

模板框架使用

Version 1.0

概述

Motion Studio新建工程时,可以选择新建"空的框架"和新建"模板框架"两种方式。"空的程序框架"里没有任何代码,由用户自行编写整个程序,而用"模板框架"新建工程后,Motion Studio里就已经创建了两个Task,并在系统内部封装了一些函数、变量,在ProjectDefine.bi和两个Task创建了部分程序以及创建了一部分VR变量区域。这些共同组成了"模板框架"。

"模板框架"定义了机器接受命令的接口和机器运行的状态切换,用户在程序框架下添加代码,就可以很快完成一套设备运行的程序,让设备稳定的运行。该"模板框架"特别适用顺序流水作业的运动控制相关设备。

目的

"模板框架"可以让用户快速搭建稳定可靠的程序,避免了开发者随意开发导致的程序结构不佳,运行效率不高以及不易调试、维护等问题。同时,很好的使用该框架,可以用同一个框架应对各种非标设备,大幅缩短开发周期。

框架流程

Task 组成

框架由 2 个 Task 构成,两个 Task 的主体结构都是 While 循环。

- 1. Cmd02.bas: 负责扫描外部信息(HMI下发的命令和I/O)—>产生机器动作命令。
- 2. Control02.bas: 负责机器动作执行—>**执行命令**。

Cmd02.bas 主流程解析

Cmd02.bas 这个 Task 流程很简单,说明如下:

- 扫描有没有伺服报警、限位报警等错误发生
- 扫描 HMI 下发的命令和 ScanMIO()产生的命令 VR(C Cmd)是否合规
 - a) 没有命令,则不产生动作命令
 - b) 命令不合规,则不产生动作命令
 - c) 命令合规,则产生动作命令到VR(C_RunMD)和VR(C_SubMD)
- 更新以上两个扫描结果信息到VR(CS_WarnId)和VR(CS_ErrId)

Control02.bas 主流程解析

Control02.bas 这个 Task 的流程说明如下:

- 更新当前机器的系统状态
- 根据 Cmd02.bas 产生的机器执行命令,执行相应的动作
- 设置机器下一个运行模式,以便更新机器下一个系统状态

注意:使用模板框架的情况下,系统内部定义了机器状态机的运行模式,机器需按照系统定义好的状态机运行。具体请参照"状态机与机器运行模式"章节。

状态机与机器运行模式

状态机由 Select Case 实现运行模式管理。框架内部已定义好状态机,根据机器得到的命令 VR(C_RunMD),系统会自动切换状态机。

状态机说明如下:

状态	说明
Idle	机器刚上电的状态
DbgRdy	机器上电后经过初始化后的状态,称为调试模式等待状态
Home	回机械原点运动中的状态
HomeRdy	回完机器原点的状态,称为原点模式等待状态
Org	回工作原点运动中的状态
OrgRdy	回完工作原点的状态,称为工作原点模式等待状态
Run	自动运行中的状态,即自动流程运行中的状态
Stop	自动流程运行被停止后的状态

Err_B	机器出现重大错误后的状态			
Err_S	机器出现一般错误后的状态			
DbgSub	调试模式等待状态下的子动作在执行时的状态			
HomeSub	原点模式等待状态下的子动作在执行时的状态			
OrgSub	工作原点模式等待状态下的子动作在执行时的状态			

机器状态机切换如下图

- 三种等待状态:①DbgRdy 、③HomeRdy、⑤OrgRdy。等待状态下,机器无动作, 处于等待接收命令状态
- 框架中的自动流程动作支持自动/单步/暂停运行
- 依据不同命令,自动切换状态机模式
- 发生停止命令或一般错误的重置错误命令后,如果机器曾回过机械原点,会自动进入 HomeRdy 状态
- 分两种错误处理:一般错误 Err_S 和重大错误 Err_B。发生重大错误,重置错误后,系统会进入 DbgRdy,需重回机械原点,才能进行后续的回工作原点和自动流程动作。

全局接口变量

系统保留了 VR(0)~VR(15)的使用,这 16 个变量的 VR 编号内部都做了宏定义。用户可以针对这些接口,查询 VR 表来调试机器,说明如下:

VR	宏定义	说明
VR(0)	VR(C_RunMD)	系统执行的动作模式
VR(1)	VR(CS_RunSTA)	系统状态
VR(2)	预留	
VR(3)	VR(CS_RunStepCount)	自动流程动作中当前运行的步骤号
VR(4)	VR(C_SubMD)	系统执行的动作子模式
VR(5)	VR(C_Cmd)	外部下发的命令。例如:HMI 下发的命令
VR(6)	预留	
VR(7)	预留	
VR(8)	VR(CS_WarnId)	系统警告代码
VR(9)	VR(CS_ErrId)	系统错误代码
VR(10)	VR(CF_Home)	机械原点的标志位
VR(11)	VR(CF_Stop)	停止命令的标志位
VR(12)	VR(CF_Pause)	暂停命令的标志位
VR(13)	VR(CF_Step)	单步命令的标志位
VR(14)	VR(CF_Err)	错误的标志位
VR(15)	VR(CF_AutoOrg)	机械原点后自动执行到工作原点的标志位

VR(C_Cmd)

VR(C_Cmd)作为接收外部命令的接口,可以是 HMI 下发命令改变 VR(C_Cmd)的值,也可以通过程序执行赋值改变 VR(C_Cmd)的值。

VR(C_Cmd)数值说明

数值	系统内宏定义	说明
0	N_NO_CMD	无命令
1	N_CMD_Home	回机械原点命令
2	N_CMD_Org	回工作原点命令
3	N_CMD_Run	自动流程运行命令
4	N_CMD_Stop	停止命令
5	N_CMD_Pause	暂停命令
6	N_CMD_Step	单步运动命令
7	N_CMD_Resume	恢复命令,继续运行被暂停的自动流程
8	N_CMD_OnErrB	重大错误处理命令
9	N_CMD_OnErrS	一般错误处理命令
10	N_CMD_ResetErr	重置错误状态命令
101~199	用户自定义	DbgRdy 模式下自定义动作命令
201~299	用户自定义	HomeRdy 模式下自定义动作命令
301~399	用户自定义	OrgRdy 模式下自定义动作命令
401~499	用户自定义	RunAuto 模式下自定义动作命令(暂保留)

VR(CS_RunSTA)

VR(CS_RunSTA)反馈的是当前机器处于的系统状态。系统状态会根据机器动作的执行,系统内自动切换。

VR(CS RunSTA)数值说明

数值	系统内宏定义	说明
0	N_ST_Idle	初始空闲状态
1	N_ST_DbgRdy	完成初始化,在 DbgRdy 模式下等待状态
2	N_ST_Home	正在回机械原点中
3	N_ST_HomeRdy	完成回机械原点的等待状态
4	N_ST_Org	正在到工作原点中
5	N_ST_OrgRdy	完成到工作原点的等待状态
6	N_ST_RunAuto	正在自动流程动作运行中
7	N_ST_Stop	正在停止运行中
8	N_ST_ErrB_Pause	发生重大错误, 处于暂停状态
9	N_ST_ErrS_Pause	发生一般错误, 处于暂停状态
10	N_ST_RunPause	自动流程动作运行处于暂停状态
11	N_ST_Dbg_SubActions	正在执行 DbgRdy 模式下自定义动作
12	N_ST_Home_SubActions	正在执行 HomeRdy 模式下自定义动作
13	N_ST_Org_SubActions	正在执行 OrgRdy 模式下自定义动作
14	N_ST_Run_SubActions	正在执行 RunAuto 模式下自定义动作

框架的动作组成

用框架开发,系统把整个设备的动作分为"基本动作"和"用户自定义动作"

- 基本动作:系统已定义好,具体里面的动作细节由用户根据机台实际应用编写。
- 用户自定义动作:用户根据实际应用,可以自定义动作,放入三个等待状态模式下,即 框架保留了用户自定义动作的扩展空间。

基本动作

	说明	
系统定义中的基本动作	1.	系统定义了常见设备中需用到的基本动作
命令 VR(C_Cmd) 的编号范围	2.	基本动作执行会引起系统状态机切换,从而实现动
为:0~10		作有效管理
	3.	例如:回机械原点,回工作原点,自动流程动作

用户自定义动作

● DbgRdy 模式下的自定义动作: Dbg_SubActions

	说明	
DbgRdy 模式下自定义动作	4.	DbgRdy 模式可以执行的是调试动作,不需要回机
命令 VR(C_Cmd) 的编号范围		械原点就可以执行的动作放在此模式下。
为:101~199	5.	当系统处于①DbgRdy、③HomeRdy、⑤OrgRdy
		的模式下,才可以执行
	6.	该模式下的自定义动作执行完,系统会自动进入
		DbgRdy 状态模式
	7.	例如:DIO 手动调试,轴调试

● HomeRdy 模式下的自定义动作: Home_SubActions

	说明	
HomeRdy 模式下自定义动作	1.	需要回机械原点才可执行的动作放在此模式下。
命令 VR(C_Cmd) 的编号范围	2.	当系统处于③HomeRdy、⑤OrgRdy 的模式下,
为:201~299		才可以执行。
	3.	该模式下的自定义动作执行完,系统会自动进入
		HomeRdy 状态模式
	4.	例如:示教、手动定位

● OrgRdy 模式下的自定义动作: Org_SubActions

	说明	
OrgRdy 模式下自定义动作	1.	需要回工作原点才可执行的动作放在此模式下。
命令 VR(C_Cmd) 的编号范围	2.	当系统处于⑤OrgRdy 的模式下,才可以执行。
为:301~399	3.	该模式下的自定义动作执行完,系统会自动进
		OrgRdy 状态模式
	4.	例如:改变加工速度

自动/单步/暂停

自动流程动作(Run)可以实现自动顺序执行、单步执行以及暂停操作。

- 自动流程顺序动作需写在 Sub ModeRun 的函数体里
- 一般情况下,用户定义的设备组件(如 XYZ Table)下的 WaitDone()方法作为一个单步节点
- 如果需要动作步骤间实现暂停操作,需在步骤节点间插入 FC.CheckPause

如何使用框架

框架已具备的功能

- 14 种设备系统状态自动转换
- 发生重大错误与一般错误时暂停动作
- 特定状态, 拒绝不合法的操作(Ex: 机器还没有回零, 不能操作 RUN)
- 9 种基本动作处理:
 - a) 回原点,到工作点,
 - b) 自动运行,暂停, 单步运行,停止
 - c) 重大错误, 一般错误, 重置错误

两个步骤开发设备

步骤 1:添加基本动作处理

添加步骤	说明				
1. 初始化	在 Init(),编写您的初始化动作				
2. 回机械原点	在 ModeHome (),编写您的回机械原点动作				
3. 到工作原点	在 ModeOrg (),编写您的回工作原点包含的动作				
4. 自动运行	在 ModeRun (),编写您的自动运行动作				
5. 停止	1. 在 UserStop(),编写如何停止您的设备动作				
3. 停止	2. 在 ModeStop(),编写停止后,您希望执行的动作				
	重大错误:				
	1. 在 UserErrB(),编写发生错误时您要采取的动作(Ex: 停止)				
	2. 在 ModeErrB(), 编写 Motion 错误停止后, 您希望执行的动作				
	3. 当发生错误,系统会暂停 Control02.bas 的执行,并等待清除错误				
	命令				
6. 错误处理	4. 请在 UserResetErr(),编写您的清除错误动作				
0. 相厌处理	一般错误:				
	1. 在 UserErrS(),编写发生错误时您要采取的动作(Ex: 停止)				
	2. 在 ModeErrS(), 编写 Motion 错误停止后, 您希望执行的动作				
	3. 当发生错误,系统会暂停 Control02.bas 的执行,并等待清除错误				
	命令				
	4. 请在 UserResetErr(),编写您的清除错误动作				

步骤 2:添加基本动作处理

● 步骤 2-1:在 DbgRdy 模式下添加可执行的自定义动作

添加步骤

1. 在 DoCmd(), 定义您的命令编号 1xx ... 命令编号范围: 101-199

2. 在 DoCmd() 设定子动作模式编号 VR(C_SubMD)= n

3. 在 ModeDbg_SubActions(),添加当子动作模式 VR(C_SubMD) = n 时,要执行的动作

范例:如需在 DbgRdy 模式下添加"对轴 0、1、2 三个轴的伺服使能"动作。

SUB DoCmd()

SELECT CASE INT(VR(C_Cmd))

CASE 101 '指令编号(Debug Ready 模式下)

VR(C_SubMD)=1 '设定子动作模式编号 VR(C_SubMD)=n

Ret = Err_Success

END SELECT

SUB ModeDbg_SubActions()

SELECT CASE INT(VR(C_SubMD))

CASE 1 '当子动作模式 VR(C_SubMD) = n 时

BASE 0,1,2 '示范动作...对轴 0,1,2 使能伺服

SVON

END SELECT

● 步骤 2-2:在 HomeRdy 模式下添加可执行的自定义动作

添加步骤

1. 在 DoCmd(), 定义您的命令编号 2xx ... 命令编号范围: 201-299

2. 在 DoCmd() 设定子动作模式编号 VR(C_SubMD)= n

3. 在 ModeHome_SubActions(), 添加当子动作模式 VR(C_SubMD) = n 时, 要执行的动作

范例:如需在 HomeRdy 模式下添加"做轴 0、1、2 三轴的直线插补"动作。

SUB DoCmd()

SELECT CASE INT(VR(C_Cmd))

CASE 201 '指令编号(Home Ready 模式下)

VR(C SubMD)=2 '设定子动作模式编号 VR(C SubMD)= n

Ret = Err_Success

END SELECT

SUB ModeHome_SubActions()

SELECT CASE INT(VR(C_SubMD))

CASE 2 '当子动作模式 VR(C_SubMD) = n 时

BASE 0,1,2 '示范动作...到指定点 A

LINEABS 1000, 1000, 1000

WAIT DONE

END SELECT

● 步骤 2-3:在 OrgRdy 模式下添加可执行的自定义动作

添加步骤

1. 在 DoCmd(), 定义您的命令编号 3xx ... 命令编号范围: 301-399

2. 在 DoCmd() 设定子动作模式编号 VR(C_SubMD)= n

3. 在 ModeOrg_SubActions(),添加当子动作模式 VR(C_SubMD) = n 时,要执行的动作

范例:如需在OrgRdy模式下添加"载入工单"动作。

SUB DoCmd()

SELECT CASE INT(VR(C_Cmd))

CASE 301 '指令编号(Org Ready 模式下)

VR(C_SubMD)=3 '设定子动作模式编号 VR(C_SubMD)= n

Ret = Err_Success

END SELECT

SUB ModeOrg_SubActions()

SELECT CASE INT(VR(C_SubMD))

CASE 3 '当子动作模式 VR(C_SubMD) = n 时

LoadWorkOrder() '示范动作...载入工单,准备加工。

END SELECT

系统函数说明

ScanMIO()

格 式: Function ScanMIO() AS INTEGER

描述: 扫描 Motion I/O 的状态。默认框架下,扫描轴上 MIO.ALM、MIO.PEL、

MIO.NEL 、MIO.EMG 四个 Motion I/O 的状态。需检测其他 Motion I/O

的状态,需在ScanMIO()函数体中自行添加

返回值:

● ERR_AxisAlmError:发生伺服报警时,返回ERR_AxisAlmError

• ERR AxisPelError:发生正向硬件限位报警时,返回 ERR AxisPelError

● ERR AxisNelError:发生负向限位报警时,返回ERR AxisNelError

● ERR_AxisEmgError:发生负向限位报警时,返回ERR_AxisEmgError

● ERR_Success: 没有发生轴错误时返回 ERR_Success

FC.CheckCmd()

格 式: FUNCTION FlowCtrl.CheckCmd() AS INTEGER

描述: 检测 VR(C Cmd)命令是否合规。系统内部已做宏定义,VR(C Cmd)即 VR(5)。

VR(C Cmd)中的命令值说明如下表:

命令	对应值	说明
N_NO_CMD	0	无命令
N_CMD_Home	1	回机械原点命令
N_CMD_Org	2	到工作原点命令
N_CMD_Run	3	自动流程运行命令
N_CMD_Stop	4	停止运动命令
N_CMD_Pause	5	暂停自动流程命令
N_CMD_Step	6	自动流程单步执行命令
N_CMD_Resume	7	暂停后恢复自动流程运行命令
N_CMD_OnErrB	8	重大错误后处理命令
N_CMD_OnErrS	9	一般错误后处理命令

N_CMD_ResetErr	10	清除轴错误状态命令
N_CMD_DbgSub	101~199	DebugReady 模式下的子程序执行命令
N_CMD_HomeSub	201~299	HomeReady 模式下的子程序执行命令
N_CMD_OrgSub	301~399	OrgReady 模式下的子程序执行命令
N_CMD_RunSub	401~499	Run 模式下的子程序执行命令
其他命令	以上值之外	不合规命令

返回值:

- ERR_NoCommand:检测到 VR(C_Cmd)的值为 0
- ERR_InvalidOperation 检测到 VR(C_Cmd)的值不符合机器当前状态允许的操作,
 比如当前机器正在执行自动流程动作,这时候 HMI 下发一个回原点命令,机器不会执行回原点命令。FC.CheckCmd()函数的返回值则为 ERR_InvalidOperation
- ERR UnknowCommand: 检测到 VR(C Cmd)的值非(0~10)或(101~499)
- ERR_Success: 检测到 VR(C_Cmd)的值非以上三种情况时,返回 ERR_Success

DoCmd()

格 式: FUNCTION DoCmd() AS INTEGER

描述: 根据检测到的 VR(C_Cmd)值,系统内部会改变 VR(C_RunMD)

和 VR(C_SubMD)的值。系统内部已做宏定义, VR(C_RunMD)即 VR(0),

VR(C SubMD)即 VR(4)。

根据 VR(C_Cmd)的值,产生的 VR(C_RunMD)和 VR(C_SubMD)的值如下表

VR(C_Cmd)值	产生的 VR(C_RunMD)值	产生的 VR(C_SubMD)值
N_NO_CMD	无变化	无变化
N_CMD_Home	N_MD_Home : 2	无变化
N_CMD_Org	N_MD_Org : 4	无变化
N_CMD_Run	N_MD_Run: 6	无变化
N_CMD_Stop	N_MD_Stop: 7	无变化
N_CMD_Pause	无变化,但程序会执行到	无变化
	FC.ChecknPause()这行停下	
N_CMD_Step	无变化,但程序会执行到下一个	无变化

	FC.ChecknPause()行停下	
N_CMD_Resume	无变化,但程序会恢复执行,继 续未执行完的自动流程动作	无变化
N_CMD_OnErrB	N_MD_ErrB: 8	无变化
N_CMD_OnErrS	N_MD_ErrS : 9	无变化
N_CMD_ResetErr	ErrB : N_MD_DbgRdy	无变化
	● ErrS:曾回过机械原点,则 N_MD_HomeRdy	
	● ErrS:未回过机械原点,则	
	N_MD_DbgRdy	
N_CMD_DbgSub	N_MD_Dbg_SubActions : 13	依照用户在该状态模式下的
		子动作定义的编号
N_CMD_HomeSub	N_MD_Home_SubActions :14	依照用户在该状态模式下的
		子动作定义的编号
N_CMD_OrgSub	N_MD_Org_SubActions : 15	依照用户在该状态模式下的
		子动作定义的编号
N_CMD_RunSub	N_MD_Run_SubActions: 16	依照用户在该状态模式下的
		子动作定义的编号
其他命令	无变化	无变化

返回值:

ERR_UnknowCommand:检测到VR(C_Cmd)的值非(0~10)或(101~499)

ERR_Success: 检测到 VR(C_Cmd)的值合规

FC. SetPreMode()

格 式: FlowCtrl. SetPreMode()

描述:根据机器得到的动作命令 VR(C_RunMD), 更新设置机器当前的系统状态

VR(CS_RunSTA)。

VR(C_RunMD)与 VR(CS_RunSTA)的对应关系如下:

命令 VR(C_RunMD)	设置的系统状态 VR(CS_RunSTA)
N_MD_ldle : 0	N_ST_Idle : 0

N_MD_DbgRdy : 1	N_ST_DbgRdy: 1
N_MD_Home : 2	N_ST_Home : 2
N_MD_HomeRdy : 3	N_ST_HomeRdy : 3
N_MD_Org : 4	N_ST_Org : 4
N_MD_OrgRdy : 5	N_ST_OrgRdy : 5
N_MD_Run: 6	N_ST_RunAuto : 6
N_MD_Stop: 7	N_MD_Stop: 7
N_MD_ErrB: 8	N_ST_ErrB_Pause: 8
N_MD_ErrS: 9	N_ST_ErrS_Pause : 9
N_MD_Dbg_SubActions : 13	N_ST_Dbg_SubActions : 13
N_MD_Home_SubActions : 14	N_ST_ Home _SubActions : 14
N_MD_Org_SubActions : 15	N_ST_Org_SubActions : 15
N_MD_Run_SubActions : 16	N_ST_Run_SubActions : 16

FC. SetNextMode()

格 式: FlowCtrl. SetNextMode()

描述: 目前模式动作完成后,依据目前的模式,决定了下一个模式。即当前动作命令 VR(C_RunMD)的模式下动作完成后,用该函数设置更新下一个 VR(C_RunMD),这个运行模式的管理是依据框架系统内部定义的状态机实现的,请参考"状态机与机器运行模式"章节。

当前 VR(C_RunMD)模式与下一个 VR(C_RunMD)模式的对应关系如下:

当前 VR(C_RunMD)模式	下一个 VR (C_RunMD) 模式
N_MD_ldle : 0	N_MD_DbgRdy : 1
N_MD_DbgRdy : 1	N_MD_DbgRdy : 1
N_MD_Home : 2	N_MD_HomeRdy : 3
N_MD_HomeRdy : 3	VR(CF_AutoOrg)为1 , 则 N_MD_Org : 4
	VR(CF_AutoOrg)为 0 , 则 N_MD_HomeRdy : 3
N_MD_Org : 4	N_MD_OrgRdy : 5
N_MD_OrgRdy : 5	N_ST_OrgRdy : 5

N_MD_Run : 6	N_MD_Org: 4
N_MD_Stop_Insert: 10	N_MD_Stop: 7
N_MD_Stop: 7	回过机械原点:N_MD_HomeRdy:3
	未回过机械原点:N_MD_DbgRdy:1
N_MD_ErrB_Insert : 11	N_MD_ErrB: 8
N_MD_ErrB : 8	N_MD_DbgRdy : 1
N_MD_ErrS_Insert : 12	N_MD_ErrS: 9
N_MD_ErrS : 9	回过机械原点:N_MD_HomeRdy:3
	未回过机械原点:N_MD_DbgRdy:1
N_MD_Dbg_SubActions : 13	N_MD_DbgRdy : 1
N_MD_Home_SubActions : 14	N_MD_HomeRdy : 3
N_MD_Org_SubActions : 15	N_MD_OrgRdy : 5
N_MD_Run_SubActions : 16	N_MD_Run: 6

FlowCtrl

FlowCtrl 是系统内部定义的一个类,这个类里面包含了一些流程控制用到的 SUB和 Funtion。用户结合本文档的说明,无需了解该类里的方法细节即可完成开发。该类里的一些需要用户了解内部细节的方法如 FC.CheckCmd()、FC.SetPreMoe()、FC.SetNextMoe()等已在本章节说明。

XYZ_TABLE

XYZ_TABLE 是框架下系统定义的一个示例类,这个类代表 XYZ 直角坐标平台这样的一个元件,该类包含了 XYZ 直角坐标平台下的一些方法:如三轴移动,回原点,WatiDone,停止移动,清除错误等。

该类定义在 ProjectDefine.bi 里面,如果用户的设备也是 XYZ 直角坐标平台,用户可以根据实际应用,在 TYPE XYZ_TABLE 里扩展方法、属性。如果用户的设备不是 XYZ 直角坐标平台,用户可以仿照 TYPE XYZ_TABLE 定义自己的类。