Homework 10, Chapter 11 Solutions

1

The minimum polynomial of $\sqrt{2}$ over \mathbb{Q} is x^2-2 ; since this polynomial is degree 2, $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$. Similarly, the minimum polynomial of $\sqrt{5}$ over \mathbb{Q} is x^2-5 . The roots here are not in $\mathbb{Q}(\sqrt{2})$, so this polynomial is irreducible over $\mathbb{Q}(\sqrt{2})$ and $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2$. The minimum polynomial of $\sqrt{10}$ over \mathbb{Q} is x^2-10 ; this polynomial has roots in $\mathbb{Q}(\sqrt{2})(\sqrt{5})$, namely $(\pm\sqrt{2}\sqrt{5})$. The result is $[\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt{10}):\mathbb{Q}]=4$.

$\mathbf{2}$

The polynomial $x^4 - 4x^2 - 5$ can be factored into $(x^2 - 5)(x^2 + 1)$; each of these polynomials can be further factored into $x^2 - 5 = (x + \sqrt{5})(x - \sqrt{5})$ and $x^2 + 1 = (x + i)(x - i)$. Since the polynomial is degree 4 and we've factored into four distinct polynomials of degree one, we have all of the roots: $\pm i$, $\pm \sqrt{5}$. Since negative coefficients are in the field extensions $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(i)$, the splitting field is $\mathbb{Q}(\sqrt{5}, i)$.

3

 \mathbf{a}

Claim: If $f(x) = cx^n \in F[x]$ and $g(x) = b_0 + b_1x^1 + \dots + b_kx^k \in F[x]$, then (fg)'(x) = f(x)g'(x) + f'(x)g(x).

Proof. We have $(fg)(x) = \sum_{i=0}^{k} cb_i x^{n+i}$, so $(fg)'(x) = (n+i) \sum_{i=1}^{k} cb_i x^{n+i-1}$.

Taking the individual functions' derivatives, we have $f'(x) = cnx^{n-1}$ and $g'(x) = \sum_{i=1}^k b_i x^{i-1}$. So $fg'(x) = \sum cb_i x^{n+i-1}(i)$ and $f'g(x) = \sum_{i=1}^k cnb_i x^{n+i-1}$, and $fg'(x) + f'g(x) = (n+i)\sum_{i=1}^k cb_i x^{n+i-1} = (fg)'(x)$. \square

b

Claim: If f(x), g(x) are any polynomials in F[x], then (fg)'(x) = f(x)g'(x) + f'(x)g(x).

Proof. Let f(x) be of the form $f(x) = a_0 + a_1 x^1 + \dots + a_n x^n$. Then this is the same form of g(x) from part a. So (fg)(x) can be written as $(fg)(x) = \sum_{i=0}^n a_i x^i g(x)$. We then have for each term $(a_i x^i g(x))' = ia_i x^{i-1} g(x) + a_i x^i g'(x)$, so by the summation rule, $(fg)'(x) = (\sum_{i=0}^n a_i x^i g(x))' = \sum_{i=1}^n ia_i x^{i-1} g(x) + \sum_{i=0}^n a_i x^i g'(x) = fg'(x) + f'g(x)$.