Mathematical Properties of Continuous Ranked Probability Score Forecasting

Romain Pic1, Clément Dombry1, Philippe Naveau2 et Maxime Taillardat3

¹Laboratoire de Mathématiques de Besançon, Université de Bourgogne Franche-Comté

²Laboratoire des Sciences du Climat et de l'Environnement, Université de Versailles Saint-Quentin

³Centre National de Recherches Météorologiques, Météo France

- Probabilistic Forecasting
 - Context
 - Scoring Rules and Distributional Regression
 - CRPS
- Statistical Learning
 - Theoretical Framework
 - Optimal Minimax Rate of Convergence
- k-NN and Kernel Methods
 - k-Nearest Neighbors
 - Kernel Method

Table of Contents

- Probabilistic Forecasting
 - Context
 - Scoring Rules and Distributional Regression
 - CRPS
- Statistical Learning
 - Theoretical Framework
 - Optimal Minimax Rate of Convergence
- k-NN and Kernel Methods
 - k-Nearest Neighbors
 - Kernel Method

Probabilistic Forecasting

Probabilistic Forecasting

All those whose duty it is to issue regular daily forecasts know that there are times when they feel **very confident** and other times when they are **doubtful** as to coming weather. It seems to me that the condition of confidence or otherwise forms a **very important part of the prediction**.

Ernest Cook (MWR, 1906)

Probabilistic Forecasting Techniques

- Various approaches :
 - Ensemble prediction
 - Quantile regression
 - Expectile regression
 - Distributional regression: cumulative distribution function, density, quantile function, copula...

Probabilistic Forecasting Techniques

- Various approaches :
 - Ensemble prediction
 - Quantile regression
 - Expectile regression
 - **Distributional regression** : cumulative distribution function, density, quantile function, copula...
- How can we compare a distribution and an observation?

Probabilistic Forecasting Techniques

- Various approaches :
 - Ensemble prediction
 - Quantile regression
 - Expectile regression
 - **Distributional regression** : cumulative distribution function, density, quantile function, copula...
- ullet How can we compare a distribution and an observation? o **Scoring Rules**

Continuous Ranked Probability Score

• Continuous Ranked Probability Score (CRPS) : [Matheson and Winkler, 1976]

$$\mathrm{CRPS}(F,y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}_{y \le z})^2 \mathrm{d}z$$

Continuous Ranked Probability Score

• Continuous Ranked Probability Score (CRPS) : [Matheson and Winkler, 1976]

$$\operatorname{CRPS}(F,y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}_{y \le z})^2 \mathrm{d}z$$

• Difference of expected scores :

$$\overline{\mathrm{CRPS}}(F,G) - \overline{\mathrm{CRPS}}(G,G) = \int_{\mathbb{R}} (F(z) - G(z))^2 \mathrm{d}z$$

$$\overline{\mathrm{CRPS}}(F,G) > \overline{\mathrm{CRPS}}(G,G) \text{ (strictly proper)}$$

Table of Contents

- Probabilistic Forecasting
 - Context
 - Scoring Rules and Distributional Regression
 - CRPS
- Statistical Learning
 - Theoretical Framework
 - Optimal Minimax Rate of Convergence
- 3 k-NN and Kernel Methods
 - k-Nearest Neighbors
 - Kernel Method

Theoretical framework

- $Y \in \mathbb{R}$ variable of interest, $X \in \mathbb{R}^d$ covariables with $(X, Y) \sim P$.
- Goal : estimate the conditional distribution of Y given X, noted F_X^* .

Statistical Learning Framework

In practice: estimate the conditional distribution of Y given X based on n observations D_n = {(X_i, Y_i), i ∈ [1; n]} where (X_i, Y_i) are assumed i.i.d. following P.

Verification with the CRPS

 $\label{eq:Methods} \mbox{Methods concerned by the framework} :$

Methods concerned by the framework :

 Not only methods based on the minimization of the CRPS, also methods using the CRPS for verification.

Methods concerned by the framework:

- Not only methods based on the minimization of the CRPS, also methods using the CRPS for verification.
- Predict a parametric or nonparametric distribution: Censored-Shifted Gamma, Censored-GEV, EGPD, QRF, Bernstein polynomials...

Methods concerned by the framework:

- Not only methods based on the minimization of the CRPS, also methods using the CRPS for verification.
- Predict a parametric or nonparametric distribution: Censored-Shifted Gamma, Censored-GEV, EGPD, QRF, Bernstein polynomials...
- Predicted distribution represented as an ensemble of values: Random/Quantile Ensembles, Generators...

$$R_P(\hat{F}_n) = \overline{\mathrm{CRPS}}(\hat{F}_{n,X}, F_X^*)$$

$$R_P(\hat{F}_n) = \overline{\mathrm{CRPS}}(\hat{F}_{n,X}, F_X^*)$$

$$R_P(F^*) = \overline{\mathrm{CRPS}}(F_X^*, F_X^*)$$

$$R_P(\hat{F}_n) = \overline{\mathrm{CRPS}}(\hat{F}_{n,X}, F_X^*)$$

$$R_P(F^*) = \overline{\mathrm{CRPS}}(F_X^*, F_X^*)$$

• Rate of convergence for a given class of distributions ?

$$R_P(\hat{F}_n) = \overline{\mathrm{CRPS}}(\hat{F}_{n,X}, F_X^*)$$

$$R_P(F^*) = \overline{\mathrm{CRPS}}(F_X^*, F_X^*)$$

- Rate of convergence for a given class of distributions ?
- Minimization of the maximal error on a class of distributions. (minimax error)

$$R_P(\hat{F}_n) = \overline{\text{CRPS}}(\hat{F}_{n,X}, F_X^*)$$

$$R_P(F^*) = \overline{\mathrm{CRPS}}(F_X^*, F_X^*)$$

- Rate of convergence for a given class of distributions ?
- Minimization of the maximal error on a class of distributions. (minimax error)

Definition

A sequence of positive numbers (a_n) is called an **optimal minimax rate of convergence** on the class \mathcal{D} if

$$\liminf_{n\to\infty}\inf_{\hat{F}_n}\sup_{P\in\mathcal{D}}\frac{\mathbb{E}_{D_n\sim P^n}[R_P(\hat{F}_n)]-R_P(F^*)}{a_n}>0 \tag{L}$$

and

$$\limsup_{n\to\infty}\inf_{\hat{F}_n}\sup_{P\in\mathcal{D}}\frac{\mathbb{E}_{D_n\sim P^n}[R_P(\hat{F}_n)]-R_P(F^*)}{a_n}<\infty, \tag{U}$$

where the infimum is taken over all distributional regression models \hat{F}_n trained on D_n .

Optimal Minimax Rate of Convergence

Consider the following classes:

Definition

For $h \in (0,1]$, C > 0 and M > 0, let $\mathcal{D}^{(h,C,M)}$ be the class of distributions P such that $F_x^*(y) = P(Y \le y | X = x)$ satisfies :

- i) $X \in [0,1]^d P_X$ -a.s.;
- ii) For all $x \in [0,1]^d$, $\int_{\mathbb{R}} F_x^*(z)(1 F_x^*(z))dz \le M$;
- iii) $\|F_{x'}^* F_x^*\|_{L^2} \le C \|x' x\|^h$ for all $x, x' \in [0, 1]^d$.

Remark: Conditions similar to point regression [Györfi et al., 2002].

Class of distributions

- i) $X \in [0,1]^d P_X$ -a.s.;
 - \rightarrow More generally a compact.

Class of distributions

- i) $X \in [0,1]^d$ P_X -a.s.; \rightarrow More generally a compact.
- ii) For all $x \in [0,1]^d$, $\int_{\mathbb{R}} F_x^*(z)(1-F_x^*(z))dz \leq M$; \to The dispersion of Y|X=x remains bounded for all $x \in [0,1]^d$.

Class of distributions

- i) $X \in [0,1]^d P_X$ -a.s.; \rightarrow More generally a compact.
- ii) For all $x \in [0,1]^d$, $\int_{\mathbb{R}} F_x^*(z)(1-F_x^*(z))dz \leq M$; \to The dispersion of Y|X=x remains bounded for all $x \in [0,1]^d$.
- iii) $\|F_{x'}^* F_x^*\|_{L^2} \le C \|x' x\|^h$ for all $x, x' \in [0, 1]^d$.

$$\overline{\mathrm{CRPS}}(\hat{F}_{n,X},F_X^*) - \overline{\mathrm{CRPS}}(F_X^*,F_X^*) = \int_{\mathbb{R}} (\hat{F}_{n,X}(z) - F_X^*(z))^2 \mathrm{d}z = \|\hat{F}_{n,X} - F_X^*\|_{L^2}$$

Using knowledge from previous observations at $X = x_i$ to extrapolate the value at $X = x \to \text{Need}$ regularity of F^* .

Table of Contents

- Probabilistic Forecasting
 - Context
 - Scoring Rules and Distributional Regression
 - CRPS
- Statistical Learning
 - Theoretical Framework
 - Optimal Minimax Rate of Convergence
- k-NN and Kernel Methods
 - k-Nearest Neighbors
 - Kernel Method

 $\hat{F}_{n,x}(z) = \frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{1}_{y_{i:n}(x) \le z}, \ _{i:n}(x) \text{ index of the } i\text{-th nearest neighbor of } x.$

$$\hat{F}_{n,x}(z) = \frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{1}_{y_{i:n}(x) \le z}, \quad i:n(x) \text{ index of the } i\text{-th nearest neighbor of } x.$$

• (L) Use a subclass with a binary response to obtain a **lower minimax rate of** convergence : $a_n = n^{-\frac{2h}{2h+d}}$.

• (L) Use a subclass with a binary response to obtain a lower minimax rate of convergence : $a_n = n^{-\frac{2h}{2h+d}}$.

Proposition

Assume $P \in \mathcal{D}^{(h,C,M)}$ and let \hat{F}_n be the k-NN model. Then,

$$\mathbb{E}_{D_n \sim P^n}[R_P(\hat{F}_n)] - R_P(F^*) \leq \begin{cases} 8^h C^2 \left(\frac{k_n}{n}\right)^h + \frac{M}{k_n} & \text{if } d = 1, \\ c_d^h C^2 \left(\frac{k_n}{n}\right)^{2h/d} + \frac{M}{k_n} & \text{if } d \geq 2, \end{cases}$$

where $c_d=rac{2^{3+rac{2}{d}}(1+\sqrt{d})^2}{V_d^{2/d}}$ and V_d is the volume of the unit ball in \mathbb{R}^d .

Theorem

For $d \geq 2$, the optimal minimax rate of convergence on the class $\mathcal{D}^{(h,C,M)}$ is $\mathbf{a_n} = \mathbf{n}^{-\frac{2h}{2h+d}}$. Moreover, the k-NN algorithm reaches the optimal rate of convergence for $\begin{pmatrix} Md & \frac{d}{2h+d} \end{pmatrix}$

$$k_n = \left(\frac{Md}{2hC^2c_d^h}\right)^{\frac{d}{2h+d}}n^{\frac{2h}{2h+d}}.$$

Theorem

For $d \geq 2$, the optimal minimax rate of convergence on the class $\mathcal{D}^{(h,C,M)}$ is $a_n = n^{-\frac{2h}{2h+d}}$. Moreover, the k-NN algorithm reaches the optimal rate of convergence for $k_n = \left(\frac{Md}{2hC^2c_d^h}\right)^{\frac{d}{2h+d}}n^{\frac{2h}{2h+d}}.$

$$k_n = \left(\frac{N/d}{2hC^2c_d^h}\right) \qquad n^{\frac{2h}{2h+d}}.$$

- What happens in d = 1?
- Interesting result but k-NN not used in practice.

$$\hat{F}_{n,x}(z) = \frac{\sum_{i=1}^{n} K(\frac{x-x_i}{h_n}) \mathbb{1}_{y_i \le z}}{\sum_{i=1}^{n} K(\frac{x-x_i}{h_n})}, \text{ with } K(z) = \mathbb{1}_{\{\|z\| \le 1\}}.$$

$$\hat{F}_{n,x}(z) = \frac{\sum_{i=1}^{n} K(\frac{x-x_i}{h_n}) \mathbb{1}_{y_i \le z}}{\sum_{i=1}^{n} K(\frac{x-x_i}{h_n})}, \text{ with } K(z) = \mathbb{1}_{\{\|z\| \le 1\}}.$$

• (L) Same lower minimax rate of convergence as previously : $a_n = n^{-\frac{2h}{2h+d}}$.

• (L) Same lower minimax rate of convergence as previously : $a_n = n^{-\frac{2h}{2h+d}}$.

Proposition

Assume $P \in \mathcal{D}^{(h,C,M)}$ and let \hat{F}_n be the naive kernel model. Then,

$$\mathbb{E}_{D_n \sim P^n}[R_P(\hat{F}_n)] - R_P(F^*) \le \tilde{c}_d \frac{2M + Cd^{h/2} + \frac{M}{n}}{nh_n^d} + C^2 h_n^{2h}$$

where \tilde{c}_d only depends on $d \geq 1$.

Kernel Method

• (L) Same lower minimax rate of convergence as previously : $a_n = n^{-\frac{2h}{2h+d}}$.

Proposition

Assume $P \in \mathcal{D}^{(h,C,M)}$ and let \hat{F}_n be the naive kernel model. Then,

$$\mathbb{E}_{D_n \sim P^n}[R_P(\hat{F}_n)] - R_P(F^*) \le \tilde{c}_d \frac{2M + Cd^{h/2} + \frac{M}{n}}{nh_n^d} + C^2 h_n^{2h}$$

where \tilde{c}_d only depends on $d \geq 1$.

Theorem

For any d, the optimal minimax rate of convergence on the class $\mathcal{D}^{(h,C,M)}$ is $\mathbf{a}_n = \mathbf{n}^{-\frac{2h}{2h+d}}$. Moreover, the naive kernel algorithm reaches the optimal rate of $\left(\tilde{c}_d d(M+Cd^{h/2}+\frac{M}{2h+d})\right)^{\frac{1}{2h+d}}$.

convergence for
$$h_n=\left(rac{ ilde{c}_d d(M+Cd^{h/2}+rac{M}{n})}{2hC^2}
ight)^{rac{1}{2h+d}} n^{-rac{1}{2h+d}}.$$

Kernel Method

• (L) Same lower minimax rate of convergence as previously : $a_n = n^{-\frac{2h}{2h+d}}$.

Proposition

Assume $P \in \mathcal{D}^{(h,C,M)}$ and let \hat{F}_n be the naive kernel model. Then,

$$\mathbb{E}_{D_n \sim P^n}[R_P(\hat{F}_n)] - R_P(F^*) \le \tilde{c}_d \frac{2M + Cd^{h/2} + \frac{M}{n}}{nh_n^d} + C^2 h_n^{2h}$$

where \tilde{c}_d only depends on $d \geq 1$.

Theorem

For any d, the optimal minimax rate of convergence on the class $\mathcal{D}^{(h,C,M)}$ is $a_n=n^{-\frac{2h}{2h+d}}$. Moreover, the naive kernel algorithm reaches the optimal rate of

convergence for
$$h_n=\left(rac{ ilde{c}_d d(M+Cd^{h/2}+rac{M}{n})}{2hC^2}
ight)^{rac{1}{2h+d}} n^{-rac{1}{2h+d}}.$$

- Optimal minimax rate of convergence for any d.
- Used in practice ?

Conclusion

- Optimal minimax rate of convergence for distributional regression.
- Upper bound on the convergence rate for k-NN and kernel methods at fixed n.
- Extension to usual weighted CRPSs.
- Perspectives :
 - Study other algorithms: Random Forests (e.g. QRF).
 - Study other definitions of convergence : other distances.
 - Adapt other classical results to the distributional regression framework.

Preprint: Mathematical Properties of Continuous Ranked Probability Score Forecasting, Pic et al. (https://arxiv.org/abs/2205.04360)

References I

Bremnes, John Bjørnar (2020). "Ensemble post-processing using quantile function regression based on neural networks and Bernstein polynomials". In: Monthly Weather Review 148 (1). DOI: 10.1175/MWR-D-19-0227.1.

Gneiting, Tilmann and Matthiass Katzfuss (2014). "Probabilistic Forecasting". In: Annual Review of Statistics and its Applications. DOI: 10.1146/annurey-statistics-062713-085831

Györfi, Lászlò et al. (2002). A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer.

Matheson, James E. and Robert L. Winkler (1976). "Scoring Rules for Continuous Probability Distributions". In: Management Science 22 (10). DOI: 10.2307/2629907.

Naveau, Philippe et al. (2016). "Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection". In: Water Resources Research 52 (4). DOI: 10.1002/2015wr018552.

Scheuerer, Michael and Thomas M. Hamill (2015). "Statistical Post-Processing of Ensemble Precipitation Forecasts by Fitting Censored, Shifted Gamma Distributions". In: Monthly Weather Review 143 (11). DOI: 10.1175/MWR-D-15-0061.1.

References II

Schulz, Benedikt and Sebastian Lerch (2021). *Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison*. arXiv:2106.09512. eprint: 2106.09512 (stat.ML).

Taillardat, Maxime et al. (2016). "Calibrated Ensemble Forecasts using Quantile Regression Forests and Ensemble Model Output Statistics.". In: *Monthly Weather Review* 144 (6). DOI: 10.1175/MWR-D-15-0260.1.

Zamo, Michaël and Philippe Naveau (2018). "Estimation of the Continuous Ranked Probability Score with Limited Information and Applications to Ensemble Weather Forecasts". In: *Mathematical Geosciences* 50.2, pp. 209–234. DOI: 10.1007/s11004-017-9709-7.

- $X_1, X_2 \sim \mathcal{U}([0,1])$
- $Y = X_1 + X_2 + \sigma \epsilon$ with $\epsilon \sim \mathcal{N}(0,1)$
- $Y|X \sim \mathcal{N}(X_1 + X_2, \sigma^2)$

- $X_1, X_2 \sim \mathcal{U}([0,1])$
- $Y = X_1 + X_2 + \sigma \epsilon$ with $\epsilon \sim \mathcal{N}(0,1)$
- $Y|X \sim \mathcal{N}(X_1 + X_2, \sigma^2)$
- Checking the conditions :

- $X_1, X_2 \sim \mathcal{U}([0,1])$
- $Y = X_1 + X_2 + \sigma \epsilon$ with $\epsilon \sim \mathcal{N}(0,1)$
- $Y|X \sim \mathcal{N}(X_1 + X_2, \sigma^2)$
- Checking the conditions :
 - i) $X \in [0,1]^d P_X$ -a.s.;
 - ii) For all $x \in [0,1]^d$, $\int_{\mathbb{R}} F_x^*(z)(1-F_x^*(z))dz \leq M$;

$$\rightarrow M = \frac{\sigma}{\sqrt{\pi}} \checkmark$$

- iii) $\|F_{x'}^* F_x^*\|_{L^2} \le C \|x' x\|^h$ for all $x, x' \in [0, 1]^d$.
 - ightarrow Hard to get optimal values for C and h but h=1 works. \checkmark

- $X_1, X_2 \sim \mathcal{U}([0,1])$
- $Y = X_1 + X_2 + \sigma \epsilon$ with $\epsilon \sim \mathcal{N}(0,1)$
- $Y|X \sim \mathcal{N}(X_1 + X_2, \sigma^2)$
- Checking the conditions :
 - i) $X \in [0,1]^d P_X$ -a.s.; \checkmark
 - ii) For all $x \in [0,1]^d$, $\int_{\mathbb{R}} F_x^*(z)(1-F_x^*(z))dz \leq M$; $\to M = \frac{\sigma}{\sqrt{\varepsilon}} \checkmark$
 - iii) $\|F_{x'}^* F_x^*\|_{L^2} \le C \|x' x\|^h$ for all $x, x' \in [0, 1]^d$. \rightarrow Hard to get optimal values for C and h but h = 1 works.
- k-NN :

$$\hat{F}_{n,x}(z) = \frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{1}_{y_{i:n}(x) \le z}$$

- $X_1, X_2 \sim \mathcal{U}([0,1])$
- $Y = X_1 + X_2 + \sigma \epsilon$ with $\epsilon \sim \mathcal{N}(0,1)$
- $Y|X \sim \mathcal{N}(X_1 + X_2, \sigma^2)$
- Checking the conditions :
 - i) $X \in [0,1]^d P_X$ -a.s.; \checkmark
 - ii) For all $x \in [0,1]^d$, $\int_{\mathbb{R}} F_x^*(z)(1-F_x^*(z))dz \leq M$; $\to M = \frac{\sigma}{\sqrt{\varepsilon}} \checkmark$
 - iii) $\|F_{x'}^* F_x^*\|_{L^2} \le C \|x' x\|^h$ for all $x, x' \in [0, 1]^d$. \rightarrow Hard to get optimal values for C and h but h = 1 works.
- *k*-NN :

$$\hat{F}_{n,x}(z) = \frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{1}_{y_{i:n}(x) \le z}$$

$$\overline{\mathrm{CRPS}}(F_{n,x},F_x^*) - \overline{\mathrm{CRPS}}(F_x^*,F_x^*) = \int_{\mathbb{R}} \left(\frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{1}_{y_{i:n}(x) \leq z} - \Phi\left(\frac{z - (x_1 + x_2)}{\sigma}\right) \right)^2 \mathrm{d}z$$

CRPS vs. k_n

Parameters : $\sigma = 1$ and n = 200.

Scaling of k_n with n, $\sigma = 2$

$$k_n \propto n^{\frac{2h}{2h+d}}$$

Scaling of k_n with n, $\sigma = 2$

$$k_n \propto n^{\frac{2h}{2h+d}}$$

Scaling of k_n with n, $\sigma = 2$

$$k_n \propto n^{\frac{2h}{2h+d}}$$

Figure: Equation : y = 1.1 + 0.68x, $R^2 = 0.952$

Scaling of k_n with σ , n = 200

$$k_n \propto M^{rac{d}{2h+d}} \propto \sigma^{rac{d}{2h+d}}$$

Scaling of k_n with σ , n = 200

$$k_n \propto M^{rac{d}{2h+d}} \propto \sigma^{rac{d}{2h+d}}$$

$$k_n \propto M^{\frac{d}{2h+d}} \propto \sigma^{\frac{d}{2h+d}}$$

Figure: Equation : y = 3.9 + 0.56x, $R^2 = 0.942$