University of Ljubljana Faculty of Mathematics and Physics

Department of Physics

Advanced Particle Detectors and Data Analysis

Notes for Exercises

Author: Marko Urbanč Professor: prof. dr. Peter Križan Assistant: doc. dr. Rok Dolenec

Ljubljana, December 2024

Contents

1	Interactions of Particles with Photons	1
	1.1 Bethe-Bloch Equation	1

1 Interactions of Particles with Photons

1.1 Bethe-Bloch Equation

The Bethe-Bloch equation describes the mean energy loss per distance traveled while traversing through matter. We generally use the Bethe-Bloch equation when we are dealing with **thick absorbers**, such as the ones in calorimeters. Do note that the Bethe-Bloch equation does not accurately describe the energy loss of **electrons** and **positrons** due to their small mass and the fact that they suffer from much larger energy losses due to bremsstrahlung and pair production. For a particle with charge Z and velocity $\beta = v/c$, the Bethe-Bloch equation is given as:

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2 W_{\mathrm{max}}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right] , \tag{1}$$

where δ is the density effect correction and C is the shell correction. The rest is as follows:

$$N_a = 6.022 \times 10^{23} \, \mathrm{mol}^{-1} \; , \quad r_e = 2.818 \times 10^{-15} \, \mathrm{m} \; , \quad m_e = 9.11 \times 10^{-31} \, \mathrm{kg} \; , \quad c = 3 \times 10^8 \, \mathrm{m/s} \; ,$$

$$\rho = \mathrm{density} \; \mathrm{of} \; \mathrm{the} \; \mathrm{material} \; , \quad A = \mathrm{atomic} \; \mathrm{mass} \; \mathrm{of} \; \mathrm{the} \; \mathrm{material} \; , \quad z = \mathrm{charge} \; \mathrm{of} \; \mathrm{the} \; \mathrm{particle} \; , \quad \gamma = \frac{1}{\sqrt{1-\beta^2}} \; ,$$

$$W_{\mathrm{max}} = \mathrm{maximum} \; \mathrm{energy} \; \mathrm{transfer} \; \mathrm{in} \; \mathrm{a} \; \mathrm{single} \; \mathrm{collision} \; , \quad I = \mathrm{mean} \; \mathrm{excitation} \; \mathrm{energy} \; . \tag{2}$$

The constant factor in the equation can be written as:

$$2\pi N_a r_e^2 m_e c^2 = 0.1535 \,\text{MeV cm}^2 \text{mol}^{-1} \,. \tag{3}$$

We can find the mean excitation energy I from the following experimentally determined formula:

$$I = \begin{cases} Z(12 + \frac{7}{Z}) & \text{for } Z < 13, \\ Z(9.76 + 58.8Z^{-1.19}) & \text{for } Z \ge 13. \end{cases}$$
 (4)

The maximum energy transfer in a single collision W_{max} can be calculated as:

$$W_{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \left(m_e/M\right) + \left(m_e/M\right)^2} \approx 2m_e c^2 \beta^2 \gamma^2 \,. \tag{5}$$

For our purposes we will ignore the density effect correction δ and the shell correction C.