

FIG. 3

FIG. 6

FIG. 7

FIG. 8

FIG. 10A

FIG. 10B

FIG. 11

EXAMPLE MEMORY MAP FOR DSP/CPU INTEGRATED CHIP

0x0000000 0x0010000	X-MEMORY (DATA PROGRAM) 64kB Y-MEMORY (DATA PROGRAM) 64kB	INTERNAL MEMORY
0x0020000	RESERVED 16MB - 128kB	
0x1000000	EXTERNAL CS1 16MB (STANDARD, ROM, EPROM, FLASH, SRAM)	
0x2000000	EXTERNAL CS1 16MB	
0x3000000	(BURST ROM) EXTERNAL CS1 16MB	
0x4000000	(DRAM, PSEUDO SRAM)	
	RESERVED 16MB x 5	
0x9000000 0x9000200	ON-CHIP PERIPHERALS 512B	
	RESERVED 48MB	
0xC000000		
	RESERVED FOR USER LOGIC 64MB	
0xFFFFFF		
	1100	

FIG. 12A

FIG. 13A

FROM SYSTEM TIMING CIRCUIT

FIG. 13B

FIG. 14

FIG. 15A

FROM SYSTEM TIMING CIRCUIT

FIG. 15B

FIG. 16

FIG. 17A

FROM SYSTEM TIMING CIRCUIT

FIG. 17B

FIG. 18

COMMUNICATION TERMINAL PROCESSING

FIG. 19

FIG. 20B FIG. 20A INVENTION PRIOR ART DSP FUNCTION EQUALIZE. DSP EQUALIZE, DEMODULATE DEMODULATE AND DECODE AND DECODE THE RECEIVE DATA FOR RECEIVE DATA FOR COMMUNICATION PATH COMMUNICATION PATH CPU FUNCTION DECODE INTERRUPT CPU RECEIVE DATA, AND KNOWING AN INSTRUCTION OF POWER AMP OUTPUT CONTROL. OUTPUT CONTROL DATA CPU SAVE INTERNAL STATUS AND RECEIVE RECEIVE DATA FROM DSP DRIVE AFE COMMON PERIPHERALS AND CONTROL POWER AMP OUTPUT CPU DECODE RECEIVE DATA, AND KNOWING AN INSTRUCTION FOR POWER AMP OUTPUT CONTROL, OUTPUT CONTROL DATA INTERRUPT DSP **OVERHEAD** DSP SAVE INTERNAL STATUS AND RECEIVE CONTROL DATA FROM CPU DSP DRIVE AFE

PERIPHERALS AND CONTROL POWER AMP OUTPUT

FIG. 21

FIG. 22

FIG. 23

```
short XARRAY[4]={1,2,3,4};
short YARRAY[4]={1,1,1,1};
short ZARRAY[2];
main(){
        short *x_pntr, *y_pntr1, *y_pntr2;
                              /*INITIALING x_pntr*/
        x_pntr=XARRAY;
        y_pntr1=YARRAY;
                              /*INITIALING y_pntr1*/
        y_pntr=ZARRAY;
                              /*INITIALING y_pntr2*/
        /*CALL MULTIPLY AND ACCUMULATE ROUTINE/*
        mac_sss(4, x_pntr, y_pntr1, y_pntr2);
}
                  R4 R5
                               R6
               X POINTER
                               Y POINTER
```

FIG. 24

2400

ASSEMBLER LANGUAGE EXPRESSION OF SUM OF PRODUCTS REALIZED BY DSP FUNCTION PADD A0, M0, A0 PMULS X0, Y0, M0 MOVX.W @R5+, X0 MOVY.W @R6+, Y0 2402 2404 2403 2413 2412 X MEM Y MEM R5 R6 **XARRAY** YARRAY 2 1 2414 2411 3 1 R4 4 1 R7 ZARRAY 2415 2410 X0 Y0 2416 -2409 MULTIPLIER -2408

M0

AĽU

A0

2401

-2407

2406

2405