§10 Прямое произведение обобщённых функций.

Для классических функций $f(x), x \in \mathbb{R}^n$, и $g(y), y \in \mathbb{R}^m$, их прямое произведение $f(x) \times g(y)$ задаётся формулой $f(x) \times g(y)(x,y) = f(x) \cdot g(y)$. Если функции f(x) и g(y) локально интегрируемы, то таково и их прямое произведение $f(x) \times g(y)$. Для соответствующих регулярных обобщённых функций верны равенства

$$(f(x) \times g(y), \varphi(x, y)) = \int_{\mathbb{R}^{n+m}} f(x) \cdot g(y) \cdot \varphi(x, y) dx dy =$$

$$= \int_{\mathbb{R}^{n}} f(x) \cdot \int_{\mathbb{R}^{m}} g(y) \cdot \varphi(x, y) dy dx = (f(x), (g(y), \varphi(x, y))).$$

Положим эти равенства в основу общего определения.

Определение 10.1. Пусть $f \in D'(\mathbb{R}^n)$, $g \in D'(\mathbb{R}^m)$ — произвольные обобщенные функции. Их прямым произведением называется обобщённая функция $f \times g \in D'(\mathbb{R}^{n+m})$, заданная правилом:

$$(f(x) \times g(y), \varphi(x,y)) = (f(x), (g(y), \varphi(x,y))),$$
 где $\varphi(x,y) \in D(\mathbb{R}^{n+m}).$ (74)

Корректность этого определения вытекает из следующей теоремы

Теорема 10.2. Функция $\psi(x) = (g(y), \varphi(x, y))$ является основной функцией для любой функции $\varphi(x, y) \in D(\mathbb{R}^{n+m})$.

Доказательство. Для фиксированной точки x функция $\phi(x,y)$ является основной, следовательно, число $\psi(x) = (g(y), \phi(x,y))$ определено корректно. Покажем, что функция $\psi(x)$ финитна, т.е. имеет компактный носитель.

Обозначим через P_x , P_y проекции носителя $\operatorname{supp} \varphi(x,y)$ на \mathbb{R}^n и на \mathbb{R}^m соот-

ветственно (см. рисунок выше). Оператор проектирования является непрерывным отображением, следовательно, P_x , P_y — компакты. Ясно, что $\operatorname{supp} \phi(x,y) \subset P_x \times P_y$. Рассмотрим точку $x_0 \not\in P_x$, для неё $\phi(x_0,y) \equiv 0$ для любого y, так как $(x_0,y) \not\in \operatorname{supp} \phi(x,y)$. Тогда $\psi(x_0) = (g(y),\phi(x_0,y)) = 0$, и потому $\operatorname{supp} \psi(x) \subset P_x$. Следовательно, $\psi(x)$ — финитная функция.

Докажем бесконечную дифференцируемость функции $\psi(x)$. Установим, например, существование частной производной ψ_{x_1} . Существование других частных производных первого порядков доказывается аналогично. Рассмотрим вектор $e_1=(1,0,...,0)$ в \mathbb{R}^n и произвольное $h\in[-1,1]$. Нам нужно установить существование предела $\lim_{h\to 0}\frac{1}{h}\cdot \left\{\psi(x+h\cdot e_1)-\psi(x)\right\}$.

Для этого выберем произвольную последовательность $h_k \to 0$ и определим функции $\xi_k \left(x,y \right) = \frac{1}{h_k} \cdot \left(\phi \big(x + h_k \cdot e_1, y \big) - \phi \big(x,y \big) \right)$. Легко понять, что они финитны и бесконечно дифференцируемы. Кроме того, при каждом $(x,y) \in \mathbb{R}^{n+m} \ \xi_k \left(x,y \right) \to \phi_{x_1} \left(x,y \right)$ при $k \to \infty$. Докажем сходимость

$$\xi_k(x,y) \xrightarrow{D(\mathbb{R}^m)} \phi_{x_1}(x,y).$$
 (*)

- 1) носитель $\mathrm{supp}\,\xi_k\left(x,y\right)$ является компактом. Множество $\mathrm{supp}\,\phi\big(x+h\cdot e_1,y\big)$ это сдвиг компакта $\mathrm{supp}\,\phi\big(x,y\big)$ «вдоль» вектора e_1 на h. Так как $h\in[-1,1]$, то все множества $\mathrm{supp}\,\phi\big(x+h_k\cdot e_1,y\big)$ будут лежать в одном компакте K_0 . Поэтому все носители $\mathrm{supp}\,\xi_k\left(x,y\right)$ будут лежать в одном компакте $K=K_0\cup\mathrm{supp}\,\phi\big(x,y\big)$. Ясно, что проекция этого компакта на \mathbb{R}^m равна P_v .
- 2) Зафиксируем $x^0 \in P_x$ произвольно и обозначим $x^k = x^0 + h_k \cdot e_1$. Нужно показать, что $\xi_k^{(\alpha_y)} \left(x^0, y \right) \Rightarrow \varphi_{x_1}^{(\alpha_y)} \left(x^0, y \right)$ при $k \to \infty$ равномерно на P_y .

Ясно, что $x^k \xrightarrow[k \to \infty]{} x^0$ и все точки x^k лежат на отрезке $\left[x^0 - e_1, x^0 + e_1 \right]$ в \mathbb{R}^n . Заметим, что, по теореме Лагранжа,

$$\xi_k^{(\alpha_y)} \Big(x^0, y \Big) = \varphi_{x_1}^{-(\alpha_y)} \Big(x'^k, y \Big),$$
 где $x'^k \in \left[x^0, x^0 + h_k \cdot e_1 \right].$

Рассмотрим (очевидно, компактные) множества $K_k = \left\{x'^k\right\} \times P_y, \ k \in \mathbb{N}$, и $K_\infty = \left\{x^0\right\} \times P_y$ (см. рисунок выше).

Функция $\phi_{x_l}^{(\alpha_y)}(x,y)$ непрерывна, поэтому можно окружить каждую точку из K_{∞} прямоугольной окрестностью $U \times V$, где $U \subset \mathbb{R}^n$ и $V \subset \mathbb{R}^m$ так, чтобы колебание (разность между наибольшим и наименьшим значениями) функции $\phi_{x_l}^{(\alpha_y)}(x,y)$ в этой окрестности было бы меньше ε . Множество K_{∞} компактно, поэтому из полученного открытого покрытия можно извлечь конечное подпокрытие $U_1 \times V_1, \cdots, U_l \times V_l$. Пусть $O_0 = U_1 \cap \ldots \cap U_l$. Тогда

 $\left(O_0 \times P_y\right) \subset \bigcup_{i=1}^l \left(U_i \times V_i\right)$. Так как $x'^k \to x^0$ в \mathbb{R}^n , то существует номер N такой, что $x'^k \in O_0$ при k > N. Тогда любая точка вида $\left(x'^k, y\right)$, начиная с номера N, а

также точка $\left(x^0,y\right)$ принадлежит множеству $\bigcup_{i=1}^l \left(U_i \times V_i\right)$, и поэтому

 $\left|\phi_{x_1}^{(\alpha_y)}\!\!\left(x'^k,y\right)\!\!-\!\phi_{x_1}^{(\alpha_y)}\!\!\left(x^0,y\right)\!\right|\!<\!\varepsilon$ для любого y. Значит, мы доказали равномерную сходимость $\xi_k^{(\alpha_y)}\!\!\left(x^0,y\right)\!\!\Rightarrow\!\phi_{x_1}^{(\alpha_y)}\!\!\left(x^0,y\right)$ на P_y . Следовательно,

 $\xi_k(x,y)$ $\xrightarrow{D(\mathbb{R}^m)} \phi_{x_1}(x,y)$. Так как обобщённая функция g непрерывна, то

$$\lim_{k\to\infty}\frac{1}{h_k}\cdot\left\{\psi\big(x+h_k\cdot e_1\big)-\psi\big(x\big)\right\}=\lim_{k\to\infty}\frac{1}{h_k}\cdot\left\{\left(g(y),\phi\big(x+h_k\cdot e_1,y\big)\right)-\left(g(y),\phi\big(x,y\big)\right)\right\}=\\=\lim_{k\to\infty}\left(g(y),\xi_k\left(x,y\right)\right)=\left(g(y),\phi_{x_1}\left(x,y\right)\right)$$
 для произвольного $x\in\mathbb{R}^n$.

Мы доказали, что производная ψ_{x_1} существует , причём $\psi_{x_1}(x) = \Big(g(y), \phi_{x_1}\big(x,y\big)\Big)$. По индукции можно аналогичным образом доказать существование производной $\psi^{(\beta)}$ произвольного порядка β .

Теорема 10.3. Соответствие $\varphi(x,y) \to T \varphi(x) = (g(y), \varphi(x,y)) - \text{есть ли-}$ нейное и непрерывное отображение $T: D(\mathbb{R}^{n+m}) \to D(\mathbb{R}^n)$.

Доказательство. По теореме 10.2 отображение T задано корректно. Линейность этого преобразования очевидна. Докажем его непрерывность. Достаточно показать, что из сходимости $\varphi_k \to 0$ в $D(\mathbb{R}^{n+m})$ следует сходимость $T(\varphi_k) = \psi_k \to 0$ в $D(\mathbb{R}^n)$ при $k \to \infty$. Так как $\varphi_k \to 0$, то:

- 1) Существует компакт K, содержащий носители всех функций $\varphi_k(x,y)$,
- 2) $\left(\left(\phi_k \right)_y^{(\beta)} \right)_x^{(\alpha)} (x, y) \Rightarrow 0$ на *K* при любых мультииндексах α и β .

Обозначим K_x – проекцию компакта K на первый сомножитель в произведении $\mathbb{R}^n \times \mathbb{R}^m$. Тогда

3)
$$\operatorname{supp} \psi_k(x) \subset \operatorname{supp} (g(y), \varphi_k(x, y)) \subset K_x$$
 для любого k , и

4)
$$(\psi_k)^{(\alpha)}(x) = (g(y), \varphi_k(x, y))_x^{(\alpha)} = (g(y), (\varphi_k)_x^{(\alpha)}(x, y))_x \stackrel{K_x}{\Longrightarrow} 0.$$