GET-Aufgaben 1

GET Aufgabenblatt 3

Aufgabe 5 Impedanz

Eine Impedanz weist bei der Frequenz $f = 1 \,\mathrm{kHz}$ den Wert $\underline{Z} = (300 + \mathrm{j}\,400)\,\Omega$ auf.

- a) Skizzieren Sie das Zeigerdiagramm der Impedanz.
- b) Bestimmen Sie den Scheinwiderstand.
- c) Ermitteln Sie die Admittanz $\underline{Y} = 1/\underline{Z}$ sowie den Scheinleitwert.
- d) Geben Sie eine Schaltung aus zwei in Reihe geschalteten Bauelementen zur Realisierung der Impedanz \underline{Z} an und dimensionieren Sie diese Schaltung.
- e) Geben Sie eine Schaltung aus zwei parallel geschalteten Bauelementen zur Realisierung der Impedanz \underline{Z} an und dimensionieren Sie diese Schaltung.

An die Impedanz \underline{Z} wird nun die Spannung

$$u(t) = \hat{u} \cdot \cos(2\pi f t)$$

mit $\hat{u} = 5 \text{ V}$ und f = 1 kHz gelegt.

f) Ermitteln Sie den Strom i(t).

Aufgabe 6 Komplexe Amplituden

Ein Widerstand $R=1\,\mathrm{k}\Omega$ ist mit einer Kapazität $C=1\,\mathrm{\mu F}$ in Reihe geschaltet. An diese Reihenschaltung wird die Spannung $\underline{\hat{U}}=10\,\mathrm{V}\cdot\mathrm{e}^{\mathrm{j}\,30^\circ}$ angelegt. Die Schaltung wird bei der Frequenz $f=\omega/2\pi=1\,\mathrm{kHz}$ betrachtet.

- a) Skizzieren Sie die Schaltung und tragen Sie die komplexen Amplituden aller Ströme und Spannungen ein.
- b) Berechnen Sie die Impedanz \underline{Z} und den Scheinwiderstand.

Lösung:
$$\underline{Z} = 1012,6\,\Omega\cdot\mathrm{e}^{-\mathrm{j}\,9^\circ}$$

c) Bestimmen Sie die komplexe Amplitude $\underline{\hat{U}}_R$ der Spannung über dem Widerstand R sowie die komplexe Amplitude $\underline{\hat{U}}_C$ der Spannung über der Kapazität C.

Lösung:
$$\underline{\hat{U}}_{R} = 9.88 \,\mathrm{V} \cdot \mathrm{e}^{\mathrm{j} \, 39^{\circ}}, \ \underline{\hat{U}}_{C} = 1.57 \,\mathrm{V} \cdot \mathrm{e}^{-\mathrm{j} \, 51^{\circ}}$$

- d) Skizzieren Sie das Zeigerdiagramm der komplexen Spannungsamplituden.
- e) Geben Sie die zeitabhängigen Größen

$$u(t) = \operatorname{Re}\{\underline{\hat{U}} \cdot e^{j\omega t}\}$$
 sowie $i(t) = \operatorname{Re}\{\underline{\hat{I}} \cdot e^{j\omega t}\}$

an.

Lösung:
$$u(t) = 10 \text{ V} \cdot \cos(\omega t + 30^\circ), \quad i(t) = 9.88 \text{ mA} \cdot \cos(\omega t + 39^\circ)$$