mini的FPGA烧写过程

创建项目导入文件

新建一个项目

不勾选"Do not specify sources at this time"

添加对应Verilog文件

添加对应约束文件

选择FPGA芯片型号

点击Finish创建完成

添加BRAM IP Core

从IP Catalog中搜索选择"Block Memory Generator"

接口类型选择"Native"

更改Port A位宽和深度,配置操作模式,取消勾选"Primitives Output Register"

加载coe文件到BRAM中

更改设备名称为"BRAM"

点击OK和Generate, 生成IP Core的Verilog代码

完成

添加clocking wizard IP

再次搜索ip核,选择clocking wizard

输入频率更改为125MHz

输出更改为50MHz

取消勾选"locked"选项

更改IP核名称为"CLKWIZ"

点击"OK"和"generate"完成生成

生成BitStream进行烧写

生成比特流

连接设备

烧写比特流

连接IO引脚

观察结果

安装驱动

查看效果

