Lei de Coulomb

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

19 de Outubro de 2020

Sumário

- **1** Introdução
 - Conceito de carga elétrica
- 2 Lei de Coulomb
- Material dielétrico
- Experiência da balança de torção
- 5 Apêndice

Introducao

Carga elétrica

- ✓ Existem dois tipos diferentes de carga elétrica (positivo e negativo);
- ✓ O processo de eletrização não cria cargas, apenas a transfere de um corpo para o outro levando a lei de conservação da carga elétrica;
- ✓ Acreditava-se que a transferência ocorria pela carga positiva e não pela negativa;
- ✓ Pela experiência realizada por Du Fay cargas de mesmo sinal se repelem e sinais contrários se atraem;

Carga elementar

A carga elétrica assume valores discretos, dados pela carga -e do elétron e +e do próton.

$$e = 1,602177 \times 10^{-19} \text{ C}$$

Características

✓ É uma força conservativa;

000

- ✓ Curta distância:
- ✓ Proporcional ao produto das cargas:
- ✓ Inversamente proporcional ao quadrado da distância:
- ✓ Pode ser atrativa ou repulsiva dependendo do produto das cargas;
- ✓ Obedece as Leis de Newton do movimento.

Sentido da força em relação ao sinal das cargas.

Lei de Coulomb

$$F_{Qq} = k rac{Q}{r_G^2}$$

Leis de Newton e a Força eletrostática

Vetorialmente, a lei de Coulomb é definida como

$$\vec{F}_{Qq} = k \frac{Qq}{r_{Qq}^2} \hat{r}_{Qq}$$

Sabendo que $\vec{r}_{Qq} = -\vec{r}_{qQ}$ temos que a Lei de Coulomb satisfaz a Lei da ação e reação, onde

$$ec{\mathcal{F}}_{Qq} = -ec{\mathcal{F}}_{qQ}$$

$$\overbrace{F}_{QQ}$$
 (Qq > 0

Sentido da força em relação ao sinal das cargas.

Dado o conjunto de cargas i distribuídas no espaço, a força resultante atuando em cada carga devido as demais é obtida somando vetorialmente as forças atuando na carga i.

$$\vec{F}_i = \vec{F}_{i1} + \vec{F}_{i2} + \vec{F}_{i3} + \vec{F}_{i4} + \vec{F}_{i5} + \vec{F}_{i6}.$$

Lei de Coulomb em um distribuição de cargas

$$\vec{F}_i = \sum_{j=1}^N \vec{F}_{ij}.$$

Prof. Flaviano W. Fernandes

IFPR-Irati

Corollary

Introducao

- ✓ A presença de um material dielétrico reduz a força eletrostática entre as cargas;
- Quanto maior a constante dielétrica do material mais enfraquecido será a força elestrostática entre cargas elétricas;
- ✓ O vácuo possui o menor valor da constante dielétrica (1,0).

Dissolução do NaCl em água.

A constante dielétrica do ar é praticamente idêntico ao do vácuo;

Duas cargas mergulhadas em óleo possui a força eletrostática 4,6 vezes menor que no vácuo;

A água por ser um dipolo elétrico é altamente polarizável, portanto a constante dielétrica é muito alta.

Constante dielétrica de diferentes materiais.

Meio material	Constante dielétrica
Vácuo	1,0
Ar	1,0005
Benzeno	2,3
Óleo	4,6
Água	81

Constante dielétrica

Fator de redução da força elétrica entre cargas em um meio dielétrico.

Corollary

Em virtude da força elétrica que se manifesta entre as esferas, a haste gira provocando uma torção no fio. Medindo o ângulo de torção consegue determinar o valor da força entre as esferas.

Balança de torção

Transformar um número em notação científica

Corollary

Introducao

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times \textcolor{red}{2}} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5 \text{ g} = 2,5 \times 10^{(1) \times 3} \text{ mg} \rightarrow 2,5 \times 10^{3} \text{ mg}$$

10
$$\mu$$
C = 10 × 10^[(-3)×1+(-1)×3] C \rightarrow 10 × 10⁻⁶ C

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times \textcolor{red}{2}} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5~\text{m}^2 = 2,5 \times 10^{(2) \times 3}~\text{mm}^2 \rightarrow 2,5 \times 10^6~\text{mm}^2$$

10
$$\mu \text{m}^2 = 10 \times 10^{[(-6) \times 1 + (-2) \times 3]} \text{ m}^2 \rightarrow 10 \times 10^{-12} \text{ m}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	P	ho
Sigma	Σ	σ
Tau	Τ	au
Ípsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.3, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/teaching

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.