Cross-Species Transfer Learning

From Dog breed to Cat breed Classification using Deep Learning Techniques

Prodromos Kampouridis

TABLE OF CONTENTS

O1Introduction

O2 Dataset O3 CNN

Q4Transfer Learning

05
Cross-Dataset
Evaluation

06 Demo

01 Introduction

Introduction

The ability to accurately identify different breeds of dogs and cats has numerous applications, including in animal shelters, veterinary clinics and breeding programs.

Introduction

Due to the plenty physical characteristics and subtle variations among breeds it can be a challenge to classify them correctly.

Accurate breed classification can also help with understanding health issues and behavior traits related to specific breeds.

02 Dataset

About the Dataset

> Oxford-IIT (Dogs)
17 Classes

> Oxford-IIT (Cats)
12 Classes

> Stanford Dogs

Data Preprocessing

- Data Augmentation
 - ✓ Flipping
 - ✓ Rotating
 - ✓ Zooming
 - ✓ Cropping
 - ✓ Blurring
 - ✓ Noise
- ☐ Generative Adversarial Networks (GANs)

03 CNN

Model Structure

Conv2D

activation = relu dilation_rate = 1, 1 filters = 32 groups = 1 kernel_size = 3, 3 strides = 1, 1

ReLU

Conv2D

activation = relu dilation_rate = 1, 1 filters = 64 groups = 1 kernel_size = 3, 3 strides = 1, 1

ReLU

Conv2D

activation = relu dilation_rate = 1, 1 filters = 128 groups = 1 kernel_size = 3, 3 strides = 1, 1

ReLU

Conv2D

activation = relu dilation_rate = 1, 1 filters = 256 groups = 1 kernel_size = 3, 3 strides = 1, 1

ReLU

Conv2D

activation = relu dilation_rate = 1, 1 filters = 512 groups = 1 kernel_size = 3, 3 strides = 1, 1

ReLU

Dense

activation = relu bias_constraint = kernel_constraint = units = 512

RelU

Dense

activation = softmax bias_constraint = kernel_constraint = units = 17

Softmax

BatchNormalization

axis = 3 beta_constraint = gamma_constraint =

BatchNormalization

axis = 3 beta_constraint = gamma_constraint =

zation BatchNormalization

MaxPooling2D

axis = 3 beta_constraint = gamma_constraint =

BatchNormalization

axis = 3 beta_constraint = gamma_constraint =

BatchNormalization

axis = 3 beta_constraint = gamma_constraint =

BatchNormalization

axis = 3 beta_constraint = gamma_constraint =

Spatial Dropout 2D

noise_shape = rate = 0.1 seed = pool_size = 2, 2 strides = 2, 2

SpatialDropout2D

MaxPooling2D Spa

noise_shape = rate = 0.2 seed =

SpatialDropout2D MaxPooling2D

= 0.2 pool_size = 2, 2 = strides = 2, 2

SpatialDropout2D

noise_shape = rate = 0.2 seed =

SpatialDropout2D

noise_shape = rate = 0.2 seed =

Hyperparameter Tuning

	Batch Size	Learning Rate	Regularization (L1 + L2)
	32	0.1	0.01
	64	0.01	0.001
	128	0.001	0.0001
Best Parameters	32	0.001	0.0001

Trainable	Validation	Validation	Test	Test
Parameters	Accuracy	Loss	Accuracy	Loss
1.841.368	83.6%	1.397	83%	1.468

Results

Results

04 TRANSFER LEARNING

CNN Model

Block	Trainable Parameters	Validation Accuracy	Validation Loss	Test Accuracy	Test Loss
1	1.449.996	77.8%	1.826	75.1%	1.815
2	1.745.676	78.6%	1.511	75.8%	1.400
3	1.819.788	81.1%	1.364	80.5%	1.331
Output Layer	6.156	51%	2.216	57.6%	2.126

CNN Model Learning Curve

Percentage	Accuracy	
20	16.6%	
30	46.8%	
40	62.5%	
50	77%	
60	75.8%	
70	76.4%	
80	78.6%	
90	80.7%	
100	81.1%	

EfficientNet Model

	Trainable	Validation	Validation	Test	Test
	Parameters	Accuracy	Loss	Accuracy	Loss
Efficient Net	1.720.332	89.5%	0.665	91.2%	0.312

Cross-dataset Evaluation for Cats

	Trainable Parameters	Validation Accuracy	Validation Loss	Test Accuracy	Test Loss
Fully Trained	1.843.933	56.9%	2.227	62.2%	2.107
Transfer Learning	1.819.788	81.1%	1.364	77.5%	1.331
Output Layer	6.156	51%	2.216	57.6%	2.126

Cross-dataset Evaluation for Dogs

	Trainable Parameters	Validation Accuracy	Validation Loss	Test Accuracy	Test Loss
Fully Trained	1.841.368	83.6%	1.397	83%	1.468
Transfer Learning	1.819.788	83.1%	1.436	80.9%	1.557

06 DEMO

DEMO

DEMO

