WHAT IS CLAIMED IS:

15

20

- 1. A combustion method for NO_x reduction by suppressing temperature of combustion gas derived from a burner, comprising:
- a $\mathrm{NO_x}$ reduction step for suppressing combustion gas temperature in such a manner that suppression of $\mathrm{NO_x}$ generation is preferred to reduction of exhaust CO value, thereby keeping $\mathrm{NO_x}$ value not more than a specified value; and
- a CO reduction step for thereafter reducing exhaust CO value resulting from the ${
 m NO}_{
 m x}$ reduction step to not more than a specified value.
 - 2. A combustion method for NO_x reduction as claimed in claims 1, wherein the NO_x reduction step is performed with an excess air ratio which is determined from a NO_x reduction target value and an excess air ratio versus NO_x characteristic of the NO_x reduction step.
 - 3. A combustion method for NO_x reduction as claimed in claims 1, wherein the CO reduction step is performed with a CO oxidation catalyst member.
 - 4. A combustion method for NO_x reduction by suppressing temperature of combustion gas derived from a burner, comprising:
- a NO_x reduction step for suppressing combustion 25 gas temperature in such a manner that suppression of NO_x

generation is preferred to reduction of exhaust CO value, thereby keeping NO_x value not more than 10 ppm (at 0% O_2 in the exhaust gas, dry basis); and

a CO reduction step for thereafter reducing exhaust CO value resulting from the $NO_{\rm x}$ reduction step to not more than a specified value.

5

10

20

- 5. A combustion method for NO_x reduction as claimed in claims 4, wherein the NO_x reduction step is performed with an excess air ratio which is determined from a NO_x reduction target value and an excess air ratio versus NO_x characteristic of the NO_x reduction step.
- 6. A combustion method for NO_x reduction as claimed in claims 4, wherein the CO reduction step is performed with a CO oxidation catalyst member.
- 15 7. A combustion method for NO_x reduction by suppressing temperature of combustion gas derived from a burner, comprising:
 - a $\mathrm{NO_x}$ reduction step for suppressing combustion gas temperature in such a manner that suppression of $\mathrm{NO_x}$ generation is preferred to reduction of exhaust CO value, thereby keeping $\mathrm{NO_x}$ value not more than a specified value; and
- a CO reduction step for thereafter reducing exhaust CO value resulting from the NO_x reduction step to not more than a specified value, the CO reduction step

being performed in a zone where the combustion gas temperature is not more than 900°C.

- 8. A combustion method for NO_x reduction as claimed in claims 7, wherein the NO_x reduction step is performed with an excess air ratio which is determined from a NO_x reduction target value and an excess air ratio versus NO_x characteristic of the NO_x reduction step.
- 9. A combustion method for NO_x reduction as claimed in claims 7, wherein the CO reduction step is performed with a CO oxidation catalyst member.

10

- 10. A combustion apparatus for NO_x reduction by suppressing temperature of combustion gas derived from a burner, comprising:
- ${
 m NO_x}$ reduction means for suppressing combustion gas temperature in such a manner that suppression of ${
 m NO_x}$ generation is preferred to reduction of exhaust CO value, thereby keeping ${
 m NO_x}$ value not more than a specified value; and
- - 11. A combustion apparatus for NO_x reduction as claimed in 10, wherein the NO_x reduction is performed with an excess air ratio which is determined from a NO_x

reduction target value and an excess air ratio versus NO_{x} characteristic of the NO_{x} reduction means.

12. A combustion apparatus for NO_x reduction as claimed in claims 10, wherein the CO reduction means is a CO oxidation catalyst member.

5

20

- 13. A combustion apparatus for NO_x reduction as claimed in claims 10, wherein the NO_x reduction means is implemented by heat transfer tubes having a space formed by removing heat transfer tubes.
- 10 14. A combustion apparatus for NO_x reduction as claimed in Claims 10, wherein the NO_x reduction means is implemented by heat transfer tubes having no space formed by removing heat transfer tubes.
- 15. A combustion apparatus for NO_x reduction by suppressing temperature of combustion gas derived from a burner, comprising:

 NO_x reduction means for suppressing combustion gas temperature in such a manner that suppression of NO_x generation is preferred to reduction of exhaust CO value, thereby keeping NO_x value not more than 10 ppm (at 0% O_2 in the exhaust gas, dry basis); and

CO reduction means for reducing exhaust CO value resulting from the NO_{x} reduction means to not more than a specified value.

16. A combustion apparatus for NO_x reduction by suppressing temperature of combustion gas derived from a burner, comprising:

 ${
m NO}_{
m x}$ reduction means for suppressing combustion gas temperature in such a manner that suppression of ${
m NO}_{
m x}$ generation is preferred to reduction of exhaust CO value, thereby keeping ${
m NO}_{
m x}$ value not more than a specified value; and

5

CO reduction means for reducing exhaust CO value resulting from the NO_x reduction means to not more than a specified value in a zone where the combustion gas temperature is not more than 900°C.