Implementarea filtrelor digitale IIR în forma lattice

Laborator 6, PSS

Objectiv

Familiarizarea studenților cu formele de implementare tip lattice pentru filtre IIR

Noțiuni teoretice

Exerciții

1. Fie sistemul IIR cauzal cu poli și zerouri, cu funcția de sistem:

$$H(z) = \frac{1 + 2z^{-1} + 3z^{-2} + 2z^{-3}}{1 + \frac{2}{5}z^{-1} + \frac{7}{20}z^{-2} + \frac{1}{2}z^{-3}}$$

Determinați și desenați structura echivalentă lattice cu poli și zerouri.

2. Se dă sistemul IIR cauzal numai cu poli, cu funcția de sistem:

$$H(z) = \frac{1}{1 + \frac{2}{5}z^{-1} + \frac{7}{20}z^{-2} + \frac{1}{2}z^{-3}}$$

Determinați coeficienții structurii lattice și desenați-o.

- 3. Utilizați utilitarul fdatool pentru a proiecta unul din filtrele următoare:
 - a. Un filtru trece-jos IIR de ordin 4, de tip eliptic, cu frecvența de tăiere de 5kHz la o frecvență de eșantionare de 44.1kHz;
 - b. Un filtru trece-sus IIR de ordin 4, de tip eliptic, cu frecvența de tăiere de 1kHz la o frecvență de eșantionare de 44.1kHz;

- c. Un filtru trece-bandă IIR de ordin 4, de tip eliptic, cu banda de trecere între 700Hz si 4kHz la o frecvență de eșantionare de 44.1kHz.
- 4. În mediul Simulink, realizati implementarea IIR filtrului de mai sus în forma lattice.
- 5. În Octave, realizați o funcție pentru a filtra un semnal de intrare \mathbf{x} cu un filtru IIR în forma lattice, folosind coeficientii K si V:

```
y = filter latc iir(K, V, x)
```

În funcție, definiți variabilele w1, w2, ... pentru a stoca valorile din celulele de intârziere, și w1 next, ... pentru valorile lor următoare.

- Calculați ieșirea curentă pe baza valorilor w1, ... și a intrării curente
- Calculați valorile următoare w1_next, ... pe baza valorilor w1, ... și a intrării curente
- Actualizați w1, ... cu valorile din w1_next, ... apoi se iterează din nou
- 6. Utilizați funcția de mai sus pentru a filtra un semnal audio.
 - a) Încărcați fișierul folosind audioread();
 - b) Filtrați semnalul cu funcția filter_latc_iir() de mai sus, și afișați/redați semnalul obținut.

Observații:

- Veți avea nevoie de blocurile *Unit Delay, Sum* și *Gain*
- La intrare puneți un bloc From Multimedia File, la ieșire un bloc To Audio Device
- La ieșire, înainte de blocul *To Audio Device* intercalați un bloc *Manual Switch* la care semnalul original și semnalul filtrat, pentru a putea comuta ușor între cele două
- La blocul From Multimedia File selectați un fișier audio (de ex. Kalimba.mp3 din My Documents) și puneți setările Sample-based, Samples per audio channel = 1 și "DataTypes/Audio output data type" = double

- Setați parametrii modelului Simulink pentru o simulare discretă, cu pas fix (auto):
 - Type: Fixed-step
 - Solver: discrete (no continuous states)

Figure 1: Model settings for discrete models

Întrebări finale

1. TBD