A PROOF

Lemma 3.1

For $1 \leq h < H_c$, The $S_c[h]$ will be compacted in line 4 of Algorithm 1.

When h=1, we have $|S_c[1]|=n_c$ before line 4 and $|S_c[1]|=n_c\mod 2$ after compaction in line 4. After that, we have $|S_c[2]|=\lfloor n_c/2\rfloor$ before compaction and $|S_c[2]|=\lfloor n_c/2\rfloor\mod 2$ after compaction. Similarly, we have $|S_c[h]|=\lfloor n_c/s(h-1)\rfloor\mod 2$ for $h< H_c$.

Since the top compactor $S_c[H_c]$ is not compacted, its size is $|S_c[H_c]| = \lfloor n_c/s^{H_c-1} \rfloor$.

Proposition 3.3

For any KLL sketch S and any value x, $R(x,S)-R(x)=\sum_{h=1}^{h=H}\sum_{i=1}^{m_h}\omega_h\cdot X_{i,h}$, where $X_{i,h}\perp X_{i',h'}$ if $i\neq i'$ or $h\neq h'$. For any $X_{i,h}$, there are $Pr[X_{i,h}=0]=\frac{1}{2}, Pr[X_{i,h}=-1]=Pr[X_{i,h}=1]=\frac{1}{4}$. Informally, that means different compaction are independent. Any one compaction at level h may affect the result of R(x,S): 50% probability of unchanged, 25% of an increase of ω_h , and 25% of a decrease of ω_h . This was already shown in KLL paper.

Let s_k denotes $s_k=\sum_{i=1}^{i=k}X_{i,h}$, its easy to examine that $Pr[s_k=v]={2k+1\choose k+v+1}/2^{2k+1}$ for $-k\leq v\leq k$.

Thus we have, for any $k \geq 1$, $Pr[s_k = 0] \geq Pr[s_1 = 0]$, $Pr[|s_k| \geq 1] \geq Pr[|s_1| \geq 1] = Pr[|s_1| = 1]$ and $Pr[|s_k| \geq v] \geq Pr[|s_1| \geq v] = 0$ for $v \geq 2$.

Then for the optimal chunk sketch S and any other chunk sketch S'. Since compaction number $m_h=1$ and $m_h'\geq 1$, we have $Pr[\sum_{i=1}^{m_h}\omega_h\cdot X_{i,h}\geq \epsilon n_c]\leq Pr[\sum_{i=1}^{m_h'}\omega_h\cdot X_{i,h}\geq \epsilon n_c]$ for every level h. Add all levels and we have the proposition.

Lemma 3.4

Imaging a worst case: We have $H=H_c, |S_c[h]|=1, |S[h]|=K\gamma^{H-h}$ for $1\leq h\leq H_c-1$.

We first compact the compactor at level H to increase it 1. Let $|S[H_c]|=1$ after compaction.

Now we check whether the bottom H_c-1 levels will trigger a compaction at level H_c again or not.

After the following compaction in bottom H_c-1 levels, there would be $|S[H_c]| \leq 1+\sum_{i=1}^{i=H_c-1}2^{-i}(1+|S[H_c-i]|)=1+\sum_{i=1}^{i=H_c-1}2^{-i}(1+K\gamma^i) \leq 2+K*\sum_{i=1}^{i=+\infty}(\gamma/2)^i=2+K*\frac{\gamma}{2-\gamma}$

When $K\geq 10$, there will be $|S[H_c]|\leq 2+K*rac{\gamma}{2-\gamma]}\leq K\gamma=k_{H_c}$ since $1/2<\gamma<1$. So there won't be another compaction at level H_c . So the H will increase at most 1.

Proposition 3.6

According to Hoeffding's inequality, we only need to compare $\sum_{i=1}^H 2^{2(i-1)} m_i$ and $\sum_{i=1}^H 2^{2(i-1)} m_i'$.

Let S and S' have the same height H. Let $m_h=m_h'$ for $h>=H_c$ since compaction of the two methods mainly differ in the bottom H_c-1 levels.

Now let's compute the compaction number of bottom H_c-1 levels for both methods.

For our proposed merging method, we have $m_h=n/n_s$ for $1<=h<=H_c-1$. That's because there are n/n_s chunk sketches to merge, each has compaction 1 in every level. $\sum_{i=1}^{H_c-1}2^{2(i-1)}(n/n_s)=\frac{n}{n_s}\frac{4^{H_c-1}-1}{3}$

For the original method in data stream, we let $m_h'=n/(k_h*2^{h-1})=2n(\gamma/2)^h/(K\gamma^H)$. Then we have $\sum_{h=1}^{H_c-1}2^{2(h-1)}m_h'=rac{n/2}{K\gamma^H}\sum_{h=1}^{H_c-1}(2\gamma)^h=rac{n/2}{K\gamma^H}\cdotrac{(2\gamma)^{H_c}-2\gamma}{2\gamma-1}$

Since we want $\sum_{i=1}^H 2^{2(i-1)} m_i \leq \sum_{i=1}^H 2^{2(i-1)} m_i'$, there should be $K \gamma^H \leq \frac{3}{2} \frac{(2\gamma)^{H_c} - 2\gamma}{(2\gamma - 1)(4^{H_c-1} - 1)} n_s$

Let $F(\gamma,H_c)=rac{3}{2}rac{(2\gamma)^{H_c}-2\gamma}{(2\gamma-1)(4^{H_c-1}-1)}$, then we want $\gamma^H\leq F(\gamma,H_c)n_s/K$, in other words H should be large enough since $0.5<\gamma<1$ and $F(\gamma,H_c)n_s/K$ doesn't change with n.

H will increase as n grows. Now we find a lower bound of n under certain H. A sketch with H-1 levels can summarize at most $\sum_{i=1}^{H-1} 2^{i-1} K \gamma^{H-1-i} = K \gamma^{H-2} \sum_{i=0}^{i=H-2} (2/\gamma)^i <$. Then we have $n>K2^H/(4-2\gamma)$ when there are H levels.

When
$$\gamma^H \leq F(\gamma,H_c)n_s/K \iff 2^H \geq (F(\gamma,H_c)n_s/K)^{\log_\gamma 2}$$
, there is $n \geq \frac{K}{4-2\gamma}2^H \geq \frac{K}{4-2\gamma}(F(\gamma,H_c)n_s/K)^{\log_\gamma 2} = K^{1-\log_\gamma 2} \cdot n_c^{\log_\gamma 2} \cdot F(\gamma,H_c)$. That is our proposition.