Álgebra 1 - Turma D $-2^{\circ}/2017$

1^a Lista de Exercícios – Conjuntos

Prof. José Antônio O. Freitas

Exercício 1: Dados os conjuntos $A = \{0, 1, 2\}$, $B = \{0, 2, 3\}$ e $C = \{0, 1, 2, 3, 4\}$, classifique as afirmações a seguir em verdadeira ou falsa:

a) $A \subseteq B$

e) $\{0, 2\} \subseteq C$

b) $A \in C$

f) $1 \subseteq C$

c) $B \subseteq C$

g) $\{1,4\} \in C$

d) $\{0, 2\} \subseteq B$

h) $\{0,3\} \subseteq B$

Exercício 2: Dê exemplos de conjuntos não vazios A, B e C tais que:

a) $A \subseteq B$, $C \subseteq B$ e $A \cap C =$.

b) $A \subseteq B$, $C \not\subset B$ e $A \cap C =$.

c) $A \subseteq C$, $A \neq C$ e $B \cap C =$.

d) $A \subseteq (B \cap C)$, $B \subseteq C$, $B \neq C$ e $A \neq C$.

Exercício 3: Em cada um dos seguintes itens, determine se a afirmação é verdadeira ou falsa. Se for verdadeira, demonstre-a. Se for falsa, exiba um exemplo mostrando que a afirmação é falsa.

a) Se $x \in A$ e $A \subseteq B$, então $x \in B$.

b) Se $A \not\subset B$ e $B \subset C$, então $A \not\subset C$.

c) Se $A \not\subset B$ e $B \not\subset C$, então $A \not\subset C$.

d) Se $x \in A$ e $A \not\subset B$, então $x \notin B$.

e) Se $A \subset B$ e $x \notin B$, então $x \notin A$.

Exercício 4: Determinar os elementos dos conjuntos $A, B \in E$ tais que:

$$A \cap B = \{b, c\}, \quad C_E(A) = \{d, e, f\} \quad e \quad C_E(B) = \{a, e, f\}.$$

Exercício 5: Dados os conjuntos $E = \{1, 2, 3, a, b, c, d\}$, $A = \{1, 2, 4, d\}$ e $B = \{a, 2, 4, b, 5\}$, determine:

a) $A \cup B$

c) $A^C \cup B$

b) $A \cup B^C$

d) $(A \cup B)^C$

Exercício 6: Dados os conjuntos $A = \{3, 6, 9, 12, 15, 18\}, B = \{2, 3, 5, 7, 11, 13, 17, 19\}$ e $C = \{1, 2, 3, 4, 5, \dots, 20\}$ calcule:

a) A - B

d) (A - B) - C

g) $A - (B \cap C)$

b) A-C

e) A - (B - C)

h) $(A \cup C) - B$

c) B-C

f) $(A \cup B) - C$

i) $(B \cap C) - A$

Exercício 7: Demonstre que:

a) Se $A \subseteq B$ e $C \subseteq D$, então $A \cap C \subseteq B \cap D$.

b) Se $A \subseteq B$ e C = B - A, então A = B - C.

c) Se $A \cap B = \emptyset$ e $A \cup B = C$, então A = C - B.

d) Se $A \cup B = E$, então $C_E(A) \subseteq B$ (Aqui suponha que $A \subseteq E$ e $B \subseteq E$).

e) Se $A \cap B = \emptyset$, então $A \cup C_E(B) = C_E(B)$ (Aqui suponha que $A \subseteq E$ e $B \subseteq E$).

f) A = B se, e somente se, A - B = B - A;

g) $A \subseteq B$ se, e somente se, $A - B = \emptyset$;

h) $A \cup B = \emptyset$ se, e somente se, $A = \emptyset$ e $B = \emptyset$;

i) $A \cup B = A \cap B$ se, e somente se, A = B;

j) $C_E(A) \subseteq C_E(B)$ se, e somente se, $A \cup B = A$ (Aqui suponha que $A \subseteq E$ e $B \subseteq E$);

k) $C_E(A) \subseteq C_E(B)$ se, e somente se, $A \cap B = B$ (Aqui suponha que $A \subseteq E$ e $B \subseteq E$);

l) $A \subseteq B$ se, e somente se, $A \cap B = A$.

Exercício 8: Demonstre as seguintes igualdades.

a) $A \cup (C_E(A) \cap B) = A \cup B$ (Aqui suponha que $A \subseteq E$);

b) $A \cap (C_E(A) \cup B) = A \cap B$ (Aqui suponha que $A \subseteq E$);

c) $(A - B) - C = A - (B \cup C);$

d) $A \cup (B - C) = (A \cup B) - (C - A)$;

e) $A \cap (B - C) = (A \cap B) - (A \cap C);$

f) $A - (B \cup C) = (A - B) \cap (A - C)$;

g) $A - (B \cap C) = (A - B) \cup (A - C);$

h) $(A \cup B) - C = (A - C) \cup (B - C);$

- i) $(A \cap B) C = (A C) \cap (B C);$
- j) $(A \cap B) \cap (A B) = (A B) \cap (B A) = \emptyset$;
- k) $(A B) \cup (B A) = (A \cup B) (A \cap B);$
- 1) $A (A B) = A \cap B$;
- m) (A B) B = A B;
- n) $A \cup (B \cap (A \cup C)) = A \cup (B \cap C);$
- o) $C_E(A \cap (B \cup C)) = C_E(A) \cup (C_E(B) \cap C_E(C))$ (Aqui suponha que $A \subseteq E$, $B \subseteq E$ e $C \subseteq E$).
- p) $C_E(A \cap B \cap C) = C_E(A) \cup C_E(B) \cup C_E(C)$ (Aqui suponha que $A \subseteq E$, $B \subseteq E$ e $C \subseteq E$).
- q) $C_E(A \cup B \cup C) = C_E(A) \cap C_E(B) \cap C_E(C)$ (Aqui suponha que $A \subseteq E$, $B \subseteq E$ e $C \subseteq E$).

Exercício 9: Sejam $A, B, C \in D$ conjuntos.

- a) Mostre que A e B são disjuntos se, e somente se, para todo conjunto não vazio C, $A \times C$ e $B \times C$ são disjuntos.
- b) Suponha $A \neq \emptyset$ e $C \neq \emptyset$, com $A \neq C$. Mostre que $A \subseteq B$ e $C \subseteq D$ se, e somente se, $A \times C \subseteq B \times D$.

Exercício 10: Sejam X_1, X_1, Y_1 e Y_2 subconjuntos contidos num conjunto E. Suponha que $X_1 \cup X_2 = E, Y_1 \cap Y_2 = \emptyset, X_1 \subseteq Y_1$ e $X_2 \subseteq Y_2$. Prove que $X_1 = Y_1$ e $X_2 = Y_2$.