Modelagem Lista de Problemas

Pesquisa Operacional / Programação Linear

Professor: Rian Gabriel Santos Pinheiro

Alunos: Douglas Máximo José Lucas Calheiros Leandro Martins

Problema de Steiner em grafos com limites de elo e links

Modele e implemente os três problemas a seguir:

Problema de Steiner em grafos com limites de elo e links:

Entrada: Um grafo G = (V, E) com pesos nas arestas c_e , $\forall e \in E$, um conjunto de terminais (obrigatórios) $T \subset V$ e dois inteiros $l \in r$.

Objetivo: Conectar os nós terminas com custo (peso) mínimo, eventualmente utilizando os demais nós como passagem (vértices de Steiner) de tal forma que a quantidade de vértices de Steiner com grau 2 seja menor ou igual a l e a quantidade de vértices de Steiner com grau maior que 3 seja menor ou igual a r.

Arquivo de entrada:

Exemplo:

Definições:

- *V* conjunto de vértices
- E conjunto de arestas e : VxV
- c_e custo da aresta $e \, \epsilon \, E$
- *T* conjunto de terminais obrigatórios
- l vértices não terminais com grau 2
- r vértices não terminais com grau maior ou igual a 3

Variáveis de decisão:

- O_{ii} 1 se a aresta formada pelos vértices i e j pertence à solução, 0 caso contrário.
- V^O conjunto de vértices da solução

Funções auxiliares:

- d_v 1 se o grau de $v \in V^O$ é igual a 2 e 0 caso contrário
- n_v 1 se o grau de $v \in V^O$ é maior ou igual 3 e 0 caso contrário
- k 1 se existe pelo menos um caminho para cada par ij pertencente a V^O , 0 caso contrário.

Restrições:

• Os vértices terminais devem ter exatamente um vizinho

$$\circ \quad \sum_{v \in V} O_{tv} = 1 \qquad \forall t \in T$$

O grafo resultante deve ser conexo

$$\circ$$
 $k=1$

• Número de vértices com grau 2 deve ser menor ou igual a l

$$\circ \quad \sum_{v \in V^O} d_v \le l$$

• Número de vértices com grau maior ou igual a 3 deve ser menor ou igual a $\it r$

$$\circ \sum_{v \in V^O} n_v \le r$$

Função objetivo:

$$\bullet \quad MIN(z = \sum_{ij \in E} O_{ij} c_{ij})$$

Problema de Coloração de aresta com custo mínimo

Coloração de aresta com custo mínimo

Entrada: Um grafo G = (V, E).

Objetivo: Colorir as arestas de G de forma a minimizar o somatório dos custos, em que o custo de uma cor $c_l = i$. Arquivo de entrada:

 $\begin{array}{c|c} |V| & |E| \\ v_i & v_j \\ \vdots \\ v_k & v_j \end{array}$

Exemplo:

68

1 2

1 3

2 3

2 4

2 6

3 5

3 6

4 5

Entrada

cor custo
preto 1
vermelho 2
azul 3
laranja 4

Solução Total = 17

Definições:

- V conjunto de vértices
- E conjunto de arestas
- C conjunto de custo/cores

Variáveis de decisão:

• x_e - custo/cor na aresta e, $\forall e \in E$, $x_e \in C$

Restrições:

• Vizinhança - Sejam duas arestas e1 e e2, se e1 é vizinho de e2, então:

$$\circ \quad x_{e1} \neq x_{e2}, \ \forall \ e1, \ e2 \ \in E$$

Objetivo:

•
$$MIN(\sum_{e}^{E} x_{e})$$

Problema Top K Clique

Definições:

- V conjunto de vértices
- \bullet E conjunto de arestas
- C conjunto de cliques
- K número de cliques desejados

Variáveis:

• x_{cv} - 1 se $v \in V$ pertence a clique $c \in C$, 0 caso contrário

Restrições:

- $\sum_{v \in V} d(v) = [(|c| * (|c| 1)) / 2] 1 \quad \forall c \in C$
- $|i \cap j| \neq |i|, |i \cap j| \neq |j| \forall ij \in CxC$

Objetivo:

 $\bullet \quad MAX(\bigcup_{c \in C} c)$