

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

Designing a business platform using microservices.

Rajendra Kharbuja

FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

Designing a business platform using microservices.

Entwerfen einer Business-Plattform mit microservices.

Author: Rajendra Kharbuja

Supervisor: Prof. Dr. Florian Matthes Advisor: Manoj Mahabaleshwar

Submission Date:

I confirm that this master's thesis in informatics is my own work and I have documented all sources and material used.					
Munich,	Rajendra Kharbuja				

Abstract

Contents

A	Acknowledgments							
A۱	Abstract							
1	-	llity of Service	1					
		Introduction	1					
	1.2	Quality Attributes	1					
	1.3	Related Work	2					
A	crony	ms	3					
Li	st of	Figures	4					
Li	st of	Tables	5					
Bi	bliog	raphy	6					

1 Quality of Service

1.1 Introduction

In addition to allign with the business requirements, an important goal of software engineering is to provide high quality. The quality assessment in the context of service oriented product becomes more crucial as the complexity of the system is getting higher by time. [ZL09; GL11; Nem+14] Quality models have been devised over time to evaluate quality of a software. A quality model is defined by quality attributes and quality metrics. Quality attributes are the expected properties of software artifacts defined by the chosen quality model. And, quality metrics give the techniques to measure the quality attributes. [Man+np] The software quality attributes can again be categorized into two types: internal and external attributes. [Man+np; BMB96] The internal quality attributes are the design time attributes which should be fulfilled during the design of the software. Some of the external quality attributes are loose coupling, cohesion, granularity, autonomy etc.[Ros+11; SSPnp; EM14] On the other hand, the external quality attributes are the traits of the software artifacts produced at the end of Software Development Life Cycle SDLC. Some of them are reusability, maintainability etc. [EM14; Man+np; FL07; Feu13] For that reason, the external quality attributes can only be measure after the end of development. However, it has been evident that internal quality attributes have huge impact upon the value of external quality attributes and thus can be used to predict them. [HS90; Bri+np; AL03; Shi+08] The evaluation of both internal and external quality attributes are valuable in order to produce high quality software.[Man+np; PRF07; Per+07]

1.2 Quality Attributes

As already mentioned in section 1.1, the internal and external qualities determine the overall value of the service composed. There are different researches and studies which have been performed to find the features affecting the service qualities. Based on the published research papers, a comprehensive table 1.1 has been created. The table provides a minimum list of quality attributes which have been considerd in various research papers.

#	Attribute	[SSPnp]	[Xianp]	[AZR11]	[Shi+08]	[Ma+09]	[FL07]
1	Coupling	√	√	✓	✓	✓	√
2	Cohesion	✓	X	✓	✓	✓	✓
3	Autonomy	✓	X	X	X	X	X
4	Granularity	✓	✓	✓	✓	✓	✓
5	Reusability	✓	X	X	✓	X	✓
6	Abstraction	✓	X	X	X	X	X
7	Complexity	X	X	X	✓	X	X

Table 1.1: Quality Attributes

The table 1.1 gives a picture of the studies done so far around service quality attributes. It can be deduced that most of the papers focus on coupling and granularity of the service and only few of them focus on other attributes such as complexity and autonomy.

Coupling refers to the dependency and interaction among services. The interaction becomes inevitable when a service requires a functionality provided by another service in order to accomplish its own goals. Similarly, Cohesion of any system is the extent of appropriate arrangement of elements to perform the functionalities. It affects the degree of understandability and sensibility of its interface for its consumers. Whereas, the complexity attribute provides the way to evaluate the difficulty in understanding and reasoning the context of the service or component. [EM14]

The reusability attribute for a service measures the degree to which it can be used by multiple consumer services and can undergo multiple composition to accoplish various high order functionalities. [FL07]

Autonomy is a broad term which refers to the ability of a service for self-containment, self-controlling, self-governance. Autonomy defines the boundary and context of the service. [MLS07] Finally, granularity is described in chapter ?? in detail. The basic signifiance of granularity is the diversity and size of the functionalities offered by the service. [EM14]

1.3 Related Work

Acronyms

CRUD create, read, update, delete.

IFBS International Financial and Brokerage Services.

SDLC Software Development Life Cycle.

SOAF Service Oriented Architecture Framework.

SWIFT Society for Worldwide Interbank Financial Telecommunication.

List of Figures

List of Tables

1.1 Quality Attributes	2
------------------------	---

Bibliography

- [AL03] M. Alshayeb and W. Li. An Empirical Validation of Object-Oriented Metrics in Two Different Iterative Software Processes. Tech. rep. IEEE Computer Society, 2003.
- [AZR11] S. Alahmari, E. Zaluska, and D. C. D. Roure. *A Metrics Framework for Evaluating SOA Service Granularity*. Tech. rep. School of Electronics and Computer Science University Southampton, 2011.
- [BMB96] L. C. Briand, S. Morasca, and V. R. Basili. *Property-Based Software Engineering Measurement*. Tech. rep. IEEE Computer Society, 1996.
- [Bri+np] L. C. Briand, J. Daly, V. Porter, and J. Wüst. *A Comprehensive Empirical Validation of Design Measures for Object-Oriented Systems*. Tech. rep. Fraunhofer IESE, np.
- [EM14] A. A. M. Elhag and R. Mohamad. *Metrics for Evaluating the Quality of Service-Oriented Design*. Tech. rep. Universiti Teknologi Malaysia, 2014.
- [Feu13] G. Feuerlicht. Evaluation of Quality of Design for Document-Centric Software Services. Tech. rep. University of Economics and University of Technology, 2013.
- [FL07] G. Feuerlicht and J. Lozina. *Understanding Service Reusability*. Tech. rep. University of Technology, 2007.
- [GL11] A. Goeb and K. Lochmann. *A software quality model for SOA*. Tech. rep. Technische Universität München and SAP Research, 2011.
- [HS90] S. Henry and C. Selig. *Predicting Source=Code Complexity at the Design Stage*. Tech. rep. Virginia Polytechnic Instirure, 1990.
- [Ma+09] Q. Ma, N. Zhou, Y. Zhu, and H. Wang1. Evaluating Service Identification with Design Metrics on Business Process Decomposition. Tech. rep. IBM China Research Laboratory and IBM T.J. Watson Research Center, 2009.
- [Man+np] M. Mancioppi, M. Perepletchikov, C. Ryan, W.-J. van den Heuvel, and M. P. Papazoglou. *Towards a Quality Model for Choreography*. Tech. rep. European Research Institute in Services Science, Tilburg University, np.

- [MLS07] Y.-F. Ma, H. X. Li, and P. Sun. *A Lightweight Agent Fabric for Service Autonomy*. Tech. rep. IBM China Research Lab and Bei Hang University, 2007.
- [Nem+14] H. Nematzadeh, H. Motameni, R. Mohamad, and Z. Nematzadeh. QoS Measurement of Workflow-Based Web Service Compositions Using Colored Petri Net. Tech. rep. Islamic Azad University Sari Branch and Universiti Teknologi Malaysia, 2014.
- [Per+07] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari. Coupling Metrics for Predicting Maintainability in Service-Oriented Designs. Tech. rep. RMIT University, 2007.
- [PRF07] M. Perepletchikov, C. Ryan, and K. Frampton. *Cohesion Metrics for Predicting Maintainability of Service-Oriented Software*. Tech. rep. RMIT University, 2007.
- [Ros+11] A. Rostampour, A. Kazemi, F. Shams, P. Jamshidi, and A. Azizkandi. Measures of Structural Complexity and Service Autonomy. Tech. rep. Shahid Beheshti University GC, 2011.
- [Shi+08] B. Shim, S. Choue, S. Kim, and S. Park. *A Design Quality Model for Service-Oriented Architecture*. Tech. rep. Sogang University, 2008.
- [SSPnp] R. Sindhgatta, B. Sengupta, and K. Ponnalagu. *Measuring the Quality of Service Oriented Design*. Tech. rep. IBM India Research Laboratory, np.
- [Xianp] W. Xiao-jun. Metrics for Evaluating Coupling and Service Granularity in Service Oriented Architecture. Tech. rep. Nanjing University of Posts and Telecommunications, np.
- [ZL09] Q. Zhang and X. Li. *Complexity Metrics for Service-Oriented Systems*. Tech. rep. Hefei University of Technology, 2009.