Основные определения и свойства, которые следует знать наизусть.

- 1. В каком случае события A_1, \ldots, A_n называются независимыми в совокупности.**
- 2. Формула полной вероятности**
- 3. Формулы Байеса**
- 4. Свойства вероятности*
- 5. Что такое испытания Бернулли и Формула Бернулли*
- 6. Интегральная теорема Муавра-Лапласа*
- 7. Теорема Пуассона и как ее применять*
- 8. Локальная теорема Муавра-Лапласа
- 9. Аксиомы вероятности*
- 10. Закон больших чисел в форме Бернулли*
- 11. Что называется случайной величиной*
- 12. Что называется функцией распределения случайной величины**
- 13. Как вычислить $P(\eta \in [0,1])$, зная F_{η} .
- 14. Какие случайные величины называются дискретными**
- 15. Какие случайные величины называются абс. непрерывными.**
- 16. Четыре свойства функции распределения.**
- 17. Что называется условной вероятностью события A при условии B (формула).*
- 18. Что называется функцией распределения случайного вектора.**
- 19. Какие случайные вектора называются дискретными.*
- 20. Что называются плотностью распределения случайного вектора.*
- 21. Какие случайные величины называются независимыми.**
- 22. Критерий независимости в терминах функций распределения.*
- 23. Критерий независимости в терминах плотностей.*
- 24. Что называется условной функцией распределения случайного вектора ξ при условии η .
- 25. Что называется условной плотностью распределения случайного вектора ξ при условии $\eta.*$
- 26. Что называется условным мат.ожиданием ξ при условии η , если (ξ, η) абс. непр. случайный вектор.
- 27. Мат. ожидание и его свойства**
- 28. Дисперсия и ее свойства**
- 29. Что называется условным мат.ожиданием ξ при условии η , если (ξ,η) дискретный случайный вектор.
- 30. Свойства условных мат. ожиданий.
- 31. Как вычислить $P\Big(\xi\in[a,b),\eta\in[c,d)\Big),$ зная совместную функцию распределения $F_{\xi\eta}.$
- 32. Неравенство Йенсена для мат. ожиданий.
- 33. Вычисление распределения суммы независимых случайных величин. Формула свертки.*
- 34. Неравенства Чебышева и где они применяются.**
- 35. Неравенство Гельдера для мат. ожиданий.
- 36. Неравенство Минковского для мат. ожиданий.
- 37. Последовательности независимых случайных величин (HCB) и марковские последовательности. Примеры марковских последовательностей, построенных по последовательности HCB.
- 38. Что означает $\xi_n \to \xi$ по вероятности; $\xi_n \to \xi$ с вероятностью 1; $\xi_n \to \xi$ в среднеквадратическом. **
- 39. Как вычислить мат. ожидание и дисперсию случ. величины, зная ее характеристическую функцию.
- 40. Формула полной вероятности для плотности распределения суммы 2-х случайных величин.
- 41. Определение слабой сходимости и ее связь с другими видами сходимости.*
- 42. Неравенство Ляпунова для мат. ожиданий.
- 43. Теорема Маркова о законе больших чисел.
- 44. Что называется законом больших чисел и его запись с использованием известных видов сходимости последовательностей случайных величин.
- 45. Сформулировать ЦПТ Леви в частном случае испытаний Бернулли.
- 46. Центральная предельная теорема Леви.**
- 47. В чем заключается классическое определение вероятности.
- 48. В чем заключается геометрическое определение вероятности.
- 49. Неравенство Коши-Буняковского для мат. ожиданий.*
- 50. Теорема Чебышева о законе больших чисел.*
- 51. Что такое ковариация и коэффициент корреляции.*
- 52. Что называется периодом неприводимой цепи Маркова.
- 53. Что называется плотностью распределения случайной величины.*
- 54. Как вычислить $P(\eta \in [0,1])$ зная плотность распределения p_n .
- 55. Формулы, связывающие плотность распределения и функцию распределения.
- 56. Теорема Радона Никодима и что такое производная Радона-Никодима меры μ по мере $\nu.*$
- 57. В каком случае существует производная Радона-Никодима меры μ по мере ν и что означет запись $\mu << \nu$.
- 58. Какая функция называется измеримой.

- 59. Продолжить формулу $P(A \cup B \cup C) = \dots$
- 60. Какое событие называется противоположным событию A.
- 61. Привести пример попарно независимых событий, не являющихся независимыми в совокупности.
- 62. Марковское свойство, что называется цепью Маркова и уравнения Маркова.
- 63. Условие эргодичности неприводимой цепи Маркова и вычисление финальных вероятностей.
- 64. μ_n -число успехов в сх. Бернулли с вер-ю успеха p. При каком k достигается максимум $P(\mu_n = k)$.
- 65. Определение и основные свойства (не менее 5-ти) характеристических функций.
- 66. Критерий возвратности для цепей Маркова. Пример невозвратной неприводимой ЦМ.
- 67. Записать формулу преобразования плотностей при преобразованиии q ($\eta = q(\xi)$), если q-дифференцируемая функция и g'(x) < 0 для любого x.
- 68. Что такое равномерное распределение $\xi \in U(a,b)$, его тип, $\mathbf{E}\xi$, $\mathbf{D}\xi$.
- 69. Что такое нормальное распределение $\xi \in N(a, \sigma^2)$, его тип, $\mathbf{E}\xi$, $\mathbf{D}\xi$, характеристическая функция*.
- 70. Что такое распределение Пуассона $\xi \in Pois(\lambda)$, его тип, $\mathbf{E}\xi$, $\mathbf{D}\xi$, характеристическая функция.
- 71. Как вычислить дисперсию $\xi + \eta$, зная дисперсии величин ξ и η и коэффициент корреляции между ними.
- 72. Что такое распределение Бернулли. Его тип, мат. ожидание, дисперсия, характеристическая ф-я.

Далее предлагаются примеры задач, которые следует уметь решать.

- 1. Известно, что P(A) = P(B) = 1/2 а P(AB) = 1/4. Вычислить $P(A \setminus B)$.
- 2. Какое среднее число успехов в 500 испытаниях Бернулли с вероятностью успеха 1/4.
- 3. Известно, что команда A заведомо слабее команды B и вероятность победы A в каждой игре независимо от других равна 1/3. Что выгоднее, играть серию из 3-х или из 5-ти игр, если для победы в серии надо выиграть более половины игр.
 - 4. Как вычислить $P(\eta \in [a, b])$ зная F_{η} .
 - 5. Привести пример распределения абс. непрерывного типа.
 - 6. Привести пример распределения дискретного типа.
 - 7. Привести пример распределения с отрицательным мат. ожиданием.
 - 8. Привести пример распределения с нулевой дисперсией.
- 9. Являются ли координаты точки, наугад брошенной в единичный круг независимыми случайными величинами.
- 10. Случайная величина ξ имеет ф.р. F (F непрерывная). Какое распределение будет иметь с.в.
- 11. Случайные величины X_1, \dots, X_n независимы и имеют одинаковые функции распределения F. Выписать функцию их совместного распределения.
- 12. Случайные величины X_1, \dots, X_n независимы и имеют одинаковые функции распределения F. Вычислить функции распределения случайных величин $Y = \max(X_1, \dots, X_n), Z = \min(X_1, \dots, X_n).$
- 13. Случайные величины X_1, \dots, X_n независимы и имеют одинаковые равномерные на [0,1] распределения. Вычислить мат. ожидание величин $Y = \max(X_1, \dots, X_n), Z = \min(X_1, \dots, X_n).$
- 14. Случайные величины X_1, \dots, X_n одинаково распределены и имеют мат. ожидание a, дисперсию σ и матрицу корреляции R. Вычислить $\mathbf{E}(X_1 + \ldots + X_n)$ и $\mathbf{D}(X_1 + \ldots + X_n)$.
- 15. Случайные величины X_1, X_2 имеют совместную функцию распределения F, т.ч. F(x,y) = F(y,x)при любых x, y. Чему равно E(X|X+Y).
- 16. Случайные величины X и Y независимы и имеют одинаковые плотности распределения p. Вычислить распределение линейной комбинации $\alpha X + \beta Y$. 17. Может ли быть $\mathbf{E}\xi^4=16,$ а $\mathbf{E}\xi^2=9,$ обосновать.
- 18. Х и У независимые и одинаково распределенные случайные величины. Правда ли, что случайная величина X-Y симметрична, т.е. $F_{X-Y}(-x)=1-F_{X-Y}(x)$? Обосновать. 19. Пусть ξ_1,ξ_2,\ldots – последовательность независимых случайных величин: $P(\xi_1=1)=1-P(\xi_1=-1)=1$
- $=1/3;\ \mu_k=\sum_{j=1}^k \xi_j.$ Показать, что $k^{-\alpha}\mu_k\to -\infty$ по вероятности при любом $0<\alpha\leq 1.$
- 20. Всхожесть семян (ожидаемое число взошедших семян на 1000) составляет 0.75. Получена партия из 1000 семян; ξ – число взошедших семян.
- (i). Оценить сверху $P(\xi > 800)$;
- (ii). Известно, что дисперсия числа взошедших семян из 1000 равна 180. Оценить снизу $P(\xi \in [700, 800])$; сверху $P(\xi > 800)$;
- (ііі). Исходя из того, что всход семян независимые случайные величины, вычислить приближенно вероятности из п. (i)-(ii).
 - 21. Число вызовов, поступающих на телефонную станцию за час, в среднем составляет 300.
- (i). Оценить вероятность того, что в ближайший час на TC поступит >400 вызовов.
- (ii). Исходя из того, что вызовы поступают независимо и общее число вызовов имеет распределение Пуассона, оценить сверху вероятность из (i).
- (iii). В условиях (ii) вычислить приближенно вероятность из (i).
- (iv). В условиях (ii) вычислить приближенно вероятность, что наибольшее число вызовов в час не превысит 400 в течение ближайших 10 часов.

Могут быть предложены также другие (стандартные) задачи на тему

- а). Классическое определение вероятности.
- б). Формула полной вероятности, формулы Байеса.
- в). Независимые эксперименты
- г). Вычисление вероятностей в схеме Бернулли.
- д). Случайные величины и их числовые характеристики.
- е). Вычисление распределений преобразованных с.в.
- ж). Вычисление распределений компонент случайного вектора по совместному распределению.
- з). Вычисление условных распределений и мат. ожиданий.
- и). Классификация состояний однородной цепи Маркова и вычисление финальных вероятностей.