VE 492 Homework9

Due: 23:59, July. 22th

Question 1: Maximum Likelihood Estimation

We will begin with a short derivation. Consider a probability distribution with a domain that consists of |X| different values. We get to observe N total samples from this distribution. We use n_i to represent the number of the N samples for which outcome i occurs. Our goal is to estimate the probabilities θ_i , i = 1,2...|X| - 1 of each of the events. The probability of the last outcome, |X|, equals $1 - \sum_{i=1}^{|X|-1} \theta_i$.

In maximum likelihood estimation, we choose the θ_i that maximize the likelihood of the observed samples,

$$L ext{(samples, } \theta) \propto (1 - \theta_1 - \theta_2 - \ldots - \theta_{|X|-1})^{n_{|X|}} \prod_{i=1}^{|X|-1} \theta_i^{n_i}$$

For this derivation, it is easiest to work with the log of the likelihood. Maximizing log-likelihood also maximizes likelihood, since the quantities are related by a monotonic transformation. Taking logs we obtain

$$heta^{ ext{ML}} = rgmax n_{|X|} \log \left(1 - heta_1 - heta_2 - \ldots - heta_{|X|-1}
ight) + \sum_{i=1}^{|X|-1} n_i \log heta_i$$

Setting derivatives with respect to θ_i equal to zero, we obtain |X|-1 equations in the |X|-1 unknowns, $\theta_1,\theta_2,...,\theta_{|X|-1}$:

$$rac{-n_{|X|}}{1- heta_1^{ ext{ML}}- heta_2^{ ext{ML}}-\ldots- heta_{|X|-1}^{ ext{ML}}}+rac{n_i}{ heta_i^{ ext{ML}}}=0$$

Multiplying by $\theta_i(1 - \theta_1 - \theta_2 - ... - \theta_{|X|-1})$ makes the original |X| - 1 nonlinear equations into |X| - 1 linear equations:

$$-n_{|X|} heta_i^{ ext{ML}} + n_i\left(1 - heta_1^{ ext{ML}} - heta_2^{ ext{ML}} - \ldots - heta_{|X|-1}^{ ext{ML}}
ight) = 0$$

That is, the maximum likelihood estimation of θ can be found by solving a linear system of |X|-1 equations in |X|-1 unknowns. Doing so shows that the maximum likelihood estimate corresponds to simply the count for each outcome divided by the total number of samples. I.e., we have that:

$$heta_i^{ ext{ML}} = rac{n_i}{N}$$
 Part 1-2

Notice: Please write each sub-question in one row, that is, there will be 3 rows for this question. And please use irreducible fractions for your answer.

Sample Answer:

1,1/2,1/3,1/4 2/5 (instead of 4/10),1/3,4/7 3/8,3/7,3/5

Part 1.

Now, consider a sampling process with 3 possible outcomes: R, G, and B. We observe the following sample counts:

outcome	R	G	В
count	3	1	7

- 1) What is the total sample count N?
- 2) What are the maximum likelihood estimates for the probabilities of each outcome?

$$\theta_R^{ML} = \frac{3}{11}$$

$$\theta_G^{ML} = \frac{1}{11}$$

$$\theta_R^{ML} = \frac{1}{11}$$

Part 2.

Now, use Laplace smoothing with strength k = 3 to estimate the probabilities of each

outcome.
$$\theta_{R}^{LAP,3} = \frac{3+3}{11+3\cdot 3} = \frac{6}{20} = \frac{3}{10}$$
 $\theta_{R}^{LAP,3} = \frac{3+3}{11+3\cdot 3} = \frac{6}{20} = \frac{3}{10}$
 $\theta_{R}^{LAP,3} = \frac{1+3}{11+3\cdot 3} = \frac{6}{20} = \frac{1}{10}$
 $\theta_{R}^{LAP,3} = \frac{1+3}{11+3\cdot 3} = \frac{10}{20} = \frac{1}{10}$

Part 3.

Now, consider Laplace smoothing in the limit $k \to \infty$. Fill in the corresponding probability estimates.

$$\theta_{R}^{LAP,\infty} = \frac{1}{3}$$

$$\theta_{G}^{LAP,\infty} = \frac{1}{3}$$

$$\theta_{B}^{LAP,\infty} = \frac{1}{3}$$

$$\lim_{K \to \infty} \frac{1}{11 + K \cdot 3} = \lim_{K \to \infty} \frac{1}{11} = \frac{1}{13}$$

Question 2: Poisson Parameter Evaluation

We will now consider maximum likelihood estimation in the context of a different probability distribution. Under the Poisson distribution, the probability of an event occurring X = k times is:

$$P(X=k) = \frac{v^k e^{-v}}{k!}$$

Here ν is the parameter we wish to estimate. The distribution is plotted for several values of ν below.

On a sheet of scratch paper, work out the maximum likelihood estimate for v, given observations of several k_i .

Hints: start by taking the product of the equation above over all the k_i , and then taking the log. Then, differentiate with respect to ν , set the result equal to 0, and solve for ν in terms of the k_i .

You observe the samples $k_1 = 6$, $k_2 = 3$, $k_3 = 8$, $k_4 = 4$, $k_5 = 2$. What is your maximum likelihood estimate of ν ?

Sample Answer (rounded to 3 decimal places): 0.160

Question 3: Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features F_i .

We are given the following 15 training points:

7	$\overline{F_1}$	1	1	1	1	1	1	1	0	1	1	1	0	1	1	0
	$\overline{F_2}$	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1
•	F_3	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
	Y	A	A	Α	A	A	Α	A	Α	Α	Α	В	В	В	В	С

Note: Please write your answer for each table in one row, that is, there will be 10 rows for this question. Besides, please use values rounded to 3 decimal places.

Sample Answer:

0.160,0.170,0.160

•••

•••

A

0.200,0.211,...

1) What is the maximum likelihood estimate of the prior P(Y)?

Y	P(Y)	
A	0.667	10/15
В	0.269	4/15
C	0.069	1/15

2) What are the maximum likelihood estimates of the conditional probability distributions? Fill in the tables below (the second and third are done for you).

F_1	Y	$P(F_1 Y)$	
0	A		1/10
1	A		9/10
0	В		114
1	В		3/4
0	С		١
1	С		0

F_2	Y	$P(F_2 Y)$
0	Α	0.800
1	Α	0.200
0	В	1.000
1	В	0.000
0	С	0.000
1	C	1.000

F_3	Y	$P(F_3 Y)$
0	Α	1.000
1	Α	0.000
0	В	0.500
1	В	0.500
0	C	1.000
1	C	0.000

Now consider a new data point $(F_1 = 0, F_2 = 0, F_3 = 1)$. Use your classifier to determine the joint probability of causes Y and this new data point, along with the posterior probability of Y given the new data: $\rho(Y) \coprod \rho(F_i(Y))$

Y	$P(Y,F_1 = 0,F_2 = 0,F_3 = 1)$
A	0,600
В	0.033
С	0.000

10/15 × 1/10 × 8/10 × 0 4/15 × 1/4 × \ x 0.5

\cap	Y	$P(Y F_1 = 0,F_2 = 0,F_3 = 1)$
8	A	0
	В	/
	С	0

4) What label does your classifier give to the new data point? (Break ties alphabetically). Write capital letters only.

Now use <u>Laplace Smoothing</u> with strength k = 3 to estimate the prior P(Y) for the same data.

Y	P(Y)
A	0.542
В	0.292
С	0 160

$$| 10+3/15+3\cdot3 \qquad P_{LAP,k}(x) = \frac{c(x)+1L}{N+k(x)}$$

$$| 4+3/15+3\cdot3 \qquad \times; num \quad f + types$$

$$| 1+3/15+3\cdot3 \qquad (A_1B_1C)$$

Use <u>Laplace Smoothing</u> with strength k = 3 to estimate the conditional probability distributions below (again, the second two are done for you).

1+3/10+60 a+3/10+60 1+3/4+6 2+3/4+6 1+3/1+6

$P(F_1 Y)$	Y	F_1
0.250	A	0
0.150	A	1
0.400	В	0
0,600	В	1
0.571	С	0
0.419	С	1
0.400 0.600 0.511	B B C	1

F_2	Y	$P(F_2 Y)$
0	Α	0.688
1	Α	0.312
0	В	0.700
1	В	0.300
0	C	0.429
1	C	0.571

F_3	Y	$P(F_3 Y)$
0	Α	0.812
1	Α	0.188
0	В	0.500
1	В	0.500
0	C	0.571
1	C	0.429

7) Now consider again the new data point ($F_1 = 0$, $F_2 = 0$, $F_3 = 1$). Use the Laplace-Smoothed version of your classifier to determine the joint probability of causes Y and this new data point, along with the posterior probability of Y given the new data:

Y	$P(Y,F_1 = 0,F_2 = 0,F_3 = 1)$
A	0.018
В	0.041
С	0.018

Y	$P(Y F_1 = 0,F_2 = 0,F_3 = 1)$
A	0, 2 34
В	0.532
С	0.234

6.0181 0.018 to.041 to.018
0.041 (0.018 to.041 to.018

8) What label does your (Laplace-Smoothed) classifier give to the new data point? (Break ties alphabetically). Write a single capital letter.

B

Question 4: Datasets

When training a classifier, it is common to split the available data into a training set, a hold-out set, and a test set, each of which has a different role.

Sample Answer:

A

A

A

- 1) Which data set is used to learn the conditional probabilities?
 - A. Training Data
 - B. Hold-Out Data
 - C. Test Data
- 2) Which data set is used to tune the Laplace Smoothing hyperparameters?
 - A. Training Data
 - B Hold-Out Data
 - C. Test Data
- 3) Which data set is used for quantifying performance results?
 - A. Training Data
 - B. Hold-Out Data
 - C. Test Data

Question 5: Linear Separability

Consider the data in the figure below.

The data is plotted as a function of two features, f_1 and f_2 . As plotted, the data is not linearly separable. Which of the following candidate features f_3 , when added, would cause the data to be linearly separable? Choose all possible answer(s).

A.
$$f_3 = |f_1| + |f_2|$$

B. $f_3 = \sin(f_1)$

B.
$$f_3 = \sin(f_1)$$

$$f_3 = f_1^2 + f_2^2$$

D.
$$f_3 = f_1^2$$

E.
$$f_3 = f_1$$

F. $f_3 = 1$

F.
$$f_3 = 1$$

G.
$$f_3 = f_1 f_2$$

H. $f_3 = 1$ if $f_1 \in [-7,7]$ and $f_2 \in [-7,7]$,0 otherwise

B \times there & E X FX G X HV Ф 0