Manual y testing a data pipeline

INTRODUCTION TO DATA PIPELINES

Testing data pipelines

Data pipelines should be thoroughly tested

 Validate that data is extracted, transformed, and loaded as expected

Validating pipelines' limits maintenance efforts after deployment

- Identify and fix data quality issues
- Improves data reliability

Tools and techniques to test data pipelines

- End-to-end testing
- Validating data at "checkpoints"
- Unit testing

Testing and production environments

Testing a pipeline end-to-end

End-to-end testing

- Confirm that pipeline runs on repeated attempts
- Validate data at pipeline checkpoints
- Engage in peer review, incorporate feedback
- Ensure consumer access and satisfaction with solution

Validating pipeline checkpoints

print(loaded data.head())

```
# Extract, transform, and load data as part of a pipeline
...
# Take a look at the data made available in a Postgres database
loaded_data = pd.read_sql("SELECT * FROM clean_stock_data", con=db_engine)
print(loaded data.shape)
```

```
(6438, 4)
```

```
timestamps volume open close
1997-05-15 13:30:00 1443120000 0.121875 0.097917
1997-05-16 13:30:00 294000000 0.098438 0.086458
1997-05-19 13:30:00 122136000 0.088021 0.085417
```

Validating DataFrames

```
# Extract, transform, and load data, as part of a pipeline
...
# Take a look at the data made available in a Postgres database
loaded_data = pd.read_sql("SELECT * FROM clean_stock_data", con=db_engine)
# Compare the two DataFrames.
print(clean_stock_data.equals(loaded_data))
```

True

Unit-testing a data pipeline

INTRODUCTION TO DATA PIPELINES

Validating a data pipeline with unit tests

Unit tests:

- Commonly used in software engineering workflows
- Ensure code works as as expected
- Help to validate data

pytest for unit testing

```
# Build a unit test, asserting the type of clean_stock_data
def test_transformed_data():
    raw_stock_data = extract("raw_stock_data.csv")
    clean_stock_data = transform(raw_data)
    assert isinstance(clean_stock_data, pd.DataFrame)
```

assert and isinstance

```
pipeline type = "ETL"

# Check if pipeline_type is an instance of a str
isinstance(pipeline type, str)
True
```

Assert that the pipeline does indeed take value "ETL" assert pipeline_type == "ETL"

```
# Combine assert and isinstance

assert isinstance(pipeline_type, str)
```

AssertionError

```
pipeline type = "ETL"

# Create an AssertionError
assert isinstance(pipeline type, float)
```

```
Traceback (most recent call last):
   File "<stdin>", line 4, in <module>
AssertionError
```

Mocking data pipeline components with fixtures

```
import pytest

@pytest.fixture()

def clean_data():
    raw_stock_data = extract("raw_stock_data.csv")
    clean stock_data = transform(raw_data)
    return clean stock_data
```

```
def test_transformed_data(clean_data):
    assert isinstance(clean_data, pd.DataFrame)
```

Unit testing DataFrames

```
def test_transformed_data(clean data):
    # Include other assert statements here
    # Check number of columns
    assert len(clean data.columns) == 4
    # Check the lower bound of a column
    assert clean data["open"].min() >= 0
    # Check the range of a column by chaining statements with "and"
    assert clean data["open"].min() >= 0 and clean data["open"].max() <= 1000
```

Running a data pipeline in production

INTRODUCTION TO DATA PIPELINES

Data pipeline architecture pat erns

```
# Define ETL function
...

def load(clean_data):
...

# Run the data pipeline
raw_stock_data = extract("raw_stock_data.csv")
clean_stock_data = transform(raw_data)
load(clean_stock_data)
```

```
> ls
etl_pipeline.py
```

```
# Import extract, transform, and load functions
from pipeline utils import extract, transform, load

# Run the data pipeline
raw_stock_data = extract("raw_stock_data.csv")
clean_stock_data = transform(raw_stock_data)
load(clean_stock_data)
```

```
> ls
etl_pipeline.py
pipeline_utils.py
```

Running a data pipeline end-to-end

```
import logging
from pipeline utils import extract, transform, load
logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.DEBUG)
try:
    # Extract, transform, and load data
   raw stock data = extract("raw stock data.csv")
   clean_stock_data = transform(raw stock data)
   load(clean stock data)
    logging.info("Successfully extracted, transformed and loaded data.") # Log success message
# Handle exceptions, log messages
except Exception as e:
   logging.error(f"Pipeline failed with error: {e}")
```

Orchestrating data pipelines in production

https://open.substack.com/pub/seattledataguy/p/the-state-of-data-engineering-part?r=1po78c&utm_campaign=post&utm_medium=web