# Summary of SI1162 Statistical Physics

Yashar Honarmandi yasharh@kth.se

January 23, 2020

#### Abstract

This is a summary of SI1161 Statistical physics. It contains discussions of the relevant theory.

## Contents

| 1 | Handy Mathematics                     | 1 |
|---|---------------------------------------|---|
| 2 | Combinatorics                         | 1 |
| 3 | Basic Concepts in Statistical Physics | 1 |
| 4 | Ensembles                             | 3 |
| 5 | Gases                                 | 3 |
| 6 | Thermodynamics                        | 5 |

### 1 Handy Mathematics

**Stirling's Formula** In the limit of large n, Stirling's formula gives

$$\ln n! \approx n \ln n - n.$$

**Exact Differentials** The differential of a quantity f on a phase space described by the vector  $\mathbf{r}$  is an exact differential if

$$\mathrm{d}f = \vec{\nabla}f \cdot \mathbf{r}.$$

The implication is that f is a function on phase space, which is not true for all quantities.

The Reciprocal and Reciprocity Theorems Consider a function x(y, z), and suppose that this function can be inverted to a function z(x, y). We can write the differentials of x and z, and insert the differential of z into the differential of x to yield

$$\left(\frac{\partial x}{\partial z}\right)_y = \frac{1}{\left(\frac{\partial z}{\partial x}\right)_y}, \ \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1.$$

These can also be combined to yield

$$\left(\frac{\partial x}{\partial y}\right)_z = -\left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial x}{\partial z}\right)_y.$$

#### 2 Combinatorics

Combinations and permutations Permutations are sequences of some kind. Combinations are permutations where order does not matter. From a collection of n elements, the number of possible permutations of k elements is

$$\Omega = \frac{n!}{(n-k)!}$$

and the number of possible combinations is

$$\Omega = \binom{n}{k}.$$

## 3 Basic Concepts in Statistical Physics

Avogadro's Number Statistical physics discusses systems of many particles. A relevant measure of the number of particles to be studies is  $N_A = 6.022 \times 10^{23}$ .

**Molar Mass** The molar mass of a substance is defined as  $M = mN_A$ , where m is the mass of a single atom or molecule.

Atomic Units When discussing atoms and molecules, we use relative units. These units are relative to the atomic mass unit a.u. =  $1.66 \times 10^{-27}$  kg, defined as  $\frac{1}{12}$  the mass of  $^{12}$ C. This happens to be close to the mass of a hydrogen atom.

The Thermodynamic Limit The thermodynamic limit is the limit of the statistical consideration of a system when the number of particle is large. In this limit, quantities such as temperature, pressure and density can be defined as we know them and macroscopic equilibria can be achieved.

**Intensive and Extensive Variables** Intensive variables do not depend on the size of the system, whereas extensive variables do. Examples of the former are pressure and temperature, and examples of the latter are volume and total energy.

**Heat** Heat is the flow of energy.

**Microstates** A microstate of a system is any complete description of all particles in a system, for instance a specification of all positions and velocities of the particles in a gas.

Macrostates A macrostate of a system is a description of the macroscopic properties of a system.

**Multiplicity** The multiplicity of a macrostate is the number of microstates that yield the same macrostate.

The Fundamental Postulate The fundamental hypothesis of statistical mechanics is that all microstates available to a system have equal property.

**Equilibrium and Multiplicity** Combining the fundamental postulate with our knowledge of thermodynamics, it is clear that a system in thermal equilibrium has maximal multiplicity.

**The Boltzmann constant** Consider two systems which are not in contact. The total energy and multiplicity is given by

$$E = E_1 + E_2, \ \Omega = \Omega_1(E_1)\Omega_2(E_2).$$

At equilibrium, the total multiplicity is maximal. Differentiating with respect to  $E_1$  gives

$$\partial_{E_1} \Omega = \Omega_2 \frac{\mathrm{d}\Omega_1}{\mathrm{d}E_1} + \Omega_1 \frac{\mathrm{d}\Omega_2}{\mathrm{d}E_2} \frac{\mathrm{d}E_2}{\mathrm{d}E_1}.$$

The total energy is fixed, yielding

$$\frac{1}{\Omega_1} \frac{\mathrm{d}\Omega_1}{\mathrm{d}E_1} = \frac{1}{\Omega_2} \frac{\mathrm{d}\Omega_2}{\mathrm{d}E_2},$$

which we can rewrite as

$$\frac{\mathrm{d}\ln\Omega_1}{\mathrm{d}E_1} = \frac{\mathrm{d}\ln\Omega_2}{\mathrm{d}E_2}.$$

We define this to be equal to  $\frac{1}{k_b T}$ .

The Boltzmann Factor Consider a thermal bath in contact with a small system. The energy of the small system is  $\varepsilon$ , so that the bath has energy  $E - \varepsilon$ . Taylor expanding the multiplicity yields

$$\ln \Omega(E - \varepsilon) \approx \ln \Omega(E) - \varepsilon \frac{\mathrm{d} \ln \Omega}{\mathrm{d} E} = \ln \Omega(E) - \frac{\varepsilon}{k_{\mathrm{b}} T},$$

with solution

$$\Omega(E - \varepsilon) = \Omega(E)e^{-\frac{\varepsilon}{k_{\rm b}T}}.$$

This exponential factor is called the Boltzmann factor.

We note that the probability of finding the small system in the macrostate with energy  $\varepsilon$  is, according to the fundamental hypothesis, proportional to  $e^{-\frac{\varepsilon}{k_{\rm b}T}}$ .

The Statistical Basis For Entropy We can use what we have seen in thermodynamics to show that

$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{V}.$$

Combining this with our definition of temperature from a microscopic perspective, we obtain

$$S = k_{\rm b} \ln \Omega$$
.

Entropy and Probability Consider a system with N available microstates, all equally likely and indistinguishable by experiment. These are divided into groups called to macrostates, distinguishable by experiment, with  $n_i$  microstates in each macrostate. We have

$$\sum n_i = N,$$

and the probability of finding the system in a particular macrostate is thus

$$P_i = \frac{n_i}{N}.$$

The total entropy is  $S_{\text{tot}} = k_{\text{b}} \ln N$ , but cannot be measured as the microstates are indistinguishable. Nevertheless, as entropy is extensive, the total entropy is a sum of the freedom to explore the microstates for a given macrostate and the freedom to explore the different macrostates, i.e.

$$S_{\text{tot}} = S + S_{\text{micro}}$$
.

The entropy due to exploring microstates is an expectation value over the different macrostates of the entropy, given by

$$S_{\rm micro} = \sum P_i S_i = k_{\rm b} \sum P_i \ln n_i.$$

This yields

$$S = S_{\text{tot}} - S_{\text{micro}}$$

$$= k_{\text{b}} \ln N - k_{\text{b}} \sum_{i} P_{i} \ln n_{i}$$

$$= k_{\text{b}} \sum_{i} P_{i} (\ln N - \ln n_{i})$$

$$= -k_{\text{b}} \sum_{i} P_{i} \ln P_{i}.$$

#### 4 Ensembles

**Definition** For a given system, an ensemble is a collection of all possible states of the system such that a certain set of quantities are preserved.

The Microcanonical Ensemble The microcanonical ensemble has N, V and E preserved.

The Canonical Ensemble The canonical ensemble has N, V and T preserved.

**Grand Canonical Ensembles** The grand canonical ensemble has  $\mu$ , V and T preserved.

#### 5 Gases

The Maxwell-Boltzmann Velocity Distribution Consider a system of n (approximately) non-interacting particles. Assuming the separations to be much larger than the particle size and neglecting rotational and vibrational degrees of freedom, each particle has total energy  $E = \frac{1}{2}mv^2$ . We can now treat each particle as a small system in contact with a heat reservoir (namely the other particles). The results concerning the Boltzmann factor thus hold for this molecule. A single velocity component is thus described by the probability distribution

$$g(v_i) = \sqrt{\frac{m}{2\pi k_{\rm b}T}} e^{-\frac{mv_i^2}{2k_{\rm b}T}}.$$

This is of course true for all particles in the gas, meaning that the fraction of molecules with  $v_i$  in the range  $v_i$  to  $v_i + dv_i$  is equal to  $g(v_i) dv_i$ .

It can be shown that

$$\langle v_i \rangle = 0, \ \langle |v_i| \rangle = \sqrt{\frac{2k_{\rm b}T}{m}}, \ \langle v_i^2 \rangle = \frac{k_{\rm b}T}{m}.$$

The Maxwell-Boltzmann Speed Distribution Consider instead the distribution of the particle speed. The distribution satisfying that the fraction of particles with speed in the range v to v + dv is

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k_{\rm b}T}\right)^{\frac{3}{2}} v^2 e^{-\frac{v^2}{2k_{\rm b}T}},$$

where the quadratic factor arises due to the integration volume.

It can be shown that

$$\langle v \rangle = \sqrt{\frac{8k_{\rm b}T}{\pi m}}, \ \langle v^2 \rangle = \frac{3k_{\rm b}T}{m}$$

and that f has a maximum for

$$v = \sqrt{\frac{2k_{\rm b}T}{m}}.$$

Directions and the Speed Distribution Because the velocity distribution is isotropic, the fraction of molecules whose trajectories lie in some solid angle range  $d\Omega$  is given by  $\frac{d\Omega}{4\pi}$ . In three dimensions we can choose some direction and define an azimuthal angle  $\theta$  relative to that direction, yielding that a fraction

$$\frac{1}{2}nf(v)\sin\theta\,\mathrm{d}v\,\mathrm{d}\theta$$

are travelling close to the angle  $\theta$  to the chosen direction with a speed close to v per unit volume (n is the amount of particles per volume).

The Ideal Gas Law Consider a wall with area A with a gas on one side. In a time interval dt the molecules travelling at angle  $\theta$  to the wall normal sweep out a volume  $A\cos\theta v\,dt$ . This means that the number of molecules hitting the wall during dt is given by

$$A\cos\theta v\,\mathrm{d}t\cdot\frac{1}{2}nf(v)\sin\theta\,\mathrm{d}v\,\mathrm{d}\theta$$
.

Per unit area this number becomes

$$\cos \theta v \, dt \cdot \frac{1}{2} n f(v) \sin \theta \, dv \, d\theta$$
.

Each particle imparts a momentum  $2mv\cos\theta$  to the wall. The total momentum imparted to the wall per unit area by particles travelling at a specified speed and direction is thus

$$2mv\cos\theta\cdot\cos\theta v\,\mathrm{d}t\cdot\frac{1}{2}nf(v)\sin\theta\,\mathrm{d}v\,\mathrm{d}\theta$$
,

meaning that the impulse per area, i.e. the pressure, from these particles is

$$dp = 2mv \cos \theta \cdot \cos \theta v \cdot \frac{1}{2} n f(v) \sin \theta \, dv \, d\theta.$$

Integrating this, the total pressure is

$$p = \frac{1}{3}nm \left\langle v^2 \right\rangle = nk_{\rm b}T.$$

Using the fact that  $n = \frac{N}{V}$  we finally obtain the ideal gas law

$$pV = Nk_{\rm b}T$$
.

**Dalton's Law** For a mixture of ideal gases, the partial pressures of each gas can be added. This is due to the fact that the number of particles can be added.

Gas Flux and Effusion We define the particle flux of a gas as the number of molecules striking a unit area per time. We can integrate a previously obtained expression to obtain

$$\Phi = \frac{p}{\sqrt{2\pi m k_{\rm b} T}}.$$

The velocity distribution of molecules effusing out of a container is modified by a factor v. This can be noted from the form of the expression for thu number of particles striking a unit area.

Collision Time Consider a gas, where we (for now) treat all particles but one as stationary. This particle has velocity v and collision cross-section  $\sigma$  (to be discussed later, but it is essentially the area of the particle with which other particles can collide). In a time dt the particle sweeps out an area  $\sigma v dt$ , meaning that a collision occurs within dt is  $n\sigma v dt$ . We define P(t) to be the probability of the particle not colliding up to time t. According to our reasoning, we must have  $P(t + dt) = P(t)(1 - n\sigma v dt)$ . Comparing this to a Taylor expansion of P, we obtain

$$P(t) + dP t dt = P(t)(1 - n\sigma v dt).$$

This has the solution

$$P(t) = e^{-n\sigma vt}$$

assuming our consideration started at t = 0. The probability of not colliding up to t and colliding during the next dt is

$$P'(t) = n\sigma v e^{-n\sigma v t},$$

which is normalized. Using this, we compute the collision time

$$\tau = \frac{1}{n\sigma v}.$$

Collision Cross-Section Consider two spherical particles of radius  $a_1$  and  $a_2$  interacting with a hard-sphere potential. Imagining a particle of type 1 moving in the vicinity of type 2 particles, the movement of the type 1 particle sweeps out a tube of radius  $a_1 + a_2$  such that if type 2 particles enter the tube, a collision occurs. The area of this tube is the collision cross-section, and is in this case given by

$$\sigma = \pi (a_1 + a_2)^2.$$

Mean Free Path The mean free path is the mean distance a particle can move without colliding. It should be proportional to the collision time and some velocity, but which velocity? It turns out that to include the effects of all particles moving, we must use the relative velocity between the considered particle and the other particles. We have

$$v_{\rm r}^2 = v_1^2 + v_2^2 - 2\mathbf{v}_1 \cdot \mathbf{v}_2.$$

The expected value of the cross-term is 0 due to symmetry, and hence

$$\left\langle v_{\rm r}^2 \right\rangle = 2 \left\langle v^2 \right\rangle.$$

We approximate  $\langle v_r \rangle$  and  $\langle v \rangle$  to be their RMS counterparts. Hence the mean free path is

$$\lambda = \langle v_{\rm r} \rangle \, \tau = \frac{\sqrt{\langle v_{\rm r}^2 \rangle}}{n\sigma v} = \frac{\sqrt{2} \, \langle v \rangle}{n\sigma v} = \frac{1}{\sqrt{2}n\sigma} = \frac{k_{\rm b}T}{\sqrt{2}p\sigma}.$$

## 6 Thermodynamics

Functions of State A quantity f is a function of state if its equilibrium value is a function of the equilibrium values of the variables describing the state.

**Internal Energy** The internal energy U of a system is the sum of the energy of all the internal degrees of freedom of a system.

Quasistatic Processes A process is quasistatic if the system is in equilibrium at each point during the process.

The First Law Energy is conserved and heat and work are both forms of energy. In mathematical form:

$$dU = dQ + dW.$$

This implies the convention that positive differentials correspond to energy supplied to the system.

**Heat Capacity of a Gas** The work required to compress a gas is dW = -p dV, meaning that the total change in internal energy for a gas is

$$\mathrm{d}U = \left(\frac{\partial U}{\partial T}\right)_V \mathrm{d}T + \left(\frac{\partial U}{\partial V}\right)_T \mathrm{d}V$$

where the subscript indicates which variables are constant when the derivatives are computed. The first law gives

$$dQ = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\left(\frac{\partial U}{\partial V}\right)_T + p\right) dV.$$

Heat capacitites are defined as derivatives of Q with respect to temperature, imploring us to divide by the differential change in temperature. We thus obtain

$$C_V = \left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial Q}{\partial T}\right)_V, \ C_p = \left(\frac{\partial Q}{\partial T}\right)_p = \left(\frac{\partial U}{\partial T}\right)_V + \left(\left(\frac{\partial U}{\partial V}\right)_T + p\right) \left(\frac{\partial V}{\partial T}\right)_p.$$

Molar Heat Capacities Molar heat capacities, denoted with a small c, are heat capacities per molar mass.

Adiabatic Index The adiabatic index is defined as

$$\gamma = \frac{C_p}{C_V}.$$

The Second Law of Thermodynamics The second law comes in two different statements:

- Clausius' statement: No process is possible whose sole result is the transfer of heat from a colder to a hotter body.
- **Kelvin's statement:** No process is possible whose sole result is the complete conversion of heat into work.

The Carnot Cycle Consider a machine performing work based on the energy transfer between two heat reservoirs. One way to extract the energy is by using a Carnot process, which uses an ideal gas. The cycle connects four different points in a pV diagram with two adiabatics and two isothermals.

**Efficiency** The efficiency of a machine has various definitions, but the general definition is the ratio between the energy you get out and the energy you put in.

**Carnot's Theorem** No heat engine working between two heat reservoirs is more efficient than a Carnot engine.

To prove this, suppose that you create an engine producing the same work W as a Carnot heat engine, but for an energy Q' as opposed to the energy Q needed to run the Carnot engine. Now let your new engine be used to power a reversed Carnot engine. The statement that this new engine is more efficient is expressed as

$$\frac{W}{Q'} > \frac{W}{Q} \implies Q > Q'.$$

During the process each engine gives off some heat  $Q_1$  to the cold reservoir. The first law of thermodynamics implies

$$W = Q' - Q_1' = Q - Q_1.$$

As Q - Q' > 0, so is  $Q_1 - Q'_1$ . Now, Q - Q' is the net energy left in the hot reservoir during a cycle and  $Q_1 - Q'_1$  is the energy extracted from the cold reservoir. The sole result of this process is thus to extract energy from a cold reservoir to a hot one, which violates the second law.

Clausius' Theorem Consider some arbitrary cyclic process. We can describe this as a sequence of the system being connected to temperatures  $T_i$ , with heats  $dQ_i$  being supplied at every stage. The total work performed during the cycle is given by

$$W = \sum dQ_i.$$

Now suppose that the heat at each point is supplied by a Carnot engine operating between temperatures T and  $T_i$ . One can show that for a Carnot engine the ratio of heat to temperature at which the heat is exchanged is constant. This implies

$$\frac{\mathrm{d}Q_i}{T_i} = \frac{\mathrm{d}Q_i + \mathrm{d}W_i}{T}$$

where  $dW_i$  is the work done by the Carnot engine. This process cannot violate the second law of thermodynamics, hence

$$W + \sum dW_i \le 0.$$

Hence

$$\sum dQ_i + \sum dQ_i \left(\frac{T}{T_i} - 1\right) = T \sum \frac{dQ_i}{T_i} \le 0.$$

The temperature T is constant and positive, and can thus be ignored. In the limit of considering the process in a continuous manner, this becomes

$$\int \mathrm{d}Q \frac{1}{T} \leq 0.$$

This is Clausius' theorem, where equality necessarily holds for a reversible cycle.

**Entropy** As we have seen, the integral

$$\int \mathrm{d}Q \frac{1}{T}$$

is path independent for a reversible process. We thus define the state function

$$\mathrm{d}S = \frac{\mathrm{d}Q}{T}$$

to be the entropy.

The Second Law and Entropy Consider two points connected by a reversible and an irreversible process such that the two form a cycle. Clausius' theorem yields

$$\int\limits_{A}^{B}\mathrm{d}Q\frac{1}{T}+\int\limits_{B}^{A}\mathrm{d}Q_{\mathrm{rev}}\frac{1}{T}\leq0\implies\int\limits_{A}^{B}\mathrm{d}Q\frac{1}{T}\leq\int\limits_{A}^{B}\mathrm{d}Q_{\mathrm{rev}}\frac{1}{T}.$$

This holds for two arbitrary points, meaning

$$\mathrm{d}S \geq \frac{\mathrm{d}Q}{T}.$$

Considering a thermally isolated system, we obtain

$$dS \ge 0$$
.

This is a restatement of the second law of thermodynamics.

The First Law and Entropy For a reversible process we obtain

$$dU = T dS - p dV.$$

However, as all involved quantities are functions of state, this must hold even if the process in question is irreversible.

Natural Variables For Internal Energy Our restatement of the first law implies that U can be written as a function of S and V.

**Enthalpy** The enthalpy is defined as

$$H = U + pV$$
.

We have

$$dH = dU + p dV + V dp = T dS - p dV + p dV + V dp = T dS + V dp,$$

implying that H is a function of S and p, as well as

$$\left(\frac{\partial H}{\partial S}\right)_p = T, \ \left(\frac{\partial H}{\partial p}\right)_S = V.$$

**Helmholtz Free Energy** The Helmholtz free energy is defined as

$$F = U - TS$$
.

We have

$$dF = dU - T dS - S dT = T dS - p dV - T dS - S dT = -p dV - S dT,$$

implying that H is a function of T and p, as well as

$$\left(\frac{\partial F}{\partial T}\right)_V = -S, \ \left(\frac{\partial F}{\partial V}\right)_T = -p.$$

Gibbs Free Energy The Gibbs free energy is defined as

$$G = H - TS$$
.

We have

$$dG = dH - T dS - S dT = T dS + V dp - T dS - S dT = V dp - S dT,$$

implying that G is a function of T and p, as well as

$$\left(\frac{\partial G}{\partial T}\right)_p = -S, \ \left(\frac{\partial G}{\partial p}\right)_T = V.$$

Availability and Equilibrium Consider a system in contact with surroundings at temperature  $T_0$  and pressure  $p_0$ . If heat dQ is supplied to the system during some process, the entropy change satisfies  $T_0 dS \ge dQ$ . The first law implies

$$dQ = dU - dW - (-p_0 dV),$$

where we have separated the work into a term arising due to the change in volume and a term describing other sources. Combining this yields

$$T_0 dS \ge dU - dW - (-p_0 dV),$$
  
$$dW \ge dU - T_0 dS + p_0 dV.$$

Defining the availability for this case as

$$A = U + p_0 V - T_0 S$$

implies

$$dW > dA$$
.

If the system is mechanically isolated from the surroundings, such that only volume-changing work can be performed, we have

$$dA < 0$$
.

This is a general equilibrium condition which applies to systems with many different constraints, depending on a proper definition of the availability.

**Maxwell Relations** Using the symmetry of partial derivatives for a state function, one can obtain relations between derivatives of other state functions.

As an example, the derivatives of F are -S and -p, computed with respect to T and V. This implies

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V.$$