Comunicaciones Satelital Post-Desastre: Tecnologías, Arquitecturas y Desafíos

josé Javier Gutiérrez Gil jogugil@gmail.com

Índice

- Introducción
- Problemas en Capa Física
- Problemas en Capa de Red
- 4 LoRa: Estándar Dominante en IoT Terrestre
- 5 Protocolos LoRa Modificados para Satélites
- 6 Desafíos y Futuras Direcciones
- Conclusiones

Introducción

- Los desastres naturales han aumentado, afectando redes de comunicación
- Las redes 6G (aéreas y espaciales) ofrecen resiliencia
- Objetivo: Revisar estado del arte en comunicaciones post-desastre (PDC)
- Enfoque en tecnologías terrestres, aéreas y espaciales
- Incluye aspectos de capa física y de red

Problemas en Capa Física - Resumen

Problema	Tecnologías Afectadas	Soluciones/Estado	
Modelado de Canal	Todas, especialmente VHetNets	Modelos F, Rician, medicio- nes reales limitadas	
Cobertura	D2D, UAVs, satélites	Optimización de despliegue, redes heterogéneas	
Capacidad	Redes ad hoc, PPDR	Optimización de constela- ciones, planificación de re- cursos	
Gestión de Recursos	Redes aéreas, FSO	Esquemas híbridos FSO/RF, segmentación de red	
Localización	WSNs, UAVs	Técnicas range-free, SLAM, fusión de sensores	
Eficiencia Energética	Todos los nodos	Energía renovable, transferencia inalámbrica, optimización	

Problemas en Capa de Red - Resumen

Problema	Tecnologías	Soluciones/Estado	
Arquitecturas SAGIN Routing	Integración espacio-aire- tierra MANETs, VANETs, DTNs	Protocolos de routing unifi- cados, interoperabilidad Algoritmos de optimización, protocolos tolerantes a re- tardos	
DTNs	Redes con conectividad intermitente	Store-and-forward, protocolos oportunistas	
Edge Computing	Procesamiento descentralizado	UAVs con capacidades de edge, offloading de tareas	

Protocolos de Red Actuales para Comunicaciones Satelitales

Protocolos Estándar:

- TCP/IP sobre satélite: Modificaciones para alta latencia
- SCPS (Space Communications Protocol Standards): Optimizado para espacio
- DTN (Delay-Tolerant Networking): Bundle Protocol para enlaces intermitentes

Referencias clave:

- [Cerf2007] Cerf et al. "Delay-Tolerant Networking Architecture"
- [Hasan2021] Hasan et al. "SCPS-TP for LEO satellite networks"
- [Wang2022] Wang et al. .^daptive routing in integrated satellite-terrestrial networks"

Mejoras en Protocolos de Red para Satélites

- Oportunidades de mejora:
 - Protocolos adaptativos: Ajuste dinámico a condiciones del enlace
 - Machine Learning: Predicción de rutas óptimas
 - Security-enhanced protocols: Autenticación y cifrado robustos
- Investigación reciente:
 - QoS-aware routing para tráfico prioritario
 - Mobile IP enhancements para movilidad entre satélites
 - Edge computing integration para procesamiento descentralizado
- Referencias:
 - [Liu2023] Liu et al. .^Al-based routing in satellite networks"
 - [Zhang2022] Zhang et al. "QoS provisioning in LEO constellations"

¿Por Qué Hablamos de LoRa?

LoRa: Tecnología LPWAN Más Adoptada

LoRa se ha consolidado como el estándar dominante en soluciones IoT terrestres para situaciones de desastre debido a sus características únicas.

- Penetración de mercado: ¿80 % de implementaciones LPWAN en emergencias
- Ecosistema maduro: Dispositivos, gateways y software ampliamente disponibles
- Costo efectivo: Solución de bajo costo para despliegues rápidos
- Comunidad activa: Desarrollo continuo y soporte de código abierto

Ventajas de LoRa en Escenarios Post-Desastre

Ventajas Técnicas:

- Largo alcance: 15+ km en áreas rurales
- Bajo consumo: Años de autonomía con batería
- Penetración: Buena propagación en interiores
- Escalabilidad: Miles de dispositivos por gateway

Ventajas Operativas:

- Despliegue rápido: Minutos para activación
- Bajo mantenimiento: Operación autónoma
- Flexibilidad: Múltiples proveedores
- Resiliencia: Tolerante a interferencias

Aplicaciones Comprobadas

Monitoreo de infraestructura, sensores ambientales, localización básica, mensajería de emergencia.

Protocolos Basados en LoRa para Comunicación Satelital

Protocolo	Características Principales	Ventajas	Limitaciones
LoRaSat	Modificación simple CSS	Compatibilidad	BW limitado
SatLoRa	Compensación Doppler	Robustez	Complejidad
LEO-LoRa	Optimizado LEO	Eficiencia	Sincronización
ESL (Enhanced Satellite LoRa)	Codificación adicional	Confiabilidad	Overhead

Referencias Clave

- [Wang2021] Wang et al. "LoRaSat: Satellite-compatible LoRa system"
- [Centenaro2022] Centenaro et al. "SatLoRa: LTE-compatible satellite LoRa"
- [Mac2023] Mac et al. "LEO-LoRa: Adaptive protocol for LEO satellites"
- [Rodriguez2023] Rodriguez et al. . ESL: Enhanced LoRa for satellite links"

Análisis Comparativo de Protocolos LoRa Satelitales

Parámetros de Comparación:

- Tolerancia a Doppler: SatLoRa ¿ LEO-LoRa ¿ LoRaSat
- Eficiencia Espectral: LEO-LoRa ¿ ESL ¿ SatLoRa
- Consumo Energético: LoRaSat ¡ ESL ¡ LEO-LoRa
- Complejidad: SatLoRa ¿ ESL ¿ LoRaSat

Aplicaciones:

- LoRaSat: Mensajería básica
- SatLoRa: Datos críticos
- LEO-LoRa: IoT masivo
- ESL: Misión crítica

Estado Actual

Todos los protocolos en fase de investigación/prototipo. SatLoRa muestra mejor balance rendimiento-complejidad.

Desafíos en Adaptación LoRa-Satélite

Problemas Técnicos:

- Efecto Doppler en constelaciones LEO
- Atenuación atmosférica y pérdidas por Iluvia
- Interferencia entre satélites cercanos

Desafíos de Protocolo:

- Sincronización temporal precisa
- Gestión de handover entre satélites
- Calidad de servicio diferenciada

• Limitaciones Operativas:

- Potencia de transmisión limitada en tierra
- Capacidad de procesamiento en satélites
- Gestión de grandes constelaciones

Desafíos y Futuras Direcciones

- Integración LoRa-Satélite: Protocolos unificados terrestre-espaciales
- Optimización de Recursos: Gestión espectral y energética eficiente
- Inteligencia Artificial: ML para optimización dinámica de parámetros
- Security by Design: Protocolos seguros desde el diseño inicial

Futura Investigación: Mejora Protocolos Satelitales

Línea de Investigación Propuesta

Desarrollo de protocolos híbridos que combinen lo mejor de LoRa terrestre con optimizaciones para enlaces satelitales.

• Capa Física:

- Modulaciones adaptativas mejoradas
- Esquemas de diversidad multi-satélite
- Compensación inteligente de Doppler

Capa de Red:

- Routing predictivo basado en ML
- Protocolos de acceso múltiple mejorados
- Gestión de movilidad entre satélites

Validación Experimental:

- Pruebas con cubesats de bajo costo
- Simulaciones a gran escala
- Prototipos en condiciones reales

Conclusiones

- Las PDC son componentes cruciales de las redes 5G/6G
- Enfoque en arquitecturas ad hoc que combinen múltiples tecnologías
- LoRa como base sólida: Estándar dominante en loT terrestre para emergencias
- Protocolos adaptados: Multiple variantes de LoRa para satélites en desarrollo
- Integración prometedora: Combinación LoRa-satélite para cobertura global
- Se necesitan más investigaciones en:
 - Validación experimental de protocolos LoRa satelitales
 - Optimización de parámetros físicos y de red
 - Estandarización de protocolos híbridos

¡Gracias!