

World Para Athletics Raza Point Scores 2021

Method to calculate the points for a specific performance is the Gompertz function:

$$G(p,a,b,c) = q = ae^{-e^{b-cp}}$$

To calculate the required performance for given points, the inverse Gompertz function is

$$G^{-1}(q,a,b,c) = p = \left(b - \ln\left(\ln\left(\frac{a}{q}\right)\right)\right)/c$$

with performance p (in metres), points q, and parameters a, b, c as given in the table below:

Event	Class	а	b (Men)	c (Men)	b (Women)	c (Women)
Shot Put	F11	1200	3.877517	0.416484	2.986498	0.316457
	F12	1200	3.877517	0.331111	2.986498	0.342821
	F13	1200	3.877517	0.432261	2.986498	0.363291
	F20	1200	3.877517	0.331200	2.986498	0.333756
	F32	1200	3.114028	0.437054	3.071658	0.672851
	F33	1200	3.114028	0.407640	3.071658	0.708879
	F34	1200	3.114028	0.387537	3.071658	0.553475
	F35	1200	3.877517	0.346270	2.986498	0.38413
	F36	1200	3.877517	0.372512	2.986498	0.415717
	F37	1200	3.877517	0.373891	2.986498	0.382482
	F38	1200	3.877517	0.360169	2.986498	0.411337
	F40	1200	3.877517	0.496805	2.986498	0.562954
	F41	1200	3.877517	0.411921	2.986498	0.489331
	F42	1200	3.877517	0.365998	2.986498	0.454527
	F43/44	1200	3.877517	0.341716	2.986498	0.346054
	F46	1200	3.877517	0.344046	2.986498	0.383996
	F51	n/a	n/a	n/a	n/a	n/a
	F52	1200	3.114028	0.469393	3.071658	0.848753
	F53	1200	3.114028	0.537476	3.071658	0.925011
	F54	1200	3.114028	0.474458	3.071658	0.603221
	F55	1200	3.114028	0.396368	3.071658	0.589441
	F56	1200	3.114028	0.397033	3.071658	0.550898
	F57	1200	3.114028	0.335560	3.071658	0.440262
	F61	1200	3.877517	0.365998	2.986498	0.454527
	F62	1200	3.877517	0.341716	2.986498	0.346054
	F63	1200	3.877517	0.365998	2.986498	0.454527
	F64	1200	3.877517	0.341716	2.986498	0.346054
Discus	F11	1200	3.214400	0.117333	2.795518	0.112238
	F12	1200	3.214400	0.100844	2.795518	0.101687
	F13	1200	3.214400	0.117031	2.795518	0.143526
	F32	1200	2.575542	0.199741	2.594952	0.338648
	F33	1200	2.575542	0.129710	2.594952	0.288623
	F34	1200	2.575542	0.106028	2.594952	0.184031
	F35	1200	3.214400	0.104542	2.795518	0.147826
	F36	1200	3.214400	0.115779	2.795518	0.164182
	F37	1200	3.214400	0.092118	2.795518	0.128238
	F38	1200	3.214400	0.105321	2.795518	0.129773
	F40	1200	3.214400	0.191169	2.795518	0.192034
	F41	1200	3.214400	0.119009	2.795518	0.138870
	F42	1200	3.214400	0.105090	2.795518	0.144148

Discus (cont.)	F43/44	1200	3.214400	0.082548	2.795518	0.113179
	F46	1200	3.214400	0.097193	2.795518	0.119009
	F51	1200	2.575542	0.351131	2.594952	0.300349
	F52	1200	2.575542	0.189084	2.594952	0.287157
	F53	1200	2.575542	0.163071	2.594952	0.323687
	F54	1200	2.575542	0.140174	2.594952	0.232607
	F55	1200	2.575542	0.112544	2.594952	0.174265
	F56	1200	2.575542	0.095860	2.594952	0.181243
	F57	1200	2.575542	0.087777	2.594952	0.133016
	F61	1200	3.214400	0.105090	2.795518	0.144148
	F62	1200	3.214400	0.082548	2.795518	0.113179
	F63	1200	3.214400	0.105090	2.795518	0.144148
	F64	1200	3.214400	0.082548	2.795518	0.113179
Javelin	F11	1200	2.850732	0.090920	2.370735	0.149487
	F12	1200	2.850732	0.069477	2.370735	0.090357
	F13	1200	2.850732	0.065660	2.370735	0.092521
	F33	1200	2.570877	0.170348	2.799938	0.315623
	F34	1200	2.570877	0.118437	2.799938	0.210815
	F35	1200	2.850732	0.112493	2.370735	0.150952
	F36	1200	2.850732	0.099929	2.370735	0.136599
	F37	1200	2.850732	0.093929	2.370735	0.130399
					2.370735	
	F38	1200	2.850732	0.082154	•	0.132970
	F40	1200	2.850732		2.370735	0.171992
	F41	1200	2.850732	0.100213	2.370735	0.156707
	F42	1200	2.850732	0.086120	2.370735	0.130131
	F43/44	1200	2.850732	0.075036	2.370735	0.102169
	F46	1200	2.850732	0.074932	2.370735	0.094472
	F52	1200	2.570877	0.236144	2.799938	0.342197
	F53	1200	2.570877	0.192203	2.799938	0.369892
	F54	1200	2.570877	0.146067	2.799938	0.237193
	F55	1200	2.570877	0.135299	2.799938	0.227599
	F56	1200	2.570877	0.127423	2.799938	0.195356
	F57	1200	2.570877	0.095340	2.799938	0.183570
	F61	1200	2.850732	0.086120	2.370735	0.130131
	F62	1200	2.850732	0.075036	2.370735	0.102169
	F63	1200	2.850732	0.086120	2.370735	0.130131
	F64	1200	2.850732	0.075036	2.370735	0.102169
Club Throw	F31	1200	2.928956	0.130944	2.847729	0.289092
	F32	1200	2.928956	0.126283	2.847729	0.190315
	F51	1200	2.928956	0.146364	2.847729	0.182964
High Jump	T11	1200	7.969966	6.156595	n/a	n/a
	T12	1200	7.969966	4.902126	n/a	n/a
	T13	1200	7.969966	4.645444	n/a	n/a
	T42	1200	7.969966	5.037708	n/a	n/a
	T43/44	1200	7.969966	4.336886	6.848669	6.071675
	T45-47	1200	7.969966	4.696753	n/a	n/a
	T61	1200	7.969966	5.037708	n/a	n/a
	T62	1200	7.969966	4.336886	6.848669	6.071675
	T63	1200	7.969966	5.037708	n/a	n/a
	T64	1200	7.969966	4.336886	6.848669	6.071675
Long Jump	T11	1200	5.660052	1.090072	5.787447	1.470529
	T12	1200	5.660052	0.988655	5.787447	1.225753
	T13	1200	5.660052	1.021053	5.787447	1.305537

	T20	1200	5.660052	1.008066	5.787447	1.319424
	T35	1200	5.660052	1.547771	5.787447	2.127188
	T36	1200	5.660052	1.261844	5.787447	1.697302
	T37	1200	5.660052	1.134776	5.787447	1.562599
	T38	1200	5.660052	1.088730	5.787447	1.481458
	T42	1200	5.660052	1.094213	5.787447	1.635018
	T43/44	1200	5.660052	0.989392	5.787447	1.259742
	T45-47	1200	5.660052	1.028774	5.787447	1.273799
	T61	1200	5.660052	1.094213	5.787447	1.635018
	T62	1200	5.660052	0.989392	5.787447	1.259742
	T63	1200	5.660052	1.094213	5.787447	1.635018
	T64	1200	5.660052	0.989392	5.787447	1.259742
Triple Jump	T11	1200	10.653824	0.947962	n/a	n/a
	T12	1200	10.653824	0.826646	n/a	n/a
	T13	1200	10.653824	0.900026	n/a	n/a
	T20	1200	10.653824	0.865227	8.360791	0.787919
	T42	1200	n/a	n/a	n/a	n/a
	T43/44	1200	n/a	n/a	n/a	n/a
	T45-47	1200	10.653824	0.851656	n/a	n/a
	T61	1200	n/a	n/a	n/a	n/a
	T62	1200	n/a	n/a	n/a	n/a
	T63	1200	n/a	n/a	n/a	n/a
	T64	1200	n/a	n/a	n/a	n/a

Youth Point Scores 2021

For youth events, the formula as shown above does not change apart from an adjustment of the c factor to reflect the performance difference between the average performances at major international Para athletics competitions and the average of performances expected at youth events considering the senior weight implements.

Method to calculate the points for a specific performance remains the Gompertz function with an additional static factor applicable to all genders, events, and classes:

$$G(p, a, b, c) = q = ae^{-e^{b-\frac{c}{0.88}p}}$$

To calculate the required performance for given points, the inverse Gompertz function is

$$G^{-1}(q, a, b, c) = p = 0.88 \cdot \left(b - \ln\left(\ln\left(\frac{a}{q}\right)\right)\right)/c$$

with performance p (in seconds), points q, and parameters a, b, c as listed on pages 1-3 in this document.