Spotify Popularity Prediction

Robert Bull, Uriel Garcia, Ahsin Saleem, Ross Vrbanac DS w207- Tanya Roosta Dec. 12th, 2024

Table of Contents

- 1. Data Source
- 2. Research Question
- 3. Feature Overview
- 4. Data Processing
- 5. Genre 1 Death Metal
- 6. Genre 2 Hip Hop
- 7. Genre 3 Salsa
- 8. Genre 4 Piano
- 9. Conclusion

Data Source:

- Switched our original dataset from crop yield to Spotify popularity prediction.
- New data:
 - Kaggle Spotify 1 million tracks dataset.
 - Extracted from the Spotify using their API
 - https://www.kaggle.com/datasets/amitanshjoshi/spotify-1million-tracks/data

Key Highlights:

- Size: ~1 Million tracks.
- Features: 19 musical and metadata features.
- Artists: 61,445 unique artists.
- Genres: 82 distinct genres.

What is the best performing model for classifying Spotify song popularity per genre, irrespective of artist?

Sub-Question: What features define each genre?

Sub-Question: How well can the popularity per song of different genres be predicted?

Audio Features	Description	
Popularity	Track popularity (0 to 100)	
Year	Year released (2000 to 2023)	
Danceability	Track suitability for dancing (0.0 to 1.0)	
Energy	The perceptual measure of intensity and activity (0.0 to 1.0)	
Key	The key, the track is in (-1 to -11)	
Loudness	Overall loudness of track in decibels (-60 to 0 dB)	
Mode	Modality of the track (Major '1'/ Minor '0')	
Speechiness	Presence of spoken words in the track	
Acousticness	Confidence measure from 0 to 1 of whether the track is acoustic	
Instrumentalness	Whether tracks contain vocals. (0.0 to 1.0)	
Liveness	Presence of audience in the recording (0.0 – 1.0)	
Valence	Musical positiveness (0.0 to 1.0)	
Tempo	Tempo of the track in beats per minute (BPM)	
Time_signature	Estimated time signature (3 to 7)	
Duration_ms	Duration of track in milliseconds	

Data Processing

- Popularity separated into binary classes
 - 0 for popularity < median popularity per genre
 - 1 for popularity >= median popularity per genre
- Min-max standardization of numeric features
- One-hot encoding of categorical features
- 60/20/20 train/validate/test splits with shuffled data

Death Metal

Death Metal: EDA

Death Metal: EDA

Popularity vs Key Features

Death Metal: Modeling

Model	Accuracy	Precision	AUC Score
Baseline	0.52	0.52	0.5
Logistic Regression	0.67	0.67	0.74
Random Forest Classifier	0.69	0.69	0.76
FF Neural Net	0.67	0.68	0.74

- Baseline majority class classifier
- Logistic Regression L2 penalization
- Random Forest Classifier no maximum depth, splits based on Gini impurity
- FF Neural Net 4 hidden layers of sizes [204, 204, 102, 102], 0.1 dropout layer for each, and tuned hyperparameters

Death Metal: Results (Random Forest)

	Feature	Feature Importance
0	danceability	0.083296
1	loudness	0.081751
2	instrumentalness	0.076436
3	duration_ms	0.072134
4	tempo	0.069519
5	speechiness	0.069384
6	acousticness	0.068290
7	valence	0.068242
8	liveness	0.065552
9	energy	0.063458

Death Metal RFC Test Accuracy: 0.7009423503325942 Death Metal RFC Test Precision: 0.7036852589641435 Death Metal RFC Test AUC Score: 0.7622558858969235

Hip-Hop

Hip-Hop: EDA

Hip-Hop: EDA

Hip-Hop: Modeling

Model	Accuracy	Precision	AUC Score
Baseline	0.52	0.52	0.5
Logistic Regression	0.78	0.83	0.85
Random Forest Classifier	0.78	0.85	0.85
FF Neural Net	0.77	0.81	0.84

- Comparisons on validation set
- Baseline majority class classifier
- Logistic Regression L1 penalization
- Random Forest Classifier no maximum depth, splits based on Gini impurity
- FF Neural Net 4 hidden layers of sizes [256, 128, 64, 32], 0.4 dropout layer for each, and tuned hyperparameters

Hip-Hop: Results (Random Forest)

	Feature	Coefficient
8	duration_ms	0.075731
6	valence	0.061783
1	energy	0.061680
4	acousticness	0.060087
7	tempo	0.059545
3	speechiness	0.058403
0	danceability	0.058317
5	liveness	0.057761
2	loudness	0.057374
30	year_2022	0.050634

Final Results:

Test Accuracy: 0.78Test Precision: 0.86

Test_AUC: 0.78

Salsa

Salsa: EDA

Salsa: EDA (part 2)

Salsa: Modeling

- Comparisons on validation set
- Baseline majority class classifier
- Logistic Regression L1 penalization
- Random Forest Classifier no maximum depth, splits based on Gini impurity
- FF Neural Net 2 hidden layers of sizes [128, 64], 0.3 dropout layer and tuned hyperparameters

Model	Accuracy	Precision	AUC
Baseline	0.50	0.50	0.50
Logistic Regression	0.70	0.70	0.76
FNN	0.67	0.68	0.73
Random Forest	0.70	0.71	0.77

Salsa: Results(Random Forest)

Final Results:

• Test Accuracy: 0.70

• Test Precision: 0.71

Test AUC Score: 0.77

Piano

Piano: EDA

1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

Piano: EDA

Piano: Modeling

Model	Accuracy	Precision	AUC
Baseline	0.52	0.52	0.50
Logistic Regression	0.82	0.87	0.90
Random Forest Classifier	0.84	0.88	0.92
FF Neural Net	0.82	0.84	0.91

- Baseline majority class classifier
- Logistic Regression L1 penalization
- Random Forest Classifier no maximum depth, splits based on Gini impurity
- FF Neural Net 2 hidden layers of sizes [64, 64], 0.2 dropout layer for each, and tuned hyperparameters. Tuned.

	Feature	Importance
0	instrumentalness	0.072622
1	loudness	0.063618
2	duration_ms	0.063003
3	valence	0.060654
4	energy	0.060022
5	acousticness	0.056234
6	liveness	0.047553
7	speechiness	0.045470
8	tempo	0.044045
9	danceability	0.043561
10	year_2020	0.043095

Final Results:

Test Accuracy: 0.83Test Precision: 0.88

Test AUC: 0.92

Piano Confusion Matrix (Random Forest, Test Data)

- Random Forest performed the best on all genres
 - Handles irrelevant features well

Loudness varied significantly

Contributions

Name	Presentation Contribution	Code Contribution
Robert Bull	Data Features, Data Processing, Death Metal	All modeling and EDA with respect to the Death Metal genre
Uriel Garcia	Motivation, Salsa	All modeling and EDA with respect to the Salsa genre
Ahsin Saleem	Introduction, Hip-Hop	All modeling and EDA with respect to the Hip-Hop genre
Ross Vrbanac	Conclusion, Piano	All modeling and EDA with respect to the Piano genre

Github

https://github.com/rfbull/mids-w207-final-project