AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound comprising the formula:

(I)

wherein:

R₁ is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

E, is

$$\begin{array}{c|c} & & & Y_2 \\ \hline \begin{pmatrix} R_7 \\ C \\ R_6 \end{pmatrix} & C \\ \hline \end{pmatrix}_n^{P_2}$$

 E_{2-4} are independently H, E_1 or

$$\begin{array}{c|c}
 & Y_3 \\
 & \parallel \\
 & C \\
 & \downarrow \\
 & R_8
\end{array}$$

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{2-10} are independently selected from the group consisting of hydrogen,

 C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

 D_1 and D_2 are independently ΘH ,

or a terminal branching group;

wherein

(v) and (t) are independently 0 or a positive integer up to about 6;

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₇;

 R_{11-17} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties; or a terminal branching group of the formula

wherein

E35 is

$$\begin{array}{c|c} & & Y_2 \\ \hline & & & \\ C & & C \\ \hline & & n \\ \end{array}$$

E₃₆₋₃₈ are independently H, E₃₅ or

$$\begin{array}{c|c}
 & Y_3 \\
 & & \\
 & C \\
 & & C
\end{array}$$

$$\begin{array}{c|c}
 & C \\
 & & C
\end{array}$$

$$\begin{array}{c|c}
 & C \\
 & & C
\end{array}$$

D', is

<u>or</u> (VII)

D', is OH.

<u>or</u>

(VII)
$$E_{45}$$
 $-N - C - E_{46}$ E_{48} . E_{47}

wherein

 E_{45} is

$$\begin{array}{c|c}
 & Y_2 \\
 & X_1 \\
 & X_2 \\
 & X_3 \\
 & X_4 \\
 & X_5 \\
 & X_6 \\
 &$$

E₄₆₋₄₈ are independently H, E₄₅ or

$$\begin{array}{c|c}
 & Y_3 \\
 & \parallel \\
 & C \\
 & P \\
 & R_8
\end{array}$$

<u>wherein</u>

<u>D'', is</u>

<u>or</u>

<u>D''₂ is OH,</u>

$$-J - \left\{\begin{matrix} L_1 \\ L_2 \end{matrix}\right\}_t C C C C B_1$$

$$R_{13} R_{15} Y_5 C C C B_1$$

$$R_{14} R_{18}$$

$$R_{11}$$

$$R_{11}$$

<u>or</u>

provided that $E_{2.4}$ are not all H and D_1 and D_2 are both not OH.

2. (Original) The compound of claim 1, wherein R_1 further comprises a capping group A, selected from the group consisting of hydrogen, NH₂, OH, CO₂H, $C_{1.6}$ moieties and

$$E_{2} \xrightarrow{\begin{array}{c} E_{1} \\ \\ \\ \\ E_{3} \end{array}} \underbrace{\begin{array}{c} Y_{1} \\ \\ \\ C \end{array}}_{C} \xrightarrow{\left(M\right)_{a} \left(\begin{array}{c} R_{2} \\ \\ \\ C \end{array}\right)_{m}}_{a}$$

3. (Original) A compound of claim 2, comprising the formula:

- 4. (Cancelled)
- 5. (Previously amended) The compound of claim 3, wherein Y_1 is O.
- 6. (Original) The compound of claim 1, wherein R₁ comprises a polyalkylene oxide residue.
- 7. (Original) The compound of claim 6, wherein R₁ comprises a polyethylene glycol residue.
- 8. (Original) The compound of claim 3, wherein R₁ comprises a polyethylene glycol residue.
- 9. (Original) The compound of claim 6, wherein R₁ is selected from the group consisting of
- -C(=Y₆)-(CH₂)_f-O-(CH₂CH₂O)_x-A,
- $-C(=Y_6)-Y_7-(CH_2)_5-O-(CH_2CH_2O)_x-A$
- -C(=Y₆)-NR₂₃-(CH₂)_CO-(CH₂CH₂O)_x-A,
- -(CR₂₄R₂₅)_e-O-(CH₂)_c-O-(CH₂CH₂O)_x-A,
- -NR₂₃-(CH₂)_CO-(CH₂CH₂O)_x-A,

$$\begin{split} -C(=Y_6)-(CH_2)_{f'}O-(CH_2CH_2O)_x-(CH_2)_{f'}C(=Y_6)-, \\ -C(=Y_6)-Y_7-(CH_2)_{f'}O-(CH_2CH_2O)_x-(CH_2)_{f'}Y_7-C(=Y_6)-, \\ -C(=Y_6)-NR_{23}-(CH_2)_{f'}O-(CH_2CH_2O)_x-(CH_2)_{f'}NR_{23}-C(=Y_6)-, \\ -(CR_{24}R_{25})_{o}-O-(CH_2)_{f'}O-(CH_2CH_2O)_x-(CH_2)_{f'}O-(CR_{24}R_{25})_{e''}, \text{ and} \\ -NR_{23}-(CH_2)_{f'}O-(CH_2CH_2O)_x-(CH_2)_{f'}NR_{23}- \\ \text{wherein: } Y_6 \text{ and } Y_7 \text{ are independently O, S or } NR_{23}, \\ \text{x is the degree of polymerization;} \end{split}$$

 R_{23} , R_{24} and R_{25} are independently selected from among H, $C_{1.6}$ alkyls, $C_{3.12}$ branched alkyls, $C_{3.8}$ cycloalkyls, $C_{1.6}$ substituted alkyls, $C_{3.8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1.6}$ heteroalkyls, substituted $C_{1.6}$ heteroalkyls, $C_{1.6}$ alkoxy, phenoxy and $C_{1.6}$ heteroalkoxy;

e and f are independently zero, one or two; and

A is a capping group.

- 10. (Original) The compound of claim 9, wherein R_1 comprises -O-(CH_2CH_2O)_x and x is a positive integer so that the weight average molecular weight is at least about 20,000.
- 11. (Original) The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 20,000 to about 100,000.
- 12. (Original) The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 25,000 to about 60,000.

13. (Original) A compound of claim 3, comprising the formula

14. (Original) The compound of claim 13, wherein D₁ is

15. (Original) The compound of claim 13, wherein D₁ is

16. (Original) The compound of claim 1, wherein L₁ is (CH₂CH₂O)₂.

17. (Original) The compound of claim 1, wherein L_2 is selected from the group consisting of -CH₂-, -CH(CH₃)-, -CH₂C(O)NHCH(CH₃)-, -(CH₂)₂-, -CH₂C(O)NHCH₂-, -(CH₂)₂-NH-, -(CH₂)₂-NH-C(O)(CH₂)₂NH- and -CH₂C(O)NHCH(CH₂CH(CH₃)₂)-.

18. (Original) A compound of claim 1, selected from the group consisting of:

wherein R₁ is a PEG residue and D is selected from the group consisting of:

where B is a residue of an amine or a hydroxyl- containing drug.

19. (Original) A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; p-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine

20. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D_1 is a residue of a biologically active moiety.

- 21. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.
- 22. (Currently Amended) The compound of claim 1, wherein Ar comprises the formula:

wherein R_{11} and R_{18-20} are individually selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy heteroakoxy.

- 23. (Original) The compound of claim 22, wherein R₁₁ and R₁₈₋₂₀ are each H or CH₃.
- 24. (Previously Presented) A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

$$H-J \longrightarrow L_{1} \longrightarrow L_{2} \longrightarrow L_{2}$$

wherein

(v) and (t) are independently 0 or a positive integer up to about 6; J is NR₁₂ or

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₅ are independently selected from the group consisting of O, S and NR₁₇;

 R_{11-17} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'₁ is a residue of a hydroxyl- or an amine-containing moiety; with a compound of the formula (IX):

$$R_{1} = \left\{ \begin{array}{c} R_{2} \\ C \\ R_{3} \end{array} \right\}_{m} \left(\begin{array}{c} Y_{1} \\ M \\ A \end{array} \right)_{a} \left(\begin{array}{c} E_{5} \\ C \\ C \\ E_{8} \end{array} \right)_{E_{7}} \left(\begin{array}{c} E_{5} \\ C \\ C \end{array} \right)$$

wherein

$$E_s$$
 is $\begin{pmatrix} R_7 \\ C \\ C \end{pmatrix}_n \begin{pmatrix} Y_2 \\ C \\ D_3 \end{pmatrix}$

E₆₋₈ are independently H, E₅ or

$$\begin{array}{c|c}
 & Y_3 \\
 & \parallel \\
 & C \\
 & \downarrow \\
 & R_8
\end{array}$$

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

- (a) is zero or one;
- (m) is 0 or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀; and

 R_{2-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

provided that E₆₋₈ are not all H;

under conditions sufficient to cause a polymeric conjugate to be formed.