Introduction to Recurrent Neural Networks — Part 1

Devashish Khatwani June 2018

A Motivating example for sequence modelling: Predict the next word

"This morning I took the dog for a walk." "This morning I took the dog for a walk." given these words predict what comes next? given these 2 "This morning I took the dog for a walk." words, predict the next word [1000001000] what each word is prediction

But...

"In France, I had a great time and I learnt some of the _____ language."

We need information from the far past and future to accurately guess the correct word.

Try using the whole sentence as a window!

Try using the whole sentence as a window!

But... Counts don't preserve order

"The food was good, not bad at all."

"The food was bad, not good at all."

Use really big windows!

But... Curse of Dimensionality

Difference with CNNs

- Convolution in space (CNN) VS convolution in time (RNN)
- CNN: models relationships in space. Filter slides along x and y dimensions
- RNN: models relationships in time. "Filter" slides along time dimension

What is a Sequence?

1 Audio

Bank Data?

2 ECG Reading

Sentence

Lucy is going to the park.

To solve our problem we need...

- 1. To deal with variable-length sequences
- 2. To maintain sequence order
- 3. To keep track of long-term dependencies
- 4. To share parameters across the sequence

Try out Recurrent Neural Networks

Types of RNNs

Not really a RNN!

Sentiment Classification

Video classification at frame level

RNNs remember their previous state

W, U: weight matrices

RNNs remember their previous state

 x_1 : vector representing second word

 s_1 : cell state at t = 1 s_2 : cell state at t = 2

 $s_2 = tanh(Wx_1 + Us_1)$

W, U: weight matrices

Unfolding the RNN across time

Notice that W and U are shared parameters across time

Training a RNN: What is our Loss?

Training a RNN: What are our Gradients?

we sum gradients across time for each parameter *P*:

$$\frac{\partial J}{\partial P} = \sum_{t} \frac{\partial J_{t}}{\partial P}$$

$$\frac{\partial J}{\partial W} = \sum_{t} \frac{\partial J_{t}}{\partial W}$$

so let's take a single timestep t:

$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2}$$

$$\frac{\partial J}{\partial W} = \sum_{t} \frac{\partial J_{t}}{\partial W}$$

so let's take a single timestep t:

$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2}$$

$$\frac{\partial J}{\partial W} = \sum_{t} \frac{\partial J_{t}}{\partial W}$$

so let's take a single timestep t:

$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}$$

$$\frac{\partial J}{\partial W} = \sum_{t} \frac{\partial J_{t}}{\partial W}$$

so let's take a single timestep t:

$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}$$

but wait...

$$s_2 = tanh(Us_1 + Wx_2)$$

$$\frac{\partial J}{\partial W} = \sum_{t} \frac{\partial J_t}{\partial W}$$

so let's take a single timestep t:

$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}$$

but wait...

$$s_2 = tanh(Us_1 + Wx_2)$$

 s_1 also depends on W so we can't just treat $\frac{\partial s_2}{\partial W}$ as a constant!

how does s_2 depend on W?

$$\frac{\partial s_2}{\partial W} + \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W} + \frac{\partial s_2}{\partial s_0} \frac{\partial s_0}{\partial W}$$

Training a RNN: Backpropagation Through Time

$$\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}$$

Contributions of *W* in previous timesteps to the error at timestep *t*

$$\frac{\partial J_t}{\partial W} = \sum_{k=0}^t \frac{\partial J_t}{\partial y_t} \frac{\partial y_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial W}$$

Contributions of W in previous timesteps to the error at timestep t

Training a RNN: Truncated Backpropagation Through Time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

But RNNs are hard to train: Vanishing Gradient

$$\frac{\partial J_n}{\partial W} = \sum_{k=0}^n \frac{\partial J_n}{\partial y_n} \frac{\partial y_n}{\partial s_n} \frac{\partial s_n}{\partial s_k} \frac{\partial s_k}{\partial W} \frac{\partial s_n}{\partial s_{n-1}} \frac{\partial s_{n-1}}{\partial s_{n-2}} \cdots \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial s_0}$$

Two Hacky Solutions

weights initialized to identity matrix \longrightarrow $I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$

prevents W from shrinking the gradients

More Robust Solutions: Gated Recurrent Cells

Forget Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Update Gate

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Part 2 of RNNs

- Bidirectional RNNs
- Attention
- Beam Search
- Coding Examples
 - Trigger word detection
 - Image Captioning(may be)