

Grundbegriffe der Informatik Tutorium 38

O-Kalkül und Mastertheorem
Patrick Fetzer, uxkln@student.kit.edu | 17.01.2018

Grundbegriffe Rückblick der Informatik

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Rückblick

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

• Was ist $\Omega(f)$, $\Theta(f)$, O(f)?

Rückblick

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- Was ist $\Omega(f)$, $\Theta(f)$, O(f)?
- Wieso messen wir nicht einfach Laufzeit in "Anzahl Operationen"?

Obere und untere Schranke

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorer

Obere Schranke (Worst-Case Approximation)

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Obere und untere Schranke

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

Obere Schranke (Worst-Case Approximation)

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Obere und untere Schranke

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorer

Obere Schranke (Worst-Case Approximation)

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Average-Case Approximation

$$\Theta(f) = \{g | \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : c \cdot f(n) \leq g(n) \leq c' \cdot f(n)\}$$

Obere und untere Schranke

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorer

Obere Schranke (Worst-Case Approximation)

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Average-Case Approximation

$$\Theta(f) = \{g | \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : c \cdot f(n) \leq g(n) \leq c' \cdot f(n)\}$$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

Wiederholung

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$lacktriangledown \pi n^{10} \in O(rac{1}{e^{10}} n^{10})$$

Wiederholung

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet$$
 $\pi n^{10} \in O(\frac{1}{e^{10}}n^{10})$ Ja

Wiederholung

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $lacktriangledown \pi n^{10} \in O(rac{1}{e^{10}} n^{10})$ Ja
- $5n^2 + 3 \in O(\frac{1}{2}n^2)$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $lacktriangledown \pi n^{10} \in O(rac{1}{e^{10}} n^{10})$ Ja
- $5n^2 + 3 \in O(\frac{1}{2}n^2)$ Ja

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $lacktriangledown \pi n^{10} \in O(rac{1}{e^{10}} n^{10})$ Ja
- $5n^2 + 3 \in O(\frac{1}{2}n^2)$ Ja
- $\bullet 5^n \in O(3^n)$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheoren

- $\bullet \ \pi n^{10} \in O(\frac{1}{e^{10}}n^{10}) \ \mathrm{Ja}$
- $5n^2 + 3 \in O(\frac{1}{2}n^2)$ Ja
- $5^n \in O(3^n)$ Nein

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheoren

- $\bullet \pi n^{10} \in O(\frac{1}{e^{10}}n^{10})$ Ja
- $5n^2 + 3 \in O(\frac{1}{2}n^2)$ Ja
- $5^n \in O(3^n)$ Nein
- $\log_3(n^2) \in O(7\log_2(n))$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheoren

- $\pi n^{10} \in O(\frac{1}{e^{10}}n^{10})$ Ja
- $5n^2 + 3 \in O(\frac{1}{2}n^2)$ Ja
- $5^n \in O(3^n)$ Nein
- $\log_3(n^2) \in O(7 \log_2(n))$ Ja

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheoren

- $\pi n^{10} \in O(\frac{1}{e^{10}}n^{10})$ Ja
- $5n^2 + 3 \in O(\frac{1}{2}n^2)$ Ja
- $5^n \in O(3^n)$ Nein
- $\log_3(n^2) \in O(7 \log_2(n))$ Ja
- $n^n \in O(n!)$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheoren

- $\pi n^{10} \in O(\frac{1}{e^{10}}n^{10})$ Ja
- $5n^2 + 3 \in O(\frac{1}{2}n^2)$ Ja
- $5^n \in O(3^n)$ Nein
- $\log_3(n^2) \in O(7 \log_2(n))$ Ja
- $lacksquare n^n \in O(n!)$ Nein

Aufgabe

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Zeige, dass
$$f(n) \in \Theta(g(n))$$
 mit $f(n) = 2n^4 + 4n^3$ und $g(n) = 5n^4 - 2n^2$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\begin{array}{l} r \leftarrow 0 \\ \text{for } i \leftarrow 0 \text{ to } n/2 \text{ do} \\ s \leftarrow 0 \\ \text{for } j \leftarrow i \text{ to } n-i \text{ do} \\ s \leftarrow s+j \\ \text{od} \\ r \leftarrow s+n*i \\ r \leftarrow r+s \\ \text{od} \end{array}$$

Wie oft wird die innere Schleife durchlaufen?

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

• Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$
od

- Wie oft wird die innere Schleife durchlaufen? n 2i + 1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$
od

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1)$$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheoren

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

od

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2}$$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2} + 1)}{2}$$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

od

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot \left(\frac{n}{2} + 1\right)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{4} - \frac{n}{2}$$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

od

Mastertheoren

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

• Wie oft wird die innere Schleife durchlaufen?
$$n-2i+1$$
 mal.

Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{1}{4}n^2$$

Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Formel für Mastertheorem

Komplexitätstheorie Rekursive Komplexitätsformeln der Form

Mastertheorem

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

lassen sich mit dem Mastertheorem Komplexitätsklassen zuordnen.

Auflösung des Mastertheorem

Fall 1: Wenn $f \in \mathcal{O}(n^{\log_b a - \varepsilon})$ für ein $\varepsilon > 0$ ist, dann ist $T \in \Theta(n^{\log_b a})$.

Fall 2: Wenn $f \in \Theta(n^{\log_b a})$ ist, dann ist $T \in \Theta(n^{\log_b a} \log n)$.

Fall 3: Wenn $f \in \Omega(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$ ist, und wenn es eine Konstante d gibt mit 0 < d < 1, so dass für alle hinreichend großen n gilt $af(n/b) \le df$, dann ist $T \in \Theta(f)$.

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

$$T(n) := 2T(\frac{n}{4}) + \sqrt{n}$$

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

•
$$T(n) := 2T(\frac{n}{4}) + \sqrt{n}$$
, also $a = 2, b = 4, f(n) = \sqrt{n}$

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

Mastertheorem

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n\log n$

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also $a = 4, b = 2, f(n) = n^2\sqrt{n}$

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also $a = 4, b = 2, f(n) = n^2\sqrt{n}$, also dritter Fall des Mastertheorems

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n\log n$, also $a = 3, b = 2, f(n) = n\log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also a = 4, b = 2, $f(n) = n^2\sqrt{n}$, also dritter Fall des Mastertheorems, $T \in \Theta(n^2\sqrt{n})$.

Aufgaben zum Mastertheorem

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

•
$$T(n) = 2T(\frac{n}{2}) + 10n$$

•
$$T(n) = 20n^2 + 8T(\frac{n}{2})$$

$$T(n) = 4T(\frac{n}{4}) + n^2$$

Patrick Fetzer, uxkln@student.kit.edu

Komplexitätstheorie

