Congratulations! You passed!	Next Item
1/1 point	
1. For which of the following tasks might K-means clustering be a suitable algorithm	n? Select all that apply.
Given a database of information about your users, automatically group the market segments.	hem into different
Correct You can use K-means to cluster the database entries, and each cluster will corr different market segment.	respond to a
Given sales data from a large number of products in a supermarket, figur tend to form coherent groups (say are frequently purchased together) an on the same shelf.	
Correct If you cluster the sales data with K-means, each cluster should correspond to contemporal items.	coherent groups of
Given historical weather records, predict the amount of rainfall tomorrow valued output)	w (this would be a real-
Un-selected is correct	
Given sales data from a large number of products in a supermarket, esting each of these products. Un-selected is correct	mate future sales for

Unsupervised Learning Quiz, Suppose we have three cluster centroids $\mu_1=egin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=egin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=egin{bmatrix}4\\2\end{bmatrix}$. Furthermor ē/,5,204 ists (10))0%)
training example $x^{(i)} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?	
$\bigcirc c^{(i)}=2$	
$\bigcirc c^{(i)}$ is not assigned	
$igcap c^{(i)}=3$	
Correct $x^{(i)}$ is closest to μ_3 , so $c^{(i)}=3$	
$\bigcirc c^{(i)} = 1$	
1/1 point 3.	
ు. K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner- loop. Which two?	
$lacksquare$ Move the cluster centroids, where the centroids μ_k are updated.	
Correct The cluster update is the second step of the K-means loop.	
Feature scaling, to ensure each feature is on a comparable scale to the others.	
Un-selected is correct	
The cluster assignment step, where the parameters $c^{(i)}$ are updated.	
Correct This is the correst first step of the K-means loop.	
Using the elbow method to choose K.	

Un-selected is correct

Supei , 5 questic	rviséd Learning	/5 points
4. Suppos	se you have an unlabeled dataset $\{x^{(1)},\dots,x^{(m)}\}.$ You run K-means with 50 different ra	ındom
initializ	rations, and obtain 50 different clusterings of the	
data. W	Vhat is the recommended way for choosing which one of	
these 5	50 clusterings to use?	
	Plot the data and the cluster centroids, and pick the clustering that gives the most "cohe cluster centroids.	rent"
0	Compute the distortion function $J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_k)$, and pick the one that m this.	inimizes
	ect wer value for the distortion function implies a better clustering, so you should choose the tering with the smallest value for the distortion function.	
	Manually examine the clusterings, and pick the best one.	
	Use the elbow method.	
~	1 / 1 point	
5. Which	of the following statements are true? Select all that apply.	
	Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus always better to have as large a number of clusters as is computationally feasible.	s it is
Un-se	elected is correct	
	For some datasets, the "right" or "correct" value of K (the number of clusters) can be am and hard even for a human expert looking carefully at the data to decide.	biguous,
Corre		
ın m	any datasets, different choices of K will give different clusterings which appear quite	

reasonable. With no labels on the data, we cannot say one is better than the other.

	If we are worried about K-means getting stuck in bad local optima, one way to ameliorate
	(reduce) this problem is if we try using multiple random initializations.

Corre Unsuppet Quiz, 5 quefficio	ect EViSE In Garnings independent, multiple runs can find different optima, and som §/5 points (100% In avoid bad local optima.
Un-se	The standard way of initializing K-means is setting $\mu_1=\dots=\mu_k$ to be equal to a vector of zeros.

S P