#### Plan

- Vector Space
- Subspace
- Linear Dependence and Linear Independence
- Basis and Dimension
- Linear Transformation
- Kernel and Range
- The Rank-Nullity Theorem
- Isomorphism
- The Matrix of a Linear Transformation



For  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{R}^n$  and  $c, d \in \mathbb{R}$ , we have

- $\mathbf{0} \mathbf{u} + \mathbf{v} \in \mathbb{R}^n$ ;
- 2 u + v = v + u;
- **3**  $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w});$
- u + 0 = u;
- **1**  $\mathbf{u} + (-\mathbf{u}) = \mathbf{0};$

For  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{R}^n$  and  $c, d \in \mathbb{R}$ , we have

- $\mathbf{0} \mathbf{u} + \mathbf{v} \in \mathbb{R}^n$ ;
- 2 u + v = v + u;
- **3** (u + v) + w = u + (v + w);
- $\mathbf{0} \ \mathbf{u} + \mathbf{0} = \mathbf{u};$
- **1**  $\mathbf{u} + (-\mathbf{u}) = \mathbf{0};$
- $\mathbf{6}$   $\mathbf{c}.\mathbf{u} \in \mathbb{R}^n$ ;
- $(c+d).\mathbf{u} = c.\mathbf{u} + d.\mathbf{u};$
- 0 1.u = u.

For  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{R}^n$  and  $c, d \in \mathbb{R}$ , we have

- $\mathbf{0} \mathbf{u} + \mathbf{v} \in \mathbb{R}^n$ ;
- 2 u + v = v + u;
- **3** (u + v) + w = u + (v + w);
- u + 0 = u;
- **1**  $\mathbf{u} + (-\mathbf{u}) = \mathbf{0};$
- $\mathbf{6}$   $\mathbf{c}.\mathbf{u} \in \mathbb{R}^n$ ;
- $(c+d).\mathbf{u} = c.\mathbf{u} + d.\mathbf{u};$
- 0 1.u = u.

The above properties are sufficient to do vector algebra in  $\mathbb{R}^n$ .



• If  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$  and  $\mathbf{c}, \mathbf{d} \in \mathbb{R}$ , we get all the previous ten properties.

- If  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$  and  $\mathbf{c}, \mathbf{d} \in \mathbb{R}$ , we get all the previous ten properties.
- If  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$  and  $\mathbf{c}, \mathbf{d} \in \mathbb{C}$ , we get all the previous ten properties.

- If  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$  and  $c, d \in \mathbb{R}$ , we get all the previous ten properties.
- If  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$  and  $\mathbf{c}, \mathbf{d} \in \mathbb{C}$ , we get all the previous ten properties.
- If A, B, C, O ∈ M<sub>2</sub>(R) (set of all 2 × 2 real matrices) and c, d ∈ R, we get all the previous ten properties.

- If  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$  and  $\mathbf{c}, \mathbf{d} \in \mathbb{R}$ , we get all the previous ten properties.
- If  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$  and  $\mathbf{c}, \mathbf{d} \in \mathbb{C}$ , we get all the previous ten properties.
- If A, B, C, O ∈ M<sub>2</sub>(R) (set of all 2 × 2 real matrices) and c, d ∈ R, we get all the previous ten properties.
- If  $p(x), q(x), r(x), 0 \in \mathbb{R}_2[x]$  (set of all polynomials of degree at most two with real coefficients) and  $c, d \in \mathbb{R}$ , we get all the previous ten properties.

Definition: Let  $V \ (\neq \emptyset)$  be a set. For every  $\mathbf{u}, \mathbf{v} \in V$  and  $\mathbf{c} \in \mathbb{F}$ , let

Definition: Let  $V \ (\neq \emptyset)$  be a set. For every  $\mathbf{u}, \mathbf{v} \in V$  and  $\mathbf{c} \in \mathbb{F}$ , let

• u + v (called the vector addition) be defined; and

Definition: Let  $V \ (\neq \emptyset)$  be a set. For every  $\mathbf{u}, \mathbf{v} \in V$  and  $\mathbf{c} \in \mathbb{F}$ , let

- u + v (called the vector addition) be defined; and
- c.u (called the scalar multiplication) be defined.

Definition: Let  $V \ (\neq \emptyset)$  be a set. For every  $\mathbf{u}, \mathbf{v} \in V$  and  $\mathbf{c} \in \mathbb{F}$ , let

- u + v (called the vector addition) be defined; and
- c.u (called the scalar multiplication) be defined.

Then V is called a vector space over  $\mathbb{F}$  if

Definition: Let  $V \ (\neq \emptyset)$  be a set. For every  $\mathbf{u}, \mathbf{v} \in V$  and  $\mathbf{c} \in \mathbb{F}$ , let

- u + v (called the vector addition) be defined; and
- c.u (called the scalar multiplication) be defined.

Then V is called a vector space over  $\mathbb{F}$  if

for all  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$  and fo all  $\mathbf{c}, \mathbf{d} \in \mathbb{F}$ ,

the following properties are satisfied:

- $\mathbf{0} \mathbf{u} + \mathbf{v} \in V;$
- **2** u + v = v + u;
- **3** (u + v) + w = u + (v + w);
- There is an element  $\mathbf{0}$ , called a zero, such that  $\mathbf{u} + \mathbf{0} = \mathbf{u}$ ;
- For each  $\mathbf{u} \in V$ , there is an element  $-\mathbf{u}$  such that  $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ ;

- $\mathbf{0} \mathbf{u} + \mathbf{v} \in V$ ;
- **2** u + v = v + u;
- **3** (u + v) + w = u + (v + w);
- 1 There is an element  $\mathbf{0}$ , called a zero, such that  $\mathbf{u} + \mathbf{0} = \mathbf{u}$ ;
- For each  $\mathbf{u} \in V$ , there is an element  $-\mathbf{u}$  such that  $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ ;
- $\mathbf{6}$   $\mathbf{c}.\mathbf{u} \in V$ ;
- $c.(\mathbf{u} + \mathbf{v}) = c.\mathbf{u} + c.\mathbf{v};$
- **1**  $(c+d).\mathbf{u} = c.\mathbf{u} + d.\mathbf{u};$
- 0 1.u = u.

- The elements of *V* are called vectors.
- The elements of  $\mathbb{F}$  are called scalars.

- The elements of *V* are called vectors.
- The elements of  $\mathbb{F}$  are called scalars.

For any  $n \ge 1$ , the set  $\mathbb{R}^n$  is a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

- The elements of *V* are called vectors.
- The elements of  $\mathbb{F}$  are called scalars.

For any  $n \ge 1$ , the set  $\mathbb{R}^n$  is a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

## Example

For any  $n \ge 1$ , the set  $\mathbb{C}^n$  is a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

- The elements of *V* are called vectors.
- The elements of F are called scalars.

For any  $n \ge 1$ , the set  $\mathbb{R}^n$  is a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

## Example

For any  $n \ge 1$ , the set  $\mathbb{C}^n$  is a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

#### Example

For any  $n \ge 1$ , the set  $\mathbb{C}^n$  is a vector space over  $\mathbb{C}$  with respect to usual operations of addition and scalar multiplicatiopn.

- The elements of *V* are called vectors.
- The elements of F are called scalars.

For any  $n \ge 1$ , the set  $\mathbb{R}^n$  is a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

## Example

For any  $n \ge 1$ , the set  $\mathbb{C}^n$  is a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

#### Example

For any  $n \ge 1$ , the set  $\mathbb{C}^n$  is a vector space over  $\mathbb{C}$  with respect to usual operations of addition and scalar multiplicatiopn.

### Example

The set  $\mathbb{R}^n$  is not a vector space over  $\mathbb{C}$  with respect to usual operations of addition and scalar multiplicatiopn.



The set  $\mathbb{Z}$  is not a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

The set  $\mathbb{Z}$  is not a vector space over  $\mathbb{R}$  with respect to usual operations of addition and scalar multiplicatiopn.

#### Example

Let 
$$\mathbb{R}_2[x] = \{a + bx + cx^2 : a, b, c \in \mathbb{R}\}$$
. For  $p(x) = a_0 + b_0x + c_0x^2$ ,  $q(x) = a_1 + b_1x + c_1x^2 \in \mathbb{R}_2[x]$  and  $k \in \mathbb{R}$ , define

$$p(x) + q(x) = (a_0 + a_1) + (b_0 + b_1)x + (c_0 + c_1)x^2$$
$$k.p(x) = (ka_0) + (kb_0)x + (kc_0)x^2.$$

Then  $\mathbb{R}_2[x]$  is a vector space over  $\mathbb{R}$ .

The set  $M_2(\mathbb{R})$  of all  $2 \times 2$  real matrices is a vector space over  $\mathbb{R}$  with respect to usual operations of matrix addition and matrix scalar multiplicatiopn.

The set  $M_2(\mathbb{R})$  of all  $2 \times 2$  real matrices is a vector space over  $\mathbb{R}$  with respect to usual operations of matrix addition and matrix scalar multiplicatiopn.

#### Example

The set  $\mathbb{R}^2$  is not a vector space over  $\mathbb{R}$  with respect to usual operations of addition and the following definition of scalar multiplicatiopn:

$$c.[x,y]^t = [cx,0]^t$$
 for  $[x,y]^t \in \mathbb{R}^2, c \in \mathbb{R}$ .



The set  $M_2(\mathbb{R})$  of all  $2 \times 2$  real matrices is a vector space over  $\mathbb{R}$  with respect to usual operations of matrix addition and matrix scalar multiplicatiopn.

#### Example

The set  $\mathbb{R}^2$  is not a vector space over  $\mathbb{R}$  with respect to usual operations of addition and the following definition of scalar multiplicatiopn:

$$c.[x,y]^t = [cx,0]^t$$
 for  $[x,y]^t \in \mathbb{R}^2, c \in \mathbb{R}$ .

• If there is no confusion, c.u is simply written as cu.



- We write  $V(\mathbb{F})$  to denote that V is a vector space over  $\mathbb{F}$ .
- We call V a real vector space or complex vector space according as  $\mathbb{F} = \mathbb{R}$  or  $\mathbb{F} = \mathbb{C}$ .

- We write  $V(\mathbb{F})$  to denote that V is a vector space over  $\mathbb{F}$ .
- We call V a real vector space or complex vector space according as  $\mathbb{F} = \mathbb{R}$  or  $\mathbb{F} = \mathbb{C}$ .

#### Result

Let V be a vector space over  $\mathbb{F}$ . Let  $\mathbf{u} \in V$  and  $\mathbf{c} \in \mathbb{F}$ . Then

- **1**  $0.\mathbf{u} = \mathbf{0}$ ;
- c.0 = 0;
- **3**  $(-1).\mathbf{u} = -\mathbf{u}$ ; and
- 4 If  $c.\mathbf{u} = \mathbf{0}$  then either c = 0 or  $\mathbf{u} = \mathbf{0}$ .

• If W is a subspace of a vector space  $V(\mathbb{F})$ , then  $W(\mathbb{F})$  is also a vector space.

- If W is a subspace of a vector space  $V(\mathbb{F})$ , then  $W(\mathbb{F})$  is also a vector space.
- If W is a subspace of a vector space  $V(\mathbb{F})$  then  $\mathbf{0} \in W$ .

- If W is a subspace of a vector space  $V(\mathbb{F})$ , then  $W(\mathbb{F})$  is also a vector space.
- If W is a subspace of a vector space  $V(\mathbb{F})$  then  $\mathbf{0} \in W$ .
- The sets {0} and V are always subspaces of any vectors space V. These are called the trivial subspaces.

- If W is a subspace of a vector space  $V(\mathbb{F})$ , then  $W(\mathbb{F})$  is also a vector space.
- If W is a subspace of a vector space  $V(\mathbb{F})$  then  $\mathbf{0} \in W$ .
- The sets {0} and V are always subspaces of any vectors space V. These are called the trivial subspaces.

#### Example

Let W be the set of all  $2 \times 2$  real symmetric matrices. Then W is a subspace of  $M_2(\mathbb{R})$ .

- If W is a subspace of a vector space  $V(\mathbb{F})$ , then  $W(\mathbb{F})$  is also a vector space.
- If W is a subspace of a vector space  $V(\mathbb{F})$  then  $\mathbf{0} \in W$ .
- The sets {0} and V are always subspaces of any vectors space V. These are called the trivial subspaces.

#### Example

Let W be the set of all  $2 \times 2$  real symmetric matrices. Then W is a subspace of  $M_2(\mathbb{R})$ .

#### Example

Let  $W = \{[x, y, z]^t \in \mathbb{R}^3 : x + y - z = 0\}$ . Then S is a subspace of  $\mathbb{R}^3$ .



Spanning Set: Let  $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  be a subset of a vector space  $V(\mathbb{F})$ . Then the set of all linear combinations of  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  is called the span of  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ , and is denoted by  $\mathrm{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$  or  $\mathrm{span}(S)$ . That is,

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{F}\}.$$

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{F}\}.$$

$$span(S) := \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{F}\}.$$

Let  $S \subseteq V$  (may be infinite!) The span of S is defined by

$$\mathsf{span}(\mathcal{S}) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in \mathcal{S}, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

• If span(S) = V, then S is called a spanning set for V.

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{F}\}.$$

$$\mathsf{span}(\mathcal{S}) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in \mathcal{S}, \alpha_i \in \mathbb{F}, \textit{m} \text{ a nonnegative integer} \right\}.$$

- If span(S) = V, then S is called a spanning set for V.
- Convention:  $span(\emptyset) = \{0\}$

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{F}\}.$$

$$\mathsf{span}(\mathcal{S}) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in \mathcal{S}, \alpha_i \in \mathbb{F}, \textit{m} \text{ a nonnegative integer} \right\}.$$

- If span(S) = V, then S is called a spanning set for V.
- Convention:  $span(\emptyset) = \{0\}$
- For example,  $\mathbb{R}_2[x] = \text{span}(1, x, x^2)$ .

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{F}\}.$$

$$\mathsf{span}(\mathcal{S}) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in \mathcal{S}, \alpha_i \in \mathbb{F}, \textit{m} \text{ a nonnegative integer} \right\}.$$

- If span(S) = V, then S is called a spanning set for V.
- Convention:  $span(\emptyset) = \{0\}$
- For example,  $\mathbb{R}_2[x] = \text{span}(1, x, x^2)$ .
- $\mathbb{R}[x] = \text{span}(1, x, x^2, ...)$  [ $\mathbb{R}[x] = \text{set of all polynomials in } x$ ].

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{F}\}.$$

Let  $S \subseteq V$  (may be infinite!) The span of S is defined by

$$\mathsf{span}(S) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

- If span(S) = V, then S is called a spanning set for V.
- Convention:  $span(\emptyset) = \{0\}$
- For example,  $\mathbb{R}_2[x] = \text{span}(1, x, x^2)$ .
- $\mathbb{R}[x] = \operatorname{span}(1, x, x^2, \ldots)$  [ $\mathbb{R}[x] = \operatorname{set}$  of all polynomials in x].

#### Result

Let S be a subset of a vector space  $V(\mathbb{F})$ . Then span(S) is a subspace of V.

An infinite set  $S \subseteq V$  is linearly dependent if there is some finite linearly dependent subset of S.

An infinite set  $S \subseteq V$  is linearly dependent if there is some finite linearly dependent subset of S.

Linear Independence: The set S of vectors in a vector space  $V(\mathbb{F})$  is said to be linearly independent (LI) if it is not linearly dependent. Thus

An infinite set  $S \subseteq V$  is linearly dependent if there is some finite linearly dependent subset of S.

**Linear Independence:** The set S of vectors in a vector space  $V(\mathbb{F})$  is said to be linearly independent (LI) if it is not linearly dependent. Thus

if 
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$
 then  $S$  is linearly independent (LI) if  $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow$ 

An infinite set  $S \subseteq V$  is linearly dependent if there is some finite linearly dependent subset of S.

**Linear Independence:** The set S of vectors in a vector space  $V(\mathbb{F})$  is said to be linearly independent (LI) if it is not linearly dependent. Thus

if 
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$
 then  $S$  is linearly independent (LI) if  $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \dots = c_k = \mathbf{0}$ ;

An infinite set  $S \subseteq V$  is linearly dependent if there is some finite linearly dependent subset of S.

**Linear Independence:** The set S of vectors in a vector space  $V(\mathbb{F})$  is said to be linearly independent (LI) if it is not linearly dependent. Thus

if 
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$
 then  $S$  is linearly independent (LI) if  $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \dots = c_k = \mathbf{0}$ ;

if *S* is infinite then *S* is linearly independent (LI) if every finite subset of *S* is linearly independent.

An infinite set  $S \subseteq V$  is linearly dependent if there is some finite linearly dependent subset of S.

**Linear Independence:** The set S of vectors in a vector space  $V(\mathbb{F})$  is said to be linearly independent (LI) if it is not linearly dependent. Thus

if 
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$
 then S is linearly independent (LI) if  $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow \mathbf{c}_1 = \mathbf{c}_2 = \dots = \mathbf{c}_k = \mathbf{0}$ ;

if *S* is infinite then *S* is linearly independent (LI) if every finite subset of *S* is linearly independent.

Set {0} is linearly dependent as 1.0 = 0. [A non-trivial linear combination of 0 is 0.]

An infinite set  $S \subseteq V$  is linearly dependent if there is some finite linearly dependent subset of S.

Linear Independence: The set S of vectors in a vector space  $V(\mathbb{F})$  is said to be linearly independent (LI) if it is not linearly dependent. Thus

if 
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$
 then  $S$  is linearly independent (LI) if  $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \dots = c_k = \mathbf{0}$ ;

if *S* is infinite then *S* is linearly independent (LI) if every finite subset of *S* is linearly independent.

- Set {0} is linearly dependent as 1.0 = 0. [A non-trivial linear combination of 0 is 0.]
- If  $0 \in S$ , then S is always linearly dependent as S contains a LD set  $\{0\}$ .

The set  $\{A, B, C\}$  is linearly dependent in  $M_2(\mathbb{R})$ , where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$
 and  $C = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ .

The set  $\{A, B, C\}$  is linearly dependent in  $M_2(\mathbb{R})$ , where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$
 and  $C = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ .

# Example

The set  $\{1, x, x^2, \dots, x^n\}$  is linealry independent in  $\mathbb{R}_n[x]$ .

The set  $\{A, B, C\}$  is linearly dependent in  $M_2(\mathbb{R})$ , where

$$A = \left[ \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], B = \left[ \begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right] \text{ and } C = \left[ \begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array} \right].$$

# Example

The set  $\{1, x, x^2, \dots, x^n\}$  is linealry independent in  $\mathbb{R}_n[x]$ .

# Example

The set  $\{1, x, x^2, ...\}$  is linearly independent in  $\mathbb{R}[x]$ .

The set  $\{A, B, C\}$  is linearly dependent in  $M_2(\mathbb{R})$ , where

$$A = \left[ \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], B = \left[ \begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right] \text{ and } C = \left[ \begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array} \right].$$

# Example

The set  $\{1, x, x^2, \dots, x^n\}$  is linealry independent in  $\mathbb{R}_n[x]$ .

# Example

The set  $\{1, x, x^2, ...\}$  is linearly independent in  $\mathbb{R}[x]$ .

#### Result

The vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  in a vector space V are linearly dependent iff either  $\mathbf{v}_1 = \mathbf{0}$  or there is an integer r such that  $\mathbf{v}_r$  can be expressed as a linear combination of  $\mathbf{v}_1, \dots, \mathbf{v}_{r-1}$ .



# Example

 $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$  is a basis for  $\mathbb{F}^n$ . This basis is called the standard basis for  $\mathbb{F}^n$ .

# Example

 $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$  is a basis for  $\mathbb{F}^n$ . This basis is called the standard basis for  $\mathbb{F}^n$ .

#### Example

 $\{1, x, x^2, \dots, x^n\}$  is a basis for  $\mathbb{R}_n[x]$ , known as the standard basis for  $\mathbb{R}_n[x]$ .

#### Example

 $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$  is a basis for  $\mathbb{F}^n$ . This basis is called the standard basis for  $\mathbb{F}^n$ .

#### Example

 $\{1, x, x^2, \dots, x^n\}$  is a basis for  $\mathbb{R}_n[x]$ , known as the standard basis for  $\mathbb{R}_n[x]$ .

#### Example

 $\{1, x, x^2, \ldots\}$  is a basis for  $\mathbb{R}[x]$ , known as the standard basis for  $\mathbb{R}[x]$ .

$$\mathcal{E}=\{\textit{E}_{11},\textit{E}_{12},\textit{E}_{21},\textit{E}_{22}\}$$
 is a basis for  $\textit{M}_{2}(\mathbb{R})$ , where

$$\textit{E}_{11} = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \textit{E}_{12} = \left[ \begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right],$$

$$\textit{E}_{21} = \left[ \begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \; \textit{and} \; \textit{E}_{22} = \left[ \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right].$$

 $\mathcal{E} = \{E_{11}, E_{12}, E_{21}, E_{22}\}$  is a basis for  $M_2(\mathbb{R})$ , where

$$\textbf{\textit{E}}_{11} = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \textbf{\textit{E}}_{12} = \left[ \begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right],$$

$$E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 and  $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ .

#### Example

$$B = \{1 + x, x + x^2, 1 + x^2\}$$
 is a basis for  $\mathbb{R}_2[x]$ .

Let  $a, b, c \in \mathbb{R}$ . Then  $a(1+x) + b(x+x^2) + c(1+x^2) = 0$ 

Let 
$$a, b, c \in \mathbb{R}$$
. Then
$$a(1+x) + b(x+x^2) + c(1+x^2) = 0$$

$$\Rightarrow \begin{bmatrix} 1+x & x+x^2 & 1+x^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

Let 
$$a, b, c \in \mathbb{R}$$
. Then
$$a(1+x) + b(x+x^2) + c(1+x^2) = 0$$

$$\Rightarrow \begin{bmatrix} 1+x & x+x^2 & 1+x^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

Let  $a, b, c \in \mathbb{R}$ . Then  $a(1+x) + b(x+x^2) + c(1+x^2) = 0$   $\Rightarrow \begin{bmatrix} 1+x & x+x^2 & 1+x^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$   $\Rightarrow \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$   $\Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \{1, x, x^2\} \text{ is LI}$ 

Let 
$$a, b, c \in \mathbb{R}$$
. Then
$$a(1+x) + b(x+x^2) + c(1+x^2) = 0$$

$$\Rightarrow \begin{bmatrix} 1+x & x+x^2 & 1+x^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \{1, x, x^2\} \text{ is LI}$$

$$\Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ is invertible}$$

Let 
$$a, b, c \in \mathbb{R}$$
. Then
$$a(1+x) + b(x+x^2) + c(1+x^2) = 0$$

$$\Rightarrow \begin{bmatrix} 1 + x & x + x^2 & 1 + x^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \{1, x, x^2\} \text{ is LI}$$

$$\Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ is invertible}$$

$$\Rightarrow \{1 + x, x + x^2, 1 + x^2\} \text{ is LI}.$$

Let 
$$a, b, c \in \mathbb{R}$$
. Then
$$a(1+x) + b(x+x^2) + c(1+x^2) = 0$$

$$\Rightarrow \begin{bmatrix} 1+x & x+x^2 & 1+x^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \{1, x, x^2\} \text{ is LI}$$

$$\Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ is invertible}$$

$$\Rightarrow \{1+x, x+x^2, 1+x^2\} \text{ is LI}.$$

Note the correspondence

$$1 + x \longleftrightarrow \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad x + x^2 \longleftrightarrow \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad 1 + x^2 \longleftrightarrow \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Let 
$$a, b, c \in \mathbb{R}$$
. Then
$$a(1+x) + b(x+x^2) + c(1+x^2) = 0$$

$$\Rightarrow \begin{bmatrix} 1 + x & x + x^2 & 1 + x^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \{1, x, x^2\} \text{ is LI}$$

$$\Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ is invertible}$$

$$\Rightarrow \{1 + x, x + x^2, 1 + x^2\} \text{ is LI}.$$

Note the correspondence

$$1 + x \longleftrightarrow \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad x + x^2 \longleftrightarrow \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad 1 + x^2 \longleftrightarrow \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

• 
$$\{1 + x, x + x^2, 1 + x^2\}$$
 is LI iff  $\{\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}\}$  is LI.



Coordinate: Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be an ordered bssis for a vector space  $V(\mathbb{F})$  and let  $\mathbf{v} \in V$ . Let

 $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$ . Then the scalars  $c_1, c_2, \ldots, c_n$  are called the coordinates of  $\mathbf{v}$  with respect to B, and the column vector

$$[\mathbf{v}]_B = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

is called the coordinate vector of **v** with respect to *B*.

Coordinate: Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be an ordered bssis for a vector space  $V(\mathbb{F})$  and let  $\mathbf{v} \in V$ . Let

 $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$ . Then the scalars  $c_1, c_2, \ldots, c_n$  are called the coordinates of  $\mathbf{v}$  with respect to B, and the column vector

$$[\mathbf{v}]_B = \left[egin{array}{c} c_1 \ c_2 \ dots \ c_n \end{array}
ight]$$

is called the coordinate vector of **v** with respect to *B*.

★ Coordinate of a vector is always associated with an ordered basis.

Coordinate: Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be an ordered bssis for a vector space  $V(\mathbb{F})$  and let  $\mathbf{v} \in V$ . Let

 $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$ . Then the scalars  $c_1, c_2, \ldots, c_n$  are called the coordinates of  $\mathbf{v}$  with respect to B, and the column vector

$$[\mathbf{v}]_B = \left[egin{array}{c} c_1 \ c_2 \ dots \ c_n \end{array}
ight]$$

is called the coordinate vector of **v** with respect to *B*.

★ Coordinate of a vector is always associated with an ordered basis.

#### Example

The coordinate vector 
$$[p(x)]_B$$
 of  $p(x) = 1 - 3x + 4x^2$  with respect to basis  $B = \{1, x, x^2\}$  of  $\mathbb{R}_2[x]$  is  $[p(x)]_B = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$ .



Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be an ordered bssis for a vector space V, let  $\mathbf{u}, \mathbf{v} \in V$  and let  $c \in \mathbb{F}$ . Then

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and  $[c\mathbf{u}]_B = c[\mathbf{u}]_B$ .

Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be an ordered bssis for a vector space V, let  $\mathbf{u}, \mathbf{v} \in V$  and let  $c \in \mathbb{F}$ . Then

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and  $[c\mathbf{u}]_B = c[\mathbf{u}]_B$ .

#### Result

Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be a bssis for a vector space  $V(\mathbb{F})$ , and let  $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$  be vectors in V. Then  $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$  is linearly independent in V if and only if  $\{[\mathbf{u}_1]_B, [\mathbf{u}_2]_B, \dots, [\mathbf{u}_k]_B\}$  is linearly independent in  $\mathbb{F}^n$ .

Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be an ordered bssis for a vector space V, let  $\mathbf{u}, \mathbf{v} \in V$  and let  $c \in \mathbb{F}$ . Then

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and  $[c\mathbf{u}]_B = c[\mathbf{u}]_B$ .

#### Result

Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be a bssis for a vector space  $V(\mathbb{F})$ , and let  $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$  be vectors in V. Then  $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$  is linearly independent in V if and only if  $\{[\mathbf{u}_1]_B, [\mathbf{u}_2]_B, \dots, [\mathbf{u}_k]_B\}$  is linearly independent in  $\mathbb{F}^n$ .

#### Result

Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be a bssis for a vector space V.

Any set of more than n vectors in V must be linearly dependent.



Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be an ordered bssis for a vector space V, let  $\mathbf{u}, \mathbf{v} \in V$  and let  $c \in \mathbb{F}$ . Then

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and  $[c\mathbf{u}]_B = c[\mathbf{u}]_B$ .

#### Result

Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be a bssis for a vector space  $V(\mathbb{F})$ , and let  $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$  be vectors in V. Then  $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$  is linearly independent in V if and only if  $\{[\mathbf{u}_1]_B, [\mathbf{u}_2]_B, \dots, [\mathbf{u}_k]_B\}$  is linearly independent in  $\mathbb{F}^n$ .

#### Result

Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be a bssis for a vector space V.

- Any set of more than n vectors in V must be linearly dependent.
- Any set of fewer than n vectors in V cannot span V.



If a vector space V has a basis with n vectors, then every basis for V has exactly n vectors.

If a vector space V has a basis with n vectors, then every basis for V has exactly n vectors.

### Dimension: Let V be a vector space.

• The dimension of V, denoted dim V, is the number of vectors in a basis for V. We write dim  $V = \infty$  if V does not have a finite basis.

If a vector space V has a basis with n vectors, then every basis for V has exactly n vectors.

### Dimension: Let V be a vector space.

- The dimension of V, denoted dim V, is the number of vectors in a basis for V. We write dim  $V = \infty$  if V does not have a finite basis.
- The dimension of the zero space  $\{0\}$  is defined to be 0.

If a vector space V has a basis with n vectors, then every basis for V has exactly n vectors.

### Dimension: Let *V* be a vector space.

- The dimension of V, denoted dim V, is the number of vectors in a basis for V. We write dim  $V = \infty$  if V does not have a finite basis.
- The dimension of the zero space {0} is defined to be 0.

# Example

 $\dim(\mathbb{R}^n) = n$ ,  $\dim \mathbb{C}(\mathbb{C}) = 1$ ,  $\dim \mathbb{C}(\mathbb{R}) = 2$ ,  $\dim M_2(\mathbb{R}) = 4$  and  $\dim \mathbb{R}_n[x] = n + 1$ .



Let V be a vector space with  $\dim V = n$ .

Any linearly independent set in V contains at most n vectors.

Let V be a vector space with  $\dim V = n$ .

- Any linearly independent set in V contains at most n vectors.
- 2 Any spanning set for V contains at least n vectors.

Let V be a vector space with  $\dim V = n$ .

- Any linearly independent set in V contains at most n vectors.
- Any spanning set for V contains at least n vectors.
- Any linearly independent set of exactly n vectors in V is a basis for V.

Let V be a vector space with dim V = n.

- Any linearly independent set in V contains at most n vectors.
- Any spanning set for V contains at least n vectors.
- Any linearly independent set of exactly n vectors in V is a basis for V.
- Any spanning set for V of exactly n vectors is a basis for V.

Let V be a vector space with  $\dim V = n$ .

- Any linearly independent set in V contains at most n vectors.
- Any spanning set for V contains at least n vectors.
- Any linearly independent set of exactly n vectors in V is a basis for V.
- Any spanning set for V of exactly n vectors is a basis for V.
- Any linearly independent set in V can be extended to a basis for V.

Let V be a vector space with  $\dim V = n$ .

- Any linearly independent set in V contains at most n vectors.
- Any spanning set for V contains at least n vectors.
- Any linearly independent set of exactly n vectors in V is a basis for V.
- Any spanning set for V of exactly n vectors is a basis for V.
- Any linearly independent set in V can be extended to a basis for V.
- Any spanning set for V can be reduced to a basis for V.



Change of Basis: Let  $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$  and  $C = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be bases for a vector space V. The  $n \times n$  matrix whose columns are the coordinate vectors  $[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C$  is denoted by  $P_{C \leftarrow B}$ , and is called the change of basis matrix from B to C. That is,

$$P_{C\leftarrow B} = [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C].$$

Let  $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$  and  $C = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be bases for a vector space V and let  $P_{C \leftarrow B}$  be the change of basis matrix from B to C. Then

Let  $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$  and  $C = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be bases for a vector space V and let  $P_{C \leftarrow B}$  be the change of basis matrix from B to C. Then

- **2**  $P_{C \leftarrow B}$  is the unique matrix P with the property that  $P[\mathbf{x}]_B = [\mathbf{x}]_C$  for all  $\mathbf{x} \in V$ ;

Let  $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$  and  $C = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be bases for a vector space V and let  $P_{C \leftarrow B}$  be the change of basis matrix from B to C. Then

- **2**  $P_{C \leftarrow B}$  is the unique matrix P with the property that  $P[\mathbf{x}]_B = [\mathbf{x}]_C$  for all  $\mathbf{x} \in V$ ;
- **3**  $P_{C \leftarrow B}$  is invertible and  $(P_{C \leftarrow B})^{-1} = P_{B \leftarrow C}$ .

Let  $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$  and  $C = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be bases for a vector space V and let  $P_{C \leftarrow B}$  be the change of basis matrix from B to C. Then

- **2**  $P_{C \leftarrow B}$  is the unique matrix P with the property that  $P[\mathbf{x}]_B = [\mathbf{x}]_C$  for all  $\mathbf{x} \in V$ ;

### Example

Find the change of basis matrix  $P_{C \leftarrow B}$  and  $P_{B \leftarrow C}$  for the bases  $B = \{1, x, x^2\}$  and  $C = \{1 + x, x + x^2, 1 + x^2\}$  of  $\mathbb{R}_2[x]$ . Then find the coordinate vector of  $p(x) = 1 + 2x - x^2$  with respect to the basis C.



• Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ .

• Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ .

• Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .

- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .

- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}$  given by F(p(x)) = p(3).

- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}$  given by  $F(\rho(x)) = \rho(3)$ .

What is common in all of these?

- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}$  given by F(p(x)) = p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces.

- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}$  given by F(p(x)) = p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else?

- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}$  given by  $F(\rho(x)) = \rho(3)$ .

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else? We have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}),$$

- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}$  given by F(p(x)) = p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else? We have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}), \quad F(\alpha \mathbf{v}) = \alpha F(\mathbf{v}),$$

or, equivalently,



- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}$  given by F(p(x)) = p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else? We have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}), \quad F(\alpha \mathbf{v}) = \alpha F(\mathbf{v}),$$

or, equivalently,  $F(\alpha \mathbf{u} + \mathbf{v}) = \alpha F(\mathbf{u}) + F(\mathbf{v})$ .

- Suppose  $A \in \mathcal{M}_{m \times n}$ . Take  $\mathbf{v} \in \mathbb{R}^n$ . Then  $A\mathbf{v} \in \mathbb{R}^m$ . Thus, we have a map (function)  $F : \mathbb{R}^n \to \mathbb{R}^m$  given by  $F(\mathbf{v}) = A\mathbf{v}$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}[x]$  given by  $F(p(x)) = \frac{d}{dx}p(x)$ .
- Take  $F : \mathbb{R}[x] \to \mathbb{R}$  given by F(p(x)) = p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector spaces. What else? We have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}), \ F(\alpha \mathbf{v}) = \alpha F(\mathbf{v}),$$

or, equivalently,  $F(\alpha \mathbf{u} + \mathbf{v}) = \alpha F(\mathbf{u}) + F(\mathbf{v})$ . Such functions are called linear transformations (LT).



#### Definition

A linear transformation from a vector space V into a vector space W is a mapping  $T: V \to W$  such that for all  $\mathbf{u}, \mathbf{v} \in V$  and for all  $\mathbf{a} \in \mathbb{F}$ 

$$T(a\mathbf{u} + \mathbf{v}) = aT(\mathbf{u}) + T(\mathbf{v}).$$

#### Definition

A linear transformation from a vector space V into a vector space W is a mapping  $T: V \to W$  such that for all  $\mathbf{u}, \mathbf{v} \in V$  and for all  $\mathbf{a} \in \mathbb{F}$ 

$$T(\mathbf{a}\mathbf{u} + \mathbf{v}) = aT(\mathbf{u}) + T(\mathbf{v}).$$

# Example

Let A be an  $m \times n$  matrix. Define  $T : \mathbb{R}^n \to \mathbb{R}^m$  such that  $T(\mathbf{x}) = A\mathbf{x}$  for all  $\mathbf{x} \in \mathbb{R}^n$ . Then T is a linear transformation from  $\mathbb{R}^n$  into  $\mathbb{R}^m$ .

The map  $T : \mathbb{R}^2 \to \mathbb{R}^2$ , defined by  $T([x,y]^t) = [2x,x+y]^t$  for all  $[x,y]^t \in \mathbb{R}^2$ , is a linear transformation.

The map  $T: \mathbb{R}^2 \to \mathbb{R}^2$ , defined by  $T([x, y]^t) = [2x, x + y]^t$  for all  $[x, y]^t \in \mathbb{R}^2$ , is a linear transformation.

# Example

Let V and W be two vector spaces. The map  $T_0: V \to W$ , defined by  $T_0(\mathbf{v}) = \mathbf{0}$  for all  $\mathbf{v} \in V$ , is a linear transformation. The map  $T_0$  is called the zero transformation.

The map  $T: \mathbb{R}^2 \to \mathbb{R}^2$ , defined by  $T([x, y]^t) = [2x, x + y]^t$  for all  $[x, y]^t \in \mathbb{R}^2$ , is a linear transformation.

# Example

Let V and W be two vector spaces. The map  $T_0: V \to W$ , defined by  $T_0(\mathbf{v}) = \mathbf{0}$  for all  $\mathbf{v} \in V$ , is a linear transformation. The map  $T_0$  is called the zero transformation.

# Example

Let V be a vector space. The map  $I: V \to V$ , defined by  $I(\mathbf{v}) = \mathbf{v}$  for all  $\mathbf{v} \in V$ , is a linear transformation. The map I is called the identity transformation.



The map  $T : \mathbb{R} \to \mathbb{R}$ , defined by T(x) = x + 1 for all  $x \in \mathbb{R}$ , is not a linear transformation.

The map  $T : \mathbb{R} \to \mathbb{R}$ , defined by T(x) = x + 1 for all  $x \in \mathbb{R}$ , is not a linear transformation.

#### Result

Let  $T: V \rightarrow W$  be a linear transformation. Then

- $\mathbf{0}$   $T(\mathbf{0}) = \mathbf{0}$ ;
- 2  $T(-\mathbf{v}) = -T(\mathbf{v})$  for all  $\mathbf{v} \in V$ ; and
- $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v}) \text{ for all } \mathbf{u}, \mathbf{v} \in V.$

The map  $T : \mathbb{R} \to \mathbb{R}$ , defined by T(x) = x + 1 for all  $x \in \mathbb{R}$ , is not a linear transformation.

#### Result

Let  $T: V \rightarrow W$  be a linear transformation. Then

- $\mathbf{0} \ T(\mathbf{0}) = \mathbf{0};$
- 2  $T(-\mathbf{v}) = -T(\mathbf{v})$  for all  $\mathbf{v} \in V$ ; and
- $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v}) \text{ for all } \mathbf{u}, \mathbf{v} \in V.$

# Example

Suppose  $T: \mathbb{R}^2 \to \mathbb{R}_2[x]$  is a linear transformation such that  $T[1,0]^t = 2 - 3x + x^2$  and  $T[0,1]^t = 1 - x^2$ . Find  $T[2,3]^t$  and  $T[a,b]^t$ .

# **Composition of Linear Transformation**

Let  $T: U \to V$  and  $S: V \to W$  be two linear transformations. The composition of S with T is the mapping  $S \circ T: U \to W$  defined by

$$(S \circ T)(\mathbf{u}) = S(T(\mathbf{u}))$$
 for all  $\mathbf{u} \in U$ .

# **Composition of Linear Transformation**

Let  $T: U \to V$  and  $S: V \to W$  be two linear transformations. The composition of S with T is the mapping  $S \circ T: U \to W$  defined by

$$(S \circ T)(\mathbf{u}) = S(T(\mathbf{u}))$$
 for all  $\mathbf{u} \in U$ .

#### Result

Let  $T: U \to V$  and  $S: V \to W$  be two linear transformations. Then the composition  $S \circ T$  is also a linear transformation.



$$g \circ f = I_X$$
 and  $f \circ g = I_Y$ .

• If f is invertible, the the function g satisfying  $g \circ f = I_X$ ,  $f \circ g = I_Y$  is called inverse of f.

$$g \circ f = I_X$$
 and  $f \circ g = I_Y$ .

- If f is invertible, the the function g satisfying  $g \circ f = I_X$ ,  $f \circ g = I_Y$  is called inverse of f.
- Inverse of a function, if exists, is unique.

$$g \circ f = I_X$$
 and  $f \circ g = I_Y$ .

- If f is invertible, the the function g satisfying  $g \circ f = I_X$ ,  $f \circ g = I_Y$  is called inverse of f.
- Inverse of a function, if exists, is unique.
- The symbol  $f^{-1}$  is used to denote the inverse of f.

$$g \circ f = I_X$$
 and  $f \circ g = I_Y$ .

- If f is invertible, the the function g satisfying  $g \circ f = I_X$ ,  $f \circ g = I_Y$  is called inverse of f.
- Inverse of a function, if exists, is unique.
- The symbol  $f^{-1}$  is used to denote the inverse of f.
- Inverse of a linear transformation is linear.

$$g \circ f = I_X$$
 and  $f \circ g = I_Y$ .

- If f is invertible, the the function g satisfying  $g \circ f = I_X$ ,  $f \circ g = I_Y$  is called inverse of f.
- Inverse of a function, if exists, is unique.
- The symbol  $f^{-1}$  is used to denote the inverse of f.
- Inverse of a linear transformation is linear.

# Example

Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  and  $S: \mathbb{R}^2 \to \mathbb{R}^2$  be defined by

$$T[x, y]^t = [x - y, -3x + 4y]^t$$
 and  $S[x, y]^t = [4x + y, 3x + y]^t$ 

for all  $[x,y]^t \in \mathbb{R}^2$ . Then S is the inverse of T.



Kernel and Range: Let  $T: V \to W$  be a linear transformation. Then the kernel of T (null space of T), denoted  $\ker(T)$ , and the range of T, denoted  $\operatorname{range}(T)$ , are defined as

$$\ker(T)=\{\mathbf{v}\in V: T(\mathbf{v})=\mathbf{0}\}, \text{ and}$$
 
$$\operatorname{range}(T)=\{\mathbf{w}\in W: \mathbf{w}=T(\mathbf{v}) \text{ for some } \mathbf{v}\in V\}.$$

Kernel and Range: Let  $T: V \to W$  be a linear transformation. Then the kernel of T (null space of T), denoted  $\ker(T)$ , and the range of T, denoted  $\operatorname{range}(T)$ , are defined as

$$\ker(T)=\{\mathbf{v}\in V: T(\mathbf{v})=\mathbf{0}\}, \text{ and}$$
 
$$\operatorname{range}(T)=\{\mathbf{w}\in W: \mathbf{w}=T(\mathbf{v}) \text{ for some } \mathbf{v}\in V\}.$$

### Result

Let  $T: V \to W$  be a linear transformation and let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  be a spanning set for V. Then  $T(B) = \{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$  spans the range of T.

Kernel and Range: Let  $T: V \to W$  be a linear transformation. Then the kernel of T (null space of T), denoted  $\ker(T)$ , and the range of T, denoted  $\operatorname{range}(T)$ , are defined as

$$\ker(T) = \{\mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0}\}, \text{ and}$$
 
$$\operatorname{range}(T) = \{\mathbf{w} \in W : \mathbf{w} = T(\mathbf{v}) \text{ for some } \mathbf{v} \in V\}.$$

### Result

Let  $T: V \to W$  be a linear transformation and let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  be a spanning set for V. Then  $T(B) = \{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$  spans the range of T.

# Example

Let A be an  $m \times n$  matrix. Define  $T : \mathbb{R}^n \to \mathbb{R}^m$  such that  $T(\mathbf{x}) = A\mathbf{x}$  for all  $\mathbf{x} \in \mathbb{R}^n$ . Then  $\ker(T) = \operatorname{null}(A)$  and  $\operatorname{range}(T) = \operatorname{col}(A)$ .



Let  $T: V \to W$  be a linear transformation. Then ker(T) is a subspace of V and range(T) is a subspace of W.

Let  $T: V \to W$  be a linear transformation. Then ker(T) is a subspace of V and range(T) is a subspace of W.

### Definition

Let  $T: V \to W$  be a linear transformation. We define

- rank(T) = dimension of range(T); and
- $\operatorname{nullity}(T) = \operatorname{dimension of ker}(T)$ .

Let  $T: V \to W$  be a linear transformation. Then ker(T) is a subspace of V and range(T) is a subspace of W.

### Definition

Let  $T: V \to W$  be a linear transformation. We define

- rank(T) = dimension of range(T); and
- $\operatorname{nullity}(T) = \operatorname{dimension of ker}(T)$ .

# Example

Let  $D: \mathbb{R}_3[x] \to \mathbb{R}_2[x]$  be defined by  $D(p(x)) = \frac{d}{dx}p(x)$ . Then rank(D) = 3 and nullity(D) = 1.



# Result (The Rank-Nullity Theorem)

Let  $T: V \to W$  be a linear transformation from a finite dimensional vector space V into a vector space W. Then

$$rank(T) + nullity(T) = dim(V).$$

# Result (The Rank-Nullity Theorem)

Let  $T:V\to W$  be a linear transformation from a finite dimensional vector space V into a vector space W. Then

$$rank(T) + nullity(T) = dim(V).$$

#### Definition

Let  $T: V \to W$  be a linear transformation. Then

T is called one-one if T maps distinct vectors in V into distinct vectors in W.

# Result (The Rank-Nullity Theorem)

Let  $T:V\to W$  be a linear transformation from a finite dimensional vector space V into a vector space W. Then

$$rank(T) + nullity(T) = dim(V).$$

#### Definition

Let  $T: V \to W$  be a linear transformation. Then

- T is called one-one if T maps distinct vectors in V into distinct vectors in W.
- 2 T is called onto if range(T) = W.

Let  $T: V \rightarrow W$  be a linear transformation.

• For all  $\mathbf{u}, \mathbf{v} \in V$ , if  $\mathbf{u} \neq \mathbf{v}$  implies that  $T(\mathbf{u}) \neq T(\mathbf{v})$ , then T is one-one.

Let  $T: V \to W$  be a linear transformation.

- For all  $\mathbf{u}, \mathbf{v} \in V$ , if  $\mathbf{u} \neq \mathbf{v}$  implies that  $T(\mathbf{u}) \neq T(\mathbf{v})$ , then T is one-one.
- For all  $\mathbf{u}, \mathbf{v} \in V$ , if  $T(\mathbf{u}) = T(\mathbf{v})$  implies that  $\mathbf{u} = \mathbf{v}$ , then T is one-one.

Let  $T: V \to W$  be a linear transformation.

- For all  $\mathbf{u}, \mathbf{v} \in V$ , if  $\mathbf{u} \neq \mathbf{v}$  implies that  $T(\mathbf{u}) \neq T(\mathbf{v})$ , then T is one-one.
- For all  $\mathbf{u}, \mathbf{v} \in V$ , if  $T(\mathbf{u}) = T(\mathbf{v})$  implies that  $\mathbf{u} = \mathbf{v}$ , then T is one-one.
- For all  $\mathbf{w} \in W$ , if there is at least one  $\mathbf{v} \in V$  such that  $T(\mathbf{v}) = \mathbf{w}$ , then T is onto.

•  $T : \mathbb{R} \to \mathbb{R}^2$  defined by  $T(x) = [x, 0]^t$  for  $x \in \mathbb{R}$  is one-one but not onto.

- $T : \mathbb{R} \to \mathbb{R}^2$  defined by  $T(x) = [x, 0]^t$  for  $x \in \mathbb{R}$  is one-one but not onto.
- $T: \mathbb{R}^2 \to \mathbb{R}$  defined by  $T[x, y]^t = x$ , for  $[x, y]^t \in \mathbb{R}^2$  is onto but not one-one.

- $T: \mathbb{R} \to \mathbb{R}^2$  defined by  $T(x) = [x, 0]^t$  for  $x \in \mathbb{R}$  is one-one but not onto.
- $T: \mathbb{R}^2 \to \mathbb{R}$  defined by  $T[x, y]^t = x$ , for  $[x, y]^t \in \mathbb{R}^2$  is onto but not one-one.
- $T: \mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T[x, y]^t = [-x, -y]^t$ , for  $[x, y]^t \in \mathbb{R}^2$  is one-one and onto.

- $T: \mathbb{R} \to \mathbb{R}^2$  defined by  $T(x) = [x, 0]^t$  for  $x \in \mathbb{R}$  is one-one but not onto.
- $T: \mathbb{R}^2 \to \mathbb{R}$  defined by  $T[x, y]^t = x$ , for  $[x, y]^t \in \mathbb{R}^2$  is onto but not one-one.
- $T: \mathbb{R}^2 \to \mathbb{R}^2$  defined by  $T[x, y]^t = [-x, -y]^t$ , for  $[x, y]^t \in \mathbb{R}^2$  is one-one and onto.

#### Result

A linear transformation  $T: V \to W$  is one-one iff  $ker(T) = \{\mathbf{0}\}.$ 



Let dim(V) = dim(W). Then a linear transformation  $T: V \to W$  is one-one iff T is onto.

Let dim(V) = dim(W). Then a linear transformation  $T: V \to W$  is one-one iff T is onto.

### Result

Let  $T: V \to W$  be a one-one linear transformation. If  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$  is a linearly independent set in V then  $T(S) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$  is a linearly independent set in W.

Let dim(V) = dim(W). Then a linear transformation  $T: V \to W$  is one-one iff T is onto.

### Result

Let  $T: V \to W$  be a one-one linear transformation. If  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$  is a linearly independent set in V then  $T(S) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$  is a linearly independent set in W.

### Result

Let dim(V) = dim(W). Then a one-one linear transformation  $T: V \to W$  maps a basis for V onto a basis for W.

Let dim(V) = dim(W). Then a linear transformation  $T: V \to W$  is one-one iff T is onto.

### Result

Let  $T: V \to W$  be a one-one linear transformation. If  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$  is a linearly independent set in V then  $T(S) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$  is a linearly independent set in W.

### Result

Let dim(V) = dim(W). Then a one-one linear transformation  $T: V \to W$  maps a basis for V onto a basis for W.

## Isomorphism:

 A linear transformation T: V → W is called an isomorphism if it is one-one and onto.

Let dim(V) = dim(W). Then a linear transformation  $T: V \to W$  is one-one iff T is onto.

### Result

Let  $T: V \to W$  be a one-one linear transformation. If  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$  is a linearly independent set in V then  $T(S) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$  is a linearly independent set in W.

### Result

Let dim(V) = dim(W). Then a one-one linear transformation  $T: V \to W$  maps a basis for V onto a basis for W.

## Isomorphism:

- A linear transformation T: V → W is called an isomorphism if it is one-one and onto.
- If  $T: V \to W$  is an isomorphism then we say that V and W are isomorphic, and we write  $V \cong W$ .



The vector spaces  $\mathbb{R}^3$  and  $\mathbb{R}_2[x]$  are isomorphic.

# Example

The vector spaces  $\mathbb{R}^3$  and  $\mathbb{R}_2[x]$  are isomorphic.

## Result

Let  $V(\mathbb{F})$  and  $W(\mathbb{F})$  be two finite dimensional vector spaces. Then V is isomorphic to W iff  $\dim(V) = \dim(W)$ .

# Example

The vector spaces  $\mathbb{R}^3$  and  $\mathbb{R}_2[x]$  are isomorphic.

## Result

Let  $V(\mathbb{F})$  and  $W(\mathbb{F})$  be two finite dimensional vector spaces. Then V is isomorphic to W iff  $\dim(V) = \dim(W)$ .

# Example

The vector spaces  $\mathbb{R}^n$  and  $\mathbb{R}_n[x]$  are not isomorphic.

## The Matrix of a Linear Transformation

## Result

Let V and W be two vector spaces with bases B and C respectively, where  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  and dim(W) = m. If  $T: V \to W$  is a linear transformation, then the  $m \times n$  matrix A defined by

$$A = [[T(\mathbf{v}_1)]_C, [T(\mathbf{v}_2)]_C, \dots, [T(\mathbf{v}_n)]_C]$$

satisfies

$$A[\mathbf{v}]_B = [T(\mathbf{v})]_C$$
 for all  $\mathbf{v} \in V$ .

## The Matrix of a Linear Transformation

## Result

Let V and W be two vector spaces with bases B and C respectively, where  $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  and dim(W) = m. If  $T: V \to W$  is a linear transformation, then the  $m \times n$  matrix A defined by

$$A = [[T(\mathbf{v}_1)]_C, [T(\mathbf{v}_2)]_C, \dots, [T(\mathbf{v}_n)]_C]$$

satisfies

$$A[\mathbf{v}]_B = [T(\mathbf{v})]_C$$
 for all  $\mathbf{v} \in V$ .

- The above matrix A is called the matrix of T with respect to the bases B and C.
- The matrix A is also written as  $[T]_{C \leftarrow B}$ .
- If B = C, then  $[T]_{C \leftarrow B}$  is written as  $[T]_B$ .



The above result means:

The above result means:

Suppose we know  $[T]_{C \leftarrow B}$  w.r.t. given bases B and C.

The above result means:

Suppose we know  $[T]_{C \leftarrow B}$  w.r.t. given bases B and C. Then we know T in the following sense:

The above result means:

Suppose we know  $[T]_{C \leftarrow B}$  w.r.t. given bases B and C. Then we know T in the following sense:

If 
$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{v}_{i}$$
 and  $[T]_{C \leftarrow B} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$ ,

The above result means:

Suppose we know  $[T]_{C \leftarrow B}$  w.r.t. given bases B and C. Then we know T in the following sense:

If 
$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{v}_{i}$$
 and  $[T]_{C \leftarrow B} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$ , then 
$$T(\mathbf{v}) = \sum_{i=1}^{m} b_{j} \mathbf{u}_{j}.$$

The above result means:

Suppose we know  $[T]_{C \leftarrow B}$  w.r.t. given bases B and C. Then we know T in the following sense:

If 
$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{v}_{i}$$
 and  $[T]_{C \leftarrow B} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$ , then
$$T(\mathbf{v}) = \sum_{j=1}^{m} b_{j} \mathbf{u}_{j}.$$

$$T(\mathbf{v}) = \sum_{j=1}^{m} b_j \mathbf{u}_j.$$

# Example

Let  $T: \mathbb{R}^3 \to \mathbb{R}^2$  be defined by

$$T([x, y, z]^t) = [x - 2y, x + y - 3z]^t$$
 for  $[x, y, z]^t \in \mathbb{R}^3$ .

Let  $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$  and  $C = \{\mathbf{e}_2, \mathbf{e}_1\}$  be bases for  $\mathbb{R}^3$  and  $\mathbb{R}^2$ , respectively. Find  $T_{C-B}$  and verify the previous result for  $\mathbf{v} = [1, 3, -2]^t$ .

#### Result

Let U, V and W be three vector spaces with bases B, C and D, respectively. Let  $T: U \to V$  and  $S: V \to W$  be linear transformations. Then

$$[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}.$$

#### Result

Let U, V and W be three vector spaces with bases B, C and D, respectively. Let  $T: U \to V$  and  $S: V \to W$  be linear transformations. Then

$$[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}.$$

## Result

Let  $T: V \to W$  be a linear transformation between two n-dimensional vector spaces V and W with bases B and C, respectively. Then T is invertible if and only if the matrix  $[T]_{C \leftarrow B}$  is invertible. In this case,

$$([T]_{C \leftarrow B})^{-1} = [T^{-1}]_{B \leftarrow C}.$$

### Result

Let U, V and W be three vector spaces with bases B, C and D, respectively. Let  $T: U \to V$  and  $S: V \to W$  be linear transformations. Then

$$[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}.$$

## Result

Let  $T: V \to W$  be a linear transformation between two n-dimensional vector spaces V and W with bases B and C, respectively. Then T is invertible if and only if the matrix  $[T]_{C \leftarrow B}$  is invertible. In this case,

$$([T]_{C \leftarrow B})^{-1} = [T^{-1}]_{B \leftarrow C}.$$

# Example

Let  $T: \mathbb{R}^2 \to \mathbb{R}_1[x]$  be defined by  $T([a,b]^t) = a + (a+b)x$  for  $[a,b]^t \in \mathbb{R}^2$ . Show that T is invertible, and hence find  $T^{-1}$ .