1. Две частицы с радиус-векторами \vec{r}_1 и \vec{r}_2 и импульсами \vec{p}_1 и \vec{p}_2 , соответственно, двигаются в пространстве \mathbb{R}^3 . Считая набор координат $\{\vec{r}_1, \vec{r}_2; \vec{p}_1, \vec{p}_2\}$ каноническим в фазовом пространстве данной системы, вычислите следующие скобки Пуассона:

a)
$$\{(\vec{r}_1, \vec{p}_2), (\vec{r}_2, \vec{p}_1)\},$$
 6) $\{(\vec{r}_1, \vec{p}_2), [\vec{r}_2 \times p_1]\}.$

Здесь записи (\vec{A}, \vec{B}) , $[\vec{A} \times \vec{B}]$ обозначают скалярное и векторное произведения векторов \vec{A} и \vec{B} , соответственно.

2. Лагранжиан частицы массы m и заряда e, движущейся в пространстве \mathbb{R}^3 в постоянном и однородном магнитном поле \vec{B} , может быть записан в виде

$$L = \frac{m(\dot{\vec{r}})^2}{2} + \frac{e}{2c} \left(\vec{B} \left[\vec{r} \times \dot{\vec{r}} \right] \right),$$

где \vec{r} — радиус-вектор частицы в некоторой инерциальной системе координат, $\dot{\vec{r}} := d\vec{r}/dt$ — её скорость, а константа c имеет смысл скорости света в вакууме.

- а) Получите выражение для обобщённого импульса и постройте гамильтониан этой системы.
- б) Напишите гамильтоновы уравнения движения для компонент векторов координат r_i и импульса p_i частицы.
- в) Вычислите скобки Пуассона следующих величин:

$$\{r_i, \dot{r}_j\}, \qquad \{p_i, \dot{p}_j\}.$$

- **3.** Частица массы m движется в пространстве \mathbb{R}^3 в однородном и постоянном поле тяжести с ускорением свободного падения \vec{q} .
 - а) Напишите гамильтониан этой системы и решите гамильтоновы уравнения движения с начальными данными

$$\vec{r}(0) = \vec{r}, \qquad \vec{p}(0) = \vec{p}.$$

б) Считая компоненты векторов начальных данных канонически сопряжёнными величинами

$$\{r_i, p_i\} = \delta_{ij}, \qquad \{r_i, r_i\} = \{p_i, p_i\} = 0,$$

докажите, что компоненты векторов $\vec{r}(t)$ и $\vec{p}(t)$ — решений гамильтоновых уравнений движения с начальными данными \vec{r} и \vec{p} — тоже канонически сопряжённые величины в любой момент времени t, и найдите производящую функцию $F_1(\vec{r},\vec{r}(t))$ соответствующего канонического преобразования $\{\vec{r};\vec{p}\} \to \{\vec{r}(t);\vec{p}(t)\}$.

4. От канонически сопряжённых переменных q и p совершён переход к новым переменным Q и P согласно формулам:

$$Q = p^{\alpha} e^{\beta q}, \qquad P = q^{2\alpha - \beta} + \ln p + e^{-q},$$

где α и β — вещественные параметры.

- а) При каких значениях параметров α и β данное преобразование будет каноническим?
- б) Для этих выделенных значений параметров найдите производящую функцию канонического преобразования вида $\Phi(p,Q)$.

¹То есть, $\{(\vec{r}_a)_i, (\vec{p}_b)_j\} = \delta_{ab}\delta_{ij}, \ \{(\vec{r}_a)_i, (\vec{r}_b)_j\} = \{(\vec{p}_a)_i, (\vec{p}_b)_j\} = 0 \ \ \forall a,b=1,2, \ \forall i,j=1,2,3.$