

Introduction to Machine Learning

Assoc. Prof. Karl Ezra Pilario, Ph.D.

Process Systems Engineering Laboratory
Department of Chemical Engineering
University of the Philippines Diliman

Outline

- What is Machine Learning?
 - Why only now?
 - Types of Learning Problems
- Intro to the Course (AI 221)
 - Course Delivery
 - Course Content
 - Course Requirements
 - Software

What is Machine Learning?

A field of study concerned with giving computers the *ability to learn* without being explicitly programmed.

(Arthur Samuel, 1959)

Arthur Samuel and the IBM 701 Computer

- Arthur Samuel was not a very good checkers player.
- But he was able to program a checkers bot that plays better than a human.
- The bot learned by playing millions of times against itself.
- In the process, it learns which moves lead to wins and which moves lead to losses.

One of the key differences between classical and quantum computers is that classical computers can only be in one state at a time, whereas quantum computers can exist in multiple states simultaneously. This property, known as superposition, allows quantum computers to perform certain types of calculations much faster than classical computers.

Another important difference is that quantum computers can exploit a phenomenon called

Typical ML Applications

- Filtering emails as spam / not spam
- Handwritten digits recognition
- Speech recognition, Natural Language Processing (NLP)
- Social media (Face recognition, News Feed Ranking, etc.)
- Image / Object Recognition, Image Segmentation
- Recommender systems (movies, products, videos, webpages, bookings)
- Finance (Stock market prediction, customer behaviour, etc.)
- Transportation (Self-driving cars, travel demand modelling)
- Healthcare (Early diagnostics, hospital demand forecasting)
- Bioinformatics (Protein folding and structure prediction, Gene function prediction, Biomedical image analysis)
- Chemometrics (GC-MS data analysis, drug discovery, compound classification, chemical property prediction)

IBM Watson Jeopardy, 2011

AlexNet
ImageNet Visual Recognition Challenge, 2012

AlphaGo Game of Go, 2016

IBM Deep Blue Chess, 1997

AlphaStar StarCraft II, 2019

T1037 / 6vr4 90.7 GDT (RNA polymerase domain)

T1049 / 6y4f 93.3 GDT (adhesin tip)

AlphaFold

Protein Structure Prediction, **2016**, **2018**

DALL-E 2021, 2022

quantum particle, even if the two particles are separated by a large distance. This allows

quantum computers to perform certain types of calculations in parallel, which

ChatGPT 2022

Machine Learning,
Data Science,
Data Analytics,

...why only now?

Storage

Growth in **Computing Power** worldwide

Growth in **Data Volume**

Generated worldwide

(in zetabytes)

Growth in **Data Storage** worldwide

Machine Learning + Practical Applications

2022

Machine Learning, Data Science, Data Analytics,

...why only now?

We are currently DROWNING¹ in data!

- There are about 1 trillion web pages.
- 1 hr of video is uploaded to Youtube every second.
- Human genomes have a length of 3.8×10^9 base pairs.
- Walmart handles more than 1 million transactions per hour.
- Etc...

Popular websites where we can get publicly available data:

- ¹ Venkatasubramanian (2009). DROWNING IN DATA: Informatics and Modeling Challenges in a Data-Rich Networked World. *AIChE Journal*.
- ² Murphy (2012). Machine Learning: A Probabilistic Perspective. *MIT Press.*

Why use Machine Learning in your Industry?

Three approaches to engineering problems:

- 1. Physics-driven Methods
- 2. Knowledge-driven Methods
- Data-driven Methods

Machine learning is a data-driven approach.

Reference: Pilario et al. (2020), A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring. MDPI: Processes, https://doi.org/10.3390/pr8010024

How to turn data into decisions?

Source: https://iterationinsights.com/article/where-to-start-with-the-4-types-of-analytics/

- Applying machine learning to your data is not enough.
- Ask yourself the purpose for using ML and Al.
- Don't just let your data speak, let it change the way you do things.
 The goal is prescriptive analytics!
- Getting through each stage of analytics requires more and more effort, but also more returns.

Outline

- What is Machine Learning?
 - Why only now?
 - Types of Learning Problems
- Intro to the Course (AI 221)
 - Course Delivery
 - Course Content
 - Course Requirements
 - Software

Types of Learning Problems

Supervised Learning

Learn a mapping or a function:

$$y = f(x)$$

from inputs (x) to outputs (y), given a labelled set of input-output examples $(\bigcirc$ or).

Regression

Classification

Unsupervised Learning

Discover patterns or structure from a data set () without any label information.

Dimensionality Reduction

Clustering

Density Estimation

Types of Learning Problems

A simple example...

These are images of dogs.

Now, what is this an image of?

Unsupervised Learning

Here are some images...

Is there an image that does not belong?

Are there images with similar patterns?

Types of Learning Problems

Semi-Supervised Learning

Goal: Make a computer learn from both labelled and unlabelled data.

Labelled Data

Unlabelled Data

Supervised Learning

Learn a mapping or a function:

$$y = f(x)$$

from inputs (x) to outputs (y), given a labelled set of input-output examples $(\bigcirc$ or).

Regression

Classification

- **Given:** Training Data $\{x_i, y_i\}_{i=1,2...,N}$
- Target y_i is a **continuous** variable.

• Examples:

- Forecasting future stock price
- Forecasting energy resources
- Prediction of key performance indicators
- Predicting the properties of molecules based on their structure
- Predicting the environmental impact of pollutants

- **Given:** Training Data $\{x_i, y_i\}_{i=1,2...,N}$
- Target y_i is a **categorical** variable.

• Examples:

- Classifying objects in images
- Classifying chest X-ray images into COVID positive/negative
- Handwritten digits recognition
- Filter e-mails into spam/not spam
- Classify critical equipment as to healthy or faulty
- Activity recognition from wearable devices

Unsupervised Learning

Discover patterns or structure from a data set () without any label information.

Dimensionality Reduction

Clustering

Density Estimation

Dimensionality Reduction

- **Given:** Data $\{x_i\}_{i=1,2...,N}$
- Reduce features but retain the most important information from the original data.
- Examples:
 - Feature Engineering
 - Image compression
 - Filtering noise from signals
 - Source separation in audio
 - Data visualization

Clustering

- Given: Data $\{x_i\}_{i=1,2,...,N}$
- Group similar data points together.
- Examples:
 - Customer segmentation
 - Recommendation systems
 - Identifying fake news
 - Clustering documents, tweets, posts

Density Estimation

- Given: Data $\{x_i\}_{i=1,2...,N}$
- Estimate the distribution of your data.
- Examples:
 - Anomaly Detection
 - Novelty Detection
 - Generative Models
 - Finding distribution modes
 - Spatio-temporal analytics

Machine Learning Methods

Supervised Learning

Unsupervised Learning

Outline

- What is Machine Learning?
 - Why only now?
 - Types of Learning Problems
- Intro to the Course (Al 221)
 - Course Delivery
 - Course Content
 - Course Requirements
 - Software

Introduction to the Course

COURSE NUMBER: Al 221

COURSE TITLE: Classical Machine Learning

COURSE DESCRIPTION: Linear Models. Kernel Methods. Neural Networks. Trees. Clustering.

Dimensionality Reduction. Feature Engineering. Density Estimation.

Ensemble Learning. Gaussian Processes. Bayesian Methods.

Hyperparameter Search. AutoML. Explainability.

COURSE CREDIT: 3 units

3.0 hours/week

COURSE LMS*: UVLE Course Page: Al 221 [SQRU]

Github: https://github.com/kspilario/Al221

^{*}LMS = Learning Management System

Introduction to the Course

MEngg in Artificial Intelligence

Total Units: 31 Units

Introduction to the Course

PhD in Artificial Intelligence *Option A*

Total Units: 62 Units

Requirement: 2 Publications

Al 221 Course Delivery

• **Meeting:** Every Saturday online via Zoom, except for the *Team Project Presentation*.

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday

• Course Requirements:

Requirement	% of Final Grade	Mode	
Team ProjectOral Presentation (40%)Written Report (60%)	40%	"Teams" of 1 to 3 members only, Face-to-face	
Machine Exercises	40%	Individual, Asynchronous	
Journal Critique	20%	Individual, Asynchronous	

• Grading System:

[92,100]	[88,92)	[84,88)	[80,84)	[76 <i>,</i> 80)	[72,76)	[68,72)	[64,68)	[60,64)	[0,60)
1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	5.00

Al 221 Course Content

	Introduction to Machine Learning	Apr 29	Week 8.	Trees, Weak Learners, and Ensemble Learning (Boosting, Bagging, Stacking)
Mar 4 Week 2.	Linear and Logistic Regression	May 6	Week 9.	Neural Networks for Classification,
Mar 11 Week 3.	Support Vector Machines and Kernel Methods			Regression, and Dim. Reduction
		May 13	Week 10.	Neural Networks for Time Series
Mar 18 Week 4.	Cross-validation and Hyper-parameter			
	Optimization	May 20	Week 11.	Gaussian Processes and Bayesian Optimization
Mar 25 Week 5.	Linear Dimensionality Reduction			
	+ Discriminant Analysis	May 27	Week 12.	AutoML and ML Explainability
Apr 1 Week 6.	Nonlinear Dimensionality Reduction	Jun 3	Week 13.	Team Project Presentation
Apr 22 Week 7.	Clustering, Density Estimation, and Anomaly Detection			

Al 221 Course Requirements

Team Project (40%)

- A team should have at most 3 members only.
- Aims:
 - Find a problem + data set that requires an ML solution.
 - Solve the problem using the ML methods discussed in class.
 - Present your results face-to-face.
- NO two teams should have the same problem.
- Grading:
 - Oral Presentation (40%)
 - Written Report (60%)

Machine Exercises (40%)

- Mode: Individual, asynchronous
- To be given every lecture week (Weeks 2-12).
- Submission deadline for all MEX is at the end of classes, June 8, 2023.

Journal Critique (20%)

- Mode: Individual, asynchronous
- Find a paper from a reputable journal / conference proceedings related to your field.
 - Should have an impact factor of 2 or higher.
 - Should be published in the last 3 years.
 - Send me the paper for approval first.
- Critique the paper. More guidelines to follow.

Al 221 Required Software

- Anaconda >> Spyder
- Google Colab
- Jupyter Notebook
- PyCharm

or

- You can download MATLAB by logging in to www.mathworks.com
 - Use your UP credentials!
- You can also use MATLAB online.

Al 221 Required Software

- Python 3
 - https://www.python.org
- Numpy
 - http://www.numpy.org/
- Scikit-Learn
 - https://scikit-learn.org/
- Juptyer Lab
 - https://jupyter.org/try-jupyter/lab/
 - https://nbviewer.org/

Al 221 Course Instructor

Current Position

Karl Ezra S. Pilario
Associate Professor
Department of Chemical Engineering
University of the Philippines, Diliman

- Process Dynamics & Control
- Programming in MATLAB, Python, Aspen HYSYS
- Numerical Methods in Engineering
- Plant Design and Research
- Machine Learning and Artificial Intelligence

University of the Philippines, Diliman

Education

Bachelor's Degree:

Chemical Engineering, *SCL* (2012) University of the Philippines Diliman

Master's Degree:

Chemical Engineering (2015)
University of the Philippines Diliman

PhD Degree:

PhD Energy and Power (2020)
Cranfield University, United Kingdom

Research Lab

Head, Process Systems Engineering Laboratory (PSEL)

Department of Chemical Engineering University of the Philippines - Diliman

Research Interests

- Process Data Analytics
- Process Systems Engineering
- Industrial Process Monitoring and Predictive Maintenance
- Machine Learning for Energy, Water, and Environment
- Cheminformatics and Materials Informatics

Outline

- What is Machine Learning?
 - Why only now?
 - Types of Learning Problems
- Intro to the Course (AI 221)
 - Course Delivery
 - Course Content
 - Course Requirements
 - Software