

SCHOOL OF AEROSPACE MECHANICAL AND MECHATRONIC ENGINEERING AERO3760: SPACE ENGINEERING 2

SnapSat Preliminary Design Report

21 AUGUST 2015

Name and Email	Role and Responsibility
James Allworth 312073038 jall8741@uni.sydney.edu.au	Attitude Determination and Control System
Thomas Forbutt 312101058 tfor8012@uni.sydney.edu.au	Communications and Data Handling
Oscar McNulty 312106130 omcn3220@uni.sydney.edu.au	Structural Design and Development
Penelope Player 312106718 ppla7388@uni.sydney.edu.au	On-board Computer and Power System
Nikita Sardesai 312088205 nsar2497@uni.sydney.edu.au	Thermal System Design and Payload

Contents

1	1 introduction	• • • •	 	 	• •	• •	 	•	• •	. 2
2	2 Spacecraft Deign Overview									
3	3 Payload Design Overview		 	 			 		• • •	. 4
4	4 Spacecraft Modes of Operation		 	 			 		• •	. 5
5	5 Structural Design		 	 			 	•	• • •	. 7
6	6 System Budgets		 	 			 			. 8
	6.1 Mass Budget		 	 			 			. 8
	6.2 Power Budget		 	 			 			. 10
	6.3 Pointing Budget		 	 			 			. 10
	6.4 Link Budgets		 	 			 			. 10
	6.4.1 Uplink Budget		 	 			 			. 10
	6.4.2 Downlink Budget		 	 			 			. 11
	6.5 Data Budget	· • • •	 	 			 	•	• •	. 11
7	7 Project Plans and Schedule		 	 			 			. 12
	7.1 Gantt Chart	· • • •	 	 			 	•	• •	. 13
8	8 Comments by Independent Reviewer		 	 			 		• • •	. 14
Li	List of Figures									
	2.1 Design Schematic									. 3
	4.1 Mode Transition Diagram during sate									
Li	List of Tables									
	2.1 SnapSat Design Overview		 	 			 			. 2
	4.1 SnapSat Modes of Operation									
	6.1 SnapSat Mass Budget									
	6.2 SnapSat Power Budget									
	7.1 SnapSat Project Schedule						• •	•	- •	. 10 12

1 Introduction

Snapsat is a design solution as a part of the AERO3760: Space Engineering 2 course at the University of Sydney. The project involves specific design specifications as set out by the course administrator and the CubeSat requirements [?]. <to complete!>

2 Spacecraft Deign Overview

Summarised in table 7.1 below is the outline of all components in the SnapSat proposed design.

Table 2.1: SnapSat Design Overview

Subsystem	Description
Structural	- 3D ABS printed plastic - six individual sides adhered together
ADCS	- copper loop magneto-torgqers made in-house - Osram SFH203P Photodiodes - IMU: Adafruit 9-DOF
EPS	- Australian Robotics solar panels - battery: LiNiMnCo 26650 rechargeable cell
OBC / OBDH	- Arduino DUE - 4 × PCBs
TT&C	- VHF (Xbee) - UHF - tape measure antennae
Thermal	- thermal tapings and passive coatings (Kapton tape) - selected components will have multi-layer insulation
Payload	- Leopard LI-CAM-AR0140HISPI

2.1 Subsystem Design Schematic

The layout of Snapsat, with the interconnects of power and data lines between the subsystems is shown in the figure below. (NOTE: this is only an example for now)

Figure 2.1: Design Schematic

3 Payload Design Overview

The CubeSat had been pivotal to the space research and development industry and had generally increased our accessibility to the cosmos. The cubesat platform uniquely offers an extremely low construction and launch cost in comparison to major satellite manufacturers. This has spurred on many educational bodies and small research groups to collect and analyse their own data, especially in developing nations [?]. Universities have pioneered the build of the smallest of satellites (nano- and pico-), this has been assisted with the miniaturisation in many technological fields such as electronics, materials ans sensors. These small sizes enable the cubesat to 'piggy-back' on the launch of much larger satellites, because of this they are able to get to very high (and expensive) orbits of a fraction of the price. Many big aerospace companies have also made use of the tiny platform such as Orbital Sciences (2006 [?]) and Boeing (2009 [?]) along with the United Nations, who have formally recognised the developmental benefits of small satellites [?].

Despite the quick growth of this industry in the aerosapce and related academia fields, we are only now seeing the cubesat break into early STEM education. Currently, only science and technology scholars and graduates have the full accessibility to the design of cubesats, our ease of access is not well known amongst the general public. Snapsat hopes to change this, by bringing space to social media via beautiful photographs and Twitter.

Snapsat is a nano-satellite designed for outreach and space accessibility for educational bodies and the general public. In a sun-synchronous orbit at an altitude of 350km, Snapsat will be in the prime position of Earth observation. Users can send a message to the cubesat, which will take a low resolution image of the Earth and tweet it to the world.

This turns off the

4 Spacecraft Modes of Operation

The spacecraft will experience the following modes during its lifetime. A different configuration of system operations and instructions will be executed by *SnapSat* in each case. These are summarised in table 4.1 below.

Table 4.1: SnapSat Modes of Operation

Spacecraft Mode	Description
Launch Mode	This turns the satellite off for launch to comply with CubeSat Design Specification 2.3.1. During launch the deployment switch is tripped which will turn the satellite on and transfer it into Establish Contact Mode.
Safe mode	In this mode, only essential satellite systems are kept ON such as the OBC, power board and VHF receiver. The attitude is not controlled and the transmitter is turned on occasionally for status updates.
Recovery/De- tumble mode	This mode is used to de-tumble the spacecraft after deployment into orbit as well as to recover it from any spin states (such as after Safe Mode). All Safe Mode components are ON, as well as the ADCS system. Other devices can be turned ON by ground command.
Establish Contact Mode	In this mode the satellite waits 30 seconds before deploying the antenna and attempting to communicate with the ground station. The ACS system works to orient the satellite correctly.
Payload Operation Mode	This mode is used only when taking a picture. The camera module is booted up, the camera takes a picture, stores it is RAM/ROM and then the camera is powered town again to conserve power. This mode can be triggered by reaching a preset GPS location or manually via communications. This mode can be entered either by reaching a GPS coordinate or through ground control command. It exists this mode straight into Relay Picture Mode.
Relay Picture Mode	This mode is entered after Payload Operation Mode and causes the CubeSat to start sending pictures to the ground station.
Relay Picture Mode	In this mode the camera is almost constantly transmitting images taken through the camera. It exists into Telemetry Mode when the picture has been sent.
Telemetry Mode	In this mode the CubeSat is idle, just displaying basic telemetry. Attitude controlled.
etc. (Other Modes)	

Figure 4.1: Mode Transition Diagram during satellite lifetime

5 Structural Design

The proposed one-unit satellite structure will be 3D printed using <???> plastic. This method was chosen in preference of an aluminium chassis primarily because of the ease of access of production.

6 System Budgets

This section detail the power and mass budgets of SnapSat. (overview/description)

6.1 Mass Budget

The mass budget is shown in table 6.1, it is ensured that *SnapSat* meets the requirement of a maximum weight of 1kg. The component masses were used to determine the center of gravity for the satellie, it is desirable to keep this located close to the geometric centre as the attitude control system (magneto-torques) are placed on the outermost surfaces. Centroid averaging across all three axes was used to calculate this as follows

$$x_{cg} = \frac{\sum x_i \cdot m_i}{\sum m_i}$$
 $y_{cg} = \frac{\sum y_i \cdot m_i}{\sum m_i}$ $z_{cg} = \frac{\sum z_i \cdot m_i}{\sum m_i}$

The moment of inertia about all three axes is given by

$$I = \int r^2 dm$$

The inertial of each individual component was ignored, assuming these were roughly symmetrical. Only the relative locations of the component contributed to the total inertia. Thus, the inertias were given

$$I_{xx} = \frac{1}{\sum m_i} \cdot \left(\sum \sqrt{(y_i - y_{cg})^2 + (z_i - z_{cg})^2} \cdot m_i \right)$$
 (6.1)

$$I_{yy} = \frac{1}{\sum m_i} \cdot \left(\sum \sqrt{(x_i - x_{cg})^2 + (z_i - z_{cg})^2} \cdot m_i \right)$$
 (6.2)

$$I_{zz} = \frac{1}{\sum m_i} \cdot \left(\sum \sqrt{(x_i - x_{cg})^2 + (y_i - y_{cg})^2} \cdot m_i \right)$$
 (6.3)

and so on; where x_i , y_i and z_i are the positions of each component and m_i is the mass of each component. The inertial matrix was computed using *Solidworks*. It was found to be:

$$I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix} =$$
(6.4)

Table 6.1: SnapSat Mass Budget

Subsystem	Mass (g)	Contingency (g)	Mass and Contin- gency	Fraction of Total Mass
Structural				
ADCS				
EPS				
OBS / OBDH				
TT&C				
Thermal				
Payload				
Integration				
Total				
Mass Margin				

6.2 Power Budget

Table 6.2: SnapSat Power Budget

		Average Duty Cycle by Mode (%)					
Load	Power Consump- tion (W)	Number of Units On	Safe Mode	Recovery Mode	Payload Mode	Other Mode	
OBC							
VHF Rx							
S-band Tx							
Reaction Wheels							
Power Board							
Camera							
etc.							
Sum Loads (W)						
Efficiency	Efficiency						
Power Consumed (W)							
Power Gener	rated (W)						
Power Margin							

6.3 Pointing Budget

Since this spacecraft is performing Earth observation, it requires a pointing budget. This refers to the ability to orient the spacecraft towards a target having a specific geographical orientation. Along with the pointing accuracy, the satellite needs to be able to map the location from its own location. Errors in both pointing and mapping accuracies will be discussed here.

6.4 Link Budgets

Calculations for both link budgets (list assumptions here).

6.4.1 Uplink Budget

The uplink budget allows for XXX. The specifications are

- Antenna type at satellite: (omni, directional+gain)
- Frequency Band: (VHF (145.800MHz), UHF (435.xxx MHz), SHF etc.)
- Objective C/N:
- Bit rate and modulation type:
- Expected occupied bandwidth:

6.4.2 Downlink Budget

The downlink budget allows for XXX. The specifications are

- Antenna type at satellite: (omni, directional+gain)
- Frequency Band: (VHF (145.800MHz), UHF (435.xxx MHz), SHF etc.)
- Objective C/N:
- Bit rate and modulation type:
- Expected occupied bandwidth:

6.5 Data Budget

Data budget CALCULATIONS.

7 Project Plans and Schedule

A general schedule for the SnapSat project is outlined below. A Gantt chart is provided on the following page.

Table 7.1: SnapSat Project Schedule

Major Task	Responsibility	Start Date	End Date
Structural Develop- ment	Oscar McNulty		

Gantt Chart 7.1

Preliminary Design

Component Selection Structural Design Link Budgets **Mass Budgets Power Budgets**

Critical Design

Component Reselection Budget Reevaluation PCB Design and Order Thermal Design **Order Componenets** Finalise/Send Structure Report Compilation **Code Development**

Environment Model Simulink Model

Arduino

Interface

Componenet Testing

Receive Components Thermal System Testing ADCS Testing Link Testing Solar Cell Testing Vibration and Intgeration

Launch Preparation

Assembly **Final Testing Balloon Launch**

8 Comments by Independent Reviewer

One page maximum. (Not quite sure what this is)