

ANÁLISE DE CONFIABILIDADE DE VÁLVULAS E INSTRUMENTOS DE MEDIÇÃO VOLUMÉTRICA NA REDE DE DISTRIBUIÇÃO DE ÁGUA DE SALVADOR/BA

Apresentador: L. M. ALMEIDA*

L. M. ALMEIDA¹, K. P. O. ESQUERRE¹, B. B. S. SILVA¹

¹Faculdade Escola Politécnica da Universidade Federal da Bahia *lucasmascalmeida@gmail.com

INTRODUÇÃO

O atual cenário de Salvador é oposto as demandas de segurança hídrica, pois possui um elevado índice de perdas e alta demanda de água (Bahia, 2015), que intensifica a redução da disponibilidade de recursos hídricos (Morais; De Almeida; Figueira, 2014).

Figura 1: Crise hídrica na Bahia, algumas de suas causas e indicadores de Salvador.

As válvulas e instrumentos de medição volumétricas, como o hidrômetro, são acessórios da rede que podem ser caracterizados como elementos críticos na rede distribuição.

Tabela 1: Características das válvulas e hidrômetros como instrumentos da rede de distribuição.

VÁLVULAS	CONTROLA PRESSÃO	PREVINE GOLPES HIDRÁULICOS	FACILITA MANUTENÇÃO	MITIGA PERDAS	ELEMENTO CRÍTICO	FALHA COMPROMETE ABASTECIMENTO
					-	
HIDRÔMETROS	CONTROLA O VOLUME FATURADO	LOCALIZA E QUANTIFICA AS DEMANDAS	MELHORA O GERENCIAMENTO	INDICA PERDAS	ELEMENTO CRÍTICO	FALHA ACARRETA EM PREJUÍZOS
					-	

OBJETIVO

Investigar a confiabilidade das válvulas e hidrômetros da rede de distribuição de água de uma zona de abastecimento de Salvador, Bahia.

MATERIAIS E MÉTODOS

Análise de sobrevivência: No presente trabalho foi utilizada a técnica não paramétrica do estimador de Turnbull (Turnbull, 1976) para a estimativa de função de sobrevivência das válvulas e dos hidrômetros.

Figura 2: Diagrama de decisão do método escolhido.

Estudo de caso: Foi utilizado um banco de dados com 3118 solicitações de serviço referentes a janela temporal de 2005 à 2014, para os serviços de manutenção corretiva em válvulas e em hidrômetros na rede de distribuição de uma zona de abastecimento.

RESULTADOS

Análise exploratória dos dados.

Tabela 2: Serviços por turno. Identificação de censura intervalar.

TURNOS	MANHÃ	TARDE	NOITE	SEM INFO
SERVIÇOS (%)	69,1%	30,0%	0,8%	0,1%

Figura 3: Linha do tempo do sistema de cadastro e as quantidades de serviços anual. Exclusão dos anos de 2005, 2006 e 2007.

Sistema de cadastro antigo

Análise de sobrevivência:

 Figura 5 e 6: Decaimento precoce das curvas de sobrevivência e análise dos índices de quantidade de eventos acumulados e porcentagem em risco.

| Indivíduo - IMV's | Indivíduo - Indivídu

Curva de Sobrevivência Não-Paramétrica

Transição do sistema antigo

Figura 5: Comportamento da curva de sobrevivência para válvulas.

Figura 6: Comportamento da curva de sobrevivência para hidrômetros.

Figura 7: Tempo mediano de falha, 1.12 dias para válvulas.

Figura 8: Tempo mediano de falha, 0.32 dias para hidrômetros.

CONCLUSÃO

Não se pode afirmar com certeza qual o evento que causa a falha do indivíduo, entretanto, as variações e picos de pressão na rede de distribuição aliados ao desgaste da peça, podem ser objetos de estudos de confiabilidade para complementar este diagnóstico.

REFERÊNCIAS

- Bahia, Secretária de Infraestrutura Hídrica e Saneamento da Bahia -SIHS., 2015, In: "Plano de Abastecimento de Água da Região Metropolitana de Salvador, Santo Amaro e Saubara." Fase IV. Tomo I. Relatório Sinopse. Salvador. pp. 82.
- Morais, D. C.; De Almeida, A. T.; Figueira, J. R., 2014, "A Sorting Model for Group Decision Making: A Case Study of Water Losses in Brazil". Group Decision and Negotiation, v. 23, n. 5, pp. 937–960.
- Turnbull, B. W., 1976, "The empirical distribution fuction with arbitrarily grouped, censored and truncated data". Journal of the Royal Statical, v. 38, n. 3, pp. 290–295.

AGRADECIMENTOS

O presente trabalho foi apoiado pela Fundação Baiana de Amparo à Pesquisa (FAPESB), pelo Programa de Pós-Graduação em Engenharia Industrial (PEI) e pelo grupo GAMMA (Growing with Applied Multivariate Analysis) da Universidade Federal da Bahia.