

```
Matroid Union
           Let M. = (Si, Ii) and Ma = CS2, Iz) be matroids. (Mb restriction on Si and S2)
           The union of M1 and M2, denoted by M1 VM2, is CS. US2, 2)
            where I := { I, UI2 | I, E Y, and I2 E 72}
          the MIVM2 is a notroid.
                       · whose rank function is given by TMIVM2 (U) = Min { | U|T | + LMICT ) + LM2 (T)
                                                                  = min { [UIT] + +m, (T,S) + +m, CT,S2)}
part 1 prod) We first show that MIVME is a motorid.
                     1) Suppose use have I & I and JEI. By definition, I = I, VI2
                         for some I, ∈ I, and I2 ∈ I2. And we have J= JIUJz where
                          JET and JETz, hiplying JET.
                   @ Suppose that we have I, JEY and II < [].
                         by definition, 7 II, I, J. J. such that I = II UI2 and J= JI UJE and
                         JI, JI e 21, Jz. Jze 12. (WLOG) We can assume that III = $ and Jin Jz=$.
                     · Among all such choice of II, Ix, II and Iz, Choose the one that
                             - Muximires | JI / JI + | Iz / Jz
                    · Since [J[>|I], for some i ∈ i1,23 was have [Ji]>|Ii]. thus there exists
                         t & Ji \ In such that In + t ex; , we have t & I3-i
                    · Since otherwise we could have chosen I; ':= I; ++, J; ':= J;
                                                                                                        I3-: = I3-:-t, Ti= Ti
                                                                                which yields | I'n J' | + | I'n J' | > | II n J 1 | + | I 2 n J 2 |
                     · This shows that t & I and I+t & I
                    · MIVM2 is a material
part 2 port) It is easy to see that \( \tau_{NVM2}(u) \leq \text{Min } \frac{1}{150} \text{ | Int. (TaSi) + for. (TaSi) + for. (TaSi) + for. (TaSi) = \frac{1}{150} \text{ | Int. (TaSi) + for. (TaSi) + for. (TaSi) = \frac{1}{150} \text{ | Int. (TaSi) + for. (TaSi) + for. (TaSi) = \frac{1}{150} \text{ | Int. (TaSi) + for. (TaSi) = \frac{1}{150} \text{ | Int. (TaSi) = \frac{1}{150}
                     Supere that ICU be and satisfying II = TMIVMO(U) and I - IVII
                   For any TEU, we have |I| = |ITT+ |InT| \leq |UT| + |InT| + |InT|
                                                                                                                      S | UNTI + Hay (TAS) + Hay (TAS)
```

	· (WLOG), we an assure that $S = S_2$
	[since O(W we can ousider M' = CS', I) and M' = CS', I)
	for S':= SIUS2 and we have MIVM2' = MIVM2)
	Let S := S1 = S2
	Macover, it suffices to prove TMNM2(U) \geq Min \geq [UIT] + FMN(TaSi) + TML(TaSi) TEU andy for U=S
	> MINM2(S) ≥ MINE ISITI+ MIN (T) + MIN (T) } TES
	(She O/w we can consider the restriction of M1 and M2 to U.
	=> Prest)
	Consider the dual M2 = (S, I2) of M2
	€ Xe II 122, we have a base B2 of N/2 contacted in SIX
	and thus, for I:= XUB2, we have MINM2(S) = [I] = [X + B2
	⇒ Yieldy (MIVM2CS) ≥ max (X) + (TM2(X)?
	= Min (rm, (T) + rm, (STT) + tm, (X)) (Mation) Intersection theorem TES
	TEXAL USS (MAX [I] = M/(T(U)+t2(S/U))
	= mb(tm(t)+151T1-tm(T)+tm(T)+tm(S))
	(@ ty*(u) = lul - tm(s) + tm (s/u))
	Two Aral Material.
	= mh (1stt + tm. Et) + tm. Et)) TES
	: tmivm.(u) = min ((u)TI + tmi(TnSi) + tmi(TnSi))
	C(E)? polytime?
· · · · · · · · · · · · · · · · · · ·	

Given a motioid CS.Y), XEY and YESIX such that X+y & I,
Let CCX, y) denote the mayor charit of (X+y) > 71/2 15 notation
For C: S → IR and XES, let cOx) := ∑ c(x)
Let CS, I) be a notion with veryth function C: S > R and K CM
for $X \in \mathcal{I}$ and $ X = k$, we have $C(X) = \max_{i} \tilde{c}(Y) Y \in \mathcal{I}_{i} Y = k$
for $X \in \mathcal{I}$ and $ X = k$, we have $C(X) = \max_{x \in \mathcal{I}} (X) Y \in \mathcal{I}, Y = k$. (1) O for $V \in S \setminus X$ with $X + i$ of Y (dependent), "unximum independent set with $X + i$ or $X + i$ or $X + i$ (and $X + i$).
$\int_{\mathbb{R}^{n}} we have c(\lambda) \geq c(\lambda) \leq c(\lambda) \leq c(\lambda)$
(→ arcuit 5011 (+j-i) operationes X'= 1511 weight If
@ for bj ∈ SIX with X+j ∈ I Cindpondent with and k+1)
ve have c(i) ≥ c(j) for \$ i ∈ X
(> of the bull and - k (+i)-i) aparathres × = visit by
pnot) (trivially holds.
Let e, e2,, e sol devote the elements in S
(WLOG) we assure that
$C(e_i) \ge C(e_2) \ge \cdots \ge C(e_{ S })$
and for θ i < j with $C(e_i) = C(e_j)$
$\Rightarrow (j \in X implies $
Now, consider a new matroid, Ix = & I I = E , I = & }
Run the Lagorithm to find a max moight base, considering ex eisi in that out
We dayn that the algorithm returns X.
In order to prove this dadm, we induction on # of iterations
At the beginning of the ith Heutin
we have that the elements chasen so for is exactly $X_i = (e_i : e_{i-1})$
Case O if Ei eX, the algorithm would choose ei as well.
Care 3 Let ei EX. Suppose to the contendition that the algorithm
Chooses to hande e; in the solution,
This implies that $X_n \{e_1, \dots, e_{n-1}\} < k$
Suppose X+ ei ∈ 3 Let M:= max {i ei ∈ X}
⇒ we have c(e,) > c(e,n) contradictly (iii)
D Supose X+ e; € Y
> we have that C(X+ei) ⊆ 3'e,, ei), since dw algorithm would not have chosen ei. Let em ∈ Eein elsi) arbitarily. > Gart(ii)
11 De Chozen Ch. Let EM & 2 Chit Elsh avoilor ly . > (articl)