Example

Graphs

R. K. Ghosh

- Two possible variations in problems:
 - Single source shortest paths
 - All pairs of shortest paths
- ▶ Single source shortest path can be executed *n* times each with a different source vertex for all pairs shortest path.
- So, let us first examine how single source shortest path can be solved.

Djikstra's Algorithm

- Dijkstra's algorithm partitions the set of vertices logically into three partitions.
 - Set S: consists of vertices $u \in V$ such that dist[v] (from source s) already known.
 - Set I_1 : consists of vertices $v \in V S$ such that each $v \in I_1$ is directly connected to a vertex $x \in S$.
 - Set I_2 : consists of vertices $w \in V S I_1$.
- ▶ Dijkstra's algorithm iteratively expands set S to include all vertices in V.

Example

With source vertex 1, set $S = \{1\}$ and consider edges incident on vertices of S for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
2	∞	6	undef	1
3	∞	2	undef	1
4	∞	16	undef	1
7	∞	14	undef	1

Select vertex 3 (minimum d value) for inclusion into set S. So, $S=\{1,3\}$ and p[3]=1.

Blue colored vertices are in set S, yellow colored vertices are in set I_1 , and organge colored are in set I_2 .

Now set $S=\{1,3\}$ and only edges with end points 1 and 3 are considered for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
2	6	6	1	1
4	16	16	1	1
5	∞	5	undef	3
6	∞	10	undef	3
7	14	14	1	1

Select vertex 5 for inclusion into set S.

So
$$S = \{1, 3, 5\}$$
, and $p[3] = 1, p[5] = 3$

Blue colored vertices are in set S, yellow colored vertices are in set I_1 .

Now set $S = \{1, 3, 5\}$ and only edges with end points 1, 3 and 5 are considered for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
2	6	6	1	1
4	16	9	1	5
6	10	10	3	3
7	14	14	1	1

Select vertex 2 for inclusion into set S. So $S = \{1, 2, 3, 5\}.$

$$p[3] = 1, p[5] = 3, p[2] = 1$$

Blue colored vertices are in set S, yellow colored vertices are in set I_1 .

Now set $S = \{1, 2, 3, 5\}$ and only edges with end points 1, 2, 3 and 5 are considered for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
4	16	9	5	5
6	10	10	3	3
7	14	14	1	1 1

Select vertex 4 for inclusion into set S. So $S = \{1, 2, 3, 5\}$.

$$p[3] = 1, p[5] = 3, p[2] = 1, p[4] = 5$$

Blue colored vertices are in set 1, yellow colored vertices are in set 2.

Now set $S = \{1, 2, 3, 4, 5\}$ and only edges with end points in S are considered for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
6	10	10	3	3
7	14	14	1	1

Select vertex 6 for inclusion into set S. So $S = \{1, 2, 3, 4, 5\}$. p[3] = 1, p[5] = 3, p[2] = 1, p[4] = 5, p[6] = 3

Blue colored vertices are in set 1, yellow colored vertices are in set 2.

The remaining vertex 7 is included in S the last iteration.

$$S=\{1,2,3,4,5,6,7\} \text{ and } \\ p[3]=1,p[5]=3,p[2]=1,p[4]=5,p[6]=3,p[7]=6.$$

Pseudo Code for Edge Relaxation

```
Relax(u, v) {
    new_d = min {d[v], d[u] + w(u,v)};
    if (new_d[v] < d[v]) {
        d[v] = new_d;
        p[v] = u;
    }
}</pre>
```

Pseudo Code for Dijkstra's Algorithm

```
for all (v \in V) {
    d[v] = \infty; // Initialize distances
    p[v] = undef;
choose(s); // Source
d[s] = 0; // Initialize source distance
Q = V; // Initialize queue
while (!isEmpty(Q)) {
   u = \min(d[u]); // Add new vertex
   Q = Q - \{u\}; // Update Q
   for each (v \in ADJ_G(u))
       Relax(u,v);
```

Optimal Substructure Property

- ► Consider a shortest path from *s* to *t*.
- ▶ Let v be an intermediate vertex on the path.
- ▶ Consider subpath $s \leadsto v$.
- ▶ If the subpath $s \leadsto v$ is not a shortest path, then \exists a shorter path from s to v.
- ▶ It implies that that using the above shorter path we can reduce the cost of shortest path from *s* to *t*.

Correctness of Dijkstra

- ▶ Let v be the first vertex added to S such that $d[v] \neq dist[v]$.
- ightharpoonup v cannot be s, because d[s] = 0.
- ▶ There must be path from s to v, otherwise d[v] would be ∞ .
- ▶ Since, there is a finite path, a shortest path also exists.
- Furthermore the shortest path to $s \leadsto v$ does lie completely inside S.

Correctness of Dijkstra

- ▶ Consider shortest path $P: s \leadsto v$.
- Consider two partitions of

$$P = P_1 \cup P_2,$$

where P_1 completely belongs to S.

Let y be first vertex on shortest path from s to v that does not belong to S.

Correctness of Dijkstra

▶ When x is included in S, d[x] = dist[x] and edge $x \to y$ must have been used to update

$$\mathsf{d}[y] = \mathsf{dist}[y] \leq \mathsf{dist}[v] \leq \mathsf{d}[v] \implies \mathsf{d}[y] \leq \mathsf{d}[v].$$

- Since both y and v are in V-S when v was chosen, $d[v] \le d[y].$
- ► The above two set of inequalities imply d[y] = dist[y] = dist[v] = d[v].
- ▶ So, d[v] = dist[v] is a contradiction.

Running Time of Dijkstra's Algorithm

- ▶ Once Q is empty the algorithm terminates.
- ▶ On each iteration one vertex (with minimum d value) is added to S. Finding minimum requires |V| 1 time.
 - So, with |V|-1 iterations, it gives running time $|V|^2$.
- ▶ After a vertex is included in S it performs updates for d[v]s.
- However, each edge is used exactly only once during the execution of the algorithm.
 - So the cost of update cannot exceed |E|.
- ▶ Therefore, the running time is $O(|E| + |V|^2)$.

Running Time of Dijkstra's Algorithm

- ▶ If graph is dense, $|E| = \Theta(|V|^2)$.
- ▶ But we can do better than this by keeping d[.] in form of a heap.
- ▶ We create a heap all d[s].
- ▶ Use DeleteMIN to select the vertex to be included next.
 - It requires total of $|V| \log |V|$ unit of time.
- ▶ Relaxation step is equivalent to a decrease key operation, which requires $|E| \log |V|$ units of time.
- \blacktriangleright So, total time: O($|E| \log |V| + |V| \log |V|$).

Handling Negative Weight

- Can we handle negative edge weight as long as there are no negative cycles?
- One simple solution one can imagine is to add a big number turn negative edge weight to zero.
- It does not work, because the cost of path becomes M × (hop length) + cost(path).
- ➤ So with big value of M hop length begins to dominate.

Bellman Ford

```
Initialize();
Relax(u,v);
   foreach edge (u, v) {
       if (d[v] > d[u] + w(u,v))
           report negative cycle;
Relax(u, v, w) {
   if (d[v] > d[u]+w(u,v)) {
       d[v] = d[u] + w(u,v);
       pred[v] = u;
```

Bellman-Ford Algorithm

- ▶ Relaxation is the most important part of the operation.
- ▶ Label edges as: $e_1, e_2, \dots e_m$, where m = |E|.
- $lackbox{ }$ Relaxation is repeated |V|-1 and carried out for each edge every time.

Correctness of Bellman-Ford

Lemma (Main lemma)

After k iterations of the edge relaxations, d[v] contains correct shortest path from the source s to every vertes $v \in V$ using at most k edges.

Proof.

- ▶ Basis: Initially d[s] = 0 and $d[v] = \infty$ for all $v \in V \{s\}$.
 - The shortest path from s to itself is zero.
 - At this point no edge is used for relaxation, consequently, the shortest path to other vertices are not known.
 - So, d[v] correctly gives shortest path where each path may have at most 0 edges.

Correctness of Bellman-Ford

Proof.

- ▶ **Hypothesis**: Assume that after kth iteration of relaxation step, d[v] is the shortest path from s by using at most k edges.
- ▶ **Induction step**: Now consider k + 1th iteration of relaxation step.
 - Consider some arbitrary vertex v.
 - In k + 1th iteration, relaxation is performed by each incoming edge (u, v).
 - At this point d[u] is the shortest path from s to u which used upto k edges.
 - After k+1th iteration, since $d[v]=\min\{d[v],d[u]+w(u,v)\}$, d[v] should have shortest path from source to v with at most k+1 edges.

Correctness of Bellman-Ford

- ▶ A corollary of the above induction proof leads to the following conclusion:
 - After |V|-1 iterations of the edge relaxation step, d[v] for every $v \in V$, contains the weight of the shortest path from s to v with at most |V|-1 edges.
 - If there is no negative cycle, then every cycle has a nonnegative cost.
 - So, gnoring or deleting the cycle from the path can only lead to lower cost.
 - Therefore, d[v] after completing |V|-1 relaxation steps will give correct shortest path from s to v.

Minimum Spanning Tree

Definition (Spanning Tree)

A spanning tree T of an undirected connected graph G is a connected acyclic graph containing all vertices of G.

Definition (Minimum Spanning Tree)

Given a weighted graph find a spanning tree that has minimum weight.

Minimum Spanning Tree

- Uses a strategy similar to Dijkstra's algorithm.
- ▶ Initially, only one vertex v_0 is included in V_T .
- ▶ Then grow V_T by including exactly one vertex $u \in V V_T$ by choosing cheapest edge $(v, u) \in E$ such that $v \in V_T$.
- ▶ Repeat previous step until $V_T = V$ or $V V_T = \Phi$. in V_T

Graphs

R. K. Ghosh

Minimum Spanning Tree

Edge weight(iteration#), Total weight = 30