Adding Conditional Control to Text-to-Image Diffusion Models

О чем этот доклад

Рисунок 1: Примеры работы ControlNet

План

- Напоминание про Latent Diffusion Models и Stable Diffusion
- Какие недостатки текущих подходов решает ControlNet
- Как работает ControlNet
- Как происходит обучение ControlNet
- Результаты

Latent Diffusion Models

- 1. Encoder кодирует изображение в латентное пространство меньшей размерности
- 2. Диффузионная модель работает в латентном пространстве
- 3. Диффузионная модель обучается, начиная с шума и постепенно превращая его в осмысленные латентные коды
- 4. Decoder преобразует латентные представления обратно в изображения

Latent Diffusion Models

Рисунок 2: Схема работы LDM

Stable Diffusion

- Начинает с чистого изображения, к которому добавляется гауссовский шум
- Каждый шаг добавления шума зависит только от предыдущего состояния (марковский процесс)
- Для восстановления изображения используется обученная нейронная сеть, которая предсказывает и удаляет добавленный шум на каждом шаге
- На каждом шаге восстановления применяется корректировка

Stable Diffusion

Рисунок 3: Схема работы Stable Diffusion

Преимущества ControlNet

- 1. Эффективно изучает входные условия даже при небольшом датасете
- 2. Нацелена на управление диффузионными моделями с учётом конкретных условий задачи, а не на изучение сопоставления между изображениями в разных доменах
- 3. Манипулирует входными условиями блоков нейронной сети и сохраняет исходные веса => работает быстрее, чем обучение с нуля
- 4. ControlNet можно обучить на одной NVIDIA RTX 3090Ti (обучение нейросети происходит так же быстро, как файнтюнинг диффузионной модели)

Как работает ControlNet

Сетевые блоки (network block)

Сетевой блок - набор нейронных слоев, которые обычно объединяются для формирования единого блока нейронной сети

$$\mathcal{F}(\cdot;\Theta)$$
 – блок с параметрами Θ

$$oldsymbol{y} = \mathcal{F}(oldsymbol{x};\Theta)$$
 – преобразование feature map х

$$oldsymbol{x} \in \mathbb{R}^{h imes w imes c}$$

(a) Before

Рисунок 4: сетевой блок

Сетевые блоки (network block)

Рисунок 5: блокировка сетевого блока

Блокируем исходный блок, создаем обучаемую копию и соединяем их вместе, используя слои нулевой свертки (свертка 1×1 с нулевым весом и смещением, инициализированными нулем)

Обучаемая копия

Обучаемая копия соединена с помощью слоев «нулевой свёртки» zero convolution $\boldsymbol{y}_{\mathrm{c}} = \mathcal{F}(\boldsymbol{x};\Theta) + \mathcal{Z}(\mathcal{F}(\boldsymbol{x} + \mathcal{Z}(\boldsymbol{c};\Theta_{\mathrm{z}1});\Theta_{\mathrm{c}});\Theta_{\mathrm{z}2})$ $\Theta_{\mathrm{z}1}$, $\Theta_{\mathrm{z}2}$ – параметры двух нулевых сверток neural network trainable copy block (locked) $\mathcal{Z}(\cdot;\cdot)$ – нулевая свертка zero convolution Шум не может повлиять на скрытые состояния слоев нейронной сети в обучаемой копии ControlNet

Копия сохраняет функционал изначальной модели

Рисунок 6: обучаемая копия

(b) After

ControlNet и Stable Diffusion

- Замораживаем параметры начальной модели => не вычисляем градиент 2 раз
- Для добавления ControlNet в Stable
 Diffusion нужно также преобразовать
 изображения с условиями в латентное
 пространство

Рисунок 7: применение ControlNet на примере Stable Diffusion

Обучение ControlNet

Обучение LDM

$$\mathcal{L} = \mathbb{E}_{oldsymbol{z}_0, oldsymbol{t}, oldsymbol{c}_t, oldsymbol$$

К исходному изображению $oldsymbol{z}_0$ постепенно добавляем шум и получаем $oldsymbol{z}_t$

 \boldsymbol{z}_t – зашумленное изображение

 $oldsymbol{c}_t$ – текстовый промпт

 $oldsymbol{c}_{\mathrm{f}}$ – условие задачи

 $\epsilon_{ heta}$ – обучаемая сеть для предсказания добавленного шума

Обучение ControlNet

- Случайно заменяем 50% текстовых промптов на пустые строки
- Модель усваивает условия контроль внезапно

Рисунок 8: Модель внезапно учится следовать входному условию

Inference ControlNet

Classifier-Free Guidance (CFG)

$$\epsilon_{\mathrm{prd}} = \epsilon_{\mathrm{uc}} + \beta_{\mathrm{cfg}} (\epsilon_{\mathrm{c}} - \epsilon_{\mathrm{uc}})$$

 $\epsilon_{
m prd}$ – итоговый выход модели $\epsilon_{
m uc}$ – unconditional output

 $eta_{
m cfg}$ – вес (гиперпараметр) $\epsilon_{
m c}$ – conditional output

Вес умножается на каждое соединение между
Stable Diffusion и ControlNet

Рисунок 9: Сравнение CFG и CFG Resolution Weighting

Несколько ControlNet

Не требуется никакого дополнительного взвешивания!

Рисунок 10: Применение нескольких условий

Эксперименты

Генерация без промптов

Рисунок 11: Управление Stable Diffusion без промптов

Вариации ControlNet

Рисунок 12: Сравнение различных архитектур ControlNet

Сравнение метрик

Method	Result Quality ↑	Condition Fidelity ↑
PITI [89](sketch)	1.10 ± 0.05	1.02 ± 0.01
Sketch-Guided [88] ($\beta = 1.6$)	3.21 ± 0.62	2.31 ± 0.57
Sketch-Guided [88] ($\beta = 3.2$)	2.52 ± 0.44	3.28 ± 0.72
ControlNet-lite	3.93 ± 0.59	4.09 ± 0.46
ControlNet	$\textbf{4.22} \pm \textbf{0.43}$	$\textbf{4.28} \pm \textbf{0.45}$

Рисунок 13: Сравнение людьми на основе соотношения текста и изображения и эстетической оценке

Method	FID↓	CLIP-score ↑	CLIP-aes. ↑
Stable Diffusion	6.09	0.26	6.32
VQGAN [19](seg.)*	26.28	0.17	5.14
LDM [72](seg.)*	25.35	0.18	5.15
PITI [89](seg.)	19.74	0.20	5.77
ControlNet-lite	17.92	0.26	6.30
ControlNet	15.27	0.26	6.31

Рисунок 14: Сравнение на основе автоматизированных метрик

Сравнение с предыдущими подходами

Рисунок 15: Сравнение генераций различных моделей

Рисунок 16: Зависимость качества от размера датасета

Рисунок 17: Результаты при разных предобученных моделях

Input "a high-quality and extremely detailed image"

Рисунок 18: Различная интерпретация исходного изображения

Источники

- https://arxiv.org/pdf/2302.05543
- https://habr.com/ru/companies/ruvds/articles/719348/
- https://learnopencv.com/controlnet/#How-ControlNet-Works?
- https://journal.tinkoff.ru/controlnet/?ysclid=lvtz038zmk209578071

Как попробовать: <u>fast_stable_diffusion_AUTOMATI...</u>