Modal Invariance

10/21/2020

Modal Invariance

- ▶ Suppose we have two models \mathcal{M} and \mathcal{N} . Further, suppose there is a bisimulation E between \mathcal{M} and \mathcal{N} , and suppose x E y, where x and y are two worlds in \mathcal{M} and \mathcal{N} respectively.
- Something cool happens now! If we know that a modal formula φ is true in \mathcal{M}, x then we know it's true in \mathcal{N}, y , and vice versa.
- It's cool because it says something about definability of certain properties.
- Here's an example of such a property which fails to be definable in modal logic.

Undefinability of Irreflexivity of R at states

- ► Consider $\mathcal{M} = (\{m_1\}, R)$ and $\mathcal{N} = (\{n_1, n_2\}, R)$ shown above.
- The red dashed lines depict a bisimulation *E*.
- Now if φ were a modal formula defining irreflexivity, then since we have bisimulations as shown we would have $\mathcal{M}, m_1 \models \varphi$ because $\mathcal{N}, n_1 \models \varphi$ and $m_1 \mathrel{E} n_1$. But this is clearly not the case because $\mathcal{M}, m_1 \nvDash \varphi$.

Proof of the Invariance Lemma

Lemma

For any bisimulation E between models \mathcal{M} and \mathcal{N} and any two worlds x, y with x E y, we have $\mathcal{M}, x \models \varphi$ if and only if $\mathcal{N}, y \models \varphi$ for all modal formulas φ .

Proof:

We'll use induction on formulas. We have $\mathcal{M}, x \models \varphi$ iff $\mathcal{N}, y \models \varphi$ for all atomic φ by the so called "local harmony" of x and y as $x \not\in y$.

Now assume $\varphi \equiv \neg \psi$ for some formula ψ and the result is true for ψ , that is $\mathcal{M}, x \models \psi$ iff $\mathcal{N}, y \models \psi$. Observe the following chain of biconditionals.

$$\mathcal{M}, x \models \varphi \iff \mathcal{M}, x \models \neg \psi \iff \mathcal{M}, x \nvDash \psi \iff \mathcal{N}, y \nvDash \psi \iff \mathcal{N}, y \models \neg \psi \iff \mathcal{N}, y \models \varphi.$$

So the result is true for $\neg \psi$ whenever it's true for ψ .

Proof of Invariance Lemma Continued ...

Next assume $\varphi \equiv \psi \lor \rho$ and the result is true for ψ and ρ . Then we have $\mathcal{M}, x \models \psi$ iff $\mathcal{N}, y \models \psi$, and $\mathcal{M}, x \models \rho$ iff $\mathcal{N}, y \models \rho$. So $\mathcal{M}, x \models \varphi \iff \mathcal{M}, x \models \psi \lor \rho \iff \mathcal{M}, x \models \psi \text{ or } \mathcal{M}, x \models \rho \iff \mathcal{N}, y \models \psi \text{ or } \mathcal{N}, y \models \varphi$.

So the result is true for $\psi \lor \rho$ whenever it's true for ψ and ρ .

Now assume $\varphi \equiv \Diamond \psi$ and the result is true for ψ . Then $\mathcal{M}, x \models \psi$ iff $\mathcal{N}, y \models \psi$. Suppose $\mathcal{M}, x \models \Diamond \psi$. Then there exists a world t in \mathcal{M} such that x R t and $\mathcal{M}, t \models \psi$. Now we invoke the *forward* property of the bisimulation E. There exists a world t' in \mathcal{N} so that y R t' and t E t'.

Proof of Invariance Lemma Continued ...

Here's a picture.

So $\mathcal{N}, t' \models \psi$ by the inductive hypothesis. Thus y R t' and $\mathcal{N}, t' \models \psi$. Therefore $\mathcal{N}, y \models \Diamond \psi$.

Proof of Invariance Lemma Continued ...

Conversely suppose $\mathcal{N}, y \models \Diamond \psi$. Then there exists a world u in \mathcal{N} such that $y \mathrel{R} u$ and $\mathcal{N}, u \models \psi$. Now invoke the *backward* property of the bisimulation E. There exists a world v in \mathcal{M} so that $v \mathrel{E} u$ and $x \mathrel{R} v$. So by the inductive hypothesis $\mathcal{M}, v \models \psi$. Thus $x \mathrel{R} v$ and $\mathcal{M}, v \models \psi$. Therefore $\mathcal{M}, x \models \Diamond \psi$. Hence, whenever the result is true for ψ it's also true for $\Diamond \psi$.

Finally, we'll show the result is true for $\Box \psi$ whenever it's true for ψ . We just make the following observation.

 $\Box \psi$ is logically equivalent to $\neg \Diamond \neg \psi$,

and use the proof for $\neg \psi$ and $\Diamond \psi$. Here's how. Since the result is true for ψ it's true for $\neg \psi$; so it's true for $\Diamond \neg \psi$; so it's true for $\neg \Diamond \neg \psi$; hence it's true for $\square \psi$. This completes the proof. =

Example

▶ There's no bisimulation E such that $m_1 E m_2$.

Example Continued...

▶ Suppose $m_1 E m_2$. Then by the forward property of E we'd have $m_2 E n_2$ (red dashed line) or $m_2 E n_4$ (blue dashed line).

Note that $\mathcal{M}, m_2 \models \Diamond p$ and $\mathcal{M}, m_2 \models \Diamond q$. But $\mathcal{N}, n_2 \nvDash \Diamond q$ and $\mathcal{N}, n_4 \nvDash \Diamond p$. So both the blue dashed line and red dashed line contradict the invariance lemma! 9

Example Continued...

Before reading the invariance lemma I had to go one extra level and use *local harmony* to get a contradiction. Maybe we can nail it right at m_1 and n_1 . I couldn't.