VE281

Data Structures and Algorithms

Open Addressing; Universal Hashing

Announcement

- Lecture Rescheduling
 - No course on Nov. 6, 8, 10, 13, 15.
 - Make-up courses on
 - Oct. 20, Oct. 27, Nov. 3, Nov. 24, Dec. 1 (Fridays): 2 pm 3:40 pm.

Outline

- Collision Resolution: Open Addressing
 - Linear Probing
 - Quadratic Probing and Double Hashing
 - Performance of Open Addressing
- Pathological Data Sets and Universal Hashing

Open Addressing

- Reuse empty space in the hash table to hold colliding items.
- To do so, search the hash table in some systematic way for a bucket that is empty.
 - Idea: we use a sequence of hash functions h_0 , h_1 , h_2 , . . . to probe the hash table until we find an empty slot.
 - I.e., we **probe** the hash table buckets mapped by $h_0(\text{key})$, $h_1(\text{key})$, ..., in sequence, until we find an empty slot.
 - Generally, we could define $h_i(x) = h(x) + f(i)$

Open Addressing

- Three methods:
 - Linear probing:

$$h_{i}(x) = (h(x) + i) % n$$

• Quadratic probing:

$$h_i(x) = (h(x) + i^2) % n$$

• Double hashing:

$$h_{i}(x) = (h(x) + i*g(x)) % n$$

n is the hash table size

$$h_i(key) = (h(key)+i) % n$$

- Apply hash function h_0, h_1, \ldots , in sequence until we find an empty slot.
 - This is equivalent to doing a linear search from **h** (**key**) until we find an empty slot.
- Example: Hash table size n = 9, h (key) = key%9
 - Thus h_i (key) = (key%9+i)%9
 - Suppose we insert 1, 5, 11, 2, 17, 21, 31 in sequence

	1	11			5				How about 2?
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	

Example

- Hash table size n = 9, h (key) = key%9
 - Thus h_i (key) = (key%9+i)%9
 - Suppose we insert 1, 5, 11, 2, 17, 21, 31 in sequence.

	1	11	2	21	5	31		17
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

- $h_0(2) = 2$. Not empty!
- So we try h_1 (2) = 3. It is empty, so we insert there!
- h_0 (21) = 3. Not empty!
- h_1 (21) = 4. It is empty, so we insert there!
- h_0 (31) = 4. Not empty!
- h_1 (31) = 5. Not empty!
- h_2 (31) = 6. It is empty, so we insert there!

find()

- With linear probing h_i (key) = (key%9+i)%9
 - How will you **search** an item with key = 31?
 - How will you **search** an item with key = 10?
- Procedure: probe in the buckets given by $h_0(key)$, $h_1(key)$, ..., in sequence **until**
 - we find the key,
 - or we find an empty slot, which means the key is not found.

remove()

	1	11	2	21	5	31		17
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

- With linear probing h_i (key) = (key%9+i)%9
 - How will you **remove** an item with key = 11?
 - If we just find 11 and delete it, will this work?

What is the result for searching key = 2 with the above hash table?

remove() cluster

1 2 21 5 31 17

[0] [1] [2] [3] [4] [5] [6] [7] [8]

- After deleting 11, we need to **rehash** the following "cluster" to fill the vacated bucket.
- However, we cannot move an item **beyond** its **actual** hash position. In this example, 5 cannot be moved ahead.

	1		2	21	5	31		17
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

Alternative implementation of remove()

- Lazy deletion: we mark deleted entry as "deleted".
 - "deleted" is not the same as "empty".
 - Now each bucket has three states: "occupied", "empty", and "deleted".
- We can overwrite the "deleted" entry when inserting.
- When we **search**, we will keep looking if we encounter a "deleted" entry.

Clustering Problem

cluster

- Clustering: when **contiguous** buckets are all occupied.
- <u>Claim</u>: Any hash value inside the cluster adds to <u>the end</u> of that cluster.
- Problems with a **large** cluster:
 - It becomes more likely that the next hash value will collide with the cluster.
 - Collisions in the cluster get more expensive to resolve.

Clustering Problem

- Assuming input size N, table size 2N:
 - What is the best-case cluster distribution?

• What is the worst-case cluster distribution?

• What's the average number of probes to find an empty slot for each case?

Outline

- Collision Resolution: Open Addressing
 - Linear Probing
 - Quadratic Probing and Double Hashing
 - Performance of Open Addressing
- Pathological Data Sets and Universal Hashing

Quadratic Probing

$$h_i (key) = (h(key) + i^2) % n$$

- It is less likely to form large clusters.
- Example: Hash table size n = 7, h (key) = key%7
 - Thus h_i (key) = (key%7+ i^2)%7
 - Suppose we insert 9, 16, 11, 2 in sequence.

		9	16	11		2
[0]	[1]	[2]	[3]	[4]	[5]	[6]

- h_0 (16) = 2. Not empty!
- h_1 (16) = 3. It is empty, so we insert there.
- h_0 (2) = 2. Not empty!
- $h_1(2) = 3$. Not empty!
- $h_2(2) = 6$. It is empty, so we insert there.

Problem of Quadratic Probing

- However, sometimes we will never find an empty slot even if the table isn't full!
- Luckily, if the **load factor** $L \leq 0.5$, we are guaranteed to find an empty slot.
 - <u>Definition</u>: given a hash table with *n* buckets that stores *m* objects, its **load factor** is

$$L = \frac{m}{n} = \frac{\text{\#objects in hash table}}{\text{\#buckets in hash table}}$$

More on Load Factor of Hash Table

- <u>Question</u>: which collision resolution strategy is feasible for load factor larger than 1?
 - <u>Answer</u>: separate chaining.
 - Note: for open addressing, we require $L \leq 1$.
- Claim: L = O(1) is a necessary condition for operations to run in constant time.

Double Hashing

$$h_{i}(x) = (h(x) + i*g(x)) % n$$

• Uses 2 distinct hash functions.

- Increment **differently** depending on the key.
 - If h(x) = 13, g(x) = 17, the probe sequence is 13, 30, 47, 64, ...
 - If h(x) = 19, g(x) = 7, the probe sequence is 19, 26, 33, 40, ...
 - For linear and quadratic probing, the incremental probing patterns are **the same** for all the keys.

Double Hashing

Example

- Hash table size n = 7, h(key) = key%7, g(key) = (5-key)%5
 - Thus h_i (key) = (key%7+(5-key)%5*i)%7
 - Suppose we insert 9, 16, 11, 2 in sequence.

		9		11	2	16
[0]	[1]	[2]	[3]	[4]	[5]	[6]

- h_0 (16) = 2. Not empty!
- h_1 (16) = 6. It is empty, so we insert there.
- $h_0(2) = 2$. Not empty!
- $h_1(2) = 5$. It is empty, so we insert there.

Outline

- Collision Resolution: Open Addressing
 - Linear Probing
 - Quadratic Probing and Double Hashing
 - Performance of Open Addressing
- Pathological Data Sets and Universal Hashing

Performance of Open Addressing

- Hard to analyze rigorously.
- The runtime is dominated by the number of comparisons.
- The number of comparisons depends on the load factor L.
- Define the expected number of comparisons in an unsuccessful search as U(L).
- Define the expected number of comparisons in a successful search as S(L).

Expected Number of Comparisons

Linear probing

$$U(L) = \frac{1}{2} \left[1 + \left(\frac{1}{1 - L} \right)^{2} \right]$$
$$S(L) = \frac{1}{2} \left[1 + \frac{1}{1 - L} \right]$$

L	U(L)	S(L)
0.5	2.5	1.5
0.75	8.5	2.5
0.9	50.5	5.5

 $L \leq 0.75$ is recommended.

Expected Number of Comparisons

Quadratic probing and double hashing

$$U(L) = \frac{1}{1 - L}$$

$$S(L) = \frac{1}{L} \ln \frac{1}{1 - L}$$

L	U(L)	S(L)
0.5	2	1.4
0.75	4	1.8
0.9	10	2.6

Which Strategy to Use?

- Both separate chaining and open addressing are used in real applications.
- Some basic guidelines:
 - If space is important, better to use open addressing.
 - If need removing items, better to use separate chaining.
 - **remove ()** is tricky in open addressing.
 - In mission critical application, prototype both and compare.

Outline

- Collision Resolution: Open Addressing
 - Linear Probing
 - Quadratic Probing and Double Hashing
 - Performance of Open Addressing
- Pathological Data Sets and Universal Hashing

Pathological Data Sets

- The **ideal** hash function spreads **every** data set out evenly.
- Does such ideal hash function exist?
 - No! For every hash function, there is a **pathological data set**.
- Reason: Fix a hash function $h: U \to \{0,1,...,n-1\}$
 - There exists a bucket i such that at least |U|/n elements of U hash to i under h...
 - ... if data set drawn only from these, everything collides!

Pathological Data Sets

- <u>Given</u>: A hash table with *n* buckets stores *m* items. Use separate chaining.
 - **Question**: If all *m* items are mapped to the same bucket, what's the time complexity of **find()**?
- **Answer**: The hash table degrades to a linked list.
 - The time complexity for **find()** is O(m).
 - This is actually the **worst-case** time complexity.

Solution to Pathological Data Sets

- Universal hashing:
 - Design a family H of hash functions such that for <u>all</u> data set S, "almost all" functions $h \in H$ spread S out "pretty evenly".
 - Pick a hash function **randomly** from the family *H*.

Universal Family of Hash Functions

- Definition: Let H be a set of hash functions from U to $\{0,1,2,\ldots,n-1\}$. H is universal if and only if:
 - For all $x, y \in U$ with $x \neq y$,

$$\Pr_{h \in H} (h(x) = h(y)) \le \frac{1}{n}$$

- In other words, <u>any</u> two keys of U collide with probability at most 1/n when the hash function h is chosen <u>uniformly at random</u> from H
- Note: keys x and y fixed. Random on hash function picked
 - At most 1/n of the total functions map x and y to the same bucket
- Collision probability is as small as our "gold standard" of completely random hashing

Universal Family of Hash Functions Example

- Example #1: The set of <u>all</u> functions that map from U to $\{0,1,2,\ldots,n-1\}$.
 - The family contain $n^{|U|}$ functions.
- Is this family universal?
- Yes! Because for any keys $x \neq y$, exactly 1/n of the total functions map x and y to the same bucket
 - Partition all the functions into n^2 subsets $S_{i,j}$ ($0 \le i, j \le n-1$), where $S_{i,j}$ contains functions h such that h(x) = i and h(y) = j
 - The numbers of functions in all subsets are equal.

Universal Family of Hash Functions Example

- Example #2: $\{h_0, h_1, ... h_{n-1}\}$ where $h_i: U \to i$, i.e., for any $u \in U, h_i(u) = i$.
- Is this family universal?
- No! Because for any keys $x \neq y$, all functions map x and y to the same bucket, i.e.,

$$\Pr_{h \in H} (h(x) = h(y)) = 1$$

Real Example: Hashing IP Addresses

- Let $U = \text{IP address of the form } (x_1, x_2, x_3, x_4) \text{ with each } x_i \in \{0, 1, \dots, 255\}$
- Let hash table size n be a **prime** number and n > 255.
 - Could be close to a multiple of #objects in the hash table.
- Define one hash function h_a per 4-tuple $a = (a_1, a_2, a_3, a_4)$ with each $a_i \in \{0, 1, ..., n-1\}$.
 - $h_a(x_1, x_2, x_3, x_4) = (a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4) \mod n$
 - There are n^4 such functions.

A Universal Family of Hash Functions

• **Define** the family $H = \text{all } n^4 \ h_a$'s, i.e., $H = \{h_a | a_1, a_2, a_3, a_4 \in \{0, 1, ..., n-1\}\}$ $h_a(x_1, x_2, x_3, x_4) = (a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4) \ mod \ n$

Theorem: Family H is universal.

Proof

- Consider distinct IP addresses (x_1, x_2, x_3, x_4) and (y_1, y_2, y_3, y_4)
- Assume $x_4 \neq y_4$. We need to show the collision probability for a randomly chosen function $h_a \in H$ is at most 1/n, i.e.,

$$\Pr_{h_a \in H}(h_a(x_1, ..., x_4) = h_a(y_1, ..., y_4)) \le \frac{1}{n}$$

• Note: collision happens when

$$a_1x_1 + \cdots + a_4x_4 = a_1y_1 + \cdots + a_4y_4 \pmod{n}$$

$$\Leftrightarrow a_4(x_4 - y_4) = \sum_{i=1}^{3} a_i(y_i - x_i) \pmod{n}$$

Next: let's fix random choice a_1 , a_2 , a_3 , but a_4 still random

Proof (cont.)

• Question: with a_1 , a_2 , a_3 fixed arbitrarily, how many choices of a_4 satisfy

$$a_4(x_4 - y_4) = \sum_{i=1}^{3} a_i(y_i - x_i) \pmod{n}$$
?

• Note:

fixed value

- 1. $0 \le x_4 \ne y_4 \le 255$
- 2. n > 255 is prime
- Claim: For any $b \in \{0, ..., n-1\}$, there is at most one $a_4 \in \{0, ..., n-1\}$ that let $a_4(x_4 y_4) = b \pmod{n}$
- Proof: for any $a_4' \in \{0, ..., n-1\}$ and $a_4' \neq a_4$, $(a_4 a_4')(x_4 y_4) \neq 0 \pmod{n}$

Imply
$$\Pr_{h_a \in H}(h_a(x_1, ..., x_4) = h_a(y_1, ..., y_4)) \le \frac{1}{n}$$