

Installing software on Alpine with Conda and Mamba

Installing software on Alpine with Conda and Mamba

Instructor: Brandon Reyes

- Research Computing
- Website: www.rc.colorado.edu
- Documentation: https://curc.readthedocs.io
- Helpdesk: <u>rc-help@colorado.edu</u>
- Survey: http://tinyurl.com/curc-survey18

Meet the User Support Team

Layla Freeborn

John Reiland

Brandon Reyes

Dylan Gottlieb

Andy Monaghan

Mohal Khandelwal

Michael Schneider

Ragan Lee

Slides

https://github.com/ResearchComputing/alpine_conda_mamba_primer

Session Overview

- Installing software on CURC systems
- What are Conda and Mamba?
- Using Conda and Mamba on CURC systems
 - Creating environments
 - Installing packages
 - Useful commands
 - Batch jobs
- Useful strategies for complex environments

Building Software on CURC Systems

- There are numerous ways to install software on Alpine
 - Grab pre-compiled binaries
 - Compile from source
 - Using containers (Apptainer/Singularity)
 - Using a package manager for HPC systems (Spack)
 - Within virtual environments (via Conda, Miniconda, Mamba)

Logging into CU Research Computing

Login to CURC via your terminal:

ssh <username>@login.rc.colorado.edu

Or login to CURC via your browser:

- Navigate to https://ondemand-rmacc.rc.colorado.edu
- Once logged in, select Clusters → Alpine shell

What are Conda and Mamba?

- They are a package (software) management system
 - Installs, runs, and updates packages <u>and their</u> <u>dependencies</u>
 - Creates, saves, loads, and switches between virtual environments
 - Created for Python programs, but can package and distribute software for any language

Why would we use Mamba?

- Mamba is a faster and more robust package manager in comparison to Conda
 - It is fully compatible with Conda packages
 - Supports most of Conda's commands
 - In most cases, Mamba can be used as a drop-in replacement for Conda
 - i.e. replace "conda" with "mamba" in commands

For a more detailed overview of Mamba's capabilities, please see: https://mamba.readthedocs.io

What is a .condarc file?

- The file ".condarc" is a special file that specifies configurations for Conda and Mamba
 - Specifies items such as <u>where to store installed packages and</u> environments
 - Located in your Home directory, /home/\$USER/.condarc
 - We create it for you, if it doesn't exist, with the content:

```
pkgs_dirs:- /projects/$USER/.conda_pkgsenvs_dirs:- /projects/$USER/software/anaconda/envs
```


Getting access to Conda and Mamba

On CURC systems, Conda and Mamba are made available through modules

- We highly recommend using these modules
 - Redirects output produced by Conda and Mamba
 - Creates useful variables
 - Creates the ".condarc" file, if it doesn't exist
 - They are easier than installing it yourself!

Conda and Mamba modules

- You must be on a compute node to get access to modules!
- Conda is accessible via

\$ module load anaconda

Mamba is accessible via

\$ module load miniforge

NOTE: We will be retiring our current "mambaforge" module as it is depreciated, please use "miniforge". Keep an eye out for name changes and updates around Conda and Mamba.

Demo time!

Start a session and load Conda

Start a session on an Alpine compute node with acompile:

```
[johndoe@login11 ~]$ acompile --help

[johndoe@login11 ~]$ acompile --ntasks=4 --time=60:00

...

[johndoe@c3cpu-a5-u28-1 ~]$ module load anaconda

(base) [johndoe@c3cpu-a5-u28-1 ~]$
```

Note: when you login to CURC you'll be on a *login* node. You'll need to be on a *compute* node to use anaconda. The **acompile** command allows you to quickly start an interactive job on a compute node.

2/7/25

Create your first Conda environment!

 Environments are created and programs are installed in a few simple steps

```
(base) [johndoe@c3cpu-a5-u28-1 ~]$ conda create -n my_first_env python==3.10 (base) [johndoe@c3cpu-a5-u28-1 ~]$ conda activate my_first_env (my_first_env) [johndoe@c3cpu-a5-u28-1 ~]$ python
```

Don't install packages in your base environment!

Installing packages

- Packages are installed within activated environments using conda install
- Install latest version available:

(my first env) [johndoe@c3cpu-a5-u28-1 ~]\$ conda install pandas

Install a specific version:

(my_first_env) [johndoe@c3cpu-a5-u28-1 ~]\$ conda install pandas==2.2.0

Installing packages with "pip"

 pip installs should be done within activated environments

Using pip to install latest version:

(my_first_env) [johndoe@c3cpu-a5-u28-1 ~]\$ pip install --no-cache-dir pandas

--no-cache-dir is crucial on CURC systems!

Useful Conda Commands

conda env list # list all environments

conda list # list packages in active env

conda env remove -n <envname> --all # remove an environment

conda config --show channels # view configured channels

conda deactivate # deactivate environment

conda create --name <clonedenv> / # clone an environment

--clone <envtoclone>

Useful Conda file paths on Alpine

location of python libraries

/projects/\$USER/software/anaconda/<env>/lib/python3.10/site-packages

location of package executables

/projects/\$USER/software/anaconda/<env>/bin

location of .condarc file

/home/\$USER/.condarc

Running Alpine batch jobs with Conda

[johndoe@login11 ~]\$ nano runconda.sh #Step 1: open new job script in editor

#!/bin/bash
job script name: runconda.sh

#SBATCH --partition=amilan

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --time=10:00

module purge

module load anaconda

conda activate my first env

python my python code.py

Step 2: Write job script

https://curc.readthedocs.io/en/latest/runningjobs/batch-jobs.html

[johndoe@login11 ~]\$ sbatch runconda.sh #Step 3: Schedule job

Using environments in Open OnDemand

- In Open OnDemand users can utilize their environments in Jupyter sessions. This can be done using two different methods:
 - Specifying the environment name in the "Conda environment" field
 - Allows you to launch the notebook from within your environment
 - Needed for some Jupyter extensions
 - Create a Jupyter Kernel
 - Allows you to switch between different environments while in a notebook
 - May prevent some Jupyter extensions from working
- Both methods are described at https://curc.readthedocs.io/en/latest/open_ondemand/jupyter_s ession.html

Strategies for complex environments

- You may have to use different channels and change channel order
- Conflicts can arise when iteratively installing packages. If this happens create a new environment and install the package that causes conflicts first.
- Use Mamba to accelerate installations

/25

Thank you!

Survey and feedback

http://tinyurl.com/curc-survey18

Slides

https://github.com/ResearchComputing/alpine_conda_mamba_primer

