Assignment No.9.

	ADT
	Title: To implement set of ADT. Title: To implement set of ADT.
	Title: To implement set of The ADT. Aim: To learn & implement set of ADT. Problem statement: To create ADT that implement SET CONCEPT Problem statement: To create ADT that implement SET CONCEPT
	Problem statement: 10 reare 112
	(uge array 1 LL) (uge array 1 LL) a) add (new element) place value in set.
	a) add thew every
	b) remove element 3 seath element
	d) six of 81+
	e) intersection of two set
	e) intersection or red
	D difference of two set
-	g) différence vi
	b) Subset.
	Objective: 1) To Jean the SET of ADT & unbalanced understand
	Objective: 1) To learn the SE Cy ADI & was a signer
	its different applications.
	ii) To implement the concept sol
	linked list.
	Theory:
	of different element
-	· SET: A get is an unordered collection of different element
-	of cet cap be will and xxxiii
	element using set brackets.
	Set of all tre numbers.
-	Personal alian of sel =
	Representation of set:
-	i) Roagter form ii) Set-builder form.
-	ii) Set-by love torm.

	1) Tabular form = R.g. set of yowels S = 2 a', e', 'i', o', u' 3
	ii) Set -buildre form: e-g. \(\xi \) \(\xi
	17 70 272 (1
•	Types of set: 3) finite = A set which contain definite number of is called finite set.
	i) in-linite: A set which roptain infinite pumber of in-linite: A set which roptain infinite pumber of infinite set
9	element is raised infinite set e-g set of natural number
	Operations on sets:
75 1-1	1) classorte from 84+1 & 88+2
4,	e-g) Set 1 = \(\langle \langl
	Union = { 10, 20, 30, 40, 50, 60}
	i) Intersection: It contain common element in botto e-g. 8et 1 = 510, 20,303 8et 2 = \$20,30,40,50]
	10ta 1 tt 51015
	alive true.

intersection = {20,303

3) difference:

it return the element which in set one byt not

in 8et 2.

e.g.:- set 1 = \(\(\tau_{1} \) \(

Subset:

it return true if duta from 8etA & from B are

Same.

e.g. set1 = {10,20,303

set 11 is subset of setz.

Algorithms :

i) To add an element :

step 1:) check the size of set with max if it is true
return set is full

9819

ingret data into array

data [++ size] = Rlement

step 2:) return true.

2) deletion Step 1:) Start step 2.) if size of anay is -1
print "underflow" else for (i:= o ton) if (datali)== element) perform shift to the last index its continue Step 3:) decrement size by 1. Step 4.) END 3) intersection = step 1:) Iniltiatize flag = 0 step 25 reate another empty set. step 3:) while (set 1 is not empty) while (set 2 is not empty) if (data [set1] == data [set2]) inxet dota in set 3 break end while end while return set 3

inscet data (Set 1) in sel 3 end it end while Step 4:) END 6) - Scarch : Step 1:) initialize flag to 0. Step 2:) Let element to be seazihed x. step 3.) for (i= o tan) if dota(i) == x flag=1
break end if end for step 4.) if (flag = = 1) Not found Step 5:) Stop. 7) subset :-Step 1:) initiolix flag=0 step 2:) while (Set I is not empty)
while (Set I is not empty) if (dota (i) = = data (j) flug = 1

	CIASSMATE
Ī	Date:
١	Page:

end if end while and while

if (flag=1) int flag ++

step 3:) if (flag == size of set 1) return true

else

redum false

Step 4:) END

· Application of time complexity:

Amany mathematical concepts can be defined through SETS.

H) In structures like graphs, manifolds, rings & vertor

spaces, SETS are used.

iii) Theory of mathematical relation can be described in set

Union-intersection_difference-subsets => o(n)

-analysion:

· Set ADT are type of abstract data type that allow you to store a list of non-repeated value unlike array set are unimexed & unordered. So through the assignment we have implemented SET as ADT.