Recap

• Effective spin Hamiltonian:
$$H = \frac{p_1^2}{2m} + \frac{e^2}{\left|\vec{r}_1 - \vec{R}_a\right|} + \frac{p_2^2}{2m} + \frac{e^2}{\left|\vec{r}_2 - \vec{R}_b\right|} + \frac{e}{\left|\vec{r}_1 - \vec{r}_2\right|}$$

$$H_{eff} = \frac{1}{4}(E_S + 3E_T) - (E_S - E_T)\mathbf{S}_1 \cdot \mathbf{S}_2 \Rightarrow -2J\mathbf{S}_1 \cdot \mathbf{S}_2$$

- Nearest-neighbor Heisenberg model: $H = J \sum_{i,j} \mathbf{S}_i \cdot \mathbf{S}_j$ N.B: Change of sign (historical reason)
- Exchange interaction:

$$J = \int d\vec{r}_1 d\vec{r}_2 \phi_a^*(\vec{r}_1) \phi_b^*(\vec{r}_2) V(\vec{r}_1, \vec{r}_2) \phi_a(\vec{r}_2) \phi_b(\vec{r}_1)$$

- Direct exchange interaction is usually small
- Indirect exchange
 - Superexchange (kinetic exchange)
 - Itinerant exchange (RKKY interaction)
 - Double exchange

Superexchange

Kinetic exchange

Goodenough-Kanamori-Anderson rule

> 90 degree bond: ferromagnetic and weak superexchange

Hubbard model

- t: Hopping matrix element
- U: on-site Coulomb energy

$$H = -t \sum_{\langle i,j \rangle \sigma} \left(c_{i\sigma}^+ c_{j\sigma}^- + h.c. \right) + U \sum_i n_{i\uparrow}^- n_{i\downarrow}^-$$

 For strong coupling (U>>t): 2nd order perturbation theory in t gives:

$$J = \frac{4t^2}{U}$$

• For three band model in cuprates:

$$J = \frac{4t_{pd}^{4}}{(\Delta + U_{pd})^{2}} \left(\frac{1}{U_{d}} + \frac{2}{\Delta + U_{p}} \right)$$

Double exchange

Colossal Magnetoresistance (CMR)

100 150 200 250 300

How do we calc/measure J?

- In principle, ab initio calculation
 - But often incorrect/difficult (correlation)
- Experimentally
 - T_C or T_N
 - Spectroscopy
 - Rough estimate (CW law)

Magnon dispersion

 $H = -JzS^2N + \sum_{\mathbf{k}} \omega_{\mathbf{k}} a_{\mathbf{k}}^+ a_{\mathbf{k}}$

• Diagonalize the spin Hamiltonian:

Magnetic susceptibility

- Curie's law $\chi = \frac{C}{T}$
- Curie-Weiss law $\chi = \frac{C}{T \Theta}$ Θ : Weiss Temperature

But what about S_i?

$$p_{theory} = g_J \sqrt{J(J+1)}$$

 $g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$

Calculated and Measured Magneton Numbers of Rare Earth Ions								
	Electronic	Ground State	magneton	magneton				
Ion	Configuration	Term $^{(2S+1)}L_J$	$p_{\rm theory}$	$p_{ m expt}$				
La ³⁺	$[Xe] 4f^{0}$	$^{1}S_{0}$	0.00	< 0				
Ce^{3+}	$[Xe] 4f^1$	${}^{2}\mathrm{F}_{5/2}$	2.54	2.4				
Pr^{3+}	$[Xe] 4f^2$	$^{3}\mathrm{H}_{4}$	3.58	3.5				
Nd^{3+}	$[Xe] 4f^3$	$^{4}I_{9/2}$	3.62	3.5				
Pm^{3+}	$[\mathrm{Xe}]4\mathrm{f}^4$	I_{4}	2.68	_				
Sm^{3+}	$[{ m Xe}] 4{ m f}^5$	$^{6}{ m H}_{5/2}$	0.84	1.5				
$\mathrm{Eu^{3+}}$	$[{ m Xe}] 4{ m f}^6$	$^{7}F_{0}$	0.00	3.4				
Gd^{3+}	$[Xe] 4f^7$	⁸ S _{7/2}	7.94	8.0				
Tb^{3+}	$[Xe] 4f^{8}$	'F ₆	9.72	9.5				
Dy^{3+}	$[{ m Xe}] 4{ m f}^9$	⁶ H _{15/2}	10.63	10.6				
$\mathrm{Ho^{3+}}$	$[Xe] 4f^{10}$	1 ₈	10.60	10.4				
Er^{3+}	$[Xe] 4f^{11}$	$^{4}I_{15/2}$	9.59	9.5				
Tm^{3+}	$[{ m Xe}]4{ m f}^{12}$	1 °H.	7.57	7.3				
Yb^{3+}	[Xe] $4f^{13}$	${}^{2}\mathrm{F}_{7/2}$	4.54	4.5				
Lu ³⁺	$[{ m Xe}]4{ m f}^{14}$	$^{1}\mathrm{S}_{0}$	0.00	< 0				

Calculated and Managed Managed Numbers of Theory it is Matel I and								
Calculated and Measured Magneton Numbers of Transition Metal Ions								
	Electronic	Ground State	magneton	magneton	magneton			
Ion	Configuration	Term $^{(2S+1)}L_J$	$p_{\text{theory}}^{J= L\pm S }$	$p_{\mathrm{theory}}^{J=S}$	$p_{\rm expt}$			
Ti^{3+}	$[Ar] 3d^1$	$^{2}D_{3/2}$	1.55	1.73				
V^{4+}	[Ar] 3d ¹	- D _{2/2}	1.55	1.73	1.8			
V^{3+}	$[Ar] 3d^2$	F ₂	1.63	2.83	2.8			
V^{2+}	$[Ar] 3d^3$	${}^{4}F_{3/2}$	0.77	3.87	3.8			
Cr^{3+}	$[Ar] 3d^3$	*F _{2/2}	0.77	3.87	3.7			
$\mathrm{Mn^{4+}}$	$[Ar] 3d^3$	⁴ F _{3/2}	0.77	3.87	4.0			
Cr^{2+}	$[Ar] 3d^4$	D_0	0.00	4.90	4.8			
$\mathrm{Mn^{3+}}$	$[Ar] 3d^4$	$^5\mathrm{D}_0$	0.00	4.90	5.0			
$\mathrm{Mn^{2+}}$	$[Ar] 3d^5$	⁶ S _{5/2}	5.92	5.92	5.9			
$\mathrm{Fe^{3+}}$	$[{ m Ar}] { m 3d}^5$	S _{5/2}	5.92	5.92	5.9			
Fe^{2+}	$[Ar] 3d^{6}$	$^{\circ}D_{A}$	6.70	4.90	5.4			
Co^{2+}	$[{ m Ar}] 3{ m d}^7$	4F _{9/2}	6.54	3.87	4.8			
Ni ²⁺	$[Ar] 3d^8$	$ {}^{\circ}F_{A}$	5.59	2.83	3.2			
Cu ²⁺	$[Ar] 3d^9$	$^{2}D_{5/2}$	3.55	1.73	1.9			

• Orbital momentum quenching

Orbital angular momentum quenching

 When the ground state is non-degenerate and real (both due to the real crystal field):

 $\langle 0|\vec{\mathbf{L}}|0\rangle = 0$

- N.B. ${f L}$ is pure imaginary and hermitian: $\vec{{f L}}=-i\vec{{f r}} imes
 abla$
- Result: For transition metal (3d) ions J=S
 - Not quite...
 - due to SO coupling

Crystal field > Spin orbit: 3d

Crystal field ≈ Spin orbit: 4d and 5d

Crystal field < Spin orbit: 4f (rare earth)