Exercise set 2 Topological Data Analysis, FS 23

Exercise 1

The number of holes is homotopy invariant (see Cor. 4 scribe notes 8). So, we can divide the alphabet letters in three classes: $\{B\}, \{D, O, P, Q, A, R\},$

 $\{C,G,L,M,N,S,U,V,W,Z,E,F,J,T,Y,H,I,K,X\}$. While the "B" is homotopy equivalent to the figure-of-eight graph, all the letters in the third class are contractible (all finite trees are contractible). The letters in the second class are homotopy equivalent to the circle.

Exercise 2

Definition 1. Let g, h be maps $X \to Y$. A homotopy connecting g and h is a map $H : X \times [0,1] \to Y$ such that $H(\cdot,0) = g$ and $H(\cdot,1) = h$. In this case g and h are called homotopic.

Definition 2. Two spaces X, Y are homotopy equivalent if there exist maps $g: X \to Y$ and $h: Y \to X$ such that:

- $h \circ g$ is homotopic to id_X (the identity map $x \mapsto x$), and
- $g \circ h$ is homotopic to id_Y .

Definition 3. Let $A \subseteq X$. A deformation retract of X onto A is a map $R: X \times [0,1] \to X$, such that

- $R(\cdot,0) = id_X$
- $R(x,1) \in A, \forall x \in X$
- $R(a,t) = a, \forall a \in A, t \in [0,1]$

If such a deformation retract of X onto A exists, we also say that A is a deformation retract of X.

Proposition 1. If A is a deformation retract of X (there exists a deformation retract of X onto A), then A and X are homotopy equivalent.

2.1 Cylinder is homotopy equivalent to a circle

To prove that the cylinder is homotopy equivalent to the circle, it is sufficient to prove that the circle is a deformation retract of the cylinder (cfr Proposition 1).

We define

$$R: (S^1 \times I) \times I \to S^1 \times I, \text{ with } ((x,y),t) \mapsto (x,(1-t)\cdot y)$$
 (1)

Clearly R is continuous and we have that $R((x,y),0) = \mathrm{id}_{S^1 \times I}(x,y)$, $R((x,y),1) = (x,0) \in S^1$ and $R((x,0),t) = (x,0), \forall t \in [0,1]$. We have so constructed a deformation retract of $(S^1 \times I)$ into S^1 . Using Proposition 1 the proof concludes.

2.1 Moebius strip is homotopy equivalent to a circle

Definition 4. The Möbius strip M can be defined as $I \times I$ by identifying (0,x) with (1,1-x) for $x \in I$. Equivalently $M = I^2 \setminus \sim$

Figure 1: Moebius strip

Similarly to the cylinder, to prove that the Moebius strip is homotopy equivalent to the circle, it is sufficient to prove that the circle is a deformation retract of the Moebius strip (cfr Proposition 1).

The Möbius strip has a circle at its centre, namely the image of $I \times \{1/2\}$ (since $(0, 1/2) \sim (1, 1/2)$). The Möbius strip deformation retracts to this circle by taking the deformation retract on the rectangle

$$R: (I \times I) \times I \to I \times I, \quad ((x, y), t) \mapsto (x, (1 - t)(y - 1/2) + 1/2).$$
 (2)

Since 1 - [(1-t)(y-1/2) + 1/2] = (1-t)(1-y-1/2) + 1/2 if we pass to the quotient M we get a continuous map $\tilde{R}: M \times I \to M$ (i.e the homotopy carries over to a homotopy in the quotient) given by:

$$\tilde{R}([(x,y)],t) = [R((x,y),t)]$$
 (3)

Exercise 3

Proposition 2. X, Y are homotopy equivalent if and only if there exists a space Z such that X and Y are deformation retracts of Z.

Consider the space X obtained from S^2 by attaching the two ends of an arc A to two distinct points on the sphere, say the north and south poles. Let B be an arc in S^2 joining the two points where A attaches. Then X' = X/A and Y = X/B are both deformations retracts of X (informally shown by the picture). It follows from Preposition 2 that X' and Y are homotopy equivalent.

Figure 2: The space X/A is the quotient S^2/S^0 , the sphere with two points identified, and X/B is $S^1 \vee S^2$. Image taken from [1].

The two spaces are not homeomorphic. Consider the 1-dimensional loop in X/b. Such a 1-dimensional part doesn't exist anywhere in X/A. (homeomorphism cannot map it anywhere)

Exercise 4

Definition 5. A group (G, +) is a set G together with a binary operation "+" such that

- 1. $\forall a, b \in G : a + b \in G$
- 2. $\forall a, b, c \in G : (a+b) + c = a + (b+c)$ (Associativity)
- 3. $\exists 0 \in G : a + 0 = 0 + a = a \forall a \in G$
- 4. $\forall a \in G \exists -a \in G : a + (-a) = 0$

(G, +) is abelian if we also have

5. $\forall a, b \in G : a + b = b + a$ (Commutativity)

Definition 6. A subset $A \subseteq G$ is a generator if every element of G can be written as a finite sum of elements of A and their inverses.

Definition 7. A cyclic group is a group G that contains an element $g \in G$ such that $\{g\}$ is a generator of G.

To prove that every cyclic group is abelian we can procede as follows: consider two elements $x, y \in G$. Since G is cyclic and g is a generator we can write every element of G as an alternating sum of g and g. However note that every mixed sequence of g and g can be reduced to a sum of exclusively g or g terms since g + (-g) = 0. Therefore we write g as

$$x = n \cdot g, \quad y = m \cdot g \tag{4}$$

for some integers n, m. The product of these two elements is given by

$$x + y = (n \cdot g) + (m \cdot g) \tag{5}$$

$$= (n+m) \cdot g \tag{6}$$

$$= (m+n) \cdot g \tag{7}$$

$$=y+x. (8)$$

Where in the second to last line we used commutativity of integer numbers.

Exercise 5

If by keeping applying X we would solve every cube, then there must be a generator X that solves every cube. By the previous exercise then the Rubic's cube would be commutative. We therefore we have a contradiction.

Exercise 6

If H is abelian, then, by taking f(x) = 0 as neutral element and -f(x) as inverse element it is trivial to prove that $(\text{Hom}(G, H), \oplus)$ is a group.

To show that $\operatorname{Hom}(\mathbb{Z}_2^2,\mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^2 , we need to find a bijective group homomorphism from $\operatorname{Hom}(\mathbb{Z}_2^2,\mathbb{Z}_2)$ to \mathbb{Z}_2^2 .

Let f be a function in $\operatorname{Hom}(\mathbb{Z}_2^2, \mathbb{Z}_2)$, and let a = f((1,0)) and b = f((0,1)) be the values of f on the standard basis vectors of \mathbb{Z}_2^2 . Since every element of \mathbb{Z}_2^2 is a linear combination of (1,0) and (0,1) with coefficients in \mathbb{Z}_2 , the function f is completely determined by its values on (1,0) and (0,1). Therefore, we can define a function ϕ from $\operatorname{Hom}(\mathbb{Z}_2^2,\mathbb{Z}_2)$ to \mathbb{Z}_2^2 as follows:

$$\phi(f) = (a, b)$$

We claim that ϕ is a bijective group homomorphism.

First, we need to show that ϕ preserves the group operation. Let f,g be functions in $\mathrm{Hom}(\mathbb{Z}_2^2,\mathbb{Z}_2)$, and let $a=f((1,0)),\ b=f((0,1)),\ c=g((1,0)),\ and\ d=g((0,1))$ be their respective values on the standard basis vectors of \mathbb{Z}_2^2 . Then,

$$\phi(f+g) = (f((1,0)) + g((1,0)), f((0,1)) + g((0,1))) = (a+c,b+d)$$

and

$$\phi(f) + \phi(g) = (a, b) + (c, d) = (a + c, b + d)$$

Therefore, ϕ preserves the group operation.

Next, we need to show that ϕ is injective. Suppose $\phi(f) = \phi(g)$ for two functions f,g in $\operatorname{Hom}(\mathbb{Z}_2^2,\mathbb{Z}_2)$. Then, $(a,b) = \phi(f) = \phi(g) = (c,d)$. This implies that a=c and b=d, which means that f and g agree on the standard basis vectors of \mathbb{Z}_2^2 . Since every element of \mathbb{Z}_2^2 is a linear combination of (1,0) and (0,1) with coefficients in \mathbb{Z}_2 , f and g must be equal. Therefore, ϕ is injective.

Finally, we need to show that ϕ is surjective. Let (a,b) be an element of \mathbb{Z}_2^2 . We can define a function f in $\operatorname{Hom}(\mathbb{Z}_2^2,\mathbb{Z}_2)$ as follows:

$$f(x,y) = ax + by \pmod{2}$$

for any (x,y) in \mathbb{Z}_2^2 . It is easy to verify that f is a homomorphism from \mathbb{Z}_2^2 to \mathbb{Z}_2 , and that $\phi(f)=(a,b)$. Therefore, ϕ is surjective.

Since ϕ is a bijective group homomorphism, $\text{Hom}(\mathbb{Z}_2^2, \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^2 .

References

[1] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.