ESHBACH'S HANDBOOK OF ENGINEERING FUNDAMENTALS

ESHBACH'S HANDBOOK OF ENGINEERING FUNDAMENTALS, FIFTH EDITION

Edited by Myer Kutz

John Wiley & Sons, Inc.

This book is printed on acid-free paper.

Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

```
Eshbach, Ovid W. (Ovid Wallace), 1893–1958.
Eshbach's handbook of engineering fundamentals / edited by Myer Kutz.—5th ed. p. cm.
Includes bibliograhical references.
ISBN 978-0-470-08578-3 (cloth: alk. paper)

1. Engineering—Handbooks, manuals, etc. I. Kutz, Myer. II. Title. III. Title: Handbook of engineering fundamentals.
TA151.E8 2009
620—dc22
2008041561
```

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To Ovid W. Eshbach (1893-1958), educator and editor

CONTENTS

Pref	Preface	
Contributors		xvii
1.	Mathematical and Physical Units, Standards, and Tables Jack H. Westbrook	1
	 Symbols and Abbreviations Mathematical Tables Statistical Tables Units and Standards Tables of Conversion Factors Standard Sizes Standard Screws 	3 23 42 51 69 97 142
2.	Mathematics J. N. Reddy	159
	 Arithmetic Algebra Set Algebra Statistics and Probability Geometry Trigonometry Plane Analytic Geometry Solid Analytic Geometry Differential Calculus Integral Calculus Differential Equations Finite-Element Method Laplace Transformation Complex Analysis Vector Analysis Bibliography 	160 163 181 182 191 213 221 230 238 248 258 269 286 288 303 306
3.	Mechanics of Rigid Bodies Wallace Fowler	308
	1. Definitions 2. Statics 3. Kinematics 4. Kinetics 5. Friction Bibliography	308 309 322 335 352 357
4.	Selection of Metals for Structural Design Matthew J. Donachie	358
	 Introduction Common Alloy Systems 	359 359

•••	COMPENIE
VIII	CONTENTS

	 What Are Alloys and What Affects Their Use? What Are the Properties of Alloys and How Are Alloys Strengthened? Manufacture of Alloy Articles Alloy Information Metals at Lower Temperatures Metals at High Temperatures Melting and Casting Practices Forging, Forming, Powder Metallurgy, and Joining of Alloys Surface Protection of Materials PostService Refurbishment and Repair Alloy Selection: A Look at Possibilities Level of Property Data Thoughts on Alloy Systems Selected Alloy Information Sources Bibliography 	359 360 363 363 373 373 376 379 381 383 384 385 385 390 391	
5.	Plastics: Information and Properties of Polymeric Materials Edward N. Peters		
	1. Introduction	393	
	2. Polyolefinic Thermoplastics	395	
	3. Side-Chain-Substituted Vinyl Thermoplastics	396	
	4. Polyurethane and Cellulosic Resins	401	
	5. Engineering Thermoplastics: Condensation Polymers	402	
	6. High-Performance Materials	409	
	7. Fluorinated Thermoplastics	414	
	8. Thermosets	416	
	9. General-Purpose Elastomers10. Specialty Elastomers	420 420	
	References	420	
_	Overview of Commis Materials Design and Application	122	
6.	Overview of Ceramic Materials, Design, and Application R. Nathan Katz 1. Introduction 2. Processing of Advanced Ceramics 3. Brittleness and Brittle Materials Design 4. Applications 5. Information Sources 6. Future Trends References	422 423 424 425 431 432 432	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends 	422 423 424 425 431 432	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor 	422 423 424 425 431 432 432	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain 	422 423 424 425 431 432 432 434	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending 	422 423 424 425 431 432 432	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain 	422 423 424 425 431 432 432 434	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending Torsion and Shafts Plates, Shells, and Contact Stresses Nonlinear Response of Materials 	422 423 424 425 431 432 432 434 434 447 460 464 474	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending Torsion and Shafts Plates, Shells, and Contact Stresses Nonlinear Response of Materials Energy Methods 	422 423 424 425 431 432 432 434 434 447 460 464 474 485	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending Torsion and Shafts Plates, Shells, and Contact Stresses Nonlinear Response of Materials Energy Methods Composite Materials 	422 423 424 425 431 432 432 434 434 447 460 464 474 485	
	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending Torsion and Shafts Plates, Shells, and Contact Stresses Nonlinear Response of Materials Energy Methods Composite Materials Theories of Strength and Failure 	422 423 424 425 431 432 432 434 434 447 460 464 474 485 488 492	
7.	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending Torsion and Shafts Plates, Shells, and Contact Stresses Nonlinear Response of Materials Energy Methods Composite Materials Theories of Strength and Failure References 	422 423 424 425 431 432 432 434 434 447 460 464 474 485 488 492 506	
7.	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending Torsion and Shafts Plates, Shells, and Contact Stresses Nonlinear Response of Materials Energy Methods Composite Materials Theories of Strength and Failure References Nondestructive Inspection Robert L. Crane and Jeremy S. Knopp 	422 423 424 425 431 432 432 434 434 447 460 464 474 485 488 492	
7.	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending Torsion and Shafts Plates, Shells, and Contact Stresses Nonlinear Response of Materials Energy Methods Composite Materials Theories of Strength and Failure References Nondestructive Inspection Robert L. Crane and Jeremy S. Knopp Introduction 	422 423 424 425 431 432 432 434 434 447 460 464 474 485 488 492 506	
7.	 R. Nathan Katz Introduction Processing of Advanced Ceramics Brittleness and Brittle Materials Design Applications Information Sources Future Trends References Mechanics of Deformable Bodies Neal F. Enke and Bela I. Sandor Introduction to Stress and Strain Beams and Bending Torsion and Shafts Plates, Shells, and Contact Stresses Nonlinear Response of Materials Energy Methods Composite Materials Theories of Strength and Failure References Nondestructive Inspection Robert L. Crane and Jeremy S. Knopp 	422 423 424 425 431 432 432 434 434 447 460 464 474 485 488 492 506	

CONTENTS ix

	5.	Ultrasonic Methods Magnetic Particle Method	519 526
		Thermal Methods	527 528
	7.	Eddy Current Methods Appendix: Ultrasonic Properties of Common Materials	533
		References	550
9.	Mec	chanics of Incompressible Fluids	552
	Eger	nen Ol Ogretim and Wade W. Huebsch	
		Introduction	553
		Fluid Properties	553
		Fluid Statics Ideal (Inviscid) Fluid Dynamics	561 566
		Viscous Fluid Dynamics	574
		Similitude and Dimensional Analysis	579
	7.	Flow in Closed Conduits	581
	8.	Flow in Open Channels	600
		Flow About Immersed Objects	604
	10.	Fluid Measurements	605
		References Ribliography	618 618
		Bibliography	010
10.		odynamics of Wings	619
		ren F. Phillips	
		Introduction and Notation	619
	2.	Boundary Layer Concept	622
	3. 4.	Inviscid Aerodynamics Incompressible Flow over Airfoils	623 625
	5.		632
		Incompressible Flow over Finite Wings	636
	7.	Flow over Multiple Lifting Surfaces	656
	8.	Wing Stall and Maximum Lift Coefficient	664
		Inviscid Compressible Aerodynamics	673
		Compressible Subsonic Flow	675
	11.	Supersonic Flow References	677 680
		References	080
11.		dy One-Dimensional Gas Dynamics	682
	<i>D. H.</i>	I. Daley with contributions by J. B. Wissler	
	1.	Generalized One-Dimensional Gas Dynamics	682
		Simple Flows	683
		Nozzle Operating Characteristics	688
		Normal Shock Waves Plane Oblique Shock Waves	689 690
	6.		696
		Prandtl–Meyer Expansion	696
		References	697
12.	Mat	hematical Models of Dynamic Physical Systems	698
		reston White, Jr.	
		Rationale	698
		Ideal Elements	699
	3. 4.		707 709
	4. 5.		709
	6.		735
		Simulation	737

	8. Model Classifications	741
	References	758
	Bibliography	758
12		7.00
13.	•	760
	William J. Palm III	
	1. Introduction	761
	2. Control System Structure	761
	3. Transducers and Error Detectors	765
	4. Actuators	767
	5. Control Laws	771
	6. Controller Hardware	776
	7. Further Criteria for Gain Selection	778
	8. Compensation and Alternative Control Structures	782
	9. Graphical Design Methods	785
	10. Principles of Digital Control	789
	11. Uniquely Digital Algorithms	791
	12. Hardware and Software for Digital Control	795
	13. Software Support for Control System Design	798
	14. Future Trends in Control Systems	799
	References	801
14.	Thormodynamics Fundamentals	802
14.	Thermodynamics Fundamentals Adrian Bejan	802
	•	000
	1. Introduction	802
	2. First Law of Thermodynamics for Closed Systems	803
	3. Second Law of Thermodynamics for Closed Systems	805
	4. Energy-Minimum Principle 5. Laws of Thomas dynamics for Open Systems	807 807
	5. Laws of Thermodynamics for Open Systems	
	6. Relations among Thermodynamic Properties	808
	7. Analysis of Engineering System Components References	815 817
	References	017
15.	Heat Transfer Fundamentals	818
	G. P. Peterson	
		910
	 Conduction Heat Transfer Convection Heat Transfer 	819
	3. Radiation Heat Transfer	834 844
		858
	4. Boiling and Condensation Heat Transfer References	868
	Bibliography	869
	Diologiaphy	007
16.	Electric Circuits	870
	Albert J. Rosa	
	1. Introduction	870
	2. Direct-Current (DC) Circuits	879
	3. Linear Active Circuits	891
	4. AC Circuits	905
	5. Transient Response of Circuits	928
	6. Frequency Response	935
	References	948
		7.10
17.	Electronics	949
	1. Bipolar Transistors	950
	1. Bipolar Transistors John D. Cressler	950

CONTENTS xi

	2.	Data Acquisition and Conversion Kavita Nair, Chris Zillmer, Dennis Polla, and Ramesh Harjani	964
	3.	Data Analysis	979
		Arbee L. P. Chen and Yi-Hung Wu	
	4.	Diodes Konstantinos Misiakos	990
	5	Electronic Components	1003
	٥.	Clarence W. de Silva	1003
	6.	Input Devices	1022
		George Grinstein and Marjan Trutschl	
	7.	Instruments	1026
		Halit Eren	
	8.	Integrated Circuits	1042
		N. Ranganathan and Raju D. Venkataramana	
	9.	Microprocessors	1060
		Robert P. Colwell	
	10.	1	1066
		Andrew Rusek	1077
	11.	Power Devices	1077
		Alex Q. Huang and Bo Zhang	1102
		References Bibliography	1103 1109
		Biolography	110)
18.	Ligh	nt and Radiation	1111
	_	Parker Givens	
	1.	Introduction	1111
	2.		1113
		Physical Optics	1119
		Light Sources	1128
		Lasers	1132
		The Eye and Vision	1134 1147
	7.	Detectors or Optical Transducers References	1147
		Bibliography	1149
19.	Aco	ustics	1151
	Jona	athan Blotter, Scott Sommerfeldt, and Kent L. Gee	
	1.	Introduction	1152
	2.		1152
	3.	Decibel and Other Scales	1154
	4.	Weighting Filters	1155
	_	Impedance Theory of Sound	1157
	6. 7	Theory of Sound Reflection, Transmission, and Absorption	1158 1162
		Hearing Loss	1165
		Passive Noise Control	1165
	10.	Active Noise Control	1173
		Architectural Acoustics	1178
		Community and Environmental Noise	1179
	13.		1184
	14.	Nonlinear Acoustics	1189
	15.	Human Ear and Hearing	1192

xii	CONTENTS
-----	----------

	16.	Microphones and Loudspeakers References Suggested Further Readings	1195 1198 1199
20.		mistry a. Kohl	1200
		Molecular Structure and Chemical Bonding Chemical Reactions and Stoichiometry Chemical Thermodynamics Thermochemistry Chemical Equilibrium Phase Equilibria Chemical Reaction Rates Electrochemistry	1200 1203 1205 1209 1213 1219 1221 1228 1231 1240 1245
21.	_	ineering Economy e.D. Abel	1246
	1. 2. 3. 4. 5. 6. 7. 8. 9.	Introduction Cash Flows and Time Value of Money Equivalence Single Sum and Uniform, Gradient, and Geometric Series Comparing Alternatives: Defining Options Comparing Alternatives through Figures of Merit Additional Analyses in Selection Process Capital Recovery, Capital Cost, and Replacement Studies Conclusion References	1246 1246 1247 1249 1251 1252 1256 1257 1257
22.		rces of Materials Data . Kaufman	1259
	1. 2. 3. 4. 5. 6. 7.	Introduction and Scope Intended Uses for Data Types of Data Subjects of Data Sources	1259 1259 1262 1263 1264 1265 1265 1268
Index			1271

PREFACE

In the years 1934-1936, when Ovid Wallace Eshbach (1893–1958) was preparing the first edition of the handbook that still bears his name, he was employed as special assistant in the Personnel Relations Department of AT&T. An electrical engineering graduate with honors from Lehigh University in 1915, he was well known in engineering education circles, particularly at schools which offered a cooperative option to their undergraduates. He coordinated the Bell System-MIT Cooperative Plan, an option in the Electrical Engineering Department at MÎT, which permitted selected students to alternate study terms at MIT with terms of work, either with the Bell System or with the General Electric Company. In a memoir (available on the Northwestern University web site), to which I am indebted for this information, Eshbach's son wrote that his father, in addition to interviewing, hiring, and placing students within the Bell System, monitored their progress, counseled them, and followed their careers. He was also an adjunct MIT professor and taught electrical engineering courses for students co-oping at Bell. Eshbach served on committees of the Society for the Promotion of Engineering Education and the American Institute of Electrical Engineers. He was a member of the Regional Accrediting Committee of the Engineers' Council for Professional Development as well as the Special Advisory Committee to the President's Committee on Civil Service Improvement. In 1932 he had directed a survey of adult technical education for the Chamber of Commerce of the State of New York.

Several years after he published his handbook, Eshbach was approached to become dean of the Northwestern engineering school. Northwestern had established a new engineering school in the early 1900s, initially as a department within the College of Liberal Arts. In the mid-1920s the College of Engineering became the autonomous School of Engineering, with faculty members devoted exclusively to engineering. There was a crisis in engineering education at Northwestern in 1937 when, after years of declining enrollments, the school was denied accreditation during a national survey of engineering schools carried out by the Engineers' Council for Professional Development. A major criticism was that the curriculum was too heavily weighted with nonprofessional courses. But in 1939, Walter P. Murphy, a wealthy inventor of railroad equipment, donated \$6.7 million for the construction of Northwestern's Technological Institute building. When the construction of Tech, as the engineering school was then known, was completed in 1942, Northwestern received an additional bequest of \$28 million from Murphy's estate to provide for an engineering school "second to none." Although Murphy insisted that the school not be named for him—he would not appear in public or on programs of ceremonies, such as at the cornerstone laying or the dedication of the new building—the cooperative engineering education program bears his name to commemorate his interest in "practical education." Over the next 45 years cooperative engineering education remained a constant requirement at Tech, now known as the Robert R. McCormick School of Engineering and Applied Science.

Eshbach remained Tech's dean for the rest of his life as far as I can tell. His son reports in his memoir that Eshbach always had himself assigned to teach an undergraduate quiz section, usually in physics. And his name lives on at Northwestern. There is the Ovid W. Eshbach Society, in which alumni and other donors provide funds to strengthen undergraduate engineering education through support for such needs as laboratory equipment, undergraduate research, design competitions, and instructional software. There is also the Ovid W. Eshbach Award, established in 1948 by Tech's first graduating class, which is awarded for overall excellence in scholarship and leadership. Each spring, nominations are accepted from the graduating class on who they feel most closely typifies the ideal engineering student.

The team that Ovid W. Eshbach put together for the first edition of his handbook, which was called *Handbook of Engineering Fundamentals*, included 40 representatives from academia, industry, and government, most of them based in the northeast and some in the midwest. The handbook was the first volume in the **Wiley Engineering Handbook Series**, which also included the eleventh edition of the two-volume *Kent's Mechanical Engineers' Handbook* (one volume covered power, the second design and shop practice); the third edition of the two-volume *Handbook for Electrical Engineers* (one volume covered electric power, the second communications and electronics); and the third edition of the one-volume *Mining Engineers' Handbook*. Tables of contents for all handbooks in the series

xiv PREFACE

were included on pages following the index of the Eshbach volume.

The Handbook of Engineering Fundamentals, published in 1936 jointly by Wiley in New York and Chapman & Hall in London, contains 13 sections (chapters) and 1081 pages. Eshbach wrote in the Editor's Preface: "This handbook has been prepared for the purpose of embodying in a single volume those fundamental laws and theories of science which are basic to engineering practice. It is essentially a summary of the principles of mathematics, physics, and chemistry, the properties and uses of engineering materials, the mechanics of solids and fluids, and the commonly used mathematics and physical tables, to which has been added a discussion of contract relations. Thus, with the exception of the technics of surveying and drawing, there is included the fundamental technology common to all engineering curricula."

The **second edition** of *Handbook of Engineering Fundamentals* was published in 1952. It was still part of the **Wiley Engineering Handbook Series**, to which had been added *Handbook of Mineral Dressing*. Again, it was jointly published by Wiley and Chapman & Hall. The copy that I have is from the fourth printing, May 1954. On the front cover, COLLEGE EDITION is stamped underneath the name ESHBACH.

Eshbach made numerous changes for the **second edition**. He went west to find contributors—one from Texas and four from California were among the 38 contributors to this edition. With a new section on aerodynamics, he increased the number of sections to 14. He expanded the contracts section and renamed it Engineering Law. In addition, he enlarged the engineering tables to include standard structural sizes for aluminum and data on tangents and offsets for civil engineers; revised the mathematics section to eliminate "simple and commonly known items previously introduced for completeness" and put greater stress on "statistics, determinants, and vector analysis"; thoroughly revised the sections on solid and fluid mechanics; completely revised the section on electricity and magnetism; and in the sections on metallic and nonmetallic materials, "much material, more detailed, and of interest to special groups, has been eliminated to keep the volume within practical size."

By 1975, when the **third edition** was published, Eshbach had been dead for 17 years. Dr. Mott Souders, a chemical engineer from Piedmont, California, had taken over the editorship, although Eshbach's name was the only one stamped on the spine and front cover of the book. Souders, too, had died, in 1974, before the book was published, this time solely by Wiley, which now had offices in London, Sydney, and Toronto as well as New York. The handbook was still part of the **Wiley Engineering Handbook Series**. The center of gravity of contributor locations had shifted further west. In addition to seven contributors from the West Coast and one from Texas, the roster of 40 contributors included 18 on the staff of the U.S. Air

Force Academy, who contributed a section of over 180 pages on aeronautics and astronautics.

The **third edition** has 16 sections and 1562 pages. In his Preface, written in February 1974, Souders noted that the handbook contained new sections on astronautics, heat transfer, electronics, automatic control, and engineering economy. The sections on aeronautics and chemistry had been completely rewritten. New material had been added to the sections on mathematical and physical tables; mathematics, including an article on elements of Fortran; physical units and standards; as well as radiation, light, and acoustics. In the single section on properties of materials, all text was eliminated to provide space for more charts and tables. Souders also eliminated the section on engineering law. But the **third edition** did feature, on two pages following the Preface, canons of ethics of engineers approved by the Engineer's Council for Professional Development on September 30, 1963.

By the latter 1980s, the handbook's editorship had passed to Byron Tapley, a professor in the Department of Aerospace Engineering and Engineering Mechanics at the University of Texas at Austin. The fourth edi**tion's** size and scope increased dramatically. Whereas the trim size of the previous three editions had been $5\frac{1}{2}$ by $8\frac{3}{8}$ inches, the new edition was 7 by 10. The number of sections remained the same, at 16, but the number of pages increased dramatically to close to 2100. The number of contributors nearly doubled, to 77 and included, for the first time, one from overseas, in Athens, Greece. The rest were located throughout the United States—the East Coast orientation of the first edition was a thing of the distant past. As a result of the increased scope and complexity of the undertaking, a recently retired Wiley employee, Thurman Poston, was brought on board to assist Tapley in preparing the new edition.

The **fourth edition**, published in 1990, also had a new name. It was now called Eshbach's Handbook of Engineering Fundamentals. Also, major topic areas were placed into "chapters" and the term "sections" was now being used for subtopics. The most important changes to the handbook were undertaken in "recognition," Tapley wrote in his Preface, in November 1989, "given to the dramatic change that computers and computer technology have made in the way we generate, receive, and display information." Tapley continued: "The handbook has been modified to account for this impact in three substantial ways: (1) the chapter on mathematical and trigonometric tables has been reduced substantially in recognition of the fact that both small handheld computers and desktop personal computers allow a rapid generation of much of the information contained in this chapter, (2) a specific chapter dealing with computers and computer science has been added, and (3) specific applications where computers are useful have been included in many of the chapters." Tapley added sections on differential equations and the finite-element method; expanded the control theory chapter; split the aeronautics and PREFACE

astronautics chapter into two distinct chapters (due, I have been told, to usage of the handbook by students at the U.S. Air Force Academy for some years); and extensively revised the chapters on electromagnetics and circuits, electronics, radiation, light, acoustics, and engineering economics. In addition, international standard units were adopted throughout the handbook.

My approach to the **fifth edition**, which is being published nearly two decades after the appearance of the previous edition, has been to revise or update the chapters where there has been substantial change over the intervening years, but the scope of those chapters does not require substantial expansion or alteration; add new chapters in areas where the scope was insufficient and engineers need more basic information; and eliminate chapters superseded by the ubiquity of the digital environment. So the overall goal has been to add more knowledge essential to engineers while reducing the size of the handbook. As a result, there are fewer pages but more chapters.

The chapters that have been substantially updated and revised, but where the scope has remained unaltered for the most part, include those on mechanics of incompressible fluids, electromagnetics and circuits, acoustic, and engineering economy. All except the electromagnetics and circuits chapter have new contributors.

There are numerous chapters that either cover topics new to the handbook or replace chapters, or sections of chapters, where more basic information is essential for practicing engineers and students at any level. These chapters include Selection of Metals for Design; Plastics: Thermoplastics, Thermosets, and Elastomers; Ceramics; Nondestructive Testing; Aerodynamics of Wings; Mathematical Models of Dynamic Physical Systems; Basic Control Systems Design; Thermodynamics Fundamentals; Heat Transfer Fundamentals; and Electronics (with sections on bipolar transistors, data acquisition and conversion, data analysis, diodes, electronic components, input devices, instruments, integrated circuits, microprocessors, oscilloscopes, and power devices).

I have eliminated the chapter on computers and computer science, inasmuch as contributors now routinely absorb the digital world into their work whenever appropriate, as well as the over 250 pages of materials properties data, which have been replaced by a chapter, Sources of Materials Data, which is a current description of where and how to find reliable materials properties data on the Internet, the standard practice in this digital age. In addition, I have left alone those chapters which contain basic and theoretical information that does not change.

Eshbach has gone through a great many iterations in its long life, yet the handbook remains true to its creator's original vision. My thanks to him as well as to the legion of contributors whose efforts have graced the pages of the five editions of this great reference work.

Myer Kutz Delmar, New York

CONTRIBUTORS

- **Kate D. Abel** School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey
- **Adrian Bejan** Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
- Jonathan Blotter Department of Mechanical Engineering, Brigham Young University, Provo, Utah
- **Arbee L. P. Chen** National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- **Robert P. Colwell** Intel Corporation, Hillsboro, Oregon
- **Robert L. Crane** Air Force Research Laboratory, Materials Directorate, Wright Patterson Air Force Base, Dayton, Ohio
- **John D. Cressler** Georgia Institute of Technology, Atlanta, Georgia
- Clarence W. de Silva University of British Columbia, Vancouver, British Columbia, Canada
- **D. H. Daley** Department of Aeronautics, United States Air Force Academy, Colorado Springs, Colorado
- Matthew J. Donachie Rensselaer at Hartford, Hartford, Connecticut
- **Neil F. Enke** Department of Engineering Mechanics, University of Wisconsin, Madison, Wisconsin
- Halit Eren Curtin University of Technology, Bentley, Western Australia, Australia
- Wallace Fowler Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas
- **Kent L. Gee** Department of Mechanical Engineering, Brigham Young University, Provo, Utah

- M. Parker Givens Institute of Optics, University of Rochester, Rochester, New York
- Georges Grinstein University of Massachusetts Lowell, Lowell, Massachusetts
- Ramesh Harjani University of Minnesota, Minneapolis, Minnesota
- **Alex Q. Huang** Virginia Polytechnic Institute and State University, Blacksburg, Virginia
- **Wade W. Huebsch** Department of Mechanical and Aerospace Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia
- R. Nathan Katz Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
- **J. G. Kaufman** Kaufman Associates, Inc., Columbus, Ohio
- **Jeremy S. Knopp** Air Force Research Laboratory, Materials Directorate, Wright Patterson Air Force Base, Dayton, Ohio
- **D. A. Kohl** The University of Texas at Austin, Austin, Texas
- J. G. Kaufman Kaufman Associates, Inc., Columbus, Ohio
- Konstantinos Misiakos NCSR "Demokritos," Athens, Greece
- **Kavita Nair** University of Minnesota, Minneapolis, Minnesota
- **Egemen Ol Ogretim** Department of Civil and Environmental Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia

xviii CONTRIBUTORS

William J. Palm III Department of Mechanical Engineering, University of Rhode Island, Kingston, Rhode Island

Edward N. Peters General Electric Company, Selkirk, New York

G. P. Peterson Rensselaer Polytechnic Institute, Troy, New York

Warren F. Phillips Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah

Dennis Polla University of Minnesota, Minneapolis, Minnesota

- N. Ranganathan University of South Florida, Tampa, Florida
- **J. N. Reddy** Department of Mechanical Engineering, Texas A&M University, College Station, Texas

Albert J. Rosa Professor Emeritus, University of Denver, Denver, Colorado

Andrew Rusek Oakland University, Rochester, Michigan

Bela I. Sandor Department of Engineering Mechanics, University of Wisconsin, Madison, Wisconsin

Scott Sommerfeldt Department of Mechanical Engineering, Brigham Young University, Provo, Utah

Marjan Trutschl University of Massachusetts Lowell, Lowell, Massachusetts

Raju D. Venkataramana University of South Florida, Tampa, Florida

Jack H. Westbrook Ballston Spa, New York

- **K. Preston White, Jr.** Department of Systems and Information Engineering, University of Virginia, Charlottesville, Virginia
- **J. B. Wissler** Department of Aeronautics, United States Air Force Academy, Colorado Springs, Colorado

Yi-Hung Wu National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Bo Zhang Virginia Polytechnic Institute and State University, Blacksburg, Virginia

Chris Zillmer University of Minnesota, Minneapolis, Minnesota