CSN-232 OPERATING SYSTEM

LRU Page Replacement Algorithm

GROUP:

Aaryan Jain	17114001
Chirag Dalmia	17114022
Gopi Kishan	17114035
Harsh Bhartiya	17114036
Natansh Mathur	17114051
Plyush Sethia	17114057
Rahul Dugar	17114061
Vishal Garg	17114076

<u>Implement the following algorithms in C or C++ without using existing/predefined classes.</u>

- i. LRU Counter Method
- ii. LRU Stack Method
- iii. LRU Aging Register Method
- iv. Approximate LRU Clock Method

Compare and contrast the results by testing the algorithms with different corner cases.

Draw the graph for the number of frames vs. the number of page faults.

Test Data Generation:

10⁶ Pages are generated randomly from 1 to 100.

No. of frames is varied from 2 to 100.

Draw the graph for the average time taken to execute the algorithms for different corner cases.

i. LRU - Counter Method

ii. LRU - Stack Method

iii. LRU - Aging Register Method

iv. Approximate LRU - Clock Method

Perform the complexity analysis.

- i. LRU Counter Method
- ii. LRU Stack Method
- iii. LRU Aging Register Method
- iv. Approximate LRU Clock Method
 - 1. LRU Counter Method:

Complexity:

O(Capacity)

2. LRU - Stack Method:

Complexity:

O(Capacity)

3. LRU - Aging Register Method:

Complexity:

O(Capacity / T)

4. Approximate LRU - Clock Method:

Complexity:

O(Capacity)

Write your comments/critical analysis/study report on your results and complexity.

Choosing of the algorithm depends on three factors:

- 1. Scalability: According to the size metrics, the algorithm should be chosen which depends on the size of the inputs and the complexity of the algorithm. For a particular set of input size depends on the complexity and constants. A worse algorithm may perform better depending on the size of the inputs and the constant factors.
- 2. Input: The algorithm also depends on the input data type i.e. the input data contains repetitive pages, or many different types of pages are used.
- 3. Hardware: The hardware available is also a factor for the choosing the right algorithm.