4.1.0 Continuous Random Variables and their Distributions

We have in fact already seen examples of continuous random variables before, e.g., <u>Example 1.14</u>. Let us look at the same example with just a little bit different wording.

Example 4.1

I choose a real number uniformly at random in the interval [a,b], and call it X. By uniformly at random, we mean all intervals in [a,b] that have the same length must have the same probability. Find the CDF of X.

Solution

As we mentioned, this is almost exactly the same problem as Example 1.14, with the difference being, in that problem, we considered the interval from 1 to 2. In that example, we saw that all individual points have probability 0, i.e., P(X=x)=0 for all x. Also, the uniformity implies that the probability of an interval of length l in [a,b] must be proportional to its length:

$$P(X \in [x_1, x_2]) \propto (x_2 - x_1),$$
 where $a \le x_1 \le x_2 \le b$.

Since $P(X \in [a,b]) = 1$, we conclude

$$P(X \in [x_1,x_2]) = rac{x_2-x_1}{b-a}, \qquad ext{where } a \leq x_1 \leq x_2 \leq b.$$

Now, let us find the CDF. By definition $F_X(x) = P(X \le x)$, thus we immediately have

$$F_X(x) = 0,$$
 for $x < a$,

$$F_X(x) = 1,$$
 for $x \ge b$.

For $a \le x \le b$, we have

$$egin{aligned} F_X(x) &= P(X \leq x) \ &= P(X \in [a,x]) \ &= rac{x-a}{b-a}. \end{aligned}$$

Thus, to summarize

$$F_X(x) = egin{cases} 0 & ext{for } x < a \ rac{x-a}{b-a} & ext{for } a \le x \le b \ 1 & ext{for } x > b \end{cases}$$
 (4.1)

Note that here it does not matter if we use "<" or " \leq ", as each individual point has probability zero, so for example $P(X < 2) = P(X \le 2)$. Figure 4.1 shows the CDF of X. As we expect the CDF starts at zero and ends at 1.

Fig.4.1 - CDF for a continuous random variable uniformly distributed over [a, b].

One big difference that we notice here as opposed to discrete random variables is that the CDF is a continuous function, i.e., it does not have any jumps. Remember that jumps in the CDF correspond to points x for which P(X=x)>0. Thus, the fact that the CDF does not have jumps is consistent with the fact that P(X=x)=0 for all x. Indeed, we have the following definition for continuous random variables.

Definition 4.1

A random variable X with CDF $F_X(x)$ is said to be continuous if $F_X(x)$ is a continuous function for all $x \in \mathbb{R}$.

We will also assume that the CDF of a continuous random variable is differentiable almost everywhere in \mathbb{R} .