CS 747, Autumn 2020: Week 5, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2020

Summary of Previous Lecture

- Definitions
 - ▶ MDP (S, A, T, R, γ)
 - ▶ Policy (π)
 - ▶ Value Function (V^{π})
- 2. MDP planning
- 3. Alternative formulations
- 4. Applications
- 5. Policy Evaluation

Summary of Previous Lecture

- 1. Definitions
 - ▶ MDP (S, A, T, R, γ)
 - ► Policy (π)
 - ▶ Value Function (V^{π})
- 2. MDP planning
- 3. Alternative formulations
- 4. Applications
- 5. Policy Evaluation

What is coming up this week?

Markov Decision Problems

- Bellman optimality
 - Banach's fixed-point theorem
 - Bellman optimality operator
- Value Iteration
- 3. Linear Programming formulation
 - Review of LP
 - MDP Planning as LP

Markov Decision Problems

- 1. Bellman optimality
 - Banach's fixed-point theorem
 - Bellman optimality operator
- Value Iteration
- 3. Linear Programming formulation
 - Review of LP
 - MDP Planning as LP

 A vector space X has objects called vectors that can be added and scaled.

- A vector space X has objects called vectors that can be added and scaled.
- A norm ||·|| associates a length which each vector (and satisfies some conditions).

- A vector space X has objects called vectors that can be added and scaled.
- A norm ||·|| associates a length which each vector (and satisfies some conditions).
- A complete, normed vector space (X, ||·||) is one in which every Cauchy sequence has a limit in X.

- A vector space X has objects called vectors that can be added and scaled.
- A norm ||·|| associates a length which each vector (and satisfies some conditions).
- A complete, normed vector space (X, ||·||) is one in which every Cauchy sequence has a limit in X.

A complete, normed vector space is called a Banach space.

Two Definitions

• Let $(X, \|\cdot\|)$ be a normed vector space, and let $0 \le L < 1$.

Two Definitions

- Let $(X, \|\cdot\|)$ be a normed vector space, and let $0 \le L < 1$.
- Contraction mapping. A mapping $T: X \to X$ is called a contraction mapping with contraction factor L if $\forall u, v \in X$,

$$\|\mathit{Tv}-\mathit{Tu}\|\leq L\|v-u\|.$$

Two Definitions

- Let $(X, \|\cdot\|)$ be a normed vector space, and let $0 \le L < 1$.
- Contraction mapping. A mapping $T: X \to X$ is called a contraction mapping with contraction factor L if $\forall u, v \in X$,

$$\|\mathit{Tv}-\mathit{Tu}\|\leq L\|v-u\|.$$

• **Fixed-point.** $x^* \in X$ is called a fixed-point of T if $Tx^* = x^*$.

Banach's Fixed-point Theorem

(Adapted from Szepesvári, 2010 (see Appendix A.1).)

Let $(X, \|\cdot\|)$ be a Banach space, and let $T: X \to X$ be a contraction mapping with contraction factor $L \in [0, 1)$. Then:

- 1. *T* has a unique fixed point $x^* \in X$.
- 2. For $x \in X$, $m \ge 0$: $||T^m x x^*|| \le L^m ||x x^*||$.

Banach's Fixed-point Theorem

(Adapted from Szepesvári, 2010 (see Appendix A.1).)

Let $(X, \|\cdot\|)$ be a Banach space, and let $T: X \to X$ be a contraction mapping with contraction factor $L \in [0, 1)$. Then:

- 1. *T* has a unique fixed point $x^* \in X$.
- 2. For $x \in X$, $m \ge 0$: $||T^m x x^*|| \le L^m ||x x^*||$.

• The Bellman optimality operator $B^*: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ for an MDP (S, A, T, R, γ) is defined as follows.

For $F: S \to \mathbb{R}$ and $s \in S$:

$$(B^{\star}(F))(s) \stackrel{\text{def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

• The Bellman optimality operator $B^*: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ for an MDP (S, A, T, R, γ) is defined as follows.

For $F: S \to \mathbb{R}$ and $s \in S$:

$$(B^{\star}(F))(s) \stackrel{\text{def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

• Since $S = \{s_1, s_2, \dots, s_n\}$, we may equivalently view B^* as a mapping from \mathbb{R}^n to \mathbb{R}^n .

• The Bellman optimality operator $B^*: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ for an MDP (S, A, T, R, γ) is defined as follows.

For $F: S \to \mathbb{R}$ and $s \in S$:

$$(B^{\star}(F))(s) \stackrel{\text{def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

- Since $S = \{s_1, s_2, \dots, s_n\}$, we may equivalently view B^* as a mapping from \mathbb{R}^n to \mathbb{R}^n .
- Recall that the max norm $\|\cdot\|_{\infty}$ of $F = (f_1, f_2, \dots, f_n) \in \mathbb{R}^n$ is $\|F\|_{\infty} = \max\{|f_1|, |f_2|, \dots, |f_n|\}.$

• The Bellman optimality operator $B^*: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ for an MDP (S, A, T, R, γ) is defined as follows.

For $F: S \to \mathbb{R}$ and $s \in S$:

$$(B^{\star}(F))(s) \stackrel{\text{def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

- Since $S = \{s_1, s_2, \dots, s_n\}$, we may equivalently view B^* as a mapping from \mathbb{R}^n to \mathbb{R}^n .
- Recall that the max norm $\|\cdot\|_{\infty}$ of $F = (f_1, f_2, \dots, f_n) \in \mathbb{R}^n$ is $\|F\|_{\infty} = \max\{|f_1|, |f_2|, \dots, |f_n|\}.$
- It is an established result that $(\mathbb{R}^n, \|\cdot\|_{\infty})$ is a Banach space.

• The Bellman optimality operator $B^*: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ for an MDP (S, A, T, R, γ) is defined as follows.

For $F: S \to \mathbb{R}$ and $s \in S$:

$$(B^{\star}(F))(s) \stackrel{\text{def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

- Since $S = \{s_1, s_2, \dots, s_n\}$, we may equivalently view B^* as a mapping from \mathbb{R}^n to \mathbb{R}^n .
- Recall that the max norm $\|\cdot\|_{\infty}$ of $F = (f_1, f_2, \dots, f_n) \in \mathbb{R}^n$ is $\|F\|_{\infty} = \max\{|f_1|, |f_2|, \dots, |f_n|\}.$
- It is an established result that $(\mathbb{R}^n, \|\cdot\|_{\infty})$ is a Banach space.

Fact. B^* is a contraction mapping in the $(\mathbb{R}^n, \|\cdot\|_{\infty})$ Banach space with contraction factor γ .

Proof that B^* is a Contraction Mapping

We use: $|\max_a f(a) - \max_a g(a)| \le \max_a |f(a) - g(a)|$.

Proof that B^* is a Contraction Mapping

We use:
$$|\max_{a} f(a) - \max_{a} g(a)| \le \max_{a} |f(a) - g(a)|$$
. $||B^*(F) - B^*(G)||_{\infty} = \max_{s \in S} |(B^*(F))(s) - (B^*(G))(s)|$ $= \max_{s \in S} \left|\max_{a \in A} \sum_{s' \in S} T(s, a, s') \{R(s, a, s') + \gamma F(s')\} - \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{R(s, a, s') + \gamma G(s')\}\right|$ $\le \gamma \max_{s \in S} \max_{a \in A} \left|\sum_{s' \in S} T(s, a, s') \{F(s') - G(s')\}\right|$ $\le \gamma \max_{s \in S} \max_{a \in A} \sum_{s' \in S} T(s, a, s') |F(s') - G(s')|$ $\le \gamma \max_{s \in S} \max_{a \in A} \sum_{s' \in S} T(s, a, s') |F(s') - G(s')|$ $\le \gamma \max_{s \in S} \max_{a \in A} \sum_{s' \in S} T(s, a, s') |F(s') - G(s')|$

 By Banach's Fixed-point Theorem, it follows that there is a unique fixed point for B*.

- By Banach's Fixed-point Theorem, it follows that there is a unique fixed point for B*.
- Denote the fixed point $V^*: S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^*(s')
ight\}.$$

- By Banach's Fixed-point Theorem, it follows that there is a unique fixed point for B*.
- Denote the fixed point $V^*: S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$m{V}^*(m{s}) = \max_{m{a} \in m{A}} \sum_{m{s}' \in m{S}} m{T}(m{s},m{a},m{s}') \, \{m{R}(m{s},m{a},m{s}') + \gamma \, m{V}^*(m{s}')\}.$$

• These are the Bellman optimality equations for MDP (S, A, T, R, γ) .

- By Banach's Fixed-point Theorem, it follows that there is a unique fixed point for B*.
- Denote the fixed point $V^*: S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^*(s') \right\}.$$

• These are the Bellman optimality equations for MDP (S, A, T, R, γ) . n equations, n unknowns, but non-linear!

- By Banach's Fixed-point Theorem, it follows that there is a unique fixed point for B*.
- Denote the fixed point $V^*: S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$oxed{V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^*(s')
ight\}.}$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ) . n equations, n unknowns, but non-linear!
- Value Iteration, Linear Programming, and Policy Iteration are three distinct families of algorithms to compute V^* .

- By Banach's Fixed-point Theorem, it follows that there is a unique fixed point for B*.
- Denote the fixed point $V^*: S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$m{V}^*(m{s}) = \max_{m{a} \in m{A}} \sum_{m{s}' \in m{S}} m{T}(m{s},m{a},m{s}') \, \{m{R}(m{s},m{a},m{s}') + \gamma \, m{V}^*(m{s}')\}.$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ) . n equations, n unknowns, but non-linear!
- Value Iteration, Linear Programming, and Policy Iteration are three distinct families of algorithms to compute V^* .
- Fact. V^* is the value function of every policy $\pi^*: S \to A$ that satisfies, for all $s \in S$:

$$\pi^{\star}(s) = \operatorname{argmax}_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^{*}(s') \right\}.$$

- By Banach's Fixed-point Theorem, it follows that there is a unique fixed point for B*.
- Denote the fixed point $V^*: S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^*(s') \right\}.$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ) . n equations, n unknowns, but non-linear!
- Value Iteration, Linear Programming, and Policy Iteration are three distinct families of algorithms to compute V^* .
- Fact. V^* is the value function of every policy $\pi^*: S \to A$ that satisfies, for all $s \in S$:

$$\pi^{\star}(s) = \operatorname{argmax}_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^{*}(s') \right\}.$$

• We shall prove next week that every such policy π^* is an optimal policy. Hence V^* is the optimal value function.

Markov Decision Problems

- Bellman optimality
 - Banach's fixed-point theorem
 - Bellman optimality operator
- 2. Value Iteration
- 3. Linear Programming formulation
 - Review of LP
 - MDP Planning as LP

• Iterative approach to compute V^* .

- Iterative approach to compute V^* .
- $\bullet \ V_0 \xrightarrow{B^{\star}} V_1 \xrightarrow{B^{\star}} V_2 \xrightarrow{B^{\star}} \dots$

- Iterative approach to compute V*.

 $V_0 \leftarrow$ Arbitrary, element-wise bounded, *n*-length vector. $t \leftarrow 0$.

Repeat:

For
$$s \in S$$
:

$$V_{t+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') (R(s, a, s') + \gamma V_t(s')).$$

 $t \leftarrow t + 1.$

Until $V_t \approx V_{t-1}$ (up to machine precision).

- Iterative approach to compute V*.

 $V_0 \leftarrow$ Arbitrary, element-wise bounded, *n*-length vector. $t \leftarrow 0$.

Repeat:

For
$$s \in S$$
:

$$V_{t+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') (R(s, a, s') + \gamma V_t(s')).$$

 $t \leftarrow t + 1.$

Until $V_t \approx V_{t-1}$ (up to machine precision).

• Popular; easy to implement; quick to converge in practice.

Relationship of V^* , Q^* , π^*

• Say we are working with MDP (S, A, T, R, γ) .

Relationship of V^* , Q^* , π^*

- Say we are working with MDP (S, A, T, R, γ) .
- Suppose you have computed V^* . How to get Q^* ?

Relationship of V^* , Q^* , π^*

- Say we are working with MDP (S, A, T, R, γ) .
- Suppose you have computed V^* . How to get Q^* ? For $s \in S$, $a \in A$:

$$Q^{\star}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\star}(s') \}.$$

• Now that you have Q^* , how to get π^* ?

Relationship of V^* , Q^* , π^*

- Say we are working with MDP (S, A, T, R, γ) .
- Suppose you have computed V^* . How to get Q^* ? For $s \in S$, $a \in A$:

$$Q^{\star}(s,a) = \sum_{s' \in S} T(s,a,s') \{ R(s,a,s') + \gamma V^{\star}(s') \}.$$

• Now that you have Q^* , how to get π^* ?

For
$$s \in S$$
,

$$\pi^*(s) = \operatorname*{argmax}_{a \in A} Q^*(s, a).$$

Relationship of V^* , Q^* , π^*

- Say we are working with MDP (S, A, T, R, γ) .
- Suppose you have computed V^* . How to get Q^* ? For $s \in S$, $a \in A$:

$$Q^{\star}(s,a) = \sum_{s' \in S} T(s,a,s') \{ R(s,a,s') + \gamma V^{\star}(s') \}.$$

• Now that you have Q^* , how to get π^* ? For $s \in S$.

$$\pi^*(s) = \operatorname*{argmax}_{a \in A} Q^*(s, a).$$

• Suppose you have computed π^* . How to get V^* ?

Relationship of V^* , Q^* , π^*

- Say we are working with MDP (S, A, T, R, γ) .
- Suppose you have computed V^* . How to get Q^* ? For $s \in S$, $a \in A$:

$$Q^{\star}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\star}(s') \}.$$

• Now that you have Q^* , how to get π^* ? For $s \in S$.

$$\pi^*(s) = \operatorname*{argmax}_{a \in A} Q^*(s, a).$$

• Suppose you have computed π^* . How to get V^* ? Solve Bellman equations for π^* !

Markov Decision Problems

- Bellman optimality
 - Banach's fixed-point theorem
 - Bellman optimality operator
- Value Iteration
- 3. Linear Programming formulation
 - Review of LP
 - MDP Planning as LP

- To solve for real-valued variables x_1, x_2, \dots, x_m such that
 - a given linear function of the variables is maximised, while
 - given linear constraints on the variables are satisfied.

- To solve for real-valued variables $x_1, x_2, ..., x_m$ such that
 - a given linear function of the variables is maximised, while
 - given linear constraints on the variables are satisfied.

Maximise x_1+2x_2 //Objective function subject to: //Constraints

$$x_1+x_2\leq 9, \qquad (C1)$$

$$4x_1 - 13x_2 \le -75,$$
 (C2)

$$x_1 \le 5.$$
 (C3)

- To solve for real-valued variables $x_1, x_2, ..., x_m$ such that
 - a given linear function of the variables is maximised, while
 - given linear constraints on the variables are satisfied.

Maximise
$$x_1+2x_2$$
 //Objective function subject to: //Constraints
$$x_1+x_2 \le 9, \qquad \text{(C1)}$$
$$4x_1-13x_2 < -75, \qquad \text{(C2)}$$

$$x_1 \le 5.$$
 (C3)

 Well-studied problem with wide-ranging applications in mathematics, engineering.

- To solve for real-valued variables $x_1, x_2, ..., x_m$ such that
 - a given linear function of the variables is maximised, while
 - given linear constraints on the variables are satisfied.

Maximise
$$x_1+2x_2$$
 //Objective function subject to: //Constraints
$$x_1+x_2 \leq 9, \qquad \text{(C1)}$$

$$4x_1-13x_2 \leq -75, \qquad \text{(C2)}$$

$$x_1 \leq 5. \qquad \text{(C3)}$$

- Well-studied problem with wide-ranging applications in mathematics, engineering.
- Today's solvers (commercial, as well as open source) can handle LPs with millions of variables.

Solving a Linear Program

 Step 1: Identify the feasible set, which contains all the points satisfying the constraints. Might be empty, but otherwise will be convex.

Maximise $x_1 + 2x_2$ subject to:

$$x_1 + x_2 \le 9,$$
 (C1)
 $4x_1 - 13x_2 \le -75,$ (C2)
 $x_1 \le 5.$ (C3)

Solving a Linear Program

 Step 1: Identify the feasible set, which contains all the points satisfying the constraints. Might be empty, but otherwise will be convex.

Maximise $x_1 + 2x_2$ subject to:

$$x_1 + x_2 \le 9,$$
 (C1)
 $4x_1 - 13x_2 \le -75,$ (C2)
 $x_1 \le 5.$ (C3)

Solving a Linear Program

- Step 1: Identify the feasible set, which contains all the points satisfying the constraints. Might be empty, but otherwise will be convex.
- **Step 2**: Identify points within the feasible set that maximise the objective. Usually a single point.

Maximise $x_1 + 2x_2$ subject to:

$$x_1 + x_2 \le 9,$$
 (C1)
 $4x_1 - 13x_2 \le -75,$ (C2)
 $x_1 \le 5.$ (C3)

• Bellman optimality equations: for $s \in S$,

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^*(s') \right\}.$$

• Bellman optimality equations: for $s \in S$,

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{R(s, a, s') + \gamma V^*(s')\}.$$

• Let us create n variables $V(s_1), V(s_2), \ldots, V(s_n)$, and attempt to create an LP whose unique solution is V^* .

• Bellman optimality equations: for $s \in S$,

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{R(s, a, s') + \gamma V^*(s')\}.$$

- Let us create n variables $V(s_1), V(s_2), \ldots, V(s_n)$, and attempt to create an LP whose unique solution is V^* .
- Although the Bellman optimality equations are non-linear, we can easily create linear constraints. For $s \in S$, $a \in A$:

$$V(s) \ge \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V(s') \}.$$

• Bellman optimality equations: for $s \in S$,

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{R(s, a, s') + \gamma V^*(s')\}.$$

- Let us create n variables $V(s_1), V(s_2), \ldots, V(s_n)$, and attempt to create an LP whose unique solution is V^* .
- Although the Bellman optimality equations are non-linear, we can easily create linear constraints. For $s \in S$, $a \in A$:

$$V(s) \ge \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V(s') \}.$$

• These are nk linear constraints.

• Bellman optimality equations: for $s \in S$,

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{R(s, a, s') + \gamma V^*(s')\}.$$

- Let us create n variables $V(s_1), V(s_2), \ldots, V(s_n)$, and attempt to create an LP whose unique solution is V^* .
- Although the Bellman optimality equations are non-linear, we can easily create linear constraints. For $s \in S$, $a \in A$:

$$V(s) \ge \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V(s') \}.$$

- These are nk linear constraints.
- Observe that V^* is in the feasible set.

• Bellman optimality equations: for $s \in S$,

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{R(s, a, s') + \gamma V^*(s')\}.$$

- Let us create n variables $V(s_1), V(s_2), \ldots, V(s_n)$, and attempt to create an LP whose unique solution is V^* .
- Although the Bellman optimality equations are non-linear, we can easily create linear constraints. For $s \in S$, $a \in A$:

$$V(s) \ge \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V(s') \}.$$

- These are nk linear constraints.
- Observe that V^* is in the feasible set.

Can we construct an objective function for which V^* is the sole optimiser?

• For $X: S \to \mathbb{R}$ and $Y: S \to \mathbb{R}$, we define

$$X \succeq Y \iff \forall s \in S : X(s) \ge Y(s),$$

 $X \succ Y \iff X \succeq Y \text{ and } \exists s \in S : X(s) > Y(s).$

• For $X: S \to \mathbb{R}$ and $Y: S \to \mathbb{R}$, we define

$$X \succeq Y \iff \forall s \in S : X(s) \geq Y(s),$$

 $X \succ Y \iff X \succeq Y \text{ and } \exists s \in S : X(s) > Y(s).$

• For policies $\pi_1, \pi_2 \in \Pi$, we define

$$\pi_1 \succeq \pi_2 \iff V^{\pi_1} \succeq V^{\pi_2},$$

 $\pi_1 \succ \pi_2 \iff V^{\pi_1} \succ V^{\pi_2}.$

• For $X: S \to \mathbb{R}$ and $Y: S \to \mathbb{R}$, we define

$$X \succeq Y \iff \forall s \in S : X(s) \geq Y(s),$$

 $X \succ Y \iff X \succeq Y \text{ and } \exists s \in S : X(s) > Y(s).$

• For policies $\pi_1, \pi_2 \in \Pi$, we define

$$\pi_1 \succeq \pi_2 \iff V^{\pi_1} \succeq V^{\pi_2},$$

 $\pi_1 \succ \pi_2 \iff V^{\pi_1} \succ V^{\pi_2}.$

• Note that we can have incomparable policies $\pi_1, \pi_2 \in \Pi$: that is, neither $\pi_1 \succeq \pi_2$ nor $\pi_2 \succeq \pi_1$.

• For $X: S \to \mathbb{R}$ and $Y: S \to \mathbb{R}$, we define

$$X \succeq Y \iff \forall s \in S : X(s) \geq Y(s),$$

 $X \succ Y \iff X \succeq Y \text{ and } \exists s \in S : X(s) > Y(s).$

• For policies $\pi_1, \pi_2 \in \Pi$, we define

$$\pi_1 \succeq \pi_2 \iff V^{\pi_1} \succeq V^{\pi_2},$$

 $\pi_1 \succ \pi_2 \iff V^{\pi_1} \succ V^{\pi_2}.$

- Note that we can have incomparable policies $\pi_1, \pi_2 \in \Pi$: that is, neither $\pi_1 \succeq \pi_2$ nor $\pi_2 \succeq \pi_1$.
- Also note that if $\pi_1 \succ \pi_2$ and $\pi_2 \succ \pi_1$, then $V^{\pi_1} = V^{\pi_2}$.

B^{*} Preserves ≥

• Fact. For $X:S\to\mathbb{R}$ and $Y:S\to\mathbb{R}$, $X\succeq Y\implies B^*(X)\succeq B^*(Y)$.

B^{*} Preserves ≻

• Fact. For $X:S\to\mathbb{R}$ and $Y:S\to\mathbb{R}$,

$$X \succeq Y \implies B^*(X) \succeq B^*(Y).$$

As proof it suffices to show that if $X \succeq Y$, then for $s \in S$,

$$(B^{\star}(X))(s)-(B^{\star}(Y))(s)\geq 0.$$

B^{*} Preserves ≥

• Fact. For $X:S\to\mathbb{R}$ and $Y:S\to\mathbb{R}$,

$$X \succeq Y \implies B^*(X) \succeq B^*(Y).$$

As proof it suffices to show that if $X \succeq Y$, then for $s \in S$,

$$(B^{\star}(X))(s)-(B^{\star}(Y))(s)\geq 0.$$

We use: $\max_a f(a) - \max_a g(a) \ge \min_a (f(a) - g(a))$.

B^{*} Preserves ≥

• Fact. For $X:S\to\mathbb{R}$ and $Y:S\to\mathbb{R}$,

$$X \succeq Y \implies B^*(X) \succeq B^*(Y).$$

As proof it suffices to show that if $X \succeq Y$, then for $s \in S$,

$$(B^{\star}(X))(s)-(B^{\star}(Y))(s)\geq 0.$$

We use:
$$\max_{a} f(a) - \max_{a} g(a) \ge \min_{a} (f(a) - g(a)).$$

$$(B^{\star}(X))(s) - (B^{\star}(Y))(s)$$

$$= \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma X(s') \} - \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma Y(s') \}$$

$$\ge \gamma \min_{a \in A} \sum_{s' \in S} T(s, a, s') \{ X(s') - Y(s') \} \ge 0.$$

• Each $V: S \to \mathbb{R}$ in our feasible set satisfies $V \succeq B^*(V)$.

- Each $V: S \to \mathbb{R}$ in our feasible set satisfies $V \succeq B^*(V)$.
- Since B^{*} preserves ≥, we get

$$V \succeq B^{*}(V)$$

$$\implies B^{*}(V) \succeq (B^{*})^{2}(V)$$

$$\implies (B^{*})^{2}(V) \succeq (B^{*})^{3}(V)$$

$$\vdots$$

- Each $V: S \to \mathbb{R}$ in our feasible set satisfies $V \succeq B^*(V)$.
- Since B^{*} preserves ≥, we get

$$V \succeq B^{\star}(V)$$

$$\implies B^{\star}(V) \succeq (B^{\star})^{2}(V)$$

$$\implies (B^{\star})^{2}(V) \succeq (B^{\star})^{3}(V)$$

$$\vdots$$

• By implication and by Banach's Fixed-point Theorem, $V \succ \lim_{l \to \infty} (B^*)^l(V) = V^*$.

- Each $V: S \to \mathbb{R}$ in our feasible set satisfies $V \succeq B^*(V)$.
- Since B^{*} preserves ≥, we get

$$V \succeq B^{\star}(V)$$

$$\implies B^{\star}(V) \succeq (B^{\star})^{2}(V)$$

$$\implies (B^{\star})^{2}(V) \succeq (B^{\star})^{3}(V)$$

$$\vdots$$

• By implication and by Banach's Fixed-point Theorem,

$$V \succeq \lim_{l \to \infty} (B^{\star})^l(V) = V^{\star}.$$

• We "linearise" this result: for $V: S \rightarrow R$ in the feasible set.

$$\sum_{s \in S} V(s) \ge \sum_{s \in S} V^*(s)$$
.

Linear Programming Formulation

$$\begin{aligned} & \text{Maximise}\left(-\sum_{s \in S} \textit{V(s)}\right) \\ & \text{subject to} \\ & \textit{V(s)} \geq \sum_{s' \in S} \textit{T(s, a, s')} \{\textit{R(s, a, s')} + \gamma \textit{V(s')}\}, \forall s \in \textit{S, a} \in \textit{A}. \end{aligned}$$

This LP has n variables, nk constraints.

Linear Programming Formulation

$$\begin{aligned} & \text{Maximise}\left(-\sum_{s \in \mathcal{S}} \textit{V(s)}\right) \\ & \text{subject to} \\ & \textit{V(s)} \geq \sum_{s' \in \mathcal{S}} \textit{T(s, a, s')} \{\textit{R(s, a, s')} + \gamma \textit{V(s')}\}, \forall s \in \textit{S, a} \in \textit{A}. \end{aligned}$$

- This LP has *n* variables, *nk* constraints.
- There is also a dual LP formulation with nk variables and n constraints. See Littman et al. (1995) if interested.

Markov Decision Problems

- Bellman optimality
 - Banach's fixed-point theorem
 - Bellman optimality operator
- Value Iteration
- 3. Linear Programming formulation
 - Review of LP
 - MDP Planning as LP

Markov Decision Problems

- 1. Bellman optimality
 - Banach's fixed-point theorem
 - Bellman optimality operator
- Value Iteration
- 3. Linear Programming formulation
 - Review of LP
 - MDP Planning as LP

Next week: Policy Iteration, proof of optimality of π^* .