Intelligent Systems: Mathematics for Al Vector calculus and linear algebra Part II

Danesh Tarapore

Outline

- More linear algebra and vector calculus
 - Cross product of vector
 - Linear maps and matrices
 - Scalar and vector fields

Vector cross product (1)

► Cross product of two vectors \vec{a} and \vec{b} is another vector.

Vector cross product (1)

- ► Cross product of two vectors \vec{a} and \vec{b} is another vector.
- It is a binary operation on two vectors in \mathbb{R}^3 space.

Vector cross product (1)

- ► Cross product of two vectors \vec{a} and \vec{b} is another vector.
- It is a binary operation on two vectors in \mathbb{R}^3 space.
- The vector $\vec{a} \times \vec{b}$ is a vector perpendicular to both \vec{a} and \vec{b} , thus normal to the plane containing them.

Vector cross product (2)

Now do we compute $\vec{a} \times \vec{b}$, where $\vec{a} = (a_x, a_y, a_z)$ and $\vec{b} = (b_x, b_y, b_z)$:

Vector cross product (2)

- Now do we compute $\vec{a} \times \vec{b}$, where $\vec{a} = (a_x, a_y, a_z)$ and $\vec{b} = (b_x, b_y, b_z)$:
- ► The magnitude of $\vec{a} \times \vec{b}$, $||\vec{a} \times \vec{b}|| = ||\vec{a}|| ||\vec{b}|| \sin(\vec{a}, \vec{b})$.

Vector cross product (2)

- Now do we compute $\vec{a} \times \vec{b}$, where $\vec{a} = (a_x, a_y, a_z)$ and $\vec{b} = (b_x, b_y, b_z)$:
- ► The magnitude of $\vec{a} \times \vec{b}$, $||\vec{a} \times \vec{b}|| = ||\vec{a}|| ||\vec{b}|| \sin(\vec{a}, \vec{b})$.
- ► Can also be calculated from determinant form:

$$c_x = a_y b_z - a_z b_y$$

$$c_y = a_z b_x - a_x b_z$$

$$c_z = a_x b_y - a_y b_x$$

Vector cross product - example

► Give two vectors $\vec{a} = (2, 3, 4)$ and $\vec{b} = (5, 6, 7)$, find the \vec{c} normal to these two vectors?

Linear maps (1)

- So far we have seen linear functions in 1D space, because:
 - they are easy to deal with and understand, and,
 - they can be used to formalise the concept of derivative (via tangents).

Linear maps (1)

- So far we have seen linear functions in 1D space, because:
 - they are easy to deal with and understand, and,
 - they can be used to formalise the concept of derivative (via tangents).
- We need something similar to operate in higher dimensions.
- Which brings us to linear maps

Linear maps (2)

- ➤ A linear map, or linear transformation, is a way to transform vectors from one space to another.
- ▶ A map $T: V \to W$ is linear, iff $\forall c \in \mathbb{R}$ and $\forall \vec{x}, \vec{y} \in \mathbb{V}$,

$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$
 and

$$T(c\vec{x}) = cT(\vec{x})$$

Matrix representation of linear maps

▶ Vector $\vec{y} = T(\vec{x})$ can be written as,

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ t_{21} & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{m1} & t_{m2} & \cdots & t_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

► Exercise: Try and derive the above. Will look at it in interactive session.

Linear maps - example

Let's consider the coordinate space \mathbb{R}^2 and define a map R as reflection on the x-axis. What is the matrix representation of this map?

Linear maps - example solution

 $=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}(x,y)$

Let's consider the coordinate space \mathbb{R}^2 and define a map R as reflection on the x-axis. Is this map linear? If so, what is its matrix representation?

representation?

$$R: r_x = x$$
 $r_y = -y$
 $(r_x, r_y) = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} (x, y)$
 $= (t_{11} x + t_{12} y, t_{21} x + t_{22} y)$

Scalar fields

- Scalar fields and vector fields are useful ways to represent data.
- ▶ In scalar fields, we assign a scalar to each point in space, $f: \mathbb{R}^n \to \mathbb{R}$.
- The space may possibly be a physical space, i.e. n = 2 or n = 3.
- ► The scalar may represent a dimensionless mathematical number, or a physical quantity, e.g., temperature (C).

Example scalar fields (1)

► Scalar fields over \mathbb{R}^2 space.

Example scalar fields (2)

Error function of the output of a neural network; $f(w_1, w_2 ... w_n)$, where w_i are the weights of the network.

Example scalar fields (3)

Scalar field of salinity in the ocean.

salinity

Vector fields

Vector fields

- Assign a vector to each point in space.
- "A vector field in a plane (for instance), can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane."
- Very useful to understand dynamic systems (e.g., to visualise stationary points in high order differential equations, attractors etc.).

Vector fields - example (1)

ightharpoonup Vector field of $(\sin y, \sin x)$

Vector fields - example (2)

Ocean currents for small-scale AUV robots:

Summary

- What you should know:
 - Cross product of vectors, and its use
 - ► Linear maps and matrix representation
 - Scalar and vector fields

Next session

Next math sessions we take a look at partial differential equations, total differentiation and gradient descent.