Rozmaite cierpienia

Na podstawie wykładów
Prof. Świątkowskiego
w semestrze letnim 2022/2023

oraz Introduction to Smooth Manifolds J.M. Lee

Spis treści

1	Defi	niowanie rozmaitości	4
	1.1	Rozmaitość topologiczna	4
	1.2		6
	1.3		8
	1.4	Warianty pojęcia rozmaitości różniczkowalnej	2
	1.5	Dopowiedzenie o funkcjach gładkich	2
	1.6	Dyfeomorfizmy	3
	1.7	C ^k -różniczkowalność odwzorowań rozmaitości	٠.
	1.8	Definiowanie rozmaitości gładkiej X za pomocą samego atlasu	
	1.9	Rozmaitość gładka z brzegiem	
	1.5	Rozillaitose gladka z bizegielli	′
2	Rozkład jedności 2		
	2.1	Lokalnie skończone rozdrobnienie	1
	2.2	Twierdzenie o rozkładzie jedności	4
	2.3	Zastosowania rozkładów jedności	-
	2.4	Alternatywna wersja twierdzenia o rozkładzie jedności	
	2.7	Accordacy with wers ju twier azemu o rozkudzie jedności	•
3	Dysl	cretne ilorazy rozmaitości 28	8
	3.1	Klejenie rozmaitości wzdłuż brzegu	8
	3.2	Suma spójna rozmaitości	o
	3.3	Działanie grupy dyfeomorfizmów	2
	3.4	Gładki atlas na M/G	5
4	Wektory styczne 4		
	4.1	Przestrzeń styczna - definicja kinematyczna 4	•
	4.2	Struktura wektorowa przestrzeni T _p M	2
	4.3	Różniczka	4
	4.4	Wiązka styczna	7
5	Pola	wektorowe 5	1
•	5.1	Definiowanie pola wektorowego za pomocą rozkładów jedności 52	-
	5.2	Przenoszenie gładkich pól wektorowych przez dyfeomorfizmy 54	_
	5.3	Krzywe całkowe	-
	5.4	Zastosowania potoków pól wektorowych	
	5.5	Interpretacja pól wektorowych jako derywacji	_
	5.5	miterpretacja pot wektorowych jako derywacji	,
6	Kom	utator i pochodna Liego 69	9
	6.1	Komutator pól wektorowych	9
	6.2	Komutator w lokalnych współrzędnych	o
	6.3	Definicja pochodnej Liego	Ö
	6.4	Własności	3
	6.5	Komutowanie potoków	
	6.6	Wyprostowanie komutujących pól wektorowych	
7		naitości orientowalne 79	
	7.1	Orientacja w przestrzeni wektorowej V wymiaru n	9
8	Dod:	rozmaitości 83	2
o		Podrozmaitości zadane przez odwzorowanie włożenia 88	

1. Definiowanie rozmaitości

1.1. Rozmaitość topologiczna

Definicja 1.1. Przestrzeń topologiczna M jest n-wymiarową rozmaitością (n-rozmaitością) topologiczną, jeśli:

- · jest Hausdorffa
- · ma przeliczalną bazę topologii
- jest lokalnie euklidesowa wymiaru n, tzn. każdy punkt posiada otoczenie otwarte homeomorficzne z otwartym podzbiorem w \mathbb{R}^n

Warunkiem równoważnym do lokalnej euklidesowości jest posiadanie przez każdy punkt $p \in M$ otoczenia U takiego, że istnieje homeomorfizm U $\stackrel{\cong}{\longrightarrow} B_r \subseteq \mathbb{R}^n$. [ćwiczenia]

Hausdorffowość

Dzięki warunkowi Hausdorffowości wykluczone są np. patologie pokroju

gdzie punktów A i B nie da się rozdzielić za pomocą rozłącznych zbiorów otwartych.

Ogólniej, warunek ten mówi, że lokalnie topologiczne własności z \mathbb{R}^n przenoszą się na M przez homeomorfizmy, np dla podzbioru $U \subset M$ i homeomorfizmu $\phi : U \to \overline{U} \subset \mathbb{R}^n$:

Dodatkowo, dla dowolnego *zwartego* $\overline{K}\subseteq \overline{U}$ jego odpowiednik na M, czyli $K=\phi^{-1}(\overline{K})\subseteq U$, jest *domknięty i zwarty* [ćwiczenia]. Jeśli zaś \overline{K} jest zbiorem domknięty w \overline{U} , ale niezwartym, to nie zawsze K jest domknięty w M. Weźmy np. $\phi:U\to \overline{U}=\mathbb{R}^n$

i zbiór domknięty $\overline{K} = \mathbb{R}^n$ (cała przestrzeń jest jednocześnie domknięta i otwarta). Wtedy $K = \phi^{-1}(\overline{K}) = U$ jest otwartym podzbiorem M mimo, że \overline{K} jest otwarte.

Skończone podzbiory rozmaitości będącej przestrzenią Hausdorffa są zawsze domknięte i co ważne, granice ciągów na rozmaitościach topologicznych są jednoznacznie określone.

Przeliczalna baza

Warunek przeliczalnej bazy został wprowadzony, by rozmaitości nie były "zbyt duże". Nieprzeliczalna suma parami rozłącznych kopii \mathbb{R}^n nie może być rozmaitością. Warunek ten implikuje, że każde pokrycie zbiorami otwartymi zawiera przeliczalne podpokrycie [ćwiczenia], co jest nazywane warunkiem Lindelöfa.

Przeliczalność bazy implikuje również, że każda rozmaitość topologiczna jest wstępującą sumą zbiorów otwartych

$$U_1 \subset U_2 \subset ... \subset U_n \subset ...$$

które po domknięciu są nadal zawarte w niej. Pozwala ona również na włożenie M do \mathbb{R}^n dla odpowiednio dużego n. Czyli na przykład S^2 , sfera, ma naturalne włożenie w \mathbb{R}^3 pomimo lokalnej euklidesowości z \mathbb{R}^2 .

Rodzina $\mathscr X$ podzbiorów M jest *lokalnie skończona* , jeżeli każdy punkt $p \in M$ ma otoczenie, które przecina się co najwyżej ze skończoną liczbą zbiorów z $\mathscr X$. Jeżeli M ma dwa pokrycia: $\mathscr U$ i $\mathscr V$ takie, że dla każdego $V \in \mathscr V$ znajdziemy $U \in \mathscr U$ takie, że $V \subseteq U$, to $\mathscr V$ jest *pokryciem włożonym/rozdrobnieniem* $\mathscr U$. Dzięki przeliczalności bazy M, każda rozmaitość jest **parazwarta**, czyli zawiera lokalnie skończone rozdrobnienie.

Lokalna euklidesowość

Twierdzenie 1.2. *Twierdzenie Brouwer'a* Dla $m \neq n$ otwarty podzbiór \mathbb{R}^n nie może być homeomorficzny z żadnym otwartym podzbiorem \mathbb{R}^m .

Z twierdzenia wyżej wynika, że liczba n jest przypisana do M jednoznacznie i nazywa się wymiarem M (dim(M) = n). Jeśli wymiar rozmaitości M wynosi n, to nazywamy ją czasem n-rozmaitością.

Tutaj warto zaznaczyć, że zbiór pusty zaspokaja definicję roznaitości topologicznej dla dowolnego n. Wygodnie jest go jednak móc użyć, więc w definicji niepustość M nie jest przez nas

Inne własności rozmaitości topologicznych:

- Każda rozmaitość ma przeliczalną bazę złożoną ze zbiorów homeomorficznych z kulami w \mathbb{R}^n , których domknięcia są zbiorami zwartymi.
- Każda rozmaitość jest lokalnie spójna, tzn. ma bazę otwartych zbiorów łukowo spójnych.
- Rozmaitość jest spójna

 jest łukowo spójna. Składowe spójności M są
 równe składowym łukowej spójności M.
- Każda rozmaitość jest lokalnie zwarta (tzn. każdy punkt posiada zwarte otoczenie).

1.2. Mapy, współrzędne lokalne

Definicja 1.3. Mapą na rozmaitości topologicznej M nazywamy parę (U, ϕ), gdzie U jest otwartym podzbiorem M, zaś $\phi: U \to \overline{U} = \phi(U) \subseteq \mathbb{R}^n$ jest homeomorfizmem na otwarty podzbiór w \mathbb{R}^n . Zbiór U nazywamy wtedy **zbiorem mapowym**

Ponieważ każda rozmaitość topologiczna jest lokalnie euklidesowa, to M jest pokrywana zbiorami mapowymi.

Dla mapy (U,ϕ) takiej, że $p\in U$ i $\phi(p)=0\in \mathbb{R}^n$ mówimy, że jest *mapą wokół* p. Za pomocą translacji możemy każdą mapę zawsze przesunąć tak, aby $\phi(p)=0$. Czyli możemy odgórnie zakładać, że mapa (U,ϕ) jest mapą o początku w p.

Często będziemy przechodzić do coraz to mniejszych zbiorów mapowych poprzez branie odwzorowań obciętych co nie burzy gładkości ani zgodności z atlasem. Pozwoli to np. zakładać, że dla p \notin F domkniętego bierzemy mapę (U, ϕ) taką, że U \cap F = \emptyset .

Mapy nazywa się też czasem *lokalnymi współrzędnymi* na M lub *lokalną parametryzacją* M. Ponieważ o mapie można myśleć jako o przeniesieniu siatki współrzędnych $(x_1,...,x_n)$ z $\overline{U}=\phi(U)$ przez ϕ^{-1} na U, to będziemy często utożsamiać $U\subseteq M$ z \overline{U} . O punkcie $p\in M$ takim, że $\phi(p)=(x_1,...,x_n)$ będziemy myśleć jako o $p=(x_1,...,x_n)$.

Przykłady:

- Każdy otwarty podzbiór n-rozmaitości topologicznej jest n-rozmaitością lówiczenial.
- 2. **Wykresy ciągłych funkcji**: Niech U $\subseteq \mathbb{R}^n$ i f : U $\to \mathbb{R}^k$ jest funkcją ciągłą. Wykresem f nazywamy zbiór

$$\Gamma(f) = \{(x,y) \ : \ x \in U, \ y = f(x)\} \subseteq \mathbb{R}^n \times \mathbb{R}^k$$

Oznaczmy przez $\pi_1:\mathbb{R}^n\times\mathbb{R}^k\to\mathbb{R}^n$ projekcję na \mathbb{R}^n , tzn. $\pi_1(x,y)$ = $x\in\mathbb{R}^n$. Wtedy funkcja $\phi:\Gamma(f)\to U$ będąca obcięciem π_1 do $\Gamma(f)$. Ponieważ ϕ jest obcięciem funkcji ciągłej, to samo również jest ciągłe. W dodatku, funkcja $\phi^{-1}:\mathbb{R}^n\to\Gamma(f)$ dana przez $\phi^{-1}(x)$ = $(x,f(x))\in\Gamma(f)$, jest ciągłą funkcją odwrotną do ϕ . W takim razie, ϕ jest homeomorfizmem między U a $\Gamma(f)$ i wykres funkcji ciągłych jest

lokalnie euklidesowy. Jako podzbiór $\mathbb{R}^n \times \mathbb{R}^k$ jest też przestrzenią Hausdorffa oraz ma przeliczalną bazę. W takim razie, wykres ciągłej funkcji jest rozmaitością topologiczną.

3. Sfery Sⁿ są n-rozmaitościami, które wkładają się w \mathbb{R}^{n+1} (Sⁿ = {($x_1,...,x_{n+1}$) $\in \mathbb{R}^{n+1}$: $\sum x_i^2 = 1$ }).

Rozważmy rodzinę par $\{(U_i^\pm,\phi_i^\pm): i$ = 1, ..., n + 1 $\}$ na Sⁿ zdefiniowanych jako:

$$U_i^+ = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n \ : \ x_i < 0\}$$

$$\phi_i^{\pm}(x) = (x_1, ..., x_{i-1}, \widehat{x_i}, x_{i+1}, ..., x_n).$$

Zbiory U_i^\pm pokrywają całe S^n , gdyż każdy punkt posiada co najmniej jedną niezerową współrzędną, a funkcje ϕ_i^\pm są ciągłe jako obcięcia rzutów \mathbb{R}^{n+1} na \mathbb{R}^n . Obrazem zbioru U_i^\pm przez ϕ_i^\pm jest zbiór

$$\overline{\mathsf{U}_{\mathsf{i}}^{\pm}} = \phi_{\mathsf{i}}^{\pm}(\mathsf{U}_{\mathsf{i}}^{\pm}) = \{(\mathsf{x}_1,...,\mathsf{x}_\mathsf{n}) : \sum \mathsf{x}_{\mathsf{i}}^2 < 1\}$$

czyli otwarta kula w \mathbb{R}^n .

Odwzorowania $\phi_{\mathbf{i}}^{\pm}$ są bijekcjami o odwzorowaniach odwrotnych:

$$(\phi_i^\pm)^{-1}(x_1,...,x_n)=(x_1,...,x_{i-1},\pm\sqrt{1-\sum x_i^2},x_i,...,x_n)$$

które są ciągłe. W takim razie $\phi_{\rm i}^\pm$ są homeomorfizmami między otwartymi podzbiorami S^n a otwartymi podzbiorami R^n.

Oznaczenie $\widehat{x_i}$ oznacza "wyrzucenie" danej współrzędnej. Pokazaliśmy lokalną euklidesowość S^n , natomiast bycie przestrzenią Hausdorffa o przeliczalnej bazie S^n dziedziczy z \mathbb{R}^{n+1} .

- 4. Produkt kartezjański dwóch (lub k) rozmaitości topologicznych rozmaitością topologiczną [ćwiczenia].
- 5. n-torus jest przestrzenią produktową \mathbb{T}^n = $S^1 \times ... \times S^1$ i n-rozmaitością topologiczną. \mathbb{T}^2 nazywamy po prostu torusem.

1.3. Rozmaitości gładkie (różniczkowalne)

Dla funkcji f : M o $\mathbb R$ chcemy rozpoznawać je różniczkowalność za pomocą map (U, ϕ) na M.

Funkcja f : M $\to \mathbb{R}$ wyrażona w mapie (U, ϕ) to złożenie f $\circ \phi^{-1} : \overline{U} \to \mathbb{R}$.

Definicja 1.4. Funkcja $f: M \to \mathbb{R}$ jest **gładka**, jeśli dla każdej mapy (U, ϕ) na $M f \circ \phi^{-1}$ jest gładka.

W tej definicji pojawia się pewien problem: dla jednej mapy (U, ϕ) f może gładka, ale jeśli przejdziemy z obrazu mapy (U, ψ) to może się okazać, że f $_2$ = f $_1 \circ \psi \circ \phi^{-1}$ nie jest gładka:

Dlatego chcemy móc założyć, że $\phi \circ \psi^{-1}$ jest przekształceniem gładkim.

Definicja 1.5. Mapy (U, ϕ), (V, ψ) nazywamy (gładko) **zgodnymi**, gdy $\phi \circ \psi^{-1}$ i $\psi \circ \phi^{-1}$ sa odwzorowaniami gładkimi.

Odwzorowania $\phi\psi^{-1}$ nazywamy *odwzorowaniami przejścia* z jednej mapy do drugiej. Jeśli $\phi\psi^{-1}$ i $\psi\phi^{-1}$ są gładkie, to są one wzajemnie do siebie odwrotnymi bijekcjami. Takie odwzorowania nazywamy **dyfeomorfizmami** (def. 1.14) pomiędzy otwartymi podzbiorami \mathbb{R}^n . Zauważmy, że w każdym punkcie Jakobian, czyli wyznacznik macierzy pochodnych cząstkowych, jest dla dyfeomorfizmów niezerowy [ćwiczenia].

W ogólnym przypadku, gdy U \cap V \neq \emptyset , rysunek wygląda:

Mapy (U, ϕ) i (V, ψ) nazywamy zgodnymi, jeśli:

- U ∩ V = Ø
- odwzorowania przeiścia

$$\phi\psi^{-1}:\psi(U\cap V)\to\phi(U\cap V)$$

oraz

$$\psi \phi^{-1} : \phi(U \cap V) \rightarrow \psi(U \cap V)$$

są gładkie (\iff są dyfeomorfizmami podzbiorów $\phi(U \cap V)$ i $\psi(U \cap V)$).

Definicja 1.6. Gładkim atlasem $\mathscr A$ na rozmaitości M nazywamy zbiór map $\{(U_{\alpha},\phi_{\alpha})\}$ takich, że:

- $\{U_{\alpha}\}$ pokrywają całe M
- · każde dwie mapy z tego zbioru są zgodne.

Przykłady:

1. Rodzina map $\{(U_i^\pm,\phi_i^\pm)\}$ na sferze S^n jest atlasem gładkim na S^n . Dla przykładu zbadamy zgodność map (U_i^\star,ϕ_i^\star) i (U_i^\star,ϕ_i^\star) dla i < j.

Popatrzmy jak wyglądają interesujące nas zbiory:

$$U_i^+ \cap U_i^+ = \{x \in S^n \ : \ x_i > 0, x_i > 0\}$$

$$\phi_{i}^{+}(U_{i}^{+}\cap U_{i}^{+}) = \{x \in \mathbb{R}^{n} \ : \ |x| < 1, x_{i-1} > 0\}$$

bo usuwamy i-tą współrzędną i numery poprzednich współrzędnych spadają o 1 w dół,

$$\phi_{i}^{\dagger}(U_{i}^{\dagger}\cap U_{i}^{\dagger})$$
 = $\{x\in\mathbb{R}^{n}: |x|<1, x_{i}>0\}$

bo w tym przypadku usunęliśmy współrzędną na prawo od i, więc jej położenie nie zmienia się.

$$\begin{array}{c} (x_1,...,x_n) & \xrightarrow{(\phi_j^*)^{-1}} \\ & \cap \\ \{x \in \mathbb{R}^n \ : \ |x| < 1, x_i > 0\} & (x_1,...,x_{i-1},\widehat{x_i},x_{i+1},...,x_{j-1},\sqrt{1-|x|^2},x_j,...,x_n) \\ & \cap \\ \{x \in \mathbb{R}^n \ : \ |x| < 1, x_{i-1} > 0\} \end{array}$$

Czyli odwzorowanie przejścia jest zadane wzorem:

$$\phi_i^+(\phi_i^+)^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},x_{i+1},...,x_{i-1},\sqrt{1-|x|^2},x_i,...,x_n)$$

i widać, że jest ono gładkie. Pozostałe rachunki przechodzą analogicznie.

 Jeśli V jest przestrzenią liniową wymiaru n < ∞ nad R, to dowolna norma określona na V zadaje metrykę, która pozwala określić na V topologię (identyczną dla równoważnych norm). Z taką topologią V jest n-rozmaitością z naturalnie zdefiniowaną strukturą.

Niech $(e_1,...,e_n)$ będzie bazą V. Rozważmy izomorfizm $E:\mathbb{R}^n\to V$ zadany przez

$$E(x) = \sum_{i < n} x^i e_i.$$

Funkcja ta w kontekście topologicznym jest homeomorfizmem, więc (V, E^{-1}) jest mapa na V.

Jeśli $(\overline{e}_1, ..., \overline{e}_n)$ jest inną bazą na V, to mamy homeomorfizm

$$\overline{E}(x) = \sum x^{j} \overline{e}_{i}$$

Istnieje wtedy pewna odwracalna macierz (A^j) taka, że

$$e_i = \sum A_i^j \bar{j}$$

dla każdego i.

Stąd modwzorowanie przejścia między tymi dwoma mapami jest zadana przez $\overline{E}^{-1} \circ E(x) = \overline{x}$, gdzie $\overline{x} = (\overline{x}^1, ..., \overline{x}^n)$ jest zadane przez

$$\sum_{j \leq n} \overline{x}^j \overline{e}_j = \sum_{i \leq n} x^i e_i = \sum_{i,j \leq n} x^i A_i^j \overline{e}_j \implies \overline{x}^j = \sum_{i \leq n} A_i^j x^i$$

W takim razie jakakolwiek mapa wysyłająca x na \overline{x} jest odwracalna i liniowa \Longrightarrow jest dyfeomorfizmem. Stąd dowolne dwie mapy (V, E) są gładko zgodne i ich rodzina definiuje na V standardowa gładka strukture.

Definicja 1.7. Rozmaitością gładką nazywamy parę (M, A), gdzie M jest rozmaitością topologiczną, zaś A jest pewnym atlasem gładkim na M.

Zdarza się, że różne atlasy na tej samej rozmaitości topologicznej M mogą zadawać tę samą rozmaitość gładką. Na przykład dla M = \mathbb{R}^n istnieje atlas zawierający jedną mapę $\{(\mathbb{R}^n, id_{\mathbb{R}^n})\}$ oraz atlas $\{(B_x(r), id_{B_x(r)}): x \in \mathbb{R}^n, r > 0\}$, który jest tak naprawdę "rozdrobnieniem" pierwszego atlasu.

Definicja 1.8. Niech ৶ będzie gładkim atlasem na M.

- 1. Mapa (U, ϕ) jest zgodna z \mathscr{A} , jeśli jest zgodna z każda mapa $(V, \psi) \in \mathscr{A}$.
- 2. Dwa atlasy \mathcal{A}_1 , \mathcal{A}_2 na M są zgodne, jeśli każda mapa z \mathcal{A}_1 jest zgodna z \mathcal{A}_2 .

Warto zaznaczyć, że zgodność atlasów jest relacją zwrotnią i przechodnią [ćwiczenia]. Zgodne atlasy zadają tę samą strukturę rozmaitości gładkiej na topologicznej rozmaitości M. Wszystkie zgodne atlasy należą do jednego większego atlasu, co było

przyczyną powstania definicji atlasu maksymalnego.

Definicja 1.9. \mathscr{A} jest **atlasem maksymalnym** na rozmaitości M, jeśli każda mapa zgodna z \mathscr{A} należy do \mathscr{A} .

Każdy atlas $\mathscr A$ na M zawiera się w dokładnie jednym atlasie maksymalnym, złożonym ze wszystkich map zgodnych z $\mathscr A$ [ćwiczenia]. Dodatkowo, zgodne atlasy zawierają się w tym samym atlasie maksymalnym. Wtedy można definiować rozmaitość gładką jako parę (M, $\mathscr A$), gdzie M jest rozmaitością topologiczną, a $\mathscr A$ jest pewnym gładkim atlasem maksymalnym.

1.4. Warianty pojęcia rozmaitości różniczkowalnej

Mówimy, że mapy (U, ϕ), (V, ψ) są C^k -zgodne jeśli $\phi \circ \psi^{-1}$ i $\psi \circ \phi^{-1}$ są funkcjami klasy C^k (posiadają pochodne cząstkowe rzędów \leq k). C^k -atlas to z kolei rodzina C^k -zgodnych map, która określa strukturę C^k -rozmaitości na M. Struktura C^k -rozmaitości jest słabsza niż rozmaitości gładkiej i nie da się na niej zdefiniować map klasy C^m dla m > k.

 C^0 rozmaitość to określenie na rozmaitość topologiczną, a C^∞ -rozmaitość jest tym samym co rozmaitość gładka.

Dychotomia C^0 **i** C^k **dla** k > 0 aka dykresja

Z każdego maksymalnego atlasu C^1 -rozmaitości można wybrać atlas złożony z map C^∞ -zgodnych. Zatem, każda C^1 -rozmaitość posiada C^1 -zgodną strukturę C^∞ -rozmaitości [Whitney, 1940]. Istnieją jednak C^0 -rozmaitości, które nie dopuszczają żadnej zgodnej struktury gładkiej [Quinn '82, Friedmann '82].

- Na rozmaitości analitycznej mapy są analitycznie zgodne $[C^{\omega}]$. Mapy są analitycznie zgodne, gdy wyrażaja sie za pomoca szeregów potegowych.
- Rozmaitość zespolona ma mapy będące funkcjami w \mathbb{C}^n zamiast \mathbb{R}^n .
- W rozmaitości konforemnej mapy zachowuja katy miedzy punktami.
- · Istnieją też rozmaitości kawałkami liniowe (PL)...

1.5. Dopowiedzenie o funkcjach gładkich

Funkcja $f:M\to\mathbb{R}$ jest gładka względem atlasu \mathscr{A} na M, jeśli dla każdej mapy $(U,\phi)\in\mathscr{A}$ $f\circ\phi^{-1}$ jest gładka.

Fakt 1.10.

• Jeśli f : M $\to \mathbb{R}$ jest gładka względem \mathscr{A} , zaś (U, ϕ) jest mapą zgodną z \mathscr{A} , to f \circ ϕ^{-1} jest aładka.

• Jeśli \mathscr{A}_1 i \mathscr{A}_2 są zgodnymi atlasami, to $f: M \to \mathbb{R}$ jest gładka względem $\mathscr{A} \iff f$ jest gładka względem $\mathscr{A}_2 \iff f$ jest gładka względem atlasu maksymalnego \mathscr{A}_{max} zawierającego \mathscr{A}_1 i \mathscr{A} .

Dowód. Ćwiczenia

Fakt 1.11. Złożenie gładkich odwzorowań pomiędzy rozmaitościami jest gładkie.

Dowód. Niech $f: M \to N \ i \ g: N \to P \ będą gładkimi funkcjami. Weźmy <math>p \in M$ oraz oznaczmy $q = f(p) \in N$, $s = g(q) = g(f(p)) \in P$. Niech $(U, \phi), (V, \psi), (W, \xi)$ będą mapami odpowiednio wokół p, q, s.

Wiemy, że $\psi f \phi^{-1}$ oraz $\xi g \psi^{-1}$ są funkcjami gładkimi. Chcemy sprawdzić, czy $\xi(g \circ f) \phi^{-1}$ jest funkcją gładką.

$$\xi(g \circ f)\phi^{-1} = (\xi g\psi^{-1}) \circ (\psi f\phi^{-1})$$

jest złożeniem dwóch funkcji gładkich między \mathbb{R}^n -ami, więc g \circ f jest gładką funkcją miedzy rozmaitościami.

Definicja 1.12. Rzędem funkcji $f: M \to N$ C^1 -różniczkowalnego (def. 1.15) w punkcie p nazywamy rząd macierzy pierwszych pochodnych cząstkowych odwzorowania $\psi f \phi^{-1}$ w $\phi(p)$.

Fakt 1.13. Powyższa liczba [rząd funkcji w p] nie zależy od wyboru mapy wokół p ani wokół f(p).

Dowód. Szkicowy.

Dla map (U, ϕ) , (V, ψ) oraz (U', ϕ') , (V', ψ') chcemy porównać rząd macierzy jakobianu $\widehat{f} = \psi f \phi^{-1}$ oraz $\widehat{\widehat{f}} = \psi' f (\phi')^{-1}$. Wiemy, że

$$\widehat{\widehat{\mathbf{f}}} = \alpha \widehat{\mathbf{f}} \beta$$
,

gdzie α = $\psi'\psi^{-1}$ i β = $\phi(\phi')^{-1}$.

Macierz jakobianu złożenia to iloczyn macierzy jakobianu funkcji składowych. Macierz jakobianu odwzorowań przejścia jest nieosobliwa [są one bijekcjami]. W takim razie domnożenie przez jakobian α i β nie zmieni rzedu jakobianu \hat{f} .

1.6. Dyfeomorfizmy

Definicja 1.14. Gładkie odwzorowanie $f: M \to N$ nazywamy **dyfeomorfizmem**, jeśli jest wzajemnie jednoznaczne (bijekcja) oraz odwzorowanie do niego odwrotne f^{-1} jest gładkie.

Dwie rozmaitości M, N są **dyfeomorficzne** , jeśli istnieje między nimi dyfeomorfizm. Są one wtedy nierozróżnialne jako gładkie rozmaitości.

Wyżej powiedzieliśmy, że każda C^1 -rozmaitość posiada C^1 -zgodną strukturę C^∞ rozmaitości. Teraz możemy dopowiedzieć, że jeśli dwie C^∞ -rozmaitości są C^1 -dyfeomorficzne, to są one też C^∞ -dyfeomorficzne. Stąd klasyfikacja C^1 rozmaitości różniczkowalnych z dokładnością do C^1 -dyfeomorfizmu jest taka sama jak klasyfikacja C^∞ rozmaitości z dokładnością do C^∞ dyfeomorfizmu.

Wiemy już, że istnieją C^0 -rozmaitości bez struktury C^∞ -rozmaitości. Możemy teraz dodać do tego fakt, że istnieją C^0 -rozmaitości które nie są dyfeomorficznie zgodne jako C^∞ rozmaitości. W 1956 pokazano, że dla sfer S^n $n \geq 7$ istnieje skończenie wiele takich niedyfeomorficznych struktur.

W latach 1980 pokazano, że na \mathbb{R}^4 istnieje nieprzeliczalnie wiele struktur o których mowa wyżej. Z kolei przypadku \leq 3 związek pomiędzy C^0 a C^∞ jest taki jak pomiędzy C^1 a C^∞ .

1.7. Ck-różniczkowalność odwzorowań rozmajtości

Definicja 1.15. Dla M, N gładkich rozmaitości i $f: M \to N$ ciągłej mówimy, że f jest C^k -różniczkowalna w punkcie p, jeśli dla dowolnych map $(U, \phi) \ni p$ oraz $(V, \psi) \ni f(p)$ złożenie

$$\psi \circ f \circ \phi^{-1} : \phi[U \cap f^{-1}(V)] \to \psi(V)$$

jest C^k -różniczkowalne w punkcie $\phi(p)$.

f jest C^k na otoczeniu p, jeśli $\psi \circ f \circ \phi^{-1}$ jest C^k różniczkowalne na pewnym otwartym otoczeniu $\phi(p)$.

Funkcję $\psi\circ f\circ \phi^{-1}$ jest nazywana wyrażeniem f w mapach (U, ϕ) i (V, ψ) lub też wyrażeniem f w lokalnych współrzędnych zadanych przez te mapy.

Fakt 1.16. Jeśli f wyrażona w mapach (U, ϕ) i (V, ψ) jest C^k -różniczkowalna w pukcie $\phi(p)$ [na jego otoczniu] to wyrażona w innych mapach (U', ϕ') , (V', ψ') też jest C^k różniczkowalna wokół p [na jego otoczeniu].

Dowód. Niech $\hat{f} = \psi f \phi^{-1} a \hat{\hat{f}} = \psi' f(\phi')^{-1}$. Oznaczmy odwzorowania przejścia $\alpha = \phi(\phi')^{-1}$ oraz $\beta = \psi' \psi^{-1}$. Zachodzi

$$\widehat{\widehat{\mathbf{f}}} = \beta \circ \widehat{\mathbf{f}} \circ \alpha = (\psi'\psi^{-1}) \circ (\psi \mathbf{f} \phi^{-1})(\phi(\phi')^{-1}) = \psi' \mathbf{f}(\phi')^{-1}.$$

Zarówno $\widehat{\widehat{f}}$ jak i $\widehat{\beta f} \alpha$ są funkcjami określonymi na pewnych podzbiorach \mathbb{R}^n oraz $\alpha(\phi'(p)) = \phi(p)$. W takim razie jeśli \widehat{f} jest funkcją C^k -różniczkowalną, to $\widehat{\widehat{f}}$ jako złożenie funkcji gładkich z funkcją C^k -różniczkowalna też takie jest.

Dzięki tej obserwacji możemy definiować C^k-różniczkowalność funkcji jako bycie C^k-różniczkowalną w dowolnej mapie. Możemy więc dobrać sobie mapę w której sprawdzamy C^k-różniczkowalność tak, aby dowód był wygodny.

Uwaga 1.17. Funkcja $f: M \to N$ jest C^k -różniczkowalna \iff dla dowolnych map (U,ϕ) oraz (V,ψ) wyrażenie ψ $f\phi^{-1}$ funkcji f jest C^k -różniczkowalne na całym zbiorze, na którym jest ono określone.

Pojęcia:

- · odwzorowań gładkich
- różniczkowalności w punkcie (otoczeniu)
- · dyfeomorfizmu
- · rzędu odwzorowania w punkcie

oraz ich własności bez zmian przenoszą się na rozmaitości gładkie z brzegiem (def. 1.19).

1.8. Definiowanie rozmaitości gładkiej X za pomocą samego atlasu

Lemat 1.18. Niech X będzie zbiorem (bez zadanej topologii) i $\{U_{\alpha}\}$ będzie kolekcją podzbiorów w X taką, że dla każdego α istnieje $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ różniczkowalne takie, że

- 1. dla każdego $\alpha \ \phi_{\alpha}(\mathsf{u}_{\alpha})$ = $\overline{\mathsf{U}_{\alpha}} \subseteq \mathbb{R}^{\mathsf{n}}$ jest otwarty
- 2. dla dowolnych α , β $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ oraz $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$ są otwarte w \mathbb{R}^{n} .
- 3. jeśli $U_{\alpha} \cap U_{\beta} \neq \emptyset$, to $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \rightarrow \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ jest gładkie (a nawet dyfeomorficzne, bo odwzorowanie odwrotne $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ też jest gładkie)
- 4. przeliczalnie wiele spośród U_{α} pokrywa X
- 5. dla każdego p, q \in X, jeśli p \neq q, to istnieją α , β oraz otwarte $V_p \subseteq \overline{U_\alpha}$ i $V_q \subseteq \overline{U_\beta}$ takie, że p $\in \phi_\alpha^{-1}(V_p)$, q $\in \phi_\beta^{-1}(V_q)$ oraz $\phi_\alpha^{-1}(V_p) \cap \phi_\beta^{-1}(V_q) = \emptyset$ (oddzielanie punktów otwartymi zbiorami mapowymi).

Wówczas na X istnieje jedyna struktura rozmaitości topologicznej, dla której zbiory U_{α} są otwarte. Ponadto rodzina $\{(U_{\alpha},\phi_{\alpha})\}$ tworzy wtedy gładki atlas na X.

Dokładny dowód w Lee, lemat 1.35. Dowód. A dokładniej szkic dowodu.

Określimy topologię na X przy pomocy przeciwobrazów przez ϕ_{α} otwartych podzbiorów $\overline{U_{\alpha}}=\phi_{\alpha}(U_{\alpha})\subseteq\mathbb{R}^{n}$. Sprawdzenie, że jest to bazą topologii jest ćwiczeniem. Dzięki temu zbadanie lokalnej euklidesowości jest trywialne.

Dzięki warunkowi 4 nietrudno jest wybrać wtedy bazę przeliczalną [ćwiczenie], a warunek Hausdorffowości wynika z 5.

Przykłady:

1. $\mathscr L$ jest zbiorem prostych na płaszczyźnie. Na takim zbiorze nie ma dogodnej topologii, którą możnaby od razu wykorzystać. Zdefiniujmy zbiory:

U_h = {proste niepionowe}

oraz funkcje ϕ_h , ϕ_v :

$$U_h \ni L = \{y = ax + b\} \stackrel{\phi_h}{\mapsto} (a, b) \in \mathbb{R}^2$$

$$U_V \ni L = \{x = cy + d\} \stackrel{\phi_V}{\mapsto} (c, d) \in \mathbb{R}^2$$

Obie te funkcje są różnowartościowe i ich obrazy to \mathbb{R}^2 , czyli warunek 1 jest spełniony. Ponieważ jest ich tylko 2 sztuki i pokrywają całęgo X, to również 4. został spełniony. Sprawdźmy teraz 2:

 $U_h \cap U_V = \{ \text{proste niepionowe i niepoziome} \} = \{ y = ax+b : a \neq 0 \} = \{ x = cy+d : c \neq 0 \}$

$$\phi_{\mathsf{h}}(\mathsf{U}_{\mathsf{h}}\cap\mathsf{U}_{\mathsf{v}})$$
 = {(a, b) $\in\mathbb{R}^2$: a \neq 0}

$$\phi_{V}(U_{h} \cap U_{V}) = \{(c, d) : c \neq 0\}$$

są otwarte, więc 2 jest spełniona. Teraz kolej na 3.

Weźmy prostą L = {x = cy + d} = {y = $\frac{1}{c}x - \frac{d}{c}$ } \in U_h \cap U_v.

$$\left(\frac{1}{c}, -\frac{d}{c}\right) \stackrel{\phi_h}{\longleftarrow} L \stackrel{\phi_V}{\longrightarrow} (c, d)$$

Zatem $\phi_h \phi_V^{-1}(c, d) = \left(\frac{1}{c}, -\frac{d}{c}\right)$ jest gładkie (podobnie $\phi_V \phi_h^{-1}$).

Warunek 5. jest łatwy do sprawdzenia [ćwiczenie].

Z tą naturalną (mimo wszystko) topologią $\mathscr L$ jest w istocie homeomorficzne z wnętrzem wstęgi Möbiusa. Stąd do opisania $\mathscr L$ nie wystarcza jedna mapa.

O notacjach:

- W dalszej części rozważań będziemy utożsamiać mapowe otoczenie U \subseteq M z obrazem przez mapę, czyli $\overline{U} = \phi(U) \subseteq \mathbb{R}^n$. Można o tym myśleć, że przenosimy siatkę współrzędnych $(x_1,...,x_n)$ z \overline{U} przez ϕ^{-1} na U \subseteq M.
- Za pomocą translacji współrzędnych zawsze możemy przyjąć, że p = (0, ..., 0) w mapie, czyli możemy założyć, że (U, \(\phi \)) jest mapa o początku w p.
- Często będziemy przechodzić do mniejszych zbiorów mapowych, za mapę biorąc odwzorowanie obcięte (jest to mapa zgodna z atlasem). Będziemy wtedy mówić, że przyjmujemy, iż mapa wokół p ma zbiór mapowy tak mały, jak nam akurat potrzeba, np. że jest rozłączny z pewnym zbiorem domkniętym F ⊆ M niezawierającym p.

1.9. Rozmaitość gładka z brzegiem

Rzeczywistą półprzestrzeń oznaczamy

$$H^n = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}.$$

jej brzegiem nazywamy

$$\partial H^n = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n = 0\}$$

a wnetrzem:

$$int(H^n) = \{(x_1,...,x_n) \in \mathbb{R}^n \ : \ x_n > 0\}.$$

Dla U \subseteq Hⁿ oznaczymy ∂ U = U \cap ∂ H oraz int(U) = U \cap int(Hⁿ), czyli definicja brzegu i wnętrza jest nieco inna niż na topologii. Użyjemy Hⁿ oraz definicji jej brzegu i wnętrza, by zdefiniować rozmaitość gładką z brzegiem.

Dla U \subseteq Hⁿ otwartego i f : U $\to \mathbb{R}^m$ mówimy, że f jest **gładka**, gdy jest obcięciem do U gładkiej funkcji $\widehat{f}: \widehat{U} \to \mathbb{R}^m, \widehat{U} \subseteq \mathbb{R}^n$ otwartego, U $\subseteq \widehat{U}$. Pochodne cząstkowe funkcji f są dobrze określone na int(U), a ponieważ są ciągłe, to są również dobrze określone na ∂U (tzn. nie zależą od wyboru rozszerzenia \widehat{f}). Z analizy matematycznej wiemy, że rozszerzenia \widehat{f} istnieje \iff wszystkie pochodne cząstkowe f w int(U) w sposób ciągły rozszerzają się do ∂U .

Definicja 1.19. M jest gładką rozmaitością z brzegiem, jeśli posiada atlas $\{(U_{\alpha},\phi_{\alpha})\}$, $U_{\alpha}\subseteq M$ i $\phi_{\alpha}:U_{\alpha}\to H^n$ i $\overline{U_{\alpha}}=\phi_{\alpha}(U_{\alpha})$ jest otwarty w H^n , gdzie odwzorowania przejścia są gładkie (tzn. $\phi_{\alpha}\phi_{\beta}^{-1}$ są dyfeomorfizmami pomiędzy otwartymi podzbiorami w H^n).

Fakt 1.20. Jeśli w pewnej mapie $(U_{\alpha}, \phi_{\alpha}), \phi_{\alpha}(p) \in \partial H^{n}$, to w każdej innej mapie $(U_{\beta}, \phi_{\beta})$ zawierającej p $\phi_{\alpha}(p) \in \partial H^{n}$.

Dowód. Wynika to z twierdzenia o odwzorowaniu otwartym, wraz z nieosobliwością Jakobianu odwzorowań przejścia.

Dla rozmaitości topologicznych z brzegiem analogiczny fakt wymaga w dowodzie twardego twierdzenia Brouwera o niezmienniczności obrazu - analogicznego twierdzenia o odwzorowaniu otwartym dla ciągłych injekcji.

Definicja 1.21. Brzegiem n-rozmaitości M z brzegiem nazywamy zbiór

 ∂M = {p \in M : w pewnej (każdej) mapie p \in (U $_{\alpha}$, ϕ_{α}) zachodzi ϕ (p) \in ∂H^{n} wnętrze M nazywa się

$$int(M) = \{p \in M : (\exists (U_{\alpha}, \phi_{\alpha}) \phi_{\alpha}(p) \in int(H^{n})\}$$

Fakt 1.22. Wnętrze int(M) n-rozmaitości gładkiej M jest n-rozmaitością bez brzegu.

Dowód. Jako atlas bierzemy $\{(U'_{\alpha}, \phi'_{\alpha})\}$, gdzie

$$U'_{\alpha} = \phi_{\alpha}^{-1}(\operatorname{int}(\overline{U_{\alpha}})) = U_{\alpha} \cap \operatorname{int}(M), \quad \phi'_{\alpha} = \phi_{\alpha} \upharpoonright U'_{\alpha}$$

Odwzorowania przejścia $\phi_{\alpha}'(\phi_{\beta}')^{-1}$ są obcięciami $\phi_{\alpha}\phi_{\beta}^{-1}$, więc są gładkie.

Przykłady:

1. Dysk D^n = {x $\in \mathbb{R}^n : |x| \leq 1}$ jest n-rozmaitością z brzegiem ∂D^n = S^{n-1} = {x $\in \mathbb{R}^n : |x|$ = 1}.

Dowód. Skonstruujemy mapy, pomijając sprawdzanie gładkości odwzorowań przejścia.

Mapa (U_0, ϕ_0):

$$U_0 = \{x : |x| < 1\}, \ \phi_0 : U_0 \to H^n, \ \phi_0(x_1, ..., x_n) = (x_1, ..., x_{n-1}, x_n + 2)$$

Mapy (U_i^{\pm}, ϕ_i^{\pm})

$$U_i^* = \{x \in D^n : x_i > 0\}$$

$$U_i^- = \{x \in D^n : x_i < 0\}$$

$$\phi_i^{\pm}(x_1,...,x_n) = \left(\frac{x_1}{x_i},...,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},...,\frac{x_n}{x_i},\underbrace{1-\sum_{1-r^2}x_i^2}_{1-r^2}\right)$$

$$\phi_{:}^{\pm}(p) = (\pi(p), 1 - r^2) \in H^n$$

Ш

2. Inny atlas na Dⁿ, składający się tylko z dwóch map:

Niech A i B będą punktami styczności dwóch prostych równoległych do dysku $\mathsf{D}^{\mathsf{n}}.$ Rozważmy zbiory

$$U_A = D^n \setminus \{A\}$$

$$U_B = D^n \setminus \{B\}$$

- oraz odwzorowania $\phi_A:U_A\to H_A^n$ i $\phi_B:U_B\to H_B^n$ będące inwersjami dysku względem sfer S n o środkach w A i B oraz promieniu 2.
- Tutaj warto zaznaczyć, że jeśli n = 0, to wtedy ∂M = ∅ i M jest 0-rozmaitością. W dodatku, zbiór rozmaitości gładkich z brzegiem można rozumieć jakoby zawierał zbiór rozmaitości topologicznych, gdyż ∂M = ∅ ← M jest rozmaitością topologiczną.

2. Rozkład jedności

Rozważmy rozmaitość z brzegiem M. Chcielibyśmy mieć narzędzie, które pozwoli nam tworzyć gładkie funkcje $f:M\to\mathbb{R}$ takie, że f(p) = 0 gdy $p\in\partial M$ oraz f(p) > 0 dla dowolnego $p\in Int(M)$.

Lokalnie, na zbiorze mapowym (U_{α} , ϕ) możemy funkcję spełniającą wymagania wyżej zadać przy pomocy funkcji wychodzącej z $\overline{U_{\alpha}} = \phi(U_{\alpha})$

$$f_{\alpha}: \overline{U_{\alpha}} \to \mathbb{R}, \quad f(x_1, ..., x_n) = x_n,$$

gdyż ostatnia współrzędna punktów z ∂M jest zawsze zerowa (gdyż są one w ∂H^n). Stad w prosty sposób dostajemy funkcje:

$$f_{\alpha}: U_{\alpha} \to \mathbb{R}$$
, $f_{\alpha} = \overline{f_{\alpha}} \circ \phi$

która lokalnie spełnia nasze wymagania. Nie możemy jednak w prosty sposób przełożyć lokalne f_{α} na funkcję $f:M\to\mathbb{R}$.

2.1. Lokalnie skończone rozdrobnienie

Przypomnijmy definicje, które będą przydatne przy rozkładach jedności:

Definicja 2.1. Pokrycie $\{A_{\alpha}\}$ podzbiorami przestrzeni topologicznej X jest **lokalnie skończone**, jeśli dla każdego $p \in X$ istnieje otoczenie U_p takie, że $U_p \cap A_{\alpha} \neq \emptyset$ tylko dla skończenie wielu α .

Definicja 2.2. Pokrycie $\{V_{\beta}\}$ przestrzeni X zbiorami otwartymi nazywamy **rozdrobnieniem pokrycia** $\{U_{\alpha}\}$, jeśli każdy V_{β} zawiera się w pewnym U_{α} .

Warto nadmienić, że relacja bycia rozdrobnieniem jest przechodnia. Będziemy oznaczać ją przez $\{V_{\beta}\} \prec \{U_{\alpha}\}$.

Definicja 2.3. Przestrzeń topologiczna X jest **parazwarta**, jeśli każde jej pokrycie $\{U_{\alpha}\}$ zbiorami otwartymi posiada lokalnie skończone rozdrobnienie $\{V_{\beta}\}$.

Warto przypomnieć, że każda rozmaitość topologiczna jest parazwarta. Dowód tego lematu wykorzystuje w istotny sposób lokalną zwartość, czyli istnienie dla każdego

Dowód: patrz Lee strona 36-37 punktu otoczeń prezwartych (po domknięciu zwartych). Własność ta została udowodniona na ćwiczeniach.

Uwaga 2.4. Rozdrobnienie wynikające z parazwartości rozmaitości topologicznych można z góry uznać za składające się z prezwartych zbiorów mapowych.

Dowód. Niech $\{U_{\alpha}\}$ będzie pokryciem M. Łatwo jest znaleźć rozdrobnienie $\{U_{\gamma}'\} \prec \{U_{\alpha}\}$ złożone ze zbiorów prezwartych mapowych. Wystarczy obraz każdego U_{α} w \mathbb{R}^n pokryć zbiorami prezwartymi i wrócić z nimi na M. Z faktu, że rozmaitości są parazwarte dostajemy lokalnie skończone rozdrobnienie $\{V_{\beta}\} \prec \{U_{\gamma}'\}$, które z przechodności \prec jest też rozdrobnieniem $\{U_{\alpha}\}$. Dodatkowo, każdy V_{β} zawiera się w pewnym U_{γ}' , które były mapowe i prezwarte, więc i V_{β} taki jest.

Uwaga 2.5. Niech $\{A_{\alpha}\}$ będzie lokalnie skończoną rodziną parazwartych podzbiorów rozmaitości M. Wtedy dla każdego A_{α_0} podrodzina

$$\{A_{\alpha} : A_{\alpha} \cap A_{\alpha_0} \neq \emptyset\}$$

iest skończona.

Dowód. Załóżmy nie wprost, że dla pewnego A_{α_0} podrodzina $\{A_{\alpha}: A_{\alpha} \cap A_{\alpha_0} \neq \emptyset\}$ jest nieskończona. Możemy w takim razie wybrać z niej ciąg A_{α_i} oraz ciąg punktów $x_i \in A_{\alpha_i} \cap A_{\alpha_0}$. Ciąg x_i ma punkt skupienia w pewnym $p \in cl(A_{\alpha_0})$.

Ponieważ p jest punktem skupienia x_i , to dowolne otwarte otoczenie U_p punktu p zawiera nieskończenie wiele elementów x_i . W takim razie U_p przecina się z nieskończenie wieloma zbiorami A_{CL} . Jest to sprzeczne z lokalna skończonościa $\{A_{CL}\}$.

W uwadze 2.4 pokazaliśmy mapowość i prezwartość zbiorów z rozdrobnienia $\{V_\beta\}$ wynikającego z parazwartości rozmaitości topologicznych. Możemy teraz dodatkowo zapewnić sobie istnienie interesujących nas zbiorów zwartych:

Uwaga 2.6. Niech $\{V_{\beta}\}$ będzie lokalnie skończonym rozdrobnieniem pokrycia M składającym się ze zbiorów mapowych. Wtedy dla każdego β istnieje zwarty zbiór $D_{\beta} \subset V_{\beta}$ taki, że

$$\bigcup D_{\beta} = M$$

to znaczy możemy wybrać "rozdrobnienie" przy pomocy zwartych zbiorów, które nadal pokrywa M.

Dowód. Ponieważ V_{β} są zbiorami mapowymi, to o każdym z nich możemy myśleć jak o otwartym podzbiorze w \mathbb{R}^n poprzez utożsamienie go z otwartym zbiorem $\overline{V_{\beta}} = \phi_{\beta}(V_{\beta})$ dla mapy $(V_{\beta}, \phi_{\beta})$.

Każdy V_{β_0} jest wstępującą suma mniejszych zbiorów $V_{\beta_0,k}$ dla $k\in\mathbb{N}$, które są otwarte i ich zwarte domknięcia zawierają się w V_{β_0} : $\mathrm{cl}(V_{\beta_0,k})\subseteq V_{\beta_0}$. Możemy np. wybierać $V_{\beta_0,k}=B(x_0,k)\cap\{x\in V_{\beta_0}:\ \mathrm{d}(x,V_{\beta_0^c}>\frac{1}{k}\}$, tzn. przekroje kul otwartych w \mathbb{R}^n o środku w $x_0\in V_{\beta_0}$ i promieniu k ze zbiorami tych $x\in V_{\beta_0}$, które są odległe od dopełnienia V_{β_0} o co najmniej $\frac{1}{k}$.

Niech teraz $V_{\beta_1},...,V_{\beta_m}$ będą zbiorami z $\{V_{\beta}\}$ niepusto krojącymi V_{β_0} . Jest ich skończenie na mocy 2.5. Wówczas $V_{\beta_1},...,V_{\beta_m}$ wraz z wcześniej stworzonymi $V_{\beta_0,k}$ jest pokryciem zwartego zbioru cl (V_{β_0}) . Możemy więc z niego wybrać skończone podpokrycie postaci: $V_{\beta_1},...,V_{\beta_m},...V_{\beta_0,k_0}$. Oznacza to, że zastępując w $\{V_{\beta}\}$ zbiór V_{β_0} przez zbiór V_{β_0,k_0} dostajemy nowe pokrycie M z cl $(V_{\beta_0,k_0}\subseteq V_{\beta_0})$. Powtarzamy to induktywnie dla wszystkich V_{β} i wybieramy pokrycie

$$D_{\beta} = cl(V_{\beta,k}),$$

które spełnia wymagania z uwagi.

- lokalnie skończone rozdrobnienie $\{V_{\beta}\}$ składające się ze zbiorów mapowych i parazwartych oraz
- rodzina $\{D_{\beta}\}$ zwartych podzbiorów $D_{\beta} \subseteq V_{\beta}$, która dalej pokrywa M.

To samo dotyczy też rozmaitości z brzegiem.

2.2. Twierdzenie o rozkładzie jedności

Definicja 2.7. Dla funkcji rzeczywistej $f: X \to \mathbb{R}$ określamy jej **nośnik** jako:

$$supp(f) := cl(\{x \in X : f(x) \neq 0\})$$

Fakt 2.8. $[z \mathbb{R}^n]$ Dla dowolnego otwartego $\Omega \subseteq \mathbb{R}^n$ oraz dowolnego zwartego $D \subseteq \Omega$ istnieje qładka funkcja $f : \mathbb{R}^n \to \mathbb{R}$ taka, że:

- 1. f > 0
- 2. $supp(f) \subset \Omega$
- 3. $f(x) > 0 dla x \in D$

Twierdzenie 2.9. [O rozkładzie jedności] Dla każdego otwartego pokrycia $\{U_{\alpha}\}$ rozmaitości gładkiej M istnieje rodzina $\{f_i\}$ gładkich funkcji $f_i: M \to \mathbb{R}$ takich, że

- 1. $f_i \ge 0$
- 2. dla każdego i nośnik supp (f_i) zawiera się w pewnym U_{α}
- 3. nośniki (supp(f_i)) tworzą lokalnie skończone pokrycie M
- 4. dla każdego x $\in M \sum f_i(x)$ = 1 [suma ta jest skończona wokół każdego x dzięki 3.]

Dowód. Niech $\{V_j\} \prec \{U_\alpha\}$ będzie lokalnie skończonym pokryciem otwartym prezwartymi zbiorami mapowymi. Niech $D_j \subseteq V_j$ będą zbiorami zwartymi, które dalej pokrywają M (na mocy 2.6).

Niech (V_i, ϕ_i) będzie mapą na M i niech

$$\overline{D}_i = \phi(D_i) \subseteq \phi_i(V_i) = \overline{V}_i$$

będzie zbiorem zwartym. Dzięki faktowi z \mathbb{R}^n 2.8 wiemy, że dla każdego j istnieje gładka funkcja $\overline{h}_i:\mathbb{R}^n\to\mathbb{R}$ taka, że:

- 1. $\overline{h}_i \geq 0$
- $2. \ \, supp(\overline{h}_j) \subseteq \overline{V}_j$
- $3. \ \overline{h}_j(x) > 0 \ dla \ x \in D_j.$

Zdefiniujmy teraz funkcję $h_i:M\to\mathbb{R}$ taką, że:

$$h_{j}(x) = \begin{cases} \overline{h}_{j} \circ \phi_{j}(x) & x \in V_{j} \\ 0 & x \notin V_{j} \end{cases}$$

Żeby pokazać gładkość h_j, wystarczy pokazać jej gładkość na pewnym otoczeniu każdego punktu.

Na otoczeniu punktów z V_j funkcja jest oczywiście gładka jako złożenie dwóch funkcji gładkich. Dla p $\notin V_j$ istnieje otwarte otocznie U_p które jest rozłączne z supp (h_j) , a więc jest otwartym otoczenie na którym h_j jest stale równe zero. Taka funkcja jest oczywiście gładka.

Niech teraz $h(x)=\sum_j h_j(x)$. Jest to dobrze określona definicja, gdyż supp (h_j) tworzą rodzinę lokalnie skończoną (bo $\{V_j\}$ taka jest). Z lokalnej skończoności nośników wynika, że h jest gładka na M.

Dostajemy też h(x) > 0, bo D_j pokrywają całe M, a więc dla każdego $x \in M$ istnieje i takie, że $x \in D_i$, a więc $h_i(x) > 0$.

Określmy $f_j(x) = \frac{h_j(x)}{h(x)}$. Wiemy, że $f_j: M \to \mathbb{R}$ jest gładka na M, $supp(f_j) = supp(h_j) \subseteq V_j$, więc rodzina $\{supp(f_j)\}$ jest lokalnie skończona i każdy $supp(f_j)$ zawiera się w pewnym U_{α} . Wreszcie mamy

$$\sum f_j(x) = \sum \frac{h_j(x)}{h(x)} = \frac{\sum h_j(x)}{h(x)} = \frac{\sum h_j(x)}{\sum h_j(x)} = 1$$

dla każdego $x \in M$.

Definicja 2.10. Rodzina funkcji $\{f_j\}$ jak w dowodzie twierdzenia wyżej jest nazywana **rozkładem jedności** wpisanym w pokrycie $\{U_{\alpha}\}$.

2.3. Zastosowania rozkładów jedności

Zazwyczaj rozkłady jedności służą do konstruowania gładkich funkcji, które są określone na całym M i spełniają pewne wymagania. Z pomocą rozkładów jedności będziemy też "globalizować" inne obiekty na rozmaitościach, np. pola wektorowe, metryki Riemanna czy formy różniczkowalne.

Przykłady:

 Niech F₁, F₂ będą domkniętymi rozłącznymi podzbiorami gładkiej rozmaitości M. Wówczas istnieje gładka funkcja f : M → [0,1] taka, że

$$f \upharpoonright F_1 \equiv 1$$

oraz $f \upharpoonright F_2 \equiv 0$.

Dowód. Niech $U_i = M \setminus F_i$, wtedy $\{U_1, U_2\}$ jest pokryciem M. Niech $\{f_i\}$ będzie rozkładem jedności wpisanym w $\{U_1, U_2\}$. Określmy

$$f(x) = \sum_{\text{supp}(f_i) \subseteq U_2} f_j(x).$$

Weźmy $x \in F_1$, wtedy wszystkie nośniki supp (f_i) zawierające x zawierają się w U_2 , zatem dla takich x jest

$$f(x) = \sum f_j(x) = 1$$

Jeśli $x \in F_2$, to nośniki supp (f_i) zawierające x nie mogą zawierać się w U $_2$. W takim razie f(x) = 0.

2. Rozważmy istnienie gładkiej funkcji $f: M \to \mathbb{R}$ takiej, że

$$f(p) = \begin{cases} = 0 & p \in \partial M \\ > 0 & p \in Int(M) \end{cases}$$

Niech $\{U_\alpha\}$ będzie dowolnym pokryciem zbiorami mapowymi, a $f_\alpha:U_\alpha\to\mathbb{R}^n$ będą lokalnie gładkimi funkcjami takimi, że

$$f_{\alpha} = \begin{cases} \overline{f}_{\alpha} \circ \phi_{\alpha} & U_{\alpha} \cap \partial M \neq \emptyset \\ 1 & U_{\alpha} \cap \partial M = \emptyset \end{cases}$$

gdzie $\overline{f}_{\alpha}:\overline{U}_{\alpha}\to\mathbb{R}$ jest zdefiniowane jako

$$\bar{f}_{\alpha}(x_1,...,x_n) = x_n.$$

Niech $\{h_\beta\}$ będzie rozkładem jedności wpisanym w $\{U_\alpha\}$. Dla każdego β wybieramy $\alpha(\beta)$ takie, że supp $(h_\beta)\subseteq U_{\alpha(\beta)}$. Definiujemy $h_\beta':M\to\mathbb{R}$ przez

$$h'_{\beta} = h_{\beta} \circ f_{\alpha(\beta)}$$
.

Wtedy h'_{β} jest gładkie oraz supp $(h'_{\beta})\subseteq \text{supp}(h_{\beta})$, więc rodzina nośników $\{\text{supp}(h'_{\beta})\}$ jest lokalnie skończona.

Zdefiniujmy teraz

$$f(x) = \sum h'_{\beta}$$

które z lokalnej skończoności nośników $\{\text{supp}(h'_{\beta}\}\ \text{jest dobrze określone}.$

- p $\in \partial M$, to dla każdego $\beta h'_{\beta}(p) = 0$, więc f(p) = 0.
- p \in Int(M), to wtedy istnieje β takie, że h $_{\beta}$ (p) > 0, a ponieważ dla $\gamma \neq \beta$ h $_{\gamma}'$ (p) \geq 0, to f(p) > 0.

Po angielsku taka funkcja nazywa się bump function 3. Dla dowolnego $A \subseteq M$ domkniętego oraz $A \subseteq U \subseteq M$ otwartego istnieje funkcja $f: M \to \mathbb{R}$ taka, że dla $x \in A$ f(x) = 1 oraz $supp(f) \subseteq U$.

Dowód. Niech $U_1 = U$ oraz $U_2 = M \setminus A$, zbiory te pokrywają całe M. Niech h_1, h_2 będzie rozkładem jedności wpisanym w to pokrycie. Wtedy funkcja h_1 ma poszukiwane własności, bo dla $x \in A$ mamy $h_2(x) = 0$, więc $1 = h_1(x) + h_2(x) = h_1(x)$.

Dowód istnienia to wniosek 2.28 z Lee. 4. Funkcja $f: M \to \mathbb{R}$ jest nazywana *exhaust function*, jeśli dla każdego $c \in \mathbb{R}$ $f^{-1}((-\infty, c])$ jest zwartym podzbiorem M. Kiedy idąc po liczbach naturalnych n rozpatrujemy $f^{-1}((-\inf v, n])$, to po drodze zahaczamy o wszystkie zwarte zbiory

w M, stąd też nazwa. Dowód istnienia exhaust function korzysta z rozkładów jedności $\{h_i\}$ wpisanych w dowolne pokrycie prezwartymi zbiorami oraz funkcji $f(x) = \sum_{i>1} j \cdot \phi_i(x)$.

2.4. Alternatywna wersja twierdzenia o rozkładzie jedności

Twierdzenie 2.11. Dla dowolnego otwartego pokrycia $\{U_{\alpha}\}_{\alpha\in A}$ rozmaitości gładkiej M istnieje rodzina $\{f_{\alpha}\}$ gładkich funkcji $f_{\alpha}: M\to \mathbb{R}$ takich, że

- 1. $f_{\alpha} > 0$
- 2. $supp(f_{\alpha}) \subset U_{\alpha}$
- 3. nośniki $\{\sup p(f_{\alpha})\}$ tworzą lokalnie skończone pokrycie M [czyli wiele spośród f_{α} jest zerowych]
- 4. dla każdego $x \in M \sum f_{\alpha}(x)$ = 1

Dowód. Znowu szkic dowodu za pomocą wyjściowej wersji twierdzenia.

Rozważmy rodzinę $\{f_j\}_{j\in J}$ jak w wyjściowej wersji twierdzenia. Dla każdego $j\in J$ wybieramy $\alpha(j)\in A$ takie, że supp $(f_i)\subseteq U_{\alpha(j)}$. Zdefiniujmy

$$f_{\alpha} = \sum_{j:\alpha(j)=\alpha} f_{j}$$
.

Z lokalnej skończoności nośników supp (f_j) wiemy, że f_α również jest funkcją gładką. Warunek 4 zachodzi w sposób oczywisty, tak samo warunek 1.

Warunki 2 i 3 w łatwy sposób wynikają z obserwacji, że dla dowolnej lokalnie skończonej rodziny podzbiorów P_t w przestrzeni X, $cl(\bigcup P_t) = \bigcup cl(P_t)$.

3. Dyskretne ilorazy rozmaitości

3.1. Klejenie rozmaitości wzdłuż brzegu

Twierdzenie 3.1. Niech M będzie gładką n-rozmaitościa, a B niech będzie kompotentą brzegu ∂ M. Wtedy istnieje dyfeomorficzne (dyfeomorfizm na obraz) włożenie

$$K: B \times [0,1) \rightarrow M$$

na otwarte otoczenie U komponenty B w M takie, że $K(x, 0) = x dla x \in B$.

Otoczenie kołnierzowe to otwarte otoczenie U brzegu ∂M na M, wraz z dyfeomorfizmem $F: [0,1) \times \partial M \to U$ takie, że F(0,x) = x.

Dowód. Dowód za kilka wykładów przy pomocy potoków wektorowych (Rozdział 5.4).

Jeśli M₁, B₁ oraz M₂, B₂ są jak wyżej oraz istnieje dyfeomorfizm

$$f: B_1 \rightarrow B_2$$

to możemy zdefiniować relację równoważności

$$B_1 \ni x \sim f(x) \in B_2$$

oraz stworzyć rozmaitość:

$$M_1 \cup_f M_2 = M_1 \sqcup M_2 / \sim$$
.

Struktura na $M_1 \cup_f M_2$ jest częściowo odziedziczona po M_1 i M_2 . Dodatkowo sklejamy zbiory U_i utożsamiając je z produktami $B_i \times [0,1)$ za pomocą B_i :

$$K_i: B_i \otimes [0,1) \rightarrow M_i$$

Na $M_1 \cup_f M_2$ istnieją trzy rodzaje map:

- 1. dla dowolnej mapy (U, ϕ) na M₁ rozważamy jej obcięcie do U \ B₁
- 2. dla dowolnej mapy (V, ψ) na M_2 rozważamy jej obcięcie do $V \setminus B_2$
- 3. dla dowolnej mapy (W, ξ) na B₁ i $\xi:W\to \overline{W}\subseteq \mathbb{R}^{n-1}$ rozważamy zbiór

$$[W \times [0,1)] \cup_{f \upharpoonright W} [f(W) \times [0,1)] = \widehat{W} \subseteq M_1 \cup_f M_2$$

z mapą

$$\widehat{\xi}:\widehat{W}\to\overline{\widehat{W}}\subset\mathbb{R}^n$$

$$\widehat{\xi}(x,t) = \begin{cases} (\xi(x),-t) & (x,t) \in U_1 \\ (\xi(f^{-1}(x)),t) & (x,t) \in U_2 \end{cases}$$

Mamy $\widehat{\xi}(x, 0) = \widehat{\xi}(f(x), 0)$, więc \widehat{x} jest dobrze zdefiniowane w punktach sklejenia.

$$\overline{\widehat{\mathbb{W}}} = \overline{\mathbb{W}} \times (\text{-1,1}) \subseteq \mathbb{R}^n \times (\text{-1,1}) \subseteq \mathbb{R}^{n+1}$$

zaś $\widehat{\xi}:\widehat{\mathbf{W}} \to \overline{\widehat{\mathbf{W}}}$ jest homeomorfizmem.

Sprawdzenie gładkiej zgodności map z podpunktów 1, 2 i 3 zostanie pominiete.

Rozmaitość $M_1 \cup_f M_2$ wydaje się zależeć jednocześnie od wyboru f oraz otoczeń kołnierzowych K_i komponent brzegów B_i . W rzeczywistości jednak, $M_1 \cup_f M_2$ jest takie same z dokładnością do dyfeomorfizmu dla dowolnych wyborów K_i :

Fakt 3.2.

1. Jeśli K_1, K_1' są podobnie położone w $M_1,$ tzn. istnieje $h: M_1 \to M_1$ dyfeomorfizm taki, że

$$K_1' \upharpoonright B_1 \times [0, 1\frac{1}{2}) = h \circ K_1 \upharpoonright B_1 \times [0, \frac{1}{2}),$$

to wtedy

$$\mathsf{M}_1 \cup_{f,\mathsf{K}_1,\mathsf{K}_2} \mathsf{M}_2 \cong \mathsf{M}_1 \cup_{f,\mathsf{K}_1',\mathsf{K}_2} \mathsf{M}_2.$$

Analogicznie gdy weźmiemy K2, K2. [dowód: ćwicznia]

 Każde dwa otoczenia kołnierzowe komponenty B₁ brzegu ∂M są podobnie położone. [dowód trudny] 3. Ustalmy otoczenia kołnierzowe K_1, K_2 . Jeśli $f_0, f_1: B_1 \to B_2$ są izotopijnymi dyfeomorfizmami, tzn. istnieje gładkie $F: [0,1] \times B_1 \to B_2$ takie, że $F(0) = f_0$ a $F(1) = f_1$, wtedy

$$M_1 \cup_{f_0,K_1,K_2} M_2 \cong M_1 \cup_{f_1,K_1,K_2} M_2.$$

[dowód łatwy]

3.2. Suma spójna rozmaitości

Niech M_1 , M_2 będą rozmaitościami wymiaru n. Weźmy $D_i\subseteq M_i$, czyli kule nwymiarowe zawarte w otoczeniach mapowych. Oznaczmy $B_i=\partial D_i\cong S^{n-1}$ jako komponenty brzegu rozmaitości $M_i\setminus Int(D_i)$. Niech

$$f:B_1\to B_2$$

będzie dyfeomorfizmem. Oznaczamy wówczas

$$[M_1 \setminus Int(D_1)] \cup_f [M_2 \setminus Int(D_2)] = M_1 \# M_2$$

jako sumę spójną rozmaitości M₁ i M₂.

Uwaga 3.3.

- Jeśli M_i jest rozmaitością spójną, to M_i \ Int(D_i), z dokładnością do dyfeomorfizmu, nie zależy od wyboru dysku D_i.
- 2. Istnieją dokładnie 2 klasy izotopii dyfeomorfizmów $f: S^{n-1} \to S^{n-1}$: te zachowujące orientację oraz te, które orientacji nie zachowują.
- 3. Są co najwyżej dwie rozmaitości będące sumą spójną M₁#M₂. W przypadku rozmaitości zorientowanych, jedna z nich jest preferowana.

Klasyfikacja zamkniętych powierzchni spójnych (czyli zwarte 2-wymiarowe rozmaitości bez brzegu):

- 1. Powierzchnie orientowalne: S^2 , T^2 , $T^2\#T^2$, $T^2\#T^2\#T^2$, ...
- 2. Powierzchnie nieorientowalne $\mathbb{R}P^2$ = S^2/\mathbb{Z}_2 , $\mathbb{R}P^2\#\mathbb{R}P^2$, ...

Powierzchnie z powyższej listy są parami niedyfeomorficzne. Każda zamknięta powierzchnia jest dyfeomorficzna z jedną z tej listy.

3-rozmaitości:

Dehn surgery: niech M będzie 3-wymiarową rozmaitością M z kolekcją węzłów (podrozmaitości Sⁿ dyfeomorficznych do skończonej rozłącznej sumy S^j) L = L₁ ∪ ... ∪ L_k. Rozmaitość M wywiercona wzdłuż tubowego otoczeniem L posiada k-wiele komponentów brzegu T₁ ∪ ... ∪ T_k. Chirurgia Dehna polega na wywierceniu z M tubowego otoczenia L wraz ze sklejeniem każdej z komponent brzegu T₁ ∪ ... ∪ T_k w jeden torus [to jest Dehn filling i jest wiele sposobów na wytworzenie go].

Poniżej bardzo lużne opisy z wikipedii. Dokładniejsze opisy lepiej jest doczytać w literaturze.

Rozkłady Heegaarda [Heegaard's splittings] na zorientowanej 3-rozmaitości z brzegiem M polega na na podzieleniu jej na dwa handlebody [fidget spinnery; 3-rozmaitości oriengowalne z brzegiem zawierające parami rozłączne włożone 2-dyski takie, że rozmaitość wzdłuż nich przecięta jest S³].

3.3. Działanie grupy dyfeomorfizmów

Definicja 3.4. Grupa G dyfeomorfizmów M to zbiór dyfeomorfizmów g : $M \to M$ zamknięty na składanie i branie odwrotności. Mówimy wtedy, że G działa na M przez dyfeomorfizmy.

Definicja 3.5. Orbitą punktu $x \in M$ względem działania G na M nazywamy zbiór

$$G(x) = \{g(x) : g \in G\}$$

Uwaga 3.6. Orbity G(x) i G(y) są albo rozłączne, albo pokrywają się.

Rodzina wszystkich orbit stanowi rozbicie rozmaitości M na podzbiory.

Definicja 3.7. Przestrzeń ilorazowa działania G na M to przestrzeń, której punktami są orbity G(x):

$$M/G = \{G(x) : x \in M\}$$

zaś topologia jest ilorazowa, tzn. *zbiór orbit jest otwarty* w M/G \iff suma tych orbit stanowi otwarty podzbiór w M.

Jeśli U \subseteq M jest otwartym podzbiorem, to

$$G(U)/G = \{G(x) : x \in U\}$$

jest otwarty w M/G i każdy zbiór otwarty w M/G jest takiej postaci. Kiedy ${\mathcal B}$ jest bazą topologii w M, to rodzina

$$\{G(U)/G : U \in \mathscr{B}\}\$$

jest bazą topologii w M/G. Z tego powodu M/G zawsze posiada przeliczalną bazę.

Definicja 3.8. Lokalną euklidesowość M/G zapewnia warunek na działanie nakrywające:

$$(\forall \ p \in M)(\exists \ p \in U \overset{\text{otw.}}{\subseteq} M)(\forall \ g_1,g_2 \in G) \ g_1(U) \cap g_2(U) = \emptyset.$$

Przy takim działaniu G na M podzbiór G(U)/G jest otoczeniem G(p) homeomorficzny z U. Oznacza to lokalna euklidesowość M/G.

Fakt 3.9. Jeśli działanie grupyG przez homeomorfizmy na rozmaitości M jest nakrywające, to iloraz M/G jest lokalnie euklidesowy dla wymiaru n = dim(M).

Przykłady:

1. Działanie grupy $\mathbb Z$ na $\mathbb R^2\setminus\{(0,0)\}$ przez potęgi przekształcenia liniowego zadanego macierzą

$$A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

jest nakrywające. W takim razie iloraz ($\mathbb{R}^2\setminus\{(0,0)\}$)/ $\langle A\rangle$ jest lokalnie euklidesowy wymiaru 2. Jednak iloraz ten nie jest przestrzenią Hausdorffa, bo dla punktów na osobnych osiach p i q zbiory otwarte:

nigdy nie mogą być rozłączne. Stąd rozmaitość ilorazowa M/G nie może być nigdy rozmaitościa różniczkowalna.

Definicja 3.10. Działanie G na M przez dyfeomorfizm jest:

- 1. wolne, gdy dla każdego $g \in G \setminus \{id\} i$ dla każdego $x \in M$ $g(x) \neq x$
- właściwie nieciągte [properly discontinuous], gdy dla każdego zwartego
 K ⊆ M zbiór {g ∈ G : g(K) ∩ K ≠ ∅} jest skończony.

Definicja 3.11. Dla $x \in M$ **stabilizator** (nadgrupa stabilizująca) punktu x względem G to

$$Stab(x) := \{g \in G : g(x) = x\}$$

jest automatycznie podgrupą G.

Fakt 3.12. Działanie G jest wolne \iff wszystkie stabilizatory stab(x) są trywialne (= $\{id\}$).

Przykłady:

- 1. Działanie grupy \mathbb{Z}_n na \mathbb{R}^2 zadane przez potęgi obrotu o kąt $\frac{2\pi}{n}$ nie jest wolne.
- 2. Działanie G jest wolne \iff dla każdego $x\in M$ odwzorowanie G \to G(x) zadane przez g \mapsto g(x) jest bijekcją.

Fakt 3.13.

- Gdy działanie G przez homeomorfizmy na przestrzeni topologicznej lokalnie zwartej X jest właściwie nieciągłe, to każda orbita G(x) jest dyskretnym podzbiorem w X (tzn. każdy x ∈ G(x) ma otwarte otocznie U takie, że U ∩ G(x) = {x}).
- 2. Jeśli działanie G na X jest właściwie nieciągłe i wolne, to jest też nakrywające.
- 3. Jeśli G działa przez homeomorfizmy na przestrzeni lokalnie zwartej X w sposób właściwie nieciągły, to iloraz X/G jest przestrzenią Hausdorffa.

Przykłady:

- 1. Działanie grupy \mathbb{Z} na S¹ przez potęgi obrotu o kąt α niewspółmierny z 2 π jest wolne, ale ma orbity gęste w S¹, a więc nie są one dyskretne. Zatem działanie nie jest ani właściwie nieciągłe, ani wolne. Iloraz s¹/ \mathbb{Z} jest wtedy przestrzenią z topologią trywialną, więc nie jest rozmaitością.
- 2. Działanie \mathbb{Z} na $\mathbb{R}^2\setminus\{(0,0)\}$ przez potęgi

$$A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

nie może być właściwie nieciągłe. Można to zobaczyć bezpośrednio:

dla każdego n \geq 1 mamy $A^n(K) \cap K \neq \emptyset$.

Jednakże tak zadane działanie $\mathbb Z$ na $\mathbb R^2\setminus\{(0,0)\}$ jest wolne i ma dyskretne orbity. W takim razie warunek, by działanie było wolne i miało dyskretne orbity nie jest wystarczający do tego, by iloraz był rozmaitością. Nie musi być nawet przestrzenią Hausdorffa, jak pokazaliśmy wcześniej.

Fakt 3.14. Jeśli G jest działaniem na M^n przez dyfeomorfizmy w sposób wolny i właściwie nieciągły, to iloraz M/G jest

- · lokalnie euklidesowy n-wymiarowy
- · Hausdorffa
- · ma przeliczalną bazę

Zatem M/G jest n-wymiarową rozmaitością topologiczną.

3.4. Gładki atlas na M/G

Niech $U \subseteq M$ spełnia warunek:

 $\begin{picture}(S) U jest zbiorem mapowym oraz dla każdych <math>g_1,g_2\in G, \\ g_1\neq g_2 \implies g_1(U)\cap g_2(U)=\emptyset. \end{picture}$

Zauważmy, że każdy $p \in M$ ma otoczenie U spełniające (S), a zatem każda orbita $G(p) \in M/G$ ma otoczenie postaci G(U)/G ze zbiorem U spełniającym (S). Dla takiego U odwzorowanie

$$i_U:U\to G(U)/G$$

$$p \mapsto G(p)$$

jest homeomorfizmem. Niech teraz $\phi: \mathbf{I} \to \overline{\mathbf{U}} \subseteq \mathbb{R}^n$ będzie mapą z atlasu $\mathscr{A}.$ Wtedy

$$\phi_{\mathsf{G}}:\mathsf{G}(\mathsf{U})/\mathsf{G} o \overline{\mathsf{U}} \subseteq \mathbb{R}^{\mathsf{n}}$$

$$\phi_G = \phi \circ i_{IJ}^{-1}$$

jest obiecującym kandydatem na mapę dla M/G. Rozważmy rodzinę

$$\mathscr{A}_{\mathsf{G}} = \{(\mathsf{G}(\mathsf{U})/\mathsf{G}, \phi_{\mathsf{G}}) : \mathsf{U} \text{ spełnia } (\textcircled{5}) \text{ oraz } (\mathsf{U}, \phi) \in \mathscr{A}\}.$$

Fakt 3.15. Odwzorowanie ilorazowe $q_G: M \rightarrow M/G$ zadane przez

$$q_G(x) = G(x) \in M/G$$

jest gładkie i jest lokalnym dyfeomorfizmem.

Dowód.

Zakładamy, że \mathscr{A}_G tworzy gładki atlas [fakt 3.16]. Wtedy q_G obcięte do mapowego U

musi spełniać (), więc jest bijekcją na otwary podzbiór w M/G. Ponadto

$$\phi_{\mathsf{G}} \circ \mathsf{q}_{\mathsf{G}} \circ \phi^{\mathsf{-1}} = \phi \circ \mathsf{i}_{\mathsf{U}}^{\mathsf{-1}} \circ \mathsf{i}_{\mathsf{U}} \phi^{\mathsf{-1}} = \mathsf{id}_{\mathsf{\overline{\mathsf{U}}}}$$

czyli q_G musi być funkcją gładką, bo inaczej id $_{\overline{U}}$ takie nie będzie. Stąd q_G jest dyfeomorfizmem.

Fakt 3.16. A_G jest gładko zgodny, więc jest gładkim atlasem na M/G.

Dowód. Niech (G(U)/G, ϕ_G) oraz (G(V)/G, ψ_G) będą mapami związanymi z (U, ϕ) i (V, ψ) na zbiorach U, V spełniającymi (\bigcirc). Rozważmy odwzorowanie przejścia

$$\psi_{\mathsf{G}} \circ \phi_{\mathsf{G}}^{\mathsf{-1}} : \phi_{\mathsf{G}}(\mathsf{G}(\mathsf{U})/\mathsf{G} \cap \mathsf{G}(\mathsf{V})/\mathsf{G}) \to \psi_{\mathsf{G}}(\mathsf{G}(\mathsf{U})/\mathsf{G} \cap \mathsf{G}(\mathsf{V})/\mathsf{G})$$

wiemy, że zachodzi

$$\psi_{G} \circ \phi_{G}^{-1} = \psi \circ i_{V}^{-1} \circ [\phi \circ i_{V}^{-1}]^{-1} = \psi \circ i_{V}^{-1} \circ i_{U} \circ \phi^{-1}$$

czyli wystarczy, żeby

$$i_V^{-1}i_U:U\cap i_U^{-1}(G(V)/G)\to V\cap i_V^{-1}(G(U)/G)$$

było gładkie.

Złożenie

$$i_V^{-1}\circ i_U:U\cap i_U^{-1}(G(V)/G)\to V\cap i_V^{-1}(G(U)/G)$$

jest homeomorfizmem otwartych podzbiorów w M. Weźmy y = $i_V^{-1}i_U(x)$, wtedy

$$G(x)\ni i_U(x)=i_V(y)\in G(y)$$

czyli x i y są w tej samej orbicie działania G. W takim razie istnieje $\mathbf{g}_{\mathbf{x}} \in \mathbf{G}$ takie, że

 $y=g_X(x)$. Z ciągłości $i_V^{-1}i_U$ możemy wywnioskować, że przyporządkowanie $x\mapsto g_X$ musi być stałe na komponentach spójności. W przeciwnym przypadki obraz spójnej komponenty przez ciągłe $i_V^{-1}i_U$ przeciąłby zbiory g(U) dla kilku różnych g, a te są rozłączne dla różnych g. Stąd obraz nie byłby spójny, co daje sprzeczność.

Komponenty spójności U \cap $i_U^{-1}(G(V)/G)$ są otwarte w M. Na każdej takiej komponencie W mamy $i_V^{-1}i_U(x) = g(x)$ dla ustalonego g, które jest zależne od doboru komponenty (może być różne dla różnych komponent). Zatem

$$\psi_{\rm G}\phi_{\rm G}^{-1} = \psi {\rm i}_{\rm V}^{-1} {\rm i}_{\rm U}\phi^{-1}$$

jest zadane an ϕ (W) wzorem

$$\psi_{\mathsf{G}}\phi_{\mathsf{G}}^{-1}(\mathsf{x}) = \psi \circ \mathsf{g} \circ \phi^{-1}(\mathsf{x}).$$

Odwzorowanie ψ g ϕ jest wyrażeniem dyfeomorfizmu g w mapach ϕ i ψ , więc jest gładkie. Z tego wynika, że $\psi_G \phi_G^{-1}$ jest gładkie na każdej komponencie spójności dziedziny, czyli jest gładkie.

Uwaga. Iloraz M/G dla wolnego i właściwie nieciągłego działania grupy dyfeomorfizmów G na rozmaitość M z brzegiem jest rozmaitościa z brzegiem.

Przykłady:

- 1. Działanie \mathbb{Z}^n na \mathbb{R}^n przez przesunięcia. Wtedy $\mathbb{R}^n/\mathbb{Z}^n$ = T^n to n-wymiarowy torus.
- 2. \mathbb{Z} działa na produkcie $S^1 \times \mathbb{R}$ tak, że dla $k \in \mathbb{Z}$ mamy

$$k \cdot (\theta, t) = ((-1)^k \theta, t + k)$$

Jest to przesunięcie z odpowiednią potęgą odbicia. Iloraz (S $^1 imes \mathbb{R}$)/ \mathbb{Z} jest butelką Kleina.

3. \mathbb{Z} działa na $[-1,1] \times \mathbb{R}$ przez

$$k \cdot (x, y) = ((-1)^k x, y + k)$$

a iloraz ([–1, 1] \times \mathbb{R})/ \mathbb{Z} jest wstęgą Möbiusa.

 Conf_n(M) jest przestrzenią konfiguracyjną n-elementowych podzbiorów gładkiej rozmaitości M (bez brzegu), tzn. jej punkty opisują wszystkie możliwe położenia punktów w układzie.

 $\mathsf{Conf}_n(\mathsf{M})$ można wyrazić jako iloraz działania nieciągłej grupy dyfeomorfizmów. Rozważmy produkt $\underbrace{\mathsf{M} \times ... \times \mathsf{M}}_{\mathsf{n}}$ oraz tzw. uogólnioną przekątną $\Delta^n(\mathsf{M})$ złożoną z

punktów

$$(x_1,...,x_n) \in M \times ... \times M$$

takich, że $x_i = x_j$. Zbiór $\Delta^n(M)$ jest domknięty w $M \times ... \times M$, więc $M \times ... \times M \setminus \Delta^n(M)$ jest otwarty i składa się z $(x_1, ..., x_n)$ takich, że x_1 są parami różne. Grupa permutacji S_n działa na $M \times ... \times M \setminus \Delta^n(M)$ przez

$$\sigma(x_1, ..., x_n) = (x_{\sigma(1)}, ..., x_{\sigma(n)}).$$

Wtedy (M \times ... \times M \ Δ^n (M))/S_n = Conf(M). Takie działanie jest wolne i właściwie nieciągłe, bo S_n jest skończone. Dodatkowo, każda taka funkcja σ jest dyfeomorfizmem.

Naturalna mapa w $Conf_n(M)$ wokół punktu $p=(x_1,...,x_n)$ to $U_1\times ...\times U_n$, gdzie U_i są parami rozłącznymi otoczeniami punktów x_i (można je tak dobrać ze względu na Hausdorffowość M).

4. Wektory styczne

Oznaczenia z analizy matematycznej:

• dla gładkiej funkcji $f:(a,b)\to\mathbb{R}^n$ takiej, że $f=(f_1,...,f_n)$ i dla $t\in(a,b)$ pochodną nazywamy wektor

$$f'(t) = \frac{\partial f}{\partial t}(t) = \begin{pmatrix} f'_1(t) \\ f'_2(t) \\ \dots \\ f'_n(t) \end{pmatrix}$$

• dla gładkiego odwzorowania $f:U\to\mathbb{R}^m$, $U\subseteq\mathbb{R}^n$ i $p\in U$ oznaczamy macierz pierwszych pochodnych cząstkowych w punkcie p przez D_pf . Dokładniej, jeśli $f=(f_1,...,f_m)$ i $f_i:U\to\mathbb{R}^m$ są wszystkie gładkie, to

$$D_p f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(p) & \frac{\partial f_1}{\partial x_2}(p) & \dots & \frac{\partial f_1}{\partial x_n}(p) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(p) & \frac{\partial f_m}{\partial x_2}(p) & \dots & \frac{\partial f_m}{\partial x_n}(p) \end{pmatrix}$$

Tym samym symbolem oznaczamy też odwzorowanie liniowe $\mathbb{R}^n \to \mathbb{R}^m$ zadane tą macierzą (różniczka f w p).

4.1. Przestrzeń styczna - definicja kinematyczna

Przestrzeń styczną będziemy definiować przez styczność krzywych gładkich.

Niech M będzie gładką rozmaitością. **Krzywą gładką** na M nazywamy gładkie odwzorowanie c: (a, b) \rightarrow M. O krzywej gładkiej c takiej, że c(t₀) = p mówimy, że jest *zbazowana w* p . Zbiór par (c, t₀) krzywych zbazowanych w p oznaczamy C_pM .

J.M. Lee definiuje przestrzeń styczną przy pomocy derywacji oraz przedstawia możliwość użycia m.in. kiełków funkcji gładkich

Definicja 4.1. Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół p. Krzywe (c_1, t_1) i (c_2, t_2) zbazowane w p są do siebie styczne w mapie (U, ϕ) jeśli $(\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$.

Lemat 4.2. Jeżeli $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne w mapie (U, ϕ) wokół p, to są też styczne w dowolnej innej mapie (W, ψ) wokół p (zgodnej z (U, ϕ)).

Dowód.

$$\begin{split} (\psi \circ c_1)'(t_1) &= [(\psi \circ \phi^{-1}) \circ (\phi \circ c_1)(t_1)]' = D_{\phi(p)}(\psi \circ \phi^{-1}) \circ [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[(\phi \circ c_2)'(t_2)] = [(\psi \circ \phi^{-1}) \circ (\phi \circ c_2)(t_2)]' \\ &= (\psi \circ c_2)'(t_2) \end{split}$$

Definicja 4.3. Krzywe $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne, jeżeli są styczne w pewnej (równoważnie każdej) mapie wokół p.

Relacja styczności krzywych jest relacją równoważności na C_pM , bo jest zwrotnia, symetryczna i przechodnia ($(\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$ i $(\phi \circ c_2)'(t_2) = (\phi \circ c_3)'(t_3) \Longrightarrow (\phi \circ c_1)'(t_1) = (\phi \circ c_3)'(t_3)$).

Definicja 4.4. Przestrzenią styczną do M w punkcie p nazywamy zbiór klas abstrakcji relacji styczności krzywych zbazowanych w p

$$T_pM := C_pM/stycznosc$$

Klasę abstrakcji krzywej $(c, t_0) \in C_pM$ oznaczamy przez $[c, t_0]$ lub $c'(t_0)$. Elementy przestrzeni T_pM nazywamy **wektorami stycznymi** do M w punkcie p.

4.2. Struktura wektorowa przestrzeni TpM

Dla mapy $\phi: U \to \mathbb{R}^n$ wokół $p \in M$ określamy dwa odwzorowania:

$$\begin{split} \phi_p^*: T_p \mathsf{M} &\to \mathbb{R}^n \quad \phi_p^*([\mathsf{c},\mathsf{t}_0]) = (\phi \circ \mathsf{c})'(\mathsf{t}_0) \in \mathbb{R}^n \\ \lambda_{\phi,p}: \mathbb{R}^n &\to T_p \mathsf{M} \quad \lambda_{\phi,p}(\mathsf{v}) = [\mathsf{c}_\mathsf{v},\mathsf{0}] \end{split}$$

gdzie $c_v(t) = \phi^{-1}(\phi(p) + tv)$.

Lemat 4.5. $\phi_p^* \circ \lambda_{\phi,p} = \operatorname{id}_{\mathbb{R}^n}$ oraz $\lambda_{\phi,p} \circ \phi_p^* = \operatorname{id}_{\mathsf{T}_p\mathsf{M}}$, czyli ϕ_p^* i $\lambda_{\phi,p}$ są one wzajemnie jednoznacze i do siebie odwrotne.

Dowód. Niech $v \in \mathbb{R}^n$, wtedy

$$\begin{split} \phi_p^* \circ \lambda_{\phi,p}(v) &= \phi_p^*([c_v,0]) = (\phi \circ c_v)'(0) = \frac{d}{dt}_{|t=0} \phi(\phi^{-1}(\phi(p) + t \cdot v)) = \\ &= \frac{d}{dt}_{|t=0} (\phi(p) + tv) = v \end{split}$$

Niech $[c, t_0] \in T_pM$

$$\lambda_{\phi,\mathsf{p}} \circ \phi_{\mathsf{p}}^*([\mathsf{c},\mathsf{t}_0]) = \lambda_{\phi,\mathsf{p}}((\phi \circ \mathsf{c})'(\mathsf{t}_0)) = [\mathsf{c}_{(\phi \circ \mathsf{c})'(\mathsf{t}_0)},\mathsf{0}]$$

gdzie $c_{(\phi \circ c)'(t_0)}(t) = \phi^{-1}(\phi(p) + t(\phi \circ c)'(t_0))$. W mapie ϕ zachodzi więc:

$$(\phi \circ \mathsf{c}_{(\phi \circ \mathsf{c})(\mathsf{t}_0)})'(\mathsf{0}) = \frac{\mathsf{d}}{\mathsf{d}\mathsf{t}}_{|\mathsf{t}=\mathsf{0}} [\phi(\mathsf{p}) + \mathsf{t} \cdot (\phi \circ \mathsf{c})'(\mathsf{t}_0)] = (\phi \circ \mathsf{c})'(\mathsf{t}_0)$$

W takim razie (c, t_0) i $(c_{(\phi \circ c)'(t_0)}, 0)$ są krzywymi stycznymi i mamy $[c, t_0] = [(c_{(\phi \circ c)'(t_0)}, 0]$ i w takim razie $\lambda_{\phi, p} \circ \phi_p^*([c, t_0]) = [c, t_0] \quad \checkmark$.

Fakt 4.6. Na przestrzeni stycznej T_pM istnieje dokładnie jedna struktura przestrzeni wektorowej, dla której odwzorowania ϕ_p^* oraz $\lambda_{\phi,p}$ dla wszystkich map ϕ wokół p są liniowymi izomorfizmami.

Struktura ta jest zadana przez operacje dodawania wektorów i mnożenia ich przez skalary następująco:

Odwzorowanie ϕ_p^* jest dobrze określone z definicji $T_p M$ (wszystkie krzywe z jednej klasy abstrakcji mają tę samą pochodną w jednej mapie).

- dla X, Y \in T_pM: X + Y := $\lambda_{\phi,p}(\phi_p^*(X) + \phi_p^*(Y))$ (suma w środku jest sumą w \mathbb{R}^n)
- dla a $\in \mathbb{R}$: a · X := $\lambda_{\phi,p}$ (a · ϕ_n^* (X)) (mnożenie przez skalar w \mathbb{R}^n).

Dowód. Struktura przestrzeni wektorowej musi być przeniesiona z \mathbb{R}^n przez $\lambda_{\phi,p}$. Wystarczy więc uzasadnić, że dla różnych map ϕ , ψ wokół p przeniesione z \mathbb{R}^n na T_pM struktury liniowe pokrywają się, to znaczy złożenie odwzorowań

$$\mathbb{R}^{n} \xrightarrow{\lambda_{\phi,p}} \mathsf{T}_{p}\mathsf{M} \xrightarrow{\psi_{p}^{*}=\lambda_{\psi,p}-1} \mathbb{R}^{n}$$

jest liniowe.

$$\begin{split} \psi_p^* \circ \lambda_{\phi,p}(v) &= \psi_p^*([c_v,0]) = (\psi \circ c_v)'(0) = \frac{d}{dt}_{|t=0} \psi \circ \phi^{-1}(\phi(p) + tv) = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[\frac{d}{dt}_{|t=0}(\phi(p) + tv)] = D_{\phi(p)}(\psi \circ \phi^{-1})(v) \end{split}$$

Przekształcenie $\psi_p^* \circ \lambda_{\phi,p}$ pokrywa się z działaniem macierzy $D_{\phi(p)}(\psi \circ \phi^{-1})$, a więc jest liniowe.

4

O odwzorowaniu $\phi_p^*: T_pM \to \mathbb{R}^n$ można myśleć jak o "mapie" dla T_pM stowarzyszonej z mapą ϕ otoczenia punktu p. W tej mapie działania na wektorach z T_pM sprowadzają się do zwykłych działań na wektorach w \mathbb{R}^n .

Przykład:

- Dla M = \mathbb{R}^n mamy wyróżnioną mapę ϕ : M = $\mathbb{R}^n \to \mathbb{R}^n$, ϕ = $\mathrm{id}_{\mathbb{R}^n}$. Dla każdego p \in M mapa ta, poprzez ϕ_p^* = $(\mathrm{id}_{\mathbb{R}^n})^*$ kanonicznie utożsamia $T_p\mathbb{R}^n$ z \mathbb{R}^n .
- Analogiczna sytuacja zachodzi z M = U $\subseteq \mathbb{R}^n$ otwartego podzbioru i p \in U, gdzie inkluzja i : U $\to \mathbb{R}^n$ jest traktowana jako mapa.

Dla rozmaitości M z brzegiem i p $\in \partial M$ dopuszczamy dodatkowo krzywe gładkie $c:[t_0,b) \to M$ oraz $c:(a,t_0[\to M$ takie, że $c(t_0)=p$ oraz pary (c,t_0) jako elementy C_pM . Inaczej dla niektórych "kierunków" wektorów nie istniałyby odpowiednie krzywe reprezentujące te wektory. Styczność na T_pM określa się potem w sposób analogiczny jak dla rozmaitości bez brzegu.

Wektory styczne do M = \mathbb{R}^n (lub U $\subseteq \mathbb{R}^n$) w punkcie p odpowiadające wektorom bazowym $e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, 0, ..., 1)$

oznaczamy przez $\frac{\partial}{\partial x_1}(p)$, $\frac{\partial}{\partial x_2}(p)$, ..., $\frac{\partial}{\partial x_n}(p)$. Tworzą one bazę $T_p\mathbb{R}^n$ (T_pU), zaś dowolny wektor z $T_p\mathbb{R}^n$ (T_pU) ma postać $\sum_{i=1}^n a_i \frac{\partial}{\partial x_i}(p)$. [Ocm]

Analogicznie, dla dowolnej rozmaitości M i $p \in M$ oraz mapy ϕ wokół p przeciwobraz przez $\phi_n^*: T_pM \to \mathbb{R}^n$ wersorów $e_1,...,e_n$ oznaczamy:

$$(\phi_{\mathbf{p}}^*)^{-1}(\mathbf{e}_{\mathbf{i}}) = \frac{\partial}{\partial \phi_{\mathbf{i}}}(\mathbf{p}).$$

Elementy te tworzą bazę T_pM i dowolny wektor z T_pM ma postać $\sum a_i \frac{\partial}{\partial \phi_i}(p)$.

Dla gładkiej $c:(a,b) \to M$ wektor styczny do c w $t \in (a,b)$ to

$$\mathsf{c}'(\mathsf{t}) \coloneqq [\mathsf{c},\mathsf{t}] = [(\phi \circ \mathsf{c})'(\mathsf{t})] = \sum_{\mathsf{i}} (\phi \circ \mathsf{c})'_{\mathsf{i}}(\mathsf{t}) \frac{\partial}{\partial \phi_{\mathsf{i}}}(\mathsf{c}(\mathsf{t})),$$

gdzie (U, ϕ) jest mapą wokół c(t).

4.3. Różniczka

Rozważmy funkcję gładką $f:M\to N$ i $p\in M, f(p)$ = $q\in N.$ Dla krzywej zbalansowanej $(c,t_0)\in C_pM$ mamy $(f\circ c,t_0)\in C_qN.$

Lemat 4.7. Jeżeli $(c_1,t_1),(c_2,t_2)\in C_pM$ są styczne, to $(f\circ c_1,t_1),(f\circ c_2,t_2)\in C_qN$ też są styczne

Dowód. Niech ϕ będzie mapą wokół p, $\phi: U \to \mathbb{R}^m$, zaś ψ mapą wokół q,

$$\psi: W \to \mathbb{R}^n$$

$$\begin{split} (\psi \circ f \circ c_1)'(t_1) &= [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_1)]'(t_1) = D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_2)'(t_2)] = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_2)]'(t_2) = \\ &= (\psi \circ f \circ c_2)'(t_2) \end{split}$$

Zatem krzywe (f \circ c₁, t₁) i (f \circ c₂, t₂) są styczne.

Definicja 4.8. Różniczką f w punkcie p nazywamy odwzorowanie $df_p: T_pM \to T_{f(p)}N$ określone przez $df_p([c,t_0]) = [f \circ c,t_0]$.

Odwzorowanie różniczkowe jest dobrze określone na mocy Lematu 4.7.

Lemat 4.9. $df_p: T_pM \to T_{f(n)}N$ jest odwzorowaniem liniowym.

Dowód. Wystarczy sprawdzić, że odwzorowanie

$$\mathbb{R}^{\mathsf{m}} \xrightarrow{\lambda_{\phi,p}} \mathsf{T}_{\mathsf{p}}\mathsf{M} \xrightarrow{\mathsf{df}_{\mathsf{p}}} \mathsf{T}_{\mathsf{f}(p)}\mathsf{N} \xrightarrow{\psi_{\mathsf{f}(p)}^*} \mathbb{R}^{\mathsf{n}}$$

iest liniowe (analogicznie iak przy dowodzie 4.6).

$$\begin{split} \psi_{f(p)} \circ df_p \circ \lambda_{\phi,p}(v) &= \psi_{f(p)}^* \circ df_p([c_v,0]) = \psi_{f(p)}^*([f \circ c_v,0]) = \\ &= (\psi \circ f \circ c_v)'(0) = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_v)]'(0) = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_v)'(0)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1})[v] \end{split}$$

jest to przekształcenie zadane macierzą, a więc liniowe.

Dla gładkiej funkcji f: M o N odwzorowanie df $_p$: $T_pM o T_{f(p)}N$ wyznaczyliśmy w mapach ϕ wokół p i ψ wokół f(p) jako

$$\psi_{f(p)}^* df_p \lambda_{\phi,p}(p) = D_{\phi(p)}(\psi f \phi^{-1})(v).$$

Stąd, odwzorowanie df $_p$ w bazach $\{\frac{\partial}{\partial \phi_i}(p)\}$ w T_pM i $\{\frac{\partial}{\partial \psi_j}(p)\}$ w $T_{f(p)}N$ zapisuje się macierzą

$$\mathsf{D}_{\phi(\mathsf{p})}(\psi\mathsf{f}\phi^{-1}) = \left(\frac{\partial (\psi\mathsf{f}\phi^{-1})_{\mathsf{i}}}{\partial \mathsf{x}_{\mathsf{j}}}(\phi(\mathsf{p}))\right)_{\mathsf{i}\mathsf{j}}$$

$$df_p\left[\sum a_i\frac{\partial}{\partial\phi_i}(p)\right] = \sum_i\left[\sum_j\frac{\partial(\psi f\phi^{-1})}{\partial x_j}(\phi(p))\cdot a_j\right]\frac{\partial}{\partial\psi_i}(f(p))$$

Przykłady:

• Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół $p \in M$. Możemy ją potraktować jako gładkie odwzorowanie między dwiema rozmaitościami. Wówczas różniczka d $\phi_p: T_pU \to T_{\phi(p)}\mathbb{R}^n$ jest wówna odwzorowaniu "mapowemu" $\phi_p^*: T_pM \to \mathbb{R}^n$

Dowód. Niech $[c, t_0] \in T_pM$, wtedy

$$d\phi_p([c,t_0]) = [\phi \circ c,t_0] \in T_{\phi(p)}\mathbb{R}^n$$

$$d\phi_p([c,t_0]) = (id_{\mathbb{R}^n} \circ \phi \circ c)'(t_0) = (\phi \circ c)'(t_0),$$

a z kolei

$$\phi_{\mathtt{D}}^{*}([\mathtt{c},\mathtt{t}_{0}])$$
 = $(\phi \circ \mathtt{c})'(\mathtt{t}_{0}) \in \mathbb{R}^{\mathsf{n}}$

z definicji tego odwzorowania.

- Dla gładkiej krzywej $c:(a,b) \to M$ oraz $t_0 \in (a,b)$, różniczka $dc_{t_0}:T_{t_0}(a,b) \to T_{c(t_0)}M$ jest jedynym przekształceniem liniowym, które wersor z $\mathbb{R} \cong T_{t_0}(a,b)$ przekształca na wersor $[c,t_0]=c'(t_0) \in T_{c(t_0)}M$.
- Rozważmy gładką funkcję $f:M\to\mathbb{R}$ i $p\in M$. Różniczka $df_p:T_pM\to T_{f(p)}\mathbb{R}\cong\mathbb{R}$ jest funkcjonałem liniowym na T_pM .

Definicja 4.10. Dla funkcji $f: M \to \mathbb{R}$ możemy wybrać wektor styczny $X = [c, t_0] \in T_pM$ i zdefiniować pochodną kierunkową funkcji f w kierunku wektora X:

$$Xf = df_p(X) = df_p([c, t_0]) = (f \circ c)'(t_0).$$

Pochodna kierunkowa ma następujące własności:

- X(f + g) = Xf + Xg
- $X(f \cdot g) = g(p) \cdot Xf + f(p) \cdot Xg (regula Leibniza)$

Dowód.

$$\begin{split} X(f \cdot g) &= [(f \cdot g) \circ c]'(t_0) = [(f \circ c) \cdot (g \circ c)]'(t_0) = \\ &= (f \circ c)'(t_0) \cdot (g \circ c)(t_0) + (f \circ c)(t_0) \cdot (g \circ c)'(t_0) = \\ &= Xf \cdot g(p) + f(p) \cdot Xg \end{aligned}$$

Ш

- dla $a \in \mathbb{R}$ (aX)f = a(Xf)
- jeśli X, Y $\in T_pM$, to (X + Y)f = Xf + Yf

Dowód.

$$(X + Y)f = df_p(X + Y) = df_p(X) + df_p(Y) = Xf + Yf$$

Przykłady:

- Jeśli X = $\frac{\partial}{\partial x_i}(p) \in T_p\mathbb{R}^n$ i mamy gładką funkcję $f:\mathbb{R}^n \to \mathbb{R}$, to wówczas Xf = $\frac{\partial f}{\partial x_i}(p)$.
- Jeśli X = $\frac{\partial}{\partial \phi_i}(p) \in T_p M$ i $f: M \to \mathbb{R}$ jest funkcją gładką, to oznaczamy

$$Xf = \frac{\partial (f\phi^{-1})}{\partial x_i}(\phi(p) =: \frac{\partial f}{\partial \phi_i}(p)$$

• Podobnie jak wyżej, jeśli X = $\sum a_i \frac{\partial}{\partial \phi_i}(p)$, to

$$Xf = \sum a_i \frac{\partial f}{\partial \phi_i}(p) = \sum a_i \frac{\partial f \circ \phi^{-1}}{\partial x_i}(\phi(p))$$

4.4. Wiazka styczna

Definicja 4.11. Wiązka styczna to rozłączna suma przestrzeni stycznych we wszystkich punktach rozmaitości M:

$$TM = \bigsqcup_{p \in M} T_p M$$

Chcemy teraz opisać na TM strukturę rozmaitości gładkiej. Rozważymy w tym celu rzutowanie

$$\pi:\mathsf{TM}\to\mathsf{M}$$

$$\pi(v) = p, v \in T_pM$$

które wektorowi przyporządkowuje jego punkt zaczepienia.

Lemat 4.12. Niech M będzie rozmaitością n-wymiarową M klasy C^k . Wówczas na wiązce stycznej TM istnieje naturalna struktura 2n-wymiarowej rozmaitości klasy C^{k-1} , dla której rzutowanie π jest C^{k-1} -różniczkowalne.

Jeśli M jest rozmaitością gładką (C^{∞}), to π również takie jest.

Stąd oznaczenie $\frac{\partial}{\partial x_i}$ (p), które ma charakter operatorowy związany z działaniem tego wektora na funkcjach f_n

 $\frac{\partial f}{\partial \phi_i}$ jest to i-ta pochodna cząstkowa f w mapie ϕ w punkcie p

Dowód. Strukturę rozmaitości zadamy za pomocą samych map, nie definiując właściwej topologii na TM.

Niech (U, ϕ) będzie mapą na M. Rozważmy zbiór

$$\mathsf{TU} = \pi^{-1}(\mathsf{U}) = \bigcup_{\mathsf{p} \in \mathsf{U}} \mathsf{T}_\mathsf{p} \mathsf{M} \subseteq \mathsf{TM}$$

oraz odwzorowanie

$$\overline{\phi}: \mathsf{TU} o \mathbb{R}^{2n} = \mathbb{R}^n imes \mathbb{R}^n$$

$$\phi_p^*([c, t_0]) = (\phi \circ c)'(t_0)$$

$$\overline{\phi}(v)$$
 = ($\phi(\pi(v))$, $\phi_{\pi(v)}^*(v)$) = ($\phi(p)$, $\phi_p^*(v)$) $v \in T_pM$.

 $\overline{\phi}$ jest różniczkowalne jako produkt kartezjański dwóch różniczkowalnych odwzorowań, a jego obraz to $\phi(\mathbf{v}) \times \mathbb{R}^n$.

Sprawdźmy teraz zgodność tak zadanego atlasu. Niech (U,ϕ) i (V,ψ) będą mapami na M, a $(TU,\overline{\phi})$, $(TV,\overline{\psi})$ odpowiadającymi im mapami na TM. Spójrzmy na odwzorowania przejścia:

$$\begin{split} \overline{\psi} \circ \overline{\phi}^{-1} : \phi(\mathsf{U} \cap \mathsf{V}) \times \mathbb{R}^\mathsf{n} &\to \psi(\mathsf{U} \cap \mathsf{V}) \times \mathbb{R}^\mathsf{n} \\ \overline{\psi \phi}^{-1}(\mathsf{x}, \mathsf{w}) = (\ \psi \pi [\phi \pi]^{-1}(\mathsf{x}), \ \psi_{\phi^{-1}(\mathsf{x})}^* [\phi_{\phi^{-1}(\mathsf{x})}^*]^{-1}(\mathsf{w}) \) = \\ &= (\ \psi \phi^{-1}(\mathsf{x}), \ \mathsf{D}_\mathsf{x}(\psi \phi^{-1})(\mathsf{w}) \) \end{split}$$

Jest to odwzorowanie różniczkowalne klasy C^{k-1} jako produkt odwzorowania klasy C^k i C^{k-1} .

Pozostaje sprawdzić różniczkowalność odwzorowania π . Wyrazimy je w mapach (U, ϕ) na M oraz (TU, $\overline{\phi}$) na TM. Niech p \in U oraz v \in TpU, wtedy:

$$\phi\pi\overline{\phi}^{-1}(\phi(p),\phi_p^*(v)) = \phi\pi(v) = \phi(p)$$

więc π jest w tych mapach rzutowaniem na pierwszą składową \mathbb{R}^n , więc jest gładkie

₩

Definicja 4.13. Dla $f: M \to N$ odwzorowaniem stycznym $df: TM \to TN$ nazywamy odwzorowanie

$$df(v) = df_{\pi(v)}(v) \in T_{f(\pi(v))}N \subseteq TN$$

Lemat 4.14. Dla gładkiego f również df jest gładkie.

Dowód. Weźmy $v \in T_pM$ i niech (U, ϕ) będzie mapą wokół p. Oznaczmy wówczas q = f(p) i niech (V, ψ) będzie mapą wokół q. Wyrazimy df w mapach $(TU, \overline{\phi})$ i $(TV, \overline{\psi})$.

$$\mathbb{R}^{2m} \stackrel{\overline{\phi}^{-1}}{\longrightarrow} TU \stackrel{df}{\longrightarrow} TV \stackrel{\overline{\psi}}{\longrightarrow} \mathbb{R}^{2n}$$

$$\begin{split} \overline{\psi} df \overline{\phi}^{-1}(x,w) &= (\ \psi f \phi^{-1}(x), \ \psi^*_{f \phi^{-1}(x)} df_{\phi^{-1}(x)} [\phi^*_{\phi^{-1}(x)}]^{-1}(w) \) \stackrel{1}{=} \\ &= (\ \psi f \phi^{-1}(x), \ d\psi_{f \phi^{-1}(x)} df_{\phi^{-1}(x)} (d\phi_{\phi^{-1}(x)})^{-1}(x) \) \stackrel{2}{=} \\ &= (\ \psi f \phi^{-1}(x), \ d\psi_{f \phi^{-1}(x)} df_{\phi^{-1}(x)} d\phi_x^{-1}(w) \) \stackrel{3}{=} \\ &= (\ \psi f \phi^{-1}(x), \ d(\psi f \phi^{-1})_x(w) \) = \\ &= (\ \psi f \phi^{-1}(x), \ D_x(\psi f \phi^{-1})(x) \) \end{split}$$

Równość 1 wynika z utożsamienia d $\phi_p = \phi_p^*$ (uzasadnione tutaj). Równość 2 to ogólny fakt, że jeśli f jest dyfeomorfizmem, to $(df_p)^{-1} = df_{f(p)}^{-1}$, natomiast równość 3 pojawia się na liście ćwiczeń:

$$d(f \circ g)_p = df_{g(p)} \circ dg_p$$
.

Uwaga 4.15. Różniczka df $_p$ jak w lemacie wyżej zapisuje się w bazach $\{\frac{\partial}{\partial \phi_i}(p)\}$ w T_pM oraz $\{\frac{\partial}{\partial \psi_i}(q)\}$ w T_qN przy pomocy macierzy:

$$D_{\phi(p)}(\psi f \phi^{-1}) = \left(\frac{\partial (\psi f \phi^{-1})}{\partial x_j} (\phi(p))\right)_{i,j}.$$

To znaczy ma postać:

$$df_{p}\left[\sum a_{i}\frac{\partial}{\partial\phi_{i}}(p)\right] = \sum_{i}\left[\sum_{i}\frac{\partial(\psi f\phi^{-1})_{i}}{\partial x_{j}}(\phi(p))\cdot a_{j}\right]\frac{\partial}{\partial\psi_{i}}(q)$$

Przykłady:

1. Dla otwartego U \subseteq \mathbb{R}^n , wiązka styczna TU do U utożsamia się z U \times \mathbb{R}^n poprzez

$$\sum_{i < n} a_i \frac{\partial}{\partial x_i}(p) \mapsto (\ p,\ a_1,...,a_n\)$$

Dowód tych właności jest ćwiczeniem Niech $f: M \to N$ i $g: N \to P$ będą odwzorowaniami gładkimi, wtedy:

- $d(g \circ f) = dg \circ df$
- $d(id_M) = id_{TM}$
- jeśli f jest dyfeomorfizmem, to również df jest dyfeomorfizmem oraz $(df)^{-1} = df^{-1}$

5. Pola wektorowe

Definicja 5.1. Niech M będzie gładką rozmaitością. Gładką funkcję $X:M\to TM$ taką, że dla każdego $p\in M$ $X(p)\in T_pM\subseteq TM$ nazywamy **gładkim polem wektorowym** na M.

Równoważnie możemy postawić warunek, że $\pi \circ X = id_M$.

Często zamiast X(p) piszemy krócej X_p , co oznacza wektor pola w punkcie p. Pozwala to również uniknąć konfliktu notacji z pochodną kierunkową funkcji f wzdłuż wektora X(Xf).

Uogólnienie pól wektorowych pojawiających się w kontekście równań różniczkowych

Wyraźmy pole wektorowe X : M \to TM w mapach (U, ϕ) na M oraz (TU, $\overline{\phi}$) na TM. Niech $a_i:\phi(U)\to\mathbb{R}$ będą gładkimi funkcjami rzeczywistymi (nazwiemy je współrzędnymi X w mapach ϕ i $\overline{\phi}$) takimi, że

$$\overline{\phi}X\phi^{-1}(x) = (x, a_1(x), ..., a_n(x)) = (x, \sum a_i(x)e_i),$$

gdzie e_i to baza standardowa \mathbb{R}^n . Zgodnie z oznaczeniem z poprzedniego rozdziału $\frac{\partial}{\partial \phi_i}(p) = (\phi_p^*)^{-1}(e_i)$ mamy

$$X(p) = \sum a_i(\phi(p)) \cdot \frac{\partial}{\partial \phi_i}(p).$$

Jeśli teraz oznaczymy $b_i = a_o \phi : U \to \mathbb{R}$, to wówczas

$$X(p) = \sum b_i(p) \cdot \frac{\partial}{\partial \phi_i}(p).$$

Fakt 5.2. Pole X : M \rightarrow TM jest gładkim polem wektorowym na M \iff w mapie (U, ϕ) na M i odpowiadającej jej mapie (TU, $\overline{\phi}$) na TM wyraża się jako

$$X(p) = \sum b_i(p) \cdot \frac{\partial}{\partial \phi_i}(p)$$

dla pewnych gładkich $b_i: U \to \mathbb{R}$.

Dowód. Bezpośrednio z przestawienia X w mapach (U, ϕ) i (TU, $\overline{\phi}$) jak wyżej.

Pole wektorowe na otwartym $U \subseteq \mathbb{R}^n$ ma postać

$$X(x) = \sum_{i \le n} a_i(x) \cdot \frac{\partial}{\partial x_i}(x)$$

dla pewnych gładkich funkcji $a_i:U\to\mathbb{R}$. Z tego powodu będziemy pisać

$$X(x) = [a_1(x), ..., a_n(x)] \in \mathbb{R}^n \cong T_x U.$$

Zjawiska lokalne dla pól na rozmaitościach będziemy wyrażać za pośrednictwem map za pomocą pól na otwartych podzbiorach \mathbb{R}^n .

Wniosek 5.3. Suma dwóch gładkich pól wektorowych

$$(X + Y)(p) := X(p) + Y(p)$$

jest gładkim polem wektorowym.

Iloczyn gładkiej funkcji $f: M \to \mathbb{R}$ oraz gładkiego pola X

$$(f \cdot X)(p) := f(p) \cdot X(p)$$

jest gładkim polem wektorowym

Rodzinę wszystkich gładkich pól wektorowych na M będziemy oznaczać przez $C^{\infty}(TM)$ lub $\mathfrak{X}(M)$. W algebraicznym rozumienia jest to moduł nad pierścieniem $C^{\infty}(M)$ gładkich funkcji rzeczywistych na M (patrz wniosek 5.3).

5.1. Definiowanie pola wektorowego za pomocą rozkładów jedności

Niech M będzie rozmaitością z niepustym brzegiem ∂M .

Definicja 5.4. Mówimy, że wektor $Y \in T_pM$, gdzie $p \in \partial M$, jest skierowany do wewnątrz M, jeśli w pewnej mapie $\phi: U_p \to H^n$ wyraża się przez

$$Y = \sum_{i \le n} a_i \cdot \frac{\partial}{\partial \phi_i}(p), \quad a_n > 0$$

Fakt 5.5. Jeśli wektor o początku p jest skierowany do wewnątrz w jednej mapie, to jest tak w każdej innej mapie wokół p. Ponadto, suma wektorów skierowanych do wewnątrz jest wektorem skierowanym do wewnątrz.

Dowód. Niech Y będzie wektorem skierowanym do wewnątrz w mapie (U, ϕ). Niech (V, ψ) będzie inną mapą wokół p. Wiemy, że

$$Y = \sum a_i \cdot \frac{\partial}{\partial \phi_i}(p)$$

i a_n > 0. Chcemy teraz sprawdzić, co się dzieje w indeksie n, gdy przedstawimy ten wektor jako kombinację liniową $\frac{\partial}{\partial \psi_i}$ (p). Popatrzmy na zamianę baz:

$$\begin{split} \frac{\partial}{\partial \phi_n}(p) &= (\phi_p^*)^{-1}(e_n) = \\ &= (\psi_p^*)^{-1}[\psi_p^*(\phi_p^*)^{-1}](e_n) = \\ &= (\psi_p^*)^{-1}d\psi_p d(\phi)_{\phi(p)}^{-1}(e_n) = \\ &= (\psi_p^*)^{-1}[d(\psi\phi^{-1})_{\phi(p)}(e_n)] \end{split}$$

Wiemy, że $\psi\phi^{-1}:\mathbb{R}^{n}\to\mathbb{R}^{n}$ jest funkcją rzeczywistą, czyli

$$d(\psi\phi^{-1})_{\phi(p)} = D_{\phi(p)}(\psi\phi^{-1})$$

jest jej pochodną. Dodatkowo, wiemy, że $\psi\phi^{-1}$ jest bijekcją, więc na pewno D $_{\phi(p)}(\psi\phi^{-1})$ (e $_n$) nie może się zerować. Zarówno ψ jak i ϕ są mapami wokół brzegu ∂ M, czyli tak naprawdę:

$$\psi\phi^{-1}: H^n \to H^n$$

W takim razie, $D_{\phi(p)}(\psi\phi^{-1})(e_n)\in\{(x_1,...,x_n)\in\mathbb{R}^n\ :\ x_n>0\}.$

Dla sumy wektorów X + Y takich, że X = $\sum a_i \frac{\partial}{\partial \phi_i}(p)$ i Y = $\sum b_i \frac{\partial}{\partial \phi_i}(p)$, $a_n, b_n > 0$, mamy

$$X + Y = \sum (a_i + b_i) \frac{\partial}{\partial \phi_i}(p)$$

więc $a_i + b_i > 0$.

Definicja 5.6. Pole wektorowe $X: M \to TM$ jest **skierowane do wewnątrz** M, jeśli dla każdego $p \in \partial M X(p)$ jest skierowany do wewnątrz M.

Fakt 5.7. Na każdej rozmaitości gładkiej z brzegiem M istnieje gładkie pole wektorowe X skierowane do wewnątrz M.

Dowód. Rozważmy rozkład jedności $\{f_i\}$ wpisany w pokrycie M zbiorami mapowymi U_{α} i niech supp $(f_i)\subseteq U_{\alpha_i}$. Dla tych U_{α} , które zahaczają o brzeg ∂M określmy pola wektorowe

$$X_{\alpha}:U_{\alpha}\to TU_{\alpha}\subseteq TM$$

$$X_{\alpha}(p) = \frac{\partial}{\partial (\phi_{\alpha})_{n}}(p).$$

Dla pozostałych U_{α} określamy X_{α} dowolnie.

Zdefiniujmy teraz pole wektorowe:

$$X = \sum_{i} f_{j} X_{\alpha_{j}},$$

które jest lokalnie skończoną kombinacją gładkich pól skierowanych do wewnątrz i funkcji dodatnich. Jest to więc pole wektorowe skierowanie do wewnątrz.

5.2. Przenoszenie gładkich pól wektorowych przez dyfeomorfizmy

Niech $f: M \to N$ będzie dyfeomorfizmem i niech $X \in \mathfrak{X}(M)$ będzie gładkim polem wektorowym na M. Poszczególne wektory X_p pola X przenoszone przez odwzorowanie styczne df do TN tworzą pola wektorowe na N oznaczane przez df(X) w ten sposób, że

$$df_p(X_p) = df(X)_{f(p)}$$

Określamy pole wektorowe df(X) na N przez

$$df(X)_q:=df_{f^{-1}(q)}(X_{f^{-1}(q)})\in T_qN\subseteq N.$$

Powyższe określenia oznaczają, że pole df(X), jako odwzorowanie N $\,\to\,$ TN, jest złożeniem

$$df(X) = df \circ X \circ f^{-1}$$
.

Jako złożenie odwzorowań gładkich, samo też jest odwzorowaniem gładkim.

Definicja 5.8. Gładkie pole wektorowe df(X) określone jak wyżej jest nazywane przeniesieniem pola X na N przez dyfeomorfizm f.

Jeśli o dyfeomorfiźmie f myślimy jako o sposobie utożsamienia rozmaitości M i N, to o polu df(X) na N możemy myśleć jako o tym samym polu co pole X na M względem utożsamienia za pomocą f.

Przykłady:

1. Wybierzmy pole $X \in \mathfrak{X}(M)$, takie, że dla mapy (U, ϕ) na M mamy

$$\label{eq:continuity} \mathsf{X}(\mathsf{p}) = \sum \mathsf{a}_\mathsf{i}(\mathsf{p}) \cdot \frac{\partial}{\partial \phi_\mathsf{i}}(\mathsf{p}), \quad \mathsf{p} \in \mathsf{U}.$$

Wówczas

- przeniesienie pola X | U na ϕ (U) przez dyfeomorfizm ϕ daje pole d ϕ (X)(u) = $\sum a_i(\phi^{-1}(u)) \cdot \frac{\partial}{\partial x_i}(x)$
- wyrażenie pola X w mapach (U, ϕ) na M oraz $(TU, \overline{\phi})$ na TM daje

$$\overline{\phi}X\phi^{-1}(x) = (x, a_1(\phi^{-1}(x)), ..., a_n(\phi^{-1}(x)))$$

Oba te pola, a zwłaszcza pierwsze z nich, będziemy nazywać **wyrażeniem pola** X w mapie (U,ϕ) . Ponadto zachodzi

Dowód w lemacie 5.10

$$X(p) = [c, t_0] \iff d\phi(X)(\phi(p)) = [\phi \circ c, t_0]$$

5.3. Krzywe całkowe

Definicja 5.9. Niech M będzie rozmaitością bez brzegu. Krzywą całkową pola wektorowego $X \in \mathfrak{X}(M)$ to dowolna krzywa

$$\gamma: (a, b) \to M$$

taka, że dla każdego $t \in (a, b)$

$$\gamma'(t) = [\gamma, t] = X(\gamma(t))$$

Lemat 5.10. Niech γ będzie krzywą całkową pola $X \in \mathfrak{X}(M) \iff$ dla każdej mapy (U, ϕ) na M krzywa $\phi \circ \gamma$ jest krzywą całkową pola $d\phi(X) \in \mathfrak{X}(\phi(U))$.

Dowód.

 \Longrightarrow

Jeśli $\gamma'(t)$ = [γ , t] = $X_{\gamma(t)}$, to z definicji d ϕ mamy

$$(\phi \circ \gamma)'(\mathsf{t}) = [\phi \circ \gamma, \mathsf{t}] = \mathsf{d}\phi_{\gamma(\mathsf{t})}([\gamma, \mathsf{t}]) = \mathsf{d}\phi(\mathsf{X}_{\gamma(\mathsf{t})}) = \mathsf{d}\phi(\mathsf{X})_{\phi \circ \gamma(\mathsf{t})}$$

 \leftarrow

Niech $(\phi \circ \gamma)'(t) = [\phi \circ \gamma, t] = d\phi(X)_{\phi \circ \gamma(t)}$. Wówczas

$$\begin{split} \gamma'(t) &= [\phi^{-1}(\phi \circ \gamma)]'(t) = d\phi_{\phi \circ \gamma(t)}^{-1}[(\phi \circ \gamma)'(t)] = \\ &= d\phi_{\phi \circ \gamma(t)}[d\phi(X)_{\phi \circ \gamma(t)}] = \underbrace{d\phi_{\phi \circ \gamma(t)}^{-1}d\phi_{\gamma(t)}}_{id_{T_{\gamma(t)}M}}(X_{\gamma(t)}) = X_{\gamma(t)} \end{split}$$

Krzywe całkowe mają następujące własności:

- dla każdego p ∈ M istnieje krzywa całkowa o początku w p (twierdzenie 5.11)
- jeśli krzywe całkowe przecinają się, to są sobie równe (uwaga 5.12)
- krzywe całkowe pola na otoczeniu pewnego punktu p \in M są gładko zależne (fakt 5.13)

Które zostaną udowodnione niżej.

Twierdzenie 5.11. Dla każdego $p \in M$ istnieje krzywa całkowa o początku w p, tzn. krzywa całkowa $\gamma: (-\varepsilon, \varepsilon) \to M$ taka, że $\gamma(0) = p$

Dowód. Niech (U, ϕ) będzie mapą na M taką, że powiązane z nią pole wektorowe na \mathbb{TR}^n spełnia

$$[d\phi(X)](u) = \sum_{i < n} a_i(u) \frac{\partial}{\partial x_i}(u),$$

gdzie $\phi(p)=x_0\in\phi(U)\subseteq\mathbb{R}^n$. Wystarczy pokazać, że istnieje krzywa całkowa pola $\mathrm{d}\phi(X)$ o początku x_0 .

Poszukiwana krzywa rozwiązuje równanie różniczkowe zwyczajne w \mathbb{R}^n :

$$c'(t) = [a_1(c(t)), ..., a_n(c(t))]$$

z warunkiem początkowym $c(0) = x_0$.

Uwaga 5.12. Niech $\gamma_1, \gamma_2: (a,b) \to M$ będą krzywymi całkowymi pola $X \in \mathfrak{X}(M)$. Jeśli istnieje $t_0 \in (a,b)$ takie, że

$$\gamma_1(t_0) = \gamma_2(t_0)$$

to krzywe te są równe.

Dowód. Rozważmy zbiór

A =
$$\{t \in (a, b) : \gamma_1(t) = \gamma_2(t)\}.$$

Krzywe całkowe wyrażenia pola X w mapie (U, ϕ) to wyrażenie krzywych całkowych pola X w tej samej mapie.

Jest on domknięty, gdyż γ_1 i γ_2 są funkcjami ciągłymi. Ze względu na to, że γ_i jest rozwiązaniem równania różniczkowego zwyczajnego tak jak w dowodzie wyżej, to zbiór ten jest otwarty (rozwiązania równań różniczkowych zwyczajnych są lokalnie jednoznaczne). Wiemy, że $t_0 \in A$, więc zbiór A jest niepusty. Odcinek (a, b) jest spójny, czyli skoro A \subseteq (a, b) jest zbiorem jednocześnie otwartym i domkniętym, to może być pusty (ale t_0) lub być całością. Stąd A = (a, b).

Fakt 5.13. Dla każdego $p \in M$ istnieje $p \in U_p \subseteq M$ oraz gładka funkcja

$$\Gamma: (-\varepsilon, \varepsilon) \times \mathsf{U}_\mathsf{D} \to \mathsf{M}$$

taka, że dla każdego q \in Up $\gamma_{q}:$ (-arepsilon, arepsilon) o M określone przez

$$\gamma_{q}(t) = \Gamma(t, q)$$

jest krzywą całkową pola X o początku w q.

Dowód. Wynika z analogicznego faktu dla równań różniczkowych zwyczajnych.

Definicja 5.14. Pole wektorowe $X \in \mathfrak{X}(M)$ jest **zupełne**, jeśli dla każdego $p \in M$ istnieje krzywa całkowa $\gamma: \mathbb{R} \to M$ o początku w p. To znaczy każda lokalnie określona krzywa całkowa przedłuża się do całego \mathbb{R} .

Przykłady:

1. Rozważmy pole wektorowe

$$X(u, v) = -v \frac{\partial}{\partial u}(u, v) + u \frac{\partial}{\partial v}(u, v)$$

na \mathbb{R}^2 . Jest ono zupełne, gdyż krzywe całkowe mają postać

$$\gamma(t) = (r \cdot \cos(t + t_0), r \cdot \sin(t + t_0))$$

i są określone na całym \mathbb{R} .

To samo pole ale określone na $Int(H^2) = \{(x, y) : y > 0\}$ nie jest zupełne.

Fakt 5.15. Jeśli $X \in \mathfrak{X}(M)$ jest zupełnym polem wektorowym, a dla każdego $p \in M$

$$\gamma_{\mathsf{p}}:\mathbb{R}\to\mathsf{M}$$

jest maksymalnie przedłużoną krzywą całkową pola X o początku w p, to

$$\Gamma: \mathbb{R} \times M \to M$$

określone przez

$$\Gamma(t, p) = \gamma_p(t)$$

jest odwzorowaniem gładkim.

Ponadto, dla każdego t $\in \mathbb{R}$ odwzorowanie $\phi_{\mathsf{t}}: \mathsf{M} \to \mathsf{M}$ zadane przez

$$\phi_t(p) = \gamma_p(t)$$

jest dyfeomorfizmem rozmaitości M, a przyporządkowanie t $\mapsto \phi_t$ jest homomorfizmem grupy $\mathbb R$ w grupę dyfeomorizmów M ($\mathbb R \to \mathrm{Diff}(M)$).

Dowód. Gładkość odwzorowania Γ wynika z gładkiej lokalnej zależności krzywych całkowych od punktu początkowego. Tak samo jak dla równań różniczkowych gładka zależność lokalna pociąga gładką zależność globalną.

W takim razie ϕ_t = $\Gamma(t,\cdot)$ jest gładkim odwzorowaniem M \to M, gdzie oczywiście ϕ_0 = id_M. Weźmy dowolne t, s $\in \mathbb{R}$, wtedy

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_{\mathsf{t}}(\phi_{\mathsf{S}}(\mathsf{p})) = \mathsf{X}(\phi_{\mathsf{t}}(\phi_{\mathsf{S}}(\mathsf{p}))$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_{\mathsf{t+S}}(\mathsf{p}) = \mathsf{X}(\phi_{\mathsf{S+t}}(\mathsf{p}))$$

są krzywymi całkowymi. Rozważmy teraz krzywe całkowe α (t) = $(\phi_{t} \circ \phi_{s})$ (p) oraz β (t) = ϕ_{t+s} (p). Mamy

$$\alpha(0) = (\phi_0 \circ \phi_S)(p) = (id_M \circ \phi_S)(p) = \phi_S(p)$$

$$\beta(0) = \phi_{0+s}(p) = \phi_{s}(p)$$
.

czyli α oraz β są obie krzywymi całkowymi o początku w punkcie $\phi_{\rm S}({\rm p})$, więc na mocy 5.12 mamy

$$\phi_t \circ \phi_S = \alpha = \beta = \phi_{t+s}$$

Z równości $\phi_{t+s} = \phi_t \circ \phi_s$ wynika, że:

• ϕ_t jest dyfeomorfizmem, bo

$$\phi_t \circ \phi_{-t} = \phi_{-t} \circ \phi_t = \phi_{t+(-t)} = \phi_0 = id_M$$

• $t \mapsto \phi_t$ jest homomorfizmem $\mathbb{R} \to \mathsf{Diff}(\mathsf{M})$.

Rodzina $\{\phi_t\}$ jak wyżej jest nazywana **potokiem pola** X lub **jednoparametrową grupą dyfeomorfizmów** generowaną przez X. Pojawia się też określenie *potok fazowy* pola X.

Krzywe całkowe t $\mapsto \phi_t(p)$ są nazywane **trajektoriami potoku** $\{\phi_t\}$, trajektoriami pola X, krzywymi fazowymi pola X, liniami sił etc.

Przykłady:

1. W przykładzie pola zupełnego

$$X(u, v) = -v \frac{\partial}{\partial u} + u \frac{\partial}{\partial v}$$

na \mathbb{R}^2 jak wyżej mamy potok

$$\phi_t(u, v) = (u \cos t - v \sin t, u \sin t + v \cos t)$$

będący obrotem wokół (0,0) o kat t. Na zielono niżej przedstawiono ϕ_{40} o.

Definicja 5.16. Jednoparametrową grupą dyfeomorfizmów na rozmaitości M nazywamy

- każdy homomorfizme $\mathbb{R} \to \mathsf{Diff}(M)$ gładko zależny od $\mathsf{t} \in \mathbb{R}$ lub, równoważnie,
- każdą rodzinę $\{\phi_t\}_{t\in\mathbb{R}}$ dyfeomorfizmów gładko zależną od t, taką, że $\phi_{t+s}=\phi_t\circ\phi_s$ dla każdego t, s $\in\mathbb{R}$.

Pole wektorowe $X\in\mathfrak{X}(M)$, które nie jest zupełne wyznacza jedynie tzw. lokalną jednoparametrową grupę dyfeomorfizmów, tzn. rodzinę

$$\{(\mathsf{U}_{\alpha},\varepsilon_{\alpha},\phi^{\alpha})\}_{\alpha}$$

taką, że

- 1. zbiory $U_{\alpha} \subseteq M$ są otwarte i pokrywają M
- 2. $\phi^{\alpha}: (-\varepsilon_{\alpha}, \varepsilon_{\alpha}) \times U_{\alpha} \to M$ jest gładkie
- 3. $\phi^{\alpha}(0,p)$ = p dla każdego p $\in U_{\alpha}$
- 4. oznaczając

$$\phi_t^{\alpha}(p) = \phi^{\alpha}(t, p)$$

jeśli s, s + t \in ($-\varepsilon_{\alpha}$, ε_{α}), t \in ($-\varepsilon_{\beta}$, ε_{β}) oraz ϕ_{s}^{α} (p) \in U $_{\beta}$, to wówczas

$$\phi_{\mathsf{t}}^{\beta} \circ \phi_{\mathsf{s}}^{\alpha}(\mathsf{p}) = \phi_{\mathsf{t+s}}^{\alpha}(\mathsf{p})$$

Każdy (U $_{\alpha}, \varepsilon_{\alpha}, \phi^{\alpha}$) tworzony jest z lokalnych krzywych całkowych pola X gładko

zależnych po punktu początkowego:

$$t\mapsto \phi^{\alpha}(t,p)$$

jest krzywą całkową pola X o początku w p. To znaczy

$$\phi^{\alpha}(0,p) = p$$

$$\frac{\partial}{\partial t}\phi^{\alpha}(t,p)$$
 = X($\phi^{\alpha}(t,p)$).

Taką rodzinę nazywamy też potokiem pola X, zaś X to jej potok generujący.

Twierdzenie 5.17. Każda abstrakcyjna jednoparametrowa grupa dyfeomorfizmów M jest potokiem pewnego zupełnego pola wektorowego $X \in \mathfrak{X}(M)$.

Ponadto, jeśli patrzymy na prawdziwą jednoparametrową grupę dyfeomorfizmów, to generujące ją pole X jest zupełne.

Dowód. Niech $\{(U_{\alpha}, \varepsilon_{\alpha}, \phi^{\alpha})\}$ będzie rodziną dyfeomorfizmów jak wyżej.

Określmy pole $X \in \mathfrak{X}(M)$. Jeśli $p \in U_{\alpha}$, to

$$X(p) = \frac{\partial}{\partial t} \int_{t=0}^{t} \phi^{\alpha}(t, p) \in T_{p}M$$

według punktu 3. wyżej.

Takie pole jest dobrze określone, tzn. jeśli $p \in U_{\alpha} \cap U_{\beta}$, to

$$\frac{\partial}{\partial t} \int_{t=0}^{t} \phi^{\alpha}(t, p) = \frac{\partial}{\partial t} \int_{t=0}^{t} \phi^{\beta}(t, p).$$

Można to pokazać stosując warunek 4. wyżej dla s = 0. Weźmy $\phi_{\rm S}^{\alpha}({\rm p})$ = $\phi_{\rm 0}^{\alpha}$ = p \in U $_{\beta}$, więc dla t \in ($-\varepsilon$, ε), gdzie ε = min(ε_{α} , ε_{β}), zachodzi

$$\phi_{\mathsf{t}}^{\beta}(\mathsf{p}) = \phi_{\mathsf{t}}^{\beta}(\phi_{\mathsf{S}}^{\alpha}(\mathsf{p})) = \phi_{\mathsf{t+S}}^{\alpha}(\mathsf{p}) = \phi_{\mathsf{t+0}}^{\alpha} = \phi_{\mathsf{t}}^{\alpha}(\mathsf{p}).$$

Stąd wynika równość pochodnych.

Pokażemy, że na pojedynczym U_{α} tak określone pole X jest polem gładkim. Niech Z będzie pomocniczym polem na produkcie $(-\varepsilon_{\alpha},\varepsilon_{\alpha})\times U_{\alpha}$ zadanym przez

$$Z(t, p) = \frac{d}{ds} \int_{s=t}^{s=t} (s, p) = \frac{\partial}{\partial t} (t, p).$$

Oczywiście, jest to gładkie odwzorowanie

$$Z: (-\varepsilon_{\alpha}, \varepsilon_{\alpha}) \times U_{\alpha}) \rightarrow T[(-\varepsilon_{\alpha}, \varepsilon_{\alpha}) \times U_{\alpha}]$$

które daje również

$$d\phi^{\alpha}: T[(-\varepsilon_{\alpha}, \varepsilon_{\alpha}) \times U_{\alpha}] \to TM.$$

Ponadto, dla p \in U $_{\alpha}$ zachodzi

$$X(p) = d\phi^{\alpha} \circ Z(0, p)$$

i łatwo jest już sprawdzić gładkość w lokalnych mapach na U_{α} .

Pokażemy teraz, że krzywe t $\mapsto \phi^{lpha}(t,p)$ są krzywymi całkowymi pola X, tzn. sprawdzimy, że

$$\frac{\mathsf{d}}{\mathsf{d}\mathsf{t}}_{\mathsf{t}=\mathsf{t}_0}\phi^\alpha(\mathsf{t},\mathsf{p})=\mathsf{X}(\phi^\alpha(\mathsf{t}_0,\mathsf{p}))$$

dla każdego p $\in U_{\alpha}$ oraz $t_0 \in (-\varepsilon_{\alpha}, \varepsilon_{\alpha})$.

Zbiory postaci U_{α} pokrywają całe M, stąd istnieje β takie, że $\phi^{\alpha}(t_0, p) \in U_{\beta}$, przy czym może się zdarzyć, że $\beta = \alpha$. Wtedy

$$\frac{\mathrm{d}}{\mathrm{d} t}_{\mathsf{t} + \mathsf{t}_0} \phi^\alpha(\mathsf{t}, \mathsf{p}) = \frac{\mathrm{d}}{\mathrm{d} \mathsf{s}} \sup_{\mathsf{s} = \mathsf{0}} \phi^\alpha(\mathsf{t}_0 + \mathsf{s}, \mathsf{p}) = \frac{\mathrm{d}}{\mathrm{d} \mathsf{s}} \sup_{\mathsf{s} = \mathsf{0}} \phi^\beta_\mathsf{s}(\phi^\alpha_{\mathsf{t}_0}(\mathsf{p})) = \mathsf{X}(\phi^\alpha_{\mathsf{t}_0}(\mathsf{p}))$$

przedostatnia równość wynika z warunku 4, a ostatnia równość to oczywiście sposób w jaki X jest zdefiniowane.

Twierdzenie 5.18. Jeśli $X \in \mathfrak{X}(M)$ ma nośnik zwarty, to X jest zupełne.

Na zwartej rozmaitości M każde pole X $\in \mathfrak{X}(M)$ ma nośnik zwarty, więc każde jest zupełne.

Dowód. Nośnik supp(X) możemy pokryć skończoną rodziną zbiorów U_{α_i} , dla których istnieją odpowiednie

$$\phi^{\alpha_{\mathbf{i}}}: (-\varepsilon_{\alpha_{\mathbf{i}}}, \varepsilon_{\alpha_{\mathbf{i}}}) \times \mathsf{U}_{\alpha_{\mathbf{i}}} \to \mathsf{M}.$$

Wtedy dla $\varepsilon=\min_i\{\varepsilon_{\alpha_i}\}$ możemy stworzyć krzywe całkowe o początku w dowolnym p \in M i określone na przedziale $(-\varepsilon,\varepsilon)$. Ponieważ tak dobrane ε jest jednostajne na całym M, to możemy w ten sposób dobrane krzywe całkowe przedłużać w nieskończoność w obie strony, a więc pole z którym są one powiązane jest polem zupełnym.

5.4. Zastosowania potoków pól wektorowych

Przykłady:

 Jeśli M jest rozmaitością spójną, a p, q ∈ M, to istnieje dyfeomorfizm f : M → M taki, że f(p) = q. Określamy tę własność tranzytywnością dyfeomorfizmów na punktach spójnej rozmaitości.

Dowód. Ponieważ M jest spójna, to p możemy z q połączyć kawałkami gładką krzywą γ . Mówiąc dokładniej, istnieje

$$\gamma: [\mathsf{a},\mathsf{b}] o \mathsf{M}$$

oraz a = a₀ < a₁ < ... < a_n = b takie, że $\gamma \upharpoonright [a_i, a_{i+1}]$ jest gładkim włożeniem. Oznacza to, $\gamma \upharpoonright [a_i, a_{i+1}]$ jest różnowartościowa i pochodna nie zeruje się na żadnym punkcie t $\in [a_i, a_{i+1}]$. Dodatkowo wymagamy, by $\gamma(a) = p$ i $\gamma(b) = q$.

Dla każdego i \in {0, ..., n – 1} skonstruujmy dyfeomorfizm $f_i:M\to M$ taki, że

$$f_i(\gamma(a_i)) = \gamma(a_{i+1}).$$

Wówczas dyfeomorfizm $f = f_{n-1} \circ ... \circ f_1 \circ f_0$ będzie dyfeomorfizmem którego istnienie chcemy dowieźć.

Dla i \in {0, 1, ..., n - 1} rozważmy pole wektorowe X_i o nośniku zwartym takie, że

$$X_i(\gamma \upharpoonright [a_i, a_{i+1}](t)) = \frac{d}{dt} \gamma \upharpoonright [a_i, a_{i+1}](t)$$

dla $t \in [a_i, a_{i+1}]$. Takie pole może zostać skonstruowane za pomocą rozkładów jedności i jest ono zupełne.

Oznaczmy $\gamma \upharpoonright [a_i, a_{i+1}] = \gamma^i$. Rozważmy mapę (U, ϕ) na M. Wtedy

$$\phi \circ \gamma^{i} = (\gamma_{1}^{i}(t), ..., \gamma_{n}^{i}(t)).$$

Ponieważ $(\gamma^i)'(t) \neq 0$, to dla ustalonego t_0 możemy przyjąć, że $(\gamma_1^i)'(t_0) \neq 0$. Z twierdzenia o funkcji odwrotnej wiemy, że γ_1^i jest gładko odwracalne wokół t_0 . Nakładając γ_1^{-1} lokalnie wokół t_0 na $\phi \circ \gamma^i(t)$ dostajemy dyfeomorfizm

$$(x_1,...,x_n)\mapsto (\gamma_1^{-1}(x_1),x_2,...,x_n)$$

dający mapę ψ , w której

$$\psi \gamma^{i}(t) = (t, \gamma_{2}(t), ..., \gamma_{n}(t)).$$

Zdefiniujmy lokalnie pole Y_{α} przez

$$Y_{\alpha}(x_1, ..., x_n) = [1, \gamma_2'(x_1), ..., \gamma_n'(x_1)]$$

Wtedy

$$(\psi \gamma^{i})'(t) = Y_{\alpha}(\psi \gamma^{i}(t)).$$

Wystarczy w pokrycie ze zbiorem odpowiadającym mapie ψ wpisać rozkład jedności i zdefiniować X $_{\rm i} = \sum f_{\alpha} Y_{\alpha}$, gdzie Y $_{\alpha}$ różne niż to opisane wyżej jest zerowe.

Krzywa $\gamma \upharpoonright [a_i, a_{i+1}]$ jest krzywą całkową tego pola. Zatem potok $\phi_t^{X_i}$ tego pola spełnia warunek

$$\phi_{a_{i+1}-a_{i}}^{X_{i}}(\gamma(a_{i})) = \gamma(a_{i+1}).$$

Bierzemy więc $f_i = \gamma_{a_{i+1}-a_i}^{X_i}$.

2. Niech $p \in M$ oraz $X \in C^{\infty}(TM)$ takie, że $X(p) \neq 0$. Wówczas istnieje otoczenie $p \in U$ oraz mapa $\phi : U \to \mathbb{R}^n$ taka, że pole X w tej mapie wyraża się $X = \frac{\partial}{\partial x_1}$. [Wyprostowanie pola wektorowego]

Wyrażenie pola X $\in C^\infty(TM)$ w mapie $\phi:U o\mathbb{R}^n$ to zapisanie pola

$$d\phi(X) = d\phi_{\phi^{-1}(u)}(X(\phi^{-1}(u)))$$

dla u $\in \phi(U) \subseteq \mathbb{R}^n$, w postaci

$$\sum_{i \le n} X_i(u) \cdot \frac{\partial}{\partial x_i}(u)$$

Dowód. Problem jest lokalny wokół p, więc wystarczy rozumienie go w dowolnej mapie wokół p. Możemy od razu przyjąć, że X jest polem wektorowym na U $\subseteq \mathbb{R}^n$ postaci

$$X = \sum X_i(u) \cdot \frac{\partial}{\partial x_i}(u).$$

Załóżmy, że punktowi p odpowiada punkt $u_0 \in U$ taki, że $u_0 = (0, ..., 0)$.

Przyjmijmy, że $X_1(u_0) \neq 0$, bo $X(u_0) \neq 0$. Niech ϕ_t oznacza lokalny potok wokół u_0 , tzn.

$$\phi_t(u) = \phi(t, u)$$

gdzie $\phi:(-\varepsilon,\varepsilon) imes U_0 o U$ i $U_0\subseteq U$ jest mniejszym otoczeniem p. Ponadto, niech $\phi(0,u)$ = u oraz

$$\frac{\partial}{\partial t}\phi(t, u) = X(\phi(t, u)).$$

Oznaczmy zbiór otwarty

$$\Omega = \{(u_2, ..., u_n) : (0, u_2, ..., u_n) \in U_0\} \subseteq \mathbb{R}^{n-1}$$

i rozważmy funkcję

$$F: (-\varepsilon, \varepsilon) \times \Omega \rightarrow U$$

$$F(t, (u_2, ..., u_n)) = \phi_t(0, u_2, ..., u_n) = \phi(t, (0, u_2, ..., u_n)).$$

Jej Jakobian ma postać

$$DF(0,...,0) = \begin{bmatrix} x_1(u_0) & 0 & \dots & 0 \\ x_2(u_0) & 1 & \dots & 0 \\ \vdots & & & & \vdots \\ x_n(u_0) & 0 & \dots & 1 \end{bmatrix}$$

$$det(DF(0,...,0)) = x_1(u_0) \neq 0$$
,

zatem na otoczeniu (0, ..., 0) F jest dyfeomorfizmem. Potraktujmy więc \mathbf{F}^{-1} jako

nową mapę wokół $u_0 = (0, ..., 0)$. Pokażemy, że $dF^{-1}(X) = \frac{\partial}{\partial t}$:

$$\begin{split} (dF\upharpoonright (t,u_2,...,u_n))^{-1}(X(F(t,u_2,...,u_n)) &= \frac{\partial}{\partial t}(t,u_2,...,u_n) \\ (dF\upharpoonright (t,u_2,...,u_n))(\frac{\partial}{\partial t}(t,u_2,...,u_n)) &= \frac{d}{dt}F(t,u_2,...,u_n) &= \\ &= \frac{d}{dt}\phi_t(0,u_2,...,u_n) &= \\ &= X(\phi_t(0,u_2,...,u_n)) &= X(F(t,u_2,...,u_n)) \end{split}$$

 Otocznie kołnierzowe [twierdzenie 3.1] brzegu zwartej rozmaitości. Pokażemy istnienie otoczenia kołnierzowego.

Otoczenie kołnierzowe to otwarte otoczenie U ⊂ ∂M w M wraz z dyfeomorfizmem F:[0,1) × ∂M → U takim, że F(0, x) = x.

Dowód. Niech M będzie zwartą rozmaitością o niepustym brzegu $\partial M \neq \emptyset$, a X niech będzie polem wektorowym na M, które na brzegu jest skierowane do wewnątrz M (istnienie takiego pola: 5.7). Oznacza to, że w mapie $\psi: U_p \to \mathbb{R}^n_+$ wokół punktu $p \in \partial M$, gdzie $\mathbb{R}^n_+ = \{(x_1,...,x_n): x_1 \geq 0\}$ pole X ma postać

$$X(x) = \sum_{i < n} X_i(x) \frac{\partial}{\partial x_i}$$

gdzie $X_1(0, x_2, ..., x_n) > 0$.

Dla każdego p $\in \partial M$ istnieje lokalna krzywa całkowa $\gamma:[0,\varepsilon)\to M$ pola X o początku w p, tzn. $\gamma(0)$ = p. Ponadto, istnieje również gładka funkcja

$$\phi_{\mathsf{p}}: [\mathsf{0}, arepsilon) imes \mathsf{U}_{\mathsf{p}} o \mathsf{M}$$

taka, że odwzorowanie t $\mapsto \phi_p(t,q)$ jest krzywą całkową pola X o początku w q dla każdego $q\in U_p$.

Ponieważ M jest zwarte, to każde lokalne jednostronne rozwiązanie równania różniczkowego można dowolnie przedłużać, otrzymując gładkie

$$\phi: [0, \infty) \times M \to M$$

takie, że t $\mapsto \phi(t, x)$ są krzywymi całkowymi pola X.

Określmy funkcje F : $[0, \infty) \times \partial M \to M$ taką, że

$$F(t, p) = \phi(t, p)$$
.

Wtedy funkcja F ma maksymalny rząd we wszystkich punktach (0, p), bo macierz Jakobianu w mapie $\psi_{\rm D}$ ma postać

$$DF_{(0,p)} = \begin{bmatrix} X_1(p) & 0 & \dots & 0 \\ X_2(p) & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ X_n(p) & 0 & \dots & 1 \end{bmatrix}$$

czyli det $DF_{(0,p)} = X_1(p) > 0$. Zatem istnieje $\varepsilon > 0$ taki, że obcięcie $F \upharpoonright [0, \varepsilon \times \partial M]$ jest gładkie i w każdym punkcie ma rząd n (maksymalny). Do pokazania, że $F \upharpoonright [0, \varepsilon) \times (0, \varepsilon)$

 ∂M jest otoczeniem kołnierzowym wystarczy różnowartościowość F \upharpoonright [0, ε) \times ∂M (dyfeomorfizm na otwarte otoczenie brzegu).

Załóżmy, że $F(t_1,p_1)$ = $F(t_2,p_2)$, gdzie $t_1 \geq t_3$. Wówczas z jednoznaczności krzywych całkowych dostajemy

$$F(p_1, t_1 - t_2) = F(p_2, 0) = p_2.$$

Gdyby $t_1 > t_2$, to istniałaby krzywa całkowa $\gamma[0,t_1-t_2] \to M$ zadana przez $\gamma(t)$ = F(p₁,t), gdzie $\gamma(t_1-t_2)$ = p₂, co jest niemożliwe, bo z punktu p₂ $\in \partial M$ nie da się poprowadzić krzywej całkowej "wstecz". Stąd też t_1 = t_2 i F(p₁, t_1 – t_2) = F(p₁, 0) = p₁, czyli p₂ = p₁.

5.5. Interpretacja pól wektorowych jako derywacji

Definicja 5.19. Derywacja (lub różniczkowanie) w punkcie $p \in M$ to operator

 L_p : {funkcje gładkie określone na otoczniach otwartych p} $\to \mathbb{R}$

który jest dodatkowo:

- 1. liniowy, tzn. $L_p(f+g) = L_p(f) + L_p(g)$ oraz $L_p(c \cdot f) = c \cdot L_p(f)$ dla wszystkich $c \in \mathbb{R}$ oraz funkcji gładkich f, g
- 2. spełniający regułę Leibnitza

$$L_p(f \cdot g) = f(p) \cdot L_p(g) + g(p) \cdot L_p(f)$$

Należy rozumieć, że f + g i f · g są określone na przekroju dziedzin f oraz g.

Ponieważ derywacje działają w pobliżu punktu p, to możemy założyć M = \mathbb{R}^n oraz p = (0, ..., 0) przez wyrażenie wszystkich obiektów w odpowiedniej mapie.

Przykłady:

1. Niech $X \in T_pM$ będzie wektorem stycznym. Wówczas pochodna w kierunku X jest przykładem derywacji w punkcie p $(L_p(f) = Xf)$.

Niech 1₁₁ oznacza funkcie stała równa 1 na otoczeniu U punktu p. Wówczas

$$L_{D}(1_{11}) = L_{D}(1_{11} \cdot 1_{11}) = 1_{11} \cdot L_{D}(1_{11}) + 1_{11} \cdot L_{D}(1_{11}) = 2L_{D}(1_{11})$$

zatem $L_p(1_U)=0.$ Jeśli teraz c_U oznacza funkcję stałą równą c na otoczeniu $p\in U,$ to dzięki liniowości L_p mamy

$$L_{p}(c_{11}) = cL_{p}(1_{11}) = c \cdot 0 = 0.$$

Zatem każda derywacja L_p przyjmuje wartość 0 na funkcjach stałych.

Jeśli $f: U \to \mathbb{R}$ i $p \in U$ oraz $p \in V \subseteq U$, to $L_p(f) = L_p(f \upharpoonright V)$. W takim razie, jeśli f, g pokrywają się na otoczeniu p, to $L_p(f) = L_p(g)$.

Lemat 5.20. Dowolna gładka funkcja f [po wyrażeniu w mapie] określona na kuli

wokół p = $(0, ..., 0) \subseteq \mathbb{R}^n$ przedstawia się w postaci

$$f(x) = f(0) + \sum_{i < n} x_i \cdot h_i(x),$$

gdzie h_i są gładkimi funkcjami takimi, że $h_i(0) = \frac{\partial}{\partial x_i}(0)$ dla i = 1, ..., n.

Dowód. Ustalmy $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Wówczas

$$f(x)-f(0)=\int_0^1\frac{d}{dt}f(tx)dt=\sum_{i\leq n}\int_0^1x_i\frac{\partial f}{\partial x_i}(tx)dt=\sum_{i\leq n}x_i\int_0^1\frac{\partial f}{\partial x_i}(tx)dt$$

Zatem kładąc $h_i(x) = \int_0^1 \frac{\partial f}{\partial x_i}(tx)dt$ dostajemy szukaną postać f(x).

Twierdzenie 5.21. Każda derywacja L_p w punkcie p jest pochodną kierunkową w kierunki pewnego wektora $X \in T_pM$. Wektor o tej własności jest jedyny.

Dowód. Rozważmy wektor X zadany

$$X = \sum_{i \le n} L_p(x_i) \cdot \frac{\partial}{\partial x_i}(p)$$

gdzie x; jest traktowane jako funkcja wokół p = (0,, 0)

Pokażemy, że dla dowolnej funkcji gładkiej f zachodzi Xf = Lpf.

Niech f(x) = f(0) + $\sum x_i h_i(x)$, gdzie $h_i(0) = \frac{\partial}{\partial x_i} f(0)$. Wówczas

$$\begin{split} L_p(f) &= L_p(f(0) + \sum x_i h_i) = \\ &= L_p(f(0)) + \sum L_p(x_i h_i) = \\ &= 0 + \sum [h_i(p) L_p(x_i) + x_i(0) L_p(h_i)] = \\ &= \sum \frac{\partial f}{\partial x_i}(0) L_p(x_i) = Xf \end{split}$$

Jedyność X wynika z łatwej obserwacji, że różne wektory $X \in T_pM$ są wyznaczane przez różne derywacje.

Definicja 5.22. Derywacja na M to operacja

$$L:C^{\infty}(M)\to C^{\infty}(M)$$

która jest liniowa i spełnia regułę Leibniza:

$$L(f \cdot g) = L(f) \cdot g + L(g) \cdot f$$

Przykłady:

 Gładkie pole wektorowe X na M określa derywację na M poprzez L(f) = Xf lub dokładniej L(f)(p) = X(p)f.

Twierdzenie 5.23. Każda derywacja na M jest określona przez gładkie pole wektorowe X na M. Takie pole jest wyznaczone w sposób jednoznaczny.

 $\textbf{Dow\'od.} \ \ \textbf{W} \ \textbf{ka\'zdym} \ \textbf{punkcie} \ \textbf{p} \ \in \ \textbf{M} \ \textbf{derywacja} \ \textbf{L} \ \textbf{na} \ \textbf{M} \ \textbf{wyra\'za} \ \textbf{derywację} \ \textbf{w} \ \textbf{punkcie} \ \textbf{p} \ \textbf{poprzez}$

$$L_{p}(f) = L(\widehat{f})(p),$$

gdzie \widehat{f} jest rozszerzeniem f do całego M. Z poprzedniego twierdzenia wiemy, że w każdym $p \in M$ istnieje wektor $X(p) \in T_pM$ taki, że L_p jest przez niego zadana. Pozostaje teraz wykazać, że pole wektorowe X zadane w ten sposób jest gładkie.

Załóżmy, że X nie jest gładkie. To znaczy, że istnieje i oraz mapa ψ wokół $p \in M$ takie, że i-ta współrzędna X wyrażonego w mapie ψ wokół p nie jest gładką funkcją. Dałoby się więc znaleźć gładką funkcję f na M dla której X_pf nie jest gładkie. Ale tak być nie może, więc sprzeczność.

Twierdzenia powyżej mówią o istnieniu jednoznacznej korespondencji

zadanej przez działanie pola X na funkcja f poprzez pochodną kierunkową w poszczególnych punktach:

$$Xf(p) := X_pf$$

Tak jak w przypadku 1_U możemy pokazać, że $L(0_M) = 0_M$:

$$L(0_M) = L(0_M + 0_M) = 2L(0_M) \implies L(0_M) = 0_M$$

Lemat 5.24. Niech $f \in C^{\infty}(M)$, a L niech będzie derywacją na M. Rozważmy zbiór

$$Z_f = \{x \in M : f(x) = 0\}.$$

Wówczas dla każdego $p \in Int(Z_f)$ mamy L(f)(p) = 0.

 $\textbf{Dow\'od.} \ \ \text{Niech} \ g \in C^{\infty}(M) \ i \ niech \ g(p) \neq 0, \ supp(g) \subseteq Int(Z_f). \ W\'owczas \ f \cdot g \equiv 0, \ stąd$

$$0 \equiv L(f \cdot g) = L(f)g + L(g) \cdot f$$

i dalei

$$0 = L(f)(p) \cdot g(p) + L(g)(p) \cdot f(p) = L(f)(p) \cdot g(p)$$

ponieważ g(p) \neq 0 dla pewnego p \in Int(Z_f), to musi być L(f)(p) = 0.

Jeśli f, $g \in C^{\infty}(M)$ zgadzają się na pewnym otoczeniu $p \in M$, to L(f)(p) = L(g)(p), gdyż 0 = L(f - g)(p) = L(f)(p) - L(g)(p).

6. Komutator i pochodna Liego

6.1. Komutator pól wektorowych

Lemat 6.1. Niech X.Y beda polami wektorowymi na rozmaitości M. Wówczas operator

$$XY - YX : C^{\infty}(M) \rightarrow C^{\infty}(M)$$

określony przez $f \mapsto XYf - YXf$ jest derywacją.

Dowód. Liniowość XY – YX wynika wprost z liniowości X oraz Y jako operatorów na $C^{\infty}(M)$. Operator ten spełnia również regułę Leibniza:

$$\begin{split} (XY-YX)(f\cdot g) = & XY(f\cdot g) - YX(f\cdot g) = \\ = & X(g\cdot Yf+f\cdot Yg) - Y(g\cdot Xf+f\cdot Xg) = \\ = & X(g\cdot Yf) + X(f\cdot Yg) - Y(g\cdot Xf) - Y(f\cdot Xg) = \\ = & Yf\cdot Xg+g\cdot XYf+ \frac{1}{2}(f\cdot Xf) - \frac{1}{2}(f\cdot Xg) = \\ & - Xf\cdot Yg-g\cdot YXf-Xg\cdot Yf-f\cdot YXg = \\ = & g\cdot (XYf-YXf) + f\cdot (XYg-YXg) = \\ = & g\cdot (XY-YX)f+f\cdot (XY-YX)g \end{split}$$

Lemat wyżej jest zaskakujący, gdyż np. XY + YX nie jest derywacją. Jest to operator drugiego rzędu, tzn. jego wartość na funkcji f zależy nie tylko of pierwszych pochodnych, ale również od pochodnych drugiego rzedu. W przypadku XY – YX pochodne rzedu dwa sa kasowane jak wyżej i pozostają jedynie składniki rzędu 1.

Definicia 6.2. Pole wektorowe na M odpowiadające derywacji XY – YX oznaczane jest symbolem [X, Y] i nazywa sie komutatorem pól X i Y.

Komutator ma następujące własności:

1.
$$[X, Y] = -[Y, X]$$

2.
$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0$$
 5. $[X,fY] = Xf \cdot Y + f \cdot [X,Y]$

3.
$$[X + Y, Z] = [X, Z] + [Y, Z]$$

4.
$$[fX, Y] = f[X, Y] - Y(f)X$$

5.
$$[X, fY] = Xf \cdot Y + f \cdot [X, Y]$$

6.
$$[cX, Y] = c[X, Y] = [X, cY]$$

6.2. Komutator w lokalnych współrzędnych

Niech X = $\sum X_i \frac{\partial}{\partial x_i}$ oraz Y = $\sum Y_i \frac{\partial}{\partial x_i}$ będą polami wektorowymi i X_i , Y_i niech będą funkcjami współrzędnych. Wówczas:

$$\begin{split} & [X,Y]f = XYf - YXf = \\ & = \sum X_i \frac{\partial}{\partial x_i} \left[\sum Y_j \frac{\partial f}{\partial x_j} \right] - \sum Y_i \frac{\partial}{\partial x_i} \left[\sum X_j \frac{\partial f}{\partial x_j} \right] = \\ & = \sum X_i \left[\sum \left[\frac{\partial Y_j \partial f}{\partial x_i \partial x_j} + Y_j \frac{\partial^2 f}{\partial x_i \partial x_j} \right] \right] - \sum Y_i \left[\sum \left[\frac{\partial X_j \partial f}{\partial x_i \partial x_j} + X_j \frac{\partial^2 f}{\partial x_i \partial x_j} \right] \right] = \\ & = \sum_{i,j} X_i Y_j \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{i,j} X_i \frac{\partial Y_j \partial f}{\partial x_i \partial x_j} - \sum_{i,j} Y_i X_j \frac{\partial^2 f}{\partial x_i \partial x_j} - \sum Y_i \frac{\partial X_j \partial f}{\partial x_i \partial x_j} = \\ & = \sum \frac{\partial f}{\partial x_i} \left[\sum \left[X_i \frac{\partial Y_j}{\partial x_i} - Y_i \frac{\partial X_j}{\partial x_i} \right] \right] \end{split}$$

W takim razie komutator wyrażony we współrzędnych pól X i Y to:

$$[X,Y] = \sum \left[\sum \left[X_i \frac{\partial Y_j}{\partial x_i} - Y_i \frac{\partial X_j}{\partial x_i} \right] \right] \frac{\partial}{\partial x_j}$$

6.3. Definicia pochodnej Liego

W przestrzeni \mathbb{R}^n możemy bez problemu zdefiniować pochodną kierunkową pola wektorowego Y wzdłuż wektora $v \in T_pM$ jako

$$D_VY(p) = \frac{d}{dt} \underset{t=0}{\underbrace{f}} Y(p+tv) = \lim_{t\to 0} \frac{Y(p+tv) - Y(p)}{t}$$

gdyż wektory styczne w jednym punkcie utożsamiają się jako wektory swobodne z wektorami stycznymi w każdym innym punkcie. Na innych rozmaitościach, które nie mają struktury przestrzeni wektorowej, niekoniecznie musi być to możliwe i utożsamienia takie mogą się różnić w różnych mapach.

Wzór wyżej możemy uogólniać. Pierwszą możliwością byłoby zastąpienie Y(p + tv) przez krzywą całkową o początku p wzdłuż wektora Y, ale wtedy $Y_{\gamma(t)}$ oraz $Y_{\gamma(0)}$ nie leżałyby w tej samej przestrzeni stycznej. Stąd wektor $v \in T_pM$ zastąpimy przez pole wektorowe X i wektor Y przesuniemy o t za pomocą potoku pola X, po czym wrócimy je na tę samą przestrzeń w której było Y(p). Działając w ten sposób definiujemy pochodną Liego.

Definicja 6.3. Pochodną Liego, L_XY(p), nazywamy wektor z T_pM otrzymany jako

$$\mathsf{L}_\mathsf{X} \mathsf{Y}(\mathsf{p}) = \mathsf{lim}_{\mathsf{t} \to \mathsf{0}} \frac{\mathsf{d} \phi_{-\mathsf{t}}^\mathsf{X} [\mathsf{Y}(\phi_\mathsf{t}^\mathsf{X}(\mathsf{p})] - \mathsf{Y}(\mathsf{p})}{\mathsf{t}}$$

Czasem pochodną Liego w punkcie p oznaczamy jako (L_XY)_p. lub równoważnie

$$\frac{d}{dt}_{t=0} d\phi_{-t}^{X}[Y(\phi_{t}^{X}(p))]$$

$$\frac{d}{dt} \int_{t=0}^{t} (d\phi_t^X)^{-1} [Y(\phi_t^X(p))]$$

φ^X_{-t} oznacza element potoku pola X - górny indeks będzie informował o polu wektorowym do którego się odnosi φ^X₋.

(3)

Przykłady:

1. Rozważmy \mathbb{R}^3 jako rozmaitość i niech X = $\frac{\partial}{\partial x_1}$. Mamy wtedy

$$\phi_t^X(x_1, x_2, x_3) = (x_1 + t, x_2, x_3)$$

$$\begin{array}{l} \mathsf{d}\phi_t^X : \mathsf{T}_p\mathbb{R}^3 \to \mathsf{T}_{\phi_t^X(p)}\mathbb{R}^3 = \mathsf{id}_{\mathbb{R}^3} \\ \cong_{\mathbb{R}^3} \end{array}$$

Niech teraz

$$Y(x_1, x_2, x_3) = \frac{\partial}{\partial x_2} + x_1 \cdot \frac{\partial}{\partial x_3}$$

będzie wektorem stycznym do \mathbb{R}^3 w punkcie p = (x_1,x_2,x_3) . Do wyliczenia pochodnej Liego potrzebujemy

$$Y(\phi_t^X(p)) = \frac{\partial}{\partial x_1} + (x_1 + t) \frac{\partial}{\partial x_3}$$

oraz

$$(d\phi_t^X)^{-1}(Y(\phi_t^X(p))) = \frac{\partial}{\partial x_1} + (x_1 + t)\frac{\partial}{\partial x_3}$$

Skorzystamy teraz z ostatniej wariancji definicji

$$\frac{\mathsf{d}}{\mathsf{d}\mathsf{t}}_{\mathsf{t}=\mathsf{0}}(\mathsf{d}\phi_\mathsf{t}^\mathsf{X})^{-\mathsf{1}}(\mathsf{Y}(\phi_\mathsf{t}^\mathsf{X}(\mathsf{p}))) = \frac{\partial}{\partial \mathsf{x}_\mathsf{1}} + (\mathsf{x}_\mathsf{1} + \mathsf{t})\frac{\partial}{\partial \mathsf{x}_\mathsf{3}} = \frac{\partial}{\partial \mathsf{x}_\mathsf{3}}$$

czyli
$$L_X(Y) = \frac{\partial}{\partial x_3}$$
.

2. Rozważmy teraz $M = \mathbb{R}^3$ oraz pole wektorowe

$$X(x, y) = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$$

jak w przykładzie z poprzedniego rozdziału. Wówczas

$$\phi_t^X(x, y) = (x \cos t - y \sin t, x \sin t + y \cos t)$$

$$\mathsf{d}(\phi_t^X)_p:\mathsf{T}_p\mathbb{R}^2\to\mathsf{T}_{\phi_t^X(p)}\mathbb{R}^2$$

jest zadana macierzą obrotu o t stopni

$$d(\phi_t^X) = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$

W takim razie macierz odwzorowania odwrotnego to

$$(d(\phi_t^X)_p)^{-1} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

Rozważmy teraz pole wektorowe Y(x, y) = $\frac{\partial}{\partial x}$ = (1, 0). Wtedy pochodna Liego Y to

$$\begin{split} \frac{d}{dt}_{t=0} Y(\phi_t^X(x,y)) &= \frac{d}{dt}_{t=0} \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \\ &= \frac{d}{dt}_{t=0} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} = \begin{bmatrix} \sin 0 \\ -\cos 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -\frac{\partial}{\partial y} = L_X(Y)(x,y) \end{split}$$

Warto zauważyć, że X(0,0) = 0, a jednak $L_XY(0,0) \neq 0$.

6.4. Własności

Twierdzenie 6.4.

$$L_XY = [X, Y]$$

Dowód. Pokażemy, że dla każdego $p \in M L_X Y(p) = [X, Y](p)$. Rozbijemy to na przypadki w zależności od tego, czy X(p) jest zerowe czy nie.

1. $X(p) \neq 0$

Z przykładu o wyprostowywaniu pola wektorowego wiemy, że możemy dobrać mapę, w której

$$X(x_1,...,x_n) = \frac{\partial}{\partial x_1}$$

oraz p = (0, ..., 0). Niech Y(x) = $\sum_{i \leq n} Y_i(x) \frac{\partial}{\partial x_i}$ w tej mapie. Komutator X i Y w takim przypadku wynosi [X, Y] = $\sum \frac{\partial Y_j}{\partial x_1}(0) \cdot \frac{\partial}{\partial x_j}$, bo X ma wszystkie pochodne zerowe i niezerową wartość tylko na pierwszej współrzędnej:

$$[X,Y](0) = \sum \left[\sum \left[X_i(0) \frac{\partial Y_j}{\partial x_i}(0) - Y_i(0) \frac{\partial X_j}{\partial x_i}(0) \right] \right] = \sum_{j < n} \frac{\partial Y_j}{\partial x_1}(0) \cdot \frac{\partial}{\partial x_j}(0)$$

Do wyliczenia pochodnej Liego potrzebujemy potoku pola X

$$\phi_{\mathsf{t}}^{\mathsf{X}}(\mathsf{x}_1,...,\mathsf{x}_\mathsf{n}) = (\mathsf{x}_1 + \mathsf{t},\mathsf{x}_2,...,\mathsf{x}_\mathsf{n})$$

oraz jego pochodnej, czyli d $\phi^{\rm X}_{
m t}$ = ${
m id}_{\mathbb{R}^{
m n}}$ = $({
m d}\phi^{\rm X}_{
m t})^{-1}$. Podstawiając do definicji

Dla każdego pola wektorowego X możemy znaleźć mapę taką, że X = $\frac{\partial}{\partial x_1}$ po wyrażeniu w tej

otrzymujemy

$$\begin{split} L_XY(0) &= \frac{d}{dt}_{t=0} (d\phi_t^X)^{-1} Y(\phi_t^X(0)) = \\ &= \frac{d}{dt}_{t=0} (d\phi_t^X)^{-1} Y(t,0,...,0) = \\ &= \frac{d}{dt} Y(t,0,...,0) = \frac{\partial}{\partial x_1} Y(0) = [X,Y](0) \end{split}$$

Czyli po takim wyrażeniu X i Y w mapie mamy $[X, Y](p) = L_XY(p)$.

$$X(p) = 0$$

Zaczniemy od udowodnienia dwóch faktów pomocniczych.

Fakt 1. Jeśli $X:(a,b)\to T_pM$ oraz $f:M\to\mathbb{R}$ są gładkimi funkcjami, to $\frac{d}{dt}[X(t)f]=[\frac{d}{dt}X(t)]f$.

$$\begin{split} \frac{d}{dt}[X(t)f] &= \lim_{\varepsilon \to 0} \frac{X(t+\varepsilon)f - X(t)f}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left[\frac{X(t+\varepsilon) - X(t)}{\varepsilon} \cdot f \right] \stackrel{\star}{=} \\ &= \left[\lim_{\varepsilon \to 0} \frac{X(t+\varepsilon) - X(t)}{\varepsilon} \right] \cdot f = \left[\frac{d}{dt}X(t) \right] f \end{split}$$

Równość * wynika z ciągłości pochodnej kierunkowej względem kierunku.

Fakt 2. Dla $X\in C^\infty(TM)$, $f\in C^\infty(M)$ oraz dyfeomorfizmu $h:M\to N$ rozważmy pole wektorowe dh $(X)\in C^\infty(TN)$ oraz funkcję $f\circ h^{-1}\in C^\infty(N)$ przeniesione na N przez h. Wówczas

$$Xf(p) = dh(X)(fh^{-1})(h(p)).$$

Jak w podrozdziale 5.2 o przenoszeniu pól wektorowych przez dyfeomorfizmy. Da $q \in N$ mamy

$$dh(X) = dh_{h^{-1}(q)}(X(h^{-1}(q)))$$

ale ponieważ h jest dyfeomorfizmem, to zawsze istnieje p \in M takie, że q = h(p). Możemy więc zapisać

$$dh(X) = dh_{h^{-1}(h(p))}(X(h^{-1}(h(p)))) = dh_p(X(p)).$$

W takim razie

$$dh(X)(fh^{-1})(h(p)) = d_p(X(p))(fh^{-1})(h(p)) = d_pX(fh^{-1}(h(p))) = d_pX(f(p)) = Xf(p)$$
 tak jak chcieliśmy.

Niech f będzie dowolną funkcją gładką na rozmaitości M. Zadziałamy na nią wek-

torami [X, Y](p) oraz LXY(p)

$$[X,Y](p)f = [X,Y]f(p) = XYf(p) - YXf(p) = -YXf(p)$$

bo X(p) = 0. Ponieważ X(p) = 0, to na pewnym otoczeniu p mamy $\phi_{\rm t}^{\rm X}$ (p) = p dla każdego p. Czyli

$$\begin{split} (L_XY)f(p) = & (L_XY)_p f = \left[\frac{d}{dt}_{t=0} d\phi_{-t}^X[Y(\phi_t^X(p))]\right] f = \\ = & \left[\frac{d}{dt}_{t=0} d\phi_{-t}^X[Y(p)]\right] f \stackrel{F.1}{=} \frac{d}{dt}_{t=0} [d\phi_{-t}^X(Y)f(p)] \stackrel{F.2}{=} \\ = & \frac{d}{dt}_{t=0} \left[Y(f\phi_{-t}^X)(\phi_t^X(p))\right] = \frac{d}{dt} [Y(f\phi_{-t}^X)(p)] = \\ = & \frac{d}{dt}_{t=0} \frac{d}{ds}_{s=0} [f\phi_{-t}^X(\phi_s^Y(p))] = \frac{d}{ds}_{s=0} \frac{d}{dt}_{t=0} [f\phi_{-t}^X\phi_s^Y(p)] = \\ = & \frac{d}{ds}_{s=0} - Xf(\phi_s^Y(p)) = Y(-Xf(p)) = -yXf(p) = [X, Y]f(p) \end{split}$$

Pochodna Liego ma następujące własności , które wynikają z własności komutatora:

Własności komutatora zostały przedstawione pod Definicją 6.2

1.
$$L_XY = -L_YX$$

4.
$$L_{X+Y}Z = L_XY + L_YZ$$

2.
$$L_X[Y, Z] = [L_XY, Z] + [Y, L_XZ]$$

5.
$$L_X(fY) = XfY + fL_XY$$

3.
$$L_X(Y + Z) = L_XY + L_XZ$$

6.
$$L_{fX}Y = fL_XY - (Yf)X$$

6.5. Komutowanie potoków

Definicja 6.5. Lokalne potoki pól X, Y na M **komutują** na otoczeniu punktu $p \in M$, jeśli istnieje $\varepsilon > 0$ taki, że dla każdego |t|, $|s| < \varepsilon$ zachodzi

$$\phi_s^{\mathsf{Y}} \circ \phi_t^{\mathsf{X}}(\mathsf{q}) = \phi_t^{\mathsf{X}} \circ \phi_s^{\mathsf{Y}}(\mathsf{q})$$

dla q bliskich punktowi p.

Twierdzenie 6.6. Lokalne potoki pól X,Y komutują na otoczeniu punktu p \iff [X, Y] \equiv 0 na pewnym otoczeniu punktu p. Oznacza to również, że L_XY = 0 na otoczeniu punktu p.

Lee podaje [X, Y] = 0 jako definicję komutowania potoków pól X i Y. My podchodzimy do problemu najpierw we współrzędnych lokalnych, a dopiero potem przechodzimy do perspektywy catego M.

Dowód. ⇐

Potrzebujemy faktu pomocniczego:

Jeśli $\phi: M_1 \to M_2$ jest dyfeomorfizmem i X_1 jest polem na M_1 , a $X_2 = d\phi(X_1)$ jest polem na M_2 , to wówczas ϕ przenosi trajektorie pola X_1 na trajektorie pola X_2 . Oznacza to, że

$$\phi(\phi_{\mathsf{t}}^{\mathsf{X}_1}(\mathsf{p})) = \phi_{\mathsf{t}}^{\mathsf{X}_2}(\phi(\mathsf{p}))$$

Zakładamy, że L_XY = [X,Y] = 0. Możemy pokazać, że dla każdego $q\in M$ w pobliżu poraz t_0 bliskich 0 mamy

$$\frac{d}{dt}_{t=t_0}(d\phi_{-t}^{X})(Y(\phi_{t}^{X}(q)) = \phi_{t_0}^{X}(q)$$

To z kolei jest równe zero, bo

$$\begin{split} \frac{d}{dt}_{t=t_0}(d\phi^X_{-t})(Y(\phi^X_t(q))) &= -\frac{d}{ds}_{s=0}(d\phi^X_{-t_0-s})Y(\phi^X_{t_0+s}(q)) = \\ &= \frac{d}{ds}_{s=0}(d\phi^X_{-t_0})(d\phi^X_{-s})Y(\phi^X_s(\phi^X_{t_0}(q))) = \\ &= (d\phi_{-t_0}\frac{d}{ds}_{s=0}(d\phi^X_{-s}Y(\phi^X_s(\phi^X_{t_0}(q))) = \\ &= (d\phi^X_{-t_0})[L_XY(\phi^X_{t_0}(q))] = \\ &= (d\phi^X_{-t_0})(0) = 0 \end{split}$$

Jeśli scałkujemy L_XY od 0 do t, dla małego t, to tak naprawdę całkujemy funkcję stale równą zero i dostajemy

$$0 = \int_0^t \frac{d}{ds} \int_{t=0}^t (d\phi_{-s}^X)(Y(\phi_s^X(q)))ds =$$

$$= (d\phi_{-t}^X)(Y(\phi_t^X(q)) - (d\phi_0^X)(Y(\phi_0^X(q))) =$$

$$= (d\phi_{-t}^X)(Y(\phi_t^X(q))) - Y(q)$$

bo ϕ_0^X = id. Dla q bliskich p oraz małych t dostajemy więc

$$Y(q) = (d\phi_{-t}^{X})(Y(\phi_{t}^{X}(q)))$$

Zatem lokalny dyfeomorfizm $\phi_{\mathbf{t}}^{\mathbf{X}}$ przenosi pole Y na siebie, a więc trajektorie pola Y są przez niego przenoszone na trajektorie Y. Mamy więc

$$\phi_t^X(\phi_s^Y(q)) = \phi_s^Y(\phi_t^X(q))$$

dla q bliskich p oraz małych s. W takim razie potoki X i Y komutują na otoczeniu punktu p.

 \Longrightarrow

Zauważmy najpierw, że jeśli dyfeomorfizm ϕ zachowuje trajektorie pola Y, tzn. $\phi(\phi_t^Y(q)) = \phi_t^Y(\phi(q))$ dla wszystkich q, to pole Y jest ϕ -niezmiennicze. To znaczy d $\phi(Y) = Y$. Dokładniej mamy dla każdego q d $\phi(Y(q)) = Y(\phi(q))$ lub $Y(q) = (d\phi)^{-1}(Y(\phi(q)))$.

Zakładamy, że $\phi_t^X \phi_s^Y = \phi_s^Y \phi_t^X$, czyli ϕ_t^X i ϕ_s^Y komutują wokół p. Wówczas dla małych t ϕ_t^X przenosi małe kawałki trajektorii pola Y w pobliżu p na małe kawałki trajektorii pola Y. Dzięki faktowi wyżej wiemy, że wówczas

$$(d\phi_t^X)Y(q) = Y(\phi_t^X(q)),$$

czyli

$$Y(q) = Y(\phi_{-t}^{X}(\phi_{t}^{X}(q))) = (d\phi_{-t}^{X})(Y(\phi_{t}^{X}(q)))$$

Dalsze rachunki dają

$$L_X Y(q) = \frac{d}{dt}_{t=0} (d\phi_{-t}^X) Y(\phi_t^X(q)) = \frac{d}{dt}_{t=0} Y(q) = 0$$

czyli to co chcieliśmy.

6.6. Wyprostowanie komutujących pól wektorowych

Twierdzenie 6.7. Niech $X_1, ..., X_k$ będą polami wektorowymi na M, a dim(M) = $m \ge k$. Załóżmy, że dla q w otoczeniu punktu $p \in M$ pola X_i

- parami komutują oraz
- są liniowo niezależne, tzn. dla $q\in M$ blisko p układ $X_1(q),...,X_k(q)$ wektorów jest liniowo niezależny w $T_\alpha M$.

Wówczas istnieje mapa ϕ wokół p, w której pola X_i mają postać

$$X_i(x_1,...,x_m) = \frac{\partial}{\partial x_i}$$

Dowód. Ponieważ działamy lokalnie wokół p, możemy przyjąć, że M = \mathbb{R}^m , p = (0, ..., 0) oraz

$$X_i(x) = \sum (X_i)_j(x) \cdot \frac{\partial}{\partial x_i}.$$

Ponieważ $X_1(p), ..., X_k(p)$ są liniowo niezależne, to macierz

$$\begin{bmatrix} (x_1)_1 & (x_2)_1 & \dots & (x_k)_1 \\ (x_1)_2 & (x_2)_2 & \dots & (x_k)_2 \\ \vdots & \vdots & \ddots & \ddots \\ (x_1)_m & (x_2)_m) & \dots & (x_k)_m \end{bmatrix}$$

ma rząd k. Przyjmijmy więc, że wiersze od 1 do k tworzą macierz nieosobliwą. Możemy to zrobić, bo przenumerowanie współrzędnych nic nie psuje. Rozważmy odwzorowanie

$$\lambda(\mathsf{t}_1,...,\mathsf{t}_m) = \phi_{\mathsf{t}_1}^{X_1} \circ \phi_{\mathsf{t}_2}^{X_2} \circ ... \circ \phi_{\mathsf{t}_k}^{X_k} (\mathsf{0},...,\mathsf{0},\mathsf{t}_{k+1},...,\mathsf{t}_m).$$

 λ jest gładko określone na pewnym otoczeniu (0, ..., 0) oraz

$$\lambda(0,...,0) = (0,...,0) = p.$$

Gdy k = 2, a m = 3, to $\lambda(x, y, z) = \phi_x^{X_1} \phi_y^{X_2}(0, 0, z)$, z drugiej strony mamy równość

$$\phi_{\mathsf{X}}^{\mathsf{X}_1} \phi_{\mathsf{V}}^{\mathsf{X}_2}(\mathsf{0},\mathsf{0},\mathsf{z}) = \phi_{\mathsf{V}}^{\mathsf{X}_2} \phi_{\mathsf{X}}^{\mathsf{X}_1}(\mathsf{0},\mathsf{0},\mathsf{z})$$

która wynika z rysunku

Obliczmy pochodną $\frac{\partial \lambda(t_1,...,t_m)}{\partial t_i}$ dla i = 1, ..., k

$$\begin{split} \frac{\partial \lambda(t_1,...,t_m)}{\partial t_i} &= \frac{d}{ds} \underset{s=0}{\phi_{t_1}^{X_1}} \circ ... \circ \phi_{t_i^{+s}}^{X_i} \circ ... \circ \phi_{t_k}^{X_k}(0,...,0,t_{k+1},...,t_m) = \\ &= \frac{d}{ds} \underset{s=0}{\phi} \phi_{t_i^{+s}}^{X_i} \circ \phi_{t_i^{+s}}^{X_1} \circ ... \circ \phi_{t_k}^{X_k}(0,...,0,t_{k+1},...,t_m) = \\ &= \frac{d}{ds} \underset{s=0}{\phi} \phi_s^{X_i}(\phi_{t_1}^{X_1} \circ ... \circ \phi_{t_i^{+s}}^{X_i} \circ ... \circ \phi_{t_k}^{X_k}(0,...,0,t_{k+1},...,t_m)) = \\ &= \frac{d}{ds} \underset{s=0}{\phi} \phi_s^{X_i}(\lambda(t_1,...,t_m)) = \\ &= x_i(\lambda(t_1,...,t_m)) \end{split}$$

Ponieważ $\lambda(0, ..., 0, t_{k+1}, ..., t_m) = (0, ..., 0, t_{k+1}, ..., t_m)$, to $D\lambda(0)$ zapisuje się jako macierz

$$D\lambda(0) = \begin{bmatrix} (X_1)_1 & \dots & (X_k)_1 \\ \vdots & \ddots & \vdots \\ (X_1)_k & \dots & (X_k)_k \\ \vdots & \ddots & \vdots & & 1 \\ (X_1)_m & \dots & (X_k)_m & & 0 & 0 & \dots & 1 \end{bmatrix}$$

Łatwo zobaczyć, że D λ (0) jest macierzą nieosobliwą, więc λ jest dyfeomorfizmem na otoczeniu 0. Ponieważ

$$d\lambda(\frac{\partial}{\partial t_i}(t_1,...,t_m))=X_i(\lambda(t_1,...,t_m),$$

to dla mapy $\phi = \lambda^{-1}$ mamy

$$d\phi(X_i(\lambda(t_1,...,t_m)) = \frac{\partial}{\partial t_i}(t_1,...,t_m)$$

czyli $X_i = \frac{\partial}{\partial t_i}$ w tej mapie.

7. Rozmaitości orientowalne

7.1. Orientacja w przestrzeni wektorowej V wymiaru n

Niech B(V) będzie zbiorem wszystkich baz b = $(v_1,...,v_n)$ przestrzeni V. Dla baz b₁ = $(v_1,...,v_n)$ oraz b₂ = $(w_1,...,w_n)$ macierz przejścia M_{b_1,b_2} = $(a_{ij})_{n\times m}$ to taka macierz, że $w_k = \sum a_{ik}v_i$. Równoważnie jest to macierz przekształcenia V \rightarrow V takiego, że $v_i \mapsto w_i$, czyli wyrażenia wektorów zapisanych za pomocą w_i w bazie b₁. Macierz M_{b_1,b_2} jest macierzą nieosobliwą. Opiszmy więc relację na B(V)

$$b_1 \sim b_2 \iff det(M_{b_1,b_2}) > 0$$

Lemat 7.1. Relacja $b_1 \sim b_2 \iff \det(M_{b_1,b_2}) > 0$ jest relacją równoważności która ma dwie klasy abstrakcji.

Dowód.

Zaczniemy od udowodnienia, że jest to relacja równoważności:

zwrotność: $M_{b,b} = I_{n \times n}$, a z kolei det(I) = 1 > 0

symetryczność: zauważmy, że $M_{b_2,b_1} = M_{b_1,b_2}^{-1}$, czyli $det(M_{b_2,b_1}) = \frac{1}{det(M_{b_1,b_2})}$.

przechodniość: wynika z prostej kalkulacji $M_{b_1,b_3} = M_{b_1,b_2} \cdot M_{b_2,b_3}$ oraz

$$det(M_{b_1,b_3}) = det(M_{b_1,b_2}) det(M_{b_2,b_3})$$

Relacja ta ma dwie klasy abstrakcji, bo jeśli $b_1 \not\sim b$ oraz $b_2 \not\sim b$, to wówczas tak jak przy przechodniości $M_{b_1,b_2} = M_{b_1,b} \cdot M_{b,b_2}$ i $\det(M_{b_1,b_2})$ jako iloczyn dwóch wartości ujemnych jest dodatni. Stąd $b_1 \sim b_2$.

Definicja 7.2. Orientacją na przestrzeni wektorowej V nazywamy dowolną klasę abstrakcji relacji \sim jak wyżej na zbiorze B(V).

Następujące operacje na bazie $b = (v_1, ..., v_n)$ dają bazy z tej samej klasy abstrakcji (tj. macierz przejścia ma dodatni wyznacznik)

- parzysta permutacja wektorów bazy (złożenie parzystej liczby transpozycji)
- mnożenie wektorów z bazy przez dodatnie współczynniki
- zamiana jednego z wektorów v_k na wektor

$$v'_k = v_k + \sum_{i\neq k} a_i v_i$$

dla parzystych współczynników $a_i \in \mathbb{R}$

dowolne kombinacje operacji wymienionych wyżej

dowolna ciągła modyfikacja bazy (w przestrzeni baz)

W przestrzeni \mathbb{R}^3 klasy abstrakcji rozpoznaje się za pomocą reguły śruby prawoskrętnej. W \mathbb{R}^2 natomiast klasy orientacji są zadane przez kierunek obrotu (o kąt < π) drugiego wektora bazy względem pierwszego wektora bazy, zgodny lub przeciwny do ruchu wskazówek zegara.

Następujące modyfikacje bazy b = (v₁, ..., v_n) wyprowadzają ją poza klasę abstrakcji, czyli zmieniają orientację:

- nieparzysta permutacja wektorów bazy, np. transpozycja dowolnych dwóch wektorów
- pomnożenie jednego z wektorów bazy przez ujemny współczynnik

Na rozmaitości M każda mapa (U, ϕ) zadaje dla każdego p \in U orientację w przestrzeni stycznej T_pM przez klasę abstrakcji bazy ($\frac{\partial}{\partial \phi_1}(p),...,\frac{\partial}{\partial \phi_n}(p)$). Dwie mapy (U, ϕ) oraz (V, ψ) zadają tę samą orientację na przestrzeni T_pM dla $p \in U \cap V$ wtedy, gdy Jakobian odwzorowania przejścia

$$\left[\frac{\partial (\phi\psi^{-1})_k}{\partial x_j}(\psi(p))\right]_{j,k}$$

ma dodatni wyznacznik. Jest to macierz przejścia z bazy $\left(\frac{\partial}{\partial \psi_{\rm i}}\right)$ do bazy $\left(\frac{\partial}{\partial \phi_{\rm i}}\right)$.

Definicja 7.3.

- Orientacją rozmaitości M nazywamy wybór atlasu

 = {(U_α, φ_α)} dla M, takiego że każde dwie mapy (U_α, φ_α), (V_β, ψ_β) mają dodatni wyznacznik jakobianu odwzorowania przejścia φψ⁻¹ w każdym punkcie p ∈ U_α ∩ V_β.
- Rozmaitość jest orientowalna, jeśli posiada atlas jak wyżej. W przeciwnym razie jest nieorientowalna.
- Dwa atlasy A₁, A₂ jak wyżej zadają tę samą orientację, jeśli dla każdej mapy (U, φ) ∈ A₁ i dla każdej mapy (V, ψ) ∈ A₂ jakobian odwzorowania przejścia φψ⁻¹ ma dodatni wyznacznik w każdym punkcie p ∈ U ∩ V.

Uwaga 7.4. Jeśli rozmaitość M jest orientowalna i spójna, to można na niej zdać dokładnie 2 różne orientacje.

Co więcej, można powiedzieć, że jeśli M jest orientowalna, to M jest spójna \iff M posiada 2 orientacje.

Dowód. Udowodnimy tylko pierwszą wersję uwagi.

Jeśli M jest orientowalną rozmaitością, to istnieje na niej atlas $\mathscr A$ zadający na M orientację. Niech $(U,\phi)\in\mathscr A$ i rozważmy $-\phi=-1\circ\phi$, gdzie -1 to funkcja zwracająca przeciwieństwo liczby w $\mathbb R^n\colon x\mapsto -x$. Wówczas łatwo zauważyć, że $(U,-\phi)$ to nadal

Dowód uwagi nie został zaprezentowany na wykładzie - czytasz fantazję autora notatek. mapa na M oraz, że atlas $\mathscr{A}'=\{(\mathsf{U},-\phi): (\mathsf{U},\phi)\in\mathscr{A}\}$ nie ma orientacji zgodnej z \mathscr{A} ale nadal zadaje orientację na M.

Niech $\mathscr{A}_1, \mathscr{A}_2$ będą atlasami które nie mają zgodnych orientacji. Rozważmy zbiór

$$X = \{p \in M : (\exists (U, \phi) \in \mathscr{A}_1)(\exists (V, \psi) \in \mathscr{A}_2)(\exists p \in U \cap V) \det(D_p \phi \psi^{-1}) > 0\}.$$

Chcemy pokazać, że X jest otwarty i jednocześnie M \ X jest otwarte. Wówczas X = M (co implikuje, że na M jest tylko jedna orientacja) lub X = \emptyset , czyli \mathscr{A}_1 , \mathscr{A}_2 są dwoma różnymi orientacjami i jakakolwiek inna orientacja musiałaby zgadzać się z \mathscr{A}_1 lub \mathscr{A}_2 na całym M (bo X' = M, gdzie X' to punkty w których nowa orientacja zgadza się z \mathscr{A}_1 lub \mathscr{A}_2).

Niech $p \in X$ oraz wybierzmy $(U, \phi) \in \mathscr{A}_1$ oraz $(V, \psi) \in \mathscr{A}_2$ takie, że $p \in U \cap V$. Wiemy, że $\phi \psi^{-1}(p)$ ma dodatni wyznacznik jakobianu przejścia. Załóżmy, że $U \subseteq V$, bo mapy możemy wybierać dowolnie małe. Rozważmy odwzorowanie $f: U \to \mathbb{R}$ takie, że

$$f(q) = det(D_q \phi \psi^{-1}).$$

Jest to odwzorowanie ciągłe jako iloczyn i suma skończenie wielu ciągłych pochodnych $\phi\psi^{-1}$. Co więcej, f(p) > 0, czyli z ciągłości f wiemy, że cały wykres f ma wartości ściśle dodatnie. Czyli U \subseteq X, a ponieważ w \mathscr{A}_1 jest przeliczalnie wiele map, to tylko przeliczalnie wiele zbiorów z \mathscr{A}_1 może zawierać się w X, które nie jest całym M. Stąd wiemy, że X jest sumą przeliczalnie wielu zbiorów otwartych, a więc sam też jest otwarty. Analogicznie możemy postąpić dla M \ X, dostając, że zarówno X jak i X^C jest zbiorem otwartym, czyli X = \emptyset lub X = M ze spójności M.

Fakt 7.5. Rozmaitość M jest *nieorientowalna* \iff istnieje ciągła droga b(t) : $[0,1] \rightarrow B(M)$ taka, że b(0), b(1) $\in T_pM$ oraz b(0) $\not\sim$ b(1) w T_pM .

Endomorfizm liniowy $F: V \rightarrow V$ zachowuje orientację, gdy $F(b) \sim b$.

Definicja 7.6. Dyfeomorfizm $f: M \to M$ spójnej orientowalnej rozmaitości M **zachowuje orientację**, gdy dla pewnej (równoważnie dowolnej) orientacji na M, rozumianej jako zgodny wybór klas równoważności baz w przestrzeniach stycznych T_pM , różniczka df_q w pewnym (równoważnie każdym) punkcie $q \in M$ zachowuje orientację.

Uwaga 7.7. Dyfeomorfizm f zachowuje orientację M ← po wyrażeniu w mapach dowolnego atlasu ✓ zadającego orientację na M, zachowuję orientację, tzn. spełnia warunek

$$\det(\mathrm{D}(\psi\mathrm{f}\phi^{-1}))>0$$

dla pewnego (równoważnie każdego) p \in M

Uwaga 7.8. Ciągła krzywa w zbiorze reprezentantów bazowych na wiązce stycznej TM orientowalnej rozmajtości M nie wypadnie poza klase orientacii.

Przykłady:

- 1. \mathbb{R}^n jest rozmaitością orientowalną z dokładnie dwoma orientacjami (bo jest spójna i jest orientowalna)
- 2. Sⁿ również posiada dwie orientacje (jest spójna)
- 3. Produkt rozmaitości również zachowuje orientalność, stąd torusy T^n = $S^1\times ...\times S^1$ są orientowalne.
- 4. Iloraz orientowalnej rozmaitości przez wolną i właściwie nieciągłą grupę dyfeomorfizmów zachowujących orientację jest rozmaitością orientowalną, na przykład S¹ = R/Z czy T² = R²/Z².
 - Z kolei jeśli M jest spójna, orientowalna, zaś wolna i właściwie niecągła grupa dyfeomorfizmów G zawiera dyfeomorfizm zmieniający orientację, to iloraz M/G jest rozmaitością nieorientowalną, na przykład $\mathbb{R}P^{2k} = S^{2k}/\mathbb{Z}_2$ (przy czym $\mathbb{R}P^{2k+1} = S^{2k+1}/\mathbb{Z}_2$ są orientowalne) czy wstęga Möbiusa $S^1 \times [-1,1]/\mathbb{Z}_2$.
- 5. Jeśli M, N, P są orientowalnymi rozmaitościami oraz $P\subseteq N$, $f:M\to N$ jest gładkie, a P składa się z samych rozmaitości regularnych (tzn. jest obrazem włożenia w N), to $f^{-1}(P)$ jest orientowalne, np. $SL(2,\mathbb{R})=(det)^{-1}(1)$ (macierze 2×2 o wyznaczniku 1) jest orientowalna.

8. Podrozmaitości

Definicja 8.1. Podzbiór $N\subseteq M^n$ dla gładkiej rozmaitości M jest **podrozmaitością wymiaru** n, jeśli każdy punkt $p\in N$ posiada mapowe otoczenie otwarte $U_p\subseteq M$ oraz mapę $\phi:U_p\to V=\phi(U_p)\subseteq \mathbb{R}^m$ takie, że

$$\phi(U_{D} \cap N) = \{(x_{1}, ..., x_{m}) \in V : x_{n+1} = ... = x_{m} = 0\}$$

Możemy to również rozumieć, że wokół każdego $p \in N$ istnieje lokalny układ współrzędnych $(x_1,...,x_m)$ na otwartym otoczeniu $U_p \subseteq M$ taki, że $U_p \cap N$ wyraża się w tym układzie jako $\{x_{n+1} = ... = x_m = 0\}$.

Uwaga 8.2. Każda n-wymiarowa podrozmaitość $N \subseteq M^m$ jest n-wymiarową gładką rozmaitością.

Dowód. Wybierzemy na N atlas, a następnie udowodnimy jego zgodność.

Jako mapy wybierzemy pary postaci (U $_p \cap N$, $\Pi_n^m \circ \phi$), gdzie (U $_p$, ϕ) są mapami na M jak w definicji wyżej, natomiast

$$\Pi_n^m:\mathbb{R}^m\to\mathbb{R}^n$$

jest rzutowaniem, tzn:

$$\Pi_n^m(x_1,...,x_n,x_{n+1},...,x_m) = (x_1,...,x_n).$$

W takim razie $\Pi_n^{\rm m}\circ\phi$ to pierwsze n współrzędnych gładkiej mapy ϕ , czyli jest gładką funkcją z N w \mathbb{R}^n .

Wybierzmy mapy (Up, ϕ) i (Up, ϕ') jak wyżej i posługujmy się notacją jak na ilustracji. Chcemy sprawdzić, czy $\psi'\psi^{-1}$ jest mapą gładką.

$$\psi'\psi^{-1} = (\Pi_n^m \phi')(\Pi_n^m \phi)^{-1} = (\Pi_n^m \phi')(\phi^{-1}i),$$

gdzie i : $\psi(N \cap U_p) \rightarrow V$ jest włożeniem zadanym wzorem

$$i(x_1,...,x_n) = (x_1,...,x_n,\underbrace{0...,0}_{m-n \text{ zer}}).$$

Wiemy już, że $\Pi_n^{\rm m}$, ϕ , ϕ' oraz i są gładkie, czyli również $\psi'\psi^{-1}$ jako ich złożeniem jest funkcją gładką.

Przykłady:

1. Dla m-rozmaitości M oraz n-rozmaitości N i otwartego U \subseteq M, graf gładkiej funkcji f : U \to N

$$\Gamma(f) = \{(x,f(x)) \ : \ x \in U\} \subseteq M \times N$$

jest m-podrozmaitością $M \times N$.

8.1. Podrozmaitości zadane przez odwzorowanie włożenia

Definicja 8.3. Odwzorowanie $f: N \to M$ jest **immersją**, gdy rząd f w każdym punkcie jest równy wymiarowy dim N, tzn.

$$(\forall x \in N) \operatorname{rank}(f, x) = \dim N$$

Oczywiście, aby f było immersją, musimy mieć dim(N) \leq dim(M) oraz dla każdego p \in N różniczka

$$df_p: T_pN \to T_{f(p)}M$$

musi być różnowartościowa.

Definicja 8.4. Immersję f nazywamy **gładkim włożeniem**, jeśli jest homeomorfizmem na swój obraz.

Przykłady:

1. Wstęga Mobiusa bez brzegu M = $\mathbb{R} \times (-1, 1)/\mathbb{Z}$ może być włożona w \mathbb{R}^3 .

Dowód. Działanie $\mathbb Z$ na $\mathbb R \times (-1,1)$ jest zdefiniowane jako k(x,y) = $(x+k\cdot 2\pi,(-1)^k\cdot y)$. Dla wybranego $(x,y)\in M$ rozważmy funkcje

$$N(x) = (\cos x, \sin x, 0)$$

$$V(x) = (0, 0, 1)$$

$$K(x) = \sin \frac{x}{2} \cdot N(x) + \cos \frac{x}{2} \cdot V(x)$$

Rozważmy funkcję

$$f: \mathbb{R} \times (-1, 1) \rightarrow \mathbb{R}^3$$

zadaną przez

$$f(x, y) = 2 \cdot N(x) + y \cdot K(x) = (2 \cos x + y \cdot \sin \frac{x}{2}, 2 \sin x + y \cdot \sin \frac{x}{2}, y \cdot \cos \frac{x}{2})$$

f jest immersją pasa $\mathbb{R} \times$ (–1, 1) w \mathbb{R}^3 . Wystarczy sprawdzić rząd f w dowolnym punkcie (x, y):

$$D_{(x,y)}f = \begin{bmatrix} \frac{1}{2}y\cos\frac{x}{2} - 2\sin x & \sin\frac{x}{2} \\ \frac{1}{2}y\cos\frac{x}{2} + 2\cos x & \sin\frac{x}{2} \\ -\frac{1}{2}y\sin\frac{x}{2} & \cos\frac{x}{2} \end{bmatrix}$$

łatwo zauważyć, że kolumny tej macierzy są liniowo niezależne gdy y \neq 0, gdyż wtedy ostatnie współrzędne (sin $\frac{x}{2}$ i cos $\frac{x}{2}$) są liniowo niezależnymi funkcjami. Jeśli natomiast y = 0, to aby wektory były liniowo zależne, musiałoby istnieć a, b takie, że

$$\begin{cases} \frac{a}{2}y\cos\frac{x}{2} - 2a\sin x + b\sin\frac{x}{2} = 0\\ \frac{a}{2}y\cos\frac{x}{2} + 2a\sin x + b\sin\frac{x}{2} = 0 \end{cases}$$

po dodaniu obu równań dostajemy, że

0 = ay cos
$$\frac{x}{2}$$
 + (2b) sin $\frac{x}{2}$ = (2b) sin $\frac{x}{2}$

dla dowolnego x (bo y = 0), ale tak się dzieje tylko jeśli 2b = 0.

Sprawdźmy teraz, czy f zachowuje działanie grupy $\mathbb Z$ na $\mathbb R \times (-1,1)$:

$$\begin{split} f(k(x,y)) = & f(x+k2\pi,(-1)^k y) = \\ & = \begin{bmatrix} 2\cos(x+2k\pi)+(-1)^k y\sin(\frac{x}{2}+k\pi) \\ 2\sin(x+2k\pi)+(-1)^k y\sin(\frac{x}{2}+k\pi) \\ (-1)^k\cos(\frac{x}{2}+k\pi) \end{bmatrix} \end{split}$$

oczywiście czynniki $\cos(x+2k\pi)=\cos(x)$ pozostają bez zmiany. Tak samo $\sin(\frac{x}{2}+k\pi)$ dla parzystego k. Dla k nieparzystego natomiast mamy $\sin(\frac{x}{2}+k\pi)=-\sin\frac{x}{2}$, czyli

$$(-1)^k \sin(\frac{x}{2} + k\pi) = (-1)^k \cdot (-\sin\frac{x}{2}) = \sin\frac{x}{2}$$

tak jak chcieliśmy. Tak samo dla $cos(\frac{x}{2} + k\pi) = -cos \frac{x}{2}$, stąd

$$f(k(x,y)) = f(x,y)$$

a więc istnieje funkcja indukowana przez f

$$\bar{f}: \mathbb{R} \times (-1,1)/\mathbb{Z} \to \mathbb{R}^3$$

o własności rank (\overline{f}, x) = rank(f, x).

Nietrudno też sprawdzić, że f jest homeomorfizmem na swój obraz, co zostaje zostawione jako ćwiczenie dla czytelnika.

9. Bulion definicji i twierdzeń

Rozmaitość topologiczna wymiaru n

- 1. przestrzeń Hausdorffa
- 2. przeliczalna baza topologii
- 3. lokalnie euklidesowa (każdy punkt ma otwarte otoczenie homeomorficzne z otwartym podzbiorem \mathbb{R}^n)
- Rodzina lokalnie skończona podzbiorów M to rodzina, że dla każdego p ∈ M możemy znaleźć otoczenie, które przecina się co najwyżej ze skończoną liczbą zbiorów z tej rodziny.
- **Rozdrobnienie pokrycia** $\mathscr U$ to pokrycie $\mathscr V$ takie, że dla każdego U $\in \mathscr U$ możemy znaleźć V $\in \mathscr V$ takie, że V \subset U.
- Spójność rozmaitości: 1. Rozmaitości są lokalnie spójne, tzn. posiadają bazę zbiorów łukowo spójnych.
 - 2. Rozmaitość jest spójna \iff jest łukowo spójna.

Każda rozmaitość jest lokalnie zwarta, tzn. każdy punkt posiada zwarte otoczenie.

Mapa na rozmaitości to para (U, ϕ) taka, że U jest otwartym podzbiorem M, a ϕ : U \rightarrow \overline{U} = ϕ (U) jest homeomorfizmem na otwarty podzbiór w \mathbb{R}^n . Mapy często są nazywane **lokalnymi współrzędnymi** lub **lokalną parametryzacją** na M

Mapy gładko zgodne (U, ϕ), (V, ψ) mają gładkie funkcje przejścia $\phi\psi^{-1}$ i $\psi\phi^{-1}$.

Gładki atlas na M to zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ takich, że

- 1. $\{U_{\alpha}\}$ pokrywaja M
- 2. każde dwie mapy są gładko zgodne.
- Funkcja gładka $f: M \to N$ jest gładka po wyrażeniu w każdej mapie (U, ϕ) na M i (V ψ), tzn. $\psi f \phi^{-1}$.

Dyfeomorfizm to gładka bijekcja między rozmaitościami.

Rozmaitość gładka to para (M, A), gdzie M jest rozmaitością topologiczną, a A jest pewnym atlasem gładkim na M.

Czasem wymaga się, aby $\mathscr A$ było **atlasem maksymalnym** , tzn. posiadało wszystkie mapy zgodne z $\mathscr A$.

- **Rząd funkcji** $f: M \to N$ w punkcie p to rząd macierzy pierwszych pochodnych cząstkowych odwzorowania $\psi f \phi^{-1}$ w punkcie $\phi(p)$ (ilość lnz. kolumn w macierzy jakobiego).
- Rozmaitość z brzegiem posiada atlas funkcji na H^n (rzeczywistą półprzestrzeń) zamiast na \mathbb{R}^n . Definiujemy:

- 1. ∂M = {p \in M : w pewnej [każdej] mapie p \in (U $_{\alpha}$, ϕ_{α}) ϕ_{α} (p) \in ∂H^{n} }, gdzie ∂H^{n} = {(x₁, ..., x_n) \in \mathbb{R}^{n} : x_n = 0}
- $\begin{array}{lll} \text{2.} & \text{int}(M) = \{p \in M : (\exists (U_{\alpha}, \phi_{\alpha}) \ \phi_{\alpha}(p) \in \text{int}(H^n)\}\text{, gdzie} \\ & \text{int}(H^n) = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}. \end{array}$

STRONA 19