E2 212: Homework - 3

1 Topics

- Matrix Norms
- Condition number

2 Problems

Notation: M_n denotes an $n \times n$ matrix over a field of complex (or real) numbers, i.e. $\mathbb{C}^{n \times n}$ (or $\mathbb{R}^{n \times n}$). Note that "triple-bar" norms $\|\cdot\|$ denote vector induced matrix norms while "double-bar" norms $\|\cdot\|$ denote vector norms (possibly, on matrices).

- 1. Show that, for any $\mathbf{A} \in M_n$, the series $\sum_{k=0}^{\infty} a_k \mathbf{A}^k$ converges if there is a matrix norm $\| \| \cdot \| \|$ on M_n such that the numerical series $\sum_{k=0}^{\infty} |a_k| \| \|A\| \|^k$ converges. (Hint: What does convergence of a series mean?)
- 2. If $\mathbf{A}, \mathbf{B} \in M_n$, if \mathbf{A} is invertible, and if $\mathbf{A} + \mathbf{B}$ is singular, show that $||\mathbf{B}|| \ge 1/||\mathbf{A}^{-1}||$ for any matrix norm $||\cdot|$. Thus there is an intrinsic limit to how well a non-singular matrix can be approximated by a singular one. (Hint: $\mathbf{A} + \mathbf{B} = \mathbf{A}(\mathbf{I} + \mathbf{A}^{-1}\mathbf{B})$.)
- 3. Show that if **B** is an idempotent matrix then $\|\mathbf{B}\| \ge 1$ for any matrix norm $\|\cdot\|$.
- 4. Give an example of a vector norm on matrices for which $\|\mathbf{I}\| < 1$.
- 5. Show that:

$$\|\mathbf{A}\|_2 = \max_{\|\mathbf{x}\|_2 = 1} \|\mathbf{A}\mathbf{x}\|_2 = \max_{\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1} |\mathbf{y}^H \mathbf{A}\mathbf{x}|$$

- 6. Prove the following:
 - (a) $\|\mathbf{A}\|_1 \leq \|\mathbf{A}\|_1 \leq n \|\mathbf{A}\|_{\infty}$. Here $\|\cdot\|_1$ denotes the operator (matrix) norm induced by l_1 -vector norm and $\|\cdot\|_1$ is the l_1 vector norm for matrices (sum of absolute values of entries of matrix).
 - (b) $\|\mathbf{A}\|_1 \leq \sqrt{n} \|\mathbf{A}\|_2$
- 7. Show that $\kappa(\mathbf{AB}) \leq \kappa(\mathbf{A})\kappa(\mathbf{B})$ always, where $\kappa(\cdot)$ is the condition number for a given matrix. Is $\kappa(\cdot)$ a matrix or a vector norm?
- 8. Let **A** be a unitary matrix. Prove that $\kappa(\mathbf{A}) = 1$ with respect to the spectral norm.

Hint: You do not need eigenvalues for this problem! Use the following properties of unitary matrices. If **A** is unitary matrix, then:

- (a) $\mathbf{A}\mathbf{A}^H = \mathbf{I}$, i.e., it's hermitian is it's inverse.
- (b) $\|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}^H\mathbf{x}\|_2 = \|\mathbf{x}\|_2$, i.e., it preserves the Euclidean norm.