# Trade and Growth



Figure 2 Export shares in developing and high-income countries.

Source: Harrison & Rodriguez-Clare, 2010.

## Trade (Openness) and Growth

- ▶ What are the channels that international trade can stimulate long-run growth?
- What do data tell us?
- Given what we know about trade and growth so far, what role can the government play?

| <b>&gt;</b> | What are the channels that international trade can stimulate long-run growth? |  |
|-------------|-------------------------------------------------------------------------------|--|
|             | What does economic theory tell us?                                            |  |
|             |                                                                               |  |
|             |                                                                               |  |
|             |                                                                               |  |

- Static gains from trade
  - Comparative advantage and specialization
    - ► Climate and natural resources
    - ► Relative abundance of labor and capital
    - Technology
- Keynesian net export-led growth
  - External demand
    - ► GDP = jobs

- Dynamic gains from trade
  - Scale economies
  - Selection and reallocation of production
  - Innovation: competition and profitability; scale
    - ▶ Who innovates? Those who can or those who must?
  - ▶ Emulation: vertical vs. horizontal spillover
  - Access to intermediates: specialized inputs; embodied technology
  - Consumption of increased variety
    - Which of these effects benefit domestic industries?
- Losers from trade
  - ► Any potential downside? How to address it?
  - ▶ Where does trade surplus/deficit fit in the discussion?

Figure 2: Mean of Real per Capita Gross Domestic Product and Other Variables for Asian Countries, 1950–2007



Source: Penn World Table (2011), United Nations COMTRADE (2011), World Development Indicators (2011), and authors' calculations

Source: Razmi & Hernandez, 2011.

#### **Empirical Assessments**

- What do data tell us?
- Empirical assessment
  - focuses on particular industries that have received protection
  - exploits the variation in productivity growth and different measures of support across industries
  - cross-country analysis on openness and growth

Empirical assessment (industry/country level)

$$Y_{it} = \text{Constant} + \beta \text{OPENNESS}_{it} + \phi Z_{it} + \alpha_i + \tau_t + \varepsilon_{it}$$

(Harrison & Rodriguez-Clare, 2010)

- How to measure OPENNESS Policy vs. volume
- Endogeneity b/t Y and OPENNESS
  Granger causality (lags)
  Instrumenting for OPENNESS (geography; partner tariffs)
- ► Which variables to include in controls *Z* Institutions, investment, barriers to entry...

Table 3 All countries

|                                                    | Exchange<br>rate | Revenue tariffs<br>(Trade taxes/<br>Trade volumes) | Statutory<br>Tariffs | Openness $(X + M/GDP)$ | Real<br>openness | DFI/GDP       |
|----------------------------------------------------|------------------|----------------------------------------------------|----------------------|------------------------|------------------|---------------|
| Revenue tariffs<br>(Trade taxes/<br>Trade volumes) | 0.0452<br>283    | 1.0000<br>919                                      |                      |                        |                  |               |
| Statutory Tariffs                                  | -0.0314<br>274   | 0.6271*<br>666                                     | 1.0000<br>716        |                        |                  |               |
| Openness $(X + M/\text{GDP})$                      | -0.0172<br>291   | -0.2459*<br>561                                    | -0.2470*<br>464      | 1.0000<br>607          |                  |               |
| Real openness                                      | -0.0662<br>293   | -0.2200*<br>579                                    | -0.2970*<br>461      | 0.8921*<br>566         | 1.0000<br>630    |               |
| DFI/GDP                                            | -0.0066<br>281   | -0.2501*<br>559                                    | -0.3016*<br>445      | 0.3708*<br>567         | 0.4129*<br>576   | 1.0000<br>607 |

Notes: Data from World Bank. Time period includes 1970–2004. The asterisk indicates significant at the 5% level. Number of observations are underneath correlation coefficient.

Source: Harrison & Rodriguez-Clare, 2010.

Empirical assessment (industry/country level)

$$Y_{it} = \text{Constant} + \beta \text{OPENNESS}_{it} + \phi Z_{it} + \alpha_i + \tau_t + \varepsilon_{it}$$

(Harrison & Rodriguez-Clare, 2010)

- How to measure OPENNESS Policy vs. volume
- Endogeneity b/t Y and OPENNESS
  Granger causality (lags)
  Instrumenting for OPENNESS (geography; partner tariffs)
- ► Which variables to include in controls *Z* Institutions, investment, barriers to entry...

Table 7: Growth Regressions for Cross-Sectional and Temporal Subsamples

| Dependent variable: GRGDPCH (G       | Dependent variable: GRGDPCH (Growth rate of real GDP per capita) |           |                  |            |                    |            |                      |                        |
|--------------------------------------|------------------------------------------------------------------|-----------|------------------|------------|--------------------|------------|----------------------|------------------------|
|                                      | (1)                                                              | (2)       | (3)              | (4)        | (5)                | (6)        | (7)                  | (8)                    |
|                                      |                                                                  | d South-  | Rest             | of Asia    | 195                | 3–95       | 1989                 | -2009                  |
|                                      | east.                                                            |           |                  |            |                    |            |                      |                        |
|                                      | General                                                          | Specific  | General          | Specific   | General            | Specific   |                      | Specific               |
| Constant                             | 0.0629                                                           | -0.0267   | 0.5464*          | 0.7107***  | 0.3417             | 0.1375     |                      | 0.5973***              |
|                                      | (0.29)                                                           | (-1.07)   | (1.79)           | (3.35)     | (1.64)             | (0.74)     | (2.03)               | (2.83)                 |
| Ln RGDPCH <sub>t-1</sub>             | -0.0006                                                          |           | -0.0779*         | -0.0963*** |                    |            | -0.0495*             |                        |
|                                      | (-0.33)                                                          |           | (-1.96)          | (-3.48)    | (-2.11)            | (-0.82)    | (-1.83)              | (-2.57)                |
| INDUSTRY_PROP_GDP                    | 0.0048***                                                        | 0.0011**  | 0.0025**         | 0.0022***  |                    |            |                      |                        |
| INDUSTRY_PROP_GDP.1                  | (3.13)<br>-0.0043***                                             | (1.95)    | (2.35)<br>0.0006 | (3.79)     | (3.963)<br>-0.0021 | (5.90)     | (0.92)<br>-0.0004    |                        |
|                                      | (-3.61)                                                          |           | (0.44)           |            | (-1.10)            |            | (-0.33)              |                        |
| $INDUSTRY_PROP_GDP_2$                | -0.0000                                                          |           | 0.0007           |            | -0.0009            | -0.0041*** | -0.0010              | -0.0007**              |
| MANUF_X_GDP                          | (-0.05)<br>0.0001                                                | -0.0005** | (0.61)<br>0.0000 |            | (-0.99)<br>-0.0005 | (-3.53)    | (-0.82)<br>-0.0010** | (-1.98)<br>*-0.0005*** |
|                                      | (0.31)                                                           | (-2.54)   | (0.07)           |            | (-0.76)            |            | (-3.47)              | (-2.62)                |
| MANUF_X_GDP <sub>t-1</sub>           | 0.0002                                                           | 0.0013**  | 0.0020*          |            | 0.0010             | 0.0007*    | 0.0009***            |                        |
|                                      | (0.39)                                                           | (2.20)    | (1.76)           |            | (0.86)             | (1.70)     | (3.33)               |                        |
| $MANUF_X_GDP_{-2}$                   | -0.0003                                                          | -0.0011** | -0.0011          |            | -0.0001            |            | -0.0004              |                        |
|                                      | (-0.65)                                                          | (-2.34)   | (-0.91)          |            | (-0.11)            |            | (-1.40)              |                        |
| TB_PROP_GDP                          | -0.0022***                                                       |           | 0.0002           |            | -0.0012*           | -0.0011*   | 0.0004               |                        |
|                                      | (-2.88)                                                          |           | (0.32)           |            | (-1.72)            | (-1.82)    | (1.24)               |                        |
| TB_PROP_GDP <sub>t-1</sub>           | 0.0019***                                                        |           | -0.0025***       | -0.0014**  | -0.0012            | -0.0011*   | -0.0009              |                        |
|                                      | (2.74)                                                           |           | (-2.78)          | (-2.12)    | (-1.66)            | (-2.16)    | (-1.15)              |                        |
| TB_PROP_GDP <sub>t-2</sub>           | -0.0005                                                          |           | -0.0005          |            | 0.0008**           | 0.0015***  | 0.0002               |                        |
|                                      | (-0.61)                                                          |           | (-1.04)          |            | (2.4)              | (3.46)     | (0.38)               |                        |
| PROPORTION_X_DEVELOPED               | -0.0170                                                          |           | 0.0155           |            | -0.0157            |            | 0.0579               |                        |
|                                      | (-0.27)                                                          |           | (0.38)           |            | (-0.48)            |            | (0.95)               |                        |
| PROPORTION_X_DEVELOPE $\mathbb{Q}_1$ | 0.0235                                                           | 0.0373**  | -0.0197          |            | -0.0143            |            | 0.0283               |                        |
|                                      | (0.75)                                                           | (2.57)    | (-0.28)          |            | (-0.43)            |            | (0.77)               |                        |
| PROPORTION_X_DEVELOPE $\mathbb{Q}_2$ | 0.0271                                                           | 0.0646*** | -0.0317          |            | 0.0442*            |            | 0.0073               | 0.0334***              |
|                                      | (1.24)                                                           | (3.69)    | (-0.72)          |            | (1.77)             |            | (0.43)               | (2.77)                 |

| Time Dummies                                                     | yes     | yes     | yes     | yes  | yes     | yes      | yes     | yes |
|------------------------------------------------------------------|---------|---------|---------|------|---------|----------|---------|-----|
| Country Dummies                                                  | yes     | yes     | yes     | yes  | yes     | yes      | yes     | yes |
| LnIND+ LnIND-1 + LnIND-2                                         | 0.0004  |         | 0.0039  |      | 0.0042  | 0.0015   | -0.0007 |     |
| Wald statistic                                                   | 0.59    |         | 5.68    |      | 9.66    | 3.64     | 2.06    |     |
| p-value                                                          | [0.44]  |         | [0.02]  |      | 6900021 | [0.057]  | [0.151] |     |
| LnMAN <sub>t</sub> + LnMAN <sub>t-1</sub> + LnMAN <sub>t-2</sub> | 0.0000  | -0.0003 | 0.0009  |      | 0.0004  |          | -0.0005 |     |
| Wald statistic                                                   | 0.003   | 1.30    | 0.35    |      | 0.51    |          | 3.04    |     |
| p-value                                                          | [0.955] | [0.257] | [0.556] |      | [0.438] |          | [0.081] |     |
| $LnTB_t + LnTB_{t-1} + LnTB_{t-2}$                               | -0.0007 |         | -0.0028 |      | -0.0015 | -0.00075 | -0.0003 |     |
| Wald statistic                                                   | 1.99    |         | 2.82    |      | 4.47    | 2.65     | 0.12    |     |
| p-value                                                          | [0.162] |         | [0.09]  |      | [0.025] | [0.1034] | [0.726] |     |
| $LnPRO_t + LnPRO_{t-1} + LnPRO_{t-2}$                            | 0.0335  | 0.1020  | -0.0358 |      | 0.0141  |          | 0.0935  |     |
| Wald statistic                                                   | 0.84    | 32.37   | 1.08    |      | 0.22    |          | 3.22    |     |
| p-value                                                          | [0.362] | [0.000] | [0.30]  |      | [0.640] |          | [0.073] |     |
| Adjusted R-squared                                               | 0.70    | 0.59    | 0.51    | 0.33 | 0.56    | 0.60     | 0.67    | 0.6 |
| Cross-sections included                                          | 11      | 11      | 18      | 26   | 20      | 23       | 29      | 30  |
| Observations                                                     | 95      | 116     | 114     | 222  | 119     | 149      | 142     | 160 |

<sup>&</sup>lt;sup>a</sup>(t-statistic), \*p<0.10, \*\*p<0.05, \*\*\*p<0.01

Source: Razmi & Hernandez, 2011.

Empirical assessment (industry/country level)

$$Y_{it} = \text{Constant} + \beta \text{OPENNESS}_{it} + \phi Z_{it} + \alpha_i + \tau_t + \varepsilon_{it}$$

(Harrison & Rodriguez-Clare, 2010)

- How to measure OPENNESS Policy vs. volume
- Endogeneity b/t Y and OPENNESS
  Granger causality (lags)
  Instrumenting for OPENNESS (geography; partner tariffs)
- ► Which variables to include in controls *Z* Institutions, investment, barriers to entry...



Figure 4 Trade, growth, and regulation of entry.

Source: Bolaky and Freund (2004).

- An industry level analysis on Japan
  - ► TFP growth
  - Import-led or export-led?

Table 10.2 Basic Trade and Growth Results

|                         | Exports as a    |          |           | Imports and exports entered |
|-------------------------|-----------------|----------|-----------|-----------------------------|
| Variable                | share of output | Imports  | Net trade | separately                  |
| TFPJ(-1)                | -0.083          | -0.082   | -0.070    | -0.077                      |
|                         | (-0.077)        | (0.077)  | (0.0763)  | (0.078)                     |
| RELTFP(-1)              | -0.274**        | -0.273** | -0.283**  | -0.277**                    |
|                         | (0.098)         | (0.097)  | (0.097)   | (0.098)                     |
| CUMOUT                  | 0.263**         | 0.267**  | 0.276**   | 0.272**                     |
|                         | (0.093)         | (0.094)  | (0.094)   | (0.095)                     |
| AVERD                   | 5.105**         | 4.989**  | 3.586**   | 4.327*                      |
|                         | (2.114)         | (1.788)  | (1.500)   | (2.402)                     |
| AVEX                    | -0.092          |          |           | -0.057                      |
|                         | (0.133)         |          |           | (0.143)                     |
| AVENET                  |                 | -0.095   |           |                             |
|                         |                 | (0.109)  |           |                             |
| AVEIMP                  |                 |          | 0.266     | 0.221                       |
|                         |                 |          | (0.300)   | (0.143)                     |
| Adjusted R <sup>2</sup> | 0.151           | 0.152    | 0.152     | 0.149                       |

Source: Jorgenson and Kuroda (1990).

Table 10.3 Interreaction between Convergence and Growth

|                         | Exports as a    |           |          |          |
|-------------------------|-----------------|-----------|----------|----------|
| Variable                | share of output | Net trade | Imports  | Average  |
| TFPJ(-1)                | -0.075          | -0.064    | -0.066   | -0.077   |
|                         | (0.075)         | (0.073)   | (0.078)  | (0.075)  |
| RELTFP(-1)              | -0.210**        | -0.200**  | -0.298** | -0.309** |
|                         | (0.089)         | (0.087)   | (0.098)  | (0.098)  |
| CUMOUT                  | 0.225**         | 0.226**   | 0.214**  | 0.215**  |
|                         | (0.73)          | (0.073)   | (0.095)  | (0.075)  |
| AVERD                   | 2.975*          | 3.286**   | 1.775    | 1.519    |
|                         | (1.686)         | (1.457)   | (2.402)  | (1.866)  |
| AVEX                    | -0.197          |           |          | -0.169   |
|                         | (0.275)         |           |          | (0.273)  |
| AVEIMP                  |                 |           | -0.956   | -0.169   |
|                         |                 |           | (0.687)  | (0.689)  |
| AVENET                  |                 | -0.070    |          |          |
|                         |                 | (0.253)   |          |          |
| RELTFP*AVEX             | 0.176           |           |          | 0.220    |
|                         | (0.312)         |           |          | (0.309)  |
| RELTFP *AVEIM           | P               |           | 1.760**  | 1.773**  |
|                         |                 |           | (0.848)  | (0.852)  |
| RELTFP*AVENET           | Γ               | -0.020    |          |          |
|                         |                 | (0.292)   |          |          |
| Adjusted R <sup>2</sup> | 0.151           | 0.153     | 0.171    | 0.167    |

Source: Jorgenson and Kuroda (1990).

Table 10.4 Testing for Sample Breaks

|                         | Late<br>interacted<br>with | Late<br>interacted<br>with | Late<br>interacted<br>with | Late<br>interacted<br>with |         |
|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------|
| Variable                | exports                    | net exports                | imports                    | exports & imports          | Late    |
| TFPJ(-1)                | -0.144                     | -0.167                     | -0.129                     | -0.145                     | -0.099  |
|                         | (0.069)                    | (0.069)                    | (0.067)                    | (0.069)                    | (0.067) |
| RELTFP(-1)              | -0.110                     | -0.111                     | -0.118                     | -0.121                     | -0.119  |
|                         | (0.076)                    | (0.075)                    | (0.076)                    | (0.075)                    | (0.077) |
| CUMOUT                  | 0.023                      | 0.038                      | 0.119                      | 0.072                      | 0.103   |
|                         | (0.115)                    | (0.112)                    | (0.112)                    | (0.115)                    | (0.113) |
| AVERD                   | 2.021                      | 2.661*                     | 2.751**                    | 0.649                      | 2.772** |
|                         | (1.812)                    | (1.577)                    | (1.313)                    | (1.947)                    | (1.302) |
| AVEX                    | -0.309*                    |                            |                            | -0.032                     |         |
|                         | (0.182)                    |                            |                            | (0.218)                    |         |
| AVEIMP                  |                            |                            | 0.949**                    | 0.943**                    |         |
|                         |                            |                            | (0.322)                    | (0.376)                    |         |
| AVENET                  |                            | -0.346                     |                            |                            |         |
|                         |                            | (0.131)                    |                            |                            |         |
| LATE                    | -0.038**                   | -0.025*                    | 0.008                      | 0.943**                    | -0.008  |
|                         | (0.016)                    | (0.013)                    | (0.016)                    | (0.376)                    | (0.012) |
| LATE*AVEX               | 0.322**                    |                            |                            | 0.196                      |         |
|                         | (0.115)                    |                            |                            | (0.127)                    |         |
| LATE*AVEIMP             |                            |                            | -0.449**                   | -0.467**                   |         |
|                         |                            |                            | (0.224)                    | (0.229)                    |         |
| LATE*AVENET             |                            | 0.324                      |                            |                            |         |
|                         |                            | (0.096)                    |                            |                            |         |
| Adjusted R <sup>2</sup> | 0.210                      | 0.221                      | 0.211                      | 0.226                      | 0.226   |

Source: Jorgenson and Kuroda (1990).

Table 10.5 Riccardian Regressions

| Variable                   | Relative TFP | Lagged relative TFP |
|----------------------------|--------------|---------------------|
| Dependent variable: LOGOUT |              |                     |
| LOGOUT(-1)                 | 0.754**      | 0.788**             |
|                            | (0.024)      | (0.027)             |
| RELTFP                     | 0.494**      |                     |
|                            | (0.097)      |                     |
| RELTFP(-1)                 |              | 0.089               |
|                            |              | (0.104)             |
| Adjusted R <sup>2</sup>    | 0.986        | 0.984               |
| Dependent variable: EXOUT  |              |                     |
| EXOUT(-1)                  | 0.834**      | 0.845**             |
| , ,                        | (0.030)      | (0.029)             |
| RELTFP                     |              | 0.067**             |
|                            |              | (0.022)             |
| RELTFP(-1)                 | 0.070**      |                     |
| • •                        | (0.022)      |                     |
| Adjusted R <sup>2</sup>    | 0.962        | 0.962               |

Source: Jorgenson and Kuroda (1990).

**Table 10.7 Protection and Growth Regressions** 

| Variable                | Control  | Exports  |
|-------------------------|----------|----------|
| TFPJ(-1)                | -0.088   | -0.085   |
|                         | (0.067)  | (0.068)  |
| RELTFP(-1)              | -0.149** | -0.149** |
|                         | (0.078)  | (0.078)  |
| CUMOUT                  | 0.080    | 0.079    |
|                         | (0.113)  | (0.113)  |
| AVERD                   | 2.685**  | 2.026    |
|                         | (1.384)  | (1.829)  |
| AVEX                    |          | 0.071    |
|                         |          | (0.129)  |
| DELTAERP(-1)            | -0.002** | -0.002** |
|                         | (0.001)  | (0.001)  |
| LATE                    | -0.012   | -0.012   |
|                         | (0.012)  | (0.013)  |
| LATE*DELTAERP(-1)       | 0.0014** | 0.0014   |
|                         | (0.0006) | (0.0006) |
| Adjusted R <sup>2</sup> | 0.198    | 0.195    |

Source: Jorgenson and Kuroda (1990).

Table 10.9 Competing versus Noncompeting Imports

| Variable                | Competing and noncompeting imports alone | Full<br>specification | Competing imports alone |
|-------------------------|------------------------------------------|-----------------------|-------------------------|
| TFPJ(-1)                | -0.087                                   | -0.101                | -0.094                  |
| 1115(-1)                | (0.077)                                  | (0.082)               | (0.072)                 |
| RELTFP(-1)              | -0.292                                   | -0.297                | -0.289                  |
| KEETTI (-1)             | (0.097)                                  | (0.010)               | (0.092)                 |
| CUMOUT                  | 0.202                                    | 0.200                 | 0.195                   |
|                         | (0.077)                                  | (0.079)               | (0.073)                 |
| AVERD                   | 1.694                                    | 1.690                 | 1.727                   |
|                         | (1.254)                                  | (1.889)               | (1.229)                 |
| AVEX                    | •                                        | -0.167                | , ,                     |
|                         |                                          | (0.287)               |                         |
| AVEX*RELTFP             |                                          | 0.193                 |                         |
|                         |                                          | (0.331)               |                         |
| NCOMPIM                 | -0.063                                   | -0.089                |                         |
|                         | (1.207)                                  | (1.227)               |                         |
| COMPIM                  | -1.808                                   | -1.692                | -1.909                  |
|                         | (1.157)                                  | (1.207)               | (1.081)                 |
| NCOMPIM*RELTF           | P 0.285                                  | 0.250                 |                         |
|                         | (1.995)                                  | (2.048)               |                         |
| COMPIM*RELTFP           | 2.939                                    | 2.835                 | 3.081                   |
|                         | (1.518)                                  | (1.554)               | (1.363)                 |
| Adjusted R <sup>2</sup> | 0.168                                    | 0.163                 | 0.175                   |

Source: Jorgenson and Kuroda (1990).

### **Industrial Policy**

- ▶ Given what we know about trade and growth so far, what role can the government play?
- Is there a place for industrial policy?
  - Import substitution
    - Infant industry
    - External economies of scale
    - ▶ Other market failures: information; credit; coordination
  - Export promotion
    - ► Learning by exporting
  - Encourage inward FDI "soft" IP
    - increase the supply of skilled workers, encourage technology adoption, and improve regulation and infrastructure
    - ▶ Are these more effective?

- Empirical evidence on FDI
  - Firms that receive FDI (joint ventures) or are acquired by multinationals generally exhibit higher productivity levels.
  - Positive vertical spillovers from foreign buyers to domestic suppliers (backward linkages) and from foreign suppliers to domestic buyers (forward linkages).
  - ▶ Generally insignificant horizontal spillovers to firms within the same industry.

- Korean industrial policy
  - Encouraging exports using neutral policies
  - Promoting infant industries using non-neutral policies "picking winners"
    - used information gained during implementation to evaluate and revise intentions
    - closely monitored the magnitude of incentives, the relationship of domestic to world prices, and other relevant information including indicators of product quality
  - What role did the chaebols play?
  - Did the planners knew what they were doing?

#### Further Discussion

- America's protectionist policies:
  - Should the U.S. adopt protectionist policy?
  - What would be the effects?
  - What's different for a developed economy?
- What determines a country's openness?
  - Latent comparative advantages; geography (regional integration); macroeconomics policies; trade policies
- Future topics: regionalization, inequality, etc.