INTEGRATED TECHNICAL EDUCATION CLUSTER AT ALAMEERIA

J-601-1448
Electronic Principals

Lecture #4
BJT AC Analysis

Instructor:
Dr. Ahmad El-Banna

Agenda

BJT transistor Modeling

The r_e Transistor Model (small signal analysis)

Effect of R_L and R_s & determining the Current Gain

Two-Port Systems Approach

Cascaded Systems

The Hybrid Equivalent Model (Approximate & Complete)

Troubleshooting and Practical Applications

BJT TRANSISTOR MODELING

BJT Transistor Modeling

• A model is a combination of circuit elements, properly chosen, that best approximates the actual behavior of a semiconductor device under specific operating conditions.

• Defining the important parameters of any system.

BJT Transistor Modeling

- the ac equivalent of a transistor network is obtained by:
- 1. Setting all dc sources to zero and replacing them by a short-circuit equivalent
 - 2. Replacing all capacitors by a short-circuit equivalent
- 3. Removing all elements bypassed by the short-circuit equivalents introduced by steps 1 and 2
- 4. Redrawing the network in a more convenient and logical form

- Common Emitter Configuration
- Common Base Configuration
- Common Collector Configuration
- r_e Model in Different Bias Circuits

THE r_e TRANSISTOR MODEL

The r_e Transistor Model (CE)

FIG. 5.8
Finding the input equivalent circuit

for a BJT transistor.

FIG. 5.12

BJT equivalent circuit.

FIG. 5.13

Defining the level of Zi.

$$Z_i = (\beta + 1)r_e \cong \beta r_e$$

FIG. 5.14
Improved BJT equivalent circuit.

Early Voltage

$$r_o = \frac{\Delta V}{\Delta I} = \frac{V_A + V_{CE_Q}}{I_{C_O}}$$

 I_C (mA)

$$r_o \cong \frac{V_A}{I_{C_Q}}$$

FIG. 5.15

Defining the Early voltage and the output impedance of a transistor.

FIG. 5.16

 r_e model for the common-emitter transistor configuration including effects of r_o .

The r_e Transistor Model (CB)

FIG. 5.17

(a) Common-base BJT transistor; (b) equivalent circuit for configuration of (a).

FIG. 5.18

Common base re equivalent circuit.

The r_e Transistor Model (CC)

 For the common-collector configuration, the model defined for the common-emitter configuration of is normally applied rather than defining a model for the common-collector configuration.

npn versus pnp

- The dc analysis of npn and pnp configurations is quite different in the sense that the currents will have opposite directions and the voltages opposite polarities.
- However, for an ac analysis where the signal will progress between positive and negative values, the ac equivalent circuit will be the same.

C.E. Fixed Bias Configuration

FIG. 5.20

Common-emitter fixed-bias configuration.

Network of Fig. 5.20 following the removal of the effects of V_{CC}, C₁, and C₂.

Substituting the r_e model into the network of Fig. 5.21.

FIG. 5.24

Demonstrating the 180° phase shift between input and output waveforms.

FIG. 5.23

Determining Z_o for the network of Fig. 5.22.

$$V_o = -\beta I_b (R_C || r_o)$$

$$I_b = \frac{V_i}{\beta r_e}$$

$$V_o = -\beta \left(\frac{V_i}{\beta r_e}\right) (R_C || r_o)$$

$$A_v = \frac{V_o}{V_i} = -\frac{(R_C \| r_o)}{r_e}$$

$$A_v = -\frac{R_C}{r_e}$$

I C

10

Voltage-Divider Bias

Voltage-divider bias configuration.

FIG. 5.27

Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 5.26.

$$R' = R_1 \| R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$Z_i = R' \| \beta r_e \|$$

$$Z_o = R_C \| r_o \|$$

$$Z_o \cong R_C$$
 $r_o \ge 10R_C$

$$\begin{aligned} V_o &= -(\beta I_b)(R_C \| r_o) \\ I_b &= \frac{V_i}{\beta r_e} \\ V_o &= -\beta \bigg(\frac{V_i}{\beta r_o} \bigg) (R_C \| r_o) \end{aligned}$$

$$A_v = \frac{V_o}{V_i} = \frac{-R_C \| r_o}{r_e}$$

180° phase shift

$$A_v = \frac{V_o}{V_i} \cong -\frac{R_C}{r_e}$$

TEC

11

Effect of R_L and R_s

FIG. 5.54

Amplifier configurations: (a) unloaded; (b) loaded; (c) loaded with a source resistance.

$$A_{v_{\rm NL}} = \frac{V_o}{V_i}$$

$$A_{v_L} = \frac{V_o}{V_i}$$
 with R_I

$$A_{v_s} = \frac{V_o}{V_s}$$

ith R_r and R_r

- The loaded voltage gain of an amplifier is always less than the no-load gain.
- The gain obtained with a source resistance in place will always be less than that obtained under loaded or unloaded conditions due to the drop in applied voltage across the source resistance.
- For the same configuration $A_{VNL} > A_{VL} > A_{VS}$.
- For a particular design, the larger the level of R L, the greater is the level of ac gain.
- For a particular amplifier, the smaller the internal resistance of the signal source, the greater is the overall gain.
- For any network that have coupling capacitors, the source and load resistance do not affect the dc biasing levels.

Effect of R_L and R_s..

FIG. 5.55

The ac equivalent network for the network of Fig. 5.54c.

$$R'_{L} = r_{o} \| R_{C} \| R_{L} \cong R_{C} \| R_{L}$$

$$V_{o} = -\beta I_{b} R'_{L} = -\beta I_{b} (R_{C} \| R_{L})$$

$$I_{b} = \frac{V_{i}}{\beta r_{e}}$$

$$V_{o} = -\beta \left(\frac{V_{i}}{\beta r_{e}}\right) (R_{C} \| R_{L})$$

$$A_{\nu_L} = \frac{V_o}{V_i} = -\frac{R_C \| R_L}{r_e}$$

$$V_{i} = \frac{Z_{i}V_{s}}{Z_{i} + R_{s}}$$

$$\frac{V_{i}}{V_{s}} = \frac{Z_{i}}{Z_{i} + R_{s}}$$

$$A_{v_{S}} = \frac{V_{o}}{V_{s}} = \frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}} = A_{v_{L}} \frac{Z_{i}}{Z_{i} + R_{s}}$$

$$Z_{i}$$

$$Z_i = R_B \| \beta r_e$$

$$Z_o = R_C \| r_o$$

Voltage-divider ct.

$$A_{\nu_L} = \frac{V_o}{V_i} = -\frac{R_C \| R_L}{r_e}$$

$$Z_i = R_1 \| R_2 \| \beta r_e$$

$$Z_o = R_C \| r_o$$

$$A_{\nu_L} = \frac{V_o}{V_i} = \frac{R_E \| R_L}{R_F \| R_L + r_e}$$

14

Determining the Current gain

Determining the current gain using the voltage gain.

• For each transistor configuration, the current gain can be determined directly from the voltage gain, the defined load, and the input impedance.

$$A_i = \frac{I_o}{I_i}$$

$$I_i = rac{V_i}{Z_i}$$
 and $I_o = -rac{V_o}{R_L}$

$$A_{i_L} = \frac{I_o}{I_i} = \frac{-\frac{V_o}{R_L}}{\frac{V_i}{Z_i}} = -\frac{V_o}{V_i} \cdot \frac{Z_i}{R_L}$$

$$A_{i_L} = -A_{v_L} \frac{Z_i}{R_L}$$

	moaaea BJ1 1ransis	no. m.p.y.		
Configuration	Z_i	Z_o	A_{v}	A_i
Fixed-bias:	$Medium (1 k\Omega)$ $= R_B \ \beta r_e\ $	$ \text{Medium } (2 \text{ k}\Omega) $ $= \boxed{R_C \ r_o} $		$= \frac{\beta R_B r_o}{(100)}$
R_B V_i Z_i V_o	$\cong \boxed{\beta r_e}$ $(R_B \ge 10\beta r_e)$	$\cong \boxed{R_C}$ $(r_o \ge 10R_C)$	$\approx \frac{R_C}{r_e}$ $(r_o \ge 10R_C)$	$= \frac{(r_o + R_C)(R_B + \beta r_e)}{(r_o \ge 10R_C, R_B \ge 10\beta r_e)}$
Voltage-divider	Medium (1 k Ω)	$\text{Medium}(2k\Omega)$	High (-200)	High (50)
bias: R_1 R_2 R_2 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_5	$= \left[R_1 \ R_2 \ \beta r_e \right]$	$= \boxed{R_C \ r_o}$ $\cong \boxed{R_C}$ $(r_o \ge 10R_C)$	$= \boxed{-\frac{R_C \ r_o}{r_e}}$ $\cong \boxed{-\frac{R_C}{r_e}}$ $(r_o \ge 10R_C)$	$= \boxed{ \frac{\beta(R_1 \ R_2) r_o}{(r_o + R_C)(R_1 \ R_2 + \beta r_o)} }{ \frac{\beta(R_1 \ R_2)}{R_1 \ R_2 + \beta r_o}} }$ $(r_o \ge 10R_C)$
Unbypassed emitter bias: $I_o \bigvee_{R_B} V_{CC}$ V_C	High $(100 \mathrm{k}\Omega)$ $= \boxed{R_B \ Z_b}$ $Z_b \cong \beta(r_e + R_E)$ $\cong \boxed{R_B \ \beta R_E}$ $(R_E \gg r_e)$	Medium $(2 k\Omega)$ $= \boxed{R_C}$ (any level of r_o)	Low (-5) $= \boxed{-\frac{R_C}{r_e + R_E}}$ $\cong \boxed{-\frac{R_C}{R_E}}$ $(R_E \gg r_e)$	High (50) $\cong \boxed{-\frac{\beta R_B}{R_B + Z_b}}$
Emitter-follower: V_{CC} V_i V	High (100 k Ω) $= R_B \ Z_b \ $ $Z_b \cong \beta(r_e + R_E)$ $\cong R_B \ \beta R_E \ $ $(R_E \gg r_e)$	Low (20 Ω) $= \boxed{R_E \ r_e}$ $\cong \boxed{r_e}$ $(R_E \gg r_e)$	$Low (\cong 1)$ $= \boxed{\frac{R_E}{R_E + r_e}}$ $\cong \boxed{1}$	$ \text{High } (-50) $ $ \cong \boxed{ -\frac{\beta R_B}{R_B + Z_b} } $
Common-base: $ \begin{array}{c c} I_{l} \\ V_{l} & Z_{l} \end{array} $ $ \begin{array}{c c} R_{E} \\ \hline V_{EE} \end{array} $ $ \begin{array}{c c} I_{o} \\ \hline V_{CC} \end{array} $	Low (20 Ω) $= \boxed{R_E \ r_e}$ $\cong \boxed{r_e}$ $(R_E \gg r_e)$	$Medium (2 k\Omega)$ $= R_C$	$ \text{High (200)} $ $ \cong \boxed{\frac{R_C}{r_e}} $	Low (−1) ≅
Collector feedback: R_F R_C $R_$	Medium (1 k Ω) $= \frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_F}}$ $(r_o \ge 10R_C)$	Medium $(2 k\Omega)$ $\cong \boxed{R_C R_F }$ $(r_o \ge 10R_C)$	High (-200) $\cong \left[-\frac{R_C}{r_e} \right]$ $(r_o \ge 10R_C)$ $(R_F \gg R_C)$	High (50) $= \frac{\beta R_F}{R_F + \beta R_C}$ $\approx \frac{R_F}{R_C}$

BJT Transistor Amplifiers Including the Effect of R_s and R_L				
Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z_o	
$ \begin{array}{c c} V_{CC} \\ R_B \\ V_S \\$	$\frac{-(R_L \ R_C)}{r_e}$	$R_B \ oldsymbol{eta} r_e$	R_C	
	Including r_o : $-\frac{(R_L R_C r_o)}{r_e}$	$R_B \ eta r_e$	$R_C \ r_o$	
R_1 R_C	$\frac{-(R_L \ R_C)}{r_e}$	$R_1 \ R_2 \ oldsymbol{eta} r_e$	R_C	
$ \begin{array}{c c} R_s & V_i \\ V_s & \hline \end{array} $ $ \begin{array}{c c} R_2 & \hline \end{array} $ $ \begin{array}{c c} R_E & \hline \end{array} $ $ \begin{array}{c c} C_E & \hline \end{array} $	Including r_o : $\frac{-(R_L R_C r_o)}{r_e}$	$R_1 \ R_2 \ eta r_e$	$R_C \ r_o$	
R_{s}	≅ 1	$R_E' = R_L R_E$ $R_1 R_2 \beta(r_e + R_E')$	$R'_{s} = R_{s} R_{1} R_{2}$ $R_{E} \left(\frac{R'_{s}}{\beta} + r_{e}\right)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\cong 1$	$R_1 \ R_2 \ \beta(r_e + R_E')$	$R_E \ \left(\frac{R_s'}{\beta} + r_e \right)$	
$R_s \parallel^{V_i} \downarrow \downarrow$	$\cong \frac{-(R_L \ R_C)}{r_e}$	$R_E \ r_e$	R_C	
$ \begin{array}{c c} & & & & & & & & & & & & & & & & \\ & & & &$	Including r_o : $\cong \frac{-(R_L \ R_C\ r_o)}{r_e}$	$R_E \ r_e$	$R_C \ r_o$	

V_{CC} R_1 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_4 R_5 R_6 R_6 R_7 R_8 R_8 R_9 R	$\frac{-(R_L \ R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_E)$	R_C
	Including r_o : $\frac{-(R_L R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_e)$	$\cong R_C$
V_{CC} R_B R_C R_C R_C	$\frac{-(R_L \ R_C)}{R_{E_1}}$	$R_{\mathcal{B}} \ \beta(r_e + R_{E_1})$	R_C
$\begin{array}{c c} & Z_i & R_{E_1} & Z_o \\ \hline & Z_i & R_{E_2} & Z_c & Z_c \end{array}$	Including r_o : $\frac{-(R_L \ R_C)}{R_{E_t}}$	$R_B \ \beta(r_e + R_E)$	$\cong R_C$
V_{CC} R_C R_C	$\frac{-(R_L \ R_C)}{r_e}$	$eta r_e \ rac{R_F}{ A_v }$	R_C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\frac{-(R_L R_C r_o)}{r_e}$	$eta r_e \ rac{R_F}{ A_ u }$	$R_C \ R_F\ r_o$
R_F	$\frac{-(R_L \ R_C)}{R_E}$	$eta R_E \ rac{R_F}{ A_v }$	$\cong R_C R_F $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\cong \frac{-(R_L \ R_C)}{R_E}$	$\cong \beta R_E \ rac{R_F}{ A_v }$	$\cong R_C R_F$

12

2-Port System

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

$$z_{11} \stackrel{\text{def}}{=} \left. \frac{V_1}{I_1} \right|_{I_2 = 0}$$

$$z_{12} \stackrel{ ext{def}}{=} \left. rac{V_1}{I_2}
ight|_{I_1=0}$$

$$z_{21} \stackrel{\text{def}}{=} \left. \frac{V_2}{I_1} \right|_{I_2=0}$$

$$z_{22} \stackrel{\text{def}}{=} \left. \frac{V_2}{I_2} \right|_{I_1 = 0}$$

$$V_o = A_{v_{
m NL}} V_i$$

$$Z_o = R_o$$

$$Z_i = R_i$$

FIG. 5.62

Substituting the internal elements for the two-port system of Fig. 5.61.

$$V_o = \frac{R_L A_{\nu_{\rm NL}} V_i}{R_L + R_o}$$

$$A_{v_L} = \frac{V_o}{V_i} = \frac{R_L}{R_L + R_o} A_{v_{\rm NL}}$$

$$A_{i_L} = \frac{I_o}{I_i} = \frac{-V_o/R_L}{V_i/Z_i} = -\frac{V_o}{V_i} \frac{Z_i}{R_L}$$

$$A_{i_L} = -A_{\nu_L} \frac{Z_i}{R_L}$$

2-Port System..

Including the effects of the source resistance R_s .

$$V_i = \frac{R_i V_s}{R_i + R_s}$$

$$V_o = A_{\nu_{\rm NL}} V_i$$

$$V_o = A_{\nu_{\rm NL}} \frac{R_i}{R_i + R_s} V_s$$

$$A_{\nu_s} = \frac{V_o}{V_s} = \frac{R_i}{R_i + R_s} A_{\nu_{\rm NL}}$$

FIG. 5.65 Considering the effects of R_s and R_L on the gain of an amplifier.

$$\overline{V_s} = \overline{R_i + R_s}$$

$$V_o = \frac{R_L}{R_L + R_o} A_{v_{\rm NL}} V_i$$

$$A_{\nu_{L}} = \frac{V_{o}}{V_{i}} = \frac{R_{L}A_{\nu_{\text{NL}}}}{R_{L} + R_{o}} = \frac{R_{L}}{R_{L} + R_{o}}A_{\nu_{\text{NL}}}$$

$$A_{v_s} = \frac{V_o}{V_s} = \frac{V_o}{V_i} \cdot \frac{V_i}{V_s}$$

$$A_{v_s} = \frac{V_o}{V_s} = \frac{R_i}{R_i + R_s} \cdot \frac{R_L}{R_L + R_o} A_{v_{\rm NL}}$$

$$A_{i_L} = -A_{v_L} \frac{R_i}{R_L}$$

$$A_{i_s} = -A_{v_s} \frac{R_s + R_i}{R_L}$$

CASCADED SYSTEMS

Cascaded Systems

• Examples: RC Coupled ct & Cascode ct

• Check Examples: 5.15 & 5.16

THE HYBRID EQUIVALENT MODEL

The Hybrid Equivalent Model

The r_e model has the advantage that the parameters are defined by the actual operating conditions,

the parameters of the hybrid equivalent circuit are defined in general terms for any operating conditions.

FIG. 5.93 Two-port system.

$$V_i = h_{11}I_i + h_{12}V_o$$

$$I_o = h_{21}I_i + h_{22}V_o$$

		144111.	IVEGA.	
Input impedance $(I_C = 1 \text{ mA dc}, V_{CE} = 10 \text{ V dc}, f = 1 \text{ kHz})$	h _{ie}	0.5	7.5	kΩ
Voltage feedback ratio $(I_C = 1 \text{ mA dc}, V_{CE} = 10 \text{ V dc}, f = 1 \text{ kHz})$	h_{re}	0.1	8.0	×10 ⁻⁴
Small-signal current gain $(I_C = 1 \text{ mA dc}, V_{CE} = 10 \text{ V dc}, f = 1 \text{ kHz})$	h_{fe}	20	250	
Output admittance $(I_C = 1 \text{ mA dc}, V_{CE} = 10 \text{ V dc}, f = 1 \text{ kHz})$	h _{oe}	1.0	30	lμS

FIG. 5.92 Hybrid parameters for the 2N4400 transistor.

$$V_{11} = \frac{V_i}{I_i}\Big|_{V_o = 0}$$
 ohms

short-circuit input-impedance parameter

Min

Max

$$h_{12} = \frac{V_i}{V_o} \bigg|_{I_l = 0}$$

unitless

open-circuit reverse transfer voltage ratio parameter

$$h_{21} = \frac{I_o}{I_i} \bigg|_{V_o = 0}$$

unitless

short-circuit forward transfer current ratio parameter

$$h_{22} = \frac{I_o}{V_o} \bigg|_{I_i = 0}$$

siemens

short-circuit forward transfer current ratio parameter

Transistor Hybrid Equivalent ct

$$V_i = h_{11}I_i + h_{12}V_o$$

$$I_o = h_{21}I_i + h_{22}V_o$$

FIG. 5.94

Hybrid input equivalent circuit.

FIG. 5.95

Hybrid output equivalent circuit.

For Transistor:

 $h_{11} \rightarrow i$ nput resistance $\rightarrow h_i$

 $h_{12} \rightarrow r$ everse transfer voltage ratio $\rightarrow h_r$

 $h_{21} \rightarrow f$ orward transfer current ratio $\rightarrow h_f$

 $h_{22} \rightarrow output$ conductance $\rightarrow h_o$

FIG. 5.96

Complete hybrid equivalent circuit.

(a)

(a)

FIG. 5.98

Common-base configuration: (a) graphical symbol; (b) hybrid equivalent circuit.

Hybrid vs. r_e model

 I_{i} V_{i} h_{i} $h_{f}I_{i}$ V_{o}

FIG. 5.99

Effect of removing h_{re} and h_{oe} from the hybird equivalent circuit.

FIG. 5.100
Approximate hybrid equivalent model.

$$h_{fe} = \beta_{ac}$$

$$h_{ib} = r_e$$

$$h_{fb} = -\alpha \cong -1$$

(b)

(a)

APPROXIMATE & COMPLETE H-MODEL

Approximate h-model

Approximate common-emitter hybrid equivalent circuit.

FIG. 5.105

Approximate common-base hybrid equivalent circuit.

Fixed Bias ct

FIG. 5.106
Fixed-bias configuration.

FIG. 5.107

Substituting the approximate hybrid equivalent circuit into the ac equivalent network of Fig. 5.106.

Check other configurations !!

$$A_i = \frac{I_o}{I_i} \cong h_i$$

$$Z_i = R_B \| h_{ie}$$

$$Z_o = R_C ||1/h_{oe}||$$

$$R' = 1/h_{oe} || R_C,$$

$$V_o = -I_o R' = -I_C R'$$

$$= -h_{fe} I_b R'$$

$$I_b = \frac{V_i}{h_{ie}}$$

$$V_o = -h_{fe} \frac{1}{h_{ie}} R'$$

$$A_v = \frac{V_o}{V_i} = -\frac{h_{ie}(R_C || 1/h_{oe})}{h_{ie}}$$

Complete h-model

Current Gain, $A_i = I_o/I_i$

$$I_o = h_f I_b + I = h_f I_i + \frac{V_o}{1/h_o} = h_f I_i + h_o V_o$$

Substituting $V_o = -I_o R_L$ gives

$$I_o = h_f I_i - h_o R_L I_o$$

Rewriting the equation above, we have

$$I_o + h_o R_L I_o = h_f I_i$$

and

$$I_o(1 + h_o R_L) = h_f I_i$$

so that

$$A_i = \frac{I_o}{I_i} = \frac{h_f}{1 + h_o R_L}$$

Voltage Gain, $A_v = V_o/V_i$

$$V_i = I_i h_i + h_r V_o$$

$$I_i = (1 + h_o R_L) I_o / h_f$$

and
$$I_o = -V_o/R_L$$

$$V_{i} = \frac{-(1 + h_{o}R_{L})h_{i}}{h_{f}R_{L}}V_{o} + h_{r}V_{o}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{-h_{f}R_{L}}{h_{i} + (h_{i}h_{o} - h_{f}h_{r})R_{L}}$$

Input Impedance, $Z_i = V_i/I_i$

$$V_i = h_i I_i + h_r V_o$$

$$V_o = -I_o R_L$$

$$V_i = h_i I_i - h_r R_L I_o$$

$$A_i = \frac{I_o}{I_c}$$

$$I_o = A_i I_i$$

$$V_i = h_i I_i - h_r R_I A_i I_i$$

$$Z_i = \frac{V_i}{I_i} = h_i - h_r R_L A_i \qquad A_i = \frac{h_f}{1 + h_o R_L}$$

$$A_i = \frac{h_f}{1 + h_o R_L}$$

$$Z_i = \frac{V_i}{I_i} = h_i - \frac{h_f h_r R_L}{1 + h_o R_L}$$

Output Impedance, $Z_o = V_o/I_o$

$$V_s = 0$$

$$I_i = -\frac{h_r V_o}{R_s + h_i}$$

$$I_o = h_f I_i + h_o V_o$$
$$= -\frac{h_f h_r V_o}{R_s + h_i} + h_o V_o$$

$$Z_o = \frac{V_o}{I_o} = \frac{1}{h_o - [h_f h_r / (h_i + R_s)]}$$

Hybrid π Model

FIG. 5.123

Giacoletto (or hybrid π) high-frequency transistor small-signal ac equivalent circuit.

$$r_{\pi} = \beta r_e$$

$$g_m = \frac{1}{r_e}$$

$$r_o = \frac{1}{h_{oe}}$$

$$\frac{r_{\pi}}{r_{\pi} + r_{u}} \cong \frac{r_{\pi}}{r_{u}} \cong h_{re}$$

VARIATIONS OF TRANSISTOR PARAMETERS

Hybrid parameter variations with collector current.

Hybrid parameter variations with collector-emitter potential.

Hybrid parameter variations with temperature.

In general, therefore, if a system is not working properly, first disconnect the ac source and check the dc biasing levels.

FIG. 5.128

Using the oscilloscope to measure and display various voltages of a BJT amplifier.

37

Audio Mixer

Preamplifier

FIG. 5.130 Audio mixer.

FIG. 5.133

Preamplifier for a dynamic microphone.

38

- For more details, refer to:
 - Chapter 5, Electronic Devices and Circuits, Boylestad.
- The lecture is available online at:
 - https://speakerdeck.com/ahmad_elbanna
- For inquires, send to:
 - ahmad.elbanna@feng.bu.edu.eg

