Airfoils and Wings

Lecture 3

ME EN 415
Andrew Ning
aning@byu.edu

Airfoil

Airfoil Nomenclature

Wing Nomenclature

taper vatis aspect vatis

Forces and Moment

Forces and Moment

Force Coefficients

$$q_{\infty} = \frac{1}{2} \rho V_{\infty}^2$$

dynamic pressure

$$c_l = rac{L'}{q_{\infty}c}$$

lift coefficient

$$c_d = \frac{D'}{q_{\infty}c}$$

drag coefficient

$$c_m = \frac{M'}{q_{\infty}c^2}$$

(pitching) moment coefficient

Force Coefficients for a Wing (Lifting Surface)

$$C_L = \frac{L}{q_{\infty}S}$$

$$C_D = \frac{D}{q_{\infty}S}$$

$$C_{p} = \frac{P - P_{\infty}}{q_{\infty}}$$

$$P_{\infty} + \frac{1}{2}PV_{\infty}^{2} = P + \frac{1}{2}PV_{\infty}^{2} \Rightarrow P - P_{\infty} = \frac{1}{2}P(V_{\infty}^{2} - V^{2})$$

$$C_{p} = \frac{1}{2}P(V_{\infty}^{2} - V^{2})$$

Center of pressure: lo cation where distributed lands effectively act (e.g., Zero monets)

Aerodynamic center: point at which the pitching moment is independent of angle of attack dem = 0

Cylinder

Cylinder

Cylinder

Pressure Distribution

Lift Curve

Drag Polar

or more commonly as c_d vs c_l

Drag Polar and Lift Curve

Thin Airfoil Theory

 $c_{m,c/4}$ is independent of α

Transonic

Supersonic

