Proiect Big Data

1. Introducere (Link)

1.1. Prezentarea succinta a setului de date

Setul de date ales de mine a fost extras dintr-o bază de date unde au fost analizate datele a 1177 de pacienți cu insuficiență cardiacă. Acesta a fost realizat pentru a descrie rata mortalități pacienților aflați în unitățiile de la terapie intensivă din cauza problemelor cardiace. În urma analizei acestui dataset, am extras următoarele date: *caracteristici demografice* (varsta la momentul internării în spital, sex, etnie, greutate și înalțime), semne vitale (frecvență cardiacă[HR], tensiunea arterială sistolică[SBP], tensiunea arterială diastolică[DBP], tensiunea arterială medie[MBP], frecventa respiratorie[RR], temperatura corpului[BT], saturatia pulsului de oxygen[SPO2], urină), comorbidități (hipertensiune arterială, fibrilație atrială, boala cardiacă ischemică, diabet zaharat[DM], depresie, anemie hipoferică[HA], hiperlipidemie, boală renală cronică[CKD], boală pulmonară obstructivă cronică[BPOC]) și variabile de laborator (hematocrit, globule roșii, hemoglobina corpusculară medie [MCH], concentrația medie a hemoglobinei corpusculare [MCHC], volumul corpuscular mediu [MCV], lățimea distribuției globulelor roșii [RDW], numărul de trombocite, globule albe, neutrofile, bazofile, limfocite, timp de protrombină [PT], raport internațional normalizat [INR], NT-proBNP, creatin kinază, creatinină, azot ureic din sânge [BUN], glucoză, potasiu, sodiu, calciu, clorură, magneziu, gap anionic, bicarbonat, lactate, concentrația ionilor de hidrogen [pH], presiunea parțială a CO2 în sângele arterial și LVEF).

Caracteristicile demografice și semnele vitale extrase au fost înregistrate în primele 24 de ore de la fiecare internare și au fost măsurate variabilele de laborator pe toată durata șederii la unitățiile de la terapie intensivă. Comorbiditățile au fost identificate folosind codurile ICD-9. Pentru variabile de laborator au fost realizate măsurători multiple.

1.2. Enuntarea obiectivelor

Rezultatul primar al acestui proiect a fost mortalitatea în spital, definită ca starea vitală la momentul externării din spital la supraviețuitori și non-supraviețuitori. Dintre cele 1.177 de internări, mortalitatea în spital a fost de aproximativ 13,52%.

2. Procesarea datelor

Install Library

```
[1] !pip install pyspark
!pip install numpy
!pip install pandas
!pip install matplotlib
!pip install seaborn
!pip install plotly
!pip install sklearn
```

```
Requirement already satisfied: pyspark in c:\users\bibinu\anaconda3\lib\site-packages (3.2.1)

Requirement already satisfied: py4j==0.10.9.3 in c:\users\bibinu\anaconda3\lib\site-packages (from pyspark) (0.10.9.3)

Requirement already satisfied: numpy in c:\users\bibinu\anaconda3\lib\site-packages (1.21.5)

Requirement already satisfied: pandas in c:\users\bibinu\anaconda3\lib\site-packages (1.4.2)

Requirement already satisfied: numpy>=1.18.5 in c:\users\bibinu\anaconda3\lib\site-packages (from pandas) (1.21.5)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\bibinu\anaconda3\lib\site-packages (from pandas) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\bibinu\anaconda3\lib\site-packages (from pandas) (2021.3)

Requirement already satisfied: six>=1.5 in c:\users\bibinu\anaconda3\lib\site-packages (from python-dateutil>=2.8.1->pandas)
```

Loading Library

[2] from time import time

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px

from pyspark.sql import SparkSession from pyspark.sql.functions import stddev,countDistinct,count,avg,col from pyspark.sql.functions import when from pyspark.sql.functions import mean

from pyspark.sql.types import IntegerType from sklearn.impute import SimpleImputer

Spark Session

[3] spark = SparkSession.builder.appName("Big_Data_Project").getOrCreate()

Saving Data as PySpark Dataframe

data_as_spark = spark.read.csv('original_data_null.csv',header=True)
data_as_spark_1 = spark.read.csv('original_data_.csv',header=True)

Data Analysis

Data Columns

[5] data_as_spark.columns

```
['group',
                                  'hematocrit',
                                                           'Anion_gap',
 .ID.
                                  'RBC',
                                                           'Magnesium ion',
 'outcome',
                                  'MCH',
                                                           'PH',
 'age',
                                                           'Bicarbote',
                                  'MCHC',
 'gender',
                                                           'Lactic_acid',
                                  'MCV',
 'BMI',
                                                           'PC02',
                                  'RDW',
 'hypertensive',
                                                           .EE.]
                                  'Leucocyte',
 'atrialfibrillation',
                                  'Platelets',
 'CHD_with_no_MI',
 'diabetes',
                                  'Neutrophils',
 'deficiencyanemias',
                                  'Basophils',
 'depression',
                                  'Lymphocyte',
 'Hyperlipemia',
                                  'PT',
 'Renull_failure',
                                  'INR',
 'COPD',
                                  'NT-proBNP',
 'heart rate',
                                  'Creatine kise',
 'Systolic_blood_pressure',
                                  'Creatinine',
 'Diastolic blood pressure'
                                  'Urea_nitrogen',
 'Respiratory_rate',
                                  'glucose',
 'temperature',
                                  'Blood potassium',
 'SP02',
                                  'Blood_sodium',
                                  'Blood_calcium',
 'Urine_output',
                                  'Chloride',
 'hematocrit',
```

Data Scheme

[6] data_as_spark.printSchema()

```
root
 -- group: string (nullable = true)
 -- ID: string (nullable = true)
 -- outcome: string (nullable = true)
 -- age: string (nullable = true)
 -- gender: string (nullable = true)
 -- BMI: string (nullable = true)
 -- hypertensive: string (nullable = true)
 -- atrialfibrillation: string (nullable = true)
 -- CHD with no MI: string (nullable = true)
 -- diabetes: string (nullable = true)
 -- deficiencyanemias: string (nullable = true)
 -- depression: string (nullable = true)
 -- Hyperlipemia: string (nullable = true)
 |-- Renull_failure: string (nullable = true)
 |-- COPD: string (nullable = true)
```

Data Visualization

[7] data_as_spark.createOrReplaceTempView("results")
sql_results_data_as_spark = spark.sql("select age Varsta,gender Sex,heart_rate Ritm_cardiac,depression Depresie,temperature
Temperatura,Respiratory_rate Frecventa_respiratorie,Blood_calcium Calciu,Blood_potassium Potasiu,Blood_sodium Sodiu from
results")
sql_results_data_as_spark.show()

1.	++ lcl	D	+		F	6-1-4-1	D-64	
varsta	++	Kitm_cardiac	vepresie +	lemperatura 	Frecventa_respiratorie	Calciu	Potasiu	Sodiu
72	1	68.83783784	0	36.71428571	16.62162162	7.463636364	4.816666667	138.75
75	2	101.3703704	0	36.68253968	20.85185185	8.1625	4.45	138.8888889
83	2	72.31818182	0	36.4537037	23.64	8.266666667	5.825	140.7142857
43	2	94.5	0	36.28703704	21.85714286	9.476923077	4.386666667	138.5
75	2	67.92	0	36.76190476	21.36	8.733333333	4.783333333	136.6666667
76	1	74.18181818	0	35.26666667	20.54545455	8.466666667	4.075	136.25
72	1	69.63636364	0	35.6031746	19.14814815	8.775	4.606666667	144.1333333
83	2	84.66666667	0	36.67361111	18.4	9.171428571	4.2375	140
61	2	91.91666667	0	37.1031746	18.58333333	9.44375	4.718181818	141.0909091
67	1	75.08333333	0	36.86111111	18.125	8.15	3.87	142.3
70	2	95.62962963	0	37.5555563	17.48148148	8.45	4.409090909	140.2727273
83	2	65.16	0	36.47777778	17.4	9.1		140.3333333
77	2	78.83333333	0	36.41666667	15.83333333	8.233333333	3.88	141.7
83	1	65.86956522	0	36.15740741	25.43478261	8.716666667	4.34	137.9
69	2	98.54411765		36.50925926		9.22	3.971428571	145.4285714
87	2	73.48	0	36.93333333	20.69230769	9.02	4.685714286	139.1428571
83	2	83.69230769		36.92222214	15.65217391	8.88888889	4.790909091	132.8181818
56	2	64.6	1	36.69444444	16.07142857	7.7	4.6	135.8333333
45	2	82	0	36.85185185	28.15384615	8.814285714	5.3	136.6363636
89	2	70.08333333	0	36.00793651	25.58333333	8.566666667	4	137.7777778
+	++		+	+		+		++

Data Summary

[8]

sql_describe_data_as_spark = spark.sql("select age Varsta,gender Sex,heart_rate Ritm_cardiac,temperature Temperatura,Blood_calcium Calciu,Blood_potassium Potasiu from results")
sql_describe_data_as_spark.summary().show()

+	++	+			+	+
summary	Varsta	Sex	Ritm_cardiac	Temperatura	Calciu	Potasiu
count		1177	1177	1177	1177	1177
mean	74.05522514868309	1.5250637213254035	84.57584840750846	36.67728595220208	8.500894160843536	4.176646395857267
stddev	13.434060756372105	0.49958368741589076	16.018701499654277	0.6075583791550683	0.5722625957038024	0.41483603133775254
min	19	1	100.0357143	33.25	10.00769231	3
25%	65.0	1.0	72.36	36.28571429	8.145454545	3.9
50%	77.0	2.0	83.60869565	36.65079389	8.5	4.115384615
75%	85.0	2.0	95.89285714	37.02222222	8.86875	4.4
max	99	2	nul1	null	null	6.566666667
		-1				

Visualization of age range

[9] data_as_spark.createOrReplaceTempView("pacients")
sql_age_range_data_as_spark = spark.sql("select min(age) Varsta_minima , max(age) Varsta_maxima from pacients")
sql_age_range_data_as_spark.show()

Age distribution

[10] data_as_spark.createOrReplaceTempView("age_distrib")

sql_age_data_as_spark = spark.sql("SELECT `19-40`,`41-60`,`61-80`,`81-99` FROM (select count(ID) `19-40` from age_distrib where age>=19 AND age<=40) JOIN (select count(ID) `41-60` from age_distrib where age>=41 AND age<=60) JOIN (select count(ID) `61-80` from age_distrib where age>=61 AND age<=80) JOIN (select count(ID) `81-99` from age_distrib where age>=81 AND age<=99)") sql_age_data_as_spark.show()

```
|19-40|41-60|61-80|81-99|
| 20| 171| 517| 469|
```

Gender distribution

[11] data_as_spark.createOrReplaceTempView("age_distrib")

sql_gender_data_as_spark = spark.sql("SELECT `No. Women`,`No. Men` FROM (select count(ID) `No. Women` from age_distrib where gender==1) JOIN (select count(ID) `No. Men` from age_distrib where gender==2)")

sql_gender_data_as_spark.show()

```
|No. Women|No. Men|
+-----+
| 559| 618|
+-----
```

Survivors distribution

[12] sql_survivors_data_as_spark = spark.sql("SELECT `Survivors`, `Others` FROM (select count(ID) `Survivors` from age_distrib where outcome==0) JOIN (select count(ID) `Others` from age_distrib where outcome==1)") sql_survivors_data_as_spark.show()

Data processing

Columns processing

Un prim pas pe care il consider important este redenumirea coloanelor setului de date. Unele dintre acestea contin anumite denumiri care nu sunt tocmai cunoscute. Pentru a observa care dintre coloane sunt importante, voi redenumi fiecare head cu o denumire mai sugestiva. Pentru a vizualiza denumirile initiale ale coloanelor, puteti observa rezultatul celulei [5].

```
[13]
       data_as_spark=data_as_spark.withColumnRenamed('group','Grup')
       data_as_spark=data_as_spark.withColumnRenamed('ID','Numar')
       data_as_spark=data_as_spark.withColumnRenamed('outcome','Stare')
       data_as_spark=data_as_spark.withColumnRenamed('age','Varsta')
       data_as_spark=data_as_spark.withColumnRenamed('gender','Sex')
       data_as_spark=data_as_spark.withColumnRenamed('BMI','Indice_de_masa_corporala')
       data_as_spark=data_as_spark.withColumnRenamed('hypertensive','Hipertensiv')
       data_as_spark=data_as_spark.withColumnRenamed('atrialfibrillation','Fibrilatie_atriala')
       data_as_spark=data_as_spark.withColumnRenamed('CHD_with_no_MI','Boala_coronariana')
       data_as_spark=data_as_spark.withColumnRenamed('diabetes','Diabet')
       data_as_spark=data_as_spark.withColumnRenamed('deficiencyanemias','Anemii_deficitare')
       data_as_spark=data_as_spark.withColumnRenamed('depression','Depresie')
       data_as_spark=data_as_spark.withColumnRenamed('Hyperlipemia','Hiperlipemie')
       data_as_spark=data_as_spark.withColumnRenamed('Renull_failure','Insuficienta_renala')
       data_as_spark=data_as_spark.withColumnRenamed('COPD','Boala_pulmonara_obstructiva_cronica')
```

Pentru a vizualiza denumirile actualizate ale coloanelor, consultati notebook-ul atasat acestui document

[14] data_as_spark.columns

```
['Grup',
 'Numar',
 'Stare',
 'Varsta',
 'Sex',
 'Indice_de_masa_corporala',
 'Hipertensiv',
 'Fibrilatie_atriala',
 'Boala_coronariana',
 'Diabet',
 'Anemii_deficitare',
 'Depresie',
 'Hiperlipemie',
 'Insuficienta_renala',
 'Boala_pulmonara_obstructiva_cronica',
 'Frecventa_cardiaca',
 'Tensiune_arteriala_sistolica',
 'Tensiune arteriala diastolica',
 'Frecventa_respiratorie',
 'Temperatura',
 'Saturatia pulsului de oxigen',
```

[15]

data_as_spark = data_as_spark.withColumn("Sex",when(data_as_spark.Sex == "1","Female").when(data_as_spark.Sex ==
"2","Male").otherwise("null"))

Modifications

[16]

data_as_spark.createOrReplaceTempView("dataset")
sql_results_data_as_spark = spark.sql("select Varsta,Sex,Frecventa_cardiaca,Depresie,Temperatura,Frecventa_respiratorie
from dataset")

sql_results_data_as_spark.show()

+	+	+	+	+	
Varsta	Sex	Frecventa_cardiaca	Depresie	Temperatura	Frecventa_respiratorie
72	Female	68.83783784	0	36.71428571	16.62162162
75	Male	101.3703704	0	36.68253968	20.85185185
83	Male	72.31818182	0	36.4537037	23.64
43	Male	94.5	0	36.28703704	21.85714286
75	Male	67.92	0	36.76190476	21.36
76	Female	74.18181818	0	35.26666667	20.54545455
72	Female	69.63636364	0	35.6031746	19.14814815
83	Male	84.66666667	0	36.67361111	18.4
61	Male	91.91666667	0	37.1031746	18.58333333
67	Female	75.08333333	0	36.86111111	18.125
70	Male	95.62962963	0	37.5555563	17.48148148
83	Male	65.16	0	36.47777778	17.4
77	Male	78.83333333	0	36.41666667	15.83333333
83	Female	65.86956522	0	36.15740741	25.43478261
69	Male	98.54411765	0	36.50925926	34.69343066
87	Male	73.48	0	36.93333333	20.69230769
83	Male	83.69230769	0	36.92222214	15.65217391
56	Male	64.6	1	36.69444444	16.07142857
45	Male	82	0	36.85185185	28.15384615
89	Male	70.08333333	0	36.00793651	25.583333333
+	+	+	+	+	++

Processing of the column 'Stare' values

[17]

data_as_spark = data_as_spark.withColumn("Stare",when(data_as_spark.Stare == "0","alive").when(data_as_spark.Stare == "1","dead").otherwise("null"))

Modifications

[18]

data_as_spark.createOrReplaceTempView("dataset")
sql_results_data_as_spark = spark.sql("select Varsta,Sex,Stare,Frecventa_cardiaca,Depresie,Temperatura from dataset")
sql_results_data_as_spark.show()

++				+	
Varsta	Sex	Stare	Frecventa_cardiaca	Depresie	Temperatura
+					
72	Female	alive	68.83783784	0	36.71428571
75	Male	alive	101.3703704	0	36.68253968
83	Male	alive	72.31818182	0	36.4537037
43	Male	alive	94.5	0	36.28703704
75	Male	alive	67.92	0	36.76190476
76	Female	alive	74.18181818	0	35.26666667
72	Female	alive	69.63636364	0	35.6031746
83	Male	alive	84.66666667	0	36.67361111
61	Male	alive	91.91666667	0	37.1031746
67	Female	alive	75.08333333	0	36.86111111
70	Male	alive	95.62962963	0	37.5555563
83	Male	alive	65.16	0	36.47777778
77	Male	alive	78.83333333	0	36.41666667
83	Female	alive	65.86956522	0	36.15740741
69	Male	alive	98.54411765	0	36.50925926
87	Male	alive	73.48	0	36.93333333
83	Male	dead	83.69230769	0	36.92222214
56	Male	alive	64.6	1	36.69444444
45	Male	alive	82	0	36.85185185
89	Male	alive	70.08333333	0	36.00793651
++		+		+	

Processing of the column 'Hipertensiv' values

[19]

data_as_spark = data_as_spark.withColumn("Hipertensiv",when(data_as_spark.Hipertensiv ==
"0","nu").when(data_as_spark.Hipertensiv == "1","da").otherwise("null"))

Modifications

[20]

data_as_spark.createOrReplaceTempView("dataset")
sql_results_data_as_spark = spark.sql("select Varsta,Sex,Hipertensiv,Frecventa_cardiaca,Depresie,Temperatura from dataset")

sql_results_data_as_spark.show()

4			L		
Varsta	Sex	Hipertensiv	Frecventa_cardiaca	Depresie	Temperatura
72	Female	nu	68.83783784	0	36.71428571
75	Male	nu	101.3703704	0	36.68253968
83	Male	nu	72.31818182	0	36.4537037
43	Male	nu	94.5	0	36.28703704
75	Male	da	67.92	0	36.76190476
76	Female	da	74.18181818	0	35.26666667
72	Female	da	69.63636364	0	35.6031746
83	Male	da	84.66666667	0	36.67361111
61	Male	da	91.91666667	0	37.1031746
67	Female	da	75.08333333	0	36.86111111
70	Male	da	95.62962963	0	37.5555563
83	Male	da	65.16	0	36.47777778
77	Male	da	78.83333333	0	36.41666667
83	Female	da	65.86956522	0	36.15740741
69	Male	da	98.54411765	0	36.50925926
87	Male	da	73.48	0	36.93333333
83	Male	da	83.69230769	0	36.92222214
56	Male	da	64.6	1	36.69444444
45	Male	da	82	0	36.85185185
89	Male	nu	70.08333333	0	36.00793651
+	+	+	+	+	++

Luand in considerare ca mai sunt inca 8 coloane de acest tip si ca formatarea acestora se va realiza in acelasi fel nu voi mai adauga celule in urma carora se vor modifica datele. Acestea se pot gasi in notebook-ul atasat documentului.

In acest moment trebuie sa ne ocupam de valorile null pe care le gasim in setul nostru de date. Daca incercam sa stergem toate randurile ce contin valori null vom observa conform celulei de mai jos ca vom ramanem cu 427 de linii ceea ce inseamna ca am sterge 750 de linii. Acest lucru nu este tocmai in regula, deoarece pierdem un procent foarte mare de date.

data_as_spark.createOrReplaceTempView("dataset")
sql_results_data_as_spark = spark.sql("select Varsta,Sex,Hipertensiv,Frecventa_cardiaca,Depresie,Temperatura from dataset")
sql_results_data_as_spark.show()

++	+		-		+
summary	Varsta	Sex	Frecventa_cardiaca	Depresie	Temperatura
count	427	427	427	427	427
mean	72.47540983606558	1.515222482435597	85.05205210149882	0.13114754098360656	36.709099645737695
stddev	13.416625853897502	0.5003544608930822	16.279529219221338	0.33795761084070836	0.65745153466054
min	35	1	100.09375	0	34.32407407
25%	63.0	1.0	72.51851852	0.0	36.27777778
50%	74.0	2.0	84.54166667	0.0	36.6666667
75%	84.0	2.0	96.43478261	0.0	37.07777778
max	99	2	99.96666667	1	39.13247842
			L		

Pentru a micsora numarul de date pierdute in urma stergeri valorilor null, voi aborda urmatoarea strategie. Celulele null ce apartin de coloanele cu date valorice vor fi inlocuite cu media coloanei respective. In urma acestui pas, vom sterge restul celulelor null. Coloanele esentiale ce contin valori numerice sunt:

- 1.Indice_de_masa_corporala
- 2.Frecventa cardiaca
- 3. Tensiune arteriala sistolica
- 4. Tensiune_arteriala_diastolica
- 5.Frecventa_respiratorie
- 6.Temperatura
- 7.Saturatia_pulsului_de_oxigen
- 8.Urina
- 9.Volumul_celule_rosii_din_sange
- 10.Globule rosii
- 11.Hemoglobina_corpusculara_medie
- 12.Concentratia_medie_a_hemoglobinei_corpusculare 32.Ioni_de_magneziu
- 13. Volumul corpuscular mediu
- 14.Latimea distributiei globulelor rosii
- 15.Leucocite
- 16. Trombocite
- 17. Neurofile
- 18.Globule albe
- 19.Limfocite
- 20.Timp de protrombina

- 21.Raport_internationalizat_normalizat
- 22.NT proBNP
- 23. Creatin kinaza
- 24.Creatina
- 25. Nitrogen ureic
- 26.Glucoza
- 27. Potasiu din sange
- 28.Sodiu_din_sange
- 29. Calciu din sange
- 30.Clorura
- 31.Interval anionic
- 33. Concentratia ionilor de oxigen
- 34.Bicarbote
- 35.Acid lactic
- 36. Presiunea partiala a dioxidului de carbon
- 37.Fractie de eliminare

```
[38]
```

```
#Calculam media coloanei 'Indice_de_masa_corporala'
mean_val= data_as_spark.select(mean(data_as_spark['Indice_de_masa_corporala'])).collect()
mean_val
#Afisam valoarea medie a coloanei 'Indice_de_masa_corporala'
mean_val[0][0]
#Modificam valorile de null
data_as_spark = data_as_spark.withColumn("Indice_de_masa_corporala",when(data_as_spark.Indice_de_masa_corporala ==
"null",mean_val[0][0]).otherwise(data_as_spark.Indice_de_masa_corporala))
data_as_spark.createOrReplaceTempView("dataset")
sql_results_data_as_spark = spark.sql("select Sex,Indice_de_masa_corporala,Depresie,Temperatura from dataset")
sql_results_data_as_spark.show()
```

+	+	++
Sex	Indice_de_masa_corporala	Depresie Temperatura
+		
Female	•	
Male	30.18827765159043	nu 36.68253968
Male	26.57263379	nu 36.4537037
Male	83.26462934	nu 36.28703704
Male	31.82484194	nu 36.76190476
Female	24.26229342	nu 35.26666667
Female	39.66742627	nu 35.6031746
Male	22.31111111	nu 36.67361111
Male	19.99224315	nu 37.1031746
Female	45.03203011	nu 36.86111111
Male	50.46121203	nu 37.5555563
Male	25.39189649	nu 36.47777778
Male	22.69896194	nu 36.41666667
Female	33.89105707	nu 36.15740741
Male	20	nu 36.50925926
Male	35.19894167	nu 36.93333333
Male	30.18827765159043	nu 36.92222214
Male	27.8516182	da 36.69444444
Male	91.17665294	nu 36.85185185
Male	30.18827765159043	nu 36.00793651
+	+	++

```
[39]
```

```
# Calculam media coloanei 'Frecventa_cardiaca'
mean_val= data_as_spark.select(mean(data_as_spark['Frecventa_cardiaca'])).collect()
mean_val
#Afisam valoarea medie a coloanei 'Frecventa_cardiaca'
mean_val[0][0]
#Modificam valorile de null
data_as_spark = data_as_spark.withColumn("Frecventa_cardiaca",when(data_as_spark.Frecventa_cardiaca ==
"null",mean_val[0][0]).otherwise(data_as_spark.Frecventa_cardiaca))
data_as_spark.createOrReplaceTempView("dataset")
sql_results_data_as_spark = spark.sql("select Sex,Frecventa_cardiaca,Depresie,Temperatura from dataset")
sql_results_data_as_spark.show()
```

+	·	+
Sex	Frecventa_cardiaca	Depresie Temperatura
+		
Female	68.83783784	nu 36.71428571
Male	101.3703704	nu 36.68253968
Male	72.31818182	nu 36.4537037
Male	94.5	nu 36.28703704
Male	67.92	nu 36.76190476
Female	74.18181818	nu 35.26666667
Female	69.63636364	nu 35.6031746
Male	84.66666667	nu 36.67361111
Male	91.91666667	nu 37.1031746
Female	75.08333333	nu 36.86111111
Male	95.62962963	nu 37.5555563
Male	65.16	nu 36.47777778
Male	78.83333333	nu 36.41666667
Female	65.86956522	nu 36.15740741
Male	98.54411765	nu 36.50925926
Male	73.48	nu 36.93333333
Male	83.69230769	nu 36.92222214
Male	64.6	da 36.69444444
Male	82	nu 36.85185185
Male	70.08333333	nu 36.00793651
+	·	++

```
[40]
```

```
# Calculam media coloanei 'Tensiune_arteriala_sistolica'
mean_val= data_as_spark.select(mean(data_as_spark['Tensiune_arteriala_sistolica'])).collect()
mean_val
#Afisam valoarea medie a coloanei 'Tensiune_arteriala_sistolica'
mean_val[0][0]
#Modificam valorile de null
data_as_spark = data_as_spark.withColumn("Tensiune_arteriala_sistolica",when(data_as_spark.Tensiune_arteriala_sistolica
== "null",mean_val[0][0]).otherwise(data_as_spark.Tensiune_arteriala_sistolica))
data_as_spark.createOrReplaceTempView("dataset")
sql_results_data_as_spark = spark.sql("select Sex,Tensiune_arteriala_sistolica,Depresie,Temperatura from dataset")
sql_results_data_as_spark.show()
```

Sex	Tensiune_arteriala_sistolica	Depresie	Temperatura
Female	155.8666667	nu	36.71428571
Male	140	nu	36.68253968
Male	135.3333333	nu	36.4537037
Male	126.4	nu	36.28703704
Male	156.56	nu	36.76190476
Female	118.1	nu	35.26666667
Female	106.5652174	nu	35.6031746
Male	141.1304348	nu	36.67361111
Male	98.43478261	nu	37.1031746
Female	122	nu	36.86111111
Male	149.0357143	nu	37.5555563
Male	103.2608696	nu	36.47777778
Male	126.9032258	nu	36.41666667
Female	112.1428571	nu	36.15740741
Male	107.36	nu	36.50925926
Male	159.6956522	nu	36.93333333
Male	157.2894737	nu	36.92222214
Male	113.28	da	36.69444444
Male	162.24	nu	36.85185185
Male			36.00793651
+	+		+

Luand in considerare ca mai sunt inca 34 coloane de acest tip si ca formatarea acestora se va realiza in acelasi fel nu voi mai adauga celule in urma carora se vor modifica datele. Acestea se pot gasi in notebook-ul atasat documentului.

In urma acestor modificari pe care le-am realizat, toate coloanele ce contin valori numerice nu mai contin valori null. In continuare, vom transforma valorile null ramase in coloanele ce nu contin valori numerice in string-uri de forma " " pentru a putea folosi functia care ne va sterge randurile cu valori null. Coloana pe care o mai avem de modificat este Stare care mai contine 2 valori null.

[75] data_as_spark = data_as_spark.withColumn("Stare",when(data_as_spark.Stare == "null","").otherwise(data_as_spark.Stare))

Delete rows that contains "" type of strings

[76] data_as_spark=data_as_spark.where(data_as_spark.Stare !="")

In urmatoarea celula, intalnim numarul de linii ce se afla in setul meu de date ales in urma tuturor modificariilor efectuate. Conform outputului acesteia, solutia aleasa de mine de a gestiona valorile null ale dataframe-ului s-a dovedit a fi eficienta.

[77] data_as_spark.count()

1175

In urma analizarii rezultatelor obtinute, coloana Grup contine 2 valori si anume 1 si 2. Aceste valori nu ne sunt favorabile rezultatelor pe care le cautam. Ca urmare, vom sterge aceasta coloana din setul nostru de date.

[78] data_as_spark= data_as_spark.drop("Grup")

Transform Pyspark Dataframe to Pandas Dataframe

[79] data_as_csv = data_as_spark.toPandas()

Saving the processed dataset

[80] data_as_csv.to_csv('processed_data.csv')

Visualization of the dataset using matplotlib & seaborn library

Vom crea 2 seturi de date ce ne vom ajuta sa vizualizam datele. Urmatorul set de date ne va ajuta sa vizualizam datele initiale. Anumite particularitatii din setul de date initial ne pot ajuta sa plotam rezultatele esentiale in functie de caz.

```
[81] data_as_csv_1 = data_as_spark_1.toPandas()
```

Un prim lucru pe care il putem vizualiza folosind aceste 2 librari sunt rezultatele cu privire la modificari efectuate mai sus. Output-ul urmatoarei celule prezinta setului de date initial care continea o serie foarte mare de date lipsa.

[82] plt.figure(figsize=(10, 10)) sns.heatmap(data_as_csv_1.isnull(), cbar=False)

Urmatorul output al celulei urmatoare ne prezinta rezultatele cu privire la completarea setului nostru de date

[83] plt.figure(figsize=(10, 10)) sns.heatmap(data_as_csv.isnull(), cbar=False)

Descrierea sumativa a datelor

[84] data_as_csv.describe().style.background_gradient(cmap = 'copper')

	Numar	Stare	Varsta	Sex	Indice_de_masa_corporala	Hipertensiv	Fibrilatie_atriala	Boala_coronariana	Diabet	Anemii_deficitare	Depresie
count	1175	1175	1175	1175	1175	1175	1175	1175	1175	1175	1175
unique	1175	2	68	2	933	2	2	2	2	2	2
top	125047	alive	89	Male	30.18827765159043	da	nu	nu	nu	nu	nu
freq	1	1017	140	617	214	844	645	1074	681	776	1035

In urma modificariilor pe care le-am efectua asupra setului de date ales de mine am observat faptul ca anumite coloane sunt mai semnificative decat altele pentru analiza noastra. Aceste coloane sunt fie etichetate intr-un anumit fel, fie contin valori numerice. Conform scopului urmarit de aceasta analiza, vom considera a fi semnificative urmatoarele coloane pe care le voi grupa mai jos in functie de natura acestora.

- Coloane categorice
 - Stare
 - Sex
 - Diabet
 - Depresie
- Coloane numerice
 - Indice_de_masa_corporala
 - Frecventa_cardiaca
 - Frecventa_respiratorie
 - Temperatura
 - Tensiunea_arteriala_sistolica / Tensiunea_arteriala_diastolica
 - Numarul de globule albe si rosii
 - Cantitatea de leucocite, trombocite, neurofile, limfocite
 - Cantitatea de Glucoza, Potasiu, Sodiu, Calciu, Clorura, Magneziu

In continuare voi prezenta o serie de grafice unde se poate observa detalii cu privire la variabilelor mentionate mai sus.

Distributia coloanei Stare

[85]

plt.figure(figsize=(5,7))
data=data_as_csv['Stare'].value_counts()[0:2]
sns.barplot(x=data.index,y=data,palette='deep')

fig, ax = plt.subplots(figsize=(5,5), dpi=100)
patches, texts, autotexts = ax.pie(data_as_csv_1['outcome'].value_counts(), autopct= '%1.1f%%',
shadow=True, startangle=90, explode=(0.1, 0), labels=['Alive','Death'])
plt.setp(autotexts, size=12, color = 'white', weight='bold')
autotexts[1].set_color('white');
plt.title('Distribuţia rezultatelor', fontsize=10)
plt.show()

[87] fig = px.histogram(data_as_csv, x="Varsta",color="Stare", hover_data=data_as_csv.columns) fig.show()

Distributia coloanei Varsta

```
plt.figure(figsize = (30, 20))
plotnumber = 1
cat_cols = ['Varsta']
for column in cat_cols:
    if plotnumber <= 2:
        ax = plt.subplot(3, 5, plotnumber)
        sns.distplot(data_as_csv[column],color='green')
    plt.xlabel(column)
    plotnumber += 1
plt.tight_layout()
plt.show()
```

Distributia coloanei Sex

[89] plt.figure(figsize=(5,5))
data=data_as_csv['Sex'].value_counts()[0:2]
sns.barplot(x=data.index,y=data,palette='deep')

fig, ax = plt.subplots(figsize=(5,5), dpi=100)
patches, texts, autotexts = ax.pie(data_as_csv_1['gender'].value_counts(), autopct=
'%1.1f%%', shadow=True, startangle=90, explode=(0.1, 0), labels=['Male','Female'])
plt.setp(autotexts, size=12, color = 'white', weight='bold')
autotexts[1].set_color('white');
plt.title('Distribuția genurilor', fontsize=10)
plt.show()

Distributia coloanei Indice_de_masa_corporala

```
plt.figure(figsize = (30, 20))
plotnumber = 1
cat_cols = ['Indice_de_masa_corporala']
for column in cat_cols:
    if plotnumber <= 2:
        ax = plt.subplot(3, 5, plotnumber)
        sns.distplot(data_as_csv[column],color='purple')
        plt.xlabel(column)
    plotnumber += 1
    plt.tight_layout()
    plt.show()
```


Distributia coloanei Frecventa_cardiaca

```
plt.figure(figsize = (30, 20))
plotnumber = 1
cat_cols = ['Frecventa_cardiaca']
for column in cat_cols:
    if plotnumber <= 2:
        ax = plt.subplot(3, 5, plotnumber)
        sns.distplot(data_as_csv[column],color='purple')
        plt.xlabel(column)
    plotnumber += 1
plt.tight_layout()
plt.show()
```

Distributia coloanei Frecventa_respiratorie


```
plt.figure(figsize = (30, 20))
plotnumber = 1
cat_cols = ['Frecventa_respiratorie']
for column in cat_cols:
    if plotnumber <= 2:
        ax = plt.subplot(3, 5, plotnumber)
        sns.distplot(data_as_csv[column],color='blue')
        plt.xlabel(column)
    plotnumber += 1
    plt.tight_layout()
    plt.show()
```

Distributia coloanei Temperatura

```
plt.figure(figsize = (30, 20))
plotnumber = 1
cat_cols = ['Temperatura']
for column in cat_cols:
    if plotnumber <= 2:
        ax = plt.subplot(3, 5, plotnumber)

sns.distplot(data_as_csv[column],color='red')
    plt.xlabel(column)
    plotnumber += 1
plt.tight_layout()
```

Distributia coloanei Tensiune_arteriala si Tensiune_arteriala_diastolica

```
plt.figure(figsize = (30, 20))
plotnumber = 1
cat_cols = ['Systolic_blood_pressure','Diastolic_blood_pressure']
for column in cat_cols:
    if plotnumber <= 2:
        ax = plt.subplot(3, 5, plotnumber)
        sns.distplot(data_as_csv_1[column],color='blue')
        plt.xlabel(column)
    plotnumber += 1
    plt.tight_layout()
    plt.show()
```


Luand in considerare ca acestea au fost cateva dintre cele mai importante variabile nu voi mai adauga celulele in urma carora se vor afisa distributiile variabilelor ramase. Acestea se pot gasi in notebook-ul atasat documentului. In continuare, voi prezenta o serie de ploturi ce descriu corelatia dintre variabile.

Corelatia dintre variabile

[106]

from sklearn.impute import SimpleImputer dataframe = pd.read_csv('original_data_.csv') label_x = dataframe.drop(columns='outcome') label_y = dataframe[['outcome']] simpleImp = SimpleImputer(missing_values=np.nan, strategy='mean') column = label_x.select_dtypes(include='float64').columns simpleImp.fit(label_x[column]) label_x[column] = simpleImp.transform(label_x[column]) SimpleImp = SimpleImputer(missing_values=np.nan, strategy="most_frequent") SimpleImp.fit(label_y) label_y = SimpleImp.transform(label_y) label_y = pd.DataFrame(label_y, columns=['outcome'], dtype='int64') df = label_x.copy() df['outcome'] = label_y df.groupby(by='group').describe().round().T col = ['outcome', 'gender', 'diabetes', 'depression', 'BMI', 'heart_rate',

Tensiune_arteriala_diastolica - Indice_de_masa_corporala (0.14)
Temperatura - Frecventa_cardiaca (0.18)
Tensiune_arteriala_diastolica - Frecventa_cardiaca (0.31)
Frecventa_cardiaca - Frecventa_respiratorie (0.36)
Tensiune_arteriala_sistolica - Tensiune_arteriala_diastolica (0.39)

Dintre toate variabilele, putem observa ca exista cateva care sunt puternic corelate. Mai jos, vom putea vizualiza legaturile dintre variabilele din setul de date ales de mine. Mai jos as dori sa enumar primele 5 cele mai corelate perechi de variabile pentru a putea vizualiza mult mai bine legatura dintre acestea.

[107]

px.scatter(data_as_csv, x="Tensiune_arteriala_sistolica",
y="Tensiune_arteriala_diastolica",color="Stare", marginal_y="box", marginal_x="box")

Frecventa_cardiaca si Frecventa_respiratorie

[108]

px.scatter(data_as_csv, x="Frecventa_cardiaca", y="Frecventa_respiratorie",color="Stare", marginal_y="box", marginal_x="box")

Temperatura si Frecventa_cardiaca

px.scatter(data_as_csv, x="Temperatura", y="Frecventa_cardiaca",color="Stare", marginal_y="box", marginal_x="box")

Vizualizarea variabilelor necorelate si impactul acestora asupra rezultatului final

Distributia pacientilor in functie de starea de sanatate si varsta

[112] fig = px.histogram(data_as_csv, x="Varsta",color="Stare", hover_data=data_as_csv.columns) fig.show()

Impactul depresiei asupra starii pacientilor

df = dataframe
fig = plt.figure(figsize=(12,7))
#ax1 = fig.add_axes([0,0,1,1])
ax2 = fig.add_axes([0.1,0.4, 0.4,0.6])
lab = ['NonDepresiv + Alive', 'Depresiv + Dead', 'Depresiv + Alive',
'NonDepresiv + Dead']
#ax1.bar(df['hypertensive'].unique(),df['hypertensive'].value_count
s(sort=False), width=0.5)
#ax1.set_xticks([0,1])

ax2.pie(df.groupby(by=['depression', 'outcome']).outcome.count(),
autopct= '%1.1f%%', shadow=True,startangle=90, labels=lab)

plt.title('Impactul depresiei asupra starii pacientilor')
plt.show()

Impactul diabetului asupra starii pacientilor

[114]

df = dataframe
fig = plt.figure(figsize=(12,7))
#ax1 = fig.add_axes([0,0,1,1])
ax2 = fig.add_axes([0.1,0.4, 0.4,0.6])
lab = ['NonDiabetic + Alive', 'Diabetic + Dead', 'Diabetic +
Alive', 'NonDiabetic + Dead']
#ax1.bar(df['hypertensive'].unique(),df['hypertensive'].val
ue_counts(sort=False), width=0.5)
#ax1.set_xticks([0,1])

ax2.pie(df.groupby(by=['diabetes',
'outcome']).outcome.count(), autopct= '%1.1f%%',
shadow=True,startangle=90, labels=lab)

plt.title('Impactul diabetului asupra starii pacientilor')
plt.show()

Impactul hipertensivitatii asupra starii pacientilor

[116]

```
df = dataframe
fig = plt.figure(figsize=(12,7))
#ax1 = fig.add_axes([0,0,1,1])
ax2 = fig.add_axes([0.1,0.4, 0.4,0.6])
lab = ['NonHipertensiv + Alive', 'Hipertensiv + Dead',
'Hipertensiv + Alive', 'NonHipertensiv + Dead']
#ax1.bar(df['hypertensive'].unique(),df['hypertensive'].val
ue_counts(sort=False), width=0.5)
#ax1.set_xticks([0,1])

ax2.pie(df.groupby(by=['hypertensive','outcome']).outcom
e.count(), autopct= '%1.1f%%', shadow=True,startangle=90,
labels=lab)

plt.title('Impactul hipertensivitatii asupra starii
pacientilor')
plt.show()
```


3. Metode Machine Learning

Inainte de a incepe sa construim modele pe care le vom folosi pentru a ne oferi o solutie la problema noastra mai avem o serie de pasi pe care trebuie sa ii parcurgem. Inainte de a incepe sa analizam modelele trebuie sa observam ca setul nostru de date se imparte in 2 seturi de date in functie de natura valorilor si anume categorice si numerice.

Pentru a rezolva problema propusa si anume de a prezice valoarea tinta Stare, voi folosi o serie de modele care sa fie potrivite tipurilor mele de date dar si rezultatelor pe care le caut

Setul de date ale de mine poate fi descris in felul urmator din punctul de vedere al tipurilor de date.

DATA = CATEGORICAL DATA + NUMERIC DATA

In urmatorul tabel voi scrie care au fost modele ales de mine si predictia acestora in functie de rezultatele obtinute dar si de totalitatea datelor folosite

DATA MODEL	CATEGORICAL DATA	NUMERIC DATA	
Naïve Bayes Model	0,847082		
Linear SVM Model	0,866451		
Logistic Regression Model	0,877450		
Artificial Neural Network Model	1		

Modelul Naïve Bayes

Am ales sa folosesc acest model pentru foarte scalabil, necesitând un număr de parametri liniari in functie de numărul de variabile (features/predictors). Antrenamentul se realizeaza prin intermediul probabilitatii maxime care necesită timp linear si care este mai eficienta decât aproximarea iterativă care este folosită in alte tipuri de clasificatoare.

Transformarea setului de date pentru a se potrivi modelului

```
# Salvam datele intr-o alta variabila
[117]
         naive_bayes_data =
         data_as_spark.select("Numar","Sex","Hipertensiv","Fibrilatie_atriala","Boala_coronariana","Diabet","Anemii_deficitare","Depresie",
         "Hiperlipemie", "Insuficienta_renala", "Boala_pulmonara_obstructiva_cronica", "Stare")
         # In cazul in care dorim sa micsoram numarul de valori introduse
         #naive_bayes_data = naive_bayes_data.limit(300)
         #1 Modificarea coloanei Stare
         naive_bayes_data = naive_bayes_data.withColumn("Stare",when(naive_bayes_data.Stare ==
         "alive", "yes").when(naive_bayes_data.Stare == "dead", "no").otherwise("null"))
         #2 Modificarea coloanei Sex
         naive_bayes_data = naive_bayes_data.withColumn("Sex",when(naive_bayes_data.Sex ==
         "Female", "female"). when (naive_bayes_data. Sex == "Male", "male"). otherwise ("null"))
         #3 Modificarea coloanei Hipertensiv
         naive_bayes_data = naive_bayes_data.withColumn("Hipertensiv",when(naive_bayes_data.Hipertensiv ==
         "nu","x_hipertensiv").when(naive_bayes_data.Hipertensiv == "da","hipertensiv").otherwise("null"))
         #4 Modificarea coloanei Fibrilatie_atriala
         naive_bayes_data = naive_bayes_data.withColumn("Fibrilatie_atriala",when(naive_bayes_data.Fibrilatie_atriala ==
         "nu","x_fibrilatie_atriala").when(naive_bayes_data.Fibrilatie_atriala == "da","fibrilatie_atriala").otherwise("null"))
         #5 Modificarea coloanei Boala_coronariana
         naive_bayes_data = naive_bayes_data.withColumn("Boala_coronariana",when(naive_bayes_data.Boala_coronariana ==
         "nu","x_boala_coronariana").when(naive_bayes_data.Boala_coronariana == "da","boala_coronariana").otherwise("null"))
         #6 Modificarea coloanei Diabet
         naive_bayes_data = naive_bayes_data.withColumn("Diabet",when(naive_bayes_data.Diabet ==
         "nu","x_diabet").when(naive_bayes_data.Diabet == "da","diabet").otherwise("null"))
         #7 Modificarea coloanei Anemii_deficitare
         naive_bayes_data = naive_bayes_data.withColumn("Anemii_deficitare",when(naive_bayes_data.Anemii_deficitare ==
         "nu","x_anemii_deficitare").when(naive_bayes_data.Anemii_deficitare == "da","anemii_deficitare").otherwise("null"))
```

```
#8 Modificarea coloanei Depresie
naive_bayes_data = naive_bayes_data.withColumn("Depresie",when(naive_bayes_data.Depresie ==
"nu", "x_depresie").when(naive_bayes_data.Depresie == "da", "depresie").otherwise("null"))
#9 Modificarea coloanei Hiperlipemie
naive_bayes_data = naive_bayes_data.withColumn("Hiperlipemie",when(naive_bayes_data.Hiperlipemie ==
"nu","x_hiperlipemie").when(naive_bayes_data.Hiperlipemie == "da","hiperlipemie").otherwise("null"))
#10 Modificarea coloanei Insuficienta_renala
naive_bayes_data = naive_bayes_data.withColumn("Insuficienta_renala",when(naive_bayes_data.Insuficienta_renala ==
"nu","x_insuficienta_renala").when(naive_bayes_data.Insuficienta_renala == "da","insuficienta_renala").otherwise("null"))
#11 Modificarea coloanei Boala_pulmonara_obstructiva_cronica
naive_bayes_data =
naive_bayes_data.withColumn("Boala_pulmonara_obstructiva_cronica",when(naive_bayes_data.Boala_pulmonara_obstructiva_cro
nica == "nu", "x_boala_pulmonara_obstructiva_cronica").when(naive_bayes_data.Boala_pulmonara_obstructiva_cronica ==
"da", "boala_pulmonara_obstructiva_cronica").otherwise("null"))
# Afisarea datelor finale
naive_bayes_data.select("Numar", "Stare", "Sex", "Hipertensiv", "Fibrilatie_atriala", "Boala_coronariana", "Diabet").show()
naive_bayes_data.select("Anemii_deficitare","Depresie","Hiperlipemie","Insuficienta_renala","Boala_pulmonara_obstructiva_cronic
a", "Stare"). show()
naive_bayes_data.count()
```

	Numar	Stare	Sex	Hipertensiv	Fibrilatie_a	atriala	Boala_corona	riana	Diabet		
	1	yes	female	x hipertensiv x	fibrilatie a	atriala x	boala corona	riana	diabet		
	2			x hipertensiv x					diabet		
	3			x hipertensiv x					- :		
	4			x hipertensiv x					_		
	5						boala_corona				
	6		female								
	7		female								
	8		male				boala corona		diabet		
	9				_		boala corona		diabet		
	10		female		_		 boala corona		diabet		
	11								diabet		
	12						boala corona		diabet		
	13						 _boala_corona		diabet		
	14		female				 boala corona		diabet		
	15	-	male		fibrilatie a	atriala x	 boala corona	riana x	diabet		
	16	yes	male	hipertensiv x	 fibrilatie a	atriala x	 boala corona	riana	diabet		
	17	no	male	hipertensiv x	 fibrilatie a	atriala x	 boala corona	riana x	diabet		
	18	yes	male						diabet		
	19	yes	male	hipertensiv x	fibrilatie a	atriala x	boala corona	riana x	diabet		
	20	yes	male	x_hipertensiv x	_fibrilatie_a	atriala x	_boala_corona	riana x	diabet		
	+	+	+	++-		+-		+-	+		
4				-+		T 61					+
	Aner	m11_de	ficitar	e Depresie	Hiperlipemie	Insufic	ienta_renala	Roala_p	ulmonara	a_obstructiva_cronica	Stare
				-+	+			+			+
				e x_depresie						x_boala_pulmonara	yes
		_		e x_depresie x_		_	_			boala_pulmonara_o	yes
				e x_depresie x_			_			x_boala_pulmonara	yes
				e x_depresie x_						x_boala_pulmonara	yes
		_		e x_depresie x_			_			boala_pulmonara_o	yes
				e x_depresie			_			boala_pulmonara_o	yes
							ienta_renala			boala_pulmonara_o	yes
		_		e x_depresie x_		_				x_boala_pulmonara	yes
				e x_depresie x_						x_boala_pulmonara	yes
	_	_		e x_depresie x_		_	_			x_boala_pulmonara	yes
	_			: - :		_	cienta_re			x_boala_pulmonara	yes
				: - :		_	cienta_re			x_boala_pulmonara	yes
	_	_		e x_depresie x_		_	_			boala_pulmonara_o	yes
							ienta_renala			x_boala_pulmonara	yes
				e x_depresie x_						x_boala_pulmonara	yes
	_	_					ienta_renala			x_boala_pulmonara	yes
				e x_depresie x_			_			x_boala_pulmonara	no
				e depresie x_			_			x_boala_pulmonara	yes
				e x_depresie x_		_	_			x_boala_pulmonara	yes
	2001	nii do:	Firitan	alv dannacialv I	hinonlinomiol	incufic	ionta nonala			v hoala nulmonana	VOC

anemii_deficitare|x_depresie|x_hiperlipemie| insuficienta_renala| x_boala_pulmonara...| yes|

anemii_deficitare|x_depresie|x_hiperlipemie| insuficienta_renala|

Import Library

```
from pyspark.ml import Pipeline
[118]
          from pyspark.ml.feature import VectorAssembler
          from pyspark.ml.feature import StringIndexer
          from pyspark.sql.functions import *
[119]
          #Salvam datele transformate ca csv
          naive_bayes_csv = naive_bayes_data.toPandas()
          #Salvam datele local
          naive_bayes_csv.to_csv('naive_bayes_data.csv',index=None,header=None)
[120]
          pacients_data = pd.read_csv("naive_bayes_data.csv",header = None)
          pacients_data.head()
       0
                            2
                                                                                           6
               1
                                            3
                                                                         5
                                                                                                      7
         female x hipertensiv x fibrilatie atriala x boala coronariana
                                                                              anemii deficitare x depresie
                                                                                                           hiperlipemie
                                                                                                                         insuficienta renala
                                                                     diabet
           male x hipertensiv x fibrilatie atriala x boala coronariana x diabet
                                                                              anemii deficitare x depresie x hiperlipemie x insuficienta renala
    1 2
    2 3
           male x hipertensiv x fibrilatie atriala x boala coronariana x diabet
                                                                              anemii deficitare x depresie x hiperlipemie
                                                                                                                         insuficienta renala
           male x hipertensiv x fibrilatie atriala x boala coronariana x diabet x anemii deficitare x depresie x hiperlipemie x insuficienta renala
    3 4
                                                                                                                         insuficienta renala
                   hipertensiv x fibrilatie atriala x boala coronariana x diabet
                                                                              anemii deficitare x depresie x hiperlipemie
    4 5
            male
           Create Pyspark Dataframe
  [121]
            #Create Dataframe
```

```
pacients_df.columns
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11']
```

pacients_df = spark.createDataFrame(pacients_data)

Change the columns

Add the index columns

[123]

Create the pipeline

```
[124]
```

```
pipeline = Pipeline(stages = indexers)
indexed_pacients_df = pipeline.fit(pacients_df).transform(pacients_df)
```

Visualize the results

[125]

indexed_pacients_df.show(5,False)

```
depresie_index|hiperlipemie_index|insuficienta_renala_index|boala_pulmonara_obstructiva_cronica_index|label|
0.0
              1.0
                                1.0
                                                          0.0
                                                                                                    0.0
                                0.0
                                                          11.0
                                                                                                    0.0
0.0
              0.0
10.0
              0.0
                                11.0
                                                          10.0
                                                                                                    10.0
                                0.0
                                                          0.0
0.0
              0.0
                                                                                                    0.0
                                11.0
                                                          1.0
                                                                                                    10.0
```

Create the features vectors

[126]

vectorAssembler = VectorAssembler(inputCols =

["numar_index","sex_index","tensiune_index","fibrilatie_atriala_index","boala_coronariana_index","diabet_index","anemii_de ficitare_index","depresie_index","hiperlipemie_index","insuficienta_renala_index","boala_pulmonara_obstructiva_cronica_index"],outputCol = "features")

vindexed_pacients_df = vectorAssembler.transform(indexed_pacients_df)

Visualize the results

[127] vindexed_pacients_df.show(5,False)

Import the model

[128]

from pyspark.ml.classification import NaiveBayes from pyspark.ml.evaluation import MulticlassClassificationEvaluator

Divizarea train-test

[129]

```
splits = vindexed_pacients_df.randomSplit([0.6,0.4])
train_df = splits[0]
test_df = splits[1]
```

Crearea modelului si configurarea parametrilor sai

```
[130] nb = NaiveBayes(smoothing=1.0,modelType="multinomial")
```

Antrenarea modelului

```
[131] nbmodel = nb.fit(train_df)
```

Aplicarea modelului si afisarea primelor 5 linii

```
[132] predictions_df = nbmodel.transform(test_df) predictions_df.show(5)
```

boala_pulmonara_obstructiva_cronica_index	label	features	rawPrediction	probability	prediction
0.0 0.0 0.0	0.0 0.0 0.0	(11,[0,5,6,8],[20] (11,[0],[233.0]) (11,[0,1,7,8,9],[]	[-23.107291559380 [-1.3918074527539 [-32.049632375989	[0.89987776402336 [0.93058800221294 [0.83794419786539 [0.92244492194847 [0.82190508267950	0.0 0.0 0.0

Calculul acuratetei pe dataset-ul de test

```
evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy")
nbaccuracy = evaluator.evaluate(predictions_df)
print("Test set accuracy = " + str(nbaccuracy))
```

Modelul Linear SVM

În cazul unei probleme de clasificare liniare, SVM-urile pot realiza eficient o clasificare neliniară folosind ceea ce se numește kernel, mapând implicit intrările lor în spații de caracteristici cu dimensiuni mari.

Import model

[134] from pyspark.ml.classification import LinearSVC from pyspark.ml.evaluation import MulticlassClassificationEvaluator from sklearn.metrics import confusion_matrix

Visualize the features

va_df = vindexed_pacients_df.select(['features', 'label'])
va_df.show(3)

Divizarea train-test

[136] (train, test) = va_df.randomSplit([0.9, 0.1])

Crearea modelului si configurarea parametrilor sai

[137] lsvc = LinearSVC(labelCol="label", maxIter=50,regParam=0.1)

Antrenarea modelului

[138] lsvcModel = lsvc.fit(train)

Afisarea coeficientilor

```
[139] print("Coefficients: " + str(lsvcModel.coefficients))
print("Intercept: " + str(lsvcModel.intercept))
```

Coefficients: [-3.2161912691296665e-09,-5.886041889810479e-05,1.3432638807815618e-05,4.758202144397335e-05,1.5383848718496854e-05,-0.0004296554464475632,-2.424787200714913e-05,0.0,-1.994947567246183e-06,-3.7954762669978905e-05,-0.09306299728842779]
Intercept: -1.0000358323594556

Predictions

[140]

```
pred = lsvcModel.transform(test)
pred.show(3)
```

Acuratete

[141]

```
evaluator = MulticlassClassificationEvaluator(metricName="accuracy")
acc = evaluator.evaluate(pred)
print(" Accuracy: ", acc)
```

Accuracy: 0.8490566037735849

Matrix of confusion

y_pred=pred.select("prediction").collect()
y_orig=pred.select("label").collect()
cm = confusion_matrix(y_orig, y_pred)
print("Confusion Matrix:")
print(cm)

```
Confusion Matrix:
[[90 0]
[16 0]]
```

Modelul regresie logistica

Am ales acest model pentru ca se poate descurca foarte bine sa prezica un rezultat binar, cum ar fi da sau nu, pe baza observațiilor anterioare ale unui set de date. Un model de regresie logistică prezice o variabilă de date dependentă analizând relația dintre una sau mai multe variabile independente existente.

Transformarea datelor pentru a se potrivi cu modelul

Salvam datele intr-o alta variabila [143] log_regr_data=data_as_spark.select(data_as_spark.Varsta.cast("integer"), "Sex", "Depresie", data_as_spark.Frecventa_cardiaca.cast ("float"),data_as_spark.Tensiune_arteriala_sistolica.cast("float"),"Diabet",data_as_spark.Temperatura.cast("float"),"Hipertensiv",data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_spark.Temperatura.cast("float"),data_as_ ta_as_spark.Potasiu_din_sange.cast("float"),data_as_spark.Calciu_din_sange.cast("float"),data_as_spark.Frecventa_respiratorie.ca st("float"), "Stare") cols = log_regr_data.columns #1 Modificarea coloanei Stare log_regr_data=log_regr_data.withColumn("Stare",when(log_regr_data.Stare=="alive","yes").when(log_regr_data.Stare=="dead","no").otherwise("null")) #2 Modificarea coloanei Sex log_regr_data=log_regr_data.withColumn("Sex",when(log_regr_data.Sex=="Female","female").when(log_regr_data.Sex=="Male","m ale").otherwise("null")) #3 Modificarea coloanei Depresie log_regr_data = log_regr_data.withColumn("Depresie",when(log_regr_data.Depresie == "nu","no").when(log_regr_data.Depresie == "da", "yes").otherwise("null"))

#4 Modificarea coloanei Diabet

log_regr_data = log_regr_data.withColumn("Diabet",when(log_regr_data.Diabet == "nu","no").when(log_regr_data.Diabet ==
"da","yes").otherwise("null"))

#5 Modificarea coloanei Hipertensiv

log_regr_data = log_regr_data.withColumn("Hipertensiv",when(log_regr_data.Hipertensiv ==
"nu","no").when(log_regr_data.Hipertensiv == "da","yes").otherwise("null"))

Afisarea datelor finale

log_regr_data.select("Varsta","Sex","Depresie","Frecventa_cardiaca","Tensiune_arteriala_sistolica","Diabet").show()
log_regr_data.select("Temperatura","Hipertensiv","Potasiu_din_sange","Calciu_din_sange","Frecventa_respiratorie","Stare").show()
log_regr_data.count()

log_regr_data.printSchema()

+		+	+		++
Varsta	Sex	Depresie	Frecventa_cardiaca	Tensiune_arteriala_sistolica	Diabet
+		+		·	++
72	female	no	68.83784	155.86667	yes
75	male	no	101.37037	140.0	no
83	male	no	72.318184	135.33333	no
43	male	no	94.5	126.4	no
75	male	no	67.92	156.56	no
76	female	no	74.181816	118.1	no
72	female	no	69.63636	106.565216	no
83	male	no	84.666664	141.13043	yes
61	male	no	91.916664	98.434784	yes
67	female	no	75.083336	122.0	yes
70	male	no	95.62963	149.03572	yes
83	male	no	65.16	103.26087	yes
77	male	no	78.833336	126.90323	no
83	female	no	65.86957	112.14286	yes
69	male	no	98.54412	107.36	no
87	male	no	73.48	159.69565	yes
83	male	no	83.69231	157.28947	no
56	male	yes	64.6	113.28	yes
45	male	no	82.0	162.24	no
89	male	no	70.083336	112.416664	no
+	+	+	+		++

only showing top 20 rows

Star	a_respiratorie	Frecventa	_din_sange	ge Ca	_din_san	Potasiu	Hipertensiv	emperatura
ye	16.621622		7.4636364	6	4.81666		no	36.714287
y∈	20.851852		8.1625	15	4.		no	36.68254
y e	23.64		8.266666	25	5.8		no	36.453705
y e	21.857143	ĺ	9.476923	7	4.3866		no	36.287037
y e	21.36		8.733334	33	4.78333		yes	36.761906
y e	20.545454		8.466666	75	4.0		yes	35.266666
ye	19.148148	l	8.775	6	4.60666		yes	35.603176
y e	18.4	İ	9.171429	75	4.23		yes	36.67361
y e	18.583334		9.44375	6	4.71818		yes	37.103176
y e	18.125	I	8.15	37	3.		yes	36.86111
y e	17.481482	İ	8.45	1	4.4090	ĺ	yes	37.555557
y e	17.4		9.1	33	4.03333		yes	36.47778
y e	15.833333	İ	8.233334	88	3.	ĺ	yes	36.416668
y e	25.434782	İ	8.716666	34	4.		yes	36.157406
y e	34.69343		9.22	86	3.97142		yes	36.50926
y e	20.692308		9.02	12	4.68571		yes	36.933334
r	15.652174	İ	8.888889	3	4.79090		yes	36.922222
y e	16.071428	I	7.7	6	4		yes	36.694443
y e	28.153847		8.814285	3	5		yes	36.851852
ye	25.583334	İ	8.566667	0	4		no	36.00794

only showing top 20 rows

root

- |-- Varsta: integer (nullable = true)
- |-- Sex: string (nullable = false)
- |-- Depresie: string (nullable = false)
- |-- Frecventa_cardiaca: float (nullable = true)
- |-- Tensiune_arteriala_sistolica: float (nullable = true)
- |-- Diabet: string (nullable = false)
- -- Temperatura: float (nullable = true)
- -- Hipertensiv: string (nullable = false)
- |-- Potasiu_din_sange: float (nullable = true)
- |-- Calciu_din_sange: float (nullable = true)
- |-- Frecventa_respiratorie: float (nullable = true)
- |-- Stare: string (nullable = false)

Import library

from pyspark.ml.feature import OneHotEncoder,StringIndexer,VectorAssembler from pyspark.ml import Pipeline from pyspark.ml.evaluation import BinaryClassificationEvaluator,MulticlassClassificationEvaluator

Categorical columns

[145] categoricalColumns = ['Sex','Depresie','Diabet','Hipertensiv'] stages = []

Indexing categorical columns

for categoricalCol in categoricalColumns:
 stringIndexer = StringIndexer(inputCol = categoricalCol, outputCol = categoricalCol + 'Index')
 encoder = OneHotEncoder(inputCols=[stringIndexer.getOutputCol()], outputCols=[categoricalCol + "classVec"])
 stages += [stringIndexer,encoder]

Indexing target columns

```
[147] label_stringldx = StringIndexer(inputCol = 'Stare', outputCol = 'label')
stages += [label_stringldx]
```

Indexing numeric columns

```
numericCols
['Varsta','Frecventa_cardiaca','Tensiune_arteriala_sistolica','Temperatura','Potasiu_din_sange','Calciu_din_sange','Frecventa_respiratorie']
assemblerInputs = [c + "classVec" for c in categoricalColumns] + numericCols
assembler = VectorAssembler(inputCols=assemblerInputs, outputCol="features")
stages += [assembler]
```

Create pipeline

```
pipeline = Pipeline(stages = stages)
pipelineModel = pipeline.fit(log_regr_data)
log_regr_data = pipelineModel.transform(log_regr_data)
selectedCols = ['label', 'features'] + cols
log_regr_data = log_regr_data.select(selectedCols)
```

Divizarea train-test

```
train, test = log_regr_data.randomSplit([0.7, 0.3])
print("Training Dataset Count: " + str(train.count()))
print("Test Dataset Count: " + str(test.count()))
```

Training Dataset Count: 809 Test Dataset Count: 366

Import model

[151] from pyspark.ml.classification import LogisticRegression

Crearea modelului si configurarea parametrilor sai

[152] | lr = LogisticRegression(featuresCol = 'features', labelCol = 'label', maxIter=10)

Antrenarea modelului

[153] | lrModel = lr.fit(train)

Beta Coefficients

[154]

beta = np.sort(lrModel.coefficients)
plt.plot(beta)
plt.ylabel('Beta Coefficients')
plt.show()

Plot of the ROC Curve

[155]

trainingSummary = lrModel.summary roc = trainingSummary.roc.toPandas() plt.plot(roc['FPR'],roc['TPR']) plt.ylabel('False Positive Rate') plt.xlabel('True Positive Rate') plt.title('ROC Curve') plt.show() print('Training set areaUnderROC: ' + str(trainingSummary.areaUnderROC))

Visualize the precision

[156]

pr = trainingSummary.pr.toPandas()
plt.plot(pr['recall'],pr['precision'])
plt.ylabel('Precision')
plt.xlabel('Recall')
plt.show()

Visualize the predictions

[157]

predictions = lrModel.transform(test)
predictions.select('Varsta', 'Sex', 'label', 'rawPrediction', 'prediction', 'probability').show(10)

```
Sex label
                          rawPrediction|prediction|
                                                        probability
Varstal
    78|female| 0.0|[2.47739620586088...|
                                               0.0 [0.92254193972512...]
    32|female| 0.0|[3.19295328407156...|
                                               0.0|[0.96056823397809...
    47|female| 0.0|[3.27645215005637...|
                                               0.0|[0.96361208682000...
    48|female| 0.0|[2.84264532086691...|
                                               0.0 [0.94493726257457...
    85|female| 0.0|[1.70352965676057...|
                                               0.0|[0.84599516634526...
    87|female| 0.0|[2.54731474976166...|
                                               0.0|[0.92739290988736...
    39|female| 0.0|[3.91176989160257...|
                                               0.0|[0.98038729056891...
    71|female| 0.0|[3.02228596113570...|
                                            0.0|[0.95357083797530...
    81|female| 0.0|[0.77092600254329...|
                                             0.0|[0.68372117263213...
    57|female| 0.0|[2.55310886080411...|
                                              0.0|[0.92778209324832...
only showing top 10 rows
```

Area under curve on the test dataset

[158]

predictionAndLabels = lrModel.evaluate(train)
evaluator = BinaryClassificationEvaluator()
predictionAndLabels.predictions.show()

```
rawPrediction
                                     probability prediction
Stare
 yes [1.82239750835842... | [0.86085356041197...
                                                        0.0
 ves [2.3863173273743,... [0.91577796297303...]
                                                        0.0
 yes|[3.08988583514586...|[0.95647361239933...|
                                                        0.0
 ves|[2.43250517986687...|[0.91927263870054...|
                                                        0.0
 ves | [-0.4120204516436... | [0.39842775384312... |
                                                        1.0
 yes|[2.51820065331896...|[0.92540794442043...|
                                                        0.0
 ves [2.86804563191645... [0.94624402323005...]
                                                        0.0
 yes|[3.62043473107615...|[0.97392696635478...
                                                        0.0
 yes|[3.88944945241336...|[0.97995347850438...|
                                                        0.0
 yes [2.25915118828261... [0.90543698007114...
                                                        0.0
 yes|[2.85912434514355...|[0.94578841986533...|
                                                        0.0
 yes|[2.97960806934808...|[0.95164433884617...|
                                                        0.0
 yes|[3.49755492427848...|[0.97061811932763...|
                                                        0.0
 yes|[2.90706330722986...|[0.94819449894279...|
                                                        0.0
 ves [2.15754924532702... [0.89637212108316...]
                                                        0.0
 ves [1.71612781627279... | [0.84762940201015... |
                                                        0.0
 yes|[3.19423581624958...|[0.96061678363889...|
                                                        0.0
 ves [2.60280088830868... [0.93104162267163...]
                                                        0.0
 yes|[2.29717188099106...|[0.90864254439121...|
                                                        0.0
 yes [2.37718310817546... [0.91507077179442...]
                                                        0.01
```

[159]

print('Test Area Under ROC', evaluator.evaluate(predictions))

Accuracy

[160]

```
# Pentru multiclass
evaluator = MulticlassClassificationEvaluator(predictionCol='prediction',
labelCol='label',metricName='accuracy')
acc = evaluator.evaluate(predictionAndLabels.predictions)
print(" Accuracy: ", acc)
```

Accuracy: 0.8640296662546354

5. Metode Deep Learning

Modelul Artificial Neural Network

Am ales acest model deoarece se potrivit pentru aceasta problema de clasificare mai ales prin performanta dar si prin complexitatea care ne este oferita in momentul prezicerii coloanelor tinta.

Install TensorFlow

[161] | !pip install tensorflow

```
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: tensorflow in /usr/local/lib/python3.7/dist-packages (2.8.2+zzzcolab20220527125636)
Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.21.6)
Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.6.3)
Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (4.1.1)
Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (1.46.3)
Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (57.4.0)
Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from tensorflow) (3.1.0)
Requirement already satisfied: keras-preprocessing>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (3.1.2)
Requirement already satisfied: protobuf<3.20,>=3.9.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow) (3.17.3)
Requirement already satisfied: tensorflow-estimator<2.9,>=2.8 in /usr/local/lib/python3.7/dist-packages (from tensorflow)
```

Import Tensorflow

import tensorflow as tf [162]

Reading the data

[163]

tensor_data = pd.read_csv('processed_data.csv') tensor_data.head()

	Numar	Stare	Varsta	Sex	Indice_de_masa_corporala	Hipertensiv	Fibrilatie_atriala	Boala_coronariana	Diabet	Anemii_deficitare	 Sodiu_din_sange
0	1	alive	72	Female	37.588179	nu	nu	nu	da	da	 138.750000
1	2	alive	75	Male	30.188278	nu	nu	nu	nu	da	 138.888889
2	3	alive	83	Male	26.572634	nu	nu	nu	nu	da	 140.714286
3	4	alive	43	Male	83.264629	nu	nu	nu	nu	nu	 138.500000
4	5	alive	75	Male	31.824842	da	nu	nu	nu	da	 136.666667

Transformarea datelor pentru a se potrivi modelului

```
[164]
```

```
#Modifications of the dataset
#Modifications of the Stare
tensor_data.loc[tensor_data["Stare"] == "alive", "Stare"] = 1
tensor_data.loc[tensor_data["Stare"] == "dead", "Stare"] = 0
#Modifications of the Hipertensiv
tensor_data.loc[tensor_data["Hipertensiv"] == "nu", "Hipertensiv"] = 0
tensor_data.loc[tensor_data["Hipertensiv"] == "da", "Hipertensiv"] = 1
#Modifications of the Fibrilatie_atriala
tensor_data.loc[tensor_data["Fibrilatie_atriala"] == "nu", "Fibrilatie_atriala"] = 0
tensor_data.loc[tensor_data["Fibrilatie_atriala"] == "da", "Fibrilatie_atriala"] = 1
```

```
#Modifications of the Boala_coronariana
tensor_data.loc[tensor_data["Boala_coronariana"] == "nu", "Boala_coronariana"] = 0
tensor_data.loc[tensor_data["Boala_coronariana"] == "da", "Boala_coronariana"] = 1
#Modifications of the Diabet
tensor_data.loc[tensor_data["Diabet"] == "nu", "Diabet"] = 0
tensor_data.loc[tensor_data["Diabet"] == "da", "Diabet"] = 1
#Modifications of the Anemii_deficitare
tensor_data.loc[tensor_data["Anemii_deficitare"] == "nu", "Anemii_deficitare"] = 0
tensor_data.loc[tensor_data["Anemii_deficitare"] == "da", "Anemii_deficitare"] = 1
#Modifications of the Depresie
tensor_data.loc[tensor_data["Depresie"] == "nu", "Depresie"] = 0
tensor_data.loc[tensor_data["Depresie"] == "da", "Depresie"] = 1
#Modifications of the Hiperlipemie
tensor_data.loc[tensor_data["Hiperlipemie"] == "nu", "Hiperlipemie"] = 0
tensor_data.loc[tensor_data["Hiperlipemie"] == "da", "Hiperlipemie"] = 1
#Modifications of the Insuficienta renala
tensor_data.loc[tensor_data["Insuficienta_renala"] == "nu", "Insuficienta_renala"] = 0
tensor_data.loc[tensor_data["Insuficienta_renala"] == "da", "Insuficienta_renala"] = 1
#Modifications of the Boala_pulmonara_obstructiva_cronica
tensor_data.loc[tensor_data["Boala_pulmonara_obstructiva_cronica"] == "nu", "Boala_pulmonara_obstructiva_cronica"] = 0
tensor_data.loc[tensor_data["Boala_pulmonara_obstructiva_cronica"] == "da", "Boala_pulmonara_obstructiva_cronica"] = 1
X=tensor_data.drop(['Numar','Fibrilatie_atriala','Boala_coronariana','Anemii_deficitare','Hiperlipemie','Insuficienta_renala','Boala_pulmo
nara_obstructiva_cronica','Urina','Saturatia_pulsului_de_oxigen','Volumul_celule_rosii_din_sange','Hemoglobina_corpusculara_medie','C
oncentratia_medie_a_hemoglobinei_corpusculare','Volumul_corpuscular_mediu','Latimea_distributiei_globulelor_rosii','Timp_de_protro
mbina','Raport_internationalizat_normalizat','NT_proBNP','Creatin_kinaza','Creatina','Nitrogen_ureic','Interval_anionic','Ioni_de_magnezi
u','Concentratia_ionilor_de_oxigen','Bicarbote','Acid_lactic','Presiunea_partiala_a_dioxidului_de_carbon','Fractie_de_eliminare'],axis = 1)
```

v = tensor_data['Stare']

Processing the values of 'Sex' column

[165]

from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(drop='first')
encoder_gen = encoder.fit_transform(X[["Sex"]]).toarray()
X[['is_female']] = encoder_gen
X.drop(['Sex'],axis=1,inplace=True)

Data Scaling

[166]

from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler()

standardized_attrs =

scaler.fit_transform(X[['Varsta','Indice_de_masa_corporala','Hipertensiv','Diabet','Depresie','Frecventa_cardiaca','Tensiune_a rteriala_sistolica','Tensiune_arteriala_diastolica','Frecventa_respiratorie','Temperatura','Globule_rosii','Leucocite','Trombocit e', 'Neurofile', 'Globule_albe', 'Limfocite', 'Glucoza', 'Potasiu_din_sange', 'Sodiu_din_sange', 'Calciu_din_sange', 'Clorura']])

X[['Varsta','Indice_de_masa_corporala','Hipertensiv','Diabet','Depresie','Frecventa_cardiaca','Tensiune_arteriala_sistolica','Tensiune_arteriala_diastolica','Frecventa_respiratorie','Temperatura','Globule_rosii','Leucocite','Trombocite', 'Neurofile', 'Globule_albe', 'Limfocite', 'Glucoza', 'Potasiu_din_sange', 'Sodiu_din_sange', 'Calciu_din_sange', 'Clorura']] = standardized_attrs

X.describe()

	Varsta	Indice_de_masa_corporala	Hipertensiv	Diabet	Depresie	Frecventa_cardiaca	Tensiune_arteriala_sistolica
count	1175.000000	1175.000000	1175.000000	1175.000000	1175.000000	1175.000000	1175.000000
mean	0.687936	0.183849	0.718298	0.420426	0.119149	0.487210	0.336019
std	0.167948	0.092082	0.450020	0.493837	0.324102	0.159898	0.134810
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.575000	0.130155	0.000000	0.000000	0.000000	0.366364	0.238325
50%	0.725000	0.183812	1.000000	0.000000	0.000000	0.479224	0.323438
75%	0.825000	0.204755	1.000000	1.000000	0.000000	0.597936	0.417913
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

Divizarea train-test

[167]

from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)

Import tensorflow libraries for ANN

[168]

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense

Crearea modelului si stabilirea parametrilor potriviti

[169]

model = Sequential()
model.add(Dense(units=100, activation='relu', input_shape=(23,))) # First layer
model.add(Dense(units=100, activation='relu')) # Second layer
model.add(Dense(units=1, activation='sigmoid')) # Output layer
model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 100)	2400
dense_1 (Dense)	(None, 100)	10100
dense_2 (Dense)	(None, 1)	101

Total params: 12,601 Trainable params: 12,601 Non-trainable params: 0

Compilarea modelului

```
[170] model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
```

Data conversion to tensor type

```
X_train =tf.convert_to_tensor(X_train, dtype=tf.float32)
y_train = tf.convert_to_tensor(y_train, dtype=tf.float32)
X_test = tf.convert_to_tensor(X_test, dtype=tf.float32)
y_test = tf.convert_to_tensor(y_test, dtype=tf.float32)
```

Antrenarea modelului

[172] history = model.fit(x=X_train, y=y_train, epochs=100, validation_data=(X_test, y_test), verbose=1, batch_size=128)

Calcularea predictiilor

```
[173] y_pred = model.predict(X_test).reshape((-1,)) > 0.5
    y_pred = y_pred.astype(np.int32)
    y_pred[0:5]
```

```
array([1, 1, 1, 1, 1], dtype=int32)
```

Matrix of confusion

[174]

from sklearn.metrics import confusion_matrix confusion_matrix(y_test, y_pred)

```
array([[ 59, 0], [ 0, 411]])
```

Accuracy

[175] model.eva

model.evaluate(X_test, y_test)

Loss plot

[176]

plt.plot(history.history['loss'],c='cornflowerblue ',label='training loss')
plt.plot(history.history['val_loss'],c='goldenrod', label='validation loss')
plt.legend()

