National University of Computer and Emerging Sciences, Lahore Campus

Course:	Computer Architecture	Course Code:	EE204
Program	_	Semester	Fall
:	BS(Computer Science)	:	2018
Due	_	Total	
Date:	27-11-2018	Marks:	10
Section:	С	Weight	4
Exam:	Quiz 3	Page(s):	1

Question 1: (10 marks)

Imagine the multi-cycle diagram for a single-issue processor. As can be seen, the current program takes around 12 cycles to finish execution.

	1	2	3	4	5	6	7	8	9	10	11	12
lw R2,	F	D	Х	М	W							
0(R1)												
lw R3,		F	D	Х	М	W						
4(R1)												
lw R4,			F	D	Х	М	W					
8(R1)												
lw R5,				F	D	Х	М	W				
12(R1)												
add R6, R2,					F	D	Χ	М	W			
R3												
add R7, R4,						F	D	X	М	W		
R6												
add R8, R5,							F	D	X	М	W	
R7												
lw R9,								F	D	Χ	М	W
0(R8)	<u> </u>					<u> </u>					<u></u>	

Now imagine a dual-issue static scheduling pipeline. Draw the multi-cycle diagram below. You are only required to write F, D, X, M, W and * (for stalls) for each instruction. Note that this processor cannot re-order instructions and is capable of issuing two instructions per cycle. Hazards are resolved by introducing stalls like our traditional MIPS processor. (8 marks)

	1	2	3	4	5	6	7	8	9	10	11	12
lw R2, 0(R1)												

lw R3, 4(R1)						
lw R4, 8(R1)						
lw R5, 12(R1)						
add R6, R2, R3						
add R7, R4, R6						
add R8, R5, R7						
lw R9, 0(R8)						

How many total cycles are required (2 mark	s):
--	-----