MIDTERM EXAM

Math 237 – Linear Algebra

Version 1

Fall 2017

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 0$$

$$x - z = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 5 \\ 3 & 9 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & -7 & | & 4 \\ 1 & -3 & | & 2 \\ 3 & 0 & | & 3 \end{bmatrix}$$

Solution:

$$\text{RREF}\,A = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$

E3. Solve the system of equations

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 2$$

Solution:

$$RREF\left(\begin{bmatrix} 1 & 3 & -4 & 5 \\ 3 & 9 & 1 & 2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

So the solution set is

$$\left\{ \begin{bmatrix} 1 - 3c \\ c \\ -1 \end{bmatrix} \middle| c \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set of the system of equations

$$x + 3y + 3z + 7w = 0$$

$$x + 3y - z - w = 0$$

$$2x + 6y + 3z + 8w = 0$$

$$x + 3y - 2z - 3w = 0$$

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} -3a - b \\ a \\ -2b \\ b \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$

So a basis for the solution set is

$$\left\{ \begin{bmatrix} 3\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix} \right\}$$

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c\odot(f\oplus g)=c\odot(f'+g')=c(f'+g')'=cf'\ '+cg'\ '=cf'\oplus cg'=c\odot f\oplus c\odot g.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

V2. Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} -1 & 1 & | & 0 \\ -9 & 5 & | & 0 \\ 15 & -5 & | & 2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$

Since this system has no solution, $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ cannot be written as a linear combination of the vectors $\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$.

V3. Determine if the vectors
$$\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, so the set is linearly dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

V4. Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Solution: Yes, because z = -x - y and $a \begin{bmatrix} x_1 \\ y_1 \\ -x_1 - y_1 \end{bmatrix} + b \begin{bmatrix} x_2 \\ y_2 \\ -x_2 - y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ ay_1 + by_2 \\ -(ax_1 + bx_2) - (ay_1 + by_2) \end{bmatrix}$. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution:

RREF
$$\left(\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

This has a non pivot column, therefore the set is linearly dependent.

S2. Determine if the set $\left\{ \begin{bmatrix} 3\\-1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\3\\0\\5 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4 .

Solution:

$$RREF\left(\begin{bmatrix} 3 & 2 & 1 & -1 \\ -1 & 0 & -1 & 3 \\ 2 & 2 & 0 & 0 \\ 3 & 4 & -1 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

S3. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix},\begin{bmatrix} 1\\2\\2\end{bmatrix},\begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$$
. Find a basis for W .

Solution: Let
$$A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$$
, and compute $RREF(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\left\{ \begin{bmatrix} -3\\-8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$ is a basis for W.

S4. Let $W = \operatorname{span} \left\{ \begin{bmatrix} 2\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\-8\\-1 \end{bmatrix} \right\}$. Find the dimension of W.

Solution:

$$RREF \left(\begin{bmatrix} 2 & 3 & 0 \\ 0 & 1 & 2 \\ 2 & -1 & -8 \\ 1 & 1 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since it has two pivot columns, its dimension is 2.

E1:	V3:	
E2:	V4:	
E3:	S1:	
E4:	S2:	
V1:	S3:	
V2:	S4:	