Line Search Methods

Numerical Optimization

Prepared by LimCK

Content

- Line search methods: direction and step length
- Condition of decreases
- Convergence rate

Line Search Methods

• Iteration:

$$x_{k+1} = x_k + \alpha_k p_k \tag{1}$$

- First, we determine p_k , the search direction at x_k .
- For each search direction, we determine α_k , the step length.
- Move to X_{k+1} .
- Repeat until we reach minimizer.

LimCK 4 / 25

LimCK 5 / 25

Search direction, p

Steepest descent method:

$$p_k = -\nabla f_k \tag{2}$$

Newton method:

$$p_k = -\nabla^2 f_k^{-1} \ \nabla f_k \tag{3}$$

Quasi Newton method:

$$p_k = -B_k^{-1} \nabla f_k \tag{4}$$

LimCK 7 / 25

LimCK 8 / 25

Step Length, a

- Tradeoff : we want to get the best α_k , but it is too expensive to compute it.
- So, instead of exact line search (compute the best α_{k}), we use inexact line search.
- We find α_k that brings adequate reductions in f at minimal cost.

Step Length, α

- Typically: try out a sequence of α , stop to accept one of these values when certain conditions are satisfied.
- Assume Φ as a function of α :

$$\phi(\alpha) = f(x_k + \alpha p_k), \quad \alpha > 0$$
(5)

The graph showing how f change with the change of α , if x and p are fixed.

Condition: As long as some reduction?

 As long as a step brings a lower f will do?

$$f(x_k + \alpha_k p_k) < f(x_k)$$

- NO! not enough to produce convergence to x*
- Example: $f^* = -1$, $f(x_k) = 5/k$, k = 1, 2, 3, ...

Sufficient decrease - Armijo condition

• the reduction in f should be proportional to both the step length α_k and the directional derivative $\nabla f_k^T p_k$.

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k$$
 for some constant $c_1 \in (0, 1)$

- In practice, c_1 normally is a small value, e.g. 10^{-4}
- Observe that the right hand side of (6) is a linear equation $k + m\alpha = l(\alpha)$

Sufficient decrease - Armijo condition

LimCK 13 / 25

Curvature condition

 To rule out unacceptably short steps we introduce a second requirement – curvature condition:

$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k \tag{7}$$

- c_2 is a constant in $(c_1, 1)$, typically close to 1 (e.g. 0.9)
- This condition means the gradient at x_{k+1} (if the step with α is taken) must be greater than or equal to c_2 times the initial gradient.
- Note: The gradient near the minima should be "less negative" than the gradient at a further point.

Curvature condition

LimCK 15 / 25

Wolfe Conditions

 The Armijo condition and curvature condition are known collectively as the Wolfe conditions.

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f_k^T p_k$$

$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k$$

with
$$0 < c_1 < c_2 < 1$$

Can be used in most line search methods

Wolfe Conditions

LimCK 17 / 25

Goldstein Conditions

- Also ensure that the step length α achieves sufficient decrease but is not too short.
- With 0 < c < 0.5:

$$f(x_k) + (1 - c)\alpha_k \nabla f_k^T p_k \le f(x_k + \alpha_k p_k) \le f(x_k) + c\alpha_k \nabla f_k^T p_k \tag{8}$$

Control step length

Sufficient decrease condition

Backtracking Line Search

- With backtracking, sufficient decrease condition (Armijo) alone is enough.
- This method start from $\alpha > 0$ (e.g., 1), decrease value of α until terminate by sufficient decrease condition.
- Choose the α that just fulfilled sufficient decrease condition.

Backtracking Line Search

```
Algorithm 3.1 (Backtracking Line Search).

Choose \bar{\alpha} > 0, \rho \in (0, 1), c \in (0, 1); Set \alpha \leftarrow \bar{\alpha}; repeat until f(x_k + \alpha p_k) \leq f(x_k) + c\alpha \nabla f_k^T p_k \alpha \leftarrow \rho \alpha; end (repeat)

Terminate with \alpha_k = \alpha.
```

 ρ - contraction factor

LimCK 20 / 25

Convergence of Line Search Methods

An algorithm is global convergent if:

$$\lim_{k \to \infty} \|\nabla f_k\| = 0$$

- It means, the algorithm convergence to a minimizer stationary point for any starting point x_0 .
- Steepest descent method globally convergent, but may be slow in difficult problems.
- Newton method not converge if Hessians are not positive definite

Rate of Convergence

Steepest Descent	Newton Method	Quasi Newton Method
 convergence rate is linear Can be very slow, zigzagging behaviour. 	 convergence rate is quadratic if no line search (α_k = 1) Not working if Hessian is not positive definite, or Hessian modification is required. 	 convergence rate is superlinear if B_k is getting closer to Hessian along the search. And also require α_k = 1 when it search near the solution.

Rate of Convergence

• If e_n is the error at iteration n, and e_{n+1} is the error at iteration n+1, and:

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^p} = \lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^p} = \mu$$

- If p = 1, $\mu = 1$: the convergence is sublinear
- If p = 1, $0 < \mu < 1$: the convergence is linear. The convergence rate is μ
- If p = 1, $\mu = 0$: the convergence is superlinear.
- If p = 2, $\mu > 0$: the convergence is quadratic.
- quadratic convergence implies superlinear convergence

Rate of Convergence - example

a =	8.0										
n	1	2	3	4	5	6	7	8	9	10	11
an	0.8	0.64	0.512	0.4096	0.32768	0.26214	0.20972	0.16777	0.13422	0.10737	0.0859
a ⁿ / a ⁿ⁻¹ (linear)		0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
a^d , $d = n^2$	0.8	0.4096	0.13422	0.02815	0.00378	0.00032	1.8E-05	6.3E-07	1.4E-08	2E-10	1.9E-12
a ⁿ / a ⁿ⁻¹ (superlinear)		0.512	0.32768	0.20972	0.13422	0.0859	0.05498	0.03518	0.02252	0.01441	0.00922
a ⁿ / (a ⁿ⁻¹) ²		0.64	0.8	1.5625	4.76837	22.7374	169.407	1972.15	35873.2	1019579	4.5E+07
a^{d} , $d = 2^{n}$	0.64	0.4096	0.16777	0.02815	0.00079	6.3E-07	3.9E-13	1.6E-25	2.4E-50	6E-100	3E-199
a ⁿ / a ⁿ⁻¹		0.64	0.4096	0.16777	0.02815	0.00079	6.3E-07	3.9E-13	1.6E-25	2.4E-50	6E-100
a ⁿ / (a ⁿ⁻¹) ² (quadratic)		1	1	1	1	1	1	1	1	1	1

LimCK 24 / 25

Exercise

Given that:

$$f(x) = x_1^4 + x_1 x_2 + (1 + x_2)^2$$

- When $x_k = [2 \ 1]^T$, using SD method, determine the x_{k+1} if a=0.3.
- When $x_k = [2 \ 1]^T$, using Newton method, determine if the Hessian is positive definite. Find x_{k+1} with a=0.3 if it is positive definite.