CSE 713 - Advanced Syntactic Pattern Recognition Paper Presentation

Explainable Classifier Supporting Decision-making for Breast Cancer Diagnosis from Histopathological Images

Presented by : (Group 12)

Mosarrat Rumman - 20266007 Abu Nayeem Tasneem - 20266002 Junaid Bin Kibria - 21166022 Israt Jahan Ritun - 21166038

Introduction

- Highly accurate models lack transparencies in rationalizing their decisions and interpretability to humans.
- Trade-off between transparency and accuracy for classification algorithms
- Algorithm needs to be explainable to humans with high accuracy.

In recent years:

- Lundberg and this co-author introduced in their paper "Explainable machine-learning predictions for the prevention of hypoxaemia during surgery" an algorithm that can predict hypoxaemia and explain contributing factor.
- Sabol and his authors introduced in two of their papers "Cumulative fuzzy class membership criterion decision-based classifier" and "Semantically explainable fuzzy classifier"

Contribution and process overview

- Proposed an improved version of Cumulative Fuzzy Class Membership Criterion (CFCMC).
- Created a semantically explainable algorithm using CFCMC that can classify breast cancer from histopathology samples and interpret additional information about the classification.

Construction of a CFCMC classifier Optimization for adjusting CFCMC shape

Semantic extraction using cluster similarity

Cluster variance estimation

Computing value of K (fuzzy class membership criterion)

Fig 1: Overview of proposed method

Proposed method

- Cumulative Fuzzy Class Membership Criterion decision based classifier
 - Feature space split into clusters
 - Triangular function defined, eq(1)
 - CFMC is defined as eq(2)

$$\chi_{C_i}\left(\overline{x}\right) = \max_{j} \left(\frac{1}{K_{i,j}} \sum_{\underline{k}=1}^{K_{i,j}} \kappa_{\widetilde{p}_{i,j,\underline{k}}}\left(\overline{x}\right)\right),$$

$$\kappa_{\widetilde{p}_{i,j,k}}(\overline{x}) = \begin{cases} 1 - \frac{\|\widetilde{p}_{i,j,k} - \overline{x}\|}{a_{i,j}} & \|\widetilde{p}_{i,j,k} - \overline{x}\| < a_{i,j} \\ 0 & otherwise \end{cases}, \text{ Eq(1)}$$

Eq(2)

$$CL(\overline{x}) = C_{\operatorname*{argmax}_{i}}(\chi_{C_{i}}(\overline{x})) \cdot \mathsf{Eq(3)}$$

- Class with maximum CFCMC value is winner.
- Training is divided into 2 parts
 - o Initialization: i. Data splitting, ii. Clustering, iii. Parameter initialization
 - Learning is mostly optimization.

Proposed method contd.

- Optimization algorithm such as Repeated annealing, hill climbing, or gradient methods can be used.
- Adjustment of CFCMS's surface shape occurs to achieve highest accuracy.

$$\overline{p}_i = [a_{i,1}, K_{i,1}; \cdots; a_{i,j}, k_{i,j}; \cdots; a_{i,n_{cl}^i}, k_{i,n_{cl}^i}]$$
 Eq.(4)

- Optimization is done to minimize the error rate from validation set.
- > Semantics are the relationship between clusters of data.
- Variations of the clusters from the parameters of CFCMC is measured.
- Which is used for finding the maximal membership criterion value of a single cluster.

Proposed method contd.

- Computation of K $k = p_1 \frac{K_{Cl}}{m_{Cl}} + p_2$
 - Eq(5)
- Euclidean distance displaced by custom distance

$$d = \frac{1}{n} \sum_{i=1}^{n} |x_{A,i} - x_{B,i}|$$
 Eq(6)

Custom Distance achieved stability with K parameter

Experiment

- Performance comparison with CNN, SAE and Deep multi-layered perceptron
- Dataset: 277,524 50x50 pixel RGB digital image patches
- Experimental setup of CFCMC, CNN, SAE and Deep multi-layered perceptron
- Performance results:

CFCMC	MLP	CNN	SAE	
78.65% ± 1.81%	82.54% ± 1.01%	83.29% ± 0.99%	82.29 % ± 1.97%	

Proposed Explanation

Four Possible Situations for Binary Classifier:

high

low

no

low

medium

low

IDC₆

IDC₇

IDC₈

Classified as IDC with low possibility for misclassification

low

low

no

- Classified as IDC with high possibility for misclassification
- Classified as non-IDC with low possibility for misclassification
- Classified as non-IDC with high possibility for misclassification

VALUES OF SIMILARITY OF IDC CLUSTERS TO NON-IDC CLUSTERS											
Cluster name	non-IDC ₁	non-IDC ₂	non-IDC ₃	non-IDC ₄	non-IDC ₅	non-IDC ₆	non-IDC ₇	non-IDC ₈			
IDC ₁	no	low									
IDC_2	low	no	low	low	no	low	no	low			
IDC_3	low	medium	medium	high	medium	low	low	no			
IDC_4	low	no	no	no	no	medium	no	low			
IDC_5	low	no	low	low	no	no	no	no			

low

medium

no

medium

low

no

no

medium

low

low

no

no

no

no

no

TABLE II

Proposed Explanation contd.

Example of Provided Semantics:

"Your sample is IDC with high degree of confidence, because it has low similarity or non-similar with the non-IDC samples."

THANK YOU!!!!