Parte II: Capítulo 9

Módulos de Persistencia Simplécticos

(Symplectic persistence modules)

Eduardo Velázquez

7 de Diciembre de 2023

Variedades de Liouville

Definición 9.1.1

Una variedad de Liouville (M, ω, X) es una variedad simpléctica con un campo vectorial fijo X que genera un flujo X^t tal que

- 1. $\omega = d\lambda$, $\lambda = \iota_X \omega$
- 2. $\exists P \subset M$ hipersuperficie cerrada y conexa, transversa a X, y que acota un dominio abierto U de M con cerradura compacta y $M = U \sqcup \cup_{t \geq 0} X^t(P)$.

Llamamos a X campo vectorial de Liouville y a X^t , Flujo de Liouville.

Cualquier hipersuperficie P y cualquier dominio U de este tipo se denomina *en forma de estrella.*

Cualquier variedad de Lioville se puede descomponer como

$$M = M_{*,P} \sqcup \mathsf{Core}_P(M)$$

donde $M_{*,P} = \bigcup_{t \geq 0} X^t(P)$ y $Core_P(M) = \bigcap_{t < 0} X^t(U)$, con U un abierto acotado por P. Esta descomposición es independiente de P.

Ejemplos de Variedades de Liouville

1.
$$(M, \omega_{std}, X_{rad}) = \left(\mathbb{R}^{2n}, \sum_{i=1}^{n} dp_i \wedge dq_i, \sum_{i=1}^{n} \frac{1}{2} \left(q_i \frac{\partial}{\partial q_i} + p_i \frac{\partial}{\partial p_i}\right)\right)$$

con descomosición: $\mathbb{R}^{2n} = (\mathbb{R}^{2n} \setminus \{0\}) \sqcup \{0\}.$

2.
$$(N, \omega_{cam}, X_{can}) = \left(T^*N, \sum_{i=1}^n dp_i \wedge dq_i, \sum_{i=1}^n p_i \frac{\partial}{\partial p_i}\right)$$
.

con descomosición: $T^*N = (T^* \setminus \{0_N\}) \sqcup \{0_N\}$, donde 0_N es la sección cero de T^*N . Un ejemplo de un dominio estrella es el codisco abierto

$$U_{\mathsf{g}}^*\mathsf{N} := \{(q,p) \in \mathsf{T}^*\mathsf{N} \,|\, |p|_{\mathsf{g}_{\mathsf{g}}^*} < 1\}$$

asociado a una métrica riemanniana g en N

Definición 9.1.6

Dada una variedad de Liouville (M,ω,X) , sea $\lambda=\iota_X\omega$. Un simplectomorphismo φ de una varieda de Liouville se denomina exacto si $\varphi^*\lambda-\lambda=dF$ para alguna función F en M. Los simplectomorfismos compactamente soportados forman un grupo que denotaremos como Sympex (M,ω,X) , a veces lo abreviaremos como Sympex(M).

Dada una variedad de Liouville (M, ω, X) y una hipersuperficie P en forma de estrella, cualquier punto $m \in M_{*,P}$ en la descomposición puede identificarse con un punto $(x, u) \in P \times \mathbb{R}_+$.

En particular, $P = \{u = 1\}$, y el dominio estrella $U \subset M$ que acota a P es $\{u < 1\}$.

Por convención usaremos: $Core(M) = \{u = 0\}.$

Diremos que una hipersuperficie P en forma de estrella de una variedad de Liouville (M, ω, X) es **no-degenerada**, si su **espectro de acción**,

$$\mathsf{Spec} := \left\{ \int_{\gamma} \iota_{\mathsf{X}} \omega|_{P} \, \big| \, \gamma \in \mathcal{C}(P) \right\},\tag{1}$$

es un subconjunto discreto de \mathbb{R} .

Cualquier dominio en forma de estrella U tal que $\partial \bar{U}$ cumpla (1) es un dominio con forma de estrella no-degenerado.

Definición 9.2.1

Un conjunto parcialmente ordenado (I, \preceq) está **dirigido hacia a bajo** si para cualquier $i, j \in I$, existe $k \in I$ tal que $k \preceq i$ y $k \preceq j$.

Un sistema inverso de un espacio vectorial sobre \mathbb{Z}_2 es un functor de un conjunto parcialmente ordenado hacia abajo (I, \preceq) a la categoría de espacios vectoriales. Expl. A asigna a cada $i \in I$ un espacio vectorial A_i sobre \mathbb{Z}_2 y σ asigna a cada par $i,j \in I$, tal que $i \preceq j$, un mapeo \mathbb{Z}_2 -lineal $\sigma_{ij}: A_i \to A_j$, tal que $\sigma_{ik} = \sigma_{jk} \circ \sigma_{ij}$ y $\sigma_{ii} = \mathbb{1}_{A_i}$.

Definición 9.2.2

Sea (A, σ) un sistema inverso de un espacio vectorial sobre \mathbb{Z}_2 . El *límite inverso* de (A, σ) se define como

$$\varprojlim_{i\in I} A := \{\{x_i\}_{i\in I} \in \Pi_{i\in I} A_i \mid i \leq j \Rightarrow \sigma_{ij}(x_i) = x_j\}$$

Sea U un dominio estrella de una variedad de Liouville (M, ω, X) y $\mathcal{H}(U)$ el conjunto de todas las funciones autónomas hamiltonianas en M con soporte en U.

Definamos un orden parcial en $\mathcal{H}(U)$:

$$H \leq G$$
 si $H(x, u) \geq G(x, u)$ si $(x, u) \in M$

Si además podemos considerar una homotopía monótona de H a G:

$$\{H_s\}_{s\in[0,1]}$$
 tal que $H_0=H,$ $H_1=G,$ $\partial_s H_s\leq 0$

Este homotopía induce un \mathbb{Z}_2 mapeo lineal

$$\sigma_{H,G}: HF^{a,\infty}_*(H) o HF^{(a,\infty)}_*(G)$$
 p.c. $a>0$

 $HF_*^{(a,\infty)}(H)$ - homología hamiltoniana de Floer de la función H con coeficientes en \mathbb{Z}_2 y ventana de acción (a,∞) .

Definición 9.2.4

Sea U un dominio estrella no degenerado de una variedad de Liouville (M, ω, X) , Para cualquier a > 0, la homología filtrada simpléctica de U se define como:

$$SH_*^{(a,\infty)}(U) := \varprojlim_{H \in \mathcal{H}(U)} HF_*^{(a,\infty)}(H),$$

con las siguientes propiedades

(Ejercicio 9.2.5)

- 1. Para cualquier a > 0 y grado $* \in \mathbb{Z}$, $SH_*^{(a,\infty)}$ es de dimensión finita sobre \mathbb{Z}_2 .
- 2. Para cualquier $a \leq b$, el morfismo canónico $HF_*^{(a,\infty)} \to HF_*^{(b,\infty)}$ induce un mapeo \mathbb{Z}_2 lineal

$$heta_{\mathsf{a},\mathsf{b}}: \mathsf{SH}^{(\mathsf{a},\infty)}_*(U) o \mathsf{SH}^{(\mathsf{b},\infty)}_*(U).$$

Sea U un dominio estrella no degenerado de una variedad de Liouville (M, ω, X) . Para cualquier a > 0, sea

$$SH_*^{\operatorname{In} a}(U) o SH_*^{(a,\infty)}(U).$$

Se sigue que

$$\mathbb{SH}_*(U) = \left(\{ SH_*^{\ln a}(U) \}_{a < 0} \,, \, \{ \theta_{a,b} : SH_*^{\ln b}(U) \}_{a \le b} \right).$$

Definición 9.2.6

El módulo de persistencia de tipo $SH_*(U)$ localmente finito se llama *módulo de persistencia simpléctico de U*.

Sea X un campo de Liouville en una variedad de Liouville (M,ω,X) , podemos reescalar el dominio estrella U de la siguiente forma:

Para cualquier C > 0, sea $CU := \phi^{\ln C}(U)$. $t \in \mathbb{R}$ y grado $* \in \mathbb{Z}$, el difeomorfismo

$$r_C^U: SH_*^t(U) \rightarrow SH_*^{t+\ln C}(CU),$$

resulta en un corrimiento del código de barras $\mathcal{B}_*(U)$

Ejemplos de $SH_*(U)$

1) Sea $N \ge 1$ un entero y $E(1, N, \dots, N)$ el elipsoide en $\mathbb{R}^{2n} (= \mathbb{C})$ definido como

$$E(1,N,\cdots,N)=\left\{(z_1,\cdots,z_n)\in\mathbb{C}^n\mid \pi(\frac{|z_1|}{1},\frac{|z_2|}{N},\cdots,\frac{|z_n|}{N})<1\right\},$$

- Su espectro de acción es igual a Z.
- ▶ $E(1, N, \dots, N)$ es un dominio estrella de la variedad de Liouville ($\mathbb{R}^{2n}, \omega_{std}, X_{rad}$).
- (Sec. 9.7) $SH_*^{(a,\infty)}E(1,N,\cdots,N)=\mathbb{Z}_2$ cuando $*=-2|\lceil -a\rceil|-2(n-1)|\lceil \frac{-a}{N}\rceil|$, y las homologías de los demás órdenes se anulan.
- $\mathbb{SH}_0(E(1,N,\cdots,N))=\mathbb{Z}_2(-\infty,0).$ donde $\mathbb{Z}_2(-\infty,0)$ denota al módulo de intervalo $(-\infty,0)$ sobre \mathbb{Z}_2

Ejemplo 9.3.2 I

2) Sea N una variedad cerrada y g una métrica Riemanniana. Consideremos el codisco unitario U_g^*N sobre N. Para una elección genérica de la métrica, U_g^*N es un dominio no degenerado en forma de estrella de $(T^*N, \omega_{can}, X_{can})$. Fijemos una clase de homotopía α distinta de cero del espacio libre de lazos. Consideremos el módulo de persistencia simpléctico $\mathbb{SH}_*(U_g^*N)_{\alpha}$ en la clase α .

De acuedo con el **Teorema 3.1** de Weber¹, Para cualquier a > 0, se tiene un isomorfismo entre los espacios vectoriales

$$SH_*^{(a,\infty)}(U_g^*N)_{\alpha} \simeq H_*(\Lambda_{\alpha}^aN),$$

donde $\Lambda_{\alpha}^{a}N$ es el espacio de lazos en N en la clase α de longitud < a. Más aún, esto se extiende a un isomorfismo de los módulos de persistencia $\mathbb{SH}_{*}(U_{g}^{*}N)_{*}$ y $V(N,g)_{\alpha}$ (ver ejemplo 2.4.2).

¹Weber, Joa. *Noncontractible periodic orbits in cotangent bundles and Floer homology*, 2004.

Ejemplo 9.3.2 II

3) Sea $N=\mathbb{T}^2$ la representación del toro como la superficie de revolución de una función perfil con dos mínimos locales, y extremos abiertos identificados. Dotemos a N con la métrica g inducida por \mathbb{R}^3 . Los mínimos de la función perfil generan dos geodésicas simples γ_1 y γ_2 ; análogamente los máximos locales generan dos geodésicas Γ y Γ' .

Asuma que N se comprime en γ_1 y γ_2 de manera que las longitudes de Γ y Γ' son > 2, y las longitudes γ_1 , γ_2 son < 1. Sea $s_i = -\ln \operatorname{length}_g(\gamma_i)$, y $s = (s_1, s_2)$ con $s_1 \geq s_2$.

Eligiendo adecuadamente la función perfil, podemos obtener que γ_1 , γ_2 y Γ_1 , Γ_2 son las únicas² geodésicas en su clase de homotopía que denotaremos por α .

Consideremos el módulo truncado de persistencia $V(N,g_s)$ de grado uno y rayo $(-\infty,\ln(3/2))$ (definición en Ejercicio 5.3.4). El código de barras $\mathcal{B}^{(s)}$ de este módulo truncado se ve como el de la siguiente figura:

²Stojisavljević V., Zhang J. *Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics*, p. 34.

9.4 Distancia Simpléctica de Banach-Mazur

Onjetivo: Definir una pseudométrica entre dominios estrella.

Sea \mathcal{S}^{2n} el conjunto de todos los dominios estrella de una variedad de Liouville (M,ω,X) . Sea C>0 y $\phi\in \operatorname{Symp}_{ex}(M)$, a partir del Flujo de Liouville definamos el rescalamiento:

$$\phi(C) = X^{\ln C} \circ \phi \circ X^{-\ln C} \in \mathsf{Symp}_{ex}(M)$$

Sean $U,V\in\mathcal{S}^{2n}$, un ϕ morfismo de Liouville de U a V es un simplectomorfismo exacto y compactamente soportado ϕ de M tal que $\phi(\bar{U})\subset M$ Dicho morfismo se denota: $U\stackrel{\phi}{\hookrightarrow} V$

Distancia Simpléctica de Banach-Mazur

Definición 9.4.1

Sean $U,V\in\mathcal{S}^{2n}$, diremos que un número real C>1 es (U,V)-admisible si existe un par de simplectomorfismos $\phi,\psi\in\operatorname{Symp}_{ex}(M)$ tal que

$$\frac{1}{C}U \stackrel{\phi}{\hookrightarrow} V \stackrel{\psi}{\hookrightarrow} CU$$

y existe una isotopía $\{\Phi_s\}_{s\in[0,1]}$ de morfismos de Liouville de $\frac{1}{C}U$ a CU tal que $\Phi_0=\mathbb{1}$ y $\Phi_1=\psi\circ\phi$.

Definición 9.4.2

Definimos la distancia de Banach-Mazur entre $\it U$ y $\it V$ como

$$d_{SBM}(U, V) = \inf\{\ln C > 0 \mid Ces(U, V) - admissible\}.$$

Teorema 9.4.7 (Estabilidad Topológica)

Sean $U,V\in\mathcal{S}^{2n}$ y sean $\mathcal{B}_*(U)$ y $\mathcal{B}_*(V)$ los códigos de barras de los módulos de persistencia $\mathbb{SH}_*(U)$ y $\mathbb{SH}_*(V)$, respectivamente. Entonces

$$d_{bot}(\mathcal{B}_*(U),\mathcal{B}_*(V)) \leq d_{SBM}(U,V).$$

Demostración.

Ejercicios

Ejercicio 9.4.4 d_{shm} es una pseudométrica en S^{2n} .

Ejercicio 9.4.5 Si $U, V \in \mathcal{S}^{2n}$ son exactamente simplectomórficos, $d_{SBM}(U, V) = 0$. Una pregunta abierta interesante es si d_{SBM} es una métrica 'genuina' en el espacio cociente $\mathcal{S}^{2n}/\text{Symp}_{av}(M)$.

Ejercicio 9.4.6 Muestre que $d_{SBM}(U,CU) = \big| \ln C \big|$ para cualquier $U \in \mathcal{S}^{2n}$ y C > 0. Esto implica que, como espacio pseudo-métrico, $(\mathcal{S}^{2n}, d_{SBM})$ tiene diámetro infinito.

Ejercicio 9.4.8

Consideremos los elipsoides E(1,8) y E(2,4). Observe que ambos tienen el mismo volumen. Por el ejercicio 9.3.1, tenemos

$$\mathcal{B}_0(E(1,8)) = (-\infty,0) \qquad \text{y} \qquad \mathcal{B}_0(E(2,4)) = (-\infty,\ln 2)\,.$$

El Teorema 9.4.7 implica que

$$d_{SBM}(E(1,8), E(2,4)) \ge \ln 2$$
.

9.5 Propiedades Functoriales

Teorema 9.5.1

Sea (M, ω, X) una variedad de Liouville, y sean U, V dominios estrella no-degenerados de (M, ω, X) .

1. Todo morfismo de Liouville ϕ de U a V induce un mapeo \mathbb{Z}_2 -lineal $f_{\phi}^a: SH_*^{(a,\infty)}(V) \to SH_*^{(a,\infty)}(U)$, $\forall a>0$ y grado $*\in\mathbb{Z}$. Denotemos por θ^U y θ^V a los mapeos de estructuras de los módulos de persistencia U y V respectivamente. Entonces para 0 < a < b y grado $*\in\mathbb{Z}$,

$$SH_{*}^{(a,\infty)}(V) \xrightarrow{f_{\phi}^{a}} SH_{*}^{(a,\infty)}(U)$$

$$\theta_{a,b}^{V} \qquad \qquad \downarrow \theta_{a,b}^{U}$$

$$SH_{*}^{(b,\infty)}(V) \xrightarrow{f_{\phi}^{b}} SH_{*}^{(b,\infty)}(U)$$

Si W es un dominio estrella no-degenerado tal que $U \overset{\phi}{\hookrightarrow} V \overset{\psi}{\hookrightarrow} W$, entonces $\forall a>0$, $f^a_{\psi\circ\phi}=f^a_\phi\circ f^a_\psi$ (Ejemplo 9.5.4).

2 Sea r_C el isomorfismo de rescalamiento, sea θ el mapeo de estructura de los módulos de persistencia; y sea $i=f_{\mathbb{1}}$ el morfismo inducido por el mapeo identidad $\mathbb{1}$ en M, visto como un morfismo de Liouville de U a CU. Entonces los siguientes diagramas conmutan para cualquier a>0 y grado $*\in\mathbb{Z}$.

- 3 Supongamos que $\bar{U} \subset V$, y ϕ es un morfismo de Liouville de U a V. Si ϕ es isotópico a $\mathbb{1}$ através de morfismos de Liouville de U a V, entonces $f_{\phi} = i$, donde f_{ϕ} es el morfismo inducido por ϕ e i es el morfismo inducido por la identidad.
- 4 Supongamos ϕ es un morfismode Liouville de $\frac{1}{C}U$ a V, además r_C es el isomorfismo de rescalamiento y $\phi(C)$ es el escalamiento obtenido a partir del Flujo de Liouville. Entonces

$$f_{\phi(C)}^{Ca} \circ r_C^V = r_C^{\frac{1}{C}U} \circ f_\phi^a$$
.

Sea ϕ un morfismo de Liouville de U a V.

(1) Se sigue de que ϕ induce un morfismo de espacios de funciones $\phi_*: \mathcal{H}(U) \to \mathcal{H}(V)$ dado por el push-forward de ϕ . Note que para cualquier $F \in \mathcal{H}(U)$ existe una $G \in \mathcal{H}(V)$ tal que $G \geq \phi_{*(F)}$, por lo que ϕ_* induce un morfismo $\tau_F: SH_*^{(a,\infty)}(V) \to HF_*^{(a,\infty)}(F)$ que se obtiene con la composición

$$SH_*^{(a,\infty)}(V) \xrightarrow{\pi_G} HF_*^{(a,\infty)}(G) \xrightarrow{\sigma_{G,\phi_*}(F)} HF_*^{(a,\infty)}(\phi_*F) \simeq HF_*^{(a,\infty)}(F).$$

donde π_G es la proyectión canónica, y $\sigma_{G,\phi_*}(F)$ es el morfismo inducido por una homotopía monótona de G a $\phi_*(F)$. Se compureba que si $H \geq F \in \mathcal{H}(U)$, $\sigma_{H,F} \circ \tau_H = \tau_F$. Por el ejercicio 9.2.3 existe un morfismo de $SH_*^{(a,\infty)}(V)$ a $SH_*^{(a,\infty)}(U)$.

Las pruebas de (2) y (3) usan ideas similares; ambas pueden confirmarse usando el Lema 4.15 in [46] estudiando cuidadosamente el espacio moduli de trayectorias de conexión.³

³[46] Gutt, J. The positive equivariant symplectic homology as an invariant for some contact manifolds, 2017.

Ejemplo 9.5.3

Sea 0 < 1 < R, denotemos $B_1 := B^{2n}(1)$ y $B_2 := B^{2n}(R)$. Notemos que $B_2 = RB_1$. Para toda a > 0 y grado $* \in \mathbb{Z}$, sea θ_a el morfismo de estructura $\theta_{a/R,a} : SH_*^{(a/R,\infty)}(B_1) \to SH_*^{(,\infty)}(B_1)$, y por i^a al morfismo $f_1^a : SH_*^{(a/R,\infty)}(B_2) \to SH_*^{(,\infty)}(B_1)$ inducido por el mapeo identidad. Entonces el siguiente diagrama conmuta

Se sigue del Teorema 9.5.1 (2)

$$\operatorname{SH}^{(a,\infty)}_*(U) \xrightarrow{\simeq \atop r_C} \operatorname{SH}^{(Ca,\infty)}_*(CU)$$

$$\operatorname{SH}^{(Ca,\infty)}_*(U)$$

Ejemplo 9.5.4

Sea (M,ω,X) una variedad de Liouville, y U,V dos dominios estrella no degenerados de (M,ω,X) . Supongamos que C>1 es (U,V)-admisible, entonces por definición de (U,V)-admisible 9.4.1, existen $\phi,\,\psi\in \operatorname{Symp}_{\mathrm{ex}}(M)$ tales que $\frac{1}{C}U\stackrel{\phi}{\to}V\stackrel{\psi}{\to}CU$ y $\psi\circ\phi$ isotópica a 1 mediante morfismos de Liouville de $\frac{1}{C}U$ a CU. Por el Teorema 9.5.1 (1), para cualquier a>0 el sig. diagrama conmuta

$$\operatorname{SH}^{(a,\infty)}_{\star}(CU) \xrightarrow{f^{o}_{\psi}} \operatorname{SH}^{(a,\infty)}_{\star}(V) \xrightarrow{f^{o}_{\phi}} \operatorname{SH}^{(a,\infty)}_{\star}(U/C)$$

Además, por el Teorema 9.5.1 (3), $f_{\psi \circ \phi}^a = i_{CU,U/C}^a$, donde $i_{CU,U/C}$ es el morfismo inducido por la identidad en M (vista como morfismo de U/C a CU). Por el Teorema 9.5.1 (2), tenemos el siguiente diagrama

Sean

$$\mathsf{F}_{\mathsf{a}} := \mathsf{f}^{\mathsf{Ca}}_{\psi} \circ \mathsf{r}^{\mathsf{U}}_{\mathsf{C}} : \mathsf{SH}^{(\mathsf{a},\infty)}_{*}(U) o \mathsf{SH}^{(\mathsf{Ca},\infty)}_{*}(V),$$

$$G_a := r_{\mathsf{C}}^{U/\mathsf{C}} \circ f_\phi^a : \mathit{SH}_*^{(a,\infty)}(V) o \mathit{SH}_*^{(\mathsf{C} a,\infty)}(U).$$

Por el diagrama anterior tenemos

$$G_{a} \circ F_{a/C} = \theta_{a/C,Ca}^{U} \tag{77}$$

Pasando a escala logarítmica concluimos que $\psi \circ \phi$, la cual es isotópica a $\mathbbm{1}$ a través de los morfismos de Liouville de $\frac{1}{C}U$ a CU, induce los mapeos de estructura $\theta_{a-\ln C,a+\ln C}$ de los módulos de persistencia $\mathbb{SH}_*(U)$.

9.6 Aplicaciones

Teorema 9.6.1 (No-compresión de Gromov)

Sea B^{2n} una bola y $E(R, R_{\dagger}, \cdots, R_{\dagger})$ un elipsode de \mathbb{R}^{2n} , para el que asimimos $R_{\dagger} \geq R$. Si existe un morfismo de Liouville de $B^{2n}(r)$ a $E(R, R_{\dagger}, \cdots, R_{\dagger})$, entonces $R \geq r$.

Demostración.

S.P.G. supongamos r=1. Denotemos por ϕ a un simplectomorfismo exacto compactamente soportado en \mathbb{R}^{2n} tal que $\phi(\overline{B^{2n}(1)})\subset E(R,R_\dagger,\cdots,R_\dagger)$. Elijamos $R_\bullet>0$ suficientemente grande de manera que $B^{2n}(R)$ contenga al soporte de ϕ así como al elipsoide $E(R,R_\dagger,\cdots,R_\dagger)$ Denotemos $B_1:=B^{2n}(1)$ y $B_2:=B^{2n}(R_\bullet)$. Entonces,

$$\phi(B_1) \subset E(R, R_{\dagger}, \cdots, R_{\dagger}) \subset B_2 = \phi(B_2).$$

Teorema 9.6.1 (cont. Dem.)

Por (1) y (2) del Teorema 9.5.1 y el Ejemplo 9.5.3, $\forall a > 0$ y grado $* \in \mathbb{Z}$, tenemos que el siguiente diagrama conmuta:

$$\operatorname{SH}^{(a,\infty)}_{*}(\phi(B_{2})) \longrightarrow \operatorname{SH}^{(a,\infty)}_{*}(E(R,R_{\dagger},...,R_{\dagger})) \xrightarrow{i^{a}} \operatorname{SH}^{(a,\infty)}_{*}(\phi(B_{1}))$$

$$\simeq \downarrow \qquad \qquad \qquad \downarrow \simeq \qquad$$

donde i e i_{B_2,B_1} son los morfismos inducidos por el mapeo identidad en \mathbb{R}^{2n} , vistos como morfismos de Liouville de $\phi(B_1)$ a $E(R,R_\dagger,\cdots,R_\dagger)$ y de B_1 a B_2 , respectivamente.

Teorema 9.6.1 (cont. Dem.)

Para * = 0, por el Ejemplo 9.3.1 y reescalando,

$$\mathbb{SH}_0(E(R,R_{\dagger},\cdots,R_{\dagger}))=\mathbb{Z}_2(-\infty,\ln R)$$

У

$$\mathbb{SH}_0(B_1) = \mathbb{Z}_2(-\infty,0)$$

Para cualquier $a < R_{\bullet}$, $\theta_{a/R_{\bullet,a}} \neq 0 \Rightarrow i_{B_2,B_1} \neq 0$. Entonces para *=0, $i: \mathbb{Z}_2(-\infty, \ln R) \to \mathbb{Z}_2(-\infty, 0)$ es diferente de zero. Por el ejercicio 1.2.8, $\ln R \geq 0$, es decir, $R \geq 1$.

Demostración Teorema 9.4.7

Por la definición 9.4.2, para toda $\epsilon > 0$, existe C tal que

$$1 < C \le e^{d_{SBM}(U,V) + \epsilon},$$

y morfismos $\frac{1}{C}U \stackrel{\phi}{\hookrightarrow} V \stackrel{\psi}{\hookrightarrow} CU$, tales que $\psi \circ \phi$ es isotópica a la identidad $\mathbbm{1}$ a través de los morfismos de Liouville de $\frac{1}{C}U$ a CU. Afirmamos que los mapeos F_a y G_a definidos anteriormente, definen un ln C-entrelazamiento entre $\mathbb{SH}_*(U)$ y $\mathbb{SH}_*(V)$. Recordando que $G_a \circ F_{a/C} = \theta^U_{a/C,Ca}$. Basta mostrar que

$$F_a \circ G_{a/C} = \theta^V_{a/C,Ca}$$
.

Por el punto (4) del teorema 9.5.1, tenemos que

$$F_a := f_\psi^{Ca} \circ r_C^U = r_C^{V/C} \circ f_{1/C}^a \quad \text{y} \quad G_a := r_C^{U/C} \circ f_\phi^a = f_{\phi(C)}^{Ca} \circ r_C^V$$
 .

Intercambiando U por V, y ϕ por $\psi(1/C)$ en el isomorfismo $V/C \overset{\psi(1/C)}{\hookrightarrow} U \overset{\phi(C)}{\hookrightarrow} V$ y la ec. 77 derivamos la afirmación anterior. A partir del Teorema de Isometría, tenemos

$$d_{bot}(\mathcal{B}_*(U),\mathcal{B}_*(V)) = d_{int}(\mathbb{SH}_*(U)), \mathbb{SH}_*(V)) \leq \ln C \leq d_{SBM}(U,V) + \epsilon.$$

El teorema se sigue tomando el límite $\epsilon \to 0$.

9.7 Cálculos

Cálculo de la homología simpl. filtrada de $E(1, N, \dots, N)$

Principio 1. Es difícil analizar el límite de un sistema inverso directamente, por lo cual consideraremos:

Proposición 9.7.1

Sea (A,σ) un sustema inverso de espacios vectoriales sobre \mathbb{Z}_2 . Una sucesión $\{i_v\}_{v\in\mathbb{N}}$ se denomina exhaustivamente hacia abajo (downward exhausting) para (A,σ) si para cada $i_{v+1} \preceq i_v$, $\sigma_{i_{v+1}}:A_{i_{v+1}} \to A_{i_v}$ es un isomorfismo, y $\forall i \in I$ existe $v \in \mathbb{N}$ tal que $i_v \preceq i$. Entonces, para cualquier sucesión exhaustivamente hacia abajo $\{i_v\}_{v\in\mathbb{N}}$ para (A,σ) , la proyección canónica

$$\pi_{i_{\boldsymbol{v}}}: \varprojlim_{i\in I} A \to A_{i_{\boldsymbol{v}}}$$

es un isomorfismo.

9.7 Cálculos

Cálculo de la homología simpl. filtrada de $E(1, N, \dots, N)$

Principio 2. Sean H, $G \in \mathcal{H}(U)$ con $H \preceq G$, sabemos que una homotopía de H a G induce un \mathbb{Z}_2 mapeo linear $\sigma_{H,G}: HF_*^{(a,\infty)}(H) \to HF_*^{(a,\infty)}(G)$ para cualquier a>0. En general, $\sigma_{H,G}$ no es inyectiva ni supreyectiva, excepto en las siguientes condiciones:

Proposición 9.7.2

Sea U un dominio estrella no degenerado de una variedad de Liouville (M,ω,X) , y sean $H \leq G \in \mathcal{H}(U)$ y a>0. Supongamos que existe una homotopía monótona $\{H_s\}_{s\in[0,1]}$ de H a G tal que H_s no tiene 1-órbitas periódicas con acción igual a a. Entonces $\sigma_{H,G}: HF_*^{(a,\infty)}(H) \to HF_*^{(a,\infty)}(G)$ es un isomorfismo.

Sea U un dominio estrella no degenerado de $(\mathbb{R}^{2n}, \omega_{std}, X_{rad})$. Para cualquier a>0, consideremos una sucesión $h_a(U)=\{H_i\}_{i\in\mathbb{N}}$ con las siguientes porpiedades:

$$ightharpoonup H_{i+1} \geq H_i$$

- $H_i(0) > a$ y $H_i(0) = C_i$ con $C_i \to \infty$ cuando $i \to \infty$
- $H_i \equiv 0$ para $u \ge 1 \epsilon_i$ cuando $\lim_{i \to \infty} \epsilon = 0$

Como C_i diverge, para toda $H \in \mathcal{H}(U)$ existe $i \in \mathbb{N}$ tal que $H_i \preceq H$ p.a. $H_i \in h_a(U)$. Más aún, por el Principio 2, existe una homotopía monótona de H_{i+1} a H_i tal que

$$\sigma_{H_{i+1},H_i}:HF_*^{(a,\infty)}(H_{i+1}) o HF_*^{(a,\infty)}(H_i)$$

es un isomorfismo. En otras palabras, para cualquier a>0, $h_a(U)$ resulta en una sucesión exhaustivamente hacia abajo para el sistema inverso $(HF_*^{(a,\infty)}(H),\sigma_{H,G})$.

Por la Proposición 9.7.1 (Principio 1) se tiene la siguiente fórmula para el cálculo de la homología simpléctica filtrada.

$$SH_*^{(a,\infty)}(U) = HF_*^{(a,\infty)}(H_i),$$

para cualquier $H_i \in h_a(U)$.

Sea $U = E(1, N, \dots, N)$, consideremos cada punto $z \in \mathbb{C}^n \setminus \{0\}$ como el par (x, u), donde

$$u(z) = \pi \left(\frac{|z_1|^2}{1} + \frac{|z_2|^2}{N} + \cdots + \frac{|z_n|^2}{N} \right) \quad \text{y} \quad x(z) = \frac{z}{\sqrt{u(z)}}.$$

Sea $\overline{a} > 0$,

$$H_a(x,u) = \frac{-a-\delta}{1-\epsilon}u + (a+\delta)$$

p.a. $\epsilon>0$ y $H_a(x,u)$ lisa en $u=1-\epsilon$. El valor de δ es tan pequeño que el intervalo $\left(a,\frac{a+\delta}{1-\epsilon}\right)$ no contiene valores de acciones simplécticas de órbitas Hamiltonianas 1-periódicas de $H_a(x,u)$. Por lo cual, en la ventana de acción (a,∞) , sólo existen órbitas 1-periódicas de $H_a(x,u)$ y el máximo global se alcanza en u=0. Por tanto la homología de filtrada de Floer es un espacio vectorial sobre \mathbb{Z}_2 generado por este punto fijo.

Con una elección apropiada de ϵ y δ en la vecindad de u=0,

$$H_{a}(z_{1}, \dots, c_{n}) = \frac{-a - \delta}{1 - \epsilon} \left(\pi \frac{|z_{1}|^{2}}{1} + \frac{|z_{2}|^{2}}{N} + \dots + \frac{|z_{n}|^{2}}{N} \right) + (a + \delta)$$

$$= \pi \lceil -a \rceil |z_{1}|^{2} + \sum_{i=2}^{n} \pi \lceil \frac{-a}{N} \rceil |z_{i}|^{2} + \sum_{i=1}^{n} \pi \alpha_{i} |z_{i}|^{2} + (a + \delta),$$

para cada $\alpha_i \in (-1,0)$. Por la sección 8.1

$$Ind(0) = -2|\lceil -a\rceil| - 2(n-1)|\lceil \frac{-a}{N}\rceil|.$$

Por tanto se concluye que,

$$\mathit{SH}^{(\mathsf{a},\infty)}_*(\mathit{E}(1,\mathit{N},\cdots,\mathit{N}))=\mathbb{Z}_2$$

cuando
$$* = -2 \left| \left\lceil -a \right\rceil \right| - 2(n-1) \left| \left\lceil \frac{-a}{N} \right\rceil \right|.$$

