

UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE CIENCIAS EXACTAS FÍSICAS Y NATURALES DEPARTAMENTO DE INFORMÁTICA

Trabajo Práctico 2: Canal de Información

Asignatura: Teoría de la Información

Alumnos:

- CABALLERO, Ariel
- ESPEJO, Luciano Ismael
- GUILIANI, Melissa Ann

Profesores:

- Mg. Ing. Raul O. Klenzi.
- Lic. Manuel Oscar Ortega
- Lic. Fabrizio Amaya

Enunciados

1. Sea el siguiente canal:

	b ₁	b ₂	b ₃	
a ₁	0,7	0,2	0,1	
a ₂	0,3	0,4	0,3	
a ₃	0,5	0,3	0,2	

Calcular los valores de $p(a_i/b_j)$ y las probabilidades de salida para el caso particular de $p(a_1)=0.4$, $p(a_2)=0.3$, $p(a_3)=0.3$.

- 2. Considera un Canal Binario Asimétrico con las siguientes probabilidades:
 - $p(a_1)=1/3$
 - $p(b_1/a_1)=5/6$
 - $p(b_1/a_2)=2/6$
 - a) Calcula las probabilidades condicionales hacia atrás y las probabilidades conjuntas.
 - b) Obtén la entropía del emisor, y las entropías condicionales de la fuente para cualquier símbolo de salida.
 - c) Calcula la información mutua y la capacidad del canal.
- 3. Considera un canal determinista con tres símbolos de entrada (a₁,a₂,a₃) y tres símbolos de salida (b₁,b₂,b₃), donde cada símbolo de entrada se corresponde exclusivamente con un símbolo de salida. Define las probabilidades para cada símbolo de entrada y calcula la información mutua.
- 4. Dada la siguiente matriz de canal, obtén las respectivas codificaciones de la fuente.

$$p(a)=1/4$$
, $p(b)=1/8$, $p(c)=5/8$

	а	b	C
а	1/4	2/4	1/4
b	1/5	3/5	1/5
С	1/3	1/3	1/3

Resolución Ejercicio 1

	sicio f					
	probabilidades				p(si) * p	(by 104)
	P(b1) = (0,47 P(b1) = 1	$(0,7) + (0,3 \times 0)$ $(0,28 + 0,09)$ $(0,4) = 0,52$	(0,3 * 0, + 0,15	5)		
Î	$\rho(b_2) = (c_r i_1)$ $\rho(b_2) = \frac{1}{3}$	(0,2) + (0,3) (0,0) + (0,1) (0,0) = (0,2)	2+0,09	* 0,3)		
P((b3)= (0,4 x,	0,1)+(93*	0,3)+(0,3*	0,2)	Probabilida p(b1) = (p(b2) = (
boyes.	p(21/b)) = ρ(by 1 2 i) 2(by 2 i) 2 coop eys de) * p(2i)	47112270	a formula	•
, for		(b) * p(a) =	0,7 * 0,4	9,54		

Poes
$$\rho(a_2 | a_1)$$
 tenemos

 $\rho(b_1 | a_2) \cdot \rho(a_3) = 93 \cdot 03 = 97$
 $\rho(b_1)$

Pars $\rho(a_2 | b_1) = 97$

Pars $\rho(a_2 | b_1) = 97$

Pars $\rho(a_3 | b_1)$ tenemos

 $\rho(b_1 | a_3) \cdot \rho(a_4) = 95 \cdot 03 = 97$
 $\rho(b_1)$

Pars $\rho(a_1 | b_2)$ tenemos

 $\rho(a_2 | a_1) \cdot \rho(a_1) = 97$

Poes $\rho(a_2 | a_2) \cdot \rho(a_2) = 97$

Poes $\rho(a_2 | a_2) \cdot \rho(a_2$

RESOLUCIÓN EJERCICIO 2

P(2) = 1-p(21) = 1-1/3 = 2/3 Ahora calculerros las probabilidades de salida como

(p(b) = Z p(ai) * p(b) /ai) P(b) = (1/3 * 5/6) + (2/3 * 2/6) * p(b1) = 5/18 + 2/9 /p(b1) = 1/2 P(b2) = (1/3 * 1/6) + (2/3 * 2/3) P(b2) = 1/18 + 4/9 * 17(62) = 1/2/ @ Probabilidades conjuntas Calculamos las probabilidades conjuntas, multiplicando la probabilidad de entrada por la probabilidades hacia adelante. Entonces tenemos p(21/b1) = p(21) * p(b1/21) = 1/3 * 5/6 = 15/18) $\rho(a_1|b_2) = \rho(a_1) + \rho(b_2|a_1) = 1/3 + 1/6 = 11/18$ $\rho(a_2|b_1) = \rho(a_2) + \rho(b_1|a_2) = 2/3 + 2/6 = 12/9$ $\rho(a_2|b_2) = \rho(a_2) + \rho(b_2|a_2) = 2/3 + 2/3 = 14/9$

· Probabilidates condicionales hacis atras Par relex este estato un lizarres el teoremo de Bayes P(02/by) = p(02) * p(by | 02) $p(a|b_i) = p(a_i) * p(b_i|a_i) = \frac{5/18}{1/2} = \frac{15/9}{1}$ p(02/61) = p(02) * p(6/02) = 2/9 = 1/9) · Para ba P(21/62) = p(21) * p(62/21) = 1/18 = 11/9 $p(a_2|b_2) = p(a_2) * p(b_2|a_2) = \frac{4/9}{1/2} = \frac{18/9}{1/2}$ · Entropia del Emisor La entropia HI(A) (Emisor) se calcula como: Σρi * log2 1/ρi = - Σρi * log2 ρi $H(A) = -(\frac{1}{3} * \log_{3}(\frac{1}{3}) + \frac{2}{3} * \log_{2}(\frac{2}{3}))$ $H(A) = -(\frac{1}{3} * (-1,585) + \frac{2}{3} * (-0,585))$ H(A) = -(-0,53 + (-0,39))lo la entropia de Aca 0,92 bits H(A) = 0,92

· Entropio condicionales de la fuerte para cualquier símbolo de salida En este caso, la entropia condicionales se calcular como: H(AIB) = Zp(silby)* log_2(1/p(silby)) = - Zp(silby)* log_2(p(silby)) H(A|b1) = - (5/9 + log_ 5/9 + 4/9 + log_ 4/9) = - (5/9 * (-0,848) + 4/9 * (-1,17)) = - (-0,47 - 0,52) =0,99 bits H(Alb) = - (1/9 * lop2 1/9 + 8/9 * log2 8/9) = - (1/9 * - (3,17) + 8/9 * (-0,17)) = - (-0,35 - 0,15)= +0,5 bits · Información Mutus La información metros se la colcula como I(A,B) = H(A) - H(A1B), 0,92Colculemos H(AIB) H(AIB) = p(b) + H(A|b) + p(b) + H(A|b) = 1/2 × 0,99 + 1/2 × 0,5 = 0,745 bits Lucco, la información mutus: I (A, B) = 0,92 - 0,745 = 10, 175 bits

Capacidad del caral = 9,175 bits

Resolución Ejercicio 3

Ejercicio 3
Dos que teremos un cohol de terministico, en dondo codo símbolo de ontrado se corresponde de monero exclusivos con un símbolo de solido
Entropes nos quedarios el siguiente canal, con probabilidades hacia delante p(a, 1b1) = 1; p(b2 b2) = 1; p(a3 b3) = 1
(1 0 0) Definimos las probabilidades de 0 1 0) entrada como $p(a_1) = p_1$; $p(a_2) = p_2$ (0 0 1) y $p(a_3) = p_3$ con la condición
Como el canal es determinista, las probabilidades de salidas son iguales a las probabilidades de entrada
$\rho(b_1) = \rho_1 \rho(b_3) = \rho_3$ $\rho(b_2) = \rho_2$
Haciendo uso del ejerciolo 4 (Parte del práctico de majerina) obtenemos las siguientes entradas. $\rho(a_1) = 1/3 \; ; \; \rho(a_2) = 1/3 \; y \; \rho(a_3) = 1/3$
Luego para cotener la información mutus, bista con calcular la entropia H(A).
· · · H(A)= - Σρ(si) + log2 (ρ(si))

$$H(A) = -\left(\frac{1}{3} + \log_{2}(\frac{1}{3}) + \frac{1}{3} + \log_{2}(\frac{1}{3}) + \frac{1}{3} + \log_{2}(\frac{1}{3})\right)$$

$$= -\left(\frac{1}{3} + (-1,585) + \frac{1}{3} + (-1,585) + \frac{1}{3} + (-1,585)\right)$$

$$= \sqrt{1 + (-0,53 - 0,53 - 0,53)}$$

$$= \sqrt{1 + (-0,53 - 0,53 - 0,53)}$$

$$= \sqrt{1 + (-0,53 - 0,53 - 0,53)}$$