

BEIJING 2017

用AI高效测试移动应用

杨峻峰

Use Al to Effectively Test Mobile Apps

nimbledroid

Junfeng Yang

My Passion: Build Great Dev Tools

Tsinghua

Loves coding, hates testing

Stanford Microsoft Columbia

- Years of research, development, and teaching in the area
- Helped developers of widely used systems (e.g., Linux)

NimbleDroid

- Founded NimbleDroid backed by NSF, Columbia, IDG, etc.
- Example customers: eBay, flipkart, Pinterest, Disney

Disclaimer

This talk is based on experiences analyzing apps in overseas markets

May not be completely applicable to apps in Chinese markets

In fact, our service nimbledroid.com requires VPN to access from China

Can be helpful for app developers who target overseas markets

Two Competing Goals of App Development

App Quality

Development Speed

App Quality Matters

Issues like crashes, memory leaks, and slowdowns decrease user engagement and revenue

Development Speed Matters

User demands and market competitions change all too fast

Continuous Integration (CI) to the Rescue

CI Advantages

Better app quality

- A comprehensive CI testsuite continuously tests for errors
- Avoid building on the wrong foundation

Faster development speed

- Developers get instant feedback on code checkins, instead of forensically analyzing where errors creep in
- More errors detected during development ⇒ shorter code freeze or manual testing durations

But, CI Poses Big Challenges to Testing

Manual testing

- Slow and expensive, at odds with CI
- Imagine poor manual testers trying to keep up with 10+ checkins per day on 20+ devices with manual device rotation testing after each click

Automated testing

- Supposedly test automation is good for Cl
- But, in practice, automated app UI test automation still requires much babysitting from developers

Today's Automation Needs Devs to Babysit

I have worked in several companies that have had goals of automated UI regression test suites, but I've never worked at a company that pulled it off successfully

atiffany @HackerNews

Huge pain point echoed by 100+ devs we've interviewed

Why Are Developers Forced to Spend So Much Time Here?

Have to create **low-level**, click-by-click tests

Test failures are often caused by tests themselves or test infrastructure, **not** bugs in code

Have to update tests whenever they become **outdated** to app UI

Today's Automation is Not Smart (1)

Lacks human vision, language understanding, context, judgement

Example test: "adding to shopping cart works"

Human vision

recognize shopping cart image

Language understanding recognize items for sale and prices

Context

shopping app, need to test

- items added to cart are there
- items not added are not there
- ...

Judgement

this popup ad should be bypassed without failing the test

Today's Automation is Not Smart (2)

Lacks app code and execution understanding, system monitoring

Our Vision: Al for App QA

If we take:

Advanced program analysis including

- App instrumentation and monitoring
- Automatic error detection

Advanced AI and machine learning including

- Natural language processing
- Computer vision / image recognition

Q: How intelligent can we make an automated QA platform?

A: Very.

Outline

- Vision: Al for app QA
- Current system we've built
 - Zoom in: top issues slowing down your app

Intelligent Mobile App QA

Auto-test every build of your Android app for critical issues

System Architecture

Demo

1. Multiple scenarios crawled by UI droid

2. Scenario overview with trending analytics

3. Call stack with times for detailed diagnosis

User Quotes

Sr Mobile Engineering Manager, Yahoo

"Performance tuning is difficult, tedious and time consuming. NimbleDroid makes the task suck infinitely less."

Mobile Practice Lead, Abercrombie & Fitch

"I would highly recommend nimbledroid for anyone looking to improve startup performance of their Android application."

Software Engineer, Azimo

"... NimbleDroid makes the task easier and more pleasant."

Android Software Architect, New York Times

"By far my favorite androiddev tool in a long time"

VP of Product and Engineering, RunKeeper

"Automatic discovery of user flows was so good we thought it was humans doing it via Mechanical Turk!"

Community Recognition

NYTimes dev blog post on how they leveraged NimbleDroid to make their Android app start 3x faster

Top result of Google search "sdk slowing app down"

National Science Foundation **SBIR Award**

Invited to run App Garage Performance Clinic at Droidcon London

Invited talks on Android performance at Droidcon and AnDevCon

90% of our tech blog posts were **featured by Android Weekly**, the largest Android development newsletter

Outline

- Vision: Al for app QA
- Current system we've built

Three Types of App Starts

- Cold start: after user hasn't run app for a while
 - App killed by Android
 - Need to load app's code and assets, create activities, etc
- First start: fresh after installation
 - App and Android do more than cold start, such as db init, cache init, DEX compilation (if multidex), letting users input credentials
- Warm start: shortly after user switches away from app
 - App still cached in memory

Limit Cold Start to 2 Seconds

30-40% top apps start in 2s 70% start in 3s

http://blog.nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.html

Top 5 Issues that Slow Down App Start

- Reflection
- Dependency injection
- Too much work in main thread
- ClassLoader.getResourceAsStream() and the like
- Slow 3rd party SDKs

Reflection Micro-benchmark

```
public static class DummyItem {}

private void createDummyItem() {
    for(int i = 0; i < 1_000_000; i++)
        new DummyItem();
}

private void createDummyItemWithReflection() {
    for(int i = 0; i < 1_000_000; i++)
        DummyItem.class.newInstance();
}</pre>
```

https://github.com/NimbleDroid/ReflectionTests

Reflection Micro-benchmark Results (ms)

Example: NYTimes

• http://open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/

One Performance Issue: Reflection

- NYTimes switched to custom type adapters
- Use Immutables to keep developer overhead to a minimum

Reducing reflection overhead

- Be extra careful with reflection in your Android app
- Avoid reflective type adapters when dealing with many objects

http://blog.nimbledroid.com/2016/02/23/slow-Android-reflection.html

Top 5 issues that slow down app start

Reflection

- Dependency injection
- Too much work in main thread
- ClassLoader.getResourceAsStream() and the like
- Slow 3rd party SDKs

Dependency injection

- Two possible approaches: dynamic (RoboGuice) vs static (Dagger1&2)
- Dynamic approach slows down app startup significantly!
 - RogoGuice is 5x or more slower on our micro-benchmark

 - O.8s, new version switched to dagger Erican Express 1.7s (switched to dagger), Groupon O.8s, Fandango 3.4s, ...
- One more thing: RoboGuice has 10,000 more methods than Dagger

Reducing dependency injection overhead

- Use Dagger libraries for dependency injection
- Use Dagger 2 if you can because it is slightly better than Dagger 1

http://blog.nimbledroid.com/2016/03/07/performance-of-dependency-injection-libraries.html

Top 5 issues that slow down app start

- Reflection
- Dependency injection

- Too much work in main thread
- ClassLoader.getResourceAsStream() and the like
- Slow 3rd party SDKs

Too much work in main thread

- Main thread responds to user actions
- Too much work → slow, janky
- Android's Strict Mode catches network, storage, and db accesses
- We've also seen data parsing, crypto, class initialization, ...

Example: Hollister

500,000 - 1,000,000 installs

Version 3.1.2

Startup: 5.22 seconds

Review from Jennifer Brundage

SLOW It never loads. Two articles of clothing will show up. I leave my phone for an hour still not loaded.

• Hollister spends ~2600ms to parse nationwide store info:

```
stores_af.json - 188 KB
stores_hco.json - 419 KB
stores_kids.json - 108 KB
```

Hollister 3.1.2 startup: 5.22s

Why so slow?

Analysis Info

- Summary
- Dependencies
- Vs Other Apps

Problem Methods

- * Thread.parkFor()
- AFSDK.prefetchData()
- CollectionDeserializer.deserialize
- ObjectMapper._findRootDeserial
- A MobileConfig.loadConfig()
- ♣x BeanDeserializerBase.resolve()
- AsyncHttpClient.getDefaultSchem
- Options.loadFromProperties()
- BeanDeserializerFactory.addBea

Startup Time 5.22 seconds

3.22 seconds longer than max recommended time.

Hung methods make the UI lag and become unresponsive to the user for longer than 32ms. Methods reported here are doing so because they are using the CPU during this time.

Hung Methods, CPU: 11 issues found

com.abercrombie.android.sdk.AFSDK.prefetchData()

com.fasterxml.jackson.databind.deser.std.CollectionDeserializer.deserialize()

com.fasterxml.jackson.databind.ObjectMapper._findRootDeserializer()

com.adobe.mobile.MobileConfig.loadConfig()

com.fasterxml.jackson.databind.deser.BeanDeserializerBase.resolve() Junieng@mmbieuroiu.com mttps.//mmbieuroiu.com

5709 ms

4987 ms

682 ms

555 ms

477 ms

Hollister 4.0.0 startup: 2.21s

Reducing work in main thread

- Move work to background
- Write more efficient code

Top 5 issues that slow down app start

- Reflection
- Dependency injection
- Too much work in main thread
- ClassLoader.getResourceAsStream() and the like
- Slow 3rd party SDKs

ClassLoader.getResourceAsStream()

```
public class DemoApplication extends Application {
    @Override
    public void onCreate () {
        super.onCreate();
        Properties properties = new Properties();
        try {
            properties.load(getClass().getResourceAsStream("/assets/test1.properties"));
        } catch (IOException e) { ...
        }
    }
}
```

- ~7ms on PC but ~1700 ms on Android (with 3K resource files)!
 - Extra work done in first call in Android: index all resources in APK, verify certificate, parse manifest file. Delay is proportional to APK size
- \downarrow 0.4s \downarrow 1.3s \swarrow \downarrow 1.7s
- Avoid ClassLoader.getResource*(); use Android's Resources

Top 5 issues that slow down app start

- Reflection
- Dependency injection
- Too much work in main thread
- ClassLoader.getResourceAsStream() and the like
- Slow 3rd party SDKs

Slow 3rd party SDKs

- They can slow down your app
- Hard to track down because code isn't written by you
- Not your fault, but you have to work around it @

10 slowest SDKs based on app startup delay

org.joda.time.DateTime()

```
import org.joda.time.DateTime;
import android.app.Application;

public class DemoApplication extends Application {
    static {
        new DateTime();
    }
}
```

- Even for this simple app, $\downarrow 0.4s$
- \(\psi \) \(\psi \) 2s
- Culprit: DateTime() calls getResourceAsStream() to load time zone data from APK
- Create your own fast DateTimeZoneProvider! See stackoverflow
- Or use date4j or joda-time-android

SDKs that call ClassLoader.getResource*()

SDK	# apps affected
mobileCore	251
SLF4J	70
StartApp	67
Joda-Time	55
TapJoy	52
Google Dependency Injection	46
BugSense	41
RoboGuice	35
OrmLite	26
•••	

20% SDKs call getResource*()

Apps affected by SDK getResrouce*()

Affected apps	Downloads
com.amazon.kindle	> 100,000,000
tunein.player	> 100,000,000
com.sgiggle.production	> 100,000,000
com.mobilemotion.dubsmash	> 50,000,000
com.sirma.mobile.bible.android	> 50,000,000
com. melodis. midomi Music Identifier. free mium	> 50,000,000
com.badoo.mobile	> 50,000,000
com.outfit7.talkingangelafree	> 50,000,000
com.loudtalks	> 50,000,000
com.quvideo.xiaoying	> 50,000,000
•••	

11% apps affected

Conclusions

- Vision: Al for Software QA
 - Competing app development goals: speed vs quality
 - CI helps, but raises challenges for test automation
 - Al can be the rescure
- Our current system
 - Intelligent crawler + app instrumentation
- Zoom in: top issues slowing down your app
 - Reflection, dependency injection, too much work in main thread, ClassLoader.getResourceAsStream() and the like, and slow 3rdparty SDKs

Test your app now at https://nimbledroid.com

关注QCon微信公众号, 获得更多干货!

Thanks!

