$\begin{array}{c} \textbf{Approximation speed of quantized} \textit{ } \textit{vs.} \textit{ } \textit{unquantized} \\ \textbf{ReLU neural networks and beyond} \end{array}$

Antoine Gonon, Nicolas Brisebarre, Rémi Gribonval, Elisa Riccietti Univ Lyon, ENS de Lyon, UCBL, CNRS, Inria, LIP, F-69342 Lyon

PROBLEM

Context: Quantized neural networks approximate functions with success in many applications. Does existing theory explain it?

Approximation speed [3]:

- (C, d) pseudo-metric space
- $\Sigma = (\Sigma_M)_{M \in \mathbb{N}}$ an arbitrary (often nested) sequence of subsets $\Sigma_M \subset \mathcal{C}$

$$\gamma^{*approx}(\mathcal{C}|\Sigma) := \operatorname{largest} \gamma > 0 \text{ s.t.}$$

$$\sup_{f \in \mathcal{C}} d(f, \Sigma_{M}) \underset{M \to \infty}{=} O(M^{-\gamma})$$

Examples of approximation sequences:

 $\Sigma_M := M$ -terms linear combination of a dictionary (polynomials, wavelets etc.)

 Σ_M := functions represented by ReLU networks:

Figure 1

Questions:

- Approximation speed of quantized versus unquantized ReLU neural networks?
- Better understand situations where neural networks *cannot* be expected to have higher approximation speed than the best known approximation methods

Contributions:

- Notion of ∞ -encodability of Σ
- Analysis of its consequences

∞-ENCODABILITY

Definition:

 $(\Sigma_M)_{M\in\mathbb{N}}$ is ∞ -encodable if $\forall \gamma, h > 0$:

$$N(\Sigma_M, M^{-\gamma}) \underset{M \to \infty}{=} O(M^{1+h})$$

Example:

 $\Sigma_M := M$ -terms linear combination of a dictionary, with bounded coefficient growth

Quantized vs. Unquantized

Proposition: If each Σ_M of $\Sigma = (\Sigma_M)_M$ is defined with ReLU networks of Figure 1 then in $L^p([0,1]^d)$:

- it is ∞ -encodable,
- it can be uniformly quantized into a sequence $(\Sigma_M^Q)_M$ with the same approximation speed as unquantized networks on every set $\mathcal{C} \subset L^p$:

$$\gamma^{*approx}(\mathcal{C}|\Sigma) = \gamma^{*approx}(\mathcal{C}|\Sigma^{Q})$$

Proof idea: uses Lipschitz-parameterization

Comparison with known results:

- Lipschitz-parameterization proved using a known inequality [1]. What's new is that we proved its optimality.
- [3] also uses [1] to guarantee that on a compact domain, all networks with M weights, weight magnitudes bounded by M, and arbitrary depth, can be uniformly quantized within precision ε in L^{∞} . Our result generalizes this to other types of constraints.
- [2] constructs ad-hoc quantized networks approximating functions in unit balls of L^p -Sobolev spaces $W_p^m([0,1]^d)$ for $m \in \mathbb{N}^*$, while we quantize arbitrary neural networks while controlling the loss in precision, so that $arbitrary \ \mathcal{C} \subset L^p$ can be approximated by uniformly quantized networks $as\ soon\ as$ we know that \mathcal{C} is already approximated by unquantized networks.

REMINDER: COVERING NUMBERS

$$N(C, \varepsilon) := \text{smallest } N \in \mathbb{N} \text{ s.t.}$$

$$\exists c_1, \dots, c_N \in \mathcal{C} \text{ an } \varepsilon\text{-cover of } \mathcal{C}$$

ENCODING RATE

Optimal encoding in terms of bitrate [3]:

$$\gamma^{*encod}(C) := \operatorname{largest} \gamma > 0 \text{ s.t.}$$
$$\log(N(\mathcal{C}, \varepsilon)) \underset{\varepsilon \to 0}{=} O(\varepsilon^{-1/\gamma})$$

Known examples [3]:

$\mathcal{C} := \text{unit ball of}$		$\gamma^{*encod}(C)$
α -Hölder	$C^{lpha}([0,1])$	lpha
L^p -Sobolev ^a	$W_p^m([0,1]^d)$	$rac{m}{d}$
$Besov^b$	$B_{p,q}^{m}([0,1]^d)$	$rac{\ddot{m}}{d}$

$$ap \in [1, \infty], m > d \max(1/p - 1/2, 0)$$

 $bp, q \in (0, \infty], m > d \max(1/p - 1/2, 0)$

Encoding vs. Approximation

If Σ is ∞ -encodable then:

$$\gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$$

Comparison with known results: Our concept of ∞ -encodability allows us to unify and generalize the proof of this inequality in all the cases we found in the literature: in the case of approximation with dictionaries [4][5] or with ReLU neural networks [3].

Proof idea:

REFERENCES

- [1] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with sparsely connected deep neural networks. SIAM J. Math. Data Sci., 1(1):8–45, 2019.
- Y. Ding, J. Liu, J. Xiong, and Y. Shi. On the universal approximability and complexity bounds of quantized relu neural networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
- [3] D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei. Deep neural network approximation theory. <u>IEEE Trans. Inf. Theory</u>, 67(5):2581–2623, 2021.
- 67(5):2581–2623, 2021.

 [4] P. Grohs. Optimally sparse data representations. In <u>Harmonic and applied analysis</u>, Appl. Numer. Harmon. Anal., pages 199–248.

 Birkhäuser/Springer, Cham, 2015.

Conclusion

- ∞ -encodability guarantees "reasonable" approximation speeds, avoiding degenerate cases such as $\Sigma_1 = \cdots = \Sigma_M = \cdots = \mathcal{C}$
- If an ∞ -encodable sequence is known such that $\gamma^{*approx}(\mathcal{C}|\Sigma) = \gamma^{*encod}(\mathcal{C})$, then no improved approximation speed can be hoped for using "reasonable" ReLU networks
- Standard growth assumptions on sparsity, depth and weight magnitudes, yield the same approximation speed with uniformly quantized ReLU neural networks as with unquantized ones