Name	Shaun D'Souza
UID No.	2021300031
Class & Division	S.E. COMPS A (BATCH B)
Experiment No.	1a

<u>Aim:</u> To implement the various functions e.g. linear, non-linear, quadratic, exponential etc.

Theory:

A function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. Let A & B be any two non-empty sets; mapping from A to B will be a function only when every element in set A has one end, only one image in set B.

Algorithm:

- 1. Run a for loop for i from 0 till 100.
- 2. Perform 11 functions: n, n^3, 2^n, ln n, lg n, n lg n, e^n, (3/2)^n, n.2^n, n!

Code:

```
#include <stdio.h>
#include <math.h>
int main()
     printf("\t(3/2)^n\tn^3\tn\tln(n)\t2^n\t2^(\lg(n))\te^n\tlg(\lg(n))\tln(ln(n))\t(\lg(n))^2") 
    for(double i=0;i<100;i++){</pre>
        printf("\n%.2f\t",i);
        printf("%.2f",pow((3.0/2.0),i));
        printf("\t%.2f",pow(i,3));
        printf("\t%.2f",i);
        printf("\t%.2f",log(i));
        printf("\t%.2f",pow(2,i));
        printf("\t%.2f",pow(2,(log2(i))));
        printf("\t%.2f",pow(2.713,i));
        printf("\t%.2f",log2(log2(i)));
        printf("\t%.2f",log(log(i)));
        printf("\t%.2f",pow((log2(i)),2));
    return 0;
```

Table:

Cou	(3/2)	n^3	n	ln(n	2^n	$2^{(lg(n))}$	e^n	lg(lg(n))	ln(ln(n))	$(\lg(n))^{\wedge}$	fact(n)
nt	^n))				2	
0	1	0	0	-inf	1	0	1	nan	nan	inf	

1 2 3	1.5	1	1	0	2	1	2.71	-inf	-inf	0	1
3	2.25	8	2	0.69	4	2	7.36	0	-0.37	1	1
	3.38	27	3	1.1	8	3	19.97	0.66	0.09	2.51	2
4	5.06	64	4	1.39	16	4	54.18	1	0.33	4	6
5	7.59	125	5	1.61	32	5	146.98	1.22	0.48	5.39	24
6	11.3 9	216	6	1.79	64	6	398.75	1.37	0.58	6.68	120
7	17.0 9	343	7	1.95	128	7	1081.8	1.49	0.67	7.88	720
8	25.6 3	512	8	2.08	256	8	2934.93	1.58	0.73	9	5040
9	38.4 4	729	9	2.2	512	9	7962.48	1.66	0.79	10.05	40320
10	57.6 7	1000	10	2.3	1024	10	21602.2	1.73	0.83	11.04	362880
11	86.5	1331	11	2.4	2048	11	58606.7 6	1.79	0.87	11.97	3628800
12	129. 75	1728	12	2.48	4096	12	159000. 15	1.84	0.91	12.85	39916800
13	194. 62	2197	13	2.56	8192	13	431367. 4	1.89	0.94	13.69	47900160 0
14	291. 93	2744	14	2.64	1638 4	14	1170299 .75	1.93	0.97	14.5	62270208 00
15	437. 89	3375	15	2.71	3276 8	15	3175023 .22		1	15.26	8.7178E+ 10
16	656. 84	4096	16	2.77	6553 6	16	8613838 .01	2	1.02	16	1.3077E+ 12
17	985. 26	4913	17	2.83	1310 72	17	2336934 2.5	2.03	1.04	16.71	2.0923E+ 13
18	147 7.89	5832	18	2.89	2621 44	18	6340102 6.3	2.06	1.06	17.39	3.5569E+ 14
19	221 6.84	6859	19	2.94	5242 88	19	1720069 84	2.09	1.08	18.04	6.4024E+ 15
20	332 5.26	8000	20	3	1048 576	20	4666549 48	2.11	1.1	18.68	1.2165E+ 17
21	498 7.89		21	3.04	2097 152	21	1266034 874		1.11	19.29	2.4329E+ 18
22	748 1.83	10648	22	3.09	4194 304	22	3434752 614	2.16	1.13	19.89	5.1091E+ 19
23	112 22.7 4	12167	23	3.14	8388 608	23	9318483 842	2.18	1.14	20.46	1.124E+2 1
24	168 34.1 1	13824	24	3.18	1677 7216	24	2.5281E +10	2.2	1.16	21.02	2.5852E+ 22
25		15625	25	3.22	3355 4432	25	6.8587E +10	2.22	1.17	21.57	6.2045E+ 23
26		17576	26	3.26	6710 8864	26	1.8608E +11	2.23	1.18	22.09	1.5511E+ 25
27		19683	27	3.3	1342 1772 8	27	5.0483E +11	2.25	1.19	22.61	4.0329E+ 26
28		21952	28	3.33	2684	28	1.3696E	2.27	1.2	23.11	1.0889E+

	22.6				3545		+12				28
29	9 127 834. 04	24389	29	3.37	5368 7091 2	29	3.7157E +12	2.28	1.21	23.6	3.0489E+ 29
30	191 751. 06	27000	30	3.4	1073 7418 24	30	1.0081E +13	2.29	1.22	24.08	8.8418E+ 30
31	287 626. 59	29791	31	3.43	2147 4836 48	31	2.7349E +13	2.31	1.23	24.54	2.6525E+ 32
32	431 439. 88	32768	32	3.47	4294 9672 96	32	7.4198E +13	2.32	1.24	25	8.2228E+ 33
33	647 159. 82	35937	33	3.5	8589 9345 92	33	2.013E+ 14	2.33	1.25	25.45	2.6313E+ 35
34	970 739. 74	39304	34	3.53	1.71 8E+1 0	34	5.4613E +14	2.35	1.26	25.88	8.6833E+ 36
35	145 610 9.61	42875	35	3.56	3.43 6E+1 0	35	1.4816E +15	2.36	1.27	26.31	2.9523E+ 38
36	218 416 4.41	46656	36	3.58	6.87 19E+ 10		4.0197E +15	2.37	1.28	26.73	1.0333E+ 40
37	327 624 6.61	50653	37	3.61	1.37 44E+ 11		1.0905E +16	2.38	1.28	27.14	3.7199E+ 41
38	491 436 9.92	54872	38	3.64	2.74 88E+ 11	38	2.9586E +16	2.39	1.29	27.54	1.3764E+ 43
39	737 155 4.88	59319	39	3.66	5.49 76E+ 11	39	8.0268E +16	2.4	1.3	27.94	5.2302E+ 44
40	110 573 32.3 2	64000	40	3.69	1.09 95E+ 12		2.1777E +17	2.41	1.31	28.32	2.0398E+ 46
41	165 859 98.4 8	68921	41	3.71	2.19 9E+1 2	41	5.908E+ 17	2.42	1.31	28.7	8.1592E+ 47
42	248 789 97.7 2	74088	42	3.74	4.39 8E+1 2	42	1.6028E +18	2.43	1.32	29.08	3.3453E+ 49
43	373 184 96.5 8	79507	43	3.76	8.79 61E+ 12	43	4.3485E +18	2.44	1.32	29.44	1.405E+5 1
44	559 777 44.8 7	85184	44	3.78	1.75 92E+ 13	44	1.1798E +19	2.45	1.33	29.81	6.0415E+ 52
45	839	91125	45	3.81	3.51	45	3.2007E	2.46	1.34	30.16	2.6583E+

	(((0.417		. 10				E 1
	666 17.3 1				84E+ 13		+19				54
46	125 949 926	97336	46	3.83	7.03 69E+ 13	46	8.6834E +19	2.47	1.34	30.51	1.1962E+ 56
47	188 924 889	103823	47	3.85	1.40 74E+ 14	47	2.3558E +20	2.47	1.35	30.85	5.5026E+ 57
48	283 387 333. 4	110592	48	3.87	2.81 47E+ 14	48	6.3913E +20	2.48	1.35	31.19	2.5862E+ 59
49	425 081 000. 1	117649	49	3.89	5.62 95E+ 14	49	1.734E+ 21	2.49	1.36	31.52	1.2414E+ 61
50	637 621 500. 2	125000	50	3.91	1.12 59E+ 15	50	4.7042E +21	2.5	1.36	31.85	6.0828E+ 62
51	956 432 250. 3	132651	51	3.93	2.25 18E+ 15	51	1.2763E +22	2.5	1.37	32.18	3.0414E+ 64
52	143 464 837 5	140608	52	3.95	4.50 36E+ 15	52	3.4625E +22	2.51	1.37	32.5	1.5511E+ 66
53	215 197 256 3	148877	53	3.97	9.00 72E+ 15	53	9.3938E +22	2.52	1.38	32.81	8.0658E+ 67
54	322 795 884 5	157464	54	3.99	1.80 14E+ 16	54	2.5485E +23	2.52	1.38	33.12	4.2749E+ 69
55	484 193 826 7	166375	55	4.01	3.60 29E+ 16	55	6.9141E +23	2.53	1.39	33.42	2.3084E+ 71
56	726 290 740 1	175616	56	4.03	7.20 58E+ 16	56	1.8758E +24	2.54	1.39	33.73	1.2696E+ 73
57	108 943 611 01	185193	57	4.04	1.44 12E+ 17	57	5.0891E +24	2.54	1.4	34.02	7.11E+74
58	163 415 416 52	195112	58	4.06	2.88 23E+ 17	58	1.3807E +25	2.55	1.4	34.32	4.0527E+ 76
59	245 123 124 78	205379	59	4.08	5.76 46E+ 17	59	3.7457E +25	2.56	1.41	34.61	2.3506E+ 78

							1		1		
60	367 684 687 17	216000	60	4.09	1.15 29E+ 18	60	1.0162E +26	2.56	1.41	34.89	1.3868E+ 80
61	551 527 030 75	226981	61	4.11	2.30 58E+ 18	61	2.757E+ 26	2.57	1.41	35.17	8.321E+8 1
62	827 290 546 13	238328	62	4.13	4.61 17E+ 18	62	7.4798E +26	2.57	1.42	35.45	5.0758E+ 83
63	1.24 094 E+1 1	250047	63	4.14	9.22 34E+ 18	63	2.0293E +27	2.58	1.42	35.73	3.147E+8 5
64	1.86 14E +11	262144	64	4.16	1.84 47E+ 19	64	5.5054E +27	2.58	1.43	36	1.9826E+ 87
65	2.79 211 E+1 1	274625	65	4.17	3.68 93E+ 19	65	1.4936E +28	2.59	1.43	36.27	1.2689E+ 89
66	4.18 816 E+1 1	287496	66	4.19	7.37 87E+ 19	66	4.0522E +28	2.6	1.43	36.53	8.2477E+ 90
67	6.28 224 E+1 1	300763	67	4.2	1.47 57E+ 20	67	1.0994E +29	2.6	1.44	36.8	5.4434E+ 92
68	9.42 336 E+1 1	314432	68	4.22	2.95 15E+ 20	68	2.9825E +29	2.61	1.44	37.06	3.6471E+ 94
69	1.41 35E +12	328509	69	4.23	5.90 3E+2 0	69	8.0916E +29	2.61	1.44	37.31	2.48E+96
70	2.12 026 E+1 2	343000	70	4.25	1.18 06E+ 21	70	2.1953E +30	2.62	1.45	37.57	1.7112E+ 98
71	3.18 038 E+1 2	357911	71	4.26	2.36 12E+ 21	71	5.9557E +30	2.62	1.45	37.82	1.198E+1 00
72	4.77 057 E+1 2	373248	72	4.28	4.72 24E+ 21	72	1.6158E +31	2.63	1.45	38.07	8.505E+1 01
73	7.15 586 E+1 2	389017	73	4.29	9.44 47E+ 21	73	4.3836E +31	2.63	1.46	38.31	6.123E+1 03
74	1.07 338 E+1	405224	74	4.3	1.88 89E+ 22	74	1.1893E +32	2.63	1.46	38.56	4.47E+10 5

	3										
75	1.61 007 E+1 3	421875	75	4.32	3.77 79E+ 22	75	3.2265E +32	2.64	1.46	38.8	3.308E+1 07
76	2.41 51E +13	438976	76	4.33	7.55 58E+ 22	76	8.7536E +32	2.64	1.47	39.04	2.481E+1 09
77	3.62 265 E+1 3	456533	77	4.34	1.51 12E+ 23	77	2.3748E +33	2.65	1.47	39.27	1.885E+1 11
78	5.43 398 E+1 3	474552	78	4.36	3.02 23E+ 23	78	6.4429E +33	2.65	1.47	39.51	1.452E+1 13
79	8.15 097 E+1 3	493039	79	4.37	6.04 46E+ 23	79	1747968 9233461 7859187 2620701 9417600 .002.66	1.47	39.74		1.132E+1 15
80	1.22 265 E+1 4	512000	80	4.38	1.20 89E+ 24	80	4742239 6890381 8300397 7451899 2437248 .002.66		39.97		8.946E+1 16
81	1.83 397 E+1 4	531441	81	4.39	2.41 79E+ 24	81	1286569 6276360 5895185 6975152 1840332 8.002.66		40.19		7.157E+1 18
82	2.75 095 E+1 4	551368	82	4.41	4.83 57E+ 24	82	3490463 3997766 2813856 4288635 7319680 0.002.67		40.42		5.797E+1 20
83	4.12 643 E+1 4	571787	83	4.42	9.67 14E+ 24	83	9469627 2035939 9354187 7464670 6667520 0.002.67		40.64		4.754E+1 22
84	6.18 965 E+1 4	592704	84	4.43	1.93 43E+ 25	84	2.5691E +36	2.68	1.49	40.86	3.946E+1 24
85	9.28 447 E+1 4	614125	85	4.44	3.86 86E+ 25	85	6.97E+3 6	2.68	1.49	41.08	3.314E+1 26
86	1.39 267 E+1	636056	86	4.45	7.73 71E+ 25	86	1.891E+ 37	2.68	1.49	41.3	2.817E+1 28

	_		I						I		_
	5										
87	2.08 901 E+1 5	658503	87	4.47	1.54 74E+ 26	87	5.1302E +37	2.69	1.5	41.51	2.423E+1 30
88	3.13 351 E+1 5	681472	88	4.48	3.09 49E+ 26	88	1.3918E +38	2.69	1.5	41.72	2.108E+1 32
89	4.70 026 E+1 5	704969	89	4.49	6.18 97E+ 26	89	3.776E+ 38	2.7	1.5	41.94	1.855E+1 34
90	7.05 039 E+1 5	729000	90	4.5	1.23 79E+ 27	90	1.0244E +39	2.7	1.5	42.14	1.651E+1 36
91	1.05 756 E+1 6	753571	91	4.51	2.47 59E+ 27	91	2.7793E +39	2.7	1.51	42.35	1.486E+1 38
92	1.58 634 E+1 6	778688	92	4.52	4.95 18E+ 27	92	7.5402E +39	2.71	1.51	42.56	1.352E+1 40
93	2.37 951 E+1 6	804357	93	4.53	9.90 35E+ 27	93	2.0456E +40	2.71	1.51	42.76	1.244E+1 42
94	3.56 926 E+1 6	830584	94	4.54	1.98 07E+ 28	94	5.5498E +40	2.71	1.51	42.96	1.157E+1 44
95	5.35 389 E+1 6	857375	95	4.55	3.96 14E+ 28	95	1.5057E +41	2.72	1.52	43.16	1.087E+1 46
96	8.03 084 E+1 6	884736	96	4.56	7.92 28E+ 28	96	4.0849E +41	2.72	1.52	43.36	1.033E+1 48
97	1.20 463 E+1 7	912673	97	4.57	1.58 46E+ 29	97	1.1082E +42	2.72	1.52	43.56	9.917E+1 49
98	1.80 694 E+1 7	941192	98	4.58	3.16 91E+ 29	98	3.0066E +42	2.73	1.52	43.75	9.619E+1 51
99	2.71 041 E+1 7	970299	99	4.6	6.33 83E+ 29	99	8.157E+ 42	2.73	1.52	43.95	9.427E+1 53

Functions	Observation
	Exponential function with a=1.5; gradient increases as a value of n
(3/2)^n	increases
	Cubic graph passing through the origin with coefficient of cubic variable as
N^3	1 and other constants 0
l . .	Linear graph with slope 1 passing through the origin with co-efficient of cubic
N	variable as 1 and other constants 0
l., (.,)	The output increases greatly initially but then it does not increase that
ln(n)	much.
2^n	The output increases slowly initially but as value of n becomes big, the output changes quite much
20/10/2/201	Solving the equation gives back n as (a^logn=n). Linear graph with a slope
2^(log(n))	1 and passing through the origin.
e^n	Natural exponential function
log(log(n))	Logarithm of logarithm of n; Gradient decreases as n increases.
log(log(n))	
ln(ln(n))	The ouptut increases slowly and then there is a sudden drastic increase and decrease in the ouput.
(lg(n))^2	It increases continuously
factorial(n)	Follows the function N!=n X (n-1) X (n-2) X 2 X 1; value of function increases rapidly
	-
	The gradients of logarithmic functions decrease as n increases, while for exponential functions it
Final	increases as n increases
	and remaining functions are linear

Overall observation: The output increases as value of n increases

Conclusion: Successfully executed the program for 11 different functions and also observed the trend for 100 values of n by creating graphs