Sea S: [a,b]x[c,d] > R continua tal que 3/2 es continua en [a,b]x[c,d]. Definim-Os: F(y) = Ja f(x,y) ux Probur que fes derivable, y:

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) dx$$

Dem:

Como $\frac{\partial S}{\partial y}$ es continua en $[a,b] \times [c,d]$, entonces, $\forall y \in [c,d]$, definamos $\mathcal{L}[a,b]$ -> IR, $g(x) = \frac{\partial s}{\partial y}(x,y)$, entonces g(x) es continua y, por tanto, integrable. Luego:

$$\int_{a}^{b} g_{Y}(x) dx = \int_{a}^{b} \frac{\partial y}{\partial y} (x, Y) dx$$

Ahora, como $\frac{\partial J}{\partial y}(x,y)$ existe, entonces:

$$\frac{\lambda \cdot m}{\gamma' - \gamma} \left(\frac{1}{\gamma' - \gamma} \left(\frac{1}{\gamma} (x, y') - \frac{1}{\gamma} (y, y) \right) - \frac{\partial f}{\partial y} (x, y') \right)$$

$$\left|\frac{1}{\sqrt{1-\lambda}}\left(\frac{1}{\lambda(\lambda'\lambda)}\right) - \frac{1}{\lambda(\lambda'\lambda)}\right| - \frac{9}{\lambda}(\lambda'\lambda)\right| < \varepsilon^{2}$$

Sib-a ≠ O, Juego:

$$-\frac{\varepsilon}{b-a}<\frac{1}{\gamma'-\gamma}\left(f(\gamma,\gamma')-f(\chi,\gamma)\right)-\frac{\partial f}{\partial \gamma}(\chi,\gamma)<\frac{\varepsilon}{b-a}$$

como siste (mismo argumento por el cual si ay (xiy) ax existe), entonces:

$$= \int_{a}^{b} \frac{\xi}{b-a} dx < \int_{a}^{b} \frac{1}{\gamma'-\gamma} (f(x,\gamma')-f(x,\gamma)) dx - \int_{a}^{b} \frac{\partial f}{\partial \gamma}(x,\gamma) dx < \int_{a}^{b} \frac{\xi}{b-a}$$

$$\Rightarrow \left| \frac{1}{1-\lambda} \int_{a}^{b} \left(f(x'\lambda) - f(x'\lambda) \right) dx - \int_{a}^{b} \frac{3\lambda}{5} (x'\lambda) \right| < \varepsilon$$

$$=>\frac{1}{\gamma'->\gamma'}\int_{a}^{b}(f(x,y')-f(x,y'))dx = \int_{a}^{b}\frac{\partial f}{\partial y}(x,y')dx \qquad (1)$$

Ahora, por el Teorema fundamental del cálculo, subemos que:

$$F(\gamma) = \int_{a}^{b} \left(\int_{C}^{\gamma} \frac{\partial u}{\partial u} (x, u) du + f(x, c) \right) dx \qquad y:$$

$$F(\gamma) = \int_a^b \left(\int_c^{\gamma} \frac{\partial f}{\partial u} (x, u) du + f(x, c) \right) dx$$

con y, y'e (c, d) entonces:

$$F(\gamma) - F(\gamma) = \int_{a}^{b} \left(\int_{c}^{c} \frac{\partial u}{\partial u} (x, u) du + f(x, c) - \int_{c}^{\gamma} \frac{\partial u}{\partial t} (x, u) du - f(x, c) \right) dx$$

$$= \int_{a}^{b} \left(f(x, \gamma') - f(x, c) - f(x, \gamma) + f(x, c) \right) dx$$

$$= \int_{a}^{b} \left(f(x, \gamma') - f(x, \gamma) - f(x, \gamma) \right) dx$$

$$= \int_{a}^{b} \left(f(x, \gamma') - f(x, \gamma) \right) dx$$

Por tanto:

$$\lim_{Y' \to Y} \frac{1}{Y' - Y} \int_{a}^{b} (f(x, Y') - f(x, Y)) dx = \lim_{Y' \to Y} \frac{1}{Y' - Y} (F(Y') - F(Y)) = F'(Y)$$

y, por (1):

 $F'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) dx$

g.e.d.

5.23. Sea D duch como: $D = \{(x,y) \in \mathbb{R}^2 | - \psi(x) \leq y \leq \psi(x) \text{ si } x \in [a,b]\}$ donde ψ es una función continua no negativa en [a,b]. Sea $f:D \rightarrow \mathbb{R}$ tal que f(x,y) = -f(x,-y) $\forall (x,y) \in D$. Probar que:

$$\int_{\mathcal{D}} \mathcal{F} = \mathcal{O}$$

Dem:

 $\int_{D} f = \int_{\alpha}^{b} \left(\int_{-\varphi(c)}^{\varphi(c)} \hat{J}_{x}(y) \right) = \int_{\alpha}^{b} \left(\int_{-\varphi(c)}^{\varphi(c)} \hat{f}_{x}(y) \, dy \right) dx$

Si $(x,y) \in D$, entonces $-l(x) \le y \le l(x)$, y -l(x,y) no es siempre cero, por tant o:

$$\int_{\mathcal{D}} f = \int_{\alpha}^{b} \left(\int_{-q(x)}^{q(x)} \hat{f}_{x}(y) dy \right) dx$$

Sea $F_x(y)$ una antiderivada de $\hat{J}_x(y)$ (la cual existe, pues el conjunto de discontinuidades de \hat{J}_x es de medida nula). Como \hat{J}_x es par $(\hat{J}_x(y) = f(x,y) = -f(x,-y) = -f_x(-y))$, entonces $F_x(y)$ es impar $(F_x(y) = F_x(-y))$. Luego:

$$\int_{-4(x)}^{-4(x)} \hat{f}_x dy = F_x(\varphi(x)) - F_x(\varphi(x))$$

$$= \int_{-4(x)}^{-4(x)} \hat{f}_x dy = F_x(\varphi(x)) - F_x(\varphi(x))$$

Por tunto:

 $\int_{\mathcal{D}} \mathcal{F} = \int_{\alpha}^{b} O dx = 0 \qquad \qquad q.o.d.$

2. Seun Ψ , Ψ : $[a,b] \rightarrow \mathbb{R}$ Sunciones continuus tales que $\Psi(x) \leq \Psi(x)$ $\forall x \in [a,b]$. Muestre que el Conjunto $X = \{(x,y) \in \mathbb{R}^3 \mid x \in [a,b] \mid y \mid \Psi(x) \leq y \leq \Psi(x) \}$ es J-medible, y que para toda función continua $f: X \rightarrow \mathbb{R}$ se tiene:

$$\int_{X} \int = \int_{a}^{b} \left(\int_{\varphi(x)}^{\varphi(x)} f(x, y) dy \right) dx$$

Dem:

Probaremos que X es J-medible, para allo, probaremos que ∂X es de modida nula. Es claro que $\partial X = \{(a,y) \in \mathbb{R}^2 \mid \Psi(u) \leqslant y \leqslant \Psi(a)\} \cup \{(b,y) \in \mathbb{R}^2 \mid \Psi(b) \leqslant y \leqslant \Psi(b)\} \cup \{(x,\Psi(x)) \in \mathbb{R}^2 \mid x \in [a,b]\} \cup \{(x,\Psi(x)) \in \mathbb{R}^2 \mid x \in [a,b]\}$ Basta con probar que $A = \{(a,y) \in \mathbb{R}^2 \mid \Psi(a) \leqslant y \leqslant \Psi(a)\}$ $y \in B = \{(x,\Psi(x)) \in \mathbb{R} \mid x \in [a,b]\}$ son conjuntos de medida nula. $A = \{(a,y) \in \mathbb{R}^2 \mid \Psi(a) \leqslant y \leqslant \Psi(a)\}$ es de medida nula.

Si $\Psi(a) = \Psi(a)$, entonces A consiste de un solo punto, por tanto, A es de medida nola. Si $\Psi(a) < \Psi(a)$, sea E > 0 y $C = [a - \frac{E}{4}(\Psi(a) - \Psi(a)), a + \frac{E}{4}(\Psi(a) - \Psi(a))] \times [\Psi(a), \Psi(a)]$. Es claro que A < C, y:

$$C(C) = \left(\alpha + \frac{\varepsilon}{4(\psi(\alpha) - \psi(\alpha))} - \alpha + \frac{\varepsilon}{4(\psi(\alpha) - \psi(\alpha))} \cdot (\psi(\alpha) - \psi(\alpha)) + \frac{\varepsilon}{4(\psi(\alpha) - \psi(\alpha))} \cdot (\psi(\alpha) - \psi(\alpha)) + \varepsilon \right)$$

$$= \frac{\varepsilon}{2(\psi(\alpha) - \psi(\alpha))} \cdot (\psi(\alpha) - \psi(\alpha)) = \varepsilon / 2 < \varepsilon$$

tome D= {C}, entonces:

$$A \subset \bigcup_{C \in D} C$$
 $Y \subset \bigcup_{C \in D} C(C) \subset \mathcal{E}$

por tanto, A es de medida nula.

B- $\{(x, \ell(x)) \in \mathbb{R}^2 \mid x \in (a, b)\}$ es de medidu nulu.

$$S(\varphi,P) = \sum_{i=1}^{2} (f_{i} - f_{i-1}) \cdot M_{\varphi}([f_{i-1},f_{i}])$$

 $Y_{i}(\varphi,P) = \sum_{i=1}^{2} (f_{i} - f_{i-1}) \cdot M_{\varphi}([f_{i-1},f_{i}])$

Donde:

$$M_{\ell}([t_{i-1},t_{i}]) = \sup \{ \Psi(x) | x \in [t_{i-1},t_{i}] \}$$

 $m_{\ell}([t_{i-1},t_{i}]) = \inf \{ \Psi(x) | x \in [t_{i-1},t_{i}] \}$

Seu D el conjunto de lus subceldus de [u,b] determinadas por lu partición P, y $C = \{ [f_{i-1}, f_{i}] \times [m_{\ell}((f_{i-1}, f_{i})), M_{\ell}((f_{i-1}, f_{i}))] \mid [f_{i-1}, f_{i}] \in D \}$. Afirmumos que: $B \subset_{c \in C} C'$. En efecto, seu $(x,y) \in B$, entonces $(x,y) = (x,\ell(x))$ y $x \in [u,b]$. Como $x \in (u,b]$ entonces $f(x,y) \in C'$ tales que $f_{i-1} \in x \in f_i$, y $f(f_{i-1},f_{i}) \in \ell(x) \in C'$. $f(f_{i-1},f_{i-1}) \in \ell(x)$ esto es: $f(f_{i-1},f_{i-1}) \in \ell(x)$ $f(f_{i-1},f_{i-1}) \in \ell(x)$

Además:

$$\sum_{c' \in c} c(c') = \sum_{i=1}^{K} (f_{i} - f_{i-1}) \cdot (M_{\psi}((f_{i-1}, f_{i-1}))) - M_{\psi}((f_{i-1}, f_{i-1})))$$

$$= \sum_{i=1}^{K} (f_{i} - f_{i-1}) \cdot M_{\psi}((f_{i-1}, f_{i-1})) - \sum_{i=1}^{K} (f_{i-1}, f_{i-1}))$$

$$= S((f, f)) - i((f, f)) < E$$

Por tunto, Bes de medida nula.

Como A y B son de medidu nulu, se sigue que 2x es de medidu nulu y, por tunto, X es J-medible.

Seu whoru $A = [a,b] \times [4(c), 4(a)]$, donde $c,d \in [a,b]$ son tules que $4(c) \le 4(x)$ $\forall x \in [a,b] \ y \ 4(x) \le 4(a) \ \forall x \in [a,b] \ (c y d existen, pues al sen <math>4 y \ 4 continuus en \ (a,b)$, alcunzan su múximo y mínimo). Como fes continua en $a \in A$. The dible, entonces es integrable. Es claro que $a \in A$.

Seu f: A > R lu sunción curucterística de f. Entonces:

 $\int_{\mathbf{x}} \mathbf{f} = \int_{A} \hat{\mathbf{f}}$ Sea $\hat{\mathbf{f}}_{\chi}$: $[\Psi(c), \Psi(a)] \rightarrow [R, \hat{\mathbf{f}}_{\chi}(y) = \hat{\mathbf{f}}(\chi, y) \ y \ g : [u,b] \rightarrow [R, g(\chi) = \int_{\Psi(c)} \hat{\mathbf{f}}_{\chi}(y) dy$.
Por el teorema de Fubini $g(\chi)$ es integrable en [u,b], y:

 $\int_{X} f = \int_{A} \hat{f} = \int_{a}^{b} g(x) dx = \int_{a}^{b} \left(\int_{\varphi(c)}^{\varphi(a)} \hat{f}_{x}(y) dy \right) dx$

 \hat{f}_x es integrable, pues el conjunto de discontinuidades de \hat{f}_x , $D_{\hat{f}_x}$ es de medida nula. En efecto, sea $x \in [a,b]$ y $y \in [\Psi(c),\Psi(u)]$, entonces: $(x,y) \in \inf(\overline{X})$, $(x,y) \in \partial \overline{X}$

ο (x,y)∈ Δ\<u>\</u>

Si $(x,y) \in A \setminus \overline{X}$, entonces $(x,y) \in \mathbb{R}^2 \setminus \overline{X}$, por tunto, $\exists \ 8 > 0 \ \text{tul que } D_8(x,y) \in \mathbb{R}^2 \setminus \overline{X}$, luego, $\forall \ E \neq 0 \ \exists \ 8 > 0 \ \text{tul que } si \ (x,y') \in A \setminus \overline{X} \ y \ \|(x,y) - (x,y')\| < 8$

entonces $\|f_{x}(y) - f_{x}(y)\| = 0 < \varepsilon$. Por tanto fies continuu.

Asi, Dîx < 2X que es de medido nola, por tanto Îx es integrable. Luego:

$$\int_{\psi(c)}^{\psi(a)} \hat{f}_{x} = \int_{\psi(c)}^{\psi(a)} \hat{f}_{x}(y) dy$$

Si $(x,y) \in X$, entonces: $\chi \in (a,b)$ y $\Psi(c) \leqslant \Psi(x) \leqslant \psi(x) \leqslant \Psi(a)$. Luego, $\hat{f}_{\chi}(y)$ no es necesariamente cero, por lo tanto:

$$\int_{q(x)}^{\psi(\lambda)} \widehat{f}_{x} = \int_{q(x)}^{\psi(x)} \widehat{f}_{x} = \int_{q(x)}^{\psi(x)} f(x,y) dy$$

pues, $\hat{J}_{x}(y) = J(x,y)$. Pur lo tunto:

 $\int_{X} f = \int_{a}^{b} \left(\int_{4(x)}^{4(x)} f(x,y) dy \right) dx$

3. Set $S = \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{Q} \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \{(x,y) \in \mathbb{Q} \mid x \in \mathbb{Q} \cap (0,1) \mid y, si x = P/m, (p,m)=1 \text{ entonces } y \in \mathbb{Q} \cap (0,1) \text{ entonces } y \in \mathbb{Q} \cap (0,1)$

Oem.

Proburemos primero que G(x) no existe. Sea $X_S:[0,1]\times[0,1]\to\mathbb{R}$ la función caracteristica de S en $[0,1]\times[0,1]$. Probaremos que X_S es discontinua en

Probaremos chora que, χ_{sx} : [0,1] \rightarrow \mathbb{R} , $\chi_{sx}(\gamma) = \chi_{s}(\chi,\gamma)$ es integrable $\forall \chi \in$ [0,1]

Sea x \(\(\(\) \) \(

a) Si $\chi \notin \mathbb{Q}$, entonces $\chi_{s\chi}(\gamma) = \chi_{s(\chi,\gamma)} = 0$, pues $(\chi,\gamma) \notin S \ \forall \gamma \in [0,1]$. Luego, Sea P partición de [0,1] dada por: $P = \{ f_0 = 0, f_1 = 1 \}$, entonces:

 $S(\chi_{sx}, P) = M(\{f_0, f_1\}) \cdot (f_1 - f_0) = 0 \cdot 1 = 0$ $i(\chi_{sx}, P) = m(\{f_0, f_1\}) \cdot (f_1 - f_0) = 0 \cdot 1 = 0$ Por tanto, $\forall E > 0 \exists P$ partición de [0,1] ful que: $S(\chi_{sx}, P) - i(\chi_{sx}, P) = 0 \le E$

asi, Xxx es integrable.

b) x = QN(0,1).

Si $x \in Q \cap (0,1)$, entonces $x = \frac{P}{m}$, (p,m)=1. Por tanto: $(x, \frac{K}{m}) \in S \forall K=1,2,...,m-1$. Soa $S=\min\{\frac{E}{2},\frac{1}{2m}\}$, $Y \in P$ partición de [0,1] dada por: