Assignment 1

Bislan Ashinov

1 Naive Bayes Classifier

Обозначения:

d - Документ

 c_i - Класс ј

 v_i - Слово і

 k_i - Сколько раз встретилось слово і в документе

 α - Параметр для сглаживания

М - Размер словаря

m - Количество классов

a)

$$P(v_i \in d | d \in c_j) = \frac{P(v_i \in d, d \in c_j)}{P(d \in c_j)} = \frac{\frac{\#\{d : v_i \in d, d \in c_j\}}{\#\{d\}}}{\frac{\#\{d : d \in c_j\}}{\#\{d\}}} = \frac{\#\{d : v_i \in d, d \in c_j\}}{\#\{d : d \in c_j\}}$$
(1)

$$P(d = (k_1, k_2, ..., k_M) | d \in c_j) = \prod_{i=1}^{M} P(d : \#\{v_i\} = k_i | d \in c_j) = \prod_{i=1}^{M} \frac{\#\{d : \#\{v_i\} = k_i, d \in c_j\}}{\#\{d : d \in c_j\}}$$
(2)

С применением аддитивного сглаживания, превратим эту оценку в следующее:

$$\prod_{i=1}^{M} \frac{\alpha + \#\{d : \#\{v_i\} = k_i, d \in c_j\}}{\alpha * M + \#\{d : d \in c_j\}}$$
(3)

c)

$$P(d \in c_j | d = (k_1, k_2, ..., k_M)) = \frac{P(d = (k_1, k_2, ..., k_M) | d \in c_j) P(d \in c_j)}{P(d = (k_1, k_2, ..., k_M))}$$
(4)

Из пункта b) можем подставить формулу для $P(d=(k_1,k_2,...,k_M)|d\in c_j)$ Тогда формула (3) примет вид:

$$\frac{P(d \in c_j)}{P(d = (k_1, k_2, ..., k_M))} \prod_{i=1}^{M} \frac{\alpha + \#\{d : \#\{v_i\} = k_i, d \in c_j\}}{\alpha * M + \#\{d : d \in c_j\}}$$
 (5)

Введем полную систему событий и разложим $P(d=(k_1,k_2,...,k_M))$ по формуле полной вероятности. $A_j=\{d\in c_j\}$. Очевидно, что события попарно

не пересекаются и в объединении образуют полную систему. Тогда

$$P(d = (k_1, k_2, ..., k_M)) = \sum_{j=1}^{m} P(A_j) P(d = (k_1, k_2, ..., k_M) | A_j)$$
 (6)

$$\begin{split} \frac{\frac{\#\{d:d\in c_j\}}{N}}{\sum\limits_{l=1}^{m}\frac{\#\{d:d\in c_l\}}{N}}P(d=(k_1,k_2,...,k_M)|d\in c_l)}\prod\limits_{i=1}^{M}\frac{\alpha+\#\{d:\#\{v_i\}=k_i,d\in c_j\}}{\alpha*M+\#\{d:d\in c_j\}}=\\ &=\frac{\#\{d:d\in c_j\}\prod\limits_{i=1}^{M}\frac{\alpha+\#\{d:\#\{v_i\}=k_i,d\in c_j\}}{\alpha*M+\#\{d:d\in c_j\}}}{\sum\limits_{l=1}^{m}\big(\#\{d:d\in c_l\}\prod\limits_{i=1}^{M}\frac{\alpha+\#\{d:\#\{v_i\}=k_i,d\in c_l\}}{\alpha*M+\#\{d:d\in c_l\}}\big)} \end{split}$$

d) Классификатор выберет класс, вероятность которого при условии документа является наибольшей, то есть

$$\underset{j}{\operatorname{argmax}}(P(d \in c_j | d = (k_1, k_2, ..., k_M))) \tag{7}$$

Возьмем полученную оценку из пункта с). Заметим, что в знаменателе всегда стоит сумма по всем классам, значит при выборе максимума из таких дробей можем выбирать максимум из числителей. (Еще раз показали, что вероятность документа не влияет на результат)

$$\underset{j}{\operatorname{argmax}}(\#\{d:d\in c_{j}\}\prod_{i=1}^{M}\frac{\alpha+\#\{d:\#\{v_{i}\}=k_{i},d\in c_{j}\}}{\alpha*M+\#\{d:d\in c_{j}\}})\tag{8}$$

2 Multinomial Naive Bayes Classifier

Обозначения:

d - Документ

 c_j - Класс ј

 v_i - Слово і

 k_i - Сколько раз встретилось слово і в документе

 α - Параметр для сглаживания

M - Размер словаря

m -Количество классов

 N_d - Количество слов в документе

N - Количество документов в выборке $C_{N\,d}$ - Количество перестановок слов в документе

a)
$$P(v_i \in d | d \in c_j) = \frac{\sum\limits_{d \in c_j} cnt(v_i, d)}{\sum\limits_{d \in c_i} len(d)}, \tag{9}$$

Со сглаживанием:

$$P(v_i \in d | d \in c_j) = \frac{\alpha + \sum_{d \in c_j} cnt(v_i, d)}{\alpha * M + \sum_{d \in c_j} len(d)}$$
(10)

где $cnt(v_i,d)$ - количество слов v_i в документе d, а len(d) - количество слов в d.

b)

$$P(d = (k_1, k_2, ..., k_m) | d \in c_j) = P(N) * C_{Nd} * \prod_{i=1}^{N_d} P(v_i | c_j),$$
(11)

где C_{Nd} - количество перестановок, равное полиномиальному коэффициенту

$$C_{Nd} = \frac{N_d!}{k_1! k_2! \dots k_m!}$$

c)

$$P(d \in c_{j}|d = (k_{1}, k_{2}, ..., k_{3})) = \frac{P(d = (k_{1}, k_{2}, ..., k_{m})|d \in c_{j})P(d \in c_{j})}{P(d = (k_{1}, k_{2}, ..., k_{3}))} = \frac{P(d = (k_{1}, k_{2}, ..., k_{3}))}{P(d) * C * \prod_{i=1}^{N_{d}} \frac{P(v_{i}|c_{j})}{P(d)}} = \frac{\frac{\#\{d: d \in c_{j}\}}{N}P(N_{d}) * C * \prod_{i=1}^{N_{d}} \frac{P(v_{i}|c_{i})}{\alpha * M + \sum_{d \in c_{j}} len(d)}}{P(d)}$$

Разложим также P(d) по формуле полной вероятности с полной системой событий $A_j=d\in c_j$, вынесем за скобку в сумме $P(N_d)$, $C_{N\,d}$ и N и сократим:

$$\frac{\#\{d: d \in c_j\} * \prod_{i=1}^{N_d} \frac{\alpha + \sum\limits_{d \in c_j} cnt(v_i, d)}{\alpha * M + \sum\limits_{d \in c_j} len(d)}}{\sum\limits_{l=1}^{m} \#\{d: d \in c_l\} \prod\limits_{i=1}^{N_d} \frac{\alpha + \sum\limits_{d \in c_l} cnt(v_i, d)}{\alpha * M + \sum\limits_{d \in c_l} len(d)}}$$
(12)

d) Классификатор выбирает класс с наибольшей вероятностью. Как и в модели Бернулли, достаточно оценить числитель дроби, так как знаменатель равен сумме по всем классам и для всех классов одинаков. Необходимо найти:

$$\underset{j}{\operatorname{argmax}}(\#\{d:d\in c_{j}\}\prod_{i=1}^{M}\frac{\alpha+\sum\limits_{d\in c_{l}}cnt(v_{i},d)}{\alpha*M+\sum\limits_{d\in c_{l}}len(d)}) \tag{13}$$

3 Практическая часть

d) Минимальные веса

Слова	Слова Байесовские веса		Neg
'4/10'	-3.9327313682595886	0	49
'3/10'	-3.8048979967497036	0	43
'thunderbirds'	-3.6842700089610894	0	38
'boll'	-3.6180206234198877	1	72
'/>4/10'	-3.5470688874476046	0	33
'2/10'	-3.486444265631169	0	31
'beowulf'	-3.486444265631169	0	31
'ajay'	-3.421905744493598	0	29
'dahmer'	-3.421905744493598	0	29
'uwe'	-3.3880041928179168	1	57
'deathstalker'	-3.3529128730066464	0	27
'welch'	-3.3165452288357713	0	26
'tedium'	-3.278804900852924	0	25
'kareena'	-3.278804900852924	0	25
'seagal'	-3.2261611673675024	2	73
'turgid'	-3.1987621931793875	0	23
'*1/2'	-3.1987621931793875	0	23
'hobgoblins'	-3.1987621931793875	0	23
'sarne'	-3.1987621931793875	0	23
'palermo'	-3.1987621931793875	0	23
'/>3/10'	-3.156202578760592	0	22
'unwatchable'	-3.156202578760592	2	68
'grendel'	-3.156202578760592	0	22
'kibbutz'	-3.156202578760592	0	22
'maddy'	-3.1117508161897582	0	21
'dreck'	-3.1117508161897582	1	43
'kinski'	-3.1117508161897582	0	21
'slater'	-3.1117508161897582	0	21
'lordi'	-3.0652308005548665	0	20
'shaq'	-3.0652308005548665	0	20

Максимальные веса

	Максимальные веса Слова Байесовские веса		
'edie'	4.283356730372729	Pos 73	Neg 0
'antwone'	4.213398141765818	68	0
'gundam'	4.10642602221365	61	0
'paulie'	4.09016550134187	60	0
'mildred'	4.073636199390659	59	0
'corbett'	3.7404917528621215	42	0
'din'	3.6928637038728667	40	0
'flavia'	3.6681710912824954	39	0
'biko'	3.5902095498127835	36	0
'deathtrap'	3.5346396986579727	34	0
'trier'	3.4757991986350394	32	0
'ossessione'	3.445027539968285	31	0
'7/10'	3.429279183000146	62	1
'yokai'	3.413278841653705	30	0
'brashear'	3.3804890188307137	29	0
'mclaglen'	3.3804890188307137	29	0
'visconti'	3.3804890188307137	29	0
'/>7/10'	3.3804890188307137	29	0
'daisies'	3.3465874671550324	28	0
'creasy'	3.3465874671550324	28	0
'gino'	3.3465874671550324	28	0
'8/10'	3.3291957244431636	56	1
'SOX'	3.3291957244431636	56	1
'venoms'	3.311496147343762	27	0
'rea'	3.311496147343762	27	0
'iturbi'	3.311496147343762	27	0
'ultimatum'	3.311496147343762	27	0
'warhols'			0
	3.311496147343762	27	
'gunga'	3.275128503172887	26	0
'tsui'	3.275128503172887	26	0

e)

Модель	Время обучения	train set	dev set	dev-b set
Bernully	8.17s	93.14	85.76	73.65
Multinomial	10.05s	92.41	85.68	73.55

f)Модели с биграммами дают более точный результат

Модель	train set	dev set	dev-b set
Bernully	99.54	88.12	74.90
Multinomial	99.39	87.98	75.30

При добавлении 3-грамм результат снова улучшил, но уже не так заметно на тестовых выборках, однако все еще заметно на валидационных

Модель	train set	dev set	dev-b set
Bernully	99.99	89.15	75.35
Multinomial	99.99	89.15	75.35

Также добавление 4-грамм дает результат точнее, но проверить мне это удалось лишь раз, так как мой компьютер очень тяжело переносит использование такого количества оперативной памяти. К сожалению, точные результаты у меня не сохранены, но именно эта модель была отослана мною в соревнование

19.10.2020. Также там были удалены униграммы, что также повысило точность.