Activation 1

Réglage de correcteurs P et Pl

Ressources de P. Dupas.

Savoirs et compétences :

Res1.C4.SF1: proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

Correcteur proportionnel

D'après ressources P. Dupas.

Soit un système de fonction de transfert G(p) =

placé dans une boucle à retour unitaire. On

souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de 45° et une marge de gain de 10 dB.

On donne le diagramme de Bode associé à cette fonction de transfert.

Question 1 Mesurer puis calculer la marge de phase.

Question 2 *Mesurer puis calculer la marge de gain.*

Question 3 Déterminer K_p pour avoir une marge de phase de 45°. Vérifier la marge de gain.

Question 4 Déterminer K_p pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

1.
$$M_{\varphi} = -60^{\circ}$$
.

2.
$$M'_G = -20 \, \text{dB}$$
.

3.
$$K_P = 0.054$$
 et $M_G = 5.35$ dB.

4.
$$K_P = 0.0316$$
 et $M_{\varphi} = 70^{\circ}$.

Correcteur proportionnel intégral

D'après ressources P. Dupas.

Soit un système de fonction de transfert G(p) =placé dans une boucle à retour unitaire. $\frac{1}{(p+1)(\frac{p}{8}+1)}$

On souhaite disposer d'une marge de phase de 45°en utilisant un correcteur proportionnel intégral de la forme $C(p) = K_p \frac{1 + \tau p}{\tau p}.$

Question 1 Tracer le diagramme de Bode de la boucle ouverte non corrigée.

Question 2 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45°.

Question 3 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

1.
$$1+1.0$$

2.
$$C(p) = 15, 7 \frac{1+1,018p}{1,018p}$$

1

Activation 1

Réglage de correcteurs P et Pl

Ressources de P. Dupas.

Savoirs et compétences :

Res1.C4.SF1: proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

Correcteur proportionnel

D'après ressources P. Dupas.

Soit un système de fonction de transfert $G(p)=\frac{10}{p\left(1+p+p^2\right)}$ placé dans une boucle à retour unitaire. On

souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de 45° et une marge de gain de 10 dB.

On donne le diagramme de Bode associé à cette fonction de transfert.

Question 1 *Mesurer puis calculer la marge de phase.*

Question 2 *Mesurer puis calculer la marge de gain.*

Question 3 Déterminer K_p pour avoir une marge de phase de 45°. Vérifier la marge de gain.

Question 4 Déterminer K_p pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

Correcteur proportionnel intégral

D'après ressources P. Dupas.

Soit un système de fonction de transfert $G(p) = \frac{1}{\left(p+1\right)\left(\frac{p}{8}+1\right)}$ placé dans une boucle à retour unitaire.

On souhaite disposer d'une marge de phase de 45° en utilisant un correcteur proportionnel intégral de la forme $C(p) = K_p \frac{1+\tau p}{\tau p}$.

Question 1 Tracer le diagramme de Bode de la boucle ouverte non corrigée.

Question 2 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45°.

Question 3 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

Activation 1 – Corrigé

Réglage de correcteurs P et PI

Ressources de P. Dupas.

Savoirs et compétences :

Res1.C4.SF1: proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

Correcteur proportionnel

D'après ressources P. Dupas.

Soit un système de fonction de transfert $G(p) = \frac{10}{p(1+p+p^2)}$ placé dans une boucle à retour unitaire. On

souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de 45° et une marge de gain de 10 dB.

On donne le diagramme de Bode associé à cette fonction de transfert.

Question 1 Mesurer puis calculer la marge de phase.

Correction

• On cherche ω tel que $G_{\rm dB}(\omega)=0$ dB : $G_{\rm dB}(\omega)=-20\log(10)-20\log\omega-20\log\left(\sqrt{(1-\omega^2)^2+\omega^2}\right)$ On trouve $\omega=2,21$ rad/s et $M_{\varphi}=-60^\circ$. Le système est instable.

Question 2 Mesurer puis calculer la marge de gain.

Correction Pour $\varphi=-180^\circ$, on a $\omega=1$ rad/s et $M_G=-20$ dB. Le système est instable.

Question 3 Déterminer K_p pour avoir une marge de phase de 45°. Vérifier la marge de gain.

Correction Pour $\varphi = -135^{\circ}$ on a $\omega = 0.62 \, \text{rad/s}$. On trouve un gain proportionnel de 0,054.

La marge de gain est alors de 5,35 dB ce qui est inférieur aux 10 dB demandés.

Question 4 Déterminer K_p pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

Correction Pour $\varphi = -180^{\circ}$ on a $\omega = 1 \text{ rad/s}$. On trouve un gain proportionnel de 0,316.

La marge de phase est alors de $70^{\circ}(\omega = 0.0333 \, \text{rad/s})$.

Correcteur proportionnel intégral

D'après ressources P. Dupas.

Soit un système de fonction de transfert $G(p) = \frac{1}{(p+1)(\frac{p}{8}+1)}$ placé dans une boucle à retour unitaire.

On souhaite disposer d'une marge de phase de 45° en utilisant un correcteur proportionnel intégral de la forme $C(p)=K_p\frac{1+\tau p}{\tau p}$.

Question 1 Tracer le diagramme de Bode de la boucle ouverte non corrigée.

Question 2 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45°.

Correction

- On choisit τ pour ne pas modifier la marge de phase. Il faut donc que le déphasage de 0°du correcteur ait lieu avant 9,82 rad/s. De manière usuelle on prend $\frac{1}{\tau} = \frac{9,82}{10} = 0,982 \text{ rad/s}.$ • Au final, on a $C(p) = 15,7\frac{1+1,018p}{1,018p}$.

Question 3 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

