ESPACIOS VECTORIALES

Espacios vectoriales y sus propiedades

- 1. Analizar si los siguientes conjuntos con las operaciones definidas son espacios vectoriales.
 - a) El conjunto de los números reales positivos \mathbb{R}^+ , con la suma y el producto por escalar usuales.
 - b) El conjunto de los números reales positivos \mathbb{R}^+ , con la suma x+y definida como $x\cdot y$ y el producto cx como x^c con $c\in\mathbb{R}$ (tener en cuanta que $x^c=e^{\ln x^c}$).
 - c) El conjunto de las funciones pares, con la suma y producto por escalar usuales.
 - d) El conjunto de las funciones continuas, con el producto cf definido como (cf)(x) = f(cx) y la suma habitual de funciones.
 - e) El conjunto de las funciones reales biyectivas, con el producto por escalar habitual y la suma f + g definida como (f + g)(x) = f(g(x)).
 - f) El conjunto de los polinomios a coeficientes reales de grado a lo sumo 3, incluido el polinomio nulo, con la suma y producto por escalar habituales.
 - g) \mathbb{R}^2 con el producto por escalar habitual y la suma de $x=(x_1,x_2)^T$ e $y=(y_1,y_2)^T$ definida como $x+y=(x_1+y_1+1,x_2+y_2+1)^T$.

Decir en cada caso que no resulte e.v., cuál es la propiedad que se está violando.

2. Sea $(V, +, \cdot)$ un espacio vectorial. En particular, sabemos que existe $\mathbf{0} \in V$ tal que $\mathbf{0} + x = x$ para todo $x \in V$; y que para todo $x \in V$ existe un vector \bar{x} tal que $x + \bar{x} = \mathbf{0}$.

Demostrar los siguientes enunciados.

- a) Unicidad del neutro: si $\mathbf{0}' \in V$ es tal que $\mathbf{0}' + x = x$ para todo $x \in V$, entonces $\mathbf{0}' = \mathbf{0}$.
- b) Unicidad del opuesto: dado $x \in V$, si $\bar{x}' \in V$ es tal que $x + \bar{x}' = \mathbf{0}$, entonces $\bar{x}' = \bar{x}$
- c) Propiedad cancelativa: si z + x = z + y entonces x = y.
- *d*) $\alpha \cdot \mathbf{0} = \mathbf{0} \ \forall \alpha \in \mathbb{K}$.
- e) $0 \cdot v = \mathbf{0} \ \forall v \in V$.
- f) $\bar{x} = (-1) \cdot x$ (a partir de ahora, -v es el opuesto de $v, \forall v \in V$).
- $g(-\alpha) \cdot v = \alpha \cdot (-v) = -(\alpha \cdot v).$
- h) Si $\alpha \cdot v = \mathbf{0}$ entonces $\alpha = 0$ o $v = \mathbf{0}$.
- i) $\mathbf{0} \in V$ es el único elemento del espacio vectorial que coincide con su opuesto.

Subespacios de un espacio vectorial

- 3. Determinar cuáles de los siguientes subconjuntos de \mathbb{R}^3 son subespacios.
 - a) $\{(x_1, x_2, x_3) : x_1 = 0\}.$
 - b) $\{(x_1, x_2, x_3) : x_1 = 1\}.$
 - c) $\{(x_1, x_2, x_3) : x_1 \cdot x_2 \cdot x_3 = 0\}.$
 - d) $\{(x_1, x_2, x_3) : x_1 + x_2 2x_3 = 4\}.$
 - e) $\{\alpha(1,4,0) + \beta(2,2,2) : \alpha, \beta \in \mathbb{R}\}.$
 - $f) \{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = 0\}.$
 - g) $\{(x_1, x_2, x_3) : x_1 \le x_2 \le x_3\}.$

- 4. Determinar cuales de estos subconjuntos definen subespacios vectoriales.
 - a) $\mathbb{R}^2_+ \subset \mathbb{R}^2$.
 - b) $\mathbb{Z} \subset \mathbb{R}$.
 - c) $\Gamma = \{x \in \mathbb{R}^3 : 4x_1 6x_2 + x_3 = 5\} \subset \mathbb{R}^3.$
 - d) $\{A \in \mathbb{F}^{n \times n} : A \text{ es triangular}\} \subset \mathbb{F}^{n \times n}$.
 - e) $\{A \in \mathbb{R}^{n \times n} : A \text{ es simétrica}\} \subset \mathbb{R}^{n \times n}$.
- 5. Sea **P** el plano de ecuación x + 2y + z = 6 y **P**₀ el plano paralelo a P que pasa por el origen. ¿Son **P** y **P**₀ subespacios de \mathbb{R}^3 ?.
- 6. Sea $(V, +, \cdot)$ un espacio vectorial y $U \subset V$. Entonces, U es un subespacio (vectorial) de V si y solo si toda combinación lineal de elementos de U pertenece a U; i.e. para todo $u_1, u_2 \in U$, $\alpha, \beta \in \mathbb{F}$, resulta $\alpha u_1 + \beta u_2 \in U$.
- 7. Mostrar que las dos propiedades que definen un subespacio vectorial (i.e. que la suma sea cerrada en el conjunto y que el producto por escalar también lo sea) son propiedades independientes una de otra. Para ello buscar un espacio vectorial V y un subconjunto U que sea cerrado bajo la suma pero no bajo el producto por escalar y otro conjunto U' que cumpla lo contrario.
- 8. Sean $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ y $B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$
 - a) Describir un subespacio de $\mathbb{R}^{2\times 2}$ que contenga a A y no a B.
 - b) Si un subespacio de $\mathbb{R}^{2\times 2}$ contiene a A y a B, ¿debe contener también a \mathbb{I} ?.
- 9. ¿Cuáles de los siguientes conjuntos son subespacios de $\mathbb{R}^{\mathbb{N}}$?
 - a) $\{x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}} : \{i \in \mathbb{N} : x_i \neq 0\} \text{ es finito}\}.$
 - b) $\{x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}} : \exists i_0 \in \mathbb{N}/x_i = 0, \forall i \ge i_0 \}.$
 - c) $\{x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}} : x_i \ge x_{i+1}, \forall i \in \mathbb{N}\}$ (conjunto de sucesiones decrecientes).
 - d) $\{x=(x_1,x_2,\cdots)\in\mathbb{R}^\mathbb{N}:\exists\lim_{i\to\infty}x_i\}$ (conjunto de sucesiones convergentes).
 - e) $\{x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}} : \exists c \in \mathbb{R}/x_{i+1} = cx_i, \forall i \in \mathbb{N}\}\$ (conjunto de progresiones geométricas).
- 10. Para cada uno de los siguientes conjuntos determinar si es un subespacio de $\mathcal{C}(\mathbb{R})$ o explique por que no lo es
 - a) $\{f \in \mathcal{C}(\mathbb{R}) : f(x) \le 0, \forall x \in \mathbb{R}\}.$
 - b) $\{f \in \mathcal{C}(\mathbb{R}) : f(0) = 0, \}.$
 - c) $\{f \in \mathcal{C}(\mathbb{R}) : f(2) = 0, \}.$
 - d) El conjunto de funciones constantes.
 - e) $\{\alpha + \beta \operatorname{sen} x : \alpha, \beta \in \mathbb{R}\}.$

Suma y suma directa de subespacios

11. Sea $(V, +, \cdot)$ un espacio vectorial y sean U y W subespacios de V. Probar que

$$U + W = \{v \in V : v = u + w, u \in U, w \in W\}$$

es un subespacio de V.

- 12. *a*) Sean U_1, U_2 subespacios vectoriales de V. Probar que $V = U_1 \oplus U_2$ si y solo si se verifican las siguientes condiciones:
 - i) $V = U_1 + U_2$.
 - $ii) U_1 \cap U_2 = \{0\}.$
 - b) Encontrar un contraejemplo para demostrar que el resultado anterior no puede extenderse a más de dos subespacios, es decir, probar que para $m \ge 3$ NO ES VÁLIDA la siguiente afirmación.

Sean U_i , $i=1,\ldots,m$ subespacios vectoriales de V. Entonces, si se verifican las siguientes dos condiciones:

- i) $V = U_1 + U_2 + \ldots + U_m$,
- $ii) U_1 \cap U_2 \cap \ldots \cap U_m = \{0\},\$

resulta $V = U_1 \oplus U_2 \oplus \ldots \oplus U_m$.

13. Sea $\mathbb{K}[x]$ el espacio vectorial de los polinomios con coeficientes en \mathbb{K} , y sea U el subespacio de $\mathbb{K}[x]$ dado por

$$U = \{ax^2 + bx^5 : a, b \in \mathbb{K}\}.$$

Encontrar un subespacio W de $\mathbb{K}[x]$ tal que $\mathbb{K}[x] = U \oplus W$.

14. Sea V un espacio vectorial sobre \mathbb{K} , y sean W_1, W_2, W_3 son subespacios de V. Determinar si son verdaderas o falsas las siguientes afirmaciones

a) Si
$$W_1 + W_3 = W_2 + W_3$$
 luego $W_1 = W_2$.

b) Si
$$W_1 \oplus W_3 = W_2 \oplus W_3$$
 luego $W_1 = W_2$.

- 15. Sean W_1, W_2 subespacios de V. Demostrar que $W_1 \cup W_2$ es un subespacio de V si y solo si $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$.
- 16. Considere el espacio vectorial V de todas las funciones con dominio y codominio igual a \mathbb{R} (con la suma y producto por escalares usuales).

Sean $V_i = \{f \in V : f \text{ es un función impar}\}$ y $V_p = \{f \in V : f \text{ es un función par}\}$. Probar que

- a) V_i y V_p son subespacios de V.
- b) $V_i + V_p = V$.
- c) $V_i \cap V_p = \{0\}.$

Espacio generado

17. En el espacio vectorial de las matrices reales de orden 3, describir el subespacio generado por cada uno de los siguientes conjuntos:

$$a) \; \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

$$b) \; \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix} \right\}$$

$$c) \; \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

- 18. Recordar que, dado V un espacio vectorial y $S \subset V$, $\langle S \rangle$ denota el subespacio de V generado por S. Demostrar las siguientes proposiciones:
 - a) Si $S \subseteq T \subseteq V$, entonces $\langle S \rangle \subseteq \langle T \rangle$.
 - b) $S \subseteq \langle S \rangle$.
 - c) Si $S \subseteq T$ y T es un subespacio de V, entonces $\langle S \rangle \subseteq T$. Observar que a partir de esta propiedad sabemos que $\langle S \rangle$ es el menor subespacio de V que contiene a S.
 - d) S es un subespacio de V si y sólo si $\langle S \rangle = S$.
 - e) Si $\langle S \rangle = U$, entonces $\langle U \rangle = U$.
 - f) Sea $W \subseteq V$. Entonces:
 - 1) $\langle S \cap W \rangle \subset \langle S \rangle \cap \langle W \rangle$.
 - 2) $\langle S \cup W \rangle \subset \langle S \rangle + \langle W \rangle$.
 - g) ¿Valen las contenciones inversas en los items a) y f)?

19. Describir el menor subespacio vectorial de $\mathbb{R}^{2\times 2}$ que contenga a

a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 y $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

$$b) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

c)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 y $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

20. Sea V el espacio vectorial de los polinomios en $\mathbb{R}[x]$ de grado menor o igual a 3. Considere los siguientes polinomios:

$$p_1(x) = x^3 + 2x^2 + 4,$$
 $p_4(x) = 3x^3 + 6x^2 + 9x + 12,$ $p_2(x) = 2x^3 + 5x^2 + 11x + 8,$ $p_5(x) = x^3 + 3x^2 + 8x + 3.$ $p_5(x) = x^3 + 3x^2 + 8x + 3.$

Para $j \in \{4, 5\}$ determinar si $p_i \in \langle \{p_1, p_2, p_3\} \rangle$.

Independencia lineal

- 21. Sea $A \in \mathbb{R}^{m \times n}$. Probar que N(A) es un subespacio vectorial real de \mathbb{R}^n y C(A) un subespacio vectorial real de \mathbb{R}^m .
- 22. Dada A una matriz $m \times n$, sea A' la matriz que se obtiene de agregar una columna A^{n+1} a A, donde A^{n+1} es una combinación lineal de las columnas de A. Probar que C(A) = C(A').
- 23. Explicitar el espacio columna y el espacio nulo de las siguientes matrices:

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array} \right], \quad B = \left[\begin{array}{cc} 1 & 3 \\ 2 & 6 \end{array} \right], \quad C = \left[\begin{array}{cc} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{array} \right], \quad D = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{array} \right], \quad E = \left[\begin{array}{cc} 1 & 0 \\ 2 & 0 \\ 0 & 0 \end{array} \right]$$

24. Para que vectores $b = (b_1, b_2, b_3)^T$ los siguientes sistemas tienen solución

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

- 25. Determinar una matriz A tal que su espacio nulo consista en:
 - a) Todas las combinaciones lineales de $(2, 2, 1, 0)^T$ y $(3, 1, 0, 1)^T$.
 - b) Todos los múltiplos de $(4,3,2,1)^T$.
- 26. Dadas $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{n \times p}$ probar que el espacio columna de AB está contenido en el espacio columna de A. Dar un ejemplo donde dicha contención sea estricta.
- 27. Sean A y B matrices tales que AB = 0. Demostrar que el espacio columna de B está contenido en el espacio nulo de A. ¿Qué sucede con el espacio fila de A y el espacio nulo de B^T ?
- 28. Analizar si los siguientes vectores son linealmente independientes:
 - a) $(1,1,0,0)^T$, $(1,0,1,0)^T$, $(0,0,1,1)^T$, $(0,1,0,1)^T$.
 - b) $(1,3,2)^T, (2,1,3)^T, (3,2,1)^T$
 - c) $(1, -3, 2)^T, (2, 1, -3)^T, (-3, 2, 1)^T$.
 - d) $(1,1,0)^T$, $(1,0,0)^T$, $(0,1,1)^T$, $(x,y,z)^T$ para x,y,z cualesquiera.
- 29. Determinar si los siguientes conjuntos son conjuntos de vectores l.i. o l.d. en cada uno de los espacios vectoriales que se indica a continuación:

a)
$$\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} -3 & 3 \\ 2 & 0 \end{bmatrix} \right\} \subset \mathbb{R}^{2 \times 2}$$
.

- b) $\{1, x, -1 + 2x^2, -3x + 4x^3\} \subset \mathbb{R}_3[x]$
- 30. Probar que:
 - a) Todo conjunto de vectores que contenga al vector nulo es un conjunto de vectores l.d..
 - b) Si S es un conjunto de vectores l.d. y $S \subseteq T$ entonces T es un conjunto de vectores l.d..

31. Dada la matriz

$$A = \left[\begin{array}{ccc} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{array} \right],$$

demostrar que las columnas de A son linealmente independientes si y solo si $a \cdot d \cdot f \neq 0$.

32. Encontrar el mayor número posible de vectores linealmente independiente entre los siguientes:

$$v_1 = (1, -1, 0, 0)^T$$
, $v_2 = (1, 0, -1, 0)^T$, $v_3 = (1, 0, 0, -1)^T$, $v_4 = (0, 1, -1, 0)^T$, $v_5 = (0, 1, 0, -1)^T$ y $v_6 = (0, 0, 1, -1)^T$.

- 33. Sea $P = \left\{ (x,y,z,t)^T \in \mathbb{R}^4 : x-2y+z-t=0 \right\}$ un subespacio vectorial de \mathbb{R}^4 .
 - a) Hallar 3 vectores linealmente independientes en P.
 - b) Demostrar que no existen 4 vectores linealmente independientes en P.
- 34. Probar que
 - a) Todo conjunto de vectores que contenga al vector nulo es l.d.
 - b) Si S es l.i. entonces T es l.i. $\forall T \subset S$.
 - c) Si S es l.d. entonces T es $l.d \ \forall T \supset S$.
- 35. Sea V un espacio vectorial y $\{v_1,v_2,v_3\}\subset V$ un conjunto de vectores l.i.. Probar que:
 - a) $\{v_1+v_2, v_1+v_3, v_2+v_3\}$ es un conjunto de vectores l.i..
 - b) $\{v_2-v_3,v_1-v_3,v_1-v_2\}$ es un conjunto de vectores l.d..
- 36. Sea V un espacio vectorial de dimensión finita y W un subespacio de V tal que $\dim(V) = \dim(W)$. Probar que V = W.
- 37. Sea $A = \{(1, -3, 2)^T, (2, 4, 1)^T, (3, 1, 3)^T, (1, 1, 1)^T\} \subset \mathbb{R}^3$, obtener:
 - a) Una base de \mathbb{R}^3 contenida en A.
 - b) Las componentes de los vectores de la base canónica de \mathbb{R}^3 en la base obtenida en el apartado anterior.
- 38. Sea $S = \langle \{(1, -1, 1)^T, (2, 1, 0)^T, (4, -1, 2)^T\} \subset \mathbb{R}^3$. Obtener una base de S.
- 39. Encontrar la dimensión de:
 - a) El espacio de todos los vectores de \mathbb{R}^4 cuyas componentes suman cero.
 - b) El espacio nulo de la matriz $I \in \mathcal{M}_{4\times 4}$.
 - c) El espacio de matrices simétricas 3×3 . Hallar una base.
- 40. Describir los cuatro espacios asociados a las siguientes matrices

$$A = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- 41. Dar en cada caso una matriz que cumpla las condiciones dadas o justificar porque no existe.
 - a) Su espacio columna está generado por los vectores $(1,0,0)^T$, $(0,0,1)^T$, y su espacio fila está generado por $(1,1)^T$, $(1,2)^T$.
 - b) Su espacio columna tiene al vector $(1,1,1)^T$ como base y su espacio fila tiene como base al vector $(1,2,1)^T$.
 - c) Su espacio columna contiene a los vectores $(1,1,0)^T$, $(1,0,1)^T$ pero no al vector $(1,1,1)^T$.
 - d) Su espacio columna contiene a $(1,2,1)^T$, su espacio nulo contiene a $(-1,0,1)^T$ y tiene determinante -1.

- 42. Dado un espacio vectorial (V, \oplus, \odot) sobre \mathbb{F} . Probar que:
 - a) Todo conjunto generador minimal de V es un conjunto de vectores l.i..
 - b) Todo conjunto generador de V cuyos elementos son l.i. es un conjunto generador minimal.
- 43. Obtener una base del subespacio de \mathbb{R}^3 generado por:
 - a) Los vectores $(1, -1, 1)^T$, $(2, 1, 0)^T$ y $(4, -1, 2)^T$.
 - b) Los vectores $(1, 1, -1)^T$ y $(-1, -1, 1)^T$.
 - c) Los vectores $(0, 1, 1)^T$, $(1, 1, 0)^T$ y $(0, 0, 0)^T$.
 - d) Las columnas de una matriz escalonada de tamaño 3×5 con 2 pivots.
- 44. *a*) Sea $\mathbb{R}_3[x]$ el espacio vectorial de los polinomios reales de grado a lo sumo 3 (incluyendo polinomio nulo). Encontrar una base \mathcal{B} del subespacio S de $\mathbb{R}_3[x]$ definido por $S = \langle \{p \in \mathbb{R}_3[x] : p(1) = 0\} \rangle$.
 - b) Extender \mathcal{B} a una base de $\mathbb{R}_3[x]$, esto es, encontrar una base $\tilde{\mathcal{B}}$ de $\mathbb{R}_3[x]$ tal que $\mathcal{B} \subset \tilde{\mathcal{B}}$.
- 45. Determinar si las siguientes afirmaciones son verdaderas o falsas.
 - a) Si los vectores columna de una matriz son linealmente dependientes, también lo son sus vectores fila.
 - b) El espacio columna de una matriz $n \times n$ coincide con el espacio fila de dicha matriz.
 - c) El espacio columna de una matriz $n \times n$ tiene la misma dimensión que el espacio fila de dicha matriz.
 - d) Los vectores columna de una matriz son una base de su espacio columna.
 - e) Si los vectores columna de A son linealmente independientes, Ax = b tiene exactamente una solución para todo b.
 - f) Una matriz 5×7 nunca tiene columnas linealmente independientes.

Coordenadas

- 46. Sea $A = \{(1, -3, 2)^T, (2, 4, 1)^T, (3, 1, 3)^T, (1, 1, 1)^T\} \subset \mathbb{R}^3$, obtener:
 - a) Una base de \mathbb{R}^3 contenida en A.
 - b) Las componentes de los vectores de la base canónica de \mathbb{R}^3 en la base obtenida en el apartado anterior.
- 47. Sea $\mathcal{B}_1 = \{v_1, v_2, v_3\}$ una base para un espacio vectorial V.
 - a) Demostrar que $\mathcal{B}_2 = \{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ también es una base.
 - b) Hallar la matriz de cambio de base $A / [v]_{\mathcal{B}_1} = A [v]_{\mathcal{B}_2}$
- 48. Sea $\mathcal{B}_1 = \{v_1, v_2, v_3\}$ una base para un espacio vectorial V.
 - a) Demostrar que $\mathcal{B}_2 = \{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ también es una base.
 - b) Hallar la matriz de cambio de base M de \mathcal{B}_2 a \mathcal{B}_1 .
- 49. Sea $V = \left\{\sum_{i=0}^{2} a_i x^i / a_i \in \mathbb{R}\right\}$ y $\mathcal{B}_1 = \left\{1, x, x^2\right\}$ base estándar de V.
 - a) Probar que $\mathcal{B}_2 = \{x 1, 1, (x 1)^2\}$ es otra base de V.
 - b) Hallar la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .
 - c) Utilizar lo obtenido en el ítem anterior y determinar $[p]_{\mathcal{B}_2}$ donde $p(x)=2x^2-5x+6$. ¿Cuáles son las coordenadas de p en la base $\{1,(x-1)^2,x-1\}$?
- 50. Hallar la matriz de cambio de base de:
 - $a) \ \ \text{la base canónica de } \mathbb{R}^{2\times2}, \, \mathcal{B} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}, \, \text{a la base}$ $\mathcal{B}' = \left\{ \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} -1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 2 & 0 \\ -1 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right] \right\}.$

Determinar las coordenadas de A en la base \mathcal{B}' para $A \in \mathbb{R}^{2 \times 2}$ una matriz cualquiera.

- $b) \ \ \text{La base} \ \left\{1,x,-1+2x^2,-3x+4x^3\right\} \ \text{de} \ \mathbb{R}_3[x] \ \text{a la base} \ \left\{1,-\frac{1}{2}+x,-x+x^2,\frac{1}{4}-\frac{3}{2}x^2+x^3\right\}.$
- 51. Sea $\mathcal{B} = \{(1,0)^T, (0,1)^T\}$ la base canónica de \mathbb{R}^2 y $A = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}$. ¿Existe una base \mathcal{B}' tal que A es la matriz de cambio de base de \mathcal{B} a \mathcal{B}' ? De existir, hallar dicha base.