2019年全国硕士研究生入学统一考试

计算机学科专业基础综合试题

1.	设n是描述问题规模的	非负整数,下列程序段的	的时间复杂度是	_0	
	x=0; while $(n>=(x+1)*(x+1))$				
	x=x+1;	D 0 (1/2)		D 0 (2)	
	A. $O(\log n)$	B. $O(n^{1/2})$	C. O(<i>n</i>)	D. $O(n^2)$	
2.	若将一棵树 T 转化为对 列相同的是。	应的二叉树 BT,则下列	对 BT 的遍历中,其遍原	历序列与 T 的后根遍历序	
	A. 先序遍历	B. 中序遍历	C. 后序遍历	D. 按层遍历	
3.	对 n 个互不相同的符号,是。	进行哈夫曼编码。若生原	找的哈夫曼树共有 115 个	·结点,则 n 的值	
	A. 56	B . 57	C. 58	D. 60	
4.	在任意一棵非空平衡二叉树(AVL 树) T_1 中,删除某结点 v 之后形成平衡二叉树 T_2 ,再将 v 插入 T_2 形成平衡二叉树 T_3 。下列关于 T_1 与 T_3 的叙述中,正确的是。 I. 若 v 是 T_1 的叶结点,则 T_1 与 T_3 可能不相同 II. 若 v 不是 T_1 的叶结点,则 T_1 与 T_3 一定不相同 III. 若 v 不是 T_1 的叶结点,则 T_1 与 T_3 一定相同				
	A. 仅 I	B. 仅 II	C. 仅I、II	D. 仅 I、III	
5.	下图所示的 AOE 网表示是。	一项包含8个活动的工	程。活动 d 的最早开始	时间和最迟开始时间分别	
		a=3 2 $a=3$	g=6		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e=6 6 h=9		
	A. 3 和 7	B. 12 和 12	C. 12 和 14	D. 15 和 15	
6.	用有向无环图描述表达 A. 5	式 $(x+y)((x+y)/x)$,需要B. 6	要的顶点个数至少是 C.8	D. 9	
7.	选择一个排序算法时, I. 数据的规模 A. 仅 III		间因素中,还需要考虑的 III. 算法的稳定性 C. 仅 II、III、IV	IV. 数据的初始状态	
8.	现有长度为 11 且初始为空的散列表 HT ,散列函数是 $H(key) = key \% 7$,采用线性探查(线性探测再散列)法解决冲突。将关键字序列 $87,40,30,6,11,22,98,20$ 依次插入 HT 后, HT 查找失败的平均查找长度是。				
	A. 4	B. 5.25	C. 6	D. 6.29	
9.	设主串 T = "abaabaabcabaabc",模式串 S = "abaabc",采用 KMP 算法进行模式匹配,到匹配成功时为止,在匹配过程中进行的单个字符间的比较次数是。				
	A. 9	B. 10	C. 12	D. 15	
10.	0. 排序过程中,对尚未确定最终位置的所有元素进行一遍处理称为一"趟"。下列序列中,不可能是快速排序第二趟结果的是。				
			B. 2, 16, 5, 28, 12, 60, 3	B. 2, 16, 5, 28, 12, 60, 32, 72	
C. 2, 12, 16, 5, 28, 32, 72, 60			D. 5, 2, 12, 28, 16, 32, 72, 60		

	上有 120 个初始归并段	,进行 12 路归并时	付,为实现最佳归并,	需要补充的虚段个数
是 A. 1	° B. 2		C. 3	D. 4
A. 程序 B. 指令 C. 指令	于冯·诺依曼结构计算 学的功能都通过中央处理 冷和数据都用二进制数表 〉按地址访问,数据都在 序执行前,指令和数据需	世器执行指令实现 表示,形式上无差别 E指令中直接给出	[i]	_°
unsig	下 C 语言代码: ned short usi = 6 si = usi;	5535;		
	述程序段后, si 的值是 B. —		C32768	D65535
A. 缺页 B. 缺页 C. 缺页	于缺页处理的叙述中, 「是在地址转换时 CPU 「处理由操作系统提供的 「处理程序根据页故障地 「处理完成后回到发生的	检测到的一种异常 的缺页处理程序来完 地址从外存读入所领	 完成 缺失的页	
基址寻 作数的		补码表示)为 FF1 所在的地址是	2H,基址寄存器的内容 。	34 FF00H,该操作数采用 容为 F000 0000H,则该操 D. EFFF FF15H
A. 时争 B. 时争 C. 时争	关处理器时钟脉冲信号 中脉冲信号由机器脉冲测 中脉冲信号的宽度称为时 中周期以相邻状态单元间 世器总是在每来一个时色	原发出的脉冲信号约 付钟周期,时钟周期]组合逻辑电路的晶	至整形和分频后形成 明的倒数为机器主频 最大延迟为基准确定	
式。对 I. 通用 III. 存f	功能为 R[r2]←R[r1]+M 于下列给定部件,该指 寄存器组(GPRs) 诸器(Memory) 、II B. 仅	令在取数及执行过	程中需要用到的是 II. 算术逻辑单元(AI IV. 指令译码器(ID)	°
18. 在采用		.行、访存、写回"		中,执行如下指令序列,其
I2: 10I3: a0I4: st	dd s2, s1, s0 bad s3, 0(t2) dd s2, s2, s3 tore s2, 0(t2)	//R[s3]←M[F //R[s2]←R[s //M[R[t2]+0	R[t2]+0] s2]+R[s3]	
	令中,不存在数据冒险1 I3 B. I2		C. I2 和 I4	D. I3 和 I4
存储器 是	总线的工作频率为 1333 。			333,即内存条所接插的 战的总带宽大约
A. 10.6	6GB/s B. 320	GB/s	C. 64GB/s	D. 96GB/s
A. 磁盘	于磁盘存储器的叙述中 註的格式化容量比非格式 区中包含数据、地址和校	化容量小	•	
	就存储器的最小读写单位 就存储器由磁盘控制器、		 十组成	

	率为 50kB/s。若每次中		和中断处理)为1000个时
A. 1.25%	B . 2.5%	C. 5%	D. 12.5%
III. 数据传送由 DMA 哲	区动程序设置传送参数 空制器直接控制总线完成	II. 数据传送前由 DM	A 控制器请求总线使用权 的处理由中断服务程序完成 D. I、II、III、IV
23. 下列关于线程的描述中 A. 内核级线程的调度由 B. 操作系统为每个用户 C. 用户级线程间的切换 D. 用户级线程可以在不	1操作系统完成 1级线程建立一个线程控 4比内核级线程间的切换	效率高	
24. 下列选项中,可能会将 I. I/O 结束	II. 某进程退出临界区	 III. 当前进程的时间片	
A. 仅 I 25. 下列关于系统调用的叙: I. 在执行系统调用服务 II. 操作系统通过提供系 III. 不同的操作系统为 IV. 系统调用是操作系统	述中,正确的是程序的过程中,CPU 处 经统调用避免用户程序直 这用程序提供了统一的系 充内核为应用程序提供服		
26. 下列选项中,可用于文	件系统管理空闲磁盘块的	的数据结构是。	
		III. 至闲做盘块链 C. 仅 I、III	IV. 文件分配表(FAT) D. 仅 II、III、IV
系统才会调度 Q_2 中的进 束,则转入 Q_2 。若当前	采用短进程优先调度算法 程;新创建的进程首先 Q₁、Q₂为空,系统依次	去;系统优先调度 Qι 队系 进入 Qι; Qι 中的进程执	η 中的进程,当 Q_1 为空时, 行一个时间片后,若未结 始进程调度, P_1 、 P_2 需要
28. 在分段存储管理系统中中,错误的是	。 三一份段 S 的内容 该具有相同的段号 :享段表中的段表项		和 P ₂ 共享段 S,下列叙述
是。	0, 5, 3, 5, 0, 2, 7, 6, 则过	性程访问上述页的过程中	,产生页置换的总次数
A. 3	B . 4	C. 5	D. 6
30. 下列关于死锁的叙述中 I. 可以通过剥夺进程资 II. 死锁的预防方法能确 III. 银行家算法可以判断	源解除死锁 解保系统不发生死锁		
IV. 当系统出现死锁时, A. 仅 II、III		上的进程处于阻塞态 C. 仅 I、II、III	D. 仅I、III、IV
	0位) 页号(10 位) 页内保	元: 扁移(12 位)
虚拟地址 2050 1225H 双 A 081H、101H			D 201H 401H

32.	在下列动态分区分配算》 A. 首次适应算法	法中,最容易产生内存码 B. 最坏适应算法	碎片的是。 C. 最佳适应算法	D. 循环首次适应算法		
33.	OSI 参考模型的第 5 层 A. 差错控制	(自下而上)完成的主要 B. 路由选择	要功能是。 C. 会话管理	D. 数据表示转换		
34.	100BaseT 快速以太网使 A. 双绞线	用的导向传输介质是 B. 单模光纤	。 C. 多模光纤	D. 同轴电缆		
35.	对于滑动窗口协议,若多是。	分组序号采用 3 比特编号	号,发送窗口大小为 5,	则接收窗口最大		
	A. 2	B . 3	C. 4	D. 5		
36.	假设一个采用 CSMA/CI 之间的单向传播延时最多 A. 2.56μs		月,最小帧长是 128 B ,贝 C. 10.24μs	J在一个冲突域内两个站点 D. 20.48μs		
37	若将 101,200.16.0/20 划分	• · · · · · · · · · · · · · · · · · · ·		•		
51.	A. 126	B. 254	C. 510	D. 1022		
38.		100 的段,并发送序列	号 seq = 100 的段,但发 。	。客户在 t_0 时刻第一次收生丢失。若 TCP 支持快速		
	A. t_1	$\mathbf{B}.\ t_2$	C. t ₃ 服务器	D. <i>t</i> ₄		
	### A Seq = 100 ### A					
39.			甲、乙选择的初始序列与	号分别为 2018 和 2046,则		
	第三次握手 TCP 段的确 A. 2018	队序列号是。 B. 2019	C. 2046	D. 2047		
40.	下列关于网络应用模型的A. 在 P2P 模型中,结点B. 在客户/服务器(C/S C. 在 C/S 模型中,主动D. 在向多用户分发一个	之间具有对等关系)模型中,客户与客户. 1发起通信的是客户,被	之间可以直接通信 动通信的是服务器	$ec{u}$		
41.	(13分)设线性表 L=(义如下:	$(a_1, a_2, a_3, \cdots, a_{n-2}, a_{n-1},$	a _n)采用带头结点的单链	表保存,链表中的结点定		
	<pre>typedef struct nod { int data; Struct node* ne }</pre>					
	} NODE; 请设计一个空间复杂度;	为 O(1)且时间上尽可能;	高效的算法,重新排列1	, 中的各结点,得到线性		
	表 $L' = (a_1, a_n, a_2, a_{n-1}, a_3, (1)$ 给出算法的基本设					

考研历年真题及答案下载:www.pgcode.cn

(2) 根据设计思想,采用 C 或 C++语言描述算法,关键之处给出注释。

(3) 说明你所设计算法的时间复杂度。

- 42. (10 分)请设计一个队列,要求满足:①初始时队列为空;②入队时,允许增加队列占用空间;③出队后,出队元素所占用的空间可重复使用,即整个队列所占用的空间只增不减;④入队操作和出队操作的时间复杂度始终保持为O(1)。请回答下列问题:
 - (1) 该队列是应选择链式存储结构,还是应选择顺序存储结构?
 - (2) 画出队列的初始状态,并给出判断队空和队满的条件。
 - (3) 画出第一个元素入队后的队列状态。
 - (4)给出入队操作和出队操作的基本过程。
- 43. (8分)有 $n(n \ge 3)$ 位哲学家围坐在一张圆桌边,每位哲学家交替地就餐和思考。在圆桌中心有 $m(m \ge 1)$ 个碗,每两位哲学家之间有一根筷子。每位哲学家必须取到一个碗和两侧的筷子后,才能就餐,进餐完毕,将碗和筷子放回原位,并继续思考。为使尽可能多的哲学家同时就餐,且防止出现死锁现象,请使用信号量的P、V操作[wait()、signal()操作]描述上述过程中的互斥与同步,并说明所用信号量及初值的含义。
- 44. (7分) 某计算机系统中的磁盘有 300 个柱面,每个柱面有 10 个磁道,每个磁道有 200 个扇区,扇区大小为 512B。文件系统的每个簇包含 2 个扇区。请回答下列问题:
 - (1) 磁盘的容量是多少?
 - (2) 假设磁头在85号柱面上,此时有4个磁盘访问请求,簇号分别为100260、60005、101660和110560。若采用最短寻道时间优先(SSTF)调度算法,则系统访问簇的先后次序是什么?
 - (3) 第 100 530 簇在磁盘上的物理地址是什么?将簇号转换成磁盘物理地址的过程是由 I/O 系统的什么程序完成的?
- 45. (16 分) 已知 $f(n) = n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$, 计算 f(n)的 C 语言函数 f1 的源程序(带框部分)及其在 32 位计算机 M 上的部分机器级代码如下:

```
int f1(int n){
 1 00401000 55
                             push ebp
    . . .
if(n>1)
 1100401018 83 7D 08 01
                             cmp dword ptr [ebp+8],1
 120040101C 7E 17
                             jle f1+35h (00401035)
  return n*f1(n-1);
 130040101E 8B 45 08
                             mov eax, dword ptr[ebp+8]
 1400401021 83 E8 01
                             sub eax, 1
 1500401024 50
                             push eax
 1600401025 E8 D6 FF FF FF call f1 (00401000)
 1900401030 OF AF C1
                            imul eax, ecx
 2000401033 EB 05
                             jmp f1+3Ah (0040103a)
  else return 1;
 2100401035 B8 01 00 00 00 mov eax, 1
}
    . . .
 2600401040 3B EC
                             cmp ebp, esp
 300040104A C3
                             ret
```

其中,机器级代码行包括行号、虚拟地址、机器指令和汇编指令,计算机 M 按字节编址, int 型数据占 32 位。请回答下列问题:

- (1) 计算 f(10)需要调用函数 f1 多少次? 执行哪条指令会递归调用 f1?
- (2) 上述代码中, 哪条指令是条件转移指令? 哪几条指令一定会使程序跳转执行?
- (3) 根据第 16 行的 call 指令,第 17 行指令的虚拟地址应是多少? 已知第 16 行的 call 指令采用相对寻址方式,该指令中的偏移量应是多少(给出计算过程)? 已知第 16 行的 call 指令的后 4 字节为偏移量,M 是采用大端方式还是采用小端方式?
- (4) f(13) = 6227020800,但 f1(13)的返回值为 1932053504,为什么两者不相等? 要使 f1(13)能 返回正确的结果,应如何修改 f1 的源程序?
- (5) 第 19 行的 imul 指令(带符号整数乘)的功能是 $R[eax] \leftarrow R[eax] \times R[ecx]$,当乘法器输出的 高、低 32 位乘积之间满足什么条件时,溢出标志 OF = 1? 要使 CPU 在发生溢出时转异常处理,编译器应在 imul 指令后应加一条什么指令?

- 46. (7分) 对于题 45, 若计算机 M 的主存地址为 32 位, 采用分页存储管理方式, 页大小为 4KB,则第 1 行的 push 指令和第 30 行的 ret 指令是否在同一页中(说明理由)?若指令 Cache 有 64 行,采用 4 路组相联映射方式,主存块大小为 64B,则 32 位主存地址中,哪几位表示块内地址?哪几位表示 Cache 组号?哪几位表示标记(tag)信息?读取第 16 行的 call 指令时,只可能在指令 Cache 的哪一组中命中(说明理由)?
- 47. (9分) 某网络拓扑如题 47 图所示,其中 R 为路由器,主机 H1~H4 的 IP 地址配置以及 R 的各接口 IP 地址配置如图中所示。现有若干以太网交换机(无 VLAN 功能)和路由器两类网络互连设备可供选择。

题 47 图

请回答下列问题:

- (1) 设备 1、设备 2 和设备 3 分别应选择什么类型的网络设备?
- (2)设备 1、设备 2 和设备 3 中,哪几个设备的接口需要配置 IP 地址?为对应的接口配置正确的 IP 地址。
- (3) 为确保主机 H1~H4 能够访问 Internet, R 需要提供什么服务?
- (4) 若主机 H3 发送一个目的地址为 192.168.1.127 的 IP 数据报,网络中哪几个主机会接收该数据报?