Zermelo-Fraenkel set theory is inconsistent

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, Maryland 21209
E-mail: cafeinst@msn.com, BS"D

Abstract: In this note, we prove that Zermelo-Fraenkel set theory is inconsistent by proving, using Zermelo-Fraenkel set theory, the false statement that any algorithm that determines that an $n \times n$ matrix over \mathbb{F}_2 , the finite field of order 2, is nonsingular must run in exponential time.

Disclaimer: This article was authored by Craig Alan Feinstein in his private capacity. No official support or endorsement by the U.S. Government is intended or should be inferred.

In this note, we prove that Zermelo-Fraenkel set theory [1] is inconsistent by proving, using Zermelo-Fraenkel set theory, the false statement that any algorithm that determines that an $n \times n$ matrix over \mathbb{F}_2 , the finite field of order 2, is nonsingular must run in exponential time:

Let M_n be the set of $n \times n$ matrices over \mathbb{F}_2 . And let $f_i: M_n \to \{0, 1\}$, for $i = 1, \ldots, m$, be m functions with the following special property: For any $j \in \{1, \ldots, m\}$, there exist at least two $n \times n$ matrices, A_0 and A_1 , such that $f_i(A_0) = f_i(A_1) = 1$ for each $i = 1, \ldots, j - 1, j + 1, \ldots, m$, but $f_j(A_0) = 0$ and $f_j(A_1) = 1$. We now give a definition:

Definition: We define an f_i -procedure on A, where $i \in \{1, ..., m\}$ and $A \in M_n$, to be any finite procedure that computes and returns the value of $f_i(A)$, when given input A.

We shall now prove, using Zermelo-Fraenkel set theory, the following theorem, that we shall later show is false:

Theorem: Let $A \in M_n$. It is necessary for any algorithm that determines that $f_i(A) = 1$ for each i = 1, ..., m to perform an f_i -procedure on A for each i = 1, ..., m, which takes at least m steps.

Proof: We use induction on m: For m = 0, the theorem is true vacuously.

Assume true for m=k. We shall prove true for m=k+1: Let Q be an algorithm that determines that $f_i(A)=1$ for each $i=1,\ldots,k+1$. Then Q determines that $f_i(A)=1$ for each $i=1,\ldots,k$, so by the induction hypothesis, it is necessary for Q to perform an f_i -procedure on A for each $i=1,\ldots,k$, which takes at least k steps. By the special property of the functions f_i given above, Q cannot determine that $f_{k+1}(A)=1$ from

the fact that $f_i(A) = 1$ for each i = 1, ..., k; thus, it is necessary for Q to also perform an f_{k+1} -procedure on A in order to determine that $f_{k+1}(A) = 1$, which takes at least another step. Hence, it is necessary for Q to perform an f_i -procedure on A for each i = 1, ..., k+1, which takes at least k+1 steps. So the theorem is true for m = k+1.

We can easily see that the above theorem is false when we let $m=2^n-1$ and we define functions $f_i:M_n\to\{0,1\}$, where each $i\in\{1,\ldots,m\}$ corresponds to a vector $\mathbf{x}\in\mathbb{F}_2^n\setminus\{\mathbf{0}\}$ via a one-to-one and onto function $g:\{1,\ldots,m\}\to\mathbb{F}_2^n\setminus\{\mathbf{0}\}$, such that $f_{g^{-1}(\mathbf{x})}(A)=0$ if and only if $A\mathbf{x}=\mathbf{0}$. In this situation, it is not necessary for an algorithm to perform at least $m=2^n-1$ steps in order to determine that $f_i(A)=1$ for each $i=1,\ldots,m$, since determining that $f_i(A)=1$ for each $i=1,\ldots,m$ is equivalent to determine in polynomial-time that a matrix A is nonsingular via Gaussian elimination [2]. Hence, since we have proven, using Zermelo-Fraenkel set theory, a statement that is known to be false, we can conclude that Zermelo-Fraenkel set theory is inconsistent.

References

- [1] Weisstein, Eric W. "Zermelo-Fraenkel Set Theory." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/Zermelo-FraenkelSetTheory.html
- [2] Weisstein, Eric W. "Gaussian Elimination." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/GaussianElimination.html