Mængder

Mængder

Mængder er det af de mest fundamentale matematiske objekter, og de udgør de grundlæggende byggesten (aksiomer) i dem mest gængse opbygning af matematikken. Vi starter med en definition, der er præcis nok til vores forståelse.

Definition 1.1. En mængde er et matematisk objekt, der består af en samling af elementer. Hvis et element a er indeholdt i en mængde A, skriver vi $a \in A$.

Hvis A er en mængde med elementerne a, b og c, så skriver vi A som $A = \{a,b,c\}$, altså med krøllede parenteser (tuburg-parenteser), og elementerne separeret med kommaer. Eksempler på mængder er $\{2,4,6,8\}$ og $\{7,b,4\}$. En uendelig mængde noteres med ellipse Det kunne eksempelvis være de lige tal $\{\ldots,-4,-2,0,2,4,\ldots\}$. Vi vil nu gennemgå en række vigtige eksempler:

Eksempel 1.2. Vi vil arbejde med følgende vigtige mængder:

- i) Der er en mængde, der ingen elementer har. Denne mængde kaldes den tomme mængde og noteres med \emptyset eller $\{\}$.
- ii) Mængden af naturlige tal $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- iii) Mængden af hele tal $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.$
- iv) Mængden af alle rationale tal/heltalsbrøker $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \right\}$. Eksempler er 1/2, 4, 27/3
- v) Mængden af reelle tal \mathbb{R} , der består af alle rationale tal og alle uendelige decimalfølger. Eksempler er $e, \pi, \sqrt{2}$

Hvis en mængde A er indeholdt i en mængde B, så skriver vi $A \subseteq B$ og A kaldes en delmængde af B. To mængder er ens, hvis de indeholder hinanden, altså $A \subseteq B$ og $B \subseteq A$ og vi skriver A = B.

Eksempel 1.3. Vi har følgende eksempler på delmængder:

- i) Mængden af alle mennesker er en delmængde af alle pattedyr som igen er en delmængde af alle dyr.
- ii) $\{1,2,3\} \subseteq \{1,2,3,4\}.$
- iii) De lige tal er en delmængde af de hele tal.
- iv) $\{10, 20\} \subseteq \{10, 20\}.$

Mængdeoperationer

Har vi to mængder, kan vi gøre os overvejelser om, hvordan disse mængder kan sammenlignes, og hvordan vi kan danne nye mængde ud fra gamle.

Definition 1.4 (Fællesmængde). Fællesmængden mellem to mængder A og B er den mængde, der består af de elementer, som begge mængder har til fælles. Mængden betegnes med

$$A \cap B$$

og defineres mere præcist

$$A \cap B = \{a \in A, b \in B \mid a \in B, b \in A\}.$$

Eksempel 1.5. Eksempler på fællesmængder er:

- i) $\{1, 2, 3\} \cap 2, 3, 4 = \{2, 3\}.$
- ii) $\{1, 2, 3\} \cap \{4, 5, 6\} = \emptyset$.
- iii) {Pattedyr} \cap {Havdyr} = {Hvaler, Sæler, Søkøer, Isbjørne, Havoddere}

Definition 1.6 (Foreningsmængde). Foreningsmængden af to mængder A og B består af de elementer, der er i enten A eller B og betegnes

$$A \cup B = \{a \in A, b \in B\}.$$

Eksempel 1.7. Vi har følgende eksempler på foreningsmængder:

- i) $\{1,2,3\} \cup \{4,5,6\} = \{1,2,3,4,5,6\}.$
- ii) $\{1,2\} \cup \{1,2,3,4\} = \{1,2,3,4\}.$
- iii) {Ulige tal } \cup {Lige tal} = \mathbb{Z}

Definition 1.8. Mængdedifferencen af to mængder A og B betegnes

$$A \backslash B$$

og betegner de elementer, der er i A, men ikke i B. Bemærk at $A \setminus B$ og $B \setminus A$ generelt er forskellige.

Vi har ofte brug for en mængde, der indeholder alle interessante elementer i en eller anden sammenhæng. Denne kaldes for universalmængden og betegnes med U.

Definition 1.9. Komplementærmængden til en mængde A betegnes med

 A^C

og defineres som $U \setminus A$.

Eksempel 1.10. Hvis U består af mængden af udfald af et terningeslag $U = \{1, 2, 3, 4, 5, 6\}$ og A er mængden af udfald $A = \{1, 2\}$, så vil komplementærmængden A^C af A være det, der er i U, men ikke i A, altså $A^C = U \setminus A = \{3, 4, 5, 6\}$.

Et brugbart redskab til at visualisere mængder og mængde
operationer er Venndiagrammer. Inklusionsforholdet melle
m $\mathbb{N},\mathbb{Z},\mathbb{Q}$ og \mathbb{R} kan ses af Venn-diagrammet på Fig. 1

Figur 1: Inklusionsforhold mellem $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ og \mathbb{R} .

Fig. 2 beskriver mængdeoperationer med Venn-diagrammer.

Figur 2: Mængdeoperationer beskrevet med Venn-diagrammer

Opgave 1

Bestem følgende mængder:

- $\begin{array}{lll} 1) \ \{7,9\} \cup \{9,4\} & 2) \ \{1,3\} \backslash \{1,3\} \\ 3) \ \{\emptyset,\{\emptyset\}\} \cap \{\{\emptyset\}\} & 4) \ \{1,2,3\} \cap \{3,4,5\} \end{array}$
- 5) $\{a, b, c\} \cup \{c, d, e\}$ 6) $\{a, b, c\} \cap \{c, d, e\}$

Opgave 2

Opskriv eksemplerne fra noterne som Venn-diagrammer

Opgave 3

- i) Er mængden af primtal den delmængde af de ulige tal? Hvorfor? Hvorfor ikke?
- ii) Er de lige tal en delmængde af de naturlige tal? Hvad med de ulige tal? Hvorfor? Hvorfor ikke?

Opgave 4

Potensmængden $\mathbb{P}(A)$ består af mængden af alle delmængder af A. Husk, at den tomme mængde er indeholdt i alle mængder. Opskriv følgende potensmængder

1) $\mathbb{P}(\{1,2\})$

2) $\mathbb{P}(\{1,2,3\})$

3) $\mathbb{P}(\{2,4,6,8\})$

4) $\mathbb{P}(\{a,b,c\})$

Hvor mange elementer er der i en potensmængde af en mængde med n elementer?

Opgave 5

De Morgans love for mængder lyder: For mængder A og B og universalmængde U gælder der, at

$$(A \cup B)^C = A^C \cap B^C$$

og

$$(A \cap B)^C = A^C \cup B^C.$$

- i) Brug Venn-diagrammer til at overbevise dig om, at De Morgans love er rigtige
- ii) Bevis De Morgans første lov ved at vise, at $(A \cup B)^C \subseteq A^C \cap B^C$ og $A^C \cap B^C \subseteq (A \cup B)^C$. (Hint: Antag, at $a \in (A \cup B)^C$ og vis, at $a \in A^C \cap B^C$ og vice versa.)