Lagrangian Neural Networks

Machine Learning Principles and Applications for Physics

Mathis Batard-Rinaudo, Noé Daniel, Richard Pateau Project defense

21 January 2025

Why? Objectives.

What are we trying to do?

- Enhance basic NN for physical problems with prior physics knowledge.
- Keep the physics in the predictions (conserved quantity, time fidelity...)

A first example : the simple pendulum

• Pretty simple ODE, easy for small angles

$$\ddot{ heta} + \omega_0^2 \sin heta = 0 \qquad \omega_0 = \sqrt{\frac{g}{L}} \qquad (1)$$

- Conservative system : $\partial_t E = 0$
- Response of the system is mainly cos and sin
 —> easy to fit for a baseline NN.

Create a trajectory with a NN?

Figure: Steps to recreate a trajectory starting from initial conditions

A first solution: a baseline NN

Objective

Give $(\theta(t_i), \dot{\theta}(t_i))$ and predict $\ddot{\theta}(t_i)$.

Training process

- Choose $y_0 = (\theta_0, \dot{\theta}_0)$ and generate associated pendulum trajectory.
- Choose a time interval δt and generate $(\theta(t=\delta t),\dot{\theta}(t=\delta t))$ and $(\ddot{\theta}(t=\delta t))$.
 - Integrate (1) between 0 and δt to generate $\theta(\delta t)$, $\dot{\theta}(\delta t)$ and use (1) to obtain $\ddot{\theta}(\delta t)$.
- Repeat this procedure N times for random y_0 's.
- Generate training data
 - x_{train} : all the couples $(\theta, \dot{\theta})$ generated.
 - y_{train} : all the values $(\ddot{\theta})$ generated.

$$egin{aligned} x_{\mathsf{train}} &= \left\{ (heta^1, \dot{ heta}^1), \dots, (heta^N, \dot{ heta}^N)
ight\} \ y_{\mathsf{train}} &= \left\{ \ddot{ heta}^1, \dots, \ddot{ heta}^N
ight\} \end{aligned}$$

The NN structure

Figure: Structure of the Baseline used for Simple Pendulum prediction

Figure: Training of the Baseline NN

Results

Initial conditions: $(\theta(t=0), \omega(t=0)) = (\pi/4, 0.3)$

Trajectory reconstruction time \sim 2 min for $\mathrm{d}t=0.002$ s and $N_{\text{steps}}=2000$.

Trajectories are well reproduced but energy is not conserved!

A more chaotic system?

Question

We've seen that the NN works well on a simple harmonic system. Would it work as well for more chaotic systems?

Try on a new system : the double pendulum.

$$T = \frac{1}{2}m_1(l_1\omega_1)^2 + \frac{1}{2}m_2\left((l_1\omega_1)^2 + (l_2\omega_2)^2 + 2l_1l_2\omega_1\omega_2\cos(\theta_1 - \theta_2)\right)$$

$$V = -m_1gl_1\cos\theta_1 - m_2gl_2(l_1\cos(\theta_1) + l_2\cos\theta_2)$$

$$\mathcal{L} = T - V$$

$$\frac{\partial L}{\partial a} - \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{a}}\right) = 0 \quad \text{(Euler-Lagrange)}$$

Analytical computation

$$\alpha_{1}(\theta_{1}, \theta_{2}) := \frac{l_{2}}{l_{1}} \left(\frac{m_{2}}{m_{1} + m_{2}} \right) \cos(\theta_{1} - \theta_{2}) \qquad \alpha_{2}(\theta_{1}, \theta_{2}) := \frac{l_{1}}{l_{2}} \cos(\theta_{1} - \theta_{2})$$

$$f_{1}(\theta_{1}, \theta_{2}, \dot{\theta}_{1}, \dot{\theta}_{2}) := -\frac{l_{2}}{l_{1}} \left(\frac{m_{2}}{m_{1} + m_{2}} \right) \dot{\theta}_{2}^{2} \sin(\theta_{1} - \theta_{2}) - \frac{g}{l_{1}} \sin \theta_{1}$$

$$f_{2}(\theta_{1}, \theta_{2}, \dot{\theta}_{1}, \dot{\theta}_{2}) := \frac{l_{1}}{l_{2}} \dot{\theta}_{1}^{2} \sin(\theta_{1} - \theta_{2}) - \frac{g}{l_{2}} \sin \theta_{2}$$

$$g_{1} := \frac{f_{1} - \alpha_{1} f_{2}}{1 - \alpha_{1} \alpha_{2}} \qquad g_{2} := \frac{-\alpha_{2} f_{1} + f_{2}}{1 - \alpha_{1} \alpha_{2}}$$

Using Euler-Lagrange:

$$\frac{d}{dt} \begin{pmatrix} \theta_1 \\ \theta_2 \\ \omega_1 \\ \omega_2 \end{pmatrix} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ g_1(\theta_1, \theta_2, \omega_1, \omega_2) \\ g_2(\theta_1, \theta_2, \omega_1, \omega_2) \end{pmatrix} \quad \longleftarrow \text{Necessary to create training data}$$

A new paradigm: training a Lagrangian

Figure: Training method of a LNN vs Baseline NN

Lagrangian Neural Network

How to learn Lagrangians in Machine Learning?

- 1. Obtain data from a physical system
- 2. Find the Lagrangian parametrised by a NN
- 3. Apply the Euler-Lagrange constraint
- 4. Backpropagate through the constraint to train a parametric model that approximates the true Lagrangian to optimize the weight of the parametric model

How to apply the Euler Lagrange Constraint?

$$\begin{split} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} &= 0 \\ \frac{d}{dt} \nabla_{\dot{q}} L - \nabla_{\mathbf{q}} L &= 0 \\ \\ \frac{d}{dt} \nabla_{\dot{\mathbf{q}}} L &= \left(\frac{d}{dt} \nabla_{\dot{\mathbf{q}}} L \right) = \left(\nabla_{\dot{\mathbf{q}}} \nabla_{\dot{\mathbf{q}}} L \right) \dot{\mathbf{q}} + \left(\nabla_{\mathbf{q}} \nabla_{\dot{\mathbf{q}}} L \right) \ddot{\mathbf{q}} \\ \left(\nabla_{\dot{\mathbf{q}}} \nabla_{\dot{\mathbf{q}}} L \right) \ddot{\mathbf{q}} + \left(\nabla_{\mathbf{q}} \nabla_{\dot{\mathbf{q}}} L \right) \dot{\mathbf{q}} &= \nabla_{\mathbf{q}} L \\ \\ \ddot{\mathbf{q}} &= \left(\nabla_{\dot{\mathbf{q}}} \nabla_{\dot{\mathbf{q}}}^T L \right)^{-1} \left[\nabla_{\mathbf{q}} L - \left(\nabla_{\mathbf{q}} \nabla_{\dot{\mathbf{q}}}^T L \right) \dot{\mathbf{q}} \right] \\ Equation (2) \ easy \ to \ implement \ in \ Jax. \end{split}$$

(2)

What is Particular in the LNN ?- The Lost function

Baseline : trained with the classical MSE : $\|\ddot{\theta}_{\mathsf{pred}} - \ddot{\theta}_{\mathsf{target}}\|^2$

LNN: We are looking for the Lagrangian, but we don't have any target value.

2x 128 SoftPlus for LNN

What's the training data?

Sample from a unique chaotic trajectory!

Figure: Left. Smooth training trajectory. Right. Chaotic training trajectory.

Animation - Double pendulum.

Comparaison Baseline vs LNN

Initial conditions:

$$\theta_1(t=0) = \pi/4$$
 $\theta_2(t=0) = \pi/2$
 $\omega_1(t=0) = 0$
 $\omega_2(t=0) = 0$

- Reconstruction time for Baseline ~ 1 min 30s.
- Reconstruction time for LNN $\sim 3s$

Both have a good accuracy but LNN has more fidelity

Checking accuracy of the NNs for smooth trajs

(a) Trajectories over long time durations

(b) Evolution of the system's energy wrt $\,t\,$

Baseline does not conserve E but LNN does!

Quantification of the observed dephasing

$$egin{aligned} \Delta\phi_{ heta_1,\mathsf{Baseline}} &= 10.55^{\circ} \ \Delta\phi_{ heta_1,\mathsf{LNN}} &= -0.64^{\circ} \ \Delta\phi_{ heta_2,\mathsf{Baseline}} &= 8.15^{\circ} \ \Delta\phi_{ heta_2,\mathsf{LNN}} &= 0.77^{\circ} \end{aligned}$$

LNN beats Baseline NN

A more chaotic IC

For smooth IC, both behave well!

Initial conditions:

$$\theta_1(t=0)=3\pi/7$$

$$\theta_2(t=0)=3\pi/4$$

$$\omega_1(t=0)=0$$

$$\omega_2(t=0)=0$$

Both have a bad accuracy but LNN has more fidelity.

LNN is always more "physical"

Quick Check with litterature

Figure: Results of Sam Greydanus, Miles Cranmer and $\operatorname{Stephan}$ Hoyer

Another system: 2 coupled pendulums

New Lagrangian:

$$\mathcal{L} = \frac{1}{2}ml^{2}(\dot{\theta_{1}}^{2} + \dot{\theta_{2}}^{2}) + mgl(\cos(\theta_{1}) + \cos(\theta_{2})) - \frac{1}{2}k(\theta_{1} - \theta_{2})^{2}$$

Comparison of LNN and analytical trajectories:

Accuracy is much harder to obtain there is no chaotic solution.

Animation - Torsion

Improving the performance: 2 training trajectories

- Keep same number of total samples for training trajectories
- Goal: train the LNN with a larger coverage of the phase space to improve its adaptability
- Comparison of 1 vs 2 training trajectories in the phase space: (top: 1 traj, bottom: 2 traj.)

Performance improvement

Mean error:

$$\langle |\theta_{1,an} - \theta_{1,LNN}| \rangle + \langle |\theta_{2,an} - \theta_{2,LNN}| \rangle$$

Phase shift:

When the IC is far from what the LNN has learnt, the performance is poor **regardless of the number of training trajectories**.

Conclusion

 Classical NN are already a good starting point to reconstruct physical trajectories and behaviors of systems.

BUT they don't act physically!

• NN in difficulty when faced to **chaotic** and **complex** systems.

- A promising solution : train a physical descriptor of the system !
- Much more accuracy
- Conservation of physical quantities
- Long lasting fidelity & strong adaptibility

Bibliographie

- Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, Shirley Ho LAGRANGIAN NEURAL NETWORKS, arXiv:2003.04630
- Marc Finzi, Ke Alexander Wang, Andrew Gordon Wilson Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints, arXiv:2010.13581

Backpropagation

Figure: Architecture of a neural network

We want to compute:

$$\frac{\partial C}{\partial \omega_{jk}} = \frac{\partial C}{\partial a_k^{(L)}} \frac{\partial a_k^{(L)}}{\partial z_k} \frac{\partial z_k}{\partial \omega_{jk}}$$

$$a_j^{(L)} = \sigma(z_j)$$
, with σ a non linear function $z_j = \sum_k w_{jk} a_k^{(L)} + b_k$ and $C = \sum_j (a_j^L - y_j)^2$, the cost function