Chapitre 9 Calculs algébriques (2) : factorisations, racines de polynômes

Table 9.1 – Objectifs. À fin de ce chapitre 9...

	Pour m'entraîner 🚣		
Je dois connaître/savoir faire	۵	•	Ö
vocabulaire des polynômes	9.1, 9.2		
racines d'une forme factorisée	9.3, 9.4, 9.5		
Techniques de factorisation			
Factoriser par mise en évidence d'un facteur commun	9.6, 9.7, 9.8	9.9, 9.10	9.11, 9.12
Factoriser une différence de carrés $A^2 - B^2$	9.13, 9.14	9.15, 9.16	
Factoriser une expression de la forme $A^2 \pm 2AB + B^2$	9.17, 9.18		
Factorisation par groupement	9.19		
Application à la résolution d'équations			
résoudre des équations par factorisation		9.20, 9.21, 9.22	
choisir une forme adaptée (factorisée ou réduite)		9.23, 9.24, 9.25	
problèmes	9.26, 9.27, 9.28	9.29, 9.30	

9.1 Factorisation : vocabulaire et méthodes

- Exemple 9.1 rappel vocabulaire des expressions polynômiales.
- 1. Le monôme $-2x^5$ est de degré 5 et de coefficient -2.
- 2. Le binôme -2x + 1 est un polynôme de degré 1. C'est une expression affine.
- 3. Le trinôme $5x^2 + 3x 1$ est un polynôme de degré 2 de coefficient dominant 5.
- 4. Le trinôme $x^3 \frac{2}{3}x + 3\sqrt{2}$ est un polynôme de degré 3 de coefficient dominant 1.
- Exemple 9.2 $3\sqrt{x} + 4$ et $\frac{1}{3x+4}$ ne sont pas des expressions polynômiales en x.

Définition 9.1 Un facteur est l'un des éléments constitutifs d'un produit.

- **Exemple 9.3**
- 1. Dans $12x^2y = 2 \times 2 \times 3 \times xxy$, les termes x^2 , $2x^2$ et 3xy sont des facteurs.
- 2. Dans (x-2)(2x+5), (x-2) et (2x+5) sont des facteurs.
- 3. Dans (2x-3)+(x-3), (2x-3) et (x-3) ne sont pas des facteurs.

Définition 9.2 Un polynôme est factorisé s'il est écrit comme produit de facteurs.

■ Exemple 9.4

L'expression $5(x-3)^2(2x-1)(3x+1)$ est factorisée. Mais $2(x-3)^2 + (2x-1)(2x+1)$ n'est pas factorisée.

Définition 9.3 La factorisation est le procédé qui consiste à écrire une expression (très souvent polynômiale) comme produit (de facteurs).

Exemple 9.5 $3x^2 + 5x = x(3x+5)$ $x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3})$ $x^2 + 3x + 2 = (x+1)(x+3)$

La factorisation d'expressions est un art. Pour les polynômes de degré 2 on compte :

1. la factorisation après mise en évidence de facteurs communs

depuis la 4^e

2. la factorisation par identité remarquable de la différence de carrés

depuis la 3e

3. la factorisation par identité remarquable du carré d'une somme

en 2nd

En $1^{\text{ère}}SPE$ on abordera les factorisations par somme-produit, par complétion au carré, par le calcul des racines à l'aide de la formule quadratique ou même par racine évidente ...

Mémoriser, comprendre et maitriser différentes stratégies de factorisation simplifie considérablement la résolution d'équations et d'inéquations polynomiales.

9.2 Racines et irréductibilité

Définition 9.4 r est une *racine* (un zéro) du polynôme P(x) si P(r) = 0

■ Exemple 9.6

- 1. r = 1 est une racine de $x^2 2x + 1$ car $(1)^2 2(1) + 1 = 0$.
- 2. ax + b ($a \neq 0$) est un polynôme de degré 1. Il admet une unique racine $r = \frac{-b}{a}$.
- 3. Le polynôme $x^2 + 2$ n'a pas de racines, car l'équation $x^2 + 2 = 0$ est sans solutions réelles.

Théorème 9.1 — produit nul. Pour tout A et $B \in \mathbb{R}$:

- (i) Si A = 0 ou B = 0 alors AB = 0.
- (ii) Si AB = 0 alors A = 0 ou B = 0.

Démonstration.

- (i) évident!
- (ii) On suppose que AB = 0. On va raisonner par disjonction de cas :
 - Soit A = 0 et il n'y a rien à démontrer.
 - Soit $A \neq 0$. On va démontrer que B = 0.

Corollaire 9.2 Les racines d'un polynôme factorisé sont les racines de tous ses facteurs.

■ Exemple 9.7 -11(3x-1)=0

$$5(3x-2)(2x-5) = 0$$

$$4(3x-5)^2 = 0$$

$$4(3x - 5)^2 = 0$$

$$\iff 3x - 1 = 0$$

$$\iff 3x - 2 = 0 \quad \text{ou} \quad 2x - 5 = 0$$

$$\iff 3x - 5 = 0 = 0$$

$$\iff x = \frac{1}{3}$$

$$\iff 3x - 1 = 0 \qquad \iff 3x - 2 = 0 \quad \text{ou} \quad 2x - 5 = 0 \qquad \iff 3x - 5 = 0 = 0$$

$$\iff x = \frac{1}{3} \qquad \iff x = \frac{2}{3} \quad \text{ou} \quad x = \frac{5}{2} \qquad \iff x = \frac{5}{3}$$

$$\iff x = \frac{5}{3}$$

Corollaire 9.3 Un polynôme de degré 2 $p(x) = ax^2 + bx + c$ sans racines réelles, n'est pas factorisable sous la forme (px + q)(rx + s) avec p, q, r et $s \in \mathbb{R}$.

Démonstration.

Propriété 9.4 — admis.

On appelle polynômes irréductibles (dans \mathbb{R}):

- 1. les polynômes du premier degré ax + b ($a \neq 0$)
- 2. les polynômes du second degré $ax^2 + bx + c$ sans racines réelles

Les autres polynômes sont toujours factorisables comme produit de facteurs irréductibles.

Une factorisation est complète si les facteurs sont irréductibles.

■ Exemple 9.8 — polynômes de degré 2.

1. L'équation $9x^2 + 4 = 0$ n'a pas de solutions dans \mathbb{R} .

Le polynôme $9x^2 + 4$ est irréductible, il n'est pas factorisable comme produit de termes affines (ax + b)(cx + d).

2.
$$9x^2 - 4 = (3x - 2)(3x + 2)$$
. $9x^2 - 4$ admet deux racines $r_1 = \frac{2}{3}$ et $r_2 = \frac{-2}{3}$.

■ Exemple 9.9 — polynômes de degré 3 ou plus.

Tous les polynômes de degré 3 ou plus sont factorisables (dans \mathbb{R}).

1.
$$x^3 + 8 = (x+2)(x^2 - 2x + 4)$$
.

- 2. La factorisation $x^3 x^2 + 4x 4 = (x 1)(x^2 + 4)$ est complète : facteurs de degré 1 ou de degré 2 et sans racines.
- 3. La factorisation $x^3 x^2 4x + 4 = (x 1)(x^2 4)$ n'est pas complète.

La factorisation $x^3 - x^2 - 4x + 4 = (x - 1)(x - 2)(x + 2)$ est complète car tous les termes sont irréductibles (tous de degré 1).

■ Exemple 9.10

Un polynôme de degré 3 ou plus est factorisable même s'il n'a pas de racines réelles.

- 1. $x^4 + 4 = 0$ n'a pas de solutions dans \mathbb{R} .
- **2.** Le polynôme $x^4 + 4$ est factorisable $x^4 + 4 = (x^2 2x + 2)(x^2 + 2x + 2)$.
- 3. Les polynômes $x^2 2x + 2$ et $x^2 + 2x + 2$ n'ont pas de racines (sinon $x^4 + 4$ en aurait aussi). Ils sont irréductible, et la factorisation est complète.

9.3 Factoriser après mise en évidence d'un facteur commun

La factorisation par mise en évidence d'un facteur commun est l'opération inverse de la distributivité simple. Ainsi, pour tous a, b et le facteur commun c:

$$\begin{array}{ccc} & \xrightarrow{\text{factorisation}} & \textit{produit de facteurs} \\ ac + bc & = & c(a+b) \\ \text{somme de termes} & \xleftarrow{\text{developper}} & \end{array}$$

■ Exemple 9.11 On visera à mettre en évidence le plus grand facteur commun :

$$A(x) = 25x^{2} - 20$$

$$= 5(5x^{2}) - 5(4)$$

$$= 5(5x^{2} - 4)$$

$$B(x) = 12x^{2} - 30x - 18$$

$$= 6(2x^{2}) - 6(5x) - 63$$

$$= 6(2x^{2} - 5x - 3)$$

$$C(x) = (x - 2)(2x) + (x - 2)(3)$$

$$= (x - 2)(2x + 3)$$

■ Exemple 9.12 — subtilités. On peut veiller à garder certains coefficients dominants positifs :

$$A(x) = -3x + 18$$

$$= (-3)(x + (-6))$$

$$= (-1)(2x + (-1))3$$

$$= (-1)(2x + 3)$$

$$= (-4)(x^2 + 12x - 16)$$

$$= (-4)(x^2 + 12x - 12x - 16)$$

$$= (-4)(x^2 + 12x - 12x - 16)$$

$$= (-4)(x^2 + 12x - 12x - 12)$$

$$= (-4)(x^2 + 12x - 12)$$

$$= (-4)(x^2 + 12x - 12)$$

$$= (-4)(x^2 + 12x - 12$$

■ Exemple 9.13 — précautions. Développer les puissances pour identifier le PGFC :

$$A(x) = 6x^{3} - 4x$$

$$= 3(2x)xx - 2(2x)$$

$$= 2x(3xx - 2)$$

$$= 2x(3x^{2} - 2)$$

$$= 2x(3x^{2} - 2)$$

$$= (x - 1)(x - 1)(x - 1)(3x) - 5(x - 1)(x - 1)$$

$$= (x - 1)(x - 1)[3x(x - 1) - 5]$$

$$= (x - 1)^{2}(3x^{2} - 3x - 5)$$

■ Exemple 9.14 — règle du 1. lorsqu'un des termes est aussi le facteur commun :

$$A(x) = 3x^{2} + x$$

$$= 3xx + x$$

$$= 3xx + x(1)$$

$$= x(3x + 1)$$

$$B(x) = 18x - 6$$

$$= 6(3x) - 6$$

$$= 6(3x) - 6(1)$$

$$= 6(3x - 1)$$

$$B(x) = 10x^{2} - 2x$$

$$= 2x(5x) - 2x$$

$$= 2x(5x) - 2x(1)$$

$$= 2x(5x - 1)$$

9.4 Factoriser par identités remarquables

La factorisation d'une différence de carrés $A^2 - B^2$:

$$\begin{array}{ccc} & \xrightarrow{\text{factorisation}} & \textit{produit de termes conjugués} \\ A^2 - B^2 & = & (A - B)(A + B) \\ \textit{différences de carrés} & \xleftarrow{\text{developper}} \end{array}$$

■ Exemple 9.15 — factoriser la différence de carrés $A^2 - B^2$.

$$A(x) = 4x^{2} - 9$$

$$= 2^{2}x^{2} - 3^{2}$$

$$= (2x)^{2} - 3^{2}$$

$$= (2x - 3)(2x + 3)$$

$$= (2x - 3)(2x + 3)$$

$$B(x) = x^{2} - 2$$

$$= x^{2} - (\sqrt{2})^{2}$$

$$= (x - \sqrt{2})(x + \sqrt{2})$$

$$= (3(x + 3) - \sqrt{7}) \underbrace{\left(3(x + 3) + \sqrt{7}\right)}_{\text{somme}} \underbrace{\left(3(x + 3) - \sqrt{7}\right) \left(3(x + 3) + \sqrt{7}\right)}_{\text{somme}}$$

$$= \left(3x + 9 - \sqrt{7}\right) \left(3x + 9 + \sqrt{7}\right)$$

La factorisation le carré d'une somme $A^2 \pm 2AB + B^2$:

$$A^{2} + 2AB + B^{2} \xrightarrow{\text{factorisation}} carr\'e d'une somme$$

$$A^{2} + 2AB + B^{2} \xrightarrow{\text{developper}} (A + B)^{2}$$

$$\xrightarrow{\text{developper}} carr\'e d'une diff\'erence$$

$$A^{2} - 2AB + B^{2} \xrightarrow{\text{developper}} (A - B)^{2}$$

■ Exemple 9.16 — factoriser des expressions sous la forme $A^2 \pm 2AB + B^2$.

$$A(x) = x^{2} + 6x + 9$$

$$= \underbrace{\begin{bmatrix} x^{2} \\ A^{2} \end{bmatrix}}_{A^{2}} + 2\underbrace{\begin{bmatrix} x \\ A^{2} \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} x^{2} \\ A^{2} \end{bmatrix}}_{B^{2}} + \underbrace{\begin{bmatrix} x^{2} \\ A^{2} \end{bmatrix}}_{B^{2}} + \underbrace{\begin{bmatrix} x^{2} \\ A^{2} \end{bmatrix}}_{B^{2}} - 2\underbrace{\begin{bmatrix} x^{2} \\ A^{2} \end{bmatrix}}_{A^{2}} - 2\underbrace{\begin{bmatrix} x^{2} \\ A^{2} \end{bmatrix}}_{B^{2}} + \underbrace{\begin{bmatrix} x^{2}$$

■ Exemple 9.17 — erreurs à éviter.

$$A(x) = 9x^{2} + 25$$

$$= (3x)^{2} + 5^{2}$$

$$= (2x)^{2} + 2(2x)(3) - (3)^{2}$$

$$= (3x + 1)^{2} - 25$$

$$= (3x + 1)^{2} - (5)^{2}$$

$$= (3x + 1)^{2} - (5)^{2}$$

9.5 Exercices 7

9.5 Exercices

9.5.1 Exercices : vocabulaire des polynômes

Exercice 9.1

Associer chaque expression avec l'énoncé correspondant :

un binome de coefficient dominant $-2 \dots \dots$

un polynôme de degré 3 de coefficient dominant 1.... •
$$\frac{2}{3}x^4 + x^2 + 10$$

Exercice 9.2

Exercice 9.3

Déterminer les racines des polynômes factorisés ci-dessous :

1.
$$P(x) = 13(x-2)$$
 | 3. $P(x) = (x-1)(x-4)$ | 5. $P(x) = (x-3)(x-5)$ | 2. $P(x) = -5(x-5)$ | 4. $P(x) = -11(5+x)^3$ | 6. $P(x) = 5x^2(x+1)^3$

2.
$$P(x) = -5(x-5)$$
 4. $P(x) = -11(5+x)^3$ **6.** $P(x) = 5x^2(x+1)^3$

Exercice 9.4

Résoudre dans \mathbb{R} les équations suivantes, inconnue x.

$$(E_1) \ 10(2x-3) = 0$$

$$(E_2) \ -2(5x-10)(8x+5) = 0$$

$$(E_3) \ \frac{3}{7}\left(\frac{2}{3}-x\right) = 0$$

$$(E_4) \ 7(8x-1)(7x-4) = 0$$

$$(E_5) \ -5(8x-1) + (7x-4) = 0$$

$$(E_6) \ 3(-2x-7)^3 = 0$$

$$(E_7) \ 2(x-3)^2(2x-1) = 0$$

$$(E_8) \ 37\left(16-\frac{2}{x}\right) = 0$$

$$(E_9) \ 1 + (x+2)^2 = 0$$

Exercice 9.5

- 1. Écrire deux polynômes de degré 1 dont l'unique racine est 3.
- 2. Écrire deux polynômes sous forme factorisée dont les racines sont −1 et 0.
- 3. Écrire deux polynômes de degré 3 sous forme factorisée dont les racines sont 1 et -2.
- 4. Écrire deux polynômes de degré 5 sous forme factorisée dont l'unique racine est -10.
- 5. Écrire deux polynômes de degré 2 sans racines.

9.5.2 Exercices : techniques de factorisations

■ Exemple 9.18 — Déterminer le plus grand facteur commun de deux termes.

2.
$$50x(x-2)$$
 et $10(x-2)^2$

1. $42ab \text{ et } 14a^2$	2. $50x(x-2)$ et $10(x-2)^2$		
$42ab = 2 \times 3 \times 7 \times ab$	décomposer les coefficients en facteurs premiers.		
$14a^2 = 2 \times 7 \times aa$	développer les puissances		
	$PGFC = 2 \times 7 \times a = 14a$		
$50x(x-2) = \underbrace{2 \times 5}_{} \times 5(x)\underbrace{(x-2)}_{}$			
$10(x-2)^2 = 2 \times 5(x-2)(x-2)$	PGFC= $2 \times 5(x-2) = 10(x-2)$		

Exercice 9.6

Déterminer le plus grand facteur commun des termes donnés.

4.
$$12x^2$$
 et $30x$

7.
$$12(x-1)^2$$
 et $30(x-1)$

2.
$$12x$$
 et $18(x+5)$

5.
$$12x^3$$
 et $15x^2$

8.
$$12x^2(x-5)$$
 et $30x(x-5)$

3.
$$12(x+3)$$
 et $16x$

6.
$$24(x+1)^2$$
 et $30(x+1)^3$

9.
$$12x^2(x+4)$$
 et $3(x+4)$

■ Exemple 9.19 — Factorisation par mise en évidence d'un plus grand facteur commun.

$$A(x) = 3x^{2} - 6x \qquad B(x) = (x - 2)(2x) + (x - 2)^{2}(3) \qquad C(x) = 5(x - 3) - 2(x + 2)(x - 3)$$

$$= 3xx - (2)3x \qquad = (x - 2)(2x) + (x - 2)(x - 2)(3) \qquad = (x - 3)[5 - 2(x + 2)]$$

$$= 3x(x - 2) \qquad = (x - 2)[(2x) + (3)(x - 2)] \qquad = (x - 3)(5 - 2x - 4)$$

$$= (x - 2)(5x - 6) \qquad = (x - 3)(1 - 2x)$$

Exercice 9.7

Factoriser au maximum les expressions suivantes :

1.
$$A(x) = 3x + 6$$
 $D(x) = 4x^3 - 6x^2 + 12x$ $E(x) = 2x^2y - 6xy^2 + 3xy$ $C(x) = 20x^2 - 15x^3$ $F(x) = 3x^4 - 6x^3 - x^2$

2. $A(x) = x(x - 6) + 9(x - 6)$ $D(x) = 2(3x - 4) + (3x - 4)5x$ $E(x) = 5(x - 1) - (x + 6)(x - 1)$ $E(x) = 7(2x - 1) - 3x(2x - 1)$ $E(x) = 3(2x - 1) - 5(x + 1)(2x - 1)$

3. $A(x) = (x + 3)^2 - 4(x + 3)$ $C(x) = (5x - 2)^2 - (3x - 2)(5x - 2)$ $D(x) = (4 - x)(3x - 1) - (4 - x)(16 - 2x)$

9.5 Exercices

■ Exemple 9.20 — subtilités : règle du 1 lorsqu'un des termes est aussi le facteur commun .

$$A(x) = 3x^{2} + x \qquad B(x) = 10x^{2} - 2x \qquad C(x) = 18x(x+1) - 6x$$

$$= 3xx + x \qquad = 2x(5x) - 2x \qquad = 6x(3)(x+1) - 6x$$

$$= 3xx + x(1) \qquad = 2x(5x) - 2x(1) \qquad = 6x(3)(x+1) - 6x(1)$$

$$= x(3x+1) \qquad = 2x(5x-1) \qquad = 6x[3(x+1) - 1]$$

$$= 6x(3x+3-1) = 6x(3x+2)$$

Exercice 9.8

Factoriser au maximum les expressions suivantes :

$$A(x) = 4x^2 + x$$
 $C(x) = 12x^2 + 6x$ $E(x) = (3x - 1)^2 + (3x - 1)$
 $B(x) = x - 2x^3$ $D(x) = 49x^2 - 7x$ $F(x) = 15(x + 1)^2 - 5(x + 1)$

lacktriangle Exemple 9.21 — subtilités : factoriser par -1 les facteurs non constants à coefficient dominant négatif.

$$A(x) = -x + 8$$

$$B(x) = 5(x-1) - 2x(x-1)$$

$$= (-1)(x-8)$$

$$= (5-2x)(x-1)$$

$$= (5x-2)(x-2)$$

$$= (5x-2)(x-2)$$

$$= (5x-2)(x-2)$$

Exercice 9.9

Factoriser en laissant les facteurs non constants avec un coefficient dominant positif

$$A(x) = 12x - 4x^{2}$$

$$B(x) = 25 - 15x^{3}$$

$$C(x) = 3x(12x - 1) + (1 - 12x)$$

$$D(x) = 3(x - 5) - (x - 5)(x + 2)$$

$$E(x) = 2x(5x - 2) - (2 - 5x)$$

$$F(x) = (10 - 5x) - 3x(10 - 5x)$$

■ Exemple 9.22 — subtilités : Factoriser de sorte que le facteur restant soit à coefficients entiers.

$$A(x) = \frac{1}{7}x + 5$$

$$= \frac{1}{7}x + \frac{1}{7} \times 7 \times 5$$

$$= \frac{1}{3} \times 2(x+1)(x+1) - \frac{1}{3} \times 3 \times 5(x+1)$$

$$= \frac{1}{7}(x+35)$$

$$= \frac{1}{3}(x+1)[2(x+1) - 5]$$

$$= \frac{x+35}{7}$$

$$= \frac{1}{3}(x+1)(2x-3)$$

Exercice 9.10

Factoriser de sorte que le facteur restant soit à coefficients entiers :

$$A(x) = \frac{1}{2}x + 4$$

$$B(x) = \frac{1}{3}x + 5$$

$$C(x) = \frac{1}{2}x^3 + 2x^2 - 5x$$

$$D(x) = \frac{1}{3}x^4 - 5x^2 + 2x$$

$$E(x) = \frac{2}{3}x(x-3) - 4(x-3)$$

$$F(x) = \frac{4}{5}x(x+1) - 2(x+1)$$

Exercice 9.11

Les factorisations suivantes sont fausses. Retrouver l'erreur et refaire les factorisations :

$$A(x) = 2(x+5)(x-1) + (2x-3)(x+5)$$

$$= (x+5)[2 + (x-1) + (2x-3)]$$

$$= (x+5)(3x-4)$$

$$C(x) = 2(3x-2)(5x-1) - (3x-1)(3x-2)$$

$$= (3x-2)[2(5x-1) - 3x-1]$$

$$= (3x-2)[10x-2-3x-1]$$

$$= (3x-2)(7x-3)$$

$$B(x) = (2-8x)(7-x) - 3(7-x)(3-x)$$

$$= (7-x)[(2-8x) - 3 + (3-x)]$$

$$= (7-x)(2-9x)$$

$$D(x) = (2x-3)(5x-1) - (2x-3)^2$$

$$= (2x-3)[(5x-1) - 1]$$

$$= (2x-3)(5x-2)$$

Exercice 9.12 — entrainement.

Factoriser au maximum les expressions suivantes :

$$A(x) = (3x+5)(7x-4) - (5x-3)(3x+5)$$

$$B(x) = (2x+5)(2x+7) - (6x+15)(x+2)$$

$$C(x) = (2x+5)(2x+7) + 4(2x+5)(x+2)$$

$$D(x) = (2x-3)^2 + (3x-1)(2x-3)$$

$$E(x) = 2(2x+5)(7x+5) - 3(2x+5)(x+2)$$

$$F(x) = 3(2+3x) - 2(5+2x)(2+3x)$$

$$G(x) = (2x+3)(5x+7) + 3(2x+3)(-2x+9)$$

$$H(x) = 5(2x-1)^2 + (3x-4)(2x-1)$$

$$I(x) = (2x-3)(5x-1) + 2(3x-1)(2x-3)$$

$$J(x) = 5(2x-1)^2 - (3x-4)(2x-1)$$

■ Exemple 9.23

Écrire comme un carré les expressions suivantes :

$$A(x) = 64x^{2} B(x) = 5x^{2} C(x) = \frac{16}{9}x^{2} D(x) = 9(2x - 1)^{2}$$

$$= 8^{2}x^{2} = (\sqrt{5})^{2}x^{2} = \frac{4^{2}}{3^{2}}x^{2} = (3(2x - 1))^{2}$$

$$= (8x)^{2} = (\sqrt{5}x)^{2} = (6x - 3)^{2}$$

Exercice 9.13

Écrire comme un carré les expressions suivantes :

9.5 Exercices 11

■ Exemple 9.24 — reconnaitre une différence de carrés $A^2 - B^2$ et la factoriser.

$$A(x) = 4x^{2} - 9$$

$$= 2^{2}x^{2} - 3^{2}$$

$$= (2x)^{2} - 3^{2}$$

$$= (2x - 3)(2x + 3)$$

$$B(x) = x^{2} - 2$$

$$= x^{2} - (\sqrt{2})^{2}$$

$$= x^{2} - (\sqrt{2})^{2}$$

$$= \frac{4^{2}}{3^{2}} - x^{2}$$

$$= (3x)^{2} + 5^{2}$$

$$= (3x)^{2} + 5^{2}$$

$$= (\frac{4}{3})^{2} - x^{2}$$

$$= (\frac{4}{3} - x) (\frac{4}{3} + x)$$

Exercice 9.14

Factoriser les expressions suivantes :

1.
$$x^2 - 36$$

3.
$$9x^2 - 16$$

5.
$$36x^2 - 3$$

2.
$$x^2 - 5$$

4.
$$4 - 36x^2$$

6.
$$16x^2 - \frac{1}{9}$$

■ Exemple 9.25 — factoriser une différence de carrée d'expressions.

$$A(x) = 9(x+3)^{2} - 7$$

$$= 3^{2}(x+3)^{2} - (\sqrt{7})^{2}$$

$$= \left(3(x+3)\right)^{2} - \left(\sqrt{7}\right)^{2}$$

$$= \left(3(x+3) - \sqrt{7}\right) \left(3(x+3) + \sqrt{7}\right)$$

$$= \left(3x+9 - \sqrt{7}\right) \left(3x+9 + \sqrt{7}\right)$$

$$= \left(3x+9 - \sqrt{7}\right) \left(3x+9 + \sqrt{7}\right)$$

$$= \left(6x-2-5x\right) \left(6x-2+5x\right)$$

$$= \left(x-2\right) \left(11x-2\right)$$

Exercice 9.15

Compléter pour factoriser par identité remarquable :

$$A = 4(3x - 1)^{2} - 25x^{2}$$

$$= \begin{pmatrix} \end{pmatrix}^{2} - \begin{pmatrix} \end{pmatrix}^{2}$$

$$= \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$$

Exercice 9.16

Factoriser les expressions suivantes par une identité remarquable.

1.
$$(x+3)^2-1$$

3.
$$(3x+7)^2-5$$

5.
$$4(2x-1)^2 - 25x^2$$

2.
$$25 - (2x - 1)^2$$

4.
$$(2x+3)^2-3$$

6.
$$4(x+1)^2 - 9x^2$$

7.
$$9(2x-1)^2-4x^2$$

8.
$$9(2x-1)^2-5$$

9.
$$4(2x-1)^2-25(x+3)^2$$

■ Exemple 9.26 — reconnaitre des expressions de la forme $A^2 \pm 2AB + B^2$.

$$A(x) = x^{2} + 6x + 9$$

$$= \underbrace{\begin{bmatrix} x^{2} \\ A^{2} \end{bmatrix}}_{A^{2}} + 2\underbrace{\begin{bmatrix} x^{2} \\ A^{2} \end{bmatrix}}_{A} + \underbrace{\begin{bmatrix} 3^{2} \\ B^{2} \end{bmatrix}}_{B^{2}}$$

$$= \underbrace{(A+B)^{2}}_{A^{2}} + 3\underbrace{\begin{bmatrix} A+B^{2} \\ A^{2} \end{bmatrix}}_{A^{2}} + \underbrace{\begin{bmatrix} A+B^{2} \\ A^{2} \end{bmatrix}}_{B^{2}} + \underbrace{\begin{bmatrix} A+B^{2} \\ A^{2} \end{bmatrix}$$

Exercice 9.17

Compléter pour factoriser :

$$A = x^{2} + 8x + 16$$

$$= ()^{2} ... 2 \times () \times () ... ()^{2}$$

$$= ()^{2} ... 2 \times () \times () ... ()^{2}$$

$$= ()^{2} ... 2 \times () \times () ... ()^{2}$$

$$= ()^{2} ... 2 \times () \times () ... ()^{2}$$

$$= ()^{2} ... 2 \times () \times () ... ()^{2}$$

$$= ()^{2} ... 2 \times () \times () ... ()^{2}$$

$$= ()^{2} ... 2 \times () \times () ... ()^{2}$$

$$= ()^{2} ... 2 \times () \times () ... ()^{2}$$

Exercice 9.18

Factoriser (si possible) les expressions suivantes à l'aide d'une identité remarquable.

1.
$$x^2 + 2x + 1$$

2.
$$x^2 - 6x + 9$$

3.
$$x^2 + 10x + 25$$

4.
$$x^2 + x + \frac{1}{4}$$

5.
$$9x^2 - 24x + 16$$

6.
$$36x^2 - 108x + 81$$

7.
$$4x^2 - 12x + 9$$

$$8. \ 4x^2 + 4xy + y^2$$

9.
$$x^2 - 14xy + 49y^2$$

10.
$$9x^2 - 6\sqrt{5}x + 5$$

11.
$$3x^2 - 2\sqrt{3}x + 1$$

12.
$$9x^2 - 36x + 36$$

■ Exemple 9.27 — Factoriser par mise en évidence après un groupement de termes.

$$A(x) = x^{3} + x^{2} + 4x + 4$$

$$B(x) = x^{3} - 2x^{2} - 9x + 18$$

$$C(x) = x^{3} - 2x^{2} + 3x - 6$$

$$= (x^{3} + x^{2}) + (4x + 4)$$

$$= (x^{3} - 2x^{2}) - (9x - 18)$$

$$= x^{3} + 3x - 2x^{2} - 6$$

$$= x^{2}(x + 1) + 4(x + 1)$$

$$= (x^{2} + 4)(x + 1)$$

$$= (x^{2} - 9)(x - 2)$$

$$= (x^{3} + 3x) - (2x^{2} + 6)$$

$$= x(x^{2} + 3) - 2(x^{2} + 3)$$

$$= (x - 3)(x + 3)(x - 2)$$

$$= (x - 2)(x^{2} + 3)$$

Exercice 9.19

Factoriser par regroupement les expressions suivantes :

- 1. $x^3 + 4x^2 + x + 4$
- **2.** $5x^3 + x^2 + 5x + 1$
- 3. $3x^3 x^2 + 6x 2$

- 7. $8x^5 6x^2 + 12x^3 9$
- 5. $x^3 + x^2 + x + 1$ 6. $x^5 + x^4 + x + 1$ 8. (9x + 10)(8x + 7) + 8x + 79. $2(x + 3)^2 x 3$

9.5.3 Exercices : forme factorisée pour déterminer les racines

Exemple 9.28 Factoriser (si possible) et résoudre dans \mathbb{R} les équations inconnue x:

• •		. *
$4x^2 - 9x = 0$	$4x^2 - 9 = 0$	$4x^2 + 9 = 0$
x(4x - 9) = 0	(2x-3)(2x+3) = 0	$\mathscr{S} = \varnothing$ pas de racines,
x = 0 ou $4x - 9 = 0$	$x = \frac{3}{2}$ ou $x = -\frac{3}{2}$	$4x^2 + 9$ n'est pas factorisable.
$\mathscr{S} = \left\{0 \; ; \; \frac{9}{4}\right\}$	$\mathscr{S} = \left\{ -\frac{3}{2} \; ; \; \frac{3}{2} \right\}$	
$9x^2 + 12x + 4 = 0$	$x^2 = 12x - 36$	(x+1)(2x+3) + 5(x+1) = 0
$(3x)^2 + 2(3x)(2) + 2^2 = 0$ $(3x+2)^2 = 0$	$x^2 - 12x + 36 = 0$ $(x - 6)^2 = 0$	(x+1)(2x+3+5) = 0 $(x+1)(2x+8) = 0$
(3x+2) = 0 $3x+2 = 0$	(x-6) = 0 $x-6 = 0$	(x+1)(2x+3) = 0 x+1=0 ou $2x+8=0$
$x = -\frac{2}{3}$	x = 6	x = -1 ou $x = -4$
$\mathscr{S} = \left\{ -\frac{2}{3} \right\}$	$\mathscr{S} = \{6\}$	$\mathscr{S} = \{-1 \; ; \; -4\}$

Exercice 9.20

Factoriser (si possible) et résoudre dans \mathbb{R} les équations inconnue x:

- $(E_1) 5x^2 + 2x = 0$ $(E_2) 9x^2 4 = 0$ $(E_3) 36x^2 + 100 = 0$ $(E_4) x^2 + 10x + 25 = 0$ $(E_5) x^2 6x = -9$ $(E_6) -3x^2 = 5x$ $(E_7) x^2 = 2x 1$ $(E_8) x^2 + 4x = -4$

Exercice 9.21

- 1. Factoriser complètement $(x^2 + 1)^2 4x^2$
- 2. En déduire les solutions de $(x^2 + 1)^2 4x^2 = 0$

Exercice 9.22 — entrainement.

Résoudre les équations suivantes après factorisation.

- (E_1) (3x+2)(8x+5) + (3x+2)(2x+3) = 0 $| (E_5) x^2(x^2-1) 9(x^2-1) = 0$
- $(E_2) (3x-1)^2 + (3x-1)(5x-4) = 0$
- $(E_3) (3x-1)^2 (5x-4)^2 = 0$
- $(E_4) \ 2(x+1)(x-3)^2 3(x+1)^2(x-3) = 0$ $(E_8) \ (2x+3)^2 = (5x+4)^2$
- (E_6) (2x-5)(5x-4) = (2x-5)(8x-1)
- (E_7) (6x-4)(-3x+2) = (10x-2)(6x-4)

Exercice 9.23 — Un grand classique : choisir la forme algébrique la plus adaptée.

On considère l'expression définie pour tout x appartenant à \mathbb{R} par $A(x)=(x+3)^2+2(x+1)(x+3)$.

- 1. Développer, réduire et ordonner A(x) (forme développée).
- 2. Factoriser A(x) et montrer que A(x) = (x+3)(3x+5) (forme factorisée).
- 3. a) En utilisant la forme développée donner la valeur exacte de A(0) et $A(\sqrt{2})$.
 - b) En utilisant la forme factorisée, résoudre l'équation A(x) = 0.
 - c) Utiliser la forme la plus adaptée pour déterminer les deux solutions de A(x) = 15.

Exercice 9.24 — rebelotte.

Soit la fonction B définie sur \mathbb{R} par $B(x) = (2x-4)^2 - 3(x-2)(x+5)$.

- 1. Développer, réduire et ordonner B(x) (forme développée).
- 2. Montrer que pour tout $x \in \mathbb{R}$, B(x) = (x-23)(x-2) (forme factorisée).
- 3. En utilisant la forme la plus adaptée déterminer :
 - a) Les images de 0 et $-\sqrt{2}$ par B.
 - b) Les racines de B.
 - c) Résoudre B(x) = 46 d'inconnue x.
- 4. Montrer que pour tout $x \in \mathbb{R}$, $B(x) = (x 12.5)^2 110.25$ (dite forme canonique).
- 5. En utilisant la forme canonique :
 - a) résoudre dans $\mathbb R$ l'équation B(x) = -110,25 d'inconnue x.
 - b) résoudre dans \mathbb{R} l'équation B(x) = 10,75 d'inconnue x.

Exercice 9.25 — un dernier.

Soit la fonction C définie sur \mathbb{R} par $C(x) = (3x+5)^2 - (2x+3)^2$.

- 1. Développer, réduire et ordonner C(x).
- 2. Factoriser C(x) à l'aide d'une identité remarquable et montrer que C(x) = (5x + 8)(x + 2).
- 3. En utilisant la forme la plus adaptée déterminer :
 - a) Les images de 0 et $\sqrt{3}$ par C.
 - b) Les solutions de l'équation C(x) = 0.
 - c) Les solutions de l'équation C(x) = 16 d'inconnue x.
- 4. Montrer que pour tout $x \in \mathbb{R}$, $C(x) = 5\left(x + \frac{9}{5}\right)^2 \frac{1}{5}$ (dite forme canonique).
- 5. En utilisant la forme canonique :
 - a) résoudre dans \mathbb{R} l'équation C(x) = 3 d'inconnue x.
 - b) résoudre dans \mathbb{R} l'équation C(x) = -1 d'inconnue x.

Exercice 9.26

La figure ci-contre est un rectangle.

- 1. Montrer que x est solution de $x^2 + 4x 60 = 0$.
- 2. Développer (x 6)(x + 10).
- 3. En déduire le(s) valeur(s) possible(s) de x.

15

Exercice 9.27

On suppose que la longueur d'un rectangle est 5 cm de plus que sa largeur, et que l'aire du rectangle est 66 cm². On pose x la longueur du rectangle.

- 1. Montrer que x vérifie $x^2 + 5x 66 = 0$.
- 2. Développer (x + 11)(x 6).
- 3. En déduire les dimensions du rectangle.

Exercice 9.28

La figure ci-contre est un rectangle.

- 1. Montrer que x vérifie $x^2 + x 56 = 0$.
- **2.** Développer (x 7)(x + 8).
- 3. En déduire le(s) valeur(s) possible(s) de x.

Exercice 9.29

La figure ci-contre est un rectangle.

1. Utiliser l'égalité de Pythagore pour montrer que x vérifie l'équation $x^2 + 2x - 1680 = 0$.

- 2. Développer (x 40)(x + 42).
- 3. En déduire le(s) valeur(s) possibles de x.

Exercice 9.30

L'aire de la figure en L ci-contre est 65 cm².

Les longueurs sont en cm.

- 1. Montrer que x vérifie $3x^2 38x + 55 = 0$.
- 2. Développer (3x 5)(x 11).
- 3. Résoudre en x et préciser quelles solutions sont admissibles.

