

Introduction to Superconducting Quantum Circuits

- Review of Classical Mechanics for Quantum Computing -

Department of Electrical and Computer Engineering Seoul National University

Seong Hyeon Park and Seungyong Hahn

15th August, 2024

Keywords in Classical Mechanics for Quantum Computing

Classical Mechanics: Newtonian

Conservative Force Newton's Laws of Motion

Potential Energy Kinetic Energy

Classical Mechanics: Lagrangian

Principle of Least Action Euler-Lagrangian Equation

Classical Mechanics: Hamiltonian

Phase Space Canonical Momentum

Legendre Transformation Poisson Braket

Canonical Transformation

Classical Mechanics: Simple Harmonic Oscillator

Ladder Operator

Introduction to Classical Mechanics

- What is Classical Mechanics?
 - Physical theory describing the motion of objects
 - ☐ The development of classical mechanics involved substantial change in the methods and philosophy of physics
- Why is Classical Mechanics Important for Studying Quantum Computing?
 - □ Jargons, analogy, formula,…etc. of superconducting quantum circuits are based on quantum and classical mechanics
 - ☐ In this lecture, we will briefly review selected topics in classical mechanics

Fig. Domain of validity for classical mechanics

Isaac Newton (1642-1727)

Joseph-Louis Lagrange (1736-1810)

William Rowan Hamilton (1805-1865)

Image from: https://en.wikipedia.org/wiki/Classical_mechanics

Brief Review of Newtonian Mechanics: (1) Newton's Laws of Motion

- Newton's Laws of Motion
 - ☐ Force **F**: a vector quantity [N]
 - ☐ Mass m: a scalar quantity [kg]
 - \square Acceleration \boldsymbol{a} : a vector quantity [m/s²]
 - □ Velocity **v**: a vector quantity [m/s]
 - \square Momentum $\boldsymbol{p}=m\boldsymbol{v}$: a vector quantity
 - \square Equation of motion: $\Sigma F = ma$

NOTE:

Electrical circuit variables (ex: charge) can be also represented by the above variables

- Concept of Conservative Force
 - ☐ The work done by conservative force depends only on the initial and final positions (independent of path)
- Examples of Conservative Force
 - ☐ Gravity, elastic spring, electrostatic force

Fig. Definition, formula, and example of Newton's laws of motion.

Image from: https://www.geeksforgeeks.org/newtons-laws-of-motion/

- Review of Classical Mechanics for Quantum Computing - ASL Quantum Lecture Meeting, Seoul, Republic of Korea, 2024/08/15

Brief Review of Newtonian Mechanics: (2) Potential and Kinetic Energy

- Definition of Potential Energy
 - □ Total work done by conservative forces, defined by virtue of an object's position relative to others
- Formula of Potential Energy
 - \Box For conservative force F and path between the initial point r_i and the final point r_f ,
 - The difference of the potential energy U is: $U(\mathbf{r}_f) U(\mathbf{r}_i) = -W$ (negative work) $= -\int_{\mathbf{r}_i} \mathbf{F} \cdot d\mathbf{r}$
- Definition of Kinetic Energy
 - Energy due to the motion

negative notation (typical, but not necessary)

- Formula of Kinetic Energy
 - \square For a point object (assuming that its mass exist at one point) with mass m and velocity v,
 - □ The kinetic energy T is: $T = \frac{1}{2}mv^2 = \frac{p^2}{2m}$
- Law of Conservation of Energy
 - \Box The total energy (sum of U and T) of an isolated system remains constant
 - ☐ The kinetic energy can be converted to the potential energy, vice versa

Brief Review of Newtonian Mechanics: (3) Harmonic Oscillator Example

- **Definition of Harmonic Oscillator**
 - Special type of periodic trigonometric oscillation towards the equilibrium point
- Properties of Harmonic Oscillator
 - Conservation of the total energy for ideal harmonic oscillators
 - In real oscillators, damping (frictional or dragging force) exists
- Example of Harmonic Oscillator: Mass on an Ideal Spring
 - In Newtonian mechanics, the restoring force F at the distance x is

$$\boldsymbol{F} = m \frac{d^2 \boldsymbol{x}}{dt^2} = -k \boldsymbol{x}$$
 where k

where k: spring constant [N/m]

- The above equation is the second-order differential equation
- The solution for x is

$$x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$$

where ω : angular frequency, defined as $\omega = \sqrt{\frac{k}{m}}$

The coefficients c_1 and c_2 can be determined by the initial conditions for quantum mechanics AND superconducting circuits

Fig. Motion of harmonic oscillator in real space and phase space.

Image from: https://en.wikipedia.org/wiki/Simple_harmonic_motion

NOTE:

Harmonic oscillator is very important concept

Brief Review of Lagrangian Mechanics: (1) Principles of Least Action

- Philosophy of Lagrangian Mechanics
 - □ The fundamental idea of the Lagrangian mechanics is to reformulate the equations of motion in terms of the dynamical variables that describe the degrees of freedom (no explicit force terms)
 - ☐ For complex physical systems, obtaining exact force is difficult
- Characteristics of Lagrangian Mechanics
 - \Box Generalized coordinates $\{q_k\}$: fully specify the motion of the system \rightarrow potential energy U(q,t)
 - \Box Generalized velocity coordinates $\{\dot{q}_k\}$: total time derivatives of the generalized coordinates \rightarrow kinetic energy $T(\dot{q},t)$
 - \Box Lagrangian $\mathcal{L}(q,\dot{q},t) = T U$: defined as the difference between the kinetic energy T and the potential energy U
 - □ Lagrangian is scalar quantity! While complex vector calculation is required with Newtonian mechanics
- Principles of Least Action
 - Path taken between two states is the one for which the action is minimized
 - \square The action *S* is defined as

$$S = \int_{t_1}^{t_2} \mathcal{L} \, dt = \int_{t_1}^{t_2} T - U \, dt$$

The path x(t) that makes S stationary satisfies the Euler-Lagrange equation!

example: harmonic oscillator (in previous slide) Describe the system with q and \dot{q} ONLY

- potential energy $U = \frac{1}{2}kx^2$ (here, q is x)
- kinetic energy $T = \frac{1}{2}m\dot{x}^2$
- Lagrangian $\mathcal{L} = T U = \frac{1}{2}m\dot{x}^2 \frac{1}{2}kx^2$

Brief Review of Lagrangian Mechanics: (2) Euler-Lagrangian Equation

- Definition of Euler-Lagrangian Equation
 - □ Second-order ODEs, whose solutions are stationary points of the given action
- Formula of Euler-Lagrangian Equation
 - \square For n-dimensional generalized coordinate vector $\mathbf{q} = \{q_1(t), ..., q_n(t)\}$ and speed vector $\dot{\mathbf{q}} = \{\dot{q}_1(t), ..., \dot{q}_n(t)\}$
 - \square The Lagrangian \mathcal{L} is dependent on \mathbf{q} , $\dot{\mathbf{q}}$, t that $\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t)$ can be expressed
 - □ The Euler-Lagrangian equations are defined as

$$\frac{\partial \mathcal{L}}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) = 0 \quad \text{where } i = 1, \dots, n$$

Derivation of the Euler-Lagrangian equation is beyond the scope of this lecture (also, not necessary)

See Fowles, Analytical Mechanics, (2004) for the proof

example: harmonic oscillator

$$- \mathcal{L} = T - U = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

- The Euler-Lagrangian equation is

$$-\frac{\partial \mathcal{L}}{\partial x} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}} \right) = -kx - \frac{d}{dt} (m\dot{x})$$
$$= -kx - m\ddot{x} = 0$$

- $\therefore kx + m\ddot{x} = 0$ (equation of motion)
- same result from Newtonian mechanics

- Lagrangian in Quantum Computing
 - ☐ The Lagrangian will be utilized as the fundamental analysis tool for superconducting quantum circuits
 - □ To analyze superconducting qubits and resonators, deriving the Lagrangian is a key procedure

Brief Review of Lagrangian Mechanics: (3) Simple Pendulum Example

- Simple Pendulum Problem using Newtonian Mechanics
 - The total force F on the object of mass m is

$$F = ma = -mg \sin \theta(t)$$
 where g : gravity [m/s²]

NOTE:

acceleration along the tangential axis (red line in the figure) ONLY

Relation between the tangential axis (red) and the angle θ is

$$m{s} = lm{ heta},$$
 $m{a} = rac{d^2m{s}}{dt^2} = lrac{d^2m{ heta}}{dt^2},$ where l : length of pendulum [m]

Thus, the equation of motion is $l \frac{d^2 \theta}{dt^2} + g \sin \theta = 0$

Fig. Motion of pendulum and force diagram under the gravity.

Image from: https://en.wikipedia.org/wiki/Pendulum_(mechanics)

- Simple Pendulum Problem using Lagrangian Mechanics
 - Assuming the coordinates with respect to θ only, the kinetic energy, potential energy, and Lagrangian are

$$T = \frac{1}{2}ml^2\dot{\theta}^2$$
 and $U = -mgl\cos\theta$ Lagrangian is $\mathcal{L}(\theta, \dot{\theta}, t) = T - U = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta$

From the Euler-Lagrangian equation,

$$\frac{\partial \mathcal{L}}{\partial \theta} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = -mgl \sin \theta - ml^2 \ddot{\theta} = 0 \qquad \therefore l \frac{d^2 \theta}{dt^2} + g \sin \theta = 0$$

Brief Review of Hamiltonian Mechanics: Introduction

- Philosophy of Hamiltonian Mechanics
 - □ Recall that Lagrangian mechanics allows us to find the equations of motion in terms of generalized coordinates and velocities
 - □ Extend the method using the canonical momenta (we will learn about this in the next slide) instead of generalized velocities
- Characteristics of Hamiltonian Mechanics
 - \square The Hamiltonian, denoted by \mathcal{H} , is the sum of kinetic energy T and potential energy U

$$\mathcal{H} = T + U$$

Recall that Lagrangian is defined as $\mathcal{L} = T - U$

- □ If the generalized coordinates for the system are time-independent, the Hamiltonian is also time-independent (conserved)
- □ The Hamiltonian is also scalar.

- Summary of Newtonian, Lagrangian, and Hamiltonian Mechanics
 - \square Newtonian: directly based on forces and accelerations \rightarrow intuitive approach but cumbersome for complex systems
 - □ Lagrangian: difference between kinetic and potential energy → simplified problems with generalized coordinates
 - \Box Hamiltonian: total energy of the system \rightarrow deeper insight into the conservation laws and symmetries of the system

Brief Review of Hamiltonian Mechanics: (1) Canonical Conjugate Momentum

- **Definition of Canonical Conjugate Momentum**
 - Canonical coordinates: can describe a physical system with generalized position quantities $\{q_i\}$ and velocity quantities $\{\dot{q}_i\}$
- Conjugate momentum: partial derivative of the Lagrangian, with respect to the generalized velocity
- Formula of Canonical Conjugate Momentum

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$$
 for

 $p_i = \frac{\partial \mathcal{L}}{\partial \ \dot{q}_i} \qquad \begin{array}{l} \text{for } n\text{-dimensional generalized coordinates,} \\ \text{there will be } n \text{ canonical conjugate momentum} \end{array}$

- Example of Canonical Conjugate Momentum for Harmonic Oscillator
 - Coordinate q: x (and recall that the Lagrangian is $\mathcal{L}(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 \frac{1}{2}kx^2$)
 - Momentum $p: \frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$
- Canonical Conjugate Momentum in Quantum Computing
 - Assume a superconducting *LC* parallel circuit
 - From the electrical circuit theory, flux $\Phi(t) = \int_{t_0}^t V(t')dt'$ and Q(t) = CV(t)where t_0 : reference time
 - Flux Φ = coordinate and charge Q = canonical conjugate momentum

NOTE: Quantum mechanical analysis of electrical circuits will be introduced later

Fig. Motion of harmonic oscillator

Brief Review of Hamiltonian Mechanics: (2) Phase Space

Definition of Phase Space

- ☐ A multidimensional space in which all possible states of a physical system can be represented
- \square The phase space can be defined by the generalized coordinates q_i and their canonical conjugate momenta p_i

Characteristics of Phase Space

- \square For *n*-dimensional generalized coordinates, the phase space has *n*-canonical coordinates and *n*-canonical momenta
- \Box If the Lagrangian does not depend on the $k^{\rm th}$ coordinate variable q_k , q_k is cyclic canonical variable
- \square Without q_k dependence (q_k is cyclic), the following relations are satisfied

$$\frac{\partial \mathcal{L}}{\partial q_k} = 0$$
 and $p_k = \frac{\partial \mathcal{L}}{\partial \dot{q}_k} = \text{constant}$

- Example of Phase Space: Harmonic Oscillator
 - □ The Lagrangian is $\mathcal{L} = T U = \frac{1}{2}m\dot{x}^2 \frac{1}{2}kx^2$
- \square Generalized coordinate = $\{x\}$ and canonical conjugate momentum = $\{m\dot{x}\}$
- The corresponding phase space has $\{x, m\dot{x}\}$ canonical variables

Fig. Motion of harmonic oscillator in real space and phase space.

Brief Review of Hamiltonian Mechanics: (3) Legendre Transformation

- Definition of Legendre Transformation
 - \square Transformation of the Lagrangian $\mathcal L$ into the Hamiltonian $\mathcal H$
- Formula of Legendre Transformation
 - \Box For n-generalized coordinates q_i and the corresponding momenta p_i , the Hamiltonian $\mathcal H$ can be obtained as follows

Recall that
$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$$

$$\mathcal{H}(q_1, \dots, q_n, p_1, \dots, p_n, t) = \sum_{i=1}^n p_i \dot{q}_i - \mathcal{L}(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n, t)$$

■ Characteristics of Legendre Transformation

$$\frac{\partial \mathcal{H}}{\partial q_i} = -\frac{\partial \mathcal{L}}{\partial q_i}$$
 and $\frac{\partial \mathcal{H}}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t}$

$$-\dot{p}_i = \frac{\partial \mathcal{H}}{\partial q_i}$$
 and $\dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i}$

You can derive these relations from the Legendre transformation

- Legendre Transformation in Quantum Computing
 - □ Legendre transformation from the Lagrangian of superconducting quantum circuit to derive the circuit's Hamiltonian

Similar Technique in Electrical Engineering: Coenergy Method

- lacktriangle Comparison of Energy W_e and Coenergy W_e' between Linear and Nonlinear Systems
- \square By definition, $W_e + W'_e$ is equal to qv in electric system and λi in magnetic system
- \square Only in the *linear* system, $W_e = W'_e$; if a system is *non-linear*, $W_e \neq W'_e$
- $\ \square$ Even if a system is linear, the mathematical expression of W_e is $\underline{completely\ different}$ from that of W_e'

Brief Review of Hamiltonian Mechanics: (4) Poisson Bracket

- Definition of Poisson Bracket
 - ☐ An operator that measures the infinitesimal change of one observable quantity with respect to another in phase space
- Formula of Poisson Bracket
 - \square For two functions f(q,p) and g(q,p), the Poisson bracket is defined as

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right) \quad \text{where for } i = 1, \dots, n, \\ q_i \text{ and } p_i \text{ are the generalized coordinates and momenta}$$

- Characteristics of Poisson Bracket
 - \square Anti-symmetry: $\{f,g\} = -\{g,f\}$
 - \Box Linearity: $\{af + bg, h\} = a\{f, h\} + b\{g, h\}$
 - \square Leibniz Rule: $\{q_i, p_j\} = \delta_{ij}$

where a and b: constants

where δ_{ij} : Kronecker-delta function

- Poisson Bracket and Hamiltonian Dynamics
 - \Box For any function f(q, p) in phase space, its time evolution is

$$\frac{df}{dt} = \{f, \mathcal{H}\} + \frac{\partial f}{\partial t}$$

NOTE: The Poisson bracket is the classical analogy of the commutator in quantum mechanics

Brief Review of Hamiltonian Mechanics: (5) Canonical Transformation

Definition of Canonical Transformation

- A generalized coordinate transformation that changes the generalized coordinates q_i and conjugate momenta p_i in \mathcal{H} to a new set of coordinates Q_i and momenta P_i in \mathcal{H}' , which satisfy canonical relations
- For generating function *F* (mapping function), the transformed Hamiltonian is

$$\mathcal{H}'(Q_1, \dots, Q_n, P_1, \dots, P_n) = \mathcal{H}(q_1, \dots, q_n, p_1, \dots, p_n) + \frac{\partial F}{\partial t}$$

Formula of Canonical Transformation

 \square Type 1: $F_1(q,Q,t)$

$$p_i = -\frac{\partial F_1}{\partial q_i}, P_i = -\frac{\partial F_1}{\partial Q_i} \text{ Trivial example of } F_1 = \sum q_i Q_i \\ \text{where } Q_i = p_i \text{ and } P_i = -q_i \\ \end{array} \qquad p_i = \frac{\partial F_2}{\partial q_i}, Q_i = \frac{\partial F_2}{\partial P_i}$$

 \square Type 2: $F_2(q, P, t) - \sum Q_i P_i$

$$p_i = \frac{\partial F_2}{\partial q_i}$$
, $Q_i = \frac{\partial F_2}{\partial P_i}$

Trivial example of $\overline{F_2 = \sum q_i P_i}$ where $Q_i = q_i$ and $P_i = p_i$

 \square Type 3: $F_3(p,Q,t) + \sum q_i p_i$

$$q_i = -rac{\partial F_3}{\partial p_i}$$
 , $P_i = -rac{\partial F_1}{\partial Q_i}$

 $q_i = -rac{\partial F_3}{\partial p_i}$, $P_i = -rac{\partial F_1}{\partial Q_i}$ Trivial example of $F_3 = \sum p_i Q_i$ where $Q_i = -q_i$ and $P_i = -p_i$ $q_i = -rac{\partial F_4}{\partial p_i}$, $Q_i = rac{\partial F_4}{\partial P_i}$ Trivial example of $F_4 = \sum p_i P_i$ where $Q_i = p_i$ and $P_i = -q_i$

 \square Type 4: $F_4(p, P, t) + \sum q_i p_i - \sum Q_i P_i$

$$q_i = -\frac{\partial F_4}{\partial p_i}$$
, $Q_i = \frac{\partial F_4}{\partial F_i}$

Brief Review of Hamiltonian Mechanics: (6) Simple Harmonic Oscillator

- **Example of Canonical Transformation**
 - Kinetic energy T, potential energy U, and Lagrangian \mathcal{L} of the system are

$$T = \frac{1}{2}m\dot{x}^2$$
, $U = \frac{1}{2}kx^2$, $\mathcal{L}(x,\dot{x}) = T - U = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$

Canonical momentum p and Hamiltonian ${\mathcal H}$ of the system are

$$p = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x} \quad \mathcal{H} = p\dot{x} - \mathcal{L},$$

$$\therefore \mathcal{H}(x,p) = \frac{kx^2}{2} + \frac{p^2}{2m} = \frac{m\omega^2 x^2}{2} + \frac{p^2}{2m} \quad \text{where } \omega \equiv \sqrt{\frac{k}{m}} \text{ oscillator's eigenfrequency}$$

$$p = \frac{\partial F_1(q,Q)}{\partial q_i} = m\omega q \cot Q,$$

$$P = -\frac{\partial F_1(q,Q)}{\partial Q} = \frac{m}{2} \frac{\omega q^2}{\sin^2 Q},$$

$$q = \sqrt{\frac{2P}{m\omega}} \sin Q,$$

$$p = \sqrt{2m\omega P} \cos Q,$$

$$q = \sqrt{\frac{2P}{m\omega}} \sin Q \,,$$

$$p = \sqrt{2m\omega P}\cos Q$$

NOTE: The above generating function will be utilized to solve quantum mechanical harmonic oscillator

Fig. Motion of mass on a spring (harmonic oscillator)

$$\mathcal{H}'(P,Q) = \omega P(\cos^2 Q + \sin^2 Q)$$
$$\therefore \mathcal{H}' = \omega P$$

Implies that Q is a cyclic coordinate for \mathcal{H}' and the Hamiltonian means the total energy

Brief Review of Classical Mechanics: Simple Pendulum Example

Newtonian Mechanics

Lagrangian Mechanics

Hamiltonian Mechanics

Newton's Force equation

- Equation of motion: F = ma $\therefore F = -mg\sin\theta$
- From force vector analysis,

$$s = l\theta$$
,
 $v = \frac{ds}{dt}$,
 $a = \frac{d^2s}{dt^2} = l\ddot{\theta}$
 $\therefore l\ddot{\theta} = -g\sin\theta$

Generalized coordinate θ and velocity $\dot{\theta}$

- Potential energy: $U = -mgl\cos\theta$
- Kinetic energy: $T = \frac{1}{2}m(l\dot{\theta})^2$
- Lagrangian: $\mathcal{L} = T U$ $\mathcal{L} = \frac{1}{2} m \big(l\dot{\theta}\big)^2 + mgl\cos\theta$
- The Euler-Lagrangian equation: $\frac{\partial \mathcal{L}}{\partial \theta} \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = 0$ $\therefore g \sin \theta + l \dot{\theta} = 0$

From the Lagrangian,

- Canonical conjugate momentum: $p=rac{\partial \mathcal{L}}{\partial \dot{a}}=ml^2\dot{\theta}$
- Legendre transformation: $\mathcal{H}=\sum_{i=1}p_i\dot{q}_i-\mathcal{L}$ $\mathcal{H}=ml^2\dot{\theta}^2-\mathcal{L}$

$$f = ml^{2}\theta^{2} - \mathcal{L}$$

$$= \frac{1}{2}m(l\dot{\theta})^{2} - mgl\cos\theta$$

- From the Hamiltonian's characteristic: $-\dot{p} = \frac{\partial \mathcal{H}}{\partial q}$ $-ml^2 \ddot{\theta} = \frac{\partial \mathcal{H}}{\partial \theta}$ $\therefore g \sin \theta + l \ddot{\theta} = 0$

See Also...

Textbooks:

[1] Grant R. Fowles and George L. Cassiday, *Analytical Mechanics*, Cengage Learning, 2004.

* recommended

Open Courses:

[1] Iain W. Stewart, Advanced Classical Mechanics, MIT OCW, 2014. [Online Available]

https://ocw.mit.edu/courses/8-09-classical-mechanics-iii-fall-2014/

[2] Sunil Golwala, Lecture Notes on Classical Mechanics for Physics 106ab, 2007 [Online Available]

https://sites.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf