AXLER ST=1 iff TS=1 (on vector spaces of the same dimension). Suppose V and W are finite-dimensional vector spaces of the same dimension, $S \in \mathcal{L}(W,V), T \in \mathcal{L}(V,W)$. Then ST = I iff TS = I.

matrix of identity operator with respect to two bases. Suppose $u_1, ..., u_n$ and $v_1, ..., v_n$ are two bases of V. Then, the matrices $\mathcal{M}(I; u_1, ..., u_n; v_1, ..., v_n)$ and $\mathcal{M}(I; v_1, \dots, v_n; u_1, \dots, u_n)$ are invertible and are inverses of each other. **Change of basis formula.** Let $T \in \mathcal{L}(V, W)$.

Suppose u_1, \dots, u_n and v_1, \dots, v_n are two bases of V. Let $A = \mathcal{M}(T; u_1, \dots, u_n)$ and $B = \mathcal{M}(T; v_1, \dots, v_n)$ and $C = \mathcal{M}(I; u_1, \dots, u_n; v_1, \dots, v_n).$ $A = C^{-1}BC$. eigenvalues are the zeros of minimal

polynomial. Let *V* finite-dim and $T \in L(V)$ Then:

zeros of the minimal polynomial of T are the eigenvalues of T. if V is a complex vector space, then minimal polynomial of T has the form $(z - \lambda_1) \cdot \cdots \cdot (z - \lambda_m)$, where $\lambda_1, \ldots, \lambda_m$ is a list of all eigenvalues of T, possibly with repositions

q(T)=0 iff q is a polynomial multiple of the minimal polynomial. Let V finite-dim and $T\in L(V)$ and $q\in P(F)$. Then q(T)=0 iff q is a polynomial multiple of the minimal mu minimal polynomial of a restriction opera

tor. Let V finite-dim and $T \in L(V)$ and $U \subseteq V$ that is invariant under T. Then minimal polynomial of T is a polynomial multiple of minimal polynomial of $T \mid_U$. T not invertible iff constant term of minimal polynomial of T is 0. Let V finite-dim and $T \in L(V)$. Then T is not invertible iff the constant term in the minimal polynomial of T

even-dimensional null space. Let $F = \mathbb{R}$ and V finite-dim and $T \in L(V)$ and $b^2 - 4ac < 0$. Then $\dim(T^2 + bT + cI)$ is an even number. operators on an odd-dimensional space have eigenvalues. Every operator on an odd-dimensional vector space has an eigenvalue. conditions for upper-triangular matrix Suppose $T \in L(V)$ and v_1, \ldots, v_n is a basis of V. Then TFAE:

the matrix of T with respect to v_1, \ldots, v_n is upper-triangular. span $(v_1, ..., v_k)$ is invariant under T for each k = 1, 2, ..., n.

 $Tv_k \in \operatorname{span}(v_1, \dots, v_k)$ for each $k = 1, \dots, n$. equation satisfied by operator with upper-

triangular matrix. Suppose $T \in L(V)$ and V has a basis with respect to which T has an upper-triangular matrix with diagonal entries $\lambda_1, \dots, \lambda_n$. Then $(T - \lambda_1 I) \cdot \dots \cdot (T - \lambda_n I) = 0$. necessary and sufficient condition to have an upper-triangular matrix. Suppose V is finite-dim and $T \in L(V)$. Then T has an upper-triangular matrix with respect to some basis of V iff the minimal polynomial of T equals of V in the minimal polynomial of I equals $(z - \lambda_1) \cdots (z - \lambda_n)$ for some $\lambda_i \in F$. if $F = \mathbb{C}$, then every operator on V has an upper-triangular matrix. Suppose V is a finite-dim complex vector space and $T \in L(V)$. Then T has an upper-triangular matrix with respect to some basis of V.

spect to some basis or v.

conditions equivalent to diagonalizability. Suppose V finite-dim and $T \in L(V)$. Let $\lambda_1, \dots, \lambda_m$ denote the distinct eigenvalues of T. Then TFAE:

> T is diagonalizable. V has a basis consisting of eigen-V has a basis consisting V vectors of T. $V = \bigoplus_i E(\lambda_i, T)$ $\dim V = \sum_i \dim E(\lambda_i, T)$.

enough eigenvalues implies diagonalizability. Let V be finite-dim and $T \in L(V)$ has $\dim V$ distinct eigenvalues. Then T is diago-

nanizable. necessary and sufficient condition for diagonalizability. Suppose V finite-dim and $T \in L(V)$. Then T diagonalizable iff the minimal polynomial of T equals $(z - \lambda_1) \cdots (z - \lambda_m)$ for some distinct $\lambda_1, \dots, \lambda_i \in F$. restriction of diagonalizable operator to in-

variant subspace. Suppose $T \in L(V)$ and U is a T-invariant subspace of V. Then $T \mid_U$ is a diagonalizable operator on U

commuting operators correspond to com**muting matrices.** Suppose $S, T \in L(V)$ and v_1, \dots, v_n is a basis of V. Then Sand T commute iff $M(S,(v_1,\ldots,v_n))$ and

 $M(T,(v_1,\ldots,v_n))$ commute.

eigenspace is invariant under commuting **operators.** Suppose $S, T \in L(V)$ commute and $\lambda \in F$. Then $E(\lambda, S)$ is invariant under T. simultaneous diagonalizability iff commu-tativity. Two diagonalizable operators on the same vector space have diagonal matrices with respect to the same basis iff the two operators commute.
common eigenvector for commuting opera-

tors. every pair of commuting operators on a finite-dim nonzero complex vector space has a common eigenvector.

common eigenvector.

commuting operators are simultaneously upper-triangularizable. Suppose V is a finite-dim nonzero complex vector space and S, T are commuting operators on V. Then there is a basis of V with respect to which both S, T have upper-triangular matrices.

eigenvalues of sum and product of commutations operators. Sumpset V is a faired with the contractors. ing operators. Suppose V is a finite-dim

complex vector space and S,T are commuting operators on V. Then:

every eigenvalue of S + T is an eigenvalue of S plus an eigenvalue of T. of T. every eigenvalue of ST is an eigenvalue of S times an eigenvalue of T.

V is the direct sum of $\operatorname{nul} T^{\dim V}$ and range $T^{\dim V}$. Let $T \in L(V)$. Then V = $\operatorname{nul} T^{\dim V} \oplus \operatorname{range} T^{\dim V}$.

generalized eigenvector. Let $T \in L(V)$ and λ be an eigenvalue of T. A vector $v \in V$ ($v \neq 0$) is called a generalized eigenvector of T corresponding to λ if $(T - \lambda I)^k v = 0$ for some generalized eigenvector corresponds to a

unique eigenvalue. Let $T \in L(V)$. Then each generalized eigenvector of T corresponds to only one eigenvalue of T. Let $T \in L(V)$. Let $T \in L(V)$ the eigenvalues of nilpotent operator. Let $T \in L(V)$ the eigenvalues of nilpotent operator. L(V). Then:

if T is nilpotent then 0 is an eigenvalue of T and T has no other eigenvalues. if $F = \mathbb{C}$ and 0 is the only eigenvalue of T, then T is nilpotent.

minimal polynomial & upper-triangular matrix of nilpotent operator. Let $T \in L(V)$. Then TFAE:

T is impotent. In important T is z^m for some positive integer m, there is a basis of V with respect to which the matrix of T is upper-triangular with diagonal fully 0.

generalized eigenspace. Suppose $T \in L(V)$ and $\lambda \in F$. The generalized eigenspace of T corresponding to λ is $G(\lambda,T) = \{v \in$ $V \mid (T - \lambda I)^k$ for some $k \in \mathbb{Z}_{>0}$, which is the set of generalized eigenvectors of Tcorresponding to λ , including the 0-vector. **description of generalized eigenspaces.** Suppose $T \in L(V)$ and $\lambda \in F$. Then $G(\lambda,T) = \operatorname{nul}(T - \lambda I)^{\dim V}$. generalized eigenspace decomposition. Suppose $F = \mathbb{C}$ and $T \in L(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T. Then:

> $G(\lambda_k, T)$ is invariant under T for each $k = 1, \dots, m$. $(T - \lambda_k I) \mid_{G(\lambda_k, T)}$ is nilpotent for each k = 1, ..., m. $V = \bigoplus_i G(\lambda_i, T)$.

multiplicity. Let $T \in L(V)$. The multiplicity of an eigenvalue λ of T is defined to be the dimension of the corresponding generalized eigenspace $G(\lambda,T)$, so multiplicity of λ is dim nul $(T - \lambda I)^{\dim V}$ sum of the multiplicities equals dim V. Sup-

pose $F = \mathbb{C}$ and $T \in L(V)$. Then the sum of all the multiplicities of all the eigenvalues of T equals dim V. all the multiplicities of all the eigenvalues of T equals dim V. characteristic polynomial. Let $F = \mathbb{C}$ and $T \in L(V)$. Let $\lambda_1, \dots, \lambda_m$ be the distinct eigenvalues of T, with multiplicities d_1, \dots, d_m . Then the polynomial $(z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m}$ is called the characteristic polynomial of T. **degree and zeros of the characteristic poly**-

nomial. Let $F = \mathbb{C}$ and $T \in L(V)$. Then

characteristic polynomial of T has degree $\dim V$. zeros of the characterisit polynomial are the eigenvalues of T.

Cayley-Hamilton theorem. $T \in L(V)$ and q be the characteristic polyno-

mial of T. Then q(T)=0. characteristic polynomial is a multiple of minimal polynomial. Let $F=\mathbb{C}$ and To this initial polynomial of $T \in L(V)$. Then characteristic polynomial of T is a polynomial multiple of the minimal polynomial of T. block diagonal matrix with upper-triangular blocks. Let $F = \mathbb{C}$ and $T \in L(V)$.

Let $\lambda_1, \dots, \lambda_m$ be the distinct eigenvalues of T with multiplicities d_1, \dots, d_m . Then there is a basis of V with respect to which T has a block diagonal matrix of the form

, where each A_k is a d_k -by- d_k upper-triangular matrix of the form

jordan basis. Let $T \in L(V)$. A basis of V is called a Jordan basis for T if with respect to this basis T has a block diagonal matrix

in which each Ak is an upper-triangular matrix

every nilpotent operator has a jordan basis. Let $T \in L(V)$ be nilpotent. Then there is a basis for V that is a Jordan basis for T. **Jordan form.** Let $F = \mathbb{C}$ and $T \in L(V)$. Then there is a basis of V that is a Jordan basis **product.** An inner product on V is a function that takes an ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in F$ so that

positivity: $\langle v, v \rangle > 0 \forall v \in V$. definiteness: $\langle v, \overline{v} \rangle = 0$ iff v = 0. additivity in the first slot: $\langle u +$ $\langle v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$. homogeneity in the first slot: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle.$ conjugate symmetry: $\langle u, v \rangle =$ **pythagorean theorem.** if $u,v \in V$ with u,v orthogonal, then $||u+v||^2 = ||u||^2 + ||v||^2$.

orthogonal decomposition. let $u, v \in V$ with $v \neq 0$. set $c = \frac{\langle u, v \rangle}{||v||^2}$ and $w = u - \frac{\langle u, v \rangle}{||v||^2}$. then u = cv + w and $\langle v, w \rangle = 0$. **cauchy-schwarz.** if $u, v \in V$, then $|\langle u, v \rangle| \le ||u|| \cdot ||v||$, with equality iff one of u, v is a scalar multiple of the other. triangle inequality. if $u, v \in V$, then ||u + $v|| \le ||u|| + ||v||$, with equality iff one of u, v is a nonnegative real multiple of the other. **parallelogram equality.** if $u, v \in V$, then $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$. norm of an orthonormal linear combina-tion. let e_1, \dots, e_m be an orthonormal list in V. then $||a_1e_1 + \cdots + a_me_m||^2 = |a_1|^2 + \cdots +$ bessel's inequality. let e_1, \ldots, e_m be an orthonormal list in V, then if $v \in V$, then $|\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_m \rangle|^2 \le ||v||^2$. writing a vector as a linear combination of

an orthonormal basis. let e_1, \ldots, e_m be an orthonormal basis of V and $u, v \in V$, then

$$\begin{array}{lll} v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m. \\ ||v||^2 &= |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2. \\ \langle u, v \rangle &= \langle u, e_1 \rangle \overline{\langle v, e_1 \rangle} + \dots + \langle u, e_m \rangle \overline{\langle v, e_m \rangle}. \end{array}$$

upper-triangular matrix with respect to some orthonormal basis. let V be finitedim and $T \in L(V)$. then T has an upper-triangular matrix with respect to some orthonormal basis of V iff min poly of T equals $(z - \lambda_1) \cdots (z - \lambda_n) \cdots (z - \lambda_n)$ λ_m) for some m.

schur's theorem. every operator on a finitedim complex inner product space has an upper-triangular matrix with respect to some orthonormal basis.

riesz representation theorem. finitedim and ϕ is a linear functional on V. then there is a unique $v \in V$ so that $\phi(u) = V$ $\langle u, v \rangle$ for every $u \in \hat{V}$.

adjoint. let $T \in L(V, W)$. the adjoint of T is $T^*: W \to V$ so that $\langle Tv, w \rangle = \langle v, T^*w \rangle$ for all $v \in V, w \in W$. properties of adjoint. Let $T \in L(V, W)$.

$$(S+T)^*=S^*+T^*.$$

 $(\lambda T)^*=\overline{\lambda}T^*.$
 $(T^*)^*=T.$
 $(ST)^*=T^*S^*$ for all $S\in L(W,U)$, where U is a finitedim inner product space.
 $I^*=I.$
if T is invertible, then T^* is invertible and $(T^*)^{-1}=(T^{-1})^*.$

null space and range of T^* .

$$\begin{aligned} \operatorname{nul} T^* &= (\operatorname{range} T)^{\perp}. \\ \operatorname{range} T^* &= (\operatorname{nul} T)^{\perp}. \\ \operatorname{nul} T &= (\operatorname{range} T^*)^{\perp}. \\ \operatorname{range} T &= (\operatorname{nul} T^*)^{\perp}. \end{aligned}$$

eigenvalues of self-adjoint operators. every eigenvalue of a self-adjoint operator is real. **prop.** Suppose V is a complex inner product space and $T \in L(V)$. then $\langle Tv, v \rangle = 0 \forall v \in V$ iff T = 0.

prop. suppose V is a complex inner product space and $T \in L(V)$. then T is self-adjoint iff $\langle Tv, v \rangle \in R \forall v \in V$. **prop.** let T be a self-adjoint operator on V.

then $\langle Tv, v \rangle = 0 \forall v \in V \text{ iff } T = 0.$ **prop.** let $T \in L(V)$. then T is normal iff $||Tv|| = ||T^*v|| \forall v \in V$.

range, null space, eigenvectors of a normal **operator.** let $T \in L(V)$ be normal. then

 $\begin{aligned} \operatorname{nul} T &= \operatorname{nul} T^*. \\ \operatorname{range} T &= \operatorname{range} T^*. \\ V &= \operatorname{nul} T \oplus \operatorname{range} T. \\ T &= \lambda I \text{ is normal for all } \lambda inF. \end{aligned}$ if $v \in V$ and $\lambda \in F$, then $Tv = \lambda v$ iff $T^*v = \overline{\lambda}v$.

T normal iff real/imaginary parts of T commute. let F=C and $T\in L(V)$. then T is normal iff there exist commuting self-adjoint operators A,B so that T=A+iB. minimal polynomial of self-adjoint opera-

tor. let $T \in L(V)$ self-adjoint. then the min poly of T equals $(z - \lambda_1) \cdots (z - \lambda_m)$ for some **Real Spectral Theorem.** let F = R and $T \in L(\hat{V})$. TFAE:

> T is self-adjoint.
> T has a diagonal matrix with respect to some orthonormal basis of V. has an orthonormal basis consisting of eigenvectors of T

Complex Spectral Theorem. let F = C and $T \in L(V)$. TFAE:

T is normal. T has a diagonal matrix with respect to some orthonormal basis of V. V has an orthonormal basis conhas an orthonormal basis consisting of eigenvectors of T

positive operator. an operator $T \in L(V)$ is called positive if it's self-adjoint and $\langle Tv, v \rangle \geq$ characterizations of positive operators. let

 $T \in L(V)$. TFAE: T is a positive operator.
T is self-adjoint and all eigenvalues of T are nonnegative.

with respect to some orthonormal basis of T, the matrix of T is diagonal with only nonnegative numonal with only nonnegative nur bers on diagonal. T has a positive square root. T has a self-adjoint square root. $T = R^*R$ for some $R \in L(V)$.

a linear map $S \in L(V, W)$ is an **SOURCELY.** a linear map $S \in L(V,W)$ is an isometry if $||Sv|| = ||v|| \forall v \in V$. characterizations of isometries. Let $S \in L(V,W)$. let e_1,\dots,e_n be an orthonormal basis of V and f_1,\dots,f_m be an orthonormal basis of W. TFAE: isometry.

S is an isometry. $S^*S = SS^* = I.$ $\langle Su, Sv \rangle = \langle u, v \rangle \forall u, v \in V.$ $\langle Se_1, \dots, Se_n \text{ is an orthonormal list in } W.$ columns the columns of $M(S,(e_1,\ldots,e_n),(f_1,\ldots,f_m))$ form an orthonormal list in F^m with respect to the Euclidean inner product.

unitary operator. An operator $S \in L(V)$ is called unitary if it is an invertible isometry. **characterizations of unitary operators.** let $S \in L(V)$ and e_1, \dots, e_n be an orthonormal basis of V. TFAE:

> S is a unitary operator. $S^*S = SS^* = I$. S is invertible and $S^{-1} = S^*$. Se_1, \dots, Se_n is an orthonormal basis of V. the rows of $M(S, (e_1, \dots, e_n))$ form an orthonormal basis of F^n with respect to the Euclidean inner product. S* is a unitary operator.

description of unitary operators on complex inner product spaces. let F = C and

S is a unitary operator. there is an orthonormal basis of *V* consisting of eigenvectors of *S* whose corresponding eigenvalues all have absolute value 1.

properties of T^*T . Let $T \in L(V, W)$. then

 T^*T is a positive operator on V. The appoints operator of T.

The appoints of T and T.

The appoints of T and T are appoints on T and T and T are appoints on T and T are

singular values. let $T \in L(V, W)$, the singular values of T are the nonnegative square roots of eigenvalues of T^*T , listed in decreasing order, each included as many times as the dimension of the corresponding eigenspace of T^*T . role of positive singular values. let $T \in$ L(V,W), then

> T is 1-1 iff 0 is not a singular value or I. number of positive singular values of T equals dimrange T. T is onto iff number of positive singular values of T equals dim W.

isometries characterized by having all singular values equal 1. let $S \in L(V, W)$. then S is an isometry iff all singular values of S equal

singular value decomposition. **singular value decomposition.** let $T \in L(V,W)$ and positive singular values of T are s_1, \dots, s_m . then there exist orthonormal lists $e_1, \dots, e_m \in V$ and $f_1, \dots, f_m \in W$ so that $Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$ for all $v \in V$.

we v. version of SVD. let A be a $p \times n$ matrix with rankA ≥ 1 . then there exist a $p \times m$ matrix B with orthonormal columns, an $m \times m$ matrix D with positive numbers on diagnost onal, and an $n \times m$ matrix C with orthonormal

columns so that $A=BDC^*$. **upper bound for** ||Tv||. let $T\in L(V,W)$. let s_1 be the largest singular value for T, then $||Tv|| \le s_1 ||v|| \forall v \in V$. $||Tv|| \le s_1 ||v|| |\forall v \in v$. **norm of a linear map** $||\cdot||$. let $T \in L(V, W)$. then define norm of T has $||T|| = \max\{||Tv|| \mid$ $v \in V, ||v|| \le 1\}.$ alternative formulas for ||T||. let $T \in$ L(V, W). then ||T|| is the largest singular value of T.

 $||T|| = \max\{||Tv|| \mid v \in V, ||v|| =$ ||T|| is the smallest number c so that $||Tv|| \le c||v||$ for all $v \in V$.

norm of adjoint. let $T \in L(V, W)$. then $||T^*|| = ||T||$

best approximation by linear map whose range has dimension $\leq k$. let $T \in L(V, W)$ and $s_1 \geq \cdots \geq s_m$ are the positive singular values of T. let $1 \leq k \leq m$. then $\min\{||T - S|| \mid |$ $S \in L(V, W)$, dim range $S \le k$ = s_{k+1} . Also, if $Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$ is a singular value decomposition of T and $T_k \in$ L(V, W) is defined by $T_k v = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_k \langle v, e_k \rangle f_k$ for each $v \in V$, then dimrange $T_k = k$ and $||T - T_k|| = s_{k+1}$. **polar decomposition.** let $T \in L(V)$. then there exists a unitary operator $S \in L(V)$ so that

 $T = S\sqrt{T^*T}$. RIBET DEFS. **Characteristic polynomial.** The characteristic polynomial of $T: V \to V$ (with eigenvalues $\lambda_1, \dots, \lambda_t$) is the polynomial $\prod_{i=1}^t (x - t)^{-1}$

values $\lambda_1, \dots, \lambda_r$) is the polynomial $\prod_{i=1}^r (x - \lambda_i)^{\dim X_i}$, where $V = X_1 \oplus \dots \oplus X_r$. Simultaneously diagonalizable. Operators S and T on V are simulatenously diagonalizable if there is a basis of V that consts of vectors that are eigenvectors for both S and T (i.e. there exists a basis v_1, \dots, v_n of V so that for i, $1 \le i \le n$, there are λ_i and μ_i so that $Sv_i = \lambda_i v_i$ and $Tv_i = \mu_i v_i$).

and $Tv_i = \mu_i v_i$). Complex Inner product. Let $z = (z_1, \dots, z_n)$ and $w = (w_1, \dots, w_n)$ be in \mathbb{C}^n . We have $\langle z, w \rangle = \sum_i z_i \overline{w_i}$, with $\langle w, z \rangle = \overline{\langle z, w \rangle}$ and $\langle \alpha z, w \rangle = \alpha \langle z, w \rangle$ and $\langle w, \alpha z \rangle = \overline{\alpha} \langle z, w \rangle$. Adjoint. Let $T: V \to W$. Then the adjoint of T is $T^*: W \to V$ such that $T^* = \alpha_V^{-1} \circ T' \circ T'$ α_W , where $\alpha_V: V \to V'$ and $\alpha_W: W \to W'$. **Def 1 of Determinants.** (cofactor expansion). $\det A = \sum_{i=1}^{n} (-1)^{j+1} \cdot a_{ij} \det(A_{ij}).$

Def 2 of Determinants. If $T \in L(V)$, where Det 2 of Determinants. If $\Sigma(V)$, we will the product of the eigenvalues $\lambda_1, \dots, \lambda_n$ (with multiplicity). **Det 3 of Determinants.** The determinant of an operator $T \in L(V)$ is $(-1)^n$ times the constant term of its characteristic polynomial

 $(-\lambda_1)\cdots(z-\lambda_n).$ Permutation. A permutation m =

 $(m_1, ..., m_r)$ is a list containing 1, ..., n exactly once each, and write S_n to denote the set of *n*-element permutations. Inversion. An inversion (in a permutation) is a pair $\{i, j\}$ such that $m_i > m_j$ where i < j. Def 4 of Determinants. Let A be an $n \times n$ matrix. Then, det A = A

 $\sum_{m \in S_n} \left(\operatorname{sgn}(m) \cdot a_{m_1,1} \cdots a_{m_n,n} \right).$ **Box.** The box defined by $v_1, \dots, v_n \in \mathbb{R}^n$ is $\{a_1v_1 + \dots + a_nv_n \mid 0 \le a_i \le 1, i = 1, \dots, n\}$ and as volume, $\det(r_1, \dots, r_n)$, where v_1, \dots, v_n are the columns of a matrix A. **Norm of** T. This is defined to be $\sup_{v \in V \setminus \{0\}} \frac{||Tv||}{||v||}$.

Tensor product. $V \otimes W := \operatorname{Bil}(V', W')$. RIBET THMS. **Cor.** The annihilator of U is $\{0\}$ iff U = V. The annihilator of U is V iff $U = \{0\}$. **Prop.** If $T: V \to W$ is a linear map, then the null space of T' is the annihilator of the range

We have $\operatorname{ann}(\operatorname{range} T) = \{ \psi : W \to F \}$ $\phi(Tv) = 0 \text{ for all } v \in V, T'(\psi)(v) = 0, T'\psi = 0$ $0, \phi \in \operatorname{nul}(T')\}.$ Cor. If $T: V \to W$ is a linear map between finite-dimensional F-vector spaces,

then $\dim \operatorname{nul}(T') = \dim \operatorname{nul}(T) + \dim W - \dim V$. Cor. The linear map T is onto iff T' is 1-1. Cor. If $T: V \to W$ is a linear map between finite-dimensional vector spaces, then T' and T have equal ranks.

Cor. We have range $T=(\operatorname{nul} T)^0$. **Theorem.** Let $T:V\to V$, V finite-dimensional, and let $\alpha:F[x]\to \mathscr{L}(V)$, with $f \mapsto f(T)$. Also, we have ker α to be the principal ideal (m(x)). Then, m(x) is the minimal polynomial of T and has degree $\leq n^2$.

polynomial of I and has degree $\leq h^2$. Cor. Let $\lambda_1, \dots, \lambda_t$ be distinct eigenvalues and take $E_i = E(\lambda_i, T) = \{ v \in V \mid Tv = \lambda_i v \} \subseteq V$. Now, take $E_1 \times \dots \times E_t$. Then there exists a summation map $E_1 \times \dots \times E_t \xrightarrow{\text{sum}} V$ with $(v_1, \dots, v_t) \mapsto v_1 + \dots + v_t$. Then, the sum map is 1-1. **Cor.** Suppose *V* is finite-dimensional. Then each operator on *V* has at most dim *V* distinct disconsiders.

eigenvalues. **Prop.** Suppose T is an operator on an F-

vector space V. If $f \in F[x]$ is a polynomial satisfied by T (meaning f(T) = 0), then every eigenvalue of T on V is a root of f. **Cor.** Suppose λ is an eigenvalue of operator T on a finite-dimensional F-vector space.

Then λ is a root of the minimal polynomial of T iff λ is an eigenvalue of T. **Prop.** Assume that $F = \mathbb{R}$ and that f(x) :=

 $x^2 + bx + c$ is an irreducible polynomial. If $T \in \mathcal{L}(V)$ and V is finite-dimensional, then

the null space of f(T) is even-dimensional. **Prop** (honors version). Let T be an operator on a finite-dimensional vector space over F. If p is an irreducible polynomial over F, then the

p is an irreducible polynomial over F, then the dimension of the null space of p(T) is a multiple of the degree of p.

Cor. Every operator on an odd-dimensional F-vector space has an eigenvalue.

Prop. If T is an operator on a finite-dimensional F-vector space, then the minimal polynomial of T has degree at most dimV.

Prop. If T is upper-triangular with respect to some basis of V, and if the diagonal entries of an upper-triangular matrix representation of T are $\lambda_1, \ldots, \lambda_n$, then $(T - \lambda_1 I) \cdots (T - \lambda_n I) = 0$.

Prop. Let V be a finite-dimensional vector **rop.** Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$ and let $\lambda_1, \ldots, \lambda_m$ be the eigenvalues of T. Then, $V = \oplus E(\lambda_i, T)$ iff T is diagonalizable. **Prop.** TFAE.

T is diagonalizable. V has a basis consisting of eigen-

vectors. The direct sum $\underset{:}{\oplus}V_{\lambda_i}$ is all of V. $\dim \left(\bigoplus_{i} V_{\lambda_i} \right) = \dim V.$

$$\dim \left(\bigoplus_{i} V_{\lambda_i} \right) = \dim$$

Prop. If $T: V \to V$ has dim V different eigenvalues, then T is diagonalizable. **Jordan Canonical Form.** X can be written as a direct sum of Jordan blocks, where Σ dim(block) = dim X. **Lemma.** Let $X = \oplus \operatorname{span}(U_i v)$ for $i \in \{0, \dots, k_1\}$. If Z is a subspace of X' that X is X invariant.

 $\{0,\dots,k_1\}$. If Z is a subspace of X' that is U'-invariant, then ann(Z)=:Y is U-invariant. Lemma. Suppose S and T are commuting operators on V. If A is an eigenvalue for T on V, then the eigenspace $E(\lambda,T)$ is S-invariant. Theorem. The diagonalize operators on the same finite-dimensional vector space are simulateneously diagonalizable iff they commute with each other. Theorem. Every pair of commuting operators on a finite-dimensional nonzero complex vector space has a common eigenvector. Prop. Two commuting operators on a finite-dimensional nonzero complex vector space has a common eigenvector. Prop. Two commuting operators on a finite-dimensional nonzero complex vector space can be simultaneously upper-triangularized. Prop. Let $\alpha: V \to V'$ with $v \mapsto \phi_v$, where $\phi_v: V \to F$ such that $\phi_v(x) = \langle x, v \rangle$. Then, $\alpha(\lambda v) = \overline{\lambda}(\alpha(v))$ for $\lambda \in F$.

 $\varphi_v: V \to F$ such that $\varphi_v(x) = \langle x, v \rangle$. Then, $\alpha(\lambda v) = \overline{\lambda}(\alpha(v))$ for $\lambda \in F$. Prop. If V is finite-dim then $\alpha: V \to V'$ is an invertible linear map of \mathbb{R} -vector spaces. It is an isomorphism of F-vector spaces if $F = \mathbb{R}$ and a conguegate-linear bijection if $F = \mathbb{C}$. Prop. If $V = \alpha_1 v_1 + \cdots + \alpha_m v_m$ and V_1, \dots, V_m orthogonal, then $\alpha_k = \langle v, v_k \rangle_k = 1, \dots, v_m$ is orthonormal basis of V then $V = \langle v, v_k \rangle_k = 1, \dots, V_m$ is orthonormal basis of V then $V = \langle v, v_k \rangle_k = 1, \dots, V_m$.

 v_1, \dots, v_m is orthonormal basis of V then $v = \langle v, v_1 \rangle v_1 + \dots + \langle v, v_m \rangle v_m$.

Prop. If V is a finite-dim inner product space, then V has an orthonormal basis.

Prop. Suppose V is finite-dim. Then every orthonormal list of vectors in V can be extended to an orthonormal basis of V.

Formula. Assume V is finite-dim and U is a subspace of V. Then $\dim U^\perp = \dim V$ dim U.

Prop. Suppose U is generated by a single progress vector V. Then $P_V(v) = \langle v, w \rangle_V$

nonzero vector w. Then $P_U(v) = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$.

nonzero vector w. Then $P_U(v) = \frac{\partial w_{t,w}}{\partial w_{t,w}} w$. **Prop.** If e_1, \dots, e_d is an orthonormal basis of U_i then $P_U(v) = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_d \rangle e_d$. **Formula.** $\alpha_V T^* = T' \circ \alpha_W$, where $T: V \to W$ and $T^*: W \to V$. **Formula.** Let $T: V \to W$. Then $(T'\alpha_W(w))(v) = \langle Tv, w \rangle$. **Lemma.** If $T: V \to W$ is a linear map betwen finite-dim inner product spaces, then if $a \in F$, then $(a^T)^* = \overline{a}T^*$.

Prop. The matrix of T^* is the conjugate transpose of the matrix of T if the same orthonormal bases of V and W are used to compute the matrices.
Formula. $\overline{a_{ij}} = \langle T^* w_i, v_j \rangle_V \text{ iff } a_{-j} =$ $\langle v_i, T^* w_i \rangle_V$.

Theorem. If T is symmetric, then T is orthonormal diagonalizable.

Theorem. Every eigenvalue of a self-adjoint operator, is real

Cor. If T is an operator on a complex inner product space, then $(Tv, v) \in \mathbb{R}$ for all $v \in V$ iff T is self-adjoint. **Prop.** Alternating implies anti-symmetric.

Prop. Let $x^2 + bx + c$ be an irreducible

Let $x^- + px + c$ be an irreducible quadratic over \mathbb{R} . Then the operator $T^2 + bT + c$ is injective on V.

Theorem. An operator T is normal iff $||TV|| = ||T^*V||$ for all $y \in V$. If T is normal and $Tv = \lambda v$, then

Prop. I $T^*v = \overline{\lambda}v$.

 $T^*v = \overline{\lambda}v$. Prop. Suppose T is normal and v,w eigenvectors for T with different eigenvalues. Then the vectors v,w are orthogonal. Theorem. If T is normal and $F = \mathbb{C}$, then T is diagonal in an orthonormal basis of V. Prop. Let $T:V \to V$ be a symmetric (self-adjoint) operator on a nonzero finite-dim inner product space. Then T has an eigenvalue. Prop. If T is self-adjoint, then it is diagonalizable in the real and complex case. Prop. Nipotent 2x2 operators (nonzero) have no square root. Prop. The operator S is an isometry iff V has an orthonormal basis of eigenvectors for which the corresponding eigenvalues have aboslute value T.

value 1. **Theorem.** If $T \in L(V)$, there is an isometry

 $S \in L(V)$ so that $T = S\sqrt{T^*T} = \text{(isometry)} \cdot \text{(positive operator)}$. **Observation.**

 T^*T is a positive operator. $\operatorname{nul}(T^*T) = \operatorname{nul}T$. $\operatorname{range}(T^*T) = \operatorname{range}(T^*)$. $\operatorname{dim}\operatorname{range}T = \operatorname{dim}\operatorname{range}T^*$.

Properties. Let A, B be $n \times n$ matrices. Then

 $\begin{array}{l} \det(AB) = \det A \cdot \det B. \\ \det A = 0 \text{ iff } A \text{ is not invertible.} \\ \text{If} \quad m \in S_n, \quad \text{then} \\ \det \left(A_{m_1} \quad \dots \quad A_{m_n}\right) \quad = \end{array}$ sgn(m) det A. $\alpha \cdot A_k$

Prop. Let $S: V \to W$ be a linear map between inner product spaces. Then S is an isometry iff all singular values of S are 1. **Theorem.** If the positive singular values of $T: V \to W$ are s_1, \ldots, s_m , then there are orthogonal lists $e_1, \ldots, e_m \in V$ and $f_1, \ldots, f_m \in V$. We so that $Tv = s_1(v, e_1)f_1 + \cdots + s_m(v, e_m)f_m$ for all $v \in V$. **Prop.** Let $T: V \to W$ be a linear map. If s_1 is the largest singular value of T, then

 $||Tv|| \le s_1 ||v||$ for all $v \in V$. HW SOLNS. 1. 1C.

- 13 prove that union of three subspaces of V is a subspace iff one contains the other two suf-fices to show if W is the union of three of its subspaces, then then one of the three subspaces is con-tained in the union of the other two but mobiling that of each two, by applying result of prob 8 — let $v_1, ..., v_m$ be linearly independent in V and $w \in V$. show
- $\dim span(v_1 + w, \dots, v_m + w) \ge m-1$. look at $v_1 v_2, \dots, v_1 v_m$ and it is contained in the dimspan.
- 11 let V be finitedim and $T \in L(V)$. show $T = \lambda I$ iff ST = TS for all $S \in L(V)$. for reverse direction, try contrapositive and look at $\ker T$.
- 7. 17 let V be finitedim. show the only two-sided ideals of L(V) are $\{0\}$ and L(V). — let w be so that $Tw \neq 0$. let $S_k : V \to V$ that sends v_j to 0 for $j \neq k$ and v_k to w. put R_k so that $R_k(Tw) = v_k$, and look at $R_kTS_kv_j$.
- 15 Suppose there is a linear map on V so that both null space and range of it are finitedim. show that V is finite dim. look at basis Tv_1, \dots, Tv_n for range and w_1, \dots, w_k for null space. 19 — Let W be finitedim and $T \in L(V, W)$. show T is 1-1 iff there
- L(V, W). snow T is 1-1 in there exists $S \in L(W, V)$ so that ST = I on V. letting $T: V \to W$ be 1-1 and looking at $U = \operatorname{range} T$, put $S: U \to V$ as the inverse of T and extend to $S: W \to V$.
- 20 let *W* be finite-dim and $T \in L(V, W)$. Show *T* onto iff there exists $S \in L(W, V)$ so that TS = I on W. use ontoness of *T* and look at restriction of *T* to *X*, the complement of multT. do isomorphism $X \cong W$ and put $S : W \to X$ so that TS = I. 5 — Let V,W be finitedim and
- 5 Let V,W be finitedim and $T \in L(V,W)$, show there is a basis of V and a basis of W so that in these bases, all entries of M(T) are 0 except those in entries row k col k if $1 \le k \le \text{range } T$. U = nulT and X is complement to U in V. put bases of X and U. find bases of range T and complete to get basis of W.
- 6 Let $v_1, ..., v_n$ be basis of V and W is finitedim and let $T \in L(V)$. show there is a basis $w_1, ..., w_m$ so that all entries of M(T), in these bases, are 0 except possibly a 1 in the first row, first col. first column is Tv_1 consider when $Tv_1 = 0, \neq 0$, put basis $W = \operatorname{conf}(Tv_1, w_n) = w_n$ $W = span(Tv_1, w_2, \dots, w_m).$
- 7 Let w_1, \dots, w_n a basis of W and V finitedim and $T \in L(V, W)$. Show there is a basis v_1, \dots, v_m of V so that all entries in first row of M(T), in these bases, are 0 except possibly a 1 in first row, first col. Look at $T': W' \to V'$ and apply 3c.6 result.
- 16. 3D.
 - 10 Let V,W be finite dim and $U\subseteq V$. put $E=\{T\in L(V,W)\mid U\subseteq \operatorname{nul} T\}$. find a formula for dim E in terms of dim V, dim U, U by U by U by U for U by U for U for U, U for $T \mid_{U}$ and find range and null space.
- 18. 19 let V be finitedim and $T \in L(V)$. show T has same matrix with respect to every basis of Viff $T = \lambda I$. — fix a matrix of T and for basis v_1, \dots, v_m of V, $v_1, \dots, (1/2)v_k, \dots, v_m$ is also basis; scale and edit. 19. 3E.

- 20. 9 Show a nonempty subset A of V is a translate of some subspace of V iff $\lambda v + (1 \lambda)w \in A$ for all $v, w \in A$, $\lambda \in F$. for converse, fix $x \in A$ attempt for A = x + U, where $U = \{a x \mid a \in A\}$. 21 3F

 $A_n) =$

- nul β iff there is $c \in F$ so that $\beta = c\phi$. by a previous problem, there is $S \in L(F)$ so that $\beta = S\phi$.
- 26 let V be finitedim and Ω be a subspace of V'. show $\Omega = \{v \in V \mid \phi(v) = 0 \forall \phi \in \Omega\}^0 = U^0$. show $U = \bigcap_{i=1}^m (\operatorname{nul} \phi_i)$.
- 25. 28 let V be finitedim and $T \in L(V)$. show T has at most 1+ dimrange T distinct eigenvalues. put distinct eigenvalues. The properties of th
 - 39 Let V be finitedim and $T \in L(V)$. show T has eigenvalue iff there is a subspace of V of dim V-1 that is T-invariant.—one direction: use fact eigenvalues of $T_{V/U}$ are eigenvalues of To other direction: if λ eigenvalue, then $T - \lambda I$ noninvertible so its range has dim < dim V. if $X = \operatorname{range} T$, every subspace W of V with $X \subseteq W \subseteq V$ is T-invariant.
- 28. 2 let V be a complex vector space and $T \in L(V)$ have no eigenvalues. show every subspcae of V invariant under T is $\{0\}$ or infinite-dim. — Take instead a finitedim $X \subseteq V$; it has an eigen-

4 — let F = C, $T \in L(V)$, $p \in$

- 4 let F = C, $I \in L(V)$, $p \in P(C)$ is a nonconstant polynomial and $\alpha \in C$. show α is eigenvalue of p(T) iff $\alpha = p(\lambda)$ for some eigenvalue λ of T one direction: $p(T)v = p(\lambda)v$, other direction: T is upper-triangular in some basis of V; look at diagonal and look at v(T). and look at p(T). 5 - for above question, find an example where $V = R^2$ — take
- 7 show if V finitedim and $S,T\in L(V)$, then if at least one of S,T invertible, then minimal poly of ST equals that of TS. — first show $Sp(T)S^{-1} =$... — urst show $Sp(T)S^{-1} = p(STS^{-1})$, then T,STS^{-1} have same minimal poly. replace T by TS.
- $\begin{array}{ccc}
 10 & & \text{let } V & \text{be} \\
 \dim & \text{and } T \in L(V). \\
 span(v, Tv, \dots, T^m v) & & \text{district}
 \end{array}$ $span(v, Tv, ..., T^{\dim V - 1}v)$ for all $m \ge \dim V - 1$. $-v, Tv, ..., T^mv$ has dim m.

- 7 V finitedim, $T \in L(V)$, and $v \in V$. show there is unique monic poly p_v of smallest degree so that $p_v(T)v = 0$. also show min poly of T is a poly mult of p_v . — first part: $I = \{f(x) \mid f(T)v = 0\}$, it contains 0 and closed under addition, and 'external multiplication and use well-ordering. 37. 5D.
- 3-V finitedim, $T\in L(V)$ diagonalizable. show $V=\operatorname{nul} T\oplus \operatorname{range} T$. look at eigenvalues that are 0 and eigenvalues that are nonzero.

- 6 let ϕ , β ∈ V'. show nul ϕ ⊆

- 6 V finitedim nonzero complex vector space and ST = TS. show there exist $\alpha, \lambda \in C$ so that $\operatorname{range}(S \alpha I) + \operatorname{range}(T \lambda I) \neq V$. look at 2 upper triangular matrices, one with α in bottom left corner and another with λ in bottom left corner.
- 46. 6A. 48.
- 50 6B

- 19 let V be finitedim and $T \in L(V)$. let $\varepsilon = \{q(T) \mid q \in P(F)\}$. show dim $\varepsilon =$ degree of minimal poly of T observe $F[x]/(\operatorname{nul} \alpha)$, algebra.
- 25 V finitedim, $T \in L(V)$, $U \subseteq V$ invariant under T. show minimal poly of T is poly multiple of minimal poly of $T_{V/U}$. also show (min poly of $T|_U$) x (min poly of $T_{V/U}$) is poly multiple of min poly of T. — first part: if m is min poly of T, then $m(T \mid U)$ is poly of T, then $m(T \mid U)$ is poly multiple of min poly of $T \mid_U$, similary for $T_{V/U}$. second part: let g be min poly of $T_{V/U}$ and f be min poly of $T \mid_U$ and show (fg)(T) = 0. g(T) is 0 map on V/U and f(T) maps U to $\{0\}$.
- - 2 let $T \in L(V)$ have diagonal matrix A corresponding to some basis of V. show that if $\lambda \in F$, then λ appears on diag of Aexactly $\dim E(\lambda, T)$ times. — $E(\lambda, T) = \operatorname{nul}(T - \lambda I)$ and look at
- matrix multiplication.

- 41. 19 prove/disprove: if $T \in L(V)$ and $U \subseteq V$ is invariant under T so that $T \mid_{U}$ and $T_{V/U}$ are diagonal-

- formula for $||v_1 + \cdots + v_m||^2$ 49. $4 - \operatorname{let} T \in L(V)$ so that $||Tv|| \le \|v\| \forall v \in V$. show $T - \sqrt{2}I$ is injective. — do by contradiction and use triangle inequality.
- 51. $1 \text{let } e_1, \dots, e_m \in V \text{ so that}$ $||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2, \text{ show } e_1, \dots, e_m \text{ is orthonormal} \text{to show orthogood}$
- list of $v_i's$ is a basis of V. (2) show there are $v_1, \dots, v_n \in V$ so that $||e_i - v_i|| \le \frac{1}{\sqrt{n}}$ but v_i 's are L.D. — (1): show linear indepen-
 - $\frac{1}{n}(e_1 + \cdots + e_n).$
- 55. 17 let F = C and V finitedim. show if T is an operator on V so that 1 is only eigenvalue of T and $||Tv|| \le ||v|| ||v \in V$, then T = I.

 use schur's theorem; then diagonal entries are all 1. then write Te_E , as a linear combo of the e_I 's via matrix entries, upper bound coefficients to 0, so coefficients are 0, so T = I.
- $||T^*f_1||^2 + \dots + ||T^*f_m||^2$ note $\sum ||Te_i||^2 = \sum \sum |\langle Te_i, f_j \rangle|^2$ and use inner product properties
- $\begin{array}{lll} 29 & & \text{prove/disprove:} & \text{if} \\ T \in L(V), & \text{there is an ON} \\ \text{basis} & e_1, \dots, e_n & \text{so that} \\ ||Te_i|| & = ||T^*e_i|| \forall i. & & \text{false:} \\ \text{take } T = \begin{pmatrix} 1 & 0 \end{pmatrix}. \end{array}$

- izable, then T diagonalizable. false: take $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- 43. 2—let ε be subset of V where every $T \in \varepsilon$ is diagonalizable. show there is a basis of V with respect to which every $T \in \varepsilon$ has diag matrix iff every pair $S, T \in \varepsilon$ commutes.—converse: look at direct sum of operators, eigenspaces, and restrictions.

- 10 want commuting operators S, T so that S+T has an eigenvalue that is not sum of eigenvalue of S and eigenvalue of T, and similarly for ST. let $S = \begin{pmatrix} 0 & -11 & 0 \end{pmatrix}, T = -S$.

- nal, we have $||e_a||^2 \le 1 + |a|^2 = ||e_a + ae_b||^2$. 52. 3 — let e_1, \dots, e_m be orthonormal in $V \ni v$. show $||v||^2 =$
- 53. 6—let e_1,\ldots,e_n be an ON basis of V. (1) show if $v_1,\ldots,v_n\in V$ so that $||e_i-v_i||\leq \frac{1}{\sqrt{n}}$, then the
 - dence and observe $|a_1|^2 + \cdots +$ $|a_n|^2 = ||a_1|^2 + \cdots + a_n e_n||^2 = ||a_n|^2 + \cdots + a_n e_n||^2 = ||(a_1 e_1 + \cdots + a_n e_n) - (a_1 v_1 + \cdots + a_n v_n)||^2$, apply triangle, C-S inequalities. (2): put $v_i := e_i - \frac{1}{2}$

- 61. 6 V complex inner product 40. 5 - V finitedim complex vector S = V inflictant complex vector space, $T \in L(V)$ and $V = \operatorname{nul}(T - \lambda I) \oplus \operatorname{range}(T - \lambda I)$ for all $\lambda \in C$. show T diagonalizable. — do induction on dim V. space and $T \in L(V)$ normal and $T^9 = T^8$. show T self-adjoint and $T^2 = T$. snow T self-adjoint and $T^2 = T$. — look at orthonormal basis of V of eigenvectors and see eigenvalues in $\{0,1\}$, then by prev problem, $T = P_U$ for some $U \subseteq V$.
 - 62. 8 F = C, $T \in L(V)$, show T normal iff each eigenvector of Tis eigenvector of T^* . — reverse direction: by class, \exists ON basis of V where T is upper-triangular, observe matrices, apply complex spectral theorem.
 - 63. 18 V inner product space. want $T \in L(V)$ so that $T^2 + bT + cI$ noninvertible with $b^2 < 4c$. take $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

 $7 - S \in L(V)$ invertible & positive and $T \in L(V)$ positive. show S + T invertible — first show X positive & invertible $\Longrightarrow \rangle Xv, v \rangle \forall v \in V \setminus \{0\}$, then apply.

 $B, \sqrt{T^*T} = A + B, AB = BA = 0.$ — spectral theorem, and only real

= spectral theorem, and only feat eigenvalues $\lambda_1, \dots, \lambda_n$. put $\alpha_i = \lambda_i$ if $\lambda_i \geq 0$, else, 0. put $\beta_i = -\lambda_i$ if $\lambda_i \leq 0$, else, 0. put $Ae_k = \alpha_k e_k$, B similarly.

67. 15 — $T \in L(V)$ self-adjoint. show $\exists A, B \in L(V)$ so that T = A -

- basis e_1, \dots, e_n or v, an entires on diagonal of $M(T, (e_1, \dots, e_n))$ are nonnegative. forward: use thm 'writing a vector as a linear combo of ON basis' reverse: spectral theorem and equivalent statement to T positive.
- 5 let $T \in L(V)$ self-adjoint. show T positive iff for every ON basis e_1, \ldots, e_n of V, all entries on

 $\begin{array}{ll} 18 \longrightarrow S, T \in L(V), \text{ both positive}, \\ \text{show } ST \text{ positive} \iff ST = \\ TS. \qquad \text{ forward: prf by contradiction gives } ST \neq (ST)^*, \text{ so } ST \\ \text{not self-adjoint, contradiction reverse: there is ON basis } e_1, \dots, e_n \\ \text{of eigenvectors of } S, T, \text{ so } Se_i = \\ \mu_i e_i, Te_i = \lambda_i e_i \text{ with } \lambda_i, \mu_i \geq 0 \forall i. \end{array}$ 1 — $\dim V \ge 2$ and $S \in L(V, W)$. show S isometry iff Se_1, Se_2 ON list in W for all ON list e_1, e_2 in V.

— forward: put $U := span(e_1, e_2)$ and look $S |_U & apply equivalence$ thm from axler. reverse: fix ON basis of V and look at equivalence

2 — $T \in L(V, W)$. show $T = \lambda I$ iff T preserves orthogonality. reverse: fix ON basis of V, look at $\langle u+v, u-v \rangle = ||u||^2 - ||v||^2$ and apply to pairs in ON basis, put $\lambda := ||Te_i||$ & do cases, $\lambda = 0, \neq 0$.

4-F=C and A,B self-adjoint. show A+iB unitary iff AB=BA, $A^2+B^2=I$. — forward: look at $||(A+ib)v||^2$ and $SS^*=I$ and inner products.

2 — let $T \in L(V, W)$ and s > 0. show s is singular value of T iff \exists nonzero $v \in V, w \in W$ so

that Tv = w, $T^*w = v$. — forward; e_1, \dots, e_m and f_1, \dots, f_m ON lists of V, W so that $Te_k = s_k f_k$, $T^* f_k = s_k e_k$.

3 — give example of $T \in L(C^3)$ so that 0 is only eigenvalue of T and singular values of T are 0,5.

 $- \text{Take } T = \begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix}.$

76. $4 - T \in L(V, W)$, s_1 is largest singular value of T, s_n is smallest. show $[s_n, s_1] = \{||Tv|| \mid |v| \in V$

V, ||v|| = 1. — by cases. for case $s_1 > s_n$, use bessel's inequality.

9 — $T \in L(V, W)$. show T, T^* have same positive eigenvalues — get ON lists $f_1, \dots, f_m \in W$, $e_1, \dots, e_m \in V$ by SVD and get $T^*w = s_1 \langle w, f_1 \rangle e_1 + \dots +$

11 — $T \in L(V, W)$, v_1, \dots, v_n ON basis of V. put s_1, \dots, s_n singular values of T. (1): show $||Tv_1||^2 + \dots + ||Tv_n||^2 = s_1^2 +$

 $\cdots + s_n^2$. (2): if W = V and T positive, show $\langle Tv_1, v_1 \rangle + \cdots +$

 $\langle Tv_n, v_n \rangle$. — (1): look at ON basis of V, and of W and $Te_k = s_k f_k$. (2): $\sum_{i=1}^n \langle Tv_i, v_i \rangle = \sum_{i=1}^n \langle Tv_i, v_i \rangle$

singular values. Show if λ eigenvalue of T, then $s_1 \ge |\lambda| \ge s_n$.—
take $v \in V$ so $Tv = \lambda v$, ||v|| = 1, apply prev. problem result to get $|\lambda| = ||\lambda v|| = ||Tv|| \in [s_n, s_1]$.

 $\sum_{i=1}^{n} ||\sqrt{T}v_i||^2 = s_1 + \dots + s_n.$ 15 — $T \in L(V)$ and $s_1 \ge \cdots \ge s_n$ singuluar values. show if λ eigen-

 $s_m\langle w, f_m\rangle e_m$.

73 7E

- mai in $V \ni v$. show $||v||^r = |\langle v, e_1, v \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$ iff $v \in span(e_1, \dots, e_m)$. for forward direction, set $x = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m$ look at $\langle x, v \rangle$ and $||x v \rangle|^2$
- 9 let e_1, \dots, e_m be the result of applying GPS to L.I. list $v_1, \dots, v_n \in V$. show $\langle v_k, e_k \rangle > 0 \forall k$. for case when v_1, \dots, v_n not orthogonal, show contrapositive and note $||v_a||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v_a, e_m \rangle|^2$.
- 57. 5 let $T \in L(V, W)$. let e_1, \dots, e_n be ON basis of V and f_1, \dots, f_m be ON basis of W. show $||Te_1||^2 + \dots + ||Te_n||^2 =$
- - 5 prove/disprove: if $T \in L(C^3)$ is diagonalizable, then T normal - false: take $v_1 = (1,0,0), v_2 = (0,1,0), v_3 = (1,0,1)$ and put $Tv_1 = v_1, Tv_2 = v_2, Tv_3 = 3v_3$.