Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №1 з дисципліни "Аналогова електроніка"

Виконав:

студент групи ДК-92

Мануков I.C.

Перевірив:

доц. Короткий Є В.

м. Київ

2021 p.

1. Дослідження суматора напруги на резисторі

1.1.Під час лабораторного заняття було складено суматор напруги за наступною

схемою:

У якості джерел напруги було використано керовані джерела, включенні в плату Analog Discovery 2. R було вибрано 10 кОм, як значно більші за внутрішній опор джерел.

Напруги джерел було налаштовано наступним чином:

Щуп вольтметру Analog Discovery було підключено до точки Vout.

Результати вимірювань склали 2.4939 В, що з урахуванням похибок, відповідає теоретичним передбаченням:

1.2.Симуляція суматора в LTspice для постійного сигналу

$$V_1 = 2V$$

$$V_2 = 3V$$

$$V_{out} = 2.5V$$

Результати симуляції відповідають формулі Uвих = (U1 + U2)/2 з теоретичного опису суматора.

1.3.На суматор було подано два сигналу – імпульсний, амплітудою 1В, частотою 1 кГц та синусоїдальний, амплітудою 1В та частотою 5 кГц. До виходу суматора було під'єднано вхід осцилографу:

На виході суматора спостерігали комбінацію двох вхідних сигналів, що відповідає теоретичним очікуванням.

Налаштування осцилографу: 1В/клітинка, 500 мкс/клітинка.

1.4.Симуляція суматора в LTspice для змінного сигналу:

Джерела налаштовано аналогічно до налаштувань генератору під час лабораторного дослідження. Отриманий вихідний сигнал відповідає за формою сигналу з лабораторних досліджень:

2. Дослідження RC-ланцюжка.

2.1.Під час лабораторної роботи було складено інтегруючий RC-ланцюжок с наступними параметрами:

$$C = 150 \text{ H}\Phi$$

$$R = 10 \text{ kOm}$$

2.2. Тривалість заряду/розряду до 99% складає:

$$t = 5\tau = 5*R*C = 5*150*10^{-9}*10*10^3 = 7,5 \text{ MC}$$

2.3.На вхід RC-ланцюжка подали імпульсний сигнал з частотою 33,3 Гц, амплітудою 1В та коефіцієнтом заповнення 50%.

Два щупи осцилографа було підключено відповідно до входу та виходу RC-ланцюжка, параметри осцилографа: 5 мс/клітинку, 500 мВ/клітинку:

Точка 7.5 мс після фронту вхідного сигналу відповідає 99% заряду/розряду конденсатору, що відповідає теоретичним очікуванням.

2.4.Було проведено симуляцію схеми в LTspice, результати якої також відповідають теоретичним очікуванням:

3. Дослідження RC-фільтру низької частоти

3.1.Під час лабораторної роботи будо складено RC-ФНЧ з наступними параметрами:

$$C = 150 \text{ н}\Phi$$

$$R = 10 кОм$$

Частота зрізу такого фільтру:

$$f_3 = \frac{1}{2\pi * R * C} = \frac{1}{2 * 3,14 * 10 * 10^3 * 150 * 10^{-9}} \approx 497$$
Гц

3.2.Для визначення АЧХ фільтру, що було складено, використали Network Analyzer у складі плати Analog Discovery. Було отримано наступні результати:

Загальна форма АЧХ відповідає формі з теоретичної бази.

Точка частоти зрізу (-3 дБ) знаходиться на частоті 455 Гц, що, з урахуванням похибки, відповідає очікуванням.

Швидкість спадання АЧХ - -20дБ/дек. також спостерігається у виміряній АЧХ, що відповідає очікуванням:

3.3. Було розраховано ряд значень K_u теоретичного фільтру та порівняно з даними, отриманими експериментально. Результати наведено у таблиці:

№	<i>f</i> , Гц	K _u	$K_{\rm u}$ експеримент.	Похибка, %
		теоретичне		
1	0	1	1	0
2	40	0,935	0,933	0,2
3	60	0,869	0,878	1,03
4	80	0,798	0,815	2,13
5	100	0,73	0,753	3,15
6	116	0,677	0,705	4,13
7	150	0,585	0,615	5,12
8	200	0,48	0,508	5,83
9	500	0,215	0,236	9,76
10	1000	0,11	0,122	10,9

Виділено K_u на частоті зрізу. Аналіз похибки вимірювань свідчить про коректність отриманих даних, з урахуванням поганого контакту та людського фактору.

3.4.Було проведено моделювання RC-ФНЧ в LTspice, під час якого було отримано AЧX:

Форма АЧХ відповідає теоретичній та загалом співпадає з виміряною з урахуванням масштабу.

Висновки

Було виконано дослідження роботи суматору на резисторах. У роботі зробив вихідну осцилограму суматора при постійних та змінних сигналах на вході. Також дослідив RC-ланцюжок в умовах роботи з гармонійним і імпульсним сигналом, Зробив частотну та перехідну характеристики RC-фільтру. Експерименти повторив у симуляторі та порівняв результати, вони збігаються, тому можна підтвердити результати експерименту, якщо врахувати деяку погрішність реального життя, а не ідеальних умов.