HPCC++: Enhanced High Precision Congestion Control

draft-miao-ccwg-hpcc draft-miao-ccwg-hpcc-info

Rui Miao, Surendra Anubolu, Rong Pan, Jeongkeun Lee, Barak Gafni, Jeff Tantsura, Allister Alemania, Yuval Shpigelman

IETF-119 CCWG

Mar 2024

Cloud desires hyper-speed networking

Today, clouds have

bigger data to compute & store
faster compute & storage devices
more types of compute and storage resources

High-performance storage

High-performance computation

- Storage-compute separation is norm
- HDD→SSD→NVMe
- Higher-throughput, lower latency
- 1M IOPS / 50~100us

- Distributed deep learning, HPC
- CPU→GPU, FPGA, ASIC
- Faster compute, lower latency
- E.g. latency <10us

Resource disaggregation

- More network load
- Need ultra-lower latency: 3-5us,
 - > 40Gbps (Gao Et.al. OSDI'16)

Hyper-speed network chips to form hyper-speed networking

Real-time Congestion control (CC)

Lots of data and communication => more pressure on the network

HPCC++: Enhanced High Precision Congestion Control

- New networking ASICs have in-band telemetry capabilities
- Packets collect telemetry on their route
- Can we use in-band telemetry as precise feedback for congestion control?

HPCC++ provides ideal performance

Using in-band telemetry as the precise feedback

- Fast convergence
 - > Sender knows the precise rate to adjust to
- Near-zero queue
 - > Feedback does not only rely on queue
- Few parameters
 - Rich and precise feedback, reduces heuristics which requires more parameters

Our proposals

- draft-miao-ccwg-hpcc
 - Defines the algorithm using telemetry information, including queue length, transmitted bytes, timestamp, link capacity, etc.
- draft-miao-ccwg-hpcc-info
 - Provides environment-dependent packet formats of telemetry encodings, including IFA2.0, IOAM, P4.org

0	1	2	3
0123456789	0 1 2 3 4 5	6 7 8 9 0 1 2 3 4	5 6 7 8 9 0 1
+-			
lns deviceID			rsvd
+-			
Speed rsvd	I	rxTimestampSec	
+-			
egressPort	I	ingressP	ort
+-			
rxTimeStampNs			
+-			
residenceTime			
+-			
txBytes			
+-			
rsvd		Queue Lengt	h
+-			
rsvd			
+-			

Deployment experience

- Deployed widely for storage, AI training, and database applications in one of the major cloud providers
- Achieved significant boosts in throughput and latency

HPCC++ achieves lower FCT and near-zero queue

- In testbed, vs. DCQCN (hardware-based, widely used in industry)
 - Web search traffic at 50% load
- Extensive tests compared with other CC in simulation. HPCC performs better

Your Feedback is Appreciated!

Thank You