Основы машинного обучения

Лекция 6

Линейная регрессия и градиентный спуск

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2025

Переобучение и регуляризация линейных моделей

Нелинейная задача

$$a(x) = w_0 + w_1 x$$

Нелинейная задача

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

Нелинейная задача

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

Симптом переобучения

$$a(x) = 0.5 + 13458922x - 43983740x^2 + \cdots$$

- Большие коэффициенты симптом переобучения
- Эмпирическое наблюдение

Симптом переобучения

- Большие коэффициенты в линейной модели это плохо
- Пример: предсказание роста по весу

$$a(x) = 698x - 41714$$

- Изменение веса на 0.01 кг приведет к изменению роста на 7 см
- Не похоже не правильную зависимость

- Будем штрафовать за большие веса!
- Пример функционала:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2$$

• Регуляризатор:

$$||w||^2 = \sum_{j=1}^a w_j^2$$

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

λ — коэффициент регуляризации

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

• Аналитическое решение:

$$w = (X^T X + \lambda I)^{-1} X^T y$$

• Гребневая регрессия (Ridge regression)

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 0.01 \|w\|^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 1 \|w\|^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 100 \|w\|^2 \to \min_{w}$$

Лассо

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda \sum_{j=1}^{d} |w_j| \to \min_{w}$$

- LASSO (Least Absolute Shrinkage and Selection Operator)
- Некоторые веса зануляются
- Приводит к отбору признаков

Регуляризаторы

•
$$||z||_2 = \sqrt{\sum_{j=1}^d z_j^2} - L_2$$
-норма

•
$$||z||_1 = \sum_{j=1}^d |z_j| - L_1$$
-норма

Поиск гиперпараметров

- Хотим найти коэффициент регуляризации
- Выбираем сетку, например: [0.01, 0.1, 1, 10, 100]
- Для каждого значения обучаем модель и считаем ошибку на отложенной выборке (или про кросс-валидации)
- Выбираем вариант с наименьшей ошибкой

- Grid search
- Есть и другие подходы

Интерпретация линейных моделей

```
a(x) = 100.000 * (площадь)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь) + 500.000 * (число магазинов рядом) + 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.) + 500.000 * (число магазинов рядом) + 100 * (средний доход жильцов дома)
```

```
a(x) = 10 * (площадь в кв. см.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

- Чем больше вес, тем важнее признак?
- Только если признаки масштабированы!

Масштабирование признаков

- Отмасштабируем *j*-й признак
- Вычисляем среднее и стандартное отклонение признака на обучающей выборке:

$$\mu_j = \frac{1}{\ell} \sum_{i=1}^{\ell} x_{ij}$$

$$\sigma_j = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (x_{ij} - \mu_j)^2}$$

Масштабирование признаков

• Вычтем из каждого значения признака среднее и поделим на стандартное отклонение:

$$x_{ij} \coloneqq \frac{x_{ij} - \mu_j}{\sigma_j}$$

- Если модель переобучается, то веса используются для запоминания обучающей выборки
- Правильнее масштабировать признаки модель перед изучением весов

Градиент и его свойства

Среднеквадратичная ошибка

• MSE для линейной регрессии:

$$Q(w_1, ..., w_d) = \sum_{i=1}^{\ell} (w_1 x_1 + \dots + w_d x_d - y_i)^2$$

Градиент

• Градиент — вектор частных производных

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right)$$

• У градиента есть важное свойство!

Важное свойство

- Зафиксируем точку x_0
- В какую сторону функция быстрее всего растёт?

Важное свойство

- Зафиксируем точку x_0
- В какую сторону функция быстрее всего растёт?
- В направлении градиента!
- А быстрее всего убывает в сторону антиградиента

Как это пригодится?

Как это пригодится?

Градиентный спуск

Градиентный спуск

- Стартуем из случайной точки
- Сдвигаемся по антиградиенту
- Повторяем, пока не окажемся в точке минимума

- Простейший случай: один признак
- Модель: $a(x) = w_1 x + w_0$
- Два параметра: w_1 и w_0
- Функционал:

$$Q(w_0, w_1) = \frac{1}{\ell} \sum_{i=1}^{\ell} (w_1 x_i + w_0 - y_i)^2$$

$$Q(w_0, w_1) = \frac{1}{\ell} \sum_{i=1}^{\ell} (w_1 x_i + w_0 - y_i)^2$$

$$\bullet \quad \frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_i (w_1 x_i + w_0 - y_i)$$

$$\bullet \quad \frac{\partial Q}{\partial w_0} = \frac{2}{\ell} \sum_{i=1}^{\ell} (w_1 x_i + w_0 - y_i)$$

•
$$\nabla Q(w) = \left(\frac{2}{\ell} \sum_{i=1}^{\ell} x_i (w_1 x_i + w_0 - y_i), \frac{2}{\ell} \sum_{i=1}^{\ell} (w_1 x_i + w_0 - y_i)\right)$$

Начальное приближение

• w^0 — инициализация весов

• Например, из стандартного нормального распределения

Градиентный спуск

• Повторять до сходимости:

Сходимость

• Останавливаем процесс, если

$$||w^t - w^{t-1}|| < \varepsilon$$

• Другой вариант:

$$\|\nabla Q(w^t)\| < \varepsilon$$

• Или пока ошибка на отложенной выборке уменьшается

Функционал ошибки

Линейная регрессия

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x \rangle - y_i)^2$$

•
$$\frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{i1} (\langle w, x \rangle - y_i)$$

• ..

•
$$\frac{\partial Q}{\partial w_d} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{id} (\langle w, x \rangle - y_i)$$

•
$$\nabla Q(w) = \frac{2}{\ell} X^T (Xw - y)$$

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять:

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

• Градиентный спуск находит только локальные минимумы

- Градиентный спуск находит локальный минимум
- Мультистарт запуск градиентного спуска из разных начальных точек
- Может улучшить результат

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

• Позволяет контролировать скорость обучения

Градиент на первом шаге:

[26.52, 564.80, 682.90, 5097.71, 12110.87]

Градиент на первом шаге:

[26.52, 564.80, 682.90, 5097.71, 12110.87]

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

• Позволяет контролировать скорость обучения

• Если сделать длину шага недостаточно маленькой, градиентный спуск может разойтись

• Длина шага — параметр, который нужно подбирать

Переменная длина шага

$$w^t = w^{t-1} - \frac{\eta_t}{\eta_t} \nabla Q(w^{t-1})$$

• Длину шага можно менять в зависимости от шага

• Например: $\eta_t = \frac{1}{t}$

• Ещё вариант: $\eta_t = \lambda \left(\frac{s}{s+t}\right)^p$

• Вычтем из каждого значения признака среднее и поделим на стандартное отклонение:

$$x_{ij} \coloneqq \frac{x_{ij} - \mu_j}{\sigma_j}$$