Problem 28.

For all integers a,b, and c, if $a\mid bc$ then $a\mid b$ or $a\mid c.$ False

Counter-example. Let a = 4, b = 6, c = 10

$$a \mid bc = 4 \mid 60$$

 $4 \nmid 6 \& 4 \nmid 10$

: by counter-example, the statement is false.

Problem 29.

Theorem: For all integers a and b, if $a \mid b$ then $a^2 \mid b^2$.

Proof. Let $a, b \in \mathbb{Z} \ni a$ divides bBy definition of divisibility, $\exists k \in \mathbb{Z} \ni b = ak$

$$b^2 = a^2 k^2$$

by substitution

Let $t=(k^2),\,t\in\mathbb{Z}$ by the closure of integers by multiplication Therefore, $a^2\mid b^2$ by definition of divisibility since $b^2=a^2t$ where $t\in\mathbb{Z}$ by substitution