Algorithm Design and Implementation

Principle of Algorithms VI

Divide and Conquer I

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Divide-and-conquer paradigm

Divide-and-conquer.

- Divide up problem into several subproblems (of the same kind).
- Solve (conquer) each subproblem recursively.
- Combine solutions to subproblems into overall solution.

Most common usage.

- Divide problem of size n into two subproblems of size n/2. $\longleftarrow \mathcal{O}(n)$ time
- Solve (conquer) two subproblem recursively.
- Combine two solutions into overall solution. \leftarrow $\mathcal{O}(n)$ time

Consequence.

- Brute force: $\Theta(n^2)$
- Divide-and-conquer: $\mathcal{O}(n \log n)$

Mergesort

Sorting problem

Problem. Given a list L of n elements from a totally ordered universe, rearrange them in ascending order.

Sorting applications

Obvious applications.

- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.

- Identify statistical outliers.
- Binary search in a database.
- Remove duplicates in a mailing list.

Non-obvious applications.

- · Convex hull.
- Closest pair of points.
- Interval scheduling / interval partitioning.
- Scheduling to minimize maximum lateness.
- Minimum spanning trees (Kruskal's algorithm).

• • • •

Mergesort

- Recursively sort left half.
- Recursively sort right half.
- Merge two halves to make sorted whole.

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.

- Scan A and B from left to right.
- Compare a_i and b_j .
- If $a_i \leq b_j$, append a_i to C (no larger than any remaining element in B).
- If $a_i > b_j$, append b_j to C (smaller than every remaining element in A).

Mergesort implementation

Input. List L of n elements from a totally ordered universe. Output. The n elements in ascending order.

```
MergeSort(L)
if List L has one element then
    Return L;
end
Divide the list into two halves A and B:
A \leftarrow \text{MergeSort } (A);
B \leftarrow \text{MergeSort } (B);
L \leftarrow \text{Merge } (A,B);
Return L:
```

A useful recurrence relation

Definition

 $\overline{T(n)} = \text{max}$ number of compares to mergesort a list of length n.

Recurrence.

$$T(n) \le \begin{cases} 0 & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n & \text{if } n > 1 \end{cases}$$

Solution. T(n) is $O(n \log n)$.

Assorted proofs. We describe several ways to solve this recurrence. Initially we assume n is a power of 2 and replace \leq with = in the recurrence.

8

Divide-and-conquer recurrence: recursion tree

Proposition

If T(n) satisfies the following recurrence, then $T(n) = n \log_2 n$.

Proof by induction

Proposition

If T(n) satisfies the following recurrence, then $T(n) = n \log_2 n$.

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

Proof. [by induction on n]

- Base case: when n = 1, $T(1) = 0 = n \log_2 n$.
- Inductive hypothesis: assume $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2(2n)$.

$$T(2n) = 2T(n) + 2n$$

$$= 2n \log_2 n + 2n$$

$$= 2n (\log_2(2n) - 1) + 2n$$

$$= 2n \log_2(2n).$$

Quiz 1

Which is the exact solution of the following recurrence?

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n - 1 & \text{if } n > 1 \end{cases}$$

- A. $T(n) = n \lfloor \log_2 n \rfloor$
- B. $T(n) = n \lceil \log_2 n \rceil$
- C. $T(n) = n |\log_2 n| + 2^{\lfloor \log_2 n \rfloor} 1$
- D. $T(n) = n \lceil \log_2 n \rceil 2^{\lceil \log_2 n \rceil} + 1$
- E. Not even Knuth knows.

Analysis of mergesort recurrence

Proposition

If T(n) satisfies the following recurrence, then $T(n) \leq n\lceil \log_2 n \rceil$.

$$T(n) \le \begin{cases} 0 & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n & \text{if } n > 1 \end{cases}$$

Proof. [by induction on n]

- Base case: n = 1.
- Define $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$ and note that $n = n_1 + n_2$.
- Induction step: assume true for $1, 2, \dots, n-1$.

$$T(n) \leq T(n_1) + T(n_2) + n$$

$$\leq n_1 \lceil \log_2 n_1 \rceil + n_2 \lceil \log_2 n_2 \rceil + n$$

$$\leq n_1 \lceil \log_2 n_2 \rceil + n_2 \lceil \log_2 n_2 \rceil + n$$

$$= n \lceil \log_2 n_2 \rceil + n$$

$$\leq n (\lceil \log_2 n \rceil - 1) + n$$

$$= n \lceil \log_2 n \rceil$$

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.

- Can access the elements only through pairwise comparisons.
- All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?

A1. Yes. Java, Python, C++, ...

A2. Yes. Mergesort, insertion sort, quicksort, heapsort, ...

A3. No. Bucket sort, radix sorts, ...

Comparison tree (for 3 distinct keys a, b, and c)

Sorting lower bound

Theorem

Any deterministic compare-based sorting algorithm must make $\Omega(n \log n)$ compares in the worst-case.

Proof.

- Assume array consists of n distinct values a_1 through a_n .
- Worst-case number of compares = height h of pruned comparison tree.
- Binary tree of height h has $\leq 2^h$ leaves.
- n! different orderings $\Rightarrow n!$ reachable leaves.

Sorting lower bound

Theorem

Any deterministic compare-based sorting algorithm must make $\Omega(n \log n)$ compares in the worst-case.

Proof.

- Assume array consists of n distinct values a_1 through a_n .
- Worst-case number of compares = height h of pruned comparison tree.
- Binary tree of height h has $\leq 2^h$ leaves.
- n! different orderings $\Rightarrow n!$ reachable leaves.

$$2^{h} \ge \# \text{ leaves } \ge n!$$

 $\Rightarrow h \ge \log_{2}(n!)$
 $\ge n \log_{2} n - n / \ln 2.$

Counting Inversions

Counting inversions

Music site tries to match your song preferences with others.

- You rank *n* songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, . . . , *n*.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs *i* and *j* are inverted if i < j, but $a_i > a_j$.

	А	В	С	D	Е
me	1	2	3	4	5
you	1	3	4	2	5

2 inversions: 3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs.

Counting inversions: applications

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's tau distance).

Counting inversions: divide-and-conquer

- Divide: separate list into two halves A and B.
- Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with $a \in A$ and $b \in B$.
- Return sum of three counts.

output 1+3+13=17

Counting inversions: how to combine two subproblems?

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

Warmup algorithm.

- Sort A and B.
- For each element $b \in B$.
 - binary search in A to find how elements in A are greater than b.

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with $a \in A$ and $b \in B$, assuming A and B are sorted.

- Scan A and B from left to right.
- Compare a_i and b_j .
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

Counting inversions: divide-and-conquer algorithm implementation

```
Sort-and-Count(L);
input : List L
output: Number of inversions in L and L in sorted order
if List L has one element then
    Return (0, L);
end
Divide the list into two halves A and B:
(r_A, A) \leftarrow \text{Sort-and-Count}(A);
(r_B, B) \leftarrow \text{Sort-and-Count }(B);
(r_{AB}, L) \leftarrow \text{Merge-and-Count}(A, B);
Return (r_A + r_B + r_{AB}, L):
```

Counting inversions: divide-and-conquer algorithm analysis

Proposition

The sort-and-count algorithm counts the number of inversions in a permutation of size n in $O(n \log n)$ time.

Proof.

The worst-case running time T(n) satisfies the recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Median and Selection

Median and selection problems

Selection. Given n elements from a totally ordered universe, find k^{th} smallest.

- Minimum: k = 1; maximum: k = n.
- Median: $k = \lfloor (n+1)/2 \rfloor$.
- O(n) compares for min or max.
- $O(n \log n)$ compares by sorting.
- $O(n \log k)$ compares with a binary heap. \leftarrow max heap with k smallest

Applications. Order statistics; find the "top k; bottleneck paths, \cdots

Q. Can we do it with O(n) compares?

A. Yes! Selection is easier than sorting.

Randomized quicksort

- Pick a random pivot element $p \in A$.
- 3-way partition the array into L, M, and R.
- Recur in one subarray—the one containing the k^{th} smallest element.

```
Select(A, K)

Pick pivot p \in A uniformly at random;

(L, M, R) \leftarrow \text{Partition}(A, p);

if k \leq |L| then Return Select(L, k);

else if k > |L| + |M| then Return Select(R, k - |L| - |M|);

else Return p;
```

Randomized quickselect analysis

Intuition. Split candy bar uniformly \Rightarrow expected size of larger piece is 3/4.

$$T(n) \le T(3n/4) + n \Rightarrow T(n) \le 4n$$

Definition T(n, k) = expected # compares to select k^{th} smallest in array of length $\leq n$.

Definition $T(n) = \max_k T(n, k)$.

Randomized quickselect analysis

Proposition

$$T(n) \leq 4n$$

Proof. [by strong induction on n]

- Assume true for 1, 2, . . . , *n*-1.
- T(n) satisfies the following recurrence:

$$T(n) \le n + 1/n[2T(n/2) + \dots + 2T(n-3) + 2T(n-2) + 2T(n-1)]$$

$$\le n + 1/n[8(n/2) + \dots + 8(n-3) + 8(n-2) + 8(n-1)]$$

$$\le n + 1/n(3n^2)$$

$$= 4n.$$

Closest Pair of Points

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points with the smallest Euclidean distance between them.

Brute force. Check all pairs with $\Theta(n^2)$ distance calculations.

1D version. Easy $O(n \log n)$ algorithm if points are on a line.

Non-degeneracy assumption. No two points have the same x-coordinate.

Closest pair of points: first attempt

Sorting solution.

- Sort by x-coordinate and consider nearby points.
- Sort by y-coordinate and consider nearby points.

Closest pair of points: first attempt

Sorting solution.

- ullet Sort by x-coordinate and consider nearby points.
- Sort by y-coordinate and consider nearby points.

Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Closest pair of points: divide-and-conquer algorithm

- Divide: draw vertical line L so that n/2 points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance $<\delta$.

• Observation: suffices to consider only those points within δ of line L.

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: suffices to consider only those points within δ of line L.
- Sort points in 2 δ -strip by their *y*-coordinate.
- Check distances of only those points within 7 positions in sorted list!

How to find closest pair with one point in each side?

Definition Let s_i be the point in the 2 δ -strip, with the i^{th} smallest y-coordinate.

Proposition

If |j-i| > 7, then the distance between s_i and s_j is at least δ .

Proof.

- Consider the 2δ -by- δ rectangle R in strip whose min y-coordinate is y-coordinate of s_i .
- Distance between s_i and any point s_j above R is $> \delta$.
- Subdivide R into 8 squares.
- At most 1 point per square.
- At most 7 other points can be in R.

Closest pair of points: divide-and-conquer algorithm

```
Closest-Pair((p_1, p_2, \ldots, p_n))
Compute vertical line L such that half the points are on each side of
 the line:
\delta_1 \leftarrow \text{Closest-Pair}(points in left half);
\delta_2 \leftarrow \text{Closest-Pair}(points \ in \ right \ half);
\delta \leftarrow \min \{\delta_1, \delta_2\};
Delete all points further than \delta from line L;
Sort remaining points by y-coordinate;
Scan points in y-order and compare distance between each point
 and next 7 neighbors;
if any of these distances is less than \delta then
    Update(\delta)
end
Return \delta:
```

Quiz 6

What is the solution to the following recurrence?

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rceil) + \Theta(n \log n) & \text{if } n > 1 \end{cases}$$

- A. $T(n) = \Theta(n)$.
- B. $T(n) = \Theta(n \log n)$.
- C. $T(n) = \Theta(n \log^2 n)$.
- D. $T(n) = \Theta(n^2)$.

Refined version of closest-pair algorithm

- Q. How to improve to $O(n \log n)$
- A. Don't sort points in strip from scratch each time.
 - Each recursive call returns two lists: all points sorted by x-coordinate, and all points sorted by y-coordinate.
 - Sort by merging two pre-sorted lists.

Theorem (Shamos 1975)

The divide-and-conquer algorithm for finding a closest pair of points in the plane can be implemented in $O(n \log n)$ time.

Quiz 7

What is the complexity of the 2D closest pair problem?

- A. $\Theta(n)$.
- B. $\Theta(n \log^* n)$
- C. $\Theta(n \log \log n)$.
- D. $\Theta(n \log n)$.
- E. Not even Tarjan knows.

Computational complexity of closest-pair problem

Theorem (Ben-Or 1983, Yao 1989)

In quadratic decision tree model, any algorithm for closest pair (even in 1D) requires $\Omega(n \log n)$ quadratic tests.

Theorem (Rabin 1976)

There exists an algorithm to find the closest pair of points in the plane whose expected running time is O(n).

Lower Bounds for Algebraic Computation Trees with Integer Inputs*

Andrew Chi-Chih Yao

Department of Computer Science

Princeton University

Princeton, New Jersey 08544

A NOTE ON RABIN'S NEAREST-NEIGHBOR ALGORITHM*

Steve FORTUNE and John HOPCROFT

Department of Computer Science, Cornell University, Ithaca, NY, U.S.A.

Received 20 July 1978, revised version received 21 August 1978

Probabilistic algorithms, nearest neighbor, hashing

Digression: computational geometry

Ingenious divide-and-conquer algorithms for core geometric problems.

problem	brute	clever
closest pair	$O(n^2)$	$O(n \log n)$
farthest pair	$O(n^2)$	$O(n \log n)$
convex hull	$O(n^2)$	$O(n \log n)$
Delaunay/Voronoi	$O(n^2)$	$O(n \log n)$
Euclidean MST	O (n ²)	$O(n \log n)$

running time to solve a 2D problem with n points

Note. 3D and higher dimensions test limits of our ingenuity.

Convex hull

The convex hull of a set of n points is the smallest perimeter fence enclosing the points.

Equivalent definitions.

- Smallest area convex polygon enclosing the points.
- Intersection of all convex set containing all the points.

Farthest pair

Given n points in the plane, find a pair of points with the largest Euclidean distance between them.

Fact. Points in farthest pair are extreme points on convex hull.

Delaunay triangulation

The Delaunay triangulation is a triangulation of n points in the plane such that no point is inside the circum circle of any triangle.

Some useful properties.

- No edges cross.
- Among all triangulations, it maximizes the minimum angle.
- Contains an edge between each point and its nearest neighbor.

Euclidean MST

Given n points in the plane, find MST connecting them. [distances between

point pairs are Euclidean distances]

Fact. Euclidean MST is subgraph of Delaunay triangulation.

Implication. Can compute Euclidean MST in $O(n \log n)$ time.

- Compute Delaunay triangulation.
- Compute MST of Delaunay triangulation.

Computational geometry applications

Applications.

- Robotics.
- VLSI design.
- Data mining.
- Medical imaging.
- Computer vision.
- Scientific computing.
- Finite-element meshing.
- · Astronomical simulation.
- Models of physical world.
- Geographic information systems.
- Computer graphics (movies, games, virtual reality).

airflow around an aircraft wing