SYDNEY TECHNICAL HIGH SCHOOL

PRELIMINARY HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 3

SEPTEMBER 2013

2 UNIT

Mathematics

General Instructions

- Working time 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in questions 11 to 18
- · Start each question on a new page

Total marks - 82

Section 1 - 10 marks

Attempt Questions 1 - 10. Allow about 15 minutes for this section.

Section 2 - 72 marks

Attempt Questions 11 - 18. Allow about 105 minutes for this section.

Name	:		
Teacher	;		

Section 1

10 marks Attempt Questions 1-10Allow about 15 minutes for this section

Use the multiple-choice answer sheet in your answer booklet for Questions 1-10. Do not remove the multiple-choice answer sheet from your answer booklet.

- 1. If x = -4 is a root of the equation $2x^2 + kx + 4 = 0$, what is the value of k?
 - **(A)** 7
 - **(B)** 8
 - **(C)** 9
 - **(D)** 10

2.

The rule of the function whose graph is shown is

- (A) y = |x| 4
- (B) y = |x 2| + 2
- (C) y = |x + 2| 2
- (D) y = |2 x| 2

3. If $\sqrt{12} + \sqrt{3} = \sqrt{b}$ then

- (A) $b = \sqrt{15}$
- (B) $b = 3\sqrt{3}$
- (C) b = 15
- **(D)** b = 27

4. The x coordinates of the points of intersection of $y = x^2$ and x + y = 6 are the solutions of

- (A) $x^2 x 6 = 0$
- (B) $x^2 + x 6 = 0$
- (C) $x^2 x + 6 = 0$
- (D) $x^2 + x + 6 = 0$

5.

The size of the angle x is

- (A) 68°
- (B) 88°
- (C) 92°
- **(D)** 112°

- 6. Given $y = a x^n$ then $\frac{dy}{dx} = ?$
 - (A) $a \times n \times x^{n-1}$
 - (B) $a \times n \times x^{n+1}$
 - (C) $n \times x^{n-1}$
 - **(D)** $a \times x^{n-1}$
- 7. Find the values of m for which $24 + 2m m^2 \le 0$
 - (A) $m \le -4 \text{ or } m \ge 6$
 - (B) $m \le -6 \text{ or } m \ge 4$
 - (C) $-4 \le m \le 6$
 - (D) $-6 \le m \le 4$
- 8. For $y = (4x + 1)(x + 2)^3$, $\frac{dy}{dx}$ is equal to
 - (A) $12(x+2)^2$
 - (B) $(x+2)^2(16x+11)$
 - (C) $3(x+2)^2(4x+1)$
 - (D) $(x+2)^2(12x+7)$

PQR is a triangle with side lengths x, 10 and y, as shown below. In this triangle, angle RPQ = 37° and angle QRP = 42°.

Which one of the following expressions is correct for triangle PQR?

$$(A) x = \frac{10}{\sin 37^{\circ}}$$

$$(B) x = 10 \times \frac{\sin 42^{\circ}}{\sin 37^{\circ}}$$

(C)
$$y = 10 \times \frac{\sin 37^{\circ}}{\sin 101^{\circ}}$$

(D)
$$10^2 = x^2 + y^2 - 2xy \cos 42^\circ$$

10. For $y = \sqrt{1 - f(x)}$, $\frac{dy}{dx}$ is equal to

(A)
$$\frac{2 f'(x)}{\sqrt{1-f(x)}}$$

(B)
$$\frac{-1}{2\sqrt{1-f(x)}}$$

(C)
$$\frac{1}{2}\sqrt{1-f'(x)}$$

(D)
$$\frac{-f'(x)}{2\sqrt{1-f(x)}}$$

Section 2

72 marks
Attempt Questions 11 – 18
Allow about 105 minutes for this section
Start each question on a new page

Question 11 (9 marks)

a) Simplify
$$\frac{3p^2-3q^2}{6p-6q}$$
 2

b) If
$$\frac{\sqrt{2}}{9} = 2^m \times 3^n$$
 find the values of m and n .

c) Solve
$$\frac{x+1}{x+3} = 5$$

d) Differentiate
$$y = 4x^3 - 3x^2 - x + 2$$

Question 12 (9 marks) Start a new page

a) The points
$$A(1,7)$$
, $B(-3,5)$ and $C(4,-1)$ lie on a number plane.

b) Find the exact solution of
$$2x^2 + 4x - 5 = 0$$

c) Simplify
$$\sqrt{60} + (\sqrt{5} - \sqrt{3})^2$$

Question 13 (9 marks) Start a new page

- a) Find the area bounded by the line 4x y = 8, the x axis and the y axis.
- b) If $f(x) = x^2 + 2x$ find $\frac{f(x+h)-f(x)}{h}$ in simplest form.
- c) Find the equation of the tangent to $y = (x 3)^3$ at the point (1, -8)
- d) The diagram shows XY parallel to PT, XP parallel to ST, angle XPT = 120° and angle SYT = 55° .

Find, with reasons, the value of x.

2

Question 14 (9 marks) Start a new page

a) Find the value of x, correct to 1 decimal place.

b) Solve |2x - 4| < 2

2

c) Evaluate $\lim_{x \to 2} \frac{3x^2 - 5x - 2}{x - 2}$

2

d) Indicate, by shading, the region where points simultaneously satisfy the inequalities $y \le x^2 - 1$ and $x^2 + y^2 \le 4$

3

Question 15 (9 marks) Start a new page

- a) If $\sin \theta = \frac{2}{3}$ and $\cos \theta < 0$ find the exact value of $\tan \theta$.
- b) Differentiate the following with respect to x

i)
$$y = (5x - 3)^4$$

$$y = \frac{6}{x^2}$$

iii)
$$y = 12\sqrt{x^3}$$

- c) If the quadratic equation $ax^2 + bx + c = 0$ has a discriminant equal to 4, 2 what does this tell us about the nature of the roots of the equation?
- d) If the lines 2x 5y + 3 = 0 and ax + 4y + 12 = 0 2 are perpendicular, find the value of a.

Question 16 (9 marks) Start a new page

a) Solve
$$\sin^2\theta = \frac{3}{4}$$
 for $0 \le \theta \le 360^\circ$.

b) If
$$f(x) = x\sqrt{2x+1}$$
 evaluate $f'(4)$.

c) Find, correct to the nearest degree, the acute angle the line 3x - y - 3 = 0 makes with the x axis.

d) Evaluate
$$\lim_{x \to \infty} \frac{x^2 - 4}{2x^2 + x}$$

e) Simplify
$$\sin^3 A \sec A + \sin A \cos A$$

Question 17 (9 marks) Start a new page

- a) State the domain of $y = \sqrt{x+4}$
- 1

b) If $y = \frac{2x-1}{x+4}$ find $\frac{dy}{dx}$.

2

c) Simplify $sin(90^{\circ} - \theta) cosec \theta$

2

d)

The diagram above was sketched by a surveyor, who measured the angle of elevation of a tree top on the other side of a river to be 7°12' at the point A. At the point B, 100 metres directly towards the tree from A, the angle of elevation was 9°42'.

Calculate the height of the tree, correct to 3 significant figures.

Please turn over

Question 18 (9 marks) Start a new page

a) Find the gradient of the normal to the curve

$$y = x^2 + 6x + 3$$
 at the point (1, -2)

2

b) Find all values of k for which the quadratic equation $kx^2 - 8x + k = 0$ has real roots.

3

c) The curve $y = ax + \frac{b}{x^2}$ cuts the x axis at the point (2,0)

4

and the gradient of the tangent to this curve at the point (2,0) equals 1.

Find the values of a and b.

End of paper

11

CANDIDATE NO: SOLUTIONS (2UNT 2013 YEARLY 12. a. i. $AC = \sqrt{(4-1)^2 + (-1-7)^2}$ 1. 0 = J73 units ii. $m = \frac{7 - 1}{1 - 4}$ $= \frac{8}{-3}$ 5. C iii. y-7= - = (>e-1) 8. B 34-21=-826+8 82c+34-29=0 1v. $d = \frac{[-3 \times 8 + 5 \times 3 - 29]}{\sqrt{8^2 + 3^2}}$ 11. =. $\frac{3(p-q)(p+q)}{6(p-q)}$ $=\frac{38}{\sqrt{72}}$ onits v. D (8,1) b. m=1, n=-2 b. oc = -4± 14-4-22-5 C. Dift = 5 > +15 = -4 ± 556 42 = -14 = -2 = 514 d. y= 1222-626-1 c. 2 JIS + 5 - 2 JIS +3

CANDIDATE NO:	
13. a.	14. a. x = 5.2 + 8.4 - 2x5.2x8.4x. (00)
72	x = 11.3 m
7-8	b2 < 2x-4 < 2
0 1	2 < 2 > < 6
Ance = 1 x 8 x 2	14 x 4 3
= 8 sq units	
	C. (im (3 2c+1) (2c-2)
b. f(2c+h) - f(2c)	2€→2
<i>u</i>	= (1m (3 x+1)
= (x+h) + 2 (x+h) - (x+2x)	
<u> </u>	= 1 7
= 2 + 2 xh + h + 2 x + 2h - x - 2 - 2 =	
5	1 45
= 2x + h + 2	d. , ,
c. y = 3(2-3)	
sub 20=1	-2
$m_{+} = 3(1-3)^{2}$	-2
= (2	
:. 4+8= 12 (7c-1)	
4+8= 12 26-12	15. a.
4= (220-20	2
	7 55 6
d. < XST = 120° (opposite angles	2nd quadrant
ot a povellelegren)	
i. DL = 65 (triangle equals the sum of the opposite interior angles)	$\therefore + \cos \theta = -\frac{2}{\sqrt{\pi}}$
of the upposite interior.	5
aryles)	

CANDIDATE NO.	
b. i. $y' = 20(5x-3)^3$	c. m = 3
	:. ton 0 = 3
ii. y = 6 x 2	∴ Θ = 72°
$y' = -12x^{-3}$	
= -12	d. 1/2
25	
$y' = 12 \times \frac{3}{2} \times \frac{1}{2}$	e. Sin A (Sin^A + Cos A)
y = 12 x 2 x	
= 18 125	= Sin A (Sin A + Cos A)
	= Sin A Cos A
c. roots are real, different and	Cos A
rational	= Tan A
d. $m_1 = \frac{2}{5}$ $m_2 = -\frac{q}{4}$	17. a. 26 3-4
but m, = m = -1	
2 x - a = -1	$\frac{dy}{dx} = \frac{(x+4)(z) - (2x-i)(i)}{(x+4)}$
S 4	1
2a = 20	= 22+8-22+1
a=10	(30+4)
	= 9 (20+4)~
16. a. Sin 6 = + 53	
0 = 60°, 120°, 240°, 300°	c. Sin (90° - €) (osec €
	= (o; ⊖
b. f'(2) = 12 241 + 32	5:- ⊖
f'(4) = Jq + 4/19	= Co+ 0
= 43	

d. < AQB = 1°30'	c. $(2,0)$ satisfies $y = ax + \frac{b}{2c^2}$
BQ (00 Sin7°(21 Sin2°30'	:. 0 = 2 = + 5
Sin7°12' Sin2°30'	or 8a+b=0
Ba = 100 Sin 7°12'	
Sin 2030'	y = a > 1 + b > 2-2
and $\sin 9^{\circ} 42^{\prime} = \frac{h}{BQ}$	$y' = a - 2bx^{-3}$
: h = 100 Sm7°12' Sin 9°42'	when 2=2 y'=1
5in 2° 30'	:. = a - 2b
= 48.4 m	8
	8=8a-26
18. a. y = 2 >c+6	4=40-6
when 2 = 1	
m= 8	:. Solve simultaneously
: m = -1	8=+6=0
	4a-b=4 add
b. real rods => 1 > 0	12a=4
:. (-8) - 4x (x k > 0	a = \frac{1}{3}
64-4/27,0	$b = -\frac{8}{3}$
le ≤ 16	
-4 = (c \ 4	