دورة العام ٢٠٢١ الاستثنائية السبت في ٤ أيلول ٢٠٢١

امتحانات الشهادة الثانوية العامة فرع: العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

عدد المسائل: خمس مسابقة في مادة الرياضيات الاسم: المدة: ثلاث ساعات الرقم:

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (2 points)

Dans le tableau suivant une seule des réponses proposées à chaque question est correcte.

Écrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

No	Quartiens	Réponses proposées				
51-	Questions	a	b	c		
1	Soit f la fonction donnée par $f(x) = \ln\left(\frac{e^x}{e^x - 2}\right).$ Le domaine de définition de f est]ln2; +∞[]0; +∞[]-∞;+∞[
2	Pour tout réel x, $\frac{e^{-x}}{e^{-x} + 2}$ est égale à	$\frac{1}{3}$	$\frac{1}{1+2e^x}$	$\frac{-e^{x}}{-e^{x}+2}$		
3	L'équation $\ln^2 x + \ln x - 6 = 0$ admet deux solutions x_1 et x_2 . Le produit $x_1.x_2$ est égal à	-6	e ⁻¹	e ³⁰		
4	Le clavier d'entrée d'un immeuble est formé de trois lettres A, B et C et de cinq chiffres 1, 2, 3, 4 et 5. Le code d'entrée est formé d'une lettre suivie d'un nombre de trois chiffres distincts. Le nombre de tous les codes possibles est	15	180	375		

II- (3 points)

Le plan complexe est rapporté à un repère orthonormé direct (0; \vec{u} \vec{v}).

On considère les points A, M et M' d'affixes $z_A = -i$, $z_M = z$ et $z_{M'} = z'$ tel que

$$z' = \frac{z+i}{i\overline{z}}$$
 avec $z \neq 0$.

On pose z = x + iy et z' = x' + iy' où x y x' et y' sont des nombres réels.

- 1) Ecrire z' sous la forme exponentielle dans le cas où $z = e^{i\frac{\pi}{2}}$,
- 2) Ecrire z sous la forme algébrique dans le cas où z' = z.
- 3) a- Montrer que $OM' = \frac{AM}{OM}$
 - b- Montrer que lorsque M varie sur la médiatrice de [OA], le point M' varie sur un cercle (C) dont on déterminera le centre et le rayon.
- 4) Dans cette partie x > 0 et y > 0.
 - a-Montrer que $\frac{z'+i}{z} = \frac{2y+1}{x^2+y^2}$ et en déduire que (OM) et (M'A) sont parallèles.
 - b- Montrer que $z'-z=\frac{i+z-i\ z\overline{z}}{i\ \overline{z}}$ et en déduire que si M appartient à (C), alors MM'=OA.

III- (3 points)

Une urne U contient des boules rouges et des boules noires numérotées par des entiers naturels distincts.

- 60 % des boules sont rouges, parmi lesquelles 80 % portent des entiers impairs.
- 70 % des boules noires portent des entiers impairs.

Partie A

On tire au hasard une boule de l'urne U. On considère les événements suivants :

R: « la boule tirée est rouge »

I : « la boule tirée porte un nombre impair ».

- 1) Montrer que la probabilité $P(I \cap R)$ est égale à 0,48 et calculer $P(I \cap \overline{R})$.
- 2) En déduire que P(I) = 0.76.
- 3) Les événements R et I sont-ils indépendants ? Justifier.

Partie B

Dans cette partie on suppose que le nombre des boules dans l'urne U est 50.

- 1) Montrer que le nombre des boules rouges portant des nombres impairs est 24.
- 2) Copier et compléter le tableau suivant :

	Rouge	Noire	Total
Impair			38
Pair			
Total	30		50

- 3) On tire au hasard et simultanément 3 boules de l'urne U.
 - a- Calculer la probabilité de tirer au moins une boule rouge portant un nombre impair.
 - **b-** Les boules portant des nombres pairs sont numérotées 2, 4, 6, ..., 24. Sachant que les 3 boules tirées portent des nombres pairs, calculer la probabilité que la somme des entiers portés par ces boules est plus grande que 13.

IV- (4 points)

Dans la figure ci-dessous, on a :

- ABCD est un carré direct de centre I et de côté 8.
- E est le milieu de [AB].
- F est le milieu de [EB].
- J est le milieu de [DC].
- L est le milieu de [DA].

- 1) Soit S la similitude plane directe qui transforme F en I et transforme B en J.
 - a- Montrer que k=2 et $\alpha=\frac{\pi}{2}$ sont respectivement le rapport et un angle de S.
 - b- Montrer que E est le centre de S.
- 2) Soit S' la similitude plane directe, de rapport k' = 2 et d'angle $-\frac{\pi}{2}$, qui transforme I en B.
 - a- Montrer que S'(L) = C.
 - b- Montrer que l'image de la droite (LD) par S' est la droite (DC).
 - c- Déterminer l'image de la droite (IC) par S'.
 - d- Déterminer l'image de A par S'.
- 3) Soit $h = S \circ S'$.
 - a- Montrer que h est une homothétie de rapport à déterminer.
 - b- Vérifier que h(I) = J,
 - c- Soit W le centre de h montrer que W est le centre de gravité du triangle ABJ.

V- (8 points)

On considère les deux fonction f et g définies sur]0; $+\infty$ [par $f(x) = x^2 + 1 - \ln x$ et $g(x) = x + \frac{\ln x}{x}$. On désigne par (C) la courbe représentative de g dans un repère orthonormé $\left(0; \vec{i}, \vec{j}\right)$. Soit (d) la droite d'équation y = x.

1) Le tableau suivant est le tableau de variations de f.

Montrer que f(x) > 0 pour tout x > 0.

- 2) a- Déterminer $\lim_{x\to 0} g(x)$ et en déduire une asymptote à (C).
 - b- Déterminer $\lim_{x\to +\infty} g(x)$ et en déduire que la droite (d) est une asymptote à (C).
 - c- Etudier, suivant les valeurs de x, la position relative de (C) et (d).
- 3) a- Vérifier que $g'(x) = \frac{f(x)}{x^2}$ et en déduire que g'(x) > 0 pour tout x > 0.

b- Dresser le tableau de variations de g.

- 4) Démontrer que l'équation g(x)=0 admet une racine unique α et que 0 $6<\alpha<0$ 7.
- 5) Tracer (d) et (C).
- 6) Calculer, en fonction de α , l'aire du domaine délimité par (C), (d) et les deux droites d'équations $x = \alpha$ et x = e.

أسس تصحيح مسابقة الرياضيات

I	Réponses	3pts
1	$e^{x} - 2 > 0$; $e^{x} > 2$; $x > \ln 2$; $D_{f} =]\ln 2; +\infty[$ (a)	0.75
2	$\frac{e^{-x}}{e^{-x}+2} = \frac{e^{-x}}{e^{-x}+2} \times \frac{e^{x}}{e^{x}} = \frac{1}{1+2e^{x}} $ (b)	0.75
3	Les racines de l'équation : $\ln^2 x + \ln x - 6 = 0$ sont $x_1 = e^{-3}$ et $x_2 = e^2$. Donc $x_1.x_2 = e^{-1}$ (b)	0.75
4	Le nombre de tous les codes est : $3 \times A_5^3 = 180$ (b)	0.75

II	Réponses	4.5pts
1	$z' = 2i = 2e^{i\frac{\pi}{2}}$	0.5
2	$z' = z \; ; \; iz\overline{z} = z + i$ $i(x^2 + y^2) = x + iy + i \; ; \; x = 0 \text{ et } x^2 + y^2 = y + 1 \; ; \; y^2 - y - 1 = 0$ $z_1 = \frac{1 - \sqrt{5}}{2}i \text{ ou } z_2 = \frac{1 + \sqrt{5}}{2}i$	0.5
3a	$ z' = \frac{z+i}{i\overline{z}}; z' = \frac{ z+i }{ i\overline{z} }; z' = \frac{ z+i }{ i \times \overline{z} }; z' = \frac{ z+i }{ z }; OM' = \frac{AM}{OM}$	0.5
3b	MO = MA; $OM' = 1$; M' varie sur le cercle (C)de centre O et de rayon 1	1
4a	$\frac{z'+i}{z} = \frac{\frac{z+i}{i\overline{z}}+i}{z} = \frac{z+i+i^2\overline{z}}{iz\overline{z}} = \frac{2iy+i}{i(x^2+y^2)} = \frac{2y+1}{x^2+y^2}$ $\frac{z'+i}{z} = \frac{2y+1}{x^2+y^2} \in \mathbb{R}, \text{ donc (OM) et (M'A) sont parallèles}$	1
4b	$z' - z = \frac{z + i}{i\overline{z}} - z = \frac{i + z - i z\overline{z}}{i \overline{z}}$ $M \in (C) \text{ alors } z = \overline{z} = 1$ $ z' - z = \left \frac{i + z - i z\overline{z}}{i \overline{z}} \right = \frac{ i + z - i z\overline{z} }{ i \overline{z} } = \frac{ i + z - i z\overline{z} }{ i \times \overline{z} } = i + z - i \times 1 = z = 1$ $\text{Et OA} = 1 \text{ donc } MM' = \text{OA}.$	1

Ш	Réponses				4.5pts		
A1	$P(I \cap R) = P(I / R) \times P(R) = 0.8 \times 0.6 = 0.48$ $P(I \cap \overline{R}) = P(I / \overline{R}) \times P(\overline{R}) = 0.7 \times 0.4 = 0.28$				1		
A2	$P(I) = P(I \cap R) + P(I$	$\cap \overline{R}) = 0.48$	8 + 0.28 = 0	,76			0.5
A3	Comme $P(I \cap R) = 0.48 \neq P(I) \times P(R) = 0.76 \times 0.6 = 0.456$ alors les événements R et I ne sont pas indépendants.				0.5		
B1	Le nombre des boules	s rouges por	tant des nor	nbres impai	rs est 50×0),48 = 24	0.5
B2		Impair Pair Total	Rouge 24 6 30	Noire 14 6 20	Total 38 12 50		0.5
B3. a	P (tirer au moins une boule rouge portant un nombre impair) = $1 - \frac{C_{26}^3}{C_{50}^3} = \frac{85}{98}$				0.5		
B3.b	$\frac{2; 4; 6}{P \text{ (que la somme des entiers portés par ces boules est plus grande que 13/pair)} = 1 - \frac{C_3^3}{C_{12}^3} = \frac{219}{220} \text{ ou } 1 - \frac{C_1^1 \times C_1^1 \times C_1^1}{C_{12}^3} = \frac{219}{220}$				1		

IV	Réponses	12pts		
1.a	$S(F) = I \text{ et } S(B) = J \text{ alors } K = \frac{IJ}{FB} = \frac{4}{2} = 2.$			
	$\alpha = (\overrightarrow{FB}; \overrightarrow{IJ}) = (\overrightarrow{FB}; \overrightarrow{BC}) = \frac{\pi}{2} + 2k\pi; k \in \mathbb{Z}.$			
	E symétrique de B par rapport à F, alors $S(E)$ symétrique de $S(B) = J$ par rapport à $S(F) = J$			
1.b	I, alors $S(E) = E$, par suite E centre de S.	1		
	Ou EF = 2 et EI = 4 donc EI = 2EF et $(\overrightarrow{EF}; \overrightarrow{EI}) = \frac{\pi}{2} + 2k\pi$ et S(F) = I donc S(E) = E.			
2.a	$\frac{BC}{IL} = \frac{4}{2} = 2 = K' \text{ et } (\overrightarrow{IL}; \overrightarrow{BC}) = (\overrightarrow{IL}; \overrightarrow{IJ}) = -\frac{\pi}{2} = \alpha' \text{ et } S'(I) = B. \text{ Donc } S'(L) = C$	0.5		
2.b	$S'((LD))$ est une droite \bot (LD) et passe par $S'(L) = C$. Donc $S'((LD)) = (DC)$,	0.5		
2.c	$S'((IC))$ est une droite \bot (IC) et passe par $S'(I) = B$. Donc $S'((IC)) = (BD)$,	0.5		
2.d	$(IC) \cap (LD) = \{A\} \text{ donc } \{S'(A)\} = S'((IC)) \cap S'((LD)) = (BD) \cap (DC) = \{D\}.$	0.5		
3.a	$\alpha + \alpha' = \frac{\pi}{2} + \frac{-\pi}{2} = 0$ et k.k' = 4 donc h = S o S' est une homothétie de rapport 4.	0.5		
3.b	$h(I) = S \circ S'(I) = S(B) = J.$	0.5		
	$h(I) = J$ et W centre de h, donc $\overrightarrow{WJ} = 4 \overrightarrow{WI}$ donc			
3.c	$\overrightarrow{WJ} = 4(\overrightarrow{JI} - \overrightarrow{JW})$; $-3\overrightarrow{WJ} = 4 \times (\frac{1}{2}\overrightarrow{EJ})$ donc $\overrightarrow{JW} = \frac{2}{3}\overrightarrow{JE}$ et E milieu de [AB], donc W est le	1		
	centre de gravité du triangle JAB.			

III	Réponses			
1	$f\left(\frac{\sqrt{2}}{2}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 + 1 - \ln\frac{\sqrt{2}}{2} = \frac{3}{2} - \frac{\ln 2}{4} \approx 1 \ 32 > 0 \ d'où f(x) > 0 \ pour tout \ x > 0$			
2.a	$\lim_{x \to 0} g(x) = 0 + (-\infty) = -\infty$ $x = 0 \text{ est asymptote à (C)}.$	1		
2.b	$\lim_{x \to +\infty} g(x) = (+\infty) + 0 = +\infty$ $g(x) - x = \frac{\ln x}{x} ; \text{ d'où } \lim_{x \to +\infty} [g(x) - x] = \lim_{x \to +\infty} \frac{\ln x}{x} = 0 ;$ $\text{donc (d) : } y = x \text{ est asymptote à (C).}$			
2.c	$g(x) - x = \frac{\ln x}{x}$ $g(x) - x > 0; x > 1 $			
3.a	$g'(x) = 1 + \frac{(\ln x)', x - 1, \ln x}{x^2} = \frac{x^2 + 1 - \ln x}{x^2} = \frac{f(x)}{x^2}$; $f(x)$ et $g'(x)$ ont le même signe; $g'(x) > 0$	1.5		
3.b	$ \begin{array}{c cccc} x & 0 & & +\infty \\ \hline f'(x) & & + & \\ \hline f(x) & & -\infty & & +\infty \end{array} $	1.5		
4	Sur] 0; + ∞ [: g est continue, strictement croissante de - ∞ à + ∞ donc l'équation g(x) = 0 admet une solution unique α . g(0,6) \approx -0,25 < 0 g(0,7) \approx +0,19 > 0	1.5		
5	0 0.5 1 1.5 2 2.6 3 3.5 4	2		
6	$A = \int_{\alpha}^{1} [x - g(x)] dx + \int_{1}^{e} [g(x) - x] dx = -\frac{\ln^{2} x}{2} \Big]_{\alpha}^{1} + \frac{\ln^{2} x}{2} \Big]_{1}^{e} = \frac{\alpha^{4} + 1}{2} \text{unit\'es d'aire}$	1.5		