CUSTOM LATEX COMMANDS

SIZE ADAPTIVE MATH

	(x)	parantheses
--	-----	-------------

 $\bc{...}$ [x] brackets

|x| absolute value

\absvsq{..} $|x|^2$ absolute value squared

 $\comm{..}{..} \qquad [x,y] \qquad commutator$

 $\mbox{meanv}\{..\}$ $\mbox{} \langle x \rangle$ mean value

Bra Ket Notation

\bra{..} $\langle x|$ bra

 $\ket{\ldots}$ ket

 $\begin{tabular}{ll} $\langle x|y\rangle$ & scalar product \\ \end{tabular}$

\ketbra{..}{..} $|x\rangle\langle y|$ ket-bra operator

\braketop(3 arguments) $\langle x|y|z\rangle$ matrix element

\smallbraketop(3 arguments) $\langle x|y|z\rangle$ small matrix element

SPECIAL FUNCTIONS

 $\verb| deltaf{..}| \qquad \qquad \delta(x) \qquad \text{delta function}$

\thetaf{..} $\theta(x)$ theta function

 $\texttt{expf}\{\ldots\} \qquad \qquad \exp(x) \quad \text{exponential function}$

 $\ensuremath{\mathsf{ef}}\{\ldots\}$ exponential function

NAMED STATES

\ketPsi $|\Psi
angle$

\ketpsi $|\psi
angle$

\ketphi |arphi
angle

\ketup	$ \!\!\uparrow\rangle$	spin up
\ketdo	$ \downarrow\rangle$	spin down
\ketzero	$ 0\rangle$	
\ketone	$ 1\rangle$	
\ketg	$ g\rangle$	ground state
\kete	$ e\rangle$	excited state
\vac	$ { m vac}\rangle$	vacuum

VECTORS

\vecr	\mathbf{r}
\vecrone	\mathbf{r}_1
\vecrtwo	$\mathbf{r_2}$
\vecrn	$\mathbf{r_N}$
\vecri	$\mathbf{r_{i}}$
\vecrj	$\mathbf{r_{j}}$
\vecx	x
\vecy	\mathbf{y}
\vecz	${f z}$
\vecxi	$\mathbf{x_i}$
\vecxj	$\mathbf{x_j}$
\veck	k
\vecq	\mathbf{q}
\vecp	p

DIFFERENTIATION

	$\frac{\partial}{\partial x}$	partial differentiation
\laplace	$ abla^2$	laplace operator

INTEGRATION

\integral{\(..\)} $\int dx$ integral

\integralb(3 arguments) $\int_{0}^{y} dz$ integral with boundaries

\integralf{..}{..} $\int \frac{\mathrm{d}x}{y} \qquad \text{integral with fraction}$ \intvol $\int \mathrm{d}^3 r \qquad \text{integral over r space}$ \intvolp $\int \mathrm{d}^3 r' \qquad \text{integral over r' space}$

\intvold $\int d^3r \int d^3r'$ double integral over space

\intk $\int d^3k$ integral over k space \intkp $\int d^3k'$ integral over k' space

\intkn $\int \frac{\mathrm{d}^3k}{(2\pi)^3} \qquad \text{normalized integral over k space}$ \intkpn $\int \frac{\mathrm{d}^3k'}{(2\pi)^3} \qquad \text{normalized integral over k' space}$

SPECIAL SYMBOLS

 $\begin{array}{lll} \mbox{$h.c.$} & \mbox{$h.c.$} & \mbox{$hermitian conjugate} \\ \mbox{$hamil} & \mbox{$\hat{H}$} & \mbox{$Hamilton operator} \\ \end{array}$

\hastobe $\stackrel{!}{=}$ has to be

SECOND QUANTIZATION

a annihilation operator

\aopi{..} a_x annihilation operator, indexed

\aopd a^{\dagger} creation operator

\aopdi{..} a_x^{\dagger} creation operator, indexed

\bop b annihilation operator

\bopi{..} b_x annihilation operator, indexed

\bopd b^{\dagger} creation operator

\bopdi{..} b_x^{\dagger} creation operator, indexed

\nop n number operator

 n_x number operator, indexed

\psiop $\hat{\psi} \qquad \text{field operator}$ \psiopd $\hat{\psi}^{\dagger}$ \PsiOp $\hat{\Psi}$

\PsiOp $\hat{\Psi}$ \PsiOpd $\hat{\Psi}^{\dagger}$

DIFFERENCES

\Dx Δx

\Dy Δy \Dz Δz

\Dt Δt

FIGURES

\igopt{..}{..}

\ig{..}{..}

\figopt(4 arguments)

\fig(3 arguments)

\doublefigopt(8 arguments)

\doublefig(7 arguments)

\figref{..}