

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09127479 A

(43) Date of publication of application: 16 . 05 . 97

(51) Int. CI

G02F 1/133

G02F 1/133 G02F 1/1335

(21) Application number: 07302317

(71) Applicant:

CASIO COMPUT CO LTD

(22) Date of filing: 27 . 10 . 95

(72) Inventor:

AOKI HISASHI SATO SOICHI

YOSHIDA TETSUSHI

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a device capable of full-color display with a simple constitution.

SOLUTION: One display dot consists of two adjacent picture elements in a double refraction control type liquid crystal display element 1 which has the display color changed in the range of a low applied voltage and has the gradation changed in achromatic color in the range of a high applied voltage. A driving circuit 2 converts picture data to color data and gradation data and applies a voltage corresponding to color data to one of two adjacent picture elements of the double refraction control type liquid crystal display element 1 and applies a voltage corresponding to gradation data to the other. The display color and the display gradation of two adjacent picture elements are visually synthesized to recognize a color gradation picture.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-127479

東京都八王子市石川町2951番地の5 カシ

才計算機株式会社八王子研究所内

(43)公開日 平成9年(1997)5月16日

(51) Int. C1. 5		識別記号	庁内整理番号	FI			技術表示箇所
G O 2 F	1/133	5 1 0		G O 2 F	1/133	5 1 0	
		550				5 5 0	
	1/1335	5 1 5			1/1335	5 1 5	

	審査請求 未請求 請求	項の数 5 	FD (全9頁)
(21)出願番号	特願平7-302317	(71)出願	人 000001443 カシオ計算機株式会社
(22)出顧日	平成7年(1995)10月27日		東京都新宿区西新宿2丁目6番1号
		(72) 発明	者 青木 久
			東京都八王子市石川町2951番地の5 カシ
			才計算機株式会社八王子研究所内
		(72) 発明	者 佐藤 宗一
			東京都八王子市石川町2951番地の5 カシ
			才計算機株式会社八王子研究所內
		(72)発明	者 吉田 哲志

(54) 【発明の名称】液晶表示装置

(57)【要約】

【課題】 簡単な構成でフルカラー表示が可能な液晶表示装置を提供することである。

【解決手段】 低い印加電圧の範囲で表示色が変化し、高い印加電圧の範囲で無彩色で階調が変化する複屈折制 御型液晶表示素子1の隣接する2つの画素で1つの表示ドットを構成する。駆動回路2は、画像データを色データと階調データに変換し、複屈折制御型液晶表示素子1の隣接する2つの画素の一方に色データに対応する電圧を印加し、隣接する2つの画素の他方に階調データに対応する電圧を印加する。隣接する2つの画素の表示色と表示階調が視覚上で合成され、カラー階調画像が認識される。

【特許請求の範囲】

【請求項1】第1の電極が配置された第1の基板と、前記第1の基板に対向して配置され、前記第1の基板に対向する面に第2の電極が配置された第2の基板と、前記第1の基板と第2の基板の少なくとも一方の外側に配置された偏光板とを有し、前記第1の電極と前記第2の電極との対向部分とその間の液晶とで各画素を形成し、前記流晶に印加される所定範囲の第1の印加電圧に応じて複数の有彩色の1つを表示し、前記第1の印加電圧範囲とは異なる電圧範囲の第2の印加電圧に応じて無彩色を表示する複屈折制御型液晶表示素子と、

各画素の色及び階調を指定する画像データを出力する画像データ出力手段と、

前記画像データ出力手段から出力された画像データを色 データと階調データに変換し、前記複屈折制御型液晶表 示素子の隣接する2つの画素の一方の画素の第1の電極 と第2の電極間に前記色データに対応する電圧を印加 し、隣接する2つの画素の他方の画素の第1の電極と第 2の電極との間に前記階調データに対応する電圧を印加 する駆動手段と、を備え、

前記隣接する2つの画素の表示の視覚上の合成により前記画像データにより指示される色及び階調を表示することを特徴とする液晶表示装置。

【請求項2】第1の電極が配置された第1の基板と、前記第1の基板に対向して配置され、前記第1の基板に対向する面に第2の電極が配置された第2の基板と、前記第1の基板と第2の基板との間に配置された液晶と、前記第1の基板と第2の基板との少なくとも一方の外側に配置された偏光板とを有し、前記第1の電極と前記第2の電極との対向部分とその間の液晶とで各画素を形成し、前記液晶に印加される所定範囲の第1の印加電圧に応じて複数の有彩色の1つを表示し、前記第1の印加電圧に応じて複数の有彩色の1つを表示し、前記第1の印加電圧に応じて無彩色を表示する複屈折制御型液晶表示素子と、

各画素の色及び階調を指定する画像データを出力する画像データ出力手段と、

前記画像データ出力手段から出力された画像データを色 データと階調データに変換し、前記複屈折制御型液晶表 示素子の各画素の第1の電極と第2の電極との間に連続 する2つのフレームで、色データに対応する電圧と階調 データに対応する電圧とを突互に印加する駆動手段と、 を備え、

複数フレームでの各画素の表示色と表示階調の視覚上の 合成により、カラー階調表示を行うことを特徴とする液 晶表示装置。

【請求項3】前記駆動手段は、前記色データに対応する 電圧をディジタルドライバで、前記階調データに対応す る電圧をアナログドライバで、前記第1の電極と第2の 電極との間に供給することを特徴とする請求項1又は2 に記載の液晶表示装置。

【請求項4】所定範囲の第1の印加電圧に応じて複数の 有彩色の1つを表示し、前記第1の印加電圧範囲とは異 なる電圧範囲の第2の印加電圧に応じて無彩色を表示す る複数の画素がマトリクス状に配置された複屈折制御型 液晶表示素子と、

各画素の色及び階調を指定する画像データを出力する画像データ出力手段と、

前記画像データ出力手段から出力された画像データを色 10 データと階調データに変換し、前記複屈折制御型液晶表 示素子の隣接する2つの画素の一方に前記色データに対 応する電圧を印加し、前記隣接する2つの画素の他方に 前記階調データに対応する電圧を印加する駆動手段と、 を備えることを特徴とする液晶表示装置。

【請求項5】所定範囲の第1の印加電圧に応じて複数の 有彩色の1つを表示し、前記第1の印加電圧範囲とは異 なる電圧範囲の第2の印加電圧に応じて無彩色を表示す る複数の画素がマトリクス状に配置された複屈折制御型 液晶表示素子と、

20 各画素の色及び階調を指定する画像データを出力する画像データ出力手段と、

前記画像データ出力手段から出力された画像データを色 データと階調データに変換し、前記複屈折制御型液晶表 示素子の各画素の第1の電極と第2の電極間に連続する 2つのフレームで、色データに対応する電圧と階調デー タに対応する電圧とを交互に印加する駆動手段と、

を備えることを特徴とする液晶表示装置。

【発明の詳細な説明】

[0001]

30

40

【発明の属する技術分野】この発明は、フルカラー表示が可能な液晶表示装置に関し、特に、複屈折制御型の液晶表示素子を用いてフルカラー画像を表示する液晶表示装置に関する。

[0002]

【従来の技術】カラー画像を表示できるカラー液晶表示素子としては、複屈折制御型、プレオクロイック型、カラーフィルタ型等が知られている。この中で、複屈折制御(ECB:electrically controlled birefringence)型の液晶表示素子は、液晶に電界を印加することにより液晶の分子配列を変えさせて、液晶層の複屈折効果を変化させ、この複屈折効果の変化により一対の偏光板を透過する光のスペクトル分布を変えて、所望の色を表示させるものである。この複屈折制御型液晶表示素子は、印加電圧に対して表示色と階調(明るさ)が同時に変化するため、階調表示及び多色表示を行いにくいという問題がある。

[0003]

【発明が解決しようとする課題】この問題を解決する方法として、複屈折制御型液晶表示素子と白黒TN液晶表 50 示素子を2段重ねにして、液晶表示素子を構成する方法

9

が考えられる。即ち、複屈折の画素を通過した光(着色光)の強度を、白黒TN液晶表示素子により制御することにより、各色について、多階調表示を可能とすることが考えられる。この方法によれば、フルカラー表示の液晶表示素子が実現できる。しかし、このような液晶表示素子は、その構成が複雑になり、コストが2倍かかってしまうという問題があった。

【0004】この発明は、上記実情に鑑みてなされたもので、簡単な構成でフレカラー表示が可能な液晶表示装置を提供することを目的とする。

[0005]

【課題を解決するための手段】上記目的を達成するた め、この発明の第1の観点にかかる液晶表示装置は、第 1の電極が配置された第1の基板と、前記第1の基板に 対向して配置され、前記第1の基板に対向する面に第2 の電極が配置された第2の基板と、前記第1と第2の基 板間に配置された液晶と、前記第1の基板と第2の基板 の少なくとも一方の外側に配置された偏光板とを有し、 前記第1の電極と前記第2の電極との対向部分とその間 の液晶とで各画素を形成し、前記液晶に印加される所定 範囲の第1の印加電圧に応じて複数の有彩色の1つを表 示し、前記第1の印加電圧範囲とは異なる電圧範囲の第 2の印加電圧に応じて無彩色を表示する複屈折制御型液 晶表示素子と、各画素の色及び階調を指定する画像デー タを出力する画像データ出力手段と、前記画像データ出 力手段から出力された画像データを色データと階調デー 夕に変換し、前記複屈折制御型液晶表示素子の隣接する 2つの画素の一方の画素の第1の電極と第2の電極間に 前記色データに対応する電圧を印加し、隣接する2つの 画素の他方の画素の第1の電極と第2の電極間に前記階 調データに対応する電圧を印加する駆動手段と、を備 え、前記隣接する2つの画素の表示の視覚上の合成によ り前記画像データにより指示される色及び階調を表示す ることを特徴とする。

【0006】上記構成の液晶表示装置によれば、一方の画素では、液晶に第1の電圧が印加され、色が表示される。また、他方の画素では、液晶に第2の電圧が印加されて、階調の表示が行われる。一方の画素の表示と他方の画素の表示とが視覚上で合成され、カラー階調表示が行われる。

【0007】また、この発明の第2の観点にかかる液晶表示装置は、第1の電極が配置された第1の基板と、前記第1の基板に対向して配置され、前記第1の基板に対向する面に第2の電極が配置された第2の基板と、前記第1の基板と第2の基板との間に配置された液晶と、前記第1の基板と第2の基板との少なくとも一方の外側に配置された偏光板とを有し、前記第1の電極と前記第2の電極との対向部分とその間の流晶とで各面素を形成し、前記液晶に印加される所定範囲の第1の印加電圧に応じて複数で有彩色で1つを表示し、前記流

圧範囲とは異なる電圧範囲の第2の印加電圧に応じて無 彩色を表示する複屈折制御型液晶表示素子と、各画素の 色及び階調を指定する画像データを出力する画像データ 出力手段と、前記画像データ出力手段から出力された画 像データを色データと階調データに変換し、前記複屈折 制御型液晶表示素子の各画素の第1の電極と第2の電極 間に連続する2つのフレームで、色データに対応する電 圧と階調データに対応する電圧とを交互に印加する駆動 手段と、を備え、複数フレームでの各画素の表示色と表

10 示階調の視覚上の合成により、カラー階調表示を行うことを特徴とする。

【0008】上記構成の液晶表示装置によれば、あるフレームでは、各画素の液晶に第1の電圧が印加されて色が表示される。また、他方のフレームでは、液晶に第2の電圧が印加されて、階調の表示が行われる。複数フレームの表示が視覚上で合成され、カラー階調表示が行われる。

[0009]

- 20

【発明の実施の形態】

(第1の実施の形態)以下、この発明の第1の実施の形態を図面を参照して説明する。図1は、この発明の第1の実施の形態にかかる液晶表示装置の構成を示すブロック図であり、図2は、複屈折制御型液晶表示素子の構成を示す断面図である。

【0010】図1に示すように、液晶表示装置は、複屈 折制御型液晶表示素子1と、駆動回路2とから構成される、複屈折制御型液晶表示素子1は、図2に示すよう に、一対の透明基板11、12と、一対の透明基板1 1、12間に封止材SCにより封止された液晶13と、 基板12の外側に配置された2枚の位相板21、22 と、一対の透明基板11、12及び2枚の位相板21、 22を挟んで配置された一対の偏光板23、24と、偏 光板23の外側に配置された反射板25と、から構成される

【0011】一対の透明基板11、12は、ガラス、透明樹脂等から構成される。下側の透明基板(TFT基板)11には、図1に示すように、TFT14と、画素電極15とが、マトリクス状に配置されている。

【0012】図1に示すように、各TFT14のゲート 40 電極は、行方向に配置されたゲートラインGLに接続され、ドレイン電極は列方向に配置されたデータラインDLに接続され、ソース電極は各画素電極15に接続されている。

【0013】各ゲートラインGLは、端子部T1を介して、行ドライバ31に接続されている。各データライン DLは、端子部T2を介して列ドライバ32に接続されている。

の電極との対向部分とその間の液晶とで各画素を形成 し、前記液晶に印加される所定範囲の第1の印加電圧に 応じて複数の有彩色の1つを表示し、前記第1の印加電 50 には、図3 (D) に示すように、基板11の下辺と平行

4

な水平方向日に対して右下45°の方向16aに、ラビ ンプ等の配向処理が施されている。

【() () 1 5】一方、上側の透明基板 (対向基板) 12に は、各画素電極15に対向する対向電極17が配置され ている、対向電極17には、共通電圧(コモン電圧)が 印加される。対向電極17の上には、全面に配向膜18 が配置されている。配向膜18には、図3(D)に示す 18 a の方向(配向膜16の配向処理の方向16 a に対 して反時計方向に90°の方向)に、ラビング等の配向 処理が施されている。

【0016】液晶13は、カイラル材が添加されたネマ ティック液晶から構成され、配向膜16、18に施され た配向処理に従って、TFT基板11から対向基板12 に向かって90°ツイストして配向している。

【0017】反射板25には、図3 (F) に示す25a の方向に、ヘアライン処理が施されている。位相板21 は、図3(C)に示すように、平面上で屈折率が最も大 きい軸(延伸軸)21 aが水平方向日に対し113°で 交差するように配置されている。位相板22は、図3

(B) に示すように、平面上で屈折率が最も大きい軸 (延伸軸) 22 a が水平方向日に対し20°で交差する ように配置されている。偏光板23の透過軸23aは、 図3 (E) に示すように、水平方向日に対し90°で交 差している。偏光板24の透過軸24aは、図3(A) に示すように、水平方向日に対し72°で交差してい

【0018】一方、駆動回路2は、図1に示すように、 CPU41と、プログラムメモリ42と、画像メモリ (表示メモリ) 43と、表示制御回路44と、第1の変 換テーブル45と、第2の変換テーブル46と、D/A (ディジタルアナログ)変換器47Aと、D/A (ディ ジタルアナログ)変換器47Bと、行ドライバ31と、 列ドライバ32と、から構成される。

【0019】CPU41は、予め定められたプログラム に従ってシステム全体を制御する。プログラムメモリ4 2は、CPU41の動作プログラム、例えば、画像作成 プログラムを記憶している。画像メモリ43は、CPU 41の制御によりディジタル画像データが書き込まれ る。表示制御回路44は、CPU41の制御下に画像メ モリ43に記憶されたディジタル画像データを順次読み 出し、RGB各2ビット(計6ビット)の色データDC と、3ビットの階調データDGとに分離し、色データDC を第1の変換テーブル45に供給し、階調データDGを 第2の変換テーブル46に供給する。

【0020】第1の変換デーブル45は、6ビットの色 データDCを4ビットのディジタル電圧データDc'に 変換し、DNA (ディジタルアナログ) 変換器47Aに 供給する。D/A変換器47Aは、ディジタル電圧デー タDC'をアナログ色信号に変換し、列ドライバ32に 供給する。第2の変換テーブル46は、3ビットの階調 50 夕を適宜書き込む。CPU41により画像メモリ43に

データDGを5ビットのディジタン電圧データDG'に変 換し、D/A変換器47Bに供給する。D/A変換器4

7Bは、ディジタン電圧データDG'をアナログ階調信 号に変換し、列ドライバ32に供給する。

6

【0021】列ドライバ32は、アナコブ色信号とアナ ログ階調信号をそれぞれ1走査ライン順次サンブリング し、サンプリングしたアナログ色信号を奇数列のデータ ラインDLに供給し、アナログ階調信号を偶数列のデー ダラインDLに供給する。行ドライバ31は、CPU4 10 1の制御に従って、各ゲートラインGLにゲート信号 (走査信号)を供給する。

【0022】このような構成の腋晶表示装置において、 複屈折制御型液晶表示素子1の一ドット(画像を表示す るための最小ドット)は、図4に示すように、互いに隣 接した2つの画素(第1画素と第2画素)とで構成され

【0023】第1画素または第2画素の画素電極15と 対向電極17との間に駆動電圧を印加すると、図5の印 加電圧と反射率及び表示色の関係が得られる。印加電圧 20 を上昇させていくと、それに伴って反射率は変化し、表 示色も赤→緑→青→黒→白と変化する。図6は、この場 合のCIE(x、y)色度図を示す。図6から判るよう に、各表示色の純度は優れたものである。

【0024】図5の特性において、ある一定の電圧値 (2.4V)以下の範囲では色相が変化し、この電圧値 を越える範囲では、無彩色で輝度のみが変化する。従っ て、2.4 V以下の範囲の任意の電圧を第1画素に印加 することにより、色の指定を行うことができる。また、 2. 4 Vを越える範囲の任意の電圧を第2画素に印加す 30 ることにより、階調の指定を行うことができる。各画素 は、肉眼では識別できない程度に小さい。従って、第1 画素と第2画素の表示は視覚上で合成されて階調の異な る色が認識され、カラー階調表示を行うことができる。

【OO25】例えば、図7(A)に示すように、「明る い赤」を表示するには、第1画素に「赤」を表示させ、 第2画素に「白」を表示させる。このように表示させる ことにより、「明るい赤」が表示できる。また、図7

(B) に示すように、「少し明るい赤」を表示するに は、第1画素に「赤」を表示させ、第2画素に「明るい 40 灰」を表示させる。図7 (C) に示すように、「少し暗 い赤」を表示するには、第1画素に「赤」を表示させ、 第2画素に「暗い灰」を表示させる。図7 (D) に示す ように、「暗い赤」を表示するには、第1画素に「赤」 を表示させ、第2画素に「黒」を表示させる。

【0026】次に、第1画素と第2画素とが、それぞれ 色の表示、階調の表示を行う動作を説明する。まず、図 1に示す駆動回路2において、CPU41はプログラム メモリ42に記憶されたプログラムを処理し、画像メモ リ43に表示したい画像を定義するディジタル画像デー

書き込まれたディジタル画像データは、表示制御回路 4 4により読み出される。表示制御回路 4 4 は、読み出したディジタル画像データのうち、RGB各 2 ビット (計6 ビット) の色データ DCを第1の変換テーブル 4 5 に、3 ビットの階調データ DGを第2の変換テーブル 4 6 に、それぞれ供給する。

【0027】第1の変換テーブル45は、6ビットの色データDCを、図8の変換テーブルに従って、4ビットのディジタル電圧データDC'に変換する。第2の変換テーブル46は、3ビットの階調データDGを、図9の変換テーブルに従って、5ビットのディジタル電圧データDG'に変換する。

【0028】例えば、図8の変換テーブルにおいて、「暗い青」を示す「00001」、「濃い青」を示す「000011」のそれぞれのデータは、「1001」のディジタル電圧データに変換される。また、図9の変換テーブルにおいて、「暗い階調」を示す「000」のデータは、「011のディジタル電圧データに、「明るい階調」を示す「111」のデータは、「10100」のディジタル電圧データに、それぞれ変換される。

【0029】第1の変換テーブル45は、変換した4ビットのディジタル電圧データDC'をD/A変換器47Aは、このディジタル電圧データDC'をアナログ色信号に変換し、列ドライバ32に供給する。また、第2の変換テーブル46は、5ビットのディジタル電圧データDG'をD/A変換器47Bに供給する。D/A変換器47Bは、このディジタル電圧データDG'をアナログ階調信号に変換し、列ドライバ32に供給する。

【0030】列ドライバ32は、アナログ色信号とアナログ階調信号をそれぞれ1走査ライン順次サンプリングしたアナログ色信号に応じた電圧を奇数列のデータラインDLに供給し、アナログ階調信号に応じた電圧を偶数列のデータラインDLに供給する。行びライバ31から走査信号(ゲート信号)が供給されるタイミングでTFT14がオンし、データラインDLに印かされたアナログ色信号とアナログ階調信号に応じた電圧がそれぞれ奇数列及び偶数列の画素電極に印加される。即ち、第1画素と第2画素にそれぞれ印加される。【0031】印加された電圧に応じて、第1画素は対応する色を表示し、第2画素は無彩色の階調を表示する。隣接するこれらの第1画素と第2画素の表示とは、観音の視覚上で合成され、階調を育するカラー画像を認識さ

【0032】(第2の実施の形態)第1の実施の形態に おいては、列ドライバ32で第1両素と第2画素とをそれぞれ駆動したが、第1画素と第2両素とを別々のドライバで駆動してもよい。図10に、この構成の複屈折制 御型液晶表示装置の構成を示す。 【0033】奇数列のデータラインDLには、端子部T 2を介してディジタルドライバ33が接続されている。 ディジタルドライバ33には、第1の変換テーブル45 が接続され、ディジタル電圧データDC'が供給され る。一方、偶数列のデータラインDLには、端子部T3 を介してアナログドライバ34が接続されている。アナ

を介してアナログドライバ34が接続されている。アナログドライバ34には、D/A変換器47が接続され、アナログ階調信号が供給される。

【0034】ディジタルドライバ33は、1走査ライン 10 分のディジタル電圧データDC'をサンプリングし、内 部に構成されたD/A変換器によりアナログ色信号に変 換して、そのアナログ色信号に応じた電圧を奇数列のデ ータラインDLに供給する。アナログドライバ34は、 1 走査ライン分のアナログ階調信号をサンプリングし、 サンプリングしたアナログ階調信号に応じた電圧を偶数 列のデータラインDLに供給する。

【0035】行ドライバ31から走査信号が供給されるとTFT14がオンし、このオンしたTFT14を介してアナログ色信号とアナログ階調信号に応じた電圧がそれぞれ対応する第1画素及び第2画素に印加される。印加された電圧に応じて、第1画素は対応する色を表示し。第2画素は無彩色の階調を表示する。

【0036】第1画素と第2画素の表示は、観者の視覚上で合成され、階調を有するカラー画像が認識される。 【0037】上記構成において、ディジタルドライバ33は、アナログ色信号に応じた電圧だけをデータラインDLに供給する。従って、ディジタルドライバ33の電源電圧を色を表示するための最大電圧(3.75V)程度に抑えることができ、消費電力を少なく抑えることができる。また、ディジタルドライバ33に供給されるデータDC'は、ディジタル信号であり、アナログ信号の場合の信号なまりによる指示色のばらつきは発生しない。従って、設定通りの色を第1画素に表示することができる。

【0038】この発明は、上記実施の形態に限定されず、種々の変形及び応用が可能である。例えば、上記実施の形態においては、1ドットを2つの画素で構成したが、2つに限らず、3つ以上の複数の画素で構成してもよい。例えば、色を表示する1つの画素と、階調を表示する複数の画素により1ドットを構成するようにしてもよい。また、色を表示する複数の画素と階調を表示する複数の画素、または、色を表示する複数の画素と階調を表示する複数の画素と階調を表示する複数の画素とにより1ドットを構成してもよい

【0039】上記実施の形態においては、第1画素で色の表示を、第2画素で階調の表示をそれぞれ行うように構成したが、第1画素と第2画素とに別々の表示を行わせるのではなく、連続した2つのフレームで、色の表示と階調の表示をそれぞれ行わせるように構成してもよ

50 × 5

10

【0040】にの場合の回路構成は実質的に図1の構成と同一である。この場合、例えば、奇数フレームでは、第1の変換デーブル45、D/A変換器47Aが動作し、列ドライバ32はD/A変換器47Aからのアナコヴ階調信号を順次サンブリングし、且の、対応するサンプルデータに応じた電圧を全てのデータラインDLに供給する。また、偶数フレームでは、第2の変換デーブル46、D/A変換器47Bが動作し、列ドライバ32はD/A変換器47Aからのアナコヴ階調信号を順次サンプリングし、且の、対応するサンブルデータに応じた電圧を全てのデータラインDLに供給する。

【0041】このような構成とすることにより、奇数フレームで表示された有彩色の画像と偶数フレームで表示された無彩色の階調画像とが観者の視覚上で合成され、カラー階調画像が認識される。

【0042】また、同様の構成を図10に示す回路構成により実現することも可能である。但し、この場合、ディジタルドライバ33とアナログドライバ34はそれぞれ全てのデータラインDLに接続される。従って、ディジタルドライバ33の出力端とアナログドライバ34の出力端はデータラインDLを介して接続される。奇数フレームでは、第1の変換テーブル45とディジタルドライバ33が動作し、階調信号に応じた電圧を対応する全てのデータラインDLに供給する。この際、アナログドライバ34の出力端はオープン状態に設定する。また、偶数フレームでは、第2の変換テーブル46、D/A変換器47が動作し、アナログ階調信号に応じた電圧を対応する全てのデータラインDLに供給する。この際、ディジタルドライバ33の出力端はオープン状態に設定する。

【0043】このような構成によっても、奇数フレームで表示された有彩色の画像と偶数フレームで表示された無彩色の階調画像とが観者の視覚上で合成され、カラー階調画像が認識される。

【0044】なお、複数フレームの表示画像の合成により任意の画像を表示する場合には、フリッカ等を防止するため、実効フレーム周波数を30Hz以上に設定することが望ましい。

【0045】液晶表示素子1の各ドットで表示される色は、3原色に限定されない。図5に示す色度図上で表示可能な任意の色と無彩色階調表示を組み合わせて、任意の色の階調表示を実現することができる。

【0046】上記実施の形態においては、TFTをアクティブ素子とする複屈折制御型液晶表示素子にこの発明を適用したが、この発明は、MIMをアクティブ素子とする複屈折制御型液晶表示素子にも適用可能である。また、アクティブ素子を使用しない、パッシブマトリク区型の複屈折制御型液晶表示素子にも、適用可能である。

【0047】また、上記実施の形態において、偏光板23、24の透過軸及で位相板21、22の延伸軸の配置は、適宜変更してもよい。また、偏光板23、24、及び位相板21、22は、適宜省略してもよい。また、上記実施の形態では、反射型の複屈折制御型液晶表示素子にも適用可能である。

[0048]

【発明の効果】以上説明したように、この発明によれば、簡単な構成でフルカラー表示が可能な液晶表示装置を提供することができる。

【図面の簡単な説明】

【図1】この発明の第1の実施の形態にかかる液晶表示 装置の構成を示すブロック図である。

【図2】第1の実施の形態にかかる複屈折制御型液晶表示素子の構成を示す断面図である。

【図3】(A)は、上偏光板の透過軸の方向を示す図である。(B)は、上位相板の延伸軸の方向を示す図である。(C)は、下位相板の延伸軸の方向を示す図である。(D)は、配向膜の配向処理方向を示す図である。

(E) は、下偏光板の透過軸の方向を示す図である。

(F) は、反射板のヘアラインの方向を示す図である。

【図4】複屈折制御型液晶表示素子の一ドットの構成を示す図である。

【図 5】印加電圧と反射率及び表示色の関係を示す図で ある。

【図6】 複屈折制御型液晶表示素子の表示色の色度図で トス

【図7】1ドット分の表示色及び表示階調の例を示す図30 である。

【図8】第1の変換テーブルの例を示す図である。

【図9】第2の変換テーブルの例を示す図である。

【図10】この発明の第2の実施の形態にかかる液晶表示装置の構成を示すブロック図である。

【符号の説明】

【図1】

【図3】 【图2】 18 12 (A) 20. (8) (C) 23 15 16 14 延伸軸 18a H 16,18 90°TN 【図4】 (0) -23 (E) 第1画案 第2四案 -23a (F)

13

【図5】

【図8】

RI	R 2	G 1	G 2	B 1	B 2	ディジタル電圧データ			
0	0	0	0	0	1				
0	0	0	0	1	0	1	0	0	1
0	0	0	0	1	1				
									- 1
					_		1	-	-
1	1	1	1	1	1	1	1	1	

【図9】

	階調データ				ディジタル電圧データ				
	0	0	0	0	1	1	0	1	
	0	0	1	0	1	1	1	0	
	0	1	0	0	1	1	1	1	
				-					
								1	
1				ļ					
ļ									
								- 1	
				L					
	1	ı	1	1	0	1	0	0	

【図10】

