Multipliers and Magnitude comparators

Binary Multiplier

• 2 bit × 2 bit binary multiplier using adders and external gates.

• Design a 3 bit × 3 bit binary multiplier using Full adders and external AND gates.

4-bit by 3-bit binary multiplier

Magnitude Comparator

• 1 bit Magnitude comparator

(1W/ 12)	2				•	
1104	Input		Output			
	Α	В	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B	
m_{o}	0	0	0	1	0	
ω 1	0	1	1.	0	0	
Wr	1	0	0	0	1	
w	1	1	0	1	0	

• 2 bit magnitude comparator

	Inputs B			Outputs			
	A_1	A_0	B ₁	B_0	A>B	A=B	A <b< th=""></b<>
_ € U o	0	0	0	0	0	1	0
المق	0	0	0	1 .	0	0	1.
m [∠]	0	0	1	0	0	0	1
mz	0	0	1	1	0	0	1
94	0	1	0	0	1	0	0
₩.	0	1	0	1	0	1	0
67 p	0	1	1	0	0	0	1
ω_{J}	0	1	1	1 .	0	0	1
EN &	1	0	0	0	1 .	0	0
<i>6</i> /5	1	0	0	1	1	0	0
\mathcal{U}^{ω}	1	0	1	0	0	1	0
MU	1	0	1	1	0	0	1
MU	1	1	0	0	1 -	0	0
61/53	1	1	0	1	1 ′	0	0
014	1	1	1	0	1 -	0	0
6/12	1	1	1	1	0 ′	1	0

 $A > B = (A_1 > B_1) + (A_1 + B_2) (A_2 > B_3) (B_3 + A_1 + A_2 + A_2 + A_2 + A_3 + A_3 + A_4 + A_5 +$

2-bit magnitude comparator

$$A = B \Rightarrow E = (A_1 = B_1) \cdot (A_0 = B_0) = (A_1 \oplus B_1) \cdot (A_0 \oplus B_0)$$

$$E_1 \cdot E_0$$

$$A_1$$

$$A < B \Rightarrow L = (A_1 < B_1) + (A_1 = B_1) \cdot (A_0 < B_0)$$

$$B_1$$

$$L = (A_1 B_1) + (A_1 \oplus B_1) \cdot (A_0 B_0)$$

$$A_1 + A_1 \oplus B_1$$

$$A_2 \oplus A_3 \oplus A_4$$

$$A_4 \oplus A_5 \oplus A_5$$

$$A_5 \oplus A_6$$

$$A_6 \oplus A_6$$

$$A_$$

$$A > B = G = (A_1 > B_1) + (A_1 = B_1) (A_0 > B_0)$$

$$G = A_1 B_1 + (A_1 \oplus B_1) \cdot (A_0 \cap B_0)$$

$$G_1 + E_1 G_0$$

Two-bit magnitude components
using 1-bit-magnitude
components

• 3 bit magnitude comparator using 1-bit magnitude comparator

• 4 bit magnitude comparator

B3B2 B1 B0

A
$$4-61$$
 $4-61$
 E
 $A=B$
 $A>B$
 $A>B$
 $A>B$
 $A>B$
 $A>B$
 $A>B$

$$G = A > B = G_2 + E_3 G_2 + E_3 E_2 G_1 + E_3 E_2 E_1 G_0$$

$$A_3 B_3 + (A_5 B_3) A_2 B_2 + \dots$$

4-bit magnitude comparator

SOM LO

Design a 4-bit magnitude comparator using 7483 IC and external gates

