				Ιm			
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	$\frac{9k^2r_3+4t_2}{3(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_1^{\#2}_+ \alpha_\beta$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{9k^2r_3+4t_2}{3(k+k^3)^2r_3t_2}$	$-\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1+}^{#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

Lagrangian density $\frac{2}{3}t_3 \omega_{,\alpha}^{ al} \omega_{\kappa\alpha}^{ k} + \frac{2}{3}t_2 \omega_{,\kappa}^{ k\lambda} \omega_{\kappa\lambda}^{ l} + \frac{1}{3}t_2 \omega_{\kappa\lambda}^{ l} \omega_{\kappa\lambda}^{ k} + \frac{2}{3}t_2 \omega_{,\kappa}^{ k\lambda} \omega_{\kappa\lambda}^{ l} + \frac{1}{3}t_2 \omega_{\kappa\lambda}^{ l} \omega_{\kappa\lambda}^{ k} + \frac{2}{3}t_2 \omega_{,\kappa\lambda}^{ l} \omega_{\kappa\lambda}^{ l} + \frac{2}{3}t_2 \omega_{\kappa\lambda}^{ l} \omega_{\kappa\lambda}^{ l} + \frac{2}{3}t_2 \omega_{\kappa\lambda}^{ l} \omega_{\kappa\lambda}^{ l} + \frac{2}{3}t_2 \omega_{\kappa}^{ l} \omega_{\kappa\lambda}^{ l} + \frac{2}{3}t_2 \omega_{\kappa\lambda}^{ l} \omega_{\kappa\lambda}^{ l} + \frac{2}{3}t_2 \omega_{\kappa\lambda}^{ l} \omega_{\kappa}^{ l} + \frac{2}{3}t_2 \omega_{\kappa\lambda}^{ l} \omega_{\kappa\lambda}^{ l} + \frac{2}{3}t_2 \omega_{\kappa\lambda}^{ l} \omega_{\kappa$
--

α $f_{1}^{#2}$	0	0	0	$-\frac{2}{3}ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ <u>3</u>	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	[2]	$-\frac{1}{3}ikt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{#1} + \alpha^{eta}$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{#2} \dagger^{lpha}$

	$\omega_{0}^{\#1}$	$f_{0+}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0^{+}}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	0

	#	1	1	c	ĸ	κ	0 3	2	2	24
Soulce collistiallits	SO(3) irreps	$\tau_{0}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} - i k \ \sigma_1^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#1}{}^{\alpha} + 2 \ \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta+\bar{\imath}k\;\sigma_{1+}^{\#2}\alpha\beta==0$	$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	$\tau_{2+}^{\#1\alpha\beta} == 0$	Total #:

	$\sigma_0^{\#1}$	$ au_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
			·	

	Massive particle		
? $J^P = 0^- $?	Pole residue:	$-\frac{1}{r_2} > 0$	
$J^{2} \equiv 0$	Polarisations:	1	
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$	
; ,	Spin:	0	
	Parity:	Odd	

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)