Intervals, Transformations, and Slope Solution (version 155)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -6) \cup (-3, 3)$
Negative	$(-6, -3) \cup (3, 8)$
Increasing	$(-9, -8) \cup (-4, -2)$
Decreasing	$(-8, -4) \cup (-2, 8)$
Domain	(-9,8)
Range	(-7,7)

Intervals, Transformations, and Slope Solution (version 155)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=17$ and $x_2=62$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 17 & 73 \\ 62 & 83 \\ 73 & 62 \\ 83 & 17 \\ \hline \end{array}$$

$$\frac{g(62) - g(17)}{62 - 17} = \frac{83 - 73}{62 - 17} = \frac{10}{45}$$

The greatest common factor of 10 and 45 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{2}{9}$$

2