

Dr. Chelsea Parlett-Pelleriti

Unsupervised Machine Learning

Clustering

$$C_1 \cup C_2 \cup ... \cup C_K = \{1, ..., n\}$$

$$C_k \cap C_{k'} = \emptyset$$
 for all $k \neq k'$

$$\min_{C_1,...,C_K} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

$$W(C_k) = \frac{1}{C_k} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

K-Means Algorithm

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers
- 4. Repeat 2 and 3 until either:
 - a. Cluster membership does not change
 - b. Centers change only a tiny amount

- 1. Choose \mathbf{k} random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose \mathbf{k} random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

Assumptions

- Spherical Clusters
- Roughly the same # in each cluster

Evaluating Unsupervised Models

Cohesion:

Separation:

$$s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

Applications

Fig. 8: Only Leaf

Fig. 7: Both Brinjal and Leaf

Fig. 6: Only Brinjal

Applications

Fig. 2: Process Flow Diagram