Hydrogen Atom non-relativistic Schrödingers Equation

$$-\frac{h^{2}}{2m}\nabla^{2}+V^{2}=E^{2}+$$

In a Coulonb potential, this PDF is separable in spherical coordinates and the solutions are of the form

T(r, θ, φ) ~
$$\frac{1}{r}$$
 R_{ne}(r) $\frac{1}{e}$ (θ, φ)

Lagurre Polynomials Spherical Harmonics

The states are quantified by 4 quantum numbers:

$$S = \frac{\pm \frac{1}{2}}{2}$$
 electron spin

The energy eigenvalues are given by

$$E_n = -\frac{\mu e^4}{2 h^2} \sim \frac{-13.5984 \text{ eV}}{n^2} \approx \frac{\text{ionization}}{\text{potential}}$$

$$\mu = \frac{m_{\text{nuc}} \cdot m_e^-}{m_{\text{nuc}} + m_e^-} \sim \frac{\text{nuclear}}{\text{charge}} = 1 \text{ for hydragin}$$

The allowed transitions are given by the selection rules for Electric Dipole transitions $\vec{\mu}_e = -e \vec{r}$

by finding the matrix elements

Where

$$\langle \tau_{n'e'n'}(\vec{r}) | \hat{\mu}_{e} | \tau_{nem}(\vec{r}) \rangle = \int \int \int \tau_{n'e'n'}(\vec{r}) \cdot (-e\vec{r}) \cdot \tau_{(\vec{r})} \sin \theta d\theta d\theta$$

USING the properties of orthogonality of spherical harmonics leads to the selection rules

$$\Delta L = \pm 1$$

$$\Delta M = 0, \pm 1$$

Multi-electron atoms obey Pauli's Exclusion Principle:

3

ONLY 2. (22+1) è are allowed in a given subshell with quantum numbers ne

i.e. l=0 => shell => 2.(2.0+1) = 2 e allowed

l=1 => shell => 2. (2.1+1) = 6 è allowed

l=2 =) shell => 2 = (2.2+1) = 10 e allowed

Due to electrostatic and magnetic interactions, the multiple e orbital orgalar momenta and spins couple. We must use the rules of vector addition of quantized orgalar momenta. For elements in ~ first half of the Periodic Table, the individual angular momenta (li) and spins (si) of all valence e couple as:

 $\vec{L} = \sum_{i} \vec{\ell_{i}} \qquad \qquad M_{L} = \sum_{i} m_{\ell_{i}}$

 $\vec{S} = \sum_{i} \vec{s_{i}} \qquad M_{s} = \sum_{i} m_{s_{i}}$

J= L+5 "Russell- Saunders" Coupling

→ J = L+S, L+S-1, ..., |L-S|

Proof of Clebsch-Gordon Series

Consider two argular momenta \vec{l} , and \vec{l}_z The quantum numbers m_ℓ , and $m_{\ell z}$ vary from: -l, $\leq m_\ell$, $\leq +l$, AND -l, $\leq m_{\ell z} \leq +l_z$ Now let's cauple (vectorially add) \vec{l} , and \vec{l}_z : $\vec{l} = \vec{l}_1 + \vec{l}_2$

Since $M_L = m_{e_1} + m_{e_2}$, the inequalities become: $-l_1 \leq M_L - m_{e_2} \leq +l_2$ $-l_2 \leq M_L - m_{e_1} \leq +l_2$

Now let M_L , m_{e_1} , and m_{e_2} assume their maximal values: $M_L = +L$ $m_{e_2} = +l_2$

then we have:

 $-\ell_{1} \leq L - \ell_{2} \leq \ell_{1}$ $-\ell_{2} \leq L - \ell_{1} \leq + \ell_{2}$ $ADDING + \ell_{2} \leq \ell_{1} + \ell_{2}$ $\ell_{2} - \ell_{1} \leq L \leq \ell_{1} + \ell_{2}$ $\ell_{1} - \ell_{2} \leq L \leq \ell_{1} + \ell_{2}$

Since $L \ge l_2 - l_2$ AND $L \ge l_1 - l_2 = \sum \lfloor \lfloor 2 \rfloor l_1 - l_2 \rfloor$ $\implies \lfloor \lfloor l_1 - l_2 \rfloor \le \lfloor \lfloor \lfloor 2 \rfloor \rfloor + \lfloor 2 \rfloor$

Finally, since L is an angular momentum, it can only change by intergral values

=> L= l,+l2, l,+l2-1, ..., |l,-l2|

What is Parity ?

Parity is the behavior of a wavefunction incluse the inversion of the coordinate system

Why does parity go like $TI(-1)^{li}$?
For single e^{-1} wavefunctions $+ \sim R_{ne}(n) Y_{n}^{M}(0, \phi)$

Rne(r) is usuaffected by inversion because $r \rightarrow r$ and it is symmetric about the origin. The only component to τ that matters is $\bigvee_{e}^{m}(\theta,\phi)$

$$Y_{\ell}^{m}(\pi-\theta,\phi;\pi) = (-1)^{\ell} Y_{\ell}^{m}(\theta,\phi)$$

$$Y_{\ell}^{m}(\theta,\phi) = (-1)^{\ell} Y_{\ell}^{m}(\theta,\phi)$$

$$Y_{\ell}^{m}(\theta,\phi) = (-1)^{\ell} Y_{\ell}^{m}(\theta,\phi)$$

So the individual parities of the single wavefunctions simply multiply to get the final parity (PIMe)=

6 EXAMPle : Let's take a 2 valence e atom in the ground state configuration 152252p2 (CIT, NII, etc.)

$$\vec{S} = \vec{S}_1 + \vec{S}_2$$
 =) $S = S_1 + S_2, ..., |S_1 - S_2|$
= $\frac{1}{2} + \frac{1}{2}, |\frac{1}{2} - \frac{1}{2}|$
= $1, 0$

Possible terms are

However, we must use Pauli's exclusion punciple to determine which terms are allowed.

For each e, $l=1 \Rightarrow m_e = -1, 0, +1$ and $m_s = \pm \frac{1}{2}$ => there are 3x2 = 6 possible one e states Therefore, there are $\binom{6}{2} = \frac{6!}{2!(6-2)!} = \frac{6!5}{2} = 15$ unique two e states

Exa	uple o	what	are the	15 unique two	e states ?	7
	me		ML	Ms	Number	
-1	0	+				
$\uparrow\downarrow$			- 2	0	l	
	11		O	0	2	
		11	+2	O	3	
1	^		-1	+ 1	4	
· 1	L		- 1	0	5	
	•		<u>- 1</u>	0	6	
1	1			_ 1	7	
\downarrow	1			. 1	8	
1		^	O	+ 1	9	
1		\checkmark	0	0	·	
↓		1	0	0	(0	
.l		↓	0	-1	11	
V	^	^	4	4	12	
	1	1	•	0	13	
	1		+ 1	•	14	
	1	7	+	0	15 two e state	que
	1	\checkmark	+ 1	-1	State	s!
	ADDING UP Mis and Ms we make the table s		ML 1 +2 0 +1 1 -1 1 -2 0	0 -1 0 0 1 3 1 2 1 0		

```
Example
Still conit : Now which terms can exist?
```

L=2 S=0
1D term =>
$$M_5 = 0$$

 $M_L = -2, 1, 0, +1, +2$

Let's subtract those 5 states from our table:

L= 1 S= 1
$$M_S = -1, 0, +1$$
 There are 9 combinations $M_L = -1, 0, +1$ of M_L and M_S

Subtracting these 9 states leaves:

$$M_L$$
 +1 0 -1
+2 0 0 0 0
+1 0 0 0 Remaining State
0 0 0 0 has M_L = 0 M_S = 0
-2 0 0 0 \Rightarrow this has to be

So the terms for
$$1s^22s^22p^2$$
 (CI, NII, etc.)
are $1D$, $3P$, and 15

(3D eliminated and 3S eliminated)

Example How do we order these states by energy?

USE HUNDS Rules

- (1) Maximum multiplicity 25+1 => 3P lowest energy
- 2) Maximum L for some multiplicity is lower => 1 D lower in energy
- (3) Since less than half the configuration is filled, the state with lowest J is lowest in energy => 3Po lowest state

FOR H, He, Li, Be Alkali Metals N, P, Column I periodic table ek.

Grand Electronic State is S => Structure

L=0 => Nothing split

NO FINE Splitting in Ground State!