REGULAR LANGUAGES

Frank Tsai

December 5, 2023

Contents

Contents
1 Deterministic finite automaton
2 Regular expressions
1. DETERMINISTIC FINITE AUTOMATON
Definition 1.1. A deterministic finite automaton (DFA) consists of the following data
1. a nonempty finite set Q of $states$;
2. a nonempty finite set Σ of <i>alphabet</i> ;
3. a transition function $\delta: Q \times \Sigma \to Q$;
4. an initial state $q_0 \in \mathcal{Q}$;
5. a set $F \subseteq Q$ of final states.
(1-1) A DFA is a simple <i>abstract machine</i> . The transition function $\delta: Q \times \Sigma \to Q$ specifies how the machine steps given an input and the current state.
(1·2) Given a DFA $D=(Q,\Sigma,\delta,q_0,F)$. We define a new function $\delta^*:\Sigma^*\to Q$ by recursion:
1. If the input is the empty string then $\delta^*(\varepsilon) = q_0$;
2. If the input is a string s' followed by a character c then $\delta^*(s' \cdot c) = \delta(\delta^*(s'), c)$.
For any string s over the alphabet Σ , $\delta^*(s)$ is the state of D after processing s .
Definition 1.2. Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. We say that a string s over the alphabet Σ is accepted by D if

 $\delta^*(s) \in F$

In other words, a string s is accepted by D if D ends up in a final state after processing s.

Definition 1.3. Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. The *language* of D, denoted $\mathcal{L}(D)$ is the set

$$\mathcal{L}(D) = \{\, s \in \Sigma^* \mid \delta^*(s) \in F \,\}$$

We say that a language $L \subseteq \Sigma^*$ is recognized by a DFA D if $\mathcal{L}(D) = L$.

Definition 1.4. A language L is said to be *regular* if there is a DFA D that recognizes L.

(1·3) In the following examples, take $\Sigma = \{0, 1\}$.

Example 1.5. The empty language \emptyset is regular.

(1.4) This language is recognized by the following DFA:

Example 1.6. The language Σ^* is regular.

(1.5) This language is recognized by the following DFA:

Example 1.7. Every finite language L_{Fin} is regular.

(1.6) The idea is that we can construct a DFA by brute force. This works because there are only finitely many strings in L_{Fin} , i.e., finitely many states suffice. For instance, suppose that $L_{\text{Fin}} = \{000, 010, 01\}$. The following DFA recognizes L_{Fin} :

Definition 1.8. Let $L, L' \subseteq \Sigma^*$ be languages. The concatenation $L \cdot L'$ is the language

$$L \cdot L' = \{ s \cdot s' \in \Sigma^* \mid s \in L \land s' \in L' \}$$

Theorem 1.9. The class of regular languages is closed under intersection, union, complement, concatenation, and Kleene closure. That is, if L and L' are regular languages then so are $L \cap L'$, $L \cup L'$, $\Sigma^* \setminus L$, $L \cdot L'$, and L^* .

Proof sketch. (1·7) We only sketch the proof of closure under union. Let $D = (Q, \Sigma, \delta, q_0, F)$ (resp., $D' = (Q', \Sigma, \delta', q'_0, F')$) be a DFA that recognizes L (resp., L'). The main idea is to construct a new DFA that simulates both D and D':

- 1. take $Q \times Q'$ as the set of states;
- 2. take Σ as the alphabet;
- 3. define the transition function $\Delta: (Q \times Q') \times \Sigma \to Q \times Q'$ by

$$\Delta((q, q'), c) = (\delta(q, c), \delta'(q', c))$$

- 4. take $(q_0, q'_0) \in Q \times Q'$ as the initial state;
- 5. take { $(q, q') \in Q \times Q' \mid q \in F \lor q' \in F'$ } as the set of final states.

2. REGULAR EXPRESSIONS

Definition 2.1. Given an alphabet Σ , *regular expressions* are defined inductively as follows:

- 1. ∅ is a regular expression;
- 2. ε is a regular expression;
- 3. each literal $c \in \Sigma$ is a regular expression;
- 4. if r and r' are regular expressions then $r \cdot r'$ is a regular expression;
- 5. if r and r' are regular expressions then r + r' is a regular expression;
- 6. if r is a regular expression then r^* is a regular expression.
- $(2\cdot 1)$ We have just defined the syntax of regular expressions. The semantics of regular expressions is defined by mapping each regular expression to a language.

Definition 2.2. The language of a regular expression r is defined by recursion on r:

1. the language of the regular expression \varnothing is the empty language:

$$\mathcal{L}(\emptyset) = \emptyset$$

2. the language of the regular expression ε is the language containing just the empty string:

$$\mathcal{L}(\varepsilon) = \{ \varepsilon \}$$

3. the language of the regular expression c is the language containing just c: for each $c \in \Sigma$,

$$\mathcal{L}(c) = \{c\}$$

4. the language of the regular expression rr' is the concatenation of $\mathcal{L}(r)$ and $\mathcal{L}(r')$:

$$\mathcal{L}(r \cdot r') = \mathcal{L}(r) \cdot \mathcal{L}(r')$$

5. the language of the regular expression r + r' is the union of $\mathcal{L}(r)$ and $\mathcal{L}(r')$:

$$\mathcal{L}(r+r') = \mathcal{L}(r) \cup \mathcal{L}(r')$$

6. the language of the regular expression r^* is the Kleene closure of $\mathcal{L}(r)$:

$$\mathcal{L}(r^*) = (\mathcal{L}(r))^*$$

Theorem 2.3. Let e be a regular expression. $\mathcal{L}(e)$ is regular, i.e., there is a DFA D that recognizes $\mathcal{L}(e)$.

Proof. (2·2) We proceed by induction on the structure of e. When e is \emptyset , ε , or c, $\mathcal{L}(e)$ is finite. In Example 1.7, we informally argued that finite languages are regular.

(2·3) When e is $r \cdot r'$ or r + r', the induction hypothesis states that $\mathcal{L}(r)$ and $\mathcal{L}(r')$ are regular. By definition $\mathcal{L}(r \cdot r') = \mathcal{L}(r) \cdot \mathcal{L}(r')$ and $\mathcal{L}(r + r') = \mathcal{L}(r) \cup \mathcal{L}(r')$. By Theorem 1.9, the class of regular languages is closed under concatenation and union, so $\mathcal{L}(r \cdot r')$ and $\mathcal{L}(r + r')$ are regular.

(2·4) Finally, when e is r^* , the induction hypothesis again states that $\mathcal{L}(r)$ is regular. By definition, $\mathcal{L}(r^*) = (\mathcal{L}(r))^*$. By Theorem 1.9, the class of regular languages is closed under Kleene closure, so $\mathcal{L}(r^*)$ is regular.

(2.5) Theorem 2.3 shows that every regular expression has a corresponding DFA. The converse is also true: every DFA has a corresponding regular expression. The proof of this fact is not trivial.