Chapter V

CONTINUOUS RANDOM VARIABLES

1 The Cumulative Distribution Function. Probability Density Function

Definition 1.1. The cumulative distribution function (CDF) of r.v. X is $F_X(x) = P(X \le x)$.

Proposition 1.1. The CDF of r.v. X has the following properties:

- $1. \lim_{x \to -\infty} F_X(x) = 0;$
- 2. $\lim_{x \to \infty} F_X(x) = 1;$
- 3. $P(a < X \le b) = F_X(b) F_X(a), \forall a, b \in \mathbb{R};$
- 4. $P(X=x)=0, \forall x \in \mathbb{R}$ (the probability of any individual outcome is 0.)

Definition 1.2. The r.v. X is a continuous r.v. if the CDF of $X, F_X(x)$ is a continuous function.

Definition 1.3. The probability density function (PDF) of a continuous r.v. X is the function given by $f_X(x) = F'_X(x)$.

Proposition 1.2. The PDF of r.v. X has the following properties:

- 1. $f_X(x) \geq 0$, for any $x \in \mathbb{R}$;
- 2. $F_X(x) = \int_{-\infty}^x f_X(u) du;$
- 3. $\int_{-\infty}^{\infty} f_X(x) dx = 1;$
- 4. $P(a < X \le b) = \int_a^b f_X(x) dx$.

2 Expected Values

Definition 2.1. The expected value of a continuous r.v. X is the number

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx.$$

Remark: The expected value pf a function of r.v. X, g(X), is

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx.$$

Proposition 2.1. The following properties hold for any r.v. X:

- 1. E(X E(X)) = 0;
- 2. E(aX + b) = aE(X) + b;
- 3. $Var(X) = E(X^2) (E(X))^2$;
- 4. $Var(aX + b) = a^2 Var(X)$.

3 Families of Continuous R.V.

Definition 3.1. X is a uniform (a,b) r.v. $(or\ X)$ is a uniform r.v. $or\ X$ is uniformly distributed $or\ X$ has a uniform distribution) if the PDF is

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x < b \\ 0, & otherwise \end{cases}, \quad b > a.$$

Properties: If X is a uniform (a, b) r.v. then:

a) the CDF of X is

$$F_X(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a \le x < b , b > a. \\ 1, & x > b \end{cases}$$

- b) $E(X) = \frac{a+b}{2}$;
- c) $Var(X) = \frac{(a-b)^2}{12}$.

Definition 3.2. X is an exponential (λ) r.v. if the PDF is

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & otherwise \end{cases}, \lambda > 0.$$

Properties: If X is an exponential (λ) r.v. then:

a) the CDF of X is

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & otherwise; \end{cases}$$

- b) $E(X) = \frac{1}{\lambda};$
- c) $Var(X) = \frac{1}{\lambda^2}$.

Definition 3.3. X is a Gaussian (μ, σ) r.v.) (or normal r.v.) if the PDF is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad \mu \in \mathbb{R}, \sigma > 0.$$

We denote $X \in N(\mu, \sigma^2)$

Remark: The graph of the PDF has a bell shape, where the center of the bell is $x = \mu$ and σ is the width of the bell. The height pf the peak is $\frac{1}{\sigma\sqrt{2\pi}}$.

Properties:

- 1. If $X \in N(\mu, \sigma^2)$ then $E(X) = \mu, Var(X) = \sigma^2$.
- 2. If $X \in N(\mu, \sigma^2)$ then $aX + b = Y \in N(a\mu + b, a\sigma^2)$.
- 3. $\mu \sigma$ and $\mu + \sigma$ are points of inflection for the graph;
- 4. The subtended area of the curve is equal to 1;
- 5. The area of the left side of $x=\mu$ is equal to the area of the right side, and equals $\frac{1}{2}$;
- 6. 68% of the subtended area of the curve is between $\mu \sigma$ and $\mu + \sigma$; 95% of the subtended area is between $\mu 2\sigma$ and $\mu + 2\sigma$; 99.7% of the subtended area is between $\mu 3\sigma$ and $\mu + 3\sigma$;

Figure 1: The graph of f_X for $\mu = 100$ and $\sigma = 16.1$.

7. The graph of the curve is asymptotically to Ox axis.

Figure 2: The graph of f_X for different values of μ and σ .

Definition 3.4. The standard normal r.v. Z is the Gaussian (0,1) r.v.

Properties:

- 1. If $X \in N(0,1)$ then E(X) = 0, Var(X) = 1.
- 2. The CDF of the standard normal r.v. Z is

$$\Phi(z) = \frac{1}{2\pi} \int_{-\infty}^{z} e^{-\frac{u^2}{2}} du.$$

3. If $X \in N(\mu, \sigma^2)$ then the CDF of X is:

$$F_X(x) = \Phi(\frac{x-\mu}{\sigma}).$$

4. The probability that X is in the interval (a, b] is

$$P(a < X \le b) = \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma}).$$

5. For any complex z

$$\Phi(-z) = 1 - \Phi(z).$$

Definition 3.5. X is a Pareto r.v. $(X \in (Pareto(\alpha, \beta)))$) if the PDF is

$$f_X(x) = \begin{cases} \frac{\alpha}{\beta} \cdot (\frac{\beta}{x})^{\alpha+1}, & x \ge \beta \\ 0, & x < \beta, \end{cases}, \quad x \ge \beta.$$

for any $\alpha, \beta > 0$.

Remarks: 1. The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, scientific, geophysical, actuarial, and many other types of observable phenomena.

- 2. The duration of the processor service for the processes of the UNIX operating system, was proved by experimentation that it has Pareto distribution.
- 3. The size of the files stored on the WEB servers has Pareto distribution of parameter $\alpha \in [1.1, 1.3]$.
- 4. The length of time, X, between two successive packets of information in the irregular data bundle in communication systems, is a Pareto parameter variable. Parameter β represents the minimum time interval between two packages, and the parameter α characterize the intensity of the network use.
- 5. Pareto distribution is used as a model for simulating Internet traffic. This simulation is used to study the parameters of the Internet network under high traffic conditions.

Figure 3: The graph of f_X for different values of α . (by Wikipedia)

Properties:

1. The CDF of X is

$$F_X(x) = \begin{cases} 1 - (\frac{\beta}{x})^{\alpha}, & x \ge \beta \\ 0, & x < \beta; \end{cases}$$

2. The expected value of X is

$$E(X) = \frac{\alpha \beta}{\alpha - 1},$$

for any $\alpha > 1, \beta > 0$.

3. The variance of X is:

$$Var(X) = \frac{\alpha \beta^2}{(\alpha - 1)^2 (\alpha - 2)},$$

for any $\alpha > 2, \beta > 0$.

4 Conditioning Continuous Random Variables

Definition 4.1. For a r.v. X with PDF $f_X(x)$ and an event $B \subset S_X$ with probability P(B) > 0, the conditional PDF of X given B is:

$$f_{X|B}(x) = \begin{cases} \frac{f_X(x)}{P(B)}, & x \in B\\ 0, & otherwise; \end{cases}$$

Proposition 4.1. Given an event space $\{B_1, B_2, ... B_n\}$ and the conditional PDF $f_{X|B}(x)$, then

$$f_X(x) = \sum_{i=1}^{n} f_{X|B}(x) \cdot P(B_i).$$

Definition 4.2. If $x \in B$, the conditional expected value of X is:

$$E(X \mid B) = \int_{-\infty}^{\infty} x \cdot f_{X|B}(x).$$

5 Probability Models of Derived R.V.

Let X be a continuous r.v. with the PMF $f_X(x)$, g a real function, and Y = g(X) a new r.v.

In order to find the PMF of the new r.v. Y, we follow a two-step procedure:

- find the CDF $F_Y(y) = P(Y \le y)$;
- compute $f_y(y) = F'_Y(y)$.

Proposition 5.1. Multiplying a r.v. by a positive constant stretches (a > 1) or shrinks (a < 1) the original PDF: if Y = aX, a > 0, then $F_Y(y) = F_X(\frac{y}{a})$, and $f_Y(y) = \frac{1}{a} f_X(\frac{y}{a})$.

Proposition 5.2. 1. If Y = aX, a > 0, then:

- a) if X is uniform (b, c), then Y is uniform (ab, ac);
- b) if X is exponential (λ) , then Y is exponential $(\frac{\lambda}{a})$;
- c) if X is Gaussian (μ, σ) then Y is Gaussian $(a\mu, a\sigma)$.

2. If
$$Y = X + b$$
, then:

- a) the CDF of Y is $F_Y(y) = F_X(y-b)$;
- b) the PDF of Y is $f_Y(y) = f_X(y-b)$.

6 Solved Problems

1. Suppose X is uniformly distributed over [-1,3] and $Y=X^2$. Find the CDF and the PDF of Y.

Solution: The PDF of X is given by:

$$f_X(x) = \begin{cases} \frac{1}{4}, & x \in [-1, 3] \\ 0, & otherwise, \end{cases}$$

and the corresponding CDF is:

$$F_X(x) = \begin{cases} 0, & x < -1 \\ \frac{1}{4}(x+1), & x \in [-1, 3] \\ 1, & x > 3. \end{cases}$$

The CDF of $Y = X^2$ is:

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y}).$$

• If $\sqrt{y} > 3$, then y > 9 and $-\sqrt{y} < -3$, so

$$F_X(\sqrt{y}) - F_X(-\sqrt{y}) = 1 - 0 = 1,$$

if y > 9.

• If $\sqrt{y} < 3$, and $-\sqrt{y} < -1$, then y < 9 and y > 1, so

$$F_X(\sqrt{y}) - F_X(-\sqrt{y}) = \frac{1}{4}(\sqrt{y} + 1),$$

if $y \in [1, 9]$.

 \bullet If $\sqrt{y}<3,$ and $-\sqrt{y}>-1,$ then y<9 and y<1, so

$$F_X(\sqrt{y}) - F_X(-\sqrt{y}) = \frac{1}{4}(\sqrt{y} + 1) - \frac{1}{4}(-\sqrt{y} + 1) = \frac{1}{2}\sqrt{y},$$

if $y \in [0,1]$.

Therefore:

$$F_Y(y) = \begin{cases} 0, & y < 0 \\ \frac{1}{2}\sqrt{y}, & y \in [0, 1) \\ \frac{1}{4}(\sqrt{y} + 1), & y \in [1, 9) \\ 1, & y \ge 9, \end{cases}$$

so the PDF for Y is:

$$f_Y(y) = F_Y'(y) = \begin{cases} \frac{1}{4\sqrt{y}}, & y \in [0, 1) \\ \frac{1}{8\sqrt{y}}, & y \in [1, 9) \\ 0, & otherwise. \end{cases}$$

7 Exercises

1. R.v. has PDF

$$f_X(x) = \begin{cases} cxe^{-\frac{x}{2}}, & x \ge 0 \\ 0, & otherwise. \end{cases}$$

Find the following:

- a) $c \in \mathbb{R}$;
- b) The probability that X takes values in [0, 4];
- c) The probability that X takes values in (-2,2);
- d) The CDF for X.
- e) The expected value of X, E(X);
- f) The variance of X, var(X);
- g) The standard deviation of X;
- h) The second moment of Y.
- 2. If $X \in N(0,1)$ and $Y \in N(0,2)$, then find the following:
 - a) $P(-1 < X \le 1)$; b) P(X > 3.5);

c)
$$P(-1 < Y \le 1)$$
; d) $P(Y > 3.5)$.

3. The CDF of r.v. X is

$$F_X(x) = \begin{cases} 0, & x < -1 \\ \frac{1}{4}(x+1), & x \in [-1, 1) \\ 1, & x \ge 1. \end{cases}$$

Sketch the graph for the CDF and find the following:

- a) $P(X \le 1)$; b) P(X < 1);
- c) P(X = 1); d) The PDF of X.

4. The PDF of r.v. X is

$$f_X(x) = \begin{cases} \frac{1}{10}, & 0 \le x < 10\\ 0, & otherwise. \end{cases}$$

Find the following:

- a) $P(X \le 6)$;
- b) The conditional PDF of X given $Y \leq 6$;
- c) The conditional probability of X given X > 8;
- d) The conditional expected value of X given X > 8.

5. The CDF of r.v. X is

$$F_X(x) = \begin{cases} a, & x \le 1 \\ \frac{1}{2}(x+1), & x \in (-1,1] \\ b, & x > 1. \end{cases}$$

Find the following:

- a) The values of the real parameters a and b;
- b) The PDF for X;
- c) The PDF for $Y = X^2$.

6. The PDF of r.v. X is

$$f_X(x) = \begin{cases} \frac{1}{3}, & -1 < x < 2 \\ 0, & otherwise. \end{cases}$$

Find the following:

- a) The CDF for X; b) The PDF for the r.v. $Y = e^X$; c) The PDF for the r.v. $Z = \sqrt{X}$.