Exercise set #7

Please submit your solutions in teams of two using the sciebo file-drop folder. The link is available in ILIAS. For the formatting please stick to the submission_guideline.pdf that you can find on sciebo. In the case of multiple uploads we will consider the latest. Uploads after the deadline will be deleted without further notice.

1. Eigenvectors and eigenvalues

- (a) Given a matrix $A \in \mathbb{R}^{n \times n}$ and one of its eigenvectors v, how do you obtain the corresponding eigenvalue λ ?
- (b) Show that scaling an eigenvector v of matrix $A \in \mathbb{R}^{n \times n}$ by a constant $c \neq 0$ yields another eigenvector with the same eigenvalue λ .
- (c) For symmetric $A \in \mathbb{R}^{n \times n}$ with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ show that the corresponding eigenvectors v_1, \ldots, v_n are orthogonal to each other.

15 points

2. Centering matrix

The Centering matrix is defined as $H = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\mathsf{T}$ where I_n is the $n \times n$ identity matrix, $\mathbf{1}_n$ is the n dimensional one-vector, i.e. $\mathbf{1}_n = [1, 1, \dots, 1]^\mathsf{T}$. Show:

- (a) H is symmetric, i.e. $H = H^{\mathsf{T}}$.
- (b) H is idempotent, i.e. H = HH.
- (c) Show that $H1_n = 0_n$, i.e., 1_n is an eigenvector with eigenvalue 0.
- (d) What are the other eigenvalues of H?
- (e) For a data matrix $X \in \mathbb{R}^{d \times n}$ show that XH has mean zero, i.e. show $\frac{1}{n}XH1_n = 0_d$.

 20 points

3. Benchmarking the centering matrix (programming task)

The centering matrix is a very handy tool for theoretical derivations, however it is not a computational efficient way to center a data matrix as you will see by solving this exercise.

- (a) Write a Python function center_with_matrix(data) that subtracts the row-wise mean from the input array data by multiplying with the centering matrix.
- (b) Write a Python function centering_with_numpy(data) that performs the same operation using basic NumPy-functions.
- (c) Sample random data matrices with uniformly distributed entries with 10 rows and a different number of columns. Plot the number of columns of the data matrix against the elapsed runtime for both functions. Also add a legend to your plot.

15 points

4. PCA on iris data (programming task)

For this exercise we will use the iris data set which is available online¹. The goal is to perform a principal component analysis (PCA) and derive with a new feature subspace. You may use NumPy/SciPy functions for the computations.

(a) Write a Python function that calculates the covariance matrix

$$\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T$$

of a dataset $X = [x_1, \dots, x_n] \in \mathbb{R}^{D \times n}$, where $\hat{\mu} \in \mathbb{R}^D$ is the mean of the data matrix. Do not use the function np.cov.

- (b) Implement a function pca(X, d, whitening=False) that performs PCA on the input data X and returns the projected (and optionally whitened) data Y, the matrix of eigenvectors V, and the eigenvalues Lambda. For the eigenvector decomposition you can use the function np.linalg.eigh.
- (c) Project the Iris data onto a two-dimensional feature space. Create scatter plots visualizing the projected data points before and after applying whitening.

Important: This exercise assumes that the data points are stacked columnwise!

30 points

5. Inhomogeneous kernel function

For $a, b \in \mathbb{R}^2$, consider the inhomogeneous polynomial kernel function $k(a, b) = (a^\mathsf{T}b + 1)^p$.

- (a) Show that $\Phi(a) = [a_1^2, a_2^2, \sqrt{2}a_1a_2, \sqrt{2}a_1, \sqrt{2}a_2, 1]^T$ is a feature map for the kernel $k(a, b) = (a^Tb + 1)^2$, i. e., show that $k(a, b) = \Phi(a)^T\Phi(b)$.
- (b) What is the corresponding feature map for $k(a,b) = (a^{\mathsf{T}}b+1)^3$? What is the dimensionality of that feature space?
- (c) What is the feature space dimension of $k(a,b) = (a^{\mathsf{T}}b+1)^p$? Proof your answer.

20 points

¹https://archive.ics.uci.edu/ml/datasets/iris