LOGIC FOR PHILOSOPHY

1 Chapter one

2 Chapter two

2.1 Valuation functions for disjunction and equivalence

(a) We need to show that for any wff φ and χ , and any PL-interpretation \mathscr{I} , $V_{\mathscr{J}}(\varphi \vee \chi)=1$ iff either $V_{\mathscr{J}}(\varphi)=1$ or $V_{\mathscr{J}}(\chi)=1$. We must first notice that $(\varphi \vee \chi)$ is just shorthand for $(\sim \varphi \to \chi)$, so that what we need to show is that for any wff φ and χ , and any PL-interpretation \mathscr{J} , $V_{\mathscr{J}}(\sim \varphi \to \chi)=1$ iff either $V_{\mathscr{J}}(\varphi)=1$ or $V_{\mathscr{J}}(\chi)=1$. This can be done by showing, first, that, if $V_{\mathscr{J}}(\sim \varphi \to \chi)=1$ then $V_{\mathscr{J}}(\varphi)=1$ or $V_{\mathscr{J}}(\chi)=1$, and subsequently that, if $V_{\mathscr{J}}(\varphi)=1$ or $V_{\mathscr{J}}(\chi)=1$ then $V_{\mathscr{J}}(\sim \varphi \to \chi)=1$.

Let us start by proving that if $V_{\mathscr{J}}(\sim \varphi \to \chi)=1$, then either $V_{\mathscr{J}}(\varphi)=1$ or $V_{\mathscr{J}}(\chi)=1$. We first assume that $V_{\mathscr{J}}(\sim \varphi \to \chi)=1$. Recall that we have defined the valuation function for \to as follows: $V_{\mathscr{J}}(\varphi \to \psi)=1$ iff either $V_{\mathscr{J}}(\varphi)=0$ or $V_{\mathscr{J}}(\psi)=1$. Given our assumption, we can therefore say that either $V_{\mathscr{J}}(\sim \varphi)=0$ or $V_{\mathscr{J}}(\chi)=1$. But then, given the definition for the valuation function for \sim , which is $V_{\mathscr{J}}(\sim \varphi)=1$ iff $V_{\mathscr{J}}(\varphi)=0$, we can say that either $V_{\mathscr{J}}(\varphi)=1$ or $V_{\mathscr{J}}(\chi)=1$. This is what we wanted to show.

The second stage of the proof requires us to prove that if $V_{\mathscr{I}}(\varphi)=1$ or $V_{\mathscr{I}}(\chi)=1$ then $V_{\mathscr{I}}(\sim \varphi \to \chi)=1$. So, let us as-

sume that either $V_{\mathscr{J}}(\varphi)=1$ or $V_{\mathscr{J}}(\chi)=1$. By the valuation function for \sim , we see how our assumption implies that either $V_{\mathscr{J}}(\sim \varphi)=0$ or $V_{\mathscr{J}}(\chi)=1$. And so, subsequently, by the valuation function for \rightarrow , we can demonstrate that our assumption implies that $V_{\mathscr{J}}(\sim \varphi \rightarrow \chi)=1$. \square

(b) We need to show that for any wff φ and χ , and any PL-interpretation \mathscr{I} , $V_{\mathscr{I}}(\varphi \mapsto \chi) = 1$ iff $V_{\mathscr{I}}(\phi) = V_{\mathscr{I}}(\chi)$. We begin by noting that $\phi \mapsto \psi$ is shorthand for $(\phi \to \psi) \land (\psi \to \phi)$, and that the latter in its turn is shorthand for $(\sim (\phi \to \psi) \to \sim (\psi \to \phi))$. This means that what we need to show is that, for any wff φ and χ , and any PL-interpretation \mathscr{I} , $V_{\mathscr{I}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$ iff $V_{\mathscr{I}}(\phi) = V_{\mathscr{I}}(\chi)$. This can be done by showing, first that, if $V_{\mathscr{I}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$ then $V_{\mathscr{I}}(\phi) = V_{\mathscr{I}}(\chi)$, and, subsequently, that if $V_{\mathscr{I}}(\phi) = V_{\mathscr{I}}(\chi)$, then $V_{\mathscr{I}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$.

Let us start by proving that if $V_{\mathscr{J}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$ then $V_{\mathscr{J}}(\phi) = V_{\mathscr{J}}(\chi)$. We assume the antecedent of the conditional we are trying to prove, $V_{\mathscr{J}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$. By the definition of the valuation function of \sim , we see that $V_{\mathscr{J}}((\phi \to \chi) \to \sim (\chi \to \phi)) = 0$. If we rely on our definition of the valuation function of \to , we can demonstrate that $V_{\mathscr{J}}(\phi \to \chi) = 1$ and that $V_{\mathscr{J}}(\sim (\chi \to \phi)) = 0$. We now assume, for reductio, that $V_{\mathscr{J}}(\phi) \neq V_{\mathscr{J}}(\chi)$. This implies either that $\mathscr{J}(\phi) = 1$ and $\mathscr{J}(\chi) = 0$, or that $\mathscr{J}(\phi) = 0$ and $\mathscr{J}(\chi) = 1$ (but not both, of course). We will now demonstrate that each of these possibilities entails a contradiction.

So, first, let $\mathcal{J}(\phi)=1$ and $\mathcal{J}(\chi)=0$. The converse of the valuation function for \to is that $V_{\mathcal{J}}(\phi \to \psi)=0$ iff $V_{\mathcal{J}}(\phi)=1$ and $V_{\mathcal{J}}(\psi)=0$. We see that our current assumption about the particular valuation interpretation for ψ and χ implies that $V_{\mathcal{J}}(\phi \to \chi)=0$. But this contradicts with a premise we derived from our antecedent.

This means that, at best, $\mathcal{J}(\phi) = 0$ and $\mathcal{J}(\chi) = 1$. But

then, by the valuation functions for \rightarrow and \sim , we see that $V_{\mathscr{J}}(\chi \rightarrow \psi) = 0$, and so that $V_{\mathscr{J}}(\sim (\chi \rightarrow \psi)) = 1$. This again contradicts with a premise we derived from our antecedent, and so we have shown that our antecedent together with $V_{\mathscr{J}}(\phi) \neq V_{\mathscr{J}}(\chi)$ leads to contradiction.

Now we still need to prove that if $V_{\mathscr{J}}(\phi) = V_{\mathscr{J}}(\chi)$, then $V_{\mathscr{J}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi))) = 1$. We assume that $V_{\mathscr{J}}(\phi) = V_{\mathscr{J}}(\chi)$, and so can assume either that $\mathscr{J}(\phi) = 1$ and $\mathscr{J}(\chi) = 1$, or that $\mathscr{J}(\phi) = 0$ and $V_{\mathscr{J}}(\chi) = 0$ (but, again, not both). We proceed again in two straightforward stages.

First, we demonstrate that if we assume $\mathcal{J}(\phi)=1$ and that $\mathcal{J}(\chi)=1$, it follows that $V_{\mathcal{J}}(\sim((\phi\to\chi)\to\sim(\chi\to\phi)))=1$. We assume that $V_{\mathcal{J}}(\phi)=1$ and that $V_{\mathcal{J}}(\chi)=1$. Using our definitions for the valuation function of \to and \sim , we can say that $V_{\mathcal{J}}(\phi\to\chi)=1$ and that $V_{\mathcal{J}}(\sim(\chi\to\phi))=0$. But this implies that $V_{\mathcal{J}}((\phi\to\chi)\to\sim(\chi\to\phi))=0$, which in turn implies that $V_{\mathcal{J}}(\sim((\phi\to\chi)\to\sim(\chi\to\phi)))=1$. This is the desired result.

Second, we demonstrate that if we assume $\mathcal{J}(\phi)=0$ and that $\mathcal{J}(\chi)=0$, it equally follows that $V_{\mathcal{J}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi)))=1$. Again, the valuation function of \to and \sim allow us to say that $V_{\mathcal{J}}(\phi \to \chi)=1$ and that $V_{\mathcal{J}}(\sim (\chi \to \phi))=0$. As shown, this implies that $V_{\mathcal{J}}((\phi \to \chi) \to \sim (\chi \to \phi))=0$, which in turn implies that $V_{\mathcal{J}}(\sim ((\phi \to \chi) \to \sim (\chi \to \phi)))=1$. \square

2.2 Logical consequence

(a) We need to establish that $\models [P \land (Q \lor R)] \rightarrow [(P \land Q) \lor (P \land R)]$. We can prove this by reductio. So let \mathscr{J} be any PL-interpretation, and let us assume that $V_{\mathscr{J}}((P \land (Q \lor R)) \rightarrow ((P \land Q) \lor (P \land R))) = 0$. Given our definition of the valuation function \rightarrow , we can say that $(i) \ V_{\mathscr{J}}(P \land (Q \lor R)) = 1$, and that $(ii) \ V_{\mathscr{J}}((P \land Q) \lor (P \land R)) = 0$. Given our definitions of the valuation function \land and \lor , we can say that $(iii) \ \mathscr{J}(P) = 0$

1 (from i), and that (iv) $V_{\mathscr{J}}(P \wedge Q) = 0$ (from ii). By the valuation function of \wedge , this means that (v) $\mathscr{J}(Q) = 0$ (from iii & iv).

Now, given both these interpretations of P and Q, we can demonstrate that i implies that (vi) $V_{\mathscr{J}}(Q \vee R) = 1$ (by \wedge and $\mathscr{J}(P)$), and so that $\mathscr{J}(R) = 1$ (by \vee , vi, & $\mathscr{J}(Q)$). But given our valuation function for \wedge , we see that our interpretations of P and Q also imply (vii) $V_{\mathscr{J}}(P \wedge Q) = 0$. And so we can show that ii implies that $V_{\mathscr{J}}(P \wedge R) = 0$ (by \vee & vii), and so that $\mathscr{J}(R) = 0$ (by \wedge & $\mathscr{J}(P)$). So, we have derived both $\mathscr{J}(R) = 1$ and $\mathscr{J}(R) = 0$, which is absurd. \square

- (b) We need to establish that $(P \leftrightarrow Q) \lor (R \leftrightarrow S) \not\vDash P \lor R$. We can do this by finding an interpretation of P, Q, R, and S such that $V_{\mathscr{J}}(P \leftrightarrow Q) \lor (R \leftrightarrow S) = 1$ and $V_{\mathscr{J}}(P \lor R) = 0$. So, let \mathscr{J} be an interpretation such that $\mathscr{J}(P) = 0$, $\mathscr{J}(Q) = 0$, $\mathscr{J}(R) = 0$, and $\mathscr{J}(P) = 0$. Given our definition of the valuation function \leftrightarrow , we can say that $V_{\mathscr{J}}(P \leftrightarrow Q) = 1$, and that $V_{\mathscr{J}}(R \leftrightarrow S) = 1$. And given our definition of the valuation function \lor this implies that $V_{\mathscr{J}}(P \leftrightarrow Q) \lor (R \leftrightarrow S) = 1$. But then, given our definition of the valuation function \lor , we can say that $V_{\mathscr{J}}(P \lor R) = 0$. \square
- (c) We need to establish that $\sim (P \wedge Q)$ and $\sim P \vee \sim Q$ are semantically equivalent. This, in effect, means that proof is required for $\vDash (\sim (P \wedge Q)) \leftrightarrow (\sim P \vee \sim Q)$. We can proceed in two stages. First, we demonstrate that $\vDash (\sim (P \wedge Q)) \rightarrow (\sim P \vee \sim Q)$, and, subsequently, that $\vDash (\sim P \vee \sim Q) \rightarrow (\sim (P \wedge Q))$.

We prove that $\vDash (\sim (P \land Q)) \to (\sim P \lor \sim Q)$ by reductio. So let \mathscr{J} be any PL-interpretation, and let us assume that $V_{\mathscr{J}}(\sim (P \land Q)) \to (\sim P \lor \sim Q) = 0$. Given our definition of the valuation function \to , we can say that $V_{\mathscr{J}}(\sim (P \land Q)) = 1$, and that $V_{\mathscr{J}}(\sim P \lor \sim Q) = 0$. By our definition of the valuation functions \sim and \wedge , we see that $V_{\mathscr{J}}(P \land Q) = 0$, and so

that not both $\mathcal{J}(P)=1$ and $\mathcal{J}(Q)=1$. But by our definition of the valuation function \vee , we also see that $V_{\mathcal{J}}(\sim P)=0$ and $V_{\mathcal{J}}(\sim Q)=0$. Using again our definition for the valuation function \sim , this implies that both $\mathcal{J}(P)=1$ and $\mathcal{J}(Q)=1$. From our assumption, we have derived a contradiction.

We now prove that $\vDash (\sim P \lor \sim Q) \to (\sim (P \land Q))$, again by reductio. So let \mathscr{J} be any PL-interpretation, and let us assume that $V_{\mathscr{J}}(\sim P \lor \sim Q) \to (\sim (P \land Q)) = 0$. Given our definition of the valuation function \to , we can say that $V_{\mathscr{J}}(\sim P \lor \sim Q) = 1$, and that $V_{\mathscr{J}}(\sim (P \land Q)) = 0$. By our definition of the valuation function \lor and \sim , we see that not both $V_{\mathscr{J}}(\sim P) = 0$ and $V_{\mathscr{J}}(\sim Q) = 0$, and so that not both $\mathscr{J}(P) = 1$ and $\mathscr{J}(Q) = 1$. Now, by our definition of the valuation function \sim , we see that $V_{\mathscr{J}}(P \land Q) = 1$. Notice, however, that given the valuation function \land , it follows that both $\mathscr{J}(P) = 1$ and $\mathscr{J}(Q) = 1$. And again we have derived a contradiction from our assumption. \square

2.3 Sequent proofs in PL

(a) We need to prove that $P \to (Q \to R) \Rightarrow (Q \land \sim R) \to \sim P$.

1.
$$P \to (Q \to R) \Rightarrow P \to (Q \to R)$$
 (RA)

2.
$$Q \land \sim R \Rightarrow Q \land \sim R$$
 (RA)

3.
$$P \Rightarrow P$$
 (RA, for reductio)

4.
$$P, P \rightarrow (Q \rightarrow R) \Rightarrow Q \rightarrow R$$
 (1,3, \rightarrow E)

5.
$$Q \land \sim R \Rightarrow Q$$
 (2, \land E)

6.
$$P, P \rightarrow (Q \rightarrow R), Q \land \sim R \Rightarrow R$$
 (4, 5, \rightarrow E)

7.
$$P, P \rightarrow (Q \rightarrow R), Q \land \sim R \Rightarrow \sim R$$
 (6, $\land E$)

8.
$$P, P \rightarrow (Q \rightarrow R), Q \land \sim R \Rightarrow R \land \sim R$$
 (6, 7, \land I)

9.
$$P \rightarrow (Q \rightarrow R), Q \land \sim R \Rightarrow \sim P$$
 (8, RAA)

10.
$$P \rightarrow (Q \rightarrow R) \Rightarrow (Q \land \sim R) \rightarrow \sim P$$
 (9, \rightarrow I)

(b) We need to prove that $P, Q, R \Rightarrow P$.

1.
$$P \Rightarrow P$$
 (RA)

2.
$$Q \Rightarrow Q$$
 (RA)

3.
$$R \Rightarrow R$$
 (RA)

4.
$$Q, R \Rightarrow Q \land R$$
 (2, 3, \land I)

5.
$$Q, R \Rightarrow Q$$
 (4 \land E)

6.
$$P, Q, R \Rightarrow P \land Q$$
 (1, 5, \land I)

7.
$$P,Q,R \Rightarrow P$$
 (6 \land E)

(c) We need to prove that $P \to Q, R \to Q \Rightarrow (P \lor R) \to Q$.

1.
$$P \Rightarrow P$$
 (RA)

2.
$$R \Rightarrow R$$
 (RA)

3.
$$P \lor R \Rightarrow P \lor R$$
 (RA)

4.
$$P \to Q \Rightarrow P \to Q$$
 (RA)

5.
$$R \to Q \Rightarrow R \to Q$$
 (RA)

6.
$$P \rightarrow Q, P \Rightarrow Q$$
 (1, 4, \rightarrow E)

7.
$$R \to Q, R \Rightarrow Q$$
 (2, 5, \to E)

8.
$$P \rightarrow Q, R \rightarrow Q, P \lor R \Rightarrow Q$$
 (3, 6, 7, \lor E)

9.
$$P \to Q, R \to Q \Rightarrow (P \lor R) \to Q$$
 (8, \to I)

2.4 Axiomatic proofs in PL

- (a) We need to prove that $\vdash P \rightarrow P$
- **(b)** We need to prove that $\vdash (P) \rightarrow P$
- (c) We need to prove that $\sim \sim P \vdash P$