Introduction to cryptography

2A. Intermezzo: design of symmetric primitives

Gilles VAN ASSCHE Olivier MARKOWITCH

INFO-F-405 Université Libre de Bruxelles 2020-2021

© 2019-2020 Gilles Van Assche and Olivier Markowitch. All rights reserved.

Bit transposition vs permutation

Bit transposition $\Pi: \mathbb{Z}_2^n \to \mathbb{Z}_2^n$, with

$$(x_1, x_2, \dots, x_n) = \Pi(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$$

for some permutation of the bit positions $1 \dots n$.

not to be confused with

Permutation $f: \mathbb{Z}_2^n \to \mathbb{Z}_2^n$, any bijective mapping within \mathbb{Z}_2^n .

Example of bit transposition

Let n = 3. There are 3! = 6 possible bit transpositions over 3 bits. As an example, let us swap the first and last bits:

$X_1X_2X_3$	$\Pi(x_1,x_2,x_3)$
000	000
001	100
010	010
011	110
100	001
101	101
110	011
111	111

Other examples:

- DES: IP and the "permutation" P in F
- AES: ShiftRows
- **EXECUTE:** π and ρ

Example of permutation

Let n = 3. There are $(2^3)! = 40320$ possible permutations over 3 bits. Let us build an arbitrary example by assigning each value once on the right hand side of the truth table:

$x_1x_2x_3$	$f(x_1,x_2,x_3)$
000	011
001	101
010	010
011	001
100	110
101	000
110	100
111	111

A bit transposition is a permutation, but not vice-versa in general.

Let f be a function from \mathbb{Z}_2^n to \mathbb{Z}_2^m , and let \oplus denote the bitwise addition modulo 2.

Linearity

The function f is **linear** iff

$$\forall x, y \in \mathbb{Z}_2^n : f(x \oplus y) = f(x) \oplus f(y)$$

Affinity

The function f is **affine** iff

$$\forall x, y \in \mathbb{Z}_2^n : f(x \oplus y) = f(x) \oplus f(y) \oplus f(0^n)$$

Note: a linear function is also affine.

Let f be a function from \mathbb{Z}_2^n to \mathbb{Z}_2^m , and let \oplus denote the bitwise addition modulo 2.

Linearity

The function f is **linear** iff

$$\forall x, y \in \mathbb{Z}_2^n : f(x \oplus y) = f(x) \oplus f(y).$$

Affinity

The function f is **affine** iff

$$\forall x, y \in \mathbb{Z}_2^n : f(x \oplus y) = f(x) \oplus f(y) \oplus f(0^n)$$

Note: a linear function is also affine

Let f be a function from \mathbb{Z}_2^n to \mathbb{Z}_2^m , and let \oplus denote the bitwise addition modulo 2.

Linearity

The function f is **linear** iff

$$\forall x, y \in \mathbb{Z}_2^n : f(x \oplus y) = f(x) \oplus f(y).$$

Affinity

The function *f* is **affine** iff

$$\forall x, y \in \mathbb{Z}_2^n : f(x \oplus y) = f(x) \oplus f(y) \oplus f(0^n).$$

Note: a linear function is also affine.

Examples of linear functions:

- f(x) = 0
- $\blacksquare f(x,y) = x \oplus y$
- bit transpositions
- composition of the above

Examples of affine functions:

- $f(x) = x \oplus constant$
- linear functions
- composition of the above

Non-linearity

Let f be a function from \mathbb{Z}_2^n to \mathbb{Z}_2^m , and let \oplus denote the bitwise addition modulo 2.

Non-linearity

In the context of this class, the function f is **non-linear** if it is not affine (and therefore not linear).

Example:
$$f: \mathbb{Z}_2^2 \to \mathbb{Z}_2: f(a,b) = ab$$

$$f(1,0) = 0$$

$$f(0,1) = 0$$

$$f(1,1) = 1 \neq f(1,0) + f(0,1)$$

Non-linearity

Let f be a function from \mathbb{Z}_2^n to \mathbb{Z}_2^m , and let \oplus denote the bitwise addition modulo 2.

Non-linearity

In the context of this class, the function f is **non-linear** if it is not affine (and therefore not linear).

Example:
$$f: \mathbb{Z}_2^2 o \mathbb{Z}_2: f(a,b) = ab$$

$$f(1,0) = 0$$

$$f(0,1) = 0$$

$$f(1,1) = 1 \neq f(1,0) + f(0,1)$$

Diffusion

Let f be a function from \mathbb{Z}_2^n to \mathbb{Z}_2^m .

Diffusion

The function f provides **diffusion** if at least one input bit influences more than one output bit.

Example

$$f: \mathbb{Z}_2^2 \to \mathbb{Z}_2^2: f(a,b) = (a,a+b)$$

Here the input a influences both output bits

Diffusion

Let f be a function from \mathbb{Z}_2^n to \mathbb{Z}_2^m .

Diffusion

The function f provides **diffusion** if at least one input bit influences more than one output bit.

Example:

$$f: \mathbb{Z}_2^2 \to \mathbb{Z}_2^2: f(a,b) = (a,a+b)$$

Here the input a influences both output bits.

Bend-mix-notch-shuffle

In primitives, we often would like that each output bit depends in a complicated (non-linear, non-symmetric) way on all in the input bits.

Idea: repeat a sequence of operations (=a round) that

- **bends** ⇒ apply a non-linear mapping
- mixes ⇒ apply a (usually, linear) mapping that diffuses to a number of bits
- **notches** ⇒ do something to break the symmetry
- \blacksquare **shuffles** \Rightarrow move the bits around to ensure global diffusion

[Terminology: idea of Joan Daemen]