Athletic Runner Injury Prediction System

T Akhila, A Divya Sri, K Sunidhi, B Amulya

Under the esteemed guidance of

Dr. P. Kayal

Associate Professor

Bachelor of Technology
Department of Information Technology
BVRIT HYDERABAD College of Engineering for Women

April 5, 2024

Contents

- Overview
- Problem Statement
- Objectives
- 4 Graphical Representation
- Methodology
- Results and Discussion
- Report Structure
- 8 Key Findings
- References

Overview

 By leveraging advanced machine learning techniques, we empower athletes to proactively manage their well-being, optimize performance, and contribute to the broader goals of health, innovation, and sustainability in sports and society.

Problem Statement

- Running is one of the most popular sports in the world.
- 60 million people participated in jogging, running, or trail running in America alone in 2017. But it is reported that 50 percent of runners get injured every year.

Objectives

Model Development

- Performing feature extraction and identifying the feature importance for Injury Prediction For Athletic Runners.
- Building model for injury prediction for athletic runners using machine learning techniques.

Graphical Representation

Dataset

• The data set consists of a detailed training log from a Dutch high-level running team over a period of seven years (2012-2019).

	nr. sessions	nr. rest days	total kms	km	total km Z3- Z4-Z5- T1-T2	nr. tough sessions (effort in Z5, T1 or T2)	nr. days with interval session	total km Z3-4	max km Z3-4 one day	total km Z5- T1-T2	 max training success.2	avg recovery.2	min recovery.2	max recovery.2	Athlete ID	injury	rel total kms week 0_1	rel total kms week 0_2	rel total kms week 1_2	Dat
0	5.0	2.0	22.2	16.4	11.8	1.0	2.0	10.0	10.0	0.6	 0.0	0.18	0.16	0.20	0	0	0.718447	1.378882	1.919255	-
1	5.0	2.0	21.6	16.4	11.7	1.0	2.0	10.0	10.0	0.5	 0.0	0.18	0.16	0.20	0	0	0.683544	1.018868	1.490566	
2	5.0	2.0	21.6	16.4	11.7	1.0	2.0	10.0	10.0	0.5	 0.0	0.17	0.16	0.18	0	0	0.683544	1.018868	1.490566	
3	5.0	2.0	21.6	16.4	11.7	1.0	2.0	10.0	10.0	0.5	 0.0	0.18	0.16	0.18	0	0	0.683544	1.018868	1.490566	

Methodology

- Data Preprocessing:
 - Reading the data
 - Splitting data
 - Dimensionality reduction
- Exploratory data analysis:
 - This involves visualizing the distribution of injury and non-injury.
 - Exploring correlations between features and the target variable(Injury).

- Model building:
 - SVM
 - Bagging
 - XgBooster
 - Decision tree
 - MLP
 - RNN
 - LSTM
- Evaluation:
 - Confusion matrices to visualize the performance of each model, particularly in terms of true positives, true negatives, false positives, and false negatives.
 - Accuracy for each model.

Results and Discussion

520 JEGA		SVM	A Second		Bagging		XgBooster			
DATASET	Accuracy	Precision	F1 Score	Accuracy	Precision	F1 Score	Accuracy	Precision	F1 Score	
575*42224	0.94	0.03	0.05	0.98	0	0	0.98	1	0.01	
575*575	0.58	0.57	0.6	0.57	0.57	0.6	0.68	0.65	0.71	
1150*1150	0.65	0.63	0.67	0.78	0.74	0.8	0.71	0.67	0.74	
1725*1725	0.7	0.68	0.71	0.88	0.83	0.89	0.72	0.68	0.75	
2300*2300	0.7	0.66	0.73	0.92	0.88	0.92	0.73	0.69	0.75	
2875*2875	0.73	0.69	0.75	0.94	0.91	0.95	0.71	0.68	0.74	

Results and Discussion

		Decision Tre	e	MLP				RNN		LSTM		
DATASET	Accuracy	Precision	F1 Score	Accuracy	Precision	F1 Score	Accuracy	Precision	F1 Score	Accuracy	Precision	F1 Score
575*42224	0.97	0.03	0.04	0.87	0.02	0.04	0.94	0.01	0.03	0.95	0.03	0.05
575*575	0.58	0.53	0.58	0.58	0.57	0.45	0.58	0.55	0.55	0.5	0.4	0.6
1150*1150	0.79	0.76	0.81	0.51	0.59	0.3	0.65	0.6	0.73	0.64	0.62	0.7
1725*1725	0.85	0.8	0.86	0.63	0.62	0.66	0.6	0.56	0.72	0.62	0.59	0.71
2300*2300	0.89	0.83	0.9	0.54	0.73	0.28	0.57	0.66	0.42	0.61	0.6	0.65
2875*2875	0.92	0.86	0.92	0.68	0.62	0.74	0.6	0.62	0.57	0.61	0.58	0.69

Results and Discussion

Report Structure

- Introduction
- Related Work
- Dataset
- Proposed Method
- Results and Discussion
- Conclusion

Key Findings

- Data set is biased for non-injured cases.
- Machine Learning models performed better than deep learning models.

References

- Bullock, Garrett S., et al. "Just how confident can we be in predicting sports injuries? A systematic review of the methodological conduct and performance of existing musculoskeletal injury prediction models in sport." Sports medicine 52.10 (2022): 2469-2482.
- Kathan, Alexander, et al. "Investigating Individual-and Group-Level Model Adaptation for Self-Reported Runner Exertion Prediction from Biomechanics." 2022 E-Health and Bioengineering Conference (EHB). IEEE, 2022.
- Huang, Chen, and Lei Jiang. "Data monitoring and sports injury prediction model based on embedded system and machine learning algorithm." Microprocessors and Microsystems 81 (2021): 103654.

References

- Van Eetvelde, Hans, et al. "Machine learning methods in sport injury prediction and prevention: a systematic review." Journal of experimental orthopaedics 8 (2021): 1-15.
- Nejković, Valentina, Maša Radenković, and Nenad Petrović. "Ultramarathon result and injury prediction using PyTorch." 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS). IEEE, 2021.
- Bai Y, Guan Y, Ng W F. Fatigue assessment using ECG and actigraphy sensors[C]//Proceedings of the 2020 International Symposium on Wearable Computers. 2020: 12-16.

Thank you