Задача 9.2

Задача решается весьма просто с использованием «золотого правила механики»: ни один простой механизм не дает выигрыша в работе - во сколько раз выигрываешь в силе, во столько раз проигрываешь в расстоянии. Согласно этому правилу, произведение силы, приложенной к рукоятке на ее смещение равно произведению силы, создаваемой поршнем, на его перемещение. Если винт провернется на один оборот, то поршень сместится на величину, равную шагу поршня, поэтому

$$2F \cdot 2\pi l = F_{\pi} h, \tag{1}$$

где $F_{\mathcal{A}} = pS = p\pi R^2$ сила давления, создаваемая поршнем. Из этих выражений находим искомое давление

$$p = \frac{4Fl}{hR^2} \tag{2}$$

Схема оценивания.

Пункт	Содержание	Баллы	Примечания
1.1	Использование «золотого правила»	2	
1.2	Математическое соотношение между силами и смещениями	2	
1.3	Связь между смещениями	1	
1.4	Связь между силой и давлением	1	
1.5	Выражение для давления	2	
1.6	Обоснование, оформление	2	
	ОТОГИ	10	

Задача 9.3

Выделим тонкое кольцо протекающей воды толщиной h. Мощность теплоты, выделяемой в этом кольце при прохождении тока, определяется законом Джоуля-Ленца

$$P = \frac{U^2}{R},\tag{1}$$

где R - электрическое сопротивление слоя воды, которое можно рассчитать по формуле

$$R = \rho \frac{L}{S}.$$
 (2)

Учитывая, что электрический ток идет перпендикулярно тонкому слою воды, в данном случае

$$L = R_1 - R_2; \qquad S = 2\pi R_1 h. \tag{3}$$

За время протекания воды через нагреватель $au = \frac{l}{V}$ она получит количество теплоты

$$Q = \frac{U^2}{R} \tau = \frac{U^2 2\pi R_1 h}{\rho (R_1 - R_2)} \cdot \frac{l}{V}. \tag{4}$$

Этого количества теплоты должно быть достаточно, чтобы нагреть слой воды на Δt градусов. Для этого требуется теплота

$$Q = cm\Delta t = c\gamma \cdot \pi \left(R_1^2 - R_2^2\right) h\Delta t, \qquad (5)$$

здесь $\pi(R_1^2-R_2^2)h$ - объем выделенного слоя воды, γ - плотность воды.

Приравнивая два последних выражения, получаем формулы для вычисления скорости

$$V = \frac{2U^2 R_1}{\rho(R_1 - R_2)} \cdot \frac{l}{c\gamma(R_1^2 - R_2^2)\Delta t}.$$
 (6)

Схема оценивания.

Пункт	Содержание	Баллы	Примечания
1.1	Закон Джоуля-Ленца	1	
1.2	Выражение для сопротивления - общая формула - «где длина, где площадь» - применение в данном случае	3	1 1 1
1.3	Выделение тонкого кольца воды	1	
1.4	Теплота, необходимая для нагревания - общая формула - выражение для массы выделенной воды - окончательный результат	3	1 1 1
1.5	Использование равенства теплот	1	
1.6	Окончательный результат	1	
	ОЛОТИ	10	