Improving Experiments by Optimal Blocking: Minimizing the Maximum Within-block Distance

Michael J. Higgins Jasjeet Sekhon

University of California at Berkeley

July 18, 2013

Goal

We provide the first polynomial time algorithm for blocking with multiple treatment categories

- ensures good covariate balance by design
- is efficient enough to be used in large experiments
- better balance than greedy methods
- can estimate conditional variances

Covariate imbalance in randomized experiments

- PROBLEM: In finite samples, there is a probability of bad covariate balance between treatment groups
- Bad imbalance on important covariates → Imprecise estimates of treatment effects
- Even in large samples, covariate adjustment may improve precision of estimates

Adjustment and covariate imbalance

- Regression adjustment [Freedman, 2008, Lin, 2012]
- Post-stratification [Miratrix, Sekhon, and Yu, 2013]:
 - Group similar units together after after randomization
 - SATE/PATE results good; ex post problems arise
 - Data mining concerns
- Re-randomization [Lock Morgan and Rubin, 2012]:
 - Repeat randomly assigning treatments until covariate balance is "acceptable"
- LESSON: design the randomization to build in adjustment

Current blocking approaches for two treatments

- Matched-pairs blocking: Pair "most-similar" units together.
 For each pair, randomly assign one unit to treatment, one to control [Imai, 2008]
- Optimal Multivariate Matching Before Randomization [Greevy, Lu, Silber, and Rosenbaum, 2004]
- Optimal-greedy blocking [Moore, 2012]

Matched-Pairs

- No efficient way to extend approach to more than two treatment categories
- Fixed block sizes (2 units): design may pair units from different clusters
- Cannot estimate conditional variances [Imbens, 2011]
- Difficulty with treatment effect heterogeneity
- Worse problems with some tests—e.g., rank sum

Blocking by minimizing the Maximum Within-Block Distance (MWBD)

- Experiment with *n* units and *r* treatment categories
- Select a threshold $t^* \ge r$ for a minimum number of units to be contained in a block
- Block units so that each block contains at least t* units, and so that the maximum distance between any two units within a block—the MWBD—is minimized
- Threshold t*: Allows designs with multiple treatment categories, multiple replications of treatments within a block

Threshold $t^* = 2$. Distance = Mahalanobis distance.

Heights and Weights for 12 Subjects

Threshold $t^* = 2$. Distance = Mahalanobis distance.

Threshold $t^* = 2$. Distance = Mahalanobis distance.

Threshold $t^* = 2$. Distance = Mahalanobis distance.

Optimal blocking and approximately optimal blocking

- For all blockings that contain at least t* units:
- Let λ denote the smallest MWBD achievable by such a blocking—any blocking that meets this bound is called an optimal blocking
- Finding an optimal blocking is an NP-hard problem—feasible to find in small experiments, may not be feasible in large experiments [Hochbaum and Shmoys, 1986]
- We now show that finding a blocking with MWBD $\leq 4\lambda$ is possible in polynomial time

Viewing experimental units as a graph

- Use an idea from Paul Rosenbaum [1989]: Matching problems can be viewed as graph theory partitioning problems
- Experimental units are vertices in a graph
- An edge is drawn between two units if they can be placed in the same block
- Edge-weights are some measure of distance between pretreatment covariates (e.g. Mahalanobis distance)

Distance = Mahalanobis distance.

Distance = Mahalanobis distance.

Units as a graph

• • •

•

• • •

Distance = Mahalanobis distance.

Units as a graph

Distance = Mahalanobis distance.

Units as a graph

Notation:

- A graph G is defined by its vertex set V and its edge set E: G = (V, E)
- Vertices in V denoted by $\{i\}$; n units $\rightarrow n$ vertices in V
- Edges in E are denoted by (i, j)
- A complete graph has an edge $(i,j) \in E$ between every two distinct vertices $\{i\}, \{j\} \in V; \frac{n(n-1)}{2}$ edges overall
- The weight of edge $(i,j) \in E$ is denoted by w_{ij} : at most $\frac{n(n-1)}{2}$ distinct values of w_{ij}

Note about edge weights

- If our concern is covariate balance, natural choices for edge weights measure distance between block covariates—e.g., Mahalanobis, L¹, L², distances
- Our method only requires weights to satisfy the triangle inequality: for any distinct vertices $\{i\}, \{j\}, \{k\},$

$$w_{ik} + w_{kj} \geq w_{ij}$$

Threshold $t^* = 2$. Distance = Mahalanobis distance.

Minimize Maximum Distance

Optimal blocking as a graph partitioning problem

- A partition of V is a division of V into disjoint blocks of vertices $(V_1, V_2, \dots, V_\ell)$
- Blocking of units ↔ Partition of a graph:
 Two units are in the same block of the blocking if and only if their corresponding units are in the same block of the partition
- Optimal blocking problems are optimal partitioning problems: we want to find a partition $(V_1^*, V_2^*, \dots, V_{\ell^*}^*)$ with $|V_j^*| \ge t^*$ that minimizes the maximum within-block edge weight

Bottleneck subgraphs

- Bottleneck subgraphs helpful for solving partitioning problems
- Define the bottleneck subgraph for mamimum weight of w as the graph that has $(i,j) \in E_w$ if and only if $w_{ij} \leq w$
- At most $\frac{n(n-1)}{2}$ different edge weights $w_{ij} \to \text{At most } \frac{n(n-1)}{2}$ different bottleneck subgraphs
- All points within a block of our approximately optimal blocking are connected by some path of edges in a bottleneck subgraph; used to show approximate optimality

Complete graph

Units as a graph

Bottleneck subgraph of weight 5

Bottleneck graph: Weight = 5

Bottleneck subgraph of weight 3

Bottleneck graph: Weight = 3

Bottleneck subgraph of weight 3

Bottleneck graph: Weight = 3

Approximate algorithm outline:

- Find the bottleneck subgraph of "appropriate" weight
 - can use k-nearest neighbor graph
- Select block centers that are "just far enough apart"
- Grow from these block centers to obtain an approximately optimal partition—and thus, an approximately optimal blocking
- Approach closely follows Hochbaum and Shmoys [1986]

Algorithm step-by-step: Find bottleneck graph

- Find smallest weight threshold λ^- such that each vertex in the corresponding bottleneck subgraph is connected to at least t^*-1 edges.
- Can show that $\lambda^- \leq \lambda$, where λ is the smallest MWBD possible.
- Bottleneck subgraph can be constructed in polynomial time.

Algorithm step-by-step: Find block centers

- Find a set of vertices—block centers—such that:
 - There is no path of two edges or less connecting any of the vertices in the set
 - For any vertex not in the set, there is a path of two edges or less that connects that vertex to one in the set
- Any set will do, but some choices of centers are better.

Algorithm step-by-step: Grow from block centers

- Form blocks comprised of a block center plus any vertices connected to that center by a single edge.
- The way our block centers were chosen (no path of two edges connects two block centers), these blocks will not overlap.
- At this point, these blocks contain at least t* units (by edge connection criterion).

Algorithm step-by-step: Assign all unassigned vertices

- For each unassigned vertex, find the closest block center.
 Add that vertex to the center's corresponding block.
- The way our block centers were chosen, all unassigned vertices are at most a path of two edges away from a block center.

Our blocking

Our approximate algorithm came up with the following blocking:

Threshold $t^* = 2$. Dissimilarity = Mahalanobis distance.

Sketch of proof of approximate optimality

• Algorithm is guaranteed to obtain a blocking with MWBD $\leq 4\lambda$, though does much better than that in practice.

Sketch of proof of approximate optimality

- Algorithm is guaranteed to obtain a blocking with MWBD $\leq 4\lambda$, though does much better than that in practice.
- Sketch of proof:
- Each vertex is at most a path of two edges away from a block center ⇒
 - In the worst case: two vertices $\{i\}, \{j\}$ in the same block can be connected by a path of four edges in the bottleneck subgraph (two from vertex $\{i\}$ to the block center, two from the block center to vertex $\{j\}$).

Sketch of proof cont'd

- Each vertex is at most a path of two edges away from a block center ⇒
 In the worst case: two vertices {i}, {j} in the same block can be connected by a path of four edges in the bottleneck subgraph (two from vertex {i} to the block center, two from the block center to vertex {j}).
- In worst case: $(i, k_1), (k_1, k_2), (k_2, k_3), (k_3, j)$ is a path of four edges connecting $\{i\}$ to $\{j\}$.
- Each edge has weight at most $\lambda^- \Longrightarrow$ The corresponding edge weights satisfy:

$$w_{ik_1} + w_{k_1k_2} + w_{k_2k_3} + w_{k_3j} \le 4\lambda^- \le 4\lambda.$$

Sketch of proof cont'd

• Since edge weights satisfy the triangle inequality:

$$w_{ik} + w_{kj} \geq w_{ij}$$

it follows that

$$w_{ij} \leq w_{ik_1} + w_{k_1k_2} + w_{k_2k_3} + w_{k_3j} \leq 4\lambda^- \leq 4\lambda.$$

Sketch of proof cont'd

Since edge weights satisfy the triangle inequality:

$$w_{ik} + w_{kj} \geq w_{ij}$$

it follows that

$$w_{ij} \leq w_{ik_1} + w_{k_1k_2} + w_{k_2k_3} + w_{k_3j} \leq 4\lambda^- \leq 4\lambda.$$

- That is, every edge joining two vertices within the same block has weight $\leq 4\lambda$.
- The maximum within-block distance of the approximately optimal blocking is $\leq 4\lambda$.
- QED

Some final remarks about algorithm:

- Algorithm does not contain any inherently random components.
- Quick, local changes to the approximately optimal blocking may improve the blocking. (e.g., divide large blocks into smaller blocks, swap units between blocks)

Neyman-Rubin potential outcomes model

 The Neyman-Rubin potential outcomes framework assumes the following model for response [Splawa-Neyman, Dabrowska, and Speed, 1990, Rubin, 1974]:

$$Y_{kc} = y_{kc1} T_{kc1} + y_{kc2} T_{kc2} + \ldots + y_{kcr} T_{kcr}.$$

- Y_{kc} : Observed response of kth unit in block c.
- y_{kct} : Potential outcome of the unit under treatment t.
- T_{kct} : Treatment indicators. $T_{kct} = 1$ if the unit receives treatment t, $T_{kct} = 0$ otherwise.

Parameters of interest and estimators

 Parameters of interest: Sample average treatment effect of treatment s relative to treatment t (SATE_{st}):

$$\mathsf{SATE}_{st} = \sum_{c=1}^{b} \sum_{k=1}^{n_c} \frac{y_{kcs} - y_{kct}}{n}$$

• Two unbiased estimators of SATE_{st} are the difference-in-means estimator and the the Horvitz-Thompson estimator.

$$\hat{\delta}_{st,diff} \equiv \sum_{c=1}^{b} \frac{n_c}{n} \sum_{k=1}^{n_c} \left(\frac{y_{kcs} T_{kcs}}{\# T_{cs}} - \frac{y_{kct} T_{kct}}{\# T_{ct}} \right),$$

$$\hat{\delta}_{st, \text{HT}} \equiv \sum_{c=1}^{b} \frac{n_c}{n} \sum_{k=1}^{n_c} \left(\frac{y_{kcs} T_{kcs}}{n_c/r} - \frac{y_{kct} T_{kct}}{n_c/r} \right).$$

• Assume complete randomization of treatment, r divides n_c .

Variance of estimators

$$\begin{aligned} & \operatorname{Var}(\hat{\delta}_{st,\operatorname{diff}}) = \operatorname{Var}(\hat{\delta}_{st,\operatorname{HT}}) \\ &= \sum_{c=1}^{b} \frac{n_{c}^{2}}{n^{2}} \left(\frac{r-1}{n_{c}-1} (\sigma_{cs}^{2} + \sigma_{ct}^{2}) + 2 \frac{\gamma_{cst}}{n_{c}-1} \right) \\ & \mu_{cs} &= \frac{1}{n_{c}} \sum_{k=1}^{n_{c}} y_{kcs} \\ & \sigma_{cs}^{2} &= \frac{1}{n_{c}} \sum_{k=1}^{n_{c}} (y_{kcs} - \mu_{cs})^{2} \\ & \gamma_{cst} &= \frac{1}{n_{c}} \sum_{k=1}^{n_{c}} (y_{kcs} - \mu_{cs}) (y_{kct} - \mu_{ct}) \end{aligned}$$

Variance of estimators

$$\begin{split} & \mathsf{Var}(\hat{\delta}_{\mathit{st},\mathsf{diff}}) = \mathsf{Var}(\hat{\delta}_{\mathit{st},\mathsf{HT}}) \\ &= \sum_{c=1}^{b} \frac{n_{c}^{2}}{n^{2}} \left(\frac{r-1}{n_{c}-1} (\sigma_{\mathit{cs}}^{2} + \sigma_{\mathit{ct}}^{2}) + 2 \frac{\gamma_{\mathit{cst}}}{n_{c}-1} \right) \end{split}$$

- Note: σ_{cs}^2 and σ_{ct}^2 are estimable, γ_{cst} not directly estimable.
- Conservative estimate:

$$\widehat{\mathsf{Var}} = \sum_{c=1}^{b} \frac{n_c^2}{n^2} \left(\frac{2(r-1)}{n_c - 1} (\hat{\sigma}_{cs}^2 + \hat{\sigma}_{ct}^2) \right)$$

• Small differences for more general treatment assignments.

When does blocking help?

- Blocking vs. completely randomized treatment assignment (no blocking): which estimates of SATE_{st} have lower variance?
- Blocking helps if and only if:

$$\sum_{c=1}^{b} n_c^2 \left[\left(\frac{(r-1)(\sigma_s^2 + \sigma_t^2) + 2\gamma_{st}}{\sum n_c^2 (n-1)} \right) - \left(\frac{(r-1)(\sigma_{cs}^2 + \sigma_{ct}^2) + 2\gamma_{cst}}{n^2 (n_c - 1)} \right) \right] \ge 0$$

• Intuitive to make σ_{cs}^2 , σ_{ct}^2 small w.r.t. σ_s^2 , σ_t^2 , but other blocking designs may also improve treatment effect estimates.

Can blocking hurt?

When blocking is completely randomized:

$$\mathbb{E}\left[\sum_{c=1}^{b} n_c^2 \left(\frac{(r-1)(\sigma_{cs}^2 + \sigma_{ct}^2) + 2\gamma_{cst}}{n^2(n_c - 1)}\right)\right]$$

$$= \sum_{c=1}^{b} n_c^2 \left(\frac{(r-1)(\sigma_s^2 + \sigma_t^2) + 2\gamma_{st}}{\sum n_c^2(n-1)}\right)$$

Blocked variance = Completely randomized variance

ullet Any improvement to completely random blocking ullet Reduced variance in treatment effect estimates.

Future Work

- Apply graph partitioning techniques to other statistical problems:
 - Clustering—alternative to *k*-means.
 - Apply to matching problems.
 - Other problems in nonparametric statistics.
- Improve theoretic results of algorithm.

Bibliography I

- David A. Freedman. On regression adjustments in experiments with several treatments. The annals of applied statistics, 2(1): 176–196, 2008.
- Robert Greevy, Bo Lu, Jeffrey H. Silber, and Paul Rosenbaum. Optimal multivariate matching before randomization. Biostatistics, 5(4):263–275, 2004.
- D.S. Hochbaum and D.B. Shmoys. A unified approach to approximation algorithms for bottleneck problems. <u>Journal of</u> the ACM (JACM), 33(3):533–550, 1986.
- K. Imai. Variance identification and efficiency analysis in randomized experiments under the matched-pair design. Statistics in medicine, 27(24):4857–4873, 2008.

Bibliography II

- Guido W. Imbens. Experimental design for unit and cluster randomized trials. Working Paper, 2011.
- Winston Lin. Agnostic notes on regression adjustments to experimental data: Reexamining freedman's critique. Annals of Applied Statistics, 2012.
- Kari Lock Morgan and Donald B Rubin. Rerandomization to improve covariate balance in experiments. <u>Annals of Statistics</u>, 40(2):1263–1282, 2012.
- Luke W. Miratrix, Jasjeet S. Sekhon, and Bin Yu. Adjusting treatment effect estimates by post-stratification in randomized experiments. <u>Journal of the Royal Statistical Society, Series B</u>, 75(2):369–396, 2013.

Bibliography III

- Ryan T Moore. Multivariate continuous blocking to improve political science experiments. <u>Political Analysis</u>, 20(4):460–479, 2012.
- P.R. Rosenbaum. Optimal matching for observational studies.

 <u>Journal of the American Statistical Association</u>, 84(408):
 1024–1032, 1989.
- Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. <u>Journal of Educational</u> Psychology; Journal of Educational Psychology, 66(5):688, 1974.
- Jerzy Splawa-Neyman, DM Dabrowska, and TP Speed. On the application of probability theory to agricultural experiments. essay on principles. section 9. <u>Statistical Science</u>, 5(4):465–472, 1990.