HR's Hiring_Salary_Predictor(PROJECT)

THIS PROJECT HELPS HR TO PREDICT THE SALARY OF NEWLY HIRED PERSON

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.simplefilter(action='ignore', category=FutureWarning)
```

In [2]: df=pd.read_csv("hiring.csv")

In [3]: df

Out[3]:

	experience	test_score(out of 10)	interview_score(out of 10)	salary(\$)
0	NaN	8.0	9	50000
1	NaN	8.0	6	45000
2	five	6.0	7	60000
3	two	10.0	10	65000
4	seven	9.0	6	70000
5	three	7.0	10	62000
6	ten	NaN	7	72000
7	eleven	7.0	8	80000

```
In [4]: import math
    df.experience=df.experience.fillna('zero')
    test_medians=math.floor(df['test_score(out of 10)'].median())
    df['test_score(out of 10)']=df['test_score(out of 10)'].fillna(test_score)
```

```
from word2number import w2n
   In [6]:
                               df['experience'] = df['experience'].apply(w2n.word_to_num)
                               df
   Out[6]:
                                         experience test_score(out of 10) interview_score(out of 10) salary($)
                                 0
                                                               0
                                                                                                                                                                                                   50000
                                                                                                                8.0
                                 1
                                                               0
                                                                                                                8.0
                                                                                                                                                                                     6
                                                                                                                                                                                                   45000
                                 2
                                                               5
                                                                                                                6.0
                                                                                                                                                                                     7
                                                                                                                                                                                                   60000
                                                                2
                                                                                                             10.0
                                                                                                                                                                                   10
                                                                                                                                                                                                   65000
                                 3
                                                               7
                                                                                                                9.0
                                                                                                                                                                                     6
                                                                                                                                                                                                   70000
                                 5
                                                               3
                                                                                                                7.0
                                                                                                                                                                                                   62000
                                                                                                                                                                                   10
                                 6
                                                             10
                                                                                                                8.0
                                                                                                                                                                                     7
                                                                                                                                                                                                   72000
                                                             11
                                                                                                                7.0
                                                                                                                                                                                     8
                                                                                                                                                                                                   80000
   In [7]:
                               reg=linear model.LinearRegression()
                               reg.fit(df[['experience','test_score(out of 10)','interview_score(out of 10)','interview_score(out
   Out[7]:
                                  ▼ LinearRegression
                                 LinearRegression()
   In [8]: reg.predict([[2,9,6]])
   Out[8]: array([53205.96797671])
   In [9]: reg.predict([[12,10,10]])
   Out[9]: array([92002.18340611])
In [10]:
                               import pickle
                               # save model
                               with open('linearRegressionModel_Salary_Prediction','wb') as f:
                                            pickle.dump(reg,f)
In [11]:
                              # save model
                               with open('linearRegressionModel_Salary_Prediction','rb') as f:
                                             load_model=pickle.load(f)
In [14]:
                              pred=load model.predict([[2, 10, 4]]) # (experience, test score, in
                               print(pred)
                               [50641.19359534]
```