- 1) RTS: $641|(2^{2^5}+1)$. This is the same as showing $2^{2^5}+1\equiv 641 \pmod{641}$, which of course is the same as $2^{32} \mod{641}+1 \mod{641}=0$. Trivially, $1 \mod{641}=1$ and we observe that $2^{32}=(2^{16})^2$. We can now expand this upwards modulo 641 to get our answer $2^8=256$. $2^{16}=256^2=65536 \mod{641}=154$, and finally $2^{32}=154^2=23716=640 \pmod{641}$. Nice!
- 2) Find $26^{7^{\circ}} (mod \ 11)$. We can use Fermat's Little Theorem to determine that $26^{10} \equiv 1 (mod \ 11)$, as 11 is prime and coprime to 26. Because $7^9 = 40353607$, we can rewrite it as $10 \cdot 4035360 + 7$, and thus $26^{7^{\circ}} = 26^{10^{4035360}} 26^{7}$. Because congruency is maintained through multiplication, $26^{10^{4035360}} \equiv 1 (mod \ 11)$ implying $26^{7^{\circ}} \equiv 1 \cdot 26^{7} (mod \ 11)$. Now we can transform 26 into a congruency class in \mathbb{Z}_{11} , [26] = [4].

 $[4^7]=[4^3][4^4]=[9][256]=[9][3]=[27]=[5]$, therefore $26^{7^9}\equiv 5 \pmod{11}$.

3) p-1=qs+r

a) RTS $a' \equiv 1 \pmod{p}$ from $a^{p-1} \equiv 1 \pmod{p}$.

$$a^{p-1} \equiv 1 \pmod{p}$$

$$a^{qs+r} \equiv 1 \pmod{p}$$

$$a^{qs}a^r \equiv 1 \pmod{p}$$

but $a^s \equiv 1 \pmod{p}$, so any multiple of s (including qs) is also congruent to 1, so $1 \cdot a^r \equiv 1 \pmod{p}$, and thus $a^r \equiv 1 \pmod{p}$. \square

- b) Since $a^s \equiv 1 \pmod{p}$ and s is the smallest positive integer, and $0 \le r \le s$, r must be 0.
- c) Because r=0, p-1=qs+0, and $1 \cdot a^r \equiv 1 \pmod{p}$, $s \mid (p-1)$ must be true.
- d) As we have seen above, p-1=qs, and that s|(p-1), p-1=s, so the smallest positive integer s for $8^s\equiv 1 \pmod{17}$ must be 16.
- [7][x]+[12][y]=[6]in \mathbb{Z}_{20} : 4) Solve [6][x]+[11][y]=[13][7][x]+[12][y]=[6][21][x]+[36][y]=[18][x]+[16][y]=[18][x]=[18]-[16][y][7][x]+[12][5]=[6][6]([18]-[16][y])+[11][y]=[13] now solve for x: [7][x]+[60]=[6][8]-[16][y]+[11][y]=[13][x] = [18][27][y] = [-5][7][y] = [15][y] = [45][y] = [5]
- 5) Solve [8][x]+[3][y]=[9] in \mathbb{Z}_{12} :