$\overline{Algorithme}$ \overline{de} Cuthill-Mac Kee

Randimbinirina Mamitiana MISA M1

05 Juillet 2021

I/ RÉSOLUTION DU SYSTEME SUIVANT :

L'objectif c'est de $r\tilde{A}$ © soudre Ax = b. A est une matrice symétrique définie positive.

I. 1- Graphe correspondante:

La graphe correspondant à la matrice A est:

Pour remplir ce graphe, on a numéroté les lignes de la matrice A, puis on récupère comme voisins tous les numéros de ligne non nul.

I . 2- Recherche d'un sommet périphérique :

Prenons le sommet n = 9, et cherchons sont éxcentricité¹.

¹distance max d'un sommet par rapport aux autres sommets

• $\boxed{n=3}$, $\boxed{n=6}$ et $\boxed{n=7}$ On procède de la même manière et on obtient: e(3)=3, e(6)=3 et e(7)=4. Comme e(7)>e(9)=e(3)=e(6), alors prenons **7 comme sommet périphérique**.

Ainsi, on obtient la graphe suivante :

I . 3- Recherche de sigma :

i	1	2	3	4	5	6	7	8	9	10	, ا
σ_i	7	10	8	1	6	3	5	9	4	2	1

$$NTF = 37$$

D'où la matrice correspondant à σ_i :

$$\begin{bmatrix} \times & \cdot \\ \times & \times & \cdot \\ \cdot & \times & \times & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \times & \times & \times & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \times & \times & \times & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \times & \times & \times & \times & \cdot & \cdot & \cdot \\ \cdot & \cdot & \times & \times & \times & \times & \times & \cdot & \cdot \\ \cdot & \cdot & \cdot & \times & \times & \times & \times & \times & \cdot \\ \cdot & \cdot & \cdot & \times & \times & \times & \times & \times & \times \\ \cdot & \cdot & \cdot & \times & \times & \times & \times & \times & \times \end{bmatrix}$$

I . 4- Recherche de sigma inverse :

i	1	2	3	4	5	6	7	8	9	10
σ_i	7	10	8	1	6	3	5	9	4	2
σI_i	4	1	3	10	5	8	6	2	7	9

$$NTF = 31$$

La graphe et la matrice correspondantes à σI_i :

Cette graphe donne la matrice dont son profil est le plus optimisé possible.

I . 5- Recherche de la matrice de passage P :

P est la matrice de passage de i vers σI_i .

Pour retrouver les éléments de P :

$$P_{ij} = \delta_{i\sigma I_i} = \begin{cases} 1 & \text{si } i = \sigma I_j \\ O & \text{sinon} \end{cases}$$

D'où:

Posons A' la matrice $P^t.A.P$ Comme Ax = b,

$$A.(P.P^t)x = b,$$

$$P^t.A.(P.P^t)x = P^t.b,$$

$$(P^t.A.P).P^tx = P^t.b,$$

$$\begin{cases} A' = P^t.A.P \\ b' = P^t.b \\ A'.x' = b' \\ P^t.x = x' \end{cases}$$

Après avoir fait les calculs (dans un programme "algo_Cuthill_MacKee.ipynb"), on a les résultats suivants :

$$A' = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 4 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 4 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 6 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 6 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 6 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 4 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

$$b' = \begin{bmatrix} 5 & 11 & -4 & 8 & 2 & 4 & 11 & 18 & 0 & 7 \end{bmatrix}$$

$$x' = \begin{bmatrix} 1 & 1 & -2 & 2 & 0 & 1 & 1 & 3 & -1 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} 1 & 2 & 0 & -1 & 1 & -2 & 1 & 3 & 1 & 1 \end{bmatrix}$$