Probability Models

Johannes Wissel

School of Operations Research & Information Engineering Cornell University

Spring 2024

Reading: Devore 2.1-2.3

Probability Models

A probability model describes an experiment or phenomenon where the outcome isn't known in advance, or can't be predicted with certainty, e.g.,

- flipping a coin;
- who will be the next president;
- whether two students in 2700 have the same birthday.

Probability models are defined by *three elements*:

- 1. sample space S: contains all the possible outcomes;
- 2. set of events \mathcal{E} : subsets of \mathcal{S} ;
- 3. probability function *P*: assigns probabilities (i.e., numbers between 0 and 1) to events.

Probability Models: Example

Probability model for flipping a fair coin:

- 1. sample space $S = \{\text{heads}, \text{tails}\}$
- 2. set of events $\mathcal{E} = \{\emptyset, \{\text{heads}\}, \{\text{tails}\}, \mathcal{S}\}$
- 3. probability function P:
 - $P(\emptyset) = 0$
 - ▶ $P(\{\text{heads}\}) = 0.5$
 - $P(\{\text{tails}\}) = 0.5$
 - P(S) = 1

Events

An **event** is a subset of possible outcomes that has a probability assigned to it.

Examples of Events:

- ▶ (throwing a die) $\{1,3,5\}$ = set of all odd outcomes
- ▶ (value of the Dow Jones) $\{x \in \mathbb{R} : x > 15,000\} = \text{set of all outcomes exceeding } 15,000$

Set manipulation can make computing probabilities easier.

Set Manipulation

Let A and B be events (which are sets).

- ▶ A and B occur: $A \cap B = \text{set of all outcomes that are in both } A \text{ and } B$
- ▶ A or B occurs: $A \cup B = \text{set of all outcomes that are in } A \text{ or } B$
- ightharpoonup A doesn't occur: A^c = set of all outcomes that are not in A

For a sequence A_1, A_2, \ldots of events,

- $ightharpoonup \bigcap_{i=1}^{\infty} A_i = \text{set of all outcomes in } A_1 \text{ and } A_2 \text{ and } \dots$
- $igspace \bigcup_{i=1}^{\infty} A_i = \text{set of all outcomes in } A_1 \text{ or } A_2 \text{ or } \dots$

Set Manipulation

De Morgan's Laws: For any sequence A_1, A_2, \ldots of events,

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$$

$$\left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} A_i^c$$

Probability Functions

A **probability function** is a function $P(\cdot)$, which assigns a number between 0 and 1 to every event, that satisfies the *axioms of probability*:

- 1. $P(A) \ge 0$ for every event A.
- 2. If the events $A_1, A_2, ...$ are mutually exclusive (i.e., $A_i \cap A_j = \emptyset$ for all i and j), then

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=P(A_1)+P(A_2)+\cdots.$$

3. P(S) = 1.

Properties of Probability Functions

$$P(\emptyset) = 0$$

For *finitely* many mutually exclusive events A_1, \ldots, A_n ,

$$P(A_1 \cup \cdots \cup A_n) = P(A_1) + \cdots + P(A_n)$$

For any event A,

$$P(A) \leq 1$$
 $P(A^c) = 1 - P(A)$

Properties of Probability Functions

For any two events A and B,

$$P(A) \leq P(B)$$
 if A is a subset of B

Inclusion-Exclusion Formula:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Defining Probability Functions: Discrete ${\cal S}$

When the sample space S is discrete (i.e., finite or countably infinite), any assignment of numbers p_s for each outcome $s \in S$ where

$$p_s \geq 0 \quad ext{for all } s, \quad ext{ and } \qquad \sum_{s \in \mathcal{S}} p_s = 1$$

defines a probability function P as follows:

$$P(A) = \sum_{s \in A} p_s$$
 for each event A .

Example: Throwing a Fair Die

Sample Space: $S = \{1, 2, 3, 4, 5, 6\}$

Set of Events: $\mathcal{E} = \text{collection of all subsets of } \mathcal{S}$

Probability Function: Let $p_s = \frac{1}{6}$ for s = 1, 2, 3, 4, 5, 6.

Example: The probability that the outcome is divisible by 3 is

$$P({3,6}) = p_3 + p_6 = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}.$$

Defining Probability Functions: Continuous ${\mathcal S}$

When S is \mathbb{R} (the set of all real numbers), we consider a *density* functions f(x) where

$$f(x) \ge 0$$
 for all $x \in \mathbb{R}$, and $\int_{-\infty}^{\infty} f(x) dx = 1$.

To define a probability function P, for

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

let

$$P([a,b]) = \int_a^b f(x) dx.$$

Example: Service Times

In queueing theory, the following probability model is often used for the time that it takes a server (e.g., a bank teller) to serve a customer. Take some $\lambda > 0$ and consider the density function

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{when } x \ge 0, \\ 0 & \text{when } x < 0. \end{cases}$$

Question: What's the probability that the service time is at least 3 time units?

A.
$$1 - \lambda e^{-3\lambda}$$

B.
$$e^{-3\lambda}$$

C.
$$\lambda e^{-3\lambda}$$

C.
$$\lambda e^{-3\lambda}$$
D. $1 - e^{-3\lambda}$

Picking a Probability Function

Three common ways to decide what probability function to use (i.e. what p_s 's or what f(x) to use):

- 1. Symmetry
- 2. Estimate the probabilities from the data
- Theory

Symmetry

When we want all outcomes to be equally likely.

Examples:

▶ Discrete S: Toss 2 fair dice.

$$\mathcal{S} = \{(i,j) : i,j \in \{1,2,3,4,5,6\}\}$$
 $p_{(i,j)} = 1/36$ for all $(i,j) \in \mathcal{S}$

Continuous S: Pick a number at random from [0,1].

$$S = [0, 1] = \{x \in \mathbb{R} : 0 \le x \le 1\}.$$

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Estimate Probabilities from Data

Example: To estimate the probability that a Cornell student was born in New York state vs. other places, we take a poll! Caution: The folks in this room are a biased sample!

- A. Born in New York state.
- B. Born elsewhere in the U.S.
- C. Born outside of the U.S.

Theory

Example: The *Poisson distribution* is appropriate for modeling the number of calls that a call center receives per hour when receiving one call doesn't affect the time that another call's received.

In this case, $\mathcal{S}=\{0,1,2,\dots\}$ and the probability that s calls are received during a given hour is

$$p_s = \frac{e^{-\lambda}\lambda^s}{s!},$$

where the parameter λ needs to be estimated.

Some other random phenomena:

- Number of patients arriving in an emergency room between midnight and 1am.
- Number of decay events per second from a radioactive source.
- Number of search queries Google receives per second.

Birthday Problem

Question: What's the probability that at least 2 students in this class have the same birthday?

Assumptions:

- 1. No leap year (i.e., every year has 365 days).
- 2. Births occur on every day with equal likelihood.

Sample Space: Let N be the number of students in this class, and

$$S = \{(b_1, \ldots, b_N) : b_n \in \{1, \ldots, 365\}, \ n = 1, \ldots N\}$$

Birthday Problem

Let A be the event that at least 2 students have the same birthday.

It's easier to calculate the probability of A^c , the event that everyone has a different birthday, and use $P(A) = 1 - P(A^c)$:

Birthday Problem

Note that $P(A^c)$ decreases (so P(A) increases) as the number of students N increases.

Question: Based on your intuition, how many students do you think are needed to make $P(A) \approx 0.5$?

- A. 2
- B. 25
- C. 250
- D. 2,500

Summary

- A probability model consists of:
 - 1. sample space \mathcal{S}
 - 2. set of events \mathcal{E}
 - 3. probability function P satisfying the axioms of probability
- Many useful properties of probability functions can be derived from the axioms of probability.
- ▶ Three common ways to pick a probability function to use are:
 - 1. Symmetry
 - 2. Estimate the probabilities from the data
 - Theory

Events Probability Functions