Page HTML
Politic debate summary

Déposez ici votre fichier de débat: MP4 ou WAV Valider Résultat par mail le jour suivant

AWS Amplify

Its purpose is to create a front-end interface for the user to upload its file.

API Gateway

Its purpose is to make API calls to our pipeline and maintaining/securing the incoming flux.

SQS

Its purpose is to make sure the incoming files are sent to our pipeline without any loss.

Data processing

AWS Lambda

We have two lambdas in this part:

- One is to ensure that the files have an accepted extension (either wav/mp3/mp4)
- The other is trigered when a file is put inside the S3 bucket to launch the transcription

S3 Bucket

Used to store data.

We use this over a database because we didn't require to access the data directly, S3 are cheaper, and useful to transfer data.

AWS Elastic Transcoder

Is only used when the incoming file is an mp3 or mp4. It will convert it to a WAV file that can be used by our model.

SQS

Its purpose is to distribute all the processed data to our model.

ML Ops

AWS Lambda

We have three lambdas in this part:

- The first one is going to trigger the launch of our model
- The two others are triggered at the end of the prediction. One will trigger the analysis of the text and the other one will store the data in a database.

Amazon SageMaker

It allows us to use our model to transcribe WAV files to text.

Amazon Comprehend

Is used to analyze the sentiment of the transcribed text.

Once the model is trained, it will replace the current model

Train a model with data stored in a S3 bucket

Dynamo DB

It allows us to store a transcription and its sentiment analysis.

This time we choose a database over a bucket because we need to be able to pair a transcription and an analysis. It's also an easier way to access the data to send it back to the user.

Return the output by mail

AWS Lambda

The lambda is triggered at 3 AM every day by an Event bridge. It will go fetch the data in the database and return it.

SNS

Its purpose is to get the results of the transcription back to the user by mail at 3 AM.

AWS Lambda

The lambda is triggered every day at 3 AM. It will go fetch new data in the Admin bucket and will feed it to the model to retrain it.

AWS Event bridge

Its purpose is to manage mutiple events from a trigger

Event

Here this event is active once when it's 3 AM

Rule

We have 2 rules:

- one for triggering the model training,
- the other to trigger mails to send results back to the users

S3 bucket

This S3 bucket stores all of the training data

AWS Amplify

Its purpose is to create a front-end interface for the admin to upload new data to a S3 bucket.

API Gateway

Its purpose is to make API calls to the S3 bucket and maintaining/securing the incoming flux.

S3 bucket

This S3 stores all of the training data given by an admin.

Pro

Cons

- Does the job
- Low cost architecture
- Easy use/access for User and Admin
- RGPD proof
- Safe

- Delayed results
- No training with the incoming data from user
- No user page to show and correct bad predictions from model