DM 1: Révisions

Pour le lundi 20 septembre

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice 1

Soient $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$ trois suites réelles telles que $a_0=1$, $b_0=2$, $c_0=7$, et vérifiant les relations de récurrence :

$$\forall n \in \mathbb{N}, \quad \left\{ \begin{array}{lll} a_{n+1} & = & 3a_n + & b_n \\ b_{n+1} & = & & 3b_n + & c_n \\ c_{n+1} & = & & & 3c_n \end{array} \right.$$

On souhaite exprimer a_n , b_n , et c_n uniquement en fonction de n.

1. Pour tout entier naturel n, on considère le vecteur colonne $X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$. Trouver une matrice A telle que

$$\forall n \in \mathbb{N}, X_{n+1} = AX_n.$$

En déduire que, pour tout entier naturel n, $X_n = A^n X_0$.

2. Soit N =
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
. Calculer N², N³, puis N^p pour $p \ge 3$.

3. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad A^n = 3^n I_3 + 3^{n-1} n N + 3^{n-2} \frac{n(n-1)}{2} N^2.$$

4. En déduire l'expression de a_n , b_n et c_n en fonction de n.

Au choix:

Exercice 2

On note $f: \mathbb{R} \to \mathbb{R}$ l'application de classe \mathbb{C}^2 , définie pour tout $x \in \mathbb{R}$ par :

$$f(x) = x - \ln(1 + x^2)$$

et $\mathscr C$ la courbe représentative de f dans un repère orthonormé.

On donne la valeur approchée : $ln(2) \approx 0,69$.

- 1. (a) Calculer, pour tout $x \in \mathbb{R}$, f'(x).
 - (b) En déduire le sens de variation de f.
 - (c) Calculer, pour tout $x \in \mathbb{R}$, f''(x).
- 2. Déterminer la limite de f en $-\infty$ et la limite de f en $+\infty$.
- 3. Montrer que & admet deux points d'inflexion dont on déterminera les coordonnées.
- 4. Tracer & en faisant apparaître les tangentes à & en l'origine et en chacun des points d'inflexion. On utilisera un repère orthonormé d'unité graphique 2 centimètres.
- 5. On considère la suite $(u_n)_{n\geqslant 0}$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n). \end{cases}$$

1

- (a) Montrer que $(u_n)_{n\geq 0}$ est décroissante.
- (b) Etablir que la suite $(u_n)_{n\geqslant 0}$ converge et déterminer sa limite.
- (c) Ecrire un programme en Scilab qui calcule et affiche un entier n tel que $u_n \le 10^{-3}$.
- (d) i. Etablir: $\forall x \in [0;1], \quad f(x) \leq x \frac{1}{2}x^2.$

- ii. En déduire : $\forall n \in \mathbb{N}, u_n^2 \leq 2(u_n u_{n+1}).$
- iii. Démontrer que la série $\sum_{n>0} u_n^2$ converge.

OU

Exercice 2

Pour tout entier naturel n, on définit sur $[0, +\infty[$ la fonction f_n par :

$$\forall x \in [0, +\infty[, f_n(x) = e^x + nx^2 - 3]$$

et on note \mathcal{C}_n sa courbe représentative dans un repère orthonormé.

- 1. Soit $n \in \mathbb{N}$.
 - (a) Justifier que f_n est dérivable sur son ensemble de définition puis déterminer sa dérivée. En déduire son tableau de variations.
 - (b) Donner l'équation de la tangente à \mathcal{C}_n au point d'abscisse 1.
 - (c) Montrer que l'équation $f_n(x) = 0$ possède une unique solution positive que l'on notera x_n .
- 2. On s'intéresse à la suite $(x_n)_{n \ge 1}$.
 - (a) Montrer que : $\forall n \in \mathbb{N}^*$, $x_n \in]0,1[$.
 - (b) Soit $n \in \mathbb{N}^*$. Montrer que : $\forall x \in]0,1[$, $f_{n+1}(x) > f_n(x)$. En déduire le signe de $f_n(x_{n+1})$.
 - (c) En déduire les variations de $(x_n)_{n \ge 1}$.
 - (d) Montrer que $(x_n)_{n\geqslant 1}$ converge. On notera ℓ sa limite.
 - (e) On suppose dans cette question que $\ell > 0$. Calculer $\lim_{n \to +\infty} e^{x_n} + nx_n^2 3$ et en déduire une contradiction.
 - (f) Déterminer la valeur de ℓ .
 - (g) Déterminer $\lim_{n\to+\infty} \sqrt{\frac{n}{2}} x_n$ et en déduire un équivalent de x_n en $+\infty$.
- 3. Tracer dans un même repère \mathscr{C}_0 , \mathscr{C}_1 et \mathscr{C}_2 .
- 4. Écrire une fonction Scilab qui prend un entier n et qui renvoie une valeur approchée de x_n à 10^{-3} près. On pourra utiliser une méthode de dichotomie.

Problème 1

Partie 1 : étude d'une variable discrète sans mémoire.

Soit X une variable aléatoire discrète, à valeurs dans \mathbb{N} telle que : $\forall m \in \mathbb{N}$, $P(X \ge m) > 0$.

On suppose également que X vérifie : $\forall (m,n) \in \mathbb{N} \times \mathbb{N}, P_{(X \geqslant m)}(X \geqslant n+m) = P(X \geqslant n)$. On pose P(X = 0) = p et on suppose que p > 0.

- 1. On pose q = 1 p. Montrer que $P(X \ge 1) = q$. En déduire que 0 < q < 1.
- 2. Montrer que : $\forall (m, n) \in \mathbb{N} \times \mathbb{N}, P(X \ge n + m) = P(X \ge m)P(X \ge n)$.
- 3. Pour tout n de \mathbb{N} on pose $u_n = P(X \ge n)$.
 - (a) Utiliser la relation obtenue à la deuxième question pour montrer que la suite (u_n) est géométrique.
 - (b) Pour tout n de \mathbb{N} , exprimer $P(X \ge n)$ en fonction de n et de q.
 - (c) Établir que : $\forall n \in \mathbb{N}, P(X = n) = P(X \ge n) P(X \ge n + 1)$.
 - (d) En déduire que, pour tout n de \mathbb{N} , on a $P(X = n) = q^n p$.
- 4. (a) Reconnaître la loi suivie par la variable X + 1.
 - (b) En déduire $\mathbb{E}(X)$ et $\mathbb{V}(X)$.

Partie 2 : taux de panne d'une variable discrète.

Pour toute variable aléatoire Y à valeurs dans $\mathbb N$ et telle que, pour tout n de $\mathbb N$, $\mathrm{P}(\mathrm{Y} \geqslant n) > 0$, on définit le taux de panne de Y à l'instant n, noté λ_n par : $\forall n \in \mathbb N$, $\lambda_n = \mathrm{P}_{(\mathrm{Y} \geqslant n)}(\mathrm{Y} = n)$.

- 1. (a) Montrer que: $\forall n \in \mathbb{N}, \lambda_n = \frac{P(Y=n)}{P(Y \ge n)}$
 - (b) En déduire que : $\forall n \in \mathbb{N}, 1 \lambda_n = \frac{P(Y \ge n + 1)}{P(Y \ge n)}$.
 - (c) Établir alors que : $\forall n \in \mathbb{N}, 0 \leq \lambda_n < 1$.

- (d) Montrer par récurrence, que : $\forall n \in \mathbb{N}^*$, $P(Y \ge n) = \prod_{k=0}^{n-1} (1 \lambda_k)$.
- 2. (a) Montrer que: $\forall n \in \mathbb{N}^*$, $\sum_{k=0}^{n-1} P(Y = k) = 1 P(Y \ge n)$.
 - (b) En déduire que $\lim_{n\to\infty} P(Y \ge n) = 0$.
 - (c) Montrer que $\lim_{n\to\infty}\sum_{k=0}^{n-1}-\ln(1-\lambda_k)=+\infty$.
 - (d) Conclure quant à la nature de la série de terme général λ_n .
- 3. (a) Compléter la fonction Scilab suivante pour qu'elle renvoie n!:

```
function z=factorielle(n)
    z=1
    if n == 0 then
        z= ----
    else
        z= ----
    end
endfunction
```

(b) On considère le programme suivant :

```
n=input("Donner un entier naturel non nul")
a=input("Donner un reel")
g(1)=1
for k=1:n
g(k+1)=a*g(k)
end
disp(g(n+1))
```

Dire quel est le résultat retourné.

(c) Proposer un programme permettant le calcul de la somme $\sum_{k=0}^{n-1} \frac{a^k}{k!} e^{-a}$.

Partie 3 : caractérisation des variables dont la loi est du type de celle de X.

- 1. Déterminer le taux de panne de la variable X dont la loi a été trouvée à la question 3 d) de la partie 1.
- 2. On considère une variable aléatoire Z, à valeurs dans \mathbb{N} , et vérifiant : $\forall n \in \mathbb{N}$, $P(Z \ge n) > 0$. On suppose que le taux de panne de Z est constant, c'est-à-dire que l'on a : $\forall n \in \mathbb{N}$, $\lambda_n = \lambda$.
 - (a) Montrer que $0 < \lambda < 1$.
 - (b) Pour tout n de \mathbb{N} , déterminer $P(Z \ge n)$ en fonction de λ et n.
 - (c) Conclure que les seules variables aléatoires Z à valeurs dans \mathbb{N} , dont le taux de panne est constant et telles que pour tout n de \mathbb{N} , $P(Z \ge n) > 0$, sont les variables dont la loi est du type de celle de X.