③将 CON 单元的 K7 置为 0,按动时序与操作台单元的开关 ST,当时序信号走到 T4 时刻时,控制总线的指示灯 HALD 为灭,继续按动开关 ST,发现控制总线单元的时钟信号指示灯 T1——T4 开始变化,说明 CPU 的时钟被接通。此时 XMRD 受 CPU 控制,恢复有效为低,相应的指示灯 E0 灭。使用万用表测量数据总线和地址总线左侧的芯片 74LS245 的使能控制信号(第

19 脚),发现电压为低,说明总线和 CPU 恢复连通。

第5章 模型计算机

在前面的章节中,我们重点讨论计算机中每个部件的组成及特性,本节中,我们将重点讨论 如何完整设计一台模型计算机,进一步建立整机的概念。

本章安排了三个实验:有 CPU 与简单模型机设计实验、硬布线控制器模型机设计实验和复杂模型机设计实验。

5.1 CPU 与简单模型机设计实验

5.1.1 实验目的

- (1) 掌握一个简单 CPU 的组成原理。
- (2) 在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机。
- (3) 为其定义五条机器指令,编写相应的微程序,并上机调试掌握整机概念。

5.1.2 实验设备

PC 机一台, TD-CMA 实验系统一套。

5.1.3 实验原理

本实验要实现一个简单的 CPU,并且在此 CPU 的基础上,继续构建一个简单的模型计算机。 CPU 由运算器 (ALU)、微程序控制器 (MC)、通用寄存器 (R0),指令寄存器 (IR)、程序计数器 (PC) 和地址寄存器 (AR) 组成,如图 5-1-1 所示。这个 CPU 在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU 必须和主存挂接后,才有实际的意义,所以还需要在该 CPU 的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。

图 5-1-1 基本 CPU 构成原理图

除了程序计数器 (PC), 其余部件在前面的实验中都已用到,在此不再讨论。系统的程序计数器 (PC) 和地址寄存器 (AR) 集成在一片 CPLD 芯片中。CLR 连接至 CON 单元的总清端 CLR, 按下 CLR 按钮, 将使 PC 清零, LDPC 和 T3 相与后作为计数器的计数时钟, 当 LOAD 为低时, 计数时钟到来后将 CPU 内总线上的数据打入 PC。

图 5-1-2 程序计数器(PC)原理图

本模型机和前面微程序控制器实验相比,新增加一条跳转指令 JMP,共有五条指令: IN (输入)、ADD (二进制加法)、OUT (输出)、JMP (无条件转移),HLT (停机),其指令格式如下 (高 4 位为操作码):

助记符	机器指令码	说明
IN	0010 0000	IN → RO
ADD	0000 0000	$RO + RO \rightarrow RO$
OUT	0011 0000	RO \longrightarrow OUT
JMP addr	1110 0000	***** addr -> PC
HLT	0101 0000	停机

图

本实验在前一个实验的基础上增加了三个部件,一是 PC (程序计数器),另一个是 AR (地 址寄存器),还有就是 MEM (主存)。因而在微指令中应增加相应的控制位,其微指令格式如表 5-1-1 所示。

5-1-3 数据通路图

表 5-1-1 微指令格式 18-15 14-12 23 21 20 19 11 - 98-6 5-0 M23M22WR RD IOM S3-S0 A字段 B字段 C字段 MA5-MA0 A 字段 B字段 C字段 14 13 12 11 10 9 选择 7 6 选择 8 选择 0 0 0 0 0 0 0 NOP 0 NOP 0 NOP 0 1 LDA 0 0 1 ALU B 0 0 1 P<1> 0 1 0 LDB () 1 0 RO B 0 1 0 保留 0 1 1 LDR0 1 1 保留 0 1 1 0 保留 1 0 0 0 0 0 0 保留 1 1 保留 保留 1 0 1 LOAD 1 0 1 保留 1 0 1 LDPC PC B 保留 1 1 0 LDAR 1 1 0 1 1 0 1 LDIR 1 1 1 1 1 1 保留 保留

系统涉及到的微程序流程见图 5-1-4 所示,当拟定"取指"微指令时,该微指令的判别测试字段为 P<1>测试。指令译码原理见图 3-2-3 所示,由于"取指"微指令是所有微程序都使用的公用微指令,因此 P<1>的测试结果出现多路分支。本机用指令寄存器的高 6 位(IR7—IR2)作为测试条件,出现 5 路分支,占用 5 个固定微地址单元,剩下的其它地方就可以一条微指令占用控存一个微地址单元随意填写,微程序流程图上的单元地址为 16 进制。

图 5-1-4 简单模型机微程序流程图

当全部微程序设计完毕后,应将每条微指令代码化,表 5-1-2 即为将图 5-1-4 的微程序流程图按 微指令格式转化而成的 "二进制微代码表"。

地址	十六进制	高五位	S3-S0	A 字段	B 字段	C 字段	MA5-MA0
00	00 00 01	00000	0000	000	000	000	000001
01	00 6D 43	00000	0000	110	110	101	000011
03	10 70 70	00010	0000	111	000	001	110000
04	00 24 05	00000	0000	010	010	000	000101
05	04 B2 01	00000	1001	011	001	000	000001
1D	10 51 41	00010	0000	101	000	101	000001
30	00 14 04	00000	0000	001	010	000	000100
32	18 30 01	00011	0000	011	000	000	000001
33	28 04 01	00101	0000	000	010	000	000001
35	00 00 35	00000	0000	000	000	000	110101
3C	00 6D 5D	00000	0000	110	110	101	011101

表 5-1-2 二进制微代码表

设计一段机器程序,要求从 IN 单元读入一个数据,存于 R0,将 R0 和自身相加,结果存于 R0,再将 R0 的值送 OUT 单元显示。

根据要求可以得到如下程序, 地址和内容均为二进制数。

说 明		助记符	内 容	地 址
RO 从 IN 单元读入数据送 RO	R	; START: IN	00100000	00000000
R0 和自身相加,结果送 R0		; ADD R0,R0	00000000	00000001
RO 的值送 OUT 单元显示		; OUT RO	00110000	00000010
跳转至 00H 地址		; JMP START	11100000	00000011
		;	0000000	00000100
停机		; HLT	01010000	00000101

5.1.4 实验步骤

- 1. 按图 5-1-5 连接实验线路。
- 2. 写入实验程序,并进行校验,分两种方式,手动写入和联机写入。
- 1) 手动写入和校验
- (1) 手动写入微程序
- ① 将时序与操作台单元的开关 KK1 置为'停止'档, KK3 置为'编程'档, KK4 置为'控存'档, KK5 置为'置数'档。
- ② 使用 CON 单元的 SD05——SD00 给出微地址, IN 单元给出低 8 位应写入的数据,连续两次按动时序与操作台的开关 ST,将 IN 单元的数据写到该单元的低 8 位。
 - ③ 将时序与操作台单元的开关 KK5 置为'加1'档。
- ④ IN 单元给出中 8 位应写入的数据,连续两次按动时序与操作台的开关 ST,将 IN 单元的数据写到该单元的中 8 位。IN 单元给出高 8 位应写入的数据,连续两次按动时序与操作台的开关 ST,将 IN 单元的数据写到该单元的高 8 位。
 - ⑤ 重复①、②、③、④四步,将表 5-1-2 的微代码写入 2816 芯片中。

图 5-1-5 实验接线图

(2) 手动校验微程序

①将时序与操作台单元的开关 KK1 置为'停止'档, KK3 置为'校验'档, KK4 置为'控存'档, KK5 置为'置数'档。

②使用 CON 单元的 SD05——SD00 给出微地址,连续两次按动时序与操作台的开关 ST, MC 单元的指数据指示灯 M7——M0 显示该单元的低 8 位。

- ③ 将时序与操作台单元的开关 KK5 置为'加1'档。
- ④ 连续两次按动时序与操作台的开关 ST, MC 单元的指数据指示灯 M15——M8 显示该单元的中 8 位, MC 单元的指数据指示灯 M23——M16 显示该单元的高 8 位。
- ⑤ 重复①、②、③、④四步,完成对微代码的校验。如果校验出微代码写入错误,重新写入、校验,直至确认微指令的输入无误为止。
 - (3) 手动写入机器程序
 - ① 将时序与操作台单元的开关 KK1 置为'停止'档, KK3 置为'编程'档, KK4 置为'主存'档, KK5 置为'置数'档。
- ② 使用 CON 单元的 SD07——SD00 给出地址,IN 单元给出该单元应写入的数据,连续两次按动时序与操作台的开关 ST,将 IN 单元的数据写到该存储器单元。
 - ③ 将时序与操作台单元的开关 KK5 置为'加1'档。

- ④ IN 单元给出下一地址(地址自动加 1)应写入的数据,连续两次按动时序与操作台的开关 ST,将 IN 单元的数据写到该单元中。然后地址会又自加 1,只需在 IN 单元输入后续地址的数据,连续两次按动时序与操作台的开关 ST,即可完成对该单元的写入。
 - ⑤ 亦可重复①、②两步,将所有机器指令写入主存芯片中。
 - (4) 手动校验机器程序

①将时序与操作台单元的开关 KK1 置为'停止'档, KK3 置为'校验'档, KK4 置为'主 存'档, KK5 置为'置数'档。

- ② 使用 CON 单元的 SD07——SD00 给出地址,连续两次按动时序与操作台的开关 ST, CPU 内总线的指数据指示灯 D7——D0 显示该单元的数据。
 - ③ 将时序与操作台单元的开关 KK5 置为'加1'档。
- ④ 连续两次按动时序与操作台的开关 ST, 地址自动加 1, CPU 内总线的指数据指示灯 D7——D0 显示该单元的数据。此后每两次按动时序与操作台的开关 ST, 地址自动加 1, CPU 内总线的指数据指示灯 D7——D0 显示该单元的数据,继续进行该操作,直至完成校验,如发现错误,则返回写入,然后校验,直至确认输入的所有指令准确无误。
- ⑤ 亦可重复①、②两步,完成对指令码的校验。如果校验出指令码写入错误,重新写入、校验、直至确认指令码的输入无误为止。

2) 联机写入和校验

联机软件提供了微程序和机器程序下载功能,以代替手动读写微程序和机器程序,但是微程序和机器程序得以指定的格式写入到以TXT为后缀的文件中,微程序和机器程序的格式如下:

\$M XX XXXXXX

机器指令代码微指令代码十六进制地址十六进制地址机器指令标志微指令标志

本次实验程序如下,程序中分号';'为注释符,分号后面的内容在下载时将被忽略掉:

;	//****	*********	* * *	//
;	//			//
;	//	CPU 与简单模型机实验指令文件	//	
;	//			//
;	//	By TangDu CO.,LTD		//
;	//			//

```
; //***** Start Of Main Memory Data ***** //
 $P 00 20 ; START: IN R0
                          从 IN 单元读入数据送 RO
 $P 01 00 ; ADD R0,R0
                          RO 和自身相加,结果送 RO
                           RO 的值送 OUT 单元显示
 $P 02 30
          ; OUT RO
 $P 03 E0 ; JMP START
                          跳转至 00H 地址
 $P 04 00
 $P 05 50
          ; HLT
; //***** End Of Main Memory Data ***** //
; //*** Start Of MicroController Data **** //
 $M 00 000001
              ; NOP
 $M 01 006D43
              ; PC->AR,PC 加 1
 $M 03 107070
              ; MEM->IR, P<1>
              ; R0->B
 $M 04 002405
 $M 05 04B201
              ; A 加 B->R0
              ; MEM->PC
 $M 1D 105141
 $M 30 001404
              ; R0->A
 $M 32 183001
              ; IN->R0
 $M 33 280401
              ; R0->OUT
 $M 35 000035
              ; NOP
 $M 3C 006D5D
              ; PC->AR,PC 加 1
; //** End Of MicroController Data **//
```

选择联机软件的"【转储】—【装载】"功能,在打开文件对话框中选择上面所保存的文件, 软件自动将机器程序和微程序写入指定单元。

选择联机软件的"【转储】—【刷新指令区】"可以读出下位机所有的机器指令和微指令,并在指令区显示,对照文件检查微程序和机器程序是否正确,如果不正确,则说明写入操作失败,应重新写入,可以通过联机软件单独修改某个单元的指令,以修改微指令为例,先用鼠标左键单击指令区的'微存'TAB按钮,然后再单击需修改单元的数据,此时该单元变为编辑框,输入6位数据并回车,编辑框消失,并以红色显示写入的数据。

3. 运行程序

方法一: 本机运行

将时序与操作台单元的开关 KK1、KK3 置为'运行'档,按动 CON 单元的总清按钮 CLR,将使程序计数器 PC、地址寄存器 AR 和微程序地址为 00H,程序可以从头开始运行,暂存器 A、B,指令寄存器 IR 和 OUT 单元也会被清零。

将时序与操作台单元的开关 KK2 置为'单步'档,每按动一次 ST 按钮,即可单步运行一条微指令,对照微程序流程图,观察微地址显示灯是否和流程一致。每运行完一条微指令,观测一次 CPU 内总线和地址总线,对照数据通路图,分析总线上的数据是否正确。

当模型机执行完 JMP 指令后,检查 OUT 单元显示的数是否为 IN 单元值的 2 倍,按下 CON 单元的总清按钮 CLR,改变 IN 单元的值,再次执行机器程序,从 OUT 单元显示的数判别程序执行是否正确。

方法二: 联机运行

将时序与操作台单元的开关 KK1 和 KK3 置为'运行'档,进入软件界面,选择菜单命令"【实验】—【简单模型机】",打开简单模型机数据通路图。

按动 CON 单元的总清按钮 CLR,然后通过软件运行程序,选择相应的功能命令,即可联机运行、监控、调试程序,当模型机执行完 JMP 指令后,检查 OUT 单元显示的数是否为 IN 单元值的 2 倍。在数据通路图和微程序流中观测指令的执行过程,并观测软件中地址总线、数据总线以及微指令显示和下位机是否一致。

5.2 硬布线控制器模型机设计实验

5.2.1 实验目的

- (1) 掌握硬布线控制器的组成原理、设计方法。
- (2) 了解硬布线控制器和微程序控制器的各自优缺点。

5.2.2 实验设备

PC 机一台, TD-CMA 实验系统一套。

5.2.3 实验原理

硬布线控制器本质上是一种由门电路和触发器构成的复杂树形网络,它将输入逻辑信号转换成一组输出逻辑信号,即控制信号。硬布线控制器的输入信号有:指令寄存器的输出、时序信号和运算结果标志状态信号等,输出的就是所有各部件需要的各种微操作信号。

硬布线控制器的设计思想是:在硬布线控制器中,操作控制器发出的各种控制信号是时间 因素和空间因素的函数。各个操作定时的控制构成了操作控制信号的时间特征,而各种不同部 件的操作所需要的不同操作信号则构成了操作控制信号的空间特征。硬布线控制器就是把时间 信号和操作信号组合,产生具有定时特点的控制信号。