

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Surender KHARBANDA
Donald W. KUFE

Serial No.: 10/577,003

Filed: December 13, 2006

For: MODULATION OF INTERACTION OF
MUC1 WITH MUC1 LIGANDS

Group Art Unit: 1643

Examiner: Anne Gussow

Atty. Dkt. No.: 1643

Confirmation No.: 1914

CERTIFICATE OF ELECTRONIC TRANSMISSION
37 C.F.R. § 1.8

I hereby certify that this correspondence is being electronically filed with the United States Patent and Trademark Office via EFS-Web on the date below:

November 13, 2009
Date

Monica A. De La Paz

**RESPONSE TO NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT
APPLICATIONS CONTAINING NUCLEOTIDE SEQUENCE AND/OR AMINO ACID
SEQUENCE DISCLOSURES**

Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Sir:

This paper is submitted in response to the Office Communication dated October 21, 2009, setting forth a Notice to Comply with Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures, for which a response is due November 21, 2009.

Amendments to the Specification begin on page 2.

Remarks begin on page 3.

AMENDMENT

AMENDMENTS TO THE SPECIFICATION:

Please delete the Sequence Listing and insert therefor the substitute Sequence Listing submitted as text concurrently herewith through EFS-Web.

REMARKS

The specification has been amended to comply with the attached Notice to Comply with Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures dated October 21, 2009. No new matter is added by entry of this amendment.

It is believed that no fee is due with this communication, however, should any fees under 37 C.F.R. §§ 1.16 to 1.21 be required for any reason relating to the enclosed document, the Commissioner is authorized to deduct or credit said fees from or to Fulbright & Jaworski Deposit Account No. 50-1212/GENU:005US.

The Examiner is invited to contact the undersigned attorney with any questions, comments or suggestions relating to the referenced patent application.

Respectfully submitted,

Monica A. De La Paz
Reg. No. 54,662
Attorney for Applicants

FULBRIGHT & JAWORSKI L.L.P.
600 Congress Avenue, Suite 2400
Austin, Texas 78701
(512) 474-5201

Date: November 13, 2009

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/577,003	12/13/2006	Surender Kharbanda	GENU:005US/10605111	1914
32425	7590	10/21/2009	EXAMINER	
FULBRIGHT & JAWORSKI L.L.P. 600 CONGRESS AVE. SUITE 2400 AUSTIN, TX 78701			GUSSOW, ANNE	
			ART UNIT	PAPER NUMBER
			1643	
			MAIL DATE	DELIVERY MODE
			10/21/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

UNITED STATES PATENT AND TRADEMARK OFFICE

COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, DC 20231
www.uspto.gov

APPLICATION NO./CONTROL NO. 10577003	FILING DATE 12/13/2006	FIRST NAMED INVENTOR / PATENT IN REEXAMINATION KHARBANDA ET AL.	ATTORNEY DOCKET NO. GENU:005US/106051 11
---	---------------------------	--	--

EXAMINER
ANNE M. GUSSOW

ART UNIT 1643	PAPER 20091020
------------------	-------------------

DATE MAILED:

Please find below and/or attached an Office communication concerning this application or proceeding.

Commissioner of Patents

This application contains sequence disclosures that are encompassed by the definitions for nucleotide and/or amino acid sequences set forth in 37 C.F.R. § 1.821(a)(1) and (a)(2). However, this application fails to comply with the requirements of 37 C.F.R. §§ 1.821-1.825 for the reason(s) set forth on the attached Notice To Comply With Requirements For Patent Applications Containing Nucleotide Sequence And/Or Amino Acid Sequence Disclosures. Applicant must comply with the requirements of the sequence rules (37 CFR 1.821 - 1.825) before the application can be examined under 35 U.S.C. §§ 131 and 132.

APPLICANT IS GIVEN ONE MONTH FROM THE DATE OF THIS LETTER WITHIN WHICH TO COMPLY WITH THE SEQUENCE RULES, 37 C.F.R.. §§ 1.821-1.825. Failure to comply with these requirements will result in ABANDONMENT of the application under 37 C.F.R. § 1.821(g). Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 C.F.R. § 1.136. In no case may an applicant extend the period for response beyond the six month statutory period. Direct the response to the undersigned. Applicant is requested to return a copy of the attached Notice to Comply with the response.

The addresses below are effective 5 June 2004. Please direct all replies to the United States Patent and Trademark Office via one (1) of the following:

1. Electronically submitted through EFS-Web (<<http://www.uspto.gov/ebc/efs/downloads/documents.htm>>, EFS Submission User Manual - ePAVE)
2. Mailed to:

Mail Stop Sequence
Commissioner for Patents
P.O. Box 22313 1450
Alexandria, VA 22313 1450
3. Hand Carry, Federal Express, United Parcel Service or other delivery service to:

U.S. Patent and Trademark Office
Mail Stop Sequence
Customer Window
Randolph Building
401 Dulaney Street
Alexandria, VA 22314

Any inquiry concerning this communication should be directed to Anne M. Gussow at telephone number (571)272-6047. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Larry Helms, can be reached on (571)272-0832.

/Anne M Gussow/
Examiner, Art Unit 1643

Notice to Comply	Application No. 10577003	Applicant(s) KHARBANDA ET AL.	
	Examiner ANNE M. GUSSOW	Art Unit 1643	

**NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING
NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES**

Applicant must file the items indicated below within the time period set the Office action to which the Notice is attached to avoid abandonment under 35 U.S.C. § 133 (extensions of time may be obtained under the provisions of 37 CFR 1.136(a)).

The nucleotide and/or amino acid sequence disclosure contained in this application does not comply with the requirements for such a disclosure as set forth in 37 C.F.R. 1.821 - 1.825 for the following reason(s):

- 1. This application clearly fails to comply with the requirements of 37 C.F.R. 1.821-1.825. Applicant's attention is directed to the final rulemaking notice published at 55 FR 18230 (May 1, 1990), and 1114 OG 29 (May 15, 1990). If the effective filing date is on or after July 1, 1998, see the final rulemaking notice published at 63 FR 29620 (June 1, 1998) and 1211 OG 82 (June 23, 1998).
- 2. This application does not contain, as a separate part of the disclosure on paper copy, a "Sequence Listing" as required by 37 C.F.R. 1.821(c).
- 3. A copy of the "Sequence Listing" in computer readable form has not been submitted as required by 37 C.F.R. 1.821(e).
- 4. A copy of the "Sequence Listing" in computer readable form has been submitted. However, the content of the computer readable form does not comply with the requirements of 37 C.F.R. 1.822 and/or 1.823, as indicated on the attached copy of the marked -up "Raw Sequence Listing."
- 5. The computer readable form that has been filed with this application has been found to be damaged and/or unreadable as indicated on the attached CRF Diskette Problem Report. A Substitute computer readable form must be submitted as required by 37 C.F.R. 1.825(d).
- 6. The paper copy of the "Sequence Listing" is not the same as the computer readable form of the "Sequence Listing" as required by 37 C.F.R. 1.821(e).
- 7. Other:

Applicant Must Provide:

- An initial or substitute computer readable form (CRF) copy of the "Sequence Listing".
- An initial or substitute paper copy of the "Sequence Listing", **as well as an amendment specifically directing its entry into the application.**
- A statement that the content of the paper and computer readable copies are the same and, where applicable, include no new matter, as required by 37 C.F.R. 1.821(e) or 1.821(f) or 1.821(g) or 1.825(b) or 1.825(d).

For questions regarding compliance to these requirements, please contact:

For Rules Interpretation, call (571) 272-0731 or (571) 272-0951
 For CRF Submission Help, call (571) 272-2510
 PatentIn Software Program Support
 Technical Assistance 1-866-217-9197 or 703-305-3028 or 571-272-6845
 PatentIn Software is Available At www.USPTO.gov

PLEASE RETURN A COPY OF THIS NOTICE WITH YOUR REPLY

/Anne M Gussow/ Examiner, Art Unit 1643	
--	--

=====

Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2009; month=7; day=16; hr=13; min=14; sec=47; ms=224;]

=====

Reviewer Comments:

1.

W402 Undefined organism found in <213> in SEQ ID (33)
W402 Undefined organism found in <213> in SEQ ID (34)
W402 Undefined organism found in <213> in SEQ ID (35)
W402 Undefined organism found in <213> in SEQ ID (36)
W402 Undefined organism found in <213> in SEQ ID (37)
W402 Undefined organism found in <213> in SEQ ID (38)
W402 Undefined organism found in <213> in SEQ ID (40)
W402 Undefined organism found in <213> in SEQ ID (41)
W402 Undefined organism found in <213> in SEQ ID (42)
W402 Undefined organism found in <213> in SEQ ID (44)

<210> 33

<211> 232

<212> PRT

<213> HS

* * * * *

<210> 34

<211> 699

<212> DNA

<213> HS

* * * * *

<210> 35

<211> 230

<212> PRT

<213> HS

* * * * *

<210> 36

<211> 690

```
<212> DNA
<213> HS
* * * * *
<210> 37
<211> 228
<212> PRT
<213> HS
* * * * *
<210> 38
<211> 687
<212> DNA
<213> HS
* * * * *
<210> 40
<211> 690
<212> DNA
<213> HS
* * * * *
<210> 41
<211> 585
<212> PRT
<213> HS
* * * * *
<210> 42
<211> 1758
<212> DNA
<213> HS
* * * * *
<210> 44
<211> 333
<212> DNA
<213> HS
* * * * *
```

For SEQ ID # 33 through 44, numeric identifier <213> can only be one of three choices, "Scientific name, i.e. Genus/species, Unknown or Artificial Sequence." For all sequences using "Unknown" or "Artificial sequence", for numeric identifier <213>, a mandatory feature is required to explain the source of the genetic material. The feature consists of <220>, which remains blank and, <223>, which states the source of the genetic material. To explain the source, if the sequence is put together from several organisms, please list those organisms. If the sequence is

made in the laboratory, please indicate that the sequence is synthesized. Please make all necessary changes.

2.

W213 Artificial or Unknown found in <213> in SEQ ID (45)
W213 Artificial or Unknown found in <213> in SEQ ID (46)
W213 Artificial or Unknown found in <213> in SEQ ID (47)
W213 Artificial or Unknown found in <213> in SEQ ID (48)
W213 Artificial or Unknown found in <213> in SEQ ID (49)
W213 Artificial or Unknown found in <213> in SEQ ID (50)
W213 Artificial or Unknown found in <213> in SEQ ID (51)
W213 Artificial or Unknown found in <213> in SEQ ID (52)
W213 Artificial or Unknown found in <213> in SEQ ID (53)
W213 Artificial or Unknown found in <213> in SEQ ID (54)
W213 Artificial or Unknown found in <213> in SEQ ID (55)
W213 Artificial or Unknown found in <213> in SEQ ID (56)
W213 Artificial or Unknown found in <213> in SEQ ID (57)
W213 Artificial or Unknown found in <213> in SEQ ID (58)
W213 Artificial or Unknown found in <213> in SEQ ID (59)
W213 Artificial or Unknown found in <213> in SEQ ID (60)
W213 Artificial or Unknown found in <213> in SEQ ID (61)
W213 Artificial or Unknown found in <213> in SEQ ID (62)
W213 Artificial or Unknown found in <213> in SEQ ID (63)
W213 Artificial or Unknown found in <213> in SEQ ID (64) This
error has occurred more than 20 times, will not be displayed

The warnings shown above are ok and require no response.

Application No: 10577003 Version No: 2.0

Input Set:

Output Set:

Started: 2009-06-23 16:31:45.971
Finished: 2009-06-23 16:31:49.350
Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 379 ms
Total Warnings: 38
Total Errors: 0
No. of SeqIDs Defined: 72
Actual SeqID Count: 72

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (33)
W 402	Undefined organism found in <213> in SEQ ID (34)
W 402	Undefined organism found in <213> in SEQ ID (35)
W 402	Undefined organism found in <213> in SEQ ID (36)
W 402	Undefined organism found in <213> in SEQ ID (37)
W 402	Undefined organism found in <213> in SEQ ID (38)
W 402	Undefined organism found in <213> in SEQ ID (40)
W 402	Undefined organism found in <213> in SEQ ID (41)
W 402	Undefined organism found in <213> in SEQ ID (42)
W 402	Undefined organism found in <213> in SEQ ID (44)
W 213	Artificial or Unknown found in <213> in SEQ ID (45)
W 213	Artificial or Unknown found in <213> in SEQ ID (46)
W 213	Artificial or Unknown found in <213> in SEQ ID (47)
W 213	Artificial or Unknown found in <213> in SEQ ID (48)
W 213	Artificial or Unknown found in <213> in SEQ ID (49)
W 213	Artificial or Unknown found in <213> in SEQ ID (50)
W 213	Artificial or Unknown found in <213> in SEQ ID (51)
W 213	Artificial or Unknown found in <213> in SEQ ID (52)
W 213	Artificial or Unknown found in <213> in SEQ ID (53)
W 213	Artificial or Unknown found in <213> in SEQ ID (54)

Input Set:

Output Set:

Started: 2009-06-23 16:31:45.971
Finished: 2009-06-23 16:31:49.350
Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 379 ms
Total Warnings: 38
Total Errors: 0
No. of SeqIDs Defined: 72
Actual SeqID Count: 72

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (55)
W 213	Artificial or Unknown found in <213> in SEQ ID (56)
W 213	Artificial or Unknown found in <213> in SEQ ID (57)
W 213	Artificial or Unknown found in <213> in SEQ ID (58)
W 213	Artificial or Unknown found in <213> in SEQ ID (59)
W 213	Artificial or Unknown found in <213> in SEQ ID (60)
W 213	Artificial or Unknown found in <213> in SEQ ID (61)
W 213	Artificial or Unknown found in <213> in SEQ ID (62)
W 213	Artificial or Unknown found in <213> in SEQ ID (63)
W 213	Artificial or Unknown found in <213> in SEQ ID (64) This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Kharbanda, Surrender
Kufe, Donald

<120> Modulation of Interaction of MUC1 with MUC1 Ligands

<130> GENU:005US

<140> 10577003
<141> 2006-12-13

<150> PCT/US2004/034680
<151> 2004-10-21

<150> 60/514,198
<151> 2003-10-24

<150> 60/519,822
<151> 2003-11-12

<160> 72

<170> PatentIn version 3.3

<210> 1
<211> 164
<212> PRT
<213> Homo sapiens

<400> 1

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly
20 25 30

Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Glu Thr Ser Ala
35 40 45

Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Phe Asn
50 55 60

Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg
65 70 75 80

Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu
85 90 95

Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu
100 105 110

Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Met Glu Thr
115 120 125

Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr
130 135 140

Ile Ser Asp Val Ser Val Asp Val Pro Phe Pro Phe Ser Ala Gln
145 150 155 160

Ser Gly Ala Gly

<210> 2
<211> 492
<212> DNA
<213> Homo sapiens

<400> 2
atgacacccgg gcacccagtc tcctttcttc ctgttgtgtgc tcctcacagt gcttacagot 60
accacagcccc ctaaacccgc aacagttgtt acaggttctg gtcatgcaag ctctacccca 120
ggtggagaaa aggagacttc ggctacccag agaagttcag tgcccgactc tactgagaag 180
aatgctttta attcctctct ggaagatccc agcaccgact actaccaaga gctgcagaga 240
gacatttctg aaatgtttt gcagatttat aaacaagggg gtttctggg cctctccaat 300
attaagttca gcccaggatc tgggtggta caattgactc tggccttccg agaaggtaacc 360
atcaatgtcc acgacatgga gacacagtgc aatcagtata aaacggaagc agcctctega 420
tataacctga cgatctcaga cgtcagcgtg agtgatgtgc catttcctt ctctgcccag 480
tctggggctg gg 492

<210> 3
<211> 155
<212> PRT
<213> Homo sapiens

<400> 3

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly

20

25

30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser
 35 40 45

Thr Glu Lys Asn Ala Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp
 50 55 60

Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile
 65 70 75 80

Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro
 85 90 95

Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile
 100 105 110

Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala
 115 120 125

Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val
 130 135 140

Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly
 145 150 155

<210> 4
<211> 465
<212> DNA
<213> Homo sapiens

<400> 4	
atgacaccgg gcacccagtc tcctttcttc ctgtgtgtgc tcctcacagt gcttacagtt	60
gttacagggtt ctggtcatgc aagctctacc ccaggtggag aaaaggagac ttcggctacc	120
cagagaagtt cagtccccag ctctactgag aagaatgctt ttaattcctc tctggaagat	180
cccagcacccg actactacca agagctgcag agagacattt ctgaaaatgtt ttgcagatt	240
tataaacaag ggggtttctt gggctctcc aatattaagt tcagggcagg atctgtggtg	300
gtacaattga ctctggcctt ccgagaaggt accatcaatg tccacgacat ggagacacag	360
ttcaatcagt ataaaacgga agcagcctct cgtatataacc tgacgatctc agacgtcagc	420
gtgagtgatg tgccatttcc tttctctgcc cagtctgggg ctggg	465

<210> 5
<211> 173
<212> PRT
<213> Homo sapiens

<400> 5

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser
35 40 45

Thr Glu Lys Asn Ala Leu Ser Thr Gly Val Ser Phe Phe Leu Ser
50 55 60

Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser
65 70 75 80

Thr Asp Tyr Tyr Gin Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu
85 90 95

Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe
100 105 110

Arg Pro Gly Ser Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly
115 120 125

Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr
130 135 140

Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser
145 150 155 160

Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly
165 170

<210> 6
<211> 519
<212> DNA
<213> Homo sapiens

<400> 6
atgacacccgg gcacccagtc tcctttcttc ctgctgctgc tcctcacagt gcttacagtt 60
gttacagggtt ctggcatgc aagctctacc ccaggtggag aaaaggagac ttcggctacc 120
cagagaagtt cagtccccag ctctactgag aagaatgctc tgtctactgg ggtcttttc 180
ttttctgt ctttcacat ttcaaacctc cagtttaatt cctctctgga agatcccage 240
accgactact accaagagct gcagagagac atttctgaaa tgttttgca gattataaa 300
caagggggtt ttctggcct ctccaatatt aagttcaggc caggatctgt ggtggtacaa 360
ttgactctgg ccttccgaga aggtaccatc aatgtccacg acatggagac acagttcaat 420
cagtataaaa cggaaggcgc ctctcgatat aacctgacga tctcagacgt cagcgtgagt 480
gatgtgccat ttctttctc tgccagtc gggctggg 519

<210> 7
<211> 140
<212> PRT
<213> Homo sapiens

<400> 7

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Thr
35 40 45

Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln
50 55 60

Ile Tyr Lys Gln Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg
65 70 75 80

Pro Gly Ser Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr
85 90 95

Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu
100 105 110

Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp
115 120 125

Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly
130 135 140

<210> 8
<211> 420
<212> DNA
<213> Homo sapiens

<400> 8
atgacaccgg gcacccagtc tcccttcttc ctgctgtgc tcctcacagt gcttacagtt 60
gttacagggtt ctggtcatgc aagctctacc ccaggtggag aaaaggagac ttcggttacc 120
cagagaagtt cagtccccag caccgactac taccaagagc tgcagagaga catttctgaa 180
atgttttgc agatttataa acaagggggt tttctgggcc tctccaatat taagttcagg 240
ccaggatctg tggtggtaca attgactctg gccttccgag aaggtaccat caatgtccac 300
gacatggaga cacagttcaa tcagtataaa acggaagcag cctctcgata taacctgacg 360
atctcagacg tcagcgtgag tgatgtgcca ttcccttct ctgcccagtc tggggctggg 420

<210> 9
<211> 130
<212> PRT
<213> Homo sapiens

<400> 9

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser
35 40 45

Thr Glu Lys Asn Ala Ile Pro Ala Pro Thr Thr Thr Lys Ser Cys Arg
50 55 60

Glu Thr Phe Leu Lys Trp Pro Gly Ser Val Val Gln Leu Thr Leu
65 70 75 80

Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe
85 90 95

Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser
100 105 110

Asp Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly
115 120 125

Ala Gly
130

<210> 10
<211> 390
<212> DNA
<213> Homo sapiens

<400> 10
atgacacccgg gcacccaggc tcctttcttc ctgtgtgtgc tcctcacagt gcttacagtt 60
gttacaggtt ctggcatgc aagctctacc ccaggtggag aaaaggagac ttcggctacc 120
cagagaagtt cagtgcccgag ctctactgag aagaatgcta tcccaagcacc gactactacc 180
aagagctgca gagagacatt tctgaaatgg ccaggatctg tgggtgtaca attgactctg 240
gccttccgag aaggtaaccat caatgtccac gacatggaga cacagttcaa tcagtataaa 300
acggaaggcag cctctcgata taacctgacg atctcagacg tcagcgtgag tgatgtgcc 360
tttccttct ctgcccaggc tggggctggg 390

<210> 11
<211> 102
<212> PRT
<213> Homo sapiens

<400> 11

Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu Leu
1 5 10 15

Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly Gly
20 25 30

Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val Val Val
35 40 45

Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val
50 55 60

Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn
65 70 75 80

Leu Thr Ile Ser Asp Val Ser Val Asp Val Pro Phe Pro Phe Ser
85 90 95

Ala Gln Ser Gly Ala Gly
100

<210> 12
<211> 306
<212> DNA
<213> Homo sapiens

<400> 12
tttaattcct ctctggaaga tccccgcacc gactactacc aagagctgca gagagacatt 60

tctgaaatgt ttttgcagat ttataaaca gggggtttc tgggccttc caatattaag 120

ttcaggccag gatctgttgt ggtacaattt actctggct tccgagaagg taccatcaat 180

gtccacgaca tggagacaca gttcaatcag tataaaacgg aagcagcctc tcgatataac 240

ctgacgatct cagacgtca ggtgagtgtat gtgcatttc cttctctgc ccagtctggg 300

gctggg 306

<210> 13
<211> 375
<212> PRT
<213> Homo sapiens

<400> 13

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser
35 40 45

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His
50 55 60

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu
65 70 75 80

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln
85 90 95

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr
100 105 110

Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro
115 120 125

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr
130 135 140

Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser
145 150 155 160

Ala Pro Asp Asn Arg Pro Ala Leu Gly Ser Thr Ala Pro Pro Val His
165 170 175

Asn Val Thr Ser Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr Leu
180 185 190

Val His Asn Gly Thr Ser Ala Arg Ala Thr Thr Thr Pro Ala Ser Lys
195 200 205

Ser Thr Pro Phe Ser Ile Pro Ser His Ser Asp Thr Pro Thr Thr
210 215 220

Leu Ala Ser His Ser Thr Lys Thr Asp Ala Ser Ser Thr His His Ser
225 230 235 240

Thr Val Pro Pro Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gln Leu
245 250 255

Ser Thr Gly Val Ser Phe Phe Leu Ser Phe His Ile Ser Asn Leu
260 265 270

Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu
275 280 285

Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly
290 295 300

Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val Val

305 310 315 320

Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp

325 330 335

Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr

340 345 350

Asn Leu Thr Ile Ser Asp Val Ser Val Asp Val Pro Phe Pro Phe

355 360 365

Ser Ala Gln Ser Gly Ala Gly

370 375

<210> 14

<211> 1125

<212> DNA

<213> Homo sapiens

<400> 14

atgacacccgg gcacccagtc tcctttcttc ctgtgtgtgc tcctcacagt gcttacagtt 60

gttacaggtt ctggtcatgc aagctttaacc ccaggtggag aaaaggagac ttctggctacc 120

cagagaagtt cagtgcctcag ctctactgag aagaatgttg tgatgtatgc cagcagcgta 180

ctctccagcc acageccccgg ttcaggctcc tccaccactc agggacagga tgtcactctg 240

gccccggcca cggaaaccagg ttcaggttca gctgtccacctt ggggacagga tgtcacctcg 300

gtcccagtca ccaggccagc cctggggctcc accaccccgcc cagccccacga tgtcacctca 360

gccccggaca acaaggccagg cccggggctcc accggccccc cagccccacgg tgtcacctcg 420

gccccggaca ccagggccggc cccggggctcc accggccccc cagccccatgg tgtcacctcg 480

gccccggaca acaggccccgc cttggggctcc accggccccc cagttccacaa tgtcacctcg 540

gcctcaggct ctgcattcagg ctcatgttct actctgggtgc acaacggcac ctctgcccagg 600

gctaccacaa cccccagccag caagagcact ccatttcaa ttcccaagccca ccactctgat 660

actcctacca cccttgcag ccatagcacc aagactgtatgc ccagtagcac tcaccatagc 720

acggtaacctc ctctcacctc ctccaatcac agcacttctc cccagttgtc tactggggtc 780

tctttttttt tcctgtttt tcacatttca aacctccagt ttaattccctc tctggaagat 840

cccagcacccg actactacca agagctgcag agagacattt ctgaaaatgtt tttgcagatt 900

tataaacaag ggggtttctt gggccctctcc aatattaagt tcaggccagg atctgtggtg 960

gtacaattga ctctggcctt ccgagaaggt accatcaatg tccacgacgt ggagacacag 1020

ttcaatcagt ataaaacgga agcagcctct cgatataacc tgacgatctc agacgtcagc 1080

gtgagtgtatg tgccatttcc ttctctgcc cagtctgggg ctggg 1125

<210> 15

<211> 337

<212> PRT

<213> Homo sapiens

<400> 15

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser
35 40 45

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His
50 55 60

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu
65 70 75 80

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln
85 90 95

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala