3-Ply Alpha–Beta Pruning Worksheet — Set 2 Root MAX \rightarrow MIN \rightarrow MAX. Write , at each internal node.

Alpha-beta recap

- Keep bounds: α (best for MAX so far), β (best for MIN so far).
- MAX: update $\alpha = \max(\alpha, v)$; MIN: update $\beta = \min(\beta, v)$.
- Prune when $\alpha \geq \beta$ at a node.
- Start at root with $(-\infty, +\infty)$; traverse left to right.

Exercise C — Left-to-right traversal

Root (MAX) initial $(\alpha, \beta) = (-\infty, +\infty)$

Child	Result	α	β	
Left MIN				
Middle MIN				
Right MIN				

Visit order (leaves): Pruned subtrees: Root value: Chosen move:

Answer Key — Set 2

Values of each internal node (left-to-right):

- Left MIN: children MAX values 15 and $9 \Rightarrow \min(15, 9) = 9$.
- Middle MIN: children MAX values 12 and 11 \Rightarrow min(12, 11) = 11.
- Right MIN: children MAX values 10 and $14 \Rightarrow \min(10, 14) = 10$.
- Root MAX: max(9, 11, 10) = 11, choose the middle branch.

Alpha-beta trace (concise):

- 1. Root: $(\alpha, \beta) = (-\infty, +\infty)$.
- 2. Enter Left MIN with $(-\infty, +\infty)$.
 - MAX A [6,15] with $(-\infty, +\infty) \to 15$; Left MIN $\beta = 15$.
 - MAX B [3,5,9] with $(-\infty, 15) \to 9$; Left MIN $\beta = \min(15, 9) = 9$.
 - Left MIN returns 9.

Root $\alpha = \max(-\infty, 9) = 9$.

- 3. Enter Middle MIN with $(\alpha, \beta) = (9, +\infty)$.
 - MAX C [4,12] with $(9, +\infty) \to 12$; Middle MIN $\beta = 12$.
 - MAX D [2,11,7] with $(9,12) \to 11$; Middle MIN $\beta = \min(12,11) = 11$.
 - Middle MIN returns 11.

Root $\alpha = \max(9, 11) = 11$.

- 4. Enter Right MIN with $(\alpha, \beta) = (11, +\infty)$.
 - MAX E [10,8] with $(11, +\infty) \to 10$; Right MIN $\beta = 10$.
 - Cutoff: inherited $\alpha = 11 \ge \beta = 10$ at Right MIN, so prune MAX F entirely.
 - Right MIN returns 9? No, it returns current $\beta = 10$.

Root final $\alpha = \max(11, 10) = 11$.

Visit order of leaves:

Pruned subtrees:

Entire right-branch second child MAX F with leaves [13, 1, 14].