Amendments to the Claims

This listing of claims will replace all prior versions, and listing, of claims in the application.

 (Currently Amended) A method for preparing a peptide comprising a peptidic backbone made up of four or more amino acids;

wherein the method comprises a step of:

reacting a peptide acyl donor comprising a peptidic backbone made up of two or more amino acids wherein said peptide acyl donor has the structure:

with a peptide amine acceptor having the structure:

$$R^{S_1}S$$

$$(A_2)$$

$$A_2$$

$$Peptide Backbone$$

$$R^{\times 2}$$

under reducing reaction conditions employing an excess of a reducing agent; wherein k1 and k2 are independently integers between 1 and about 20;

each occurrence of A₁ and A₂ is independently an aliphatic, heteroaliphatic, aromatic, heteroaromatic, aryl, or heteroaryl group;

RS1 is a sulfide protecting group;

R is aliphatic, heteroaliphatic, aromatic or heteroaromatic;

RX0 is a disulfide substituted aryl moiety:

each occurrence of L^1 is independently a substituted or unsubstituted, linear or branched, cyclic or acyclic, saturated or unsaturated aliphatic or heteroaliphatic $\frac{1}{1}$

 R^{X1} is hydrogen, alkyl, acyl, aromatic, heteroaromatic, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), a nitrogen protecting group, an amino acid or a proctected amino acid; and

 R^{X2a} is $-OR^{X2a}$ or $-NR^{X2b}R^{X2e}$, wherein R^{X2a} is hydrogen, alkyl, aromatic, heteroaromatic, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), a carboxylic acid protecting group, an amino acid or a proctected amino acid; and R^{X2b} and R^{X2e} are independently hydrogen, alkyl, aromatic, heteroaromatic, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), a nitrogen protecting group, an amino acid or a proctected amino acid.

(Canceled)

- 3. (Currently Amended) The method of claim 1, wherein each occurrence of A1 $\underline{\Delta}_1$ and A2 $\underline{\Delta}_2$ is independently a biomolecule carbohydrate determinant, a small molecule, a macromolecule or a diagnostic label.
- 4. (Currently amended) The method of claim 1, wherein each occurrence of $A1 \Delta_1$ and $A2 \Delta_2$ is independently a carbohydrate determinant having the structure:

wherein a, b, c, d, e, f, g, h, i, x, y and z are independently 0, 1, 2 or 3, with the proviso that the x, y and z bracketed structures represent furanose or pyranose $\frac{1}{1000}$ modelies $\frac{1}{1000}$ groups and the

sum of b and c is 1 or 2, the sum of d and f is 1 or 2, and the sum of g and i is 1 or 2, and with the proviso that x, y and z are not simultaneously 0; wherein R_0 is hydrogen, a linear or branched chain alkyl, acyl, arylalkyl or aryl group; wherein each occurrence of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 is independently hydrogen, OH, OR i , NHR i , NHCOR i , F, CH₂OH, CH₂OR i , a substituted or unsubstituted linear or branched chain alkyl, (mono-, di- or tri)hydroxyalkyl, (mono-, di- or tri)acyloxyalkyl, arylalkyl or aryl group; wherein each occurrence of R^i is independently hydrogen, CHO, COOR ii , or a substituted or unsubstituted linear or branched chain alkyl, acyl, arylalkyl or aryl group or a saccharide moiety having the structure:

wherein Y and Z are independently NH or O; wherein k, l, r, s, t, u, v and w are each independently 0, 1 or 2; with the proviso that the v and w bracketed structures represent furanose or pyranose moieties groups and the sum of l and k is 1 or 2, and the sum of s and u is 1 or 2, and with the proviso that v and w are not simultaneously 0; wherein R'_0 is hydrogen, a linear or branched chain alkyl, acyl, arylalkyl or aryl group; wherein each occurrence of R_{10} , R_{11} , R_{12} , R_{13} , and R_{15} is independently hydrogen, OH, OR^{iii} , $NHCOR^{iii}$, F, CH_2OH , CH_2OR^{iii} , or a substituted or unsubstituted linear or branched chain alkyl, (mono-, di- or tri)hydroxyalkyl, (mono-, di- or tri)acyloxyalkyl, arylalkyl or aryl group; wherein each occurrence of R_{16} is hydrogen, COOH, COORⁱⁱ, CONHRⁱⁱ, a substituted or unsubstituted linear or branched chain alkyl or aryl group; wherein each occurrence of R^{ii} is hydrogen, CHO, COOR^{iv}, or a substituted or unsubstituted linear or branched chain alkyl, acyl, arylalkyl or aryl group; and wherein each occurrence of R^{ii} and R^{iv} are each independently H, or a substituted or unsubstituted linear or branched chain alkyl, arylalkyl or aryl group.

 (Withdrawn/Currently Amended) The method of claim 1, wherein each occurrence of L¹ is independently -O-(CH₂)_n-, wherein n is 0-9, or a glycoside-containing moiety group. 6. (Withdrawn/Currently Amended) The method of claim 1, wherein L¹ is -O-(CH₂)_n-CH₂- and two or more non-adjacent amino acids is/are independently substituted with a moiety group having the structure:

wherein each occurrence of n is independently 0-8.

- 7. (Currently Amended) The method of claim 1, wherein each occurrence of A1 \underline{A}_1 and A2 \underline{A}_2 is independently selected from the group consisting of Globo-H, fucosyl GM1, KH-1, glycophorin, STn, (2,3)ST, Le³, Le³, N3, Tn, 2,6-ST, Gb3 and TF.
- 8. (Currently Amended) The method of claim 1, wherein the peptide has the structure:

wherein s1 and s2 are independently an integer from 1 to about 20;

t1, t2 and t3 are each independently an integer;

R^{XI} is hydrogen, alkyl, acyl, aromatic, heteroaromatic, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), a nitrogen protecting group, an amino acid or a proctected amino acid;

 R^{X2} is $-0R^{X2a}$ or $-NR^{X2b}R^{X2e}$, wherein R^{X2a} is hydrogen, alkyl, aromatic, heteroaromatic, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), a carboxylic acid protecting group, an amino acid or a proctected amino acid; and R^{X2b} and R^{X2e} are independently hydrogen, alkyl, aromatic, heteroaromatic, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), a nitrogen protecting group, an amino acid or a proctected amino acid:

R^{P1}, R^{P2} and R^{P3} are independently H, alkyl, heteroalkyl, aromatic, heteroaromatic, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), or a natural or non-natural amino acid side chain;

each occurrence of L^1 is independently a substituted or unsubstituted aliphatic or heteroaliphatic moiety;

 A_1 and A_2 are each independently an aliphatic, heteroaliphatic, aromatic, heteroaromatic, aryl, or heteroaryl group; and

at least one occurrence of the bracketed structure t2 is a cysteine residue or protected cysteine residue;

and the method comprises a step of:

reacting a peptide acyl donor having the structure:

with a peptide amine acceptor having the structure:

under reducing reaction conditions employing an excess of a reducing agent; wherein the sum t+t' equals (t2)+1.

9. (Previously Presented) The method of claim 8, wherein the step of reacting the peptide acyl donor with the peptide amine acceptor is repeated a desired number of times, to prepare a peptide having the structure:

wherein RX1 and RX2 are as defined in claim 8:

each occurrence of A may be the same or different and may be as defined for A_1 and A_2 in claim 8;

each occurrence of R^{P1} may be the same or different and may be as defined for R^{P1} and R^{P2} in claim 8;

- q is an integer greater than or equal to 2;
- each occurrence of s is independently an integer from 1 to about 20;
- each occurrence of t is independently an integer;
- t0 is an integer; and

each occurrence of R⁸⁰ is independently H, alkyl, heteroalkyl, aromatic, heteroaromatic, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), or a natural or non-natural amino acid side chain.

- 10. (Original) The method of claim 9, wherein q is an integer between 2 and about 5.
- 11. (Original) The method of claim 9, wherein q is 2.
- 12. (Original) The method of claim 9, wherein the sum s+t is between about 2 and about 6.
- 13. (Original) The method of claim 9, wherein t0 is an integer from 0 to about 20.

- 14. (Original) The method of claim 9, wherein R^{X1} is hydrogen, Fmoc or Ac.
- 15. (Original) The method of claim 9, wherein R^{X2} is NH₂.
- 16. (Cancelled)
- 17. (Cancelled)
- 18. (Currently Amended) The method of claim $47 \ \underline{1}$, wherein R^{X0} the peptide acyl donor has the structure:

wherein R is lower alkyl.

- 19. (Original) The method of claim 18, wherein R is ethyl.
- 20. (Original) The method of claim 9, wherein R^{S1} is -StBu.
- 21. (Currently Amended) The method of claim 9, wherein in the step of reacting the peptide acyl donor having the structure:

with the peptide amine acceptor, an intermediate having the following structure is formed in situ:

$$\mathbb{R}^{X1} \begin{bmatrix} H & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} H & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{\mathbb{R}^{N0a}} \mathbb{R}^{N0a}$$

wherein R^{X0a} is an oxygen-substituted aryl moiety.

- 22. **(Previously Presented)** The method of claim 21, wherein the reducing agent is 2-mercaptoethanesulfonic acid, sodium salt.
- 23. (Currently Amended) The method of claim 9, wherein the peptide acyl donor has the structure:

- 24. (Withdrawn) The method of claim 1, wherein at least one occurrence of A_1 or A_2 is a carbohydrate domain, and some or all of carbohydrate domains are O-linked to the peptide backbone.
- 25. (Previously Presented) The method of claim 1, wherein at least one occurrence of A_1 or A_2 is a carbohydrate domain, and some or all of carbohydrate domains are N-linked to the peptide backbone.
- 26. (Withdrawn) The method of claim 1, wherein the peptide is symmetrical.
- 27. (Previously Presented) The method of claim 1, wherein the peptide is nonsymmetrical.

- 28. (Withdrawn) The method of claim 1, further comprising a step of conjugating the peptide to an immunogenic carrier.
- (Withdrawn) The method of claim 28, wherein the carrier is a protein, a peptide or a lipid.
- (Withdrawn) The method of claim 28, wherein the carrier is Bovine Serum Albumin (BSA), Keyhole Limpet Hemocyanin (KLH) or polylysine.
- 31. **(Withdrawn)** The method of claim 28, wherein the carrier is a lipid carrier having the structure:

wherein m, n and p are each independently integers between about 8 and 20; and $R_{\rm V}$ is hydrogen, substituted or unsubstituted linear or branched chain lower alkyl or substituted or unsubstituted phenyl.

- 32. (Withdrawn) The method of claim 31, wherein m', n' and p' are each 14.
- (Withdrawn) The method of claim 28, wherein the carrier is linked to the peptide through a crosslinker.
- 34. (Withdrawn) The method of claim 33, wherein the crosslinker is a fragment having the structure:

whereby said structure is generated upon conjugation of a maleimidobenzoic acid Nhydroxy succinimide ester with a suitable functionality on the peptide.

35. (Previously Presented) The method of claim 1, wherein the peptide has the structure:

36. (Withdrawn) The method of claim 1, wherein the peptide has the structure:

37. (Withdrawn) The method of claim 1, wherein the peptide has the structure:

38. (Withdrawn) The method of claim 1, wherein the peptide has the structure:

39. (Withdrawn) The method of claim 1, wherein the peptide has the structure:

40. (Cancelled)