Lecture13: MOSFET, small-signal model

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Large-signal model (1/2)

- Saturation region
 - Drain current is determined by gate voltage. (voltage-controlled current source)

Large-signal model (2/2)

- Triode region
 - Still, it can be described by a voltage-controlled current source.

Example 6.13 (Razavi)

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal current

- Using the transconductance (g_m) and the output resistance (r_O) ,
 - The small-signal drain current is given as $i_D = g_m v_G + \frac{v_D}{r_O}$.
 - When we build a small-signal model, two contributions must be separately considered.

Small-signal model

 For small-signal analysis, a small-signal model for the MOSFET is introduced.

Time-dependent one?

In general, capacitive components can be seen.

At low frequencies

- Capacitor current is $I = C \frac{dV}{dt}$.
 - When a sinusoidal dependence, for example $\sin \omega t$, is assumed, the capacitor current is proportional to ω .
 - At low frequencies, ω can be regarded as a small number.
 - In other words, the electric conduction between two nodes becomes rather weak.
 - Therefore, we often neglect the capacitive components in the small-signal model.
 - Of course, at higher frequencies, they become very important.