

MARS-OZ: a design for a Simulated Mars Base in the Australian Outback

David Willson (1) Jonathan D. A. Clarke (2), and Guy Murphy (3)

- (1) SEMF Pty Ltd, 2nd floor 44 Murray Street Hobart Tasmania 7000 Australia
- (2) Australian Centre for Astrobiology, Macquarie University, NSW 2109, Australia
- (3) Mars Society Australia, P O Box 151, Clifton Hill 3068, Australia

Abstract

Mars Society Australia has developed the design of a simulated Mars base, MARS-OZ, for deployment in outback Australia. MARS-OZ will provide a platform for a diverse range of Mars analogue research in Australia. The simulated base consists of two mobile modules whose dimensions and shape approximate those of horizontally landed bent biconic spacecraft described in an earlier paper. The modules are designed to support field engineering, robotics, architectural, geological, biological and human factors research at varying levels of simulation fidelity. Non-Mars related research can also be accommodated, for example general field geology and biology, and engineering research associated with sustainable, low impact architecture. Crews of up to eight can be accommodated. In addition to its research function, the base also will serve as a centre of space education and outreach activities. The prime site for the MARS-OZ simulated base is located in the northern Flinders Ranges near Arkaroola in South Australia. This region contains many features that provide useful scientific analogues to known or possible past and present conditions on Mars from both a geological and biological perspective. The features will provide a wealth of study opportunities for crews. The very diverse terrain and regolith materials will provide ideal opportunities to field trial a range of equipment, sensors and exploration strategies. If needed, the prime site can be secured from casual visitors, allowing research into human interaction in isolation. Despite its relative isolation, the site is readily accessible by road and air from major Australian centres. This paper provides description of the configuration, design and construction of the proposed facility, its interior layout, equipment and systems fitouts, a detailed cost estimate, and its deployment. We estimate that the deployment of MARS-OZ could occur within nine months of securing funding.

CONTENTS

1. INTRODUCTION AND BACKGROUND	1
2. WHY BUILD A SIMULATED A MARS BASE?	1
3. MARS-OZ GOALS	3
4. THE ARKAROOLA MARS ANALOGUE REGION	3
5. THE MARS-OZ SITE	5
6. BASE DESIGN	6
7. THE MARS-OZ SIMULATED BASE ARCHITECTURAL ELEMI	ENTS8
7.1 Hab Module Internal Detail	9
7.2 Cargo module detail	12
8. BASE CONSTRUCTION, SYSTEMS AND DEPLOYMENT	13
8.1 Structure	15
8.2 Safety	15
8.3 Furnishing.	15
8.4 Air Conditioning	15
8.5 Water Recycling	16
8.6 Power Supply	16
8.7 Instrumentation	16
8.8 Communications and Data storage	
8.9 Transport	
8.10 Opening and Promotion	20
9. MARS-OZ COSTING	20
9.1 Design Review	21
9.2 Project Approvals	21
9.3 Design	21
9.4 Fabrication and Transport to Site	21
9.5 Opening and Promotion	21
10 CONCLUSIONS	22

1. INTRODUCTION AND BACKGROUND

Mars Society Australia (MSA) in 2001 commenced researching design concepts for an Australian Mars Analogue Research Station (MARS-OZ)¹ ². A long, low structure was selected for logistic reasons as it could be transported as a unit using standard prime movers. This eliminates the need for on site assembly and allows full check out of systems prior to deployment. The unitary construction also facilitates relocation of the base to different sites, as required. The configuration is also different to the vertical cylinders deployed by the Mars Society in Utah and Devon Island³, thus allowing the utility of different designs and layouts to be evaluated and compared.

Horizontally deployed modules, equivalent to horizontally landed spacecraft on the surface of Mars, have been considered by a range of proposed mission scenarios, in particular those developed in the former Soviet Union by the Energia Group⁴ and the International Space University⁵ (ISU) that utilised a range of horizontally landed biconic vehicles. A range of biconic landers, some horizontally landed, others vertically, had also been studied in the United States under the auspices of the "Case for Mars" ^{6 7 8}. These concepts provided a starting point for a MSA crewed Mars lander design and mission concept was developed, as described elsewhere^{9 10}. These missions are based on a "Mars Semi-Direct" mission architecture¹¹, as used by various iterations of NASA's design reference mission¹² (DRM) and others¹³. Mars Semi-Direct entails the use of three vehicles, a Habitat vehicle (or Hab), the Cargo vehicle which both land and, depending on scenario, either an Earth Return Vehicle (ERV) or a Mars Transfer Vehicle (MTV).

The planned MARS-OZ simulated base consists of field modules equivalent to that those that would be landed on MARS-OZ in the mission concept. These modules will provide a platform for a range of Mars-related field studies and expand the range of research MSA and its associates can carry out at its prime research site at Arkaroola, South Australia.

2. WHY BUILD A SIMULATED A MARS BASE?

Although there has been extensive research into different Mars mission concepts and considerable experience in long duration space missions, in particular onboard Mir and now the ISS, the issues involved with living and working on Mars have received far less attention. Clarifying these is essential before long duration Mars stays, as contemplated in missions using conjunction-class orbits with 500-600 day surface stay overs, such "Mars Direct" ¹⁴ and "Mars Semi-Direct", and Mars bases. A Mars base and components must function for many years. The components must also be adaptable to changing needs as the base grows. There have been a number of important reviews of the key issues in recent years¹⁵ ¹⁶ ¹⁷, highlighting a number of operation questions that must be answered early in the design history of any Mars mission.

A simulated Mars base is a powerful tool in which to explore many of these issues and Mars analogue missions carried out from them¹⁸. These include living, operating and undertaking research within such a base as well as conducting field exploration work in a Mars like or Mars analogue sites around the base. Missions of discovery involve discovering the broad issues under pining Mars base design and usage in integrated simulated missions in an analogue environment. Examples include the Mars Desert Research Station (MDRS) in Utah¹⁹ or on Devon Island, where both the Mars Society and NASA have facilities. Missions of opportunity investigate both the comparison of terrestrial analogues to known or possible Martian environments, past and present, and technologies to study these environments, such as Arkaroola (see below) or Devon Island²⁰. Missions of investigation test and trials specific isolated aspects or equipment usually of an operational nature. An example of this is the investigation of methods of integrated data collection and storage using data loggers²¹.

As such, a suitably well-designed simulated base should provide designers, psychologists, physiologists, engineers and horticulturalists with a test-bed in which research ideas, methodologies and equipment that could operate within the confines and limitations of a real Mars base. This is especially true for missions of discovery and investigation. The geological location of the base and its laboratory would provide planetary geologists, astrobiologists, and engineers the opportunity to allow a range of equipment and exploration methodologies to be tested in the field. While conditions are not fully Mars like, they are none the less more extensive, more variable and less controlled than the laboratory and thus provide an intermediate testing ground between laboratory trials and actual deployment. A well-chosen field location can also assist in the training of possible crews in planetary science.

Finally, designing the station to simulate a possible Mars base, arranging for controlled isolation from the outside world and siting it in an area that visually has some fidelity to Mars increases the value of the station for social psychological and medical research. In particular studies of human performance and group dynamics in small isolated teams can be made to assist in crew selection.

As such the choice of the Mars analogue site is fundamental to the overall success of the simulated Mars base. Several such sites have been selected to date, among them Houghton Crater on Devon Island in the Canadian Arctic, and the Mars Society's MDRS near Hanksville, Utah. Houghton Crater is the site of both the SETI and Mars Institutes' "Mars on Earth" field station and the Mars Society's Flashline analogue station, both these are currently operating independently of each other. In addition to their research function, such stations can have an important education and outreach function²².

The reasons to build a simulated Mars base are summarised as a set of mission goals providing baseline design criteria for the MARS-OZ project. These goals are discussed in the following section.

3. MARS-OZ GOALS

The overall 'mission statement' of the MARS-OZ project is to, "Explore the issues of living and working on another planet". A specific list of preliminary goals can be drawn up, based on the reasons given in the previous section. These goals are:

- To provide planetary scientists access to a 'Mars like' region enabling
 opportunities to conduct research and training for planetary geologists and
 astrobiologists in field exploration and their related methodologies;
- To provide geologists, biologists, psychologists, physiologists, engineers, designers and horticulturalists a 'test bed' to research ideas, methodologies and equipment that can operate within the constraints of a base on Mars;
- To empirically test of the design advantages of using bent biconic lifting body shapes as a design basis for Mars bases. In particular, internal utility and accessibility of working spaces, and the mobility of the modules when wheels are attached;
- The trial and demonstration of technologies suitable for environmental low impact self-sustaining mobile structures; and
- To provide an inspirational public outreach vehicle encouraging planetary exploration and the education of public groups and school students into the science and technology of living on another planet.

These goals drive the design of the MARS-OZ structure and the selection of a suitable location.

4. THE ARKAROOLA MARS ANALOGUE REGION

MSA selected the Arkaroola region over five other areas in central Australia (Figure 1) as its prime region for Mars analogue research on the basis of it scientific interest, accessibility, and suitability for a range of engineering and social psychological field research²³ ²⁴.

Figure 1. Arkaroola and the five other Mars analogue regions investigated MSA.

Scientifically the region provides an example of studied alluvial, aeolian, lacustrine, and artesian spring sediments and associated duricrusts of the Lake Eyre Basin, adjacent to the dissected uplands of the Flinders Ranges. These offer a range of excellent analogues to equivalent sedimentary successions on Mars and have been extensively studied, both past and present. The geological features differ markedly from those available at Utah and on Devon Island, and thus complement studies at those sites.

The geological units host a range of niches of astrobiological significance, including mound springs, radioactive thermal springs, sinters associated with extinct hydrothermal systems, halophytic and cryptoendolithic organisms in the salt lakes and gibber plains (stony desert pavement) and a range of microbiotic crusts. MSA, and its overseas partners, has commenced collecting baseline data to allow the establishment of a microbiological observatory at Arkaroola. Importantly, the artesian and radioactive hot springs have no parallel at other Mars analogue sites.

The diverse landscape (Figure 2) of the region also allows testing of equipment, such hyperspectral sensors²⁵, rovers, in diverse arid environments and terrains. Compared with other Mars analogue sites such as Devon Island or Hanksville Utah, which are spatially constrained by land tenure issues, Arkaroola region has few such limits. Traverses of tens of km are possible with only limited interaction with other human activities. Longer-range traverses are possible if use of dirt roads is accepted. Local leaseholders

have been enthusiastic supporters of MSA's activities in the region and are hoping for expanded operations in the future.

Figure 2. Aerial view of the eastern margins of the Flinders Ranges and the adjacent Lake Frome Plain. Photo courtesy G. Mann.

In addition to Mars analogue research, the northern Flinders Ranges and its hinterland are of considerable interest to a wide range of field sciences, including geology, biology, ecology, soil science, hydrogeology and palaeontology. We envisage the facility being available for use as a field station for such research. Furthermore the MARS-OZ modules, which are designed to be mobile and self contained, can serve as a test bed and technology demonstrator for low impact, environmentally sustainable architecture, with many applications in remote, environmentally sensitive areas or where rapid deployment of self supporting units is needed, such as disaster relief.

5. THE MARS-OZ SITE

The preferred site for the MARS-OZ simulated base lies on the Arkaroola lease, Australia's first and largest private nature preserve. The Sprigg family who run the property have a long history of supporting scientific research and ecotourism. They are supportive of the establishment of a Mars analogue facility and the many visitors to the region provide an excellent opportunity for outreach²⁶. Arkaroola is eight hours by road north of Adelaide. In an emergency the all weather airstrip at Balcanoona would permit air evacuation by the Royal Flying Doctor Service, the same airstrip can also be used by charter operators.

The site itself (Figure 3), subject to environmental and native title clearance, lies on the eastern margin of the Flinders Ranges. It is located in a narrow belt of low rolling hills dissected by small gullies between the fans of the Lake Frome Plain and the eastern

margin of the Flinders ranges. The bedrock consists of Proterozoic Wooltana basalts cut by numerous veins of quartz-haematite breccia. Some of the hills were mantled by residual caps of transported pebbles and cobbles of two different ages; a quartz-rich lithology formed by Cretaceous near shore deposits and a lithic gravel of relict Pleostocene fans. Several metres of basalt saprolite are preserved under the gravel caps. The soils are red brown and swelling, and are mantled with an armour of angular cobble to pebble-sized gibbers. Vegetation is sparse, with scattered small bushes and almost no grass.

Figure 3. View southwest over the proposed MARS-OZ site.

The site is readily accessible by unsealed track from both Arkaroola and the main highway to the east. Some upgrading of the track from the east would be required to allow the large MARS-OZ modules to be brought in. Despite this ease of access, security can be easily maintained by means of gates. This would allow complete isolation from the outside world, if required for research, for example social psychology.

6. BASE DESIGN

The design of the Mars base required the combined inputs from a detailed workable Mars mission vehicle concept design and the specific aims and goals for a Mars surface simulation.

A family of Mars landers has been covered in detail by Willson and Clarke²⁷. The mission concept employs 3 vehicles and a Habitat vehicle (or Hab), the Cargo vehicle both of which land and a Mars Transfer Vehicle that remains in orbit. The Cargo vehicle has a separable forward section housing a Mars Ascent Vehicle with an in-situ fuel

processing plant. The rear section is a garage with a pressurised rover, multi-port adaptors, flexible airlocks and other cargo.

In brief, the Hab and Cargo vehicles travel to separately to mars but land near to each other. The crew walk or drive in a lightweight open rover from the Hab to the Cargo vehicle. They extract the pressurised rover from the garage. Wheels are attached to the garage section and it is detached from the forward section of the Cargo vehicle. The crew in the pressurised rover tow the garage to the Hab. Here they unload the adaptor module and flexible extension airlock and assemble all the components to form a Mars base. This assembly process (Figure 4) can be tested during the assembly of the MARS-OZ base in Arkaroola.

The crew return to Earth via the Mars Ascent vehicle that blasts off from the Cargo vehicle forward section and ascends to a low orbit around Mars, docking with the Mars Transfer Vehicle. This then transports the crew home to Earth. The crew land on Earth in a small landing capsule.

The vehicle concept is based around modules of fewer than 50 tonnes utilising horizontally landed bent biconic vehicles. These modules offer considerable advantages over other vehicle shapes. In brief, these are:

- They have a low deceleration g loading, good manoeuvrability during Mars entry providing accurate placement of payloads on the surface compared to other Mars landers;
- They have superior cargo carrying capacity (especially with respect to bulky items), easier loading, unloading, entry and egress. The configuration also offers the most growth potential through by simply lengthening the module;
- The low shape makes easier prevision of radiation protection using regolith materials, either through burial or erection of a regolith-covered roof; and,
- Their long low shape facilitates, with the addition of wheels, towing and repositioning on the surface of Mars. A number of modules can be connected via connecting them to multi-port adaptors creating a growing Mars base.

These issues combined with the MARS-OZ mission goals form the 'driver' for the simulated base geometry, internal architecture and structural design covered in the following sections.

Figure 4. The Assembly of the base on Mars.

7. THE MARS-OZ SIMULATED BASE ARCHITECTURAL ELEMENTS

Beginning from an overall Mars Semi Direct-like mission, we propose that the simulated Mars base to consist of the two landing vehicles, the Hab and Cargo vehicle as shown in figure 5. These are the horizontally landed bent biconic vehicle shapes 18 meters long by 4.7 meters in diameter. For the purposes of the simulation base, the Cargo vehicle will be made separable with a forward section and rear 'garage' section carrying the rover. The forward section will not have a 'chemical' processing plant and 'Mars Ascent Vehicle', although plywood mock ups of these components can be made, if needed. Instead this section will become the housing for two diesel generators and fuel. The rear garage section is equipped with detachable wheels, as would the real vehicle on Mars, and can be towed by the rover to the Hab section (Figure 5). The base will also employ the adaptor module with multiple docking hatches and flexible extension airlock.

As discussed, a fundamental part of the simulated base experience is to trial this assembly process as realistically as possible. This includes 'timing' the process and ascertaining the most efficient manpower and vehicle requirements to achieve the best result.

Once the simulated base is deployed the assumed vehicle dimensions, diameter and the internal architecture can be trialed for long-term living and working utility.

Figure 5. The MARS-OZ base configuration. Showing habitat module (left), adaptor and airlock module (centre) garage module (bottom left) and power and simulated ascent stage housing (top).

7.1 HAB MODULE INTERNAL DETAIL

The internal architecture layout has been driven by a range of issues, including dust management, people traffic control, room accessibility, and acoustic management. Experience gained from living in the Mars Desert Research Station during Expedition One provided an important source of practical data²⁸. For example, dust management and suppression is major issue in Mars exploration²⁹ as it is in any outback facility in Australia, and its control has been a major design consideration (Figure 6). In addition the base configuration is a compromise between the Hab being a 'stand alone' structure and it being connected to the Garage or other modules.³⁰

The crew enter the base through the main airlock/adaptor module. They clean their suits in the airlock. The crew can move into the suit storage vestibule at the rear of the Hab on the lower deck and remove their suits. Further cleaning may occur in this area. The crew can then step into the wet room and shower and wash before moving into the exercise/medical room. Stairs in this area provide access to the upper deck. The laboratory is in the forward part of the lower deck of the Hab. These working areas are kept separate from the upper deck living areas. The medical area is kept on the lower deck to facilitate easy access in an emergency.

The upper deck living area includes the galley and mess area, control station (cockpit) and individual bedrooms at the rear. The upper deck bedrooms are located far as possible from the lab to mitigate noise. The design provides up to eight individual cabins to allow for evaluation of crew sizes other than the four of the MARS-OZ concept mission³¹. The cockpit would be converted to a meeting room and office area after landing. A second stairwell connects the control station to the forward end of the lab, eliminating work traffic moving through the galley and mess while providing alternate access between decks in an emergency. The stairwell also provides emergency outside access and on a real Mars lander could be sealed off as a second airlock, if needed.

An important feature of the upper level plan is the configurability of the sleeping quarters. The rooms in this area are designed using a hinged, modular construction system. This allows the layout to be easily converted according to the needs of individual crews from an arrangement of eight cabins along a central corridor to either a smaller number of rooms with an enlarged general living area, or to just a single, large open space. The sleeping quarter layout could be customised for specific missions, and crew would have the option of changing the configuration during the day or during a mission if they chose.

Design of the interior aims to optimise the layout and arrangement of various functions within the limited confines of the Hab. Interior spaces and fittings are designed to be partially reconfigurable to accommodate a variety of tasks and functions depending on changing requirements. For example, the central medical facility and exercise area is planned as a flexible area with deployable equipment. The upper flight deck may also be freely reconfigured to suit various requirements including a meeting area, lounge or theatre.

The design of the upper deck aims to provide a functional layout for living and sleeping that offers a sense of spaciousness and can be readily adapted and personalised to mitigate the psychological effects of living in a confined space over long periods of time. A partition system is proposed that can unfold to define the required number of individual sleeping/working bays, or stowed to provide more open living space. Foldout partitions balance the need for intimate and private space with the need for spatial flexibility. They offer the opportunity to create a larger space to relieve feelings of confinement, to accommodate larger group activities, or simply to allow less constricted movement through the cabin.

This configurability has been included to allow for undertake comparative studies of different crew sizes and of different possible living quarter arrangements. It is also a response to the physically confined nature of the habitat interior. Living together in confined spaces such as this for extended periods of time can a degree of psychological stress on crews. MARS-OZ crews will be able to enlarge their living area during the day by folding away unused sleeping cubicles, if desired. Alternatively, given that personal space in close quarters is highly prized, used sleeping spaces when the base is occupied

by smaller crews can be stowed for increased open areas, reconfigured for storage. A third option is less, but larger sleeping space for use by crew members who are couples.

Other features that will enhance the feeling of interior spaciousness include the use of colour, fold-away furniture; careful positioning of window openings and virtual space will also contribute to a sense of openness. This adaptability will be highly desirable on an actual Mars base module. How to best to achieve this reconfigurability within the constraints of the MARS-OZ simulated base modules is the subject of ongoing research. Aspects of different internal configurations are illustrated in are illustrated in Figure 7.

Figure 6. Hab structure and interior.

Figure 7. Interior schematics of the MARS-OZ Hab module showing representative different configurations allowable with movable bulkheads and fittings as developed by Kirtsen Thompson Architects, Melbourne. TOP LEFT: control cabin in "cockpit" configuration. BOTTOM LEFT: control cabin in "conference" configuration. TOP RIGHT: View aft on upper deck showing all eight sleeping cabins deployed. BOTTOM RIGHT: view aft showing all sleeping cabins folded away.

7.2 CARGO MODULE DETAIL

The cargo module is designed in two sections. These are transported to site as a single unit the shape of the bent biconic lander. On site these come apart into the forward section (containing generators, fuel and a mock up ascent stage) and the garage module, containing the Starchaser Marsupial rover, collapsed adaptor module, and other cargo (Figure 8).

Separating the garage from the forward section involves the following procedure:

- 1) The Cargo vehicle is jacked;
- 2) The wheels are attached to the rear landing legs and under the garage at the join to the forward section;
- 3) Two additional support legs are attached to the forward section. This ensures the forward section is supported after being detached from the garage;
- 4) One section is then jacked to relieve the load between the two halves;

5) The joining bolts, adjacent to the horizontal stringers, are removed and the halves separated. On Mars these would likely be explosive bolts, detonated by pressing a button. Our simulation will require the bolts to be undone by hand.

Once separated, the forward section of the cargo vehicle would be located near the base and used for storage and as a generator house. On site at Arkaroola this might be within 100 m. On Mars the ascent stage would have to be parked up to 1 km away to ensure safety in the event of an explosion.

Assembling the base involves connecting the Hab to the Garage section. This process employs the adaptor module. It is constructed from aluminium, weighs 200 kg and is fixed onto a small trolley. This enables two or three people to roll it out of the Garage and bolt one end to the Hab tail door docking collar ring. A small winch would be required to assist rolling it down the Garage ramp. The adaptor module is a connection tube with hatches at each end and on the sides. The garage end of the adaptor module has a flexible section to cater for any misalignment between the structures. The garage is pushed by the rover so to line up its door docking collar ring as near as possible to the adaptor module flexible end. This connection is bolted together (Figure 9).

Finally, the flexible extension airlock, made flexible to reduce its storage space in the garage, is bolted one of the adaptor module side hatches. The air lock does require a small support trestle to prevent the airlock sagging when loaded with people.

A key design feature is the hatches. These are a double door system consisting of a small door for normal entry fixed to a 1.6 metre diameter hinged door fixed to a collar ring. All hatches used on the Hab, Garage, adaptor and flexible extension airlock modules are of matching design, allowing experimentation in alternative arrangements. For example, the flexible extension airlock can be fixed to the garage or the rear of Hab.

In addition the flexible extension airlock hatch can be docked to a matching hatch on the rear of the rover. When this occurs the crew can move between the Hab and Rover without climbing into space suits and stepping outside. The rover would require locking down to a ramp that is attached to the base. The rover uses the ramp to align itself to the airlock hatch to prevent the rover from rolling away after parking.

Figure 9 shows the rear of the Hab, adaptor module and flexible extension airlock with hatches, jacking points, wheel and lifting lug locations.

8. BASE CONSTRUCTION, SYSTEMS AND DEPLOYMENT

The simulated Mars base has been designed to approximate the possible dimensions of a future base where possible. The Hab mass is estimated at 21 tonnes and Cargo module mass estimated at 14 tonnes. Air will not recycled, the structure will be mild steel instead of aluminium alloy and, at least initially, its power supply is to be provided by diesel

generators. However it will recycle water, minimise power usage and have systems monitored remotely transmitted via an Internet satellite link.

Figure 8. Cargo module showing forward section (housing generator and mock up ascent stage) and detachable garage module.

Figure 9. View of Hab rear, adaptor module and flexible extension airlock

8.1 STRUCTURE

The module structure will consist of an internal 3mm mild steel plate within 75 mm RHS hoop frames and 50mm RHS stringers. The outer cladding is panel rib roofing steel. Insulation is sandwiched between the inner steel and outer cladding. The floors are of 100mm deep girts clad with 20 mm thick floor ply with covered with vinyl. The room walls are aluminium sheets riveted to 50 mm RHS steel frames. Insulation is sandwiched between the walls. The interior walls are to be re-configurable to test different room arrangements and furnishing.

8.2 SAFETY

The simulated base must meet statutory requirements for noise, temperature, and ventilation. Fire is a major risk in any enclosed structure, and where possible the facility must be constructed of non-inflammable or fire retardant materials. The MAR-OZ Hab module is also provided with three exits, two on the lower deck (the forward and rear "airlocks", and an upper deck emergency exit at the rear. The two stairways, located centre and aft should allow access to at least one exit at all times, not matter where a fire is located. The garage module has two exits, forward and aft. While provision of a sprinkler or similar fire protection system may be impractical, each compartment should be equipped with a fire extinguisher. We envisage each compartment being fitted with smoke or heat sensors.

8.3 Furnishing

We expect people to live in the base for long periods of time and human factors research to be conducted, trialing the room layouts and furnishings. Chairs, tables, beds and storage lockers are to be made from aluminium sheets and thin walled furniture steel. The base control cables, power cables, computer network cables, water piping and air conditioning ducts are stowed on cable ladders in main ducts located under the mid floor on each side of the lower deck section. The cable ladders can be access via removable panels on the ducts.

8.4 AIR CONDITIONING

The structure is to be made as airtight as practical. This will allow for the possible inclusion of air recycling equipment at a later stage. Until then, air is drawn in from the outside through the nose section via 2 air conditioning units and ducted throughout the Hab. The adaptor module and flexible extension airlock is connected to this system. The garage section is to have its own air conditioning unit. The air conditioning system is designed to maintain the base at a comfortable temperature during the worse case 50° C summer temperatures occasionally achieved at Arkaroola. We expect the air conditioning units in the Hab to use up to 14 kW power for cooling during the hot periods. The Hab wall insulation has been designed for this purpose.

8.5 WATER RECYCLING

Unlike air, the water is to be recycled. It is supplied from fresh water and 'grey' water tanks. The kitchen is to have a fresh water outlet for drinking, a cold 'grey' water outlet and a hot 'grey' water outlet. The fresh water is to be recycled to 'grey' water via a reverse osmosis water recycler and an UV steriliser. Most of the piping will be in the form of plastic hoses and is designed to be easily altered to test alternative circuits. The system does not recycle urine because an incinerating toilet is specified to consume human waste.

The overall system is shown in figure 10.

The air conditioning, sanitary and water recycling system is to be part of the goal for the demonstration of technologies suitable for environmental low impact self-sustaining mobile structures. The aim being to provide a package of power, sanitary, water and services for mobile structures used by construction camps, emergency services and the army.

8.6 Power Supply

The proposed power supply is to be 2 x 10 kW 240V diesel generators housed in the forward section of the Cargo vehicle. The base power system is to have rectifiers and batteries available to add on a solar cell generator. This will provide for all electric system, including heating, cooling, cooking, and waste disposal. Multiple power outlets will be provided for each compartment, especially in the working areas. We envisage that solar cells might be gradually phased in over time.

8.7 Instrumentation

We propose that the services and power supply are to have monitoring instrumentation that measures:

- The power usage;
- The internal and external temperatures;
- Air and water flow rates;
- Tank levels; and
- Humidity and CO₂.

The purpose of the instrumentation is for the monitoring interior environment and for improving of the efficiency of the water recycling and power system. The data will be sent to the base computer that is connected to the satellite link.

8.8 COMMUNICATIONS AND DATA STORAGE

We proposed to provide a satellite and Internet link between the base and research establishments. The link would allow video communication and down loaded data from

the monitoring instruments to be displayed at any research centre in the world and to a proposed interpretation centre located at the Arkaroola village. The interpretation centre is for the 'Public outreach' and is discussed in section 8.

We suggest this can be achieved with the following software and hardware:

- A SCADA (Supervisory Control and Data Acquisition) software for the data acquisition and display at the base and Winc software provided at the research offices of the for displaying the information;
- An Israeli designed Gilat 360e satellite modem providing uplink speeds of 110
 Kbytes and down link speeds of 400 Kbps with a 1.2 m offset dish for the
 satellite communications system; and,
- A standard PC, a PLC to read data from the monitoring instrumentation, a video capture card for the video cameras, and five video cameras with radio link. The video cameras would be located in and around the Hab and Garage.

This hardware and software provides the best quality for the lowest cost data storage and communications link via the Internet. The system is also shown in figure 10.

Figure 10. Diagrams of the water recycling system, power supply and data collection and communication system ${\bf r}$

8.9 Transport

The simulated Hab and Cargo modules are to be transportable in two separable units behind prime movers. We do not intended that the modules are moved regularly, but they can be moved on rare occasions to different locations. In addition the modules can be fitted out and checked at an industrial site before transported. To achieve this a removable tow pin and wheel frame is employed.

The removable tow pin is located on a frame under the nose section of each unit. This enables the modules to be hooked up to a prime mover. A detachable 9 tonne axle wheel frame supports the rear end of the module. The frame is bolted to cleats on the back end of the module.

The transport set up (Figure 11) allows 300mm clearance to the road, combined with the module width of 4.7 meters giving an overall height of 5 meters. The height clearance is higher than the highest Australian legal limit of 4.6 meters on Australian roads but low enough to pass under bridges and overpasses on the main Australian highways. The transport height and width triggers the need for a structural certificate and a permit from local transport authorities. The vehicle will require an escort but not a police escort.

The low clearance to the ground is suitable for the main highways but will be an issue when being moved on the rough tracks at Arkaroola. When this occurs the rear end of the module is jacked up to 600 mm clearance to the ground and the wheel frame lowered to new matching bolt holes on the cleats. The vehicle does not pass under objects while being moved in these areas. Some minor road works may be required.

Finally the modules are provided with lifting lugs. These enable them to be lifted onto ships to be taken to other locations. The Hab module mass of 22 tonnes is within the capacities of most shipping container cranes and lifting systems.

Figure 11. Transportation mode of MARS-OZ modules, using detachable wheels and a prime mover. Two such prime movers will be required to set up the base on the chosen site.

8.10 OPENING AND PROMOTION

We propose to film the simulation of the assembly of the MARS-OZ base as part of the opening of the project.

The plan is to locate the cargo vehicle at some distance from the Hab similar to an actual Mars landing. The Cargo Vehicle would have the Garage connected to its nose section. The rover, adaptor module and flexible extension airlock would be inside.

The promotion film might begin with the Mars explorers leaving the Hab in a small car and travel to the Cargo Vehicle. An actual electric car would be preferred but an open jeep or dune buggy could simulate un-pressurised rover.

The 'Mars' explorers would arrive at the Cargo Vehicle, unload the Starchaser Marsupial pressurised rover from the Garage section and detach the Garage from the nose section.

The pressurised rover would be hitched to the Garage in order to tow it to the Hab. Once there the adaptor and flexible extension module would be unloaded from the Garage. The explorers would then connect the modules and Garage to form the completed Mars-Oz base. The assembly process would be timed, and teething problems exposed for future reference thereby assessing the feasibility of such an assembly on the Martian surface.

We also propose the construction of an Interpretation Centre at the Arkaroola village in order to manage visitor access to the site. The Centre is to provide school; students and other groups access to the base for workshops covering the theme, "Exploring the issues of living and working on another planet". It would consist of a 'mission control centre' with the PC communications and data link to the base. This would assist the educators instructing groups on planetary geology, astrobiology, psychology and other science issues. It is not intended the base is to open for uncontrolled tourism.

9. MARS-OZ COSTING

The total cost of the project at the beginning of 2005 was estimated to be \$1,400,000. To date much the steel fabrication design has already been completed by the Mars Society Australia and issued for tender. This has greatly assisted in the estimation of the overall costs.

The table of the cost breakdown is shown in Table 2

Project Cost Components	Costs	Percent
		of Total
Design review	\$40,000	3%
Project approvals	\$90,000	6%
Design and Project management	\$315,000	23%
Fabrication and transport to site	\$790,000	56%

Opening and promotion	\$30,000	2%
Contingency	\$135,000	10%
TOTAL	\$1,400,000	

Table 2. MARS-OZ simulated base cost breakdowns

We suggest nine months need to be allowed for the project from the award of funding to completion. This includes an initial 1-month concept review, a 3 month design period, 4 months to construct and fit out and 1 month for the promotion film.

A description of the project cost components in the above table follows.

9.1 DESIGN REVIEW

The purpose of the design review is to ensure the project design is to the standard and compatible with the needs of the research institutions that intend to use it. This cost covers the promotion 'fly through' of the base, travel and reviews with the users and investors.

9.2 Project Approvals

The project approvals and environmental management plan consists of field surveys, reports and discussions with local authorities including aborigines associated with the area. This cost is variable but expected to be not as high as estimated due to the 'low environmental foot print' aspect of the base design.

9.3 Design

The design costs include a structural verification, design of interior fittings, services, monitoring instrumentation, systems control, data storage, communication links, operations manuals and a hazard analysis. The structural verification is to provide for the requirements of gaining the road transport certification.

9.4 FABRICATION AND TRANSPORT TO SITE

The fabrication and transport to site costs include all steel fabrication, transport to site, purchase and fitting out of the electrical and mechanical services, monitoring instruments, data storage and communication equipment. The electrical power generation costs are for diesel generators only. The costs do not include provision of solar cells. A steel frame with wheels for transport is also included.

9.5 OPENING AND PROMOTION

The opening and promotion costs consist mostly of travel costs to Arkaroola for a number of people. The cost of the film documentary is expected to be carried by the filming company.

Finally the Interpretation Centre as described in section 6 is not part of the Mars-Oz budget described above. However we expect such a centre, making use of existing buildings in the Arkaroola village will greatly assist in the general base running costs.

10. CONCLUSIONS

We believe that the proposed MARS-OZ simulated base will provide a world-class platform for a range of Mars analogue studies for an international research clientele. The unique features of the MARS-OZ design and the Arkaroola region will complement existing and proposed analogue research sites in Utah, on Devon Island, and Iceland. MSA is seeking partners to enable to construct of the facility in the immediate future.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the input of many people into preparation of the MARS-OZ design. In particular we would like to thank R. Antiori, S. Bishop, D. Cooper, S. Dawson, P. Grey, V. Gushin, R. Hart, J. Hoogland, M. Hughes, J Laing, P. Lee, L. Lemke, G. Mann, J. Michalek, D. Oppenheim, R. Persaud, S. Rupert-Robles, F. Schubert, T. Sterk, C. Stoker, G. Snyder, A Veasey, M. West, and N. Wood for many valuable ideas and suggestions. Lastly, we thank the hard and ongoing work by Kirsten Thomson and the team at Kerstin Thompson Architects (54 Charles Street, Fitzroy, Victoria) 3065, Australia for their ongoing design input into the interior configuration. Lastly, we thank the hard and ongoing work by individuals at SEMF (Hobart office) for their engineering advice and Kirsten Thomson and the team at Kerstin Thompson Architects (Melbourne) for their interior architecture work. Manuscript drafts were read by Graham Mann and Shannon Rupert-Robles.

REFERENCES

- ¹ Clarke, J. "An Australian Mars Analogue Research station (MARS-OZ): a proposal." Mars Society Australia Inc. May 2002. Available on line at
- http://www.marssociety.org.au/technical/MARSOZ Proposal-ver1A.pdf
- ² Clarke, J. (comp.). "An Australian Mars Analogue Research station (MARS-OZ): Addendum to Initial Proposal Document." Mars Society Australia Inc. October 2002. Available on line at http://marssociety.org.au/library/MarsOZ Addendum1.pdf
- ³ Zubrin, R. "Mars on Earth" Tarcher, 2004.
- ⁴ Energia Corporation. The 1987 Project. Address when accessed http://www.energia.ru/english/energia/mars/chron-1987.html
- ⁵ ISU. "International Mars mission final report." International Space University, Tolouse, France, 577 p. plus appendices, 1991.
- ⁶ Welch, S. "Mission strategy and spacecraft design for a Mars base program." Case for Mars II: Proceedings of the Second Case for Mars Conference, American Astronautical Society Science and Technology Series, **62**, 344-375, 1984.
- ⁷ French, J. R. "Mars landing and launch requirement and a possible approach." Case for Mars III: Strategies for Exploration. Proceedings of the Third Case for Mars Conference, American Astronautical Society Science and Technology Series, **75**, 413-420, 1987.
- ⁸ Grover, M. R., Odell, E.H., Smith-Brito, S. L., Warwick, R.W., and Bruckne A. P. "Ares explore: a study of human Mars exploration alternatives using in situ propellant production and current technology." The Case for Mars VI: Making Mars an Affordable Destination. Proceedings of the Sixth Case for Mars Conference. American Astronautical Society Science and Technology Series **98**, 309-340. 1996.
- ⁹ Willson, D. and Clarke, J. D. A. "MARS-OZ A Proposed Mars Base Design Adopting a Horizontally Landed Bent Biconic Vehicle" *Journal of the British Interplanetary Society* (in press).
- ¹⁰ Willson, D. and Clarke, J. D. A. MARS-OZ Design reference mission. *Journal of the British Interplanetary Society (submitted)*.
- ¹¹ Zubrin, R. and Weaver, D. "Practical methods for near-term piloted Mars missions." *Journal of the British Interplanetary Society* **48**. 1995.
- ¹² Hoffman, S. J. and Kaplan, D. L. (eds.)." Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team", NASA Johnson Space Centre. 1997.
- ¹³ Grover et al., op cit.
- ¹⁴ Zubrin, R. "The case for Mars." Touchstone, New York, p 48, p 95, 1997.
- ¹⁵ Duke, M. B. (ed.), "Science and the Human exploration of Mars workshop." *LPI Contribution* 1089, Lunar and Planetary Institute, Houston, 2001.
- ¹⁶ Hoffman, S. J. (ed.). "The Mars surface reference mission: a description of human and robotic surface activities." NASA/TP-2001-209371, 2001.
- ¹⁷ Budden, N. A. (ed.). "Mars field geology, biology, and paleontology workshop: summary and recommendations." *LPI contribution* 968, Lunar and Planetary Institute, Houston, 1998.
- ¹⁸ Persaud, R. "A systematic approach to investigations at Mars analog research stations." *In* Cockell, C. S. (ed.). Martian Expedition Planning. *American Astronautical Society Science and Technology Series* **107**, 104-121, 2004.
- ¹⁹ Persaud, R., Rupert-Robles, S., Clarke, J. D. A., Dawson, S., Mann, G. A., Waldie, J., Piechocinski, S., and Roesch, J. "Expedition One: a Mars Analog Research Station 30-day Mission." *In Cockwell, C. S.* (ed.). Martian Expedition Planning. *American Astronautical Society Science and Technology Series* **107**, 53-87, 2004.
- ²⁰ Cockell, C. S., Graham, S., Clancey, W., Lee, P., and Lim, D. S. S. "Exobiological protocol and laboratory for the human exploration of Mars lessons from a polar impact crater." *In* Cockell, C. S. (ed.). Martian Expedition Planning. *American Astronautical Society Science and Technology Series* **107**, 33-52, 2004.
- ²¹ Piechocinski, S., Cellucci, F., Clarke, J. D. A., Laing, J., Orlotti, B., Persaud, R., Solignac, A., and Wood, N. B. "Potential capabilities and uses of an integrated data logging device during a human Mars exploration mission". *In Cockell, C. S. (ed.). Martian Expedition Planning. American Astronautical Society Science and Technology Series* **107**, 273-286, 2004.

- ²² Laing, J. H., Clarke, J., Deckert, J., Gostin,, V., Hoogland, J., Lemke, L., Leyden, J., Mann, G., Murphy, G., Stoker, C., Thomas, M., Waldie, J., Walter, M., and West, M. 'Using an Australian Mars Analogue Research Facility for Astrobiology Education and Outreach' in Bioastronomy 2002: Life Among The Stars, Proceedings of IAU Symposium 213, Hamilton Island, Great Barrier Reef, Australia, July 8-12, 2002, R.P. Norris & F. Stootman (eds.), pp. 553–558, 2004.
- ²³ Mann, G. A., Clarke, J. D. A., and Gostin, V. A. "Surveying for Mars Analogue Research Sites in the Central Australian Deserts." *Australian Geographical Studies*. **30**(1), 116-124, 2004.
- ²⁴ Clarke, J. D. A., Thomas, M., and Norman, M. "The Arkaroola Mars analog region, South Australia." *Abstracts of the 34th Lunar and Planetary Science Conference* Abstract #1029, 2004.
- ²⁵ Thomas, M. and Walter, M. R. "Application of Hyperspectral Infrared Analysis of Hydrothermal Alteration on Earth and Mars." *Astrobiology* **2**(3), 335-351, 2002.
- ²⁶ Laing et al., op cit.
- ²⁷ Willson and Clarke *op cit*.
- ²⁸ Persaud, R., Rupert-Robles, S., Clarke, J. D. A., Dawson, S., Mann, G., Waldie, J., Piechocinski, S., and Roesch. "Expepedition One: a Mars Analog Research Station 30-day mission." *In Cockell, C. S. (ed.).* Martian Expedition Planning. *American Astronautical Society Science and Technology Series* **107**, 53-88, 2004.
- ²⁹ Committee on Precursor Measurements Necessary to Support Human Operations on the Surface of Mars, National Research Council. "Safe on Mars: Precursor Measurements to Support Human Operations on the Martian Surface." National Academies Press, 2002
- ³⁰ Willson and Clarke, in press, op cit.
- ³¹ Willson and Clarke, in press op cit.