FACULTADES DE CIENCIAS Y DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN LICENCIATURA EN ESTADÍSTICA

Probabilidad II Primer semestre de 2018 Práctico 2

- 1. Probar los siguientes resultados
 - (a) Si $X_n \xrightarrow{c.s.} X$ y $Y_n \xrightarrow{c.s.} Y$ entonces $X_n + Y_n \xrightarrow{c.s.} X + Y$.
 - (c) Si $X_n \xrightarrow{c.s.} X$ y g es una función continua, entonces $g(X_n) \xrightarrow{c.s.} g(X)$.
 - (e) Si $X_n \xrightarrow{c.s.} X$ y $Y_n \xrightarrow{c.s.} Y$ y a_n , b_n dos sucesiones de números reales tales que $a_n \to a > 0$ y $b_n \to b$, entonces $a_n X_n + b_n Y_n \xrightarrow{c.s.} aX + bY$.
 - (d) ¿Valen los resultados anteriores en el caso que $X_n \stackrel{P}{\longrightarrow} X$ y $Y_n \stackrel{P}{\longrightarrow} Y$?
- 2. Verificar que si X_1, X_2, \ldots i.i.d., entonces \overline{X}_n es un estimador coherente o consistente para
 - (a) El parámetro p, si $X_1 \sim Bin(1, p)$,
 - (b) λ , si $X_1 \sim Poi(\lambda)$,
 - (c) $1/\lambda$, si $X_1 \sim Exp(\lambda)$.
- 3. Supongamos que queremos obtener un estimador de θ de una muestra X_1, X_2, \ldots de la distribución Unif $(0, \theta]$. Dado que $\int_0^\theta x dF(x) = \theta/2$, se propone el estimador $T_n = 2 \sum_{i=1}^n X_i/n$. ξT_n , converge c.s. a θ ?. Analizar la convergencia del estimador alternativo de θ , $X_{(n)} = \max\{X_1, \ldots, X_n\}$.
- 4. Mostrar que $d_2(X,Y) = \sqrt{\mathbb{E}(X-Y)^2}$ es una distancia en el conjunto de las variables aleatorias con momento de segundo orden finito. Verificar que $d_2(X_n,Y) \to 0$ implica $X_n \xrightarrow{P} Y$, pero $X_n \xrightarrow{P} Y$ no implica que $d_2(X_n,Y) \to 0$.
- 5. Se define $d_P(X,Y) := E(1 \exp(-|X Y|))$. Demostrar que
 - (a) $d_P(X,Y)$ es una distancia en el espacio de todas las v.a. reales. Para la desigualdad triangular se sugiere usar (y demostrar) que $1-uv \le 1-u+1-v$ para todo $u,v \in [0,1]$.
 - (b) si Y, X_1, X_2, \ldots es una sucesión de v.a. reales entonces $d_P(X_n, Y) \to 0$ si y sólo si $X_n \stackrel{P}{\longrightarrow} Y$.
- 6. Sea $\{X_n\}_{n\geq 1}$ una sucesión de v.a. que converge en media cuadrática a la v.a. X cuando $n\to\infty,\ y\ X$ es tal que $E(X^2)<\infty,$ es decir $E[(X_n-X)^2]\to 0$ cuando $n\to\infty.$ Demostrar que
 - (a) $E(X_n) \to E(X)$ cuando $n \to \infty$.
 - (b) $E(X_n^2) \to E(X^2)$ cuando $n \to \infty$.

Encontrar una sucesión de v.a. que converge en media pero no converge en media cuadrática.

7. Sean X_1, X_2, \ldots, X_n variables aleatorias i.i.d y sea $X_{1:n} := min\{X_1, X_2, \ldots, X_n\}$. Probar que la sucesión de estimadores $\{X_{1:n}\}_{n\geq 1}$ de θ es débilmente coherente según la f.d.p $f(x;\theta)$ sea

a)
$$f(x; \theta) = \begin{cases} 1 & \text{si } \theta < x < \theta + 1 \\ 0 & \text{en otro caso} \end{cases}$$

b)
$$f(x;\theta) = \begin{cases} e^{-(x-\theta)} & \text{si } x > \theta \\ 0 & \text{en otro caso} \end{cases}$$

b)
$$f(x;\theta) = \begin{cases} e^{-(x-\theta)} & \text{si } x > \theta \\ 0 & \text{en otro caso} \end{cases}$$

c) $f(x;\theta) = \begin{cases} 2(x-\theta) & \text{si } \theta < x < \theta + 1 \\ 0 & \text{en otro caso} \end{cases}$

Finalmente, supongamos que $f(x;\theta) = 0 \ \forall \ x < \theta$. Proponer una condición sencilla sobre f que asegure la coherencia débil de la sucesión de estimadores $\{X_{1:n}\}_{n>1}$ de θ y que contenga (a),(b) y (c) como casos particulares.

8. Se consideran las v.a. $X_k = \alpha + \beta z_k + \epsilon_k$, $k = 1, \dots$ donde α y β son parametros desconocidos llamados coeficientes de regresión, z_k son constantes conocidas y ϵ_k son v.a. i.i.d. con $E(\epsilon_k) = 0$ y $Var(\epsilon_k) = \sigma^2 \ \forall k$. Hallar una condición suficiente para la coherencia débil de las sucesiones de estimadores:

$$\hat{\alpha}_n = \overline{X}_n - \overline{z}_n \, \hat{\beta}_n \, \operatorname{de} \, \alpha$$

$$\hat{\beta}_n = \frac{\sum_{i=1}^n (z_i - \overline{z}_n) X_i}{\sum_{i=1}^n (z_i - \overline{z}_n)^2} \text{ de } \beta \text{ siendo } \overline{z}_n = \frac{1}{n} \sum_{i=1}^n z_i.$$

9. Una sucesión de variables aleatorias, Y_n , se dice estocásticamente acotada, cuando para cada $\epsilon > 0$ existe una constante K y un valor $n_0 = n_0(\epsilon)$ tales que $P(|Y_n| \le$ $K(t) \ge 1 - \epsilon \quad \forall n > n_0 = n_0(\epsilon)$. Dada Y_n estocásticamente acotada y otra sucesión de variables aleatorias X_n tal que

$$\frac{X_n}{Y_n} \xrightarrow{P} 0$$
 cuando $n \to \infty$

demostrar que

$$X_n \xrightarrow{P} 0$$
 cuando $n \to \infty$.

10. Sean X_1, X_2, \ldots v.a. i.i.d. con valor esperado μ y variancia finita σ^2 . Mostrar que

$$\frac{X_1 + X_2 + \dots + X_n}{X_1^2 + X_2^2 + \dots + X_n^2} \xrightarrow{c.s.} \frac{\mu}{\sigma^2 + \mu^2}$$

cuando $n \to \infty$.

11. Sea $\{(X_k, Y_k)^{tr}, 1 \leq k \leq n\}$ una muestra aleatoria de una distribución bivariada con vector de valores esperados y matriz de variancias y covariancias

$$\mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} , \quad \mathbf{\Sigma} = \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} ,$$

y sean

$$\overline{X}_{n} = \frac{1}{n} \sum_{k=1}^{n} X_{k} \quad S_{n,x}^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \overline{X}_{n})^{2}$$

$$\overline{Y}_{n} = \frac{1}{n} \sum_{k=1}^{n} Y_{k} \quad S_{n,y}^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (Y_{k} - \overline{Y}_{n})^{2}$$

las medias aritméticas y variancias muestrales.

- (a) Probar que $S_{n,x}^2 \xrightarrow{c.s.} \sigma_x^2$ y que $S_{n,y}^2 \xrightarrow{c.s.} \sigma_y^2$ cuando $n \to \infty$.
- (b) Se define el coeficiente de correlación empírico como

$$r_{n} = \frac{\sum_{k=1}^{n} (X_{k} - \overline{X}_{n})(Y_{k} - \overline{Y}_{n})}{\sqrt{\sum_{k=1}^{n} (X_{k} - \overline{X}_{n})^{2} \sum_{k=1}^{n} (Y_{k} - \overline{Y}_{n})^{2}}}.$$

Probar que $r_n \xrightarrow{c.s.} \frac{\sigma_{xy}}{\sigma_x \sigma_y}$ cuando $n \to \infty$.

- 12. Dada una partición del intervalo [0,1] en n subintervalos disjuntos de longitudes p_1,p_2,\ldots,p_n se define la entropía de dicha partición como $H=-\sum_{i=1}^n p_i\log p_i$. Sean X_1,X_2,\ldots v.a. i.i.d. con distribución uniforme en [0,1], y sea $Z_m(i)$ el número de variables X_1,X_2,\ldots,X_m que caen en el intervalo i-ésimo de la partición dada. Mostrar que $R_m=\prod_{i=1}^n p_i^{Z_m(i)}$ cumple $\frac{1}{m}\log R_m \xrightarrow{c.s.} -H$ cuando $m\to\infty$.
- 13. Sea $f:[0,1] \longrightarrow [0,1]$ continua.
 - (a) Sean $\{\xi_n\}_{n\geq 1}$ v.a. i.i.d., $\xi_1 \sim Uni[0,1]$, y se consideran las v.a. $X_n := f(\xi_n), n \geq 1$. Mostrar que $\overline{X}_n \xrightarrow{c.s.} \int_0^1 f(t)dt$.
 - (b) Se define la sucesión de v.a. $\{Y_n := \mathbf{I}_{\{f(\xi_n) \geq U_n\}}\}_{n \geq 1}$ con $\xi_1, \xi_2, \dots, U_1, U_2, \dots$ v.a. i.i.d. Uni[0,1]. Mostrar que $\overline{Y}_n \stackrel{c.s.}{\longrightarrow} \int_0^1 f(t) dt$.
 - (c) Calcular $Var(\overline{X}_n)$ y $Var(\overline{Y}_n)$.
- 14. Un jugador (con un capital inicial de por ejemplo \$1,000) realiza sus apuestas a lo largo de una sucesión de pruebas independientes con la misma probabilidad de éxito 0 . Al final de cada prueba el jugador tendrá un capital dado por el doble de lo anterior, o la mitad, dependiendo que el resultado de la prueba sea un éxito o un fracaso.
 - (a) Construir sobre un espacio de probabilidad una sucesión $\{X_n\}_{n\geq 1}$ de v.a. reales, tal que X_n represente el capital del jugador luego de la prueba n-ésima.
 - (b) Hallar el valor esperado de X_n , y calcular el límite de $E(X_n)$ cuando $n \to \infty$.

3

- (c) Probar que si $p < \frac{1}{2}$ entonces $X_n \stackrel{c.s.}{\longrightarrow} 0$. Sugerencia: considerar el logaritmo de X_n y emplear la LFGN de Kolmogorov para v.a. i.i.d.
- (d) Comentar los resultados anteriores cuando $\frac{1}{3} .$

- 15. Se define una sucesión de experimentos independientes, cada uno consiste en sortear un número real al azar entre 0 y 1 con distribución uniforme. Se define la sucesión de sucesión de variables aleatorias: $X_n := \mathbb{I}_{[0,1/n]}(\omega_n)$ donde ω_n es el resultado del n-ésimo experimento. Se pide:
 - a) Definir adecuadamente un espacio de probabilidad sobre el que se puedan definir toda la sucesión de variables aleatorias.
 - b) Estudiar el límite casi-seguro de la sucesión.
- 16. Probar que

$$\cap_{\epsilon \in \mathbb{R}^+} \cup_{n=1}^{\infty} \cap_{k=n}^{\infty} \{ |X_k - X| < \epsilon \} = \cap_{\epsilon \in \mathbb{Q}^+} \cup_{n=1}^{\infty} \cap_{k=n}^{\infty} \{ |X_k - X| < \epsilon \}$$