Security and Privacy of Genomic Data

Sara Foresti

Dipartimento di Informatica Università degli Studi di Milano sara.foresti@unimi.it

Challenges in Data-Driven Genomic Computing Como, Villa del Grumello – March 8, 2019

©SPDP Lab 1/1

Genomic data (1)

- Large collections generated thanks to reduction of sequencing costs
- Highly related with personal and medical data

© SPDP Lab 2/18

Genomic data (2)

- Advantages for research
 - data analysis for extracting valuable information
 - + sharing for collaborative computation

Disclosure risks

- Considerable economic value
- · Highly sensitive content

Disclosure risks

- Considerable economic value
- Highly sensitive content
- High risk of exposure is case of attacks

Security: a complex problem

Publication

Sharing

Outsourcing

Regulations

©SPDP Lab

Data protection – Publication

- Minimize release/exposure
 - o correlation among different data sources
 - indirect exposure of sensitive information
 - o de-identification ≠ anonymization
 - o privacy vs utility

Data protection – Outsourcing

- Encryption protects data confidentiality but
 - limits functionality
 - indirect exposure

Data protection – Sharing

- Scientific research demands for data sharing
 - + combine data collections owned by different subjects
 - + enables collaboration
 - requires controlled data release

Characterization of Data Protection Challenges

Scientific and technical challenges

Security properties

Confidentiality

- data externally stored
- users identities
- · actions that users perform on the data

Integrity

- data externally stored
- computation and query results

SLA compliance

assurance and certification

©SPDP Lab 11/18

Access requirements

Data archival

- upload/download
- protection of data in storage

Data retrieval/extraction

- support for fine-grained data retrieval and queries
- protection of computations and query results

Data update

- support for access retrieval and enforcement of updates
- protection of the actions and of their effects on the data

©SPDP Lab 12/18

Architectures

1 user - 1 provider

- protection of data at rest
- fine-grained retrieval
- query privacy/integrity

n users - * providers

- authorizations and access control
- multiple writers

* users - n providers

controlled data sharing and computation

©SPDP Lab

Issues and Directions

Data Sharing:

Today...

- Two extreme solutions
 - Share everything
 - + enables collaboration
 - requires full trust
 - Share nothing
 - + guarantees privacy
 - slows scientific research

©SPDP Lab 15/18

...Tomorrow

- Selective sharing based on: receiving subject, data sensitivity, context, purpose, ...
- Requires to study solutions enabling to:
 - o identify sensitive data
 - o express access restrictions through a simple while flexible language
 - protect data (e.g., encryption, aggregation, obfuscation)

©SPDP Lab 16/18

GMQL for enabling sharing

- GMQL is an expressive and flexible query language for genomic data
- Could be extended to:
 - associate protection requirements with the data
 - o specify access restrictions
 - enable the enforcement of protection techniques

©SPDP Lab

Conclusions

- Data collection and analysis are vital for scientific research
- Solutions that guarantee data protection are enabling for:
 - data publication
 - outsourcing of data storage and/or computation
 - data sharing and collaborative computations and

o ...

©SPDP Lab 18/18