MCSD1133 Operations Research & Optimization



CHAPTER 6:
INTEGER PROGRAMMING
- BRANCH & BOUND



**Innovating Solutions** 



# Method for Solving Integer Programming

The two commonly used methods are:

- 1. Branch and Bound (B & B) Method
- 2. Cutting Plane Method

Neither method is consistently effective; but B&B is far more successful.



# Branch-and-Bound (B&B)

- Developed in 1960 by A Land and G Doig
- Relax the integer restrictions in the problem and solve it as a regular LP. Let's call this  $LP_0$  (to imply node-zero LP)
- Since the original "large" problem is hard to solve directly, it is divided into smaller and smaller sub-problems until these sub-problems can be conquered.
- The conquering (fathoming) is done partially by:
  - (i) giving a **bound** for the best solution in the subset;
  - (ii) discarding the subset if the bound indicates that it can't contain an optimal solution.



# Branching

• If  $LP_0$  (in general  $LP_i$ ) fails to yield integer solution, branch on any variable that fails to meet this requirement. The process of branching is illustrated below.

If  $LP_i$  yields  $x_1 = 3.5$  and  $x_1$  is taken as the branching variable, we get two subproblems,  $LP_{i+1} = LP_i \& (x_1 \le 3)$  and  $LP_{i+2} = LP_i \& (x_1 \ge 4)$ .



# **Bounding / Fathoming**

- Select  $LP_1$  (including new constraint in general  $LP_i$ ) and solve.
- Three conditions arise:
  - 1) Infeasible solution: Declare fathomed (no further investigation of  $LP_i$ )
  - Integer solution: If it is superior to the current best (Z\*) solution update the current best.
     Declare fathomed.
  - 3) Non-integer solution: If it is inferior to the current best(Z\*), declare fathomed. Meaning it cannot yield any better Integer Linear Programming (ILP) solution and no further branching is required. Else branch again.



### **Best Bound**

- In **maximisation**, the solution to a sub-problem is superior if it raises the current lower bound.
- In **minimisation**, the solution to a sub-problem is superior if it lowers the current upper bound.
- When all sub-problems have been fathomed, stop. The current bound is the best bound.



# **Example 1**

Max,  $Z = 5x_1 + 8x_2$ 

Subject to:

$$x_1 + x_2 \le 6$$

$$5x_1 + 9x_2 \le 45$$

 $x_1, x_2 \ge 0$  integer





### LP-Relaxation

- $\triangleright$  Fact: If LP-relaxation has integral optimal solution  $x^*$ , then  $x^*$  is optimal for IP too.
- In our case,  $(x_1, x_2) = (2.25, 3.75)$  is the optimal solution of the LP-relaxation. Unfortunately, it is **not** integral.
- The optimal value is 41.25
- Fact: OPT(LP-relaxation) ≥ OPT(IP) (for maximization problems)
- The optimal value of the LP-relaxation is an upper bound for the optimal value of the IP.
- Thus 41.25 is an upper bound value for OPT(IP). Current best value = 41.25



# **Branching Steps**

- To find out more about the location of the IP's optimal solution, partition the feasible region of the LP-relaxation.
- Choose a variable that is fractional in the optimal solution to the LP-relaxation (variable has the greatest fractional part  $x_2$ ). Observe that every feasible IP point must have either  $x_2 \le 3$  or  $x_2 \ge 4$ .
- With this in mind, branch on the variable  $x_2$  to create the following two subproblems:

#### Subproblem 1(LP1)

Max 
$$Z = 5x_1 + 8x_2$$

Subject to:  $x_1 + x_2 \le 6$ 

$$5x_1 + 9x_2 \le 45$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

#### Subproblem 2(LP2)

Max 
$$Z = 5x_1 + 8x_2$$

Subject to: 
$$x_1 + x_2 \le 6$$

$$5x_1 + 9x_2 \le 45$$

$$x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

• Solve both subproblems separately.



# **Branching Steps (Graphically)**

Subproblem 1: Optimal solution (3,3) with value z = 39 Subproblem 2: Optimal solution (1.8,4) with value z = 41





### **Solution Tree**

For each subproblem, we record:

- ✓ the restriction that creates the subproblem.
- ✓ the optimal LP solution.
- ✓ the LP optimum value.



The optimal solution for Subproblem 1 is integral: (3, 3).

- In this case, we can fathom(dismiss) Subproblem 1 because its solution is integral.
- The best integer solution found so far is denoted by  $Z^*$ . In our case,  $Z^*=39$ .
- $Z^*$  is a lower bound for OPT(IP): OPT(IP)  $\geq Z^*$ . In our case, OPT(IP)  $\geq 39$ .
- The optimal solution for Subproblem 2 is (1.8, 4) with Z=41.
- The upper bound is 41:  $OPT(IP) \le 41$ .



# **Next Branching Steps (Graphically)**

- Fathom Subproblem 1.
- Branch Subproblem 2 on  $x_1$ :
  - Subproblem 3: New restriction is  $x_1 \le 1$ . Opt. solution (1, 4.44) with value z = 40.55
  - Subproblem 4: New restriction is x₁ ≥ 2.
     The subproblem is infeasible.





### Solution Tree (cont'd)



 If a subproblem is infeasible, then it is fathomed. In our case, Subproblem 4 is infeasible; fathom it.

The upper bound for OPT(IP) is updated:  $39 \le OPT(IP) \le 40.55$ .

■ Next branch Subproblem 3 on  $x_2$ . (Note that the branching variable might recur).

Max 
$$Z = 5x_1 + 8x_2$$
  
s.t:  
 $x_1 + x_2 \le 6$   
 $5x_1 + 9x_2 \le 45$   
 $x_2 \ge 4$   
 $x_1 \le 1$   
 $x_1, x_2 \ge 0$ 

Max 
$$Z = 5x_1 + 8x_2$$
  
s.t:  
 $x_1 + x_2 \le 6$   
 $5x_1 + 9x_2 \le 45$   
 $x_2 \ge 4$   
 $x_1 \ge 2$   
 $x_1, x_2 \ge 0$ 



### Solution Tree (cont'd)

#### Branch Subproblem 3 on $x_2$ :

- Subproblem 5: New restriction is  $x_2 \le 4$ . Feasible region:
  - The segment joining (0,4) and (1,4)
  - Opt. solution (1, 4) with value 37
- Subproblem 6: New restriction is  $x_2 \ge 5$ .
  - Feasible region is just one point: (0, 5)
  - Opt. solution (0, 5) with value 40





### **Solution Tree - Final**



Max 
$$Z = 5x_1 + 8x_2$$
  
s.t:  
 $x_1 + x_2 \le 6$   
 $5x_1 + 9x_2 \le 45$   
 $x_2 \ge 4$   
 $x_1 \le 1$   
 $x_2 \le 4$   
 $x_1$ ,  $x_2 \ge 0$ 

Max 
$$Z = 5x_1 + 8x_2$$
  
s.t:  
 $x_1 + x_2 \le 6$   
 $5x_1 + 9x_2 \le 45$   
 $x_2 \ge 4$   
 $x_1 \le 1$   
 $x_2 \ge 5$   
 $x_1$ ,  $x_2 \ge 0$ 



### **Solution Tree - Final**



- If the optimal value of a subproblem is  $\leq Z^*$ , then it is fathomed.
  - In our case, Subproblem 5 is fathomed because 37 ≤ Z\*.
- If a subproblem has integral optimal solution x\*, and its value > Z\*, then x\* replaces the current best integer solution.
  - In our case, Subproblem 6 has integral optimal solution, and its value  $40 > 39 = Z^*$ . Thus, (0,5) is the new best integer solution, and new  $Z^* = 40$ .
- If there are no unfathomed subproblems left, then the current Z\* is an optimal solution for (IP).
  - In our case, (0, 5) is an optimal solution with optimal value Z = 40.



# Solution – ILP Model (final LP model)

Max, 
$$Z = 5x_1 + 8x_2$$
  
Subject to:  
 $x_1 + x_2 \le 6$   
 $5x_1 + 9x_2 \le 45$   
 $x_2 \ge 4$   
 $x_1 \le 1$   
 $x_2 \ge 5$   
 $x_1, x_2 \ge 0$  and integer

### Solution:

$$x_1 = 0$$
;  $x_2 = 5$ ;  $Z = 40$ 



# Branch & Bound (for Minimization IP)

The optimal value of the LP-relaxation is a lower bound for the optimal value of the IP.

The best integer solution found is denoted by Z\*.

Z\* is an upper bound for OPT(IP):

$$OPT(IP) \leq Z^*$$
.

- If solution exceeds upper bound, branch is fathomed.
- If solution is integer and if it is superior to the current best(Z\*) solution (< Z\*) update the current best, replace the Z\* (upper bound on cost)



# Example 2

subject to 
$$\begin{aligned} & \textit{Minimize } z = 5x_1 + 4x_2 \\ & 3x_1 + 2x_2 \geq 5 \\ & 2x_1 + 3x_2 \geq 7 \\ & x_1, x_2 \ non-negative \ integers \end{aligned}$$





### **Exercise**

Solve the following ILP problem using B&B method.

Maximize 
$$Z = 5x_1 + 4x_2$$
  
subject to:  
$$6x_1 + 4x_2 \le 24$$
$$x_1 + 2x_2 \le 6$$
$$x_1, x_2 \ge 0 \text{ and integer}$$

- Draw the B&B tree.
- Provide your final solution with its ILP model (i.e., the final LP model)

