2.

```
\begin{split} & \mathsf{EDGE}(I,J) \\ & \mathsf{RESULT} \leftarrow F \\ & Y \leftarrow VERT[I] \\ & WHILE(Y \neq 0) \\ & IF(HEAD(X) == J) \ THEN \\ & \mathsf{RESULT} \leftarrow T \\ & \mathsf{ELSE} \\ & X \leftarrow \mathsf{NEXT}(X) \end{split}
```

**3.** On average, EDGE must look at the average number of edges from any vertex. If R has P edges and N vertices, then EDGE examines  $\frac{\sum P_{ij}}{N} = \frac{P}{N}$  edges on average.

# 4.

$$LOOK(NUM, NEXT, START, N, K)$$
 $X \leftarrow START$ 
 $WHILE(X \neq 0)$ 
 $IF(K == NUM(X)) THEN$ 
 $RETUEN X$ 
 $ELSE$ 
 $X \leftarrow NEXT(X)$ 
 $PRINT("NOT FOUND")$ 

# 6.

# 一种解法:

| VERT | TAIL | HEAD | NEXT |
|------|------|------|------|
| 2    | 4    | 1    | 9    |

| 4 | 1 | 1 | 3  |
|---|---|---|----|
| 7 | 1 | 2 | 5  |
| 1 | 2 | 1 | 6  |
|   | 1 | 3 | 0  |
|   | 2 | 4 | 8  |
|   | 3 | 4 | 10 |
|   | 2 | 3 | 0  |
|   | 4 | 3 | 0  |
|   | 3 | 3 | 0  |

$$\mathbf{M}_{R}\!\!=\!\!\begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$



# 12.

# 一种解法:

| VERT | TAIL | HEAD | NEXT |
|------|------|------|------|
| 1    | F    | F    | 2    |
| 4    | F    | M    | 3    |

| 7  | F | W | 0  |
|----|---|---|----|
| 11 | M | M | 5  |
|    | M | F | 6  |
|    | M | W | 0  |
|    | R | F | 8  |
|    | R | M | 9  |
|    | R | R | 10 |
|    | R | W | 0  |
|    | W | F | 12 |
|    | W | M | 13 |
|    | W | W | 0  |

(d)  $\{(a,a), (e,a), (d,a), (a,b), (b,c), (d,c), (e,e), (a,e), (b,e), (d,e)\}$ 

12.

$$\mathbf{M}_{R} \cap \mathbf{S} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix} \qquad \mathbf{M}_{R} \cup \mathbf{S} = \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \qquad \mathbf{M}_{R}^{-1} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \qquad \mathbf{M}_{S}^{-1} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \qquad \mathbf{M}_{S}^{-1} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix}$$

14.

$$R \cap S = \{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$$
  
 $\{\{1,2\},\{3\},\{4\},\{5\},\{6\}\}\}$ 

**19.** The definitions of irreflexive, asymmetric, and antisymmetric each require that a certain pair does not belong to *R*. We cannot "fix" this by including more pairs in *R*.

20.(a)成立, (b)不成立

**23.** (a) Reflexive.  $a R a \wedge a S a \Rightarrow a S \circ R a$ . Irreflexive. No.  $1 R 2 \wedge 2 S 1 \Rightarrow 1 S \circ R 1$ . Symmetric. No.  $1 R 3, 3 R 1, 3 S 2, 2 S 3 \Rightarrow 1 S \circ R 2$ , but  $2 S \circ R 1$ . Asymmetric. No.  $R = \{(1, 2), (3, 4)\}$  and  $S = \{(2, 3), (4, 1)\}$  provide a counterexample. Antisymmetric. No.  $R = \{(a, b), (c, d)\}$  and  $S = \{(b, c), (d, a)\}$  provide a counterexample. Transitive. No.  $R = \{(a, d), (b, e)\}$  and  $S = \{(d, b), (e, c)\}$  provide a counterexample.

**(b)** No, symmetric and transitive properties are not preserved.

24.

(a) 
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$
 (c) 
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

26.

If  $a(R \cap S)b$ , then a R b, since R is asymmetric, there is no b R a. Then there is no  $b(R \cap S)a$ , so  $R \cap S$  is asymmetric.

Let  $R=\{(1,2)\}$ ,  $S=\{(2,1)\}$  , so  $R \cup S=\{(1,2),(2,1)\}$  , as we can see,  $R \cup S$  is not asymmetric.

**27.**  $R \cap S$  is antisymmetric. If  $a(R \cap S)b$  and  $b(R \cap S)a$ , then a R b and b R a. Hence a = b because R is antisymmetric.  $R \cup S$  may not be antisymmetric. Let  $R = \{(1, 2)\}$ ,  $S = \{(2, 1)\}$ .

# 28.

Let  $a(S \cup T) \circ R$  c, then there is  $a(S \cup T)b$  and b R c. Then a S b or a T b, so we have a  $S \circ R$  c or a  $T \circ R$  c. Then a  $(S \circ R) \cup (T \circ R)$  c. Hence,  $(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$ 

# 30.

Let a T  $\circ$ R c, so a R b and b T c. As R  $\subseteq$ S, we have a S b, then a T  $\circ$ S c. So if R  $\subseteq$  S, then T  $\circ$  R  $\subseteq$  T  $\circ$ S.

- **31.** (a) Let  $\mathbf{M}_{R \cap S} = [m_{ij}]$ ,  $\mathbf{M}_R = [r_{ij}]$ ,  $\mathbf{M}_S = [s_{ij}]$ .  $m_{ij} = 1$  if and only if  $(i, j) \in R \cap S$ .  $(i, j) \in R$  if and only if  $r_{ij} = 1$  and  $(i, j) \in S$  if and only if  $s_{ij} = 1$ . But this happens if and only if the i, jth entry of  $\mathbf{M}_R \wedge \mathbf{M}_S$  is 1.
  - **(b)** Let  $\mathbf{M}_{R \cup S} = [m_{ij}]$ ,  $\mathbf{M}_R = [r_{ij}]$ ,  $\mathbf{M}_S = [s_{ij}]$ .  $m_{ij} = 1$  if and only if  $(i, j) \in R \cup S$ .  $(i, j) \in R$  if and only if  $r_{ij} = 1$  or  $(i, j) \in S$  if and only if  $s_{ij} = 1$ . But this happens if and only if the i, jth entry of  $\mathbf{M}_R \vee \mathbf{M}_S$  is 1.
  - (c) The i, jth entry of  $\mathbf{M}_{R^{-1}}$  is 1 if and only if  $(i, j) \in R^{-1}$  if and only if  $(j, i) \in R$  if and only if the j, ith entry of  $\mathbf{M}_R$  is 1 if and only if the i, jth entry of  $\mathbf{M}_R^T$  is 1.
  - (d) The i, jth entry of  $\mathbf{M}_{\overline{R}}$  is 1 if and only if  $(i, j) \in \overline{R}$  if and only if  $(i, j) \notin R$  if and only if the i, jth entry of  $\mathbf{M}_R$  is 0 if and only if the i, jth entry of  $\overline{\mathbf{M}}_R$  is 1.

If a R - S b, then a R b and there is no a S b. As R and S are symmetric relations, so b R a and there is no b S a. Then b R - S a . Hence R - S is also a symmetric relation on A.

- **37.** (a) R is symmetric if and only if  $x R y \Rightarrow y R x$  if and only if  $R \subseteq R^{-1} \subseteq R$ .
  - (b) Suppose R is antisymmetric. Let  $(x, y) \in R \cap R^{-1}$ , then x = y and  $(x, y) \in \Delta$ . Suppose  $R \cap R^{-1} \subseteq \Delta$ . If x R y and y R x, then x R y and  $x R^{-1} y$ . Thus  $(x, y) \in \Delta$ , so x = y.
  - (c) Suppose R is asymmetric. Let  $(x, y) \in R \cap R^{-1}$ . This contradicts the fact that R is asymmetric. Hence  $R \cap R^{-1} = \emptyset$ . Let x R y and y R x. Then  $(x, y) \in R \cap R^{-1} = \emptyset$ . Hence R is asymmetric.

# 4.8

#### 8.

Since  $S^{\infty}=S\cup S^2\cup\cdots\cup S^n$  ,  $S=R^2$  , hence,  $S^{\infty}=R^2\cup R^4\cup\cdots\cup R^{2n}$ 

Therefore,  $aS^{\infty}b \Leftrightarrow a(R^2 \cup R^4 \cup \cdots \cup R^{2n})b \Leftrightarrow aR^2b \vee aR^4b \vee \cdots \vee aR^{2n}b \Leftrightarrow$  there is a path in R from a to b having an even number of edges.

### 10.

n = 4

$$\text{Let } W_0 = M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{, then } W_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{, } W_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{, }$$

$$W_3 = W_4 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{, therefore, } M_{R^{\infty}} = W_4 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

n = 4

$$\text{Let } W_0 = M_R = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \text{ then } W_1 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, W_2 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

#### **14.**

Disproof.

$$M_R = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Therefore,  $M_{s(R_t)} \neq M_{t(R_s)}$ , the symmetric closure of  $R_t$  is not the same relation as the transitive closure of  $R_s$ .

**18.** 

$$M_{(R \cup S)^{\infty}} = \begin{vmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{vmatrix}$$

$$A/R = \{\{1\}, \{2,3\}, \{4,5\}\}, A/S = \{\{1,2\}, \{3\}, \{4\}, \{5\}\}, A/(R \cup S)^{\infty} = \{\{1,2,3\}, \{4,5\}\}.$$

#### 20.

19 题中的过程仅适用于R和S均为等价关系,且计算 $(R \cup S)^{\infty}$ 过程中需要用到 Warshall 算法,所以无法替代 Warshall 算法。

### 23.

We first show  $R^{\infty}$  is transitive. Then we show it is the smallest relation that contains R. It is a direct proof.

#### 24.

首先证明若从a到b之间存在环,则存在更短的路径;再证明a到b之间,若a,b不同,则最长路径长度为n-1,若a,b相同,则最长路径长度为n;因此, $\forall k \in \mathbb{Z}$ , $1 \le k \le n$ , $aR^kb$ ,因此 $R^\infty = R \cup R^2 \cup R^n$ 。间接证明。

#### 25.

 $R \times R$ 

- **5.** Each integer has a unique square that is also an integer.
- **6.** For each  $a \in \mathbb{R}$ ,  $e^a \in \mathbb{R}$ , and for each  $a \in \mathbb{R}$ , there is a unique  $e^a$ .
- 7. Each  $r \in \mathbb{R}$  is either an integer or it is not.

- **8.** For each  $a \in \mathbb{R}$ , there is a unique integer which is the greatest integer less than or equal to a.
- **11.** (a) Both.
- (b) Neither.
- **12.** (a) One to one.
- (b) Onto.
- **13.** (a) Both.
- (b) Onto.
- **14.** (a) Onto.
- (b) Neither.
- **15.** (a) Both.
- (b) Onto.

- **29.**  $n^m$ .
- **30.**

If  $f:A \to B$  and  $g:B \to C$  are one-to-one functions, then  $g \circ f$  is one to one.

Proof: Let  $a_1, a_2 \in A$ . Suppose  $(g \circ f)(a_1) = (g \circ f)(a_2)$ . Then  $g(f(a_1)) = g(f(a_2))$  and  $f(a_1) = f(a_2)$ , because  $(g \circ f)(a_1) = g(f(a_1))$ ,  $(g \circ f)(a_2) = g(f(a_2))$  and g is one-to-one functions. Thus a1 = a2, because f is one-to-one functions. Hence  $g \circ f$  is one to one.

31.

If  $f: A \to B$  and  $g: B \to C$  are onto functions, then  $g \circ f$  is onto.

Proof: Choose  $x \in C$ . Then there exists  $y \in B$  such that g(y) = x. (Why? because g is onto) Then there exists  $z \in A$  such that f(z) = y (why? because f is onto) and  $(g \circ f)(z) = x$ . Hence,  $g \circ f$  is onto.

33.

Suppose  $g \circ f$  is onto. Let  $c \in C$ . Then  $\exists a \in A$  such that  $(g \circ f)(a) = c$ . But  $(g \circ f)(a) = g(f(a))$ ,  $f(a) \in B$ , so g is onto.

Use mathematical induction to prove,  $\forall k \in \mathbb{Z}$  ,  $f^k$  is bijection.

Therefore, if  $a_1, a_2 \in A$ ,

$$O(a_1, f) = \{ f^0(a_1), f^1(a_1), f^{-1}(a_1), f^2(a_1), f^{-2}(a_1), \cdots \},$$

$$O(a_2, f) = \{f^0(a_2), f^1(a_2), f^{-1}(a_2), f^2(a_2), f^{-2}(a_2), \cdots \}$$

If 
$$a_1 \neq a_2$$
,  $\forall k \in \mathbb{Z}$ ,  $f^k(a_1) \neq f^k(a_2)$ , then  $O(a_1, f) \cap O(a_2, f) = \emptyset$ .

Therefore, if  $O(a_1, f) \cap O(a_2, f) \neq \emptyset$ , then  $a_1 = a_2$ , then  $O(a_1, f) = O(a_2, f)$ .

## **40.**

(a) Disproof.

$$f(a_1 + a_2) = (a_1 + a_2)^2$$
,  $f(a_1) + f(a_2) = a_1^2 + a_2^2$ 

If 
$$a_1, a_2 \neq 0$$
, then  $(a_1 + a_2)^2 \neq a_1^2 + a_2^2$ , then  $f(a_1 + a_2) \neq f(a_1) + f(a_2)$ .

(b) Proof.

The length of  $\,s_1 \cdot s_2\,$  is equal to the length of  $\,s_1\,$  plus the length of  $\,s_2\,$  .

Therefore, 
$$f(s_1 \cdot s_2) = f(s_1) + f(s_2)$$
.

# **41.** Disproof.

(a) and (b). Consider the table for ⋄.

Since f(0) = true and f(1) = false, we see this is not the table for either  $\vee$  or  $\wedge$ .

n = ak + r,  $0 \le r < n$ . Since  $k < 2k < 3k < \cdots < ak \le n$  the number of multiples of k between 1 and n is a. But  $\frac{n}{k} = a + \frac{r}{n}$  with  $0 \le \frac{r}{n} < 1$  so  $\lfloor \frac{n}{k} \rfloor = a$ .

8.

设 n=2k+1,(k 
$$\in$$
 Z)  $\frac{n^2}{4} = \frac{4k^2+4k+1}{4} = k^2+k+\frac{1}{4}$ ,向上取整为 $k^2+k+1$ 。

$$\frac{n^2+3}{4} = \frac{4k^2+4k+4}{4} = k^2+k+1$$

所以 
$$\lceil \frac{n^2}{4} \rceil = \frac{n^2+3}{4}$$

- 18. (例 7.(a)中1: A\* -> Z 为 l(w), 它是字符串 w 的长度)
- (a) 由于 $A^*$ 中元素均为字符串,字符串必有唯一长度,所以1是处处有定义的。
- (b) 'ab' ∈ A\*, 'ba' ∈ A\*, l('ab') = 2, l('ba') = 2, 所以1不是单射。
- (c) l(w)为字符串 w 的长度, l(w)>=0, 但 l(w) ∈ Z, 所以 1 不是满射.

## 20.

存在 2 个不同的关于 p 的布尔函数,f(p) = p,g(p) = ! p

存在 4 个有两个布尔变量的布尔函数,设这两个布尔变量为 p,q

$$f1(p, q) = p&q$$
,  $f2(p, q) = p&!q$ ,  $f3(p, q) = !p&q$ ,  $f1(p, q) = !p&!q$ 

### 28.

对任意 S 为 A 的子集, 令 f (x)=1,  $x \in S$ , 0,  $x \in A \setminus S$ ; 这样对每个元素  $x \in A$ , f(x)有两个取值, 0 或 1; 因此, 根据乘法原理, 这样的 f 有  $2^n$  个, 每个 f 唯一的对应 A 的一个子集, 因此  $|pow(A)| = 2^n$ 

 $f^{-1}(1)$  is the set of elements of A.

**5.3** 

11.

$$\{f_5\}, \{f_6, f_{10}, f_{11}\}, \{f_7\}, \{f_4\}, \{f_8\}, \{f_1\}, \{f_2\}, \{f_3\}, \{f_9\}, \{f_{12}\}.$$

**12.** 

**13.** 

$$f_1$$
,  $\Theta(n \lg n)$ ;  $f_2$ ,  $\Theta(n^2)$ ;  $f_4$ ,  $\Theta(\lg n)$ ;  $f_5$ ,  $\Theta(1)$ ;  $f_6$ ,  $\Theta(n)$ ;  $f_{10}$ ,  $\Theta(n)$ ;  $f_{11}$ ,  $\Theta(n)$ .

**20.** 

 $\Theta(n)$ 

21.

$$f(n, m, q) = 1 + nq + 3nmq + 1$$
. Let  $N = \max(n, m, q)$ , then  $f$  is  $\Theta(N^3)$ .

$$f(n+2) = 2*f(n) + f(n+1)$$

$$f(0) = 0$$
,  $f(1) = 1$ 

得 
$$f(n) = 2^n/6 + (-1)^n/3$$

$$f(n) \in \Theta (2^n)$$

伪代码:

- 1. f0 <- 0
- 2. f1<-1

## 3. FOR I=0 THRU N

a. 
$$f2 = 2*f0+f1$$

b. 
$$f0 = f1$$

c. 
$$f1 = f2$$

## 4. RETURN f2

计算 F(N)所需要的运行时间为 O(n)

23.

(a) 
$$P_n = P_{n-1} + (n-2) + (n-3), P_3 = 1, P_4 = 4.$$

**(b)** 
$$\theta(n^2)$$
.

24.

若  $\Theta(n^a)$ 比  $\Theta(n^b)$ 低,则存在  $n \ge k$  和常数 c,  $|n^a| < c|n^b| = c|n^a|$ .  $|n^{b-a}|$  即  $c|n^{b-a}| > 1$ ,c 为常数,所以 b > a > 0

若 b>a>0,则存在则存在 n  $\geq$  2 和常数 c = 1,  $|n^a| < |n^b| = |n^a|$ .  $|n^{b-a}|$  即  $\Theta(n^a)$ 比  $\Theta(n^b)$ 低

所以 $\Theta(n^a)$ 比 $\Theta(n^b)$ 低,当且仅当b>a>0。

若 $\Theta(a^n)$ 比 $\Theta(b^n)$ 低,则存在  $n \ge k$  和常数 c,|  $a^n$ |< c|  $b^n$ |,即  $c > (a/b)^n$ 则 0 < a < b。

若 0<a<b, 则存在  $n \ge 2$  和常数 c = 1,  $|a^n|<|b^n|$ ,所以  $\Theta(a^n)$ 比  $\Theta(b^n)$ 低。 综上  $\Theta(a^n)$ 比  $\Theta(b^n)$ 低,当且仅当 0<a<b

#### **26.**

设 g(x)=r f(x)

若 r>0 存在 n>=1,和常数 c=2r,使得 |g(x)| = |r|f(x)| <=2r|f(x)|成立 同时存在 n>=1,和常数 c=2/r,使得 |f(x)| <=2/r\*|rf(x)| = 2|f(x)|成立 若 r<0 存在 n>=1,和常数 c=-2r,使得 |g(x)| = |r|f(x)| <=-2r|f(x)|成立 同时存在 n>=1,和常数 c=-2/r,使得 |f(x)| <=-2/r\*|rf(x)| = 2|f(x)|成立 所以如果 r!=0,那么对于任意函数 f,有  $\Theta$  (rf) =  $\Theta$  (f)

#### 27.

Suppose h(n) > 0,  $\forall n$ ,  $\Theta(f)$  lower than (or the same as)  $\Theta(g)$ .  $|f(n)| \le c \cdot |g(n)|$ ,  $n \ge k$  (and  $|g(n)| \le d \cdot |f(n)|$ ,  $n \ge l$ ).  $h(n)|f(n)| \le c \cdot h(n) \cdot |g(n)|$ ,  $n \ge k$  (and  $h(n)|g(n)| \le d \cdot h(n) \cdot |f(n)|$ ,  $n \ge l$ ). Hence  $|f(n) \cdot h(n)| \le c \cdot |g(n) \cdot h(n)|$ ,  $n \ge k$  (and  $|g(n) \cdot h(n)| \le d \cdot |f(n) \cdot h(n)|$ ,  $n \ge l$ ). Hence  $\Theta(fh)$  is lower than (or the same as)  $\Theta(gh)$ . Note that if  $\Theta(f)$  is strictly lower than  $\Theta(g)$ , then  $\Theta(fh)$  must be strictly lower than  $\Theta(gh)$ .

#### 28.

若 $\Theta$ (f) =  $\Theta$ (h),则 f = O(h),有 n>=k1,和常数 c1,使得|f(n)|<=c1|h(n)| 同样若 $\Theta$ (g) =  $\Theta$ (h),则 g = O(h),有 n>=k2,和常数 c2,使得|g(n)|<=c2|h(n)|

则存在  $n>=max\{k1,k2\}$ 和常数 c1+k2,使得|f(n)|+|g(n)|<=(c1+c2)|h(n)|

 $|f(n)+g(n)| \le |f(n)|+|g(n)|$ 

则结论 如果 $\Theta(f) = \Theta(g) = \Theta(h)$ ,那么 f+g是 O(h)的 成立。

**29.** 

26 题已证明定理 6,结合关系 Θ 是传递的,结论得证。

# **5.4**

# **12.**

- (a) (6.8)° (2.3)° (1.4.5)
- (b) (1,2,3,4). (5,7,8,6)

# **13.**

- (a) (1,6,3,7,2,5,4,8)
- (b) (5,6,7,8)<sub>°</sub> (1,2,3)

# **14.**

- (a) (a,g,e,c,b,d)
- (b) (a,d,b,e,g,c)

## **15.**

- (a)  $(2,6) \circ (2,8) \circ (2,5) \circ (2,4) \circ (2,1)$ .
- **(b)**  $(3,6) \circ (3,1) \circ (4,5) \circ (4,2) \circ (4,8)$ .

## **16.**

RAEEU YEO HRW

(a)将置换写成不相交循环的积

(1,4,6,8,3) = (1,3)。(1,8)。(1,6)。(1,4) 为偶置换

(b)将置换写成不相交循环的积

(1,7,6,8,5)。(2,3,4)=(1,5)。(1,8)。(1,6)。(1,7)。(2,4)。(2,3) 为偶置换

# **26.**

p是集合 A 到自身的双射。

p2 = p。p,也是集合A到自身的双射。

所以 p2 是置换。

## **28.**

(a) (2,3,5)° (1,4)

(b)

| 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|
| 4 | 5 | 2 | 1 | 3 | 6 |

(c)

| 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|
| 1 | 5 | 2 | 4 | 3 | 6 |

(d) p 的周期为 2 x 3 = 6

- (a) Basis step: n = 1. If p is a permutation of a finite set A, then  $p^1$  is a permutation of A is true. Induction step: The argument in Exercise 26 also shows that if  $p^{n-1}$  is a permutation of A, then  $p^{n-1} \circ p$  is a permutation of A. Hence  $p^n$  is a permutation of A.
- **(b)** If |A| = n, then there are n! permutations of A. Hence, the sequence  $1_A$ , p,  $p^2$ ,  $p^3$ , ... is finite and  $p^i = p^j$  for some  $i \neq j$ . Suppose i < j. Then  $p^{-i} \circ p^i = 1_A = p^{-i} \circ p^j$ . So  $p^{j-i} = 1_A$ ,  $j i \in \mathbb{Z}$ .

证自反性。对于 A 中任一元素 a,有 $p^0(a) = a$ ,所以 a R a。自反性成立。

证对称性。若 a R b ,则 $p^n(a) = b$ ,则 $p^{-n}(b) = a$ ,b R a。对称性成立。

证传递性。若 a R b,b R c, 则 $p^{n1}(a) = b$ ,  $p^{n2}(b) = c$ , 则 $p^{n1} \circ p^{n2}(a) = c$ ,

即 $p^{n1+n2}(a) = c$ ,即 a R c。传递性成立。

所以 R 是一个等价关系。

- (a) 3
- (b) 6
- **38.**
- 10
- **39.**

For each increasing sequence of length  $\lceil \frac{n}{2} \rceil$ , there is exactly one associated up-down permutation of A, because there is just one way to arrange the remaining elements of A in decreasing order and insert them to fill the even positions.