Discharging Method on the Planar Graph

Huy Bui

Texas A&M University

 $July\ 16th\ 2019$

Table on Contents

- Introduction
- 2 Method
- 3 Example

- The discharging method is a technique used to prove lemmas in structural graph theory
- Discharging is most well known for its central role in the proof of the Four Color Theorem
- The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list
- The presence of the desired subgraph is then often used to prove a coloring result.

- The discharging method is a technique used to prove lemmas in structural graph theory
- Discharging is most well known for its central role in the proof of the Four Color Theorem
- The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list
- The presence of the desired subgraph is then often used to prove a coloring result.

- The discharging method is a technique used to prove lemmas in structural graph theory
- Discharging is most well known for its central role in the proof of the Four Color Theorem
- The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list.
- The presence of the desired subgraph is then often used to prove a coloring result.

- The discharging method is a technique used to prove lemmas in structural graph theory
- Discharging is most well known for its central role in the proof of the Four Color Theorem
- The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list.
- The presence of the desired subgraph is then often used to prove a coloring result.

Four color theorem

- In 1904, Wernicke introduced the discharging method to prove a theorem which was part of an attempt to prove the four color theorem.
- In 1976, the four color theorem was proved by Appel and Haken using discharging method. The proof is very complex, over 400 pages, and it heavily relies on computer

Huy Bui 4 / 18

Four color theorem

- In 1904, Wernicke introduced the discharging method to prove a theorem which was part of an attempt to prove the four color theorem.
- In 1976, the four color theorem was proved by Appel and Haken using discharging method. The proof is very complex, over 400 pages, and it heavily relies on computer

Huy Bui 4 / 18

Four color theorem

- In 1904, Wernicke introduced the discharging method to prove a theorem which was part of an attempt to prove the four color theorem.
- In 1976, the four color theorem was proved by Appel and Haken using discharging method. The proof is very complex, over 400 pages, and it heavily relies on computer.

Huy Bui 4 / 18

• Euler's formula : For a connected planar graph :

$$V(G) - E(G) + F(G) = 2$$

 Multiply Euler's Formula by −6 and split the term for edges to obtain

$$-6V(G) + 2E(G) + 4E(G) - 6F(G) = -12$$

• Since $E(G) = \frac{1}{2} \sum_{v \in V(G)} d(v)$ and $E(G) = \frac{1}{2} \sum_{f \in F(G)} l(f)$ substitute to the equation we get

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12$$

• Euler's formula : For a connected planar graph :

$$V(G) - E(G) + F(G) = 2$$

 Multiply Euler's Formula by −6 and split the term for edges to obtain

$$-6V(G) + 2E(G) + 4E(G) - 6F(G) = -12$$

• Since $E(G) = \frac{1}{2} \sum_{v \in V(G)} d(v)$ and $E(G) = \frac{1}{2} \sum_{f \in F(G)} l(f)$ substitute to the equation we get

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12$$

• Euler's formula : For a connected planar graph :

$$V(G) - E(G) + F(G) = 2$$

 Multiply Euler's Formula by −6 and split the term for edges to obtain

$$-6V(G) + 2E(G) + 4E(G) - 6F(G) = -12$$

• Since $E(G) = \frac{1}{2} \sum_{v \in V(G)} d(v)$ and $E(G) = \frac{1}{2} \sum_{f \in F(G)} l(f)$ substitute to the equation we get

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12$$

• Euler's formula : For a connected planar graph :

$$V(G) - E(G) + F(G) = 2$$

 Multiply Euler's Formula by −6 and split the term for edges to obtain

$$-6V(G) + 2E(G) + 4E(G) - 6F(G) = -12$$

• Since $E(G) = \frac{1}{2} \sum_{v \in V(G)} d(v)$ and $E(G) = \frac{1}{2} \sum_{f \in F(G)} l(f)$ substitute to the equation we get

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12$$

• Euler's formula : For a connected planar graph :

$$V(G) - E(G) + F(G) = 2$$

 Multiply Euler's Formula by −6 and split the term for edges to obtain

$$-6V(G) + 2E(G) + 4E(G) - 6F(G) = -12$$

• Since $E(G) = \frac{1}{2} \sum_{v \in V(G)} d(v)$ and $E(G) = \frac{1}{2} \sum_{f \in F(G)} l(f)$ substitute to the equation we get

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12$$

• Euler's formula : For a connected planar graph :

$$V(G) - E(G) + F(G) = 2$$

 Multiply Euler's Formula by −6 and split the term for edges to obtain

$$-6V(G) + 2E(G) + 4E(G) - 6F(G) = -12$$

• Since $E(G) = \frac{1}{2} \sum_{v \in V(G)} d(v)$ and $E(G) = \frac{1}{2} \sum_{f \in F(G)} l(f)$ substitute to the equation we get

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12$$

Huy Bui 5 / 18

$$-6V(G) + 4E(G) + 2E(G) - 6F(G) = -12$$

or multiply by -4 split the edge as similar

$$-4V(G) + 2E(G) + 2E(G) - 4F(G) = -8$$

$$-6V(G) + 4E(G) + 2E(G) - 6F(G) = -12$$

or multiply by -4 split the edge as similar

$$-4V(G) + 2E(G) + 2E(G) - 4F(G) = -8$$

$$-6V(G) + 4E(G) + 2E(G) - 6F(G) = -12$$

or multiply by -4 split the edge as similar

$$-4V(G) + 2E(G) + 2E(G) - 4F(G) = -8$$

$$-6V(G) + 4E(G) + 2E(G) - 6F(G) = -12$$

or multiply by -4 split the edge as similar

$$-4V(G) + 2E(G) + 2E(G) - 4F(G) = -8$$

$$-6V(G) + 4E(G) + 2E(G) - 6F(G) = -12$$

or multiply by -4 split the edge as similar

$$-4V(G) + 2E(G) + 2E(G) - 4F(G) = -8$$

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12 \text{ (vertex charging)}$$

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (l(f) - 6) = -12 \text{ (face charging)}$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (l(f) - 4) = -8 \text{ (balance charging)}$$

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12 \text{ (vertex charging)}$$

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (l(f) - 6) = -12 \text{ (face charging)}$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (l(f) - 4) = -8 \text{ (balance charging)}$$

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12 \text{ (vertex charging)}$$

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (l(f) - 6) = -12 \text{ (face charging)}$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (l(f) - 4) = -8 \text{ (balance charging)}$$

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2l(f) - 6) = -12 \text{ (vertex charging)}$$

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (l(f) - 6) = -12 \text{ (face charging)}$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (l(f) - 4) = -8 \text{ (balance charging)}$$

- Assume by contradiction that G has none of the configuration.
- Initialize charge
- Establish discharging rule
- Calculate final charge (which would contradict with the proposition)

- Assume by contradiction that G has none of the configuration.
- Initialize charge
- Establish discharging rule
- Calculate final charge (which would contradict with the proposition)

- Assume by contradiction that G has none of the configuration.
- Initialize charge
- Establish discharging rule
- Calculate final charge (which would contradict with the proposition)

- Assume by contradiction that G has none of the configuration.
- Initialize charge
- Establish discharging rule
- Calculate final charge (which would contradict with the proposition)

Definition: Assign each edge a list of color. A k-edge-choosable means that the list on each edge has length k, and that from any such set of lists, the graph G can be properly colored.

Vizing's theorem: Every graph is $\Delta+1$ edge colorable Vizing's conjecture: Every graph is $\Delta+1$ edge choosable We are going to prove a smaller case of Vizing's conjecture Theorem: If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G)+1,8\}$ -edge choosable

Definition: Assign each edge a list of color. A k-edge-choosable means that the list on each edge has length k, and that from any such set of lists, the graph G can be properly colored.

Vizing's theorem : Every graph is $\Delta+1$ edge colorable Vizing's conjecture : Every graph is $\Delta+1$ edge choosable

We are going to prove a smaller case of Vizing's conjecture **Theorem**: If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G)+1,8\}$ -edge choosable

Definition: Assign each edge a list of color. A k-edge-choosable means that the list on each edge has length k, and that from any such set of lists, the graph G can be properly colored.

Vizing's theorem : Every graph is $\Delta + 1$ edge colorable Vizing's conjecture : Every graph is $\Delta + 1$ edge choosable

We are going to prove a smaller case of Vizing's conjecture

Theorem: If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G)+1,8\}$ -edge choosable

Definition: Assign each edge a list of color. A k-edge-choosable means that the list on each edge has length k, and that from any such set of lists, the graph G can be properly colored.

Vizing's theorem: Every graph is $\Delta + 1$ edge colorable Vizing's conjecture: Every graph is $\Delta + 1$ edge choosable We are going to prove a smaller case of Vizing's conjecture Theorem: If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G) + 1, 8\}$ -edge choosable

Proof: Let e be any edge in G. Let w(e) denotes the weight of e. So $w(e) \le 2\Delta \le 8$ for all $\Delta(G) \le 4$

Consider the case when $\Delta = 5$ or 6. We will show that G has an edge e such that $w(e) \leq \Delta + 3$.

Suppose every edge $e \in E(G)$ has $w(e) \ge \Delta + 4$

Use balance charging for initial charge: d(v) - 4, l(f) - 4

Need charge: 3-faces with initial charge -1

Proof: Let e be any edge in G. Let w(e) denotes the weight of e. So $w(e) \le 2\Delta \le 8$ for all $\Delta(G) \le 4$

Consider the case when $\Delta = 5$ or 6. We will show that G has an edge e such that $w(e) \leq \Delta + 3$.

Suppose every edge $e \in E(G)$ has $w(e) \ge \Delta + 4$ Use balance charging for initial charge : d(v) - 4, l(f) - 4

Need charge: 3-faces with initial charge -1

Proof: Let e be any edge in G. Let w(e) denotes the weight of e. So $w(e) \le 2\Delta \le 8$ for all $\Delta(G) \le 4$

Consider the case when $\Delta = 5$ or 6. We will show that G has an edge e such that $w(e) \leq \Delta + 3$.

Suppose every edge $e \in E(G)$ has $w(e) \ge \Delta + 4$ Use balance charging for initial charge : d(v) - 4, l(f) - 4Need charge : 3-faces with initial charge -1.

Proof: Let e be any edge in G. Let w(e) denotes the weight of e. So $w(e) \le 2\Delta \le 8$ for all $\Delta(G) \le 4$

Consider the case when $\Delta = 5$ or 6. We will show that G has an edge e such that $w(e) \leq \Delta + 3$.

Suppose every edge $e \in E(G)$ has $w(e) \ge \Delta + 4$

Use balance charging for initial charge : d(v) - 4, l(f) - 4Need charge : 3-faces with initial charge -1. **Lemma 1 :** Let G be a connected plane graph with no two 3-faces sharing an edge. If $\Delta \leq 5$ then G has an edge with weight at most 8. If $\Delta = 6$, then G has an edge with weight at most 9.

Proof: Let e be any edge in G. Let w(e) denotes the weight of e. So $w(e) \le 2\Delta \le 8$ for all $\Delta(G) \le 4$

Consider the case when $\Delta = 5$ or 6. We will show that G has an edge e such that $w(e) \leq \Delta + 3$.

Suppose every edge $e \in E(G)$ has $w(e) \ge \Delta + 4$

Use balance charging for initial charge : d(v) - 4, l(f) - 4

Need charge: 3-faces with initial charge -1

Lemma 1 : Let G be a connected plane graph with no two 3-faces sharing an edge. If $\Delta \leq 5$ then G has an edge with weight at most 8. If $\Delta = 6$, then G has an edge with weight at most 9.

Proof: Let e be any edge in G. Let w(e) denotes the weight of e. So $w(e) \le 2\Delta \le 8$ for all $\Delta(G) \le 4$

Consider the case when $\Delta = 5$ or 6. We will show that G has an edge e such that $w(e) \leq \Delta + 3$.

Suppose every edge $e \in E(G)$ has $w(e) \ge \Delta + 4$

Use balance charging for initial charge : d(v) - 4, l(f) - 4

Need charge: 3-faces with initial charge -1.

Rule : Each 3-face take $\frac{1}{2}$ from its k-vertices where $k \geq 5$.

Every 3-face has at least two k-vertices so 3-faces is happy Each k-vertex has at most $\lfloor k/2 \rfloor$ incident triangle so its final charge is at least

$$(k-4) - \frac{1}{2} \lfloor k/2 \rfloor = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

for any $k \in \{5, 6\} \implies$

Rule : Each 3-face take $\frac{1}{2}$ from its k-vertices where $k \geq 5$.

Every 3-face has at least two k-vertices so 3-faces is happy.

Each k-vertex has at most $\lfloor k/2 \rfloor$ incident triangle so its final charge is at least

$$(k-4) - \frac{1}{2} \lfloor k/2 \rfloor = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

for any $k \in \{5, 6\} \implies$

Rule: Each 3-face take $\frac{1}{2}$ from its k-vertices where $k \geq 5$. Every 3-face has at least two k-vertices so 3-faces is happy. Each k-vertex has at most $\lfloor k/2 \rfloor$ incident triangle so its final charge is at least

$$(k-4) - \frac{1}{2} \lfloor k/2 \rfloor = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

for any $k \in \{5, 6\} \implies$

Rule: Each 3-face take $\frac{1}{2}$ from its k-vertices where $k \geq 5$. Every 3-face has at least two k-vertices so 3-faces is happy. Each k-vertex has at most $\lfloor k/2 \rfloor$ incident triangle so its final charge is at least

$$(k-4) - \frac{1}{2} \lfloor k/2 \rfloor = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

for any $k \in \{5, 6\} \implies$

Proof: Assume the graph has none of these configurations:

- C1: there is no two 3-faces with a common edge.
- C2 : every edge has weight at least $\Delta + 3$. By C2, $\delta(G) = 3$.

Use balance charging :d(v)-4, l(f)-4

Proof: Assume the graph has none of these configurations:

- C1: there is no two 3-faces with a common edge.
- C2 : every edge has weight at least $\Delta + 3$. By C2, $\delta(G) = 3$.

Use balance charging :d(v)-4, l(f)-4

Proof : Assume the graph has none of these configurations :

- C1: there is no two 3-faces with a common edge.
- C2 : every edge has weight at least $\Delta + 3$. By C2, $\delta(G) = 3$.

Use balance charging :d(v)-4, l(f)-4

Proof: Assume the graph has none of these configurations:

- C1: there is no two 3-faces with a common edge.
- C2 : every edge has weight at least $\Delta + 3$.

By C2,
$$\delta(G) = 3$$
.

Use balance charging :d(v)-4, l(f)-4

Proof: Assume the graph has none of these configurations:

- C1: there is no two 3-faces with a common edge.
- C2 : every edge has weight at least $\Delta + 3$. By C2, $\delta(G) = 3$.

Use balance charging :d(v)-4, l(f)-4

Proof: Assume the graph has none of these configurations:

- C1: there is no two 3-faces with a common edge.
- C2 : every edge has weight at least $\Delta + 3$. By C2, $\delta(G) = 3$.

Use balance charging :d(v)-4, l(f)-4.

Proof : Assume the graph has none of these configurations :

- C1: there is no two 3-faces with a common edge.
- C2 : every edge has weight at least $\Delta + 3$. By C2, $\delta(G) = 3$.

Use balance charging :d(v)-4, l(f)-4.

- R1 : Each 3-vertex takes $\frac{1}{3}$ charge from its neighbors.
- **R2**: Each 3-face takes $\frac{1}{2}$ charge from its k-vertices with $k \geq \frac{\Delta+3}{2}$

Each triangle must have at least two k-vertices. Thus 3-faces are happy.

Let v be a k-vertex

Case 1:
$$\frac{\Delta+3}{2} \le k < \Delta$$

$$(k-4) - \frac{1}{2} \left| \frac{k}{2} \right| = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

- R1: Each 3-vertex takes $\frac{1}{3}$ charge from its neighbors.
- R2 : Each 3-face takes $\frac{1}{2}$ charge from its k-vertices with $k\geq \frac{\Delta+3}{2}$

Each triangle must have at least two k-vertices. Thus 3-faces are happy.

Let v be a k-vertex

Case 1:
$$\frac{\Delta+3}{2} \le k < \Delta$$

$$(k-4) - \frac{1}{2} \left| \frac{k}{2} \right| = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

- R1: Each 3-vertex takes $\frac{1}{3}$ charge from its neighbors.
- R2 : Each 3-face takes $\frac{1}{2}$ charge from its k-vertices with $k\geq \frac{\Delta+3}{2}$

Each triangle must have at least two k-vertices. Thus 3-faces are happy.

Let v be a k-vertex

Case 1:
$$\frac{\Delta+3}{2} \le k < \Delta$$

$$(k-4) - \frac{1}{2} \left| \frac{k}{2} \right| = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

- R1: Each 3-vertex takes $\frac{1}{3}$ charge from its neighbors.
- R2 : Each 3-face takes $\frac{1}{2}$ charge from its k-vertices with $k\geq \frac{\Delta+3}{2}$

Each triangle must have at least two k-vertices. Thus 3-faces are happy.

Let v be a k-vertex

Case 1:
$$\frac{\Delta+3}{2} \le k < \Delta$$

$$(k-4) - \frac{1}{2} \left| \frac{k}{2} \right| = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

- R1: Each 3-vertex takes $\frac{1}{3}$ charge from its neighbors.
- R2 : Each 3-face takes $\frac{1}{2}$ charge from its k-vertices with $k\geq \frac{\Delta+3}{2}$

Each triangle must have at least two k-vertices. Thus 3-faces are happy.

Let v be a k-vertex

Case 1:
$$\frac{\Delta+3}{2} \le k < \Delta$$

$$(k-4) - \frac{1}{2} \left| \frac{k}{2} \right| = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

- R1 : Each 3-vertex takes $\frac{1}{3}$ charge from its neighbors.
- R2 : Each 3-face takes $\frac{1}{2}$ charge from its k-vertices with $k \geq \frac{\Delta+3}{2}$

Each triangle must have at least two k-vertices. Thus 3-faces are happy.

Let v be a k-vertex

Case 1:
$$\frac{\Delta+3}{2} \le k < \Delta$$

$$(k-4) - \frac{1}{2} \left| \frac{k}{2} \right| = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

- R1 : Each 3-vertex takes $\frac{1}{3}$ charge from its neighbors.
- R2 : Each 3-face takes $\frac{1}{2}$ charge from its k-vertices with $k\geq \frac{\Delta+3}{2}$

Each triangle must have at least two k-vertices. Thus 3-faces are happy.

Let v be a k-vertex

Case 1: $\frac{\Delta+3}{2} \le k < \Delta$

$$(k-4) - \frac{1}{2} \left| \frac{k}{2} \right| = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

- R1 : Each 3-vertex takes $\frac{1}{3}$ charge from its neighbors.
- R2 : Each 3-face takes $\frac{1}{2}$ charge from its k-vertices with $k \geq \frac{\Delta+3}{2}$

Each triangle must have at least two k-vertices. Thus 3-faces are happy.

Let v be a k-vertex

Case 1:
$$\frac{\Delta+3}{2} \le k < \Delta$$

$$(k-4) - \frac{1}{2} \left\lfloor \frac{k}{2} \right\rfloor = \frac{1}{2} \left\lceil \frac{3k}{2} \right\rceil - 4 \ge 0$$

v loses charge to incident 3-faces and 3-vertices. Let t be the number of triangles and n be the number of 3-vertices. We have the inequality

$$k - 2t + t \ge n$$

and

$$t \leq \lfloor k/2 \rfloor$$

Substitute these two inequalities to the final charge equation to obtain

$$k-4-\frac{t}{2}-\frac{n}{3} \ge \frac{1}{6} \left| \frac{7k}{2} \right| - 4 \ge 0$$

for $k = \Delta = 7$

Thus, everything is happy. \Longrightarrow

v loses charge to incident 3-faces and 3-vertices. Let t be the number of triangles and n be the number of 3-vertices. We have the inequality

$$k - 2t + t \ge n$$

and

$$t \leq \lfloor k/2 \rfloor$$

Substitute these two inequalities to the final charge equation to obtain

$$k-4-\frac{t}{2}-\frac{n}{3} \ge \frac{1}{6} \left| \frac{7k}{2} \right| - 4 \ge 0$$

for $k = \Delta = 7$

v loses charge to incident 3-faces and 3-vertices. Let t be the number of triangles and n be the number of 3-vertices. We have the inequality

$$k - 2t + t \ge n$$

and

$$t \leq \lfloor k/2 \rfloor$$

Substitute these two inequalities to the final charge equation to obtain

$$k-4-\frac{t}{2}-\frac{n}{3} \ge \frac{1}{6} \left| \frac{7k}{2} \right| -4 \ge 0$$

for $k = \Delta = 7$

v loses charge to incident 3-faces and 3-vertices. Let t be the number of triangles and n be the number of 3-vertices. We have the inequality

$$k - 2t + t \ge n$$

and

$$t \leq |k/2|$$

Substitute these two inequalities to the final charge equation to obtain

$$k-4-\frac{t}{2}-\frac{n}{3} \ge \frac{1}{6} \left| \frac{7k}{2} \right| - 4 \ge 0$$

for $k = \Delta = 7$

v loses charge to incident 3-faces and 3-vertices. Let t be the number of triangles and n be the number of 3-vertices. We have the inequality

$$k - 2t + t \ge n$$

and

$$t \leq |k/2|$$

Substitute these two inequalities to the final charge equation to obtain

$$k-4-\frac{t}{2}-\frac{n}{3} \ge \frac{1}{6} \left| \frac{7k}{2} \right| -4 \ge 0$$

for $k = \Delta = 7$

v loses charge to incident 3-faces and 3-vertices. Let t be the number of triangles and n be the number of 3-vertices. We have the inequality

$$k - 2t + t \ge n$$

and

$$t \leq |k/2|$$

Substitute these two inequalities to the final charge equation to obtain

$$k-4-\frac{t}{2}-\frac{n}{3} \ge \frac{1}{6} \left| \frac{7k}{2} \right| -4 \ge 0$$

for $k = \Delta = 7$

v loses charge to incident 3-faces and 3-vertices. Let t be the number of triangles and n be the number of 3-vertices. We have the inequality

$$k - 2t + t \ge n$$

and

$$t \leq |k/2|$$

Substitute these two inequalities to the final charge equation to obtain

$$k-4-\frac{t}{2}-\frac{n}{3} \ge \frac{1}{6} \left| \frac{7k}{2} \right| -4 \ge 0$$

for $k = \Delta = 7$

Thus, everything is happy.⇒

←

Theorem If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G)+1,8\}$ -edge choosable

Proof: Let $M_G = \max\{\Delta(G) + 1, 8\}$

If $E(G) \leq 8$, then each edge would have at most 7 edges incident to it. Thus it is 8 choosable, which implies M_G -edge choosable

Inductive hypothesis: let's assume that every plane graph G with E(G) = k and no two 3-faces sharing an edge is M_G -edge choosable.

Consider a plane graph H with no two 3-faces sharing an edge and E(H) = k + 1.

If H is disconnected, each component H_i of H would have $E(H_i) \leq k$. Thus, H_i is M_{H_i} -edge choosable for every i. Therefore, the edge choosibility of H is:

$$\max_{i \in I} \{M_{H_i}\} \le M_E$$

since $\Delta(H_i) \leq \Delta(H)$.

4 D > 4 A > 4 B > 4 B > B = 40 Q

Theorem If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G) + 1, 8\}$ -edge choosable **Proof**: Let $M_G = \max\{\Delta(G) + 1, 8\}$

If $E(G) \leq 8$, then each edge would have at most 7 edges incident to it. Thus it is 8 choosable, which implies M_G -edge choosable

Inductive hypothesis: let's assume that every plane graph G with E(G) = k and no two 3-faces sharing an edge is M_G -edge choosable.

Consider a plane graph H with no two 3-faces sharing an edge and E(H) = k + 1.

If H is disconnected, each component H_i of H would have $E(H_i) \leq k$. Thus, H_i is M_{H_i} -edge choosable for every i. Therefore, the edge choosibility of H is:

$$\max_{i \in I} \{M_{H_i}\} \le M_H$$

Theorem If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G) + 1, 8\}$ -edge choosable **Proof**: Let $M_G = \max\{\Delta(G) + 1, 8\}$

If $E(G) \leq 8$, then each edge would have at most 7 edges incident to it. Thus it is 8 choosable, which implies M_G -edge choosable

Inductive hypothesis: let's assume that every plane graph G with E(G) = k and no two 3-faces sharing an edge is M_G -edge choosable.

Consider a plane graph H with no two 3-faces sharing an edge and E(H) = k + 1.

If H is disconnected, each component H_i of H would have $E(H_i) \leq k$. Thus, H_i is M_{H_i} -edge choosable for every i. Therefore, the edge choosibility of H is:

$$\max_{i \in I} \{M_{H_i}\} \le M_H$$

Theorem If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G) + 1, 8\}$ -edge choosable **Proof**: Let $M_G = \max\{\Delta(G) + 1, 8\}$

If $E(G) \leq 8$, then each edge would have at most 7 edges incident to it. Thus it is 8 choosable, which implies M_G -edge choosable

Inductive hypothesis: let's assume that every plane graph G with E(G) = k and no two 3-faces sharing an edge is M_G -edge choosable.

Consider a plane graph H with no two 3-faces sharing an edge and E(H) = k + 1.

If H is disconnected, each component H_i of H would have $E(H_i) \leq k$. Thus, H_i is M_{H_i} -edge choosable for every i. Therefore, the edge choosibility of H is:

$$\max_{i \in I} \{ M_{H_i} \} \le M_H$$

Theorem If G is a plane graph and no two 3-faces sharing an edge, then G is $\max\{\Delta(G) + 1, 8\}$ -edge choosable

Proof: Let $M_G = \max\{\Delta(G) + 1, 8\}$

If $E(G) \leq 8$, then each edge would have at most 7 edges incident to it. Thus it is 8 choosable, which implies M_G -edge choosable

Inductive hypothesis: let's assume that every plane graph G with E(G) = k and no two 3-faces sharing an edge is M_G -edge choosable.

Consider a plane graph H with no two 3-faces sharing an edge and E(H) = k + 1.

If H is disconnected, each component H_i of H would have $E(H_i) \leq k$. Thus, H_i is M_{H_i} -edge choosable for every i. Therefore, the edge choosibility of H is:

$$\max_{i \in I} \{M_{H_i}\} \le M_H$$

$$w(e) = \begin{cases} 8 & \text{if } \Delta(H) = 5\\ 9 & \text{if } \Delta(H) = 6\\ \Delta + 2 & \text{if } \Delta(H) \ge 7 \end{cases}$$

Let I(e) be number of incident edges of e. So I(e) = w(e) - 2.

Consider the graph H-e. WLOG assume by inductive hypothesis that H-e is connected and M_H choosable. (Note that M_{H-e} -choosable implies M_H choosable)

Showing that $I(e) \leq M_H - 1$ implies that we have enough color for e such that H is still M_H -choosable.

$$w(e) = \begin{cases} 8 & \text{if } \Delta(H) = 5\\ 9 & \text{if } \Delta(H) = 6\\ \Delta + 2 & \text{if } \Delta(H) \ge 7 \end{cases}$$

Let I(e) be number of incident edges of e. So I(e) = w(e) - 2.

Consider the graph H-e. WLOG assume by inductive hypothesis that H-e is connected and M_H choosable. (Note that M_{H-e} -choosable implies M_H choosable)

Showing that $I(e) \leq M_H - 1$ implies that we have enough color for e such that H is still M_H -choosable.

$$w(e) = \begin{cases} 8 & \text{if } \Delta(H) = 5\\ 9 & \text{if } \Delta(H) = 6\\ \Delta + 2 & \text{if } \Delta(H) \ge 7 \end{cases}$$

Let I(e) be number of incident edges of e. So I(e) = w(e) - 2.

Consider the graph H - e. WLOG assume by inductive hypothesis that H - e is connected and M_H choosable. (Note that M_{H-e} -choosable implies M_H choosable)

Showing that $I(e) \leq M_H - 1$ implies that we have enough color for e such that H is still M_H -choosable.

$$w(e) = \begin{cases} 8 & \text{if } \Delta(H) = 5\\ 9 & \text{if } \Delta(H) = 6\\ \Delta + 2 & \text{if } \Delta(H) \ge 7 \end{cases}$$

Let I(e) be number of incident edges of e. So I(e) = w(e) - 2.

Consider the graph H-e. WLOG assume by inductive hypothesis that H-e is connected and M_H choosable. (Note that M_{H-e} -choosable implies M_H choosable) Showing that $I(e) \leq M_H - 1$ implies that we have enough color for e such that H is still M_H -choosable.

If
$$\Delta(H) = 5$$
, $I(e) = 6 \le 7 = M_H - 1$

If
$$\Delta(H) = 6$$
, $I(e) = 7 \le 7 = M_H - 1$

If
$$\Delta(H) \geq 7$$
, $I(e) = \Delta(H) = M_H - 1$

For the case when $\Delta(H) \leq 4$, we can pick any edge and still obtain the same inequality:

$$I(e) \le 2\Delta(H) - 2 < 7 = M_H - 1$$

Thus, H is M_H edge choosable \square

If
$$\Delta(H) = 5$$
, $I(e) = 6 \le 7 = M_H - 1$

If
$$\Delta(H) = 6$$
, $I(e) = 7 \le 7 = M_H - 1$

If
$$\Delta(H) \geq 7$$
, $I(e) = \Delta(H) = M_H - 1$

For the case when $\Delta(H) \leq 4$, we can pick any edge and still obtain the same inequality:

$$I(e) \le 2\Delta(H) - 2 < 7 = M_H - 1$$

Thus, H is M_H edge choosable \square

If
$$\Delta(H) = 5$$
, $I(e) = 6 \le 7 = M_H - 1$

If
$$\Delta(H) = 6$$
, $I(e) = 7 \le 7 = M_H - 1$

If
$$\Delta(H) \geq 7$$
, $I(e) = \Delta(H) = M_H -$

For the case when $\Delta(H) \leq 4$, we can pick any edge and still obtain the same inequality:

$$I(e) \le 2\Delta(H) - 2 < 7 = M_H - 1$$

Thus, H is M_H edge choosable \square

If
$$\Delta(H) = 5$$
, $I(e) = 6 \le 7 = M_H - 1$

If
$$\Delta(H) = 6$$
, $I(e) = 7 \le 7 = M_H - 1$

If
$$\Delta(H) \geq 7$$
, $I(e) = \Delta(H) = M_H - 1$

For the case when $\Delta(H) \leq 4$, we can pick any edge and still obtain the same inequality:

$$I(e) \le 2\Delta(H) - 2 < 7 = M_H - 1$$

Thus, H is M_H edge choosable \square

If
$$\Delta(H) = 5$$
, $I(e) = 6 \le 7 = M_H - 1$

If
$$\Delta(H) = 6$$
, $I(e) = 7 \le 7 = M_H - 1$

If
$$\Delta(H) \geq 7$$
, $I(e) = \Delta(H) = M_H - 1$

For the case when $\Delta(H) \leq 4$, we can pick any edge and still obtain the same inequality:

$$I(e) \le 2\Delta(H) - 2 < 7 = M_H - 1$$

Thus, H is M_H edge choosable \square

Thank you!