Clima e Consumo HVAC

Integração de Sistemas de Informação

Enrique Rodrigues $N^{\circ}28602$

Instituto Politécnico do Cávado e do Ave

6 de outubro de 2025

$$T_{\text{interior}}(t) = T_{\text{anterior}} + \alpha \cdot (T_{\text{exterior}} - T_{\text{anterior}}) + \beta \cdot (T_{\text{conforto}} - T_{\text{anterior}}) + \epsilon$$

Onde:

- $T_{\text{interior}}(t)$ = temperatura interior no instante atual
- T_{anterior} = temperatura interior no instante anterior
- T_{exterior} = temperatura exterior
- T_{conforto} = temperatura de conforto desejada (ex: 21°C)
- α = coeficiente de isolamento do edifício
- β = coeficiente de correção do HVAC
- ϵ = pequeno ruído aleatório

$$P_{\text{HVAC}} = \max \left(20, 50 + 5 \cdot |T_{\text{conforto}} - T_{\text{exterior}}| + 20 \cdot |T_{\text{interior}} - T_{\text{conforto}}| + \eta \right)$$

Onde:

- *P*_{HVAC} = consumo de energia do HVAC (W)
- $|T_{conforto} T_{exterior}|$ = esforço do HVAC devido à temperatura exterior
- $|T_{\text{interior}} T_{\text{conforto}}|$ = esforço do HVAC devido à diferença da temperatura interior
- 50 = carga base do HVAC (W)
- 5, 20 = coeficientes de escalamento do esforço do HVAC
- η = pequeno ruído aleatório
- max(20,·) garante um consumo mínimo de 20 W

Linha CSV = (timestamp, id_dispositivo, sala, sensor, valor, T_{exterior})

$$id_dispositivo = sensor + {''}_{''} + nome_sala_limpo$$

$$\begin{cases} T_{\text{interior}} = T_{\text{anterior}} + \alpha (T_{\text{exterior}} - T_{\text{anterior}}) + \beta (T_{\text{conforto}} - T_{\text{anterior}}) + \epsilon \\ P_{\text{HVAC}} = \max \left(20, 50 + 5 |T_{\text{conforto}} - T_{\text{exterior}}| + 20 |T_{\text{interior}} - T_{\text{conforto}}| + \eta \right) \end{cases}$$