Problems under Proportion(s)

Type	Formula
Single Proportion	$Z=rac{oldsymbol{p}'-oldsymbol{p}}{\sqrt{oldsymbol{p}oldsymbol{q}/oldsymbol{n}}}$
Difference of two Proportions	$Z = \frac{p'_1 - p'_2}{\sqrt{pq\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ Where, $p = \frac{n_1 p'_1 + n_2 p'_2}{n_1 + n_2}$ and $q = 1 - p$

Notations:

- p stands for population proportion and q = 1 p.
- p' stands for sample proportion.
- p'_1 and p'_2 stands for proportions of sample 1 and sample 2, respectively.
- p_1 and p_2 stands for proportions of population 1 and population 2, respectively.

Problems Sample Proportion (Single and Difference)

1. Before an increase in excise duty on tea, 800 people out of a 1000 were consumers of tea. After the increase in duty, 800 people were consumers of tea in a sample of 1200 persons. Find whether there is significant decrease in the consumption of tea after the increase in duty. Also find the 95% confidence limits for difference of two proportions.

Solution:

Sample 1 (Before an increase in excise duty): $n_1 = 1000 \text{ and } p_1' = \frac{800}{1000} = 0.8$

Sample 2 (After an increase in excise duty): $n_2 = 1200 \text{ and } p_2' = \frac{800}{1200} = 0.67$

Population: $p = \frac{n_1 p_1' + n_2 p_2'}{n_1 + n_2} = \frac{800 + 800}{1000 + 1200} = 0.73 \text{ and } q = 1 - p = 0.27$

Step 1:

 H_0 : There is no significant decrease in the consumption of tea after the increase in duty

(i.e.)
$$p_1' \leq p_2'$$

 H_1 : There is a significant decrease in the consumption of tea after the increase in duty

(i.e.)
$$p'_1 > p'_2$$
 [One tailed test]

Step 2: Choosing α the level of significance (LOS)

$$\alpha = 5\%$$

Step 3: Computing the test statistic Z using a formula

$$Z = \frac{p_1' - p_2'}{\sqrt{pq\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{0.8 - 0.67}{\sqrt{(0.73)(0.27)\left(\frac{1}{1000} + \frac{1}{1200}\right)}} = 6.82$$

Step 4: Critical value Z_{α}

$$Z_{\alpha} = 1.645$$
 (One tailed test)

Step 5: Drawing the Conclusion

Here |Z| = 6.82 and $Z_{\alpha} = 1.645$.

Since $|Z| > Z_{\alpha}$, we reject H_0 at 5% level of significance.

Now to find the 95% confidence limits for difference of two population proportions.

$$\begin{split} p_1 - p_2 \in & \left((p_1' - p_2') - Z_\alpha \left(\sqrt{\frac{p_1' q_1'}{n_1}} + \frac{p_2' q_2'}{n_2} \right), (p_1' - p_2') + Z_\alpha \left(\sqrt{\frac{p_1' q_1'}{n_1}} + \frac{p_2' q_2'}{n_2} \right) \right) \\ p_1 - p_2 \in & \left((0.8 - 0.67) - 1.96 \left(\sqrt{\frac{(0.8)(0.2)}{1000}} + \frac{(0.67)(0.33)}{1200} \right), (0.8 - 0.67) + 1.96 \left(\sqrt{\frac{(0.8)(0.2)}{1000}} + \frac{(0.67)(0.33)}{1200} \right) \right) \\ p_1 - p_2 \in & \left((0.13) - 1.96(0.019), (0.13) + 1.96(0.019) \right) \\ p_1 - p_2 \in & \left((0.09276, 0.16724) \right) \end{split}$$

Note: This implies that we are 95% confidence that this confidence interval will contain the true unknown value of the difference of population proportions.

2. A manufacturing company claims that more than 95% of its products supplied confirm to the specifications out of a sample of 200 products, 18 are defective. Test the claim at 5% Los.

Solution:

Sample:
$$n = 200$$
 and $p' = \frac{200-18}{200} = 0.91$

Population: p = 0.95 and q = 1 - p = 0.05

Step 1: Formulating the hypothesis $H_0 \& H_1$ and decide whether it is a Two tailed test or a One tailed test with the help of H_1

 H_0 : At most 95% of the company products supplied confirm to the specifications

(i.e.)
$$p' \leq p$$

 H_1 : More than 95% of the company products supplied confirm to the specifications

(i.e.)
$$p' > p$$
 [One tailed test]

Step 2: Choosing α the level of significance (LOS)

$$\alpha = 5\%$$
 (given) Dr. Jayagopal_Module 5

Step 3: Computing the test statistic Z using a formula

$$Z = \frac{p' - p}{\sqrt{pq/n}} = \frac{0.91 - 0.95}{\sqrt{(0.95)(0.05)/200}} = -2.56$$

Step 5: Drawing the Conclusion

Here
$$|Z| = 2.56$$
 and $Z_{\alpha} = 1.645$.

Since $|Z| > Z_{\alpha}$, we reject H_0 at 5% level of significance.

3. The fatality rate of typhoid patients is believed to be less than 17.26%. In a certain year 640 patients suffering from typhoid were treated in a metropolitan hospital and only 63 patients died. Can you consider the hospital efficient? Also find the 95% confidence limits for proportion.

Solution:

Sample:
$$n = 640$$
 and $p' = \frac{63}{640} = 0.098$

Population: p = 0.1726 and q = 1 - p = 0.8274

Step 1:

 H_0 : The hospital is inefficient.

(i.e.)
$$p' \ge p$$

 H_1 : The hospital is efficient.

(i.e.)
$$p' < p$$
 [One tailed test]

Step 2: Choosing α the level of significance (LOS)

$$\alpha = 5\%$$

Step 3: Computing the test statistic Z using a formula

$$Z = \frac{p' - p}{\sqrt{pq/n}} = \frac{0.0984 - 0.1726}{\sqrt{(0..1726)(0.8274)/640}} = -4.96$$

Step 4: Critical value Z_{α}

$$Z_{\alpha} = 1.645$$
 (One tailed test)

Step 5: Drawing the Conclusion

Here |Z| = 4.96 and $Z_{\alpha} = 1.645$.

Since $|Z| > Z_{\alpha}$, we reject H_0 at 5% level of significance.

Now to find the 95% confidence limits for population proportion.

$$p \in \left(p' - Z_{\alpha}(\sqrt{p_1q_1/n}), p' + Z_{\alpha}(\sqrt{p_1q_1/n})\right)$$

$$p \in \left(0.0984 - 1.96\left(\sqrt{\frac{(0.0984)(0.9016)}{640}}\right), 0.0984 + 1.96\left(\sqrt{\frac{(0.0984)(0.9016)}{640}}\right)\right)$$

$$p \in \left(0.0984 - 1.96(0.012), 0.0984 + 1.96(0.012)\right)$$

$$p \in \left(0.07488, 0.12192\right)$$

Note: This implies that we are 95% confidence that this confidence interval will contain the true unknown value of the population proportions.

Here, $p = 0.1726 \notin (0.07488, 0.12192)$, thus we have H_0 is rejected.

Module 6: Hypothesis Testing II

Small sample tests- Student's t-test, F-test- chi-square test- goodness of fit — independence of attributes- Design of Experiments - Analysis of variance — One way-Two way-Three way classifications - CRD-RBD-LSD.

Test of Hypothesis – Small Sample

Small Sample (i.e sample size is <= 30) test is done by using **F-test** and **t-test**.

F-Test

by population variances.

$$\frac{69!}{52!} F = \frac{61^2}{52^2} \left(if 5,^2 > 52^2 \right)$$

$$F = \frac{6^{2}}{6^{2}} \left(\frac{1}{1} + \frac{5^{2}}{5^{2}} + \frac{70^{2}}{5^{2}} \right).$$
Dr. R. Jayagopal Module 6