Robust Weighting and Matching Techniques for Causal Inference in Observational Studies with Continuous Treatment

Universität Stuttgart

Ioan Scheffel

October 22, 2022

Contents

1	Chapter One Title	2
2	Convex Analysis	3
3	Random Matrix Inequality	4
4	Simple yet useful Calculations	5

Chapter 1 Chapter One Title

hello \mathbb{R}

Chapter 2

Convex Analysis

We begin by defining convex sets

Definition 1. A subset $\Omega \subseteq \mathbb{R}^n$ is called CONVEX if we have $\lambda x + (1-\lambda)y \in \Omega$ for all $x, y \in \Omega$ and $\lambda \in (0, 1)$.

Clearly, the line segment $[a, b] := \{\lambda a + (1 - \lambda)b \mid \lambda \in [0, 1]\}$ is contained in Ω for all $a, b \in \Omega$ if and only if Ω is a convex set.

Next we define convex functions.

The concept of convex functions is closely related to convex sets.

The line segment between two points on the graph of a convex function lies on or above and does not intersect the graph.

In other words: The area above the graph of a convex function f is a convex set, i.e. the *epigraph* $\operatorname{epi}(f) := \{(x, \alpha) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \leq \alpha\}$ is a convex set in \mathbb{R}^{n+1} .

Often an equivalent characterisation of convex functions is more useful.

Theorem 1. The convexity of a function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ on \mathbb{R}^n is equivalent to the following statement:

For all $x, y \in \mathbb{R}^n$ and $\lambda \in (0, 1)$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{2.1}$$

Chapter 3

Random Matrix Inequality

Theorem 2. Let $(A_k)_{1 \leq k \leq n} \subseteq \mathbb{R}^{d_1 \times d_2}$ be a finite sequence of independent, random matrices. Assume that

$$\mathbb{E}(A_k) = 0 \quad and \quad ||A_k|| \le L \quad for \ each \quad k \in \{1, \dots, n\}.$$
 (3.1)

Introduce the random matrix

$$S := \sum_{k=1}^{n} A_k. (3.2)$$

Let v(S) be the matrix variance statistic of the sum:

$$v(S) := \max \left\{ \left\| \mathbb{E}(SS^T) \right\|, \left\| \mathbb{E}(S^TS) \right\| \right\}$$
(3.3)

$$= \max \left\{ \left\| \sum_{k=1}^{n} \mathbb{E}(A_k A_k^T) \right\|, \left\| \sum_{k=1}^{n} \mathbb{E}(A_k^T A_k) \right\| \right\}. \tag{3.4}$$

Then

$$\mathbb{E} \|S\| \le \sqrt{2v(S)\log(d_1 + d_2)} + \frac{1}{3}L\log(d_1 + d_2). \tag{3.5}$$

Furthermore, for all $t \geq 0$,

$$\mathbb{P}(\|S\| \ge t) \ge (d_1 + d_2) \exp\left(\frac{-t^2/2}{v(S) + Lt/3}\right). \tag{3.6}$$

Chapter 4

Simple yet useful Calculations

Proposition 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous such that a minimum x^* exists and is unique. Then for all $y \in \mathbb{R}^n$ and C > 0 it follows

$$\inf_{\|\Delta\| = C} f(y + \Delta) - f(y) > 0 \qquad \Rightarrow \qquad \|x^* - y\| \le C. \tag{4.1}$$

Proof. Since $\mathcal{C} := \{ \|\Delta\| \leq C \}$ is compact and

$$f(x^*) \le f(y) < \inf_{\|\Delta\| = C} f(y + \Delta)$$

the continious function $f(y+\cdot)$ has a minimum in $\overset{\circ}{\mathcal{C}}:=\{\|\Delta\|< C\}$. Since x^* is the unique minimum of f there exists $\Delta^*\in \overset{\circ}{\mathcal{C}}$ such that $x^*-y=\Delta^*$. We conclude that $\|x^*-y\|\leq C$.

Proposition 2. Let $f \in C^2(\mathbb{R})$. Then for all $a, x, \Delta \in \mathbb{R}^n$ there exist $\xi_1, \xi_2 \in (0,1)$ such that it holds

$$f(a^T(x+\Delta)) - f(a^Tx) = f'(a^Tx) a^Tx + f''(a^T(x+\xi_1\xi_2\Delta)) \Delta^T A \Delta, \quad (4.2)$$
where $A := aa^T \in \mathbb{R}^{n \times n}$.