

AUTOMATIZACIÓN Y ROBÓTICA

CURSO 2022/2023

Tema 2. Sensores

Tema 2. Sensores

- > Definición de sensor. Características.
- > Clasificación general.
- > Sensores digitales.
- > Sensores numéricos.
- > Sensores analógicos.

DEFINICIÓN DE SENSOR. CARACTERÍSTICAS

Definición de sensor

• <u>Sensor</u>: dispositivo eléctrico/mecánico que convierte magnitudes físicas a valores medibles de dicha magnitud. Generalmente, los valores medibles son señales eléctricas codificadas en analógico o digital.

Forma de codificar la señal:

- Analógicos:
 - ✓ 0-10V.
 - ✓ 4-20 mA.
- Digitales:
 - ✓ Pulsos (duración proporcional a la magnitud).
 - ✓ Número codificado en binario.
 - ✓ Todo-Nada (1-0).

Características

• Descriptores estáticos:

- Rango. Valores mínimos y máximos para las variables de entrada y salida.
- Resolución. Cantidad de incremento de medida más pequeña detectable.
- <u>Error</u>. Diferencia entre el valor medido por el sensor y el valor real.
- Sensibilidad. Razón de cambio de la salida frente a cambios en la entrada.
- Excitación. Cantidad de corriente requerida para el funcionamiento del sensor.

• Descriptores dinámicos:

- Tiempo de respuesta.
- Régimen permanente/estacionario.

CLASIFICACIÓN GENERAL

Clasificación general

 La lista de sensores para diferentes variables físicas es muy larga. Aquí se van a ver los más comunes en un proceso de automatización industrial.

Según la señal de salida que dan pueden ser:

- <u>Digitales</u>. Su salida actúa como un conmutador (cerrado o abierto). Se conectan a entradas lógicas o digitales del PLC.
- <u>Numéricos</u>. Dan un código como varias señales digitales o como trenes de pulsos. Para conectar a entradas especiales: entradas de pulsos o de contadores rápidos (módulo específico del PLC).
- <u>Analógicos</u>. Dan una señal analógica de tensión o corriente, o modulación de pulso. Se deben conectar a entradas analógicas (ADC) del PLC.

SENSORES DIGITALES

- > Sensores de proximidad o detectores
 - > Sensores de proximidad con contacto (finales de carrera).
 - Sensores de proximidad sin contacto.
 - ✓ Sensores magnéticos.
 - ✓ Sensores capacitivos.
 - ✓ Sensores fotoeléctricos.
 - ✓ Sensores ultrasónicos.

- > Sensores de proximidad con contacto.
- Sensores electromecánicos sencillos y baratos.
- Al ser mecánicos y trabajar por contacto, solo tienen garantizado un número máximo de maniobras. (aprox. 10 millones de ciclos).
- Cierran (NO) o abren (NC) un contacto eléctrico.
- Tiempo de conmutación entre 1 y 10 ms.
- Cuando se emplean para operaciones de conteo, se deben tener en cuenta los rebotes de los contactos.

- > Sensores de proximidad con contacto.
- Ejemplos.

- > Sensores de proximidad sin contacto.
 - Sensores Magnéticos (efecto "Reed").
 - Reaccionan antes los campos magnéticos de imanes permanentes y de electroimanes.

- > Sensores de proximidad sin contacto.
 - Sensores Inductivos.
 - Detectan elementos metálicos a distancia de hasta 20mm de media (pueden llegar hasta 75 mm), según el modelo.
 - Funcionan aplicando una señal de alta frecuencia a una bobina, cuya inductancia cambia al acercarse un elemento metálico.
 - Robustos: no hay piezas mecánicas y no se desgastan. Resistentes a ambientes agresivos
 - Los hay con salida de lógica positiva (PNP) y salida lógica negativa (NPN).

- > Sensores de proximidad sin contacto.
 - Sensores Capacitivos.
 - Detectan elementos de materiales conductores y no conductores sin contacto (máximo de 1m a 2m). Aplicaciones en materiales no metálicos como vidrio, cerámica, plástico, madera, agua, aceite, cartón, etc.
 - Funcionan mediante un condensador abierto cuyo campo eléctrico cambia al colocar delante materiales que actúan como dieléctricos (según su constante dieléctrica ε).
 - Su sensibilidad se ve muy afectada por el tipo de material y el por el grado de humedad en el ambiente.

• Modo de operación similar a los inductivos. No hay piezas mecánicas y no se desgastan.

PNP y NPN.

- > Sensores de proximidad sin contacto.
 - Sensores Fotoeléctricos (fotocélulas).
 - Se componen de dos elementos:
 - Emisor de luz (infrarroja o laser)
 - Receptor de luz, que detecta luz u oscuridad.
 - Detección sin contacto de objetos, y de todo tipo de materiales (en función del modelo). Respuesta rápida (microsegundos).

Omron industrial.omron.es

- > Sensores de proximidad sin contacto.
 - Sensores Fotoeléctricos (fotocélulas).
 - De barrera (1):
 - Se componen de un emisor y de un receptor. El emisor se coloca de forma que el haz de luz incida sobre el receptor.
 - Una interrupción del haz de luz origina una conexión de la salida.
 - De retro reflexión (2): elemento reflector.

(2)

• De reflexión directa (3): la luz del emisor da en un objeto y refleja sobre un receptor

(1)

- > Sensores de proximidad sin contacto.
 - Sensores Ultrasónicos.
 - Emiten sonido en el rango inaudible a cualquier frecuencia y reciben el eco.
 - Rango de distancia relativamente alto.
 - Detección de objetos transparentes e independientes del color y material.
 - Poco sensible a la humedad y polvo.
 - Objetos con superficies inclinadas, el eco se puede desviar.

> Aplicaciones

Centros de mecanizado Cilindros neumáticos

Supervisión niveles de llenado (sensores capacitivos, ultrasónicos)

SENSORES NUMÉRICOS

> Encoders.

- Generar señales digitales que permiten determinar la posición y velocidad de un eje normalmente giratorio.
- Dos tipos:
 - ✓ Absolutos. La salida es un conjunto de señales con un código que representa una posición.
 - ✓ *Incrementales*: Su salida es una o varias señales de pulsos que permiten conocer un desplazamiento relativo.

Motor CC con encoder

commons.wikimedia.o

- > Encoders absolutos.
 - Utilizan una rueda codificada con secciones opacas y transparentes, que son leídas por fotodiodos.
 - Para N bits de salida: resolución de 360° / 2N.
 - Suelen usar codificación Gray para evitar errores de lectura de las secciones.

- > Encoders incrementales.
 - Las salidas del encoder deben conectarse a un módulo contador para llevar la cuenta de la posición.
 - Los hay con 1, 2, ó 3 salidas de pulsos o canales.
 - Un canal, con un pulso cada x°.
 - ✓ Salida con N=360°/x pulsos por vuelta.
 - ✓ No permiten determinar el sentido de giro por si solos.

> Encoders incrementales.

- 2 canales (A y B) o de cuadratura. Cada canal genera un pulso cada x grados, pero están desfasados.
- Con un módulo contador adecuado se puede determinar el sentido de giro analizando la evolución de las señales.
- 360°/x pulsos por vuelta, y con una frecuencia máxima.

Α		П							
В									
	1	2	3	4	5	6	7	8	9

	Fase	Α	В
Giro horario	1	0	0
	2	1	0
	3	1	1
	4	0	1

Giro antihorario	Fase	Α	В	
	4	0	0	
	3	0	1	
	2	1	1	
	1	1	0	

- > Encoders incrementales.
 - 3 canales: A, B + I (ó Z). Además de A y B dan una señal de índice (I ó Z) con un pulso por vuelta.
 - El índice permite tener una referencia absoluta, que se suele usar para reiniciar el módulo contador.

> Encoders.

- En una planta, las interferencias electromagnéticas pueden afectar a las señales procedentes del sensor. Con encoders, esto puede equivocar al contador de posición.
- Se requiere un cableado inmune a las interferencias:
 - ✓ Cables blindados.

SENSORES ANALÓGICOS

Potenciómetro

- La resistencia entre sus terminales varía en función de la posición de un mando lineal o rotativo.
- Es un elemento sencillo y barato. Pero que sufre desgaste y suciedad que alteran su funcionamiento.

Tacómetro

- Al girar un bobinado en un campo magnético (o al revés) se genera una corriente que proporciona una diferencia de potencial de salida.
- La diferencia de potencial (voltaje) de salida es proporcional de la velocidad angular de giro.
- Hoy en día se usan más los encoders numéricos para medir velocidad, además de posición.

$$V = K \cdot \alpha$$

- Sensores basados en el efecto Seebeck: al calentar el punto que une dos piezas de metales distintos, manteniendo los otros extremos a una temperatura inferior, se obtiene una diferencia de potencial entre los metales.
- La diferencia de potencial (voltaje) de salida es proporcional a la temperatura.
- Según los metales usados, hay diferentes tipos.

Distancia por láser

- Con un haz laser se determina la distancia a un objeto mediante análisis de interferencias o triangulación.
- Son caros, pero rápidos (0,2ms) y de alta precisión:
 - Resolución de 0.1 µm para distancias de 4mm.
 - Resolución de 200 µm para distancias de 300mm.
- Suelen se reconfigurables, y proporcionan a su salida un rango de tensión (-5 a 5V) o corriente (4-20mA).

Omron ZX industrial.omron.es

AUTOMATIZACIÓN Y ROBÓTICA

CURSO 2022/2023

Tema 2. Sensores