

BUSINESS PROTIP: YOU CAN STRENGTHEN ANY PRESENTATION BY OPENING WITH A REMINDER ABOUT HOW COOL IMMUNE SYSTEMS ARE.

Predicting elections with Bayesian "Mister P" (MRP)

MRP is "Multi-level regression and post-stratification" Andrew Enfield, Data 512 Autumn 2017

Our samples are biased, and we should care

We usually work with samples

All samples are biased/not representative (or at least most are)

Biased samples can lead to incorrect results, under-representation of disadvantaged groups, bad things

So, adjust the sample to be more representative of the population

Not a magic bullet, but it can help

Some options, for example

Post-stratification

Propensity score matching

Post-stratification overview, 2016 election

1. Divide population into "cells", one for each combination of values in the data

Sex, race/ethnicity, state 2 * 5 * 51 = 510 cells

2. **For each cell**, estimate contribution from that cell using the:

Proportion voting for Trump, based on the sample

Data Pew Research Center poll data, 10/2016 **Method** Bayesian multi-level regression; could use simple logistic regression, others

Size of population

Data US Census "Current Population Survey", 11/2016

3. Final estimate is an average of all cells, weighted by size of the population in each cell

Method Post-stratification

Probability of voting for Trump, by cell

Notes

Sex and race categories defined by Pew Research Center poll data

It didn't work as well as I'd hoped it would

Ideal: MRP applied to unweighted raw data matches Pew results based on sophisticated weighting

Actual

MRP results are different – 43.3% vs 46.4%

MRP results no better than simple logistic regression

Possible improvements, for example

Additional variables: age, income, region, educational level...

Method	Clinton	Trump
(baseline) Pew Research Center, weighted	53.6%	46.4%
Bayesian MRP	56.7%	43.3%
Bayesian MRP (adjusted for likelihood of voting)	56.8%	43.2%
Logistic regression (OLS)	56.5%	43.5%
Pew Research Center, unweighted	53.1%	46.9%

Thanks

Data, code, references, details at https://github.com/aenfield/Data512