Text-Independent Speaker Verification Using 3D Convolutional Neural Networks

by

Royston Rodrigues (16307R004)

Kanhaiya Kumar (13D070046)

Indian Institute of Technology Bombay

Outline

- 1. Task Definition
- 2. Implementation Details
 - 1. Data Representation
 - 2. Architecture Details of Development Phase
 - 3. Enrollment Phase
 - 4. Evaluation Phase
- 3. Dataset Details
- 4. Results

Task Definition

The Speaker verification problem refers to verifying the claimed identity of a speaker by using their voice characteristics. Our speaker verification system consists of three phases:

- Development Phase
 - Training 3D CNN
 - Discriminative Feature Extraction
- Enrollment Phase
 - Codebook formation
- Evaluation Phase
 - Speaker Identification
 - Speaker Verification

Data Representation:

Typical MFCC Pipeline:

Image Source: D. Jurafsky, J. H. Martin, Speech and Language Processing

Data Representation:

Modified MFEC Pipeline:

Image Source: D. Jurafsky, J. H. Martin, Speech and Language Processing

Data Representation:

Tool used: https://github.com/jameslyons/pythonspeechfeatures

Architecture Details of Development Phase:

Layer Name	Input Size	Output Size	Kernel	Stride
Conv1-1	20 x 80 x 40 x 1	18 x 80 x 36 x 16	$3 \times 1 \times 5$	1 x 1 x 1
Conv1-2	18 x 80 x 36 x 16	16 x 36 x 36 x 16	$3 \times 9 \times 1$	1 x 2 x 1
Pool1	16 x 36 x 36 x 16	16 x 36 x 18 x 16	$1 \times 1 \times 2$	1 x 1 x 2
Conv2-1	16 x 36 x 18 x 16	14 x 36 x 15 x 32	$3 \times 1 \times 4$	1 x 1 x 1
Conv2-2	14 x 36 x 15 x 32	12 x 15 x 15 x 32	$3 \times 8 \times 1$	1 x 2 x 1
Pool2	12 x 15 x 15 x 32	$12 \times 15 \times 7 \times 32$	$1 \times 1 \times 2$	1 x 1 x 2
Conv3-1	12 x 15 x 7 x 32	$10 \times 15 \times 5 \times 64$	$3 \times 1 \times 3$	1 x 1 x 1
Conv3-2	10 x 15 x 5 x 64	$8 \times 9 \times 5 \times 64$	$3 \times 7 \times 1$	1 x 1 x 1
FC4	8 x 9 x 5 x 64	64	-	-
FC5	64	200	-	-

Table 1: Architecture Details

Architecture Details of Development Phase:

Activation Function – PReLU

- Loss Function Cross Entropy, Classify 200 Speakers
- Pooling Careful Temporal Pooling
- Dropout Huge Training Time, Settled for Weight Decay L₂
- Batch Norm Important, Otherwise Training is Stuck, No learning
- Batch Size As much as possible in the GPU, Batch size = 128

Enrollment Phase:

Speaker ID	FC 4
1	FC 4 ₁
2	FC 4 $_2$
•	•
•	•
•	•
_	-
N	FC 4 $_{ m N}$

Speaker Data

Neural Network

Codebook

Important: Set network training flag to false!!!

- Minimum distance of test feature to existing enrolled features
- Distance threshold needed to avoid unenrolled speakers getting verified

Data Set Details:

VoxCeleb: -

- 100,000 utterances for 1,251 celebrities.
- Size of this dataset is 160 GB.
- 3 days to download.
- Parallel on four machines.

For Training Development stage:-

- Used 200 speakers data.
- Each speaker had atleast 80 examples.
- Validation Set: Randomly Sampled 10% Subset

For Enrollment stage:-

- Codebook Formation
- Case 1: Using speakers from training set (32x80)
- *Case 2*: From test set (32x80)
- On an average 16 mins of speech required for enrollment.

For Evaluation stage:-

- Speaker Identification
- Speaker Verification
 - Positive and negative data.

Result for speaker Identification task

How Many Examples needed for enrollment?

Why So many example during enrollment?

Data	Accuracy
Train	92.491 %
Validation	68.213 %

Development phase training results

Results for speaker verification task

	ROC	curve wher	test codel	oook	
1.0 -					Curve =1 line
0.8 -	<i>></i>				
True Positive Rate>					
1					
0.2 -					
0.0	0.2	0.4 False Positi	0.6 ve Rate>	0.8	1.0

Error	Percentage
EER	16.875 %
SER	6.09375 %

Error	Percentage
EER	27.8125 %
SER	22.5 %

Error rate for users from training dataset

Error rate for users only from test dataset

Thank You