Agar

Într-un agar se află n microbi. Fiecare microb poate fi caracterizat prin indexul său i $(0 \le i < n)$ si puterea sa p_i .

Un microb i poate mânca microbul j dacă și numai dacă:

- Cei doi microbi sunt diferiți: $i \neq j$.
- Microbul i este cel putin la fel de puternic ca microbul j: $p_i \geq p_i$.
- Microbul *i* nu are o putere mai mare de dublul puterii microbului *j* (nici în lumea microbilor nu este frumos ca cei puternici să îi atace pe cei slabi): $p_i \leq 2p_j$.

De exemplu, un microb cu puterea 9 poate mânca un microb cu puterea între 5 și 9 și poate fi mâncat de un microb cu puterea între 9 și 18.

O mulțime de microbi se numește *anihilatoare* dacă este posibil ca microbii să se mănânce între ei astfel încât să rămână un singur microb.

Atenție: O secvență este *anihilatoare* dacă există **CEL PUȚIN** un scenariu în care microbii se mănâncă între ei până rămâne unul singur. De exemplu, mulțimea de microbi cu puterile 3, 7 și 4 este *anihilatoare*, pe când mulțimea de microbi cu puterile 3 și 7 nu este.

Oamenii de știință vor să efectueze m diferite experimente asupra microbilor, și consideră diferite scenarii, fiecare scenariu fiind caracterizat de doi indici a și b ($0 \le a \le b < n$). Pentru un scenariu particular (a, b), oamenii de știință izolează toți microbii cu indice i cuprins între a și b (inclusiv), urmând să testeze dacă mulțimea izolată de microbi este anihilatoare.

Atenție: Cele m scenarii sunt pur teoretice și nu se influențează unul pe altul. Astfel, puteți considera că pentru fiecare scenariu toți virușii sunt încă în viață.

Date de Intrare

Pe prima linie se dau numerele n și m, care reprezintă numărul de microbi, respectiv numărul de scenarii pe care le consideră oamenii de știință. Următoarea linie conține n numere $p_0, p_1, ..., p_{n-1}$. Următoarele m linii conțin câte două numere a și b, care reprezintă parametrii scenariilor.

Date de Ieșire

Pentru fiecare din cele m experimente, să se afișeze câte o linie care să conțină "DA" dacă secvența este anihilatoare și "NU" în caz contrar.

Constrângeri

- $1 \le n, m \le 10^5$.
- $1 \le p_i \le 10^5$, pentru orice $0 \le i < n$.

Subtask-uri

- 1. (20 de puncte) $1 \le n, m \le 1000$.
- 2. (20 de puncte) $1 \le p_i \le 32$, pentru orice $0 \le i < n$.
- 3. (50 de puncte) Toate scenariile au a=0. Altfel spus, intervalele alese de oamenii de știință sunt prefixe.
- 4. (10 puncte) Nicio constrângere suplimentară.

${\bf Exemplu}$

Input Standard (cin)	Output Standard $(cout)$
3 3	NU
3 7 4	DA
0 1	DA
0 2	
1 2	
5 5	DA
5 2 4 11 10	NU
0 0	DA
0 1	NU
0 2	DA
0 3	
0 4	