EECS/BioE C106A/206A Introduction to Robotics

Lost Section 1

Sep 18 Fri 7 – 9 PM

Contents

Theory
 Rigid body transformation
 Twist, exponential coordinates
 Screw

- Example
The satellites system (Homework1 Problem 4)

One message in this section:

Check a frame in which a coordinate is defined.

Rigid body transformation (relative+absolute)

$$g_{0F} = \begin{bmatrix} R_{0F} = e^{\widehat{\omega}\theta} & r_{0F} \\ 0 & 1 \end{bmatrix}$$

 ω : the coordinate for the rotation axis of frame 0 r_{0F} : the coordinate for the translation of frame 0

p: a point

 p_F : the coordinate for p of frame F p_0 : the coordinate for p of frame 0

$$\begin{bmatrix} p_0 \\ 1 \end{bmatrix} = \begin{bmatrix} R_{0F} & r_{0F} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_F \\ 1 \end{bmatrix}$$

 ω : frame 0 r_{0F} : frame 0

 p_0^a : the coordinate of frame 0, for the fixed point on frame 0 p_F : the coordinate of frame 0, for the fixed point on frame F

$$p_F^a = R_{0F} \, p_0^a + r_{0F}$$

$$\begin{bmatrix} p_F^a \\ 1 \end{bmatrix} = \begin{bmatrix} R_{0F} & r_{0F} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_0^a \\ 1 \end{bmatrix} = g_{0F} \begin{bmatrix} p_0^a \\ 1 \end{bmatrix}$$

Rigid body transformation (relative+absolute)

 ω : the coordinate for the rotation axis of frame 0 r_{0F} : the coordinate for the translation of frame 0

p: a point

 p_F : the coordinate for p of frame F p_0 : the coordinate for p of frame 0

There is a single p, but multiple coordinates p_F , p_0 . $(R, \omega, r_{0F}, p_F, p_0)$ are defined in the relative frame.

absolute

ω: frame 0 r_{0F} : frame 0

 p_0^a : the coordinate of frame 0, for the fixed point on frame 0 p_F^a : the coordinate of frame 0, for the fixed point on frame F

There are multiple p_0^a , p_F^a . $(R, \omega, r_{0F}, p_0^a, p_F^a)$ are defined in the frame 0.

Exponential Coordinates, Twist + Screw (absolute)

 $(v,\widehat{\omega}) \in se(3)$: twist

$$\xi \coloneqq (v, \omega) \in \mathbb{R}^6$$
: the twist coordinates of $\hat{\xi} = \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix}$

 (ξ, θ) : exponential coordinate

$$\frac{d}{dt} \begin{bmatrix} p(t) \\ 1 \end{bmatrix} = \begin{bmatrix} \dot{p}(t) \\ 0 \end{bmatrix} = \hat{\xi} \begin{bmatrix} p(t) \\ 1 \end{bmatrix} = \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p(t) \\ 1 \end{bmatrix} \qquad \begin{array}{l} p(t) : \text{frame 0} \\ \omega : \text{the coordinate for the rotation axis of frame 0} \end{array}$$

Then, $\begin{bmatrix} p(\theta) \\ 1 \end{bmatrix} = e^{\hat{\xi}\theta} \begin{bmatrix} p(0) \\ 1 \end{bmatrix}$

Here, we only have a single frame: frame 0.

$$g = e^{\hat{\xi}\theta} = \begin{cases} \begin{bmatrix} e^{\hat{\omega}\theta} & v\theta \\ 0 & 1 \end{bmatrix} & \omega = 0 \\ \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})(\omega \times v) + \omega \omega^T v\theta \\ 0 & 1 \end{bmatrix} & \omega \neq 0, \parallel \omega \parallel = 1 \end{cases}$$

Exponential Coordinates, Twist + Screw (absolute)

Case 1. $\omega \neq 0$

$$\begin{bmatrix} p(\theta) \\ 1 \end{bmatrix} = \begin{bmatrix} e^{\widehat{\omega}\theta} & (I - e^{\widehat{\omega}\theta})q + h\theta\omega \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p(0) \\ 1 \end{bmatrix}$$

Case 2. $\omega=0$: pure translation $h=\infty$

$$\begin{bmatrix} p(\theta) \\ 1 \end{bmatrix} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p(0) \\ 1 \end{bmatrix} \text{, where } v \text{ is a velocity vector and a unit vector.}$$

p: the coordinate of the point of frame 0

 ω : the coordinate for the rotation axis of frame 0

q: the coordinate for the center of the rotation of frame 0

h: pitch

 θ : rotation angle

Here, we only have a single frame: frame 0.

Exponential Coordinates, Twist + Screw (absolute)

	Exponential Coordinates, Twist	Screw
All v, ω, q are defined in the single frame: frame 0.	$(v,\omega, heta)$: exponential coordinate	$\omega,q,h, heta$
$\omega \neq 0$	$\begin{bmatrix} e^{\widehat{\omega}\theta} & \left(I - e^{\widehat{\omega}\theta}\right)(\omega \times v) + \omega \omega^T v\theta \\ 0 & 1 \end{bmatrix}$ If $v = -\omega \times q + h\omega$, the type	$\begin{bmatrix} e^{\widehat{\omega}\theta} & \left(I-e^{\widehat{\omega}\theta}\right)q+h\theta\omega\\ 0 & 1 \end{bmatrix}$ wo transformations are the same.
$\omega = 0$	$egin{bmatrix} I & v heta \ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} I & v\theta \ 0 & 1 \end{bmatrix}$

Relative transformation: method 1

rotation θ and translation R (g_{01}) -> coordinate change (g_{1e})

$$g_{0e} = g_{01}g_{1e}$$

$$g_{1e} = \begin{bmatrix} R_{1e} & p_{1e} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

If you want to find ω_{1e} and θ_{1e} use Rodrigues' formula.

Here,
$$\omega_{1e} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
, $\theta_{1e} = \frac{2}{3}\pi$, $p_{1e} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ are defined in frame 1.

$$g_{01} = \begin{bmatrix} R_{01} & p_{01} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & -r\sin \theta \\ \sin \theta & \cos \theta & 0 & r\cos \theta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Here,
$$\omega_{01}=\hat{\mathbf{z}}_0$$
, $\theta_{01}=\theta$, $p_{01}=\begin{bmatrix} -r\sin\theta\\ r\cos\theta\\ 0 \end{bmatrix}$ are defined in frame 0.

Relative transformation: method 2

rotation θ (g_{01}) -> coordinate change and translation R (g_{1e})

$$g_{0e} = g_{01}g_{1e}$$

$$g_{1e} = \begin{bmatrix} R_{1e} & p_{1e} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & r \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

If you want to find ω_{1e} and θ_{1e} use Rodrigues' formula.

Here,
$$\omega_{1e}=\frac{1}{\sqrt{3}}\begin{bmatrix}1\\-1\\-1\end{bmatrix}$$
, $\theta_{1e}=\frac{2}{3}\pi$, $p_{1e}=\begin{bmatrix}0\\r\\0\end{bmatrix}$ are defined in frame 1.

$$g_{01} = \begin{bmatrix} R_{01} & p_{01} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Here,
$$\omega_{01} = \hat{\mathbf{z}}_0$$
, $\theta_{01} = \theta$, $p_{01} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ are defined in frame 0.

Relative transformation: other methods

Absolute transformation: method 3

translation R and coordinate change (g_1) -> rotation θ (g_2)

$$g_{0e} = g_2 g_1$$

 $g_{0e} = g_2 g_1$ Check the multiplication order.

$$g_1 = \begin{bmatrix} R_1 = e^{\widehat{\omega}_1 \theta_1} & p_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & r \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Using exponential coordinate and screw is algebraically difficult here.

All R_1 , ω_1 , p_1 are defined in frame 0.

screw

$$g_2 = \begin{bmatrix} R_2 & p_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \text{Warning: } R_2 \neq \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

Warning:
$$R_2 \neq \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_2 = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\omega_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \theta_2 = \theta\right), q_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \text{ Then, } p_2 = (I - R_2)q_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Center of angle rotation axis the rotation

All R_2 , ω_2 , p_2 , q_2 are defined in frame 0.

Absolute transformation: method 4

translation $R(g_1)$ -> coordinate change (g_2) -> rotation $\theta(g_3)$

$$g_{0e} = g_3 g_2 g_1$$

$$g_1 = \begin{bmatrix} R_1 = e^{\widehat{\omega}_1 \theta_1} & p_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & r \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \omega_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \, p_1 = \begin{bmatrix} 0 \\ r \\ 0 \end{bmatrix} \, \text{are defined in frame 0.}$$

$$\omega_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, p_1 = \begin{bmatrix} 0 \\ r \\ 0 \end{bmatrix}$$
 are defined in

$$g_2 = \begin{bmatrix} R_2 & p_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & r \\ 0 & 1 & 0 & -r \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 All R_2, ω_2, p_2, q_2 are defined in frame 0 .

$$R_2 = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \left(\omega_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \theta_2 = \frac{2}{3}\pi \right), q_2 = \begin{bmatrix} 0 \\ r \\ 0 \end{bmatrix}. \text{ Then, } p_2 = (I - R_2)q_2 = \begin{bmatrix} 0 \\ r \\ -r \end{bmatrix}$$

To find R_2 , no need to fine ω_2 , θ_2 .

$$g_3 = \begin{bmatrix} R_3 & p_3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \text{Warning: } R_3 \neq \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \quad \text{All } R_3, \omega_3, p_3, q_3 \text{ are defined in frame 0.}$$

Warning:
$$R_3 \neq \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_3 = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\omega_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \theta_3 = \theta \right), q_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \text{ Then, } p_3 = (I - R_3)q_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Absolute transformation: method 5. This method requires a complex algebra. Take a look for practice.

translation $R(g_1)$ -> rotation $\theta(g_2)$ -> coordinate change (g_3)

$$g_{0e} = g_3 g_2 g_1$$

$$g_1 = \begin{bmatrix} R_1 = e^{\widehat{\omega}_1 \theta_1} & p_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & r \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \omega_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, p_1 = \begin{bmatrix} 0 \\ r \\ 0 \end{bmatrix} \text{ are defined in frame 0.}$$

$$\omega_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, $p_1 = \begin{bmatrix} 0 \\ r \\ 0 \end{bmatrix}$ are

screw

$$g_2 = \begin{bmatrix} R_2 & p_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 All R_2, ω_2, p_2, q_2 are defined in frame 0.

$$R_2 = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\omega_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \theta_2 = \theta \right), q_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \text{ Then, } p_2 = 0$$

screw

$$g_3 = \begin{bmatrix} R_3 & p_3 \\ 0 & 1 \end{bmatrix}$$
 Warning: $\omega_3 \neq \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$: coordinate in frame 2.

All R_3 , ω_3 , p_3 , q_3 are defined in frame 0.

$$R_3 = \begin{bmatrix} \frac{\sin 2\theta}{2} & (\sin \theta)^2 & -\cos \theta \\ (\sin \theta)^2 - 1 & -\frac{\sin 2\theta}{2} & -\sin \theta \\ -\sin \theta & \cos \theta & 0 \end{bmatrix}, \begin{pmatrix} \omega_3 = \frac{1}{\sqrt{3}}R_2 \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \theta_3 = \frac{2}{3}\pi \end{pmatrix}, q_3 = \begin{bmatrix} -r\sin \theta \\ r\cos \theta \\ 0 \end{bmatrix}. \text{ Then, } p_3 = (I - R_3)q_3.$$