Praca domowa nr 1 (zwrot: piątek 8 marca 2024, godz. 23.00) (3 pkt)

Korzystając z danych rzeczywistych nt. liczby ofiar w wojnach i konfliktach zbrojnych, które miały miejsce w latach 1816 – 2007 (plik wars.txt) przygotuj:

- 1. Histogram N(x) opisujący liczbę konfliktów o liczbie ofiar w przedziałach o ustalonej szerokości Δx , tj. $(x_0, x_0+\Delta x)$, $(x_0+\Delta x, x_0+2\Delta x)$, $(x_0+2\Delta x, x_0+3\Delta x)$ itd., gdzie x_0 jest najmniejszą liczbą ofiar wśród analizowanych konfliktów. Szerokość przedziału Δx ustal samodzielnie. Możesz popróbować, jak wartość Δx wpływa na histogram. Wykres N(x) przedstaw w równych skalach. Wypróbuj skale: liniowo-liniową (lin-lin), liniowo-logarytmiczną (lin-log) i podwójnie logarytmiczną (log-log).
- 2. Na podstawie histogramu przygotuj wykres prawdopodobieństwa P(x). Pamiętaj, że P(x)=N(x)/(NΔx), gdzie N-liczba wszystkich konfliktów. Zastanów się, dlaczego we wzorze na P(x) występuje dzielenie przez szerokość przedziału. Zauważ, że ponieważ we wzorze na P(x) dzielimy N(x) przez stałą wartość, dlatego wykresy P(x) i N(x) są identyczne. Jedyną rzeczą która je odróżnia jest "przeskalowana" pionowa oś.
- 3. Przygotuj wykres P(x) korzystając z metody "binowania logarytmicznego", w której liczbę ofiar N(x) zlicza się w przedziałach o wykładniczo rosnącej szerokości, tj. (x_0 , x_0 a), (x_0 a, x_0 a²), (x_0 a², x_0 a³) itd. Gdy z N(x) będziesz obliczać P(x) nie zapomnij o podzieleniu tej liczby przez długość przedziału, która w tej sytuacji nie jest stała i wynosi odpowiednio: dla pierwszego przedziału: x_0 a- x_0 = x_0 (a-1), dla drugiego: x_0 a²- x_0 a, dla trzeciego: Przedstaw ten wykres w różnych skalach: liniowo-liniowej, liniowo-logarytmicznej i podwójnie logarytmicznej.
- 4. Przygotuj wykres przedstawiający tzw. skumulowany rozkład $P^{c}(x)$ we wszystkich ww. skalach. Rozkład skumulowany patrz prezentacja do wykładu.