Cognoms	Nom	DNI
Examen Parcial EDA	Duració: 1h 30n) () min 08/11/2021
 L'enunciat té 4 fulls, 8 cares, e Poseu el vostre nom complet i Contesteu tots els problemes e Llevat que es digui el contrari, en temps. Llevat que es digui el contrari 	número de DNI a cada pro en el propi full de l'enuncia sempre que parlem de cost	t a l'espai reservat. ens referim a cost asimptòtic
Problema 1		(5 pts.)
Responeu les preguntes següents	5:	
(a) (1 pt.) Considereu la funció n	nystery:	
if $(n \le 1)$ return fals if $(n == 2)$ return true if $(n\%2 == 0)$ return for (int $i = 3$; $i*i \le 1$ if $(n\%i == 0)$ return return true; } La funció mystery determina	ie; false; (n; i += 2) rn false;	i
el cost en el cas pitjor, en fu cost:	nció d' n , és $\Theta($ \lfloor)). Justifiqueu aquest

(b) (1 pt.) Considereu ara el codi següent:

```
int j = 0;
int s = 0;
for (int i = 0; i < n; ++i)
   if (i == j*j) {
      for (int k = 0; k < n; ++k) ++s;
        ++j;
   }</pre>
```

En funció d'n, el cost és $\Theta($ \bigcirc) . Justifiqueu la vostra resposta:

(c) (1 pts.) Donat un vector v d'n enters, volem calcular el nombre total de parelles (i,j) tals que $0 \le i < j \le n-1$ i v[i] = v[j]. Per tal de solucionar el problema ens donen el codi següent:

```
int pairs (const vector < int>& v, int l, int r) {
    if (l ≥ r) return 0;
    else {
        int m = (l+r)/2;
        int n_left = pairs (v, l, m);
        int n_right = pairs (v, m+1, r);
        int n_crossed = 0;
        for (int i = l; i ≤ m; ++i)
            for (int j = m+1; j ≤ r; ++j)
                if (v[i] == v[j]) ++n_crossed;
        return n_left + n_right + n_crossed;
    }
}
int pairs (const vector < int>& v) {return pairs(v,0,v. size () - 1);}
```

(d) (2 pts.) Ens asseguren ara que tots els nombres de v són naturals estrictament menors que un cert paràmetre enter K, que és constant i no depèn d'n. En aquesta situació, el codi següent és una solució al problema de l'apartat anterior:

```
int pairs_2 (const vector < int>& v) {
    vector < int> times(K,0);
    int n = v. size ();
    for (int i = 0; i < n; ++i) ++times[v[i]];

    int res = 0;
    for (int i = 0; i < K; ++i) res += (times[i]*(times[i]-1))/2;
    return res;
}</pre>
```

Si n és la mida de v, el cost de $pairs_2$ en funció d'n és $\Theta($ \bigcirc). Justifiqueu la vostra resposta:

Expliqueu per què el codi anterior és una s	solució correcta:
	\
\	/

Cognoms	Nom	DNI

Problema 2 (5 pts.)

Donat un vector v d'n enters ordenats creixentment i un enter x, volem determinar el nombre de vegades que x apareix a v.

(a) (1.5 pts.) Diem que la *primera aparició* d'x dins v és el menor índex i amb $0 \le i < n$ i v[i] = x, o bé -1 si x no apareix a v. Un amic ens comenta que si sabem trobar la primera aparició, aleshores trobar una solució eficient al nostre problema no és massa difícil. Ompliu el codi següent per tal que trobi la primera aparició d'x dins v de manera que el seu cost en cas pitjor sigui $O(\log n)$.

```
int first_occurrence (int x, const vector < int > & v, int l, int r) {
   if (l > r) return -1;
   else {
     int m = (l+r)/2;
     if (v[m] < x) return first_occurrence (x,v,m+1,r);
     else if (v[m] > x) return first_occurrence (x,v,l,m-1);
   }
}
int first_occurrence (int x, const vector < int > & v) {
   return first_occurrence (x,v,0,v.size ()-1);
}
```

(b) (1.5 pts.) Amb la funció anterior funcionant ja correctament, ens demanen que omplim el codi següent per tal que calculi el nombre d'aparicions d'x dins v:

```
int p = first\_occurrence\ (x,v);

int n = v. size\ ();

for (int i = 0;\ i < n;\ ++i)\ v[i] = -v[i];

for (int i = 0;\ i \le n/2 - 1;\ ++i)\ swap(v[i],v[n-1-i]);

int q = first\_occurrence\ (-x,v);

int res;

if (p == -1)\ res = 0;

else res = cout \ll res \ll endl;
```

'n.	de forma rao					_
						\mathcal{L}
xpliqueu pe	r què el codi	anterior ca	alcula correc	ctament el no	ombre d'apa	aricio
x dins v .						

n cas pitjor,	asimptòtican	nent més e		el codi anter	ior? Si exis
xpliqueu-lo a eix, expliqueu			concret) i ana	llitzeu el seu	cost. Si no

Aquesta cara estaria en blanc intencionadament si no fos per aquesta nota.