Operations On Data

(Solutions to Solution to Review Questions and Problems)

Review Questions

- **Q4-1.** Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical value (*true* or *false*).
- Q4-3. The bit allocation can be 1. In this case, the data type normally represents a logical value.
- Q4-5. The decimal point of the number with the smaller exponent is shifted to the left until the exponents are equal.
- **Q4-7.** The common logical binary operations are: AND, OR, and XOR.
- **Q4-9.** The NOT operation inverts logical values (bits): it changes *true* to *false* and *false* to *true*.
- Q4-11. The result of an OR operation is true when one or both of the operands are true
- **Q4-13.** An important property of the AND operator is that if one of the operands is false, the result is false.
- **Q4-15.** An important property of the XOR operator is that if one of the operands is true, the result will be the inverse of the other operand.
- Q4-17. The AND operator can be used to clear bits. Set the desired positions in the mask to 0.
- **Q4-19.** The logical shift operation is applied to a pattern that does not represent a signed number. The arithmetic shift operation assumes that the bit pattern is a signed number in two's complement format.

Problems

P4-1.

a.	NOT (99) ₁₆	=	NOT (10011001) ₂	=	$(01100110)_2$	=	(99)16
b.	NOT (FF) ₁₆	=	NOT (11111111) ₂	=	$(00000000)_2$	=	(00)16
c.	NOT (00) ₁₆	=	NOT (00000000) ₂	=	$(11111111)_2$	=	(FF)16
d.	NOT (01) ₁₆	=	NOT (00000001) ₂	=	$(11111110)_2$	=	(FE)16

1

P4-3.

a.	(99) ₁₆ OR (99) ₁₆	=	(10011001) ₂ OR (10011001) ₂	=	(10011001) ₂	=	(99)16
b.	(99) ₁₆ OR (00) ₁₆	-	(10011001) ₂ OR (00000000) ₂	=	$(10011001)_2$	=	(99)16
c.	(99) ₁₆ OR (FF) ₁₆	-	(10011001) ₂ OR (11111111) ₂	=	$(111111111)_2$	=	(FF)16
d.	(FF) ₁₆ OR (FF) ₁₆	=	(11111111) ₂ OR (11111111) ₂	=	$(111111111)_2$	=	(FF)16

P4-5.

```
Mask = (00001111)_2
Operation: Mask AND (xxxxxxxx)_2 = (0000xxxx)_2
```

P4-7.

```
Mask: (11000111)_2
Operation: Mask XOR (xxxxxxxx)_2 = (yyxxxyyy)_2, where y is NOT x
```

- **P4-9.** Arithmetic right shift divides an integer by 2 (the result is truncated to a smaller integer). To divide an integer by 4, we apply the arithmetic right shift operation twice.
- **P4-11.** We assume that extraction is for bits 4 and 5 from left. Let the integer in question be (abcdefgh)₂.
 - a. Apply logical right shift operation on (abcdefgh)₂ three times to obtain (000abcde)₂.
 - **b.** Let (**000abcde**)₂ AND (**00000001**)₂ to extract the fifth bit: (0000000**e**)
 - **c.** Apply logical right shift operation on $(000abcde)_2$ once to obtain $(0000abcd)_2$
 - **d.** Let $(0000abcd)_2$ AND $(00000001)_2$ to extract the fourth bit: (00000000d)

P4-13.

a. 00000000 10100001 + 00000011 111111111 =

						1	1	1	1	1	1	1	1	1	1		Carry	Decimal
	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1		161
+	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1		1023
	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0		1184

b. 00000000 10100001 – 00000011 11111111 = 00000000 10100001 + (-00000011 11111111) = 00000000 10100001 + 111111100 00000001 =

Г															1		Carry	Decimal
			0															161
+	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	1		-1023
	1	1	1	1	1	1	0	0	1	0	1	0	0	0	1	0		-862

c. (-00000000 10100001) + 00000011 11111111 = 11111111 01011111 + 00000011 11111111 =

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Carry	Decimal
																		-161
+	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1		1023
	0	0	0	0	0	0	1	1	0	1	0	1	1	1	1	0		862

d. (-00000000 10100001) - 00000011 11111111 = (-00000000 10100001) + (-00000011 111111111) = 111111111 01011111 + 111111100 00000001 =

1 1 1 1 1 1	11111	Carry Decimal
11111111	0 1 0 1 1 1 1 1	-161
+ 1 1 1 1 1 1 0 0	0 0 0 0 0 0 0 1	-1023
1 1 1 1 1 0 1 1	0 1 1 0 0 0 0 0	-1184

P4-15.

- a. There is overflow because 32 + 105 = 137 is not in the range (-128 to +127).
- **b.** There is no overflow because 32 105 = -73 is in the range (-128 to +127).
- c. There is no overflow because -32 + 105 = 73 is in the range (-128 to +127).
- **d.** There is overflow because -32 105 = -137 is not in the range (-128 to +127).

P4-17. Number are stored in sign-and-magnitude format

a. $19+23 \rightarrow A=19=(00010011)_2$ and $B=23=(00010111)_2$. Operation is addition; sign of B is not changed. $S=A_S$ XOR $B_S=0$, $R_M=A_M+B_M$ and $R_S=A_S$

No overf	low		1		1	1	1		Carry
A_S		0	0	1	0	0	1	1	$\mathbf{A}_{\mathbf{M}}$
$\mathbf{B_{S}}$	+	0	0	1	0	1	1	1	$\mathbf{B}_{\mathbf{M}}$
R_S		0	1	0	1	0	1	0	R_{M}

The result is $(00101010)_2 = 42$ as expected.

b. $19 - 23 \rightarrow A = 19 = (00010011)_2$ and $B = 23 = (00010111)_2$. Operation is subtraction, sign of B is changed. $B_S = \overline{B}_S$, $S = A_S XOR B_S = 1$, $R_M = A_M$

 $+\overline{(B_M+1)}$. Since there is no overflow $R_M = \overline{(R_M+1)}$ and $R_S = B_S$ The result

-	No overflow						1	1		Carry
A_S			0	0	1	0	0	1	1	$\mathbf{A}_{\mathbf{M}}$
$\mathbf{B_{S}}$		+	1	1	0	1	0	0	1	$\overline{(\mathbf{B_M}+1)}$
			1	1	1	1	1	0	0	$R_{\mathbf{M}}$
R_S			0	0	0	0	1	0	0	$R_{M} = (R_M + 1)$

 $(10000100)_2 = -4$ as expected.

c. $-19 + 23 \rightarrow A = -19 = (10010011)_2$ and $B = 23 = (00010111)_2$. Operation is addition, sign of B is not changed. $S = A_S XOR B_S = 1$, $R_M = A_M + \overline{(B_M + 1)}$. Since there is no overflow $R_M = \overline{(R_M + 1)}$ and $R_S = B_S$

	No overflow						1	1		Carry
A_S			0	0	1	0	0	1	1	A_{M}
B_{S}		+	1	1	0	1	0	0	1	$\overline{(B_M}+1)$
			1	1	1	1	1	0	0	R_{M}
R_{S}			0	0	0	0	1	0	0	$R_{M} = \overline{(R_M + 1)}$

The result is $(00000100)_2 = 4$ as expected.

d. $-19-23 \rightarrow A=-19=(10010011)_2$ and $B=23=(00010111)_2$. Operation is subtraction, sign of B is changed. $S=A_S$ XOR $B_S=0$, $R_M=A_M+B_M$ and $R_S=A_S$

No overflow			1		1	1	1		Carry
A_{S}		0	0	1	0	0	1	1	A_{M}
B_{S}	+	0	0	1	0	1	1	1	B_{M}
$R_{ m S}$		0	1	0	1	0	1	0	R_{M}

The result is $(10101010)_2 = -42$ as expected.

- **P4-19.** We assume that both operands are in the presentable range.
 - **a.** Overflow can occur because the magnitude of the result is greater than the magnitude of each number and could fall out of the presentable range.
 - **b.** Overflow does not occur because the magnitude of the result is smaller than one of the numbers; the result is in the presentable range.
 - **a.** When we subtract a positive integer from a negative integer, the magnitudes of the numbers are added. This is the negative version of case *a*. Overflow can occur.
 - **b.** When we subtract two negative numbers, the magnitudes are subtracted from each other. This is the negative version of case b. Overflow does not occur.

P4-21. The result is a number with all 0's which has the value of 0. For example, if we add number (10110101)₂ in 8-bit allocation to its two's complement (01001011)₂ we obtain

									Decimal equivalent
1	1	1	1	1	1	1	1		Carry
	1	0	1	1	0	1	0	1	-74
+	0	1	0	0	1	0	1	1	+74
	0	0	0	0	0	0	0	0	0

We use this fact in normal mathematical calculation in the computers.