#### Attacking Cryptosystems using Quantum Computer

#### Chaganti Kamaraja Siddhartha T Mani Venkata Krishna

Indian Institute of Technology, Madras

May 8, 2023



#### Contents

- RSA Encryption Technique
- Even-Mansour
- Overview of Quantum Computing
- Breaking Even-Mansour cipher
- Breaking RSA cipher
- 6 Bibliography

# What, why, RSA?:)

- RSA is developed by Rivest, Shamir and Adleman.
- It is the best public key scheme till date.
- Security because of high cost of factoring i.e., exponential time(for sufficiently large numbers factoring takes over a million years).
- Enryption is easier because modular exponentiation takes polynomial  $time(O(num\_bits^3))$ .
- It is used by breaking the whole message into segments and encrypting each segment.

# How to implement RSA?

- First we need to generate public(we share it to the world) and private(we keep it to ourselves) keys.
- Generate two very large prime numbers. Let us name them p, q.
- Calculate N = p \* q. And a small number e such that it is co-prime to (p-1)\*(q-1).
- And let d be the modulo inverse of e modulo (p-1)\*(q-1).
- e is the public key, d is the private key.

### Example

- Let p = 5, q = 11
- N = p \* q = 55.
- (p-1)\*(q-1) = 40.
- Let us choose e=3 which is co-prime to 40.
- $d = 3^{-1} \pmod{40} = 27$ . (Note that 27 is one of many possiblities for that e).
- Let us choose msg x = 13.
- Encryption:  $c = 13^3 \pmod{55} = 52$ .



### How to encrypt and decrypt using those keys?

- Take a segment of data that needs to be encrypted let it be 'x'. Let 'e' be the public key of reciever.
- To encrypt, sender calculates  $c = x^e \pmod{N}$ . And transmits the cipher(c).
- To decrypt, reciever uses his private key(d) to calculate  $x = c^d \pmod{N}$ .
- Now reciever gets the segment x.

Can we break RSA without knowing private key?

#### How to break RSA?

- Factorise N and get p and q.
- You can d as we know public key e, p and q.
- We will get everything we need.
- $\bullet$  But how much time does it take to factorise N? It takes  $O(\sqrt{N})$  time complexity.
- RSA-4096 uses two 2048-bit prime numbers. Here  $N\ 2^{4096}$ . Hence trying to factorise it takes time of the order  $2^{2048}$ .
- If we are able to factorise it we will be able break RSA.

#### Order finding problem

- ullet Given two integers a and N finding the smallest r such that  $a^r=1 (mod\ N)$  is the order finding problem.
- Example: for N = 10 and a = 3, order = 4 as  $3^4 = 1 \pmod{10}$ .



## Solving factorisation problem using order finding problem

- For simplicity, let us say we have to factor  $\mathbf{N}$  which is product of two distinct primes  $p_1$  and  $p_2$ .
- We pick a random integer **a** from 2 to N-1 and compute gcd(a,N) this can be done in polynomial time.
- If gcd is not 1 then it must either be equal to  $p_1$  or  $p_2$  in this case the factorisation problem is solved.
- So let us say gcd(a, N) = 1.
- Let  ${\bf r}$  be the order of  $a\ modulo\ N$  which can be evaluated in polynomial time(Under the assumption that order finding can be solved in poynomial time).
- We repeat the above steps until we find  $\mathbf{r}$  that is even for some  $\mathbf{a}$ . There is very significant fraction of  $\mathbf{a}$ 's which have even order for a  $\mathbf{N}$ .

#### CONT.

 $\bullet$   $a^r-1$  is a multiple of **N**. If r is even we can write  $a^r-1$  as,

$$a^{r} - 1 = (a^{r/2} - 1)(a^{r/2} + 1)$$

- $(a^{r/2}-1)$  cannot be multiple of **N** because if that were the case then order would be r/2 not r.
- case(i):  $(a^{r/2}+1)$  is not a multiple of **N**. That means  $(a^{r/2}-1)$  and  $(a^{r/2}+1)$  are not multiple of **N** but their product is. That implies  $p_1$  is a prime factor of  $(a^{r/2}-1)$  and  $p_2$  is a prime factor of  $(a^{r/2}+1)$  or vice versa. In this case we can find  $p_1$  by just calculating  $\gcd(a^{r/2}-1,N)$  similarly  $p_2$  by just calculating  $\gcd(a^{r/2}+1,N)$ .

#### CONT.

- case(ii):  $(a^{r/2} + 1)$  is a multiple of **N**. In this case we cannot do anything but choose another **a** (These cases are very less frequent).
- Hence we can say that by solving order finding problem we can solve factorisation problem.
- Shor's algorithm is used by us to solve order finding problem.

### How to implement Even-Mansour?

- We break the message into blocks and we apply encryption.
- Let us call one block as M.
- In encryption we use a prewhitening key  $K_2$  and postwhitening key  $K_2$  an a function circuit **F**.
- Here  $K_1, K_2$  are private info and **F** is known to all.
- Let ENC(M) be the overall encryption function and C be the resulting cipher.

$$C = ENC(M) = F(K_1 \oplus M) \oplus K_2$$



### How to decrypt Even-Mansour cipher?

- ullet For the sake of decryption we need to know  $K_2$  and  $K_1$ . If we don't have them we cannot decrypt it.
- For decryption we calculate  $K_2 \oplus \mathbf{W}$  followed by passing it through  $F^{-1}$  function circuit.
- Let the output be V.
- The message **M** will be  $K_1 \oplus \mathbf{V}$ .
- We use simon's algorithm to break Even-Mansour.



# Overview of Quantum Computing

- **Q** Quantum states are represented using state  $|0\rangle$  and  $|1\rangle$  similar to classical states 0 and 1.
- Unlike Classical states which only exist in either 0 or 1, Quantum states exists in superposition of states. For example an arbitrary quantum state is represented as

$$a|0\rangle + b|1\rangle$$

where, a, b are complex numbers and  $a^2 + b^2 = 1$ .

- Even though Quantum states exists in superposition when measured in computational basis they only output either 0 or 1. Please note that they output classical states 0 and 1 and not quantum states  $|0\rangle$ ,  $|1\rangle$ .
- If a two one function f(x) with period s is given there exists a quantum algorithm called Simon's algorithm which can find the period s in polynomial time
- If a Number which is product of two primes is given there exists a quantum algorithm called Shor's algorithm which makes use of order-finding and outputs the prime factors of given number.

#### Periodic function for Even-Mansour

Kuwakado and Morii (2012) showed that there is a function f(M) that can be computed from given resource where the function f(M) is periodic with period  $k_1$ . The function given by Kuwakado and Morii (2012) is

$$f(M) = Enc(M) \oplus F(M)$$

$$f(M) = F(M \oplus k_1) \oplus k_2 \oplus F(M)$$

$$f(M \oplus k_1) = F(M \oplus k_1 \oplus k_1) \oplus k_2 \oplus F(M \oplus k_1)$$

$$f(M \oplus k_1) = F(M) \oplus k_2 \oplus F(M \oplus k_1)$$

$$f(M \oplus k_1) = f(M)$$

#### Even-Mansour automation

Canale et al. (2022) authored a code available at period-search. (n.d.). GitHub. Retrieved May 7, 2023, from https://github.com/rub-hgi/period-search.git which can be used to generate periodic function like f(x) as shown above for different ciphers like Even-Mansour, Fiestel-3,4,5 rounds and Misty-5k ciphers. The output of their code generating the function by taking encryption and resources as input is shown in results section.



Figure: periodic function for even mansour attack

## Quantum Cirucit for Even Mansour



Figure: Even mansour simon

#### Even Mansour



Figure: EVEN-MANSOUR RESULT

#### Even Mansour

The output of first two qubits is either 00 or 11 therefore, if the key is 'ab' then

$$a+b=0$$

$$\implies ab = 00 \text{ or } 11$$

but it is periodic with non-zero period therefore, period s = 11.

## Shor Algorithm

Let us assume there exists a Unitary operator U when acted up on any state  $|y\rangle$  results in the following state.

$$U|y\rangle = |ay \mod N\rangle$$

We call this unitary opeartor as modular multiplication operator from Markov and Saeedi (2015) as shown in figure.



Figure: Circuit for  $Cx \mod 15$ . Source: Markov and Saeedi (2015)



### Shor Algorithm

If there is a quantum state which is created using superposition of states as shown below,

$$|u_0\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} |a^k \mod N\rangle \tag{1}$$

Now, if we apply the Unitary U on this state,  $U|u_0\rangle=|u_0\rangle$  therefore, the state  $|u_0\rangle$  is an eigen state of U with eigen value equal to one. Let us create an arbitrary state  $|u_s\rangle$  as shown below,

$$|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2\pi i k s/r} \left| a^k \mod N \right\rangle \tag{2}$$

It can be easily verified that the state  $|u_s\rangle$  is also an eigen state of U with eigen value equal to  $e^{2\pi is/r}$  that is

$$U\left|u_{s}\right\rangle = e^{2\pi i s/r}\left|u_{s}\right\rangle$$



## Shor Algorihtm

Now, let us create a superposition of all the states of the form  $|u_s
angle$  that is

$$|\varphi\rangle = \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |u_s\rangle$$

As we know.

$$\sum_{k=0}^{r-1} e^{2\pi i k s/r} = 0, \ \forall s \neq 0.$$

We can show that,

$$|\varphi\rangle = |1\rangle$$



## Shor Algorithm

when Unitary is operated on this state  $|1\rangle$ ,

$$U|1\rangle = e^{2\pi i s/r}|1\rangle$$

where, s is a random integer between 0 and r-1 because, the state  $|1\rangle$  is superposition of all the states of the form  $|u_s\rangle$  where s varies from 0 to r-1 refer to figure[6] which shows the output of the cirucit in [5].

# Shor Algorithm Circuit



# Shor Algorithm Result



Figure: Output of shor's simulation



#### Shor result

```
ATTEMPT 1:
Register Reading: 01000000
Corresponding Phase: 0.25
Result: r = 4
Guessed Factors: 3 and 5
*** Non-trivial factor found: {guess} ***
*** Non-trivial factor found: {guess} ***
```

Figure: Result with a = 7 for N = 15

## **Bibliography**

- Canale, F., Leander, G., and Stennes, L. (2022). Simon's algorithm and symmetric crypto: Generalizations and automatized applications. Cryptology ePrint Archive, Paper 2022/782. https://eprint.iacr.org/2022/782.
- Kuwakado, H. and Morii, M. (2012). Security on the quantum-type even-mansour cipher. pages 312–316.
- Markov, I. L. and Saeedi, M. (2015). Constant-optimized quantum circuits for modular multiplication and exponentiation.

## Simon problem

If a function f(x) is 2:1 such that for every input  $x_1$  in  $2^n$  there exists  $x_2$  which satisfy the condition  $x_1 \oplus s = x_2$  and  $f(x_1) = f(x_2)$ . If the function f(x) is given in a black box how many calls to the black box it will take to determine s. Here, we call s as period of function f(x).

$$f(000) = f(111) = 000$$
  

$$f(001) = f(110) = 001$$
  

$$f(010) = f(101) = 010$$
  

$$f(011) = f(100) = 011$$



#### Starting State

$$|\psi_0\rangle = |0\rangle^{\otimes 3} |0\rangle^{\otimes 3}$$

#### **State after First Hadamard Transforms**

$$|\psi_1\rangle = \frac{1}{\sqrt{2^3}} \sum_{x \in \{0,1\}^3} |x\rangle |0\rangle^{\otimes 3}$$

#### State after applying the oracle

$$|\psi_2\rangle = \frac{1}{\sqrt{2^3}} \sum_{x \in \{0,1\}^3} |x\rangle |f(x)\rangle$$





#### State after measuring the second register

If the measurement gave  $|001\rangle$ 

$$|\psi_3\rangle = \frac{1}{\sqrt{2}}(|x\rangle + |x \oplus s\rangle)$$

where,

$$f(x) = f(x \oplus s) = 001$$





#### State after final Hadamard

$$|\psi_3\rangle = \frac{1}{\sqrt{2^7}} \sum_{z \in \{0.1\}^3} [(-1)^{x.z} + (-1)^{(x \oplus s).z}] |z\rangle$$



**Measurement of first 3 qubits of final state** Measurement of first 3 qubits of final state give information about s because,

It will give output only if

$$(-1)^{x.z} = (-1)^{(x \oplus s).z}$$

which means:

$$x.z \mod 2 = (x \oplus s).z \mod 2$$

$$x.z \bmod 2 = x.z \oplus s.z \bmod 2$$

$$\implies s.z = 0 \mod 2$$



A string z will be measured, whose inner product with s=0. Thus, repeating the algorithm  $\approx$  n times, we will be able to obtain n different values of z and the following system of equation can be written:

$$\begin{cases} s.z_1 = 0 \mod 2 \\ s.z_2 = 0 \mod 2 \\ \vdots \\ s.z_n = 0 \mod 2 \end{cases}$$

From which s can be determined, for example by Gaussian elimination.



If first run gives the output  $z_1=011$  then, Let  ${\sf s}={\sf abc}$   $z_1=011$ 

$$s.z_1 = 0 \bmod 2$$

$$b+c=0 \bmod 2$$

either, bc = 00 or bc = 11.

If the second run gives the output  $z_2 = 101$  then,  $z_2 = 101$ 

$$s.z_2 = 0 \bmod 2$$

$$a+c=0 \mod 2$$

either ac=00 or ac =11.

If  $c=0 \implies a=0$  and b=0 then s=000 but we know  $s\neq 000$  therefore,  $c=1 \implies a=1$ ,  $b=1 \implies s=111$ . We can clearly see, Simon's algorithm determined the period s in polynomial steps.

