2/6/23, 9:58 AM FIRST(X)

8.2. FIRST(α) (Dragon Book p. 220)

On the previous page, I constructed the parsing table by hand. But we need an algorithm that constructs it. That is the subject of this and the next page.

Fix a grammar G to talk about. The tokens, nonterminals and productions in what follows belong to G. S is the start symbol.

Definition of FIRST(X)

Let α be a string of tokens and nonterminals.

<u>Definition.</u> FIRST(α) is the set of all tokens t so that $\alpha \Rightarrow^* t\beta$ for some string β .

Additionally, FIRST(α) contains ϵ if $\alpha \Rightarrow * \epsilon$.

That is, FIRST(α) contains all tokens that can begin α , plus ϵ if α can be erased.

For example, let's see what FIRST(N) is for each nonterminal N in the following grammar.

$$E \to TR$$

$$R \to \varepsilon$$

$$R \to \varepsilon$$

$$R \to +E$$

$$T \to FS$$

$$S \to \varepsilon$$

$$S$$

N	E	T	$oxed{F}$	F R	
FIRST(N)	{ n , (}	{ n , (}	{ n , (}	$\{\epsilon, +\}$	{ε, *}

Computing FIRST(S)

There is a simple and natural algorithm to compute $FIRST(\alpha)$. To begin with, we compute $FIRST(\alpha)$ where α is exactly one symbol long.

For each nonterminal N, start with FIRST(N) = {} and add members as necessary until no more members can be added.

2/6/23, 9:58 AM FIRST(X)

To compute first(t) and first (N)

1. If *t* is a token then $FIRST(t) = \{t\}$.

- 2. If N is a nonterminal, find all productions with N on the left-hand side. For each such production $N \to Y_1 Y_2 \dots Y_n$ $(n \ge 0)$, do the following.
 - a. Add all tokens in $FIRST(Y_1)$ to FIRST(N).
 - 6. $U \longrightarrow \text{if } C \text{ then } S$
 - 7. $U \longrightarrow \text{if } C \text{ then } B \text{ else } U$
 - 8. $C \longrightarrow c_i, i \geq 1$
 - 9. $O \longrightarrow s_i, i \geq 1$

RST(N).

nals: if, then, else, c_i , s_i , \$\$.

else B

ıd nonterminals α.

To compute FIRST(α) for strings α

- a. FIRST(ε) = { ε }
- b. If α begins with token t then FIRST(α) = $\{t\}$.
- c. If $\alpha = N\beta$ starts with nonterminal N, then
 - a. If FIRST(N) does not contain ε then FIRST(α) = FIRST(N).
 - b. If FIRST(N) contains ε then FIRST(α) = FIRST(N) \cup FIRST(β).

The interesting part of the computation is FIRST(N) for a nonterminal N. Here is the computation for the expression grammar above.

An example

The computation goes in phases. Start with $FIRST(N) = \{\}$ for every nonterminal N. For the sample grammar above, that looks like this.

N	$oxed{E}$	T	$oxed{F}$	R	S
FIRST(N)	{}	{}	{}	{}	{}

First, the productions whose right-hand side begin with a token and the erasing productions come into play. Rule 2 above tell you that

- FIRST(R) contains + and ε , due to productions $R \to +E$ and $R \to \varepsilon$.
- FIRST(S) contains * and ε , due to productions $S \to T$ and $S \to \varepsilon$.
- FIRST(F) contains **n** and (due to productions $F \rightarrow$ **n** and $F \rightarrow$ (E).

2/6/23, 9:58 AM FIRST(X)

$$\boxed{ \textbf{FIRST(N)} \hspace{0.1cm} \{\} \hspace{0.1cm} \{\} \hspace{0.1cm} \{\textbf{n, ()} \hspace{0.1cm} \{\textbf{\epsilon, +}\} \hspace{0.1cm} \{\textbf{\epsilon, *}\} }$$

Now, since $T \to F S$ is a production, all tokens in FIRST(F) are added to FIRST(T).

N	$oxed{E}$	T	F	R	S
FIRST(N)	{}	{ n , (}	{ n , (}	{ε, +}	{ε, * }

Then, since $E \to TR$ is a production, all tokens in FIRST(T) are added to FIRST(E).

N	E	T	F	R	S
FIRST(N)	{ n , (}	{ n , (}	{ n , (}	$\{\epsilon, +\}$	{ε, *}

Finally, no new members can be added to any of the sets, so the algorithm is done.

Using FIRST(S) in constructing the LL(1) parsing table.

The FIRST sets tell how to make entries in the LL(1) parsing table. Look at each production. If a production is

$$i. N \rightarrow \alpha$$

then add production number i to the table at row N, column t for every token t in FIRST(α).