Xinyi Liu

☐ (734) 450-4260 • 5060 Edwards Mill Road, NC, 27612 • ☑ xinyiww@umich.edu • 📅 xinyibbtxdy

EDUCATION

University of North Carolina - Chapel Hill

Chapel Hill, NC

Ph.D. Biomedical Engineering, Robotics

Aug 2024 – Now

University of Michigan – Ann Arbor

Ann Arbor, MI

M.S. Electrical & Computer Engineering, Robotics

Aug 2021 - May 2023

Coursework: Experimental Unmanned Robotics, Linear Systems, Machine Learning, Information Theory

University of California, Berkeley

Berkeley, CA

Exchange Student (GPA: 3.96/4.00)

Sep 2019 - May 2020

Coursework: Artificial Intelligence, Experimental Control Design, Optimization Models in Engineering, 3D Vision

ShanghaiTech University

Shanghai, China

B.E. Electrical Engineering (Major GPA: 3.9/4.0 Rank: 2/66) Outstanding Graduates

Sep 2017 - Aug 2021

Publications

- X. Liu, T. Zhang, M. Johnson-Roberson, W. Zhi "SplaTraj: Camera Trajectory Generation with Semantic Gaussian Splatting" 2025 IEEE International Conference on Robotics and Automation (ICRA) (submitted) [arxiv]
- J. Li, **X. Liu**, J. Li, B. Zhu, J. Jiao, M. Tomizuka, C. Tang, and W. Zhan "Guided Online Distillation: Promoting Safe Reinforcement Learning by Offline Demonstration" 2024 IEEE International Conference on Robotics and Automation (ICRA) [arxiv, website]
- D.Isele, P. Gupta, **X. Liu**, S. Bae "Gaussian Lane Keeping: A Robust Prediction Pipeline" International Conference on Intelligent Transportation Systems, 2024 [arxiv, website].
- (Best Paper) S. Danforth, X. Liu, M. Ward, P. Holmes, and R. Vasudevan "Predicting Sagittal-Plane Swing Hip Kinematics in Response to Trips", RA-L and BioRob for the IEEE Robotics and Automation Letters, 2022 [DOI, video]
- S. Danforth, P. Holmes, **X. Liu**, M. Ward, and R. Vasudevan "Real-Time Trip-Recovery Planning in Robotic Prostheses using Predicted Sets of Human Motion", IEEE Transactions on Robotics, 2022.

RESEARCH EXPERIENCE

Camera Trajectory Generation with Semantic Gaussian Splatting

Pittsburgh, PA

Research Assistant at Group of Dr. Matthew Johnson-Roberson (Drop Lab) at CMU

April 2024 - Sep 2024

- Developed SplaTraj, a novel framework for generating semantically-aware camera trajectories using Gaussian splatting.
- Developed methods for querying photorealistic representations with language embeddings and formulated the camera trajectory generation as a continuous-time trajectory optimization problem.
- Successfully generated Radial Basis Function-based (RBF) camera trajectories that match user-specified language instructions
 with the ability to isolate and project specified spatial regions dynamically.
- First Authorship: Submitted to ICRA 2025.

Safe Reinforcement Learning Fine-Tuning in Driving Scenarios

Berkeley, CA

Research Assistant at Group of Dr. Masayoshi Tomizuka (MSC Lab) at UC Berkeley

June 2023 - Sep 2024

- Developed a versatile driving simulation platform capable of replaying real-world datasets and facilitating online training.
- Specified problem formulation and configuration spaces. Conducted offline training of a transformer model as a baseline.
- Implemented an online distillation procedure within the driving simulator, successfully extracting lightweight policies from the transformer model.
- We achieved approximately a 15% improvement in success rates for real-world traffic-driving tasks.

Swing Hip Recovery Behavior Modeling and Safe Planning

Ann Arbor, MI

Research Assistant at Group of Dr. Ram Vasudevan (ROAHM Lab) at UMich

Sep 2021 - Dec 2022

 Planned and executed human subject experiments to develop a trip-recovery dataset to analyze prosthetic wearers' responses following unexpected trips.

- Developed three distinct models to forecast hip trip-recovery behavior: a multi-output Gaussian process regression (Bayesian)
 model, a NARX (neural network) model, and a pendulum dynamics model.
- Designed and implemented a scuff-free trip-recovery planner, and compared its performance to a clinically utilized nominal phase-based controller. Demonstrated empirical superiority of our planner in terms of trip-recovery performance.
- Best Paper of BioRob for the IEEE Robotics and Automation Letters, 2022

Autonomous Mid-Air Docking of Drones

Berkeley, CA

Research Assistant at Group of Dr. Mark Mueller (HiPeR Lab) at UC Berkeley

Nov 2019 - Oct 2020

- Conducted thorough calibration and error analysis of the onboard positioning system's sensors (cameras and IMU units).
- Collaborated with a team to build simulation platform development, providing tests and extensions for real-world experiments.
- Implemented an onboard closed-loop control approach on simulated drones, enabling mid-air docking in simulation.

WORK EXPERIENCE

Honda Research Institute USA, Inc.

San Jose, CA

Research Intern, Autonomous Driving & Interactive Decision Making

Sep 2022 - Apr 2023

- Developed a C++-based obstacle-avoidance planning module to identify and correct unsafe or infeasible trajectories generated by the behavior planner. Successfully decreased the collision rate in simulation from 30% to less than 3%.
- Designed and Implemented multiple standard trajectory prediction modules and integrated them into the ROS-Carla simulator.
- Implemented robust Gaussian-based trajectory prediction predictor, the paper has been accepted by ICITS, 2024.

Rimble Inc. Berkeley, CA

Software Engineer Intern, Computer Vision Applications on E-sports Analytics

May 2021 - Aug 2021

- Prototyping a real-time Python pipeline for acquiring keyframes from ongoing e-sports events and streaming videos on Twitch.
- Designed and developed real-time game status tracker and odds analysis modules for e-sport interactive user interface.

Skills

Programming: Python, C/C++, MATLAB, R, LaTeX
Framework: PyTorch, TensorFlow, ROS, ROS2
Simulation: Carla, Gym, IsaacSim, Mujoco, OpenSim

Languages: English (Proficient), Chinese (Native), Cantonese (Intermediate), French (Intermediate)

PROJECT EXPERIENCE

Event-Based Corner Detection and Tracking

Shanghai, China

Graduate Thesis on Event Camera, State estimation

Mar 2021 - May 2021

- Developed a novel strategy of corner feature extraction from the input of an event camera.
- Proposed a new loss function D2D with an exact solver for fitting the spatial-temporal manifold.
- Built a C++ pipeline for corner detection and tracking to test the D2D loss function in simulation and real-world datasets.

Depth Estimation from a Single City-Scene Image

Berkeley, CA

Course Project on Computer Vision, Depth Estimation

Mar 2020 - May 2020

- Applied Manhattan assumption and vanishing point (VP) constraints to improve single-image depth estimation in city scenarios.
- Demonstrated improved depth estimation performance by 5% on average and enhanced depth estimate on edges and corners.