STOCHASTIC RESOURCE OPTIMIZATION OVER HETEROGENEOUS GRAPH NEURAL NETWORKS FOR FAILURE-PREDICTIVE MAINTENANCE SCHEDULING

ZHEYUAN WANG*, MATTHEW GOMBOLAY*

*CORE Robotics Lab, School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA

https://core-robotics.gatech.edu/ E-mail: {pjohnwang,mgombolay3}@gatech.edu

Cognitive Optimization & Relational Robotics Lab

<u>Introduction</u>

- ☐ Resource optimization for predictive maintenance requires inferring and reasoning over stochastic failure models and dynamically allocating repair resources.
- ☐ Predictive maintenance scheduling is typically performed with ad hoc, hand-crafted heuristics and manual scheduling by human experts, which is time-consuming, laborious and hard to scale.
- ☐ Recent advances in AI have leveraged deep neural networks to solve operations research problems, but only touched static, deterministic setting.
- We build the scheduling policy network directly on a heterogeneous graph representation of scheduling problems and develop an RL-based policy optimization procedure to enable robust learning in highly stochastic environments.

Aircraft Maintenance Environment

- ☐ We develop a virtual predictive-maintenance scheduling environment, called AirME.
 - Heterogeneous aircraft, $\{p_i\}$
 - Homogeneous maintenance crews, $\{c_i\}$
 - A maintenance decision, $d = \langle p_i, c_j \rangle$
 - An hour-based time system with discrete time steps
- ☐ Hybrid probabilistic failure model
- Model component/part failure using Weibull distributions based on aircraft usage

$$p(x; \lambda, k) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}, x \ge 0$$

- Grounded with "broken" status when failure happens for at least one of its components
- Model parameters hidden from scheduling policies
- ☐ Stochastic aircraft maintenance task
 - Duration and cost generated on-the-fly
- ☐ Sample flying operations based on usage rate
- Different planes earn different hourly income
- □ Scheduling objectives
- O1: overall profit; O2: revenue only; O3: fleet availability
- POMDP formulation

Fig. 1. Overview of AirME and Scheduling Policy Network

Stochastic Scheduling with Graphs

crew

state

repairing

Fig. 2. Metagraph

repaired_by

self

- \Box Scheduling Policy Network, $\pi_{\theta}(u|o)$
 - Fully graph convolutional structure
 - Action $u_t = \{d_1, d_2, ..., d_n\}$

Conditional policy $p_{\theta}(u_t|o_t) = \prod_{i=1}^{n} p_{\theta}(d_i|o_t, d_{1:i-1})$

• Decision generation schemes: Full, Skip, Single

□ Heterogeneous Graph Representation

 Joint learning the problem representation and the policy

- Model entities in the environment
- Planes, crews
- Model RL components
- State, decisions
- □ A novel heterogeneous graph layer
 - Building block of our scheduling policy network
 - Computation Step
 - 1) per-edge-type message passing
 - 2) per-node-type feature reduction
 - Softmax-based attention for state summary node
 - Multi-head adaptation

Stochastic Policy Learning Methods

- ☐ HetGPO: heterogeneous graph-based policy learning framework
 - Developed from Proximal Policy Optimization (PPO) with several adaptations for stochastic scheduling
- ☐ Clipped surrogate objective

$$L(\theta) = E_t[\min(r_t(\theta)A_t, clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t)]$$

$$\pi_{\theta}(u|o)$$

 $r_t(\theta) = \frac{\pi_{\theta}(u|o)}{\pi_{old}(u|o)}$ A_t : Advantage term

☐ Step-based baseline for variance reduction

- More accessible and efficient than state-based baselines
- ☐ Use idea of curriculum learning

Experimental Results

- □ We evaluate the utility of HetGPO against the following algorithms
 - Hand-crafted heuristics, Model-based planning
 - Machine learning-based methods
- ☐ Dataset: small, medium and large AirME instances
- ☐ Evaluation on O1, O2, O3 using two metrics
- M1: normalized objective value
- M2: % improvement over the Corrective Scheduler

□ Ablation studies

Table I. Evaluation results on O1: profit

Methods	Small		Medium		Large	
	M1	M2 (%)	M1	M2 (%)	M1	M2 (%)
Random	0.522 ± 0.025	-2.87 ± 5.65	0.532 ± 0.021	-2.65 ± 4.22	0.533 ± 0.016	-2.23 ± 3.51
Corrective	0.539 ± 0.023	0.0 ± 0.0	0.547 ± 0.016	0.0 ± 0.0	0.546 ± 0.016	0.0 ± 0.0
Condition-based	0.656 ± 0.050	21.7 ± 6.41	0.661 ± 0.041	20.8 ± 5.87	0.648 ± 0.051	18.6 ± 7.03
Periodic	0.599 ± 0.051	11.1 ± 6.96	0.598 ± 0.047	9.38 ± 7.00	0.587 ± 0.048	7.52 ± 6.83
Model-based	0.669 ± 0.052	24.0 ± 6.99	0.671 ± 0.044	22.8 ± 6.45	0.658 ± 0.054	20.5 ± 7.68
DeepRM	0.533 ± 0.015	-0.88 ± 2.57	0.538 ± 0.011	-1.47 ± 1.77	0.539 ± 0.013	-1.11 ± 0.97
Decima	0.651 ± 0.021	21.1 ± 6.42	0.660 ± 0.017	20.9 ± 4.49	0.663 ± 0.014	21.6 ± 4.51
HetGPO-Single	0.680 ± 0.012	26.4 ± 4.32	0.676 ± 0.011	23.7 ± 3.17	0.666 ± 0.011	22.3 ± 3.77
HetGPO-Skip	0.695 ± 0.010	29.1 ± 4.09	0.697 ± 0.009	27.5 ± 2.70	0.695 ± 0.008	27.5 ± 2.72
HetGPO-Full	0.693 ± 0.011	28.8 ± 4.01	0.694 ± 0.009	27.1 ± 2.62	0.693 ± 0.008	27.1 ± 2.68

See paper for full results on O2, O3

Conclusion

- ☐ HetGPO outperforms both heuristics and learning-based counterparts across various objectives and problem scales.
- ☐ Our future work involves applying HetGPO to a broader class of stochastic resource optimization problems, such as Patient Admission Scheduling (PAS) problems.