Basic Electronic Circuits (IEC-103)

Lecture-10

Sinusoidal Oscillators

Types of Oscillators

- 1. Feedback Oscillator
- 2. Relaxation Oscillators

- □ Feedback Oscillators
 - A fraction of output is feedback to the input with no net phase shift.
 - The loop gain must be maintained at 1 to maintain oscillations
 - Amplifier can be made of either discrete transistor or an op-amp.

Feedback Oscillators

Two conditions must be satisfied for sustained oscillations

Two conditions must be satisfied for sustained oscillations

1. The phase shift around the feedback loop must be effectively 0°.

Two conditions must be satisfied for sustained oscillations

- 1. The phase shift around the feedback loop must be effectively 0°.
- 2. The voltage gain $A\beta$ around the closed feedback loop (loop gain) must be equal to 1.

(b) The closed loop gain is 1.

RC and LC Oscillators

RC Oscillators: The frequency determining network contains only resistive and capacitive elements.

- Wein bridge oscillator
- Phase-shift oscillator
- Twin-T oscillator

RC and LC Oscillators

LC Oscillators: The frequency determining network contains inductive and capacitive elements.

- Hartly
- Colpitts
- Capp
- Pierce

RC Oscillators

$$R_F = 2R_s$$

$$R_F = 2R_s$$

$$\omega = \frac{1}{RC}$$

$$\frac{R_{\rm f}}{R_{\rm 1}} = 29$$

$$\frac{R_{\rm f}}{R_{\rm 1}} = 29$$

$$\omega = \frac{1}{\sqrt{6}RC}$$

Buffered Phase Shift Oscillator

LC Oscillators

Transistor Oscillators

Colpitt's Oscillator

Colpitt's Oscillator

$$\omega = \frac{1}{\sqrt{LC_{T}}}$$

Colpitt's Oscillator

$$\omega = \frac{1}{\sqrt{LC_{T}}}$$

$$\mathbf{C}_{\mathrm{T}} = \frac{\mathbf{C}_{1}\mathbf{C}_{2}}{\mathbf{C}_{1} + \mathbf{C}_{2}}$$

Hartley Oscillator

Hartley Oscillator

$$\omega = \frac{1}{\sqrt{L_T C}}$$

Hartley Oscillator

$$\omega = \frac{1}{\sqrt{L_{\rm T}C}}$$

$$\mathbf{L}_{\mathrm{T}} = \mathbf{L}_{1} + \mathbf{L}_{2}$$

Clapp Oscillator

Clapp Oscillator

$$\omega = \frac{1}{\sqrt{LC_{T}}}$$

Clapp Oscillator

$$\omega = \frac{1}{\sqrt{LC_{T}}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_{\rm 1}} + \frac{1}{C_{\rm 2}} + \frac{1}{C_{\rm 3}}$$