Time-Evolving Paradoxical Spaces: A Dynamic Graph Framework with Surreal Distances

Author Name

December 16, 2024

Abstract

We present a novel mathematical framework for modeling time-evolving graphs with surreal ordinal distances and recursive paradoxical spaces. Building on surreal number theory, dynamic graph systems, and memory-like structures from sheaf theory, we analyze the evolution of spaces over time. This approach incorporates infinitesimal and transfinite changes, resonance phenomena, and singularities. Applications include non-Euclidean geometries, dynamic systems, and semiotic paradoxes inspired by recursive spaces such as the *House of Leaves*.

Contents

1	Introduction	2
2	Surreal Numbers and Ordinals 2.1 Surreal Numbers	
3	Dynamic Graphs with Surreal Distances3.1 Graph Framework3.2 Edge Types and Recursions	
4	Time Evolution and Monodromy 4.1 Transformation Rules	
5	Paradoxical Spaces and Sheaf Memory	4
6	Conclusion	4

1 Introduction

Spaces that evolve recursively over time, exhibit paradoxical growth, or involve transfinite measures require new mathematical tools. Traditional graph theory is insufficient for representing:

- Flows through spaces with infinitesimal and infinite distances,
- Dynamic transformations of nodes and edges over time,
- Singularities and resonance points where spatial continuity breaks.

Our framework builds on three primary tools:

- 1. **Surreal Numbers:** Recursive structures that model infinite and infinitesimal changes,
- 2. **Dynamic Graphs:** Graphs with evolving nodes, edges, and surreal weights,
- 3. **Monodromy and Memory:** Structures inspired by sheaf theory to capture time evolution and resonance.

This paper introduces the mathematical definitions, properties, and examples for analyzing such spaces.

2 Surreal Numbers and Ordinals

2.1 Surreal Numbers

Definition 2.1 (Surreal Numbers). A surreal number S is defined recursively as:

$$S = \{L \mid R\}, \text{ where } L, R \subseteq S \text{ and } L < R.$$

Surreal numbers extend real numbers to include infinitesimal (ϵ) and transfinite (ω) values.

Example 2.1 (Basic Surreal Numbers).

$$0 = \{|\}, \quad 1 = \{0 \mid \}, \quad -1 = \{|0\}, \quad \frac{1}{2} = \{0 \mid 1\}.$$

Infinitesimals and infinities are given as:

$$\epsilon = \{0 \mid \}, \quad \omega = \{\mid 0\}.$$

2.2 Ordinal Arithmetic

Surreal numbers naturally generalize ordinals, allowing operations such as addition, multiplication, and exponentiation.

Definition 2.2 (Ordinal). An ordinal \mathcal{O} is expressed as:

$$\mathcal{O} = \omega^w + k, \quad w, k \in \mathbb{N}.$$

Remark 2.1. Ordinal arithmetic includes:

$$\omega + 1 > \omega$$
, $\omega \cdot 2 = \omega$, $\omega^{\omega} > \omega^2$.

3 Dynamic Graphs with Surreal Distances

3.1 Graph Framework

We define a dynamic graph $\mathcal{H} = (V, E, W)$:

- V: Nodes (e.g., spaces),
- E: Edges connecting nodes,
- \bullet W: Weights as surreal distances.

Definition 3.1 (Surreal Distance). The weight $w_{uv} \in W$ of an edge (u, v) is a surreal ordinal:

$$w_{uv} = \omega^w + k$$
 or an infinitesimal ϵ .

3.2 Edge Types and Recursions

Edges can take the following forms:

- 1. **Single Edge:** A standard edge with a surreal weight,
- 2. **Infinite Edge:** A recursive edge repeating transfinite times,
- 3. Fractional Edge: A fractional path with rational weight,
- 4. Paradoxical Edge: An edge with undefined behavior.

Example 3.1 (The Five-Minute Hallway). This hallway grows infinitely when entered:

Nodes: Entrance
$$\rightarrow$$
 Hallway \rightarrow Abyss.

Edges are weighted as:

$$Entrance \xrightarrow{\omega} Hallway, \quad Hallway \xrightarrow{\omega^2} Abyss.$$

4 Time Evolution and Monodromy

4.1 Transformation Rules

A time-evolving graph $\mathcal{H}(t)$ evolves based on transformations:

Transformation:
$$T: E \to E', \quad w' = w + \epsilon.$$

Transformations may include:

- Local perturbations,
- Discontinuous jumps,
- Resonance interactions.

Definition 4.1 (Monodromy). The monodromy of a time-evolving graph captures how nodes and edges transform over time, including:

Singularities: Special times where continuity breaks.

4.2 Conditions for Stability

Theorem 4.1 (Stability Condition). A dynamic graph $\mathcal{H}(t)$ is stable if:

 $\forall u, v \in V : \text{ flow through } E \text{ remains bounded as } t \to \infty.$

5 Paradoxical Spaces and Sheaf Memory

Example 5.1 (Mirror Room). The mirror room generates infinite reflections at infinitesimal steps:

$$Origin \xrightarrow{\epsilon} First \ Reflection \xrightarrow{\epsilon} Second \ Reflection \rightarrow \dots$$

The sequence collapses to an abyss as $n \to \infty$.

Remark 5.1. The sheaf-like memory structure ensures that information about nodes persists through singularities and transformations.

6 Conclusion

We have developed a framework for time-evolving graphs with surreal distances, transformations, and paradoxical structures. Applications span recursive geometries, dynamic systems, and semiotic spaces.

Future directions include:

- Extending monodromy to higher-dimensional spaces,
- Applying the framework to physical systems with non-standard flows,
- Investigating connections to game theory and logic.

References

- [1] Conway, J. H. (1976). On Numbers and Games.
- [2] Harary, F. (1969). *Graph Theory*.
- [3] Danielewski, M. Z. (2000). House of Leaves.