Esercitazione 5

Geometria e Algebra Lineare GE110 - AA 2022–2023 Esercitatore: Amos Turchet

29 Marzo 2023

Esercizio 1. Per ognuno dei seguenti sistemi lineari discutere la loro compatibilità usando il Teorema di Rouché-Capelli e descrivere l'insieme delle soluzioni al variare del parametro $m \in \mathbb{R}$.

1.

$$\begin{cases} 2x_1 - x_2 = m + 1\\ mx_1 + x_2 = 1 \end{cases}$$

2.

$$\begin{cases} 2x_1 + mx_2 = 1\\ 2x_1 + (1+m)x_2 = 1\\ (3-m)x_1 + 3x_2 = 1 + m \end{cases}$$

3.

$$\begin{cases} x_2 + mx_3 = m + 1 \\ x_1 + x_2 + x_3 = 2 \\ mx_1 + x_2 = 1 + m \end{cases}$$

4.

$$\begin{cases} x_1 - x_2 = 2 \\ mx_2 + x_3 = m \\ x_2 + mx_3 = m \end{cases}$$

Esercizio 2. Sia $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ e definiamo

$$H_a = \{x \in \mathbb{R}^n : a \cdot x = 0\} = \{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n : a_1 x_1 + \dots + a_n x_n = 0 \}$$

- 1. Dimostrare che, se a non è il vettore nullo, allora H_a è un sottospazio di \mathbb{R}^n di dimensione n-1;
- 2. Sia V un sottospazio di \mathbb{R}^n di dimensione n-1. É sempre possibile trovare un vettore a tale che $V=H_a$?

Esercizio 3. Si consideri i seguenti tre vettori di \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

- (a) Dimostrare che $\mathcal{B} = \{v_1, v_2, v_3\}$ é una base di \mathbb{R}^3 .
- (b) Calcolare le coordinate dei vettori della base canonica e_1, e_2, e_3 nella base \mathcal{B} ;

Esercizio 4. Sia V uno spazio vettoriale su un campo \mathbb{K} di dimensione finita. Dato un sottospazio vettoriale W dimensione che esiste un *complementare* di W, ovvero un sottospazio U di V tale che $V = W \oplus U$ e in particolare dim $U = \dim V - \dim W$.

Esercizio 5. Sia $V = \mathbb{K}[x]_{\leq 1}$ lo spazio vettoriale dei polinomi di grado al più 1.

- (a) Dimostrare che $\mathcal{B}_1 = \{1, 1+x\}$ e $\mathcal{B}_2 = \{1-x, 2x\}$ sono due basi di V.
- (b) Trovare le coordinate dei seguenti vettori di V rispetto alla base \mathcal{B}_1

$$v_1 = 1$$
 $v_2 = x$ $v_3 = 3x + 3$.

(c) Trovare le coordinate dei vettori al punto precedente nella base \mathcal{B}_2 .

Esercizio 6. Si consideri il sottospazio \mathcal{S} delle matrice simmetriche nello spazio vettoriale $\mathcal{M}_{2,2}(\mathbb{R})$.

- (a) Calcolare una base \mathcal{B} di \mathcal{S} .
- (b) Calcolare le coordinate dei vettori $E_{1,1}, E_{1,2} + E_{2,1}$ e $E_{2,2}$ nella base \mathcal{B} (dove $E_{i,j}$ denota il vettore della base canonica);
- (c) Calcolare le coordinate della matrice $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ nella base $\mathcal{B}.$