RODNEY T HODGSON_PHD

1	14. (amended) A method of characterizing the condition of a region of interest of skin, wherein
2	the absorption and scattering of light in different spectral bands by the region of interest is
3	a function of the condition of the skin, the method comprising:
4	illuminating a portion of the skin including the region of interest by light in at least three spectral
5	bands;
6	digitally imaging the portion of the skin including the region of interest at the at least three
7	spectral bands with the light re-emitted by the portion of the skin to generate digital
8	images comprising digital signals whose values are a function of the condition of the
9	region of interest of the skin; and
10	providing the digital images to a processor, wherein the processor:
11	segments the digital images by generating a segmentation mask defining the boundary of
12	the region of interest from a digital image in any one of the at least three spectral
13	bands;
14	computes at least one estimated value for each digital image at each spectral band which
15	is a function of a characteristic of the region of interest determined by the
16	segmentation mask;
17	characterizes the condition of the region of interest of the skin based on the estimated
18	values, wherein the characterizing step comprises comparing a weighted
19	combination of estimated values against a threshold value; and wherein the
20	condition of the region of interest to be characterized is the presence of a
21	melanoma, and weight coefficients for each parameter value and the threshold
22	value are selected to maximize specificity, under the constraint of 100%
23	sensitivity to melanoma, on a representative set of training images; and
24	outputs the characterization of the condition of the region of interest of the skin.

Add the following new claims

25

1

68. (New claim) A method of characterizing the condition of a region of interest of skin, wherein

~~~		
lacksquare		

1	the absorption and scattering of light in different spectral bands by the region of interest is
2	a function of the condition of the skin, the method comprising:
3	illuminating a portion of the skin including the region of interest by light in at least three spectral
4	bands;
5	digitally imaging the portion of the skin including the region of interest at the at least three
6	spectral bands with the light re-emitted by the portion of the skin to generate digital
7	images comprising digital signals whose values are a function of the condition of the
8	region of interest of the skin; and
9	providing the digital images to a processor, wherein the processor:
10	segments the digital images by generating a segmentation mask defining the boundary of
11	the region of interest from a digital image in any one of the at least three spectral
12	bands;
13	computes at least one estimated value which is a statistical measure of the deviation of
14	the boundary of the region of interest from the boundary of an ellipse of the same
15	area, aspect ratio, and orientation as the segmentation mask;
16	characterizes the condition of the region of interest of the skin based on the estimated
17	values; and
18	outputs the characterization of the condition of the region of interest of the skin.
1	69. (New claim) A method of characterizing the condition of a region of interest of skin, wherein
2	the absorption and scattering of light in different spectral bands by the region of interest is
3	a function of the condition of the skin, the method comprising:
4	illuminating a portion of the skin including the region of interest by light in at least three spectral
5	bands;
6	digitally imaging the portion of the skin including the region of interest at the at least three
7	spectral bands with the light re-emitted by the portion of the skin to generate digital
8	images comprising digital signals whose values are a function of the condition of the
9	region of interest of the skin; and
10	providing the digital images to a processor, wherein the processor:
	Docket No 900-001 serial No. 09/032,450 Inventors Dina Gutkowicz-Krusin, Marek Elbaum, Michael Greenebaum, Adam Jacobs,

PAGE 04

1	segments the digital images by generating a segmentation mask defining the boundary of
2	the region of interest from a digital image in any one of the at least three spectral
3	bands;
4	computes at least one estimated value of a statistical measure of the gradient values of the
5	intensity of the digital images across the border of the segmented images;
6	characterizes the condition of the region of interest of the skin based on the estimated
7	values; and
8	outputs the characterization of the condition of the region of interest of the skin.
1	70. (New claim) A method of characterizing the condition of a region of interest of skin,
2	wherein the absorption and scattering of light in different spectral bands by the region of
3	interest is a function of the condition of the skin, the method comprising:
4	illuminating a portion of the skin including the region of interest by light in at least three spectral
5	bands;
6	digitally imaging the portion of the skin including the region of interest at the at least three
7	spectral bands with the light re-emitted by the portion of the skin to generate digital
8	images comprising digital signals whose values are a function of the condition of the
9	region of interest of the skin; and
10	providing the digital images to a processor, wherein the processor:
11	segments the digital images by generating a segmentation mask defining the boundary of
12	the region of interest from a digital image in any one of the at least three spectral
13	bands;
14	computes at least one estimated value based on the ratio of standard deviation of the areas
15	of dermal papillae to their mean within the segmentation mask;
16	characterizes the condition of the region of interest of the skin based on the estimated
17	values; and
18	outputs the characterization of the condition of the region of interest of the skin.

01/05/2000	18:08	9147624125	RODNEY T	HODGSON PHD

1	wherein the absorption and scattering of light in different spectral bands by the region of
2	interest is a function of the condition of the skin, the method comprising:
3	illuminating a portion of the skin including the region of interest by light in at least three spectral
4	bands;
5	digitally imaging the portion of the skin including the region of interest at the at least three
6	spectral bands with the light re-emitted by the portion of the skin to generate digital
7	images comprising digital signals whose values are a function of the condition of the
8	region of interest of the skin; and
9	providing the digital images to a processor, wherein the processor:
10	segments the digital images by generating a segmentation mask defining the boundary of
11	the region of interest from a digital image in any one of the at least three spectral
12	bands;
13	computes at least one estimated value of the average and standard deviation of the
14	thickness of rete ridges within the segmentation mask, for a digital image of the
15	region of interest determined by the segmentation mask;
16	characterizes the condition of the region of interest of the skin based on the estimated
17	values; and
18	outputs the characterization of the condition of the region of interest of the skin. for a
19	digital image of the region of interest determined by the segmentation mask;
1	72. (New claim) A method of characterizing the condition of a region of interest of skin,
2	wherein the absorption and scattering of light in different spectral bands by the region of
3	interest is a function of the condition of the skin, the method comprising:
4	illuminating a portion of the skin including the region of interest by light in at least three spectral
5	bands;
6	digitally imaging the portion of the skin including the region of interest at the at least three
7	spectral bands with the light re-emitted by the portion of the skin to generate digital
8	images comprising digital signals whose values are a function of the condition of the
9	region of interest of the skin;

calibrating each pixel location in the digital image in each spectral band with respect to stored
images of a white target material having known diffuse reflectance, each of the stored
images being an average of a plurality of images acquired at each spectral band, while the
material undergoes continual in-plane motion; and
providing the digital images to a processor, wherein the processor:
segments the digital images by generating a segmentation mask defining the boundary of
the region of interest from a digital image in any one of the at least three spectral
bands;
computes at least one estimated value for each digital image at each spectral band which
is a function of a characteristic of the region of interest determined by the
segmentation mask;
characterizes the condition of the region of interest of the skin based on the estimated
values; and
outputs the characterization of the condition of the region of interest of the skin.