الحسابيات

\mathbb{Z} قابلية القسمة في -I

1- تعریف

 \mathbb{Z} لیکن a و a من

a=kb نقول إن b يقسم a و نكتب b/a إذا وجد b في $\mathbb Z$ حيث

$$(a;b) \in \mathbb{Z}^2$$
 $b/a \Leftrightarrow \exists k \in \mathbb{Z}$ $a = kb$

2- ملاحظات

bاو a او a اننا نقول إن b قاسم لـ a أو a مضاعف لـ b -*

 $b\cdot\mathbb{Z}=\left\{k\cdot b/k\in\mathbb{Z}
ight\}$ مجموعة مضاعفات العدد b هي المجموعة $b\in\mathbb{Z}$ -*

$$b/a \Rightarrow |b| \leq |a|$$
 : $b \in \mathbb{Z}$ $a \in \mathbb{Z}^*$ ليكن -*

" b/a" خاصيات العلاقة -3

نقول إن العلاقة" b/a "نعكاسية $orall a \in \mathbb{Z}$ " نقول إن العلاقة "

نقول إن العلاقة" b/a "متعدية $orall (a;b;c)\in \mathbb{Z}^3$ $\begin{cases} b/a \\ a/c \end{cases} \Rightarrow b/c$ -*

$$\forall (a;b;c) \in \mathbb{Z}^3 \quad \begin{cases} b/a \\ a/b \end{cases} \Rightarrow |a| = |b| -*$$

ىلاحظة

$$\mathbb N$$
 نقول إن العلاقة" b/a " نقول إن العلاقة في $orall (a;b;c)\in \mathbb N^3$ $\begin{cases} b/a \\ a/b \end{cases} \Rightarrow a=b$

تمرين

 $orall (a;b) \in \mathbb{Z}^2$ $b/a \Leftrightarrow a \cdot \mathbb{Z} \subset b \cdot \mathbb{Z}$ بين أن -1

$$\forall (a; x_1; x_2; y_1; y_2) \in \mathbb{Z}^5$$
 $a/(x_1 - y_1)$ \land $a/(x_2 - y_2) \Leftrightarrow a/(x_1 x_2 - y_1 y_2)$ -2

$\mathbb Z$ القسمة الاقلىدىة في $-{ m II}$

 $\mathbb N$ القسمة الاقليدية في 1

مبرهنة

 $a \neq b$ ليكن $a \neq b$ من \mathbb{N} حيث

 $0 \leq r \prec b$ حيث a = bq + r عيث $\left(q,r\right)$ من من عبد روج وحيد

اصطلاحات

العملية التي تمكننا من تحديد (q;r) بحيث a=bq+r حيث $0 \leq r \prec b$ تسمى القسمة الاقليدية لـ a=bq+r على b في a=a

العدد a يسمى المقسوم و العدد b يسمى المقسوم عليه و العدد q الخارج و

 $\mathbb Z$ - القسمة الاقليدية في $\mathbb Z$

مبرهنة

a
eq b لیکن a من \mathbb{Z} و b في \mathbb{N}^* حيث

 $0 \le r \prec b$ حيث a = bq + r عن $\mathbb{Z} \times \mathbb{N}$ من (q;r) عن موجد زوج وحيد

اصطلاحات

العملية التي تمكننا من تحديد (q;r) من $\mathbb{Z} imes \mathbb{N}$ بحيث a = bq + r تسمى

 \mathbb{Z} القسمة الاقليدية لـ aعلى b

الباقي p الخارج و q الباقي العدد q العدد q العدد q العدد العدد q العدد q العدد العدد العدد q العدد العدد q العدد العد

تمرين

 q^2 و باقي x و باقي معدد الأعداد الصحيحة النسبية x بحيث يكون للقسمة الاقليدية لـ x

تمرين

بين إذا كان للقسمة الاقليدية لـ aعلى b و القسمة الاقليدية لـ a'على b نفس الخارج a و كان a و كان a فان a خارج القسمة الاقليدية لـ aعلى a

III- الموافقة بترديدn

1- تعریف

 $\mathbb N$ ليكن a و b من $\mathbb Z$ و a من a و نكتب a و نكتب a إذا كان a يقسم a

 $\forall (a;b) \in \mathbb{Z}^2 \quad a \equiv b \quad [n] \Leftrightarrow n/a - b \Leftrightarrow \exists k \in \mathbb{Z} \quad a - b = kn$

2- خاصيات العلاقة " الموافقة بترديد n"

أ- $a\equiv a$ نقول إن العلاقة " الموافقة بترديد n" انعاكسية $orall a\in \mathbb{Z}$

ب- (a;b) تماثلية " الموافقة بترديد "n نقول إن العلاقة " نقول $\forall (a;b) \in \mathbb{Z}$ $a \equiv b$ $a \equiv a$ $b \equiv a$

"n نقول إن العلاقة " الموافقة بترديد $\forall (a;b) \in \mathbb{Z} \quad (a\equiv b \quad \begin{bmatrix} n \end{bmatrix})et \ (b\equiv c \quad \begin{bmatrix} n \end{bmatrix}) \Rightarrow a\equiv c \quad \begin{bmatrix} n \end{bmatrix}$ متعدىة

نلخص الخاصيات أ و ب و ج بقولنا إن العلاقة " الموافقة بترديد n" علاقة تكافؤ

د- خاصية

 $\mathbb N$ لیکن a و b من $\mathbb Z$ و a

n على القسمة الاقليدية على $a \equiv b \quad \begin{bmatrix} n \end{bmatrix}$

البرهان

 $0 \le r_2 \prec n$ و $0 \le r_1 \prec n$ مع $b = nq_2 + r_2$ و $a = nq_1 + r_1$ و n = 0 و n = 0

 $a-b=nig(q_1-q_2ig)$ فان $r_1=r_2$ فان a إذا كان a و b و لهما نفس باقي القسمة الاقليدية على a

$$a \equiv b$$
 $[n]$ أي أن

a-b=nk عكسيا إذا كان $a\equiv b$ فانه يوجد k من $a\equiv b$

 $r_1 - r_2$ و منه $n_1 - r_2 = (k - q_1 - q_2)n$ أي

 $\left|r_{1}-r_{2}
ight|\prec n$ و لدينا $0\leq r_{1}\prec n$ و $0\leq r_{1}\prec n$

 $r_1 = r_2$ و بالتالي $r_1 - r_2 = 0$ أي

$\mathbb{Z}/_{n\mathbb{Z}}$ المجموعة -3

$$\forall (a;n) \in \mathbb{Z} \times \mathbb{N} \quad \exists (q;r) \in \mathbb{Z} \times \mathbb{N} \quad a = nq + r \quad et \quad 0 \le r < n \qquad -*$$

$$\forall (a; n) \in \mathbb{Z} \times \mathbb{N} \quad \exists r \in \mathbb{N} \quad a \equiv r \quad [n] \quad et \quad r \in \{0; 1; \dots, n-1\} \ \text{-}$$

r المجموعة $x\in\mathbb{Z}/x\equiv r$ هي مجموعة الأعداد الصحيحة النسبية التي لها نفس الباقي - المجموعة الأقليدية على n نرمز لها بـ \overline{r}

 $\mathbb Z$ المجموعة $\overline r$ تسمى صنف تكافؤ r بالنسبة للعلاقة " الموافقة بترديد $\overline r$

$$x \in \overline{r} \iff x \equiv r \quad [n]$$

 $\forall a \in \mathbb{Z} \quad \exists r \in \big\{0;1;\ldots;n-1\big\} / \quad \overline{a} \equiv \overline{r} \qquad \exists a \in \mathbb{Z} \quad \exists r \in \big\{0;1;\ldots;n-1\big\} / \quad a \equiv r \quad \left[n\right] - *$

r=r' و $0 \le r' \prec n$ و $0 \le r \prec n$ و $\overline{r}=\overline{r}$ فان *

(n باقي القسمة الاقليدية على r) $\forall (x;n) \in \mathbb{Z} \times \mathbb{N} \ \exists r \in \{0;1;...;n-1\} / \ x \in \overline{r} \ -*$

$$\mathbb{Z} = \overline{0} \cup \overline{1} \cup \overline{2} \cup \cup (\overline{n-1})$$
 اذن

 $\mathbb{Z}_{n\mathbb{Z}}$ المجموعة $\{\overline{0};\overline{1};.....;\overline{n-1}\}$ برمز لها بالرمز

أمثلة

$$\overline{1} = \left\{x \in \mathbb{Z}/x = 2k+1 \quad (k \in \mathbb{Z})\right\} \quad \overline{0} = 2 \cdot \mathbb{Z} \quad \text{ with } \quad \overline{\mathbb{Z}}/2\mathbb{Z} = \left\{\overline{0}; \overline{1}\right\} *$$

$$\overline{1} = \left\{x \in \mathbb{Z}/x = 7k+1 \quad (k \in \mathbb{Z})\right\} \quad \overline{0} = 7 \cdot \mathbb{Z} \quad \text{ with } \quad \overline{\mathbb{Z}}/7\mathbb{Z} = \left\{\overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}; \overline{6}\right\} *$$

$$\overline{3} = \left\{x \in \mathbb{Z}/x = 7k+3 \quad (k \in \mathbb{Z})\right\} \quad \overline{2} = \left\{x \in \mathbb{Z}/x = 7k+2 \quad (k \in \mathbb{Z})\right\} \quad \overline{6} = \left\{x \in \mathbb{Z}/x = 7k+6 \quad (k \in \mathbb{Z})\right\} \quad \overline{6} = \left\{x \in \mathbb{Z}/x = 7k+6 \quad (k \in \mathbb{Z})\right\} \quad \overline{6} = \overline{6}$$

$$\overline{9} \quad \text{ with } \quad \overline{9} \quad \overline{9}$$

4- انسجام العلاقة " الموافقة بترديد n" مع الجمع والضرب

أ- خاصىة

 $\overline{\mathbb{N}}$ ليكن x وy وz و t من \mathbb{N}

$$x+z\equiv y+t$$
 [n] فان $z\equiv t$ و $x=y$ و $x\equiv y$ إذا كان

$$x \times z \equiv y \times t$$
 [n] فان $z \equiv t$ و $x \equiv y$ [n] إذا كان

نقول إن العلاقة " الموافقة بترديد n" منسجمة مع الجمع والضرب

ب- نتائج

$$\overline{r+r'} = \overline{r} + \overline{r'}$$
 نکتب $x \times x' \in \overline{r \times r'}$ و $x + x' \in \overline{r+r'}$ فان $x' \in \overline{r'}$ فان $x \in \overline{r}$ و $x \times x' \in \overline{r \times r'}$ و $x \times x' \in \overline{r \times r'} = \overline{r} \times \overline{r'}$

$$\forall (a;b) \in \mathbb{Z}^2 \quad \forall (p;n) \in \mathbb{N}^* \times \mathbb{N} \quad a \equiv b \quad [n] \Rightarrow a^p \equiv b^p \quad [n] -*$$

أمثلة

$$\overline{3} \times \overline{4} = \overline{12} = \overline{2}$$
 , $\overline{0} + \overline{1} + \overline{2} + \overline{3} + \overline{4} = \overline{10} = \overline{0}$, $\overline{3} + \overline{4} = \overline{7} = \overline{2}$ *في $\frac{\mathbb{Z}}{5\mathbb{Z}}$ في *

تمرين

 $\overline{x}+\overline{5}=\overline{2}$ حدد مجموعة الأعداد الصحيحة النسبية x حيث في x

تمرين

$$\mathbb{Z}_{4\mathbb{Z}_{-}}$$
أعط جدول الجمع ثم الضرب في -1

$$2^{-13}$$
 على 13 على 13- $2^{70} + 3^{70}$ على 13- -2

تمرين

$$\forall n \in \mathbb{N}$$
 $n(n^4 - 1) \equiv 0$ $[n]$ بین أن -1

$$\mathbb{N}^*$$
 من $3 \times 5^{2n-1} + 2^{3n-2}$ لکل n من -2

4- 4- على
$$\mathbb{R}^n$$
 على \mathbb{R}^n على \mathbb{R}^n على \mathbb{R}^n على \mathbb{R}^n على \mathbb{R}^n على \mathbb{R}^n على \mathbb{R}^n

<u>IV- القاسم المشترك الأكبر</u>

 D_a نرمز لمجموعة قواسم العدد الصحيح النسبي a بالرمز

1- تعریف

 $\overline{\mathbb{Z}}^*$ لیکن a و b من

القاسم المُشتركُ الأكبر للعددين a و b هو أكبر قاسم مشترك موجب قطعا لـ a و b يرمز له $a \wedge b$ بـ $a \wedge b$

$$\delta = a \wedge b \Leftrightarrow \begin{cases} \delta \in D_a \cap D_b \\ \forall x \in D_a \cap D_b \end{cases} \quad x \leq \delta$$

 \mathbb{Z}^* ليكن a و b و a $(a \wedge b) \wedge c = a \wedge (b \wedge c)$

 $48 \land 60 = 12$

3- خوارزمية اقليدس أو طريقة " القسمات المتتالية " لتحديد القاسم المشترك

 $a \wedge b = b \wedge a$

 $a \wedge a = |a|$

 $\forall a \in \mathbb{Z}^* \quad D_a = D_{-a} \quad *$

ومنه تحديد القاسـم المشـترك الأكبر لعددين صحيحين نسـبيير $orall (a;b) \in \mathbb{Z}^{*2}$ $a \wedge b = |a| \wedge |b| *$ يرجع إلى تحديد القاسم المشترك الأكبر لعددين صحيحين طبيعيين.

 \mathbb{N}^* ب- ليكن a و a

 $a \wedge b = b$ فان b/a - إذا كان

و a=bq+r و a=bq+r و a=bq+r و a=bq+r و اخا کان ar بما أن a-bq فان كل قاسم مشترك لـ a-bq بما

 $D_a \cap D_b \subset D_r \cap D_b$ و بالتالي قاسم قاسم مشترك لـ a و b و مهترك لـ و a أي (a = bq + r عكسيا كل قاسم مشترك لـ b و r يقسم a

 $D_r \cap D_b \subset D_a \cap D_b$ ومنه کل قاسـم مشـترك لـ b و b هو قاسـم مشـترك لـ و b $a \wedge b = r \wedge b$ و بالتالي $D_a \cap D_b = D_r \cap D_b$ إذن

b على a على القسمة الاقليدية لـ a على b على b على من b لا يقسم b على الكن b $a \wedge b = r \wedge b$

 $b \prec a$ ج- لیکن a و b من \mathbb{N}^* نفترض أن

 $0 \le r_1 \prec b$ حيث $a = bq_1 + r_1$ يإجراء القسمة الاقليدية لـ a على على b نحصل على

 $a \wedge b = b$ و منه b/a فان $r_1 = 0$ و منه

 $0 \le r_1 \prec r_2$ و $b = r_1q_2 + r_2$ نجري القسمة الاقليدية لـ b على $r_1 \leftarrow 0$ و نحصل على $r_2 \leftarrow 0$ $a \wedge b = b \wedge r_1 = r_1$ و منه $b \wedge r_1 = r_1$ فان $b \wedge r_2 = 0$ اذا كان

 $0 \le r_3 \prec r_2$ و $r_1 = r_2 q_3 + r_3$ و نحصل على $r_2 \succ 0$ القسمة الاقليدية لـ r_1 على $r_2 \succ 0$ و نحصل على $r_2 \succ 0$

يإجراء العملية n مرة نحصل على

$$a \wedge b = b \wedge r_1$$
 , $0 \prec r_1 \prec b$, $a = bq_1 + r_1$
 $b \wedge r_1 = r_1 \wedge r_2$, $0 \prec r_2 \prec r_1$, $b = r_1q_2 + r_2$
 $r_1 \wedge r_2 = r_2 \wedge r_3$, $0 \prec r_3 \prec r_2$, $r_1 = r_2q_3 + r_3$

 $r_{n-2} \wedge r_{n-1} = r_{n-1} \wedge r_n$, $0 < r_n < r_{n-1}$, $r_{n-2} = r_{n-1}q_n + r_n$

 $a \wedge b = b \wedge r_1 = r_1 \wedge r_2 = r_2 \wedge r_3 = \dots = r_{n-2} \wedge r_{n-1} = r_{n-1} \wedge r_n$ و منه نستنتج

 $0 \prec r_n \prec r_{n-1} \ldots \prec r_3 \prec r_2 \prec r_1 \prec b$

 $A = \{r_1; r_2; r_3, \dots, r_n; \dots\}$ نضع

جزء من $\mathbb N$ مكبور بالعدد b و منه A مجموعة منتهية A $\exists p \in \mathbb{N} \, / \quad r_{p+1} = 0 \quad ; \quad r_p
eq 0$ إذن


```
r_{p-1}\wedge r_p=r_b بما أن r_{p-1}=r_pq_{p+1} فان r_{p+1}=0 و منه a\wedge b=r_p إذن
```

نتبحة

 \mathbb{N}^* لیکن a و b من

a القاسم المشترك الأكبر للعددين a و b هو اخر باقي غير منعدم في طريقة القسمات المتتالية لـ b على b

مثال باستعمال طريقة القسمات المتتالية، نحدد القاسم المشترك الأكبر للعددين1640 و 156

$$1640 = 156 \times 10 + 80$$

$$156 = 80 \times 1 + 76$$

$$80 = 76 \times 1 + 4$$

$$76 = 4 \times 19 + 0$$

$$1640 \land 156 = 4$$
 إذن

3- خاصیات

أ- مىرھنة

 $\delta=a\wedge b$ ليكن a و b من \mathbb{Z}^* و $\delta=au+bv$ يوجد عددان b و v من v خيث

البرهان

$$\delta$$
 - $a \wedge b$ و b من \mathbb{Z}^* و

$$A = \left\{ n \in \mathbb{N}^* / n = au + bv \quad ; \quad (u, v) \in \mathbb{Z}^2 \right\}$$
نعتبر

$$a^2 + b^2 \in A$$
 لأن $A \neq \emptyset$

$$\exists p \in A \quad \forall x \in A \quad x \ge p$$
 و بالتالي $A \subset \mathbb{N}$

$$\delta = p$$
 نبرهن أن $p = au_0 + bv_0$ ليكن

$$\delta \leq p$$
 بما أن δ/a و δ/b فان δ/p و منه $m{\diamond}$

$$\exists (q;r) \in \mathbb{Z} \times \mathbb{N} \quad a = pq + r \quad ; \quad 0 \le r \prec p$$
 يانجاز القسمة لـ a على p نحصل على \star

$$r = a - q(au_0 + bv_0) = a(1 - qu_0) + b(-qv_0)$$
 ومنه

 $r \prec p$ ومنه $r \geq p$ و منه $r \geq 0$ وهذا يتناقض مع كون $r \geq 0$

p/b وبنفس الطريقة نبرهن أن r=0 وبالتالي p/a

 $\delta \geq p$ ومنه p قاسم مشترك لـ a و وبالتالي p

$$\delta=p$$
 لدينا $\delta \leq p$ و $\delta \leq p$ لدينا

ب- استنتاجات

من البرهان السابق نستنتج $\delta=a\wedge b$ هو أصغر عدد موجب قطعا من المجموعة *

$$B = \left\{ n \in \mathbb{Z}^* / n = au + bv \quad ; \quad (u; v) \in \mathbb{Z}^2 \right\}$$

b بما أن δ قاسم مشترك لـ a و b فان أي قاسم لـ δ يقسم st و st

$$\exists (k_1;k_2) \in \mathbb{Z}^2$$
 $a=k_1c$; $b=k_2c$ عكسيا اذا كان c قاسم مشترك لـ a و b و فان

$$\exists (u; v) \in \mathbb{Z}^2 / \delta = au + bv$$
 بما أن $\delta = a \wedge b$ فانه $\delta = a \wedge b$

$$\delta$$
 ومنه $\delta = (k_1 u + k_2 v)c$ أي δ

مبرهنة

$$\delta = a \wedge b$$
 و \mathbb{Z}^* من a

$$D_a \cap D_b = D_\delta$$
 مجموعة قواسـم δ هي مجموعة القواسـم المشـتركة لـ a و

نتيجة

پذا کان
$$a$$
 و b و a أعداد من a فان $a \wedge b = \delta \Rightarrow ca \wedge cb = |c|$

4- القاسم المشترك الأكبر لعدة أعداد تعريف

 $\overline{\mathbb{Z}}^*$ و a_2 و a_3 أعداد من a_1

 a_1 أكبر عدد صحيح طبيعي يقسم في آن واحد a_1 و a_2 و a_2 و a_3 يسمى القاسم المشترك الأكبر لـ a_k و..... a_3 و a_2 و a_3 و a_3 الأكبر لـ a_4

 $12 \land -18 \land 15 = 3$ مثال

نتيجة

 $lpha_3$ إذا كان δ هو القاسم المشترك الأكبر لـ $lpha_1$ و $lpha_2$ و $lpha_3$ فانه توجد اعداد

 $\sum_{i=1}^{i=k}lpha_ia_i$ و $lpha_k$ من \mathbb{Z} حیث $lpha_k$

--V- الأعداد الأولية فيما بينها

1- تعریف

 \mathbb{Z}^* لیکن b و a

 $a \wedge b = 1$ نقول $a \wedge b = 1$ نقول $a \wedge b = 1$ نقول ما نقول المان فيما بينهما

2- مبرهنة Bezout

 \mathbb{Z}^* لیکن a و b من

 $\exists (u,v) \in \mathbb{Z}^2$ / au+bv=1 فانه $a \land b=1$

 $\exists (u,v) \in \mathbb{Z}^2 / \quad au + bv = 1$ عکسیا: لیکن b و a من b

 $a \wedge b = 1$ ومنه كل قاسم مشترك لـ a و b و يقسم a و بالتالي $D_a \cap D_b = \{-1,1\}$ أي

مبرهنة Bezout

 $\overline{\mathbb{Z}}^*$ لیکن a و b من

 $a \wedge b = 1 \Leftrightarrow \exists (u; v) \in \mathbb{Z}^2 / au + bv = 1$

3- نتيجة

b لیکن a و b من \mathbb{Z}^* و d قاسـم مشترك لـ

$$a \wedge b = |d| \Leftrightarrow \frac{a}{|d|} \wedge \frac{b}{|d|} = 1$$

ملاحظة

 \mathbb{Z}^* و $a \wedge b = \delta$ و $a \wedge b = \delta$ و $a \wedge b = \delta$ اذا کان $a \wedge b = \delta$

 $p \wedge q = 1$; $a = \delta p$; $b = q\delta$ حيث

4- مبرهنة كوصThéorème de GAUSS

ا- مبرهنة

 \mathbb{Z}^* لیکن a و b و a

b يقسم الجداء ab و كان $a \wedge c = 1$ فان عيسم الجداء و

البرهان

 $a \wedge c = 1$ و c/ab حیث $a \wedge c = 1$ و $a \wedge c = 1$

 $\exists (u; v; k) \in \mathbb{Z} / au + cv = 1$; ab = kc ومنه

 $b = b \times 1 = b(au + cv) = bau + bcv = kcu + bcv = c(ku + bv)$ و بالتالي

b اذن c يقسم

ب- استنتاجات

a - مبرهنة

 $\mathbb{Z}^{^{st}}$ لیکن a و b و a

 $a \wedge b = 1$ et a/c et $b/c \Rightarrow ab/c$

مثال يكون x قابل للقسمة على 6 اذا كان قابل للقسمة على 2 و 3 مثال ملاحظة

الشرط $a \wedge b = 1$ ضروري

 $6 \times 4 = 24$ مثالً 36 يقبل القسمة على 2 4 و 6 ،و لا يقبل القسمة على 34

b- مبرهنة

البرهان

$$ab \equiv ac \quad [n] \Leftrightarrow \exists k \in \mathbb{Z} \quad ab - ac = kn$$
 $\Leftrightarrow n/a(b-c)$ $b \equiv c \quad [n]$ اذن $n/(b-c)$ فان $a \wedge n = 1$ وحيث أن

5- خاصیات

$$\begin{cases} a \wedge b = 1 \\ a \wedge c = 1 \end{cases} \Leftrightarrow a \wedge bc = 1$$

$$\mathbb{Z}^*$$
 لیکن a و b و a من -*

$$a \wedge b = 1 \Leftrightarrow a \wedge b^n = 1$$

$$\mathbb{N}^*$$
 لیکن a و b من \mathbb{Z}^* و a

$$a \wedge b = 1 \Leftrightarrow a^m \wedge b^n = 1$$

$$\mathbb{N}^*$$
 لیکن a و b من \mathbb{Z}^* و a

نتبحة

$$\mathbb{Z}^*$$
 لیکن a و b من

$$\forall x \in \mathbb{Z}$$
 $\exists (u; v) \in \mathbb{Z}^2$ $x = au + bv$ فان $a \land b = 1$ إذا كان

تمرين محلول

17x + 3y = 94 تمرين حدد الأعداد الصحيحة النسبية حيث

الحل

الطريقة1

$$17(x-2)+3(y-20)=0$$
 ومنه $17x+3y=94$ و $17\times 2+3\times 20=94$ لدينا

$$-17(x-2) = 3(y-20)$$
 أي

$$\exists k \in \mathbb{Z}$$
 $x-2=3k$ ومنه $3/(x-2)$ فان $3/(x-2)$ فان $3/(x-2)$ ومنه $3/17(x-2)$

$$\exists k \in \mathbb{Z}$$
 $x = 3k + 2$ وبالتالي

$$\exists k \in \mathbb{Z}$$
 $y = -17k + 20$ ومنه $\exists k \in \mathbb{Z}$ $3y = 94$ ومنه

$$S = \{(3k+2; -17k+20)/k \in \mathbb{Z}\}$$
 إذن

الطريقة2

$$17x + 3y = 94 \Leftrightarrow 17x - 94 = 3y$$

$$\Leftrightarrow 17x \equiv 94$$
 [3]

$$\Leftrightarrow 2x \equiv 1$$
 [3]

$$\Leftrightarrow -x \equiv 1$$
 [3]

$$\Leftrightarrow -x \equiv -(-1)$$
 [3]

$$\exists k \in \mathbb{Z}$$
 $x = 3k - 1$ ومنه $x = -1$ فان $-1 \land 3 = 1$ ومنه

$$\exists k \in \mathbb{Z}$$
 $y = 17k + 37$ و بالتالي

$$S = \left\{ \left(3k - 1; 17k + 37\right) / k \in \mathbb{Z} \right\}$$
 إذن

حدد الأعداد u_0 و u_1 و u_2 عدود المتالية $u_0 \wedge q = 1$ عدود المجموعة \mathbb{N}^* عدود المتالية $u_1 + 2u_3 = 44u_0^2$ و تحقق q الهندسية التي أساسها

$$(a+b) \wedge ab = 1$$
 و $(a+b) \wedge b = 1$ فان $a \wedge b = 1$ و $a \wedge b = 1$

استنتج أن
$$\frac{2n+3}{n^2+3n+2}$$
 غير قابلة للاختزال

بين أن العدد
$$\sqrt{\frac{2}{3}}$$
 عدد لاجدري

6- الأعداد الأولية فيما بينها في مجموعها

نقول إن الأعداد a_1 و a_2 و a_3 من \mathbb{Z}^* أولية فيما بينها في مجموعها إذا كان القاسم المشترك الأكبر لهذه الأعداد هو 1

عندما نقول إن الأعداد a_1 و a_2 و a_3 عندما نقول إن الأعداد a_1 عندما عندما عندما عندما عندما عندما عندما عندما الأعداد a_1 عندما عن لا يعني أولية فيما بينها مثني مثني

نقول إن الأعداد a_1 و a_2 و a_2 من a_3 أولية فيما بينها في مجموعها إذا وفقط وجدت أعداد

$$\sum_{i=1}^n u_1 a_i = 1$$
 و u_2 و u_3 و u_2 و u_3 و u_2 و u_3 حل المعادلة $(x;y) \in \mathbb{Z}^2$ حل المعادلة $(x;y) \in \mathbb{Z}^2$

$$(x;y) \in \mathbb{Z}^2$$
 حل المعادلة $ax + by = c$

$$1075x + 64y = 9$$
 \mathbb{Z}^2 نحل فی

نطبق خوارزمية اقليدس لتحديد 64 ^ 1075

$$1075 = 64 \times 16 + 51$$

$$64 = 51 \times 1 + 13$$

$$51 = 13 \times 3 + 12$$

$$13 = 12 \times 1 + 1$$

$$12 = 12 \times 1 + 0$$

 $1075 \land 64 = 1$

ومنه یوجد
$$(x; y)$$
 من \mathbb{Z}^2 حیث وجد

$$b = 64$$

$$a = 1075$$
 لنضع

من خوارزمية اقليدس نستنتج أن

$$51 = a - 16b$$

$$13 = b - (a - 16b)$$

$$12 = a - 16b - 3(b - (a - 16b))$$

$$1 = b - (a - 16b) - (a - 16b - 3(b - (a - 16b)))$$

$$1 = -5a + 84b$$

$$9 = -45 \times 1075 + 756 \times 64$$
 و منه $9 = -45a + 756b$

و منه
$$(-45,756)$$
 حل للمعادلة $(-45,756)$ و بالتالي $(-45,756)$ حل للمعادلة و المعادلة $(-45,756)$

و بالتالي
$$64/(x+45)$$
 فان $64/1075(x+45)$ و حيث أن $64/1075(x+45)$


```
\exists k \in \mathbb{Z} \quad y = 1075k + 756 و منه \exists k \in \mathbb{Z} \quad x = 64k - 45 إذن \exists k \in \mathbb{Z} \quad x + 45 = 64k عكسيا إذا كان S = \{(64k - 45; 1075k + 756) \mid k \in \mathbb{Z}\} إذن S = \{(64k - 45; 1075k + 756) \mid k \in \mathbb{Z}\} ب
```

 $b \neq 0$ نعتبر المعادلة $a \neq 0$ عيث $a \neq 0$ حيث (E) $(x;y) \in \mathbb{Z}^2$ ax + by = c نضع $a \neq 0$ عيث $a \neq 0$ عيث

 $c=\delta c$ ' بوضع a'x+b'y=c' خان المعادلة تصبح *

a'x+b'y=c' فانه يوجد $\left(u_0;v_0\right)$ من \mathbb{Z}^{*2} حيث $\left(u_0;v_0+b\right)$ أي المعادلة 1=a' \wedge b' بما أن 1=a

 $ax_0+by_0=c$ عكسيا إذا كان للمعادلة أي ax+by=c في \mathbb{Z}^2 ليكن ax+by=c عكسيا إذا كان للمعادلة أي $\delta(c$ في $\delta(a'x_0+b'y_0)=c$ ومنه

خاصية

 $\delta = a \wedge b$ و \mathbb{Z}^2 من (a;b) ليكن

 δ/c للمعادلة ax + by = c حلول في \mathbb{Z}^2 إذا وفقط إذا كان

ax + by = c حل المعادلة

a'x+b'y=c' لنفترض أن δ/c إذن حل المعادلة يرجع إلى حل المعادلة

 $a'c'u_0 + b'c'v_0 = c'$ أي a'x + b'y = 1 حيث $(u_0; v_0)$ حيث $1 = a' \land b'$ بما أن

 $a'(x-c'u_0) = -b'(y-c'v_0)$ ومنه $a'(x-c'u_0) + b'(y-c'v_0) = 0$

 $a'/(c'v_0-y)$ و بالتالي $a'/(c'v_0-y)$ و حيث أن $a'/b'(c'v_0-y)$

x=kb'+ c' u_0 اذن y=-a'k+c' v_0 حیث y=-a

a'x+b'y=c' هو حل للمعادلة (kb'+c' u_0 ; -a'k+c' v_0) عكسيا نتأكد أن

 $\{(kb'+c'u_0;-a'k+c'v_0)/k\in\mathbb{Z}\}$ اذن

تمرين

7x - 3y = 1 حل في \mathbb{Z}^2 المعادلة

ليكن a من $\mathbb N$ بحيث باقي القسمة الاقليدية لـ a على 7 و 3 على التوالي1 و 2 $\mathbb N$

حدد باقي القسمة الإقليدية لـ a على 35

<u>VI- المضاعف المشترك الأصغر</u>

- تعریف

 $(a;b) \in \mathbb{Z}^{*2}$ ليكن

 $a \lor b$ المضاعف المشترك الأصغر لـ a و b هو أصغر مضاعف مشترك موجب لـ a و انرمز له بـ

2- خاصيات

$$\mathbb{Z}^*$$
 نه c و b و a -* -أ

 $a \lor b = b \lor a$

 $(a \lor b)|c| = ac \lor bc$

 $a \wedge a = |a|$

 $b/a \Leftrightarrow a \lor b = |a|$

 $a \lor b = m$ ب- $a \lor b = a$ و a من \mathbb{Z}^* و

m كل مضاعف مشترك لـ a و b هو مضاعف للعدد

ج- مبرهنة

 $\overline{a \wedge b = \delta}$ ليكن $a \vee b = m$ و $\overline{\mathbb{Z}}^*$ و $a \vee b = a$

نتيجة

 \mathbb{Z}^* ليكن a و a من $a \wedge b = 1 \Leftrightarrow a \vee b = |ab|$

3- المضاعف المشترك لعدة أعداد

تعريف

 $\operatorname{\mathbb{Z}}^*$ و a_2 و a_2 عداد من a_1

 a_1 أصغر مضاعف مشترك موجب للأعداد a_1 و a_2 و a_3 و.... a_3 أصغر مضاعف المشترك الأصغر لـ

 a_k و a_2 و a_2

<u>VII- الأعداد الأولية</u>

1- تعاربف

أ- القواسم الفعلية لعدد صحيح نسبي

نعریف

 $a \in \mathbb{Z}$ ليكن

 $d \notin \{-1,1,-a,a\}$ و قسم و العدد a إذا و فقط إذا كان d يقسم و

أمثلة

*- القواسم الفعلية للعدد 6 هي 2 و 2- و 3 و 3-

العدد 7 لا يقبل قواسـم فعلية $D_7 = \{1; -1; 7; -7\}$ لدينا

ب- الأعداد الأولية

تعريف

 $a \in \mathbb{Z}$ ليكن

نقول إن العدد a أولي إذا و فقط إذا كان a يخالف 1 و 1- و ليس له قواسـم فعلية

 $|a| \neq 1$ و $D_a = \{1; -1; a; -a\}$ و $a \neq 1$

نرمز لمجموعة الأعداد الأولية بـ P

2- خاصيات

أ- إذا كان p و p عددين أوليين و |q|
eq |p| فانهما أوليين فيما بينهما (العكس غير صحيح)

a بحيث p لا يقسم a ب- إذا كان p أولي فانه أولي مع أي عدد a

. -1 ج- لِیکن a عددا غیر أولي في \mathbb{Z}^* و یخالفa

أصغر قاسم فعلي موجب للعدد a هو عدد أولي أصغر قاسم

د- مجموعة الأعداد الأولية غير منتهية

البرهان

نبرهن أن مجموعة الأعداد الأولية غير منتهية

لتكن P^+ مجموعة الأعداد الأولية الموجبة

 $2 \in P^+$ لأن $P^+ \neq \emptyset$

 $m\succ p$ لدينا m=p!+1 لنفترض أن p^+ منتهية و ليكن p أكبر عنصر من

 $q \leq p$ و منه $m
otin P^+$ ومنه $m
otin P^+$ و بالتالي للعدد m قاسم أولي $m
otin P^+$ و و

(p! يستلزم q يقسم p! لأن $q \le p$

لدينا q/m و q/p ومن q/p ومن q/m أي q/m وهذا يتناقض مع كون q أولي

ومنه P^+ غير منتهية إذن P غير منتهية

3- طريقة عملية لتحديد الأعداد الأولية

مبرهنة

 $n \ge 2$ و $n \in \mathbb{N}$ ليكن

 $p^2 \le n$ و n يقسم يوجد عدد أولي موجب ويسم p يغسر أولي فانه يوجد عدد أولي أولي

البرهان

و منه يوجد p و $n \geq 2$ و $n \neq n$ و ليكن p أصغر قاسـم فعلي موجب لـ n إذن $n \neq n$ أولي ومنه يوجد n = pk من $n \neq n$


```
p^2 \le pk = n إذن
                                                                                                            ملاحظة
                                                                                         n \ge 2 و n \in \mathbb{N}
        p^2 \leq n لتأكد من أن n هل أولي أم لا. نرى هل يقبل القسمة على أحد الأعداد الأولية
                                                           فإذا كان يقبل القسمة على أحدهم فان n غير أولي \diamond
                                                 و إذا كان لا يقبل القسمة على أي واحد مهن فان n عدد أولي \star
                                                                  ( p^2 > n عملیا نتوقف عندما تکون )
العدد 179 لا يقبل القسمة على أي عدد من الأعداد الأولية التالية 2 و 3 و 5 و 7 و 11 و 13
                                                                17^2 = 289 ; 13^2 = 169
                                                                                                           4- خاصیات
                                                                                                           خاصىة
                     *- إذا كان عدد أولي يقسم جداء أعداد صحيحة نسبية فانه يقسم أحد عوامل هذا الجداء
                                                                                                            البرهان
                            ليكن p عددا أوليا وa = a_1 \times a_2 \times \dots \times a_n جداء n من الأعداد الصحيحة النسبية p
                                                                \exists i \in \{1;2;....;n\} / p/a_i نفترض أن p/a نبين
                                         من أجل n=2 لدينا p/a_1 	imes a_2 . إذا كان p/a_1 فان ذلك هو المطلوب
                              GAUSS وحيث p/a_1 \times a_2 فان حسب a_1 \wedge p = 1 إذا كان p لا يقسم a_1 فان حسب
                    p/a_2
                                        n+1 لنفرض أن الخاصية صحيحة بالنسبة لـ n لنبره صحتها بالنسبة لـ
                                                                  p/b بحيث b = a_1 \times a_2 \times \dots \times a_n \times a_{n+1} ليكن
                                                                          إذا كان p/a_{n+1} فان ذلك هو المطلوب
                                 GAUSS وحيث p/b فان حسب a_{n+1} \wedge p = 1 إذا كان p لا يقسم a_{n+1} \wedge p = 1
       p/a_1 \times a_2 \times ... \times a_n
                                                                                  \exists i \in \{1; 2; .....; n\} / p/a_i ومنه
                                                     لتكن p_1 و p_2...... و p_n أعداد أولية موجبة و p_1 عددا أوليا
                                                    p/p_1 \times p_2 \times \dots \times p_n \Rightarrow \exists i \in \{1, 2, \dots, n\} \quad p = p_i
```

 $p \le k$ بما أن $p \prec n$ فان $n \prec k \prec k$ اإذن k قاسم فعلي موجب للعدد n و بالتالي

5- التفكيك الى جداء من عوامل أولية

1- مبرهنة

کل عدد صحیح نسبی n غیر منعدم ومخالف لـ1 و 1- یمکن کتابته بکیفیة وحیدn $lpha_1$ و p_1 أعداد أولية مختلفة مثنى مثنى و $n=arepsilon p_1^{lpha_1} imes p_1^{lpha_2} imes n=p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ $arepsilon=\pm 1$ و $lpha_n$ أعداد صحيحة طبيعية غير منعدمة و

ملاحظة عندما نكتب n على شكل $p_k^{lpha_k} \times p_1^{lpha_2} \times \dots \times p_k^{lpha_k}$ فاننا نقول اننا فككنا الى جداء عوامل أولية

مثال فكك العدد1752- إلى جداء عوامل أولية

2- تطبيقات

(A) نتيجة1

ليكن $p_n=p_1$ و $p_1=\varepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ ليكن يكون عدد d قاسما للعدد n اذا وفقط اذا كان تفكيك d الى عوامل جداء أولية على شكل $d = \varepsilon p_1^{\beta_1} \times p_2^{\beta_2} \times \dots \times p_k^{\beta_k}$

 $\{1;2;....;k\}$ حيث $0 \le \beta_i \le \alpha_i$ لكل

ليكن $p_n= p_1$ و $p_1 \sim n = \varepsilon \, p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ ليكن يكون عدد m مضاعفا للعدد n إذا وفقط إذا كان تفكيك m إلى عوامل جداء أولية على شكل

 $d = \varepsilon p_1^{\lambda_1} \times p_2^{\lambda_2} \times \dots \times p_k^{\lambda_k}$ $\{1;2;....;k\}$ حيث $0 \le \alpha_i \le \lambda_i$ لكل

(B) القاسم المشترك الأكبر – المضاعف المشترك الأصغر

+ القاسُم المشُترك الْأَكْبر

 $b=arepsilon\,p_1^{\,eta_1} imes p_2^{\,eta_2} imes \ldots imes p_k^{\,eta_k}$ و $a=arepsilon\,p_k^{\,eta_2} imes \ldots imes p_k^{\,lpha_2} imes \ldots imes p_k^{\,lpha_k}$ ليكن $a=arepsilon\,p_1^{\,lpha_1} imes p_2^{\,lpha_2} imes \ldots imes p_k^{\,lpha_k}$ ليكن $a=arepsilon\,p_1^{\,lpha_1} imes p_2^{\,lpha_2} imes \ldots imes p_k^{\,lpha_k}$ وحیث p_1 و p_2 و را أعداد أولية p_1

 $\delta = p_{\scriptscriptstyle 1}^{\lambda_{\scriptscriptstyle 1}} imes p_{\scriptscriptstyle 2}^{\lambda_{\scriptscriptstyle 2}} imes \dots imes p_{\scriptscriptstyle k}^{\lambda_{\scriptscriptstyle k}}$ القاسم المشترك الأكبر للعددين a و b هو العدد $\{1;2;....;k\}$ حيث $\lambda_i=\inf\left(lpha_i;eta_i
ight)$ حيث

+ المضاعف المشترك الأصغ

 p_1 ليكن $a=arepsilon p_1^{eta_1} imes p_1^{eta_1} imes p_2^{eta_2} imes imes p_k^{eta_k}$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes imes p_k^{lpha_k}$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes imes p_k^{lpha_k}$ ليكن $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes$ أعداد أولية p_n أعداد أولية

 $m=p_1^{\lambda_1} imes p_2^{\lambda_2} imes \dots imes p_k^{\lambda_k}$ المضاعف المشترك الأصغر للعددين a و a $\left\{1;2;....;k
ight\}$ حيث $\lambda_i=\sup\left(lpha_i;eta_i
ight)$ حيث

 \mathbb{N} و p عددا أوليا في $n\in\mathbb{N}$ ليكن $n\in\mathbb{N}$

 $orall d \in \mathbb{N}$ $p/d \Rightarrow \left[\exists m \in \mathbb{N} \quad \exists d' \in \mathbb{N} \quad d = p^m d' \quad p \wedge d' = 1
ight]$ -1

 p^n برهن أن $\forall q \in \mathbb{N}^* - \{1\}$ $q/p^m \Leftrightarrow iggl[\exists k \in \{1;2;....;n\} \quad q = p^kiggr]$ و استنتج عدد قواسم -2

ليكن $a=p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_n^{lpha_n}$ تفكيك للعدد الصحيح الطبيعي -3 a عدد قواسم $\varphi(a)$

بین أن $\varphi(a) = (1+\alpha_1)(1+\alpha_2)....(1+\alpha_n)$ و استنتج عدد قواسم عدد صحیح نسبی

 $\forall (m,n) \in \mathbb{N}^2$ $m \ge 1 \Rightarrow m^n \ge 1 + n(m-1)$ بين أن -1

 $\forall m \in \mathbb{N} \quad m \succ 1 \Rightarrow \forall p \in \mathbb{N} \quad \exists n \in \mathbb{N} \quad m^n \succ p$ استنتج أن -2

 $orall b\in \mathbb{N} \quad b\succ 1 \Longrightarrow orall n\in \mathbb{N} \quad \exists !k\in \mathbb{N} \quad b^k \leq n \prec b^{k+1}$ بين أن -3

 $\forall (m,n) \in \mathbb{N}^2$ $m \ge 1 \Rightarrow m^n \ge 1 + n(m-1)$ نبین أن -1

 $m^n = \left(\left(m - 1 \right) + 1 \right)^n = \sum_{i=n}^{n} C_n^i \left(m - 1 \right)^i = 1 + n \left(m - 1 \right) + \sum_{i=n}^{n} C_n^i \left(m - 1 \right)^i$ ليكن $(m; n) \in \mathbb{N}^2$

 $m^n \ge 1 + n(m-1)$ فان $m-1 \ge 0$

 $\forall m \in \mathbb{N} \quad m \succ 1 \Rightarrow \forall p \in \mathbb{N} \quad \exists n \in \mathbb{N} \quad m^n \succ p$ نستنتج أن -2

 $m \succ 1$ حيث $m \in \mathbb{N}$ ليكن

 $m^n \ge 1 + n(m-1)$ إذا و جدت n فان

 $p \in \mathbb{N}$ ليكن

 $m^n \succ p$ خسب أرخميدس يوجد n من \mathbb{N} حيث $n = (m-1) \succ p$ أي $n = (m-1) \succ p$ إذن

 $orall b\in \mathbb{N}$ $b\succ 1\Longrightarrow orall n\in \mathbb{N}$ $\exists !k\in \mathbb{N}$ $b^k\leq n\prec b^{k+1}$ نبين أن -3

 $A_n = \left\{k \in \mathbb{Z}/n \prec b^{k+1}
ight\}$ تعتبر $A_n \neq \varnothing$ ناب خون $\forall b \in \mathbb{N}$ $b \succ 1 \Rightarrow \forall n \in \mathbb{N}$ $\exists k_n \in \mathbb{N}$ $b^{k_n+1} \succ b^{k_n} \succ n$ (2) حسب $b^{k_{n_0}} \leq n \prec b^{k_{n_0}+1}$ ناب أصغر عنصر عنصر $a_n \in \mathbb{N}$ ومنه $a_n \in \mathbb{N}$ وحيث $a_n \in \mathbb{N}$ فان $a_n \in \mathbb{N}$ وهذا يتناقض مع كون $a_n \in \mathbb{N}$ أصغر عنصر ل $a_n \in \mathbb{N}$ وهذا يتناقض مع كون $a_n \in \mathbb{N}$ أصغر عنصر ل $a_n \in \mathbb{N}$ وأصغر عنصر ل $a_n \in \mathbb{N}$ فان $a_n \in \mathbb{N}$ فان $a_n \in \mathbb{N}$ وهذا يتناقض مع كون $a_n \in \mathbb{N}$ أصغر عنصر ل $a_n \in \mathbb{N}$ لو أن $a_n \in \mathbb{N}$ فان $a_n \in \mathbb{N}$

2- تعریف

أساس نظمة عد هو عدد الأرقام التي تستعمل لتمثيل الأعداد الصحيحة الطبيعية

أمثلة

- أساس نظمة العد العشـري هو 10. الأرقام المستعملة هي 0 و 1 و 2 و3 و 4 و 5 و 6 و 7 و 8 و9 $\,$
 - ✓ أساس نظمة العد الاثنائي هو 2. الأرقام المستعملة هي 0 و 1
- ساس نظمة العد الاثنى عشري هو 12. الأرقام المستعملة هي 0 و 1 و 2 و3 و 4 و 5 و 6 و 7 و 8 و9 و 4 و 6 و 7 و 9 و 9 و 9 و 10 و 11 نرمز في الكتابة لرقم10 بـ lpha و لـ11 بـ eta
 - ullet أساس نظمة العد الثماني هو 8. الأرقام المستعملة هي 0 و 1 و 2 و0 و 0 و 0
 - $(b\succ 1)$. b نظمة العد ذات الأساس

- تمهيدة1

 $(b \succ 1)$ ليكن b عددا صحيحا طبيعيا حيث

 $0 \leq q_k \prec b$ و $0 \leq r_k \prec b^k$ و $n = b^k q_k + r_k$ کیل عدد صحیح طبیعی n یوجد k و k یوجد k و ا

البرهان

 $(b \succ 1)$ حيث $(b; n) \in \mathbb{N}^2$ ليكن

إذا كان n=0 فان نتيجة بديهية

 $\exists ! k \in \mathbb{N} \quad b^k \leq n \prec b^{k+1}$ إذا كان $n \in \mathbb{N}^*$ فانه حسب النشاط التمهيدي

 $q_k\in\mathbb{N}$ و $0\leq r_k\prec b^k$ و $n=b^kq_k+r_k$ و على b^k نحصل على b^k و $0\leq r_k\prec b^k$ و لبين أن $0\leq q_k\prec b$

 $n\prec b^{k+1}$ يذا كان $q_k\geq b$ ومنه $q_k\geq b^{k+1}$ و بالتالي $q_kb^k\geq b^{k+1}$ و هذا يتناقض مع كون $q_k\geq b$ إذا كان $0\leq q_k\prec b$

 $0 \le q_k \prec b$ و $0 \le r_k \prec b^k$ و $n = b^k q_k + r_k$ ب- حسب التمهيدة 1 لدينا

بتطبیق التمهیدة علی $r_k = 0$ علی علی علی $r_k = b^{k-1} q_{k-1} + r_{k-1}$ و $r_k \leq r_{k-1} < b^{k-1}$ (لأن $r_k < b^k$

نطبق التمهيدة على r_{k-1} وهكذا حت نصل الى r_1 فنحصل على

$$0 \le q_{k-2} \prec b$$
 g $0 \le r_{k-2} \prec b^{k-2}$ g $r_{k-1} = b^{k-2}q_{k-2} + r_{k-2}$

· · · · · ·

 $0 \le q_1 \prec b$ g $0 \le r_1 \prec b$ g $r_2 = bq_1 + r_1$ $q_0 = r_1$ g $r_1 = 1 \times q_0$

 $n=\sum_{i=0}^{i=k}q_ib^i$ بجمع جميع أطراف المتساويات نحصل على الكتابة في شكلها الوحيد

 $\big\{1;2;....;k\big\}$ حيث $0 \le q_i \prec b$ حيث

 $(b \succ 1)$ ليكن b عددا صحيحا طبيعيا حيث

 $0 \leq q_i \prec b$ بحيث $n = \sum_{i=0}^{i=k} q_i b^i$ لكل عدد صحيح طبيعي n يوجد عدد صحيح طبيعي $n = \sum_{i=0}^{i=k} q_i b^i$ بحيث n > 0 اذا كان $q_k > 0$ و $\{1;2;....;k\}$

ملاحظة

n الكتابة $n=\sum_{i=0}^{i=k}q_ib^i$ تبين أنه لتمثيل عدد صحيح طبيعي $n=\sum_{i=0}^{i=k}q_ib^i$ الكتابة

bفي نظمة العد ذات الأساس

 $n=\overline{q_kq_{k-1}.....q_0}_{(b)}$ نحتاج الى b رمز و نمثل العدد n في نظمة العد ذات الأساس b بكتابة b رمز و نمثل العدد العدد العدد العدد أمثلة

 $2703 = 2 \times 10^3 + 7 \times 10^2 + 0 \times 10 + 3$ في نظمة العد العشري كتابة العدد 2703 هي *

* في نظمة العد الثنائي كتابة العددين 8 و 15 هي

1000 أي أن العدد 8 ممثل في نظم العد الاثنائي ب $8=1\times2^3+0\times2^2+0\times2+0$ أي أن العدد 15 ممثل في نظم العد الاثنائي ب1111 أي أن العدد 15 ممثل في نظم العد الاثنائي ب

* في نظمة العد الثماني

$$15 = \overline{17}_{(8)}$$
 ومنه $15 = 1 \times 8 + 7$ $131 = \overline{203}_{(8)}$ ومنه $131 = 2 \times 8^2 + 0 \times 8 + 3$

ج- طريقة عملية لإيجاد تمثيل عدد صحيح طبيعي في نظمة عد ما

 $n \in \mathbb{N}$ $b \succ 1$; $b \in \mathbb{N}$ ليكن

لدىنا

 $0 \le r_0 \prec b \quad ; \quad n = bq_1 + r_0$

 $0 \le r_1 \prec b \quad ; \quad q_1 = bq_2 + r_1$

.

$$0 \le r_k \prec b \quad ; \quad q_k = bq_{k+1} + r_k$$

$$n \ge q_1 \ge q_2 \ge \dots \ge q_q$$

 $q_k=r_k$ بما أن المجموعة $A=\left\{q_1;q_2...
ight\}$ مكبورة في $\mathbb N$ وغير فارغة فانه يوجد

ومنه

$$0 \le r_0 \prec b \quad ; \quad n = bq_1 + r_0$$

$$0 \le r_1 \prec b \quad ; \quad q_1 = bq_2 + r_1$$

.

$$0 \le r_{k-1} \prec b \quad ; \quad q_{k-1} = bq_k + r_{k-1}$$
$$q_k = r_k$$

و بضرب طرفي المتساوية رقم i بالعدد b^i نحصل على

$$n = bq_1 + r_0$$

$$bq_1 = b^2q_2 + br_1$$

.

$$b^{i}q_{i} = b^{i+1}q_{i+1} + b^{i}r_{i}$$

$$b^{k-1}q_{k-1} = b^{k}q_{k} + b^{k-1}r_{k-1}$$
$$b^{k}q_{k} = b^{k}r_{k}$$

$$i \in \{1; 2; \dots; k\}$$
 g $0 \le r_i \prec b$

 $i \in \left\{1;2;....;k\right\}$ و $0 \le r_i \prec b$ $n = \sum_{i=1}^{i=k} b^i r_i$ بجمع أطراف المتساويات نحصل على

$$n = \overline{r_k r_{k-1}r_1 r_0}$$
 فان $r_k \neq 0$ إذا كان

لتحديد تمثيل للعدد n في نظمة العد ذات الأساس b $(0 \le i \le k)$ نحسب البواقي r_i

$$n = r_k r_{k-1} r_1 r_{0 (b)}$$

لنبحث عن تمثيل للعدد 3254 في نظمة العد الثماني ثم نظمة العد الاثنا عشري

4- مقارنة عددين ممثلين في نفس النظمة

$$y=c_mc_{m-1}.....c_{0\,(b)}$$
 و $x=a_na_{n-1}....a_{0\,(b)}$ اليكن $x=a_na_{n-1}....a_{0\,(b)}$ اليكن $y\succ x$ فان $x\mapsto a_na_{n-1}....a_{0\,(b)}$ إذا كان $x\mapsto a_na_{n-1}....a_{0\,(b)}$

$$y=\overline{c_nc_{n-1}.....c_0}_{(b)}$$
 و $x=\overline{a_na_{n-1}....a_0}_{(b)}$ و ينفس نظمة العد ب $a_i\neq c_i$ و فان ترتيب $a_i\neq c_i$ هو نفس ترتيب $a_i\neq c_i$ و $a_i\neq c_i$ و الحاكان $a_i\neq c_i$ و الحاكان $a_i\neq c_i$ و الحاكان $a_i\neq c_i$ و الحاكان $a_i\neq c_i$ و الحاكان على الحاكان و الحاكان في الحاكان في

لتمثيل عددx في نظمة عد ذات الأسـاس b نمثله أولا في نظمة العد العشـري و نحدد تمثيله في نظمة عد

هل توجد نظمة العد ذات الأساس b حيث $xxx \times xxx = yyyyyyy$

6- مصاديق قابلية القسمة على بعض الأعداد في نظمة العد العشري

 $x=\overline{a_na_{n-1}....a_1a_0}$ عدد صحیح طبیعی کتابته فی نظمة العدد العشری هی x

$$x \equiv 0 \qquad [4] \Leftrightarrow 4/\overline{a_1 a_0}$$

$$x \equiv 0 \qquad [5] \Leftrightarrow a_0 = 0 \quad ou \quad a_1 = 5$$

$$x \equiv 0 \qquad [5] \Leftrightarrow \overline{a_1 a_0} \in \{00; 25; 50; 75\}$$

$$x \equiv 0$$
 [3] $\Leftrightarrow \sum_{i=0}^{i=n} a_i \equiv 0$ [3]

$$x \equiv 0$$
 [9] $\Leftrightarrow \sum_{i=0}^{i=n} a_i \equiv 0$ [9]

$$x \equiv 0 \qquad [11] \Leftrightarrow \sum_{i=0}^{i=n} (-1)^i \ a_i \equiv 0 \qquad [11]$$