FÍSICA - FORMULÁRIO

CINEMÁTICA

Grandezas básicas

$$V_m = \frac{\Delta s}{\Delta t}$$
 $a = \frac{\Delta v}{\Delta t}$

M.R.U.

$$= s_0 + v \cdot t$$

M.R.U.V.

$$v = v_0 + \mathbf{a} \cdot t$$

$$s = s_0 + v_0 t + \frac{1}{2}$$

$$v^2 = v_0^2 + 2a\Delta s$$

Lançamento de projéteis

$$h_{m\acute{a}x} = \frac{{v_0}_y^2}{2g} \quad t_{hm\acute{a}x} = \frac{{v_0}_y}{g}$$

$$A = \frac{{v_0}^2 \operatorname{sen}(2\theta)}{\tilde{s}}$$

$$\omega_m = \frac{\Delta \varphi}{\Delta t} = \frac{2\pi}{T}$$
 $\gamma = \frac{\Delta \omega}{\Delta t}$

$$\varphi = \frac{S}{R} \quad \omega = \frac{v}{R} \quad \gamma = \frac{V}{R}$$

Acoplamento de polias

Por correia
$$v_a = v_b$$

$$f_a R_a = f_b R_b$$

$$\omega_a R_a = \omega_b R_b$$

Por eixo

$$\omega_a = \omega_b$$

$$\frac{v_a}{R_a} = \frac{v_b}{R_b}$$

DINÂMICA

2ª lei de Newton

$$F_r = ma$$

Lei de Hooke

$$F = kx$$

Força de atrito

$$|Fat_e \le \mu_e N|$$
 $|Fat_c = \mu_c N|$

Momento de uma força (torque)

$$M = Fd$$

Resultante centrípeta

$$F_{cp} = ma_c a_c = \frac{v^2}{R} = \omega^2 R$$

Trabalho

$$\tau = Fd \cdot cos\theta$$
 $\tau = \Delta E$

Potência mecânica

$$\mathcal{P} = \frac{\tau}{\Lambda t} = Fv$$

Rendimento

$$\eta = \frac{\mathcal{P}_u}{\mathcal{P}_t}$$

Energia cinética

$$E_c = \frac{mv^2}{2}$$

Energia potencial gravitacional

$$E_{pg} = mgh$$

Energia potencial elástica

$$E_{pe} = \frac{kx^2}{2}$$

Energia mecânica

$$E_m = E_c + E_p$$

Quantidade de movimento

$$Q = mv$$

Impulso

$$I = F\Delta t \qquad I = \Delta Q$$

Coeficiente de restituição

$$e = \frac{\left| v_{af} \right|}{\left| v_{ap} \right|}$$

Centro de massa

$$X_{CM} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n}$$

Gravitação

Força gravitacional
$$F = G \frac{Mm}{d^2}$$

 3^{a} lei de Kepler $T^{2} = kR^{3}$

Velocidade de um satélite
$$v = \sqrt{\frac{GM}{d}}$$

Hidrostática

Pressão

$$p = \frac{F}{A}$$

Densidade ou massa específica

$$\mu = \frac{m}{V}$$

Pressão no interior de um líquido

$$p_l = \mu g h$$

Vasos comunicantes

$$\mu_a h_a = \mu_b h_b$$

Princípio de Pascal

$$p_1 = p_2 \Rightarrow \overline{\frac{F_1}{A_1} = \frac{F_2}{A_2}}$$

Empuxo $E = \mu_l V_l g$

 $P = P_a + E$

$$r = r_a + E$$

ÓPTICA

Associação de espelhos planos

$$n = \frac{360^{\circ}}{\alpha} - 1$$

Equação dos pontos conjugados

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}$$

Ampliação da imagem

$$A = \frac{i}{o} = -\frac{p'}{p}$$

Índice de refração

$$n_{2,1} = \frac{v_1}{v_2}$$

Lei de Snell-Descartes

$$\frac{\operatorname{sen}\hat{\iota}}{\operatorname{sen}\hat{r}} = \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

Reflexão interna total

$$sen \hat{L} = \frac{n_{menor}}{n_{maior}}$$

Lâmina de faces paralelas

$$d = e \frac{\operatorname{sen}(\hat{\imath} - \hat{r})}{\cos \hat{r}}$$

Desvio produzido por um prisma

$$\varphi = \hat{\imath} + \hat{\imath}' - \hat{A}$$

Convergência ou vergência

$$V = \frac{1}{f}$$

TERMODINÂMICA

Termometria

	°C	K	°F
Fusão	0	273	32
Ebulição	100	373	212

$$\frac{T_{x} - T_{F_{x}}}{T_{E_{x}} - T_{F_{x}}} = \frac{T_{y} - T_{F_{y}}}{T_{E_{y}} - T_{F_{y}}}$$

Dilatação

Linear $\Delta L = \alpha L_0 \Delta T$ Superficial $\Delta A = \beta A_0 \Delta T$ $\beta \cong 2\alpha$ Volumétrica $\Delta V = \gamma V_0 \Delta T$ $\gamma \approx 3\alpha$

$$\Delta V_r = \Delta V_{ap} + \Delta V_{rec}$$

Calorimetria

Calor latente $L = \frac{Q}{m}$

Capacidade calorífica $C = \frac{Q}{\Lambda T}$

Calor específico $c = \frac{C}{m} = \frac{Q}{m\Delta T}$

Transferência de calor por condução

$$\phi = \frac{\Delta Q}{\Delta t} = k \frac{A(T_2 - T_1)}{L}$$

Estudo dos gases

Lei geral dos gases perfeitos

$$\frac{P_0 V_0}{T_0} = \frac{PV}{T}$$

Equação de Clapeyron

$$\frac{\overline{PV}}{T} = nR$$

Leis da termodinâmica

$$\Delta Q = \tau + \Delta U$$

Transformação

Isobárica $\tau = p \cdot \Delta V$ Isotérmica $\tau = Q$

Isométrica $\Delta U = Q$ $\tau = 0$

Adiabática $\Delta U = -\tau$

Cíclica $\tau = Q = Q_1 - Q_2$

Rendimentos

$$\eta = \frac{\mathcal{P}_u}{\mathcal{P}_t} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$$

Rendimento na máquina de Carnot

$$\boxed{\frac{Q_2}{Q_1} = \frac{T_2}{T_1} \Longrightarrow \eta = 1 - \frac{T_2}{T_1}}$$

ONDULATÓRIA

Movimento harmônico simples

$$x = A\cos(\omega t + \varphi_0)$$

$$v = -\omega A \sin(\omega t + \varphi_0)$$

$$a = -\omega^2 x$$

Velocidade angular de um sistema massa-mola

$$\omega = \sqrt{k/m}$$

Velocidade angular de um pêndulo

$$\omega = \sqrt{g/L}$$

Velocidade das ondas

$$v = \frac{\lambda}{T} = \lambda f$$

Em uma corda $v = \frac{F}{\mu}$

Acústica

Intensidade sonora $I = \frac{P}{A} = \frac{\Delta E}{A \cdot \Delta t}$

Nível sonoro $\beta = 10 \log \frac{1}{L}$

Cordas e tubos sonoros

Frequência de uma corda ou tubo sonoro $f_n = n \cdot f_1$

corda ou tubo sonoro aberto $f_n = \frac{n v}{2L}$ tubo sonoro fechado $f_{(2n-1)} = \frac{(2n-1)\nu}{4L}$

Efeito Doppler

$$f' = f\left(\frac{v \pm v_{o}}{v \pm v_{f}}\right)$$

ELETROSTÁTICA

Carga elétrica de um corpo

$$Q = n \cdot e$$

Lei de Coulomb

$$F = k \frac{|Q \cdot q|}{d^2}$$

Vetor intensidade campo elétrico

$$E = \frac{F}{q} = \frac{k|Q|}{d^2}$$

Energia potencial elétrica

$$E_{pe} = k \frac{Q \cdot q}{d}$$

Potencial elétrico
$$V_A = \frac{E_{pe}}{q} = k \frac{Q}{d}$$

Trabalho da força elétrica $\tau_{AB} = Uq$

ddp em campo elétrico uniforme U = E.d

Capacitância

$$C = \frac{Q}{U} V = \frac{Q_1 + Q_2 + \dots + Q_n}{C_1 + C_2 + \dots + C_n}$$

Energia elétrica armazenada

$$W = QU/2$$

Capacitor de placas paralelas

$$C = \epsilon \frac{A}{d} \quad E = \frac{Q}{\epsilon \cdot A}$$

ELETRODINÂMICA

Corrente elétrica
$$i = \frac{\Delta Q}{\Delta t}$$

1^a lei de Ohm
$$R = \frac{U}{i}$$

2^a lei de Ohm
$$R = \rho \frac{l}{A}$$

Potência elétrica
$$\mathcal{P} = iU$$

Energia elétrica
$$E_{ele} = \mathcal{P}\Delta t$$

Força eletromotriz
$$\mathcal{E} = \frac{\Delta \tau}{\Delta Q}$$

$$U = \mathcal{E} - ri$$

$$\boxed{\mathcal{P}_u = Ui} \boxed{\mathcal{P}_t = \mathcal{E}i} \boxed{\mathcal{P}_d = ri^2}$$

$$\eta = \frac{\mathcal{P}_u}{\mathcal{P}_t} = \frac{U}{\mathcal{E}}$$

Equação do receptor

$$U = \mathcal{E}' + r'i$$

$$\frac{ [\mathcal{P}_t = Ui] }{ [\mathcal{P}_u = \mathcal{E}'i] } \frac{ [\mathcal{P}_d = ri^2] }{ [\mathcal{P}_d = ri^2] }$$

$$\frac{ [\mathcal{P}_t = \mathcal{E}'i] }{ [\mathcal{P}_d = ri^2] }$$

Lei de Ohm generalizada

$$U = \sum (R + r + r') \cdot i + \sum \varepsilon' - \sum \varepsilon$$

MAGNETISMO

Campo magnético

Em fio $B = \frac{\mu i}{2\pi d}$

Em espira circular $B = \frac{\mu i}{2d}$

Em bobina $B = \left(\frac{\mu i}{2d}\right) N$

Em solenoide $B = \mu i \frac{N}{l}$

Força magnética

 $F = Bqv \cdot \operatorname{sen} \varphi$

Em um fio condutor

 $F = Bil \cdot \operatorname{sen} \varphi$

Entre fios paralelos

 $F = \frac{\mu i_1 i_2 l}{2\pi d}$

Indução magnética

Fluxo magnético $\Phi = BA \cos \varphi$

Lei de Faraday $\varepsilon = -\frac{\Delta\Phi}{\Delta t}$

Transformador $\frac{U_2}{N_2} = \frac{U_1}{N_1}$

 $P_1 = P_2 \rightarrow U_1 i_1 = U_2 i_2$

PRINCIPAIS RELAÇÕES MATEMÁTICAS E DE VALORES

$$\boxed{1 \frac{m}{s} = 3.6 \frac{km}{h}} \quad \boxed{1L = 1 dm^{3}}$$

$$\boxed{dam^{3} \xrightarrow{\times 1000} \boxed{m^{3}} \xleftarrow[dm^{3}]}$$

 $1atm = 760mmHg \cong 10^5 N/m^2$ $1cal \cong 4,186J$

Carga elétrica de um elétron (e)

 $e \cong 1.6 \cdot 10^{-19}C$

Constante universal dos gases (R)

$$8,31 \frac{J}{mol \cdot K} \cong 0,082 \frac{atm \cdot L}{mol \cdot K} \cong 2 \frac{cal}{mol \cdot K}$$

Prefixos		
mili m		10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10-9

Teorema do paralelogramo $a^2 = b^2 + c^2 + 2bc \cdot \cos \alpha$

FÍSICA - UNIDADES DO SI

UNIDADES FUNDAMENTAIS

Grandeza	Unidade	Símbolo	Observações e definições (simplificado)
Comprimento	metro	m	Comprimento percorrido pela luz no vácuo, no intervalo de 1/299 792 458 segundos.
Massa	quilograma	kg	Massa do protótipo internacional.
Тетро	segundo	s	Duração de 9 192 631 770 períodos da radiação correspondente à transição entre dois níveis hiperfinos do estado fundamental do átomo de césio 133.
Corrente elétrica	ampère	A	Corrente mantida em dois condutores paralelos, situados no vácuo a 1 metro de distância um do outro, produz uma força entre esses condutores igual a $2 \cdot 10^{-7}$ newtons.
Temperatura	kelvin	K	Fração 1/273,16 da temperatura termodinâmica do ponto tríplice da água.
Quantidade de matéria	mol	mol	Quantidade de matéria contida em 0.012 kg de carbono 12. Equivalente a $6.02 \cdot 10^{23}$.
Intensidade luminosa	candela	cd	Intensidade luminosa de uma fonte emissora de radiação monocromática na frequência de 540 · 10 ¹² hertz, com uma intensidade energética, de 1/683 watts por esferorradiano.

UNIDADES DERIVADAS				
Grandeza	Unidade	Símbolo	Observações e definições (simplificado)	
Área	metro quadrado	m^2		
Volume	metro cúbico	m^3		
Ângulo	radiano	rad		
Densidade	quilograma por m ³	kg/m^3		
Velocidade	metro por segundo	m/s		
Aceleração	metro por s ²	m/s^2		
Força	newton	N	$1N = 1kg \cdot m/s^2$	
Pressão	pascal	Pa	N/m^2	
Trabalho, energia	joule	J	$1J = N \cdot m$	
Potência	watt	\overline{W}	$W = J/s$ ou $W = N \cdot m/s$	
Intensidade sonora	potência por área	W/m^2		
Nível sonoro	decibel	dB		
Frequência	hertz	Hz	Quantidade de ciclos em um segundo (s^{-1})	
Convergência ou vergência	dioptria	di	$di = m^{-1}$	
Carga elétrica	coulomb	С		
Diferença de potencial (ddp)	volt	\overline{V}	J/C	
Capacitância	farad	F	C/V	
Resistência elétrica	ohm	Ω	V/A	
Fluxo magnético	weber	Wb	$1Wb = 1T \cdot m^2$	
Indução magnética	tesla	T	$1T = 1N/(C \cdot m/s)$ ou $1N/(A \cdot m)$	

FÍSICA - CONSTANTES FÍSICAS & hexag

Constante	Símbolo	Valor para cálculo	Valor + (incerteza) + unidade
Velocidade da luz no vácuo	С	$3\cdot 10^8 m/s$	2 997 924 58 m/s (exato)
Carga elementar	e	1,6 · 10 ⁻¹⁹ C	1,602 177 33(49) · 10 ^{−19} C
Número de Avogadro	N_A	$6,02 \cdot 10^{23}$	$6,022\ 136\ 7(36)\cdot 10^{23}$
Constante da gravitação universal	G	$6,67 \cdot 10^{-11} \frac{N \cdot m^2}{kg^2}$	$6,67259(85)\cdot 10^{-11}\frac{N\cdot m^2}{kg^2}$
Permissividade elétrica do vácuo	ϵ_0	$8,8 \cdot 10^{-12} \; \frac{C^2}{Nm^2}$	$8,854\ 187\ 817\ \cdot 10^{-12} \frac{C^2}{Nm^2} (\text{exato})$
Permeabilidade magnética do vácuo	μ_0	$4\pi \cdot 10^{-7} \; \frac{T \cdot m}{A}$	$4\pi \cdot 10^{-7} \frac{T \cdot m}{A} \text{(exato)}$
Constante eletrostática do vácuo ou constante de Coulomb	k_0	$9 \cdot 10^9 \frac{\textit{N} \cdot \textit{m}^2}{\textit{C}^2}$	$8,987\ 551\ 787\cdot 10^9 \frac{N\cdot m^2}{C^2} \text{ (exato)}$
Unidade de massa atômica	и	$1,66 \cdot 10^{-12} kg$	$1,660\ 540\ 2(10)\cdot 10^{-12}kg$
Constante dos gases	R	$8,31 \frac{J}{\text{mol} \cdot K}$	8,314 510(70) J mol·K
Constante de Planck	h	6,63 · 10 ⁻³⁴ J · s	$6,626\ 075(40)10^{-34}\ \text{J}\cdot\text{s} \text{ (exato)}$