Polar Coordinates: Tangent Lines, Arc Length, & Area

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 10.3 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Know how to compute the slope of the tangent line to a polar curve at a given point.
- Be able to find the arc length of a polar curve.
- Be able to Calculate the area enclosed by a polar curve or curves.

PRACTICE PROBLEMS:

For problems 1-3, find the slope of the tangent line to the polar curve for the given value of θ .

1.
$$r = \theta$$
; $\theta = \frac{\pi}{6}$

2.
$$r = 3 + 2\sin\theta$$
; $\theta = \frac{\pi}{6}$

3.
$$r = 1 - \sin 2\theta$$
; $\theta = \pi$

4. Consider the circle $r = 3\cos\theta$. Find all values of θ in $0 \le \theta < \pi$ for which the curve has either a horizontal or vertical tangent line.

For problems 5-7, fnd the arc length of the given curves

- 5. The entire circle $r = 4 \sin \theta$.
- 6. The spiral $r = e^{-\theta}$ for $\theta \ge 0$.
- 7. The entire cardioid $r = 1 + \cos \theta$. (Hint: It may be useful to use symmetry and the identity $\cos^2 \theta = \frac{1}{2}(1 + \cos{(2\theta)})$

1

For problems 8-16, find the area of each of the specified regions.

- 8. The region in the 1st quadrant within the circle $r = 3\cos\theta$
- 9. The region enclosed by the cardioid $r = 3 + 3\sin\theta$
- 10. The region inside the circle r=3 but outside the cardioid $r=1+\cos\theta$

- 11. The region inside the circle r=3 but outside the cardioid $r=2+2\cos\theta$
- 12. The region outside the circle r=3 but inside the cardioid $r=2+2\cos\theta$
- 13. The region in common between the two circles $r = 3\sin\theta$ and $r = 3\cos\theta$
- 14. The region inside the circle r=2 and to the right of the line $r=\sec\theta$
- 15. The region enclosed by the rose $r = 3\cos 2\theta$
- 16. The region enclosed by the rose $r = 2 \sin 3\theta$
- 17. Find the area of the shaded region (shown below) which is enclosed between the circle $r = 2\cos\theta$ and the cardioid $r = 2 + 2\cos\theta$.

18. Consider the limaçon $r = \sqrt{3} + 2\sqrt{3}\cos\theta$

- (a) Compute the area enclosed by the inner loop of the limacon.
- (b) Compute the area enclosed between the outer and inner loops of the limacon.