

DEPARTAMENTO DE FORMACIÓN BÁSICA FÍSICA

HOJA DE TRABAJO 05 ACELERACIÓN Y CLASIFICACIÓN DEL MOVIMIENTO

PREGUNTAS

Aceleración y clasificación de movimiento

- De los siguientes enunciados, señale la afirmación correcta:
 - a) siempre que la aceleración es constante, la trayectoria es rectilínea
 - b) siempre que la aceleración es variable, la trayectoría es curvilínea
 - c) si el ángulo formado entre la velocidad y la aceleración es obtuso, el movimiento de la partícula es uniforme
 - d) si el ángulo formado entre la velocidad y la aceleración es agudo, el movimiento de la partícula es retardado
 - e) si el ángulo formado entre la velocidad y la aceleración es obtuso, el movimiento de la particula es retardado
- 2. La figura muestra cuatro trayectorias que podria tomar una partícula que se desplaza con rapidez constante v. Clasifiquelas de manera descendente de acuerdo con la magnitud de la aceleración que experimentaria: al momento que está pasardo por la curuca

b)
$$a_3 > a_4 > a_1 > a_2$$

c)
$$a_1 > a_4 > a_2 > a_3$$

d)
$$a_2 > a_3 > a_1 > a_4$$

e)
$$a_2 > a_3 > a_4 > a_1$$

- 3. Un satélite artificial orbita alrededor de la Tierra a lo largo de una circunferencia con rapidez constante. Entonces su:
 - a) velocidad es constante
 - b) aceleración es constante
 - c) aceleración es variable en magnitud y constante en dirección
 - d) aceleración es variable en dirección y constante en magnitud
 - e) aceleración es nula
- 4. Si la dirección de la aceleración tangencial de una particula apunta a favor de su velocidad, entonces necesariamente su rapidez:
 - a) aumenta
 - b) disminuye
 - c) aumenta y luego disminuye
 - d) disminuye y luego aumenta
 - e) no se puede determinar
- 5. De los siguientes enunciados, señale la afirmación correcta:
 - a) si |a_T| es constante y diferente de cero, el movimiento es uniforme
 - b) si |a_T| es constante y diferente de cero, el movimiento es uniformemente variado
 - c) si |at aumenta, el movimiento es acelerado
 - d) si |a7| disminuye, el movimiento es retardado
 - e) si lat es cero, el movimiento es variable

DEPARTAMENTO DE FORMACIÓN BÁSICA FÍSICA

- Una partícula se mueve con rapidez constante v a lo largo de la trayectoria de la figura. Entones, es correcto afirmar que la:
 - a) a y a son constantes
 - b) $\overrightarrow{a_T}$ es variable y $\overrightarrow{a_N}$ es constante
 - c) $\overline{a_T}$ y $\overline{a_N}$ son variables
 - d) ar es variable y an es nula
 - e) at es nula y an es variable

PROBLEMAS

Aceleración y clasificación del movimiento

 Una particula que se desplaza a lo largo del eje x tiene una velocidad que viene dada por la función $\vec{v} = (4t^2 - 32)\vec{1}$ m/s, donde t es el tiempo y está en segundos. Determine la aceleración media de la partícula para el intervalo de 3 a 5 s.

R: 32 i m/s2

Una partícula se mueve a lo largo de una circunferencia, como se indica en la figura. Determine la aceleración media del movimiento para el intervalo de 0 a 2 s. Considere que $v_0 = 20$ m/s y $v_2 = 60 \, \text{m/s}.$

R: $11.21\vec{i} - 21.21\vec{i}$ m/s²

3. Una partícula se mueve a lo largo de una circunferencia de 10 m de radio. En un instante dado. su rapidez es de 50 m/s y la magnitud de su aceleración tangencial es de 2,5 m/s2. Para dicho instante, determine el ángulo θ, formado la aceleración y su componente normal.

R: 0,57°

 Una partícula se mueve sobre una pista curvilinea. Al instante t = 3 s, experimenta una rapidez de 1 m/s que aumenta 2 m/s en cada segundo. Determine la magnitud de la aceleración a los 6 s, si en este instante el radio de curvatura de la trayectoria es de 10 m.

R:5,29 m/s2

- Una partícula describe una trayectoria curvilínea con aceleración constante de 30 1 − 60 k m/s². En el instante en que su velocidad es $\vec{v} = -30\vec{t} - 40\vec{k}$ m/s determine:
 - a. el ángulo que forman la velocidad y la aceleración (R: 63,43°)
 - b. el tipo de movimiento (R: curvilineo variado acelerado)
- 6. En cierto instante una partícula experimenta una aceleración $\vec{a} = -4\vec{\imath} 2\vec{\jmath}$ m/s² y su unitario tangencial es $\frac{\sqrt{3}}{2}\vec{i} + \frac{1}{2}\vec{j}$. Determine:
 - a. el ángulo que forman la velocidad y la aceleración (R: 176,56°)
 - b. el tipo de movimiento (R: curvilineo variado retardado)

DEPARTAMENTO DE FORMACIÓN BÁSICA FÍSICA

Problemas adicionales: proyección de la aceleración sobre la velocidad

7. Una partícula se mueve por el plano xy en sentido horario a lo largo de una circunferencia con centro en el origen. En el instante t = 0 s, pasa por la posición -3 î+4 j m con una aceleración de 8 î+3 j m/s². Determine las componentes tangencial y normal de la aceleración de la particula en ese instante.

$$R: \overrightarrow{a_T} = 6,56 \vec{i} + 4,92 \vec{j} \text{ m/s}^2$$

 $\overrightarrow{a_N} = 1,44 \vec{i} - 1,92 \vec{j} \text{ m/s}^2$

- 8. Para cierto instante, la velocidad de una partícula es $\vec{v} = -4\vec{i} + 2\vec{j} \vec{k}$ m/s y su aceleración es $\vec{a} = 8\vec{i} 2\vec{j} + 9\vec{k}$ m/s². Determine:
 - a. el ángulo entre \vec{v} y \vec{a} y el tipo de movimiento que experimenta ($R: 143,56^\circ$; curvilíneo variado retardado)
 - b. la aceleración tangencial, en términos del unitario tangencial ($R: -9.82 \, \overrightarrow{u_T} \, \text{m/s}^2$)
 - c. la aceleración, en términos de los unitarios tangencial y normal $(R: -9.82 \,\overline{u_T} + 7.25 \,\overline{u_N} \,\mathrm{m/s^2})$
 - d. la aceleración tangencial, en términos de los vectores base $(R:-8,57i-4,28j+2,14\vec{k}\text{ m/s}^2)$
 - e. la aceleración normal, en términos de los vectores base $(R: -0.57i + 2.28j + 6.85k \text{ m/s}^2)$
 - f. el radio de curvatura de la trayectoria en este punto (R: 2,89 m)

Para cierto in	nstante, la relocidad de	una partícula es $\vec{v} = -41 + 2\vec{j}$
[m/s] 4 Du	accleración es a=81	-23 +9k [m/s2] Determine
El angulo	entre y à y el tipo	de marimiento que experiment
		G VG a
$V = \Delta Y = \Delta t$	-42 + 23 - k [m/s]	$\omega ns \theta_{\vec{v}\vec{a}} = \frac{v \Theta \vec{a}}{ \vec{v} \vec{a} }$
ci di A	v 87-924 GB [m/s]	A (cn - 45
$\Delta t \rightarrow 0$ Δ	iv = 8i-2j+9k [m/s²]	0-2 - cn -45 55,90
171=4,58	[mls]	$\{\theta_{\vec{v}\vec{a}} = 143, 61\}$
a = 12,20	Tm/s27	
141-12,20	Hor. Cu	rvelineo Retardado.
La acelerac	ion targencial, en terr	nina del unitario tangencial
1 1 1 1 1		
\vec{v} = \alpha\)	$r = (\vec{a} \circ \vec{v}) \vec{v} = -45$	(4,58)2 [m2/52]
ā	$\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	58î -4,29j + 2,15k [mls2]
		83 [m/s] 9,837 [m/s]
9	11 1	
	$V_{\vec{a}_{1}} = C$	7,871 - 0,44y - 0,22k
		s unitarios tangencial y norm
) Lici aceleia	xcis+1 on reditional are sa	35 phasius asigericas y ribiria
10.1-1	$ \vec{c} ^2 - \vec{c}_7 ^2 = \sqrt{0}$	$2.201^2 - (-9.83)^2 = 7.23 [m]$
$\vec{a} = -9.8$	33+7,23 [m/s]	ninos de la rectores base
Proceedings	Tr Th	nivez de la rectara la co
u_{τ}	-8,572-4,23+9,141	C TUS

