TERMIN 4 - zadaci za samostalan rad - rješenja

* * *

Zadatak 1.

Dopuniti skup vektora $\{(1,1,1,2),(1,2,3,-3)\}$ do ortogonalne baze vektorskog prostora \mathbb{R}^4 .

Rješenje

Neka je $V = Lin\{(1,1,1,2), (1,2,3,-3)\}$. Kako je prostor kolona matrice A ortogonalan na nula prostor matrice A^T , iz stepenaste forme

$$\begin{bmatrix} \boxed{1} & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 & 1 & 0 \\ 2 & -3 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \cdot (-1) + R_3} \begin{bmatrix} \boxed{1} & 1 & 1 & 0 & 0 & 0 \\ 0 & \boxed{1} & -1 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 1 & 0 \\ 0 & -5 & -2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \cdot (-2) + R_3} \begin{bmatrix} \boxed{1} & 1 & 1 & 0 & 0 & 0 \\ 0 & \boxed{1} & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & -7 & 5 & 0 & 1 \end{bmatrix}$$

dobijamo $V^{\perp} = Lin\{(1, -2, 1, 0), (-7, 5, 0, 1)\}.$

Da bismo skup $\{(1,1,1,2),(1,2,3,-3)\}$ doveli do ortogonalne baze prostora \mathbb{R}^4 , potrebno je da bazni vektori prostora V i V^{\perp} budu međusobno ortogonalni. Za ortogonalizaciju tih vektora iskoristićemo Gram-Šmitov postupak. Imamo da je:

$$\overrightarrow{y_1} = \overrightarrow{x_1},$$

$$\overrightarrow{y_2} = \overrightarrow{x_2} - \frac{(\overrightarrow{x_2}, \overrightarrow{y_1})}{(\overrightarrow{y_1}, \overrightarrow{y_1})} \cdot \overrightarrow{y_1},$$

$$\overrightarrow{y_3} = \overrightarrow{x_3},$$

$$\overrightarrow{y_4} = \overrightarrow{x_4} - \frac{(\overrightarrow{x_4}, \overrightarrow{y_3})}{(\overrightarrow{y_3}, \overrightarrow{y_3})} \cdot \overrightarrow{y_3},$$

odakle dobijamo

$$\overrightarrow{y_1} = (1, 1, 1, 2),$$

$$\overrightarrow{y_2} = (1, 2, 3, -3) - \frac{0}{7} \cdot (1, 1, 1, 2)$$

$$= (1, 2, 3, -3),$$

$$\overrightarrow{y_3} = (1, -2, 1, 0),$$

$$\overrightarrow{y_4} = (-7, 5, 0, 1) - \frac{(-17)}{6} \cdot (1, -2, 1, 0)$$

$$= \left(-\frac{25}{6}, -\frac{4}{6}, \frac{17}{6}, 1\right)$$

$$= \frac{1}{6} \cdot (-25, -4, 17, 6).$$

Dakle, jedna od ortogonalnih baza prostora R^4 je

$$B_{\mathbb{R}^4} = \{(1, 1, 1, 2), (1, 2, 3, -3), (1, -2, 1, 0), (-25, -4, 17, 6)\}.$$

Zadatak 2.

Neka je

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 3 \\ -1 & 1 \\ 0 & 0 \\ -1 & 1 \end{bmatrix}.$$

Odrediti baze fundamentalnih potprostora matrice A pa provjeriti da li su ispunjeni odgovarajući uslovi njihove ortogonalnosti.

Rješenje

Iz proširene stepenaste forme matrice A:

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 3 & 0 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} \boxed{1} & 3 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_3} \begin{bmatrix} \boxed{1} & 3 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \cdot (-4) + R_3} \begin{bmatrix} \boxed{1} & 3 & 0 & 1 & 0 & 0 & 0 \\ 0 & \boxed{1} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -4 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

dobijamo

$$B_{C(A)} = \left\{ \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\}, \qquad B_{C(A^T)} = \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} = \mathbb{R}^2, \qquad B_{N(A^T)} = \left\{ \begin{bmatrix} -4 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

Kako je $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^5$, zaključujemo da je

$$dim\left(C\left(A\right)\right)+dim\left(N\left(A\right)\right)=2.$$

Kako je $dim\left(C\left(A\right)\right)=2$, zaključujemo da je $dim\left(N\left(A\right)\right)=0$ pa je

$$B_{N(A)} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}.$$

Neka je

$$\overrightarrow{x_1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \overrightarrow{x_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \overrightarrow{x_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{i} \quad \overrightarrow{y_1} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \overrightarrow{y_2} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \overrightarrow{y_3} = \begin{bmatrix} -4 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \overrightarrow{y_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \overrightarrow{y_5} = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Kako vrijedi

$$(\overrightarrow{x_1}, \overrightarrow{x_3}) = 0$$
 i $(\overrightarrow{x_2}, \overrightarrow{x_3}) = 0$

zaključujemo da je $C(A^T) \perp N(A)$.

Sa druge strane, kako vrijedi

$$(\overrightarrow{y_1}, \overrightarrow{y_3}) = 0, \quad (\overrightarrow{y_1}, \overrightarrow{y_4}) = 0, \quad (\overrightarrow{y_1}, \overrightarrow{y_5}) = 0, \quad (\overrightarrow{y_2}, \overrightarrow{y_3}) = 0, \quad (\overrightarrow{y_2}, \overrightarrow{y_4}) = 0 \text{ i } (\overrightarrow{y_2}, \overrightarrow{y_5}) = 0$$

zaključujemo da je $C(A) \perp N(A^T)$.

Ovim smo pokazali ortogonalnost fundamentalnih potprostora matrice A.

* * *

Zadatak 3.

Neka je

$$A = \begin{bmatrix} 1 & -2 & a \\ -2 & 1 & b \\ -2 & -2 & c \end{bmatrix}.$$

Odrediti $a,b,c\in\mathbb{R}$ tako da matrica Aima ortogonalne kolone.

Rješenje

Kako su kolone $A_{\bullet 1}$ i $A_{\bullet 2}$ ortogonalne jer je $A_{\bullet 1}^T \cdot A_{\bullet 2} = 0$, matrica A će imati ortogonalne kolone ako vrijedi $A_{\bullet 1}^T \cdot A_{\bullet 3} = 0$ i $A_{\bullet 2}^T \cdot A_{\bullet 3} = 0$, tj. ako je

$$\begin{cases} a - 2b - 2c = 0 \\ -2a + b - 2c = 0 \end{cases} \Leftrightarrow \begin{cases} a - 2b = 2c \\ -2a + b = 2c \end{cases}$$

čije je rješenje a=-2c i b=-2c. Dakle, da bi matrica A imala ortogonalno rješenje, potrebno je da vrijedi

$$(a, b, c) = (-2c, -2c, c)$$
.

Odabiranjem proizvoljne vrijednosti parametra c dobijamo jedno rješenje sistema. Npr. za c=-1 dobijamo da je

$$(a,b,c) = (2,2,-1)$$
.

Zadatak 4.

Odrediti jednu ortonormiranu bazu prostora kolona matrice

$$A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 3 & 0 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

a onda odrediti ortogonalnu dopunu od C(A).

Rješenje

Iz proširene stepenaste forme matrice A:

$$\begin{bmatrix} \boxed{1} & 3 & 8 & 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \cdot (-1) + R_4} \begin{bmatrix} \boxed{1} & 3 & 8 & 1 & 0 & 0 & 0 \\ 0 & 0 & -8 & -1 & 1 & 0 & 0 \\ 0 & -4 & -8 & -1 & 0 & 1 & 0 \\ 0 & -4 & -8 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} \boxed{1} & 3 & 8 & 1 & 0 & 0 & 0 \\ 0 & \boxed{-4} & -8 & -1 & 1 & 0 & 0 \\ 0 & 0 & -8 & -1 & 1 & 0 & 0 \\ 0 & -4 & -8 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} \boxed{1} & 3 & 8 & 1 & 0 & 0 & 0 \\ 0 & 0 & -8 & -1 & 1 & 0 & 0 \\ 0 & 0 & -8 & -1 & 1 & 0 & 0 \\ 0 & 0 & -4 & -8 & -1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

dobijamo da je

$$C(A) = \{\overrightarrow{x_1}, \overrightarrow{x_2}, \overrightarrow{x_3}\}$$

pri čemu je

$$\overrightarrow{x_1} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T, \quad \overrightarrow{x_2} = \begin{bmatrix} 3 & 3 & -1 & -1 \end{bmatrix}^T, \quad \overrightarrow{x_3} = \begin{bmatrix} 8 & 0 & 0 & 0 \end{bmatrix}^T.$$

Koristeći Gram-Šmitov postupak ortogonalizacije, ortogonalne vektore $\overrightarrow{y_1}, \overrightarrow{y_2}$ i $\overrightarrow{y_3}$ dobijamo iz formula:

$$\overrightarrow{y_1} = \overrightarrow{x_1},
\overrightarrow{y_2} = \overrightarrow{x_2} - \frac{\left(\overrightarrow{x_2}, \overrightarrow{y_1}\right)}{\left(\overrightarrow{y_1}, \overrightarrow{y_1}\right)} \cdot \overrightarrow{y_1},
\overrightarrow{y_3} = \overrightarrow{x_3} - \frac{\left(\overrightarrow{x_3}, \overrightarrow{y_1}\right)}{\left(\overrightarrow{y_1}, \overrightarrow{y_1}\right)} \cdot \overrightarrow{y_1} - \frac{\left(\overrightarrow{x_3}, \overrightarrow{y_2}\right)}{\left(\overrightarrow{y_2}, \overrightarrow{y_2}\right)} \cdot \overrightarrow{y_2}.$$

Računanjem dobijamo

$$\overrightarrow{y_1} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix},
\overrightarrow{y_2} = \begin{bmatrix} 3\\3\\-1\\-1 \end{bmatrix} - \frac{4}{4} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\2\\-2\\-2 \end{bmatrix},
\overrightarrow{y_3} = \begin{bmatrix} 8\\0\\0\\0\\0 \end{bmatrix} - \frac{8}{4} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - \frac{16}{16} \cdot \begin{bmatrix} 2\\2\\-2\\-2 \end{bmatrix} = \begin{bmatrix} 4\\-4\\0\\0 \end{bmatrix}.$$

Kako je

$$\|\overrightarrow{y_1}\| = 2, \|\overrightarrow{y_2}\| = 4 \text{ i } \|\overrightarrow{y_3}\| = 4\sqrt{2},$$

tražena ortonormirana baza prostora C(A) je

$$B_{C(A)} = \left\{ \frac{1}{2} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \frac{1}{4} \cdot \begin{bmatrix} 2\\2\\-2\\-2 \end{bmatrix}, \frac{1}{4\sqrt{2}} \cdot \begin{bmatrix} 4\\-4\\0\\0 \end{bmatrix} \right\}$$

odnosno

$$B_{C(A)} = \left\{ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{bmatrix} \right\}.$$

Kako je $C(A) \perp N(A^T)$, iz stepenaste forme matrice A dobijamo da je ortogonalna dopuna prostora C(A):

$$N\left(A^{T}\right) = Lin \left\{ \begin{bmatrix} 0\\0\\-1\\1 \end{bmatrix} \right\}.$$

Zadatak 5.

Da li postoji ortogonalna matrica $Q \in \mathcal{M}_3$ čija je prva kolona $\overrightarrow{q_1} = \begin{bmatrix} \frac{3}{5} & 0 & -\frac{4}{5} \end{bmatrix}^T$? Obrazložiti odgovor.

Rješenje

Neka su $\overrightarrow{q_1}, \overrightarrow{q_2}, \overrightarrow{q_3}$ kolone matrice Q. Da bi matrica Q bila ortogonalna, potrebno je da vrijedi

$$\overrightarrow{q_1} \perp \overrightarrow{q_2}, \ \overrightarrow{q_1} \perp \overrightarrow{q_3} \ i \ \overrightarrow{q_2} \perp \overrightarrow{q_3}.$$

Neka je

$$\overrightarrow{q_2} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}.$$

Kako je $\overrightarrow{q_1} \perp \overrightarrow{q_2}$ imamo da je $(\overrightarrow{q_1}, \overrightarrow{q_2}) = 0$ odnosno

$$\frac{3}{5} \cdot x_2 + 0 \cdot y_2 - \frac{4}{5} \cdot z_2 = 0.$$

Odaberimo proizvoljan vektor $\overrightarrow{q_2}$ tako da vrijedi prethodna jednakost. Neka je

$$\overrightarrow{q_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Kako je $\overrightarrow{q_1} \perp \overrightarrow{q_3}$ i $\overrightarrow{q_2} \perp \overrightarrow{q_3}$, vrijedi $(\overrightarrow{q_1}, \overrightarrow{q_3}) = 0$ i $(\overrightarrow{q_2}, \overrightarrow{q_3}) = 0$. Ako je

$$\overrightarrow{q_3} = \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix}$$

imamo da je

$$\frac{3}{5} \cdot x_3 + 0 \cdot y_2 - \frac{4}{5} \cdot z_2 = 0$$
$$0 \cdot x_3 + 1 \cdot y_3 + 0 \cdot z_3 = 0.$$

Iz prethodnog sistema dobijamo $y_3 = 0$ i $x_3 = \frac{4}{3}z_3$. Izborom prozivoljne vrijednosti z_3 dobijamo vektor $\overrightarrow{q_3}$ koji je ortogonalan na vektore $\overrightarrow{q_1}$ i $\overrightarrow{q_2}$. Npr. za $z_3 = 1$ dobijamo

$$\overrightarrow{q_3} = \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}.$$

Konačno, matrica

$$Q = \begin{bmatrix} \frac{3}{5} & 0 & \frac{4}{3} \\ 0 & 1 & 0 \\ -\frac{4}{5} & 0 & 1 \end{bmatrix}$$

je jedna ortogonalna matrica čija je prva kolona $\overrightarrow{q_1}$. Važno je napomenuti da ovakvih matrica ima beskonačno mnogo, a gore navedena matrica Q je samo jedna od njih.

Zadatak 6.

Neka je

$$V = Lin \left\{ \begin{bmatrix} 0 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 4 \\ 5 \end{bmatrix} \right\}.$$

Odrediti ortonormiranu bazu prostora V^{\perp} .

Rješenje

Ako bazne vektore prostora V predstavimo kao kolone matrice A, koristeći činjenicu da je $C(A) \perp N(A^T)$ iz stepenaste forme proširene matrice A

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 1 & 0 & 0 \\ 3 & 4 & 0 & 0 & 1 & 0 \\ 4 & 5 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} \boxed{2} & 3 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 1 & 0 \\ 4 & 5 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow (-\frac{3}{2}) + R_3} \begin{bmatrix} \boxed{2} & 3 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 1 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{3}{2} & 1 & 0 \\ 0 & -1 & 0 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \cdot \frac{1}{2} + R_3} \begin{bmatrix} \boxed{2} & 3 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{3}{2} & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{bmatrix}$$

dobijamo da je

$$V^{\perp} = Lin \left\{ \begin{bmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Da bismo odredili ortogonalnu bazu prostora V^{\perp} koristimo Gram-Šmitov postupak ortogonalizacije:

$$\overrightarrow{y_1} = \begin{bmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix},$$

$$\overrightarrow{y_2} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix} - \frac{\begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix}^T \cdot \begin{bmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix}}{\begin{bmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix}} \cdot \begin{bmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix} - \frac{\cancel{7}}{\cancel{2}} \cdot \begin{bmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -1 \\ 1 \end{bmatrix}$$

Ortonormiranjem vektora $\overrightarrow{y_1}$ i $\overrightarrow{y_2}$ dobijamo ortonormiranu bazu prostora V^{\perp} :

$$\overrightarrow{q_1} = \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 + \left(-\frac{3}{2}\right)^2 + 1^2 + 0^2}} \cdot \begin{bmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix} = \frac{2}{\sqrt{14}} \cdot \begin{bmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{14}} \\ -\frac{3}{\sqrt{14}} \\ \frac{2}{\sqrt{14}} \\ 0 \end{bmatrix},$$

$$\overrightarrow{q_2} = \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 + \left(-1\right)^2 + 1^2}} \cdot \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -1 \\ 1 \end{bmatrix} = \frac{2}{\sqrt{10}} \cdot \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} \\ \frac{2}{\sqrt{10}} \end{bmatrix}.$$

Dakle, ortonormirana baza prostora V^{\perp} je

$$B_{V^{\perp}} = \left\{ \begin{bmatrix} \frac{1}{\sqrt{14}} \\ -\frac{3}{\sqrt{14}} \\ \frac{2}{\sqrt{14}} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} \\ -\frac{2}{\sqrt{10}} \\ \frac{2}{\sqrt{10}} \end{bmatrix} \right\}.$$

* * * *

Zadatak 7.

Odrediti ortogonalnu projekciju i ortogonalnu komponentu vektora $\overrightarrow{x} = (4, -1, -3, 4)$ na potprostor generisan vektorima $\overrightarrow{a} = (1, 1, 1, 1)$, $\overrightarrow{b} = (1, 2, 2, -1)$ i $\overrightarrow{c} = (1, 0, 0, 3)$.

Rješenje

Na početku, odredimo potprostor V^{\perp} ortogonalan na potprostor V generisan vektorima \overrightarrow{d} , \overrightarrow{b} i \overrightarrow{c} . Iz stepenaste forme proširene matrice

$$\begin{bmatrix} \boxed{1} & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 3 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \cdot (-1) + R_3} \begin{bmatrix} \boxed{1} & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & \boxed{1} & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 1 & 0 \\ 0 & -2 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \cdot (-1) + R_3} \begin{bmatrix} \boxed{1} & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & \boxed{1} & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -3 & 2 & 0 & 1 \end{bmatrix}$$

vidimo da je vektor \overrightarrow{c} linearno zavisan sa vektorima \overrightarrow{a} i \overrightarrow{b} pa je

$$B_V = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\-1 \end{bmatrix} \right\}$$

dok je

$$B_{V^{\perp}} = \left\{ \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Vektor \overrightarrow{x} moguće je razložiti kao zbir vektora $\overrightarrow{y} \in V$ i $\overrightarrow{z} \in V^{\perp}$.

Tada je \overrightarrow{y} ortogonalna projekcija vektora \overrightarrow{x} na potprostor V dok je \overrightarrow{z} ortogonalna komponenta vektora \overrightarrow{x} . Iz jednačine

$$\overrightarrow{x} = \begin{bmatrix} 4 \\ -1 \\ -3 \\ 4 \end{bmatrix} = \alpha \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + \delta \cdot \begin{bmatrix} -3 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

dobijamo sistem

$$\begin{cases} \alpha + \beta & -3\delta = 4\\ \alpha + 2\beta - \gamma + 2\delta = -1\\ \alpha + 2\beta + \gamma & = -3\\ \alpha - \beta & + \delta = 4 \end{cases}$$

čije je rješenje $\alpha=3,\,\beta=-2,\,\gamma=-2,\,\delta=-1.$ Odavde je

$$\overrightarrow{y} = \alpha \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 1\\2\\2\\-1 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - 2 \cdot \begin{bmatrix} 1\\2\\2\\-1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\-1\\5 \end{bmatrix}$$

$$\overrightarrow{z} = \gamma \cdot \begin{bmatrix} 0\\-1\\1\\0 \end{bmatrix} + \delta \cdot \begin{bmatrix} -3\\2\\0\\1 \end{bmatrix} = -2 \cdot \begin{bmatrix} 0\\-1\\1\\0 \end{bmatrix} - \begin{bmatrix} -3\\2\\0\\1 \end{bmatrix} = \begin{bmatrix} 3\\0\\-2\\-1 \end{bmatrix}$$

pa je dakle vektor $\overrightarrow{y} = (1, -1, -1, 5)$ ortogonalna projekcija vektora \overrightarrow{x} na potprostor generisan vektorima \overrightarrow{d} , \overrightarrow{b} i \overrightarrow{c} . Vektor $\overrightarrow{z} = (3, 0, -2, -1)$ je ortogonalna komponenta vektora \overrightarrow{x} .

Zadatak 8.

Odrediti matricu ortogonalnog projektovanja na prostor $Lin \left\{ \begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} \right\}.$

Rješenje

Neka je vektorski prostor $V = Lin \left\{ \begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} \right\}.$

Korištenjem stepenaste forme proširene matrice A u kojoj se po kolonama nalaze bazni vektori vektorskog prostora V:

$$\begin{bmatrix} \boxed{1} & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \cdot (-1) + R_2} \begin{bmatrix} \boxed{1} & 1 & 1 & 0 & 0 & 0 \\ 0 & \boxed{-1} & -1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \cdot 2 + R_3} \begin{bmatrix} \boxed{1} & 1 & 1 & 0 & 0 & 0 \\ 0 & \boxed{-1} & -1 & 1 & 0 & 0 \\ 0 & 0 & \boxed{-1} & -1 & 1 & 0 & 0 \\ 0 & 0 & \boxed{-1} & 2 & 1 & 0 \\ 0 & 1 & \boxed{-1} & 1 & 0 & 1 \end{bmatrix}$$

dobijamo da je $V^{\perp}=Lin\left\{ \begin{bmatrix} -1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix} \right\}$. Kako je $V+V^{\perp}=\mathbb{R}^4$, skup

$$\mathcal{B}_N = \left\{ \begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix} \right\}$$

je baza prostora \mathbb{R}^4 . Po bazi \mathcal{B}_N , matrica ortogonalnog projektovanja na prostor V je

Kako je potrebno odrediti matricu ortogonalnog projektovanja na prostor V po standardnoj bazi \mathcal{B}_S prostora \mathbb{R}^4 i kako je matrica prelaska

$$S_{\mathcal{B}_N \to \mathcal{B}_S} = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & 0 & 2 & 1 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix},$$

matricu projektovanja po standardnoj bazi \mathcal{B}_S dobijamo kao:

$$\begin{split} P_{\mathcal{B}_S} &= S_{\mathcal{B}_N \to \mathcal{B}_S} \cdot P_{\mathcal{B}_N} \cdot S_{\mathcal{B}_S \to \mathcal{B}_N} \\ &= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & 0 & 2 & 1 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & 0 & 2 & 1 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}^{-1} \\ &= \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \end{bmatrix} . \end{split}$$

Zadatak 9.

Data je matrica

Odrediti projekcije vektora
$$\begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} \in \mathbb{R}^4$$
 na potprostore $N(A)$ i $C\left(A^T\right)$.

Rješenje

Iz stepenaste forme proširene matrice A^T

$$\begin{bmatrix} \boxed{1} & 1 & -1 & -1 & | & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & -1 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & -1 & -1 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & -1 & 1 & -1 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & -1 & 1 & -1 & | & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \cdot (-1) + R_3} \begin{bmatrix} \boxed{1} & 1 & -1 & -1 & | & 1 & 0 & 0 & 0 \\ 0 & \boxed{-2} & 2 & 0 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & | & -1 & 0 & 1 & 0 \\ 0 & -2 & 2 & 0 & | & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \cdot (-1) + R_4} \begin{bmatrix} \boxed{1} & 1 & -1 & -1 & | & 1 & 0 & 0 & 0 \\ 0 & \boxed{-2} & 2 & 0 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & | & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & -1 & 0 & 1 \end{bmatrix}$$

dobijamo da je

$$C\left(A^{T}\right) = Lin\left\{\begin{bmatrix}1\\1\\1\\1\end{bmatrix}, \begin{bmatrix}1\\-1\\1\\-1\end{bmatrix}\right\} \text{ i } N\left(A\right) = Lin\left\{\begin{bmatrix}-1\\0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\-1\\0\\1\end{bmatrix}\right\}.$$

Vektor $\overrightarrow{x} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$ moguće je razložiti kao zbir vektora $\overrightarrow{y} \in C\left(A^{T}\right)$ i $\overrightarrow{z} \in N\left(A\right)$.

Tada je \overrightarrow{y} ortogonalna projekcija vektora \overrightarrow{x} na potprostor $C(A^T)$ dok je \overrightarrow{z} ortogonalna projekcija vektora \overrightarrow{x} na potprostor N(A). Iz jednačine

$$\overrightarrow{x} = \begin{bmatrix} 1\\1\\2\\3 \end{bmatrix} = \alpha \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix} + \gamma \cdot \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix} + \delta \cdot \begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix}$$

dobijamo sistem

$$\begin{cases} \alpha + \beta - \gamma &= 1\\ \alpha - \beta & -\delta = 1\\ \alpha + \beta + \gamma &= 2\\ \alpha - \beta & +\delta = 3 \end{cases}$$

čije je rješenje $\alpha = \frac{7}{4}, \ \beta = -\frac{1}{4}, \ \gamma = \frac{1}{2}, \ \delta = 1.$ Odavde je

$$\overrightarrow{y} = \alpha \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} = \frac{7}{4} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{1}{4} \cdot \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 2 \\ \frac{3}{2} \\ 2 \end{bmatrix}$$

$$\overrightarrow{z} = \gamma \cdot \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \delta \cdot \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{2} \cdot \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -1 \\ \frac{1}{2} \\ 1 \end{bmatrix}$$

pa je dakle vektor $\overrightarrow{y} = \begin{bmatrix} \frac{3}{2} \\ 2 \\ \frac{3}{2} \\ 2 \end{bmatrix}$ projekcija vektora \overrightarrow{x} na potprostor $C(A^T)$.

Vektor $\overrightarrow{z} = \begin{bmatrix} -\frac{1}{2} \\ -1 \\ \frac{1}{2} \\ 1 \end{bmatrix}$ je projekcija vektora \overrightarrow{x} na potprostor N(A).

Zadatak 10.

Neka je $\mathbb{R}_2(x)$ vektorski prostor realnih polinoma stepena ne većeg od 2 i neka je u tom vektorskom prostoru skalarni proizvod definisan sa

$$\left(p\left(x\right),q\left(x\right)\right) = \int_{0}^{+\infty} e^{-x} p\left(x\right) q\left(x\right) dx.$$

Odrediti ortonormiranu bazu tog prostora pomoću Gram-Šmitovog postupka ortogonalizacije polazeći od standardne baze tog prostora $\{1, x, x^2\}$.

Rješenje

Polazeći od polinoma $p_0(x) = 1$, $p_1(x) = x$ i $p_2(x) = x^2$, odredićemo ortogonalne polinome $q_0(x)$, $q_1(x)$ i $q_2(x)$ koristeći Gram-Šmitov postupak:

$$q_{0}(x) = p_{0}(x) = 1,$$

$$q_{1}(x) = p_{1}(x) - \frac{\left(p_{1}(x), q_{0}(x)\right)}{\left(q_{0}(x), q_{0}(x)\right)} \cdot q_{0}(x),$$

$$q_{2}(x) = p_{2}(x) - \frac{\left(p_{2}(x), q_{0}(x)\right)}{\left(q_{0}(x), q_{0}(x)\right)} \cdot q_{0}(x) - \frac{\left(p_{2}(x), q_{1}(x)\right)}{\left(q_{1}(x), q_{1}(x)\right)} \cdot q_{1}(x).$$

Koristeći definiciju skalarnog proizvoda dobijamo:

$$(q_0(x), q_0(x)) = \int_0^{+\infty} e^{-x} \cdot 1 \cdot 1 \, dx = -e^{-x} \Big|_0^{+\infty} = -\lim_{x \to +\infty} e^{-x} - (-e^0) = 1$$

$$(p_1(x), q_0(x)) = \int_0^{+\infty} e^{-x} \cdot x \cdot 1 \, dx \qquad \begin{cases} u = x \\ du = dx \\ v = -e^{-x} \\ dv = e^{-x} \, dx \end{cases}$$

$$= -xe^{-x} \Big|_0^{+\infty} - \int_0^{+\infty} -e^{-x} \, dx = -\left(\lim_{x \to +\infty} xe^{-x} - 0 \cdot e^0\right) - e^{-x} \Big|_0^{+\infty} = -\lim_{x \to +\infty} \frac{x}{e^x} - \left(\lim_{x \to +\infty} e^{-x} - e^0\right) = 1$$

pa je

$$q_1(x) = x - \frac{1}{1} \cdot 1 = x - 1.$$

Dalje je

$$(p_{2}(x), q_{0}(x)) = \int_{0}^{+\infty} e^{-x} \cdot x^{2} \cdot 1 \, dx$$

$$\begin{cases} u = x^{2} \\ du = 2x \, dx \\ v = -e^{-x} \\ dv = e^{-x} \, dx \end{cases}$$

$$= -x^{2} e^{-x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-x} \cdot 2x \, dx = -\left(\lim_{x \to +\infty} x^{2} e^{-x} - 0^{2} \cdot e^{0}\right) + 2 \cdot \left(p_{1}(x), q_{0}(x)\right) = -\lim_{x \to +\infty} \frac{x^{2}}{e^{x}} + 2 = 2$$

$$(q_{1}(x), q_{1}(x)) = \int_{0}^{+\infty} e^{-x} \cdot (x - 1)^{2} \, dx = \int_{0}^{+\infty} e^{-x} \cdot \left(x^{2} - 2x + 1\right) \, dx = \int_{0}^{+\infty} e^{-x} \cdot x^{2} \, dx - 2 \cdot \int_{0}^{+\infty} e^{-x} \cdot x \, dx + \int_{0}^{+\infty} e^{-x} \, dx$$

$$= (p_{2}(x), q_{0}(x)) - 2 \cdot \left(p_{1}(x), q_{0}(x)\right) + (q_{0}(x), q_{0}(x))$$

$$= 2 - 2 \cdot 1 + 1 = 1$$

$$(p_{2}(x), q_{1}(x)) = \int_{0}^{+\infty} e^{-x} \cdot x^{2} \cdot (x - 1) dx = \int_{0}^{+\infty} e^{-x} \cdot x^{3} dx - \int_{0}^{+\infty} e^{-x} \cdot x^{2} dx$$

$$\begin{cases} u = x^{3} \\ du = 3x^{2} dx \\ v = -e^{-x} \\ dv = e^{-x} dx \end{cases}$$

$$= -x^{2} e^{-x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-x} \cdot 3x^{2} dx - \int_{0}^{+\infty} e^{-x} \cdot x^{2} dx = -\left(\lim_{x \to +\infty} \frac{x^{2}}{e^{x}} - 0^{2} \cdot e^{0}\right) + 2 \cdot \int_{0}^{+\infty} e^{-x} \cdot x^{2} dx$$

$$= 2 \cdot (p_{2}(x), q_{0}(x)) = 4$$

pa je

$$q_2(x) = x^2 - \frac{2}{1} \cdot 1 - \frac{4}{1} \cdot (x - 1) = x^2 - 2 - 4x + 4 = x^2 - 4x + 2.$$

Dakle, ortogonalna baza prostora $\mathbb{R}_2(x)$ je

$$B_{\mathbb{R}_{2}(x)} = \{q_{0}(x), q_{1}(x), q_{2}(x)\} = \{1, x - 1, x^{2} - 4x + 2\}.$$

Prethodnu bazu je potrebno ortonormirati.

$$\begin{aligned} & \text{Kako je} \\ & \left(q_{0}\left(x\right), q_{0}\left(x\right)\right) = 1 \\ & \left(q_{1}\left(x\right), q_{1}\left(x\right)\right) = 1 \\ & \left(q_{2}\left(x\right), q_{2}\left(x\right)\right) = \int_{0}^{+\infty} e^{-x} \cdot \left(x^{2} - 4x + 2\right)^{2} \, dx = \int_{0}^{+\infty} e^{-x} \cdot \left(x^{4} - 8x^{3} + 20x^{2} - 16x + 4\right) \, dx \\ & = \int_{0}^{+\infty} e^{-x} \cdot x^{4} \, dx - 8 \cdot \int_{0}^{+\infty} e^{-x} \cdot x^{3} \, dx + 20 \cdot \int_{0}^{+\infty} e^{-x} \cdot x^{2} \, dx - 16 \cdot \int_{0}^{+\infty} e^{-x} \cdot x \, dx + 4 \cdot \int_{0}^{+\infty} e^{-x} \, dx \\ & = -x^{4} e^{-x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-x} \cdot 4x^{3} \, dx - 8 \cdot \int_{0}^{+\infty} e^{-x} \cdot x^{3} \, dx + 20 \cdot \int_{0}^{+\infty} e^{-x} \cdot x^{2} \, dx - 16 \cdot \int_{0}^{+\infty} e^{-x} \cdot x \, dx + 4 \cdot \int_{0}^{+\infty} e^{-x} \, dx \\ & = -\left(\lim_{x \to +\infty} \frac{x^{4}}{e^{x}} - 0^{4} \cdot e^{0}\right) - 4 \cdot \int_{0}^{+\infty} e^{-x} \cdot x^{3} \, dx + 20 \cdot \left(p_{2}\left(x\right), q_{0}\left(x\right)\right) - 16 \cdot \left(p_{1}\left(x\right), q_{0}\left(x\right)\right) + 4 \cdot \left(q_{0}\left(x\right), q_{0}\left(x\right)\right) \\ & = -4 \cdot \left(-x^{3} e^{-x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-x} \cdot 3x^{2} \, dx\right) + 20 \cdot 2 - 16 \cdot 1 + 4 \cdot 1 \\ & = 4 \cdot \left(\lim_{x \to +\infty} \frac{x^{3}}{e^{x}} - 0^{3} \cdot e^{0}\right) - 12 \cdot \int_{0}^{+\infty} e^{-x} \cdot x^{2} \, dx + 28 \\ & = -12 \cdot \left(p_{2}\left(x\right), q_{0}\left(x\right)\right) + 28 \end{aligned}$$

ortonormirana baza prostora $\mathbb{R}_{2}(x)$ je

 $=-12 \cdot 2 + 28 = 4$

$$B_{\mathbb{R}_{2}(x)} = \left\{ \frac{1}{\|q_{0}(x)\|} \cdot q_{0}(x), \frac{1}{\|q_{1}(x)\|} \cdot q_{1}(x), \frac{1}{\|q_{2}(x)\|} \cdot q_{2}(x) \right\}$$

$$= \left\{ \frac{1}{\sqrt{\left(q_{0}(x), q_{0}(x)\right)}} \cdot q_{0}(x), \frac{1}{\sqrt{\left(q_{1}(x), q_{1}(x)\right)}} \cdot q_{1}(x), \frac{1}{\sqrt{\left(q_{2}(x), q_{2}(x)\right)}} \cdot q_{2}(x) \right\}$$

$$= \left\{ q_{0}(x), q_{1}(x), \frac{1}{2} \cdot q_{2}(x) \right\}$$

$$= \left\{ 1, x - 1, \frac{x^{2} - 4x + 2}{2} \right\}$$

$$= \left\{ 1, x - 1, \frac{x^{2} - 2x + 1}{2} \right\}.$$