Social Networks with Link Misclassification

Arthur Lewbel, Xi Qu, and Xun Tang

University of Oxford, March 1, 2024

- In social networks, individual outcomes depend on:
 - own characteristics (direct effects)
 - others' characteristics (contextual effects)
 - others' outcomes (peer effects)
- Links reported in samples are subject to misclassification:
 - recall errors in survey responses
 - errors in data entry

Introduction

 We propose estimators for social effects that are robust to link misclassification.

- Conventional 2SLS:
 - Structural form (SF): $y = \lambda Gy + X\beta + \varepsilon$, where $G_{ij} = 1$ if i and j are linked, and 0 otherwise.
 - Suppose *G* is perfectly reported in a sample.
 - Peer outcomes *Gy* are endogenous due to simultaneity.
 - Conventional 2SLS using GX or G^2X as instruments for Gy e.g. Lee (2007), Bramoulle et al (2009)
 - IV exogeneity and relevance hold with $E(\varepsilon|X,G)=0$.

- How do misclassified links affect inference?
 - Suppose the sample only reports $H \neq G$, with H randomly misclassifying links in G
 - Feasible structural form: $y = \lambda Hy + X\beta + u$, with $u = \varepsilon + \lambda (G H)y$
 - Endogenous peer outcomes: Hy correlated with u through measurement errors in H and through simultaneity
 - Also, X is now endogenous (correlated with u via y).
 - Hence HX (and H^2X) are not valid IV b/c H and X are both correlated with u.

Related Literature

- Lee (2007), Bramoulle, Djebbari, and Fortin (2009)
 - introduce conventional IV methods
- Boucher and Houndetoungan (2020)
 - use knowledge (or estimates) of distribution of networks
 - draw networks from the distribution to construct IVs
- Griffith (2022)

- missing links due to censoring (caps on # of links reported)
- characterized the omitted variable bias in feasible regression
- for model with no peer effects, estimate the bias under an order invariance condition
- Lewbel, Qu, and Tang (2022): estimation when the sample does not report link status
- Lewbel, Qu, and Tang (2023): 2SLS applies when errors in link measures are small enough

Preview: Basic Idea

 We illustrate the main idea when links are randomly misclassified with rates

$$p_0 = E(H_{ij}|G_{ij} = 0), p_1 = E(1 - H_{ij}|G_{ij} = 1).$$

- Adjusted 2SLS:
 - replaces H with an adjusted $\mathcal{H}(p)$ in structural form, using $p \equiv (p_0, p_1)$; this restores exogeneity in X
 - uses new IVs for $\mathcal{H}(p)y$: H'X or $\mathcal{H}(p)'X$
 - is implemented using closed-form estimates of (p_0, p_1)
 - applies in various scenarios: (a)symmetric G, single or multiple (un)symmetrized measures H

Preview: Extensions

- Extensions:
 - add contextual effects
 - allow for heterogeneous misclassification rates
 - include group-level fixed effects
- Adjusted 2SLS: works with a single, large network
 - approximate groups (blocks) with sparse, unreported links between blocks
 - links within blocks are misclassfied with non-diminishing rates

Preview: Application

- We apply our method to data from Banerjee, Chandrasekhar, Duflo, and Jackson (2013)
 - surveys from over 4.1k households in 43 villages

Introduction

- two measures of links imputed ("VisitCome" vs "VisitGo")
- evidence of link misclassification: symmetrized measures differ

VisitCome vs VisitGo

Degree	0	1	2	3	4	5	6	7	8	9	10
$H^{(1)}$	2	21	110	227	357	505	526	546	506	379	269
$H^{(2)}$	4	24	112	245	384	522	534	577	491	386	255
Degree	11	12	13	14	15	16	17	18	19	20	≥ 21
$H^{(1)}$	224	145	90	74	54	33	27	15	9	6	24
$H^{(2)}$	179	137	102	59	46	28	22	13	9	3	17

- Dependent variable: whether participate in micro-finance program (sample average participation rate is 18.4%)
- Main findings:

- low misclassification rates; mostly due to missing links (p_0 near zero; p_1 around 0.11 and 0.14).
- "endorsement effect": $\lambda \approx 0.051$ (additional participating neighbor increases own participation by 5.1%)
- ignoring link misclassification results in upward bias in peer effect estimates

Model:

many small, independent networks

$$y = \lambda Gy + X\beta + \varepsilon$$
, $E(\varepsilon|X, G) = 0$, $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times K}$, $\varepsilon \in \mathbb{R}^n$, $G_{ij} \in \{0, 1\}$, $G_{ii} = 0$.

- reduced form: $y = M(X\beta + \varepsilon)$, $M \equiv (I \lambda G)^{-1}$.
- data reports H instead of G, with $H_{ii} = 0$.

Model Assumptions

- (A1) $E(H_{ij}|G,X) = E(H_{ij}|G_{ij},X)$.
 - caution: fails if G is asymmetric while H is symmetrized
- (A2) Random misclassification
 - $E(1-H_{ij}|G_{ij}=1,X)=p_1$, $E(H_{ij}|G_{ij}=0,X)=p_0$.
- (A3) $E(\varepsilon|X, G, H) = 0$.

• Consider an (infeasible) adjusted structural form:

$$y = \lambda \mathcal{H}(p)y + X\beta + \underbrace{\varepsilon + \lambda (G - \mathcal{H}) y}_{\equiv v},$$

where

$$\mathcal{H}(p) \equiv \frac{H - p_0(\iota\iota' - I)}{1 - p_0 - p_1}.$$

- Under (A1), (A2), (A3),
 - $E(H_{ij}|G_{ij},X) = p_0(1-G_{ij}) + (1-p_1)G_{ij}$ for $i \neq j$
 - $E(\mathcal{H}(p)|X,G)=G$
 - $E(\mathcal{H}(p)y|X,G) = E(\mathcal{H}(p)|G,X)MX\beta = GMX\beta = E(Gy|X,G)$
 - E(v|X,G) = 0.

Adjusted 2SLS

- Let $R \equiv (\mathcal{H}(p)y, X)$, $Z \equiv (\zeta(X), X)$, where $\zeta(\cdot)$ is nonlinear function of X.
- Suppose:

(IV-R)
$$E(Z'R)$$
 and $E(Z'Z)$ have full rank.

Then

$$E(Z'y) = E(Z'R)(\lambda, \beta')' + \underbrace{E(Z'v)}_{=0}.$$

- So, 2SLS works after this adjustment, with proper IVs.
- We provide sufficient conditions for (IV-R).

 What if apply 2SLS to a structural form (SF) using unadjusted H?

- What if apply 2SLS to a structural form (SF) using unadjusted H?
 - Then $y = \check{R}\theta + u$, where $\check{R} \equiv (Hy, X)$, $\theta \equiv (\lambda, \beta')'$ and $u = v + \left(\frac{p_0 + p_1}{1 p_0 p_1}\right) \lambda Hy \left(\frac{p_0}{1 p_0 p_1}\right) \lambda (u' I)y,$

- What if apply 2SLS to a structural form (SF) using unadjusted H?
 - Then $y = \check{R}\theta + u$, where $\check{R} \equiv (Hy, X)$, $\theta \equiv (\lambda, \beta')'$ and

$$u=v+\left(rac{
ho_0+
ho_1}{1-
ho_0-
ho_1}
ight)\lambda Hy-\left(rac{
ho_0}{1-
ho_0-
ho_1}
ight)\lambda(\iota\iota'-I)y$$
 ,

with ν being errors in SF using $\mathcal{H}(p)$, and $E(\nu|X,G)=0$.

 Will show how to construct valid IV. But such IVs won't resolve misclassification bias (b/c 2nd and 3rd terms in u).

- What if apply 2SLS to a structural form (SF) using unadjusted H?
 - Then $y = \check{R}\theta + u$, where $\check{R} \equiv (Hy, X)$, $\theta \equiv (\lambda, \beta')'$ and $u = v + \left(\frac{p_0 + p_1}{1 p_0 p_1}\right) \lambda Hy \left(\frac{p_0}{1 p_0 p_1}\right) \lambda (u' I)y$,

the whole according
$$SF$$
 using $SI(n)$ and $F(n|X,C) = 0$

- Will show how to construct valid IV. But such IVs won't resolve misclassification bias (b/c 2nd and 3rd terms in u).
- A special case:

- What if apply 2SLS to a structural form (SF) using unadjusted H?
 - Then $y = \check{R}\theta + u$, where $\check{R} \equiv (Hy, X)$, $\theta \equiv (\lambda, \beta')'$ and $u = v + \left(\frac{p_0 + p_1}{1 p_0 p_1}\right) \lambda Hy \left(\frac{p_0}{1 p_0 p_1}\right) \lambda (u' I)y$,

- Will show how to construct valid IV. But such IVs won't resolve misclassification bias (b/c 2nd and 3rd terms in u).
- A special case:
 - One-sided randomly missing: $p_0 = 0$, $p_1 > 0$.

- What if apply 2SLS to a structural form (SF) using unadjusted H?
 - Then $y = \check{R}\theta + u$, where $\check{R} \equiv (Hy, X)$, $\theta \equiv (\lambda, \beta')'$ and $u = v + \left(\frac{p_0 + p_1}{1 p_0 p_1}\right) \lambda Hy \left(\frac{p_0}{1 p_0 p_1}\right) \lambda (u' I)y$,

- Will show how to construct valid IV. But such IVs won't resolve misclassification bias (b/c 2nd and 3rd terms in u).
- A special case:
 - One-sided randomly missing: $p_0 = 0$, $p_1 > 0$.
 - Thus $E(Z'u) = E(Z'\check{R})(\frac{p_1}{1-p_1}\lambda, 0')'$.

- What if apply 2SLS to a structural form (SF) using unadjusted H?
 - Then $y = \check{R}\theta + u$, where $\check{R} \equiv (Hy, X)$, $\theta \equiv (\lambda, \beta')'$ and

$$u = v + \left(\frac{\rho_0 + \rho_1}{1 - \rho_0 - \rho_1}\right) \lambda H y - \left(\frac{\rho_0}{1 - \rho_0 - \rho_1}\right) \lambda (u' - I) y,$$

- Will show how to construct valid IV. But such IVs won't resolve misclassification bias (b/c 2nd and 3rd terms in u).
- A special case:
 - One-sided randomly missing: $p_0 = 0$, $p_1 > 0$.
 - Thus $E(Z'u) = E(Z'\check{R})(\frac{p_1}{1-p_1}\lambda, 0')'$.
 - Plim of $\hat{\lambda}$ in naive 2SLS: $\left(1+\frac{p_1}{1-p_1}\right)\lambda=\frac{\lambda}{1-p_1}.$

- What if apply 2SLS to a structural form (SF) using unadjusted H?
 - Then $y = \check{R}\theta + u$, where $\check{R} \equiv (Hy, X)$, $\theta \equiv (\lambda, \beta')'$ and

$$u=v+\left(rac{
ho_0+
ho_1}{1-
ho_0-
ho_1}
ight)\lambda Hy-\left(rac{
ho_0}{1-
ho_0-
ho_1}
ight)\lambda(\iota\iota'-I)y$$
 ,

- Will show how to construct valid IV. But such IVs won't resolve misclassification bias (b/c 2nd and 3rd terms in u).
- A special case:
 - One-sided randomly missing: $p_0 = 0$, $p_1 > 0$.
 - Thus $E(Z'u) = E(Z'\check{R})(\frac{p_1}{1-p_1}\lambda, 0')'$.
 - Plim of $\hat{\lambda}$ in naive 2SLS: $\left(1+\frac{p_1}{1-p_1}\right)\lambda=\frac{\lambda}{1-p_1}.$
 - We have an "augmentation" bias!

Construct IVS Hom I

- Recall HX is not valid IV; but we'll show $\mathcal{H}(p)'X$ is!
- (A4) Given (G, X), $H_{ij} \perp H_{kl}$ for all $(i, j) \neq (k, l)$.
 - rules out symmetric H (undirected links).
- We show $Z = (\mathcal{H}(p)'X, X)$ satisfies E(Z'v) = 0.

- Recall HX is not valid IV; but we'll show $\mathcal{H}(p)'X$ is!
- (A4) Given (G, X), $H_{ij} \perp H_{kl}$ for all $(i, j) \neq (k, l)$.
 - rules out symmetric *H* (*undirected* links).
- We show $Z = (\mathcal{H}(p)'X, X)$ satisfies E(Z'v) = 0.
 - $E\left[(\mathcal{H}(p)^2)_{ij}|G,X\right] = \left(G^2\right)_{ij}$ under (A4).

- Recall HX is not valid IV; but we'll show $\mathcal{H}(p)'X$ is!
- (A4) Given (G, X), $H_{ij} \perp H_{kl}$ for all $(i, j) \neq (k, l)$.
 - rules out symmetric H (undirected links).
- We show $Z = (\mathcal{H}(p)'X, X)$ satisfies E(Z'v) = 0.
 - $E\left[(\mathcal{H}(p)^2)_{ij}|G,X\right] = (G^2)_{ij}$ under (A4).
 - $E[\mathcal{H}(p)G|G,X] = E(\mathcal{H}(p)|G,X)G = G^2$.

- Recall HX is not valid IV; but we'll show $\mathcal{H}(p)'X$ is!
- (A4) Given (G, X), $H_{ij} \perp H_{kl}$ for all $(i, j) \neq (k, l)$.
 - rules out symmetric *H* (*undirected* links).
- We show $Z = (\mathcal{H}(p)'X, X)$ satisfies E(Z'v) = 0.
 - $E\left[(\mathcal{H}(p)^2)_{ij}|G,X\right]=\left(G^2\right)_{ij}$ under (A4).
 - $E[\mathcal{H}(p)G|G,X] = E(\mathcal{H}(p)|G,X)G = G^2$.
 - $E(\mathcal{H}(p)Gy|G,X) = E(\mathcal{H}(p)^2y|G,X)$ under (A3) $\Rightarrow E[(\mathcal{H}(p)'X)'v|G,X] = 0.$

- Recall HX is not valid IV; but we'll show $\mathcal{H}(p)'X$ is!
- (A4) Given (G, X), $H_{ij} \perp H_{kl}$ for all $(i, j) \neq (k, l)$.
 - rules out symmetric *H* (*undirected* links).
- We show $Z = (\mathcal{H}(p)'X, X)$ satisfies E(Z'v) = 0.
 - $E\left[(\mathcal{H}(p)^2)_{ij}|G,X\right] = (G^2)_{ij}$ under (A4).
 - $E[\mathcal{H}(p)G|G,X] = E(\mathcal{H}(p)|G,X)G = G^2$.
 - $E(\mathcal{H}(p)Gy|G,X) = E(\mathcal{H}(p)^2y|G,X)$ under (A3) $\Rightarrow E[(\mathcal{H}(p)'X)'v|G,X] = 0.$
 - H'X also satisfies IV exogeneity (b/c E(v|G,X)=0).

Construct IVs from H

- What if H is a symmetrized measure (e.g. $H_{ij} = H_{ji}$ by construction)?
- Need *two* symmetrized measures $H^{(1)}$, $H^{(2)}$
 - (A4) Given (G, X), $H_{ij}^{(1)} \perp H_{kl}^{(2)}$ for all $(i, j) \neq (k, l)$.
 - e.g., two independent surveys of the same, latent G
 - Analogous argument shows

$$E[(H^{(2)}X)'v^{(1)}]=0,$$

where $v^{(t)}$ is error in structural form using adjusted measure

$$\frac{H^{(t)} - p_0^{(t)}(u' - I)}{1 - p_0^{(t)} - p_1^{(t)}}.$$

- For adjusted 2SLS, we need estimates for p_0 , p_1 .
- We obtain these estimates using:
 - either (a) two independent H⁽¹⁾, H⁽²⁾ (symmetrized or not) for the same G (symmetric or not);
 - or (b) a single unsymmetrized H for symmetric G

- $\phi_{ij}(X)$: demographic info related to link formation (not modeling link formation per se).
- E.g., $\phi_{ij}(X) \equiv \mathbb{1}\{X_{i,1} = X_{j,1}\}$; let ω_1 denote " $\phi_{ij}(X) = 1$."
- Scenario (a): two measures $H^{(1)}$, $H^{(2)}$
 - parameters of interests: $p_1^{(t)}$, $p_0^{(t)}$ for t = 1, 2
 - nuisance: $\pi_1 \equiv \frac{1}{n(n-1)} \sum_{i \neq j} \Pr\{G_{ij} = 1 | \omega_1\}$ and π_0
 - we do *not* seek to learn about link formation from π_1 , π_0 .

• Summarize joint distribution $H_{ij}^{(1)}$, $H_{ij}^{(2)}$:

$$\begin{split} &\frac{1}{n(n-1)} \sum_{i \neq j} E\left(\left. H_{ij}^{(1)} H_{ij}^{(2)} \right| \omega_1\right) = \left(1 - \rho_1^{(1)}\right) \left(1 - \rho_1^{(2)}\right) \pi_1 + \rho_0^{(1)} \rho_0^{(2)} \left(1 - \pi_1\right), \\ &\frac{1}{n(n-1)} \sum_{i \neq j} E\left(\left. H_{ij}^{(t)} \right| \omega_1\right) = \left(1 - \rho_1^{(t)}\right) \pi_1 + \rho_0^{(t)} \left(1 - \pi_1\right) \text{ for } t = 1, 2; \\ &\text{and likewise conditioning on } \omega_0. \end{split}$$

• We get closed-form expressions for $p_1^{(t)}$, $p_0^{(t)}$ as functions of identifiable moments on the left-hand side.

Identify and Estimate MR: (p_0, p_1)

- This idea also extends to Scenario (b), with a single, unsymmetrized measure H for a symmetric G.
 - For unordered $\{i,j\}$, let $H_{\{i,j\}}^{(1)} \equiv H_{ij}$, $H_{\{i,j\}}^{(2)} \equiv H_{ji}$.
 - Method in (a) applies with $\frac{1}{n(n-1)}$, $\sum_{i\neq j}$, $H_{ij}^{(t)}$ replaced by $\frac{2}{n(n-1)}$, $\sum_{i>j}$, $H_{\{i,j\}}^{(t)}$ respectively.

Identify and Estimate MR: (p_0, p_1)

- We can recover MR using any generic definition of $\phi_{ij}(X)$ and partition of its support
 - necessary condition for identification: $\pi_1 \neq \pi_0$.
- Another extension: use aggregate moments in the argument.
 - e.g., $E\left[\delta(H^{(t)})|\sigma(X)\right]$ with $\delta(H)$: # of links in H; $\sigma(X)$: gender ratio.
 - estimators easy to computation with a closed form.

Identification Summary

	Reported Network Measures									
	Single,	unsym'zed	Multiple	e, sym'zed	Multiple, unsym'zed					
	(IV)	(MR)	(IV)	(MR)	(IV)	(MR)				
Sym. G		\checkmark		\checkmark	$\sqrt{}$	\checkmark				
Asym. G	√	?	violat	es (A1)	√					

Adjusted 2SLS: Single Measure

- Step 1. Use analog principle to estimate misclassification rates $\hat{p} \equiv (\hat{p}_1, \hat{p}_0)$.
- Step 2. (Single H) Use (H'X, X) as IV for $(\mathcal{H}(p)y, X)$:

$$\hat{\theta} \equiv \left(\mathbf{A}'\mathbf{B}^{-1}\mathbf{A}\right)^{-1}\mathbf{A}'\mathbf{B}^{-1}(\mathbf{Z}'Y),$$

where $\mathbf{A} \equiv \mathbf{Z}'\mathbf{R}(\widehat{p})$ and $\mathbf{B} \equiv \mathbf{Z}'\mathbf{Z}$, with \mathbf{R} , \mathbf{Z} stacking

$$R_s(\widehat{p}) \equiv (\mathcal{H}_s(\widehat{p})y_s, X_s), Z_s \equiv (H'_sX_s, X_s)$$

over all group s in the sample.

• We derived asymptotic variance, taking into account estimation error in \hat{p} .

• With two measures $H^{(t)}$, stack the moments: $E\left[\tilde{Z}_{\epsilon}'(\tilde{\gamma}_{s}-\tilde{R}_{s}\theta)\right]=0$, where

$$\tilde{Z}_s \equiv \left(\begin{array}{cc} Z_s^{(1)} & 0 \\ 0 & \tilde{Z}_s^{(2)} \end{array} \right), \; \tilde{y}_s \equiv \left(\begin{array}{c} y_s \\ y_s \end{array} \right), \; \tilde{R}_s \equiv \left(\begin{array}{c} R_s^{(1)} \\ R_s^{(2)} \end{array} \right),$$

and for each group s in the sample,

$$Z_s^{(t)} \equiv \left(H_s^{(3-t)} X_s, X_s\right), \; R_s^{(t)} \equiv \left(\mathcal{H}_s^{(t)}(\widehat{\rho}) y_s, X_s\right).$$

• Provided $E\left(\tilde{Z}_s'\tilde{R}_s\right)$ has full rank, we can identify θ from the stacked moments. Apply 2SLS:

$$ilde{ heta} \equiv \left[ilde{\mathsf{R}}' ilde{\mathsf{Z}} \left(ilde{\mathsf{Z}}' ilde{\mathsf{Z}}
ight)^{-1} ilde{\mathsf{Z}}' ilde{\mathsf{R}}
ight]^{-1} ilde{\mathsf{R}}' ilde{\mathsf{Z}} \left(ilde{\mathsf{Z}}' ilde{\mathsf{Z}}
ight)^{-1} ilde{\mathsf{Z}}' ilde{\mathsf{y}}.$$

• Let α denote group-level fixed effects,

$$y = \lambda Gy + X\beta + \alpha + \varepsilon$$
,

where G is measured by H.

- Apply with-in transformation to y, X and network measure(s).
 - Constructing IVs requires two measures $H^{(1)}$, $H^{(2)}$.
- This works because $E(\mathcal{H}(p)|G,X)=G$ and the with-in transformations are linear.

SF with contextual effects:

$$y = \lambda Gy + X\beta + GX\gamma + \varepsilon.$$

Adjusted feasible structural form is

$$y = \lambda \mathcal{H}(p)y + X\beta + \mathcal{H}(p)X\gamma + \eta$$
,

where
$$\eta \equiv \varepsilon - \lambda (\mathcal{H}(p) - G)y - (\mathcal{H}(p) - G)X\gamma$$
.

- Under (A1)-(A3), $E(\eta | X, G) = 0$.
- Under (A4), use $(H'X, H'\zeta(X))$ as IVs for $(\mathcal{H}(p)y, \mathcal{H}(p)X)$ in adjusted 2SLS.

• Relax (A2) to (A2') as follows:

$$E(H_{ii}|G_{ii}=1,X)=1-p_{ii.1}(X), E(H_{ii}|G_{ii}=0,X)=p_{ii.0}(X).$$

Let

$$\mathcal{H}_{ij}(X;p) \equiv \frac{H_{ij} - p_{ij,0}(X)}{1 - p_{ii,0}(X) - p_{ii,1}(X)} \ \forall i \neq j, \ \mathcal{H}_{ii}(X) = 0.$$

Then $E[\mathcal{H}(X;p)|G,X]=G$ under (A2') and (A1), (A3).

• Step 1: estimate $p_{ij}(X)$ using sample analogs, possibly with parametrization.

• Step 2: apply 2SLS to

$$y = \lambda \mathcal{H}(X; p)y + X\beta + \underbrace{\varepsilon + \lambda[G - \mathcal{H}(X; p)]y}_{v^*},$$

where

$$E(v^*|G,X) = \lambda \{GMX\beta - E[\mathcal{H}(X;p)|G,X]MX\beta\}$$

= \(\lambda[GMX\beta - GMX\beta] = 0.

Use non-linear $\zeta(X)$, e.g. $X \circ X$ as IVs for $\mathcal{H}(X;p)y$.

• Or do method of moment, using efficient IVs.

- Consider a "nearly block-diagonal" (NBD) setting
 - sample partitioned into S approximate groups, a.k.a. blocks
 - links between all n_s individuals in a block are dense; links across blocks are sparse
 - e.g., much less likely to have linked households across villages
- Measurement errors:
 - links within blocks are reported, but randomly misclassified
 - the sample does not report any link across blocks

Single, Large Network

• Let \tilde{G} differ from G by missing all links *between* blocks. Assume:

(*)
$$\sum_{i=1}^N \sum_{j
otin s(i)} E(| ilde{G}_{ij} - G_{ij}|) = O(S^
ho)$$
 for $ho < 1$,

where $j \notin s(i)$ means j is not in the same block as i, with S being # of blocks and $N = \sum_{s=1}^{S} n_s$ the sample size.

- Condition (*) posits the order of measurement errors outside blocks are small. Example:
 - n_s is uniformly bounded by $n_B < \infty$ for all s;
 - dyadic links across blocks formed at rate $q_S = O(S^{-\gamma})$;
 - (*) holds with $\rho = 2 \gamma < 1$.
- Adjusted 2SLS, denoted $\hat{\theta}$, is such that

$$\hat{\theta} - \theta = O_p(S^{-1/2} \vee S^{\rho-1}),$$

where $\theta \equiv (\lambda, \beta')'$. If $\rho < 1/2$, then $\hat{\theta}$ is root-n CAN.

MC Simulation

- Data-generating process:
 - $y_s = \lambda G_s y_s + X_s \beta + \alpha_s + \varepsilon_s$
 - $X_{s,i,1}$ Bernoulli (0.5), $X_{s,i,2}$ N(0,1), $\lambda = 0.05$, $\beta = (1,2)$
 - correlated fixed effect: $\alpha_s = 5\bar{X}_s\beta 3/2 + e_s$, e_s N(0,1)
 - $\pi_1 = E(G_{ij}|X_{i1} = X_{j1}) = 0.2, \ \pi_0 = E(G_{ij}|X_{i1} \neq X_{j1}) = 0.1$
 - small MR: $\left(p_0^{(1)}, p_1^{(1)}\right) = (0.10, 0.20),$ $\left(p_0^{(2)}, p_1^{(2)}\right) = (0.08, 0.16)$
 - large MR $\stackrel{\checkmark}{=}$ 2×small MR
- Group size: $n \in \{25, 50, 100\}$.
- No. of groups : $S \in \{50, 100\}$.
- Report mean and std. dev of our closed-form estimates from Q=100 replicated samples.

Table 1(a): MR Estimates (Small)

Small	$\pi_1 = 0.2$	$\pi_0 = 0.1$	$p_0^{(1)} = 0.1$	$p_1^{(1)} = 0.2$	$p_0^{(2)} = 0.08$	$p_1^{(2)} = 0.16$
S = 50	$\widehat{\pi}_1$	$\widehat{\pi}_0$	$\widehat{p}_0^{(1)}$	$\widehat{ ho}_1^{(1)}$	$\widehat{p}_0^{(2)}$	$\widehat{\rho}_1^{(2)}$
n = 25	0.2009	0.1015	0.0990	0.2020	0.0792	0.1638
	(0.0123)	(0.0081)	(0.0061)	(0.0301)	(0.0059)	(0.0349)
n = 50	0.1996	0.0998	0.1002	0.2000	0.0800	0.1573
	(0.0063)	(0.0042)	(0.0031)	(0.0150)	(0.0031)	(0.0186)
n = 100	0.2000	0.1002	0.1000	0.2007	0.0798	0.1573
	(0.0030)	(0.0021)	(0.0014)	(0.0075)	(0.0015)	(0.0086)
S = 100						
n = 25	0.1994	0.0997	0.0996	0.1968	0.0804	0.1588
	(0.0099)	(0.0060)	(0.0042)	(0.0241)	(0.0047)	(0.0245)
n = 50	0.2006	0.1006	0.0997	0.2011	0.0798	0.1608
	(0.0043)	(0.0029)	(0.0020)	(0.0099)	(0.0019)	(0.0112)
n = 100	0.2002	0.1002	0.0999	0.2001	0.0800	0.1609
	(0.0025)	(0.0017)	(0.0011)	(0.0054)	(0.0011)	(0.0067)

Large	$\pi_1 = 0.2$	$\pi_0 = 0.1$	$p_0^{(1)} = 0.2$	$p_1^{(1)} = 0.4$	$p_0^{(2)} = 0.16$	$p_1^{(2)} = 0.32$
S = 50	$\widehat{\pi}_1$	$\widehat{\pi}_0$	$\widehat{p}_0^{(1)}$	$\widehat{p}_{1}^{(1)}$	$\widehat{p}_{0}^{(2)}$	$\widehat{p}_{1}^{(2)}$
n = 25	0.2032	0.1039	0.1994	0.4012	0.1586	0.3191
	(0.0370)	(0.0260)	(0.0092)	(0.0442)	(0.0112)	(0.0654)
n = 50	0.1987	0.0994	0.2005	0.3990	0.1602	0.3137
	(0.0174)	(0.0122)	(0.0045)	(0.0224)	(0.0052)	(0.0330)
n = 100	0.2004	0.1006	0.1998	0.4004	0.1598	0.3206
	(0.0084)	(0.0059)	(0.0023)	(0.0100)	(0.0025)	(0.0155)
S = 100						
n = 25	0.1987	0.0993	0.1995	0.3943	0.1604	0.3142
	(0.0257)	(0.0173)	(0.0062)	(0.0322)	(0.0075)	(0.0452)
n = 50	0.2011	0.1012	0.1998	0.4013	0.1594	0.3189
	(0.0123)	(0.0090)	(0.0032)	(0.0159)	(0.0039)	(0.0216)
n = 100	0.2004	0.1003	0.1999	0.4003	0.1599	0.3201
	(0.0059)	(0.0042)	(0.0017)	(0.0073)	(0.0017)	(0.0112)

	S = 50						S = 100				
		ive		Adjusted		Naive		Adjusted		Oracle	
Reg.	$H^{(1)}y$	$H^{(2)}y$	$\mathcal{H}^{(1)}y$	$\mathcal{H}^{(2)}y$	Gy	$H^{(1)}y$	$H^{(2)}y$	$\mathcal{H}^{(1)}y$	$\mathcal{H}^{(2)}y$	Gy	
IV	$H^{(1)}X$	$H^{(2)}X$	$H^{(2)}X$	$H^{(1)}X$	GX	$H^{(1)}X$	$H^{(2)}X$	$H^{(2)}X$	$H^{(1)}X$	GX	
n = 25				Ex	pected #	of peers 3.	.75				
$\lambda = 0.05$	0.0259	0.0307	0.0490	0.0467	0.0508	0.0283	0.0324	0.0517	0.0511	0.0489	
s.t.d	(0.007)	(0.006)	(0.012)	(0.014)	(0.005)	(0.005)	(0.005)	(0.008)	(0.009)	(0.007)	
$\beta_1 = 1$	1.0613	1.0523	1.0113	1.0131	1.0108	1.0614	1.0540	1.0102	1.0117	1.0112	
s.t.d	(0.078)	(0.081)	(0.079)	(0.086)	(0.062)	(0.064)	(0.066)	(0.062)	(0.064)	(0.078)	
$\beta_2 = 2$	1.9978	1.9983	1.9950	1.9951	2.0018	2.0064	2.0058	2.0041	2.0027	1.9946	
s.t.d	(0.046)	(0.046)	(0.047)	(0.047)	(0.031)	(0.032)	(0.032)	(0.034)	(0.032)	(0.046)	
n = 50				E	pected #	of peers 7	.5				
$\lambda = 0.05$	0.0274	0.0312	0.0492	0.0497	0.0499	0.0274	0.0310	0.0495	0.0493	0.0499	
s.t.d	(0.003)	(0.004)	(0.006)	(0.006)	(0.003)	(0.002)	(0.003)	(0.005)	(0.004)	(0.003)	
$\beta_1 = 1$	1.1001	1.0836	1.0029	0.9971	1.0019	1.1021	1.0897	1.0010	1.0059	0.9988	
s.t.d	(0.068)	(0.064)	(0.067)	(0.060)	(0.043)	(0.047)	(0.047)	(0.047)	(0.046)	(0.060)	
$\beta_2 = 2$	2.0036	2.0032	2.0021	2.0008	1.9991	2.0017	2.0013	1.9990	1.9983	2.0010	
s.t.d	(0.032)	(0.031)	(0.035)	(0.032)	(0.020)	(0.021)	(0.020)	(0.022)	(0.021)	(0.030)	
n = 100				E	xpected #	of peers 1	15				
$\lambda = 0.05$	0.0277	0.0313	0.0504	0.0504	0.0500	0.0278	0.0313	0.0503	0.0500	0.0501	
s.t.d	(0.001)	(0.001)	(0.003)	(0.003)	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.001)	
$\beta_1 = 1$	1.2544	1.2210	0.9984	1.0039	1.0060	1.2589	1.2197	1.0051	0.9999	1.0008	
s.t.d	(0.072)	(0.065)	(0.070)	(0.064)	(0.026)	(0.048)	(0.041)	(0.047)	(0.045)	(0.041)	
$\beta_2 = 2$	2.0002	2.0004	1.9983	1.9988	1.9979	2.0017	2.0010	1.9983	1.9973	1.9993	
s.t.d	(0.026)	(0.022)	(0.035)	(0.028)	(0.013)	(0.019)	(0.017)	(0.023)	(0.019)	(0.020)	

	S = 50						S = 100			
		iive	Adjusted		Oracle	Naive		Adjusted		Oracle
Reg.	$H^{(1)}y$	$H^{(2)}y$	$\mathcal{H}^{(1)}y$	$\mathcal{H}^{(2)}y$	Gy	$H^{(1)}y$	$H^{(2)}y$	$\mathcal{H}^{(1)}y$	$\mathcal{H}^{(2)}y$	Gy
IV	$H^{(1)}X$	$H^{(2)}X$	$H^{(2)}X$	$H^{(1)}X$	GX	$H^{(1)}X$	$H^{(2)}X$	$H^{(2)}X$	$H^{(1)}X$	GX
n = 25				Ex	pected #	of peers 3.	.75			
$\lambda = 0.05$	0.0118	0.0180	0.0460	0.0437	0.0489	0.0136	0.0195	0.0532	0.0500	0.0508
s.t.d	(0.007)	(0.007)	(0.020)	(0.027)	(0.007)	(0.005)	(0.004)	(0.019)	(0.020)	(0.005)
$\beta_1 = 1$	1.0813	1.0733	1.0117	1.0173	1.0112	1.0822	1.0722	1.0005	1.0189	1.0108
s.t.d	(0.081)	(0.081)	(0.101)	(0.095)	(0.078)	(0.068)	(0.068)	(0.085)	(0.078)	(0.062)
$\beta_2 = 2$	1.9967	1.9980	1.9951	1.9937	1.9946	2.0045	2.0059	2.0023	2.0027	2.0018
s.t.d	(0.047)	(0.046)	(0.054)	(0.054)	(0.046)	(0.033)	(0.032)	(0.042)	(0.035)	(0.031)
n = 50				E	pected #	of peers 7	'.5			
$\lambda = 0.05$	0.0132	0.0188	0.0510	0.0510	0.0499	0.0133	0.0184	0.0491	0.0486	0.0499
s.t.d	(0.003)	(0.003)	(0.014)	(0.020)	(0.003)	(0.002)	(0.002)	(0.009)	(0.011)	(0.003)
$\beta_1 = 1$	1.1431	1.1273	0.9942	0.9865	0.9988	1.1458	1.1348	0.9956	1.0111	1.0019
s.t.d	(0.072)	(0.068)	(0.097)	(0.088)	(0.060)	(0.050)	(0.051)	(0.067)	(0.071)	(0.043)
$\beta_2 = 2$	2.0011	2.0027	1.9987	1.9995	2.0010	2.0000	2.0010	1.9967	1.9976	1.9991
s.t.d	(0.030)	(0.031)	(0.046)	(0.036)	(0.030)	(0.022)	(0.021)	(0.030)	(0.022)	(0.017)
n = 100				E	xpected #	of peers 1	15			
$\lambda = 0.05$	0.0133	0.0185	0.0504	0.0500	0.0501	0.0135	0.0185	0.0500	0.0506	0.0500
s.t.d	(0.001)	(0.001)	(0.008)	(0.008)	(0.001)	(0.001)	(0.001)	(0.005)	(0.006)	(0.001)
$\beta_1 = 1$	1.3679	1.3357	0.9936	1.0079	1.0008	1.3726	1.3358	1.0079	0.9860	1.0060
s.t.d	(0.092)	(0.086)	(0.136)	(0.115)	(0.041)	(0.060)	(0.055)	(0.096)	(0.087)	(0.026)
$\beta_2 = 2$	1.9983	1.9996	1.9982	1.9986	1.9993	2.0007	2.0015	1.9995	1.9988	1.9979
s.t.d	(0.027)	(0.026)	(0.061)	(0.045)	(0.020)	(0.210)	(0.019)	(0.046)	(0.035)	(0.014)

- Data source: Banerjee et al (2013). Over 4.1k households from 43 villages in Karnataka, India.
- Dependent variable y: participation in a micro-finance program. Average participation rate is 18.9%
- Covariates X are demographics at the household and individual level.
- From survey responses, Banerjee et al (2013) provide various symmetrized social network measures.

Empirical Application: Network Measures

- We use two of symmetrized measures of links reported in the data: $H^{(1)}$ is who visits you (*VisitCome*) and $H^{(2)}$ is who you visit (*VisitGo*).
- $H^{(1)}$ and $H^{(2)}$ are measures of the same underlying G, because if household A visits household B, as recorded in $H^{(1)}$ then household B must have been visited by household A, as recorded in $H^{(2)}$.
- These two matrices differ substantially in data, showing both are noisy measures of G.
- We assume the differences between $H^{(1)}$ and $H^{(2)}$ are missing links, and any of the reported zeros in both could also be missing links.

Application

Table 2(a): Summary of Variables (No. obs: 4149)

Variable	definition	mean	s.d.	min	max
У	dummy for participation	0.1894	0.3919	0	1
room	number of rooms	2.4389	1.3686	0	19
bed	number of beds	0.9229	1.3840	0	24
age	age of household head	46.057	11.734	20	95
edu	education of household head	4.8383	4.5255	0	15
lang	whether to speak other language	0.6799	0.4666	0	1
male	whether the hh head is male	0.9161	0.2772	0	1
leader	whether it has a leader	0.1393	0.3463	0	1
shg	whether in any saving group	0.0513	0.2207	0	1
sav	whether to have a bank account	0.3840	0.4864	0	1
election	whether to have an election card	0.9525	0.2127	0	1
ration	whether to have a ration card	0.9012	0.2985	0	1
ration	whether to have a ration card	0.9012	0.∠985	U	

Variable	value	obs.	per.	Variable	value	obs.	per.
religion				latrine			
-	Hinduism	3943	95.04	-	Owned	1195	28.80
-	Islam	198	4.77	-	Common	20	0.48
-	Christianity	7	0.19	-	None	2934	70.72
roof				property	property ownership		
-	Thatch	82	1.98	-	Owned	3727	89.83
-	Tile	1388	33.45	-	Owned & shared	32	0.77
-	Stone	1172	28.25	-	Rented	390	9.40
-	Sheet	868	20.92				
-	RCC	475	11.45				
-	Other	164	3.95				
electricity				caste			
-	No power	243	5.86	-	Scheduled caste	1139	27.54
-	Private	2662	64.18	-	Scheduled tribe	221	5.34
-	Government	1243	29.97	-	OBC	2253	54.47
				-	General	523	12.65

Table 3 Degree Distribution in Network Measures

Degree	0	1	2	3	4	5	6	7	8	9	10
$H^{(1)}$	2	21	110	227	357	505	526	546	506	379	269
$H^{(2)}$	4	24	112	245	384	522	534	577	491	386	255
Degree	11	12	13	14	15	16	17	18	19	20	≥ 21
$H^{(1)}$	224	145	90	74	54	33	27	15	9	6	24
H ⁽²⁾	179	137	102	59	46	28	22	13	9	3	17

$$y = \lambda \mathcal{H}^{(t)} y + X\beta + villageFE + v^{(t)}.$$

MR Estimates

$$\hat{\rho}_0^{(1)} = 0.002, \ \hat{\rho}_1^{(1)} = 0.143;$$
 $\hat{\rho}_0^{(2)} < 0.001, \ \hat{\rho}_1^{(2)} = 0.108.$

 Adjusted 2SLS estimates are calculated from a single, large network.

- (a) & (c): "Naive" 2SLS treating $H^{(1)}$ & $H^{(2)}$ as true G.
- (b) & (d): adjusted 2SLS using $H^{(3-t)}X$ as IVs for $H^{(t)}y$, t = 1, 2.
- (e): adjusted 2SLS exploiting stacks moments implied in (b) & (d).

Table 4: Two-stage Least Square Estimates

				9 9 4 4 4 .		
	OLS	(a)	(b)	(c)	(d)	(e)
R.h.s. Endogeneity		$H^{(1)}y$	$\mathcal{H}^{(1)}y$	$H^{(2)}y$	$\mathcal{H}^{(2)}y$	$\mathcal{H}^{(t)}y$
Instruments		$H^{(1)}X$	$H^{(2)}X$	$H^{(2)}X$	$H^{(1)}X$	Combined
λ		0.0523***	0.0499***	0.0550***	0.0542***	0.0515***
		(0.0079)	(0.0086)	(0.0097)	(0.0082)	(0.0083)
leader	0.0515***	0.0371**	0.0355**	0.0414**	0.0403**	0.0379**
	(0.0175)	(0.0187)	(0.0188)	(0.0184)	(0.0184)	(0.0185)
age	-0.0012***	-0.0017***	-0.0017***	-0.0016***	-0.0017***	-0.0017***
	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0005)
ration	0.0502**	0.0438**	0.0430**	0.0420**	0.0412**	0.0422**
	(0.0212)	(0.0201)	(0.0202)	(0.0195)	(0.0194)	(0.0198)
electricity - gov	0.0441**	0.0338**	0.0326**	0.0349**	0.0339**	0.0333**
	(0.0152)	(0.0157)	(0.0158)	(0.0156)	(0.0155)	(0.0156)
electricity - no	0.0162	0.0226	0.0233	0.0240	0.0248	0.0240
	(0.0275)	(0.0296)	(0.0296)	(0.0300)	(0.0298)	(0.0297)
caste — tribe	-0.0411	-0.0278	-0.0263	-0.0270	-0.0255	-0.0260
	(0.0294)	(0.0309)	(0.0305)	(0.0301)	(0.0298)	(0.0301)
caste — obc	-0.0822***	-0.0505**	-0.0468**	-0.0472**	-0.0435***	-0.0456***
	(0.0163)	(0.0217)	(0.0214)	(0.0218)	(0.0210)	(0.0212)
caste — gen	-0.1142***	-0.0718***	-0.0669***	-0.0669***	-0.0620**	-0.0650***
	(0.0239)	(0.0238)	(0.0244)	(0.0244)	(0.0235)	(0.0241)
religion — Islam	0.1225***	0.0967***	0.0938***	0.0880***	0.0843***	0.0895***
	(0.0332)	(0.0325)	(0.0325)	(0.0346)	(0.0349)	(0.0335)
religion — Chri	0.1569	0.1427	0.1410	0.1462	0.1450	0.1431
	(0.1440)	(0.1295)	(0.1279)	(0.1310)	(0.1299)	(0.1287)
Controls	√	√	√	√	√	√
VillageFE	√	\checkmark	√	√ √	\checkmark	√
R^2	0.0862	0.1339	0.1353	0.1356	0.1366	0.1358
Obs	4134	4134	4134	4134	4134	4134

Note: s.e. clustered at village level are in parentheses. ***, **, and * indicate 1%, 5% and 10% significant.

Empirical results: summary

Empirical findings:

- misclassification rates are low on average; mostly due to missing links (p_0 near zero; p_1 around 0.11 and 0.14).
- $\lambda \approx$ 0.051: additional participating "neighbor" increases own participation prob by 5.1%
- ignoring link misclassification by using traditional 2SLS yields peer effect λ estimates biased upward.

Conclusion

- We propose a simple method for applying 2SLS when some links are randomly misclassified.
- We estimate peer effects on participation in a microfinance program in India.
 - we find low rates of link misclassification.
 - errors in link measures are empirically important.

THANK YOU!