6.034 Exam 3 Cheat Sheet

Neural Nets

Useful Information

- 1) Neural Nets are numerical classifiers with binary (0/1) output
- 2) The neuron is a primitive circuit element
- 3) Forward propagation computes the overall output of a neural net

(Input Layer) \rightarrow (Logic Function Layers) \rightarrow Output (0/1)

A single neuron can draw one line and shade above or below it

Primitive Logic Functions

Computable by a Single Neuron Note: used in the logic layer

• AND(x,y)

-OR(x,y)

- AND(x, NOT(y))

* note, the circle on the line means that the weight is -1)

• NOT(x)

- "MAJORITY(x1, x2, x3, x4, ...)" (3 input example)

- note, doubling the weight of the bottom input (x3 for instance) makes this gate act like OR(AND(x1, x2), x3)

Need More than One Neuron

• XOR(x, y)(3 neurons to compute)

The T at the end is +1.5

Helper Functions

$$Stairstep_T(x) = \begin{cases} 1 & \text{if } x \ge T \\ 0 & \text{if } x < T \end{cases}$$

$$\operatorname{Sigmoid}_{S,M}(x) = \frac{1}{1 + e^{-S(x-m)}}$$

$$\operatorname{Performance} = \operatorname{Accuracy}(out*,out) = \frac{1}{2}(out*-out)^2$$

• * means $\mathbf{desired}$ output

Quick Formulas For Backward Propagation

$$W'_{A \to B} = W_{A \to B} + \Delta W_{A \to B}$$
$$\Delta W_{A \to B} = r \cdot out_A \cdot \delta_B$$

$$\delta_B = \begin{cases} out_B(1-out_B)(out*-out) & \text{if neuron B is in final (output) layer} \\ out_B(1-out_B) \sum_{outgoingC_i} W_{B\to C_i} \delta_{C_i} & \text{if neuron B is not in final (output) layer} \end{cases}$$

Backwards Propagation Steps

- 1. Computing output of each neuron using forward Propagation and $Stairstep_T$ function
- 2. Compute δ_B for final layer
- 3. Compute δ_B for earlier layers
- 4. Compute updates for weights
- 5. Update all weights

Miscellaneous Notes

• You can never classify all points correctly if you have a + data point and a - data point (contradictory) right on top of each other

Overfitting - too strict with regards to the data it's trying to model

Underfitting - too simple with regards to the data it's trying to model

Support Vector Machines

Useful Information

- like Neural Nets, classifies numerical data into two classes: + and -
- draws the decision boundary line that separates the training data with the widest possible margin

Boundaries

- 1-D just a point
- 2-D some sort of line or curve
- 3-D some sort of plane

How to Draw SVM Boundaries (2D)

- 1. Draw the $convex\ hulls$ for the + and training points.
- a convex hull is the shape you get when you wrap a rubber band around the points and let it contract

- 2. Look at the regions where the convex hulls are closest.
- 3 Cases:

3. The corresponding boundaries look like this:

How to find the equation of the boundary line

1. Find the boundary line:

2. Write equation the for the line:

In the above example:

$$x = 1.5$$

3. Re-write the line equation to the form: $\vec{w} \cdot \vec{x} + b \Rightarrow \vec{w} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + b = 0$

In the above example:

$$x = 1.5 \Rightarrow 0y + 1x - 1.5 = 0 \Rightarrow \underbrace{\left(1 \quad 0\right)}_{\vec{w}} \cdot \underbrace{\left(\begin{matrix} x \\ y \end{matrix}\right)}_{\vec{x}} + \underbrace{\left(-1.5\right)}_{b} = 0$$

4. So, our decision boundary needs to follow a few conventions:

- positiveness(x) = output of $\vec{w} \cdot \vec{x} + b$
- positiveness for + support vectors: +1
- positiveness for support vectors: -1
- positiveness for + training points: ≥ 1
- positiveness for training points: ≤ -1

So we need to scale $\vec{w} \cdot \vec{x} + b$ so that it actually follows these conventions.

We can do this by taking one of the support vectors and scaling the equation so that positiveness outputs the correct thing (+1 or -1 appropriately).

Using the - support vector (2,2):

$$(1 \quad 0) \cdot {2 \choose 2} + (-1.5) \Rightarrow 2 - 1.5 = .5$$

postiveness (2,2) should be -1, so we need to multiply the whole equation by -2.

$$\underbrace{\left(-2 \quad 0\right)}_{\vec{w}} \cdot \underbrace{\begin{pmatrix} x \\ y \end{pmatrix}}_{\vec{x}} + \underbrace{\left(3\right)}_{b} = 0$$

Note that \vec{w} should be \perp to the decision boundary, and also pointing towards the positive points.

How to find the α values for the training points

The α of a training point refers to how important it is when determining the boundary line.

- $\alpha = 0$ for non-support vectors
- $\sum_{\vec{p} \in "+" \text{ points}} \alpha_p = \sum_{\vec{p} \in "-" \text{ points}} \alpha_p$ solve $\vec{w} = \sum_{\vec{p} \in "+" \text{ points}} \alpha_p \vec{p} \sum_{\vec{p} \in "-" \text{ points}} \alpha_p \vec{p}$

In this case (from the above example):

- $\alpha_d = 0$, since it isn't a support vector
- $\alpha_a + \alpha_b = \alpha_c$ "+" points "-"points
- $\underbrace{\begin{pmatrix} -2\\0 \end{pmatrix}}_{c\overline{c}} = \alpha_a \begin{pmatrix} 1\\3 \end{pmatrix} + \alpha_b \begin{pmatrix} 1\\1 \end{pmatrix} \alpha_c \begin{pmatrix} 2\\2 \end{pmatrix}$
- solving these gives you $\alpha_c = 2$ and $\alpha_a = \alpha_b = 1$

Note - the larger the margin width $(\frac{2}{||\vec{w}||})$, the smaller the α values ###Kernels

Sometimes our training data isn't linearly separable. So, try transforming the data (e.g., polar coords).

Kernel Trick - replace the " \cdot " in $\vec{w} \cdot \vec{x} + b$ with another function. - this function is called a **Kernel function** - this effectively transforms the space

A **Kernel function** is a similarity measure.

$$class(\vec{x}) = SIGN[\vec{w} \cdot \vec{x} + b] \tag{1}$$

$$= SIGN[(\sum_{i} y_i \alpha_i x_i) \cdot \vec{x} + b]$$
 (2)

$$= SIGN[(\sum_{i} y_i \alpha_i K(\vec{x_i}, \vec{x}) + b]$$
(3)

So basically we're taking this test point \vec{x} and comparing it with all of our support vectors, and then taking a weighted sum of that.

Common Kernel Functions

1. Linear Kernel (e.g.) dot product

$$K(\vec{u}, \vec{v}) = \vec{u} \cdot \vec{v}$$

2. Quadratic Kernel Function

Draws conic sections: - circle - ellipse - hyperbola - parabola - normal line Ex:

$$K(\vec{u}, \vec{v}) = (\vec{u} \cdot \vec{v} + 1)^2$$

3. Radial (Gaussian) Basis Kernel Function

Basically draws circles around each points. Has a parameter to adjust "how tight" the circles and grouping is. Can perfectly classify any set of training data, as long as you don't have contradictory test data.

 \bullet can sometimes overfit

$$e^{\frac{|\vec{u}-\vec{v}|^2}{\sigma}}$$