Segurança Computacional Trabalho 2

Gabriel Nogueira - 18/0113330

1 Cifração e Decifração AES (chave 128 bits)

1.1 Geração da Chave de 128 bits

Para a geração de uma chave aleatória de 128 bits foram selecionados 16 bytes psedo-aleatórios por meio da função getrandbits do módulo random da linguagem python. Em seguida, esse valor foi convertido para o formato de string, para facilitar sua leitura do arquivo.

1.2 Cifração e decifração

Para cifrar uma mensagem, foi primeiro necessário dividi-la em blocos de 16 bytes (128 bits), para que pudessem ser processados um a um. Após divididos os blocos, cada bloco é tratado como uma matriz 4x4 de bytes, sendo assim, foram definidas as seguintes operações sobre os bytes da mensagem (M) e os bytes de uma chave (K_i) :

- add_key: $M \oplus K_i$
- sub_bytes: cada byte de m_i é mapeado para um novo byte m'_i
- \bullet shif_rows: faz uma permutação em cada linha de M
- \bullet mix_columns: realiza uma transformação linear em cada coluna de M

Dessa forma, para criptografar um bloco (M), a partir da chave K_0 foi necessário realizar a operação $addkey(M, K_0)$, o que resulto na matriz de blocos denominada state

Em seguida, a chave foi expandida em outras 10 chaves. Para as primeiras 9 chaves foi realizada a seguinte composição de funções:

 $state = addkey(mixcolumns(shiftrows(sbox(state))), K_i)$

e por ultimo foi realizada a seguinte operação para a chave K_{10}

```
state = addkey(shiftrows(subbytes(state))), K_{10})
```

Para a decifração foi realizado um procedimento análogo, invertendo as operações, e utilizando as chaves em ordem contraria

```
state = imixcolumns(addkey(isubbytes(ishiftrows(state)), K_i)) E por ultimo,
```

$state = addkey(isubbytes(ishifrows(state))), K_{10})$

2 Geração de chaves e cifra RSA

Não foi possível completar o resto do relatório, mas tentei deixar o código o mais claro possível. Peço desculpas pelo inconveniente.

- 2.1 Geração de chaves
- 2.2 **OEAP**
- 2.3 Cifração/decifração assimétrica usando OEAP
- 3 Assinatura RSA
- 3.1 Assinatura da mensagem
- 3.2 Formatação do resultado
- 4 Verificação