

Controllable Music Generation via Factorized Representation of Pitch and Rhythm

Code Repo

Ke Chen¹, Cheng-I Wang², Taylor Berg-Kirkpatrick¹, Shlomo Dubnov¹

¹University of California San Diego ² Smule Inc.

What is Music SketchNet?

The Music SketchNet is a model that allows users to specify partial music ideas, namely rhythm and pitch contour, in the process of music composition.

The Music SketchNet is constructed in a context completion scenario:

- Given past and future contexts. it allows to generate the missing middle measures.
- Users can specify <u>rhythm</u> and <u>pitch contour</u> in the missing measures.
- The model will try to meet the user's specifications in the generation in specific musical style.

The Pipeline and Components

The Music SketchNet has:

- The SketchVAE
- The SketchInpainter
- The SketchConnector

I. SketchVAE Convert a single measure to a latent code with the disentangled pitch part and the rhythm part. $D_5 A_4 A_4 A_4 B_4 C_5 G_4$ Rhythm Encoder Q_τ Pitch Encoder Q_{θ} Pitch Tokens D₅ A₄ A₄ A₄ B₄ C₅ G₄ -0_0_0_000___0_

III. SketchConnector

Finalize the generation from the SketchInpainter. Simulate the user controls by random unmasking.

D₅ _ A₄ _ A₄ _ A₄ B₄ C₅ _ _ _ G₄ _

Output Melody Tokens

II. SketchInpainter

Predict the missing middle measures based on the previous and future contexts in the latent space. Separate the prediction process: rhythm -> rhythm; and pitch -> pitch.

Generation Demos

(1) Original folk song. (2) Generation with specifications in pitch contour. (3) Generation with specifications in rhythm pattern. (4) Generation with both specifications.

Experiments

(1) The reconstruction performance comparison among existing models in three test sets.

Irish-		Irish-Test	Test Irish-Test-R			R	Irish-Test-NR		
Model	loss↓	pAcc ↑	rAcc ↑ loss	s \prip pA	Acc↑	rAcc ↑ los	s↓ pAcc↑	rAcc ↑	
Music InpaintNet	0.662	0.511	0.972 0.3	12 0	0.636	0.975 0.9	97 0.354	0.959	
SketchVAE + InpaintRNN	0.714	0.510	0.975 0.4	73 0	.619	0.981 1.0	75 0.374	0.964	
SketchVAE + SketchInpainter	0.693	0.552	0.985 0.2	95 0	0.692	0.991 1.0	02 0.389	0.977	
SketchNet	0.516	0.651	0.985 0.2	06 0	.799	0.991 0.7	83 0.461	0.977	

(2) The subjective listening test with three criteria.

Model	Complexity [↑]	Structure [†]	Musicality [↑]
Original	3.22	3.47	3.56
InpaintNet	2.98	3.01	3.09
SketchNet	3.04	3.29	3.26

(3) Virtual control test (details in paper)

Control Info.	Rhythm	Pitch
Pitch Acc.	0.189	0.881
Rhythm Acc.	0.973	0.848

Conclusion

- A new model for controllable music generation.
- Three components for different tasks in the generation pipeline.
- Both objective and subjective experiments in evaluating generations.
- Broader potential applications with music latent variables.