Preliminary Amendment

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	Claims 1-52. (canceled)
1	Claims 53-76. (not entered)
1	Claim 77. (new) A method for designing logic circuitry implemented by a
2	programmable logic device, the method comprising:
3	providing a design file incorporating the logic design circuitry in computer
4	readable format;
5	generating from the design file a retiming graph for each of a plurality of clock
6	domains associated with the logic design circuitry;
7	applying constraints to the retiming graph to determine which registers of the
8	retiming graph are capable of being moved forward or backward across a combinational logic
9	element of the logic design circuitry; and
10	retiming the logic design circuitry by moving compatible registers on the retiming
11	graph backward or forward across the combinational logic elements until the difference between
12	gate-to-gate delays for the logic design is minimized.
1	Claim 78. (new) The method of claim 77, wherein applying the constraints
2	comprises determining which of the registers are compatible.
1	Claim 79. (new) The method of claim 78, wherein the registers are compatible if
2	they have the same clock domain, the same clock-enable, and they have the same asynchronous
3	load.

Appl. No. Not yet assigned Atty Docket No.: 015114-063920US

Preliminary Amendment

I	Claim 80. (new) The method of claim 77, wherein retinning comprises heratively
2	retiming the logic design circuitry to find a minimal difference between the gate-to-gate delays.
1	Claim 81. (new) The method of claim 77, wherein retiming comprises
2	determining delays associated with a netlist and determining a required cycle time.
1	Claim 82. (new) The method of claim 77, wherein retiming the logic design
2	circuitry comprises forming a host node to store the constraints.
1	Claim 83. (new) The method of claim 77, further comprising applying constraints
2	for asynchronous signals by setting upper and lower boundaries on edges in the retiming graph.
1	Claim 84. (new) The method of claim 77, further comprising applying the
2	retiming graph to a netlist based on user selectable criteria.
1	Claim 85. (new) The method of claim 84, wherein applying the retiming
2	comprises modifying power-up signals, or reset signals, or asynchronous logic signals on the
3	registers retimed.
1	Claim 86. (new) The method of claim 77, further comprising removing registers
2	of the retiming graph that are not capable of being moved forward or backward across logic
3	elements of the logic design circuitry.