Triangulări

Mihai-Sorin Stupariu

Sem. I, 2018 - 2019

Supravegherea unei galerii de artă

Camera din P poate supraveghea A, dar nu B.

2 / 17

Formalizare

▶ O galerie de artă poate fi interpretată (în contextul acestei probleme) ca un poligon simplu \mathcal{P} (adică un poligon fără autointersecții) având n vârfuri.

Formalizare

- O galerie de artă poate fi interpretată (în contextul acestei probleme) ca un poligon simplu P (adică un poligon fără autointersecții) având n vârfuri.
- ▶ O cameră video (vizibilitate 360⁰) poate fi identificată cu un punct din interiorul lui \mathcal{P} ; ea poate supraveghea acele puncte cu care poate fi unită printr-un segment inclus în interiorul poligonului.

Formalizare

- O galerie de artă poate fi interpretată (în contextul acestei probleme) ca un poligon simplu P (adică un poligon fără autointersecții) având n vârfuri.
- ▶ O cameră video (vizibilitate 360^0) poate fi identificată cu un punct din interiorul lui \mathcal{P} ; ea poate supraveghea acele puncte cu care poate fi unită printr-un segment inclus în interiorul poligonului.
- ▶ Problema galeriei de artă: câte camere video sunt necesare pentru a supraveghea o galerie de artă și unde trebuie amplasate acestea?

▶ Se dorește exprimarea numărului de camere necesare pentru supraveghere în funcție de *n* (sau controlarea acestuia de către *n*).

- ► Se dorește exprimarea numărului de camere necesare pentru supraveghere în funcție de *n* (sau controlarea acestuia de către *n*).
- Pentru a supraveghea un spațiu având forma unui poligon convex, este suficientă o singură cameră.

- ► Se dorește exprimarea numărului de camere necesare pentru supraveghere în funcție de *n* (sau controlarea acestuia de către *n*).
- Pentru a supraveghea un spațiu având forma unui poligon convex, este suficientă o singură cameră.
- Numărul de camere depinde și de forma poligonului: cu cât forma este mai "complexă", cu atât numărul de camere va fi mai mare.

- ► Se dorește exprimarea numărului de camere necesare pentru supraveghere în funcție de *n* (sau controlarea acestuia de către *n*).
- Pentru a supraveghea un spațiu având forma unui poligon convex, este suficientă o singură cameră.
- Numărul de camere depinde și de forma poligonului: cu cât forma este mai "complexă", cu atât numărul de camere va fi mai mare.
- Principiu: Poligonul considerat: descompus în triunghiuri (triangulare).

ightharpoonup Fie $\mathcal P$ un poligon plan.

- ▶ Fie P un poligon plan.
- (i) O diagonală a lui \mathcal{P} este un segment ce unește două vârfuri ale acestuia și care este situat în interiorul lui \mathcal{P} .

- Fie P un poligon plan.
- (i) O **diagonală** a lui \mathcal{P} este un segment ce unește două vârfuri ale acestuia și care este situat în interiorul lui \mathcal{P} .
- (ii) O **triangulare** \mathcal{T}_P a lui \mathcal{P} este o descompunere a lui \mathcal{P} în triunghiuri, dată de o mulțime maximală de diagonale ce nu se intersectează.

- ightharpoonup Fie $\mathcal P$ un poligon plan.
- (i) O diagonală a lui \mathcal{P} este un segment ce unește două vârfuri ale acestuia și care este situat în interiorul lui \mathcal{P} .
- ▶ (ii) O triangulare T_P a lui P este o descompunere a lui P în triunghiuri, dată de o mulțime maximală de diagonale ce nu se intersectează.
- ► **Teoremă.** Orice poligon simplu admite o triangulare. Orice triangulare a unui poligon cu n vârfuri conține exact n 2 triunghiuri.

Rezovlarea problemei galeriei de artă

► Amplasarea camerelor se poate face în vârfurile poligonului.

Rezovlarea problemei galeriei de artă

- Amplasarea camerelor se poate face în vârfurile poligonului.
- ▶ Dată o pereche (P, T_P) se consideră o 3-colorare a acesteia: fiecărui vârf îi corespunde o culoare dintr-un set de 3 culori și pentru fiecare triunghi, cele 3 vârfuri au culori distincte.

Rezovlarea problemei galeriei de artă

- Amplasarea camerelor se poate face în vârfurile poligonului.
- ▶ Dată o pereche (P, T_P) se consideră o 3-colorare a acesteia: fiecărui vârf îi corespunde o culoare dintr-un set de 3 culori și pentru fiecare triunghi, cele 3 vârfuri au culori distincte.
- ▶ **Observație.** Dacă \mathcal{P} este simplu, o astfel de colorare există, deoarece graful asociat perechii $(\mathcal{P}, \mathcal{T}_{\mathcal{P}})$ este arbore.

Teorema galeriei de artă

▶ **Teoremă.** [Chvátal, 1975; Fisk, 1978] *Pentru un poligon cu n vârfuri,* $\left[\frac{n}{3}\right]$ camere sunt **uneori necesare** și întotdeauna **suficiente** pentru ca fiecare punct al poligonului să fie vizibil din cel puțin una din camere.

Teorema galeriei de artă

- ▶ **Teoremă.** [Chvátal, 1975; Fisk, 1978] Pentru un poligon cu n vârfuri, $\begin{bmatrix} n \\ 3 \end{bmatrix}$ camere sunt **uneori necesare** și întotdeauna **suficiente** pentru ca fiecare punct al poligonului să fie vizibil din cel puțin una din camere.
- ▶ Despre Teorema Galeriei de Artă: J. O'Rourke, *Art Gallery Theorems* and *Algorithms*

► Concepte:

- Concepte:
 - vârf principal,

- ► Concepte:
 - vârf principal,
 - ▶ ear (vârf / componentă de tip E) [Meisters, 1975];

- Concepte:
 - vârf principal,
 - ▶ ear (vârf / componentă de tip E) [Meisters, 1975];
 - ▶ mouth (vârf / componentă de tip M) [Toussaint, 1991].

- Concepte:
 - vârf principal,
 - ▶ ear (vârf / componentă de tip E) [Meisters, 1975];
 - ▶ mouth (vârf / componentă de tip M) [Toussaint, 1991].
- Orice vârf de tip E este convex; orice vârf de tip M este concav (reflex). Reciproc nu neapărat!

- Concepte:
 - vârf principal,
 - ▶ ear (vârf / componentă de tip E) [Meisters, 1975];
 - ▶ mouth (vârf / componentă de tip M) [Toussaint, 1991].
- Orice vârf de tip E este convex; orice vârf de tip M este concav (reflex). Reciproc nu neapărat!
- ▶ **Teoremă**. (Two Ears Theorem [Meisters, 1975]) Orice poligon cu cel puțin 4 vârfuri admite cel puțin două componente de tip E care nu se suprapun.

- Concepte:
 - vârf principal,
 - ▶ ear (vârf / componentă de tip E) [Meisters, 1975];
 - ▶ mouth (vârf / componentă de tip M) [Toussaint, 1991].
- Orice vârf de tip E este convex; orice vârf de tip M este concav (reflex). Reciproc nu neapărat!
- ▶ **Teoremă**. (Two Ears Theorem [Meisters, 1975]) Orice poligon cu cel puțin 4 vârfuri admite cel puțin două componente de tip E care nu se suprapun.
- ▶ Corolar. Orice poligon simplu admite (cel puţin) două diagonale.

- Concepte:
 - vârf principal,
 - ▶ ear (vârf / componentă de tip E) [Meisters, 1975];
 - ▶ mouth (vârf / componentă de tip M) [Toussaint, 1991].
- Orice vârf de tip E este convex; orice vârf de tip M este concav (reflex). Reciproc nu neapărat!
- ▶ **Teoremă**. (Two Ears Theorem [Meisters, 1975]) Orice poligon cu cel puțin 4 vârfuri admite cel puțin două componente de tip E care nu se suprapun.
- ▶ Corolar. Orice poligon simplu admite (cel puţin) două diagonale.
- Găsirea unei componente de tip E: complexitate O(n) [ElGindy, Everett, Toussaint, 1993]. Se bazează pe Two Ears Theorem!

- ► Concepte:
 - vârf principal,
 - ▶ ear (vârf / componentă de tip E) [Meisters, 1975];
 - ▶ mouth (vârf / componentă de tip M) [Toussaint, 1991].
- Orice vârf de tip E este convex; orice vârf de tip M este concav (reflex). Reciproc nu neapărat!
- ▶ **Teoremă**. (Two Ears Theorem [Meisters, 1975]) Orice poligon cu cel puțin 4 vârfuri admite cel puțin două componente de tip E care nu se suprapun.
- ▶ Corolar. Orice poligon simplu admite (cel puţin) două diagonale.
- Găsirea unei componente de tip E: complexitate O(n) [ElGindy, Everett, Toussaint, 1993]. Se bazează pe Two Ears Theorem!
- ▶ Algoritmul de triangulare bazat de metoda *ear cutting*: complexitate $O(n^2)$.

- Concepte:
 - vârf principal,
 - ▶ ear (vârf / componentă de tip E) [Meisters, 1975];
 - ▶ mouth (vârf / componentă de tip M) [Toussaint, 1991].
- Orice vârf de tip E este convex; orice vârf de tip M este concav (reflex). Reciproc nu neapărat!
- ▶ **Teoremă**. (Two Ears Theorem [Meisters, 1975]) Orice poligon cu cel puțin 4 vârfuri admite cel puțin două componente de tip E care nu se suprapun.
- ▶ Corolar. Orice poligon simplu admite (cel puţin) două diagonale.
- Găsirea unei componente de tip E: complexitate O(n) [ElGindy, Everett, Toussaint, 1993]. Se bazează pe Two Ears Theorem!
- ▶ Algoritmul de triangulare bazat de metoda ear cutting: complexitate $O(n^2)$.
- Link despre triangulări
 Link pentru algoritmul Ear cutting

► Concept: **poligon** *y*-**monoton**

- ► Concept: **poligon** *y*-monoton
- Algoritmi de triangulare eficienți: complexitate O(n) pentru poligoane y-monotone [Garey et al., 1978].

- Concept: poligon y-monoton
- Algoritmi de triangulare eficienți: complexitate O(n) pentru poligoane y-monotone [Garey et al., 1978].
- ▶ Descompunerea unui poligon oarecare in componente y-monotone poate fi realizată cu un algoritm de complexitate $O(n \log n)$ [Lee, Preparata, 1977].

- ► Concept: **poligon** *y***-monoton**
- Algoritmi de triangulare eficienți: complexitate O(n) pentru poligoane y-monotone [Garey et al., 1978].
- ▶ Descompunerea unui poligon oarecare in componente y-monotone poate fi realizată cu un algoritm de complexitate $O(n \log n)$ [Lee, Preparata, 1977].
- ► Există și alte clase de algoritmi mai rapizi; [Chazelle, 1990]: algoritm liniar.

- ► Concept: **poligon** *y*-monoton
- Algoritmi de triangulare eficienți: complexitate O(n) pentru poligoane y-monotone [Garey et al., 1978].
- ▶ Descompunerea unui poligon oarecare in componente y-monotone poate fi realizată cu un algoritm de complexitate $O(n \log n)$ [Lee, Preparata, 1977].
- ► Există și alte clase de algoritmi mai rapizi; [Chazelle, 1990]: algoritm liniar.
- Link pentru alte abordări

- Concept: poligon y-monoton
- Algoritmi de triangulare eficienți: complexitate O(n) pentru poligoane y-monotone [Garey et al., 1978].
- ▶ Descompunerea unui poligon oarecare in componente y-monotone poate fi realizată cu un algoritm de complexitate $O(n \log n)$ [Lee, Preparata, 1977].
- ► Există și alte clase de algoritmi mai rapizi; [Chazelle, 1990]: algoritm liniar.
- Link pentru alte abordări
- ► Găsirea unui algoritm liniar "simplu" Problemă în *The Open Problems*Project

Triangularea poligoanelor monotone

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

1. Lanțul vârfurilor din partea stângă și al celor din partea dreaptă sunt unite într-un singur șir, ordonat descrescător, dupa y (dacă ordonata este egală, se folosește abscisa). Fie v_1, v_2, \ldots, v_n șirul ordonat.

Triangularea poligoanelor monotone

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- 1. Lanțul vârfurilor din partea stângă și al celor din partea dreaptă sunt unite într-un singur șir, ordonat descrescător, dupa y (dacă ordonata este egală, se folosește abscisa). Fie v₁, v₂,..., v_n șirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- 1. Lanțul vârfurilor din partea stângă și al celor din partea dreaptă sunt unite într-un singur șir, ordonat descrescător, dupa y (dacă ordonata este egală, se folosește abscisa). Fie v₁, v₂,..., v_n șirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- Lanţul vârfurilor din partea stângă şi al celor din partea dreaptă sunt unite într-un singur şir, ordonat descrescător, dupa y (dacă ordonata este egală, se foloseşte abscisa). Fie v₁, v₂,..., v_n şirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1
- 4. **do if** v_j și vârful din top al lui S sunt în lanțuri diferite

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- Lanţul vârfurilor din partea stângă şi al celor din partea dreaptă sunt unite într-un singur şir, ordonat descrescător, dupa y (dacă ordonata este egală, se foloseşte abscisa). Fie v₁, v₂,..., v_n şirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1
- 4. **do if** v_j și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate vârfurile din S

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- Lanţul vârfurilor din partea stângă şi al celor din partea dreaptă sunt unite într-un singur şir, ordonat descrescător, dupa y (dacă ordonata este egală, se foloseşte abscisa). Fie v₁, v₂,..., v_n şirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1
- 4. **do if** v_j și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate varfurile din S
- 6. inserează diagonale de la v_j la vf. extrase, exceptând ultimul

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- Lanţul vârfurilor din partea stângă şi al celor din partea dreaptă sunt unite într-un singur şir, ordonat descrescător, dupa y (dacă ordonata este egală, se foloseşte abscisa). Fie v₁, v₂,..., v_n şirul ordonat.
- 2. Iniţializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1
- 4. **do if** v_j și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate varfurile din S
- 6. inserează diagonale de la v_j la vf. extrase, exceptând ultimul
- 7. inserează v_{i-1} și v_i în S

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- Lanţul vârfurilor din partea stângă şi al celor din partea dreaptă sunt unite într-un singur şir, ordonat descrescător, dupa y (dacă ordonata este egală, se foloseşte abscisa). Fie v₁, v₂,..., v_n şirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1
- 4. **do if** v_i și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate varfurile din S
- 6. inserează diagonale de la v_j la vf. extrase, exceptând ultimul
- 7. inserează v_{j-1} și v_j în S
- 8. **else** extrage un vârf din S

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- Lanţul vârfurilor din partea stângă şi al celor din partea dreaptă sunt unite într-un singur şir, ordonat descrescător, dupa y (dacă ordonata este egală, se foloseşte abscisa). Fie v₁, v₂,..., v_n şirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** i = 3 **to** n 1
- 4. **do if** v_j și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate vârfurile din S
- 6. inserează diagonale de la v_i la vf. extrase, exceptând ultimul
- 7. inserează v_{i-1} și v_i în S
- 8. **else** extrage un vârf din S
- 9. extrage celelalte vârfuri din S dacă diagonalele formate cu v_j sunt în interiorul lui \mathcal{P} ; inserează aceste diagonale; inserează înapoi ultimul vârf extras

Input: Un poligon *y*-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- 1. Lanțul vârfurilor din partea stângă și al celor din partea dreaptă sunt unite într-un singur șir, ordonat descrescător, dupa y (dacă ordonata este egală, se folosește abscisa). Fie v_1, v_2, \ldots, v_n șirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** i = 3 **to** n 1
- 4. **do if** v_i și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate vârfurile din S
- 6. inserează diagonale de la v_j la vf. extrase, exceptând ultimul
- 7. inserează v_{j-1} și v_j în S
- 8. **else** extrage un vârf din S
- 9. extrage celelalte vârfuri din S dacă diagonalele formate cu v_j sunt în interiorul lui \mathcal{P} ; inserează aceste diagonale; inserează înapoi ultimul vârf extras
- 10. inserează v_i în S

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- 1. Lanțul vârfurilor din partea stângă și al celor din partea dreaptă sunt unite într-un singur șir, ordonat descrescător, dupa y (dacă ordonata este egală, se folosește abscisa). Fie v₁, v₂,..., v_n șirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1
- 4. **do if** v_i și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate vârfurile din S
- 6. inserează diagonale de la v_i la vf. extrase, exceptând ultimul
- 7. inserează v_{j-1} și v_j în S
- 8. **else** extrage un vârf din S
- 9. extrage celelalte vârfuri din $\mathcal S$ dacă diagonalele formate cu v_j sunt în interiorul lui $\mathcal P$; inserează aceste diagonale; inserează înapoi ultimul vârf extras
- 10. inserează v_i în S
- 11. adaugă diagonale de la v_n la vf. stivei (exceptând primul și ultimul)

► Triangularea unui poligon convex (listă ordonată de puncte $(P_1, P_2, ..., P_n)$.

- Triangularea unui poligon convex (listă ordonată de puncte (P_1, P_2, \ldots, P_n) .
- Are sens să vorbim de triangulare pentru mulțimea $\{P_1, P_2, \dots, P_n\}$?

- Triangularea unui poligon convex (listă ordonată de puncte (P_1, P_2, \ldots, P_n) .
- ▶ Are sens să vorbim de triangulare pentru $\underline{\text{mulţimea}}$ $\{P_1, P_2, \dots, P_n\}$?
- Comentariu: Triangulările mulțimilor de puncte sunt esențiale în grafica pe calculator.

- Triangularea unui poligon convex (listă ordonată de puncte (P_1, P_2, \ldots, P_n) .
- ▶ Are sens să vorbim de triangulare pentru $\underline{\text{mulţimea}}$ $\{P_1, P_2, \dots, P_n\}$?
- Comentariu: Triangulările mulțimilor de puncte sunt esențiale în grafica pe calculator.
- ▶ **Definiție.** O **triangulare** a unei mulțimi \mathcal{P} din plan este o subdivizare maximală a acoperirii convexe $\operatorname{Conv}(\mathcal{P})$ a lui \mathcal{P} cu triunghiuri ale căror vârfuri sunt elemente ale lui \mathcal{P} (fără autointersecții!)

- Triangularea unui poligon convex (listă ordonată de puncte (P_1, P_2, \ldots, P_n) .
- ▶ Are sens să vorbim de triangulare pentru $\underline{\text{mulţimea}}$ $\{P_1, P_2, \dots, P_n\}$?
- Comentariu: Triangulările mulțimilor de puncte sunt esențiale în grafica pe calculator.
- ▶ **Definiție.** O **triangulare** a unei mulțimi \mathcal{P} din plan este o subdivizare maximală a acoperirii convexe $Conv(\mathcal{P})$ a lui \mathcal{P} cu triunghiuri ale căror vârfuri sunt elemente ale lui \mathcal{P} (fără autointersecții!)
- ► Trebuie făcută distincție între triangulare a unui poligon $(P_1, P_2, ..., P_n)$ și triangulare a mulțimii subdiacente $\{P_1, P_2, ..., P_n\}$ (coincid dacă poligonul este convex!)

▶ Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.

- ▶ Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.
- ► Legătură între aceste elemente?

- ▶ Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.
- Legătură între aceste elemente?
- ightharpoonup Propoziție. Fie ${\mathcal P}$ o mulțime de n puncte din plan nesituate toate pe o aceeasi dreaptă. Notăm cu k numărul de puncte de pe frontiera acoperirii convexe $Conv(\mathcal{P})$. Orice triangulare a lui \mathcal{P} are (2n-k-2) triunghiuri şi (3n-k-3) muchii.

- ▶ Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.
- Legătură între aceste elemente?
- ▶ **Propoziție.** Fie \mathcal{P} o mulțime de n puncte din plan nesituate toate pe o aceeași dreaptă. Notăm cu k numărul de puncte de pe frontiera acoperirii convexe $\operatorname{Conv}(\mathcal{P})$. Orice triangulare a lui \mathcal{P} are (2n-k-2) triunghiuri și (3n-k-3) muchii.
- ▶ Demonstrație: Se bazează pe formula lui Euler / numărul de incidente.

- ▶ Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.
- Legătură între aceste elemente?
- ▶ **Propoziție.** Fie \mathcal{P} o mulțime de n puncte din plan nesituate toate pe o aceeași dreaptă. Notăm cu k numărul de puncte de pe frontiera acoperirii convexe $\operatorname{Conv}(\mathcal{P})$. Orice triangulare a lui \mathcal{P} are (2n-k-2) triunghiuri și (3n-k-3) muchii.
- ▶ **Demonstrație:** Se bazează pe formula lui Euler / numărul de incidențe.
- **Exemplu:** Cazul unui poligon convex cu n vârfuri (k = n): n 2 triunghiuri și 2n 3 muchii.

▶ **Problemă.** Se fac măsurători ale altitidinii pentru un teren. Se dorește reprezentarea tridimensională (cât mai sugestivă). Alternativ: se dorește generarea unui teren pentru o aplicație.

▶ **Problemă.** Se fac măsurători ale altitidinii pentru un teren. Se dorește reprezentarea tridimensională (cât mai sugestivă). Alternativ: se dorește generarea unui teren pentru o aplicație.

▶ **Problemă.** Se fac măsurători ale altitidinii pentru un teren. Se dorește reprezentarea tridimensională (cât mai sugestivă). Alternativ: se dorește generarea unui teren pentru o aplicație.

Problematizare - continuare

▶ **Problemă (reformulată).** Cum "comparăm triangulările" unei mulțimi de puncte fixate?

Problematizare - continuare

- ▶ **Problemă** (reformulată). Cum "comparăm triangulările" unei mulțimi de puncte fixate?
- **Exemplu.** Măsurători ale altitudinii.

Triangulare 1

Triangulare 2

Triangulări

Problematizare - continuare

- ▶ **Problemă** (reformulată). Cum "comparăm triangulările" unei mulțimi de puncte fixate?
- Exemplu. Măsurători ale altitudinii.

▶ Întrebări naturale: (i) Există o triangulare "convenabilă" a unei mulțimi de puncte? (ii) Cum poate fi determinată eficient o astfel de triangulare?

14 / 17

▶ Fixată: o mulțime de puncte \mathcal{P} .

- ▶ Fixată: o mulțime de puncte P.
- ▶ Fie \mathcal{T} o triangulare a lui \mathcal{P} cu m triunghiuri. Fie $\alpha_1, \alpha_2, \ldots, \alpha_{3m}$ unghiurile lui \mathcal{T} , ordonate crescător. **Vectorul unghiurilor lui** \mathcal{T} **este** $A(\mathcal{T}) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$.

- ▶ Fixată: o mulțime de puncte P.
- Fie \mathcal{T} o triangulare a lui \mathcal{P} cu m triunghiuri. Fie $\alpha_1, \alpha_2, \ldots, \alpha_{3m}$ unghiurile lui \mathcal{T} , ordonate crescător. **Vectorul unghiurilor lui** \mathcal{T} **este** $A(\mathcal{T}) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$.
- ▶ Relație de ordine pe mulțimea triangulărilor lui \mathcal{P} : ordinea lexicografică pentru vectorii unghiurilor. Fie \mathcal{T} și \mathcal{T}' două triangulări ale lui \mathcal{P} . Atunci $A(\mathcal{T}) > A(\mathcal{T}')$ dacă $\exists i$ astfel ca $\alpha_j = \alpha'_j$, $\forall 1 \leq j < i$ și $\alpha_i > \alpha'_i$.

- Fixată: o mulțime de puncte P.
- ▶ Fie \mathcal{T} o triangulare a lui \mathcal{P} cu m triunghiuri. Fie $\alpha_1, \alpha_2, \ldots, \alpha_{3m}$ unghiurile lui \mathcal{T} , ordonate crescător. **Vectorul unghiurilor lui** \mathcal{T} **este** $A(\mathcal{T}) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$.
- ▶ Relație de ordine pe mulțimea triangulărilor lui \mathcal{P} : ordinea lexicografică pentru vectorii unghiurilor. Fie \mathcal{T} și \mathcal{T}' două triangulări ale lui \mathcal{P} . Atunci $A(\mathcal{T}) > A(\mathcal{T}')$ dacă $\exists i$ astfel ca $\alpha_j = \alpha'_j$, $\forall 1 \leq j < i$ și $\alpha_i > \alpha'_i$.
- ▶ Triangulare unghiular optimă: \mathcal{T} astfel ca $A(\mathcal{T}) \geq A(\mathcal{T}')$, pentru orice triangulare \mathcal{T}' .

- ▶ Fixată: o mulțime de puncte P.
- ▶ Fie \mathcal{T} o triangulare a lui \mathcal{P} cu m triunghiuri. Fie $\alpha_1, \alpha_2, \ldots, \alpha_{3m}$ unghiurile lui \mathcal{T} , ordonate crescător. **Vectorul unghiurilor lui** \mathcal{T} **este** $A(\mathcal{T}) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$.
- ▶ Relaţie de ordine pe mulţimea triangulărilor lui \mathcal{P} : ordinea lexicografică pentru vectorii unghiurilor. Fie \mathcal{T} și \mathcal{T}' două triangulări ale lui \mathcal{P} . Atunci $A(\mathcal{T}) > A(\mathcal{T}')$ dacă $\exists i$ astfel ca $\alpha_j = \alpha'_j$, $\forall 1 \leq j < i$ și $\alpha_i > \alpha'_i$.
- ▶ Triangulare unghiular optimă: \mathcal{T} astfel ca $A(\mathcal{T}) \geq A(\mathcal{T}')$, pentru orice triangulare \mathcal{T}' .
- **Exemplu:** Cazul unui patrulater convex.

▶ Fixată: o mulțime de puncte \mathcal{P} .

- Fixată: o mulțime de puncte P.
- ▶ Conceptul de muchie ilegală. Fie $A, B, C, D \in \mathcal{P}$ fixate astfel ca ABCD să fie un patrulater convex; fie \mathcal{T}_{AC} , \mathcal{T}_{BD} triangulările date de diagonalele AC, respectiv BD. Muchia AC este ilegală dacă

$$\min A(\mathcal{T}_{AC}) < \min A(\mathcal{T}_{BD}).$$

- Fixată: o mulțime de puncte P.
- ▶ Conceptul de muchie ilegală. Fie $A, B, C, D \in \mathcal{P}$ fixate astfel ca ABCD să fie un patrulater convex; fie \mathcal{T}_{AC} , \mathcal{T}_{BD} triangulările date de diagonalele AC, respectiv BD. Muchia AC este ilegală dacă

$$\min A(\mathcal{T}_{AC}) < \min A(\mathcal{T}_{BD}).$$

► Concluzie: Muchia AC este ilegală dacă, printr-un flip (înlocuirea ei cu BD), cel mai mic unghi poate fi mărit (local).

- Fixată: o mulțime de puncte P.
- ▶ Conceptul de muchie ilegală. Fie $A, B, C, D \in \mathcal{P}$ fixate astfel ca ABCD să fie un patrulater convex; fie \mathcal{T}_{AC} , \mathcal{T}_{BD} triangulările date de diagonalele AC, respectiv BD. Muchia AC este ilegală dacă

$$\min A(\mathcal{T}_{AC}) < \min A(\mathcal{T}_{BD}).$$

- ► Concluzie: Muchia AC este ilegală dacă, printr-un flip (înlocuirea ei cu BD), cel mai mic unghi poate fi mărit (local).
- ▶ Concluzie (reformulare): Fie \mathcal{T} o triangulare cu o muchie ilegală e, fie \mathcal{T}' triangularea obținută din \mathcal{T} prin flip-ul muchiei e. Atunci $A(\mathcal{T}') > A(\mathcal{T})$.

- ▶ Fixată: o mulțime de puncte P.
- ▶ Conceptul de muchie ilegală. Fie $A, B, C, D \in \mathcal{P}$ fixate astfel ca ABCD să fie un patrulater convex; fie \mathcal{T}_{AC} , \mathcal{T}_{BD} triangulările date de diagonalele AC, respectiv BD. Muchia AC este ilegală dacă

$$\min A(\mathcal{T}_{AC}) < \min A(\mathcal{T}_{BD}).$$

- ► Concluzie: Muchia AC este ilegală dacă, printr-un flip (înlocuirea ei cu BD), cel mai mic unghi poate fi mărit (local).
- ▶ Concluzie (reformulare): Fie \mathcal{T} o triangulare cu o muchie ilegală e, fie \mathcal{T}' triangularea obținută din \mathcal{T} prin flip-ul muchiei e. Atunci $A(\mathcal{T}') > A(\mathcal{T})$.
- Criteriu geometric pentru a testa dacă o muchie este legală.

► Triangulare legală: nu are muchii ilegale.

Triangulări

- ► Triangulare legală: nu are muchii ilegale.
- ▶ O triangulare legală poate fi determinată pornind de la o triangulare arbitrară.

- ► Triangulare legală: nu are muchii ilegale.
- O triangulare legală poate fi determinată pornind de la o triangulare arbitrară.
- ▶ **Propoziție.** Fie P o mulțime de puncte din plan.
 - (i) Orice triangulare unghiular optimă este legală.
 - (ii) Dacă \mathcal{P} este în poziție generală (oricare patru puncte nu sunt conciclice), atunci există o unică triangulare legală, iar aceasta este unghiular optimă.

- ► Triangulare legală: nu are muchii ilegale.
- O triangulare legală poate fi determinată pornind de la o triangulare arbitrară.
- ▶ **Propoziție.** Fie P o mulțime de puncte din plan.
 - (i) Orice triangulare unghiular optimă este legală.
 - (ii) Dacă \mathcal{P} este în poziție generală (oricare patru puncte nu sunt conciclice), atunci există o unică triangulare legală, iar aceasta este unghiular optimă.
- ▶ **Teoremă.** Fie \mathcal{P} o mulțime de n puncte din plan, în poziție generală. Triangularea unghiular optimă poate fi construită, folosind un algoritm incremental randomizat, în timp mediu $O(n \log n)$, folosind O(n) memorie medie.