Problem E. Balanced Array

• 2023.10.06 15:00 Update: Strengthened testcases and rejudged solutions.

Problem Description

Given an array $a=[a[0],a[1],\ldots,a[n-1]]$ with $\displaystyle\sum_{i=0}^{n-1}a[i]=0$, you want to balance the array such that every element becomes 0.

To achieve this, you can perform the following operations any number of times:

- Choose an index i $(0 \le i \le n-1)$, pay w[i] dollars, and update $(a[i], a[(i+1) \bmod n])$ to $(a[i]-1, a[(i+1) \bmod n]+1)$.
- ullet Choose an index i ($0 \leq i \leq n-1$), pay w[i] dollars, and update (a[i],a[(i+1) mod n])to $(a[i] + 1, a[(i+1) \mod n] - 1)$.

It is guaranteed that w[n-1]=0. Can you determine the minimum amount of dollars you have to pay to balance the array?

Input Format

- line 1: n
- line 2: a[0] a[1] ... a[n-1]
- line 3: w[0] w[1] ... w[n-1]

Output Format

• line 1: the minimum cost to make the array balanced.

Constraints

- $2 \le n \le 1000000$.
- $|a[i]| \leq 1000$ for $i = 0, 1, \ldots, n-1$.
- $\sum_{i=1}^{n-1} a[i] = 0.$
- ullet $0 \le w[i] \le 1000$ for $i=0,1,\ldots,n-1$.
- w[n-1]=0.
- All the inputs are integers.

Subtasks

- 1. (25 points) $n \le 100$; $|a[i]| \le 100$ for $i = 0, 1, \dots, n-1$.
- 2. (75 points) No additional constraints.

No.	Testdata Range	Time Limit (ms)	Memory Limit (KiB)
Samples	1-4	1000	262144
1	5-21	1000	262144
2	1-33	1000	262144

Samples

Sample Input 1

This sample input satisfies the constraints of all the subtasks.

Sample Output 1

14

The picture of sample 1.

The number inside the circle is a[i] and the number on the line connecting position i and $(i+1) \bmod 4$ is w[i].

In the optimal solution, we first pay w[1]=3 dollars twice to update the array to [-1,0,4,-3]. Then, we pay w[2]=2 dollars four times to further update the array to [-1,0,0,1]. Finally, we pay w[3]=0 dollars to achieve a balanced array.

Sample Input 2

```
5
4 1 -9 3 1
7 3 5 3 0
```

This sample input satisfies the constraints of all the subtasks.

Sample Output 2

```
58
```

Sample Input 3

```
8
10 20 30 40 -40 -30 -20 -10
88 46 90 17 22 63 99 0
```

This sample input satisfies the constraints of all the subtasks.

Sample Output 3

```
8290
```

Sample Input 4

```
4
1000 -1000 1000 -1000
0 0 0 0
```

This sample input satisfies the constraints of Subtasks 2.

Sample Output 4

0