Deep Neural Network for NLP

Sequential NLP Data

Sequential Data

- Characters in words
- Words in sentences
- Sentences in paragraphs
- Paragraphs in documents

NLP is full of **sequential** data

Dependencies in Language

Dependencies: the relationship between two words (it can be semantic or syntax)

It is equal to the sequential information contained in the sequence data.

Long-distance Dependencies in Languages

Examples

He does not have very much confidence in himself

The rain has lasted as long as the life of clouds

The trophy would not fit in the brown suitcase because it was too small

Sequential NLP Data

Machine learning models should capture this kind of sequential information in NLP data.

Complex Semantic

- 1. **Input Text:** a sequence of words;
- 2. Through Word Embedding Look-up: a sequence of word vectors;
- 3. Neural networks is applied upon the vector sequences to learn semantic **composition** for final prediction;
- Human understand the word meaning firstly, then get the whole sentence meaning by composing these words' meaning together.

Intro to RNN

Deep Learning Timeline

Examples

- Tagging Task: Assuming we have a predefined set of tags, we assign a tag to each word in input sentences.
- Given an input sentence: I would like to arrive at Singapore on Mar. 29.

Singapore -> Dest. Place
Mar. 29 -> Time of Arrival

Feed-forward Network

- Input: Each word (word vector)
- Output: Prob. Scores that the input word belong to the tag

Singapore

Confusing Case

Input Sentence 1:

I would like to arrive at Singapore on Mar. 29.

• Input Sentence 2:

I would like to leave Singapore on Mar. 29.

Neural Network needs Memory

Singapore

The outputs of hidden layer are stored in the memory.

Arrival Departure y1 y2 Store h2 a0 **a**1 h1 **x1** x2

Memory can be considered as another input

Input Seq : [1, 1] [1, 1] [2, 2]

Output Seq: [4, 4]

Given initial values

All weights are 1, no bias, linear activation

Input Seq : [1, 1] [1, 1] [2, 2]

Output Seq: [4, 4] [12, 12]

Using previous hidden output

All weights are 1, no bias, linear activation

Back to Our Case

Back to Our Case

Are these two probs. distribution of SG same? And Why?

Recurrent Neural Network (Elman 1990)

 Recurrent neural network is proposed to utilize information from previous time steps and current information to make reasoning at the current step

• A is the neural network that take x_t in and generate h_t

Image credits to Colah.

• A loop allows information to be passed from one step of the network to the next.

۸ ۱۱ میری می این از میری می از م

Neuron computation of RNN

 Model parameters are tied across all time steps (run the same RNN cell)

$$h_t = \sigma \left(W^{(hh)} h_{t-1} + W^{(hx)} x_{[t]} \right)$$

$$\hat{y}_t = \operatorname{softmax} \left(W^{(S)} h_t \right)$$

- We need $h_0 \in \mathbb{R}^{D_h}$ as the initialization vector for the hidden layer at time step $\mathbf{0}$.
- Inputs enter and move forward at each time step

Focus on certain time step

Unrolling in Time

Process the NLP sequence data

RNN's Bottleneck

- RNN is not suitable for parallel computation.
- RNN's training is not easy
 - Gradient Vanishing
 - Gradient Exploding
 - Reminder on gradient descent algorithms:

W = W - alpha dL/dW

W is the layer weights;

L is the loss function;

Alpha is the learning rate, which represents how aggressive that our model parameters are updated.

RNN Training is Hard

Real experiments on Language Models

Rough Error Surface of RNN

Toy Example

$$w = 1 \quad \Rightarrow \quad y_{1000} = 1$$

$$w = 1.01 \quad \Rightarrow \quad y_{1000} = 20000$$

$$w = 0.99 \quad \Rightarrow \quad y_{1000} \sim = 0$$

$$w = 0.01 \quad \Rightarrow \quad y_{1000} \sim = 0$$

$$w = 0.01 \quad \Rightarrow \quad y_{1000} \sim = 0$$

$$\Rightarrow \quad \text{Small Gradient:} \\ \text{dL/dw}$$

Loss Computation

- Total Loss
 - Total loss is the sum of loss computed on each time step.

BPTT

 For RNN gradient computation, Backpropagation Through Time

Weight is the same for all the time steps

 Inputs from many time step ago can modify output

> Shared Model Parameters across time steps

Accumulated Derviatives

BPTT Equation

RNN formulation

$$h_t = \sigma \left(W^{(hh)} h_{t-1} + W^{(hx)} x_{[t]} \right)$$

$$\hat{y}_t = \operatorname{softmax} \left(W^{(S)} h_t \right)$$

• Total error is the sum of each error at time steps t

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W}$$

Apply chain rule for error at certain time step t

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

Exploding Gradient Solutions

Truncated BPTT

Clip gradients at threshold

RMSprop to adjust learning rate

Vanishing Gradient Problem

- The error at a time step ideally can tell a previous time step from many steps away to change during backprop
- Can not capture long-term dependency
- The representation from time steps 0 and t can not travel to influence the time step t+1
- Harder to detect

Vanishing Gradient Solutions

- RMSprop
- LSTM, GRUs (gated RNN)
- ReLu activation functions

LSTM/GRU

• LSTM/GRU are using gates in cell computation to control information flow

RNN for Language Model

Recurrent Neural Network

- Recurrent neural network works in a chain way
- The method is in naturally suitable for processing sequences data
- A broad applications:
 - Speech Recognition
 - Time series Prediction
 - Language Modeling
 - Machine Translation

Language Models

- A language model computes a probability for a sequence of words:
 - P(w1,..., wT)
- Useful for machine translation/Question Answering
 - Word Ordering
 - p(the cat is small) > p(small is the cat)
 - Word Choice
 - p(walking home after school) > p(walking house after school)

Traditional Methods

- Probability is usually conditioned on window of n previous words
- An incorrect but practical Markov Assumption
- To estimate probabilities, compute for unigram and bigrams

$$p(w_2|w_1) = \frac{\text{count}(w_1, w_2)}{\text{count}(w_1)} \qquad p(w_3|w_1, w_2) = \frac{\text{count}(w_1, w_2, w_3)}{\text{count}(w_1, w_2)}$$

Traditional Methods

- A lot of n-grams and extremely large combinations
 - Requires large RAM requirements
- Use one machine with 140GB RAM for 2.8days to built a model on 126 billion tokens.

RNN-based Language Model

- Language Modelling here is one of **tagging** task
- Each label/tag is the next word!

At a single time step:

e time step:
$$h_t = \sigma\left(W^{(hh)}h_{t-1} + W^{(hx)}x_{[t]}\right)$$

$$\hat{y}_t = \operatorname{softmax}\left(W^{(S)}h_t\right)$$

$$\hat{P}(x_{t+1} = v_i \mid x_t, \dots, x_1) = \hat{y}_{t,i}$$

RNN-based Language Model

- This task is for sequential labelling, i.e., each time step has its own target value
- At each time step, the learned hidden representation are fed into two layers:
 - Predict the target value (softmax or linear regression)
 - Compute the hidden features at the next time step

Intro to CNN

Convolutional Neural Network

Local Features Matter

- Discriminative patterns are much smaller than the whole image
- A neuron does not have to see the whole image
- Less parameters required

Location Insensitive

- The same patterns appear in different regions
- A neuron should be location insensitive.

Subsampling Works

- Subsampling the pixels will not change the object
- We can subsample the pixels to make images smaller -> less parameters required

Crocodile

CNN for Images

CNN:

- 1. Convolutional Layer: from local regions in images to feature map
- 2. Pooling Layer: reduce the dimensionality of feature maps
- 3. 2d example ->
 Yellow shows filter weights
 Green shows input

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Stanford UFLDL

CNN for Images

- Convolution Layer:
 - Local features matters
 - Location Insensitive
- Max Pooling Layer:
 - Subsampling works

CNN for Text

CNN works for Text

Images

Local Features Matter

Locations Insensitive

Subsampling Works

Texts

Key n-grams define semantics

Pulp fiction's director is Quentin. I am obsessed of it.

Locations of key n-grams Insensitive?

I am obsessed of Pulp fiction, whose director is Quentin.

Pulp fiction's director is Quentin. I am obsessed of it.

I owe you ten dollars
You owe me ten dollars.

Doc. Summarization

Combinations

E.g., I hate this movie

- Compute vectors for every possible phrase
 - I hate this movie ----> I hate; hate this; this movie
- Compute these vectors for these phrases

Convolution Operation

Word Vectors

like this

Filters updated during training

like this movie very much

very

Feature Maps

Toy Example

- This convolution provides high activations for 2-grams with certain meaning
- Can be extended to 3-grams,
 4-grams, etc.
- Can have various filters, need to track many n-grams.
- They are called 1D since we only slice the windows only in one direction

Why is it better than BoW?

Convolution Operation

$$p = \tanh\left(W \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] + b\right)$$

Word Vector: $c \in R^k$

[]: concatenation operation

W: linear matrix $W \in R^{d \times nk}$

b: bias vector $b \in R^d$

W and b are the network parameters to be learned.

Convolution Layer Weights

W: linear matrix $W \in R^{d \times nk}$

- Each row vector in linear matrix can be regarded as one n-gram extractor,
 i.e., filter.
- Number of row d can be regarded as number of extractors.
- The output is the feature value for the input n-words.
- They are called 1D because we slide the window only in one direction.

Padding

Padding: After convolution, the lengths of feature maps depends on padding

Toy Sequence: 1, 3, 4, 5

a. To be the same as the input length (same)

b. Input length - window size + 1

(valid or narrow)

Variable Feature Dimension after Convolution

c. Input length + window size - 1

(wide)

Stride

- Control how the filters move along the input sequence
- N-stride means that the filter convolve around the input sequence by shifting n units every time.

Pooling Operation

- 1. Calculates some reduction function feature-wise
- 2. Pooling is conducted over the sequence direction
 - a. **K-range Max pooling:** Did u see this feature anywhere in the k window

$$[5.5 \; ; \; 6.1]^T$$

b. Average pooling: How prevalent is this feature over the entire range?

$$[2.9 \; ; \; 4.5]^T$$

Lose the order information.

We do not care the position of the key n-grams in the sentence. Whether the key n-grams is in the sentence or not is important.

Convolution Operation Hyper-parameters

Windows size n: how many words are considered together?

Output dimension d: how many filters are used for word windows?

Windows Size

Windows size n: capture the n-gram features in convolutional layer

- CNN automatically learns the values of its filters
- Compared to n-grams model, CNN is efficient and compact in representation without representing all vocabulary

Stride Size

Stride size: how much you want to shift your filter at each step

- It is usually set to be one
- If large stride size, build a model that behaves somewhat similarly to a tree

This movie is very interesting to me

stride size=2

Multiple Filters

- Use multiple filter weights w (initialize randomly)
- Use different window sizes n
- Then, we can have features for bigrams, tri-grams, 4-grams

Classification after one CNN layer

- 1. First one convolution, followed by one max-pooling
- 2. Obtain final features vectors: $z = [c_1,...,c_m]$ where m is the number of filters
- Apply softmax layers on final vector

$$y = softmax \left(W^{(S)}z + b \right)$$

CNN Framework

Multiple Channels

- Like image, CNN is applied on R-G-B channels
- For NLP, different word embeddings can be regarded as different channels

CNN for NLP

- 1. n-grams features are important (window size)
- 2. Location of key n-grams are trivial (pooling)
- Stack of Convolutional layer or large window size can also capture long-range information