

BCJ0205 - Fenômenos Térmicos Exp 4 - Máquina térmica de efeito Seebeck

Professor:		/ Data:/	/2018
Turma:	Turno (D/N):	Campus (SA/SB):	
Nome:		RA:	
Nome:		RA:	
Nome:		RA:	

1 Objetivos

Verificar experimentalmente a segunda lei da termodinâmica através da utilização do efeito Seebeck como mecanismo de uma máquina térmica. Relacionar a diferença de temperatura que uma liga metálica de Fe-Constantan é submetida à força eletromotriz observada nos extremos da liga metálica.

2 Introdução

O efeito Seebeck, descoberto em 1821 por Thomas Johann Seebeck, é a produção de uma diferença de potencial elétrico na junção entre dois condutores (ou semicondutores) de materiais diferentes, quando estes estão submetidos a diferentes temperaturas. Ele é associado ao efeito considerado inverso e descoberto pelo francês Jean Charles Athanese Peltier e em muitos livros texto é apresentado como efeito Peltier-Seebeck. Esses dois efeitos, em conjunto com o efeito Thomson são conhecidos como efeito termoelétrico. O efeito Joule - geração de calor pela passagem de corrente em um material resistivo - é relacionado aos demais, mas não é considerado termoelétrico, dado que processos com os efeitos Peltier-Seebeck e Thomson podem ser reversíveis[3], enquanto o efeito Joule nunca é.

O efeito Seebeck ocorre porque os níveis eletrônicos dos materiais da junta variam de forma diferente com a temperatura, levando a criação de uma diferença de potencial na junção. A figura 2 esquematiza um circuito termoelétrico construído com materiais de portadores de carga diferentes (tipo-p e tipo-n), e configurado como gerador elétrico.

A tensão produzida pelo efeito Seebeck num circuito semelhante ao mostrado na figura 2 pode ser descrita por

$$V \cong \alpha(T_Q - T_F) \tag{1}$$

onde V é a tensão, T_Q e T_F são as temperaturas quente e fria respectivamente e α é o coeficiente de Seebeck ou potência termoelétrica, que de maneira geral, não é constante com a temperatura.

Figura 1: Esquerda: Esquema de um gerador termoelétrico por efeito Seebeck.[1] Neste circuito em particular não são os coeficientes de Seebeck que são diferentes, mas diferentes portadores de carga (tipo-p e tipo-n). Direita: Kit experimental de efeito Seebeck (CIDEPE EQ088A).[2]

Neste experimento, iremos determinar o coeficiente α , bem como estimar a potência produzida pelo circuito em estudo. Iremos ainda estimar a potência consumida por uma máquina de Carnot que produzisse um trabalho equivalente ao do circuito testado.

Para isso, temos de lembrar que a potência dissipada num circuito elétrico é dada por

$$P = V \cdot i = \frac{V^2}{R} \tag{2}$$

onde R é a resistência elétrica do circuito. Cabe ainda lembrar que a eficiência de uma máquina de Carnot é dada por:

$$\varepsilon_C = 1 - \frac{T_F}{T_O} = \frac{W}{Q_O} \tag{3}$$

onde ε_C é a eficiência de Carnot, W e Q_Q são respectivamente o trabalho fornecido e o calor consumido pela máquina de Carnot. Manipulando o último termo da equação 3 com um intervalo de tempo arbitrário Δt obtemos a potência consumida pela máquina de Carnot equivalente

$$\varepsilon_C = \frac{W}{Q_Q} \cdot \frac{\Delta t}{\Delta t} = \frac{P_W}{P_Q} \Rightarrow P_Q = \frac{P_W}{\varepsilon_C}$$
 (4)

onde P_W é a potência útil (trabalho) fornecida pela máquina e P_Q a potência consumida pela máquina a partir da fonte quente.

3 Procedimento experimental

3.1 Materiais

- gelo
- um termopar calibrado para medida de temperatura
- dois multímetros para medidas de temperatura, resistência e tensão elétricas
- um par de cabos jacaré-banana
- um béquer graduado para transporte e dispensa de água quente

- Kit CIDEPE EQ088A, cujas peças a serem utilizadas são:
 - uma placa com circuito de junta Fe-Constantan
 - um funil de vidro para permitir a adição de água quente sem necessidade de remover a placa
 - um copo branco para acondicionar a água na temperatura ambiente (referência)
 - um copo vermelho para acondicionar a mistura de água de temperatura variável
 - um suporte metálico para acondicionar os copos e a placa com circuito sobre eles

3.2 Métodos

- 1. Insira o termopar na água do copo branco e anote a temperatura inicial, T_R (°C) (a incerteza da temperatura neste método é de 1°C) e anote o valor na tabela 3.
- 2. Antes de colocar água no copo vermelho, conecte os cabos jacaré-banana em um dos multímetros e nos terminais do circuito. Primeiramente, meça a resistência elétrica (R), e anote na tabela 3. Em seguida meça e anote na mesma tabela a temperatura ambiente (T_{amb}) .
- 3. Retorne o multímetro conectado ao circuito para a posição de leitura de tensão contínua (DC).
- 4. Coloque água gelada no copo vermelho em quantidade suficiente para cobrir a sonda do circuito em até ≈ 5 cm. Não deixe entrar pedras de gelo no recipiente!!!
- 5. Posicione o copo vermelho no suporte e sobre ambos os copos a placa do circuito, cobrindo-os. Insira o termopar pelo orifício central da tampa do copo vermelho, de forma que este chegue até o fundo e registre a temperatura da água. Certifique-se de que o funil está seguramente acoplado à tampa do copo vermelho. Anote o valor da temperatura da água no copo vermelho T_V e da tensão V na tabela 3.
- 6. Coloque água quente no béquer, e despeje no funil em pequenas quantidades, da ordem de 10 ml por vez. Use o misturador para agitar a mistura de água quente e fria para que seja atingido o equilíbrio rapidamente. Ele deve ser atingido, com a agitação do misturador, em alguns segundos. Monitore o valor da temperatura. Enquanto esta não tiver subido pelo menos ≈ 8 °C, continue o processo de adição gradual (passos de 10 ml) de água quente. Quando atingida a nova temperatura, com esse mínimo intervalo, anote os novos valores de T_V e V na tabela 4.
- 7. Repita o passo anterior até completar a tabela 4. Se o copo encher antes, esvazie-o e coloque água quente sem mistura (até quase a metade do copo), conseguindo mais uma medida.
- 8. Antes de encerrar as medidas, faça mais uma medida da temperatura de referência do copo branco (T_R) e mais uma medida de resistência elétrica do circuito (R) retirando-o da água, e anote os valores respectivamente na tabela 3.

Faixa	Precisão	Resolução
400 Ω	$\pm (0.8\% + 5D)$	0,1 Ω
$4~\mathrm{k}\Omega$	$\pm (0.8\% + 4D)$	1 Ω
40 kΩ		10 Ω
400 kΩ		100 Ω
$4~\mathrm{M}\Omega$		1 kΩ
$40~\mathrm{M}\Omega$	$\pm (1.2\% + 5D)$	10 kΩ

Faixa	Precisão	Resolução
40 mV	$\pm (0.5\% + 6D)$	0,01 mV
400 mV		0,1 mV
4 V	$\pm (0.5\% + 5D)$	$1 \mathrm{\ mV}$
40 V	(0.5% + 5D)	10 mV
400 V		100 mV
1000 V	$\pm (1.0\% + 5D)$	1 V

Tabela 1: Tabela de precisão do multímetro **Minipa ET-2075B** na modalidade de resistência e tensão DC.

Faixa	Precisão	Resolução
400 Ω		0,1 Ω
$4~\mathrm{k}\Omega$	$\pm (1,2\% + 4D)$	1 Ω
40 kΩ	(1,270 + 4D)	10 Ω
400 kΩ		100 Ω
$4~\mathrm{M}\Omega$		$1~\mathrm{k}\Omega$
$20~\mathrm{M}\Omega$	$\pm (3\% + 5D)$	10 kΩ

Faixa	Precisão	Resolução
400 mV	$\pm (0.5\% + 4D)$	$100~\mu\mathrm{V}$
4 V		1 mV
40 V	$\pm (0.8\% + 4D)$	10 mV
400 V	(0.870 + 4D)	100 mV
600 V		1 V

Tabela 2: Tabela de precisão do multímetro **Minipa ET-1953** na modalidade de resistência e tensão DC.

4 Resultados e Discussões

1. (5 pontos) Anote na tabela abaixo os dados iniciais e finais (no final do experimento) solicitados na etapa dos Métodos. Para o erro das medidas com o multímetro consulte as tabelas 1 e 2.

Medida	T_R (°C)	σ_{T_R} (°C)
Inicial		
Final		

Medida	$R(\Omega)$	$\sigma_R (\Omega)$	T_{amb} (°C)	$\sigma_{T_{amb}}$ (°C)
Inicial				
Final				

Tabela 3: À esquerda, valores para o copo branco. À direita, valores do circuito de Fe-Constantan.

1			

2. (10 pontos) Preencha o lado esquerdo da tabela 4 com os dados coletados de temperatura e tensão.

Medida	$T_V(^{\circ}\mathrm{C})$	V (mV)	$\sigma_V \; (\mathrm{mV})$	P (nW)	$\sigma_P \text{ (nW)}$	ϵ_C	σ_{ϵ_C}	P_Q (nW)	σ_{P_Q} (nW)
1									
2									
3									
4									
5									
6									
7									

Tabela 4: Dados coletados de temperatura e tensão. As demais colunas estão destinadas aos cálculos da análise.

3. (10 pontos) Preencha a coluna da tabela 4 com os respectivos erros de tensão (σ_V (mV)), os valores da potência dissipada dado pela equação 2, e o seu respectivo erro.

3. _____

	4
pontos) Ajuste os dados da figura 2 por uma reta. Pelo mérnha o coeficiente de Seebeck (veja equação 1) e sua incerteza	
	E
	5
pontos) Qual o valor esperado para o coeficiente linear do a O valor obtido do ajuste é consistente com o esperado? das pelo ajuste.	

7.	(10 pontos) Com base nos dados coletados, calcule a eficiência correspondente a uma máquina de Carnot, ϵ_C , operando entre as temperaturas anotadas na tabela 4 e preencha as colunas correspondentes aos seus valores e respectivas incertezas.
	7
8.	(10 pontos) Responda se a eficiência desta máquina térmica seria maior, menor ou igual a ϵ_C ?
	8
9.	(10 pontos) Considere que este circuito tivesse a eficiência de Carnot e produzisse a potência observada no experimento. Calcule qual seria a potência consumida da fonte quente e anote seus resultados na tabela 4 com suas respectivas incertezas.
	9
10.	$(10~{\rm pontos})$ Explique como os resultados deste experimento corroboram a segunda lei da termodinâmica?
	10

Pontos

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	5	10	10	15	10	10	10	10	10	10	100
Score:											

Referências

- [1] Ken Brazier e C.M. Cullen, https://commons.wikimedia.org/wiki/File:Thermoelectric_Generator_Diagram.svg, última visita em 25/03/2017
- [2] Manual CIDEPE, kit EQ088A
- [3] F.J. Disalvo, Thermoelectric Cooling and Power Generation, Science 285 (5428): 703–6, 1999
- [4] H. Moysés Nussenzveig, Curso de Física Básica 2, Editora Edgard Blücher (1996)
- [5] R.A Serway, J.W. Jewett Jr., Princípios de Física vol. 2, Cengage Learning (2004)
- [6] A. A. Campos, E. S. Alves, N. L. Speziali, Física experimental básica na Universidade, Ed. UFMG (2008).
- [7] Otaviano A. M. Helene e Vito R. Vanin, Tratamento Estatístico de Dados em Física Experimental Editora Edgard Blücher, 2^a edição (1991).

Figura 2: _____