8th Lecture Computer Networks

Dr. Christian Baun

Fachhochschule Frankfurt am Main University of Applied Sciences Faculty of Computer Science and Engineering wolkenrechnen@gmail.com

Agenda for Today

- Data link layer (part 3)
 - Media access control methods
 - Media access control method of Ethernet
 - Media access control method of WLAN
 - Address resolution with ARP

Data Link Layer

- Functions of the data link layer
 - Pack packets of the network layer into frames
 - Break the bit stream of the physical layer into frames
 - Ensure correct transmission of the frames inside a physical network from one network device to another one via error detection with checksums
 - Provide physical addresses (MAC addresses)
 - Control access to the transmission medium

- Devices: Bridge, Layer-2-Switch (Multiport-Bridge)
- Protocols: Ethernet, Token Ring, WLAN, Bluetooth

Media Access Control Methods

- With Ethernet and WLAN the network devices or stations use a shared transmission medium
- To coordinate media access and to avoid collisions, media access control methods are required
 - Ethernet uses the media access control method CSMA/CD
 - WLAN uses the media access control method CSMA/CD
- Bluetooth is not discussed here, because Bluetooth devices are organized in **piconets**
 - In each piconet, the master coordinates a media access

Media Access Control Method CSMA/CD

- In contrast to Token Ring, for Ethernet it's impossible to clearly predict the waiting time and amount of data that can be transmitted
- All participants are related to the medium access in direct competition
- The Waiting time and amount of data depend on the number of participants and the amount of data which is send by the individual participants
- Ethernet uses the media access control method "Carrier Sense Multiple Access / Collision Detection" (CSMA/CD)

Meaning of CSMA/CD

Carrier Sense (CS) means:

- Each network device monitors the channel before transmitting, and it only transmits when the channel is free
- This means that the network devices can distinguish between a free and a busy connecting cable

• Multiple Access (MA) means:

 All network devices access the same transmission medium in a competitive way

Collision Detection (CD) means:

 Each network device also monitors the channel during transmission, in order to detect collisions as early as possible and to perform error handling when needed

Image source: http://www.payer.de/cmc/cmcs08.htm

Functioning of CSMA/CD (1/2)

Image source: Wikipedia

- If a network device wants to transmit frames via Ethernet, it operates according to the following sequence
- Monitor the transmission medium
 - Transmission medium is free \Longrightarrow step 2
 - $\bullet \ \, \text{Transmission medium is busy} \Longrightarrow \text{step 3}$
- Start transmission and continue to monitor the transmission medium
 - Successful transmission
 - Send success message to upper network layers ⇒ step 5
 - Collision is detected
 - Stop frame transmission and send the 48 bit long (jam signal) to announce the collision ⇒ step 3

Functioning of CSMA/CD (2/2)

- Transmission medium is busy. Check the number of transmission attempts:
 - Maximum not yet reached
 - ullet Wait a random time \Longrightarrow step 1
 - The random time is calculated using the backoff method
 - Maximum is reached ⇒ step 4
- Error
 - Maximum number of transmission attempts reached
 - Send error message to upper network layers ⇒ step 5
- Leave transmission mode

Image source: Wikipedia

Example of CSMA/CD

Network Size and Collision Detection

- A collision must be detected by the sender
- It is important that the transmission of a frame is not completed when a collision occurs
 - Otherwise, the network device might already be finished with the transmission and believes the transmission was successful
- Each frame must have a certain minimum length
 - It must be dimensioned in a way that the transmission duration for a frame with minimum length does not fall below the maximum RTDT (round trip delay time)
 - The RTDT is the time it takes for a frame to travel from one end of the network to the most distant end and return back
- This ensures that a collision reaches the sender before it's transmission is finished
 - If a sender detects a collision, it knows that it's frame has not arrived correctly at the receiver, and can try the transmission again later

Minimum Frame Length and Collision Detection (Example)

- For Ethernet, a maximum network size, and a minimum frame length is defined
- The minimum frame length, where collision detection is still possible, is calculated as follows:

```
P=2*U*rac{D}{V}
P=0 Minimum frame length in bits
U=0 Data transmission speed of the transmission medium in bits per second (bps)
D=0 Network length in meters
V=0 Signal speed on the transmission medium in meters per second (mps)
```

- Calculation example for 10BASE5 with 10 Mbps and coaxial cables:
 - U = 10 Mbps = 10,000,000 bps
 - D = 2,500 meters (this is the maximum length for 10BASE5)
 - V = speed of light * velocity factor
 - Speed of light $c = 299,792,458 \, \text{mps}$
 - Velocity factor ABF = 0.77 for coaxial cables
 - $V = c * ABF \approx 231,000,000 \text{ mps}$

$$P=2*10*\frac{2500}{231}\approx~218~\mathrm{Bits}~\approx~28~\mathrm{bytes}$$

 this means that the minimum frame length of 64 bytes for Ethernet is more than enough

Velocity Factor (Wave Propagation Speed)

- The velocity factor, also known as wave propagation speed, depends on transmission medium and is:
 - 1 for the vacuum
 - 0.60 for twisted pair cables
 - 0.67 for optical fiber
 - 0.60 for coaxial cables
- Describes the speed of a signal on a transmission medium relative to the speed of light

Network Size and Collision Detection (Example)

 The maximum network size, where collision detection is still possible, is calculated as follows:

```
2*S_{max} = V*t_{frame} S<sub>max</sub> = Maximum network size with collision detection V = S_{int} = t_{frame} = t_{frame} S<sub>max</sub> = Maximum network size with collision detection V = S_{int} = t_{frame} = t_{frame
```

- Calculation example for 10BASE5 with 10 Mbps and coaxial cables:
 - $V = 231,000,000 \text{ mps } = 231 * 10^6 \text{ mps}$
 - Transmission duration $t_{frame} =$ Transmission duration for a single bit multiplied with the number of bits in a frame ($\Longrightarrow 512$ bit = 64 byte)
 - \bullet The transmission duration for a single bit at 10 mbps is 0.1 microseconds
 - A frame with the minimum frame length of 64 bytes needs requires $51.2\mu s$ for a complete transmission
 - A 51.2 μ s long signal travels in the coaxial cable the following distance: $231*10^6*51.2*10^{-6}=11,827.20~\text{m}=11.82~\text{km}$
 - A frame which is 64 bytes large needs for 2*2,500 m = 5,000 m less than half the minimum transmission time of $51.2\mu s$
 - The maximum network size of 2.5 km is dimensioned small enough

CSMA/CD nowadays

- The media access method CSMA/CD is absolutely necessary for computer networks that are based on the bus network topology, because at this topology, all network devices are directly connected with a common transmission medium
- Almost all Ethernet-based networks nowadays fully switched and therefore free from collisions

Media Access Control Method CSMA/CA of WLAN

- CSMA/CD does not work with wireless networks
 - In contrast to wired computer networks based of Ethernet, it's not guaranteed that all collisions are detected in wireless networks
- With CSMA/CD, the sender detects occurring collisions
 - In wired networks with a common transmission medium, each participant receives the transmissions of all other participants
 - Therefore each participant detects any collision
 - For wireless networks such as WLAN, this is not always the case
 - For this reason, the media access methods Carrier Sense Multiple Access
 / Collision Avoidance (CSMA/CA) is used which tries to minimize the
 occurrence of collisions
- Two special characteristics of the transmission medium in wireless networks lead to undetected collisions at the receiver
 - Hidden terminal problem
 - Fading
- The hidden terminal problem and fading both make multiple access in wireless networks more complicated compared to wired networks

Zwei Spezielle Eigenschaften des Übertragungsmediums

- Hidden terminal problem (Problem caused by invisible or hidden terminal device)
 - X and Y both send frames to the Access Point
 - Because of obstacles the stations X and Y can not detect their transmissions, although they interfere each other at the Access Point

- Fading (decreasing signal strength)
 - X and Y both send frames to the Access Point
 - The electromagnetic waves of the wireless network are gradually weakened by obstacles and in free space
 - Caused by the positions of X and Y to each other stations, their signals are too weak that the stations can detect each others transmissions

Source: Computernetzwerke, James F. Kurose, Keith W. Ross, Pearson (2008)

WLAN (802.11) implements 3 different Media Access Control Methods

CSMA/CA

- Strategy: Listen before talk
- Collision avoidance through random backoff time
- Minimum distance between frames
- Receive acknowledgements via ACK (not for broadcast)
- Default method which is implemented in all WLAN devices

CSMA/CA RTS/CTS (Request To Send/Clear To Send)

- Solves the problem of hidden terminals
- Optional method and implemented in most WLAN devices

CSMA/CA PCF (Point Coordination Function)

- Access Point controls the access to the transmission medium
- Optional method and seldom implemented

Source: Lecture slides of Prof. Dr. Michael Massoth and Wikipedia

Transmission of Frames

- Erkennt bei CSMA/CD (Ethernet) ein sendender Teilnehmer eine Kollision, bricht er das Senden des Rahmens ab
- WLAN verwendet aber keine Kollisionserkennung, sondern mit CSMA/CA eine Kollisionsvermeidung (eigentlich ist es nur eine Kollisionsminimierung)
 - Hat eine Station mit dem Senden eines Rahmens begonnen, überträgt sie den vollständigen Rahmen in jedem Fall
 - Es gibt also kein Zurück mehr, wenn eine Station einmal mit dem Senden begonnen hat
 - Der Sender muss darum erkennen können, wenn ein Rahmen nicht korrekt beim Empfänger angekommen ist

Functioning of CSMA/CA - 1/5

- At first, the sender *listens* to the transmission medium (carrier sense)
- The transmission medium needs to be idle for a short period
 - ullet This period is called **Distributed Interframe Spacing (DIFS)** $pprox 50 \mu s$
- If the transmission medium is free for the duration of one DIFS, the station can send start to transmit a frame

Functioning of CSMA/CA - 2/5

- If a station receives a frame which passes the CRC check, them it waits for a short period
 - This period is called **Short Interframe Spacing (SIFS)** $\approx 10 \mu s$
 - Then the receiver sends an acknowledgement frame (ACK)
 - Die Empfangsbestätigung durch ACK erfolgt nicht bei einem Broadcast
- DIFS und SIFS garantieren bei CSMA/CA einen Mindestabstand zwischen aufeinanderfolgenden Rahmen

Functioning of CSMA/CA - 3/5

- Ist das Übertragungsmedium (der Kanal) belegt, finden bis zum Ablauf des Netzbelegungsvektors – Network Allocation Vectors (NAV) – keine weiteren Sendeversuche statt
- Der NAV ist eine Zählvariable, die von jeder Station selbst verwaltet wird
 - Verringert die Kollisionen bei CSMA/CA
 - Enthält die Zeit, die das Übertragungsmedium voraussichtlich belegt sein wird

Functioning of CSMA/CA – 4/5

- Empfängt eine Station zum Beispiel die Information "Das Übertragungsmedium ist für die nächsten x Datenrahmen belegt", trägt sie die erwartete Belegungszeitspanne in ihren NAV ein
- Der NAV wird mit der Zeit dekrementiert, bis er den Wert 0 erreicht
- ullet Solange der NAV > 0 ist, unternimmt eine Station keine Sendeversuche
 - Dabei ist es egal, ob das Übertragungsmedium frei oder belegt ist

Functioning of CSMA/CA - 5/5

- Nach Ablauf des NAV und einem weiteren DIFS mit freiem Übertragungsmedium wird eine Backoffzeit aus dem Contention Window (CW) erzeugt
 - Das CW ist ein Wert, den jeder IEEE 802.11 Rahmen enthält
 - Mit dem CW wird eine zufällige Zeitspanne als Backoff definiert
 - Die CW-Zeitspanne liegt zwischen einem minimalen und einem maximalen Wert
 - Die CW-Zeitspanne wird bei jeder auftretenden Kollision verdoppelt
- Nach dem Ablauf der Backoffzeit wird der Rahmen gesendet

CSMA/CA RTS/CTS

- The media access control method CSMA/CA reduces the number of collisions
 - But it can not avoid all collisions
- An improved collision avoidance provides CSMA/CA RTS/CTS
 - Sender and receiver exchange with this method control frames before the sender begins to transmit
 - This way, all available stations know that a transmission will start soon
 - The control frames are Request To Send (RTS) and Clear To Send (CTS)
 - both control frames contain a field which indicates how long the transmission medium (the channel) will be occupied

Functioning of CSMA/CA RTS/CTS – 1/4

- After the DIFS, the sender transmits a RTS frame to the receiver
 - The RTS frame contains a field that specifies the period, the sender wants to reserve (use) the transmission medium (the channel)
 - In the RTS frame, the sender specifies the length of data frame to be transmitted

Functioning of CSMA/CA RTS/CTS - 2/4

- the receiver acknowledges this by waiting the SIFS and then transmitting a CTS frames, which also contains the period, the sender wants to reserve the transmission medium
 - The receiver sends the length field back to the sender and confirms this way the length of the data frame to be transmitted

Functioning of CSMA/CA RTS/CTS – 3/4

- After the receiver successfully received the data frame, he waits a SIFS and transmits an ACK frame to the sender
- All other stations wait the time (prame length) which is specified in the CTS frame
- Collisions can only occur during the transmission of RTS and CTS frames

Functioning of CSMA/CA RTS/CTS - 4/4

- Advantage: CSMA/CA RTS/CTS reduces collisions, because it solves the problem of hidden terminals
- Drawbacks:
 - Delays which are caused by the reservation of the transmission medium occur
 - The RTS and CTS frames which are used to reserve the transmission medium are overhead

CSMA/CA RTS/CTS in Practice

- CSMA/CA RTS/CTS is optional for WLAN and is mostly implemented
 - In practice, it is used for reserving channels for the transmission of big data frames
- For each station, a RTS threshold value can be set (driver?)
 - This way it can be defined that RTS/CTS is used only when a frame is bigger than the threshold value
- Often, the default threshold value is higher than the maximum frame length (2.346 byte) for IEEE 802.11
 - Then, the RTS/CTS sequence can be omitted for all transmitted data frames

Image source: http://www.itedge.net

Source: Computernetzwerke, James F. Kurose, Keith W. Ross, Pearson (2008)

CSMA/CA PCF

- PCF = Point Coordination Function
- The access point controls the media access by requesting the registered stations to transmit data frames
 - The approach is called polling
- CSMA/CA PCF is an optional method and seldom implemented
 - For this reason it is not discussed here in detail

Arbeitsweise von ARP (1/2)

- Das Address Resolution Protocol (ARP) übersetzt IP-Adressen der Vermittlungsschicht in MAC-Adressen der Sicherungsschicht
- Will ein Netzwerkgerät Daten an einen Empfänger senden, gibt es auf der Vermittlungsschicht die IP-Adresse des Empfängers an
- Auf der Sicherungsschicht ist aber die MAC-Adresse nötig
 - Darum muss in der Sicherungsschicht die Adressauflösung erfolgen
 - Um die MAC-Adresse eines Netzwerkgeräts innerhalb des LAN zu erfahren, versendet ARP einen Rahmen mit der MAC-Broadcast-Adresse FF-FF-FF-FF-FF als Zieladresse
 - Dieser Rahmen wird von jedem Netzwerkgerät entgegengenommen und ausgewertet
 - Der Rahmen enthält die IP-Adresse des gesuchten Netzwerkgeräts
 - Fühlt sich ein Gerät mit dieser IP-Adresse angesprochen, schickt es eine ARP-Antwort an den Sender
 - Die gemeldete MAC-Adresse wird im lokalen ARP-Cache des Senders gespeichert

Arbeitsweise von ARP (2/2)

- Der ARP-Cache dient zur Beschleunigung der Adressauflösung
 - Er enthält eine Tabelle mit vier Spalten
 - Protokolltyp (IP)
 - Protokolladresse des Senders (IP-Adresse)
 - Hardware-Adresse des Sender (MAC-Adresse)
 - Ablaufzeit Time To Live (TTL)
 - Die TTL wird vom Betriebssystem festgelegt
 - Wird ein Eintrag in der Tabelle verwendet, verlängert sich die TTL
- Aktuelle Linux-Distributionen verwerfen Einträge im ARP-Cache nach ca. 5 Minuten
- Wird ein Eintrag in der Tabelle verwendet, wird die TTL verlängert
- Unter Linux kann der ARP-Cache mit arp angezeigt und verändert werden
- Mit arping kann man manuell Anforderungen zur Adressauflösung versenden

Aufbau von ARP-Nachrichten (1/2)

- ARP-Nachrichten werden im Nutzdatenteil von Ethernet-Rahmen übertragen
 - Das Typ-Datenfeld im Ethernet-Rahmen wird auf den Wert 0x0806 für das ARP-Protokoll gesetzt
- Das Datenfeld H-Länge enthält die Länge der Hardwareadressen (MAC-Adressen) in Bytes
 - Bei Ethernet sind MAC-Adressen 6 Bytes lang

- Das Datenfeld P-Länge enthält die Länge der Protokolladressen (IP-Adressen) in Bytes
 - Bei IPv4 sind IP-Adressen 4 Bytes lang

Aufbau von ARP-Nachrichten (2/2)

- Die Quell-MAC-Adresse ist die MAC-Adresse des Senders bei einer ARP-Anforderung und die MAC-Adresse des antwortenden Hosts bei einer ARP-Antwort
- Die Ziel-MAC-Adresse ist in einer ARP-Anforderung gleichgültig und enthält in einer ARP-Antwort die MAC-Adresse des anfragenden Hosts
- Die Quell-IP-Adresse ist bei einer ARP-Anforderung die IP des anfragenden Host und bei einer ARP-Antwort die IP des antwortenden Hosts
- Die Ziel-IP-Adresse ist bei einer ARP-Anforderung die IP-Adresse des gesuchten Hosts und bei einer ARP-Antwort die IP-Adresse des anfragenden Hosts

32 Bit (4 Bytes)

Hardwareadresstyp		Protokolladresstyp
H-Länge	P-Länge	Operation
MAC-Adresse (Sender)		
MAC-Adresse (Sender)		IP-Adresse (Sender)
IP-Adresse (Sender)		IP-Adresse (Ziel)
IP-Adresse (Ziel)		MAC-Adresse (Ziel)
MAC-Adresse (Ziel)		