Discrete Response Model Lecture 1

datascience@berkeley

Maximum Likelihood Estimation (1)

Maximum Likelihood Estimation

Suppose the success or failure of a field goal in football can be modeled with a Bernoulli(π) distribution. Let Y = 0 if the field goal is a failure and Y = 1 if the field goal is a success. Then the probability distribution for Y is:

$$P(Y = y) = \pi^{y} (1 - \pi)^{1-y}$$

where π denotes the probability of success.

Suppose we would like to estimate π for a 40-yard field goal. Let y_1 , ..., y_n denote a random sample of observed field goal results at 40 yards. Thus, these y_i s are either 0s or 1s. Given the resulting data $(y_1,...,y_n)$, the "likelihood function" measures the plausibility of different values of π :

Maximum Likelihood Estimation

Suppose we would like to estimate π for a 40-yard field goal. Let y_1 , ..., y_n denote a random sample of observed field goal results at 40 yards. Thus, these y_i s are either 0s or 1s.

Given the resulting data $(y_1,...,y_n)$, the "likelihood function" measures the plausibility of different values of π :

$$L(\pi \mid y_1,...,y_n)$$
= $P(Y_1 = y_1) * P(Y_2 = y_2) * * P(Y_n = y_n)$
= $\prod_{i=1}^{n} P(Y_i = y_i)$
= $\prod_{i=1}^{n} \pi^{y_i} (1 - \pi)^{1-y_i}$
= $\pi^{\sum_{i=1}^{n} y_i} (1 - \pi)^{n-\sum_{i=1}^{n} y_i}$
= $\pi^{w} (1 - \pi)^{n-w}$

Berkeley school of information