

## COMP4434 Big Data Analytics

# Lecture 1 Introduction to Big Data Analytics

HUANG Xiao xiaohuang@comp.polyu.edu.hk

#### **Arrangement**

- Prerequisites:
  - Basic statistics, probability, linear algebra
  - Basic Computer Science fundamentals
    - programming (Python)
    - data structures
    - algorithms
    - database systems
- 26 hours Lectures + 13 hours Lab
  - Four lab sessions

#### What is big data?

- Posts on social media sites
- Purchase transaction records
- Digital pictures and videos
- Software logs
- Microphone & camera recordings
- Cell phone GPS signals
- Sensing data
- Scans of government documents
- Traffic data



### **Definition of big data**

- Definition 1: a combination of structured, semi-structured and unstructured data collected by organizations that can be mined for information and used in machine learning projects, predictive modeling and other advanced analytics applications.
- Definition 2: "Big data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making." -- Gartner
- 4Vs Characteristics of big data
  - Volume, Velocity, Variety, Veracity

COMP4434

#### **4Vs Characteristics of big data**

Volume, Velocity, Variety, Veracity



#### Volume: scale of data

- Data volume is increasing exponentially
- Generated by huge number of devices and sensors
  - The number of smartphone mobile network subscriptions worldwide reached almost 6.4 billion in 2022



COMP4434

#### Velocity: speed of data generation

- Data is generated fast
- Data need to be processed fast
  - Online Data Analytics: late decisions mean missing opportunities
  - e.g., 1: Based on your current location and your purchase history,
     send promotions right now for store next to you
  - e.g., 2: Sensors monitoring your activities and body, notify you if there are abnormal measurements

|                                      | Amount per minute |
|--------------------------------------|-------------------|
| Emails sent                          | 231400000         |
| Cryptocurrency purchased (USD)       | 90200000          |
| Texts sent                           | 16000000          |
| Searches conducted on Google         | 5900000           |
| Snaps shared on Snapchat             | 2430000           |
| Pieces of content shared on Facebook | 1700000           |
| Swipes on Tinder                     | 1100000           |
| Hours streamed                       | 1000000           |
| USD spent on Amazon                  | 443000            |
| USD sent on Venmo                    | 437600            |
| Tweets shared on Twitter             | 347200            |
| Hours spent in Zoom meetings         | 104600            |
| USD spent on DoorDash                | 76400             |

Media usage in an internet minute as of April 2022

## Variety: data in many forms

- A single application may generate/collect many types of data, e.g., types of data are stored in emails
  - Tabular data: attributes like subject, to, from
  - Text (in email body)
  - Image (in attachment)
  - Hyperlinks
- Types of data
  - Relational Data (e.g., Tables)
  - Text Data (e.g., comments)
  - Semi-structured Data (e.g., XML)
  - Graph Data (e.g., social network)
  - What else?

COMP4434

8

### **Data in Many Forms**

John likes to watch movies. Mary likes movies too.







#### **Text**

| Sig     | nal    |
|---------|--------|
| (Voice, | Audio) |

**Image** 

| $\stackrel{dash}{A}$ | 1   | 2   | 3   | 4   |
|----------------------|-----|-----|-----|-----|
| 1                    | 0   | 1.2 | 4.3 | 0   |
| 2                    | 1.2 | 0   | 0.8 | 0   |
| 3                    | 4.3 | 8.0 | 0   | 2.6 |
| 4                    | 0   | 0   | 2.6 | 0   |
|                      |     |     |     |     |

**Graph** 

| Tuple $\chi_1$ |
|----------------|
|----------------|

John also likes to watch football

games.

John likes to watch 2 movies. Mary likes movies too.

| signal1 | signal2 |
|---------|---------|
| 13.58   | 7.24    |
| 12.11   | 12.50   |
| 13.49   | 8.66    |
| 11.25   | 10.98   |
| 14.57   | 13.75   |
| 13.22   | 9.02    |

| 12 | 20 | 22      |
|----|----|---------|
| 5  | 0  | 5       |
| 10 | 15 | 25      |
| 5  | 0  | 5       |
| 15 | 75 | 17<br>5 |

| Node1 | Node2 | Weight |
|-------|-------|--------|
|       |       |        |

|   | 1 | 2 | 1.2 |
|---|---|---|-----|
| 2 | 1 | 3 | 4.3 |
| 3 | 2 | 3 | 0.8 |
| Ļ | 3 | 4 | 2.6 |

#### Veracity: uncertainty of data

- Is the data accurate?
  - Measurement error
  - Human errors like typos in names/addresses
- Does the data come from a reliable source?
- What if data from different sources are not consistent?



Fake, Paid-For Reviews in Amazon



#### Applications: Artificial Intelligence with big data

 Artificial Intelligence: the theory and development of computer systems able to perform tasks normally requiring human

intelligence

Before the Age of "big data"

- ELIZA is an early natural language processing computer program created from 1964 to 1967 at MIT
- On May 11, 1997, an IBM computer called IBM Deep Blue beat the world chess champion after a six-game match

```
Welcome to
                                           ZZZZZZ
                                                   AAAAAA
                                           ZZ
                           LLLLLL IIII ZZZZZZ
                                                        AA
  Eliza is a mock Rogerian psychotherapist.
  The original program was described by Joseph Weizenbaum in 1966.
  This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you?
       Men are all alike.
ELIZA: What is the connection, do you suppose?
     They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
      Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
      He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy?
YOU:
```

- Big data has changed AI: "AI Would Be Nothing Without Big Data"
  - "Data is the new oil"

### **History of Al**



### Recent breakthroughs in Al



At the 2017 Future of Go Summit, the Master version of AlphaGo beat Ke Jie, the number one ranked player in the world at the time, in a three-game match, after which AlphaGo was awarded professional 9-dan by the Chinese Weigi Association

#### Recommendation

- Ex: Amazon, YouTube, Netflix, .....
- What item for what people?
- How to improve users' satisfaction?

Recommended for You Based on Kindle Paperwhite, 6" High Resolution Display w...

Page 1 of 5



\$9.99 Prime







- More recommendations:
  - News feed
  - Music feed
  - Twitter feed







- Web search, image search
- Chatbot
- Virtual assistant
- High-frequency trading





- Disease Treatment: Joint research between Google DeepMind and Moorfields Eye Hospital
  - Eyecare professionals diagnose eye conditions by using optical coherence tomography (OCT) scans (over 1,000 a day at Moorfields alone)
  - Achieving expert error rate 5.5% comparably to the two best retina specialists (6.7% and 6.8% error rate)





#### **Demo 1: ChatGPT**

Write essays:

https://youtu.be/oLjZva6JvLl

Programming:

https://youtu.be/TIDA6pvjEE0

https://youtu.be/B3yuK2XHmvM

Conversation:

https://youtu.be/GYeJC31JcM0

## **Demo 2: Autonomous driving**

 https://www.notateslaapp.com/news/1579/musk-live-steamsfsd-v12-and-it-s-too-human-why-that-s-a-problem-video



### **Demo 3: AlphaFold**



David

Baker

"for computational

Demis

Hassabis

"for protein structure prediction"

John M.

 A solution to a 50-year-old grand challenge in biology

#### An example in drug design



#### We can do more



## **Big Data Analysis Procedure**



## Relations among big data analytics and Al



24

