Examenul național de bacalaureat 2024 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(0,3+0,4)\cdot 10 + 2\cdot 0,5 = 0,7\cdot 10 + 1 =$	3p
	=7+1=8	2p
2.	f(1)=1	2p
	f(2)=3, de unde obținem $f(1)+f(2)=4$	3p
3.	2x+1=5, de unde obținem $2x=4$	3 p
	x = 2, care convine	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Numerele, din mulțimea A , care sunt divizibile cu 3 sunt 21, 51 și 81, deci sunt 3 cazuri favorabile, de unde obținem $p = \frac{3}{9} = \frac{1}{3}$	3 p
5.	$m = \frac{3+5}{2} =$	3 p
	= 4	2p
6.	AB = 12	3 p
	$P_{\Delta ABC} = AB + AC + BC = 48$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(1)) = \begin{vmatrix} 3 & 1 \\ 1 & 1 \end{vmatrix} = 3 \cdot 1 - 1 \cdot 1 =$	3 p
	=3-1=2	2p
b)	$A(1) + A(5) = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 11 & 1 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 14 & 2 \\ 2 & 6 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} 7 & 1 \\ 1 & 3 \end{pmatrix} = 2A(3)$	2p
c)	Inversa matricei $A(1)$ este matricea $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$	3p
	$X = \begin{pmatrix} 7 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix}$	2p
2.a)	$f(0) = 0^3 + m \cdot 0^2 + 2 \cdot 0 - 5 =$	3p
	=0+0+0-5=-5, pentru orice număr real m	2p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

	b)	$f(1) = 0 \implies 1^3 + m \cdot 1^2 + 2 \cdot 1 - 5 = 0$	3 p
		m-2=0, de unde obținem $m=2$	2p
	c)	$x_1 + x_2 + x_3 = -m$, $x_1x_2 + x_1x_3 + x_2x_3 = 2$	2p
		$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = m^2 - 4$, deci $m^2 - 4 = 5$ și, cum m este număr natural, obținem $m = 3$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{\left(x^2\right)' \cdot \left(x^2 + 1\right) - x^2 \cdot \left(x^2 + 1\right)'}{\left(x^2 + 1\right)^2} =$	2p
	$= \frac{2x(x^2+1)-x^2 \cdot 2x}{(x^2+1)^2} = \frac{2x}{(x^2+1)^2}, \ x \in \mathbb{R}$	3p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x^2 + 1} = \lim_{x \to +\infty} \frac{x^2}{x^2 \left(1 + \frac{1}{x^2}\right)} = 1$	3p
	Dreapta de ecuație $y=1$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Leftrightarrow x = 0, \ f'(x) \le 0$, pentru orice $x \in (-\infty, 0] \Rightarrow f$ este descrescătoare pe $(-\infty, 0]$;	3 p
	$f'(x) \ge 0$, pentru orice $x \in [0, +\infty) \Rightarrow f$ este crescătoare pe $[0, +\infty)$	2p
2.a)	$\int_{0}^{1} \frac{f(x)}{x+1} dx = \int_{0}^{1} e^{x} dx = e^{x} \Big _{0}^{1} =$	3р
	=e-1	2p
b)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} e^{x} (x+1) dx = e^{x} (x+1) \Big _{0}^{1} - \int_{0}^{1} e^{x} dx = e^{x} (x+1) \Big _{0}^{1} - e^{x} \Big _{0}^{1} =$	3 p
	=2e-1-e+1=e	2p
c)	$\int_{1}^{a} \frac{2xf(x^{2})}{x^{2}+1} dx = \int_{1}^{a} 2xe^{x^{2}} dx = \int_{1}^{a} e^{x^{2}} (x^{2})' dx = e^{x^{2}} \begin{vmatrix} a \\ 1 \end{vmatrix} = e^{a^{2}} - e$	3 p
	$e^{a^2} - e = e(e^3 - 1) \implies e^{a^2} = e^4$ şi, cum $a > 1$, obţinem $a = 2$	2p