Machine Breakdown Analytics

→ Data Analysis & Simple Machine Learning Predictions for Chemical Line

Content

- Project Objective
- Understanding the Dataset
- Breakdown Analysis
- Repairer Analysis
- Predicting Troubleshooting & Repair Time
- Conclusion/Recommendations

01 Project Objectives

What is the scope or KPI?

Project Objective

Machine

The company wants to be aware of the top causes of downtime and its occurrence **frequency/patterns** so as to plan ahead before the downtime occurs.

Man

With efforts to recognize employees' performance, the company wants to reward the best technician/repairs over the years but do not know how to measure/judge their performance as they are considered a more technical role.

02 Analyzing Dataset

Understanding the Given Dataset

Understanding the Dataset 2-1

A. Total no. of Rows and Columns

Rows	700
Columns	30

```
In [2]: # Load dataset
        data = pd.read_excel("IL DES Line 4 Breakdown Data.xlsx")
        pd.set_option('display.max_columns', None)
        data.head()
```

Out[2]:

_	ID.No	MC.No	Area	MC.Name	Report Date & Time	Problem Description	Status When Attend	Status During Repair	Status After Attend	No of people attend
C	216422	L108DV	NC- B314	DES 4- Chemical Developing 1	2014- 02-20 03:55:15	few rollers with loose 'o' ring causing pnl ov	SWA	SDR	OK	1.0
1	216864	L108DV	NC- B314	DES 4- Chemical Developing 1	2014- 02-26 16:53:06	dev system level sensor data jammedchemical	SWA	SDR	OK	1.0
2	219122	L108DV	NC- B314	DES 4- Chemical Developing 1	2014- 03-31 05:12:26	filter pipe leaking	NP	NP	OK	1.0
3	220959	L108DV	NC- B314	DES 4- Chemical Developing 1	2014- 04-28 20:47:53	air hose leaking	RWA	RDR	OK	1.0
4	222147	L108DV	NC- B314	DES 4- Chemical Developing 1	2014- 05-19 14:04:31	air leakage	RWA	RDR	OK	1.0
4										•

```
In [3]: # Check total rows and columns of the dataset
        data.shape
```

Out[3]: (700, 30)

Understanding the Dataset 2-2

B. Total no. of Machine No.

Total No	of
Machine	No

21

```
In [4]: data['MC.No '].nunique()
```

Out[4]: 21

2-3 **Understanding the Dataset**

C. Null Data

Total Empty Rows	700
Total Empty Data	14

```
In [5]: # Find out the breakdown of null values in different columns
        data.isna().sum()
Out[5]: ID.No
                                                        0
        MC.No
        Area
        MC.Name
        Report Date & Time
        Problem Description
        M/C Status When Attend
        M/C Status During Repair
        M/C Status After Attend
        No of people attend
        Action Taken
        Actual Repair Start Time(Attend Date)
        Troubleshoot Complete Time
        Actual Repair Complete Time(Complete Date)
                                                        6
        Fab/Spare parts sourcing Time(mins)
                                                        6
        Breakdown Repair Category
                                                        6
        KIV Reason
                                                        6
        Parts Required
                                                      700
        Oty Required
                                                        6
        Wait AM/PM
        Attend Wait time (mins)
                                                        6
        Troubleshoot Hours (mins)
                                                        6
        Rectify Hours (mins)
        Repair Hours (mins)
                                                        6
        Remarks
                                                      700
                                                       6
        Repairer 1
        Repairer 2
                                                      690
        User Feedback
                                                      700
        Feedback By
                                                      700
        Feedback Entry Time
                                                      700
        dtype: int64
In [6]: # Find out if there's any duplicated entries
        data.duplicated().sum()
```

Out[6]: 0

Understanding the Dataset 2-4

D. Managing Null Data

Approach 1

Since there are 5 columns that have null values for all 700 columns, therefore we will drop the columns:

- Parts Required
- Remarks
- User_Feedback
- Feedback_By
- Feedback_Entry_Time

```
In [9]: # Copy original dataset to retain integrity
        data1 = data.copy()
        # Drop 5 Colmuns with all null values: Parts Required, Remarks, User_Feedback, F
        data1 = data1.drop(data1.columns[[17, 24, 27, 28, 29]], axis=1)
        data1.head()
```

Out[9]:

No of people attend	M/C Status After Attend	M/C Status During Repair	M/C Status When Attend	Problem Description	Report Date & Time	MC.Name	ID.No MC.No Area			
1.0	OK	SDR	SWA	few rollers with loose 'o' ring causing pnl ov	2014- 02-20 03:55:15	DES 4- Chemical Developing 1	NC- B314	L108DV	216422	0
1.0	OK	SDR	SWA	dev system level sensor data jammedchemical	2014- 02-26 16:53:06	DES 4- Chemical Developing 1	NC- B314	L108DV	216864	1
1.0	OK	NP	NP	filter pipe leaking	2014- 03-31 05:12:26	DES 4- Chemical Developing 1	NC- B314	L108DV	219122	2
1.0	OK	RDR	RWA	air hose leaking	2014- 04-28 20:47:53	DES 4- Chemical Developing 1	59 I 108DW		220959	3
1.0	ОК	RDR	RWA	air leakage	2014- 05-19 14:04:31	DES 4- Chemical Developing 1	NC- B314	L108DV	222147	4
•										4

2-5 **Understanding the Dataset**

D. Managing Null Data

Rows	700
Columns	25

Result:

Data left with 700 rows and 25 columns

In [10]:	<pre># Check again for null values after droppin data1.isna().sum()</pre>	g the 5 c	columns	
Out[10]:	ID.No	0		
	MC.No	0		
	Area	0		
	MC.Name	0		
	Report Date & Time	0		
	Problem Description	0		
	M/C Status When Attend	3		
	M/C Status During Repair	3		
	M/C Status After Attend	0		
	No of people attend	3		
	Action Taken	3		
	Actual Repair Start Time(Attend Date)	6		
	Troubleshoot Complete Time	6		
	Actual Repair Complete Time(Complete Date)	6		
	Fab/Spare parts sourcing Time(mins)	6		
	Breakdown Repair Category	6		
	KIV Reason	6		
	Oty Required	6		
	Wait AM/PM	3		
	Attend Wait time (mins)	6		
	Troubleshoot Hours (mins)	6		
	Rectify Hours (mins)	6		
	Repair Hours (mins)	6		
	Repairer 1	6		
	Repairer 2	690		
_	1			

dtype: int64

Understanding the Dataset 2-6

D. Managing Null Data

Approach 2

We assume that those with null values in 'Repairer 2' Column is because there's only 1 repairer

 Replace the Null Values in 'Repairer 2' Column with "No Repairer 2" (String)

Result:

Left 6 rows with null data

```
In [11]: # Replace 'Repairer 2' Column null cells with "No Repairer 2"
         data1['Repairer 2'] = data1['Repairer 2'].fillna("No Repairer 2")
In [12]: # Check again for null values after filling null cells of 'Repairer 2' Column
          data1.isna().sum()
Out[12]: ID.No
                                                        0
          MC.No
          Area
          MC.Name
          Report Date & Time
          Problem Description
          M/C Status When Attend
          M/C Status During Repair
          M/C Status After Attend
          No of people attend
          Action Taken
          Actual Repair Start Time(Attend Date)
          Troubleshoot Complete Time
          Actual Repair Complete Time(Complete Date)
          Fab/Spare parts sourcing Time(mins)
          Breakdown Repair Category
          KIV Reason
          Qty Required
          Wait AM/PM
          Attend Wait time (mins)
          Troubleshoot Hours (mins)
          Rectify Hours (mins)
          Repair Hours (mins)
          Repairer 1
          Repairer 2
          dtype: int64
```

2-7 **Understanding the Dataset**

D. Managing Null Data

Approach 3

With 6 rows of the data have multiple null values

• Drop All the 6 Rows with the Null Values

In [13]: # Display only thos rows with null values data1[data1.isna().any(axis=1)]

Out[13]:

	ID.No	MC.No	Area	MC.Name	Report Date & Time	Problem Description	M/C Status When Attend	M/C Status During Repair	M/C Status After Attend	No of people attend	ł
448	294973	L110DV	NC- B314	DES 4- Chemical Developing 3	2017- 10-13 02:21:34	developing make-up tank sensor level not working	NaN	NaN	nil	NaN	
494	297310	L118ET	NC- B314	DES 4- Etching Chamber 5	2017-11- 27 07:32:57	etching m15 sensor problem	NaN	NaN	nil	NaN	
578	306056	L119ET	NC- B314	IL DES 4- Etching Chamber 6	2018- 05-25 08:56:17	hci dosing pump haing problem hcl keep dosin	RWA	RDR	OK	1.0	cor
579	306476	L119ET	NC- B314	IL DES 4- Etching Chamber 6	2018- 06-04 05:51:54	etching door sensor problem cot not start mc	SWA	SDR	OK	1.0	c dc n
580	307416	L119ET	NC- B314	IL DES 4- Etching Chamber 6	2018- 06-22 11:44:17	re-cycle fecl meter c no data display	RWA	RDR	OK	1.0	re t on
626	302311	L127WA	NC- B314	DES 4- Water Rinse	2018- 03-04 01:09:02	water pipe leaking	NaN	NaN	nil	NaN	

Understanding the Dataset 2-8

D. Managing Null Data

Rows	694
Columns	25

Result:

Data left with 694 rows and 25 columns

```
In [14]: # Check again for any null values in dataset
         Final data.isna().sum()
Out[14]: ID.No
                                                        0
         MC.No
         Area
         MC.Name
         Report Date & Time
         Problem Description
         M/C Status When Attend
         M/C Status During Repair
         M/C Status After Attend
         No of people attend
         Action Taken
         Actual Repair Start Time(Attend Date)
         Troubleshoot Complete Time
         Actual Repair Complete Time(Complete Date)
         Fab/Spare parts sourcing Time(mins)
         Breakdown Repair Category
         KIV Reason
         Oty Required
         Wait AM/PM
         Attend Wait time (mins)
         Troubleshoot Hours (mins)
         Rectify Hours (mins)
         Repair Hours (mins)
         Repairer 1
         Repairer 2
         dtype: int64
In [15]: # Check processed dataset's total number of rows and columns
         Final data.shape
Out[15]: (694, 25)
```

Understanding the Dataset 2-6

E. Final Data

We will further drop columns which are not useful for EDA or have any correlation in the Final_data

Columns to Drop:

- •ID.No
- Area

Rows	694
Columns	25
Total No of Machine No	21

Total Empty Rows	0
Total Empty Data	0

```
In [18]: # Further dropping of non-useful columns
         Final_data = Final_data.drop(data1.columns[[0, 2]], axis=1)
         Final_data.head()
```

Out[18]:

	MC.No	MC.Name	Report Date & Time	Problem Description	M/C Status When Attend	M/C Status During Repair	M/C Status After Attend	No of people attend	Action Taken	R TI
0	L108DV	DES 4- Chemical Developing 1	2014- 02-20 03:55:15	few rollers with loose 'o' ring causing pnl ov	SWA	SDR	OK	1.0	replace some worn out oring @ develoving roller	1
1	L108DV	DES 4- Chemical Developing 1	2014- 02-26 16:53:06	dev system level sensor data jammedchemical	SWA	SDR	OK	1.0	clean sensor and reset system.	1
2	L108DV	DES 4- Chemical Developing 1	2014- 03-31 05:12:26	filter pipe leaking	NP	NP	OK	1.0	replace the pvc filter connector.	:
3	L108DV	DES 4- Chemical Developing 1	2014- 04-28 20:47:53	air hose leaking	RWA	RDR	OK	1.0	-trim and re-connect broken airhose.	:
4	L108DV	DES 4- Chemical Developing 1	2014- 05-19 14:04:31	air leakage	RWA	RDR	OK	1.0	replace air connector.	:
4										•

03 Analysis of Errors

Study of Breakdowns of Chemical Line

Breakdown Analysis 3-1

A. Yearly Breakdown Distribution Overview

3-2 **Breakdown Analysis**

B. Process Breakdown Distribution Overview

3-3 **Breakdown Analysis**

C. Top Breakdown Distribution

Top 3 Breakdown Repair Categories are:

- Electrical Bit Device (EBD)
- Pump (PMP)
- Main Ware Trip (MWT)

Breakdown Repair Category

EBD	114
PMP	110
MWT	100
EWT	91
PVC	88
EAL	65
MAL	54
ОТН	22
PWT	20
MTR	9
FAC	9
PAL	7
MSO	5

3-4 Breakdown Analysis

D. Top 3 Breakdown by Years

- Overall total Top 3 Breakdowns is lower compared to the peak in 2016
- Not much significant pattern can be found by analyzing the Top 3 Breakdown over the Years (2014–2017)

3-5 **Breakdown Analysis**

D. Top 3 Breakdown by Years

- However, an upward trend of the Pump repair is observed.
- There might be a possible pattern of the Pump repair peaks every 2 years $(2014 \sim 2016, 2017 \sim 2019)$

3-6 **Breakdown Analysis**

E. Top 3 Breakdown by Months

- Overall all Top 3 Breakdowns occurs in all of the months
- There is a spike trend of Main Ware Trip (MWT) and Pump (PMP) repair in August

3-7 **Breakdown Analysis**

E. Top 3 Breakdown by Months

For Electrical Bit Device (EBD) repair, there is a possible trend of increasing in breakdown every 2 months

3-8 **Breakdown Analysis**

E. Top 3 Breakdown by Months

Critical Repair Months are:

- August (52 repairs)
- January (33 repairs)
- May (31 repairs)

Breakdown Analysis 3-9

Breakdown Category

PMP

Breakdown Analysis 3-10

E. Top 3 Modules in each Top 3 Breakdown

There is a common module that is in the top 3 modules of each top 3 breakdown:

Machine No: L125ST

Name: IL DES 4-Stripping 3

Process: Stripping

PMP

Breakdown Analysis Conclusion 3-11

Top 3 Breakdowns			
EDB			
PMP			
MWT			

Pattern/ Occurrence				
Increase Every 2 Months				
Peaks Every 2 Years				
Peaks During August				

Peak Month
July
August
August

Modules to Note L125ST L112WA, L109DV, L110DV

Study of Repairers Overall Performance

A. Criteria to Determine Top Repairer

Entries / Issues Resolved

Skills set (How many breakdown categories can repairer resolved)

Troubleshoot & Repair Time

B. Top 10 Repairers Entries since Y2014 to Y2019

Top 10 counts of entries/repairs done by each repairer final_ca['Repairer Name'].value_counts().to_frame().head(10)

Repairer Name

li	303
jerson	137
dennis	70
alexander	44
paolo	37
rey	32
admin	17
aloysius	12
yoly	9
wee	6

C. Overview of Top 10 Repairers Performance

Average Repair Time of Repairers

D. Top 10 Repairers with Most Repair Skills since Y2014 to Y2019

Skills Repairer 12 li 12 jerson 11 dennis 10 rey 10 paolo aloysius 9 alexander 5 yoly 5 admin wee

E. Closing on Top 2 Repairers

Average Troubleshooting Time of Top Repairers Breakdown = EBD Breakdown = PMP Breakdown = MWT Troubleshooting Time 0 0 Repairer jerson

Mean Troubleshooting Time

	Breakdown	Repairer	
	EBD	jerson	390.200000
		li	121.636364
	MWT	jerson	362.777778
		li	77.177419
	PMP	jerson	67.380952
		li	101.489362

Mean Repair Time

Breakdown	Repairer	
E BD	jerson	390.600000
	li	122.181818
MWT	jerson	362.777778
	li	77.419355
PMP	jerson	67.857143
	li	2861.702128

Repairer Analysis Conclusion 3-11

	Top 3 Repairer	No. of Repair Entries	No. of Skills	Troubleshoot Time (Mean)	Repair Time (Mean)
7	Li	303	12	100.10 mins	1020.43 mins
	Jerson	137	12	273.45 mins	273.74 mins
	Dennis	70	11	-	-

Li did better overall when we compared troubleshoot and repair time against the top 3 breakdowns

05 Machine Learning

Predicting Troubleshoot & Repair Time

A. Encoding the Breakdown Categories for Machine Learning

```
In [79]: # Replace string and organize the values of the columns
         breakdown cat = [
             (model['Breakdown Repair Category '] == 'EAL '),
             (model['Breakdown Repair Category '] == 'EBD '),
             (model['Breakdown Repair Category '] == 'EWT '),
             (model['Breakdown Repair Category '] == 'FAC '),
             (model['Breakdown Repair Category '] == 'MAL '),
             (model['Breakdown Repair Category '] == 'MSO '),
             (model['Breakdown Repair Category '] == 'MTR '),
             (model['Breakdown Repair Category '] == 'MWT '),
             (model['Breakdown Repair Category '] == 'OTH '),
             (model['Breakdown Repair Category '] == 'PAL '),
             (model['Breakdown Repair Category '] == 'PMP '),
             (model['Breakdown Repair Category '] == 'PVC '),
             (model['Breakdown Repair Category '] == 'PWT ')
          # create a list of the values we want to assign for each condition
         breakdown_values = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']
          # create a new column and use np.select to assign values to it using our lists as arguments
          model['BreakdownCat'] = np.select(breakdown cat, breakdown values)
         # display updated DataFrame
         model.head()
In [80]: from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         model['BreakdownCat'] = model.apply(le.fit_transform)
         model.head()
Out[80]:
            Breakdown Repair Category Troubleshoot Hours (mins) Repair Hours (mins) Repairer Name BreakdownCat
                              MWT
                                                     35.0
                                                                                 jerson
                              EBD
                                                     50.0
                                                                      50.0
          2
                              PVC
                                                     30.0
                                                                                 jerson
                                                                                                 11
                                                     15.0
                              PWT
                                                                      15.0
                                                                                                 12
          3
                                                                                 dennis
                              PWT
```

B. Checking the Correlation of Features

In [81]: model.corr() Out[81]: Troubleshoot Hours (mins) Repair Hours (mins) BreakdownCat

	moubicamout moura (mina/	ricpair riours (mins,	Dicaraowiioat
Troubleshoot Hours (mins)	1.000000	0.085649	-0.073771
Repair Hours (mins)	0.085649	1.000000	0.026329
BreakdownCat	-0.073771	0.026329	1.000000

. The features do not really have a correlation with each other

C. Simple Model Using Linear Regression (Troubleshoot Time Prediction)

Troubleshoot Prediction (Linear Regression)

```
In [103]: t_target = np.array(model['Troubleshoot Hours (mins) '])
In [104]: t features = np.array(model.drop(['Troubleshoot Hours (mins)', 'Repair Hours (mins)', 'Repairer Name', 'Troubleshoot Hours (mins)', 'Repairer Name', 'Repairer Name', 'Troubleshoot Hours (mins)', 'Repairer Name', 'Troubleshoot Hours (mins)', 'Repairer Name', 'Troubleshoot Hours (mins)', 'Repairer Name', 'Repairer Name', 'Troubleshoot Hours (mins)', 'Repairer Name', 'Troubleshoot Hours (mins)', 'Repairer Name', 'Repairer Na
In [105]: t_target = t_target.reshape(694,1)
                                       r features = t features.reshape(694,1)
In [106]: from sklearn.model_selection import train_test_split
                                      X train, X test, y train, y test = train test split(t features, t target, test size = 0.2, random state = 123)
In [107]: # Plot outputs
                                      plt.scatter(X_test, y_test, color='black')
                                      plt.title('Test Data')
                                      plt.xlabel('Breakdown Categories')
                                      plt.ylabel('Repair Hours (Mins)')
                                      plt.xticks(())
                                      plt.yticks(())
Out[107]: ([], <a list of 0 Text yticklabel objects>)
```


D. Simple Model Using Linear Regression (Repair Time Prediction)

Repair Prediction (Linear Regression)

```
In [109]: r_target = np.array(model['Repair Hours (mins) '])
In [110]: r_features = np.array(model.drop(['Repair Hours (mins) ', 'Repairer Name', 'Troubleshoot Hours (mins) ', 'Breakdown Repair Category
In [111]: r_target = r_target.reshape(694,1)
          r_features = r_features.reshape(694,1)
In [112]: from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test = train_test_split(r_features, r_target, test_size = 0.2, random_state = 123)
In [113]: # Plot outputs
          plt.scatter(X test, y test, color='black')
          plt.title('Troubleshoot Hours Prediction')
         plt.xlabel('Breakdown Categories')
          plt.ylabel('Repair Hours (Mins)')
          plt.xticks(())
          plt.yticks(())
Out[113]: ([], <a list of 0 Text yticklabel objects>)
```



```
In [114]: # Create linear regression object
          r regr = LinearRegression()
          # Train the model using the training sets
          r_regr.fit(X_train, y_train)
          #regr.predict(X test).reshape(1, 1))
          # Plot outputs
          plt.plot(X_test, r_regr.predict(X_test), color='red',linewidth=3)
          plt.title('Repair Hours Prediction')
          plt.xlabel('Breakdown Categories')
          plt.ylabel('Repair Hours (Mins)')
          plt.show()
```


D. Simple Model Using Linear Regression (Repair Time Prediction)

Repair Prediction (Linear Regression)

```
In [109]: r_target = np.array(model['Repair Hours (mins) '])
In [110]: r_features = np.array(model.drop(['Repair Hours (mins) ', 'Repairer Name', 'Troubleshoot Hours (mins) ', 'Breakdown Repair Category
In [111]: r_target = r_target.reshape(694,1)
          r_features = r_features.reshape(694,1)
In [112]: from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test = train_test_split(r_features, r_target, test_size = 0.2, random_state = 123)
In [113]: # Plot outputs
          plt.scatter(X test, y test, color='black')
          plt.title('Troubleshoot Hours Prediction')
         plt.xlabel('Breakdown Categories')
          plt.ylabel('Repair Hours (Mins)')
          plt.xticks(())
          plt.yticks(())
Out[113]: ([], <a list of 0 Text yticklabel objects>)
```



```
In [114]: # Create linear regression object
          r regr = LinearRegression()
          # Train the model using the training sets
          r_regr.fit(X_train, y_train)
          #regr.predict(X test).reshape(1, 1))
          # Plot outputs
          plt.plot(X_test, r_regr.predict(X_test), color='red',linewidth=3)
          plt.title('Repair Hours Prediction')
          plt.xlabel('Breakdown Categories')
          plt.ylabel('Repair Hours (Mins)')
          plt.show()
```


E. Predict Troubleshoot and Repair Time based on Breakdown Input

Breakdown Categories:

- EAL
- EBD
- EWT
- FAC
- MAL
- MSO
- MTR
- MWT
- OTH
- PVC
- PWT

```
In [118]: breakdown_type = input("Enter Breakdown Category: ")
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[0]])), ), 'mins' )
              print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[0]]))), 'mins')
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[1]]))), 'mins' )
              print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[1]]))), 'mins')
          elif breakdown type == 'EWT'
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[2]]))), 'mins' )
             print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[2]]))), 'mins')
          elif breakdown_type -- 'FAC':
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[3]]))), 'mins' )
             print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[3]]))), 'mins')
          elif breakdown_type == 'MAL':
             print('Predicted Troubleshoot Hours (Mins) for', breakdown type,':', int(np.round(t regr.predict([[4]]))), 'mins' )
             print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[4]]))), 'mins')
          elif breakdown_type == 'MSO':
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[5]]))), 'mins' )
             print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[5]]))), 'mins')
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[6]]))), 'mins' )
              print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[6]]))), 'mins' )
          elif breakdown type == 'MWT':
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[7]]))), 'mins' )
              print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[7]]))), 'mins')
          elif breakdown type == 'OTH':
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[8]]))), 'mins' )
              print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[8]]))), 'mins')
          elif breakdown_type == 'PAL'
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[9]]))), 'mins' )
              print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[9]]))), 'mins')
          elif breakdown_type == 'PMP':
             print('Predicted Troubleshoot Hours (Mins) for', breakdown type,':', int(np.round(t regr.predict([[10]]))), 'mins')
              print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[10]]))), 'mins')
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[11]]))), 'mins' )
              print('Predicted Repair Hours (Mins) for', breakdown_type,':', int(np.round(r_regr.predict([[11]]))), 'mins')
          elif breakdown_type == 'PWT':
             print('Predicted Troubleshoot Hours (Mins) for', breakdown_type,':', int(np.round(t_regr.predict([[12]]))), 'mins' )
              print('Predicted Repair Hours (Mins) for', breakdown type,':', int(np.round(r regr.predict([[12]]))), 'mins')
```

Enter Breakdown Category: Input:

Enter Breakdown Category: PMP Output:

Predicted Troubleshoot Hours (Mins) for PMP: 83 mins

Predicted Repair Hours (Mins) for PMP: 599 mins

E. Predict Troubleshoot and Repair Time based on Top 3 Breakdowns

Breakdown Categories:	Input:	Enter Breakdown Category:
 EAL EBD EWT FAC MAL MSO MTR 	Output:	Enter Breakdown Category: EBD Predicted Troubleshoot Hours (Mins) for EBD : 179 mins Predicted Repair Hours (Mins) for EBD : 231 mins
 MWT OTH PAL PMP PVC PWT 	Output:	Enter Breakdown Category: PMP Predicted Troubleshoot Hours (Mins) for PMP : 83 mins Predicted Repair Hours (Mins) for PMP : 599 mins
	Output:	Enter Breakdown Category: MWT Predicted Troubleshoot Hours (Mins) for MWT : 115 mins Predicted Repair Hours (Mins) for MWT : 476 mins

06 Final Conclusion

Insights, Recommendations and Conclusion

Machine (Objective #1)

The company wants to be aware of the top causes of downtime and its occurrence <u>frequency/patterns</u> so as to plan ahead before the downtime occurs.

Top 3 Breakdowns	Pattern/ Occurrence	Peak Month	Modules to Note
EDB	Increase Every 2 Months	July	LIZECT
PMP	Peaks Every 2 Years	August	L125ST
MWT	Peaks During August	August	L112WA, L109DV, L110DV

Man (Objective #2)

With efforts to recognize employees' performance, the company wants to reward the **best technician/repairs** over the years but do not know how to measure/judge their performance as they are considered a more technical role.

	Top 3 Repairer	No. of Repair Entries	No. of Skills	Troubleshoot Time (Mean)	Repair Time (Mean)
**	Li	303	12	100.10 mins	1020.43 mins
	Jerson	137	12	273.45 mins	273.74 mins
	Dennis	70	11	-	-

Li did better overall when we compared troubleshoot and repair time against the top 3 breakdowns

Prediction (Additional)

In order to reduce the overall downtime, the machine learning prediction enables a setting of target **Repair Hours** for the technician/repairer so as to look into those with long repair hours so to increase the Overall Equipment Efficiency (OEE).

Enter Breakdown Category: EBD Output:

> Predicted Troubleshoot Hours (Mins) for EBD: 179 mins Predicted Repair Hours (Mins) for EBD : 231 mins

Enter Breakdown Category: PMP Output:

> Predicted Troubleshoot Hours (Mins) for PMP: 83 mins Predicted Repair Hours (Mins) for PMP : 599 mins

Enter Breakdown Category: MWT Output:

> Predicted Troubleshoot Hours (Mins) for MWT: 115 mins Predicted Repair Hours (Mins) for MWT: 476 mins

• What we aim to achieve after this:

Reduce Machine Breakdown

Improve Repairer's Efficiency

Increase in Data Driven Decision Making

Thank You.

End of Presentation