Test de Hipótesis

Recordamos:

El objetivo de una investigación no es estimar un parámetro sino decidir sobre cuál de dos proposiciones contradictorias sobre el parámetro es la correcta.

A la proposición se la llama *hipótesis* y al procedimiento de toma de decisión sobre la hipótesis se lo conoce como *Prueba de hipótesis* o *Test de hipótesis*.

¿Cómo debemos prodecer?

El procedimiento formal para pruebas de hipótesis es similar al método científico:

El científico plantea una hipótesis respecto a uno o más parámetros de la población

Luego toma una muestra de la misma y compara sus observaciones con la hipótesis Si las observaciones no concuerdan con la hipótesis la rechaza, de lo contrario concluye que la muestra no detectó la diferencia entre los valores real e hipotético de los parámetros poblacionales.

Ejemplo:

Por experiencia previa se sabe que una concentración de Hg (mercurio). en el agua a 1 mcg/l se considera un riesgo para la salud.

Se toma una muestra de 6 determinaciones de concentración de Hg en el agua y se obtienen los siguientes datos: 0,86; 0,89; 0,93; 1,02; 0,96; 0,83

Supongamos que el método tiene un error de medición con $\sigma = 0.08mcg/l$ queremos determinar si la muestra de agua puede considerarse libre de contaminación.

Para ello, debemos decidir entre dos hipótesis:

- ✓ La concentración de Hg en la muestra de agua es admisible.
- ✓ La concentración de Hg en la muestra de agua es un riesgo para la salud.

Supongamos que tenemos una m.a X_1 , ..., X_6 donde cada $X_i \sim N(\mu; 0.08^2)$ y X_i = resultado de la i-ésima determinación Entonces las hipótesis que debemos plantear:

- Entonces definimos:
- La hipótesis alternativa, denotada por H_A, es la hipótesis que el investigador desea demostrar o probar.
- La hipótesis nula, denotada H₀, es lo contrario de lo que se desea demostrar.
- En $H_{0,}$ la palabra nula significa sin valor, efecto o consecuencia, lo cual sugiere que H_0 debe identificarse con la hipótesis de no cambio, no diferencia

En el ejemplo tenemos:

 H_0 : μ =1 Contra H_A : μ <1

• Notamos que al decidirnos por una de las 2 hipótesis pueden ocurrir alguna de las siguientes situaciones:

Decisión	H ₀ es verdadera	H ₀ no es verdadera
Rechazo H ₀	Error (Tipo I)	\checkmark
No rechazo H ₀	✓	Error (Tipo II)

Se pueden cometer dos tipos de errores, y se los distingue con los nombres *Error tipo I y Error tipo II*.

En términos del problema, el Error tipo I sería afirmar que la muestra de agua tiene una concentración de mercurio aceptable μ <1, cuando en realidad la concentración es 1.

El Error tipo II sería afirmar que la muestra de agua tiene una concentración alta (de μ =1), cuando en realidad es más baja. En este caso, cometer el error de tipo I es más grave que el de tipo II.

Por eso queremos que el error de tipo I sea lo menor posible y es el que podemos controlar.

Recordemos que nunca conocemos el verdadero valor de μ y sólo podemos hacer inferencias basadas en la muestra acerca de su valor. Como \bar{X} es un estimador insesgado para μ , y el valor \bar{x} observado es una estimación del verdadero μ . Entonces si \bar{x} resulta mucho más chico que 1, tendremos motivos para pensar que en realidad μ <1 (cuanto menor sea \bar{x} , mayor será la evidencia contra H_0 a favor de H_A).

Con lo cual, debemos decidir cuándo consideramos que \bar{x} es lo suficientemente chico como para rechazar H_0 , manteniendo acotado la probabilidad de tipo I.

Para ello, debemos considerar un estadístico (de prueba) con distribución conocida cuando H_0 es verdadera y definir una zona de rechazo.

Usaremos el estadístico de prueba: $Z = \frac{(\bar{X}-1)\sqrt{6}}{0.08} \sim N(0,1)$ bajo H_0

Si queremos que la probabilidad de Error tipo I sea de 0,05 (tiene sentido calcular probabilidades ya que \overline{X} es v.a con lo cual Z también lo es)

Entonces P(EI)=P(Rech H_0/H_0 es verd) y queremos que sea a lo sumo 0,05, con lo cual

P(EI)=P(
$$\frac{(\bar{X}-1)\sqrt{6}}{0.08}$$
< a)=0.05 $\Rightarrow \Phi(a) = 0.05 \Rightarrow a = -1.645$
 $\therefore a = -z_{\alpha}$

∴Rechazo H₀:
$$\mu$$
=1 cuando $\frac{(\bar{X}-1)\sqrt{6}}{0.08}$ < $-z_{\alpha}$

$$\therefore P(EI) = P(\frac{(\bar{X}-1)\sqrt{6}}{0.08} < -z_{\alpha}/H_0 \text{ verd}) = P_{H_0}(\frac{(\bar{X}-1)\sqrt{6}}{0.08} < -z_{\alpha}) = \Phi(-z_{\alpha}) = \alpha$$

P(EII)=P(Aceptar H_0 /cuando H_0 falsa)= $\beta(\mu)$ difícil de calcular

Este valor α se lo llama *nivel de significancia* del test. Al fijar un nivel de significancia nos aseguramos que la probabilidad de cometer error tipo l, no sea mayor que 0,05.

Se llama zona de rechazo a los valores menores que $-z_{\alpha}$ (el conjunto de todos los valores del estadístico de prueba para los cuales la hipótesis nula ha de ser rechazada a favor de la hipótesis alternativa)

Observación: el área de la zona de rechazo es α.

Región o zona de rechazo: Rechazo H_0 a favor de la H_A si $z_0 < -z_\alpha$

Región o zona de rechazo: Rechazo H_0 a favor de la H_A si $z_0 < -z_\alpha$

• Con los datos del problema, al reemplazar \bar{X} por $\bar{x}=0.915$ el valor que toma el estadístico es $z_0=\frac{(0.915-1)\sqrt{6}}{0.08}=-2.6$

Como la Región o zona de rechazo es: Rechazo ${
m H_0}$ a favor de la ${
m H_A}$ si ${
m z_0}<-z_{lpha}$

En este caso -2,6<-1,645, z_0 cae en la región de rechazo, por lo tanto se puede rechazar H_0 con α =0,05, ya que suficiente evidencia contra H_0 a favor de H_A .

• Conclusión en términos del problema sería: podemos afirmar que la concentración de Hg en la muestra de agua está dentro de los niveles admisibles con α =0,05.

La probabilidad de equivocarnos al hacer esta afirmación es de a lo sumo 0,05, también suele decirse que el resultado es significativo al 5%.

Supongamos que queremos reducir el margen de error tipo I.

Podemos calcular la probabilidad de rechazar H_0 pero con el valor observado z_0 , esto sería: $P(\frac{(\bar{X}-1)\sqrt{6}}{0.08} < z_0) = \Phi(z_0) = \Phi(-2.6) = 0.0047$

De esta forma reducí el error y es el más chico que se puede cometer.

• **Definición:** El p-valor es la probabilidad de rechazar H_0 con los datos observados. Dicho en otras palabras, el p-valor (o nivel de significancia observado de una prueba estadística) es el valor más pequeño de α para el cual H_0 se puede rechazar. Es el riesgo real de cometer un error tipo I, si H_0 es rechazada con base en el valor observado del estadístico de prueba. El valor p mide la fuerza de la evidencia contra H_0 .

Un valor p pequeño indica que el valor observado del estadístico de prueba se encuentra alejado del valor hipotético de μ . Esto presenta fuerte evidencia de que H_0 es falsa y debe ser rechazada. Valores de p grandes indican que la estadística observada de prueba no está alejada de la media hipotética y no apoya el rechazo de H_0 .

También suele definirse al p-valor como el menor nivel de significación α , para el cual se puede rechazar la hipótesis H_0 con los datos observados.

Observación: El p-valor está entre 0 y 1, ya que es una probabilidad

Relación p-valor con el nivel de significancia

Notamos que:

El nivel de significancia es un valor prefijado por el investigador, en cambio el p-valor surge a partir de los datos del problema.

Resumiendo:

Un test de hipótesis es un proceso de decisión que, en función de los datos de una m.a nos permite decidir entre la validez de dos hipótesis contradictorias.

Los elementos de una prueba estadística son:

- \rightarrow Hipótesis (H_0 y H_A)
- Estadístico de prueba y distribución bajo H₀
- ➤ La región de rechazo
- ➤ P-valor
- **≻**Conclusión

• Para una m.a X_1, X_2, \dots, X_n con distribución normal y σ_0 conocido.

Hipótesis nula	$H_0: \mu = \mu_0$			
Estadístico de prueba: $Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma_0} \sim N(0,1)$ bajo H_0				
Hipótesis alternativa:	$H_A: \mu < \mu_0$	H_A : $\mu > \mu_0$	H_A : $\mu \neq \mu_0$	
Región de rechazo a nivel α	$z_0 < -z_lpha$	$Z_0>Z_{lpha}$	$ z_0 >z_{lpha/2}$	
p-valor	$\Phi(z_0)$	$1 - \Phi(z_0)$	$2(1 - \Phi(z_0))$	

Test de hipótesis para la media de una distribución Normal con varianza desconocida

Ejemplo:

El zooplancton se compone de todos los animales oceánicos que se dejan arrastrar pasivamente por el movimiento del agua. Se extrajeron 9 muestras de agua en las proximidades de una isla, se determinó el número de individuos por m³ y se obtuvieron los siguientes valores:

5000 5700 4450 4500 4825 4025 3700 4900 3750

Supongamos que el número de individuos por m³ de agua está normalmente distribuido. El investigador sospecha, por tener experiencia en el tema, que en esa zona la cantidad media de zooplancton por m³ de agua supera los 4200 individuos y quiere verificar la teoría. ¿Proveen los datos suficiente evidencia para apoyar esta suposición?

use nivel $\alpha = 0.05$

• Sea X_1, X_2, \dots, X_9 una m.a donde cada

 $X_i =$ "número de individuos por m^3 de agua de la muestra i" i=1,...,9

Supongamos que $X_i \sim N(\mu, \sigma^2)$ con σ^2 desconocida

Planteamos las hipótesis:

$$H_0$$
: $\mu = 4200 \ vs \ H_A$: $\mu > 4200 \ (test unilateral a derecha)$

Estadístico de prueba:
$$T = \frac{\bar{X} - 4200}{s/\sqrt{n}} \sim T(n-1)bajo H_0$$
 gl=n-1=8

Región de rechazo: Rechazo H_0 a favor de H_A si $t_0 > t_{\alpha,n-1}$

Buscando en tabla de la t-Student: $t_{\alpha,n-1}$ = $t_{0,05,9-1}$ = 1,86

Obtengo de los datos
$$t_0 = \frac{\bar{x} - 4200}{s/\sqrt{n}} = \frac{4538,9 - 4200}{649,29/\sqrt{9}} = 1,56,$$

no se cumple $t_0 > t_{\alpha,n-1}$, t_0 no cae en la región de rechazo

• Conclusión: No tenemos suficiente evidencia contra H_0 , a nivel α =0,05. Es decir que no podemos afirmar con un nivel de α =0,05 que el número medio de individuos de la población de zooplancton sea mayor a 4200 por m³.

Si queremos calcular el p-valor P-valor= $P(T>t_0)=P(T>1,56)$ No se puede calcular exactamente, entonces debemos acotar 0,05< P-valor<0,1

Para una m.a X_1, X_2, \dots, X_n con distribución normal y σ_0 desconocido.

Hipótesis nula		$H_0: \mu = \mu_0$		
Estadístico de prueba: $T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{s} \sim T(n-1)$ bajo H_0				
Hipótesis alternativa:	H_A : $\mu < \mu_0$	H_A : $\mu > \mu_0$	H_A : $\mu \neq \mu_0$	
Región de rechazo a nivel α	$t_0 < -t_\alpha$	$t_0 > t_{\alpha}$	$ t_0 > t_{\alpha/2}$	
p-valor	$P(T < t_0) = $ $P(T > t_0)$	P(T> t_0)	$P(T > t_0) = 2P(T > t_0)$	

Test para la media con n grande

• **Ejemplo**: La contaminación de metales pesados de varios ecosistemas es una amenaza ambiental. Un artículo científico reporta que, para una muestra de n = 56 peces de la especie Mugil liza, la concentración media muestral de zinc en el hígado fue de 9.15 µg/g y la desviación estándar muestral (s) fue de 1.27 µg/g. ¿Se puede afirmar, en base a estos datos, que los peces de esa región tienen niveles medios de zinc diferentes a 8.2 µg/g?.

Aquí tenemos una m.a X_1, X_2, \ldots, X_{56} donde cada X_i es la concentración de zinc en el hígado (µg/g) del i-ésimo pez examinado y desconocemos su distribución, pero suponemos que tiene media

 $\mu = E(X_i)$ y varianza $\sigma^2 = V(X_i)$ desconocido.

$$\bar{x}$$
 = 9.15, s = 1.27,

Las hipótesis a plantear son: H_0 : $\mu = 8.2$ vs H_A : $\mu \neq 8.2$ test bilateral

Como n es grande, y se desconoce σ , se lo estima con s.

Se tiene el estadístico de prueba: $T = \frac{\bar{X} - 8,2}{s/\sqrt{n}} \approx N(0,1)$ bajo H_0

Por TCL.

Región de rechazo: se rechaza H_0 a favor de H_A si: $|t_0| > z_{\alpha/2}$ como no nos dan un valor de α , debemos calcular el p-valor y tomar una decisión en base a ese resultado.

$$t_0 = \frac{9,15-8,2}{1,27/\sqrt{56}} = 5,598$$

P-valor=P($|T| > |t_0|$) =2(P(T> $|t_0|$)) \cong_{tcl} 2(1- $\Phi(|t_0|$))<2.0,0001=0,0002

Conclusión:

Esto significa que hay una muy fuerte evidencia para rechazar H_0 , y se puede lo puede hacer con cualquier nivel de significación razonable. Por lo tanto, podemos concluir que la concentración media de zinc en el hígado de los peces de esa región es diferente a 8.2 µg/g.

Para una m.a X_1, X_2, \dots, X_n con distribución desconocida y σ_0 desconocido.

Hipótesis nula		$H_0\!:\!\mu=\mu_0$			
Estadístico de prueba: $T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{s} \approx N(0,1)$ bajo H_0					
Hipótesis alternativa:	H_A : $\mu < \mu_0$	H_A : $\mu > \mu_0$	H_A : $\mu \neq \mu_0$		
Región de rechazo a nivel α	$t_0 < -z_\alpha$	$t_0 > z_{\alpha}$	$ t_0 > z_{\alpha/2}$		
p-valor	$P(T < t_0) = $ $P(T > t_0)$	P(T> t_0)	$P(T > t_0) = 2P(T > t_0) \approx 2(1-\Phi(t_0))$		

Test para una Proporción

• Cuando una m.a de n intentos idénticos se saca de una población Binomial, la proporción muestral \hat{p} tiende a una distribución normal cuando n es grande.

$$n \hat{p} > 5 y n(1 - \hat{p}) > 5$$

$$\frac{\widehat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \approx N(0,1)$$

Cuando se prueba una hipótesis acerca de p, la proporción en la población que posee cierto atributo, se tienen:

$$H_0$$
: $p=p_0$ vs H_A : $p>p_0$ ó $p< p_0$ ó $p\neq p_0$
El estadístico de prueba es: Z= $\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \approx N(0,1)$ bajo H_0

Ejemplo: Cerca del 20% de adultos participar de actividades físicas. En una encuesta de n=100 adultos de más de 40 años, un total de 15 personas indicaron que hacían ejercicio físico al menos 2 veces por semana. ¿Estos datos indican que el % de participación para adultos mayores de 40 es considerablemente menor a la cifra de 20 %?

$$X_i = \begin{cases} 1, & \text{si el } i-\text{\'e}simo \ adulto \ mayor \ de \ 40 \ realiz\'o \ ejercicio \\ c. \ c \\ X_i \sim B(1,p) \end{cases}$$

p=proporción de adultos mayor de 40 que realizan ejercicio

$$H_0$$
: $p = 0.2 \ vs \ H_A$: $p < 0.2$ (test unilateral por izquierda)

El estadístico de prueba es: Z=
$$\frac{\hat{p}-0.2}{\sqrt{\frac{0.2(1-0.2)}{100}}} \approx N(0.1)$$
 bajo H_0 (*)

$$\hat{p} = \frac{15}{100} = 0.15 \, Z_0 = -1.25$$

(*) Verifica: n \hat{p} =100.0,15=15 >5 y n(1- \hat{p})=100.0,85=85>5

P-valor= P(Z<-1,25)
$$\cong \Phi(-1,25) = 0,1056$$

 tcl

∴No se rechaza H_0 , los datos no indican que el % de participación para adultos mayor 40 años sea menor a la cifra 20 %.

Relación Intervalo de confianza -test

Sea $X_1, X_2, ..., X_n$ una m.a de una distribución $F(\theta)$ y sea $IC_{1-\alpha}(\theta)$ un intervalo de confianza de nivel 1- α para θ , esto significa que:

$$P(\theta \in IC_{1-\alpha}(\theta)) = 1-\alpha$$

Si consideramos el test de hipótesis: H_0 : $\theta = \theta_0 \ vs \ H_A$: $\theta \neq \theta_0$

Si H_0 es verdadera, entonces:

$$P(\theta_0 \in IC_{1-\alpha}(\theta)) = 1-\alpha \qquad P(\theta_0 \notin IC_{1-\alpha}(\theta)) = \alpha$$

Entonces podemos establecer la siguiente regla de decisión:

Rechazar H_0 : $\theta = \theta_0$ a favor $de H_A$: $\theta \neq \theta_0$ cuando $\theta_0 \notin IC_{1-\alpha}(\theta)$, de este modo construimos un test bilateral de nivel α .

Si consideramos el siguiente ejemplo: La contaminación de metales pesados de varios ecosistemas es una amenaza ambiental. Un artículo científico reporta que, para una muestra de n=56 peces de la especie Mugil liza, la concentración media muestral de zinc en el hígado fue de 9.15 µg/g y la desviación estándar muestral fue de 1.27 µg/g. Se desea estimar la concentración media poblacional de zinc en el hígado de esa especie de peces, mediante un intervalo de 95% de confianza.

Tenemos X_1, X_2, \ldots, X_{56} donde cada X_i es la concentración de zinc en el hígado (µg/g) del i-ésimo pez examinado y desconocemos su distribución, pero suponemos que tiene media

 $\mu = E(X_i)$ y varianza $\sigma^2 = V(X_i)$.

Función pivote:
$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \approx N(0,1)$$
 por tcl,

El intervalo de confianza de nivel 0,95 a utilizar, de nivel aproximado es: $IC_{1-\alpha}(\mu) = [\bar{X} - z_{\alpha/2} \frac{S}{\sqrt{n}}; \bar{X} + z_{\alpha/2} \frac{S}{\sqrt{n}}]$

Reemplazando con los datos el intervalo numérico es: $IC_{0,95}(\mu)$ =[9,15-0,3326;9,15+0,3326]=[8,81;9,48]

¿Se puede afirmar, en base a estos datos, que los peces de esa región tienen niveles medios de zinc diferentes a 8.2 µg/g?. Con nivel de significancia 0,05.

Planteamos las hipótesis: H_0 : $\mu = 8.2 \ vs \ H_A$: $\mu \neq 8.2$

Como tenemos calculado el Intervalo de confianza de nivel 0,95, podemos utilizar la relación intervalo test

Rechazar H_0 : $\mu = 8,2$ a favor $de\ H_A$: $\mu \neq 8,2$ cuando $8,2 \notin IC_{0,95}(\mu)$, pero en este problema;