WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	(51) International Patent Classification ⁴ : C12N 15/00, A61K 39/04 G01N 33/569	A2	ļ `) International Publication Number: WO 88/ 05823) International Publication Date: 11 August 1988 (11.08.88)		
	. (21) International Application Number: PCT/US (22) International Filing Date: 1 February 1988			(74) Agents: GRANAHAN, Patricia et al.; Hamilton, Brook, Smith & Reynolds, Two Militia Drive, Lexington, MA 02173 (US).		
**	(31) Priority Application Number: (32) Priority Date: 2 February 1987 ((33) Priority Country:	007 87) US	ropean patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent)			
	 (71) Applicant: WHITEHEAD INSTITUTE FOR EDICAL RESEARCH [US/US]; Nine C Center, Cambridge, MA 02142 (US). (72) Inventors: HUSSON, Robert, N.; 60 Parkma Brookline, MA 02146 (US). YOUNG, Rich 11 Sussex Road, Winchester, MA 01890 (US NICK, Thomas, M.; 1434 Rainier Falls Drivta, GA 30329 (US). 		et,	Published Without international search report and to be republished upon receipt of that report.		

(54) Title: MYCOBACTERIUM TUBERCULOSIS GENES ENCODING PROTEIN ANTIGENS

(57) Abstract

Mycobacterium tuberculosis genes encoding five immunologically relevant proteins have been isolated by systematically screening a lambda gt11 recombinant DNA expression library with a collection of murine monoclonal antibodies directed against protein antigens of this pathogen. One of the M. tuberculosis antigens, a 65kD protein, has been shown to have determinants common to M. tuberculosis and M. leprae. In addition, genes encoding proteins of other mycobacteria (M. africanum, M. smegmatis, M. bovis BCG and M. avium) have been isolated. Isolation and characterization of genes encoding major protein antigens of M. tuberculosis make it possible to develop reagents useful in the diagnosis, prevention and treatment of tuberculosis. They can be used, for example, in the development of skin tests, serodiagnostic tests and vaccines specific for tuberculosis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	_	_		
		FR	France	ML	Mali
ΑU	Australia	· GA	Gabon	MR	Maurita ni a
BB	Barbados	GB	United Kingdom	MW	Malawi
B€	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	π	Italy	NO	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF.	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	u	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	· 1D	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC	Monaco	US	United States of America
FI	Finland		Madagassas	03	Omice States of America

-1-

MYCOBACTERIUM TUBERCULOSIS GENES AND ENCODING PROTEIN ANTIGENS

Description

Background

15

20

25

Tuberculosis was the major cause of infectious mortality in Europe and the United States in the 19th and early 20th centuries. Dubos, R. and J. Dubos, The White Plague: Tuberculosis, Man and Society, Little Brown & Co., Boston, MA, (1952).

Today, it remains a significant global health problem.

For example, in the United States there are over 20,000 new cases of tuberculosis diagnosed annually. In addition, the steadily declining incidence of tuberculosis evident in preceding years appears to have changed course, reaching a plateau in 1985 and showing an increase in the first half of 1986. Centers for Disease Control, Morbidity/Mortality, Weekly Report, 34:774 (1986); and Centers for Disease Control, Morbidity/Mortality, Weekly Report, 35:774 (1986).

Worldwide, tuberculosis remains widespread and constitutes a health problem of major proportions, particularly in developing countries. The World Health Organization estimates that there are ten million new cases of active tuberculosis per year and an annual mortality of approximately three

10

15

20

25

30

million. Joint International Union Against Tuberculosis and World Health Organization Study Group, Tubercle, 63:157-169 (1982).

Tuberculosis is caused by Mycobacterium (M.) tuberculosis or Mycobacterium (M.) bovis, which are the 'tubercle bacilli' of the family Mycobacteriaceae. M. bovis is a species which causes tuberculosis in cattle and is transmissible to humans and other animals, in whom it causes tuberculosis. At present, nearly all tuberculosis is caused by respiratory infection with M. tuberculosis. Infection may be asymptomatic in some, but in other individuals, it produces pulmonary lesions which lead to severe debilitation or death. Resistance to tuberculosis is provided by cell-mediated immune mechanisms.

Mycobacteria are aerobic, acid-fast, non-sporeforming, non-motile bacili with high lipid contents
and slow generation times. M. leprae is the etiologic agent of leprosy and, among the other mycobacteria, the only major pathogen. Bloom, B.R. and
T. Godal, Review of Infectious Diseases, 5:765-780
(1983). However, other mycobacterial species are
capable of causing disease. Wallace, R.J. et.al.,
Review of Infectious Diseases, 5:657-679 (1984).
M.avium, for example, causes tuberculosis in fowl
and in other birds. Members of the M.
Avium-intracellularae complex have become important
pathogens among individuals with acquired immunodeficiency syndrome (AIDS). Certain groups of

-3-

individuals with AIDS have a markedly increased incidence of tuberculosis as well. Pitchenik, A.E. et. al., Annals of Internal Medicine, 101:641-645 (1984).

05

10

15

20

25

Diagnostic and immunoprophylatic measures for mycobacterial diseases have changed little in the past half century. Tuberculin, developed by Koch as a cure for tuberculosis in the late 1800s, is an M. tuberculosis filtrate of complex and poorly-defined composition. It is used as a skin test antigen to detect prior exposure to the bacillus. Enrichment of the protein fraction of this material in the 1930's produced the purified protein derivative (PPD) which is still used to diagnose exposure to tuberculosis. Seibert, F.M. et.al., American Review of Tuberculosis, 30(Suppl.):705-778 (1934). usefulness is limited, however, by its lack of specificity and its inability to distinguish active disease from prior sensitization by contact with M. tuberculosis or cross-sensitization to other mycobacteria. Young, R.A. and R.W. Davis, Proceedings of the National Academy of Sciences, USA, 80:194-1198 (1983).

Bacille Calmette Guerin (BCG), an avirulent strain of \underline{M} . bovis, has been used widely as a live vaccine against tuberculosis for over 50 years. Calmette, A., C. et.al., Bulletin of the Academy of

Medicine Paris, 91:787-796 (1924). During that time, numerous studies have shown that BCG has protective efficacy against tuberculosis. These studies are reviewed by F. Luelmo in American Review 05 of Respiratory Diseases, 125(pt. 2):70-72 (1982). However, more recently, a major trial of BCG in India indicated that such a vaccine was not protective against tuberculosis in this setting. World Health Organization WHO Technical Report Series, 651 10 (1980). Presently available approaches to diagnosing, preventing and treating tuberculosis are limited in their effectiveness and must be improved if a solution is to be found for the important public health problem tuberculosis represents 15 worldwide.

Summary of the Invention

20

25

30

The present invention is based on the isolation of genes encoding immunogenic protein antigens of the tubercle bacillus <u>Mycobacterium tuberculosis</u> (<u>M. tuberculosis</u>). Genes encoding such protein antigens have been isolated from a recombinant DNA expression library of <u>M. tuberculosis</u> DNA. Genes encoding proteins of four additional mycobacteria have also been isolated and restriction maps produced.

In particular, genes encoding five immunodominant protein antigens of the tuberculosis bacillus (i.e., those M. tuberculosis proteins of molecular weight 12,000 daltons (12kD), 14kD, 19kD, 65kD and 71kD have been isolated by probing a lambda gtll expression library of M. tuberculosis DNA with

-5-

monoclonal antibodies directed against <u>M.</u> tuberculosis-specific antigens.

Recombinant DNA clones producing the specific antigenic determinants recognized by the monoclonal antigens were also isolated in this manner. DNA from such recombinant lambda gt11 clones was mapped with restriction endonucleases; the restriction maps for genes encoding the five immunodominant protein antigens (i.e., genes encoding the 12kD, 14kD, 19kD, 65kD and 71kD proteins) were deduced. The nucleotide sequence of three of the genes have been determined and, in each case, the amino acid sequence of the encoded protein has been deduced.

Brief Description of the Drawings

05

10

15

20

25

30

Figure 1 shows restriction maps of M. tuberculosis DNA. Recombinant DNA clones isolated with
monoclonal antibodies directed against the 12kD,
14kD, 19kD, 65kD and 71kD protein antigens were
mapped with restriction endonucleases. The insert
DNA endpoints are designated left (L) or right (R)
in relation to lac Z transcripts which traverse the
insert from right to left. Restriction sites are
represented as follows: A, Sal I; B, BamHI; E,
ECORI; G, BglII; K, KpnI; P, PvuI; S, SacI; X, XhoI.

Figure 2 shows arrays of antigens from M.

tuberculosis recombinant DNA clones probed with
rabbit hyperimmune serum. The code of the recombinant DNA clones shown on the numbers filter is: 1,
Y3275; 2, Y3274; 3, Y3279; 4, Y3277; 5, Y3247; 6,
Y3272; 7, Y3150; 8, Y3254; 9, Y3147; 10, Y3163; 11,

10

15

30

Y3179; 12, Y3191; 13, Y3252; 14, Y3178; 15, Y3180; 16, Y3143; 17, lambda gt11. Clones 1, 5, 6, 7, 9 and 16 are M. tuberculosis recombinants described in the following section. Clones 10, 11, 14 and 15 are M. leprae recombinants expressing epitopes of the 18kD, 28kD, 36kD and 65kD antigens, respectively. Clones 2, 3, 4, 8, 12, 13 are uncharacterized recombinants from the lambda gt11 M. tuberculosis and M. leprae libraries. Clone 17 is a non-recombinant lambda gt11 control.

Figure 3 shows arrays of recombinant mycobacterial antigens probed with monoclonal antibodies to assess the extent of cross-reactivity between recombinant protein antigen of M. tuberculosis and of M. leprae. The array of clones is identical to that shown in Figure 2. Antibody probes and the antigen sizes recognized are: 1/, IT-11 (71kD); 2, IT-31 (65kD); 3, IT-16 (19kD); 4, IT-1 (14kD); 5, IT-3 (12kD).

Figure 4 shows restriction maps of DNA encoding four proteins (71kD, 65kD, 19kD and 14kD) of M.

tuberculosis and four proteins (71kD, 65kD, 19kD and 14kD) of M. bovis BCG. Restriction sites are represented as follows: A, AatII; B, BamHl; C,

BclI; D, DraIII; E=EcoRI; G, BglII; H, HinfI; K, KpnI; P, PstI; S, SalI; V, PvuI and X, XhoI.

Figure 5 is a comparison of restriction maps of the gene encoding the 65kD protein of 6 mycobacteria (M. leprae, M. tuberculosis, M. africanum, M. bovis BCG, M. smegmatis, M. avium). Restriction sites are

-7-

as follows: B, BamHl; K, KpnI; N, SacI; P, PvuI; S, SalI; X, XhoI.

Figure 6 is the nucleotide sequence of the region containing the <u>M. tuberculosis</u> 19kD gene. The deduced amino acid sequence of the encoded protein is also represented (protein start position, nucleotide 1110; protein stop position, nucleotide 1586).

Figure 7 is the nucleotide sequence of the region containing the <u>M. tuberculosis</u> 71kD gene and the deduced amino acid sequence of the encoded protein.

Figure 8 is the nucleotide sequence of the region containing the <u>M. tuberculosis</u> 65kD gene. The deduced amino acid sequences of the two long open reading frames are presented in one letter code over (540) or under (517) the appropriate triplets.

Detailed Description of the Invention

05

10

15

20

25

30

The invention described herein is based on the isolation of genes encoding immunogenic protein antigens of the bacillus M. tuberculosis, which is the major etiologic agent of tuberculosis. In particular, it is based on the isolation, using monoclonal antibodies directed against M. tuberculosis-specific antigens, of genes encoding five immunogenic protein antigens of the tuberculosis bacillus; these five antigens are immunodominant. Immunogenic antigens are those which elicit a response from the immune system.

Immunodominant protein antigens are immunogenic

10

15

20

25

30

antigens against which the immune system directs a significant portion of its response. Genes encoding M. tuberculosis antigens of molecular weight 12,000 daltons (12kD), 14kD, 19kD, 65kD and 71kD were isolated in this manner.

Isolation and characterization of major protein antigens of <u>M. tuberculosis</u>, as described herein, make it possible to develop more effective tools for the prevention, diagnosis, and treatment of tuberculosis. Identification and isolation of genes encoding five immunodominant <u>M. tuberculosis</u> protein antigens, as well as of the five protein antigens, are described below; uses of the genes and encoded products are also described.

M. bovis BCG DNA clones were also isolated for the genes encoding the 71kD, 65kD, 19kD and 14kD proteins. In order to compare M. bovis BCG and M. tuberculosis genes encoding proteins of similar molecular weight, restriction endonuclease maps were determined for DNA segments containing each of the genes. Restriction maps for each of these genes is represented in Figure 4.

In addition, DNA clones were isolated for the genes encoding the 65kD protein from M. africanum, M. smegmatis and M. avium. Restriction endonuclease maps were determined for DNA segments containing each of these genes. The restriction maps for these genes, as well as for the genes encoding the 65kD protein of M. tuberculosis, M. bovis BCG and M. leprae, are represented in Figure 5.

I. Construction of a recombinant expression library of M. tuberculosis DNA

A recombinant DNA expression library of M. tuberculosis DNA was constructed using lambda gtll. The library was constructed with M. tuberculosis genomic DNA fragments in such a way that all protein-coding sequences would be represented and expressed. Young, R.A., B.R. Bloom, C.M. Grosskinsky, J. Ivanyi, D. Thomas and R.W. Davis, Proceedings of the National Academy of Sciences, USA, 82:2583-2587 (1985).

05

10

15

20

25

30

Lambda gtll is a bacteriophage vector which is capable of driving the expression of foreign insert DNA with E. coli transcription and translation signals. Lambda gtl1 expresses the insert DNA as a fusion protein connected to the E. coli Betagalactosidase polypeptide. This approach ensures that the foreign DNA sequence will be efficiently transcribed and translated in E. coli. This approach is also useful in addressing the problem of the highly unstable nature of most foreign proteins; fusion proteins are often more resistant to proteolytic degradation than is the foreign polypeptide Lambda gtll and the E. coli strain used (Y1090) have been described previously. Young, R.A. et al., Proceedings of the National Academy of Sciences, USA, 80:1194-1198 (1983); Young, R.A. and R.W. Davis, <u>Science</u>, <u>222</u>:778-782 (1983). The teachings of these publications are incorporated herein by reference. The library constructed in this manner has a titer of 1x 10¹⁰ pfu/ml. and

contains approximately 40% recombinants with an average insert size of 4kB.

II. Screening of the lambda gt11 M. tuberculosis library with antibody probes

Murine monoclonal antibodies to protein antigens of M. tuberculosis were used individually to probe the M. tuberculosis recombinant DNA library. This work is described below and with specific reference to the 65kD antigen in the Exemplifica-10 tion. The antibodies used as probes and the sizes of the antigens to which they bind are shown below.

		M. tuberculosis
	Antibody	<u>Antigen</u>
	IT-3	12kD
15	IT-20	14kD
	IT-19	19kD
	IT-27	19 k D
	IT-17	23kD
	IT-29	23kD
20	IT-15	38kD
	IT-21	38kD
	IT-23	38kD
	IT-13	65kD
	IT-31	65kD
25	IT-33	65kD
	IT-11	71kD

Engers, H.D. et al., Infectious Immunology, 51:718-720 (1986).

-11-

All monoclonal antibodies were used at approximately 1:200 to 1:300 dilution in 50mM Tris-HC1 pH8/150 mM NaC1/.05% Tween 20.

Screening of the lambda gtll recombinant DNA library was performed as described by Young et al. in Proceedings of the National Academy of Sciences, USA, 82:2583-2587 (1985), the teachings of which are incorporated herein by reference. One modification was made in the method described by Young and co-workers: 1% bovine serum albumin was used in place of 20% fetal calf serum to decrease background.

05

10

15

20

25

30

Briefly, cloned lambda gt11 recombinants were arrayed on lawns of E. coli Y1090. The phage were grown, antigen expression was induced and the antigens were blotted and probed with serum. Detection of signal-producing plaques was performed with a biotinylated secondary antibody system (Vectastain, Vector Laboratories, Burlingame, CA) or with an alkaline phosphatase conjugated secondary antibody system (Protoblot, Promega Biotec, Madison, WI), both used according to manufacturer's instructions. Signal-producing clones were isolated using antibodies directed against protein antigens of molecular weight 12kD, 14kD, 19kD and 65kD and 71kD. In each case, similar numbers of clones were isolated in screens of approximately 105 recombinant plaques. DNA clones encoding the 23kD and 38kD antigens could not be detected with these antibodies, possibly because the native epitope is modified or topographically complex, or because the

antigen-antibody interaction is too weak to be recognized by current detection methods.

III. Probing of Arrays of lambda gtll DNA Clones with Antibody Probes

05 0.2 ml of a saturated culture of Y1090 was added to 2.5 ml of molten LB soft agar, poured onto 100 mm plates containing 1.5% LB agar and allowed to harden at room temperature for 10 min. 100 ul of phage plate stock containing approximately 1011 10 pfu/ml of the lambda gt11 DNA clones of interest were placed into alternate wells of 96-well tissue culture plates. A multi-pronged transfer device was placed briefly in the wells containing phage and then touched lightly to the surface of the plate 15 onto which the soft agar had been poured. plates were then incubated at 42°C for approximately 3 hours, at which point clear plaques approximately 5mm in diameter were visible. The plates were then overlayed with nitrocellulose filters saturated with 20 10mM isopropylthiogalactoside (IPTG) and incubated at 37°C for 3.5 hours. Subsequent processing of filters for detection of antigen was identical to the procedures described for screening of lambda gtll library with antibody probes.

Immunoscreening of the lambda gtll library to isolate clones reactive with monoclonal antibodies specific for the 65kD antigen is described in the Exemplification.

-13-

IV. Recombinant DNA Manipulation

05

10

15

20

25

30

DNA from recombinant lambda gt11 clones was isolated and mapped with restriction endonucleases by standard techniques. Davis, R.W. et al.,

Advanced Bacterial Genetics: A Manual for Genetic Engineering, Cold Spring Harbor (1980).

Figure 1 shows the genomic DNA restriction map deduced for each of the genes encoding the five M. tuberculosis antigens and illustrates how each of the cloned DNAs aligns with that map. All clones isolated with monoclonal antibodies directed against any single antigen align with a single genomic DNA segment. This indicates that all clones were isolated because they express the protein of interest rather than an unrelated polypeptide containing a similar or identical epitope. In addition, this result suggests that each antigen is the product of a single gene.

The orientation of each DNA insert in the recombinant clones was determined by restriction analysis. Only among the clones for the 65kD antigen were the inserts found in both possible orientations relative to the direction of lac z transcription in lambda gt11. This suggests that this protein can be expressed in E. coli from signals independent of those provided by lac z. Similar results have been obtained for recombinant DNA clones encoding the 65kD antigens of M. bovis and M. leprae. Thole, J.E.R. et al., Infectious Immunology, 50:800-806 (1985); Young, R.A. et al., Nature, 316:450-452 (1985).

The nucleotide sequences of three regions of the <u>M. tuberculosis</u> DNA were determined: 1) the region containing the <u>M. tuberculosis</u> 19kD gene; 2) the region containing the <u>M. tuberculosis</u> 71kD gene; and 3) the region containing the 65kD gene. The three sequences are represented in Figures 6-8. Sequences were determined using standard techniques, which are described in the Exemplification.

V. Filter hybridization of Insert DNA

10 Arrays of lambda gt11 clones were created as described above and incubated at 42° for 5 hours. The plates were then overlayed with nitrocellulose filters and placed at 4°C for 1 hour. Probe DNA was labelled with ³²P by nick translation. Filter hybridization was performed as described by Davis et 15 al. in Advanced Bacterial Genetics: A Manual for Genetic Engineering, Cold Spring Harbor (1980), the teachings of which are incorporated herein by reference. Hybridization conditions were as follows: 50% v/v formamide, 5x SSPE (1x SSPE is 0.18M NaCl, 10mM 20 $Na_{1.5}H_{1.5}PO_4$, 1mM Na_2 EDTA, pH 7.0), 1x Denhardt's solution (0.02% w/v Ficoll, 0.02% w/v polyvinylpyrrolidone, 0.02% w/v bovine serum albumin), 0.3% NaDodSO₄ at 42°C for approximately 16 hours, fol-25 lowed by washing in 2x SSPE, 0.2% NaDodSO, at 45°C.

VI. Recombinant Antigens Recognized by Rabbit Serum

The response of a second animal to an antigen preparation of M. tuberculosis was assessed by

-15-

examining the reactivity of rabbit anti-M. tuberculosis hyperimmune sera with recombinant antigens. Cloned lambda gtll recombinants were arrayed on lawns of E. coli and probed with the rabbit hyperimmune serum. Anti-M. tuberculosis hyperimmune serum, produced by repeated immunization of rabbits with M. tuberculosis H37Rv culture filtrate, was provided by J. Bennedsen (Statens Seruminstitut, Copenhagen, Denmark). These sera were used at 1:100 dilution.

05

10

15

20

25

30

These sera produced positive signals with lambda gtll clones encoding each of the five M. tuberculosis epitopes which had been isolated with murine monoclonal antibodies (Figure 2). Particularly strong signals were observed with the 65kD and 71kD antigens (Figure 2). These results demonstrate that mice and rabbits can mount an antibody response to the same protein antigens of M. tuberculosis.

Clones for the five M. tuberculosis antigens were detected at similar frequencies in the lambda gtll recombinant DNA library. Thus, the number and type of antigen-producing clones isolated with polyclonal serum antibodies should reflect the relative titer and deversity of the individual antibodies in this serum.

To determine whether any of the 5 M. tuberculosis antigens are relatively immunodominant in the rabbit humoral immune response to M. tuberculosis, the M. tuberculosis lambda gtll recombinant DNA library was screened with the rabbit serum. Forty signal-producing clones were isolated, arrayed on

0.5

10

15

20

25

30

lawns of E. coli Y1090 and probed with monoclonal antibodies directed against each of the 5 recombinant M. tuberculosis protein antigens. Remarkably, 17 of the 40 clones (43%) reacted strongly with at least one of the four anti-65kD monoclonal antibodies tested. An additional six clones (15%) reacted strongly with the anti-17kD monoclonal antibody (IT-11). This indicates that a large proportion of the anti-M. tuberculosis antibody present in the rabbit serum was directed against the 65kD antigen of M. tuberculosis and suggests that it is a dominant antigen for the rabbit humoral immune response. Seventeen of the clones did not react with any of the monoclonal antibodies tested, suggesting that the rabbit sera may identify M. tuberculosis proteins not recognized by the murine antibodies.

VII. Antigenic Relatedness of M. <u>tuberculosis</u> and M. leprae Proteins

There is evidence that M. tuberculosis and M. leprae share immunologically important antigens. To assess this further, an investigation of the exact nature of the immunological relatedness among recombinant protein antigens of M. tuberculosis and M. leprae was conducted.

For each of five M. tuberculosis and four M. leprae protein antigens, a single recombinant DNA clone containing most or all of the gene of interest was used to express antigen in the following manner. The recombinant phage clones were arrayed on a lawn

of <u>E</u>. <u>coli</u> Y1090, which was then grown and induced for antigen expression.

05

10

15

Antigen immobilized on nitrocellulose filters was then probed with 26 individual anti-M. tuberculosis and M. leprae monoclonal antibodies. Figure 3 shows the array of DNA clones used and the results obtained with the anti-M tuberculosis antibodies IT-1, IT-3, IT-11, IT-16, and IT-31, which recognized proteins of 14kD, 12kD, 71kD, 19kD and 65kD respectively. Table 1 details the full results of these cross-screening experiments, showing the reactivity of antigen expressed from individual recombinant DNA clones with each of the individual monoclonal antibodies. Clones were scored as positive only if the signal produced was clearly greater than the background signal produced by the non-recombinant lambda gtll clone included in/each array.

TABLE 1
Reactivity of Monoclonal Antibodies with
Recombinant Protein Antigens

			DNA_CLONES									
				H. 27	berculo	eis.				H. le	prae	
<u>ani</u>	TIBODI	Es	12k0	14kD	19k0	65XD	71kD	-	18kD	28kD	36kD	65kD
v			¥3275	¥3247	¥3147	¥3150	¥3272	\gtl1	¥3179	A3763	X3180	¥3178
	12kD	culosis IT-J	•	-		•	-	-	-	-	•	-
	14kD	IT-I	•	•	. .	-	-			-	-	-
		IT-4	•	\odot	-	-	-	` -	-	-	-	•
		IT-ZO	•	•	-	-	-	-	-	-	-	-
	19kD	IT-10		-	①	-	-	-	-	-	-	-
		IT-12	-	-	•	-	-	-	-	-	-	_
		IT-16	-	-	•	-	_	_	_	4	-	-
		IT-19	-	•	•	•	-	-	-	- ·	-	-
	65kD	17-13	•	-	-	•	-	-	-		-	-
		IT-31	-	-	-	⊙	-	٠ ـ	-	-	-	•
		17-33	•	-	-	•	-	-	•	-	-	⊙
	71kD	IT-11	-	-	-	-	•	-	-	-	-	•
Ħ.	lepra	<u>e</u>	•									
	18KD	L7-15	-	-	-	•	•	•	•	-	-	-
	26k0	SA1.D2D	-	•	-	•	-	-	-	⊕	. •	-
		SA1.BIII	i -	-	-	-		-	-	-	•	- ,
	36kD	F47-9-1	-	-	-	-	-	-	•	-	•	-
		HLO4-A	-	-	-	•	-	-	-	-	-	-
	65kD	cr.r	-	•	-	•	-	-	-		-	•
		IIH9	-	-	-	⊕	-	-	-	-	-	0
		IIIE9	-	•	-	. •	-	-	-	-	-	0
		IIC8	-	•	•	•	•	•	-	-	-	0
		IIIC8	-	-	-	-	-	•	•	-	-	⊙ ⊙
		T2.3	•		-	•	- "	•	-	•	-	\odot
		A7-5	-	•	-	•	•	-	-	•	-	0
		SA2.D7C	-	•	-	\odot	-	-	-	-	-	0
		HLJOA	⊕	⊕	•	⊙	•	⊙	•	•	•	0

-19-

Several conclusions can be drawn from the results shown in Table 1. Among the 11 monoclonal antibodies that recognize a 65kD antigen, 7 react with the 65kD protein from both mycobacteria (IT-31, C1.1, IIH9 (identical to IT-33), IIC8, T2.3, Y1-2, SA2.D7C), one antibody reacts only with the M. tuberculosis 65kD protein (IT-13), and two antibodies react only with the M. leprae 65kD protein (IIIE9 and IIIC8). One antibody, ML30A, cross-reacts with an antigen in E. coli and could not specifically identify antigen-producing clones. These results indicate that the 65kD protein antigens of M. tuberculosis and M. leprae are homologues and share a number of epitopes. In addition to these shared epitopes, however, both 65kD antigens have epitopes that are specific for one species relative to the other.

05

10

15

20

25

30

antigens of these two mycobacterial species.

Because monoclonal antibodies recognize a single epitope and because only one or a few antibodies were available for each antigen, it is not clear whether the 65kD proteins are the only homologous protein antigens of M. tuberculosis and M. leprae.

Among the antigens for which lambda gtll clones have been isolated, the 18kD antigen of M. leprae and the 19kD antigen of M. tuberculosis are of similar size. To determine whether these two antigens are related, the homology of the DNA sequences that encode these antigens was examined. At conditions of moderate stringency, no hybridization was observed between

No cross-reactivity was observed between other

10

15

20

25

30

the insert DNA and Y3147 (an M. tuberculosis 19kD clone) and Y3179 (an M. leprae 18kD clone). This indicates no significant homology between the DNA sequences of the insert DNAs of these two clones. This result suggests that the M. tuberculosis 19kD and the M. leprae 18kD proteins are unlikely to be homologous.

As a result of the work described, recombinant DNA clones encoding five major protein antigens of M. tuberculosis were isolated through the use of an extensive collection of well-characterized murine monoclonal antibodies. These five proteins were also found to be major antigens in the rabbit humoral immune response to M. tuberculosis. One of these antigens, the 65kD protein, is shared with another other mycobacterial pathogen M. leprae.

Several lines of evidence indicate that the 65kD antigen is among the most immunodominant of the protein antigens of M. tuberculosis. Eleven of the 25 different M. tuberculosis and M. leprae monoclonal antibodies examined in this study recognized the 65kD recombinant antigen from one or both mycobacteria. In addition, almost half of the recombinant DNA clones isolated with rabbit polyclonal anti-M. tuberculosis sera express the 65kD antigen, reflecting the predominance of antibody to this antigen in these sera.

Considerable evidence indicates that the 65kD antigen plays an important role in the human response to tuberculosis. Antibodies directed against this protein can be detected in the serum of

-21-

patients with tuberculosis. The 65kD antigen is present in purified protein derivatives (PPD's) of M. tuberculosis, M. bovis, and other mycobacteria. Thole, J.E.R. et al., Infection Immunity, 50:800-806 (1985). Finally, helper T cell clones reactive with recombinant 65kD antigen have been isolated from patients with tuberculosis, indicating that this antigen is involved in the cell-mediated as well as the humoral immune response to tuberculosis.

05

10 Among the major antigens of the leprosy bacillus, the 65kD antigen appears to elicit antibody and T cell responses similar to those observed for the M. tuberculosis antigen. Both serum antibodies and T cells directed against the 65kD \underline{M} . leprae antigen have been observed in patients with 15 leprosy. Britton, W.J. et al., Journal of Immunology, 135:4171-4177 (1985); Mustafa, A.S. et al., Nature, 319:63-66 (1986). In addition, T cell clones from leprosy patients have been found to respond to recombinant 65kD protein of M. bovis, as 20 well as to PPD's from both M. bovis BCG and M. leprae. Emmrich, F. et al., Journal of Experimental Medicine, 163:1024-1029 (1986); Shankar, P. et al., Journal of Immunology, 136:4255-4263 (1986). It is interesting to note that in vaccine trials in Asia 25 and Africa, BCG provided significant protection against leprosy, ranging from 20% to 80%. Fine, P., <u>Tubercle</u>, <u>65</u>:137-153 (1984). An intriguing possibility is that the M. bovis BCG 65kD antigen is involved in engendering the immune protection 30

10

15

20

provided by this vaccine against \underline{M} . \underline{leprae} , as well as against \underline{M} . tuberculosis.

In addition to the 65kD antigen, there is evidence that the 19kD and 71kD antigens of M. tuberculosis may be particularly important in the immune response to this bacillus. Helper T cell clones from tuberculosis patients have been isolated which respond to the recombinant 19kD protein. The 71kD antigen is recognized by the humoral immune system of both mice and rabbits, and antibody to this antigen has been shown to be a prominent component of hyperimmune anti-M. tuberculosis rabbit sera.

VIII. Isolation of DNA Clones for Genes Encoding Proteins of Additional Mycobacteria

Using the procedures described above for isolation of genes encoding <u>M. tuberculosis</u> proteins, genes encoding proteins of additional mycobacteria were isolated. DNA clones containing genes encoding the following proteins were isolated:

	Mycobacterium	Protein	Clone
	M. bovis BCG	71kD	PL1-101
		65kD	PL1-105
		19kD	PL1-501
25		14kD	PL1-502
	M. smegmatis	65kD	PL1-206
	M. avium	65kD	PL1-401
	M. africanum	65kD	PL1-301

For purposes of comparison, genes encoding the following proteins were isolated for <u>M. tuberculosis</u> and <u>M. leprae</u>:

	Mycobacterium	<u>Protein</u>	<u>Clone</u>
05	M. tuberculosis	71kD	¥3272
		65kD	Y3150
		19kD	Y3147
		14kD	Y3248
	M. leprae	65kD	

10 The following strains were used for this purpose:

	<u>Species</u>	<u>Isolate</u>
	M. leprae	Armadillo isolate (WHO)
	M. tuberculosis	Erdmann strain
15	M. africanum	African clinical isolate
	M. bovis BCG	Danish vaccine strain
	M. smegmatis	MC ² -6
	Mavium	AIDS patient isolate

DNA from recombinant lambda gtll clones was isolated, as described above, and mapped with restriction endonucleases, using standard techniques. Davis, R.W. et al., Advanced Bacterial Genetics: A Manual for Genetic Engineering, Cold Spring Harbor (1980).

25 Figure 4 presents a comparison of the restriction maps for four genes of <u>M. tuberculosis</u> with the restriction maps for four genes of <u>M. bovis</u> BCG which encode proteins of the same molecular weight. As is evident from the figure, in each case, the

10

15

20

25

restriction sites on the two genes (e.g., those on the <u>M. tuberculosis</u> gene and those on the <u>M. bovis</u> gene which encodes a protein of the same molecular weight) are essentially identical. This indicates that the sequence of the genes of the two mycobacteria (at least those encoding these four proteins) are very similar and, therefore, the proteins they encode are also very similar.

Figure 5 presents a comparison of the restriction map for the gene encoding the 65kD protein for the six mycobacteria. As is evident, the restriction maps for the genes encoding the 65kD protein of M. tuberculosis, M. africanum, M. bovis BCG, M. smegmatis and M. avium are essentially identical. The fact that there is no detectable difference

The fact that there is no detectable difference among these mycobacteria at the level of the restriction map is an indication that, at least at this level, the encoded proteins are the same.

As is also evident, the map of the <u>M. leprae</u> 65kD gene has several identical restriction sties in common with those of the other mycobacteria; it also has two sites not found in the other genes and lacks three sites present in the others. This indicates that, at the level of the restriction map, there are similarities in the DNA (and the encoded protein). In addition, however, there are differences apparent at this level.

IX. Diagnostic, Therapeutic and Preventive Applications

The isolation of genes encoding major protein antigens of M. tuberculosis makes it possible to

-25-

address problems which presently exist in diagnosing treating and preventing tuberculosis. Isolation of genes encoding proteins of other mycobacteria, such as M. bovis BCG, M. africanum, M. smegmatis and M. avium makes it possible to address similar problems in diseases which they cause.

05

10

15

20

25

30

The nucleotide sequence of three of the five genes has been determined. The sequence of the remaining genes can be determined using well-known methods, such as that of Sanger et al. Sanger, F. et.al., Proceedings of the National Academy of Sciences, USA, 74:5463-5467 (1977). The amino acid sequence of each of the immunodominant proteins has been deduced from the nucleotide sequence of the three genes and can be done for the others.

Identification and characterization of the genes for major tuberculosis protein antigens and of the proteins themselves make it possible to develop improved reagents for diagnosis and immuno-prophylaxis of tuberculosis. Proteins antigens encoded by an entire gene, or amino acid sequences (e.g., peptides, protein fragments) which make up the antigenic determinant of a M. tuberculosis antigen (i.e., M. tuberculosis-specific antigenic determinants) may be used in serodiagnostic tests and skin tests. Such antigens would be highly specific to the tuberculosis bacillus and the tests in which they are used would also be highly specific. Highly specific serological tests would be of great value in screening populations for

10

15

20

25

30

individuals producing antibodies to <u>M. tuberculosis</u>specific antigenic determinants; in monitoring the
development of active disease in individuals and in
assessing the efficacy of treatment. As a result,
early diagnosis of tuberculosis will be feasible,
thus making it possible to institute treatment at an
early stage of the disease and, in turn, to reduce
the likelihood it will be transmitted.

As a result of the work described, it is also possible to determine which segment(s) of the M. tuberculosis antigen is recognized by M. tuberculosis-specific T cells. A mixture of peptides recognized by helper T cells can serve as a specific skin test antigen useful in assessing immunological status (delayed hypersensitivity) of infected individuals and those with whom they come in contact. This specific skin test antigen would be useful in evaluating rapidly the immunological efficacy of anti-tuberculosis vaccines.

It is reasonable to expect that the products encoded by M. tuberculosis genes, particularly those shown to be recognized by helper T cells, are themselves immunogenic and thus useful components of vaccines against tuberculosis. These products include proteins and portions of such proteins (e.g., polypeptides and peptides). For example, one approach to vaccine development is the introduction of genes encoding products (e.g., polypeptides) which provide immunological protection into viruses such as vaccinia virus, or bacteria, such as cultivatable mycobacteria, thus producing a vaccine

10

15

20

25

capable of engendering long-lasting and very specific immunity. The genes encoding five immunodominant protein antigens of the tuberculosis bacillus, described herein, are useful for that purpose; genes encoding the 65kD, 19kD and 71kD antigens, or a portion thereof, are particularly valuable in vaccine construction.

Because of the similarities in the DNA encoding similarly-sized proteins and, thus, of the encodied proteins themselves, it is possible that, for example, a vaccine effective against two or more of the mycobacteria can be produced.

EXEMPLIFICATION

Isolation and Analysis of Recombinants Expressing the 65kD M. tuberculosis Antigen

The recombinant DNA library of M. tuberculosis genomic DNA fragments in the lambda gtl1 vector was constructed as described above. Recombinant phage lambda RY3143 and lambda RY3146 were used. Young, R.A. et al., Proceedings of the National Academy of Sciences, USA, 82:2583-2587 (1985). Subclones of the mycobacterial DNA inserts in these recombinant phage were constructed in pUC19 or M13mp9 vectors using standard recombinant DNA techniques. Messing, J. and J. Viera, Gene, 19:269-276 (1982). Maniatis, T. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

Monoclonal antibodies specific for the 65kD antigen were obtained from the Immunology of Tuberculosis Scientific Working Group under a grant from the WHO/World Bank/UNDP Special Program for 05 Vaccine Development. These antibodies included IT-13 (WTB-78), IT-31 (SA2D5H4), and IT-33 (MLIIH9). Coates, A.R.M. et al., Lancet, 2:167-169 (1981). Gillis, T.P. and T.M. Buchanon, Immunology, 37:172-178 (1982). Anti-B-galactosidase antibodies 10 were purchased from CooperBiomedical. Polyclonal rabbit antisera directed against a sonicate of M. tuberculosis strain H37Rv were elicited as described by Minden and co-workers. Minden, P. et al., Infect. Immun., 46:519-525 (1984). Results are 15 shown in Table 2.

-29-

TABLE 2: PATTERNS OF ANTIBODY REACTIVITIES

	Number of Clones	Reactivi	ty with	Antibodies
		<u>IT-13</u>	<u>IT-31</u>	<u>IT-33</u>
	27	+	+	+
05	1	+	+	+
	2	+	-	+
	3	-	+	+
	1	+	-	-
	2	-	+	-
10	2	_	-	+

a: Recombinant clones expressing antigens reactive with the 65kD antigen specific monoclonal antibodies IT-13, IT-31, and IT-33 were isolated as described above. For the initial screen, a pool of the three antibodies was used; it contained a 1:1000 dilution 15 of each antibody to screen a total of about 8 \times 10⁵ recombinant phage from the lambda gtll-M. tuberculosis library. To determine which monoclonal antibody reacted with which of the 38 plaquepurified recombinants, about 100 pfu of each 20 recombinant phage were inoculated in small spots on a lawn of Y1090. The phage were allowed to grow and induced to synthesize the foreign proteins as described previously. The filters were then reacted with a 1:1000 dilution of one of the monoclonal 25 hybridoma antibodies as described above.

The lambda gtll-M. tuberculosis library was screened with the monoclonal antibodies specific for the 65kD antigen and clones reactive with them were isolated essentially as described by Young et al. 05 Young, R.A. et al., Proceedings of the National Academy of Sciences, USA, 82:2583-2587 (1985). Briefly, for each 150mm LB plate, 0.6ml of a fresh overnight culture of Y1090 was infected with 1-2 x10⁵ plaque forming units of the library. After 3.5-4 hours of growth at 42°C, the plaques were 10 overlaid with a dry nitrocellulose filter which had been saturated with 10mM isopropyl-B-D-thiogalactopyranoside (IPTG). The plates were incubated an additional 3.5-4 hours at 37°C and then removed to 15 room temperature and the position of the filters marked. The filters were washed briefly in TBST (50 mM Tris-HCl, pH 8, 150mM NaCl, 0.05% Tween 20) and then incubated in TBST + 20% fetal calf serum. After 30 minutes at room temperature, the filters were transferred to TBST plus antibody. For the 20 initial screen, the antibody mix contained a 1:1000 dilution of IT-13, IT-31, and IT-33. The filters were incubated with the antibody solution overnight at 4°C with gentle agitation, washed in TBST and 25 reacted with biotinylated goat anti-mouse immunoglobulin, the Vectastain ABC reagent, and developer as described by the manufacturer (Vector Laboratories). After the color had developed the filters were washed with several changes of water 30 and air dried. Phage corresponding to positive signals were twice plaque purified. To determine

-31-

which monoclonal antibodies reacted with which of the recombinant phage, about 100 pfu of a purified phage stock were inoculated in a small spot on a lawn of Y1090 bacteria on an LB plate. The phage were allowed to grow and induced to synthesize the foreign proteins as described above. The filters were then reacted with a 1:1000 dilution of one of the monoclonal antibodies. The subsequent steps were the same as for the initial screen.

05

10 Western blot assays were carried out as follows: Cells containing phage or plasmids in which the expression of the foreign sequences was under the control of the E. coli lac gene regulatory sequences were induced to synthesize the foreign 15 proteins by incubating the cells in the presence of 2.5mM IPTG for 2 hours. Crude lysates of cells expressing lambda gt11 recombinants were made as described in Huynh et al. Huynh, T.V. et al., In: DNA Cloning Techniques: A Practical Approach, (D. Glover, ed.) IRL Press, Oxford, Vol. 1, pp. 49-78 20 (1985). Crude lysates of cells expressing plasmid encoded proteins were made by harvesting cells from overnight cultures and resuspending the cells in 10 mM Tris pH7.5/10 mM EDTA containing 100 ug 25 lysozyme/ml. After 10 minutes at room temperature, SDS was added to a final concentration of 0.5%. A protease inhibitor (Trasylol, Boehringer Mannheim) was added to all crude lysates at a final concentration of 0.3%. The crude protein preparations 30 were electrophoresed on 10% polyacrylamide-SDS Laemmli gels and the separate proteins electrophor-

10

etically transferred to nitrocellulose. Laemmli, U.K., Nature, 227:680-685 (1970). Towbin, H. et al., Proceedings of the National Academy of Sciences, USA, 76:4350-4354 (1979). The immobilized proteins were reacted with a 1:1000 dilution of monoclonal antibody IT-13 in TBST overnight at 4°C. The nitrocellulose filters were then washed, reacted with peroxidase-conjugated goat anti-mouse immunoglobulin, and developed as described by Niman and co-workers. Niman, H.L. et al., Proceedings of the National Academy of Sciences, USA, 80:4949-4953 (1983).

The sequences of 5'-end-labeled restriction fragments of the mycobacterial DNA were determined 15 by a modification of the partial chemical degradation technique of Maxam and Gilbert. Brow, M.A.D. et al., Mol. Biol. Evol., 2:1-12 (1985). Maxam, A.M. and W. Gilbert, Proceedings of the National Academy of Sciences, USA, 74:560-564 20 (1976). For the M13/dideoxy sequencing studies, Sau3AI fragments from the mycobacterial DNA inserts were subcloned into the BamHI site of M13mp9. Phage DNA was isolated from the M13 recombinants and subjected to the dideoxy chain termination 25 sequencing reactions. Biggin, M.D. et al., Proceedings of the National Academy of Sciences, USA, 80:3963-3965 (1983). Sanger, F. et al., Journal of Molecular Biology, 143:161-178 (1980). The products of the sequencing reactions were 30 electrophoresed on 6% acrylamide/7M urea/0.5-2.5 x TBE gradient sequencing gels. The gels were dried

-33-

under vacuum and exposed to Kodak XRP-1 film. The nucleotide sequences were determined independently for both strands of the mycobacterial DNA.

Computer-aided analyses of the nucleic acid sequences and deduced protein sequences were performed using the Databases and programs provided by the Nucleic Acid and Protein Identification Resources of the National Institutes of Health as well as the programs of Chou and Fasman and Hopp and Woods. Chou, P.Y. and G.D. Fasman, Adv. Enzym., 47:45-148 (1978). Hopp, T.P. and K.P. Woods, Proceedings of the National Academy of Sciences, USA, 78:3824-3828 (1981). The nucleotide sequence of the region containing the M. tuberculosis 65kD gene and the deduced amino acid sequence of the two long open reading frames are represented in Figure 8.

B-galactosidase assays were also carried out. Cells were grown in LB broth or LB broth plus 2.5mM IPTG to an OD₆₀₀ of about 0.3. Crude lysates were made and b-galactosidase activity assayed as described by Miller. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1972).

25 Equivalents

05

10

15

20

30

Those skilled in the art will recognize or be able to ascertain, using no more than routine experimentation, many equivalents to the specific materials and components described herein. Such equivalents are intended to be encompassed in the scope of the following claims.

CLAIMS

- Isolated DNA encoding an immunogenic protein antigen of <u>Mycobacterium tuberculosis</u>.
- 2. DNA of Claim 1 selected from the group consisting of DNA encoding Mycobacterium tuberculosis
 protein antigens of molecular weight 71kD,
 65kD, 19kD, 14kD and 12kD.
- 3. Isolated DNA encoding an immunodominant protein antigen of Mycobacterium tuberculosis, the protein antigen having a molecular weight of approximately 65kD and recognized by a monoclonal antibody selected from the group consisting of: IT-31; Cl.1; IIH9; IIC8; T2.3; Y1-2; SA2.D7C and IT-13.
- 4. Isolated DNA encoding an immunodominant protein antigen of <u>Mycobacterium tuberculosis</u>, the protein antigen having a molecular weight of approximately 19kD and recognized by a monoclonal antibody selected from the group consisting of: IT-10; IT-12; IT-16; and IT-19.
 - 5. Isolated DNA encoding an immunodominant protein antigen of Mycobacterium tuberculosis, the protein antigen having a molecular weight of approximately 71kD and recognized by the monoclonal antibody IT-11.

WO 88/05823 PCT/US88/00281

-35-

- 6. Isolated DNA encoding an antigenic determinant of Mycobacterium tuberculosis protein.
- 7. DNA of Claim 6 which encodes an antigenic determinant selected from the group consisting of antigenic determinants of Mycobacterium tuberculosis proteins of molecular weight 71kD, 65kD, 19kD, 14kD and 12kD.
- 8. Isolated DNA encoding an amino acid sequence of an antigenic determinant of Mycobacterium
 10 tuberculosis protein, said protein having a molecular weight of approximately 65kD.
- 9. Isolated Mycobacterium tuberculosis DNA encoding an immunodominant protein antigen having a molecular weight of approximately 65kD, said

 DNA selected from the group consisting of:
 - a. the DNA insert of clone Y3141;
 - b. the DNA insert of clone Y3143;
 - c. the DNA insert of clone Y3150;
 - d. the DNA insert of clone Y3253; and
- e. the DNA insert of clone Y3262.

- 10. A protein antigen encoded by DNA of Claim 9.
- 11. A protein antigen of Claim 10, wherein the protein antigen is recognized by a monoclonal antibody selected from the group consisting of IT-31; Cl.1; IIH9; IIC8; T2.3; Y1-2; SA2.D7C and IT-13.

- 12. Isolated DNA having a nucleotide sequence selected from the group consisting of: a) the nucleotide sequence represented in Figure 6, or a portion thereof; b) the nucleotide sequence represented in Figure 7, or a portion thereof; and c) the nucleotide sequence represented in Figure 8, or a portion thereof.
- 13. A protein or a peptide selected from the group consisting of: a) proteins or peptides encoded by the nucleotide sequence represented in Figure 6, or a portion thereof; b) proteins or peptides encoded by the nucleotide sequence represented in Figure 7, or a portion thereof; and c) proteins or peptides encoded by the nucleotide sequence represented in Figure 8, or a portion thereof.
- 14. A peptide having the amino acid sequence of an antigenic determinant of Mycobacterium tuberculosis protein, said antigenic determinant being unique to Mycobacterium tuberculosis protein.
 - 15. A peptide encoded by isolated Mycobacterium
 tuberculosis DNA, said peptide recognized by helper T cells.
- 25 16. A peptide encoded by the Mycobacterium tuberculosis DNA insert of clone Y3150 or a portion of said DNA insert.

WO 88/05823 PCT/US88/00281

-37-

- 17. Isolated DNA encoding a protein of Myco-bacterium africanum the protein having a molecular weight of 65kD.
- 18. Isolated DNA encoding a protein of Myco-bacterium avium, the protein having a molecular weight of 65kD.
 - 19. A vaccine comprising DNA encoding Mycobacterium tuberculosis protein in a recombinant vaccine vector capable of expressing said DNA.
- 10 20. A vaccine of Claim 19 in which the recombinant vaccine vector is vaccinia virus or cultivatable mycobacteria.
- 21. A vaccine of Claim 20 in which the DNA encodes
 the 65kD Mycobacterium tuberculosis protein

 15 recognized by the monoclonal antibody IT-13, or
 a portion of said protein.
 - 22. A vaccine comprising DNA encoding an antigenic determinant unique to Mycobacterium tuberculosis cultivatable mycobacteria capable of expressing said DNA.
 - 23. A method of detecting antibody against Mycobacterium tuberculosis in a biological fluid, comprising the steps of:
- a) incubating an immunoadsorbent com-25 prising a solid phase to which is attached

immunodeterminant Mycobacterium tuberculosis protein with a sample of the biological fluid to be tested, under conditions which allow the anti-Mycobacterium tuberculosis antibody in the sample to bind to the immunoadsorbent;

b) separating the immunoadsorbent from the sample; and

05

10

20

- c) determining if antibody is bound to the immunoadsorbent, as an indication of anti-Mycobacterium tuberculosis in the sample.
- 24. A method of Claim 23 in which the Mycobacterium tuberculosis protein attached to the solid phase has a molecular weight of approximately 65kD.
- 25. A method of detecting antibody against Mycobacterium tuberculosis in a biological fluid, comprising the steps of:
 - a) incubating an immunoadsorbent comprising a solid phase to which is attached a peptide having the amino acid sequence of an antigenic determinant of Mycobacterium tuberculosis protein with a sample of the biological fluid to be tested, under conditions which allow antibody against Mycobacterium tuberculosis to bind to the immunoadsorbent;
 - b) separating the immunoadsorbent; and
 - c) determining if antibody is bound to the immunoadsorbent, as an indication of the

WO 88/05823 PCT/US88/00281

-39-

presence of the antibody against Mycobacterium tuberculosis in the sample.

26. A method of Claim 25 in which the peptide has the amino acid sequence of an antigenic determinant which is unique to Mycobacterium tuberculosis protein.

05

27. A kit useful in detecting antibody against

Mycobacterium tuberculosis in a biological

fluid, comprising a collection of reagents for

immunoassay of said antibody, said collection

of reagents a solid phase to which is attached

immunodeterminant Mycobacterium tuberculosis

protein or a peptide having the amino acid

sequence of an antigenic determinant of

Mycobacterium tuberculosis.

2/43

3/43 FIG.2

.

4/43 FIG.3

6/43

š

š

- 7/43

FIG. 5

9

8/43

FIGURE 6

50 CGGTGAGATAGCCCGAC 回 臼 ſΞ

CGGCGCGTCCCAGTCGACCACGTCCAATACGCACCGCAAAAGCCGGTACGTGTTGCG GCCGCGCAGGGTCAGCAGGTTGTGCAGGTTATGCGTGGCGTTTTCGGCCATGCACAACGC G Ţ

FIGURE 6 (CONT'D)

S CGCCTTCGCGCCCTTTATCTTCACGTAGAGGCGTCCCCGGAGCCACGGGCCCCGGTAGAC 回

9/43

CTTGAGCTAGAGGTGGGGCAGCTACCACACCAGAGGGGGCCAGAGCCACTACAGCTGGCA 回 U ы Ŀı 回

3

FIGURE 6 (CONT'D)

回

ď

CGGCACGACGAGCGAAACCTCACCGGTCGACAGTGTCTGCCCGAGGCCGCAGCCGACGTG GCCGTGCTGCTCGCTTTGGAGTGGCCAGCTGTCACAGACGGGCTCCGGCGTCGGCTTGCAC 260 Ωı

10/43

GGGGGCCICIGGCGCGGGTIGIGCCACGGCAIGIACAICGGGCGIGCCGCGIAGIAGTAGC CCCCCGGAGACCGCGCCCAACACGGTGCCGTACATGTAGCCCGCACGGCGCATCATCGC K Ω,

7

FIGURE 6 (CONT'D)

C GCTCGGCCGCATCTACAAAAGGACGTGCCGCACGCGCCACTTGGGGAGGCCGCGGTCGTG CGAGCCGGCGTAGATGTTTCCTGCACGGCGTGCGCGGTGAACCCCCTCCGGCGCCAGCAC ď U ធា C U 回 400 Ø Ø ഗ

11/43

CGCCACCITICCCGCGTCCACGICGGCCTGGGTGGTGACGCCGAGCACCCCCACCGAAAIG GCGGTGGAAAGGGCGCAGGTGCAGCCGGACCCACCACTGCGGCTCGTGGGGTGGCTTTAC 回 U 回 K U K 460 ď

CGCTATGTTCAGGTCGCGCCGCCGGTGGAGCCACCTGTGGTTGCCCAGCTACTGCTA

12/43

:

CTACGGGCCGTGGTGGACCATCTCCGGGACAAAGCGCCAGTCGACCCTAACGG

680

Ü

U

13/43 GTCGGGTCACAGTGGGAGTTGCTTCGACTATAACCTCTATAGCTTAGGCGCCTGGACTAT

099

FIGURE 6 (CONT'D)

CHRESTHUSE SHEFT

14/43 ن K CGACCCTACGTGGCTACAGCCGCGCGTGGCAGCTCTTTGCTCATGCGCAGCAACAGGGT C C U Z Д S Д 出 Z 凶 Ø S ₽ 召 3 O K G K

GTGGTGCGCTGGTAGCCGTCGGAACTAGTGTGTGCCCCTGTCGCGCCGTTACTTAGGCGC K

----- CHEET

15/43

1020 GTGCGGCCATCTACGGCAACCGCTTGGTGCGATGGCTGGTCTTTCTCTCTTAAAAGGCGG CGTGGATCTGGAGCCCGGGACGATTGCGCGTATGACGGCTTCGCCAGGAGTTACGGCTAC GCACCTAGACCTCGGGCCCTGCTAACGCGCATACTGCCGAAGCGGTCCTCAATGCCGATG 工 二 CACGCCGGTAGATGCCGTTGGCGAACCACGCTACCGACCAGAAAGAGAGAATT 1010 1070 U S 1000 1060 4 ø 1050 990 ø 1040 980 Ø ග Д ĸ 1030 970 4 U U

16/43

B1125czisti--- -----

17/43

(CONT'D) 9 FIGURE

K U

CTGCCAGCGCCATCGGC CIGGCGAIGCIGICCGII

CICGGCGGTAAGACCAGCGICCAGAAAGGCCTA Ы

TCCAGCAGTAGCTGCCATTCCTGGTCTTGCAGTGGCCGAGGCACCACACGTGTTGGCGCC

G

召

а

 $\mathbf{\Sigma}$

FIGURE 6 (CONT'D)

ഗ Д 1300 只 民 K K ഗ

18/43

CHRCTITHITE CHECT

回

FIGURE 6 (CONT'D)

TGCCGTTGGGAGGCCTCCACTTCAGGCAACCCGAGCCATTGCAGTTGCCGCAGTGCGACC GGCCGTTACAGTIGTAGCGCTAGCCGCCCCCCGCTGGCCGTAACGGCGGCACGAGTGGC 1360 ĸ ഗ ĸ

19/43

CTATGTGCAGCCCGTGGCCTGTCCCATTGCGGAGCCGTTGGTTCCTGCCGTCGGTGATG1 O a 民 回 Ω а K Д Ö

20/43

TCTAGIGACCCTGGCGAIGGCCCCAGCTGTACCGGTTGGGCTACAGTGGCCACTTGTTCA AGATCACTGGGACCGCTACCGGGGTCGACATGGCCAACCCGATGTCACCGGTGAACAAG 1530 U ഗ S ø,

21/43 🕰 GCAAGCTTTAGCTCCACTGGACAAGGATTGGATTTCGCACAGCTACGCCCGACACTTGTC 1600 CGTTCGAAATCGAGGTGACCTGTTC 1580 ĸ 1570 ď ഗ ы Z

GCGCAGCCICGGCCCGTCAGICCGGAICGCGCCGCIGCIAAGCICGCCAACGGIAGGCAG TAGCGCGGCGACGATTCGAGCGGTTGCCATCCGTC 1670 S 1650 CGCGTCGGAGCCGGGCAGTCAGGCC 1640 U 1630 Ø

TTCACCGTTGGCGTTTTGAGCCATATAGGCCCACTCGATGAGTGCCACTAGCAAGG CAACACGCGGAACTGGTGTCGCCTCTGCTAGCGGTCCGGCTCGGGCCACGATGGCCGAAC U Q G Ω S 回 G ഗ 召 U Ö 1750 3 Q

22/43

ATTEMPT SHEET

7

ഷ CGCCCTGGCACTGCATAGCGGCGCCCGCTTGGCGAGCTTTTGGAGCCTGACGTCGCGCCG GCCTTATGGGCCGGGTAACAGCTAGTGGACGTCGTGCTGCACGCAGCCGGGCCACGAGTT U 回 ഗ ĸ

23/43

CGCGCAGCAGTGCTAGCACGGCCCTGGCCACACGTGCGCCCCGCAACCGGTCGTCCAACCA 1960 U 耳

24/43

GTGGTGGACCACGTTGGCACGGCGTAGTGGGCC

(CONT'D

9

FIGURE

3

25/43 (1)

CTCGCGGGTGACCACTAGACCAGGCCGTTGTACTCGCAGCGACTGGCGCAGTTGGCGTTC Z 2090 S 2080 Ø S Σ 2070 z G 3 Q 2050 3 回

CCAGCGGCCCCCGAGTCCAGACGCGCCAGCAG K 工 Д

GGCGCTGTACAGGTGGCCAGGCGCAAGGTCGCCGGCGGGGCTCAGGTCTGCGCGGTCGTC 2150 2130 2110 Σ ഗ D,

26/43 **⊑**+ GICGICCAGGAGCIGCICIGCACAAIAGGCGAGCCAGAGGCIACGGIGGGCCGAGIAGCG CACACGCTGCCGGAGCCCTAGCAGGGGATAGGCGACGCAGTTAAGGCACATTGGTGCCTA S Ø 2200 ы G 召 Q, U C Z U S U 回 ഥ Ø

(CONT'D)

9

FIGURE

27/43

GCGGCGTTCCCCTCAAGCGTCAAGTACTGACCGTAGCCGTTGCTTGACCGCGTGTGCCCAA 2330 S U Ü

بعا

2520 GCTGGGCTCAACGGGGTGGAGCCACCTCCCCAAACGCAGTCCAAGCCCGTGGGCCTGGCC CGACCCGAGTTGCCCCACCTCGGTGGAGGGGTTTGCGTCAGGTTCGGGCACCCGGACCGG G 2510 I > U S ĸ Ŀ 2500 2440 Ω S Z 2490 2430 G U U 伀 S 2480 Ц Ы U C U Д C П 2470 2410 ы S K U Д æ S

28/43

,

Ì

ì

FIGURE 6 (CONT'D)

29/43

ρι

FIGURE 7

m		10	30	/43		O)		
48		96		144		192		
GAG	Glu	ATC	Gly Ile	GAC ATC 144	Ile	ACC GGC	\mathtt{Gly}	
CGT	lle Gln Val Tyr Gln Gly Glu Arg	ACC GGC	Gly		Thr Phe Asp	ACC	Val His Val Thr Ala Lys Asp Lys Gly Thr	
GAG	Glu	ACC	Thr	TTC	Phe	၁၅၅	G1y	
GGG	G1y	CTG	Leu	ACT	Thr	AAG	Lys	
CAG	Gln	GAG	Glu	GTC	Arg Gly Ile Pro Gln Ile Glu Val	GAC	Asp	
TAT	Tyr	TTC	Phe	GAG	Glu	AAG	Lys	
GTG CAG ATC CAG GTC TAT CAG	Val	TCC TTC	Lys Leu Leu Gly Ser Phe	CCG CAG ATC GAG	Ile	SAM SSE SSA STE SAS	Ala	
CAG	Gln	555	$_{ m G1y}$	CAG	Gln	\(\frac{1}{2}\)	Thr	
ATC	Ile	CTC GGG	Leu	ອວວ	Pro	J.L.	Val	
CAG	Val Gln	TTG	Leu	GGG ATT	Ile	ָר מ	His	
GTG	Val	aac aag	Lys	999	G1y	ָרָ בּי	Val	
TCG	Ser	AAC	Asn	SSS	Arg	4 Fr	Ile	
೮೦೦	Pro	CAC	His	900	Pro	ָרָ ט	Gly	1
TTC CAA CCG		ອວອ	Ala	໑ວ໑ ໑ວວ	Pro Ala	ָרָטָטָי האיי ערטַט	Asp Ala Asn Gly	
TTC	Phe Gln	၁၁၅	Ile Ala Ala			ָ נ	Ala	
GAA	Glu	49 ATC. GCC GCG	Ile	900	Pro	ָר ה ה	Asp	4
-		49		97		ر بر	7	

30/43

.

240		288	31/43	336		384	
AAG GAG AAC ACG ATC CGA ATC CAG GAA GGC TCG GGC CTG TCC AAG GAA	Glu	GAT . 288	Asp	TIG	Leu	GGT	Gly
AAG	Lys		MET Ile Lys Asp Ala Glu Ala His Ala Glu Glu Asp				Glu
TCC	Ser	GAG	Glu	GAG	Glu	GCC	Ala
CTG	Leu	CCC	Ala	၁၁၅	Ala	GAG	Glu
၁၅၅	Thr Ile Arg Ile Gln Glu Gly Ser Gly Leu Ser	GAC GCC GAA GCG CAC GCC GAG GAG	His	CGT AAT CAA GCC GAG ACA	Lys Arg Alu Glu Ala Asp Val Arg Asn Gln Ala Glu Thr	GAG AAG TTC GTC AAA GAA CAG CGT GAG GCC GAG	lu Lys Phe Val Lys Glu Gln Arg Glu Ala Glu
TCG	Ser	GCG	Ala	AAT	Asn	CAG	Gln
255	Gly	GAA	Glu	CGT	Arg	GAA	Glu
GAA	Glu	ರಿಬರಿ	Ala	GAT GTT	Val	AAA	Lys
CAG	Gln	GAC	Asp	GAT	Asp	GTC	Val
ATC	Ile	AAG	Lys	೮೮೮	Ala	TIC	Phe
CGA	Arg	CGC ATG ATC AAG	Ile	CGC GAG GAG GCC	Glu	AAG	Lys
ATC	Ile	ATG	MET	GAG	Glu	GAG	Glu
ACG			Arg		Arg	ACG	Thr
AAC	Glu Asn	GAC	Asp	CGT	Arg	CAG ACG	Gln
GAG	Glu	GAC ATT	Asp Ile Asp Arg	CGC AAG	Lys	TAC	Val Tyr Gln Thr Gl
AAG	Lys	GAC	Asp	CGC	Arg	GTC	Val
193		241		289		337	•

FIGURE 7 (CONT'D)

432	4 0 8 3;	2/43 8 7 2	576	
GTG Val	CAA Gln	AGC	CCA	
GCG Ala	CAT	GCA	TGC	ιΩ
GCC	GGC Gly	$_{ m GGG}$	CGC	61
GAT Asp	TTC	TCT Ser		GGC G1v
GTT Val	TAT Tyr	GGC Gly	CAC	CIC
AAC AAG Asn Lys	GGA	GCA	GTC ACA GGC Val Thr Gly	CCC CGG CTC Pro Arg Leu
AAC	ATC Ile	GTC Val	ACA Thr	CCC
CTG	CGG	GGA G1y	GTC Val	CCA
ACG Thr	TGG Trp	CCA	TGC Cys	${f TGC}$
GAC Asp	ACT Thr	${\tt GGG}$	GGC Gly	CGG
CCT GAA Pro Glu	GGC	GCT Ala	CTA CGA AGC AGC TCA GGC Leu Arg Ser Ser Gly	
CCT GAA Pro Glu	GGC GGC Gly Gly	GGA GAA Gly Glu	AGC Ser	GCC GGG Ala Glv
GTA Val	GAA Glu	GGA Gly	AGC	
TCG AAG Ser Lys	GCG	GGC GAT Gly Asp	CGA	CGG
	GAA Glu		CTA	CCC CGG CGG CGA
GGT Gly	GCG	GTC Val	GAT	CCC
385	433	481	529	577

ţ

FIGURE 8

3 2	5' TCGAACGAGGGCGTGACCCGGTGCGGGGCTTCTTGCACTCGGCATAGGCGAGTGCTAAG 3' AGCTTGCTCCCCGCACTGGGCCACGCCCCGAAGAACGTGAGCCGTATCCGCTCACGATTC 10 20 80 60	GACCCGGTG CTGGGCCAC 20	CGGGGCTTCT GCCCCGAAGA 30	TGCACTCGGC/ ACGTGAGCCG' 40	ATAGGCGAGTG FATCCGCTCAC 50	CTAAG GATTC BØ
	AATAACGTTGGCACTCGCGACCGGTGAGTGCTAGGTCGGGACGGTGAGGCCCAGGCCCGTC	CGCGACCGG	TGAGTGCTAG	GTCGGGACGG	TGAGGCCAGGC	CCGTC

180 120 | | A | | GCAACCG | GAGCGC | GGCCAC | CACGATCCAGCCCTGCCACTCCGGTCCGGGCAG 100

TCGCATTCATCGCCCCAACGGCAGTGGGCCACTGGGGGCAAAGTAGGGGCTAGGCCTCCT 230 **AGCGTAAGTAGCGGGGTTGCCGTCACCCGGTGACCCCCGTT** 210 200 G 190

TAGTGAAGCGTTACCGGTTCTGTTAACGCATGCTGCTTCTCCGGGCAGCGCGGAGCTCG CGAGC TTGCGTACGACGAAGAGGCCCGTCGCGGCC 290 280 ш 270 GGCCAAGACAA 260 ATCACTTCGCAA 250 I Z

360 **GGGGCTTGAACGCCCTCGCCGATGCGGTAAAGGTGACATTGGGCCCCAAGGGCCGCAACG** CCCCGAACTTGCGGGAGCGGCTACGCCATTTCCACTGTAACCCGGGGTTCCCGGGGTTGC œ Ç ۵ J 340 0 J \simeq

G 0 J ₹

ŝ

34/43

FIGURE 8 (CONT'D)

AGGAGATCGAGCTGGAGGATCCGTACGAGAAGATCGGCGCCGAGCTGGTCAAAGAGGTAG TCCTCTAGCTCGACCTCCTAGGCATGCTCTTCTAGCCGCGGCTCGACCAGTTTCTCATC

CCAAGAAGACCGATGACGTCGCCGGTGACGGCACCACGACGGCCACCGTGCTGGCCCĂGG GGTTCTTCTGGCTACTGCAGCGGCCACTGCCGTGGTGCTGCCGGTGGCACGACCGGGTCC J ٥ J

GCAACCAAGCGCTCCCGGACGCGTTGCAGCGCCGGCCGCGGTTGGGCGAGCCAGAGTTTG **CGTTGGTTCGCGAGGGCCTGCGCAACGTCGCGGCCGGCGCCAACCCGCTCGGTCTCAAAC** G Z G ⋖ Z œ G ш œ ~

GCGGCATCGAAAAGGCCGTGGAGAAGGTCACCGAGACCCTGCTCAAGGGCGCCAAGGAGG C G C C G T A G C T T T T C C G G C A C T T C C A G T G G C T C T G G G A C G A G T T C C G C G G G T T C C T C > ш œ

TCGAGACCAAGGAGCAGATTGCGGCCACCGCAGCGATTTCGGCGGGTGACCAGTCCATCG <u> AGCTCTGGTTCCTCGTCTAACGCCGGTGGCGTCGCTAAAGCCGCCCACTGGTCAGGTAGC</u>

CGTCGAGG CACTGGACTAGCGGCTCCGCTACCTGTTCCACCCGTTGCTCCCGCAGTAGTGGCAGCTCC GTGACCTGATCGCCGAGGCGATGGACAAGGTGGGCAACGAGGGCGTCATCAC G ш Z > 0 Ç

ĩ

35/43

⋖

ш

G

(CONT'D æ FIGURE

840 CCCGA CACCGAGGGTATGCGGTTCGACAAGGGC TCAGGTTGTGGAAACCCGACGTCGAGCTCGAGTGGCTCCCATACGCCAAGCTGTT 0 \simeq Σ J w CGAGCT GGGCTGCAGCT J AGTCCAACACCT S

900 ACATCTCGGGGTACTTCGTGACCGACCCGGAGCGTCÀGGAGGCGGTCCTGGAGGACCCCT TGTAGAGCCCCATGAAGCACTGGCTGGGCCTCGCAGTCCTCCGCCAGGACCTCCTGGGGA 0 > ⋖ 880 ш đ \simeq 870 ے ٥ 880 > O S

ACATCCTGCTGGTCAGCTCCAAGGTGTCCACTGTCAAGGATCTGCTGCCGCTGCTCGAGA TGTAGGACGACCAGTCGAGGTTCCACAGGTGACAGTTCCTAGACGACGGCGACGAGGTCT TGCTGCCGCT CAGCTCCAAGGTGTCCACTGTCAAGGATC 0 S

CGCCGAGGACGTCGAGGGCGAGGCGC ۵ ш ⋖ AGGICATCGGAGCCGGTAAGCCGCTGCTGATCAT

CCAGTAGCCTCGGCCATTCGGCGACGACTAGTAGCGGCTCCTGCAGCTCCCGCTCCGCG S ¥ G 986 ¥

1080 **ACAGGTGGGACCAGCAGTTGTTCTAGGCGCCGTGGAAGTTCAGCCACCGCCAGTTCCGAG** CGTCAACAAGATCCGCGGCACCTTCAAGTCGGTGGCGGTCAAGGCTC 1060 ď Z TGTCCACCCTGGT S

GGTGGT G GCAGGATATGGCCATTCT ≆ ۵ đ CCGGCTTCGGCGACCGCCGCAAGGCGATGCT 1110 ≆ ⋖ ¥ ~ ~ ٥ G J

G

1200 Z G ш

36/43

FIGURE 8 (CONT'D)

7

AGGCCCGCAAGGTCGTGGTCACCAAGGACGAGACCACCATCGTCGAGGGCGCCGGTGACA TCCGGGCGTTCCAGCACCAGTGGTTCCTGCTCTGGTGGTAGCAGCTCCCGCGGCCACTGT J V T K D E T T I V E G A GGTCACCAAGGACGAGACCACCATCGTCGAGGCGCGC 1240 1230 1210 œ

T D A I A G R V A Q I R Q E I E N S D S CCGACGCCATCGCCGGACGAGTGGCCAGGAGAGAGAACAGCGACTCCG <u> GGCTGCGGTAGCGGCCTGCTCACCGGGTCTAGGCGGTCCTCTAGCTCTTGTCGCTGAGGC</u> 0 S

J J 1360 ⋖ 1350 Œ ш đ ¥ ш ~ 0 > 0

TCAAGGCCGGTGCCGCCACCGAGGTCGAACTCAAGGAGCGCAAGCACCGCATCGAGGATG **AGTTCCGGCCACGGCGGTGGCTCCAGCTTGAGTTCCTCGCGTTCGTGGCGTAGCTCCTAC** ~ I ¥ œ ш ¥ 1410 ш 1400 ⋖ J 390

GCGTTACGGTTCCGGCGGCAGCTCCTCCCGTAGCAGCGGCCACCCCCCACACTGCG CGAGGAGGGCATCGTCGCCGGTGGGGGTGTGACGC C 1490 G J 1480 G ш 1470 ш CGGTTCGCAATGCCAAGGCCGCCGT ¥ Z œ

GGACGAGCTGAAGCTCGAAGGCGACGAGGCGACCGGCG <u> ACAACGTTCGCCGGGGCTGGACCTGCTCGACTTCGAGCTTCCGCTGCTCCGCTGGCCGCGC</u> 1650 S H ¥ ш TGTTGCAAGCGGCCCCGACCCT ۵ 1610

CCGCGACCTCCGGGGCGACTTCGTCTAGCGGAAGTTGAGGCCCG CTCCGGGC S GGAGGCCCCGCTGAAGCAGAT O ٩ ⋖ ш GGTGGCGCT GGTTGTAGCACTT > A N I

8

FIGURE

37/43

L E P G V V A E N V N TO TO TO THE TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTA **ACCTCGGCCCGCACCACCGGCTCTTCCACGCGTTGGACGGCCGACCGGTGCCTGACTTGC** CTCÀGACCGGTGTCTACGAGGATCTGCTCGCTGCCGGCGTTGCTGACCCGGTCAAGGTGA GAGTCTGGCCACAGATGCTCCTAGACGAGGGACGGCCGCAACGACTGGGCCAGTTCCACT ¥ ш C 1670 ٩ G ۵ ⋖ ⋖ > 5 1660 ب ق ۰ ≺ Z < ≺ œ ഗ > ⋖ ¥ ٥ ≺ ш z ш ≺ Q > G ⋖ G S œ đ

1800 TCGTTGCCGACAAGCCGGAAAAGGAGAAAGGCTTCCGTTCCCGGTGGCGGCGACATGGGTG **AGCAACGGCTGTTCGGCCTTTTCCTCTCCGAAGGCAAGGGCCACCGCCGCTGTACCCAC** CCCGTTCGGCGCTGCAGAATGCGGCGTCCATCGCGGGGCTGTTCCTGACCACCGAGGCCG J ≆ ۵ 1790 G G G ۰ 1780 > S ⋖ 1830 ¥ ш ¥ ш 1760 ؎ ¥ ۵ 1810 ⋖

C C C G A G G A G C C A C C C T C G A T G C C T T T G T G G T C C G T C C G T T G G A A 1940 1930

2040 <u> ACCGGCGACACCCGCTCAGCCCCCGGCGCAGAGCCACGTCGTCGCGCGCCTACCCATGCT</u>

ω

FIGURE

3

⋖

>

 α

ш

S

J

ت

S

u

38/43

2280 CACCGCAGCGGGCGGTGTCGTCATCGGGGCCTGCGTCCGACGCCTGGGCACGGCCGTCGA GTGGCGTCGCCCGCCACAGCAGTAGCCCCGGACGCAGGCTGCGGACCCGGTGCCGGCAGCT GCTAGTCGCTCATCGGCGATCCTAGCCTACCGCCGGTGTTGTCCCACTGAAGCGACGCCA 2160 CCCGGTCCAAAACGGCGCATGCTGGGGGCTAGTCCGGCTGCAGCTGGTGACGGGCCCCAG GTAGCCCCGGCAGCCCCTCAAGCGCGTCGTGGCCGAGCTGACGGTGGCACACGTGCGTA CGATCAGCGAGTAGCCGCTAGGATCGGATGGCGGCCACAACAGGGTGACTTCGCTGCGGT GGGCCAGGTTTTGCCGCGTACGACCCCCGATCAGGCCGACGTCGACCACTGCCCGGGGTC 2480 CGAACCGACCGGCTGCCCGATCCGCGGGCTGGCGTAGGCGGATTCGCGGTCGGGGCTCGG GCTTGGCTGGCCGACGGGCTAGGCGCCCGACCGCATCCGCCTAAAGCGCCAGCCCGAGCC CATCGGGGCCGTCGGGGAGTTCGCGCAGCACCGGCTCGACTGCCACCGTGTGCACGCGAT GGCCATCATCGACGGTGATCAGGTAAGCGAACGGGTAGTCGGGCAAGGCGGCGGCCAGCC CCGGTAGTAGCTGCCACTAGTCCATTCGCTTGCCCATCAGCCCGTTCCGCCGCCGGTCGG 2400 **GTTTGAGGTCTACCTTTTTGGCACCCACGGATTCGAGGATAGGCGCCCGATGTGTTACT**C CAAACTCCAGATGGAAAAACCGTGGGTGCCTAAGCTCCTATCCGCGGGCTACACAATGAG 2520 ۵ S 2090 2210 2270 2330 2390 2460 2510 œ S 2140 2080 2440 2200 2260 2380 2320 2500 ⋖ ⋖ 2070 2370 2430 2130 2250 2190 2310 2490 S م œ 2120 2060 2180 2300 2360 2420 2480 G ۵. 2110 2410 2290 2360 2470 S

- かにとなえ

Q

∢

S

J

⋖

GITCCAGAAGCIGGIGIIGAGGCIGCCIGCGCTGCCGAGGCCCGCGITGAITGICCCCGA CAAGGTCTTCGACCACAACTCCGACGGACGCGACGGCTCCGGGCGCAACTAACAGGGGCT

S

=

S

2910

2900 S

2890

39/43 CGACTGGTTCCGGCGGAGGCTCGGTCGGCGCAAAGGATTCCGCCGCAAAACGTAGGGCCG 2820 **GCTGACCAAGGCCGCCTCCGAGCCAGCCGCGTTCCTAAGGCGGCGTTTTGCATCCCCGC** 2780 **GGCGAGGATGCCCGAACTCAAAGCCGCCGTGCTCATGCCGCCGGTGGCGTAGCCGGCGGA** CCGCTCCTACGGGCTTGAGTTTCGGCGGCACGAGTACGGCGGCCACCGCATCGGCCGCCT 2840 2700 GCCTGAGTCCAGGCCGCCAACAGGAGCACTGGCCGGGGCGGCGGCGACGGGCGTGTTGGTCAG CGGACTCAGGTCCGGCGGTTGTCCTCGTGACCGGCCCCGCCGCTGCCCGCACAACCAGTC GCCCGAGTTGAGGACGTTCGCCAGGCCGTGTTGGAGACCGCCCGTTGATCCGAGGGCGGĀ **AGATTCCGGGCCCAAACGCGGGCTCGGTCGGCGCGTGACGGCGATGGCCCCAAGCCCAA** CTAAGGCCCGGGTTTGCGCCCGAGCCAGCCGCGGCACTGCCGCTACCGGGGTTCGGGT 2810 2750 J 2870 2630 2890 ے S S J ≺ 2800 2880 2820 2680 2740 ⋖ J S ⋖ ٩ ⋖ 2850 2870 2810 2790 2730 ⋖ G J ⋖ S ۵. 2840 2780 2660 ⋖ > 2600 J 2720 Z J J > ٥. 2710 2830 2850 2690 Z ۵ S ഗ

(CONT'D ∞ FIGURE CGCAAGCCCGAGTCGTTGCTGCCCGAGTTGACGAAGCTCGGGTAGCTGGTGCCAGGGCT **GGCGTTCGGGCTCAGCAACGACGGGCTCAACTGCTTCGAGCCCATCGACCACGGTCCCGA**

2550

2540

٩

S

Z

S

S

z

~

J

2670

2580

----- GHEET

4

40/43

(CONT'D) ∞ FIGURE

2990 3000	3050 3060	3110 3120	3170 3180	3230 3240
ATGITICCGCTGCCGGA	ATGTTGCCGCTACCCGA	AACCGATATTCCCGCT	AGGCCCAGGTTGCCGCT	CTGCCGATGTTGTTGTT
TACAAAGGCGACGCCT	TACAACGGCGATGGGCT	TTGGGCTATAAGGGCGA	TCCGGGTCCAACGGCGA	GACGCTACAACAA
I N G S G S	I N G S G S	F G I N G S	L G L N G S	S G I N N N
2950 2990 3000 CGTCCCGATGCCCGATGTTTCCCCGTGCCGGA CCCGCTGCCCGCTGCCCGCTGCCCGCCCGCCCCGATGTTTCCCCCGATGTTTCCCCCGCCCCCCCC	3010 3020 3030 3040 3050 3060 CTTCAATAAGCCGACGTTGCCGGTGCCCGAGTTCCCGAAGCCGATGTTGCCGCTACCCGACCGA	3070 3080 3090 3100 3120 3120 GTTGAAGCCGCAACCCATCTGGTGATCACCGGTGATCCCGAACCCGATATTCCCGCT CAACTTCGGCGTTGGGCTTGGGCTTTGGGTAGACCCACTAGTGGCCACTAGGGCTTTGGGCTATAAGGGCGAACTAGGGCTATAAGGGCGAACTAGGGCTTTGGGTAGAGGCGAACTAGGGCTATAAGGGCGAACTAGGGCTATAAGGGCGAACTAGGGCGAACTAGGGCTATAAGGGCGAACTAGGGCGAACTAGGGCAACCCGAACTAGGGCAACCCGAACTAGAGGCAACTAGGGCAACCCGAACTAGAACTAGAACTAGGGCAAAAAAAA	3130 3140 3150 3160 3170 3180 3190 3190 3190 3180 ACCGGTGTTGCCGAGGCCCAGGTTGCCGCTCGCTTGCCGAGGCCCAGGTTGCCGCTTGCCGAGGCCGCTTGCCGAGGTTGCCGCTTGCCGCTTGCCGCTTGCCGCTTGCCGCTTGCCGCTTGCCGCTTGCCGCTTGCCGGTTGCCGCTTGCCGCTTGCCGCTTGCCGCTTGCCAACGGCCGAGGTTGCCAACGGCTATAACGGCCACAACGGCTCCAACGGCTCCAACGGCCGAGGTTGCAACGGCCGAGGTTGCAACGGCCGAGGCGAACGGCTAACGGCCGAACGGCTAACGGCCGAACGGCTAACGGCCAACGGCTAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCCAACGGCTAACAACAACAACAACAACAACAACAACAACAACAACAA	3210 3230 3240 3240 3240 3230 3230 3240 324

3360 GCCCAGATIGATCTGGCCGTTCTTGCCGATGTCGATGCCGAGGTTCCGCAAGACCTGCTG CGGGTCTAACTAGACGGCAAGACGGCTACGGCTCCAAGGCGTTCTGGACGAC GCCGATGTTGTTGCCGATGTTGTTGTTGCCGATGTTGCCGCTGCCGGTGTTGCCGAA CGGCTACAACAACGGCTACAACAACGGCTACAACGGCGACGGCCACAACGGCT 3350 3320 z 3260

 ∞

FIGURE

41/43

3880

3850

3640

⋖

⋖

⋖

⋖

⋖

⋖

⋖

TGCCGGCTGCACGGTGGCCGCCAGCGCCGCCTCGAACGCGGTCGCTGTTGCCATGGCCTG

3550

<u> ACGGCCGACGTGCCACCGGCGGTCGCGGCGGAGCTTGCGCCAGCGACAACGGTACCGGAC</u>

<u> ACGCCGGCGAACAAGGCGGACGCGGCGCACGACTCGGTCCGATCCATGACCCAACG</u>

∢

ď

⋖

ш

∢

⋖

⋖

⋖

TGCGGCCGCTTGTTCCGCCTGCGCTGCCGCGTGCTGAGCCAGGCTAGGTACTGGGTTGC

3630

3620

3610

GTGCAGGTTACGGGTGTAAACGAGCATACGGCGGAGCTGCAGGTACTCGCGGCCTCGCAA **CTGCCCAAACCAGTTCGTAGCTGCCAGCAGCTGCATCAGGCCACGATTGGCCGCTACCAC** GACGGGTTTGGTCAAGCATCGACGGTCGTCGACGTAGTCCGGTGCTAACCGGCGATGGTG GGTCCCGCGGTCAACACGCTGCCGGCGTCTGCGTAGCTTCACCATTGGTCGGTAGCGGCG CACGTCCAATGCCCACATTTGCTCGTATGCCGCCTCGACGTCCATGAGCGCCGGAGCGTT CCAGGGCGCCAGTTGTGCGACGGCCGCAGACGCATCGAAGTGGTAACCAGCCATCGCCGC 3590 3470 3630 œ ۵ G 3580 3520 3460 > J ⋖ 3570 3450 3390 3510 ⋖ ⋖ 3440 3500 ⋖ Œ 3560 ≥ ≥ 3430 G ٩ ۵ đ > ≆

3480

3540

3780 GACGGAGCCAAGCGACGCTATTGACGCGAGTTCTTCGGCCAGGCTCGCCCCAGGCGGT CTGCCTCGGTTCGCTGCGATAACTGCGCTCGTTAAGAAGCCGGTCGAGCGGGGTCCGCCA V S G L S A I S A L L E E A L E G W A T CTGCCGGTAGTAGCGGCGGCGCCTGCCTGGGTCGGTCCGCGGTGATCAGTCAAGCCTACA GACGGCCATCATCGCCGCCGCGGACGGACCCAGCCAGGCGCCACTAGTCAGTTCGGATGT J 3760 3890 ٩ S 3740 3880 ⋖ 3870

?

œ

FIGURE

7

42/43

4070

4080

4050

4040

م

J

GGATCCTTGGCGGTCGAATGGATCAGGGCCCATCCCCGGCTGACCGCCGGCCCTACGTCG

نه

J

۰

ď

TTGCCGTGGCGGTATCGGCACTTCAATACCACTCATCTTTGGGGTCATCTTTGGAGCGCC <u> AACGGCACCGCCATAGCCGTGAAGTTATGGTGAGTAGAAACCCCAGTAGAAACCTCGCGG</u> CCTAGGAACCGCCAGCTTACCTAGTCCCGGGTAGGGGCCGACTGGCGGCCGGGATGCAGC **3GCCGCAGCAATTAGCGGTCCCGACCCGGGACCGGCAAACATCAGTGCCGAATTGATCTC** CCGGCGTCGTTAATCGCCAGGGCTGGGCCCTGGCCGTTTGTAGTCACGGCTTAACTAGAG <u> GGCGGCAACCACGCAAAATGCGGGCTTGTCAGCCGATCCAACTTAACTGTCAGCGACCG</u> A C C G C C G T T G G T G C T T T T A C G C C C G A A C A G T C G G C T A G G T T G A C A G T C G C T G G C 3950 3890 4010 3830 Σ ¥ Z ٩. 4000 3940 3880 ¥ ۵ 4 ≥ ⋖ J S 3870 3930 3990 3810 J S ے S 3980 3920 > 3860 J I ۵ u_ ⋖ ٩ 3850 3910 3970 ٩

٩

۵.

4

3900

3960

⋖

×

<u> ACTCCCAGACGGTGGACGGGGCATTACAGCGACCATACCGTTCGTGGCTGCGGCGCCGGG</u> **AAGAGTTGCTCCGCGACGCGTTCACCCGGTTGATCGAACATGTCGACGAACTCACCGACG TGAGGGTCTGCCACCTGCCCCGTAATGTCGCTGGTATGGCAAGCACCGACGCCGCGCGCCC** T T C T C A A C G A G G G G G C A A G T G G C C A A C T A G C T G T A C A G C T G A G T G G C T G C ے 4130 4120 ٩ > J 4110 G 4100 ⋖ G 4090 \propto

GCCTCACCGACCAACTCGCCTGCTACCGCCCGACCCCCAGCGCCAACAGCATTGCGTGGC <u> CGGAGTGGCTGGTTGAGCGGACGATGGCGGGCTGGGGGTCGCGGTTGTCGTAACGCACC</u> 4180 4170 4160

٠:

43/43

FIGURE 8 (CONT'D)

. ლე

CHECTITIES CHEFT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A2	43) International Publication Date: 11 August 1988 (11.08.88)
•	Brook, Smith & Reynolds, Two Militia Drive, Lex-
37 (02.02.8	ropean patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent)
Cambrid man Stre ichard, A US). SHI	Published Without international search report and to be republished upon receipt of that report.
3	US88/00281 38 (01.02.88) 010,007 37 (02.02.87) US OR BIOM- Cambridge man Street, ichard, A. ; US). SHIN- Drive, Atlan-

(54) Title: MYCOBACTERIUM TUBERCULOSIS GENES ENCODING PROTEIN ANTIGENS

(57) Abstract

Mycobacterium tuberculosis genes encoding five immunologically relevant proteins have been isolated by systematically screening a lambda gt11 recombinant DNA expression library with a collection of murine monoclonal antibodies directed against protein antigens of this pathogen. One of the M. tuberculosis antigens, a 65kD protein, has been shown to have determinants common to M. tuberculosis and M. leprae. In addition, genes encoding proteins of other mycobacteria (M. africanum, M. smegmatis, M. bovis BCG and M. avium) have been isolated. Isolation and characterization of genes encoding major protein antigens of M. tuberculosis make it possible to develop reagents useful in the diagnosis, prevention and treatment of tuberculosis. They can be used, for example, in the development of skin tests, serodiagnostic tests and vaccines specific for tuberculosis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	ML	Mali
ΑŲ	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	II	Italy	NO	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	КР	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	
Œ	Switzerland	LI	Liechtenstein		Senegal
CM	Cameroon	LK	-	SU	Soviet Union
DE	Germany, Federal Republic of		Sri Lanka	TD	Chad
DE	Denmark	LU	Luxembourg	TG	Togo
П	Finland	MC	Monaco	US	United States of America
	r mixio	MG	Madagarcar		

WO 88/05823 PCT/US88/00281

-1-

MYCOBACTERIUM TUBERCULOSIS GENES AND ENCODING PROTEIN ANTIGENS

Description

Background

15

20

25

Tuberculosis was the major cause of infectious mortality in Europe and the United States in the 19th and early 20th centuries. Dubos, R. and J. Dubos, The White Plague: Tuberculosis, Man and Society, Little Brown & Co., Boston, MA, (1952).

Today, it remains a significant global health problem.

For example, in the United States there are over 20,000 new cases of tuberculosis diagnosed annually. In addition, the steadily declining incidence of tuberculosis evident in preceding years appears to have changed course, reaching a plateau in 1985 and showing an increase in the first half of 1986. Centers for Disease Control, Morbidity/Mortality, Weekly Report, 34:774 (1986); and Centers for Disease Control, Morbidity/Mortality, Weekly Report, 35:774 (1986).

Worldwide, tuberculosis remains widespread and constitutes a health problem of major proportions, particularly in developing countries. The World Health Organization estimates that there are ten million new cases of active tuberculosis per year and an annual mortality of approximately three

10

15

million. Joint International Union Against Tuberculosis and World Health Organization Study Group, Tubercle, 63:157-169 (1982).

Tuberculosis is caused by Mycobacterium (M.) tuberculosis or Mycobacterium (M.) bovis, which are the 'tubercle bacilli' of the family Mycobacteriaceae. M. bovis is a species which causes tuberculosis in cattle and is transmissible to humans and other animals, in whom it causes tuberculosis. At present, nearly all tuberculosis is caused by respiratory infection with M. tuberculosis. Infection may be asymptomatic in some, but in other individuals, it produces pulmonary lesions which lead to severe debilitation or death. Resistance to tuberculosis is provided by cell-mediated immune mechanisms.

Mycobacteria are aerobic, acid-fast, non-sporeforming, non-motile bacili with high lipid contents and slow generation times. M. leprae is the eti-20 ologic agent of leprosy and, among the other mycobacteria, the only major pathogen. Bloom, B.R. and T. Godal, Review of Infectious Diseases, 5:765-780 (1983). However, other mycobacterial species are capable of causing disease. Wallace, R.J. et.al., 25 Review of Infectious Diseases, 5:657-679 (1984). M.avium, for example, causes tuberculosis in fowl and in other birds. Members of the M. Avium-intracellularae complex have become important pathogens among individuals with acquired immuno-30 deficiency syndrome (AIDS). Certain groups of

WO 88/05823 PCT/US88/00281

-3-

individuals with AIDS have a markedly increased incidence of tuberculosis as well. Pitchenik, A.E. et. al., Annals of Internal Medicine, 101:641-645 (1984).

05

10

15

20

25

Diagnostic and immunoprophylatic measures for mycobacterial diseases have changed little in the past half century. Tuberculin, developed by Koch as a cure for tuberculosis in the late 1800s, is an M. tuberculosis filtrate of complex and poorly-defined composition. It is used as a skin test antigen to detect prior exposure to the bacillus. Enrichment of the protein fraction of this material in the 1930's produced the purified protein derivative (PPD) which is still used to diagnose exposure to tuberculosis. Seibert, F.M. et.al., American Review of Tuberculosis, 30(Suppl.):705-778 (1934). usefulness is limited, however, by its lack of specificity and its inability to distinguish active disease from prior sensitization by contact with M. tuberculosis or cross-sensitization to other mycobacteria. Young, R.A. and R.W. Davis, Proceedings of the National Academy of Sciences, USA, 80:194-1198 (1983).

Bacille Calmette Guerin (BCG), an avirulent strain of M. bovis, has been used widely as a live vaccine against tuberculosis for over 50 years.

Calmette, A., C. et.al., Bulletin of the Academy of

10

15

20

25

30

Medicine Paris, 91:787-796 (1924). During that time, numerous studies have shown that BCG has protective efficacy against tuberculosis. These studies are reviewed by F. Luelmo in American Review of Respiratory Diseases, 125(pt. 2):70-72 (1982). However, more recently, a major trial of BCG in India indicated that such a vaccine was not protective against tuberculosis in this setting. World Health Organization WHO Technical Report Series, 651 (1980). Presently available approaches to diagnosing, preventing and treating tuberculosis are limited in their effectiveness and must be improved if a solution is to be found for the important public health problem tuberculosis represents worldwide.

Summary of the Invention

The present invention is based on the isolation of genes encoding immunogenic protein antigens of the tubercle bacillus <u>Mycobacterium tuberculosis</u> (<u>M. tuberculosis</u>). Genes encoding such protein antigens have been isolated from a recombinant DNA expression library of <u>M. tuberculosis</u> DNA. Genes encoding proteins of four additional mycobacteria have also been isolated and restriction maps produced.

In particular, genes encoding five immunodominant protein antigens of the tuberculosis bacillus (i.e., those <u>M. tuberculosis</u> proteins of molecular weight 12,000 daltons (12kD), 14kD, 19kD, 65kD and 71kD have been isolated by probing a lambda gtll expression library of <u>M. tuberculosis DNA</u> with