

# Introduction

Prof. Seungchul Lee Industrial AI Lab.



#### Introduction

- 2018 present: POSTECH
  - Industrial AI Lab.
- 2013 2017: UNIST
  - iSystems Design Lab.
- 2010, Ph.D. from the University of Michigan, Ann Arbor
  - S. M. Wu Manufacturing Research Center
  - The Center of Intelligent Maintenance Systems (IMS)
- 2008, M.S. from the University of Michigan, Ann Arbor
- 2005, B.S. of Electrical Engineering from Seoul National University
- 2001, B.S. of Mechanical Engineering from Seoul National University



#### **Tutorial Materials**

- All tutorial materials are already available at
  - <a href="http://iai.postech.ac.kr/index.php/tutorials/">http://iai.postech.ac.kr/index.php/tutorials/</a>

| TUTO         | RIALS                                     |                     |        |
|--------------|-------------------------------------------|---------------------|--------|
| ote: Lecture | slides are best viewed in Chrome.         |                     |        |
|              |                                           |                     |        |
| 배한금속·재료      | :<br>학회] 인공지능재료과학 분과 2020 하계단기강좌 "딥러닝의 기초 | S이론과 재료설계 및 공정 최적화0 | 네 응용"  |
| Dates        | Topics                                    | Jupyter notebook    | Slides |
| 07/01/20     | Python Installation                       | oup, tel motobook   | Olideo |
|              | Linear Algebra                            | iNote#01            | pdf#01 |
|              | Optimization and Gradient Descent         | iNote#02            | pdf#02 |
|              | Regression                                | iNote#03            | pdf#03 |
|              | Classification                            | iNote#04            | pdf#04 |
| 07/02/20     | Artificial Neural Networks                | iNote#05            | pdf#05 |
|              | Autoencoder                               | iNote#06            | pdf#06 |
|              | Convolutional Neural Networks (CNN)       | iNote#07            | pdf#07 |
|              |                                           |                     |        |



### (홍보) Machine Learning and Deep Learning

- All lecture materials are already available at
  - <a href="http://iai.postech.ac.kr/index.php/machine-learning/">http://iai.postech.ac.kr/index.php/machine-learning/</a>
  - <a href="http://iai.postech.ac.kr/index.php/deep-learning/">http://iai.postech.ac.kr/index.php/deep-learning/</a>





- 동영상 강의
  - YouTube
  - iAI POSTECH 검색
  - 구독





#### **Statistics**





## **Statistics + Computer Science**



## **Artificial Intelligence (AI)**





## **Machine Learning and Deep Learning**



### **Python**

Python coding example

```
y = np.empty([m,1])
# Run K-means
for n iter in range(500):
    for i in range(m):
        d\theta = np.linalg.norm(X[i,:] - mu[0,:],2)
        d1 = np.linalg.norm(X[i,:] - mu[1,:],2)
        d2 = np.linalg.norm(X[i,:] - mu[2,:],2)
        y[i] = np.argmin([d0, d1, d2])
    err = 0
    for i in range(k):
        mu[i,:] = np.mean(X[np.where(y == i)[0]], axis=0)
        err += np.linalg.norm(pre mu[i,:] - mu[i,:],2)
    pre mu = mu.copy()
    if err < 1e-10:
        print("Iteration:", n_iter)
        break
```



## **Linear Algebra**

- Vector and Matrix
- Ax = b
- Projection
- Eigen analysis
- Least squares



## **Optimization**

- Least squares
- Convex optimization
- Gradient descent





### **Statistics and Probability**

- Statistics
  - Law of large numbers, central limit theorem
  - Correlation
  - Monte Carlo simulation
- Probability
  - Random variable, Gaussian density distribution, conditional probability
  - maximum likelihood (MLE), maximum a posterior (MAP), Bayesian thinking



## **Regression (Data Fitting or Approximation)**

• Statistical process for estimating the relationships among variables







#### Classification

- The problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known
- To find classification boundaries





#### **Dimension Reduction**

• the process of reducing the number of random variables under consideration, and can be divided into feature selection and feature extraction.



# Clustering





# Clustering



### **Deep Artificial Neural Networks**

- Complex/Nonlinear universal function approximator
  - Linearly connected networks
  - Simple nonlinear neurons

