Los embalses de Paco

Paco tiene un país sediento y ocioso que gobernar y se le ha ocurrido que podría matar dos pájaros de un tiro poniendo a sus gentes a construir embalses.

El problema es que Paco tiene un número limitado de materiales para la construcción de las presas y debe optimizarlos lo máximo posible. Necesita un programa que, dado el perfil de elevación de un terreno y el número de bloques de hormigón disponibles para ese terreno, encuentre los puntos donde situar dichos bloques, de manera que pueda embalsar la mayor cantidad de agua de posible.

¿Puedes ayudarlo?

Problema:

La primera línea del input contiene el número de casos (terrenos) a analizar (T) a la que sigue cada caso.

Cada caso es **independiente** y está compuesto por 2 líneas. La primera línea contiene el número entero de coordenadas que hay en la zona a analizar (N), seguido del número entero de bloques de hormigón disponibles para construir (M). La segunda línea contiene los N números enteros indicando el valor de elevación de terreno de cada coordenada $(X_1, X_2, X_3, ..., X_n)$.

```
(int) 1 <= T <= 50
(int) 3 <= N <= 20
(int) 0 <= M <= 5
(int) 0 <= X<sub>i</sub> <= 50
```

 $\begin{array}{l} T \\ N \ M \\ X_{1} X_{2} X_{3} \ X_{4} \ X_{n} \\ N \ M \\ X_{1} X_{2} X_{3} \ X_{4} \ X_{n} \\ \dots \end{array}$

Por cada caso T_i , devuelve una línea de la siguiente forma "Case $\#T_i$: V_{max} " siendo V_{max} un número entero con el máximo volumen de agua que puede ser embalsada en esta zona mediante los bloques de hormigón disponibles.

Cada bloque de hormigón utilizado eleva en 1 la coordenada en la que se utiliza y no hay obligación de utilizar todos los bloques de hormigón si no fuera necesario.

Los datos de entrada se deben leer del standard input del lenguaje que elijas y deben mostrarse por el standard output.

Los datos de una misma línea están separados entre sí por un espacio en blanco.

Ejemplo:

Input:

1 10 1 1 2 1 0 3 1 2 2 1 2

En este input tenemos un solo caso a analizar con 10 coordenadas y disponemos de 1 bloque de hormigón. La zona a analizar es la siguiente como se especifica en la segunda línea del caso:

Dada esta entrada, decidimos poner el bloque en la coordenada 10 dándole una altura de 3, de manera que el máximo de agua que podemos embalsar en la zona es 9:

Podíamos haber utilizado el bloque en la coordenada 2 dándole una altura de 3 también, pero en este caso el máximo de agua a embalsar hubiera sido 7, con lo que la solución anterior es mejor.

El output de esta entrada de datos debería ser "Case #1: 9".

Input de prueba:

```
7
10 1
1 2 1 0 3 1 2 2 1 2
6 2
2 1 4 3 0 2
3 4
0 1 0
4 1
0 2 3 1
4 2
2 1 0 1
10 3
1 2 0 1 3 0 2 0 1 2
2 0 5
3 1 1 2 1 1 3 4 3 0 4 5 0 5 2 1 2 9 1 7 3 0 2 6 4 1 8 2 3 1 5 2 7 9 1 1
```

Output esperado:

```
Case #1: 9 //Colocando 1 en la 10

Case #2: 6 //Colocando 2 en la 6

Case #3: 1 //Colocando 2 en la 1 y 2 en la 3

Case #4: 0 //No hay manera de embalsar agua

Case #5: 3 //Colocando 1 en la 4 y no utilizando el otro

Case #6: 16 //Colocando 1 en la 5 y 2 en la 10

Case #7: 209 //Colocando 5 en la 18
```