

Indian Institute of Technology Tirupati Image Processing Lab

Lab sheet. No: 03

Name: Pedasingu Rajesh Roll. No: EE21M019

1. Otsu's Thresholding:

Write your own MATLAB function to perform Otsu's thresholding of the input grayscale image. **Input Images:** coins.jpg, building.jpg, an image of your own hand-written notes! The input to the program is a grayscale image and the outputs of your program should be

- (i) Plot the histogram of the input image with Otsu-based threshold value marked on it.
- (ii) Display the resulting segmentation image. Write your observations from these results and also compare your results with the results of the "graythresh" command in MATLAB.

Aim: To perform Otsu's thresholding of the input grayscale image for given images and plot the histogram for resultant image and mark the threshold values in the histogram.

Output:

given image

after thresholding

given image

minimum mean gauare error astimator (mmse)

Criterial:

$$E[(y.9)^2]$$
. $Y=y,14>.4$.

50, estimation at character with $f=\int_{-2}^{2}(y-9)^2 \cdot f_y(y) dy$
 $=\min \int_{-2}^{2}(y-0)^2 \cdot f_y(y) dy$
 $df=\int_{-2}^{2}(y-0)^2 \cdot f_y(y) dy = 0$
 $f=\int_{-2}^{2}(y-0)^2 \cdot f_y(y) dy = 0$
 $f=\int_{-2}^{2}(y-0)^2 \cdot f_y(y) dy = 0$
 $f=\int_{-2}^{2}(y-0)^2 \cdot f_y(y) dy = 0$

after thresholding

rowinsum mean square exert estimater (MMSE)

Criterial

E[(y,y)^2]...

50, estimation of good into not good into not convering min
$$T = \int (y-\hat{y})^2 \cdot f_y(y) \, dy$$

= min $\int (y-c)^2 f_y(y) \, dy$
 $\frac{df}{dc} = : \int a(y-c) \cdot f_y(y) \, dy = 0$
 $\Rightarrow \int y \cdot f_y(y) \, dy = c \cdot \int f_y(y) \, dy$
 $\Rightarrow c = E(y)$

Inferences:

- 1. I used the red dotted line (line command) to mark the threshold value found using Otsu thresholding in the histogram.
- 2. I used the **between class variance** method to find the threshold value using Otsu method, because some of the given images size is too high, so computation is more for **with-in class variance** method.
- 3. We select the threshold value as, the threshold value which gives the maximum between class variance.
- 4. When we compare the results with inbuilt command "graythresh" both are almost similar. Comparison results are listed below.

after thresholding

after thresholding

after thresholding

using graythresh command

using graythresh command

using graythresh command

