Adversarial-Free Speaker Identity-Invariant Representation Learning for Automatic Dysarthric Speech Classification

Parvaneh Janbakhshi and Ina Kodrasi

Idiap Research Institute Speech and Audio Processing Group

Virtual INTERSPEECH 2022

September 2022

Outline

- 1. Automatic Dysarthria Speech Classification
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

- » Speech dysarthria due to Parkinson's disease (PD) \to disturbances of muscular control on speech production system
 - ▶ Imprecise articulation, abnormal speech rhythm, reduced stress, breathiness

- » Speech dysarthria due to Parkinson's disease (PD) \to disturbances of muscular control on speech production system
 - ▶ Imprecise articulation, abnormal speech rhythm, reduced stress, breathiness
- » Dysarthric speech classification: discriminating between normal speech and speech from patients with dysarthria (e.g., PD)

- Speech dysarthria due to Parkinson's disease $(PD) \rightarrow disturbances$ of muscular control on speech production system
 - Imprecise articulation, abnormal speech rhythm, reduced stress, breathiness
- Dysarthric speech classification: discriminating between normal speech and speech from patients with dysarthria (e.g., PD)

Dysarthric speech classification using:

- Subjective screening based on » Automatic and objective method judgement of medical practitioners
 - Labor-intensive
 - Inconsistency
 - Difficulties with early diagnosis

- - Efficient and economical
 - Repeatable
- Early diagnosis

- Speech dysarthria due to Parkinson's disease $(PD) \rightarrow disturbances$ of muscular control on speech production system
 - Imprecise articulation, abnormal speech rhythm, reduced stress, breathiness
- Dysarthric speech classification: discriminating between normal speech and speech from patients with dysarthria (e.g., PD)

Dysarthric speech classification using:

- Subjective screening based on » Automatic and objective method judgement of medical practitioners
 - Labor-intensive
 - Inconsistency
 - Difficulties with early diagnosis

- - Efficient and economical
 - Repeatable
 - Early diagnosis

Outline

- 1. Automatic Dysarthria Speech Classification
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

- » Traditional machine learning approaches
- » Deep learning approaches

» Traditional machine learning approaches (Hegde et al., 2019; Kodrasi and Bourlard, 2020; Hernandez et al., 2020)

» Traditional machine learning approaches (Hegde et al., 2019; Kodrasi and Bourlard, 2020; Hernandez et al., 2020)

- ↑ May fail to adequately capture pathological speech characteristics
- ↑ May fail to characterize abstract but important acoustic cues

- » Deep learning approaches \rightarrow data-driven approaches using no prior knowledge
 - Exploit high-level abstract features from low-level speech representations or raw waveforms using neural networks (Vaiciukynas et al., 2017; Mallela et al., 2020; Narendra et al., 2021)

∧ no explicit attempts to guide the networks to learn robust features

- » Deep learning approaches
 - Pairwise training using distance-based CNNs (Janbakhshi et al., 2021)
 - ↑ A single network for different but phonetically matched utterances

» Deep learning approaches

Supervised speaker identity-invariant representation learning with adversarial training (Janbakhshi and Kodrasi, 2021)

 $\underline{\wedge}$ Difficulty of training the adversarial network for obtaining the speaker identity-invariant representation

Outline

- 1. Automatic Dysarthria Speech Classification
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

- » Speaker identity-invariant representation via feature separation
 - Dual representation learning
 - Jointly minimizing the auto-encoder reconstruction loss and minimizing a speaker ID loss using one of the representations while minimizing a MI criterion between the two representations

Speaker identity-invariant representation training \rightarrow feature separation

- » Requires MI approximation, i.e., $I(z_{\rm id}, z_{\rm r})$
 - Challenging for high-dimensional variables with unknown probability distributions

Speaker identity-invariant representation training \rightarrow feature separation

- » Requires MI approximation, i.e., $I(z_{\rm id}, z_{\rm r})$
 - Challenging for high-dimensional variables with unknown probability distributions
 - ▶ Variational contrastive log-ratio upper bound (vCLUB) \rightarrow an upper bound for MI (Cheng et al., 2020)

$$I_{\text{vCLUB}}(z_{\text{id}}, z_{\text{r}}) = \mathbb{E}_{p(z_{\text{id}}, z_{\text{r}})} \left[\log q_{\phi}(z_{\text{id}}|z_{\text{r}}) \right] - \mathbb{E}_{p(z_{\text{id}})} \mathbb{E}_{p(z_{\text{r}})} \left[\log q_{\phi}(z_{\text{id}}|z_{\text{r}}) \right], \tag{1}$$

▶ $q_{\phi}(z_{\rm id}|z_{\rm r})$ → variational approximation of $p(z_{\rm id}|z_{\rm r})$ → modelled by a neural network with overall parameters of ϕ

Speaker identity-invariant representation training \rightarrow feature separation

- » Requires MI approximation, i.e., $I(z_{\rm id}, z_{\rm r})$
 - Challenging for high-dimensional variables with unknown probability distributions
 - ▶ Variational contrastive log-ratio upper bound (vCLUB) \rightarrow an upper bound for MI (Cheng et al., 2020)

$$I_{\text{vCLUB}}(z_{\text{id}}, z_{\text{r}}) = \mathbb{E}_{p(z_{\text{id}}, z_{\text{r}})} \left[\log q_{\phi}(z_{\text{id}}|z_{\text{r}}) \right] - \mathbb{E}_{p(z_{\text{id}})} \mathbb{E}_{p(z_{\text{r}})} \left[\log q_{\phi}(z_{\text{id}}|z_{\text{r}}) \right], \tag{2}$$

- $q_{\phi}(z_{\rm id}|z_{\rm r}) \rightarrow \text{variational approximation of } p(z_{\rm id}|z_{\rm r}) \rightarrow \text{modelled by a neural network with overall parameters of } \phi$
- Approximating ϕ by maximizing the log-likelihood loss, i.e., $L_{\rm ll}(\phi) = \log q_{\phi}(z_{\rm id}|z_{\rm r})$
- $ightharpoonup L_{\mathrm{MI}}(\theta_{e}^{\mathrm{id}}, \theta_{e}^{\mathrm{r}}) = I_{\mathrm{vCLUB}}(z_{\mathrm{id}}, z_{\mathrm{r}})$

Speaker identity-invariant representation training \rightarrow feature separation

$$(\hat{\theta}_e^{\mathrm{id}}, \hat{\theta}_e^{\mathrm{r}}, \hat{\theta}_{\mathrm{d}}, \hat{\theta}_{\mathrm{id}}) = \arg\min_{\theta_{\mathrm{id}}, \theta_{\mathrm{r}}^{\mathrm{r}}, \theta_{\mathrm{d}}, \theta_{\mathrm{id}}} E(\theta_e^{\mathrm{id}}, \theta_e^{\mathrm{r}}, \theta_{\mathrm{d}}, \theta_{\mathrm{id}}, \hat{\phi})$$
(3)

$$\hat{\phi} = \arg\min_{\phi} -L_{\text{ll}}(\phi, \hat{\theta}_e^{\text{id}}, \hat{\theta}_e^{\text{r}}) \tag{4}$$

$$E(\theta_e^{\mathrm{id}}, \theta_e^{\mathrm{r}}, \theta_{\mathrm{d}}, \theta_{\mathrm{id}}, \hat{\phi}) = L_{\mathrm{ae}}(\theta_e^{\mathrm{id}}, \theta_e^{\mathrm{r}}, \theta_{\mathrm{d}}) + \lambda L_{\mathrm{id}}(\theta_e^{\mathrm{id}}, \theta_{\mathrm{id}}) + \beta L_{\mathrm{MI}}(\theta_e^{\mathrm{id}}, \theta_e^{\mathrm{r}}, \hat{\phi}),$$
(5)

Supervised speech representation learning for pathological detection

- » Final dysarthric speech classification
 - ▶ Training the final dysarthric speech classifier operating on the learned feature (bottleneck) representation
- » Evaluating an unseen test speaker
 - Applying soft voting on the classifier prediction scores for all input Mel spectrograms belonging to that speaker

Outline

- 1. Automatic Dysarthria Speech Classification
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

- » Dataset: Spanish PC-GITA database (Orozco et al., 2014)
 - Discriminating PD patients from healthy speakers
 - Dysarthric speech classification task train/evaluation data → Speaker-independ 10-fold cross-validation framework
 - ▶ Speaker ID auxiliary task train/evaluation data → utterance splits of neurotypical speakers in the training set
- Evaluation metrics for dysarthric speech classification and speaker ID
 - Accuracy
 - ► AUC: area under ROC curve

- » Proposed learned representation in the feature separation framework vs. the state-of-the-art representation learned by adversarial training
 - ▶ Feature separation framework with and without auxiliary modules, i.e., speaker ID ($\lambda \neq 0$) and MI minimizer ($\beta \neq 0$)

λ	β	PD classificat	ion ↑	speaker ID ↓				
		Accuracy (%)	AUC	Accuracy (%)	AUC			
X	×	57.2	0.72	58.3	0.98			
\checkmark	×	61.4	0.75	49.6	0.98			
Proposed adversarial-free feature separation framework								
✓	✓	75.2	0.82	5.0	0.67			
Adversaria	framework from Ja	nbakhshi and Kodrasi (202	1)					
_	-	77.0	0.85	5.2	0.67			

- » Proposed learned representation in the feature separation framework vs. the state-of-the-art representation learned by adversarial training
 - ▶ Feature separation framework with and without auxiliary modules, i.e., speaker ID ($\lambda \neq 0$) and MI minimizer ($\beta \neq 0$)

λ	β	PD classificat	PD classification ↑		speaker ID \downarrow				
		Accuracy (%)	AUC	Accuracy (%)	AUC				
×	×	57.2	0.72	58.3	0.98				
\checkmark	×	61.4	0.75	49.6	0.98				
Proposed adversarial-free feature separation framework									
✓	✓	75.2	0.82	5.0	0.67				
Adversarial framework from Janbakhshi and Kodrasi (2021)									
_	_	77.0	0.85	5.2	0.67				

- ► Efficacy of the proposed feature separation framework in suppressing speaker identity cues → robust representation for the dysarthric speech classification
 - No statistically significant difference in performance of the feature separation and adversarial framework

- » Proposed learned representation in the feature separation framework vs. the state-of-the-art representation learned by adversarial training
 - Sensitivity of speaker-invariant representation learning to the weight values of speaker ID loss (λ)

loss weight value of the speaker ID

- » Proposed learned representation in the feature separation framework vs. the state-of-the-art representation learned by adversarial training
 - Sensitivity of speaker-invariant representation learning to the weight values of speaker ID loss (λ)

loss weight value of the speaker ID

▶ The feature separation framework is less sensitive to the weight values of speaker ID loss compared to adversarial training

Outline

- 1. Automatic Dysarthria Speech Classification
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

Summary

- » Proposing a supervised representation learning framework for dysarthric speech classification
- » An adversarial-free feature separation framework to suppress speaker identity cues unrelated to dysarthria in the learned representation
 - Training a dual encoder generating two representations and a single decoder
 - Supervising one of the representations with a speaker ID task while minimizing a MI criterion between the two representations
- » Proposed framework is successful in obtaining a speaker identity-invariant representation \rightarrow more informative representations for dysarthric speech classification
 - ▶ While is more robust to the choice of some of the training parameters compared to its adversarial counterpart framework

Thank You

Reference

- Cheng, P., Hao, W., Dai, S., Liu, J., Gan, Z., and Carin, L. (2020). CLUB: A contrastive log-ratio upper bound of mutual information. In Proc. 37th International Conference on Machine Learning, volume abs/2006.12013. PMLR.
- Hegde, S., Shetty, S., Rai, S., and Dodderi, T. (2019). A survey on machine learning approaches for automatic detection of voice disorders. *Journal of Voice*, 33(6):947.e11-947.e33.
- Hernandez, A., Yeo, E. J., Kim, S., and Chung, M. (2020). Dysarthria Detection and Severity Assessment Using Rhythm-Based Metrics. In Proc. 21st Annual Conference of the International Speech Communication Association, pages 2897-2901, Shanghai, China.
- Janbakhshi, P. and Kodrasi, I. (2021). Supervised speech representation learning for Parkinson's disease classification. In Proc. 14th ITG Conference on speech communication, pages 1-5, Virtual Conference.
- Janbakhshi, P., Kodrasi, I., and Bourlard, H. (2021). Automatic dysarthric speech detection exploiting pairwise distance-based convolutional neural networks. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 7328-7332, Toronto, Canada.
- Kodrasi, I. and Bourlard, H. (2020). Spectro-temporal sparsity characterization for dysarthric speech detection. IEEE Transactions on Audio, Speech, and Language Processing, 28(1):1210-1222.
- Mallela, J., Illa, A., Belur, Y., Atchayaram, N., Yadav, R., Reddy, P., Gope, D., and Ghosh, P. K. (2020). Raw Speech Waveform Based Classification of Patients with ALS, Parkinson's Disease and Healthy Controls Using CNN-BLSTM. In Proc. 21st Annual Conference of the International Speech Communication Association, pages 4586-4590, Shanghai, China.
- Narendra, N., Schuller, B., and Alku, P. (2021). The detection of Parkinson's disease from speech using voice source information. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:1925-1936.
- Orozco, J. R., Arias-Londoño, J. D., Vargas-Bonilla, J., González-Rátiva, M., and Noeth, E. (2014). New spanish speech corpus database for the analysis of people suffering from parkinson's disease. In Proc. International Conference on Language Resources and Evaluation, Reykjavik, Iceland.
- Vaiciukynas, E., Gelzinis, A., Verikas, A., and Bacauskiene, M. (2017). Parkinson's disease detection from speech using convolutional neural networks. In In Proc. International Conference on Smart Objects and Technologies for Social Good. pages 206-215. Pisa, Italy. Springer International Publishing.