International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia

wombats

Spanish-VE — 1.0

La ciudad de Brisbane ha sido invadida por una gran cantidad de wombats mutantes, y usted debe llevar a la gente a salvo.

Las calles en Brisbane están dispuestas en una gran red. Existen R calles horizontales que van de este a oeste, numeradas 0, ..., (R - 1) en orden de norte a sur, y C calles verticales que van de norte a sur, numeradas 0, ..., (C - 1) en orden de oeste a este, como se muestra en la figura.

Los wombats han invadido desde el norte, y las personas están escapando hacia el sur. Las personas pueden correr a través de las calles horizontales en cualquier dirección, pero en las calles verticales ellos *sólo pueden correr hacia el sur*, buscando ponerse a salvo.

Las intersecciones entre una calle horizontal P con una calle vertical Q se denota (P, Q). Cada segmento de calle entre dos intersecciones contiene un número de wombats, y esos números pueden cambiar en el tiempo. Su tarea es guiar a cada persona desde una intersección dada en el norte (en la calle horizontal 0) a alguna intersección en el sur (en la calle horizontal R-1), llevandolos por una ruta donde pase por la menor cantidad de wombats.

Para comenzar, a usted se le proveerá del tamaño de la red y el número de wombats en cada calle. Luego de esto, usted recibirá una serie de E eventos, cada uno de los cuales es:

- un *change*, el cual, cambia el número de wombats en un segmento; ó
- un escape, donde una persona llega a una intersección dada en la calle horizontal 0, y luego usted debe encontrar una ruta a una intersección dada en la calle horizontal R 1 pasando por la menor cantidad posible de wombats.

Usted debe manejar dichos eventos implementando las funciones (init(), changeH(), changeV() and (escape()), como se describen más adelante.

Ejemplos

La imagen anterior muestra una red inicial con R = 3 calles horizontales y C = 4 calles verticales, con el número de wombats marcado en cada segmento. Considere la siguiente serie de eventos:

- Una persona llega a la intersección A = (0, 2) y desea escapar a la intersección B = (2, 1). El menor número de wombats por el que puede pasar es de 2, como se indica por la línea punteada.
- Otra persona llega a la intersección | X = (0, 3) | y desea escapar a la intersección | Y = (2, 3). La menor cantidad de wombats por la que puede pasar es de | 7, de nuevo indicados por una línea punteada.
- Ocurren dos eventos de cambio: el número de wombats en el segmento superior de la calle vertical 0 cambia a 5, y el número de wombats en el segmento central de la calle horizontal 1 cambia a 6. Vea los números encerrados en círculos en la siguiente imagen.

Una tercera persona llega a la intersección A = (0, 2) y desea escapar a la intersección
 B = (2, 1). Ahora el menor número de wombats que puede pasar es 5, como se indica por la línea punteada.

Implementación

Usted debe enviar un archivo que implemente los procedimientos [init()], [changeH()] y changeV() y la función [escape()], como sigue:

Su procedimiento: init()

```
C/C++
void init(int R, int C, int H[5000][200], int V[5000][200]);

type wombatsArrayType = array[0..4999, 0..199] of LongInt;
procedure init(R, C : LongInt; var H, V : wombatsArrayType);
```

Descripción

Este procedimiento le provee la información inicial de las calles, y le permite inicializar cualquier variable global o estructura de datos. Este procedimiento será invocado una sola vez, antes de cualquier llamada a changeH(), changeV() o escape().

Parámetros

- R: El número de calles horizontales.
- C: El número de calles verticales.
- H: Un arreglo bidimensional de tamaño R × (C 1), donde H[P][Q] contiene la cantidad de wombats en el segmento de calle horizontal entre las intersecciones (P, Q) y (P, Q + 1).
- V: Un arreglo bidimensional de tamaño (R 1) × C, donde V[P][Q] contiene el número de de wombats en el segmento de calle vertical entre las intersecciones (P, Q) y (P + 1, Q).

Su procedimiento: changeH()

```
C/C++ void changeH(int P, int Q, int W);

Pascal procedure changeH(P, Q, W: LongInt);
```

Descripción

Este procedimiento será invocado cuando el número de wombats cambie en el segmento de calle horizontal, entre las intersecciones (P, Q) y (P, Q + 1).

Parámetros

- P: Indica cual calle horizontal es afectada $(0 \le P \le R 1)$.
- Q: Indica entre cuales dos calles verticales está el segmento $(0 \le Q \le C 2)$.
- W: El nuevo número de wombats en este segmento de calle ($0 \le W \le 1,000$).

Su procedimiento: changeV()

```
C/C++ void changeV(int P, int Q, int W);

Pascal procedure changeV(P, Q, W: LongInt);
```

Descripción

Este procedimiento será invocado cuando el número de wombats cambie en el segmento de calle vertical, entre las intersecciones (P, Q) y (P, Q + 1).

Parámetros

- P: Indica entre cuales calles horizontales se encuentra el segmento $(0 \le P \le R 2)$.
- Q: Indica cual calle vertical es afectada ($0 \le Q \le C 1$).
- W: El nuevo número de wombats en este segmento de calle (0 ≤ W ≤ 1,000).

Tu Función: escape()

```
C/C++     int escape(int V1, int V2);
Pascal     function escape(V1, V2 : LongInt) : LongInt;
```

Descripción

Dicha función debe calcular la menor cantidad posible de wombats por los cuales debe pasar una persona viajando desde la intersección (0, V1) hasta (R-1, V2).

Parámetros

- V1: Indica donde comienza la persona en la fila $(0 \le V1 \le C-1)$.
- V2: Indica donde termina la persona en la fila [R-1] ($0 \le V2 \le C-1$).

• Retorna: El menor número de wombats que la persona debe pasar.

Sesión de Ejemplo

La siguiente sesión describe el ejemplo anterior:

Function Call	Returns
init(3, 4, [[0,2,5], [7,1,1], [0,4,0]], [[0,0,0,2], [0,3,4,7]])	
escape(2,1)	2
escape(3,3)	7
changeV(0,0,5)	
changeH(1,1,6)	
escape(2,1)	5

Restricciones

■ Tiempo límite: 20 segundos

■ Límite de memoria: 256 MiB (Megabytes)

■ 2 ≤ R ≤ 5,000

■ 1 ≤ C ≤ 200

■ A lo sumo 500 cambios (llamadas a changeH() o changeV())

■ A lo sumo 200,000 llamadas a escape()

• A lo sumo 1,000 wombats en cualquier segmento, en cualquier momento.

Subtareas

Subtareas	Puntos	Condiciones de Entrada adicionales
1	9	C = 1
2	12	R,C ≤ 20, y no se realizarán llamadas a changeH() o changeV()
3	16	R,C ≤ 100, y se realizaran a lo sumo 100 llamadas a escape()
4	18	C = 2
5	21	C ≤ 100
6	24	(None)

Experimentación

El evaluador en su computadora leerá la entrada desde el archivo wombats.in, el cual, debe estar en el formato siguiente:

```
    línea 1: R C
    línea 2: H[0][0] ... H[0][C-2]
    ...
    línea (R+1): H[R-1][0] ... H[R-1][C-2]
    línea (R+2): V[0][0] ... V[0][C-1]
    ...
    línea (2R): V[R-2][0] ... V[R-2][C-1]
    siguiente línea: E
```

• luego E líneas: un evento por línea, en el orden en el cual ocurren.

Si C = 1, las líneas vacías que contienen el número de wombats en las calles horizontales (líneas 2 hasta R + 1) no son necesarias.

La línea por cada evento debe estar en alguno de los siguientes formatos:

```
para indicar changeH(P, Q, W): 1 P Q W
para indicar changeV(P, Q, W): 2 P Q W
para indicar escape(V1, V2): 3 V1 V2
```

Por ejemplo, el caso mencionado en la descripción debe ser presentado en el siguiente formato:

```
3 4

0 2 5

7 1 1

0 4 0

0 0 0 2

0 3 4 7

5

3 2 1

3 3 3

2 0 0 5

1 1 1 6

3 2 1
```

Notas del lenguaje

```
C/C++ Usted debe #include "wombats.h".

Pascal Usted debe definir la unit Wombats. Todos los arreglos estan numerados a partir de 0 (no 1).
```

Vea las plantillas de las soluciones en su computadora como ejemplo.