Szeregowanie zadań Wykład nr 2

dr Hanna Furmańczyk

26-02-2020

Złożoność problemów szeregowania zadań

Problemy:

- wielomianowe
- NP-trudne
- otwarte

Złożoność problemów szeregowania zadań

Problemy:

- wielomianowe
- NP-trudne
- otwarte

Jak sobie radzić z NP-trudnością?

- wielomianowe algorytmy przybliżone o gwarantowanej dokładności względnej,
- dokładne algorytmy pseudowielomianowe,
- algorytmy dokładne, szybkie tylko w średnim przypadku,
- heurystyki wyszukujące (np. tabu search, algorytmy genetyczne),
- dla małych rozmiarów danych wykładnicze przeszukiwanie wyczerpujące (np. branch-and-bound - alg. podziału i ograniczeń).

Redukcje podproblemów do problemów ogólniejszych Przykłady.

Szeregowanie operacji bezprocesorowych $-|prec|C_{max}$

Relacja zależności kolejnościowych w zbiorze zadań

- przeciwzwrotna $\forall_{Z_i} \neg Z_i \prec Z_i$
- przechodnia $\forall_{Z_i,Z_i,Z_k}(Z_i \prec Z_j \land Z_j \prec Z_k) \Rightarrow Z_i \prec Z_k$

Szeregowanie operacji bezprocesorowych $-|prec|C_{max}$

Relacja zależności kolejnościowych w zbiorze zadań

- przeciwzwrotna $\forall_{Z_i} \neg Z_i \prec Z_i$
- przechodnia $\forall_{Z_i,Z_i,Z_k}(Z_i \prec Z_j \land Z_j \prec Z_k) \Rightarrow Z_i \prec Z_k$

Metody reprezentacji relacji

Sieć AN (activity on node)

- wierzchołki odpowiadają operacjom, ich wagi (liczby naturalne) są równe czasom wykonywania,
- $Z_i \prec Z_j \Leftrightarrow$ w sieci istnieje ścieżka skierowana z wierzchołka Z_i do wierzchołka Z_j ,
- zwykle usuwa się łuki przechodnie (jak w diagramie Hassego).

Sieć AN (activity on node)

- wierzchołki odpowiadają operacjom, ich wagi (liczby naturalne) są równe czasom wykonywania,
- $Z_i \prec Z_j \Leftrightarrow$ w sieci istnieje ścieżka skierowana z wierzchołka Z_i do wierzchołka Z_j ,
- zwykle usuwa się łuki przechodnie (jak w diagramie Hassego).

Sieć AA (activity on arc)

- łuki odpowiadają operacjom, ich długości są równe czasom wykonywania,
- przez każdy wierzchołek przechodzi droga z Z (źródło) do U (ujście),
- $Z_i \prec Z_j \Leftrightarrow$ łuk Z_i kończy się w początku łuku Z_j , lub też w sieci istnieje ścieżka skierowana z końca łuku Z_i do początku Z_j ,
- można wprowadzać operacje pozorne łuki o zerowej długości.

Metody reprezentacji relacji ≺ za pomocą digrafu acyklicznego.

Przykład. Ta sama relacja porządku dla zbioru 19 operacji.

Metoda ścieżki krytycznej

Zasada: dla każdej operacji określamy najwcześniejszy możliwy moment uruchomienia tj. maksymalną "długość ścieżki doń prowadzącej.

Metoda ścieżki krytycznej

Zasada: dla każdej operacji określamy najwcześniejszy możliwy moment uruchomienia tj. maksymalną "długość ścieżki doń prowadzącej.

Algorytm dla AN

- numeruj wierzchołki "topologicznie" (brak łuków "pod prąd")
- wierzchołkom Z_a bez poprzedników nadaj etykietę $I(Z_a) = 0$, a kolejnym wierzchołkom Z_i przypisuj $I(Z_i) = \max\{I(Z_i) + p_i : \text{istnieje } \text{luk z } Z_i \text{ do } Z_i\},$

Wynik: $I(Z_i)$ jest najwcześniejszym możliwym terminem rozpoczęcia Z_i .

Algorytm dla AA

- numeruj wierzchołki "topologicznie" (brak łuków "pod prąd")
- ② źródłu Z nadaj etykietę I(Z)=0, a kolejnym wierzchołkom v przypisuj $I(v)=\max\{I(u)+p_j: \text{tuk } Z_j \text{ prowadzi z } u \text{ do } v\}$,

Wynik: I(v) wierzchołka początkowego Z_j jest najwcześniejszym możliwym terminem rozpoczęcia tej operacji. I(U) to termin zakończenia harmonogramu.

Metoda ścieżki krytycznej.

 $\label{eq:model-prec} \mbox{Model} -|\mbox{prec}| C_{\mbox{max}} \mbox{ operacji o różnych czasach wykonania, z} \\ \mbox{zależnościami kolejnościowymi, ale nie wymagających procesorów.} \\ \mbox{Celem jest znalezienie najkrótszego możliwego harmonogramu.}$

Przykład. Harmonogram dla sieci AA złożonej z 19 operacji.

Tworzenie sieci CPM:

Zdarzenia niekrytyczne i ścieżka krytyczna

- Algorytmy ścieżki krytycznej minimalizują nie tylko C_{max}, ale wszystkie zdefiniowane wcześniej funkcje kryterialne.
- Możemy wprowadzić do modelu różne wartości terminów przybycia r_j dla zadań Z_j dodając "sztuczne" zadania (o długości r_j):
 - jako wierzchołki poprzednicy w modelu AN
 - jako łuk prowadzący ze źródła Z do początku łuku Z_j w modelu AA.