TSM Deep Learning

$\begin{array}{c} {\rm Practical~work~10-} \\ {\rm Feature~Visualization~and~Data~Augmentation} \end{array}$

Objectives

MSE

The objective of this PW is to understand some more advanced methods to train and use Convolutional Neural Networks (CNN) including data augmentation and techniques of visualisation inside the network.

Submission

- **Deadline**: W11 (in 1 week), before the start of the lecture.
- **Format**: Zip with report and/or iPython notebook.

Exercise 1 Data Augmentation

Use the notebook CIFAR10CNN_from_raw_augmented_data_stud.ipynb available on Moodle as starting point.

Data augmentation - online augmentation

FIGURE 1 – Online data augmentation pipeline

a) Train a CNN

Define a CNN with the following structure: CONV(32F, same)-RELU-CONV(32F, same)-RELU-MAXP(2)-CONV(32F, same)-RELU-MAXP(2)-DENSE. Train the network using 10 epochs and batches of 128 images. Use a categorical_crossentropy loss and the adam optimizer.

b) Train the CNN with data augmentation

Re-read the section of the slides explaining the principles of data augmentation for images. Keras allows you to use an *online* data augmentation strategy as illustrated on Figure 1. Using the example given for the FashionMNIST dataset (cf. slides), implement a similar data augmentation strategy for CIFAR10.

You may try with different strategies and hyperparameter values of the data augmentation tool of Keras.

- a) Report the accuracy on the train set and on the test set for your different experiments. Do you observe an improvement using data augmentation?
- b) Compare the evolution of the loss through the training epochs, with and without using data augmentation. Comment your observations.
- c) If you tried with different data augmentation strategies, which one seems to give the best results?

Exercise 2 Visualisation of Activations

The objective is here to visualise the different activation maps in the network previously trained. The Figure 2 illustrates the principle for the first CONV layer on the first 6 filters of a given network.

Using the best of your network previously trained on CIFAR10 in exercise 1, implement a visualizer for the activations at different layer outputs.

- a) Read again the example of the visualisation presented in class.
- b) Implement a code to visualise all the filters at a given layer. Hints: use subplots to have a grid of images, use for loops to avoid code repetition.
- c) For a given input image (e.g. X_train[12]), visualise the different activations maps of your network : outputs of CONV, RELU, MAXP. Comment on what you see.

Figure 2 – Visualisation of activations of a CONV layer

Exercise 3 Optional: Review Questions

- a) Explain 2 strategies to visualise the modelling taking place in CNNs.
- b) What do we try to fight when using data augmentation?
- c) What are the implementation strategies for data augmentation?