AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (currently amended): An inkjet ink comprising at least one dye in an aqueous medium,

wherein the dye satisfies a relation of $\varepsilon 1/\varepsilon 2 > 1.2$ wherein $\varepsilon 1$ represents a molar extinction

coefficient obtained from absorbance at the maximum wavelength of a spectral absorption curve

obtained by measuring an aqueous solution of the dye having a concentration of 0.1 mmol/liter

using a cell having a light pass length of 1 cm and \(\epsilon\) represents a molar extinction coefficient

obtained from absorbance at the maximum wavelength of a spectral absorption curve obtained

by measuring an aqueous solution of the dye having a concentration of 0.2 mmol/liter using a

cell having a light pass length of 5 µm.

2. (original): An ink set comprising the ink as claimed in Claim 1 as at least one of

constituting inks.

3. (original): The ink set as claimed in Claim 2, wherein the dye contained in the ink as

claimed in Claim 1 constituting the ink set is an azo dye having a heterocyclic group.

4. (original): The ink set as claimed in Claim 3, wherein the azo dye having a

heterocyclic group is an azo dye wherein two heterocyclic groups are connected by an azo bond.

2

5 (original): The ink set as claimed in Claim 2, wherein the dye contained in the ink as claimed in Claim 1 constituting the ink set is a metal chelate dye wherein a metal coordinated with a heterocyclic group form a nucleus.

- 6. (original): The ink set as claimed in Claim 5, wherein the metal chelate dye wherein a metal coordinated with a heterocyclic group form a nucleus is a phthalocyanine dye.
- 7. (currently amended): The ink set as claimed in Claim 2, which is for use in A method of inkjet recording comprising ejecting an ink according to Claim 1 onto a recording material.
- 8. (new): The inkjet ink as claimed in Claim 1, wherein the dye is represented by one of the following formulae (1) to (4):

$$A_{11}-N=N-B_{11}$$
 (1)

wherein A_{11} and B_{11} each independently represents a heterocyclic group which may be substituted;

Amendment Under 37 C.F.R. § 1.111

U.S. Appln. No.: 10/808,460

wherein X_{21} , X_{22} , X_{23} and X_{24} each independently represents -SO- Z_2 , -SO₂- Z_2 , -SO₂NR₂₁R₂₂, a sulfo group, -CONR₂₁R₂₂ or -COOR₂₁,

 Z_2 independently represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,

R₂₁ and R₂₂ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,

 Y_{21} , Y_{22} , Y_{23} and Y_{24} each independently represents a monovalent substituent,

 a_{21} to a_{24} and b_{21} to b_{24} represent the numbers of substituents X_{21} , X_{22} , X_{23} and X_{24} and Y_{21} , Y_{22} , Y_{23} and Y_{24} , respectively, a_{21} to a_{24} each independently represents an integer of from 0

to 4, provided that all of a_{21} to a_{24} are not 0 at the same time, and b_{21} to b_{24} each independently represents an integer of from 0 to 4, provided that when a_{21} to a_{24} and b_{21} to b_{24} each represents an integer of 2 or more, the plurality of $X_{21}s$, $X_{22}s$, $X_{33}s$, $X_{24}s$, $Y_{21}s$, $Y_{22}s$, $Y_{23}s$ or $Y_{24}s$ may be the same or different from each other, and

M represents a metal atom or an oxide, hydroxide or halide thereof;

wherein A₃₁ represents a 5-membered heterocyclic group,

 B_{31} and B_{32} each represents = CR_{31} - or - CR_{32} =, or either one of B_{31} and B_{32} represents a nitrogen atom and the other represents = CR_{31} - or - CR_{32} =,

R₃₅ and R₃₆ each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group or a sulfamoyl group, and each group may further have a substituent,

G₃, R₃₁ and R₃₂ each independently represents a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, a carboxy group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic oxycarbonyl group, an acyl group, a hydroxy group, an alkoxy group, an aryloxy group, an heterocyclic oxy group, a silyloxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group, an aryloxycarbonyloxy group, an amino group (including an

Amendment Under 37 C.F.R. § 1.111

U.S. Appln. No.: 10/808,460

arylamino group and a heterocyclic amino group), an acylamino group, a ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, an alkylsulfonylamino group, an arylsulfonylamino group, a heterocyclic sulfonylamino group, a nitro group, an alkylthio group, an arylthio group, an alkylsulfonyl group, an arylsulfonyl group, a heterocyclic sulfonyl group, an alkylsulfinyl group, an arylsulfinyl group, a heterocyclic sulfinyl group, a sulfamoyl group, a sulfo group or a heterocyclic thio group, and each group may be further substituted, and

R₃₁ and R₃₅, or R₃₅ and R₃₆ may be combined with each other to form a 5-membered or 6-membered ring;

$$A_{41}-N=N-B_{41}-N=N-C_{41}$$
 (4)

wherein A_{41} , B_{41} and C_{41} each independently represents an aromatic group which may be substituted or a heterocyclic group which may be substituted.