

O1Core Idea

Deep Nets were black-box

Understand input-output behaviour (which feature to edit?)

Decision making, Fairness, privacy, Causality

Help debugging

Requirements / Axioms Sensitivity

Implementation Invariance

Completeness the attributions add up to the difference between the output of input x vs baseline

Linearity

And More....

- Gradients (of the output with respect to the input) is a natural analog of the model coefficients for a deep network.
- Gradients are insensitive, RELU example.
- Accumulating gradient rather than local gradient.

What is path method

Interpolation between the baseline and the output in a straight line

$$x \coloneqq x' + \alpha(x - x')$$

lpha - interpolation constant to perturbed features by

x - input image tensor

x'- baseline image tensor

What is path method

What is path method

2. Integrated Gradient (approximated with integral with Riemann Trapezoid)

$$IntegratedGrads_i^{approx}(x) ::= (x_i - x_i') imes \sum_{k=1}^m rac{\partial F(x' + rac{k}{m} imes (x - x'))}{\partial x_i} imes rac{1}{m}$$

where:

i = feature (individual pixel)

x = input (image tensor)

x' = baseline (image tensor)

k = scaled feature perturbation constant

m = number of steps in the Riemann sum approximation of the integral. This is covered in depth in the section *Compute integral approximation* below.

Steps

Find a baseline eg.black image

Generate alphas

Generate interpolated path inputs

Steps

Compute gradients between model output predictions with respect to input features

Integral approximation through

Averaging

Scale integrated
gradients with respect
to original image =
(xi-x'i)×average
gradients

Experiment details

Images data

Any random Image

Pre-trained googlenet

Number of steps 100-1000

Original Paper Results / Images

Original Paper Results / Text-QA classification

when did ed sheeran get his first number one of the year? [prediction: DATETIME]
did charles oakley play more minutes than robert parish? [prediction: YESNO]

Red is positive, Blue is negative, and Gray is neutral (zero). The predicted class is specified in square brackets.

Our Results-Text-Sentiment Analysis (pos/neg)

Integrated Gradient

This is a terrible movie

This is a good movie

I hated this movie

Gradient

i watched this movie on theater and i did like it

i watched this movie on theater and i did not like it

I liked this movie

The Same RESULTS...

just Visualization Tricks

How to verify?

Interaction between features?

Experiment with text NMT

• Experiment the new version of the paper 2020

