分子空间结构与物质性质·一·「价层电子对互斥模型(VSEPR)」

- 价层电子对互斥模型 (Valence Shell Electron Pair Repulsion) 可以用来预测分子的立体模型
- 理论认为,分子的空间构型是中心原子周围的"价层电子对"相互排斥的结果。价层电子对是指分子中的中心原子与结合原子间的 σ **键电子对**和**中心原子上的孤电子对**,由于相互排斥作用,尽可能趋向彼此远离,**排斥力最小**
- 多重键只计其中的 σ 键电子对, **不计** π **键电子对**

判断分子中中心原子上的价层电子对数

价层电子对数 = 孤电子对数 + 成键电子对数

价层电子对数
$$=rac{1}{2}(a+xb)$$

a 是中心原子的价电子数(阳离子要减去电荷数、阴离子要加上电荷数); b 是每个配位原子提供的价电子数, O=0; 碱金属(eg,H)=1; x 是与中心原子结合的原子数

分子或离子	中心原子	a	x	b	价层电子对数	孤电子对数	说明	VSEPR 模型
SO_2	S	6	2	0	$rac{1}{2}(6+2 imes0)=3$	3 - 2 = 1	$2\sigma+1$ 孤电子对	平面三角形
NH_4^+	N	5 - 1 = 4	4	1	$rac{1}{2}(4+4 imes1)=4$	4 - 4 = 0	$4\sigma+0$ 孤电子对	四面体形
CO_3^{2-}	C	4 + 2 = 6	3	0	$\frac{1}{2}(6+3\times 0)=3$	3 - 3 = 0	$3\sigma+0$ 孤电子对	平面三角形

VSEPR 模型与分子空间结构

分子	价层电子对数	σ 键电子对数	孤电子对数	VSEPR 模型	分子立体构型
CO_2	2	2	0	直线形	直线形
BF_3	3	3	0	平面三角形	平面三角形
SO_2	3	2	1	平面三角形	V形
CH_4	4	4	0	正四面体形	正四面体形
NH_3	4	3	1	四面体	三角锥
H_2O	4	2	2	四面体	V形

电子间排斥力大小: 孤电阻对-孤电阻对 > 孤电阻对-成键电子对 > 成键电子对-成键电子对