HARDWARE FELLOWSHIP 2023

DAY 4

INSTRUCTOR: SUSHANT PANDEY

WIRELESS COMMUNICATION

Decoder Logic

	Inp	Output			
D3	D ₂	D1	Do	В	A
0	0	0	0	x	x
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

4-bit binary encoder

	Inputs			Outputs				
EN	A	В	Y3	Y2	Y1	Yo		
O	X	X	O	0	О	0		
1	О	О	О	О	О	1		
1	О	1	O	О	1	О		
1	1	O	О	1	0	O		
1	1	1	1	O	O	O		

Receiver

Antennas are electrical devices that transform the electrical signals to radio signals in the form of Electromagnetic (EM) Waves and vice versa. These Electromagnetic Waves propagates through space.

Transmitter

WIRELESS COMMUNICATION

Source encoding aims to convert information waveforms (text, audio, image, video, etc.) in to a suitable form for applying signal processing techniques. (Remove redundant information)

The channel encoder, **does the coding for error correction**. During the transmission of the signal, due to the noise in the channel, the signal may get altered and hence to avoid this, the channel encoder adds some redundancy.

Modulation is the process of converting data into radio waves by adding information to an electronic or optical carrier signal.

(process of encoding information from a message source in a way that is suitable for transmission)

ASK (Amplitude Shift Keying (Modulation)

ASK Modulated output wave

ASK (Amplitude Shift Keying (Modulation)

- (i) = Digital bit sequence
- (ii) = Carrier wave
- (iii) = ASK modulated wave

Generation of ASK

Multiplier

 $\log(xy) = \log(x) + \log(y)$

Op amp

An operational amplifier (op amp) is an analog circuit block that takes a differential voltage input and produces a single-ended voltage output.

Inverting Op amp

Non-inverting Op amp

$$\Rightarrow v_o = v_i \left(1 + \frac{R_f}{R_1} \right)$$

Log Amplifier

log(xy) = log(x) + log(y)

A logarithmic amplifier, or a log amplifier, is an electronic circuit that produces an output that is proportional to the logarithm of the applied input.

Log Amplifier

The **nodal equation** at the inverting input terminal's node is -

$$\frac{0-V_i}{R_1} + I_f = 0$$

$$=>I_f=rac{V_i}{R_1}.\ldots.Equation 1$$

The following is the equation for current flowing through a diode, when it is in forward bias -

Log Amplifier

The KVL equation around the feedback loop of the op amp will be -

$$0 - V_f - V_0 = 0$$

$$=> V_f = -V_0$$

Substituting the value of $\ V_f$ in Equation 2, we get -

$$I_f = I_s e^{\left(rac{-V_0}{nV_T}
ight)}.\dots..Equation 3$$

$$rac{V_i}{R_1} = I_s e^{\left(rac{-V_0}{nV_T}
ight)}$$

$$rac{V_i}{R_1 I_s} = e^{\left(rac{-V_0}{n V_T}
ight)}$$

Applying **natural logarithm** on both sides, we get -

$$In\left(rac{V_i}{R_1I_s}
ight)=rac{-V_0}{nV_T}$$

AntiLog Amplifier

AntiLog Amplifier

The nodal equation at the inverting input terminal's node is -

$$-I_f + \frac{0 - V_0}{R_f} = 0$$

$$=>-rac{V_0}{R_f}=I_f$$

$$=>V_0=-R_fI_f.....Equation 4$$

We know that the equation for the current flowing through a diode, when it is in forward bias, is as given below –

$$I_f = I_s e^{\left(rac{V_f}{nV_T}
ight)}$$

Substituting the value of I_f in Equation 4, we get

$$V_0 = -R_f \left\{ I_s e^{\left(rac{V_f}{nV_T}
ight)}
ight\}$$

The KVL equation at the input side of the inverting terminal of the op amp will be

$$V_i-V_f=0$$

$$V_f = V_i$$

Substituting, the value of Vf in the Equation 5, we get -

$$V_0 = -R_f I_s e^{\left(rac{V_i}{nV_T}
ight)}$$

OPamp as Summer

OPamp as Summer

$$I_F = I_1 + I_2 + I_3 = -\left[\frac{V1}{Rin} + \frac{V2}{Rin} + \frac{V3}{Rin}\right]$$
 $V_1 \bigcirc$

Inverting Equation: Vout = $-\frac{Rf}{Rin} \times Vin$

then, -Vout =
$$\left[\frac{R_F}{Rin}V1 + \frac{R_F}{Rin}V2 + \frac{R_F}{Rin}V3\right]$$

OPamp as Summer

-Vout =
$$\frac{R_F}{R_{DM}}$$
 (V1+ V2+ V3....etc)

Multiplier

Multiplier Using Opamp

Generation of ASK

Non-Coherent Detection of ASK

Asynchronous ASK detector

RF 433 Mhz Module

- Wireless (RF) Simplex Transmitter and Receiver
- Receiver Operating Voltage: 3V to 12V
- Receiver Operating current: 5.5mA
- Operating frequency: 433 MHz
- Transmission Distance: 3 meters (without antenna) to 100 meters (maximum)
- Modulating Technique: ASK (Amplitude shift keying)
- Data Transmission speed: 10Kbps
- Circuit type: Saw resonator

RF 433 Mhz Module

RF 433 Mhz Transmitter Pin Layout

RF 433 Mhz Receiver Pin Layout

Marconi Antenna

-17.3 cm piece of solid wire

Marconi Antenna

THANK YOU

