# **Learning outcomes:**

After completing this exercise, you should be able to understand and perform below tasks.

- Applying K-means Clustering, Hierarchical clustering.
- Understand various cluster metrics generated in R.
- Evaluating the performance of clusters.
- Understanding the importance of standardizing data.
- Visualization and interpretation of results.

### **Clustering Activity:**

On the inbuild 'mtcars' data set, we will be clustering the similar cars based on different features using K-means and Hierarchial clustering.

#### R Code:

- 1. Load inbuild 'mtcars' data available in R
- 2. Understand the data and apply the necessary pre-processing steps.
- 3. Normalize/Scale the data.

Note: Identify the cluster performance with and without normalizing/scaling the data and identify the importance of the scaling the data.

# **#Hierarchical Clustering Activity:**

1. Calculate the distance between different cars using "dist" function using different distance methods.

```
d <- dist(mydata, method = "euclidean") # distance matrix
```

Note: Experiment with different distance methods.

2. Build the hierarchical clustering using "hclust" function using agglomerative method ward.D2

```
fit <- hclust(d, method="ward.D2")
```

Note: You can explore different methods single, complete, average

Visualize the clusters. Tree like structure is called as dendrogram. plot(fit)

# dendrogram displays all possible clusters from the data in bottom up approach

 Creating 5 clusters using cutree function, "K" specifies number of cluster to create. groups <- cutree(fit, k=5) # cut tree into 5 clusters groups

# draw dendogram with red borders around the 5 clusters rect.hclust(fit, k=5, border="red")

 Append cluster labels to the actual data frame Mydata\_cluster <- data.frame(mydata, groups)</li>



### K-means clustering:

6. Build the cluster using kmeans function by mentioning the number of clusters.

# K-means clustering

fit<- kmeans(mydata,centers=2)

fit

7. Check sum of Inter cluster distance(betweenness) and Intra cluster distances(With-in sum of squares).

fit\$withinss

sum(fit\$withinss)

**#Cluster Centers** 

fit\$centers

#To check cluster number of each row in data

fitScluster

- 8. Identifying the ideal number of cluster:
  - Write a for loop which should start with 2 clusters and build k-means model up to 15 clusters.
  - Capture the within-sum of squares for different number of cluster, save sum(fit\$withinss) for each model.
  - Plot sum(fit\$withinss) generated in all models
  - Find the best cluster based on the curve.

# Exercise: Cereals data: Identify similar cereals using K-means clustering

**Cereals data:** Data consists of the information of proteins, calories, vitamins, carbohydrates, minerals etc. for different cereals. Using K-means technique identify/cluster the similar cereals.

- Load the cereals data into R.
- Analyze the data and apply the required pre-processing steps and prepare data for clustering.
- Use a distance metric to compute distance matrix.
- Apply k-means clustering technique, identify the ideal number of cluster.
- Identify the similar cereals based on the clusters.

