

IIC2223 — Teoría de Autómatas y Lenguajes Formales 2020-2

Tarea 5 – Respuesta Pregunta 2

2.1

Sea L subconjunto infinito de $\{a^nb^nc^n \mid n>0\}$. Demostraremos que L no es libre de contexto utilizando el Lema de bombeo para lenguajes libres de contexto:

 $\forall N>0$, podemos elegir $z\in L,\,z=a^mb^mc^m$ con m>N. La palabra z siempre existirá en el lenguaje ya que L es inifnito, por lo que |L|>N, lo que implica que $\exists z=a^mb^mc^m\in L, m>N$. Luego, cumplimos la condición de que $|z|\geq N$, ya que |z|=3m>N.

Luego, tenemos que revisar los posibles valores que podría tomar el string de la forma uvwxy, con $vx \neq \epsilon$ y $|vwx| \leq N$. Tenemos dos casos:

- vwx es subpalabra de a^m , b^m o c^m :
 - Llamaremos j al símbolo tal que vwx es subpalabra de j^m y llamaremos k y l a los símbolos restantes tal que vwx no es subpalabra de k^m ni l^m . Luego, $v=j^p, w=j^q, x=j^r, p+q+r\leq N < m$. Bombeando, obtenemos una porcion de la palabra de la forma $j^{pi}j^qj^{ri}$, donde si elegimos i=m, obtenemos una porcion de la palabra de la forma $j^{pm}j^qj^{rm}$ y ya que $(pm+q+rm)\neq m$ y p+r>0, entonces tenemos un "desequilibrio" entre j y k y l, por lo que $u\cdot v^i\cdot w\cdot x^i\cdot y\notin L$.
- vwx NO es subpalabra de a^m , b^m o c^m :
 - Esto significa que tenemos dos símbolos distintos en vwx, los cuales llamaremos j y k. Notemos que no pueden estar los tres símbolos ya que para esto necesitaríamos que $|vwx| \ge m+2$. El símbolo que no pertenece a z lo llamaremos l. Luego, podemos "desestabilizar" la palabra bombeando con v^i o x^i , i > 1, ya que alguna necesariamente debe contener el símbolo j o k, lograremos que $\#_j(z) \ne \#_l(z)$ o bien $\#_k(z) \ne \#_l(z)$, lo cual, en ambos casos, produce que $u \cdot v^i \cdot w \cdot x^i \cdot y \notin L$.

2.2

 $\forall N > 0$, podemos elegir $z \in L, z = 1010^2 10^4 ... 10^{2^N} \# 0101^2 01^4 ... 01^{2^N}$.

Usaremos los nombres de j y k tal que z = j#k.

Luego, tenemos varios casos para las descomposiciones de la forma $u \cdot v \cdot w \cdot x \cdot y$:

• $|v| \neq |x|$:

En este caso al bombear con i=1 generaríamos que $|j|\neq |k|$, por lo que la palabra generada no prodría pertenecer a L.

• $\# \in vx$:

En este caso, al bombear con i=1 generaríamos que existan 2 símbolos # en la palabra, por lo que no puede pertenecer a L.

• $\# \in uy$:

Esto implica que $vwx \in j$ o $vwx \in k$, por lo que al bombear con i = 1, provocamos que $|j| \neq |k|$, por que la nueva palabra no pertence a L.

• $\# \in w \ \mathbf{y} \ |v| = |x|$:

L Lamaremos como α a la cantidad de simbolos en w que van después de #. Si $|u| > \alpha$, entonces podemos bombear con i = |u| veces. Ya que x es una secuencia que será repetida y u debe contener símbolos distintos para |u| > 1, entonces eventualmente encontraremos que algún símbolo calza.

De manera similar, si llamamos β a la cantidad de símbolos en w que estan antes del #, y tenemos que $|y| > \beta$, entonces podemos usar i = |y| para generar una secuencia que repetida que corresponde en un segmento a la inversa de la palabra correspondiente en k, pero que al repetirla no podrá seguir el patrón ya que elegimos una estructura para z que no es cíclica.