Quiz de Mathématiques

Durée: 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

- Les questions peuvent présenter une ou plusieurs réponses correctes.
- Noircir les cases, ne pas faire des croix sur les cases.
- En cas d'erreur, utilisez du « blanco ».
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.

BON COURAGE!

* * * * * * * * * * * * * * * * * *

- 1. Soit $f(x) = \frac{1}{2+x} + \frac{4}{x^2-4}$ et \tilde{f} son prolongement s'il existe. Parmi les affirmations suivantes lesquelles sont vraies?
 - f(x) est prolongeable par continuité en x=2 et $\tilde{f}(2)=+\infty$ (1)
 - f(x) n'est pas prolongeable par continuité en x=2
 - f(x) est prolongeable par continuité en x=-2 et $\tilde{f}(-2)=-\frac{1}{4}$
 - f(x) n'est pas prolongeable par continuité en x=-2
 - aucune des réponses précédentes n'est correcte.
- 2. Soit $I = \int_{0}^{1} -\sqrt{1-x^2} \, dx$. Parmi les graphes suivants, lequel décrit I?

- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 3. Un équivalente de f(x), avec $f'(x) \neq 0$, au voisinage de 0 est ...
 - $(1) \blacksquare \quad f(x) f(0) \underset{a}{\sim} f'(0)x \qquad (2) \square \quad f(x) f'(0) \underset{a}{\sim} f(0)x \qquad (3) \blacksquare \quad f(x) \underset{a}{\sim} f(0) + f'(0)x$
 - $_{(4)}\Box$ $f(x)-f(0) \sim f'(0)+f'(0)x$ $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
- 4. Soit $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$. Cocher la(les) affirmation(s) correcte(s).
 - $_{(1)}\square$ $f(x) \underset{a}{\sim} g(x)$
 - $f(x) \stackrel{\text{d}}{=} o(g(x))$
 - On ne peut rien dire sur le comportement de f(x) et g(x).
 - $_{(4)}\square$ $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$
 - aucune des réponses précédentes n'est correcte. $_{(5)}\square$

- 5. La formule de Taylor-Young à l'ordre n d'une fonction $f \in \mathcal{C}^n$ au voisinage de a avec $\lim_{x \to a} \varepsilon(x) = 0$ est ...

 - $$\begin{split} f(x) &= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + (x-a)^n \varepsilon(x) \\ f(x) &= \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k + (x-a)^{n+1} \varepsilon(x) \end{split}$$
 (2)
 - $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + o((x-a)^n)$ $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + o((x-a)^{n+1})$ aucune des réponses précédentes n'est correcte.
 - $_{(4)}\square$
 - (5)
- 6. Les développements limités servent à :
 - (1) donner une approximation au voisinage d'un point.
 - (2) calculer des limites.
 - \square (3) donner l'allure d'une fonction sur son domaine de définition.
 - remplacer une fonction par une fonction polynomiale sur son domaine de définition. (4)
 - (5)aucune des réponses précédentes n'est correcte.
- 7. La valeur de la limite $\lim_{x\to 0} \frac{1-\cos(x)}{r^2}$ est ...
 - $_{(1)}\square$ 0 $_{(2)}\blacksquare$ $\frac{1}{2}$ $_{(3)}\square$ 2 $_{(4)}\square$ $+\infty$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 8. Soit $f(x) = \left(1 + \frac{1}{x}\right)^x$. Parmi les affirmations suivantes la (lesquelles) est (sont) vraie(s)?
 - $\lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to +\infty} f(x) = 1$ $\lim_{x \to +\infty} f(x) = 1$ $\lim_{x \to +\infty} f(x) = 0$
 - $\lim_{(4)}$ $\lim_{x\to +\infty} f(x) = e$ $\lim_{(5)}$ aucune des réponses précédentes n'est correcte.
- 9. Soit f une fonction continue sur \mathbb{R} telle que f(0) = 1, f(1) = 1, f(2) = -1. Quelle(s) affirmation(s) est(sont) correcte(s)?
 - f est constante $\sup[0,1]$ (1)
 - (2) f s'annule sur[1, 2]
 - \square f est décroissante sur [1,2]
 - $_{(4)}\square$ f s'annule deux fois sur[0,2]
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 10. On considère $f(x) = e^x$ au voisinage de 0. Cocher la(les) affirmation(s) correcte(s).

 - $\begin{array}{ll} \text{(1)} \blacksquare & f(x) = 1 + x + \frac{x^2}{2} + o(x^2) \\ \text{(2)} \square & f(x) = 1 x + \frac{x^2}{2} + o(x^2) \\ \text{(3)} \square & f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + o(x^3) \\ \text{(4)} \square & f(x) = 1 x + \frac{x^2}{2} \frac{x^3}{6} + o(x^3) \\ \text{(5)} \square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$
- 11. Au voisinage de 0 :
 - $\begin{array}{ll}
 & \frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \frac{x^{n+1}}{1-x} \\
 & \frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n)
 \end{array}$

 - (3) $\Box \frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^{n-1})$
 - $\frac{1}{1-x} = 1 x + x^2 + \dots + (-1)^n x^n + o(x^{n-1})$ (4)
 - aucune des réponses précédentes n'est correcte.

- 12. On considère $f(x) = \sqrt{x+2}$ au voisinage de 0. Cocher les affirmations correctes.

 - $\begin{array}{ll} \text{(1)} \blacksquare & f(x) = \sqrt{2}(1 + \frac{x}{4} \frac{x^2}{32}) + o(x^3) \\ \text{(2)} \square & f(x) = 2 + \frac{x}{2} \frac{x^2}{8} + o(x^3) \\ \text{(3)} \square & f(x) = 1 + \frac{x}{2} \frac{x^2}{8} + o(x^3) \\ \text{(4)} \square & f(x) = 2(1 \frac{x}{4} + \frac{x^2}{32}) + o(x^3) \\ \text{(5)} \square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$
- 13. Parmi les valeurs suivants, cocher celle qui s'approche le plus de $\sin(0.01)$.
 - $_{(1)}\square$ $\frac{\pi}{4}$ $_{(2)}\square$ 0.99 $_{(3)}\square$ $\frac{\pi}{2}$ $_{(4)}\blacksquare$ 0.01 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 14. Parmi les affirmations suivantes la(lesquelles) est(sont) vraie(s)?
 - $(1) \blacksquare \quad x = o(\ln(x)) \qquad (2) \square \quad e^x = o(x^2) \qquad (3) \blacksquare \quad \ln(x) = o(x^2) \qquad (4) \blacksquare \quad x^2 = o(e^x)$
 - (5) aucune des réponses précédentes n'est correcte.
- 15. Parmi les équivalents suivants, le(lesquels) est(sont) valable(s)?
 - (1) \Box $\ln(x^3) \underset{+\infty}{\sim} x^3$ (2) \Box $e^x \underset{+\infty}{\sim} 1 + x$ (3) \blacksquare $2x^5 + x^4 x^3 \underset{+\infty}{\sim} 2x^5$
 - (4) \blacksquare $\ln\left(1+\frac{1}{x}\right) \underset{+\infty}{\sim} \frac{1}{x}$ $(5)\Box$ $\tan(3x) \underset{+\infty}{\sim} 3x$
- 16. Lesquelles parmi les affirmations suivantes sont valables?
 - $(1) \square \quad x = o(x^2) \qquad (2) \blacksquare \quad x^2 = o(x) \qquad (3) \blacksquare \quad x = o(x^2) \qquad (4) \square \quad x^2 = o(x)$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 17. Ci-dessous apparaît le graphe de la fonction f au voisinage du point x=2. Quel est le seul développement limité qui soit possible?

- $\begin{array}{ll} \text{(1)} \square & 2 + 3(x-2) + (x-2)^2 + o((x-2)^2) \\ \text{(2)} \blacksquare & 2 3(x-2) + (x-2)^3 + o((x-2)^2) \\ \text{(3)} \square & 2 3(x-2) + (x-2)^2 + o((x-2)^2) \\ \text{(4)} \square & 2 + 3(x-2) (x-2)^3 + o((x-2)^2) \\ \text{(5)} \square & 2 3x x^3 + o(x^3) \end{array}$

- 18. Soit f une fonction définie sur un intervalle ouvert contenant 0, telle que $f(x) = 1 + x + o(x^2)$.
 - $f(2x) = 1 + 2x + o(x^2)$
 - $_{(2)}\square$
 - 2f(x) = 1 + 2x + o(x) $f^{2}(x) = 1 + 2x + x^{2} + o(x^{2})$
 - (4)
 - aucune des réponses précédentes n'est correcte.

19. Soit $f(x) = \sin(x)$. Déterminer son développement limité en $\frac{\pi}{2}$ à l'ordre 3, s'il existe.

$$f(x) = x - \frac{x^3}{6} + o(x^3)$$

$$f(x) = x - \frac{\pi}{2} - \frac{(x - \frac{\pi}{2})^3}{3!} + o((x - \frac{\pi}{2})^3)$$

$$f(x) = 1 - \frac{x^2}{2} + o(x^3)$$

$$_{(4)}\blacksquare \qquad f(x)=1-\frac{(x-\frac{\pi}{2})^2}{2}+o((x-\frac{\pi}{2})^3)$$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

20. Soit $f(x) = e^{\cos(x)}$. Déterminer son développement limité en 0 à l'ordre 3, s'il existe.

$$f(x) = e + e(x-1) + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + o((x-1)^3)$$

(2)
$$f(x) = e - \frac{e}{2}x^2 + o(x^3)$$

$$_{(3)}\square \qquad f(x) = 1 + (1 - \frac{x^2}{2}) + \frac{1}{2}(1 - \frac{x^2}{2})^2 + \frac{1}{6}(1 - \frac{x^2}{3}) + o(x^3)$$

$$f(x) = \frac{8}{3} - \frac{5}{4}x^2 + o(x^3)$$

 $_{(5)}\square$ $\;\;$ aucune des réponses précédentes n'est correcte.