Assignment-3

- 1. Given a fixed element $x \in l_1$, show that the seq. $x = (x_1, x_2, ..., x_k, o, o ...)$ converges to x in l_1 -novm. Show that $x^{(k)}$ also cys. to x in l_2 -novm.

 (give an example to show that $x^{(k)} \neq x$ in l_0 -novm.
- 2. Given $x,y \in l_2$, define $\langle x,y \rangle := \sum_{i=1}^{\infty} x_i y_i$. Show that if $2 \to x \otimes y \to y$ in l_2 then $\langle x, y \rangle \to \langle x, y \rangle$.
- 3. Two metrics d and g on a set M are said to be equivalent if $d(x_{1},x_{2}) \rightarrow 0$ iff $g(x_{1},x_{2}) \rightarrow 0$.

For (M,d) a metric space, show that

- (i) $g(x,y) := \sqrt{d(x,y)}$
- (ii) = (xy):= d(x,y)/1+d(x,y)
- (iii) $\Upsilon(x,y):=\min \{d(x,y), |y| all these metrics (i) -(iii) are equivalent to d.$
- 4. (a) Show that the usual metric on N, i.e., (N, 1.1) is equivalent to the discrete metric on N. Show that any metric on a finite set is equivalent to the discrete metric.

 (b) If M is a countable set and d is a metric on M, then is d equivalent to the discrete metric on M?
 - 5. Show that the metrics induced by Vill, III, and IIIo on IR are equivalent.
- 6. (The product metric) (Given two metric spaces (M,d) and (N,8), define the following metrics on MXN= \(\grace{\chi}(x,y) \ \right| \(x \in M \), \(\grace{\chi} \) \(\right) \(\right) \) as
 - (i) $d_1((a,x),(b,b)) = d(a,b) + g(x,b)$
 - (ii) d2 ((a,x), (b,y)) := [d(a,b)2+ g(xy)2] 42
 - (iii) do ((a,x), (b,y)):= max } d(a,b), g(a,b)}

Show that all there metrics on MXN are equivalent.

(Note that a particular example of this product meters space is given in Onestion 5.)

, Line	
evaluation. 7.	Show that every Canchy seq. in (IR, 11.112) crg. in IR for n>12.
	Does every Cambo sour in (IP" Hill) and in (IP" Hill) also so in IP" wint there hower?
	Does every Carely seq. in (12,11.110) and in (12,11.11,) also cry. in 12 wit these norms? Does every Carely seq. in (1,11.110) cry. in 12 ls the 11.11, norm equivalent to 11.11, norm?
	1862 EAGUS CENTER OF THE COMMENTER TO THE MANNEY
	(We say 11.11 and 11.11 on M are equivalent if the metrics induced by these
	norms, namely, d11-11 and d11-11, are equivalent.