1. Data waktu pelayaran mesin ATM tersebut termasuk jenis data kontinyu, karena olata tersebut merupakah olata yang didapat olari hasil pengukuran yang dan olata tersebut dapat berupa Satuan atau pecahan (tinggi badan orang-orang ada yang 180 cm dan 159,5 cm)

2. - Urutkan data dari nilai poling kecil

- Tabel Distribusi Frekuensi Tunggal

3

0,5	0.9	0,9	0,9	0.5	0,5	0,9	0,9	0.5	0,5
0,9	0,9	0.9	0.5	0.5	0.5	0.9	0,5	0,5	0.5
0.5	0.5	1	1	1	1	(. (1
1	1	((((Ţ	1	1	1,9
1,5	1,5	1,5	1,9	1,5	1,5	1,5	1,5	1,5	2
2	2	. 2	2	2	2	2.5	2,5	3	3

 Waktu pelayanan ATM
 Frekuersi

 0.5
 22

 1
 17

 21.5
 10

 2
 7

 2.5
 2

Pembuatan Histogram don Model Populasi

Histogram dan Model Populosi Waktu Pelayonon Mesin ATM

a. Phata-rata (mean) =
$$\frac{68}{60}$$
 = 1,13 (x)

Lb= lepi bauch kelas median

n= banyak data

C. Varians =>
$$S^2 = (f_1(x_1-\bar{x})^2 + f_2(x_2-\bar{x})^2 + f_3(x_3-\bar{x})^2 + f_4(x_4-\bar{x})^2 + f_5(x_5-\bar{x})^2 + f_6(x_6-\bar{x})^2)/n$$

$$= (22(0.5-1.13)^2 + 17(1-1.13)^2 + 10(1.5-1.13)^2 + 7(2-1.13)^2 + 2(2.5-1.13) + 2(3-1.13)^2)/n$$

$$= 8.73 + 0.29 + 1.37 + 5.30 + 3.75 + 7 = 26.44 = 0.44$$

d. Standar Devisiosi = S = 1/26,44 = 5,14 d Standor Devisiosi => S= No.44 = 0.66

e. Waktu pelayanan paling cepat == 0.5 menif f. Waktu pelayanan paling lambat = 3 menit

Dibandingkan dengan kurva Distribusi Exporensial

. Jadi, dapat diduga bahwa waktu pelayonan mesin ATM tersebut adalah terdistribusi exponensial