# **2D Spline Curves**

**CS 4620 Lecture 13** 

#### **Motivation: smoothness**

- In many applications we need smooth shapes
  - that is, without discontinuities



- So far we can make
  - things with corners (lines, squares, rectangles, ...)
  - circles and ellipses (only get you so far!)

#### Classical approach

- Pencil-and-paper draftsmen also needed smooth curves
- Origin of "spline:" strip of flexible metal
  - held in place by pegs or weights to constrain shape
  - traced to produce smooth contour



#### Translating into usable math

#### Smoothness

- in drafting spline, comes from physical curvature minimization
- in CG spline, comes from choosing smooth **functions** 
  - usually low-order polynomials <sub>3ই চেই</sub>১১

#### Control

- in drafting spline, comes from fixed pegs
- in CG spline, comes from user-specified control points

### **Defining spline curves**

• At the most general they are parametric curves  $S = \{\mathbf{p}(t) \, | \, t \in [0,N] \}$ 

- Generally f(t) is a piecewise polynomial
  - for this lecture, the discontinuities are at the



#### **Defining spline curves**

- Generally f(t) is a piecewise polynomial
  - for this lecture, the discontinuities are at the integers
  - e.g., a cubic spline has the following form over [k, k + 1]:

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$
$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

Coefficients are different for every interval

#### **Coordinate functions**





#### **Coordinate functions**



#### **Control of spline curves**

- Specified by a sequence of control points
- Shape is guided by control points (aka control polygon)
  - interpolating: passes through points
  - approximating: merely guided by points



# How splines depend on their controls

- Each coordinate is separate
  - the function x(t) is determined solely by the x coordinates of the control points
  - this means 1D, 2D, 3D, ... curves are all really the same
- Spline curves are linear functions of their controls
  - moving a control point two inches to the right moves x(t) twice as far as moving it by one inch
  - x(t), for fixed t, is a linear combination (weighted sum) of the control points' x coordinates
  - p(t), for fixed t, is a linear combination (weighted sum) of the control points

# **Splines as reconstruction**



- This spline is just a polygon
  - control points are the vertices
- But we can derive it anyway as an illustration
- Each interval will be a linear function
  - -x(t)=at+b
  - constraints are values at endpoints
  - $-b = x_0$ ;  $a = x_1 x_0$
  - this is linear interpolation



Vector formulation

$$x(t) = (x_1 - x_0)t + x_0$$
  
 $y(t) = (y_1 - y_0)t + y_0$   
 $\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$ 

Matrix formulation

t // coef // control point

$$\mathbf{p}(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

- Basis function formulation
  - regroup expression by **p** rather than t

$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$
$$= (1 - t)\mathbf{p}_0 + t\mathbf{p}_1$$

- interpretation in matrix viewpoint

$$\mathbf{p}(t) = \begin{pmatrix} \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

- Basis function formulation
  - regroup expression by **p** rather than t

$$\mathbf{p}(t) = (\mathbf{p_1} - \mathbf{p_0})t + \mathbf{p_0}$$

$$= (1 - t)\mathbf{p_0} + t\mathbf{p_1}$$

$$= p(t) = \begin{bmatrix} x(t) & y(t) \end{bmatrix} \qquad \begin{bmatrix} \mathbf{p_0} \\ \mathbf{p_1} \end{bmatrix} = \begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \end{bmatrix}$$
- interpretation in matrix viewpoint

$$\mathbf{p}(t) = \begin{pmatrix} \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

- Vector blending formulation: "average of points"
  - blending functions: contribution of each point as t changes control point 의 가중치 (weight)



- Basis function formulation: "function times point"
  - basis functions: contribution of each point as t changes



- can think of them as blending functions glued together
- this is just like a reconstruction filter!

### Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
  - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
    - what are x(t) and y(t)?
  - then move one control straight up



### Piece these together

Create series of equations  $p_4$  $p_2$  $0 \le t < 1, (1-t) p_0 + t p_1 \\ 1 \le t < 2, (2-t) p_1 + (t-1) p_2$  $(x,y) = \begin{cases} 2 \le t < 3, (3-t)p_2 + (t-2)p_3 \end{cases}$  $3 \le t < 4, (4-t)p_3 + (t-3)p_4$  $p_4$ 

Cornell CS4620 Fall 2008 • Lecture 18

Blending Functions

© 2008 Steve Marschner •

 $4 \le t < 5, (5-t)p_4 + (t-4)p_5$ 

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)



Solve constraints to find coefficients

$$x(t) = at^3 + bt^2 + ct + d$$
 $x'(t) = 3at^2 + 2bt + c$ 
 $x(0) = x_0 = d$ 
 $x(1) = x_1 = a + b + c + d$ 
 $x'(0) = x'_0 = c$ 
 $x'(1) = x'_1 = 3a + 2b + c$ 



$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x'_0 \\ x'_1 \end{bmatrix}$$
2008 • Lecture  $\begin{bmatrix} 3 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}$ 

 Solve constraints to find coefficients

$$x(t) = at^{3} + bt^{2} + ct + d$$

$$x'(t) = 3at^{2} + 2bt + c$$

$$x(0) = x_{0} = d$$

$$x(1) = x_{1} = a + b + c + d$$

$$x'(0) = x'_{0} = c$$

$$x'(1) = x'_{1} = 3a + 2b + c$$



$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

$$-2b + c$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x'_0 \\ x'_1 \end{bmatrix}$$







© 2008 Steve Marschner •

Matrix form is much simpler

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

- coefficients = rows
- basis functions = columns
  - note **p** columns sum to [0 0 0 1]<sup>T</sup>

Matrix form is much simpler

$$\begin{bmatrix} \mathbf{p_0} \\ \mathbf{p_1} \\ \mathbf{v_0} \\ \mathbf{v_1} \end{bmatrix} = \begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \\ x'_0 & y'_0 \\ x'_1 & y'_1 \end{bmatrix}$$

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

- coefficients = rows
- basis functions = columns
  - note **p** columns sum to [0 0 0 1]<sup>T</sup>

 $A^{-1}$ 

#### **Coefficients = rows**

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

$$egin{bmatrix} egin{bmatrix} \mathbf{t}^3 & t^2 & t & 1 \end{bmatrix} egin{bmatrix} imes & imes &$$

$$\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$$

#### **Basis functions=columns**

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

$$egin{bmatrix} egin{bmatrix} \mathbf{x} & \mathbf{x}$$

$$\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$$

Hermite blending functions



#### **Longer Hermite splines**

- Can only do so much with one Hermite spline
- Can use these splines as segments of a longer curve
  - curve from t = 0 to t = 1 defined by first segment
  - curve from t = 1 to t = 2 defined by second segment
- To avoid discontinuity, match derivatives at junctions
  - this produces a  $C^1$  curve

Hermite basis functions



### Continuity

- Smoothness can be described by degree of continuity
  - zero-order (C<sub>0</sub>): position matches from both sides
  - first-order ( $C^1$ ): tangent matches from both sides
  - second-order ( $C^2$ ): curvature matches from both sides
  - Gn vs. Cn

변화율까지 동일(좌, 우 미분) first order second order zero order

### **Continuity**

- Parametric continuity (C) of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
- Neither form of continuity is guaranteed by the other
  - Can be  $C^1$  but not  $G^1$  when  $\mathbf{p}(t)$  comes to a halt (next slide)
  - Can be G¹ but not C¹ when the tangent vector changes length abruptly

# Geometric vs. parametric continuity





그림이 다르다, 위 쪽 동그라미 x

#### **Control**

- Local control
  - changing control point only affects a limited part of spline
  - without this, splines are very difficult to use
  - many likely formulations lack this
    - natural spline
    - polynomial fits



#### **Control**

- Convex hull property
  - convex hull = smallest convex region containing points
    - think of a rubber band around some pins
  - some splines stay inside convex hull of control points



#### **Affine invariance**

- Transforming the control points is the same as transforming the curve
  - true for all commonly used splines
  - extremely convenient in practice...





 Constraints are endpoints and endpoint tangents



$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$



#### **Affine invariance**

 Basis functions associated with points should always sum to 1



$$\mathbf{p}(t) = b_0 \mathbf{p}_0 + b_1 \mathbf{p}_1 + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1$$

$$\mathbf{p}'(t) = b_0 (\mathbf{p}_0 + \mathbf{u}) + b_1 (\mathbf{p}_1 + \mathbf{u}) + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1$$

$$= b_0 \mathbf{p}_0 + b_1 \mathbf{p}_1 + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1 + (b_0 + b_1) \mathbf{u}$$

$$= \mathbf{p}(t) + \mathbf{u}$$

- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- note derivative is defined as 3 times offset t
- reason is illustrated by linear case

$$\mathbf{p}_0 = \mathbf{q}_0$$
  
 $\mathbf{p}_1 = \mathbf{q}_3$   
 $\mathbf{v}_0 = 3(\mathbf{q}_1 - \mathbf{q}_0)$   
 $\mathbf{v}_1 = 3(\mathbf{q}_3 - \mathbf{q}_2)$ 



$$\mathbf{p}_0 = \mathbf{q}_0$$
  
 $\mathbf{p}_1 = \mathbf{q}_3$   
 $\mathbf{v}_0 = 3(\mathbf{q}_1 - \mathbf{q}_0)$   
 $\mathbf{v}_1 = 3(\mathbf{q}_3 - \mathbf{q}_2)$ 

$$\begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

$$\mathbf{p}_0 = \mathbf{q}_0$$

$$\mathbf{p}_1 = \mathbf{q}_3$$

$$\mathbf{v}_0 = 3(\mathbf{q}_1 - \mathbf{q}_0)$$

$$\mathbf{v}_1 = 3(\mathbf{q}_3 - \mathbf{q}_2)$$

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

Hermite matrix

$$egin{aligned} egin{bmatrix} -1 & 3 & -3 & 1 \ 3 & -6 & 3 & 0 \ -3 & 3 & 0 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix} egin{bmatrix} \mathbf{q}_0 \ \mathbf{q}_1 \ \mathbf{q}_2 \ \mathbf{q}_3 \end{bmatrix} & \mathbf{Hermit} \ \mathbf{B\'ezier} \ \mathbf{p}_0 = \mathbf{q}_0 \ \mathbf{p}_1 = \mathbf{q}_3 \ \mathbf{v}_0 = 3(\mathbf{q}_1 - \mathbf{q}_0) \end{aligned}$$

 $\mathbf{v}_1 = 3(\mathbf{q}_3 - \mathbf{q}_2)$ 

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

### **Bézier matrix**

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

- note that these are the Bernstein polynomials

$$C(n,k) t^{k} (1-t)^{n-k}$$

and that defines Bézier curves for any degree

# **Apply Constraint Matrix**

$$\begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

$$\begin{bmatrix} (1-u)^3 & 3u(u-1)^2 & 3u^2(u-1) & u^3 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

$$(1-u)^3 p_0 + 3u(1-u)^2 p_1 + 3u^2(1-u) p_2 + u^3 p_3$$

# **Bézier basis**





# **Bezier Polynomials sum to one**

$$(1-u)+u=1$$

$$((1-u)+u)=1$$

$$((1-u)+u)^{3}=1$$

$$(1-u)^{3}+3u(1-u)^{2}+3u^{2}(1-u)+u^{3}=1$$

So each point on the curve is a convex sum of the control points

Thus the curve lies inside the convex hull of the control points

#### **Convex hull**

- If basis functions are all positive, the spline has the convex hull property
  - we're still requiring them to sum to 1



Client click check

- if any basis function is ever negative, no convex hull prop.
  - proof: take the other three points at the same place

### **Convex Hull**

Check that the curve remains inside the convex hull of the control points in our examples



# Chaining spline segments

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points and they have nice properties
  - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
  - a similar construction leads to the interpolating Catmull-Rom spline

# Chaining Bézier splines

- No continuity built in
- Achieve C¹ using collinear control points



#### **Subdivision**

 A Bézier spline segment can be split into a two-segment curve:



- de Casteljau's algorithm
- also works for arbitrary t

# **Cubic Bézier splines**

- Very widely used type, especially in 2D
  - e.g. it is a primitive in PostScript/PDF
- Can represent C¹ and/or G¹ curves with corners
- Can easily add points at any position
- Illustrator demo

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
  - use adjacent control points

end tangents: extra points or zero

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
  - use adjacent control points



- end tangents: extra points or zero

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
  - use adjacent control points



end tangents: extra points or zero

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
  - use adjacent control points



end tangents: extra points or zero

- Tangents are  $({\bf p}_{k+1} {\bf p}_{k-1}) / 2$ 
  - scaling based on same argument about collinear case  $\mathbf{p}_0 = \mathbf{q}_k$

$$\mathbf{p}_1 = \mathbf{q}_k + 1$$
 $\mathbf{v}_0 = 0.5(\mathbf{q}_{k+1} - \mathbf{q}_{k-1})$ 
 $\mathbf{v}_1 = 0.5(\mathbf{q}_{k+2} - \mathbf{q}_K)$ 

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -.5 & 0 & .5 & 0 \\ 0 & -.5 & 0 & .5 \end{bmatrix} \begin{bmatrix} \mathbf{q}_{k-1} \\ \mathbf{q}_k \\ \mathbf{q}_{k+1} \\ \mathbf{q}_{k+2} \end{bmatrix}$$

## **Catmull-Rom basis**



## **Catmull-Rom basis**



## **Catmull-Rom splines**

- Our first example of an interpolating spline
- Like Bézier, equivalent to Hermite
  - in fact, all splines of this form are equivalent
- First example of a spline based on just a control point sequence
- Does not have convex hull property

# **B-Spline**

- We may want more continuity than C<sup>1</sup>
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity



# Why B-spline. 1. High-order bezier curve instead?

- Recall bezier curve
  - The degree of a Bezier
     Curve is determined by the number of control points
  - E. g. bezier curve degree 11
     difficult to bend the "neck" toward the line segment
     P<sub>4</sub>P<sub>5</sub>.
  - We can add more control points, BUT this will increase the degree of the curve > increase computational burden and smoothness



# Why B-Spline. 2. Chaining cubic Bezier curves instead?

- Joint many bezier curves of lower degree together (right figure)
  - You can chain Hermite or Bezier curves
  - Catmull-Rom spline is also in this form
  - Unintuitive to control and sometimes not smooth enough



## **B-splines**

 Use 4 points, but approximate only middle two



- Draw curve with overlapping segments
  - 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc
- Curve may miss all control points
- Smoother at joint points (why? later)

# **Cubic B-spline basis**



# **Cubic B-spline basis**



## **Deriving the B-Spline**

- Want a cubic spline; therefore 4 active control points
- Want C2 continuity
  - Turns out that is enough to determine everything

# Efficient construction of any B-spline

- B-splines defined for all orders
  - order *d*: degree *d* − 1
  - order d: d points contribute to value
- One definition: Cox-deBoor recurrence

$$b_{1} = \begin{cases} 1 & 0 \le u < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$b_{d} = \frac{t}{d-1}b_{d-1}(t) + \frac{d-t}{d-1}b_{d-1}(t-1)$$

B-spline construction, alternate view

- Recurrence
  - ramp up/down
- Convolution
  - smoothing of basis fn
  - smoothing of curve



### **B-spline of order 1 using b1(t)**

- Order =1
- Degree =0
- Discontinuous
- 1 segment basis function



# B-spline of order 2 (Linear B-Splines)

- Order =2
- Degree =1
- C0 continuous
- 2 segments





### **B-spline or order 4 (cubic B-spline)**

- Order =4
- Degree =3
- C2 continuous
- 4 segments





### **Cubic B-spline matrix**

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

$$p(t) = \mathbf{t}^{\mathrm{T}} \mathbf{M}_{S} \mathbf{p} = \mathbf{b}(\mathbf{t})^{\mathrm{T}} \mathbf{p}$$



$$b(t) = \frac{1}{6} \begin{bmatrix} (1-t)^3 \\ 3t^3 - 6t^2 + 4 \\ -3t^3 + 3t^2 + 3t + 1 \\ t^3 \end{bmatrix}$$



#### **Basis Functions**

In terms of the blending polynomials

$$B_{i}(u) = \begin{cases} 0 & u < i - 2 \\ b_{0}(u+2) & i - 2 \le u < i - 1 \\ b_{1}(u+1) & i - 1 \le u < i \\ b_{2}(u) & i \le u < i + 1 \\ b_{3}(u-1) & i + 1 \le u < i + 2 \\ 0 & u \ge i + 2 \end{cases} \xrightarrow{b_{0}(u+2)} \xrightarrow{b_{1}(u+1) \ b_{2}(u)} \xrightarrow{b_{3}(u-1)}$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

### **Basis Functions**



### Other types of B-splines

- Nonuniform B-splines
  - discontinuities not evenly spaced
  - allows control over continuity or interpolation at certain points
  - e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
  - ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
  - key properties:
    - invariance under perspective as well as affine
    - ability to represent conic sections exactly

## Non-uniform B-Spline basis function

$$N_{i,k}(u) = (u - u_i) \frac{N_{i,k-1}(u)}{u_{i+k-1} - u_i} + (u_{i+k} - u) \frac{N_{i+1,k-1}(u)}{u_{i+k} - u_{i+1}}$$
(1.1)

$$N_{i,1} = \begin{cases} 1 & u_i \le u \le u_{i+1} \\ 0 & \text{Otherwise} \end{cases}$$
 (1.2)

 $\rightarrow$ In equation (1.1), the denominators can have a value of zero, 0/0 is presumed to be zero.

# Type of B-Spline knot vector (the set of parameters t)

Non-periodic knots (open knots)

- -First and last knots are duplicated k times.
- -E.g (0,0,0,1,2,2,2)
- -Curve pass through the first and last control points

Periodic knots (non-open knots)

- -First and last knots are not duplicated same contribution.
- -E.g(0, 1, 2, 3)
- -Curve doesn't pass through end points.
- can used to generate closed curves (when first
- = last control points)

### Type of B-Spline knot vector



### **Converting spline** representations

- All the splines we have seen so far are equivalent
  - all represented by geometry matrices

$$\mathbf{p}_S(t) = T(t)M_S P_S$$

- where S represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication  $P_1 = M_1^{-1} M_2 P_2$  베지에spline 으로 컨버전 후,, 사용

$$P_1 = M_1^{-1} M_2 P_2$$

$$egin{aligned} \mathbf{p}_1(t) &= T(t) M_1(M_1^{-1} M_2 P_2) \ &= T(t) M_2 P_2 = \mathbf{p}_2(t) \end{aligned} \ \ _{\mathbb{Q} \text{ 2008 Steve Marschner } ullet_{8}}$$

### **Evaluating splines for display**

- Need to generate a list of line segments to draw
  - generate efficiently
  - use as few as possible
  - guarantee approximation accuracy
- Approaches
  - reccursive subdivision (easy to do adaptively)
  - uniform sampling (easy to do efficiently)

**Evaluating by subdivision** 

- Recursively split spline
  - stop when polygon is within epsilon of curve
- Termination criteria
  - distance between control points
  - distance of control points from line





**Evaluating by subdivision** 

- Recursively split spline
  - stop when polygon is within epsilon of curve
- Termination criteria
  - distance between control points
  - distance of control points from line





**Evaluating by subdivision** 

- Recursively split spline
  - stop when polygon is within epsilon of curve
- Termination criteria
  - distance between control points
  - distance of control points from line





### **Evaluating with uniform spacing**

- Forward differencing
  - efficiently generate points for uniformly spaced t values
  - evaluate polynomials using repeated differences

### **B-Spline Patches**

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) p_{ij} = u^T \mathbf{M}_S \mathbf{P} \mathbf{M}_S^T v$$

defined over only 1/9 of region



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012