INVERSE CONSISTENCY BY CONSTRUCTION FOR MULTISTEP DEEP REGISTRATION

MICCAI 2023. Hastings Greer, Lin Tian, Francois-Xavier Vialard, Roland Kwitt, Sylvain Bouix, Raul San Jose Estepar, Richard Rushmore, and Marc Niethammer

TRADITIONAL DEEP REGISTRATION

Fixed Image (IB)

Moving image (IA)

Transformation model : $\varphi(x) = kx$

$$k = NN_{\theta}(I^A, I^B)$$

Inverse consistent if NN_{θ} $(I^A, I^B) * NN_{\theta}(I^B, I^A) = 1$

OUR APPROACH

Fixed Image (IB)

Moving image (IA)

Transformation model : $\phi(x) = kx$

$$k = \exp(NN_{\theta}(I^A, I^B) - NN_{\theta}(I^B, I^A))$$

Inverse consistent if

$$\exp\left(NN_{\theta}(I^A,I^B)-NN_{\theta}(I^B,I^A)\right)*\exp\left(NN_{\theta}(I^B,I^A)\right.\\ \left.-NN_{\theta}(I^A,I^B)\right)=1$$

K DOESN'T HAVE TO BE A NUMBER

Transformation model : $\phi(x) = kx$

$$k = \exp(NN_{\theta}(I^A, I^B) - NN_{\theta}(I^B, I^A))$$

1

A NOTATION FOR FINDING PROPERTIES OF REGISTRATION ALGORITHMS

- I^A, I^B, I^M, I^F
- \varphi, \varpsi
- Operators are functions from registration algorithms to registration algorithms

- Images are functions from coordinates to intensities
- Transforms are functions from coordinates to coordinates
- (it's usually clearer to write a registration algorithm called on inputs instead of a naked transform)
- Registration algorithms are functionals from image pairs to transforms
- Operators are functions from registration algorithms to registration algorithms

TWO STEP REGISTRATION

Given two Neural Networks Φ_{θ} , Ψ_{ρ} that are inverse consistent, $TSC\{\Phi_{\theta},\Psi_{\rho}\}[I^A,I^B]=$

$$\sqrt{\Phi_{\theta}[I^A,I^B]} \circ \Psi_{\rho}[I_A \circ \sqrt{\Phi_{\theta}[I^A,I^B]},I^B \circ \sqrt{\Phi_{\theta}[I^B,I^A]}] \circ \sqrt{\Phi_{\theta}[I^A,I^B]}$$

is also inverse consistent. Proof via symbol munging.

MULTI STEP REGISTRATION

ACCELERATED CONVERGENCE


```
    N(A, B)
    exp(N(A, B))
    exp(N(A, B) - N(B, A))
    TS, exp(N(A, B))
    TSC, exp(N(A, B))
    TSC, exp(N(A, B))
    TSC, exp(N(A, B))
```

REAL WORLD PERFORMANCE

HCP			
Approach	DICE	% J	$\ \Phi^{AB}\circ\Phi^{BA}-\mathrm{id}\ $
ANTs SyNOnly [2]	75.8	0	0.0350
ANTs SyN	77.2	0	1.30
ConstrICON	79.3	3.81e-6	0.000386
ConstrICON + io	80.1	0	0.00345
GradICON [23]	78.6	0.00120	0.309
GradICON + io	80.2	0.000352	0.123
SynthMorph [8] brain	78.4	0.364	_
SynthMorph shape	79.7	0.298	_
OASIS			
Approach	DICE	% J	$\left \left\ \Phi^{AB}\circ\Phi^{BA}-\mathrm{id}\right\ \right $
ConstrICON	79.7	9.73e-5	0.00776
SymNet [14]	79.1	0.00487	0.0595
EasyReg [10]	77.2	_	0.181

