ETR0309_006

Dual LDO Regulators, Low ESR Cap. Compatible

■GENERAL DESCRIPTION

The XC6401 series are highly accurate, Dual, low noise, CMOS LDO voltage regulators. Performance features of the series includes low output noise, high ripple rejection ratio, low dropout and very fast turn-on times.

The XC6401 includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensators internally. The XC6401's current limiters' foldback circuit also operates as a short protect for the output current limiter. The output voltage for each regulator is set independently by laser trimming. Voltages are selectable in 0.05V steps within a range of 0.8V to 5.0V. The XC6401 series is also fully compatible with low ESR ceramic capacitors, reducing cost and improving output stability.

This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies. The EN function allows the output of each regulator to be turned off independently, resulting in greatly reduced power consumption. The XC6401 series is available in the SOT-26W or USP-6B, USP-6C 'chip-scale' package.

APPLICATIONS

- Mobile Phones
- Cordless phones and radio communication equipment
- Portable games
- Cameras, Video recorders
- Portable Audio Equipment
- PDAs

■FEATURES

Maximum Output Current : More than 150mA (300mA limit)

Dropout Voltage : 100mV @100mA **Operating Voltage Range** : 1.5V \sim 6.0V

Output Voltage Range : 0.8V~5.0V (0.05V increments)

Highly Accurate : $\pm 2\%$ (VOUT>1.5V)

: ±30mV (VouT≦1.5V)

Low Power Consumption : $25 \mu A (TYP.)$

Standby Current : Less than 0.1 μ A (TYP.)

High Ripple Rejection : 70dB @1kHz Operating Temperature Range : -40°C \sim +85°C Low ESR Capacitor Compatible : Ceramic capacitor

Low Output Noise

Packages: SOT-26W, USP-6B, USP-6CEnvironmentally Friendly: EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUITS

■TYPICAL PERFORMANCE CHARACTERISTICS

●Interactive Load Transient Response XC6401 (VR1:3.0V, VR2:2.85V)

VIN=4.0V, CIN= CL=1 μ F (ceramics) 500 3.1 VR1 Output Voltage (3.0V) 3.0 Output Voltage VOUT (V) 300 2.9 VR2 Output Voltage (2.85V) 2.8 200 100mA VR1 Output Current 2.7 100 10mA 2.6 0

Time (40 μ sec/div)

■PIN CONFIGURATION

*The dissipation pad for the USP-6B/C packages should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release.

If the pad needs to be connected to other pins, it should be connected to the Vss pin.

■ PIN ASSIGNMENT

PIN NUMBER		PIN NAME	FUNCTION	
SOT-26W	USP-6B/C	FIN NAIVIE	FONCTION	
1	3	EN1	ON/OFF Control 1	
2	2	Vin	Power Input	
3	1	EN2	ON/OFF Control 2	
4	6	Vout2	Output 2	
5	4	Vss	Ground	
6	5	Vout1	Output 1	

■ PRODUCT CLASSIFICATION

Selection Guide

The following options for the Regulator 1, 2, the EN pin logic, internal pull-up / down are available.

● Ordering Information XC6401①2③④⑤⑥-⑦(*1)

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
		Е	High Active with pull-down resistor
1)	Regulator1,	F	High Active with no pull-down resistor
U	EN type	G	Low Active with pull-up resistor
		Н	Low Active with no pull-up resistor
		Е	High Active with pull-down resistor
2	Regulator2,	F	High Active with no pull-down resistor
	EN type	G	Low Active with pull-up resistor
		Н	Low Active with no pull-up resistor
			Internally set sequential number relating output voltage of
34	Output Voltage	01~	each regulators
34	Output voltage		Regulator 1 Output Voltage Range: 0.8 ~ 5.0 V (0.05V increments)
			Regulator 2 Output Voltage Range: 0.8 ~ 5.0 V (0.05V increments)
		MR	SOT-26W
		MR-G	SOT-26W
	Packages	DR	USP-6B
56-7	Taping Type (*2)	DR-G	USP-6B
		ER	USP-6C
		ER-G	USP-6C

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

For reverse orientation, please contact your local Torex sales office or representative.

(Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦)

^(*2) The device orientation is fixed in its embossed tape pocket.

■ ABSOLUTE MAXIMUM RATINGS

Ta = 25°C

PARAMETER		SYMBOL	RATINGS	UNITS
Input Vo	ltage	VIN	6.5	V
Output C	urrent	IOUT1 + IOUT2	700	mA
Output Voltage		Vout	Vss -0.3 ~ Vin +0.3	V
EN Pin Voltage		VEN	Vss -0.3 ~ 6.5	V
	SOT-26W		250	
Power Dissipation	USP-6B	Pd	100	mW
	USP-6C		100	
Operating Temperature Range		Topr	-40 ~ +85	°C
Storage Temper	ature Range	Tstg	-55 ~ +125	°C

^{*} Sum of IOUT1 and IOUT2.

■ELECTRICAL CHARACTERISTICS

XC6401FFxx

Regulator 1, Regulator 2

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*3)	Vout (E)	VIN=VOUT (T) + 1.0V IOUT=30mA	0.98	Vout(t)	1.02	V	1
Maximum Output Current	IOUTMAX	VIN=VOUT (T) + 1.0V	150	-	-	mA	1
Load Regulation	ΔVουτ	1mA≦louT≦100mA	-	15	60	mV	1
Dropout Voltage	Vdif1	IOUT=30mA		E-1		mV	1
Dropout Voltage	Vdif2	IOUT=100mA		E-2		mV	'
Supply Current	Iss	VIN=VEN=VOUT (T) + 1.0V, IOUT=0mA	-	25	45	μΑ	2
Standby Current	ISTB	VIN=VOUT (T) + 1.0V, VEN=VSS	-	0.01	0.10	μΑ	3
Line Regulation (*7)	$\frac{\Delta Vout}{\Delta Vin \cdot Vout}$	Vout(t)+1.0V≦VIN≦6.0V VEN=VIN, IOUT=30mA	-	0.01	0.20	%/V	1
Input Voltage	Vin		1.5	-	6.0	V	-
Output Voltage	ΔVουτ	IOUT=30mA		±100		(°C	4
Temperature Characteristics	ΔTopr · Vout	-40°C≦Topr≦85°C	-	±100	-	ppm/°C	1
Ripple Rejection Rate(*8)	PSRR	VIN=[VOUT(T)+1.0]VDC+0.5Vp-pAC IOUT=30mA, f=1kHz	-	70	-	dB	5
Current Limiter	llim	VIN=VOUT (T) + 1.0V, VEN=VIN	-	300	-	mA	1
Short-Circuit Current	Ishort	VIN=VOUT (T) + 1.0V, VEN=VIN	-	30	-	mA	1
EN "High" Voltage	VENH		1.30	-	6.0	V	4
EN "Low" Voltage	VENL		-	-	0.25	V	4
EN "High" Current	lenh	VIN=VEN=VOUT (T) + 1.0V	-0.10	-	0.10	μΑ	4
EN "Low" Current	IENL	VIN= VOUT (T) + 1.0V, VEN=VSS	-0.10	-	0.10	μΑ	4

- NOTE *1: Vout(T)=Specified output voltage
 - *2: Vout(E)=Effective output voltage
 - (I.e. the output voltage when "Vout(T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).
 - *3: If Vout (T) \leq 1.45V, MIN Vout (T) 30mV, MAX Vout (T) + 30mV
 *4: Vdif= $\{VIN1^{(^{c}6)}-VOUT1^{(^{c}5)}\}$

 - *5: Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input.
 *6: Vnu=the input voltage when Vout1 appears as input voltage is gradually decreased.

 - *7: When Vout(T)≥4.5V, 5.5V≤VIN≤6.0V
 - *8: When VouT(T)≥4.8V, VIN=5.75VDC+0.5Vp-pAC
 - *9: Unless otherwise stated, VIN=VOUT(T)+1.0V

^{**} Pd=(VIN-VOUT1)xIOUT1+(VIN-VOUT2)xIOUT2

■ ELECTRICAL CHARACTERISTICS (Continued)

●Dropout Voltage

SETTING OUTPUT VOLTAGE	DETECT VOLTAGE		E-1 DROPOUT VOLTAGE 1		E-2 DROPOUT VOLTAGE 2		
SETTING COTT OT VOLIMOE		V)		(mV)		(mV)	
(V)		OUT	•	dif 1		lif 2	
Vout(t)	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	
0.80	0.770	0.830					
0.85	0.820	0.880	300	700	400	800	
0.90	0.870	0.930	200	000	250	700	
0.95	0.920	0.980	200	600	350	700	
1.00	0.970	1.030	100	500	270	600	
1.05	1.020	1.080	100	500	270	600	
1.10	1.070	1.130	80	400	240	500	
1.15	1.120	1.180	- 60	400	240	500	
1.20	1.170	1.230	65	300	200	400	
1.25	1.220	1.280	- 65	300	200	400	
1.30	1.270	1.330	60	200	190	200	
1.35	1.320	1.380	- 60	200	180	300	
1.40	1.370	1.430	55	100	165	250	
1.45	1.420	1.480	- 55	100	165	250	
1.50	1.470	1.530					
1.55	1.519	1.581		75	150	200	
1.60	1.568	1.632	50				
1.65	1.617	1.683	50			200	
1.70	1.666	1.734					
1.75	1.715	1.785					
1.80	1.764	1.836		65	140	180	
1.85	1.813	1.887	45				
1.90	1.862	1.938	45	03		100	
1.95	1.911	1.989					
2.00	1.960	2.040					
2.05	2.009	2.091			120		
2.10	2.058	2.142					
2.15	2.107	2.193					
2.20	2.156	2.244	40	60		170	
2.25	2.205	2.295				170	
2.30	2.254	2.346					
2.35	2.303	2.397					
2.40	2.352	2.448					
2.45	2.401	2.499					
2.50	2.450	2.550					
2.55	2.499	2.601					
2.60	2.548	2.652					
2.65	2.597	2.703					
2.70	2.646	2.754	35	55	110	160	
2.75	2.695	2.805					
2.80	2.744	2.856					
2.85	2.793	2.907					
2.90	2.842	2.958					
2.95	2.891	3.009					

■ DROPOUT VOLTAGE CHART (Continued)

● Dropout Voltage (Continued)

	DETECT '	VOLTAGE		E-1	E-		
SETTING OUTPUT VOLTAGE			1	VOLTAGE 1	DROPOUT VOLTAGE 2		
	(V)		(mV)		(mV)		
(V)	Vo		Vdif 1		Vdif 2		
Vout(t)	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	
3.00	2.940	3.060	 				
3.05	2.989	3.111	 				
3.10	3.038	3.162	 				
3.15	3.087	3.213	 				
3.20	3.136	3.264	<u> </u>				
3.25	3.185	3.315	 				
3.30	3.234	3.366	 				
3.35	3.283	3.417	 				
3.40	3.332	3.468	 				
3.45	3.381	3.519	 				
3.50	3.430	3.570	 				
3.55	3.479	3.621	 				
3.60	3.528	3.672					
3.65	3.577	3.723	 				
3.70	3.626	3.774					
3.75	3.675	3.825					
3.80	3.724	3.876					
3.85	3.773	3.927					
3.90	3.822	3.978	 				
3.95	3.871	4.029					
4.00	3.920	4.080	30	45	100	150	
4.05	3.969	4.131					
4.10	4.018	4.182					
4.15	4.067	4.233	1				
4.20	4.116	4.284					
4.25	4.165	4.335					
4.30	4.214	4.386					
4.35	4.263	4.437					
4.40	4.312	4.488	 				
4.45	4.361	4.539	 				
4.50	4.410	4.590	 				
4.55	4.459	4.641					
4.60	4.508	4.692	 				
4.65	4.557	4.743	4				
4.70	4.606	4.794	4				
4.75	4.655	4.845	1				
4.80	4.704	4.896	1				
4.85	4.753	4.947	1				
4.90	4.802	4.998	1				
4.95	4.851	5.049	<u> </u>				
5.00	4.900	5.100					

■OPERATIONAL EXPLANATION

<Output Voltage Control>

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFETs, which are connected to the Vout1 and Vout2 pins, are then driven by the subsequent output signal. The output voltages at the Vout1 and Vout2 pins are controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the EN pin's signal.

<Low ESR Capacitors>

With the XC6401 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that output capacitors (CL1, CL2) is connected as close as possible to the output pins (Vout1 and Vout2) and the Vss pin. Please use an output capacitor with a capacitance value of at least 1 μ F. Also, please connect an input capacitor (CIN) of 1 μ F between the VIN pin and the Vss pin in order to ensure a stable power input.

< Current Limiter, Short-Circuit Protection >

The XC6401 series includes a combination of a fixed current limiter circuit & a foldback circuit which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 30mA flows.

<EN Pins>

The IC's internal circuitry can be shutdown via the signal from the EN1 and EN2 pins with the XC6401 series. In shutdown mode, output at the Vout1 and Vout2 pins will be pulled down to the Vss level via R11 & R12 and R21 & R22. The operational logic of the IC's EN1 and EN2 pins are selectable (please refer to the selection guide). Note that as the standard XC6401FF type's regulator 1 and 2 are both 'High Active/No Pull Down', operations will become unstable with the EN1 or EN2 pins open. Although the EN1 and EN2 pins are equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the EN1 and EN2 pins input current will increase when the IC is in operation. We suggest that you use this IC with either a VIN voltage or a Vss voltage input at the EN1 and EN2 pins. If this IC is used with the correct specifications for the EN1 and EN2 pins, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.

■NOTES ON USE

- Please use this IC within the stated absolute maximum ratings.
 The IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between VIN and Vss wiring in particular.
- 3. Please wire the input capacitor (CIN) and the output capacitors (CL1, CL2) as close to the IC as possible.

TEST CIRCUITS

Circuit ①

EN1/EN2 : High Active = EN=VIN Low Active = EN=VSS

Circuit 2

EN1/EN2:

- High Active with pull-down resistor built-in VR1 Supply Current Iss1=I1 (Note:EN1=ON, EN2=OFF) VR2 Supply Current Iss2=I1 (Note:EN1=OFF, EN2=ON)
- 2. High Active with no pull-down resistor built-in VR1 Supply Active Current Iss1=I1

(Note:EN1=ON, EN2=OFF)

VR2 Supply Current Iss2=I1 (Note:EN1=OFF, EN2=ON)

3. Low Active with pull-up resistor built-in

VR1 Supply Current Iss1=I1+I2

(Note:EN1=ON, EN2=OFF)

VR2 Supply Current Iss2=I1+I3

(Note:EN1=OFF, EN2=ON)

 Low Active with no pull-up resistor built-in VR1 Supply Current Iss1=I1 (Note:EN1=ON, EN2=OFF) VR2 Supply Current Iss2=I1 (Note:EN1=OFF, EN2=ON)

Circuit ③

EN1/EN2:

High Active = EN= Vss Low Active = EN= Vin

■TEST CIRCUITS (Continued)

Circuit 4

Circuit ⑤

EN1/EN2 : High Active = EN=VIN Low Active = EN=Vss

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(1) Output Voltage vs. Output Current (Continued)

XC6401(5.0V) VIN=4 0V CIN=1uF (ceramics), CL=1uF (ceramics) 6.0 5.0 Output Voltage VOUT (V) 4.0 VIN = 6.0V= 5.3V3.0 2.0 1.0 0.0 50 100 150 200 250 300 Output Current IOUT (mA)

(2) Output Voltage vs. Input Voltage

XC6401(0.8V)

XC6401(0.8V)

XC6401(2.85V)

XC6401(2.85V)

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

(3) Dropout Voltage vs. Output Current (Continued)

0.0

(4) Supply Current vs. Input Voltage

XC6401(0.8V)

XC6401(2.85V)

100

Output Current IOUT (mA)

200

XC6401(3.0V)

XC6401(5.0V)

(5) Output Voltage vs. Ambient Temperature

XC6401(3.0V)

XC6401(5.0V)

(6) Supply Current vs. Ambient Temperature

XC6401(2.85V)

(6) Supply Current vs. Ambient Temperature (Continued)

(7) Input Transient Response

XC6401(2.85V)

(7) Input Transient Response (Continued)

(8) Load Transient Response

XC6401(3.0V)

(8) Load Transient Response (Continued)

(9) Ripple Rejection Rate

XC6401(3.0V)

(10) Cross Talk

XC6401 (VR1:3.0V, VR2:2.85V)

Time (40usec/div)

XC6401 Series

■PACKAGING INFORMATION

●SOT-26W

●USP-6B

■ PACKAGING INFORMATION (Continued)

●USP-6C

Unit: mm

■ PACKAGING INFORMATION (Continued)

- ●USP-6B Reference Pattern Layout
- 2.4 0.45 0
- ●USP-6B Reference Metal Mask Design

●USP-6C Reference Pattern Layout

●USP-6C Reference Metal Mask Design

PRODUCT SERIES

XC6401Exxxxx

XC6401Fxxxxx

XC6401Gxxxxx

XC6401Hxxxxx

■MARKING RULE

●SOT-26W

1 represents product series

SOT-26W (TOP VIEW)

MARK	PRODUCT SERIES
1	XC6401xxxxMx

23 represents internally set sequential number

ex.)

MA	RK	INTERNALLY SET SEQUENTIAL	PRODUCT SERIES		
2	3	NUMBER	FRODUCT SERIES		
С	2	C2	XC6401EED5		
С	0	C0	XC6401EED6		
0	1	01	XC6401FF36		
1	8	18	XC6401FF37		

4 represents production lot number 0 to 9, A to Z reverse character 0 to 9, A to A repeated (G, I, J, O, Q, W excluded).

●USP-6B,USP-6C

1 represents product series

MARK

Ε F

Ζ

Н

MARK	PRODUCT SERIES
1	XC6401xxxxxx

OPTIONAL FUNCTIONS

EN1: High Active with pull-down resistor

EN1: High Active with no pull-down resistor

EN1: Low Active with pull-up resistor

EN1: Low Active with no pull-up resistor

USP-6B (TOP VIEW)

3 represents type of VR2 regulator

2 represents type of VR1 regulator

_		
t-:_		
1-6) ⊕ ⊖ 6	
1-5-	G N 1-1	
2 '	[
3	L®!	

USP-6C (TOP VIEW)

MARK	OPTIONAL FUNCTIONS	PRODUCT SERIES
Е	EN1: High Active with pull-down resistor	XC6401xExxxx
F	EN1: High Active with no pull-down resistor	XC6401xFxxxx
Z	EN1: Low Active with pull-up resistor	XC6401xGxxxx
Н	EN1: Low Active with no pull-up resistor	XC6401xHxxxx

45 represents VR output voltage (serial number ex.)

MARK		OUTPUT VOLTAGE		PRODUCT SERIES
4	5	VR1 (V)	VR2 (V)	PRODUCT SERIES
0	1	2.85	2.10	XC6401xx01xx
0	2	2.85	2.85	XC6401xx02xx

6 represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

Note: No character inversion used

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.