Equações em diferença de ordem 2

Cap. 6 Gandolfo, Cap. 3 Shone

14 de maio de 2019

Modelo de interação do multiplicador-acelerador

Objetivo:

Observar a variedade de trajetórias que podem ser obtidas em função de variações nos parâmetros do modelo.

Hipóteses: Dada uma economia fechada,

- O consumo *C* é função da renda em período anterior;
- ► Gastos públicos *G* são constantes (investimento autônomo).
- la Investimento induzido I: depende da variação da demanda em t e t-1

Em função das hipóteses colocadas, o modelo econômico é dado pelas equações:

$$C_t = bY_{t-1} (1)$$

$$I_t = k(C_t - C_{t-1}) (2)$$

$$G_t = G > 0 (3)$$

$$Y_t = C_t + I_t + G_t \tag{4}$$

onde:

- \blacktriangleright $b \in (0,1)$: propensão marginal a consumir;
- ▶ *k*: coeficiente de aceleração;

Substituindo a eq. (1) em (2) e a eq. (2) em (4), temos que:

$$Y_t - b(k+1)Y_{t-1} + bkY_{t-2} = G$$

podendo assim, analisar o comportamento da renda nacional e por substituição, de C_t e de I_t .

Solução particular

Por g(t) = G, a tentativa de solução particular é tal que $Y_t^p = K$. Substituindo na eq. em diferença:

$$Y_t^p = \frac{1}{1 - b}G$$

Os desvios deste valor serão dados pela solução homogênea.

Solução homogênea

$$Y_t - b(k+1)Y_{t-1} + bkY_{t-2} = 0$$

O polinômio característico:

$$\lambda^2 - b(k+1)\lambda + bk = 0$$

em que

$$a_1 = -b(k+1)$$
$$a_0 = bk$$

Obs.: note os sinais dos coefs (+, -, +).

Análise qualitativa

$$a_1 = -b(k+1);$$
 $a_0 = bk$

1. Condição 1:

$$1 + a_1 + a_0 > 0 \implies 1 - bk - b + bk = 1 - b > 0$$

2. Condição 2:

$$1 - a_1 + a_0 > 0 \implies 1 + bk + b + bk = 1 + b + 2bk > 0$$

3. Condição 3:

$$a_0 < 1 \Rightarrow bk < 1$$

Assim, para o sistema ser estável, bk < 1 ou

$$b < \frac{1}{k} \tag{5}$$

As raízes são tais que

$$\lambda_1, \lambda_2 = \frac{b(k+1)}{2} \pm \frac{\sqrt{\Delta}}{2}$$

onde $\Delta = b^2(k+1)^2 - 4bk$. Para identificar a características dinâmicas da renda, precisamos analisar Δ . Se

$$\Delta = b^2(k+1)^2 - 4bk \ge 0$$

$$\Rightarrow b^2(k+1)^2 \stackrel{\geq}{=} 4bk$$

$$\Rightarrow b(k+1)^2 \gtrsim 4k$$

$$\Rightarrow b \stackrel{\geq}{=} \frac{4k}{(k+1)^2} \tag{6}$$

Localização das raízes

Análise das regiões

Temos quatro regiões possíveis:

Região	$b \gtrsim 1/k$	$b \gtrsim 4k/(1+k)^2$	b	k
A	√ (<)	>	0.9	0.5
В	√ (<)	<	0.5	1.5
C	>	<	0.5	3
D	>	>	0.9	2

No R ...

No R: Exemplos para simulação

Região	b	k	Δ	$\lambda_1,\ \lambda_2$	$ \lambda_i $
A	0.9	0.5	0.025	0.75, 0.60	< 1
В	0.5	1.5	-1.4375	$0.6250 \pm 0.5995i$	< 1
C	0.5	3	-2	$1.0000 \pm 0.7071i$	> 1
D	0.9	2	0.09	1.5, 1.2	> 1

Análise das fronteiras

Região	$b \gtrsim 1/k$	$b \gtrsim 4k/(1+k)^2$	b	k
A-B	✓(<)		8/9	0.5
В-С	=	<	2/3	1.5
C-D	>		3/4	3

No R: Exemplos para simulação

Região	b	k	Δ	$\lambda_1,\;\lambda_2$	$ \lambda_i $
A-B	8/9	0.5	0	2/3, 2/3	< 1
В-С	2/3	1.5	-1.222	$0.8333 \pm 0.5528i$	= 1
C-D	3/4	3	0	3/2, 3/2	> 1

Equações em diferença de ordem superior

A forma geral de uma equação em diferenças de ordem n é dado por

$$y_{t+n} + a_{n-1}y_{t+n-1} + \ldots + a_1y_{t+1} + a_0y_t = g(t)$$

A solução homogênea segue o mesmo procedimento visto para as equações de ordem 2. A partir da possível solução λ^t , determinamos os valores de λ a partir de:

$$\lambda^{n} + a_{n-1}\lambda^{n-1} + \ldots + a_{1}\lambda + a_{0} = 0$$

Obtemos assim, n raízes, reais ou complexas.

Solução homogênea

1. Se as *n* raízes são reais e diferentes, a sol. homogênea será dada por:

$$y_t^h = A_1 \lambda_1^t + A_2 \lambda_2^t + \ldots + A_n \lambda_n^t$$

2. Se houver alguma raíz λ real de multiplicidade $m \leq n$:

$$y_t = A_1 \lambda^t + A_2 t \lambda^t + A_3 t^2 \lambda^t + \dots + A_m t^{m-1} \lambda^t$$

3. Se há raízes complexas, estas aparecerão sempre aos pares (conjugados). Logo, para cada par,

$$y_t = R^t [A_3 \cos(\theta t) + A_4 \sin(\theta t)]$$

- ► Havendo raízes complexas repetidas, usamos o mesmo *artifício* de multiplicar por *t* aos cos's e sin's.
- A solução homogênea geral será dada pela composição de todas as parcelas necessárias.

Usando o R: exercícios do cap. 7

$$a3 = 1$$

$$a2 = -4$$

$$a1 = 4.8$$

$$a0 = -1.6$$

$$g = 100$$

$$tmax = 10$$

$$y = rep(0, tmax)$$

$$y[1] = 400$$

$$y[2] = 420$$

$$y[3] = 450$$

Usando o R (2): exercícios do cap. 7

Tentando agora com:

$$a3 = 1$$

$$a2 = -1$$

$$a1 = -2$$

$$a0 = 2$$

$$g = 0$$

$$y[1] = 0$$

$$y[2] = 2$$

$$y[3] = 4$$
tentar com 1