RTL to GDS: 8-Bit Counter

Design

The module is an 8-bit counter with a synchronous reset and an 'up_down' input to determine if it will be an up counter or a down counter. The technology libraries used are FreePDK45 lib v1.0 typical scan.lib and FreePDK45 lib v1.0.lef.

Simulation

Testbench Output

The simulation of the verilog code works as expected.

Coverage Report

The coverage is not 100% because the test bench only tests counting up to 10 (4 bits), so the upper 4 bits are left untested.

Synthesis

The timing intent results are as expected.

```
Lint summary
Unconnected/logic driven clocks
                                                                  0
Sequential data pins driven by a clock signal
Sequential clock pins without clock waveform
Sequential clock pins with multiple clock waveforms
Generated clocks without clock waveform
Generated clocks with incompatible options
Generated clocks with multi-master clock
Paths constrained with different clocks
Loop-breaking cells for combinational feedback
                                                                  0
Nets with multiple drivers
Timing exceptions with no effect
Suspicious multi_cycle exceptions
Pins/ports with conflicting case constants
Inputs without clocked external delays
Outputs without clocked external delays
Inputs without external driver/transition
Outputs without external load
Exceptions with invalid timing start-/endpoints
                                                 Total:
```

The post-synthesis power report is as follows:

Instance: /cour	nter8				
Power Unit: W					
PDB Frames: /st	im#0/frame#0				
Category	Leakage	Internal	Switching	Total	Row%
memory	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00%
register	2.45672e-08	1.61905e-06	2.11981e-07	1.85560e-06	57.56%
latch	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00%
logic	2.55873e-08	6.29439e-07	3.86522e-07	1.04155e-06	32.31%
bbox	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00%
clock	0.00000e+00	0.00000e+00	3.26400e-07	3.26400e-07	10.13%
pad	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00%
pm	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00%
Subtotal	5.01545e-08	2.24849e-06	9.24903e-07	3.22355e-06	100.00%
Percentage	1.56%	69.75%	28.69%	100.00%	100.00%
l					

The post-synthesis area report is as follows:

Gate	Instances	Area	Library
A0I21_X1	2	2.128	FreePDK45_lib_v1.0
DFF X1	7	35.378	FreePDK45 lib v1.0
INV X2	3	1.596	FreePDK45 lib v1.0
INV X4	4	2.128	FreePDK45 lib v1.0
NAND2 X1	5	3.990	FreePDK45 lib v1.0
NOR2 X1	5	3.990	FreePDK45 lib v1.0
NOR2 X2	1	0.798	FreePDK45 lib v1.0
0AI21 X1	3	3.192	FreePDK45 lib v1.0
0AI22 X1	6	7.980	FreePDK45 lib v1.0
0R2 X1	1	1.064	FreePDK45 lib v1.0
0R2 X2	4	4.256	FreePDK45 lib v1.0
SDFF X2	1	6.916	FreePDK45 lib v1.0
X0R2_X2	7	13.034	FreePDK45_lib_v1.0
total	49	86.450	

Туре	Instances	Area	Area %
comment in 1		42.294	48.9
sequential inverter	_	3.724	46.9
logic	-	40.432	46.8
physical cells	0	0.000	0.0
total	49	86.450	100.0

Logical Equivalence Check

The verilog code and the netlist are equivalent.

Static Timing Analysis (before DFT)

Schematic

The pre-DFT schematic is as follows:

Graph Based Analysis

The setup and hold slacks are positive.

```
Path 1: MET Setup Check with Pin count_reg[7]/CK
Endpoint: count reg[7]/D (^) checked with leading edge of 'clk'
Beginpoint: count_reg[0]/Q (^) triggered by leading edge of 'clk'
Path Groups: {clk}
Other End Arrival Time
- Setup
                                   0.432
+ Phase Shift
                                  10.000

    Uncertainty

                                   0.020
= Required Time
- Arrival Time
                                  10.048
                                   5.156
= Slack Time
     Clock Rise Edge
     + Clock Network Latency (Ideal) 0.500
     = Beginpoint Arrival Time 0.500
       ----
      Instance Arc Cell Delay Arrival Required
                                                Time Time
      count_reg[0] CK ^ - - 0.500 5.392
count_reg[0] CK ^ -> Q ^ DFF_X1 1.614 2.114 7.006
                A1 ^ -> ZN V NAND2 X1 0.169 2.283 7.175
A2 V -> ZN V 0R2 X1 0.396 2.679 7.571
A1 V -> ZN V 0R2 X2 0.384 3.063 7.955
      g804
      g797
                    g793
                                                                  8.340
      g787
                                                                  8.724

      g779
      A1 v -> ZN v OR2 X2
      0.363 4.196
      9.088

      g772
      B v -> Z v XOR2 X2
      0.367 4.562
      9.454

      g767
      B1 v -> ZN ^ OAI2Z X1
      0.594 5.156
      10.048

      count_reg[7]
      D ^ DFF_X1
      0.000 5.156
      10.048

Path 1: MET Hold Check with Pin count reg[0]/CK
Endpoint: count_reg[0]/D (v) checked with leading edge of 'clk'
Beginpoint: reset (^) triggered by leading edge of 'clk'
Path Groups: {clk}
Other End Arrival Time
+ Hold
                                    0.073
+ Phase Shift
                                    0.000
+ Uncertainty
                                   0.020
= Required Time
                                   0.593
  Arrival Time
                                    0.937
                                   0.344
  Slack Time
     Clock Rise Edge
                                                0.000
     + Input Delay
                                               0.300
     + Drive Adjustment
                                                0.057
     + Source Insertion Delay 0.500
= Beginpoint Arrival Time 0.857
        .....
       Instance Arc Cell Delay Arrival Required
       .....
       - reset ^ - - 0.857 0.513
g810 A1 ^ -> ZN v NOR2_X2 0.080 0.937 0.593
count_reg[0] D v DFF_X1 0.000 0.937 0.593
```

There are no untested paths and no timing violations.

8 .0 1 .6 1	(100%) (100%) 0 (100%) 6 (100%) 0 (100%)	0 0 0	(0%) (0%) (0%) (0%)	0 0	(0%) (0%) (0%) (0%)	
.0 1 .6 1	0 (100%) 6 (100%)	0 0	(0%)	0	(0%)	
.6 1	6 (100%)	0				
			(0%)	0	(0%)	
.0 1	0 (100%)	Θ				
			(0%)	0	(0%)	
	TIMING	CHECK (COVERAGE			
		TIMING		TIMING CHECK COVERAGE		

Path Based Analysis

The GBA and PBA results are in agreement.

```
Path 1: MET Setup Check with Pin count reg[7]/CK
Endpoint: count_reg[7]/D (^) checked with leading edge of 'clk'
Beginpoint: count_reg[0]/Q (^) triggered by leading edge of 'clk'
Path Groups: {clk}
Retime Analysis { Data Path-Slew }
Other End Arrival Time 0.500
Setup
                                 0.424
+ Phase Shift
                              10.000

    Uncertainty

                               0.020
= Required Time
- Arrival Time
                              10.056
+ Clock Network Latency (Ideal) 0.500
     = Beginpoint Arrival Time 0.500
      Instance Arc Cell Retime Arrival Required Delay Time Time

      count_reg[0]
      CK ^ -> Q ^ DFF_X1
      1.614
      2.114
      7.014

      g811
      - NAND2_X1
      0.000
      2.114
      7.014

      g811
      Al ^ -> ZN v
      NAND2_X1
      0.169
      2.283
      7.184

      g804
      - 0R2_X1
      0.000
      2.283
      7.184

                                 OR2_X1 0.000 2.283 7.184
                  A2 v -> ZN v 0R2_X1 0.396 2.679
      g804
                                                             7.580
                  - OR2 X2 0.000 2.679
A1 v -> ZN v OR2 X2 0.384 3.063
- OR2 X2 0.000 3.063
      g797
      g797
                                                             7.964
      g793
                  A1 v -> ZN v OR2_X2 0.385 3.448 8.348
      q793
                   - 0R2_X2 0.000 3.448 8.348
A1 v -> ZN v 0R2_X2 0.385 3.832 8.733
      g787
      g787
                  A1 v -> ZN v OR2 X2
                                  - npa-va-
                                                      -2-022--
Path 1: MET Hold Check with Pin count reg[0]/CK
Endpoint: count_reg[0]/D (v) checked with leading edge of 'clk'
                          (^) triggered by leading edge of 'clk'
Beginpoint: reset
Path Groups: {clk}
Other End Arrival Time
                                   0.500
+ Hold
                                    0.073
+ Phase Shift
                                   0.000
                                   0.020

    Uncertainty

= Required Time
                                   0.593
  Arrival Time
                                   0.937
                                   0.344
  Slack Time
     Clock Rise Edge
                                               0.000
                                               0.300
     + Input Delay
     + Drive Adjustment
     + Source Insertion Delay 0.500
= Beginpoint Arrival Time 0.857
       -----
       Instance Arc Cell Delay Arrival Required Time Time
      - reset ^ - - 0.857 0.513
g810 A1 ^ -> ZN v NOR2_X2 0.080 0.937 0.593
count_reg[0] D v DFF_X1 0.000 0.937 0.593
```

Check Type	Check	_	Violated		
ExternalDelay (Early)	8			0 (0%)	
ExternalDelay (Late)	8	8 (100%)	0 (0%)	0 (0%)	
Hold	10	10 (100%)	0 (0%)	0 (0%)	
PulseWidth	16	16 (100%)	0 (0%)	0 (0%)	
Setup	10	10 (100%)	0 (0%)	0 (0%)	
AILS			HECK COVERAGE		
Pin son	Referenc	e Pin	Check Type	S	lac

Design For Test

All 8 flip-flops in the design pass the DFT rule check and are mapped to scan cells.

```
Detected 0 DFT rule violation(s)
       Summary of check dft rules
       **********
       Number of usable scan cells: 4
Clock Rule Violations:
         Internally driven clock net: 0
            Tied constant clock net: 0
                 Undriven clock net: 0
       Conflicting async & clock net: 0
                   Misc. clock net: 0
Async. set/reset Rule Violations:
........
       Internally driven async net: 0
            Tied active async net: 0
               Undriven async net: 0
                  Misc. async net: 0
  Total number of DFT violations: 0
Total number of Test Clock Domains: 1
 DFT Test Clock Domain: clk
       Test Clock 'clk' (Positive edge) has 8 registers
Number of user specified non-Scan registers: 0
   Number of registers that fail DFT rules: 0
   Number of registers that pass DFT rules:
Percentage of total registers that are scannable: 100%
Scan mapping status report
_____
   Scan mapping: converting flip-flops that pass TDRC.
   Scan mapping done: 8 flip-flops mapped to scan.
   Category
                                       Number Percentage
                                       8
                                                    100.00%
   Scan flip-flops mapped for DFT
   Flip-flops not mapped for DFT
        flip-flops not scan replaceable 0 0.00% flip-flops not targeted for DFT 0 0.00%
     Totals 8 100.00%
```

Static Timing Analysis (after DFT)

Schematic

In the post-DFT schematic, scan cells can be seen.

Graph Based Analysis

The setup and hold slacks are positive.

```
Path 1: MET Setup Check with Pin count reg[7]/CK
Endpoint: count reg[7]/D (^) checked with leading edge of 'clk'
Beginpoint: count reg[0]/Q (^) triggered by leading edge of 'clk'
Path Groups: {clk}
Other End Arrival Time
- Setup
                                        0.695
+ Phase Shift
                                     10.000
                                      0.020

    Uncertainty

                                      9.785
= Required Time
- Arrival Time
                                        4.751
      ack Time 5.033
Clock Rise Edge 0.000
= Slack Time
      + Clock Network Latency (Ideal) 0.500
      = Beginpoint Arrival Time 0.500
       -----
       Instance Arc Cell Delay Arrival Required
Time Time
       count_reg[0] CK ^ - - 0.500 5.533
count_reg[0] CK ^ -> Q ^ SDFF_X2 1.179 1.679 6.712

    count_reg[0]
    CK ^ -> Q ^ SDFF_X2
    1.179
    1.679
    6.712

    g338
    A1 ^ -> ZN v NAND2_X1
    0.191
    1.870
    6.904

    g631
    A2 v -> ZN ^ NOR2_X1
    0.329
    2.199
    7.232

    g627
    A1 ^ -> ZN v NAND2_X1
    0.197
    2.395
    7.429

    g619
    A1 v -> ZN v OR2_X2
    0.402
    2.798
    7.831

    g613
    A1 v -> ZN v OR2_X2
    0.363
    3.182
    8.215

    g606
    A1 v -> ZN v OR2_X2
    0.363
    3.545
    8.579

       g599 B v -> Z v XOR2_X2 0.367 3.912 8.945 g594 B1 v -> ZN ^ OAI22_X1 0.839 4.751 9.785 count_reg[7] D ^ SDFF_X2 0.000 4.751 9.785
Path 1: MET Hold Check with Pin count reg[0]/CK
Endpoint: count_reg[0]/SI (^) checked with leading edge of 'clk'
Beginpoint: DFT_sdi_1 (^) triggered by leading edge of 'clk'
Path Groups: {clk}
Path Groups. 1011,
Other End Arrival Time
                                          0.500
+ Hold
                                           0.015
+ Phase Shift
                                           0.000
+ Uncertainty
                                          0.020
= Required Time
Arrival Time
                                          0.535
                                          0.839
   Slack Time
                                          0.304
       Clock Rise Edge
                                                        0.000
       + Input Delay
       + Input Delay
+ Drive Adjustment
+ Source Insertion Delay
= Beginpoint Arrival Time

0.309
0.500
0.839
         -----
        Instance Arc Cell Delay Arrival Required
                                                         Time Time
        - DFT_sdi_1 ^ - - 0.839 0.535 count_reg[0] SI ^ SDFF_X2 0.000 0.839 0.535
```

There are no untested paths and no timing violations.

	TIMING CH	IECK COVERAGE S	UMMARY		
Check Type	No. of Checks	Met	Violated	Untested	
ExternalDelay (Early)	10	10 (100%)	0 (0%)	0 (0%)	
ExternalDelay (Late)	10	10 (100%)	0 (0%)	0 (0%)	
Hold	24	24 (100%)	0 (0%)	0 (0%)	
PulseWidth	16	16 (100%)	0 (0%)	0 (0%)	
Setup	24	24 (100%)	0 (0%)	0 (0%)	
AILS		TIMING C	HECK COVERAGE		
Pin Son	Reference	Pin	Check Type		Slad

Path Based Analysis

The GBA and PBA results are in agreement.

```
Path 1: MET Setup Check with Pin count reg[7]/CK
Endpoint: count_reg[7]/D (^) checked with leading edge of 'clk'
Beginpoint: count_reg[0]/Q (^) triggered by leading edge of 'clk'
Path Groups: {clk}
Retime Analysis { Data Path-Slew }
Other End Arrival Time 0.500
+ Phase Shift

    Uncertainty

= Required Time
                          9.790
- Arrival Time
                          4.751
= Slack Time
                          5.039
= Slack Time(original) 5.033
   Clock Rise Edge 0.000
+ Clock Network Latency (Ideal) 0.500
    = Beginpoint Arrival Time 0.500
     Instance Arc Cell Retime Arrival Required
                                    Delay Time Time
     1.679
                    NAND2_X1 0.000
                                           1.679
                A1 ^ -> ZN v NAND2_X1 0.191
     g338
                                           1.870
     g631
                           NOR2_X1
                                    0.000
                                           1.870
                                                   6.909
              A2 v -> ZN ^ NOR2_X1
                                    0.329
     g631
                                           2.199
               - NAND2_X1 0.000
A1 ^ -> ZN v NAND2_X1 0.196
     g627
                                           2.199
     g627
                                           2.395
                                                   7.434
              - OR2_X2 0.000
A1 v -> ZN v OR2_X2 0.402
     a619
                                           2.395
                                                   7.434
     q619
                                                   7.836
                           0R2_X2
0R2_X2
                                    0.000
     a613
     - 0R2_X2
g613 A1 v -> ZN v 0R2_X2
                                    0.384
                                           3.182
Path 1: MET Hold Check with Pin count reg[0]/CK
Endpoint: count_reg[0]/SI (^) checked with leading edge of 'clk' Beginpoint: DFT_sdi_1 (^) triggered by leading edge of 'clk'
Path Groups: {clk}
Other End Arrival Time
                                 0.500
+ Hold
                                 0.015
+ Phase Shift
                                 0.000
+ Uncertainty
                                 0.020
                                0.535
= Required Time
  Arrival Time
                                 0.839
  Slack Time
                                 0.304
     Clock Rise Edge
                                             0.000
     + Input Delay
                                            0.300
     + Drive Adjustment
                                            0.039
     + Source Insertion Delay
                                            0.500
     = Beginpoint Arrival Time 0.839
      -----
      Instance Arc Cell Delay Arrival Required
      - DFT_sdi_1 ^ - - 0.839 0.535 count_reg[0] SI ^ SDFF_X2 0.000 0.839 0.535
```

Check Type	No. of Checks	Met	Violated	Untested
ExternalDelay (Early)	10	10 (100%)	0 (0%)	0 (0%)
ExternalDelay (Late)	10	10 (100%)	0 (0%)	0 (0%)
Hold	24	24 (100%)	0 (0%)	0 (0%)
PulseWidth	16	16 (100%)	0 (0%)	0 (0%)
Setup	24	24 (100%)	0 (0%)	0 (0%)
		TIMING C	HECK COVERAGE	
AILS				
Pin	Reference	Pin	Check Type	Sla

Placement and Routing

Utilization factor 0.8 is used.

Adding Rings

Adding Stripes

Global Routing

Placement

Clock Tree Synthesis

Detailed Routing

Issues and Learnings

- In verilog code, arrays are not synthesizable and should be replaced with address and data ports.
- Asynchronous inputs should not be constrained with respect to the clock.
- Using root and instance attributes to avoid optimizing parts of the design.
- Correcting unconnected pins in a design.
- To perform PBA instead of GBA, add flag -retime path_slew_propagation to report timing command.
- A new constraint file needs to be created for DFT to include the new test mode and shift enable ports.
- DFT (in my version of the tool) requires the command replace_scan before connect_scan_chains. Otherwise, flip-flops are marked as non-scannable. Also, DFT only works for FreePDK45 lib v1.0 typical scan.lib and not for slow.lib (in my case).
- The LEF file (FreePDK45_lib_v1.0.lef) compatible with FreePDK45_lib_v1.0_typical_scan.lib supports only M1-M4 layers (as opposed to gsclib045_tech.lef, which supports more than 9 layers). Because of this, there are 12 DRC violations in the final design.