Path Testing

Dr. John H Robb, PMP, SEMC
UTA Computer Science and Engineering

Program Graphs

Definition: Given a program written in an imperative programming language, its program graph is a directed graph in which nodes are statement fragments, and edges represent flow of control. (A complete statement is a "default" statement fragment.)

We will refer to this as a Control Flow Graph

Control Flow Graphs of Structured Programming Constructs

Seft

Sample Control Flow Graph

DD-Paths

- Originally defined by E. F. Miller (1977?)
- "DD" is short for "decision to decision"
- Original definition was for early (second generation) programming languages
- Similar to a "chain" in a directed graph
- Bases of interesting test coverage metrics

Key point: a DD-path graph is a reduced Control Flow Graph!

DD-Paths

A DD-Path (decision-to-decision) is a chain in a program graph such that

Case 1: it consists of a single node with indeg = 0, (initial node)
Case 2: it consists of a single node with outdeg = 0, (terminal node)

Case 3: it consists of a single node with indeg ≥ 2 or outdeg ≥ 2, (decisional node)

Case 4: it consists of a single node with indeg = 1 and outdeg = 1, (non-decisional node)

Case 5: it is a maximal chain of length ≥ 1.

DD-Path Graph

Given a program written in an imperative language, its DD-Path graph is the directed graph in which nodes are DD-Paths of its program graph, and edges represent control flow between successor DD-Paths.

- a form of condensation graph
- 2-connected components are collapsed into an individual node
- single node DD-Paths (corresponding to Cases
 1 4) preserve the convention that a
 statement fragment is in exactly one DD-Path

_0 _0 _0

DD-Path Graph of the Triangle Program

(not much compression because this example is control intensive, with little sequential code.)

DD-Path Graph

Cyclomatic Complexity

- In a strongly connected directed graph G, its cyclomatic complexity, denoted by V(G), is given by V(G) = e n + p, where
 - e is the number of edges in G
 - n is the number of nodes in G
 - p is the number of connected regions in G
- In code that conforms to structured programming (single entry, single exit), p = 1.
- In a directed graph that is not strongly connected,
 V(G) = e n + 2p.

Cattle Pens and Cyclomatic Complexity

- Cyclomatic complexity describes the number of "enclosed regions" in a directed graph.
- Given a directed graph drawing, to compute V(G) without counting nodes, edges, and connected regions, consider the nodes to be fence posts, and edges are 4-wire fences. Then the number of cattle pens is V(G). (The outside is also a cattle pen.)

-9

_0 _0

Cattle Pens and Cyclomatic Complexity

$$V(G) = e - n + 2p$$

= 23 - 20 + 2
= 5

Cattle Pens and Cyclomatic Complexity

Another example...

$$V(G) = e - n + 2p$$

$$= 37 - 31 + 2$$

Another Example—NextDate

- Pseudo-code on the next four slides
- Program graph after pseudo-code

Program NextDate Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer Dim day,month,year As Integer Output ("Enter today's date in the form MM DD YYYY") Input (month, day, year) Case month Of Case 1: month Is 1,3,5,7,8, Or 10: '31 day months (except Dec.) If day < 315. Then tomorrowDay = day + 1 Else tomorrowDay = 1tomorrowMonth = month + 110. **EndIf** Case 2: month Is 4,6,9, Or 11 '30 day months If day < 3012. 13. Then tomorrowDay = day + 114. Else 15. tomorrowDay = 116. tomorrowMonth = month + 117. EndIf

_0

_0

-0

-0 -0 -0

-0

-0 -0 -0 -0 -0

-	
-0	18. Case 3: month Is 12: 'December
-9	19. If day < 31
9	20. Then tomorrowDay = day + 1
Control of the Contro	21. Else
	22. tomorrowDay = 1
-9	23. tomorrowMonth = 1
100	24. If year = 2012
	25. Then Output ("2012 is over")
	26. Else tomorrow.year = year + 1
-0	27. Endlf
0	28. Endlf
_0	
-0	
-9	
-	
_0	
-0_	
-9	
-0	
Software	Testing: A Craftsman's Approach, 4 th Edition Chapter 16 Software Complexity
Software	Chapter 10 Software Complexity

-0

_0 _0

-0 -0 _0

-9		
-9		
-9	29. Case 4: month is 2: 'Fe	ebruary
-	30.lf day < 28	bordary
-	-	
-	31. Then tomorrowDa	y = day + 1
0	32. Else	
Lo	33.If day = 28 34.	
_0	35. Then If (isLeap	
0		morrowDay = 29 'leap year
-0		
-0	_100	'not a leap year
-0	38.	tomorrowDay = 1
-0_	39.	tomorrowMonth = 3
-0	EndIf	
-9-	211311	
-9		
-9		
0		
0		
0		
0		
Lo		
_0		
Cag	Trating A. Croftsman's Assessed 4th E. V.	Chantan 16 S. Saman Canada in
Software	Testing: A Craftsman's Approach, 4th Edition	Chapter 16 Software Complexity

-0

_0 _0

_0

_0		
-9		
-0		
-9		
-0		
0	40.	Else If day = 29
-9	41.	Then If (isLeap)
-9	42.	Then tomorrowDay = 1
0	43.	tomorrowMonth = 3
0	44.	Else 'not a leap year
_0	45.	Output("Cannot have Feb.", day)
_0	46.	Endlf
_0	47.	Endlf
-0	48.	Endlf
-0 -0 -0 -0	49.	EndIf
-0	50.	EndCase
-0	51.	
_0		Output ("Tomorrow's date is", tomorrowMonth, tomorrowDay, tomorrowYear)
-0	52.	End NextDate
-9		
-9		
-9		
-0		
-9		
-0		
-9		
-65		
So	oftware	Testing: A Craftsman's Approach, 4th Edition Chapter 16 Software Complexity

Find V(G) for the Program Graph of NextDate

$$e = 60$$

 $n = 50$
 $p = 1$

$$V(G) = 60 - 50 + 2$$

= 12

Software Testing: A Craftsman's Approach, 4th Edition

Chapter 16 Software Complexity

McCabe's Example

McCabe's

$$V(G) = 10 - 7 + 2(1)$$

= 5

$$V(G) = 11 - 7 + 1$$

= 5

Basis Path Method

- Perform the following steps:
 - Draw the reduced CFG
 - Determine the Cyclomatic Complexity (from the reduced CFG)
 - 3. Develop the basis paths
 - a. Define an initial basis path (pick any path) identify the basis path
 - b. Then "flip" each decision starting with the first one at a time - capture each derived path from the basis path
 - c. Stop when you have reached the Cyclomatic Complexity v(g)
 - 4. Determine the inputs required to traverse each basis path and the expected outputs for each. You should have v(g) test cases.

_0 _0

-0

_0 _0

_0 _0

Simple Boundary Value Problem

public static double guessWhat(double input) {

double result; if (input<0.0) result = -input; else result = input; return result; 11 }

- Student exercise
- Describe what the code seems to be doing
- **Draw the reduced CFG (DD-path)**
- **Determine the Cyclomatic complexity**
- **Develop the equivalence partitions**
- Develop the basis paths using the **Cyclomatic complexity**
- **Develop the test cases using required** input values to achieve boundary value coverage
- 7. Do the test cases and outputs refute or support the code functional description?

(c) JRCS 2016

10

25

Answer

- 1. The code returns the absolute value of the input
- 2. The DD-path graph is shown on the right
- 3. Cyclomatic complexity is 2. Verified with code
- 4. Basis paths are
 - a. 5,6,10
 - b. 5,8,10

- a. Note that the significance is not specified assume 0.01
- b. -min <= input <0.0 (use -0.01)
- c. $0.0 \le input \le max (use 0.0)$
- 6. Test cases (using basis paths and boundary values)
 - a. Test case 1: input=-0.01, guessWhat=0.01
 - b. Test case 2: input=0.0, guessWhat=0.0
- 7. Test cases support program description

Note that we do not need to create 100's of test cases incrementing input by 0.01 – we have done this with two test cases

Another Basis Path Example

public static boolean getres(boolean reservation, boolean tableavailable) {

```
Student exercise
boolean result:
                                 Describe what the code seems to be
```

- result = true;
- else
- if (tableavailable) result = true;

return result;

- 10 else
- result = false;
- 13
- 14 **15** }

- doing if (reservation)
 - **Draw the reduced CFG (DD-path)**
 - **Determine the Cyclomatic complexity**
 - **Develop the basis paths using the** Cyclomatic complexity. Use MC/DC to select basis paths
 - **Develop the test cases using required** input values to achieve boundary value coverage
 - Do the test cases and outputs refute or support the code functional description?

Answers

- 1. The method is providing the following result
 - getres = reservation | | tableavailable
- 2. The DD-path graph is shown to the right
- 3. Cyclomatic complexity is 3 from the graph
- 4. Since this is an || relationship we need to use
 - FF,FT,TF as the inputs
 - TF gives us 5,6,13
 - FT gives us 5,8,9,13
 - FF gives us 5,8,11,13

- TC 1: reservation = true, tableavailable = false, getres = true
- TC 2: reservation = false, tableavailable = true, getres = true
- TC 3: reservation = false, tableavailable = false, getres = false
- 6. Yes the test cases and expected results support the description

_0

_0

_0

-0

_0

Working Examples (1)

- 1 public int countNeg(int i,int j,int k,int l) {
- 2 Student exercise
- 3 int s=0; 1. Describe what the code seems to be doing
 - 2. Draw the reduced CFG
- _____
- 5 if (i < 0) 3. Determine the Cyclomatic complexity
 6 s++:
- 7 if (j < 0)
 4. Develop the basis paths using the Cyclomatic complexity
- 9 if (k < 0)

 5. Develop the test cases using required input values to achieve boundary value coverage
 - **6.** Determine coverage achieved
 - 7. Do the test cases and outputs refute or support the code functional description?

15 }

8

10

13

S++;

S++:

S++;

11 if (I < 0)

14 return s;

-0

_0

-0

-0

_0

Working Examples (1) - Answer

- 2. The reduced CFG is shown to the left with the corresponding line numbers shown in each node.
- 3. The cyclomatic complexity is counted to the left in red it is 5 requiring 5 tests cases for basis path coverage.

Test	Inputs				Exp Out	
Case	i	j	k	ı	Return	Basis Path
1	-1	-1	-1	-1	4	5-6-7-8-9-10-11-12-14
2	0	-1	-1	-1	3	5-7-8-9-10-11-12-14
3	0	0	-1	-1	2	5-7-9-10-11-12-14
4	0	0	0	-1	1	5-7-9-11-12-14
5	0	0	0	0	0	5-7-9-11-14

- 6. Full statement coverage is achieved with the basis paths selected. WHY?
- 7. The test cases support the functional description.

More Basis Path Examples

.0	1	public static double calculatePostageDu	ıe (int weight)	J
9	2	double postage due;		dent exercise
0		acaste poetage_aret		Describe what the code seems to be
-0		if (weight<=1)	1.	
	5	postage_due = 0.49;		doing
-0	6	else	2.	Draw the reduced CFG (DD-path)
999	7	if (weight<=2)		
-0	8	postage_due = 0.70; else	3.	Determine the Cyclomatic complexity
0		postage due = 0.99;	4.	Develop the basis paths using the
	11	postage_aac o.ss,		Cyclomatic complexity
	12	return postage_due;		
	13		5.	Develop the equivalence partitions
-9	14	}		
0			6.	Develop the test cases using required
-0			•	input values to achieve boundary value
-0				coverage
0				
.0			7.	Do the test cases and outputs refute or
-0				support the code functional
0				description?
-		(c) IRCS 2016		31

Answer

1. The program calculates postage according to the following rates:

- 2. See DD-path graph on right
- 3. Cyclomatic complexity = 3, double check confirms
- 4. Basis paths

_0

_0

-0

_0

- a. 4, 5, 12
 - b. 4, 7, 8, 12
 - c. 4, 7, 10, 12
- 5. Partitions (ignore robustness test values)
 - a. -min <= weight < $\frac{1}{2}$
 - b. weight =(2)
 - c. (3)<= weight <= max
- 6. Test cases
 - 1. Weight = 1, postage=0.49
 - 2. Weight = 2, postage=0.70
 - 3. Weight = 3, postage=0.99
- 7. Test cases and expected outputs support description above

Extend the Previous Example

Use your results from the previous answer to develop this

```
public static double calculatePostageDue (int weight) {
      double postage due;
                                     Student exercise
      if (weight<=1)
          postage due = 0.49;
                                          Describe what the code seems to be doing
      else
                                          Draw the reduced CFG (DD-path)
          if (weight<=2)
             postage due = 0.70;
                                          Determine the Cyclomatic complexity
          else
             if (weight <=3)
10
                                          Develop the basis paths using the Cyclomatic
                postage due = 0.91;
11
12
                                          complexity
             else
13
                postage due = 1.12;
14
      return postage due;
                                          Develop the equivalence partitions
15
16
                                          Develop the test cases using required input
                                          values to achieve boundary value coverage
                                          Do the test cases and outputs refute or support
                                     7.
```

the code functional description?

33

Answer

1. The program calculates postage according to the following rates:

$$<= 1 (Oz presumably) = $0.49, 2 = $0.70, 3 = $0.91, >=4 = $1.12$$

- 2. See DD-path graph on right
- 3. Cyclomatic complexity = 4, double check confirms
- 4. Basis paths
 - a. 4, 5, 14
 - b. 4, 7, 8, 14
 - c. 4, 7, 10, 11, 14
 - d. 4, 7, 10, 13, 14
- 5. Partitions (ignore robustness test values)
 - a. $-min \le weight \le 1$
 - b. weight =
 - c. weight = (3)
 - d. (4)<= weight <= max

_0

Answer (cont.)

6. Test cases

_0 _0

-0

-0

_0

- 1. Weight = 1, postage=0.49
- 2. Weight = 2, postage=0.70
- 3. Weight = 3, postage=0.91
- 4. Weight = 4, postage=1.12
- 7. Test cases and expected outputs support description above
- 8. Developing test cases is where we find the most defects, typically not executing the tests.
 - a. In this example we detect some strangeness in the code, that we would fix by replacing some of the <= with =</p>

A Little More Complicated Example

- This example is from the book "How We Test Software at Microsoft"
- From the Gregorian calendar example, the dates of 10/5/-10/14/1582
 were excluded from the calendar
- The book writes this as:

```
if (year == 1582 && month ==10 && !(day<5) && !(day > 14)) return true;
```

else

_0

_0

_0

_0

return false;

Is there a better way to write the last two conditions?

This is the solution from the book - what is wrong with this solution?

Table 6-1. Truth Table for IsInvalidGregorianCalendarDate Function

Tests Parameters			Cond	litional	Expected result					
	Month	Day	Year	Year	Month	!(day < 5)	!(day > 14)			
1	10	11	1582	True	True	True	True	True		
2	10	21	1582	True	True	True	False	False		
3	10	3	1582	True	True	False		False		
4	5	7	1582	True	False			False		
5	10	5	1994	False				False		

• This turns out to be a really good exercise. If we use MC/DC how many test cases is this - how many conditions are in the expression?

For Modules M09-M10 we will work with Single Condition Multiple
 Decision statements - we're not ready for Multiple Condition Decisions yet

	Stu	dent exercise
result=false;	1	December 1 CEC
if (year == 1582)	1.	Draw the reduced CFG
if (month==10)	2.	Determine the Cyclomatic complexity
if (day>=5)	3.	Develop the basis paths using the
if (day <= 14)		Cyclomatic complexity
result=true;	4.	Develop the test cases using required
		input values to achieve boundary value
		coverage
	if (month==10) if (day>=5) if (day <= 14)	result=false; if (year == 1582) if (month==10) if (day>=5) if (day <= 14)

Use this guide:

		day >= 5	day <= 14
:	Т	5	14
	F	4	15

What coverage have we achieved?

	day >= 5	day <= 14
Т	5	14
F	4	15

Test Case	Inputs			Exp Out	
Number	Year	Month	Day	Return	Basis Path
1	1582	10	5	TRUE	7-8-9-10-11-12
2	1581	10	5	FALSE	7-12
3	1582	11	5	FALSE	7-8-12
4	1582	10	4	FALSE	7-8-9-12
5	1582	10	15	FALSE	7-8-9-10-12

6 result=false;

7 if (year == 1582)

8 if (month==10)

9 if (day>=5)

if (day <= 14)

11 result=true;

12_{CCJRCS} return result;

Have we achieved coverage?

	day >= 5	day <= 14
Т	5	14
F	4	15

Test Case		Inputs		Exp Out	
Number	Year	Month	Day	Return	Basis Path
1	1582	10	5	TRUE	7-8-9-10-11-12
2	1581	10	5	FALSE	7-12
3	1582	11	5	FALSE	7-8-12
4	1582	10	4	FALSE	7-8-9-12
5	1582	10	15	FALSE	7-8-9-10-12
6	1583	10	5	FALSE	1
7	1582	9	5	FALSE	-
8	1582	10	14	TRUE	-

1 result=false;

2 if (year == 1582)

3 if (month==10)

4 if (day>=5)

5 if (day <= 14)

6 result=true;

12

We have achieved Decision, Statement, BV and Extreme Range coverage

Notice how we're changing only one input at a time from the all true path

A Simpler Homework Problem

```
5 public void setAlerts (double fuel_level) {
6
       setChime(false); setRedLight(false); setYellowLight(false); setGreenLight(false);
       if (fuel level <= 15.0)
         setChime(true);
                               Assume fuel_level is significant to 0.1 and
10
       else
                               ranges from 0.0 to 100.0 gallons
         if (fuel level<30.0)
11
           setRedLight(true);
12
13
         else
14
           if (fuel level<=40.0)
              setYellowLight(true);
15
16
           else
              if (fuel_level<50.0)
17
                  setGreenLight(true);
18
19
```

A Simpler Homework Problem (cont.)

Corresponding
Decision table "code description"

fuel_level in gallons	Rule 1	Rule 2	Rule 3	Rule 4	Rule 5
CONDITIONS					
0.0 <= fuel_level <= 15.0	Υ				
15.1 <= fuel_level <= 29.9		Υ			
30.0 <= fuel_level <= 40.0			Υ		
40.1 <= fuel_level <= 49.9				Υ	
50.0 <= fuel_level <= 100.0					Υ
ACTIONS					
chime	TRUE	FALSE	FALSE	FALSE	FALSE
redLight	FALSE	TRUE	FALSE	FALSE	FALSE
yellowLight	FALSE	FALSE	TRUE	FALSE	FALSE
greenLight	FALSE	FALSE	FALSE	TRUE	FALSE
Table implements a "first-of"					

A Simpler Homework Problem (cont.)

fuel_level (all values are gallons):

0.0 15.0 15.1 29.9 30.0 40.0 40.1 49.9 50.0 100.0

A Simpler Homework Problem (cont.)

	Inputs		Expected Outputs				
Test case number	fuel_level (gallons)	chime	redLight	yellowLight	greenLight	Basis Path	
1	15.0	TRUE	FALSE	FALSE	FALSE	8-9-19	
2	29.9	FALSE	TRUE	FALSE	FALSE	8-11-12-19	
3	40.0	FALSE	FALSE	TRUE	FALSE	8-11-14-15-19	
4	49.9	FALSE	FALSE	FALSE	TRUE	8-11-14-17-18-19	
5	50.0	FALSE	FALSE	FALSE	FALSE	8-11-14-17-19	
6	15.1	FALSE	TRUE	FALSE	FALSE	-	
7	30.0	FALSE	FALSE	TRUE	FALSE	-	
8	40.1	FALSE	FALSE	FALSE	TRUE	-	
9	0.0	TRUE	FALSE	FALSE	FALSE	-	
10	100.0	FALSE	FALSE	FALSE	FALSE	-	

Notice that the first 5 test cases must be in this order. Test cases after this can be in any order.

-0 -0 -0

Notice that we have to add 3 test cases to the basis path to test all BVs and we add the 2 extreme range tests to get a total of 10 test cases.

We have designed our test cases to give us decision and statement coverage (guaranteed with basis path), full BV coverage and extreme range coverage.

Drawing CFGs on more complicated problems

```
6 public boolean codeDrawing (int points) {
    boolean result;
    if (points > 40) {
      result=true;
                            Assume points ranges from 0 to
10
      count++;}
                            100 (both inclusive)
    else {
12
      result=false;
                            Do not worry about extreme
      if (points < 25) {
13
                            ranges for count or transactions
        transactions++;
14
        if (count > 1) {
15
           result = true;
16
           transactions=0; }
17
18
19 }
```

Drawing CFGs on more complicated problems (cont.)

- 6 public boolean codeDrawing (int points) {
- boolean result;
- if (points > 40) {
- result=true;
- 10 count++;}
- 11 else {

_0

_0

_0

_0

_0

- 12 result=false;
- if (points < 25) { 13
- transactions++; 14
- 15
- if (count > 1) { result = true; 16
- transactions=0; } 17
- 18
- 19

The chain at 9-10 is absorbed into 9

The assignment at 12 is absorbed into 13 The assignment at 14 is absorbed into 15

The chain at 16-17 is absorbed into 16

Nodes are either decisions, merges, or assignments. Nodes are only assignments when they cannot be absorbed into a decision

Drawing CFGs on more complicated problems (cont.)

(all values are points):

24 25 40 41 **100**

6 public boolean codeDrawing (int points) {

- boolean result;
- if (points > 40) {
- result=true;
- 10 count++;}
- else {
- 12 result=false;
- if (points < 25) { 13
- transactions++ 14
- if (count > 1) { 15
- result = true; 16
- 17 transactions=0; }

18 19

			, ,							
}[Test case		Inputs	5	Ex	pected Outp	uts			
ᅦ	number	er points cou		transactions	result	count	transactions	Basis Path		
	1	41	0	0	TRUE	1	0	8-9-19		
	2	24	2	0	TRUE	2	0	8-13-15-16-19		
ſ	3	25	2	0	FALSE	2	0	8-13-19		
	4	24	1	0	FALSE	1	1	8-13-15-19		
-[5	40	1	0	FALSE	1	0	-		
	6	0	1	0	FALSE	1	1	-		
	7	100	1	0	TRUE	2	0	-		

8	stateme	ent 15 E	CP/BV
	result (all valu	es are po
9 1 13		T	F
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	₹	0 2	4 25 40
15	3		
	\setminus /		
$-;$ $\begin{pmatrix} 16 \\ 2 \end{pmatrix}$]/		
19	y		
, _0.)			

Drawing CFGs on more complicated problems (cont.)

Strictly speaking, this is the corresponding decision table. Note that I have allowed you to simplify this on the homework.

10		Rule 1	Rule 2	Rule 3	Rule 4	Rule 5	Rule 6	Rule 7	Rule 8	Rule 9
0	CONDITIONS									
9	0 <= points <= 24	Υ	Υ	Υ						
0	25 <= points <= 40				Υ	Y	Υ			
0	41 <= points <= 100							Υ	Υ	Υ
0	count = 0	Υ			Υ			Y		
0	count = 1		Υ			Y			Υ	
-9	count >= 2			Υ			Y		<u> </u>	Υ
9										
0	ACTIONS									
0	result	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE
0	count	count	count	count	count	count	count	count++	count++	count++
-	transactions	transactions++	transactions++	0	transactions	transactions	transactions	transactions	transactions	transactions
20										
-3	Table implements a "first-of" r	rule								
-170										

Also note that there is no way to represent this code as a series of multiple condition single decision statements because of the variable transactions - it has three possible values.

A Typical Homework Problem

- We are not yet ready to address multiple condition decision statements yet
- Many of the homework problems provide a multiple decision single condition snippets of code instead (like the previous Gregorian snippet)
- For these multiple decision, single condition homework problems follow the following steps
 - 1. Develop the CFG and Cyclomatic complexity
 - 2. Develop the basis path test set
 - 3. Mentally convert the multiple decision statements into a multiple condition single decision statement
 - 4. Solve for MCDC
 - 5. Test cases are

_0

_0

_0

- a. Basis path set
- b. MCDC solutions (map these into the BP set)
- c. Untested BVs, Extreme range values, and missing MCDC tests

```
x=false
if (a)
                converts to x = a \parallel b;
 x=true;
else
 if (b)
   x=true;
x=false
                            x = a \&\& b;
if (a)
               converts to
 if (b)
  x = true
```

```
public boolean checkOut (double cart, int creditRating, statusClass.Status status) {
6
       boolean approved=false;
       if (status==statusClass.Status.gold) {
8
9
         if (cart < 3 500.00)
                                           Draw the reduced CFG (DD-path)
            approved = true;
10
11
         else
                                             Determine the Cyclomatic
            if (creditRating > 650)
12
                                             complexity
               approved = true; }
13
14
      else {
         if (status==statusClass.Status.silver) {
15
            if (cart < 2 500.00)
16
               approved = true;
17
                                            Assume
18
            else
                                                  creditRating ranges from 0 to 850
               if (creditRating > 750)
19
                  approved = true; }
                                                  both inclusive
20
21
         else {
                                                  cart ranges from $0.00 to
22
               if (cart < 1 500.00)
                                                  $20,000.00 both inclusive.
23
                  approved = true;
```

51

else

return approved; }

if (creditRating > 800)

approved = true; }}

24 25

26 27

- 2. Work down from the very top level to the bottom
- 3. Flip each decision on a level from left to right

Now develop the test cases, check all BVs, etc

Initial Test Case Table (from Basis Path only)

Test Case		Inputs		Exp Out		
Number	cart	creditRating	status	return	Basis Path	
1	\$3,499.99	650	gold	TRUE	8-9-10-27	
2	\$2,499.99	750	silver	TRUE	8-15-16-17-27	
3	\$3,500.00	651	gold	TRUE	8-9-12-13-27	
4	\$1,499.99	800	regular	TRUE	8-15-22-23-27	
5	\$3,500.00	650	gold	FALSE	8-9-12-27	
6	\$2,500.00	751	silver	TRUE	8-15-16-19-20-27	
7	\$1,500.00	801	regular	TRUE	8-15-22-25-26-27	
8	\$2,500.00	750	silver	FALSE	8-15-16-19-27	
9	\$1,500.00	800	regular	FALSE	8-15-22-25-27	

- Now we must add in
 - 1. MCDC test cases
 - 2. Missing BVs and Extreme range values

A Typical Homework Problem

```
public boolean checkOut (double cart, int creditRating, statusClass.Status status) {
       boolean approved=false;
       if (status==statusClass.Status.gold) {
          if (cart < 3 500.00)
                                               approved = (cart < 3_500.0 \parallel creditRating > 650)
             approved = true;
10
                                                           Use (MCDC FT, FF, TF)
11
          else
                                                            3_500.00, 651 (test case 3)
             if (creditRating > 650)
12
                                                            3 500.00, 650 (test case 5)
13
                approved = true; }
                                                            3_499.99, 650 (test case 1)
14
       else {
15
          if (status==statusClass.Status.silver) {
```

16 if (cart < 2 500.00) approved = true; 17 18 else 19 if (creditRating > 750) approved = true; } 20 21 else { if (cart < 1 500.00) 22

else

23

24

25

approved = $(cart < 2_500.0 \parallel creditRating > 750)$ 2_500.00, 751 (test case 6) 2 500.00, 750 (test case 8) 2 499.99, 750 (test case 2) approved = $(cart < 1_500.0 \parallel creditRating > 800)$ approved = true; 1_500.00, 801 (test case 7)

1_500.00, 800 (test case 9) if (creditRating > 800) approved = true; }} 1 499.99, 800 (test case 4)

26 return approved: } All of our MCDC test cases are already captured in the BP set - we don't need to add any

- No extra MCDC tests need to be added
- No extra BVs need to be added
- Complete Test Case Table

Test Case		Inputs		Exp Out		
Number	cart	creditRating	status	return	Basis Path	MCDC test cases
1	\$3,499.99	650	gold	TRUE	8-9-10-27	stmts 9-13 TF
2	\$2,499.99	750	silver	TRUE	8-15-16-17-27	stmts 16-20 TF
3	\$3,500.00	651	gold	TRUE	8-9-12-13-27	stmts 9-13 FT
4	\$1,499.99	800	regular	TRUE	8-15-22-23-27	stmts 22-26 TF
5	\$3,500.00	650	gold	FALSE	8-9-12-27	stmts 9-13 FF
6	\$2,500.00	751	silver	TRUE	8-15-16-19-20-27	stmts 16-20 FT
7	\$1,500.00	801	regular	TRUE	8-15-22-25-26-27	stmts 22-26 FT
8	\$2,500.00	750	silver	FALSE	8-15-16-19-27	stmts 16-20 FF
9	\$1,500.00	800	regular	FALSE	8-15-22-25-27	stmts 22-26 FF
10	\$20,000.00	650	gold	FALSE	Extreme range cart	
11	\$0.00	650	gold	TRUE	Extreme range cart	
12	\$3,500.00	0	gold	FALSE	Extreme range cR	
13	\$3,500.00	850	gold	TRUE	Extreme range cR	

- value is a don't care - we are just testing the extreme ranges

Code coverage achieved is: full boundary coverage, full statement and decision coverage, and extreme range coverage.

Another Homework Problem

```
8 public void carCollAlarms (boolean selfDrive, double speed, double distance) {
   carCollAlert=carCollWarn=carCollCaut=emerBrake=false;
    if (selfDrive)
10
                                      Draw the reduced CFG (DD-path)
       if (speed > 50.0)
11
                                      Determine the Cyclomatic
12
         if (distance<=150.0)
                                      complexity
           if (distance>100.0)
13
              carCollCaut=true;
14
15
           else
                                     Assume
              if (distance>50.0)
16
                                          speed ranges from 0.0 to 200.0
17
                carCollWarn=true;
                                          both inclusive
18
              else {
                                          distance ranges from 0.0 to 1,000.0
19
                carCollAlert=true;
                                          both inclusive
                if (distance<=25.0)
20
                  emerBrake=true;}}
21
```


Distance (feet)						
Speed (miles/hour)	Rule 1	Rule 2	Rule 3	Rule 4	Rule 5	
CONDITIONS	Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y					
selfDrive=TRUE	Υ	Υ	Υ	Υ		
speed > 50.0	Υ	Υ	Υ	Υ	2	
100.1 <= distance <= 150.0	Υ				the	
50.1 <= distance <= 100.0		Υ			<u></u>	
25.1 <= distance <= 50.0			Υ		A	
0 <= distance <= 25.0				Υ		
ACTIONS						
carCollCaut	TRUE	FALSE	FALSE	FALSE	FALSE	
carCollWarn	FALSE	TRUE	FALSE	FALSE	FALSE	
carCollAlert	FALSE	FALSE	TRUE	TRUE	FALSE	
emerBrake	FALSE	FALSE	FALSE	TRUE	FALSE	

In the decision table we have to break up each distinct region of distance into a separate ECP

Initial test case table (from the BP set)

Test Ca		Inputs			Ехр			
Numbe	r selfDrive speed distance		distance	carCollCaut carCollWarn carCollAlert		emerBrake	Basis Path tested	
1	TRUE	50.1	100.1	TRUE	FALSE	FALSE	FALSE	10-11-12-13-14-22
2	FALSE	50.1	100.1	FALSE	FALSE	FALSE	FALSE	10-22
3	TRUE	50.0	100.1	FALSE	FALSE	FALSE	FALSE	10-11-22
4	TRUE	50.1	150.1	FALSE	FALSE	FALSE	FALSE	10-11-12-22
5	TRUE	50.1	50.1	FALSE	TRUE	FALSE	FALSE	10-11-12-13-16-17-22
6	TRUE	50.1	25.0	FALSE	FALSE	TRUE	TRUE	10-11-12-13-16-20-21-22
7	TRUE	50.1	25.1	FALSE	FALSE	TRUE	FALSE	10-11-12-13-16-20-22

public void carCollAlarms (boolean selfDrive, double speed, double distance) { carCollAlert=carCollWarn=carCollCaut=emerBrake=false; If we take statements 10-14 together as a logical if (selfDrive) 10 expression abcd we use the MCDC test cases 11 if (speed > 50.0) TTTT, FTTT, TFTT, TTFT,TTTF if (distance<=150.0) 12 selfD distance TC# speed 13 if (distance>100.0) TTTT **50.1** 100.1 true carCollCaut=true; 14 FTTT false **50.1** 100.1 15 else TFTT **50.0** 100.1 true 16 if (distance>50.0) TTFT **50.1 150.1** true carCollWarn=true; TTTF 17 **50.1** 100.0 true ECP/BV analysis of statement 14 - speed MUST be 50.1 mph 18 else { distance (ft.) 0.0 100.0 100.1 150.0 150.1 200.0 carCollAlert=true; 20 if (distance<=25.0) We see that with speed = 50.1 mph we need 21 emerBrake=true;}} to test 4 BVs - we need to add an additional test case (TC 9) to the MCDC set for the untested BV. When we have a multiple condition with variable a like a < x && a > y

61

one of the TT BVs will be missing

```
public void carCollAlarms (boolean selfDrive, double speed, double distance) {
   carCollAlert=carCollWarn=carCollCaut=emerBrake=false;
10
    if (selfDrive)
                          ECP/BV analysis of statement 17 - speed MUST be 50.1 mph
11
       if (speed > 50.0)
                                     distance (ft.) 0.0 50.0 50.1 100.0 100.1 200.0
12
         if (distance<=150.0)
                                        We see that with speed = 50.1 mph we need
13
            if (distance>100.0)
                                        to test 4 BVs - we need to add an additional
              carCollCaut=true;
14
                                        test case (TC 10) to test the untested BV of
                                        distance=50.0 when speed=50.1
            else
              if (distance>50.0)
16
17
                 carCollWarn=true;
18
              else {
19
                 carCollAlert=true;
                 if (distance<=25.0)
20
21
                   emerBrake=true;}}
```

• Final test case table - we have to add three BVs to the Basis Path set (test cases 8, 9, and 10)

Test Case		Inputs			Ехр				
Number	selfDrive	speed	distance	carCollCaut	carCollWarn	carCollAlert	emerBrake	Basis Path tested	
1	TRUE	50.1	100.1	TRUE	FALSE	FALSE	FALSE	10-11-12-13-14-22	
2	FALSE	50.1	100.1	FALSE	FALSE	FALSE	FALSE	10-22	
3	TRUE	50.0	100.1	FALSE	FALSE	FALSE	FALSE	10-11-22	
4	TRUE	50.1	150.1	FALSE	FALSE	FALSE	FALSE	10-11-12-22	
5	TRUE	50.1	50.1	FALSE	TRUE	FALSE	FALSE	10-11-12-13-16-17-22	
6	TRUE	50.1	25.0	FALSE	FALSE	TRUE	TRUE	10-11-12-13-16-20-21-2	
7	TRUE	50.1	25.1	FALSE	FALSE	TRUE	FALSE	10-11-12-13-16-20-22	
8	TRUE	50.1	100.0	FALSE	TRUE	FALSE	FALSE	TTTF from slide 61	
9	TRUE	50.1	150.0	TRUE	FALSE	FALSE	FALSE	Missing MCDC slide 61	
10	TRUE	50.1	50.0	FALSE	FALSE	TRUE	FALSE	Missing MCDC slide 62	
11	TRUE	0.0	150.0	FALSE	FALSE	FALSE	FALSE	extreme range speed	
12	TRUE	200.0	150.0	TRUE	FALSE	FALSE	FALSE	extreme range speed	
13	TRUE	50.1	1,000.0	FALSE	FALSE	FALSE	FALSE	extreme range distance	
14	TRUE	50.1	0.0	FALSE	FALSE	TRUE	TRUE	extreme range distance	

⁻ value is a don't care - we are just testing the extreme ranges

Mathematical Tests

- Mathematical tests also require some insight and rules, much like && and
 | operators are sensitive to F and T respectively
- Sums are sensitive to zero
 - a = b + c
 - where either b or c = 0 is not a good test condition, as it does not strongly demonstrate the use of b, c (many values are initialized to 0)
 - For example, a = b+c when c=0 could not distinguish a=b from a=b+c
 - so it is best to use non-zero and best to use unique values to more strongly assert the correct operands
- Multiplies are sensitive to 0 or 1
 - anything * 0 = 0, so it doesn't demonstrate that the correct operand was used c=a*b, b=0 doesn't show a was actually used
 - the identity function does not as strongly demonstrate both operands
 were correctly used either c=a*b vs. c=a
 - so it is best to avoid using 0,1 in multiplications and best to use unique values to more strongly assert the correct operands

_0

_0

_0

Mathematical Exercise

1 private static int getNumberofThingAwaMichees(double a, double b, double c) {

-39		<u> </u>		, , , , , , , , , , , , , , , , , , , ,
-0	2		Stu	ident exercise
-0	3	double d;	1.	Describe what the code seems to be
0	4	int numroots;		doing
9	5	d=b*b - 4*a*c;	2.	Draw the reduced CFG (DD-path)
	6	if (d>0)	3.	Determine the Cyclomatic
-0	7	numroots=2;		complexity
9 9	8	else {	4.	Develop the basis paths using the
0	9	if (d==0)		Cyclomatic complexity
0	10	numroots=1;	5.	Develop the test cases using required
0	11	else		input values to achieve boundary
0	12	numroots=0;		value coverage (0.01)
0	13	}	6.	Determine coverage achieved
0	14	return numroots;		
9	15}	hint: ugo a_10 0 a_2 0	7.	Do the test cases and outputs refute or support the code functional
0	(c)	hint: use a=18.0, c=2.0		description? 65

Mathematical Exercise - answers

- 1. The software attempts to count the number of roots for a quadratic equation given a,b,c
- 2. The reduced CFG is shown to the left with the corresponding line numbers shown in each node.
 - The cyclomatic complexity is counted to the left in red it is 3 requiring 3 tests cases for basis path coverage.

Test		Inputs		Output	
Case	а	b	С	Return Val.	Path coverage
1	18.00	12.01	2.00	2	5,6,7,13,15
2	18.00	12.00	2.00	1	5,6,9,10,13,15
3	18.00	11.99	2.00	0	5,6,9,11,13,15

Notice that a, b, c were picked to be unique

222222

I had to develop a model to identify unique values

Note also the 0.01 threshold

- 6. Full statement coverage is achieved with the basis paths selected. WHY?
- 7. The test cases support the functional description.