

INSTITUTO TECNOLÓGICO DE SAN LUIS POTOSÍ

MATERIA:

INTELIGENCIA ARTIFICIAL 17:00 – 18:00

CARRERA:

INGENIERIA EN SISTEMAS COMPUTACIONALES

ALUMNO:

HERNÁNDEZ HERNÁNDEZ CARLOS ALBERTO

DOCENTE:

ISC. CORDERO MARTINEZ STEPHANIE

Enlace a GitHub:

https://github.com/CarlosHdz360/evaluacion_u3

EVALUACIÓN U3 Y U4

Alcance 1 cumplido:

Se carga la imagen:

Que tiene por ruta:

```
# predicción
imagen_para_predecir = 'C:/Users/reyna/Desktop/evaluacion/dataset_cars/Sedan/sedan01.jpg'
```

Se realiza la predicción con un modelo previamente entrenado llamado "modelo_cars"

El resultado es:

```
considered legacy. We recommend using instead the native Ke model(model, 'my_model.keras')`.

1/1 _______ 0s 186ms/step
El automóvil es un Sedan.

PS C:\Users\reyna\Desktop\evaluacion> [
```

Alcance 2 cumplido:

Se sigue utilizando el mismo modelo, se enlistan las clases para la predicción

```
'Convertible', 'Coupe', 'Electric', 'Sedan',
'Sport', 'SUV', 'Truck', 'Van', 'Wagon'
```

La cámara detecta los frame en tiempo real y lo compara con la imagen procesada.

El resultado es:

Alcance 3 no cumplido: debido a que el modelo presentaba errores al momento de predecir

Clasificación de Automóviles

Resultado: Ninguno

Se optó por cambiar a una interfaz gráfica de Python "Tkinter" que realizaba las predicciones sin ningún tipo de problemas:

