МОД-КП Домашнее задание 6 (Неделя 12): Тема 7. Уравнение Кортевега-деВриза

1 Уравнение Кортевега-деВриза

1.1 Метод разделения переменных

В этом домашнем задании мы решим численно уравнение Кортевега-деВриза (КдВ), которое описывает волны на мелкой воде, колебания в нелинейных решетках, волны в плазме, и другие процессы. Уравнение КдВ имеет следующий вид:

$$u_t + \beta u \, u_x + \gamma u_{xxx} = 0, \quad u(x,0) = u_0(x),$$
 (1)

где u(x,t) – например, высота жидкости, β и γ – параметры, характеризующие систему. Считаем, что система имеет бесконечную протяженность $x = [-\infty, \infty]$.

Будем решать это уравнение методом разделения по процессам. Совместное влияние дисперсии (третий член в уравнении (1)) и нелинейности (второй член в уравнении (1)) на шаге Δt можно учесть следующим образом. Сначала интегрируем уравнение (1), рассматривая только дисперсию ($\beta=0$). При этом из поля u(x,t) в момент времени t получаем промежуточное поле $u_D(x,t+\Delta t)$ в момент времени $t+\Delta t$. Данное промежуточное поле рассматриваем в качестве начального $u_N(x,t)=u_D(x,t+\Delta t)$, и решаем уравнение (1), учитывая только нелинейность ($\gamma=0$). Полученное поле принимаем в качестве искомого поля, $u(x,t+\Delta t)=u_N(x,t+\Delta t)$. Можно показать, что такая двух-шаговая схема действительно аппроксимирует уравнение (1). Рассмотрим каждый шаг более детально.

При учете только дисперсии рассматривается следующее уравнение:

$$u_t = -\gamma u_{xxx}. (2)$$

Можно показать, что для Фурье-образа $\bar{u}(k,t)$ функции u(x,t)

$$\bar{u}(k,t) \equiv F[u(x,t)] = \int_{-\infty}^{\infty} u(x,t)e^{-ikx}dx, \tag{3}$$

решение уравнения (2) имеет следующий вид

$$\bar{u}(k,t+\Delta t) = \bar{u}(k,t)e^{i\gamma k^3 \Delta t}.$$
(4)

Тогда можно записать решение на линейном шаге

$$u_D(x, t + \Delta t) = F^{-1} \left[e^{i\gamma k^3 \Delta t} F[u(x, t)] \right], \tag{5}$$

где $F^{-1}[\bar{u}(k,t)]$ означает обратное преобразование Фурье.

При учете только нелинейности рассматривается следующее уравнение:

$$u_t = -\frac{\beta}{2}(u^2)_x. \tag{6}$$

Фурье-преобразование этого уравнения имеет вид

$$\bar{u}_t = -\frac{\beta}{2}ik\,\overline{u^2}.\tag{7}$$

Тогда для Фурье-образа \bar{u} по методу Эйлера можно записать

$$\bar{u}(k, t + \Delta t) \approx \bar{u}(k, t) - \Delta t \frac{\beta}{2} i k \overline{u^2}.$$
 (8)

В этой формуле в качестве Фурье-образа поля в момент t берется поле полученное на линейном шаге $\bar{u}(k,t)=F[u_D(x,t+\Delta t)]$. Заметим также, что в правой части уравнения (8) стоит Фурье-преобразование от квадрата функции, $\overline{u^2}=F[u^2(x,t)]$. Тогда для нелинейного шага получаем

$$u_N(x, t + \Delta t) \approx F^{-1}[\bar{u}(k, t + \Delta t)]. \tag{9}$$

Таким образом, используя на шаге Δt сначала уравнение (5), затем уравнение (9), получаем значение поля $u(x, t + \Delta t)$ в момент $t + \Delta t$. Заметим, что при численной реализации этого метода можно работать в k-пространстве, и использовать формулы (4) и (8). В этом случае на каждом Δt не надо будет делать обратное преобразование поля на нелинейном шаге. Это значит, что алгоритм будет работать несколько быстрее. Однако, при выводе результатов необходимо будет вернуться к исходному полю u(x,t).

1.2 Псевдокод программы

Псевдокод программы имеет вид

```
Задать параметры (beta, gam, N, nout, ...) 
Задать вектор k
Задать начальное условие
```

```
U = fft(u); % Фурье-преобразование от и 
Цикл по n (по временным слоям) 
Линейный шаг (дисперсия) для U 
Нелинейный шаг для U 
t = t + dt;
```

```
Если п кратно nout
Преобразовать U в u.
Сохранить результат для данного t
конец_если
конец_цикла
```

В данной программе, внутри цикла по временным слоям, мы работаем с Фурьеобразом U. Преобразование к исходному полю происходит при выводе результатов.

1.3 Замечание о быстром Фурье-преобразовании

Для выполнения Фурье-преобразования в Матлабе (и других языках программирования) используется алгоритм быстрого преобразования Фурье (БПФ). В Матлабе для этого алгоритма используется функция fft() (для обратного Фурье-преобразования — функция ifft()). Особенностью этого алгоритма является то, что он переставляет компоненты Фурье-образа. При этом в векторе, который возвращает алгоритм, сначала располагаются компоненты Фурье-образа для положительных k, а затем для отрицательных. Значения переменных x и k, которые соответствуют компонентам векторов u и \bar{u} приведены в Таблице 1.

Таблица 1. Значения переменных х и к

j	x	k
1	-L/2	0
2	-L/2+h	$\frac{2\pi}{Nh}$
3	-L/2+2h	$\frac{4\pi}{Nh}$
N/2	-L/2 + h(N/2 - 1)	$\frac{2\pi(N/2-1)}{Nh}$
N/2 + 1	-L/2 + hN/2	$\pm \frac{\pi}{h}$
N/2 + 2	-L/2 + h(N/2 - 1)	$-\frac{2\pi(N/2-1)}{Nh}$
N-1	-L/2 + h(N-2)	$-\frac{4\pi}{Nh}$
N	-L/2 + h(N-1)	$-\frac{2\pi}{Nh}$

1.4 Домашнее задание 6

Дано уравнение Кортевега-деВриза

$$u_t + \beta u u_x + \gamma u_{xxx} = 0, \quad u(x, 0) = u_0(x).$$

Значения параметров β , γ для разных Вариантов указаны в Таблице 2. Необходимо выполнить следующее: 1) Численно решить уравнение КдВ для начального условия

$$u_0(x) = 2a^2 \operatorname{sech}^2[b(x - x_0)] \equiv u_s(x, a, b, x_0), \quad b = a/\sqrt{6\gamma/\beta},$$
 (10)

где $x_0 = -5$. Для параметров a = 1, 1.5, 2 определить амплитуду и скорость движения солитона. Для нахождения скорости солитона постройте графики поля в начальный и конечный моменты времени $(t_{end} \sim 1)$. По графику (или из анализа соответствующих переменных), найдите координаты центра солитона в начальный и конечный моменты, x_0 и x_{end} . Вычислите скорость солитона из $v = (x_{end} - x_0)/t_{end}$. Постройте график динамики солитона при a = 1.5.

2) Численно решить уравнение КдВ для начального условия в виде двух солитонов (11):

$$u_0(x) = u_s(x, a_1, b_1, x_{01}) + u_s(x, a_2, b_2, x_{02}),$$
(11)

Параметр этих солитонов равен a_1, a_2 , соответственно, а координаты центров x_0 равны $x_{01} = -5$ и $x_{02} = -1$. Найти начальные параметры a_1, a_2 , при которых эти солитоны столкнутся в точке x = 2 (с точностью 10-20 %). Построить график, подтверждающий столновение в этой точке.

Что включить в отчет: 1) Номер варианта и значения параметров β и γ . 2) Значения амплитуд и скоростей для значений параметра a=1,1.5,2, и график динамики солитона для a=1.5.4) Значения параметров a_1 и a_2 , при которых столкновение солитонов произойдет в точке x=2, и график, подтверждающий столновение в этой точке. 5) Выводы по работе: Что изучили в данной работе? Какие закономерности обнаружены? Чему учит данная работа? и т.д.

Таблица 2. Значения параметров для различных вариантов

Вариант	β	γ
1	5	1
2	5	2
3	5 5 5	$\begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$
4	6	2
5	6	3
6	7	1
7	7	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$
8	7	3