$\mathrm{ULB} \hspace{3cm} 2018/2019$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

LISTE 10- TYPES DE CONVERGENCE

Soient (X, \mathcal{A}, μ) un espace mesuré et $(f_k)_{k \in \mathbb{N}}$ une suite de fonctions mesurables sur cet espace. On rappelle les types suivants de convergence :

(i) On dit que $(f_k)_{k\in\mathbb{N}}$ converge vers f presque partout s'il existe un ensemble $E\subset X$ de mesure nulle tel que

$$f_k(x) \to f(x)$$
 pour tout $x \in X \setminus E$.

(ii) On dit que $(f_k)_{k\in\mathbb{N}}$ converge vers f en mesure si, pour tout $\epsilon>0$,

$$\lim_{k \to \infty} \mu \Big(\{ x \in X : |f_k(x) - f(x)| > \epsilon \} \Big) = 0.$$

(iii) On dit que $(f_k)_{k\in\mathbb{N}}$ converge vers f dans $L^p(X)$ si

$$||f_k - f||_{L^p(X)} \to 0$$
 lorsque $k \to \infty$.

(iv) On dit que $(f_k)_{k\in\mathbb{N}}$ converge vers f presque uniformément si, pour tout $\epsilon > 0$, il existe $\Omega \in \mathcal{A}$ tel que $\mu(\Omega) < \epsilon$ et $f_k \to f$ uniformément sur $X \setminus \Omega$.

Il est utile d'avoir en tête les suites définies par les fonctions suivantes :

- (1) $f_k = \frac{1}{k} \mathbb{1}_{[0,k]}$.
- (2) $f_k = \mathbb{1}_{[k,k+1]}$.
- (3) $f_k = k \mathbb{1}_{\left[\frac{1}{k}, \frac{2}{k}\right]}$.
- (4) $f_k = \mathbb{1}_{\left[\frac{k-2^i}{2^i}, \frac{k-2^i+1}{2^i}\right]}$ pour $i \ge 0$ et $2^i \le k < 2^{i+1}$.

Exercice 1. Soient (X, \mathcal{A}, μ) un espace mesuré, $(f_k)_{k \in \mathbb{N}}$ une suite de fonctions mesurables sur cet espace et $1 \leq p \leq \infty$. Justifier les affirmations suivantes :

- a) La convergence presque partout n'implique pas la convergence dans $L^p(X)$, sauf si la suite $(f_k)_{k\in\mathbb{N}}$ est bornée par une fonction $g\in L^p(X)$.
- b) La convergence dans $L^p(X)$ implique la convergence en mesure.
- c) La convergence presque partout n'implique pas la convergence en mesure, sauf si $\mu(X) < \infty$.
- d) La convergence en mesure n'implique pas la convergence presque partout, mais seulement la convergence presque partout d'une sous-suite.
- e) La convergence en mesure n'implique pas la convergence dans $L^p(X)$, sauf si la suite $(f_k)_{k\in\mathbb{N}}$ est bornée par une fonction $g\in L^p(X)$.
- f) La convergence presque uniforme implique la converge en mesure.
- g) La convergence presque partout n'implique pas la convergence presque uniforme.
- h) Si $\mu(X) < \infty$, la convergence presque partout implique la convergence presque uniforme.

Remarque : Ceci est le théorème d'Egorov.