Matematická logika

Rostislav Horčík

horcik@math.feld.cvut.cz
 horcik@cs.cas.cz
 www.cs.cas.cz/~horcik

Splnitelnost množin

Definice

Množina formulí S je splnitelná, pokud existuje pravdivostní ohodnocení u takové, že u(S)=1, tj. $u(\varphi)=1$ pro všechny $\varphi\in S$.

Věta

Pro množinu formulí S a formuli φ platí

 $\mathcal{S} \models \varphi$ právě tehdy, když $\mathcal{S} \cup \{\neg \varphi\}$ není splnitelná.

Klausule

Definice

Literál je buď výroková proměnná (positivní literál) nebo její negace (negativní literál). Literály p a $\neg p$ se nazývají komplementární. Klausule C je libovolná formule tvaru

$$C = x_1 \vee x_2 \vee \cdots \vee x_n$$

kde x_i jsou literály (navzájem různé).

Pro n = 0 definujeme C = F (F značí kontradikci). V tomto případě se C nazývá prázdná klausule.

Pozorování

Klausule je tautologií právě tehdy, když obsahuje dvojici komplementárních literálů.

Klausule

Tvrzení

Ke každé formuli α existuje množina klausulí S_{α} taková, že pro každé pravdivostní ohodnocení u platí

$$u(\alpha) = 1$$
 právě tehdy, když $u(S_{\alpha}) = 1$.

- Pomocí CNF máme $\alpha \models C_1 \land C_2 \land \cdots \land C_n$, kde C_i jsou klausule.
- $C_1 \wedge C_2 \wedge \cdots \wedge C_n$ je splněna p.t.k. $S_\alpha = \{C_1, C_2, \dots, C_n\}$ je splněna, tj. pro každé pravdivostní ohodnocení u platí

$$u(C_1 \wedge C_2 \wedge \cdots \wedge C_n) = 1$$
 p.t.k. $u(S_\alpha) = 1$.

Resolventa

Konvence

Mějme klausuli C a literál p, který se v C vyskytuje. Symbolem $C \setminus p$ označujeme klausuli, která obsahuje všechny literály jako C kromě p. Např. pro $C = \neg x \lor y \lor \neg z$ máme

$$C \setminus \neg z = \neg x \vee y$$
.

Definice

Řekneme, že klausule D je rezolventou klausulí C_1 a C_2 podle literálu p, pokud existuje literál p takový, že p se vyskytuje v klausuli C_1 , $\neg p$ se vyskytuje v klausuli C_2 a

$$D = (C_1 \setminus p) \vee (C_2 \setminus \neg p).$$

D značíme $\operatorname{res}_p(C_1, C_2)$. Např. $\operatorname{res}_p(p, \neg p) = F$.

Věta

Mějme dánu množinu klausulí S a označme D rezolventu některých dvou klausulí z množiny S. Pak množiny S a $S \cup \{D\}$ jsou pravdivé ve stejných pravdivostních ohodnoceních.

- Nechť u je pravdivostní ohodnocení. Musíme ukázat, že u(S) = 1 p.t.k. u(S∪{D}) = 1 (směr zprava doleva je triviální).
 Předvalkádnica v ževa (O) do Domana (O O) vyte (O O) vyte (O O).
- Předpokládejme, že u(S)=1 a $D=\operatorname{res}_{p}(C_{1},C_{2})$ pro $C_{1},C_{2}\in S.$
- Máme tedy $u(C_1) = u(C_2) = 1$ a $D = (C_1 \setminus p) \vee (C_2 \setminus \neg p)$.
- Pokud u(p) = 1, pak $u(C_2 \setminus \neg p) = 1$.
- Pokud u(p) = 0, pak $u(C_1 \setminus p) = 1$.
- V obou případech u(D) = 1.

Resoluční uzávěr

Definice

Označme

$$R(S) = S \cup \{D \mid D \text{ je resolventa některých klausulí z } S\}$$
 $R^0(S) = S$
 $R^{i+1}(S) = R(R^i(S)), i \in \mathbb{N}$
 $R^*(S) = \bigcup \{R^i(S) \mid i \in \mathbb{N}\}$

Pozorování

Pro konečnou množinu klausulí S existuje $n \in \mathbb{N}$ takové, že $R^*(S) = R^n(S)$.

Věta

Mějme dánu konečnou množinu klausulí S. Pak množiny S a $R^*(S)$ jsou pravdivé ve stejných pravdivostních ohodnoceních.

- Víme, že pro každou resolventu D některých klausulí z $R^i(S)$, jsou množiny $R^i(S)$ a $R^i(S) \cup \{D\}$ splněny ve stejných ohodnoceních.
- Z toho plyne, že S a $R^i(S)$ jsou splněny ve stejných ohodnoceních pro každé $i \in \mathbb{N}$.
- Protože $R^*(S) = R^n(S)$ pro nějaké $n \in \mathbb{N}$, je důkaz hotov.

Resoluční princip

Věta

Konečná množina klausulí S je splnitelná právě tehdy, když $R^*(S)$ neobsahuje prázdnou klausuli F.

- Zleva doprava: když je S, pak je splnitelná i R*(S). Tudíž nemůže obsahovat prázdnou klausuli (kontradikci) F.
- Zprava doleva: dokážeme později.

Algoritmus

Předchozí věta dává návod, jak zjistit, zda daná konečná množina klausulí je spnitelná nebo je nesplnitelná:

- Formule množiny M převedeme do CNF a množinu M pak nahradíme množinou S všech klausulí vyskytujících se v některé formuli v CNF. Klausule, které jsou tautologiemi, vynecháme. Jestliže nám nezbyde žádná klausule, množina M se skládala z tautologií a je pravdivá v každém pravdivostním ohodnocení.
- Vytvoříme R*(S).
- Obsahuje-li $R^*(S)$ prázdnou klausuli, je množina S (a tedy i množina M) nesplnitelná, v opačném případě je M splnitelná.

Je zřejmé, že konstrukce celé množiny $R^*(S)$ může být zbytečná. Stačí pouze zjistit, zda $R^*(S)$ obsahuje F.

Davis-Putnam algoritmus

Algoritmus DP(S)

Vstup: konečná množina klausulí SVýstup: S je splnitelná \times nesplnitelná

- Pokud S obsahuje tautologie, tak je vyřaď.
- Vyber libovolnou výrokovou proměnnou x v některé z klausulí v S.
- Nechť $M \subseteq S$, která obsahuje klausule bez x.
- Nechť N je množina všech resolvent množiny S podle x.
- Pokud $F \in N$, pak vrať S není splnitelná a skonči.
- Pokud $N \cup M = \emptyset$, pak vrať S je splnitelná a skonči.
- $DP(N \cup M)$.

Tvrzení

Algoritmus DP skončí po konečně mnoha krocích.

- Klausule v N ∪ M neobsahují x, tj. každé volání DP obsahujeme méně a méně proměnných.
- Protože klausule v *S* obsahují jen konečně mnoho výrokových proměnných, algoritmus skončí po konečně mnoha krocích.

Tvrzení

Nechť $S, N \cup M$ jsou množiny klausulí z algoritmu DP. Pak

 $N \cup M$ je splnitelná p.t.k. S je splnitelná.

- Protože M ⊆ S a N jsou rezolventy z S, je směr zprava doleva triviální.
- Nechť u splňuje $N \cup M$, tj. $u(N \cup M) = 1$.
- Nechť $M_1 \subseteq S$ je množina klausulí, které obsahují x a $M_2 \subseteq S$ množina klausulí, které obsahují $\neg x$.
- Zkonstruujeme ohodnocení v, které splní $S = M \cup M_1 \cup M_2$.

Důkaz pokračování

- Nechť v(y) = u(y) pro všechny výrokové proměnné y různé od x.
- Pokud $u(C \setminus x) = 1$ pro všechny $C \in M_1$, pak definujeme v(x) = 0, tj. $v(M_2) = 1$ a tudíž v(S) = 1.
- Jinak existuje $C \in M_1$ taková, že $u(C \setminus x) = 0$.
- Definujeme v(x) = 1 (tj. $v(M_1) = 1$) a ukážeme, že $v(M_2) = 1$.
- Nechť $D \in M_2$. Pak $\operatorname{res}_X(C, D) \in N$, tj. $u(\operatorname{res}_X(C, D)) = 1$.
- Protože $u(\operatorname{res}_x(C,D)) = u((C \setminus x) \vee (D \setminus \neg x)) = 1$ a $u(C \setminus x) = 0$, dostaneme $u(D \setminus \neg x) = 1$.
- Takže $v(D) = v(D \setminus \neg x) = u(D \setminus \neg x) = 1$.

Věta

Algoritmus DP je korektní a úplný, tj.

 $\mathsf{DP}(S)$ vrátí "S je splnitelná" právě tehdy, když S je splnitelná.

- Zprava doleva: DP(S) vrátí "S je nesplnitelná", pokud v některém kroku F ∈ N ∪ M.
- Z předchozího tvrzení plyne, že S je nesplnitelná.
- Zleva doprava: DP(S) vrátí "S je splnitelná", pokud v posledním kroku N ∪ M = ∅ (∅ je triviálně splnitelná).
- Konstrukce z důkazu předchozího tvrzení nám dává ohodnocení, které splní S.