Traduction et translittération des entités nommées pour une paire de langues peu dotée

Ngoc Tan Le

26 Septembre 2019

Plan de présentation

- Introduction
- 2 État de l'art
- Méthodologie
- 4 Expérimentations et Évaluations
- Conclusion
- 6 Bibliographie

- Croissance phénoménale des informations et des connaissances multilingues via les documents numérisés et dans le Web
 ⇒ Besoins d'outils de traitement automatique des langues naturelles (TALN) et de la traduction automatique (TA)
- Diversité des langues avec le plus grand nombre d'internautes

Top Ten Languages Used in the Web - April 30, 2019 (Number of Internet Users by Language)							
TOP TEN LANGUAGES IN THE INTERNET	World Population for this Language (2019 Estimate)	Internet Users by Language	Internet Penetration (% Population)	Internet Users Growth (2000 - 2019)	Internet Users % of World (Participation)		
<u>English</u>	1,485,300,217	1,105,919,154	74.5 %	685.7 %	25.2 %		
Chinese	1,457,821,239	863,230,794	59.2 %	2,572.3 %	19.3 %		
<u>Spanish</u>	520,777,464	344,448,932	66.1 %	1,425.8 %	7.9 %		
<u>Arabic</u>	444,016,517	226,595,470	51.0 %	8,917.3 %	5.2 %		
<u>Portuguese</u>	289,923,583	171,583,004	59.2 %	2,164.8 %	3.9 %		
Indonesian / Malaysian	302,430,273	169,685,798	56.1 %	2,861.4 %	3.9 %		
French	422,308,112	144,695,288	34.3 %	1,106.0 %	3.3 %		
<u>Japanese</u>	126,854,745	118,626,672	93.5 %	152.0 %	2.7 %		
Russian	143,895,551	109,552,842	76.1 %	3,434.0 %	2.5 %		
German	97,025,201	92,304,792	95.1 %	235.4 %	2.1 %		
TOP 10 LANGUAGES	5,193,327,701	3,346,642,747	64.4 %	1,123.0 %	76.3 %		
Rest of the Languages	2,522,895,508	1,039,842,794	41.2 %	1,090.4 %	23.7 %		
WORLD TOTAL	7,716,223,209	4,386,485,541	56.8 %	1,115.1 %	100.0 %		

Source : https ://www.internetworldstats.com/stats7.htm

Diversité des langues les plus utilisées dans les sites Web
 Année 2017

Année 2017

Langues les plus utilisées par les sites d'Internet par Web Technology Surveys 2017 (Source : https://w3techs.com/technologies/overview/content_language/all)

• Diversité des systèmes d'écriture

(Source: Wikipedia, 2019)

 Traduction automatique (TA): un sous-domaine de la linguistique computationnelle, TALN et Intelligence Artificielle.

Source: https://blogs.thomsonreuters.com/

- Traduction automatique (TA): un sous-domaine de la linguistique computationnelle, TALN et Intelligence Artificielle.
 - Problématiques :
 - (A) Les systèmes de TA ne proposent pas toujours de bonnes traductions
 - Traduire un nom commun écrit avec des majuscules comme un nom propre
 - Traduire un nom propre ayant une signification dans un dictionnaire bilingue comme un nom commun
 - (B) Mots hors vocabulaires (MHV) ou non traduits : entités nommées, expressions multi-mots et acronymes. etc.

Définition (Ehrmann, 2008)

Étant donné un modèle applicatif et un corpus, on appelle « entité nommée » toute expression linguistique qui réfère à une entité unique du modèle de manière autonome dans le corpus.

- Quelques illustrations de la traduction automatique des entités nommées (TAEN)
 - (1.1) Hier soir, j'ai mangé avec Monsieur Michel Poulet.
 - (1.2) Đêm qua tôi đã ăn thịt gà với Michel.
 - (traduction erronée, par Google Translate, consultée Lundi 07 Janvier 2018; Lundi 06 Mai 2019.
 - » Littéralement : Hier soir, j'ai mangé du poulet avec Michel.)
 - (1.3) Tối qua, tôi đã ăn với ông Mi-sên Pu-lê. (traduction et translittération correcte)
 - (2.1) Ma famille voyage dans le delta du fleuve Mékong.
 - (2.2) Gia đình tôi đi du lịch ở đồng bằng sông Mêkông. (translittération correcte)
 - (2.3) Gia đình tôi đi du lịch ở đồng bằng sông Cửu Long. (traduction correcte, par Google Translate, consultée Lundi 07 Janvier 2018; Lundi 06 Mai 2019)

- Peu de recherches pour une paire de langues peu dotées français-vietnamien
- Une langue peu dotée ou langue : dans le contexte du TALN,
 peu de ressources linguistiques numériques, d'outils linguistiques
 (Berment, 2004; Besacier et al., 2014)
- Emprunts des mots et des constructions grammaticales du chinois, du français et de l'anglais au long de l'Histoire du Vietnam

1.2. Caractéristiques du vietnamien

• Alphabet : 29 lettres

Introduction

00000000000

Figure 3-2: L'alphabet vietnamien

(Source : Do Thi Ngoc Diep (2011). Extraction de corpus parallèle pour la traduction automatique depuis et vers une langue peu dotée, Thèse 2011, Université de Grenoble)

• 6 tons (ngang, sắc, huyền, hỏi, ngã, nặng)

Tableau 3-2 : La signification d'un mot vietnamien dépend de son ton

(Src : Iran D.D, 2007)						
Mot vietnamien	bá	bã	ba	bà	bà	bạ
Signification	le roi	le marc (de café)	trois	la nâture	grand- mère	n'importe

1.2. Caractéristiques du vietnamien

Introduction

- Type de langue isolante : non-flexionnelle, monosyllabique (dont le chinois, le khmer, le thai)
 - Au niveau morphologique : Pas de changement
 Par exemple :
 Tôi nhìn anh ấy = Je regarde lui (littéral) // Je le regarde (correct)
 Anh ấy nhìn tôi = Il regarde moi (littéral) // Il me regarde (correct)
 - Au niveau grammatical: Ordre des mots
 Par exemple:
 quần áo // áo quần = le vêtement
 Gạo xay = Riz moulu // Xay gạo = Moudre du riz
 Nó bảo sao không tới = II dit pourquoi ne pas venir
 Sao không bảo nó tới = Pourquoi ne pas lui dire de venir
 Sao bảo nó không tới = Pourquoi dire qu'il ne vient pas
- **Syllabe**: environ 10 000 syllabes en vietnamien (Hoang Phe, 1997) Par exemple: Tôi / nhìn / anh / ấy ⇒ II y a 4 syllabes.
- Mot : se compose d'une syllabe ou de plusieurs syllabes
 Par exemple : Tôi / nhìn / anh ấy ⇒ II y a 3 mots.
- Problématique : Les frontières d'un mot ne peuvent pas être déterminées par un espace

1.3. Traduction/Translittération des ENs en vietnamien

- Noms propres (NPs) en vietnamien : 2 catégories
 - (a) NPs d'origine vietnamienne

Par exemple : Trần Văn Tạo, Đinh Tiên Hoàng, Lý Bạch, Lỗ Tấn

(b) NPs d'origine étrangère

Par exemple : François, Ivan, Napoléon, Hugo (en français)

Sans traits d'union : Frăngxoa/Phơrăngxoa/Frânxoa/Phơrânxoa,

Ivan/Ivân, Napôlêông, Huygô/Uygô

Avec traits d'union : Frăng-xoa/Pho-răng-xoa/Frân-xoa/Pho-rân-xoa,

I-van/I-vân, Na-pô-lê-ông, Huy-gô/Uy-gô

- Écriture des noms de personnes, de locations, d'organisations :
 - Influence sino-vietnamienne
 - Translittération en sino-vietnamien ou via une langue indo-européenne

Par exemple: Washington, Berlin, Moscou, Tokyo (en français)
Sans traits d'union: Oasinhton, Béclin/Béclanh, Mátxcova, Tôkyô
Avec traits d'union: Oa-sinh-ton, Béc-lin/Béc-lanh, Mát-xco-va, Tô-ky-ô

 Problématiques : Manque de l'uniformité, influences des dialectes

1.4. Objectifs de recherche

- Pourquoi choisir les entités nommées à traiter?
 - Emprunts des mots et des constructions grammaticales du chinois, du français et de l'anglais
 - Évolution du Web et mondialisation de l'économie : Une grande diversité des langues de communication ⇒ Un grand nombre de nouveaux mots
 - Mots hors vocabulaire : entités nommées (personne, location et organisation)
- Pourquoi choisir l'apprentissage machine (approche statistique)?
 - Avoir la capacité d'apprendre automatiquement les connaissances linguistiques au niveau lexical et syntaxique
 - Entraîner des systèmes de REN grâce aux corpus annotés d'apprentissage
- Pourquoi choisir l'approche à base de réseaux de neurones?
 - Émergence de l'approche à base de réseaux de neurones
 - Impacts de l'approche à base de réseaux de neurones dans le traitement des entités nommées

2.1. Reconnaissance des entités nommées (REN)

Définition (Ehrmann, 2008)

Étant donné un modèle applicatif et un corpus, on appelle « entité nommée » toute expression linguistique qui réfère à une entité unique du modèle de manière autonome dans le corpus.

- La tâche de REN: la première fois dans la 6ème Message Understanding Conference - MUC (Sundheim, 1995), CoNLL-2003 (Tjong Kim Sang et al., 2003)
- La notion d'EN couvre non seulement les noms propres, mais aussi des entités plus complexes :
 - des noms désignant des PERsonnes, LOCations, ORGanisations, etc.
 - des notions plus techniques comme les maladies, les gènes (BioInformatique)
 - des expressions multi-mots : idiomes, groupes verbaux, groupes nominaux, etc.
- Un grand impact envers le TALN :
 - CLIR, IE, QA, Traduction automatique
 - Moteurs de recherche, filtrage du contenu Web

Introduction

2.2. Google Deep NMT

Introduction

FIGURE – "Google's Multilingual Neural Machine Translation System : Enabling Zero-Shot Translation" (Johnson et al., 2018)

3.1. Méthodologie de recherche

- Répartir en tâches suivantes :
 - Collecter des ressources linguistiques à partir des sites Web multilingues
 - ② Développer un modèle de reconnaissance des entités nommées pour une langue peu dotée de ressources linguistiques
 - Appliquer l'approche à base de réseaux de neurones dans le traitement des entités nommées pour améliorer davantage la qualité et l'efficacité du système
 - Évaluer notre méthodologie

3.2. Processus de validation des résultats

- Pour pallier le problème d'indisponibilité de corpus bilingues d'apprentissage
 - Collecter des textes monolingues à partir des sites Web en vietnamien (i.e. http://fr.vietnamplus.vn, http://www.vietnamplus.vn, http://tamdaoconf.com)
 - Collecter des données d'apprentissage fournies par les campagnes d'évaluation (i.e. MUC, CoNLL, NEWS)

Métriques d'évaluation

Introduction

- Traitement des entités nommées bilingues : Précision, Rappel et F-score
- Traduction automatique
 - Évaluation automatique : score de BLEU BiLingual Evaluation Understudy (Papineni et al., 2002)
 - Métrique pour l'évaluation de la traduction avec ordonnancement explicite: METEOR - Metric for Evaluation of Translation with Explicit ORdering (Banerjee et Lavie, 2005)
 - Taux d'erreur de traduction : TER Translation Error Rate (Snover et al., 2009)
 - Taux des mots hors vocabulaires (MHV)

3.3. Système de traduction automatique statistique des entités nommées (TAEN)

Le processus global : trois étapes

- Prétraitement
- Construction d'un système de TAEN à base de segments pour une paire de langues peu dotée
- O Post-traitement

(Le et al., ACM TALLIP 2019)

FIGURE – Architecture de notre système de TAEN

4.1.1. Module de reconnaissance des entités nommées

Le processus global : trois étapes

- Pré-traitement : normaliser le corpus monolingue, segmenter des mots et faire un étiquetage morpho-syntaxique
- Extraction des traits linguistiques : orthographique, information contextuelle locale, etc.
- Construction du modèle

FIGURE – Architecture du modèle de reconnaissance des entités nommées en vietnamien (*Traduction de l'illustration en français : «Voici l'université des sciences naturelles»*)

4.1.2. Extraction des traits linguistiques (RNN)

• Illustration de différents traits linguistiques dans une phrase en vietnamien

TABLE - Illustration des traits linguistiques, à savoir surface de mot, lemme, grappe de mot (word cluster), étiquette morpho-syntaxique, chunk (segment syntaxique) et ENs (entités nommées). Ici, en vietnamien : « Chỉ có Pháp và Anh ủng hộ đề xuất của Fischler. », en français : « Seules la France et la Grande-Bretagne ont soutenu la proposition de Fischler. »

Surface de mot	Lemme	Grappe de mot	Étiquette POS	Chunk	ENs
Chỉ có	chỉ có	011000111	RB	I-NP	0
Pháp	pháp	111001	NNP	I-NP	I-LOC
và	và	0011110	CC	I-NP	0
Anh	anh	111001	NNP	I-NP	I-LOC
ủng hộ	ủng hộ	0110011011	VBD	I-VP	0
đề xuất	đề xuất	01010111	NN	B-NP	0
của	của	001110	POS	I-NP	0
Fischler	fischler	0110100	NNP	I-NP	I-PER
		0010		0	0

4.1.3. Expérimentations

Introduction

Préparation des données :

	Langue	Catégorie	#App. (tokens)	#Dév.	#Test
WNUT'2016	anglais	tweets	2 394 (37 619)	420	3 856
CAP'2017	français	tweets	3 000 (62 261)	null	3 000
CLC'2018	vietnamien	actualité	9 600 (248k)	1 200	1 200

TABLE – Statistiques des données d'apprentissage

- Un large corpus monolingue non étiqueté, contenant 17 095 994 phrases en vietnamien (équivalent à 372 720 876 tokens)
- Outils utilisés :
 - Segmenteur au niveau des mots CLC_VN_WS¹, word2vec², TreeTagger³, conlleval⁴ script: évaluer les modèles de REN
 - Implémentations de Wapiti-CRF⁵ et Bi-LSTM-CRF NER⁶ (Lample et al., 2016)
- 1. http://www.clc.hcmus.edu.vn/
- 2. https://code.google.com/p/word2vec/
- 3. http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
- 4. http://www.cnts.ua.ac.be/conll2003/ner/
- 5. https://wapiti.limsi.fr/
- 6. https://github.com/glample/tagger/

4.1.4. Expérimentations

• Les catégories des entités nommées à traiter

Catégorie	Арр.	Dév
person	266	664
geo-location	158	325
company	49	207
facility	77	209
product	158	177
music artist	76	116
movie	30	80
sports team	83	74
tv show	2	65
other	229	545
Total	1 128	2 462

TABLE – Statistiques des types d'entités nommées pour WNUT'2016, *tweets* en anglais.

Catégorie	#EN	Catégorie	#EN
musicartist	80	transportLine	548
product	340	event	161
person	966	facility	329
geoloc	700	sportsteam	87
movie	40	tvshow	47
other	279	org	358
media	191	Total	4 126

TABLE – Statistiques des types d'entités nommées pour CAp'2016, *tweets* en français.

• Les catégories des entités nommées à traiter

Catég	EN	
ABB		1 137
ABB	DES	84
ABB	LOC	372
ABB	ORG	686

69

220

1 029

8

ABB TRM

ABB TTL

BRN

DES

	Catégorie	EN
ĺ	DTM	2 684
	LOC	4 299
	MEA	2 618
	NUM	4 754
	ORG	3 279
	PER	4 161
	TRM	190
	TTL	988

TABLE - Statistiques du corpus annoté en vietnamien.

Ce corpus contient **26 578** d'entités nommées : Person (PER), Organization (ORG), Location (LOC), Abbreviation (ABB), Brand (BRN), Designation (DES), Date time (DTM), Measurement (MEA), Terminology (TRM), Title (TTL).

4.1.4. Expérimentations - Configuration

• Approche à base de réseaux de neurones :

Algorithme: Recurrent neural network (RNN)
Outil: bi-LSTM-CRF (Lample et al., 2016)

Optimisation: sgd (stochastic gradient descent) (Rumellhart et al., 1986)

Taux d'apprentissage (learning rate) : 0,01 Taille des échantillons (batch-size) : 32 Nombre d'itération (#epoch) : 100 Taux d'abandon (drop-out rate) : 0,5

Taille du plongement des mots (embedding) : 100

4.1.5. Résultats obtenus - Tweets

Twitter en anglais

1
,82
97
25
92
,2

TABLE – Résultats des systèmes de REN avec des *tweets* en anglais. Baseline : avec des traits linguistiques.

Twitter en français

	P	R	F1
Baseline	50,08	31,19	38,44
+ Words clusters	69,42	41,49	51,93
+ Gazetteer	69,15	41,86	52,15
Notre approche	69,46	41,94	52,30

TABLE – Résultats des systèmes de REN avec des *tweets* en français. Baseline : avec des traits linguistiques.

4.1.5. Résultats obtenus - Tweets

Rang	Système	Р	R	F1
1	CambridgeLTL	60,77	46,07	52,41
2	Talos	58,51	38,12	46,16
3	akora	51,70	39,48	44,77
9	UQAM-NTL	40,73	23,52	29,82
	Notre approche	52,66	29,63	37,92

TABLE – Comparaison de notre modèle avec les trois premiers systèmes participant dans WNUT'2016.

Rang	Système	Р	R	F1
1	Synapse Dev	73,65	49,06	58,89
2	High Inst. of Techno	58,95	46,83	52,19
3	TanDam	60,67	45,48	51,99
2*	Notre approche	69,46	41,94	52,30

TABLE – Comparaison de notre modèle avec les trois premiers systèmes participant dans CAp'2017.

4.1.5. Résultats obtenus - Corpus en vietnamien

- Expérimentations : 4 systèmes
- (1) Système 1 : système de base (Support Vector Machine)
- (2) Système 2 : système de base (Conditional Random Fields)
- (3) Système 3 : système de base, dit Bi-LSTM sans les traits linguistiques
- (4) Système 4 : notre approche avec les traits linguistiques

TABLE – Comparaison de performances entre différents systèmes de reconnaissance des entités nommées

Expérimentations	Précision (%)	Rappel (%)	F1 (%)
Système 1 (SVM)	85,23	78,02	81,46
Système 2 (CRF)	86,70	79,54	82,97
Système 3 (Bi-LSTM, sans traits)	81,08	83,50	82,27
Système 4 (notre approche, avec traits)	84,53	87,93	86,20

4.1.5. Évaluations - Prédictions

Pour le français :

```
\begin{tabular}{ll} \textbf{Yannick Jadot} en campagne à Toulouse pour la primaire présidentielle $$https://t.co/Z8t4wzELEQ$$ & Yannick_B-person Jadot_I-person en_O campagne_O à_O & Toulouse_B-geoloc pour_O la_O primaire_O présidentielle_O & https://t.co/Z8t4wzELEQ_O & Double & Toulouse_O & Double & Dou
```

Pour l'anglais :

```
'Breaking Dawn' Returns to Vancouver on January 11th http://bit.ly/dbDMs8 '_O Breaking_B-movie Dawn_I-movie '_O Returns_O to_O Vancouver_B-geo-loc on_O January_O 11th_O http://bit.ly/dbDMs8_O
```

Pour le vietnamienne :

```
Bộ GD-DT cho_biết ngày thi thứ hai của kì thi tốt_nghiệp THPT năm 2009 có thêm 842 thí_sinh bỏ thi . (Traduction : "Le ministère de l'Éducation et de la Formation a donné à la deuxième journée d'examen de l'examen de fin d'études secondaires en 2009 plus de 842 candidats.")
Bộ_B-ABB_ORG GD-DT_I-ABB_ORG cho_biết_O ngày_O thi_O thứ_O hai_O của_O kì_O thi_O tốt_nghiệp_O THPT_B-ABB năm_B-DTM 2009_I-DTM có_O thêm_O 842_B-NUM thí_sinh_O bỏ_O thi_O .
```

4.1.5. Analyse des erreurs

Introduction

- Erreurs de prédiction de nouvelles entités nommées
- 2 Erreurs de prédiction d'annoter une classe au lieu d'une autre classe

- Pour les messages de Twitter
 - Certaines catégories d'entités nommées : event, media et other.

Texte	Référence	Prédiction
Tchat des Jeudis de la Ligne	event	other
#TableRondeRATP	event	0
#BFM	media	0

4.1.5. Analyse des erreurs

Pour le vietnamien

Table – Illustration des erreurs de prédiction de nouvelles entités nommées.

Theo Vv O O thống kê Vv O O của Nn O O riêng Aa O O Bênh viên Nn B-ORG B-ORG phu sản Nn I-ORG I-ORG Từ Dũ X I-ORG I-ORG . PU O O năm Nt B-DTM B-DTM 2007 X I-DTM I-DTM có Ve O O

613 X B-NUM B-NUM em Nn O O dưới Nn O O 18 X B-MEA B-MEA tuổi Nn I-MEA I-MEA đến Vd O O xin Vv O O bỏ Vy O O thai Nn O O

tại Cm O O khoa Nn B-ORG O Kế hoạch Nn I-ORG O gia đình Nn I-ORG O của Nn O O bệnh viện Nn O O $PU \cap O$

Traduction:

Bệnh viện phụ sản Từ $D\tilde{u} = H\hat{o}pital$ de maternité de Từ $D\tilde{u}$ khoa Kế hoạch gia đình = Département de planification familiale

4.2.1. Translittération automatique des entités nommées

- Approche proposée : à base de réseaux neuronaux récurrents
 - (1) Pré-traitement

Introduction

- (2) Modification des séquences d'entrée basée sur la représentation d'alignement
- (3) Création d'un système de translittération à base de réseaux de neurones récurrents

FIGURE - Architecture du module de translittération des entités nommées

4.2.2. Expérimentations - Configuration

- Préparation des données :
 - 4 259 paires d'entités nommées bilingues français-vietnamien (depuis la campagne NEWS⁷ - ACL 2018)
- Outils utilisés :
 - m-2-m aligner⁸ (Jiampojamarn et al., 2007)
 - word2vec⁹
 - nmt-keras¹⁰ (Peris, 2017) pour entraîner un modèle neuronal de translittération
 - Sequitur-G2P¹¹ pour entraîner un modèle de translittération
 - Moses (Koehn, 2009) ¹² pour entraîner un modèle de traduction automatique statistique

^{7.} http://workshop.colips.org/news2018/dataset.html

^{8.} https://github.com/letter-to-phoneme/m2m-aligner/

 $^{9.\ {\}tt https://code.google.com/archive/p/word2vec/}$

^{10.} https://github.com/lvapeab/nmt-keras/
11. https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html

^{12.} http://www.statmt.org/moses_steps.html

4.2.3. Évaluations

Introduction

TABLE – Évaluation des expérimentations avec les métriques d'évaluation telles que BLEU (BiLingual Evaluation Understudy) (Papineni et al., 2002), taux d'erreurs de traduction (TER - Translation Error Rate) (Snover et al., 2009) et taux d'erreurs de phonèmes (PER - Phoneme Error Rate).

Expérimentations	BLEU ↑	TER ↓	PER ↓
Système de base A (pbSMT)	61,30	24,08	44,20
Système de base B (modèle de séquences multi-jointes)		20,50	38,00
Système 1 (encodeur-décodeur + attention)	92,38	9,69	18,28
Système 2 (encodeur-décodeur + attention + représentation d'alignement)	94,41	4,70	8,87
Système 3 (encodeur-décodeur + attention + représentation d'alignement + plongements de sources et de cibles pré-entraînés)	95,96	3,28	6,19

4.2.3. Évaluations

Prédiction par nos modèles

TABLE – Exemples de résultats de prédiction de translittération par deux systèmes d'évaluation, hypothèses et références pour six noms propres tels que PARIS, NICE, JACQUES, VINCENTE, YUKON et ZIMBABWE.

Évaluation	Hypothèses	Références
	parít	pari
	n í t	nítxờ
Système de base A (pbSMT)	gi ắ c	giắccơ
Systeme de base A (pbSivi i)	vanh <mark>s</mark> ân tơ	vanhxântơ
	iu k ô ng	d uy c ô ng
	gi <mark>anh</mark> babuê	giimbabuê
	pari	pari
	nítxờ	nítxờ
Notre approche (Système 3)	giắccơ	giắccơ
	vanhxântơ	vanhxântơ
	d uy c ô ng	d uy c ô ng
	giim bab <mark>o</mark>	giimbabuê

4.3.1. Système de traduction et de translittération automatique des entités nommées (TAEN)

Préparation des données :

TABLE - Statistiques des données d'apprentissage

Données	Description	#paires de phrases	#tokens fr - vi	
	conférence	5k	105 009 - 143 255	
Apprentissage	Tam Dao 2009	JK		
Apprentissage	conversations,	15k	234 422 - 287 178	
	livres bilingues, Web	13K	254 422 - 207 170	
	corpus utilisé dans	50k	1 783 349 - 2 337 997	
la thèse de Diep (201		JUK	1 703 349 - 2 337 997	

- Outils utilisés :
 - Prétraitement : en vietnamien avec CLC VN WS (Vu, 2011)
 - SRI Language Modeling (SRILM) (Stolcke et al., 2002),
 - Moses (Koehn, 2009) pour entraîner un modèle de traduction automatique statistique
 - nmt-keras (Peris, 2017) pour entraîner un modèle de traduction automatique neuronale

Introduction

4.3.2. Système de traduction et de translittération automatique des entités nommées (TAEN)

- Expérimentations :
 - Expérimentation 1 (Système 1 TAS) : #app. = 50k, #test = 359 entités extraites de 1060 paires de phrases bilingues
 - Expérimentation 2 (Système 2 TAS) : similaire à Exp1, avec modèle de langue entraîné sur un large corpus ayant 17 095 994 phrases en vietnamien.
 - Expérimentation 3 (Système 3 TAS) : similaire à Exp2, #app. = 70k
 - Expérimentation 4 (Système 4 TAN) : similaire à Exp3

TABLE – Évaluation des performances de différents systèmes de traduction automatique des entités nommées pour la paire de langues peu dotée en français-vietnamien, en appliquant nos deux méthodes.

Expérimentation	BLEU	METEOR	TER	Taux de MHV
Système 1 - TAS (base)	31,40	40,50	67,60	49,80
Système 2 - TAS	40,00	63,40	49,70	38,60
Système 3 - TAS	51,80	68,40	36,20	27,50
Système 4 - TAN	12,04	28,30	91,94	4 ₱ ▶ 69,72 4 = ▶

4.3.3. Système de traduction et de translittération automatique des entités nommées (TAEN)

• Prédiction par nos modèles

Introduction

TABLE – Quelques illustrations de prédiction de la traduction automatique des entités nommées produites par les quatre systèmes d'expérimentation, avec un ensemble d'entités nommées en français {Indonésie, Cambodge, Asie du Sud-Est, Mékong, khmer}.

Référence	Système 1	Système 2	Système 3	Système 4
inđônêxia	inđônêxia	inđônêxia	inđônêxia	in-đô-nê-xia ta lực
campuchia	cam-pu-chia	campuchia	campuchia	tìm thấy miến
đông nam á	nam á	đông nam á	đông nam á	nam á thế á thế
mêkông	sông	sông mê công	mê công	sông cửu long
khmer	dân	khơme	khơme	liệu họ .

Conclusion

4.3.4. Système de traduction et de translittération automatique des entités nommées (TAEN)

Introduction

 Aller plus loin : Expérimenter notre meilleure approche (Système 3 -TAS)

TABLE – Évaluation de la performance de notre approche pour la tâche de traduction automatique de 100 noms propres de la Bible bilingue française-vietnamienne, ainsi que 100 termes techniques de chimie en général.

Expérimentation	BLEU	METEOR	TER	Taux de MHV
Bible	42,10	34,30	38,80	58,30
	(+8.90)	(-3,30)	(-15,40)	(-20,30)
Termes techniques	33,20	37,60	54,20	78,60

Bibliographie

Conclusion

4.3.5. Système de traduction et de translittération automatique des entités nommées (TAEN)

- Prédiction par le système 3 TAS
- Prédiction de traduction automatique des noms propres, extraits de la bible française-vietnamienne

Source FR	Référence VI	Prédiction VI
israel	ysơraên	isờraen
ruben	rubên	cuben
simeon	simêôn	simêôn
levi	lêvi	lêvi
juda	giuđa	duđa
issacar	ysaca	ixòtaca
zabulon	sabulôn	giabulông
benjamin	bêngiamin	bendamin
jacob	giacốp	<mark>d</mark> acốp
joseph	giôsep	puydốtxơ
ramses	ramse	ramxơ
pharaon	pharaôn	pharaông

Prédiction de traduction automatique des termes techniques de chimie

Source FR	Référence VI	Prédiction VI
adrenaline	ađrênalin	ađờrênalin <mark>nơ</mark>
aleurone	aloron	alêuronno
amygdale	amiđan	amycđanl <mark>o</mark>
aminoacide	aminôaxít	aminôaxi <mark>đ</mark> ơ
amine	amin	amin <mark>no</mark>
amibe	amíp	ami <mark>bê</mark>
ammoniac	amôniắc	am <mark>m</mark> ôniác
acetylene	axêtylen	asờtilâ <mark>nơ</mark>
blouson	bờludông	bờ <mark>lôus</mark> ông
hemoglobine	hêmôglôbin	hêmôgờlôbin <mark>nơ</mark>
paludisme	baluyđít	baluđi <mark>sờme</mark>
vaseline	vadolin	vagienlinno
virus	virút	virútxơ
vitamine	vitamin	vitaminng

Conclusion

- Relever les défis de recherches sur le TALN, spécifiquement en regard du vietnamien, créer les outils linguistiques
- Reconnaissance des ENs et traduction des ENs pour le français-vietnamien : un défi majeur de la TA
 - Une grande partie de mots non ou mal traduits dans les textes bilingues en français-vietnamien
 - ⇒ Contribution sur la translittération des ENs bilingues : réduire des MHV, non ou mal traduits ainsi qu'améliorer la qualité du système de la TA
- Notre méthodologie de TAEN : être adaptée à n'importe quelle paire de langues, à condition de posséder un petit corpus bilingue parallèle

Projets concernant le traitement des ENs

Projets effectués

- (Le et Sadat, ACL NEWS 2018, Melbourne, Australie) : Translittération des entités nommées en langues asiatiques
- (Le et Sadat, NAACL WiNLP 2018, Louisiane, États-Unis) : Reconnaissance des entités nommées en vietnamien
- (Le et al., CAP compétition 2017, Grenoble, France) :
 Reconnaissance des entités nommées dans les tweets en français
- (Le et al., COLING WNUT compétition, 2016, Osaka, Japon) :
 Reconnaissance des entités nommées dans les tweets en anglais

Projets en cours

- Thales Group Québec :
 - Supervision de Fatiha Sadat
 - Approches: bi-LSTM-CRF (Lample et al., NAACL 2016), bi-LSTM-CNN-CRF (Ma et Hovy, ACL 2017)
 - Catégories à traiter : ORG, USER, DEVICE, APPLICATION, CONNECTION, GAME, SOFTWARE

Publications

Introduction

- 2019 (a) Low Resource Machine Transliteration Using Recurrent Neural Network. In Proceedings of ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), ISSN 2375-4699, Inf. Process. 18(2): 13:1-13:14 (2019).
 - (b) Augmenting Named Entity Recognition with Commonsense Knowledge. In Proceedings of ACL 2019, Widening Natural Language Processing workshop, Florence, Italy, 28 July 2019.
 - (c) Transfer Learning to Enhance Korean Word Segmentation on Social Media Texts. In proceedings of the 2019 16th International Conference of the Pacific Association for Computational Linguistics (PACLING), October 11-13, 2019, Hanoi, Vietnam (accepted/accepté).

Publications

Introduction

- 2018 (a) Cross-linguistic Projection for French-Vietnamese Named Entity Recognition. Language Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Springer LNAI (Lecture Notes in Artificial Intelligence) Series, Lecture Notes in Computer Science, DOI: 10.1007/978-3-319-93782-3_29. In book: Human Language Technology. Challenges for Computer Science and Linguistics, 407-419, June 2018.
 - (b) Neural network-based model for Named Entity Recognition in low-resource settings. In Proceedings of NAACL HLT 2018, Widening Natural Language Processing workshop, New Orleans, USA, 1-6 June 2018.
- 2017 (a) Reconnaissance des entités nommées dans les messages Twitter en français. In Proceedings of 19^{ème} Conférence sur l'apprentissage automatique, Grenoble, France, 28-30 Juin 2017.
 - (b) Information Extraction in Real-World Business Documents. CICLing: International Conference on Computational Linguistics and Intelligent Text Processing, April 17-23, 2017 Budapest, Hungary.

Publications

Introduction

- 2016 (a) UQAM-NTL: Named entity recognition in Twitter messages. COLING 2016, Osaka, Japan, 11-16 December 2016.
 - (b) Construction de ressources linguistiques pour un corpus annoté bilingue français-vietnamien. 84ème Congrès de l'ACFAS, Université du Québec à Montréal, Québec, Canada, 9-13 Mai 2016.
- 2015 (a) Error Analysis of Named Entity Translation output for Poor-Resourced Bilingual Vietnamese-French Pair. 7th Language Technology Conference, Poznan, Poland, 304-308, 27-29 November 2015.
 - (b) Building a Bilingual Vietnamese-French Named Entity Annotated Corpus through Cross-Linguistic Projection. 22^{ème} TALN, Caen, France, 22-25 Juin 2015.

A. Livres

- 1. Manning Christopher, Hinrich Schütze. (1999). Foundations of Statistical Natural Language Processing. ISBN 0-262-13360-I, Second printing, 1999 Massachusetts Institute of Technology.
- 2. Philip Koehn, Franz Josef Och, Daniel Marcu. (2003). Statistical phrase-based translation. In Proceedings of HLT-NAACL, 2003.
- 3. Jurafsky Daniel, James H. Martin. (2008). Speech and Language Processing: An introduction to natural language processing. Computational Linguistics and Speech Recognition, 2008.

B. Articles (non exhaustifs)

- 1. Ehrmann, M. (2008). Les Entitées Nommées, de la linguistique au TAL : Statut théorique et méthodes de désambiguisation. (Thèse de doctorat). Paris Diderot University.
- 2. Koehn, P. et Knowles, R. (2017). Six challenges for neural machine translation. arXivpreprint arXiv:1706.03872.
- 3. Mangeot, M. et Sadat, F. (2014). TALN-RECITAL 2014 workshop TALAf 2014: Traitement automatique des langues africaines (TALAf 2014: African language processing). Dans TALN-RECITAL 2014 Workshop TALAf 2014: Traitement Automatique des Langues Africaines (TALAf 2014: African Language Processing).

Questions et Réponses

Merci de votre attention!