

M9110-224.1T

Модуль электроизмерительный

ERE

Руководство по эксплуатации

02.2020 версия 1.12

Содержание

Предупреждающие сообщения	3
Используемые аббревиатуры и термины	4
Введение	5
1 Назначение	6
2 Технические характеристики и условия эксплуатации	7
2.1 Технические характеристики	
2.2 Гальваническая изоляция	
2.3 Условия эксплуатация	
3 Меры безопасности	
4 Монтаж и демонтаж	
4.1 Установка	
4.2 Отсоединение клеммных колодок	
4.3 «Быстрая» замена	
5 Подключение	
5.1 Общие требования	
5.2 Помехи и методы их подавления	
5.3 Схемы подключения	13
6 Устройство и принцип работы	14
6.1 Устройство	
6.2 Принцип работы	14
6.3 Управление	15
6.4 Индикация	15
6.5 Измерение параметров	15
6.5.1 Действующий ток	
6.5.2 Использование согласующего трансформатора	16
7 Настройка	17
7.1 Конфигурирование	
7.2 Конфигурационные и оперативные параметры	
7.3 Восстановление заводских сетевых настроек прибора	18
8 Интерфейс RS-485	
8.1 Базовый адрес прибора в сети RS-485	20
8.2 Мастер сети	
9 Техническое обслуживание	21
10 Маркировка	21
11 Транспортирование и хранение	
12 Комплектность	
13 Гарантийные обязательства	
ПРИЛОЖЕНИЕ А. Команды управления прибором по сети RS-485	
ПРИЛОЖЕНИЕ Б. Команды протокола ОВЕН	
ПРИЛОЖЕНИЕ В. Команды протокола Modbus	26
ПРИЛОЖЕНИЕ Г. Команды протокола DCON	29

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые аббревиатуры и термины

АЦП – аналого-цифровой преобразователь.

Имя параметра – набор символов, однозначно определяющий доступ к параметру в приборе.

Индекс параметра – числовое значение, отличающее параметры однотипных элементов с одинаковыми именами.

Конфигурация – совокупность значений параметров, определяющих работу прибора.

Конфигурационные параметры – параметры, определяющие конфигурацию прибора. Задаются в программе-конфигураторе.

Мастер сети – прибор (или ПК), инициирующий обмен данными в сети RS-485 между отправителем и получателем данных.

Оперативные параметры – данные, которые прибор передает по сети RS-485.

ПК – персональный компьютер.

Сетевые параметры – служебные параметры, определяющие работу прибора в сети RS-485.

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, работой и техническим обслуживанием модуля электроизмерительного МЭ110-1Т (в дальнейшем по тексту именуемого «прибор»).

Прибор имеет один вход для измерения тока в однофазных сетях и имеет возможность питания от сети переменного тока с частотой от 47 до 63 Гц (номинальные значения 50 или 60 Гц) и напряжением от 90 до 264 В (номинальные значения 110, 220 или 240 В) или от сети постоянного напряжения от 20 до 375 В (номинальное значение 24 В).

Подключение, регулирование и техническое обслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

1 Назначение

Прибор предназначен для измерения тока в однофазных сетях, преобразования его в цифровой код и передачи результатов измерений в сеть RS-485.

Прибор может быть использован в системах контроля и управления технологическими процессами в промышленности.

Прибор изготавливается в соответствии с ТУ 4221-004-46526536-2011.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Характеристики прибора

Наименование	Значение
Напряжение питания	• от 90 до 264 В переменного тока (номинальное напряжение 220 В) частотой от 47 до 63 Гц; • от 20 до 375 В постоянного тока (номинальное напряжение 24 В)
Потребляемая мощность, не более	5 BA
Измере	ние тока
Количество аналоговых каналов измерения	1
Входной сигнал тока (действующее значение)	~(0,025,00) А, от 45 до 65 Гц
Входной сигнал тока (с использованием внешних трансформаторов тока)	~(2 · 10 ⁻⁵ 5 · 10⁵) А, от 45 до 65 Гц
Основная погрешность измерений	± 0,5 %
Дополнительная погрешность измерения, вызванная изменением температуры окружающего воздуха относительно нормальной (на каждые 10 °C изменения температуры)	± 0,5 %
Время опроса входа, не более	1 c
Интерфе	йс связи
Интерфейс связи с Мастером сети	RS-485
Максимальное количество приборов, одновременно подключаемых к сети RS-485, не более	32
Максимальная скорость обмена по интерфейсу RS-485	115200 бит/с
Протоколы связи, используемые для передачи информации	DCON, Modbus-ASCII, Modbus-RTU, OBEH
Общие с	ведения
Степень защиты корпуса:	
• со стороны передней панели	IP20
• со стороны клеммной колодки	IP00
Габаритные размеры прибора	110 × 76 × 27 мм
Масса прибора, не более	0,5 кг
Средняя наработка на отказ	60 000 ч
Средний срок службы	10 лет

Предел дополнительной приведенной погрешности, вызванной изменением частоты сети от его номинального значения до любого в пределах допустимого диапазона от 47 до 63 Гц не превышает 0,5 предела основной погрешности.

Время установления рабочего режима прибора не более 5 минут.

По эксплуатационной законченности приборы относятся к изделиям второго порядка.

2.2 Гальваническая изоляция

Прибор имеет следующие группы гальванически изолированных цепей:

- питания прибора;
- интерфейса RS-485;
- измерительного входа и цепь заводских настроек.

Электрическая прочность изоляции всех групп цепей относительно друг друга – 2500 В.

2.3 Условия эксплуатация

Прибор эксплуатируется в следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 20 до плюс 55 °C;
- верхний предел относительной влажности воздуха 80 % при +35 °C и более низких температурах без конденсации влаги;
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения В4 по ГОСТ 52931.

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 по ГОСТ 52931.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N2 по ГОСТ 52931.

По электромагнитной совместимости модули относятся к оборудованию класса A по ГОСТ Р 51522. Если подаются импульсные помехи, то допускается кратковременное прекращение обмена по сети RS-485. Обмен должен восстанавливаться сразу по окончании действия помехи.

3 Меры безопасности

По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ 12.2.007.0.

Во время эксплуатации и технического обслуживания следует соблюдать требования следующих документов:

- ΓΟCT 12.3.019;
- «Правила эксплуатации электроустановок потребителей»;
- «Правила охраны труда при эксплуатации электроустановок».

Во время эксплуатации прибора открытые контакты клеммника находятся под опасным для жизни напряжением. Прибор следует устанавливать в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам.

Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходных разъемов и внутренние элементы модулей.

ВНИМАНИЕ

Запрещается использование модулей при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

4 Монтаж и демонтаж

Во время монтажа следует соблюдать меры безопасности из раздела 3.

Перед установкой прибора следует подготовить посадочное место в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов.

4.1 Установка

Прибор может быть установлен на DIN-рейке 35 мм или закреплен на внутренней стенке шкафа с помощью винтов.

Прибор следует устанавливать защелкой вниз.

Для установки прибора на DIN-рейку следует:

- 1. Подготовить место на DIN-рейке для установки прибора.
- 2. Установить прибор на DIN-рейку.
- 3. С усилием придавить прибор к DIN-рейке до фиксации защелки.

Для демонтажа прибора следует:

- 1. Отсоединить линии связи с внешними устройствами.
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего отвести прибор от DIN-рейки.

Рисунок 4.1 – Габаритные и установочные размеры

4.2 Отсоединение клеммных колодок

Для отсоединения клеммных колодок следует:

- 1. Отключить питание модуля и подключенных к нему устройств.
- 2. Поднять крышку.
- 3. Выкрутить винты.
- 4. Снять колодку.

4.3 «Быстрая» замена

Конструкция клеммника позволяет оперативно заменить прибор без демонтажа подключенных к нему внешних линий связи.

Для замены прибора следует:

- 1. Обесточить все линии связи, подходящие к прибору, в том числе линии питания.
- 2. Открутить крепежные винты по краям обеих клеммных колодок прибора.
- 3. Отделить съемную часть каждой колодки от прибора вместе с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента.
- 4. Снять прибор с DIN-рейки или вынуть прибор из щита.

- 5. На место снятого прибора установить другой с предварительно удаленными разъемными частями клеммных колодок.
- 6. Подсоединить к установленному прибору снятые части клеммных колодок с подключенными внешними линиями связи.
- 7. Закрутить крепежные винты по краям обеих клеммных колодок.

5 Подключение

Прибор подключается по схемам из раздела 5.3 с соблюдением следующей последовательности операций:

- 1. Подсоединить прибор к источнику питания.
- 2. Подсоединить канал измерения к входу прибора.
- 3. Подсоединить линии интерфейса RS-485.
- 4. Подать питание на прибор.

5.1 Общие требования

Способы питания прибора:

- питание прибора от 220 В следует осуществлять от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети;
- питание прибора от 24 В следует осуществлять от локального источника питания подходящей мощности, установленного в том же шкафу электрооборудования, в котором устанавливается прибор.

Прибор следует подключать в сеть RS-485 по двухпроводной схеме витой парой проводов, соблюдая полярность. Провод А подключается к выводу А прибора, аналогично соединяются между собой выводы В. На концах линии рекомендуется установить резисторы сопротивлением 120 Ом.

Для обеспечения надежности электрических соединений входных клемм рекомендуется использовать медные многожильные кабели сечением от 0,75 до 1,5 мм², концы которых перед подключением следует зачистить и залудить или оконцевать. Жилы кабелей следует зачищать с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т. е. чтобы оголенные участки провода не выступали за ее пределы.

5.2 Помехи и методы их подавления

На работу прибора могут оказывать влияние внешние помехи:

- возникающие под действием электромагнитных полей (электромагнитные помехи), наводимые на прибор и на линии связи прибора с первичными преобразователями;
- возникающие в питающей сети.

Для уменьшения влияния электромагнитных помех следует:

- во время прокладки сигнальных линий от первичных преобразователей их длину следует по возможности уменьшать и выделять их в самостоятельную трассу (или несколько трасс), отделенную от силовых кабелей;
- обеспечить надежное экранирование сигнальных линий. Экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединять к заземленному контакту щита управления;
- прибор рекомендуется устанавливать в металлическом шкафу, внутри которого не должно быть никакого силового оборудования. Корпус шкафа должен быть заземлен.

Для уменьшения помех, возникающих в питающей сети, следует:

- подключать прибор к питающей сети отдельно от силового оборудования;
- все заземляющие линии и экраны прокладывать по схеме «звезда» с обеспечением хорошего контакта к заземляемому элементу:
- заземляющие цепи выполнять проводами наибольшего сечения;
- фильтры сетевых помех (например, ОВЕН БСФ) следует устанавливать в линиях питания прибора.

5.3 Схемы подключения

Рисунок 5.1 – Подключение прибора к однофазной сети

Рисунок 5.2 – Подключение прибора к однофазной сети через согласующий трансформатор

ПРЕДУПРЕЖДЕНИЕ

Замыкание клемм 3 и 6 приводит к восстановлению заводских сетевых настроек.

6 Устройство и принцип работы

6.1 Устройство

Устройство прибора:

- вход для измерения тока в однофазных цепях;
- аналого-цифровой преобразователь (АЦП);
- микроконтроллер, обрабатывающий входной сигнал;
- драйвер RS-485 с гальванической развязкой;
- вторичный источник питания (ВИП) с гальванической развязкой.

Структурная схема прибора приведена на рисунке ниже:

Рисунок 6.1 - Структурная схема прибора

6.2 Принцип работы

Прибор работает в сети RS-485 по протоколам:

- DCON;
- · Modbus-ASCII;
- Modbus-RTU;
- · OBEH.

Для организации обмена данными в сети по интерфейсу RS-485 необходим Мастер сети.

Мастером сети может являться:

- ПК:
- ПЛК;
- панель оператора;
- удаленный облачный сервис.

ПРИМЕЧАНИЕ

Из-за аппаратных ограничений невозможно использование в приборе следующих сочетаний сетевых параметров:

- PrtY = 0, Sbit = 0, Len = 0 (контроль четности отсутствует, 1 стоп-бит, 7 бит);
- PrtY = 1, Sbit = 1, Len = 1 (проверка на четность, 2 стоп-бита, 8 бит);
- PrtY = 2, Sbit = 1, Len = 1 (проверка на нечетность, 2 стоп-бита, 8 бит).

В сети RS-485 предусмотрен только один Мастер сети.

Прибор конфигурируется на ПК через преобразователь интерфейса RS-485/RS-232 или RS-485/USB (например, OBEH AC3-M или AC4) с помощью ПО «Конфигуратор M110» (см. Руководство пользователя на сайте owen.ru).

6.3 Управление

Управление режимами работы прибора и считывание из прибора результатов измерения выполняется с использованием команд, передаваемых в сети RS-485. Прибор обеспечивает работу в сети RS-485 с использованием следующих протоколов:

- Modbus RTU, чтение/запись;
- Modbus ASCII, чтение/запись;
- ОВЕН, чтение/запись;
- DCON, только чтение.

Протоколы переключаются с помощью параметра **T.pro**.

ПРИМЕЧАНИЕ

Полный перечень параметров прибора приведен в Приложении Команды управления прибором по сети RS-485.

Прибор не является **Мастером сети**, поэтому сеть RS-485 должна иметь **Мастера сети**, например ПК с запущенной на нем SCADA-системой, контроллер или регулятор.

К прибору предоставляется бесплатный ОРС-драйвер и библиотека стандарта Windows DLL, которые рекомендуется использовать для подключения прибора к SCADA-системам и контроллерам других производителей.

Команды управления конфигурацией прибора обеспечивают запись и чтение конфигурационных параметров, определяющих режимы работы прибора.

Конфигурационные параметры хранятся в энергонезависимой памяти прибора. Их запись выполняется в два этапа. На первом этапе параметры записываются в оперативную память. На втором этапе по специальной команде (Aply) параметры переписываются в энергонезависимую память. Если команда Арју не была подана, то в случае пропадания питания в процессе конфигурации все изменения аннулируются.

Команда Ару кроме перезаписи изменений конфигурационных параметров в энергонезависимую память обеспечивает применение изменений сетевых настроек, что вызывает переход работы прибора на новые сетевые настройки.

Управление прибором по протоколу **ОВЕН** реализовано в ПО «Конфигуратор М110».

Для работы прибора в составе SCADA-систем по протоколам Modbus и OBEH на сайте owen.ru следует скачать бесплатный ОРС-сервер.

6.4 Индикация

На лицевой панели прибора размещены светодиодные индикаторы:

Таблица 6.1 – Индикация

Светодиоды	Свечение	Значение
Питание	Зеленое	Подача на прибор питающего тока
RS-485 Зеленое		Прием (наличие данных) в сети RS-485 и режим загрузки внутреннего ПО
Авария	Красное	Возникновение нештатной ситуации (выход из строя узла, отсутствие связи с АЦП, если к модулю не приходит запрос в течение времени указанного в параметре t.out)
«I»	Желтое	Выход за пределы измерения входного сигнала

6.5 Измерение параметров

6.5.1 Действующий ток

Входной сигнал, поступающий на клеммы прибора, проходит через токовый шунт и поступает на фильтр нижних частот со срезом на частоте 70 кГц и подавлением 20 дБ/дек. Последующая обработка сигнала выполняется специализированным $\Sigma \Delta$ -АЦП и микроконтроллером, где действующий ток I_{ms} рассчитывается по следующей формуле:

$$I_{rms} = K_I \sqrt{\frac{1}{T} \int_0^T I^2(t) dt}$$
 (6.1)

где / – значение фазного тока;

 K_l – коэффициент трансформации по току.

6.5.2 Использование согласующего трансформатора

Допускается подключение канала тока через согласующий трансформатор, в данном случае следует установить в параметре **N.i** значение коэффициента трансформации внешнего трансформатора. По умолчанию подразумевается, что трансформатор не используется, и значение этого параметра равно 1. Параметр может принимать значение от 0,001 до 9999,000.

ПРИМЕЧАНИЕ

Полный перечень параметров прибора приведен в приложении Команды управления прибором в сети RS-485.

Пример

Если необходимо измерить ток 100 A, но прибор измеряет ток до 5 A, и используется понижающий трансформатор 100/5. Тогда значение параметра **N.i** будет равно 20.

7 Настройка

7.1 Конфигурирование

Прибор конфигурируется с помощью ПО «Конфигуратор М110». Установочный файл располагается на сайте owen.ru.

Для конфигурирования прибора следует:

- 1. Подключить прибор к ПК через адаптер интерфейса RS-485/RS-232 или RS-485/USB.
- 2. Подать питание на прибор.
- 3. Установить и запустить ПО «Конфигуратор М110».
- 4. Выбрать настройки порта для установки связи с прибором.

Рисунок 7.1 - Выбор настроек порта

5. Выбрать модель прибора.

Рисунок 7.2 - Выбор модели прибора

6. В открывшемся главном окне задать конфигурационные параметры.

Рисунок 7.3 - Главное окно

7. После задачи параметров записать настройки в прибор, выбрав команду в главном меню **Прибор** → **Записать все параметры**.

Подробная информация о работе с ПО «Конфигуратор М110» представлена в руководстве пользователя на сайте owen.ru.

7.2 Конфигурационные и оперативные параметры

Параметры в приборе разделяются на группы:

- конфигурационные;
- оперативные.

Конфигурационные параметры – это параметры, определяющие конфигурацию прибора: настройку входов и сетевые настройки. Значения этих параметров следует задавать с помощью ПО «Конфигуратор М110».

Значения конфигурационных параметров хранятся в энергонезависимой памяти прибора и сохраняются в случае выключения питания.

Оперативные параметры – это данные, которые прибор передает по сети RS-485 при запросе от Мастера. Оперативные параметры отражают текущее состояние регулируемой системы.

Каждый параметр имеет имя, состоящее из латинских букв (до четырех), которые могут быть разделены точками, и название. Например, «Задержка ответа по RS-485» **Rs.dL**, где «Задержка ответа по RS-485» – название, **Rs.dL** – имя.

Конфигурационные параметры имеют также индекс – цифру, отличающую параметры однотипных элементов. Индекс передается вместе со значением параметра. Работу с индексами выполняет ПО «Конфигуратор М110» автоматически.

Оперативные параметры не имеют индекса. Они индексируются через сетевой адрес.

7.3 Восстановление заводских сетевых настроек прибора

Восстановление заводских сетевых настроек прибора рекомендуется использовать во время установки связи между ПК и прибором в случае утери информации о заданных значениях сетевых параметров прибора.

ВНИМАНИЕ

Напряжение на некоторых элементах печатной платы прибора опасно для жизни! Прикосновение к печатной плате, а также попадание посторонних предметов внутрь корпуса недопустимы.

Для восстановления заводских сетевых настроек прибора следует:

- 1. Отключить питание прибора.
- 2. Соединить клеммы прибора 3 и 6 между собой прибор перестроится на заводские значения сетевых параметров, но в его памяти сохраняются ранее установленные значения сетевых параметров.
- 3. Включить питание.
- 4. Запустить ПО «Конфигуратор М110».

- 5. В окне установки связи задать значения заводских сетевых параметров (в соответствии с данными Приложения Команды управления прибором по сети RS-485) или нажать кнопку «Заводские сетевые настройки». Связь с прибором установится с заводскими значениями сетевых параметров.
- 6. Считать значения сетевых параметров прибора, выбрав команду **Прибор | Прочитать все параметры**или открыв папку **Сетевые параметры**.
- 7. Зафиксировать на бумаге значения сетевых параметров прибора, которые были считаны.
- 8. Закрыть ПО «Конфигуратор М110».
- 9. Отключить питание прибора.
- 10. Снять перемычку между клемм прибора 3 и 6.
- 11. Подключить питание прибора и запустить ПО «Конфигуратор М110».
- 12. Установить зафиксированные ранее значения параметров в окне Установка связи с прибором.
- 13. Нажать кнопку **Установить связь** и проверить наличие связи с прибором, выбрав команду **Прибор | Проверка связи с прибором**.

8 Интерфейс RS-485

8.1 Базовый адрес прибора в сети RS-485

Каждый прибор в сети RS-485 должен иметь свой уникальный базовый адрес:

Таблица 8.1 - Адресация в сети RS-485

Адресация в протоколе ОВЕН*				
Диапазон значений базового адреса при 8-битной адресации	от 0 до 254			
Диапазон значений базового адреса при 11-битной адресации	от 0 до 2039			
Широковещательный адрес при 8-битной адресации	255			
Широковещательные адреса при 11-битной адресации	от 2040 до 2047			
Базовый адрес прибора по умолчанию**	16			
Базовый адрес каждого следующего прибора [базовый адрес предыдущего прибора] + 1				
Адресация в про	отоколе Modbus			
Диапазон значений базового адреса	от 1 до 255			
Широковещательный адрес	0			
Адресация в пр	отоколе DCON			
Диапазон значений базового адреса	от 0 до 255			
ПРИМЕЧАНИЕ				

8.2 Мастер сети

Для организации обмена данными в сети по интерфейсу RS-485 необходим **Мастер сети**. Основная функция **Мастера сети** — инициировать обмен данными между **Отправителем** и **Получателем данных**. Прибор не может быть **Мастером сети**, он выступает в роли **Получателя данных**.

В качестве Мастера сети можно использовать:

- программируемые контроллеры (ПЛК);
- ПК с подключенным преобразователем RS-232/RS-485 (например, OBEH AC3-M) или USB/RS-485 (например, OBEH AC4).

В сети RS-485 предусмотрен только один **Мастер сети**.

9 Техническое обслуживание

Обслуживание прибора во время эксплуатации заключается в его техническом осмотре. Во время выполнения работ пользователь должен соблюдать меры безопасности из раздела 3.

Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в шесть месяцев и включает в себя выполнение следующих операций:

- очистку корпуса прибора, а также его клеммных колодок от пыли, грязи и посторонних предметов;
- проверку качества крепления прибора на DIN-рейке или на стене;
- проверку качества подключения внешних связей.

Обнаруженные во время осмотра недостатки следует немедленно устранить.

10 Маркировка

На корпус прибора наносятся:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс точности;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер и дата выпуска прибора.

На потребительскую тару наносятся:

- наименование прибора;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер и дата выпуска прибора.

11 Транспортирование и хранение

Прибор транспортируется в закрытом транспорте любого вида в транспортной таре поштучно или в контейнерах. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 ГОСТ 15150 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 ГОСТ 15150. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

12 Комплектность

Прибор	1 шт.
Паспорт и Гарантийный талон	1 экз.
Краткое руководство по эксплуатации	1 экз.

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

13 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Команды управления прибором по сети RS-485

Таблица А.1 – Значения типов данных

Тип паши іх	Бит	Диапазон значений	
Тип данных		Минимальное	Максимальное
Unsigned char	8	0	255
Unsigned short	16	0	65535
Unsigned long	32	0	4294967295
Signed long	32	-2147483648	2147483647
Float	32	3,4E-38	3,4E+38

Приложение Б. Команды протокола ОВЕН

Таблица Б.1 – Команды протокола ОВЕН

Команда	HASH	Данные записи/чтения	Тип данных	Примечание
Название прибора dev	D681	Строка ASCII, 8 байт MЭ110-1T	Char	Только чтение
Версия прошивки ver	2D5B	ASCII, 5 байт Vx.уу X – номер версии; YY– номер подверсии	Char	Только чтение. Устанавливается предприятием- изготовителем
Скорость обмена данными bPS	B760	Вуte: 0 – 2,4 кбит/с; 1 – 4,8 кбит/с; 2 – 9,6 кбит/с; 3 – 14,4 кбит/с; 4 – 19,2 кбит/с; 5 – 28,8 кбит/с; 6 – 38,4 кбит/с; 7 – 57,6 кбит/с; 8 – 115,2 кбит/с	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 2
Длина слова данных Len	523F	Byte: 7 или 8	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 8
Тип контроля четности PrtY	E8C4	Byte: 0 – контроля нет; 1 – четность; 2 – нечетность	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Количество стоп- битов в посылке Sbit	B72E	Byte: 0 – 1 стоп-бит; 1 – 2 стоп-бита	Unsigned char	По умолчанию – 0
Задержка ответа по RS-485 rS.dL	CBF5	Byte: от 0 до 255 мс	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 45
Сетевой тайм-аут t.out	BEC7	Byte: от 0 до 600 с	Unsigned short	Запись/Чтение. <i>По</i> умолчанию – 600
Базовый адрес прибора Addr	9F62	Word_16: от 0 до 2047	Unsigned short	Запись/Чтение. <i>По</i> умолчанию – 16
Протокол обмена T.pro	77A0	0 – Modbus ASCII; 1 – Modbus RTU; 2 – OBEH; 3 – DCON	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 2
Длина сетевого адреса A.Len	1ED2	Byte: 8 – 8 бит; 11 – 11 бит	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 8
Код последней ошибки n.Err	0233	Чтение: Byte: от 0 до 255 После включения прибора – 0	Unsigned char	Только чтение. Коды ошибок в описании протокола ОВЕН
Байт статуса Stat	9C5B	Чтение: 0 – ошибка ЕЕРROM; 1 – ошибка связи с АЦП; 2 – ошибка применения параметров	Unsigned char	Только чтение

Продолжение таблицы Б.1

Режим работы Mode	5304	7 – прибор работает с целыми числами, если бит уст. в 1; 5, 6 – не используется; 4 – режим калибровки; 3 – флаг завершения калибровки масштаба; 2 – флаг завершения калибровки смещения нуля; 1 – флаг завершения калибровки верхней точки; 0 – результаты калибровки	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Запись изменений в энергонезависимую память и переход на новые сетевые настройки Aply	8403	Для применения и сохранения параметров нужно записать 0x81	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Коэффициент трансформация тока по входу 1 с плавающей точкой N.i1	375C	от 0,001 до 9999,000	Float	Запись/Чтение <i>По</i> умолчанию – 1,0
Измеренное значение тока по входу 1 с плавающей точкой in.i1	6693		Float	Только чтение
Значение частоты дискретизации с плавающей точкой in.F	1425		Float	Только чтение (технологический параметр)

Приложение В. Команды протокола Modbus

Для протокола Modbus реализовано выполнение следующих функций:

- 03, 04 (read registers) чтение одного или нескольких регистров;
- 06 (preset single register) запись одного регистра;
- 16 (preset multiple registers) запись нескольких регистров;
- 17 (report slave ID) чтение имени прибора и версии программы.

Если адрес прибора равен нулю, для протокола Modbus это широковещательный адрес, прибор будет выполнять команды записи (6, 16), но не будет отправлять квитанции на принятые команды. На адреса более 247 прибор реагировать не будет.

Для функций **06** и **16** в случае попытки записать регистры, предназначенные только для чтения, или в случае попытки обращения к несуществующим регистрам возвращается ошибка 1 (**Illegal function**).

Структура запроса и ответа для функции 17

Функция позволяет получить имя прибора и версию программного обеспечения.

В таблице ниже представлен запрос на чтение имени и версии программного обеспечения прибора с адресом 12.

Адрес	Функция	Контрольная сумма
12	17	ZZ

Ответ на функцию 17 представлен в таблице ниже.

Адрес	Функция	Количество байт данных	Данные 14 байт	Контрольная сумма
12	17	14	M9110-1T VX.YY	ZZ

ПРИМЕЧАНИЕ

Поля X и YY определяются предприятием-изготовителем.

Параметры протокола **Modbus** представлены в таблице 1.

Таблица В.1 – Команды протокола Modbus

Команда	Номера регистров	Данные записи/чтения	Тип данных	Примечание
Имя прибора	0–3	MЭ110-1T	Char	Только чтение
Версия прошивки	4–5	X – номер версии; YY– номер подверсии	Char	Только чтение. Устанавливается предприятием- изготовителем
Скорость обмена	6	Вуte: 0 – 2,4 кбит/с; 1 – 4,8 кбит/с; 2 – 9,6 кбит/с; 3 – 14,4 кбит/с; 4 – 19,2 кбит/с; 5 – 28,8 кбит/с; 6 – 38,4 кбит/с; 7 – 57,6 кбит/с;	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 2
Длина слова данных	7	Byte: 7 или 8	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 8
Тип контроля четности слова данных	8	Вуte: 0 – контроля нет; 1 – четность; 2 – нечетность	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Количество стоп- битов в посылке	9	Byte: 0 – 1 стоп-бит; 1 – 2 стоп-бита	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0

Продолжение таблицы В.1

Задержка ответа по RS-485	10	Byte: от 0 до 255 мс	Unsigned char	Запись/Чтение. <i>По умолчанию</i> – <i>45</i>
Сетевой тайм-аут	11	Byte: от 0 до 600 с	Unsigned short	Запись/Чтение. <i>По</i> умолчанию – 600
Базовый адрес прибора	12	Word_16: от 1 до 255	Unsigned short	Запись/Чтение. По умолчанию – 1
Тип протокола	13	0 – ModBus ASCII; 1 – ModBus RTU; 2 – OBEH; 3 – DCON	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 2
Длина сетевого адреса	14	Byte: 8 – 8 бит; 11 – 11 бит	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 8
Код последней сетевой ошибки	15	Чтение: Byte: от 0 до 255 После включения прибора – 0	Unsigned char	Только чтение
Байт статуса	16	Чтение: 0 – ошибка EEPROM; 1 – ошибка связи с АЦП; 2 – ошибка применения параметров	Unsigned char	Только чтение
Режим работы	17	7 – прибор работает с целыми числами, если бит уст. в 1; 5–6 – не используется; 4 – режим калибровки; 3 – флаг завершения калибровки масштаба; 2 – флаг завершения нуля; 1 – флаг завершения калибровки верхней точки; 0 – результаты калибровки	Unsigned char	Запись/Чтение <i>По умолчанию</i> – 0
Положение десятичной точки в целом значении коэффициента трансформации тока по входу 1	18	0 - (); 1 - (); 2 - (); 3 - ()	Unsigned char	Запись/Чтение По умолчанию – 0
Целое значение коэффициента трансформации тока по входу 1 со смещением точки	19–20	от 1 до 9 999 999	Unsigned long	Запись/Чтение <i>По умолчанию</i> – 1
Положение десятичной точки в целом значение измеренного тока по входу 1	21	0 - (); 1 - (); 2 - (); 3 - ()	Unsigned char	Запись/Чтение По умолчанию – 0
Целое значение измеренного тока по входу 1 со смещением точки	22–23	от 0 до 999 999	Unsigned long	Только чтение <i>По</i> <i>умолчанию</i> – 1
Положение десятичной точки в целом значение частоты дискретизации	24	0 - (); 1 - (); 2 - (); 3 - ()	Unsigned char	Запись/Чтение. <i>По умолчанию</i> – 0 (технологический параметр)

Продолжение таблицы В.1

Целое значение частоты дискретизации со смещением десятичной точки	25–26	от 0 до 99 999	Unsigned long	Только чтение (технологический параметр)
Коэффициент трансформации тока по входу 1 с плавающей точкой	27–28	от 0,001 до 9999,000	Float	Запись/Чтение. <i>По</i> умолчанию – 1,0
Измеренное значение тока по входу 1 с плавающей точкой	29–30		Float	Только чтение
Значение частоты дискретизации с плавающей точкой	31–32		Float	Только чтение (технологический параметр)
Запись изменений в энергонезависимую память и переход на новые сетевые настройки Aply	33	Для применения и сохранения параметров нужно записать 0x81	Unsigned char	

Таблица В.2 – Маска кодов ошибок для команды Aply

Номер бита	Описание ошибки	
3	Не удалось сохранить в энергонезависимую память параметры для настройки измерений (регистры 14–16, 18, 20)	
2	Недопустимое значение в одном из параметров для настройки измерений (регистры 14–16, 18, 20)	
1	Не удалось сохранить в энергонезависимую память сетевые параметры (регистры 0–10)	
0	Недопустимое значение в сетевых параметрах (регистры 2–10)	

Приложение Г. Команды протокола DCON

Г.1 Считывание данных

Посылка:

#AA[CHK](cr)

где AA — адрес модуля от 0x00 до 0xFF;

[СНК] – контрольная сумма;

(cr) – символ перевода строки (0x0D).

Ответ:

(данные) [CHK] (cr)

где **(данные)** — записанные подряд без пробелов результаты измерения в десятичном представлении. Длина записи об измерении тока равна девяти символам (включая знак и десятичную точку), десятичная точка может быть смещена не более, чем на три знака. При передаче значений менее 10 в начале значения добавляется 0. На месте недостоверных данных передается значение «— 999999.9». Длина записи об измерении частоты равна шести символам (включая знак и и десятичную точку), причем десятичная точка может быть смещена не более, чем на два знака.

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то не выдается никакого ответа.

Пример

>+002.0023+50.07[CHK](cr)

- измеренное значение тока 2,0023 А;
- измеренное значение частоты 50,07 Гц.

Контрольная сумма (СНК) позволяет обнаружить ошибки в командах, отправленных из ведущего устройства, а также в ответах ведомого. Контрольная сумма (СНК) передается как коды двух ASCII символов (от 0х00 до 0хFF) и представляет собой сумму ASCII кодов всех символов посылки не включая код символа переноса строки. В случае переполнения суммы, старшие разряды отбрасываются.

ПРИМЕЧАНИЕ

Вся информация, содержащаяся в кадре, включая адрес прибора, данные, СНК и символ перевода строки, передается в ASCII кодах. Следует обратить внимание, что использование ASCII кодов строчных латинских символов недопустимо.

Г.2 Считывание имени прибора

Посылка:

\$AAM[CHK](cr)

где AA — адрес модуля от 0x00 до 0xFF;

[СНК] – контрольная сумма;

(ст) – символ перевода строки (0х0D).

Ответ:

!AA (имя прибора (8 символов)) [CHK] (cr)

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то не выдается никакого ответа.

Пример

>!AAM3110-1T[CHK](cr)

Г.3 Считывание версии программы прибора

Посылка:

```
$AAF[CHK](cr)
```

где **AA** – адрес модуля от 0x00 до 0xFF;

[СНК] – контрольная сумма;

(ст) – символ перевода строки (0х0D).

Ответ:

!AA(версия(4 символа))[CHK](cr)

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то не выдается никакого ответа.

Пример

>!AAx.yy[CHK](cr)

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru 1-RU-48572-1.12