

Boosting Power System Operation Economics via Closed-Loop Predict-and-Optimize

Xianbang Chen, Ph.D. Candidate Lei Wu, Ph.D., FIEEE

Stevens Institute of Technology

For 2023 IEEE PES Grid Edge Technologies Conference & Exposition

Problem Statement: Operations in Open-Loop Predict-then-Optimize (O-PO) Framework

Operators' Goal

Minimum
Operation Cost

Economic Flaws in O-PO

- Redundant reserve requirement
- More accurate prediction may NOT lead to lower operation cost as systems are nonlinear

Presented Solution: Operating in Closed-Loop Predict-and-Optimize Framework

Open-Loop Predict-then-Optimize (O-PO)

- Accuracy-Oriented:
 Prediction pursues statistical accuracy
- Open-Loop:
 Prediction is myopic to operation cost

Closed-Loop Predict-and-Optimize (C-PO)

- Cost-Oriented:Prediction pursues lower operation cost
- Closed-Loop:
 Operation cost is fed back to prediction

Results on 4 Systems with Real-World Operation Data

- Effective Cost-Oriented Learning: 0.82%-4.44% improvement on cost
- Compatibility: Compatible with *industry practice*
- Applicable to Large-Size Systems: Equipped with an accelerated algorithm

Future Implementations

 Boosting profit for Portland General Electric's hydropower projects

Sponsors and Partners:

National Science Foundation (USA)

Department of Energy (USA)

Portland General Electric (USA)

Public Service Electric & Gas (USA)