Probabilidad

Universidad Internacional de Valencia

Máster Universitario en Inteligencia Artificial

02MIAR | Matemáticas:

Matemáticas para la Inteligencia Artificial

Profesor:

David Zorío Ventura

De

Variables aleatorias

Definición

Una variable aleatoria (V.A.) X sobre un espacio muestral Ω es una función $\Omega \to \mathbb{R}$. En ese caso, es posible inducir una probabilidad asociada a esa variable aleatoria sobre $X(\Omega) \subseteq \mathbb{R}$. Dado un suceso $A \subseteq \mathbb{R}$, definimos

$$P_X(A) \equiv P(X \in A) := P(X^{-1}(A)) = P(\{\omega \in \Omega \mid X(\omega) \in A\}).$$

Ejemplos

1. Sea Ω el conjunto formado por la población mundial $X:\Omega\to\mathbb{R}$ la variable aleatoria que a una persona $\omega\in\Omega$ le asigna su año de nacimiento, $X(\omega)\in\mathbb{R}$. Entonces si $A=\{1984,1985,1986\}$:

$$X^{-1}(A) = \{$$
 personas nacidas entre 1984 y 1986 $\}$
 $P_X(A) =$ proporción de personas nacidas entre 1984 y 1986.

Variables aleatorias

Ejemplos

2. Sea Ω el espacio muestral asociado al lanzamiento de tres monedas:

$$\Omega = \{ZZZ, CZZ, ZCZ, ZZC, CCZ, CZC, ZCC, CCC\}.$$

ightharpoonup Sea $X:\Omega\to\mathbb{R}$ la V.A. que cuenta el número de caras obtenidas:

►
$$X(ZZZ) = 0$$
. ► $X(CZZ) = 2$. ► $X^{-1}(0) = \{ZZZ\}$. ► $P(X = 0) = \frac{1}{8}$.
 ► $X(CZZ) = 1$. ► $X(CZC) = 2$. ► $X^{-1}(1) = \{CZZ, ZCZ, ZZZ\}$. ► $P(X = 1) = \frac{3}{6}$.

►
$$X(ZCZ) = 1$$
. ► $X(ZCC) = 2$. ► $X^{-1}(2) = \{CCZ, CZC, ZCC\}$. ► $P(X = 2) = \frac{3}{6}$.

►
$$X(ZZC) = 1$$
. ► $X(CCC) = 3$. ► $X^{-1}(3) = \{CCC\}$. ► $P(X = 3) = \frac{1}{8}$.

►
$$P(1 < X \le 3.5) = P(X^{-1}(]1, 3.5]) = P(\{\omega \in \Omega \mid X(\omega) \in]-1, 3.5]\}) = P(\{CCZ, CZC, ZCC, CCC\}) = \frac{1}{2}$$

Variables aleatorias discretas

Definición

Sea X una V.A. Si el conjunto $X(\Omega)$ es finito o numerable (indexable por números naturales), entonces diremos que X es una variable aleatoria discreta.

En ese caso, definimos la **función de densidad** o función de masa de probabilidad asociada como $f_X: \mathbb{R} \to [0,1]$ dada por

$$f_X(x) = P(X = x) = P_X(\{x\}) = P(X^{-1}(\{x\})) = P(\{\omega \in \Omega \mid X(\omega) = x\}), \quad x \in \mathbb{R}.$$

Definimos la función de distribución asociada como $F_X : \mathbb{R} \to [0,1]$ dada por

$$F_X(x) = P(X \le x) = \sum_{t \in \Omega, X(t) \le x} f_X(X(t)), \quad x \in \mathbb{R}.$$

Condición de normalización: $\sum f_X(X(t)) = 1$.

Variables aleatorias discretas

Ejemplos

1. Sea $\Omega = \{uno, dos, tres, cuatro, cinco, seis\}$ el conjunto de los posibles resultados al lanzar un dado y $X : \Omega \to \mathbb{R}$ la V.A. que le asigna su valor: X(uno) = 1, X(dos) = 2, X(tres) = 3, X(cuatro) = 4, X(cinco) = 5 y X(seis) = 6. Entonces

$$X(\Omega) = \{1, 2, 3, 4, 5, 6\}.$$

$$f_X(4) = P(X = 4) = P(\{cuatro\}) = \frac{1}{6}.$$

Por otra parte,

$$F_X(4) = P(X \le 4) = P(\{uno, dos, tres, cuatro\}) = \frac{2}{3}.$$

Variables aleatorias discretas

Ejemplos

2. Consideramos el experimento aleatorio consistente en lanzar una moneda hasta obtener como resultado cara. El espacio muestral es por tanto

$$\Omega = \{ cara, (cruz, cara), (cruz, cruz, cara), (cruz, cruz, cruz, cara), ... \}.$$

Sea X la V.A. aleatoria consistente en contar el número de lanzamientos hasta obtener cara. Entonces:

 $f_X(1) = \frac{1}{2}.$ $f_X(2) = \frac{1}{4}.$ $f_X(3) = \frac{1}{8}.$

 $f_X(4) = \frac{1}{16}$.

- \triangleright X(cara) = 1.
- \triangleright X((cruz, cara)) = 2.
- \triangleright X((cruz, cruz, cara)) = 3.
- \triangleright X((cruz, cruz, cruz, cara)) = 4.
- $f_X(n)=\tfrac{1}{2^n}, \forall n\in\mathbb{N}.$ Por tanto, $X(Ω) = \{1, 2, 3, 4, ...\} = N$.
 - $\sum_{t \in \Omega} f_X(X(t)) = \sum_{n \in \mathbb{N}} f_X(n) = \sum_{n \in \mathbb{N}} P(X = n) = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$

Variables aleatorias continuas

Definición

Sea X una V.A. asociada a un espacio muestral Ω . Diremos que X es una V.A. continua si $X(\Omega)$ es continuo (por ejemplo, un intervalo o todos los reales).

Definimos la función de distribución asociada a X como $F_X : \mathbb{R} \to [0,1]$ dada por

$$F_X(x) = P(X \le x).$$

Asimismo, diremos que X admite una función de densidad $si \ \exists f_X : \mathbb{R} \to [0, +\infty[$ no negativa e integrable tal que para cada $A \subseteq \mathbb{R}$

$$P(X \in A) = \int_A f_X(t) dt.$$

Condición de normalización: $\int_{-\infty}^{+\infty} f_X(t) dt = 1$.

Variables aleatorias continuas

► Si X es una V.A. continua que admite una función de densidad, entonces podemos escribir

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(t) dt.$$

La función de densidad debe satisfacer la condición de normalización:

$$\int_{-\infty}^{+\infty} f_X(t) \mathrm{d}t = P(X \in \mathbb{R}) = 1.$$

De la existencia de una función de densidad se deduce que

$$P(X < x) = \lim_{t \to x^-} F_X(t) = F_X(x) = P(X \le x).$$

En particular, se deduce que en ese caso

$$P(X = x) = 0, \forall x \in \mathbb{R}.$$

Variables aleatorias continuas

Ejemplo

Se elige un número al azar dentro del intervalo real [0,1] y se considera la V.A. aleatoria asociada a dicho experimento. Entonces la función de distribución asociada a X es:

$$F_X(x) = P(X \le x) = \begin{cases} 0 & \text{si } x < 0, \\ x & \text{si } 0 \le x \le 1, \\ 1 & \text{si } x > 1. \end{cases}$$

Por tanto, la función de densidad asociada a X es:

$$f_X(x) = egin{cases} 0 & \textit{si } x < 0, \ 1 & \textit{si } 0 \leq x \leq 1, \ 0 & \textit{si } x > 1. \end{cases}$$

Esperanza

Definición

Sea X una V.A. asociada a un espacio muestral Ω , y con función de densidad $f_X(x)$. Definimos la **esperanza** de X como

$$E[X] = \begin{cases} \sum_{x \in X(\Omega)} x f_X(x) & \text{si } X \text{ es una } V.A. \text{ discreta,} \\ \int_{\mathbb{R}} x f_X(x) dx & \text{si } X \text{ es una } V.A. \text{ continua.} \end{cases}$$

Propiedades

Sean X, Y variables aleatorias, $a \in \mathbb{R}$. Entonces:

- 1. E[X + Y] = E[X] + E[Y].
- 2. E[aX] = aE[X].
- 3. Si X, Y son independientes, entonces E[XY] = E[X]E[Y].

Ejemplos

1. El precio del número de una rifa es de 1 euro. Si ésta tiene un total de 1000 números y el premio tiene un valor de 500 euros, ¿cuál es el promedio de beneficio esperado?

Llamamos X a la V.A. que cuantifica el beneficio obtenido al participar en la rifa:

Perder la rifa:
$$X = -1 \rightarrow P(X = -1) = \frac{999}{1000}$$
.
Ganar la rifa: $X = 499 \rightarrow P(X = 499) = \frac{1}{1000}$.

Por tanto:

$$E[X] = (-1) \cdot P(X = -1) + 499 \cdot P(X = 499) = -\frac{999}{1000} + \frac{499}{1000} = -0.5.$$

Esperanza

Ejemplos

2. Consideramos el intervalo [0,1] y seleccionamos un punto al azar y nos planteamos cuál es el valor sobre el que oscilará el promedio. Vimos que

$$f_X(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 & \text{si } 0 \le x \le 1, \\ 0 & \text{si } x > 1. \end{cases}$$

Por tanto:

$$E[X] = \int_{-\infty}^{+\infty} x f_X(x) \mathrm{d}x = \int_0^1 x \mathrm{d}x = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}.$$

Varianza

Definición

Sea X una V.A. y $g: \mathbb{R} \to \mathbb{R}$. Definimos

$$E[g(X)] = egin{cases} \sum_{x \in X(\Omega)} g(x) f_X(x) & \textit{si } X \textit{ es una } V.A. \textit{ discreta,} \\ \int_{\mathbb{R}} g(x) f_X(x) \mathrm{d}x & \textit{si } X \textit{ es una } V.A. \textit{ continua.} \end{cases}$$

Definición

Sea X una V.A. aleatoria. Definimos la varianza de X como:

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2.$$

Propiedades

- 1. $Var(aX) = a^2Var(X), \forall a \in \mathbb{R}$.
- 2. $Var(X + a) = Var(X), \forall a \in \mathbb{R}$.
- 3. Var(X + Y) = Var(X) + Var(Y) si X, Y son independientes.

Varianza

Eiemplos

1. En el ejemplo de la rifa, se tiene

$$E[X^{2}] = \sum_{x \in \{-1,499\}} x^{2} f_{X}(x) = (-1)^{2} \cdot P(X = -1) + 499^{2} \cdot P(X = 499)$$
$$= \frac{999}{1000} + \frac{249001}{1000} = 250.$$

Por tanto, $Var(X) = E[X^2] - E[X]^2 = 250 - 0.5^2 = 249.75$.

$$E[X^2] = \int_{-\infty}^{+\infty} x^2 f_x(x) dx = \int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}.$$

Luego
$$Var(X) = E[X^2] - E[X]^2 = \frac{1}{3} - \left(\frac{1}{2}\right)^2 = \frac{1}{12}$$
.

Distribución de Bernoulli

Una V.A. X sigue la **distribución de Bernoulli** de parámetro $p \in [0, 1]$, y lo denotaremos por $X \sim \text{Be}(p)$, si $X \in \{0, 1\}$, verificando

$$P(X = 1) = p$$
, $P(X = 0) = 1 - p$.

Podemos calcular la esperanza y varianza de X como sigue:

$$E[X] = p$$
, $Var(X) = p(1-p)$.

Ejemplo

Consideramos el experimento consistente en devolver éxito (X=1) si al lanzar un dado obtenemos un 5 y fracaso (X=0) en otro caso. Entonces $X \sim \text{Be}(\frac{1}{6})$.

Distribución binomial

Si $X = X_1 + \cdots + X_n$, con $X_i \sim \text{Be}(p)$ independientes entre sí, es decir, si X es una V.A. aleatoria que cuenta el número de éxitos tras realizar n pruebas Bernoulli de parámetro p independientes, diremos que X sigue una **distribución binomial** de parámetros n y p, que denotaremos por $X \sim \text{B}(n,p)$. Se cumple

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
, donde $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Por otra parte,

$$E[X] = np$$
, $Var(X) = np(1-p)$.

Distribución binomial

Ejemplo

Lanzamos un dado 10 veces y queremos calcular cuál es la probabilidad de obtener tres veces un cinco. Si X es la V.A. que cuenta el número de veces que se obtiene un cinco tras lanzar el dado 10 veces, entonces $X \sim B(10, \frac{1}{6})$, por lo que n=10, $p=\frac{1}{6}$ y k=3, con lo cual se tiene:

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{10!}{3! \cdot 7!} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^7 = \frac{390625}{2519424}.$$

Distribución de Poisson

Supongamos que realizamos un número de pruebas Bernoulli muy alto n, con una probabilidad p_n cada vez más pequeña, de forma que

$$\lim_{n\to\infty} np_n = \lambda.$$

Si $X_n \sim B(n, p_n)$, entonces se puede demostrar que

$$\lim_{n\to\infty} P(X_n=k) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

Si X es una variable de este tipo, diremos que X sigue una **distribución de Poisson** de parámetro λ , que denotaremos por $X \sim \text{Po}(\lambda)$. Se cumple

$$E[X] = \lambda, \quad Var(X) = \lambda.$$

Distribución de Poisson

Ejemplo

La probabilidad media de tener un accidente de tráfico al coger el coche en una determinada región es de un 0.01%. Si una persona coge el coche una media total de 20000 veces a lo largo de su vida, ¿cuál es la probabilidad de que sufra algún accidente de tráfico en algún momento de su vida?

Sea X la V.A. aleatoria que contabiliza el número de accidentes de tráfico en esas circunstancias. Como n=20000 y p=0.0001, tenemos $\lambda=np=2$, y podemos decir que $X\approx \text{Po}(2)$. Por tanto, se nos pide

$$P(X > 0) = 1 - P(X = 0) = 1 - \frac{e^{-\lambda}\lambda^0}{0!} = 1 - e^{-2} \approx 0.8647.$$

Distribuciones continuas

Distribución uniforme:

Si X es una V.A. continua que toma valores uniformemente en el intervalo [a, b], entonces diremos que X sigue una **distribución uniforme**, y lo denotaremos por $X \sim \text{Unif}([a, b])$.

Ejercicio

 $Si \ X \sim Unif([a, b])$, obtener razonadamente F_X , f_X , $E[X] \ y \ Var(X)$.

Distribución normal:

Una V.A. X sigue una **distribución normal** de **media** μ y **desviación típica** σ , denotado por $X \sim N(\mu, \sigma)$, si se cumple

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Distribución normal

Se cumple $E[X] = \mu$ y $Var(X) = \sigma^2$.

Teorema

Si $X \sim N(\mu, \sigma)$, entonces $\frac{X - \mu}{\sigma} \sim N(0, 1)$. Usualmente esta última distribución recibe el nombre de **normal tipificada**.

Distribución normal

Ejemplo

La altura (en centímetros) de una determinada población sigue una distribución normal de media 175 y desviación típica 10. ¿Cuál es la probabilidad de que una persona elegida al azar mida más de 185 cm?

Sea X la V.A. asociada, luego $X \sim N(175, 10)$. Si definimos $Z = \frac{X-175}{10} \sim N(0, 1)$, se tiene

$$P(X > 185) = P\left(\frac{X - 175}{10} > \frac{185 - 175}{10}\right)$$

= $P(Z > 1) = 1 - P(Z \le 1) \approx 1 - 0.8413 = 0.1587.$

Comandos utilizados: from scipy.stats import norm

1-norm.cdf(1)

Teorema del límite central

Teorema (Teorema del límite central)

Sea $\{X_i\}_{i=1}^{\infty}$ una sucesión de variables aleatorias idénticamente distribuidas (en adelante, i.i.d.), con $E[X_i] = \mu$ y $Var(X_i) = \sigma^2 \ \forall i \in \mathbb{N}$. Denotamos para cada $n \in \mathbb{N}$

$$S_n = \sum_{i=1}^n X_i$$
 y definimos $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$.

Entonces se cumple

$$\lim_{n\to\infty} P(Z_n \le t) = P(Z \le t),$$

donde $Z \sim N(0,1)$.

En particular,
$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 para valores de *n* grandes.

Teorema del límite central

Ejemplo

¿Cuál es la probabilidad de que al lanzar una moneda 400 veces, salga cara en menos de 210 ocasiones?

Sea $X_i \sim \text{Be}(0.5)$ la V.A. que vale 1 si se obtiene cara en el lanzamiento i-ésimo y 0 en otro caso, por lo que $E[X_i] = 0.5$ y $\text{Var}[X_i] = 0.5^2 = 0.25$. Si definimos $S_{400} = \sum_{i=1}^{400} X_i$, entonces se nos pide

$$P(S_{400} < 210) = P(S_{400} \le 209)$$

$$= P\left(\frac{S_{400} - 400 \cdot 0.5}{\sqrt{400} \cdot \sqrt{0.25}} \le \frac{209 - 400 \cdot 0.5}{\sqrt{400} \cdot \sqrt{0.25}}\right)$$
 $\approx P(Z < 0.9) \approx 0.8159,$

donde $Z \sim N(0,1)$.

Ley de grandes números

Teorema (Ley de grandes números)

Sea $\{X_i\}_{i=1}^{\infty}$ una sucesión de variables aleatorias independientes cumpliendo $E[X_i] = \mu$ y $Var(X_i) = \sigma^2 \ \forall i \in \mathbb{N}$. Si denotamos para cada $n \in \mathbb{N}$

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

entonces

$$\lim_{n\to\infty} P(|\overline{X}_n - \mu| < \varepsilon) = 1, \quad \forall \varepsilon > 0.$$

¡Muchas gracias!

Contacto:

david.zorio@campusviu.es