I collaborated with: went to TA sessions

Question

Chapter 10, Problem 2. (a) Hint: See if you can figure out how to break the problem into subproblems that give the recursion T(n,d)=3T(n,d-1)+p(n) for some polynomial p(); then solve the recurrence. (b) Hint: Think about the two assignments that set every variable to 0 and every variable to 1, respectively. How far can an arbitrary assignment Φ simultaneously be from these two assignments? Divide and conquer....

Solution

a) Run Time: $O(3^d * p(n))$

Proof. Base Case: Let d=0. If Explore(Φ ,d) returns "yes" then Φ is a satisfying assignment that is at most d distance away from Φ . Also, if Explore(Φ ,d) returns "no" then Φ is not a satisfying assignment.

Inductive Hypothesis: Let $k \ge 0$ and suppose the algorithm returns "yes" if and only if there exists a satisfying assignment Φ such that the distance from Φ to Φ ' is at most k.

Inductive Sep: If $\operatorname{Explore}(\Phi, k+1)$ returns "yes," then one of the recursive calls to $\operatorname{Explore}(\Phi_i, k)$ returned "yes." Using our inductive hypothesis, we know that Φ_i has distance k to a satisfying assignment. Thus, Φ has distance at most k+1 to a satisfying assignment. Conversely, suppose Φ has distance k+1 to a satisfying assignment Φ . Let C be a clause unsatisfied by Φ . Since Φ ' satisfies C, then it must disagree with Φ in at least one variable. Thus, one of the assignments Φ_i that changes this variable is k distance away from Φ '. By the inductive hypothesis, this call returns "yes" so the call $\operatorname{Explore}(\Phi, k+1)$ returns "yes."

b) Let Φ_0 be an assignment of variables such that they are all set to 0 and Φ_1 be an assignment of variables such that they are all set to 1. A satisfying assignment will be at a distance of at most n/2 from one of these two assignments. We call $\operatorname{Explore}(\Phi_0,n/2)$ and $\operatorname{Explore}(\Phi_1,n/2)$ and see if either returns "yes." The running time of each call is $O(p(n)*3^{n/2})=O(p(n)*(\sqrt{3})^n)$