

הטכניון - מכון טכנולוגי לישראל

מבנה מחשבים ספרתיים (234267)

מבחן מסכם מועד ב' 2016 פברואר 2016

מרצים: ליהוא רפופורט, עדי יועז. מרצים: פרנק סלה, איתי רביד.

 : שם
 מס. ת.ז. :

- משך הבחינה: שלוש שעות.
 - מותר כל חומר עזר.
- ש לכתוב את התשובות בטופס הבחינה בלבד ובמקום המיועד לתשובה.
 - יש לכתוב בקיצור ככל האפשר, <u>אך יש לנמק כל תשובה</u>.
 - בדקו שבטופס שבידכם יש 14 עמודים כולל עמוד זה.
 - . המבחן כולל ארבע שאלות, יש לענות על כולן.

/ 21	שאלה 1
/ 24	שאלה 2
/ 29	שאלה 3
/ 20	שאלה 4
/ 6	5 שאלה
/100	ציון סופי

בהצלחה!

שאלה 1 – זיכרון וירטואלי (21 נק')

נתון מעבד <u>דמוי</u> x86 העובד במוד של 64 ביט ומבנה הכתובת הבא:

6	63 48	47 36	35 24	23 12	11 0
	Sign Ext	PML3	PML2	PTE	offset

- במעבד קיים TLB גדול. במידה ויש TLB hit, התרגום מתקבל תוך מחזור שעון אחד.
 - .PMH מתגלה תוך מחזור שעון אחד, ובמקרה זה פונים ל-TLB miss ⊙
- .PML2-3 ישנם translation caches גדולים עבור כל אחת מרמות התרגום PML2-3
 - הגישה אליהם מתבצעת במקביל. ○
 - במידה ויש hit, הכניסה המתאימה מתקבלת תוך 6 מחזורי שעון.
 - גם הוא 6 מחזורי שעון. ס miss ס הזמן לקביעת כ
- במעבד קיים data cache בגודל data cache, וגודל שורה של 64 בתים.
- תוא 3 מחזורי שעון. הזמן לקביעת miss עבור hit עבור hit עבור
- הניחו שלאחר ששורה מובאת ל-cache, היא לא נזרקת ממנו במהלך סידרת הפניות.
 - גישה לזיכרון אורכת 200 מחזורי שעון.
- א. (10 נק') נתונה סידרת פניות לכתובות וירטואליות (בבסיס 16). עבור כל אחת מהפניות יש לפרט:
- שלא ניגשו אליו. miss או hit ה-TLB וה-translation caches, או שלא ניגשו אליו.
 - .miss-שהסתיימו ב-hit, ומספר הגישות ל-Data cache שהסתיימו ב-miss .
 - זמן הגישה הכולל לקבלת התרגום.

הניחו כי גודל כניסה בטבלאות הדפים היא 8 בתים וכן כי בתחילת הסידרה כל ה-caches ריקים.

זמן גישה לקבלת התרגום	D\$ num misses	D\$ Num hits	PML3 hit/miss/ n.a.	PML2 hit/miss/ n.a.	TLB hit/ miss	כתובת
						FFFF CBA9 8765 4321
						FFFF CBA9 8765 <u>0</u> 321
						FFFF CBA <u>0</u> 8765 4321
						FFFF CBA9 8765 4 <u>0</u> 21
						FFFF CB <u>B</u> 9 8765 4321

נק'). עבור המערכת המתוארת בתחילת התרגיל, הציעו שתי דרכים שונות על מנת לא L1 se במקביל לתרגום הכתובות מווירטואליות לפיזיות. ן לשנות את מבנה ה-cache (אך יש להשאירו בגודל 64KB). אין לשנות את מבנה הט ירטואלית. יש להסביר.	ל-te ניתן
רות א':	ופשר
	פשר
נק') סעיף זה אינו מתבסס על הנתונים שבתחילת השאלה ולא על הסעיפים הקודמים. לתכנן מבנה לכתובת וירטואלית, כך שמתקיימים התנאים הבאים: גודל דף 2 ¹⁵ B, גודל כל טבלה בכל אחת מהרמות הוא בגודל דף המרחב הפיזי הנתמך Byte, והמרחב הוירטאולי הנתמך 2 ⁶³ Byte. בכל כניסה בטבלאות בכל הרמות 20 סיביות משמשות לניהול (בנוסף למיפוי לכתובח גודל כתובת וירטואלית: 64 סיביות.	ישי • •
רו את מבנה הכתובת הוירטואלית והסבירו.	צייר

('נק') 24) <u>Cache שאלה 2 – זיכרון</u>

נתון מעבד עם הירארכית זיכרון בעלת שתי רמות מטמון L1 :Cache נתון מעבד עם הירארכית זיכרון בעלת שתי

ונתון כי הרמה העליונה L1 Cache יכולה להיות קונפיגורבילית פעם אחת המבנה של L1 Cache ו D-Cache – ו I-Cache המורכב מ: I-Cache ו P-Cache בין Split Cache המורכב מ: Data ו P-Cache נפרדים.

:כאשר ה – L1 Cache הוא במבנה של Split Cache

WB, Write Allocate: בתים בשורה, גודל 1KBytes, מדיניות כתיבה: 8, Direct Mapped :I-Cache, מדיניות כתיבה: 64, Direct Mapped :D-Cache, מדיניות כתיבה: WB, Write Allocate, מדיניות כתיבה: WB, Write Allocate, מדיניות כתיבה:

:che – הוא במבנה של L1 Cache – מאשר ה

2-Way set associative :Unified L1 Cache, מדיניות החלפה 2-Way set associative :Unified L1 Cache, מדיניות כתיבה: WB ,Write Allocate .

4-Way set associative :L2, בתים בשורה, גודל 128KBytes, מדיניות החלפה LRU, מדיניות החלפה WB ,Write Allocate .

נתונים זמני הגישה הבאים:

L1 lookup latency 1 clk cycle; L1 fill latency 1 clk cycle L2 lookup latency 12 clk cycle; L2 fill latency 12 clk cycle Main memory lookup latency 80 clk cycle

נתונה הלולאה המקוננת הבאה:

for (int i=0; i< X; i++) for (int j=0; j< Y; j++) Z=A[j]+W;

נתונן כי המערך A[j] הוא מערך של בתים היושב בכתובת בסיס 0x40000000 (כך שלדוגמה הכתובת A[j] היא A[j] היא A[j] היא A[j] היא A[j]

W הוא קבוע השמור ברגיסטר, וכן – X,Y,Z הם משתנים המאוחסנים ברגיסטרים. כמו כן גם אנדקסי הלולאות i ו - j מאוחסנים כל אחד ברגיסטר.

הקומפיילר מייצר 16 פקודות מכונה למימוש הלולאה המקוננת שלעיל, אחת מהפקודות היא פקודת הקומפיילר מייצר 16 פקודות היא באורך קבוע של 4 בתים Load Byte (המשמשת לקריאת הנתון היושב בכתובת Ox8000003F עד Ox8000003F.

נתון כי בתחילת ביצוע התכנית כל זיכרונות המטמון ריקים.

נתון כי כל זיכרונות המטמון הינם "Blocking/non pipelined" היינו לא ניתן לבצע גישה חדשה לפני שהגישה הקודמת סופקה.

					. 1 1	I Cacho	a hit rata
					L1	i-Cache -	-hit rate ב
	·····				:L1	D-Cache-	-hit rate ב-
	_						_
clk cycles) הד את הזמן הדרוע	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הד את הזמן הדרוע	זכרו להוסיף	ו של Miss	he הוא L1 ? ? (במקרה תחשבו רק נ	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הד את הזמן הדרוע	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הדו את הזמן הדרוש	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הד את הזמן הדרוע	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הד את הזמן הדרוע	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הד את הזמן הדרוע	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הדו את הזמן הדרוע	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הדו	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הד את הזמן הדרוע	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת
clk cycles) הדו	זכרו להוסיף	ו של Miss	ר? (במקרה	∕=1–ı X=	ה כאשר 1	כנית הנתונו	לביצוע הת

	 							
	ננאי התחלה בו hit ב-D-cache							
		א להסביר	יש ?Direct N	חוא lapped	n D-Cache	אשר ה – <u>י</u>	יט Y=8′	192 (i
								`
		<u> </u>						
		<u></u>						
		ש להסביר	?Direct Ma	apped הוא	D-Cache -	- כאשר ה	Y=327	768 (ii
ש	זלפה LRU ? יע	עם מדיניות הו	Fully Asso	ciative הוא	D-Cache-	- כאשר ה	Y=327	768 (iii
			·					להׄסביר

-ก	(6 נק') עתה הקונפיגורציה של ה-L1 Cache היא Unified Cache. האם יהיו קונפליקטים בין Code ל-Data כך שאחד יפנה את השני מה- Unified L1 Cache? אם התשובה היא "כן יהיו קונפליקטים" אזי יש להסביר מי יפנה את מי: ה-Code את ה-Data או Data Data את ה-Code ? יש להסביר.	Τ.
	Y=8192 כאשר (i	
		-
		-
		-
		-
	Y=16384 (ii	
		_
		-
		-
		-
	<u></u>	-

(נק') Out-Of-Order Execution – 3 שאלה

- א. יש למלא את הטבלה שבהמשך. לכל פקודה יש לרשום:
- של הפקודה. בערכי הרגיסטרים הארכיטקטוניים לאחר commit של הפקודה. R3, R2, R1
 - addr − כתובת הגישה לזיכרון עבור פקודות load ו-store בלבד.
 - . ערך זיכרון שנקרא או נכתב עבור פקודות load ו-store בלבד. − data •
- .t =1 הזמן בו מבוצעת אלוקציה לפקודה: עד 3 פקודות בכל מחזור, החל מ- t =1. הזמן בו מבוצעת אלוקציה לפקודה

כבר מולאו

- יש 8 כניסות, וב-RS יש 5 כניסות. ROB יש 8 כניסות, וב-RS יש 5 ניסות. ניתן לבצע אלוקציה לפקודה רק כאשר יש עבורה מקום ב-ROB וב-RS.
- כל פקודה (כולל פקודות store) תופסת מקום אחד ב-ROB ומקום אחד ב-RS.
- src2 ,src1 לפקודה: מספרי הרגיסטרים המשמשים כ-sources לפקודה:
 עבור רגיסטר פיזי, ו-Ri במידה וקוראים ישירות את הרגיסטר הארכיטקטוני.
 עבור src1 :store הרגיסטר המשמש לחישוב הכתובת.
 - T src2 ready , T src1 ready : T src2 ready , T src1 ready .
 לפקודה.
 אם ה-src כבר מוכן בזמן האלוקציה, אז זמן זה יהיה שווה לזמן האלוקציה.
 ד data ready של ה-src אחרת, זמן זה שווה ל-src של ה-src.
 - ד ביצוע. הניחו כי ישנן אינסוף יחידות ביצוע. T exe
 - ס פקודה יכולה להיכנס לביצוע לכל המוקדם במחזור שלאחר האלוקציה. ⊙
- o פקודה נכנסת לביצוע במחזור השעון שלאחר המחזור בו כל ה-src-ים מוכנים. פקודת store ⊙ נכנסת לביצוע במחזור השעון שלאחר המחזור בו src1 (המשמש לחישוב הכתובת) מוכן.
 - ס פקודת מוצאת מה-RS במחזור שלאחר הביצוע שלה (Texe+1), וכבר במחזור זה פקודה
 חדשה יכולה לבצע alloc ולהשתמש במקום שהתפנה.
- שנשלח לביצוע בזמן t=Texe, או שהוסר עבורו תנאי חסימה קודם :Load block code עבור (רישמו את כל תנאי החסימה לפי הסדר): בזמן t+1 לפי הסדר (רישמו את כל תנאי החסימה לפי הסדר):
 - unknown store address חסימה כתוצאה מ − 1 o
 - waiting for store data חסימה כתוצאה מ-2

Load פונה ל-L1 cache miss בזמן 1+exe (גם אם נחסם), כך שמידה ויש L1 cache miss, נשלחת כבר פניה ל-L2 cache, ובזמן 10+exe הנתונים כבר זמינים עבור ה-load.

- :T data ready •
- עבור load שהוסרו עבורו תנאי החסימה בזמן t שהוסרו עבורו תנאי החסימה כ
- .t+4 בזמן: store to load forwarding או שיש, cache בזמן load במידה וה-load
 - :T'exe <Texe בזמן cache אחר לאותה שורה ב-load אחר לאותה שורה ב-max(T'exe+10, t+4)
 - .max(Texe+10, t+4) אחרת, בזמן –

- שבור store: מחזור השעון בו הן ה-data לכתיבה לזיכרון והן הכתובת מוכנים.
 - .T data ready = max(Texe+1, T src2 ready) כלומר
- הכתובת של ה-store ידועה בזמן **Texe+1** (ובזמן זה מוסר תנאי חסימה של store שנחסם ע"י ה-store על unknown store address).
 - בפרט, bad שמבוצע בזמן t (תנאי החסימה שלו משוערכים בזמן t+1), לא נחסם על load שמבוצע בזמן t (כתובת ה-store ע"י store קודם לו, שמבוצע גם הוא בזמן t (כתובת ה-store ידועה בזמן t+1).
 - .Texe+1 :ALU עבור פקודות o
- עם חיזוי שגוי, מבוצע flush בזמן 1+Texe, והפקודות מהמסלול הנכון מבצעות עבור פקודת Tush עבור פקודת
 אלוקציה בזמן Texe+6.
 - commit הזמן בו הפקודה מבצעת:T commit ●
 - ובתנאי שהפקודה שלפניה T data ready+1 החל מזמן commit, ובתנאי שהפקודה שלפניה commit ביצעה/מבצעת commit.
 - . ניתן לבצע commit לעד **4 פקודות** בכל מחזור. ⊙
 - .post-commit מבצעת את הכתיבה אל ה-store מבצעת את הכתיבה אל ה-store מבצעת את הכתיבה אל
 - וכבר במחזור זה פקודה (Tcommit+1) commit במחזור שלאחר ROB), וכבר במחזור זה פקודה מוצאת מה-alloc ולהשתמש במקום שהתפנה.

• הנחות:

- הכתובות בתוכנית הן פיזיות (אין צורך בתרגום).
- . כל הערכים המספריים (כתובות, קבועים וכו) בשאלה הם בבסיס 16. ⊙
- write no allocate עובד במדיניות cache− הוא ריק בתחילת הביצוע. ה-L1 data cache הוא ריק בתחילת הביצוע.
 - $.(32_{10} = 20_{16})$ 32₁₀B היא L1 cache גודל שורה ב-
 - בטבלה רשומות אך ורק הפקודות מהמסלול הנכון.

	. בהנחה שהחזאי יחסמו על address			ב.
	_			
			 	_
		 	 	_
		 	 	_

Pdst	instruction	R1	R2	R3	addr	data	src1	src2	T alloc	T src1 ready	T src2 ready	T exe	block code	T data ready	T commit
0	load R1 ← m[R2+50]	10	20	30	70	10									
1	store m[R1+60] ← R3	10	20	30	70	30									
2	add R3 ← R3 + R2	10	20	50											
3	load R1 ← m[R2+R3]	30	20	50	70	30									
4	store m[R2+20] ← R1	30	20	50	40	30									
5	load R2 ← m[R3-10]	30	30	50	40	30									
6	if (R3>20) jmp wrongly predicted	30	30	50											
7	load R2 ← m[R3]	30	10	50	50	10									
8	add R1 ← R1 + R2	40	10	50											

(נק') Power/Performance & SMT impact – 4 שאלה

נתון Core שתוכנן בטכנולוגית ייצור 14nm (Process Technology) עם המאפיינים הבאים: ה- Core הוא מעבד 4wide. שטח ה- Core.

ההספק הסטטי (Leakage Power) הוא 0.1Watt ההספק הסטטי (ההספק הסטטי קבוע ולא משתנה עם המתח).

הקיבול הדינאמי של ה- Core נתון כפונקציה של ה – IPC של האפליקציה אותה הוא מריץ . וערכו הוא: Cdyn = IPC × 525pF.

.Thread אחד. Multi-Threading - אינו תומך ב Core אינו מסוגל להריץ רק Multi-Threading נתון כי ה- Core אינו תומך ב Virus=3.5, TDP=3, Warm=2, Cold=1.5.

להלן נתונה טבלה המראה את נקודות מתח ותדר אפשריות לעבודת ה- Core:

מתח ב Volt's	תדר ב Ghz
0.60	1
0.65	1.33
0.70	1.66
0.75	1.75
0.80	2.25
0.85	2.5
0.90	3.33
1	3.5
1.1	4

בשנה הבאה ניתן יהיה לייצר את ה-Core המדובר בטכנולוגית ייצור חדשה של 10nm בגרסת "speed" או בגרסת "power" עם המאפיינים הבאים:

גרסת ה- "speed" תאפשר הרצה בתדר הגבוה ב- 20% יחסית לטכנולוגית 14nm (תדר הגבוה ב – 20% לעומת התדר המצוין בטבלה שלעיל עבור כל נקודת מתח אפשרית).

גרסת ה- "power" לעומת זאת תספק הפחתת הקיבול הדינמי Cdyn ב- 30% יחסית לטכנולוגית 14nm.

דרוש לתכנן מערכות שונות העושות שימוש ב – Core בטכנולוגית ייצור 10nm במסגרת מעטפות הספק נתונות ועבור כל מערכת להחליט אם לבחור בגרסת ה - "speed" או בגרסת ה - "power" של טכנולוגיית הייצור החדשה על מנת למקסם את סך כל הביצועים של המערכת.

			•	11 1011 : \	Core's –	עבוו וו	-ייון ב	III 4vval
								_
						<u>_</u>		
								<u></u>
צועים מקסימליי כאשר ה – ore וCO? הסבירו.	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
cre – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
ore – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
cre – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
ore – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
ore – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
ore – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
ore – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
צועים מקסימלייו כאשר ה – ore וCol? הסבירו.	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
ore – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
ore – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת
ore – כאשר ה	אחד Core	אחת על \	יית Varm	יה אפליקצ	מורצת על	כאשר נ ֿ	Tablet	ממערכת

(5 נק') השוו את הביצועים של גרסת טכנולוגית הייצור 10nm שבחרתם בסעיף א לביצועים של מערכת דומה המיוצרת בטכנולוגיה 14nm. לצורך ההשוואה חשבו את מספר הפקודות המבוצעות ביחידת זמן, 1 sec בכל אחת מהמערכות (ערכו את ההשוואה באותם תנאים כמו בסעיף א: מערכת המריצה בו זמנית שני Threads (שני Core's) בתנאי TDP במעטפת הספק של 4Watt המוקצים עבור שני ה – Core's).	ג.
כמו כן מצאו את השיפור באחוזים "Throughput Speedup" בין שני דורות הטכנולוגיה שהשוויתם.	
	_
	_
	_
(5 נק') עתה נדרש לתכנן מערכת Desk-Top המורכבת מ – 6 מעבדים (6 Core's) באיזו גרסה של טכנולוגית ייצור 10nm תבחרו להשתמש כדי לקבל ביצועים מקסימליים ממערכת זו המריצה בו זמנית Threads 6 בתנאי TDP במעטפת הספק של 60Watts המוקצים עבור ה – Core's? הסבירו.	Τ.
רוטבדיו. כמו כן סכמו את המסקנות העולות מהחישובים שערכתם בסעיפים א ו - ד של שאלה זו ותארו את השיקולים בבחירת מאפייניי טכנולוגית הייצור Process Technology עבור מעטפות הספק שונות.	
	_
	_
	_

שאלה 5 – חיזוי קפיצות (6 נק')

במעבד קיים branch predictor מסוג lshare, עם 4 כניסות היסטוריה באורך 5 סיביות כל אחת. במעבד קיים branch predictor, האינדקס למערך זה מורכב מהיסטורית ה בנוסף ישנו מערך של 32 מונים (bimodal counters), האינדקס למערך זה מורכב מהיסטוריות branch עם 5 הסיביות התחתונות של כתובת ה branch. (weakly taken) 2- מערך ההיסטוריה מאותחל ל-0 והמונים מותחלים ל-2 (weakly taken) .

המעבד מריץ את התוכנית הבאה:

100 mov R1,0x0B ; R1=0x0B (binary 01011)

104 mov R2,5 ; R2=5

108 and R9,R1,0x10; R9=R1&0x10 (0x10 is binary 10000)

10c beg R9,0x10,114; if (R9==0x10) PC=114

110 nop ; no operation

114 sll R1,R1,1 ; R1=R1<<1 (Shift Left Logical)

118 sub R2,R2,1 ; R2=R2-1

11c bne R2,0,108 ; if (R2!=0) PC=108

א. (6 נק') השלימו את הטבלה הבאה עבור סידרת הקפיצות בסדר אותו המעבד מריץ את התוכנית לעיל.

שתי השורות הראשונות בטבלה כבר מולאו לצורך הדגמה.

שימו-לב כי כתובת הקפיצה נתונה בבסיס 16, ואילו ההיסטוריה בבסיס 2.

נכונות החיזוי	החיזוי (0/1)	ערך המונה לפני הקפיצה	מספר המונה	ערך ההיסטוריה לפני הקפיצה	Taken/ not-taken	כתובת ה- branch
*	1	2	01100	00000	0	10c
✓	1	2	11100	00000	1	11c
						10c
						11c
						10c
						11c
						10c
						11c
						10c
						11c