#### !pip install kaggle

```
Requirement already satisfied: kaggle in /usr/local/lib/python3.10/dist-packages (1.5] Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.10/dist-packages (Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from Requirement already satisfied: python-slugify in /usr/local/lib/python3.10/dist-packages (from Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-package Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.10/dist-Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-package idna<4,>=2.5 in /usr/local/lib/python3.10/dist-package
```

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m

```
from logging import warning
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

df = pd.read\_csv('/content/drive/MyDrive/Colab Notebooks/kaggle\_dataset/customer\_churn/Chu
df.head()

|   | RowNumber | CustomerId | Surname  | CreditScore | Geography | Gender | Age | Tenure | Bal   |
|---|-----------|------------|----------|-------------|-----------|--------|-----|--------|-------|
| 0 | 1         | 15634602   | Hargrave | 619         | France    | Female | 42  | 2      |       |
| 1 | 2         | 15647311   | Hill     | 608         | Spain     | Female | 41  | 1      | 838(  |
| 2 | 3         | 15619304   | Onio     | 502         | France    | Female | 42  | 8      | 15966 |
| 3 | 4         | 15701354   | Boni     | 699         | France    | Female | 39  | 1      |       |
| 4 | 5         | 15737888   | Mitchell | 850         | Spain     | Female | 43  | 2      | 1255° |

df,columns

```
'IsActiveMember', 'EstimatedSalary', 'Exited'],
          dtype='object')
print('df:', df.shape)
    df: (10000, 14)
df.duplicated().sum()
    0
df.isnull().sum()
     RowNumber
                       0
    CustomerId
                       0
                       0
    Surname
                       0
    CreditScore
    Geography
                       0
                       0
    Gender
                       0
    Age
                       0
    Tenure
                       0
    Balance
                       0
    NumOfProducts
    HasCrCard
                       0
    IsActiveMember
                       0
    EstimatedSalary
    Exited
    dtype: int64
df.info()
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 14 columns):
     #
         Column
                          Non-Null Count Dtype
         -----
                           _____
     0
         RowNumber
                          10000 non-null int64
     1
         CustomerId
                          10000 non-null int64
     2
         Surname
                          10000 non-null object
      3
         CreditScore
                          10000 non-null int64
     4
                          10000 non-null object
         Geography
     5
         Gender
                          10000 non-null object
      6
         Age
                          10000 non-null int64
     7
                          10000 non-null int64
         Tenure
     8
         Balance
                          10000 non-null float64
     9
                          10000 non-null int64
         NumOfProducts
     10 HasCrCard
                          10000 non-null int64
     11 IsActiveMember
                          10000 non-null int64
                          10000 non-null float64
     12 EstimatedSalary
```

df.describe()

memory usage: 1.1+ MB

13 Exited

10000 non-null

dtypes: float64(2), int64(9), object(3)

int64

|       | RowNumber   | CustomerId   | CreditScore  | Age          | Tenure       | Balan       |
|-------|-------------|--------------|--------------|--------------|--------------|-------------|
| count | 10000.00000 | 1.000000e+04 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.0000  |
| mean  | 5000.50000  | 1.569094e+07 | 650.528800   | 38.921800    | 5.012800     | 76485.8892  |
| std   | 2886.89568  | 7.193619e+04 | 96.653299    | 10.487806    | 2.892174     | 62397.4052  |
| min   | 1.00000     | 1.556570e+07 | 350.000000   | 18.000000    | 0.000000     | 0.0000      |
| 25%   | 2500.75000  | 1.562853e+07 | 584.000000   | 32.000000    | 3.000000     | 0.0000      |
| 50%   | 5000.50000  | 1.569074e+07 | 652.000000   | 37.000000    | 5.000000     | 97198.5400  |
| 75%   | 7500.25000  | 1.575323e+07 | 718.000000   | 44.000000    | 7.000000     | 127644.2400 |
| max   | 10000.00000 | 1.581569e+07 | 850.000000   | 92.000000    | 10.000000    | 250898.0900 |

plt.figure(figsize=(20,10))
sns.heatmap(df.corr(), annot = True)



### <Axes: >



```
col = []
for i in df.columns:
  num = len(df[i].unique())
  print(i,':', str(num) + str(' Distinct values'))
  #append < 10 distinct values columns in list
  if num < 10:
    col.append(i)
     RowNumber: 10000 Distinct values
     CustomerId: 10000 Distinct values
     Surname: 2932 Distinct values
     CreditScore: 460 Distinct values
     Geography: 3 Distinct values
     Gender : 2 Distinct values
     Age : 70 Distinct values
     Tenure: 11 Distinct values
     Balance : 6382 Distinct values
     NumOfProducts : 4 Distinct values
     HasCrCard : 2 Distinct values
     IsActiveMember : 2 Distinct values
     EstimatedSalary: 9999 Distinct values
     Exited: 2 Distinct values
for i in col:
  print(df[i].value_counts(), '\n')
     France
                5014
     Germany
                2509
                2477
     Spain
     Name: Geography, dtype: int64
     Male
               5457
     Female
               4543
     Name: Gender, dtype: int64
     1
          5084
     2
          4590
     3
           266
     4
            60
     Name: NumOfProducts, dtype: int64
     1
          7055
          2945
     Name: HasCrCard, dtype: int64
     1
          5151
     0
          4849
     Name: IsActiveMember, dtype: int64
     0
          7963
     1
          2037
```

BLACKBOX AI

Name: Exited, dtype: int64

```
for i in col:
    sns.countplot(x=i, data=df)
    plt.title(i)
    plt.show()
```









```
3000 -
2000 -
1000 -
0 Exited
```

```
plt.hist(df['Age'], edgecolor='black')
plt.title('Age Distribution')
plt.show()
```

# Age Distribution

```
3500 -

3000 -

2500 -

2000 -

1500 -
```

```
sns.set(style="whitegrid")
j = col.pop()
for i in col:
   sns.countplot(x=i, hue=j, data=df)
   plt.title( i + ' vs ' + j)
   plt.show()
```







IsActiveMember

BLACKBOX AI

## df.head()

|   | RowNumber | CustomerId | Surname  | CreditScore | Geography | Gender | Age | Tenure | Bal   |
|---|-----------|------------|----------|-------------|-----------|--------|-----|--------|-------|
| 0 | 1         | 15634602   | Hargrave | 619         | France    | Female | 42  | 2      |       |
| 1 | 2         | 15647311   | Hill     | 608         | Spain     | Female | 41  | 1      | 838(  |
| 2 | 3         | 15619304   | Onio     | 502         | France    | Female | 42  | 8      | 15966 |
| 3 | 4         | 15701354   | Boni     | 699         | France    | Female | 39  | 1      |       |
| 4 | 5         | 15737888   | Mitchell | 850         | Spain     | Female | 43  | 2      | 1255  |

df.drop(columns=['RowNumber', 'CustomerId', 'Surname'], inplace=True )

df.head()

|   | CreditScore | Geography | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | ] |
|---|-------------|-----------|--------|-----|--------|-----------|---------------|-----------|---|
| 0 | 619         | France    | Female | 42  | 2      | 0.00      | 1             | 1         |   |
| 1 | 608         | Spain     | Female | 41  | 1      | 83807.86  | 1             | 0         |   |
| 2 | 502         | France    | Female | 42  | 8      | 159660.80 | 3             | 1         |   |
| 3 | 699         | France    | Female | 39  | 1      | 0.00      | 2             | 0         |   |
| 4 | 850         | Spain     | Female | 43  | 2      | 125510.82 | 1             | 1         |   |

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Gender'] = le.fit_transform(df['Gender'])
```

df.head()

|   | CreditScore | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActive" |
|---|-------------|--------|-----|--------|-----------|---------------|-----------|-----------|
| 0 | 619         | 0      | 42  | 2      | 0.00      | 1             | 1         |           |
| 1 | 608         | 0      | 41  | 1      | 83807.86  | 1             | 0         |           |
| 2 | 502         | 0      | 42  | 8      | 159660.80 | 3             | 1         |           |
| 3 | 699         | 0      | 39  | 1      | 0.00      | 2             | 0         |           |
| 4 | 850         | 0      | 43  | 2      | 125510.82 | 1             | 1         |           |

### a.head()

| E | <b>=</b> |     |
|---|----------|-----|
| 0 | 1        | ıl. |
| 1 | 0        |     |
| 2 | 1        |     |
| 3 | 0        |     |
| 4 | 0        |     |

df.drop(columns=['Exited'], inplace = True)

df.head()

|   | CreditScore | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMeml |
|---|-------------|--------|-----|--------|-----------|---------------|-----------|--------------|
| 0 | 619         | 0      | 42  | 2      | 0.00      | 1             | 1         |              |
| 1 | 608         | 0      | 41  | 1      | 83807.86  | 1             | 0         |              |
| 2 | 502         | 0      | 42  | 8      | 159660.80 | 3             | 1         |              |
| 3 | 699         | 0      | 39  | 1      | 0.00      | 2             | 0         |              |
| 4 | 850         | 0      | 43  | 2      | 125510.82 | 1             | 1         |              |

df = pd.concat([df, a], axis=1)

df.head()

|   | CreditScore | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMeml |
|---|-------------|--------|-----|--------|-----------|---------------|-----------|--------------|
| 0 | 619         | 0      | 42  | 2      | 0.00      | 1             | 1         |              |
| 1 | 608         | 0      | 41  | 1      | 83807.86  | 1             | 0         |              |
| 2 | 502         | 0      | 42  | 8      | 159660.80 | 3             | 1         |              |
| 3 | 699         | 0      | 39  | 1      | 0.00      | 2             | 0         |              |
| 4 | 850         | 0      | 43  | 2      | 125510.82 | 1             | 1         |              |
|   |             |        |     |        |           |               |           |              |

plt.figure(figsize=(20,10))
sns.heatmap(df.corr(), annot = True)

<Axes: >



```
x = df.iloc[:, :-1].values
y = df.iloc[:,-1].values
```

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=
```

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
```

```
from sklearn.linear_model import LogisticRegression
log = LogisticRegression(random_state = 42)
log.fit(x_train, y_train)
```

```
LogisticRegression
LogisticRegression(random_state=42)
```

from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
R = RandomForestClassifier(n\_estimators=5 ,random\_state = 42)

```
R.fit(x_train, y_train)
```

```
RandomForestClassifier

RandomForestClassifier(n_estimators=5, random_state=42)

clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, random_state=42)

clf.fit(x_train, y_train)
```

```
GradientBoostingClassifier
GradientBoostingClassifier(learning_rate=1.0, n_estimators=10, random_state=42)
```

```
classifier = [log, R, clf]
model = ['Logistic Regression', 'Random Forest Classifier', 'Gradient Boosting Classifier'

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, Confu
for i in range(len(classifier)):
    y_pred = classifier[i].predict(x_test)
    cm = confusion_matrix(y_test, y_pred)
    accuracy = accuracy_score(y_test, y_pred)*100
    print('\nfor ' + str(model[i]) + ':\n')
    disp = ConfusionMatrixDisplay(confusion_matrix=cm)
    plt.rcParams['axes.grid'] = False
    disp.plot()
    print(accuracy)
    print(classification_report(y_test, y_pred))
    plt.show()
```





for Gradient Boosting Classifier:

| 85.65        |           |        |          |         |
|--------------|-----------|--------|----------|---------|
|              | precision | recall | f1-score | support |
| 0            | 0.88      | 0.95   | 0.91     | 1607    |
| 1            | 0.70      | 0.47   | 0.56     | 393     |
| accuracy     |           |        | 0.86     | 2000    |
| macro avg    | 0.79      | 0.71   | 0.74     | 2000    |
| weighted avo | 0.84      | 0.86   | 0.84     | 2000    |

