Lesson 18: Inference for Two Proportions

Homework

Solutions

Please note that the steps show rounded numbers, but that the final answers to the problems are calculated without rounding.

on		
----	--	--

Rural Communities

Urban Communities

- 1 -
- 2 $n_1 \times \hat{p}_1 \ge 10 \text{ and } n_1 \times (1 \hat{p}_1) \ge 10$

$$261 \times (0.038) = 10 \ge 10$$
 and $261 \times (1 - 0.038) = 251 \ge 10$

$$n_2 \times \hat{p}_2 \ge 10$$
 and $n_2 \times (1 - \hat{p}_2) \ge 10$

$$1614 \times (0.103) = 166 \ge 10$$
 and $1614 \times (1 - 0.103) = 1448 \ge 10$

The requirements are met.

3 - (-0.092 , -0.037) We are 95 % confident that the true difference of the proportions of city children with hay fever and rural children with hay fever is between -0.092 and -0.037 .

If you swapped the definition of groups 1 and 2, then you would get the same values with opposite signs: (0.037, 0.092). This is also correct.

4 - No. This means that it is plausible that the likelihood of a child contracting hay fever is different in the city than in rural areas.

Problem	Part	Solution
5	-	$n_1 \times \hat{p}_1 \ge 10$ and $n_1 \times (1 - \hat{p}_1) \ge 10$ $200,000 \times (0.0002) = 33 \ge 10$ and $200,000 \times (1 - 0.0002) = 199,967 \ge 10$
		$n_2 \times \hat{p}_2 \ge 10$ and $n_2 \times (1 - \hat{p}_2) \ge 10$ $200,000 \times (0.0006) = 115 \ge 10$ and $200,000 \times (1 - 0.0006) = 199,885 \ge 10$
6	-	The requirements are met. (-0.00053 , -0.00029) We are 95 % confident that the true difference of the proportions of vaccinated children who developed polio and non-vaccinated children who developed polio is -0.00053 and -0.00029 .
		If you swapped the definition of groups 1 and 2, then you would get the same values with opposite signs: (0.00029 , 0.00053). This is also correct.

Male Cheaters

Femal Cheaters

7

Male Cheaters

Female Cheaters

Problem	Part	Solution
8	-	$n_1 \times \hat{p}_1 \ge 10$ and $n_1 \times (1 - \hat{p}_1) \ge 10$ $117 \times (0.624) = 73 \ge 10$ and $117 \times (1 - 0.624) = 44 \ge 10$
		$n_2 \times \hat{p}_2 \ge 10$ and $n_2 \times (1 - \hat{p}_2) \ge 10$ $168 \times (0.518) = 87 \ge 10$ and $168 \times (1 - 0.518) = 81 \ge 10$
		The requirements are met.
9	-	$H_0: p_1 = p_2$
		$H_a: p_1 > p_2$
10	-	$\hat{p_1} = 0.624$
		$\hat{p_2} = 0.518$
11	-	z = 1.775
12	-	p-value = 0.038

Normal Probability Applet

13 14	-	reject the null hypothesis
15	-	There is sufficient evidence to suggest that the proportion of men who cheat in college is greater than the proportion of women who cheat in college.
16	-	The p-value would double and be equal to 0.076. This p-value is not significant and we would fail to reject the null hypothesis. With a two sided test we would not have sufficient evidence to conclude that there is a difference between the proportion of women and men who cheat in college.
17	-	$n_1 \times \hat{p}_1 \ge 10 \text{ and } n_1 \times (1 - \hat{p}_1) \ge 10$ $1655 \times (0.03) = 50 \ge 10 \text{ and } 1655 \times (1 - 0.03) = 1605 \ge 10$
		$n_2 \times \hat{p}_2 \ge 10$ and $n_2 \times (1 - \hat{p}_2) \ge 10$ $1652 \times (0.019) = 31 \ge 10$ and $1652 \times (1 - 0.019) = 1621 \ge 10$
		The requirements are met.
18	-	$H_0: p_1 = p_2$
		$H_a: p_1 \neq p_2$
19	-	$\hat{p_1} = 0.03$ $\hat{p_2} = 0.019$

Problem	Part	Solution
20	-	z = 2.129
21	-	p-value = 0.033

Normal Probability Applet

22 -

24

23 - reject the null hypothesis

There is sufficient evidence to suggest that the proportion of Clarinex subjects with dry mouth is different than the proportion of placebo subjects with dry mouth.