

MA0301 Elementary discrete mathematics Spring 2018

Norwegian University of Science and Technology Department of Mathematics

Exercise 6

- Use the alternative principle of induction to show that if u_n is defined recursively by the rules $u_1 = 1$, $u_2 = 5$ and for all n > 1, $u_{n+1} = 5u_n 6u_{n-1}$, then $u_n = 3^n 2^n$ for all $n \in \mathbb{N}$.
- 6 a) Guess a formula for $\sum_{i=1}^{n} bi + c$, where b, c are given numbers, and prove it using the principle of induction.
 - **b)** Use $6\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)$ and the result of step **a)** to write down a formula for $\sum_{i=1}^{n} ai^2 + bi + c$, where a,b,c are given numbers.

Section 5.1

9 Complete the proof of Theorem 1

Theorem 0.1. For any sets $A, B, C \subseteq \mathcal{U}$:

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

11 For $A, B, C \subset \mathcal{U}$, prove that

$$A \times (B - C) = (A \times B) - (A \times C)$$

Section 7.2

- 6 For sets A, B and C, consider relations $\mathcal{R}_1 \subseteq A \times B$, $\mathcal{R}_2 \subseteq B \times C$, and $\mathcal{R}_3 \subseteq B \times C$. Prove that:
 - a) $\mathscr{R}_1 \circ (\mathscr{R}_2 \cup \mathscr{R}_3) = (\mathscr{R}_1 \circ \mathscr{R}_2) \cup (\mathscr{R}_1 \circ \mathscr{R}_3),$

b)
$$\mathcal{R}_1 \circ (\mathcal{R}_2 \cap \mathcal{R}_3) \subseteq (\mathcal{R}_1 \circ \mathcal{R}_1) \cap (\mathcal{R}_1 \circ \mathcal{R}_3)$$
.

a) Draw the digraph
$$G_1 = (V_1, E_1)$$
 where $V_1 = \{a, b, c, d, e, f\}$ and $E_1 = \{(a, b), (a, d), (b, c), (b, e), (d, b), (d, e), (e, c), (e, f), (f, d)\}.$

b) Draw the undirected graph $G_1 = (V_2, E_2)$ where $V_2 = \{s, t, u, v, w, x, y, z\}$ and

$$E_2 = \{\{s, t\}, \{s, u\}, \{s, x\}, \{t, u\}, \{t, w\}, \{u, w\}, \{u, x\}, \{v, w\}, \{v, x\}, \{v, y\}, \{w, z\}, \{x, y\}\}\}$$

18 For $A = \{v, w, x, y, z\}$, each of the following is the (0, 1)-matrix for a relation \mathscr{R} on A. Here the rows and the columns are indexed in the order v, w, x, y, z. Determine the relation $\mathscr{R} \subset A \times A$ in each case, and draw the undirected graph G associated with \mathscr{R}

$$\mathbf{b)} \ M(\mathscr{R}) = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$