Corso di Laurea in Matematica, Università di Roma "La Sapienza"

Corso di Data Mining

M. Falcone

Esercitazioni in Laboratorio

Foglio 1: Immagini digitali in matlab e compressione

1. Prime operazioni sulle immagini

Scrivere un programma che legga immagini digitali, in toni di grigio o a colori, e le trasformi in una o più matrici usando i comandi di MATLAB illustrati nel manuale di visualizzazione. Potete usare le immagini che ho messo a disposizione sulla pagina e-learning oppure le vostre immagini, i formati accettati in lettura/scrittura sono moltissimi (gif, tiff, jpeg, ...). Visualizzare le matrici sia come valori numerici che come immagini.

2. Compressione delle immagini attraverso la SVD

Scrivere un programma che legga una immagine, la salvi su una o più matrici e la comprima con vari livelli di compressione. A questo scopo può essere utile visualizzare anche il grafico dei valori singolari σ_i , $i = 1, ..., \min\{m, n\}$, per decidere quando fermarsi nella compressione.

In ogni caso, va rappresentata l'immagine di partenza e, a fianco, l'immagine compressa indicando anche il numero ed il valore dei valori singolari utilizzati.

Successivamente, aggiungere al programma anche il calcolo del fattore di compressione e il calcolo della accuratezza.

Provate anche a vedere la differenza tra una compressione con un singolo canale (toni di grigio) e una compressione sui 3 canali RGB.

Dati in INPUT:

- l'immagine (nel formato che preferite)
- il numero massimo $k \leq min\{m, n\}$

si vuole avere in OUTPUT:

- il numero dei valori singolari utilizzati (k = 5, 10, 20, 50, 100, 200...)
- l'immagine compressa, indicando k
- il fattore di compressione
- l'accuratezza

Al programma finale si arriva per gradi aggiungendo i vari punti uno per volta.