Risk Aversion in Sovereign Debt and Default

Francisco Roch UTDT Francisco Roldán IMF

Winter SED UTDT, December 2024

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Why risk aversion? Why in sovereign debt?

- · In most RBC models, macro-financial separation holds
 - · Elasticity of intertemporal substitution determines allocations
 - · Risk aversion determines asset prices
- · Sovereign debt literature typically inherits this line of thinking
 - · CRRA preferences frequent, typically $\gamma = 2$
- If MFS holds in sovereign debt, macro outcomes robust to different preferences
 - · In particular, calibration of output/utility costs of default
 - · Less clear about welfare effects
 - ... losses from default, debt dilution
 - ... welfare effects of banning debt, introducing state-contingent bonds

Wanting risk prices in sovereign debt

This paper

- · Show that macro-financial separation breaks in the sovereign debt model
- · Understand the impact of preferences consistent with significant risk premia
- Find that risk aversion affects equilibria in unexpected ways
 - · Cautious behavior manifests in higher-order moments
 - Convex costs mute post-default volatility

Framework

Sovereign default model without default [reduces to an income-fluctuations problem]

$$\begin{aligned} \mathbf{v}(\mathbf{b},\mathbf{z}) &= \max_{\mathbf{b}'} \mathbf{u}(\mathbf{c}) + \beta \mathbb{E} \left[\mathbf{v}(\mathbf{b}',\mathbf{z}') \mid \mathbf{z} \right] \\ \text{subject to} \quad \mathbf{c} + \kappa \mathbf{b} &= q(\mathbf{b}',\mathbf{z})(\mathbf{b}' - (1-\rho)\mathbf{b}) + \mathbf{y}(\mathbf{z}) \\ \quad \mathbf{b}' &\leq \bar{\mathbf{b}} \end{aligned}$$
 with $q(\mathbf{b}',\mathbf{z}) = \frac{1}{1+r}$

· We consider parametrizations of the model to vary risk aversion

... with CRRA preferences
$$u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$$

... with robustness, $u(c) = \log c$; replace \mathbb{E} with $\mathbb{T}[X \mid \mathcal{F}] = -\frac{1}{\theta} \log (\mathbb{E}[\exp(-\theta X) \mid \mathcal{F}])$

· Start from log-log [$\theta=0$]: RA moves asset prices and welfare, not the macro

loglog	$ heta= exttt{1}$	heta=2	$\theta = 3$
0.0276	0.031	0.0406	0.138
0.00777	0.00916	0.0114	0.0147
1.59	1.62	1.65	1.66
0.0769	2.03	3.84	5.44
29.7	29.5	29.2	28.9
-0.0119	-0.0141	-0.0177	-0.0231
1.034	1.008	0.9867	0.971
	0.0276 0.00777 1.59 0.0769 29.7 -0.0119	0.0276 0.031 0.00777 0.00916 1.59 1.62 0.0769 2.03 29.7 29.5 -0.0119 -0.0141	0.0276 0.031 0.0406 0.00777 0.00916 0.0114 1.59 1.62 1.65 0.0769 2.03 3.84 29.7 29.5 29.2 -0.0119 -0.0141 -0.0177

^{...} welfare in autarky at $\theta=3$ is 6pp lower than loglog or CRRA

Macro-financial separation without default (cont'd)

· Start from log-log [$\gamma=1$]: EIS+RA moves mostly macro, not asset prices and welfare

	loglog	$\gamma=2$	$\gamma = 5$	$\gamma=$ 10	$\gamma = 20$
Average spread (bps)	0.0276	0.0273	0.0269	0.0271	0.0285
Corr. NX,Y (%)	0.00777	0.0154	0.0852	0.397	0.668
Rel. vol. cons (%)	1.59	1.56	1.35	0.965	0.727
Risk premium (p.p.)	0.0769	0.227	0.627	1.02	1.67
Debt-to-GDP (%)	29.7	28.8	25.9	19.3	8.75
Corr. deficit, y (%)	-0.0119	-0.0251	-0.162	-0.605	-0.774
Welfare	1.034	1.03	1.021	1.01	0.9918

... in fully Epstein-Zin, move only EIS for even less effect on asset prices and welfare

Option value of default (with small pref. shocks for numerical performance)

$$\mathcal{V}(b, \mathbf{z}) = \max\{\mathbf{v}_{R}(b, \mathbf{z}) + \epsilon_{R}, \mathbf{v}_{D}(b, \mathbf{z}) + \epsilon_{D}\}$$

· Similar equation for value of repayment v_R , debt prices reflect default probabilities

$$q(b',z) = \frac{1}{1+r} \mathbb{E}\left[(1 - \mathbb{1}_{\mathcal{D}'}) \left(\kappa + (1-\rho)q(b'',z') \right) \mid z \right]$$

· Costs of default

$$v_{D}(b, z) = u(h(y(z))) + \beta \mathbb{E} \left[\mathbb{1}_{R} \mathcal{V}(B(b, z'), z') + (1 - \mathbb{1}_{R}) v_{D}(b, z') \mid z \right]$$
$$h(y) = y(1 - d_{0} - d_{1}y)$$

 $\,\,$ Risk aversion $\,\Longrightarrow\,$ no-smoothing in default costly $\,\Longrightarrow\,$ no macro-financial separation

Option value of default (with small pref. shocks for numerical performance)

$$\mathcal{V}(b, \mathbf{z}) = \max\{\mathbf{v}_{R}(b, \mathbf{z}) + \epsilon_{R}, \mathbf{v}_{D}(b, \mathbf{z}) + \epsilon_{D}\}$$

 \cdot Similar equation for value of repayment v_R , debt prices reflect default probabilities

$$q(b',z) = \frac{1}{1+r} \mathbb{E}\left[(1 - \mathbb{1}_{\mathcal{D}'}) \left(\kappa + (1-\rho)q(b'',z') \right) \mid z \right]$$

· Costs of default

$$v_{D}(b, z) = u(h(y(z))) + \beta \mathbb{E} \left[\mathbb{1}_{R} \mathcal{V}(B(b, z'), z') + (1 - \mathbb{1}_{R}) v_{D}(b, z') \mid z \right]$$
$$h(y) = y(1 - d_{0} - d_{1}y)$$

 \cdot Risk aversion \Longrightarrow no-smoothing in default costly \Longrightarrow no macro-financial separation

Quantitative properties

Calibration

· Keep the same discount rate, vary costs of default to match spreads and debt

	Parameter	$\gamma = 2$	loglog	$\theta = 3$
Sovereign's discount factor	β	0.9627	0.9627	0.9627
Sovereign's robustness parameter	θ	0	0	3
Sovereign's EIS	γ	2	1	1
Default output cost: linear	d_1	-0.2833	-0.2836	-0.247
Default output cost: quadratic	d_2	0.3253	0.3228	0.3029
Average spread (bps)	815	754	756	815
Debt-to-GDP ratio (%)	17.4	16.8	16.7	17.4

Comparative statics: CRRA

· Increasing EIS+RA: Less volatility, procyclical exports, more skewed debt outcomes

	loglog	$\gamma=2$	$\gamma = 5$	$\gamma=$ 10	$\gamma = 20$
Avg. spread (bps)	756	800	912	974	1,057
Corr. NX,Y (%)	-0.285	-0.302	-0.21	0.0726	0.416
Rel. vol. cons (%)	1.5	1.37	1.18	1.04	0.921
Risk premium (p.p.)	0.652	0.789	1.02	1.28	2.38
Debt-to-GDP (%)	16.7	15.7	12.4	7.62	3.25
Corr. deficit, y (%)	0.391	0.391	0.217	-0.21	-0.627
Default freq. (%)	4.4	4.41	4.17	3.45	2.7
Std. dev. spreads (bps)	448	538	877	1,209	1,816
Welfare	1.013	1.01	1.002	0.9918	0.9728

Comparative statics: robustness

· Increasing RA: less debt tolerance, limited effect on volatilities

	loglog	$ heta= exttt{1}$	$\theta = 2$	$\theta = 3$
Avg. spread (bps)	756	1,683	20,240	36,331
Corr. NX, y (%)	-0.285	-0.227	-0.0901	-0.227
Rel. vol. cons (%)	1.5	1.38	1.26	1.46
Risk premium (p.p.)	0.652	2.92	4.43	6.99
Debt-to-GDP (%)	16.7	14.2	9.09	9.57
Corr. deficit, y (%)	0.391	0.292	0.118	0.266
Default freq. (%)	4.4	5.88	3.57	2.47
Std. dev. spreads (bps)	448	2,561	103,509	189,131
Welfare	1.013	0.9848	0.9629	0.9469

Calibrated output costs of default with robustness

Event-study of defaults

Calibrations with risk aversion

 $\cdot \ \, \text{Calibration with robustness: skewed debt outcomes, small decrease in macro volatility}$

	Data	$\gamma=2$	loglog	$\theta = 3$
Avg. spread (bps)	815	754	756	815
Corr. NX,Y (%)	-	-0.314	-0.285	-0.194
Rel. vol. cons (%)	0.94	1.38	1.5	1.35
Risk premium (p.p.)	-	0.778	0.652	5.9
Debt-to-GDP (%)	17.4	16.8	16.7	17.4
Corr. deficit, y (%)	-	0.405	0.391	0.207
Default freq. (%)	-	4.21	4.4	1.51
Std. dev. spreads (bps)	443	496	447	2,026

Ergodic distribution for debt in CRRA model

Ergodic distribution for debt with robustness

Ergodic distribution for debt

Ergodic distribution for spreads

Worst-case models

· Distorted expectation of X

$$\widetilde{\mathbb{E}}\left[X\mid\mathcal{F}\right] = \mathbb{E}\left[\frac{\exp(-\theta v(s'))}{\mathbb{E}\left[\exp(-\theta v(s'))\mid\mathcal{F}\right]}X\mid\mathcal{F}\right]$$

Welfare effects

Welfare effects of debt

Welfare effects of banning defaults

Welfare effects of shortening maturity

Takeaways

With preferences consistent with positive risk premia

- · Lower debt tolerance
 - ... Larger default costs required
- · Less staying at the edge of default
 - ... More skewness in the distribution of debt and spreads
- More use of the debt for insurance
 - ... Large gains from debt access, not so much for making debt safe

Welfare gains decomposition

Consumption without default costs c_t^R

$$c^{R}(b,z) = \mathbb{1}_{\mathcal{D}}(b,z)y(b,z) + (1 - \mathbb{1}_{\mathcal{D}}(b,z))c(b,z)$$

Evaluate value of consuming c^R [instead of c] and removing uncertainty

$$V_{NC}(b,z) = u(c^{R}(b,z)) + \beta \mathbb{E} \left[V_{NC}(b',z') \mid z \right]$$

$$V_{NV}(b,z) = u(c^{R}(b,z)) + \beta V_{NV}(b',\mathbb{E} [z' \mid z])$$

Welfare gains between models/equilibria with value functions v and v^*

$$\frac{v^{\star}(b_0, z_0)}{v(b_0, z_0)} = \frac{v^{\star}(b_0, z_0)/v_{NC}^{\star}(b_0, z_0)}{v(b_0, z_0)/v_{NC}(b_0, z_0)} \times \frac{v_{NC}^{\star}(b_0, z_0)/v_{NV}^{\star}(b_0, z_0)}{v_{NC}(b_0, z_0)/v_{NV}(b_0, z_0)} \times \frac{v_{NV}^{\star}(b_0, z_0)}{v_{NV}(b_0, z_0)}$$

Welfare gains

	Total gains	From default costs	From volatility	From level		
		$\gamma=2$				
Access to markets	0.622	-0.273	0.218	0.679		
No default	1.87	0.274	-0.292	1.89		
Short-term debt	0.411	0.255	-0.448	0.606		
loglog						
Access to markets	0.663	-0.294	0.284	0.674		
No default	2.04	0.295	-0.345	2.09		
Short-term debt	0.519	0.272	-0.439	0.688		
$\theta = 3$						
Access to markets	0.961	-0.25	0.0354	1.18		
No default	1.72	0.251	-0.0744	1.54		
Short-term debt	0.262	0.233	-0.45	0.481		

Model with linear costs

· Convex costs lower income volatility during defaults

Risk aversion in the sovereign debt model

- We evaluate preferences consistent with risk premia in the sovereign default model
 ... mostly possible to match standard calibration targets with robustness
- · Effect of robustness concentrated at higher-order moments
 - ... makes crises look like more abrupt events
- Innocent-looking features of the standard model weigh against large risks/distortions
 ... convex costs of default mute post-default uncertainty

Macro-finanical separation with autarky

-			N .
	∢ Ba	ack	
•			_

	loglog	$\gamma=2$	$\gamma = 5$	$\gamma=$ 10	$\gamma = 20$
Corr. NX,Y (%)	-0.00131	-0.00131	-0.00131	-0.00131	-0.00131
Rel. vol. cons (%)	1	1	1	1	1
Risk premium (p.p.)	0.0833	0.251	0.751	1.57	3.05
Welfare	1.002	1	0.9951	0.9868	0.9699

	loglog	$ heta= exttt{1}$	$\theta = 2$	$\theta = 3$
Corr. NX,Y (%)	-0.00131	-0.00131	-0.00122	-0.00073
Rel. vol. cons (%)	1	1	1	1
Risk premium (p.p.)	0.0833	2.02	3.81	5.32
Welfare	1.002	0.9769	0.9564	0.9411