Практична робота № 2

Тема. Асимптотична складність алгоритмів. Інші нотації Мета: набути практичних навичок у розв'язанні задач на оцінку асимптотичної складності алгоритмів у Ω , Θ , o, θ , ω -нотаціях.

Постановка завдання. Виконати індивідуальне завдання. Завдання полягає у розв'язанні двох задач, які потрібно вибрати зі списку, наведеного нижче. Правило вибору номерів наступний: n, n + 5, де n - номер студента в списку групи. У разі, якщо було досягнуто кінця списку задач, потрібно циклічно повернутися на його початок.

Завдання.

№14

Щоб показати, що f(n)=O(g(n)) f(n)=O(g(n)) для функцій f(n)=n4-2n3+3n+7 та g(n)=n4 використаємо метод меж (також відомий як критерій Ліміта).

- Обчислимо границю:
- $\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} f(n)/g(n) = \lim_$
- Спрощуємо вираз:
- $\lim_{n\to\infty} (n^4-2n^3+3n+7)/n^4 = \lim_{n\to\infty} ((n^4/n^4)-(2n^3/n^4)+(3n/n^4)+(7/n^4))$
- Розділимо на окремі дроби: $\lim_{n\to\infty} 1 \to \infty (1-(2n^3/n^4)+(3n/n^4)+(7/n^4)) = \lim_{n\to\infty} 1 \to \infty (1-(2/n)+(3/n^3)+(7/n^4))$ ^4))

Таким чином:

$$\lim_{n\to\infty} n\to\infty (1-(2/)n+(3/n^3+(7/n^4))=1-0+0+0=1$$

Тепер знаходимо границю кожного доданка окремо:

- Границя 11 залишається 1, так як це константа.
- Границя 2mn2 прямує до 0 при $n \to \infty n \to \infty$.
- Границя 3n3n33 прямує до 0 при $n \rightarrow \infty n \rightarrow \infty$.
- Границя 7n4n47 прямує до 0 при $n \rightarrow \infty n \rightarrow \infty$.

Оскільки границя є скінченним числом (1), ми можемо зробити висновок, що:

$$f(n)=O(g(n))$$

Таким чином, ми показали, що f(n)=O(g(n))f(n)=O(g(n)) за допомогою методу меж.

Завдання №4

Щоб довести, що $f(n) = \Omega(g(n))$ f(n)= $\Omega(g(n))$ для функцій f(n) = 2n3 + 7n2 - 4 f(n)=2n3 + 7n2 - 4 та g(n) = n3g(n)=n3

$$f(n) \ge c \cdot g(n) f(n) \ge c \cdot g(n)$$

Формально, ми повинні знайти такі константи cс та n0n0, щоб нерівність була виконана. Для цього спростимо вирази функцій і знайдемо підходящі константи.

$$f(n)=2n^3+7n^2-4$$

$$g(n)=n^3$$

$$2n^3+7n^2-4 \ge c \cdot n^3$$

$$2n^3+7n^2-4 \ge n^3$$

$$2n^3-n^3+7n^2-4 \ge 0$$

$$n3+7n2-4 \ge 0$$

Таким чином, ми довели, що $f(n) = \Omega(g(n))$:

$$f(n)=2n^3+7n^2-4\ge 1\cdot n^3$$

Це підтверджує, що $f(n) = \Omega(n/3)$.

Контрольні питання:

1. Що таке асимптотична складність алгоритму?

Асимптотична складність алгоритму – це міра ефективності алгоритму, яка показує, як змінюється час виконання або обсяг використаної пам'яті алгоритму в залежності від розміру вхідних даних, коли цей розмір прямує до нескінченності. Вона допомагає порівнювати алгоритми незалежно від апаратних засобів чи реалізаційних деталей.

2. Які інші нотації, крім О-нотації, використовуються для вираження асимптотичної складності?

Крім О-нотації (Big O), використовуються ще такі нотації:

- **О-нотація (Theta)**: Описує точну асимптотичну поведінку алгоритму, тобто як нижню, так і верхню межу.
- **Ω-нотація (Отеда)**: Описує нижню межу асимптотичної складності.
- **о-нотація (маленька о)**: Описує верхню межу, яка не є точним верхнім обмеженням.
- **ω-нотація (маленька омега)**: Описує нижню межу, яка не є точним нижнім обмеженням.

3. Як визначити асимптотичну складність алгоритму за допомогою символів Θ і Ω ?

Визначення складності за допомогою О-нотації:

Функція f(n)f(n) належить до $\Theta(g(n))\Theta(g(n))$, якщо існують такі константи c1>0c1>0, c2>0c2>0 та n0n0, що для всіх $n\geq n0n\geq n0$ виконується:

$$c1 \cdot g(n) \le f(n) \le c2 \cdot g(n)c1 \cdot g(n) \le f(n) \le c2 \cdot g(n)$$

Визначення складності за допомогою Ω-нотації:

Функція f(n)f(n) належить до $\Omega(g(n))\Omega(g(n))$, якщо існують константи c>0c>0 та n0n0, що для всіх $n\geq n0n\geq n0$ виконується:

$$f(n) \ge c \cdot g(n) f(n) \ge c \cdot g(n)$$

4. Яка різниця між О-нотацією, Θ-нотацією і Ω-нотацією?

О-нотація (Від О):

- Описує верхню межу асимптотичної поведінки.
- Використовується для характеристики найгіршого випадку.
- Гарантує, що алгоритм не буде повільнішим за вказану межу.
- Формально: f(n) = O(g(n))f(n) = O(g(n)) означає, що існують константи c > 0c > 0 і n0n0, такі що $f(n) \le c \cdot g(n)f(n) \le c \cdot g(n)$ для всіх $n \ge n0n \ge n0$.

О-нотація (Theta):

- Описує точну межу асимптотичної поведінки.
- Характеризує як верхню, так і нижню межу.
- Використовується, коли хочуть показати точний порядок зростання.

• Формально: $f(n) = \Theta(g(n)) f(n) = \Theta(g(n))$ означає, що існують константи c1 > 0c1 > 0, c2 > 0c2 > 0 і n0n0, такі що $c1 \cdot g(n) \le f(n) \le c2 \cdot g(n) c1 \cdot g(n) \le f(n) \le c2 \cdot g(n)$ для всіх $n \ge n0n \ge n0$.

Ω-нотація (Omega):

- Описує нижню межу асимптотичної поведінки.
- Використовується для характеристики найкращого випадку.
- Гарантує, що алгоритм не буде швидшим за вказану межу.
- Формально: $f(n) = \Omega(g(n)) f(n) = \Omega(g(n))$ означає, що існують константи c > 0c > 0 і n0n0, такі що $f(n) \ge c \cdot g(n) f(n) \ge c \cdot g(n)$ для всіх $n \ge n0n \ge n0$.

Таким чином, основна різниця між цими нотаціями полягає в тому, що 0-нотація визначає верхню межу, Ω -нотація – нижню межу, а Θ -нотація – точну межу асимптотичної складності.