```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import random
```

```
dataset=pd.read_csv("/content/E-commerce Customer Behavior - Sheet1.csv")
dataset.head()
```

	Customer ID	Gender	Age	City	Membership Type	Total Spend	Items Purchased	Average Rating	Discount Applied	Days Since Last Purchase	Satisfaction Level	11.
0	101	Female	29	New York	Gold	1120.20	14	4.6	True	25	Satisfied	
1	102	Male	34	Los Angeles	Silver	780.50	11	4.1	False	18	Neutral	
2	103	Female	43	Chicago	Bronze	510.75	9	3.4	True	42	Unsatisfied	
3	104	Male	30	San Francisco	Gold	1480.30	19	4.7	False	12	Satisfied	
4	105	Male	27	Miami	Silver	720.40	13	4.0	True	55	Unsatisfied	
Next steps: Generate code with dataset New interactive sheet												

features = ['Total Spend', 'Items Purchased', 'Days Since Last Purchase', 'Average Rating']
X = np.array(dataset[features])

```
def calculate_distance(a, b):
    return np.sqrt(np.sum((a - b) ** 2))
```

```
def assign_clusters(centroids, X):
    assigned_cluster = []
    for i in X:
        distances = [calculate_distance(i, c) for c in centroids]
        assigned_cluster.append(np.argmin(distances))
    return assigned_cluster
```

```
def update_centroids(clusters, X):
    new_centroids = []
    df_temp = pd.concat([pd.DataFrame(X), pd.Series(clusters, name='cluster')], axis=1)
    for c in set(df_temp['cluster']):
        current_cluster = df_temp[df_temp['cluster'] == c][df_temp.columns[:-1]]
        cluster_mean = current_cluster.mean(axis=0)
        new_centroids.append(cluster_mean)
    return np.array(new_centroids)
```

```
k = 3
init_indices = random.sample(range(len(X)), k)
centroids = np.array([X[i] for i in init_indices])
print("Initial Centroids:\n", centroids)

Initial Centroids:
  [[430.5  8.  21.  3.1 ]
  [800.9  12.  17.  4.1 ]
  [505.75  10.  39.  3.3 ]]
```

```
epochs = 10
for i in range(epochs):
    clusters = assign_clusters(centroids, X)
    centroids = update_centroids(clusters, X)

# Visualize first and last iteration
if i == 0 or i == epochs - 1:
    plt.figure(figsize=(10,7))
    plt.scatter(X[:,0], X[:,1], c=clusters, alpha=0.3)
    plt.scatter(centroids[:,0], centroids[:,1], color='black', marker='X', s=200)
    plt.title(f'K-Means Clustering - Iteration {i+1}')
    plt.xlabel(features[0])
    plt.ylabel(features[1])
    plt.show()
```



```
for i in range(k):
    print(f"\nCluster {i} Summary:")
    print(dataset[dataset['Cluster']==i][features].describe())
Cluster 0 Summary:
       Total Spend
                     Items Purchased Days Since Last Purchase
                                                                   Average Rating
        116.000000
                           116.000000
                                                                        116.000000
count
                                                       116.000000
mean
        473.388793
                             8.491379
                                                        31.612069
                                                                          3.325000
std
         31.299435
                             1.050844
                                                         9.504938
                                                                          0.197759
\, {\rm min} \,
        410.800000
                             7.000000
                                                        18.000000
                                                                          3.000000
25%
        440.900000
                             8.000000
                                                        23.000000
                                                                          3.175000
50%
        475.250000
                             8.500000
                                                        33.500000
                                                                          3.300000
        500.750000
530.400000
                             9.000000
                                                        39.000000
                                                                          3.500000
75%
max
                            10.000000
                                                        49.000000
                                                                          3.600000
Cluster 1 Summary:
```

′				<i>c</i> =	015
		Total Spend	Items Purchased	Days Since Last Purchase	Average Rating
	count	117.000000	117.000000	117.000000	117.000000
	mean	1311.144444	17.615385	17.940171	4.675214
	std	151.929971	2.548990	7.535308	0.167077
	min	1120.200000	14.000000	9.000000	4.300000
	25%	1160.600000	15.000000	11.000000	4.500000
	50%	1210.600000	17.000000	18.000000	4.700000
	75%	1470.500000	20.000000	25.000000	4.800000
	max	1520.100000	21.000000	36.000000	4.900000
	Cluste	r 2 Summary:			
		Total Spend	Items Purchased	Days Since Last Purchase	Average Rating
	count	117.000000	117.000000	117.000000	117.000000
	mean	748.432479	11.658120	30.256410	4.051282
	std	60.594250	1.107672	16.820633	0.174007
	min	660.300000	10.000000	12.000000	3.700000
	25%	690.600000	11.000000	15.000000	3.900000
	50%	770.200000	12.000000	21.000000	4.100000
	75%	800.900000	13.000000	47.000000	4.200000
	max	830.900000	14.000000	63.000000	4.400000