Introduction to Functional Analysis

Notes taken by Runqiu Ye Carnegie Mellon University

Spring 2025

Contents

1	 Banach space t 	Banach space theory		
	1.1 Quotient sp	paces, Baire category and uniform boundedness	3	
2 Hilbert space theory		4		
	2.1 Basic Hilber	ert space theory	4	
	2.2 Orthonorma	al bases and Fourier Series	6	

1 Banach space theory

1.1 Quotient spaces, Baire category and uniform boundedness

Theorem. Let $\|\cdot\|$ be a **seminorm** on a vector space V. If we define $E = \{v \in V : \|v\| = 0\}$, then E is a subspace of V, and the function on V/E defined by

$$||v + E|| = ||v||$$

for any $v + E \in V/E$ defines a **norm**.

Theorem (Baire Category Theorem). Let M be a complete metric space, and let $\{C_n\}_{n=0}^{\infty}$ be a collection of closed subsets of M such that $M = \bigcup_{n=0}^{\infty} C_n$. Then at least one of the C_n contains an open ball $B(x,r) = \{y \in M : d(x,y) < r\}$.

Theorem (Uniform Boundedness Theorem). Let B be Banach space and V a normed vector space. Let $\{T_n\}_{n=0}^{\infty}$ be a sequence in $\mathcal{B}(B,V)$. Then if for all $b \in B$ we have $\sup_n \|T_n b\| < \infty$ (that is, this sequence is pointwise bounded), then $\sup_n \|T_n\| < \infty$ (the operator norms are bounded).

Proof. For each $k \in \mathbb{N}$, define

$$C_k = \left\{ b \in B : ||b|| \le 1, \sup_{n \in \mathbb{N}} ||T_n b|| \le k \right\}.$$

This set is closed for each $k \in \mathbb{N}$, but by assumption, we have

$$\{b \in B : ||b|| \le 1\} = \bigcup_{k=0}^{\infty} C_k.$$

The left hand side is a closed subset of B, and is thus a complete metric space. By Baire Category Theorem, there exists $k \in \mathbb{N}$ such that C_k contains an open ball $B(b_0, \delta_0)$. Then, if $b \in B(0, \delta_0)$, we have $b_0 + b \in B(b_0, \delta_0)$ and thus

$$\sup_{n\in\mathbb{N}} ||T_n(b_0+b)|| \le k.$$

It follows that

$$\sup_{n \in \mathbb{N}} ||T_n b|| \le \sup_{n \in \mathbb{N}} ||T_n (b_0 + b)|| + \sup_{n \in \mathbb{N}} ||T_n b_0|| \le 2k.$$

Suppose ||b|| = 1, then $\frac{\delta_0}{2}b \in B(0, \delta_0)$ and thus for all $n \in \mathbb{N}$, we have

$$\left\| T_n \left(\frac{\delta_0}{2} b \right) \right\| \le 2k.$$

Therefore,

$$\sup_{n\in\mathbb{N}}||T_n||\leq \frac{4k}{\delta_0}.$$

2 Hilbert space theory

2.1 Basic Hilbert space theory

Definition (Pre-Hilbert space). A **pre-Hilbert** space H is a vector space over \mathbb{C} with a **Hermitian** inner product, which is a map $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ satisfying the following properties.

1. For all $\lambda_1, \lambda_2 \in C$ and $v_1, v_2, w \in H$, we have

$$\langle \lambda_1 v_1 + \lambda_2 v_2, w \rangle = \lambda_1 \langle v_1, 2 \rangle + \lambda_2 \langle v_2, w \rangle.$$

- 2. For all $v, w \in H$, we have $\langle v, w \rangle = \overline{\langle w, v \rangle}$.
- 3. For all $v \in H$, we have $\langle v, v \rangle \geq 0$, with equality if and only if v = 0.

Definition. Let H be a pre-Hilbert space. For all $v \in H$, we define

$$||v|| = \langle v, v \rangle^{\frac{1}{2}}.$$

Theorem (Cauchy-Schwarz inequality). Let H be a pre-Hilbert space. For all $u, v \in H$, we have

$$|\langle u, v \rangle| \le ||u|| \, ||v|| \, .$$

Proof. Define $f(t) = ||u + tv||^2$. Notice that

$$f(t) = \langle u + tv, u + tv \rangle$$

$$= \langle u, u \rangle + t^2 \langle v, v \rangle + t \langle u, v \rangle + t \langle v, u \rangle$$

$$= ||u||^2 + t^2 ||v||^2 + 2t \operatorname{Re}(\langle u, v \rangle).$$

This implies that

$$0 \le f(t_{\min}) = ||u||^2 - \frac{\text{Re}(\langle u, v \rangle)^2}{||v||^2}.$$

It follows that

$$|\operatorname{Re}(\langle u, v \rangle)| \le ||u|| ||v||.$$

This is almost what we want. To finish up, first note that if $\langle u, v \rangle = 0$ then there is nothing to prove, so suppose $\langle u, v \rangle \neq 0$, and define

$$\lambda = \frac{\overline{\langle u, v \rangle}}{|\langle u, v \rangle|}.$$

Note that we have $|\lambda| = 1$ and we have the chain of equalities of real numbers:

$$|\langle u, v \rangle| = \lambda \langle u, v \rangle = \langle \lambda u, v \rangle = \text{Re} \langle \lambda u, v \rangle \le ||\lambda u|| \, ||v||.$$

However, $\|\lambda u\| = \|u\|$, so the proof is complete.

Theorem. If H is a pre-Hilbert space, then $\|\cdot\|$ is a norm on H.

Proof. Note that

$$||v|| = 0 \iff \langle v, v \rangle = 0 \iff v = 0.$$

Now if $\lambda \in \mathbb{C}$ and $v \in H$, then

$$\langle \lambda v, \lambda v \rangle = \lambda \overline{\lambda} \langle v, v \rangle = |\lambda|^2 ||v||^2$$
.

Therefore, $\|\lambda v\| = |\lambda| \|v\|$.

Finally, let $u, v \in H$, then

$$||u + v||^{2} = \langle u + v, u + v \rangle$$

$$= ||u||^{2} + ||v||^{2} + 2 \operatorname{Re} \langle u, v \rangle$$

$$\leq ||u||^{2} + ||v||^{2} + 2 |\langle u, v \rangle|$$

$$\leq ||u||^{2} + ||v||^{2} + 2 ||u|| ||v||$$

$$= (||u|| + ||v||)^{2}.$$

This completes the proof.

Theorem. If $u_n \to u$ and $v_n \to v$ in a pre-Hilbert space H, then $\langle u_n, v_n \rangle \to \langle u, v \rangle$.

Proof. If $u_n \to u$ and $v_n \to v$, then $||u_n - u|| \to 0$ and $||v_n - v|| \to 0$. It follows that

$$\begin{split} |\langle u_n, v_n \rangle - \langle u, v \rangle| &= |\langle u_n - u, v_n \rangle - \langle u, v - v_n \rangle| \\ &\leq |\langle u_n - u, v_n \rangle| + |\langle u, v - v_n \rangle| \\ &\leq \|u_n - u\| \, \|v_n\| + \|u\| \, \|v - v_n\| \\ &\leq \|u_n - u\| \sup_{k \in \mathbb{N}} \|v_k\| + \|u\| \, \|v - v_n\| \\ &\rightarrow 0 \end{split}$$

as $n \to \infty$. This completes the proof.

Definition (Hilbert space). A **Hilbert space** is a pre-Hilbert space that is complete with repsect to the norm $\|\cdot\| = \langle \cdot, \cdot \rangle^{\frac{1}{2}}$.

Example. Some examples of Hilbert spaces:

- $-\mathbb{C}^n = \{z = (z_1, \dots, z_n) : z_j \in \mathbb{C}\}$ with $\langle z, w \rangle = \sum_j z_j \overline{w_j}$ is a Hilbert space.
- $-\ell^2 = \left\{ a = \{a_k\}_{k=0}^{\infty} : a_k \in \mathbb{C}, \sum_{k=0}^{\infty} |a_k|^2 < \infty \right\} \text{ with } \langle a, b \rangle = \sum_{k=0}^{\infty} a_k \overline{b_k} \text{ is a Hilbert space.}$
- If $E \subset \mathbb{R}$ is measurable, then $L^2(E) = \left\{ f : E \to \mathbb{C}, \int_E \left| f \right|^2 < \infty \right\}$ with $\langle f, g \rangle = \int_E f\overline{g}$ is a Hilbert space.

We will show that each separable Hilbert spaces is isometrically isomorphic to either \mathbb{C}^n or ℓ^2 .

Now we have seen that ℓ^2 and L^2 spaces are Hilbert spaces. A natural question is whether other ℓ^p or L^p spaces are also Hilbert spaces with respect to some inner product? It turns out there is a simple way to decide whether a norm come from a inner-product, and thus whether a Banach space is a Hilbert space.

Theorem (Parallelogram Law). If H is a pre-Hilbert space, then for all $u, v \in H$, we have

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

In addition, if H is a normed vector space satisfying this equality, then H is a pre-Hilbert space.

Using the previous theorem, we can verify that ℓ^p and L^p with $p \neq 2$ are **not** Hilbert spaces.

Definition (Orthogonal). If H is a pre-Hilbert space, $u, v \in H$ are **orthogonal** if $\langle u, v \rangle = 0$. We denote this as $u \perp v$.

Definition (Orthonormal sets). If H is a pre-Hilbert space, a subset $\{e_{\lambda}\}_{{\lambda}\in\Lambda}\subset H$ is **orthonormal** if for all ${\lambda}\in\Lambda$, we have $\|e_{\lambda}\|=1$ and ${\lambda}_1\neq{\lambda}_2$ implies $e_{{\lambda}_1}\perp e_{{\lambda}_2}$.

Remark. we will mainly be interested in the case where we have a countable orthonormal set.

Example. The set $\left\{\frac{1}{\sqrt{2\pi}}e^{inx}\right\}_{n\in\mathbb{Z}}$ as elements in $L^2([-\pi,\pi])$ is a orthonormal subset of $L^2([-\pi,\pi])$. Indeed, for any $m,n\in\mathbb{Z}$, we have

$$\int_{-\pi}^{\pi} e^{imx} \overline{e^{inx}} = \int_{-\pi}^{\pi} e^{i(m-n)x}$$

This evaluates to 2π if m = n and 0 if $m \neq n$.

Theorem (Bessel). If $\{e_n\}_{n=0}^{\infty}$ is countable orthonormal subset of a pre-Hilbert space H, then for all $u \in H$, we have

$$\sum_{n=0}^{\infty} \left| \langle u, e_n \rangle \right|^2 \le \left\| u \right\|^2.$$

Proof. We first do the finite case. Suppose $\{e_n\}_{n=1}^N$ is an orthonormal subset of H. Then,

$$\left\| \sum_{n=1}^{N} \langle u, e_n \rangle e_n \right\|^2 = \left\langle \sum_{n=1}^{N} \langle u, e_n \rangle e_n, \sum_{n=1}^{N} \langle u, e_n \rangle e_n \right\rangle$$
$$= \sum_{n=1}^{N} \sum_{m=1}^{N} \langle u, e_n \rangle \overline{\langle u, e_m \rangle} \langle e_n, e_m \rangle$$
$$= \sum_{n=1}^{N} |\langle u, e_n \rangle|^2.$$

Also,

$$\left\langle u, \sum_{n=1}^{N} \langle u, e_n \rangle e_n \right\rangle = \sum_{n=1}^{N} \overline{\langle u, e_n \rangle} \langle u, e_n \rangle$$
$$= \sum_{n=1}^{N} |\langle u, e_n \rangle|^2.$$

Therefore,

$$0 \le \left\| u - \sum_{n=1}^{N} \langle u, e_n \rangle e_n \right\|^2$$

$$= \|u\|^2 + \left\| \sum_{n=1}^{N} \langle u, e_n \rangle e_n \right\|^2 - 2 \operatorname{Re} \left\langle u, \sum_{n=1}^{N} \langle u, e_n \rangle e_n \right\rangle$$

$$= \|u\|^2 - \sum_{n=1}^{N} |\langle u, e_n \rangle|^2,$$

as desired.

For the infinite case, just take the limit as $N \to \infty$.

Definition (Maximal orthonormal subset). An orthonormal subset $\{e_{\lambda}\}_{\lambda}$ of a pre-Hilbert space is **maximal** if $u \in H$ and $\langle u, e_{\lambda} \rangle = 0$ for all $\lambda \in \Lambda$ implies that u = 0.

Theorem. Every non-trivial pre-Hilbert space has a maximal orthonormal subset.

This can be proved using Zorn's Lemma. We will prove something less strong but often equally useful by hand, without applying Zorn's Lemma.

Theorem. Every non-trivial separable pre-Hilbert space has a countable maximal orthonormal subset.

2.2 Orthonormal bases and Fourier Series