第一节 常用半导体器件

一 半导体基础知识

1. 本征半导体 纯净的具有晶体结构的半导体,常用材料为四价元素 Si 或 Ge

- · 本征激发和复合最终存在**动态平衡** → 一定温度下, 载流子的浓度一定, 自由电子与空穴浓度相等
- · 本征半导体的载流子浓度随温度升高而增加, 但载流子浓度低, 导电效果差, 且受温度影响极大
- 2. 杂质半导体 通过扩散工艺在本征半导体中掺入少量杂质元素
 - ① N型半导体(Negative) 在四价晶体中掺入五价元素 P

② | P型半导体(Positive) 在四价晶体中掺入三价元素 B

· 杂质半导体中多子浓度远高于少子, 受温度影响不大, 但少子浓度受温度影响极大

3. PN 结 将 P 型半导体和 N 型半导体制作在一起形成的结构

P区中的空穴往N区中扩散 N区中的自由电子往P区中扩散

二 二极管

二极管 由 PN 结加电极引线与管壳构成 ^{阳极}

1. 二极管的特性曲线

2. 二极管在电路中的参数

工作点 二极管工作时的电流与电压,需要同时满足自身特性曲线及外电路需求

· 在i-u 图上作外电路曲线与自身特性曲线,交点 $Q(U_{\rm D},I_{\rm D})$ 即为工作点其中外电路方程 $U_{\rm D}=U_{\rm S}-RI_{\rm D}$ 在图上是一条直线

- · 二极管电压发生微小变化 Δu_{D} 导致电流发生微小变化 Δi_{D} , r_{D} 为特性曲线斜率倒数
- 3. 理想二极管 导通时压降为恒定值 $U_{
 m ON}$,截止时视为断路
 - · 通常硅管 $U_{ON} = 0.7 \text{V}$, 锗管 $U_{ON} = 0.3 \text{V}$
 - **例1** 设图中的二极管导通时的正向压降为 0.7 V_{o} 求 U_{a} 、 U_{b} 和 I_{a} 、 I_{b} ,并说明各个二极管的导通状况。

解 由图中电路可以直接得到各点电位: c 点-4V, d 点-1V, e 点 12V, f 点 14V

假设二极管 D_1 导通,则 a 点电位为 -4V+0.7V=-3.3V,此时 ad 间电压为-2.3V, D_2 截止假设二极管 D_2 导通,则 a 点电位为 -1V+0.7V=-0.3V,此时 ac 间电压为 3.7V, D_1 导通若根据 D_1 导通,则 a 点电位-3.3V,与前述的-0.3V 矛盾,因此这个假设不成立

同理,可得到 D3 截止, D4 导通

总结 理想二极管导通状态的判断与电路分析

- ① 只有1个二极管时,将其断路,求出两侧电位差,若大于导通电压,则该二极管导通
- ② 当有多个二极管,且它们某一侧的电位相同,另一侧电位不同时,断路后两侧电位差最大的二极管导通,其余的都截止
- ③ 二极管导通后电压值等于导通电压,与二极管串联的电阻承担剩余电压
- 4. 稳压二极管 用于稳定电压的特殊二极管,工作在反向击穿状态

稳定电压 U_z 规定电流下稳压管的反向击穿电压,在电路中体现为二极管两端的电压恒为 U_z

动态电阻 r. 稳压管工作在稳压区时,端电压变化量与电流变化量之比,越小稳压特性越好

- **例 2** 如图所示的稳压电路中,已知稳压二极管的 U_z = 6V , I_z = 10mA , 动态电阻 r_z = 10 Ω ,负载电阻 R_L = 300 Ω ,输入电压 U_I = 12V 。求:
 - (1) 限流电阻 R 的电阻值及所消耗的功率;
 - (2) 当输入电压 U_1 增加 5%时,负载两端电压 U_0 增加的百分数

 \mathbf{H} (1) 由稳压二极管的特性, $U_{\rm Z}=U_{\rm O}=6{
m V}$

:
$$I_{L} = \frac{U_{O}}{R_{L}} = \frac{6V}{300\Omega} = 20\text{mA}$$
 $I = I_{Z} + I_{L} = 30\text{mA}$ $R = \frac{U_{I} - U_{Z}}{I} = \frac{12V - 6V}{30\text{mA}} = 200\Omega$

 $P = U_R I = 6V \times 30 \text{mA} = 0.18 \text{W}$

(2) 由稳压二极管的动态特性,等效后的电路为线性电路,由叠加定理, ΔU_1 引起 ΔU_0

由串并联,
$$\Delta I = \frac{U_{\rm I}}{r_{\rm Z}//R_{\rm L} + R}$$
 , $\Delta U_{\rm O} = \frac{r_{\rm Z}//R_{\rm L}}{r_{\rm Z}//R_{\rm L} + R} \Delta U_{\rm I}$

代人 $\Delta U_{\rm I} = 12 \times 5\% = 0.6 {
m V}$, 得 $\Delta U_{\rm O} = 27.7 {
m mV}$, 变化百分比 $\frac{\Delta U_{\rm O}}{U_{\rm O}} \times 100\% = 0.46\%$

总结 稳压二极管的静态分析中,要从稳压二极管两端电压为 U_z 这个已知条件入手,通过直流电路分析得到其它物理量。动态分析中则要将变化量作为电路的物理量,然后稳压二极管替换为电阻 r_z ,进行分析计算

三 双极晶体管

1. 双极晶体管的结构与工作原理

晶体管含有3个依次连接的掺杂区,形成2个PN结,根据掺杂类型分为NPN和PNP型

· 基区很薄目杂质浓度很低

发射区掺杂浓度很高

· 集电区面积很大

- ① U_{BB} 使发射结加**正向电压**,扩散运动形成**发射极电流** I_{E}
 - · 发射区杂质浓度高 → 发射区大量自由电子扩散进入基区,基区极少量空穴进入发射区
- ② 扩散到基区的自由电子与空穴复合,形成基极电流 I。
 - · 因为基区空穴极少, 所以只有少部分自由电子与空穴复合, 基极电源补充复合掉的空穴, 从而形成基极电流
- ③ 集电结加反向电压,漂移运动形成**集电极电流** I_{c}
 - · ②中没有和空穴复合的自由电子在反向电压作用下进入集电区, 形成集电极电流
- ④ 三个电流的关系为 $I_{\text{R}} + I_{\text{C}} = I_{\text{E}}$
 - · 晶体管的参数确定, 因此到达基区的自由电子的去向(复合 or 漂移至集电极)比例基本恒定
 - ・ 因此 $I_{\rm B}$ 和 $I_{\rm C}$ 存在比例关系,且 $I_{\rm C}$ 远大于 $I_{\rm B}$ → 小电流 $I_{\rm B}$ 可以控制大电流 $I_{\rm C}$ → 放大作用

2.双极晶体管的基本特性 ※

① \mid 输入特性 C、E 极间电压 u_{CE} 一定时,B 极电流 i_{B} 与 B、E 极间电压 u_{BE} 的关系

$$i_{\mathrm{B}} = f_{\mathrm{in}} \left(u_{\mathrm{BE}} \right) \big|_{u_{\mathrm{CE}} = \mathbb{R} \mathfrak{B}}$$

认为 $U_{CE} \ge 1V$ 时输入特性曲线基本重合,此时 u_{CE} 不再影响特性曲线

② **输出特性** $I_{\rm B}$ 一定时,集电极电流 $i_{\rm C}$ 与 $u_{\rm CE}$ 的关系

$$i_{\mathrm{C}} = f_{\mathrm{out}} \left(u_{\mathrm{CE}} \right) \big|_{i_{\mathrm{R}} = \mathbb{R}}$$

- · u_{CE} 从零逐渐增大时, i_{C} 逐渐增大; u_{CE} 增大到一定数值后,曲线几乎平行于横轴
- · 根据输出曲线, 图上不同的位置晶体管有不同的工作状态

截止区 发射结电压小于导通电压,集电结反向偏置,此时 CE 间相当于开路

饱和区 发射结与集电结均处于正向偏置,此时 $I_{
m C}$ 不受 $I_{
m B}$ 控制,只随 $U_{
m CE}$ 变化

放大区 发射结正向偏置,集电结反向偏置,此时 $I_{\rm C}$ 主要受 $I_{\rm B}$ 控制, $U_{\rm CE}$ 的影响极小

③ 主要参数(实际上不严格区分这两个参数)

直流电流放大系数 交流电流放大系数 $\overline{\beta} \approx \frac{I_{\rm C}}{I_{\rm B}} \qquad \qquad \beta = \frac{\Delta i_{\rm C}}{\Delta i_{\rm B}}$

例 3 今测得电路中处于放大状态的晶体管 T_1 、 T_2 和 T_3 各个电极对地电位如下表所示。判断各晶体管的 E、B、C 极及管型(硅管或锗管、NPN 型或 PNP 型)

晶体管		T_1			T_2			T_3	
电极编号	1	2	3	1	2	3	1	2	3
电极电位/V	+6	+3	+2.3	-0.7	0	-6	-1	-1.3	-6

解 不管是哪种类型的管子,工作在放大状态时,基极的电位一定是居中的

以 T₁ 管为例,居中的电位为+3V,因此电极 2 为基极 B

另外两个电极中、电极3电位比电极2低0.7V、电极1则比电极2高3V

因为 BE 间的导通电压不是 0.7V 就是 0.3V, 因此电极 3 为发射极 E, 电极 1 为集电极 C

由此可得到该管为硅管, C 电极电位最高, 因此为 NPN 型

其余2个晶体管同理,结果见下表

晶体管		T_1			T_2			T_3	
电极编号	1	2	3	1	2	3	1	2	3
电极电位/V	+6	+3	+2.3	-0.7	0	-6	-1	-1.3	-6
电极名称	С	В	Е	В	Е	С	Е	В	С
管型	NPN 型 硅管			PNP 型 硅管			PNP 型 锗管		

总结 工作在放大状态下的晶体管

- ① 电位居中的电极为基极 B
- ② 与基极电位相差 0.7V 或 0.3V 的为发射极 E, 剩余的电极为集电极 C
- ③ 相差 0.7V 为硅管, 相差 0.3V 为锗管
- ④ 集电极电位最高的为 NPN 型, 最低的为 PNP 型

2. 已知各电极电位,判断工作状态

例 4 今测得电路中处于某电路中 PNP 型硅晶体管 $T_1 \sim T_4$ 各个电极和公共端之间的电压 $U_E \times U_B$ 和 U_C 如表所示,判断各晶体管的工作状态

晶体管	E 极电位/V	B 极电位/V	C 极电位/V
T_1	0	0.7	10
T_2	2	2.7	2.3
T_3	0	-3	6
T_4	2	2.7	3.2

 \mathbf{F} \mathbf{F}

 T_2 : $\varphi_B > \varphi_E$ (发射结正偏) $\varphi_B > \varphi_C$ (集电结正偏), 为饱和状态

 $T_3: \varphi_B < \varphi_E$ (发射结反偏) $\varphi_B < \varphi_C$ (集电结反偏), 为截止状态

 T_4 : $\varphi_B > \varphi_E$ (发射结正偏) $\varphi_B < \varphi_C$ (集电结反偏), 为放大状态

总结 对于已知管型和各引脚电位的晶体管,判断工作状态:

- ① B 电位居中时,发射结正偏,集电结反偏,为放大状态
- ② NPN 型 B 电位最小 或 PNP 型 B 电位最大时,发射结和集电结均反偏,为截止状态
- ③ NPN 型 B 电位最大 或 PNP 型 B 电位最小时,发射结和集电结均正偏,为饱和状态

3. 双极晶体管的微变等效模型

· 晶体管的电流电压只在某工作点Q附近微小变化时,才可以用线性电路等效

注: ① 同一晶体管的不同静态工作点 **Q**对应不同的微变等效模型参数模型体现的是输入电压和输入电流**微小变化量**间的关系

② 该模型实际上忽略了 U_{CE} 对 I_{B} 和 I_{C} 的影响