*: cross-validation, GCV)
 - moderate: iterative regularized PCA (tuning σ , S)
 - high noise (SNR low, S large): soft thresholding (tuning λ , σ) Implemented in R packages denoiseR (Josse, Wager, Sardy)

The imputed data set should be analysed with caution with other methods

Incomplete ozone

-	03	Т9	T12	T15	Ne9	Ne12	Ne15	Vx9	V×12	V×15	O3v
0601	87	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	NA	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
:	:	- :	- :	- :	- :	:	:	:	:	:	
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0919	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	-5.1902	NA
0920	96	NA	NA	NA	3	3	3	-3.9392 NA	-3.0042 NA	NA	71
0921	98	NA	NA	NA	2	2	2	4	5	4.3301	96
					1		6				98
0923	92	14.7	17.6	18.2		4		5.1962	5.1423	3.5	
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

Complete ozone

```
max03
                  T9
                        T12
                              T15
                                    Ne9 Ne12 Ne15
                                                      Vx9 Vx12 Vx15 max03v
20010601 87.000 15.600 18.500 20.471 4.000 4.000 8.000 0.695 -1.710 -0.695 84.000
20010602 82.000 18.505 20.870 21.799 5.000 5.000 7.000 -4.330 -4.000 -3.000 87.000
20010603 92.000 15.300 17.600 19.500 2.000 3.984 3.812 2.954 1.951 0.521 82.000
20010604 114.000 16.200 19.700 24.693 1.000 1.000 0.000 2.044 0.347 -0.174 92.000
20010605 94.000 18.968 20.500 20.400 5.294 5.272 5.056 -0.500 -2.954 -4.330 114.000
20010606 80.000 17.700 19.800 18.300 6.000 7.020 7.000 -5.638 -5.000 -6.000 94.000
20010607 79.000 16.800 15.600 14.900 7.000 8.000 6.556 -4.330 -1.879 -3.759 80.000
20010610 79.000 14.900 17.500 18.900 5.000 5.016 0.000 -1.042 -1.389 99.000
20010611 101.000 16.100 19.600 21.400 2.000 4.691 4.000 -0.766 -1.026 -2.298 79.000
20010612 106.000 18.300 22.494 22.900 5.000 4.627 4.495 1.286 -2.298 -3.939 101.000
20010613 101.000 17.300 19.300 20.200 7.000 7.000 3.000 -1.500 -1.500 -0.868 106.000
20010915 69.000 17.100 17.700 17.500 6.000 7.000 8.000 -5.196 -2.736 -1.042 71.000
20010916 71.000 15.400 18.091 16.600 4.000 5.000 5.000 -3.830 0.000 1.389 69.000
20010917 60.000 15.283 18.565 19.556 4.000 5.000 4.000 0.000 3.214 0.000 71.000
20010918 42.000 14.091 14.300 14.900 8.000 7.000 7.000 -2.500 -3.214 -2.500 60.000
20010919 65.000 14.800 16.425 15.900 7.000 7.982 7.000 -4.341 -6.062 -5.196 42.000
20010920 71.000 15.500 18.000 17.400 7.000 7.000 6.000 -3.939 -3.064 0.000 65.000
20010924 76.000 13.300 17.700 17.700 5.631 5.883 5.453 -0.940 -0.766 -0.500 65.139
20010925 75.573 13.300 18.434 17.800 3.000 5.000 5.001 0.000 -1.000 -1.286
                                                                           76,000
        77.000 16.200 20.800 20.499 5.368 5.495 5.177 -0.695 -2.000 -1.473 71.000
20010927
20010928
        99.000 18.074 22.169 23.651 3.531 3.610 3.561 1.500 0.868 0.868
                                                                           93.135
20010929 83.000 19.855 22.663 23.847 5.374 5.000 3.000 -4.000 -3.759 -4.000
                                                                           99.000
20010930
         70.000 15.700 18.600 20.700 7.000 6.405 7.000 -2.584 -1.042 -4.000 83.000
```

- > library(missMDA)
- > res.comp <- imputePCA(ozo[, 1:11])</pre>
- > res.comp\$comp

Cherry on the cake: PCA on incomplete data!


```
> imp <- cbind.data.frame(res.comp$completeObs, ozo[, 12])
> res.pca <- PCA(imp, quanti.sup = 1, quali.sup = 12)
> plot(res.pca, hab = 12, lab = "quali"); plot(res.pca, choix = "var")
> res.pca$ind$coord #scores (principal components)
```

Random Forests versus PCA

	Feat1	${\tt Feat2}$	${\tt Feat3}$	${\tt Feat4}$	Feat5
C1	1	1	1	1	1
C2	1	1	1	1	1
C3	2	2	2	2	2
C4	2	2	2	2	2
C5	3	3	3	3	3
C6	3	3	3	3	3
C7	4	4	4	4	4
C8	4	4	4	4	4
C9	5	5	5	5	5
C10	5	5	5	5	5
C11	6	6	6	6	6
C12	6	6	6	6	6
C13	7	7	7	7	7
C14	7	7	7	7	7
Igor	8	NA	NA	8	8
Frank	8	NA	NA	8	8
Bertrand	9	NA	NA	9	9
Alex	9	NA	NA	9	9
Yohann	10	NA	NA	10	10
Jean	10	NA	NA	10	10

Iterative Random Forests imputation

- Initial imputation: mean imputation random category Sort the variables according to the amount of missing values
- 2 Fit a RF X_j^{obs} on variables X_{-j}^{obs} and then predict X_j^{miss}
- 3 Cycling through variables
- 4 Repeat step 2.2 and 3 until convergence
- number of trees: 100
- lacksquare number of variables randomly selected at each node \sqrt{p}
- number of iterations: 4-5

Implemented in the R package missForest (paper) missForest (Daniel J. Stekhoven, Peter Buhlmann, 2011)

Random Forests versus PCA

	Feat1	Feat2	Feat3	Feat4	Feat5		Feat1	Feat2	Feat3	Feat4	Feat5
C1	1	1.0	1.00	1	1	C1	1	1	1	1	1
C2	1	1.0	1.00	1	1	C2	1	1	1	1	1
C3	2	2.0	2.00	2	2	C3	2	2	2	2	2
C4	2	2.0	2.00	2	2	C4	2	2	2	2	2
C5	3	3.0	3.00	3	3	C5	3	3	3	3	3
C6	3	3.0	3.00	3	3	C6	3	3	3	3	3
C7	4	4.0	4.00	4	4	C7	4	4	4	4	4
C8	4	4.0	4.00	4	4	C8	4	4	4	4	4
C9	5	5.0	5.00	5	5	C9	5	5	5	5	5
C10	5	5.0	5.00	5	5	C10	5	5	5	5	5
C11	6	6.0	6.00	6	6	C11	6	6	6	6	6
C12	6	6.0	6.00	6	6	C12	6	6	6	6	6
C13	7	7.0	7.00	7	7	C13	7	7	7	7	7
C14	7	7.0	7.00	7	7	C14	7	7	7	7	7
Igor	8	6.87	7 6.87	8	8	Igor	8	8	8	8	8
Frank	8	6.87	7 6.87	8	8	Frank	8	8	8	8	8
Bertrand	9	6.87	7 6.87	9	9	Bertrand	9	9	9	9	9
Alex	9	6.87	7 6.87	9	9	Alex	9	9	9	9	9
Yohann	10	6.87	7 6.87	10	10	Yohann	10	10	10	10	10
Jean	10	6.87	7 6.87	10	10	Jean	10	10	10	10	10

 \Rightarrow with Random Forests \Rightarrow with PCA (Stekhoven, Buhlmann, 2011 - Bartlett, Carpenter, 2014)

 \Rightarrow Non linear relationship well handled by forests

Outline

- 1 Missing values
- 2 Single imputation with PCA
- 3 Multiple imputation with PCA
 - Multiple imputation based on normal distribution
- 4 Categorical data
- **5** Conclusion

Single imputation methods: Danger!

$$\mu_y = 0
\sigma_y = 1
\rho = 0.6
CI\mu_y 95\%$$
0.01
0.5
0.30

Confidence interval for a mean

Let $Y = (Y_1, \dots, Y_n)'$ be i.i.d. independent Gaussian random with expectation μ_y and variance $\sigma_y^2 > 0$.

- lacksquare The empirical mean $ar{Y}=n^{-1}\sum_{i=1}^n Y_i$
- $\bar{Y} \sim \mathcal{N}(\mu_y, \sigma_y^2/n)$
- \blacksquare A confidence interval for μ

$$\mathbb{P}\left(\bar{Y} - \frac{\sigma_y}{\sqrt{n}} z_{1-\alpha/2} \le \mu \le \bar{Y} + \frac{\sigma_y}{\sqrt{n}} z_{1-\alpha/2}\right) = 1 - \alpha$$

Confidence interval for a mean

Let $Y = (Y_1, \dots, Y_n)'$ be i.i.d. independent Gaussian random with expectation μ_y and variance $\sigma_y^2 > 0$.

- lacksquare The empirical mean $ar{Y}=n^{-1}\sum_{i=1}^n Y_i$
- $\bar{Y} \sim \mathcal{N}(\mu_y, \sigma_y^2/n)$
- \blacksquare A confidence interval for μ

$$\mathbb{P}\left(\bar{Y} - \frac{\sigma_y}{\sqrt{n}} z_{1-\alpha/2} \le \mu \le \bar{Y} + \frac{\sigma_y}{\sqrt{n}} z_{1-\alpha/2}\right) = 1 - \alpha$$

Variance unknown:

$$rac{\sqrt{n}}{\widehat{\sigma_y}}\left(ar{Y}-\mu_y
ight)\sim T(n-1)$$

$$\left[\bar{y}-\frac{\widehat{\sigma}_y}{\sqrt{n}}t_{1-\alpha/2}(n-1)\;,\;\bar{y}+\frac{\widehat{\sigma}_y}{\sqrt{n}}t_{1-\alpha/2}(n-1)\right]$$

Simulation

- Generate bivariate Gaussian data ($\mu_y = 0, \sigma_y = 1, \rho = 0.6$)
- Put missing values on y
- Imput missing entries
- Compute the confidence interval of μ_y count if the true value $\mu_y=0$ is in the confidence interval
- Repeat the steps 10000 times
- Give the coverage

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

$$\begin{bmatrix} \bar{y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}}; \bar{Y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}} \end{bmatrix}$$
Mean imputation
Regression imputation
$$\mu_y = 0$$

$$\sigma_y = 1$$

$$\rho = 0.6$$

$$CI\mu_y 95\%$$
Regression imputation
$$0.01$$

$$0.01$$

$$0.72$$

$$0.78$$

$$0.78$$

$$0.78$$

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

 \Rightarrow Standard errors of the parameters $(\hat{\sigma}_{\hat{\mu}_{v}})$ calculated from the

Underestimation of variance

Classical confidence interval for μ_y $\left[\bar{y}-qt_{n-1}\frac{\hat{\sigma}_y}{\sqrt{n}}; \bar{Y}-qt_{n-1}\frac{\hat{\sigma}_y}{\sqrt{n}}\right]$

Asymptotic variance with missing values (Little & Rubin, p140):

$$\frac{\hat{\sigma}_y^2}{n_{obs}} \left(1 - \hat{\rho}^2 \frac{n - n_{obs}}{n_{obs}} \right) = \frac{\hat{\sigma}_y^2}{n} \left(1 + \frac{n - n_{obs}}{n_{obs}} (1 - \hat{\rho}^2) \right)$$

- \Rightarrow When the $\rho=$ 1, we trust the prediction and the coverage given by stochastic regression is OK.
- \Rightarrow Coverage of single imputation is too low: need to take into account the uncertainty associated to the predictions.

Multiple imputation (Rubin, 1987)

Single imputation: underestimation of standard errors

- \Rightarrow a single value can't reflect the uncertainty of prediction
 - Generate M plausible values for each missing value

- 2 Perform the analysis on each imputed data set: $\hat{\theta}_m$, $\widehat{Var}\left(\hat{\theta}_m\right)$
- 3 Combine the results: $\hat{\theta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_m$ $T = \frac{1}{M} \sum_{m=1}^{M} \widehat{Var} \left(\hat{\theta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m=1}^{M} \left(\hat{\theta}_m \hat{\theta} \right)^2$
- \Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)

Multiple imputation

Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors

1 Generating *M* imputed data sets

- 2 Performing the analysis on each imputed data set
- \blacksquare Combining: variance = within + between imputation variance

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m}$$

$$T = \frac{1}{M} \sum_{m} \widehat{Var} \left(\hat{\beta}_{m} \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m} \left(\hat{\beta}_{m} - \hat{\beta} \right)^{2}$$

Multiple imputation: bivariate case

1 Generating *M* imputed data sets

First idea: several stochastic regression for m=1,...,M, draw y_i from the predictive $\mathcal{N}(x_i\hat{\beta},\hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- \blacksquare Combining: variance = within + between imputation variance

	M = 1	M = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
ho = 0.6	0.59	0.59
$CI\mu_y$ 95%	70.8	81.8

Multiple imputation: bivariate case

1 Generating *M* imputed data sets

First idea: several stochastic regression for m=1,...,M, draw y_i from the predictive $\mathcal{N}(x_i\hat{\beta},\hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- \blacksquare Combining: variance = within + between imputation variance

	M = 1	M = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y=1$	0.99	0.99
ho=0.6	0.59	0.59
$ extit{CI}\mu_y$ 95%	70.8	81.8

⇒ Variability of the parameters is missing: "improper" imputation

Multiple imputation: bivariate case

1 Generating *M* imputed data sets

First idea: several stochastic regression for m=1,...,M, draw y_i from the predictive $\mathcal{N}(x_i\hat{\beta},\hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- \blacksquare Combining: variance = within + between imputation variance

	M = 1	M = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
ho=0.6	0.59	0.59
$CI\mu_y$ 95%	70.8	81.8

- ⇒ Variability of the parameters is missing: "improper" imputation
- ⇒ Prediction variance = estimation variance plus noise

Regression: variance of prediction

$$y_{n+1} = x'_{n+1}\beta + \varepsilon_{n+1}$$
$$\hat{y}_{n+1} = x'_{n+1}\hat{\beta}$$
$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$V[\hat{y}_{n+1} - y_{n+1}] = V[x'_{n+1}(\hat{\beta} - \beta) - \varepsilon_{n+1}]$$

$$= x'_{n+1}V(\hat{\beta} - \beta)x_{n+1} + \sigma^{2}]$$

$$= \hat{\sigma}^{2}(x'_{n+1}(X'X)^{-1}x_{n+1} + 1)$$

CI for the prediction

$$\left[x'_{n+1}\hat{\beta} + -t_{n-p}(1-\alpha/2)\hat{\sigma}\sqrt{(x'_{n+1}(X'X)^{-1}x_{n+1}+1)}\right]$$

Multiple imputation continuous data: bivariate case

- \Rightarrow Proper multiple imputation with $y_i = x_i \beta + \varepsilon_i$
 - **1** Variability of the parameters, M plausible: $(\hat{\beta})^1,...,(\hat{\beta})^M$
 - \Rightarrow Bootstrap
 - ⇒ Posterior distribution: Data Augmentation (Tanner & Wong, 1987)
 - 2 Noise: for m=1,...,M, missing values y_i^m are imputed by drawing from the predictive distribution $\mathcal{N}(x_i\hat{\beta}^m,(\hat{\sigma}^2)^m)$

$$\begin{array}{ccc} & \text{Improper} & \text{Proper} \\ \textit{CI}\mu_{\textit{y}}95\% & 0.818 & 0.935 \end{array}$$

Multiple imputation

- \Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values) Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors
 - \blacksquare Generating M imputed data sets: variance of prediction

- Performing the analysis on each imputed data set
- 3 Combining: variance = within + between imputation variance $\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m}$ $T = \frac{1}{M} \sum \widehat{Var} \left(\hat{\beta}_{m} \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum \left(\hat{\beta}_{m} \hat{\beta} \right)^{2}$

Multiple imputation

- \Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values) Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors
 - \blacksquare Generating M imputed data sets: variance of prediction

- 1) Variance of estimation of the parameters + 2) Noise
- 2 Performing the analysis on each imputed data set
- 3 Combining: variance = within + between imputation variance $\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m}$ $T = \frac{1}{M} \sum \widehat{Var} \left(\hat{\beta}_{m} \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum \left(\hat{\beta}_{m} \hat{\beta} \right)^{2}$

Joint modeling

 \Rightarrow Hypothesis $x_{i.} \sim \mathcal{N}(\mu, \Sigma)$

Algorithm Expectation Maximization Bootstrap:

- Bootstrap rows: X^1, \ldots, X^M EM algorithm: $(\hat{\mu}^1, \hat{\Sigma}^1), \ldots, (\hat{\mu}^M, \hat{\Sigma}^M)$
- $oxed{2}$ Imputation: x_{ij}^m drawn from $\mathcal{N}\left(\hat{\mu}^m,\hat{\Sigma}^m\right)$

Easy to parallelized. Implemented in Amelia (website)

Amelia Earhart

Gary King

Matt Blackwell

Fully conditional modeling

- \Rightarrow Hypothesis: one model/variable
 - 1 Initial imputation: mean imputation
 - 2 For a variable j
 - 2.2 Imputation of the missing values in variable j with a model of X_j on the other X_{-j} : stochastic regression x_{ij} from $\mathcal{N}\left((x_{i,-j})'\hat{\beta}^{-j},\hat{\sigma}^{-j}\right)$
 - 3 Cycling through variables
- \Rightarrow Iteratively refine the imputation.
- \Rightarrow With continuous variables and a regression/variable: $\mathcal{N}\left(\mu,\Sigma\right)$

Implemented in mice (website) and Python

"There is no clear-cut method for determining

Fully conditional modeling

- \Rightarrow Hypothesis: one model/variable
 - I Initial imputation: mean imputation
 - 2 For a variable j
 - 2.1 $(\hat{\beta}^{-j}, \hat{\sigma}^{-j})$ drawn from a Bootstrap: $(\hat{\beta}^{-j}, \hat{\sigma}^{-j})^1, \dots, (\hat{\beta}^{-j}, \hat{\sigma}^{-j})^M$
 - 2.2 Imputation of the missing values in variable j with a model of X_j on the other X_{-j} : stochastic regression x_{ij} from $\mathcal{N}\left((x_{i,-j})'\hat{\beta}^{-j},\hat{\sigma}^{-j}\right)$
 - 3 Cycling through variables

Get M imputed data

- \Rightarrow Iteratively refine the imputation.
- \Rightarrow With continuous variables and a regression/variable: $\mathcal{N}\left(\mu,\Sigma\right)$

Implemented in mice (website) and Python

"There is no clear-cut method for determining

Joint / Conditional modeling

- \Rightarrow Both seen imputed values are drawn from a Joint distribution (even if joint does not exist)
- \Rightarrow Conditional modeling takes the lead?
 - Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
 - Many statistical models are conditional models!
 - Tailor to your data
 - Appears to work quite well in practice
- ⇒ Drawbacks: one model/variable... tedious...

Joint / Conditional modeling

- \Rightarrow Both seen imputed values are drawn from a Joint distribution (even if joint does not exist)
- ⇒ Conditional modeling takes the lead?
 - Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
 - Many statistical models are conditional models!
 - Tailor to your data
 - Appears to work quite well in practice
- ⇒ Drawbacks: one model/variable... tedious...
- \Rightarrow What to do with high correlation or when n < p?
 - JM shrinks the covariance $\Sigma + k\mathbb{I}$ (selection of k?)
 - CM: ridge regression or predictors selection/variable \Rightarrow a lot of tuning ... not so easy ...

Multiple imputation with Bootstrap PCA

$$x_{ij} = \mu_{ij} + \varepsilon_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$$
, $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$

- 1 Variability of the parameters, M plausible: $(\hat{\mu}_{ij})^1,...,(\hat{\mu}_{ij})^M$
- 2 Noise: for m=1,...,M, missing values x_{ij}^m drawn $\mathcal{N}(\hat{\mu}_{ij}^m,\hat{\sigma}^2)$

Implemented in missMDA (website)

François Husson

\Rightarrow Step 1: Generate M imputed data sets

```
> library(Amelia)
> res.amelia <- amelia(don, m = 100)
> library(mice)
> res.mice <- mice(don, m = 100, defaultMethod = "norm.boot")
> library(missMDA)
> res.MIPCA <- MIPCA(don, ncp = 2, nboot = 100)
> res.MIPCA$res.MI
```

⇒ Step 2: visualization

Observed versus Imputed Values of maxO3 200 150 Imputed Values 8 100 120 140 160 Observed Values

```
# library(Amelia)
> res.amelia <- amelia(don, m = 100)
> compare.density(res.amelia, var = "T12")
> overimpute(res.amelia, var = "max03")
```

- ⇒ Step 2: visualization
- ⇒ Individuals position (and variables) with other predictions

Regularized iterative PCA ⇒ reference configuration

- ⇒ Step 2: visualization
- ⇒ Individuals position (and variables) with other predictions

Regularized iterative PCA ⇒ reference configuration

- ⇒ Step 2: visualization
- ⇒ Individuals position (and variables) with other predictions

Regularized iterative PCA ⇒ reference configuration

PCA representation


```
> imp <- cbind.data.frame(res.comp$completeObs, ozo[, 12])
> res.pca <- PCA(imp,quanti.sup = 1, quali.sup = 12)
> plot(res.pca, hab =12, lab = "quali"); plot(res.pca, choix = "var")
> res.pca$ind$coord #scores (principal components)
```

\Rightarrow Step 2: visualization

```
> res.MIPCA <- MIPCA(don, ncp = 2)
> plot(res.MIPCA, choice = "ind.supp"); plot(res.MIPCA, choice = "var")
```


 \Rightarrow Percentage of NA?

 \Rightarrow Step 3. Regression on each table and pool the results

$$\begin{split} \hat{\beta} &= \tfrac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m \\ \mathcal{T} &= \tfrac{1}{M} \sum_{m} \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \tfrac{1}{M} \right) \tfrac{1}{M-1} \sum_{m} \left(\hat{\beta}_m - \hat{\beta} \right)^2 \end{split}$$

```
> library(mice)
```

- > res.mice <- mice(don, m = 100)
- > imp.micerf <- mice(don, m = 100, defaultMethod = "rf")</pre>
- > lm.mice.out <- with(res.mice, lm(max03 ~ T9+T12+T15+Ne9+...+Vx15+max03v))
- > pool.mice <- pool(lm.mice.out)</pre>
- > summary(pool.mice)

	est	se	t	df	Pr(> t)	lo 95	hi 95	nmis	fmi	lambda
(Intercept)	19.31	16.30	1.18	50.48	0.24	-13.43	52.05	NA	0.46	0.44
Т9	-0.88	2.25	-0.39	26.43	0.70	-5.50	3.75	37	0.71	0.69
T12	3.29	2.38	1.38	27.54	0.18	-1.59	8.18	33	0.70	0.68
Vx15	0.23	1.33	0.17	39.00	0.87	-2.47	2.93	21	0.57	0.55
max03v	0.36	0.10	3.65	46.03	0.00	0.16	0.56	12	0.50	0.48

Outline

- 1 Missing values
- 2 Single imputation with PCA
- 3 Multiple imputation with PCA
 - Multiple imputation based on normal distribution
- 4 Categorical data
- **5** Conclusion

Categorical data

Survey data

region		sex	age	vear	edu	drunk	alcohol	gla
Ile de France	:8120	F:29776	18 25: 6920	2005:27907	E1:12684	0 :44237	<1/m :12889	0
lie de Flance	.0120	F. 23110	10_25. 0920	2005.21901	E1:12004	0 .44237	\1/II .12009	U
Rhone Alpes	:5421	M:23165	26_34: 9401	2010:25034	E2:23521	1-2 : 4952	0 : 6133	0-2
Provence Alpes	:4116		35_44:10899		E3:6563	10-19: 839	1-2/m: 7583	10-
Nord Pas de Calais	:3819		45_54: 9505		E4:10100	20-29: 212	1-2/w: 9526	3-4
Pays de Loire	:3152		55_64: 9503		NA:73	3-5 : 1908	3-4/w: 6815	5-6
Bretagne	:3038		65_+ : 6713			30+ : 404	5-6/w: 3402	7-9
(Other)	:25275					6-9 : 389	7/w : 6593	

binge	Pbsleep	Tabac
<2/m:10323	Never:20605	Frequent : 9176
0 :34345	Often: 10172	Never :39080
1/m : 6018	Rare :22134	Occasional: 4588
1/w : 1800	NA: 30	NA: 97
- /		

INPES http://www.inpes.sante.fr

Principal components method: Multiple Correpondence Analysis Single imputation based on MCA for categorical data

Multiple Correspondence Analysis (MCA)

 $X_{n \times m}$ m categorical variables coded with indicator matrix A

$$\mathcal{D}_{\rho} = \begin{array}{|c|c|c|c|}\hline & \rho_1 & & & 0\\ & \ddots & & \\ 0 & & & \rho_J \\ \hline \end{array}$$

For a category c, the frequency of the category: $p_c = n_c/n$. A SVD on weighted matrix: $Z = \frac{1}{\sqrt{mp}} (A - 1p^T) D_p^{-1/2} = U \Lambda V'$ The PC $(F = U\Lambda^{1/2})$ satisfies: $\arg \max_{F_s \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \eta^2(F_s, X_i)$

$$\eta^{2}(F, X_{j}) = \frac{\sum_{c=1}^{C_{j}} n_{c}(F_{.c} - F_{..})^{2}}{\sum_{i=1}^{n} \sum_{c=1}^{C_{j}} (F_{ic})^{2}} = \frac{\text{RSS between}}{\text{RSS tot}}$$

Benzecri, 1973: "In data analysis the mathematical problems reduces to computing eigenvectors; all the science (the art) is in finding the right matrix to diagonalize"

Iterative MCA algorithm:

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	NA	NA	1	0	
ind 2	NA	NA	NA	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	NA	NA	
ind 1232	0	0	1	0	1	0	1	

library(missMDA); ?imputeMCA

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.41	0.59	1	0	
ind 2	0.20	0.30	0.50	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.27	0.78	
ind 1232	0	0	1	0	1	0	1	

library(missMDA); ?imputeMCA

Iterative MCA algorithm:

- 1 initialization: imputation of the indicator matrix (proportion)
- 2 iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	V
ind 4	а	е	h	V
ind 5	b	f	h	u
ind 6	С	f	h	u
ind 7	С	f	NA	V
ind 1232	С	f	h	V

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.41	0.59	1	0	
ind 2	0.20	0.30	0.50	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.27	0.78	
ind 1232	0	0	1	0	1	0	1	

Iterative MCA algorithm:

- 1 initialization: imputation of the indicator matrix (proportion)
- 2 iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
 - (b) imputation with the fitted matrix $\hat{\mu} = \mathit{U_S} \Lambda_\mathit{S}^{1/2} \mathit{V_S'}$

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	V
ind 4	а	е	h	V
ind 5	b	f	h	u
ind 6	С	f	h	u
ind 7	С	f	NA	V
ind 1232	С	f	h	٧

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.65	0.35	1	0	
ind 2	0.11	0.20	0.69	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.30	0.40	
ind 1232	0	0	1	0	1	0	1	

Iterative MCA algorithm:

- 1 initialization: imputation of the indicator matrix (proportion)
- 2 iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
 - (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V_S'$
 - (c) column margins are updated

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	V
ind 4	а	е	h	V
ind 5	b	f	h	u
ind 6	С	f	h	u
ind 7	С	f	NA	٧
ind 1232	С	f	h	٧

	V1 a	V1_b	V/1 o	V/2 o	\/2 f	\/2 a	1/2 h	
	v ı_a	V 1_D	V1_C	VZ_E	VZ_I	v3_g	V3_h	
ind 1	1	0	0	0.65	0.35	1	0	
ind 2	0.11	0.20	0.69	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.30	0.40	
ind 1232	0	0	1	0	1	0	1	

Iterative MCA algorithm:

- 1 initialization: imputation of the indicator matrix (proportion)
- 2 iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
 - (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V_S'$
 - (c) column margins are updated

	V1	V2	V3	 V14
ind 1	а	NA	g	 u
ind 2	NA	f	g	u
ind 3	а	е	h	٧
ind 4	а	е	h	٧
ind 5	b	f	h	u
ind 6	С	f	h	u
ind 7	С	f	NA	٧
ind 1232	С	f	h	V

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.71	0.29	1	0	
ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	0	0	1	0	1	0	1	

⇒ the imputed values can be seen as degree of membership

Iterative MCA algorithm:

- 1 initialization: imputation of the indicator matrix (proportion)
- 2 iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
 - (b) imputation with the fitted matrix $\hat{\mu} = U_{S} \Lambda_{S}^{1/2} V_{S}'$
 - (c) column margins are updated

	V1	V2	V3	 V14
ind 1	а	е	g	 u
ind 2	С	f	g	u
ind 3	a	е	h	٧
ind 4	а	е	h	V
ind 5	b	f	h	u
ind 6	С	f	h	u
ind 7	С	f	g	٧
ind 1232	С	f	h	٧

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	1	0	0	0.71	0.29	1	0	
ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	1	0	0	1	0	0	1	
ind 4	1	0	0	1	0	0	1	
ind 5	0	1	0	0	1	0	1	
ind 6	0	0	1	0	1	0	1	
ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	0	0	1	0	1	0	1	

Two ways to obtain categories: majority or draw

Multiple imputation with MCA

Variability of the parameters: M sets $(U_{n\times S}, \Lambda_{S\times S}, V_{m\times S}^{\top})$ using a non-parametric bootstrap

	Ū	į	\hat{X}_1					\hat{X}_2	•					\hat{X}_{h}	Л		
1	0			1	0	0	1	0		1	0	0		1	0	 1	0
1	0			1	0	0	1 1	0		1	0	0		1 1	0	 1	0
1	U			0.01	0.80	0.19	1	U		0.60	0.2	0.20	l	1	U	 0.11	0.7
0.2	5 0.	75		0	0	1	0.26	0.74		0	0	1		0.20	0.80	0	0
0	1			0	0	1	0	1		0	0	1		0	1	0	0

2 Categories drawn from multinomial disribution using the values in $(\hat{X}_m)_{1 \le m \le M}$

У	 Attack
у	 Attack
у	 Suicide
n	 Accident
n	 S

У	 Attack
у	 Attack
у	 Attack .
n	 Accident
n	 В

ſ	У	 Attack
	У	 Attack
	у	 Suicide
	n	 Accident
L	n	 Suicide

library(missMDA); MIMCA()

Multiple imputation for categorical data

- ⇒ Joint modeling:
 - Log-linear model (Schafer, 1997) (cat): pb many levels
 - Latent class models (Vermunt, 2014) nonparametric Bayesian (Si & Reiter, 2014, Murray & Reiter, 2016) (MixedDataImpute, NPBayesImpute, NestedCategBayesImpute)
- ⇒ Conditional model: logistic, multinomial logit, forests (mice)
- ⇒ MIMCA provides valid inference (ex. logistic reg with missing) applied to data of various size (many levels, rare levels)

Time (seconds)	Titanic	Galetas	Income
rows-variables-levels	(2000 - 4 - 4)	(1000 - 4 -11)	(6000 - 14 - 9)
MIMCA	2.750	8.972	58.729
Loglinear	0.740	4.597	NA
Nonparametric bayes	10.854	17.414	143.652
Cond logistic	4.781	38.016	881.188
Cond forests	265.771	112.987	6329.514

Outline

- 1 Missing values
- 2 Single imputation with PCA
- 3 Multiple imputation with PCA
 - Multiple imputation based on normal distribution
- 4 Categorical data
- 5 Conclusion

To conclude

Take home message:

- "The idea of imputation is both seductive and dangerous. It is seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the real and imputed data have substantial biases." (Dempster and Rubin, 1983)
- Single imputation aims to complete a dataset as best as possible (prediction)
- Multiple imputation aims to perform other statistical methods after and to estimate parameters and their variability taking into account the missing values uncertainty
- Single imputation can be appropriate for point estimates

To conclude

Take home message:

- Principal component methods powerful for single & multiple imputation of quanti & categorical data (rare categories): dimensionality reduction and capture similarities between obs and variables. (be careful some implementations do not handle well categorical data)
 - \Rightarrow Correct inferences for analysis model based on relationships between pairs of variables
 - ⇒ SVD can be distributed! Master Slave, privacy preserving
 - \Rightarrow Requires to choose the number of dimensions S
- Handling missing values in PCA, MCA, FAMD, Multiple Factor Analysis (MFA), Correspondence analysis for contingency tables
- Preprocessing before clustering
- Package R missMDA (youtube, website, blog)

Challenges

- \Rightarrow MI theory:
 - Imputation model as complex as the analysis one (interaction)
 - Good theory for regression parameters: others?
 - MI theory with new asymptotic small n, large p?
 - ⇒ Still an active area of research
 - ⇒ Imputation/Multiple imputation for prediction.
 - ⇒ Variable selection
- ⇒ Some practical issues:
 - Imputation not in agreement (X and X^2): missing passive, Imputation out of range?, Problems of logical bounds (> 0)
 - Multiple imputation is appealing but ... with large data?

Ressources implementation

```
Package missMDA:
http://factominer.free.fr/missMDA/index.html
```

Youtube: https://www.youtube.com/watch?v=00M8_FH6_80&list=PLnZgp6epRBbQzxFnQrcxg09kRt-PA66T_playlist

Article JSS:

https://www.jstatsoft.org/article/view/v070i01