TS226

.

Codes correcteur d'erreur

Romain Tajan

8 octobre 2019

Plan

- 1 Codes Linéaires (binaires) en blocs
 - Définition
 - ▶ Matrice de parité
 - ⊳ Encodeur Systématique
 - Détection d'erreur

Plan

- 1 Codes Linéaires (binaires) en blocs
- Définition
- ▶ Matrice de parité
- Encodeur Systématique
- Détection d'erreur

Code linéaire en bloc

Code linéaire

Soit $\mathcal C$ un code $(M=2^k,n)$, $\mathcal C$ est un **code bianire linéaire** si et seulement si les mots de codes $\mathbf c\in\mathbb F_2^n$ sont obtenus à partir des messages $\mathbf u\in\mathbb F_2^k$ par la relation

$$\mathbf{c} = \mathbf{u}G$$

où G est une matrice de taille $k \times n$ appelée matrice génératrice de C

$$G = \begin{pmatrix} \mathbf{g_0} \\ \mathbf{g_1} \\ \vdots \\ \mathbf{g_{k-1}} \end{pmatrix} = \begin{pmatrix} g_{0,0} & g_{0,1} & \dots & g_{0,n-1} \\ g_{1,0} & g_{1,1} & \dots & g_{1,n-1} \\ \vdots & \vdots & & \vdots \\ g_{k-1,0} & g_{k-1,1} & \dots & g_{k-1,n-1} \end{pmatrix}$$

- 1 \mathcal{C} est un sous-espace vectoriel de \mathbb{F}_2^n de dimension rang(G) = k
- 2 Il existe plusieurs matrices génératrices pour un même code.
- 3 le rendement du code est $R = \frac{rang(G)}{n} = \frac{k}{n}$

Code dual | Matrice de parité

Matrice de parité

Le code \mathcal{C} peut aussi être défini par sa **matrice de parité** H de taille $n - k \times n$:

$$H = \begin{pmatrix} \mathbf{h_0} \\ \mathbf{h_1} \\ \vdots \\ \mathbf{h_{n-k-1}} \end{pmatrix} = \begin{pmatrix} h_{0,0} & h_{0,1} & \dots & h_{0,n-1} \\ h_{1,0} & h_{1,1} & \dots & h_{1,n-1} \\ \vdots & \vdots & & \vdots \\ h_{n-k-1,0} & h_{n-k-1,1} & \dots & h_{n-k-1,n-1} \end{pmatrix}$$

Soit $\mathbf{v} \in \mathbb{F}_2^n$, $\mathbf{v} \in \mathcal{C}$ (\mathbf{v} est un mot de code) si et seulement si

$$\mathbf{v}H^T=0$$

- 1 H est appelée matrice de parité du code C et vérifie $GH^T = 0_{k \times n k}$
- 2 H n'est pas unique

Encodeur systématique

Soit \mathcal{C} un code ($M=2^k, n$) pour un canal à entrées binaires. Un encodeur $\varphi(\cdot)$ est dit systématique ssi

$$\forall \mathbf{u} \in \mathbb{F}_2^k, \varphi(\mathbf{u}) = [\mathbf{p} \ \mathbf{u}] \text{ avec } \mathbf{p} \in \mathbb{F}_2^{n-k}$$

Si \mathcal{C} est linéaire alors il existe une matrice génératrice sous la forme

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

La matrice de parité associée à la matrice G précédente

$$H = \begin{pmatrix} 1 & 0 & \dots & 0 & p_{0,0} & \dots & p_{k,0} \\ 0 & 1 & \dots & 0 & p_{0,1} & \dots & p_{k,1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & p_{0,n-k-1} & \dots & p_{k,n-k-1} \end{pmatrix} = \begin{bmatrix} I_{n-k} & P^T \end{bmatrix}$$

Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

1 Un encodeur systématique comporte le message en clair

Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

- Un encodeur systématique comporte le message en clair
- 2 Les encodeurs systématiques sont souvent moins complexes que leurs équivalents non-systématiques

Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

- Un encodeur systématique comporte le message en clair
- 2 Les encodeurs systématiques sont souvent moins complexes que leurs équivalents non-systématiques
- 3 Une matrice d'encodage systématique peut être trouvée pour tout code linéaire en bloc de matrice génératrice **pleine** (à des permutations de colonnes près)
 - → Pivot de Gauss

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \text{Pivot}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \begin{matrix} \text{Pivot} \\ L_2 \leftarrow L_2 + L_1 \end{matrix}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \textbf{Pivot}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \begin{matrix} \textbf{Pivot} \\ L_3 \leftarrow L_3 + L_2 \end{matrix}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \text{Pivot}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{matrix} \leftarrow \textbf{Pivot} \\ L_4 \leftarrow L_4 + L_3 \end{matrix}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

1 But : permuter | sommer des lignes pour faire apparaître la matrice / à droite

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- 2 Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près
- 4 Soit $G' = [P, I_k] = G\Pi$ où Π est une matrice de permutation des colonnes, soit $H' = [I_{n-k}P^T]$ alors

$$G'(H')^T = 0_{k \times n - k} = GH^T$$
 avec $H = H'\Pi$

Soit C un code linéaire en bloc $(2^k, n)$.

Soit C un code linéaire en bloc $(2^k, n)$.

Soit $\boldsymbol{c} \in \mathcal{C}$ le mot de code transmis et soit \boldsymbol{r} le mot reçu

 $\boldsymbol{r}=\boldsymbol{c}+\boldsymbol{e}$ (e est apelé vecteur d'erreur)

Soit C un code linéaire en bloc $(2^k, n)$.

Soit $\boldsymbol{c} \in \mathcal{C}$ le mot de code transmis et soit \boldsymbol{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

Le décodeur peut détecter une erreur en calculant le syndrome

$$\mathbf{s} = \mathbf{r}H^T$$

Si $\mathbf{s} = \mathbf{0}$ alors $\mathbf{r} \in \mathcal{C}$ sinon il y a une erreur.

Soit C un code linéaire en bloc $(2^k, n)$.

Soit $\boldsymbol{c} \in \mathcal{C}$ le mot de code transmis et soit \boldsymbol{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

Le décodeur peut détecter une erreur en calculant le syndrome

$$s = rH^T$$

Si $\mathbf{s} = \mathbf{0}$ alors $\mathbf{r} \in \mathcal{C}$ sinon il y a une erreur.

Soit C un code linéaire en bloc $(2^k, n)$.

Soit $\boldsymbol{c} \in \mathcal{C}$ le mot de code transmis et soit \boldsymbol{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

Le décodeur peut détecter une erreur en calculant le syndrome

$$\mathbf{s} = \mathbf{r}H^T$$

Si $\boldsymbol{s}=\boldsymbol{0}$ alors $\boldsymbol{r}\in\mathcal{C}$ sinon il y a une erreur.

Remarques

Les positions des erreurs sont inconnues

Soit C un code linéaire en bloc $(2^k, n)$.

Soit $\boldsymbol{c} \in \mathcal{C}$ le mot de code transmis et soit \boldsymbol{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

Le décodeur peut détecter une erreur en calculant le syndrome

$$s = rH^T$$

Si $\mathbf{s} = \mathbf{0}$ alors $\mathbf{r} \in \mathcal{C}$ sinon il y a une erreur.

- Les positions des erreurs sont inconnues
- Certains vecteurs d'erreurs e laissent les erreurs non détectées

Soit C un code linéaire en bloc $(2^k, n)$.

Soit $\boldsymbol{c} \in \mathcal{C}$ le mot de code transmis et soit \boldsymbol{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

Le décodeur peut détecter une erreur en calculant le syndrome

$$s = rH^T$$

Si $\mathbf{s} = \mathbf{0}$ alors $\mathbf{r} \in \mathcal{C}$ sinon il y a une erreur.

- Les positions des erreurs sont inconnues
- O Certains vecteurs d'erreurs e laissent les erreurs non détectées
- Soit $\mathbf{c}' \in \mathcal{C}$ avec $\mathbf{c}' \neq \mathbf{c}$, il suffit de prendre $\mathbf{e} = \mathbf{c} + \mathbf{c}'$

Soit C un code linéaire en bloc $(2^k, n)$.

Soit $\boldsymbol{c} \in \mathcal{C}$ le mot de code transmis et soit \boldsymbol{r} le mot reçu

 $\mathbf{r} = \mathbf{c} + \mathbf{e}$ (e est apelé vecteur d'erreur)

Le décodeur peut détecter une erreur en calculant le syndrome

$$s = rH^T$$

Si $\mathbf{s} = \mathbf{0}$ alors $\mathbf{r} \in \mathcal{C}$ sinon il y a une erreur.

- Les positions des erreurs sont inconnues
- O Certains vecteurs d'erreurs e laissent les erreurs non détectées
- Soit $\mathbf{c}' \in \mathcal{C}$ avec $\mathbf{c}' \neq \mathbf{c}$, il suffit de prendre $\mathbf{e} = \mathbf{c} + \mathbf{c}'$
- Dans ce cas $\mathbf{r} = \mathbf{c}'$ et comme $\mathbf{c}' \in \mathcal{C}$, $\mathbf{r}H^T = \mathbf{0}$

Soit \mathcal{C} un code linéaire en bloc $(2^k, n)$. Soit $\mathbf{c} \in \mathcal{C}$ le mot de code transmis et soit \mathbf{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

On cherche ici la probabilité d'une erreur non détectée

$$P_U(E) = \sum_i A_i p^i (1-p)^{n-i}$$

où A_i est le nombre de mots de codes non-nuls de \mathcal{C} de poids de Hamming $w_H(\mathbf{c}) = i$

Soit \mathcal{C} un code linéaire en bloc $(2^k, n)$. Soit $\mathbf{c} \in \mathcal{C}$ le mot de code transmis et soit \mathbf{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

On cherche ici la probabilité d'une erreur non détectée

$$P_U(E) = \sum_i A_i p^i (1-p)^{n-i}$$

où A_i est le nombre de mots de codes non-nuls de \mathcal{C} de poids de Hamming $w_H(\mathbf{c}) = i$

Soit \mathcal{C} un code linéaire en bloc $(2^k, n)$. Soit $\mathbf{c} \in \mathcal{C}$ le mot de code transmis et soit \mathbf{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

On cherche ici la probabilité d'une erreur non détectée

$$P_U(E) = \sum_i A_i \rho^i (1 - \rho)^{n-i}$$

où A_i est le nombre de mots de codes non-nuls de \mathcal{C} de poids de Hamming $w_H(\mathbf{c}) = i$

Remarques

• Poids de Hamming : soit $\mathbf{v} = [v_0, v_1, \dots v_{n-1}] \in \mathbb{F}_2^n$ alors $w_H(\mathbf{v}) = |\{i : v_i = 1\}|$

Soit \mathcal{C} un code linéaire en bloc $(2^k, n)$. Soit $\mathbf{c} \in \mathcal{C}$ le mot de code transmis et soit \mathbf{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

On cherche ici la probabilité d'une erreur non détectée

$$P_U(E) = \sum_i A_i p^i (1-p)^{n-i}$$

où A_i est le nombre de mots de codes non-nuls de \mathcal{C} de poids de Hamming $w_H(\mathbf{c}) = i$

- Poids de Hamming : soit $\mathbf{v} = [v_0, v_1, \dots v_{n-1}] \in \mathbb{F}_2^n$ alors $w_H(\mathbf{v}) = |\{i : v_i = 1\}|$
- Distance de Hamming : soient $\mathbf{v}, \mathbf{v}' \in \mathbb{F}_2^n$ alors $d_H(\mathbf{v}, \mathbf{v}') = |\{i : v_i \neq v_i'\}|$

Soit \mathcal{C} un code linéaire en bloc $(2^k, n)$. Soit $\mathbf{c} \in \mathcal{C}$ le mot de code transmis et soit \mathbf{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

On cherche ici la probabilité d'une erreur non détectée

$$P_U(E) = \sum_i A_i \rho^i (1 - \rho)^{n-i}$$

où A_i est le nombre de mots de codes non-nuls de C de poids de Hamming $w_H(\mathbf{c}) = i$

- Poids de Hamming : soit $\mathbf{v} = [v_0, v_1, \dots v_{n-1}] \in \mathbb{F}_2^n$ alors $w_H(\mathbf{v}) = |\{i : v_i = 1\}|$
- **Distance de Hamming**: soient $\mathbf{v}, \mathbf{v}' \in \mathbb{F}_2^n$ alors $d_H(\mathbf{v}, \mathbf{v}') = |\{i : v_i \neq v_i'\}|$
- La séquence A_i est appelée spectre de poids de C

Soit \mathcal{C} un code linéaire en bloc $(2^k, n)$. Soit $\mathbf{c} \in \mathcal{C}$ le mot de code transmis et soit \mathbf{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

On cherche ici la probabilité d'une erreur non détectée

$$P_U(E) = \sum_i A_i p^i (1-p)^{n-i}$$

où A_i est le nombre de mots de codes non-nuls de C de poids de Hamming $w_H(\mathbf{c}) = i$

- **Poids de Hamming**: soit $\mathbf{v} = [v_0, v_1, \dots v_{n-1}] \in \mathbb{F}_2^n$ alors $w_H(\mathbf{v}) = |\{i : v_i = 1\}|$
- Distance de Hamming : soient $\mathbf{v}, \mathbf{v}' \in \mathbb{F}_2^n$ alors $d_H(\mathbf{v}, \mathbf{v}') = |\{i : v_i \neq v_i'\}|$
- La séquence A_i est appelée **spectre de poids** de C
- La plus petite valeur de *i* telle que $A_i \neq 0$ est appelée **distance minimale** de C

Soit \mathcal{C} un code linéaire en bloc $(2^k, n)$. Soit $\mathbf{c} \in \mathcal{C}$ le mot de code transmis et soit \mathbf{r} le mot reçu

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$
 (e est apelé vecteur d'erreur)

On cherche ici la probabilité d'une erreur non détectée

$$P_U(E) = \sum_i A_i p^i (1-p)^{n-i}$$

où A_i est le nombre de mots de codes non-nuls de \mathcal{C} de poids de Hamming $w_H(\mathbf{c}) = i$

- Poids de Hamming : soit $\mathbf{v} = [v_0, v_1, \dots v_{n-1}] \in \mathbb{F}_2^n$ alors $w_H(\mathbf{v}) = |\{i : v_i = 1\}|$
- Distance de Hamming : soient $\mathbf{v}, \mathbf{v}' \in \mathbb{F}_2^n$ alors $d_H(\mathbf{v}, \mathbf{v}') = |\{i : v_i \neq v_i'\}|$
- La séquence A_i est appelée spectre de poids de C
- La plus petite valeur de *i* telle que $A_i \neq 0$ est appelée **distance minimale** de C
- Un code C de distance minimale $d_{min}(C)$ peut **détecter** toute erreur de poids inférieur à $d_{min}-1$

Démonstration de $P_U(E) = \sum_i A_i p^i (1-p)^{n-i}$

- Poids de Hamming : soit $\mathbf{v} = [v_0, v_1, \dots v_{n-1}] \in \mathbb{F}_2^n$ alors $w_H(\mathbf{v}) = |\{i : v_i = 1\}|$
- **Distance de Hamming**: soient $\mathbf{v}, \mathbf{v}' \in \mathbb{F}_2^n$ alors $d_H(\mathbf{v}, \mathbf{v}') = |\{i : v_i \neq v_i'\}|$

Spectre des poids $\{A_i\}_{i \geq d_{min}}$

Correction d'erreurs

Mettre la question 5