LS-1101-2022

Lipids and Membranes

Introduction

- Lipids are hydrophobic, nonpolar molelcules.
 - They are soluble in nonpolar solvent.
 - They are insoluble in polar solvents, such as water
- They are isolated from the other biological molecules by extracting them with nonpolar solvents.

Introduction

The types of lipids

- Fatty Acids
- In the carboxylic acid family
- Waxes
- Fatty Acids + Alcohols
- Triglycerides
- 3 Fatty acids + glycerol
- Phospholipids and glycolipids
- 2 fatty acids + glycerol + phosphate + X
- Steroids
- Derivatives of cholesterol
- Eicosanoids
- Derivatives of the Fatty acid arachidonic acid

Membranes

Formed from phospholipids and glycolipids

Lipids

A free fatty acid

Functions

Energy storage

Membrane structure

Membrane transport

Cell Signaling

Any other function?

Fats give more energy when broken down

Fats can be store in less space than glucose

Fats need less water to be stored

Membranes form many compartments in the cell

Biological membranes are composed of a lipid bilayer

Membrane lipids are amphipathic molecules

- Membrane lipids are amphipathic
- Hydrophilic heads (polar) form hydrogen bonds with water
- Hydrophobic tails (non-polar) are excluded by water molecules

Three classes of membrane lipids

Membrane lipids

Phosphatidylcholine is the most abundant phospholipid in cell membranes

Packing arrangements of lipid molecules in an aqueous environment

Cone-shaped lipid molecules for micelles, cylinder-shaped lipids form bilayers

Phospholipid bilayers spontaneously close to form a sealed compartment

The membrane bilayer is a fluid

- •Lateral diffusion occurs rapidly within the plane of the membrane
- Individual phospholipids may rotate axially
- •Flip-flopping from one side to the other is very rare as it is energetically unfavorable

The membrane bilayer is a fluid

Fluorescence Recovery After Photo-bleaching (FRAP)

- A fluorescent probe is used to label membrane proteins
- 2. The probe is destroyed in a small region using intense laser light
- 3. Fluorescence microscopy is used to observe behavior of the unbleached probe

Who controls the membrane fluidity?

The composition of a membrane regulates the degree of its fluidity

- Membrane lipids with fatty acyl side chains that are saturated (no double bonds) pack tightly in the membrane and make it less fluid
- Lipids that are unsaturated (1, 2, or 3 double bonds) pack loosely and make it more fluid

Figure 10-12 Molecular Biology of the Cell 5/e (© Garland Science 2008)

SATURATED

UNSATURATED

HO
$$\frac{0}{1}$$
 $\frac{9}{12}$ $\frac{6}{15}$ $\frac{3}{16}$ $\frac{1}{18}$

The composition of a membrane regulates the degree of its fluidity

The presence of cholesterol in the membrane stiffens the bilayer making it more rigid

Cellular membranes are asymmetric

- 1. All lipids are synthesized on the cytosolic surface of the ER
- 2. Lipids in the outer leaflets are transported there by flippases
- 3. Continuity between organelle lumen & extracellular space

Membrane proteins

- Proteins compose ~50% of the membrane
- Membrane proteins perform many functions

Membrane proteins associate with the bilayer in different ways

- Transmembrane proteins span the bilayer
- Peripheral membrane proteins associate with one side

Transmembrane proteins usually span the bilayer using alpha-helices

Some membrane proteins use betasheets to cross the bilayer

- Beta-sheets arranged in this cylindrical conformation are known as a "beta-barell"
- Hydrophilic amino acid residues face towards the pore, hydrophobics face the bilayer

Bacterial cell surface

Peptidoglycan

The cytoplasmic side of the membrane is called the cell cortex

- Meshwork of transmembrane proteins and filaments (spectrin)
- Mechanical support for the membrane and cell shape

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

The extracellular surface of the membrane is coated with carbohydrate

Extracellular glycoproteins perform numerous functions

- Carbohydrate layer protects cells from chemical and mechanical damage
- Different cell types present different combinations of glycoproteins and proteoglycan on their surface molecular signature
- Information in the carbohydrate layer aids in cell-cell recognition and communication

Cells use different mechanisms to restrict membrane protein movements

- A. By tethering to elements inside of the cell (cortex)
- B. By tethering to elements outside of the cell
- C. By interacting with proteins on the surface of another cell
- D. By diffusion barriers established within polarized cells

Epithelial cell polarity

Transport across the cell membrane

How Molecules Cross the Membrane

	Active/ Passive	Molecules that Move	Direction	Energy Needed?	Protein Needed?
Diffusion	Passive	small, hydrophobic	down gradient (toward low conc.)	no	no
Osmosis	Passive	water	toward high conc. of <u>solutes</u>	no	no
Facilitated Diffusion	Passive		down gradient (toward low cons.)	no	yes
Active Transport	Active		specific: in <u>or</u> out, dep. on transporter	yes	yes

TABLE 2.1 Extracellular and Intracellular Ion Concentrations

	CONCENTRATION (MM)					
ION	INTRACELLULAR	EXTRACELLULAR				
Squid neuron						
Potassium (K+)	400	20				
Sodium (Na+)	50	440				
Chloride (Cl-)	40–150	560				
Calcium (Ca ²⁺)	0.0001	10				
Mammalian neuron						
Potassium (K+)	140	5				
Sodium (Na+)	5–15	145				
Chloride (Cl-)	4–30	110				
Calcium (Ca ²⁺)	0.0001	1–2				

Co-transport: Na+- K+ Pump

Copyright @ 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Channel mediated transport

Patch Clamping

The technique of **patch clamping** is used to study ion channel activity.

A narrow bore micropipet may be pushed up against a cell or vesicle, and then pulled back, capturing a fragment of membrane across the pipet tip.

Patch Clamping

A **voltage** is imposed between an electrode inside the patch pipet and a reference electrode in contact with surrounding solution. **Current** is carried by ions flowing through the membrane.

If a membrane patch contains a **single channel** with 2 conformational states, the current will fluctuate between 2 levels as the channel opens and closes.

The increment in current between open & closed states reflects the rate of ion flux through one channel.

Vesicle mediated transport

