CHM 102A End-Sem Exam 2018

Total Marks: 80 Duration: 2 Hours

N	а	m	e:
	ч		

Roll Number:

Section:

Instructions:

- 1. Please write answers in the space (box) provided.
- 2. Please write in ink. (Answers written in pencil will not be re-graded)
- 3. Calculators are allowed. (Sharing calculators in NOT ALLOWED).

hydrogen	1																	helium
1.1.																		2
H																		He
1.0079 lithium	bervilium												boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8 8	9	10
Li	Be												В	_ C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18,998	20,180
sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Mg												ΑI	Si	P	S	CI	Ar
22.990	24.305												26,962	28.096	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zine 30	gallium 31	germanium 32	arsenic 33	selenium 34	tromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium	strontium		yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xienon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	∣ Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	l In	∣Sn	Sb	∣ Te ∣		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ba	*		Hf	Ta	W	Re	Os	İr	Pt	۸.,	Ца	Τī	Pb	Bi	Po	At	Rn
	137.33	^	Lu 174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	Au 198.97	Hg	204.38	207.2	208.98	1209		
132.91 francium	radium		lawrencium	rutherfordium	dubnium	seaborgium	bohrlum	hassium	meitnerium	ununnillum	unununlum	ununbium	nihonium	flerovium	moscovium	livermorium	[210] tennessine	[222] oganesson
87	88	89-102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
∣ Fr	∣Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Nh	FI	Mc	Lv	Ts	Og
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]	[284]	[289]	[288]	[293]	[294]	[294]
			lanthanum	oerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium		
*Lone	hanide	001100	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
Lalli	namue	selles	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
			actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkellum	californium	einsteinium	fermium	mendelevium	nobelium		
* * Ac	tinide s	eries	89	90	91	92	93	94	95	96	97	98	_99	_100	101	102		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			12271	232.04	231.04	238.03	[23.7]	12441	12430	12471	[247]	[251]	12521	12571	12581	1259	1	

Q. No.	1	2	3	4	5	6	7	8	Total
Marks									

Q1.

- (i) Below is a proposed catalytic cycle describing the Wacker oxidation reaction, which is used to produce about 4 million tons of acetaldehyde annually.
 - a) In the table below, write the oxidation state and total valence electron count of Pd in each complex (1 7). (Both values have to be correct to get one mark. No partial marking.) (1*7 = 7 marks)
 - b) What is the correct terminology (name) for the reaction which converts complex 4 to complex 5? (1 mark)

Answer (i)

a)

Metal complex	Oxidation State of Palladium	Valence Electron Count for Pd
H ₂ O Pd OH ₂	+2	16 electrons
H ₂ O Pd //	+2	16 electrons
H ₂ O _{1/1,} $\stackrel{\bigcirc}{\longrightarrow}$ $\stackrel{\longrightarrow}{\longrightarrow}$ $\stackrel{\bigcirc}{\longrightarrow}$ \longrightarrow	+2	16 electrons

Metal complex	Oxidation State of Palladium	Valence Electron Count for Pd
H ₂ O _m Pd H	+2	14 electrons
OH H ₂ O ₁₁₁ Pd H 5	+2	16 electrons
H ₂ O Pd Cl	+2	16 electrons
[Pd(H ₂ O) ₄] 7	0	18 electrons

b) What is the name of the step that converts 4 to 5?.

β-elimination or β-hydride elimination

(marks have been awarded for "elimination" also)

(ii) The following carbonyl complexes give distinct CO stretching peaks when subjected to IR (infrared) spectroscopy. Identify the one with the lowest and highest CO stretching frequency (as measured in cm⁻¹). (1+1 =2 marks)

$$[Ti(CO)_6]^{2-}$$
 Cr(CO)₆ $[Fe(CO)_6]^{2+}$ $[V(CO)_6]^{-}$ $[Mn(CO)_6]^{+}$

Answer (ii):

Complex with highest stretching frequency:

Complex with lowest stretching frequency:

As we progress from Ti(2-) to V(-) to Cr(0) to Mn(1+) to Fe(2+) the positive charge on the metal is increasing which reduces the extent of π -back-donation from the central metal orbital to the π^* of the ligand. This can be observed via an increase in the ν (CO) stretching frequency in the IR spectrum. This is most obvious, for example, if we compare the least electronegative metal center Ti(2-) where ν (CO) = 1748 cm-1 relative to the most electronegative metal given in Fe(2+) where ν CO) = 2204 cm-1.

Q2.

(i) The complex trans-[NiCl₂(H₂O)₄] (**A**) is paramagnetic. Upon treatment with excess NaCN, a diamagnetic complex [Ni(CN)₄]⁻² (**B**) is obtained. Draw structures for **A** and **B** along with their d-orbital splitting diagram showing the electrons. (the entire structure and splitting diagram has to be correct for 1 mark each. No partial marking) (2 + 2 = 4 marks)

Answer:

	Complex A	Complex B
Structure	CI H ₂ O OH ₂ H ₂ O OH ₂ CI	NC NI CN
d-orbital splitting diagram	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Complex **A** is octahedral, d_8 , $(t_{2g})^6(e_g)^2$ with 2 unpaired electrons, hence paramagnetic. Complex **B** is square planar with the electron configuration shown, hence diamagnetic. 1 mark for each for the structures of A and B, and 1 mark for each for the orbital splitting diagram including the electrons. (no further partial marking).

(ii) Consider the following oxygen binding curves for Hemoglobin (Hb) and Myoglobin (Mb) and answer the following questions (write <u>True</u> or <u>False</u> in the box provided).

(1x6 = 6 marks)

a) The sigmoidal curve of Hemoglobin (Hb) indicates that it is more suited for releasing oxygen in the muscles compared to Myoglobin (Mb).

TRUE		

b) In the working muscle, Hemoglobin (Hb) is mainly in the "R" state.

FALSE		

c) The sigmoidal curve of Hemoglobin (Hb) indicates that the binding of one molecule of oxygen decreases the affinity of other subunits for binding subsequent oxygen molecules.

FALSE		

d) When saturated, one molecule of Myoglobin binds to four molecules of oxygen.

FALSE		

e) The coordination number of Fe⁺² in de-oxygenated Hemoglobin and Myoglobin is 4.

f) We know that a very small amount of carbon monoxide is produced in the human body. However, it does not result in fatal poisoning because the binding affinity of Mb and Hb towards CO is less than towards O₂.

FALSE		

Q3.

(i) An automobile catalytic converter contains solid platinum, palladium, and rhodium compounds and converts NO to N₂ and O₂. This conversion is an example of which of the following: Enzyme Catalysis, Homogeneous Catalysis, Heterogeneous Catalysis. (1 mark)

Answer:

Heterogeneous Catalysis

- (ii) The rate of a certain enzyme catalyzed reaction is being tracked by determining light absorbance of the product by absorption spectroscopy. The volume of the reaction mixture is 2 cm³, which contains 5 µg enzyme. The change in light absorbance in 1 minute is $\Delta A = 0.15$ (measured in a 1 cm long sample container). (It is given that the molar extinction coefficient of the product is $\epsilon = 3 \cdot 10^4 \, \text{M}^{-1} \text{cm}^{-1}$. The molar mass of the enzyme is 50000 g/mol.) (1+1 = 2 marks)
 - a) What is the change in concentration of the product in 1 minute?

b) How many moles of substrate are transformed by 1 mole of enzyme in 1 minute?

100

Detailed solution:

According to the Lambert-Beer equation: $A = \varepsilon cl$

 $\Delta A = \Delta c \epsilon I$

 $\Delta c_{product} = \Delta E/(\epsilon \cdot I) = 0.15/(3 \cdot 10^4 \,\text{M}^{-1} \text{cm}^{-1} \cdot 1 \,\text{cm}) = 5 \cdot 10^{-6} \,\text{M}$

 $c_{enzyme} = m_{enzyme}/M_{enzyme}/V = 5 \cdot 10^{-6} \text{ g}/50000 \text{ gmol}^{-1}/0,002 \text{ dm}^3 = 5 \cdot 10^{-8} \text{ M}$

Turnover number = $\Delta c_{product}/(c_{enzyme} \cdot t) = 100 \text{ min}^{-1}$

1 mol enzyme transforms 100 mol substrate in 1 minute.

(iii) Identify the organic product obtained from the reductive elimination of the following complex. (1 mark)

(iv) Which of the following complexes undergo oxidative addition to CH₃I faster? (1 mark)

 $[Irl_2(CO)_2]^T$ or $[Rhl_2(CO)_2]^T$

Answer:

[Irl₂(CO)₂]⁻

Ir is more nucleophilic due to lower electronegativity.

(v) Which two of these octahedral compounds would exhibit chirality? (1+1 = 2 marks)

[Co(NH₃)₃(NO₂)₃]; [Cr(NH₃)₃(NO₂)(Cl)(Br)]; [Co(NH₃)₂(Br)(Cl)₃]; [Pt(Py)(NH₃)(NO₂)(Cl)(Br)(I)]

Answer:

 $[Pt(Py)(NH_3)(NO_2)(CI)(Br)(I)]$

- (vi) The energy corresponding to the crystal field splitting of a complex is 2.9×10^{-19} J. (1+1+1 = 3 marks)
 - a) What wavelength of light (in nm) would be absorbed for this d-d electronic transition? (Given that Planck's constant = 6.626×10^{-34} J.s and speed of light = 2.998×10^8 m/s)

685 nm

Detailed solution:

$$\Delta E_{\text{electron}} = E_{\text{photon}} = hc/\lambda$$

$$2.9 \times 10^{-19} \text{ J} = \frac{(6.626 \times 10^{-34} \text{ J.s}) (2.998 \times 10^8 \text{ m/s})}{\lambda}$$

$$\lambda = 6.85 \times 10^{-7} \text{ m} \left(\frac{1 \text{ nm}}{10^{-9} \text{ m}}\right)$$

= 685 nm

b)	To what color of light does this waveleng	gth correspond?	
	Red		
c)	What color would a solution of this comp	olex appear?	
	Green		
Q4.			
	molecule drawn below is called Naprog pain and fever. The " S " enantiomer of t		
"R" enar	ntiomer is inactive. The specific rotation [lpha] _D for the " S " enantior	mer is +50°.
			(1*3 = 3 marks)
		<u>М</u> е	(1*3 = 3 marks)
	Me O	Me 	(1*3 = 3 marks)
(a) Is the	Me O	OH	
(a) Is the	0	OH	
(b) Dete	e "S" enantiomer dextrorotatory or levoro	tatory? Write in the box	below.

(c) In a sample of Naproxen where the ee is 64% and the optical rotation has a (+) sign, what percentage of the sample is the " \mathbf{S} " enantiomer.

82%				

(ii) An energy profile diagram for the reaction $\mathbf{A} \rightarrow \mathbf{E}$ is given below. The various energy differences for the steps involved are marked as numbered arrows G_1 - G_7 . For the following questions, write the number of the arrow that corresponds to the correct energy.

$$(1*5 = 5 marks)$$

For the following questions, write the number of the arrow that corresponds to the correct energy.

(a) For the reaction $\mathbf{A} \rightarrow \mathbf{E}$, the activation energy for the rate determining step is:

G2			

(h)) For the reaction	$\Delta \rightarrow F$	ΛG is
(D)) For the reaction	⋈ ⊸∟,	ΔG is.

G6		

(c) For the step $\mathbf{E} \rightarrow \mathbf{C}$, the activation energy is:

(d) For the step $\mathbf{C} \rightarrow \mathbf{E}$, the activation energy is:

(e) Is the reaction $\mathbf{A} \rightarrow \mathbf{E}$ is endothermic or exothermic?

(iii) Among the following conformers, identify the least stable and most stable conformer.

Answer:

Least stable conformer:

Most stable conformer:

Q5.

(i) Write the structure of the major organic product(s) in the following reactions. Partial structure of the product is provided in some cases; add the required functionality to make it the right answer. (The entire structure has to be correct; no partial marking unless otherwise indicated)

(1+2+2 = 5 marks)

(b)
$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3

(ii) Arrange the following molecules in *increasing* order of S_N1 reactivity. (1 mark)

Answer:

B<D<A<C

(ii) For the two amino alcohols shown below (1 and 2), write the organic products that can be obtained upon treatment with NaNO₂/HCl. (1*4 = 4 marks)

Q6.

(i) Write the structure of the major organic product for the following reactions.

(1 * 6 = 6 marks)

(a)
$$KO^tBu$$
 KO^tBu CH_3 KO^tBu CH_3 KO^tBu CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH

(ii) Which of the following two molecules will undergo an E2 elimination faster. Write the answer in the box provided (indicate **A** or **B**). (1 mark)

Answer:

(iii) Draw all likely products of the following reaction.

(1*3 = 3 marks)

$$CH_3$$
 OH
 A
 A
 CH_3
 CH_3
 CH_3
 A

Q7.

(i) The cyclohexane derivative shown below can exist in two conformations, one of which is favoured over the other. Complete the chair conformations by adding the appropriate substituents. (All substituents have to be correct in order to get one mark. No partial marking)

$$(1*2 = 2 marks)$$

$$H_3C$$
 CH_2CH_3
 H_3C
 CH_2CH_3

Answer:

$$\begin{array}{c} \text{CH}_3 \\ \text{Me} \\ \text{4} \\ \text{5} \end{array} \begin{array}{c} \text{CH}_2\text{CH}_3 \\ \text{CH}_2\text{CH}_3 \end{array}$$

(ii) Viewing along the C2-C3 bond of the n-butane molecule, draw the Newman projections for the most stable and least stable conformers. (1+1 = 2 marks)

Answer:

most stable conformation

least stable conformation

(iii) The following is the energy profile diagram for the conformational analysis of 2,2,3-trimethylpentane, considering rotation of the C3-C4 bond. Match the given conformations (**A-F**) with the points (darkened circles) on the energy profile diagram. Simply write the letters in the boxes provided.

(1*6 marks)

Q8.

(i) For the following pairs of molecules, identify the relationship between the structures in each pair (whether they are enantiomers, diastereomers, constitutional isomers, identical). Write your answer in the boxes provided. (1*5 = 5 marks)

- (ii) The name and partial structures of two compounds are provided. Complete the structures by adding the appropriate substituents. (1*2 = 2 marks). (Entire structure has to be correct to get 1 mark. No partial marking.)
- a) 2(S), 3(S)-dibromopentane

 H

 Br

 H

 CH₂CH₃
- b) 1(S), 2(S)-dibromocyclohexane
- (iii) The following molecule is Captopril, a medicine used for combating hypertension. The two stereogenic carbons are labelled C_A (with substituents coded as "a-d") and C_B (with substituents coded as "e-h").

In the table below, for both the stereogenic carbon atoms, write the substituent with \underline{second} $\underline{highest\ priority}$ and assign **R** and **S** configuration. (1*2 = 2 marks).

(Both answers for each carbon atom have to be correct to get 1 mark. No partial marking.)

Carbon Atom (number indicated in structure)	Substituent with second-highest priority (just write the letter code)	Configuration (R or S)	
C _A	d	S	
Св	h	S	

(iv) Which of the following molecules are chiral? (All correct molecules must be identified; no partial marking). (1 mark)

Answer: Among the four molecules shown, the following are chiral:

A, B			