Relatório ITP

Thiago Oliveira Coelho

2 de abril de 2020

Sumário

1	Intr	rodução	2				
2	Metodologia						
	2.1	Modelos de gravidade	2				
	2.2	Obtenção de estimadores	2				
	2.3	Variáveis do modelo	2				
3	Dados e fontes						
4	Res	ultados	3				
	4.1	Regressão Simples	3				

1 Introdução

Com o advento da globalização, as barreiras tradicionais ao comércio internacional, como as tarifárias, têm se tornado menores o que diminui as oportunidades para implementação de medidas protecionistas.(MASKUS; WILSON; OTSUKI, 2000). Isso tem causado aparecimento de diversas barreiras não tarifárias (BNTs), que impedem o fluxo internacional de bens. Apesar de estas barreiras poderem ser legítimas, por exemplo para corrigir eventuais externalidades negativas advindas do produto importado, o fato é que estas terão impacto nas importações do país. Este impacto pode ser positivo ou negativo, dependendo do setor analisado. Em geral, normas de importação tendem a diminuir o comércio para bens primários e impulsionar o comércio de bens mais complexos (MOENIUS, 2006).

2 Metodologia

Considerando os trabalhos que visam estabelecer quantitativamente o impacto das notificações, será utilizado um modelo de gravidade cujos estimadores serão estabelecidos por PPML (Poisson Pseudo Maximum Likelihood).

2.1 Modelos de gravidade

Os modelos de gravidade são utilizados majoritariamente desde a década de 60 para a explicação de fluxos de comércio internacional. Originalmente derivado do modelo de Newton, utilizava a distância entre os dois objetos (países) e a massa deles (PIB), para explicar tal fluxo. Com o tempo, o desenvolvimento da área de economia internacional têm tornado o modelo cada vez mais teóricamente embasado e representativo da realidade.

2.2 Obtenção de estimadores

Dada a característica de haver grandes quantidades de fluxos de troca com valor zero, o estimador utilizado será o de *Poisson Pseudo Maximum Likelihood* (PPML). Isso se deve pelo fato de tal metodologia se portar melhor dados muitos valores nulos. Tal método de estimação também gera resultados consistentes na presença de heterocedasticidade.

2.3 Variáveis do modelo

$$\ln X_{JT} = \ln Y B_t + \ln Y E_{JT} + Dist_J + \ln T R F_{JT} \tag{1}$$

Onde:

- X_{JT} = Valor de exportação do Brasil para o país J no período T;
- YB_T = Renda do Brasil no período t;
- YE_{JT} = Renda do país J no período t;
- $Dist_J$ = Distância entre o Brasil e o país J;
- TRF_{JT} = Valor da tarifa efetivamente aplicada pelo país J ao Brasil no período T.

Obs: Todas aquelas variáveis que não são dummies estão sendo transformadas por meio de logaritmo natural, assim como pede a especificação de (SANTOS SILVA; TENREYRO, 2006).

3 Dados e fontes

Bases de dados utilizadas:

- 1. Notificações: https://www.epingalert.org/en;
- 2. Valor de exportações: https://comtrade.un.org/;
- 3. PIB: Banco mundial, (BANK, s.d.);
- 4. Distanciamento: (MAYER; ZIGNAGO, 2011);
- 5. Tarifas: WITS

4 Resultados

4.1 Regressão Simples

Dep. Variable:	Imports Value in 1000 USD	No. Iterations:	11
Model:	GLM	Df Residuals:	11795
Model Family:	Poisson	Df Model:	3
Link Function:	log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-9.9808e+08
Covariance Type:	HC1	Deviance:	1.9961e+09

	coef	std err	t	P> t	[0.025	0.975]
PIB_(1000_US\$)	3.852e-10	2.73e-11	14.100	0.000	3.32e-10	4.39e-10
contig	6.9917	0.071	97.971	0.000	6.852	7.132
dist	0.0006	8.16e-06	70.775	0.000	0.001	0.001
Weighted Average	0.0020	0.002	1.314	0.189	-0.001	0.005

Referências

BANK, The World. World Development Indicators. [S.l.: s.n.].

MASKUS, Keith E; WILSON, John S; OTSUKI, Tsunehiro. Quantifying the impact of technical barriers to trade: a framework for analysis. World Bank, Washington, DC, 2000.

MAYER, Thierry; ZIGNAGO, Soledad. Notes on CEPII's distances measures: The GeoDist database. [S.l.], 2011. Disponível em: ¡http://www.cepii.fr/CEPII/en/publications/wp/abstract.asp?NoDoc=3877¿.

MOENIUS, Johannes. The Good, the Bad and the Ambiguous: Standards and Trade in Agricultural Products, jan. 2006.

SANTOS SILVA, João; TENREYRO, Silvana. The Log of Gravity. **The Review of Economics and Statistics**, v. 88, n. 4, p. 641–658, 2006. Disponível em: https://EconPapers.repec.org/RePEc:tpr:restat:v:88:y: 2006:i:4:p:641-658;.