

Jurusan Teknologi Informasi Politeknik Negeri Malang **Mata Kuliah Data Warehouse Kuis 1**

Nama : Lyra Faiqah Bilqis

Nomor Urut : 19 / 2A SIB

1. Tuliskan perbandingan star schema dan snowflake schema pada tabel berikut:

	Star Schema	Snowflake Schema
Normalisasi	Denormalisasi (menggunakan	Normalisasi (tabel dimensi
	tabel dimensi dengan data	terpecah menjadi beberapa
	yang lebih ringkas)	tabel kecil)
Kompleksitas desain/skema	Lebih sederhana karena tabel	Lebih kompleks karena tabel
	dimensi langsung terhubung	dimensi memiliki sub-tabel
	ke tabel fakta	untuk normalisasi
Kompleksitas query	Lebih mudah, karena tabel dimensi tidak banyak terpecah	Lebih kompleks karena
		memerlukan lebih banyak join
		antar tabel
Performa query	Lebih cepat karena lebih sedikit join yang diperlukan	Lebih lambat karena lebih
		banyak join antar tabel
		dimensi
Storage	Menggunakan lebih banyak	Menggunakan lebih sedikit
	ruang karena adanya data	ruang karena data lebih
	redundan	terstruktur dan tidak redundan
Integritas data	Rentan terhadap inkonsistensi	Lebih baik dalam menjaga
	data karena adanya duplikasi	integritas data karena
	data di tabel dimensi	mengikuti prinsip normalisasi
Maintenance (pengisian data dengan proses ETL dari OLTP)	Lebih mudah karena data tidak banyak terpecah	Lebih sulit karena
		membutuhkan banyak tahap
		transformasi untuk
		memastikan konsistensi antar
		tabel

2. Gambar berikut menunjukkan skema OLTP database dari sebuah sistem informasi ekspedisi. Buatlah data warehouse dalam star schema yang digunakan sebagai dasar analisis performa ekspedisi.

1. Identifikasi Tabel Fakta

Pengiriman menjadi tabel fakta utama karena berisi informasi penting seperti:

- TanggalPengiriman
- TanggalSampaiPerkiraan
- TanggalSampaiAktual
- NamaPelanggan
- Berat
- AlamatAsal
- AlamatTujuan
- KurirID
- StatusPengirimanID
- PembayaranID
- PengirimanID
- LokasiID

2. Identifikasi Tabel Dimensi

Tabel dimensi memberikan konteks pada data di tabel fakta. Dari skema OLTP, kita bisa membuat tabel dimensi sebagai berikut:

a) Dim	ensi Lokasi (berdasarkan kecamatan, kota, provinsi)
•	LokasiID (Primary Key)
•	Kecamatan_Asal

- Kecamatan_Tujuan
- Kota
- Provinsi
- Nama
- b) Dimensi Kurir (untuk analisis berdasarkan kurir)
 - KurirID (Primary Key)
 - Nama
 - TipeKendaraan
 - NoHP
- c) Dimensi Status Pengiriman (untuk analisis berdasarkan status pengiriman)
 - StatusPengirimanID (Primary Key)
 - Nama
- d) Dimensi Pembayaran (untuk analisis metode dan status pembayaran)
 - PembayaranID (Primary Key)
 - Total
 - Tipe_Pembayaran
 - Status_Pembayaran
- 3. Buat Skema Star Schema

