Scan Context-Based Loop Closure for Real-Time LiDAR Odometry and Mapping.

Piyush Kumar - 230752 Research Project Abstract

Mentor: Prof. Salil Goel, Assistant Professor, IIT Kanpur

1. Introduction

Loop closure detection is a critical component in SLAM systems to correct accumulated drift and achieve globally consistent maps. This project implements a Scan Context-based method for robust loop closure detection using LiDAR data, particularly effective in large-scale environments due to its rotation-invariant and place-recognizable descriptors. By leveraging KD-tree-based fast nearest neighbor search, the system efficiently identifies previously visited locations, enabling correction of trajectory errors and improving overall map accuracy for reliable navigation.

2. Objectives

To develop and evaluate a **loop closure** detection framework based on the **Scan Context method**, integrated within a **ROS-based** system on **Ubuntu**, aimed at enabling accurate recognition of revisited locations using LiDAR data. The goal is to mitigate pose drift and improve global consistency in **SLAM**, thereby enhancing autonomous robot localization and navigation in large-scale environments.

3. Related Work

Loop closure detection has been explored through both vision-based and LiDAR-based approaches. Vision-based methods like FAB-MAP and Bag-of-words rely on image features but often fail in low-light or dynamic environments. LiDAR-based methods, such as Scan Context and ICP, offer greater robustness by using geometric information. Among them, Scan Context stands out for its rotation-invariant descriptors and efficient KD-tree search, making it well-suited for large-scale environments.

After reviewing these approaches, I selected the **Scan Context** method for its robustness and scalability. I am currently implementing a C++ version of this method, integrated with ROS on Ubuntu, to support reliable loop closure detection for LiDAR-based SLAM.

4. Applications

The implemented **Scan Context**-based loop closure detection system enhances the **accuracy** of LiDAR-based SLAM by **reducing drift** over time. This is crucial for **reliable autonomous navigation** and **localization** in applications such as mobile robotics, autonomous vehicles, warehouse automation, and UAV mapping in **GNSS-denied environments**.

5. Conclusion

This work presents the implementation of a **Scan Context**-based loop closure detection method integrated with ROS on Ubuntu. By leveraging **LiDAR data** and efficient **KD-tree search**, the system enables robust and scalable detection of revisited locations, significantly improving **SLAM accuracy** and supporting reliable autonomous navigation in large-scale environments.

6. Keywords

Scan Context, Loop Closure, LiDAR.