#### **CLAIMS:**

 A method of determining proximity of a target node to a source node, comprising: communicating a query from the source node to the target node, communicating a response from the target node to the source node,

the response from the target node including a measure of processing time required to generate the response based on the query,

receiving the response at the source node,

determining a measure of query-response time between communicating the query and receiving the response, and

determining the proximity of the target node based on a communication time that depends upon a difference between the measure of query-response time and the measure of processing time.

### 2. The method of claim 1, wherein

the query and response correspond to at least a portion of a cryptographic keyexchange protocol.

# 3. The method of claim 2, wherein

the key-exchange protocol corresponds to a Needham-Schroeder key-exchange protocol.

#### 4. The method of claim 1, wherein

the query and response correspond to at least a portion of an OCPS protocol.

# 5. The method of claim 1, wherein

the measure of processing time at the target node is predefined.

## 6. The method of claim 1, wherein

determining the proximity includes comparing the communication time to a threshold value that distinguishes between local and remote nodes.



restricting communications with the target node based on the proximity.

# 8. The method of claim 1, wherein

the response is cryptographically signed by the target node.

# 9. A node on a network including:

a communication device that is configured to receive a query from a source node and to transmit a corresponding response to the source node,

a processor that is configured to process the query and produce therefrom the response,

wherein

the response includes a measure of processing time required to process the query and produce the response.

# 10. The node of claim 9, wherein

the processor is configured to process the query and produce the response as part of a cryptographic key-exchange protocol.

#### 11. The node of claim 10, wherein

the key-exchange protocol corresponds to a Needham-Schroeder key-exchange protocol.

#### 12. The node of claim 9, wherein

the query and response correspond to at least a portion of an OCPS protocol initiated by the source node.

# 13. The node of claim 9, wherein

the measure of processing time is predefined.

## 14. The node of claim 9, wherein

the processor is further configured to cryptographically sign the response.



a communication device that is configured to transmit a query to a target node and to receive a corresponding response from the target node,

the response from the target node including a measure of processing time required to generate the response at the target node, and

a processor that is configured to:

generate the query,

receive the response,

measure a query-response time between generating the query and receiving the response, and

determine a proximity of the target node relative to the node based on a communication time that is dependent upon a difference between the query-response time and the measure of processing time.

## 16. The node of claim 15, wherein

the processor is configured to generate the query and receive the response as part of a cryptographic key-exchange protocol.

# 17. The node of claim 16, wherein

the key-exchange protocol corresponds to a Needham-Schroeder key-exchange protocol.

## 18. The node of claim 15, wherein

the query and response correspond to at least a portion of an OCPS protocol initiated by the node.

#### 19. The node of claim 15, wherein

the measure of processing time is predefined.

# 20. The node of claim 15, wherein

the processor is configured to determine the proximity based on a comparison of the communication time to a threshold value that distinguishes between local and remote nodes.





# 21. The node of claim 15, wherein

the processor is further configured to control subsequent communications with the target node based on the proximity.