

Redes de Computadores

Grado en Ingeniería Informática en Tecnologías de la Información

Curso 2022-2023

Práctica 1: Medios Físicos

Francisco González Bulnes
Pelayo Nuño Huergo
Pablo Alonso García
Área de Ingeniería Telemática
Universidad de Oviedo

Tipos de Conexión Física

Cableada (Wired) Inalámbrica (Wireless) Router Wireless Router

Desde el punto de vista del usuario final, nada cambia

Tipos de Conexión Física

Cableada (Wired)

- Interceptar la señal cuando atraviesa el cable es muy difícil (alta seguridad)
- ✓ Velocidades de transmisión mucho mayores (400GbE 400Gbits/s)
- ✓ No es una tecnología cara
- ✓ Plug and play: sin apenas configuraciones, conectar y listo
- x El cable se puede dañar, ocupa espacio, y puede ser difícil de organizar Inalámbrica (Wireless)
- Movilidad, libertad de uso, sin restricción física de ubicación en el ámbito de la red
- Sin cables, ni bocas, más usuarios conectados sobre un único punto de acceso
- x Alcance de la señal limitado, la velocidad y calidad decrece con la distancia
- x Las señales pueden ser interceptadas (menor seguridad)
- x Más vulnerable a las interferencias con otras señales
- x La velocidad no alcanza la de las redes cableadas (IEEE 802.11ay 20-40Gbits/s)

No son excluyentes

El estándar **Ethernet** (IEEE 802.3) define, entre otras cosas, dos tipos de interfaces de red (NIC) para los dispositivos de red.

MDI → Medium-dependent interface

MDI-X → Medium-dependent interface crossover

Existen tres tipos principales de medios de cobre que se utilizan en las redes:

- Par trenzado no blindado (UTP)
- Par trenzado blindado (STP)

Cable de par trenzado no blindado (UTP)

© CISCO

Cable de par trenzado blindado (STP)

© CISCO

Existen tres tipos principales de medios de cobre que se utilizan en las redes:

- Par trenzado no blindado (UTP)
- Par trenzado blindado (STP)
- Coaxial

Cuatro pares de hilos codificados por color trenzados entre sí

No utilizan blindaje para contrarrestar EMI y RFI y crosstalk → Anulación

El número de vueltas de cada par de hilos varía

11

Conectores RJ-45 para UTP

Socket RJ-45 para UTP

© CISCO

Conector defectuoso: los hilos están expuestos, sin trenzar, y el revestimiento no los cubre completamente.

Conector en buenas condiciones: los hilos están sin trenzar en la medida necesaria para fijar el conector.

Algo tan simple como la terminación de un cable puede afectar al rendimiento de la transmisión

© CISCO

EIA/TIA-568B: estándar que dicta las características del cableado para productos comerciales y redes de computadores

Define dos normas para la elaboración de los cables en función del color y su conexión con los conectores RJ45

14

Ingeniería Telemática

Tipo de cable	Estándar	Capa de aplicación	
Cable directo de Ethernet	Ambos extremos son T568A o T568B.	Conecta un host de red a un dispositivo de red, como un switch o un hub.	
Cruzado Ethernet	Un extremo es T568A, el otro extremo es T568B.	 Conecta dos hosts de red. Conecta dos dispositivos de red intermediarios (un switch a un switch, o un router a un router). 	

© CISCO

15

Cable Directo

Cable Directo

Cable Directo

Nº de pin	Nº de par	Color	Uso
1	2	Blanco/Verde	Transmitir
2	2	Verde	Transmitir
3	3	Blanco/Naranja	Recibir
4	1	Azul	No se utiliza
5	1	Blanco/Azul	No se utiliza
6	3	Naranja	Recibir
7	4	Blanco/Marrón	No se utiliza
8	4	Marrón	No se utiliza

Elaboración de un Cable de Red

Materiales:

- Un tramo de cable, de categoría 5, 5e o 6.
- 2 conectores RJ-45
- Tenaza crimpadora RJ-45
- Alicate
- Pelacables
- Comprobador de cables Ethernet (optativo)

Comprobaciones (LAN Tester)

Comprobaciones (LAN Tester)

Construye un Cable de Red Directo Telemática

Redes de Computadores 22

Probemos los cables construidos Telemática

Configuración de Parámetros de Red

Desde la consola de Linux:

```
redes@redes-HP-Mini-100e: ~

Archivo Editar Pestañas Ayuda

redes@redes-HP-Mini-100e:~$ sudo dhclient -r

redes@redes-HP-Mini-100e:~$

redes@redes-HP-Mini-100e:~$

redes@redes-HP-Mini-100e:~$

redes@redes-HP-Mini-100e:~$

redes@redes-HP-Mini-100e:~$

redes@redes-HP-Mini-100e:~$
```

Desde la consola de Windows:

```
C:\Windows\system32\cmd.exe

C:\Users\FRANCISCO>netsh int ip set address "Conexión de área Local" static 192.

168.100.2 255.255.255.0_
```


Probemos los cables construidos Telemática

Escenario 1

Comprobaciones (LAN Tester)

Los más avanzados que son capaces de medir/detectar:

- Crosstalk
- Pérdidas de inserción/atenuación
- Problemas de ruido
- Correcta longitud del cable
- El ancho de banda
- La calidad de tecnologías VoIP, vídeo, etc.
- Características del tráfico para detectar amenazas
- Malas configuraciones en dispositivos finales
- La alimentación eléctrica a través de Ethernet (PoE)
- Cortocircuitos
- Distancia hasta el fallo
- Etc.

Cable Cruzado

Cable Cruzado

Cable Cruzado

Nº de pin	Nº de par	Color	Uso
1	2	Blanco/Naranja	Transmitir
2	2	Naranja	Transmitir
3	3	Blanco/Verde	Recibir
4	1	Azul	No se utiliza
5	1	Blanco/Azul	No se utiliza
6	3	Verde	Recibir
7	4	Blanco/Marrón	No se utiliza
8	4	Marrón	No se utiliza

Construye un Cable de Red Cruzado Telemática

Redes de Computadores 30

Probemos los cables construidos Telemática

Probemos los cables construidos Telemática

Escenario 2

Patch Panels

- Ubican los puertos de una red
- Se colocan en un bastidor o rack de telecomunicaciones
- Los dispositivos finales se conectarán a uno de estos paneles
- A su vez, estos se conectan a los dispositivos de capa 2
- Facilitan la organización y estructura de la red
- Mejoran la seguridad
- Aumentan el tiempo de vida de los dispositivos finales

Probemos el Patch Panel

Probemos el Patch Panel

Escenario 3:

Conecta el patch panel con los puertos 1 y 2 del switch Conecta el PC del alumno 1 al puerto 1, y el del alumno 2 al puerto 2

Probemos el Patch Panel

Escenario 4:

Intercambia las conexiones de usuario sin tocar el switch Comprueba la comunicación

Fibra Óptica

Características:

- Muy baja atenuación, por lo que soporta enlaces de larga distancia (interurbanos)
- Soporta transmisión en muy alta frecuencia,
 con canales de gran ancho de banda y por tanto a alta tasa binaria
- La instalación es costosa. Las fusionadoras son equipos caros y requieren personal especializado
- Es inmune a la radiación electromagnética, por lo que es apta para entornos industriales junto a líneas eléctricas de alta potencia
- En las certificaciones se mide -mediante reflectometría- la longitud del cable, para evitar que en la instalación se dejen bobinas prefabricadas de longitud mucho mayor de la necesaria
- La latencia que introduce es mínima
- Es el soporte para las redes de telecomunicación modernas (FTTH, transmisión en nodos móviles 4G y 5G)