1. (Elephant Under the Rug Theorem)

Let $D \subset \mathbb{R}$. Suppose $f: D \to \mathbb{R}$ is Continuous and $f(x_0) \neq 0$ At some point $x_0 \in D$. Prove that there is a S > 0 such that $f(x_0) \neq 0$ for all x in the interval $(x_0 - \delta, x_0 + \delta)$.

Proof

Let $\mathcal{E} = f(x_0)/2 > 0$. By the \mathcal{E} - δ criterion for continuity, there is $\alpha \delta > 0$ such that $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \mathcal{E}$, or $x \in (x_0 - \delta, x + \delta_0) \Rightarrow f(x) \in (f(x_0) - \mathcal{E}, f(x_0) + \mathcal{E})$.

In other words, the S-interval about x_0 is mapped into the ε -interval about $f(x_0)$. But $f(x_0) - \varepsilon = f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2} > 0$, so $\forall x \in (x_0 - \delta, x + \delta)$, $f(x) > f(x_0) - \varepsilon = \frac{f(x_0)}{2} > 0$.

$$|x_{n+1}-x_n|<\frac{1}{2^n}$$

Show that (2,3) converges. (Hint. Write

$$\times_{n+k} - \times_n = (\times_{n+k} - \times_{n+k-1}) + (\times_{n+k-1} - \times_{n+k-2}) + \cdots + (\times_{n+1} - \times_n).$$

$$|x_{m}-x_{n}| = |(x_{m}-x_{m-1})+(x_{m-1}-x_{m-2})+\cdots+(x_{n+1}-x_{n})|$$
(all the intermediate terms cancel out)

$$(\Delta \text{ inequality})$$

 $<\frac{1}{2^{n-1}}+\frac{1}{2^{m-2}}+\cdots+\frac{1}{2^n}=\frac{1}{2^{n+n-1}}+\cdots+\frac{1}{2^n}$

$$= \frac{1}{2^n} \left(\frac{1}{3^{n+1}} + \dots + 1 \right) = \frac{1}{2^n} \frac{1 - \left(\frac{1}{2} \right)^{n}}{1 - \frac{1}{2}}$$

$$= \frac{1}{2^{n}} \left(2 - \left(\frac{1}{2} \right)^{R-1} \right) < \frac{1}{2^{n}} \left(2 \right) = \frac{1}{2^{n-1}}$$

From this table, it is clear that 2 n for

all n ∈ N. (This can be easily proven by induction.)

Hence,

$$|\chi_n - \chi_n| < \frac{1}{2^{n-\epsilon}} \le \frac{1}{n}$$

It suffices to solve $\frac{1}{n} < \varepsilon$

Taking reciprocals gives n> =

Choose a natural number N > 1. Then

V n>N and k≥1,

This proves that 1x,3 is Cauchy and therefore convergent. I

An alternative approach is to note that, as above, $|x_m - x_n| < \frac{1}{2^m} + \frac{1}{2^{m-1}} + \cdots + \frac{1}{2^n}$.

The right hand side is the difference $S_m - S_{n-1}$ of the partial sums of $\sum_{k=0}^{\infty} \frac{1}{2^k}$, where $S_n = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k$.

Since $\sum_{k=1}^{\infty} \frac{1}{2^k}$ is convergent, if is Cauchy and therefore for any $\epsilon 70$, $\exists N \in \mathbb{N}$ s.t. $\forall m, n \geq N$, $|S_m - S_{n+1}| < \epsilon$.

Therefore, the same N quarantees that $\forall m, n \ge N$, $| z_m - z_n | < | s_m - s_{n-1} | < \varepsilon$.

This proves that Ing is Couchy and therefore convergent. I

3. (10 points) Uniform convergence.
Assume $\{a_n\}$ is a bounded sequence of numbers and M is an upper bound, $ a_n \le M$ for all $n \in \mathbb{N}$. Let $r > 0$. Prove that the series
$f(x) = \sum_{n=0}^{\infty} \frac{a_n x^n}{n!}$
converges uniformly on $[-r, r]$ to a continuous function.
Solution For 1215,
Solution. For $ x \leq r$, $\left \frac{a_n x^n}{n!} \right \leq \frac{ a_n x }{n!} \leq \frac{M r^n}{n!} = M_n$
Consider the ratio:
$\frac{M_{n+1}}{M_n} = \frac{M_r^{n+1}}{(n+1)!} \frac{n!}{M_r^n} = \frac{r}{n+1} \rightarrow 0$
By the ratio test, & Mn cg.
By the ratio test, $\sum M_n cg$. By the M-test, $\sum \frac{a_n x^n}{n!}$ converges uniformly on $[-r, r]$ $[-r, r]$

4. (15 points) Continuity of log.

In Calculus II, you showed, for $x \in (-1, 1]$, that

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} .$$

- (a) Show that this series converges uniformly on the interval [-r,r] for any $r \in (0,1)$. (You may use any series convergence test that is in our book.)
- (b) Prove that ln(1+x) is a continuous function on (-1,1).
 - (a) For |x| Er

$$\left|\frac{(-1)^{n+1}z^n}{n}\right| = \frac{(z)^n}{n} \leq \frac{r^n}{n} := M_n$$

Consider the ratio

$$\frac{M_{n+1}}{M_{n}} = \frac{r^{n+1}}{n+1} \frac{n}{r^{n}} = \frac{n}{n+1} r \longrightarrow r < 1$$

By the ratio test, \(\sum_{n} \sum_{n} \) Converges.

By the M-test, $\sum_{n=1}^{\infty} (-1)^{n+1} x^n$ converges uniformly on

[-r, r] = (-1,1).

(b) Being a polynomial in x, the partial sum $S_{N} = \sum_{i=1}^{N} \frac{(-1)^{n+1}x^{n}}{n}$ is continuous on [-r, r].

As the uniform limit of continuous functions, ln(1+x) $= \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n!} \text{ is continuous on } [-r,r] \text{ for all }$ $0 < r < \pm . \text{ Any } x_0 \in (-1,1) \text{ is in } [-r,r] \text{ for }$ $\text{some } r \in (0,1), \text{ for example, } r = \frac{(|x_0|+1)}{2}.$

Hence, ln(1+x) is continuous at any $T_0 \in (-1,1)$, i.e., continuous on (-1,1).

5. (10 points) Sum of uniformly convergent sequences. Let $\{f_n\}$ and $\{g_n\}$ be sequences of functions from \mathbb{R} to \mathbb{R} . Assume $f_n \to f$ uniformly on \mathbb{R} and $g_n \to g$ uniformly on \mathbb{R} . Prove that $f_n + g_n$ converges to $f + g$ uniformly on
\mathbb{R} .
Proof. Let €>0. Since for → funiformly on R, ∃N∈IN
(not depending on x) such that \(\neq \text{N} \) and \(\text{N} \)
$(f_n(x) - f(x)) < \frac{\varepsilon}{2}$
Similarly, since 90 - 9 uniformly on IR, FNZEN Cnot
depending on x) Such that $\forall x \in \mathbb{R}$ and $\forall n \geq N$,
9,(x) - 3(π) < ε/2.
Choose N = mox (NI, NZ). By the A inequality,
YXER and YnzN,
$ (f_n + g_n)(x) - (f + g)(x) = f_n(x) - f(x) + g_n(x) - g(x) $
$\leq f_n(x) - f(x) + g_n(x) - g(x) $
$<\frac{\varepsilon}{c} + \frac{\varepsilon}{2} = \varepsilon$.
Hence, $f_n + g_n \rightarrow f + g$ uniformly on R.

6. ((15	points)	Uniform	convergence
0.	(1)	pomis	Cimorin	convergence

For each of the following sequences, find the limit as $n \to \infty$ and determine whether it converges pointwise or uniformly. Show your reasoning.

(a)
$$\frac{\sin x}{n}$$
 on \mathbb{R}

(b)
$$\frac{x}{nx+1}$$
 on $(0,1)$

(c)
$$x^n$$
 on $[0, 0.999]$

(a)
$$\left|\frac{\text{Rin} \times 1}{\Omega}\right| \leq \frac{1}{\Omega} \rightarrow 0$$
 (since $\left|\frac{\text{Rin} \times 1}{\Omega}\right| \leq 1$)

Since
$$\left|\frac{\sin x}{n} - 0\right| \le \frac{1}{n}$$
 and $\frac{1}{n} \to 0$,

by the Comparison theorem for uniform convergence, $(\sin x)/n \rightarrow 0$ uniformly on R.

(b)
$$\frac{\chi}{n\chi+1} = \frac{1}{n+\frac{1}{\chi}} \rightarrow 0$$
 as $n \rightarrow \infty$ for each $\chi \in (0,1)$.

Since

$$\left|\frac{x}{nx+1}-0\right|=\frac{1}{n+\frac{1}{x}}\leq\frac{1}{n}$$
 and $\frac{1}{n}\to 0$

by the comparison theorem for uniform convergence, $\times/(nx+1)$ converges uniformly to 0 on (0,1).

(c) Since
$$|x| < 1$$
 for $x \in [0, 6.999]$, $x^{2} \rightarrow 0$.

Since

$$|z^{-0}| = |z|^{2} \leq (.999)^{2}$$
 and $(.999)^{2} \rightarrow 0$,

by the companison theorem for uniform convergence, $x^2 \rightarrow 0$ uniformly on [9.199]