信息安全专业

2021级本科B210314班

毕业论文答辩

基于多源数据的路由起源验证技术研究

南京邮电大学

答辩人: B21031402谢睿熙

导师: 吴争

- 1. 选题背景及意义
- 2. 研究现状与挑战
- 3. 方法设计与分析
- 4.实验结果与对比
- 5. 总结

1.选题背景及意义

BGP协议

· BGP协议的核心地位

边界网关协议(BGP)是互联网域间路由的核心协议,负责**在自治系统(AS)之间交换路由信息**,构建全球路由网络,对互联网的稳定运行至关重要。

• BGP路由安全

BGP在设计之初,没有充分考虑安全机制。例如,由于缺乏路由认证机制,使得路由消息容易被篡改。

数据来源: BGPStream, https://www.bgpstream.com/

1.选题背景及意义

前缀劫持

攻击机理:前缀劫持是常见的BGP异常情况,攻击者伪造路由信息,将流量重定向至恶意目的地。

重大事件: 2008年巴基斯坦电信劫持YouTube流量, 致其全球服务长时间不可用; 2018年针对Amazon Route的BGP劫持,攻击者窃取大量加密货币。

1.选题背景及意义

BGP相关数据源对比

• RPKI特性

RPKI是基于公钥密码学的安全框架,用于解决BGP路由起源认证问题。网络运营商通过证书和ROA记录验证路由宣告合法性,权威性高。

• RIB表

RIB存储**路由信息表**,是BGP路由信息的**静态存储**机制。其覆盖范围受观测点地理位置限制,数据每5分钟更新一次,反映网络实际传播的路由信息,但准确性较低。

• IRR特性

IRR是分布式数据库,记录IP地址空间、AS号码持有信息及路由策略。但存在数据质量问题,**不同数据库数据可能不一致**,部分信息更新不及时,攻击者还可能注册虚假信息。

数据源	特点			
RPKI	权威性高			
RIB	数据量大			
IRR	数据较为准确			

检测前缀劫持的方法

 $\left(1\right)$

主动探测方法

方法: 通过主动向目标前缀发送探测流

量,检测其可达性和路径变化[1]。

优点:能确定事件源头和发展程度

缺点: BGP拓扑规模复杂, 开销大, 无

法全量检测且缺乏实时性。

2

机器学习方法

方法: 运用深度学习等算法对网络流

量或路由数据建模[2]。

优点:能自动学习复杂网络行为模式,

适应网络变化

缺点: 大量标记数据, 依赖数据质量

和特征工程, 且**部分模型难以解释**

(3)

路由逻辑方法

方法: 基于BGP路由信息分析检测前

缀劫持[3]。

优点: 具有较好的可解释性和较快处

理速度。

缺点:但**对数据可靠性依赖大**,数据

源不准确或不完整会影响检测结果。

[1] Z. M. Mao et al. BGP Beacons. IMC 2003.

[2] Shone N et al. A deep learning approach to network intrusion detection. TETCI, 2018.

[3] Giotsas, V. et al. On the Incompleteness of BGP Data for AS-level Analysis. Sigcomm 2014.

研究挑战

目标

保证异常检测 的**实时性**和**准 确性**。

挑战1

数据源的P/O对信息不完整,检测结果准确率低。

挑战2

多源数据存在冲突, 检测结果出现误报。

挑战3

路由信息频繁变化,数据库需要及时更新。

1.数据不完整性

不同数据源**覆盖范围不同**,数据不完整

2.数据多起源

一个前缀对应多个 AS 的情况, 如不**同数据源的P/O对信息不** 一致。

3.数据时变性

BGP前缀**会频繁进行宣告和 撤销操作**,给检测带来挑战。

贡献一

对**三方路由数据**进行 全面测量

贡献二

提取**时空稳定性特征**, 并利用云模型进行数 据筛选

贡献三

双Trie结构进行异常 检测,自动更新所提 方法

总体框架与模块划分

路由测量

 数据源来自RouteViews RIB、RPKI ROA和IRR注册数据

• 根据固定窗口(5天),存储路由信息

• 数据结构为Trie树

IPTrie节点中存储IP前缀的信息

路由测量

1.验证数据源多起源

一个前缀对应多个 AS 的情况

2.验证数据源不完整性

RIB覆盖广但不准确,IRR数据最少

3.验证数据源时变性

对200个前缀一年的UPDATES表检测发 现其变化规律不同

RPKI、IRR、RIB三方数据重合的比例

2021年1月内路由更新情况

云模型与特征提取方法

1.提取空间一致性特征

$$S_p^t = h \cdot w_t^T$$

空间一致性表示P/O对被观测点观测到的次数

空间稳定性

2.提取时间持续性特征

$$S_p^s = g$$

时间持续性表示AS对P/O对5天内持续宣告的天数

时间稳定性

3.提取数据源隶属度特征

$$S_p^m = m \cdot w_d^T$$

对于来自不同数据源 (RPKI、IRR、RIB) 的P/O对

数据源稳定性

3.方法设计与分析 云模型与特征提取方法

引入云模型理论

• 期望
$$\overline{S}_t = \frac{1}{a} \sum_{i=1}^a S_i^t$$

•
$$\hat{E}n_t = \sqrt{\frac{\pi}{2}} \times \frac{1}{a} \sum_{i=1}^a (s_i^t - \overline{S}^t)$$

• 超熵
$$\hat{H}e_t = \sqrt{B_t^2 - \hat{E}n_t^2}$$

 $\hat{y}_i = e^{-\frac{(s^t - Ex_t)^2}{2 \cdot (En_t')^2} - \frac{(s^s - Ex_s)^2}{2 \cdot (En_s')^2} - \frac{(s^m - Ex_m)^2}{2 \cdot (En_m')^2}}$ 云滴不确定度

进行定性概念和定量数值的双向转换。

数据源与空间一致性的不确定度3D云模型

双Trie树异常检测机制

1.双Trie树的功能分工

IPTrie用于**存储全量的前缀及**其相关信息,并实时**评估其不确定度。**

DetectTrie存储经过验证后的**高可信P/O对**,用于**快速判断**前缀**是否**为**合法**路由。

2.异常判定逻辑

合法: 前缀与合法路由**符合匹配**条件

劫持:前缀不符合合法路由规则,如覆盖关

系不匹配或ASN不一致。

一个时间窗口内路由信息处理

Invalid

Alert: AS123 attack <192.168.16.0/20, AS16654>

Trie树搜索IP前缀

4.实验结果与对比`

实验环境与数据集

实验数据来源

实验数据主要来源于RouteViews RIB、RPKI ROA和IRR注册数据。

实验环境

服务器: AMD EPYC 7K62, 48 核处理器,

代码运行在 Linux 操作系统, 64GB 内存。

代码语言: Python

数据来源	数据时间范围	采集点	数据量
RIB表	2023-2024	RRC00 (路由表较为完整,对等邻居 较多)	100GB
RPKI	2023-2024	RIPE、AFRINIC、APNIC、 LACNIC、ARIN (五大互联网注册机构)	7GB
IRR	2023-2024	RADB	5.7GB

基准方法	分类
Artemis	基于路由逻辑
BEAM	基于机器学习
BGPviewer	基于机器学习
BGPvector	基于机器学习

4.实验结果与对比

实验1. 鲁棒性验证

1.实时性

在不同的前缀长度下都能够进行实时地异常检测。

2.稳定性

云模型能够较为有效的区分合法和不合法 P/O 对, 且不会受到不合法 P/O 对的负面影响,体现出较 好的稳定性。

不同前缀长度下 Trie 树的构建和检测速度

实验2.基准方法对比

标注数据集

标注数据集包含10个真实劫持事件,选取依据为权威新闻标注。在已知发生时间、攻击AS、受害AS以及前缀的情况下,对每条BGP路由更新消息进行标注,保证了数据集的准确性。

开放数据集

在该数据集中,定义违背了 RPKI 中 P/O 对的报警为正确报警,其余报警为错误报警。

基于 2024 年 12 月下半月的未标注的 BGP 路由数据进行异常检测,将所提方法 与其他方法进行对比。

4.实验结果与对比

标注数据集实验对比

Dateset		# Alarms(#False Alarm)				
	CloudTrie	Artemis	BEAM	BGPVector	BGPviewer	
Iran_hijack	16 (0)	16 (0)	255 (223)	25 (25)	4 (2)	
PJSC_Rostelecom	8 (6)	0 (0)	1 (0)	1 (0)	1 (0)	
DV_LINK	8 (0)	8 (0)	CloudTrie检测的准确率较高,检测出10个事件中的9个异常事件。与其他方法相比,CloudTrie的误极次数最少,假阳率最低。			
Bitcanal_Jingdong	7 (1)	7 (1)				
Iran_Telegram	3 (0)	3 (0)				
FIBRA_PLUS_TELECOM	4 (3)	. (0))	
Campana_MYTHIC	3 (2)	4 (4)	84 (76)	2 (2)	1 (0)	
Nigeria_JSC_Ukraine	2 (1)	2 (1)	14 (1)	2 (2)	3 (2)	
Russia_Ukraine	3 (3)	3 (3)	48 (47)	3 (3)	2 (1)	
RU_AS_hijack_twitter	4 (0)	6 (2)	6 (6)	2 (2)	10 (9)	
FP Rate	14.07%	26.43%	65.89%	24.92%	34.24%	

开放数据集实验对比

次数

表现最为稳定

在开放环境异常检测结果对比

多源数据测量

对RIB、RPKI和IRR三类数据源进行全面测量,揭示了BGP路由数据具有不完整性、MOAS现象普遍性以及时变性等特性。

云模型应用

基于云模型概念,设计实时IP 路由可信度评估模型。综合 时间、空间和数据隶属三个 维度,提取稳定性特征评估 路由信息准确性。

双Trie树机制

构造在线和离线两棵Trie树, 克服BGP路由数据的时变性问 题。基于固定窗口机制与双 Trie树协同更新方法,使检测 准确率提升10%,误报率降低 10%。

・ 现有成果:

论文:面向不确定信源的前缀劫持检测方法,论文准备投稿《中国科学-信息科学》。

专利:一种面向不确定信源的前缀劫持检测方法,专利在受理中。

• 未来研究方向:

未来,随着区块链、联邦学习等技术的引入,数据源的可靠性与隐私性会进一步提升,而增量学习与图神经网络的结合或将赋予模型更强的自适应能力。

信息安全专业

2021级本科B210314班

毕业论文答辩

恳请老师批评指正!

南京邮电大学

答辩人: B21031402谢睿熙

导师: 吴争