جمعية أصدقاء الرياضيات ASSOCIATION DES AMIS DE MATHEMATIQUES

Bac Blanc

Epreuve de Maths

Niveau : /7C

Durée :4h

Proposée le 24 décembre 2019 de 8h à 12h

Exercice 1: (5 pts)

On considère les matrices : $M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ et $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 1) Calculer $M^2 = M \times M$. On donne $M^3 = \begin{bmatrix} 20 & 10 & 11 \\ 12 & 2 & 9 \\ 42 & 20 & 21 \end{bmatrix}$

- 2. a) Vérifier que : $M^3 = M^2 + 8M + 6I$
- b) Exprimer M^4 sous la forme: $M^4 = \alpha M^2 + \beta M + \gamma I$ où α, β et γ sont des entiers naturels à déterminer.
- 3) En déduire que M est inversible et déterminer M⁻¹.
- 4) On cherche à déterminer trois entiers a,b et c tels que la courbe de la fonction
- $f(x) = ax^2 + bx + c$ passe par les points A(1,1), B(-1,-1) et C(2,5).
- a) Montrer que ça revient à trouver les entiers a,b et c tels que : $M \times \begin{vmatrix} b \\ b \end{vmatrix} = \begin{vmatrix} -1 \\ -1 \end{vmatrix}$.
- b) Déterminer alors ces entiers.

Exercice 2 (4 pts) AMIMATA. MY

On donne dans \mathbb{C} le polynôme $p(z) = z^3 + (1 + 3ie^{i\theta})z^2 + (1 + i + 3ie^{i\theta})z + (3i - 3)e^{i\theta}$.

- 1. a) Montrer que $z_0 = -3ie^{i\theta}$ est une solution l'équation P(z) = 0.
- b) Donner une factorisation de P(z) de la forme $P(z) = (z+3ie^{i\theta})(z^2+az+b)$
- c) Résoudre l'équation P(z) = 0.
- 2) Dans le plan complexe muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$, on considère les points A, B et M d'affixes respectives $z_A = -i$, $z_B = -1 + i$ et $z = -3ie^{i\theta}$.
- a) Déterminer le lieu géométrique de M lorsque θ varie dans $[0,2\pi[$.
- b) Soit G le centre de gravité du triangle ABM. Déterminer l'affixe G.
- c) Trouver une transformation simple, que l'on caractérisera, qui envoie M en G.
- d) Déterminer alors le lieu géométrique de G lorsque θ varie dans $[0,2\pi[$.
- 3) On pose $\theta = \frac{\pi}{10}$. Donner la forme algébrique du nombre $w = z^5 + z_A^{5} + z_B^{5}$.

Exercice 3 (5 points)

- 1. a) Vérifier que l'entier 101 est premier.
- b) Justifier que l'équation (1): 67x + 100y = 1 admet des solutions dans \mathbb{Z}^2 .
- c) Résoudre cette équation dans \mathbb{Z}^2 .
- 2) Soit (D) la droite passant par les points A(3,-2) et B(103,-69).
- a) Les couples de coordonnées de A et B sont-ils solutions de (1) ?
- b) Existe-t-il un point de (D) dont les coordonnées sont des entiers naturels?
- 3) On considère dans N, l'équation (2) : $x^{67} \equiv 5$ [101].
- a) Soit x une solution de (2). Prouver que x et 101 sont premiers entre eux et que $x^{100} \equiv 1$ [101].
- b) Montrer alors que : $x = 5^3$ [101].
- c) Montrer que si : $x = 5^3$ [101] alors x est solution de (2).
- d) Montrer que l'ensemble des solutions de (2) est l'ensemble des entiers naturels de la forme x = 24 + 101k où k est un entier naturel.
- e) Soit x une solution de (2). Prouver que $49 + x^{2019}$ est un multiple de 101.

Exercice 4 (6 points)

Le plan complexe est muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$.

- 1) Pour tout nombre complexe z, on pose: $P(z) = z^3 (2+6i)z^2 11z 8 + 6i$
- a) Calculer P(2i).
- b) Déterminer les nombres a et b tels que pour tout z de \mathbb{C} : $P(z) = (z-2i)(z^2+az+b)$
- c) Résoudre, dans l'ensemble des nombres complexes, l'équation (E): P(z) = 0.
- d) En déduire les solutions de l'équation (E'): $z^6 (2+6i)z^4 11z^2 8 + 6i = 0$ dans \mathbb{C} .
- 2) Soient A, B et C les images des solutions de l'équation P(z) = 0 avec $|z_A| < |z_B| < |z_C|$.
- a) Placer les points A, B et C.
- b) On considère l'application s d'expression complexe: z' = az + b.

Déterminer a et b sachant que s(A) = A et s(C) = B.

- c) Déterminer le module de a .
- d) Soit θ un argument de a . Montrer que $\cos \theta = \frac{3}{\sqrt{10}}$ et que $\sin \theta = \frac{11}{\sqrt{10}}$.
- 3) Soit l'application f qui à tout point M d'affixe z associe M'd'affixe z' tels $z'=\frac{3+i}{8}z+\frac{-5+i}{8}. \ \ Soit \ le \ point M_{_0}(3,4), \ et \ pour \ tout \ n\in \mathbb{N} \ \ on \ pose M_{_{n+1}}=f(M_{_n}). \ Soit \ z_n$ l'affixe du point M_{_n}.

- a) Vérifier, en utilisant l'expression de f, que l'affixe du point $M_1 = f(M_0)$ est 2i.
- b) Montrer que pour tout $n \in \mathbb{N}$ on $a : z_n = -1 + \left(\frac{3+i}{8}\right)^n (4+4i)$.
- c) Pour tout $n \in \mathbb{N}^*$, on pose $S_n = M_0 M_1 + M_1 M_2 + ... + M_{n-1} M_n$. Exprimer S_n en fonction den et calculer $\lim S$

Fin.