平均値の定理

~基礎から「解けない漸化式」への応用まで~

$$1 + \frac{1}{2 + \frac{1}{2$$

平均値の定理の基本

関数 f(x) が,閉区間 [a, b] で連続,かつ,開区間 (a, b) で微分可能であるとする.このとき,開区間 (a, b) 内の値 c で,

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

を満たすものが存在する.

例題 1. 関数 $f(x) = \log x$ の区間 $1 \le x \le e$ について、平均値の定理における c の値を求めよ.

例題 2. 極限値 $\lim_{x\to 0} \frac{\sin x - \sin(\sin x)}{x - \sin x}$ を求めよ.

問題 1. 双曲線 $y=\frac{1}{x}$ 上の 2 点 $(1,\ 1),\ (2,\ \frac{1}{2})$ を結ぶ線分と平行な直線で,この双曲線に接するものの方程式を求めよ.

問題 2. $A_n=\frac{1}{2}(\log n)^2$ であるとき, $\lim_{n\to\infty}(A_{n+1}-A_n)$ を求めよ.ただし, $\lim_{x\to\infty}\frac{\log x}{x}=0$ は用いてよい.

例題 3. e を自然対数の底とする. $e \le p < q$ のとき,不等式

$$\log(\log q) - \log(\log p) < \frac{q - p}{e}$$

が成り立つことを証明せよ.

「解けない漸化式」への応用

例題 4. $f(x) = \frac{1}{2}\cos x$ とする.

- (1) 任意の x, y に対し, $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$ が成り立つことを証明せよ.
- (2) x = f(x) はただ 1 つの解をもつことを証明せよ.
- (3) 任意の a に対して、 $a_0=a$ 、 $a_n=f(a_{n-1})$ $(n=1,2,3,\cdots)$ で定められる数列 $\{a_n\}$ は、f(x)=x の解に収束することを示せ.

問題 3. $a_1=1$, $a_{n+1}=1+\frac{1}{1+a_n}$ $(n=1,2,3,\cdots)$ で定められる数列 $\{a_n\}$ を考える.

- (1) $f(x) = 1 + \frac{1}{1+x}$ とする.
 - (a) 1 以上の実数 x で、f(x) = x を満たすものを求めよ.
 - (b) 1以上の実数 $a,\ b$ に対し,常に $|f(a)-f(b)| \leqq \frac{1}{4}|a-b|$ が成り立つことを証明せよ.
- (2) 極限値 $\lim_{n\to\infty} a_n$ を求めよ.

問題 4. $a_1=\sqrt{2}, \ a_{n+1}=\sqrt{2}^{a_n} \ (n=1,2,3,\cdots)$ によって定められる数列 $\{a_n\}$ の極限値 $\lim_{n\to\infty}a_n$ を求めよ.

問題 5. 関数 f(x) を $f(x) = \frac{1}{2}x\{1 + e^{-2(x-1)}\}$ とする.

- $\begin{array}{l} (1) \ x>\frac{1}{2} \ \text{ならば} \ 0 \leqq f'(x)<\frac{1}{2} \ \text{であることを示せ.} \\ (2) \ x_0 \ \text{を正の数とするとき,} \ \ \text{数列} \ \{x_n\} \ (n=0,1,\cdots) \ \text{を} \ x_{n+1}=f(x_n) \ \text{によって定める.} \end{array}$ $x_0 > \frac{1}{2}$ であれば、 $\lim_{n \to \infty} x_n = 1$ であることを示せ.

例題 1. 関数 $f(x) = \log x$ の区間 $1 \le x \le e$ について,平均値の定理における e の値を求めよ.

解答

$$f'(x) = \frac{1}{x}$$
 より、平均値の定理より、 $1 < c < e$ なる c で、

$$\frac{\log e - \log 1}{e - 1} = \frac{1}{c}$$

を満たすものが存在する. このとき, c = e - 1.

例題 2. 極限値 $\lim_{x\to 0} \frac{\sin x - \sin(\sin x)}{x - \sin x}$ を求めよ.

解答

$$f(x) = \sin x$$
 とおくと, $f'(x) = \cos x$ である.

平均値の定理より、 $x \otimes \sin x$ の間の値 c で、

$$\frac{f(x) - f(\sin x)}{x - \sin x} = f'(c) \quad \text{すなわち} \quad \frac{\sin x - \sin(\sin x)}{x - \sin x} = \cos c$$

となるものが存在する. $x \to 0$ のとき, $c \to 0$ より,

$$\lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{x - \sin x} = \lim_{c \to 0} \cos c = \mathbf{1}$$

問題 1. 双曲線 $y=\frac{1}{x}$ 上の 2 点 $(1,\ 1),\ (2,\ \frac{1}{2})$ を結ぶ線分と平行な直線で,この双曲線に接するものの方程式を求めよ.

解答 $y' = -\frac{1}{x^2}$ より,接点の座標を $(c, \frac{1}{c})$ とおくと,

$$\frac{\frac{1}{2} - 1}{2 - 1} = -\frac{1}{c^2} \quad \therefore \quad c = \sqrt{2}$$

ゆえに、求める直線の方程式は

$$y = -\frac{1}{\sqrt{2}^2}(x - \sqrt{2}) + \frac{1}{\sqrt{2}}$$
 .: $y = -\frac{1}{2}x + \sqrt{2}$

問題 2. $A_n=\frac{1}{2}(\log n)^2$ であるとき, $\lim_{n\to\infty}(A_{n+1}-A_n)$ を求めよ.ただし, $\lim_{x\to\infty}\frac{\log x}{x}=0$ は用いてよい.

解答 $f(x) = \frac{1}{2} (\log x)^2$ とおくと、 $f'(x) = \frac{\log x}{x}$.

平均値の定理より、n < x < n+1 かつ

$$\frac{f(n+1) - f(n)}{(n+1) - n} = \frac{\log c}{c}$$

となる c が存在する. $n \to \infty$ のとき, $c \to \infty$ より,

$$\lim_{x \to \infty} (A_{n+1} - A_n) = \lim_{c \to \infty} \frac{\log c}{c} = \mathbf{0}$$

例題 3. e を自然対数の底とする. $e \leq p < q$ のとき,不等式

$$\log(\log q) - \log(\log p) < \frac{q - p}{e}$$

が成り立つことを証明せよ.

(名大)

解答 $f(x) = \log(\log x)$ とおくと、 $f'(x) = \frac{1}{x \log x}$.

平均値の定理より,p < c < q となる c で

$$\frac{f(q) - f(p)}{q - p} = f'(c)$$
 すなわち $\frac{\log(\log q) - \log(\log p)}{q - p} = \frac{1}{c \log c}$

を満たすものが存在する. $p \ge e$ より, c > e なので,

$$\frac{1}{c\log c} < \frac{1}{e\log e} = \frac{1}{e} \quad \therefore \quad \frac{\log(\log q) - \log(\log p)}{q - p} < \frac{1}{e}$$

したがって、
$$\log(\log q) - \log(\log p) < \frac{q-p}{e}$$
.

「解けない漸化式」への応用

例題 4. $f(x) = \frac{1}{2}\cos x$ とする.

- (1) 任意の x, y に対し、 $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$ が成り立つことを証明せよ.
- (2) x = f(x) はただ 1 つの解をもつことを証明せよ.
- (3) 任意の a に対して, $a_0=a$, $a_n=f(a_{n-1})$ $(n=1,2,3,\cdots)$ で定められる数列 $\{a_n\}$ は, f(x)=x の解に収束することを示せ. (三重大)

解答

(1) x=y のとき,両辺=0 より,成立するので,以下 $x \neq y$ とする. $f'(x)=-\frac{1}{2}\sin x$. 平均値の定理より,x と y の間の値 c で

$$\frac{f(x) - f(y)}{x - y} = -\frac{1}{2}\sin c$$

となるものが存在する. したがって,

$$\frac{|f(x) - f(y)|}{|x - y|} \le \frac{1}{2}$$

$$\therefore |f(x) - f(y)| \le \frac{1}{2}|x - y|.$$

(2) g(x) = x - f(x) とおくと、 $g'(x) = 1 + \frac{1}{2}\sin x > 0$ より、g'(x) は単調増加. これと、 $g(0) = -\frac{1}{2} < 0 < \frac{\pi}{2} = g\left(\frac{\pi}{2}\right)$ より、g(x) = 0 となる x がただ 1 つ存在する。

これが x=f(x) となる唯一の x である. \Box (3) f(x)=x を満たす x を α とおく. $x=a_{n-1},\ y=\alpha$ を (2) に適用すると

$$|a_n - \alpha| \le \frac{1}{2} |a_{n-1} - \alpha|$$

これを繰り返し用いると

$$|a_n - \alpha| \le \frac{1}{2} |a_{n-1} - \alpha| \le \dots \le \left(\frac{1}{2}\right)^n |a_0 - \alpha|$$
$$0 \le |a_n - \alpha| \le \left(\frac{1}{2}\right)^n |a - \alpha| \xrightarrow{n \to \infty} 0$$

したがって
$$\lim_{n \to \infty} a_n = \alpha$$

lim を用いずにそのまま表してみる遊び;

$$\frac{1}{2}\cos\left(\frac{1}$$

※ 消失点における値が初項 a であり、a が任意の実数でこの等式は成り立つ.

問題 3. $a_1=1$, $a_{n+1}=1+\frac{1}{1+a_n}$ $(n=1,2,3,\cdots)$ で定められる数列 $\{a_n\}$ を考える.

- $(1) \ f(x) = 1 + \frac{1}{1+x} \ \text{LFS}.$
 - (a) 1 以上の実数 x で、f(x) = x を満たすものを求めよ.
 - (b) 1以上の実数 a, b に対し、常に $|f(a) f(b)| \le \frac{1}{4} |a b|$ が成り立つことを証明せよ.

(2) 極限値 $\lim_{n\to\infty} a_n$ を求めよ.

解答

(1) (a)
$$x = 1 + \frac{1}{1+x}$$
 とすると, $x^2 = 2$. $x \ge 1$ より, $x = \sqrt{2}$

(b) a = b のとき、両辺= 0 より、成立するので、以下 $a \neq b$ とする.

 $f'(x) = -\frac{1}{(1+x)^2}$. 平均値の定理より, $a \ge b$ の間の値 c で,

$$\frac{f(a) - f(b)}{a - b} = -\frac{1}{(1+c)^2}$$

を満たすものが存在する. このとき,

$$\frac{|f(a) - f(b)|}{|a - b|} = \frac{1}{(1 + c)^2} \le \frac{1}{(1 + 1)^2} = \frac{1}{4}$$

ゆえば, $|f(a) - f(b)| \le \frac{1}{4}|a - b|$.

(2) k を自然数とし、 $a_k \ge 1$ と仮定すると、 $a_{k+1} = 1 + \frac{1}{1+a_k} > 1$. これと、 $a_1 \ge 1$ より、任意の自然数 n に対して、 $a_n \ge 1$ である。 よって、 $a = a_n$ 、 $b = \sqrt{2}$ を (1)(b) に適用できて、

$$\left|a_{n+1} - \sqrt{2}\right| \le \frac{1}{4} \left|a_n - \sqrt{2}\right|$$

$$\therefore \quad 0 \le |a_n - \sqrt{2}| \le \left(\frac{1}{4}\right)^{n-1} |a_1 - \sqrt{2}| \xrightarrow{n \to \infty} 0$$

したがって、 $\lim_{n\to\infty} a_n = \sqrt{2}$.

lim を用いずにそのまま表してみる遊び;

$$1 + \frac{1}{2 + \frac{1}{2$$

問題 4. $a_1=\sqrt{2}, \quad a_{n+1}=\sqrt{2}^{a_n} \quad (n=1,2,3,\cdots)$ によって定められる数列 $\{a_n\}$ の極限値 $\lim_{n\to\infty}a_n$ を求めよ.

解答

$$f(x) = \sqrt{2}^x$$
 とおくと、 $f(2) = 2$ 、 $f(4) = 4$ である。 $y = f(x)$ のグラフは常に下に凸であり、 $y = x$ のグラフは直線であるから、

この2つの交点は多くて2点しかない.

以上より、 $f(\alpha) = \alpha$ となる実数 α は $\alpha = 2,4$ しかない.

さて、k を自然数とし、 $a_k < 2$ と仮定すると、 $a_{k+1} = \sqrt{2}^{a_k} < \sqrt{2}^2 = 2$.

これと $a_1 = \sqrt{2} < 2$ より、任意の自然数 n に対して $a_n < 2$.

$$f'(x) = \sqrt{2}^x \log \sqrt{2}.$$

平均値の定理より、 $a_n < c < 2$ なる実数 c で

$$\frac{f(2) - f(a_n)}{2 - a_n} = f'(c) \quad$$
すなわち
$$\frac{2 - a_{n+1}}{2 - a_n} = \sqrt{2}^c \log \sqrt{2}$$

を満たすものが存在する. ここで、

$$\sqrt{2}^c \log \sqrt{2} < \sqrt{2}^2 \log \sqrt{2} = 2 \log \sqrt{2} = \log \sqrt{2}^2 = \log 2$$

に注意すると,

$$\frac{2-a_{n+1}}{2-a_n} < \log 2$$
 すなわち $2-a_{n+1} < \log 2(2-a_n)$

これをくり返し用いると、

$$\therefore 2-a_n < \log 2(2-a_{n-1}) < \dots < (\log 2)^{n-1}(2-a_1)$$

$$\therefore 0 \leq 2 - a_n < (\log 2)^{n-1} (2 - a_1) \xrightarrow{n \to \infty} 0.$$

したがって $\lim_{n\to\infty}a_n=\mathbf{2}$

lim を用いずにそのまま表してみる遊び;

問題 5. 関数 f(x) を $f(x) = \frac{1}{2}x\{1 + e^{-2(x-1)}\}$ とする.

- (1) $x > \frac{1}{2}$ ならば $0 \le f'(x) < \frac{1}{2}$ であることを示せ.
- (2) x_0 を正の数とするとき、数列 $\{x_n\}$ $(n=0,1,\cdots)$ を $x_{n+1}=f(x_n)$ によって定める. $x_0>\frac{1}{2}$ であれば、 $\lim_{n\to\infty}x_n=1$ であることを示せ. (東大)

解答

(1)
$$f'(x) = \frac{1}{2} \{ 1 \cdot (1 + e^{-2(x-1)}) + x \cdot (-2e^{-2(x-1)}) \} = \frac{1}{2} \{ 1 + e^{-2(x-1)} - 2xe^{-2(x-1)} \}$$
 $f''(x) = \frac{1}{2} \{ -2e^{-2(x-1)} - 2e^{-2(x-1)} + 4xe^{-2(x-1)} \} = 2(x-1)e^{-2(x-1)}.$ よって、 $f(x)$ の増減は次のようになる.

したがって、 $x>\frac{1}{2}$ ならば $0 \le f'(x) < \frac{1}{2}$. (2) (1) の結果より、 $x>\frac{1}{2}$ において、f(x) は単調増加する.これと

$$f\left(\frac{1}{2}\right) = \frac{1}{2} \cdot \frac{1}{2} \left\{ 1 + e^{-2 \cdot (\frac{1}{2} - 1)} \right\} = \frac{1 + e}{4} > \frac{1 + 1}{4} = \frac{1}{2}$$

より, $x>\frac{1}{2}$ ならば $f(x)>\frac{1}{2}$ である.

ゆえに,k を 0 以上の整数として, $x_k > \frac{1}{2}$ を仮定すると, $x_{k+1} = f(x_k) > \frac{1}{2}$ これと $a_0 > \frac{1}{2}$ より,任意の 0 以上の整数 n に対して, $x_n > \frac{1}{2}$ が成立する.

平均値の定理より、 $1 \ge x_n$ の間の値 c で、

$$\frac{f(x_n) - f(1)}{x_n - 1} = f'(c) \quad$$
すなわち
$$\frac{x_{n+1} - 1}{x_n - 1} = f'(c)$$

を満たすものが存在する.

ここで、 $1>\frac{1}{2}$ かつ $x_n>\frac{1}{2}$ より、 $c>\frac{1}{2}$ なので、(1) の結果から

$$\frac{|x_{n+1}-1|}{|x_n-1|} = f'(c) < \frac{1}{2}$$

$$|x_{n+1}-1|<\frac{1}{2}|x_n-1|.$$

これを繰り返し用いると,

$$|x_n - 1| < \frac{1}{2}|x_{n-1} - 1| < \dots < \left(\frac{1}{2}\right)^n |x_0 - 1|$$

$$\therefore \quad 0 \leq |x_n - 1| < \left(\frac{1}{2}\right)^n |x_0 - 1| \xrightarrow{n \to \infty} 0$$

したがって
$$\lim_{n\to\infty} x_n = 1$$

lim を用いずにそのまま表してみる遊び;

$$f(x) = \frac{1}{2}x\{1 + e^{-2(x-1)}\}$$
 とすると

** 消失点における値が初項 x_0 であり、この値が $x_0 > \frac{1}{2}$ を満たすときにこの等式は成立する.

以上の問題を眺めていると自然に浮かんでくるのは
問 1. 漸化式 $a_{n+1}=f(a_n)$ をもつ数列 $\{a_n\}$ が α に収束するとする.このとき,必ず $f(\alpha)=\alpha$ が成り立つといえるか?
問 2. 漸化式 $a_{n+1}=f(a_n)$ をもつ数列 $\{a_n\}$ が収束するために、初項 a_1 と $f(x)$ についてどのような条件が必要か?