Lecture Notes for

Neural Networks and Machine Learning

Generative Networks and Auto-Encoding Generators

Logistics and Agenda

- Logistics
 - Office Hours, 12:30-1:30
 - Lab due date
 - Student paper presentation
- Agenda
 - A historical perspective of generative Neural Networks
 - Variational Auto-Encoding
 - VAE in Keras Demo (if time)
 - Adversarial Auto-Encoders (if time)

Generative versus Discriminative

https://learnopencv.com/generative-and-discriminative-models/

Motivations: Generative Latent Variables

Latent Space Variables

$$p(\mathbf{x} \mid \mathbf{z})$$

Output Observation (e.g., image)

Hard: z is expertly chosen

Latent Space Variables

$$p(\mathbf{x} \mid \mathbf{z})$$

Output Observation (e.g., image)

Not as Hard: **z** is trained, latent variables are uncontrolled

Want:
$$p(\mathbf{x}) \approx \sum p(\mathbf{z}) p_{\theta}(\mathbf{x} \mid \mathbf{z})$$

Z

1

Motivations: Generative Latent Variables

Not as Hard: z is trained, latent variables are uncontrolled

Want: $p(\mathbf{x}) \approx \sum p(\mathbf{z}) p_{\theta}(\mathbf{x} \mid \mathbf{z})$

Z

https://learnopencv.com/generative-and-discriminative-models/http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf

Motivation: Mixtures for Simplicity

Want:
$$p(\mathbf{x}) \approx \sum_{\mathbf{z}} p(\mathbf{z}) p_{\theta}(\mathbf{x} \mid \mathbf{z})$$

Lecture Notes for CS8321 Neural Networks and Machine Learning

- Each latent variable is mostly independent of other latent variables
- The sum of various mixtures can approximate most any distribution
- Good choice for conditional is Normal Distribution
- Can parameterize p(x|z) to be a Neural Network

$$p_{\theta}(\mathbf{x} \mid \mathbf{z} = k) = \mathcal{N}(\mathbf{x}, \mu_k, \Sigma_k)$$

mean and covariance learned

Motivation: Mixtures for Simplicity

$$= \mathcal{N}(\mathbf{x}, \mu_k, \Sigma_k)$$

mean and covariance learned

A History of Generative Networks

Taxonomy of Generative Models

Abridged History of Generative Networks

2006 Restricted Boltzmann Machine

Deep Boltzmann Machine

$$P\left(v,h^{(0)},h^{(2)},h^{(2)}\right) = \frac{1}{2.061} \exp\left(-E(v,h^{(0)},h^{(2)},h^{(2)};\vartheta)\right). \tag{20.24}$$

Tasimplify our presentation, we coult the bias passenters below. The DRM energy function is then defined as follows:

$$S(a, K^{(0)}, K^{(2)}, \mathbf{A}^{(2)}, \theta) = -a^{-1} \mathbf{W}^{(1)} \mathbf{h}^{(1)} - K^{(0)} \mathbf{W}^{(2)} \mathbf{A}^{(2)} - K^{(2)} \mathbf{W}^{(2)} \mathbf{h}^{(0)}.$$

$$(30.25)$$

tile new develop the mean field approach for the example with two hidden beyons Let $Q(h^{(i)}, h^{(i)} | v)$ by the approximation of $P(h^{(i)}, h^{(i)} | v)$. The mean field commodation involves that

$$Q(\mathbf{A}^{(0)}, \mathbf{A}^{(2)} \parallel \varphi) = \prod_{i} Q(\mathbf{A}_{i}^{(0)} \parallel \varphi) \prod_{i} Q(\mathbf{A}_{i}^{(2)} \parallel \varphi).$$
 (29.29)

Not tractable: Can only optimize the Evidence lower bound, ELBO

One can conceive of many ways of measuring how well $Q(h \mid v)$ if to $P(h \mid v)$. The mean field approach is to minimize

Approximate via UCUC iko Bibbs Sampling

$$\text{KL}[Q||P) = \sum_{i} Q(\mathbf{A}^{(0)}, \mathbf{A}^{(2)} | w) \log \left(\frac{Q(\mathbf{b}^{(1)}, \mathbf{A}^{(2)} | w)}{P(\mathbf{b}^{(1)}, \mathbf{A}^{(2)} | w)} \right).$$
 (2020)

Scotliston Inc. Violan Bendi, and serve Boundle Description Millioner, 1719

2009 Deep Boltzmann Machine

Goodfellow, Bengio, Courville

samples generated from the deep Boltaman machines by running the Gibbs sampler for 13,000 steps.

2009, Practical Examples

Salakhutdinov and Hinton

Variational Auto Encoding

Aside: Remember These

$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$

could be neural networks

$$\mathbf{E}_{s \leftarrow q(s|x)}[f(\cdot)] = \int q(s|x) \cdot f(x) \, dx \approx \sum_{\forall i}^{\text{could be field at field works}} q(s|x^{(i)}) \cdot f(x^{(i)})$$

Expected value of f under conditional distribution, q s is latent variable, $x^{(i)}$ is an observation

$$\therefore \mathbf{E}_{s \leftarrow q(s|x)}[\log f(\cdot)] = \sum_{\forall i} q(s|x^{(i)}) \cdot \log (f(x^{(i)}))$$

If function is a probability, this is just the negative of cross entropy of distributions:

$$H(q, p) = -\sum_{x} q(x) \cdot \log(p(x))$$

Recall that KL divergence is a measure of difference in two distribution, and is just:

$$D(p||q) = \sum_{x} p(x) \cdot \log\left(\frac{p(x)}{q(x)}\right) = \mathbf{E}_p \left[\log\left(\frac{p(x)}{q(x)}\right)\right]$$

Can Auto Encoding Generate Samples?

Once trained, is it possible to generate data?

- Does this work for simple auto encoding?
 - Yes, but not satisfactory results
- Learned space is not continuous
- Features could be highly correlated, related in complex ways
 - So, how to sample from the latent space?
- Need to define constraints on latent space...

Reasonable constraints for p(z)?

- Should be simple, easy to sample from: Normal
- Each component should be independent and identically distributed (i.i.d).: Diag. Covariance
 - Encourages features that may be semantic, like expert might select

Mathematical Motivation

$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$
 We need this inference in order to compute latent variable
$$p(x) = \int p(x \mid z)p(z)dz$$
 Denominator is of this form

- We can't compute! Intractable computation for all "z"
- So let's define this with variational inference:
 - AKA: Find the best approximation of desired distribution using a parametrized set of distributions (usually normal distributions)
 - Only needs to work for z with observed $x^{(i)}$
 - 1. **Encode** observed $x^{(i)}$ via network $q(z \mid x^{(i)})$ (with some constraints)
 - 2. Use $q(z \mid x^{(i)})$ to sample z appropriately, then **decode** with another neural network, $p(x^{(i)} \mid z^{(i)})$
 - \circ 3. Make $q(z \mid x^{(i)})$ largest probability possible via Gaussian Distributions

KL Divergence

$$p(x) = \frac{p(z,x)}{p(z|x)} = \frac{p(x|z)p(z)}{p(z|x)}$$

$$\log p(x) = \log p(x) \cdot \int q(z)dz \qquad \log p(x) \ge \int q(z) \cdot \log \left[\frac{p(x,z)}{q(z)}\right] dz$$

$$\log p(x) = \int \log p(x) \cdot q(z)dz \qquad \text{equal only if } p(z|x) \text{ and } q(z) \text{ are essentially the same distribution}$$

$$\log p(x) = \int q(z)\log \left[\frac{p(x,z)}{p(z|x)}\right] dz \qquad \therefore \min D_{KL} \left[q(z) \| p(z|x)\right]$$

$$\log p(x) = \int q(z)\log \left[\frac{p(x,z) \cdot q(z)}{p(z|x) \cdot q(z)}\right] dz$$

$$\log p(x) = \int q(z) \cdot \left(\log \left[\frac{p(x,z)}{q(z)}\right] + \log \left[\cdot \frac{q(z)}{p(z|x)}\right]\right) dz$$

$$\log p(x) = \int q(z) \cdot \log \left[\frac{p(x,z)}{q(z)}\right] dz + \left[q(z)\log \left[\frac{q(z)}{p(z|x)}\right] dz\right]$$

Need a new formulation

Step Three: Make conditional p and q Similar

$$D_{KL} \left[q(z | x^{(i)}) || p(z | x^{(i)}) \right] = \mathbf{E}_{q(z|x)} \left[\log \left(\frac{q(z | x^{(i)})}{p(z | x^{(i)})} \right) \right]$$

Step Four: Use Variational Inference

Assume that a family of distributions can maximize likelihood of observing $x^{(i)}$:

$$\log p(x)_{\forall i} \approx \mathbf{E}_{\mathbf{z} \leftarrow q(z|x^{(i)})} \left[\log p(x^{(i)})\right]$$

Max Log Lik:: maximize probability of observed $x^{(i)}$ given family of distributions q hope this is a good approximation

Output of network, q, are the mean and covariance for sampling a variable z

Need a new formulation

$$\log p(x)_{\forall i} \approx \mathbf{E}_{\mathbf{z} \leftarrow q(z|x)} \left[\log p(x^{(i)})\right]$$
 Maximize!

$$= \mathbf{E}_q \begin{bmatrix} \log \frac{p(x^{(i)} \mid z) p(z)}{p(z \mid x^{(i)})} \frac{q(z \mid x^{(i)})}{q(z \mid x^{(i)})} \end{bmatrix}$$
 Variational + multiply by one
$$p(z \mid x^{(i)}) \text{ this is still a problem}$$

$$\begin{split} &= \mathbf{E}_{q} \left[\log p(x^{(i)} | z) \right] + \mathbf{E}_{q} \left[\log \frac{p(z)}{q(z | x^{(i)})} \right] + \mathbf{E}_{q} \left[\log \frac{q(z | x^{(i)})}{p(z | x^{(i)})} \right] \\ &= \mathbf{E}_{q} \left[\log p(x^{(i)} | z) \right] - \mathbf{E}_{q} \left[\log \frac{q(z | x^{(i)})}{p(z)} \right] + \mathbf{E}_{q} \left[\log \frac{q(z | x^{(i)})}{p(z | x^{(i)})} \right] \\ &= \mathbf{E}_{q} \left[\log p(x^{(i)} | z) \right] - D_{KL} \left[q(z | x^{(i)}) || p(z) \right] + D_{KL} \left[q(z | x^{(i)}) || p(z | x^{(i)}) \right] \end{split}$$

 $\log p(x)_{\forall i} \geq \mathbf{E}_q \left[\log p(x^{(i)} | z)\right] - D_{KL} \left[q(z | x^{(i)}) \| p(z)\right] \text{ Will Maximize Lower Bound}$

Can we motivate this in a different way?

