LAB 05

Manually configure OpenFlow with Mininet

- Objectives
 - Understand how an Openflow switch behaves
 - Understand what an Openflow controller supposes to do to enable communication.
- Dpctl: a command-line utility that sends openflow messages to a switch
 - View switch configuration and capability
 - · View flow table entries
 - · Add, delete, and modify flow table entries

Use the command line to setup the topology

- \$ sudo mn --topo single,3 --mac --switch ovsk --controller remote
 - This creates a simple host with 3 switches, the mac addresses are assigned in a certain way, the switch is an Open vSwitch (software OpenFlow switch), controller is supposed to be at local host with port number 6633.
 - Mininet> net
 - Mininet> h1 ifconfig
 - Mininet> h2 ifconfig
 - The switch can be controlled at tcp:127.0.0.1:6634
- Mininet>pingall
 - This fails as the switch has nothing in its flow table
- Start another window do 'man dpctl' and 'man ovs-dpctl'
- \$ dpctl show tcp:127.0.0.1:6634
 - Tcp:127.0.0.1:6634 is the switch port for control
- \$dpctl dump-flows tcp:127.0.0.1:6634
 - The flow table is empty

Manually configure the OpenFlow switch with dptcl

- \$dpctl add-flow tcp:127.0.0.1:6634 in_port=1,idle_timeout=1000,actions=output:2
- \$dpctl add-flow tcp:127.0.0.1:6634 in_port=2,idle_timeout=1000,actions=output:1
 - \$dpctl dump-flows tcp:127.0.0.1:6634
 - Mininet> pingall
 - H1 and h2 are now connected.
 - \$dpctl dump-flows tcp:127.0.0.1:6634
 - Check the statistics
 - Mininet> s1 dpctl dump-flows tcp:127.0.0.1:6634
 - Continue the exercise to completely install flow table for all hosts.

Try the following:

- \$dpctl add-flow tcp:127.0.0.1:6634
 dl_dst=0:0:0:0:0:1,idle_timeout=1000,actions=output:1
- \$dpctl add-flow tcp:127.0.0.1:6634 dl_dst=0:0:0:0:2,idle_timeout=1000,actions=output:2
- \$dpctl add-flow tcp:127.0.0.1:6634
 - dl_dst=0:0:0:0:0:3,idle_timeout=1000,actions=output:3
 - \$dpctl dump-flows tcp:127.0.0.1:6634
 - Mininet> pingall
 - Try the following:
 - \$dpctl add-flow tcp:127.0.0.1:6634 idle_timeout=1000,actions=flood
 - Mininet> pingall
 - \$dpctl add-flow tcp:127.0.0.1:6634
 dl dst=ff:ff:ff:ff;ff;idle timeout=1000,actions=flood
 - Mininet>pingall
 - dpctl del-flows tcp:127:0.0.1:6634
 - dpctl dump-flows tcp:127.0.0.1:6634
 - \$dpctl add-flow tcp:127.0.0.1:6634 dl_dst=ff:ff:ff:ff:ff;idle_timeout=1000,actions=flood
 - \$dpctl add-flow tcp:127.0.0.1:6634 dl_dst=0:0:0:0:0:1,idle_timeout=1000,actions=output:1
 - Mininet>pingall
 - how to make the ping successful for one pair of hosts?
- Packet Capture: Use Wireshark to capture packets on the Mininet network, focusing on traffic between the OpenFlow switches and controller.
- OpenFlow Packet Structure: Analyse captured packets to identify OpenFlowspecific information. Recognize different OpenFlow message types (like "Packet-In" and "FlowMod").

Submission:

- 1. Analyse the above OpenFlow packet formats with Wireshark.
- 2. Include descriptions of different OpenFlow message types.