

Amendment to the Claims

1. (Withdrawn) A method for preventing or treating anthrax infections by inhibiting Anthrax Lethal Factor activity comprising administering a compound of the formula:

wherein **U** and **V** are, independently, C, N, or C(CH₃), **L**₁ is a linker and **R**₁, **R**₂, **R**₃ and **R**₄ are each independently selected substituent groups, as follows:

R₁ is Z(CHR₅)_nY where n is 0 to 4,

Z is a bond, S, CO, O, SO, SO₂, NH, NR₁₁, SO₂NR₁₁, NR₁₁SO₂, 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,2-cyclohexylidene;

Y is a group known to bind to zinc, including CONR₁₁OH, COOH, SH, ArSH, NHCOCH₂SH, 2-hydroxybenzoate (linked at the 3,4,5, or 6-position), 2-hydroxypyridinecarboxylate (linked at the 3,4,5, or 6-position, with the ring nitrogen at any unsubstituted position), CF₃P=O(OH)₂, C(CH₃)=NOCH₂COOH, C(CH₂OH)=NOCH₂COOH, NHCO(CHR₁₁)_mSH (where m = 1 to 4), PO(OH)₂, PO(R₁₁)OH, SO₂NR₁₁OH, or NH(OH)COR₁₁, or is derivatized to form a prodrug that is capable of undergoing conversion to a zinc-binding moiety,

R₅ and **R**₁₁ are, independently, H, CH₃, amino, hydroxy, alkoxy, alkylthio, alkyl (C₂-C₁₀), branched alkyl (C₃-C₁₀), alkylthio (C₁-C₇), alkylthioalkyl (C₂-C₈), arylthio, (C₂-C₁₀)

alkylamino(C1-C7), amino, arylamino, aryl, heteroaryl, arylalkyl, heterarylalkyl, arylalkenyl, heterarylalkenyl, arylalkynyl, or heterarylalkynyl,

and where R1 can be further substituted with one or more of the following: NH₂, OH, halogen, alkyl, CONH₂, CONHOH, C(NH)NH₂, C(NH)NHOH, NHC(NH)NH₂, CN, NO₂, NR₆R₇ where R₆ and R₇ are H or alkyl and optionally form a ring, or R₅ can form a ring with R₂ or with R₁₁;

R₂ is H, isobutyl, n-butyl, pentyl, methyl, alkyl (C1-C10), branched alkyl (C3-C10), cycloalkyl, cycloalkyimethyl (C3-C9 cycle), Ar(CH₂)n (where n is 0 to 4, Ar is phenyl, aryl, heteroaryl), phenethyl, arylalkenyl, heterarylalkenyl, arylalkynyl, heterarylalkynyl, alkenyl (C2-C8), alkynyl (C2-C8), pentafluorophenoxyethyl, pentafluorophenylmethyl, cycloalkenyl (C4-C10), alkylthio, arylthio, alkylamino, arylamino, aryl, dichlorophenyl, or R₂ can form a ring with R₅, R₁₁, L₁, or R₃, and R₂, R₅ and R₁₁ can be substituted with one or more of the following: NH₂, OH, halogen, alkyl, CF₃, CF₃O, CF₃S, alkoxy, alkylthio, SO₂alkyl (C1-C4), CONH₂, CONHOH, C(NH)NH₂, CN, NO₂, C(NH)NHOH, NHC(NH)NH₂, or NR₆R₇ where R₆ and R₇ are H or alkyl and can form a ring;

R₃ is H, phenethyl, alkyl (C1-C10), branched alkyl (C1-C10), aryl, phenyl substituted with aryl or heteroaryl at the 2-, 3-, or 4-positions, benzyloxy, pyrrolyl substituted with 1-2 aryl groups, 2-aryl-1,3,4 thiadiazolyl, heteroaryl (including thiophenyl), -L₂Ar where Ar includes 1-naphthyl, 2-naphthyl, 4-phenylphenyl, 5-(2-thienyl)-2-thienyl, 4-(3'-methoxyphenyl)phenyl, 4-(4'-methoxyphenyl)phenyl, 3-indolyl, phenyl, t-butyl, indolyl 3-phenylphenyl, indolyl, 2,3-dimethyl-5-indolyl, benzothiophenyl, 4-(1,2,3-thiadiazol-4-yl)phenyl, 4-(2-thienyl)phenyl, 5-(2-pyridyl)-2-thienyl, 1-(2-naphthyl)vinylaminoalkyl, N-hydroxybenzamidin-4-yl, 2-methylcarbazol-3-yl, 2-ethylcarbazol-3-yl, aryl or heteroaryl and L₂ is a linker chosen from the following, in both orientations: bond, CH₂, (CH₂)₂, CH₂NHCH₂, CH₂CH₂CONHCH₂, CH₂CH₂CONHCH₂CH₂, 1,1 vinylidene, 1,2-vinylidene, CO, CH₂CH₂NHCH₂, CH₂CH₂CH₂NHCH₂, CH₂NHCH₂CH₂, (CH₂)_q where q = 3 to 7, (CHR₉)_r where r = 1 to 7 and R₉ is independently H, alkyl (C1-C10), branched alkyl (C3-C10), cycloalkyl (C3-C10), cycloalkylalkyl (C4-C14), alkyl thio, amino, alkyl amino, dialkylamino,

($\text{CHR9}_s\text{X}\text{CHR9}_t$) where $s + t = 0$ to 8 , X is O , S , CO , SO , SO_2 , NH , CONH , NHCO , SO_2NH , NHSO_2 , or NR9 and R9 is independently H , alkyl ($\text{C}1\text{-C}10$), branched alkyl ($\text{C}3\text{-C}10$), cycloalkyl ($\text{C}3\text{-C}10$), cycloalkylalkyl ($\text{C}4\text{-C}14$), acyl, alkyl thio, amino, alkyl amino, or dialkylamino, and R9 also includes N-linked heterocycles such as piperidine, pyrrolidine, (1,2,3,4-)tetrahydrobetacarbolin-2yl, R15 is H , alkyl ($\text{C}1\text{-C}4$), branched alkyl ($\text{C}3\text{-C}5$), or cycloalkyl($\text{C}3\text{-C}5$), carbon-carbon single bonds in R8 can optionally be substituted with double or triple bonds, and where R3 can form a ring with R2 , L1 , or R4 , or R3 , R9 and R15 are further substituted with one or more of the following NH_2 , OH , halogen, $\text{N}(\text{CH}_3)_2$, alkyl, CF_3 , CF_3O , CF_3S , alkoxy, alkylthio, CONH_2 , CONHOH , $\text{C}(\text{NH})\text{NH}_2$, CN , NO_2 , $\text{C}(\text{NH})\text{NHOH}$, $\text{NHC}(\text{NH})\text{NH}_2$, aryloxy, trifluoromethylphenoxy, carboxyalkyl ($\text{C}2\text{-C}8$), (Carboxyphenyl)methylthio, carboxyalkylthio ($\text{C}2\text{-C}8$), carboxyphenyl, NR6R7 where R6 and R7 are H or alkyl or can form a ring;

R4 is H , alkyl ($\text{C}1\text{-C}10$), branched alkyl ($\text{C}1\text{-C}10$), arylalkyl, heteroarylalkyl, CONR10R16 where R10 is H , methyl, alkyl ($\text{C}2\text{-C}10$), branched alkyl ($\text{C}3\text{-C}10$), benzyl, phenethyl, arylalkyl, heteroarylalkyl, alkanoyl ($\text{C}2\text{-C}8$), branched alkanoyl, aroyl ($\text{C}6\text{-C}12$), heteroaroyl ($\text{C}2\text{-C}10$), isopropyl, CONR16R12 ; and where R12 and R16 are, independently, H , methyl, alkyl, benzyl, 2-phenylethyl, 2-indanyl, 2-morpholinylethyl, (2,6)-dimethoxylbenzyl, dimethylaminoethyl, (2-pyridyl)methyl, 2-(2-pyridyl)ethyl, 4-carboxybenzyl, 1-phenylethyl, $\text{CH}(\text{CONH}_2)\text{CH}_2\text{C}_6\text{H}_5$, $\text{CH}(\text{CONH}_2)\text{CH}_2\text{CH}(\text{CH}_3)_2$, $\text{CH}(\text{CONH}_2)\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$, $\text{CH}(\text{CONH}_2)\text{CHCH}_3$, $\text{CH}(\text{CH}_2\text{OCH}_3)\text{CH}_2\text{C}_6\text{H}_5$, $\text{CH}(\text{CONHCH}_2\text{CH}_2\text{OCH}_3)\text{CH}_2$ cyclohexyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aminoalkyl, hydroxyalkyl, (trifluoromethylphenoxy)phenyl. NR16R12 can optionally form an N-linked monocyclic or bicyclic heterocyclic ring, including but not limited to 1,2-dihydroisoindole, octahydroisoindole, morpholine, piperidine, piperazine, N-alkyl piperazine ($\text{C}1\text{-C}4$), homopiperazine, 3-pyrrolidine, pyrrolidine, tetrahydroisoquinoline, octahydropyrrolo[3,4-C]pyrrole, L-proline, L-proline dimethylamide, D-proline, D-proline dimethylamide, and thiazolidine, or

R4 can form a ring with L1 or R3 , and R4 , R6 , R7 , R10 , R11 , R12 and R16 can be further substituted, independently, with 1 to 3 of the following substitutents: NH_2 , OH , F , Cl , Br , methyl, alkyl, aryl, cycloalkyl ($\text{C}3\text{-C}6$), heterocycloalkyl, heteroaryl, CF_3 ,

CF₃O, CF₃S, CF₃, aryloxy, trifluoromethylphenoxy, alkoxy, alkylthio, CONH₂, CN, NO₂, CONHOH, C(NH)NH₂, C(NH)NHOH, NHC(NH)NH₂, NR₆R₇ where R₆ and R₇ are H or alkyl, or can form a ring; and

L1 is a linker including the following, in either orientation: single bond, double bond, CONH, NHCO, N(CH₃)CO, CON(CH₃), CH₂NH, NHCH₂, CH=CH,C(NH₂)=N, N=C(NH₂), arylene (linked 1,2-; 1,3-; or 1,4), heteroarylene (linked 1,2-; 1,3-; or 1,4), ethynyl, CH=CF, CF=CH, CF=CF, CH₂CH₂, C(CH₃)=CH, CH=C(CH₃), SO₂NH, SO₂, COCH₂, CH₂CO, CNOHCH₂, CH₂CNOH, C(CF₃)=CH, CH=C(CF₃), SO₂CH₂, CH₂SO₂, SOCH₂, CH₂SO, CH₂CHOH, CHOCH₂, lower cycloalkyl (C3-C6), or CHOCHCHOH, or where L1 can be substituted with one or more of the following: NH₂, OH, halogen, alkyl, CF₃, CF₃O, CF₃S, alkoxy, alkylthio, CONH₂, CONHOH, C(NH)NH₂, C(NH)NHOH, NHC(NH)NH₂, NR₆R₇ where R₆ and R₇ are H or alkyl and optionally form a ring.

2. (Original) A pharmaceutical composition useful for preventing or treating anthrax infections by inhibiting Anthrax Lethal Factor activity comprising
a compound of the formula:

wherein U and V are, independently, C, N, or C(CH₃), L1 is a linker and R1, R2, R3 and R4 are each independently selected substituent groups, as follows:

R1 is Z(CHR₅)_nY where n is 0 to 4,

Z is a bond, S, CO, O, SO, SO₂, NH, NR11, SO₂NR11, NR11SO₂, 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,2-cyclohexylidene;

Y is a group known to bind to zinc, including CONR11OH, COOH, SH, ArSH, NHCOCH₂SH, 2-hydroxybenzoate (linked at the 3,4,5, or 6-position), 2-hydroxypyridinecarboxylate (linked at the 3,4,5, or 6-position, with the ring nitrogen at any unsubstituted position), CF₃P=O(OH)₂, C(CH₃)=NOCH₂COOH, C(CH₂OH)=NOCH₂COOH, NHCO(CHR11)_mSH (where m = 1 to 4), PO(OH)₂, PO(R11)OH, SO₂NR11OH, or NH(OH)COR11, or is derivatized to form a prodrug that is capable of undergoing conversion to a zinc-binding moiety,

R5 and **R11** are, independently, H, CH₃, amino, hydroxy, alkoxy, alkylthio, alkyl (C2-C10), branched alkyl (C3-C10), alkylthio (C1-C7), alkylthioalkyl (C2-C8), arylthio, alkylamino(C1-C7), amino, arylamino, aryl, heteroaryl, arylalkyl, heterarylalkyl, arylalkenyl, heterarylalkenyl, arylalkynyl, or heterarylalkynyl,

and where **R1** can be further substituted with one or more of the following: NH₂, OH, halogen, alkyl, CONH₂, CONHOH, C(NH)NH₂, C(NH)NHOH, NHC(NH)NH₂, CN, NO₂, NR6R7 where **R6** and **R7** are H or alkyl and optionally form a ring, or **R5** can form a ring with **R2** or with **R11**;

R2 is H, isobutyl, n-butyl, pentyl, methyl, alkyl (C1-C10), branched alkyl (C3-C10), cycloalkyl, cycloalkylmethyl (C3-C9 cycle), Ar(CH₂)n (where n is 0 to 4, Ar is phenyl, aryl, heteroaryl), phenethyl, arylalkenyl, heterarylalkenyl, arylalkynyl, heterarylalkynyl, alkenyl (C2-C8), alkynyl (C2-C8), pentafluorophenoxyethyl, pentafluorophenylmethyl, cycloalkenyl (C4-C10), alkylthio, arylthio, alkylamino, arylamino, aryl, dichlorophenyl, or **R2** can form a ring with **R5**, **R11**, **L1**, or **R3**, and **R2**, **R5** and **R11** can be substituted with one or more of the following: NH₂, OH, halogen, alkyl, CF₃, CF₃O, CF₃S, alkoxy, alkylthio, SO₂alkyl (C1-C4), CONH₂, CONHOH, C(NH)NH₂, CN, NO₂, C(NH)NHOH, NHC(NH)NH₂, or NR6R7 where **R6** and **R7** are H or alkyl and can form a ring;

R3 is H, phenethyl, alkyl (C1-C10), branched alkyl (C1-C10), aryl, phenyl substituted with aryl or heteroaryl at the 2-, 3-, or 4-positions, benzyloxy, pyrrolyl substituted with 1-2 aryl groups, 2-aryl-1,3,4 thiadiazolyl, heteroaryl (including thiophenyl), -L2Ar where Ar includes 1-naphthyl, 2-naphthyl, 4-phenylphenyl, 5-(2-thienyl)-2-thienyl, 4-(3'-methoxyphenyl)phenyl, 4-(4'-methoxyphenyl)phenyl, 3-indolyl, phenyl, t-butyl, indolyl 3-phenylphenyl, indolyl, 2,3-dimethyl-5-indolyl, benzothiophenyl, 4-(1,2,3-thiadiazol-4-yl)phenyl, 4-(2-thienyl)phenyl, 5-(2-pyridyl)-2-thienyl, 1-(2-naphthyl)vinylaminoalkyl, N-hydroxybenzamidin-4-yl, 2-methylcarbazol-3-yl, 2-ethylcarbazol-3-yl, aryl or heteroaryl and L2 is a linker chosen from the following, in both orientations: bond, CH₂, (CH₂)₂, CH₂NHCH₂, CH₂CH₂CONHCH₂, CH₂CH₂CONHCH₂CH₂, 1,1 vinylidene, 1,2-vinylidene, CO, CH₂CH₂NHCH₂, CH₂CH₂CH₂NHCH₂, CH₂NHCH₂CH₂, (CH₂)_q where q = 3 to 7, (CHR9)_r where r = 1 to 7 and R9 is independently H, alkyl (C1-C10), branched alkyl (C3-C10), cycloalkyl (C3-C10), cycloalkylalkyl (C4-C14), alkyl thio, amino, alkyl amino, dialkylamino, (CHR9)_sX(CHR9)_t where s + t = 0 to 8, X is O, S, CO, SO, SO₂, NH, CONH, NHCO, SO₂NH, NSO₂ or NR9 and R9 is independently H, alkyl (C1-C10), branched alkyl (C3-C10), cycloalkyl (C3-C10), cycloalkylalkyl (C4-C14), acyl, alkyl thio, amino, alkyl amino, or dialkylamino, and R9 also includes N-linked heterocycles such as piperidine, pyrrolidine, (1,2,3,4-)tetrahydrobetacarbolin-2yl, R15 is H, alkyl (C1-C4), branched alkyl (C3-C5), or cycloalkyl(C3-C5), carbon-carbon single bonds in R8 can optionally be substituted with double or triple bonds, and where R3 can form a ring with R2, L1, or R4, or R3, R9 and R15 are further substituted with one or more of the following NH₂, OH, halogen, N(CH₃)₂, alkyl, CF₃, CF₃O, CF₃S, alkoxy, alkylthio, CONH₂, CONHOH, C(NH)NH₂, CN, NO₂, C(NH)NHOH, NHC(NH)NH₂, aryloxy, trifluoromethylphenyloxy, carboxyalkyl (C2-C8), (Carboxyphenyl)methylthio, carboxyalkylthio (C2-C8), carboxyphenyl, NR6R7 where R6 and R7 are H or alkyl or can form a ring;

R4 is H, alkyl (C1-C10), branched alkyl (C1-C10), arylalkyl, heteroarylkyl, CONR10R16 where R10 is H, methyl, alkyl (C2-C10), branched alkyl (C3-C10), benzyl, phenethyl, arylalkyl, heteroarylkyl, alkanoyl (C2-C8), branched alkanoyl, aroyl (C6-

C12), heteroaroyl (C2-C10), isopropyl, CONR16R12; and where R12 and R16 are, independently, H, methyl, alkyl, benzyl, 2-phenylethyl, 2-indanyl, 2-morpholinylethyl, (2,6)-dimethoxylbenzyl, dimethylaminoethyl, (2-pyridyl)methyl, 2-(2-pyridyl)ethyl, 4-carboxybenzyl, 1-phenylethyl, CH₂(CONH₂)CH₂C₆H₅, CH₂(CONH₂)CH₂CH(CH₃)₂, CH₂(CONH₂)CH(CH₃)CH₂CH₃, CH₂(CONH₂)CHCH₃, CH₂(CH₂OCH₃)CH₂C₆H₅, CH₂(CONHCH₂CH₂OCH₃)CH₂cyclohexyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aminoalkyl, hydroxyalkyl, (trifluoromethylphenoxy)phenyl. NR16R12 can optionally form an N-linked monocyclic or bicyclic heterocyclic ring, including but not limited to 1,2-dihydroisoindole, octahydroisoindole, morpholine, piperidine, piperazine, N-alkyl piperazine (C1-C4), homopiperazine, 3-pyrroline, pyrrolidine, tetrahydroisoquinoline, octahydronyrro[3,4-C]pyrrole, L-proline, L-proline dimethylamide, D-proline, D-proline dimethylamide, and thiazolidine, or

R4 can form a ring with L1 or R3, and R4, R6, R7, R10, R11, R12 and R16 can be further substituted, independently, with 1 to 3 of the following substitutents: NH₂, OH, F, Cl, Br, methyl, alkyl, aryl, cycloalkyl (C3-C6), heterocycloalkyl, heteroaryl, CF₃, CF₃O, CF₃S, CF₃, aryloxy, trifluoromethylphenoxy, alkoxy, alkylthio, CONH₂, CN, NO₂, CONHOH, C(NH)NH₂, C(NH)NHOH, NHC(NH)NH₂, NR6R7 where R6 and R7 are H or alkyl, or can form a ring; and

L1 is a linker including the following, in either orientation: single bond, double bond, CONH, NHCO, N(CH₃)CO, CON(CH₃), CH₂NH, NHCH₂, CH=CH, C(NH₂)=N, N=C(NH₂), arylene (linked 1,2-; 1,3-; or 1,4), heteroarylene (linked 1,2-; 1,3-; or 1,4), ethynyl, CH=CF, CF=CH, CF=CF, CH₂CH₂, C(CH₃)=CH, CH=C(CH₃), SO₂NH, SO₂, COCH₂, CH₂CO, CNOHCH₂, CH₂CNOH, C(CF₃)=CH, CH=C(CF₃), SO₂CH₂, CH₂SO₂, SOCH₂, CH₂SO, CH₂CHOH, CHOCH₂, lower cycloalkyl (C3-C6), or CHOHCHOH, or where L1 can be substituted with one or more of the following: NH₂, OH, halogen, alkyl, CF₃, CF₃O, CF₃S, alkoxy, alkylthio, CONH₂, CONHOH, C(NH)NH₂, C(NH)NHOH, NHC(NH)NH₂, NR6R7 where R6 and R7 are H or alkyl and optionally form a ring, together with a pharmaceutically acceptable carrier.