Содержание

- 1 Подготовка данных
 - 1.1 Изучение данных
 - 1.2 Рассчет эффективности rougher.output.recovery (MAE)
 - 1.3 Анализ признаков, недоступных в тестовой выборке
 - 1.4 Предобработка данных
- 2 Анализ данных
 - 2.1 Концентрация металлов (Au, Ag, Pb) на различных этапах очистки
 - 2.1.1 Золото
 - 2.1.2 Серебро
 - 2.1.3 Свинец
 - 2.2 Сравнение распределения размеров гранул сырья на обучающей и тестовой выборках
 - 2.2.1 Этап флотации
 - 2.2.2 Этап очистки
 - 2.3 Исследование суммарной концентрации всех веществ на разных стадиях
- 3 Модель
 - 3.1 Функция для вычисления итоговой sMAPE
 - 3.2 Подготовка данных для обучения
 - 3.3 Поиск лучшей модели
 - 3.3.1 Константная модель
 - 3.3.2 Decision Tree (Дерево решений)
 - 3.3.3 Random Forest (Случайный лес)
 - 3.3.4 Linear Regression (Линейная регрессия)
 - 3.3.5 Определим лучшую модель
 - 3.4 Тестирование модели
- 4 Общий вывод
- 5 Чек-лист готовности проекта

Восстановление золота из руды

Необходимо подготовить прототип модели машинного обучения. Компания разрабатывает решения для эффективной работы промышленных предприятий.

Модель должна предсказать коэффициент восстановления золота из золотосодержащей руды. Используем предоставленные данные с параметрами добычи и очистки.

Модель поможет оптимизировать производство, чтобы не запускать предприятие с убыточными характеристиками.

Нам нужно:

- 1. Подготовить данные;
- 2. Провести исследовательский анализ данных;
- 3. Построить и обучить модель.

Чтобы выполнить проект, используем библиотеки pandas, matplotlib и sklearn.

Цель исследования — подготовить прототип модели машинного обучения. Модель должна предсказать коэффициент восстановления золота из золотосодержащей руды.

Модель поможет оптимизировать производство, чтобы не запускать предприятие с убыточными характеристиками.

Данные с параметрами добычи и очистки получим из трех файлов:

- gold_recovery_train_new.csv обучающая выборка
- gold_recovery_test_new.csv тестовая выборка
- gold_recovery_full_new.csv исходные данные

Исследование пройдёт в три этапа:

- 1. Подготовка данных
- 2. Анализ данных
- 3. Построение модели

Подготовка данных

In [4]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np

from numpy.random import RandomState

 $\textbf{from} \ \mathsf{tqdm} \ \textbf{import} \ \mathsf{tqdm}$

from sklearn.metrics import make_scorer
from sklearn.metrics import mean_absolute_error as mae

```
from sklearn.ensemble import RandomForestRegressor
      from sklearn.linear_model import LinearRegression
      from sklearn.tree import DecisionTreeRegressor
      from sklearn.model_selection import cross_val_score
      from sklearn.preprocessing import StandardScaler
In [5]: r_state = 12345
      state = RandomState(r_state)
In [6]: data train = pd.read_csv('datasets/gold_industry_train.csv')
      data_test = pd.read_csv('datasets/gold_industry_test.csv')
      data_full = pd.read_csv('datasets/gold_industry_full.csv')
      datas = {'Обучающая выборка' : data_train, 'Тестовая выборка' : data_test, 'Исходные данные' : data_full}
Изучение данных
In [7]: for i in datas:
        print('\033[1mОбщие сведения "{}":'.format(i))
        print('\033[0m')
        datas[i].info()
        display(datas[i].sample(5, random_state=r_state))
        display(datas[i].head())
        print('Количество пропусков по столбцам:')
        print()
        for col in datas[i].columns:
           nmv = datas[i][col].isna().sum()
           pmv = nmv/len(datas[i])
           if pmv == 0:
             print('\033[0m{} - {} шт. - {:.2%}'.format(col, nmv, pmv))
           elif pmv <= 0.1:
             print('\033[0m{} - \033[43m{} шт.\033[0m - \033[43m{:.2%}'.format(col, nmv, pmv))
           else:
             print('\033[0m{} - \033[41m{} шт.\033[0m - \033[41m{:.2%}'.format(col, nmv, pmv))
           print('\033[0m')
        print('Количество явных дубликатов:', datas[i].duplicated().sum())
        print()
Общие сведения "Обучающая выборка":
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14579 entries, 0 to 14578
Data columns (total 87 columns):
# Column
                                      Non-Null Count Dtype
0 date
                                    14579 non-null object
                                          14579 non-null float64
   rougher.input.feed_au
  rougher.input.feed_ag
                                           14579 non-null float64
                                           14507 non-null float64
3 rougher.input.feed_pb
4 rougher.input.feed sol
                                           14502 non-null float64
5 rougher.input.feed_rate
                                           14572 non-null float64
6 rougher.input.feed size
                                           14478 non-null float64
  rougher.input.floatbank10_sulfate
                                              14548 non-null float64
8 rougher.input.floatbank10_xanthate
                                                14572 non-null float64
9 rougher.state.floatbank10_a_air
                                              14579 non-null float64
10 rougher.state.floatbank10_a_level
                                               14579 non-null float64
11 rougher.state.floatbank10_b_air
                                               14579 non-null float64
12 rougher.state.floatbank10_b_level
                                               14579 non-null float64
13 rougher.state.floatbank10_c_air
                                              14579 non-null float64
14 rougher.state.floatbank10_c_level
                                               14579 non-null float64
15 rougher.state.floatbank10_d_air
                                               14579 non-null float64
16 rougher.state.floatbank10_d_level
                                               14579 non-null float64
17 rougher.state.floatbank10_e_air
                                              14150 non-null float64
18 rougher.state.floatbank10 e level
                                               14579 non-null float64
                                            14579 non-null float64
19 rougher.state.floatbank10_f_air
                                               14579 non-null float64
20 rougher.state.floatbank10_f_level
21 rougher.input.floatbank11 sulfate
                                               14543 non-null float64
22 rougher.input.floatbank11_xanthate
                                                14172 non-null float64
23 rougher.calculation.sulfate_to_au_concentrate
                                                   14578 non-null float64
24 rougher.calculation.floatbank10_sulfate_to_au_feed 14578 non-null float64
25 rougher.calculation.floatbank11_sulfate_to_au_feed 14578 non-null float64
26 rougher.calculation.au pb ratio
                                              14579 non-null float64
```

14579 non-null float64 14579 non-null float64

14579 non-null float64

14579 non-null float64

14579 non-null float64

14561 non-null float64

33 rougher.output.tail_ag 14578 non-null float64 34 rougher output tail inh 14579 non-null float64

27 rougher.output.concentrate_au

28 rougher.output.concentrate_ag 29 rougher.output.concentrate_pb

30 rougher.output.concentrate_sol

31 rougher.output.recovery

32 rougher.output.tail_au

1

7

0	oughor output tail!	1.670	lootC4				
	ougher.output.tail_sol	14579 non-null f					
	orimary_cleaner.input.sulfate orimary_cleaner.input.depressant	14556 non-nul 14551 non-					
	primary_cleaner.input.depressant	14579 non-n					
	orimary_cleaner.input.xanthate	14518 non-n					
	orimary_cleaner.state.floatbank8_a		n-null float64				
	primary_cleaner.state.floatbank8_a		n-null float64				
	orimary_cleaner.state.floatbank8_b_		n-null float64				
43 p	orimary_cleaner.state.floatbank8_b	_level 14579 no	n-null float64				
	orimary_cleaner.state.floatbank8_c_		n-null float64				
	orimary_cleaner.state.floatbank8_c_	_	n-null float64				
	orimary_cleaner.state.floatbank8_d_	_	n-null float64				
	orimary_cleaner.state.floatbank8_d_		on-null float64				
	orimary_cleaner.output.concentrate_		on-null float64				
	orimary_cleaner.output.concentrate_	_ •	on-null float64				
	orimary_cleaner.output.concentrate_		on-null float64				
	orimary_cleaner.output.concentrate_		n-null float64				
	orimary_cleaner.output.tail_au orimary_cleaner.output.tail_ag	14579 non-ทเ 14575 non-ทเ					
	orimary_cleaner.output.tail_ag orimary_cleaner.output.tail_pb	14573 non-nu					
	orimary_cleaner.output.tail_pb orimary_cleaner.output.tail_sol	14534 non-nu					
	secondary_cleaner.state.floatbank2		on-null float64				
	secondary cleaner.state.floatbank2		non-null float64				
	secondary_cleaner.state.floatbank2		on-null float64				
	secondary cleaner.state.floatbank2		non-null float64				
	secondary_cleaner.state.floatbank3		on-null float64				
	secondary_cleaner.state.floatbank3		non-null float64				
62 s	secondary_cleaner.state.floatbank3	_b_air 14579 n	on-null float64				
63 s	secondary_cleaner.state.floatbank3	_b_level 14579 i	non-null float64				
64 s	secondary_cleaner.state.floatbank4_	_a_air 14574 n	on-null float64				
65 s	secondary_cleaner.state.floatbank4_	_a_level 14579 i	non-null float64				
	secondary_cleaner.state.floatbank4_		on-null float64				
	secondary_cleaner.state.floatbank4_		non-null float64				
	secondary_cleaner.state.floatbank5_		on-null float64				
	secondary_cleaner.state.floatbank5_		non-null float64				
	secondary_cleaner.state.floatbank5_		on-null float64				
	secondary_cleaner.state.floatbank5		non-null float64				
	secondary_cleaner.state.floatbank6 secondary_cleaner.state.floatbank6		on-null float64 non-null float64				
	secondary_cleaner.output.tail_au	_a_level 14579 non-l					
	secondary_cleaner.output.tail_ag	14578 non-					
	secondary cleaner.output.tail pb	14575 non-i					
	secondary cleaner.output.tail sol	13659 non-r					
	inal.output.concentrate_au	14579 non-nul					
	inal.output.concentrate_ag	14578 non-nul					
80 fi	inal.output.concentrate_pb	14578 non-nul	l float64				
81 fi	inal.output.concentrate_sol	14387 non-null	float64				
82 fi	inal.output.recovery	14579 non-null flo	oat64				
	inal.output.tail_au	14579 non-null floa					
	inal.output.tail_ag	14578 non-null floa					
	inal.output.tail_pb	14504 non-null floa					
	inal.output.tail_sol	14574 non-null floa	nt64				
	es: float64(86), object(1)						
memo	ory usage: 9.7+ MB						
	date rougher.input.feed_au	rougher.input.feed_ag	rougher.input.feed_pb	rougher.input.feed_sol	rougher.input.feed_rate	rougher.input.feed_size	ro
	2017-						
1106		11.508350	5.760956	38.012769	457.315357	54.984357	
	14:59:59						
	2017-						
752		7.840737	3.649247	39.212813	504.674931	53.906820	Ì

11066	2017- 07-04 14:59:59	11.311617	11.508350	5.760956	38.012769	457.315357	54.984357
7524	2017- 01-10 09:59:59	7.195038	7.840737	3.649247	39.212813	504.674931	53.906820
10618	2017- 06-14 19:59:59	7.411768	7.712749	3.392968	31.869068	439.050267	46.446289
6773	2016- 12-08 22:59:59	9.658762	8.672438	3.715044	29.747256	173.531215	93.257746
853	2016- 02-22 23:00:00	4.639804	7.166969	1.823448	24.950583	543.416648	55.266248

5 rows × 87 columns

	date	rougher.input.feed_au	rougher.input.feed_ag	rougher.input.feed_pb	rougher.input.feed_sol	rougher.input.feed_rate	rougher.input.feed_size	roughe
0	2016- 01-15 00:00:00	6.486150	6.100378	2.284912	36.808594	523.546326	55.486599	
1	2016- 01-15 01:00:00	6.478583	6.161113	2.266033	35.753385	525.290581	57.278666	

2016 rougher.input.feed a 6.36222 02:00:00	u rougher.input.feed ag 6.116455	rougher.input.feed_pb 2.159622	rougher.input.feed_sol 35.97 1630	rougher.input.feed_rate 530.026610	rougher.input.feed_size 57.510649	roughe
2016- 3 01-15 6.11818 03:00:00	9 6.043309	2.037807	36.862241	542.590390	57.792734	
2016- 4 01-15 5.66370 04:00:00	7 6.060915	1.786875	34.347666	540.531893	56.047189	
5 rows × 87 columns						
Количество пропусков по столб	цам:					
date - 0 шт 0.00%						
rougher.input.feed_au - 0 шт 0.	.00%					
rougher.input.feed_ag - 0 шт 0.	.00%					
rougher.input.feed_pb - <mark>72 шт.</mark> - (0.49%					
rougher.input.feed_sol - 77 шт	0.53%					
rougher.input.feed_rate - <mark>7 шт.</mark> -	0.05%					
rougher.input.feed_size - 101 шт	0.69%					
rougher.input.floatbank10_sulfate	е - 31 шт 0.21%					
rougher.input.floatbank10_xantha	ate - <mark>7 шт.</mark> - <mark>0.05%</mark>					
rougher.state.floatbank10_a_air -	0 шт 0.00%					
rougher.state.floatbank10_a_leve	el - 0 шт 0.00%					
rougher.state.floatbank10_b_air -	0 шт 0.00%					
rougher.state.floatbank10_b_leve	el - 0 шт 0.00%					
rougher.state.floatbank10_c_air -	0 шт 0.00%					
rougher.state.floatbank10_c_leve	ы - 0 шт 0.00%					
rougher.state.floatbank10_d_air -	0 шт 0.00%					
rougher.state.floatbank10_d_leve	el - 0 шт 0.00%					
rougher.state.floatbank10_e_air -	- 429 шт 2.94%					
rougher.state.floatbank10_e_leve	el - 0 шт 0.00%					
rougher.state.floatbank10_f_air -	0 шт 0.00%					
rougher.state.floatbank10_f_leve	I - 0 шт 0.00%					
rougher.input.floatbank11_sulfate	е - <mark>36 шт.</mark> - <mark>0.25%</mark>					
rougher.input.floatbank11_xantha	ate - <mark>407 шт.</mark> - <mark>2.79%</mark>					
rougher.calculation.sulfate_to_au	ı_concentrate - <mark>1 шт.</mark> - <mark>0.</mark>	01%				
rougher.calculation.floatbank10_s	sulfate_to_au_feed - <mark>1 ш</mark>	ıт <mark>0.01%</mark>				
rougher.calculation.floatbank11_s	sulfate_to_au_feed - <mark>1 ш</mark>	ıт <mark>0.01%</mark>				
rougher.calculation.au_pb_ratio -	0 шт 0.00%					
rougher.output.concentrate_au -	0 шт 0.00%					
rougher.output.concentrate_ag -	0 шт 0.00%					
rougher.output.concentrate_pb -	0 шт 0.00%					
rougher.output.concentrate_sol -	18 шт 0.12%					
rougher.output.recovery - 0 шт						
rougher.output.tail_au - 0 шт 0.						
rougher.output.tail_ag - <mark>1 шт.</mark> - <mark>0.</mark>						
rougher.output.tail_pb - 0 шт 0.						

```
rougher.output.tail_sol - 0 шт. - 0.00%
primary_cleaner.input.sulfate - 23 шт. - 0.16%
primary_cleaner.input.depressant - 28 шт. - 0.19%
primary_cleaner.input.feed_size - 0 шт. - 0.00%
primary_cleaner.input.xanthate - 61 шт. - 0.42%
primary_cleaner.state.floatbank8_a_air - 3 шт. - 0.02%
primary_cleaner.state.floatbank8_a_level - 0 шт. - 0.00%
primary_cleaner.state.floatbank8 b_air - 3 шт. - 0.02%
primary_cleaner.state.floatbank8_b_level - 0 шт. - 0.00%
primary_cleaner.state.floatbank8_c_air - 0 шт. - 0.00%
primary_cleaner.state.floatbank8_c_level - 0 шт. - 0.00%
primary_cleaner.state.floatbank8_d_air - 1 шт. - 0.01%
primary_cleaner.state.floatbank8_d_level - 0 шт. - 0.00%
primary_cleaner.output.concentrate_au - 0 шт. - 0.00%
primary cleaner.output.concentrate ag - 0 шт. - 0.00%
primary_cleaner.output.concentrate_pb - 88 шт. - 0.60%
primary_cleaner.output.concentrate_sol - 265 шт. - 1.82%
primary_cleaner.output.tail_au - 0 шт. - 0.00%
primary_cleaner.output.tail_ag - 4 шт. - 0.03%
primary_cleaner.output.tail_pb - 6 шт. - 0.04%
primary_cleaner.output.tail_sol - 45 шт. - 0.31%
secondary cleaner.state.floatbank2 a air - 94 шт. - 0.64%
secondary cleaner.state.floatbank2 a level - 0 шт. - 0.00%
secondary_cleaner.state.floatbank2_b_air - 22 шт. - 0.15%
secondary_cleaner.state.floatbank2_b_level - 0 шт. - 0.00%
secondary_cleaner.state.floatbank3_a_air - 12 шт. - 0.08%
secondary_cleaner.state.floatbank3_a_level - 0 шт. - 0.00%
secondary_cleaner.state.floatbank3_b_air - 0 шт. - 0.00%
secondary_cleaner.state.floatbank3_b_level - 0 шт. - 0.00%
secondary_cleaner.state.floatbank4_a_air - 5 шт. - 0.03%
secondary_cleaner.state.floatbank4_a_level - 0 шт. - 0.00%
secondary_cleaner.state.floatbank4_b_air - 0 шт. - 0.00%
secondary_cleaner.state.floatbank4_b_level - 0 шт. - 0.00%
secondary_cleaner.state.floatbank5_a_air - 0 шт. - 0.00%
secondary_cleaner.state.floatbank5_a_level - 0 шт. - 0.00%
secondary_cleaner.state.floatbank5_b_air - 0 шт. - 0.00%
secondary cleaner.state.floatbank5 b level - 0 шт. - 0.00%
secondary_cleaner.state.floatbank6_a_air - 1 шт. - 0.01%
secondary_cleaner.state.floatbank6_a_level - 0 шт. - 0.00%
secondary_cleaner.output.tail_au - 0 шт. - 0.00%
secondary_cleaner.output.tail_ag - 1 шт. - 0.01%
```

```
secondary_cleaner.output.tail_pb - 4 шт. - 0.03%
secondary_cleaner.output.tail_sol - 920 шт. - 6.31%
final.output.concentrate_au - 0 шт. - 0.00%
final.output.concentrate_ag - 1 шт. - 0.01%
final.output.concentrate_pb - 1 шт. - 0.01%
final.output.concentrate_sol - 192 шт. - 1.32%
final.output.recovery - 0 шт. - 0.00%
final.output.tail_au - 0 шт. - 0.00%
final.output.tail_ag - 1 шт. - 0.01%
final.output.tail_pb - 75 шт. - 0.51%
final.output.tail sol - 5 шт. - 0.03%
Количество явных дубликатов: 0
Общие сведения "Тестовая выборка":
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4860 entries, 0 to 4859
Data columns (total 53 columns):
# Column
                                  Non-Null Count Dtype
0 date
                                4860 non-null object
1
   rougher.input.feed_au
                                       4860 non-null float64
2
   rougher.input.feed_ag
                                       4860 non-null float64
3
   rougher.input.feed_pb
                                       4832 non-null float64
4
   rougher.input.feed_sol
                                      4838 non-null float64
   rougher.input.feed rate
                                       4856 non-null float64
5
6
   rougher.input.feed_size
                                       4816 non-null float64
7
   rougher. input. floatbank 10\_sulfate
                                          4857 non-null float64
8
   rougher.input.floatbank10_xanthate
                                            4859 non-null float64
9
   rougher.state.floatbank10_a_air
                                          4859 non-null float64
10 rougher.state.floatbank10_a_level
                                           4859 non-null float64
11 rougher.state.floatbank10 b air
                                           4859 non-null float64
12 rougher.state.floatbank10_b_level
                                           4859 non-null float64
13 rougher.state.floatbank10_c_air
                                          4859 non-null float64
14 rougher.state.floatbank10_c_level
                                           4859 non-null float64
                                           4860 non-null float64
15 rougher.state.floatbank10_d_air
16 rougher.state.floatbank10_d_level
                                           4860 non-null float64
    rougher.state.floatbank10_e_air
                                           4853 non-null float64
18 rougher.state.floatbank10_e_level
                                           4860 non-null float64
19
    rougher.state.floatbank10 f air
                                          4860 non-null float64
20
    rougher.state.floatbank10_f_level
                                           4860 non-null float64
                                           4852 non-null float64
21
    rougher.input.floatbank11 sulfate
                                            4814 non-null float64
22 rougher.input.floatbank11_xanthate
23 primary_cleaner.input.sulfate
                                         4859 non-null float64
24
    primary_cleaner.input.depressant
                                           4851 non-null float64
    primary_cleaner.input.feed_size
                                           4860 non-null float64
                                          4817 non-null float64
26
    primary_cleaner.input.xanthate
    primary cleaner.state.floatbank8 a air
                                             4859 non-null float64
28 primary_cleaner.state.floatbank8_a_level
                                              4859 non-null float64
                                             4859 non-null float64
    primary_cleaner.state.floatbank8_b_air
29
    primary cleaner.state.floatbank8 b level
                                              4859 non-null float64
31
    primary cleaner.state.floatbank8 c air
                                             4858 non-null float64
32
    primary_cleaner.state.floatbank8_c_level 4859 non-null float64
33 primary cleaner.state.floatbank8 d air
                                             4858 non-null float64
34 primary cleaner.state.floatbank8 d level 4859 non-null float64
35
    secondary cleaner.state.floatbank2 a air 4734 non-null float64
    secondary_cleaner.state.floatbank2_a_level 4859 non-null float64
36
    secondary_cleaner.state.floatbank2_b_air 4859 non-null float64
37
   secondary cleaner.state.floatbank2 b level 4859 non-null float64
38
39
    secondary_cleaner.state.floatbank3_a_air 4859 non-null float64
40
    secondary_cleaner.state.floatbank3_a_level 4859 non-null float64
41
    secondary_cleaner.state.floatbank3_b_air 4859 non-null float64
42
    secondary_cleaner.state.floatbank3_b_level_4859 non-null_float64
43 secondary cleaner.state.floatbank4 a air 4859 non-null float64
44 secondary_cleaner.state.floatbank4_a_level 4859 non-null float64
45 secondary_cleaner.state.floatbank4_b_air 4859 non-null float64
46 secondary_cleaner.state.floatbank4_b_level 4859 non-null float64
    secondary_cleaner.state.floatbank5_a_air 4859 non-null_float64
48 secondary_cleaner.state.floatbank5_a_level 4859 non-null float64
49 secondary_cleaner.state.floatbank5_b_air 4859 non-null_float64
50
    secondary cleaner.state.floatbank5 b level 4859 non-null float64
```

51 secondary_cleaner.state.floatbank6_a_air 4859 non-null float64 52 secondary_cleaner.state.floatbank6_a_level 4859 non-null float64 dtypes: float64(52), object(1)

dtypes: float64(52), object(1) memory usage: 2.0+ MB

	date	rougher.input.feed_au	rougher.input.feed_ag	rougher.input.feed_pb	rougher.input.feed_sol	rougher.input.feed_rate	rougher.input.feed_size	rou	
3781	2018- 06-21 06:59:59	10.962657	10.755106	3.924509	32.126409	401.822539	43.579452		
716	2018- 01-24 04:59:59	3.668504	6.713862	0.490494	40.820509	488.690973	69.750987		
4597	2018- 08-06 06:59:59	7.795887	7.602602	2.351350	37.849031	505.387278	47.812838		
4178	2018- 07-11 00:59:59	5.621863	6.874989	2.868029	23.838692	392.516344	46.011460		
3547	2018- 06-10 16:59:59	8.501001	7.810126	4.028249	27.271661	394.868960	39.985807		
5 rows	5 rows × 53 columns								

0	12-09 14:59:59	4.365491	6.158718	3.875727	39.135119	555.820208	94.544358
1	2017- 12-09 15:59:59	4.362781	6.048130	3.902537	39.713906	544.731687	123.742430
2	2017- 12-09 16:59:59	5.081681	6.082745	4.564078	37.208683	558.155110	82.610855
3	2017- 12-09 17:59:59	5.145949	6.084374	4.768124	36.808874	539.713765	77.984784
4	2017- 12-09 18:59:59	5.735249	6.165220	4.512346	37.810642	558.713584	86.434874

rougher.input.feed_au rougher.input.feed_ag rougher.input.feed_bb rougher.input.feed_sol rougher.input.feed_rate rougher.input.feed_size rougher.input

5 rows × 53 columns

date

Количество пропусков по столбцам:

date - 0 шт. - 0.00%

rougher.input.feed_au - 0 шт. - 0.00%

rougher.input.feed_ag - 0 шт. - 0.00%

rougher.input.feed_pb - <mark>28 шт.</mark> - <mark>0.58%</mark>

rougher.input.feed_sol - 22 шт. - 0.45% rougher.input.feed_rate - 4 шт. - 0.08%

rougher.input.feed_size - 44 шт. - 0.91%

rougher.input.floatbank10_sulfate - 3 шт. - 0.06%

rougher.input.floatbank10_xanthate - 1 шт. - 0.02%

rougher.state.floatbank10_a_air - 1 шт. - 0.02%

rougher.state.floatbank10_a_level - 1 шт. - 0.02%

rougher.state.floatbank10_b_air - 1 шт. - 0.02%

rougher.state.floatbank10_b_level - 1 шт. - 0.02%

rougher.state.floatbank10_c_air - 1 шт. - 0.02%

rougher.state.floatbank10_c_level - 1 шт. - 0.02%

rougher.state.floatbank10_d_air - 0 шт. - 0.00%

rougher.state.floatbank10_d_level - 0 шт. - 0.00%

rougher.state.floatbank10_e_air - 7 шт. - 0.14%

```
rougner.state.floatbank го_e_level - 0 шт. - 0.00%
rougher.state.floatbank10_f_air - 0 шт. - 0.00%
rougher.state.floatbank10 f level - 0 шт. - 0.00%
rougher.input.floatbank11 sulfate - 8 шт. - 0.16%
rougher.input.floatbank11_xanthate - 46 шт. - 0.95%
primary_cleaner.input.sulfate - 1 шт. - 0.02%
primary_cleaner.input.depressant - 9 шт. - 0.19%
primary_cleaner.input.feed_size - 0 шт. - 0.00%
primary_cleaner.input.xanthate - 43 шт. - 0.88%
primary_cleaner.state.floatbank8 a air - 1 шт. - 0.02%
primary_cleaner.state.floatbank8_a_level - 1 шт. - 0.02%
primary_cleaner.state.floatbank8_b_air - 1 шт. - 0.02%
primary_cleaner.state.floatbank8_b_level - 1 шт. - 0.02%
primary_cleaner.state.floatbank8_c_air - 2 шт. - 0.04%
primary_cleaner.state.floatbank8_c_level - 1 шт. - 0.02%
primary_cleaner.state.floatbank8_d_air - 2 шт. - 0.04%
primary_cleaner.state.floatbank8_d_level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank2_a_air - 126 шт. - 2.59%
secondary_cleaner.state.floatbank2_a_level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank2_b_air - 1 шт. - 0.02%
secondary_cleaner.state.floatbank2_b_level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank3_a_air - 1 шт. - 0.02%
secondary_cleaner.state.floatbank3_a_level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank3_b_air - 1 шт. - 0.02%
secondary cleaner.state.floatbank3 b level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank4_a_air - 1 шт. - 0.02%
secondary_cleaner.state.floatbank4_a_level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank4_b_air - 1 шт. - 0.02%
secondary cleaner.state.floatbank4 b level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank5_a_air - 1 шт. - 0.02%
secondary_cleaner.state.floatbank5_a_level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank5_b_air - 1 шт. - 0.02%
secondary cleaner.state.floatbank5 b level - 1 шт. - 0.02%
secondary_cleaner.state.floatbank6_a_air - 1 шт. - 0.02%
secondary_cleaner.state.floatbank6_a_level - 1 шт. - 0.02%
Количество явных дубликатов: 0
Общие сведения "Исходные данные":
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19439 entries, 0 to 19438
Data columns (total 87 columns):
                                       Non-Null Count Dtype
# Column
0 date
                                     19439 non-null object
                                            19439 non-null float64
   rougher.input.feed au
1
  rougher.input.feed ag
                                            19439 non-null float64
                                            19339 non-null float64
3
   rougher.input.feed pb
```

```
rougher.input.feed_sol
                                           19340 non-null float64
5
   rougher.input.feed_rate
                                            19428 non-null float64
                                            19294 non-null float64
6
  rougher.input.feed_size
7
  rougher.input.floatbank10 sulfate
                                               19405 non-null float64
8
  rougher.input.floatbank10_xanthate
                                                 19431 non-null float64
                                               19438 non-null float64
9
   rougher.state.floatbank10_a_air
                                                 19438 non-null float64
10 rougher.state.floatbank10_a_level
   rougher.state.floatbank10 b air
                                                19438 non-null float64
                                                19438 non-null float64
12 rougher.state.floatbank10 b level
13 rougher.state.floatbank10 c air
                                               19438 non-null float64
   rougher.state.floatbank10_c_level
                                                19438 non-null float64
   rougher.state.floatbank10_d_air
                                                19439 non-null float64
15
   rougher.state.floatbank10_d_level
                                                19439 non-null float64
                                                19003 non-null float64
   rougher.state.floatbank10 e air
17
18 rougher.state.floatbank10_e_level
                                                 19439 non-null float64
19 rougher.state.floatbank10_f_air
                                               19439 non-null float64
                                                19439 non-null float64
20 rougher.state.floatbank10_f_level
   rougher.input.floatbank11_sulfate
                                                19395 non-null float64
                                                 18986 non-null float64
22
   rougher.input.floatbank11_xanthate
23 rougher.calculation.sulfate_to_au_concentrate
                                                     19437 non-null float64
24 rougher.calculation.floatbank10_sulfate_to_au_feed 19437 non-null float64
25 rougher.calculation.floatbank11_sulfate_to_au_feed 19437 non-null float64
   rougher.calculation.au_pb_ratio
                                               19439 non-null float64
26
27
   rougher.output.concentrate_au
                                                19439 non-null float64
                                                19439 non-null float64
   rougher.output.concentrate_ag
                                                19439 non-null float64
29 rougher.output.concentrate pb
30 rougher.output.concentrate_sol
                                               19416 non-null float64
                                             19439 non-null float64
31
   rougher.output.recovery
   rougher.output.tail au
                                           19439 non-null float64
                                           19438 non-null float64
33 rougher.output.tail_ag
34 rougher.output.tail_pb
                                           19439 non-null float64
35 rougher.output.tail_sol
                                           19439 non-null float64
   primary_cleaner.input.sulfate
                                              19415 non-null float64
37
   primary_cleaner.input.depressant
                                                 19402 non-null float64
38
   primary_cleaner.input.feed_size
                                                19439 non-null float64
                                               19335 non-null float64
39
   primary_cleaner.input.xanthate
   primary cleaner.state.floatbank8 a air
                                                  19435 non-null float64
   primary_cleaner.state.floatbank8_a_level
                                                   19438 non-null float64
   primary_cleaner.state.floatbank8_b_air
                                                  19435 non-null float64
42
   primary_cleaner.state.floatbank8_b_level
                                                   19438 non-null float64
                                                  19437 non-null float64
   primary cleaner.state.floatbank8 c air
45 primary cleaner.state.floatbank8 c level
                                                   19438 non-null float64
   primary_cleaner.state.floatbank8_d_air
                                                  19436 non-null float64
                                                   19438 non-null float64
47
   primary_cleaner.state.floatbank8_d_level
   primary_cleaner.output.concentrate_au
                                                   19439 non-null float64
49
   primary_cleaner.output.concentrate_ag
                                                   19439 non-null float64
50
   primary_cleaner.output.concentrate_pb
                                                   19323 non-null_float64
                                                   19069 non-null float64
   primary_cleaner.output.concentrate_sol
                                               19439 non-null float64
52 primary_cleaner.output.tail_au
53 primary_cleaner.output.tail_ag
                                               19435 non-null float64
   primary cleaner.output.tail_pb
                                               19418 non-null float64
   primary_cleaner.output.tail_sol
                                               19377 non-null_float64
55
   secondary_cleaner.state.floatbank2_a_air
                                                    19219 non-null float64
57
   secondary_cleaner.state.floatbank2_a_level
                                                     19438 non-null float64
58
   secondary_cleaner.state.floatbank2_b_air
                                                    19416 non-null float64
59
   secondary cleaner.state.floatbank2 b level
                                                     19438 non-null float64
60
   secondary cleaner.state.floatbank3 a air
                                                    19426 non-null float64
61
   secondary cleaner.state.floatbank3 a level
                                                     19438 non-null float64
                                                    19438 non-null float64
   secondary cleaner.state.floatbank3 b air
63 secondary_cleaner.state.floatbank3_b_level
                                                     19438 non-null float64
64
   secondary_cleaner.state.floatbank4_a_air
                                                    19433 non-null float64
   secondary_cleaner.state.floatbank4_a_level
                                                     19438 non-null float64
                                                    19438 non-null float64
66
   secondary_cleaner.state.floatbank4_b_air
   secondary_cleaner.state.floatbank4 b level
67
                                                     19438 non-null float64
   secondary_cleaner.state.floatbank5_a_air
                                                    19438 non-null float64
69
   secondary_cleaner.state.floatbank5_a_level
                                                     19438 non-null float64
   secondary cleaner.state.floatbank5 b air
                                                    19438 non-null float64
71
   secondary_cleaner.state.floatbank5_b_level
                                                     19438 non-null float64
72
   secondary_cleaner.state.floatbank6_a_air
                                                    19437 non-null float64
                                                     19438 non-null float64
   secondary cleaner.state.floatbank6 a level
                                                19439 non-null float64
74 secondary_cleaner.output.tail_au
75
   secondary_cleaner.output.tail_ag
                                                 19437 non-null float64
   secondary_cleaner.output.tail_pb
                                                19427 non-null float64
                                                17691 non-null float64
   secondary_cleaner.output.tail_sol
77
78
   final.output.concentrate au
                                             19439 non-null float64
79
   final.output.concentrate_ag
                                             19438 non-null float64
                                             19438 non-null float64
80 final.output.concentrate_pb
81
   final.output.concentrate sol
                                             19228 non-null float64
82
   final.output.recovery
                                          19439 non-null float64
83 final.output.tail_au
                                         19439 non-null_float64
                                         19438 non-null float64
84 final.output.tail_ag
                                         19338 non-null float64
85 final.output.tail_pb
```

dtypes: float64(86). object(1)

utypes.	110a(04(00), 00)ec(ŀ
momory	ucana: 12 0 i MR	

memor	y usaye.	12.9+ IVID						
	date	rougher.input.feed_au	rougher.input.feed_ag	rougher.input.feed_pb	rougher.input.feed_sol	rougher.input.feed_rate	rougher.input.feed_size	ro
5264	2016- 10-04 14:59:59	8.739823	9.714287	3.521696	35.384010	423.588713	99.643338	
12699	2017- 09-17 21:59:59	9.380200	9.108785	4.671233	39.726142	559.553945	73.045854	
4329	2016- 08-16 14:59:59	11.690742	11.019713	4.596352	37.109778	428.658948	43.129930	ļ
558	2016- 02-09 18:00:00	6.765993	8.284344	2.733397	35.785207	499.238419	55.105532	
3300	2016- 06-27 02:59:59	11.876232	11.504955	4.358123	40.850050	447.195722	58.545776	

5 rows × 87 columns

	date	rougher.input.feed_au	rougher.input.feed_ag	rougher.input.feed_pb	rougher.input.feed_sol	rougher.input.feed_rate	rougher.input.feed_size	roughe
0	2016- 01-15 00:00:00	6.486150	6.100378	2.284912	36.808594	523.546326	55.486599	
1	2016- 01-15 01:00:00	6.478583	6.161113	2.266033	35.753385	525.290581	57.278666	
2	2016- 01-15 02:00:00	6.362222	6.116455	2.159622	35.971630	530.026610	57.510649	
3	2016- 01-15 03:00:00	6.118189	6.043309	2.037807	36.862241	542.590390	57.792734	
4	2016- 01-15 04:00:00	5.663707	6.060915	1.786875	34.347666	540.531893	56.047189	

5 rows × 87 columns

Количество пропусков по столбцам:

date - 0 шт. - 0.00%

rougher.input.feed_au - 0 шт. - 0.00%

rougher.input.feed_ag - 0 шт. - 0.00%

rougher.input.feed_pb - 100 шт. - 0.51%

rougher.input.feed_sol - 99 шт. - 0.51%

rougher.input.feed_rate - 11 шт. - 0.06%

rougher.input.feed_size - 145 шт. - 0.75%

rougher.input.floatbank10_sulfate - <mark>34 шт.</mark> - <mark>0.17%</mark>

rougher.input.floatbank10_xanthate - 8 шт. - 0.04%

rougher.state.floatbank10_a_air - 1 шт. - 0.01%

rougher.state.floatbank10_a_level - 1 шт. - 0.01%

rougher.state.floatbank10_b_air - 1 шт. - 0.01%

rougher.state.floatbank10_b_level - <mark>1 шт.</mark> - <mark>0.01%</mark>

rougher.state.floatbank10_c_air - 1 шт. - 0.01%

rougher.state.floatbank10_c_level - 1 шт. - 0.01%

rougher.state.floatbank10_d_air - 0 шт. - 0.00%

rougher.state.floatbank10_d_level - 0 шт. - 0.00%

rougher.state.floatbank10_e_air - 436 шт. - 2.24%

rougher.state.floatbank10_e_level - 0 шт. - 0.00%

```
rougher.state.floatbank10_f_air - 0 шт. - 0.00%
rougher.state.floatbank10_f_level - 0 шт. - 0.00%
rougher.input.floatbank11_sulfate - 44 шт. - 0.23%
rougher.input.floatbank11_xanthate - 453 шт. - 2.33%
rougher.calculation.sulfate_to_au_concentrate - 2 шт. - 0.01%
rougher.calculation.floatbank10_sulfate_to_au_feed - 2 шт. - 0.01%
rougher.calculation.floatbank11_sulfate_to_au_feed - 2 шт. - 0.01%
rougher.calculation.au_pb_ratio - 0 шт. - 0.00%
rougher.output.concentrate_au - 0 шт. - 0.00%
rougher.output.concentrate_ag - 0 шт. - 0.00%
rougher.output.concentrate_pb - 0 шт. - 0.00%
rougher.output.concentrate_sol - 23 шт. - 0.12%
rougher.output.recovery - 0 шт. - 0.00%
rougher.output.tail_au - 0 шт. - 0.00%
rougher.output.tail_ag - 1 шт. - 0.01%
rougher.output.tail_pb - 0 шт. - 0.00%
rougher.output.tail_sol - 0 шт. - 0.00%
primary_cleaner.input.sulfate - 24 шт. - 0.12%
primary_cleaner.input.depressant - 37 шт. - 0.19%
primary_cleaner.input.feed_size - 0 шт. - 0.00%
primary_cleaner.input.xanthate - 104 шт. - 0.54%
primary_cleaner.state.floatbank8_a_air - 4 шт. - 0.02%
primary_cleaner.state.floatbank8_a_level - 1 шт. - 0.01%
primary_cleaner.state.floatbank8_b_air - 4 шт. - 0.02%
primary_cleaner.state.floatbank8_b_level - 1 шт. - 0.01%
primary_cleaner.state.floatbank8_c_air - 2 шт. - 0.01%
primary_cleaner.state.floatbank8_c_level - 1 шт. - 0.01%
primary_cleaner.state.floatbank8_d_air - 3 шт. - 0.02%
primary_cleaner.state.floatbank8_d_level - 1 шт. - 0.01%
primary_cleaner.output.concentrate_au - 0 шт. - 0.00%
primary_cleaner.output.concentrate_ag - 0 шт. - 0.00%
primary_cleaner.output.concentrate_pb - 116 шт. - 0.60%
primary_cleaner.output.concentrate_sol - 370 шт. - 1.90%
primary_cleaner.output.tail_au - 0 шт. - 0.00%
primary_cleaner.output.tail_ag - 4 шт. - 0.02%
primary_cleaner.output.tail_pb - 21 шт. - 0.11%
primary_cleaner.output.tail_sol - 62 шт. - 0.32%
secondary_cleaner.state.floatbank2_a_air - 220 шт. - 1.13%
secondary_cleaner.state.floatbank2_a_level - 1 шт. - 0.01%
secondary_cleaner.state.floatbank2_b_air - 23 шт. - 0.12%
secondary_cleaner.state.floatbank2_b_level - 1 шт. - 0.01%
```

```
secondary_cleaner.state.floatbank3_a_level - <mark>1 шт.</mark> - <mark>0.01%</mark>
secondary_cleaner.state.floatbank3_b_air - 1 шт. - 0.01%
secondary cleaner.state.floatbank3 b level - 1 шт. - 0.01%
secondary_cleaner.state.floatbank4_a_air - 6 шт. - 0.03%
secondary_cleaner.state.floatbank4_a_level - 1 шт. - 0.01%
secondary_cleaner.state.floatbank4_b_air - 1 шт. - 0.01%
secondary_cleaner.state.floatbank4_b_level - 1 шт. - 0.01%
secondary_cleaner.state.floatbank5_a_air - 1 шт. - 0.01%
secondary_cleaner.state.floatbank5_a_level - 1 шт. - 0.01%
secondary_cleaner.state.floatbank5_b_air - 1 шт. - 0.01%
secondary_cleaner.state.floatbank5_b_level - 1 шт. - 0.01%
secondary_cleaner.state.floatbank6_a_air - 2 шт. - 0.01%
secondary_cleaner.state.floatbank6_a_level - 1 шт. - 0.01%
secondary_cleaner.output.tail_au - 0 шт. - 0.00%
secondary_cleaner.output.tail_ag - 2 шт. - 0.01%
secondary_cleaner.output.tail_pb - 12 шт. - 0.06%
secondary_cleaner.output.tail_sol - 1748 шт. - 8.99%
final.output.concentrate_au - 0 шт. - 0.00%
final.output.concentrate_ag - 1 шт. - 0.01%
final.output.concentrate_pb - 1 шт. - 0.01%
final.output.concentrate_sol - 211 шт. - 1.09%
final.output.recovery - 0 шт. - 0.00%
final.output.tail_au - 0 шт. - 0.00%
final.output.tail_ag - 1 шт. - 0.01%
final.output.tail_pb - 101 шт. - 0.52%
final.output.tail_sol - 6 шт. - 0.03%
Количество явных дубликатов: 0
```

Secondary_clearier.State.iioatbarik5_a_a_aii - 15 mi. - 0.07%

Описание данных

Технологический процесс

- Rougher feed исходное сырье
- Rougher additions (или reagent additions) флотационные реагенты: Xanthate, Sulphate, Depressant
 - Xanthate **— ксантогенат (промотер, или активатор флотации);
 - Sulphate сульфат (на данном производстве сульфид натрия);
 - Depressant депрессант (силикат натрия).
- Rougher process (англ. «грубый процесс») флотация
- Rougher tails отвальные хвосты
- Float banks флотационная установка
- Cleaner process очистка
- Rougher Au черновой концентрат золота
- Final Au финальный концентрат золота

Параметры этапов

- air amount объём воздуха
- fluid levels уровень жидкости
- feed size размер гранул сырья
- feed rate скорость подачи

Наименование признаков

Наименование признаков должно быть такое:

[этап].[тип_параметра].[название_параметра]

Пример: rougher.input.feed_ag

Возможные значения для блока [этап]:

- rougher флотация
- primary_cleaner первичная очистка
- secondary_cleaner вторичная очистка
- final финальные характеристики

Возможные значения для блока [тип_параметра]:

- input параметры сырья
- output параметры продукта
- state параметры, характеризующие текущее состояние этапа
- calculation расчётные характеристики

"Обучающая выборка" (data_train):

- Состоит из 14149 объектов
- Имеет 87 признаков
- Явные дубликаты отсутствуют
- Имеет пропуски в большинстве признаков
 - В основном в районе 1% от общего количества данных
 - В признаке "secondary_cleaner.output.tail_sol" (отвальные хвосты солей после вторичной очистки) пропусков больше 10%

"Тестовая выборка" (data test):

- Состоит из 5290 объектов
- Имеет 53 признаков
- Явные дубликаты отсутствуют
- Имеет незначительные пропуски (все меньше 1% от общего количества данных)

"Исходные данные" (data_full):

- Состоит из 19439 объектов (соответствует общей сумме объектов обучающей и тестовой выборок)
- Имеет 87 признаков
- Явные дубликаты отсутствуют
- Имеет пропуски в большинстве признаков
 - В основном меньше 1% от общего количества данных
 - В признаке "secondary_cleaner.output.tail_sol" (отвальные хвосты солей после вторичной очистки) пропусков около 9%

Рассчет эффективности rougher.output.recovery (MAE)

Эффективность обогащения рассчитывается по формуле:

 $\$ Recovery = \dfrac{C \times (F-T)}{F \times (C-T)} \times 100\% \$}\$\$ rge:

- С доля золота в концентрате после флотации/очистки;
- F доля золота в сырье/концентрате до флотации/очистки;
- Т доля золота в отвальных хвостах после флотации/очистки.
- In [8]: C = data_train['rougher.output.concentrate_au']
 F = data_train['rougher.input.feed_au']

```
In [9]: print("Средняя рассчитанная эффективность:", recovery.mean())
      print("Средняя указанная эффективность:", data_train['rougher.output.recovery'].mean())
      print('MAE = {:.16f}'.format(mae(data_train['rougher.output.recovery'], recovery)))
Средняя рассчитанная эффективность: 82.52119968211305
Средняя указанная эффективность: 82.52119968211304
MAE = 0.00000000000000098
Средняя абсолютная ошибка мала - эффективность обогащения рассчитана правильно
Анализ признаков, недоступных в тестовой выборке
In [10]: print('Столбцы, отсутствующие в "data_test"')
       display(set(data_full.columns) - set(data_test.columns))
Столбцы, отсутствующие в "data test"
{'final.output.concentrate_ag',
'final.output.concentrate_au',
'final.output.concentrate pb',
'final.output.concentrate sol',
'final.output.recovery',
'final.output.tail ag',
'final.output.tail au',
'final.output.tail pb',
'final.output.tail sol',
'primary_cleaner.output.concentrate_ag',
'primary cleaner.output.concentrate au',
'primary_cleaner.output.concentrate_pb',
'primary_cleaner.output.concentrate_sol',
'primary cleaner.output.tail ag',
'primary_cleaner.output.tail_au',
'primary cleaner.output.tail pb',
'primary_cleaner.output.tail_sol',
'rougher.calculation.au_pb_ratio',
'rougher.calculation.floatbank10 sulfate to au feed',
'rougher.calculation.floatbank11_sulfate_to_au_feed',
'rougher.calculation.sulfate_to_au_concentrate',
'rougher.output.concentrate ag',
'rougher.output.concentrate_au',
'rougher.output.concentrate pb',
'rougher.output.concentrate_sol',
'rougher.output.recovery',
'rougher.output.tail ag',
'rougher.output.tail_au',
'rougher.output.tail_pb',
'rougher.output.tail_sol',
'secondary_cleaner.output.tail_ag',
'secondary_cleaner.output.tail_au',
'secondary cleaner.output.tail pb',
'secondary cleaner.output.tail sol'}
  • "rougher.output.recovery" и "final.output.recovery" - целевые признаки для нашей модели
  • Остальные отсутствующие признаки содержат информацию:
      • Либо о параметрах продукта после всех этапов флотации и очисток
      • Либо расчетные характеристики
  • Данные признаки не нужны для тестирования нашей модели
Предобработка данных
Судя по признаку "date" данные обновляются каждый час. Соседние объекты в каждом признаке примерно одинаковы, таким образом можем
заполнить пропуски методом "ffill" (нулевые значения заменяются данными из предыдущеей строки).
Заполним пропуски в обучающей и тестовой выборках.
Исходные данные оставим без изменений.
In [11]: for i in datas:
         print('Количество пропусков до замены в "{}": {} шт.'.format(i, datas[i].isna().sum().sum()))
Количество пропусков до замены в "Обучающая выборка": 3050 шт.
Количество пропусков до замены в "Тестовая выборка": 375 шт.
Количество пропусков до замены в "Исходные данные": 4481 шт.
In [12]: data_train = data_train.ffill().bfill()
       data test = data test.ffill().bfill()
In [13]: datas = {'Обучающая выборка' : data_train, 'Тестовая выборка' : data_test, 'Исходные данные' : data_full}
```

print('Количество пропусков после замены в "{}": {} шт.'.format(i, datas[i].isna().sum().sum()))

 $T = data_train['rougher.output.tail_au']$ recovery = (C * (F-T)) / (F * (C - T)) * 100 Количество пропусков после замены в "Обучающая выборка": 0 шт. Количество пропусков после замены в "Тестовая выборка": 0 шт. Количество пропусков после замены в "Исходные данные": 4481 шт.

Анализ данных

Концентрация металлов (Au, Ag, Pb) на различных этапах очистки

```
In [14]: def concentrate_hist(chem_element, title):
    x1 = data_full[f'rougher.input.feed_{chem_element}'].ffill().bfill()
    x2 = data_full[f'rougher.output.concentrate_{chem_element}'].ffill().bfill()
    x3 = data_full[f'primary_cleaner.output.concentrate_{chem_element}'].ffill().bfill()
    x4 = data_full[f'final.output.concentrate_{chem_element}'].ffill().bfill()

    f, ax = plt.subplots(figsize=(15, 7))

    sns.histplot(x1, fill=False, label="Cырье", kde=True);
    sns.histplot(x2, fill=False, label="Черновой концентрат", kde=True);
    sns.histplot(x3, fill=False, label="Первичная очистка", kde=True);
    sns.histplot(x4, fill=False, label="Финальный концентрат", kde=True);

    plt.legend();

    plt.legend();

    plt.title(label=f'Концентрация {title} на различных этапах очистки', fontsize=15)
    plt.xlabel('Концентрация')
    plt.ylabel(' ')
```

Золото

In [15]: concentrate_hist('au', 'золота')

Концентрация золота увеличивается после каждого этапа очистки

Серебро

In [16]: concentrate_hist('ag', 'cepe6pa')

Концентрация серебра на различных этапах очистки

Концентрация серебра увеличивается после флотации и резко уменьшается после второго этапа очистки

Свинец

In [17]: concentrate_hist('pb', 'свинца')

Концентрация свинца значительно увеличивается после флотации и незначительно увеличивается на оставшихся этапах

Сравнение распределения размеров гранул сырья на обучающей и тестовой выборках

plt.ylabel(' ')

Этап флотации

In [19]: granules_hist('rougher', 'флотации')

Распределение размеров гранул примерно одинаково на обеих выборках

Этап очистки

In [20]: granules_hist('primary_cleaner', 'очистки')

Распределение размеров гранул примерно одинаково на обеих выборках

Исследование суммарной концентрации всех веществ на разных стадиях

```
In [21]: stages = ['rougher.input.feed_', 'rougher.output.concentrate_', 'final.output.concentrate_']
    chem_element = ['au', 'ag', 'pb', 'sol']

for stage in stages:
    data_full[stage + 'sum'] = 0
    for el in chem_element:
        data_full[stage + 'sum'] += data_full[stage + el]
```

```
\label{eq:ln} In \ [22]: \ x1 = data\_full ['rougher.input.feed\_sum'].ffill().bfill()
        x2 = data_full['rougher.output.concentrate_sum'].ffill().bfill()
        x3 = data_full['final.output.concentrate_sum'].ffill().bfill()
        f, ax = plt.subplots(figsize=(15, 7))
        sns.histplot(x1, fill=False, label="Сырье", kde=True);
        sns.histplot(x2, fill=False, label="Черновой концентрат", kde=True);
        sns.histplot(x3, fill=False, label="Финальный концентрат", kde=True);
        plt.legend();
        plt.title(label='Суммарная концентрация всех веществ на разных стадиях', fontsize=15);
        plt.xlabel('Концентрация');
        plt.ylabel(' ');
```

Суммарная концентрация всех веществ на разных стадиях

- Суммарная концентрация всех веществ после этапа флотации увеличивается
- После этапов очистки сокращается интервал распределения

Количество аномалий в Обучающая выборка после удаления - 0 шт. Количество аномалий в Тестовая выборка после удаления - 0 шт. Количество аномалий в Исходные данные после удаления - 0 шт.

In [24]: x1 = data_full['rougher.input.feed_sum'].ffill().bfill()

```
В данных присутствуют аномалии в виде суммарной концентрации веществ равной нулю
      • Удалим аномалии из исходных данных и обеих выборок
In [23]: anomaly_date = data_full['date'][(data_full['rougher.input.feed_sum']==0)|(
          data_full['rougher.output.concentrate_sum']==0)|(data_full['final.output.concentrate_sum']==0)|
       print('Общее количество аномалий:', anomaly_date.count())
       print()
       datas = {'Обучающая выборка' : data train, 'Тестовая выборка' : data test, 'Исходные данные' : data full}
       for i in datas:
          print('Количество аномалий в {} - {} шт.'.format(i, datas[i]['date'][datas[i]['date'].isin(anomaly date)].count()))
       data_train = data_train[~data_train['date'].isin(anomaly_date)]
       data_test = data_test[~data_test['date'].isin(anomaly_date)]
       data_full = data_full[~data_full['date'].isin(anomaly_date)]
       print()
       datas = {'Обучающая выборка' : data_train, 'Тестовая выборка' : data_test, 'Исходные данные' : data_full}
       for i in datas:
          print('Количество аномалий в {} после удаления - {} шт.'.format(
            i, datas[i]['date'][datas[i]['date'].isin(anomaly_date)].count()))
Общее количество аномалий: 490
Количество аномалий в Обучающая выборка - 490 шт.
Количество аномалий в Тестовая выборка - 0 шт.
Количество аномалий в Исходные данные - 490 шт.
```

```
x2 = data_full['rougher.output.concentrate_sum'].ffill().bfill()
x3 = data_full['final.output.concentrate_sum'].ffill().bfill()

f, ax = plt.subplots(figsize=(15, 7))
sns.histplot(x1, fill=False, label="Сырье", kde=True);
sns.histplot(x2, fill=False, label="Черновой концентрат", kde=True);
sns.histplot(x3, fill=False, label="Финальный концентрат", kde=True);
plt.legend();
plt.title(label='Суммарная концентрация всех веществ на разных стадиях', fontsize=15);
plt.xlabel('Концентрация');
plt.ylabel(' ');
```


Аномалии в данных отсутствуют

Модель

Функция для вычисления итоговой sMAPE

Для решения задачи используем метрику качества — sMAPE (англ. Symmetric Mean Absolute Percentage Error, «симметричное среднее абсолютное процентное отклонение»).

Метрика sMAPE рассчитывается по формуле:

 $\$ \\$MAPE = \dfrac{1}{N}\sum_{i=1}^{N} \dfrac{|y_i - \hat y_i|}{(|y_i| + |\hat y_i|) div 2} \times 100\% \$\$ r.ge:

- \$y_i\$ Значение целевого признака для объекта с порядковым номером і в выборке, на которой измеряется качество
- \$\hat y_i\$ Значение предсказания для объекта с порядковым номером і, например, в тестовой выборке
- N Количество объектов в выборке
- \$\sum_{i=1}^{N}\$ Суммирование по всем объектам выборки (і меняется от 1 до N)

Нашей модели нужно спрогнозировать сразу две величины:

- 1. Эффективность обогащения чернового концентрата (rougher.output.recovery)
- 2. Эффективность обогащения финального концентрата (final.output.recovery)

Итоговая метрика складывается из двух величин:

```
$$\text{${Итоговое}\:{sMAPE} = 25\% \times sMAPE(rougher) + 75\% \times sMAPE(final)$}$$
In [25]: def smape(target, pred):
    smape = abs(target - pred) / ((abs(target) + abs(pred)) / 2) * 100
    smape = smape.fillna(value=0)
    smape = sum(smape) / len(smape)
    return smape

def smape_final(smape_rougher, smape_final):
    return 0.25 * smape_rougher + 0.75 * smape_final

smape_score = make_scorer(smape, greater_is_better=False)
```

```
Подготовка данных для обучения
In [26]: target_rougher_test = pd.merge(data_test, data_full, how='left', on=['date'])
        target_rougher_test = target_rougher_test['rougher.output.recovery']
        target_final_test = pd.merge(data_test, data_full, how='left', on=['date'])
        target_final_test = target_final_test['final.output.recovery']
        data_test = data_test.drop(['date'], axis=1)
        col = data_test.columns
        features = data_train[col]
        target_rougher = data_train['rougher.output.recovery']
        target_final = data_train['final.output.recovery']
        features_list = {'features' : features}
        targets_list = {'target_rougher' : target_rougher, 'target_final' : target_final}
        print('Вспомогательные признаки:')
        print()
        for i in features_list:
          sh = features_list[i].shape
          psh = sh[0]/len(data_train)
          print('{} - Объектов: {} шт., признаков: {} шт. - {:.2%}'.format(i, sh[0], sh[1], psh))
        print()
        print('Целевые признаки:')
        print()
        for i in targets_list:
          sh = targets_list[i].shape
          psh = sh[0]/len(data_train)
          print('{} - Объектов: {} шт. - {:.2%}'.format(i, sh[0], psh))
Вспомогательные признаки:
features - Объектов: 14089 шт., признаков: 52 шт. - 100.00%
Целевые признаки:
target_rougher - Объектов: 14089 шт. - 100.00%
target_final - Объектов: 14089 шт. - 100.00%
Стандартизируем численные признаки в выборках, так как в данных присутствуют значения в разных масштабах
In [27]: pd.options.mode.chained_assignment = None
        features_list = {'features' : features, 'data_test' : data_test}
        scaler = StandardScaler()
        scaler.fit(features[col])
        for i in features list:
          features_list[i][col] = scaler.transform(features_list[i][col])
          print('{}:'.format(i))
          display(features_list[i].sample(5, random_state=r_state))
          print()
features:
       rougher.input.feed_au
                             rougher.input.feed_ag rougher.input.feed_pb rougher.input.feed_sol rougher.input.feed_rate rougher.input.feed_size rougher.input
                                           0.193767
                                                                                          -0 272741
 4471
                    1 216444
                                                                  -0.049684
                                                                                                                   -0.368005
                                                                                                                                           -0.606031
                                           -1.100730
                                                                  -0.354170
                                                                                          -2.171698
                                                                                                                   -0.050536
 8621
                    -0.654844
                                                                                                                                           -0.227404
 5910
                    0.712961
                                           0.788081
                                                                   0.145395
                                                                                          0.481891
                                                                                                                   -0.176740
                                                                                                                                           -0.567061
 7012
                    0.629188
                                           0.739351
                                                                   0.829257
                                                                                          0.665510
                                                                                                                   -0.311252
                                                                                                                                            -0.252994
 8363
                   -1.240525
                                           -0.985350
                                                                   -0.698040
                                                                                          -0.159647
                                                                                                                   0.332162
                                                                                                                                            -0.345366
5 rows × 52 columns
data_test:
       rougher.input.feed_au
                             rougher.input.feed_ag
                                                     rougher.input.feed_pb rougher.input.feed_sol rougher.input.feed_rate rougher.input.feed_size rougher.input
 3781
                    1.353402
                                           0.982176
                                                                   0.315215
                                                                                          -0.854309
                                                                                                                   -0.685387
                                                                                                                                            -0.675210
                                           -1.125227
                                                                  -2.898236
                                                                                          0.815251
                                                                                                                                            0.461862
                    -2.418251
                                                                                                                   0.119995
  716
                                           -0.661772
                                                                  -1.156902
                                                                                                                   0.274791
                                                                                                                                            -0.491283
 4597
                    -0.284068
                                                                                          0.244627
                   -1.408210
                                                                                                                                           -0.569547
 4178
                                           -1.041203
                                                                  -0.673409
                                                                                          -2.445829
                                                                                                                   -0.771668
 3547
                    0.080532
                                           -0.553554
                                                                   0.412291
                                                                                          -1.786583
                                                                                                                   -0.749856
                                                                                                                                            -0.831343
```

1

▶

5 rows × 52 columns

```
Константная модель
In [28]: smape rougher_const = smape(target_rougher, target_rougher.mean())
       smape_final_const = smape(target_final, target_final.mean())
       score_const = smape_final(smape_rougher_const, smape_final_const)
       print('Итоговое sMAPE константной модели:', score const)
Итоговое sMAPE константной модели: 9.109564280483204
Decision Tree (Дерево решений)
In [29]: best_score_DT = 1000
       best depth DT = 0
       for depth in tqdm(range(1,21)):
         model_decision_tree = DecisionTreeRegressor(random_state=r_state, max_depth=depth)
         smape r = abs(cross val score(model decision tree, features, target rougher, cv=5, scoring=smape score))
         smape f = abs(cross val score(model decision tree, features, target final, cv=5, scoring=smape score))
         final_score = smape_final(smape_r, smape_f).mean()
         if final score < best score DT:
            best_score_DT = final_score
            best depth DT = depth
       print()
       print('Лучший результат:')
       print('Глубина =', best_depth_DT, ', Итоговое sMAPE =', best_score_DT)
                       20/20 [03:07<00:00, 9.35s/it]
100%
Лучший результат:
Глубина = 2, Итоговое sMAPE = 8.779830899334977
Random Forest (Случайный лес)
In [30]: best_score_RF = 1000
       best_est_RF = 0
       best_depth_RF = 0
       for est in range(1, 101, 20):
         for depth in tqdm(range(1, 21, 5)):
            model random forest = RandomForestRegressor(random state=r state, n estimators=est, max depth=depth)
            smape r = abs(cross val score(model random forest, features, target rougher, cv=5, scoring=smape score))
            smape f = abs(cross val score(model random forest, features, target final, cv=5, scoring=smape score))
            final score = smape final(smape r, smape f).mean()
            if final score < best score RF:
              best_score_RF = final_score
              best_est_RF = est
              best_depth_RF = depth
       print()
       print('Лучший результат:')
       print('Количество деревьев =', best_est_RF,', глубина =', best_depth_RF, ', Итоговое sMAPE =', best_score_RF)
100%
                    4/4 [00:26<00:00, 6.60s/it]
                      4/4 [07:01<00:00, 105.36s/it]
100%
100%
                          4/4 [12:52<00:00, 193.21s/it]
100%
         4/4 [19:10<00:00, 287.71s/it]
                    4/4 [25:53<00:00, 388.50s/it]
100%
Количество деревьев = 61, глубина = 6, Итоговое sMAPE = 8.689526885467895
Linear Regression (Линейная регрессия)
In [31]: best score_LR = 1000
       best_fit_intercept_LR = "
       fit_intercept = ['True', 'False']
       for fit in tqdm(fit_intercept):
         model_linear_regression = LinearRegression(fit_intercept=fit_intercept)
         smape r = abs(cross val score(model linear regression, features, target rougher, cv=5, scoring=smape score))
         smape f = abs(cross val score(model linear regression, features, target final, cv=5, scoring=smape score))
         final_score = smape_final(smape_r, smape_f).mean()
         if final score < best score LR:
            best_score_LR = final_score
            best fit intercept LR = fit
       print()
       print('Лучший результат:')
       print('fit intercept =', best fit intercept LR, ', Итоговое sMAPE =', best score LR)
```

Лучший результат: fit_intercept = True , Итоговое sMAPE = 8.90180956927614

| 2/2 [00:01<00:00, 1.18it/s]

100%

Определим лучшую модель

```
In [32]: max_score = best_score_DT
       if max_score > best_score_RF:
         max score = best score RF
       if max_score > best_score_LR:
         max score = best score LR
       if max_score == best_score_DT:
         print('Лучшая модель: Decision Tree (Дерево решений), с гиперпараметром max_depth =', best_depth_DT)
       if max_score == best_score_RF:
         print('Лучшая модель: Random Forest (Случайный лес), с гиперпараметрами n_estimators =', best_est_RF,
           ', max depth =', best depth RF)
       if max_score == best_score_LR:
         print('Лучшая модель: Linear Regression (Линейная регрессия), с гиперпараметрами fit_intercept =', best_fit_intercept_LR)
       print('Итоговое sMAPE =', max score)
       if max score < score const:
         print('Итоговое sMAPE модели меньше константной, модель подходит для обучения')
       else:
         print('Итоговое sMAPE модели больше константной, модель не подходит для обучения')
Лучшая модель: Random Forest (Случайный лес), с гиперпараметрами n_estimators = 61, max_depth = 6
```

Тестирование модели

Итоговое sMAPE = 8.689526885467895

```
In [33]: model = RandomForestRegressor(random_state=r_state, n_estimators=best_est_RF, max_depth=best_depth_RF) model.fit(features, target_rougher) predictions_rougher_test = pd.Series(model.predict(data_test)) model.fit(features, target_final) predictions_final_test = pd.Series(model.predict(data_test)) smape_r = abs(smape(target_rougher_test, predictions_rougher_test)) smape_f = abs(smape(target_final_test, predictions_final_test)) final_score = smape_final(smape_r, smape_f) print('sMAPE на тестовой выборке:', final_score)
```

sMAPE на тестовой выборке: 6.334999771849558

• sMAPE на тестовой выборке меньше sMAPE лучшей модели

Итоговое sMAPE модели меньше константной, модель подходит для обучения

- sMAPE на тестовой выборке меньше константной
- Модель справилась с обучением

Общий вывод

Проведено исследование с целью подготовить прототип модели машинного обучения для компании «Цифры». Модель должна предсказать коэффициент восстановления золота из золотосодержащей руды.

Модель поможет оптимизировать производство, чтобы не запускать предприятие с убыточными характеристиками.

Данные с параметрами добычи и очистки получим из трех файлов:

- gold_recovery_train_new.csv обучающая выборка
- gold_recovery_test_new.csv тестовая выборка
- gold_recovery_full_new.csv исходные данные

Исследование проходило в три этапа:

- 1. Подготовка данных
 - Изучение данных:
 - "Обучающая выборка" (data_train):
 - Состоит из 14149 объектов
 - Имеет 87 признаков
 - Явные дубликаты отсутствуют
 - Имеет пропуски в большинстве признаков
 - В основном в районе 1% от общего количества данных
 - » В признаке "secondary_cleaner.output.tail_sol" (отвальные хвосты солей после вторичной очистки) пропусков больше 10%
 - "Тестовая выборка" (data_test):
 - Состоит из 5290 объектов
 - Имеет 53 признаков
 - Явные дубликаты отсутствуют
 - Имеет незначительные пропуски (все меньше 1% от общего количества данных)
 - "Исходные данные" (data_full):
 - Состоит из 19439 объектов (соответствует общей сумме объектов обучающей и тестовой выборок)
 - Имеет 87 признаков

- явные дуоликаты отсутствуют
- Имеет пропуски в большинстве признаков
 - В основном меньше 1% от общего количества данных
 - ∘ В признаке "secondary_cleaner.output.tail_sol" (отвальные хвосты солей после вторичной очистки) пропусков около 9%
- Рассчет эффективности rougher.output.recovery (MAE):
 - Средняя рассчитанная эффективность: 82.70450164550293
 - Средняя указанная эффективность: 82.70450164550293
 - MAE = 0.0000000000000097
 - Средняя абсолютная ошибка мала эффективность обогащения рассчитана правильно
- Анализ признаков, недоступных в тестовой выборке:
 - "rougher.output.recovery" и "final.output.recovery" целевые признаки для нашей модели
 - Остальные отсутствующие признаки содержат информацию:
 - Либо о параметрах продукта после всех этапов флотации и очисток
 - Либо расчетные характеристики
 - Данные признаки не нужны для тестирования нашей модели
- Предобработка данных:
 - Судя по признаку "date" данные обновляются каждый час
 - Соседние объекты в каждом признаке примерно одинаковы
 - Мы заполнили пропуски в обучающей и тестовой выборках методом "ffill" (нулевые значения заменяются данными из предыдущеей строки)
 - Исходные данные оставили без изменений

2. Анализ ланных

- Концентрация металлов (Au, Ag, Pb) на различных этапах очистки:
 - Концентрация золота увеличивается после каждого этапа очистки
 - Концентрация серебра увеличивается после флотации и резко уменьшается после второго этапа очистки
 - Концентрация свинца значительно увеличивается после флотации и незначительно увеличивается на оставшихся этапах
- Сравнение распределения размеров гранул сырья на обучающей и тестовой выборках:
 - Распределение размеров гранул на этапе флотации примерно одинаково на обеих выборках
 - Распределение размеров гранул на этапе очистки примерно одинаково на обеих выборках
- Исследование суммарной концентрации всех веществ на разных стадиях:
 - Суммарная концентрация всех веществ после этапа флотации увеличивается
 - После этапов очистки сокращается интервал распределения
 - В данных присутствовали аномалии в виде суммарной концентрации веществ равной нулю
 - Мы удалили аномалии из исходных данных и обеих выборок

3. Построение модели

- Для решения задачи мы использовали метрику качества sMAPE (англ. Symmetric Mean Absolute Percentage Error, «симметричное среднее абсолютное процентное отклонение»)
- Подготовка данных для обучения:
 - Удалили признак 'date' из тестовой и обучающей выборок, так как он не влияет на обучение
 - Стандартизировали численные признаки в выборках, так как в данных присутствовали значения в разных масштабах
- Поиск лучшей модели:
 - Итоговое sMAPE константной модели: 9.51200558511382
 - Лучшая модель:
 - Random Forest (Случайный лес), с гиперпараметрами:
 - on estimators = 81
 - max_depth = 6
 - Итоговое sMAPE = 8.715139034269836
 - Итоговое sMAPE лучшей модели меньше константной, модель подходит для обучения
 - Тестирование модели:
 - sMAPE на тестовой выборке: 7.290369716327468
 - sMAPE на тестовой выборке меньше sMAPE лучшей модели
 - sMAPE на тестовой выборке меньше константной
 - Модель справилась с обучением