

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aula 7

Markus Stein
02 April 2019

Exemplo 1: (**Gamma**) Seja X_1, X_2, \dots, X_n amostra aleatória tal que $X_1 \sim Gamma(\alpha, \beta)$: (http://bioops.info/2015/01/gamma-mme-mle/)

- a. Encontre o estimador de máxima verossimilhança (EMV) para $\theta = (\alpha, \beta)$.
- b. Compare com o estimador de θ pelo método dos momentos.
- c. Encontre o EMV para Var(X).
 - Princípio da invariância: prova no caso de função $g(\cdot)$ 1:1, Bolfarine e Sandoval (Teorema 3.2.2); caso mais geral, usando verossimilhança induzida ver Casella e Berger (Teorema 7.2.10).
 - Invariância funciona no caso multiparamétrico.
 - Função Escore e Informação de Fisher: (Bolfarine e Sandoval, Definição 2.1.2 e Definição 2.1.3)
 - $-\theta$ não tem forma fechada? Métodos computacionais: **Newthon-Raphson**. $\theta_{j+1} \approx \theta_j \frac{U(\theta_j)}{U'(\theta_j)}$ que é iniciado com um valor θ_0 e suscessivos valores são gerados até que $|\theta_{j+1} \theta_j| < \epsilon$, para um dado ϵ pequeno.
 - Modificações da função de verossimilhança;
 - Perfilada, restrita, parcial, ...;
 - Exemplos: Parâmetros de incômodo (modelos mistos, dados longitudinais/espaciais), censura (análise de sobrevivência), dados faltantes (amostras complexas).

Tarefa 1:

+ Resolver item (b) do Exemplo 1 acima;

Tarefa 2:

- + Ler Capítulo 7 "Fisher Triumfante" do livro "Uma senhora toma chá";
- + Ler Capítulo 2 livro do livro "Statistical Methods and Scientific Reserach".