Lecture 24

ML Estimation

Arnab Hazra

Problem of MoM for other models

- ► AR(p) models are basically linear models, and the Yule-Walker estimators are essentially least squares estimators.
- ► If we use MoM for MA or ARMA models, we will not get optimal estimators because such processes are nonlinear in the parameters.
- For the MA(1) model $X_t = W_t + \theta W_{t-1}$, we can write as

$$X_t = \sum_{j=1}^{\infty} (-\theta)^j X_{t-j} + W_t,$$

which is nonlinear in θ .

- ► Here $\gamma(0) = \sigma_W^2(1 + \theta^2)$ and $\gamma(1) = \theta \sigma_W^2$.
- ▶ Hence, $\hat{\rho}(1) = \hat{\gamma}(1)/\hat{\gamma}(0) = \hat{\theta}/(1+\hat{\theta}^2)$. Because $|\hat{\theta}/(1+\hat{\theta}^2)| \le 1/2$ but $|\hat{\rho}(1)|$ does not necessarily satisfy this condition, MoM is problematic for this model.

ML estimation

- ▶ We first focus on the causal AR(1) case. Let $X_t = \mu + \phi(X_{t-1} \mu) + W_t$.
- ▶ Here $W_t \stackrel{\text{IID}}{\sim} N(0, \sigma_W^2)$. The likelihood is $L(\mu, \phi, \sigma_W^2) = f(X_1, \dots, X_T | \mu, \phi, \sigma_W^2)$.
- ▶ Due to AR(1) structure, $L(\mu, \phi, \sigma_W^2) = f(X_1)f(X_2|X_1) \dots f(X_T|X_{T-1})$.
- ▶ Because $X_t|X_{t-1} \sim N(\mu + \phi(X_{t-1} \mu), \sigma_W^2)$, we have

$$f(X_t|X_{t-1}) = f_W[(X_t - \mu) - \phi(X_{t-1} - \mu)].$$

Overall

$$L(\mu, \phi, \sigma_W^2) = f(X_1) \prod_{t=2}^{l} f_W[(X_t - \mu) - \phi(X_{t-1} - \mu)].$$

Considering $f(X_1)$, our approach is called unconditional least square, and after ignoring it, it is called unconditional least square.

Calculation of likelihood

- ▶ To find $f(X_1)$, we can use the causal representation $X_1 = \mu + \sum_{j=0}^{\infty} \phi^j W_{1-j}$ to see that X_1 is normal, with mean μ and variance $\sigma_w^2/(1-\phi^2)$.
- Finally, the likelihood is

$$L(\mu, \phi, \sigma_W^2) = (2\pi\sigma_W^2)^{-T/2} (1 - \phi^2)^{1/2} \exp\left[-\frac{S(\mu, \phi)}{2\sigma_W^2}\right],$$

where
$$S(\mu, \phi) = (1 - \phi^2)(X_1 - \mu)^2 + \sum_{t=2}^{T} [(X_t - \mu) - \phi(X_{t-1} - \mu)]^2$$
.

- $S(\mu,\phi)$ is called the unconditional sum of squares. The MLE of σ_W^2 is $\hat{\sigma}_W^2 = T^{-1}S(\hat{\mu},\hat{\phi})$ where $\hat{\mu}$ and $\hat{\phi}$ are the MLEs of μ and ϕ , respectively.
- We obtain this by maximizing $I(\mu, \phi) = \log[T^{-1}S(\mu, \phi)] T^{-1}\log(1 \phi^2)$.

Conditional likelihood

- ▶ $L(\mu, \phi, \sigma_W^2)$ is a complicated function of the parameters, and hence, the minimization of $I(\mu, \phi)$ or $S(\mu, \phi)$ is accomplished numerically.
- In the case of AR models, conditional on initial values, they are linear models.
- ▶ We can drop the term in the likelihood that causes the nonlinearity.
- \triangleright Conditioning on X_1 , the conditional likelihood becomes

$$L(\mu, \phi, \sigma_W^2 | X_1) = \prod_{t=2}^T f_W[(X_t - \mu) - \phi(X_{t-1} - \mu)].$$

Finally, the conditional likelihood is

$$L(\mu, \phi, \sigma_W^2 | X_1) = (2\pi\sigma_W^2)^{-(T-1)/2} \exp\left[-\frac{S_c(\mu, \phi)}{2\sigma_W^2}\right],$$

where
$$S_c(\mu, \phi) = \sum_{t=2}^{T} [(X_t - \mu) - \phi(X_{t-1} - \mu)]^2$$
.

Maximum conditional likelihood estimates

▶ $S_c(\mu, \phi)$ is called the conditional sum of squares. The MLE of σ_W^2 is $\hat{\sigma}_W^2 = (T-1)^{-1}S_c(\hat{\mu}, \hat{\phi})$ where $\hat{\mu}$ and $\hat{\phi}$ are the MLEs of μ and ϕ , respectively.

Following the results from least squares estimation, we have

$$\hat{\mu} = \frac{\overline{X}_{(2)} - \hat{\phi} \, \overline{X}_{(1)}}{1 - \hat{\phi}}, \quad \hat{\phi} = \frac{\sum_{t=2}^{T} (X_t - \overline{X}_{(2)})(X_{t-1} - \overline{X}_{(1)})}{\sum_{t=2}^{T} (X_{t-1} - \overline{X}_{(1)})^2},$$

where
$$\overline{X}_{(2)} = \frac{\sum_{t=2}^{T} X_t}{T-1}$$
 and $\overline{X}_{(1)} = \frac{\sum_{t=2}^{T} X_{t-1}}{T-1}$.

MLE for ARMA(p, q) model

- For a normal ARMA(p,q) model, let $\beta = (\mu, \phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q)'$ be the (p+q+1)-dimensional vector of the model parameters.
- The likelihood can be written as

$$L(\beta, \sigma_W^2) = f(X_1)f(X_2|X_1)f(X_3|X_1, X_2) \dots f(X_T|X_1, \dots, X_{T-1}).$$

- The conditional distribution of X_t given X_{t-1}, \ldots, X_1 is Gaussian with mean X_t^{t-1} and variance P_t^{t-1} . Recall that $P_t^{t-1} = \gamma(0) \prod_{j=1}^{t-1} (1 \phi_{i,j}^2)$.
- ► For ARMA model, $\gamma(0) = \sigma_W^2 \sum_{j=0}^{\infty} \psi_j^2$, in which case we may write

$$P_t^{t-1} = \sigma_W^2 \sum_{j=0}^{\infty} \psi_j^2 \prod_{j=1}^{t-1} (1 - \phi_{j,j}^2) \stackrel{\text{def}}{=} \sigma_W^2 r_t.$$

► Here $r_1 = \sum_{j=0}^{\infty} \psi_j^2$ and $r_{t+1} = r_t (1 - \phi_{t,t}^2)$.

Calculation of likelihood

Finally, the likelihood is

$$L(\beta, \sigma_W^2) = (2\pi\sigma_W^2)^{-T/2} [r_1(\beta) \dots r_T(\beta)]^{-1/2} \exp \left| -\frac{S(\beta)}{2\sigma_W^2} \right|,$$

where
$$S(\beta) = \sum_{t=1}^{T} [X_t - X_t^{t-1}(\beta)]^2 / r_t(\beta)$$
.

- ▶ The MLE of σ_W^2 is $\hat{\sigma}_W^2 = T^{-1}S(\hat{\beta})$ where $\hat{\beta}$ is the MLE of β , respectively.
- ▶ We obtain this by maximizing $I(\beta) = \log[T^{-1}S(\beta)] + T^{-1}\sum_{t=1}^{T}\log(r_t(\beta))$.
- We can use Newton-Raphson and Fisher-scoring algorithms.

Thank you!