Differential Equations

Lecture Set 01
Course Overview and
Introduction to Differential Equations

林惠勇 Huei-Yung Lin

lin@ee.ccu.edu.tw

Robot Vision Lab Department of Electrical Engineering National Chung Cheng University Chiayi 621, Taiwan

Course Overview

- Instructor
 - ▶ 林惠勇, lin@ee.ccu.edu.tw
 - ▶ Office Hour: Wed. 10:00 12:00, or by appointment
 - Room 431A
 - Phone: (05) 272-0411 ext. 33224
- Class Time and Place
 - ► Tu, Th: 13:00 14:30 (originally 13:15 14:30)
 - ▶ Room 127
- Teaching Assistant
 - Office Hours: 8 hours total
 - ▶ Room 122
 - Phone: (05) 272-0411 ext. 23274

Course Overview

Course Webpage

- School's ecourse website
- ▶ The lecture slides will be posted on the course website.
- Old lecture slides (from the previous year) are also available on the ecourse website.

Textbook:

- ▶ Differential Equations with Boundary-Value Problems, Metric Version, 9th Edition by Dennis G. Zill, ISBN: 978-1-337-55988-1, CENGAGE Learning
- Differential Equations with Boundary-Value Problems, Metric Version, 8th Edition, by Zill and Wright, ISBN: 987-1-305-97063-2, CENGAGE Learning

Reference:

▶ Differential Equations, 3rd Edition, by S. L. Ross, ISBN: 978-0471032946, John Wiley & Sons

Rules – How To Survive This Course?

- Exams 75%
 - ► Three exams 25% each
 - ► One optional final exam 25% (comprehensive)
- Homeworks 5%
 - No late homework
 - Only 2 problems will be graded (More will be discussed later.)
- Quizzes and participation 20%
 - Several in-class quizzes (9/24, 11/7, 12/12, to be confirmed)
 - Most problems from homework exercises and textbook examples
- Important dates: (TBC)
 - ► Exam I: 10/8, 13:00 14:30
 - Exam II: 11/26, 13:00 14:30
 - ► Exam III: 1/2, 13:00 14:30
 - ► Exam IV (optional, comprehensive): 1/9, 13:00 14:30

Rules – How To Survive This Course?

- Extra lectures:
 - ▶ 13:00 13:15, 15 minutes before lectures, starting this Thursday
- Absolutely NO makeup exams!!!
 - Exam IV can fill one skipped exam.
- Do NOT skip classes.
- Take notes in class, not everything will appear on lecture slides.
- Do the homework by yourself.

Questions?

Course Objective

- To familiarize students with theories of differential equations and problem-solving techniques.
- The goal of the course is to train the students with capabilities of building mathematical models for the physical systems and solve them in the time domain.

Course Topics

- Introduction to Differential Equations
- First-Order Differential Equations
- Higher-Order Differential Equations
- Series Solutions of Linear Equations
- The Laplace Transform
- Systems of Linear First-Order Differential Equations
- Numerical Solutions of Ordinary Differential Equations
- Fourier Series
- Boundary-Value Problems in Rectangular Coordinates
- Integral Transforms

Definition 1.1.1: Differential Equation

Definition (1.1.1: Differential Equation)

An equation containing the derivatives of one or more <u>dependent</u> variables, with respect to one or more <u>independent</u> variables, is said to be a **differential equation (DE)**.

Example

The equation

$$\frac{dy}{dx} = 0.2xy$$

is a differential equation and its solution is

$$y = e^{0.1x^2}$$

Note that the above equation is differentiable on the interval $(-\infty, \infty)$.

Example

Example

The equation

$$\frac{dy}{dx} = 0.2xy$$

is a differential equation and its solution is

$$y = e^{0.1x^2}$$

Classification of Differential Equations

The differential equations can be classified by **type**, **order**, and **linearity**.

- Classification by Type:
 - Ordinary differential equation (ODE):

$$\frac{dy}{dx} + 5y = e^x, \qquad \frac{d^2y}{dx^2} - \frac{dy}{dx} + 6y = 0, \qquad \frac{dx}{dt} + \frac{dy}{dt} = 2x + y$$

Partial differential equation (PDE)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2} - 2\frac{\partial u}{\partial t}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

➤ ODE has derivatives with respect to one independent variable, but PDE has derivatives with respect to several independent variables.

Classification of Differential Equations

- Classification by Order:
 - First order differential equation

$$\frac{dy}{dx} + 5y = e^x, \qquad M(x, y)dx + N(x, y)dy = 0, \qquad \frac{dy}{dx} = f(x, y)$$

Second order differential equation

$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^3 - 4y = e^x, \qquad \frac{d^2y}{dx^2} = f(x, y, y')$$

nth order differential equation

$$F(x, y, y', y'', \dots, y^{(n)}) = 0,$$
 $\frac{d^n y}{dx^n} = f(x, y, y', y'', \dots, y^{(n-1)})$

The second one is referred to as the **normal form** of the first one.

Named by the highest order of derivatives involved.

Classification of Differential Equations

- Classification by Linearity:
 - Linear differential equation

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g(x)$$

$$(y-x)dx + 4xdy = 0, \qquad y'' - 2y' + y = 0, \qquad \frac{d^3 y}{dx^3} + x\frac{dy}{dx} - 5y = e^x$$

Nonlinear differential equation

$$(1-y)y' + 2y = e^x$$
, $\frac{d^2y}{dx^2} + \sin y = 0$, $\frac{d^4y}{dx^4} + y^2 = 0$

► Check the linearity of the <u>dependent</u> variables. (The linear combination of dependent variable's differentiation <u>only</u>. That is, 1, *y*, *y'*, *y''*, · · · .)

Definition 1.1.2: Solution of an ODE

Definition (1.1.2: Solution of an ODE)

Any function ϕ , defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an nth-order ODE reduces the equation to an identity, is said to be a **solution** of the equation on the interval.

In other words, a solution of an *n*th ODE

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

is a function ϕ that possesses at least n derivatives and for which¹

$$F(x, \phi(x), \phi'(x), \phi''(x), \cdots, \phi^{(n)}(x)) = 0$$
 for all x in I

¹That is, $y = \phi(x), ...$

Interval of Definition

The interval I in the definition is variously called the **interval of definition**, the **interval of existence** and can be an open interval (a,b), a close interval [a,b], an infinite interval (a,∞) , and so on.

Example 5: Verification of a Solution

Verify that the indicated function is a solution of the given DE on the inverval $(-\infty,\infty)$.

(a)
$$\frac{dy}{dx} = xy^{1/2}$$
; $y = \frac{1}{16}x^4$

(b)
$$y'' - 2y' + y = 0$$
; $y = xe^x$

Solution Curve

The graph of a solution ϕ of an ODE is called a **solution curve**.

Example

The graph $\phi(x) = \frac{1}{16}x^4$ is a solution curve of $dy/dx = xy^{1/2}$ from the previous example.

Since ϕ is a <u>differentiable</u> function, it is <u>continuous</u> on its interval I of definition.

Thus, there may be a difference between the graph of the function ϕ and the graph of the solution ϕ .

The domain of the function ϕ need not be the same as the interval I of definition (or domain) of the solution ϕ .

Example: Function versus Solution

- The domain of y = 1/x, considered as a <u>function</u>, is the set of all real numbers x except 0. A plot of the function is shown in (a).
- The function y = 1/x is also a solution of the linear 1st-order differential equation xy' + y = 0. (Verify this!)
- When we say y = 1/x is a <u>solution</u>, we mean it is a function defined on I on which it is differentiable and satisfies the DE. Thus, y = 1/x is a solution of the DE on <u>any interval</u> not containing 0.

Explicit Solution

A solution in which the dependent variable is expressed solely in terms of the independent variable and constants is said to be an **explicit solution**.

Example

$$y = \phi(x),$$
 $y = \frac{1}{16}x^4,$ $y = xe^x,$ $y = 1/x$

Definition 1.1.3: Implicit Solution of an ODE

Definition (1.1.3: Implicit Solution of an ODE)

A relation G(x, y) = 0 is said to be an **implicit solution** of an ODE

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

on an interval I, provided there exists <u>at least one</u> function ϕ that satisfies the relation as well as the differential equation on I.

Example 7: Verificaion of an Implicit Solution

The relation $x^2 + y^2 = 25$ is an implicit solution of the DE

$$\frac{dy}{dx} = -\frac{x}{y}$$

on the interval -5 < x < 5.

(a) implicit solution $x^2 + y^2 = 25$

(b) explicit solution

$$y_1 = \sqrt{25 - x^2}, -5 < x < 5$$

(c) explicit solution

$$y_2 = -\sqrt{25 - x^2}, -5 < x < 5$$

In this case, $G(x, y) = x^2 + y^2 - 25$, $F(x, y, y', y'', \dots, y_0^{(n)}) = y' + x/y$.

Families of Solutions

When solving a 1st-order DE

$$F(x, y, y') = 0$$

we usually obtain a solution containing an arbitrary constant c. A solution containing an arbitrary constant represents a set G(x, y, c) = 0 of solutions called a **one-parameter family of solutions**. (Check $y' = y, y = ce^x$)

When solving an nth-order DE

$$F(x, y, y', \cdots, y^{(n)}) = 0$$

we seek an <u>n</u>-parameter family of solutions $G(x, y, c_1, c_2, \dots, c_n) = 0$.

This means that <u>a single DE can possess an infinite number of solutions</u> corresponding to the unlimited number of choices for the parameter(s).

Families of Solutions

A solution without any arbitrary parameters is called a **particular** solution.

Example

An explicit solution of $xy' - y = x^2 \sin x$ is given by $y = cx - x \cos x$. The solution $y = -x \cos x$ is a particular solution. (Verify this!)

Families of Solutions

A DE may also possess a **singular solution**, which cannot be obtained by specializing <u>any</u> of the parameters in the family of solutions.

Example

The relation y = 0 is a solution of the DE $dy/dx = xy^{1/2}$. It cannot be obtained from the solution $y = (\frac{1}{4}x^2 + c)^2$. Thus, the trivial solution y = 0 is a singular solution. (Verify this!)

System of Differential Equations

A **system of ordinary differential equations** is two or more equations involving the derivatives of two or more unknown functions of a single independent variable.

Example

A system of two first-order differential equations is given by

$$\frac{dx}{dt} = f(t, x, y)$$
$$\frac{dy}{dt} = g(t, x, y)$$

A **solution** of the above system is a pair of differentiable functions $x = \phi_1(t)$, $y = \phi_2(t)$, defined on a common interval I, that satisfy each equation of the system on this interval.

Initial-Value Problem

• On some interval *I* containing x_0 , the problem:

Solve:

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$

Subject to:

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

where y_0, y_1, \dots, y_{n-1} are arbitrary real constants, is called an **initial-value problem (IVP)**.

• The values of y(x) and its first n-1 derivatives at a single point x_0 : $y(x_0) = y_0, y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}$ are called the **initial** conditions (ICs).

Initial-Value Problem

Solving an nth-order IVP:

Solve:

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$

Subject to:

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

entails first finding an n-parameter family of solutions of the given DE and then using the n ICs at x_0 to determine numerical values of the n constants in the family.

• The <u>resulting particular solution</u> is defined on some interval *I* containing the initial point x_0 .

First-Order Initial-Value Problem

First-order initial-value problem:

Solve:

$$\frac{dy}{dx} = f(x, y)$$

Subject to: $y(x_0) = y_0$

Remark

We are seeking a solution y(x) of the DE y' = f(x, y) on an interval I containing x_0 so that its graph passes through the specified point (x_0, y_0) .

Second-Order Initial-Value Problem

Second-order initial-value problem:

Solve:

$$\frac{d^2y}{dx^2} = f(x, y, y')$$

Subject to: $y(x_0) = y_0, y'(x_0) = y_1$

Remark

We are seeking a solution y(x) of the DE y'' = f(x, y, y') on an interval I containing x_0 so that its graph not only passes through (x_0, y_0) but the slope of the curve at this point is y_1 .

Example 1: Two First-Order IVPs

The equation $y = ce^x$ is a one-parameter family of solutions of the simple 1st-order equation y' = y.

- The equation $y = 3e^x$ is a solution of the IVP: y' = y, y(0) = 3
- The equation $y = -2e^{x-1}$ is a solution of the IVP: y' = y, y(1) = -2

Remark

Note that y = 0 is also a solution of the DE y' = y. (c = 0)

Example 2: Interval *I* of Definition of a Solution

A one-parameter family of solution of the 1st-order DE $y' + 2xy^2 = 0$ is $y = 1/(x^2 + c)$.

For a given IC: y(0) = -1, the solution is then $y = 1/(x^2 - 1)$. (Verify!)

- (a) shows the largest intervals on which $y = 1/(x^2 1)$ is a solution of the DE $y' + 2xy^2 = 0$ are $-\infty < x < -1, -1 < x < 1, 1 < x < \infty$.
- (b) shows that the largest interval on which $y = 1/(x^2 1)$ is a solution of the IVP $y' + 2xy^2 = 0$, y(0) = -1 is -1 < x < 1.

Example 4: An IVP Can Have Several Solutions

- Each of the functions y = 0 and $y = \frac{1}{16}x^4$ satisfies the DE $dy/dx = xy^{1/2}$ and IC y(0) = 0. (Verify this!)
- So the IVP

$$\frac{dy}{dx} = xy^{1/2}, \quad y(0) = 0$$

has at least two solutions.

• The graphs of both functions pass through the same point (0,0).

Existence of a Unique Solution

Theorem (1.2.1: Existence of a Unique Solution)

Let R be a rectangular region in the xy-plane defined by a < x < b, $c \le y \le d$ that contains the point (x_0, y_0) in its interior. If f(x, y) and $\partial f/\partial y$ are continuous on R, then there exits some interval $I_0: x_0 - h < x < x_0 + h, h > 0$, contained in a < x < b, and a unique function y(x), defined on I_0 , that is a solution of the IVP:

Solve:

$$\frac{dy}{dx} = f(x, y)$$

 $\frac{dy}{dx} = f(x, y)$ Subject to: $y(x_0) = y_0$

Example 5: Example 4 Revisited

- The DE $dy/dx = xy^{1/2}$ possess at least two solutions whose graphs pass through (0,0). (see Example 4)
- Inspection of the functions

$$f(x,y) = xy^{1/2}$$
 and $\frac{\partial f}{\partial y} = \frac{x}{2y^{1/2}}$

shows that they are continuous in the upper half-plane y > 0.

 Thus, Theorem 1.2.1 enables us to conclude that the DE has a unique solution for any IC given from the upper half-plane y > 0.

Remark

Since the second equation is not continuous on y=0, the solutions of the DE is not unique in the xy-plane! The conditions in Theorem 1.2.1 are sufficient but not necessary. (That is, the statement is \underline{not} "iff".)

Differential Equations as Mathematical Models

- The mathematical description of a system or a phenomenon is called a mathematical model.
- Consider the single-loop series circuit shown in the figure, containing an inductor, resistor, and capacitor.
 According to Kirchhoff's voltage law, we can obtain a second-order differential equation describing the system

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = E(t)$$

(a) LRC-series circuit

Homework

- Exercises 1.1: 9, 12, 17, 22, 36, 37.
- Exercises 1.2: 3, 8, 15, 20, 28.