2023 February 1 Shift 2

1

AI24BTECH11004-Bheri Sai Likith Reddy

1 SECTION-A

- 1) The sum $\sum_{n=1}^{\infty} \frac{2n^2 + 3n + 4}{(2n)!}$ is equal to :

 - a) $\frac{11e}{2} + \frac{7}{2e}$ b) $\frac{13e}{4} + \frac{5}{4e} 4$ c) $\frac{11e}{2} + \frac{7}{2e} 4$ d) $\frac{13e}{4} + \frac{5}{4e}$
- 2) Let $S = \left\{ x \in \mathbb{R} : 0 < x < 1 \text{ and } 2 \tan^{-1} \left(\frac{1-x}{1+x} \right) = \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right\}$. If n(S) denotes the number of elements in S then:
 - a) n(S)=2 and only one element in S is less than $\frac{1}{2}$
 - b) n(S)=2 and only one element in S is less than
 - c) n(S)=2 and only one element in S is less than $\frac{1}{2}$
 - d) n(S) = 0
- 3) Let $\vec{d} = 2\hat{i} 7\hat{j} + 5\hat{k}$, $\vec{b} = \hat{i} + \hat{k}$ and $\vec{c} = \hat{i} + 2\hat{j} 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\overrightarrow{r} \times \overrightarrow{d} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{r} \cdot \overrightarrow{b} = 0$, then $|\overrightarrow{r}|$ is equal to :

 - a) $\frac{11}{7}\sqrt{2}$ b) $\frac{11}{7}$ c) $\frac{11}{5}\sqrt{2}$ d) $\frac{\sqrt{914}}{7}$
- 4) If $A = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$, then:
 - a) $A^{30} A^{25} = 2I$
 - b) $A^{30} + A^{25} + A = I$
 - c) $A^{30} + A^{25} A = I$
 - d) $A^{30} = A^{25}$
- 5) Two sice are thrown independently. Let A be the event tthat teh number appeared on teh 1^{st} die is less than teh number appeared on the 2^{nd} die, B be teh event that theh number appeared on the number appeared on the 1st die is even and that on the second die is odd, and C be the event that the number appeared on ist die is odd and that on the 2^{nd} is even. Then
 - a) the numbere of favourable cases of the event $(A \cup B) \cap C$ is 6
 - b) A and B are mutually exchusive
 - c) The number of favourabel cases of the events A,B and C are 15,6 and 6 respectively
 - d) B and C are independent
- 6) Which of the following statements is a tautology?
 - a) $p \to (p \land (p \to q))$

- b) $(p \land q) \rightarrow (\neg (p) \rightarrow q)$
- c) $(p \land (p \rightarrow q)) \rightarrow \neg q$
- d) $pV(p \wedge q)$
- 7) The number of integral values of k, for which one root of the equation $2x^2 8x + k = 0$ lies in the interval (2,3), is:
 - a) 2
 - b) 0
 - c) 1
 - d) 3
- 8) Let $f: R-0, 1 \to R$ be a function such that $f(x) + f\left(\frac{1}{1-x}\right) = 1 + x$. Then f(2) is equal to:
 - a) $\frac{9}{2}$ b) $\frac{9}{4}$ c) $\frac{7}{4}$ d) $\frac{7}{3}$
- 9) Let the plane P pass through the intersection of the planes 2x + 3y z = 2 and x+2y+3z=6, adn be perpendicular to the plan 2x+y-z+1=0. If d is the distance of P from the point (-7, 1, 1), then d_2 is equal to:

 - b) $\frac{15}{53}$ c) $\frac{25}{83}$ d) $\frac{250}{23}$
- 10) Let a, b be two real numbers such that ab < 0. If the complex number $\frac{1+ai}{b+i}$ is of unit modulus and a + ib lies on the circle |z - 1| = |2z|, then a possible value of $\frac{1+|a|}{4b}$, where [t] is greatest inteer function, is :
 - a) $\frac{-1}{2}$
 - b) $-\bar{1}$
 - c) 1
 - d) $\frac{1}{2}$
- 11) The sum of the abosolute maximum and minimum values of the function f(x) = $\left|x^{2}-5x+6\right|-3x+2$ in teh interval [-1,3] is equal to:
 - a) 10
 - b) 12
 - c) 13
 - d) 24
- 12) Let P(S) denote the power set of S = 1,2,3,...,10. Define the relations R_1 and R_2 on P(S) as AR_1B if $(A \cap B^c) \cup (B \cap A^c) = \phi$ and AR_2B if $A \cup B^c = B \cup A^c$, \forall A,B \in P(S). Then:
 - a) both R_1 and R_2 are equivalence relations
 - b) only R_1 is an equivalence realtion
 - c) only R_2 is an euevalence realtaion
 - d) both R_1 and R_2 are not equivalence relations

- 13) The area of the region given by $\{(x, y) : xy \le 8, 1 \le y \le x^2\}$ is:

 - a) $8 \log_e^2 \frac{13}{3}$ b) $16 \log_e^2 \frac{14}{3}$ c) $8 \log_e^2 + \frac{7}{6}$ d) $16 \log_e^2 + \frac{7}{3}$
- 14) Let $\alpha x = exp(x^{\beta}y^{\gamma})$ be the solution of the differential equation $2x^2ydy (1-xy^2)dx =$ 0, x > 0, $y(2) = \sqrt{\log_e^2}$. Then $\alpha + \beta - \gamma$ equals :
 - a) 1
 - b) -1
 - c) 0
 - d) 3
- 15) The value of the integral $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 \cos 2x} dx$ is :