Espectros atômicos e modelo atômico de Rutherford

Aula 3

Prof. Márcio Sampaio Gomes Filho

Observação

- * Esses slides são um complemento à aula ministrada em sala;
- Explicações/desenvolvimentos serão feitas no quadro.

Informação

Página do curso: https://marciosampaio.github.io/ fisica-quantica-2025.1.html

Espectros Atômicos

Cerca de 150 anos depois, Fraunhofer, utilizando um método experimental semelhante, observou que o espectro solar era atravessado por mais de 600 linhas escuras estreitas (linhas de absorção).

Espectros de linhas

Posteriormente, vários cientistas observaram linhas brilhantes nítidas nos espectros de luz emitidos pelos átomos dos elementos ao serem aquecidos em uma chama ou serem submetidos a descargas elétricas (linhas de emissão).

Espectros de linhas

Quando visto ou fotografado através de um espectroscópio, esta radiação aparece como um conjunto de linhas discretas, cada uma de uma determinada cor ou comprimento de onda.

Johann Balmer (1885)

Descobriu que as linhas do hidrogênio nas regiões da luz visível e do ultravioleta próximo podiam ser calculadas através da fórmula empírica:

$$\lambda_n = 364, 6 \frac{n^2}{n^2 - 4} \,\mathrm{nm}$$
 (1)

onde n é um inteiro que pode assumir os valores $n=3,4,5,\cdots$

Série de Balmer

- Linhas na região da luz visível e no ultravioleta;
- \bullet Cinco linhas (H_{α} , H_{β} , ...);
- **limin** Limite da série: H_{∞} (ponto além do qual nenhuma linha aparece)

- Balmer sugeriu que sua fórmula poderia ser um caso especial de uma expressão mais geral aplicável aos espectros de outros.
- Tal expressão, foi encontrada de forma independente por J. R. Rydberg e W. Ritz e por isso é chamada de fórmula de Rydberg-Ritz:

$$\frac{1}{\lambda_{mn}} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right),\tag{2}$$

onde m e n são números inteiros e n > m.

- λ_{mn} é o comprimento de onda da luz emitida no vácuo.
- R é a constante de Rydberg.
- ❖ Para o hidrogênio: $R_H = 1,096776 \times 10^7 \, \text{m}^{-1}$
- valor limite $R_{\infty} = 1,097373 \times 10^7 \, \mathrm{m}^{-1}$.

Outras séries

Outras séries de linhas espectrais do hidrogênio foram descobertas para m=1 (por Theodore Lyman) e para m=3 (por Friedrich Paschen).

❖ Série de Lyman (m=1)

$$\frac{1}{\lambda_{1n}} = R_H \left(\frac{1}{1^2} - \frac{1}{n^2} \right), \tag{3}$$

onde n = 2,3,...

❖ Série de Paschen (m=3)

$$\frac{1}{\lambda_{3n}} = R_H \left(\frac{1}{3^2} - \frac{1}{n^2} \right),\tag{4}$$

onde n = 4.5.6...

Exercício: Séries Espectrais do Hidrogênio: Encontre o comprimento de onda da primeira linha da série (H_{α}) , sendo m=2 e n=3.

O núcleo atômico

No começo do século XX, as linhas espectrais de emissão e de absorção apresentavam um dilema para os cientistas: por que os átomos de uma determinada substância só emitem e absorvem comprimentos de onda particulares?

https://mundoeducacao.uol.com.br/quimica/atomo.htm

Modelo de Thomson

Esse modelo oferecia uma possível explicação para as linhas espectrais:

- Emissão: Se um átomo colidisse com outro, como em um gás aquecido, cada elétron oscilaria em torno de sua posição de equilíbrio com uma frequência característica e emitiria radiação eletromagnética com essa frequência.
- Absorção: Se o átomo fosse iluminado com a luz de muitas frequências, cada elétron absorveria seletivamente apenas a luz cuja frequência combinasse com a frequência de oscilação natural do elétron.

O experimento de Rutherford

As primeiras experiências projetadas para testar o modelo de Thomson sondando a estrutura interior do átomo foram executadas em 1910-1911 por Rutherford e dois de seus alunos, Geiger e Marsden, na Inglaterra.

Resultados de Rutherford

- A maioria das partículas não sofria nenhuma deflexão ou foram defletidas em ângulos da ordem de 1 grau.
- No entanto, algumas partículas eram defletidas em ângulos grandes, de 90 graus ou mais.
- Também foram observados espalhamentos de quase 180, ou seja, quase diretamente para trás.
- As grandes deflexões observadas experimentalmente só podiam resultar do encontro de uma partícula alfa com uma carga positiva confinada a uma região muito menor que o átomo como um todo (núcleo do átomo).

Resultados de Rutherford

https://www.ufrgs.br/colegiodeaplicacao/wp-content/uploads/2020/09/100-Qui%CC%81mica-semana-26.pdf

Existem duas dificuldades básicas no modelo planetário de Rutherford

- Como vimos, um átomo emite (e absorve) determinadas frequências características da radiação eletromagnética e não outras. Mas este modelo não pode explicar este fenômeno.
- A segunda dificuldade é que os elétrons de Rutherford estão sujeitos a uma aceleração centrípeta. Segundo a teoria de Maxwell do Eletromagnetismo, cargas aceleradas centripetamente girando devem irradiar ondas eletromagnéticas. Infelizmente, este modelo clássico leva à autodestruição quando aplicado ao átomo.

Figura 6: Trajetória segundo Rutherford, que mostra o colapso do átomo.

https://www.ufrgs.br/colegiodeaplicacao/wp-content/uploads/2020/09/100-Qui%CC%81mica-semana-26.pdf