Model 3

a la Universitat

Contesta fins a un màxim de 5 preguntes d'entre totes les proposades a les opcions A i B de l'examen. Utilitza la taula periòdica adjunta. Pots usar la calculadora.

La puntuació màxima de cada pregunta està indicada a l'inici de la qüestió. La nota de l'examen és la suma de les puntuacions.

OPCIÓ A

1A. (2 punts)

a) El premi Nobel de Química de l'any 2018 va ser concedit als investigadors Frances H. Arnold, George P. Smith i Sir Gregory P. Winter (figura 1), pel descobriment d'un nou mètode usat a l'enginyeria de proteïnes, el qual imita el procés de selecció natural amb el propòsit de dirigir les proteïnes cap a un objectiu definit. La treonina (figura 2) és un dels aminoàcids essencials utilitzats per aquests investigadors.

Figura 1. Frances H. Arnold, George P. Smith i Sir Gregory P. Winter

Figura 2. Estructura química de la treonina

- i) A partir de l'estructura química de la treonina (figura 2), determina'n la massa molecular.
- ii) Anomena dos grups funcionals presents a la molècula de la treonina.
- b) Anomena els composts següents: KOH i FeSO₄
- **2A. (2 punts)** En diferents països, la fluoració de l'aigua de consum humà és utilitzada per prevenir la càries dental.
 - a) Si el valor del producte de solubilitat (K_{ps}) del difluorur de calci (CaF_2), a 25 °C, és igual a 3,4 · 10⁻¹¹, quina és la solubilitat (en mol/L) d'una dissolució saturada de CaF_2 ?

1 / 4

- b) Quants de mols de fluorur de sodi (NaF) cal afegir a 2 L d'una dissolució aquosa, la qual conté 20 mg/L de Ca²⁺, perquè comenci a precipitar CaF₂?
- **3A.** (2 punts) A partir dels següents elements químics de la taula periòdica: fluor (F), neó (Ne) i sodi (Na),
 - a) Determina la configuració electrònica dels elements fluor i sodi.
 - b) Considerant els elements fluor i neó, quin té la primera energia d'ionització més elevada? Justifica la resposta.
 - c) Considerant els elements fluor i sodi, explica de forma raonada quin formarà el catió més estable.
 - d) Considerant els elements neó i sodi, quin té el radi atòmic més petit? Justifica la resposta.
- **4A. (2 punts)** L'àcid acètic o etanoic (CH₃COOH) és el principal component del vinagre i és el responsable dels seus sabor i olor característics. Al laboratori tenim una dissolució d'àcid acètic de concentració desconeguda amb un valor de pH igual a 4,0.
 - a) Calcula la molaritat de la dissolució d'àcid acètic.
 - b) Es valoren 10 mL de la dissolució anterior d'àcid acètic amb una dissolució d'hidròxid de sodi (NaOH) 10⁻⁴ M.
 - i) Escriu la reacció de neutralització de l'àcid acètic.
 - ii) Indica de manera raonada si el pH de la dissolució, en el punt d'equivalència de la valoració, serà àcid, bàsic o neutre.

Dades: K_a (CH₃COOH) = 1,8·10⁻⁵

- **5A.** (2 punts) Indica de manera raonada si les següents afirmacions són vertaderes o falses.
 - a) Per a qualsevol reacció química, el nombre inicial de mols de reactius coincideix amb el nombre total de mols de productes que es formen una vegada acabada la reacció.
 - b) Per a qualsevol reacció química, el nombre total de molècules presents a la mescla reaccionant augmenta a mesura que té lloc la reacció.
 - c) La velocitat de qualsevol reacció química augmenta a mesura que disminueix la temperatura de reacció.
 - d) A les mateixes condicions de pressió i temperatura, volums iguals de dues substàncies en estat gasós contenen el mateix nombre de molècules.

OPCIÓ B

a la Universitat

- **1B. (2 punts)** Una dissolució aquosa A conté 1,26 g/L d'àcid nítric (HNO₃). Una segona dissolució aquosa B conté 0,4 g/L d'hidròxid de sodi (NaOH). Es mesclen 50 mL de la dissolució A amb 50 mL de la dissolució B.
 - a) Calcula el pH resultant després de mesclar els volums indicats de les dissolucions A i B, suposant que els volums són additius.
 - b) Indica el significat del següent pictograma que apareix en una botella d'àcid nítric comercial:

2B. (2 punts) A 427 °C, el clorur d'amoni (NH₄Cl) es descompon parcialment en amoníac (NH₃) i clorur d'hidrogen (HCl) segons el següent equilibri químic:

$$NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$$

S'introdueix una certa quantitat de NH₄Cl (s) dins un recipient de 5 L de capacitat, en el qual s'havia fet prèviament el buit, i s'escalfa a 427 °C. Quan s'assoleix l'equilibri a aquesta temperatura, la pressió a l'interior del recipient és de 4560 mm Hg.

- a) Calcula la constant d'equilibri en pressions (K_p) a 427 °C.
- b) Calcula la quantitat de NH₄Cl (en grams) que s'haurà descompost.
- c) Quin efecte tindrà sobre la concentració de NH₃ (g) una disminució del volum del recipient? Raona la resposta.
- **3B. (2 punts)** Indica de manera raonada si les afirmacions següents són vertaderes o falses:
 - a) La molècula de triclorur de nitrogen (NCl₃) és apolar.
 - b) L'etanol (CH₃-CH₂OH) té un punt d'ebullició més elevat que el dimetil èter (CH₃-O-CH₃).
 - c) Segons la teoria de repulsió de parells electrònics de la capa de valència (TRPECV), la molècula BeCl₂ presenta una geometria lineal.
 - d) En valor absolut, l'energia reticular del clorur de sodi (NaCl) és més elevada que l'energia reticular del clorur de potassi (KCl).

3 / 4

4B. (2 punts) L'anàlisi química de l'aigua oxigenada (H₂O₂) es pot dur a terme dissolent la mostra en àcid sulfúric (H₂SO₄) i valorant amb permanganat de potassi (KMnO₄), segons la següent reacció química ajustada:

$$3H_2SO_4$$
 (aq) $+2KMnO_4$ (aq) $+5H_2O_2$ (aq) $\rightarrow 2MnSO_4$ (aq) $+5O_2$ (g) $+K_2SO_4$ (aq) $+8H_2O$ (l)

- a) Indica, de manera raonada, quina és l'espècie que actua com a oxidant a la reacció anterior. Escriu la semireacció corresponent a l'espècie oxidant.
- b) A una mostra d'aigua oxigenada s'hi afegeix un excés d'àcid sulfúric i es valora amb permanganat de potassi 0.2 M, de manera que es consumeixen 25 mL d'aquesta dissolució. Calcula el volum d'oxigen (O_2) , mesurat a 0 °C i 1 atm, que es produeix durant la valoració.
- **5B.** (2 punts) Considera els composts orgànics següents:

- a) Anomena els composts 1) i 2).
- b) Formula un **isòmer de posició** del compost 1).
- c) Formula un **isòmer de funció** del compost 2).

Proves d'accés a la Universitat

Taula Periòdica dels Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	la	lla	IIIb	IVb	Vb	VIb	VIIb		VIII		lb	llb	Illa	IVa	Va	Vla	VIIa	0
1	1 H 1,00794																	2 He 4,0026
2	3 Li 6,941	4 Be 9,0122											5 B 10,811	6 C 12,0107	7 N 14,0067	8 O 15,9994	9 F 18,9984	10 Ne 20,1797
3	11 Na 22,9898	12 Mg 24,3050											13 AI 26,9815	14 Si 28,0855	15 P 30,9738	16 S 32,066	17 CI 35,4527	18 Ar 39,948
4	19 K 39,0983	20 Ca 40,078	21 Sc 44,9559	22 Ti 47,867	23 V 50,9415	24 Cr 51,9961	25 Mn 54,9380	26 Fe 55,845	27 Co 58,9332	28 Ni 58,6934	29 Cu 63,546	30 Zn 65,39	31 Ga 69,723	32 Ge 72,61	33 As 74,9216	34 Se 78,96	35 Br 79,904	36 Kr 83,80
5	37 Rb 85,4678	38 Sr 87,62	39 Y 88,9059	40 Zr 91,224	41 Nb 92,9064	42 Mo 95,94	43 Tc (98,9063)	44 Ru 101,07	45 Rh 102,905	46 Pd 106,42	47 Ag 107,8682	48 Cd 112,411	49 In 114,818	50 Sn 118,710	51 Sb 121,760	52 Te 127,60	53 I 126,9045	54 Xe 131,29
6	55 Cs 132,905	56 Ba 137,327	57 * La 138,906	72 Hf 178,49	73 Ta 180,948	74 W 183,84	75 Re 186,207	76 Os 190,23	77 Ir 192,217	78 Pt 195,078	79 Au 196,967	80 Hg 200,59	81 TI 204,383	82 Pb 207,2	83 Bi 208,980	84 Po (208,98)	85 At (209,99)	86 Rn (222,02)
7	87 Fr (223,02)	88 Ra (226,03)	89 * Ac (227,03)	104 Rf (261,11)	105 Db (262,11)	106 Sg (263,12)	107 Bh (264,12)	108 Hs (265,13)	109 Mt (268)	110 Ds (271)	111 Rg (272)	112 Cn (277)	113 Nh ()	114 FI (285)	115 Mc (288)	116 Lv (289)	117 Ts ()	118 Og (293)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140,116	140,908	144,24	(144,913)	150,36	151,964	157,25	158,925	162,50	164,930	167,26	168,934	173,04	174,967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232,038	231,036	238,029	(237,048)	(244,06)	(243,06)	(247,07)	(247,07)	(251,08)	(252,08)	(257,10)	(258,10)	(259,10)	(262,11)

Constants: R = 0,082 atm L mol $^{-1}$ K $^{-1}$ = 8,3 J mol $^{-1}$ K $^{-1}$

SOLUCIONS

a la Universitat

OPCIÓ A

1A. (2 punts)

- a) Pregunta competencial:
- i) Pes molecular de la treonina:

$$H_3C$$
 OH
 OH
 OH
 NH_2

$$4 \times 12 (C) + 3 \times 16 (O) + 9 \times 1 (H) + 1 \times 14 (N) = 119$$

0,5 punts

ii) Grups funcionals: amina, àcid carboxílic, alcohol (2 d'aquests 3) **0,5 punts**

b) Formulació química:

KOH: hidròxid de potassi **0,5 punts** FeSO₄: sulfat de ferro(II) o tetraoxidsulfat de ferro **0,5 punts**

2A. (2 punts)

a)
$$\text{CaF}_2\left(s\right)\ \rightleftarrows\ \text{Ca}^{2+}\left(\mathsf{aq}\right)\ +\ 2\ \mathsf{F}^-\left(\mathsf{aq}\right)$$
 Equilibri:
$$s\qquad 2s$$

$$K_{ps} = [Ca^{2+}][F^{-}]^{2} = s (2s)^{2} = 4 s^{3} = 3,4 \cdot 10^{-11}$$
 0,5 punts

Per tant
$$s = 2,04 \cdot 10^{-4} \cdot mol/L$$
 0,25 punts

b)
$$NaF_{(s)} \rightleftarrows Na^{+}_{(aq)} + F^{-}_{(aq)}$$

$$K_{s} = [Ca^{2+}][F^{-}]^{2} = 10^{-10}$$

$$[Ca^{2+}] = \frac{0,02 \text{ g Ca}^{2+}}{\text{L di\'o}} \frac{1 \text{ mol Ca}^{2+}}{40 \text{ g Ca}^{2+}} = 5 \cdot 10^{-4} \text{ M}$$

$$\textbf{0,5 punts}$$

$$[F^{-}] = \sqrt{\frac{3,4\cdot10^{-11}}{5\cdot10^{-4}}} = 2,61 \cdot 10^{-4} \text{ M}$$

Solució: **5,22·10⁻⁴ mols F**⁻ **0,25 punts**

3A. (2 punts)

a) F: $1s^22s^22p^5$

Na: 1s²2s²2p⁶3s¹ (0,25 punts cada configuració electrònica) **0,5 punts**

- b) El **Ne**. Ambdós elements (F i Ne) es troben en el mateix període, i en aquests casos, quan més a la dreta es troba un element major càrrega efectiva tindrà, amb el qual els electrons de la capa de valència es troben més atrets cap el nucli, i per tant, es necessita més energia per poder extreure aquests electrons. **0,5 punts**
- c) El **Na**, ja que el catió Na⁺ adquireix la configuració de màxima estabilitat amb 8 electrons a la darrera capa.

0,5 punts

d) El **Ne** ja que té un nivell electrònic menys (menys capes) que el Na i per tant els electrons més externs es troben més a prop del nucli, el que fa que el radi atòmic sigui menor.

0,5 punts

4A. (2 punts)

a)

$$CH_3COOH (aq) \rightleftharpoons CH_3COO^- (aq) + H_3O^+ (aq)$$

Inicial:

 C_0

Equilibri: $c_0 - x$

(

Χ

$$pH = - log [H_3O^+] = 4$$
; per tant $x = 10^{-4} M$

0,5 punts

$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} = \frac{x^2}{c_0 - x} = 1.8 \ 10^{-5}$$

Per tant $c_0 = 6,56 \ 10^{-4} \, M$

0,5 punts

- b) Reacció de neutralització:
 - i) CH_3COOH (aq) + NaOH (aq) \rightleftharpoons CH_3COONa (aq) + H_2O (I) **0,5 punts**
 - ii) pH <u>bàsic</u> ja que en aquest cas es neutralitza un àcid feble amb una base forta.

0,5 punts

5A. (2 punts)

a) Fals. La massa total de reactius sí que és igual a la massa total de productes (Llei de Lavoisier), en canvi el nombre de mols de reactius i de productes depèn de l'estequiometria de cada reacció i no té per que mantenir-se.

0,5 punts

b) **Fals**. El número de molècules es proporcional al número de mols i aquest pot augmentar, disminuir o mantenir-se durant el temps que té lloc la reacció química.

0,5 punts

c) **Fals**. La velocitat de la reacció augmenta quan la temperatura de la reacció augmenta ja que augmentarà l'energia cinètica de les molècules i per tant el nombre de col·lisions entre les molècules serà major (també es pot veure amb l'equació d'Arrhenius; si v = k conc. i $k = k_0 \exp(-E_0/RT)$ quan T augmenta el valor de k també augmenta).

0,5 punts

d) **Vertader**. Aquest és l'enunciat de la Llei d'Avogadro; es pot veure amb l'equació PV=nRT; amb n = PV/RT, si P i T no canvien i també s'igualen els volums implica que hi haurà el mateix nombre de mols, i per tant també de molècules.

0,5 punts

OPCIÓ B

1B. (2 punts)

Reacció de neutralització: a)

$$HNO_3$$
 (aq) + NaOH (aq) \rightleftharpoons NaNO₃ (aq) + H₂O(I) **0,25 punts**

$$HNO_3$$
: 1,26 g/L $HNO_3 \frac{1 \text{ mol } HNO_3}{63 \text{ g } HNO_3} = 0,02 \text{ mol/L } HNO_3 \cdot 50 \text{ mL} = 10^{-3} \text{ mol } HNO_3$

NaOH: 0,4 g/L NaOH
$$\frac{1 \text{ mol NaOH}}{40 \text{ g NaOH}} = 0,01 \text{ mol/L NaOH} \cdot 50 \text{ mL} = 5 \cdot 10^{-4} \text{ mol NaOH}$$

0,5 punts

Després de neutralitzar quedaran 0,0005 mols HNO3 dintre de 100 mL de dió **0,25 punts**

Per tant:
$$pH = -log (0,0005/0,1) = 2,30$$
 0,5 punts

b)

0,5 punts

2B. (2 punts)

$$NH_4Cl\ (s)\ \rightleftarrows\ NH_3\ (g)\ +\ HCl\ (g)$$
 Inicial
$$n_0 - - -$$
 Equilibri
$$n_0 - x \qquad x \qquad x$$

$$(s\grave{o}lid)$$

a) En pressions: $K_p = P_{NH3} P_{HCI}$

I sabem que
$$P_{NH3} + P_{HCI} = P_{Total} = 4560 \text{ mm Hg} = 6 \text{ atm}$$

Per tant:
$$P_{NH3} = P_{HCI} = 3 \text{ atm}$$
 (0,5 punts)

Solució:
$$\mathbf{K_p} = \mathbf{9} \text{ (atm}^2)$$

4/6

b) $K_c = (x/5)^2$; per tant x = 0.26 mol NH₄Cl (PM: 53.5) Solució: **13.98 g NH₄Cl**

0,5 punts

c) Aplicant el Principi de Le Chatelier, si hi ha una reducció del volum del sistema, aquest evolucionarà cap a on hi hagi menys mols de gas, per tant cap a l'esquerra; és a dir la concentració d'amoníac disminuirà.

0,5 punts

3B. (2 punts)

a) **Fals**. NCl₃, geometria amb forma de piràmide trigonal amb un parell d'electrons no enllaçats, és una molècula polar ja que els vectors d'enllaç no s'anul·len.

0,5 punts

b) **Vertader**. L'etanol és una molècula polar (grup -OH) que té la capacitat de formar enllaços d'hidrogen. En canvi, el dimetil èter no presenta cap hidrogen unit a l'oxigen i tan sols presenta interaccions dipol-dipol. Això fa que es necessiti més energia, en el cas del EtOH, per rompre els enllaços d'hidrogen i assolir el pas de líquid a gas.

0,5 punts

c) Vertader.

0,5 punts

d) **Vertader**.

Energia reticular (Er): NaCl (-188 kcal/mol) vs. KCl (-168 kcal/mol)

Er és directament proporcional al producte de les càrregues (en aquest cas igual per a ambdues molècules) i inversament proporcional a la distància catió-anió.

El radi atòmic del K és major que el radi atòmic del Na; per tant, la distància entre el K i el Cl serà més gran que la distància entre el Na i el Cl.

0,5 punts

4B. (2 punts)

a la Universitat

Reacció química Redox ajustada:

$$3H_2SO_4_{(aq)} + 2KMnO_4_{(aq)} + 5H_2O_2_{(aq)} \rightarrow 2MnSO_4_{(aq)} + 5O_2_{(q)} + K_2SO_4_{(aq)} + 8H_2O_{(l)}$$

a) L'espècie química que actua com a oxidant, i que per tant es redueix, és el $KMnO_4$ (o MnO_4^-). El Mn passa d'estat d'oxidació +7 (MnO_4^-) a estat d'oxidació +2 ($MnSO_4$).

0,5 punts

Semireacció de reducció (corresponent a l'espècie oxidant):

$$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O_{(I)}$$
 0,5 punts

b) Volum d'oxigen (0 °C i 1 atm) que es produeix:

alcohol cíclic, èter, èter cíclic, ...)

$$25 \text{ mL KMnO}_4 \cdot \frac{0.2 \text{ mol KMnO}_4}{1000 \text{ mL KMnO}_4} \cdot \frac{5 \text{ mol O}_2}{2 \text{ mol KMnO}_4} = 0.0125 \text{ mol O}_2$$
 (0,5 punts)

Aplicant PV=nRT
$$\rightarrow$$
 V = 280 mL O₂ 1 punt

5B. (2 punts)

a) (1) CH₃-CH₂-CH₂-CH₂OH: butan-1-ol **0,5 punts**(2) CH₃-CH₂-CH₀: butanal **0,5 punts**b) CH₃-CH₂-CHOH-CH₃ (butan-2-ol) **0,5 punts**c) CH₃-CH₂-CO-CH₃ (butanona) **0,5 punts**(Hi ha més possibilitats: alcohol amb doble enllaç,