ЛАБОРАТОРНАЯ РАБОТА 30

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ЭЛЕКТРИЧЕСКОГО КОЛЕБАТЕЛЬНОГО КОНТУРА МЕТОДОМ РЕЗОНАНСА

Выполнил студент гр	Ф.И.О
Подпись преподавателя	дата
(обязательна после окончания эксперимента)	

<u>Цель работы</u>: экспериментальное исследование особенностей явления резонанса в электрическом колебательном контуре, условий его возникновения и определение основных характеристик колебательного контура методом резонанса.

Порядок выполнения работы

- 1. Ознакомиться с электрической схемой установки.
- 2. Включить установку и переключателем подключить в цепь резистор с сопротивлением R_1 (величины сопротивлений R_1 и R_2 указаны на установке).
- 3. Снять резонансную кривую. Для этого, изменяя значения емкости конденсатора C, указанные на установке против ручки его ротора, измерять показания микроамперметра, который показывает эффективное значение тока $I_{\rm эфф}$. Результаты измерений при подключенном резисторе R_1 заносить в таблицу 1.

4. Переключателем включить в контур другой резистор с сопротивлением R_2 и снять вторую резонансную кривую, повторяя действия пункта 3.

						Габлиг	ιa1.
Деления на кон-							
денсаторе							
С, пФ							
$I_{ m 3 \phi \phi}$, мкА для R_1 = Ом							
для R_1 = Ом							
$I_{ m 9 d \phi}$, мкА для R_2 = Ом							
для R_2 = Ом							

5. По данным таблицы 1 в одних координатных осях (на одном листе) построить два графика резонансных кривых $I_{9\Phi\Phi}=f(C)$ для двух сопротивлений R_1 и R_2 .

6. По двум построенным резонансным кривым определить значения емкости $C_{\rm pes}$, соответствующие максимальному значению тока $I_{\rm 9\varphi\varphi} = I_0/\sqrt{2}$.

7. По формуле
$$L = \frac{1}{C_{\rm pe3}\omega_{\rm pe3}^2}$$
 определить индуктивность контура L в двух случаях. Резо-

нансная циклическая частота для тока в данном случае совпадает с частотой переменного тока в цепи: $\omega_{\text{De3}} = 2\pi \nu_0$. Частота этого тока ν_0 указана на установке.

- 8. По формуле $\rho = \sqrt{\frac{L}{C_{\rm pe3}}}$ рассчитать волновое сопротивление контура в двух случаях.
- 9. По формуле $Q = \frac{\rho}{R}$ вычислить добротность контура.
- 10. Все результаты вычислений занести в таблицу 2.

					Габлица 2.
$C_{ m pe}$ 3 , п Φ	ω_{pe_3} , c^{-1}	<i>L</i> , Гн	R, Om	р, Ом	Q

Контрольные вопросы к лабораторной работе № 30

- 1. Какая цепь называется электрическим колебательным контуром?
- 2. Нарисуйте замкнутую цепь, содержащую конденсатор с ёмкостью C, катушку с индуктивностью L, резистор R и источник тока с переменной ЭДС $\varepsilon_0 \cos(\omega t)$ Запишите правило Кирхгофа с учетом ЭДС самоиндукции в катушке и приведите его к дифференциальному уравнению вынужденных электрических колебаний.
- 3. Какова амплитуда и частота вынужденных колебаний? С помощью метода векторной диаграммы получите выражения для амплитуды напряжения U_C на конденсаторе и амплитуды силы тока I в цепи. Постройте приблизительные графики амплитудно-частотных характеристик этих величин. Чем отличаются эти графики?
- 4. Какова разность фаз между вынужденными колебаниями U_C и I?
- 5. Какие величины называются индуктивным, ёмкостным, активным и полным сопротивлением цепи переменному току?
- 6. Какая величина называется эффективным (действующим) значением тока (напряжения)? На каких элементах цепи выделяется эффективная мощность
- 7. Какое явление называется резонансом? Что такое резонансная частота и как её вычислить?
- 8. Резонанс какой величины наблюдается в данной работе?
- 9. Сделать вывод резонансной частоты для колебаний заряда на конденсаторе.
- 10. Сделать вывод резонансной частоты для колебаний силы тока в цепи.
- 11. Частоту внешнего источника ЭДС постепенно увеличивают. Резонанс какой величины, U_C или I, наступит раньше?
- 12. Какая величина называется волновым сопротивлением контура? Как её вычислить?
- 13. Какая величина называется добротностью электрического колебательного контура? Каков её физический смысл?
- 14. Что происходит с кривой амплитудно-частотной характеристики тока при увеличении активного сопротивления R цепи?
- 15. Почему в радиоприемниках надо использовать приемный контур с высокой добротностью?

Изучаемый в работе материал можно найти в следующих учебных пособиях:

- 1. Савельев И.В. Курс физики в 3-х тт.: Т. 2: Электричество М.: Наука, 1970.- §§ 59, 100, 101.
- 2. Колмаков, Ю.Н. Кажарская С.Е. Физика. Электромагнетизм: руководство к проведению самостоятельной работы студентов. Изд-во ТулГУ, 2017, стр. 104-108.