(Sections 1.3)

Exponential and Sinusoidal Signals

• They arise frequently in applications, and many other signals can be constructed from them.

Continuous-time complex exponential and sinusoidal signals:

$$x(t) = Ce^{at}$$

where C and a are in general complex numbers.

Real exponential signals: C and a are reals.

- The case a>0 represents exponential growth. Some signals in unstable systems exhibit exponential growth.
- ullet The case a<0 represents exponential decay. Some signals in stable systems exhibit exponential decay.

1

Periodic complex exponential:

$$e^{jw_0t}$$

where $j = \sqrt{-1}$, $w_0 \neq 0$ is real, and t is the time.

Euler's formula: $e^{jw_0t} = \underbrace{\cos(w_0t)}_{\operatorname{Re}\{e^{jw_0t}\}} + j\underbrace{\sin(w_0t)}_{\operatorname{Im}\{e^{jw_0t}\}}$. Note that

- $|e^{jw_0t}| = 1$ and $\angle e^{jw_0t} = w_0t$.
- $e^{j2\pi k} = 1$, for $k = 0, \pm 1, \pm 2, \dots$

Since

$$e^{jw_0\left(t+\frac{2\pi}{|w_0|}\right)} = e^{jw_0t}e^{j2\pi\frac{w_0}{|w_0|}} = e^{jw_0t}\underbrace{e^{j2\pi\mathrm{sign}(w_0)}}_{=1} = e^{jw_0t}$$

we have

$$e^{jw_0t}$$
 is periodic with fundamental period $\frac{2\pi}{|w_0|}$.

Note that

- e^{jw_0t} and e^{-jw_0t} have the same fundamental period.
- Energy in e^{jw_0t} : $\int_{-\infty}^{\infty} |e^{jw_0t}| dt = \int_{-\infty}^{\infty} 1.dt = \infty$
- Average Power in e^{jw_0t} : $\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|e^{jw_0t}|dt=\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T1.dt=1$.
- $\{e^{jkw_0t}\}_{k=0,\pm 1,...}$, are all periodic with period $\frac{2\pi}{|w_0|}$. They are called a harmonically related set of complex exponentials with e^{jkw_0t} being the k-th harmonic.

Sinusoidal signals:

$$A\cos(w_0t+\phi)$$
 and $A\sin(w_0t+\phi)$.

where A is real, w_0 is real, ϕ is real, and t is the time. (Graph one of the signals!)

- They arise in systems that conserve energy such as an ideal LC circuit or an ideal mass-spring system.
- Periodic with the same fundamental period $T_0=2\pi/|w_0|$
 - $|w_0|$ is the fundamental frequency
 - $f_0 := 1/T_0 = |w_0|/(2\pi)$ is the number of cycles per unit time (large f_0 means more oscillatory)
 - |A| is the amplitude
 - $|\phi|$ is the size of the phase shift.
- Since

$$e^{j(w_0t+\phi)} = \cos(w_0t+\phi) + j\sin(w_0t+\phi)$$

we can write

$$A\cos(w_0t + \phi) = A\operatorname{Re}(e^{j(w_0t + \phi)})$$

$$A\sin(w_0t + \phi) = A\operatorname{Im}(e^{j(w_0t + \phi)}).$$

• Recall, for any complex number z,

$$z = \operatorname{Re}(z) + j\operatorname{Im}(z)$$
 $z^* = \operatorname{Re}(z) - j\operatorname{Im}(z)$

therefore

$$\operatorname{Re}(z) = \frac{z + z^*}{2}$$
 $\operatorname{Im}(z) = \frac{z - z^*}{2j}$.

Hence, we can also write

$$A\cos(w_{0}t + \phi) = \frac{A}{2} \left(e^{j(w_{0}t + \phi)} + \left(e^{j(w_{0}t + \phi)} \right)^{*} \right) = \frac{A}{2} \left(e^{j(w_{0}t + \phi)} + e^{-j(w_{0}t + \phi)} \right)$$

$$= \frac{A}{2} e^{j\phi} e^{jw_{0}t} + \frac{A}{2} e^{-j\phi} e^{-jw_{0}t}$$

$$A\sin(w_{0}t + \phi) = \frac{A}{2j} \left(e^{j(w_{0}t + \phi)} - \left(e^{j(w_{0}t + \phi)} \right)^{*} \right) = \frac{A}{2} e^{-j\pi/2} \left(e^{j(w_{0}t + \phi)} - e^{-j(w_{0}t + \phi)} \right)$$

$$= \frac{A}{2} e^{j(\phi - \pi/2)} e^{jw_{0}t} - \frac{A}{2} e^{-j(\phi + \pi/2)} e^{-jw_{0}t}.$$

General complex exponential signals:

$$Ce^{at}$$

where C and a are complex numbers.

If

$$C = |C|e^{j\theta}$$
 and $a = r + jw_0$

then

$$Ce^{at} = |C|e^{j\theta}e^{(r+jw_0)t} = |C|e^{rt}e^{j(w_0t+\theta)} = \underbrace{|C|e^{rt}\cos(w_0t+\theta)}_{\text{Re}(Ce^{at})} + j\underbrace{|C|e^{rt}\sin(w_0t+\theta)}_{\text{Im}(Ce^{at})}.$$

- If r = 0, the real and imaginary part are sinusoidals.
- If r > 0, the real and imaginary part are sinusoidals multiplied by a growing exponential. Such signals arise in unstable systems.
- If r < 0, the real and imaginary part are sinusoidals multiplied by a decaying exponential. Such signals arise in stable systems, for example, in RLC circuits, or in mass-spring-friction system, where the energy is dissipated due to the resistors, friction, etc.

Discrete-time complex exponential and sinusoidal signals:

$$x[n] = Ce^{\beta n}$$

where C and β are complex numbers.

Analogous to the continuous-time case with the following differences: (w_0 is real below)

• $e^{jw_0t} = e^{jw_1t}$ are different signals if $w_0 \neq w_1$, whereas

$$e^{jw_0n} = e^{jw_1n}$$
 if $w_0 - w_1 = 2k\pi$, for some $k \in \{0, \pm 1, \dots\}$.

(Explain this on the unit circle!)

Therefore, it is sufficient to consider only the case $w_0 \in [0, 2\pi)$ or $w_0 \in [-\pi, \pi)$.

- As w_0 increases e^{jw_0n} oscillates at higher frequencies, whereas this is not the case for e^{jw_0n} . In the figure below, the frequency of oscillations increases as w_0 changes from 0 to π then it decreases as w_0 changes from π to 2π .
- e^{jw_0t} is periodic with fundamental period $2\pi/|w_0|$, whereas

$$e^{jw_0n}$$
 is periodic $\Leftrightarrow e^{jw_0n}=e^{jw_0(n+M)}$ for some integer $M>0$, for all n $\Leftrightarrow e^{jw_0M}=1$ for some integer $M>0$ $\Leftrightarrow w_0M=2\pi m$ for some integers $m,M>0$ $\Leftrightarrow \frac{w_0}{2\pi}$ is rational.

• If $\frac{w_0}{2\pi}=\frac{m}{M}$ for some integers m and M which have no common factors, then the fundamental period is $M=\frac{2m\pi}{w_0}$ because

$$e^{jw_0(n+N)} = e^{jw_0n}e^{j\frac{2\pi m}{M}N}.$$

The same observations hold for discrete-time sinusoids.

Fig. 1. To determine the fundamental period, count the number of steps to get back to 1!

Examples:

- 1) Is $x[n] = e^{jn2\pi/3} + e^{jn3\pi/4}$ periodic? If it is periodic, what's its fundamental period? For $e^{jn2\pi/3}$, $w_0/(2\pi) = 1/3$, so $e^{jn2\pi/3}$ is periodic with fundamental period 3. For $e^{jn3\pi/4}$, $w_0/(2\pi) = 3/8$, so $e^{jn3\pi/4}$ is periodic with fundamental period 8. x[n] is periodic with fundamental period 24 = lcm(3,8).
- 2) Is $x[n] = \sin(3n/4)$ periodic? If it is periodic, what's its fundamental period? Since $\frac{w_0}{2\pi} = \frac{3}{8\pi}$ is irrational, x[n] is not periodic; see the figure where x[n] = 0 only at n = 0.

3) Is $x[n] = \sin(8\pi n/31)$ periodic? If it is periodic, what's its fundamental period? Since $w_0/(2\pi) = 4/31$, x[n] is periodic with fundamental period 31; see the figure where x[0] = x[31] = 0. Note that the continuous-time signal $\sin(8\pi t/31)$ has fundamental period 31/4, hence it is 0 at t = 31/4. But x[n] has no 31/4—th sample and it misses 0 between x[7] and x[8].

Harmonically related discrete-time periodic exponentials:

$$\phi_k[n] = \{e^{jk(2\pi/N)n}\}_{k=0,\pm1,\dots},$$
 are all periodic with period $N.$

However, unlike the continuous-time signals, these signals are not all distinct because

$$\phi_{k+N}[n] = e^{j(k+N)(2\pi/N)n} = e^{jk(2\pi/N)n}e^{j2\pi n} = \phi_k[n].$$

This implies that there are only N distinct signals in this set, for example,

$$\phi_0[n] = 1$$

$$\phi_1[n] = e^{j2\pi n/N}$$

$$\phi_2[n] = e^{j4\pi n/N}$$

$$\vdots$$

$$\phi_1[n] = e^{j2(N-1)\pi/N}.$$