Alessandro Toigo

Programma

- Statistica descrittiva (riassumere molti dati attraverso poche caratteristiche essenziali)
- Probabilità
 (costruire un modello che preveda il risultato di un esperimento)
- Inferenza statistica (tarare i parametri del modello in base ai risultati dell'esperimento)
- Regressione lineare (riconoscere relazioni tra dati di tipo diverso)

Statistica e Probabilità

STATISTICA analisi dei risultati del passato

INFERENZA taratura del modello

PROBABILITÀ previsione dei risultati del futuro

ESPERIMENTO ALEATORIO = esito non scontato

ESEMPI:

- lancio di un dado
- lancio di tre monete
- sondaggio tra 100 studenti

ESPERIMENTO ALEATORIO = esito non scontato

ESEMPI:

- lancio di un dado
- lancio di tre monete
- sondaggio tra 100 studenti

EVENTO = proposizione circa il risultato dell'esperimento

ESEMPI:

- E = "uscirà 6"
- F = "uscirà testa al 2º lancio"
- G = "tutti e 100 gli intervistati saranno più bassi di 2 m"

 $\mathcal{E} = \text{insieme di tutti i possibili eventi}$

L'insieme \mathcal{E} è una logica booleana con le operazioni

$$\wedge = \mathsf{AND} \qquad \qquad \vee = \mathsf{OR} \qquad \qquad \overline{\cdot} = \mathsf{NOT}$$

$$\vee = \mathsf{OR}$$

$$\overline{\cdot} = \mathsf{NOT}$$

 $\mathcal{E} = \text{insieme di tutti i possibili eventi}$

L'insieme ${\mathcal E}$ è una logica booleana con le operazioni

$$\wedge = \mathsf{AND}$$

$$\vee = \mathsf{OR}$$

$$\overline{}=\mathsf{NOT}$$

$$(E \wedge F) \wedge G = E \wedge (F \wedge G)$$

$$\overline{E \wedge F} = \overline{E} \vee \overline{F}$$

$$E \wedge (F \vee G) = (E \wedge F) \vee (E \wedge G)$$

e similmente con
$$\lor \leftrightarrow \land$$

e similmente con
$$\lor \leftrightarrow \land$$

e similmente con
$$\lor \leftrightarrow \land$$

 $\mathcal{E} = \text{insieme di tutti i possibili eventi}$

L'insieme \mathcal{E} è una logica booleana con le operazioni

$$\wedge = \mathsf{AND}$$

$$\vee = \mathsf{OR}$$

$$\overline{} = \mathsf{NOT}$$

PROPRIETÀ:

$$(E \wedge F) \wedge G = E \wedge (F \wedge G)$$

e similmente con
$$\lor \leftrightarrow \land$$

$$\overline{E \wedge F} = \overline{E} \vee \overline{F}$$

e similmente con
$$\lor \leftrightarrow \land$$

$$E \wedge (F \vee G) = (E \wedge F) \vee (E \wedge G)$$

e similmente con
$$\lor \leftrightarrow \land$$

Si definiscono inoltre

$$\Omega = \text{evento certo}$$

$$:= E \vee \overline{E}$$

$$\emptyset =$$

 \emptyset = evento impossibile := $E \wedge \overline{E}$

 $\forall E$

E ed F sono incompatibili quando $E \wedge F = \emptyset$

E implica F quando $E \wedge F = E$

Definizione

Una *probabilità* è una qualsiasi funzione $\mathbb{P}: \mathcal{E} \to \mathbb{R}$ t.c.

- ② $\mathbb{P}(\Omega) = 1$ (normalizzazione)
- \odot Se E_1, E_2, \ldots, E_n sono a due a due incompatibili,

$$\mathbb{P}(E_1 \vee E_2 \vee \ldots \vee E_n) = \mathbb{P}(E_1) + \mathbb{P}(E_2) + \ldots + \mathbb{P}(E_n)$$
 (additività)

Definizione

Una *probabilità* è una qualsiasi funzione $\mathbb{P}: \mathcal{E} \to \mathbb{R}$ t.c.

- \odot Se E_1, E_2, \ldots, E_n sono a due a due incompatibili,

$$\mathbb{P}(E_1 \vee E_2 \vee \ldots \vee E_n) = \mathbb{P}(E_1) + \mathbb{P}(E_2) + \ldots + \mathbb{P}(E_n)$$
 (additività)

Conseguenze

- $0 \le \mathbb{P}(E) \le 1$
- **③** Se *E* implica *F*, allora $\mathbb{P}(E) \leq \mathbb{P}(F)$

Definizione

Una *probabilità* è una qualsiasi funzione $\mathbb{P}: \mathcal{E} \to \mathbb{R}$ t.c.

- ② $\mathbb{P}(\Omega) = 1$ (normalizzazione)
- Se E_1, E_2, \ldots, E_n sono a due a due incompatibili,

$$\mathbb{P}(E_1 \vee E_2 \vee \ldots \vee E_n) = \mathbb{P}(E_1) + \mathbb{P}(E_2) + \ldots + \mathbb{P}(E_n)$$
 (additività)

ATTENZIONE:

$$\mathbb{P}(T_1 \vee T_2 \vee T_3) \neq \mathbb{P}(T_1) + \mathbb{P}(T_2) + \mathbb{P}(T_3) = 150\% > 1$$

(a)
$$\mathbb{P}\left(\overline{E}\right) = 1 - \mathbb{P}(E)$$
: $1 \stackrel{(2)}{=} \mathbb{P}(\Omega)$

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(E \vee \overline{E})$$

$$1 \, = \, \mathbb{P}\left(\Omega\right) \, = \mathbb{P}\left(E \vee \overline{E}\right) \stackrel{\text{(3)}}{=} \, \mathbb{P}\left(E\right) + \mathbb{P}\left(\overline{E}\right) \qquad \text{perch\'e } E \wedge \overline{E} = \varnothing$$

$$\begin{array}{ll} \mathbf{1} \, = \, \mathbb{P}\left(\Omega\right) \, = \mathbb{P}\left(E \vee \overline{E}\right) \, = \, \mathbb{P}\left(E\right) + \mathbb{P}\left(\overline{E}\right) & \quad \text{perché $E \wedge \overline{E} = \varnothing$} \\ \Rightarrow \quad \mathbb{P}\left(\overline{E}\right) = \mathbf{1} - \mathbb{P}\left(E\right) & \quad \end{array}$$

$$\begin{array}{ll} 1 \, = \, \mathbb{P} \left(\Omega \right) \, = \mathbb{P} \left(E \vee \overline{E} \right) \, = \, \mathbb{P} \left(E \right) + \mathbb{P} \left(\overline{E} \right) & \text{perché } E \wedge \overline{E} = \varnothing \\ \\ \Rightarrow & \mathbb{P} \left(\overline{E} \right) = 1 - \mathbb{P} \left(E \right) \end{array}$$

0 $0 \le \mathbb{P}(E) \le 1$:

$$0\stackrel{(1)}{\leq}\mathbb{P}(E)$$

$$\begin{array}{ll} 1 \, = \, \mathbb{P}\left(\Omega\right) \, = \mathbb{P}\left(E \vee \overline{E}\right) \, = \, \mathbb{P}\left(E\right) + \mathbb{P}\left(\overline{E}\right) & \text{perché } E \wedge \overline{E} = \varnothing \\ \\ \Rightarrow & \mathbb{P}\left(\overline{E}\right) = 1 - \mathbb{P}\left(E\right) \end{array}$$

0 $0 \le \mathbb{P}(E) \le 1$:

$$0 \leq \mathbb{P}(E) = 1 - \mathbb{P}(\overline{E})$$

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(E \vee \overline{E}) = \mathbb{P}(E) + \mathbb{P}(\overline{E}) \qquad \text{perché } E \wedge \overline{E} = \emptyset$$
$$\Rightarrow \quad \mathbb{P}(\overline{E}) = 1 - \mathbb{P}(E)$$

0 $0 \le \mathbb{P}(E) \le 1$:

$$0 \le \mathbb{P}(E) = 1 - \mathbb{P}(\overline{E}) \le 1$$

$$\begin{array}{ll} 1 \, = \, \mathbb{P} \left(\Omega \right) \, = \mathbb{P} \left(E \vee \overline{E} \right) \, = \, \mathbb{P} \left(E \right) + \mathbb{P} \left(\overline{E} \right) & \text{perch\'e } E \wedge \overline{E} = \varnothing \\ \\ \Rightarrow & \mathbb{P} \left(\overline{E} \right) = 1 - \mathbb{P} \left(E \right) \end{array}$$

0 $0 \le \mathbb{P}(E) \le 1$:

$$0 \leq \mathbb{P}(E) = 1 - \mathbb{P}(\overline{E}) \leq 1$$

o Se *E* implica *F*, allora $\mathbb{P}(E) \leq \mathbb{P}(F)$:

$$\mathbb{P}(F) = \mathbb{P}\left((E \wedge F) \vee (\overline{E} \wedge F)\right)$$

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(E \vee \overline{E}) = \mathbb{P}(E) + \mathbb{P}(\overline{E}) \qquad \text{perch\'e } E \wedge \overline{E} = \emptyset$$
$$\Rightarrow \quad \mathbb{P}(\overline{E}) = 1 - \mathbb{P}(E)$$

0 $0 \le \mathbb{P}(E) \le 1$:

$$0 \leq \mathbb{P}(E) = 1 - \mathbb{P}(\overline{E}) \leq 1$$

⊚ Se *E* implica *F*, allora $\mathbb{P}(E) \leq \mathbb{P}(F)$:

$$\mathbb{P}(F) = \mathbb{P}\left((E \wedge F) \vee (\overline{E} \wedge F)\right)$$

$$\stackrel{(3)}{=} \mathbb{P}(E \wedge F) + \mathbb{P}(\overline{E} \wedge F) \qquad \text{perché}(E \wedge F) \wedge (\overline{E} \wedge F) = \emptyset$$

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(E \vee \overline{E}) = \mathbb{P}(E) + \mathbb{P}(\overline{E}) \qquad \text{perch\'e } E \wedge \overline{E} = \emptyset$$
$$\Rightarrow \quad \mathbb{P}(\overline{E}) = 1 - \mathbb{P}(E)$$

0 $0 \le \mathbb{P}(E) \le 1$:

$$0 \leq \mathbb{P}(E) = 1 - \mathbb{P}(\overline{E}) \leq 1$$

o Se E implica F, allora $\mathbb{P}(E) \leq \mathbb{P}(F)$:

$$\mathbb{P}(F) = \mathbb{P}\left((E \land F) \lor (\overline{E} \land F)\right)$$

$$= \mathbb{P}(E \land F) + \mathbb{P}\left(\overline{E} \land F\right)$$

$$= \mathbb{P}(E) + \mathbb{P}\left(\overline{E} \land F\right) \quad \text{perché } E \land F = E$$

$$\begin{array}{ll} \textcircled{0} & \mathbb{P}\left(\overline{E}\right) = 1 - \mathbb{P}(E): \\ \\ 1 = \mathbb{P}(\Omega) = \mathbb{P}\left(E \vee \overline{E}\right) = \mathbb{P}(E) + \mathbb{P}\left(\overline{E}\right) & \text{perché } E \wedge \overline{E} = \varnothing \\ \\ \Rightarrow & \mathbb{P}\left(\overline{E}\right) = 1 - \mathbb{P}(E) \end{array}$$

0 $0 \le \mathbb{P}(E) \le 1$:

$$0 \leq \mathbb{P}(E) = 1 - \mathbb{P}(\overline{E}) \leq 1$$

o Se *E* implica *F*, allora $\mathbb{P}(E) \leq \mathbb{P}(F)$:

$$\mathbb{P}(F) = \mathbb{P}\left((E \land F) \lor (\overline{E} \land F)\right)$$

$$= \mathbb{P}(E \land F) + \mathbb{P}\left(\overline{E} \land F\right)$$

$$= \mathbb{P}(E) + \mathbb{P}\left(\overline{E} \land F\right)$$

$$0$$

$$\geq \mathbb{P}(E)$$

Variabili aleatorie

VARIABILE ALEATORIA (v.a.) = risultato di una misura in un esperimento aleatorio

ESEMPI:

- X = numero che uscirà nel lancio di un dado
- Y = numero di teste nei tre lanci di moneta
- Z = altezza del 10° intervistato

Non ha un valore definito finché non la misuro

Variabili aleatorie

VARIABILE ALEATORIA (v.a.) = risultato di una misura in un esperimento aleatorio

ESEMPI:

- X = numero che uscirà nel lancio di un dado
- Y = numero di teste nei tre lanci di moneta
- ullet Z= altezza del 10 $^{
 m o}$ intervistato $\bigg\}$ continua

Non ha un valore definito finché non la misuro

discrete

Variabili aleatorie

ESEMPI:

- X = numero che uscirà nel lancio di un dado
- Y = numero di teste nei tre lanci di moneta
- Z =altezza del 10° intervistato

continua

discrete

$$X = \begin{pmatrix} \pi & 5 \\ 5 & 5 \end{pmatrix} 2^{5}$$

Non ha un valore definito finché non la misuro

Le v.a. non sono eventi, ma si possono usare per creare eventi:

- E := "X = 6" = "uscirà 6"
- F := "Y = 3" = "uscirà sempre testa"
- $G := "Z > 1.80 \,\mathrm{m"} = "il \, 10^{\circ}$ intervistato sarà più alto di $1.80 \,\mathrm{m"}$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

La funzione di ripartizione (f.d.r.) di una v.a. X è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X' \le t')$

PROPRIETÀ:

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

PROPRIETÀ:

$$s < t \Rightarrow "X \le s" \text{ implica } "X \le t"$$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X' \le t')$

PROPRIETÀ:

$$s < t \Rightarrow "X \le s" \text{ implica } "X \le t"$$

 $\Rightarrow \mathbb{P}("X \le s") \le \mathbb{P}("X \le t")$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

PROPRIETÀ:

$$s < t$$
 \Rightarrow " $X \le s$ " implies " $X \le t$ "
 \Rightarrow $\mathbb{P}("X \le s") \le \mathbb{P}("X \le t")$
 \Rightarrow $F_X(s) \le F_X(t)$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

PROPRIETÀ:

$$s < t$$
 \Rightarrow " $X \le s$ " implica " $X \le t$ "
 \Rightarrow $\mathbb{P}("X \le s") \le \mathbb{P}("X \le t")$
 \Rightarrow $F_X(s) \le F_X(t)$
D'ora in poi, $\mathbb{P}("\dots") = \mathbb{P}(\dots)$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}("X \le t")$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t \to +\infty}{\longrightarrow} 1$ e $F_X(t) \underset{t \to -\infty}{\longrightarrow} 0$

La funzione di ripartizione (f.d.r.) di una v.a. X è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}("X \le t")$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t \to +\infty}{\longrightarrow} 1 \quad {
 m e} \quad F_X(t) \underset{t \to -\infty}{\longrightarrow} 0$:

$$F_X(t) = \mathbb{P}(X \leq t)$$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t o +\infty}{\longrightarrow} 1 \quad ext{e} \quad F_X(t) \underset{t o -\infty}{\longrightarrow} 0$:

$$F_X(t) = \mathbb{P}\left(X \leq t\right) \xrightarrow[t \to +\infty]{} \mathbb{P}\left(X < +\infty\right)$$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

PROPRIETÀ:

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t o +\infty}{\longrightarrow} 1 \quad ext{e} \quad F_X(t) \underset{t o -\infty}{\longrightarrow} 0$:

$$F_X(t) = \mathbb{P}\left(X \leq t\right) \underset{t \to +\infty}{\longrightarrow} \mathbb{P}\left(X < +\infty\right) = \mathbb{P}\left(\Omega\right) = 1$$

e similmente per l'altro limite

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t \to +\infty}{\longrightarrow} 1 \quad {
 m e} \quad F_X(t) \underset{t \to -\infty}{\longrightarrow} 0$
- Se s < t, allora $\mathbb{P}(s < X \le t) = F_X(t) F_X(s)$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}("X \le t")$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t \to +\infty}{\longrightarrow} 1 \quad {
 m e} \quad F_X(t) \underset{t \to -\infty}{\longrightarrow} 0$
- Se s < t, allora $\mathbb{P}\left(s < X \le t\right) = F_X(t) F_X(s)$:

$$F_X(t) = \mathbb{P}(X \leq t)$$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}("X \le t")$

- F_X è una funzione non-decrescente
- $\bullet \ \ F_X(t) \underset{t \to +\infty}{\longrightarrow} \ 1 \quad \text{e} \quad F_X(t) \underset{t \to -\infty}{\longrightarrow} \ 0$
- Se s < t, allora $\mathbb{P}(s < X \le t) = F_X(t) F_X(s)$:

$$F_X(t) = \mathbb{P}(X \leq t) = \mathbb{P}("X \leq s" \lor "s < X \leq t")$$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t \to +\infty}{\longrightarrow} 1 \quad {
 m e} \quad F_X(t) \underset{t \to -\infty}{\longrightarrow} 0$
- Se s < t, allora $\mathbb{P}(s < X \le t) = F_X(t) F_X(s)$:

$$F_X(t) = \mathbb{P}\left(X \le t
ight) = \mathbb{P}\left("X \le s" \lor "s < X \le t"
ight) \ \stackrel{ ext{(3)}}{=} \mathbb{P}\left(X \le s
ight) + \mathbb{P}\left(s < X \le t
ight) \ ext{perché } "X \le s" \land "s < X \le t" = \varnothing$$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t \to +\infty}{\longrightarrow} 1 \quad {
 m e} \quad F_X(t) \underset{t \to -\infty}{\longrightarrow} 0$
- Se s < t, allora $\mathbb{P}(s < X \le t) = F_X(t) F_X(s)$:

$$F_X(t) = \mathbb{P}(X \le t) = \mathbb{P}("X \le s" \lor "s < X \le t")$$

$$= \mathbb{P}(X \le s) + \mathbb{P}(s < X \le t)$$

$$= F_X(s) + \mathbb{P}(s < X \le t)$$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t \to +\infty}{\longrightarrow} 1 \quad {
 m e} \quad F_X(t) \underset{t \to -\infty}{\longrightarrow} 0$
- Se s < t, allora $\mathbb{P}(s < X \le t) = F_X(t) F_X(s)$:

$$F_X(t) = \mathbb{P}(X \le t) = \mathbb{P}("X \le s" \lor "s < X \le t")$$

$$= \mathbb{P}(X \le s) + \mathbb{P}(s < X \le t)$$

$$= F_X(s) + \mathbb{P}(s < X \le t)$$

$$\Rightarrow \mathbb{P}(s < X \le t) = F_X(t) - F_X(s)$$

La *funzione di ripartizione* (f.d.r.) di una v.a. *X* è

$$F_X: \mathbb{R} \to [0,1]$$
 $F_X(t) := \mathbb{P}(X \le t)$

- F_X è una funzione non-decrescente
- ullet $F_X(t) \underset{t \to +\infty}{\longrightarrow} 1 \quad {
 m e} \quad F_X(t) \underset{t \to -\infty}{\longrightarrow} 0$
- Se s < t, allora $\mathbb{P}(s < X \le t) = F_X(t) F_X(s)$
- F_X è continua da destra con limite da sinistra

ESEMPI:

Definizione

Una v.a. X si dice assolutamente continua (a.c.) se esiste una funzione $f_X : \mathbb{R} \to \mathbb{R}$ t.c.

$$\mathbb{P}(s \leq X \leq t) = \int_{s}^{t} f_{X}(z) dz \qquad \forall s, t \in \mathbb{R}, \ s < t$$

Definizione

Una v.a. X si dice assolutamente continua (a.c.) se esiste una funzione $f_X : \mathbb{R} \to \mathbb{R}$ t.c.

$$\mathbb{P}\left(s \leq X \leq t\right) = \int_{s}^{t} f_{X}(z) dz \qquad \forall s, t \in \mathbb{R}, \ s < t$$

La funzione f_X è la *densità* di X, e soddisfa

• $f_X(z) \geq 0$ per ogni $z \in \mathbb{R}$ (positività) perché $\mathbb{P}\left(s \leq X \leq t\right) \geq 0$ per ogni $s,t \in \mathbb{R}$ con s < t

Definizione

Una v.a. X si dice assolutamente continua (a.c.) se esiste una funzione $f_X : \mathbb{R} \to \mathbb{R}$ t.c.

$$\mathbb{P}\left(s \leq X \leq t\right) = \int_{s}^{t} f_{X}(z) dz \qquad \forall s, t \in \mathbb{R}, \ s < t$$

La funzione f_X è la *densità* di X, e soddisfa

- $f_X(z) \ge 0$ per ogni $z \in \mathbb{R}$ (positività)
- $\int_{-\infty}^{+\infty} f_X(z) \, \mathrm{d}z = 1$ (normalizzazione) perché $\mathbb{P}(-\infty < X < +\infty) = 1$

Definizione

Una v.a. X si dice assolutamente continua (a.c.) se esiste una funzione $f_X : \mathbb{R} \to \mathbb{R}$ t.c.

$$\mathbb{P}\left(s \leq X \leq t\right) = \int_{s}^{t} f_{X}(z) dz \qquad \forall s, t \in \mathbb{R}, \ s < t$$

La funzione f_X è la *densità* di X, e soddisfa

- $f_X(z) \ge 0$ per ogni $z \in \mathbb{R}$ (positività)
- $\int_{-\infty}^{+\infty} f_X(z) dz = 1$ (normalizzazione)

ATTENZIONE: per una v.a. assolutamente continua

$$\mathbb{P}(X = t) = 0$$
 $\mathbb{P}(X < t) = \mathbb{P}(X \le t)$ ecc.

Definizione

Una v.a. X si dice assolutamente continua (a.c.) se esiste una funzione $f_X : \mathbb{R} \to \mathbb{R}$ t.c.

$$\mathbb{P}\left(s \leq X \leq t\right) = \int_{s}^{t} f_{X}(z) dz \qquad \forall s, t \in \mathbb{R}, \ s < t$$

Legame densità - f.d.r. per una v.a. assolutamente continua:

$$F_X(t) = \mathbb{P}(X \le t) = \int_{-\infty}^t f_X(z) \, dz$$

$$\Rightarrow f_X(t) = \frac{d F_X(t)}{dt}$$

ESEMPI:

ESEMPI:

$$f_X(t) = \begin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases}$$

con a < b fissati

$$f_X(t) = \begin{cases} rac{1}{b-a} & \text{se } t \in [a,b] \\ 0 & \text{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \quad \text{con } a < b \text{ fissati}$$

dove la *funzione indicatrice* di un insieme $A \subset \mathbb{R}$ è

$$\mathbb{1}_{A}(t) = \begin{cases} 1 & \text{se } t \in A \\ 0 & \text{altrimenti} \end{cases}$$

$$f_X(t) = \begin{cases} rac{1}{b-a} & \text{se } t \in [a,b] \\ 0 & \text{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \quad \text{con } a < b \text{ fissati}$$

dove la *funzione indicatrice* di un insieme $A \subset \mathbb{R}$ è

$$\mathbb{1}_{A}(t) = \begin{cases} 1 & \text{se } t \in A \\ 0 & \text{altrimenti} \end{cases}$$

La densità f_X si chiama uniforme continua di parametri a, b e si scrive

$$X \sim \mathcal{U}(a, b)$$

$$f_X(t) = \begin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \qquad ext{con } a < b ext{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

$$f_X(t) = \begin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \qquad ext{con } a < b ext{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

$$\begin{array}{c|c}
f_X(t) & & \\
\hline
 & &$$

$$f_X(t) = \begin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \qquad ext{con } a < b ext{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

X può prendere solo questi valori

supp f_X è il supporto della v.a. X

$$f_X(t) = \begin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \qquad ext{con } a < b ext{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

$$F_X(t) = \int_{-\infty}^t f_X(z) \,\mathrm{d}z$$

$$\begin{array}{ccc}
 & f_X(t) \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

supp f_X è il supporto della v.a. X

$$f_X(t) = \begin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \qquad ext{con } a < b ext{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

$$\mathbb{P}(-0.9 \le X \le 0.2) = \int_{-0.9}^{0.2} f_X(t) dt$$

$$= \int_{-0.9}^{0.2} 0.5 dt = 0.55$$

$$= \int_{-0.9}^{0.2} 0.5 dt = 0.55$$

$$\sup_{t = 0.5} f_X(t) dt$$

$$\operatorname{supp} f_X$$
 è il *supporto* della v.a. X

$$F_X(t) = \int_{-\infty}^t f_X(z) dz$$

$$= \begin{cases} \int_{-\infty}^t 0 dz = 0 & \text{se } t < -1.5 \end{cases}$$

$$f_X(t) = \begin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \qquad ext{con } a < b ext{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

$$\mathbb{P}(-0.9 \le X \le 0.2) = \int_{-0.9}^{0.2} f_X(t) dt$$

$$= \int_{-0.9}^{0.2} 0.5 dt = 0.55$$

$$\sup_{t \to 0} f_X(t) = \int_{-0.9}^{0.2} f_X(t) dt$$

$$= \int_{-0.9}^{0.2} f_X(t) dt = 0.55$$

$$F_X(t) = \int_{-\infty}^t f_X(z) dz$$

$$= \begin{cases} \int_{-\infty}^t 0 dz = 0 & \text{se } t < -1.5 \\ \int_{-\infty}^{-1.5} 0 dz + \int_{-1.5}^t 0.5 dz = 0.5(t+1.5) & \text{se } -1.5 \le t \le 0.5 \end{cases}$$

$$f_X(t) = egin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases} = rac{1}{b-a} \, \mathbbm{1}_{[a,b]}(t) \qquad ext{con } a < b ext{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

$$\mathbb{P}(-0.9 \le X \le 0.2) = \int_{-0.9}^{0.2} f_X(t) dt$$

$$= \int_{-0.9}^{0.2} 0.5 dt = 0.55$$

$$\sup_{t = 0.5} f_X(t) dt = 0.55$$

$$\sup_{t = 0.5} f_X(t) dt = 0.55$$

$$F_X(t) = \int_{-\infty}^t f_X(z) \, \mathrm{d}z$$

$$\int_{-\infty}^t 0 \, \mathrm{d}z = 0 \qquad \text{se } t < -15$$

 $= \begin{cases} \int_{-\infty}^{t} 0 \, dz = 0 \\ \int_{-\infty}^{-1.5} 0 \, dz + \int_{-1.5}^{t} 0.5 \, dz = 0.5(t+1.5) & \text{se } -1.5 \le t \le 0.5 \\ \int_{-1.5}^{-1.5} 0 \, dz + \int_{-1.5}^{0.5} 0.5 \, dz + \int_{0.5}^{t} 0 \, dz = 1 & \text{se } t > 0.5 \end{cases}$

13/48

$$f_X(t) = egin{cases} rac{1}{b-a} & ext{se } t \in [a,b] \\ 0 & ext{altrimenti} \end{cases} = rac{1}{b-a} \, \mathbbm{1}_{[a,b]}(t) \qquad ext{con } a < b ext{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

$$F_{X}(t) \qquad F_{X}(t) \qquad \mathbb{P}(-0.9 \le X \le 0.2) = \int_{-0.9}^{0.2} f_{X}(t) \, dt$$

$$= \int_{-0.9}^{0.2} 0.5 \, dt = 0.55$$

$$= \int_{-0.9}^{0.2} t \quad \text{supp } f_{X} \, \text{è il supporto della v.a. } X$$

$$F_{X}(t) = \int_{-0.9}^{t} f_{X}(z) \, dz$$

$$= \begin{cases} 0 & \text{se } t < -1.5 \\ 0.5(t+1.5) & \text{se } -1.5 \le t \le 0.5 \\ 1 & \text{se } t > 0.5 \end{cases}$$

$$f_X(t) = \begin{cases} rac{1}{b-a} & \text{se } t \in [a,b] \\ 0 & \text{altrimenti} \end{cases} = rac{1}{b-a} \mathbbm{1}_{[a,b]}(t) \quad \text{con } a < b \text{ fissati}$$

ESEMPIO: se a = -1.5, b = 0.5:

$$F_{X}(t) \uparrow F_{X}(t) \qquad \mathbb{P}(-0.9 \le X \le 0.2) = \\ = F_{X}(0.2) - F_{X}(-0.9)$$

$$= F_{X}(t) = \int_{-\infty}^{t} f_{X}(z) dz$$

$$= \begin{cases} 0 & \text{se } t < -1.5 \\ 0.5(t+1.5) & \text{se } -1.5 \le t \le 0.5 \\ 1 & \text{se } t > 0.5 \end{cases}$$

13/48

Se X è una v.a. e $g: \mathbb{R} \to \mathbb{R}$ è una funzione, posso considerare la nuova v.a. $\mathbf{v} = g(X)$

$$Y = g(X)$$

ESEMPI:

•
$$g(x) = \mathbb{1}_{[0,3]}(x)$$
 \Rightarrow $Y = \mathbb{1}_{[0,3]}(X)$

•
$$g(x) = 1.8 \cdot x + 32 \implies Y = 1.8 \cdot X + 32$$

Se X è una v.a. e $g: \mathbb{R} \to \mathbb{R}$ è una funzione, posso considerare la nuova v.a.

$$Y = g(X)$$

ESEMPI:

•
$$g(x) = \mathbb{1}_{[0,3]}(x)$$
 \Rightarrow $Y = \mathbb{1}_{[0,3]}(X)$

•
$$g(x) = 1.8 \cdot x + 32 \implies Y = 1.8 \cdot X + 32$$

Se conosco la densità X, qual è quella di Y?

Se X è una v.a. e $g: \mathbb{R} \to \mathbb{R}$ è una funzione, posso considerare la nuova v.a. V = g(X)

$$Y = g(X)$$

ESEMPI:

•
$$g(x) = \mathbb{1}_{[0,3]}(x)$$
 \Rightarrow $Y = \mathbb{1}_{[0,3]}(X)$

•
$$g(x) = 1.8 \cdot x + 32 \implies Y = 1.8 \cdot X + 32$$

Se X è una v.a. e $g:\mathbb{R}\to\mathbb{R}$ è una funzione, posso considerare la nuova v.a. Y=g(X)

•
$$g(x) = \mathbb{1}_{[0,3]}(x)$$
 \Rightarrow $Y = \mathbb{1}_{[0,3]}(X)$

•
$$g(x) = 1.8 \cdot x + 32 \implies Y = 1.8 \cdot X + 32$$

Se X è una v.a. e $g: \mathbb{R} \to \mathbb{R}$ è una funzione, posso considerare la nuova v.a.

$$Y = g(X)$$

ESEMPI:

•
$$g(x) = \mathbb{1}_{[0,3]}(x)$$
 \Rightarrow $Y = \mathbb{1}_{[0,3]}(X)$

•
$$g(x) = 1.8 \cdot x + 32 \Rightarrow Y = 1.8 \cdot X + 32$$

Se X è una v.a. e $g: \mathbb{R} \to \mathbb{R}$ è una funzione, posso considerare la nuova v.a.

$$Y = g(X)$$

ESEMPI:

•
$$g(x) = x^2$$
 $\Rightarrow Y = X^2$
• $g(x) = \mathbb{1}_{[0,3]}(x)$ $\Rightarrow Y = \mathbb{1}_{[0,3]}(X)$

•
$$g(x) = 1.8 \cdot x + 32 \implies Y = 1.8 \cdot X + 32$$

$$F_Y(t) = \mathbb{P}(Y \le t) = \mathbb{P}(g(X) \in (-\infty, t]) = \mathbb{P}(X \in g^{-1}((-\infty, t]))$$

$$= \int_{g^{-1}((-\infty, t])} f_X(z) dz$$

Se X è una v.a. e $g: \mathbb{R} \to \mathbb{R}$ è una funzione, posso considerare la nuova v.a.

$$Y = g(X)$$

ESEMPI:

•
$$g(x) = x^2$$
 \Rightarrow $Y = X^2$
• $g(x) = \mathbb{1}_{[0,3]}(x)$ \Rightarrow $Y = \mathbb{1}_{[0,3]}(X)$
• $g(x) = 1.8 \cdot x + 32$ \Rightarrow $Y = 1.8 \cdot X + 32$

•
$$g(x) = 1.8 \cdot x + 32 \implies Y = 1.8 \cdot X + 32$$

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(g(X) \in (-\infty, t]) = \mathbb{P}(X \in g^{-1}((-\infty, t]))$$
$$= \int_{g^{-1}((-\infty, t])} f_{X}(z) dz$$

$$f_Y(t) = \frac{\mathrm{d}F_Y(t)}{\mathrm{d}t}$$

ESEMPIO:

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati

ESEMPIO:

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati

ESEMPIO:

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a > 0$

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a > 0$

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(aX + b \le t) = \mathbb{P}\left(X \le \frac{t - b}{a}\right)$$

$$= F_{X}\left(\frac{t - b}{a}\right)$$

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a > 0$

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(aX + b \le t) = \mathbb{P}\left(X \le \frac{t - b}{a}\right)$$

$$= F_{X}\left(\frac{t - b}{a}\right)$$

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a > 0$

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(aX + b \le t) = \mathbb{P}\left(X \le \frac{t - b}{a}\right)$$

$$= F_{X}\left(\frac{t - b}{a}\right)$$

$$f_Y(t) = \frac{\mathrm{d}F_Y(t)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left[F_X\left(\frac{t-b}{a}\right) \right]$$

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a > 0$

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(aX + b \le t) = \mathbb{P}\left(X \le \frac{t - b}{a}\right)$$

$$= F_{X}\left(\frac{t - b}{a}\right)$$

$$f_{Y}(t) = \frac{\mathrm{d}F_{Y}(t)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left[F_{X}\left(\frac{t-b}{a}\right) \right]$$
$$= F'_{X}\left(\frac{t-b}{a}\right) \cdot \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{t-b}{a}\right)$$

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a > 0$

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(aX + b \le t) = \mathbb{P}\left(X \le \frac{t - b}{a}\right)$$

$$= F_{X}\left(\frac{t - b}{a}\right)$$

$$f_{Y}(t) = \frac{dF_{Y}(t)}{dt} = \frac{d}{dt} \left[F_{X}\left(\frac{t-b}{a}\right) \right]$$

$$= F'_{X}\left(\frac{t-b}{a}\right) \cdot \frac{d}{dt}\left(\frac{t-b}{a}\right)$$

$$= f_{X}\left(\frac{t-b}{a}\right) \cdot \frac{1}{a}$$

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a > 0$

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(aX + b \le t) = \mathbb{P}\left(X \le \frac{t - b}{a}\right)$$

$$= F_{X}\left(\frac{t - b}{a}\right)$$

$$f_{Y}(t) = \frac{dF_{Y}(t)}{dt} = \frac{d}{dt} \left[F_{X}\left(\frac{t-b}{a}\right) \right]$$

$$= F'_{X}\left(\frac{t-b}{a}\right) \cdot \frac{d}{dt}\left(\frac{t-b}{a}\right)$$

$$= f_{X}\left(\frac{t-b}{a}\right) \cdot \frac{1}{a}$$

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a < 0$

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(aX + b \le t) = \mathbb{P}\left(X \ge \frac{t - b}{a}\right)$$
$$= 1 - F_{X}\left(\frac{t - b}{a}\right)$$

$$f_{Y}(t) = \frac{dF_{Y}(t)}{dt} = \frac{d}{dt} \left[1 - F_{X} \left(\frac{t - b}{a} \right) \right]$$
$$= -F'_{X} \left(\frac{t - b}{a} \right) \cdot \frac{d}{dt} \left(\frac{t - b}{a} \right)$$
$$= -f_{X} \left(\frac{t - b}{a} \right) \cdot \frac{1}{a}$$

ESEMPIO:

$$Y = aX + b$$
 con $a, b \in \mathbb{R}$ fissati e con $a \neq 0$

In conclusione,

$$f_Y(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right)$$

Se: $\left\{ \begin{array}{ll} \text{-} & \gamma \in (0,1) \text{ è fissato} \\ \text{-} & \text{esiste un unico } q_{\gamma} \in \mathbb{R} \text{ tale che } F_X(q_{\gamma}) = \gamma \end{array} \right.$

allora: $q_{\gamma} = F_X^{-1}(\gamma)$ è il *quantile di ordine* γ (della densità) di X

Se:
$$\left\{ \begin{array}{ll} \text{-} & \gamma \in (0,1) \text{ è fissato} \\ \text{-} & \text{esiste un unico } q_{\gamma} \in \mathbb{R} \text{ tale che } F_X(q_{\gamma}) = \gamma \end{array} \right.$$

allora: $q_{\gamma} = F_X^{-1}(\gamma)$ è il *quantile di ordine* γ (della densità) di X

Se $\gamma = 0.5$, ottengo la *mediana* di *X* ecc.

Se:
$$\begin{cases} - & \gamma \in (0,1) \text{ è fissato} \\ - & \text{esiste un unico } q_{\gamma} \in \mathbb{R} \text{ tale che } F_X(q_{\gamma}) = \gamma \end{cases}$$
 allora:
$$q_{\gamma} = F_X^{-1}(\gamma) \text{ è il } \textit{quantile di ordine } \gamma \text{ (della densità) di } X$$

PROPRIETÀ:

• Se
$$Y = aX + b$$
, allora $q_{\gamma}^{Y} = \begin{cases} a q_{\gamma}^{X} + b & \text{se } a > 0 \\ a q_{1-\gamma}^{X} + b & \text{se } a < 0 \end{cases}$

Se:
$$\begin{cases} - & \gamma \in (0,1) \text{ è fissato} \\ - & \text{esiste un unico } q_{\gamma} \in \mathbb{R} \text{ tale che } F_X(q_{\gamma}) = \gamma \end{cases}$$

allora: $q_{\gamma} = F_X^{-1}(\gamma)$ è il *quantile di ordine* γ (della densità) di X

PROPRIETÀ:

• Se
$$Y = aX + b$$
, allora $q_{\gamma}^{Y} = \begin{cases} a q_{\gamma}^{X} + b & \text{se } a > 0 \\ a q_{1-\gamma}^{X} + b & \text{se } a < 0 \end{cases}$

• Se f_X è simmetrica rispetto all'asse delle y ($\Leftrightarrow f_X = f_{-X}$), allora

•
$$F_X(t) = 1 - F_X(-t)$$

Se:
$$\left\{ \begin{array}{ll} - & \gamma \in (0,1) \text{ è fissato} \\ - & \text{esiste un unico } q_{\gamma} \in \mathbb{R} \text{ tale che } F_X(q_{\gamma}) = \gamma \end{array} \right.$$

allora: $q_{\gamma} = F_X^{-1}(\gamma)$ è il *quantile di ordine* γ (della densità) di X

PROPRIETÀ:

• Se
$$Y = aX + b$$
, allora $q_{\gamma}^{Y} = \begin{cases} a q_{\gamma}^{X} + b & \text{se } a > 0 \\ a q_{1-\gamma}^{X} + b & \text{se } a < 0 \end{cases}$

• Se f_X è simmetrica rispetto all'asse delle y ($\Leftrightarrow f_X = f_{-X}$), allora

•
$$F_X(t) = 1 - F_X(-t)$$

$$\bullet$$
 $-q_{\gamma}=q_{1-\gamma}$

Definizione

Il *valore atteso* di una v.a. assolutamente continua X è il numero reale

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z$$

Definizione

Il *valore atteso* di una v.a. assolutamente continua X è il numero reale

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}\left[X\right]\text{)}$$

Definizione

Il $valore \ atteso \ di \ una \ v.a. \ assolutamente continua \ X \ è il numero reale$

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}[X])$$

PROPRIETÀ:

Definizione

Il valore atteso di una v.a. assolutamente continua X è il numero reale

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}[X])$$

PROPRIETÀ:

Definizione

Il $valore \ atteso \ di \ una \ v.a. \ assolutamente continua \ X \ è il numero reale$

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}[X])$$

PROPRIETÀ:

Definizione

Il $valore \ atteso \ di \ una \ v.a. \ assolutamente continua \ X \ è il numero reale$

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}[X])$$

PROPRIETÀ:

Definizione

Il $valore \ atteso \ di \ una \ v.a. \ assolutamente continua \ X \ è il numero reale$

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}[X])$$

PROPRIETÀ:

Definizione

Il $valore \ atteso \ di \ una \ v.a. \ assolutamente continua \ X \ è il numero reale$

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}[X])$$

PROPRIETÀ:

Definizione

Il valore atteso di una v.a. assolutamente continua X è il numero reale

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}\left[X\right])$$

PROPRIETÀ:

- μ_X è il baricentro della densità di X
- Se f_X è simmetrica rispetto all'asse $x=x_0$, allora $\mu_X=x_0$

Definizione

Il $valore\ atteso\ di\ una\ v.a.\ assolutamente continua\ X\ è\ il numero\ reale$

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} z \, f_X(z) \, \mathrm{d}z \qquad \text{(A volte si scrive anche } \mu_X = \mathbb{E}[X])$$

PROPRIETÀ:

- μ_X è il baricentro della densità di X
- Se f_X è simmetrica rispetto all'asse $x=x_0$, allora $\mu_X=x_0=q_0^X$

Se $g: \mathbb{R} \to \mathbb{R}$, come si calcola

$$\mathbb{E}\left[g(X)\right]=???$$

Secondo la definizione,

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} z \, f_{g(X)}(z) \, \mathrm{d}z$$

ma in pratica il passaggio $f_X o f_{g(X)}$ è laborioso

Secondo la definizione,

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} \frac{\mathsf{z}}{\mathsf{r}} f_{g(X)}(z) \,\mathrm{d}z$$

ma in pratica il passaggio $f_X o f_{g(X)}$ è laborioso

Teorema (non dimostrato)

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} \frac{g(z)}{g(z)} f_X(z) dz$$

Teorema (non dimostrato)

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(z) \, f_X(z) \, \mathrm{d}z$$

PROPRIETÀ (continuazione):

• Se $a, b \in \mathbb{R}$:

$$\mathbb{E}\left[aX+b\right]=a\mathbb{E}\left[X\right]+b \qquad \text{(linearità di }\mathbb{E}\text{)}$$

Teorema (non dimostrato)

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(z) \, f_X(z) \, \mathrm{d}z$$

PROPRIETÀ (continuazione):

• Se $a,b\in\mathbb{R}$:

$$\mathbb{E}\left[aX+b\right]=a\mathbb{E}\left[X\right]+b$$
 (linearità di \mathbb{E})

$$\mathbb{E}\left[aX+b\right] = \int_{-\infty}^{+\infty} (az+b) f_X(z) dz$$

Teorema (non dimostrato)

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(z) \, f_X(z) \, \mathrm{d}z$$

PROPRIETÀ (continuazione):

• Se $a, b \in \mathbb{R}$:

$$\mathbb{E}\left[aX+b\right]=a\mathbb{E}\left[X\right]+b$$
 (linearità di \mathbb{E})

$$\mathbb{E}[aX + b] = \int_{-\infty}^{+\infty} (az + b) f_X(z) dz$$
$$= a \int_{-\infty}^{+\infty} z f_X(z) dz + b \int_{-\infty}^{+\infty} f_X(z) dz$$

Teorema (non dimostrato)

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(z) \, f_X(z) \, \mathrm{d}z$$

PROPRIETÀ (continuazione):

• Se $a, b \in \mathbb{R}$:

$$\mathbb{E}\left[aX+b\right]=a\mathbb{E}\left[X\right]+b$$
 (linearità di \mathbb{E})

$$\mathbb{E}[aX + b] = \int_{-\infty}^{+\infty} (az + b) f_X(z) dz$$

$$= a \underbrace{\int_{-\infty}^{+\infty} z f_X(z) dz}_{\mathbb{E}[X]} + b \underbrace{\int_{-\infty}^{+\infty} f_X(z) dz}_{1}$$

Teorema (non dimostrato)

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(z) \, f_X(z) \, \mathrm{d}z$$

PROPRIETÀ (continuazione):

• Se $a, b \in \mathbb{R}$:

$$\mathbb{E}\left[aX+b\right]=a\,\mathbb{E}\left[X\right]+b\qquad \text{(linearità di }\mathbb{E}\text{)}$$

$$\mathbb{E}[aX + b] = \int_{-\infty}^{+\infty} (az + b) f_X(z) dz$$

$$= a \int_{-\infty}^{+\infty} z f_X(z) dz + b \int_{-\infty}^{+\infty} f_X(z) dz$$

$$= a \mathbb{E}[X] + b$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \int_{-\infty}^{+\infty} (z - \mu_{X})^{2} f_{X}(z) dz$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \int_{-\infty}^{+\infty} (z - \mu_{X})^{2} f_{X}(z) dz$$

PROPRIETÀ:

• $\operatorname{var}[X] \geq 0$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \int_{-\infty}^{+\infty} (z - \mu_{X})^{2} f_{X}(z) dz$$

PROPRIETÀ:

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$\operatorname{var}[X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$var[X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz$$

$$= \int_{-\infty}^{+\infty} z^2 f_X(z) dz - 2\mu_X \int_{-\infty}^{+\infty} z f_X(z) dz + \mu_X^2 \int_{-\infty}^{+\infty} f_X(z) dz$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- var[X] > 0
 - $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$\operatorname{var}\left[X\right] = \int_{-\infty}^{+\infty} \left(z^2 - 2\mu_X z + \mu_X^2\right) f_X(z) \, \mathrm{d}z$$

$$= \underbrace{\int_{-\infty}^{+\infty} z^2 f_X(z) \, \mathrm{d}z}_{\mathbb{E}\left[X^2\right]} - 2\mu_X \underbrace{\int_{-\infty}^{+\infty} z f_X(z) \, \mathrm{d}z}_{\mathbb{E}\left[X\right]} + \mu_X^2 \underbrace{\int_{-\infty}^{+\infty} f_X(z) \, \mathrm{d}z}_{\mathbb{E}\left[X\right]}$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- var[X] > 0
 - $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$var[X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz$$

$$= \int_{-\infty}^{+\infty} z^2 f_X(z) dz - 2\mu_X \int_{-\infty}^{+\infty} z f_X(z) dz + \mu_X^2 \int_{-\infty}^{+\infty} f_X(z) dz$$

$$= \mathbb{E}[X^2] - 2\mu_X \cdot \mu_X + \mu_X^2 \cdot 1$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$:

$$var[X] = \int_{-\infty}^{+\infty} (z^2 - 2\mu_X z + \mu_X^2) f_X(z) dz$$

$$= \int_{-\infty}^{+\infty} z^2 f_X(z) dz - 2\mu_X \int_{-\infty}^{+\infty} z f_X(z) dz + \mu_X^2 \int_{-\infty}^{+\infty} f_X(z) dz$$

$$= \mathbb{E}[X^2] - 2\mu_X \cdot \mu_X + \mu_X^2 \cdot 1$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $var[aX + b] = a^2 var[X]$

Definizione

La *varianza* di una v.a. assolutamente continua *X* è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX+b\right]=\mathbb{E}\left[\left\{\left(aX+b\right)-\mathbb{E}\left[aX+b\right]\right\}^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

PROPRIETÀ:

- $\operatorname{var}[X] > 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX+b\right] = \mathbb{E}\left[\left\{(aX+b) - \mathbb{E}\left[aX+b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{(aX+b) - (a\mathbb{E}\left[X\right]+b)\right\}^{2}\right] \qquad \text{linea}$$

linearità di $\mathbb E$

Definizione

La *varianza* di una v.a. assolutamente continua *X* è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mu_X^2$
- $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{\left(aX + b\right) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{\left(aX + b\right) - \left(a\mathbb{E}\left[X\right] + b\right)\right\}^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] > 0$
 - $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
 - $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{(aX + b) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{(aX + b) - (a\mathbb{E}\left[X\right] + b)\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{a(X - \mathbb{E}\left[X\right])\right\}^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] > 0$
 - $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
 - $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{\left(aX + b\right) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{\left(aX + b\right) - \left(a\mathbb{E}\left[X\right] + b\right)\right\}^{2}\right]$$
$$= \mathbb{E}\left[a^{2}\left\{\left(X - \mathbb{E}\left[X\right]\right)\right\}^{2}\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- var[X] > 0
 - $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
 - $var[aX + b] = a^2 var[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{\left(aX + b\right) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left\{\left(aX + b\right) - \left(a\mathbb{E}\left[X\right] + b\right)\right\}^{2}\right]$$

$$= a^{2}\mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] \quad \text{linearità di } \mathbb{E}$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- var[X] > 0
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $\operatorname{var}[aX + b] = a^2 \operatorname{var}[X]$:

$$\operatorname{var}\left[aX + b\right] = \mathbb{E}\left[\left\{\left(aX + b\right) - \mathbb{E}\left[aX + b\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{\left(aX + b\right) - \left(a\mathbb{E}\left[X\right] + b\right)\right\}^{2}\right]$$
$$= a^{2} \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = a^{2} \operatorname{var}\left[X\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua X è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mu_X^2$
- $var[aX + b] = a^2 var[X]$
- Per la *deviazione standard* $\operatorname{sd}[X] = \sqrt{\operatorname{var}[X]}$ si ha

$$\operatorname{sd}\left[aX+b\right]=\left|a\right|\operatorname{sd}\left[X\right]$$

Definizione

La *varianza* di una v.a. assolutamente continua *X* è il numero reale

$$\operatorname{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

PROPRIETÀ:

- $\operatorname{var}[X] \geq 0$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mu_X^2$
- $var[aX + b] = a^2 var[X]$
- Per la *deviazione standard* $\operatorname{sd}[X] = \sqrt{\operatorname{var}[X]}$ si ha

$$\mathrm{sd}\left[aX+b\right]=\left|a\right|\mathrm{sd}\left[X\right]$$

(A volte si scrive anche $\sigma_X = \operatorname{sd}[X]$)

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

$$f_X(z) = egin{cases} rac{1}{b-a} & ext{se } z \in [a,b] \ 0 & ext{altrimenti} \end{cases}$$

- $\mathbb{E}[X] = \frac{a+b}{2}$ perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$
- $\operatorname{var}[X] = \mathbb{E}\left[X^2\right] \mathbb{E}[X]^2$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
 dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 \, f_X(z) \, \mathrm{d}z$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

- $\mathbb{E}[X] = \frac{a+b}{2}$ perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mathbb{E}\left[X\right]^2$ dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 f_X(z) dz = \int_a^b z^2 \frac{1}{b-a} dz$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
 dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 f_X(z) dz = \int_a^b z^2 \frac{1}{b-a} dz$$
$$= \frac{1}{b-a} \left[\frac{z^3}{3}\right]_{z=a}^{z=b}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

- $\mathbb{E}[X] = \frac{a+b}{2}$ perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$ dove

$$\mathbb{E}\left[X^{2}\right] = \int_{-\infty}^{+\infty} z^{2} f_{X}(z) dz = \int_{a}^{b} z^{2} \frac{1}{b-a} dz$$
$$= \frac{1}{b-a} \left[\frac{z^{3}}{3}\right]_{z=a}^{z=b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2$$

$$\mathbb{E}\left[X^{2}\right] = \int_{-\infty}^{+\infty} z^{2} f_{X}(z) dz = \int_{a}^{b} z^{2} \frac{1}{b-a} dz$$
$$= \frac{1}{b-a} \left[\frac{z^{3}}{3}\right]_{z=a}^{z=b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2$$
$$= \frac{(b-a)^2}{12}$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k=1$$
:

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k = 2$$
: $\leq \frac{1}{2^2} = 25\%$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k=3$$
:

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2 f_X(z)}_{\ge 0} dz + \int_{|z - \mu_X| < \varepsilon} \underbrace{(z - \mu_X)^2 f_X(z)}_{\ge 0} dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{> \varepsilon^2} f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{>\varepsilon^2} f_X(z) dz \ge \int_{|z - \mu_X| \ge \varepsilon} \varepsilon^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\geq \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{>\varepsilon^2} f_X(z) dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) dz$$

Disuguaglianza di Chebyshev

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

DIMOSTRAZIONE:

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) \, dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) \, dz$$

$$= \varepsilon^2 \mathbb{P}(|X - \mu_X| \ge \varepsilon)$$

Disuguaglianza di Chebyshev

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

DIMOSTRAZIONE:

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) dz$$

$$= \varepsilon^2 \mathbb{P}(|X - \mu_X| \ge \varepsilon) \quad \Rightarrow \quad \frac{\sigma_X^2}{\varepsilon^2} \ge \mathbb{P}(|X - \mu_X| \ge \varepsilon)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

PROPRIETÀ:

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione)
- La f.d.r. di N(0,1) si indica con Φ e si trova tabulata

	Tav	ola della	$\Phi(0.36) =$								
z	0.00	0.01	0.02	0.03	0.04	0.05	(0.06)	0.07	0.08	0.09	φ(0,0 ± 0,00)
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	$= \Phi(0.3+0.06)$
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	` ′
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	0.04050
(0.3)	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	= 0.64058
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	0.00
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	$q_{0.64058} = 0.36$
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77035	0.78230	0.78524	70.04030

22/4

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}\left(0 < X < 5.1\right) = \mathbb{P}\left(\begin{array}{ccc} 0 & & & < X & & < 5.1 \end{array}\right)$$

ESEMPIO:

$$X \sim N(\underbrace{3.2}_{\mu}, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\begin{array}{cc} 0 - 3.2 \\ \end{array} < \begin{array}{c} X - \mu \\ \end{array} < \begin{array}{c} 5.1 - 3.2 \\ \end{array}\right)$$

ESEMPIO:

$$X \sim N(3.2, \underbrace{7.6}_{\sigma^2})$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \underbrace{\frac{X - \mu}{\sigma}}_{N(0,1)} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \underbrace{\frac{X - \mu}{\sigma}}_{N(0,1)} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	(0.09)	$\Phi(0.689) =$
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	$\Psi(0.000) =$
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	
											$= \Phi(0.6+0.09)$
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	$=\Psi(0.0\pm0.09)$
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	` ,
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524	= 0.75490
0.8	0.78814	0.70103	n 70380	n 70673	n 70055	U 8U534	0.80511	0.80785	0.81057	0.81397	0.70.00

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \underbrace{\frac{X - \mu}{\sigma}}_{N(0,1)} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$
$$= 0.75490$$

$\Phi(-1.161) =$	0.09	0.08	0.07	(0.06)	0.05	0.04	0.03	0.02	0.01	0.00	z
$\Psi(1.101) =$	0.53586	0.53188	0.52790	0.52392	0.51994	0.51595	0.51197	0.50798	0.50399	0.50000	0.0
	0.57535	0.57142	0.56749	0.56356	0.55962	0.55567	0.55172	0.54776	0.54380	0.53983	0.1
$= 1 - \Phi(1.161)$	0.83891	U.83646	U.83398	U.83147	U.82894	0.82639	0.82381	0.82121	U.81859	U.81594	0.9
` ,	0.86214	0.85993	0.85769	0.85543	0.85314	0.85083	0.84849	0.84614	0.84375	0.84134	1.0
	0.88298	0.88100	0.87900	0.87698	0.87493	0.87286	0.87076	0.86864	0.86650	0.86433	1.1
= 1 - 0.87698	0.90147	0.89973	0.89796	0.89617	0.89435	0.89251	0.89065	0.88877	0.88686	0.88493	1.2
	0.91774	0.91621	0.91466	0.91308	0.91149	0.90988	0.90824	0.90658	0.90490	0.90320	1.3

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$
$$= 0.75490 - (1 - 0.87698)$$

	z	0.00	0.01	0.02	0.03	0.04	0.05	(0.06)	0.07	0.08	0.09	$\Phi(-1.161) =$
	0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	\(\psi(\)\)
1	0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	
1 .	J.9	U.81594	U.81859	0.82121	0.82381	0.82639	U.82894	U.83147	0.83398	U.83646	0.83891	$= 1 - \Phi(1.161)$
12	1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214	,
TC.	1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298	
	1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147	= 1 - 0.87698
	1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774	

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$

$$= \Phi(0.689) - \Phi(-1.161)$$

$$= 0.75490 - (1 - 0.87698)$$

$$= 0.63188 = 63.188\%$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

S è un insieme discreto quando tutti i suoi punti sono isolati

 \Rightarrow S è finito o al più numerabile

ESEMPIO:
$$S = \{-4, -2.\overline{6}, -0.9, \sqrt{3}, \pi, 4.5\}$$
 $I = (-2.1, 3.8)$

Si richiede
$$\mathbb{P}(X \in (-2.1, 3.8)) = \mathbb{P}(X \in \{-0.9, \sqrt{3}, \pi\})$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}\left(X\in\mathcal{S}\right)=\mathbb{P}\left(X\in\mathbb{R}\cap\mathcal{S}\right)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}(X \in S) = \mathbb{P}(X \in \mathbb{R} \cap S) = \mathbb{P}(X \in \mathbb{R})$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}(X \in S) = \mathbb{P}(X \in \mathbb{R} \cap S) = \mathbb{P}(X \in \mathbb{R}) = 1$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S
ightarrow [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

•
$$\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$$
 per ogni $I \subseteq \mathbb{R}$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S o [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \lor \dots \lor "X = k_n")$$

$$con I \cap S = \{k_1, \dots, k_n\}$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S o [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \lor \dots \lor "X = k_n")$$

$$\stackrel{\text{(3)}}{=} \mathbb{P}(X = k_1) + \dots + \mathbb{P}(X = k_n) \quad \text{con } I \cap S = \{k_1, \dots, k_n\}$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$\rho_X: S \to [0,1]$$

$$\rho_X(k) := \mathbb{P}(X = k)$$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \vee \ldots \vee "X = k_n")$$

$$= \mathbb{P}(X = k_1) + \ldots + \mathbb{P}(X = k_n) \quad \text{con } I \cap S = \{k_1, \ldots, k_n\}$$

$$= \sum_{k \in I \cap S} p_X(k)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S o [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

- $\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività) perché $p_X(k) = \mathbb{P}(X=k)$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S o [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

- $\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività)
- $\sum_{k \in S} p_X(k) = 1$ (normalizzazione) perché $\mathbb{P}(X \in S) = 1$

Definizione

Una v.a. X si dice discreta se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S o [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

- $\mathbb{P}(X \in I) = \sum p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività) $\sum p_X(k) = 1$ (normalizzazione)

proprietà fondamentali

ESEMPIO:

X = numero che uscirà nel lancio di un dado

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \mathbb{P}(X = k) = \mathbb{P}(\text{"uscirà }k")$$

tutti i $k \in S$ sono equiprobabili

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \mathbb{P}(X = k) = \mathbb{P}(\text{"uscirà }k")$$
tutti i $k \in S$ sono equiprobabili

$$\sum_{k\in\mathcal{S}}p_X(k)=1$$

$$p_X(k) = p_X(k') \quad \forall k, k' \in S$$

$$p_X(k) = \frac{1}{6}$$
 $\forall k \in S$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1, 2, 3, 4, 5, 6\})$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1, 2, 3, 4, 5, 6\})$$

$$\mathbb{P}(2.3 \le X < 5) = ???$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1,2,3,4,5,6\})$$

$$\mathbb{P}(2.3 \le X < 5) = \sum_{k \in \{3,4\}} p_X(k)$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1, 2, 3, 4, 5, 6\})$$

$$\mathbb{P}(2.3 \le X < 5) = \sum_{k \in \{3,4\}} p_X(k) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

X assolutamente continua		X discreta
$\int_I \dots f_X(z) \mathrm{d}z$	\longrightarrow	$\sum_{k\in I\cap S}\dots p_X(k)$

$$X$$
 assolutamente continua X discreta
$$\int_I \dots f_X(z) dz \longrightarrow \sum_{k \in I \cap S} \dots p_X(k)$$

Definizioni

Il *valore atteso* e la *varianza* di una v.a. discreta *X* sono i numeri reali

$$\mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) \qquad \text{var}[X] = \sum_{k \in S} (k - \mathbb{E}[X])^2 \, p_X(k)$$

$$X$$
 assolutamente continua X discreta
$$\int_I \dots f_X(z) dz \longrightarrow \sum_{k \in I \cap S} \dots p_X(k)$$

Definizioni

Il *valore atteso* e la *varianza* di una v.a. discreta *X* sono i numeri reali

$$\mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) \qquad \text{var}[X] = \sum_{k \in S} (k - \mathbb{E}[X])^2 \, p_X(k)$$

Teorema (non dimostrato)

$$\mathbb{E}\left[g(X)\right] = \sum_{k \in S} g(k) \, \rho_X(k)$$

Valgono le stesse proprietà e gli stessi risultati del caso continuo

X = c qualunque sia il risultato dell'esperimento

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$\mathcal{S} = \{c\} \quad \Rightarrow \quad p_X : \{c\} \to [0,1]$$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

X = c qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

$$\bullet \mathbb{E}[X] = \sum_{k \in S} k \, p_X(k)$$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

•
$$\mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) = c \cdot p_X(c)$$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

•
$$\mathbb{E}[X] = \sum_{k \in S} k p_X(k) = c \cdot p_X(c)$$

= $c \cdot 1 = c$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

- $\mathbb{E}[X] = c$
- $\operatorname{var}[X] = \sum_{k \in S} (k \mathbb{E}[X])^2 p_X(k)$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

•
$$\mathbb{E}[X] = c$$

•
$$\operatorname{var}[X] = \sum_{k \in S} (k - \mathbb{E}[X])^2 \, \rho_X(k) = (c - c)^2 \cdot \rho_X(c)$$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

•
$$\mathbb{E}[X] = c$$

•
$$\operatorname{var}[X] = \sum_{k \in S} (k - \mathbb{E}[X])^2 p_X(k) = (c - c)^2 \cdot p_X(c)$$

= $(c - c)^2 \cdot 1 = 0$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

- $\mathbb{E}[X] = c$
- var[X] = 0

$$var[X] = 0 \Leftrightarrow X \text{ è una costante}$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$\mathcal{S} = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \rightarrow [0,1]$$

$$X=egin{cases} 1 & ext{se succederà l'evento } E \ 0 & ext{se succederà l'evento } \overline{E} \ S=\{0,1\} & \Rightarrow & p_X:\{0,1\}
ightarrow [0,1] \ & p_X(0)=\mathbb{P}\left(X=0
ight) \end{cases}$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \to [0,1]$$

 $p_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(\overline{E})$

$$X = egin{cases} 1 & ext{se succederà l'evento } \overline{E} \ 0 & ext{se succederà l'evento } \overline{E} \ S = \{0,1\} & \Rightarrow & p_X : \{0,1\}
ightarrow [0,1] \ & p_X(0) = \mathbb{P}\left(X=0\right) = \mathbb{P}\left(\overline{E}\right) \ & p_X(1) = \mathbb{P}\left(X=1\right) \end{cases}$$

$$X = egin{cases} 1 & ext{se succederà l'evento } E \ 0 & ext{se succederà l'evento } \overline{E} \end{cases}$$
 $S = \{0,1\} \Rightarrow p_X : \{0,1\}
ightarrow [0,1]$ $p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E})$ $p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E)$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \rightarrow [0,1]$$
 $p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q$ $p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $p_X(E) = \mathbb{P}(E) = q$

 p_X si chiama densità bernoulliana di parametro q e si scrive

$$X \sim B(1,q)$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$X = \left\{ egin{array}{ll} S = \{0,1\} & \Rightarrow & p_X : \{0,1\}
ightarrow [0,1] \\ & p_X(0) = \mathbb{P}\left(X=0\right) = \mathbb{P}\left(\overline{E}\right) = 1-q \\ & p_X(1) = \mathbb{P}\left(X=1\right) = \mathbb{P}\left(E\right) = q \end{array}
ight\} \ ext{con } q := \mathbb{P}\left(E\right)$$

$$\bullet \mathbb{E}[X] = \sum_{k \in S} k \, p_X(k)$$

•
$$\mathbb{E}[X] = \sum k \, p_X(k) = 0 \cdot p_X(0) + 1 \cdot p_X(1)$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \rightarrow [0,1]$$

$$p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1 - q \\ p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q \end{cases} \} \text{ con } q := \mathbb{P}(E)$$

$$\bullet \ \mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) = 0 \cdot p_X(0) + 1 \cdot p_X(1)$$

$$= 0 \cdot (1-q) + 1 \cdot q$$

$$X = egin{cases} 1 & ext{se succederà l'evento } \overline{E} \ 0 & ext{se succederà l'evento } \overline{\overline{E}} \ p_X : \{0,1\}
ightarrow [0,1] \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $ho_X : \{0,1\}
ightarrow [0,1]$ $ho_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \
ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$

•
$$\mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) = 0 \cdot p_X(0) + 1 \cdot p_X(1)$$

= $0 \cdot (1 - q) + 1 \cdot q$
= q

•
$$\mathbb{E}[X] = a$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $ho_X : \{0,1\}
ightarrow [0,1]$ $ho_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \
ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $ho_X(E) = \mathbb{P}(E) = q$

- $\mathbb{E}[X] = q$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mathbb{E}\left[X\right]^2$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $p_X : \{0,1\} \rightarrow [0,1]$
$$p_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(\overline{E}) = 1 - q$$
$$p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(E) = q$$
 $\} con $q := \mathbb{P}(E)$$

•
$$\mathbb{E}[X] = q$$

•
$$\operatorname{var}[X] = \mathbb{E}\left[\frac{X^2}{}\right] - \mathbb{E}[X]^2 = \mathbb{E}[X] - \mathbb{E}[X]^2$$
 perché $X^2 = X$ $\begin{pmatrix} 1^2 = 1 \\ 0^2 = 0 \end{pmatrix}$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $ho_X : \{0,1\}
ightarrow [0,1]$ $ho_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \
ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$

•
$$\mathbb{E}[X] = q$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X] - \mathbb{E}[X]^2$$

= $q - q^2$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $ho_X : \{0,1\}
ightarrow [0,1]$ $ho_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \
ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$

•
$$\mathbb{E}[X] = q$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X] - \mathbb{E}[X]^2$$

= $q - q^2$
= $q(1 - q)$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $ho_X : \{0,1\}
ightarrow [0,1]$ $ho_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \
ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $ho_X(E) = \mathbb{P}(E) = q$

- $\mathbb{E}[X] = q$
- var[X] = q(1 q)

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \rightarrow [0,1]$$
 $p_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(\overline{E}) = 1 - q \ p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(E) = q \$ $con q := \mathbb{P}(E)$

- $\mathbb{E}[X] = q$
- var[X] = q(1 q)

ESEMPI:

Nel lancio di due dadi:

X = risultato del primo lancio Y = risultato del secondo lancio X + Y = somma dei due risultati

ESEMPI:

Nel lancio di due dadi:

X = risultato del primo lancio Y = risultato del secondo lancio X + Y = somma dei due risultati

Nel sondaggio fra 100 studenti:

 $X_4 =$ altezza del 4º studente $X_{17} =$ altezza del 17º studente

 Y_4 = peso del 4° studente Y_{17} = peso del 17° studente

ESEMPI:

- Nel lancio di due dadi:
- X = risultato del primo lancio Y = risultato del secondo lancio X + Y = somma dei due risultati
- Nel sondaggio fra 100 studenti:

 $X_4 =$ altezza del 4º studente $X_{17} =$ altezza del 17º studente

 $Y_4 = \text{peso del } 4^{\circ} \text{ studente}$ $Y_{17} = \text{peso del } 17^{\circ} \text{ studente}$

Tra loro le variabili alatorie si possono sommare, moltiplicare ecc. :

X + Y XY ...

Teorema

- var [X + Y] = var[X] + var[Y] + 2 cov[X, Y]dove la *covarianza* di X e Y è $\text{cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

Per *n* v.a. $X_1, X_2, ..., X_n$:

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right] + 2 \sum_{\substack{i,j=1\\i < j}}^{n} \operatorname{cov}\left[X_{i}, X_{j}\right]$$

Come mi sbarazzo di cov $[X_i, X_j]$?

ESEMPI:

Nel lancio di due dadi:

X = risultato del primo lancio Y = risultato del secondo lancio X + Y = somma dei due risultati

ESEMPI:

Nel lancio di due dadi:

X = risultato del primo lancio Y = risultato del secondo lancio

X + Y = somma dei due risultati

X, Y indipendenti

ESEMPI:

Nel lancio di due dadi:

X = risultato del primo lancio Y = risultato del secondo lancio X + Y = somma dei due risultati

X, X + Y NON indipendenti

ESEMPI:

Nel lancio di due dadi:

X= risultato del primo lancio Y= risultato del secondo lancio X+Y= somma dei due risultati

X, Y, X + Y NON indipendenti

ESEMPI:

Nel lancio di due dadi:

X= risultato del primo lancio Y= risultato del secondo lancio X+Y= somma dei due risultati

Nel sondaggio fra 100 studenti:

 X_4 = altezza del 4° studente X_{17} = altezza del 17° studente

 Y_4 = peso del 4° studente Y_{17} = peso del 17° studente

ESEMPI:

Nel lancio di due dadi:

$$X=$$
 risultato del primo lancio $Y=$ risultato del secondo lancio $X+Y=$ somma dei due risultati

Nel sondaggio fra 100 studenti:

$$X_4 =$$
altezza del 4º studente $X_{17} =$ altezza del 17º studente $Y_4 =$ peso del 4º studente $Y_{17} =$ peso del 17º studente

 X_4 , X_{17} indipendenti

ESEMPI:

Nel lancio di due dadi:

X= risultato del primo lancio Y= risultato del secondo lancio X+Y= somma dei due risultati

Nel sondaggio fra 100 studenti:

 $X_4 =$ altezza del 4º studente $X_{17} =$ altezza del 17º studente $Y_4 =$ peso del 4º studente $Y_{17} =$ peso del 17º studente

 X_4 , Y_{17} indipendenti

ESEMPI:

Nel lancio di due dadi:

X = risultato del primo lancio Y = risultato del secondo lancioX + Y = somma dei due risultati

Nel sondaggio fra 100 studenti:

 X_4 = altezza del 4° studente

 $X_{17} =$ altezza del 17º studente

 Y_4 = peso del 4° studente Y_{17} = peso del 17° studente

 X_4 , Y_4 NON indipendenti

ESEMPI:

Nel lancio di due dadi:

$$X=$$
 risultato del primo lancio $Y=$ risultato del secondo lancio $X+Y=$ somma dei due risultati

Nel sondaggio fra 100 studenti:

$$X_4 =$$
 altezza del 4º studente $X_{17} =$ altezza del 17º studente $Y_4 =$ peso del 4º studente $Y_{17} =$ peso del 17º studente

 X_4 , Y_4 , X_{17} , Y_{17} NON indipendenti

Definizione (per 2 variabili aleatorie)

Le v.a. X, Y si dicono *indipendenti* se

$$\mathbb{P}\left("X \in I" \land "Y \in J" \right) =$$

$$= \mathbb{P}\left(X \in I \right) \cdot \mathbb{P}\left(Y \in J \right)$$

per ogni possibile scelta di $I, J \subseteq \mathbb{R}$

Definizione (per *n* variabili aleatorie)

Le v.a. X_1, X_2, \ldots, X_n si dicono *indipendenti* se

$$\mathbb{P}("X_1 \in I_1" \wedge "X_2 \in I_2" \wedge \ldots \wedge "X_n \in I_n") =$$

$$= \mathbb{P}(X_1 \in I_1) \cdot \mathbb{P}(X_2 \in I_2) \cdot \ldots \cdot \mathbb{P}(X_n \in I_n)$$

per ogni possibile scelta di $I_1, I_2, \ldots, I_n \subseteq \mathbb{R}$

Definizione (per *n* variabili aleatorie)

Le v.a. X_1, X_2, \ldots, X_n si dicono *indipendenti* se

$$\mathbb{P}\left("X_1 \in I_1" \wedge "X_2 \in I_2" \wedge \ldots \wedge "X_n \in I_n" \right) =$$

$$= \mathbb{P}\left(X_1 \in I_1 \right) \cdot \mathbb{P}\left(X_2 \in I_2 \right) \cdot \ldots \cdot \mathbb{P}\left(X_n \in I_n \right)$$

per ogni possibile scelta di $I_1, I_2, \ldots, I_n \subseteq \mathbb{R}$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono indipendenti, allora $\operatorname{cov}\left[X_i, X_j\right] = 0$ quando $i \neq j$. In particolare,

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]$$

Definizione (per *n* variabili aleatorie)

Le v.a. X_1, X_2, \ldots, X_n si dicono *indipendenti* se

$$\mathbb{P}("X_1 \in I_1" \wedge "X_2 \in I_2" \wedge \ldots \wedge "X_n \in I_n") =$$

$$= \mathbb{P}(X_1 \in I_1) \cdot \mathbb{P}(X_2 \in I_2) \cdot \ldots \cdot \mathbb{P}(X_n \in I_n)$$

per ogni possibile scelta di $I_1, I_2, \ldots, I_n \subseteq \mathbb{R}$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono indipendenti, allora $\operatorname{cov}\left[X_i, X_j\right] = 0$ quando $i \neq j$. In particolare,

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]$$

ATTENZIONE: Non vale il viceversa

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono indipendenti, allora $\operatorname{cov}\left[X_i, X_j\right] = 0$ quando $i \neq j$. In particolare,

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]$$

ESEMPIO: Se *X* e *Y* sono indipendenti,

•
$$\mathbb{E}[X - Y] = \mathbb{E}[X] - \mathbb{E}[Y]$$

linearità di $\mathbb E$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono indipendenti, allora $\operatorname{cov}\left[X_i, X_j\right] = 0$ quando $i \neq j$. In particolare,

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]$$

ESEMPIO: Se *X* e *Y* sono indipendenti,

- $\bullet \mathbb{E}[X Y] = \mathbb{E}[X] \mathbb{E}[Y]$
- $\operatorname{var}[X Y] = \operatorname{var}[X] + \operatorname{var}[-Y]$

linearità di $\mathbb E$

indipendendenza di X, Y

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono indipendenti, allora $\operatorname{cov}\left[X_i, X_j\right] = 0$ quando $i \neq j$. In particolare,

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]$$

ESEMPIO: Se *X* e *Y* sono indipendenti,

$$\bullet \mathbb{E}[X - Y] = \mathbb{E}[X] - \mathbb{E}[Y]$$

•
$$\operatorname{var}[X - Y] = \operatorname{var}[X] + \operatorname{var}[-Y]$$

= $\operatorname{var}[X] + (-1)^{2} \operatorname{var}[Y]$

linearità di ${\mathbb E}$

indipendendenza di *X*, *Y* quadraticità di var

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono indipendenti, allora $\operatorname{cov}\left[X_i, X_j\right] = 0$ quando $i \neq j$. In particolare,

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]$$

ESEMPIO: Se *X* e *Y* sono indipendenti,

$$\bullet \mathbb{E}[X - Y] = \mathbb{E}[X] - \mathbb{E}[Y]$$

•
$$\operatorname{var}[X - Y] = \operatorname{var}[X] + \operatorname{var}[-Y]$$

= $\operatorname{var}[X] + (-1)^{2} \operatorname{var}[Y]$
= $\operatorname{var}[X] + \operatorname{var}[Y]$

linearità di $\mathbb E$

indipendendenza di X, Y quadraticità di var

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono indipendenti, allora $\operatorname{cov} \left[X_i, X_j \right] = 0$ quando $i \neq j$. In particolare,

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]$$

ESEMPIO: Se *X* e *Y* sono indipendenti,

$$\bullet \mathbb{E}[X - Y] = \mathbb{E}[X] - \mathbb{E}[Y]$$

•
$$\operatorname{var}[X - Y] = \operatorname{var}[X] + \operatorname{var}[-Y]$$

= $\operatorname{var}[X] + (-1)^{2} \operatorname{var}[Y]$
= $\operatorname{var}[X] + \operatorname{var}[Y]$

linearità di $\mathbb E$

indipendendenza di *X*, *Y* quadraticità di var

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

tutte le prove hanno la stessa probabilità di successo q

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

tutte le prove hanno la stessa probabilità di successo q

le prove non si influenzano tra loro

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

tutte le prove hanno la stessa probabilità di successo q

le prove non si influenzano tra loro

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

$$\Rightarrow X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- tutte le prove hanno la stessa probabilità di successo q
- 3 le prove non si influenzano tra loro

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

$$\Rightarrow \quad X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

tutte le prove hanno la stessa probabilità di successo q

$$\Rightarrow$$
 $X_i \sim B(1,q)$ per ogni $i = 1, ..., n$

le prove non si influenzano tra loro

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

$$\Rightarrow \quad X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

tutte le prove hanno la stessa probabilità di successo q

$$\Rightarrow$$
 $X_i \sim B(1,q)$ per ogni $i = 1, ..., n$

3 le prove non si influenzano tra loro

$$\Rightarrow X_1, \ldots, X_n$$
 sono indipendenti

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

$$\Rightarrow \quad X_i = \begin{cases} 1 & \text{se avrò successo all'} \textit{i}\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

tutte le prove hanno la stessa probabilità di successo q

$$\Rightarrow$$
 $X_i \sim B(1,q)$ per ogni $i = 1, ..., n$

le prove non si influenzano tra loro

$$\Rightarrow$$
 X_1, \ldots, X_n sono indipendenti

$$Y =$$
 numero di successi nelle n prove
= $X_1 + X_2 + ... + X_n$

Progettiamo di fare *n* prove t.c.:

ogni prova può avere solo due esiti (successo o insuccesso)

$$\Rightarrow \quad X_i = egin{cases} 1 & ext{ se avrò successo all'} \emph{i}\text{-esima prova} \\ 0 & ext{ altrimenti} \end{cases}$$

tutte le prove hanno la stessa probabilità di successo q

$$\Rightarrow$$
 $X_i \sim B(1,q)$ per ogni $i = 1, ..., n$ $X_1, ..., X_n$ sono

le prove non si influenzano tra loro

$$\Rightarrow$$
 X_1, \ldots, X_n sono indipendenti

 X_1, \dots, X_n sono

(i.) ndipendenti e denticamente d. istribuite

$$Y =$$
 numero di successi nelle n prove $= X_1 + X_2 + ... + X_n$

$$Y = X_1 + X_2 + ... + X_n$$
 con $X_1, ..., X_n$ i.i.d. e $X_i \sim B(1, q)$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1,q)$

• $\mathbb{E}[Y] = ???$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1, q)$

$$\bullet \ \mathbb{E}[Y] = \mathbb{E}[X_1 + X_2 + \ldots + X_n]$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1, q)$

•
$$\mathbb{E}[Y] = \mathbb{E}[X_1 + X_2 + \ldots + X_n]$$
 linearità di \mathbb{E}

$$= \mathbb{E}[X_1] + \mathbb{E}[X_2] + \ldots + \mathbb{E}[X_n]$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1, q)$

•
$$\mathbb{E}[Y] = \mathbb{E}[X_1 + X_2 + \ldots + X_n]$$

= $\underbrace{\mathbb{E}[X_1]}_{q} + \underbrace{\mathbb{E}[X_2]}_{q} + \ldots + \underbrace{\mathbb{E}[X_n]}_{q}$ $X_i \sim B(1,q)$ per ogni i

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1,q)$

•
$$\mathbb{E}[Y] = \mathbb{E}[X_1 + X_2 + \dots + X_n]$$

$$= \underbrace{\mathbb{E}[X_1]}_{q} + \underbrace{\mathbb{E}[X_2]}_{q} + \dots + \underbrace{\mathbb{E}[X_n]}_{q}$$

$$= nq$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1, q)$

•
$$\mathbb{E}[Y] = nq$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1, q)$

- $\mathbb{E}[Y] = nq$
- var[Y] = ???

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1, q)$

- $\mathbb{E}[Y] = nq$
- $\operatorname{var}[Y] = \operatorname{var}[X_1 + X_2 + \ldots + X_n]$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1,q)$

- $\mathbb{E}[Y] = nq$
- $\operatorname{var}[Y] = \operatorname{var}[X_1 + X_2 + \ldots + X_n]$ indipendenza delle X_i = $\operatorname{var}[X_1] + \operatorname{var}[X_2] + \ldots + \operatorname{var}[X_n]$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1,q)$

- $\mathbb{E}[Y] = nq$
- $\operatorname{var}[Y] = \operatorname{var}[X_1 + X_2 + \ldots + X_n]$ $= \underbrace{\operatorname{var}[X_1]}_{q(1-q)} + \underbrace{\operatorname{var}[X_2]}_{q(1-q)} + \ldots + \underbrace{\operatorname{var}[X_n]}_{q(1-q)} \qquad X_i \sim B(1,q) \text{ per ogni } i$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1,q)$

•
$$\mathbb{E}[Y] = nq$$

•
$$\operatorname{var}[Y] = \operatorname{var}[X_1 + X_2 + \dots + X_n]$$

$$= \underbrace{\operatorname{var}[X_1]}_{q(1-q)} + \underbrace{\operatorname{var}[X_2]}_{q(1-q)} + \dots + \underbrace{\operatorname{var}[X_n]}_{q(1-q)}$$

$$= nq(1-q)$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1, q)$

- $\mathbb{E}[Y] = nq$
- var[Y] = nq(1 q)

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1,q)$

- $\mathbb{E}[Y] = nq$
- var[Y] = nq(1 q)

•
$$p_Y(k) = \binom{n}{k} q^k (1-q)^{n-k}$$
 per ogni $k \in S = \{0, 1, 2, ..., n\}$
dove $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
coefficiente binomiale di n su k

 p_Y è la densità *binomiale* di parametri $n \in q$:

$$Y \sim B(n, q)$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1, q)$

- $\mathbb{E}[Y] = nq$
- var[Y] = nq(1 q)

•
$$p_Y(k) = \binom{n}{k} q^k (1-q)^{n-k}$$
 per ogni $k \in S = \{0, 1, 2, ..., n\}$
dove $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \#\{I \subseteq \{1, 2, ..., n\} \mid \#I = k\}$

Per esempio, con n = 3 e k = 2:

$$\{I \subseteq \{1,2,3\} \mid \#I = 2\} = \{\{1,2\}, \{1,3\}, \{2,3\}\}$$

 $\Rightarrow \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \# \quad " \quad " = 3$

Per esempio, con $I = \{1,3\}$:

 $\bigwedge_{i \in I} "X_i = 1" = "X_1 = 1" \wedge "X_3 = 1"$

$$Y=X_1+X_2+\ldots+X_n$$
 con X_1,\ldots,X_n i.i.d. e $X_i\sim B(1,q)$

DIMOSTRAZIONE di $p_Y(k)=\binom{n}{k}q^k(1-q)^{n-k}$:
$$\underbrace{\bigwedge_{i\in I} "X_i=1"}_{\text{successo nelle prove }I}$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1,q)$
DIMOSTRAZIONE di $p_Y(k) = \binom{n}{k} q^k (1-q)^{n-k}$:
$$\underbrace{\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)}_{\text{successo solo nelle prove } I}$$

Per esempio, con
$$I = \{1,3\}$$
 e $n = 3 \Rightarrow I^c = \{2\}$:

$$\bigwedge_{i \in I^{G}} "X_{i} = 0" = "X_{2} = 0"$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. e $X_i \sim B(1,q)$
DIMOSTRAZIONE di $p_Y(k) = \binom{n}{k} q^k (1-q)^{n-k}$:
$$\bigvee_{\substack{I \subseteq \{1,2,\ldots,n\} \\ \text{t.c. } \#I = k}} \left[\left(\bigwedge_{i \in I} "X_i = 1" \right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0" \right) \right]$$
esattamente k successi

$$Y=X_1+X_2+\ldots+X_n$$
 con X_1,\ldots,X_n i.i.d. e $X_i\sim B(1,q)$ DIMOSTRAZIONE di $p_Y(k)=\left(egin{array}{c} n\\ k \end{array}
ight)q^k(1-q)^{n-k}$:

$$\mathbb{P}(Y=k) = \mathbb{P}\left(\bigvee_{\substack{I\subseteq\{1,2,\ldots,n\}\\\text{t.c. }\#I=k}} \left[\left(\bigwedge_{i\in I} "X_i=1"\right) \wedge \left(\bigwedge_{j\in I^c} "X_j=0"\right)\right]\right)$$

esattamente k successi

$$Y = X_1 + X_2 + \ldots + X_n \quad \text{con} \quad X_1, \ldots, X_n \text{ i.i.d.} \quad \text{e} \quad X_i \sim B(1, q)$$

$$\textbf{DIMOSTRAZIONE di} \quad p_Y(k) = \binom{n}{k} q^k (1 - q)^{n-k} :$$

$$\mathbb{P}(Y = k) = \mathbb{P}\left(\bigvee_{\substack{I \subseteq \{1, 2, \ldots, n\} \\ \text{t.c. } \#I = k}} \left[\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right]\right)$$

$$\stackrel{(3)}{=} \sum_{I \subseteq \{1, 2, \ldots, n\}} \mathbb{P}\left(\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right)$$

$$Y = X_1 + X_2 + \ldots + X_n \quad \text{con} \quad X_1, \ldots, X_n \text{ i.i.d.} \quad \text{e} \quad X_i \sim B(1,q)$$

$$\textbf{DIMOSTRAZIONE di} \quad p_Y(k) = \binom{n}{k} q^k (1-q)^{n-k} :$$

$$\mathbb{P}(Y = k) = \mathbb{P}\left(\bigvee_{\substack{I \subseteq \{1,2,\ldots,n\}\\ \text{t.c. } \#I = k}} \left[\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right]\right)$$

$$= \sum_{\substack{I \subseteq \{1,2,\ldots,n\}\\ \text{t.c. } \#I = k}} \mathbb{P}\left(\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right)$$

$$= \sum_{\substack{I \subseteq \{1,2,\ldots,n\}\\ \text{t.c. } \#I = k}} \left(\prod_{i \in I} \mathbb{P}(X_i = 1)\right) \times \left(\prod_{j \in I^c} \mathbb{P}(X_j = 0)\right) \quad \text{indipendenza}$$

$$Y = X_1 + X_2 + \ldots + X_n \quad \text{con} \quad X_1, \ldots, X_n \text{ i.i.d.} \quad \text{e} \quad X_i \sim B(1, q)$$

$$\textbf{DIMOSTRAZIONE di} \quad p_Y(k) = \binom{n}{k} q^k (1 - q)^{n-k} :$$

$$\mathbb{P}(Y = k) = \mathbb{P}\left(\bigvee_{\substack{I \subseteq \{1, 2, \ldots, n\} \\ \text{t.c. } \#I = k}} \left[\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right]\right)$$

$$= \sum_{\substack{I \subseteq \{1, 2, \ldots, n\} \\ \text{t.c. } \#I = k}} \mathbb{P}\left(\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right)$$

$$= \sum_{\substack{I \subseteq \{1, 2, \ldots, n\} \\ \text{t.c. } \#I = k}} \left(\prod_{i \in I} \mathbb{P}(X_i = 1)\right) \times \left(\prod_{j \in I^c} \mathbb{P}(X_j = 0)\right)$$

$$Y = X_1 + X_2 + \ldots + X_n \quad \text{con} \quad X_1, \ldots, X_n \text{ i.i.d.} \quad \text{e} \quad X_i \sim B(1, q)$$

$$\mathbf{DIMOSTRAZIONE} \text{ di} \quad p_Y(k) = \binom{n}{k} q^k (1 - q)^{n-k} :$$

$$\mathbb{P}(Y = k) = \mathbb{P}\left(\bigvee_{\substack{I \subseteq \{1, 2, \ldots, n\} \\ \text{t.c. } \#I = k}} \left[\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right]\right)$$

$$= \sum_{\substack{I \subseteq \{1, 2, \ldots, n\} \\ \text{t.c. } \#I = k}} \mathbb{P}\left(\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right)$$

$$= \sum_{\substack{I \subseteq \{1, 2, \ldots, n\} \\ \text{t.c. } \#I = k}} \left(\prod_{i \in I} \mathbb{P}(X_i = 1)\right) \times \left(\prod_{j \in I^c} \mathbb{P}(X_j = 0)\right)$$

$$Y = X_1 + X_2 + ... + X_n$$
 con $X_1, ..., X_n$ i.i.d. e $X_i \sim B(1, q)$

DIMOSTRAZIONE di $p_Y(k) = \binom{n}{k} q^k (1-q)^{n-k}$:

$$\mathbb{P}(Y = k) = \mathbb{P}\left(\bigvee_{\substack{I \subseteq \{1, 2, \dots, n\} \\ \text{t.c. } \#I = k}} \left[\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right]\right)$$

$$= \sum_{\substack{I \subseteq \{1, 2, \dots, n\} \\ \text{t.c. } \#I = k}} \mathbb{P}\left(\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right)$$

$$= \sum_{\substack{I \subseteq \{1, 2, \dots, n\} \\ \text{t.c. } \#I = k}} \underbrace{\left(\prod_{i \in I} \mathbb{P}(X_i = 1)\right)}_{q^k} \times \underbrace{\left(\prod_{j \in I^c} \mathbb{P}(X_j = 0)\right)}_{(1-q)^{n-k}}$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. $e X_i \sim B(1, q)$

DIMOSTRAZIONE di
$$\rho_Y(k) = \binom{n}{k} q^k (1-q)^{n-k}$$
:

$$\mathbb{P}(Y=k) = \mathbb{P}\left(\bigvee_{\substack{I\subseteq\{1,2,\dots,n\}\\\text{t.c. }\#I=k}} \left[\left(\bigwedge_{i\in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j\in I^c} "X_j = 0"\right)\right]\right)$$

$$= \sum_{\substack{I\subseteq\{1,2,\dots,n\}\\\text{t.c. }\#I=k}} \mathbb{P}\left(\left(\bigwedge_{i\in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j\in I^c} "X_j = 0"\right)\right)$$

$$= \sum_{\substack{I\subseteq\{1,2,\dots,n\}\\\text{t.c. }\#I=k}} \left(\prod_{i\in I} \mathbb{P}(X_i = 1)\right) \times \left(\prod_{j\in I^c} \mathbb{P}(X_j = 0)\right)$$

$$= \left(\bigcap_{k} q^k (1-q)^{n-k}\right)$$

$$Y = X_1 + X_2 + \ldots + X_n$$
 con X_1, \ldots, X_n i.i.d. $X_i \sim B(1, q)$

DIMOSTRAZIONE di
$$\rho_Y(k) = \binom{n}{k} q^k (1-q)^{n-k}$$
:

$$\mathbb{P}(Y = k) = \mathbb{P}\left(\bigvee_{\substack{I \subseteq \{1, 2, \dots, n\} \\ \text{t.c. } \#I = k}} \left[\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right]\right)$$

$$= \sum_{\substack{I \subseteq \{1, 2, \dots, n\} \\ \text{t.c. } \#I = k}} \mathbb{P}\left(\left(\bigwedge_{i \in I} "X_i = 1"\right) \wedge \left(\bigwedge_{j \in I^c} "X_j = 0"\right)\right)$$

$$= \sum_{\substack{I \subseteq \{1, 2, \dots, n\} \\ \text{t.c. } \#I = k}} \left(\prod_{i \in I} \mathbb{P}(X_i = 1)\right) \times \left(\prod_{j \in I^c} \mathbb{P}(X_j = 0)\right)$$

$$= \left(\bigcap_{k} q^k (1 - q)^{n - k}\right)$$

1 anno

Y = numero di terremoti in un anno

$$\underbrace{\mathbb{E}\left[Y\right] = 3.72}_{\text{fissato}}$$

 X_i = numero di terremoti nell'*i*-esimo semestre, i = 1, 2

Y = numero di terremoti in un anno $= X_1 + X_2$

$$\underbrace{\mathbb{E}\left[Y\right] = 3.72}_{\text{fissato}} = \mathbb{E}\left[X_1\right] + \mathbb{E}\left[X_2\right]$$

 X_i = numero di terremoti nell'*i*-esimo semestre, i = 1, 2

Y = numero di terremoti in un anno $= X_1 + X_2$

$$\underbrace{\mathbb{E}\left[Y\right] = 3.72}_{\text{fissato}} = \mathbb{E}\left[X_1\right] + \mathbb{E}\left[X_2\right]$$

$$\Rightarrow X_1, X_2$$
 sono i.i.d.

 X_i = numero di terremoti nell'*i*-esimo semestre, i = 1, 2

Y = numero di terremoti in un anno $= X_1 + X_2$

$$\underbrace{\mathbb{E}[Y] = 3.72}_{\text{fissato}} = \underbrace{\mathbb{E}[X_1] + \mathbb{E}[X_2]}_{\text{tutti uguali}} \Rightarrow \mathbb{E}[X_i] = \frac{3.72}{2}$$

$$\Rightarrow X_1, X_2$$
 sono i.i.d.

 X_i = numero di terremoti nell'*i*-esimo quadrimestre, i = 1, 2, 3

Y = numero di terremoti in un anno $= X_1 + X_2 + X_3$

$$\underbrace{\mathbb{E}[Y] = 3.72}_{\text{fissato}} = \underbrace{\mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3]}_{\text{tutti uguali}} \Rightarrow \mathbb{E}[X_i] = \frac{3.72}{3}$$

• periodi diversi hanno andamento simile senza influenzarsi tra loro $\Rightarrow X_1, X_2, X_3$ sono i.i.d.

 X_i = numero di terremoti nell'*i*-esimo mese, i = 1, ..., 12

Y = numero di terremoti in un anno $= X_1 + \ldots + X_{12}$

$$\underbrace{\mathbb{E}[Y] = 3.72}_{\text{fissato}} = \underbrace{\mathbb{E}[X_1] + \ldots + \mathbb{E}[X_{12}]}_{\text{tutti uguali}} \Rightarrow \mathbb{E}[X_i] = \frac{3.72}{12}$$

$$\Rightarrow X_1, \dots, X_{12}$$
 sono i.i.d.

1 anno

 X_i = numero di terremoti nell'*i*-esima settimana, i = 1, ..., 52

Y = numero di terremoti in un anno $= X_1 + \ldots + X_{52}$

$$\underbrace{\mathbb{E}[Y] = 3.72}_{\text{fissato}} = \underbrace{\mathbb{E}[X_1] + \ldots + \mathbb{E}[X_{52}]}_{\text{tutti uguali}} \Rightarrow \mathbb{E}[X_i] = \frac{3.72}{52}$$

$$\Rightarrow \quad X_1,\dots,X_{52} \quad \text{ sono i.i.d.}$$

1 anno

$$X_i$$
 = numero di terremoti nell'*i*-esimo giorno, $i = 1, ..., 365$

Y = numero di terremoti in un anno $= X_1 + \ldots + X_{365}$

$$\underbrace{\mathbb{E}[Y] = 3.72}_{\text{fissato}} = \underbrace{\mathbb{E}[X_1] + \ldots + \mathbb{E}[X_{365}]}_{\text{tutti uguali}} \quad \Rightarrow \quad \mathbb{E}[X_i] = \frac{3.72}{365}$$

$$\Rightarrow X_1, \dots, X_{365}$$
 sono i.i.d.

1 anno

 X_i = numero di terremoti nell'i-esimo istante, i = 1, ..., n

Y = numero di terremoti in un anno $= X_1 + \ldots + X_n$

$$\underbrace{\mathbb{E}[Y] = \lambda}_{\text{fissato}} = \underbrace{\mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]}_{\text{tutti uguali}} \Rightarrow \mathbb{E}[X_i] = \frac{\lambda}{n}$$

• periodi diversi hanno andamento simile senza influenzarsi tra loro $\Rightarrow X_1, \dots, X_n$ sono i.i.d.

1 anno

 X_i = numero di terremoti nell'*i*-esimo istante, i = 1, ..., n

Y = numero di terremoti in un anno $= X_1 + \ldots + X_n$

$$\underbrace{\mathbb{E}[Y] = \lambda}_{\text{fissato}} = \underbrace{\mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]}_{\text{tutti uguali}} \Rightarrow \mathbb{E}[X_i] = \frac{\lambda}{n}$$

- periodi diversi hanno andamento simile senza influenzarsi tra loro
 - $\Rightarrow X_1, \dots, X_n$ sono i.i.d.
- n grande \Rightarrow le X_i possono prendere solo valori $\{0,1\}$

$$\Rightarrow$$
 $X_i \sim B(1,q)$ con $q = \mathbb{E}[X_i] = \frac{\lambda}{n}$ piccolo

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$

 X_i = numero di terremoti nell'*i*-esimo istante, i = 1, ..., n

Y = numero di terremoti in un anno $= X_1 + \ldots + X_n$

$$\underbrace{\mathbb{E}[Y] = \lambda}_{\text{fissato}} = \underbrace{\mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]}_{\text{tutti uguali}} \Rightarrow \mathbb{E}[X_i] = \frac{\lambda}{n}$$

- periodi diversi hanno andamento simile senza influenzarsi tra loro
 - $\Rightarrow X_1, \dots, X_n$ sono i.i.d.
- n grande \Rightarrow le X_i possono prendere solo valori $\{0,1\}$

$$\Rightarrow$$
 $X_i \sim B(1,q)$ con $q = \mathbb{E}[X_i] = \frac{\lambda}{n}$ piccolo

Y ha (circa!) densità *di Poisson* (o *poissoniana*) di parametro λ $Y \approx \mathcal{P}(\lambda)$

DIMOSTRAZIONE:

$$p_Y(k) = \binom{n}{k} q^k (1-q)^{n-k}$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$
 $\downarrow \qquad \qquad \qquad \downarrow$
 $p_Y(k) = \mathrm{e}^{-\lambda} \, rac{\lambda^k}{k!}$ con $k \in S = \{0, 1, 2, \ldots\}$

DIMOSTRAZIONE:

$$p_Y(k) = \binom{n}{k} q^k (1-q)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$
 $\downarrow \qquad \qquad \downarrow$
 $p_Y(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ con $k \in S = \{0, 1, 2, \ldots\}$

DIMOSTRAZIONE:

$$p_{Y}(k) = \binom{n}{k} q^{k} (1-q)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^{k} \left(1-\frac{\lambda}{n}\right)^{n-k}$$
$$= \frac{\lambda^{k}}{k!} \left(1-\frac{\lambda}{n}\right)^{-k} \left(1-\frac{\lambda}{n}\right)^{n} \frac{n!}{n^{k}(n-k)!}$$

$$p_{Y}(k) = \binom{n}{k} q^{k} (1-q)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^{k} \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \underbrace{\left(1-\frac{\lambda}{n}\right)^{-k}}_{\to 1} \left(1-\frac{\lambda}{n}\right)^{n} \frac{n!}{n^{k}(n-k)!}$$

$$\left(1-\frac{\lambda}{n}\right)^{-k} \xrightarrow[n \to \infty]{} 1$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad p_Y(k) = \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \quad \mathrm{con} \quad k \in S = \{0, 1, 2, \ldots\}$$

$$p_{Y}(k) = \binom{n}{k} q^{k} (1-q)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^{k} \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \underbrace{\left(1 - \frac{\lambda}{n}\right)^{-k}}_{\rightarrow 1} \underbrace{\left(1 - \frac{\lambda}{n}\right)^{n}}_{\rightarrow e^{-\lambda}} \frac{n!}{n^{k} (n-k)!}$$

$$\left(1 - \frac{\lambda}{n}\right)^{n} \underset{n \to \infty}{\longrightarrow} e^{-\lambda}$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad p_Y(k) = \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \quad \mathrm{con} \quad k \in S = \{0, 1, 2, \ldots\}$$

$$p_{Y}(k) = \binom{n}{k} q^{k} (1-q)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^{k} \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \underbrace{\left(1-\frac{\lambda}{n}\right)^{-k} \underbrace{\left(1-\frac{\lambda}{n}\right)^{n}}_{\rightarrow 1} \frac{n!}{n^{k} (n-k)!}}_{\frac{n}{n}} \frac{n!}{n^{k} (n-k)!}$$

$$\frac{n!}{n^{k} (n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{n^{k}}$$

$$p_{Y}(k) = \binom{n}{k} q^{k} (1-q)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^{k} \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \underbrace{\left(1-\frac{\lambda}{n}\right)^{-k} \left(1-\frac{\lambda}{n}\right)^{n}}_{\rightarrow 1} \frac{n!}{n^{k} (n-k)!}$$

$$\frac{n!}{n^{k} (n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{n^{k}} = \frac{n^{k} + O(n^{k-1})}{n^{k}}$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad p_Y(k) = \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \quad \mathrm{con} \quad k \in S = \{0, 1, 2, \ldots\}$$

$$p_{Y}(k) = \binom{n}{k} q^{k} (1-q)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^{k} \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \underbrace{\left(1-\frac{\lambda}{n}\right)^{-k}}_{\rightarrow 1} \underbrace{\left(1-\frac{\lambda}{n}\right)^{n}}_{\rightarrow e^{-\lambda}} \underbrace{\frac{n!}{n^{k}(n-k)!}}_{\rightarrow 1}$$

$$\frac{n!}{n^{k}(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{n^{k}} = \frac{n^{k}+O(n^{k-1})}{n^{k}} \xrightarrow[n\to\infty]{} 1$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$
 $\downarrow \qquad \qquad \downarrow$
 $p_Y(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ con $k \in S = \{0, 1, 2, \ldots\}$

$$p_{Y}(k) = \binom{n}{k} q^{k} (1-q)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^{k} \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \underbrace{\left(1-\frac{\lambda}{n}\right)^{-k}}_{\to 1} \underbrace{\left(1-\frac{\lambda}{n}\right)^{n}}_{\to e^{-\lambda}} \underbrace{\frac{n!}{n^{k}(n-k)!}}_{\to 1}$$

$$= \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad p_Y(k) = \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \quad \mathrm{con} \quad k \in S = \{0, 1, 2, \ldots\}$$

•
$$\mathbb{E}[Y] = nq$$
 perché $Y \sim B(n,q)$

•
$$\mathbb{E}[Y] = nq \xrightarrow[\substack{n \to \infty \\ q \to 0 \\ nq = \lambda}]{} \lambda$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad p_Y(k) = \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \quad \mathrm{con} \quad k \in S = \{0, 1, 2, \ldots\}$$

- $\mathbb{E}[Y] = \lambda$
- var[Y] = nq(1-q) perché $Y \sim B(n,q)$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad p_Y(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
 con $k \in S = \{0, 1, 2, \ldots\}$

•
$$\mathbb{E}[Y] = \lambda$$

•
$$\operatorname{var}[Y] = nq(1-q) \xrightarrow[q\to 0 \\ nq=\lambda]{n\to\infty} \lambda \cdot 1$$

$$Y \sim B(n, q)$$
 con $n \to \infty$, $q \to 0$, $nq = \lambda \approx 1$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad p_Y(k) = \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \quad \mathrm{con} \quad k \in S = \{0, 1, 2, \ldots\}$$

- $\mathbb{E}[Y] = \lambda$
- $\operatorname{var}[Y] = \lambda$

Qual è la densità di X + Y se conosco la densità di X e quella di Y?

Teorema

Se $X \sim B(m,q)$ e $Y \sim B(n,q)$ (con lo stesso parametro q) sono indipendenti, allora $X + Y \sim B(m+n,q)$

Teorema

Se $X \sim B(m,q)$ e $Y \sim B(n,q)$ (con lo stesso parametro q) sono indipendenti, allora $X + Y \sim B(m+n,q)$

DIMOSTRAZIONE:

X + Y = numero di successi in m + n prove indipendenti e tutte con la stessa probabilità di successo q

$$\sim B(m+n,q)$$

Teorema

Se $X \sim B(m,q)$ e $Y \sim B(n,q)$ (con lo stesso parametro q) sono indipendenti, allora $X + Y \sim B(m+n,q)$

Teorema

Se $X \sim \mathcal{P}(\lambda)$ e $Y \sim \mathcal{P}(\mu)$ sono indipendenti, allora $X + Y \sim \mathcal{P}(\lambda + \mu)$

Teorema

Se $X \sim B(m,q)$ e $Y \sim B(n,q)$ (con lo stesso parametro q) sono indipendenti, allora $X + Y \sim B(m+n,q)$

Teorema

Se $X \sim \mathcal{P}(\lambda)$ e $Y \sim \mathcal{P}(\mu)$ sono indipendenti, allora $X + Y \sim \mathcal{P}(\lambda + \mu)$

Teorema (non dimostrato)

Se $X \sim N(\mu_X, \sigma_X^2)$ e $Y \sim N(\mu_Y, \sigma_Y^2)$ sono indipendenti, allora

$$X + Y \sim N(\mu_X + \mu_Y, \, \sigma_X^2 + \sigma_Y^2)$$

Come si calcola $\mathbb{E}[g(X)]$ o $\mathbb{E}[g(X, Y)]$?

Come si calcola $\mathbb{E}[g(X)]$ o $\mathbb{E}[g(X, Y)]$?

• Se X è continua, sappiamo che

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(z) \, f_X(z) \, \mathrm{d}z$$

Ma l'integrale potrebbe essere difficile!

Come si calcola $\mathbb{E}[g(X)]$ o $\mathbb{E}[g(X, Y)]$?

• Se X è continua, sappiamo che

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(z) \, f_X(z) \, \mathrm{d}z$$

Ma l'integrale potrebbe essere difficile!

• Se g(X, Y) = X + Y, sappiamo che

$$\mathbb{E}\left[X+Y\right] = \mathbb{E}\left[X\right] + \mathbb{E}\left[Y\right]$$

Ma g(X, Y) potrebbe essere una funzione più complicata!

Teorema

• In prima approssimazione,

$$\mathbb{E}\left[g(X,Y)\right]\simeq g(\mu_X,\mu_Y)$$

Teorema

• In prima approssimazione,

$$\mathbb{E}\left[g(X,Y)\right] \simeq g(\mu_X,\mu_Y)$$

In prima approssimazione, se X e Y sono indipendenti,

$$\operatorname{var}\left[g(X,Y)\right] \simeq \left[\partial_{1}g\left(\mu_{X},\mu_{Y}\right)\right]^{2}\operatorname{var}\left[X\right] + \\ + \left[\partial_{2}g\left(\mu_{X},\mu_{Y}\right)\right]^{2}\operatorname{var}\left[Y\right]$$

dove

$$\partial_1 g(\mu_X, \mu_Y) = \left. \frac{\partial g(x, y)}{\partial x} \right|_{(\mu_X, \mu_Y)} \qquad \partial_2 g(\mu_X, \mu_Y) = \left. \frac{\partial g(x, y)}{\partial y} \right|_{(\mu_X, \mu_Y)}$$

DIMOSTRAZIONE:

$$g(\mathbf{x}, \mathbf{y}) = g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_1 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{x} - \mu_{\mathbf{X}}) + \partial_2 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{y} - \mu_{\mathbf{Y}}) +$$

DIMOSTRAZIONE:

$$g(x, y) \simeq g(\mu_X, \mu_Y) + \partial_1 g(\mu_X, \mu_Y)(x - \mu_X) + \partial_2 g(\mu_X, \mu_Y)(y - \mu_Y) + \partial_2 g(\mu_X, \mu_Y)(y - \mu_Y)(y - \mu_Y) + \partial_2 g(\mu_X, \mu_Y)(y - \mu_Y)(y - \mu_Y)(y - \mu_Y)(y - \mu_Y) + \partial_2 g(\mu_X, \mu_Y)(y - \mu_$$

DIMOSTRAZIONE:

$$g(\mathbf{X}, \mathbf{y}) \simeq g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_1 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}}) + \partial_2 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{y} - \mu_{\mathbf{Y}})$$
$$g(\mathbf{X}, \mathbf{Y}) \simeq g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_1 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}}) + \partial_2 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{Y} - \mu_{\mathbf{Y}})$$

DIMOSTRAZIONE:

$$g(\textbf{\textit{X}},\textbf{\textit{y}}) \simeq g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}}) + \partial_{1}g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})(\textbf{\textit{X}} - \mu_{\textbf{\textit{X}}}) + \partial_{2}g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})(\textbf{\textit{y}} - \mu_{\textbf{\textit{Y}}})$$
$$g(\textbf{\textit{X}},\textbf{\textit{Y}}) \simeq \underbrace{g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}} + \underbrace{\partial_{1}g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}}(\textbf{\textit{X}} - \mu_{\textbf{\textit{X}}}) + \underbrace{\partial_{2}g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}}(\textbf{\textit{Y}} - \mu_{\textbf{\textit{Y}}})$$

DIMOSTRAZIONE:

$$g(\mathbf{X}, \mathbf{y}) \simeq g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}}) + \partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{y} - \mu_{\mathbf{Y}})$$

$$g(\mathbf{X}, \mathbf{Y}) \simeq \underbrace{g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}} + \underbrace{\partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}}(\mathbf{X} - \mu_{\mathbf{X}}) + \underbrace{\partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}}(\mathbf{Y} - \mu_{\mathbf{Y}})$$

$$\mathbb{E}\left[g(X,Y)
ight]\simeq g(\mu_X,\mu_Y)+ \hspace{1cm} ext{linearità di }\mathbb{E} \ +\partial_1 g\left(\mu_X,\mu_Y
ight)\mathbb{E}\left[X-\mu_X
ight]+\partial_2 g\left(\mu_X,\mu_Y
ight)\mathbb{E}\left[Y-\mu_Y
ight]$$

DIMOSTRAZIONE:

$$g(\mathbf{X}, \mathbf{y}) \simeq g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}}) + \partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{y} - \mu_{\mathbf{Y}})$$

$$g(\mathbf{X}, \mathbf{Y}) \simeq \underbrace{g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}} + \underbrace{\partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}})}_{\text{costante}} + \underbrace{\partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{Y} - \mu_{\mathbf{Y}})}_{\text{costante}}$$

$$\begin{split} \mathbb{E}\left[g(\textcolor{red}{\textbf{X}},\textcolor{red}{\textbf{Y}})\right] &\simeq g(\mu_{\textcolor{blue}{\textbf{X}}},\mu_{\textcolor{blue}{\textbf{Y}}}) + \underbrace{\text{linearità di }\mathbb{E}} \\ &+ \partial_1 g\left(\mu_{\textcolor{blue}{\textbf{X}}},\mu_{\textcolor{blue}{\textbf{Y}}}\right) \underbrace{\mathbb{E}\left[\textcolor{blue}{\textbf{X}}-\mu_{\textcolor{blue}{\textbf{X}}}\right]}_{=\mu_{\textcolor{blue}{\textbf{X}}}-\mu_{\textcolor{blue}{\textbf{X}}}} + \partial_2 g\left(\mu_{\textcolor{blue}{\textbf{X}}},\mu_{\textcolor{blue}{\textbf{Y}}}\right) \underbrace{\mathbb{E}\left[\textcolor{blue}{\textbf{Y}}-\mu_{\textcolor{blue}{\textbf{Y}}}\right]}_{=\mu_{\textcolor{blue}{\textbf{Y}}}-\mu_{\textcolor{blue}{\textbf{Y}}}} \end{split}$$

DIMOSTRAZIONE:

$$g(\mathbf{X}, \mathbf{y}) \simeq g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}}) + \partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{y} - \mu_{\mathbf{Y}})$$

$$g(\mathbf{X}, \mathbf{Y}) \simeq \underbrace{g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}} + \underbrace{\partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}}(\mathbf{X} - \mu_{\mathbf{X}}) + \underbrace{\partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}}(\mathbf{Y} - \mu_{\mathbf{Y}})$$

$$\mathbb{E}\left[g(X,Y)\right] \simeq g(\mu_X,\mu_Y) + \\ + \partial_1 g(\mu_X,\mu_Y) \underbrace{\mathbb{E}[X]}_{=\mu_X-\mu_X} + \partial_2 g(\mu_X,\mu_Y) \underbrace{\mathbb{E}[X]}_{=\mu_Y-\mu_Y}$$

DIMOSTRAZIONE:

$$g(\mathbf{X}, \mathbf{y}) \simeq g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_1 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}}) + \partial_2 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{y} - \mu_{\mathbf{Y}})$$
 $g(\mathbf{X}, \mathbf{Y}) \simeq \underbrace{g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}} + \underbrace{\partial_1 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}}(\mathbf{X} - \mu_{\mathbf{X}}) + \underbrace{\partial_2 g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante}}(\mathbf{Y} - \mu_{\mathbf{Y}})$

$$\mathbb{E}\left[g(X,Y)\right] \simeq g(\mu_X,\mu_Y) + \\ + \partial_1 g(\mu_X,\mu_Y) \underbrace{\mathbb{E}[X]}_{=\mu_X-\mu_X} + \partial_2 g(\mu_X,\mu_Y) \underbrace{\mathbb{E}[X]}_{=\mu_Y-\mu_Y}$$

$$= g(\mu_X,\mu_Y)$$

DIMOSTRAZIONE:

Sviluppo g in serie di Taylor intorno a (μ_X, μ_Y) :

$$g(\textbf{\textit{X}},\textbf{\textit{y}}) \simeq g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}}) + \partial_1 g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})(\textbf{\textit{X}} - \mu_{\textbf{\textit{X}}}) + \partial_2 g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})(\textbf{\textit{y}} - \mu_{\textbf{\textit{Y}}})$$
$$g(\textbf{\textit{X}},\textbf{\textit{Y}}) \simeq \underbrace{g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}} + \underbrace{\partial_1 g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}}(\textbf{\textit{X}} - \mu_{\textbf{\textit{X}}}) + \underbrace{\partial_2 g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}}(\textbf{\textit{Y}} - \mu_{\textbf{\textit{Y}}})$$

$$var[aX + bY + c] = a^2 var[X] + b^2 var[Y]$$
 se X e Y sono indipendenti

DIMOSTRAZIONE:

Sviluppo g in serie di Taylor intorno a (μ_X, μ_Y) :

$$g(\mathbf{X}, \mathbf{y}) \simeq g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}}) + \partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{y} - \mu_{\mathbf{Y}})$$

$$g(\mathbf{X}, \mathbf{Y}) \simeq \underbrace{g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante} = c} + \underbrace{\partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante} = a}(\mathbf{X} - \mu_{\mathbf{X}}) + \underbrace{\partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante} = b}(\mathbf{Y} - \mu_{\mathbf{Y}})$$

$$var[aX + bY + c] = a^2 var[X] + b^2 var[Y]$$
 se X e Y sono indipendenti

$$\operatorname{var}\left[g(X,Y)\right] \simeq \\ \simeq \left[\partial_{1}g\left(\mu_{X},\mu_{Y}\right)\right]^{2}\operatorname{var}\left[X-\mu_{X}\right]+\left[\partial_{2}g\left(\mu_{X},\mu_{Y}\right)\right]^{2}\operatorname{var}\left[Y-\mu_{Y}\right]$$

DIMOSTRAZIONE:

Sviluppo g in serie di Taylor intorno a (μ_X, μ_Y) :

$$g(\mathbf{X}, \mathbf{y}) \simeq g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}}) + \partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{X} - \mu_{\mathbf{X}}) + \partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})(\mathbf{y} - \mu_{\mathbf{Y}})$$

$$g(\mathbf{X}, \mathbf{Y}) \simeq \underbrace{g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante} = c} + \underbrace{\partial_{1}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante} = a}(\mathbf{X} - \mu_{\mathbf{X}}) + \underbrace{\partial_{2}g(\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})}_{\text{costante} = b}(\mathbf{Y} - \mu_{\mathbf{Y}})$$

$$var[aX + bY + c] = a^2 var[X] + b^2 var[Y]$$
 se X e Y sono indipendenti

$$\operatorname{var}\left[g(X,Y)\right] \simeq \\ \simeq \left[\partial_{1}g\left(\mu_{X},\mu_{Y}\right)\right]^{2}\underbrace{\operatorname{var}\left[X-\mu_{X}\right]}_{=\operatorname{var}\left[X\right]} + \left[\partial_{2}g\left(\mu_{X},\mu_{Y}\right)\right]^{2}\underbrace{\operatorname{var}\left[Y-\mu_{Y}\right]}_{=\operatorname{var}\left[Y\right]}$$

DIMOSTRAZIONE:

Sviluppo g in serie di Taylor intorno a (μ_X, μ_Y) :

$$g(\textbf{\textit{X}},\textbf{\textit{y}}) \simeq g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}}) + \partial_{1}g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})(\textbf{\textit{X}} - \mu_{\textbf{\textit{X}}}) + \partial_{2}g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})(\textbf{\textit{y}} - \mu_{\textbf{\textit{Y}}})$$
$$g(\textbf{\textit{X}},\textbf{\textit{Y}}) \simeq \underbrace{g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}=c} + \underbrace{\partial_{1}g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}=a}(\textbf{\textit{X}} - \mu_{\textbf{\textit{X}}}) + \underbrace{\partial_{2}g(\mu_{\textbf{\textit{X}}},\mu_{\textbf{\textit{Y}}})}_{\text{costante}=b}(\textbf{\textit{Y}} - \mu_{\textbf{\textit{Y}}})$$

$$var[aX + bY + c] = a^2 var[X] + b^2 var[Y]$$
 se X e Y sono indipendenti

$$\operatorname{var}\left[g(\boldsymbol{X}, \boldsymbol{Y})\right] \simeq \\
\simeq \left[\partial_{1}g\left(\mu_{X}, \mu_{Y}\right)\right]^{2} \underbrace{\operatorname{var}\left[\boldsymbol{X} - \mu_{X}\right]}_{=\operatorname{var}\left[\boldsymbol{X}\right]} + \left[\partial_{2}g\left(\mu_{X}, \mu_{Y}\right)\right]^{2} \underbrace{\operatorname{var}\left[\boldsymbol{Y} - \mu_{Y}\right]}_{=\operatorname{var}\left[\boldsymbol{Y}\right]} \\
= \left[\partial_{1}g\left(\mu_{X}, \mu_{Y}\right)\right]^{2} \operatorname{var}\left[\boldsymbol{X}\right] + \left[\partial_{2}g\left(\mu_{X}, \mu_{Y}\right)\right]^{2} \operatorname{var}\left[\boldsymbol{Y}\right]$$

Campioni aleatori

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

Campioni aleatori

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

ESEMPI:

Nel lancio di due dadi:

X = numero che uscirà sul primo dado X, Y è un campione Y = numero che uscirà sul secondo dado aleatorio

Campioni aleatori

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

ESEMPI:

Nel lancio di due dadi:

$$X =$$
 numero che uscirà sul primo dado X, Y è un campione $Y =$ numero che uscirà sul secondo dado aleatorio

Nel lancio di tre monete:

$$X_i = \begin{cases} 1 & \text{se uscirà testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

 X_1, X_2, X_3 è un campione aleatorio

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

ESEMPI:

Nel sondaggio fra 100 studenti:

 X_i = altezza dell'*i*-esimo intervistato

 X_1, \dots, X_{100} è un campione aleatorio

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

La media campionaria di un campione aleatorio è una variabile aleatoria

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

$$\mathbb{E}\left[\overline{X}_{n}\right] = ???$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

$$\mathbb{E}\left[\overline{X}_n\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

$$\mathbb{E}\left[\overline{X}_n\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}\left[X_i\right]$$
 linearità di \mathbb{E}

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

$$\mathbb{E}\left[\overline{X}_{n}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[X_{i}\right]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mu$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

$$\mathbb{E}\left[\overline{X}_n\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}\left[X_i\right]$$
$$= \frac{1}{n}\sum_{i=1}^n \mu = \frac{1}{n} \cdot n\mu$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

$$\mathbb{E}\left[\overline{X}_{n}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[X_{i}\right]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mu = \frac{1}{n}\cdot\mathcal{P}\mu = \mu$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

• Posto $\mu = \mathbb{E}[X_i]$ (uguale per tutte le i): $\mathbb{E}[\overline{X}_n] = \mu$

$$\mathbb{E}\left[\overline{X}_{n}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[X_{i}\right]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mu = \frac{1}{\cancel{n}}\cdot\cancel{n}\mu = \mu$$

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}\left[X_i\right]$ (uguale per tutte le i): $\mathbb{E}\left[\overline{X}_n\right] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*):

$$\operatorname{var}\left[\overline{X}_{n}\right] = ???$$

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}\left[X_i\right]$ (uguale per tutte le i): $\mathbb{E}\left[\overline{X}_n\right] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*):

$$\operatorname{var}\left[\overline{X}_{n}\right] = \operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}\left[X_i\right]$ (uguale per tutte le i): $\mathbb{E}\left[\overline{X}_n\right] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*):

$$\operatorname{var}\left[\overline{X}_{n}\right] = \operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \left(\frac{1}{n}\right)^{2}\operatorname{var}\left[\sum_{i=1}^{n}X_{i}\right]$$
 quadraticità di var

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}[X_i]$ (uguale per tutte le i): $\mathbb{E}[\overline{X}_n] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*):

$$\operatorname{var}\left[\overline{X}_{n}\right] = \operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \left(\frac{1}{n}\right)^{2}\operatorname{var}\left[\sum_{i=1}^{n}X_{i}\right]$$
$$= \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}\operatorname{var}\left[X_{i}\right] \qquad \text{indipendenza delle } X_{i}$$

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}[X_i]$ (uguale per tutte le i): $\mathbb{E}[\overline{X}_n] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*):

$$\operatorname{var}\left[\overline{X}_{n}\right] = \operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \left(\frac{1}{n}\right)^{2}\operatorname{var}\left[\sum_{i=1}^{n}X_{i}\right]$$
$$= \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}\operatorname{var}\left[X_{i}\right] = \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}\sigma^{2}$$

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}[X_i]$ (uguale per tutte le i): $\mathbb{E}[\overline{X}_n] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*):

$$\operatorname{var}\left[\overline{X}_{n}\right] = \operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \left(\frac{1}{n}\right)^{2}\operatorname{var}\left[\sum_{i=1}^{n}X_{i}\right]$$
$$= \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}\operatorname{var}\left[X_{i}\right] = \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}\sigma^{2} = \left(\frac{1}{n}\right)^{2}\cdot n\sigma^{2}$$

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}[X_i]$ (uguale per tutte le i): $\mathbb{E}[\overline{X}_n] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*):

$$\operatorname{var}\left[\overline{X}_{n}\right] = \operatorname{var}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] = \left(\frac{1}{n}\right)^{2} \operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right]$$
$$= \left(\frac{1}{n}\right)^{2} \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right] = \left(\frac{1}{n}\right)^{2} \sum_{i=1}^{n} \sigma^{2} = \left(\frac{1}{n}\right)^{2} \Re \sigma^{2} = \frac{\sigma^{2}}{n}$$

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}[X_i]$ (uguale per tutte le i): $\mathbb{E}[\overline{X}_n] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*): $\text{var}[\overline{X}_n] = \frac{\sigma^2}{n}$

$$\operatorname{var}\left[\overline{X}_{n}\right] = \operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \left(\frac{1}{n}\right)^{2}\operatorname{var}\left[\sum_{i=1}^{n}X_{i}\right]$$
$$= \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}\operatorname{var}\left[X_{i}\right] = \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}\sigma^{2} = \left(\frac{1}{n}\right)^{2}\mathcal{N}\sigma^{2} = \frac{\sigma^{2}}{n}$$

Definizione

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

- Posto $\mu = \mathbb{E}[X_i]$ (uguale per tutte le i): $\mathbb{E}[\overline{X}_n] = \mu$
- Posto $\sigma^2 = \text{var}[X_i]$ (uguale per tutte le *i*): $\text{var}[\overline{X}_n] = \frac{\sigma^2}{n}$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

Se $X_i \sim N(\mu, \sigma^2)$ per ogni i:

$$X_1 + X_2 + \ldots + X_n \sim N$$

riproducibilità di N

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \sim N$$
 $X \sim N \Rightarrow aX + b \sim N$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \sim N\left(\mu, \quad \right) \qquad \mathbb{E}\left[\overline{X}_n\right] = \mu$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \text{var}\left[\overline{X}_n\right] = \frac{\sigma^2}{n}$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad -$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \begin{array}{c} \mu = 0.5 \\ \sigma = 1 \\ n = 2 \end{array}$$

$$\Rightarrow \quad \overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \begin{array}{c} \mu = 0.5 \\ \sigma = 1 \\ n = 2 \end{array}$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \begin{array}{c} \mu = 0.5 \\ \sigma = 1 \\ n = 5 \end{array}$$

$$\Rightarrow \quad \overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \begin{array}{c} \mu = 0.5 \\ \sigma = 1 \\ n = 5 \end{array}$$

Definizione

Un campione aleatorio di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \begin{array}{c} \mu = 0.5 \\ \sigma = 1 \\ n = 10 \end{array}$$

$$\Rightarrow \quad \overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \begin{array}{c} 1 \\ n = 10 \end{array}$$

Definizione

Un *campione aleatorio* di numerosità n è una successione X_1, \ldots, X_n di v.a. indipendenti e identicamente distribuite (i.i.d.)

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i = \text{media campionaria}$$

ESEMPIO:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \begin{array}{c} \mu = 0.5 \\ \sigma = 1 \\ n = 25 \end{array}$$

$$\Rightarrow \overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

La media campionaria *tende in probabilità* al valore atteso delle X_i :

$$\overline{X}_n \xrightarrow[n \to \infty]{\mathbb{P}} \mu$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

La media campionaria tende in probabilità al valore atteso delle X_i :

$$\overline{X}_n \xrightarrow[n \to \infty]{\mathbb{P}} \mu$$

 μ non si può misurare, ma \overline{X}_n sì!

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$1 \geq \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right)$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$1 \underset{\mathbb{P}(E) \leq 1}{\geq} \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) \underset{\mathbb{P}(E) = \\ = 1 - \mathbb{P}(\overline{E})}{=} 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right)$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\begin{array}{lll}
1 & \geq & \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = & 1 - \mathbb{P}(\overline{E}) \\
& = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right)
\end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\begin{array}{lll}
1 & \underset{\mathbb{P}(E) \leq 1}{\geq} & \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & \underset{\mathbb{P}(E) = \\ = 1 - \mathbb{P}(\overline{E})}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
 & \underset{\mathbb{E}[\overline{X}_{n}] = \mu}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right) \\
 & \underset{\mathbb{P}(E) = \mu}{\geq} & 1 - \frac{\operatorname{var}\left[\overline{X}_{n}\right]}{\varepsilon^{2}}
\end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\begin{array}{lll}
1 & \underset{\mathbb{P}(E) \leq 1}{\geq} & \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & \underset{\mathbb{P}(E) = \\ = 1 - \mathbb{P}(\overline{E})}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = \\ \mathbb{E}[\overline{X}_{n}] = \mu & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right) \\
& \geq \\ \mathbb{E}[\overline{X}_{n}] = \mu & 1 - \frac{\operatorname{var}\left[\overline{X}_{n}\right]}{\varepsilon^{2}} \\
& = \\ \frac{\sigma^{2} := \operatorname{var}\left[X_{i}\right]}{\varepsilon^{2}} & 1 - \frac{\left(\sigma^{2}/n\right)}{\varepsilon^{2}}
\end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\begin{array}{lll}
1 & \geq & \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = & 1 - \mathbb{P}(\overline{E}) \\
& = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right) \\
& \geq & 1 - \frac{\operatorname{var}\left[\overline{X}_{n}\right]}{\varepsilon^{2}} \\
& = & 1 - \frac{\sigma^{2}}{n \varepsilon^{2}}
\end{array}$$

$$\begin{array}{ll}
1 - \frac{\sigma^{2}}{n \varepsilon^{2}}
\end{array}$$

$$\begin{array}{ll}
1 - \frac{\sigma^{2}}{n \varepsilon^{2}}
\end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\begin{array}{ccc}
1 & \underset{\mathbb{P}(E) \leq 1}{\geq} & \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & \underset{\mathbb{P}(E) = \\ = 1 - \mathbb{P}(\overline{E})}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& \underset{\mathbb{E}[\overline{X}_{n}] = \mu}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right) \\
& \underset{\mathbb{C}(\text{hebyshev})}{\geq} & 1 - \frac{\operatorname{var}\left[\overline{X}_{n}\right]}{\varepsilon^{2}} \\
& \underset{\sigma^{2} : = \operatorname{var}\left[X_{1}\right]}{=} & 1 - \frac{\sigma^{2}}{n \varepsilon^{2}}
\end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

DIMOSTRAZIONE:

$$1 \geq \mathbb{P}(|\overline{X}_n - \mu| < \varepsilon) \geq 1 - \frac{\sigma^2}{n\varepsilon^2}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

DIMOSTRAZIONE:

$$1 \geq \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) \geq 1 - \frac{\sigma^2}{n\varepsilon^2} \longrightarrow_{n \to \infty} 1$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1 \qquad \text{per ogni } \varepsilon > 0$$

DIMOSTRAZIONE:

$$1 \geq \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) \geq 1 - \frac{\sigma^2}{n\varepsilon^2} \xrightarrow[n \to \infty]{} 1$$

$$\Rightarrow \lim_{n\to\infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\mathbb{P}\left(\left|\overline{X}_{n}-\mu\right|<\varepsilon\right) \geq 1-\frac{\sigma^{2}}{n\varepsilon^{2}}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\mathbb{P}\left(\left|\overline{X}_{n}-\mu\right|<\varepsilon\right) \geq 1-\frac{\sigma^{2}}{n\varepsilon^{2}} \equiv p$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\mathbb{P}\left(\left|\overline{X}_{n}-\mu\right|<\varepsilon\right) \geq 1-\frac{\sigma^{2}}{n\,\varepsilon^{2}} \equiv p$$

$$\Rightarrow \quad \varepsilon\left(n,p\right)=\frac{\sigma}{\sqrt{n(1-p)}}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$

$$\Rightarrow \quad \mu = \frac{1}{2}$$

con Chebyshev

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$
 $\Rightarrow \quad \mu = \frac{1}{2}$

con Chebyshev

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$
 $\Rightarrow \mu = \frac{1}{2}$

con Chebyshev

 $\overline{X}_n = realizzazione$ di \overline{X}_n dopo l'esperimento

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$
 $\Rightarrow \mu = \frac{1}{2}$

con Chebyshev

 $\overline{X}_n = realizzazione$ di \overline{X}_n dopo l'esperimento

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$
 $\Rightarrow \mu = \frac{1}{2}$

con Chebyshev

 $\overline{X}_n = realizzazione$ di \overline{X}_n dopo l'esperimento

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- X_1, X_2, \dots i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- $X_1, X_2, ...$ i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- $X_1, X_2, ...$ i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}}$$

$$X_i = egin{cases} 1 & ext{se avrò successo all'} i - ext{esima prova} \ 0 & ext{altrimenti} \end{cases}$$

- $X_1, X_2, ...$ i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \frac{\text{frequenza empirica}}{\text{(dei successi)}}$$

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- $X_1, X_2, ...$ i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right]=q\qquad\Rightarrow\qquad\overline{X}_{n}\xrightarrow[n\to\infty]{\mathbb{F}}q$$

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- $X_1, X_2, ...$ i.i.d.
- ullet $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1, Z_2, \dots$$
 i.i.d. con $Z_i \sim f$
$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- X_1, X_2, \dots i.i.d.
- ullet $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{ frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

- $X_1, X_2, ...$ i.i.d.
- ullet $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{ frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

- $X_1, X_2, ...$ i.i.d.
- $X_i \sim B(1,q)$ con $q = \mathbb{P}(a \leq Z_i \leq b)$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{ frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

• $X_1, X_2, ...$ i.i.d.

•
$$X_i \sim B(1,q)$$
 con $q = \mathbb{P}(a \le Z_i \le b) = \int_a^b f(z) dz$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{ frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{P}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

• X_1, X_2, \dots i.i.d.

•
$$X_i \sim B(1,q)$$
 con $q = \mathbb{P}(a \le Z_i \le b) = \int_a^b f(z) dz$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: FR([a, b])$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{P}} q$$

$$Z_1,\,Z_2,\dots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

• X_1, X_2, \dots i.i.d.

•
$$X_i \sim B(1,q)$$
 con $q = \mathbb{P}(a \le Z_i \le b) = \int_a^b f(z) dz$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: FR([a, b])$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \operatorname{FR}\left(\left[a,b\right]\right) \xrightarrow[n \to \infty]{\mathbb{P}} \int_{a}^{b} f(z) \, \mathrm{d}z$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

• X_1, X_2, \dots i.i.d.

•
$$X_i \sim B(1,q)$$
 con $q = \mathbb{P}(a \le Z_i \le b) = \int_a^b f(z) dz$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: FR([a, b])$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \operatorname{FR}([a,b]) \xrightarrow[n \to \infty]{\mathbb{P}} \int_{a}^{b} f(z) \, \mathrm{d}z$$

La frequenza relativa converge all'area sottesa dalla densità!

$$Z_1, Z_2, \dots$$
 i.i.d. con $Z_i \sim f$
$$f(z) = \begin{cases} \mathrm{e}^{-z} & \text{se } z \geq 0 \\ 0 & \text{se } z < 0 \end{cases}$$

$$Z_1, Z_2, \dots$$
 i.i.d. con $Z_i \sim f$
$$f(z) = \begin{cases} \mathrm{e}^{-z} & \text{se } z \geq 0 \\ 0 & \text{se } z < 0 \end{cases}$$

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

• Se n = 1: $\overline{X}_n = X_1 \sim f$ (ovviamente!)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

- Se n = 1: $\overline{X}_n = X_1 \sim f$ (ovviamente!)
- Se n > 1 è piccolo : non lo so

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

- Se n = 1: $\overline{X}_n = X_1 \sim f$ (ovviamente!)
- Se n > 1 è piccolo : non lo so
- Se n > 1 è grande : esiste il famoso...

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

- Se n = 1: $\overline{X}_n = X_1 \sim f$ (ovviamente!)
- Se n > 1 è piccolo : non lo so
- Se n > 1 è grande : esiste il famoso...

Teorema del Limite Centrale (versione informale)

Se
$$X_1, \ldots, X_n$$
 sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\mathrm{var}[X_i] = \sigma^2$, allora $\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$ se n è 'grande'

 \approx : 'ha circa densità'

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

OSSERVAZIONI:

Tipicamente, 'grande' = 'maggiore di 30'

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

OSSERVAZIONI:

- Tipicamente, 'grande' = 'maggiore di 30'
- Se $X_i \sim N(\mu, \sigma^2)$, già sapevamo che $\overline{X}_i \sim N(\mu, \frac{\sigma^2}{n})$

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

OSSERVAZIONI:

- Tipicamente, 'grande' = 'maggiore di 30'
- Se $X_i \sim N(\mu, \sigma^2)$, già sapevamo che $\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- Il TLC vale qualunque sia la densità delle X_i

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

OSSERVAZIONI:

- Tipicamente, 'grande' = 'maggiore di 30'
- Se $X_i \sim N(\mu, \sigma^2)$, già sapevamo che $\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- Il TLC vale qualunque sia la densità delle X_i
- Il TLC non dice nulla sulla densità delle X_i

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

Se
$$X_1, \ldots, X_n$$
 sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

$$n = 25$$

$$n = 25$$

$$1 + \sqrt{\frac{f_{X_n}}{Ma \text{ allora } f_{\overline{X_n}}}} \text{ diverge !}^{f_{\overline{X_n}}}$$

Servirebbe un enunciato più preciso...

$$X_i \sim N(0.5, 1)$$

$$X_i \sim \mathcal{E}(1)$$

Teorema del Limite Centrale (versione formale)

Se
$$X_1, X_2,...$$
 sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\operatorname{var}[X_i] = \sigma^2$, allora
$$\lim_{n \to \infty} \mathbb{P}\left(\overline{X_n - \mu} \leqslant z\right) = \Phi(z) \quad \text{per ogni } z \in \mathbb{R}$$

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

standardizzazione di \overline{X}_n

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Qual è la densità di $X_1 + X_2 + ... + X_n$ quando n è grande?

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

$$\Rightarrow \quad \mathbb{E}\left[X_1+\ldots+X_n\right] = \mathbb{E}\left[X_1\right]+\ldots+\mathbb{E}\left[X_n\right] \quad \quad \text{linearità di } \mathbb{E}$$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = \underbrace{\mathbb{E}[X_1]}_{\mu} + \ldots + \underbrace{\mathbb{E}[X_n]}_{\mu}$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \, \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = \underbrace{\mathbb{E}[X_1]}_{\mu} + \ldots + \underbrace{\mathbb{E}[X_n]}_{\mu} = n \mu$

Se $X_1, ..., X_n$ sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + ... + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow$$
 $\operatorname{var}\left[X_{1}+\ldots+X_{n}\right]=\operatorname{var}\left[X_{1}\right]+\ldots+\operatorname{var}\left[X_{n}\right]$ indipendenza delle X_{i}

Se $X_1, ..., X_n$ sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + ... + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

 $\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = \underbrace{\operatorname{var}[X_1]}_{\sigma^2} + \ldots + \underbrace{\operatorname{var}[X_n]}_{\sigma^2}$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = \underbrace{\operatorname{var}[X_1]}_{\sigma^2} + \ldots + \underbrace{\operatorname{var}[X_n]}_{\sigma^2} = n \sigma^2$$

Se $X_1, ..., X_n$ sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + ... + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

 $\Rightarrow \operatorname{var}[X_1 + \dots + X_n] = n\sigma^2$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

Se
$$X_1, \ldots, X_n$$
 sono i.i.d. e N e grande, allora per li TLC $\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$

Derché $Z \sim N \quad \Rightarrow \quad aZ + k \sim N$

• $\mathbb{E}[X_i] = \mu$

• $\text{var}[X_i] = \sigma^2$

• $\text{var}[X_1 + \ldots + X_n] = n \sigma^2$
 $\Rightarrow \quad \text{var}[X_1 + \ldots + X_n] = n \sigma^2$

$$\mathbb{E}[X_i] = \mu$$

$$\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n\mu$$

•
$$\operatorname{var}[X_i] = \sigma^2$$

 $\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = n \sigma^2$

$$\Rightarrow X_1 + \ldots + X_n \approx N(n\mu, n\sigma^2)$$

Se X_1, \ldots, X_n sono i.i.d. e *n* è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad \underbrace{X_1 + \ldots + X_n = n \, \overline{X}_n \approx N}$$

perché

$$Z \sim N \quad \Rightarrow \quad aZ + t \sim N$$

$$\Rightarrow \quad \mathbb{E}\left[X_1 + \ldots + X_n\right] = n\,\mu$$

•
$$\operatorname{var}\left[X_{i}\right] = \sigma^{2}$$

$$\Rightarrow$$
 var $[X_1 + \ldots + X_n] = n \sigma^2$

erché
$$Z \sim N \Rightarrow aZ + t \sim N$$

• $\mathbb{E}[X_i] = \mu$
 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n\mu$

• $\operatorname{var}[X_i] = \sigma^2$

• $X_1 + \ldots + X_n \approx N(n\mu, n\sigma^2)$

Teorema del Limite Centrale (versione equivalente)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{X_1+\ldots+X_n-n\,\mu}{\sqrt{n\,\sigma^2}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Se
$$X_1, \ldots, X_n$$
 sono i.i.d. con $X_i \sim B(1, q)$, allora
$$X_1 + \ldots + X_n \sim B(n, q)$$

$$X_1 + \ldots + X_n \sim B(n, q)$$

 $X_1 + \ldots + X_n \approx N(n \mu, n \sigma^2)$

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim B(1, q)$, allora, se n è grande,

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(\textit{n}, \, \textit{q}) \\ X_1 + \ldots + X_n \approx \textit{N}\left(\textit{n}\, \mu, \, \textit{n}\, \sigma^2\right) \end{array} \right\} \, \Rightarrow \, \, \textit{B}(\textit{n}, \, \textit{q}) \simeq \textit{N}\left(\textit{n}\, \mu, \, \textit{n}\, \sigma^2\right) \label{eq:spectrum}$$

Quali sono i parametri della gaussiana?

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(\textit{n}, \textit{q}) \\ X_1 + \ldots + X_n \approx \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \; \textit{B}(\textit{n}, \, \textit{q}) \simeq \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \label{eq:spectrum}$$

$$\bullet \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(\textit{n}, \textit{q}) \\ X_1 + \ldots + X_n \approx \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \end{array} \right\} \ \Rightarrow \ \textit{B}(\textit{n}, \, \textit{q}) \simeq \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right)$$

- $\mu = \mathbb{E}[X_i] = q$
- $\sigma^2 = \text{var}[X_i] = q(1-q)$

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(n,\,q) \\ X_1 + \ldots + X_n \approx \textit{N}\left(n\,\mu,\,n\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \underbrace{\textit{B}(n,\,q) \simeq \textit{N}\left(n\,\mu,\,n\,\sigma^2\right)}_{\parallel}$$

•
$$\mu = \mathbb{E}[X_i] = q$$

$$\bullet \ \mu = \mathbb{E}[X_i] = q$$

$$\bullet \ \sigma^2 = \text{var}[X_i] = q(1-q)$$

$$\Rightarrow \boxed{B(n, q) \simeq N(nq, nq(1-q))}$$

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim B(1, q)$, allora, se n è grande,

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(n,\,q) \\ X_1 + \ldots + X_n \approx \textit{N}\left(n\,\mu,\,n\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \underbrace{\textit{B}(n,\,q) \simeq \textit{N}\left(n\,\mu,\,n\,\sigma^2\right)}_{\parallel}$$

$$\bullet \mu = \mathbb{E}[X_i] = q$$

$$\bullet \sigma^2 = \operatorname{var}[X_i] = q(1-q)$$

$$\Rightarrow \boxed{B(n, q) \simeq N(nq, nq(1-q))}$$

Approssimazione gaussiana della binomiale (versione formale)

Se $Y_n \sim B(n, q)$ per ogni n, allora

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{Y_n - nq}{\sqrt{nq(1-q)}} \le z\right) = \Phi(z) \quad \text{per ogni } z \in \mathbb{R}$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30}<20) = \sum_{k=0}^{19} p_{Y_{30}}(k)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30}<20)=\sum_{k=0}^{19}p_{Y_{30}}(k)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30} < 20) = \sum_{k=0}^{19} p_{Y_{30}}(k) = \sum_{k=0}^{19} {30 \choose k} 0.5^k (1 - 0.5)^{30-k}$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30} < 20) = \sum_{k=0}^{19} p_{Y_{30}}(k) = \sum_{k=0}^{19} {30 \choose k} 0.5^k (1 - 0.5)^{30-k} = ???$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q))$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} = \text{num. di teste nei 30 lanci} \sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

 $\mathbb{P}(Y_{30} < 20) = \mathbb{P}\begin{pmatrix} Y_{30} & 20 \end{pmatrix}$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

 $\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} - nq) < 20 - 30 \cdot 0.5$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}\left(Y_{30} < 20\right) = \mathbb{P}\left(\frac{Y_{30} - nq}{\sqrt{nq(1-q)}} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0.1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$ ".

B(30) dove qui mettere \leq 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20-30\cdot 0.5}{\sqrt{30\cdot 0.5\cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

fol calco "
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$ ". The solution of the second of the seco

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$

$$\simeq \Phi\left(\frac{20-30\cdot 0.5}{\sqrt{30\cdot 0.5\cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

$$"Y < 20" = "Y \le 19" = "Y \le 19"$$

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, dove qui mettere ≤ 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

$$"Y < 20" = "Y \le 19" = "Y \le 19"$$

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, (dove qui mettere \le 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$

=

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.643) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ ".

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, dove qui mettere ≤ 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$
 $= \dots$

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.643) = 94.950\%$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \ n\,q\geq 5 \ n(1-q)\geq 5 \end{array}
ight.$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \\ n\,q\geq 5 \\ n(1-q)\geq 5 \end{array}
ight. \\ \mathcal{P}(n\,q) & ext{se} & egin{array}{ll} n\geq 20 \\ q\leq 0.01 \\ n\,q \simeq 1 \end{array}
ight.$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{ egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \\ n\,q\geq 5 \\ n(1-q)\geq 5 \end{array}
ight. \\ \mathcal{P}(n\,q) & ext{se} & egin{array}{ll} n\geq 20 \\ q\leq 0.01 \\ n\,q\simeq 1 \end{array}
ight.$$

$$\Rightarrow$$
 $\mathcal{P}(\lambda) \simeq \textit{N}(\lambda,\,\lambda)$ se $\lambda \geq 5$

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + X_1 + X_2 + \ldots + X_n$$

dove:

 $\ell = \text{lunghezza } vera \text{ del lato } (costante deterministica})$

 $X_1 =$ errore dovuto alla dilatazione termica del tavolo (v.a.)

 $X_2 =$ errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + X_1 + X_2 + \ldots + X_n$$

dove:

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\underline{\text{costante deterministica}})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + \underbrace{X_1 + X_2 + \ldots + X_n}_{E}$$

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\text{costante deterministica})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

dove:

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

CONSEGUENZA:
$$E := X_1 + X_2 + ... + X_n \underset{\mathsf{TLC}}{\approx} N(0, \sigma_E^2)$$

 $\operatorname{con} \ \sigma_E^2 = n \operatorname{var} [X_i]$

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L \,=\, \ell + X_1 + X_2 + \ldots + X_n \,=\, \ell + E \,\approx\, \textbf{N}\big(\ell,\,\sigma_{\textbf{E}}^2\big)$$

dove:

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\underline{\text{costante deterministica}})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

CONSEGUENZA:
$$E := X_1 + X_2 + ... + X_n \underset{\mathsf{TLC}}{\approx} N(0, \sigma_E^2)$$

 $\operatorname{con} \ \sigma_E^2 = n \operatorname{var} [X_i]$

Cose da non fare MAI

• Credere che il TLC renda le X_i gaussiane quando n è grande:

È assurdo!

È \overline{X}_n che diventa gaussiana. La densità delle X_i non può cambiare né se n = 1 né se n = 10 né se n = 10000000

Cose da non fare MAI

• Credere che il TLC renda le X_i gaussiane quando n è grande:

È assurdo!

È \overline{X}_n che diventa gaussiana. La densità delle X_i non può cambiare né se n = 1 né se n = 10 né se n = 10000000

• Credere che $X_1 + X_2 + ... + X_n$ sia la stessa cosa di nX_1 :

Non ha senso!

Se lancio un dado n = 2 volte ed esce $x_1 = 4$ al primo lancio e $x_2 = 1$ al secondo, la somma dei due lanci non può essere $n x_1 = 8$, ma è piuttosto $x_1 + x_2 = 5$.