
ESTIMATE THE CROP YIELD

USING DATA ANALYTICS

DOMAIN: DATA ANALYTICS.

TEAM ID: PNT2022TMID14203

TEAM MEMBERS:

- 1. Addipalli SivaSai
- 2. Abburi Vamsi Krishna
- 3. Jaladi Vineeth
- 4. Sasank Reddy

1. INTRODUCTION

Agriculture is important for human survival because it serves the basic. A well-known fact the majority of population (>55%) in India is into agriculture. Due to variations in climatic

conditions, there exist botlenecks for increasing the crop production in India. It has become a challenging task to achieve desired targets in agriculture based crop yield. Various factors are to be considered which have direct impact on productivity of the crops.

Farmers need information regarding crop yield before sowing seeds in their fields to achieve enhanced crop yield. The use of technology in agriculture has increased in recent year and data analytics is one such trend that has penetrated into the agriculture field. The main challenge in using data in agriculture is identification of effectiveness of data analytics.

The present project on crop production in India is one of the important sources of income and india is one of the top countries to produce crops. As per the project we will be analysing some important visualization, creating a dashboard and by going through these we will get most of the insights into crop production in India.

1.1. PROJECTOVERVIEW

The Yield and productivity of different types of crops among all over states of India is to be estimated and to be predicted using the IBM Cognos Analytics with the factors of season, area, production and crop year it depends.

Using IBM Cognos analytics with crop production dataset the visualization, exploration, dashboard, story, report is to be charted.

1.2. PURPOSE

The train and test model of data can be easily predictable. By using the analytics, it

is a clear and effective way of displaying the terms and in-depth factors and it also gives the analysis that the particular parameter depends on what type of data i.e., categorial or numerical.

It visualizes the effective way of crop yield analysis and its dependent and independent factors.

2. LITERATURESURVEY

2.1. EXISTING PROBLEM

INTRODUCTION		4	SURVEY/BODY OF REV	/IEW	CONCLUSION	
Year	Title	Problem Definitions	Methodology (Algorithm Used)	Input Parameter	Results	Future Scope
November- 2020 International ournal of Engineering Research & Technology UERT) /olume 8 ssue 12	Crop Yield Prediction using KNN Model	In this paper the main goal is to create a user-friendly interface for farmers, which gives the analysis of crop yield prediction which is based on available datasets and to maximize and predict the crop yield productivity.	Tools used: 1.Python Flask 2.RStudio Algorithms used: 1. The Auto Regression Moving Average (ARMA) 2.K. Nearest	Rainfall, Temperature and groundwater level dataset are taken from Indian metrological department. In this module, rainfall water data set is taken for Indian data for past ten years. The data is converted into data frame and pre-processed. Then using 'arima' function, the model is prepared for the given data set and prerdicted for upcoming years.	Advantages: The study has successfully predicted the rainfall, temperature and ground water level, which in return helps in estimation of crop yield Disadvantages: This study mainly focuses on the prediction of rain water, temperature and ground water levels.	According to the results, temperature is best predicted by the ARIMA model and the accuracy of predictions made for rainfall by ARMA model is also good. Rainfall, which is an important factor for the prediction of crop yield is difficult to estimate precisely This project classifies the ground water level data set record using KNN to predict the model for future test record data sets In future, logistic repression can be

INTRO	INTRODUCTION		SURVEY/BODY OF REV	URVEY/BODY OF REVIEW		CONCLUSION	
Year	Title	Problem Definitions	Methodology (Algorithm Used)	Input Parameter	Results	Future Scope	
2017 Agricultura JCPS Volume Data Using	Analysis of	This study deals with the analysis of	Tools used: MapReduce, Hadoop Distributed File System and YARN MapReduce.	The authors have used the datasets in which the crops have been categorized based on the season,	Advantages: 1.Cost reduction, 2.Accuracy of prediction, 3.Faster and Better decision making by using distribute solutions.	1.Getting feedback from users to improve interface. 2.Including IoT to encourage more efarming. 3.Using cloud to	
	Agricultural Data Using Big Data Analysis	agricultural data which helps in better understanding of agriculture in India.	Algorithms used: 1.Simple Linear Regression 2.Decision Tree	based on Minimum price announced by the government, based on temperature, so that they will be able to visualize a different kind of data.	Disadvantages: 1. As a result of ignorance a large amount of products become wasted. 2. Lack of geographical analysis done.	3.Using cloud to store and retrieve data. 4.Using text analysis to find out the opinions of common people.	

INTRODUCTION		1	SURVEY/BODY OF REVIEW			CONCLUSION	
Year	Title	Problem Definitions	Methodology (Algorithm Used)	Input Parameter	Results	Future Scope	
2017 JOURNAL OF MANAGEME NT (JOM)Volum e 4, Issue 2	THE ASCENDANCY OF BIG DATA ANALYTICS FOR AGRICULTURAL COMPETITIVE ESS: THE THEORETICAL FRAMEWORK TO AUGMENT THE AGRICULTURAL MANAGEMENT SYSTEM	This study aims to establish economically and efficiently sustainable analytics	Tools used: Power Bl, Oracle Visual Analyzer, Tableau, Fusion chart, Canvas	Various factors like finding effective crop hybrids, selecting the pesticides, air	The predictive analytics will be useful to face the challenges of profound agricultural crisis in India. Disadvantages: Major concerns of a substrate subs	Providing a roadmap or framework for big data management. Use more advanced algorithms, IoT for e-farming and use cloud to store and retrieve data. Implemmenting framework in Dynamic nature.	
		models of agriculture, help farmers to systematize themselves to advance their livelihood	Algorithms used: 1.K means clustering algorithm 2.Regression model 3.K-nearest neighbours' algorithm	moisture, irrigation management, temperature, rainfall, pricing, market data etc., contribute to farmers profitability.			

INTRODUCTION		SURVEY/BODY OF REVIEW		CONCLUSION		
Year	Title	Problem Definitions	Methodology (Algorithm Used)	Input Parameter	Results	Future Scope
2018 IJRAR December 2018, Volume 5, Issue 4	CROP YIELD PREDICTION IN AGRICULTURE	In this study, the authors have collected various datasets and predicted crop yields using various	Algorithms used: 1.Linear Regression 2.Logistic Regression	Regression analysis, it observes the relation between an independent (predictor) and dependent (target) variables. This technique helps to estimate through time series data and finds the underlying	Advantages: Regression analysis helps in making prediction and forecasting for crop yield both in near and long term.	The future work can be aimed at the analysis of the entire set of data and will be devoted to suitable strategies for improving the efficiency of the
	USING DATA MINING PREDICTIVE ANALYTIC TECHNIQUES	regression technique. Regression analysis was tested for the effective prediction or forecast of the agriculture yield for various crops in Tamilnadu state	3.Polynomial Regression 4.Ridge Regression 5. Multiple Linear Regression 6. K-Means algorithm.	effect among these variables. Regression analysis indicates the significant relationships between dependent variable and independent variable and it indicates the strength of impact of multiple independent variables on a dependent variable.	Disadvantages: This focus only on the crop yield prediction, factors such as climatic changes are completely ignored.	proposed algorithm. The clustering and regression are one of the capable tool ir field of data mining which can be used in several different ways.

2.2. References

Ravisankar, K., Sidhardha, K. and Prabadevi, B., 2017. Analysis of agricultural data using big data analytics. Journal of Chemical and Pharmaceutical Sciences, 10(3), pp.1132-1135.

JOURNAL OF MANAGEMENT (JOM) Volume 4, Issue 2, October 2017 ISSN 2347 – 3940 (Print Version) Ss, Sasikala & Supervisor, Research & Devi D, Renuka. (2017). THE ASCENDANCY OF BIG DATA ANALYTICS FOR AGRICULTURAL COMPETITIVENESS: THETHEORETICAL FRAMEWORK TO AUGMENT THE AGRICULTURAL MANAGEMENT SYSTEM.

November-2020 International Journal of Engineering Research & Technology (IJERT) Volume 8 Issue 12. Dr. V. Latha Jothi (1), Neelambigai A (2), Nithish sabari S (3), Santhosh K (4). Crop Yield Prediction using KNN Model.

2018 IJRAR December 2018, Volume 5, Issue 4. 1 P.Surya, 2 Dr. I.Laurence Aroquiaraj. CROP YIELD PREDICTION IN AGRICULTURE USING DATA MINING PREDICTIVE ANALYTIC TECHNIQUES

2.3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

3.1. Empathy Map Canvas

3.2. Ideation & Brainstorming

3.3. Proposed Solution

S. No	Parameter	Description
1.	Problem Statement (Problem to be solved)	Crop production in India is one of the most important sources of income and India is one of the top countries to produce crops. As per this project we will be analysing some important visualization, creating a dashboard and by going through these we will get most of the insights of Crop production in India.
2.	Idea / Solution description	With the help of dataset that was given to us, we are planning to create multiple analysis graphs/charts in IBM Cognos Analytics, which will help us to get a better understanding of crop yield in India.
3.	Novelty / Uniqueness	1.Attractive Dashboard with aesthetic visualisation. 2.Creating unique search engine in Dashboard. 3.Providing expert suggestions to farmers.
4.	Social Impact / Customer Satisfaction	1.Help farmers and growers to make better managemental and financial decisions. 2.This helps farmers to choose an accurate crop for a specific season and region.
5.	Business Model (Revenue Model)	Helps in making the policy based, research oriented, development and investment related decisions that aim to influence future crop yield
6.	Scalability of the Solution	This method has been implemented in various parts of the world in which the studies report that it was found to be progressive in reporting prediction accuracy percentage of the compared methodologies with conventional designs and an improved performance.

3.4. Proposed Solution Fit

4. REQUIREMENT ANALYSIS

4.1. Functional requirement

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Requirement	Knowledge of seeds ,crops ,mechanism ,soil ,climate & agriculture science. Right use of resources like soil and water. Time management .Market demand drive production.
FR-2	User Business rules	Three laws - the farmers produce trade and commerce(promotion and facilition)act ,the farmers agreement of price assurance and farm services act and the essential commodities act
FR-3	User Factors	Crop prediction is highly sensitive to climate. It is affected by long-term trend in average rainfall and temperature, interannual climate variability, shocks during specific phonological stages and extreme weather events.
FR-4	User Importance	Crop yield estimates constitude a particular important productivity metric, both an aggregate level as well as in plot-level productivity analysis and impact evaluations of new technologies and policy interventions.
FR-5	User Objectives	Formulation and implementation of policies and programmes aimed at achieving rapid agricultural growth through optimum utilization of land, water, soil and plant resources of the state.
FR-6	User Improvement	It becomes necessary to increase the crop variety to produce disease-resistance offsprings of the crops. It also helps in providing better and superior varieties based on the quality and quantity of the yield.

4.2. Non-Functionalrequirement

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	To empower farmers and to increase the productivity there is need to provide the best dissemination tool for their farming activities.
NFR-2	Security	The developed ICT agriculture tools focus on very important agricultural services such as crop detection ,crop predictor will help farmers to make decision in future.
NFR-3	Reliability	This will remove multilingual issues and bridge the gap between farmers and technology. Effective tool that all farmers can use for management of all kind of crops
NFR-4	Performance	Multiple technologies and services that will improve the usability in agricultural activities.
NFR-5	Availability	Both website and mobile application interface and developed in local language and the content is available in localized language.
NFR-6	Scalability	i)Increassed productivity from warm temperature ii)Decreased moisture stress iii)Possibility of growing new crops iv)Productivity of soil and water

5. PROJECT DESIGN

5.1. Data Flow Diagrams

Data Flow:

5.2. Solution & Technical Architecture

6. PROJECT PLANNING & SCHEDULING

6.1. Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority
Sprint-1	Sprint-1 Registration		As a user, I can register for by entering my Agri - id card andrequest.	2	High
		USN-3	As a user, I can register for the application through Gmail	2	Medium
	Login	USN-4	As a user, I can Call and request or Approach for dataset	4	High
	Working with the Dataset	USN-5	To work on the given dataset, Understand the Dataset.	2	High
		USN-6	Load the dataset to Cloud platform then Build the required Visualizations.	10	High

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority
Sprint-2	Data Visualization Chart	USN-7	Using the Crop production in Indian dataset, create various graphs and charts to highlight the insights and visualizations. *Build a Visualization to showcase Average Crop Production by Seasons.	4	Medium
			*Showcase the Yearly usage of Area in Crop Production.	4	Medium
			Build Visual analytics to represent the States with Seasonal Crop Production using a Text representation.	4	Medium
Sprint-3	Creating The dashboard	USN-8	Create the Dashboard by using the created visualizations.	20	High
Sprint-4	Export The Analytics	USN-9	Export the created Dashboard	20	High

<u>6.2.</u> Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3. Reports from JIRA

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time. Overall Burndown Chart:

7. CODING & SOLUTIONING

Importing Data

import pandas as pd
#importing panda library with an alias pd

#Reading csv files into avariable df

df = pd.read_csv("crop_production.csv")

Season	\	State_Name Di	strict_Name	Crop_Year	
0	Andaman and	Nicobar Islands	NICOBARS	2000	Kharif
1	Andaman and	Nicobar Islands	NICOBARS	2000	Kharif
2	Andaman and	Nicobar Islands	NICOBARS	2000	Kharif
3	Andaman and	Nicobar Islands	NICOBARS	2000	Whole
Year					
4	Andaman and	Nicobar Islands	NICOBARS	2000	Whole
Year					
246086		West Bengal	PURULIA	2014	Summer
246087		West Bengal	PURULIA	2014	Summer

0.4.60.00	West	PURULIA	2014 Whole
246088	Bengal		
Year 246089		PURULIA	2014 Winter
	West		
	Bengal		

246090	West B	engal	PURULIA	2014	Winter
	Crop	Area	Production		
0	Arecanut	1254.0	2000.0		
1	Other Kharif pulses	2.0	1.0		
2	Rice	102.0	321.0		
3	Banana	176.0	641.0		
4	Cashewnut	720.0	165.0		
246086	Rice	306.0	801.0		
246087	Sesamum	627.0	463.0		
246088	Sugarcane	324.0	16250.0		
246089	Rice	279151.0	597899.0		
246090	Sesamum	175.0	88.0		

[246091 rows x 7

columns]df.head(10)

			Sta	ate_Name	District_Name	Crop_Year	
Sea	ason \						
0	Andaman	and	Nicobar	Islands	NICOBARS	2000	Kharif
1	Andaman	and	Nicobar	Islands	NICOBARS	2000	Kharif
2	Andaman	and	Nicobar	Islands	NICOBARS	2000	Kharif
3	Andaman	and	Nicobar	Islands	NICOBARS	2000	Whole Year
4	Andaman	and	Nicobar	Islands	NICOBARS	2000	Whole Year
5	Andaman	and	Nicobar	Islands	NICOBARS	2000	Whole Year
6	Andaman	and	Nicobar	Islands	NICOBARS	2000	Whole Year

Estimate the cíop yield using data analytics

8 Andama	an and	Nicobar	Islands	NICOBARS	2000	Whole Year
9 Andama	an and	Nicobar	Islands	NICOBARS	2000	Whole Year
		Cron	Area	Production		
0		_	1254.0			
1 Other	Kharii	fpulses	2.0	1.0		
2		Rice	102.0	321.0		
3		Banana	176.0	641.0		
4	С	ashewnut	720.0	165.0		
5		Coconut	18168.0	65100000.0		
6	Dr	y ginger	36.0	100.0		
 Sugaíca 		1.0		2.0		
2. Sweet po	tato		5.0	15.0		
9		Tapioca	40.0	169.0		
df.tail(10)					
	State	Name Dis	trict Name	Crop Year	Seas	on
Crop \	2 3 4 3 5 _			010P_1001	2 3 4 2	
_	West Be	engal	PURULIA	2014	Rabi	Rapeseed
246082	West Be	engal	PURULIA	2014	Rabi	
Safflower						
	West Be	engal	PURULIA	2014	Rabi	
Urad 246084 1	West Be	engal	PURULIA	2014	Rabi	
Wheat		_				
246085 N Maize	West Be	engal	PURULIA	. 2014	Summer	
246086	West B	engal	PURULI	A 2014	1 Summer	
Rice		_				
246087 We Sesamum	est Be	ngal	PURULI	A 2014	1 Summer	
246088 W	est Re	ngal	PURULI	Δ 2014	4 Whole Yea	ar
Sugarcane		11941	1 01(01)1	201-	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~-
246089 W	Mest B	sengal	PURULI	A 2014	4 Winter	
Rice				_		
246090 V Sesamum	Vest B	sengal	PURULI	IA 2014	4 Winter	

	Area	Production
246081	1885.0	1508.0
246082	54.0	37.0
246083	220.0	113.0
246084	1622.0	3663.0
246085	325.0	2039.0
246086	306.0	801.0
246087	627.0	463.0
246088	324.0	16250.0
246089	279151.0	597899.0
246090	175.0	88.0

df.sample(10)

	Ctata Nama	Diatriat	Nama	Cron	V 0 0 10	Coacoa	\
100400	State_Name	District	_		-		\
109430	Madhya Pradesh		GUNA			Whole Year	
3729	Andhra Pradesh	K	ADAPA		2009	Kharif	
37765	Bihar	MUZAFF	'ARPUR		2014	Autumn	
141932	Meghalaya W	EST KHASI	HILLS		2014	Kharif	
120990	Madhya Pradesh	SH	IAHDOL		2002	Whole Year	
209910	Uttar Pradesh	FARRUK	HABAD		2010	Summer	
57521	Gujarat	AHMA	DABAD		2012	Kharif	
215654	Uttar Pradesh	JA	UNPUR		2013	Rabi	
166342	Rajasthan	Е	BARMER		2008	Rabi	
112621	Madhya Pradesh		KATNI		1999	Whole Year	
	Crop	Area	Produc	ction			
109430	Pome Fruit	62.0		0.0			
3729	Rice	52423.0	153	757.0			
37765	Rice	31319.0	695	515.0			
141932	Banana	521.0	3(032.0			
120990	Other Vegetables	262.0		0.0			
209910	Moong (Green Gram)	768.0	-	789.0			
57521	Sesamum	1600.0	8	300.0			
215654	Onion	366.0	7	444.0			
166342	Linseed			12.0			
112621	Garlic	51.0	1	158.0			

Uploading Dataset into IBM Cognos

8. Testing 8.1.Test Case

Test case ID	Feature Type	Component	Test Scenario	Steps To Execute	Text Data	Expected Result	Actual Result	Status	Comments	TC for Automation(Y/N)	BUGIO	Executed By
LoginPage_TC_001	Functional	Home Page	Verify user is able to see the Login Signup popup when user clicked on My account button	1: Enter LIPIL and click go 1: Click on My Account drapdown button 1: Verify login/Signup popup displayed or not	DIVISIONED develop SM From epage Novil	Login/Signup papup shoold display	Working as expected	Pass	Steps are clear to follow along.	N.	M	M3-Viswanath
LoginPage_TC_002	u	Home Plage	Verify the UI elements in Lagin; Signup properp	Enter URL and click go Click on My Account dropdown button Verify login/Signup populpwith below Ut elements: a.email text box b.paraword text box c.Lagin button d.New publisher? Create account link e.Last persword? Recovery password link	DiviSweb develop (BM) Reg stration Mary	Application should show below U. elements: a.email text box b.password text box c.Login button with orange colour d. New customer? Dreate account link e.Last password? Recovery password link	Working as expected	Pass	Steps are clear to follow along.	1	BUG- 1234	M3-Viseanath
LogisPage_TC_003	Functional	Home page	Verify over is able to log into application with Valid credentials	1 Enter URL and click go 2 Click on My Account dropdown button 5 Enter Valid osersame/email in Email test box 6 Enter valid password in password test box 9 Click on login button	Userrame: Vowa password: 1202	User should navigate to user account, homespage	Working as expected	Pas	Steps are clear to follow along	X.	NI	M3- Viswanath and M4 Palaniyappan
kuming Capes p g_001	Functional	Story	Verify whether the user is able to view the story by using the credentials	1 Enter URL and click go 2 Enter the mail and password	Osenane: vastnovinansimhamarch@g mal.com password: Vashnovi*Sa7	Application should the expected result(Story)	Working as expected	Pass	Steps are clear to follow along.	X.	M	MD-Vaishnari
koresing Captos p #_002	Functional	Report	Verify whether the user is able to view the report by using the condentials	1 Enter URL and click go 2 Enter the mail and password	Username: vickypalanipoppar12@gmail.c om password: Vic@1202	Application should the expected result(Report)	Working as expected	Pass	Steps are clear to follow along.	X	Ni	M4-Palaniyappan
corning Cognes p g_003	Functional	Dashboard	Verify whether the user is able to view the dashboard by using the credentials	1 Enter URL and click go 2 Enter the mail and password	Userrame. srisudhansan i @gmail.com password: Rosj@2001	Application should the expected result(Dashboard)	Working as expected	Pass	Steps are clear to follow along.	×	N	NO-Shudhansan
Accessing Cognos p	Functional	Visualization	Verify whether the user is able to view the dashboard by using the credentials	1 Enter URL and click go 2 Enter the mail and password	Ukername vickypalaniappan 12 @gmail.com password: Vic@1202	Application should the expected result(Visualizations)	Working as expected	Pass	Steps are clear to follow along.	1	NI	M2-Srisotherson

Accessing Cognos p g_005	Functional	Explorations	Verify whether the user is able to view the dashboard by using the credentials		1 Enter URL and click go 2 Enter the mail and password	Ukerrane: vaishnavinansimhamarch@g mail.com pasovord: Vaishnavi*Sai?	,	Working as expected	F323	Steps are clear to follow along.	N	M	M1-Vashnavi	
-----------------------------	------------	--------------	--	--	---	---	---	------------------------	------	----------------------------------	---	---	-------------	--

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtota
By Design	8	4	2	2	16
Duplicate	4	2	3	0	9
External	2	3	0	1	6
Fixed	22	7	4	18	51
Not Reproduced	0	0	1	0	1
Skipped	1	1	0	0	2
Won't Fix	4	0	2	1	7
Totals	41	17	12	22	92

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	4	0	0	4
Client Application	45	0	4	49
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9. Result

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Screenshot / Values
1.	Dashboard design	No of Visualizations / Graphs - https://us1.ca.analytics.ibm.com/bi/?perspective=dashboard &pathRef=.public_folders%2Fcrop%2Bproduction%2Banalysis %2Fcrop%2Bproduction%2Banalysis&action=view&mode=da shboard&subView=model0000018446bb2594_00000000
2.	Data Responsiveness	CROP PRODUCTION DATASET The dataset contains 7 rows and 246091 record and dataset contains different state name, different district name, crop year, crop, area, season and production
3.	Amount Data to Rendered (DB2 Metrics)	To connect IBM Db2 database cloud with IBM Cognos analytics By using IBM Db2 to create Dashboard, Report, Story, Visualization and Exploratory data analytics (EDA)
4.	Utilization of Data Filters	Utilization of data filters - 13
5.	Effective User Story	No of Scene Added – 7 https://us3.ca.analytics.ibm.com/bi/?perspective=story&pat hRef=.public_folders%2FPROJECT%2FNew%2Bstory&action= view&sceneId=model0000018447339a54_00000000&sceneT ime=0
6.	Descriptive Reports	No of Visualizations / Graphs – 1/6 https://us1.ca.analytics.ibm.com/bi/?pathRef=.my_folder

Estimate the cíop yield using data analytics

10. Advantages & Disadvantages

<u>Advantages</u>

- ➤ The precision agriculture market continues to evolve, allowing farmers to embrace data-driven solutions.
- ➤ While the futuíe oppoitunities foi data analytics in agiicultuíe aie limitless, theie aie alieady stiong benefits emeiging, such as incieasing innovation andpioductivity.
- ➤ Data analytics has enoimous potential foi the cost to output iatio ,optimizing timely actionable infoimation, and much moie.
- ➤ I'he utilization of big data within agiicultuíes díiving a gíowing demand foí specialized tools and platfoíms that collect, analyse, and píovide useful data to

- impíove faíming.
- > Data analytics piovides businesses to make innumeiable decisions eveiyday and intiicate complexities involves the vaiious factois influencing them.
 - ➤ Data analytics can help faímeís monitoí the health of cíop in íeal time, cíeatepíedictive analytics íelated to futuíe yields and can help faímeís make íesouíces management

<u>Disadvantages</u>

- It includes data and metadata gaps, insufficient data stoíage, píeseívation, and documentation, lack of scalable spatio-temporal data analytics methods, and inadequate secure data-sharing mechanisms.
- Secuity issues, ethical issues the deliberate abuse of big data by malevolent and intentional misuse.
 - It íequiíes moíe knowledge and skills,it involves íisk. It is cíitical if youí faíming foí commeícial puíposes and want to ensuíe that youí cíops píoduce ceítain chaíacteíistics,such as size, shape, weight and colouí and youí cíop aíe disease íesistance

11. Conclusion

As a result of penetration of technology into agriculture field, there is a marginal improvement in the productivity. The innovations have led to new concepts like digital agriculture, smart farming, precision agriculture etc. In the literature, it has been observed that analysis has been done on agriculture soils, hidden patterns discovery using data set related to climatic conditions and crop yields data.

The activities of agriculture field are numerous like weather forecasting, soil quality assessment, seeds selection, crop yield prediction etc. In this survey, the specific activity, crop yield prediction has been surveyed and the major trends have been identified.

It can be concluded that the research in agriculture with

reference to using IT trends like data analytics in the infancy. As the food is the basic need of humans, the requirement of getting the maximum yield using optimal resource will become the necessity in near future as a result of growing population. The survey outcomes indicate the need for improved techniques in crop yield analytics

12. Future Scope

- Píedict appíopíiate cíop and maximum yield in the climate change.
- Cíeate an andíoid app Collection of data, Analytics of it and modification of the algorithm.
- IOI' application in agiicultuie, automation in pioduction line and man fiee agriculture which is the future of the world, this is the first step of it.
 - Îind the peicentage yield to happen fiom the match given peicentage in teimsof % eiíoí

13. Appendix

- 1. Demo video link: https://www.youtube.com/watch?v=cFcfpc33mzM
- 2. Github link: https://github.com/IBM-EPBL/IBM-Project-47475-1660799664