Практическое занятие № 6

УСТОЙЧИВОСТЬ СИСТЕМ. ЧАСТОТНЫЕ КРИТЕРИИ УСТОЙЧИВОСТИ. КРИТЕРИЙ НАЙКВИСТА.

1. Цели и задачи работы

В результате студент должен освоить методы определения устойчивости систем автоматического управления.

Для формирования умений студент должен уметь:

- строить графики, соблюдая требования к выбору масштаба, к обозначениям, к вычерчиванию кривых;
- вычислять определители.

2. Рекомендации при подготовке к практическому занятию

- 2.1. Вопросы, которые необходимо изучить при подготовке к практическому занятию:
 - годограф,
 - устойчивая САУ,
 - неустойчивая САУ,
 - характеристическое уравнение,
 - квадрант.
- 2.2. Литература, которую необходимо изучить при подготовке к практическому занятию:
- 1. Гильфанов К.Х. Теория автоматического управления: Учеб. пособие. / Гильфанов К.Х., Подымов В.Н. Казань: Казан. гос. энерг. ун-т, 2009. 176 с.

Глава 5. Стр. 107-116.

2. Бесекерский В.А. Теория систем автоматического регулирования. Учебное пособие / Бесекерский В.А., Попов Е.П. – 4-е изд., перераб. и доп. – СПб, Изд-во «Профессия», 2008. – 752 с.

Глава 6. §6.4. Стр. 131-143.

2.3. Ссылка на лекции:

Лекция 12. Понятие об устойчивости. Частотные критерии устойчивости. Критерий Найквиста.

3. Краткие сведения из теории

Критерий Найквиста.

Критерий Найквиста применяется для исследования устойчивости замкнутых систем. На основе комплексной частотной характеристики (амплитудно-фазовой частотной характеристики) разомкнутой системы.

КЧХ имеет действительное и мнимое слагаемые:

$$W(j\omega) = U(\omega) + jV(\omega) . \tag{2.9}$$

Для построения КЧХ задают ω от 0 до ∞ и на комплексной плоскости получают годограф. Вид годографа, его расположение относительно точки -1 на действительной оси, позволяют судить об устойчивости замкнутой системы.

Рассмотрим формулировки критерия Найквиста для трех случаев.

1. Разомкнутая система устойчива. Тогда, если годограф устойчивой разомкнутой системы при изменении ω от 0 до ∞ не охватывает точку -1 на оси абсцисс, то замкнутая система будет устойчивой. Охватывает — замкнутая система неустойчивая.

Примеры годографов, соответствующих устойчивой и неустойчивой замкнутой системам, представлены на рис. 5.14 и 5.15.

2. Разомкнутая система неустойчива. Тогда, если годограф неустойчивой разомкнутой системы при изменении ω от 0 до ∞ **охватывает** точку -1 на оси абсцисс в положительном направлении m/2 раз, где m – число корней характеристического уравнения разомкнутой системы с положительной действительной частью, то замкнутая система будет устойчивой.

Примеры годографов, соответствующих устойчивой и неустойчивой замкнутым системам во втором случае, представлены на рис. 5.16 и 5.17 для m=2 .

Рис. 5.16 Рис. 5.17

3. Разомкнутая система астатическая. Годограф зеркально отражается и кривые «замыкаются» на бесконечности. Тогда, если точка -1 на оси абсцисс оказалась вне замкнутой кривой — замкнутая система устойчивая. Если охватывается кривой — неустойчивая. Примеры таких годографов приведены на рис. 5.18 и 5.19.

Замкнутая система будет находиться на границе устойчивости, если годограф разомкнутой системы проходит через точку -1 оси абсцисс. Аналитически это условие можно записать в виде

$$1 + W(j\omega) = 0.$$

Пример 1.

Дана передаточная функция разомкнутой системы:

$$W(p) = \frac{k}{p^3 + 3p^2 + 4p + 1}.$$

Полагая k=2 проверить с помощью критерия Найквиста, будет ли устойчивой замкнутая система?

Решение.

Предварительно выясняем устойчивость разомкнутой системы по критерию Гурвица: система устойчива.

Найдём комплексную частотную характеристику разомкнутой системы:

$$W(j\omega) = \frac{2}{-j\omega^3 - 3\omega^2 + j4\omega + 1} = \frac{2(1 - 3\omega^2) - j2(4\omega - \omega^3)}{(1 - 3\omega^2)^2 + (4\omega - \omega^3)^2}.$$

Выделим действительный и мнимый частотные полиномы:

$$U(\omega) = \frac{2(1-3\omega^2)}{(1-3\omega^2)^2 + (4\omega - \omega^3)^2},$$
$$V(\omega) = \frac{2(4\omega - \omega^3)}{(1-3\omega^2)^2 + (4\omega - \omega^3)^2}.$$

Построим годограф разомкнутой системы.

По условию $V(\omega) = 0$ находим частоты пересечения годографом действительной оси и соответствующие значения $U(\omega)$:

$$V(\omega) = 0,$$
 $4\omega - \omega^3 = 0,$ $\overline{\omega}_1 = 0,$ $\overline{\omega}_3 = 2,$

$$U(0) = 2.$$
 $U(2) = -0.18.$

Полагая $U(\omega) = 0$, находим частоту пересечения годографом мнимой оси и соответствующее значение $V(\omega)$:

$$U(\omega) = 0,$$
 $1 - 3\omega^2 = 0,$ $\overline{\omega}_2 = 1/\sqrt{3} = 0.58,$ $V(0.58) = -0.94.$

Для
$$\omega=1$$
 получаем $U(1)=-0.3$, $V(1)=-0.46$. При $\omega=\infty$ $U(\infty)=0$, $V(\infty)=0$.

Вид годографа показан на рис. 5.17.

Рис. 5.17. Годограф по условиям примера 5.10

Разомкнутая система устойчивая, годограф не охватывает точку (-1,0), значит, замкнутая система тоже устойчивая.

3. Содержание занятия

Задания по тематике.

Задача 1.

Дана передаточная функция разомкнутой системы:

$$W(p) = \frac{10}{p^2 + p + 1} \ .$$

Определить по критерию Найквиста будет ли устойчива замкнутая система.

Задача 2.

Передаточная функция разомкнутой системы

$$W(p) = \frac{6}{p-3}.$$

Выяснить устойчивость замкнутой системы.

Задача 3.

Разомкнутая система описывается уравнением

$$2\frac{d^2y}{dt^2} + 3\frac{dy}{dt} = x.$$

Построить годограф Найквиста. Выяснить устойчивость замкнутой системы.

5. Контрольные вопросы по теме занятия

- 5.1. Понятие об устойчивости.
- 5.2. Характеристическое уравнение.
- 5.3. Формулировка критерия Найквиста.