Tugas Besar IF2220 Probabilitas dan Statistika Penarikan Kesimpulan dan Pengujian Hipotesis

Anggota Kelompok (K-02):

- 1. Firizky Ardiansyah (13520095)
- 2. Muhammad Fahmi Irfan (13520152)

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import *
from math import *
from IPython.display import Markdown, display
```

Data Water Potability

Diberikan sebuah data water_potability.csv yang dapat diakses pada utas berikut: Dataset Tugas Besar IF2220. water_potability.csv merupakan data metrik kualitas air yang mengandung 11 kolom sebagai berikut:

- 1. id
- 2. pH
- 3. Hardness
- 4. Solids
- 5. Chloramines
- 6. Sulfate
- 7. Conductivity
- 8. OrganicCarbon
- 9. Trihalomethanes
- 10. Turbidity
- 11. Potability

Kolom 2-10 adalah kolom atribut (non-target), sedangkan kolom 11 adalah kolom target.

```
def printf(str):
    display(Markdown(str))

column_name = ['id', 'pH', 'Hardness', 'Solids', 'Chloramines', 'Sulfate', 'Conductivity', 'Organic Carbon',
    'Trihalomethanes', 'Turbidity', 'Potability']

data = pd.read_csv("water_potability.csv", names = column_name)
    df = pd.DataFrame(data)

df
```

Out[]: _		id	рН	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic Carbon	Trihalomethanes	Turbidity	Potability
	0	1	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
	1	2	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0
	2	3	5.584087	188.313324	28748.687739	7.544869	326.678363	280.467916	8.399735	54.917862	2.559708	0
	3	4	10.223862	248.071735	28749.716544	7.513408	393.663396	283.651634	13.789695	84.603556	2.672989	0
	4	5	8.635849	203.361523	13672.091764	4.563009	303.309771	474.607645	12.363817	62.798309	4.401425	0
	•••											
	2005	2006	8.197353	203.105091	27701.794055	6.472914	328.886838	444.612724	14.250875	62.906205	3.361833	1
	2006	2007	8.989900	215.047358	15921.412018	6.297312	312.931022	390.410231	9.899115	55.069304	4.613843	1
	2007	2008	6.702547	207.321086	17246.920347	7.708117	304.510230	329.266002	16.217303	28.878601	3.442983	1
	2008	2009	11.491011	94.812545	37188.826022	9.263166	258.930600	439.893618	16.172755	41.558501	4.369264	1
	2009	2010	6.069616	186.659040	26138.780191	7.747547	345.700257	415.886955	12.067620	60.419921	3.669712	1

2010 rows × 11 columns

Asumsi kolom numerik: Kolom yang bertipe real maupun bilangan bulat. Kolom id dan kolom target yaitu Potability tidak dianalisis, kecuali disebutkan secara eksplisit dalam soal.

SOAL 1

Menulis deskripsi statistika (Descriptive Statistics) dari semua kolom pada data yang bersifat numerik, terdiri dari mean, median, modus, standar deviasi, variansi, range, nilai minimum, maksimum, kuartil, IQR, skewness dan kurtosis. Boleh juga ditambahkan deskripsi lain.

Deskripsi Umum

```
# Description
desc = df[df.columns[1:10]].describe()
desc.loc['variance'] = df.var()
desc.loc['range'] = df.max() - df.min()
desc.loc['tQR'] = df.quantile(0.75) - df.quantile(0.25)
desc.loc['skewness'] = df.skew()
desc.loc['kurtosis'] = df.kurtosis()
```

Out[]:	рН	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic Carbon	Trihalomethanes	Turbidity
count	2010.000000	2010.000000	2.010000e+03	2010.000000	2010.000000	2010.000000	2010.000000	2010.000000	2010.000000
mean	7.087193	195.969209	2.190467e+04	7.134322	333.211376	426.476708	14.357940	66.400717	3.969497
std	1.572803	32.643166	8.625398e+03	1.585214	41.211111	80.701872	3.325770	16.081109	0.780471
min	0.227499	73.492234	3.209426e+02	1.390871	129.000000	201.619737	2.200000	8.577013	1.450000
25%	6.090785	176.740657	1.561441e+04	6.138326	307.626986	366.619219	12.122530	55.949993	3.442882
50%	7.029490	197.203525	2.092688e+04	7.142014	332.214113	423.438372	14.323286	66.482041	3.967374
75%	8.053006	216.447589	2.717053e+04	8.109933	359.268147	482.209772	16.683562	77.294613	4.514663
max	14.000000	317.338124	5.648867e+04	13.127000	481.030642	753.342620	27.006707	124.000000	6.494749
variance	2.473709	1065.576277	7.439749e+07	2.512904	1698.355672	6512.792113	11.060746	258.602066	0.609135
range	13.772501	243.845890	5.616773e+04	11.736129	352.030642	551.722883	24.806707	115.422987	5.044749
IQR	1.962221	39.706932	1.155612e+04	1.971607	51.641161	115.590553	4.561031	21.344620	1.071781
skewness	0.048535	-0.085321	5.910114e-01	0.013003	-0.045728	0.268012	-0.020220	-0.051383	-0.032266
kurtosis	0.626904	0.525480	3.373203e-01	0.549782	0.786854	-0.237206	0.031018	0.223017	-0.049831
range IQR skewness	13.772501 1.962221 0.048535	243.845890 39.706932 -0.085321	5.616773e+04 1.155612e+04 5.910114e-01	11.736129 1.971607 0.013003	352.030642 51.641161 -0.045728	551.722883 115.590553 0.268012	24.806707 4.561031 -0.020220	115.422987 21.344620 -0.051383	5.044749 1.071781 -0.032266

Modus Kolom pH

```
print('Kolom pH :')
print(df['pH'].mode())
Kolom pH :
       0.227499
        0.989912
       1.431782
2
       1.757037
       1.985383
2005
      11.568768
2006
      11.898078
2007
      12.246928
2008
      13.349889
2009 14.000000
Length: 2010, dtype: float64
```

Modus Kolom Hardness

```
print('Kolom Hardness :')
print(df['Hardness'].mode())
Kolom Hardness :
        73.492234
        77.459586
1
        81.710895
2
        94.091307
3
        94.812545
4
2005
       286.567991
2006
       287.975540
2007
       300.292476
       306.627481
2008
       317.338124
Length: 2010, dtype: float64
```

Modus Kolom Solids

```
print('Kolom Solids :')
print(df['Solids'].mode())
Kolom Solids :
0
        320.942611
        1198.943699
        1351.906979
        1372.091043
4
        2552.962804
        ...
2005
      50793.898917
2006
      53735.899194
2007
      55334.702799
2008
      56351.396304
2009
      56488.672413
Length: 2010, dtype: float64
```

Modus Kolom Chloramines

```
print('Kolom Chloramines :')
print(df['Chloramines'].mode())
Kolom Chloramines :
        1.390871
        1.920271
        2.397985
2
        2.456014
3
        2.458609
4
       12.580026
2005
       12.626900
       12.653362
2007
      13.043806
2009 13.127000
Length: 2010, dtype: float64
```

Modus Kolom Sulfate

```
print('Kolom Sulfate :')
print(df['Sulfate'].mode())
Kolom Sulfate :
       129.000000
        180.206746
2
       182.397370
       187.170714
        187.424131
       458.441072
2005
       460.107069
2006
2007
       475.737460
       476.539717
2008
       481.030642
2009
Length: 2010, dtype: float64
```

Modus Kolom Conductivity

```
print('Kolom Conductivity :')
print(df['Conductivity'].mode())
Kolom Conductivity :
        201.619737
        210.319182
        233.907965
2
        245.859632
        252.968328
         . . .
2005
       666.690618
2006
       669.725086
       695.369528
2007
2008
       708.226364
2009
       753.342620
```

Modus Kolom Organic Carbon

Length: 2010, dtype: float64

```
print('Kolom Organic Carbon :')
print(df['Organic Carbon'].mode())
Kolom Organic Carbon :
        2.200000
        4.371899
1
        4.466772
2
        4.861631
3
4
       4.966862
2005
       23.569645
2006
       23.604298
2007
       23.917601
2008
      24.755392
2009 27.006707
Length: 2010, dtype: float64
```

Modus Kolom Trihalomehanes

```
print('Kolom Trihalomethanes :')
print(df['Trihalomethanes'].mode())
Kolom Trihalomethanes :
         8.577013
1
        14.343161
        15.684877
2
        16.291505
3
        17.527765
4
         • • •
2005
       114.034946
2006
       114.208671
2007
       116.161622
       120.030077
2008
2009
      124.000000
Length: 2010, dtype: float64
```

Modus Kolom Turbidity

```
print('Kolom Turbidity :')
print(df['Turbidity'].mode())
Kolom Turbidity :
       1.450000
       1.492207
       1.496101
       1.680554
4
       1.812529
        . . .
2005
       6.307678
2006
       6.357439
2007
       6.389161
2008
      6.494249
      6.494749
2009
Length: 2010, dtype: float64
```

Modus Keseluruhan

Out[]

```
In [ ]: df[df.columns[1:10]].mode()
```

]:		рН	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic Carbon	Trihalomethanes	Turbidity
	0	0.227499	73.492234	320.942611	1.390871	129.000000	201.619737	2.200000	8.577013	1.450000
	1	0.989912	77.459586	1198.943699	1.920271	180.206746	210.319182	4.371899	14.343161	1.492207
	2	1.431782	81.710895	1351.906979	2.397985	182.397370	233.907965	4.466772	15.684877	1.496101
	3	1.757037	94.091307	1372.091043	2.456014	187.170714	245.859632	4.861631	16.291505	1.680554
	4	1.985383	94.812545	2552.962804	2.458609	187.424131	252.968328	4.966862	17.527765	1.812529
	2005	11.568768	286.567991	50793.898917	12.580026	458.441072	666.690618	23.569645	114.034946	6.307678
	2006	11.898078	287.975540	53735.899194	12.626900	460.107069	669.725086	23.604298	114.208671	6.357439
	2007	12.246928	300.292476	55334.702799	12.653362	475.737460	695.369528	23.917601	116.161622	6.389161
	2008	13.349889	306.627481	56351.396304	13.043806	476.539717	708.226364	24.755392	120.030077	6.494249
	2009	14.000000	317.338124	56488.672413	13.127000	481.030642	753.342620	27.006707	124.000000	6.494749

2010 rows × 9 columns

Terlihat bahwa untuk setiap kolom, terdapat 2010 modus sesuai dengan banyaknya baris. Hal ini karena setiap data di dalam kolom bernilai unik sehingga frekuensi terbesar data adalah 1, sehingga setiap data adalah modus.

SOAL 2

Membuat Visualisasi plot distribusi, dalam bentuk histogram dan boxplot untuk setiap kolom numerik. Berikan uraian penjelasan kondisi setiap kolom berdasarkan kedua plot tersebut.

```
def visualizeDistributionPlot(df):
    _, axes = plt.subplots(1, 2, figsize = (16, 7))
    sns.histplot(data=df, ax=axes[0])
    df.plot(kind = "box", ax = axes[1])
```

Plot Distribusi Kolom pH

```
visualizeDistributionPlot(df["pH"])
```


Berdasarkan histogram, kolom ini memiliki kecenderungan ke kiri sehingga memiliki positive skew, tetapi kecenderungan ini mendekati nol sehingga dapat diabaikan. Selain itu, plot distribusi cenderung lebih ramping dari histogram yang berdistribusi normal, sehingga tipe kurtosisnya adalah leptokurtic. Bentuk histogram secara umum mendekati belly-shape, tetapi lebih ramping. Adapun berdasarkan boxplot, kolom ini memiliki pencilan di kedua ujung.

Plot Distribusi Kolom Hardness

In []: visualizeDistributionPlot(df["Hardness"])

Berdasarkan histogram, kolom ini memiliki kecenderungan ke kanan sehingga memiliki negative skew. Selain itu, plot distribusi cenderung lebih ramping dari histogram yang berdistribusi normal, sehingga tipe kurtosisnya adalah leptokurtic. Bentuk histogram secara umum mendekati belly-shape, tetapi lebih ramping dan memiliki kecenderungan. Adapun berdasarkan boxplot, kolom ini memiliki pencilan di kedua ujung.

Plot Distribusi Kolom Solids

visualizeDistributionPlot(df["Solids"])

Berdasarkan histogram, kolom ini memiliki kecenderungan ke kiri sehingga memiliki positive skew. Selain itu, plot distribusi cenderung lebih ramping dari histogram yang berdistribusi normal, sehingga tipe kurtosisnya adalah leptokurtic. Bentuk histogram secara umum mendekati belly-shape, tetapi lebih ramping dan memiliki kecenderungan. Adapun berdasarkan boxplot, kolom ini memiliki pencilan di bagian atas upper-tail

Plot Distribusi Kolom Chloramines

In []: visualizeDistributionPlot(df["Chloramines"])

Berdasarkan histogram, kolom ini memiliki kecenderungan ke kiri sehingga memiliki positive skew, tetapi kecenderungan ini mendekati nol sehingga dapat diabaikan. Selain itu, plot distribusi cenderung lebih ramping dari histogram yang berdistribusi normal, sehingga tipe kurtosisnya adalah leptokurtic. Bentuk histogram secara umum mendekati belly-shape, tetapi lebih ramping. Adapun berdasarkan boxplot, kolom ini memiliki pencilan di kedua ujung.

Plot Distribusi Kolom Sulfate

In []: visualizeDistributionPlot(df["Sulfate"])

Berdasarkan histogram, kolom ini memiliki kecenderungan ke kanan sehingga memiliki negative skew, tetapi kecenderungan ini mendekati nol sehingga dapat diabaikan. Selain itu, plot distribusi cenderung lebih ramping dari histogram yang berdistribusi normal, sehingga tipe kurtosisnya adalah leptokurtic. Bentuk histogram secara umum mendekati belly-shape, tetapi lebih ramping. Adapun berdasarkan boxplot, kolom ini memiliki pencilan di kedua ujung.

Plot Distribusi Kolom Conductivity

[n []: visualizeDistributionPlot(df["Conductivity"])

Berdasarkan histogram, kolom ini memiliki kecenderungan ke kiri sehingga memiliki positive skew. Selain itu, plot distribusi cenderung lebih lebar dari histogram yang berdistribusi normal, sehingga tipe kurtosisnya adalah platykurtic. Bentuk histogram secara umum mendekati belly-shape, tetapi lebih lebar dan memiliki kecenderungan. Adapun berdasarkan boxplot, kolom ini memiliki pencilan di bagian atas upper-tail

Plot Distribusi Kolom Organic Carbon

In []: visualizeDistributionPlot(df["Organic Carbon"])

Berdasarkan histogram, kolom ini memiliki kecenderungan negatif yang bisa diabaikan, bentuk kurtosisnya juga mendekati histogram berdistibusi normal, sehingga kolom ini bisa dianggap berdistribusi normal. Dari boxplot dapat dilihat bahwa kolom ini memiliki sedikit outlier di kedua ujung.

Plot Distribusi Kolom Trihalomethanes

In []: visualizeDistributionPlot(df["Trihalomethanes"])

Berdasarkan histogram, kolom ini memiliki kecenderungan negatif yang bisa diabaikan, bentuk kurtosisnya juga mendekati histogram berdistibusi normal, sehingga kolom ini bisa dianggap berdistribusi normal. Dari boxplot dapat dilihat bahwa kolom ini memiliki beberapa outlier di kedua ujung.

Plot Distribusi Kolom Turbidity

In []: visualizeDistributionPlot(df["Turbidity"])

Berdasarkan histogram, kolom ini memiliki kecenderungan positif yang bisa diabaikan, bentuk kurtosisnya juga mendekati histogram berdistibusi normal, sehingga kolom ini bisa dianggap berdistribusi normal. Dari boxplot dapat dilihat bahwa kolom ini memiliki sedikit outlier di kedua ujung.

SOAL 3

Menentukan setiap kolom numerik berdistribusi normal atau tidak. Gunakan normality test yang dikaitkan dengan histogram plot.

Normality test akan dilakukan dengan menggunakan fungsi normaltest() pada module scipy.stats. Fungsi normaltest() mengimplimentasikan D'Agostino K-Squared Test, yaitu uji kenormalan dengan skewness dan kurtosis.

```
def normality_test(atr):
    _, axes = plt.subplots(1, 1, figsize = (8, 7))
    sns.histplot(df[atr], stat='density', kde=True, linewidth=0, ax = axes)
    stat, p = normaltest(df[atr])
    alpha = 0.05
    print(f'p = {p}')
    if p>alpha:
        printf(f'Data {atr} **berdistribusi normal**')
    else:
        printf(f'Data {atr} **tidak berdistribusi normal**')
```

Normality Test untuk pH

p = 2.6514813346797777e-05 Data pH **tidak berdistribusi normal**

Data di atas tidak berdistribusi normal menurut D'Agostino K-Squared Test dengan $\alpha=0.05$. Dari histogram, juga dapat dilihat bahwa grafik sedikit miring sehingga tidak berbentuk bell curve.

Normality Test untuk Hardness

In []:

normality_test('Hardness')

p = 0.00013442428699593753

Data Hardness tidak berdistribusi normal

Data di atas tidak berdistribusi normal menurut D'Agostino K-Squared Test dengan lpha=0.05. Dari histogram, juga dapat dilihat bahwa grafik tidak berbentuk bell curve.

Normality Test untuk Solids

In []

normality_test('Solids')

p = 2.0796613688739523e-24 Data Solids **tidak berdistribusi normal**

Data di atas tidak berdistribusi normal menurut D'Agostino K-Squared Test dengan lpha=0.05. Dari histogram, juga dapat dilihat bahwa grafik tidak berbentuk bell curve.

Normality Test untuk Chloramines

In []

normality_test('Chloramines')

p = 0.0002504831654753917

Data Chloramines tidak berdistribusi normal

Data di atas tidak berdistribusi normal menurut D'Agostino K-Squared Test dengan lpha=0.05. Dari histogram, juga dapat dilihat bahwa grafik tidak berbentuk bell curve.

Normality Test untuk Sulfate

In []: normal

normality_test('Sulfate')

p = 4.4255936678013136e-07

Data Sulfate tidak berdistribusi normal

Data di atas tidak berdistribusi normal menurut D'Agostino K-Squared Test dengan lpha=0.05. Dari histogram, juga dapat dilihat bahwa grafik tidak berbentuk bell curve.

Normality Test untuk Conductivity

In []: normality_test('Conductivity')

p = 4.39018078287845e-07 Data Conductivity **tidak berdistribusi normal**

Data di atas tidak berdistribusi normal menurut D'Agostino K-Squared Test dengan lpha=0.05. Dari histogram, juga dapat dilihat bahwa grafik tidak berbentuk bell curve.

Normality Test untuk Organic Carbon

normality_test('Organic Carbon')

p = 0.8825496581408284

Data Organic Carbon **berdistribusi normal**

Data di atas berdistribusi normal menurut D'Agostino K-Squared Test dengan lpha=0.05. Dari histogram, juga dapat dilihat bahwa grafik berbentuk bell curve.

Normality Test untuk Trihalomethanes

In []: normality_test('Trihalomethanes')

p = 0.1043598441875204

Data Trihalomethanes **berdistribusi normal**

Data di atas berdistribusi normal menurut D'Agostino K-Squared Test dengan lpha=0.05. Dari histogram, juga dapat dilihat bahwa grafik berbentuk bell curve.

Normality Test untuk Turbidty

[n []: normality_test('Turbidity')

p = 0.7694717369961169

Data Turbidity **berdistribusi normal**

Data di atas berdistribusi normal menurut D'Agostino K-Squared Test dengan lpha=0.05. Dari histogram, juga dapat dilihat bahwa grafik berbentuk bell curve.

SOAL 4

Melakukan test hipotesis 1 sampel, dengan menuliskan 6 langkah testing dan menampilkan boxplotnya untuk kolom/bagian yang bersesuaian.

Enam Langkah Testing:

- 1. Tentukan Hipotesis nol $(H_0: \theta=\theta_0)$, dimana θ bisa berupa μ , σ^2 , p, atau data lain berdistribusi tertentu (normal, binomial, dst.).
- 2. Pilih hipotesis alternatif H1 salah dari dari $heta> heta_0$, $heta< heta_0$, atau $heta
 eq heta_0$.
- 3. Tentukan tingkat signifikan α .
- 4. Tentukan uji statistik yang sesuai dan tentukan daerah kritis.
- 5. Hitung nilai uji statistik dari data sample. Hitung p-value sesuai dengan uji statistik yang digunakan.
- 6. Ambil keputusan dengan TOLAK H_0 jika nilai uji terletak di daerah kritis atau dengan tes signifikan, TOLAK H_0 jika p-value lebih kecil dibanding tingkat signifikansi lpha yang diinginkan.

```
def drawBoxPlot(data):
    _, axes = plt.subplots(1, 1, figsize=(8, 7))
    data.plot(kind = "box", ax = axes)
    plt.show()
```

Nilai rata-rata pH di atas 7?

Box Plot Data pH

drawBoxPlot(df["pH"])

Uji Hipotesis

Misalkan μ ialah nilai rata-rata pH.

1. Hipotesis Nol

 $H_0: \mu = 7$

2. Hipotesis Alternatif

 $H_0: \mu > 7$

3. Tingkat signifikan

 $\alpha = 0.05$

4. Uji Statistik dan Daerah Kritis

Uji statistik : Single sample, one sided, variance known Daerah kritis : z>1.645, diperoleh dari $z_lpha=1.645$

5.Nilai Uji Statistik dan p-value

$$z=rac{(ar{x}-\mu_0)\sqrt{n}}{\sigma}$$
 $p=P(Z>|z|)=1-P(Z<|z|)$

z = 2.485445147379887

p = 0.006469476288896492

6. Keputusan

Karena z berada dalam daerah kritis, z=2.485>1.645, disimpulkan bahwa H_0 dapat ditolak.

Dengan demikian, **rata-rata pH** > 7

Bagian b

Nilai rata-rata Hardness tidak sama dengan 205?

Box Plot Data Hardness

drawBoxPlot(df['Hardness'])

Uji Hipotesis

Misalkan μ merupakan nilai rata-rata Hardness

1. Hipotesis Nol

 $H_0: \mu=205$

2. Hipotesis Alternatif

 $H_1: \mu
eq 205$

3. Tingkat signifikan

lpha=0.05

4. Uji Statistik dan Daerah Kritis

Uji statistik : Single sample, two sided, variance known

Daerah kritis : z < -1.96 atau z > 1.96, diperoleh dari $z_{lpha/2} = 1.96$

5.Nilai Uji Statistik dan p-value

$$z=rac{(ar{x}-\mu_0)\sqrt{n}}{\sigma}$$
 $p=P(Z>|z|)+P(Z<-|z|)=2(1-P(Z<|z|))$

```
In []:
    expected_mean = 205.0
    avg = df['Hardness'].mean()
    std = df['Hardness'].count()
    z = (avg - expected_mean)*sqrt(n)/std
    p = 2*(1-norm.cdf(abs(z)))
    print(f'z = {z}')
    print(f'p = {p}')
```

6. Keputusan

p = 0.0

Karena z berada dalam daerah kritis, z=-12.403<-1.96, disimpulkan bahwa H_0 dapat ditolak.

Dengan demikian, **rata-rata Hardness** eq 205

Bagian c

Nilai Rata-rata 100 baris pertama kolom Solids bukan 21900?

Box Plot 100 Baris Pertama Kolom Solids

In []: drawBoxPlot(df['Solids'].loc[:99])

Uji Hipotesis

Misalkan μ merupakan nilai rata-rata 100 baris pertama kolom Solids.

1. Hipotesis Nol

 $H_0: \mu=21900$

2. Hipotesis Alternatif

 $H_1: \mu
eq 21900$

3. Tingkat signifikan

lpha=0.05

4. Uji Statistik dan Daerah Kritis

Uji statistik : Single sample, two sided, variance known

Daerah kritis : z < -1.96 atau z > 1.96, diperoleh dari $z_{lpha/2} = 1.96$

5.Nilai Uji Statistik dan p-value

$$z=rac{(ar{x}-\mu_0)\sqrt{n}}{\sigma}$$
 $p=P(Z>|z|)+P(Z<-|z|)=2(1-P(Z<|z|))$

```
In []:
    expected_mean = 21900
    avg = df['Solids'].loc[:99].mean()
    std = df['Solids'].loc[:99].count()
    z = (avg - expected_mean)*sqrt(n)/std
    p = 2*(1-norm.cdf(abs(z)))
    print(f'z = {z}')
    print(f'p = {p}')

z = 0.5636797715721551
```

p = 0.57297208646551746. Keputusan

Karena z tidak berada dalam daerah kritis -1.96 < z = 0.564 < 1.96 dan p-value > lpha disimpulkan bahwa H_0 **gagal ditolak**.

Dengan demikian, rata-rata 100 baris pertama kolom Solids ialah 21900

Bagian d

Proporsi nilai Conductivity yang lebih dari 450, adalah tidak sama dengan 10%?

Box Plot Kolom Conductivity

```
In [ ]: drawBoxPlot(df['Conductivity'])
```


Uji Hipotesis

Misalkan p_0 merupakan proporsi nilai Conductivity yang lebih dari 450.

1. Hipotesis Nol

 $H_0:p_0=0.1$

2. Hipotesis Alternatif

 $H_1:p_0
eq 0.1$

3. Tingkat signifikan

 $\alpha = 0.05$

4. Uji Statistik dan Daerah Kritis

Uji statistik : Single sample, two sided, proportion test Daerah kritis : z<-1.96 atau z>1.96, diperoleh dari $z_{lpha/2}=1.96$

5.Nilai Uji Statistik dan p-value

$$z = rac{(\hat{p}-p_0)\sqrt{n}}{\sqrt{p_0(1-p_0)}}$$
 $p = P(Z>|z|) + P(Z<-|z|) = 2(1-P(Z<|z|))$

```
In []:
    p_expected = 0.1
    n = df['Conductivity'].count()
    p_data = df['Conductivity'].loc[df['Conductivity'] > 450].count()/n
    z = (p_data - p_expected)*sqrt(n)/sqrt(p_expected*(1-p_expected))
    p = 2*(1-norm.cdf(abs(z)))
    print(f'z = {z}')
    print(f'p = {p}')
z = 40.44637613158931
```

6. Keputusan

p = 0.0

Karena z berada dalam daerah kritis, z=40.45>1.96, disimpulkan bahwa H_0 **dapat ditolak**.

Dengan demikian, nilai Conductivity yang lebih dari 450 tidak sama dengan 10%.

Bagian e

Proporsi nilai Trihalomethanes yang kurang dari 40, adalah kurang dari 5%?

Box Plot Data Trihalomethanes

In []: drawBoxPlot(df['Trihalomethanes'])

Uji Hipotesis

Misalkan p_0 merupakan proporsi nilai Trihalomethanes yang kurang dari 40.

1. Hipotesis Nol

 $H_0: p_0 = 0.05$

2. Hipotesis Alternatif

 $H_1:p_0<0.05$ (one-tailed)

3. Tingkat signifikan

lpha=0.05

4. Uji Statistik dan Daerah Kritis

Uji statistik : Single sample, one sided, proportion test Daerah kritis : z<-1.645, diperoleh dari $z_{lpha}=1.645$

5.Nilai Uji Statistik dan p-value

$$z = \frac{(\hat{p} - p_0)\sqrt{n}}{\sqrt{p_0(1 - p_0)}}$$

```
p = P(Z < -|z|) = 1 - P(Z < |z|)
```

```
p_expected = 0.05
n = df['Trihalomethanes'].count()
p_data = df['Trihalomethanes'].loc[df['Trihalomethanes'] < 40].count()/n
z = (p_data - p_expected)*sqrt(n)/sqrt(p_expected*(1-p_expected))
p = 1 - norm.cdf(abs(z))
print(f'z = {z}')
print(f'p = {p}')</pre>
```

z = 0.5628826416670951 p = 0.2867574004907629

6. Keputusan

Karena z tidak berada dalam daerah kritis, z=0.563>-1.645 dan p-value > lpha, disimpulkan bahwa H_0 gagal ditolak.

Dengan demikian, proporsi nilai Trihalomethanes yang kurang dari 40 tidak kurang dari 5%.

SOAL 5

Melakukan test hipotesis 2 sampel, dengan menuliskan 6 langkah testing dan menampilkan juga boxplotnya untuk kolom/bagian yang bersesuaian.

Enam Langkah Testing:

- 1. Tentukan Hipotesis nol $(H_0: \theta = \theta_0)$, dimana θ bisa berupa μ , σ^2 , p, atau data lain berdistribusi tertentu (normal, binomial, dst.).
- 2. Pilih hipotesis alternatif H1 salah dari dari $\theta > \theta_0$, $\theta < \theta_0$, atau $\theta \neq \theta_0$.
- 3. Tentukan tingkat signifikan α .
- 4. Tentukan uji statistik yang sesuai dan tentukan daerah kritis.
- 5. Hitung nilai uji statistik dari data sample. Hitung p-value sesuai dengan uji statistik yang digunakan.
- 6. Ambil keputusan dengan TOLAK H_0 jika nilai uji terletak di daerah kritis atau dengan tes signifikan, TOLAK H_0 jika p-value lebih kecil dibanding tingkat signifikansi α yang diinginkan.

Bagian a

Data kolom Sulfate dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata kedua bagian tersebut sama?

Deskripsi Statistik Kedua Sampel

```
df1 = df["Sulfate"].head(len(df)//2)
df2 = df["Sulfate"].tail(len(df)//2)
describeTwoSamples(df1, df2, [" Awal", " Akhir"])
      Sulfate Awal Sulfate Akhir
count 1005.000000 1005.000000
      331.305330
                    335.117423
mean
        41.332755
                     41.021129
std
       129.000000
                    205.935091
min
       307.563455
                     307.752703
25%
50%
       330.390976
                     333.439570
       356.552697
                     362.415419
75%
        476.539717
                      481.030642
max
```

Blox Plot Kedua Sampel

In []: drawBoxPlots(df1, df2, ["Bagian Awal", "Bagian Akhir"])

Uji Hipotesis

1. Hipotesis Nol

 $H_0: \mu_{Sulfate_awal} = \mu_{Sulfate_akhir} \iff \mu_{Sulfate_awal} - \mu_{Sulfate_akhir} = 0$

2. Hipotesis Alternatif

 $H_1: \mu_{Sulfate_awal}
eq \mu_{Sulfate_akhir} \iff \mu_{Sulfate_awal} - \mu_{Sulfate_akhir}
eq 0 ext{ (two-sided)}$

3. Tingkat Signifikan

lpha = 0.05

4. Uji Statistik dan Daerah Kritis

Uji Statistik : Two sample, two sided, variansi diketahui dan derajat kebebasan > 30, sehingga z-test Daerah kritis : z<-1.96 atau z>1.96, diperoleh dari $z_{\frac{\alpha}{2}}=1.96$

5. Nilai Uji Statistik dan p-value

$$z=rac{(ar{x_1}-ar{x_2})-d_0}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}} \ p=P(Z>|z|)+P(Z<-|z|)=2(1-P(Z<|z|))$$

```
p = 2*(1-norm.cdf(abs(z)))

print(f"z = {z}")
print(f"p = {p}")
```

z = -2.0752690696871983 p = 0.03796160438512852

6. Keputusan

Karena z berada dalam daerah kritis, z=-2.075<-1.96, disimpulkan bahwa H_0 dapat ditolak.

Dengan demikian, rata-rata kedua sampel tidak sama

Bagian b

Data kolom OrganicCarbon dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata bagian awal lebih besar dari pada bagian akhir sebesar 0.15?

Deskripsi Statistik Kedua Sampel

```
df1 = df["Organic Carbon"].head(len(df)//2)
df2 = df["Organic Carbon"].tail(len(df)//2)
describeTwoSamples(df1, df2, [" Awal", " Akhir"])
       Organic Carbon Awal Organic Carbon Akhir
              1005.000000
                                    1005.000000
count
                                      14.461907
                14.253973
mean
                 3.351162
                                       3.298573
std
min
                 2.200000
                                       4.466772
                11.983961
                                      12.244622
25%
                14.210624
                                      14.356496
50%
75%
                16.684074
                                      16.682025
                                      27.006707
max
                23.917601
```

Blox Plot Kedua Sampel

```
In [ ]: drawBoxPlots(df1, df2, ["Bagian Awal", "Bagian Akhir"])
```


Uji Hipotesis

1. Hipotesis Nol

 $H_0: \mu_{OrganicCarbon_awal} = \mu_{OrganicCarbon_akhir} + 0.15 \iff \mu_{OrganicCarbon_awal} - \mu_{OrganicCarbon_akhir} = 0.15$

2. Hipotesis Alternatif

 $H_1: \mu_{OrganicCarbon_awal}
eq \mu_{OrganicCarbon_akhir} + 0.15 \iff \mu_{OrganicCarbon_awal} - \mu_{OrganicCarbon_akhir}
eq 0.15$ (two-sided)

3. Tingkat Signifikan

 $\alpha = 0.05$

4. Uji Statistik dan Daerah Kritis

Uji Statistik : Two sample, two sided, variansi diketahui dan derajat kebebasan > 30, sehingga z-test

Daerah kritis z<-1.96 atau z>1.96, diperoleh dari $z_{rac{lpha}{2}}=1.96$

5. Nilai Uji Statistik dan p-value

$$z = rac{\left(ar{x}_{1} - ar{x}_{2}
ight) - d_{0}}{\sqrt{\sigma_{1}^{2}/n_{1} + \sigma_{2}^{2}/n_{2}}}$$

$$p = P(Z > |z|) + P(Z < -|z|) = 2(1 - P(Z < |z|))$$

```
In [ ]:
    z = (df1.mean()-df2.mean() - 0.15)/sqrt(df1.var()/len(df1) + df2.var()/len(df2))
    p = 2*(1-norm.cdf(abs(z)))

print(f"z = {z}")
    print(f"p = {p}")

z = -2.413145517798807
```

p = 0.015815503817599996

6. Keputusan Karena z berada dalam daerah kritis, z=-2.413<-1.96, disimpulkan bahwa H_0 dapat ditolak.

Dengan demikian, rata-rata sampel pertama **tidak lebih besar** dari pada sampel kedua sebesar 0.15

Bagian c

Rata-rata 100 baris pertama kolom Chloramines sama dengan 100 baris terakhirnya?

Deskripsi Statistik Kedua Sampel

```
df1 = df["Chloramines"].head(100)
    df2 = df["Chloramines"].tail(100)
    describeTwoSamples(df1, df2, [" Awal", " Akhir"])
Chloramines Awal Chloramines Akhir
```

mean 7.007771 7	s Akhir
	.000000
std 1.480892 1	.147198
	.306806
min 3.606036 3	.458192
25% 6.098138 6	.336701
50% 7.071012 7	.113334
75% 8.070950 7	.975377
max 10.056852 10	.282329

Blox Plot Kedua Sampel

Uji Hipotesis

1. Hipotesis Nol

 $H_0: \mu_{Chloramines_awal} = \mu_{Chloramines_akhir} \iff \mu_{Chloramines_awal} - \mu_{Chloramines_akhir} = 0$

2. Hipotesis Alternatif

 $H_1: \mu_{Chloramines_awal}
eq \mu_{Chloramines_akhir} \iff \mu_{Chloramines_awal} - \mu_{Chloramines_akhir}
eq 0 ext{ (two-sided)}$

3. Tingkat Signifikan

lpha=0.05

4. Uji Statistik dan Daerah Kritis

Uji Statistik : Two sample, two sided, variansi diketahui dan derajat kebebasan > 30, sehingga z-test Daerah kritis : z<-1.96 atau z>1.96, diperoleh dari $z_{\frac{\alpha}{2}}=1.96$

5. Nilai Uji Statistik dan p-value

$$z=rac{(ar{x_1}-ar{x_2})-d_0}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}} \ p=P(Z>|z|)+P(Z<-|z|)=2(1-P(Z<|z|))$$

z = -0.7059424842236872 p = 0.48022390604502796

Karena z tidak berada dalam daerah kritis -1.96 < z = -0.706 < 1.96 dan p-value > lpha disimpulkan bahwa H_0 gagal ditolak.

Dengan demikian, rata-rata sampel pertama **sama dengan** rata-rata sampel kedua

Bagian d

6. Keputusan

Proporsi nilai bagian awal Turbidity yang lebih dari 4, adalah lebih besar daripada, proporsi nilai yang sama di bagian akhir Turbidity?

Deskripsi Statistik Kedua Sampel

```
In [ ]:
    df1 = df["Turbidity"].head(len(df)//2)
    df2 = df["Turbidity"].tail(len(df)//2)
    describeTwoSamples(df1, df2, [" Awal", " Akhir"])
Turbidity Aval Turbidity Akhir
```

		Turbidity Awal	Turbidity Akhir
CC	unt	1005.000000	1005.000000
me	an	3.942879	3.996115
st	:d	0.786455	0.773917
mi	.n	1.496101	1.450000
25	5%	3.403393	3.488675
56	%	3.964450	3.969740
75	5%	4.496627	4.549917
ma	ìΧ	6.494249	6.494749

Blox Plot Kedua Sampel

In []: drawBoxPlots(df1, df2, ["Bagian Awal", "Bagian Akhir"])

Uji Hipotesis

1. Hipotesis Nol

 $H_0: p_{Turbidity_awal} = p_{Turbidity_akhir} \iff p_{Turbidity_awal} - p_{Turbidity_akhir} = 0$

2. Hipotesis Alternatif

 $H_1: p_{Turbidity_awal} > p_{Turbidity_akhir} \iff p_{Turbidity_awal} - p_{Turbidity_akhir} > 0$ (one-sided)

3. Tingkat Signifikan

4. Uji Statistik dan Daerah Kritis

Uji Statistik : Two sample, one sided, proportion test Daerah kritis : z>1.645, diperoleh dari $z_{lpha}=1.645$

5. Nilai Uji Statistik dan p-value

$$z = rac{(\hat{p_1} - \hat{p_2})}{\sqrt{\hat{p}\hat{q}\left(1/n_1 + 1/n_2
ight)}} \ \hat{p_i} = rac{x_i}{n_i}, \hat{p} = rac{x_1 + x_2}{n_1 + n2} \ p = P(Z > z) = 1 - P(Z < z)$$

```
In []:
    x1 = len(df1.loc[df1 > 4])
    x2 = len(df2.loc[df2 > 4])
    n1 = len(df1)
    n2 = len(df2)
    p1 = x1/n1
    p2 = x2/n2
    phat = (x1+x2)/(n1+n2)
    qhat = 1-phat

    z = (p1-p2)/sqrt(phat*qhat*(1/n1 + 1/n2))
    p = 1-norm.cdf(z)

    print(f"z = {z}")
    print(f"p = {p}")
```

6. Keputusan

z = -0.13388958661778735p = 0.5532550575911831

Karena z tidak berada dalam daerah kritis z=-0.134<1.645 dan p-value >lpha disimpulkan bahwa H_0 **gagal ditolak**.

Dengan demikian, proporsi data yang lebih dari empat pada sampel pertama tidak lebih besar dibandingkan proporsi sampel kedua

Bagian e

Bagian awal kolom Sulfate memiliki variansi yang sama dengan bagian akhirnya?

Deskripsi Statistik Kedua Sampel

```
df1 = df["Sulfate"].head(len(df)//2)
df2 = df["Sulfate"].tail(len(df)//2)
describeTwoSamples(df1, df2, [" Awal", " Akhir"])
      Sulfate Awal Sulfate Akhir
count 1005.000000 1005.000000
       331.305330
                     335.117423
mean
        41.332755
                      41.021129
std
       129.000000
                      205.935091
min
25%
       307.563455
                      307.752703
50%
       330.390976
                      333.439570
75%
                      362.415419
        356.552697
        476.539717
                      481.030642
```

Blox Plot Kedua Sampel

In []: drawBoxPlots(df1, df2, ["Bagian Awal", "Bagian Akhir"])

Uji Hipotesis

1. Hipotesis Nol

```
H_0: \sigma^2_{Sulfate\_awal} = \sigma^2_{Sulfate\_akhir} \iff \sigma^2_{Sulfate\_awal} - \sigma^2_{Sulfate\_akhir} = 0
```

2. Hipotesis Alternatif

```
H_1:\sigma^2_{Sulfate\_awal} 
eq \sigma^2_{Sulfate\_akhir} \iff \sigma^2_{Sulfate\_awal} - \sigma^2_{Sulfate\_akhir} 
eq 0 	ext{ (two-sided)}
```

3. Tingkat Signifikan

lpha=0.05

4. Uji Statistik dan Daerah Kritis

Uji Statistik : distribusi F

Daerah kritis $f > f_{rac{lpha}{2}}(v_1,v_2) = f_1$ atau $f < f_{1-rac{lpha}{2}}(v_1,v_2) = f_2$, yaitu

```
alpha = 0.05
v1 = len(df1)-1
v2 = len(df2)-1

f1 = norm.ppf(1-alpha/2, v1, v2)
f2 = 1/norm.ppf(1-alpha/2, v2, v1)

print(f"f1 = {f1}")
print(f"f2 = {f2}")
print(f"Daerah kritis\t: f > {f1} atau f < {f2}")</pre>
```

f1 = 2971.803840478214

f2 = 0.00033649596463240414Daerah kritis : f > 2971.803840478214 atau f < 0.00033649596463240414

5. Nilai Uji Statistik dan p-value

$$f=rac{s_1^2}{s^2}$$

```
p = P(F > |f|) + P(F < -|f|) = 2(1 - P(F < |f|))
```

```
In [ ]:
    f = df1.var()/df2.var()
    p = 2*(1-norm.cdf(abs(f), v1, v2))
    print(f"f = {f}")
    print(f"p = {p}")

f = 1.0152511043950063
    p = 1.6821998800807634
```

6. Keputusan

Karena f tidak berada dalam daerah kritis $f_2 < f = 1.01 < f_1$ dan p-value > lpha disimpulkan bahwa H_0 **gagal ditolak**.

Dengan demikian, variansi kedua sampel sama

SOAL 6

Test korelasi: tentukan apakah setiap kolom non-target berkorelasi dengan kolom target, dengan menggambarkan juga scatter plot nya. Gunakan correlation test.

Intepretasi Koefisien Korelasi:

```
c<0 : Berkorelasi negatif, berbanding terbalik c=0 : Tidak berkorelasi c>0 : Berkorelasi positif, berbanding lurus |c|<0.30 : Negligible 0.30\leq |c|<0.50 : Weak 0.50\leq |c|<0.70 : Moderate 0.70\leq |c|<0.90 : Strong |c|\geq 0.90 : Very Strong
```

```
In [ ]: | def drawScatterPlot(col1, col2, data):
             plt.figure(figsize=(8, 7))
             plt.scatter(data[col1], data[col2])
             plt.xlabel(col1)
             plt.ylabel(col2)
             plt.show()
             c = df[col1].corr(df[col2])
             printf(f"Koefisien korelasi = {c}")
             verdict = ""
             if(c == 0):
                 printf("Intepretasi koefisien: Kedua kolom tidak berkorelasi")
                 verdict += "Intepretasi koefisien: Kedua kolom **berkorelasi negatif**"
                 verdict += "Intepretasi koefisien: Kedua kolom **berkorelasi positif**"
             if(abs(c) < 0.3):
                 verdict += ", tetapi ***negligible***."
             elif(abs(c) < 0.5):
                 verdict += ", tetapi ***weak***."
             elif(abs(c) < 0.7):
                 verdict += ", dan ***moderate***."
             elif(abs(c) < 0.9):
                 verdict += ", dan ***strong***."
                 verdict += ", dan ***very strong***."
             printf(verdict)
```

Korelasi Potability dengan pH

In []: drawScatterPlot("pH", "Potability", df)

Koefisien korelasi = 0.01547509440843348

Intepretasi koefisien: Kedua kolom **berkorelasi positif**, tetapi *negligible*.

Korelasi Potability dengan Hardness

```
In [ ]: drawScatterPlot("Hardness", "Potability", df)
```


Koefisien korelasi = -0.0014631528959479344

Intepretasi koefisien: Kedua kolom **berkorelasi negatif**, tetapi *negligible*.

Korelasi Potability dengan Solids

In []: drawScatterPlot("Solids", "Potability", df)

Koefisien korelasi = 0.03897657818173466

Intepretasi koefisien: Kedua kolom **berkorelasi positif**, tetapi *negligible*.

Korelasi Potability dengan Chloramines

In []: drawScatterPlot("Chloramines", "Potability", df)

Koefisien korelasi = 0.02077892184052409

Intepretasi koefisien: Kedua kolom **berkorelasi positif**, tetapi *negligible*.

Korelasi Potability dengan Sulfate

In []: drawScatterPlot("Sulfate", "Potability", df)

Koefisien korelasi = -0.015703164419273778

Intepretasi koefisien: Kedua kolom **berkorelasi negatif**, tetapi *negligible*.

Korelasi Potability dengan Conductivity

In []: drawScatterPlot("Conductivity", "Potability", df)

Koefisien korelasi = -0.016257120111377067

Intepretasi koefisien: Kedua kolom **berkorelasi negatif**, tetapi *negligible*.

Korelasi Potability dengan Organic Carbon

In []: drawScatterPlot("Organic Carbon", "Potability", df)

Koefisien korelasi = -0.015488461910747259

Intepretasi koefisien: Kedua kolom **berkorelasi negatif**, tetapi *negligible*.

Korelasi Potability dengan Trihalomethanes

In []: drawScatterPlot("Trihalomethanes", "Potability", df)

Koefisien korelasi = 0.009236711064712997

Intepretasi koefisien: Kedua kolom **berkorelasi positif**, tetapi *negligible*.

Korelasi Potability dengan Turbidity

In []: drawScatterPlot("Turbidity", "Potability", df)

Koefisien korelasi = 0.022331042640622665

Intepretasi koefisien: Kedua kolom **berkorelasi positif**, tetapi *negligible*.