CHE374

Cheat Sheet

Relevant: Weeks 1 - 8

Week 1 - Time Value of Money

Future Value	F = P(1+i)
Simple Interest	$F_N = P(1+iN)$
Compound	$F = P(1+i)^N$
Interest	
Subperiod	$F = P(1 + \frac{r}{m})^{mN}$
Compounding	· · · · · · · · · · · · · · · · · · ·
Eff. Annual In-	$i_e = (1 + \frac{r}{m})^m - 1 = (\frac{F}{P})^{\frac{12}{N}} - 1$
terest Rate	Eq. 2, only T-bills
Continuously	$i_e = \lim_{m \to \infty} (1 + \frac{r}{m})^m - 1 = e^r - 1$
Compounding	$m \rightarrow \infty$
Continuous	$r = \lim_{m \to \infty} ((i_e + 1) - 1)m = \ln(1 + i_e)$
Compounding	
Future Interest	$(1+r_{1,x})^{\frac{x}{12}} = (1+r_{1,k})^{\frac{k}{12}}(1+r_{k,x})^{\frac{x-k}{12}}$
Rates	$r_{a,b}$ is the rate from time a to b

Week 2 - Cash-flow Analysis

Arithmetic	$A_n = A' + (N-1)G A'$: the original,
Gradient	G: amnt added, N : # of periods
Geometric	$A_n = A'(1+g)^{N-1}$
Gradient	, -7
Compound	$(F/P, i, N) = (1+i)^N, (P/F, i, N) = \frac{1}{(1+i)^N}$
Amount	(1+t)
Perpetuity	$(P/A, i) = \frac{1}{i}, (A/P, i) = i$
Annuity	$(P/A, i, N) = \frac{1}{i} (1 - \frac{1}{(1+i)^N})$
Arithmetic	$(P/G, i, N) = \frac{1}{i^2} \left(1 - \frac{1+iN}{(1+i)^N} \right)$
Growth	$i^2 \left(\frac{(1+i)^N}{2} \right)$
	$1-\left(\frac{1+g}{1+\dot{s}}\right)^N$
Geometric	$(P/G, i, g, N) = \frac{1 - (\frac{1+g}{1+i})^N}{i-g}$
Growth	

Week 3 - Mortgages and Bonds

Loan to Value Ratio	$LTV = \frac{Principle}{HouseValue}$
Ammortization	# of years it takes to pay off the loan.
Period	
Mortgage Term	# of years the interest rate is fixed,
	after which the rate is renegotiated
Face/Par Value	Value received at bond maturity
Coupon Rate	Interest rate paid annually on the bond

Week 4 - Risk, Reward, and Arbitrage Week 4 - Contd.

$$\begin{array}{lll} \text{Return vector} & \overrightarrow{R_i} = \begin{bmatrix} r_{t_1} \\ \vdots \\ r_{t_n} \end{bmatrix}, & r_{t_j} = \frac{1}{\Delta t} \ln \left(\frac{P_{t_j}}{P_{t_{j-1}}} \right) \\ & & \text{A portfolio of } n \text{ stocks, the returns of } \\ & & \text{project } i \text{ at } \underline{t_j} \\ & & \sigma = \sqrt{Var(\overrightarrow{R_i})} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (r_i - \overline{r})^2} \\ & \text{Return} \\ & \text{Covariance} & Cov(\overrightarrow{R_i}, \overrightarrow{R_j}) = \frac{1}{n-1} \sum_{i=1}^n (r_i - \overline{r_i}) (r_j - \overline{r_j}) \\ & & Covariance \\ & \text{Matrix} & \Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix} \\ & \text{Covariances} & \sigma_{ij} = \sigma_{ji} = Cov(\overrightarrow{R_i}, \overrightarrow{R_j}) \\ & \sigma_{ii} = Var(\overrightarrow{R_i}) \\ & & \sigma_{ii} = Var(\overrightarrow{R_i}) \\ & \text{Portfolio} & \overrightarrow{X} = \begin{bmatrix} x_1 \\ \vdots \\ nx_n \end{bmatrix} \text{ We invest } x_i \text{ in each } \\ & \text{stock.} \\ & \text{Portfolio} \\ & \text{Return} \\ & \text{Portfolio} \\ & \text{Return} \\ & \text{Portfolio} \\ & \text{Volatility} \\ & \text{CAPM Assumptions} \\ \end{array}$$

- Correlation & volatility of/between assets are fixed
- Investors aim to make as much money as possible
- Investors are rational and risk-averse
- Investors have the same info at the same time
- Investors have accurate conception of possible returns, i.e. the probability beliefs of investors match the true distribution of returns.
- No taxes or transaction costs
- Actions of investors do not influence prices
- Investors can lend and borrow unlimited amounts at the risk free rate
- Securities can be divided into any size

Efficiency Frontier & Capital Market Line Minimize $\sigma_n^2 = \overrightarrow{X}^T \Sigma \overrightarrow{X}$

While $\sum_{i=1}^{n} x_i = 1$, $\sum_{i=1}^{n} x_i \mathbb{E}[R_i] = \mathbb{E}[R_p]$, $\sum_{i=1}^{n} x_i \sigma_i = \sigma_p$

 $\mathbb{E}[R_p] = w \cdot \mathbb{E}[R_m] + (1 - w) \cdot r_f \quad w \text{ is}$ Leveraging the weight of MP
$$\begin{split} & \sigma_p = \sqrt{w^2 \sigma_m^2 + (1-w)^2 \cdot \sigma_f}, \ \sigma_f = 0 \\ & \beta_i = \frac{Cov(R_i, R_m)}{Var(R_m)} = \frac{\sigma_{i,m}}{\sigma_m^2} = \frac{\rho_{i,m}\sigma_i}{\sigma_m} \end{split}$$
Systematic Risk Asset Expected $\mathbb{E}[R_i] = r_f + \beta_i (\mathbb{E}[R_m] - r_f)$ Return Undervalued Overvalued ∧ Risk-free rate Security Market Line (Asset Expected Return Plotted) Forwards/Futures Contract to buy/sell assets at a future date at a price agreed upon today $\mathbb{E}[P] = \sum_{i=1}^{n} P_i \cdot p_i$ Expected Value

 p_i is the probability of P_i occurring $\mathbb{E}[R] = \frac{\mathbb{E}[P]}{P_0} - 1 = \frac{\sum_{i=1}^n P_i \cdot p_i}{P_0} - 1$

Expected

Return