Deep Learning with Privacy Preservation for Speech Analysis

Imperial College London

Ranya Aloufi, David Boyle, Hamed Haddadi Systems and Algorithms Laboratory

Anonymize the speaker emotion by converting the expressive speech to natural utterance

Speech signal is a rich resource to disclose several speakers' states, such as their emotional and mood states, confidence and stress levels, physical condition, age, gender, and personal traits.

Figure1: Emotion Anonymization based on CycleGAN-VC

Framework

The proposed method in **(Figure1,3)** is focused on what the content is in regardless how to say it.

Experiment

- The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)[1]
- WORLD: speech analysis, manipulation and synthesis[2]
- CycleGAN-VC: non-parallel voice conversion [3]

Figure 2: Speech features analysis for different emotion categories which are natural, angry, happy respectively

Following Steps

- Analyzing the prosody features (Figure2)
- Testing the quality of generated WAVs
- Measuring privacy with different Metrics
- Further experiments and techniques will be conducted

Figure3: Overview of the System Architecture [4]

References

- [1] S. R. Livingstone and F. A. Russo, "The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)," 2018.
- [2] M. Morise, F. Yokomori, and K. Ozawa, "World: a vocoder-based highquality speech synthesis system for real-time applications," 2016.
- [3] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, "Cyclegan-vc2: Improved cyclegan-based non-parallel voice conversion," 2019.
- [4] K. H. Kaneko, Takuhiro, "Parallel-data-free voice conversion using cycle-consistent adversarial networks," 2017.

Contact Information r.aloufi18@imperial.ac.uk

