Sorteernetwerken van Optimale Grootte

Mathias Dekempeneer Vincent Derkinderen

Begeleider: Tom Schrijvers

Comparator Netwerk

Sorteernetwerk

TODO Vincent: Paint skills

- Genereer: toevoegen alle mogelijke comparatoren
- Snoei: subsumes principe

 R_0

 $N_1 - R_1$

 $N_2 - R_2$

 R_0

 $N_1 - R_1$

 $N_2 - R_2$

N₃

 R_0

 $N_1 - R_1$

 $N_2 - R_2$

 R_0

 $N_1 - R_1$

 $N_2 - R_2$

Subsumes

- Beschreven in "Twenty-Five Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten)" (Codish et al.)
- C_a subsumes C_b ⇔ C_a wordt gedekt door C_b
- Verwijder de netwerken die anderen dekken

Gevonden sorteernetwerk: (1-2) (2-3) (1-2)

1000

100

10

Dekempeneer & Derkinderen (24 threads) 2 x Intel Xeon E5-2680v3 Codish et al. (288 threads) 144 x Intel E8400

Conclusie

Conclusie

WAT?

Resultaten van de paper gereproduceerd

Conclusie

WAT?

Resultaten van de paper gereproduceerd

WAT VOLGT?

Bekijken reden van verbetering

Implementatie voor meerdere nodes

Verbeteringen voor het algoritme zoeken