https://www.nature.com/ articles/s41467-024-50404-y

Data availability

The publicly available genotype, DNA methylation, and gene expression data of GTEx participants used in this study are available in the dbGaP and GEO under accession code phs000424.v8.p2^{10,15} and GSE213478^{10,15}, respectively. The publicly available DNA methylation data of TCGA participants used in this study are available in the NCI Genomic Data Commons Data Portal [https://portal.gdc.cancer.gov/]²⁷. The publicly available GTEx v8based gene expression and splicing prediction models used in this study are available in PredictDB [https://p 35. Bycroft, C. et al. The UK biobank resource with deep phenotyping and genomic data. used in this study are Nature 562, 203-209 (2018). cancer GWAS used in Article ADS CAS PubMed PubMed Central Google Scholar (accession code phs001736.v2.p1) for renal cell cancer⁸, GWAS catalog (accession code GCST004746³⁴, ⁴⁸), UK Biobank data from the Neale lab [https://www.nealelab.is/ukbiobank]35, the FinnGen website [https://r9.finngen.fi/]36, and the Biobank Japan website [https://pheweb.jp/]³⁷ for lung cancer, OCAC website [https://ocac.ccge.medschl.cam.ac.uk/data-projects/] for ovarian cancer 6,38, GWAS catalog ession code 37. Sato, G. et al. Pan-cancer and cross-population genome-wide association studies dissect diction models shared genetic backgrounds underlying carcinogenesis. Nat. Commun. 14, 3671 (2023). $10810820)^{33}$. The Article ADS CAS PubMed PubMed Central Google Scholar remaining data are available within the Article, Supplementary information or Source Data

files. Source data are provided with this paper.

The Biobank Japan website

https://pheweb.jp/

BioBank Japan PheWeb (PheWeb.jp)

Search for a variant, gene, or phenotype

Example queries: Type 2 diabetes (T2D) PCSK9 rs671

This website releases genome-wide association study (GWAS) summary statistics of the BioBank Japan Project (BBJ). We provide GWAS results in the Japanese population (mainly from BBJ) using the PheWeb platform, with public access to the full summary statistics.

The BBJ is a prospective genome biobank managed by the Institute of Medical Science, the University of Tokyo. It has collaboratively collected DNA and serum samples from 12 medical institutions across Japan. The project has recruited approximately 260,000 participants, mainly of Japanese ancestry. All study participants were diagnosed with one or more of 51 target diseases. RIKEN Center for Integrative Medical Sciences, the University of Tokyo, and Osaka University contributed to the genotyping of the BBJ samples.

News

March 25, 2025: 3 new GWAS results from Yamamoto, K., et al. (2024), Sasa, N., Kojima, S. & Koide, R., et al. (2025), and Yata, T., Sato, G. & Ogawa, K., et al. (2025). Phenotypes include Jomon proportion, eHHV-6B positivity, and neuromyelitis optica spectrum disorder (NMOSD).

July 27, 2024: 7 new GWAS results from Sonehara, K. & Yano, Y., et al. (2024), and Suzuki, K., Hatzikotoulas, K., Southam, L., Taylor, HJ., Yin, X., Lorenz, KM. & Mandla, R., et al. (2024).

Phenotypes include recurrent pregnancy loss, and the latest multi-ancestry meta-analysis of T2D.

July 26, 2023: 7 new GWAS results from Akiyama, Y. & Sonehara, K., et al. (2023), and Sato, G., et al. (2023).

Phenotypes include Hunner-type interstitial cystitis, and pan-cancer meta-analyses (e.g., breast cancer).

ICD10 C	Colorectal cancer	BBJ	167,691	8,305	159,386	Download
ICD10 C	Cervical cancer	BBJ	61,581	967	60,614	Download
ICD10 C	Endometrial cancer	BBJ	61,814	1,200	60,614	Download
ICD10 C	Esophageal cancer	BBJ	160,589	1,388	159,201	Download
ICD10 C	Gastric cancer	BBJ	167,122	7,921	159,201	Download
ICD10 C	Hepatic cancer	BBJ	161,323	2,122	159,201	Doveload
ICD10 C	Lung cancer	BBJ	178,726	4,444	174,282	Download
ICD10 C	Malignant lymphoma	BBJ	177,677	335	177,342	Download
ICD10 C	Ovarian cancer	BBJ	61,457	843	60,614	Download
ICD10 C	Pancreatic cancer	BBJ	159,700	499	159,201	Download
ICD10 C	Pharyngeal and laryngeal cancer	BBJ	178,726	300	178,426	Download
ICD10 C	Prostate cancer	BBJ	90,332	5,672	84,660	Download
ICD10 C	Skin cancer	BBJ	178,726	154	178,572	Download
ICD10 C	Thyroid cancer	BBJ	178,723	361	178,362	Download
ICD10 D	Aplastic anemia	BBJ	174,110	53	174,057	Download

Genetics of rheumatoid arthritis contributes to biology and drug discovery

Okada, Y., et al, Nature 506 376-381 (2014)

When using these results, please cite the relevant studies which appear on each phenotype page.

Sakaue, S. & Kanai, M., et al. (2021) ▼

Kanai, M., et al. (2021)

Sakaue, S., et al. (2021)

Okada, Y., et al. (2014)

GWAS summary statistics of BioBank Japan (BBJ)

Citation: Sakaue, S. & Kanai, M., et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53 1415-1424 (2021).

Detailed description of the file format and columns can be found here.

Link to wget commands for all the files

Category	Phenotype	Cohort	No. samples	No. cases	No. controls	Download link
ICD10 A	Diphtheria infection	BBJ	170,788	541	170,247	Download
ICD10 A	Dysentery	BBJ	178,482	411	178,071	Download
ICD10 A	Nontuberculous Mycobacterial infection	BBJ	172,384	64	172,320	Download
ICD10 A	Pulmonary tuberculosis	BBJ	178,671	7,800	170,871	Download
ICD10 A	Typhoid fever	BBJ	178,328	257	178,071	Download
ICD10 B	Acute hepatitis by Hepatitis A virus	BBJ	166,864	261	166,603	Download
ICD10 B	Chronic hepatitis B	BBJ	171,822	2,234	169,588	Download
ICD10 B	Chronic hepatitis C	BBJ	176,698	7,110	169,588	Download

Columns

Binary traits (disease endpoints and medications)

We provide the output from SAIGE software. Please also refer to the SAIGE website.

#	column name	Descriptions							
1	V	marker name (CHR:POS:REF:ALT)							
2	CHR	chromosome							
3	POS	position (hg19)							
4	SNPID	rsID (if present) or equivalent ID							
5	Allele1	REF allele							
6	Allele2	ALT allele (This allele is the effect allele.)							
7	AC_Allele2	allele count of Allele2 (ALT)							
8	AF_Allele2	allele frequency of Allele2 (ALT)							
9	imputationInfo	RSQ value in imputation							
10	N	sample size							
11	BETA	effect size of Allele2							
12	SE	standard error f BETA							
13	Tstat	score statistic							
14	p.value	P value with SPA (suddle point approximation) applied							
15	p.value.NA	P value when SPA is not applied							
16	Is.SPA.converge	whether SPA is converged or not							
17	varT	estimated variance of score statistic with sample related incorporated							
18	varTstar	variance of score statistic without sample related incorporated							
19	AF.Cases	allele frequency of Allele2 in cases							
20	AF.Controls	allele frequency of Allele2 in controls							

名稱 hum0197.v3.BBJ.LuC.v1.zip 名稱 GWASsummary_LuC_Japanese_SakaueKanai2020.auto.txt.gz GWASsummary_LuC_Japanese_SakaueKanai2020.chrX.txt.gz

GWASsummary_LuC_Japanese_SakaueKanai2020.auto.txt

名稱

1	v CHR POS SNE	PID	Allele1	Allele2 AC	Alle	le2	AF Allele2 imputat	ionInfo N BETA	SE Tstat p.value	p.value	.NA Is.SPA.converge	varT varTstar	AF.Cases ^
2	1:751343:T:A	1	751343	rs28544273		A	52797.9333332697	0.147706358709057	0.902226705653162	-	_	0.0321097919454924	
3	1:751756:T:C	1	751756	rs28527770	_	C	52632.1843136993	0.147242662829413	0.907137991857088	178726		0.0320342400035706	
4	1:752566:G:A	1	752566	rs3094315	G	A	301245.603921563	0.842758199482904	0.998880155492734	178726	-0.0358871260393195	0.029660987403796	-40.791292
5	1:752894:T:C	1	752894	rs3131971	T	С	303703.800000067	0.849635195774726	0.93587401089489	178726	-0.0375661558692187		-38.517141
6	1:753405:C:A	1	753405	rs3115860	С	Α	304361.062745183	0.851473939844184	0.913916501556503	178726	-0.0379453034220357	0.0318101314022378	-37.499640
7	1:753425:T:C	1	753425	rs3131970	T	C	304126.050980472	0.850816476003694	0.918229880659406	178726	-0.0379477189885624	0.0316764611289227	-37.819202
8	1:756285:ATCCAC	CCTG	TCTACACT	ACCTGCTTGTCC	CAGCA	\GG:A	1 756285 1:75628	5:ATCCACCCTGTCTACAC	CTACCTGCTTGTCCAGCAGG: A	ATCCACC	CTGTCTACACTACCTGCTTG	TCCAGCAGG A 504	416.22352923
9	1:759293:T:A	1	759293	rs10157329	T	A	43938.5254900521	0.12292147054724	0.771496296636453	178726	0.0325772644136663	0.0377233887933103	22.8924995
10	1:759700:T:C	1	759700	rs3115852	T	С	302343.541176511	0.845829765049602	0.928756966180498	178726	-0.0372128891488308	0.031135131554094	-38.387690
11	1:759837:T:A	1	759837	rs3115851	T	A	304130.537254949	0.850829026708339	0.895896293886641	178726	-0.0384109732799781	0.032144691598347	-37.173785
12	1:760912:C:T	1	760912	rs1048488	C	T	301848.098039239	0.844443724022355	0.921597399175042	178726	-0.0370258424318253	0.0312000477309129	-38.035964
13	1:761147:T:C	1	761147	rs3115850	T	C	301743.003921583	0.84414971498714	0.920199606330509	178726	-0.0369741121768211	0.0312110254219712	-37.956108
14	1:761752:C:T	1	761752	rs1057213	C	T	303562.109803952	0.849238806340298	0.886881818526478	178726	-0.0382236500760109	0.0322423104083215	-36.768833
15	1:762273:G:A	1	762273	rs3115849	G	A	303142.494117567	0.848064898553 0.	.842635749605786 178	3726 -0.	0473150603895612 0.0	332913484155606 -42	2.6910293844
16	1:762589:G:C	1	762589	rs3115848	G	C	305481.372548958	0.854608094370594	0.846074025770228	178726	-0.0478040431087389	0.0336556266144027	-42.203577
17	1:762592:C:G	1	762592	rs3131950	C	G	305479.015686211	0.854601500862246	0.845840034295337	178726	-0.0477851312037589	0.0336608661386646	-42.173749
18	1:762601:T:C	1	762601	1:762601:T:	C	T	C 305509.90980386	0.854687929578963	0.846023581239321	178726	-0.0478011927877414	0.0336628732859178	-42.182893
19	1:762632:T:A	1	762632	rs3131948	T	A	305587.274509749	0.854904363410328	0.846596609304415	178726	-0.0476855842876394	0.0336638505497148	-42.078430
20	1:764191:T:G	1	764191	rs7515915	T	G	49648.8078428354	0.138896433207355	0.82274564684342	178726	0.0486385783569644	0.0347404059043576	40.3005613

UK Biobank data (from the Neale lab)

https://www.nealelab.is/uk-biobank

[1ST AUGUST 2018] WE'RE THRILLED TO ANNOUNCE AN UPDATED GWAS ANALYSIS OF THE UK BIOBANK.

LEARN MORE

GWAS RESULTS

Multi-ancestry analysis:

GWAS analysis of 7,221 phenotypes across 6 continental ancestry groups in the UK Biobank. This effort was led by Alicia Martin, Hilary Finucane, Mark Daly and Ben Neale, lead analysts Konrad Karczewski and Elizabeth Atkinson, with contributions from team members at ATGU. The summary statistics have been made available on the Pan UKBB website.

GWAS round 2:

Results shared 1st August 2018.

Imputed genotypes from HRC plus UK10K & 1000 Genomes reference panels as released by UK Biobank in March 2018.

GWAS round 2 results can be found here

FAQ

Got questions about our GWAS of the UK Biobank?

What samples, markers and phenotypes we used? The format of our GWAS results files? Use permissions of the results? How to cite our results?

Read our FAQs.

泰昭群方核

```
> library(data.table) #fread
> #install.packages("R.utils")
> library(R.utils) #gunzip
> data.raw <- gunzip("22140.gwas.imputed_v3.both_sexes.tsv.bgz", "22140.gwas.imputed_v3.both_sexe
s.tsv")
> data <- fread("22140.gwas.imputed_v3.both_sexes.tsv")</pre>
> head(data)
         variant minor allele
                                 minor_AF expected_case_minor_AC low_confidence_variant
                            T 0.00000e+00
1:
    1:15791:C:T
                                                       0.00000000
                                                                                     TRUE
    1:69487:G:A
                            A 1.15143e-05
                                                       0.00255617
                                                                                     TRUE
    1:69569:T:C
                            C 2.12235e-04
                                                       0.04711610
                                                                                     TRUE
   1:139853:C:T
                            T 1.13861e-05
                                                       0.00252772
                                                                                     TRUE
5: 1:692794:CA:C
                            C 1.11409e-01
                                                      24.73280000
                                                                                     TRUE
   1:693731:A:G
                            G 1.16398e-01
                                                      25.84050000
                                                                                    FALSE
   n_complete_samples
                               AC
                                      ytx
                                                   beta
                                                                                    pval
                                                                         tstat
                                                                 se
1:
                91787
                          0.00000
                                   0.0000
                                                    NaN
                                                                NaN
                                                                           NaN
                                                                                     NaN
                          2.11373 0.0000 -1.54509e-03 0.024525300 -0.0629998 0.949767
2:
                91787
3:
                91787
                         38.96080 0.0000 -1.26638e-03 0.005790820 -0.2186870 0.826895
4:
                91787
                          2.09020
                                   0.0000 -1.53306e-03 0.024525800 -0.0625079 0.950159
5:
                91787 20451.80000 25.1922 2.51863e-05 0.000284583
                                                                     0.0885024 0.929478
6:
                91787 21367.70000 21.2941 -2.79860e-04 0.000269534 -1.0383100 0.299128
>
```

Variant = chr:pos:ref:alt

Beta=effect size of alt allele

Harmonization of GWAS data

- Ensure the reference and alternate alleles of each variant are defined consistently across datasets
- Ambiguous: A/T or G/C