Reactor 1 C_2H_6 C2H6 - C2H6 + H2 Separato O2, C2H4, N2, C2H4O V = 81 ft3 X = 0.8Reactor 2 Cyt, + 102 Ag CH2 CH2 W = 45,440 lb C2H4O Reactor 3 C₂H₄O(aq) V = 197 ft³ OH-CH₂-CH₂-OH

Process Flowsheet for Ethylene Glycol Manufacture

From "Elements of Chemical Reaction Engineering", 4th Editions, H.S. Fogler, For teaching purposes only.

Lecture #2.1

- Chemical industries involve at least one chemical reaction
- Chemical reactions take place in a REACTOR
- Reaction, Reactors and more Reactors!

GOUTAM DEO

CHEMICAL ENGINEERING DEPARTMENT

IIT KANPUR

Briefly

- ► Course policy
- Course content
- Reactions occur in primarily three ways
- ► Importance of Chemical Engineering Thermodynamics
- Reaction rate is independent of the reactor and is an algebraic function

ESO201A & CHE251A intro. us to mass, species, & energy balances in chemical processes

▶ For a control volume (Reactor) the three balances can be applied

$$(F_{j})_{inlet} _{-}(F_{j})_{outlet} + G_{j} = \frac{d(Nj)_{cV}}{dt} \quad F_{j} \rightarrow \frac{moles\ of\ species\ 'j'}{time} \quad G_{j} \rightarrow \frac{moles\ of\ 'j'\ generated}{time}$$

$$\sum_{inlet} \dot{E} - \sum_{outlet} \dot{E} + \dot{Q} - \dot{W} = \frac{dE_{cV}}{dt} \quad \dot{E} \rightarrow \frac{Energy\ (Enthalpy)}{time} \quad (Nj)_{cV} \rightarrow moles\ of\ 'j'\ in\ CV_{outlet}$$

From simple to complex for understanding

Balance for species A (not showing heat and work)

Reactants and Inerts

Reactor

Outlet species

Unconverted reactants, products and Inerts

$$(F_A)_{inlet}$$
 $(F_A)_{outlet}$ + G_A = $\frac{d(N_A)_{CV}}{dt}$ = 0 for steady state

$$F_A \rightarrow \frac{moles\ of\ A}{time}$$

$$G_A
ightarrow rac{moles\ of\ A\ generated}{time}$$

$$(N_A)_{CV} \rightarrow moles\ of\ A\ in\ CV$$

$$(\Delta V)_k \leftrightarrow (r_A)_k$$
Reactor

Rate of Generation, G_A , is $G_A = \sum_{k=1}^n g_A = \sum_{k=1}^n (r_A)_k \cdot (\Delta V)_k$ summed over all volume Rate of Generation, G_A , is elements $(\Delta V)_k$

$$\longrightarrow G_A = \sum_{k=1}^n g_A = \sum_{k=1}^n (r_A)_k \cdot (\Delta V)_k$$

Ideal reactors are defined based on variations of rates in Reactor

- ► For a well-mixed reactor, all $(r_A)_k$ are the same (rate of reaction is the same through out the reactor \rightarrow T, P, Conc., Cat same throughout)
 - "Ideal" BATCH REACTOR and "Ideal" Continuous Stirred Tank Reactor (CSTR)
 - BATCH Reactor does not have any inlet or outlet flow and a CSTR is a ideal flow reactor
 - Then, $G_A = \sum_{k=1}^{\infty} (r_A)_k \cdot (\Delta V)_k = r_A \cdot V$
- Else, $G_A = \sum_{k=1}^n (r_A)_k \cdot (\Delta V)_k = \int r_A \cdot dV$

A general mole balance equation for species *j* in a reactor is useful for analysis

$$F_{j0} - F_j + \int r_j \, dV = \frac{dN_j}{dt}$$

In – Out + Generation = Accumulation ← for species j

- where, F_{j0} \rightarrow inlet molar flow rate of j, $\frac{moles\ of\ j}{time}$ $F_{j} \rightarrow \text{outlet molar flow rate of}\ j$, $\frac{moles\ of\ j}{time}$
 - $r_j \rightarrow \text{rate of formation of } j \text{ (applicable if } j \text{ is reactant or product), } \frac{moles\ of\ j\ formed}{volume.time}$
 - $N_j \rightarrow \text{moles of A in Reactor at time 't', moles of } j$

▶ The general mole balance eqⁿ can be applied to different Reactors

Batch Reactor (BR) is a closed system

Batch Reactors used for

- Testing new process that are under R&D
- Manufacture of expensive products
- Processes difficult to make continuous (Biochemical reactions, pharmaceuticals, paints, some polymerization reactions)
- Disadvantages
 - High labor
 - Variability of product
 - Difficulty for large scale operation
- Semi-batch used for gas-liquid reactions

Mole balance for species j

$$F_{j0} - F_j + \int r_j dV = \frac{dN_j}{dt}$$
$$F_{j0} = 0 = F_j$$

Well-mixed $\rightarrow \int r_j . dV = r_j . V$

V is the volume of the **BR**, which may or may not change with **t**

Thus, the **design eq**ⁿ is

$$\frac{dN_j}{dt} = r_j.V$$

For semi batch reactor

$$F_{j0}$$
 or $F_j \neq 0$

Time taken to achieve a certain amount of product can be determined

Design equation can be integrated

$$\frac{dN_j}{dt} = r_j.V$$

lacksquare With $N_j=N_{j0}$ at t=0 and $N_j=N_{j_required}$ at $t=t_{required}$

$$t_{required} = \int_{N_{j0}}^{N_{j-required}} \frac{dN_{j}}{r_{j}.V}$$

- This is the time required to change the number of moles of j from N_{j0} to $N_{j_required}$
- ▶ NOTE: we have assumed $V \neq f(t)$

