

Fondamenti di Automatica – A.A. 2023/2024

Esercitazione 09: Stabilità e prestazioni dei sistemi retroazionati

Ingegneria Informatica Prof. Fredy Ruiz

# Criteri per stabilità in anello chiuso

Come possiamo analizzare la stabilità di sistemi complessi interconnessi in retroazione?

Criterio di Nyquist



Criterio di Bode



NOTA: Ovviamente è sempre possibile valutare i poli di  $F(s) = \frac{L(s)}{1 + L(s)}$ 

#### Funzioni di sensitività



#### Funzioni di sensitività

Analizzando lo schema di controllo in figura, si possono ottenere le seguenti relazioni:

$$Y(s) = F(s)Y^{0}(s) + S(s)D(s) - F(s)N(s)$$

$$E(s) = S(s)Y^{0}(s) - S(s)D(s) + F(s)N(s)$$

$$U(s) = Q(s)Y^{0}(s) - Q(s)D(s) - Q(s)N(s)$$



#### Sentitività complementare

$$F(s) = \frac{R(s)G(s)}{1 + R(s)G(s)}$$

#### Sentitività

$$S(s) = \frac{1}{1 + R(s)G(s)}$$

Sentitività del controllo

$$Q(s) = \frac{R(s)}{1 + R(s)G(s)}$$

### Requisiti di un sistema di controllo

• Asintotica stabilità: Criteri di Nyquist e di Bode

• **Prestazioni statiche**: valutano l'andamento dell'errore di controllo e(t) a transitorio esaurito a fronte di disturbi (disturbi non sinusoidali).

• **Prestazioni dinamiche**: riguardano il comportamento durante il transitorio del sistema. Ci riferiremo soltanto all'attenuazione di disturbi a una determinata frequenza, (<u>disturbi sinusoidali</u>) oppure all'approssimazione ai poli dominanti della sensitività.

# Prestazioni statiche (segnali non sinusoidali)

Vogliamo valutare l'andamento di e(t), a fronte di una variazione di y(t) = Asca(t)



# $\hookrightarrow$

#### Teorema del valor finale

Consideriamo una generica L(s)

$$L(s) = \frac{\mu_L \prod_i (1 + \tau_i s) \prod_i (1 + \frac{2\zeta_i s}{\alpha_{ni}} + s^2 \alpha_{ni}^2)}{s^{g_L} \prod_i (1 + T_i s) \prod_i (1 + \frac{2\xi_i s}{\omega_{ni}} + s^2 \omega_{ni}^2)}$$

E la funzione di sensitività complementare

$$S(s) = \frac{1}{1 + L(s)}$$

$$\lim_{s \to 0} S(s) = \lim_{s \to 0} \frac{s^{g_L}}{s^{g_L} + \mu_L}$$

# Prestazioni statiche (segnali non sinusoidali)

Vogliamo valutare l'andamento di e(t), a fronte di una variazione di y(t) = Asca(t)



#### Teorema del valor finale

$$e(\infty) = \lim_{s \to 0} s E(s) = \lim_{s \to 0} s \frac{A}{s} S(s) = \lim_{s \to 0} AF(s) = \lim_{s \to 0} \frac{s^{g_L}}{s^{g_L} + \mu_L} A$$



Il valore dell'errore dipende solo da **guadagno**, dal **tipo** e dall'**ampiezza** del disturbo.

# Prestazioni statiche (segnali non sinusoidali)

Vogliamo valutare l'andamento di e(t), a fronte di una variazione dei disturbi



$$e(\infty) = \lim_{s \to 0} \frac{s^{g_L}}{s^{g_L + \mu_L}} \frac{A}{s^{r-1}}$$



A fronte di segnali  $y^0(t)$  e d(t) tali che  $Y^0(s) = \frac{A_1}{s^{r_1}}$  e  $D(s) = \frac{A_2}{s^{r_2}}$ , possiamo ottenere la seguente **tabella**, per  $r_i = 1,2,3$ , che determina l'entità dell'<u>errore a transitorio esaurito</u> in funzione del tipo  $g_L$  e del guadagno  $\mu_L$  della funzione L(s).

| Segnale $y^{\circ}(t)$ o $d(t)$ | Asca(t)             | Aram(t)           | Apar $(t)$        |
|---------------------------------|---------------------|-------------------|-------------------|
| $g_L = 0$                       | $\frac{A}{1+\mu_L}$ | $\infty$          | $\infty$          |
| $g_L = 1$                       | 0                   | $\frac{A}{\mu_L}$ | $\infty$          |
| $g_L = 2$                       | 0                   | 0                 | $\frac{A}{\mu_L}$ |
| $g_L = 3$                       | 0                   | 0                 | 0                 |

Nota: Con un ingresso r>0 avrò  $e(\infty)=0$  solo se  $g_L\geq r$ .

Tuttavia abbondare di poli nell'origine potrebbe portare ad un cattivo margine di fase...

# Prestazioni dinamiche (segnali sinusoidali)

Per analizzare il comportamento dinamico, dobbiamo studiare, alla frequenza del disturbo, cosa succede alla funzione di trasferimento (alle sensitività).



#### Teorema della risposta in frequenza

Consideriamo un disturbo sinusoidale su  $n(t) = A\sin(\overline{\omega}t)$ 

$$|e(\infty)| = |F(j\overline{\omega})|A$$

Nota: andremo a considerare sempre solo l'effetto sul modulo dell'errore (non consideriamo la fase)

Cerchiamo di capire come ricavare il modulo di  $|F(j\overline{\omega})|$  partendo dal diagramma di Bode di  $L(j\omega)$ 

### Approssimazione delle sensitività

1) Supponiamo siano verificate le condizioni di applicabilità del criterio di Bode

$$\begin{cases} |L(j\omega)|_{dB} > 0 & |L(j\omega)| > 1 & \omega < \omega_c \text{ Amplifica} \\ |L(j\omega)|_{dB} < 0 & |L(j\omega)| < 1 & \omega > \omega_c \text{ Attenua} \end{cases}$$

ightharpoonup Consideriamo un generico disturbo alla pulsazione  $\overline{\omega}$  e cerchiamo il termine "dominante" al denominatore

$$|F(j\overline{\omega})| = \frac{|L(j\overline{\omega})|}{|1| + |L(j\overline{\omega})|} \cong \begin{cases} per & \overline{\omega} < \omega_c & |L(j\overline{\omega})| > 1 \\ per & \overline{\omega} > \omega_c & |L(j\overline{\omega})| < 1 \end{cases} \rightarrow \frac{\frac{|L(j\overline{\omega})|}{|L(j\overline{\omega})|}}{1} = 1$$

### Approssimazione delle sensitività

Con lo stesso principio possiamo approssima tutte le funzioni di sensitività

$$|F(j\overline{\omega})| \cong \begin{cases} 1, & \overline{\omega} < \omega_c \\ |L(j\overline{\omega})|, & \overline{\omega} > \omega_c \end{cases} \qquad |S(j\overline{\omega})| \cong \begin{cases} \frac{1}{|L(j\overline{\omega})|}, & \overline{\omega} < \omega_c \\ 1, & \overline{\omega} > \omega_c \end{cases}$$

$$|Q(j\overline{\omega})| \cong \begin{cases} \frac{1}{|G(j\overline{\omega})|}, & \overline{\omega} < \omega_c \\ |R(j\overline{\omega})|, & \overline{\omega} > \omega_c \end{cases}$$

# Prestazioni dinamiche (approssimazione ai poli dominanti)

• Sotto l'ipotesi di applicabilità del criterio di Bode e di asintotica stabilità del sistema retroazionato, possiamo approssimare la F(s) ai poli dominanti:



Sistema del second'ordine

### Prestazioni dinamiche (approssimazione ai poli dominanti)

Dove il guadagno di F(s) si calcola come:

$$\mu_F \cong \begin{cases} \frac{\mu_L}{1 + \mu_L}, & g_L = 0\\ 1, & g_L > 0 \end{cases}$$

E lo smorzamento come:

$$\xi_F = \sin\left(\frac{\varphi_m}{2}\right) \approx \varphi_m/100$$

# Prestazioni dinamiche (approssimazione ai poli dominanti)

La durata dei transitori è quindi:

$$T_a \cong \begin{cases} \frac{5}{\omega_c}, & \varphi_m \ge 75^{\circ} \\ \frac{5}{\xi_F \omega_c}, & \varphi_m < 75^{\circ} \end{cases}$$

Nel caso di approssimazione a polo reale, i transitori non introducono oscillazioni o sovraelongazioni, mentre nel caso di approssimazione a poli complessi coniugati, si ha che la sovraelongazione percentuale S% e il periodo di oscillazione  $T_p$  sono, rispettivamente

$$S\% = 100e^{-\frac{\xi_F \pi}{\sqrt{1 - \xi_F^2}}} \qquad T_p = \frac{2\pi}{\omega_c \sqrt{1 - \xi_F^2}}$$

#### **Esempio**

$$y^{o} = 10sca(t)$$
  $L(s) = \frac{10}{s(1+0.01s)}$ 



➤ Il criterio di Bode è applicabile



$$\omega_c = 9.95 \frac{rad}{s}$$

$$\varphi_m = 84.3^{\circ}$$

Possiamo approssimare F(s) come una funzione del prim'ordine ( $\varphi_m \ge 75^\circ$ )

#### **Esempio**

$$y^{o} = 10sca(t)$$
  $L(s) = \frac{10}{s(1+0.01s)}$ 

➤ Il criterio di Bode è applicabile

$$\mathbf{F}(s) \approx \frac{\mu_F}{1 + \frac{s}{\omega_c}}$$

$$\mu_F = \mathbf{1}$$
 dato che il tipo  $g_L = 1 \rightarrow T_a = \frac{5}{\omega_c}$ 





$$\omega_c = 9.95 \frac{rad}{s} \ \varphi_m = 84.3^{\circ}$$

Possiamo approssimare F(s) come una funzione del prim'ordine ( $\varphi_m \ge 75^\circ$ )

### **Esempio**

$$y^{o} = 10sca(t) \qquad y^{o} \xrightarrow{e} \xrightarrow{R(s)} \xrightarrow{Q(s)} \xrightarrow{d} y$$

$$L(s) = \frac{10}{s(1+0.01s)} \qquad F(s) = \frac{L(s)}{1+L(s)}$$

 $\triangleright$  Approssimazione ai poli dominanti di F(s)

$$F(s) \approx \frac{1}{1 + \frac{s}{9.95}}$$
  $T_a \approx \frac{5}{9.95} \approx 0.5s$ 

