

Data Structure & Algorithms 1

SYLLABUS

Sep – Dec 2023

Course Objectives

► The objective of this course is to introduce students to the **construction** of computer **programs**. Such construction occurs in two phases:

- 1. <u>Abstract program definition</u>: This involves, in particular, writing algorithms in a language not necessarily understandable by a computer. We will refer to this as the language of specification (pseudo-code) of algorithms.
- Concrete program definition: This entails writing a text that translates the
 previous algorithms into a language understandable by the computer. At this
 point, we will talk about a programming language.

Course Objectives

Employ a methodological approach, enabling the design and implementation of Algorithms to solve problems

Understand of fundamental programming concepts in C++ (lab sessions)

Utilize control structures to manage program flow

Course Objectives

- Learn modular programming (functions)
- Work with arrays, strings, and matrices to store and manipulate data

Apply recursion techniques to solve problems

Introduce students to advanced topics: Pointers & File handling

Schedule (14 weeks)

Week	Chapters
1 – 2	 Algorithmic Thinking and Problem Solving Introduction to Algorithmic Thinking and Problem Solving Algorithm, Processor, Action Program and Programming language Resolution process Algorithm Formalism Algorithm structure Flowchart Declaration Body
3	Control Structures: • Conditional Statements, • Loops (while, for, dowhile)

Schedule (14 weeks)

Week	Chapters
4 – 5	 Modular programming Functions and Modular Programming Function Declaration, Definition, and Calling Variable Scopes and Parameter Passing Packages
6 - 9	 Static data structure 1D array 2D array Advanced Operations on Arrays (Tri / search) Sorting Algorithms: Bubble Sort Searching Algorithms: Linear Search Manipulating Strings & struct

Schedule (14 weeks)

Week	Chapters
10 – 11	 Recursion Principles of recursion Rules Example 1: Factorial Other Examples Fibonacci & Binary search
12 – 13	 Dynamic Memory Allocation Dynamic Memory Allocation and Pointers (C++) Pointer definition Pointer in C++ Pointer expression and arithmetic Applications: Array of pointers and Linked list
14	File Handling and Streams

Assessment and Grading

- Final Examination [60 %]
- Midterm Examination [20 %]
- ► Tests:
 - 1. Lab Test [7 %]
 - 2. Tutorial Test [7 %]
- Online Quizzes [3 %]
- Lab & Tutorial attendant & Participation [3 %]

References

Text books:

Introduction to Algorithms, fourth edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stei

C++ How to Program 8th Edition by Paul Deitel, Harvey Deite

Algorithm Design: A
Methodological Approach
- 150 problems and
detailed solutions

Course Website

Check out the DSA1 course website for additional details and the latest updates:

https://data-structure1.vercel.app

About the Course