AD-E 900 095 NWC TP 6256

FY 1980 Report on Dye Laser Materials

by Aaron N. Fletcher Research Department

February 1981

E

NAVAL WEAPONS CENTER CHINA LAKE, CALIFORNIA 93555

Approved for public release; distribution unlimited.

Naval Weapons Center

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

FOREWORD

This report covers the work performed in FY 1980 supported by the Electronic Materials Technology Program of the Naval Research Laboratory under program element 62762N, Project Number F62581, Task Area ZF62581001. The work is part of a continuing effort to document the stability of laser dye solutions under well-controlled conditions.

The report was reviewed for technical accuracy by Richard A. Hollins.

Approved by E. B. ROYCE, Head Research Department 13 February 1981 Under authority of
W. B. HAFF
Capt., U.S. Navy
Commander

Released for publication by R. M. HILLYER
Technical Director

NWC Technical Publication 6256

Publis	hed byTechnical	Information	Depa	rtment
Collat	ion	errore.Cc / ar,	, 12	leaves
First	Printing	335 uñnumpe	ered	copies

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
NWC TP 6256 AD-A102 882	 _•
4. TITLE (and Subsiste)	5. TYPE OF REPORT & PERIOD COVERED
	Research Report
	Oct 1979-Sep 1980
FY 1980 REPORT ON DYE LASER MATERIALS	6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(*)	8. CONTRACT OR GRANT NUMBER(#)
	1
Aaron N. Fletcher	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 BROCKAN EL ENEUT BROJECT TASK
2. PERFORMING ONGENIENTION NAME AND REDUCESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Noval Harris Coutou	Program Element 62762N
Naval Weapons Center	Project Number F62581
China Lake, CA 93555	Task 2F62581001
CONTROLLING OFFICE NAME AND ADDRESS	February 1981
Naval Weapons Center	13. NUMBER OF PAGES
China Lake, CA 93555	22
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS, (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	<u></u>
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimi	u _ 4
Approved for public release; distribution unilimit	cea.
17. DISTRIBUTION STATEMENT (of the ebatract entered in Block 20, if different fr	om Report)
,	• •
18. SUPPLEMENTARY NOTES	
	4
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
	·
Dye Lasers Laser Dyes	
Tunable Lasers Photodegradation	
Rhodamine Dyes	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
See reverse side of form.	
	j
	İ
PARIL	لندخيب خيادي والمتعادي

DD 1 JAN 73 1473 EDITION OF 1 NOV 68 18 OBSOLETE 5/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

- (U) FY 1980 Report on Dye Laser Materials, by Aaron N. Fletcher. China Lake, Calif., Naval Weapons Center, February 1981. 22 pp. (NWC TP 6256, publication UNCLASSIFIED.)
- (U) Ten commercially available rhodamine dyes have been examined for their stability in dye lasers. Except for rhodamine 101 and sulforhodamine 101, the output of the dye laser showed a time dependence in addition to the dependence upon total input energy per unit volume; i.e., these latter dyes showed a "recovery" in laser output upon standing overnight. Unfortunately, the recovered solution shows a faster decay than would the original dye solution. Sulforhodamine 101 showed the highest dye laser lifetime parameters, followed by rhodamine 3B. Little difference was observed in the lifetime of the remaining dyes. The unsubstituted amines showed the lowest lasing outputs, highest laser thresholds, and the bluest laser emission of the ten dyes.

Access	ion For						
NTIS	GRA&I						
DTIC 3	rab 🗇						
Unanno	ounced 🗌						
Justi	fication						
<u> </u>							
Еу							
Distribution/							
Availability Codes							
-	Avail and/or						
Dist	Special						
	THE STATE OF THE S						
11	111111111111111111111111111111111111111						
1 1 1	i						

CONTENTS

· · · · · · · · · · · · · · · · · · ·	Intro	oauc	tion	•	• •	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	J
Materials Detection Equipment Procedure Calculations Results Discussion One Day Versus Two Days Type of Dye References 1. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 4 Molar Solution of Sulforhodamine B (Kiton Red S) in Ethanol 2. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 4 Molar Solution of Rhodamine 3B Perchlorate in Ethanol 3. Laser Output for 1.0 x 10 4 Molar Solution of Sulforhodamine 101 in Ethanol 4. Laser Output for a 1.0 x 10 4 Molar Solution of Rhodamine 101 Perchlorate in Ethanol Tables: 1. The Structure of Available Rhodamine Dyes 2. Dye Laser Degradation Parameters µ1 and µ2 3. Dye Laser Degradation Parameters µ3, µ4, and T 4. Effect of Standing Overnight on Laser Output 5. Partial Summation of Laser Characteristics Using Rhodamine Dyes	Exper	cime	ntal																												3
Materials Detection Equipment Procedure Calculations Results Discussion One Day Versus Two Days Type of Dye References 1. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 4 Molar Solution of Sulforhodamine B (Kiton Red S) in Ethanol 2. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 4 Molar Solution of Rhodamine 3B Perchlorate in Ethanol 3. Laser Output for 1.0 x 10 4 Molar Solution of Sulforhodamine 101 in Ethanol 4. Laser Output for a 1.0 x 10 4 Molar Solution of Rhodamine 101 Perchlorate in Ethanol Tables: 1. The Structure of Available Rhodamine Dyes 2. Dye Laser Degradation Parameters µ1 and µ2 3. Dye Laser Degradation Parameters µ3, µ4, and T 4. Effect of Standing Overnight on Laser Output 5. Partial Summation of Laser Characteristics Using Rhodamine Dyes		Dye	Lase	er)	Equ	iip	mer	nt													•										3
Procedure Calculations Results Discussion One Day Versus Two Days Type of Dye References 1. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Sulforhodamine B (Kiton Red S) in Ethanol 2. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Rhodamine 3B Perchlorate in Ethanol 3. Laser Output for 1.0 x 10 ⁻¹⁴ Molar Solution of Sulforhodamine 101 in Ethanol 4. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Rhodamine 101 Perchlorate in Ethanol Tables: 1. The Structure of Available Rhodamine Dyes 2. Dye Laser Degradation Parameters µ1 and µ2 3. Dye Laser Degradation Parameters µ3, µ4, and τ 4. Effect of Standing Overnight on Laser Output 5. Partial Summation of Laser Characteristics Using Rhodamine Dyes		Mate	erial	Ls				٠		٠					٠	•			٠		•								•	٠	4
Calculations Results Discussion One Day Versus Two Days Type of Dye References 1. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Sulforhodamine B (Kiton Red S) in Ethanol 2. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Rhodamine 3B Perchlorate in Ethanol 3. Laser Output for 1.0 x 10 ⁻¹⁴ Molar Solution of Sulforhodamine 101 in Ethanol 4. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Rhodamine 101 Perchlorate in Ethanol Tables: 1. The Structure of Available Rhodamine Dyes 2. Dye Laser Degradation Parameters µ1 and µ2 3. Dye Laser Degradation Parameters µ3, µ4, and τ 4. Effect of Standing Overnight on Laser Output 5. Partial Summation of Laser Characteristics Using Rhodamine Dyes		Det	ectio	on]	Equ	iip	mei	nt	٠	•		٠			•				•			٠	٠		٠				•		4
Results One Day Versus Two Days Type of Dye References 1. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Sulforhodamine B (Kiton Red S) in Ethanol 2. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Rhodamine 3B Perchlorate in Ethanol 3. Laser Output for 1.0 x 10 ⁻¹⁴ Molar Solution of Sulforhodamine 10l in Ethanol 4. Laser Output for a 1.0 x 10 ⁻¹⁴ Molar Solution of Rhodamine 10l Perchlorate in Ethanol 5. Dye Laser Degradation Parameters µ ₁ and µ ₂ 3. Dye Laser Degradation Parameters µ ₃ , µ ₁₄ , and T 4. Effect of Standing Overnight on Laser Output 5. Partial Summation of Laser Characteristics Using Rhodamine Dyes																															5
Discussion																															4 5 5 6
One Day Versus Two Days Type of Dye		Res	ults	•		•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	6
References	Discu	ıssi	on .																												9
References		One	Day	Ve	rsu	S	Twe	o I)ay	ys																_					9
Figures: 1. Evidence of Dye Recovery. Laser Output for a 1.0 x 10 Holar Solution of Sulforhodamine B (Kiton Red S) in Ethanol		Тур	e of	Dy	e.	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	÷	•	•	•		13
 Evidence of Dye Recovery. Laser Output for a 1.0 x 10⁻⁴ Molar Solution of Sulforhodamine B (Kiton Red S) in Ethanol	Refer	enc	es .	•						•				-	•	•				•				•		•	•	•	•		16
 The Structure of Available Rhodamine Dyes	Figur	 2. 3. 	1.0 (Kit Evid 1.0 Pero Lase Sulf Lase	x : ton lend x : chlo er (forl er (10 Rece_ 10 ora Out hod	d of te pu	Mod S) Mod in it in	lar in ye lar n E for	r S Re Etl LOJ	Soleth Etheco Sol har L.(L i	Luinai pvolui Lui Lui Lui Lui Lui	tiono: ery tio L E	on L on LO tha	of of ang	Las E I	Sul Ser Sho	lfo oda ar	Out am: So	ind	da ut e	for	ne or	B a of	· ·		•					10 10 11 11
o. Producting pasting maverengens of the knoddinthe pies		1. 2. 3. 4.	Dye Dye Effe Part Rhod	Las Las ect ial	ser ser of L S ine	D D S um D	egi egi tar mat	rad rad ndi tio	lat lat ing on	tio tio g (of	on on ove E I	Pa Pa eri La:	ara ara nig sen	ame ame ght	ete ete Cha	ers ers ers	S I La La	13: 13: 18: 18:	ar er ci:	nd P4 O St:	μ; ut; ic:	2 and pui 5 l	i t Us:	ins		•				•	6 7 8 9 14 15

ACKNOWLEDGEMENT

The author thanks Michael E. Pietrak for the performance of the majority of the experimental work described in this study. Ramon Hendrix helped with the data processing. Discussions with Richard H. Knipe gave valuable insight with respect to both photophysics and photochemistry.

INTRODUCTION

The flashlamp-pumped dye laser has proven to have limited usefulness as a portable military device because of the photodegradation of the dye solution. Although there have been state-of-the-art reviews on laser dyes, 1,2 the photodegradation of laser dyes, 3 and dye lasers, 4-6 only authors from, or funded by, military organizations have given strict attention to the interaction between dye photodegradation and the laser output. The work reported herein is the work performed in FY 80 that documents the stability of rhodamine laser dyes. Using the data of this report, it should be possible for the engineer to be able to predict the operational characteristics that could be expected using a comparable flashlamp-pumped dye laser. This work is a continuation of a series of studies reported in Applied Physics. 10-15

The basic philosophy guiding these studies has been to use commercial grade materials in a well-controlled laboratory environment. Thus, although extensive measurements are made on a given laser dye, the operational characteristics observed for that dye should be obtainable by anyone using normal care in handling dye laser materials. It should be noted that this study has not been directed specifically towards improving the operational characteristics of laser dyes; rather, this study has been directed towards establishing a base line for the normal stability and output that can be expected using the best commercially available materials.

EXPERIMENTAL

DYE LASER EQUIPMENT

A Phase-R DL 10Y (Phase-R Company, New Durham, New Hampshire) xenon-triaxial flashlamp was used to form a laser cavity to evaluate the dyes. A 60% reflectance curved (4 meter radius) multidielectric output mirror was used with a nominal 100% reflectance mirror to complete the lasing cavity. Plain quartz windows were used with the triaxial cell since our experience has shown that antireflectance coatings degrade under the sustained long-term lasing needed for dye stability measurements. In order to protect the mirrors from unnecessary degradation, cards were placed between the windows and the mirrors whenever laser

output was not being measured. A 0.16-ufarad capacitor in conjunction with an EG&G HY-3202 thyratron, and a 1.5-kW Hypotronics, Inc., 30 kV power supply was used to discharge the flashlamp. The dye solution was flowed from a reservoir to a 316 stainless steel variable-speed gear pump (MICROPUMP Corporation), through a 90-mm diameter 0.5-micron poresize Fluoropore filter (Millipore Corporation), through two 10-foot long stainless steel heat exchangers, through the laser, through a flow meter, and back to the reservoir. The first heat exchanger was tempered by ethanol from a constant temperature bath. The second heat exchanger was tempered by water that was circulating in a system identical to that of the dve solution except that the water flowed through the coolant portion of the triaxial flashlamp. The flow rate of the water coolant was varied so as to hold the two solutions to within 0.05° Celsius of each other (usually with the dye solution being held hotter than the coolant). The absolute value of the dye solutions was held at 25 ±1° Celsius. In general, the temperature of the dye solution started near 24°C at the start of the day and would be near 25.5°C by the end of the day. The dye solution was flowed at the rate of 8 ml/sec. A drain valve at the lowest portion of the flow system allowed either pure ethanol to be refluxed through the changed system on a continuous basis when dyes were being changed, or else for 95% ethanol followed by distilled-in-glass acetone to be used to flush out spent dye solutions. The refluxing process was performed for a minimum of 2 hours. The complete laser flow system consisted of glass, quartz, Delrin, polypropylene, epoxy, fluoropore, Teflon, silicone rubber (0-rings), ethylene propylene (0-rings), and stainless steel.

MATERIALS

Laser grade dyes from either Exciton or Eastman were used for most of this study. United States Industrial (USI) reagent grade 200-proof ethanol was used as a solvent for the laser dyes. No special precaution was used to exclude moisture, since previous experience has shown that 95% ethanol gave similar results to those obtained using pure ethanol. In a separate study, the USI reagent grade ethanol was found to give somewhat higher laser dye lifetimes and lower ultraviolet absorption than did Publicker or Goldshield 200-proof alcohols.

DETECTION EQUIPMENT

A Spex 0.75 meter spectrograph was used to detect lasing wavelengths with Polaroid 3000 speed black and white film, type 107. The calibration on the spectrograph was 1 mm = 1.075 nm in the region of 600 nm. Mercury emission lines were used to calibrate the Spex. A Techtronics 7844 dual-beam oscilloscope using United Detector Technology PIN 6LC Schottky barrier photodiodes were used to monitor the temporal characteristics of flashlamp and laser output. A Laser Precision Corporation Rk 3232 Energy Ratio Meter was used to follow the output of the dye laser using their 1 cm² detector.

PROCEDURE

Three to five hundred ml of dye solution was added to the dye laser and circulated about one-half hour prior to lasing in order to allow time for temperature equilibration. Each point needed for a slope efficiency and threshold was measured from the average of five flashes in sequence taken at a specific input voltage. The voltages were measured with a digital voltmeter. The flashes were made every 24 seconds. Results taken every 10 seconds gave comparable, but slightly more erratic, results. The dye solution was degraded further by 100 to 400 flashes at a nominal 30 J per flash at a rate of one flash every 5 seconds. A slope efficiency and threshold were again determined and the process repeated until the laser output had decreased to at least one-half of its initial value using the largest input energy. The temporal characteristics and the lasing wavelength could be measured at any time by means of light from a beam splitter in the path of the laser. Further details of the procedures and equipment can be found in Parts 1 and 2 of NWC TP 5768. 18,19

CALCULATIONS

Previous studies had shown that the laser output, ϕ , could be expressed by, 10 , 11

$$\phi = k (I - t) \tag{1}$$

$$\phi = (\mu_1 + \mu_2 T) (I_0 - \mu_4 T)$$
 (2)

where,

k = slope efficiency,

I = input energy stored in the capacitor prior to the flash in Joules,

t = threshold of lasing in Joules,

 $T = \Sigma I/V =$ total input energy per unit volume; V is the volume of the dye in liters, μ_1 , μ_2 , μ_3 , and μ_4 are laser degradation constants for a given set of experimental conditions, and $I_0 = I - \mu_3 =$ initial effective input energy.

The values of μ_1 , μ_2 , μ_3 , and μ_4 are determined by least square plots of,

$$k = \mu_1 + \mu_2 T \tag{3}$$

and,
$$t = \mu_3 + \mu_4 T \tag{4}$$

where k and t are determined as functions of T from plots of ¢ vs T at constant values of I. A number placed in a parenthesis following the laser degradation parameter will indicate the number of days of experimentation that was used in the calculation of the parameter. It should be noted from the Procedure section that these plots are derived from a

single experiment by varying the voltage to which the capacitor is charged, rather than a series of experiments each performed at a different value of I. As shown previously, the half-life value, τ , can be calculated by

$$\tau = -\mu_1/2\mu_2 \tag{5}$$

RESULTS

Table 1 shows the structure of rhodamine dyes that are readily available. Table 2 shows the values of μ_1 and μ_2 . Table 3 gives values of μ_3 , μ_4 , and τ for the 10 rhodamine dyes tested in FY 80. The linear regression coefficient $\bar{\tau}$ varies from -1 to +1 with a perfectly linear expression having an absolute value of 1. The number of values used in the linear regression is expressed by n.

TABLE 1. The Structure of Available Rhodamine Dyes.

$$R_1$$
 R_2
 R_3
 R_4
 R_3

Eastman dye designation	R ₁	R ₂	R ₃	R ₄	R ₅
Rh 110	Н	Н	Ħ	CO ₂ H	н
Rh 123	Ĥ	H	H	CO ₂ CH ₃	Н
Rh 116	Н	CH ₃	H	CO ₂ H	H
Rh 19	Н	C ₂ H ₅	CH ₃	CO ₂ H	Ħ
Rh6G	H	C2H5	CH ₃	CO₂Č₂H5	H
RhB	C ₂ H ₅	C ₂ H ₅	H	CÕ₂H Š	H
Rh3B	C ₂ H ₅	C ₂ H ₅	H	CO ₂ C ₂ H ₅	Н
Rh 101	RING	RING	RING	CŌźĤ	Ĥ
SRh B	C ₂ H ₅	C ₂ H ₅	H	ŠO3H	SO ₃ H
SRh 101	RING	RING	RING	SO ₃ H	SO ₃ H

NWC TP 6256

Dye	Conc.	Test #	11 (1) × 10+3	ил (2) ж 10 ^{‡3}	-112 (1) x 10+9 (J-1dm ³)	u2 (2) x 10+9 (J-1dm³)	-r (I)	-r (2)	n (I)	n (2)
Rh 110	2.0	5,228	1.00	0.92	8.1	4.9	0.98	0.93	25	13
Rh 123	7.0 0.0	, 64. 64.4	0.42	: :	. จ.ก	1 1	0.95		2 60 11	
RN 116	2.0	5,712	1.05	1.01	, 7, 7 , 2, 6,	4.4	86.0	0.95	റ ത	1.55
Rh 19	2.0	5,649	1.41	1.28	14.3	. v. c.	666	0.73	v 20 v	1 01 2
Rh 6G (TF) 6G (TF) 6G (P) 6G (CL)	0 - 1 - 1 - 2 4 0 0 0	5,218 5,214 5,407 5,631	2.46 1.80 2.17 1.28	1.21	24.2 16.6 21.4 6.5	1113	0.98	1 1 6	. @ 4 ~ ~	1111
-	0 0000	5,210 5,417 5,245 5,245	2:12 2:13 1:41	2:01	15.9 31.7 5.2	: • • • • • • • • • • • • • • • • • •	0.95 0.95 0.95	26.0 0.90 0.90 86.0	-v ræo	1111
Rh 3B	2.00	5,623 5,627	1.43	1.45	4.0 4.0 4.0	4 6.6 2.2 .	0.90	0.96 0.89 0.89	ဇာ ဇာ	77
Rh 101	2.0	5,442	2.46	2.23	8.5 5.5	15.3	0.93	0.96		15
SRI. II	7.0 0.0	5,601 5,605 5,605	2:16	1.87	51.5 14.2	19.7 8.8	0.99	0.91	ıΛœ	51
SR: 101	2.0	5,616	1.47	1.59			-0.26 0.86	0.97	· υ υ	121
TF " fetrafluoroborate	roborate	4 3 4	P w Perchlorate		Cl = Chlorate		ry short	* Very short run first day	t day	

Dye Laser Degradation Parameters 111 and 112.

TABLE 2.

NWC TP 6256

Dve	Conc.	Tast #	113 (E) (C)	69 (3)	(44) (Cdm ^(d))	иц (2) (dm ³)	-t (T)	-t (2)	t (1) (k.jdm ⁻³) (t (2) (k.Jdm ⁻³)
Rh 110	1.0	5,228	22.8	22.3	4, 6 4 6	7.0	0.99	0.99	61 54	81
Rh 123	7 7 0 0	649 643 749	26.7	1 1	26.9	1 1	9.93	***	22 23	1 1
Rh 1.16	7.0 7.0	5,712 2,706	17.9	2.67 29.0	23 20	ক ক ক ক	0.98 0.99	0.85	69 48	22
Rh 19	2.0	5,649	16.9	17.5	11.5	ν.4. απ	0.97	0.83	49 35	116 66
85 88 88 88 88 88 88 88 88 88 88 88 88 8	40000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55000 55000 55000 55000		,0404 ,0404	11161	00404 288 289 200	11191	5 5 5 5 6 7 7 7 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7 8	143
	4444 0000	25.55 44.55 45.55 75.55 75.55 75.55	4 1 9 9 1 1 8 1 9 9 9 9 9 9 9 9 9 9 9 9 9	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0000 0000	4446	0.00 0.00 0.00 0.00	0.90	90 38* 134 88	163 115 185 143
Rh 3B	44	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	220	20.4 20.4 4.8	4.4 Q.n	4.0 6.4	0.94	0.97	178	222 170
Rh 101	7.0 7.0	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14.6	14.1	8 7 9 7	6.1 1.1	0.90	0.96	9 7	73 98
SRN B	2.0	s,601 8,603	17.5	17.2	12.5 14.4	12.6	0.99	0.97	21 43	37 65
SR1 101	ÓÖ	5,616	14.8 9.9	4 4 4 4 6 6	Ç.	ā n	0.36	96.0	1 607	246 301

DISCUSSION

ONE DAY VERSUS TWO DAYS

In contrast to the coumarin dyes, most of the rhodamine dyes show a considerable increase in laser output after standing overnight. An example of this is seen in Figures 1 and 2. The exceptions to this were sulforhodamine 101 and rhodamine 101 shown in Figures 3 and 4. These two dyes have their amino groups restricted from rotation by the aliphatic rings. Examples of the amount of the overnight increase is given in Table 4 calculated for the maximum I values used in an experiment.

TABLE 4. Effect of Standing Overnight on Laser Output.

Dye	Molar Çonc.	Input Energy, I	Percent	Change
	× 10 ⁴	(Joules)	2nd Day	3rd Day
Rh 110	1	40	+23	
Rh 123		_ =		
Rh 116	1	40	+35	
	2	40	+35	
Rh 19	1	3 5	+78	
	2	35	+53	
Rh 6G	1	30	+90	<u></u>
	2	40	+50	+73
Rh B	1	35	+16	
	1	35	+12	
	2	40	+11	<u></u>
Rh 3B	gran.	40	+25	-÷
	2	40	+20	**
Rh 101	*Bunk	30	- 9	
	-	35	- 5	
SRh B	4	35	+56	~~
	2	40	+42	7.4
SRh 101	general de la company de la co	35	- 1	- 4
	2	35	- 6	18

FIGURE 1. Evidence of Dye Recovery. Laser Output for a 1.0 x 10^{-4} Molar Solution of Sulforhodamine B (Kiton Red S) in Ethanol.

FIGURE 2. Evidence of Dye Recovery. Laser Output for 1 1.0 x 10^{-4} Molar Solution of Rhodamine 3B Perchlorate in Ethanol.

FIGURE 3. Laser Output for 1.0 x 10^{-4} Molar Solution of Sulforhodamine 101 in Ethanol.

FIGURE 4. Laser Output for a 1.0 x 10^{-4} Molar Solution of Rhodamine 101 Perchlorate in Ethanol.

The increase in the laser output is apparently due to an increase in the percent transmission at the lasing wavelength caused by the slow reaction of a photoproduct. The lack of increase for rhodamine 101 and sulforhodamine 101 suggests that the ring system of these two dyes inhibits formation of the unstable photoproduct(s) that absorb at the lasing wavelength. The reaction scheme can be depicted as:

$$D = hv \rightarrow D^* \tag{6}$$

or
$$S + hv \rightarrow S^*$$
 (7)

where D represents a dye molecule, S represents a solvent molecule, and D* and S* are energy-rich molecules. If the energy-rich dye is considered as the starting point (e.g., the electronically excited triplet state), it is possible to speculate an overall reaction

$$xD* + yS \rightarrow L_{i} + P_{i}$$
 (8)

where $L_{\rm i}$ is a product that absorbs at the lasing wavelength and $P_{\rm i}$ absorbs light at other than the lasing wavelength. The overnight recovery can be explained by

$$-dL_{i}/dt \neq 0$$
 (9)

The term $L_{\underline{i}\underline{i}}$ used as more than one product is possible. In fact it is likely that reactions of the type

$$L_1 \rightarrow L_2 \rightarrow P_1 \tag{10}$$

occur.

Although a recovery is seen in Figures 1 and 2, it is noted that further testing causes a marked decrease in the "recovery." This observation suggests that a reaction of the following sort occurs

$$P + hv \rightarrow L \tag{11}$$

Thus the rapid drop in laser output occurs only after product P is in the solution.

The above variation in absorption at the lasing wavelength causes Equations 1 and 2 to be only approximations that would be valid for dyes examined at the same rate of flashlamp input. However, since relative data between different dyes can be obtained, we have proceeded to make measurements with these inexact data. In order to give better insight as to the effects of dye solution "recovery," the data have been calculated on the basis of 1-day and 2-day runs where the stability of the dye warranted measurements on the second day. The linear regression coefficient is lower for the 2-day run whenever there is a marked recovery as can be seen in Figures 1 and 2 and Tables 2 and 3.

TYPE OF DYE

Table 5 shows the dyes grouped by their functional groups. The addition of methyl groups to the rhodamine amino groups shown in the results of Table 5 appear to give no better dye stability than that found with just the hydrogen atoms. In turn, fixing the amino groups with an aliphatic ring as is observed with sulforhodamine 101, gives more laser dye stability for sulforhodamine 101 but not for rhodamine 101. Fixing the amino group does lower the threshold of lasing as shown in Table 5, as well as stop the overnight recovery shown in Figures 1-4 for both rhodamine 101 and sulforhodamine 101. The free amines appear to be poor lasing dyes with respect to threshold and slope efficiency shown in Table 5. Effects of mirror alignment tend to make the relative values of slope efficiency less accurate than the other measurements, so that relative threshold values are probably more reliable.

The one measurement that is distinctly different for the various types of rhodamine dyes is the initial lasing wavelength for a given concentration of dye. Table 5 gives the results for the lasing wavelength midpoint of 10⁻⁴ M solutions while Table 6 gives the more complete data. Here the increasing shift to higher wavelengths (red shift) is seen with substitution at the 3,6-amine by methyl groups, as well as the marked red shift when the ring groups prevent rotation. Although the 9-substituted phenyl group is supposed to be electronically insulated from the pyronine moiety, the change from a carboxyphenyl to a carboethoxyphenyl gives a distinct red shift. In nonpolar solvents, the free acids are known to form nonfluorescent, nonlasing, inner lactone rings.² Thus, dyes such as rhodamine 110 or 116 would have a propensity to be poorer laser dyes than would rhodamine 123. Our results, however, indicate that rhodamine 123 is found to be the inferior dye of the three in ethanol.

TABLE 5. Partial Summation of Laser Characteristics Using Rhodamine Dyes

		9-Substitution	n
3,6-Amine	<u>Disulfophenyl</u>	<u>Carboxyphenyl</u>	<u>Carboethoxyphenyl</u>
	Dye desig	gnations	
Ring	SRh 101	Rh 101	
Diethyl	SRh B	Rh B	Rh 3B
Mono ethyl (methyl)		Rh 19 (116)	Rh 6G
Unsubstituted		Rh 110	Rh 123
Nominal Single-	-Day Lifetime (K.	JdM ⁻³), for 1 x 1	10 ⁻⁴ M Solutions
Ring	∿ 250	45	
Diethyl	20	65	180
Mono ethyl (methyl)		50 (70)	50
Unsubstituted	***	60	35
Nominal Two-L	ay Lifetime (KJo	M ⁻³), for 1 x 10	O ⁻⁴ M Solutions
Ring	250	75	
Ďietkýl	65	140	220
Mono éthyl (méthyl)		115 (95)	
Unsubstituted		95	
Thre	shold (Joules),	1 x 10 ⁻⁴ M Solut	ions
Ring	14	14	
Diethyl	17	18	20
Mono ethyl (methyl)		17 (18)	14
Unsubstituted	~-	23	27
Slope Effi	ciency Values (x	$(10^3), 1 \times 10^{-4}$	M Solutions
Ring	1.5	2.2	•
Diethyl	2.2	2.2	1.45
Mono ethyl (methyl)		1.4 (1.0)	2.2
Unsubstituted		1.0	0.42
<u>Initial Midpoi</u>	nt Lasing Wavele	ength (nm), 1 x 1	10 ⁻⁴ M Solutions
Ring	647	651	
Diethy1	626	624	629
Mono ethyl (methyl)		593 (592)	595
Unsubstituted		572	579
			

TABLE 6. Broadband Lasing Wavelengths of the Rhodamine Dyes.

		<u>Lasing Wa</u>	velength, nm Approximate
Dye	Conc. x 10 ⁴	Range	Midpoint
Rh 110	1.0 2.0	567–577	572
Rh 123	1.0	574-585	579
	2.0	575-586	580
Rh 116	1.0	584-600	592
	2.0	588-599	594
Rh 19	1.0	586-600	593
	2.0	589-599	594
Rh 6G	0.37	582-604	593
	1.0	584-603	595
	2.0	591-606	598
Rh B	1.0	617-631	624
	2.0	621-632	626
Rh 3B	1.0	622–636	629
	2.0	624–635	630
Rh 101	1.0	644 – 657	651
	2.0	649–660	654
SRh B	1.0	620-632	626
	2.0	621-630	626
SRh 101	1.0	640–655 645–656	647 650

REFERENCES

- 1. K. H. Drexhage. "What's Ahead in Laser Dyes," Laser Focus, Vol. 9, No. 3 (March 1973), pp. 35-39.
- K. H. Drexhage, Chap. 4 in Dye Lasers, 2nd ed., ed. by F. P. Schüfer, Topics Appl. Phys. Vol. 1, (Springer, Berlin, Heidelberg, New York) (1978), Chap. 4.
- 3. R. S. Sinclair. "The Light Stability and Photodegradation of Dyes," *Photochem. and Photobro.*, Vol. 31 (1980), pp. 622-629.
- F. P. Schäfer (Ed.). Dye Lasers, 2nd ed., Topics Appl. Phys., Vol. 1 (Springer, Berlin, Heidelberg, New York) (1978).
- 5. R. C. Cunningham. "Another Look at Dye Lasers," *Electro-Opt. Sys. Design*, Vol. 10, No. 5 (May 1978), pp. 50-54.
- S. Kimel and S. Speiser. "Lasers and Chemistry," Chem. Rev., Vol. 77, No. 4 (1977), pp. 437-472.
- E. J. Schimitschek and others. "New Improved Laser Dye for the Blue-Green Spectral Region," *IEEE J. Quant. Electr.*, QE-9 (1973), pp. 781-782.
- E. J. Schimitschek and others. "Laser Performance and Stability of Fluorinated Coumarin Dyes," Opt. Comm., Vol. 11 (1974), pp. 352-355.
- 9. E. J. Schimitschek and others. "New Laser Dyes with Blue-Green Emission," Opt. Comm., Vol. 16, No. 3 (March 1976), pp. 313-316.
- 10. A. N. Fletcher. "Laser Dye Stability. Part 2. Input Energy Per Flash, Dye Concentration, and Mirror Reflectivity Effects," Appl. Phys., Vol. 12 (1977), pp. 327-332.
- 11. A. N. Fletcher. "Laser Dye Stability. Part 3. Bicyclic Dyes in Ethanol," Appl. Phys., Vol. 14 (1977), pp. 295-302.
- 12. A. N. Fletcher. "Laser Dye Stability. Part 4. Photodegradation Relationships for Bicyclic Dyes in Alcohol Solutions," *Appl. Phys.*, Vol. 16 (1978), pp. 93-97.

- A. N. Fletcher and D. E. Bliss. "Laser Dye Stability. Part 5. Effect of Chemical Substituents of Bicyclic Dyes upon Photodegradation Parameters," Appl. Phys., Vol. 16 (1978), pp. 289-295.
- 14. A. N. Fletcher, D. A. Fine, and D. E. Bliss. "Laser Dye Stability. Part 1. Flash Frequency and Fluid Filtration Effects," Appl. Phys., Vol. 12 (1977), pp. 39-44.
- 15. A. N. Fletcher. "Laser Dye Stability. Part 6. Flashlamp-pumped Tricarbocyanine Near-Infrared Dyes," Appl. Phys., Vol. 22 (1980), pp. 227-231.
- 16. E. A. Dorko and others. "Kinetic Studies of Kiton Red S Photo-decomposition Under Continuous Working and Flash Photolytic Conditions," J. of Photoshem., Vol. 12 (1980), pp. 345-356.
- 17. S. Edward Neister. "The Dye Laser Dye Update," Opt. Spec., (February 1977), pp. 34-36.
- 18. Naval Weapons Center. Near-Ultraviolet Lasing Dyes. Part 1.

 Search for New Dyes and Summation of Results, by Peter R. Hammond and others. China Lake, Calif., NWC, September 1975. (NWC TP 5768, Part 1, publication UNCLASSIFIED.)
- 19. Naval Weapons Center. Near-Ultraviolet Lasing Dyes. Part 2. Effects of Coaxial Flashlamp Excitation, by Aaron N. Fletcher. China Lake, Calif., NWC, September 1975. (NWC TP 5768, Part 2, publication UNCLASSIFIED.)

INITIAL DISTRIBUTION

```
1 Assistant Deputy Chief of Naval Material for Laboratory Management (MAT-08L)
  13 Naval Air Systems Command
       ADPO-32A (1)
       AIR-00D4 (2)
      AIR-30212 (2)
      AIR-310, H. J. Mueller (1)
      AIR-310B, J. W. Willis (1)
      AIR-350 (1)
      AIR-360G, A. S. Glista, Jr. (1)
      AIR-54922B, W. K. Whitting (3)
      A. D. Klein (1)
  1 Chief of Naval Operations (OP-0982F4)
  5 Chief of Naval Material
     MAT-03 (1)
     MAT-03PB (1)
     MAT-032B (1)
     MAT-0343 (1)
     NSP-001 (1)
 2 Naval Electronics Systems Command
     NELEX-304, J. Cauffman (1)
     N. Butler (1)
 4 Naval Sea Systems Command
     SEA-05R14 (1)
     SEA-62R (1)
     SEA-99612 (2)
8 Chief of Naval Research, Arlington
     ONR-420 (1)
    ONR-421 (1)
    ONR-427
      L. Cooper (1)
      J. Dimmock (1)
      G. Wright (1)
    ONR-472
      W. J. Condell, Jr. (1)
      R. Morris (1)
      G. Neece (1)
6 Naval Ocean Systems Center, San Diego
    M. Geller (1)
   J. M. Hood, Jr. (1)
```

```
T. G. Pavlopoulos (1)
     E. J. Schimitschek (1)
     D. Stierwalt (1)
     H. Wieder (1)
 2 Naval Postgraduate School, Monterey
     E. Crittenden (1)
     J. Neighbours (1)
16 Naval Research Laboratory
     Code 5000 (1)
     Code 5200 (1)
     Code 5290 (1)
     Code 5530, R. Patton (1)
     Code 6000 (1)
     Code 6003, F. Patton (1)
     Code 6130 (1)
     Code 6330 (1)
     Code 6500 (1)
     Code 6503, Laser Technology Program, J. MacCallum, Jr. (1)
     Code 6509 (1)
     Code 6510.3, M. Hass (1)
     Code 6530 (1)
     Code 6570, H. Taylor (1)
     Code 6800 (1)
     W. R. Hunter (1)
10 Naval Surface Weapons Center Detachment, White Oak Laboratory,
   Silver Spring
     J. Dixon (1)
     K. Enkenhus (1)
     R. Greene (1)
     E. L. Harris (1)
     L. A. Lee (1)
     H. R. Riedl (1)
     W. Scanlon (1)
     L. H. Schindel (1)
     J. Wise (1)
     Technical Library (1)
 2 Office of Naval Research Branch Office, Boston
     F. Quelle (1)
     M. White (1)
 2 Office of Naval Research Branch Office, Pasadena
     R. Behringer (1)
     R. Marcus (1)
20 Office of Navy Technology
     MAT-07(1)
     MAT-07B (1)
     MAT-07C (1)
     MAT-07P (1)
```

```
MAT-071 (1)
      62332N (1)
      62633N (1)
      62734N (1)
      62761N (1)
    MAT-072 (1)
      62711N (1)
      62712N (1)
      62721N (1)
      62735N (1)
      62759N (1)
      62762N (1)
      62764N (1)
      62765N (1)
    MAT-073 (1)
      62766N (1)
2 Pacific Missile Test Center, Point Mugu
    Code 5352, G. Gibbs (1)
    Technical Library (1)
1 Army Combat Developments Command, Air Defense Agency, Fort Bliss
1 Army Combat Developments Command, CBR Agency, Fort McClellan
  (CDCCBR-MR, F. D. Poer)
1 Army Combat Developments Command, Fort Leavenworth (Combat Arms
  Group, Col. McFall)
3 Army Electronics Command, Fort Monmouth
    AMSEL-CT-L-G, T. Ewanizky (1)
    AMSEL-TL-IJ, L. Wandinger (1)
    DRSEL-TL-ESG, T. AuCoin (1)
2 Army Materiel Development and Readiness Command, Alexandria
    AMCRD-TP, B. Zarwyn (1)
    P. Chernoff (1)
3 Army Missile Command, Redstone Scientific Information Center, Redstone
  Arsenal
    T. Barr (1)
    J. P. Hallowes (1)
    W. Jennings (1)
1 Army Weapons Command, Rock Island Arsenal (SWERR-R, J. W. McGarvey)
3 Army Ballistic Missile Defense Program Office, Arlington
  (A. J. Bast, Jr.)
3 Army Ballistic Research Laboratories, Aberdeen Proving Ground
    E. C. Alcarez (1)
    F. Allen (1)
    R. Eichelberger (1)
1 Army Research Office, Duke University, Durham (H. Whitman)
3 Ballistic Missile Defense Advanced Technology Center, Huntsville
    CRDABH-0 (1)
    RDMH-M, B. Shratter (1)
    F. Hoke (1)
1 Night Vision Laboratory, Fort Belvoir (R. G. Buser)
```

2 Office Chief of Research and Development DARD-ARP-P, Watson (1) DARD-MSA (1) 3 Redstone Arsenal AMSMI-RRE, J. Bennet (1) AMSMI-QPA, G. Hutcheson (1) HEL Program Office, B. Jennings (1) 2 Headquarters, U.S. Air Force

AF/RDPS, Col. Parsons (1)

INAKA, Lt. Col. W. M. Truesdell (1)

2 Air Force Systems Command, Andrews Air Force Base DLTW, Lt. Col. A. J. Chiota (1) XRLW, Capt. E. H. Cobb (1)

1 Aeronautical Systems Division, Wright-Patterson Air Force Base (XRF, C. Fawcett)

4 Air Force Wright Aeronautical Laboratories, Wright Patterson Air Force Base AFWAL/AADD, K. Hutchinson (1) AFWAL/AADO-1, T. L. Williamson (1) AFWAL/AAWD-2, S. Johnson, Jr. (1)

AFWAL/RAWD-2, 5. Johnson, 51.

AFWAL/PO, Col. Strand (1)

2 Air Force Cambridge Research Laboratories, Laurence G. Hanscom Field
 J. Garing (1)
 A. Kahan (1)

1 Air Force Institute of Technology, Wright-Patterson Air Force Base

(E. A. Dorko)
1 Air Force Medical Research Laboratory, Wright-Patterson Air Force
Base (Maj. M. R. Fossett, Jr.)

1 Air Force Office of Scientific Research, Bolling Air Force Base (Code 223, L. C. Kravitz)

1 Air Force Rocket Propulsion Laboratory, Edwards Air Force Base (LKCG, B. R. Bornhorst)

1 Air Force Rocket Propulsion Laboratory, Edwards Air Force Base (PYSP, Capt. S. Thompson)

1 Air Force Weapons Laboratory, Kirtland Air Force Base (HELPLO,
 J. Walsh)

2 Bolling Air Force Base (AFOSR/NE, M. Swerdlow)

2 Electronics Systems Division, Laurence G. Hanscom Field
 XRJ, Capt. J. C. Jalbert (1)
 XRT, A. E. Anderson (1)

2 Foreign Technology Division, Wright-Patterson Air Force Base
PDTA (1)
PDTR (1)

1 Laurence G. Hanscom Field (RADC/ETSP, C. Sahagian)

2 Rome Air Development Center, Griffiss Air Force Base OCTE (1)

F. J. Rehm (1)

1 Space and Missile Systems Organization, Sunnyvale Air Force Station (AFUPO/XRTD, Lt. D. DeMaio)

```
1 Assistant Secretary of Defense (Systems Analysis, Strategic Programs,
  G. R. Nichols)
 2 Director of Defense Research and Engineering
     Assistant Director I&C (1)
     SW, B. T. Plymale (1)
2 Under Secretary of Defense for Research and Engineering
    G. Gamota (1)
    L. Sumney (1)
5 Defense Advanced Research Projects Agency, Arlington
    Director, Laser Division (1)
    Maj. R. Paulsen (1)
    Maj. H. Winsor (1)
    R. Reynolds (1)
    M. Stickley (1)
1 Arms Control and Disarmament Agency (C. Henkin)
12 Defense Technical Information Center
1 Department of Energy (F. C. Schwenk)
2 Ames Research Center, Moffett Field, CA
    K. Billman (1)
    R. L. McKenzie (1)
9 Goddard Space Flight Center, Greenbelt, MD
    L. Caudill (6)
    L. Dunkelman (1)
    M. Fitzmaurice (1)
    F. Paul (1)
1 Lewis Research Center, NASA, Cleveland (J. W. Dunning, Jr., Aerospace
  Research Engineer)
2 AVCO Research Laboratory, Everett, MA (G. P. Millburn)
1 Airsearch Manufacturing Company, Los Angeles, CA (A. C. Stancliffe)
1 Analytic Services, Inc., Falls Church, VA (J. Davis)
2 Applied Physics Laboratory, JHU, Laurel, MD
    R. E. Gorozdos (1)
    A. Stone (1)
1 Atlantic Research Corporation, Alexandria, VA (R. F. Hoglund,
  Propulsion Division)
2 Battelle Memorial Institute, Columbus, OH
    STOIAC, F. Tietzel (1)
    R. E. Schwerzel (1)
2 Battelle Memorial Institute, Pacific Northwest Laboratory,
  Richland, WA
    DSB 3000 Area, R. S. Gordon (1)
    MET. DEV. Department 231F, R. W. Stewart (1)
1 Boston University, Boston, MA (G. Jones)
1 Candela Corporation, Natick, MA
4 Eastman Kodak Co., Kodak Research Laboratory, Rochester, NY
    K. H. Reynolds (1)
    B. B. Snavely (1)
    F. G. Strome, Jr. (1)
    F. G. Webster (1)
```

```
1 Electro Optical Systems, Inc., Pasadena, CA (A. Jensen)
1 Environmental Research Institute of Michigan, Ann Arbor, MI
    (G. Zissis)
1 Exciton Chemical Company, Dayton, OH
1 General Electric Company, Defense Electronics Division, Pittsfield,
  MA (G. Harrington, Room 1044)
1 General Electric Company, Missile Space Vehicle Department,
  Philadelphia, PA (W. J. East, Space Division)
1 General Research Corporation, Santa Barbara, CA (R. Holbrook)
1 Hercules, Incorporated, Cumberland, MD (R. F. Preckel)
1 Hercules, Incorporated, Research Center, Wilmington, DE (J. E. Greer,
  Director, Systems Group, Industrial Systems Department)
1 Honeywell, Inc., Systems & Research Center, Minneapolis, MN
1 Hughes Aircraft Company, Canoga Park, CA (Aerospace Group, Systems
  Division)
5 Hughes Aircraft Company, Culver City, CA
    M. Braunstein (1)
    P. O. Clark (1)
   D. Forster (1)
    E. Peressini (1)
    J. Rogers, MS/D 1281 (1)
1 Hughes Aircraft Company, Fullerton, CA (W. Yates)
1 Institute for Defense Analyses, Arlington, VA (A. Schnitzler)
5 Lincoln Laboratory, MIT, Lexington, MA
    R. S. Cooper (1)
    G. P. Dinneen (1)
    S. Edelberg (1)
    J. Freedman (1)
    R. Kingston (1)
2 Lockheed Missiles and Space Company, Sunnyvale, CA
    L. R. Lunsford (1)
    K. Schneider (1)
1 Los Alamos Scientific Laboratory, Los Alamos, NM (M. Piltch)
2 Martin-Marietta Corporation, Denver, CO
    S. Chapin (1)
    S. Giles (1)
3 Mathematical Sciences Northwest, Bellevue, WA
    Research Center, J. E. Janssen (1)
    A. Hertzberg (1)
    P. H. Rose (1)
1 McDonnell Douglas Astronautics Company, Huntington Beach, CA
  (P. L. Klevatt, Department A3-830-BBFO, M/S 9)
1 McDonnell Douglas Corporation, St. Louis, MO (D. P. Ames,
  Department 220)
1 Mitre Corporation, Bedford, MA (A. C. Cron)
1 New England Nuclear, Pilot Division, Westwood, MA
1 Northrop Corporation, Norair Division, Hawthorne, CA (G. Hasserjian,
  Laser Systems Department)
2 Oak Ridge National Laboratory, Oak Ridge, TN
    Research Materials Information Center (1)
```

E. T. Arakawa (1)

```
1 Phase-R Company, New Durham, NH (S. E. Neister)
1 Physics International, San Leandro, CA (A. F. Klein, Director,
  Applied Science Department)
2 R&D Associates, Marina del Rey, CA
    R. Hundley (1)
    R. E. LeLevier (1)
1 Radio Corporation of America, Moorestown, NJ (J. J. Mayman, Systems
  Projects)
1 Raytheon Company, Waltham, MA (F. A. Horrigan, Research Division)
3 Riverside Research Institute, New York, NY
    J. Bose (1)
    L. H. O'Neill (1)
    HPEGL Library, H. Cressman (1)
3 Rockwell International Corporation, Anaheim, CA
    Autonetics Division
      Code HA18, T. T. Kumagai (1)
      J. Daugherty (1)
      G. Sutton (1)
2 SRI International, Menlo Park, CA
    H. E. Lindberg (1)
    J. E. Malick (1)
1 TROSCOM, Natick Laboratories, Natick, MA
1 TRW, Inc., Redondo Beach, CA (N. Campbell)
2 The Boeing Company, Seattle, WA (E. K. Bjornerud)
1 The Rand Corporation, Santa Monica, CA (C. R. Culp/S. A. Carter)
1 Thiokol Chemical Corporation, Wasatch Division, Brigham City, UT
  (J. M. Mason)
2 United Aircraft Corporation, East Hartford, CT
    A. Angelbeck (1)
    G. H. McLafferty (1)
3 United Aircraft Corporation, West Palm Beach, FL
    E. Pinsley (1)
    R. A. Schmidtke (1)
4 University of Arizona, Optical Sciences Center, Tucson, AZ
    C. L. Blenman (1)
    B. O. Seraphin (1)
    F. Turner (1)
    W. L. Wolfe (1)
2 University of California, Lawrence Radiation Laboratory, Livermore,
    P. Hammond (1)
    M. Spaeth (1)
1 University of New Mexico, Albuquerque, NM (G. H. Daub, Department
  of Chemistry)
1 VARIAN Associates, San Carlos, CA (J. Quinn, EIMAC Division)
1 Vought Corporation, Systems Division, Dallas, TX (F. G. Simpson)
3 Westinghouse Defense and Space Center, Baltimore, MD (R. A. Lee)
1 Westinghouse Electric Corporation, Research and Development
```

Laboratories, Pittsburgh, PA (E. P. Riedel)