

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 10-219375

(43)Date of publication of application : 18.08.1998

(51)Int.Cl.

C22C 14/00
A61C 8/00
A61L 27/00
C22C 30/00
C22F 1/18
// C22F 1/00
C22F 1/00
C22F 1/00

(21)Application number : 09-020588

(71)Applicant : DAIDO STEEL CO LTD

(22)Date of filing : 03.02.1997

(72)Inventor : ARAYA MITSUO

MORINAGA MASAHIKO

KURODA DAISUKE

(54) TITANIUM ALLOY AND HARD TISSULAR SUBSTITUTIVE MATERIAL USING SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a new titanium alloy having strength particularly suitable for an organic hard tissular substitutive material for the such as bone, a part of the bone, prostheses for the bone, an artificial joint, a dental root, and an implant, and also having high elongation and low elastic modulus and also to provide a hard tissular substitutive material using this titanium alloy.

SOLUTION: The titanium alloy has a composition consisting of, by weight, 20-60%, in total, of Nb and Ta and the balance Ti with inevitable impurities. It is desirable to regulate Nb content and Ta content to >15-50% and >6-20%, respectively. One or ≥2 kinds among ≤10% Mo, ≤5% Zr, and ≤5% Sn are further added to the above titanium alloy. The hard tissular substituting material is obtained by subjecting these titanium alloys to solution heat treatment or further to aging treatment.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-219375

(43)公開日 平成10年(1998)8月18日

(51)Int.Cl*	識別記号	P I
C 22 C 14/00	C 22 C 14/00	Z
A 61 C 8/00	A 61 C 8/00	Z
A 61 L 27/00	A 61 L 27/00	L
C 22 C 30/00	C 22 C 30/00	
C 22 F 1/18	C 22 F 1/18	H

審査請求 未請求 請求項の数 6 OL (全 6 頁) 最終頁に続く

(21)出願番号 特願平9-20598	(71)出願人 000003713 大同特殊鋼株式会社 愛知県名古屋市中区錦一丁目11番18号
(22)出願日 平成9年(1997)2月3日	(72)発明者 新藤 光雄 愛知県豊橋市野依台1-24-13
特許法第30条第1項適用申請有り 平成8年9月30日 社団法人日本鉄鋼協会開催の「第132回秋期講演大会」 において文書をもって発表	(72)発明者 森永 正彦 愛知県名古屋市中区丸の内二丁目10番23号 グランエステート丸の内1002号室
	(72)発明者 黒田 大介 愛知県豊橋市西山町字東郷20-4 ハイツ サードィーワン2-A
	(74)代理人 弁理士 鈴木 學

(54)【発明の名称】チタン合金とこれを用いた硬質組織代替材

(57)【要約】

【課題】 皆又はその一部、或いはその補助材、人工関節、歯根、又はインプラント材等の生体の硬質組織代替材に特に適した強度と、高い伸び、及び低い弾性率を有する新たなチタン合金と、これを用いた硬質組織代替材を提供する。

【解決手段】 Nb及びTaを合計で20wt%~60wt%含み残部がTiと不可逆的不純物からなるチタン合金。上記Nbの含有量は15wt%組~50wt%以下の範囲が、また、上記Taは6wt%組~210wt%以下の範囲が望ましい。これらのチタン合金に、更に10wt%以下のMo、5wt%以下のZr、又は5wt%以下のSnの一種又は二種以上を添加したチタン合金も含まれる。更に、これらのチタン合金を溶体化処理し、或いはその後に時効処理した硬質組織代替材も含まれる。

(2)

特開平10-219375

1

2

【特許請求の範囲】

【請求項1】Nb及びTaを合計で20wt%～60wt%含み、残部がTiと不可逆的不純物からなることを特徴とするチタン合金。

【請求項2】前記Nbの含有量が15wt%組～50wt%以下であることを特徴とする請求項1に記載のチタン合金。

【請求項3】前記Taの含有量が6wt%組～20wt%以下であることを特徴とする請求項1又は2に記載のチタン合金。

【請求項4】前記チタン合金に、更に10wt%以下のMo、5wt%以下のZr、又は、5wt%以下のSnの一組又は二種以上を添加したことを特徴とする請求項1乃至3に記載のチタン合金。

【請求項5】前記チタン合金に溶体化処理を施し、このチタン合金の結晶粒を再結晶させたことを特徴とする請求項1乃至4に記載の硬質組織代替材。

【請求項6】前記溶体化処理の後に、前記チタン合金に時効処理を施したことを見做す請求項5に記載の硬質組織代替材。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、新規なチタン(Ti)合金に関し、特に生体の人工骨材又はその一部、或いはそれらの補助材のような硬質組織代替材に適したチタン合金と、このチタン合金を用いた硬質組織代替材に関する。

【0002】

【従来の技術】一般に、歯科用の人工歯根や医療用の人工骨材には、Ti-6wt%A1-4wt%Vに代表されるチタン合金が通用又は検討されている。これは、チタンが他の金属に比べ、生体内において高い適応性を有することによる。しかし、従々の研究によると、上記チタン合金のうちV(バージュ)は、生体の細胞に対し、毒性を有することが指摘されている。このため上記Vに替えてNbやFeを添加したTi-6wt%A1-7wt%Nbや、Ti-5wt%A1-2.5wt%Fe等の所謂 $\alpha+\beta$ 型のチタン合金が提案されている。しかし乍ら、これらの合金中のA1(アミニウム)は、ある種の腐食症を招くという指摘もなされている。

【0003】そこで、上記毒性やアレルギー性の指摘がない金属元素を用い、 $\alpha+\beta$ 型チタン合金よりも高い伸びと、優れた冷間加工性を有すると共に、弾性率を低くして生体内的硬質組織に近付けるべく β 型チタン合金が提案されるようになった。この β 型チタン合金には、例えばTi-1.3wt%Nb-1.3wt%Zr、Ti-1.6wt%Nb-1.0wt%Hf、Ti-1.5wt%Mo、Ti-1.5wt%Mo-5wt%Zr-3wt%A1、Ti-1.2wt%Mo-6wt%Zr-2wt%Fe、Ti-1.5wt%Mo-2.8wt%Nb-0.2wt%Si-0.26wt%O等が含まれている。しか

し乍ら、上記各 β 型チタン合金のうち、どのような成分組成の合金が人工骨材等のような硬質組織代替材に適しているか、あまり研究されておらず、未だ不明確であった。

【0004】

【発明が解決すべき課題】本発明は、上記従来の技術に鑑み、生体の硬質組織代替材に特に適し、生体に対し毒性やアレルギーが少なく、適度な強度と高い伸び率、及び低い弾性率を有すると共に、耐食性にも優れた生体の活動にフィットする新たなチタン合金と、このチタン合金を用いた硬質組織代替材を提供することを目的とする。

【0005】

【課題を解決するための手段】本発明は、上記課題を解決するため、 β 型チタン合金について発明者らが銳意研究した結果、チタンに対しNb(ナブ)と共にTa(タント)を併せて所定量ずつ添加することに着目することにより得られたものである。即ち、本発明のチタン合金は、Nb及びTaを合計で20wt%～60wt%含み、残部がTiと不可逆的不純物からなることを特徴とする。係る組成の合金にすると、上記課題を解決することが可能となる。尚、上記NbとTaを合計する範囲の上限は、50wt%とするのが望ましい。このチタン合金のうち、Nbの含有量は、15wt%組～50wt%以下の範囲にあることが望ましい。Nbが15wt%以下では、金属組織中に α 相が析出し、一方、Nbが50wt%を超えると、伸びが不足し始めたり、Nbのより望ましい上限は45wt%である。

【0006】また、前記Taの含有量は、6wt%超～20wt%以下の範囲内にあることが望ましい。Taが6wt%以下になると伸びが不足し始め、一方、Taが20wt%を超過すると、合金自体の融点が上がり過ぎるために、Taのより望ましい上限は15wt%である。更に、上記の各チタン合金に対し、更に、10wt%以下のMo(モリブデン)、5wt%以下のZr(ジルコニウム)、又は、5wt%以下のSn(錫)の一組又は二種以上を添加したものも含まれる。係る各元素を添加することにより、一層安定した特性を有するチタン合金を得ることが可能となる。

【0007】また、本発明には、上記チタン合金を用い、これらに溶体化処理を施して、その結晶粒を再結晶させたことを特徴とする硬質組織代替材、及びその溶体化処理の後に更に時効処理を施した硬質組織代替材も含まれる。上記溶体化処理及び/又は時効処理を施すことにより、 β 相における結晶粒が微細化され、強度を適正に高め、且つ伸びと弾性率を適正化することができる。係る硬質組織代替材によれば、骨、又は歯根として、或いは、義歯、義肢、又は義足等の構成部材として用いることで、生体の活動に馴染んだ特性及び効果を得ることができ、医療技術の向上に寄与することが可能となる。

(3)

特開平10-219375

3

【0008】

【発明の実施の形態】以下に本発明の実施に好適な形態を実施例と共に説明する。T_iをベースとし、T_iと共に生体への適応性の高いNb及びTaを組合せ、更にMo、Zr、又はSnを付随的に添加した組々の成分組成を有するチタン合金をそれぞれ溶解した。これらの合金を鋳型中に鋳込んで一定サイズのインゴットをそれぞれ得た。次いで、係る各インゴットに所定の冷間加工を施した後、それらの各加工材から所要数の薄板を切り出した。次に、これらの薄板にそれぞれ所定の溶体化処理及び/又は時効処理を施した(図1参照)後、所要形状の試験片に仕上げて引張り試験等を行った。また、比較例として、前記従来の技術に示したα+β型及びβ型のチタン合金を、上記図1と同じ溶解から熱処理までのプロセスを経させて試験片とし、これらについても同じ引張り試験等を行った。

【0009】

【実施例】以下において具体的な実施例を挙げて、比較例と共に説明する。T_iに生体への適応性の高いNb及びTaを組合せ、更にMo、Zr、又はSnを付随的に添加した表1に示す各成分組成のチタン合金を溶解した。一方、比較例として、表1に示すT_i-6wt%Al-4wt%V等(α+β型)と、T_i-13wt%Nb-13wt%Zr等(β型)を溶解した。

【0010】

【表1】

【0011】次いで、これらの各チタン合金を所定の鋳型中において鋳造し、それについて45μのボタンインゴットを得た。係る各ボタンインゴットに対し冷間圧延(圧下率7.5%)を行って、各合金組成内の結晶粒を微細化させた延べ板を得た。次に、これらチタン合金の各延べ板から、薄板を各合金についてそれぞれ10片ずつ切り出した。更に、各薄板に対し、表1に示す条件の溶体化処理(ST)を行って、それらの組成内に10~50μ程度の結晶粒径に再結晶させると共に、そのうちの5片ずつについては、その後、引き続いて時効処理(STA)を施した(図1参照)。

【0012】尚、前記表1中の時効処理(Aging)の処理時間を3時間以上としたのは、図2のグラフに示すように、3時間未満では硬度が不安定であるのに對し、これを越えると安定した硬度になるためである。上記各薄板は、図3に示す引張り試験片1に仕上げ加工される。これらの各試験片についてJISZ2241に従って引張り試験を行うことにより、引張り強さ(σ_u/MPa)、0.2%耐力(σ_{0.2}/MPa)、伸び率(%)、及び、弾性率(GPa)をそれぞれ測定した。それらの測定結果(平均値)を表2に示す。

【0013】

【表2】

【0014】前記表2の結果を分かり易くするため、実

4

施例No.4、5、18、19、22、23と比較例No.1~6の各引張り強さ、伸び率、及び、弾性率をそれぞれ図4乃至図6にグラフとして示した。尚、0.2%耐力のグラフは、図4の引張り強さと同様の傾向であったため、省略した。これらの結果から、各実施例の溶体化処理のみを施したSTA材(4,18,22)は、何れも伸び率が30%以上と各比較例よりも高くなり(図5参照)、また、引張り強さと弾性率は比較例よりも低い値を示した(図4,6参照)。尚、比較例のように、引張り強さと弾性率が高いと、それらが生体に適用された部位に接する骨等の表面を磨耗させ、傷付け易くなる恐れがある。特に骨の弾性率は、約30GPaであるため、これに近い程、生体への適応性が高くなる。これらの結果から、各実施例のチタン合金のSTA材は、優れた伸び特性を有すると共に、強度や弾性率は比較例よりも低く、生体の硬質組織に近似するので、例えば、骨折部の残存組織内に挿入されると、その変形に対し一体となって追従して変化し、骨の一部となって長く使用することが可能になる。

【0015】一方、各実施例の時効処理も施したSTA材(5,19,23)は、引張り強さが同じ組成のSTA材より高いが、各比較例と同等か又はこれらよりやや低い(図4参照)。また、伸び率は実施例5を除き同じ組成のSTA材より低下するが、比較例と同等(10%組)以上のものも認められる(図5参照)。更に、弾性率は実施例19を除き比較例よりも低い値を示す(図6参照)。これらの結果から、各実施例のチタン合金のSTA材は、上記STA材とは別の比較的硬い硬質組織に対し、適応性が高いものと思われる。これらの結果から、本発明の前記各チタン合金は、溶体化処理及び/又は時効処理を施すことと、生体内における各種の硬質組織に馴染み易い種々の特性が得られることが理解される。尚、前記溶体化処理は、微細な再結晶粒を得るために、800~1000°Cに加熱して30~60分程度保持することが望ましい。また、時効処理は、前記の強度や硬度を得るため、400~500°Cに加熱して少なくとも2時間以上保持することが望ましく、最長では24時間保持する場合も含まれる。

【0016】本発明のチタン合金及び硬質組織代替材は、前述した他に、インプラント材、人工関節、又は歯列矯正材等の種々の硬質組織用の代替材、又はその一部の補助材として使用することもできる。また、本発明のチタン合金は、以上のような生体用に限らず、その優れた伸びと速度な強度、低い弾性率、及び優れた耐食性という特性により、医療用以外の各種分野、例えば機械器具材、福祉器具材、民生品材料等に適用することも可能である。

【0017】

【発明の効果】以上において説明した本発明のチタン合金によれば、適度な強度と高い伸び及び低い弾性率を得ることができる。また、このチタン合金を用いた硬質組織代替材は、生体の硬質組織に適応した優れた特性を有

(4)

特開平10-219375

5

6

し、且つ毒性やアレルギーも少なく長期に涉り生体に馴染み易い材料を提供することが可能となる。

【図面の簡単な説明】

【図1】本発明の硬質組織代替材を得るプロセスを示す概略の流れ図である。

【図2】本発明のチタン合金の時効処理における硬度と処理時間の関係を示すグラフである。

* 【図3】(A)と(B)は本発明のチタン合金等を用いた引張り試験片の正面図と側面図である。

【図4】実施例と比較例の引張り強さを示すグラフである。

【図5】実施例と比較例の伸び率を示すグラフである。

【図6】実施例と比較例の弾性率を示すグラフである。

* 【表1】

No	合金組成 (wt %)	熱処理
1	Ti - 16 Nb - 7 Ta	STA; 844°C × 0.5 hr → 400°C × 3 hr
2	Ti - 20 Nb - 9 Ta	STA; " → "
3	Ti - 25 Nb - 11 Ta	STA; " → "
4	Ti - 28 Nb - 13 Ta	ST; 844°C × 0.5 hr
5	Ti - 28 Nb - 13 Ta	STA; " → 500°C × 3 hr
6	Ti - 34 Nb - 20 Ta	STA; " → 450°C × 3 hr
7	Ti - 40 Nb - 10 Ta	STA; " → "
8	Ti - 45 Nb - 8 Ta	STA; " → "
9	Ti - 50 Nb - 7 Ta	STA; " → "
10	Ti - 16 Nb - 13 Ta	STA; " → 400°C × 3 hr
11	Ti - 21 Nb - 12 Ta	STA; " → "
12	Ti - 24 Nb - 14 Ta	STA; " → "
13	Ti - 30 Nb - 15 Ta	STA; " → 500°C × 3 hr
14	Ti - 37 Nb - 10 Ta	STA; " → 450°C × 3 hr
15	Ti - 42 Nb - 8 Ta	STA; " → "
16	Ti - 18 Nb - 10 Ta - 2 Mo	ST; 844°C × 0.5 hr
17	Ti - 18 Nb - 10 Ta - 2 Mo	STA; " → 400°C × 3 hr
18	Ti - 18 Nb - 19 Ta - 4 Mo	ST; 844°C × 0.5 hr
19	Ti - 16 Nb - 13 Ta - 4 Mo	STA; " → 450°C × 3 hr
20	Ti - 34 Nb - 20 Ta - 4.6 Zr	ST; 844°C × 0.5 hr
21	Ti - 36 Nb - 20 Ta - 4.6 Zr	STA; " → 400°C × 3 hr
22	Ti - 29 Nb - 19 Ta - 4.6 Zr	ST; 844°C × 0.5 hr
23	Ti - 29 Nb - 19 Ta - 4.6 Zr	STA; " → 450°C × 3 hr
24	Ti - 29 Nb - 13 Ta - 4.6 Sn	ST; 844°C × 0.5 hr
25	Ti - 29 Nb - 18 Ta - 4.6 Sn	STA; " → 400°C × 3 hr
26	Ti - 29 Nb - 19 Ta - 2 Sn	ST; 844°C × 0.5 hr
27	Ti - 29 Nb - 19 Ta - 2 Sn	STA; " → 400°C × 3 hr
比 較 例	1 Ti - 6 Al - 4 V	ST; 868°C × 1 hr
	2 Ti - 6 Al - 4 V	STA; " × 1 hr → 480°C × 4 hr
	3 Ti - 5 Al - 2.5 Fe	ST; " × 1 hr
	4 Ti - 5 Al - 2.5 Fe	STA; " × 1 hr → 520°C × 4 hr
	5 Ti - 18 Nb - 19 Zr	ST; 775°C × 1 hr
	6 Ti - 18 Nb - 18 Zr	STA; " × 1 hr → 425°C × 4 hr

【表2】

(5)

特開平10-219375

7

8

No.	引張り強さ (kgf/mm ²)	0.2%応力 (kgf/mm ²)	伸び率 (%)	鷹係数 (GPa)	
1	869	840	8	115	
2	803	715	5	73	
3	1210	1180	3	115	
4	580	205	31	68	
5	570	270	86	65	
6	580	410	19	65	
7	560	380	21	53	
8	588	379	23	53	
9	420	415	27	50	
10	820	827	4	104	
11	1185	1147	4	112	
12	1020	968	8	78	
13	430	425	20	53	
14	580	410	17	61	
15	570	410	23	50	
16	776	564	22	80	
17	899	852	15	81	
18	634	550	68	46	
19	1200	1170	3	112	
20	415	410	31	49	
21	419	417	25	50	
22	522	245	42	50	
23	574	330	18	56	
24	527	453	27	60	
25	1035	976	8	65	
26	582	397	23	60	
27	1021	1000	5	67	
比 較 例 例	1 2 3 4 5 6	896 953 901 943 798 994	827 822 843 886 599 864	15 10 15 11 20 18	114 114 115 115 88 81

【図1】

【図2】

(6)

特開平10-219375

【図3】

【図4】

【図5】

【図6】

フロントページの続き

(51)Int.Cl.⁹
// C22F 1/00識別記号
630
675
686F I
C22F 1/00
630C
675
686B