

Sub B1

WHAT IS CLAIMED IS:

- Sub B2*
1. A master information carrier comprising a non-magnetic substrate on which a ferromagnetic film is disposed with an embossed pattern, protrusions of said embossed pattern corresponding to a disposition of digital information signals, wherein recessed portions of said embossed pattern are filled with a non-magnetic solid material.
 2. A master information carrier according to claim 1, wherein said non-magnetic solid material comprises as a main component an oxide or metal which has a low solid-solubility with the ferromagnetic film material.
 3. A master information carrier according to claim 2, wherein said non-magnetic solid material comprises a main component selected from the group consisting of SiO₂, Al₂O₃, Cu, and Ag.
 4. A master information carrier according to claim 1, wherein said non-magnetic solid material comprises a polymer material.
 5. A master information carrier according to claim 4, wherein the polymer material is formed by diluting polyimide in a solvent to prepare a polyimide solution, spin-coating the polyimide solution, and curing it with heat.
 6. A master information carrier according to claim 1, wherein a hard protective film of 20nm or less in thickness is formed on the surface of said ferromagnetic film and said non-magnetic solid material.
 7. A master information carrier according to claim 6, wherein the hard protective film comprises a carbon as a main component formed by sputtering.
 8. A master information carrier comprising:
a non-magnetic substrate having an embossed pattern, recessed portions of said embossed pattern corresponding to a disposition of digital information signals;
and
a ferromagnetic film filled in recessed portions of said embossed pattern.
 9. A master information carrier according to claim 8, wherein said non-magnetic substrate comprises a main component selected from the group consisting of Si, C, SiO₂, and Al₂O₃.
 10. A master information carrier according to claim 8, wherein the cross section of said ferromagnetic film in a bit length direction of the digital information signals has a substantially trapezoidal shape with an upper side at the surface that is longer than a lower side on the substrate.
 11. A master information carrier according to claim 8, wherein a hard
- Sub B3*

~~protective film of 20nm or less in thickness is formed on the surface of said substrate and said ferromagnetic film filled in the recessed portions.~~

~~12. A master information carrier according to claim 11, wherein said hard protective film comprises a carbon as a main component formed by sputtering.~~

5

odd } ADD
A' } BT }

Pat 15