TD

Gyrolock ★ – Sujet

Centrale Supelec PSI 2022.

Comportement dynamique du stabilisateur

C1-05

FIGURE 1 – Modèle cinématique du système GyroLock (représenté pour $\theta_2 = \theta_3 = 0$)

Dans la modélisation retenue (figure 1), une liaison pivot non parfaite permet de représenter la flexibilité de l'attache reconfigurable. La table d'opération (0) est supposée fixe et le référentiel \mathcal{R}_0 $(O_0, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ lié à la table (0) est galiléen. Au stabilisateur (1) est associé le repère \mathcal{R}_1 $(O_0, \vec{x}_0 = \vec{x}_1, \vec{y}_1, \vec{z}_1)$ avec $\theta_1 = (\vec{y}_0, \vec{y}_1) = (\vec{z}_0, \vec{z}_1)$. Le point P tel que $O_0P = L$ représente le bout du stabilisateur (1) en contact avec la zone à opérer.

Paramétrage, notations et hypothèses

- ► La liaison pivot d'axe (O_0, \vec{x}_0) entre les solides (0) et (1) possède une raideur k et un coefficient de frottement visqueux f, d'où \vec{M} $(O_0, 0 \rightarrow 1) \cdot \vec{x}_0 = -(k\theta_1 + f\dot{\theta}_1)$;
- ▶ les autres liaisons sont supposées parfaites;
- ▶ l'action du cœur sur le stabilisateur (1) est modélisée par $\{\mathcal{T}_{c\to 1}\}=\left\{\begin{array}{c} f_c\vec{y}_1\\ \hline 0 \end{array}\right\}_p$;
- ▶ seul le déplacement vertical du point P est pris en compte. On note $y(t) = -\overrightarrow{O_0P} \cdot \overrightarrow{y_0}$;
- ▶ le stabilisateur (1) est de masse m_1 et possède un centre d'inertie G_1 tel que $\overrightarrow{O_0G_1} = L_{G_1}\vec{z}_1$ et l'opérateur d'inertie est $\mathcal{J}(G_1,1) = \begin{bmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & C_1 \end{bmatrix}$;
- ▶ la masse et l'inertie de l'étrier (2) sont négligeables;
- ▶ la toupie (3) est de masse m_3 et possède un centre d'inertie G_3 tel que $\overrightarrow{O_0G_3} = L_{G_3}\vec{z}_1 + H_{G_3}\vec{y}_1$;
- ▶ les figures de changement de base sont données figures 6 et 9;
- les actions mécaniques dues à la pesanteur sont négligées devant les effets dynamiques. Q 14. Sans détailler les calculs, donner la méthode permettant de déterminer la loi de mouvement du stabilisateur (équation différentielle en $\theta_1(t)$). L'ensemble isolé, l'inventaire des actions mécaniques extérieures, le théorème utilisé et sa projection scalaire sont à préciser clairement.

Question 1 Exprimer $\vec{\delta}(O_0, 1/0) \cdot \vec{x}_0$, la projection sur \vec{x}_0 du moment dynamique au point O_0 du solide (1) en mouvement dans le référentiel \mathcal{R}_0 .

Question 2 Exprimer littéralement la vitesse $\vec{V}(G_3, 3/0)$ dans la base \mathfrak{B}_1 , puis l'accélération $\vec{\Gamma}(G_3, 3/0)$ dans la base \mathfrak{B}_1 .

Question 3 En conservant les conditions de fonctionnement ci-contre ¹, il est possible de montrer que $\vec{\delta}$ (G_3 , 3/0) $\cdot \vec{x}_0 = A_3 \ddot{\theta}_1 - c_x(t)$ avec $c_x(t) = B_3 \omega_3 \dot{\theta}_2$ (résultat admis sans démonstration). En déduire $\vec{\delta}$ (O_0 , 3/0) $\cdot \vec{x}_0$, en fonction de A_3 , $c_x(t)$, m_3 , L_{G_3} , H_{G_3} et $\ddot{\theta}_1(t)$.

Question 4 Exprimer J_x en fonction de A_1 , A_3 , m_1 , m_3 , L_{G_1} , L_{G_3} et H_{G_3} permettant d'écrire la loi de mouvement du stabilisateur (1) sous la forme suivante :

$$J_x \ddot{\theta}_1(t) + f \dot{\theta}_1(t) + k\theta_1(t) = c_x(t) - Lf_c(t)$$

En supposant que θ_1 reste proche de 0, la relation $y(t) = L\theta_1(t)$ sera utilisée.

Les transformées de Laplace de y(t), $c_x(t)$ et $f_c(t)$ sont notées Y(p), $C_x(p)$ et $F_c(p)$.

Question 5 En déduire les expressions littérales des fonctions de transfert $H_{\text{pert}}(p)$ et $H_1(p)$ du schéma-blocs figure 2 en fonction de L, J_x , f et k.

On rappelle que L=0,3 m et les valeurs retenues pour J_x , f et k sont :

$$-f = 64 \times 10^{-3} \text{ N} \cdot \text{m} \cdot \text{s} \cdot \text{rad}^{-1};$$

$$-k = 95 \text{ N} \cdot \text{m} \cdot \text{rad}^{-1}$$
.

Question 6 Écrire $H_1(p)$ sous forme canonique, puis calculer les valeurs de ses paramètres caractéristiques : gain statique K_1 , amortissement ξ_1 et pulsation propre ω_1 . Commenter le comportement associé (fréquentiel ou temporel).

1: $\ddot{\theta}_2 \approx 0$, $\theta_2 \approx 0$ et $\dot{\theta}_3 = \omega_3$ constante.

FIGURE 2 – Schéma bloc du stabilisateur (1)