INVERSIÓN DE MATRICES CON EL MÉTODO DE GAUSS Y JORDAN

Sea la siguiente matriz:

6 0 7 4 0 5 1 2 3

Primero construimos la siguiente matriz aumentada:

6 0 7 1 0 0 ← F1 4 0 5 0 1 0 ← F2 1 2 3 0 0 1 **←** F3

La idea de este método es trasladar la matriz identidad I al lado izquierdo de la matriz ampliada mediante operaciones algebraica.

El elemento pivote es a_{11} =6. Para que sea 1, hacemos:

F11 ← (1/6) F1

 $\begin{bmatrix} 1/6 \end{bmatrix} \begin{bmatrix} 6 & 0 & 7 & 1 & 0 & 0 \\ 1 & 0 & 7/6 & 1/6 & 0 & 0 & \leftarrow \texttt{F11}$

El resto de elementos de la columna perteneciente al elemento pivote lo convertimos en cero siguiendo las siguientes operaciones algebraicas:

$F2 \leftarrow (-4) F1 + F2$

F3 ← (-1) F1 + F3

El pivote ahora es el elemento a33=11/6. Para que sea 1 operamos:

F32 ← (6/11) F31

[6/11] [0 2 11/6 -1/6 0 1] 0 12/11 1 -1/11 0 6/11
$$\leftarrow$$
F32

El resto de elementos de la columna perteneciente al elemento pivote lo convertimos en cero siguiendo las siguientes operaciones algebraicas:

F12 ← -7/6 F32 + F11

El pivote es a22. Para llevarlo a 1, hacemos:

F23 ← (-11/4) F22

El pivote ahora es el elemento a22=-11/4. Para que sea 1 operamos:

F13 ← (14/11) F23 + F12

[14/11	.][0	1	0	7/4	-11/4	1/2] +	
	0	14/11	0	49/22	-7/2	7/11	
	[1	-14/11	0	3/11	0	-7/11]	
	1	0	0	5/2	-7/2	0	← F13
F33 ← (7/8) F23 + F32							
[-12/1]	1][0	1	0	•	-11/4	· -	
	0	-12/11	0	-42/22	3	-6/11	
	0	12/11	1	-1/11	0	6/11	
	0	0	1	-2	3	0	← F33
				- 10	- 10	_	
	1	0	0	5/2	•	0	←F23
	0	1	0	•	-11/4	1/2	←F23
	0	0	1	-1/2	3	0	←F23

La matriz cuadrada 3x3 a la derecha de la matriz ampliada es precisamente la matriz inversa de A. Para comprobar si el resultado es correcto, se procede a multiplicar AA⁻¹ y el resultado debe ser la matriz identidad I.