

NOT FOR PUBLIC RELEASE

RTL8218D-CG

INTEGRATED OCTAL 10/100/1000M ETHERNET TRANSCEIVER

DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 1.0 17 January 2018

Track ID: JATR-8275-15

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211 Fax: +886-3-577-6047 www.realtek.com

COPYRIGHT

©2018 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

DISCLAIMER

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

USING THIS DOCUMENT

This document is intended for the hardware and software engineer's general information on the Realtek RTL8218D IC.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

ELECTROSTATIC DISCHARGE (ESD) WARNING

This product can be damaged by Electrostatic Discharge (ESD). When handling, care must be taken. Damage due to inappropriate handling is not covered by warranty.

Do not open the protective conductive packaging until you have read the following, and are at an approved anti-static workstation.

- Use an approved anti-static mat to cover your work surface.
- Use a conductive wrist strap attached to a good earth ground
- Always discharge yourself by touching a grounded bare metal surface or approved anti-static mat before picking up an ESD-sensitive electronic component
- If working on a prototyping board, use a soldering iron or station that is marked as ESD-safe
- Always disconnect the microcontroller from the prototyping board when it is being worked on

REVISION HISTORY

Revision	Release Date	Summary
1.0	2018/01/17	First release.

Table of Contents

1.	GENERAL DESCRIPTION					
2.	FEA	TURES	2			
3.	SYS	TEM APPLICATIONS	3			
	3.1.	24-Port Gigabit Ethernet Switch				
	3.2.	24-Port Gigabit Ethernet Switch				
	3.3.	20+4 COMBO PORT GIGABIT ETHERNET SWITCH.				
	3.4.	24+4 COMBO PORT GIGABIT ETHERNET SWITCH				
4.		OCK DIAGRAM				
5.		ASSIGNMENTS				
	5.1.	PIN ASSIGNMENTS				
	5.2.	PACKAGE IDENTIFICATION.	۰۰۰۰۰۰۰۵ و			
_	5.3.	PIN ASSIGNMENT TABLES				
		DESCRIPTIONS				
6.						
	5.1.	MEDIA DEPENDENT INTERFACE PINS				
	5.2.	XSGMII PINS	13			
	5.3.	QSGMII PINS				
	5.4.	SERIAL LED PINS				
	5.5.	CONFIGURATION PINS				
	5.6.	MISCELLANEOUS PINS				
	5.7. 5.8.	TEST PINS				
7.	FUN	NCTION DESCRIPTION	17			
	7.1.	MDI Interface				
	7.2.	1000Base-T Transmit Function				
	7.3.	1000Base-T Receive Function				
	7.4.	100Base-TX Transmit Function	17			
	7.5.	100BASE-TX RECEIVE FUNCTION				
	7.6.	10BASE-T TRANSMIT FUNCTION				
	7.7.	10Base-T Receive Function				
	7.8.	AUTO-NEGOTIATION FOR UTP				
	7.9.	CROSSOVER DETECTION AND AUTO CORRECTION				
	7.10.					
	7.11. 7.12.	MDC/MDIO Interface				
	7.12. 7.13.	QUAD SERIAL GIGABIT MEDIA INDEPENDENT INTERFACE (QSGMII)				
	7.13. 7.13					
	7.13	·				
,	7.13 7.14.	Serial LED				
	7.14					
	7.14					
	7.14	y 0				
	7.14	7 0 0				
,	7.1 <i>-</i> 7.15.	REALTEK CABLE TEST (RTCT)				
	7.16.	IEEE 802.3AZ ENERGY EFFICIENT ETHERNET (EEE)				
	7.17.	INTERRUPT PIN FOR EXTERNAL CPU				
	7.18.	REG.0.11 POWER DOWN MODE				
		REG.0.14 PHY DIGITAL LOOPBACK RETURN TO INTERNAL				

8. RE	GISTER DESCRIPTIONS	31
8.1.	REGISTER 0: CONTROL	32
8.2.	REGISTER 1: STATUS	33
8.3.	REGISTER 2: PHY IDENTIFIER 1	34
8.4.	REGISTER 3: PHY IDENTIFIER 2	34
8.5.	REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT	34
8.6.	REGISTER 5: AUTO-NEGOTIATION LINK PARTNER ABILITY	
8.7.	REGISTER 6: AUTO-NEGOTIATION EXPANSION	36
8.8.	REGISTER 7: AUTO-NEGOTIATION NEXT PAGE TRANSMIT	36
8.9.	REGISTER 8: AUTO-NEGOTIATION LINK PARTNER NEXT PAGE ABILITY	
8.10.	REGISTER 9: 1000BASE-T CONTROL	
8.11.	REGISTER 10: 1000BASE-T STATUS	
8.12.	REGISTER 13: MMD ACCESS CONTROL REGISTER	
8.13.	REGISTER 14: MMD ACCESS ADDRESS DATA REGISTER	
8.14.	REGISTER 15: EXTENDED STATUS	
9. EL	ECTRICAL CHARACTERISTICS	40
9.1.	ABSOLUTE MAXIMUM RATINGS	40
9.2.	OPERATING RANGE	
9.3.	POWER CONSUMPTION	
9.4.	IEEE 10/100/1000BASE-T SPECIFICATIONS	
9.5.	XSGMII CHARACTERISTICS	
9.5	.1. XSGMII Differential Transmitter Characteristics	
9.5	.2. XSGMII Differential Receiver Characteristics	
9.5		
9.5	.4. QSGMII Differential Receiver Characteristics	
9.6.	XTALI CLOCK CHARACTERISTICS	45
9.7.	POWER AND RESET CHARACTERISTICS	
9.8.	MDC/MDIO INTERFACE CHARACTERISTICS	
9.9.	LED CHARACTERISTICS	
	.1. Serial LED Timing	47
10. TH	IERMAL CHARACTERISTICS	
10.1.	ASSEMBLY DESCRIPTION	48
10.1.	MATERIAL PROPERTIES	48
10.2.	SIMULATION CONDITIONS.	
10.4.	THERMAL PERFORMANCE OF E-PAD LQFP-128 ON PCB UNDER STILL AIR CONVENTION	
10.5.	THERMAL PERFORMANCE OF E-PAD LOFP-128 WITH EXTERNAL HEAT-SINK ON PCB UNDER NATURAL	
	ENTION	49
11. MI	ECHANICAL DIMENSIONS	50
11.1.	LQFP-128 E-PAD PACKAGE	50
11.1.	MECHANICAL DIMENSIONS NOTES	
	RDERING INFORMATION	
31		

List of Tables

TABLE 1. PIN ASSIGNMENTS TABLE	9
TABLE 2. MEDIA DEPENDENT INTERFACE PINS	11
TABLE 3. XSGMII PINS	13
Table 4. QSGMII Pins	13
TABLE 5. SERIAL LED PINS	13
TABLE 6. CONFIGURATION PINS	14
Table 7. Miscellaneous Pins	15
TABLE 8. POWER AND GND PINS	16
TABLE 9. TEST PINS	16
TABLE 10. MEDIA DEPENDENT INTERFACE PIN MAPPING	19
TABLE 11. SERIAL LED PER-LED CONTROL	24
TABLE 12. SERIAL LED MODE CONFIGURATION (PER-PORT 3 LEDS)	26
TABLE 13. SERIAL LED CONFIGURATION REGISTER	27
TABLE 14. REGISTER DESCRIPTIONS	31
TABLE 15. REGISTER 0: CONTROL	32
Table 16, Register 1: Status.	
TABLE 17. REGISTER 2: PHY IDENTIFIER 1	
TABLE 18. REGISTER 3: PHY IDENTIFIER 2	
TABLE 19. REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT	
TABLE 20. REGISTER 5: AUTO-NEGOTIATION LINK PARTNER ABILITY	
Table 21. Register 6: Auto-Negotiation Expansion	
Table 22. Register 7: Auto-Negotiation Next Page Transmit	
Table 23. Register 8: Auto-Negotiation Link Partner Next Page Ability	
Table 24. Register 9: 1000Base-T Control	
Table 25. Register 10: 1000Base-T Status	
TABLE 26. REGISTER 13: MMD ACCESS CONTROL REGISTER	
TABLE 27. REGISTER 14: MMD ACCESS ADDRESS DATA REGISTER	
TABLE 28. REGISTER 15: EXTENDED STATUS	
TABLE 29. ABSOLUTE MAXIMUM RATINGS	
TABLE 30. OPERATING RANGE	40
TABLE 31. XSGMII MODE POWER CONSUMPTION	
TABLE 31: ASOMI MODE FOWER CONSUMPTION	42
TABLE 32. IEEE 10/100/1000BASE-T SPECIFICATIONS	
TABLE 33. ASGMII DIFFERENTIAL TRANSMITTER CHARACTERISTICS	
TABLE 34, ASGIVIN DIFFERENTIAL TRANSMITTER CHARACTERISTICS	
TABLE 35. QSGMII DIFFERENTIAL RECEIVER CHARACTERISTICS	
TABLE 37 OSGMII DIFFERENTIAL TRANSMITTER CHARACTERISTICS	
TABLE 37 QSGWII DIFFERENTIAL RECEIVER CHARACTERISTICS	
TABLE 39. POWER AND RESET CHARACTERISTICS	
TABLE 40. MDIO TIMING CHARACTERISTICS AND REQUIREMENT	
TABLE 41. SERIAL LED TIMING	
TABLE 42. ASSEMBLY DESCRIPTION	
TABLE 43. MATERIAL PROPERTIES	
TABLE 44. SIMULATION CONDITIONS	
TABLE 45. THERMAL PERFORMANCE OF E-PAD LQFP-128 ON PCB UNDER STILL AIR CONVENTION	49
TABLE 46. THERMAL PERFORMANCE OF E-PAD LQFP-128 WITH EXTERNAL HEAT-SINK ON PCB UNDER NATURAL	40
CONVENTION	
Table 47. Ordering Information	

List of Figures

FIGURE 1.	24-PORT GIGABIT ETHERNET SWITCH (QSGMII & XSGMII INTERFACE)	3
FIGURE 2.	24-PORT GIGABIT ETHERNET SWITCH (QSGMII / XSGMII INTERFACE)	4
	24+4-PORT COMBO GIGABIT ETHERNET SWITCH (QSGMII / XSGMII INTERFACE)	
	20 + 4-PORT COMBO GIGABIT ETHERNET SWITCH (QSGMII OR XGMII-PLUS INTERFACE)	
	BLOCK DIAGRAM	
	PIN ASSIGNMENTS	
FIGURE 7.	CONCEPTUAL EXAMPLE OF POLARITY CORRECTION	19
FIGURE 8.	MDIO READ FRAME FORMAT	20
	MDIO WRITE FRAME FORMAT	
FIGURE 10	. XSGMII INTERCONNECTION DIAGRAM	21
FIGURE 11	. QSGMII Interconnection Diagram	22
FIGURE 12	. [MDI x 8] + [XSGMII x 1] . [MDI x 8] + [QSGMII x 2]	23
FIGURE 13	. [MDI x 8] + [QSGMII x 2]	23
FIGURE 14	SERIAL LED TIMING DEFINITIONS	28
FIGURE 15	. REG.0.14 PHY DIGITAL LOOPBACK	30
	. POWER AND RESET CHARACTERISTICS	
FIGURE 17	. MDIO SOURCED BY MASTER (MAC)	46
FIGURE 18	. MDIO SOURCED BY RTL8218D (SLAVE)	46
FIGURE 19	. SERIAL LED TIMING	47

CONFIDENTIAL CONFIDENTIAL for Grandstream

1. General Description

The RTL8218D-CG integrates octal independent 10/100/1000M Ethernet transceivers into a single IC, and performs all the physical layer (PHY) functions for 1000Base-T, 100Base-TX, and 10Base-T Ethernet on category 5 UTP cable except 1000Base-T half-duplex. 10Base-T functionality can also be achieved on standard category 3 or 4 cable.

This device includes PCS, PMA, and PMD sub-layers. They perform encoding/decoding, clock/data recovery, digital adaptive equalization, echo cancellers, crosstalk elimination, and line driver, as well as other required supporting circuit functions. The RTL8218D also integrates an internal hybrid that allows the use of inexpensive 1:1 transformer modules.

Each of the four independent transceivers features an innovative XSGMII / QSGMII for reduced PCB traces. All transceivers can communicate with the MAC simultaneously through the same XSGMII.

Features

- Octal-port integrated 10/100/1000M Ethernet transceiver
- Each port supports full duplex in 10/100/1000M mode (half duplex is only supported in 10/100M mode)
- Supports XSGMII (Ten-Gigabit Serial Media Independent Interface) and QSGMII (Quad Serial Gigabit Media Independent Interface) in 10/100/1000M mode
- Supports IEEE 802.3az Energy Efficient Ethernet (EEE)
- Supports crossover detection and auto correction in 10Base-T/100Base-T
- Auto-detection and auto-correction of wiring pair swaps, pair skew, and pair polarity or Grandstream

- Auto-detection and auto-correction of wiring pair swaps, pair skew, and pair polarity
- Supports Realtek's Cable Test (RTCT)
- Supports one interrupt output to external CPU for notification
- Low power consumption
- Easy layout, good EMI, and good thermal performance
- 25MHz crystal or 3.3V OSC input
- 3.3V and 1.1V power supply
- LQFP-128 E-PAD package

3. System Applications

3.1. 24-Port Gigabit Ethernet Switch

Figure 1. 24-Port Gigabit Ethernet Switch (QSGMII & XSGMII Interface)

3.2. 24-Port Gigabit Ethernet Switch

Figure 2. 24-Port Gigabit Ethernet Switch (QSGMII / XSGMII Interface)

3.3. 20+4 Combo Port Gigabit Ethernet Switch

Figure 3. 24+4-Port Combo Gigabit Ethernet Switch (QSGMII / XSGMII Interface)

3.4. 24+4 Combo Port Gigabit Ethernet Switch

Figure 4. 20 + 4-Port Combo Gigabit Ethernet Switch (QSGMII or XGMII-plus Interface)

4. Block Diagram

Figure 5. Block Diagram

for Grandstream

5. Pin Assignments

5.1. Pin Assignments

Figure 6. Pin Assignments

5.2. Package Identification

Green package is indicated by the 'G' in GXXXV (Figure 6). The version number is shown in the location marked 'V'.

5.3. Pin Assignment Tables

Upon Reset: Defined as a short time after the end of a hardware reset. After Reset: Defined as the time after the specified 'Upon Reset' time.

I: Input Pin AI: Analog Input Pin

O: Output Pin AO: Analog Output Pin

I/O: Bi-Directional Input/Output Pin AI/O: Analog Bi-Directional Input/Output Pin

P: Digital Power Pin AP: Analog Power Pin

G: Digital Ground Pin AG: Analog Ground Pin

I_{PD}: Input Pin With Pull-Down Resistor A: Analog Pin

I_{PU}: Input Pin With Pull-Up Resistor; O_{PU}: Output Pin With Pull-Up Resistor;

(Typical Value = 75K Ohm) (Typical Value = 75K Ohm)

SP: SerDes Power Pin SG: SerDes Ground Pin

Table 1. Pin Assignments Table

		Table I. I I
Pin Name	Pin No.	Type
P2MDICP	1	AI/O
P2MDICN	2	AI/O
P2MDIDP	3	AI/O
P2MDIDN	4	AI/O
AVDDH	5	AP
P3MDIAP	6	AI/O
P3MDIAN	7	AI/O
P3MDIBP	8	AI/O
P3MDIBN	9	AI/O
AVDDL	10	AP
P3MDICP	11	AI/O
P3MDICN	12	AI/O
P3MDIDP	13	AI/O
P3MDIDN	14	AI/O
AVDDH	15	AP
AGND	16	AG
MDIREF	17	AO
AVDDL	18	AP
RTT1	19	AO
RTT2	20	AO
AVDDH	21	AP

I_{S:} Schmitt Trigger Input Pin

Pin Name	Pin No.	Type
DVDDL	22	P
DVDDL	23	P
AVDDH	24	AP
P4MDIAP	25	AI/O
P4MDIAN	26	AI/O
P4MDIBP	27	AI/O
P4MDIBN	28	AI/O
AVDDL	29	AP
P4MDICP	30	AI/O
P4MDICN	31	AI/O
P4MDIDP	32	AI/O
P4MDIDN	33	AI/O
AVDDH	34	AP
P5MDIAP	35	AI/O
P5MDIAN	36	AI/O
P5MDIBP	37	AI/O
P5MDIBN	38	AI/O
AVDDL	39	AP
P5MDICP	40	AI/O
P5MDICN	41	AI/O
P5MDIDP	42	AI/O

Pin Name	Pin No.	Type
P5MDIDN	43	AI/O
NC	44	-
AVDDH	45	AP
P6MDIAP	46	AI/O
P6MDIAN	47	AI/O
P6MDIBP	48	AI/O
P6MDIBN	49	AI/O
AVDDL	50	AP
P6MDICP	51	AI/O
P6MDICN	52	AI/O
P6MDIDP	53	AI/O
P6MDIDN	54	AI/O
AVDDH	55	AP
P7MDIAP	56	AI/O
P7MDIAN	57	AI/O
P7MDIBP	58	AI/O
P7MDIBN	59	AI/O
AVDDL	60	AP
P7MDICP	61	AI/O
P7MDICN	62	AI/O
P7MDIDP	63	AI/O
P7MDIDN	64	AI/O
AVDDH	65	AP
Reserved	66	I/O _{PU}
CHIP_MODE1	67	I_{PU}
CHIP_MODE2	68	I_{PU}
DVDDL	69	P
EN_PHY	70	I/O _{PU}
PHYADDR1	71	I/O _{PD}
PHYADDR0	72	I/O _{PD}
Reserved	73	I/O_{PD}
DVDDIO	74	P
MDIO	75	I/O _{PU}
MDC	76	Ι
DVDDL	77	P
INTERRUPT	78	I/O _{PU}
SVDDH	79	SP
NC	80	-
SVDDL	81	SP
S1RXP	82	AO
S1RXN	83	AO
SGND	84	SG
S1TXP	85	AI
S1TXN	86	AI

Pin Name	Pin No.	Type
SGND	87	SG
SVDDL	88	SP
SORXN	89	AO
SORXP	90	AO
SVDDL	91	SP
S0TXN	92	AI
SOTXP	93	AI
SGND	94	SG
XTALO	95	AO
XTALI	96	AI
DVDDIO	97	Р
nRESET	98	I_{PU}
PHYADDR4/LEDCK	99	I/O _{PD}
PHYADDR3/LEDDA	100	I/O _{PD}
PHYADDR2	101	I_{PD}
AVDDH	102	AP
POMDIAP	103	AI/O
POMDIAN	104	AI/O
POMDIBP	105	AI/O
P0MDIBN	106	AI/O
AVDDL	107	AP
POMDICP	108	AI/O
P0MDICN	109	AI/O
POMDIDP	110	AI/O
P0MDIDN	111	AI/O
AVDDH	112	AP
P1MDIAP	113	AI/O
P1MDIAN	114	AI/O
P1MDIBP	115	AI/O
P1MDIBN	116	AI/O
AVDDL	117	AP
P1MDICP	118	AI/O
P1MDICN	119	AI/O
P1MDIDP	120	AI/O
P1MDIDN	121	AI/O
PLLVDDL0	122	AP
AVDDH	123	AP
P2MDIAP	124	AI/O
P2MDIAN	125	AI/O
P2MDIBP	126	AI/O
P2MDIBN	127	AI/O
AVDDL	128	AP
GND	EPAD	G

6. Pin Descriptions

6.1. Media Dependent Interface Pins

Table 2. Media Dependent Interface Pins

Pin Name	Pin No.	Type	Description
POMDIAP	103	AI/O	Port 0 Media Dependent Interface A~D.
POMDIAN	104	111,0	For 1000Base-T operation, differential data from the media is transmitted and
POMDIBP	105		received on all four pairs. For 100Base-TX and 10Base-T operation, only
POMDIBN	106		MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N
POMDICP	108		and MDIBP/N.
POMDICN	109		Each of the differential pairs has an internal 100ohm termination resistor.
POMDIDP	110		
POMDIDN	111		
P1MDIAP	113	AI/O	Port 1 Media Dependent Interface A~D.
P1MDIAN	114	111/0	For 1000Base-T operation, differential data from the media is transmitted and
P1MDIBP	115		received on all four pairs. For 100Base-TX and 10Base-T operation, only
P1MDIBN	116		MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N
P1MDICP	118		and MDIBP/N.
P1MDICN	119		Each of the differential pairs has an internal 100ohm termination resistor.
P1MDIDP	120		
P1MDIDN	121		
P2MDIAP	124	AI/O	Port 2 Media Dependent Interface A~D.
P2MDIAN	125	711/0	For 1000Base-T operation, differential data from the media is transmitted and
P2MDIBP	126		received on all four pairs. For 100Base-TX and 10Base-T operation, only
P2MDIBN	127		MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N
P2MDICP	1		and MDIBP/N.
P2MDICN	2		Each of the differential pairs has an internal 100ohm termination resistor.
P2MDIDP	3		wanns II Gui-
P2MDIDN	4		
P3MDIAP	6	AI/O	Port 3 Media Dependent Interface A~D.
P3MDIAN	7	111/0	For 1000Base-T operation, differential data from the media is transmitted and
P3MDIBP	8		received on all four pairs. For 100Base-TX and 10Base-T operation, only
P3MDIBN	9		MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N
P3MDICP	11		and MDIBP/N.
P3MDICN	12		Each of the differential pairs has an internal 100ohm termination resistor.
P3MDIDP	13		
P3MDIDN	14		
P4MDIAP	25	AI/O	Port 4 Media Dependent Interface A~D.
P4MDIAN	26		For 1000Base-T operation, differential data from the media is transmitted and
P4MDIBP	27		received on all four pairs. For 100Base-TX and 10Base-T operation, only
P4MDIBN	28		MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N
P4MDICP	30		and MDIBP/N.
P4MDICN	31		Each of the differential pairs has an internal 100ohm termination resistor.
P4MDIDP	32		
P4MDIDN	33		

Pin Name	Pin No.	Type	Description
P5MDIAP	35	AI/O	Port 5 Media Dependent Interface A~D.
P5MDIAN	36		For 1000Base-T operation, differential data from the media is transmitted and
P5MDIBP	37		received on all four pairs. For 100Base-TX and 10Base-T operation, only
P5MDIBN	38		MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N
P5MDICP	40		and MDIBP/N.
P5MDICN	41		Each of the differential pairs has an internal 100ohm termination resistor.
P5MDIDP	42		
P5MDIDN	43		
P6MDIAP	46	AI/O	Port 6 Media Dependent Interface A~D.
P6MDIAN	47		For 1000Base-T operation, differential data from the media is transmitted and
P6MDIBP	48		received on all four pairs. For 100Base-TX and 10Base-T operation, only
P6MDIBN	49		MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N
P6MDICP	51		and MDIBP/N.
P6MDICN	52		Each of the differential pairs has an internal 100ohm termination resistor.
P6MDIDP	53		
P6MDIDN	54		
P7MDIAP	56	AI/O	Port 7 Media Dependent Interface A~D.
P7MDIAN	57		For 1000Base-T operation, differential data from the media is transmitted and
P7MDIBP	58		received on all four pairs. For 100Base-TX and 10Base-T operation, only
P7MDIBN	59		MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N
P7MDICP	61		and MDIBP/N.
P7MDICN	62		Each of the differential pairs has an internal 100ohm termination resistor.
P7MDIDP	63		
P7MDIDN	64		

for Grandstream

6.2. XSGMII Pins

Table 3. XSGMII Pins

Pin Name	Pin No.	Type	Description	
S0RXP	90	AO	If CHIP_MODE[2:1] = 2'b01	
SORXN	89		XSGMII Differential Output.	
			10.3125GHz serial interfaces to transfer data from an External device that supports the XSGMII interface.	
			Differential pairs have an internal 100ohm termination resistor.	
S0TXP	93	AI	If CHIP_MODE[2:1] = 2'b01	
S0TXN	92		XSGMII Differential Input.	
			10.3125GHz serial interfaces to receive data from an External device that supports the XSGMII interface.	
			Differential pairs have an internal 100ohm termination resistor.	
Reserved	82	AO	Reserved. Requires either a 50 ohm resistor and 0.1µF cap in series to SVDDL,	
	83		or can be left floating	
Reserved	85	AI	Reserved. Can be left floating	
	86			

6.3. QSGMII Pins

Table 4. QSGMII Pins

Pin Name	Pin No.	Type	Description
SORXP SORXN S1RXP S1RXN	90 89 82 83	AO	If CHIP_MODE[2:1] = 2'b10 QSGMII Differential Output. 5GHz serial interfaces to transfer data from an External device that supports the QSGMII interface. Differential pairs have an internal 100ohm termination resistor.
S0TXP S0TXN S1TXP S1TXN	93 92 85 86	AI	If CHIP_MODE[2:1] = 2'b10 QSGMII Differential Input. 5GHz serial interfaces to receive data from an External device that supports the QSGMII interface. Differential pairs have an internal 100ohm termination resistor.

6.4. Serial LED Pins

Table 5. Serial LED Pins

Pin Name	Pin No.	Type	Description	
LEDCK	99	I/O_{PD}	Serial LED Clock Output	
LEDDA	100	I/O_{PD}	Serial LED Data Output	

6.5. Configuration Pins

Table 6. Configuration Pins

Pin Name	Pin No.	Type	Description
PHYADDR0	72	I/O _{PD}	PHYADDR0, PHY Address Select. These pins are the 5-bit IEEE-specified PHY address. The states of these five pins are latched during power-up or reset. Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset.
PHYADDR1	71	I/O _{PD}	PHYADDR1, PHY Address Select. These pins are the 5-bit IEEE-specified PHY address. The states of these five pins are latched during power-up or reset. Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset.
PHYADDR2	101	I _{PD}	PHYADDR2, PHY Address Select. These pins are the 5-bit IEEE-specified PHY address. The states of these five pins are latched during power-up or reset. Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset.
PHYADDR3 / LEDDA	100	I/O _{PD}	PHYADDR3, PHY Address Select. These pins are the 5-bit IEEE-specified PHY address. The states of these five pins are latched during power-up or reset. Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset.
PHYADDR4 / LEDCK	99	I/O _{PD}	PHYADDR4, PHY Address Select. These pins are the 5-bit IEEE-specified PHY address. The states of these five pins are latched during power-up or reset. Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset.
EN_PHY	70	I/O _{PU}	Enable PHY Power 1: Power up all ports. 0: Power down all ports and set the MII register 0.11 power down as 1. Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset.
CHIP_MODE2	68	$I_{ m PU}$	MAC Interface Configuration: CHIP_MODE[2:1] = 01: XSGMII 10: Reserved for Internal use 11:Reserved for Internal use 00:Reserved for Internal use
CHIP_MODE1	67	I_{PU}	Reference CHIP_MODE2

6.6. Miscellaneous Pins

Table 7. Miscellaneous Pins

Pin Name	Pin No.	Type	Description
MDC	76	Ι	MII Management Interface Clock Input. The clock reference for the MII management interface.
			The maximum frequency support is 8MHz.
MDIO	75	I/O _{PU}	MII Management Interface Data Input/Output.
MDIO	/3	1/Орц	MDIO transfer management data in and out of the device synchronous to the rising edge of MDC.
INTERRUPT	78	I/O _{PU}	Interrupt output when Interrupt even occurs.
			Active High by pull-down to GND via a 1K resistor.
			Active Low by pull-up to DVDDIO via a 4.7K resistor.
nRESET	98	I_{PU}	Hardware Reset (Active Low Reset Signal).
			To complete the reset function, this pin must be asserted for at least 10ms. It must be pulled high for normal operation.
MDIREF	17	AO	MDI Bias Resistor.
			Adjusts the reference current for all PHYs.
			This pin must connect to AGND via a 2.49k ohm resistor.
NC	44	ı	We suggest NC pins are left floating.
NC	80	-	We suggest NC pins are left floating.
XTALI	96	AI	25MHz Crystal Clock Input.
			25MHz±50ppm tolerance crystal reference or oscillator input.
			When using a crystal, connect a loading capacitor from each pad to ground.
			When either using an oscillator or driving an external 25MHz clock from
			another device, XTALO should be kept floating.
			The maximum XTALI input voltage is 3.3V.
XTALO	95	AO	25MHz Crystal Clock Output.
			25MHz±50ppm tolerance crystal output. Refer to XTALI.
fo		5	Ialius

6.7. Power and GND Pins

Table 8. Power and GND Pins

Pin Name	Pin No.	Type	Description
AVDDH	5, 15, 21, 24, 34, 45, 55,	AP	Analog High Voltage Power
	65, 102, 112,123		
AVDDL	10, 18, 29, 39, 50, 60,	AP	Analog Low Voltage Power
	107, 117, 128		
PLLVDD0	122	AP	PLL Power
			This pin should be filtered with a low resistance series ferrite
			bead and 1000pF + 2.2µF shunt capacitors to ground
SVDDH	79	SP	QSGMII / RSGMII-Plus SerDes High Voltage Power
SVDDL	81, 88, 91	SP	QSGMII / RSGMII-Plus SerDes Low Voltage Power
DVDDIO	74, 97	P	Digital I/O Power
DVDDL	22, 23, 69, 77	P	Digital Low Voltage Power
AGND	16	AG	Analog Ground
SGND	84, 87, 94	SG	QSGMII/RSGMII-Plus SerDes Ground
GND	EPAD	G	Digital/Analog Ground

6.8. Test Pins

Table 9. Test Pins

Pin Name	Pin No. Type		Description
RTT1	19	AO	Reserved for Internal Use. Must be Left Floating or pulled-up to to DVDDIO via 4.7K resistor.
RTT2	20	AO	Reserved for Internal Use. Must be Left Floating or pulled-up to to DVDDIO via 4.7K resistor.
Reserved	66	I/O _{PU}	Reserved for Internal Use. Must be Left Floating or pulled-up to to DVDDIO via 4.7K resistor.
Reserved	73	I/O _{PD}	Reserved. Must be tied to GND via a 1K resistor for normal operation

7. Function Description

7.1. MDI Interface

The RTL8218D embeds octal 10/100/1000M Ethernet PHYs in one chip. Each port uses a single common MDI interface to support 1000Base-T, 100Base-TX, and 10Base-T. This interface consists of four signal pairs-A, B, C, and D. Each signal pair consists of two bi-directional pins that can transmit and receive at the same time. The MDI interface has internal termination resistors, and therefore reduces BOM cost and PCB complexity. For 1000Base-T, all four pairs are used in both directions at the same time. For 10/100M links and during auto-negotiation, only pairs A and B are used.

7.2. 1000Base-T Transmit Function

The 1000Base-T transmit function performs 8B/10B coding, scrambling, 4D-PAM5 encoding. These code groups are passed through a waveform-shaping filter to minimize EMI effect, and are transmitted onto the 4-pair CAT5 cable at 125MBaud/s through a D/A converter.

7.3. 1000Base-T Receive Function

Input signals from the media pass through the sophisticated on-chip hybrid circuit to subtract the transmitted signal from the input signal for effective reduction of near-end echo. The received signal is processed with state-of-the-art technology, e.g., adaptive equalization, BLW (Baseline Wander) correction, cross-talk cancellation, echo cancellation, timing recovery, error correction, and 4D-PAM5 decoding. The 8-bit-wide data is recovered and is sent to the GMII interface at a clock speed of 125MHz. The Rx MAC retrieves the packet data from the internal receive MII/GMII interface and sends it to the packet buffer manager.

7.4. 100Base-TX Transmit Function

The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such that EMI effects can be reduced significantly.

The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit stream is driven into the network media in the form of MLT-3 signaling. The MLT-3 multi-level signaling technology moves the power spectrum energy from high frequency to low frequency, which also reduces EMI emissions.

7.5. 100Base-TX Receive Function

The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error rate. A de-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL circuit. Finally, the converted parallel data is fed into the MAC.

7.6. 10Base-T Transmit Function

The output 10Base-T waveform is Manchester-encoded before it is driven onto the network media. The internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external filter.

7.7. 10Base-T Receive Function

The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit detects the signal level is above squelch level.

7.8. Auto-Negotiation for UTP

The RTL8218D obtains the states of duplex, speed, and flow control ability for each port in UTP mode through the auto-negotiation mechanism defined in the IEEE 802.3 specifications. During auto-negotiation, each port advertises its ability to its link partner and compares its ability with advertisements received from its link partner. By default, the RTL8218D advertises full capabilities (1000full, 100full, 100half, 10full, 10half) together with flow control ability.

7.9. Crossover Detection and Auto Correction

The RTL8218D automatically determines whether or not it needs to crossover between pairs, so that an external crossover cable is not required. When connecting to a device that does not perform MDI crossover, the RTL8218D automatically switches its pin pairs to communicate with the remote device. When connecting to a device that does have MDI crossover capability, an algorithm determines which end performs the crossover function.

The crossover detection and auto correction function can be disabled via register configuration. The RTL8218D is set to MDI Crossover by default. The pin mapping in MDI and MDI Crossover mode is given below.

Pairs		MDI		MDI Crossover				
	1000Base-T	100Base-TX	10Base-T	1000Base-T	100Base-TX	10Base-T		
A	A	TX	TX	В	RX	RX		
В	В	RX	RX	A	TX	TX		
C	C	Unused	Unused	D	Unused	Unused		
D	D	Unused	Unused	С	Unused	Unused		

Table 10. Media Dependent Interface Pin Mapping

7.10. Polarity Correction

The RTL8218D automatically corrects polarity errors on the receiver pairs in 1000Base-T and 10Base-T modes. In 100Base-TX mode, the polarity is irrelevant.

In 1000Base-T mode, receive polarity errors are automatically corrected based on the sequence of idle symbols. Once the descrambler is locked, the polarity is also locked on all pairs. The polarity becomes unlocked only when the receiver loses lock.

In 10Base-T mode, polarity errors are corrected based on the detection of valid spaced link pulses. The detection begins during the MDI crossover detection phase and locks when 10Base-T links up. The polarity becomes unlocked when the link is down.

Figure 7. Conceptual Example of Polarity Correction

7.11. MDC/MDIO Interface

The RTL8218D supports the IEEE compliant Management Data Input/Output (MDIO) Interface. This is the only method for the MAC to acquire the status of the PHY. The Media Independent Interface Management (MIIM) registers are written and read serially, using the MDC/MDIO pins. Data transferred to and from the MDIO pins is synchronized with the MDC clock. All transfers are initiated by the MAC. A clock of up to 8MHz must drive the MDC pin of the RTL8218D.

The MII register is a block of 32 registers, each 16 bits wide. Certain registers are defined by IEEE 802.3 and are required for compliance $(0\sim10, 15)$.

The MDIO frame structure starts with a 32-bit preamble, which is required by the RTL8218D. The following data includes a start-of-frame marker, an op-code, a 10-bit address field, and a 16-bit data field. The address field is divided into two 5-bit segments. The first segment identifies the PHY address and the second identifies the register being accessed.

The 5-bits of the PHY address are determined by the hardware strapping values during power up. The MDIO protocol provides both read and write operations. During a write operation, the MAC drives the MDIO line for the entire frame. For a read operation, a turn-around time is inserted in the frame to allow the PHY to drive back to the MAC. The MDIO pin of the MAC must be put in high-impedance during these bit times. Figure 8 and Figure 9 depict the MDIO read and write frame format respectively.

The RTL8218D is permanently programmed for preamble suppression. A preamble of 32 '1' bits is required only for the first read or write. The management preamble may be as short as 1 bit.

Figure 8. MDIO Read Frame Format

Figure 9. MDIO Write Frame Format

7.12. Ten-Gigabit Media Independent Interface (XSGMII)

The XSGMII (Ten-Gigabit Media Independent Interface) reduces PCB complexity and IC pin count. This innovative 10.3125 Gbps serial interface provides MAC to PHY communication path. XSGMII can carry the full duplex gigabit Ethernet data streams of 8 ports simultaneously, using only 4 pins.

Figure 10. XSGMII Interconnection Diagram

7.13. Quad Serial Gigabit Media Independent Interface (QSGMII)

The QSGMII (Quad Serial Gigabit Media Independent Interface) reduces PCB complexity and IC pin count. This innovative 5Gbps serial interface provides a MAC to PHY communication path. QSGMII can carry the full duplex gigabit Ethernet data streams of four ports simultaneously, using only 4 pins.

Figure 11. QSGMII Interconnection Diagram

7.13.1. XSGMII Interface

Figure 12. [MDI x 8] + [XSGMII x 1]

7.13.2. QSGMII Interface

Figure 13. [MDI x 8] + [QSGMII x 2]

7.14. Serial LED

7.14.1. Port Status Indicator

The RTL8218D supports serial LED mode. In the serial LED mode, the data is clocked through a shift register and the shifted symbols are output to the 36 LED pins. Each MDI port has three indicator symbols and each fiber port has three indicator symbols. Each symbol may have different indicator information

7.14.2. LED Configuration

Table 11. Serial LED Per-LED Control

PHY0, Reg.30 = 8, Reg.=31=0x281

Reg.bit	Name	Mode	Description	Default
18.[15:12]	LED_00_Mode	RW	Assign LEDn to Port.	0x0
			0000: MDI0	
			0001: MDI1	
			0010: MDI2	
			0011: MDI3	
			0100: MDI4	
			0101: MDI5	
			0110: MDI6	
			0111: MDI7 1000: Reserved	
			1000: Reserved 1001: Reserved	
			1001. Reserved	
			1010: Reserved	
		-04	1100~1110: Reserved	
			1111: Disable	
18.11		RW	1000M Speed Indicator.	0x0
18.10		RW	100M Speed Indicator.	0x0
18.9		RW	10M Speed Indicator.	0x0
18.8		RW	Reserved	0x0
18.7		RW	1000M Activity Indicator. Act blinking when the	0x0
			corresponding port is transmitting or receiving.	
18.6		RW	100M Activity Indicator. Act blinking when the	0x0
			corresponding port is transmitting or receiving.	
18.5		RW	10M Activity Indicator. Act blinking when the	0x0
			corresponding port is transmitting or receiving.	
18.4		RW	Reserved	0x0
18.3		RW	Duplex Indicator.	0x0
18.2		RW	Collision Indicator. Blinking when a collision occurs.	0x0
18.1		RW	Tx Activity Indicator. Blinking when the corresponding port is transmitting.	0x0
18.0		RW	Rx Activity Indicator. Blinking when the corresponding port is receiving.	0x0
19[15:0]	LED_01_Mode	RW	Same as LED_00_Mode	-
				·

Reg.bit	Name	Mode	Description	Default
20[15:0]	LED_02_Mode	RW	Same as LED_00_Mode	-
21[15:0]	LED_03_Mode	RW	Same as LED_00_Mode	-
22[15:0]	LED_04_Mode	RW	Same as LED_00_Mode	-
23[15:0]	LED_05_Mode	RW	Same as LED_00_Mode	-

PHY0, Reg.29 = 8, Reg.=31=0x282

Reg.bit	Name	Mode	Description	Default
16[15:0]	LED_06_Mode	RW	Same as LED_00_Mode	-
17[15:0]	LED_07_Mode	RW	Same as LED_00_Mode	-
18[15:0]	LED_08_Mode	RW	Same as LED_00_Mode	-
19[15:0]	LED_09_Mode	RW	Same as LED_00_Mode	-
20[15:0]	LED_10_Mode	RW	Same as LED_00_Mode	-
21[15:0]	LED_11_Mode	RW	Same as LED_00_Mode	-
22[15:0]	LED_12_Mode	RW	Same as LED_00_Mode	-
23[15:0]	LED_13_Mode	RW	Same as LED_00_Mode	-

PHY0, Reg.29 = 8, Reg.=31=0x283

1110,1105.	2) 0, Iteg. DI UNIOU			
Reg.bit	Name	Mode	Description	Default
16[15:0]	LED_14_Mode	RW	Same as LED_00_Mode	-
17[15:0]	LED_15_Mode	RW	Same as LED_00_Mode	-
18[15:0]	LED_16_Mode	RW	Same as LED_00_Mode	<u>-</u>
19[15:0]	LED_17_Mode	RW	Same as LED_00_Mode	-
20[15:0]	LED_18_Mode	RW	Same as LED_00_Mode	-
21[15:0]	LED_19_Mode	RW	Same as LED_00_Mode	-
22[15:0]	LED_20_Mode	RW	Same as LED_00_Mode	-
23[15:0]	LED_21_Mode	RW	Same as LED_00_Mode	-

PHY0. Reg. 29 = 8. Reg. = 31 = 0x284

1110,1105	in of ites. of the			
Reg.bit	Name	Mode	Description	Default
16[15:0]	LED_22_Mode	RW	Same as LED_00_Mode	-
17[15:0]	LED_23_Mode	RW	Same as LED_00_Mode	-
18[15:0]	LED_24_Mode	RW	Same as LED_00_Mode	-
19[15:0]	LED_25_Mode	RW	Same as LED_00_Mode	-
20[15:0]	LED_26_Mode	RW	Same as LED_00_Mode	-
21[15:0]	LED_27_Mode	RW	Same as LED_00_Mode	-
22[15:0]	LED_28_Mode	RW	Same as LED_00_Mode	-
23[15:0]	LED_29_Mode	RW	Same as LED_00_Mode	-

PHY0, Reg.29 = 8, Reg.=31=0x285

Reg.bit	Name	Mode	Description	Default
16[15:0]	LED_30_Mode	RW	Same as LED_00_Mode	-
17[15:0]	LED_31_Mode	RW	Same as LED_00_Mode	-
18[15:0]	LED_32_Mode	RW	Same as LED_00_Mode	-
19[15:0]	LED_33_Mode	RW	Same as LED_00_Mode	-
20[15:0]	LED_34_Mode	RW	Same as LED_00_Mode	-
21[15:0]	LED_35_Mode	RW	Same as LED_00_Mode	-

Table 12. Serial LED Mode Configuration (Per-Port 3 LEDs)

of Per-LED Register	LED_MODE [1:0]=11	LED_MODE [1:0]=10	LED_MODE [1:0]=01	LED_MODE [1:0]=00
LED35	0x0FF0	0x0880	0x0880	0x0FF0
LED34	0x1FF0	0x0880 0x1880	0x0880	0x1FF0
LED34	0x1FF0 0x2FF0	0x1880	0x1880	0x2FF0
LED32	0x3FF0	0x3880	0x3880	0x3FF0
LED31	0x4FF0	0x4880	0x4880	0x4FF0
LED30	0x5FF0	0x5880	0x5880	0x5FF0
LED29	0x6FF0	0x6880	0x6880	0x6FF0
LED28	0x7FF0	0x7880	0x7880	0x7FF0
LED27	0x0800	0x0440	0x0660	0x8CC0
LED26	0x1800	0x1440	0x1660	0x9CC0
LED25	0x2800	0x2440	0x2660	0xACC0
LED24	0x3800	0x3440	0x3660	0xBCC0
LED23	0x4800	0x4440	0x4660	0xF000
LED22	0x5800	0x5440	0x5660	0xF000
LED21	0x6800	0x6440	0x6660	0xF000
LED20	0x7800	0x7440	0x7660	0xF000
LED19	0x0400	0x0220	0x8880	0xF000
LED18	0x1400	0x1220	0x9880	0xF000
LED17	0x2400	0x2220	0xA880	0xF000
LED16	0x3400	0x3220	0xB880	0xF000
LED15	0x4400	0x4220	0x8440	0xF000
LED14	0x5400	0x5220	0x9440	0xF000
LED13	0x6400	0x6220	0xA440	0xF000
LED12	0x7400	0x7220	0xB440	0xF000
LED11	0x8CC0	0x8880	0xF000	0xF000
LED10	0x9CC0	0x9880	0xF000	0xF000
LED09	0xACC0	0xA880	0xF000	0xF000
LED08	0xBCC0	0xB880	0xF000	0xF000
LED07	0x8800	0x8440	0xF000	0xF000
LED06	0x9800	0x9440	0xF000	0xF000
LED05	0xA800	0xA440	0xF000	0xF000
LED04	0xB800	0xB440	0xF000	0xF000
LED03	0x8400	0xF000	0xF000	0xF000

of Per-LED Register	LED_MODE [1:0]=11	LED_MODE [1:0]=10	LED_MODE [1:0]=01	LED_MODE [1:0]=00
LED02	0x9400	0xF000	0xF000	0xF000
LED01	0xA400	0xF000	0xF000	0xF000
LED00	0xB400	0xF000	0xF000	0xF000

Notes:

LED_MODE [1:0]=11

MDI: [Link/Act] [SPD1000] [SPD100] FX: [Link/Act] [SPD1000] [SPD100]

LED MODE [1:0]=10

MDI: [SPD1000/Act] [SPD100/Act] [SPD10/Act] FX: [SPD1000/Act] [SPD100/Act] [Disable]

LED MODE [1:0]=01

MDI: [SPD1000/Act] [SPD100(10)/Act] FX: [SPD1000/Act] [SPD100/Act]

LED_MODE [1:0]=00 MDI: [Link/Act] FX: [Link/Act]

7.14.3. Serial LED Configuration Register

Table 13. Serial LED Configuration Register

PHY0, Reg.29 = 8, Reg.=31=0x280

Reg.bit	Name	Mode	Description	Default
16[15:14]	Reserved	RW	Reserved	00
16[13:12]	cfg_led_mode	RW	00: LED_Mode0. Per-Port 2 LEDs	11
			01: LED_Mode1. Per-Port 2 LEDs	
			10: LED_Mode2. Per-Port 3 LEDs	
			11: LED_Mode3. Per-Port 3 LEDs	
16[11]	Reserved	RW	Reserved	0
16[10:8]	Serial Blink Rate	RW	LED Blink Rate Configuration.	000
			000: 32ms	
			001: 64ms	
			010: 128ms	
			011: 256ms	
			100: 512ms	
			101: 1024ms	
			110: 48ms	
			111: 96ms	
16[7:6]	serial led burst cycle	RW	2'b00: 8 (ms)	10
			2'b01: 16	
			2'b10: 32	
			2'b11: 64	

4400

Reg.bit	Name	Mode	Description	Default
16[5:4]	serial led clock cycle	RW	2'b00: 32 (ns)	11
			2'b01: 64	
			2'b10: 96	
			2'b11: 192	
16[3]	led_seri_active_low	RW	Serial LED active LOW	1
			0: LED status active high	
			1: LED status active low	
16[2]	led_seri_disable	RW	Disable Serial LED.	
			1: Disable	
			0: Enable	
			Default by strapping option (pin-30)	
16[1]	led_data_e_b	RW	Serial LED DATA_EN	
16[0]	led_clk_e_b	RW	Serial LED CLK_EN	

Note: Upon reset, the RTL8218D supports chip diagnostics and LED functions by blinking all LEDs once via the LED_PowerOn_Light strapping pin configuration.

7.14.4. Serial LED Timing Definitions

Figure 14. Serial LED Timing Definitions

7.15. Realtek Cable Test (RTCT)

The RTL8218D physical layer transceivers use DSP technology to implement the Realtek Cable Test (RTCT) feature. The RTCT function could be used to detect short, open, crossed, or impedance mismatch in each differential pair.

7.16. IEEE 802.3az Energy Efficient Ethernet (EEE)

The RTL8218D supports IEEE 802.3az Energy Efficient Ethernet ability for 1000Base-T and 100Base-TX in full duplex operation.

The Energy Efficient Ethernet (EEE) optional operational mode combines the IEEE 802.3 Media Access Control (MAC) sub-layer with 100Base-T and 1000Base-T Physical Layers defined to support operation in Low Power Idle mode. When Low Power Idle mode is enabled, systems on both sides of the link can disable portions of the functionality and save power during periods of low link utilization.

- For 1000Base-T: Supports Energy Efficient Ethernet with the optional function of Low Power Idle
- For 100Base-TX: Supports Energy Efficient Ethernet with the optional function of Low Power Idle

7.17. Interrupt Pin for External CPU

The RTL8218D provides one Interrupt output pin to interrupt an external CPU for 10/100/1000Base-T ports. The polarity of the Interrupt output pin can be configured via register access. In configuration registers, each port has link-up and link-down interrupt flags with mask.

When port link-up or link-down interrupt mask is enabled, the RTL8218D will raise the interrupt signal to alarm the external CPU. The CPU can read the interrupt flag to determine which port has changed to which status.

7.18. Reg.0.11 Power Down Mode

The RTL8218D implements power down mode on a per-port basis. Setting MII Reg.0.11 forces the corresponding port of the RTL8218D to enter power down mode.

7.19. Reg.0.14 PHY Digital Loopback Return to Internal

The digital loopback mode of the PHY (return to MAC) may be enabled on a per-port basis by setting MII Reg.0.14 to 1. In digital loopback mode, the TXD of the PHY is transferred directly to the RXD of the PHY, with TXEN changed to CRS_DV, and returns to the MAC via an internal MII. The data stream coming from the MAC will not egress to the physical medium, and an incoming data stream from the network medium will be blocked in this mode. The packets will be looped back in 10Mbps, 100Mbps, and 1000Mbps in full duplex mode. This function is useful for diagnostic purposes.

Loopback Return to MAC

Figure 15. Reg.0.14 PHY Digital Loopback

As the RTL8218D only supports digital loopback in full duplex mode, PHY Reg.0.8 for each port will be always kept to 1 when digital loopback is enabled. In loopback mode, the link LED of the loopback port should be always turned on, and the speed combined with the duplex LED will reflect the link status (1000full/10full) correctly regardless of what the previous status of this loopback port was.

8. Register Descriptions

Registers 0~15 of the MII are defined by the MII specification. Other registers are defined by Realtek Semiconductor Corp. for internal use and are reserved.

The following abbreviations are used in this section:

RW: Read/Write RO: Read Only SC: Self Clearing

LL: Latch Low until clear LH: Latch High until clear

Table 14. Register Descriptions

_		Table 14. Negister Descriptions	7 0 7
Page	Register	Description	Default
0	0	Control	0x1140
	1	Status	0x7989
	2	PHY Identifier 1	0x001C
	-3	PHY Identifier 2	0xC983
	4	Auto-Negotiation Advertisement	0x05E1
	5	Auto-Negotiation Link Partner Ability	0x0000
	6	Auto-Negotiation Expansion	0x0064
	7	Auto-Negotiation Next Page Transmit	0x2001
	8	Auto-Negotiation Link Partner Next Page Ability	0x0000
	9	1000Base-T Control	0x0E00
	10	1000Base-T Status	0x0000
	11~14	Reserved	0x0000
	13	1000Base-T MMD Access Control	0x0000
	14	1000Base-T MMD Access Address Data	0x0000
	15	Extended Status	0x2000
	16~30	ASIC Control	-

8.1. Register 0: Control

Table 15. Register 0: Control

Reg.bit	Name	Mode	Description	Default
0.15	Reset	RW/SC	1: PHY reset	0
			0: Normal operation	
			This bit is self-clearing.	
0.14	Loopback	RW	1: Enable loopback (this will loopback TXD to RXD and	0
	(Digital loopback)		ignore all activity on the cable media)	
			0: Normal operation	
			This function is usable only when this PHY is operated in	
			10Base-T full duplex, 100Base-TX full duplex, or	
			1000Base-T full duplex.	
0.13	Speed Selection[0]	RW	[0.6, 0.13] Speed Selection [1:0].	0
			11: Reserved	
			10: 1000Mbps	
			01: 100Mbps	
			00: 10Mbps	
0.10		DIV	This bit can be set through SMI (Read/Write).	
0.12	Auto Negotiation Enable	RW	1: Enable auto-negotiation process	1
			0: Disable auto-negotiation process	
0.11	D D	DIV	This bit can be set through SMI (Read/Write).	
0.11	Power Down	RW	1: Power down (all functions will be disabled except SMI function)	0
			0: Normal operation	
0.10	Isolate	DW	1	0
0.10	Isolate	RW	1: Electrically isolates the PHY from QGMII (PHY still responds to MDC/MDIO)	0
			0: Normal operation	
0.9	Restart Auto Negotiation	RW/SC	1: Restart Auto-Negotiation process	0
0.9	Restart Auto Negotiation	KW/SC	0: Normal operation	U
0.8	Duplex Mode	RW	1: Full duplex operation	1
0.8	Duplex Mode	IXW	0: Half duplex operation	1
			This bit can be set through SMI (Read/Write).	
0.7	Collision Test	RO	1: Collision test enabled	0
0.7	Combion 10st	RO	0: Normal operation	
			When set, this bit will cause the COL signal to be asserted	
			in response to the assertion of TXEN within 512-bit times.	
			The COL signal will be de-asserted within 4-bit times in	
			response to the de-assertion of TXEN.	
0.6	Speed Selection[1]	RW	See Bit 13.	1
0.[5:0]	Reserved	RO	Reserved.	000000

8.2. Register 1: Status

Table 16. Register 1: Status

Dog hit	g.bit Name Mode Description Default						
Reg.bit		Mode					
1.15	100Base-T4	RO	0: No 100Base-T4 capability The RTL8218D does not support 100Base-T4 mode, and this bit should always be 0.	0			
1.14	100Base-TX-FD	RO	1: 100Base-TX full duplex capable 0: Not 100Base-TX full duplex capable	1			
1.13	100Base-TX-HD	RO	1: 100Base-TX half duplex capable 0: Not 100Base-TX half duplex capable	1			
1.12	10Base-T-FD	RO	1: 10Base-T full duplex capable 0: Not 10Base-TX full duplex capable	1			
1.11	10Base-T-HD	RO	1: 10Base-T half duplex capable 0: Not 10Base-TX half duplex capable	1			
1.10	100Base-T2-FD	RO	0: No 100Base-T2 full duplex capability The RTL8218D does not support 100Base-T2 mode, and this bit should always be 0.	0			
1.9	100Base-T2-HD	RO	0: No 100Base-T2 half duplex capability The RTL8218D does not support 100Base-T2 mode, and this bit should always be 0.	0			
1.8	Extended Status	RO	1: Extended status information in Register 15 The RTL8218D always supports Extended Status Register.	1			
1.7	Reserved	RO	Reserved.	1			
1.6	MF Preamble Suppression	RO	The RTL8218D will accept management frames with preamble suppressed.	0			
1.5	Auto-negotiate Complete	RO	1: Auto-negotiation process completed 0: Auto-negotiation process not completed	0			
1.4	Remote Fault	RO/ LH	1: Remote fault indication from link partner has been detected 0: No remote fault indication detected This bit will remain set until it is cleared by reading register 1 via the management interface.	0			
1.3	Auto-Negotiation Ability	RO	1: Auto-negotiation capable (permanently=1) 0: No Auto-negotiation capability	1			
1.2	Link Status	RO/ LL	1: Link has not failed since previous read 0: Link has failed since previous read If the link fails, this bit will be set to 0 until this bit is read.	0			
1.1	Jabber Detect	RO/ LH	Sabber detected No Jabber detected Jabber is supported only in 10Base-T mode.	0			
1.0	Extended Capability	RO	Extended register capable (permanently=1) Not extended register capable	1			

8.3. Register 2: PHY Identifier 1

The PHY Identifier Registers #1 and #2 together form a unique identifier for the PHY part of this device. The Identifier consists of a concatenation of the Organizationally Unique Identifier (OUI), the vendor's model number, and the model revision number. A PHY may return a value of zero in each of the 32 bits of the PHY Identifier if desired. The PHY Identifier is intended to support network management.

Table 17. Register 2: PHY Identifier 1

Reg.bit	Name	Mode	Description	Default
2.[15:0]	OUI	RO	Composed of the 3 rd to 18 th Bits of the Organizationally Unique	0x001C
			Identifier (OUI), Respectively.	

8.4. Register 3: PHY Identifier 2

Table 18. Register 3: PHY Identifier 2

Reg.bit	Name	Mode	Description	Default
3.[15:10]	OUI	RO	Assigned to the 19 th through 24 th Bits of the OUI.	110010
3.[9:4]	Model Number	RO	Manufacturer's Model Number.	011000
3.[3:0]	Revision Number	RO	Manufacturer's Revision Number.	0011

8.5. Register 4: Auto-Negotiation Advertisement

This register contains the advertisement abilities of this device as they will be transmitted to its Link Partner during Auto-negotiation.

Note: Each time the link ability of the RTL8218D is reconfigured, the auto-negotiation process should be executed to allow the configuration to take effect.

Table 19. Register 4: Auto-Negotiation Advertisement

Reg.bit	Name	Mode	Description	Default
4.15	Next Page	RO	1: Additional next pages exchange desired	0
			0: No additional next pages exchange desired	
4.14	Acknowledge	RO	Permanently=0.	0
4.13	Remote Fault	RW	1: Advertises that the RTL8218D has detected a remote fault	0
			0: No remote fault detected	
4.12	Reserved	RO	Reserved.	0
4.11	Asymmetric Pause	RW	1: Advertises that the RTL8218D has asymmetric flow control	0
			capability	
			0: No asymmetric flow control capability	
4.10	Pause	RW	1: Advertises that the RTL8218D has flow control capability	1
			0: No flow control capability	
4.9	100Base-T4	RO	1: 100Base-T4 capable	0
			0: Not 100Base-T4 capable (permanently=0)	
4.8	100Base-TX-FD	RW	1: 100Base-TX full duplex capable	1
			0: Not 100Base-TX full duplex capable	

Reg.bit	Name	Mode	Description	Default
4.7	100Base-TX	RW	1: 100Base-TX half duplex capable	1
			0: Not 100Base-TX half duplex capable	
4.6	10Base-T-FD	RW	1: 10Base-TX full duplex capable	1
			0: Not 10Base-TX full duplex capable	
4.5	10Base-T	RW	1: 10Base-TX half duplex capable	1
			0: Not 10Base-TX half duplex capable	
4.[4:0]	Selector Field	RO	00001: IEEE 802.3	00001

Note 1: This Register 4 setting has no effect unless auto-negotiation is restarted or link down.

Note 2: If 1000Base-T is advertised, then the required next pages are automatically transmitted.

8.6. Register 5: Auto-Negotiation Link Partner Ability

This register contains the advertised abilities of the Link Partner as received during Auto-negotiation. The content changes after a successful Auto-negotiation.

Table 20. Register 5: Auto-Negotiation Link Partner Ability

Reg.bit	Name	Mode	Description	Default
5.15	Next Page	RO	Link partner desires Next Page transfer Link partner does not desire Next Page transfer	0
5.14	Acknowledge	RO	1: Link Partner acknowledges reception of Fast Link Pulse (FLP) 0: Not acknowledged by Link Partner	0
5.13	Remote Fault	RO	Remote Fault indicated by Link Partner No remote fault indicated by Link Partner	0
5.12	Reserved	RO	Technology Ability Field. Received code word bit 12.	0
5.11	Asymmetric Pause	RO	1: Asymmetric Flow control supported by Link Partner 0: No Asymmetric flow control supported by Link Partner When auto-negotiation is enabled, this bit reflects Link Partner ability (Read only).	0
5.10	Pause	RO	1: Flow control supported by Link Partner 0: No flow control supported by Link Partner When auto-negotiation is enabled, this bit reflects Link Partner ability (Read only).	0
5.9	100Base-T4	RO	1: 100Base-T4 supported by Link Partner 0: 100Base-T4 not supported by Link Partner	0
5.8	100Base-TX-FD	RO	1: 100Base-TX full duplex supported by Link Partner 0: 100Base-TX full duplex not supported by Link Partner	0
5.7	100Base-TX	RO	1: 100Base-TX half duplex supported by Link Partner 0: 100Base-TX half duplex not supported by Link Partner	0
5.6	10Base-T-FD	RO	1: 10Base-TX full duplex supported by Link Partner 0: 10Base-TX full duplex not supported by Link Partner	0
5.5	10Base-T	RO	1: 10Base-TX half duplex supported by Link Partner 0: 10Base-TX half duplex not supported by Link Partner	0
5.[4:0]	Selector Field	RO	00001: IEEE 802.3	00000

8.7. Register 6: Auto-Negotiation Expansion

Table 21. Register 6: Auto-Negotiation Expansion

Reg.bit	Name	Mode	Description	Default
6.[15:7]	Reserved	RO	Ignore On Read.	0
6.6	Receive Next Page Location Able	RO	1: Received next page storage location is specified by bit (6.5) 0: Received next page storage location is not specified by bit (6.5)	1
6.5	Received Next Page Storage Location	RO	1: Link Partner next pages are stored in Register 8 0: Link Partner next pages are stored in Register 5	1
6.4	Parallel Detection Fault	RO/LH	1: A fault has been detected via the Parallel Detection function 0: No fault has been detected via the Parallel Detection function	0
6.3	Link Partner Next Page Ability	RO	Link Partner is Next Page able Link Partner is not Next Page able	0
6.2	Local Next Page Ability	RO	1: RTL8218D is Next Page able	1
6.1	Page Received	RO/LH	1: A New Page has been received 0: A New Page has not been received	0
6.0	Link Partner Auto- Negotiation Ability	RO	If Auto-Negotiation is Enabled, this bit means: 1: Link Partner is Auto-Negotiation able 0: Link Partner is not Auto-Negotiation able	0

8.8. Register 7: Auto-Negotiation Next Page Transmit

Table 22. Register 7: Auto-Negotiation Next Page Transmit

Reg.bit	Name	Mode	Description	Default
7.15	Next Page	RW	1: Another next page desired	0
			0: No other next page to send	
7.14	Reserved	RO	1: A fault has been detected via the Parallel Detection	0
			function	
			0: No fault has been detected via the Parallel Detection	
			function	
7.13	Message Page	RW	1: Message page	1
7.12	Acknowledge 2	RW	1: Local device has the ability to comply with the message received	0
			0: Local device has no ability to comply with the message received	
7.11	Toggle	RO	Toggle Bit.	0
7.[10:0]	Message/Unformatted Field	RW	Content of Message/Unformatted Page.	000000
				00001

8.9. Register 8: Auto-Negotiation Link Partner Next Page Ability

Table 23. Register 8: Auto-Negotiation Link Partner Next Page Ability

Reg.bit	Name	Mode	Description	Default
8.15	Next Page	RO	Received Link Code Word Bit 15.	0
8.14	Acknowledge	RO	Received Link Code Word Bit 14.	0
8.13	Message Page	RO	Received Link Code Word Bit 13.	0
8.12	Acknowledge 2	RO	Received Link Code Word Bit 12.	0
8.11	Toggle	RO	Received Link Code Word Bit 11.	0
8.[10:0]	Message/Unformatted Field	RO	Received Link Code Word Bit 10:0.	0

8.10. Register 9: 1000Base-T Control

Table 24. Register 9: 1000Base-T Control

Reg.bit	Name	Mode	Description	Default		
9.[15:13]	Test Mode	RW	Test Mode Select.	000		
			000: Normal mode			
			001: Test mode 1–Transmit waveform test			
			010: Test mode 2–Transmit jitter test in MASTER mode			
			011: Test mode 3–Transmit jitter test in SLAVE mode			
			100: Test mode 4–Transmitter distortion test			
			101, 110, 111: Reserved			
9.12	MASTER/SLAVE Manual	RW	1: Enable MASTER/SLAVE manual configuration	0		
	Configuration Enable		0: Disable MASTER/SLAVE manual configuration			
9.11	MASTER/SLAVE	RW	1: Configure PHY as MASTER during MASTER/SLAVE	1		
	Configuration Value		negotiation, only when 9.12 is set to logical one			
		-04	0: Configure PHY as SLAVE during MASTER/SLAVE			
			negotiation, only when 9.12 is set to logical one			
9.10	Port Type	RW	1: Multi-port device	1		
			0: Single-port device			
9.9	1000Base-T Full-Duplex	RW	1: Advertise PHY is 1000Base-T Full-Duplex capable	1		
	-		0: Advertise PHY is not 1000Base-T Full-Duplex capable			
9.8	1000Base-T Half-Duplex	RW	1: Advertise PHY is 1000Base-T Half-Duplex capable	0		
	•		0: Advertise PHY is not 1000Base-T Half-Duplex capable			
9.[7:0]	Reserved	RW	Reserved.	0		

8.11. Register 10: 1000Base-T Status

Table 25. Register 10: 1000Base-T Status

Reg.bit	Name	Mode	Description	Default
10.15	MASTER/SLAVE	RO/LH/	1: MASTER/SLAVE configuration fault detected	0
	Configuration Fault	SC	0: No MASTER/SLAVE configuration fault detected	
10.14	MASTER/SLAVE	RO	1: Local PHY configuration resolved to MASTER	0
	Configuration Resolution		0: Local PHY configuration resolved to SLAVE	
10.13	Local Receiver Status	RO	1: Local receiver OK	0
			0: Local receiver not OK	
10.12	Remote Receiver Status	RO	1: Remote receiver OK	0
			0: Remote receiver not OK	
10.11	Link Partner 1000Base-T	RO	1: Link partner is capable of 1000Base-T Full-Duplex	0
	Full-Duplex		0: Link partner is not capable of 1000Base-T Full-Duplex	
10.10	1000Base-T Half-Duplex	RO	1: Link partner is capable of 1000Base-T Half-Duplex	0
			0: Link partner is not capable of 1000Base-T Half-Duplex	
10.[9:8]	Reserved	RO	Reserved.	0
10.[7:0]	Idle Error Count	RO/SC	Idle Error Counter.	0
			The counter stops automatically when it reaches 0xFF.	

8.12. Register 13: MMD Access Control Register

Table 26. Register 13: MMD Access Control Register

Reg.bit	Name	Mode	Description	Default
13.[15:14]	Function	RW	13.[15:14]	0
			00: Address	
		-06	01: Data, no post increment	
			10: Data, post increment on read and writes	
			11: Data, post increment on writes only	
13.[13:5]	Reserved	RW	Write as 0, ignore on read	0
13.[4:0]	MMD DEVAD	RW	Device address	0

8.13. Register 14: MMD Access Address Data Register

Table 27. Register 14: MMD Access Address Data Register

Reg.bit	Name	Mode	Description	Default
13.[15:10]	MMD Address Data		If 13.[15:14] = 00, MMD DEVAD's address register. Otherwise, MMD DEVAD's data register as indicated by	0
			the content of its address register	

8.14. Register 15: Extended Status

Table 28. Register 15: Extended Status

Reg.bit	Name	Mode	Description	Default
15.15	1000Base-X Full-Duplex	RO	1: 1000Base-X Full-Duplex capable	0
			0: Not 1000Base-X Full-Duplex capable	
15.14	1000Base-X Half-Duplex	RO	1: 1000Base-X Half-Duplex capable	0
			0: Not 1000Base-X Half-Duplex capable	
15.13	1000Base-T Full-Duplex	RO	1: 1000Base-T Full-Duplex capable	1
			0: Not 1000Base-T Full-Duplex capable	
15.12	1000Base-T Half-Duplex	RO	1: 1000Base-T Half-Duplex capable	0
			0: Not 1000Base-T Half-Duplex capable	
15.[11:0]	Reserved	RO	Reserved.	0

for Grandstream

9. Electrical Characteristics

9.1. Absolute Maximum Ratings

WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device reliability may be affected. All voltages are specified reference to GND unless otherwise specified.

Table 29. Absolute Maximum Ratings

Parameter	Min	Max	Units
Junction Temperature (Tj)	-	+125	°C
Storage Temperature	-45	+125	°C
DVDDIO, AVDDH Supply Voltage Referenced to GND	GND-0.3	+3.63	V
DVDDL, AVDDL, SVDDL, PLLVDDL Supply Voltage Referenced to GND	GND-0.3	+1.21	V
Digital Input Voltage	GND-0.3	VDDIO+0.3	V

9.2. Operating Range

Table 30. Operating Range

Parameter	Min	Тур	Max	Units
Ambient Operating Temperature (Ta)	0	-	70	°C
DVDDIO, AVDDH Supply Voltage Range	3.135	3.3	3.465	V
DVDDL, AVDDL, SVDDL, PLLVDDL Supply Voltage Range	1.05	1.1	1.2	V
for Grand	ds	tre	ea	

9.3. Power Consumption

Table 31. XSGMII Mode Power Consumption

Parameter	Symbol	Min	Тур	Max	Units			
System Idl)							
Power Supply Current for VDDH	$I_{DVDDIO}, I_{AVDDH}, I_{SVDDH}$	-	35	1	mA			
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	ı	411	ı	mA			
1000Base-T Activ	e (8 1000base-T Ports are in link-u	ıp state)						
Power Supply Current for VDDH	$I_{DVDDIO}, I_{AVDDH}, I_{SVDDH}$	-	452	1	mA			
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	-	1583	-	mA			
EEE 1000Base-T Lin	EEE 1000Base-T Linkup (8 1000base-T Ports are in link-up state)							
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	ı	36		mA			
Power Supply Current for VDDL I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}		-	532	-	mA			
100Base-TX Activ	up state)							
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	-	150	-	mA			
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL})ı	646	1	mA			
EEE 100Base-TX Lin	kup (8 100base-TX Ports are in li	nk-up sta	te)					
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	-	34	-	mA			
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	1	490	-	mA			
10Base-T Activ	e (8 10base-T Ports are in link-up	state)						
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	-	319	-	mA			
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	-	450	-	mA			
	DVDDIO=3.3V							
TTL Input High Voltage	$V_{ m IH}$	2.0	I	-	V			
TTL Input Low Voltage	$V_{ m IL}$	1	<u>a</u> 1	0.7	V			
Output High Voltage	V_{OH}	2.7		-	V			
Output Low Voltage	V_{OL}	L - \	5	0.6	V			

Note: DVDDIO=3.3V, AVDDH=3.3V, DVDDL=1.10V, AVDDL=1.10V, SVDDL=1.10V.

Table 32.QSGMII Mode Power Consumption

Parameter	Symbol	Min	Тур	Max	Units				
Syster	System Idle (All ports are in link-down state)								
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	-	40	-	mA				
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	-	548	-	mA				
1000Base-T A	Active (8 1000base-T Ports are in link-	up state)							
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	-	468	-	mA				
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	-	1665	-	mA				
EEE 1000Base-T	Linkup (8 1000base-T Ports are in li	nk-up stat	te)						
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	-	40	-	mA				
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	-	664	-	mA				
100Base-TX Active (8 100base-TX Ports are in link-up state)									
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	-	155	-	mA				
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	-	781	-	mA				
EEE 100Base-TX	K Linkup (8 100base-TX Ports are in li	nk-up sta	ite)						
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}		40	_	mA				
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	-	621	-	mA				
10Base-T A	Active (8 10base-T Ports are in link-up	state)							
Power Supply Current for VDDH	I _{DVDDIO} , I _{AVDDH} , I _{SVDDH}	-	315		mA				
Power Supply Current for VDDL	I _{DVDDL} , I _{AVDDL} , I _{SVDDL} , I _{PLLVDDL}	-	607	A -	mA				
	DVDDIO=3.3V								
TTL Input High Voltage	V_{IH}	2.0	-	-	V				
TTL Input Low Voltage	V _{IL}	-	-	0.7	V				
Output High Voltage	V_{OH}	2.7	-	-	V				
Output Low Voltage	V_{OL}	1 :-	-	0.6	V				

Note: DVDDIO=3.3V, AVDDH=3.3V, DVDDL=1.10V, AVDDL=1.10V, SVDDL=1.10V.

9.4. IEEE 10/100/1000Base-T Specifications

Table 33. IEEE 10/100/1000Base-T Specifications

Parameter	Min	Тур	Max	Units
1000Base-T				
Peak Voltage of Point A	670	724.5	820	mV
Peak Voltage of Point B	670	726.0	820	mV
Difference between the Peak Voltage of Point A and Point B	-	0.467	1	%
Difference between the Peak Voltage of Point C and 0.5 Times the Average of the Peak Voltage of Points A and B	-	0.47	2	%
Difference between the Peak Voltage of Point D and 0.5 Times the Average of the Peak Voltage of Points A and B	-	0.66	2	%
Droop of Point G	73.1	85.4	-	%
Droop of Point J	73.1	826	-	%
Transmitter Distortion	-	8.5	10	mV
Common Mode Output Voltage	1	46.4	50	mV
100Base-TX				
Peak Voltage (+Vout)	950	1017	1050	mV
Peak Voltage (-Vout)	-950	-1017	-1050	mV
Amplitude Symmetry	0.98	1.001	1.02	-
Rise Time (+Vout)	3	3.56	5	ns
Rise Time (-Vout)	3	3.51	5	ns
Fall Time (+Vout)	3	3.54	5	ns
Fall Time (-Vout)	3	3.48	5	ns
Rise/Fall Symmetry (+Vout)	-	70.2	500	ps
Rise/Fall Symmetry (-Vout)	-	70.1	500	ps
Overshoot (+Vout)	1	-0.8	5	%
Overshoot (-Vout)	,	1.1	5	%
Transmit Jitter (+Vout)	-	0.62	1.4	ns
Transmit Jitter (-Vout)	ı	0.61	1.4	ns
Distortion (Duty Cycle)	-	80	500	ps
10Base-T				
Link Pulse Timing	8	16	24	ms
Differential Voltage	2.2	2.57	2.8	V
Peak-to-Peak Normal Jitter with Cable	ı	1.7	11	ns
Peak-to-Peak 8.0 BT Jitter with Cable	-	8.2	22	ns
Peak-to-Peak 8.5 BT Jitter with Cable	-	11.73	22	ns
Peak-to-Peak Normal Jitter without Cable	-	0.9	16	ns
Peak-to-Peak 8.0 BT Jitter without Cable	-	1.2	40	ns
Peak-to-Peak 8.5 BT Jitter without Cable	1	1.3	40	ns
Common Mode Output Voltage	1	23.55	50	mV

9.5. XSGMII Characteristics

9.5.1. XSGMII Differential Transmitter Characteristics

Table 34. XSGMII Differential Transmitter Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Notes
UI	Unit Interval	-	97	-	ps	-
$V_{TX\text{-DIFFp-p}}$	Output Differential Voltage	400	-	900	mV	-
T_{J}	Output Jitter	-	-	0.28	UI	-
R_{TX}	Differential Resistance	-	100	-	ohm	-

9.5.2. XSGMII Differential Receiver Characteristics

Table 35. QSGMII Differential Receiver Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Notes
UI	Unit Interval	-	97	-	ps	-
$V_{RX ext{-DIFF}p ext{-}p}$	Input Differential Voltage	200	-	950	mV	-
R_{RX}	Differential Resistance	-	100	-	ohm	

9.5.3. **OSGMII Differential Transmitter Characteristics**

Table 36 QSGMII Differential Transmitter Characteristics

Parameter	Symbol	Min	Тур	Max	Units
Unit Interval	UI	199.94	200	200.06	ps
Output Offset Voltage	VTX-OFFSET	600	800	1000	mV
Output Differential Voltage	VTX-DIFFp-p	400	700	900	mV
Output Total Jitter	T_TJ	-	-	0.35	UI

9.5.4. **QSGMII Differential Receiver Characteristics**

Table 37 QSGMII Differential Receiver Characteristics

Parameter	Symbol	Min	Тур	Max	Units
Unit Interval	UI	199.94	200	200.06	ps
Input Differential Voltage	$V_{RX ext{-DIFF}p ext{-}p}$	200	-	950	mV
Differential Resistance	R_{RX}	-	100	-	ohm

9.6. XTALI Clock Characteristics

Table 38. XTALI Clock Characteristics

Parameter	Min	Тур	Max	Units
Frequency of XTALI	-	25	-	MHz
Frequency Tolerance of XTALI	-50	-	+50	ppm
Duty Cycle of XTALI	40	-	60	%
Rise Time of XTALI	-	-	12.5	ns
Fall Time of XTALI	-	-	12.5	ns

Note: PLL generated clocks are not recommended as input to XTALI since they can have excessive jitter. Zero delay buffers are also not recommended for the same reason.

9.7. Power and Reset Characteristics

Figure 16. Power and Reset Characteristics

Table 39. Power and Reset Characteristics

Parameter	SYM	Description/Condition	Type	Min	Typical	Max	Units
Reset Delay Time	t1	The duration from 'all power steady' to the reset signal released to high	I	10	-	-	ms
Reset Low Time	t2	The duration of reset signal remaining low time before issuing a reset to the RTL8218D		10	-	-	ms
VDDL Power Rise Settling Time	t3	DVDDL, AVDDL, and SVDDL power rise settling time	I	1	-	-	ms
VDDH Power Rise Settling Time	t4	DVDDIO, and AVDDH power rise settling time	I	1	-	-	ms

9.8. MDC/MDIO Interface Characteristics

The RTL8218D supports the IEEE compliant Management Data Input/Output (MDIO) Interface. This is the only method for the MAC to acquire the status of the PHY. The MDIO is a bi-directional signal that can be sourced by the Master or the Slave. In a write command, the master sources the MDIO signal. In a read command, the slave sources the MDIO signal.

- The timing characteristics t1, t2, and t3 (Figure 17) of the Master (MAC) are provided by the Master when the Master sources the MDIO signal (Write command)
- The timing characteristics t4 (Figure 18) of the Slave (RTL8218D) are provided by the RTL8218D when the RTL8218D sources the MDIO signal (Read command)

Figure 17. MDIO Sourced by Master (MAC)

Figure 18. MDIO Sourced by RTL8218D (Slave)

Table 40. MDIO Timing Characteristics and Requirement

Parameter	SYM	Description/Condition	Type	Min	Typical	Max	Units
MDC Clock Period	t1	Clock Period	I	125	ı	ı	ns
MDIO to MDC Rising Setup Time (Write Data)	t2	Input Setup Time	I	10	-	-	ns
MDIO to MDC Rising Hold Time (Write Data)	t3	Input Hold Time	I	10	-	-	ns
MDC to MDIO Delay Time (Read Data)	t4	Clock (Rising Edge) to Data Delay Time	О	20	ı	100	ns

9.9. LED Characteristics

9.9.1. Serial LED Timing

Figure 19. Serial LED Timing

Table 41. Serial LED Timing

Symbol	Description	Min	Тур	Max	Units
T1	Serial LED Clock Cycle Time	-	192		ns
T2	Serial LED Clock On/Off Duration		6.82	- /	us
T3	Serial LED Burst Cycle Time		32	1 -/-	ms

CONFIDE TO THE STREAM FOR Grandstream

10. Thermal Characteristics

10.1. Assembly Description

Table 42. Assembly Description

Package	Туре	E-Pad LQFP-128					
	Dimension (L×W)	14×20mm					
	Thickness	1.4mm					
PCB	PCB Dimension (L×W)	273×156.6mm					
	PCB Thickness	1.6mm					
	Number of Cu Layer-PCB	4-Layer (2S2P)					
Heat Sink	-	35.8 x 35 x 28 mm ³					

10.2. Material Properties

Table 43. Material Properties

Item		Material	Thermal Conductivity K (W/m-k)
Package Die		Si	147
	Silver Paste	1033BF	1.0
	Lead Frame	CDA7025	168
	Mold Compound	G631	0.9
PCB		Cu	400
		FR4	0.2

10.3. Simulation Conditions

Table 44. Simulation Conditions

Input Power	3.1W
Test Board (PCB)	4L (2S2P)
Control Condition	Air Flow = 0m/s

10.4. Thermal Performance of E-Pad LQFP-128 on PCB under Still Air Convention

Table 45. Thermal Performance of E-Pad LQFP-128 on PCB under Still Air Convention

PCB Layer	$ heta_{ m JA}$	$\theta_{ m JC}$	$\Psi_{ m JT}$
4L PCB	14.3	7.3	3.3

10.5. Thermal Performance of E-Pad LQFP-128 with External Heat-Sink on PCB under Natural Convention

External Heat-Sink size: 100 x 24.5 x 20.3 mm³

Table 46. Thermal Performance of E-Pad LQFP-128 with External Heat-Sink on PCB under Natural Convention

PCB Layer	$ heta_{ m JA}$	$\theta_{ m JC}$	$\Psi_{ m JT}$	$\Psi_{ m JB}$
4L PCB	10.7		6.2	8.5

Note:

 θ_{JA} : Junction to ambient thermal resistance.

 Ψ_{JT} : Junction to top center of package thermal characterization.

 Ψ_{JB} : Junction to bottom surface center of PCB thermal characterization.

Grandstream

11. Mechanical Dimensions

11.1. LQFP-128 E-PAD Package

11.2. Mechanical Dimensions Notes

Symbol		Dimension in mn	1	I	Dimension in incl	ı	
	Min	Nom	Max	Min	Nom	Max	
A			1.60			0.063	
A_1	0.05		0.15	0.002		0.006	
A_2	1.35	1.40	1.45	0.053	0.055	0.057	
b	0.17	0.2	0.27	0.007	0.009	0.011	
D	22.00 BSC			0.866 BSC			
D_1		20.00 BSC		0.787 BSC			
D_2/E_2	5.6	6.55	7.50	0.220	0.258	0.295	
Е		16.00BSC		0.630BSC			
E_1		14.00BSC			0.551BSC		
e	0.50BSC				0.020BSC		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00 REF			0.039 REF		

Note 1: CONTROLLING DIMENSION: MILLIMETER (mm).

Note 2: REFERENCE DOCUMENT: JEDEC MS-26.

12. Ordering Information

Table 47. Ordering Information

Part Number	Package	Status
RTL8218D-CG	LQFP-128 EPAD Green Package	Mass Production

Note: See page 8 for package identification information.

Realtek Semiconductor Corp. Headquarters

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel: +886-3-578-0211 Fax: +886-3-577-6047 www.realtek.com