

1 / 21

FIG. 1

2/21

FIG. 2

3/21

FIG. 3

FIG. 4

FIG. 5

6/21

FIG. 6

FIG. 7

8 / 21

FIG. 8

9 / 21

FIG. 9

----- : IN THE CASE WHERE IN ACCELERATION REDAL DEPRESS STROKE IS CHANGED DURING THE PERIOD BETWEEN THE GEARSHIFTING START REQUEST AND THE START OF GEARSHIFTING

_____ : IN THE CASE WHERE THERE IS NO CHANGE IN ACCELERATION REDAL DEPRESS STROKE DURING THE PERIOD BETWEEN THE GEARSHIFTING START REQUEST AND THE START OF GEARSHIFTING

10 / 21

FIG. 10

11 / 21

FIG. 11

12 / 21

FIG. 12

13 / 21

FIG. 13

14 / 21

FIG. 14

15 / 21

FIG. 15

16 / 21

FIG. 16

REVOLUTION SPEED CHANGE QUANTITY=
INPUT SHAFT REVOLUTION SPEED \times (1-GEAR RATIO AFTER
GEASHIFTING/GEAR RATIO BEFORE GEASHIFTING)

17/21

FIG. 17

TRANSMISSION TORQUE CHANGE QUANTITY=
INERTIA × SECOND CLUTCH GEAR RATIO ×
REVOLUTION SPEED CHANGE QUANTITY/GEARSHIFTING TIME

18/21

FIG. 18

TARGET REVOLUTION SPEED = $\{(1-G) \times \text{GEAR RATIO BEFORE GEARSHIFTING} + G \times \text{GEAR RATIO AFTER GEARSHIFTING}\} \times \text{OUTPUT SHAFT REVOLUTION SPEED}$

19 / 21

FIG. 19

20 / 21

FIG. 20

21 / 21

FIG. 21

