$$\frac{\text{Cove 3 } \int \text{an 06}}{1} \int_{2}^{8} \frac{3}{x} dx = \frac{3 \ln x}{3 \ln x} = \frac{3 \ln x}{2} = \frac{3 \ln x}{3 \ln x} = \frac{3 \ln x}{3 \ln x}$$



(3) a) It's a product!!

$$y = \chi^{2}(\chi + 1)^{6}$$
 $u = \chi^{2}$ 
 $v = (\chi + 1)^{6}$ 
 $v = (\chi$ 

4) i) 
$$f(x) = 2-Jx$$

As  $Jx$  is positive

the max value of  $f(x)$  is  $Z$ 

So  $y \le 2$ 

ii)  $f(4) = 2-J4 = 0$ 
 $f(f(4)) = f(0) = 2$ 

iii)  $|2-Jx| = K$ 
 $y = |2-Jx|$  looks whethin

For  $Z$  solutions  $0 \le K \le 2$ 

From the diag am its easily to integrate the two separately. 
$$y = e^{2x-1}$$
 will give a regarive over that we can 'add' an.

$$\int_{0}^{1/2} (1-2x)^{5} dx = \left[\frac{1}{6} - \frac{1}{2}(1-2x)^{5}\right]_{0}^{1/2} = \left[\frac{1}{12}(1-2x)^{6}\right]_{0}^{1/2} = \left[\frac{1}{12}(1-2x)^{6}\right]_{0}$$

$$\int_{0}^{h} e^{2x-1} - 1 \cdot dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2x-1} \int_{0}^{h} e^{2x-1} - 1 \cdot dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2x-1} \int_{0}^{h} e^{2x-1} - 1 \cdot dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-\frac{1}{2}} \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} = \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} = \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} = \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} = \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} = \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} = \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} = \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} = \int_{0}^{\frac{1}{2}} e^{-\frac{1}{2}} e^{-$$

b) i) 
$$20 = 80e^{-0.02t}$$

$$\frac{20}{80} = e^{-0.02t}$$

$$\frac{20}{80} = e^{-0.02t}$$

$$\frac{1}{4} = e^{-0.02t} = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}{$$



$$\chi_{2} = 1 + \cos\left(\frac{2}{3}\right) = 1.786$$

$$\chi_{3} = 1 + \cos\left(\frac{\alpha ns^{2}}{3}\right) = 1.828$$

$$\chi_{4} = 1 + \cos\left(\frac{\alpha ns^{2}}{3}\right) = 1.820$$

$$\chi_{5} = 1 + \cos\left(\frac{\alpha ns^{2}}{3}\right) = 1.820$$

$$\chi_{5} = 1 + \cos\left(\frac{\alpha ns^{2}}{3}\right) = 1.822$$

$$\chi_{6} = 1.82$$

$$\chi_{1} = 1.82$$

$$\chi_{1} = 1.82$$

$$\chi_{2} = 1.82$$

$$\chi_{3} = 1.82$$

$$\chi_{4} = 1.82$$

$$\chi_{5} = 1.82$$

$$\chi_{5} = 1.82$$

$$\chi_{6} = 1.82$$

$$\chi_{7} = 1.8$$

(3) 
$$y = \ln(5-x^2)$$
 $\frac{dy}{dx} = ?$ 

Rechain rule - a function of a function  $\frac{dy}{dx} = ?$ 
 $\frac{dy}{dx} = ?$ 
 $\frac{dy}{dx} = ?$ 
 $\frac{dy}{dx} = -2x$ 
 $\frac{dy}{dx} = \frac{1}{x}$ 
 $\frac{dy}{dx} = -2x$ 
 $\frac{dy}{dx} = \frac{1}{x}$ 
 $\frac{dy}{dx} = -2x = 1$ 
 $\frac{dy}{dx} = -2x = -4$ 
 $\frac{y-0}{x-2} = -4$ 
 $\frac{y-0$ 

(9i) 
$$Sin 30 = Sin 20 + 0$$
)
$$= A is$$
 $Sin 20 cos 0 + Sin 0 cos 20$ 

$$= 2 sin 0 cos 0 cos 0 + Sin (cos 0 - sin 30)$$

$$= 2 sin 0 cos 0 + Sin cos 0 - sin 30$$

$$= 3 sin 0 (1 - sin 30) - sin 30$$

$$= 3 sin 0 - 3 sin 30 - sin 30$$

$$= 3 sin 0 - 3 sin 30 - sin 30$$

$$= 3 sin 0 - 4 sin 30$$
ii)  $9 sin (iox) - 12 sin (iox) bodos abit likethin

Sin 30 = 3 sin 0 - 4 sin 30
$$3 sin 30 = 9 sin 0 - 12 sin 30$$
Where  $0 = \frac{1}{3}x$ 

$$So  $9 sin (iox) - 12 sin (iox) = 3 sin (3 x 10x)$ 

$$= 3 sin (iox) - 2 sin (iox) = 3 sin (3 x 10x)$$

$$= 3 sin (iox) - 3 sin (iox) = 1 ie 10x = 90$$
occors when  $sin (iox) = 1$  ie  $10x = 90$$$$ 

iii) 
$$3 \sin 6 \beta \cos 2 \beta = 4$$
  
 $= 3 \sin 6 \beta \sin 2 \beta = 4$   
thin  $f$   $3 \sin 6 \beta \cos 3 \sin 3 \beta \cos 6 \beta = 4 \sin 6 \beta = 4 \sin 2 \beta - 12 \sin^3 2 \beta$   
 $3 \sin 6 \beta = 4 \sin 2 \beta - 12 \sin^3 2 \beta = 4$   
 $3 \sin 6 \beta = 4 \sin^2 2 \beta = 4$   
 $3 \sin 6 \beta = 4 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 5 \cos^2 2 \beta = 4$   
 $12 \sin^2 2 \beta = 4$   
 $12 \sin$