Joinable state spaces

■ (State spaces)

- $:\leftrightarrow$ (i) S,A are countable sets;
 - (ii) $A \subseteq (S \rightarrow S)$;
 - (iii) $id \in A$;

 $\operatorname{def}(S,A)$ is state space

- (iv) forall $f,g \in A$, $g \circ f \in A$.
- -- An element $s \in S$ is called a "(valid) state", while $f \in A$ is a "(valid) action".
- -- Conditions (iii) and (iv) together say that "zero or more valid actions performed sequentially is still a valid action".
- -- For example, $S=\mathbb{N}$ and $A=\{n\mapsto n+i\mid i\in\mathbb{N}\}$ (trivially bijective to \mathbb{N}) form the state space of a simple counting app.

(Products of state spaces)

- (S,A) is state space,
- (T,B) is state space,
- $\mathsf{def}\ (S,A)\times (T,B)\ :=\ (\{(s,t)\mid s\in S,\ t\in T\},\{(s,t)\mapsto (f(s),g(t))\mid f\in A,\ g\in B\})\,.$
- \Rightarrow $(S,A)\times(T,B)$ is state space.
- -- Check axioms.
- -- Corollary: for any finite index set I, if (forall $i \in I$, (S_i, A_i) is state space), then so is the iterated product $\prod_{i \in I} (S_i, A_i)$.
- -- Remark: this simply means that it is possible to "decompose" a state space into a product of independent parts.

(Joinability)

- (S,A) is state space,
- $\operatorname{def}\ (S,A)$ is joinable by $\wedge:S\times S\to S$
 - $:\leftrightarrow$ exists partial order \le on S such that
 - (i) (S, \leq) is semilattice;
 - (ii) forall $s \in S$ and $f \in A$, $s \le f(s)$;
 - (iii) forall $s,t\in S$, $s\wedge t$ is the join (least upper bound) of s and t.
- -- Notation: if there is no ambiguity, I will simply say "(S,A) is joinable (state space)" and use " \wedge " for the join operation.
- -- Remark: the join operation " \wedge " takes whole s as input. In practice, we seldom want to send the whole application state s over network...

(Products of joinable state spaces)

- (S,A) is joinable,
- (T,B) is joinable,
- \Rightarrow (S,A) imes (T,B) is joinable by $(s_1,t_1),(s_2,t_2)\mapsto (s_1\wedge s_2,\ t_1\wedge t_2)$.
- -- Check axioms (using partial order $(s_1,t_1) \leq (s_2,t_2) : \leftrightarrow s_1 \leq s_2$ and $t_1 \leq t_2$).
- -- Corollary: for any finite index set I, if (forall $i \in I$, (S_i, A_i) is joinable), then so is the iterated product $\prod_{i \in I} (S_i, A_i)$.
- -- Remark: to join is to join independent parts separately.

■ (Delta- and gamma-joinability) (S,A) is joinable, $\operatorname{\mathsf{def}}\ (S,A)$ is delta-joinable by $\Delta: S \times A \times A \to S$ $:\leftrightarrow$ forall $s\in S$ and $f,g\in A$, $\Delta(s,f,g)=(f(s)\wedge g(s))$. -- "Three-way merge" using common ancestor and changes. -- Remark: it is easy to see that joinability implies delta-joinability (simply implement Δ by first applying changes and then joining), so the new definition is mathematically "meaningless". Practically, however, it is possible to have more efficient direct implementations for Δ . (In mathematics, we think "extensionally" equal functions to be "the same"; in programming, it makes sense to consider their "intensional" difference.) -- Remark: in order for this to be actually useful, we must be able to "revert" the local state to a previous snapshot s, while separating later actions. $\operatorname{def}\ (S,A)$ is gamma-joinable by $\Gamma:S imes A o S$ $:\leftrightarrow$ forall $s\in S$ and $f,g\in A$, $\Gamma(f(s),g)=(f(s)\wedge g(s))$. -- "Asymmetric merge" using "our" state and "their" changes. -- Remark: gamma-joinability is a stronger condition than joinability. For some data structures, such Γ is possible to implement. If this is true, then there is no need to retain older state snapshots. A history of actions is still needed. ■ (Properties of gamma-joinable spaces) (S,A) is gamma-joinable by Γ , $\Rightarrow \Gamma = (s,f) \mapsto f(s)$. -- Γ is same as apply. -- For any $s \in S$ and $f \in A$, $\Gamma(s,f) = \Gamma(\mathrm{id}(s),f) = (\mathrm{id}(s) \wedge f(s)) = (s \wedge f(s)) = f(s)$. -- Corollary: a joinable space is gamma-joinable **if and only if** forall $s \in S$ and $f,g\in A,\ g(f(s))=(f(s)\wedge g(s)).$ \Rightarrow for any $s \in S$ and $f \in A$, f(f(s)) = f(s). -- Idempotence. -- Calculate $f(f(s)) = (f(s) \land f(s)) = f(s)$. \Rightarrow for any $s \in S$ and $f,g \in A$, g(f(s)) = f(g(s)). -- Commutativity. -- Calculate $g(f(s)) = (f(s) \land g(s)) = (g(s) \land f(s)) = f(g(s))$. -- Remark: if A is generated from a set of "atomic actions" $\{f_i,\ldots\}_{i\in\mathbb{N}}$, then every element $f \in A$ corresponds to a finite set $\{f_{k_1}, \ldots, f_{k_n}\}$ such that $f = f_{k_1} \circ \ldots \circ f_{k_n}$ (i.e. duplicates and ordering do not matter). (LWW-registers are gamma-joinable) X is totally ordered set, -- The set of possible values. $S:=(\mathbb{R}\cup\{-\infty,+\infty\})\times X$, -- The set of timestamped values. $A:=\{s\mapsto \max\{s,(t,x)\}\mid t\in\mathbb{R}\cup\{-\infty,+\infty\},\;x\in X\},\;$ — The set of timestamped actions. $\operatorname{def} \operatorname{Reg}(X) := (S, A).$ $\Rightarrow \operatorname{Reg}(X)$ is gamma-joinable. -- Easy to check (using the "natural" total order on S).

■ (LWW-graphs are gamma-joinable)

V, E are finite sets, -- Index sets of vertices and edges.

X,Y are totally ordered sets, -- Sets of possible values on vertices and edges.

def Graph $(V, E, X, Y) := \prod_{v \in V} \operatorname{Reg}(X \cup \{\bot\}) \times \prod_{e \in E} \operatorname{Reg}(Y \cup \{\bot\})$.

- \Rightarrow Graph(V, E, X, Y) is gamma-joinable.
- -- By previous results (products of joinable state spaces are joinable, so are gamma-

joinable; although more efficient implementation exists).

-- Remark: a LWW-graph is just a product of many LWW-registers. A special value \bot is used to indicate absence of a particular vertex or edge. In case an edge has a normal value but one of its endpoints has value \bot (i.e. marked as absent), the edge is disregarded.

Quotient of histories

■ TODO: spell out the theory of (decentralised) OT

■ TODO: derive CP1 and CP2 from well-definedness of functions on quotient structures