Lecture 1: Introducing CS5702 - Modern Data

Prof. Martin Shepperd

martin.shepperd@brunel.ac.uk

Lecture Poll

Please use your mobile or computer to go to:

pollev.com/mshepperd

We will need it in a few minutes. Thanks!

Welcome

This is a great time to study data science, statistics and machine learning.

Agenda

- 1. Module overview
- 2. Teaching approach and resources
- 3. What is R and why do data scientists use it?
- 4. R basics
- 5. Getting help
- 6. Week 1 goals
- 7. Extension question and study

1. Module overview

Meet the team

- Professor Martin Shepperd (module leader)
- Professor Xiaohui (Hui) Liu (support lecturer)
- Ziyan (Leo) Fu (GTA)
- Yu Cao (GTA)
- Namir Oud (GTA)
- Matia Ghafourian (GTA)
- Jingzhong Fang (GTA)
- Nchongmaje Ndipenoch (GTA)

Lecture protocol

- 1. I will start at 1105 prompt; please be ready
- 2. Be aware, lectures will be recorded
- 3. Feel free to ask questions as we go along or ...
- 4. ... ask during in a question gap (2-3 per lecture)
- 5. Be **considerate** of others (fellow students and me) and don't chat.

Thanks!

What is data?

Wisdom of crowds

What's Modern Data about?

To provide an introduction to **data management** and **exploration**. ... appreciation of the richness and availability of different data sources ... **techniques**, **methods and processes** for modern data analysis.

— Study Guide

Data science is ...

Wisdom of crowds

Data science is

Data science is an exciting discipline that allows you to turn **raw** data into **understanding**, **insight**, and **knowledge**.

Hadley Wickham and Garrett Grolemund

Opportunities

... there is more data and richer data available than ever before, coupled with more and more powerful analysis tools.

... incredible **opportunities** to collect, clean, merge, analyse and visualise data both for **good**, and for less good purposes.

Course structure

Module structure

Week structure

Week	Lecture Topic	Lecturer	Labs
1	Module overview, motivating examples, the R ecosystem	MS	Joint with QDA: What is data science? What can we do with R? Basic R and descriptive stats.
2	2. The richness of data: structured and unstructured	MS	Analysing the module survey.
3	3. Engineering or hacking? Readable code and reproducible data analysis	MS	Finding and importing data. Simple visualisation of time series, smoothing.
4	4. Exploratory data analysis (EDA) and visualisation	MS	Exploring data: more complex questions (salary and gender analysis)
5	5. Data quality, cleaning and imputation	MS	Cleaning data set examples. Imputation with R packages.
6	6. Presenting data effectively	MS	Interactive data: R and shiny
7	7. Processing and analysing text	MS	Word clouds, etc
8	8. Data Science and Machine Learning: an introduction	XL	Predictive modelling and evaluation in R.
9	9. Data for good	XL	Coursework (CS5801) surgery
10-12	10. Exam (CS5802) revision	MS/XL	
13	Exam week	-	-

2. Teaching approach and resources

- Practical
- Lecture and lab
- Use R and RStudio
- Being organised
 - Decide on your personal to-do / checklist system now!
 - Keep up to date
 - Weekly checklists (as text files) can be grabbed from here

Learning Resources:

- Brightspace VLE
- The "Modern Data" interactive book
- Worksheets and linked files from GitHub
- Quizzes
- Reading list and references (also your own research)

3. What is R and why do data scientists use it?

R is an open, purpose-designed, highly-extensible, statistical and data analysis programming language.

R Advantages

- designed by statisticians
- powerful data handling,
 wrangling and storage
 capabilies
- flexible graphical facilities
- integrates with machine learning e.g., TensorFlow etc

- interactive dashboards
- large, open community
- easy integration withe.g., C, C++, FORTRAN
- widely used by researchers

Source: www.alfredogmarquez.com/2019/12/29/r-s-demise-higly-overblown/

4. R basics

As a **prerequisite** you should have completed the Getting Ready Chapter, in particular to have **installed** R and RStudio and run some simple R test examples.

R and variables

A variable is a named container for information and this information can be set, modified or referenced.

```
# This R code creates three different variables
```

```
numericVariable <- 10
stringVariable <- "Hello world!"
logicVariable <- TRUE</pre>
```

R infers the **data type** from what you assign. This is called implicit typing.

Data types

The data type is an attribute of a variable which tells the R interpreter how we intend to use the data.

- defines the operations that can be done
- the meaning of the data
- limits to values that can be stored, e.g., if the type is logical, only TRUE and FALSE

Simple data types in R

- numeric or floating point
- character or character string (if 2+ in length)
- logical (TRUE or FALSE)

Manipulating variables

```
# Initialise (or overwrite if it already exists) y to 5.3
y <- 5.3

# Multiply y by 13
y <- y * 13

# Display y
y
[1] 68.9</pre>
```

Useful complex data types

- vector: multiple instances of the same type
 - see Modern Data book
- data frame: multiple instances of different types
 - see Modern Data book

Creating and using vectors

- So far mainly focused on **atomic** variables.
- Often useful to store/analyse multiple instances e.g., the height of all the people in a sample.
- Use a vector of the same type of atomic variables

A simple vector in R

```
# The c() function *combines* elements into a vector
sampleHeights <- c(168, 176, 170)
is.vector(sampleHeights)
[1] TRUE

sampleHeights[2]
[1] 176
sampleHeights
[1] 168 176 170</pre>
```

A data frame in R

- Is a 2-dimensional structure
- A workhorse for the data analyst
- Multiple data types e.g., numeric and character
- Sometimes referred to as 'rectangular' data because each column is the same length (a special case of a List)
- Similar(ish) to a spreadsheet

A simple data frame in R

```
name <- c('Suzie Smith','Ahmed Abbas','Atilla The Hun')
salary <-c(21000, 23400, 26800)
employmentDF <- data.frame(name, salary)</pre>
# Show the top 6 rows of the dataframe
head(employmentDF)
            name salary
    Suzie Smith 21000
2 Ahmed Abbas 23400
3 Atilla The Hun 26800
```

The View() function

Note View has an upper case 'V'
View(employmentDF)

For more details on R basics

- Modern Data book
- also Kabacoff¹
- the lab worksheets

¹ Kabacoff, R. (2015). R in Action: Data Analysis and Graphics With R (2nd ed.). Manning Publications.

5. Getting help

- 1. find/read the relevant cheatsheet
- 2. perspiration e.g., see this five step approach
- 3. talk it over with a fellow student
- 4. module **FAQs** on Brightspace
- 5. Stack overflow
- 6. ask a member of the course team

For more suggestions visit the subsection 0.2 "vi) Learn how to get help" in the Modern Data book.

6. Week 1 goals

```
By the end of this week you should:
[ ] completed the Week 0 Getting Ready chapter
[ ] completed the Week 1 Introduction chapter
[ ] have an appreciation of the background and
development of R
[ ] understand the main components of the R ecosystem
[ ] be able to write, execute, save and organise simple R
programs
[ ] to be confident in using RStudio for basic coding tasks
```

7. Extension activity

Read Provost and Fawcett² (it's only 8 pages) and determine what are the fundamental concepts of Data Science. Then rank them in order of importance.

² Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51--59. Access via Google Scholar

References

- Kabacoff, R. (2015). R in Action: Data Analysis and Graphics With R (2nd ed.). Manning Publications.
- Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51--59.
- Wickham, H., & Grolemund, G. (2018). R for data science. O'Reilly Media, Inc.