Mid-Semester Examination, March-2017 Reinforced Concrete Design (CVL4121)

Semester: 6^{th} Branch: Civil Engineering Full mark: 100 Time: 2 Hours

Subject Learning Outcome	*Taxonomy	Question	Marks
(Student will able to)	Level	number	1,161,110
Classify and apply different methods of analysis of reinforced concrete structures like Working stress method (WSM) and Limit state method (LSM).	L4	2	40
Design tensile and compressive reinforcement in concrete members such as beams and slabs using LSM according to IS-456:2000.	L5	1	40
Design shear reinforcement in concrete members such as beams and slabs using LSM according to IS-456:2000.	L5	1	20

^{*}Blooms taxonomy levels: Knowledge (L1), Comprehension (L2), Application (L3), Analysis (L4), Evaluation (L5), Creation (L6)

Answer both questions. Use data given in question paper and IS code only.

Question 1

A slab is simply supported on two beams and the beams simply supported on two walls as shown in Figure 1. The wall are 250mm thick have a clear distance of 7m between them. Beams have a center to center distance of 3m. The slab has to carry a dead load of $1.5\frac{kN}{m^2}$ and a live load of $4.5\frac{kN}{m^2}$. Design tensile and shear reinforcement for slab and beams each respectively according to IS456:2000.

Question 2

The beam as shown in Figure 2 has an effective span of 8m. Find the strain in compression and tension steel. Determine the moment of ²⁵ resistance and maximum UDL that can be + carried by the beam. Assume Fe415 steel, M20 ¹⁵ concrete and 25mm clear cover. Refer to data given in Table 1 and 2.

20

10

20

+ 10

Grade of	d'/d			
steel	0.05	0.10	0.15	0.20
Fe 250	217.5	217.5	217.5	217.5
Fe 415	355.1	351.9	342.4	329.2
Fe 500	423.9	411.3	395.1	370.3

Table 1: f_{sc} for Fe415 at $x_u = x_{lim}$

Strain	Stress(MPa)
0	0
0.00144	288.7
0.00163	306.7
0.00192	324.8
0.00241	342.8
0.00276	351.8
\geq 0.00380	360.9

Table 2: Stress-Strain data Fe415

$\sim 100A_{st}$	$f_{st}(MPa)$			
$p_t = \frac{3t}{bd}$	145	190	245	
0.3	-	1.89	1.47	
0.4	-	1.68	1.34	
0.5	1.95	1.53	1.23	
0.6	1.79	1.43	1.17	
0.8	1.57	1.29	1.06	
1.0	1.42	1.20	0.99	
1.2	1.33	1.12	0.95	
1.4	1.26	1.08	0.92	
1.6	1.21	1.03	0.88	
1.8	1.17	0.99	0.85	
2.0	1.12	0.97	0.83	

Table 3: Data for k_t or k_1

Figure 1:

Figure 2: