Pràctica 2: WATER QUALITY

Rubén Simó Marín – 1569391 Sergio Navarrete Villalta – 1564572

Alejandro García García – 1564537

1. 1. EDA (exploratory data analysis)

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	NaN	204.890	20791.319	7.300	368.516	564.309	10.380	86.991	2.963	C
1	3.716	129.423	18630.058	6.635	NaN	592.885	15.180	56.329	4.501	(
2	8.099	224.236	19909.542	9.276	NaN	418.606	16.869	66.420	3.056	(
3	8.317	214.373	22018.417	8.059	356.886	363.267	18.437	100.342	4.629	(
4	9.092	181.102	17978.986	6.547	310.136	398.411	11.558	31.998	4.075	(
271	4.668	193.682	47580.992	7.167	359.949	526.424	13.894	66.688	4.436	•
272	7.809	193.553	17329.802	8.061	NaN	392.450	19.903	NaN	2.798	•
273	9.420	175.763	33155.578	7.350	NaN	432.045	11.039	69.845	3.299	
274	5.127	230.604	11983.869	6.303	NaN	402.883	11.169	77.488	4.709	
3275	7.875	195.102	17404.177	7.509	NaN	327.460	16.140	78.698	2.309	

```
print("Tipus d'atributs:")
dataset.dtypes
Tipus d'atributs:
                  float64
рh
Hardness
                  float64
Solids
                  float64
Chloramines
                  float64
Sulfate
                  float64
Conductivity
                 float64
Organic_carbon
                  float64
Trihalomethanes
                  float64
Turbidity
                  float64
Potability
                    int64
dtype: object
```


0 1998 1 1278

Name: Potability, dtype: int64

1. 2. Preprocessing (normalitzation, outlier removal, feature selection..)

```
dataset.isnull().sum()

ph 491
Hardness 0
Solids 0
Chloramines 0
Sulfate 781
Conductivity 0
Organic_carbon 0
Trihalomethanes 162
Turbidity 0
Potability 0
dtype: int64
```



```
#normalitzacio de dades utilitzant preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn import preprocessing
scaler = StandardScaler()
standardized = scaler.fit transform(dataset)
standardized dataset = pd.DataFrame(standardized, columns=dataset.columns)
print(standardized dataset)
              ph Hardness Solids Chloramines Sulfate Conductivity \
          -0.025
                     0.259 -0.139
                                        0.112
                                                 0.966
                                                              1.709
          -2.285 -2.036 -0.386
                                        -0.308 -0.015
      1
                                                              2.063
           0.697 0.848 -0.240
                                        1.361 -0.015
                                                             -0.094
           0.845 0.548
                            0.000
                                        0.592
                                                 0.644
                                                             -0.779
           1.373 -0.464 -0.460
                                       -0.364
                                                -0.650
                                                             -0.344
             . . .
                       . . .
                            . . . .
                                          . . .
                                                  . . .
                                                                . . .
      3271 -1.637
                  -0.082
                            2.916
                                        0.028
                                                 0.729
                                                              1.240
      3272 0.500
                  -0.086 -0.534
                                        0.593 -0.015
                                                             -0.418
      3273 1.596
                  -0.627 1.271
                                        0.144 -0.015
                                                              0.072
      3274 -1.325 1.041 -1.144
                                       -0.517 -0.015
                                                             -0.289
                                                             -1.222
      3275 0.545 -0.039 -0.526
                                        0.245 -0.015
           Organic_carbon Trihalomethanes Turbidity Potability
      0
                   -1.181
                                    1.305
                                             -1.286
                                                         -0.800
      1
                    0.271
                                   -0.639
                                              0.684
                                                        -0.800
      2
                    0.781
                                    0.001
                                             -1.167
                                                        -0.800
      3
                    1.255
                                    2.152
                                              0.848
                                                        -0.800
                   -0.824
                                   -2.182
                                              0.139
                                                        -0.800
      . . .
                      . . .
                                      . . .
                                                . . .
                                                           . . .
      3271
                   -0.118
                                    0.018
                                              0.601
                                                         1.250
      3272
                   1.699
                                    0.014
                                             -1.498
                                                         1.250
      3273
                   -0.981
                                    0.218
                                             -0.856
                                                         1.250
```

0.703

0.780

0.951

-2.124

1.250

1.250

[3276 rows x 10 columns]

-0.942

0.561

3274

3275

1. 3. Model Selection

- Logistic Regression
- Nearest K Neighbors
- ▶ SVM

1. 4. Cross-validation

- Cross-validation k-fold

- Cross-validation sufflesplit

Leave-one-out


```
folds = range(2,31)

def evaluatemodel(cv, standar):

    x = standar[:,[0,1,2,3,4,5,6,7,8]]
    y = standar[:,9]
    lab = preprocessing.LabelEncoder()
    y_transformed = lab.fit_transform(y)

    logReg = LogisticRegression()
    scores = cross_val_score(logReg, x, y_transformed, scoring='accuracy', cv=cv, n_jobs=-1)
    return mean(scores), scores.min(), scores.max()

for k in folds:
    cv = KFold(n_splits=k, shuffle=True, random_state=10)
    k_mean, k_min, k_max = evaluatemodel(cv, standardized)
    print('-> folds=%d, accuracy=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, k_max))|
```

```
-> folds=2, accuracy=0.611 (0.596,0.626)
-> folds=3, accuracy=0.614 (0.589,0.631)
-> folds=4, accuracy=0.611 (0.584,0.628)
-> folds=5, accuracy=0.611 (0.569,0.631)
-> folds=6, accuracy=0.611 (0.577,0.632)
-> folds=7, accuracy=0.610 (0.577,0.643)
```

1. 5. Metric Analysis

- -Accuracy_score
- -F1_score
- -Average_precision_score

```
def PRCurve(y_v,probs, n_classes):
    precision = {}
    recall = {}
    average precision = {}
    plt.figure()
    for i in range(n classes):
        precision[i], recall[i], = precision_recall_curve(y_v == i, probs[:, i])
average_precision[i] = average_precision_score(y_v == i, probs[:, i])
        plt.plot(recall[i], precision[i],
        label='Precision-recall curve of class {0} (area = {1:0.2f})'
                                 ''.format(i, average_precision[i]))
        plt.xlabel('Recall')
        plt.ylabel('Precision')
        plt.legend(loc="upper right")
def RocCurve(y_v, probs, n_classes):
    fpr = \{\}
    tpr = {}
    roc auc = {}
    for i in range(n classes):
        fpr[i], tpr[i], = roc curve(y v == i, probs[:, i])
        roc_auc[i] = auc(fpr[i], tpr[i])
    # Compute micro-average ROC curve and ROC area
    # Plot ROC curve
    plt.figure()
    for i in range(n classes):
        plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc auc[i]))
    plt.legend()
```

LOGISTIC REGRESION Logistic Regression Score: 0.6036585365853658 Logistic Regression Cross Val Score: 0.611450559762622 260 Errores de clasificacion de un total de 656 396 Aciertos de clasificacion de un total de 656 Confusion matrix: [[396 0] [260 0]] Logistic Regression F1 Score: 0.6036585365853658

NEAREST K NEIGHBORS

k=1: 266.301 errores de clasificación de un total de 655
k=2: 243.225 errores de clasificación de un total de 655
k=3: 256.373 errores de clasificación de un total de 655
k=4: 244.64 errores de clasificación de un total de 655
k=5: 251.497 errores de clasificación de un total de 655
k=6: 243.613 errores de clasificación de un total de 655
k=7: 247.296 errores de clasificación de un total de 655
k=8: 242.405 errores de clasificación de un total de 655
k=9: 243.781 errores de clasificación de un total de 655
k=10: 239.26 errores de clasificación de un total de 655

Nearest K Neighbour Score: 0.6509146341463414

Nearest K Neighbour Cross Val Score: 0.6389266782175319

229 Errores de clasificacion de un total de 656 427 Aciertos de clasificacion de un total de 656

Confusion matrix:

[[360 36] [193 67]]

Nearest K Neighbour F1 Score: 0.6509146341463414

```
SVM with rbf kernel Score: 0.6935975609756098
SVM with rbf kernel Cross Val Score: 0.6595395555974951

201 Errores de clasificacion de un total de 656
455 Aciertos de clasificacion de un total de 656

Confusion matrix:
[[381 15]
[186 74]]

SVM with rbf kernel F1 Score: 0.6935975609756098
```

```
SVM Linear Score: 0.6036585365853658
SVM Linear Cross Val Score: 0.611450559762622

260 Errores de clasificacion de un total de 656
396 Aciertos de clasificacion de un total de 656

Confusion matrix:
[[396 0]
[260 0]]

SVM Linear F1 Score: 0.6036585365853658
```


Logistic Regression

	precision	recall	f1-score	support
class 0 class 1	0.60 0.00	1.00 0.00	0.75 0.00	396 260
accuracy macro avg	0.30	0.50	0.60 0.38	656 656
weighted avg	0.36	0.60	0.45	656

Nearest K Neighbors

Nearest K Nei	ghbour precision	recall	f1-score	support
class 0 class 1	0.65 0.65	0.91 0.26	0.76 0.37	396 260
accuracy macro avg weighted avg	0.65 0.65	0.58 0.65	0.65 0.56 0.60	656 656 656

SVM (SVM amb rbf)

SVM	precision	recall	f1-score	support
class 0 class 1	0.67 0.83	0.96 0.28	0.79 0.42	396 260
accuracy macro avg weighted avg	0.75 0.74	0.62 0.69	0.69 0.61 0.65	656 656

1. 6. Hyperparameter Search

Exhaustive Grid Search

Randomized Parameter Optimization

Bayesian optimization search

```
# GridSearchCV
from sklearn.model_selection import GridSearchCV

parameters = {'kernel':('linear', 'rbf'), 'C':[0,0.2,0.5,0.75,1,1.25,1.5], 'gamma':[0.09,0.08,0.07,0.1]}
svc = svm.SVC()
clf = GridSearchCV(svc, parameters)
search = clf.fit(x_train,y_train)
print("GridSearchCV: ", search.best_params_)

# RandomizedSearchCV
from sklearn.model_selection import RandomizedSearchCV
clf = RandomizedSearchCV(svc, parameters, random_state=0)
search = clf.fit(x_train,y_train)
print("RandomizedSearchCV: ", search.best_params_)
```

```
GridSearchCV: {'C': 1.25, 'gamma': 0.1, 'kernel': 'rbf'}
RandomizedSearchCV: {'kernel': 'rbf', 'gamma': 0.09, 'C': 1}
```

GridSearchCV

SVM with rbf kernel Score: 0.6966463414634146 SVM with rbf kernel Cross Val Score: 0.6599222544632911 199 Errores de clasificacion de un total de 656 457 Aciertos de clasificacion de un total de 656

Confusion matrix: [[376 20] [179 81]]

SVM with rbf kernel F1 Score: 0.6966463414634146

RandomizedSearchCV

SVM with rbf kernel Score: 0.6905487804878049 SVM with rbf kernel Cross Val Score: 0.6591594779568074

203 Errores de clasificacion de un total de 656 453 Aciertos de clasificacion de un total de 656

Confusion matrix: [[379 17] [186 74]]

SVM with rbf kernel F1 Score: 0.6905487804878049

2. Apartat (A): Comparativa de models


```
        Correct classification Logistic
        0.5 % of the data:
        0.6153846153846154

        Correct classification SVM
        0.5 % of the data:
        0.5634920634920635

        Correct classification Logistic
        0.7 % of the data:
        0.5940996948118006

        Correct classification SVM
        0.7 % of the data:
        0.5534079348931842

        Correct classification Logistic
        0.8 % of the data:
        0.6448170731707317

        Correct classification SVM
        0.8 % of the data:
        0.573170731707317
```


