Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Organización Computacional

Ing. Fernando Paz

Auxiliar: Brayan Prado

PRACTICA 1 SIMULACIÓN DE UN VISUALIZADOR DE 7 SEGMENTOS

Sergio Emilio de León Búcaro 201800673

Claudia Paola Alonzo Hernández 201902246

Alberto Josué Hernandez Armas 201903553

Jennifer Yulissa Lourdes Taperio Manuel 202103763

Melvin Alexander Valencia Estrada 202111556

Harold Alejandro Sánchez Hernández 202200100

INTRODUCCIÓN

La práctica propuesta por la empresa de publicidad involucra el diseño e implementación de un circuito combinacional de 3 bits en Proteus para las entradas X, Y, Z con el objetivo de generar una salida A y B para un display de 7 segmentos. Este display mostrará una palabra de 8 donde la salida B debe ser un efecto espejo de la salida A, permitiendo la legibilidad desde ambos lados. Además, se plantea la futura implementación de un sistema de detección de errores, que añadirá un bit de paridad a la información obtenida.

El circuito requerirá el uso de compuertas transistorizadas para algunos segmentos del display y compuertas lógicas TTL (Transistor-Transistor Logic) para otros. Así mismo, se solicita implementar dos funciones de detección de errores, denominadas Función J (Paridad Par de 1's) y Función K (Paridad Par de 0's), mediante circuitos integrados.

La metodología de trabajo especifica que la práctica debe ser desarrollada físicamente, con dos funciones implementadas en placas y el resto de los circuitos en protoboard. Se destaca la importancia de la presentación y creatividad en la elaboración de cada display.

Para lograr la detección de errores, se propone utilizar circuitos lógicos que cuenten el número de bits '1' y '0' en las entradas respectivamente, generando salidas de 1 cuando estos sean pares.

OBJETIVOS

General:

Diseñar e implementar un sistema de visualización utilizando un display de 7 segmentos el cual se pueda leer la palabra DICTADURA junto al espejo de esta y desarrollar funciones de detección de errores mediante lógica combinacional.

Específicos:

- Diseñar un circuito combinacional utilizando compuertas transistorizadas y compuertas lógicas TTL (Transistor-Transistor Logic) para generar las salidas A y B.
- Implementar físicamente las funciones de detección de errores Función J (Paridad Par de 1's) y Función K (Paridad Par de 0's) mediante circuitos integrados.
- Construir placas con compuertas transistorizadas para las funciones de detección de errores, etiquetando adecuadamente con el número de grupo, semestre y año.

- Implementar el resto de los circuitos en protoboard, considerando términos mínimos para la parte frontal y términos máximos para la parte posterior.
- Desarrollar la presentación visual de cada display de siete segmentos, mostrando una palabra de 8 letras

CONTENIDO

a. Funciones booleanas:

segmento a: y=A'BC'+AB'C'

segmento b: y = A'C+BC'

segmento c: y = 1

segmento d: y = C'+AB'

segmento e: y = B'C'+AB'+AC'

segmento f: y = B'C'+AB'+AC'

segmento g: y = B'C'+BC+AB'

Tabla general

			Columna1 🔻	Columna2 🔻	Columna3 🔻	Columna4 🔻	Columna5 🔻	Columna6 🗸	Columna7 🐷
Α	В	С	a	b	С	d	e	f	g
0	0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	0	0	0	0
0	1	0	1	1	1	1	0	0	0
0	1	1	0	1	1	0	0	0	1
1	0	0	1		1	1	1	1	1
1	0	1	0	0	1	1	1	1	1
1	1	0	0	1	1	1	1	1	0
1	1	1	0	0	1	0	0	0	1

b . Mapas de karnaugh

segmento a		
AB\C	0	1
0 0	0	0
0 1	1	0 0
1 1	0	0
10	1	0
segmento b		
AB\C	0	1
0 0	0	1
0 1	1	1
11	1	1 0
10	0	0
segmento c		
AB\C	0	1
0 0	1	1
0 1	1	1
1 1	1	1

segmento d		
AB\C	0	1
0 0	1	0
0 1	1	0
11	1	0
10	1	1
segmento e		
AB\C	0	1
0 0	1	0
0 1	0	0
11	1	0
10	1	1
segmento f		
AB\C	0	1
0 0	1	0
0 1	0	0
11	1	0
1 0	1	1

segmento g		
AB\C	0	1
0 0	1	0
0 1	0	1
1 1	0	1
10	1	1

c. Diagramas del Diseño de Circuitos

segmento a

segmento b

segmento c

$$y = 1$$

segmento d

segmento e

segmento f

segmento g

d. Equipo Utilizado

1 plancha		
1 cautín		
1 pelador de cables		
1 cuadro de lija		
1 bandeja de plástico		
1 pinza		
1 cortador de cables		

e. Presupuesto

Componentes	Precio Unitario	Cantidad	Total
Transistor NPN 222A	Q2.00	30	Q60
Placa de pruebas	Q35	8	Q280
Leds	Q1	30	Q30
Cable	Q3	12 m	Q36
Compuerta Lógica AND	Q5	10	Q50
Compuerta Lógica OR	Q5	10	Q50
Compuerta Lógica NOT	Q5	10	Q50
Compuerta Lógica XOR	Q5	5	Q25
Dispswitch	Q3	1	Q3
TOTAL	Q584		

APORTE INDIVIDUAL DE CADA INTEGRANTE

Estudiante	Aporte
Sergio Emilio de León Búcaro	Compra de componentes, realizo diagrama en proteus, segmentos en protoboard, trabajo escrito
Claudia Paola Alonzo Hernández	Compra de componentes, realizo diagrama en proteus, segmentos en protoboard, trabajo escrito
Alberto Josué Hernandez Armas	Compra de componentes, realizo diagrama en proteus, segmentos en protoboard, trabajo escrito
Jennifer Yulissa Lourdes Taperio Manuel	Compra de componentes, realizo diagrama de proteus, segmentos en protoboard, trabajo escrito
Melvin Alexander Valencia Estrada	Compra de componentes, realizo diagrama de proteus, placas y segmentos en protoboard y trabajo escrito
Harold Alejandro Sánchez Hernández	Compra de componentes.realizo diagramas en proteus, placas y segmentos en protoboard y trabajo escrito

CONCLUSIONES

La práctica utilizada fue de gran utilidad para que se aprendiera sobre circuitos, transistores y lógica booleana, así mismo se puso en práctica lo aprendido en clase al tener que aplicar el conocimiento en un proyecto real.

Se llegó a conocer de primera mano cómo es crear desde 0 un circuito, pasando por la fase lógica, de diseño, para llegar a materializarlo.

Lo aprendido en la realización de la práctica servirá como puente para las prácticas siguientes como para el proyecto final, ya que sirvió de introducción para que como estudiantes nos familiaricemos con los componentes y formas de trabajar en equipo.

La realización de pruebas exhaustivas ha sido esencial para garantizar la correcta funcionalidad del circuito combinacional y del sistema de detección de errores. Este proceso ha destacado la importancia de la validación práctica en el desarrollo de proyectos electrónicos.

ANEXOS

a. Diagrama del Circuito Impreso

- Circuito Segmento C

-Circuito Segmento B

- Circuito PCB

-Circuito Paridad

b. Fotografía del Circuito Físico

c. Video

El link para ver el video:

https://www.youtube.com/watch?v=Y7tzTAn9mnE