

"Hi, honey... I'm Ohm!"

# CIRCUITOS ELÉCTRICOS

# Problemas resolvidos

I



Circuitos Eléctricos – 2019/2020



a) Qual foi a potência fornecida ao elemento E em cada um dos 3 intervalos ?

# 1.1 - **Problema 6**





a)

$$P[0,2] = 5 \times 1mA = 5mW$$

$$P[2,3] = 2 \times 0 = 0W$$

 $P[3,5]=2\times (-1mA)=-2mW$  (neste intervalo o elemento E fornece potência ao exterior)

E. Martins, DETI Universidade de Aveiro

I-3

### Circuitos Eléctricos - 2019/2020

# **1.1 – Problema 6**





b) Qual foi a energia fornecida ao elemento E durante as primeiras duas horas ?

# 1.1 - Problema 6





b) 
$$P = VI = 5x(1mA) = 5mW$$
  
 $E = Pxt = (5mW)(2x60x60) = 36J$ 

E. Martins, DETI Universidade de Aveiro

I-5

### Circuitos Eléctricos - 2019/2020

# **1.1 – Problema 6**





c) Supondo uma energia inicial nula, qual é a energia que permanece (restante) no elemento E ao fim das 5 horas ?

# 1.1 - Problema 6



c) 
$$E[0,2] = 36J$$
 
$$E[3,5] = -2mW \times 2h \times 60m \times 60s = -14.4J$$
 
$$E_{restante} = 36J - 14.4J = 21.6J$$

E. Martins, DETI Universidade de Aveiro

I-7

Circuitos Eléctricos – 2019/2020

## **1.2** – Problema 10

Um circuito composto por um bateria de automóvel de 12Volts e uma lâmpada, apresentado na figura 1.2 fornece à lâmpada uma energia de 460.8Wh durante o período de 8 horas.



- a) Qual é a potência fornecida à lâmpada ?
- b) Qual é a corrente que percorre a lâmpada?

# 1.2 – Problema 10



a) Uma vez que a potência é igual à energia a dividir pelo tempo temos:

$$P = \frac{E}{t} = \frac{460.8}{8} = 57.6W$$

b) Uma vez que a corrente é igual à potência a dividir pela tensão:

$$I = \frac{P}{V} = \frac{57.6}{12} = 4.8A$$

E. Martins, DETI Universidade de Aveiro

I-9

### Circuitos Eléctricos – 2019/2020



- Calcular valores das tensões, correntes e potências dissipadas.
- Para cada elemento, indicar se está a dissipar ou a fornecer potência (D/F).

| Tabela I |       |       |                    |     |  |  |  |
|----------|-------|-------|--------------------|-----|--|--|--|
| Elemento | V (V) | I (A) | P <sub>d</sub> (W) | D/F |  |  |  |
| a        | 10    | 25    |                    |     |  |  |  |
| b        | -2    |       |                    |     |  |  |  |
| c        |       | 5     |                    |     |  |  |  |
| d        | 12    |       |                    |     |  |  |  |
| e        | 10    | 10    |                    |     |  |  |  |
| f        |       |       |                    |     |  |  |  |
| g        |       |       |                    |     |  |  |  |



$$\begin{split} V_a - V_c + V_b &= 0 \Leftrightarrow 10 - V_c - 2 = 0 \Leftrightarrow V_c = 8V \\ V_f &= V_e = 10V \\ V_a + V_e - V_g - V_d &= 0 \Leftrightarrow 10 + 10 - V_g - 12 = 0 \Leftrightarrow V_g = 8V \end{split}$$

I-11

### Circuitos Eléctricos - 2019/2020



| Tabela I |       |       |                    |     |  |  |  |
|----------|-------|-------|--------------------|-----|--|--|--|
| Elemento | V (V) | I (A) | P <sub>d</sub> (W) | D/F |  |  |  |
| a        | 10    | 25    |                    |     |  |  |  |
| b        | -2    |       |                    |     |  |  |  |
| c        |       | 5     |                    |     |  |  |  |
| d        | 12    |       |                    |     |  |  |  |
| e        | 10    | 10    |                    |     |  |  |  |
| f        |       |       |                    |     |  |  |  |
| g        |       |       |                    |     |  |  |  |

$$\begin{split} I_b &= I_c = 5A \\ I_a + I_b + I_d &= 0 \Leftrightarrow 25 + 5 + I_d = 0 \Leftrightarrow I_d = -30A \\ I_g &= I_d = -30A \\ I_e + I_f + I_g &= 0 \Leftrightarrow 10 + I_f - 30 = 0 \Leftrightarrow I_f = 20A \end{split}$$



| Tabela I |       |      |                    |     |  |  |  |
|----------|-------|------|--------------------|-----|--|--|--|
| Elemento | V (V) | I(A) | P <sub>d</sub> (W) | D/F |  |  |  |
| a        | 10    | 25   | 250                | D   |  |  |  |
| b        | -2    | 5    | 10                 | D   |  |  |  |
| c        | 8     | 5    | 40                 | D   |  |  |  |
| d        | 12    | -30  | -360               | F   |  |  |  |
| e        | 10    | 10   | 100                | D   |  |  |  |
| f        | 10    | 20   | 200                | D   |  |  |  |
| g        | 8     | -30  | -240               | F   |  |  |  |

I-13

### Circuitos Eléctricos – 2019/2020

# 1.4 - Problema 16

Dado o circuito eléctrico da figura 1.5 em que as unidades das resistências estão todas em ohms  $(\Omega)$ .



### Calcular:

- a) O valor da corrente ia.
- b) O valor da tensão va.
- c) A potência fornecida pela fonte de 15Volts.

# 1.4 - Problema 16



E. Martins, DETI Universidade de Aveiro

I-15

### Circuitos Eléctricos - 2019/2020



**KVL:** 
$$-15 - v_b + 50 + v_c - v_a = 0$$

$$v_a = 1200i_a$$
  
 $v_b = 800i_a$   
 $v_c = -3000i_a$   
 $-15 - 800i_a + 50 - 3000i_a - 1200i_a = 0$   
 $i_a = 7mA$ 



$$i_a = 7mA$$
  $v_a = 1200i_a = 1200 \times 0.007 = 8.4V$ 

I-17

### Circuitos Eléctricos - 2019/2020



$$i_a = 7mA$$
  $P_{a(15)} = VxI = 15x0.007 = 105mW$ 

Mas isto é a potência absorvida!

$$P_{f(15)} = -105mW$$

# **1.5** – Problema 14A

# Dado o circuito eléctrico



Calcular a tensão v e a corrente i.

E. Martins, DETI Universidade de Aveiro

I-19

Circuitos Eléctricos - 2019/2020

# 



$$v = -\frac{R_p}{2+3+R_p} = 10$$

$$v = -0.98V$$

$$i = \frac{v}{R_p} = -1.8A$$

E. Martins, DETI Universidade de Aveiro

# Calcular a resistência equivalente entre A e B



E. Martins, DETI Universidade de Aveiro

I-21

Circuitos Eléctricos - 2019/2020





I-23

Circuitos Eléctricos – 2019/2020





I-25

Circuitos Eléctricos - 2019/2020





I-27

Circuitos Eléctricos – 2019/2020



$$R_{eq} = [(6+6)//4] + 8 = 3 + 8 = 11K\Omega$$