1	IN RE: The application of George S. Rhyneer
2	TITLE OF THE INVENTION
3	Shock-actuated Lock With Resetable Ball
4	CROSS REFERENCE TO RELATED APPLICATIONS
5	Not Applicable
6 7	STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
8	Not Applicable
9	BACKGROUND OF THE INVENTION
0	1. Field of the invention
1	This invention relates to earthquake locks for cabinets and particularly to
12	earthquake locks for cabinets using magnetic latches.
13	2. Description of the Prior Art
14	Earthquakes have been a part of the world since the beginning of time. They are
15	cause of much destruction. Most earthquakes however are not catastrophic events.
16	These minor earthquakes may still cause damage as items are thrown off shelves and
17	contents of closed cabinets are discharged into the room. Not much can be done to
18	protect items stored on open shelves. However, closed cabinets have doors that, if they
19	were to remain closed in an earthquake would prevent a lot of incidental damage. To
20	that end, several types of "earthquake lock" have been invented that allow normal use
21	of cabinets under ordinary circumstances, but act to lock the cabinets doors shut in the
	The Application of George S. Rhyneer Page 1

1	event of seismic activity. U.S. Patents that address this problem are Patent No.
2	5,152,562 and 5,518,282. Patent No. 5,152,562 teaches a device that uses a ball that is
3	held in an elevated position in a housing. At the base of the housing is a latch that
4	attaches to the inside of a cabinet door. The latch has a slot cut into it such that when
5	the door is closed, the slot is positioned under the ball. When an earthquake strikes, if
6	the force is sufficient, it causes the ball to be pushed from its resting position and down
7	into the slot. This then prevents the door from opening and spilling the contents of the
8	cabinet. Although this system appears to work, it has several problems. First, the ball
9	is set in a recess. Although the sensitivity of the device can be adjusted, it can take
10	considerable force to cause the ball to drop. Second, the latch with the slot is attached to
11	the door. If the movement that causes the ball to fall also causes the door to fly open,
12	the ball will not fall into the slot. If the door has opened widely enough, it may even
13	block the door from closing again. Finally, once the lock is set, there is no way to open
14	the cabinet again. The patent teaches securing a string that passes through the side of
15	the cabinet so that a user can pull the ball back up so that the door can be opened.
16	U.S. Patent No. 5,518,282 teaches a system that keeps a door or drawer locked all
17	the time. In this way, an earthquake cannot cause the door to open. Moreover, because
18	the door is locked al the time, there is no need for a system to cause the door to be
19	locked, with the inherent possibility of the failure of the system. The patent uses a
20	hooked shaped latch that hooks onto a ledge attached to the door. There is a release
21	mechanism provided that allows the door to be opened for ordinary use. While this

1	device eliminates the need for a device to lock the door in the event of an earthquake, it
2	has the problem of prevent easy access to the contents of the cabinets. Because
3	earthquakes rarely occur but accessing the cabinets is a daily occurrence, this system
4	rapidly becomes a nuisance.
5	Two systems have been developed in Japan as well. JP9067970A2 and
6	JP9078926A2 use balls to engage latches to prevent doors from opening in the event of
7	an earthquake. JP9067970A2 teaches a system similar to Patent No. 5,152,562 in that a
8	ball is designed to drop into a bracket with a slot, which is attached to the door.
9	JP9078926A2 teaches a system in which a ball drop down and engages a spring
10	mechanism that causes two pins to laterally move into holes drilled in the doors. Once
11	the pins are in place, the doors will not open. These systems suffer from the same
12	problem as discussed above: if the doors are open at the same time the ball drops, the
13	ball does not align with the slot in the bracket in the first case, or what is worse, the pins
14	will not align with the holes in the doors in the latter case. This is worse because one
15	the pins have been deployed, the doors will not close fully. Thus, when the next jolt
16	hits, the doors may be flung open, with the locks having no effect.
17	BRIEF DESCRIPTION OF THE INVENTION
18	The instant invention solves all of these problems. It is a lock for earthquakes
19	that securely holds a door closed when an earthquake strikes, but it otherwise out of the
20	way during normal use. It consists of a steel ball that is positioned at the top of an

angled ramp. A magnet is embedded on the inside surface of the door, where it is

The Application of George S. Rhyneer Page 3

21

1	invisible under normal use. When an earthquake strikes, the steel ball drops and
2	contacts the magnet. At this point, the door is effectively locked. The system is
3	designed so that the magnet is strong enough to securely hold the door closed, but can
4	be easily overcome to open the door after the event is over. Moreover, unlike the other
5	designs, if the door should open as the ball is dropping, the magnet will engage the ball
6	as soon as it closes. There is no problem with alignment. In this way, the system is
7	simple and effective. Once the event is over, the system can be reset by pulling the door
8	open with enough force to overcome the magnet and placing the ball back up into its
9	ready position. There is no need for strings that penetrate the cabinets or for large
10	latches attached to the door. When closed, the cabinets appear perfectly normal. When
11	the door is open, the only thing a user sees is a small magnet inlaid into the door and
12	the ball and ramp.
13	It is an object of the invention to produce an earthquake lock for cabinet doors
14	that allows normal operation of the doors during ordinary use.
15	It is another object of the invention to produce an earthquake lock for cabinet
16	doors that does not require a mechanism for resetting the lock after an event.
17	It is yet another object of the invention to produce an earthquake lock for cabinet
18	doors that does not incorporate intrusive components that are attached to the cabinet
19	door.
20	BRIEF DESCRIPTION OF THE DRAWINGS

The Application of George S. Rhyneer Page 4

1	Figure 1 is a partial side view of the interior of a cabinet with the invention
2	installed and with the ball in the ready position.
3	Figure 2 is a partial side view of the interior of a cabinet with the invention
4	installed and with the ball in the lock position.
5	Figure 3 is a partial view of the inner surface a cabinet door showing a magnet
6	inlaid therein.
7	Figure 4 is a partial side view of the interior of a cabinet with the invention
8	installed showing the ball down and the door locked.
9	Figure 5 is a front detail view of the track showing the ball in the ready position.
10	Figure 6 is a front detail view of the track showing the ball in the lock position.
11	DETAILED DESCRIPTION OF THE INVENTION
12	Referring now to fig. 1, a partial side view of the interior of a cabinet 100 is
13	shown. Here, the device 1 is shown installed. The device 1 consists of a base plate 2, a
14	ramp 3 and a stop plate 4. The ramp 3 has three main parts. The first is an elevation
15	block 3a, the second is the upper ramp 3b and the third is the vertical ramp 3c. Note
16	that in the preferred embodiment, the vertical ramp portion 3c is set at a slight back
17	angle to ensure a smooth ball drop. In the preferred embodiment, a plurality of ribs 3d
18	(see fig. 6) are used to hold the ball in place in the upper ramp 3b. A ball 5 is shown in
19	place in the upper ramp 3b. A stop plate 4 is positioned at the front of the device and is
20	secured into the base using common fasteners (on the other hand, the entire unit can be
21	made of plastic or light non-ferrous metal, it desired).

The Application of George S. Rhyneer Page 5

1	Figure 2 shows the same view as figure 1, with the ball 5 at the base of the
2	vertical ram 3c. Here, the stop plate 4 is shown retaining the ball in the device.
3	Figure 3 shows the inside face of a door 101. A magnet 6 is installed in the door
4	101. In the preferred embodiment, the magnet is inlaid in the door to provide a smooth,
5	pleasing appearance. Note the pull handle screw 102 is shown just above the magnet.
6	Figure 4 shows the magnet in the lock position and the door 101 closed. Here,
7	the magnet 6 (shown in dashed lines) is pressed against the ball 5. In this position, the
8	door is held shut by a significant force. However, it is possible to overcome this force
9	by pulling on the pull handle 103. Figure 2 shows the position of the components after
10	the door is opened. In the preferred embodiment, the ball 5is repositioned by pushing
11	the ball back up to the top ramp 3b. This is a simple way of resetting the door without
12	having to use complicated strings to spring reset features.
13	Figures 5 and 6 show front view of the device with the ball in the ready position
14	and in the lock position. Here, the stop plate 4 is clearly shown. The plate has an open
15	center that allows the ball to protrude slightly past the stop plate (see fig. 2). These
16	figures also show the fasteners 10 that secure the stop plate to the base 2. Figure 6
17	shows the ribs 3d used to provide a frictional surface to hold the ball in place at the top
18	of the ramp. Of course, other means may be used to hold ball in the ready position.
19	The only criteria are that the ball remains in place in the ready position during ordinary
20	use and that the ball is free to drop when a sufficient shaking force is experienced. The
21	ribs 3d can be considered as a means for retaining said ball in said upper portion of the

- 1 ramp. The ribs create a frictional force that can be defined as creating a threshold of
- 2 motion, below which, the ball 5 is held motionless in said upper portion of the ramp.
- 3 Above the threshold of motion, the ball overcomes the frictional force and is then able
- 4 to move in ramp until it falls to the bottom of the ramp. A moderate earthquake should
- 5 have enough force to overcome the threshold of motion.
- The present disclosure should not be construed in any limited sense other than
- 7 that limited by the scope of the claims having regard to the teachings herein and the
- 8 prior art being apparent with the preferred form of the invention disclosed herein and
- 9 which reveals details of structure of a preferred form necessary for a better
- 10 understanding of the invention and may be subject to change by skilled persons within
- the scope of the invention without departing from the concept thereof.