(2)
CRYSTALS-Kyber

Pei He

CRYSTALS-Kyber: Introduction

- Shor's Algorithm:
 - Efficient polynomial-time algorithm using quantum computers:
 - Solve DLP and ECDLP
 - Find prime factors (RSA)
- Lattice problems such as LWE are believed to be hard for quantum computers to solve
- Kyber is based on the hard Module Learning with Errors Problem

	\boldsymbol{n}	q	k	η_1	η_2	d_u	d_v	required RBG strength (bits)
ML-KEM-512	256	3329	2	3	2	10	4	128
ML-KEM-768	256	3329	3	2	2	10	4	192
ML-KEM-1024	256	3329	4	2	2	11	5	256

Learning With Errors:

Given $t = A_s + e_s$, with e being small, find a good s

Module LWE (MLWE)

- Basically LWE except A, s, t and e go from being integer vectors to polynomial vectors
- All operations done within a polynomial ring eg. $R_q = \mathbb{Z}_{541}[x]/(x^4+1)$
- Polynomial coefficients can be encoded as bytes

$$A = \begin{bmatrix} 442 + 502x + 513x^2 + 15x^3 & 368 + 166x + 37x^2 + 135x^3 \\ 479 + 532x + 116x^2 + 41x^3 & 12 + 139x + 385x^2 + 409x^3 \\ 29 + 394x + 503x^2 + 389x^3 & 9 + 499x + 92x^2 + 254x^3 \end{bmatrix}$$

$$s = \begin{bmatrix} 2 - 2x + x^3 \\ 3 - 2x - 2x^2 - 2x^3 \end{bmatrix}$$

$$e = \begin{bmatrix} 2 - 2x - x^2 \\ 1 + 2x + 2x^2 + x^3 \\ -2 - x^2 - 2x^3 \end{bmatrix}$$

$$t = As + e = \begin{bmatrix} 30 + 252x + 401x^2 + 332x^3 \\ 247 + 350x + 259x^2 + 485x^3 \\ 534 + 234x + 137x^2 + 443x^3 \end{bmatrix}$$

Kyber - Key Encapsulation Mechanism

Alice

Keygen

- Randomly select n length bitstream rho to expand into A
- Randomly select small [-2,2] polynomial vectors s, e
- t = As + e
- Randomly select n- length bitstream z

Decapsulate

- u = decompress(u*)
- v = decompress(v*)
- m' = round_q(v' s . u')
- K', R' = G(m', H(rho + t))
- $\mathbf{K}^* = \mathbf{J}(\mathbf{Z} + \mathbf{C})$
- Encrypt m' with rho, t and R' to get u', v'.
- If u==u' and v==v' return K' else K*

Default parameters: $\mathbf{q} = 3329$ and $\mathbf{n} = 256$

Public key: rho, t

Ciphertext: u*, v*

Fujisaki-Okamoto transform:

using hash functions

- G: sha-512
- H: sha-256
- J: sha-256

to make KEM resistant against chosen ciphertext attack

Bob

Encapsulate

- Randomly select n-length bitstream m as secret message
- h = <mark>H(rho + t</mark>)
- \mathbf{K} , $\mathbf{R} = \mathbf{G}(\mathbf{m}, \mathbf{h})$

Encrypt

- Expand rho into A
- Select small [-2,2] polynomial vectors r, e1, e2 using seed R
- u = Ar + e1
- $v = t \cdot r + e^2 + [q/2] m$
- u* = compress(u)
- v* = compress(v)

Kyber-512 Demo

- Source code available at https://github.com/wph12/kyber

Attack - Bad RNG

```
Encapsulate

- Randomly select n-length
bitstream m as secret
message
- h = H(rho + t)
- K, R = G(m, h)
```

Bob only uses bad RNG to generate message M. The rest of KEM remains the same

Attack - Kyberslash

- Side channel: timing leaks information about secrets (m, m')
- Time taken by division depends on input!
- Kyberslash1:
 - Need to convert m' from polynomial (int array)
 - to bytes representation for hashing with G

```
    K', R' = G(m', H(rho + t))
    K* = J(z + c)
    Encrypt m' with rho, t and R' to get u', v'.
    If u==u' and v==v' return K' else K*
```

Some Kyber libraries will use this line of code (t is derived from m'):

```
t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
```

If we obtain m', we can easily calculate the shared secret key K'

Kyberslash1 baby demo

```
t = (((t << 1) + KYBER O/2)/KYBER O) & 1;
```

- Used timing score to approximate time taken
 - The higher the value of t, the longer it will take to be divided

- Results are grossly exaggerated since we assume that only the value of m will affect time taken to decode m'
 - It does show that information is leaked

```
- Results with 1-byte m (n = 8) as shown
```

```
score = 0
for t in m_poly:
    t += (t >> 15) & self.q
    t = ((t << 1) + self.q//2)
    score += math.log2(t)
return score</pre>
```


Kyberslash2

- When compressing v, information may be leaked about m
- Again, division of secret by public parameter
- x here refers to bytes of v

```
def compress_ele(self, x, d):
    """
    Compute round((2^d / q) * x) % 2^d
    """
    t = 1 << d
    y = (t * x + 1664) // 3329 # 1664 = 3329 // 2
    return y % t</pre>
```

Encrypt

- Expand rho into A
- Select small [-2,2] polynomial vectors r, e1, e2 using seed R
- u = Ar + e1

```
v = t \cdot r + e^2 + [q/2] m
```

- u* = compress(u)
- v* = compress(v)

- Other mathematical attacks
 - BKZ lattice reduction algorithm