1

Assignment 14

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment14

1 Problem

Let T be the linear operator on a n- dimensional vector space V and suppose that T has an n distinct characteristic values. Prove that T is diagonalizable.

2 Results used

Diagonalizable	A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an basis of V , consisting of eigen vectors of T
Theorem	If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator \mathbf{T} with distinct eigen values $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent. Let a_1, a_2, \dots, a_k be the scalars such that $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_k\mathbf{v}_k = 0$ (1) Applying \mathbf{T} on both sides , we get $ \mathbf{T}(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_k\mathbf{v}_k) = 0 \\ \Rightarrow a_1\mathbf{T}(\mathbf{v}_1) + a_2\mathbf{T}(\mathbf{v}_2) + \dots + a_k\mathbf{T}(\mathbf{v}_k) = 0 $ As $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigen vectors $\Rightarrow \mathbf{T}(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$ for $i = 1, \dots, k$ $\Rightarrow a_1\lambda_1\mathbf{v}_1 + a_2\lambda_2\mathbf{v}_2 + \dots + a_k\lambda_k\mathbf{v}_k = 0$ (2) Multiplying (1) by λ_k , we get $a_1\lambda_k\mathbf{v}_1 + a_2\lambda_k\mathbf{v}_2 + \dots + a_k\lambda_k\mathbf{v}_k = 0$ (3) Subtracting (2) and (3), we get $a_1(\lambda_1 - \lambda_k)\mathbf{v}_1 + a_2(\lambda_2 - \lambda_k)\mathbf{v}_2 + \dots + a_k(\lambda_{k-1} - \lambda_k)\mathbf{v}_{k-1} = 0$ As $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct $\Rightarrow \lambda_i - \lambda_k \neq 0$ for $i = 1, 2, \dots, k-1$ So, We can say that $a_1 = a_2 = \dots = a_{k-1} = 0$ Substituting this in (1), we get $a_k = 0$
	As $a_1 = a_2 = \cdots = a_k = 0$, We can say that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly independent

3 Solution

Given	T has an n distinct characteristic values and $dim(V) = n$
T is diagonalizable	Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct eigen values of T and let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be the eigen vectors of T From above results we can state that $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ is linearly independent. And also given that $\dim(\mathbf{V}) = \mathbf{n}$.So, this set forms a basis of V . $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ is a basis for V consisting of eigen vectors of T . So, T is diagonalizable.