

|중2 교과서 변형문제 발전

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2021-11-09
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

단원 ISSUE

이 단원에서는 평행사변형에서 각의 크기를 구하는 문제, 평행사 변형의 조건에 따른 미지수를 구하는 문제 등이 자주 출제되며 주어진 조건을 꼼꼼히 따져보면서 실수가 생기지 않도록 학습합니

평가문제

[중단원 학습 점검]

1. 다음 둘레의 길이가 80 cm **인 평행사변형** ABCD 에서 $\angle A$ 의 이동분선과 $\angle D$ 의 이동분선이 \overline{BC} 와 만나는 점을 각각 E, F라 하고, 두 각의 이등분선 의 교점을 G라고 하자. 이때 \overline{FE} 의 길이는?

- ① 4 cm
- ② 5 cm
- 3 8 cm
- 4 10 cm
- (5) 12 cm

[중단원 학습 점검]

2. 다음 평행사변형 ABCD에서 $\angle B$ 의 이등분선이 변 CD의 연장선과 만나는 점을 E라고 할 때, DE+DF의 값은?

- ① 8 cm
- ② 10 cm
- ③ 12 cm
- 4 14 cm
- ⑤ 16 cm

[중단원 학습 점검]

- 평행사변형 ABCD에서 $\angle B: \angle C = 5:7$ 일 때, ∠A와 ∠D의 크기의 차는?
 - ① 30°
- ② 35°
- 3040°
- 45°
- (5) 50°

[단원 마무리]

4. 다음 평행사변형 ABCD에서 점 E는 CD의 중점 이고, \overline{AE} 의 연장선과 \overline{BC} 의 연장선이 만나는 점을 F**라고 할 때**, △AED**의 넓이는** △ABF**의 넓이의** 몇 배인가?

① $\frac{1}{4}$

3 2

- **4 4**
- (5) 16

[단원 마무리]

5. 다음 평행사변형 ABCD에서 ∠A, ∠B의 이동분 선이 \overline{BC} , \overline{AD} 와 만나는 점을 각각 E, F라고 할 때, $\angle y - \angle x$ 의 값은?

- ① 100°
- ② 102°
- ③ 104°
- 4 106°
- (5) 108°

[중단원 학습 점검]

6. 다음과 그림과 같은 평행사변형 ABCD에서 x+y의 값은? (단, 점 O는 두 대각선의 교점이다.)

- ① 112
- ② 113
- 3 114
- 4 115
- **⑤** 116

[중단원 학습 점검]

7. 다음 중에서 □ABCD가 평행사변형이 되는 조건 은?

- ① $\overline{BC} = 3 \text{ cm}, \overline{CD} = 4 \text{ cm}$
- ② $\overline{BC} = 4 \text{ cm}, \angle CAB = 15^{\circ}$
- \bigcirc $\boxed{BC} = 4 \text{ cm}, \angle CAD = 15^{\circ}$
- \bigcirc $\boxed{CD} = 3 \text{ cm}, \angle CAB = 15^{\circ}$
- (5) $\overline{CD} = 3 \text{ cm}$. $\angle CAD = 15^{\circ}$

[중단원 학습 점검]

8. 다음 평행사변형 ABCD에서 AB, BC, CD, DA 의 중점을 각각 E, F, G, H라고 하자. 다음 보기 중에서 있는 대로 고른 것은?

<보기>

- $\neg. \ \Delta EBF \equiv \Delta GDH$
- \vdash . $\overline{EF} = \overline{GH}$
- □ □ EFGH는 평행사변형이 아니다.
- ① ¬
- 2 L
- ③ ┐, ∟
- ④ ∟, ⊏
- ⑤ ┐, ㄴ, ⊏

- [단원 마무리]
- **9.** 다음 보기 중에서 □ABCD가 평행사변형이 되는 것의 개수는?

<보기>

- \neg . $\overline{AB}//\overline{DC}$, $\overline{AB} = \overline{DC} = 7$ cm
- \bot . $\angle C = \angle A = 115^{\circ}$, $\angle D = \angle B = 65^{\circ}$
- \Box . $\angle A = \angle C = 45^{\circ}$, $\angle B = 135^{\circ}$
- \equiv . $\overline{AB} = \overline{DC} = 6$ cm, $\overline{AD} = \overline{BC} = 6$ cm
- (1) 0

2 1

3 2

4 3

⑤ 4

실전문제

10. $\langle \text{보기} \rangle$ 와 같이 평행사변형 ABCD에서 점 O를 지나는 직선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 E, F 라고 한다. 평행사변형 ABCD의 넓이가 $52\,cm^2$ 일 때, 두 삼각형 OAE와 OBF의 넓이의 합은?(단, 점 O는 두 대각선 AC와 BD의 교점이다.)

- ① $12 \, cm^2$
- ② $13 \, cm^2$
- $314cm^2$
- $(4) 15 cm^2$
- \bigcirc 16 cm²
- **11.** 다음 중 □ABCD가 평행사변형이 될 수 <u>없는</u> 것 은?
 - ① $\overline{AB}//\overline{CD}$, $\overline{AD}//\overline{BC}$
 - ② $\angle A = 100^{\circ}$, $\angle B = 80^{\circ}$, $\angle C = 100^{\circ}$
 - \bigcirc $\boxed{AB}//\boxed{DC}$, $\boxed{AB}=5$ cm, $\boxed{DC}=5$ cm
 - \triangle \triangle A = 70°, \triangle B = 110°, \triangle AD = 3 cm, \triangle BC = 3 cm
 - $\overline{\text{AB}} = 3 \text{ cm}$, $\overline{\text{BC}} = 3 \text{ cm}$, $\overline{\text{CD}} = 5 \text{ cm}$, $\overline{\text{DA}} = 5 \text{ cm}$

12. 그림과 같은 평행사변형 ABCD에서 \overline{AC} 와 \overline{BD} 의 길이의 합이 24이고, \overline{DC} =6일 때, $\triangle OCD$ 의 둘 레의 길이는?

- ① 16
- ② 18
- 3 20
- 4) 22
- ⑤ 24
- **13.** 다음 그림의 평행사변형 ABCD의 두 꼭짓점 A, C에서 대각선 BD에 내린 수선의 발을 각각 E, F 라고 할 때, 다음 중 $\Box AECF$ 가 평행사변형임을 설명하는 데 가장 적절한 것은?

① $\overline{CE} = \overline{CF}$

닮음비는?

- ② $\overline{AE} = \overline{EC}$
- \bigcirc $\angle ECB = \angle FCD$
- \bigcirc $\angle BAE = \angle DAF$
- (5) $\triangle ABE \equiv \triangle CDF$
- **14.** 다음 그림과 같은 평행사변형 ABCD에서 \overline{AE} 는 $\angle A$ 의 이등분선이고 $\overline{AE} \perp \overline{DF}$, $\overline{AB} = 6\,cm$, $\overline{AD} = 9\,cm$ 일 때, $\triangle GAD$ 와 $\triangle GEF$ 의

- ① 2:1
- ② 3:1
- 33:2
- 4:1
- ⑤ 5:1

- ① 11*cm*
- ② 12 cm
- 313cm
- 4 14cm
- ⑤ 15*cm*
- **16.** 그림과 같은 평행사변형 ABCD에서 \overline{AE} , \overline{DF} 는 각각 $\angle A$, $\angle D$ 의 이등분선이고,

 $\overline{AB} = 8cm$, $\overline{AD} = 12cm$ 일 때, \overline{EF} 의 길이는?

- ① 1 cm
- ② 2 cm
- ③ 3 cm
- 4 4 cm
- ⑤ 5*cm*
- **17.** 평행사변형 ABCD에서 변 CD의 중점을 E라 하고, 꼭짓점 A에서 \overline{BE} 에 내린 수선의 발을 F라 하자. $\angle DAF = 60$ 이고 $\overline{AD} = 6$, $\overline{DE} = 4$ 일 때, $\angle DFE = x$, $\overline{AF} = y$ 라 할 때 x + y의 값은?

- ① 36
- ② 38
- 3 40
- **4** 42
- ⑤ 44

4

정답 및 해설

1) [정답] ②

[해설] 평행사변형 ABCD의 둘레의 길이가 80cm이

므로
$$\overline{AD} = \frac{1}{2}(80 - 15 - 15) = 25 \text{ cm}$$

∠BEA = ∠DAE(엇각)이므로

삼각형 ABE는 BA=BE인 이등변삼각형이다.

따라서 $\overline{BE} = \overline{BA} = 15 \text{ cm}$ 이다.

같은 방법으로 $\overline{\text{CF}} = \overline{\text{CD}} = 15 \text{ cm}$

 $\overline{BC} = \overline{BE} + \overline{CE} - \overline{ED}$ 으로

 $25 = 15 + 15 - \overline{\text{FE}}$

 $\overline{FE} = 5 \text{ (cm)}$

2) [정답] ④

[해설] $\angle CEB = \angle ABE(엇각)이고,$

 \angle ABE = \angle EBC이므로 \triangle BCE는 $\overline{CB} = \overline{CEQ}$ 이 등변삼각형이다.

 $\overline{CE} = \overline{CB} = 15 \text{ cm}$ 이고, $\overline{CD} = \overline{AB} = 8 \text{ cm}$ 이므로

 $\overline{DE} = \overline{CE} - \overline{CD} = 15 - 8 = 7 \text{ (cm)}$

이때 ∠EFD = ∠EBC(동위각)이므로

△DFE는 DF=DE인 이등변삼각형이다.

따라서 $\overline{\rm DF} = \overline{\rm DE} = 7$ 이므로 $\overline{\rm DE} + \overline{\rm DF} = 14\,{\rm cm}$

3) [정답] ①

[해설]
$$\angle A = \angle C = 180^{\circ} \times \frac{7}{12} = 105^{\circ}$$

$$\angle D = \angle B = 180^{\circ} \times \frac{5}{12} = 75^{\circ}$$

따라서 ∠A-∠D=30

4) [정답] ①

[해설] \triangle AED와 \triangle FEC에서

 $\angle ADE = \angle FCE()$ 었각), $\overline{DE} = \overline{CE}$

∠AED = ∠FEC(맞꼭지각)

이므로 $\triangle AED = \triangle FEC(ASA 합동)$

따라서 $\overline{CF} = \overline{DA}$ 이고, 이때 평행사변형 ABCD에

서 $\overline{BC} = \overline{AD}$ 이므로 $\overline{BF} = 2\overline{AD}$

ΔAED의 높이는 ΔABF의 높이의 2배이므로

$$\triangle AED = \frac{1}{2} \times \overline{AD} \times \frac{1}{2} \overline{AH} = \frac{1}{4} \times \overline{AD} \times \overline{AH}$$

$$\Delta ABF = \frac{1}{2} \times \overline{BF} \times \overline{AH} = \frac{1}{2} \times 2\overline{AD} \times \overline{AH}$$
$$= \overline{AD} \times \overline{AH}$$

즉, $\triangle AED$ 의 넓이는 $\triangle ABF$ 의 넓이의 $\frac{1}{4}$ 배이

다.

5) [정답] ②

[해설] 평행사변형은 두 쌍의 대각의 크기가 각각 같

$$\angle A + \angle B = 180^{\circ}$$
, $\angle C + \angle D = 180^{\circ}$

AD//BC이므로

 $\angle FAE = \angle AEB = 180^{\circ} - 116^{\circ} = 64^{\circ}$ (엇각)

 $\angle A = 2 \angle FAE = 2 \times 64^{\circ} = 128^{\circ}$ 이므로

 $\angle B = 180^{\circ} - \angle A = 180^{\circ} - 128^{\circ} = 52^{\circ}$

$$\angle x = \angle D = \angle B = 52^{\circ}$$

$$\angle FBE = \frac{1}{2} \angle B = \frac{1}{2} \times 52^{\circ} = 26^{\circ}$$

∠AFB = ∠FBE = 26°(엇각)이므로

 $\angle y = 180^{\circ} - \angle AFB = 180^{\circ} - 26^{\circ} = 154^{\circ}$

따라서 $\angle y - \angle x = 154^{\circ} - 52^{\circ} = 102^{\circ}$

6) [정답] ⑤

[해설] $x = \overline{AC} = 2\overline{AO} = 11$

∠BDC = ∠ABD = 45 °(엇각)이므로

 $\angle D = 30^{\circ} + 45^{\circ} = 75^{\circ} = \angle B$

$$\angle y = \angle C = \angle A = \frac{1}{2} (360 \degree -75 \degree -75 \degree) = 105 \degree$$

에서 y = 105

따라서 x+y=116이다.

7) [정답] ③

[해설] ③ $\angle CAD = \angle ACB = 15$ °에서 엇각의 크기가 같으므로 \overline{AD} , \overline{BC} 이 서로 평행하다.

(⑤ AB, CD가 서로 평행하지 않을 수도 있다.) 따라서 한 쌍의 대변이 평행하고 그 길이가 같으

므로 평행사변형이 될 수 있다.

8) [정답] ③

[해설] \neg . \triangle AEH와 \triangle CGF에서

 $\overline{AE} = \overline{CG}$, $\angle HAE = \angle FCG$, $\overline{AH} = \overline{CF}$

이므로 $\triangle AEH = \triangle CGF(SAS)$ 합동)이므로 두 삼 각형의 넓이는 같다.

마찬가지 방법으로 ΔEBF 와 ΔGDH 에서

 $\overline{\mathrm{EB}} = \overline{\mathrm{GD}}, \ \angle \mathrm{EBF} = \angle \mathrm{GDH}, \ \overline{\mathrm{BF}} = \overline{\mathrm{DH}}$

이므로 $\triangle EBF = \triangle GDH(SAS 합동)$ (참)

 \triangle . \triangle AEH = \triangle CGF이므로 $\overline{EH} = \overline{GF}$

 $\triangle EBF = \triangle GDH이므로 \overline{EF} = \overline{GH}$ (참)

ㄷ. ㄴ에서 두 쌍의 대변의 길이가 각각 같으므

로 □EFGH는 평행사변형이다. (거짓)

따라서 옳은 것은 ㄱ, ㄴ이다.

9) [정답] ⑤

[해설] ㄱ. 한 쌍의 대변이 평행하고 그 길이가 같다.

ㄴ. $\angle C = \angle A = 115$ °, $\angle D = \angle B = 65$ °이므로 두 쌍의 대각의 크기가 각각 같다.

□. \angle D = 360 ° −45 ° −45 ° −135 ° = 135 ° ○] □

로 두 쌍의 대각의 크기가 각각 같다.

ㄹ. 두 쌍의 대변의 길이가 각각 같다. 따라서 □ABCD가 평행사변형이 되는 것은 ㄱ, ㄴ, ㄷ, ㄹ의 네 개다.

10) [정답] ②

[해설] $\triangle OAE$ 와 $\triangle OCF$ 에서

 $\overline{OA} = \overline{OC}$, $\angle EAO = \angle FCO$ (엇각),

 $\angle AOE = \angle COF(맞꼭지각)이므로$

 $\triangle OAE = \triangle OCF(ASA$ 합동)

 $\stackrel{\triangle}{\rightarrow}$, $\triangle OAE = \triangle OCF$

 $\therefore \triangle OAE + \triangle OBF = \triangle OCF + \triangle OBF = \triangle OBC$

$$=\frac{1}{4}\Box ABCD = \frac{1}{4} \times 52 = 13(cm^2)$$

11) [정답] ⑤

[해설] ① 두 쌍의 대변이 각각 평행하다.

- ② 두 쌍의 대각의 크기가 각각 같다.
- ③ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ④ $\angle A + \angle B = 180\,^\circ$ 이므로 $\overline{AD}//\overline{BC}$ 따라서 한 쌍의 대변이 평행하고 그 길이가 같다.

12) [정답] ②

[해설]
$$\overline{\mathit{OC}} = \frac{1}{2}\overline{\mathit{AC}}$$
, $\overline{\mathit{OD}} = \frac{1}{2}\overline{\mathit{BD}}$ 이므로

 $\triangle OCD$ 의 둘레의 길이는

$$\overline{OC} + \overline{OD} + \overline{CD} = \frac{1}{2} \overline{AC} + \frac{1}{2} \overline{BD} + \overline{CD}$$

$$= \frac{1}{2} (\overline{AC} + \overline{BD}) + \overline{CD}$$

$$= \frac{1}{2} \times 24 + 6 = 12 + 6 = 18$$

13) [정답] ⑤

[해설] $\triangle ABE$ 와 $\triangle CDF$ 에서

 $\angle AEB = \angle CFD = 90^{\circ}, \overline{AB} = \overline{CD},$

 $\angle ABE = \angle CDF$ 이므로

 $\triangle ABE = \triangle CDF(RHA$ 합동)

따라서 $\triangle ABE \equiv \triangle CDF$ 이면 $\overline{AE} = \overline{CF}$,

 $\angle AEF = \angle CFE = 90$ ° 이므로 $\overline{AE}//\overline{CF}$

한 쌍의 대변이 평행하고 그 길이가 같으므로

□ AECF는 평행사변형이다.

14) [정답] ②

[해설] $\triangle AGD$ 가 직각삼각형이므로

 $\angle GAD + \angle GDA = 90^{\circ} \circ]$ 고,

평행사변형 ABCD에서

 $\angle BAD + \angle ADC = 180$ °이므로

 $\angle BAE + \angle FDC = 90^{\circ}$ $\therefore \angle GDA = \angle FDC$

이때 $\angle ADF = \angle CFD()$ 었각)이므로

 $\triangle CDF$ 는 $\overline{CD} = \overline{CF} = 6cm$ 인 이등변삼각형

마찬가지로 $\angle DAE = \angle AEB()$ 인간)이므로

 $\triangle BAE$ 는 $\overline{BA} = \overline{BE} = 6cm$ 인 이등변삼각형

 $\therefore \overline{EF} = \overline{BE} + \overline{CF} - \overline{BC} = 6 + 6 - 9 = 3(cm)$

 $\triangle GAD$ 와 $\triangle GEF \vdash \angle AGD = \angle EGF = 90^{\circ}$,

 $\angle DAG = \angle FEG()$ 것각)

 $\therefore \triangle GAD \hookrightarrow \triangle GEF(AA$ 닮음)

따라서 닮음비는 \overline{AD} : \overline{FE} =9:3=3:1이다.

15) [정답] ⑤

[해설] $\overline{AD}//\overline{BC}$ 이므로 $\angle DAF = \angle AFB$ (엇각)

 $\angle AFB = \angle EFC$ (맞꼭지각)

이때 $\overline{AB}//\overline{DE}$ 이므로 $\angle BAF = \angle FEC$ (엇각)

즉 $\angle \mathit{EFC} = \angle \mathit{FEC}$ 이므로 $\triangle \mathit{CFE}$ 는 이등변삼각 형이다.

 $\therefore y = 4cm$

또 $\angle DAE = \angle DEA$ 이므로 $\triangle DEA$ 는 이등변삼각 형이다

 $\therefore x = \overline{DC} + \overline{CE} = \overline{AB} + \overline{CE} = 7 + 4 = 11(cm)$

 $\therefore x + y = 15cm$

16) [정답] ④

[해설] $\angle DAE = \angle BEA$ (엇각), $\angle BAE = \angle BEA$

따라서 $\triangle ABE$ 는 $\overline{BA} = \overline{BE}$ 인 이등변삼각형이므

로 $\overline{BE} = \overline{BA} = 8(cm)$

또 $\angle ADF = \angle CFD$ (엇각), $\angle CDF = \angle CFD$

따라서 $\triangle CDF$ 는 $\overline{CD} = \overline{CF}$ 인 이등변삼각형이므

로 $\overline{CF} = \overline{CD} = 8(cm)$

이때 $\overline{BC} = \overline{AD} = 12(cm)$ 이므로

 $\overline{BE} + \overline{CF} - \overline{EF} = 12$

 $8+8-\overline{EF}=12$ $\therefore \overline{EF}=4(cm)$

17) [정답] ①

위의 그림과 같이 \overline{AD} , \overline{BE} 의 연장선이 만나는 점을 H라 하면 ΔDEH 와 ΔCEB 에서

 $\overline{CE} = \overline{DE}$, $\angle DEH = \angle CEB$ (맞꼭지각),

 $\angle HDE = \angle BCE()$ 었각)이므로

 $\Delta DEH \equiv \Delta CEB(ASA$ 합동)

 $\therefore \overline{DH} = \overline{BC}$

이때 \overline{BC} = \overline{AD} 이므로 점 D는 \overline{AH} 의 중점이고, 직각삼각형의 빗변의 중점은 외심이므로 점 D는 ΔAFH 의 외심이다.

 $\therefore \overline{AD} = \overline{DH} = \overline{FD}$

따라서 $\triangle DAF$ 는 $\overline{DA} = \overline{DF}$ 인 이등변삼각형이고 $\triangle DAF = 60^{\circ}$ 이므로 $\triangle DAF$ 는 정삼각형이다.

 $\therefore \overline{AF} = \overline{AD} = 6$. $\angle DFE = 90^{\circ} - 60^{\circ} = 30^{\circ}$

 $\therefore x + y = 36$