Chapter 5

Indicate the best answer by writing the appropriate letter.

- 1. Both pairs of opposite sides of a quadrilateral are parallel. Which special kind of quadrilateral *must* it be?
 - a. parallelogram
- b. rectangle
- c. rhombus
- d. trapezoid
- 2. The diagonals of a certain quadrilateral are congruent. Which term could *not* be used to describe the quadrilateral?
 - a. isosceles trapezoid
- b. rectangle

c. rhombus

- d. parallelogram with a 60° angle
- 3. M is the midpoint of hypotenuse \overline{TK} of right $\triangle TAK$. AM = 13. What is the length of \overline{TK} ?
 - a. 26
- **b.** $19\frac{1}{2}$
- **c.** 13
- d. none of these
- **4.** In \square WXYZ, WX = 10. What does ZW equal?
 - **a.** 16
- **b.** *YZ*
- \mathbf{c} , WY
- d. none of these
- 5. A diagonal of a parallelogram bisects one of its angles. Which special kind of parallelogram *must* it be?
 - a. rectangle

b. rhombus

c. square

- d. parallelogram with a 60° angle
- **6.** The lengths of the bases of a trapezoid are 18 and 26. What is the length of the median?
 - a. 8
- **b.** 22
- c. 44
- **d.** 34
- 7. In quad. PQRS, PQ = SR, QR = PS, and $m \angle P = m \angle Q$. Which of the following is *not necessarily* true?
 - a. $\overline{PR} \perp \overline{QS}$
- b. $\overline{PR} \cong \overline{QS}$
- $\mathbf{c}. \ \angle P \cong \angle R$
- **d.** $\angle R \cong \angle S$
- **8.** In $\triangle ABC$, AB = 8, BC = 10, and AC = 12. M is the midpoint of \overline{AB} , and N is the midpoint of \overline{BC} . What is the length of \overline{MN} ?
 - a. 4
- b. 5
- **c.** 6

- **d.** 9
- 9. If EFGH is a parallelogram, which of the following must be true?
 - $\mathbf{a.} \ \angle E \cong \angle F$

b. $\angle F \cong \angle H$

c. $\overline{FG} \parallel \overline{GH}$

- **d.** $m \angle E + m \angle G = 180$
- 10. Which information does *not* prove that quad. ABCD is a parallelogram?
 - **a.** \overline{AC} and \overline{BD} bisect each other.
- **b.** $\overline{AD} \parallel \overline{BC}; \overline{AD} \cong \overline{BC}$
- c. $\overline{AB} \parallel \overline{CD}; \overline{AD} \cong \overline{BC}$

- **d.** $\angle A \cong \angle C$; $\angle B \cong \angle D$
- 11. In the figure, $\overline{RU} \cong \overline{US}$ and $\angle 1 \cong \angle 2$. Which of the following *cannot* be proved?
 - a. $\angle 3 \cong \angle 4$
- **b.** $\overline{RV} \cong \overline{VT}$
- c. $\overline{US} \cong \overline{VT}$
- $\mathbf{d.} \ ST = 2 \cdot UV$
- 12. Which of the following must be true for any trapezoid?
 - a. Any two consecutive angles are supplementary.
 - **b.** At least one angle is obtuse.
 - c. The diagonals bisect each other.
 - d. The median bisects each base.

