

Segurança da Informação

Diffie-Hellman, RSA, DSA

Acordo de Chaves Diffie-Hellman

Problema do Logaritmo Discreto

- Dados os inteiros a, p e x, é "fácil" calcular $y = a^x \mod p$.
- Dados a, p e y, é "difícil" calcular x.
- Com valores de k bits, são necessários cerca de k³ passos para calcular y.
- Para calcular x, são necessários

$$2^{c\sqrt[3]{k\ln^2 k}}$$

passos (esforço quase exponencial).

Diffie-Hellman

- Primeiro algoritmo assimétrico conhecido publicamente (1976).
- Segurança relacionada com a dificuldade de calcular o logaritmo discreto.
- Objetivo: acordo de chave através de um canal potencialmente inseguro.
- Extensão: cifração (ElGamal).

Chaves Diffie-Hellman

- Parâmetros:
 - *q*: primo.
 - p: primo tal que p-1 seja múltiplo de q.
 - g: inteiro entre 2 e p–2 tal que g^q mod p = 1.
- Chave privada:
 - x: inteiro aleatório entre 1 e q-1.
- Chave pública:
 - $y = g^x \mod p$.

Exemplo

- q = 11, p = 23, g = 2.
- Notar que $2^{11} = 1 \pmod{23}$.
- Chave privada: x = 9.
- Chave pública: $y = 2^9 \mod 23 = 6$.

Protocolo Diffie-Hellman

- Alice (A) e Beto (B) desejam estabelecer comunicação segura.
- Possibilidade: usar um algoritmo simétrico para cifrar as mensagens trocadas entre A e B.

• Problema: A e B precisam compartilhar uma chave simétrica.

Protocolo Diffie-Hellman

Pares de chaves:

$$x_{A'}$$
 $y_A = g^{x_A} \mod p$
 $x_{B'}$ $y_B = g^{x_B} \mod p$

- A obtém a chave pública de B e viceversa a partir de uma base de chaves.
- A calcula $y_B^{XA} \mod p$ B calcula $y_A^{XB} \mod p$ = $(g^{XB})^{XA} \mod p$ = $(g^{XA})^{XB} \mod p$ = $g^{XAXB} \mod p$ = $g^{XAXB} \mod p$

Exemplo

- q = 11, p = 23, g = 2.
- $x_A = 5$, $y_A = 2^5 \mod 23 = 9$.
- $x_B = 8$, $y_B = 2^8 \mod 23 = 3$.
- A calcula $y_B^{x_A} \mod p$ B calcula $y_A^{x_B} \mod p$ = $3^5 \mod 23$ = $9^8 \mod 23$ = 13 = 13
- A e B usam a chave compartilhada K = 13 com um algoritmo simétrico.

Limitações

 A chave compartilhada é sempre a mesma (protocolos mais avançados possibilitam chaves voláteis de sessão).

 As operações envolvidas não sugerem um mecanismo óbvio para definir assinaturas digitais (uso exclusivo para negociação de chave de sessão).

Criptossistema RSA

Fatoração Inteira

- Dados dois primos p e q e um inteiro n, é fácil verificar se n = pq: trabalhando com valores de k bits, são necessários cerca de k^2 passos para calcular n.
- Dado apenas n, é difícil calcular p e q.
- Para calcular p e q, são necessários

$$2^{c\sqrt[3]{k\ln^2 k}}$$

passos (esforço quase exponencial).

Algoritmo RSA

Rivest, Shamir, Adleman (1977).

- Primeiro sistema assimétrico completo (cifração e assinatura).
- Algoritmo assimétrico mais amplamente utilizado no mundo.

Patenteado até 2000 (EUA, Canadá).

Chaves RSA

Módulo:

```
n = pq (p \in q: primos de tamanho similar),

\varphi(n) = (p-1)(q-1).
```

Expoente público:

```
e, inversível mod \varphi(n), isto é, primo relativo a \varphi(n).
```

Expoente privado:

```
d, inverso de e \mod \varphi(n), isto é, e \cdot d \equiv 1 \pmod {\varphi(n)}.
```


Exemplo

- p = 7, q = 17, n = 119.
- $\varphi(n) = (7-1)(17-1) = 96.$
- Expoente público:
 - e = 5.
- Expoente privado:
 - $d = 5^{-1} \pmod{96} = 77$.
- Em caso de dúvida:

$$5^{-1} \equiv 5^{\phi(96)-1} \equiv 5^{31} \equiv 77 \pmod{96}$$
. ou diretamente: $5 \cdot 77 = 4 \cdot 96 + 1$.

Operação do RSA

• M: inteiro no intervalo entre 0 e *n*–1.

- Encriptação: C = M^e mod n.
- Decriptação: $M = C^d \mod n$.

- Por que funciona?
 - $C^d \mod n = (M^e \mod n)^d \mod n = M^{ed} \mod n$ $n = M^{ed \mod \varphi(n)} \mod n = M^1 \mod n = M.$

Exemplo

- p = 7, q = 17, n = 119, e = 5, d = 77.
- M = 19 (inteiro no intervalo 0 até 118).
- $C = M^e \mod n = 19^5 \mod 119 = 66$.
- $M = C^d \mod n = 66^{77} \mod 119 = 19$.
- Observação:

```
66^{77} \mod 119 =
(((66^7 \mod 119)^{10} \mod 119) \cdot (66^7 \mod 119)) \mod 119 =
((59^{10} \mod 119) \cdot 59) \mod 119 = (81 \cdot 59) \mod 119 = 19,
onde 66^7 \mod 119 = 59 e 59^{10} \mod 119 = 81.
```


Detalhes dos Parâmetros

- Normalmente o expoente e é pequeno em comparação com o expoente d.
- Restrição: $e > \log_2 n$.
- Valor mais popular: e = 65537 (17 bits, 2 iguais a 1). Vantagem: exponenciação rápida.
- Dados do TCR são armazenados com o expoente d para acelerar as operações aritméticas com a chave privada.

Assinaturas RSA

- Trocar o papel das chaves.
 - Remetente encripta com sua chave privada.
 - Destinatário decripta com a chave pública do remetente.

- Envelope criptográfico:
 - Remetente assina uma mensagem e cifra com a chave pública do destinatário, que inverte essas operações com as chaves complementares.

Cuidados Especiais

 Existem dezenas de vulnerabilidades potenciais na utilização do RSA.

- Não são vulnerabilidades intrínsecas do algoritmo!
- Implementações de produção devem tomar os cuidados necessários para evitar todas essas vulnerabilidades.

RSA e Fatoração Inteira

- O conhecimento dos primos p e q permite calcular o expoente d a partir de e.
- O conhecimento do expoente d permite fatorar o módulo n = pq.
- A equivalência entre a fatoração inteira e o cálculo de C^d mod n sem envolver d, p, q era só uma conjectura até 2008.

Chaves RSA

- Tamanhos comuns de chaves RSA (e.g. ICP-Brasil, SPB):
 - 1024 bits [uso geral]
 - 2048 bits [autoridade certificadora]
 - Tamanho dobrado a partir de 2009.
- Tamanhos recomendados pelo governo da Alemanha (2004):
 - 2048 bits [uso geral]
 - 3072 bits [autoridade certificadora]

Assinaturas DSA

DSA

- Assinatura digital baseada no problema do logaritmo discreto.
- Peculiaridade: algoritmos de cifração e de assinatura baseados em logaritmo discreto são, via de regra, heterogêneos (fórmulas não relacionadas).
- RSA: cifração e assinatura.
- DSA: somente assinatura.

Algoritmo DSA

- Parâmetros:
 - *q*: primo.
 - p: primo tal que p−1 seja múltiplo de q.
 - g: inteiro entre 2 e p–2 tal que g^q mod p = 1.
- Chave privada:
 - x: inteiro aleatório entre 1 e q-1.
- Chave pública:
 - $y = g^x \mod p$.

Algoritmo DSA

- Assinatura: (r, s)
 - k: inteiro aleatório entre 1 e q−1.
 - $h \leftarrow \text{hash}(M)$.
 - $r \leftarrow (g^k \mod p) \mod q$ (se r = 0, mudar k).
 - $s \leftarrow (h + xr) \cdot k^{-1} \mod q$.
- Verificação:
 - $u \leftarrow h \cdot s^{-1} \mod q$.
 - $v \leftarrow r \cdot s^{-1} \mod q$.
 - aceitar \Leftrightarrow $(g^u y^v \mod p) \mod q = r$.

Envelope criptográfico

Envelope puro

• O uso de algoritmos simétricos e funções de hash motiva-se pela maior eficiência desse algoritmos. Contudo...

Epílogo

Estabelecendo uma ICP

 Serviços básicos da segurança: algoritmos simétricos, assimétricos e auxiliares.

 Como garantir que as informações públicas (e.g. identidade das partes envolvidas) são realmente confiáveis?