Stat 260, Lecture 6, Tidy Data

David Stenning

Load packages and datasets

Create tibbles used in examples

```
table2 <- table1 %>%
  gather(cases,population,key="type",value="count") %>%
  arrange(country,year)
table3 <- table1 %>%
  mutate(rate = paste(cases,population,sep="/")) %>%
  select(-cases,-population)
table4a <- table1 %>%
  select(country,year,cases) %>%
  spread(key=year,value=cases)
table4b <- table1 %>%
  select(country,year,population) %>%
  spread(key=year,value=population)
```

Reading

Required Reading:

► Tidy Data: Chapter 12 of online text.

Useful References:

- Advanced: Wickham (2014) [https://www.jstatsoft.org/index. php/jss/article/view/v059i10/v59i10.pdf]
- Data import (readr/tidyr) cheatsheet at [https://github.com/rstudio/cheatsheets/raw/master/dataimport.pdf]

Tidy data

- In a tidy dataset,
 - each variable has its own column,
 - each observation has its own row, and
 - each value has its own cell.
- (See Figure 12.1 of the online text.)
- The tibble table1 that we read in earlier is tidy:

table1

```
## # A tibble: 6 x 4
##
    country
              year cases population
    <chr>>
                <int> <int>
##
                                 <int.>
## 1 Afghanistan 1999
                        745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil
                 1999 37737 172006362
## 4 Brazil
                 2000 80488 174504898
## 5 China
                 1999 212258 1272915272
## 6 China
                 2000 213766 1280428583
```

Why is table1 tidy?

- It is never straightforward to answer this.
- These are WHO data on Tuberculosis cases.
 - ▶ The variables are country, year, number of cases and population
 - ► The observations are country/year combinations.
 - Each value is in its own cell.
- country and year describe the observational unit, and so there must be one row for each, and there must be variables that record country and year.
- cases and population are what we measure on the observational unit and so must be variables.

Non-tidy data

- There are many ways to be non-tidy.
- Exercise: Why are table2 and table4a not tidy?

```
print(table2,n=6)
## # A tibble: 12 x 4
##
    country year type
                                 count
    <chr> <int> <chr>
##
                                <int>
## 1 Afghanistan 1999 cases
                                    745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases
                                   2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases
                                  37737
## 6 Brazil 1999 population 172006362
## # ... with 6 more rows
print(table4a,n=6)
```

Why tidy?

- ► Good statistics (exploratory, visualization, modelling) requires that we identify the observational unit.
- ▶ R is efficient at computing with vectors, so variables as column-vectors are efficient.
- ► Tidyverse tools require it; e.g.,

```
table1 %>% mutate(rate=cases/population*100000)
```

```
## # A tibble: 6 x 5
##
    country
              year cases population rate
##
    <chr>
            <int> <int>
                               <int> <dbl>
## 1 Afghanistan 1999 745 19987071 3.73
## 2 Afghanistan 2000 2666 20595360 12.9
## 3 Brazil
             1999 37737 172006362 21.9
                2000 80488 174504898 46.1
## 4 Brazil
## 5 China
           1999 212258 1272915272 16.7
                2000 213766 1280428583 16.7
## 6 China
```

table1 %>% group_by(year) %>% summarize(sum(cases)) ## # A tibble: 2 x 2 year `sum(cases)` ## ## <int> <int> ## 1 1999 250740 ## 2 2000 296920 ggplot(table1,aes(x=year,y=cases,color=country)) + geom_point() 200000 -150000 country 8 100000 - Afghanistan Brazil China 50000 -

1999.50

vear

1999.75

2000.00

1999.25

1999.00

Exercises

- ► Compute rate from table2.
- ► Compute rate from table4a and table4b.

Gathering

- ► The problem with table 4a is that the cases variable is split across the columns 1999 and 2000 that must be "gathered" into one.
- Each value of cases needs a label (key) to tell us which year it comes from.

```
table4a %>% gather(`1999`,`2000`,key=year,value=cases)
## # A tibble: 6 x 3
##
    country
                year
                      cases
##
    <chr>
          <chr> <int>
## 1 Afghanistan 1999
                        745
## 2 Brazil 1999
                      37737
## 3 China 1999
                     212258
## 4 Afghanistan 2000
                       2666
## 5 Brazil
                2000
                      80488
## 6 China
                2000
                     213766
```

Exercise Repeat for table4b

Gathering: another example

#

#

Billboard Top 100 rankings of songs

```
bb <- read_csv("billboard.csv")
bb</pre>
```

```
A tibble: 317 x 83
##
       year artist.inverted track time genre date.entered date.peaked x1st.wee
                            <chr> <tim> <chr> <date>
##
      <dbl> <chr>
                                                           <dat.e>
                                                                           <dbl
                                                                              7
##
       2000 Destiny's Child Inde~ 03:38 Rock
                                              2000-09-23
                                                           2000-11-18
      2000 Santana
                           Mari~ 04:18 Rock
##
                                             2000-02-12
                                                           2000-04-08
                                                                              7
##
       2000 Savage Garden I Kn~ 04:07 Rock 1999-10-23
                                                           2000-01-29
                                                                              4
##
      2000 Madonna
                           Music 03:45 Rock
                                              2000-08-12
                                                           2000-09-16
##
      2000 Aguilera, Chri~ Come~ 03:38 Rock
                                             2000-08-05
                                                           2000-10-14
                                                                              5
##
       2000 Janet
                            Does~ 04:17 Rock
                                              2000-06-17
                                                           2000-08-26
                                                                              5
##
       2000 Destiny's Child Say ~ 04:31 Rock
                                             1999-12-25
                                                           2000-03-18
                                                                              8
       2000 Iglesias, Enri~ Be W~ 03:36 Latin 2000-04-01
                                                           2000-06-24
                                                                              6
##
##
       2000 Sisqo
                            Inco~ 03:52 Rock 2000-06-24
                                                          2000-08-12
   9
## 10
       2000 Lonestar
                            Amaz~ 04:25 Coun~ 1999-06-05
                                                          2000-03-04
    ... with 307 more rows, and 75 more variables: x2nd.week <dbl>.
## #
## #
      x3rd.week <dbl>, x4th.week <dbl>, x5th.week <dbl>, x6th.week <dbl>,
## #
       x7th.week <dbl>, x8th.week <dbl>, x9th.week <dbl>, x10th.week <dbl>,
## #
       x11th.week <dbl>, x12th.week <dbl>, x13th.week <dbl>, x14th.week <dbl>,
## #
       x15th.week <dbl>, x16th.week <dbl>, x17th.week <dbl>, x18th.week <dbl>,
## #
       x19th.week <dbl>, x20th.week <dbl>, x21st.week <dbl>, x22nd.week <dbl>,
```

x23rd.week <dbl>, x24th.week <dbl>, x25th.week <dbl>, x26th.week <dbl>,

x27th.week <dbl>, x28th.week <dbl>, x29th.week <dbl>, x30th.week <dbr/>, x30th.we

Structure of the Billboard table

- Columns year through date.peaked describe the song, then x1st.week through x76th.week are the chart positions for the first through 76th weeks.
 - ► If a song is on the chart for less than 76 weeks, its position is NA for any missing weeks.
- Weeks are not variables, they are the time data for the time series.

Tidying the Billboard data

- Main step is to gather the rankings in the different weeks into a rank variable.
- ▶ Before gathering, will select/rename some of the variables.
- ► After gathering, will create some new variables and sort the data frame.

Select and rename

- ▶ Won't need time or genre.
 - ▶ Recall that select() from dplyr can use to de-select
- Rename artist.inverted
 - ▶ Recall that rename() from dplyr takes arguments of the form newname = oldname

```
bb <-
bb %>% select(-time,-genre) %>%
rename(artist = artist.inverted)
```

Gather the weeks into a "long" version of the Billboard data

- Leave each song info variable as-is.
- ► The "values", are the chart positions.
- ▶ The weeks are the "keys" for these values.
- ▶ We want to create key-value pairs for each observation.
 - ► There will be missing values, which we can remove.

```
bb %>% gather(x1st.week:x76th.week,key=week,value=rank,na.rm=TRUE) %>% mutate(week= parse_number(week)) %>% # replace, e.g., x1st.week with 1, ... arrange(artist,track,week)
```

```
## # A tibble: 5,307 x 7
##
       year artist
                    track
                                               date.entered date.peaked
                                                                         week
##
      <dbl> <chr>
                    <chr>>
                                                            <date>
                                                                        <dbl> <
                                               <dat.e>
##
      2000 2 Pac Baby Don't Cry (Keep Ya H~ 2000-02-26
                                                            2000-03-11
      2000 2 Pac
                    Baby Don't Cry (Keep Ya H~ 2000-02-26
                                                            2000-03-11
##
##
      2000 2 Pac
                    Baby Don't Cry (Keep Ya H~ 2000-02-26
                                                            2000-03-11
                                                                            3
                    Baby Don't Cry (Keep Ya H~ 2000-02-26
##
      2000 2 Pac
                                                            2000-03-11
##
      2000 2 Pac
                    Baby Don't Cry (Keep Ya H~ 2000-02-26
                                                            2000-03-11
##
       2000 2 Pac
                    Baby Don't Cry (Keep Ya H~ 2000-02-26
                                                            2000-03-11
                                                                            7
##
       2000 2 Pac
                    Baby Don't Cry (Keep Ya H~ 2000-02-26
                                                            2000-03-11
      2000 2Ge+her The Hardest Part Of Break~ 2000-09-02
                                                            2000-09-09
                                                                            1
##
##
       2000 2Ge+her The Hardest Part Of Break~ 2000-09-02
                                                            2000-09-09
      2000 2Ge+her The Hardest Part Of Break~ 2000-09-02
                                                            2000-09-09
## 10
## # ... with 5.297 more rows
```

Spreading

- Whereas gathering makes a wide dataset long, spreading makes a long dataset wide.
- Spread when observations are split across multiple rows.
- E.G., table2 has observations for each country/year split across two rows:

table2

```
## # A tibble: 12 x 4
##
     country year type
                                       count
     <chr>
                 <int> <chr>
##
                                       <int>
   1 Afghanistan 1999 cases
                                         745
##
##
   2 Afghanistan 1999 population 19987071
   3 Afghanistan 2000 cases
                                        2666
##
   4 Afghanistan
                  2000 population
                                    20595360
##
##
   5 Brazil
                  1999 cases
                                       37737
                  1999 population
##
   6 Brazil
                                   172006362
   7 Brazil
                  2000 cases
                                       80488
##
##
   8 Brazil
                  2000 population 174504898
   9 China
                  1999 cases
                                      212258
##
## 10 China
                  1999 population 1272915272
                  2000 cases
                                      213766
## 11 China
## 12 China
                  2000 population 1280428583
```

Spreading table2

The column type contains the keys for the values in count that belong in columns cases and population, respectively.

table2 %>% spread(key=type,value=count)

```
## # A tibble: 6 x 4
##
    country
                 year cases population
    <chr>>
##
                <int> <int>
                                  <int.>
                         745 19987071
## 1 Afghanistan 1999
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil
                 1999 37737 172006362
## 4 Brazil
                 2000 80488 174504898
## 5 China
                 1999 212258 1272915272
## 6 China
                 2000 213766 1280428583
```

Exercise Select country, year and cases from table1 and use spread to obtain a table with rows for each year and columns for each country. (Note: such data is not tidy.)

Separating

separate() splits a column on a specified separator, or at a specified character number.

```
print(table3,n=4)
## # A tibble: 6 x 3
##
    country year rate
##
    <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## # ... with 2 more rows
table3 %>% separate(rate,into=c("cases","population"),sep="/") %>% print(n=4)
## # A tibble: 6 x 4
##
    country year cases population
    <chr> <int> <chr> <chr>
##
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## # ... with 2 more rows
```

▶ Notice that cases and population are character columns.

Separating based on character number

```
print(table3,n=4)
## # A tibble: 6 x 3
##
    country year rate
##
    <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## # ... with 2 more rows
table3 %>% separate(rate,into=c("first", "remainder"), sep=1)
## # A tibble: 6 x 4
##
    country vear first remainder
    <chr> <int> <chr> <chr>
##
## 1 Afghanistan 1999 7 45/19987071
## 2 Afghanistan 2000 2 666/20595360
## 3 Brazil
                1999 3 7737/172006362
## 4 Brazil
                2000 8 0488/174504898
## 5 China
             1999 2 12258/1272915272
## 6 China
                2000 2
                          13766/1280428583
```

Convert type of columns after separating

```
## # A tibble: 6 x 4
##
    country year cases population
##
    <chr>
              <int> <int>
                                <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil
                1999 37737 172006362
## 4 Brazil
                2000 80488 174504898
## 5 China
             1999 212258 1272915272
## 6 China
                2000 213766 1280428583
```

Missing data

When we used gather() on the Billboard data we set na.rm=TRUE to remove weeks where a given track was not on the charts:

```
bb %>% select(track,x23rd.week:x25th.week) %>% print(n=4)
## # A tibble: 317 x 4
                               x23rd.week x24th.week x25th.week
##
     track
##
     <chr>>
                                    <dbl>
                                                <dbl>
                                                           <dbl>
## 1 Independent Women Part I
                                       10
                                                   12
                                                              15
## 2 Maria, Maria
                                                   36
                                                              48
                                       26
## 3 T Knew T Loved You
                                                   12
                                                              14
                                        8
## 4 Music
                                       29
                                                   44
                                                              NA
## # ... with 313 more rows
```

➤ The missings in bb are "explicit"; when gather() removes them they become "implicit" (e.g., no row for week 25 for track 4).

Making implicit missing data explicit

spread() will make implicit missing values explicit if needed for a row.

```
stocks <- tibble( year=c(2015,2016,2016), qtr = c(1,1,2),
                return = c(1.0, 2.0, 3.0)
stocks
## # A tibble: 3 x 3
## year gtr return
## <dbl> <dbl> <dbl>
## 1 2015 1
## 2 2016 1
## 3 2016 2
stocks %>% spread(key=year, value=return)
## # A tibble: 2 x 3
##
      gtr '2015' '2016'
## <dbl> <dbl> <dbl>
## 1
                     2
## 2
             NA
                     3
```

Make implicit explicit with complete()

complete() creates rows for all combinations of input variables and fills in missing values where necessary.

Case Study: WHO TB data

► The who dataset comes with tidyr. We'll use a related (less tidy) version from the WHO website.

```
tb <- read_csv("tb.csv")</pre>
```

Structure of TB table

- ► First column is 2-letter country code, second is year, third is number of new cases for that country/year.
- ▶ Then come TB counts for different gender/age categories.
 - new_sp is "new cases by positive pulmonary smear assay"
 - gender is m or f
 - two special age categories 0-4, 5-14,
 - ► age categories 0-14, 15-24, 25-34, 35-44, 45-54, 55-65, 65+, unknown (u)
- Gender/age columns are not variables, they are data on the observed units.
- ► Tidy data would have one row for each country, year, gender and age category, with a column of counts

Tidying the TB data

► Recall structure of the data: country, year, count of new cases, counts of new cases by gender/age categories.

```
names(tb)[1:10]
## [1] "iso2"    "year"    "new_sp"    "new_sp_m04"    "new_sp_m51
## [6] "new_sp_m014"    "new_sp_m1524"    "new_sp_m2534"    "new_sp_m3544"    "new_sp_m45
```

- ► Main step is to "gather" TB prevalence in the different gender/age categories into a count variable.
 - Complicated by the coding of gender/age categories
- ▶ Before gathering, will remove unneeded variables.

Remove variables

- Won't need overall count
- ▶ Special categories 0-4 and 5-14 overlap with 0-14, so remove
- Age unknown not useful for analysing trends, so remove

```
tb <- select(tb,-new_sp, -contains("04"), -contains("514"),
             -new_sp_mu, -new_sp_fu)
tb
    A tibble: 5,769 x 16
##
      iso2
```

```
year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544 new_sp_m45
      <chr> <dbl>
                         <dbl>
                                       dbl>
                                                      <dbl>
                                                                    <dbl>
                                                                                 <db
##
    1 AD
              1989
                             NA
                                           NA
                                                         NA
                                                                       NA
##
             1990
                             NΑ
                                                                       NΑ
##
    2 AD
                                           NΑ
                                                         NΑ
##
    3 AD
             1991
                             NA
                                           NA
                                                                       NΑ
                                                         NΑ
##
    4 AD
             1992
                             NΑ
                                           NΑ
                                                         NΑ
                                                                       NΑ
    5 AD
             1993
                             NΑ
                                           NΑ
                                                                       NΑ
##
                                                         NΑ
##
    6 AD
             1994
                             NA
                                           NA
                                                         NA
                                                                       NA
##
    7 AD
             1996
##
    8 AD
              1997
##
    9 AD
              1998
                              0
                                            0
                                                          0
## 10 AD
              1999
## #
     ... with 5,759 more rows, and 9 more variables: new sp m5564 <dbl>,
## #
       new_sp_m65 <dbl>, new_sp_f014 <dbl>, new_sp_f1524 <dbl>,
## #
       new_sp_f2534 <dbl>, new_sp_f3544 <dbl>, new_sp_f4554 <dbl>,
## #
       new_sp_f5564 <dbl>, new_sp_f65 <dbl>
                                                                               29 / 31
```

Gather counts for demographic groups

Create demographic variable demog and count variable count by gathering over all variables except iso2 and year.

```
tblong <- tb %>%
  gather(new_sp_m014:new_sp_f65,key=demog,value=count,na.rm=TRUE)
tblong
```

```
## # A tibble: 33,615 x 4
## iso2 year demog
                      count
     <chr> <dbl> <chr> <dbl> <chr>
##
##
   1 AD 1996 new_sp_m014
   2 AD
##
           1997 new_sp_m014
   3 AD 1998 new sp m014
##
##
   4 AD
           1999 new_sp_m014
   5 AD
           2000 new_sp_m014
##
   6 AD
           2001 new sp m014
##
##
   7 AD
           2002 new_sp_m014
                              0
   8 AD
           2003 new sp m014
##
                              0
##
   9 AD
           2004 new_sp_m014
                              0
## 10 AD
           2005 new sp m014
                              0
## # ... with 33,605 more rows
```

Separate gender from age category.

First remove new_sp_, then separate result on first column

```
maxlen <- max(nchar(tblong$demog))</pre>
tb <- tblong %>% mutate(demog = substr(demog,8,maxlen)) %>%
 separate(demog, into=c("gender", "agecat"), sep=1)
tb
## # A tibble: 33,615 x 5
##
     iso2
            year gender agecat count
##
     <chr> <dbl> <chr> <chr>
                                <dbl>
   1 AD
             1996 m
                         014
##
##
   2 AD
        1997 m
                         014
   3 AD
         1998 m
                         014
##
   4 AD
         1999 m
                         014
##
##
   5 AD
         2000 m
                         014
   6 AD
             2001 m
                         014
##
##
   7 AD
            2002 m
                         014
##
   8 AD
            2003 m
                         014
                                    0
##
    9 AD
             2004 m
                         014
## 10 AD
             2005 m
                         014
## # ... with 33.605 more rows
```