# HORIZON AEROSPACE

• 18333 EGRET BAY BOULEVARD, SUITE 300 • HOUSTON, TEXAS, USA 77058 • (713) 333-5944

• TELEFAX (713) 333-3743

N93-230741

# SPACE BIOLOGY INITIATIVE PROGRAM DEFINITION REVIEW

**TRADE STUDY 4** 

**DESIGN MODULARITY AND COMMONALITY** 

#### FINAL REPORT

Prepared by:

#### HORIZON AEROSPACE

L. Neal Jackson, President John Crenshaw, Sr. Engineer

and

#### EAGLE ENGINEERING, INC.

W.L. Davidson F.J. Herbert J.W. Bilodeau J.M. Stoval

#### **EAGLE TECHNICAL SERVICES**

T. Sutton

Prepared for:

GE GOVERNMENT SERVICES
Houston, Texas
Contract No. G966016-J45

June 1, 1989

# Table of Contents

| Foreword ü                                                                                                                                                                                                                                                                      |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Foreword                                                                                                                                                                                                                                                                        |                  |
| Table of Contents iii                                                                                                                                                                                                                                                           |                  |
| List of Figures v                                                                                                                                                                                                                                                               |                  |
| List of Tables vi                                                                                                                                                                                                                                                               |                  |
| List of Abbreviations and Acronyms                                                                                                                                                                                                                                              |                  |
| Glossary and Definitions ix                                                                                                                                                                                                                                                     |                  |
| 1.0 Introduction                                                                                                                                                                                                                                                                |                  |
| 1.3 Application of Trade Study Results  1.4 Scope  1.5 Methodology  1.5.1 Data And Documentation Survey  1.5.2 Database Development  1.5.3 Costing Techniques Summary  1.5.4 Survey Data Integration  1.5.5 Cost Analysis  1.6 Definitions  1.6.1 Modularity  1.6.2 Commonality | 122333           |
| 2.0 Executive Summary  2.1 Assumptions And Groundrules  2.2 SBI Functional Element Candidates for Modularization/Commonality  2.3 Modularity/Commonality Cost Impacts  2.4 Future Work  2.5 Conclusion Summary                                                                  | 6<br>6<br>7<br>7 |
| 3.0 Trade Study Database                                                                                                                                                                                                                                                        | 6.6              |
| 4.0 Documentation Survey  4.1 Documentation Sources  4.1.1 Common SBI Trade Study Bibliography  4.1.2 Trade Study Bibliography for Modularity & Commonality  4.2 Documentation Data                                                                                             | 1                |

| 5.0 Modularity/Commonality Trade Study                               | ٠,         |
|----------------------------------------------------------------------|------------|
| 5.1 Guidelines for Modularity/Commonality Functional Elements        | 4          |
| 5.2 SBI Hardware Sample Selection                                    | .4         |
| 5.2.1 Modularity Candidate Sample Set                                | $\omega$   |
| 5.2.2. Commonality Candidate Sample Set                              | در         |
| 5.3 Relative SBI Modularization and Commonality Cost Impact Analysis | 40         |
| 5 3 1 Modularization Cost Impact Analysis                            | 40         |
| 5 3 2. Commonality Cost Impact Analysis                              | 40         |
| 5.3.2.1 Empirical Cost Relationships                                 | 40         |
| 5.3.2.2 Lot Certification                                            | 4/         |
| 5.3.2.3 Design Cost Reduction                                        | 27         |
| 6.0 Conclusions                                                      | +C<br>40   |
| Appendix A - Space Biology Hardware Baseline                         | - 1        |
| Appendix B - Complete SBI Trade Study Bibliography B.                | - ]        |
| Appendix C - Cost Assessment Techniques Summary                      | ]          |
| Appendix D - Database Definition                                     | - ]        |
| Appendix F - Detailed Hardware Descriptions E                        | , <u> </u> |

# List of Figures

| Figure 1.5 | Space Biology Initiative Definition Review Trade Study Logic Flow |   | ) |
|------------|-------------------------------------------------------------------|---|---|
| - 3        |                                                                   | • |   |

# List of Tables

| Table 1.4 SBI Hardware Categories and Functions                                                                                                   | 4   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2.1.1. Common SRI Trade Study Assumptions and Groundfules                                                                                   | 7   |
| Table 2.1-1 Common SBI Trade Study Assumptions and Groundrules 1 Table 2.1-2 Modularity and Commonality Trade Study Assumptions and Groundrules 1 | 10  |
| Table 2.2-1 List of SBI Hardware Vital to Program Cost Impact Analysis                                                                            | 11  |
| Table 2.2-1 List of SBI Hardware vital to Plogram Cost impact randy on                                                                            | 12  |
| Table 2.2-1 List of SBI Haldware vital to Tiggs ample Selection                                                                                   | 12  |
| T-N- 2 2 3 Modularity Candidate Sample Set                                                                                                        | Ų   |
| Table 2.2.4 SRI Hardware Items for Commonality                                                                                                    | 1-7 |
| Table 2.3 Commonality List of Functions/Assemblies                                                                                                | 15  |
| Table 4.1-2 Bibliography for Modularity and Commonality                                                                                           | 18  |
| Table 4.1-2 Bibliography for Modularity and Commonanty                                                                                            | 28  |
| Table 5.2-1 Database Listing of SBI Hardware Vital to Program Cost Impact Analysis                                                                | วด  |
| Table 5.2.2 Dechara Listing for Modularity Sample Selection Assessment                                                                            | 47  |
| Table 5.2.2 "Vital" Database Listing for Commonality Sample Selection Assessment                                                                  | JU  |
| Table 5.2.1 Database Listing of Modularity Candidate Sample Set                                                                                   | 38  |
| Table 5.3.2 Commonality List of Functions/Assemblies                                                                                              | 39  |
| Table 5.3.2 Commonality List of Functions/Assembles                                                                                               |     |

# List of Abbreviations and Acronyms

Artificial Intelligence AI Ames Research Center **ARC** 

Biomedical Research Project (Human/Crew Members) **BmRP** 

Biological Research Project (Non Human/Rodents, primates or plants) BRP

Biological Specimen Holding Facility **BSHF** 

Computer Aided Design CAD Critical Design Review CDR

Closed Ecological Life Support System **CELSS** 

Crew Health Care CHeC

Commercial Off-The-Shelf COTS

Change Request CR

Design, Development, Test and Evaluation DDT&E

Data Management System DMS

Exercise Countermeasure Facility ECF

Environmental Control and Life Support System **ECLSS** 

**Extended Duration Crew Operations EDCO** 

Environmental Health System **EHS** 

**Electrical Power Distribution System EPDS** 

Functional Support Unit FSU Gas Grain Simulator GGS

Health Maintenance Facility **HMF** 

High Performance Liquid Chromatograph **HPLC** 

Hardware Quantity and Usage List HQUL

Human Research Facility HRF Johnson Space Center JSC Local Area Network LAN

Laboratory Support Equipment LSE Life Sciences Laboratory Equipment LSLE

Life Science Research Facility LSRF Mission Dependent Equipment MDE Medical Development Unit MDU Multi-Layer Insulation MLI

Mission Requirements Data Base MRDB

Major Subcontractor **MSK** 

National Aeronautics and Space Administration NASA

NASA Space Transportation System NSTS

Off-The-Shelf OTS

Principal Investigator PΙ

Permanent Manned Capability **PMC** Payload Operations Control Center POCC

Reference Mission Operational Analysis Document RMOAD

Science & Applications Information System SAIS

Space Biology Hardware Baseline **SBHB** 

Space Biology Initiative SBI Space Station Freedom SSF

| SLS       | Space Laboratory Life Science            |
|-----------|------------------------------------------|
| SSFP      | Space Station Freedom Program            |
| SSIS      | Space Station Information Systems        |
| STS       | Space Transportation System              |
| TDRSS     | Tracking and Data Relay Satellite System |
| TFU       | Theoretical First Unit                   |
| WAN       | Wide Area Network                        |
| 77 2-32 1 |                                          |

# Glossary and Definitions

Assembly

An accumulation of subassemblies and/or components that perform specific functions within a system. Assemblies can consist of subassemblies, components, or both.

#### Certification

The process of assuring that experiment hardware can operate under adverse Space Station Freedom environmental conditions. Certification can be performed by analysis and/or test. The complete SSFP definition follows. Tests and analysis that demonstrate and formally document that all applicable standards and procedures were adhered to in the production of the product to be certified. Certification also includes demonstration of product acceptability for its operational use. Certification usually takes place in an environment similar to actual operating conditions.

Certification Test Plan

The organized approach to the certification test program which defines the testing required to demonstrate the capability of a flight item to meet established design and performance criteria. This plan is reviewed and approved by cognizant reliability engineering personnel. A quality engineering review is required and comments are furnished to Reliability.

Component

An assembly of parts, devices, and structures usually self-contained, which perform a distinctive function in the operation of the overall equipment.

Experiment

An investigation conducted on the Space Station Freedom using experiment unique equipment, common operational equipment of facility.

Experiment Developer

Government agency, company, university, or individual responsible for the development of an experiment/payload.

Experiment unique hardware

Hardware that is developed and utilized to support the unique requirements of an experiment/payload.

**Facility** 

Hardware/software on Space Station Freedom used to conduct multiple experiments by various investigators.

Flight Increment

The interval of time between shuttle visits to the Space Station Freedom. Station operations are planned in units of flight increments.

Flight increment planning

The last step in the planning process. Includes development of detailed resource schedules, activity templates, procedures and operations supporting data in advance of the final processing, launch and integration of payloads and transfer of crew.

Ground operations

Includes all components of the Program which provide the planning, engineering, and operational management for the conduct of integrated logistics support, up to and including the interfaces with users. Logistics, sustaining engineering, pre/post-flight processing, and transportation services operations are included here.

#### Increment

The period of time between two nominal NSTS visits.

#### Interface simulator

Simulator developed to support a particular Space Station Freedom or NSTS system/subsystem interface to be used for interface verification and testing in the S&TC and/or SSPF.

Integrated logistics support

Includes an information system for user coordination, planning, reviews, and analysis. Provides fluid management, maintenance planning, supply support, equipment, training, facilities, technical data, packaging, handling, storage and transportation. Supports the ground and flight user requirements. The user is responsible for defining specific logistics requirements. This may include, but not be limited to resupply return in term of frequency, weight, volume, maintenance, servicing, storage, transportation, packaging, handling, crew requirements, and late and early access for launch site, on-orbit, and post-mission activities.

Integrated rack

A completely assembled rack which includes the individual rack unique subsystem components. Verification at this level ensures as installed component integrity, intrarack mechanical and electrical hookup interface compatibility and mechanisms operability (drawer slides, rack latches, etc.).

Integration

All the necessary functions and activities required to combine, verify, and certify all elements of a payload to ensure that it can be launched, implemented, operated, and returned to earth successfully.

Orbit replaceable unit (ORU)

The lowest replaceable unit of the design that is fault detectable by automatic means, is accessible and removable (preferably without special tools and test equipment or highly skilled/trained personnel), and can have failures fault-isolated and repairs verified. The ORU is sized to permit movement through the Space Station Freedom Ports.

# Payload integration activities

Space Station Freedom payload integration activities will include the following:

Pre-integration activities shall include receiving inspection, kitting, GSE preps and installation, servicing preps and servicing, post deliver verification, assembly and staging (off-line labs), rack and APAE assembly and staging, alignment and post assembly verification.

Experiment integration activities shall include experiment package installation into racks, deck carriers, platforms, etc., and payload to Space station interface verification testing. When the Freedom element is available on the ground, Space Station Freedom integration activities (final interface testing) shall include rack or attached payload installation into Freedom element (e.g., pressurized element, truss structure, platform) and shall include payload-to-element, interface verification, followed by module, truss, or platform off-loading of experiments, as required, for launch mass for follow-on increments, Space Station Freedom integration activities shall include rack or attached payload installation into the logistics element and verification of the payload-to-logistics element interface.

Integration activities (final interface testing) shall include: rack or attached payload installation into Space Station Freedom element (e.g., lab module, truss structure, platform) on the ground, when available, and shall include payload to element interface verification, configure and test for station to station interface verification, followed by module, truss or platform off-loading of experiments, as required, for launch mass.

Launch package configuration activities shall include configuring for launch and testing station to NSTS interfaces, (if required), stowage and closeout, hazardous servicing, (if required), and transport to the NSTS Orbiter.

NSTS Orbiter integrated operations activities shall include insertion of the launch package into the orbiter, interface verification (if required), pad operations, servicing, closeout, launch operations, and flight to Space Station Freedom.

On-orbit integration activities shall include payload installation and interface verification with Space Station Freedom.

Hardware removal that includes rack-from-module and experiment-from-rack removal activities.

# Payload life cycle

The time which encompasses all payload activities from definition, to development through operation and disbursement.

# Permanent manned capability (PMC)

The period of time where a minimum of capabilities are provided, including required margins, at the Space Station Freedom to allow crews of up to eight on various tour durations to comfortably and safely work in pressurized volumes indefinitely. Also includes provisions for crew escape and EVA.

#### Physical integration

The process of hands-on assembly of the experiment complement; that is, building the integrated payload and installing it into a standard rack, and testing and checkout of the staged payload racks.

#### Principal Investigator

The individual scientist/engineer responsible for the definition, development and operation of an experiment/payload.

#### Rack staging

The process of preparing a rack for experiment/payload hardware physical integration: encompasses all pre-integration activities.

#### Space Station Freedom

The name for the first Unites States permanently manned space station. It should always be interpreted as global in nature, encompassing all of the component parts of the Program, manned and unmanned, both in space and on the ground.

#### Subassembly

Two or more components joined together as a unit package which is capable of disassembly and component replacement.

#### Subsystem

A group of hardware assemblies and/or software components combined to perform a single function and normally comprised of two or more components, including the supporting structure to which they are mounted and any interconnecting cables or tubing. A subsystem is composed of functionally related components that perform one or more prescribed functions.

#### Verification

The process of confirming the physical integration and interfaces of an experiment/payload with systems/subsystems and structures of the Space Station Freedom. The complete SSFP definition follows. A process that determines that products conform to the design specification and are free from manufacturing and workmanship defects. Design consideration includes performance, safety, reaction to design limits, fault tolerance, and error recovery. Verification includes analysis, testing, inspection, demonstration, or a combination thereof.

# 1.0 Introduction

## 1.1 Background

The JSC Life Sciences Project Division has been directly supporting NASA Headquarters, Life Sciences Division, in the preparation of data from JSC and ARC to assist in defining the Space Biology Initiative (SBI). GE Government Services and Horizon Aerospace have provided contract support for the development and integration of review data, reports, presentations, and detailed supporting data. SBI Definition (Non-Advocate) Review at NASA Headquarters, Code B, has been scheduled for the June-July 1989 time period. In a previous NASA Headquarters review, NASA determined that additional supporting data would be beneficial in clarifying the cost factors and impact in the SBI of modularizing appropriate SBI hardware items. In order to meet the demands of program implementation planning with the definition review in late spring of 1989, the definition trade study analysis must be adjusted in scope and schedule to be complete for the SBI Definition (Non-Advocate) Review.

## 1.2 Task Statement

The objective of this study is to define the relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, this study will define the relative cost impacts of implementing commonality of hardware for all Space Biology hardware. Cost analysis and supporting recommendations for levels of modularity and commonality will be presented. The study will provide a mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis.

# 1.3 Application of Trade Study Results

The SBI cost definition is a critical element of the JSC submission to the SBI Definition (Non-Advocate) Review and the results of this trade study are intended to benefit the development of the SBI costs. It is anticipated that the GE PRICE cost estimating model will be used to assist in the formulation of the SBI cost definition. The trade study results are planned to be produced in the form of factors, guidelines, rules of thumb, and technical discussions which provide insight on the effect of modularity/commonality on the relative cost of the SBI hardware. The SBI cost estimators are required to define input parameters to the PRICE model which control the cost estimating algorithms. These trade study results can be used as a handbook of cost effects by the SBI cost estimators in developing and defining the required PRICE input parameters.

# 1.4 Scope

The space biology hardware to be investigated has been defined and baselined in Appendix A Space Biology Hardware Baseline (SBHB). By study contract direction, no other space biology hardware has been considered. The complexity and importance of the subject could warrant an extensive study if unlimited time and resources were available. However, due to the practical needs of the real program schedule and budget, the depth of study has been adjusted to satisfy

the available resources and time. In particular, cost analyses have emphasized the determination of influential factors and parametric relationships rather than developing detailed, numerical cost figures. While program objectives and mission definitions may be stable in the early program phases, hardware item specifications are often elusive and change many times before final design. For this reason, the trade study analyses have focused on the category and function of each hardware item (Table 1.4) rather than the particular, current definition of the item. In the process of acquiring trade study data, certain information could be considered a snapshot of the data at the time it was recorded for this study. The data have been analyzed as defined at the time of recording; no attempt has been made to maintain the currency of acquired trade study data.

#### 1.5 Methodology

The methodology used in performing the Modularization/Commonality Trade Study, shown in Figure 1.5, consists of the initial, important phase of search and acquisition of related data; followed by a period of data integration and analysis; and, finally, the payoff phase where candidate items and implementation factors, including design modularity and commonality impacts to parametric cost analysis are identified.

## 1.5.1 Data And Documentation Survey

A literature review and database search were conducted immediately upon study initiation. Information pertaining to the modularization of commercial and space flight research hardware was considered for applicability to the study task.

## 1.5.2 Database Development

An analysis of the trade study data needs was performed to provide an understanding of the logical database design requirements. Based on the knowledge gained in the database analysis, the trade study data structures were developed and implemented on a computer system. The pertinent information collected from the data and documentation survey was input to the trade study database.

# 1.5.3 Costing Techniques Summary

Costing techniques used in previous projects were surveyed and historical cost factors were collected for review of applicability to this trade study. The applicable data were identified for use in cost analysis to demonstrate relative cost impacts of modularization/commonality for space biology technology hardware.

# 1.5.4 Survey Data Integration

The Space Biology Hardware Baseline was reviewed and the facilities, assemblies, subassemblies, components, and functions of this hardware that have the potential for design modularity and commonality were identified as candidates for design modularity and commonality. The technical data collected from the survey were integrated with the Space

Biology Hardware Baseline database and a matrix of candidate functions, specifications, cost Analysis, design modularity and commonality applications will be developed.

The initial survey data analysis was performed to select a sample of the SBHB items which could be potential candidates for modularization. With limited study time and a SBHB of 93 referenced hardware items, Appendix A, a method was needed to separate the items which could have the most cost impact and were worthy of study resource application. The "initial few and trivial many" method (SBI #96) was used. This method applies the principal that in any population which contributes to a common effort (cost). A relative few of the contributors account for the bulk of the effort (cost). All SBHB items were listed in descending order of probable acquisition cost. Weight was used as an indication of probable acquisition cost based on historical experience in previous space programs. It was found that 34 percent of the items (32 items) accounted for 93 percent of the mass or probable cost (Table 5.3). Therefore, consideration was immediately limited to these 32 items. The modularization candidate sample set was chosen from Table 5.4-1 based on amenability to modularization and commonality. This list of 32 items does not mean the remaining 61 (93-32) items are of lesser importance in obtaining space biology information.

The sample set was then subjected to a more detailed analysis to determine important factors relative to commonality and to select the most representative functions/assemblies for final analysis. By this process, a reasonable effort could be devoted to analyze the impact more thoroughly.

#### 1.5.5 Cost Analysis

Analyses were performed to demonstrate the relative cost impact for modularity and commonality within the candidate hardware items. Additional study was dedicated to the final selected item. Based on this cost assessment and historical data, the relative relationship of modularization/commonality to space biology hardware cost was assessed.

#### 1.6 Definitions

## 1.6.1 Modularity

Modularization is the packaging of the instrument equipment in units which correspond to system functional elements in such a way that the units can be easily removed, replaced, and reconfigured.

## 1.6.2 Commonality

Commonality refers to the commonness of an individual (item) "COMMON" from latin "communis" is defined as "belonging to or shared by two or more individuals or by all members of a group. It can broadly be defined as the use of identical, interchangeable, functionally compatible or similar items to satisfy different sets of functionally similar requirements.

# Table 1.4 SBI Hardware Categories and Functions

# SBI HARDWARE CATEGORIES

FUNCTIONS (Applicable to each Category)

Cardiovascular

Analysis

Cytology

Calibration

Environmental Monitoring

**CELSS** 

Exobiology

Collection

Hematology

Health Maintenance

Histology

Measurement

Logistics

Preparation

Miscellaneous

Stowage

Neurophysiology

Plant Sciences

Pulmonary

Surgical Science

Urology

Figure 1.5 Space Biology Initiative Definition Review Trade Study Logic Flow



#### 2.0 Executive Summary

### 2.1 Assumptions And Groundrules

In the process of performing the subject trade study, certain data or study definition was not available or specified. Assumptions and groundrules have been established to document, for the purposes of this trade study, the definition of important information which is not definite fact or is not available in the study time period. Major assumptions and groundrules which affect the four EEI trade studies are provided in a list common to all of the studies (Table 2.1-1). The assumptions which primarily affect the design modularity and commonality study are documented in a separate list (Table 2.1-2).

# 2.2 SBI Functional Element Candidates for Modularization/Commonality

The baseline candidate list of 93 SBI hardware items is shown in Appendix A with an "S" by each item. Space flight history has established that project costs are mostly significantly affected by space equipment weight. To determine which SBI hardware warranted the most study resources, the SBI hardware list was prioritized by mass (Table 2.2-1 repeated from Table 5.2-1) showing the top 32 items which represent 93% by mass, 87% by volume and 87% by power (watts) of the total 93 items.

The 32 hardware items in Table 2.2-1 were reviewed and selective judgements were recorded on the potential for modularization (Table 2.2-2 repeated from Table 5.2-2). Each SBI hardware item was analyzed to determine if the entire item can be modularized or at least a portion of the components could be modularized. The confidence level is an indication of the knowledge and understanding of the individual items at the time of this study. There are five (5) items in this list where there was insufficient data to make an estimation for modularity/commonality (marked NO on Table 2.2-2). There are four (4) items on this list that are marked with a "P" for Pulmonary Group and four (4) marked "PL" for Plant Monitoring Group. The Pulmonary Group has a total of eleven (11) hardware items (#56 thru 66 listed in Appendix A) with interrelated use of hardware for the planned functions and experiments. The group will be treated as one item for this trade study. It is assumed that most of the Pulmonary Group can be packaged or modularized together. The heaviest items in the group is the mass spectrometer which can possibly be used for other SBI functions. The details and practicality of adapting the mass spectrometer to the different applications (Pulmonary functions, Plant Gas Chromatograph, etc.) is not known at this time. The CELSS hardware item is presently planned as a separate experiment, however the function of this hardware item is plant monitoring which is why it has been grouped into this category.

The modularity candidate sample set (Table 2.2-3 is a repeat of Table 5.2.1) was derived by removing those items that have insufficient data and little or no modularization potential. The item in the two groups Pulmonary (P) and Plant Monitoring (PL) were left in this sample set with a high confidence level that the group or a portion of the group could be packaged (modularized) together.

The candidate hardware items were analyzed for common functions/assemblies by sorting the vital database listing (Table 5.2-3 and summarized in Table 2.2-4). The level of commonality

was the lowest level possible with the available information. The Pulmonary Function Equipment Storage Assembly hardware items show an amplifier as being common. This particular hardware item would not use an amplifier; however, the Pulmonary Group would more than likely use this function/assembly. This type of analysis was used throughout the study for commonality. The number of common functions/assemblies will be subjective; however, the methodology does show a large potential cost savings through commonality. The level of commonality (i.e. assembly, sub assembly, component) has a direct effect on the implementation of the common solution which in turn has a direct effect on the overall cost of the program (SBI #89).

# 2.3 Modularity/Commonality Cost Impacts

The 15 candidates for modularity of the SBI hardware items are shown in Table 2.2-3. The cost impact of modularizing these items would require a redesign for the existing hardware, (i.e., Pulmonary and Plant Monitoring Group) and a new design for other items. Redesign costs would be much higher than new design of hardware in the conception phase. No cost analysis data is presented in this trade study for modularity.

The commonality list of functions/assemblies is shown in Tables 2.2-4 and summarized in Table 2.3. Table 2.2-4 shows some of the functions/assemblies for the 32 SBI hardware items. The number of potential SBI hardware items using each function/assembly is shown in Table 2.3 with the possible cost reduction for each function. To estimate the potential cost reduction for each SBI hardware item will require additional, more detailed information on the individual functions, assemblies, subassemblies and components, (lowest level possible). As seen from Table 2.3 the potential cost reduction is quite large for the first few units. After 10 items, however, the cost reduction is essentially a flat curve. The details of developing the cost impact analysis is in section 5.3.2.1.

#### 2.4 Future Work

Future studies should include more details on all of the functions/assemblies (lowest level possible) of the individual SBI hardware items. This information would then allow for a cost impact analysis of the individual SBI hardware items versus just the functions/assemblies. There is a high degree of confidence that with further, more detailed, trade studies there can be a large cost savings of modules/common items within the SBI group as well as with in other Space Station Freedom related activities. There may also be further cost savings with an analysis between the different trade studies. Other SSF activities (i.e. CHeC, EDCO, and HMF will have common hardware items and many of these will be flown on SLS-1 which could greatly reduce development cost.

## 2.5 Conclusion Summary

The analysis of this modularity/commonality trade study indicates that there can be considerable cost saving within these groups by modularizing the various assemblies and components for long duration missions. The analysis of the functions/assemblies for commonality, regardless of the factors that influence cost, shows that very large potential savings are available. Size (weight), complexity, development cost, fabrication cost and learning factors can vary over any

foreseeable range of values, but common use of elements or assemblies will still produce large savings. The analysis in section 5.3.2.1, which relates development cost, first unit cost and learning factors, vividly demonstrates this important finding.

As can be seen from Table 7-1 in Appendix C, modularity has a favorable affect on life cycle costs in almost every step of a development, test, integration and operational life cycle. Therefore, a small cost in weight to make a design modular will yield large programmatic return over the whole Space Station life cycle. Modularity also can be implemented such that improved commonality results. Select the correct items for commonality development (Table 2.2-4) and major cost savings become achievable.

# Table 2.1-1 Common SBI Trade Study Assumptions and Groundrules

- Where project, hardware, and operations definition has been insufficient, detailed quantitative analysis has been supplemented with assessments based on experienced judgement of analysts with space flight experience from the Mercury Project through the current time.
- 2) Space flight hardware cost is primarily a function of weight based on historical evidence.
- The effects of interrelationships with space biology and life science hardware and functions other than the SBI baseline hardware are not considered in the trade study analyses.
- 4) Trade study information, once defined during the analysis for the purpose of establishing a known and stable baseline, shall not be changed for the duration of the trade study.
- Hardware life cycle costs cannot be studied with quantitative analyses due to the unavailability of definition data on hardware use cycles, maintenance plans, logistics concepts, and other factors of importance to the subject.
- The SBI hardware as identified is assumed to be designed currently without any special emphasis or application of miniaturization, modularity, commonality, or modified commercial off-the-shelf adaptations.
- 7) It is assumed that the required hardware performance is defined in the original equipment specifications and must be satisfied without regard to implementation of miniaturization, modularization, commonality, or modified commercial off-the-shelf adaptations.

# Table 2.1-2 Modularity and Commonality Trade Study Assumptions and Groundrules

- 1) Many of the SBI hardware items are interrelated, i.e., pulmonary group, plant monitoring, etc., and were not treated as separate entities.
- 2) Any current SBI equipment hardware concept is subject to being redesigned to meet the benefits of design modularity and commonality.

| 1         | Į.    |                                                   | 2              | Mass                                                  | Po              | Power        | 1              | Volume   |
|-----------|-------|---------------------------------------------------|----------------|-------------------------------------------------------|-----------------|--------------|----------------|----------|
| 1         | i     | Hardware Item Name                                | Kg             | Accumul.                                              | (Watts)         | Accumul.     | 2              | Accumul. |
|           |       |                                                   | 50             | 1000                                                  | 1300            | 1300         | 1.92           | 1.92     |
| _         | 168   | CELSS                                             | 88             | 500                                                   | 1500            | 2800         | 1.92           | 3.84     |
| 2         | 169   | Gas Grain Simulator                               | 8 8            | 200                                                   | 80              | 3600         | 96             | 4.80     |
| က         | 84    | Soft Tissue Imaging System                        | 200            | 2036                                                  | 88              | 3900         | 5              | 5.09     |
| 4         | 11    | Hard Tissue Imaging System                        | 9 8            | 3256                                                  | 3 2             | 4400         | 24             | 5.33     |
| 2         | 126   | Scintillation Counter                             | 3 8            | 2366                                                  | 3 5             | 4500         | 40             | 5.73     |
| 9         | 74    | Force Resistance System                           | 2 8            | 2330                                                  | 3 5             | 4610         | 2 5            | 5 93     |
| 7         | 145   | Automated Microbic System                         | 21             | 2400                                                  | 010             | 4860         | ;              | 6.13     |
| <b>60</b> | 155   | Total Hydrocarbon Analyzer                        | 2 2            | 2030                                                  | 000             | 2000         | 5 5            | 6.33     |
| <u></u>   | 191   | Inventory Control System                          | 21             | 2000                                                  | 000             | 2300         | ; S            | 6.53     |
| 2         | 162   | id. Equ                                           | 2,6            | 0707                                                  | 3 8             | 2860<br>5860 | ; S            | 6.73     |
| =         | 163   | Test/Ckout/Calibration Instrumentation            | 2,             | 2704                                                  | 445             | 5005<br>5005 | ; <del>-</del> | 6.86     |
| 12        | 106   | Neck Baro-Cuff                                    | <u>.</u>       | 18/2                                                  | 0               | 6455         | : -            | 66 9     |
| 13        | 113   | Blood Gas Analyzer                                | <del>2</del> 5 | 2830                                                  | 000             | 2433         | 2 2            | 7.08     |
| 14        |       | Mass Spectrometer                                 | 4              | /68Z                                                  | 300             | 0000         | 5 +            | 20.7     |
| 5         |       | Plant HPLC Ion Chromatograph                      | 40             | 2917                                                  | 90°<br>         | 6833         | 4 5            | 7.7      |
|           |       | Head Torso Phantom                                | 32             | 2949                                                  | o (             | 6830         | <u> </u>       | 7.32     |
| 177       |       | Pulmonary Gas Cylinder Assem.                     | 90             | 2979                                                  | 0               | 6822         | 80.<br>0.      | 7.7      |
| - 8       | _     | Plant Gas Chromatograph/Mass Spectro-             | 52             | 3004                                                  | <u>2</u>        | 6955         | 92.            | 10./     |
|           |       | meter                                             |                | 1                                                     |                 |              | 9              | 7.60     |
| 19        | 115   | Chemistry System                                  | 23             | 3027                                                  | 100             | 7055         | 8<br>8<br>5    | 60.7     |
| 50.       |       | Hematology                                        | 23             | 3050                                                  | 200             | 7255         | ).c            | 7.70     |
| 2.5       |       | Sample Preparation Device                         | ឧ              | 3072                                                  | 120             | 7405         | <u>-</u> .     | 7.93     |
| 8         |       | Experiment Control Computer System                | 20             | 3092                                                  | 400             | 508/         | S ,            | 86.7     |
| 23        |       | Pulmonary Function Equip Stor. Assem.             | 20             | 3112                                                  | 0               | C08/         | C).            | 6.03     |
| 24        |       | Motion Analysis System                            | 20             | 3132                                                  | 8               | 7905         | ට<br>දි        | 8.08     |
| 25        |       | Animal Biotelemetry System                        | 50             | 3152                                                  | <u>\$</u>       | 8005         | ક              | 8.13     |
| 78        |       | Blood Pressure & Flow Instrumentation             | 50             | 3172                                                  | ,<br>200<br>200 | 8205         | <u>ş</u> ;     | 20.00    |
| 27        |       | Venous Pressure Transducer/Display                | 20             | 3192                                                  | <u>8</u>        | 8302         | <u>S</u>       | 8.24     |
| . ~       |       | Cell Handling Accessories                         | 50             | 3212                                                  | යි              | 8355         | .05            | 8.29     |
| 38        |       | Ban-in-Box                                        | 61             | 3231                                                  | 0               | 8355         | .15            | 8.44     |
| ] S       | _     | Plant Gas Cylinder Assem.                         | 19             | 3250                                                  | 0               | 8355         | <b>6</b>       | 8.53     |
| 3 F       |       | Gas Cylinder Assembly                             | 19             | 3269                                                  | 20              | 8405         | <b>6</b>       |          |
| - 6       | _     | Call Harvacter                                    | 19             | 3288                                                  | 20              | 8455         | ·<br>90:       | 89.8     |
| Š Š       | - Res | items 89 items have 3535 kg mass 10.0M² of volume | 10,359 wa      | 10,359 watts of power 4 Items are TBD (all are small) | Items are       | TBD (all are | small)         |          |
|           |       | 1                                                 |                |                                                       |                 |              |                |          |

Table 2.2-1 List of SBI Hardware Vital to Program Cost Impact Analysis

|                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |            | Asse                        | Assessment |
|------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|-----------------------------|------------|
| Ken 4                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sufficient        | Modularity | Contk                       | Confidence |
| Prioritizes<br>by Mess | Prioritized Hardware<br>by Mess Nem # | Hardware Kem Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date<br>Available | Potential  | Low                         | High       |
| •                      | 160                                   | 30 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | X-PL       |                             | ×          |
|                        |                                       | Gas Grain Simulator Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | ×          | -                           | ×          |
|                        |                                       | Soft Tissue Imaging System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ON<br>ON          |            |                             |            |
|                        | 77                                    | Hard Tissue Imaging System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>Q</del>      |            |                             |            |
|                        | 126                                   | Scintillation Counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | ×          |                             | ×          |
|                        | 7.4                                   | Force Resistance System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ON         | ×                           |            |
|                        | 145                                   | Automated Microbic System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | ×          |                             | ×          |
|                        |                                       | Total Hydrocarbon Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ON                |            |                             | -          |
|                        |                                       | Inventory Control System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | ×          |                             | ×          |
| 0                      |                                       | Lab Materials Pack & Hand. Equip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | ×          | ×                           |            |
| 2 -                    | 163                                   | Test/Ckout/Calibration Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | ×          |                             | ×          |
| 12                     | 106                                   | Neck Baro-Cuff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | ×          |                             | ×          |
|                        | 113                                   | Blood Gas Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | ×          | ×                           |            |
| 2                      | 6.1                                   | Mass Spectrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | X-P        | ×                           |            |
| - 10                   | 112                                   | Plant HPLC ton Chromatograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | X-PL       |                             | ×          |
| 1.0                    | 147                                   | Head Torso Phantom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | ON.        |                             | ×          |
| 17                     | 6.3                                   | Pulmonary Gas Cylinder Assem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | d-X        | ×                           |            |
| 4                      | 110                                   | Plant Gas Chromatograph/Mass Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | X-PL       | ×                           |            |
| 9                      | 115                                   | Chemistry System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | ×          | ×                           |            |
| 200                    | 138                                   | Hematology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ×          | ×                           |            |
| -                      | 34                                    | Sample Preparation Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | ×          | ×                           |            |
| 20                     | 165                                   | Experiment Control Computer System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | ×          |                             | ×          |
| 2 6 6                  | 62                                    | Pulmonary Function Equip Stor. Assem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | X-P        | ×                           |            |
| 2 4                    | 8.0                                   | Motion Analysis System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | ON.        |                             |            |
| 25                     | 66                                    | Animal Biotelemetry System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 2          |                             |            |
| 26                     | 100                                   | Blood Pressure & Flow Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ON.               |            |                             |            |
| 27                     | 100                                   | Vancus Pressure Transducer/Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                 |            |                             |            |
| 2.8                    | 120                                   | Cell Handling Accessories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | ×          | ×                           |            |
| 2 0                    | 7 Y                                   | Bec.lo. Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | A-N        | ×                           |            |
| 9 0                    | 111                                   | Plant Gas Cylinder Assem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | X-PL       | ×                           |            |
| 3 1                    | 119                                   | Gas Cylinder Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | ×          | ×                           |            |
| 32                     | 130                                   | Cell Harvester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | ×          | ×                           |            |
|                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | P - Pulmo  | P - Pulmonary Group         |            |
|                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | PL - Plant | PL - Plant Monttoring Group | Proup      |
| •                      |                                       | Committee of the second | -12 Colocki       |            | •                           |            |

Table 2.2-2 Modularity Assessment Review for Sample Selection

Table 2.2-3 Modularity Candidate Sample Set

|                      | Thermal/Shock Isolation                      | ×           | ×ĺ                           | T                         |                            | T                     | T                       | Ī                         | Т                          | ×                        | Т                                 | ×                                      | Ţ              | T                  | T:                | ×                            |                    | Ĺ        | L                                 | Ι                |             |             |           |                                      | ×                      |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ţ                         | $\bot$       |                           |                       |                | 9                          |
|----------------------|----------------------------------------------|-------------|------------------------------|---------------------------|----------------------------|-----------------------|-------------------------|---------------------------|----------------------------|--------------------------|-----------------------------------|----------------------------------------|----------------|--------------------|-------------------|------------------------------|--------------------|----------|-----------------------------------|------------------|-------------|-------------|-----------|--------------------------------------|------------------------|----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|---------------------------|-----------------------|----------------|----------------------------|
| -                    | rotingM.muH.samq.qmeT                        | ×           | ×                            | $\dashv$                  | 1                          | 1                     | $\dashv$                | 7                         | +                          | ×                        | _                                 |                                        | <   >          | <b>&lt;</b>        | 7                 | <                            | ×                  |          |                                   |                  |             |             |           |                                      | ×                      |                            |                                | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}} $ | >                         | <            |                           |                       |                | 2                          |
| ŀ                    | Storage Locker                               | _           | ×                            | $\dashv$                  | $\dashv$                   | +                     | 寸                       | $\dashv$                  | $\dagger$                  | 十                        | $\dagger$                         | 十                                      | 十              | +                  | $\dagger$         |                              | $\top$             | 1        | T                                 | T                | Τ           | Τ           | ×         |                                      |                        |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | ,            | < ;                       | <                     |                | 4                          |
| }                    | Scintiliation Counter                        |             | _                            | _                         |                            | ×                     | $\dashv$                | $\dashv$                  | $\top$                     | ×                        | +                                 | ×                                      | $\dagger$      | $\top$             | $\top$            | Ť                            | 1                  | 1        | T                                 | Т                | Τ           | T           |           |                                      |                        |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                         |              | T                         | 7                     | <b>~</b>       | 4                          |
| }                    | maid gend elgmas                             | ×           | ×                            | +                         | ┪                          |                       | +                       | +                         | $\dashv$                   | ×                        | -                                 | +                                      | 十              | $\top$             | +,                | <                            | $\top$             | ×        |                                   | 1                | ×           |             | 1         |                                      |                        |                            |                                | Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | ×            | Τ                         | Ι                     |                | 83                         |
| }                    | namuli derig eldmaß                          |             | $\neg$                       |                           | $\dashv$                   |                       | $\dashv$                | ×                         | $\top$                     | 十                        | ┪                                 | $\top$                                 | 1              |                    | T                 | T                            | $\top$             | 1        |                                   | ×                | , ,         | <           | Г         |                                      |                        |                            |                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                         |              |                           | ] ;                   | <u>×</u>       | 2                          |
| S                    | laminA qan9 elqma8                           | 一           |                              |                           | 1                          | 1                     | 寸                       | 7                         | 十                          | ×                        | ×                                 | Ť                                      | +              | T                  | T                 | T                            | T                  | T        | Τ                                 |                  | ;           | 4           | Π         |                                      | ×                      | 4                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |              |                           |                       |                | 4                          |
| <u>ë</u> .           | Recorders                                    | ×           | ×                            |                           | _                          | -                     | ×                       | ×                         | +                          | $\dagger$                |                                   | × ;                                    | <              | $\dagger$          | $\top$            | 1                            | ×                  |          |                                   |                  |             | Τ           |           | ×                                    | ×                      | 4                          |                                | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >                         | <u> </u>     | I                         | 1                     |                | 5                          |
| Functions/Assemblies | Redistion Handling                           | ×           | ×                            | П                         | ヿ                          |                       |                         |                           |                            | T                        | ×                                 | ×                                      | T              |                    | Ţ                 |                              | ×                  |          | Ι                                 |                  |             |             |           |                                      |                        |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\perp$                   | $\perp$      |                           | $\perp$               | ×              | 9                          |
| SS                   | Pumpe                                        | ×           | ×                            |                           |                            |                       | 7                       | $\exists$                 |                            |                          |                                   | I                                      | ×              | $\perp$            | $oxed{\bot}$      | ×                            | $\perp$            |          | L                                 | Ĭ.               | $\perp$     |             | Į.        |                                      | L.                     | $oxed{oxed}$               | L                              | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\perp$                   | 1            | $\downarrow$              | _                     | 4              | 4                          |
| \$                   | Power Supply                                 | ×           | ×                            |                           |                            |                       |                         |                           | T                          |                          |                                   | ×                                      | ×              | ×                  | $oxed{\ \ \ \ }$  | ×                            |                    |          |                                   | _                |             |             | _         | L                                    | <u>&gt;</u>            | 4_                         | L                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\perp$                   | $\downarrow$ | $\perp$                   | _                     |                | 7                          |
| Suc                  | andoM                                        | ×           | ×                            | П                         |                            |                       |                         |                           | ٦                          |                          |                                   | :                                      | ×              | T                  | $\int$            | ×                            |                    |          |                                   |                  |             |             |           |                                      |                        | <u> </u>                   | L                              | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\perp$                   | $\perp$      | $\perp$                   | _                     | _              | 4                          |
| 퓽                    | Microbial Monitoring                         | ×           |                              | П                         |                            |                       |                         | ×                         | 1                          |                          | T                                 |                                        |                |                    | Т                 |                              |                    |          |                                   |                  |             | $\perp$     |           |                                      |                        | _                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | $\perp$      | 1                         | 1                     |                | 2                          |
| S                    | Mess Spectrometer                            |             | ×                            | П                         | $\exists$                  |                       |                         | $\exists$                 |                            |                          |                                   | ×                                      |                | T                  | ×                 | Т                            | $\top$             |          | ×                                 |                  | 1           |             |           |                                      |                        | 1_                         | L                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | $\perp$      | ┵                         | ↓                     | _              | 4                          |
| 9                    | Ges Hendling                                 | ×           | ×                            | П                         |                            |                       | $\neg$                  |                           | T                          |                          | ×                                 | T                                      | 1              | ×                  | $\exists$ :       | ×                            | 7                  | <        |                                   |                  |             |             |           |                                      |                        |                            | L                              | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                         | <u> </u>     | <   ;                     | <                     |                | 6                          |
| List                 | \$J0200J                                     | ×           | _                            | П                         |                            |                       |                         | 一                         |                            |                          | 1                                 |                                        |                |                    | T                 | T                            | T                  | Т        | 7,                                | < ×              | 4           |             | T         |                                      |                        |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |              |                           |                       |                | က                          |
|                      | Finid Handling                               |             |                              | Н                         |                            |                       | -                       | ×                         | 1                          |                          | 7                                 | $\dagger$                              | +              | $\top$             | +                 | ×                            | $\dagger$          | 1        | Τ,                                | <b>(</b>   >     | ( )         | <b>~</b>    |           |                                      | Π                      | T                          | Ì                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <                         |              | T                         |                       |                | 9                          |
| <u>X</u>             |                                              |             |                              | Н                         | _                          | -                     | $\dashv$                | -                         | $\dashv$                   | $\dashv$                 | +                                 | $\star$                                | +              | ×                  | +                 | 7                            | ×                  | +        | +                                 | +                | +           | ╁           | $\dagger$ | T                                    | ١,                     | _                          | T                              | ┪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\top$                    | 1            | 1                         |                       | 寸              | 8                          |
| Representive         | Displays-Transducer<br>Environmental Control | ×           | ×                            | $\vdash$                  | Щ                          |                       | ×                       | ×                         | -                          | $\dashv$                 | $\dashv$                          | $\frac{2}{\times}$                     | +              | +                  | +                 | ×                            |                    | +        | +                                 | +                | +           | +           | +-        | +                                    | +-                     | -                          | ×                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                         | +            | $\dagger$                 | +                     | +              | 2                          |
| Ges                  | Displays-Transducet                          |             | _                            | H                         |                            |                       |                         | -                         | $\dashv$                   | ┪                        | +                                 | 7                                      | +              | ᆉ                  | +                 | $\dashv$                     | <del>\</del>       | +        | +                                 | +                | +           | +           | +         | +-                                   | Ι,                     | <u> </u>                   | $\dagger$                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                         | +            | +                         | $\dagger$             | $\dashv$       | 2                          |
| de                   | Detectors                                    |             | _                            | Ш                         |                            | Ш                     |                         | Ц                         | Ц                          | ×                        | _                                 | $\downarrow$                           | -              | ×                  | +                 | ×                            | 7                  | $\perp$  | +                                 | +                | +           | +           | +         | +                                    | ╁                      | +                          | +                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                         | +            | -                         | +                     | +              |                            |
| Œ                    | anehevno                                     | ×           | ×                            |                           |                            |                       |                         |                           |                            |                          |                                   | ×                                      | ×              | ×                  | ;                 | ×                            | _                  | 1        | $\perp$                           | $\bot$           | 1           | 1           | 1         | $\perp$                              | \ <u>'</u>             | ⁴_                         | +                              | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | +            | 1                         | $\downarrow$          |                | 7                          |
|                      | Computers& Accessories                       | ×           | ×                            |                           |                            |                       | X                       | X                         |                            | ×                        |                                   | ×                                      |                |                    |                   | ×                            |                    |          |                                   | $\perp$          |             | <u>&gt;</u> | <u> </u>  | ×                                    | 1                      | <b>4</b>                   |                                | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 1            | $\perp$                   | $\perp$               |                | 10                         |
|                      | - Centrifuge                                 | _           |                              |                           |                            |                       |                         |                           |                            |                          |                                   |                                        | T              | ×                  | T                 | ×                            |                    |          | :                                 | × >              | <b>&lt;</b> |             |           | L                                    |                        |                            |                                | ┵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |              |                           | $\perp$               | _              | 4                          |
|                      |                                              | ×           | ×                            |                           | Г                          |                       | ×                       |                           | П                          |                          |                                   | T                                      | T              | T                  | T                 | П                            |                    |          | Ţ                                 |                  |             |             |           | ×                                    | :   >                  | ×                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |              |                           |                       |                | ည                          |
|                      | Automation/Robotics                          | ×           | -                            | Т                         | _                          |                       |                         |                           |                            | ┪                        | ×                                 | ×                                      | 7              | 1                  | T                 | $\mathbf{x}$                 | ×                  |          | T                                 |                  | T           | ×           |           |                                      |                        | Γ                          |                                | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |              |                           |                       | ĺ              | 9                          |
|                      |                                              | <u> </u>    | ├                            | ┝                         | -                          |                       |                         | -                         | Н                          | -                        | $\dashv$                          | ×                                      | ×              | $\dashv$           | +                 |                              | ⇉                  | +        | +                                 | $\dagger$        | +           | 1,          | <b> </b>  | <del>-</del>                         | 1;                     | ×                          | Ť                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\dashv$                  | 1            | $\dashv$                  | $\top$                |                | 9                          |
|                      | sneilligmA                                   | <del></del> | ├                            | ╀                         | -                          |                       | _                       | -                         | $\vdash$                   |                          | -                                 | 7                                      | 7              | $\dashv$           | +                 | $\dashv$                     | 7                  | ╁        | +                                 | +                | +           | +           | +         | +                                    | +                      | $\dagger$                  | $\dagger$                      | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                         | $\dashv$     | +                         | $\dagger$             | _              | 1                          |
| <u> </u>             | totanene@ losoneA                            |             | ×                            | 1                         | <u> </u>                   | _                     | <u> </u>                | _                         | Н                          | _                        |                                   | -                                      | +              | _                  | $\dashv$          | $\dashv$                     | 4                  | +        | +                                 | +                | +           | +           | +         | ╁                                    | +                      | +-                         | +                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                         | +            | $\dashv$                  | +                     | ┪              |                            |
|                      | Hardware Item Name                           | 88.10       | Goo Grain Cimulator Facility | Cat Cincip Insolog System | Hard Tiesne impoint System | Scintillation Counter | Force Resistance System | Automated Microbic System | Total Hydrocarbon Analyzer | Inventory Control System | Lab Materials Pack & Hand, Equip. | Test/Ckout/Calibration Instrumentation | Neck Baro-Cuff | Blood Gas Analyzer | Mass Spectrometer | Plant HPLC Ion Chromatograph | Head Torso Phantom | r Assem. | Plant Gas Chromatograph/Mass Spec | Chemistry System | Hematology  | - 1         | VSIEM     | Pulmonary Function Equip Stor. Assem | Motion Analysis System | Animal Biotelemetry System | BIOOD FEESSURE & FIOW HISTINIE | Venous Pressure Transducer/Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cell Handling Accessories | Bag-in-Box   | Plant Gas Cylinder Assem. | Gas Cylinder Assembly | Cell Harvester | Total Functions/Assemblies |
|                      | Hardware<br>Nem #                            | 16.0        | 0 0                          | 200                       | 7.7                        | 126                   | 7.4                     | 145                       | 155                        | 161                      | 162                               | 163                                    | 106            | 113                | 6.1               | 112                          | 147                | 63       | 10                                | 115              | 138         | 34          | 165       | 62                                   | 28                     | 66                         | 000                            | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 129                       | 57           | 111                       | 119                   | 130            |                            |
|                      | kem#<br>Prioritized<br>by Mass               |             | - (                          | 7                         | 7                          | • 4                   | ي د                     | 7                         |                            | •                        | 10                                | =                                      | 12             | 13                 | 14                | 1.5                          | 16                 | 17       | 189                               | 19               | 20          | 21          | 22        | 23                                   | 24                     | 25                         | 56                             | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>58</b>                 | 29           | 30                        | 3.1                   | 32             |                            |

Table 2.2-4 SBI Hardware Items for Commonality

Table 2.3 Commonality List of Functions/Assemblies

|    | inction/Assembly H/W<br>st from Table 5.4.2 | Possible Number of SBI<br>H/W Items with Common<br>Functions/Assemblies | Percent Cost<br>Decrease   |
|----|---------------------------------------------|-------------------------------------------------------------------------|----------------------------|
| 1  | Aerosol Generator                           | 1                                                                       | •                          |
| 2  | Amplifiers                                  | 6                                                                       | 0<br>51-59                 |
| 3  | Automation/Robotics                         | 6                                                                       |                            |
| 4  | Cameras/Video                               | 5                                                                       | 51-59                      |
| 5  | Centrifuge                                  | 4                                                                       | 47-55                      |
| 6  | Computers & Accessories                     | 10                                                                      | <u>43-51</u><br>59-66      |
| 7  | Converters                                  | 7                                                                       | 5 <del>3-66</del><br>54-61 |
| 8  | Detectors                                   | 5                                                                       | 47-55                      |
| 9  | Displays-Transducer                         | 5                                                                       | 47-55                      |
| 10 | Environmental Control                       | 8                                                                       | <u> </u>                   |
| 11 | Fluid Handling                              | 6                                                                       | 51-59                      |
| 12 | Freezers                                    | 3                                                                       | 37-43                      |
| 13 | Gas Handling                                | 9                                                                       | 57-65                      |
| 14 | Mass Spectrometer                           | 4                                                                       | 43-51                      |
| 15 | Microbial Monitoring                        | 2                                                                       | 25-31                      |
| 16 | Motors                                      | 4                                                                       | 43-51                      |
| 17 | Power Supply                                | 7                                                                       | 54-61                      |
| 18 | Pumps                                       | 4                                                                       | 43-51                      |
| 19 | Radiation Handling                          | 6                                                                       | 51-59                      |
| 20 | Recorders                                   | 10                                                                      | 59-66                      |
|    | Sample Prep Animal                          | 4                                                                       | 43-51                      |
|    | Sample Prep Human                           | 5                                                                       | 47-55                      |
|    | Sample Prep Plant                           | 8                                                                       | 55-63                      |
|    | Scintillation Counter                       | 4                                                                       | 43-51                      |
|    | Storage Locker                              | 4                                                                       | 43-51                      |
|    | Temp.Press.Hum. Monitor                     | 10                                                                      | 59-66                      |
| 27 | Thermal/Shock Isolation                     | 6                                                                       | 51-59                      |

## 3.0 Trade Study Database

The trade study database has been implemented on the dBase IV program by Ashton-Tate. The database definition including a database dictionary is provided in Appendix D.

### 3.1 Database Files

Four types of dBASE IV files were created for the Space Biology Initiative (SBI) Trade Studies database. These files are database files, index files, report files and view files. Database files have the file name extension dbf. A database file is composed of records and records comprise fields which contain the data. Index files have the file name extension ndx. Index files are used to maintain sort orders and to expedite searches for specific data. Report files have the file name extension frm. Report files contain information used to generate formatted reports. View files contain information used to relate different database (dbf) files. View files link different database files into a single view file.

#### 3.2 Database Management

The development of the SBI Trade Studies database consist of two major steps, logical database development and physical database development. Defining attributes and relationships of data was the major emphasis of the logical database development. The attributes and relationships of the data were determined after analysis of available data and consultation with other SBI team members. Based on the knowledge from the logical database development, the physical structure of the database was developed and implemented on a computer. Setting up the database on a computer was the second major development process. The first step of this process was to determine how to store the data. dBASE IV allows data to be stored as character, numeric, date or logical data types. The second step was to create the database files. After the database files were created, the actual data was entered. For a complete listing of the database structures see Appendix D.

#### 3.3 Database Use

To the maximum extent possible, data generated in performance of this trade study was stored in the database. This approach not only facilitated analysis and comparison of trade data, but also enabled the efficient publication and editing of tables and figures in the study report. In addition, the data are available in the database for future evaluation using different screening logic and report organization.

#### 4.0 Documentation Survey

An extensive survey was made to collect all the latest information pertaining to Modularity & Commonality and associated cost experience. Library searches were made using titles, authors, key words, acronyms, phrases, synonyms, time periods and any possible related activities to modularization and commonality. Interviews with personnel in the various scientific disciplines were made throughout the initial portion of the study.

## 4.1 Documentation Sources

There were many personal & telephone interviews with knowledgeable personnel in the various scientific fields. These interviews are summarized in Appendix B.

The following documentation sources were checked during the initial portion of the study.

# 4.1.1 Common SBI Trade Study Bibliography

The complete list of all references used in the four Eagle Engineering, Inc. trade studies is provided in Appendix B. A unique SBI reference index number has been assigned to each information source.

# 4.1.2 Trade Study Bibliography for Modularity & Commonality

Particular reference information from Appendix B that is of special importance to modularity/commonality is repeated in Table 4.1.2.

#### 4.2 Documentation Data

Cost effective reuse and checkout of hardware prior to launch will require an emphasis on standard tests, long design history of components, and modularity in components with a readily available set of spares. The program should emphasize maintainability, which must be made a priority at the beginning of the program during conceptual design. Although the belief is widespread that modularity and accessibility for maintenance and checkout will increase cost and weight, the experiences of Solar Max and the prelaunch history of the Hubble Space Telescope have refuted this thinking. The actual weight penalty for modularization of the Hubble was less than 400 lbs. on a 25,000 lb system. Had the modularization been initiated at conceptual design, Hubble Telescope engineers maintain there would not have been any weight penalty. Both Solar Max and Hubble system engineers have stated that modularity (ref the Space Assembly Maintenance and Servicing Study Report, USAF Space Division, 1988).

The Skylab program used a common amplifier for many of the Physiological Monitoring System (PMS) sensors. This amplifier was microminiaturized and became the standard amplifier throughout the program. The miniaturization was accomplished by reduction in size and weight of the electronic sensors which also reduced the cost of the various modules in the different hardware items. This same basic common microminiaturized amplifier is scheduled for use by the SBI Bioinstrumentation & Physiological Monitoring Group. (Appendix A lists this group 3)

Je No. 05/25/89

Table 4.1-2 Bibliography for Modularity and Commonality

|               |                                        |       |                                                                                                                | 1    |                                          |                           |                           |          |
|---------------|----------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|------|------------------------------------------|---------------------------|---------------------------|----------|
| 1D #          | AUTHOR                                 | -     | TITLE                                                                                                          | VOL. | PUBLISHER                                | REPORT/DOCUMENT<br>NUMBER | PUBL I SHER<br>LOCAT I ON | DATE     |
| 58101         | SBIO1 Kozarsky, C                      | ē.    | MUS Inputs                                                                                                     |      | Lockheed Life Sciences<br>Frogram Office | Lockheed Memo             | Washington,<br>DC         | 01/19/89 |
| <b>SB1</b> 02 | SB102 Kozarsky, D.                     |       | Latest Space Station Rack<br>Studies                                                                           |      | NASA MSFC                                |                           | Huntsville,<br>AL.        | 02/02/89 |
| <b>SB103</b>  | SBIO3 Holt, A.                         | o vi  | PNWG-SS Freedom Assly.<br>Seq. Irial Pyl. Manifest                                                             |      | Payload Manifest Working<br>Group (PMWG) |                           | Reston, VA.               | 12/09/88 |
| SB104         | Shannon,                               | J.    | Business Practice Low<br>Cost System Activity                                                                  |      | NASA JSC                                 |                           | Houșton, TX.              | 11/12/75 |
| SBIII NASA    | NASA                                   | KOOTE | Reference Mission<br>Operational Analysis<br>Document (RMOAD) For The<br>Life Sciences Research<br>Facilities. |      | NASA JSC                                 | NASA TH 89604             | Houston, TX.              | 02/01/87 |
| <br>SBI 12    | SBI12 Breiling, R.                     |       | Cost Risk Analysis Using<br>Price Models                                                                       |      | RCA Price Systems                        |                           | Mooreston,<br>NJ.         | 09/01/87 |
| 58113         | Fogleman,<br>G.Schwart,<br>D.Fonda, M. |       | Gas Grain Simulation<br>Facility: Fundamental<br>Studies of Particle<br>Formation And<br>Interactions          | -    | NASA Ames Kesearch Center                | NASA AKC/855<br>88-01     | Moffet<br>Field, CA.      | 08/31/87 |
| SB114 JPL     | JPL                                    |       | Flight Projects Office<br>Payload Classification<br>Product Assurance<br>Provisions                            |      | JFL                                      | JPL D-1489 Kev.<br>A      | Pasadena,<br>CA.          | 04/30/87 |
| 58115         | SB115 PRC Systems                      |       | Cost Estimate For The<br>Search for<br>Extraterrestrial<br>Intelligence (SETI)<br>Kevised                      |      | PRC Systems Services                     |                           | Huntsville,<br>AL.        | 06/15/87 |
| SB116         | SBI16 NASA SSPD                        |       | Space Station Commonality<br>Process Requirements<br>Rev.B                                                     |      | NASA SSPO                                | SSP 30285 Rev.<br>B       | Reston,<br>Virgina        | 09/15/88 |

Je No. 2

Table 4.1-2 Bibliography for Modularity and Commonality

|                              | lable 4.1-2 Bibliography tor                                                                                                                   | חסמנו מי ז נץ                                |                           |                               |          |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|-------------------------------|----------|
| ID # AUTHOR                  | TITLE VOL. NO.                                                                                                                                 | . PUBLISHER                                  | REPORT/DOCUMENT<br>NUMBER | PUBL I SHER<br>LOCAT I ON     | DATE     |
| SB117 Webb, D.               | Technology Forecasting<br>Using Price - H                                                                                                      | Rockwell International                       |                           | Anaheim, CA.                  | 04/17/86 |
| SB118 NASA                   | Classification Of NASA<br>Office Of Space Science<br>And Applications<br>(OSSA) Space Station<br>Payloads                                      | NASA JSC                                     |                           | Houston, TX.                  | ` `      |
| SB119 NASA                   | Life Science Research<br>Objectives And<br>Representative<br>Experiments For The Space<br>Station (Green Book)                                 | NASA Ames Life Science<br>Division           |                           | Moffet.<br>Field, CA.         | 01/01/86 |
| SBI20 NASA                   | Medical Requirements Of<br>An In-Flight Medical<br>System For Space<br>Station                                                                 | NASA JSC                                     | 3SC 31013                 | Houston, TX. 11/30/87         | 11/30/87 |
| SBI21 TKW                    | A Study Of Low Cost<br>Approaches To Scientific<br>Experiment Implementa-<br>tion For Shuttle Launched<br>And Serviced Automated<br>Spacecraft | TRW Systems Group                            | Contract NASW<br>2717     | Redondo<br>Beach, CA.         | 03/19/89 |
| SB122 LMSC                   | Low-Cost Program<br>Practices For Future NASA<br>Space Programs                                                                                | LMSC                                         | LMSC-D387518              | Sunnyvale,<br>CA.             | 05/30/74 |
| SB123 Steward,<br>GMiller, L | Biomedical Equipment<br>Technology Assesment For<br>The Science Laboratory<br>Nodule                                                           | Management and Technical<br>Services Company |                           | Houston, TX.                  | 08/01/86 |
| SB124 General<br>Electric    | WP-3 Commonality Plan                                                                                                                          | General Electric                             | NAS5-32000                | Philadelphia 04/22/88<br>, PA | 04/22/88 |
| SBI25 NASA                   | Microbiology Support Plan<br>For Space Station                                                                                                 | NASA JSC                                     | JSC-32015                 | Houston, TX.                  | 09/01/86 |

Je No. 3

Table 4.1-2 Bibliography for Modularity and Commonality

e No. 5/25/89

Table 4.1-2 Bibliography for Modularity and Commonality

| ID # AUTHOR              | TITLE                                                                                                                                                 | VOL. PUBLISHER<br>NO.                         | REPORT/DOCUMENT<br>NUMBER | PUBL I SHER<br>LOCAT I ON | DATE       |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------|---------------------------|------------|
| SBI35 NASA JSC           | Space Station Freedom<br>Human-Oriented Life<br>Sciences Research<br>Baseline Reference<br>Experiment Scenario                                        | JSC- Medical Sciences<br>Space Station Office | Blue Book                 | Houston, IX.              | 10/01/88   |
| SBI39 NASA JSC           | July 1988 Pogress Report<br>On Experiment Standard<br>User Interfaces Study                                                                           | JSC - Life Sciences<br>Project Division       |                           | Houston, TX.              | -          |
| SB140 Rockwell<br>Intl.  | EMS Data Data Package<br>2.3A S4207.2, GSE<br>Commonality Analysis                                                                                    | Rockwell International                        | SSS 85-0099               | Downey, CA                | 16/04/85   |
| SB141 NASA OSSA          | Life Sciences Space<br>Station Planning<br>Document: A Reference<br>Payload For The Life<br>Sciences Research<br>Facility                             | Office of Space Science<br>and Applications   | NASA TN 89188             | Washington,<br>D.C.       | 01/01/86   |
| SBI44 Huffstætler,<br>W. | Skylab Biomedical<br>Hardware Development                                                                                                             | AIAA 20th Annual Meeting                      |                           | Los Angeles,<br>CA        | 08/22/74   |
| SB146 Anderson, A.       | Progressive Autonomy -<br>For Space Station Systems<br>Operation                                                                                      | АІАА                                          | ·                         | New York, NY 06/05/84     | 06/05/84   |
| SB147 NASA JSC           | Life Sciences Research<br>Laboratory (LSKL) Human<br>Research Facility<br>forSpace Station Initial<br>Operating Configuration<br>(IOC) Science Reqts. | NASA JSC                                      | JSC 20799                 | Houston, TX               | 10/01/85   |
| SB148 MDAC               | Crew Health Care System<br>(CHec) Development Plan                                                                                                    | Mcdonnell Douglas Space<br>Station Co.        |                           | Houston, TX.              |            |
| SBI49 Minsky, M.         | Engines of Creation                                                                                                                                   | Anchor Press                                  |                           | New York, NY              | Y 01/10/86 |
| SBI50 MDAC               | Crew Health Care                                                                                                                                      | 1 MDAC                                        | MDC H3924                 | Houston,<br>Texas         | 11/01/10   |

Je Na. 5 05/25/89

Table 4.1-2 Bibliography for Modularity and Commonality

| ID # ·AUTHOR              | TITLE                                                                                         | VOL. FUBLISHER                       | REPORT/DOCUMENT PUBLISHER | PUBLISHER             | DATE     |
|---------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------|----------|
|                           |                                                                                               | ND.                                  | NUMBER                    | LOCATION              |          |
| SBIS4 NASA JSC            | Mission Integration Plan                                                                      | NASA JSC                             | SSP 30000<br>Appendix D   | Houston, TX. 04/30/86 | 04/30/86 |
| SB155 Pacheo              | Analyzing Commonality in<br>a System                                                          | Boeing                               | NASA STI<br>Facility      | Baltimore,<br>MD.     | 03/01/88 |
| SBIS6 NASA MSFC           | Spacelab Configurations                                                                       |                                      |                           | • .                   | ' '      |
| SB168 Hamaker, Joe        | Joe Telephone interview relating to MSFC history and techniques for cost estimating.          | Cost Analysis Branch<br>Chief MSFC   |                           | Huntsville,<br>Al     | 04/27/89 |
| SB169 Booker, Clef        | lef Personal Interview                                                                        | Man-Systems Division JSC             |                           | Houston, TX.          | 04/04/89 |
| SBI70 Evans, Jim          | m Fersonal Interview                                                                          | Life Science Project<br>Division JSC |                           | Houston, TX.          | 04/19/89 |
| SBI76 Trowbridge,<br>John | e, Fersonal interview relating CHeC experience to miniaturization, modularity and make-or-buy | McDonnell Douglas                    |                           | Houston, TX.          | 03/29/89 |
| SBI78 McFadyen,<br>Gary   | Personal Interview relating to life science hardware background at JSC                        | Southwest Research<br>Institute      |                           | Houston, TX.          | 04/10/89 |
| SBIBO McFadyen            | Bloengineering on SBI<br>hardware                                                             | Southwest Research<br>Institute      |                           | San Antonio,<br>TX.   | 04/06/89 |
| SBIBI Allen, Jos          | De Fersonal interview - 5.5.<br>Life Science AIAA Meeting                                     | Space Industries                     |                           | Houston, TX.          | 04/07/89 |
| SBIB2 Averner,<br>Maurice | Fersonal interview on<br>CELSS                                                                | NASA HQ. CELSS<br>Coordinator        |                           | Washington,<br>DC.    | 04/07/89 |
| SBIB3 Fogleman,<br>PhD    | G. Personal interview relating to Gas Grain Simulation Facility                               | NASA AMES                            |                           | Moffet<br>Field, CA.  | 04/06/89 |

ge No. 6 05/25/89

Table 4.1-2 Bibliography for Modularity and Commonality

| ID # AUTHOR            | THOR             | TITLE                                                     | VOL. FUBLISHER<br>NO. | REPORT/DOCUMENT PUBLISHER<br>NUMBER | PUBL 1 SHER<br>LOCAT 1 ON | DATE     |
|------------------------|------------------|-----------------------------------------------------------|-----------------------|-------------------------------------|---------------------------|----------|
| SB184 Wh               | SBI84 White. Bob | Personal Interview relating to modularity and commonality | NASA JPL              |                                     | Pasadena,<br>CA.          | 04/10/89 |
| SBIBS Grumm,<br>Richar | נד               | Personal interview<br>relating to SBI hardware            | NASA JPL              |                                     | Pasadena,<br>CA.          | 04/11/89 |
| SBI86 Baeing           | eing             | U.S. Lab Review Workshop                                  |                       |                                     |                           | ' '      |
| SB187 Mc               | Gillroy, B.      | SBIB7 McGillroy, B. Personal Interview on<br>CELSS        | NASA AMES             |                                     | Moffet.<br>Field, CA      | 05/05/89 |
| SBI89 Boeing           |                  | Space Station Program<br>Commonality Plan Draft 3         | Boeing                | D683-10112-1                        |                           | 10/31/88 |

## 5.0 Modularity/Commonality Trade Study

## 5.1 Guidelines for Modularity/Commonality Functional Elements

Modular functional elements are readily replaceable Modules should be plug-in with blind-mating connectors, guides, and hold-down hardware that facilitates installation and removal.

Modular functional elements are readily maintainable Individual elements should have well-defined functional characteristics to facilitate trouble shooting and allow the use of automatic test sets - module design should enhance accessibility for servicing.

Modular functional elements facilitate system modification and expansion Individual elements should have well-defined interface characteristics of individual functions should be reasonably general to allow application flexibility.

Modular functional elements may not be adaptable to incorporation of technological advances. The chosen functional level might not readily accommodate a new approach to component usage.

Common items should perform the same function as another item, which does not harm or degrate the system performance of that individual hardware item.

#### 5.2 SBI Hardware Sample Selection

The Space Biology Hardware Baseline list is shown in Appendix A. This list has 169 hardware items, however, only 93 of these items are categorized for SBI functions. This list was based-lined December 1988 and then updated 23 March 1989. Many of these items are in the conceptional phase; however, some are existing hardware items that are in existence today. There will more than likely be future additions and deletions to this baseline list.

The initial survey data analysis was performed to select a sample of the SBHB items which could be potential candidates for implementation of modularity and commonality. With limited study time and a SBHB of 93 items, a method was needed to separate items which could have large cost impact and were worthy of study resource application. The following method was used. All SBHB items were listed in descending order of probable acquisition cost. Weight was used as an indication of probable acquisition cost based on historical experience in previous space programs. It was found that 34 percent of the items (32 items) accounted for 93 percent of the mass or probable cost (Table 5.2-1). The accumulated volume (8.68 M³) of the 32 items represents 87% of the total volume. The accumulated power (8455 watts) represents 82% of total power requirements

The prioritized list of "vital" hardware items was considered for modularization and commonality. This list was further examined for those items that can be considered as a sample set of candidates for possible modularization (Table 5.2-2) and for commonality (Table 5.2-3). This list showing the possible level of modularity and commonality was developed using all available resources within the constraints of this trade study. This assessment of possible candidates is based upon the best knowledge of the SBI hardware items at the time of this study.

There will be additions and deletions from this list as new developments and techniques become

## 5.2.1 Modularity Candidate Sample Set

All of the items in Table 5.2-2 were analyzed to determine if the entire item could be modularized or at least a portion of the components within the item could be modularized. The items that did not meet this category are marked with a No in the "Modularity Potential Column" on Table 5.2-2. The confidence level is an indication of the knowledge and understanding of the individual item at the time of this study. There are 5 items out of the 32 that had insufficient data due to the fact that they are new developments still under the conception phase. There were two areas where the items which have modularization potential were grouped together due to the interrelationship of the individual items (function checks and experiments requires more than one item to complete) These two groups are labeled (P) for Pulmonary and (PL) for Plant Monitoring. There are other areas which may be grouped together but were not considered in the study. The Pulmonary Group has a total of (11) eleven hardware items (#56 thru 66 Appendix A Group 3A) Most of these items are interrelated which is why these items should be packaged (modularized) together. A portion of this group is already packaged together and will be flown on SLS-1 as Astronaut Lung Function Equipment (ALFE). The mass spectrometer is the heaviest item in this group and special handling will be required when dealing with gas analysis (molecular fragments according to their atomic mass). There can be a tremendous cost and weight savings if the mass spectrometer can be used for other SBI functions (Plant Monitoring etc.). Some of the components in the mass spectrometer may be common; however, the details and practicality of adapting the unit to different applications is not known at this time. The CELSS hardware item is presently being planned as a separate experiment for plant monitoring ("crop growth research facility for seed-to-seed crop studies"). This appears to be the same function as the other items for plant monitoring and was therefore placed in this group.

The modularity candidate sample set was derived by filtering the "vital" list in Table 5.2-2 to remove SBI hardware items which did not appear to warrant analysis at this time. The sample set (Table 5.2.1) resulted from removing hardware items from the "vital" list that have:

- A. Insufficient data to preform assessments.
- B. No modularization potential and assessment confidence level is high.
- C. Modularity potential, but the assessment level is low (unless part of a group).

# 5.2.2 Commonality Candidate Sample Set

The candidate hardware items were defined for commonality by sorting the modularity/commonality data base on the basis of having a common function/assemblies. The "vital" hardware items were evaluated for the potential of containing functions/assemblies in a representative list that was considered for this SBI trade study. A subjective analysis was performed as to which hardware items might use each given function/assembly. The amplifier has six areas where it might be used. The Pulmonary Function Equipment Storage Assembly

hardware item would not use an amplifier; however, the Pulmonary Group will more than likely use this function. This type of analysis was used throughout the study for commonality. The numbers for common items will be subjective; however, this methodology was used to make a selection of those hardware items that may have possible potential cost savings through commonality. The level of commonality was analyzed to the lowest level possible with the available information. In most cases this was the assembly level or in a few cases subassembly. The level of commonality has a direct effect on the implementation of the common solution and the degree of commonality, which also has a direct affect on the overall cost of the program. (Ref. SBI #88)

All 28 (32-4 with insufficient data) of the vital hardware items had some areas of commonality (Table 5.2-3). The maximum number of common functions/assemblies shown on Table 5.2-3 is ten (10) and the smallest number is one (1).

## 5.3 Relative SBI Modularization and Commonality Cost Impact Analysis

Since modularity and commonality have multielements related design aspects (i.e. it is difficult to have successful modularity/commonality in a single equipment element), no example hardware item candidate was selected for individual cost analysis. The subjects were addressed in the multielement context or as related to the function that is modular or common.

## 5.3.1 Modularization Cost Impact Analysis

The redesign of the items listed for modularity will in most cases add additional cost. However, this redesign cost if incorporated into the initial conception phase may not add cost to the item. This initial increase in cost will in most cases be make up when life cycle analysis is incorporated into the overall cost. (Appendix C Table 7-1) The grouping of the hardware items may reduce an overlap in development cost if controlled by one organization.

## 5.3.2 Commonality Cost Impact Analysis

The candidate list of 32 hardware items was analyzed for commonality using the representative list of 27 functions/assemblies. The number of "Vital" SBI hardware items having potential application for each type of function/assembly has been compiled in Table 5.3.2. A lower level of commonality (i.e. subassembly/component) would increase the number of potential functions that would be common to the individual hardware items. This lower level of commonality may also allow for modularity of various subassemblies that would be common to more items. The number of common items would have a direct effect upon other areas such as the number of spares required, maintainability, transportation, packaging, storage, power requirements, crew training, crew time lines, and other potential cost drivers.

## 5.3.2.1 Empirical Cost Relationships

Analysis of the relative cost impact resulting the use of various numbers of common functions/assemblies in Table 5.3.2 must be based on empirical cost relationships since hardware definitions are not available. Appendix C contains a detailed definition of cost assessment techniques which can be applied to commonality. The techniques relate theoretical first unit

(TFU) cost to design and development (DD) cost and then applies learning factors to demonstrate the cost reduction potential for common application of hardware in SBI.

To further demonstrate how this assessment was applied to this trade study the formula used for calculations will be repeated from Appendix C Section 3.2.

$$CP_1 = D + D cost (.35 \text{ or } .15 \text{ D&D x L.F.}) \text{ N}$$

CP<sub>1</sub> = Cost of a single program or one (1) item

D&D = Design and Development Cost TFU = Theoretical First Unit Cost

L.F. = Learning Factor

N = Number of Common Functions/Assemblies

For calculations used in this study

.15 and .35 D&D = TFU .80 = L.F. Range of 0 to (10) Ten = N

The Design and Development (D&D) cost factors of .15 and .35 were both used to give the range for the Theoretical First Unit (TFU) cost. The learning factor (L.F.) has a wide range based upon the type of hardware, type of fabrication, and type of manufacturing (automation). Table 3-5 in Appendix C displays the range of learning factors. This trade study used 80% (0.80) as an average learning factor (L.F.). The number (N) of common functions/assemblies for the SBI hardware items is from Table 5.2-3 (Data base print out). These numbers were generated from the information available at the time of this study. This same information on Table 5.2-3 is repeated in Table 2.2-3 Executive Summary.

The Figures 3-2 and 3-3 in appendix C were generated using (.35 D&D and .80 L.F. for Figure 3-2) and (.15 D&D and .80 L.F. for Figure 3-3) However, these figures only show (5) five items (N) and are shown primarily to dramatize the tremendous cost reduction for the first few units.

## 5.3.2.2 Lot Certification

The certification of various lots within the SBI Program is not feasible at this time.

## 5.3.2.3 Design Cost Reduction

The design cost reductions of the SBI items can be seen in Table 5.3.2-1 which shows the best possible candidates and the potential cost percentage reduction for these functions. This cost reduction is for applications within the SBI hardware list. There may be considerable more reduction if the trade study were to include other areas within Space Station Freedom. Many of the SBI commonality functions are common to the functions of Crew Health Care (CHeC) System, Extended Crew Operations (EDCO), and other Life Science activities. SBI #48 & 76.

Table 5.2-1 Database Listing of SBI Hardware Vital to Program Cost Impact Analysis

| 1 168 CELSS Test Facility 2 2 800.0 1800 51 27 38 25 163 Gas Grain Sisulator 2 800.0 1800 51 27 38 3 00.0 2100 59 35 48 3 00.0 2100 59 35 48 47 Hard Tissue Laaging System 4 136.0 2236 63 38 51 17 17 Hard Tissue Laaging System 5 90.0 2326 66 42 53 125 5 125 5 Cintillation Counter 6 70.0 2396 68 45 57 14 15 Automated Microbal System 9 70.0 2396 68 45 57 14 15 Automated Microbal System 9 70.0 2466 70 46 59 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ITEM \$ PRIORITIZED BY MASS | HH<br>ITEM |                                              | ACCUM<br>% OF<br>ITEMS | MASS<br>(kg) | ACCUM<br>MASS | ACCUM<br>MASS<br>PERCENT | ACCUM<br>POWER<br>PERCENT | ACCUM<br>VOLUME<br>PERCENT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|----------------------------------------------|------------------------|--------------|---------------|--------------------------|---------------------------|----------------------------|
| 1   168   CELSS Test Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |            |                                              |                        |              |               |                          | _                         | 40                         |
| 2 163 Gas Grain Staulator 2 300.0 2100 59 35 48 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |            | aging Took Escility                          | 1                      | 1000.0       |               |                          |                           |                            |
| Section   Sect   |                             |            | CELSS 1854 Factives                          | 2                      | 800.0        |               |                          | -                         |                            |
| 4 77 Hard Tissue Laging System 5 90.0 2326 66 42 53 51 55 Scintillation Counter 5 90.0 2326 66 42 53 51 55 Scintillation Counter 6 70.0 2396 68 45 57 66 74 Force Resistance System 8 70.0 2396 68 45 57 71 45 Automated Microbal System 9 70.0 2536 72 48 61 8 155 Total Hyrdocarbon Analyzer 10 70.0 2506 74 53 63 9161 Inventory Control System 10 70.0 2506 74 53 63 10 162 Lab Materials Packaging & Handling Equipment 11 70.0 2576 76 58 65 10 162 Lab Materials Packaging & Handling Equipment 12 70.0 2746 78 60 67 11 163 Test/Checkout/Calibration Instrumentation 12 70.0 2746 78 60 67 11 163 Test/Checkout/Calibration Instrumentation 13 45.2 2791 79 61 63 12 106 Meck Baro-Cuff 13 45.0 2835 80 63 70 13 113 Blood Sas Analyzer 15 40.7 2877 81 65 71 14 61 Mass Spectromater 15 40.7 2877 81 65 71 15 112 Plant HLPC Ion Chromatograph 16 40.0 2917 83 67 72 15 112 Plant HLPC Ion Chromatograph 17 32.0 2949 83 67 72 16 147 Head/Torso Phantom 17 32.0 2949 83 67 72 16 147 Head/Torso Phantom 18 30.0 2979 84 67 74 17 63 Pulmonary Gas Cylinder Assembly 18 30.0 2979 84 67 74 18 110 Plant Gas Chromatograph/Hass Spectrometer 19 25.0 3004 85 68 76 69 77 19 115 Chemistry System 22 23.0 3050 86 71 78 19 115 Chemistry System 22 23.0 3050 86 71 78 19 115 Chemistry System 22 23.0 3050 86 71 78 19 115 Chemistry System 22 23.0 3050 86 71 78 19 115 Chemistry System 22 23.0 3050 86 71 78 19 115 Chemistry System 22 23.0 3050 86 71 78 19 115 Chemistry System 22 23.0 3050 86 71 78 19 115 Chemistry System 22 23.0 3050 86 71 78 19 115 Chemistry System 22 23.0 3050 86 71 78 10 10 81000 Pressure and Flow Instrumentation 28 20.0 3192 89 77 81 81 115 110 110 Annial Biotalenetry System 27 20.0 3152 89 78 81 115 110 Plant Gas Cylinder Assembly 30 20.0 3172 90 80 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 20.0 3192 90 81 82 84 85 31 119 110 32 |                             |            | Gas Grain Simulator                          | 3                      | 300.0        |               |                          |                           |                            |
| Scintillation Counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |            |                                              | 4                      | 136.0        |               |                          |                           |                            |
| Force Resistance System   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |            |                                              | 5                      | 90.0         |               |                          |                           |                            |
| 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |            |                                              | 6                      | 70.0         |               |                          |                           |                            |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |            | Automated Microbal System                    | 8                      |              |               |                          |                           |                            |
| 9 161 Inventory Control System 10 162 Lab Materials Packaging & Handling Equipment 11 70.0 2676 76 58 65 10 162 Lab Materials Packaging & Handling Equipment 11 70.0 2746 78 60 67 11 163 Test/Checkout/Calibration Instrumentation 12 70.0 2746 78 60 67 11 163 Test/Checkout/Calibration Instrumentation 13 45.2 2791 79 61 63 12 106 Neck Baro-Cuff 13 45.0 2836 80 63 70 13 113 Blood Gas Analyzer 14 45.0 2837 81 65 71 14 61 Mass Spectromater 15 40.7 2877 81 65 71 15 112 Plant HLPC Ion Chromatograph 16 40.0 2917 83 67 72 15 112 Plant HLPC Ion Chromatograph 17 32.0 2349 83 67 73 16 147 Head/Torso Phantom 17 32.0 2349 83 67 73 17 63 Pulmonary Gas Cylinder Assembly 18 30.0 2979 84 67 74 17 63 Pulmonary Gas Cylinder Assembly 18 30.0 2979 84 67 74 18 110 Plant & Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 18 110 Plant & Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 19 115 Chemistry System 22 23.0 3050 36 71 78 20 133 Hematology System 22 23.0 3050 36 71 78 21 34 Sample Premaration Device 23 22.0 3072 87 73 79 21 34 Sample Premaration Device 24 20.1 3092 37 77 30 22 165 Experiment Control Commuter System 24 20.1 3092 37 77 30 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 88 77 30 24 82 Motion Analysis System 27 20.0 3122 89 78 81 25 39 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 39 Animal Biotelemetry System 27 20.0 3192 90 81 82 27 109 Venous Pressure Transducer/Display 29 20.0 3192 90 81 82 28 129 Cell Handling Accessories 31 19.0 3251 91 82 84 29 57 Bag-in-Box 31 19.0 3250 92 82 85 30 111 Plant & Cas Cylinder Assembly 32 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 34 19.0 3269 93 89 39                                                                                                                                                                                                                                                                                                                                                        |                             |            | Tabal Murdocarbon Analyzer                   | 9                      |              |               |                          |                           |                            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |            | Inventory Control System                     | 10                     |              |               |                          |                           |                            |
| 11 163 Test/Checkout/Calibration Instrumentation 12 45.2 2791 79 61 69 12 106 Meck Baro-Cuff 14 45.0 2836 80 63 70 13 113 Blood Gas Analyzer 15 40.7 2877 81 65 71 14 61 Mass Spectromater 15 40.7 2877 81 65 71 15 112 Plant HLPC Ion Chromatograph 16 40.0 2917 83 67 72 15 112 Plant HLPC Ion Chromatograph 17 32.0 2949 83 67 73 16 147 Head/Torso Phantom 17 32.0 2949 84 67 74 17 63 Pulmonary Gas Cylinder Assembly 18 30.0 2979 84 67 74 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 19 115 Chemistry System 20 23.0 3027 86 69 77 19 115 Chemistry System 22 23.0 3050 36 71 78 20 123 Hematology System 22 23.0 3050 36 71 78 21 34 Sample Preparation Device 23 22.0 3072 87 73 79 21 34 Sample Preparation Device 23 22.0 3072 87 77 30 22 165 Experiment Control Commuter System 24 20.1 3092 87 77 30 22 165 Experiment Control Commuter System 25 20.0 3112 88 77 60 23 52 Pulmonary function Equipment Stowage Assembly 25 20.0 3122 89 77 91 24 82 Motion Analysis System 27 20.0 3152 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 109 Venous Pressure Tansducer/Display 29 20.0 3192 90 81 82 27 109 Venous Pressure Tansducer/Display 29 20.0 3192 90 81 82 27 109 Venous Pressure Tansducer/Display 30 20.0 3212 91 82 83 29 17 83 119.0 3250 92 82 85 30 111 Plant Gas Cylinder Assembly 31 19.0 3250 92 82 85 31 119 Gas Cylinder Assembly 32 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 34 119.0 3288 93 92 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |            | the Materials Packaning & Handling Equipment | 11                     | 70.0         |               |                          |                           |                            |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |            | Total Charles / Calibration Instrumentation  | 12                     |              |               |                          |                           |                            |
| 13 113 Blood Gas Analyzer 14 43.0 2837 81 65 71 14 61 Mass Spectromater 15 40.7 2877 81 65 71 15 112 Plant HLPC Ion Chromatograph 16 40.0 2917 83 67 72 15 112 Plant HLPC Ion Chromatograph 17 32.0 2949 83 67 73 16 147 Head/Torso Phantom 17 32.0 2949 83 67 73 17 63 Pulmonary Gas Cylinder Assembly 18 30.0 2979 84 67 74 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 18 110 Plant Gas Chromatograph/Mass Spectrometer 20 23.0 3027 86 69 77 19 115 Chemistry System 22 22.0 3050 86 71 78 20 138 Hematology System 22 22.0 3072 87 73 79 21 34 Sample Preparation Device 23 22.0 3072 87 73 79 21 35 Experiment Control Computer System 24 20.1 3092 87 77 80 22 165 Experiment Control Computer System 24 20.1 3092 87 77 80 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 88 77 80 24 82 Motion Analysis System 26 20.0 3132 89 77 91 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 26 100 Blood Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 27 109 Venous Pressure Transducer/Display 29 20.0 3192 90 81 82 28 129 Cell Handling Accessories 31 19.0 3251 91 82 83 30 111 Plant Gas Cylinder Assembly 32 19.0 3250 92 82 85 31 119 Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 34 19.0 3288 93 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |            |                                              | 13                     |              |               |                          |                           |                            |
| 14 61 Mass Spectromater 15 112 Plant HLPC Ion Chromatograph 16 40.0 2917 83 67 72 15 112 Plant HLPC Ion Chromatograph 17 32.0 2349 83 67 73 16 147 Head/Torso Phantom 18 30.0 2979 84 67 74 17 63 Pulmonary Gas Cylinder Assembly 18 30.0 2979 84 67 74 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 18 110 Plant Gas Chromatograph/Mass Spectrometer 20 23.0 3027 86 69 77 19 115 Chemistry System 21 23 4 Sample Premaration Device 22 23.0 3050 86 71 78 20 123 Hematology System 22 22.0 3072 87 73 79 21 34 Sample Premaration Device 23 22.0 3072 87 73 79 22 165 Experiment Control Commuter System 24 20.1 3092 87 77 80 25 Pulmonary Function Equipment Stowage Assembly 26 20.0 3112 88 77 80 27 28 Motion Analysis System 28 Motion Analysis System 29 20.0 3152 89 78 81 25 39 Animal Biotelemetry System 27 20.0 3152 89 78 81 28 100 Blood Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 29 100 Wenous Pressure Transducer/Display 29 20.0 3192 90 81 92 20 21 109 Venous Pressure Transducer/Display 29 20.0 3192 90 81 92 20 21 109 Venous Pressure Transducer/Display 29 20.0 3212 91 82 83 30 111 Plant Gas Cylinder Assembly 30 110 9 3250 92 82 86 31 119 Gas Cylinder Assembly 31 119 Gas Cylinder Assembly 32 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 32 19.0 3288 93 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |            |                                              | 14                     |              |               |                          |                           |                            |
| 15 112 Plant HLPC Ion Chromatograph 16 40.0 2317 83 67 73 16 147 Head/Torso Phantom 17 32.0 2949 83 67 74 17 63 Pulmonary Gas Cylinder Assembly 18 30.0 2979 84 67 74 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 18 110 Plant Gas Chromatograph/Mass Spectrometer 20 23.0 3027 86 69 77 19 115 Chemistry System 22 23.0 3050 86 71 78 20 138 Hematology System 22 22.0 3072 87 73 79 21 34 Sample Preparation Device 23 22.0 3072 87 73 79 21 34 Sample Preparation Device 24 20.1 3092 87 77 80 22 165 Experiment Control Computer System 24 20.1 3092 87 77 80 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 88 77 80 24 82 Motion Analysis System 26 20.0 3132 89 77 91 24 82 Motion Analysis System 27 20.0 3152 89 78 81 25 39 Animal Biotalemetry System 27 20.0 3152 89 78 81 25 39 Animal Biotalemetry System 27 20.0 3172 90 30 82 26 100 Blood Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 27 109 Venous Pressure Transducer/Display 29 20.0 3192 90 81 82 28 129 Cell Handling Accessories 31 19.0 3231 91 82 84 29 57 8ag-in-Box 32 19.0 3250 92 82 85 31 119 Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 33 19.0 3288 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |            |                                              | 15                     |              |               |                          |                           |                            |
| 16 147 Head/Torso Phantoma 17 32.3 2979 84 67 74 17 63 Pulmonary Gas Cylinder Assembly 18 30.0 2979 84 67 74 17 63 Pulmonary Gas Cylinder Assembly 19 25.0 3004 85 68 76 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 19 115 Chemistry System 20 23.0 3027 86 69 77 19 115 Chemistry System 22 22.0 3050 86 71 78 20 138 Hematology System 22 22.0 3050 86 71 78 21 34 Sample Preparation Device 23 22.0 3072 87 73 79 21 34 Sample Preparation Device 24 20.1 3092 87 77 80 22 165 Experiment Control Computer System 24 20.1 3092 87 77 80 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 88 77 80 24 82 Motion Analysis System 26 20.0 3132 89 77 91 24 82 Motion Analysis System 27 20.0 3152 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 100 Blood Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 27 109 Venous Pressure Transducer/Display 29 20.0 3192 90 81 82 27 109 Venous Pressure Transducer/Display 30 20.0 3212 91 82 83 28 129 Cell Handling Accessories 31 19.0 3231 91 82 84 29 57 8ag-in-Box 32 19.0 3250 92 82 85 30 111 Plant Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 33 19.0 3289 93 92 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |            |                                              | 16                     |              |               |                          |                           |                            |
| 17 63 Pulaonary Gas Cylinder Assembly 18 30.0 2375 84 68 76 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 25.0 3004 85 68 76 19 115 Chemistry System 20 23.0 3027 86 69 77 19 115 Chemistry System 22 23.0 3050 36 71 78 20 128 Hematology System 22 22.0 3072 87 73 79 21 34 Sample Preparation Device 23 22.0 3072 87 77 80 22 165 Experiment Control Computer System 24 20.1 3092 87 77 80 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 88 77 60 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3122 89 77 91 24 82 Motion Analysis System 27 20.0 3152 89 78 81 25 93 Animal Biotalemetry System 27 20.0 3152 89 78 81 25 93 Animal Biotalemetry System 27 20.0 3172 90 80 82 26 100 Blood Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 27 109 Venous Pressure Transducer/Display 30 20.0 3212 91 82 93 28 129 Cell Handling Accessories 31 19.0 3231 91 82 84 29 57 Bag-in-Box 31 19.0 3250 92 82 85 30 111 Plant Gas Cylinder Assembly 32 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 33 19.0 3289 93 92 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |            |                                              | 17                     |              |               |                          |                           |                            |
| 18 110 Plant Gas Chromatograph/Mass Spectrometer 19 23.0 3027 86 69 77 19 115 Chemistry System 20 23.0 3027 86 69 77 78 20 128 Hematology System 22 22.0 3050 86 71 78 21 34 Sample Preparation Device 23 22.0 3072 87 73 79 21 85 Experiment Control Computer System 24 20.1 3092 87 77 80 22 165 Experiment Control Computer System 25 20.0 3112 88 77 80 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 89 77 91 24 82 Motion Analysis System 26 20.0 3132 89 77 91 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 100 8100d Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 27 109 Venous Pressure Transducer/Display 30 20.0 3192 90 81 82 28 129 Cell Handling Accessories 31 19.0 3231 91 82 84 29 57 8ag-in-Box 32 19.0 3250 92 82 85 30 111 Plant Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 34 19.0 3289 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |            | Pulsonary Gas Cylinder Assembly              | 18                     |              |               |                          |                           |                            |
| 19 115 Chemistry System 20 23.0 3050 36 71 78 20 128 Hematology System 22 22.0 3072 87 73 79 21 34 Sample Preparation Device 23 22.0 3072 87 77 30 22 165 Experiment Control Computer System 24 20.1 3092 87 77 80 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 88 77 80 24 82 Motion Analysis System 26 20.0 3132 89 77 81 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3172 90 80 82 26 100 Blood Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 27 109 Venous Pressure Transducer/Display 29 20.0 3192 90 81 82 27 109 Cell Handling Accessories 30 20.0 3212 91 82 83 28 129 Cell Handling Accessories 31 19.0 3231 91 82 84 29 57 Bag-in-Box 32 19.0 3250 92 82 85 30 111 Plant Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 34 13.0 3288 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |            | or not his Chromatonraph/Mass Spectrometer   | 19                     |              |               |                          |                           |                            |
| 20 138 Hematology System 22 23.0 3072 87 73 79 21 34 Sample Preparation Device 23 22.0 3072 87 77 80 22 165 Experiment Control Computer System 24 20.1 3092 87 77 80 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 88 77 80 24 82 Motion Analysis System 26 20.0 3132 89 77 91 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 100 Blood Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 26 100 Blood Pressure Transducer/Display 29 20.0 3192 90 81 82 27 103 Venous Pressure Transducer/Display 29 20.0 3212 91 82 83 28 129 Cell Handling Accessories 30 20.0 3212 91 82 83 29 57 Bag-in-Box 31 19.0 3231 91 82 84 29 57 Bag-in-Box 32 19.0 3250 92 82 85 30 111 Plant Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 34 19.0 3288 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |            |                                              | 20                     |              |               |                          |                           |                            |
| 21 34 Sample Preparation Device 23 22.0 3072 37 77 80 22 165 Experiment Control Computer System 24 20.1 3092 87 77 80 23 52 Pulmonary Function Equipment Stowage Assembly 25 20.0 3112 88 77 81 24 82 Motion Analysis System 26 20.0 3132 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3152 89 78 81 25 99 Animal Biotelemetry System 27 20.0 3172 90 80 82 26 100 Blood Pressure and Flow Instrumentation 28 20.0 3172 90 80 82 27 103 Venous Pressure Transducer/Display 29 20.0 3192 90 81 82 27 103 Cell Handling Accessories 30 20.0 3212 91 82 93 28 129 Cell Handling Accessories 31 19.0 3231 91 82 84 29 57 Bag-in-Box 31 19.0 3250 92 82 85 30 111 Plant Gas Cylinder Assembly 32 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 33 19.0 3289 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |            |                                              | 22                     |              |               |                          |                           |                            |
| 22       165       Experiment Control Computer System       24       20.1       3012       88       77       80         23       52       Pulmonary Function Equipment Stowage Assembly       25       20.0       3132       89       77       91         24       82       Motion Analysis System       26       20.0       3132       89       78       81         25       93       Animal Biotalemetry System       27       20.0       3152       89       78       81         25       93       Animal Biotalemetry System       27       20.0       3172       30       80       82         26       100       Blood Pressure and Flow Instrumentation       28       20.0       3172       30       81       82         27       109       Venous Pressure Transducer/Display       29       20.0       3192       90       81       82         28       129       Cell Handling Accessories       30       20.0       3212       91       32       83         29       20.0       3212       91       32       84         29       20.0       3231       91       32       84         29       20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |            |                                              | 23                     |              |               |                          |                           |                            |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |            | Synarianat Control Computer System           | 24                     |              |               |                          |                           |                            |
| 24       82       Motion Analysis System       26       20.0       3152       89       78       81         25       39       Animal Biotelemetry System       27       20.0       3152       89       78       81         26       100       Blood Pressure and Flow Instrumentation       28       20.0       3172       90       80       82         27       103       Venous Pressure Transducer/Display       29       20.0       3192       90       81       82         28       129       Cell Handling Accessories       30       20.0       3212       91       82       93         28       129       Cell Handling Accessories       31       19.0       3231       91       82       84         29       57       Bag-in-Box       31       19.0       3231       91       82       84         30       111       Plant Gas Cylinder Assembly       32       19.0       3250       92       82       85         31       119       Gas Cylinder Assembly       34       19.0       3289       93       92       87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            | Pulsonary Function Equipment Stowage Assest  | ly 25                  |              |               |                          |                           |                            |
| 25       93       Animal Biotelemetry System       27       20.0       3132       30       80       82         26       100       Blood Pressure and Flow Instrumentation       28       20.0       3172       30       81       82         27       103       Venous Pressure Transducer/Display       29       20.0       3192       90       81       82         28       129       Cell Handling Accessories       30       20.0       3212       91       82       93         29       20.0       3212       91       82       93         30       129       320       321       91       82       84         29       20.0       3212       91       82       83         31       19.0       3231       91       82       84         30       111       Plant Gas Cylinder Assembly       32       19.0       3250       92       82       86         31       119       Gas Cylinder Assembly       34       19.0       3289       93       92       87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |            | Working Anglysis System                      | 26                     |              |               | •                        |                           |                            |
| 26     100     Blood Pressure and Flow Instrumentation     28     20.0     3172     90     81     82       27     109     Venous Pressure Transducer/Display     29     20.0     3192     90     81     82       28     129     Cell Handling Accessories     30     20.0     3212     91     82     83       29     57     Bag-in-Box     31     19.0     3231     91     82     84       29     20.0     3212     91     82     83       31     19.0     3231     91     82     85       30     111     Plant Gas Cylinder Assembly     33     19.0     3269     92     82     86       31     119     Gas Cylinder Assembly     34     19.0     3289     93     92     87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |            | thing! Rintal apatry System                  |                        |              |               |                          |                           |                            |
| 27     103     Venous Pressure Transducer/Display     29     20.0     312     91     82     93       28     129     Cell Handling Accessories     30     20.0     3212     91     82     84       29     57     Bag-in-Box     31     19.0     3231     91     82     84       30     111     Plant Gas Cylinder Assembly     32     19.0     3250     92     82     86       31     119     Gas Cylinder Assembly     33     19.0     3289     93     92     82       31     119     Gas Cylinder Assembly     34     13.0     3289     93     92     87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |            | Pland Pressure and Flow Instrumentation      | 28                     |              |               | -                        |                           |                            |
| 28 129 Cell Handling Accessories 30 20.0 3212 91 82 84 29 57 Bag-in-Box 31 19.0 3231 91 82 85 30 111 Plant Gas Cylinder Assembly 32 19.0 3250 92 82 86 31 119 Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 34 19.0 3289 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |            | Venous Pressure Transducer/Display           |                        |              |               | -                        |                           |                            |
| 23 57 Bag-in-Box 31 19.0 3250 92 82 85 30 111 Plant Gas Cylinder Assembly 33 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 34 19.0 3289 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |            |                                              | 30                     |              |               | •                        | ="                        |                            |
| 30 111 Plant Gas Cylinder Assembly 32 19.0 3269 92 82 86 31 119 Gas Cylinder Assembly 33 19.0 3289 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |            |                                              |                        |              |               |                          | •                         |                            |
| 31 119 Gas Cylinder Assembly 33 19.0 3288 93 92 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |            |                                              | 32                     |              |               | •                        | _                         |                            |
| 72 11.0 4240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |            | Gae Cylinder Assembly                        |                        |              |               | -                        | _                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            |                                              | 34                     | 13.0         | 328           | 9                        | <b>্</b>                  | 2 31                       |

## NOTES:

<sup>1.</sup> Total number of SBI hardware items = 93.

<sup>2. 89</sup> items have 3535 kg mass, 10,359 Watts power, and 10 cubic meters volume.

<sup>3. 4</sup> items are not currently defined, but all are small.

Fage No. 05/30/89

| ample                                                   | Modularity Modularity<br>Confidence<br>Level | High<br>High                                                             | High<br>Low<br>High | High<br>Low                                                                                                               |                                                                                      | High<br>High<br>Low                                                                               |                                | Low                    | L COW                                                                                                                      |
|---------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Modularity Sample<br>it                                 | Modul                                        | PL<br>Item                                                               | Item<br>No<br>Item  | Item<br>Item                                                                                                              | Item<br>Item<br>Tem                                                                  | 「독음 <sup>』</sup>                                                                                  | ltem<br>Item<br>Item<br>Item   | e N N                  | Item<br>P<br>PL<br>FL                                                                                                      |
| _                                                       | Sufficient<br>Data<br>Avallable              | Υ c s s<br>Υ c s s<br>N o                                                | No<br>Yes<br>Yes    | Z V ess<br>Y ess<br>Y ess                                                                                                 | Yes<br>Yes<br>Nos                                                                    | 2                                                                                                 |                                | Yes<br>Yes<br>No<br>No | γ γ γ<br>γ es<br>γ es<br>γ es                                                                                              |
| Table 5.2-2 Database Liing for M<br>Selection Assesment | Hardware Item Name                           | CELSS Test Facility<br>Gas Grain Simulator<br>Soft Tissue Imaging System |                     | Automated Michael System Total Hyrdocarbon Analyzer Inventory Control System Lab Materials Fackaging & Handling Equipment | Test/Checkout/Calibration<br>Instrumentation<br>Neck Baro-Cuff<br>Blood Gas Analyzer | Mass Spectrometer Plant HLPC Ion Chromatograph Head/Torso Phantom Pulmonary Gas Cylinder Assembly |                                |                        | Venous Freshors Transducer/Display Cell Handling Accessories Fag-in-Eox Plant Gas Cylinder Assembly Cell Cylinder Assembly |
|                                                         | IV<br>I tem                                  | 168<br>169                                                               | 126                 | 145<br>155<br>161<br>162                                                                                                  | 163                                                                                  | 61<br>112<br>147<br>63                                                                            | 110<br>115<br>138<br>34<br>165 | 62<br>82<br>99<br>100  | 109                                                                                                                        |
| Fage No.<br>05/30/89                                    | Item #<br>Prioritized<br>by Mass             | - 01                                                                     | ମେଟ୍ଟାସେସ           | 7<br>8<br>9<br>10                                                                                                         | 1 21                                                                                 | 17                                                                                                | 18<br>20<br>21<br>22           | 23<br>24<br>25<br>26   | 27<br>28 ·<br>30                                                                                                           |

Fage No. 05/30/89

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

| REPRESENTATIVE LIST<br>OF FUNCTIONS AND<br>ASSEMBLIES                                                 | PRIORITY # OF<br>SBI HW. ITEM | 311 *                        | SBI HARDWARE NAME                                                                                                             | COUNT       |
|-------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|
| ** AERSOL GENERATOR<br>AERSOL GENERATOR<br>** Subtotal **                                             | C)                            | 169                          | Gas Grain Bimulator                                                                                                           | ला <b>ल</b> |
| ** AMPLIFIERS<br>AMPLIFIERS                                                                           | =                             | 163                          | Test/Checkout/Calibration<br>Instrumentation                                                                                  | 7           |
| AMPLIFIERS<br>AMPLIFIERS<br>AMPLIFIERS                                                                | 12<br>16<br>22                | 106<br>147<br>165            | Neck Baro-Cuff<br>Head/Torso Fhantom<br>Experiment Control Computer<br>System                                                 |             |
| AMFLIFIERS<br>AMPLIFIERS<br>** Subtotal **                                                            | 23                            | 99                           | Fulmonary Function Equipment<br>Stowage Assembly<br>Animal Biotelemetry System                                                | <b>1 9</b>  |
| ** AUTOMATION/ROBOTICS<br>AUTOMATION/ROBOTICS<br>AUTOMATION/ROBOTICS<br>AUTOMATION/ROBOTICS           | 10 11                         | 168<br>162<br>163            | CELSS Test Facility<br>Lab Materials Packaging &<br>Handling Equipment<br>Test/Checkout/Calibration<br>Instrumentation        | <b></b>     |
| AUTOMATION/KOBOTICS AUTOMATION/KOBOTICS AUTOMATION/KOBOTICS ** Subtotal **                            | 15<br>16<br>21                | 112                          | Flant HLPC Ion Chromatograph<br>Head/Torso Phantom<br>Sample Freparation Device                                               | 4           |
| ** CAMERAS/VIDEO<br>CAMERAS/VIDEO<br>CAMERAS/VIDEO<br>CAMERAS/VIDEO<br>CAMERAS/VIDEO<br>CAMERAS/VIDEO | - 0 9 4 G                     | 168<br>169<br>74<br>82<br>99 | CELSS Test Facility<br>Gas Grain Simulator<br>Force Resistance System<br>Motion Analysis System<br>Animal Biotelemetry System | B           |

. Je No. 2 05/30/89

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assement

|     | KEFKESENTATIVE LIST<br>OF FUNCTIONS AND<br>ASSEMBLIES                 | FRIORITY # OF<br>SBI HW. ITEN | M I #                    | SBI HARDWARE NAME                                                                           | COUNT      |
|-----|-----------------------------------------------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------------------------------|------------|
|     | ** CENTRIFUGE<br>CENTRIFUGE<br>CENTRIFUGE<br>CENTRIFUGE<br>CENTRIFUGE | 13<br>19<br>20                | 113<br>112<br>115<br>138 | Blood Gas Analyzer<br>Flant HLFC Ion Chromatograph<br>Chemistry System<br>Hematology System |            |
|     | ** Subtotal **                                                        |                               |                          |                                                                                             | 4          |
|     | Ω×.                                                                   | - 0                           | 168                      | CELSS Test Facility<br>Gas Grain Simulator                                                  | ,ma .ma    |
|     | COMPUTERS & ACCESSORIES                                               | 1 -0                          | 74                       | Force Kesistance System                                                                     | -          |
|     | نند ز                                                                 | 7                             | 145                      | Automated Microbal System                                                                   | <b></b> -  |
|     | COMPUTERS & ACCESSORIES                                               | 4                             | 161                      | inventory control system<br>Test/Checkout/Calibration                                       |            |
|     | š                                                                     | ;                             | ,                        | Instrumentation                                                                             |            |
| 0.5 | COMPUTERS & ACCESSORIES COMPUTERS & ACCESSORIES                       | 15<br>22                      | 112                      | Flant HLFL ion Enromatograph<br>Experiment Control Computer<br>System                       | <b></b>    |
|     | COMPUTERS & ACCESSORIES COMPUTERS & ACCESSORIES                       | 24                            | 98<br>99                 | Motion Analysis System<br>Animal Biotelemetry System                                        |            |
|     | ** Subtotal **                                                        |                               |                          |                                                                                             | 10         |
|     | ** CONVERTERS                                                         | _                             | 168                      | CELSS Test Facility                                                                         | -          |
|     | CONVENTERS                                                            | • (4                          | 169                      | Gas Grain Simulator                                                                         | -          |
|     | CONVERTERS                                                            | 11                            | 163                      | Test/Checkout/Calibration<br>Instrumentation                                                | <b></b> 4  |
|     | CONVERTERS                                                            | 12                            | 106                      | Nect: Baro-Cuff                                                                             | -          |
|     | CONVEKTERS                                                            | 13                            | 113                      | Blood Gas Analyzer                                                                          | <b>-</b>   |
|     | CONVERTERS                                                            | ទ                             | 112                      | =                                                                                           | <b>-</b> - |
|     | CONVERTERS<br>** Subtotal **                                          | S.                            | <u> </u>                 | Allimai biuteiemetiy ayatem                                                                 |            |
|     |                                                                       |                               |                          |                                                                                             |            |
|     | ** DELECTURS DETECTORS                                                | 6                             | 161                      | Inventory Control System                                                                    | -          |
|     | DETECTORS                                                             | Z E                           | 113<br>113               | Blood Gas Analyzer<br>Flant HIFC Jon Chromatograph                                          |            |
|     | DETECTORS                                                             | ō                             | i<br>-                   |                                                                                             |            |

| Page No                                                                                                                                                                                                                                                   | 5.2-3 "Vital" Database Listing for Commonality<br>Selection Assesment | ting fo                                | . Commonality Sample                                                                                                                                                                                 |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| REPRESENTATIVE LIST<br>OF FUNCTIONS AND<br>ASSEMBLIES                                                                                                                                                                                                     | PRIORITY # OF<br>SBI HW. ITEM                                         | 3 Q<br>I = #                           | SBI HARDWARE NAME                                                                                                                                                                                    | COUNT    |
| DETECTORS<br>DETECTORS<br>** Subtotal **                                                                                                                                                                                                                  | 16<br>25                                                              | 147                                    | Head/Torso Phantom<br>Animal Biotelemetry System                                                                                                                                                     | N ·      |
| ** DISPLAYS-TRANSDUCERS<br>DISPLAYS-TRANSDUCERS                                                                                                                                                                                                           | 11                                                                    | 163                                    | Test/Checkout/Calibration<br>Instrumentation                                                                                                                                                         | <b>-</b> |
| DISPLAYS-TRANSDUCERS<br>DISPLAYS-TRANSDUCERS<br>DISPLAYS-TRANSDUCERS<br>DISPLAYS-TRANSDUCERS                                                                                                                                                              | 115<br>116<br>225<br>27                                               | 112<br>147<br>99<br>109                | Flant HLPC Ion Chromatograph<br>Head/Torso Phantom<br>Animal Biotelemetry System<br>Venous Pressure<br>Transducer/Display                                                                            | -        |
| ** Subtotal **                                                                                                                                                                                                                                            |                                                                       |                                        |                                                                                                                                                                                                      | •        |
| ** ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL<br>ENVIRONMENTAL CONTROL | 11 12 25 25 25 25 25 25 25 25 25 25 25 25 25                          | 168<br>169<br>145<br>163<br>113<br>147 | CELSS Test Facility Gas Grain Simulator Force Resistance System Automated Microbal System Test/Checkout/Calibration Instrumentation Blood Gas Analyzer Head/Torso Phantom Animal Biotelemetry System |          |
| ** FLUID HANDLING<br>FLUID HANDLING<br>FLUID HANDLING<br>FLUID HANDLING<br>FLUID HANDLING<br>FLUID HANDLING                                                                                                                                               | 7<br>13<br>19<br>20<br>21<br>28                                       | 145<br>1115<br>1115<br>138<br>129      | Automated Microbal System<br>Blood Gas Analyzer<br>Chemistry System<br>Hematology System<br>Sample Freparation Device<br>Cell Handling Accessories                                                   |          |

Page No. 05/30/89

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

| REPRESENTATIVE LIST<br>OF FUNCTIONS AND<br>ASSEMBLIES                                                            | FRIORITY # OF<br>SBI HW. ITEM | MH 1 8                  | SBI HARDWARE NAME                                                                                                                        | COUNT   |
|------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ** FREEZERS<br>FREEZERS<br>FREEZERS<br>FREEZERS<br>** Subtotal **                                                | 1<br>19<br>20                 | 168<br>115<br>138       | CELSS Test Facility<br>Chemistry System<br>Hematology System                                                                             | M       |
| ** GAS HANDLING<br>GAS HANDLING<br>GAS HANDLING<br>GAS HANDLING                                                  | 10 2 1                        | 168<br>169<br>162       | CELSS Test Facility<br>Gas Grain Simulator<br>Lab Materials Packaging &<br>Handling Equipment                                            |         |
| GAS HANDLING<br>GAS HANDLING<br>GAS HANDLING                                                                     | 13<br>15<br>17                | 113<br>112<br>63<br>57  | Blood Gas Analyzer<br>Flant HLFC Ion Chromatograph<br>Fulmonary Gas Cylinder<br>Assembly<br>Bag-in-Box                                   |         |
| GAS HANDLING<br>GAS HANDLING<br>GAS HANDLING<br>** Subtotal **                                                   | 30                            | 111                     | Flant Gas Cylinder Hssemuly<br>Gas Cylinder Assembly                                                                                     | • •     |
| ** MASS SPECTROMETERS MASS SPECTROMETERS MASS SPECTROMETERS MASS SPECTROMETERS MASS SPECTROMETERS ** Subtotal ** | 2<br>11<br>14<br>18           | 169<br>163<br>61<br>110 | Gas Grain Simulator<br>Test/Checkout/Calibration<br>Instrumentation<br>Mass Spectrometer<br>Plant Gas Chromatograph/Mass<br>Spectrometer | mm mm 4 |
| ** MICROBIAL MONITORING<br>MICROBIAL MONITORING<br>MICROBIAL MONITORING<br>** Subtotal **                        | 7                             | 168<br>145              | CELSS Test Facility<br>Automated Microbal System                                                                                         | N       |
| ** MOTORS<br>MOTORS                                                                                              | Ħ                             | 168                     | CELSS Test Facility                                                                                                                      | -       |

Page No. 5 05/30/89

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

| REPRESENTATIVE LIST<br>OF FUNCTIONS AND<br>ASSEMBLIES                                   | PRIORITY # OF<br>SBI HW. ITEM | 31 <b>*</b>              | SBI HAKDWAKE NAME                                                                                  | COUNT          |
|-----------------------------------------------------------------------------------------|-------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|----------------|
| MOTORS<br>MOTORS<br>MOTORS<br>** Subtotal **                                            | 2 Z Z                         | 169<br>106<br>112        | Gas Grain Simulator<br>Neck Baro-Cuff<br>Plant HLPC Ion Chromatograph                              | <b>⊶</b> ⊶ ◆   |
| ** POWER SUPPLY<br>POWER SUPPLY<br>POWER SUPPLY<br>POWER SUPPLY                         | 1 2 1                         | 168<br>169<br>163        | CELSS Test Facility<br>Gas Grain Simulator<br>Test/Checkout/Calibration<br>Instrumentation         |                |
| POWER SUPPLY<br>POWER SUPPLY<br>FOWER SUPPLY<br>POWER SUPPLY<br>** Subtotal **          | 51<br>51<br>51<br>51<br>51    | 106<br>113<br>112<br>99  | Neck Baro-Cuff<br>Blood Gas Analyzer<br>Flant HLFC Ion Chromatograph<br>Animal Biotelemetry System |                |
| ** FUMPS<br>PUMPS<br>FUMPS<br>FUMPS<br>FUMPS<br>** Subtotal **                          | 1 2 2 2                       | 168<br>169<br>106<br>112 | CELSS Test Facility<br>Gas Grain Simulator<br>Neck Baro-Cuff<br>Plant HLPC Ion Chromatograph       | लललल प         |
| ** FADIATION HANDLING<br>RADIATION HANDLING<br>FADIATION HANDLING<br>FADIATION HANDLING | 10 2 10                       | 168<br>169<br>162        | CELSS Test Facility<br>Gas Grain Simulator<br>Lab Materials Fackaging &<br>Handling Equipment      | च्याच्याच्या १ |
| RADIATION HANDLING KADIATION HANDLING KADIATION HANDLING ** Subtotal **                 | 11<br>16<br>32                | 163<br>147<br>130        | Test/Checkout/Calibration<br>Instrumentation<br>Head/Torso Phantom<br>Cell Harvestor               | • 9            |
| ** RECORDERS<br>RECORDERS                                                               | -                             | 168                      | CELSS Test Facility                                                                                | -              |

Fage No. 05/30/89

40

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

| KEFKESENIALIVE LISI<br>OF FUNCTIONS AND<br>ASSEMELIES | FRIORITY # OF<br>SBI HW. ITEM | g q<br>I #                      | SBI HARDWARE NAME                                                                                                                                                               | COUNT   |
|-------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                       | 2971                          | 169<br>74<br>145<br>163         | Gas Grain Simulator<br>Force Resistance System<br>Automated Microbal System<br>Test/Checkout/Calibration                                                                        | <b></b> |
|                                                       | 12<br>14<br>25<br>25<br>29    | 106<br>147<br>182<br>99<br>57   | instrumentation<br>Neck Baro-Cuff<br>Head/Torso Phantom<br>Motion Analysis System<br>Animal Biotelemetry System<br>Eag-in-Box                                                   | O       |
|                                                       | 9<br>10<br>21<br>25           | 161<br>162<br>34<br>99          | Inventory Control System<br>Lab Materials Packaging &<br>Handling Equipment<br>Sample Preparation Device<br>Animal Biotelemetry System                                          |         |
|                                                       | 20<br>21<br>28<br>32          | 145<br>138<br>129<br>130        | Automated Microbal System<br>Hematology System<br>Sample Preparation Device<br>Cell Handling Accessories<br>Cell Harvestor                                                      | eeee N  |
|                                                       | - 7 6 0 SI BI                 | 168<br>169<br>161<br>162<br>112 | CELSS Test Facility Gas Grain Simulator Inventory Control System Lab Materials Packaging & Handling Equipment Flant HLPC Ion Chromatograph Flant Gas Chromatograph Spectrometer |         |

Fage No. 6 05/30/89

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

| REFRESENTATIVE LIST<br>OF FUNCTIONS AND<br>ASSEMBLIES                                                                               | FRIORITY # OF<br>SBI HW. ITEM                    | 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SBI HAKDWAKE NAME                                                                                                                                                       | COUNT                |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| RECORDERS<br>RECORDERS<br>RECORDERS<br>RECORDERS                                                                                    | 2 9 7 1 2                                        | 169<br>74<br>145<br>163                 | Gas Grain Simulator<br>Force Resistance System<br>Automated Microbal System<br>Test/Checkout/Calibration<br>Instrumentation<br>Neck Baro-Cuff                           | ଲାକାଳ <sub>୍</sub> ନ |
| RECORDERS RECORDERS RECORDERS RECORDERS RECORDERS ** Subtotal **                                                                    | 14<br>24<br>25<br>29                             | 147<br>182<br>193<br>157                | Head/Torso Phantom<br>Motion Analysis System<br>Animal Biotelemetry System<br>Bag-in-Box                                                                                |                      |
| ** SAMPLE PREF. ANIMAL<br>SAMPLE PREF. ANIMAL<br>SAMPLE PREF. ANIMAL<br>SAMPLE PREF. ANIMAL<br>SAMPLE PREF. ANIMAL                  | 9<br>10<br>21<br>25                              | 161<br>162<br>34<br>99                  | Inventory Control System<br>Lab Materials Packaging &<br>Handling Equipment<br>Sample Freparation Device<br>Animal Biotelemetry System                                  |                      |
| ** SAMPLE PREP. HUMAN<br>SAMPLE PREP. HUMAN<br>SAMPLE PREP. HUMAN<br>SAMPLE PREP. HUMAN<br>SAMPLE PREP. HUMAN<br>SAMPLE PREP. HUMAN | 20<br>21<br>28<br>32                             | 145<br>138<br>34<br>129                 | Automated Microbal System<br>Hematology System<br>Sample Freparation Device<br>Cell Handling Accessories<br>Cell Harvestor                                              | W                    |
| ** SANPLE PREP. PLANT<br>SAMPLE PREP. FLANT<br>SAMPLE PREP. PLANT<br>SAMPLE PREP. FLANT<br>SAMPLE PREP. PLANT<br>SAMPLE PREP. PLANT | 10 9 2 2 1 1 5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 | 168<br>169<br>161<br>162<br>112         | CELSS Test Facility Gas Grain Simulator Inventory Control System Lab Materials Packaging & Handling Equipment Flant HLPC Ion Chromatograph Flant Gas Chromatograph/Mass |                      |

Page No. 05/30/89

Table 5.2-3 "Vital" Database Listing for Commonality Sample Selection Assesment

| REPRESENTATIVE LIST<br>OF FUNCTIONS AND<br>ASSEMBLIES                                                                                                                                                    | PRIORITY # OF<br>SBI HW. ITEM            | 31 #                                   | SBI HARDWAKE NAME                                                                                                                      | COUNT          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|
| SAMPLE PREP. PLANT<br>SAMPLE PREP, PLANT<br>** Subtotal **                                                                                                                                               | 21<br>30                                 | 34                                     | Sample Freparation Device<br>Plant Gas Cylinder Assembly                                                                               | 69             |
| ** SCINTILLATION COUNTER<br>SCINTILLATION COUNTER<br>SCINTILLATION COUNTER<br>SCINTILLATION COUNTER<br>SCINTILLATION COUNTER                                                                             | 5<br>11<br>32                            | 126<br>161<br>163<br>150               | Scintillation Counter<br>Inventory Control System<br>Test/Checkout/Calibration<br>Instrumentation<br>Cell Harvestor                    | <del></del>    |
| ** STORAGE LOCKER<br>STORAGE LOCKER<br>STORAGE LOCKER<br>STORAGE LOCKER<br>STORAGE LOCKER<br>** Subtotal **                                                                                              | 23<br>30<br>31                           | 169<br>62<br>111<br>119                | Gas Grain Simulator<br>Pulmonary Function Equipment<br>Stowage Assembly<br>Flant Gas Cylinder Assembly<br>Gas Cylinder Assembly        | <b>∞</b> ∞ ∞ ♥ |
| ** TEMP.PRESS.HUMIDITY MONITORING TEMP.PRESS.HUMIDITY MONITORING TEMP.PRESS.HUMIDITY MONITORING TEMP.PRESS.HUMIDITY MONITORING TEMP.PRESS.HUMIDITY MONITORING                                            | 1 2 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | 168<br>169<br>161<br>163               | CELSS Test Facility<br>Gas Grain Simulator<br>Inventory Control System<br>Test/Checkout/Calibration<br>Instrumentation                 |                |
| TEMP.PRESS.HUMIDITY MONITORING<br>TEMP.PRESS.HUMIDITY MONITORING<br>TEMP.PRESS.HUMIDITY MONITORING<br>TEMP.PRESS.HUMIDITY MONITORING<br>TEMP.PRESS.HUMIDITY MONITORING<br>TEMP.PRESS.HUMIDITY MONITORING | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 106<br>1113<br>1112<br>147<br>99<br>57 | Neck Baro-Cuff<br>Blood Gas Analyzer<br>Flant HLPC Ion Chromatograph<br>Head/Torso Phantom<br>Animal Biotelemetry System<br>Bag-in-Box | 0              |
| ** THERMAL/SHOCK ISOLATION<br>THERMAL/SHOCK ISOLATION                                                                                                                                                    | <b>0</b> -                               | 161                                    | Inventory Control System                                                                                                               | -              |

| 63     |       |
|--------|-------|
| Q      | 68/0  |
| Page 1 | 05/30 |

| Table 5.2-3                                                                                                                            | Table 5.2-3 "Vital" Database Listing for Commonality Sample<br>Selection Assesment | ing for<br>sesment        | . Commonality Sample                                                                                                                                     |       |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| REPRESENTATIVE LIST<br>OF FUNCTIONS AND<br>ASSEMBLIES                                                                                  | PRIORITY # OF<br>SBI HW. ITEM                                                      | MI *                      | SBI HARDWAKE NAME                                                                                                                                        | COUNT |
| THERMAL/SHOCK ISOLATION THERMAL/SHOCK ISOLATION THERMAL/SHOCK ISOLATION THERMAL/SHOCK ISOLATION THERMAL/SHOCK ISOLATION ** Subtotal ** | 27 17 27<br>23 17 27 25                                                            | 1112<br>168<br>169<br>163 | Flant HLPC Ion Chromatograph<br>CELSS Test Facility<br>Gas Grain Simulator<br>Test/Checkout/Calibration<br>Instrumentation<br>Animal Biotelemetry System |       |

Page No. 05/30/89

Modularity Candidate

Table 5.2.1 Database Listing of Sample Set

|    | Item #<br>Frioritized<br>by Mass | HW<br>Item<br># | Hardware Item Name                                    | Sufficient<br>Data<br>Available | Modularity | Modularity<br>Confidence<br>Level |
|----|----------------------------------|-----------------|-------------------------------------------------------|---------------------------------|------------|-----------------------------------|
|    | <del>-</del> 0                   | 168<br>169      | CELSS Test Facility<br>Gae Grain Simulator            | Yes                             | PL<br>1+04 | High<br>Heigh                     |
|    | נטו                              | 126             |                                                       | Yes                             | Item       | High                              |
|    |                                  | 145             | Automated Microbal System                             | Yes                             | Item       | High                              |
|    | ō-                               | 161             | Inventory Control System                              | Yes                             | Item       | High                              |
|    | <del>-</del>                     | 163             | Test/Checkout/Calibration<br>Instrumentation          | Yes                             | Item       | High                              |
| 2. | <b>6</b>                         | 106             | Neck Baro-Cuff                                        | Yes                             | Item       | High                              |
| ,  | 14                               | 6.1             | Mass Spectrometer                                     | Yes                             | Ť          | Low                               |
|    | 15                               | 112             | Plant HLPC Ion Chromatograph                          | Yes                             | 크          | High                              |
|    | 17                               | 29              | Pulmonary Gas Cylinder                                | Yes                             | <u>a</u>   | Low                               |
|    | 18                               | 110             | rssembly<br>Flant Gas Chromatograph/Mass              | Yes                             | 고          | Low                               |
|    | 23                               | 165             | spectrometer<br>Experiment Control Computer<br>Svetem | Yes                             | Item       | High                              |
|    | m<br>Cl                          | 62              | Fulmonary Function Equipment<br>Stowage Assembly      | Yes                             | ā.         | Low                               |
|    | 29                               | 57              | 1                                                     | Yes                             | ů          | L.ow                              |
|    | 30                               | 111             | Plant Gas Cylinder Assembly                           | Yes                             | 로          | L.ow                              |

Table 5.3.2 Commonality List of Functions/Assemblies

| Function/Assembly H/W List from Table 5.4.2 | Possible Number of SBI<br>H/W Items with Common<br>Functions/Assemblies | Percent Cost<br>Decrease |
|---------------------------------------------|-------------------------------------------------------------------------|--------------------------|
| 1 Aerosol Generator                         | 111                                                                     | 0                        |
| 2 Amplifiers                                | 6                                                                       | 51-59                    |
| 3 Automation/Robotics                       | 6                                                                       | <u>51-59</u>             |
| 4 Cameras/Video                             | 5                                                                       | 47-55                    |
| 5 Centrifuge                                | 4                                                                       | 43-51                    |
| 6 Computers & Accessories                   | 10                                                                      | 59-66                    |
| 7 Converters                                | 7                                                                       | 54-61                    |
| 8 Detectors                                 | 5                                                                       | 47-55                    |
| 9 Displays-Transducer                       | 5                                                                       | 47-55                    |
| 10 Environmental Control                    | 8                                                                       | <u>55-63</u>             |
| 11 Fluid Handling                           | 6                                                                       | 51-59                    |
| 12 Freezers                                 | 3                                                                       | 37-43                    |
| 13 Gas Handling                             | 9                                                                       | 57-65                    |
| 14 Mass Spectrometer                        | 4                                                                       | 43-51                    |
| 15 Microbial Monitoring                     | 2                                                                       | 25-31                    |
| 16 Motors                                   | 4                                                                       | 43-51                    |
| 17 Power Supply                             | 7                                                                       | 54-61                    |
| 18 Pumps                                    | 4                                                                       | 43-51                    |
| 19 Radiation Handling                       | 6                                                                       | 51-59                    |
| 20 Recorders                                | 10                                                                      | 59-66                    |
| 21 Sample Prep Animal                       | 4                                                                       | 43-51                    |
| 22 Sample Prep Human                        | 5                                                                       | 47-55                    |
| 23 Sample Prep Plant                        | 8                                                                       | 55-63                    |
| 24 Scintillation Counter                    | 4                                                                       | 43-51                    |
| 25 Storage Locker                           | 4                                                                       | 43-51                    |
| 26 Temp.Press.Hum. Monitor                  | 10                                                                      | 59-66                    |
| 27 Thermal/Shock Isolation                  | 6                                                                       | 51-59                    |

## 6.0 Conclusions

## 6.1 Discussion

There appears to be a potential cost savings for packaging (modularity) the various hardware items into groups of related activities and then have these supervised by one organization. The optimum case is where identical items can serve multiple purposes and be controlled and standardized by a single specification. The utilization of common components will enhance modularity and standardization across all systems and result in design and operational cost savings. Modularization/commonality should only be considered after assurance that all candidate hardware items will provide the performance, reliability, safety, energy efficiency, and can be worked within the program milestones as if they were developed as unique.

During the early phase of a conceptual design there may be little cost savings (may even add cost) resulting from commonality. However, in the later phases these costs would more than balance out by the elimination of duplicate design activity. These cost saving from commonality could possibly be increased substantially when other programs (i.e. CHeC etc) are considered.

## 6.2 Implementation Guidelines

- Use commonality as extensively as possible, but use it on only two applications if only two are available. The savings is substantial.
- To assess savings, use realistic learning factors. All SBI elements will be subject to some degree of learning factor.
- Consider minor weight penalties as acceptable for purposes of implementing common modules in design.
- Look outside SBI at CHeCs, etc., to broaden the opportunity to save cost.

## 6.3 Other Considerations

This trade study was limited to only SBI hardware for modularity and commonality. Future studies should consider Crew Health Care System (CHeC), Extended Crew Operations (EDCO) and other Life Science activities. The potential cost savings from having common modules/components throughout all of these systems is substantial. The cost reduction for spares, maintainability, transportation, packaging, storage, power requirements, crew training, and other potential cost drivers should be considered in all future studies.

Appendix A - Space Biology Hardware Baseline

| A CFP S=SBI, E=EDCO, W=WP-01 |
|------------------------------|
| E-EDCO,                      |
| S=SBI.                       |
| C=18 CFP                     |
| Codes.                       |

|                                                                        |             | HANDOWARE UND | WARE PA      | PARAMETERS |
|------------------------------------------------------------------------|-------------|---------------|--------------|------------|
| H/W HARDWARE ITEM NAME                                                 | SOURCE      | VOLUME        | MASS         | POWER      |
| *                                                                      | CODE        | (cu. m)       | (Kg)         | Maile      |
| 1.8 METER CENTRIFUGE FACILITY (1)                                      |             |               |              |            |
| SPECIMEN SUPPORT GROUP (1A)                                            | Ć           | 07.0          | 1100         | 1500       |
| 1 1.8 M Centrifuge                                                     | ວ ≩         | 0.96          | 320          | 2500       |
| Equipment Washer/Sanitizer                                             | <b>&gt;</b> | 96.0          | 350          | 800        |
|                                                                        | : ပ         | 0.48          | 200          | 200        |
|                                                                        | O           | 0.10          | 50           | 550        |
| 5 Plant Growth Module                                                  | ن<br>ا      | 0.10          | 50           | 220        |
| 6 Primate Module<br>7 Rodent Module                                    | ပ           | 0.07          | 40           | 230        |
| •                                                                      |             |               |              |            |
| BIOLOGICAL SAMPLE MANAGEMENT FACILITY (2)                              |             |               |              |            |
| BIOWASTE COLLECTION & MONITORING GROUP (2A)                            | ц           | 0.12          | .25          | 20         |
| 8 Fecal Monitoring System (24 Hr)<br>9 Urine Monitoring System (24 Hr) | ıш          | 0.20          | 09           | 20         |
| BIOLOGICAL SAMPLE STORAGE GROUP (2B)                                   | :           | 9             | <del>-</del> | 140        |
| 10 Freeze Dryer                                                        | } }         | 0.07          | 120          | 300        |
| 11 Freezer (-20 deg. C)                                                | }           | 9 9           | 120          | 300        |
|                                                                        | : ≥         | 60.0          | 20           | 0          |
| W Ollap                                                                | 3           | 0.20          | 80           | 0          |
| 14 Radiation Shielded Locker (Copy 1 of 2)                             | 3           | 0.48          | 120          | 300        |
|                                                                        |             |               |              |            |

Decen 3r 1988 Up Dated 23 Mar. 118

LIFL SCIENCES HARDWARE LIST FOR THE SPACL STATION FREEDOM ERA

Decemil . 1988

| H/W HARDWARE ITEM NAME |
|------------------------|
|                        |

## BIOLOGICAL SAMPLE MANAGEMENT FACILITY (2), (con't)

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | TO A LI THE | THE THEORY AND THE PARTIES | MARTERS     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|----------------------------|-------------|
| W. T  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | UNII HAHL   | WANE FAR                   | AMIL ILIO   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOURCE | VOLUME      | MASS                       | POWER       |
| Σ     | HARDWARE II EM NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CODE   | (cu. m)     | (kg)                       | (watts)     |
| *     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |                            |             |
| BIOLO | BIOLOGICAL SAMPLE MANAGEMENT FACILITY (2), (con't)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n't)   |             |                            |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |                            |             |
| ROL   | RODENT SUPPORT GROUP (2D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U      | 6           | ď                          | C           |
| 39    | CO2 Administration Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ာ ဖ    | 0.0         | o \$                       | ) <u>7</u>  |
| 40    | Rodent Blood Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 'n     | 0.03        | <u> </u>                   | ) (         |
| ) ·   | Dadage Caudal Vedebrae Thermal Device (CVTD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S      | 0.01        | 7                          | 20          |
| 4.    | Hodeni Caudal Velleblas momma 22.55 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S      | 0.01        | 4                          | 0           |
| 4.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S      | 0.01        | က                          | 0           |
| 43    | Rodent Hestraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U.     | 0.01        | က                          | 0           |
| 44    | Rodent Surgery Platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o cr   | 0 01        | က                          | 0           |
| 45    | $\simeq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y c    | 0.03        | 10                         | 50          |
| 46    | Rodent Urine Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) c    | 00.0        |                            | c           |
| 47    | Rodent Veterinary Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n      | 0.03        | 2                          | >           |
| P.B.  | PRIMATE SUPPORT GROUP (2E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ć      | i<br>C      | c                          | 140         |
| 0 7   | Drimate Blood Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n      | 0.00        | 7.                         | -           |
| 0 4   | Filliate Diode Concentral of the Property of t | S      | 0.01        | <b>-</b>                   | 0           |
| 4 y   | Frimate Handing Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S      | 0.05        | က                          | 140         |
| 20    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S      | 0.04        | 5                          | 0           |
| 21    | Surgery Flationin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ď      | 0 0         | ഹ                          | 0           |
| 55    | Primate Surgery/Dissection Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) (    | 10:0        | 10                         | 14          |
| 53    | Primate Urine Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ာ ဖ    | 0.00        | ) C                        | <u></u>     |
| 54    | Primate Veterinary Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S)     | 0.03        | 2 (                        | <b>&gt;</b> |
| 55    | Small Primate Restraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | တ      | 0.05        | 7                          | <b>O</b>    |

Decen er 1988

|                        |        | UNI HAHDWARE TARAMETERS | JWANE TAI | ואורו בווי |
|------------------------|--------|-------------------------|-----------|------------|
| H/W HABDWARE ITEM NAME | SOURCE | VOLUME                  | MASS      | POWER      |
|                        | CODE   | (cu. m)                 | (kg)      | (watts)    |

## 8

| *                 |                                                            | CODE       | (cu. m)   | (kg)            | Walls       |
|-------------------|------------------------------------------------------------|------------|-----------|-----------------|-------------|
| 310INS            | 310INSTRUMENTATION & PHYSIOLOGICAL MONITORING FACILITY (3) | FACILITY ( | 3)        |                 |             |
| PUI               | PULMONARY ANALYSIS GROUP (3A)                              |            | ·         | •               | ć           |
| , A               | Rad Assembly                                               | တ          | 0.01      | <b>-</b>        | <b>o</b>    |
| י כ<br>ז כ        |                                                            | ഗ          | 0.15      | 19              | 0           |
| 20                | Bag-In-box                                                 | ш          | 0.01      | -               | 0           |
| 5<br>8            | Doppier Recorder                                           | ) ဟ        | 0.08      | 13              | 100         |
| က်<br>(၁          | Electronics Control Assembly                               | ဟ          | 0.01      | က               | 30          |
| 0 9               | Mask/Hegulatol System                                      | ഗ          | -0.02.087 | 40407           | 100 200     |
| - 0               | Mass Specification Equipment Stowage Assembly              | S          | 150.88.0  | 20              | 0           |
| 7.0               | Fullmonary runction Equipment Storage (1997)               | S          | 60.0      | 30              | 0           |
| 9 6               | Pulmonary das Oymnos Assembly                              | တ          | 0.02      | <del>-</del>    | 0           |
| 0 0<br>4 r        | Representing Assembly                                      | S          | 0.01      |                 | 0           |
| 0<br>9<br>9       | Syringe (3 Liter Calibration)                              | S          | 0.01      | 2               | 0           |
|                   |                                                            |            |           | •               |             |
| PH                | PHYSICAL MONITORING GROUP (3B)                             | ı          |           | ,               | 30          |
| 67                | Accelerameter And Recorder                                 | ഗ          | 0.04      | ٥               | 33          |
| 0                 | Action matric Masurament System                            | S          | 0.05      | 180/            | 0           |
| 0 0               |                                                            | >          | 0.15      | 50              | 150         |
| 1 0               | Callieras<br>Complianos Volumometer                        | S          | 9-96 015  | % <del>08</del> | 18D/30      |
| 7 0               | Compliance Volumentorial (FFMG)                            | S          | 90.0      | <b>TBD</b> 2    | TBD         |
| - ^ ^             | Electionicapitationagherogiam (EEEE)                       | ш          | 0.01      | 2               | 20          |
| 7 7               | Electromyograph (Lind)                                     | ш          | 0.01      | -               | 10          |
| S ,               | Force Medsulement Device                                   | ်          | 0.40      | 7.0             | 100-250     |
| 4 /<br>n          | Force nesistance of stem                                   | S          | 0.03,003  | <b>480-2</b>    | TBD Bat. of |
| 9 <i>/</i><br>c / | Goniometer And Recorder                                    | ш          | 0.01      | 2               | 25          |
| l<br>•            |                                                            |            |           | _               | 0 10 10 10  |

۲

source codes: C=1 B CFP S=SBL E=EDCO, W=WP-01

| •                                        |                                                    |          |                          |              |          |
|------------------------------------------|----------------------------------------------------|----------|--------------------------|--------------|----------|
|                                          |                                                    |          | UNIT HARDWARE PARAMETERS | ARE PAR      | AMETERS  |
| H/W                                      | HARDWARE ITEM NAME                                 | SOURCE   | ш                        | MASS         | POWER    |
| =<br>-                                   | ł                                                  | CODE     | (cn. m)                  | (kg)         | (walls)  |
| BIOINS                                   | BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING      | FACILITY | (con't)                  |              |          |
|                                          | UNSICAL MONITORING GROUP (3B) (con't)              |          |                          | · .          |          |
| ב<br>ב                                   | TOICAL MOINTOING GIOCO (CT.) (CT.)                 | တ        | 0.29                     | 136          | 300      |
| //                                       | Hard Hissue IIIIaging System                       | S        | 0.01                     | ä            | 0        |
| 8/                                       | Mass Calibration Office Body                       | ш        | 0.65                     | 35           | 15       |
| 6 /                                      | Mass Measurement Device-body                       | >        | 0.08                     | 17           | 15       |
| 08                                       | Mass Measurement Device-Micro                      | >        | 0.08                     | 17           | 15       |
| 81                                       | Mass Measurement Device-Singing                    | S        | 0.05                     | 20           | 100      |
| 82                                       | Motion Analysis System                             | S        | 0.01                     | က            | 30       |
| 83                                       | Plethysmograph Measuring System                    | · v.     | 96.0                     | 300          | 800      |
| 84                                       | Soft Tissue Imaging System                         | တ        | 0.04.0002                | 100-08±      | O Bot OF |
| 82                                       | lonometer ·                                        | ш        | 0.10                     | 30           | 300      |
| 98                                       | Video System                                       | 1        |                          |              |          |
| 2                                        | NETIBOPHYSIOI OGICAL ANALYSIS GROUP (3C)           |          |                          |              | ,        |
| ֓֞֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֡֓֓֓ |                                                    | တ        | 0.01                     | ۰,           | 0        |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \    |                                                    | S        | 0.01                     | 2            | 20       |
| 8 G                                      | EEG Signal Collulitories                           | ш        | 0.01                     | -            | 0        |
| 5 C                                      | Electrode Impedance Meter                          | ш        | 0.01                     | 2            | 20       |
| 06                                       | Electro-oculograph (EOG)                           | ш        | 60.0                     | <del>-</del> | 120      |
| - 6<br>- 6                               | Neurovestibular ECDI                               | Ш        | 0.01                     | 2            | 20       |
| 92                                       | Meurovestibular rielitate montana por              | ш        | 0.04                     | 13           | 110      |
|                                          |                                                    | ш        | 0.01                     | 2            | 20       |
| 2) (                                     |                                                    | ш        | 0.01                     | 2            | 20       |
| ი                                        | Neurovestibular Optonicus Chair                    | ш        | 0.12                     | 38           | 220      |
| 9 0                                      | Neurovesubulai notainig onun                       | Ш        | 0.05                     | 18           | 0        |
| / 6<br>8<br>0                            | Subject nestraint dystem<br>Visual Tracking System | S        | 0.01                     | 2            | 20       |
| 0                                        |                                                    |          |                          |              |          |

Page 5 of 10

| , | XXX      |
|---|----------|
| • | •        |
| ( | ľ        |
|   |          |
| ( | 3        |
| - | <u> </u> |
| • | _        |
|   |          |
|   |          |
|   | _        |
|   | 4        |
|   | v        |
|   | _        |
|   | -        |
|   | _        |
|   | _        |
|   | _        |
|   | Decembe  |
|   | 7        |
|   | L        |
|   | ā        |
|   | u        |
| 4 | _        |
| ( |          |
| - |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |

|                         |        | UNII HAHI | HAHUWAHE PAHAMEIEHS | MINICIEN |
|-------------------------|--------|-----------|---------------------|----------|
| ITEM HARDWARF ITEM NAME | SOURCE | VOLUME    | MASS                | POWER    |
|                         | CODE   | (cu. m)   | (kg)                | (watts)  |

## (con,t) BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING FACILITY

| <br>(                     | 20                            | 20 | 4 | 2 | 2                   | 17                        | 20                     | 9-19-132 - 180-45-2 180-145 | 18                                          |                                |                                        |                             | 0.20 25 100                                   | 19 | 40                               |
|---------------------------|-------------------------------|----|---|---|---------------------|---------------------------|------------------------|-----------------------------|---------------------------------------------|--------------------------------|----------------------------------------|-----------------------------|-----------------------------------------------|----|----------------------------------|
| (                         | တ                             |    |   | တ | S                   | ш                         | RECEPTINE STIMULANDE E | S                           | ice E                                       |                                | S                                      |                             |                                               | တ  | S                                |
| CARDIOVASCULAR GROUP (3D) | 99 Animal Biotelemetry System |    |   |   | 103 Holler Becorder | Human Riotelemetry System | July Comment           | uff) .                      | 107 Physiological Hemodynamic Assess Device | 108 Illitasonic Imagina System | 109 Venous Pressure Transducer/Display | PLANT MONITORING GROUP (3E) | 110 Plant Gas Chromatograph/Mass Spectrometer |    | 112 Plant HPLC Ion Chromatograph |

| H/W                                            |        | UNIT HARDWARE PARAMETERS | WARE PAI   | RAMETERS |
|------------------------------------------------|--------|--------------------------|------------|----------|
| ITEM HARDWARE ITEM NAME                        | SOURCE | VOLUME                   | MASS       | POWER    |
| **                                             | CODE   | (cu. m)                  | (kg)       | (waits)  |
| ANALVTICAL INSTRIMENTS FACILITY (4)            |        |                          |            |          |
| ANALTHOAL MOINDMENTS TAGILLY (4)               |        |                          |            |          |
| BIOLOGICAL SAMPLE ANALYSIS GROUP (4A)          |        |                          | v          |          |
|                                                | S      | 0.13                     | 45         | 250      |
|                                                | ш      | 0.10                     | 30         | 200      |
| Chemistry System                               | S      | 0.08                     | 23         | 100      |
| 116 Continuous Flow Electrophoresis Device     | S      | 90.0                     | <b>TBD</b> | 180      |
|                                                | ш      | 0.02                     | 9          | 100      |
| 118 Gas Chromatograph/Mass Spectrometer        | >      | 0.20                     | 25         | 100      |
| 119 Gas Cylinder Assembly                      | S      | 60.0                     | 19         | 0        |
| 120 High Performance Liquid Chromatograph      | ≯      | 0.12                     | 40         | 100      |
|                                                | ≯      | 0.16                     | 20         | 400      |
| Osmometer                                      | Ш      | 0.02                     | 2          | 20       |
|                                                | >      | 0.05                     | 7          | 5        |
|                                                | S      | 0.03                     | .10        | 100      |
|                                                | ш      | 0.05                     | 20         | 0        |
|                                                | S      | 0.24                     | 06         | 200      |
|                                                | 3      | 0.11                     | 40         | 300      |
|                                                | ш      | 0.16                     | 52         | 400      |
| CELL ANALYSIS GROUP (4B)                       |        |                          |            |          |
| 129 Cell Handling Accessories                  | S      | 0.05                     | 20         | 20       |
|                                                | S      | 90.0                     | 19         | 50       |
|                                                | S      | 90.0                     | TBD        | 180      |
| Centrifugal Incubator (5% CO2 @37 deg C Copy 1 | 2)     | 0.16                     | 40         | 300      |
| Centrifugal Incubator (5% CO2 @37 deg          | 2)     | 0.16                     | 40         | 300      |
|                                                |        |                          |            |          |

Page 7 of 10

TO A O OFFI OF THE EDGE WEIGHT

December 1988

|             |                                             | -      | LINIT LADOWARE DARAMFTERS | MADE DAG  | AMFTERS |
|-------------|---------------------------------------------|--------|---------------------------|-----------|---------|
|             |                                             |        | מאה ואט                   | אלאור י   |         |
| <b>M</b> /H |                                             | SOURCE | VOLUME                    | MASS      | POWER   |
| ITEM        | ITEM HARDWARE HEM NAME                      | CODE   | (cu. m)                   | (kg)      | (watts) |
| *           |                                             |        |                           |           |         |
|             |                                             |        |                           |           |         |
| ANALY       | ANALYTICAL INSTRUMENTS FACILITY (4) (COLLY) |        |                           | -         |         |
|             |                                             |        |                           |           |         |
| CEL         | CELL ANALYSIS GROOP (4B) (coll 1)           | U      | 0.01                      | 2         |         |
| 101         | 13.1 Contribute Hematocrit                  | )      |                           |           |         |
| † '         | Commission Commission Device                | တ      | 0.01                      | 2         |         |
| 135         | Chromosomai Siide Preparation               | ď      | 0.05                      | 180       |         |
| 136         | Fluoromeasure Probe                         | υ      | 0.24                      | 36        |         |
| 137         | Flow Cytometer                              | ر<br>ر | 70.0                      | 23        | 200     |
| 128         | Hematology System                           | n '    | 0.0                       | 7 6 7     |         |
| 2           |                                             | ဟ      | 0.25.03                   | 7 d 11: A |         |
| 139         | Image Digitizing System                     | 3      | 0.40                      | 100       | 400     |
| 140         | Microscope System (Optical & Stereo         | •      | )                         |           |         |

20 0 20

200

0.01

шωш

Slide Preparation Device

142 143

Macroscope Subsets)

Mitogen Culture Device Skin Window Device

141

|                                                                                |        | UNIT HARDWARE PARAMETERS | VARE PAR      | AMETERS |
|--------------------------------------------------------------------------------|--------|--------------------------|---------------|---------|
| H/W HABDWARE ITEM NAME                                                         | SOURCE | VOLUME                   | MASS          | POWER   |
|                                                                                | CODE   | (cu. m)                  | (kg)          | (watts) |
| LAB SUPPORT EQUIPMENT FACILITY (5)                                             |        |                          |               |         |
| ENVIRONMENTAL MONITORING & CONTROL GROUP (5A)                                  |        |                          | -             |         |
| Accelerometer Subsystem                                                        | >      | 0.10                     | 30            | 200     |
| 144 Acceleration of the Automoted Microbic System                              | S      | 0.20                     | . 07          | 200 110 |
|                                                                                | >      | 60.0                     | 35            | 0       |
|                                                                                | S      | 0.12                     | <b>TBD</b> 32 | 0       |
| 14/ Head/Total Hamon                                                           | 3      | 0.16                     | 20            | 400     |
| o Missokial Preparation System                                                 | S      | 0.01                     | 2             | 0/403   |
| ם מ                                                                            | >      | 0.20                     | 80            | 0       |
|                                                                                | S      | 500-10-0                 | 54.74         | 0       |
| <b>-</b> (                                                                     | S      | 0.01                     | 2             | 0       |
| <b>V</b> (                                                                     | S      | 0.03                     | 10            | 20      |
|                                                                                | S      | 9-01.00/                 | 1802          | 0       |
|                                                                                | S      | 0.20                     | 7.0           | 250     |
|                                                                                |        |                          | •             |         |
| HARDWARE MAINTENANCE GROUP (5B)                                                |        |                          | •             | 1       |
| 156 Battery Charger                                                            | >      | 0.03                     | 10            | 100     |
|                                                                                | >      | 0.30                     | 100           | 0       |
|                                                                                | >      | 0.20                     | 70            | 200     |
|                                                                                | ≯      | 90.0                     | 20            | 20      |
|                                                                                | ≯      | 0.10                     | 30            | 0       |
|                                                                                |        |                          |               |         |
| 7                                                                              | v:     | 0.20                     | 7.0           | 200     |
| 161 Inventory Country Systems 160 124 Materials Packaging & Handling Equipment | S      | 0.20                     | 7.0           | 200     |
|                                                                                | S      | 0.20                     | 7.0           | 200     |
|                                                                                |        |                          |               |         |

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

Page 9 of 10

| Ć | 1  |     |
|---|----|-----|
| i | Ţ  | •   |
| ١ | ^  | •   |
| ţ | 7  | 7   |
|   |    | _   |
|   | •  |     |
|   |    |     |
|   | •  | 7   |
|   |    | ١   |
|   |    |     |
|   |    |     |
|   | ١. | _   |
|   | ζ  | £   |
|   | 6  | ことに |
|   | 7  | ٦   |
|   | •  | ~   |
|   | (  | υ   |
|   | -  | Š   |
| , | L  | _   |
|   |    |     |
|   |    |     |
|   |    |     |
|   |    |     |
|   |    |     |
|   |    |     |

| HE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA |
|-------------------------------------------------------------|
| Σ<br>Ο                                                      |
| EED                                                         |
| I I                                                         |
| OH.                                                         |
| STA                                                         |
| ACE                                                         |
| SP                                                          |
| 里                                                           |
| FOR                                                         |
| IST                                                         |
| 7E L                                                        |
| WAF                                                         |
| ARD                                                         |
| H S:                                                        |
| ACN:                                                        |
| ALC S                                                       |
| ֝֝֝֝֝֝֝֝֝֝֝<br>ט                                            |
| _                                                           |

|                                                                                                                                                           |         | IINIT HABNWARE PARAMETERS                | VARE PARA              | METERS                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------|------------------------|--------------------------------|
| H/W<br>ITEM HARDWARE ITEM NAME                                                                                                                            | SOURCE  | VOLUME<br>(cu. m)                        | MASS<br>(kg)           | POWER<br>(watts)               |
| CENTRALIZED LIFE SCIENCES COMPUTER FACILITY (6)                                                                                                           |         |                                          | ·                      |                                |
| LIFE SCIENCES DATA GROUP (6A) 164 Digital Recording Oscilloscope 165 Experiment Control Computer System 166 Multichannel Data Recorder 167 Voice Recorder | ≯ v ш v | 0.03<br>0.05<br>0.09<br><del>0.0</del> 3 | 10<br>20<br>30<br>4.26 | 100<br>400<br>150<br>0 Bat. OP |
| Ä                                                                                                                                                         |         |                                          | ·                      |                                |
| FEAST GROUP (7A) 168 CELSS Test Facility                                                                                                                  | တ       | 1.92                                     | 1000                   | 1300                           |
| EXOBIOLOGY FACILITY (8)                                                                                                                                   |         |                                          | •                      |                                |
| GAS/GRAIN GROUP (8A)<br>169 Gas Grain Simulator                                                                                                           | တ       | 1.92                                     | 800                    | 1500                           |

Baselined: December 1988

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           | - 1         | Ťτ          | UNII NAHUWANG |              | PARAMETERS.  | : u      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|-------------|---------------|--------------|--------------|----------|
| <b>%</b> /E |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      | UNIT HARD | HARDWARE PA | PAHAMETEHS  | UPDA1ED:      | -[           | BY:URF       | u (      |
| ITEM        | HARDWARE ITEM NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOURCE | VOLUME    | MASS        | POWER       | VOLUME        | MASS         | POWER        | s c      |
| **          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CODE   | (cn. m)   | (kg)        | (walls)     | (cn. m)       | <b>B</b> 3   | (walls)      | ٠        |
| 16          | Animal Tissue Blopsy Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ဟ      | 0.03      | ∞           | 0           |               |              |              | < ·      |
| 17          | Blood Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ဟ      | 0.02      | -           | 0           |               |              |              | <u>1</u> |
| 22          | Electrolusion Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S      | 90.0      | 邑           | <b>18</b> 0 |               |              |              | ]        |
| 53          | Fixation Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ဟ      | 0.02      | ∢           | 0           |               |              |              | ₹        |
|             | Muscle Blossy Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ဟ      | 0.01      | -           | 0           |               |              |              | < -      |
| 0           | Perfusion & Fixation Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ဟ      | 0.01      | 8           | 0           |               |              |              | < -      |
| 9 6         | Plant Care Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | တ      | 0.05      | 10          | 20          |               |              |              | < ·      |
| =           | Plant Harvest/Dissection Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | တ      | 0.01      | <b>→</b>    | 20          |               | - 1          |              | <u> </u> |
| . 6         | Saliva Collection Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S      | 0.01      | -           | 0           | 0.001         | 0.5          | 0            | - :      |
| 46          | Sample Preparation Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ဟ      | 0.17      | 22          | 150         |               | - 11         |              | <u>`</u> |
| . 60        | Sweat Collection Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | တ      | 0.01      | <u>e</u>    | 0           | 0.005         | 5.05         | 13           | 1        |
| 0 0         | CO2 Administration Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | တ      | 10.0      | n           | •           |               |              |              | 4        |
| 3           | Rodent Blood Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S      | 0.03      | 10          | 20          |               |              |              | < ·      |
| ? =         | Rodent Caudal Vertebrae Thermal Device (CVTD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | တ      | 0.01      | 8           | 20          |               | -            |              | 4        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ဟ      | 0.01      | 4           | 0           |               | _            |              | 4        |
| 1 7         | Bodent Bestraloi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | တ      | 0.01      | Ю           | 0           |               | _            |              | <u>\</u> |
| ? 7         | Rodent Sugery Platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S      | 0.01      | က           | 0           |               | 1            |              | <b>\</b> |
| 7           | Dodon Surgery Dissection Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ဟ      | 0.01      | ო           | 0           |               | _            |              | <u>\</u> |
|             | Codes Lide Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S      | 0.03      | 10          | 20          |               |              |              | < ·      |
| 7           | Rodent Veterinary Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | တ      | 0.03      | 10          | 0           |               |              |              | 1        |
|             | Primate Plond Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s<br>S | 0.05      | 8           | 140         |               | 1            |              | -        |
|             | Primate Handling Foundant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | တ      | 0.01      | -           | 0           |               | <del> </del> |              | ( •      |
| D C         | Primate I BNP Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S      | 90.0      | က           | 140         |               |              | <br> -<br> - |          |
| 3 -         | Primate Surpery Platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | တ      | 0.04      | S           | 0           |               | +            |              |          |
| - 5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | တ      | 0.05      | S           | 0           |               |              |              | 1        |
| 2 0         | Timing Cagain Color Comments of the Color Comments of the Color Co | S      | 0.01      | 10          | 7-          |               |              |              | 1        |
| 20          | Primate Cine Collection of storing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S      | 0.03      | 10          | 0           |               |              |              | <b>\</b> |
| 5.4         | Primate Veterinary Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S      | 0.05      | 8           | 0           |               |              |              | 4        |
| 22          | Small Primate Restraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y y    | 0.01      | -           | 0           |               |              |              | 7        |
| 26          | Bag Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0.15      | 19          | 0           |               |              |              | 7        |
| 24          | Bag-in-Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y v    | 0 08      | 13          | 100         |               |              |              | 7        |
| 59          | Electronics Control Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ט כ    | 10.0      |             | 30          |               |              |              | 7        |
| 60          | Mask/Regulator System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ט מ    | 0.00      | 10          | 100         | 0.087         | 40.7         | 200          | 7        |
| 61          | Mass Spectrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 30.0      | 0.0         | 0           | 0.051         | 20           | 0            | ſ        |
| 62          | Pulmonary Function Equipment Stowage Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |           |             | •           |               |              |              | _        |
| 63          | Pulmonary Gas Cylinder Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n o    | 60.0      | <u> </u>    | » c         |               |              |              | 7        |
| 64          | Rebreathing Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ب م    | 0.02      | - •         | · c         |               |              |              | 7        |
| 6.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ဟ ်    | 0.01      | - ‹         | •           |               |              |              | -        |
| 99          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | တ      | 0.0       | > :         | > ;         |               | 16.06        | 4            |          |
| 67          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S      | 0.04      | 16          | c<br>C      |               | <b>)</b>     |              | 7        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | A. ARC.   | J=JSC, *P   | Prime       |               |              |              |          |

A.ARC, J.JSC, "Prime

Hodoled: 3/22/89

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

|          |                                    |          |            |             |            | UNII HAHUWAHE |          | PANAMEIENS |             |
|----------|------------------------------------|----------|------------|-------------|------------|---------------|----------|------------|-------------|
|          |                                    |          | IINIT HABD | HARDWARE PA | PARAMETERS | UPDATED:      | 3 - Mar  | BY:DRP     | ш           |
| <b>≱</b> |                                    | SOURCE   |            | 1           | POWER      | VOLUME        | MASS     | POWER      | s           |
| ITEM     | ITEM HARDWARE ITEM NAME            | CODE     | (Cr. II)   | (kg)        | (watts)    | (Cr. m)       | (kg      | (walls)    | ۵           |
| *        |                                    | ď        | 0.02       | 180         | 0          |               | 1        |            | 7           |
| 68       | Anthopometric Measurement System   | ) U      | 90.0       | TBO         | 180        | 0.0152        | 16       | 130        | 7           |
| 70       | Compliance Volumometer             | ,        | 9 6        | E           | TBD        |               | 2        |            | 7           |
| 7.1      | Electroencephalomagnetogram (EEMG) | n (      | 90.0       | 3 5         | 100        |               |          | 220        | ٦           |
| 7.4      | Force Resistance System            | n (      | 5.0        | ) E         | SE E       | 0 003         | 2        | Battery Op | ٦           |
| 7.5      | Fundus Camera                      | Ø,       | 0.03       | 3 3         | 3          |               |          |            | -           |
| 11       | Hard Tissue Imaging System         | ဟ        | 0.20       | 95.<br>-    | 9          |               |          |            | -           |
|          | Mace Cathration Unit               | ဟ        | 0.01       | 8           | <b>o</b> ' |               |          | -          | <u>.</u>    |
| 0 0      | Mass Canciana Cini                 | တ        | 90.0       | 50          | 100        |               |          | -          | <u>.</u>    |
| 85       | Mollon Analysis Systems            | Ø        | 0.01       | ၉           | 30         |               |          |            | 1           |
| 83       | Plethysmograph Measuring System    | · va     | 96.0       | 300         | 800        |               |          |            | -           |
| <b>8</b> | Soft Tissue Imaging byttem         | U.       | 0.01       | 180         | 0          | 0.000226      | 90.0     | Battery Op | 7           |
| 82       | Tonometer                          | · U      | 0.01       | 8           | 0          |               |          |            | 7           |
| 87       | EEG Cap                            | <b>,</b> | 100        | 8           | 20         |               |          |            | -           |
| 88       | EEG Signal Conditioner             | י כ      | 5          |             | 20         |               |          |            | 7           |
| 88       | Visual Tracking System             | n (      | - 0.0      | , כ         | 001        |               |          |            | <           |
| 66       | Animal Blotelemetry System         | ທ        | 0.03       | 9 6         |            |               |          |            | · r         |
| 100      |                                    | ဟ        | 90.0       | 9.          | 007        |               |          |            | 7           |
|          |                                    | ဟ        | 0.02       | •           | ne i       |               |          |            | -           |
|          |                                    | တ        | 0.01       | ~           | 20         |               | 1        |            | · -         |
| 102      |                                    | တ        | 0.01       | 64          | 0          |               | 1.       |            | ,<br> -     |
| 103      |                                    | S        | 0.10       | 180         | <b>5</b>   | 0.132         | 45.2     | 143        | <u>با</u>   |
| 106      | Neck Baro-cull                     | u.       | 0.05       | 20          | 100        |               |          |            | <u>.</u>  - |
| 109      |                                    | <b>,</b> | 0.20       | 52          | 100        |               | <u> </u> |            | < -         |
| 110      |                                    | <b>,</b> | 9000       | 6           | 0          |               |          |            | <           |
| 111      | Plant Gas Cylinder Assembly        | n (      | 60.0       | . 7         | 200        |               |          |            | <b>&lt;</b> |
| 112      |                                    | n (      | 9.0        | · •         | 250        |               |          |            | -           |
| 113      |                                    | yo (     | 0.0        | 7 6         | 001        |               |          |            | 7           |
| 115      |                                    | တ (      | 0.08       |             | CET.       |               |          |            | 7           |
| 116      |                                    | ဟ (      | 0.00       | 3 2         | 0          |               |          |            | 7           |
| 110      |                                    | χ (      | 60.0       |             | 100        |               |          |            | 7           |
| 124      |                                    | ν (      | 0.0        | - 6         | 200        |               |          |            | 7           |
| 126      |                                    | တ (      | 0.24       |             | 20         |               |          |            | ۲.۲         |
| 129      |                                    | so ·     | 0.03       | 07          | 0 5        |               | _        |            | ۲.۷         |
| 130      |                                    | တ ်      | 0.06       | - 6         | E CEL      |               |          |            | ۲٦.         |
| 100      |                                    | တ        | 90.0       | 2           | 3          |               |          |            | \<br>\      |
| 2 .      |                                    | S        | 0.01       | 7           | 0.7        |               | -        |            | -           |
|          |                                    | S        | 0.01       | 2           | 20         |               |          |            | -           |
| 351      | Chiomosomai Siloa reperenti        | S        | 0.05       | 189         | <u> </u>   |               |          |            | -           |
| 136      |                                    | S        | 0.07       | 23          | 200        |               |          |            |             |
| 138      |                                    | S        | 0.25       | 7.0         | 200        | 0.03          | =        | •          | <u>'\</u>   |
| 139      |                                    | c.       | 0.01       | 2           | 0          |               | _        |            | 7           |
| 142      | 2 Skin Window Device               | ,        |            |             |            |               |          |            |             |
|          |                                    |          | A AND      | ٠ ١٧١ -     | · Prima    |               |          |            |             |

LIFE SCIENCES HANDWARE LIST FOR THE SPACE STATION FREEDOM ERA

| וב נו<br>ו | LIFE SCIENCES HANDWARE EIST FOR THE THEFT |            |                           |                 | •        |                          |         |            | Γ        |
|------------|-------------------------------------------|------------|---------------------------|-----------------|----------|--------------------------|---------|------------|----------|
|            |                                           |            |                           |                 |          | UNIT HARDWARE PARAMETERS | VARE PA | RAMETERS   | <u> </u> |
|            |                                           |            | IINIT HARDWARE PARAMETERS | WARE PA         | RAMETERS | UPDATED: 3-Mer           | 3-Mer   | BY:DRP     | ш        |
| <b>≯</b>   |                                           | SOURCE     | VOI UME                   | MASS            | POWER    | VOLUME                   | MASS    | POWER      | s        |
| TEM        | ITEM HARDWARE HEM NAME                    | CODE       | (Cit m)                   | (ka)            | (watts)  | (ca. m)                  | (kg)    | (walls)    | ۵        |
|            |                                           | 3000       | 0.00                      | 7.0             | 200      | 0.2                      | 0.2     | 110        | 7        |
| 145        | Automated Microbic System                 | ) (        | 0.10                      | TBD CRIT        | 0        |                          | 32      |            | ٦        |
| 147        | _                                         | , u        | 3.0                       | ٠ ج             | 50       | 0.01                     | 2       | 110        | ٦        |
| 149        |                                           | , a        | 50.0                      | ı <del></del> - | 0        | 0.005                    | 1.45    |            | ٠,٢٧     |
| 151        |                                           | י נ        | 5 6                       |                 | 0        |                          |         |            | 7        |
| 152        |                                           | n (        | 5 6                       | , <u>;</u>      | 00       |                          |         | -          | 7        |
| 153        | ••                                        | <b>5</b> ( | 5 6                       | 2 2             | , c      | 0.001                    | 2       | 0          | 7        |
| 154        | •                                         | . מ        |                           | 2               | 250      |                          |         |            | 7        |
| 155        | •                                         | ი          | 0.40                      | 0.2             | 200      |                          |         |            | ٠٢٧      |
| 161        | Inventory Control System                  | מ מ        | 9,60                      | 0 0             | 200      |                          |         |            | ſ.¥      |
| 162        | Lab Materials Packaging & Handling        | n          | 9.6                       | 0.2             | 200      |                          |         |            | ٠٢٧      |
| 163        | Test/Checkout/Calibration Instrum         | ם מ        | 0.60                      | o               | 400      |                          |         |            | ٧.٢      |
| 165        | Experiment Control Computer System        | n          | 6.0                       | } -             | ć        | 0.003                    | 0.26    | Battery Op | ٦        |
| 167        | Volce Recorder                            | n (        | 5.6                       | - 00            | 1300     |                          |         |            | <        |
| 168        | CELSS Test Facility                       | י מ        | 28.1                      |                 | 1500     |                          |         |            | <        |
| 169        | Gas Grain Simulator                       | ဟ          | 1.92                      | 9               | 2        |                          |         |            |          |

Fage No. 05/30/89

|                                              | Appendix B - Com                                                                                                      | Complete 35 Harden                       |                           |                        | 1        |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|------------------------|----------|
| ID # AUTHOR                                  |                                                                                                                       | VOL. PUBLISHER<br>NO.                    | REPORT/DOCUMENT<br>NUMBER | FUBL ISHER<br>LOCATION | DAIE     |
| SGIO1 Kozarsky, D.                           | MUS Inputs                                                                                                            | Lockheed Life Sciences<br>Program Office | Lockheed Nemo             | Washington,<br>DC      | 68/61/10 |
| SB102 Kozarsky, D.                           | Latest Space Station Rack<br>Studies                                                                                  | NASA MSFC                                |                           | _                      | 02/02/B9 |
| SBIO3 Holt, A.                               | PNWG-SS Freedom Assly.<br>Seq. Trial Fyl. Manifest                                                                    | Fayload Manifest Working<br>Group (FMWG) |                           | Reston, VA.            |          |
| SBIO4 Shannon, J.                            | Business Practice Low<br>Cost System Activity                                                                         | NASA JSC                                 |                           |                        |          |
| SB105 NASA                                   | Off-the-Shelf Hardware<br>Frocurement                                                                                 | NASA JSC                                 | NASA MEMO<br>HB/73-M286   |                        |          |
| SB106 NASA                                   | 01S Technology Use For<br>Space Shuttle Program                                                                       | NASA JSC                                 | NASA MEMU                 |                        |          |
| SBIO7 NASA                                   | Proposed Space Shuttle<br>Directive On OTS HW.                                                                        | NASA JSC                                 | NASA MEMU<br>NB/74-L149   |                        |          |
| SBIUB NASA                                   | Cancellation Of Space<br>Shuttle Directive On OTS                                                                     | NASA JSC                                 |                           |                        |          |
| SBIU9 NASA                                   | Agency Balloon Pyl. Util.                                                                                             | NASA JSC                                 | NASA FLAN<br>323-50-XX-71 | Houston, IX.           |          |
| SB110 NASA                                   |                                                                                                                       | Flight Support Equipment<br>Office - JSC | NSTS 21096                | Houston, TX.           |          |
| SBIII NASA                                   | Reference Nission<br>Operational Analysis<br>Document (RMDAD) For The<br>Life Sciences Research                       | NASA JSC                                 | NASA TM 89604             | Houston, TX.           | _        |
| SB112 Brelling, R.                           |                                                                                                                       | RCA Price Systems                        |                           | Mooreston,<br>NJ.      | 09/01/87 |
| SB113 Fogleman,<br>6.Schwart,<br>D.Fonda, M. | Frice Nouels<br>Gas Grain Simulation<br>Facility: Fundamental<br>Studies of Particle<br>Formation And<br>Interactions | 1 NASA Ames Kesearch Center              | er NASA ARC/555<br>88-01  | Moffet<br>Field, CA.   | 08/31/87 |

Fage No. 2 05/30/89

| •                 |                                                                                                                                                |                                    | ı                         |                           |              |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|---------------------------|--------------|
| ID # AUTHOR       | TITLE VOL.                                                                                                                                     | VOL. PUBLISHER<br>NO.              | REPORT/DOCUMENT<br>NUMBER | PUBL I SHER<br>LOCAT I ON | DATE         |
| SBII4 JFL         | Flight Projects Office<br>Payload Classification<br>Product Assurance<br>Provisions                                                            | JPL                                | JPL D-1489 Kev.<br>A      | Pasadena,<br>CA.          | 04/30/87     |
| SHII5 PRC Bystems | Cost Estimate For The<br>Search for<br>Extraterrestrial<br>Intelligence (SETI)<br>Revised                                                      | PRC Systems Services               |                           | Huntsville,<br>AL.        | 06/15/87     |
| SB116 NASA SBPO   | Space Station Commonality<br>Process Requirements<br>Rev.B                                                                                     | NASA SSPO                          | SSP 30285 Kev.<br>B       | Reston,<br>Virgina        | 09/15/88     |
| SBI17 Webb, D.    | Technology Forecasting<br>Using Price — H                                                                                                      | Rockwell International             |                           | Anaheim, CA.              | CA. 04/17/86 |
| SB118 NASA        | Classification Of NASA<br>Office Of Space Science<br>And Applications<br>(OSSA) Space Station<br>Payloads                                      | NASA JSC                           |                           | Houston, TX.              | `            |
| SB119 NASA        | Life Science Research<br>Objectives And<br>Representative<br>Experiments For The Space<br>Station (Green Book)                                 | NASA Ames Life Science<br>Division |                           | Moffet<br>Field, CA.      | 01/01/86     |
| SB120 NASA        | Medical Requirements Of<br>An In-Flight Medical<br>System For Space<br>Station                                                                 | NASA JSC                           | JSC 31013                 | Houston, TX.              | 11/30/87     |
| SBI21 TRW         | A Study Of Low Cost<br>Approaches To Scientific<br>Experiment Implementa-<br>tion For Shuttle Launched<br>And Serviced Automated<br>Spacecraft | TRW Systems Group                  | Contract NASW -<br>2717   | . Kedondo<br>Beach, CA.   | 03/19/89     |

Page No. 3 05/30/89

|                              | Appendix B - Cor                                                                                      | Complete 581 (rade 5tudies 515)              |                           |                         |                             |
|------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|-------------------------|-----------------------------|
| ID # AUTHOR                  | TITLE. VI                                                                                             | VOL. PUBLISHER<br>NO.                        | REPORT/DOCUMENT<br>NUMBER | PUBLISHER I<br>LOCATION | DATE                        |
| SB122 LNSC                   | Low-Cost Frogram<br>Fractices For Future NASA<br>Space Programs                                       | LMSC                                         | LMSC-D387518              |                         | 05/30/74                    |
| SB123 Steward,<br>GMiller, L | Biomedical Equipment<br>Technology Assesment For<br>The Science Laboratory<br>Module                  | Management and Technical<br>Services Company |                           | Houston, TX.            | 98/10/80                    |
| SBI24 General<br>Electric    | WF-3 Commonality Flan                                                                                 | General Electric                             | NAS5-32000                | α.                      | hia 04/22/88<br>TV 00/01/86 |
| SB125 NASA                   | Microbiology Support Plan<br>For Space Station                                                        | NASA JSC                                     | JSC-32015                 |                         |                             |
| SBI26 NASA                   | Concepts And Requirements<br>For Space Station Life<br>Sciences Ground<br>Support And Operations      | NASA JSC                                     | LS-70034                  | Houston, (K.            | 1X. 04/11/68                |
| SBIZ7 NASA                   | Spacelab Mission 4<br>Integrated Payload<br>Requirements Document                                     | NASA JSC                                     | SM-SE-03                  | Hauston, TX.            | TX. 06/01/83                |
| SB128 General<br>Dynamics    |                                                                                                       | 1V General Dynamics                          | CASD-NAS-74-046           | San Diego,<br>CA.       | 08/01/74                    |
| SB129 General<br>Dynamics    | Life Sciences Payload Life Sciences Payload Definition and Integration Study - Executive Summary      | 1 General Dynamics                           | CASD-NAS-74-046           | . San Diego,<br>CA.     | 08/01/74                    |
| SBI30 NASA                   | SL-3 Ames Research Center<br>Life Sciences Payload<br>Familiarization<br>Manual                       | Ames Research Center                         | ADP-81-50-001             | Moffet<br>Field, CA.    | 02/01/81                    |
| SBI31 Rockwell<br>Intl.      | EMS Data Data Package<br>2.3A S4200.2 Methodology<br>Definition - Commonality<br>Analysis Trade Study | Rockwell Internation                         | SSS 85-0168               | Downey, Ca.             | 10/64/85                    |

Fage No. 05/30/89

Appendix B - Complete SBI Trade Studies Fibliography

|                           | Appendix B - Coa                                                                                                          | Complete SBI Trade Studies Bibliography       | iography                  |                               |          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------|-------------------------------|----------|
| ID # AUTHOR               | TITLE VOL                                                                                                                 | VOL. PUBLISHER<br>NO.                         | REPORT/DOCUMENT<br>NUMBER | PUBL I SHER<br>LOCAT I ON     | DATE     |
| SB132 Rockwell<br>Intl.   | ENS Data Data Package<br>2.28 54201.2, Module<br>Commonality Analysis                                                     | Rockwell International                        | SSS 85-0137               | Downey, CA                    | 38/90/60 |
| SB133 General<br>Electric | Space Station Work<br>Package 3 Definition And<br>Preliminary Design<br>Commonality Candidates                            | General Electric Space<br>Systems Division    | DKD - 19                  | Philadelphia 05/10/85<br>, PA | 05/10/85 |
| SBI34 Rockwell<br>Intl.   | EMS Data Data Package<br>2.3A 54203.2, Module<br>Outfitting/System<br>Commonality Analysis                                | Rockwell International                        | 555 B5-0158               | Downey, CA                    | 10/28/85 |
| SBI35 NASA JSC            | Space Station Freedom<br>Human-Oriented Life<br>Sciences Research<br>Baseline Reference<br>Experiment Scenario            | JSC- Medical Sciences<br>Space Station Office | Blue Book                 | Houston, TX.                  | 10/01/88 |
| SBI36 NASA S9PD           | Space Station Approved<br>Electrical Electronic,<br>And Electromechanical<br>Parts List                                   | Space Station Frogram<br>Office               | SSF 30423 Rev.<br>A       | Keston,<br>Virgina            | 11/15/88 |
| SB137 NASA SSPO           | Space Station Program<br>Design Criteria and<br>Practices                                                                 | Space Station Frogram<br>Office               | SSP 30213 Rev.<br>B       | Keston,<br>Virgina            | 07/30/88 |
| SB138 MDAC                | Manufacturing Management<br>Plan                                                                                          | McDonnel Douglas                              | DR MU-01                  | Hauston, TX                   | ` `      |
| SB139 NASA JSC            | July 1988 Fogress Report<br>On Experiment Standard<br>User Interfaces Study                                               | JSC - Life Sciences<br>Project Division       |                           | Houston, TX.                  | 07/01/88 |
| SBI40 Rockwell<br>Intl.   | EMS Data Data Package<br>2.3A S4207.2, GSE<br>Commonality Analysis                                                        | Rockwell International                        | SSS 85-0099               | Dawney, CA                    | 10/04/85 |
| SBI41 NASA OSSA           | Life Sciences Space<br>Station Flanning<br>Document: A Reference<br>Fayload for The Life<br>Sciences Research<br>Facility | Office of Space Science<br>and Applications   | NASA TM 89188             | Washington,<br>D.C.           | 01/01/86 |

ល

Page No. U5/30/89

|                                   | Appendix B - Co                                                                                                                                       | Complete SBI irade Studies Bibliography | lography                  |                            |          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|----------------------------|----------|
| ID # AUTHOR                       | TITLE                                                                                                                                                 | VOL. PUBLISHER<br>NO.                   | REPORT/DOCUMENT<br>NUMBER | FUBLISHER DATE<br>LOCATION | 111      |
| SB142 Buruni,<br>A.Pascucci,<br>B | The DBDM test equipment and its goals                                                                                                                 | ESA                                     |                           | Milan, Italy 10/01/78      | 91/78    |
| SB143 Shiokari, A.                | Standarization and<br>Frogram Effect Analysis -<br>Final Keport                                                                                       | 111 Aerospace Corporation               |                           | El Segundo, 01/0<br>CA     | 01/01/75 |
| SBI44 Muffstetler,<br>W.          | Skylab Biomedical<br>Hardware Development                                                                                                             | AIAA 20th Annual Meeting                |                           | Los Angeles, 08/2<br>CA    | 0B/22/74 |
| SB145 FOWEll, A.                  | Commonality Analysis For<br>The NASA Space Station<br>Common Module - 36 IAF<br>Meeting, October 7-12<br>1985                                         | Fergamon Press                          |                           | New York, NY 10/07/85      | 57/85    |
| SB146 Anderson, A.                | Progressive Autonomy –<br>For Space Station Systems<br>Operation                                                                                      | АІАА                                    |                           | New York, NY 06/05/84      | 05/84    |
| SB147 NASA JSC                    | Life Sciences Research<br>Laboratory (LSRL) Human<br>Research Facility<br>forSpace Station Initial<br>Operating Configuration<br>(IOC) Science Reqts. | NASA JSC                                | JSC 20799                 | Houston, TX 10/C           | 10/01/85 |
| SB148 MDAC                        | Crew Health Care System<br>(CHec) Development Plan                                                                                                    | Mcdonnell Douglas Space<br>Station Co.  |                           | Houston, TX. 01/2          | 01/28/89 |
| SBI49 Minsky, M.                  | Engines of Creation                                                                                                                                   | Anchor Fress                            |                           | New York, NY 01/10/86      | 10/86    |
| SB150 NDAC                        | Grew Health Care                                                                                                                                      | МБАС                                    | MDC H3924                 | Houston, 11/0<br>Texas     | 11/01/88 |
| SBISI NASA JSC                    | Columbus Reference<br>Configuration Report                                                                                                            | NASA JSC                                | RP 1213800000             | Houston, TX. 05/3          | 05/31/88 |
| SBI52 NASA HQ                     | Shuttle/Fayload I/F<br>Definition Document for<br>Middect Accomodations                                                                               | NASA HO                                 | NSTS 21000                | Washington, 03/0<br>DC     | 03/01/88 |

Page No. 05/30/89

|                           | Appendix B - C                                                                 | Complete 551          | ilene attores provided the     |                         |                         |          |
|---------------------------|--------------------------------------------------------------------------------|-----------------------|--------------------------------|-------------------------|-------------------------|----------|
| 1D # AUTHOR               | TITLE                                                                          | VOL. PUBLISHER<br>NO. | SHER                           | REPORT/DOCUMENT NUMBER  | PUBL I SHER<br>LOCATION | DATE     |
| 58153                     | Rack Accomodations Users<br>Manual                                             |                       |                                |                         |                         | ` `      |
| SBIS4 NASA JSC            | Mission Integration Plan                                                       | NASA JSC              | JSC                            | SSP 30000<br>Appendix D | Hauston, TX. 04/30/86   | 04/30/86 |
| SB155 Pacheo              | Analyzing Commonality in<br>a System                                           | Boeing                | Ē                              | NASA STI<br>Facility    | Baltimore,<br>MD.       | 03/01/88 |
| SBIS6 NASA MSFC           | Spacelab Configurations                                                        |                       |                                |                         |                         | `        |
| SBIS7 Rockwell<br>Intl.   | Space Shuttle Management<br>Proposal                                           | II Rockwell           | well Intl.                     | SD 72-SH-50-2           |                         | 05/12/72 |
| 68158 LMSC                | Space Shuttle Management<br>Proposal                                           | II LMSC               |                                | LMSC-D157364            |                         | 05/12/72 |
| SB159 MDAC                | Space Shuttle Program<br>Nanagement Proposal                                   | MDAC                  |                                | E0600                   |                         | 05/12/72 |
| SB160 MSFC                | MSFC Space Station CER's<br>Report                                             | MSFC                  |                                | PRC D-2185-H            |                         | 12/01/82 |
| SBI61 NASA JSC            | CERV larget Costs for<br>Benchmark and Reference<br>Configurations             | 36C                   | JSC CERV Office                |                         | Houston, TX. 06/15/88   | 06/15/88 |
| SB162 CB0                 | Cost Estimating For Air<br>Missles                                             | Congres<br>Office     | Congressional Budget<br>Office |                         | Washington,<br>D.C.     | 01/01/83 |
| SB163 Evans, Jim          | Meeting with Jim Evans<br>Technical Assistant, NASA<br>Space and Life Sciences | Eagl                  | Eagle Engr.                    |                         | Houston, TX. 04/19/89   | 04/19/89 |
| SB164 Whitlock, R.        | JSC Cost Analysis Office                                                       | Eagl                  | Eagle Engr.                    |                         | Houston, TX. 04/11/89   | 04/11/89 |
| SB165 PRICE               | PRICE Users Newsletter                                                         | 12                    |                                |                         |                         | 10/01/88 |
| SB166 General<br>Electric | PRICE H Reference Manual                                                       |                       |                                |                         |                         | 98/10/10 |
| SB167 NASA JSC            | Satellite Services<br>Workshop                                                 | 18.2 NAS/             | NASA JSC                       | JSC 20677               | Mouston, TX. 11/06/85   | 11/06/85 |

Page No. 05/30/89

7

| ID # AUTHOR               | TITLE                                                                                      | VOL. FUBLISHER<br>NO.                    | REPORT/DOCUMENT<br>NUMBER | PUBL I SHER<br>LOCAT I ON | DATE       |
|---------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|---------------------------|------------|
| SB168 Hamaker, Joe        | Joe Telephone interview relating to MSFC history and techniques for cost estimating.       | Cost Analysis Branch<br>Chief MSFC       |                           | Huntsville,<br>Al.        |            |
| SB169 Booker, Clef        | Personal Interview                                                                         | Man-Systems Division JSC                 |                           | Houston, TX.              | 04/04/89   |
| SBI70 Evans, Jim          | Personal Interview                                                                         | Life Science Project<br>Division JSC     |                           | Houston, TX.              | 04/19/89   |
| SBI71 Heberlig, Jac<br>k  | Telephone interview relating to make-or-buy lessons learned from Apollo                    | International Business<br>Machines (IEM) |                           | Houston, TX.              |            |
| 58172 Loftus, Joe         | Telephone interview relating to make-or-buy history                                        | Assistant Director<br>(Plans) JSC        |                           | Houston, TX.              | 03/14/89   |
| SB173 Christy,<br>Neil    | Telephone interview relating to hardware development student experiments, and make-or-buy  |                                          |                           | Houston, TX.              | 03/15/89   |
| SBI74 McAllister,F<br>red | McAllister,F Telephone Interview<br>red                                                    | Man-System Division, JSC                 |                           | Houston, TX               | 03/14/89   |
| SBI75 Trowbridge,<br>John | Interview relating to<br>CHeC make-or-buy                                                  | McDonnell Douglas                        |                           | Houston, TX.              | 03/17/89   |
| SBI76 Trowbridge,<br>John | Personal interview relating CHeC experience to miniaturization, modularity and make-or-buy | McDonnell Douglas                        |                           |                           | _          |
| SBI77 Nagel, John         | Personal Interview<br>relating to LSLE<br>make-or-buy experience                           | Eagle Technical Services                 |                           | Houston, TX               | 03/27/89   |
| SBI78 McFadyen,<br>Gary   | Personal Interview relating to life science hardware background at JSC                     | Southwest Research<br>Institute          |                           | Houston, TX,              | , 04/10/89 |

Page No. 8 05/30/89

| ID # AUTHOR TITLE                                             |                                                                                                                     | danar idila id                         | REPORT / DOCUMENT | PUBLISHER                    | STAG     |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|------------------------------|----------|
|                                                               |                                                                                                                     | NO.                                    | NUMBER            |                              | 3        |
| SB179 Booker, Clef Per<br>Mir<br>amp                          | Personal Interview -<br>Minaturization on<br>amplifiers, computers and<br>modularity                                | NASA JSC/SP 341<br>Man-System Division |                   | Houston, TX.                 | 04/04/89 |
| SB180 McFadyen Blo                                            | Bioengineering on SBI<br>hardware                                                                                   | Southwest Research<br>Institute        |                   | San Antonio, 04/06/89<br>TX. | 04/06/89 |
| SBIBI Allen, Joe Fee                                          | Personal interview - 5.5.<br>Life Science AIAA Meeting                                                              | Space Industries                       |                   | Houston, TX.                 | 04/07/89 |
| SB182 Averner, Per<br>Maurice CE                              | Personal interview on<br>CELSS                                                                                      | NASA HQ. CELSS<br>Coordinator          |                   | Washington,<br>DC.           | 04/07/89 |
| SB183 Fogleman, G. Per<br>PhD<br>Si                           | Personal interview<br>relating to Gas Grain<br>Simulation Facility                                                  | NASA AMES                              |                   | Maffet<br>Field, CA.         | 04/06/89 |
| SBIB4 White. Bob Pers<br>rela                                 | Personal Interview<br>relating to modularity<br>and commonality                                                     | NASA JPL                               |                   | Pasadena,<br>CA.             | 04/10/89 |
| SB185 Grumm, Fe<br>Richard re                                 | Personal interview<br>relating to SBI hardware                                                                      | NASA JPL                               |                   | Pasaden <b>a,</b><br>CA.     | 04/11/89 |
| SBI86 Boeing U.                                               | U.S. Lab Review Workshop                                                                                            |                                        |                   |                              | ` '      |
| 88187 AcGillray, B. Fe                                        | Personal Interview on<br>CELSS                                                                                      | NASA AMES                              |                   | Noffet<br>Field, CA          | 05/05/89 |
| SRIBB NASA JSC LIENEN SEC | Life Science Flight<br>Experiments Program Life<br>Sciences Laboratory<br>Equipment (LSLE)<br>Descriptions          | NASA JSC                               | JSC-16254-I       | Houston, TX.                 | 98/10/60 |
| SBIB9 Boeing Sp<br>Co                                         | Space Station Program<br>Commonality Plan Draft 3                                                                   | Boeing                                 | D683-10112-1      |                              | 10/31/88 |
| SB190 GE Li<br>Govt.Service Li<br>s St<br>Be                  | Life Sciences Hardware<br>List for the Space<br>Slation Freedom Era -<br>Baselined December 1988<br>Updated 3/22/89 | GE Government Services                 |                   | Houston, TX.                 | 03/22/89 |

| ID # AUTHOR             | TITLE                                                                                                                | VOL. | VOL. PUBLISHER<br>NO.                    | REPORT/DOCUMENT<br>NUMBER | PUBL I SHER<br>LOCATION      | DATE       |
|-------------------------|----------------------------------------------------------------------------------------------------------------------|------|------------------------------------------|---------------------------|------------------------------|------------|
| 161191                  | NASDA Standard Rack                                                                                                  |      | NASDA                                    |                           |                              | ` `        |
| SB192                   | Envelope Study States<br>Spacelab Payloads<br>Accomodations Handbook                                                 |      | NASA MSFC                                | SLP/2104                  | Muntsvillle, 08/16/85<br>Al. | 08/16/85   |
| 56193                   | Station Interface<br>Accomodations for<br>Pressurized and Attached<br>Payloads                                       |      | NASA                                     |                           | -                            | 62/01/89   |
| SB194                   | Life Sciences Study for<br>the Space Station                                                                         |      | Management and Technical<br>Services Co. |                           | Houston, TX. 08/01/84        | 08/01/84   |
| SB195 Crenshaw,<br>John | Personal Interview with<br>John Grenshaw -<br>Discussion of standarized<br>avoins (mounted on racks)<br>in airlines. | _    |                                          |                           | Hauston, TX. 05/16/89        | 05/16/89   |
| SB196 Juran, J.M.       | The Non-Pareto Principle<br>Mea Culpa                                                                                |      |                                          |                           |                              | \          |
| SB197 Arabian, D.       | Beware Off-the-Shelf<br>Hardware                                                                                     |      | NASA JSC                                 |                           | Houston, TX. 10/17/73        | . 10/17/73 |
| SB198 SB198NASA<br>JSC  | Experimenting with<br>Baroceptor Reflexes                                                                            | 12   | NASA Tech Briefs                         | No. 11                    | New York, NY 12/01/88        | Y 12/01/88 |

Appendix C - Cost Assessment Techniques Summary

### 1.0 Introduction

# 1.1 Relative Cost Impact Analysis Task

JSC and GE Government Services are developing the SBI hardware cost estimate to be presented to NASA Headquarters. The cost related task in these trade studies is to develop and present factors which assist the cost estimators in using tools to develop the effect of the trade study specialty area (miniaturization, modularity and commonality, and Modified COTS) on SBI cost estimates. The life cycle costs are most important in judging the long term benefits of a new project. However, consideration of life cycle costs requires knowledge of the probable project life, operational use time lines, maintenance concepts, and logistics relationships. These data are not available at the time of these initial trade studies. Therefore, the trade studies address primarily the relative cost impact analysis of the design and development phase of the SBI. Life cycle costs are dealt with on a comparative, subjective basis in order to illustrate the influence of life cycle cost factors on the various trade study subjects.

# 1.2 Documentation Approach

The application of cost methods as applied to SBI trade studies involves some methods common to all of the studies and others that apply uniquely to a specific trade subject. Therefore, the selected approach to the problem is to deal with cost methods and cost trends in this appendix that is to be a part of each study report. In the cost appendix, subsequent sections of Section 1.0 deal with various methods examined for the trade studies, Section 2.0 defines the cost estimating relationship (CER's) and their factors and sensitivities, and Section 3.0 deals with specific variations and parameters of interest with respect to each trade study. Sections 4, 5 and 6 provide brief discussions of testing, SE&I and project management costs, Section 7.0 life cycle effects, and Section 8.0 summarizes the conclusions.

# 1.3 Cost Method Overview

Cost methods considered and evaluated in the course of this effort include the basic types listed below:

- a. Detailed cost build-up method. The detailed cost estimate is compiled using estimates from specialists in the various design disciplines and is constructed from a spread of hours required in design, labor rates, overhead and other factors affecting the cost of DDT&E.
- b. General Electric PRICE. The PRICE H model is a sophisticated cost modeling program requiring a variety of inputs including weight, manufacturing complexities, and design complexity plus secondary factors.
- c. Cost estimating relationship (CER's). The simplest cost estimating tools are empirical relationships based primarily on system weight and derived to match past experience on previous programs.
- d. Cost impact analysis methods. Parametric studies to establish and/or to quantify cost drivers and cost trend effects.

The choice between the foregoing alternatives was narrowed to options c and d which are used in combination as described in the balance of this report. Initial SBI cost estimates will be developed in a separate effort using PRICE H. Therefore, the task in the trade studies is to provide data and/or factors which will be helpful in assisting cost estimators in the use of the tools from which the actual estimates will be formulated. A secondary purpose is to develop parametric trend data that will help the reader understand the potential impact of the various trade study subjects on cost, i.e. miniaturization, commonality, and the use of commercial products (COTS) in lieu of new design.

Empirical cost relationships use system weight as the primary factor in deriving development and theoretical first unit (TFU) costs. A series of such relationships can be used to reflect the inherent complexity of different types of space-borne systems, i.e., one relationship for structural or mechanical systems, a second for packaged electronics, and a third for complex distributed hybrid systems. This approach has its roots in past program experience in that the end results are usually compared with past program actual costs and the relationships adjusted to match what has happened on similar system development during their life cycle. References SBI No. 60 and SBI No. 61 were used as a data source for CER's. Also, a discussion was held with the cost analysis specialist at JSC and MSFC (ref. SBI No. 64 and No. 68) as part of the effort to determine whether or not other cost work has been accomplished on the SBI trade study subjects.

As will be seen in the ensuing sections and in the trade studies proper, the results and trends also employ second order effects such as the amount of new design required, the impact of sophisticated technology and alternate materials.

Regardless of how one approaches the subject of cost development or cost trends there are three fundamental principles are involved in evaluating costs, cost drivers and cost trends (ref. SBI No. 65). These are as follows:

- 1. Estimates require reasoned judgments made by people and cannot be automated.
- 2. Estimates require a reasonably detailed definition of the project hardware that must be acquired or developed before estimates can be made.
- 3. All estimates are based upon comparisons. When we estimate, we evaluate how something is like or how it is unlike things we have seen before.

The SBI Program estimates are particularly challenging because the definition of the hardware items and the data that will permit comparisons is not detailed and complete. We are dealing with some items in their earliest conceptual phase of definition.

A couple of study principles should also be mentioned because they may help us understand the validity of the results we obtain. These are:

1. The sensitivity that study results show to variations in assumption provides an indication as to the fundamental nature of the assumption. If results are highly sensitive to variations in assumption then the assumption should be used with caution. Extrapolations are particularly hazardous in such instances. On the other

hand if results are not highly sensitive, then scaling over a wide range may be feasible, although extrapolations of cost values can yield misleading results in any event and should always be applied carefully.

2. Parametric approaches may be necessary in order to understand trends due to the absence of specific data for use in the study. Parametric in the sense used here means the arbitrary variation of a given parameter over a range of expected values, while holding other values constant.

The costing relationships used in SBI trade studies are applicable to space systems and are founded on past programs as described in references SBI No. 60 and No. 61. The only questions, therefore, are whether or not they can be used on SBI hardware (which does use subsystems similar in nature to other manned space systems) and how accurately they can be scaled to fit the range of SBI sizes. Insofar as practical, these questions have been circumvented by means of reporting cost trends in lieu of cost values.

# 2.0 General Development Cost Methods

# 2.1 Empirical Methods

As stated in Section 1.3 CER's are empirical cost estimating relationships that express expected costs on the basis of past program experience. Empirical cost estimating requires some sort of systems definition plus good judgement in the selection of the constants, and exponents. The nature of a system element or assembly, and the size/weight of the item are primary cost drivers. The most predominant variable is the exponent of the weight term in the following generalized equation:

Cost = df \*  $(C_1 (Wt)^n) + C_2 (Wt)^n$ 

Where wt = weight of the system, module or assembly

n = an exponent selected on the basis of system complexity

df = a factor reflecting the amount of new design required (design factor)

 $C_1 = constant$  selected to establish the cost trend origin

C<sub>2</sub> = a constant to reflect special requirements such as tooling - can be zero

Adjustments to the weight exponent and the constants yields values which show dramatic cost increases as a function of weight but decreasing cost per pound as the weight is increased. Cost relationships always show these trends when applied to launch vehicles, spacecraft, or payloads. Therefore, it is assumed that they apply to biology equipment (for space) as well. Economies of scale are present in all such systems. The larger the system, assembly, or component, the lower its cost per pound. There is, however, a limitation to the applicability of CER's to SBI hardware

due to size limitations. All CER's have a range of applicability and produce consistent results in terms of cost per pound over that range. The limitation comes into play when extrapolating outside the range of applicability, particularly where the size is small. Unfortunately, this limitation may be a factor in SBI hardware elements and assemblies due to their size being relatively small compared to manned spacecraft systems. Therefore, when a CER yields costs in a very high range, on the order of \$100,000/lb. or \$220,000/Kg, or higher, caution and judgement are necessary to avoid the use of misleading results.

# 2.2 System Complexity Exponents (n)

Past experience in estimating costs with empirical methods suggests that the exponent, n, increases with increasing system complexity and as a function of the degree to which a system is distributed. For example, relatively simple, structure or packaged power modules may be represented by n = 0.2. The cost of more complex mechanical systems and structures which are comprised of a variety of components and assemblies can be represented by an exponent, n = 0.4 and the most complex distributed electronics call for an exponent on the order of 0.5 to 0.6. Inasmuch as the SBI systems involve all the foregoing elements plus sophisticated sensors, it may be necessary to use exponents that are as high as 0.8 or 1.0 to represent cost trends of parts of the SBI systems. Reference No. 60 uses an exponent, n, equal to .5 for development when historical data are not available. This value has been used in SBI Reference No. 60 for displays and controls, instrumentation and communications, all of which are comprised of distributed electronics and is consistent with the range recommended here (.5 to .6).

The dramatic effect of the system complexity exponent is illustrated by Figure 2-1. Figure 2-1 is a plot of cost per pound vs. complexity exponent, n, for a range of values of n between 0.1 and 1.0. As can be seen from the figure, 1000 units of weight costs 0.2% per unit weight as much at n = 0.1 compared to the cost at n = 1.0. The point is that care must be exercised in making a proper selection of exponent in order to achieve reasonable accuracy in estimating actual costs.

The historical use of lower exponents for simple, packaged systems, and the use of higher values for complex distributed systems matches common sense expectations. To express it another way, one can safely assume that the cost of a system will be influenced dramatically by the number of different groups involved in the design, by the number of interfaces in the system, and by the complexity of the design integration effort required. Distributed power and data systems invariably cost more (per pound) to develop than do packaged elements. However, the degree to which this applies to SBI is not clear due to the fact that biological systems tend to be more packaged and less distributed than do other space systems.

# 2.3 Design Factors (df)

Figure 2-2 defines the design factors that represent the degree of new design required in a development. On the low side is the factor representing the use of existing designs that require very little modification, integration or testing. For all new current state-of-the-art designs which involve no new technology, the design factor is 0.9 to 1.0. The factor for new design requiring advancement in technology is expressed as greater than unity and can be as high as 2 or 3 for efforts that dictate a multiple design path approach to achieve the desired goals. Price H refers to this type of factor as the engineering complexity factor and uses design values similar to those

in Figure 2-2. However, Price H varies the experience of the design team as well as the complexity and the difficulty of the design.

# 2.4 Method Summary

The SBI trade studies will all require a definition of system element size, complexity and degree of new design. These factors may have to be varied over a range of probable values to evaluate trends, but they will all come into play in costing comparisons.



# Figure 2-2 Design Factors

| Design<br>Factor | Description of the Design Task                                                                                      |
|------------------|---------------------------------------------------------------------------------------------------------------------|
| .1 to .2         | Off-The-Shelf. Minor design modifications and little or no qualification testing required                           |
| .3 to .4         | Design Exists. Some new design drawings required<br>Minimum integration costs involved                              |
| .5 to .6         | Design exists but requires significant modification. On the order of 40% to 50% to existing drawings.               |
| .7 to .8         | Similar designs exist but mostly new drawings required<br>No new technology involved in electronics, structure etc. |
| .9 to 1.0        | New design with all new drawings. Little or no new technology required                                              |
| 1.0 to 3.0       | All new design, new technology required. May require multiple attack on new technology problems                     |

# 3.0 Cost Methods Applicable to Specific Trade Studies

Three of the four studies are discussed separately in this section although there are common elements associated with them that were not covered in Section 2.0. The intent is to examine the prime cost drivers that come into play with the subjects of miniaturization, modularity and commonality, use of COTS, and compatibility between spacecraft. Rack compatibility is covered in Section 7.4 under life cycle costs.

# 3.1 Hardware Miniaturization Cost Drivers

Fundamentally the variables of system (or component) weight, system complexity, and difficulty of design all influence miniaturization cost trends. For the purposes of this section weight and design difficulty will be varied, while system complexity will be treated as a series of constants, each being evaluated separately. Materials changes will not be dealt with even though it is valid to assume that the use of titanium, graphite, steel or composites will adversely affect cost. In fact, the dense materials (titanium and steel) will adversely affect cost due to weight and cost due to manufacturing complexity as well.

Given the foregoing exclusions, the miniaturization cost trends have been dealt with by parametric variation of the system size, and the degree of new design needed to achieve a given degree of miniaturization. The selected values of miniaturization vary between 10% and 90% in increments of 10%. In other words, if an unminiaturized system size is treated as 100%, Tables 3-1 through 3-4 show the effect on cost of weight reduction between zero and 90% on the first line. In order to include the effect of system complexity, Tables 3-1 through 3-4 are provided for values of n = 0.2, 0.4, 0.6, and 0.8.

The columns in the tables vary the design difficulty between a minimum change (.1 to .2 on Figure 2-2) and an all new design (0.9 to 1.0 on Figure 2-2). However, Tables 3-2 through 3-4 show the minimum design change as unity for reasons of simplifying the numbers. Thus the minimum design change number becomes 1.0 in lieu of 0.15 and the all new design becomes 6.0 which represents a relative value, compared to the minimum change value, i.e. 0.90 / 0.15 = 6.0.

The use of Tables 3-1 through 3-4 is simple. Numbers less than 1.0 indicate a cost reduction and the degree of same, while numbers above 1.0 represent cost increases and the relative size of the increase. For example, using a 50% size reduction, and miniaturization requiring an all new design (df = 6) for n = 0.4, table 3-2 shows that the cost will be on the order of 4 1/2 times the cost for an unmodified item that is not miniaturized. In like manner, one can deduce that the cost of an all new design that achieves a 90% reduction in size (was 20 lbs., is 2.0 lbs.) will cost approximately 2 1/2 (2.4 from Table 3-2) the amount of an unmodified design.

Figure 3-1 is included to illustrate the cost trends for various systems complexity factors between n = .2 and n = .8. The curves all use a design factor df = 1.0 and all have been normalized so that the unminiaturized weight is unity. The purpose of Figure 3-1 is to show the effect of complexity factors on cost as weight is reduced. No design modification effects are included in Figure 3-1 so the curves indicate complexity trends only. To generate an estimate of the relative cost of miniaturization including redesign effects, one must multiply the cost factor (Figure 3-1) by a design factor as is done in Tables 3-1 through 3-4.

Table 3-1
Miniaturization Guide Chart

| % Miniat.                               | 0    | 10   | 20   | 30   | 40   | 50   | 09   | 70   | 80   | 06   |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|
| Design Integration<br>Only              | 1.00 | 86.  | 96.  | .93  | 06:  | .87  | .83  | 62.  | .73  | .63  |
| Significant Modification<br>Req'd (30%) | 2.00 | 1.96 | 1.92 | 1.86 | 1.80 | 1.74 | 1.66 | 1.58 | 1.46 | 1.26 |
| Major Modification<br>Reqid (50%)       | 3.00 | 2.94 | 2.88 | 2.79 | 2.70 | 2.61 | 2.49 | 2.37 | 2.19 | 1.89 |
| All New Design                          | 00.9 | 5.88 | 5.76 | 5.58 | 5.40 | 5.22 | 4.98 | 4.74 | 4.38 | 3.78 |

Table 3-2 Miniaturization Guide Chart n=.4

| % Miniat.                               | 0    | 10   | 20   | 30   | 40   | 50   | 09   | 70   | 80   | 06   |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|
| Design integration<br>Only              | 1.00 | 96.  | .92  | 78.  | .82  | .76  | 69.  | .62  | .53  | .40  |
| Significant Modification<br>Req'd (30%) | 2.00 | 1.92 | 1.84 | 1.74 | 1.64 | 1.52 | 1.38 | 1.24 | 1.06 | .80  |
| Major Modification<br>Req'd (50%)       | 3.00 | 2.88 | 2.76 | 2.61 | 2.46 | 2.28 | 2.07 | 1.86 | 1.59 | 1.20 |
| All New Design                          | 00:9 | 5.76 | 5.52 | 5.22 | 4.92 | 4.56 | 4.14 | 3.72 | 3.18 | 2.40 |

Table 3-3 Miniaturization Guide Chart n=.6

| % Miniat.                               | 0    | 10   | 20   | 30   | 40   | 50   | 09   | 0/   | 80   | 06   |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|
| Design Integration<br>Only              | 1.00 | .94  | .86  | .81  | .74  | 99.  | .58  | .49  | .38  | .25  |
| Significant Modification<br>Req'd (30%) | 2.00 | 1.88 | 1.72 | 1.62 | 1.48 | 1.32 | 1.16 | 86.  | 92.  | .50  |
| Major Modification<br>Req'd (50%)       | 3.00 | 2.82 | 2.58 | 2.43 | 2.22 | 1.98 | 1.74 | 1.47 | 1.14 | .75  |
| Ali New Design                          | 00.9 | 5.64 | 5.16 | 4.86 | 4.44 | 3.96 | 3.48 | 2.94 | 2.28 | 1.50 |

Table 3-4
Miniaturization Guide Chart
n=.8

| % Miniat.                               | 0    | 10   | 20   | 30   | 40   | 50   | 09   | 70   | 80   | 06  |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|-----|
| Design Integration<br>Only              | 1.00 | .92  | .84  | .75  | 29.  | .57  | .48  | .38  | .28  | .16 |
| Signiticant Modification<br>Req'd (30%) | 2.00 | 1.84 | 1.68 | 1.50 | 1.34 | 1.14 | 96.  | 92.  | .56  | .32 |
| Major Modification<br>Req'd (50%)       | 3.00 | 2.76 | 2.52 | 2.25 | 2.01 | 1.71 | 1.44 | 1.14 | .84  | .48 |
| All New Design                          | 00.9 | 5.52 | 5.04 | 4.50 | 4.02 | 3.42 | 2.88 | 2.28 | 1.68 | 96. |

10 Figure



a.e.

for

Cost

for

Normalized Cost

Cost Factor from Tables 3-1 thru 3-4 cost(wt,xwt,ywt,zwt)=df\*(wt)^n/wt The examples are not meant to suggest that certain combinations of miniaturization and design difficulty are more rational than others, but were selected simply to demonstrate table usage. It is conceivable that a modest degree of miniaturization is achievable with modest design (df = 2).

# Caution is advised! for several reasons:

- 1. Some items cannot be reduced in size.
- 2. Some items should not be reduced in size.
- 3. Significant size reductions may require technology breakthroughs in materials, electronics, displays, etc. that could complicate the SBI development task.
- 4. Substitute materials will often negate weight reductions and raise costs even higher than estimated by the tables.

Notwithstanding all the adverse possibilities, one could conceivably reduce size and cost by miniaturizing an item or an assembly.

# 3.2 Modularity and Commonality

Common system modules, assemblies or components can have a profound impact upon development cost because of the potential savings associated with the use of a common module in more than one SBI hardware item. The following examples serve to illustrate this fact.

Table 3-5 shows the impact of using learning to reduce costs. For example, consider the case where sixteen units are to be constructed for a given SBI application of a system rack or drawer, but the item in question can be used in four applications rather than in only a single place. If the system is to be produced in small quantities, exotic tools and automation are not cost effective and the item is normally assembled using piece parts. Such systems usually have learning factors of 80%, i.e., each time the number of units is doubled (SBI Ref. No. 68), the cost of the nth unit is 80% of the previous cycle's end product cost. To be specific, the 2nd unit costs .8 times the first unit, the 4th unit .8 times the second, etc. See Table 3-5. In the case of a built-up drawer or rack which is used in four places, 16 units for prototypes, test, flight hardware, etc., becomes 64. As can be seen from Table 3-5, the cost of the 64th unit is 26.2% of the 1st unit and 64% of the 16th unit. The average cost for 64 items is reduced to 37.4% of the first unit cost compared to 55.8% of the first unit cost for 16 items. The lower the learning, the less dramatic the unit cost reduction, but for any item that is fabricated by other than completely automated processes, there is a cost reduction to be realized by common use in more than one application.

If one considers the programmatic input of multiple applications, there also exists the opportunity to avoid duplicate design and development efforts. For the sake of simplicity, we will confine this discussion to D&D plus fabrication and assume that four separate developments each require a test program. This being the case, we can treat a single, dual, triple and quadruple application in terms of the D&D effort and include the effect of reduced costs due to learning as well.

D&D = Design and Development Cost
TFU = Theoretical First Unit Cost

L.F. = .80

Number of articles required per application = 16

Then:

Let  $CP_1 = Cost$  of a single program, Let 35% D&D = TFU Cost  $C.P_1 = 1.0 D&D_{cost} + [.35 D&D * L.F.] 16$  = 1.0 D&D + [.35 D&D \* .558] 16  $C.P_1 = 1.0 D&D + 3.1248 D&D = 4.1248 D&D$ Normalized cost = C.P./4.1248 D&D

In a similar manner, the cost of 2, 3 and 4 applications can be calculated which yields the data in Table 3-6.

TABLE 3-5
Learning Factor Table
All First Articles are 100%

| Quanti | tv              | 2     | 4      | 8      | 16    | 24    | 32    | 64    |
|--------|-----------------|-------|--------|--------|-------|-------|-------|-------|
| Learni |                 |       | •      |        |       |       |       |       |
| Factor | N <sup>th</sup> | 95.0% | 90.3%  | 85.7%  | 81.5% | 79.0% | 77.4% | 73.5% |
| 0.95   | Aver.           | 97.5% | 94.4%  | 90.8%  | 87.0% | 84.65 | 83.0% | 79.1% |
|        | N <sup>th</sup> | 90.0% | 81.0%  | 72.9%  | 65.6% | 61.7% | 59.0% | 53.1% |
| 0.90   | Aver.           | 95.0% | 88.9%  | 82.2%  | 75.2% | 71.3% | 68.5% | 62.0% |
|        | N <sup>th</sup> | 85.0% | 72.3%  | 61.4%  | 52.2% | 47.5% | 44.4% | 37.7% |
| 0.85   | Aver.           | 92.5% | 83.6%  | 74.2%  | 64.9% | 59.7% | 56.2% | 48.3% |
|        | N <sup>th</sup> | 80.0% | 64.0%  | 51.2%  | 41.0% | 35.9% | 32.8% | 26.2% |
| 0.80   |                 | 90.0% | 78.6%  | 69.3%  | 55.8% | 49.8% | 45.9% | 37.4% |
|        | Aver.           | 90.0% | 78.070 | 07.070 |       |       |       |       |

# ?s: 1

- 1. N<sup>th</sup> refers to the 2<sup>nd</sup>, 4<sup>th</sup> etc article in the fabrication of identical articles by the same process
- 2."Aver.", refers to the average cost of the 1" through the N<sup>th</sup> article under the same conditions
- 3. The External Tank learning factor has been estimated at 80% (0.80) due to the relatively large amount of manual labor that goes into the fabrication process. In general the more manual the process, the greater the learning and the smaller is the number from the table that applies.
- 4. As the learning factors approach unity the reduction in cost for each succeeding cycle is reduced and 1.0 represents a fully automated process wherein the first article and the N<sup>th</sup> article cost is the same.
- 5. For the purposes of the SBI trade studies we can use the guidelines that the manual fabrication and assembly processes of sheet metal have learning factors of 80% to 90% while the more automated and repetitive processes range between 90% and 95% or even as high as 97%. There probably won't be any automated processes where the costs of a number of articles remains the same as the first article cost.

Table 3-6
Cost of Multiple Applications

| Applications | D&D Cost                            | Production<br>Cost                           | Normalized Total Cost Per Application |
|--------------|-------------------------------------|----------------------------------------------|---------------------------------------|
| 1<br>2<br>3  | 1.0 (D&D)<br>.50 (D&D)<br>.33 (D&D) | 3.1248 (D&D)<br>5.1408 (D&D)<br>6.7704 (D&D) | 1.00<br>.744<br>.628<br>.568          |
| 4 5          | .25 (D&D)<br>.20 (D&D)              | 8.3776 (D&D)<br>9.785 (D&D)                  | .523                                  |

Figure 3-2 is a linear plot of the foregoing information based upon a theoretical first unit (TFU) cost of 35% \* (DD), Figure 3-3 is based on a TFU of 15% \* (DD). Figures 3-2 and 3-3 illustrate two facts. The first is that a significant cost reduction result from the use of hardware in more than a single application. The second is that the point of diminishing cost return occurs rapidly beyond the third application.

Modularity, although similar to commonality in some respects, offers other advantages as well. However, one must acknowledge that modular designs may cost more initially than non-modular designs due to the tendency for them to require added weight for packaging and more design integration due to an increase in the number of interfaces present in the system. Nevertheless, such systems have lower life cycle costs because of simplicity in assembly, repair, replacement, problem diagnosis and upkeep in general. Also there are the advantages of being able to upgrade individual modules with new technology and/or design improvements without impacting the rest of the system and without complicated disassembly and assembly to affect a module changeout.

Thus, if modules can be made common, the system possesses the attributes of modularization and offers potential cost savings from the multiple use of various system modules. The long and short of it is that the system cost can be reduced and the system flexibility and life cycle attributes improved. Common elements in modular designs should be a major, high priority goal in all SBI systems.

# 3.3 Modification of Existing Hardware (COTS) vs. New Hardware Build

Commercial off-the-shelf (COTS) hardware has been used for space applications sporadically since the early days of manned space flight and it poses the same cost-related challenges today as it did 25 years ago. The variables involved are the cost of the item, the cost of modification to meet space flight requirements, and the cost of demonstrating the hardware's reliability in qualification testing.

Past experience indicates that the cost of hardware modification is normally the primary cost factor of the cost elements listed. In an effort to assign an order of magnitude to modification costs, the weight of the COTS, the degree of modification (design factor, df), and the nature of the system (weight and system complexity, n) are used as prime cost drivers. Table 3-6 and 3-7 show the cost of modification against size (wt), and for systems with complexity factors (n) of .2 and .4. The higher order complexity factors are assumed to be not applicable on the basis that COTS is usually procured as modules or assemblies and then integrated into a larger system as necessary.

The costs shown in Tables 3-7 and 3-8 are based upon the assumption that COTS modifications are approximately the same cost as are redesigns to existing systems. The degree of modification (or redesign) is reflected in the design factor, df. The degree of system complexity is reflected by the system complexity factor, n. The range of weights over which these parameters are varied was selected on the basis that few items to be modified would be heavier than 50 Kg and that the small items less than 5 Kg would be procured as components or small assemblies which would be used in the design of a new system. The assumed size limit can be modified if necessary but were made to keep the number of weight variables in a reasonable size range with modest increments between each one. Here, again, caution is needed when applying CER type relationships to small items and to items where the portion of a hardware element being modified is small. See paragraph 2.1 for a discussion of scaling limitations.

Specific modifications to COTS may be simple enough to invalidate the assumption that modifications and redesign costs are similar. If so, alternate COTS modification cost methods will be required and will reflect greater savings. Thus, the foregoing assumption degrades gracefully because it is conservative from a cost point of view.

A popular viewpoint today is that modified COTS is always less costly than is a new design. This belief is reflected in the emphasis on "make or buy" in recent NASA RFP's and also in recent cost seminars held by major aerospace companies. Nonetheless, some cost specialists express the opinion that modifications to COTS greater than 30-35% probably makes a new design preferable. The COTS vs. new design trade study deals with these subjects so this part of the report will be confined to cost trends only. From the viewpoint of modification costs alone it appears straightforward that COTS has great cost reduction potential and should be seriously considered whenever a commercially available system element exists that can be utilized in SBI.

In order to illustrate the cost trends for modification costs and modification cost per pound, Figure 3-4 and 3-5 are included. Figure 3.4 represents minor modifications (df = .15) and n = .2, and, therefore, shows the lowest cost per pound of any of the cases in Tables 3-7 and 3-8. Figure 3-5 is for the case of substantial modifications and n = .4, df = .55 and thus represents a high side cost case. The figures both show the trends that are typical for the values presented in the tables.

Figure 3-2 Effect on Cost of Multiple Applications of Mardware > \* C Relative Cost of Hardware used in Multiple Places

First Unit Cost (TFU) = .35%(Dev. Cost) Learning Factor = 80%

Number of Hardware Uses

ñ.'

Figure 3-3 Effect on Cost of Multiple Applications of Mardware >. \* c ) · T Relative Cost of Hardware Used in Multiple Places

First Unit Cost (TFU) = .15%(Dev.Cost)

Number of Hardware Uses

u")

# Table 3-7 Cost of Modifying Commercial Off-the Shelf Hardware

System Complexity Factor (n) =.2

| Design<br>Factor        | Minor M   |         | Modest<br>df≖.35 |         | Substantia |         | Major M<br>df=.7 |         |
|-------------------------|-----------|---------|------------------|---------|------------|---------|------------------|---------|
| Weight of Part Modified | Mod. Cost | Cost/kg | Mod. Cost        | Cost/kg | Mod. Cost  | Cost/kg | Mod. Cost        | Cost/kg |
| Weight =5 kgs           | 242.3     | 48.46   | 565.4            | 113.1   | 888.5      | 177.7   | 1212             | 242.3   |
| Weight ≖ 10 kgs.        | 278.3     | 27.83   | 649.5            | 64.95   | 1021       | 102.1   | 1392             | 139.2   |
| Weight = 20 kgs.        | 319.7     | 15.99   | 746.0            | 37.3    | 1172       | 58.62   | 1599             | 79.93   |
| Weight = 30kgs.         | 346.7     | 11.56   | 809.1            | 26.97   | 1271       | 42.38   | 1734             | 57.79   |
| Weight = 40 kgs.        | 376.0     | 9.182   | 857.0            | 21.42   | 1347       | 33.67   | 1836             | 45.91   |
| Weight = 50 kgs.        | 384.0     | 7.681   | 896.1            | 17.92   | 1408       | 28.16   | 1920             | 38.40   |

Notes: 1) All costs are in thousands of dollars

# Table 3-8 Cost of Modifying Commercial Off-the Shelf Hardware

System Complexity Factor (n) =.4

| Design<br>Weight Factor |           |         | Modest Mods df=.35 |         | Substantial Mods<br>df=.55 |                   | Major Mods<br>df≖.75 |         |
|-------------------------|-----------|---------|--------------------|---------|----------------------------|-------------------|----------------------|---------|
| of Part Modified        | Mod. Cost | Cost/kg | Mod. Cost          | Cost/kg | Mod. Cost                  | Cost/kg           | Mod. Cost            | Cost/kg |
| Weight =5 kgs.          | 391.4     | 78.28   | 913.3              | 182.7   | 1435                       | 287.0             | 1957                 | 391.4   |
| Weight = 10 kgs.        | 516.5     | 51.65   | 1205               | 120.5   | 1894                       | 189.4             | 2582                 | 258.2   |
| Weight = 20 kgs.        | 681.5     | 34.08   | 1590               | 79.51   | 2499                       | 148.5             | 3408                 | 170.4   |
| Weight = 30 kgs.        | 801.5     | 26.72   | 1870               | 62.34   | 2939                       | 97.9 <del>6</del> | 4008                 | 133.6   |
| Weight = 40 kgs.        | 899.3     | 22.48   | 2098               | 52.46   | 3297                       | 82.43             | 4496                 | 112.4   |
| Weight = 50 kgs.        | 983.2     | 19.66   | 2294               | 45.88   | 3605                       | 72.10             | 4916                 | 98.32   |

Notes: 1) All costs are in thousands of dollars

110 50 kg Variation of Cost & Cost/kg for COTS Mode = Cost of Modifications = Cost of MODS/kg. of COTS 2,≅∩ = i qure df=.15 N. o × 6 Ko 1000 લ ભ 10000001 modeost(wt) 5 T modeost(wt) C-22

Figure 3 - 5 Variation of Cost & Cost/kg for COTS Mods df=.55 n=.4



# 4.0 Testing Costs

A cursory treatment of testing costs is presented so as to make the cost picture as complete as possible. However, the applicability of test costs to SBI has not been validated and the guidelines presented should be applied with care only where a similarity exists between SBI elements and/or subsystems, and other manned spacecraft systems.

# 4.1 Test Hardware

Test hardware costs in past manned programs have included the cost of labor and materials for major test articles used to verify design concepts. However, test hardware cost relationships exclude element tests, component tests, qualification and certification tests. The cost of labor and material for the design, procurement, installation, checkout and operation of the instrumentation system on major test articles is included and as one might expect, these factors drive the cost of test hardware up to a value greater than the first unit cost.

The CER's examined put the cost of test hardware at 30% more than the theoretical first unit (TFU) cost, i.e. 1.3 \* TFU. It should be noted that this cost is to demonstrate and to verify the operation of the designed hardware and should not be construed to include experimentation and testing to acquire biological information of an experimental or research character.

# 4.2 Integration Assembly and Checkout (IACO)

This factor is most commonly estimated as a function of TFU costs or test hardware costs. It will generally run on the order of 10 - 20% of test hardware costs for manned systems, but care must be exercised in applying such a rough rule of thumb to SBI. Therefore, a simple CER is suggested in cases where PRICE H estimates have not yet been formulated. The CER is as listed below:

$$IACO = .3 (1.3 TFU)^{0.7}$$

The resulting estimate can only be generated when all other hardware costs are available.

# 4.3 Test Operations

Test operations CER's indicate that costs generally run on the order of 20% to 30% of the cost of test hardware plus integration, assembly and checkout costs. However, as is the case with other test related items of cost, the applicability to SBI hardware has not been validated. Nonetheless, the order of magnitude could be used for SBI estimates pending specific definition of test requirements for the various experiments.

Examination of the SBI hardware list (Ref.SBI No. 87) and the Life Science Laboratory Equipment description (Ref. SBI No.88) suggests that test operations could vary from little or nothing all the way up to the level indicated in CER's and approximated above.

## 5.0 SE&I Costs

SE&I cost for the design and development phase are generally expressed as a function of the DDT&E + Systems Test Hardware + IACO + Test Operations + GSE costs. However, the lower end of the validity range is almost \$1.0 billion of DDT&E costs and the applicability to SBI is extremely doubtful. For that reason, it is recommended that the preliminary SBI SE&I cost be taken as 10% to 15% of the SBI total system development cost until a detailed estimate or a PRICE H value is generated.

# 6.0 Program Management Costs

Program management costs usually run 5% of the total of all other costs, i.e., 5% of the sum of DDT&E + IACO + Test Hardware + Test Operations + GSE + SE&I (for DDT&E) costs. Inasmuch as there is no basis to assume that SBI program management cost is any more or any less than other types of programs, it seems reasonable to use a very preliminary value of this order of magnitude for budgetary estimating purposes.

# 7.0 Life Cycle Costs

As noted previously in this appendix, life cycle cost information is not available and therefore only a subjective treatment of the subject is possible. Nonetheless, Table 7-1 provides some worthwhile insights concerning all the SBI trade study subjects being addressed by Eagle. Taken singly, these subjects reveal the following probable life cycle impacts.

# 7.1 Study No. 3 - Miniaturization

The possible reduction of cost due to the impact of weight reduction is more theoretical than achievable. Indications are fairly clear that most attempts to miniaturize will cost rather than save money. Therefore, one must conclude that the reason for attempting size reductions is other than cost savings. It is beyond the scope of this write-up to postulate or to speculate further.

# 7.2 Study No. 4 - Modularity and Commonality

If the SBI program-wide support can be mobilized to support modular design and the development of hardware for common application to a number of SBI experiments and/or facilities, the cost benefit should be very significant. All the factors noted in Table 7-1 tend to substantiate this conclusion and only the programmatic direction and support has any identifiable cost or problem related to it.

Modular designs and common equipment should be a top priority requirement, goal and objective of SBI effort.

# 7.3 Study No. 5 - COTS vs. New Hardware

COTS should be regarded as a slightly trickier subject than commonality due to the potential pitfalls and cost penalties that can be incurred in its application to spaceflight. Nonetheless, the potential cost savings are large enough so that judicious use of COTS where it fits with the SBI program appears to be a cost-wise approach which could yield tremendous cost benefits for only nominal technical risk. Technical risk which can be offset by care in selecting, testing, and screening the procured items.

The use of modified COTS in lieu of a new design appears to pay off until the modification cost approaches the cost of an optimized new piece of hardware. The cut-off point has not been defined but would make an interesting and worthwhile follow-on study. Intuitively one would expect to find a series of cut-off points that are a function of the hardware complexity, and therefore, the cost and complexity of the modification program.

# 7.4 Study No. 6 - Rack Compatibility

To a greater degree than the other SBI trade studies, this subject seems to defy analysis that could give cost trend indications or life cycle cost indicators. Nevertheless, if one assumes that the inter-program coordination of rack compatibility can be accomplished with a reasonable effort, there exists the possibility to lower cost, to reduce the cost of data normalizing and

comparison, and improved scientific data return might possibly be a companion benefit to lower experimentation costs.

The entire spectrum of life cycle costs beyond the design and program management phase that would accrue due to compatibility all appear to be very positive and beneficial. Logistics, ground processing, pre-flight checkout, operations, repair and replacement all would be impacted in a beneficial way by this approach. A comparable achievement that comes to mind is the establishment of standard equipment racks by the International Air Transport Association (IATA). The benefits apply to a large number of items (commercial transports) and of course the impact is greater, but the concept has been a true bonanza to all the world's commercial airlines. Rack compatibility is potentially a smaller sized cousin to IATA's achievement.

# Table 7 -1 Life Cycle Cost

| Study                             | Study No. 3<br>Hardware Miniaturization                                                             | Study No. 4 Modularity and Commonality                                                                             | Study No. 5<br>COTS vs. New Hardware                                                                                     | Study No. 6<br>Rack Compatibility                                                                                      |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Design                            | Design change always required. Cost of redesign may be partially offset by size & weight reduction. | Requires programmatic support and some allowance for increased weight and cost in design phase.                    | Dependent upon availability and suitability of commercial modules and/or elements for SBI system application.            | Requires inter-program coordination/communication and direction which is very difficult to achieve.                    |
| Development                       | Fabrication may be complicated due to size reduction.                                               | Development, manufacture or procurement is facilitated by modularity. Commonality cost impacts all positive.       | Modified COTS appears to have significant potential advantage. Requires sound make or buy anlysis & eval.                | Common source would be highly desireable but will be hard to do due to specification differences & organiz. barriers   |
| Test and<br>Evaluation            | Test costs may increase due to difficulty in set-up and trouble shooting.                           | Module testing, integrated testing and test trouble shooting are simplified and cost savings result.               | Testing impact appears to be negative due to need for extra qualification tests and periodic retest (screening).         | Should have only minor impact which stems from differences in test requirements.                                       |
| Sustaining<br>Engineering         | No significant impact pro or con is apparent.                                                       | Individual engineering groups<br>can operate with less sytems<br>integration effort.                               | Should be automatically supported by vendor's program. Generally positive. Mods could pose problems.                     | Responsibility may be difficult to establish and to identify. Problem potential is small due to type of hardware.      |
| Technology<br>Upgrade             | May be less likely due to absence of alternate hardware availability.                               | Facilitated and made easier<br>by modular design.                                                                  | Not predictable. Experience indicates that it can vary from easy and to very painful and awkward.                        | Should be possible within a rack or module. Compatibility will reduce the overall cost of inserting new tech. upgrades |
| Maintenance<br>and<br>Operations  | Possible adverse impact on maintenance due to small size. Operation should not be affected.         | Common module impacts on maintenance, logistics and operations are all positive & highly significant.              | Maintenance of unmodified portion could pose problem. Operation not affected if reliability is adequate.                 | Design for long life should mean small scale preventive maintenance is all that is required.                           |
| Replacement                       | May be less costly due to size and favorable impact on logistics.                                   | Can be accomplished in planned phases and/or steps with minimum disruption to system operation.                    | COTS use suggests that low cost replacements are available. Advantage can erode with age.                                | Standard interfaces can only work to reduce the cost of replacement. Fewer spares, standard procedures etc.            |
| Overall Life<br>Cycle Cost Impact | Tends to look negative. The need to miniaturize must be based upon reasons other than cost.         | Life cycle cost impacts are all highly favorable except for design phase coordination & possible weight penalties. | Very significant life cycle cost advantage inherent in COTS. However, initial selection and mod program must be prudent. | Whatever the cost of litter program coordination, ICD's etc., the impact on overall NASA cost is very beneficial       |

#### 8.0 Recommendations

- 1. Perform a follow-on effort to generate a designer's "John Commonsense" manual for cost avoidance and/or reduction. The manual should be a series of simple groundrules and guidelines to help reduce Space Biology Initiative Program costs. Where possible, a series of tables or curves to help assess the potential cost gain should be included.
- 2. Mount an effort to accumulate an SBI historical cost data base. The objective should be at least two-fold. First, identify the breakpoint for various cost trade-offs. Examples are presented in Figures 3-2 and 3-3 which show that commonality soon reaches a point of diminishing return insofar as it pertains to development and manufacturing. Given such breakpoints, explore the possibility of additional life cycle cost benefits which result from reduced sparing, simplified logistics, reduced maintenance, etc. Second, obtain enough historical cost information to permit the development of CER's that are properly scaled for the range of sizes in question. Existing CER's have limitations that may invalidate their use on SBI. Therefore, actual cost data from ongoing SBI efforts would provide a valuable asset to future work of a similar nature.
- 3. Consider a follow-on program to develop a rule-based or expert system that could be used for quick cost estimates and cost comparisons. Such an effort can only proceed in parallel with item 2, above, but the development time is such that it should begin as soon as practical.
- 4. Generate a comprehensive compendium of cost estimating relationships and apply them to SBI. Subsequently, make comparisons with other cost estimating methods in an attempt to remove the existing programmatic skepticism about the voodoo and black magic of cost predictions.

# Bibliography

- A. MSFC Space Station CER's Report PRC D-2185-H, Contract NAS8-33789, December, 1982.
- B. CERV Target Costs for Benchmark and Reference Configurations JSC CERV Office Presentation, June 15, 1988.
- C. PRICE Users Newsletter, Volume 12, Number 3, October, 1988.
- D. Cost Estimating for Air to Air Missiles, Congressional Budget Office, January, 1983.
- E. PRICE H<sup>tm</sup> Reference Manual, General Electric Company, 1988.
- F. SBI Team Contact Report Joe Hamacke, April 27, 1989.
- G. SBI Contact Report Richard Whitlock, April 11, 1989.
- H. Report No. MSC-01248, ASSCAS Cost Handbook, Contract NAS 9-9018, January, 1970.

Appendix D - Database Definition

### Appendix D - Database Definition

The database files for the SBI trade Studies were developed using dBASE IV. The database files consist of dbf, ndx, and frm files. The dbf files are dBASE IV database files. NDX files are the index files for the dbf (database) files. The frm files are report files for the trade study candidate and bibliography reports. The SBI trade study database consist of 4 database files with 78 fields of information. A complete listing of the database structure and dictionary is included in this database definition.

### Database Structure For SBI Trade Studies

| Sti | ucti | re for datab                                                                                                              | oase: W:hard    | dware.dbf |     |
|-----|------|---------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-----|
| Nun | nber | of data reco<br>last update                                                                                               | ords:           | 93        |     |
| Dat | e of | last update                                                                                                               | <b>:</b> 05/30/ | /89       |     |
| Fie | eld  | Field Name                                                                                                                | Type            | Width     | Dec |
|     | 1    | HW ID                                                                                                                     | Character       | 3         |     |
|     | 2    | HW_NAME<br>HW_DESCRTN<br>HW_FACILIT                                                                                       | Character       | 50        |     |
|     | 3    | HW_DESCRTN                                                                                                                | Character       | 254       |     |
|     | 4    | HW_FACILIT                                                                                                                | Character       | 55        |     |
|     | 5    | INFO_SOURC                                                                                                                | Character       | 250       |     |
|     | 6    | HW_MASS                                                                                                                   | Numeric         | 6         | 3   |
|     | 7    | HW_VOLUME                                                                                                                 | Numeric         | 8         | 6   |
|     | 8    | HW_POWER                                                                                                                  | Numeric         | 4         |     |
|     | 9    | HW_VOLTAGE                                                                                                                | Numeric         | 6         |     |
|     | 10   | HW_HEIGHT                                                                                                                 | Numeric         | 6         |     |
|     | 11   | HW_WIDTH                                                                                                                  | Numeric         | 6         |     |
|     | 12   | HW_DEPTH                                                                                                                  | Numeric         | 8         |     |
|     | 13   | REMARKS                                                                                                                   | Character       | 50        |     |
|     | 14   | RECORD_DAT                                                                                                                | Date            | 8         |     |
|     | 15   | HW_FACILIT INFO_SOURC HW_MASS HW_VOLUME HW_POWER HW_VOLTAGE HW_HEIGHT HW_WIDTH HW_DEPTH REMARKS RECORD_DAT GROUP CATEGORY | Character       | 50        |     |
|     | 16   | CATEGORY                                                                                                                  | Character       | 50        |     |
|     |      | FUNCTION                                                                                                                  |                 |           |     |
|     | 18   | FAC_ID                                                                                                                    | Character       | 4         |     |
|     | 19   | GROUP_ID                                                                                                                  | Character       | 4         |     |
|     | 20   | MIN_LEVEL                                                                                                                 | Character       | 5         |     |
|     | 21   | CONFIDENCE                                                                                                                | Character       | 5         |     |
|     | 22   | SUFFIC_DAT                                                                                                                | Character       | 4         |     |
|     | 23   | SUFFIC_DAT PRIORITY                                                                                                       | Character       | 2         |     |
|     | 24   | MIN_LV_POT<br>MIN_EST_CF<br>MOD_LV_POT<br>MOD_EST_CF<br>COM_LV_POT                                                        | Character       | 6         |     |
|     | 25   | MIN_EST_CF                                                                                                                | Character       | 6         |     |
|     | 26   | MOD_LV_POT                                                                                                                | Character       | 6         |     |
|     | 27   | MOD_EST_CF                                                                                                                | Character       | 6         |     |
|     | 28   | COM_LV_POT                                                                                                                | Character       | 6         |     |
|     | 23   | COM_EST_CE                                                                                                                | CHaracter       | 9         |     |
|     | 30   | SYS_COMPLX                                                                                                                | Character       | 6         |     |
|     | 31   | DSN_COMPLX                                                                                                                | Character       | 6         |     |
|     | 32   | BUY_LV_POT                                                                                                                | Numeric         | 4         |     |
|     | 33   | BUY_MOD_LV                                                                                                                | Numeric         | 4         |     |
|     | 34   | BUY_EST_CF                                                                                                                | Character       | 4         |     |
|     | 35   | BUY_OTS_PT                                                                                                                | Numeric         | 4         |     |
|     | 36   | BUY_DAT_AV                                                                                                                | Character       | 4         |     |
|     | 37   | MOD_CAN                                                                                                                   | Logical         | 1         |     |
| * * | Tota | al **                                                                                                                     |                 | 968       |     |

```
Structure for database: W:biblo.dbf
Number of data records:
Date of last update : 05/26/89
Field Field Name Type
                              Width
                                       Dec
                                 5
       BB_ID
                   Character
                                 16
    2
       AUTHOR_NO1
                   Character
                                 12
       AUTHOR_NO2
                   Character
                                 12
    4
       AUTHOR_NO3 Character
                                135
    5
       ART_TITLE
                   Character
                                100
    6
       BOOK_TITLE Character
                                  3
    7
                   Character
       VOLUME_NO
                                 42
                   Character
    8
       PUBLISHER
                                 32
    9
       PUBL_LOC
                   Character
                                  8
                   Date
   10
       DATE
                                  4
   11
       PAGE_NOS
                   Character
                                100
                   Character
   12
      ABSTRACT
                                 20
   13
       ACQUIRED
                   Character
                                  б
                   Numeric
   14
       COST
                                  4
                  Character
   15
       LOANED
      REP_DOC_NO Character
                                 22
   16
                                  1
   17
      MOD
                   Logical
                                  1
                   Logical
   18
       MIN
                                  1
   19
                   Logical
       COTS
                                  1
                   Logical
   20
       RACK
                                526
** Total **
Structure for database: W:rack_com.dbf
Number of data records: 166
Date of last update : 05/26/89
                              Width
Field Field Name Type
                                       Dec
                                 38
                   Character
       IF_ITEM
    1
                                  8
    2
       UNITS
                   Character
                                  1
    3
                   Character
       UNIT_SYS
                                 12
       ITEM_TYPE
                   Character
                                 50
    5
                   Character
       VALUE
                                 25
    6
                   Character
       MODULE
                                135
** Total **
Structure for database: W:comm_mod.dbf
Number of data records: 153
Date of last update : 05/30/89
Field Field Name Type
                              Width
                                        Dec
                                  3
    1
       HW_ID
                   Character
                                 30
       COMM MOD
                   Character
       COUNT
                   Numeric
                                  1
    3
       COST_DECSC Numeric
                                  4
                                          2
    4
                                          2
                                  4
       MASS
                   Numeric
```

\*\* Total \*\*

43

# Appendix D - Database Dictionary for Space Biology Initiative Trade Studies

## Hardware.dbf This is the database file for SBI hardware.

|          |            | Unique identification number for each hardware item       |
|----------|------------|-----------------------------------------------------------|
| Field 1  | HW_ID      | Hardware name                                             |
| Field 2  | HW_NAME    | •••                                                       |
| Field 3  | HW_DESCRTN | Hardware description Facility where SBI hardware is used  |
| Field 4  | HW_FACILIT | Information source for SBI hardware data                  |
| Field 5  | INFO_SOURC |                                                           |
| Field 6  | HW_MASS    | Hardware mass                                             |
| Field 7  | HW_VOLUME  | Hardware volume                                           |
| Field 8  | HW_POWER   | Hardware power requirement                                |
| Field 9  | HW_VOLTAGE | Hardware voltage requirements                             |
| Field 10 | HW_HEIGHT  | Hardware height                                           |
| Field 11 | HW_WIDTH   | Hardware width                                            |
| Field 12 | HW_DEPTH   | Hardware depth                                            |
| Field 13 | REMARKS    | Remarks concerning SBI hardware equipment                 |
| Field 14 | RECORD_DAT | Update of last record                                     |
| Field 15 | GROUP      | Hardware group                                            |
| Field 16 | CATEGORY   | Hardware category                                         |
| Field 17 | FUNCTION   | Hardware function                                         |
| Field 18 | FAC_ID     | Hardware facility ID number                               |
| Field 19 | GROUP_ID   | Hardware group ID number                                  |
| Field 20 | MIN_LEVEL  | Miniaturization level for hardware                        |
| Field 21 | CONFIDENCE | Confidence level for miniaturization                      |
| Field 22 | SUFFIC_DAT | Is there sufficient data to make a decision of hardware   |
|          | _          | miniaturization?                                          |
| Field 23 | PRIORITY   | Priority level for hardware item based on mass            |
| Field 24 | MIN_LV_POT | Miniaturization level potential for the hardware item     |
| Field 25 | MIN_EST_CF | Confidence level for miniaturization                      |
| Field 26 | MOD_LV_POT | Modularity potential for hardware item                    |
| Field 27 | MOD_EST_CF | Confidence level for modularity estimate                  |
| Field 28 | COM_LV_POT | Commonality potential for hardware item                   |
| Field 29 | COM_EST_CF | Confidence level for commonality estimate                 |
| Field 30 | SYS_COMPLX | System complexity for hardware item                       |
| Field 31 | DSN_COMPLX | Design complexity for hardware item                       |
| Field 32 | BUY_LV_POT | Percent Buy for Hardware Item                             |
| Field 33 | BUY_MOD_LV | Percent modification to Buy Hardware Item                 |
| Field 34 | BUY_EST_CF | Confidence Level for Make-or-Buy Estimate                 |
| Field 35 | BUY_OTS_PT | Percentage of COTS hardware that does not require         |
|          |            | modification                                              |
| Field 36 | BUY_DAT_AV | Is sufficient data available for make-or-buy estimate     |
| Field 37 | MOD_CAN    | Logical field can the hardware item be modularized Y or N |
| 1 1010 0 |            | <del>-</del>                                              |

| biblo.dbf                                                             | This is the database for bibliography information. |                                                                            |  |
|-----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|--|
| Field 1                                                               | BB_ID                                              | Identification number for the reference                                    |  |
| Field 2                                                               | AUTHOR_NO1                                         | First author                                                               |  |
| Field 3                                                               | AUTHOR_NO2                                         | Second author                                                              |  |
| Field 4                                                               | AUTHOR_NO3                                         | Third author                                                               |  |
| Field 5                                                               | ART_TITLE                                          | Title of article                                                           |  |
| Field 6                                                               | BOOK_TITLE                                         | Title of book                                                              |  |
| Field 7                                                               | VOLUME_NO                                          | Volume number                                                              |  |
| Field 8                                                               | PUBLISHER                                          | Publisher                                                                  |  |
| Field 9                                                               | PUBL_LOC                                           | Publisher's address                                                        |  |
| Field 10                                                              | DATE                                               | Date of publication                                                        |  |
| Field 11                                                              | PAGE_NOS                                           | Page number of reference                                                   |  |
| Field 12                                                              | ABSTRACT                                           | Abstract                                                                   |  |
| Field 13                                                              | ACQUIRED                                           | Where the reference was acquired                                           |  |
| Field 14                                                              | COST                                               | Cost of reference                                                          |  |
| Field 15                                                              | LOANED                                             | Where the reference was loaned from                                        |  |
| Field 16                                                              | REP_DOC_NO                                         | Report or document number                                                  |  |
| Field 17                                                              | MOD                                                | Was this reference used on the modularity trade study? y                   |  |
| Field 18                                                              | MIN                                                | Was this reference used on the miniaturization trade study?                |  |
|                                                                       | CT TING                                            | y or n Was this reference used on the make-or-buy trade study? y           |  |
| Field 19                                                              | CUTS                                               |                                                                            |  |
| Field 20                                                              | RACK                                               | or n Was this reference used on the rack compatibility trade study? y or n |  |
| rock com dbf This is the database file for the rack comparison study. |                                                    |                                                                            |  |

## rack\_com.dbf This is the database file for the rack comparison study.

| Field 1 | IF_ITEM   | I/F item being compared, i.e. power converters |
|---------|-----------|------------------------------------------------|
| Field 2 | UNITS     | Units of comparison, i.e. inches               |
| Field 3 | UNIT_SYS_ | Unit system, i.e. metric                       |
| Field 4 | ITEM_TYPE | Functional Grouping of IF Item i.e. Data Mgmt. |
| Field 4 | VALUE     | Value of the comparison                        |
| Field 5 | MODULE    | Module, i.e. U.S. Lab                          |

## comm\_mod.dbf This is the design modularity and commonality database

| Field 1 | HW_ID      | Unique identification number for each hardware item |
|---------|------------|-----------------------------------------------------|
| Field 2 | COMM_MOD   | Modularity function/assembly                        |
| Field 3 | COUNT      | Used to total hardware items in COMM_MOD Field      |
| Field 4 | COST_DECSC | Cost description                                    |
| Field 5 | MASS       | Mass of hardware item                               |

Appendix E - Detailed Hardware Descriptions

|                                                                                                                                                                                                                        | Hardware Status Mod existing                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Controlled Ecological                                                                                                                                                                                                  | Revision Date Apr 4, 1989                                                                                                                    |
| Life Support System                                                                                                                                                                                                    |                                                                                                                                              |
| Control Supplement VIII                                                                                                                                                                                                | Hardware Description                                                                                                                         |
| Title Germination Experiment Kit                                                                                                                                                                                       | Modified Plant Growth Unit.                                                                                                                  |
| Element No F                                                                                                                                                                                                           | ┦ .                                                                                                                                          |
| Project FEAST                                                                                                                                                                                                          |                                                                                                                                              |
| <ul> <li>Objective</li> <li>1.) Provide a means for initial screening of plant cultivars in terms of their ability to germinate in μ-g.</li> <li>2.) Determine root-shoot orientation under μ-g conditions.</li> </ul> |                                                                                                                                              |
|                                                                                                                                                                                                                        | Desired Features/Functions                                                                                                                   |
|                                                                                                                                                                                                                        | <ol> <li>Lighting: LED @ &gt;180 µmol/sq.m/s</li> <li>Basic nutrient delivery</li> <li>Video recording and/or downlink capability</li> </ol> |
| Hardware Specifications  Weight (Kg) 27.3 Height (m) .253 Width (m) .440  Depth (m) .516 Temp Range Ambient  Peak Power (Kw) .300 Cont Power (Kw) .150                                                                 |                                                                                                                                              |
| Power Source                                                                                                                                                                                                           | Item Specific Support Equipt                                                                                                                 |
| STS Mid-deck.                                                                                                                                                                                                          | Plant Growth Module                                                                                                                          |
|                                                                                                                                                                                                                        | -                                                                                                                                            |
| Data Downlink Reqs                                                                                                                                                                                                     |                                                                                                                                              |
| 1.5 MBPS Video; 1.6 KBPS Voice                                                                                                                                                                                         |                                                                                                                                              |
| Rack Mounted/Stowed STS Middeck                                                                                                                                                                                        |                                                                                                                                              |
| Hardware Specifications                                                                                                                                                                                                |                                                                                                                                              |
| •                                                                                                                                                                                                                      | Design Status                                                                                                                                |
|                                                                                                                                                                                                                        | Modification to PGU required.                                                                                                                |
|                                                                                                                                                                                                                        |                                                                                                                                              |
|                                                                                                                                                                                                                        | Development Cost (SK) 5,7                                                                                                                    |
|                                                                                                                                                                                                                        | Development Time (months)                                                                                                                    |
|                                                                                                                                                                                                                        | Anticipated Launch Date 1992 & 19                                                                                                            |

Risk Category

Report Date

4/5/89

| Sermination Experiment Kit                                                               |   |
|------------------------------------------------------------------------------------------|---|
| Science Justification                                                                    |   |
|                                                                                          |   |
| dentified Experiments                                                                    |   |
| dentified Experiments CELSS Germination Studies.                                         |   |
|                                                                                          |   |
| History                                                                                  |   |
| Utilizes existing PGU design with modification for germination studies.                  |   |
| Problem/Issues&Concerns                                                                  |   |
| none                                                                                     |   |
|                                                                                          |   |
| Vendor Source List                                                                       |   |
|                                                                                          |   |
| Interface Requirements                                                                   |   |
| STS Mid-deck.                                                                            |   |
|                                                                                          |   |
| Special Considerations                                                                   | · |
| none                                                                                     |   |
|                                                                                          |   |
| Safety Issues                                                                            |   |
|                                                                                          |   |
| Flight Opportunity USML-1 (3/92) & USML-4 (5/96)                                         |   |
| Notes .                                                                                  |   |
| 1.) Two flights needed : Possible flights are USML-1 and USML-4.                         |   |
| REV A: Revised cost 4/4/89 from \$5250K to \$2700K to reflect changes in Cost Estimates. |   |
|                                                                                          |   |
|                                                                                          |   |
|                                                                                          |   |
|                                                                                          |   |

|                                                                                                                                                                                                                                                                           | Hardware Status Planned                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Controlled Ecological                                                                                                                                                                                                                                                     | Revision Date Apr 4, 1989                                                                                                                                                                                                                                                                                                                                                                        |  |
| Life Support System                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Title Gas/Liquid Handling Experiment H/W                                                                                                                                                                                                                                  | Hardware Description                                                                                                                                                                                                                                                                                                                                                                             |  |
| Element No 2 Revision A                                                                                                                                                                                                                                                   | An experiment package for KC-135, STS (GAS or Mid-deck) or Spacelab for evaluating physical                                                                                                                                                                                                                                                                                                      |  |
| Project FEAST                                                                                                                                                                                                                                                             | principles pertaining to gas and liquid handling, mixing and separation under μ-g conditions.                                                                                                                                                                                                                                                                                                    |  |
| Objective  1.) To evaluate and demonstrate fundamental physical principles of gas and liquid handling, mixing and separation under μ-g environment as applied to CELSS technology development.  2.) To demonstrate concept design for gas/liquid handling systems in μ-g. | Desired Features/Functions  1. Video recording and/or downlink capability 2. Capable of mixing and separation tests of a variety of gas/liquid combinations common to CELSS (water/air, nutrient solution/air,etc) 3. Thermal and shock isolation 4. Liquid and gas containment 5. Various gas and liquid reservoirs 6. Mixing and separation chamber 7. Simple PLC control with control valves. |  |
| Hardware Specifications  Weight (Kg) 27.3 Height (m) .253 Width (m) .440  Depth (m) .516 Temp Range Ambient  Peak Power (Kw) .3 Cont Power (Kw) .15                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Power Source                                                                                                                                                                                                                                                              | Item Specific Support Equipt                                                                                                                                                                                                                                                                                                                                                                     |  |
| Standard KC-135, Spacelab or NSTS source.                                                                                                                                                                                                                                 | none                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Data Downlink Reqs .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Rack Mounted/Stowed NSTS:Mid-deck Stowage SL: Rack Mounted                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Hardware Specifications                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Mid-deck locker size, may be partial SL rack size.                                                                                                                                                                                                                        | Design Status New Design                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                           | Development Cost (\$K) 1,500                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                           | Development Time (months) 24                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                           | Anticipated Launch Date 1993                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                           | Risk Category 3                                                                                                                                                                                                                                                                                                                                                                                  |  |

#### CELSS/ rEAST maraware bara sheet Report Date 4/5/89

| Gas/Liquid Handling Experiment H/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Science Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Evaluation of physical principles for FEAST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Identified Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Existing liquid/gas transfer, mixing and separation technologies for µ-g from previous space flight vehicles and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| payloads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Problem/issues&Concerns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| none at present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vendor Source List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| none at present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| none at present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Interface Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Standard KC-135, NSTS or SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Special Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Containment of liquids and gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Safety Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 511 A 6 7 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flight Opportunity USML-2 (8/93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| REV A: Revised cost 4/4/89 from \$3000K to \$1500K. Changed Unit No. from 3 to 2 to reflect Cost Estimate categorization; added misc data to various categories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Categorization, access the categories and a categories an |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                                                                                                                             | Hardware Status Planned                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Controlled Ecological                                                                                                                                       | Revision Date Apr 4, 1989                                                                                                                                                                                                     |
| Life Support System                                                                                                                                         |                                                                                                                                                                                                                               |
|                                                                                                                                                             | Hardware Description                                                                                                                                                                                                          |
| Title Water Condensation & Re-cycling Exp H/W                                                                                                               | Spacelab, NSTS middeck or KC-135 size                                                                                                                                                                                         |
| Element No 3 Revision A                                                                                                                                     | experiment package for water condensation studies.                                                                                                                                                                            |
| Project FEAST                                                                                                                                               | 4                                                                                                                                                                                                                             |
| <ol> <li>To determine problems associated with water condensation technologies under μ-g.</li> <li>Demonstrate and prove-out conceptual designs.</li> </ol> |                                                                                                                                                                                                                               |
|                                                                                                                                                             | Desired Features/Functions                                                                                                                                                                                                    |
|                                                                                                                                                             | 1. Video recording and/or downlink capability 2. Water vapor source and water reservoir 3. Condensation chamber with cooling 4. Stream processing capability at various rates 5. Monitoring capability of : relative humidty, |
| Hardware Specifications                                                                                                                                     | liquid volume, process rates                                                                                                                                                                                                  |
| Weight (Kg) 27.3 Height (m) .253 Width (m) .440                                                                                                             |                                                                                                                                                                                                                               |
| Depth (m) .516 Temp Range Ambient                                                                                                                           |                                                                                                                                                                                                                               |
| Peak Power (Kw) .300 Cont Power (Kw) .150                                                                                                                   |                                                                                                                                                                                                                               |
| Power Source                                                                                                                                                | Item Specific Support Equipt                                                                                                                                                                                                  |
| Standard platform source.                                                                                                                                   | none                                                                                                                                                                                                                          |
| Data Downlink Reqs                                                                                                                                          |                                                                                                                                                                                                                               |
| Rack Mounted/Stowed Rack Mounted or Stowed.                                                                                                                 |                                                                                                                                                                                                                               |
| Hardware Specifications                                                                                                                                     |                                                                                                                                                                                                                               |
| •                                                                                                                                                           | Design Status                                                                                                                                                                                                                 |
|                                                                                                                                                             | New Design                                                                                                                                                                                                                    |
|                                                                                                                                                             |                                                                                                                                                                                                                               |
|                                                                                                                                                             |                                                                                                                                                                                                                               |
|                                                                                                                                                             | Development Cost (\$K) 2,900                                                                                                                                                                                                  |
|                                                                                                                                                             | Development Time (months)                                                                                                                                                                                                     |
|                                                                                                                                                             | Anticipated Launch Date 1995                                                                                                                                                                                                  |
|                                                                                                                                                             | Risk Category 4                                                                                                                                                                                                               |
|                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                      |

| Water Condensation & Re-cycling Exp H/W                                                                   |   |
|-----------------------------------------------------------------------------------------------------------|---|
| Science Justification                                                                                     |   |
|                                                                                                           |   |
|                                                                                                           |   |
| Identified Experiments                                                                                    |   |
| •                                                                                                         |   |
|                                                                                                           |   |
| History                                                                                                   |   |
|                                                                                                           |   |
|                                                                                                           |   |
| Problem/issues&Concerns                                                                                   |   |
| F1001011111100000000000000000000000000                                                                    |   |
|                                                                                                           |   |
| Vendor Source List                                                                                        |   |
|                                                                                                           | ; |
|                                                                                                           |   |
| Interface Requirements                                                                                    |   |
|                                                                                                           |   |
|                                                                                                           |   |
| Special Considerations                                                                                    |   |
|                                                                                                           |   |
|                                                                                                           |   |
| Safety Issues                                                                                             |   |
|                                                                                                           |   |
| Flight Opportunity USML-3 (1/95)                                                                          |   |
| Notes                                                                                                     |   |
| 1.) Two flights may be required.                                                                          |   |
| 2.) May only require KC-135 flight to validate. 3.)                                                       |   |
| REV A: Revised cost 4/4/89 from \$5800K to \$2900K. Changed Unit No. from 2 to 3 to reflect Cost Estimate | • |
| categorization.                                                                                           |   |
|                                                                                                           |   |
|                                                                                                           |   |
|                                                                                                           |   |

|                                                                                                                   | Hardware Status Planned                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Controlled Ecological                                                                                             | Revision Date Apr 4, 1989                                                                                                                    |
| Life Support System                                                                                               |                                                                                                                                              |
|                                                                                                                   | Hardware Description                                                                                                                         |
| Title Nutrient Delivery Test H/W                                                                                  | Size of two middeck lockers on STS to study                                                                                                  |
| Element No 4 Revision A                                                                                           | basic μ-g nutrient delivery systems.                                                                                                         |
| Project FEAST                                                                                                     | •                                                                                                                                            |
| Objective  1. To evaluate plant nutrient delivery concepts under μ-g conditions for CELSS technology development. |                                                                                                                                              |
|                                                                                                                   | Desired Features/Functions                                                                                                                   |
|                                                                                                                   | Video recording and/or downlink capability.     Capability for testing a number of nutrient delivery concepts     Liquid and gas containment |
| Hardware Specifications                                                                                           |                                                                                                                                              |
| Weight (Kg) 27.3 Height (m) .253 Width (m) .440                                                                   |                                                                                                                                              |
| Depth (m) .516 Temp Range Ambient                                                                                 |                                                                                                                                              |
| Peak Power (Kw) .300 Cont Power (Kw) .150                                                                         |                                                                                                                                              |
| Power Source                                                                                                      | item Specific Support Equipt                                                                                                                 |
| Standard mid-deck power source or equivalent                                                                      | none                                                                                                                                         |
| Data Downlink Reqs                                                                                                | 1                                                                                                                                            |
| .05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice                                                |                                                                                                                                              |
| Rack Mounted/Stowed Stowed                                                                                        |                                                                                                                                              |
| Hardware Specifications                                                                                           |                                                                                                                                              |
| •                                                                                                                 | Design Status                                                                                                                                |
|                                                                                                                   | New Design                                                                                                                                   |
|                                                                                                                   |                                                                                                                                              |
|                                                                                                                   | Development Cost (SK) 3,47                                                                                                                   |
|                                                                                                                   | Development Time (months) 2                                                                                                                  |
|                                                                                                                   | Anticipated Launch Date 1992 & 199                                                                                                           |
|                                                                                                                   |                                                                                                                                              |
|                                                                                                                   | Risk Category                                                                                                                                |

| Nutrient Delivery Test H/W                                                           | $\dashv$ |
|--------------------------------------------------------------------------------------|----------|
| Science Justification                                                                |          |
| Provides test and demonstration of nutrient delivery systems for CELSS technologies. |          |
|                                                                                      |          |
| Identified Experiments                                                               |          |
| *                                                                                    |          |
|                                                                                      |          |
|                                                                                      |          |
| History None                                                                         |          |
|                                                                                      |          |
|                                                                                      |          |
| Problem/Issues&Concerns                                                              |          |
|                                                                                      |          |
|                                                                                      |          |
| Vendor Source List                                                                   |          |
| None                                                                                 |          |
| Interface Requirements                                                               |          |
| Interiace Reduirements                                                               |          |
|                                                                                      |          |
|                                                                                      |          |
| Special Considerations                                                               |          |
|                                                                                      |          |
|                                                                                      |          |
| Safety Issues                                                                        |          |
|                                                                                      |          |
|                                                                                      |          |
| Flight Opportunity SLS-2 (7/92) & IML-4 (3/96)                                       | —        |
| Notes                                                                                |          |
| REV A : Revised cost 4/4/89 from \$6850K to \$3475K.                                 |          |
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |

|                                                                                                                                                                                                            | Hardware Status Planned                                                                                                                                                             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Controlled Ecological                                                                                                                                                                                      | Revision Date Apr 4, 1989                                                                                                                                                           |  |  |  |
| Life Support System                                                                                                                                                                                        |                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                            | Hardware Description                                                                                                                                                                |  |  |  |
| Title CELSS Test Facility                                                                                                                                                                                  | Crop growth research facility for seed-to-seed crop studies under μ-gravity. IOC Station                                                                                            |  |  |  |
| Element No 5 Revision A                                                                                                                                                                                    | Freedom implementation.                                                                                                                                                             |  |  |  |
| Project FEAST                                                                                                                                                                                              |                                                                                                                                                                                     |  |  |  |
| Objective  1.) To provide a facility for conducting plant productivity studies from seed to maturity (in some instances seed to seed) with mixed crops and in mixed maturities under µ-gravity conditions. |                                                                                                                                                                                     |  |  |  |
| 2.) Assess system reliability and maintainability for CELSS                                                                                                                                                | Desired Features/Functions                                                                                                                                                          |  |  |  |
| technologies.                                                                                                                                                                                              | Modular subsystem elements to allow for design evolution.     LED lighting system     Standard double rack size.     Complete control of inputs and outputs to Station ambient atm. |  |  |  |
| Hardware Specifications                                                                                                                                                                                    | 5. Implements automation and expert systems.                                                                                                                                        |  |  |  |
| Weight (Kg) 634.7 Height (m) 1.89 Width (m) 1.05                                                                                                                                                           | 6. Full complement DAS. 7. Maximized degree of closure                                                                                                                              |  |  |  |
| Depth (m) 0.91 Temp Range S.S. Ambient                                                                                                                                                                     |                                                                                                                                                                                     |  |  |  |
| Peak Power (Kw) 2.0 Cont Power (Kw) 1.5                                                                                                                                                                    |                                                                                                                                                                                     |  |  |  |
| Power Source                                                                                                                                                                                               | Item Specific Support Equipt                                                                                                                                                        |  |  |  |
| Standard Rack power                                                                                                                                                                                        | CTF Germination and Storage Chamber.                                                                                                                                                |  |  |  |
| Data Downlink Reqs .05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS Voice                                                                                                                      |                                                                                                                                                                                     |  |  |  |
| Rack Mounted/Stowed Rack Mounted                                                                                                                                                                           |                                                                                                                                                                                     |  |  |  |
| Hardware Specifications                                                                                                                                                                                    |                                                                                                                                                                                     |  |  |  |
| 1. Lighting: 0 - 3000 μmol/sq.m/s                                                                                                                                                                          | Design Status                                                                                                                                                                       |  |  |  |
| <ol> <li>Modular nutrient delivery system</li> <li>Sealed enclosure w/ access and windows</li> </ol>                                                                                                       | New Design                                                                                                                                                                          |  |  |  |
| 4. Fully controllable HVAC 5. Pressure compensation system                                                                                                                                                 |                                                                                                                                                                                     |  |  |  |
| 6. Water condensation & re-cycling capability                                                                                                                                                              |                                                                                                                                                                                     |  |  |  |
| <ol> <li>Control of internal gaseous environment (O2, CO2, N2)</li> <li>Microbial monitoring capability</li> <li>Monitoring, control and data acquisition systems</li> </ol>                               | Development Cost (SK) 42,05                                                                                                                                                         |  |  |  |
| 10. Automated specimen handling                                                                                                                                                                            | Development Time (months) 7                                                                                                                                                         |  |  |  |
| 11. Growing Area: 0.71 sq.m, max growing height: 0.85 m                                                                                                                                                    |                                                                                                                                                                                     |  |  |  |
| <ul> <li>11. Growing Area: 0.71 sq.m, max growing height: 0.85 m</li> <li>12. Self-contained with modular subsystems</li> <li>13. Fuill control of parameters withing specified ranges</li> </ul>          | Anticipated Launch Date 199                                                                                                                                                         |  |  |  |

| CELSS Test Facility                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Science Justification  Hardware is mandatory for developement of future CELSS technologies and advanced life support systems.                                                                                                                                            |
|                                                                                                                                                                                                                                                                          |
| Identified Experiments                                                                                                                                                                                                                                                   |
| Hardware to be used in meeting CELSS Project FEAST objectives.                                                                                                                                                                                                           |
| History                                                                                                                                                                                                                                                                  |
| Major design elements derived from non-flight Crop Growth Research Chamber (CGRC) requirements.                                                                                                                                                                          |
| Problem/Issues&Concerns                                                                                                                                                                                                                                                  |
| Nutrient dlivery system, lighting, & power.                                                                                                                                                                                                                              |
| Vendor Source List                                                                                                                                                                                                                                                       |
| None at present.                                                                                                                                                                                                                                                         |
| Interface Requirements                                                                                                                                                                                                                                                   |
| Standard Space Station Freedom rack interfaces.                                                                                                                                                                                                                          |
| Special Considerations                                                                                                                                                                                                                                                   |
| None                                                                                                                                                                                                                                                                     |
| Safety Issues                                                                                                                                                                                                                                                            |
| None                                                                                                                                                                                                                                                                     |
| Flight Opportunity PMC S.S. Freedom                                                                                                                                                                                                                                      |
| Notes                                                                                                                                                                                                                                                                    |
| Establish reliability baseline for CELSS hardware                                                                                                                                                                                                                        |
| <ol> <li>Needs maintenance scenario and possibly S/E for same.</li> <li>Current crop candidates are: Potatoes, soybeans, wheat, tomato, lettuce, radish, rice, onion, legume &amp; spinach.</li> </ol>                                                                   |
| REV A: Revised cost 4/4/89 from \$15,000K to \$42,050K to reflect incorporation of CROP elements into CTF. Revised growing area from 1.5 - 2.0 sq.m to 0.71 sq.m, power from 1.8kW to 2.0 Kw peak and 1.2 - 1.3 kW cont to 1.5kW, mass changed from 1000 kg to 634.7 kg. |

#### CELSS/FEAST Hardware Data Sneet Report Date 4/5/89

|                                                       |               |                                    | Hardware Status Planned                                    |                                           |  |  |  |
|-------------------------------------------------------|---------------|------------------------------------|------------------------------------------------------------|-------------------------------------------|--|--|--|
|                                                       | Cont          | rolled Ecological                  | Revision Date                                              |                                           |  |  |  |
|                                                       | Life          | Support System                     |                                                            |                                           |  |  |  |
|                                                       |               | Alexander Chambar                  | Hardware Description                                       |                                           |  |  |  |
| Title CTF Germination Chamber                         |               |                                    | nermination proir to planting in the CELSS Tes             | Provides germination environment for seed |  |  |  |
| Element No                                            | 6             |                                    | Facility, Approx. the size of STS Middeck                  |                                           |  |  |  |
| Project                                               |               | FEAST                              | Locker                                                     |                                           |  |  |  |
| Objective  1. To provide enviror the CTF.             | nment for gen | minating seeds prior to planting i | n                                                          |                                           |  |  |  |
| 2. To provide seed s                                  | torage.       |                                    | Desired Features/Functions                                 |                                           |  |  |  |
|                                                       |               |                                    | 1. Air-tight chamber                                       |                                           |  |  |  |
|                                                       |               |                                    | Humidity controlled     Heat, shock and vibration isolated |                                           |  |  |  |
| Hardware Specifi<br>Weight (Kg) 6.8<br>Depth (m) .516 | Height (m     | Temp Range S.S. Ambient            |                                                            |                                           |  |  |  |
| Peak Power (Kw)                                       | .300          | Cont Power (Kw) .150               | Item Specific Support Equipt                               |                                           |  |  |  |
| none required                                         |               |                                    | none                                                       |                                           |  |  |  |
| none required                                         |               |                                    |                                                            |                                           |  |  |  |
| Data Downlink Req                                     | •             |                                    |                                                            |                                           |  |  |  |
| none                                                  |               |                                    |                                                            |                                           |  |  |  |
|                                                       |               |                                    |                                                            |                                           |  |  |  |
| Rack Mounted/Stor                                     | wed Stower    | d                                  |                                                            |                                           |  |  |  |
| Hardware Specif                                       | fications     |                                    |                                                            |                                           |  |  |  |
| Approximately the size                                |               | Middeck Locker.                    | Design Status                                              |                                           |  |  |  |
|                                                       |               |                                    | New Design                                                 |                                           |  |  |  |
|                                                       |               |                                    |                                                            |                                           |  |  |  |
|                                                       |               |                                    |                                                            |                                           |  |  |  |
|                                                       |               |                                    | Development Cost (SK)                                      | 80                                        |  |  |  |
| ~                                                     |               |                                    | Development Time (months)                                  |                                           |  |  |  |
|                                                       |               |                                    | Anticipated Launch Date                                    | 19                                        |  |  |  |
|                                                       |               |                                    | Alltiorbation and                                          |                                           |  |  |  |

| Science Justification Provides germination of seeds prior to planting in the CTF. Reduces operational power demand on CTF. Provides seed storage.  Identified Experiments none  History Plant Growth Unit.  Problem/Issues&Concerns none  Vendor Source List none  Interface Requirements  Special Considerations  Safety Issues  Flight Opportunity PMC Space Station Freedom  Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment. 2. Seed compartment could also be used for misc. equipment stowage | CTF Germination Chamber                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| History Plant Growth Unit.  Problem/Issues&Concerns none  Vendor Source List none  Interface Requirements  Special Considerations  Safety Issues  Flight Opportunity PMC Space Station Freedom  Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                    | Provides germination of seeds prior to planting in the CTF. Reduces operational power demand on CTF. Provides seed       |
| Problem/Issues&Concerns none  Vendor Source List none  Interface Requirements  Special Considerations  Safety Issues  Flight Opportunity PMC Space Station Freedom  Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                                                |                                                                                                                          |
| Vendor Source List none  Interface Requirements  Special Considerations  Safety Issues  Flight Opportunity PMC Space Station Freedom  Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                                                                              | ·                                                                                                                        |
| Interface Requirements  Special Considerations  Safety Issues  Flight Opportunity PMC Space Station Freedom  Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                                                                                                       |                                                                                                                          |
| Special Considerations  Safety Issues  Flight Opportunity PMC Space Station Freedom  Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |
| Safety Issues  Flight Opportunity PMC Space Station Freedom  Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                                                                                                                                                       | Interface Requirements                                                                                                   |
| Flight Opportunity PMC Space Station Freedom  Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                                                                                                                                                                      | Special Considerations                                                                                                   |
| Notes  1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Safety Issues                                                                                                            |
| 1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flight Opportunity PMC Space Station Freedom                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment. |













THE PROPERTY OF THE PROPERTY O

Storage Locker



AND HYDRACIONAL SECTIONS OF THE SECTION OF THE SECT

## Gas-Grain Simulation Facility: Description

The Gas-Grain Simulation Facility (GGSF), currently under development by the Exobiology Flight Experiments Program at Ames Research Center, is a facility-class payload proposed for the Space Station. The GGSF will be used to simulate and investigate fundamental chemical and physical processes such as the formation, collision and interaction of droplets, grains and other particles.

The Gas-Grain Simulation Facility will occupy a Space Station double rack. It will consist of several subsystems supporting an adaptable 10 liter experiment chamber. Subsystems will provide environmental control (e.g., temperature, pressure, gas mixture and humidity), measurement equipment (e.g., video cameras, optical particle counters, spectrometers, and photometers), and energy sources. Subsystems will also furnish: command and control capability; mechanisms for producing, injecting, and removing particles and clouds of particles; and levitation devices for positioning particles and keeping them in fixed positions away from the chamber walls. GGSF mass and power requirements are estimated to be 700 to 800 Kg and 1500 W peak (750 W average) respectively.

The GGSF will be modular in design; that is, it will have an adaptable configuration allowing subsystem components to be connected in a number of ways. Modularity will also allow the GGSF to evolve. At an early stage, the GGSF would be capable of supporting those experiments which promise high scientific yield and require only a few subsystems. Further, modularity will allow outdated subsystems to be replaced. New experiment chambers will be brought to the Space Station once a year so the GGSF will have a very long, useful lifetime (i.e., 10 years).

The facility's computer will control all operations of the facility during an experiment and have an autonomous decision making capability. Data exchange requirements, estimated at 20 to 40 kilobytes per day, are modest. Data/command uplinks will occur about twice per week. Aside from time needed for the initial set-up and calibration of experiments, crew time requirements will be minimal.

One possible GGSF operational sequence is as follows: A chamber designed for a series of experiments is "plugged in" to the GGSF and subsystems are attached in the configuration necessary for the first experiment. A command is then given to begin the execution of preprogrammed instructions for performing the experiment. After the first experiment is completed, the system may be reconfigured for the second experiment. When the sequence of experiments associated with the first chamber is completed, the chamber is removed and stored for return to Earth and a second chamber is attached for the next sequence of experiments.

Since many of the suggested GGSF experiments require gravitational accelerations of  $10^{-4}$  to  $10^{-5}$  g, it will be necessary to consider the background gravitational gradient when deciding where in the Space Station to place the GGSF. The GGSF will take advantage of some of the user support systems supplied by the Space Station such as the  $10^{-3}$  torr "house" vacuum and data from the accelerometer system. Also, given the delicate physical and chemical properties of some particles generated in the GGSF, some preliminary sample analysis on the Space Station may be desirable. Such analysis will require special sample handling equipment and analytical tools. For example, some GGSF experiments will use a Scanning Electron Microscope, a Gas Chromatograph, a Mass Spectrometer, a (micro) mass measurement system, and/or a High Pressure Liquid Chromatograph if they are available.

## Gas-Grain Simulation Facility: Science Rationale/Objectives

In many astrophysical and geological systems (atmospheric clouds, interstellar clouds, planetary rings, Titan's organic aerosols, Martian dust storms, etc.), processes involving small particles significantly contribute to the overall behavior of the system. Grain nucleation and aggregation, low velocity particle collisions, and charge accumulation are a few of the processes that influence such systems. Particles undergoing these processes include interstellar grains, protoplanetary particles, atmospheric aerosols, combustion products, and pre-biotic organic polymers.

The ability to simulate and investigate these types of systems and processes would present an exciting opportunity to answer long-standing scientific questions concerning the life and death of stars, the formation of the Solar System, and the connection between the Solar System's evolution and the appearance of life. These investigations would also increase our understanding of processes of immediate concern such as acid rain formation, ozone depletion, and climatic change on Earth. Furthermore, investigation of particle systems is essential to the achievement of NASA's scientific goal to attain a deep understanding of the Solar System, Earth, and the origin of life.

Many particle systems are not well understood because parameters relevant to these systems are poorly determined or unknown. Examples of such parameters are the coagulation rate of aerosol particles, the size distribution of particles nucleated from a gas, and the dependence of aggregation efficiency on material properties. Due to rapid particle settling in a 1g environment, these parameters are difficult and in many cases impossible to measure in experimental simulations on Earth.

In the study of small particle processes relevant to scientific issues mentioned above, the demands on experiment design are severe. Two common requirements are low relative velocities between particles and long time periods during which the particles must be suspended. Generally, the suspension times required are substantially longer than can be attained in 1g. Furthermore, for many studies, Earth's gravity can interfere directly with the phenomenon under study (e.g., weak inter-particle forces) or preclude the establishment of proper experimental conditions (e.g., a convection-free environment). Consequently, many processes are not amenable to experimentation in 1g.

However, in the Earth-orbital environment, the effects of gravity are reduced by a factor of as much as one million. In this environment, previously impractical or impossible experiments become feasible. Small-particle processes which cannot be studied on Earth can be investigated in Earth-orbit with a general-purpose microgravity particle research facility such as the Gas-Grain Simulation Facility (GGSF).

The GGSF, a facility-class payload proposed for the Space Station, will be used to simulate and investigate fundamental chemical and physical processes such as the formation, collision and interaction of droplets, grains and other particles. Scientific issues that can be addressed with the Gas-Grain Simulation Facility are relevant to the disciplines of exobiology, planetary science, astrophysics, atmospheric science, biology, and physics and chemistry. To date, twenty candidate GGSF experiments have been identified and described in detail. The candidate experiments are as follows:

- 1. Low-Velocity Collisions Berween Fragile Aggregates
- 2. Low-Energy Grain Interaction/Solid Surface Tension
- 3. Cloud Forming Experiment

- 4. Planetary Ring Particle Dynamics
- 5. Aggregation of Fine Geological Particulates in Planetary Atmospheres
- 6. Condensation of Water on Carbonaceous Particles
- 7. Optical Properties of Low-Temperature Cloud Crystals
- 8. Ice Scavenging and Aggregation
- 9. Synthesis of Tholin in Microgravity and Measurement of its Optical Properties
- 10. Metallic Behavior of Aggregates
- 11. Investigations of Organic Compound Synthesis on Surfaces of Growing Particles
- 12. Crystallization of Protein Crystal-Growth Inhibitors
- 13. Dipolar Grain Coagulation and Orientation
- 14. Titan Atmospheric Aerosol Simulation
- 15. Surface Condensation and Annealing of Chondritic Dust
- 16. Studies of Fractal Particles
- 17. Emission Properties of Particles and Clusters
- 18. Effect of Convection on Particle Deposition and Coagulation
- 19. Growth and Reproduction of Microorganisms in a Nutrient Aerosol
- 20. Long Term Survival of Human Microbiota in and on Aerosols

The GGSF will be sufficiantly flexible to accommodate the above as well as many other scientifically important investigations without compromising the requirements of any particular investigation. By extending the range of conditions in which experiments can be performed, the GGSF will be a powerful tool for studying the physics of small particles and grains. Important advances in our understanding of the many small-particle phenomena should follow from the new ability to study subtle small-particle effects and interactions.

#### Gas-Grain Simulation Facility: Hardware

The Gas-Grain Simulation Facility (GGSF) consists of eight subsystems which are complimentary and interdependent. All of the subsystems are necessary for meeting the facility science requirements. The GGSF subsystems and hardware are as follows:

- 1. General Purpose Experiment Chamber/Containment Subsystem
  (Includes ports, feed-throughs, subsystem interfaces, double- or triplecontainment, vibration isolation, EM shielding, etc.)
- 2. Chamber Environment Regulation/Monitoring Subsystem
  (For regulation and monitoring of temperature, pressure, and humidity. Includes gas-handling system, filters, etc.)
- 3. Aerosol Generation/Measurement Subsystem
  (Includes aerosol generators, size spectrum analyzers, CN counter, electrostatic classifier, dryer, charge neutralizer, etc.)
- 4. Chamber Illumination, Optics, and Imaging Subsystem
  (Includes UV sources, camera with optics, various lamps, photometer, etc.)
- 5. Spectrometry/Optical Scattering Subsystem
  (Includes spectrometers, lasers, photodetectors and other support equipment for light scattering measurements, etc.)
- 6. Particle Manipulation and Positioning Subsystem
  (Includes acoustic levitator, particle injection mechanisms, particle retrieval mechanisms, etc.)
- 7. Computer Control and Data Acquisition Subsystem
  (Includes microcomputer and console, data bus, data storage, control electronics, etc.)
- 8. Storage Locker
  (For storing special gas mixtures, fluids for aerosol generators, interfaces and adaptors, PI-provided hardware, samples produced in experiment runs, film, etc.)

## LIFE SCIENCES FLIGHT PROGRAMS CHANGE REQUEST

#### Reference Documentation:

Life Sciences Hardware List for the Space Station Freedom Era. R-0006

#### Description of Change:

Change the Exobiology Facility section to reflect the following:

#### **EXOBIOLOGY FACILITY (8)**

|     |                                                          | Volume<br>(cu. m) | Weight (kg) | Power (watts) |
|-----|----------------------------------------------------------|-------------------|-------------|---------------|
| Gas | Grain Simulation Facility Hardware Group (8A)            | 2.40              | 800         | 1500          |
| 1.  | General Purpose Experiment Chamber/Containment Subsystem | 0.48              | 200         | 0             |
| 2.  | Chamber Environment Regulation/Monitoring Subsystem      | 0.23              | 80          | 200           |
| 3.  | Aerosol Generation/Measurement Subsystem                 | 0.45              | 150         | 300           |
| 4.  | Chamber Illumination, Optics, and Imaging Subsystem      | 0.20              | 80          | 200           |
| 5.  | Spectrometry/Optical Scattering Subsystem                | 0.20              | 150         | 300           |
| 6.  | Particle Manipulation and Positioning Subsystem          | 0.16              | 50          | 200           |
| 7.  | Computer Control and Data Acquisition Subsystem          | 0.20              | 50          | 300           |
| 8.  | Storage Locker                                           | 0.48              | 40          | 0             |

#### Justification/Rationale:

This Change Request identifies the component subsystems of the Gas-Grain Simulation Facility (8A) and includes the volume, weight and power estimates for each subsystem. The additional 0.48 cubic meters of volume indicated in this Change Request is required for storage of items such as special gas mixtures, fluids for aerosol generators, experiment-produced samples to be returned to Earth, and film. These changes reflect further refinement of the Gas-Grain Simulation Facility requirements.

#### Gas-Grain Simulation Facility: Hardware Definitions

General Purpose Experiment Chamber/Containment Subsystem: The Gas-Grain Simulation Facility (GGSF) experiment chamber for studying small-particle processes and interactions in microgravity.

Chamber Environment Regulation/Monitoring Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that establishes, regulates, and removes the gas-mixture in the GGSF chamber as well as monitors and regulates the chamber/gas temperature, pressure, and humidity.

Aerosol Generation/Measurement Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that generates and introduces into the GGSF chamber aerosol clouds of various concentration, particle-size, and dispersion and monitors the cloud size-distribution and total concentration.

Chamber Illumination, Optics, and Imaging Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that provides optical imaging of processes occurring in the GGSF chamber and provides various light/energy sources.

Spectrometry/Optical Scattering Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that measures light-scattering and extinction properties of aerosol/dust clouds and single grains.

Particle Manipulation and Positioning Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that mechanically and/or aerodynamically injects particles into the chamber, manipulates them by acoustic and/or aerodynamic levitation, and retrieves samples from the chamber.

Gas-Grain Simulation Facility Computer Control and Data Acquisition Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem which provides computer and electronic control of experiments, data acquisition and storage.

Gas-Grain Simulation Facility Storage Locker: A locker to store Gas-Grain Simulation Facility (GGSF) support materials such as PI-provided equipment and special dust or aerosol mixtures for a planned suite of experiments and to store samples for return to Earth.

| *ur |  |  |  |
|-----|--|--|--|
|     |  |  |  |
|     |  |  |  |
| ~   |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
| 9   |  |  |  |
|     |  |  |  |
|     |  |  |  |
| _   |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
| _   |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
| _   |  |  |  |
|     |  |  |  |
|     |  |  |  |
| ~   |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
| ~   |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
| _   |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |

| _ |  |  |  |
|---|--|--|--|
| ~ |  |  |  |
| - |  |  |  |
| - |  |  |  |