2D Line Drawing

Computer coordinate

Continuous and Discrete Line

Multi small pixels => Scan-converted line

Line segment

Starting point p(x1,y1) and end point q(x2,y2)

Line equation

$$y = mx + b$$

$$m = \frac{Dy}{Dx}$$
, $Dy = y_2 - y_1$, $Dx = x_2 - x_1$; $b = y_1 - mx_1$

Line segment

Parametric equation

$$\begin{cases} x = (1-t)x_1 + tx_2 \\ y = (1-t)y_1 + ty_2 \end{cases}$$

Concept

Concept

• Let m denote the slope of segment line, and it satisfies 0 < m < 1.

• If given point (x_i, y_i) , the next point can be defined by

$$\begin{cases} x_{i+1} = x_i + 1 \\ y_{i+1} \in \{y_i, y_i + 1\} \end{cases}$$

Basic Incremental Algorithm (Digital Differential Analyzer)

$$y_{i+1} = mx_{i+1} + B$$
$$= m(x_i + \Delta x) + B$$
$$= y_i + m\Delta x$$

$$d_{1} = y - y_{i}; d_{2} = (y_{i} + 1) - y$$

$$y_{i+1} = \begin{cases} y_{i}, & \text{if } d_{1} \leq d_{2} \\ y_{i} + 1, & \text{otherwises} \end{cases}$$

- Compare values of d₁ and d₂ by

$$d_1-d_2=2(Dy/Dx)x_i+2(Dy/Dx)-2y_i+2b-1$$

with
$$y=(Dy/Dx)(x_i+1)+b$$

- Eliminate division by Dx

$$p_i = Dx(d_1 - d_2) = 2(Dy)x_i - 2(Dx)y_i + c$$
 (*)

with
$$c = 2Dy + (2b - 1)Dx$$

- Reduce calculation of $p_i(x_i, y_i)$ in (*) by

$$p_{i+1} - p_i = 2(Dy)(x_{i+1} - x_i) - 2(Dx)(y_{i+1} - y_i)$$

$$\Rightarrow p_{i+1} - p_i = 2(Dy) - 2(Dx)(y_{i+1} - y_i), \text{ with } x_{i+1} = x_i + 1$$

and define a constant increment for each step

$$p_i < 0, p_{i+1} = p_i + 2Dy \text{ by } y_{i+1} = y_i$$

$$p_i \ge 0, p_{i+1} = p_i + 2Dy - 2Dx \text{ by } y_{i+1} = y_i + 1$$

where the initial value of p_i is defined by

$$\begin{aligned} p_0 &= 2(Dy)x_0 - 2(Dx)y_0 + c \\ &= 2(Dy)x_0 - 2(Dx)y_0 + 2Dy + (2b-1)Dx \\ \mathbf{p_0} &= \mathbf{2Dy} - \mathbf{Dx} \text{ with } b = y_0 - (Dy/Dx)x_0 \end{aligned}$$

Examples

Given two points A(12,20) and B(22,27)

		DDA (m=0.7)		Bresenham (Dx=10,Dy=7,p ₀ =4, Const ₁ =2Dy=14, Const ₂ = 2(Dy-Dx)=-6)	
i	x _i	У	y _i	p _i	y i
0	12	20	20	4	20
1	13	20.7	21	-2	21
2	14	21.4	21	12	21
3	15	22.1	22	6	22
4	16	22.8	23	0	23
5	17	23.5	24	-6	24
6	18	24.2	24	8	24
7	19	24.9	25	2	25
8	20	25.6	26	-4	26
9	21	26.3	26	10	26
10	22	27	27	4	27

(Provided by Dang Nguyen Duc Tien-Vu Quoc Hoang-Le Phong)

Midpoint (Pitteway and Van Aken)

- Compare position of Q and Midpoint, where Q is the intersection point between drawing line and vertical line defined by two points P and S, and the Midpoint is the middle point of two points P and S.

Midpoint

- Drawing line equation: Ax + By + C = 0

$$A = y_2 - y_1$$
, $B = -(x_2 - x_1)$, $C = x_2y_1 - x_1y_2$

- Let F(x,y) be an implicit function

$$F(x, y) = Ax + By + C, \text{ where } A > 0$$

$$= \begin{cases} <0, (x, y) \text{ positions above the line} \\ =0, (x, y) \text{ positions on the line} \\ \ge 0, (x, y) \text{ positions below the line} \end{cases}$$

- Eliminate division by 2 in F(MidPoint) by

$$p_i = 2F(MidPoint) = 2F(x_i + 1, y_i + \frac{1}{2})$$
 (**)

$$p_{i} < 0 \Rightarrow y_{i+1} = y_{i}$$

$$p_{i} \ge 0 \Rightarrow y_{i+1} = y_{i} + 1$$

Midpoint

- Reduce calculation of $p_i(x_i, y_i)$ in (**) by

$$p_{i+1} - p_i = 2F\left(x_{i+1} + 1, y_{i+1} + \frac{1}{2}\right) - 2F\left(x_i + 1, y_i + \frac{1}{2}\right)$$
$$= \dots = 2A + 2B(y_{i+1} - y_i)$$

$$\Rightarrow p_{i+1} = p_i + 2Dy - 2Dx(y_{i+1} - y_i)$$

and define a constant increment for each step

$$p_i < 0, p_{i+1} = p_i + 2Dy \text{ by } y_{i+1} = y_i$$

$$p_i \ge 0, p_{i+1} = p_i + 2Dy - 2Dx \text{ by } y_{i+1} = y_i + 1$$

where the initial value of p_i is defined by

$$p_0 = 2F\left(x_0 + 1, y_0 + \frac{1}{2}\right) = 2A + B = 2Dy - Dx$$

Midpoint

? Bresenham Algorithm = Midpoint Algorithm

What is the difference between Bresenham and Midpoint algorithms? Or which one is more general?

References

- [1] H. Kiem, D.A. Duc, L.D. Duy, V.H. Quan, Cơ Sở Đồ Họa Máy Tính, NXB. Giáo Dục, 2005.
- [2] D.N.D.Tien, V.Q. Hoang, L. Phong, CG-Course Slide, HCM-University of Science.