l.	Convert the following	numbers directly	v to binar	v without using	an intermediar	v base:

- a. (3E89.AC27)₁₆ ______(2 Marks)
- b. (22144.3561)₈ _____ (2 Marks)

2. Convert (1100110111001010.1011101)₂ to:

- a. Octal (2 Marks)
- b. Hexadecimal (2 Marks)

Don't use an intermediary base.

3. Convert the following numbers to decimal:

- a. (8.3)₉ _____ (2 Marks)
- b. (50)₇ _____ (2 Marks)

Solution:

1a.

(3 E 89. A C 27) 16

converting each digit into its equivalent 4 bits:

$$(16) \rightarrow 3 \quad E \quad 8 \quad 9 \quad A \quad C \quad 2 \quad 7$$

$$(2) \rightarrow 0011 \quad 1110 \quad 1000 \quad 1001 \quad . \quad 1019 \quad 1100 \quad 0010 \quad 0111$$

$$\Rightarrow (3E89.AC27)_{16} = (00111110100001001.101011000010011)$$

1b.

(22144.3561)8

Ly (8) Converting each digit into its equivalent 3 bits:

$$\Rightarrow$$
 2 2 1 4 4 . 3 5 6 1

 $\downarrow / \downarrow / \downarrow / \downarrow / \downarrow / \downarrow \downarrow$

(2) \Rightarrow 010 010 001 100 100 . 011 101 110 001

 \Rightarrow (22144.3561)8 = (010010001100100.011101110001)

2a.

2b.

3a.

$$= 8 \times 9^{0} + 3 \times 9^{1}$$

$$= (8.333)_{10}$$

3b.

$$(50)_{7}$$

= $5x7 + 0x7^{\circ}$
= $(35)_{10}$