

10강. 유스케이스다이어그램 및 명세

목차

- 1) 유스케이스 분석
- (2) 액터
- ③ 유스케이스
- 4) 유스케이스 명세

Chapter. 1

유스케이스 분석

1. UML

- + UML은 객체지향 분석과 설계에서 모델 작성을 위한 표준 표기법
 - ×1990년대 객체지향 방법론/표기법/도구의 난립
 - ×프로세스는 환경과 상황에 따라 바뀌므로 표준의 제정이 어려움
 - ×표기법은 표준이 존재할 수 있으며 공통의 의사소통 수단이 됨
 - ×UML은 방법론이 아닌 표기법, 즉 모델링 언어임
 - ×OMG는 1997년에 UML 1.1을 발표하였고 2015년에 2.5를 발표함

2. UML 다이어그램

- ◆ 설계나 구현 중인 시스템의 일부를 그래픽 형태로 표현한 것
 - 구조화된 텍스트 형태의 문서로 보완될 수 있음
- ◆ UML 다이어그램은 UML 모델의 요소와 에지로 구성됨
 - 각 UML 다이어그램마다 표현하고자 하는 주요 구성 요소가 있음
 - 클래스 다이어그램, 유스케이스 다이어그램, 시퀀스 다이어그램, …

★UML 다이어그램의 분류

- <mark>구조 다이어그램</mark>은 시스템의 정적 구조를 보여주며, 추상화 수준에 따른 구성 요소들과 그들의 관계를 보임
- 행위 다이어그램은 시스템 내 객체들의 동적 행위를 보여주며,
 시간에 따른 시스템의 변화를 보임

3. UML과 4+1 뷰 (1/3)

- + 4+1뷰
 - **★UML 모델들을 관점에 따라 분해하는 방법**
 - ×다양한 관점을 표현하는 여러 다이어그램이 존재함

3. UML과 4+1 뷰 (2/3)

유스케이스뷰

- 외부에서 본 시스템의 기능을 표현하는 것
- 다른 네 가지 뷰의 기초가 됨

논리뷰

- 기능 관점에서 시스템의 구성과 구성요소들 간의 상호작용을 추상화하여 표현하는 것
- 클래스 다이어그램, 시퀀스 다이어그램, 상태 머신 다이어그램

프로세스 뷰

- 시스템의 실행에 초점을 맞추어 내부의 작업을 시각 적으로 표현하는 것
- 액티비티 다이어그램, 상태 머신 다이어그램

3. UML과 4+1 뷰 (3/3)

개발 뷰

- · 프로그래머 관점에서 시스템의 아키텍처를 이루는 각 계층에서 시스템의 모듈들과 컴포넌트들의 구성을 표현하는 것
- 패키지 다이어그램, 컴포넌트 다이어그램

물리 뷰

- 앞의 세 관점에서 표현된 시스템 설계 결과가 실세계 개체들로 어떻게 연결되는지 표현하는 것
- 최종적 시스템의 배치를 보여주는 배포 다이어그램

4. 유스케이스 개요

유스케이스

시스템이 사용자에게 제공하는 유용하고 완전한 단일(단위) 기능

- + 시스템이 제공하는 특정 기능의 동작을 설명한 시나리오
 - ×액터와 시스템 간의 상호작용을 이벤트 흐름으로 기술
 - *사용자 관점에서 시스템을 모델링하기 위한 도구
 - ×완성될 목표 시스템의 겉모습을 설명하는 것
 - ×시스템의 내부 구조나 구현 방법을 기술하는 것이 아님

5. 유스케이스 분석(1/2)

유스케이스 분석

- **사용자 요구사항**을 정리하여 구조화하는 과정
- 초기 단계에서 목표 시스템을 정확히 이해하고 세부 기능을 파악해야 함

- ♣ 유스케이스 분석의 결과는 유스케이스 다이어그램과 유스케이스 명세
- ♣ 유스케이스 분석의 효과
 - 작업을 유스케이스로 구분하여 작업을 팀에 할당함
 - 시스템의 기능에 관한 시나리오를 이해하면 관리에 도움을 줌
 - 테스트 케이스 작성을 위한 기준을 제시

5. 유스케이스 분석(2/2)

- + 유스케이스 분석 전에 자연어로 된 사용자 요구사항을 분석함
 - ×구조화보다는 정확성, 완전성, 일관성 등을 검토

R.1. 의사는 등록되어 있는 환자에 대해 Subject Evaluation,
Object Evaluation, Assessment, Plan등의 상세한 내용을
포함한 전자의무기록(EMR)을 시스템에 생성할 수 있어야 한다.

- EMR은 Electronic Medical Record의 약어이다.
- + 유스케이스 분석의 첫 단계는 시스템과 상호작용하는 개체를 찾는 일
 - ×액터는 요구사항에서 명사로 표현됨
 - ×동사는 유스케이스에 해당

Chapter. 2

액터

1. 표기법

- + 액터의 경우 막대 인간으로 표현
 - ★또는 스테레오타입을 사용하여 개체의 이름과 함께 《actor》를 표시
- + 스테레오 타입의 사용
 - *요소의 의미를 명확히 하기 위해 사용되는 UML 확장법으로 키워드를 《...》로 감싸 표현함
 - ★자주 사용되는 스테레오 타입을 아이콘으로 표시하기도 함

2. 액터 찾기

액 터

- 구현 대상은 아니며 외부에서 시스템과 상호작용하는 개체
- 시스템을 사용하는 사람이나 외부 시스템

+ 액터 찾기

- ×시스템과 상호작용하나 그 자체에 대한 분석이 필요 없는 개체
- ★사용자 외에도 관리자, 유지보수자, 시스템과 관련 있는 모든 사람이나 다른 시스템이 고려 대상임

3. 액터 간 관계

- + 액터들 간에는 일반화(또는 상속) 관계가 존재할 수 있음
 - ×공통의 요구사항을 가지는 여러 액터들을 일반화시켜 모델을 단순화 함
 - ×HIS에서 Doctor과 Nurse를 일반화하여 User를 표현함
 - ×속이 빈 삼각형을 가진 실선으로 일반화 관계를 표현함

Chapter. 3

유스케이스

1. 표기법과 유스케이스의 의미

+ 유스케이스는 대개 타원으로 표현함

2. 유스케이스와 액터와의 관계

+ 액터와 유스케이스를 선으로 연결

- ×유스케이스를 시작시키는 액터로부터 유스케이스로 화살표가 향함
- ×결과를 제공하는 유스케이스로부터 제공받는 액터로 화살표가 향함
- ×왼쪽에 유스케이스를 시작시킨 액터를, 오른쪽에 결과를 받는 액터를 둠
- ×양방향의 경우는 화살표를 생략함

3. 유스케이스 간 관계 (1/4)

+ 포함 관계 - 《include》

- ×두 유스케이스에서 중복되는 기능이 있는 경우, 중복된 부분을 별도의 유스케이스로 분리
- ★점선의 화살표를 사용하며 소스 유스케이스에서 공통 유스케이스로 향함
- ×소스 유스케이스는 공통 유스케이스 없이는 완전한 유스케이스가 되지 못함
- ×분리된 유스케이스로 만들면 유지보수성과 재사용성이 증가함
 - R.2. HIS시스템은 신규 환자 등록과는 별도로 기존 환자 챠트를 화일로부터 로드하여 추가로 입력할 수 있다.
 - R.3. R1및 R2의 경우에는 보험회사를 통해 등록여부를 재확인하게 된다.

3. 유스케이스 간 관계 (2/4)

3. 유스케이스 간 관계 (3/4)

- + 확장 관계 《extend》
 - ×특정 조건에서 선택적으로 사용되는 시나리오를 분리
 - *확장 유스케이스는 기본 유스케이스에서 예외적이며 선택적인 사건의 흐름을 떼어 내는 것
 - ×기본 유스케이스는 그 자체로 완전한 유스케이스임
 - ★점선의 화살표를 사용하며 확장 유스케이스로부터 기본 유스케이스로 화살표가 향함
 - ×《include》 관계의 경우와 화살표 방향이 반대임

3. 유스케이스 간 관계 (4/4)

+ 상속 관계 - 《generalize》

- ★전체적인 흐름은 동일하나 일부에서 구체적인 방법이나 내용이 틀린 경우
- ×자식 유스케이스는 부모 유스케이스에서 사용되는 흐름과 일치함
- *사용자 인증 유스케이스가 부모가 되며 아이디/암호, 지문 인식, 홍채 인식을 사용한 인증을 자식 유스케이스로 둠

4. 시스템의 경계

+ 시스템 경계의 표시

- ×서브젝트 경계라고도 함
- ×시스템 내부에 존재하는 유스케이스 집합을 사각 영역 안에 위치시킴
- ×사각형 상단에 시스템의 이름을 표시
- ×시스템 내부는 분석과 설계를 통한 개발이 필요한 부분
- ×액터들은 사각형 외부에 위치함

Chapter. 4

유스케이스 명세

1. 유스케이스 다이어그램과 명세

+ 유스케이스 다이어그램

- 액터와 유스케이스 및 이들 간의 관계를 요약적으로 표현
- 요구사항을 구조화하고 고객과의 원활한 의사소통을 위한 수단

★유스케이스 명세

유스케이스 다이어그램만으로는 구체적이지 못하므로 상세한 설명을 추가해야 함

2. 유스케이스 명세 (1/2)

- + 유스케이스 명세는 시나리오의 구체적 사건 흐름을 텍스트 형식으로 기술한 것
- + 유스케이스 명세의 구성

2. 유스케이스 명세 (2/2)

+ 기본 흐름

- ×원하는 목적을 달성하는 성공적 시나리오
- ×번호와 제목을 달아 구조적으로 작성

+ 대체 흐름

- ×기본 흐름에서 벗어나는 다양한 상황을 기술
- ★기본 흐름의 번호를 이용하여 다른 상황에서 일어나는 요약된 시나리오로 기술함

+ 특수 요구사항

- ×시간, 성능, 품질 등과 관련된 비기능 요구사항을 기술
- ×도메인 요구사항이나 UI 들에 관한 요구사항을 자유롭게 기술

3. 유스케이스 명세의 예 (1/5)

유스케이스 : 진료 예약

<u>관련 액터</u>: <u>환자, 의사 목록 시스템</u>

요약:

환자가 원하는 의사에게 진료 예약을 할 수 있도록 해준다. 뿐만 아니라, 진료 시점 24시간 전까지는 신청 내역을 확인하고 변경할 수도 있다. 진료 시스템은 예약이 가능한 모든 의사들의 목록을 보여준다.

선행 조건 : 환자가 진료 예약 시스템에 로그인 되어 있어야 한다.

종료 조건:

환자가 진료 예약 시스템을 통해 신청한 요청이 서버에서 정상적으로 처리되어야 한다.

3. 유스케이스 명세의 예 (2/5)

<기본 흐름>

1. 스케줄 생성

시스템은 환자가 사용 가능한 기능(스케줄 생성, 수정, 삭제)을 화면에 보여준다. 환자는 "스케줄 생성"을 선택한다.

2. 의사 선택

시스템은 진료예약가능한의사들의 리스트를의사목록시스템으로 부터 가져와서 화면에 보여준다. 환자는 예약가능한 스케줄상의 진료를 신청할수 있다. 환자는 최종적으로 스케줄 확정 버튼을 누르기 전까지 원하는 의사 및 스케줄을 확인하면서 추가 및 수정, 삭제를 할 수 있다.

3. 유스케이스 명세의 예 (3/5)

<기본 흐름>

3. 스케줄 확정

환자는 스케줄 확정 버튼을 눌러서 진료 예약을 완료한다.

시스템은 해당 스케줄에 대한 확정 번호를 화면에 보여준다.

시스템은 환자의 스케줄 정보를 저장하고, 종료한다.

3. 유스케이스 명세의 예 (4/5)

<대체 흐름>

1. 스케줄 수정

환자가 이미 스케줄을 가지고 있는 상황이다. 시스템은 기존에 확정되어 있는 진료 스케줄을 화면에 보여준다. 그리고, 그 상태로부터 기본 흐름 2번으로 이어진다.

2. 미확인 환자

환자가 로그인이 되지 않은 상태로 접근한 경우 에러 메시지를 화면에 보여주고 종료한다.

3. 유스케이스 명세의 예 (5/5)

<대체 흐름>

3. 종료

진료 예약 시스템은 언제든지 환자가 종료 버튼을 누름으로써 시스템을 종료할 수 있도록 한다. 이 경우, 현재 상황을 저장 할 지의 여부를 확인하고, 그 여부에 따라 스케줄 상황의 저장 여부를 결정한 후에 종료한다.

4. 진료 예약시간 마감

예약 마감시간 10분 전, 3분 전, 1분 전에 각각 경고 메시지를 보여주고, 강제적으로 시스템을 종료시킨다.

<특수 요구사항>

진료 예약은 동시 접속자수 1,000명까지 커버할 수 있어야 하며, 이 경우 최종 확정에 대한 서버 응답시간은 5초 이내이어야 한다.

4. 요구사항 명세 작성 팁

- + 유스케이스 분석은 유스케이스 다이어그램을 보완하는 추가적 설명을 텍스트로 제공함
- + 유스케이스 상세화 과정에서 초기에 발견하지 못했던 액터나 시나리오들을 발견할 수 있음
- ★ 고객과 반복적으로 의사소통함으로써이전 작업의 수정을 통해 유스케이스 모델에 정확성을 가하게 됨

