CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II , RECUPERO) 21 MAGGIO 2013

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Si dia la definizione di anello *booleano*. Tra \mathbb{Z}_2 , \mathbb{Z}_4 , \mathbb{Z} (con le consuete operazioni) e $(\mathcal{P}(\mathbb{Z}), \Delta, \cap)$ quali sono e quali non sono anelli booleani?

Esercizio 2. Per ogni $n \in \mathbb{N}$ si indichi con uc(n) l'ultima cifra nella scrittura decimale di n (ad esempio, uc(234) = 4, uc(76) = 6).

(i) Si trovi un $n \in \mathbb{N}$ tale che uc $(n+1) \neq$ uc(n) + 1.

Si considerino le applicazioni

$$f : n \in \mathbb{N} \mapsto \operatorname{rest}(\operatorname{uc}(n), 7) \in \mathbb{N}$$
 e $g : n \in \mathbb{N} \mapsto \operatorname{rest}(\operatorname{uc}(n), 13) \in \mathbb{N}$.

- (ii) Qual è il numero $|\operatorname{im} f|$ degli elementi dell'immagine di f?
- (iii) Qual è il numero $|\operatorname{im} g|$ degli elementi dell'immagine di g?
- (iv) Detti \mathcal{R}_f e \mathcal{R}_q rispettivamente i nuclei di equivalenza di f e g, indicare $|\mathbb{N}/\mathcal{R}_f|$ e $|\mathbb{N}/\mathcal{R}_q|$.
- (v) Descrivere nel modo più esplicito possibile $[1]_{\mathcal{R}_f}$, $[4]_{\mathcal{R}_f}$ e, per ogni $n \in \mathbb{N}$, $[n]_{\mathcal{R}_q}$.

Sia ora ρ la relazione d'ordine definita in $S:=\{n\in\mathbb{N}\mid n<10\}$ ponendo, per ogni $a,b\in S$:

$$a \rho b \iff (a = b \lor (f(a) < f(b) \land g(a) < g(b))).$$

- (vi) Disegnare il diagramma di Hasse di (S, ρ) .
- (vii) (S, ρ) è un reticolo?
- (viii) Descrivere in (S, ρ) l'insieme dei minoranti di $\{4, 8\}$ e quello dei maggioranti di $\{3, 7\}$.

Esercizio 3. Definiamo un grafo G sull'insieme di vertici $V = \{9, 10, 15, 20, 28, 10!\}$, dichiarando due elementi distinti a, b di V adiacenti se e solo se l'equazione congruenziale $ax \equiv_b 6$ ha soluzioni.

- (i) Disegnare il grafo G.
- (ii) G è connesso? G è un albero?
- (iii) Quanti lati è necessario cancellare da G per ottenere una foresta (senza modificare l'insieme dei vertici)?

Esercizio 4. Sia K un campo. Per ogni polinomio non nullo $f \in K[x]$ indichiamo con m(f) il polinomio monico associato ad f in K[x], e poniamo anche m(0) = 0. Definamo l'operazione * in K[x] ponendo f * g = m(fg) per ogni $f, g \in K[x]$.

(i) *è associativa?, è commutativa?, ammette elemento neutro?

Per arbitrari $f, g \in K[x]$:

- (ii) qualunque sia K, cosa possiamo dire sul massimo comun divisore, nell'anello K[x], tra f e f*g?
- (iii) se $K = \mathbb{Q}$, è vero che (f + f) * g = f * g?
- (iv) se $K = \mathbb{Q}$, (K[x], +, *) è un anello?

Nel caso in cui $K = \mathbb{Z}_7$, trovare, se esiste, un polinomio monico $f \in K[x]$ tale che

$$f * (\bar{3}x + \bar{2}) = x^3 + x + \bar{2}.$$