Детектирование объектов с использованием методов глубокого обучения

Залесская Галина Специалист по глубокому обучению Intel

Летняя школа по компьютерному зрению. ННГУ имени Н.И. Лобачевского 7 июля 2022 г

Agenda

- Постановка задачи
- Датасеты
- Метрики точности и производительности
- Общая архитектура детектора
- Классические архитектуры
 - 2-стадийные
 - 1-стадийные
- Сравнение точности и прозводительности

Постановка задачи детектирования

• Что и где?

confidence)

Датасеты

- Маленькие разнообразные датасеты на Roboflow (~1000 картинок):
 https://public.roboflow.com/object-detection
- MS COCO (320К картинок с разметкой 80-ти классов):
 http://cocodataset.org/
- Open Images Dataset (1.9M картинок с разметкой 600 классов): https://storage.googleapis.com/openimages/web/index.html

Метрика точности

Фиксируем порог IoU=0.5

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 * precision * recall}{precision + recall}$$

Метрика точности

- Проблема: необходимость подбора «хорошего» IoU для максимизации f1
- Решение: Average Precision (AP) метрика
- Варьируем порог IoU от о до 1 и считаем Precision и Recall для каждого конкретного IoU.
- Значение АР площадь под образовавшейся кривой

Метрики производител ьности

FPS (frames per second)

• сколько изображений обработает модель за 1 секунду

FLOPs (Floating Point Operations)

• сколько операций с нецелыми числами нужно для обработки 1 изображения

Архитертура

Архитектура классификатора

Архитектура детектора

Архитектура детектора

Двухстадийные детекторы

- R-CNN (2014)
- Fast R-CNN (2015)
- Faster R-CNN (2015)
- +: Высокая точность
- -: Медленная роизводительность

A Survey of Deep Learning-based Object Detection. https://arxiv.org/pdf/1907.09408.pdf

Faster R-CNN (2015)

Faster R-CNN pipeline

Region proposal network

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. https://arxiv.org/pdf/1506.01497.pdf

Одностадийные детекторы

- Минуют стадию генерации предложений
- Благодаря высокой производительности, активно используются на практике
- Подразделяются на anchor-based и anchor-free

SSD (2016): Single Shot Multibox Detector

SSD: Single Shot MultiBox Detector. https://arxiv.org/pdf/1512.02325.pdf

SSD (2016): Single Shot Multibox Detector

SSD: Single Shot MultiBox Detector. https://arxiv.org/pdf/1512.02325.pdf

Non-Maximum Suppression (NMS)

RetinaNet (2018)

Feature Pyramid Network

Focal Loss for Dense Object Detection. https://arxiv.org/pdf/1708.02002.pdf

Сравнение точности и производитель ности

- Тренировочные данные: PASCAL VOC 2007+2012
- Тестовые данные: PASCAL VOC 2007
- Показатель качества: средняя точность предсказания, усредненная по 20 классам (mean average precision)
- Инфраструктура: NVIDIA M40 или Titan X (сравнение качественное)

Модель	mAP, %	FPS
Fast R-CNN	70.0	0,5
Faster R-CNN VGG-16	73.2	7
Faster R-CNN ResNet	76.4	5
YOLO	63.4	45
SSD500	76.8	19
YOLOv2 544×544	78.6	40

Спасибо за внимание