Evolutionäre Algorithmen

Vorstellung für das Proseminar: "Informatik trifft Maschinenbau"

Marcel Bienia

01.04.2020

Evolution

- Biologische Theorie von Charles Darwin in 1859
- Begriffe:
 - Individuen
 - Population
 - Eigenschaften
 - Gene
 - Verschieden stark Ausprägungen
 - Generationen Ansatz

Quelle: https://de.wikipedia.org/wiki/Datei:Charles Darwin aged 51.jpg

Vererbung

- Natürliche Fitness
- Selektion
- Rekombination
- Mutation

Evolutionäre Algorithmen in der Informatik

- Lösung:
 - Variierbare Lösung
 - Optimalitätssuche
- Fitness Funktion → Testen
- Selektion → Sieben
- Rekombination → Mischen
- Mutation → Ausprobieren
- Vererbung → Optimieren

Beispiel

Quelle: https://www.youtube.com/watch?v=GOFws hhZs8&t=156s

8/26 Youtube: CARYKH

Generation 1 / Sortiert TALVERTARALLENTARALLER EPPTURALAR TOPASTATES TOAT A 8 4 4 4 4 X R X P X 4101141111111 Mas 6 A NANDALA TARBONANTO PATERAL. A 1 7 1 7 ALLERDOPPISPARIANTARIJAAR 1 2 0 0 1 with the state ALADON PAINTELL RANGER AINI 1 - - - 4 7 6 4 TAITTELESTAL AND THE BOAL AND THE 10100 - 1 x 1 - 1 - 1 - 1 - 1 X - 2 X 3 X 1 - 1 X - 2 1 1 D A A Challallandana Varrana varana varana varana varana or de la contration de NOVER LE LA DE LENGIE - I DI LE PALENIE LE LI LI INVIANVABNIYAL-ABROCADAINIALAKKO I BR- JIA 1 1 2 A & 1 A B A M A T & T & P & 4 & I X T & 2 2 2 / A & b Y RATALES AND A CONTRACT TO A CONTRACT TO THE PROPERTY OF THE PR

Generation 1 / Selektiert

10/26

Youtube: CARYKH

Generation 2

WARREFOR I TREFERENCE A CALLARA CALLAR - ADDARDERARALIADADADADADITETONA - ADDARDADADADADADADADADA NEADESTRIPERTEDITION OF THE STATE OF THE STA ald - Draft dar en Nithar e Birt - branch dire eneral survivation and the survivation of a vy v / m v b y b / z / v v / a f = 8 v b V v b v a b = 1 m k 7 = v = 5 T b k f LAPPETTAL TALLES TO SEED TO SE - a V K d - - 1 d v P A D A D T - - - a a - - - A - A A / ? P - - A A V a A ALDATEDER POPERTRUPATION OF ALLER VATORS 9 6 6 9 - 2 - 2 2 4 - 4 4 4 4 - 4 4 - 4 4 5 7 - 2 - 1 8 97 -- 1 1 MADWID V 2 4 V 2 4 V 2 4 V 2 8 2 7 1 1 4 4 8 8 7 4 8 8 2 8 ~ 4 V PTINADAS AND DITATE AND INDUSTRIANTIANT I SAND 1 A T X P D B 1 T N B T P S 4 A A F S ! T A J A P B Y T I Y A J A P B Y T A Y A P B Y A P B Y T A Y VIVAQ-1 CIVIDA 1 2 5 1 X L X L Z L V 4 7 X N ~ B A 1 A 4 4 4 4 4 7 A Detade Dei - ttade Lenso, Doch I thad billett Namber Start Derich Contract of the Start of

11/26

Youtube: CARYKH

Y = Mediane erreichte Entfernung

X = Generationen

Generation 300

13/26

Youtube: CARYKH

Zum Paper

Kohlenstofffaserverstärkter Kunststoff

- Verstärkungsfasern
- Kunststoffmatrix
- Eigenschaften
 - Fest / Steif
 - Leicht
- Einsätze
 - Stahlgewinde für Verschraubungen
 - Lastverteilen
 - Kunststoffumgebung
 - Welche Geometrie?

Quelle: https://unsplash.com/photos/zOo_MkkJwJA

Quelle: https://www.kvt-fastening.de/de/solutioneering/success-stories/

Lebensraum

- Carbon Platte
- Stahlschraube
- Kunststoffeinsatz
- Kraft auf Bolzen
- Gegenhalten mittels Stahlplatte

Individuen

- R_0 = Wanddicke
- R_T = Oberer Durchmesser
- R_B = Unterer Durchmesser
- H_T = Höhe oberer Trichter
- $H_B = H\ddot{o}he$ unterer Trichter

Quelle: "Evolutionary Optimization of the Failure Behavior of Load Introduction Elements Integrated During FRP Sandwich Structure Manufacturing" by Jan Schwennen a. o.

Finite Elemente Methode

Quelle: https://de.wikipedia.org/wiki/Datei:Elmer-pump-heatequation.png

Quelle: https://de.wikipedia.org/wiki/Datei:FAE_visualization.jpg

Quelle: "Evolutionary Optimization of the Failure Behavior of Load Introduction Elements Integrated During FRP Sandwich Structure Manufacturing" by Jan Schwennen a. o.

Fitness Funktion

- f(x) = Fitness-Wert
- V(x) = Volumen
- F(x) = First failure
 - Reaktionskraft
 - 1% Abweichung
- $W_F + W_V = 100$

$$f(x) = W_F \times \frac{F(x)}{20.1kN} \times W_V \times (1 - \frac{V(X)}{72cm^3})$$

Selektion

- Fitness-proportional selection
 - Relation zum besten Element
 - Auswählen der besten X %
- Ranked selection
 - Ordnen nach Fitness-Wert
 - Ränge zu teilen
 - Die besten X auswählen
- Elite ranked selection
 - Ranked selection
 - Nur "Elite" auswählen

Rekombination

- 2 selektierte Individuen → 1 Nachkommen
- Gleich große neue Generation
- Uniform crossover
 - Jedes Gene wird zufällig von einem der Eltern ausgewählt
 - 50 / 50
- Flat crossover
 - Lineare Kombination
 - Wert zwischen den Elternwerten
 - Zufall oder bestimmbar

Mutation

- Erkunden
- Mutationsradius
- Random mutation
 - Jedes Individuum, jedes Gen
 - Verändert im Mutationsradius
- Uniform mutation
 - Mutationsbreite
 - Begrenzt die Anzahl der Individuen
 - Verändern im Mutationsradius

Der Algorithmus

- Elite ranked selection
 - Laufzeit
- Uniform Crossover & Flat crossover
- Random Mutation
 - Zusätzliche Erkundung
- $W_F = 35 \text{ und } W_V = 65$

Die Implementierung

- Phyton
- Abaqus Scripting interface
 - Eig. GUI Programm
 - Benutzt in Phyton
 - Automatisierte Test
 - Parallelisierung
 - Input & Output Datei
- Galileo: Genetic Algorithm
 - Open Source Bibliothek
 - In Phyton

Quelle: https://www.4realsim.com/wp-content/uploads/2019/02/download-abaqus.png

Die Ergebnisse

- 65.000 verschiedene Geometrien
- Menge optimaler Ergebnisse
- Optimale Geometrie in Trichterform
- First Failure: 8.32kN → 20.4kN
- Laufzeit unter 12 Stunden

Danke für die Aufmerksamkeit