HOMEWORK 2

- 1. Prove that every (left) ideal of the product $R \times S$ of two rings is a product $I \times J$, where $I \subset R$ and $J \subset S$ are (left) ideals.
- 2. a) Find all idempotents in $\mathbb{Z}/105\mathbb{Z}$.
- b) Prove that $\mathbb{Z}/p^n\mathbb{Z}$, p a prime, has no nontrivial idempotents.
- 3. Suppose a commutative ring has finitely many idempotents. Prove that the number of idempotents is a power of 2.
- **4.** Show that the ring $M_2(\mathbb{R})$ has infinitely many idempotents.
- 5. Describe all homomorphisms from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} . In each case determine the kernel and the image.
- Prove that an element a of a commutative ring R is invertible if and only if loes not belong to any maximal ideal of R.
- 7. Determine all maximal and prime ideals of $\mathbb{Z}/n\mathbb{Z}$.
- 8. Let R be a commutative ring. The $radical\ Rad(R)$ of R is the intersection of all maximal ideals in R.
- a) Determine $Rad(\mathbb{Z})$ and $Rad(\mathbb{Z}/12\mathbb{Z})$.
- b) Prove that Rad(R) consists of all elements $a \in R$ such that 1+ab is invertible for all $b \in R$.
- 9. a) Prove that the nilradical Nil(R) of a commutative ring R is contained in every prime ideal of R.
- b) Prove that $Nil(R) \subset Rad(R)$.
- 10. Let A be an abelian group (written additively). Define a product on the (additive) group $R = \mathbb{Z} \oplus A$ by $(n, a) \cdot (m, b) = (nm, nb + ma)$.
- a) Prove that R is a ring.
- b) Determine all prime and maximal ideals of R.