Ingeniería Informática-CC.Matemáticas

ÁLGEBRA LINEAL Y GEOMETRÍA

Hoja 7: Geometría afín II. Aplicaciones afines.

- 1. Sean (A_1, Ψ_1, E_1) y (A_2, Ψ_2, E_2) dos espacios afines, sea $f: A_1 \to A_2$ una afinidad, y sea $\varphi_f: E_1 \to E_2$ su aplicación lineal asociada. Demuestra que:
 - a) La afinidad f es inyectiva si y sólo si φ_f es inyectiva;
 - b) La afinidad f es sobreyectiva si y sólo si φ_f es sobreyectiva;
 - c) La afinidad f es biyectiva si y sólo si φ_f es biyectiva.
- **2.** En $\mathbb{A}^3_{\mathbb{R}}$ consideramos los puntos

$$A = (1, 1, 0), B = (2, 0, 2), C = (1, 2, \alpha), D = (3, 4, -1)$$

$$A' = (2, 1, 0), B' = (2, 2, 1), C' = (1, 1, \beta), D' = (3, 0, 0),$$

 $\mathrm{con}\ \alpha,\beta\in\mathbb{R}.\ \mathrm{Sea}\ f:\mathbb{A}^3_{\mathbb{R}}\to\mathbb{A}^3_{\mathbb{R}}\ \mathrm{una}\ \mathrm{afinidad}\ \mathrm{tal}\ \mathrm{que}\ f(A)=A',\ f(B)=B',\ f(C)=C'\ \mathrm{y}\ f(D)=D'.$

- a) Sea $X \subset \mathbb{R}$ el conjunto de valores de α para los que se cumple que para todo valor de β , existe una transformación afín con las propiedades descritas en el párrafo anterior. Para cada uno de los valores de α obtenidos, ¿cuántas afinidades distintas se pueden construir?
- b) Para cada $\alpha \in \mathbb{R} \setminus X$, encuentra los valores de β para los que f es una afinidad. ¿Qué datos adicionales se necesitan para determinar completamente f?
- 3. Sea $T:\mathbb{A}^2_{\mathbb{R}}\to\mathbb{A}^2_{\mathbb{R}}$ una afinidad tal que

$$T(1,1) = (2,3), T(3,2) = (3,8), T(2,3) = (1,7).$$

Escribe la expresión en coordenadas de T.

- **4.** Estudia las afinidades de $\mathbb{A}^2_{\mathbb{R}}$ que dejan fija la hipérbola xy=1.
- 5. En el espacio afín, determina el lugar geométrico de las imágenes de un punto dado X por todas las afinidades que tienen una recta dada r de puntos fijos y una recta dada s, que se cruza con r, fija.
- 6. En el plano afín considera todas las afinidades de la forma

$$x' = \alpha x + y + \alpha$$
$$y' = x + \alpha y + \alpha,$$

para un parámetro $\alpha \in K$. Determina el lugar geométrico de las imágenes de un punto dado por todas estas afinidades.

- 7. Sea (A, Ψ, E) un espacio afín de dimensión n y sea $f: A \to A$ una afinidad. Demuestra que si f tiene n+1 puntos fijos afínmente independientes, entonces f es la identidad.
- 8. Sea (A, Ψ, E) un espacio afín y $h: A \to A$ una homotecia de centro $C \in A$ y razón λ . Demuestra que si $\lambda \neq 1$ entonces C es el único punto fijo de h. ¿Qué ocurre si $\lambda = 1$?
- 9. Calcula las ecuaciones de la homotecia $f: \mathbb{A}^2_{\mathbb{R}} \to \mathbb{A}^2_{\mathbb{R}}$ tal que f(1,1) = (-3,0) y f(-1,0) = (-1,1).
- **10.** Calcula las ecuaciones de la homotecia $f: \mathbb{A}^2_{\mathbb{R}} \to \mathbb{A}^2_{\mathbb{R}}$ tal que f(1,1) = (4,2) y f(-1,0) = (-2,-1), si existe.

11. Consideramos las rectas en $\mathbb{A}^2_{\mathbb{R}}$:

$$r_1: x + 2y - 4 = 0$$
 y $r_2: x = 2y$.

Calcular la expresión analtica con respecto al sistema referencia estándar de $\mathbb{A}^2_{\mathbb{R}}$ de:

- a) La simetría sobre r_1 en la dirección de r_2 ;
- **b)** La proyección sobre r_1 en la dirección de r_2 .
- 12. Sea $f: \mathbb{A}^2_{\mathbb{R}} \to \mathbb{A}^2_{\mathbb{R}}$ la aplicación definida por

$$f(x,y) = \frac{1}{5}(3x - 4y + 8, -4x - 3y + 16).$$

- a) Calcula la matriz de f con respecto al sistema referencia estándar de $\mathbb{A}^2_{\mathbb{R}}$.
- b) Demuestra que f es una simetría y calcula los elementos geométricos que la determinan.
- **13.** Sea $f:A\to A$ una afinidad, sea $L(f)\subset \mathbb{A}$ el conjunto de puntos fijos por f y sea φ_f la aplicación lineal asociada a f. Demuestra que L(f) es una variedad lineal siguiendo los siguientes pasos:
 - a) Si $L(f) = \emptyset$ entonces no hay nada que probar;
 - b) Si $L(f) = \{P\}$ con $P \in A$ entonces no hay nada que probar;
- c) Si $L(f) \supseteq \{P\}$ demuestra que φ_f tiene un autovalor igual a 1 (y por tanto tiene vectores fijos no nulos);
- d) Con las mismas hipótesis del apartado anterior, sea \mathcal{F} el subespacio vectorial generado por los autovectores de autovalor 1; demuestra que $L(f) = P + \mathcal{F}$.
- 14. Ilustra mediante un ejemplo que el recíproco del apartado (c) del ejercicio anterior no tiene por qué ser cierto.
- **15.** Sea $f:A\to A$ una aplicación afín. Se dice que una variedad lineal $L=P+\mathcal{F}$ es invariante por f si para todo $Q\in L$ se tiene que $f(Q)\in L$.
 - a) Demuestra que si L es invariante por f entonces \mathcal{F} es un subespacio invariante por φ_f ;
 - b) Ilustra mediante, un ejemplo, que el recíproco del apartado anterior no tiene por qué ser cierto.
- 16. Considera los puntos de $\mathbb{A}^3_{\mathbb{R}}$ siguientes:

$$A_0 = (1, 1, 1),$$
 $A_1 = (2, 1, 1),$ $A_2 = (1, 2, 1),$ $A_3 = (1, 1, 2).$ $B_0 = (2, 3, 1),$ $B_1 = (3, 1, 2),$ $B_2 = (1, 5, 2),$ $B_3 = (1, 4, 3).$

- a) Demuestra que A_0, A_1, A_2, A_3 son afínmente independientes;
- b) Calcula la matriz con respecto al sistema de referencia estándar de $\mathbb{A}^3_{\mathbb{R}}$ de la única afinidad $f: \mathbb{A}^3_{\mathbb{R}} \to \mathbb{A}^3_{\mathbb{R}}$ que queda definida por las imagenes $f(A_i) = B_i, i = 0, 1, 2, 3$.
 - c) Calcula los puntos fijos de f.
 - d) Calculas las rectas y planos invariantes por f.
- e) Calcula la matriz con respecto al sistema de referencia baricéntrico $\mathcal{R}_b = \{A_0, A_1, A_2, A_3\}$ de la afinidad f.