TUM Analysis für Informatik [MA0902], WiSe 2022/2023 Mitschriften basierend auf der Vorlesung von Prof. Dr. Silke Rolles

Zuletzt aktualisiert: 19. November 2022

Introduction

About

Hier sind die wichtigsten Konzepte / Formeln der Analysis Vorlesung von Prof. Dr. Silke Rolles im Wintersemester 2022/2023 zusammengefasst.

Die erstellten Notizen sind stark an den Vorlesungsfolien von Prof. Dr. Silke Rolles orientiert.

Die Mitschriften selbst sind in Markdown geschrieben und werden mithilfe einer GitHub-Action nach jedem Push mithilfe von Pandoc zu einem PDF konvertiert.

Eine stets aktuelle Version der PDFs kann über https://github.com/ManuelLerchner/analysis/relea ses/download/Release/merge.pdf heruntergeladen werden.

How to Contribute

- 1. Fork this Repository
- 2. Commit and push your changes to **your** forked repository
- 3. Open a Pull Request to this repository
- 4. Wait until the changes are merged

Contributors

Inhaltsverzeichnis

	Introduction	1
	About	1
	How to Contribute	1
	Contributors	1
1.	. Reelle Zahlen	4
	1.1 Zahlenmengen	
	Definition Abzählbarkeit	
	Anordnung von Körpern	
	1.2 Eigenschaften der reellen Zahlen	4
	Beschränktheit	4
	Supremumsaxiom in den reellen Zahlen	4
	$\mathbb R$ ist archimedisch	
	Die rationalen Zahlen liegen dicht in \mathbb{R}	
	1.3 Wichtige Ungleichungen	
	Dreiecksungleichung	
	Cauchy-Schwarz Ungleichung	
	Cauchy-Schwarz Ongleichung	٠. و
2	. Folgen	6
ے.	2.0 Definition	
	Rechenregeln Grenzwerte:	
	2.1 Konvergenz	
	Definition Konvergenz	
	Definition Divergenz	
	Asymptotische Äquivalenz	
	Beschränktheit	
	Einschließungsregel	7
	2.2 Monotone Folgen	7
	Definition	7
	Hilfreiche Formeln	7
3.	. Reihen	8
	3.1 Definition	8
	Definition	8
	Hilfreiche Reihen	8
	3.2 Konvergenzkriterien	
	Notwendige Bedingung	
	Majorantenkriterium	
	Minorantenkriterium	9
	Quotientenkriterium	
	Leibnitz Kriterium (Alternierende Reihen)	
	3.3 Rechenregeln Reihen	
	Addition von Reihen	
	Multiplikation mit einer Konstanten	
	Addition von konvergenten und divergenten Reihen	
	Divergenz des Kehrwertes	
	Umordnungssatz	
	Multiplikation von Reihen	10

	3.4 Eigenschaften der Exponentialfunktion	10
4.	Stetigkeit	11
	4.1 Definition	11
	Definition Stetigkeit	11
	Beispiel Stetigkeit einer Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}$	11
	Konvergenz von Folgen in \mathbb{R}^d	11
	Stetigkeit der Exponentialfunktion in \mathbb{C}	11
	Komposition stetiger Funktionen	11
	4.2 Zwischenwertsatz	
	4.3 Häufungspunkte	
	Satz von Bolzano-Weierstrass	
	4.4 Existenz von Maxima und Minima	

1. Reelle Zahlen

1.1 Zahlenmengen

Definition Abzählbarkeit

A ist abzählbar, wenn es eine surjektive Abbildung von \mathbb{N} auf A gibt. $(f:\mathbb{N}\to A)$

- Mit anderen Worten: A kann durchnummeriert werden
- Beispiele:
 - $\mathbb Q$ ist abzählbar (Alle Brüche können "schlangenartig" durchnummeriert werden, siehe Diagonalargument)
 - $-\mathbb{R}$ ist nicht abzählbar (Widerspruchsbeweis)

Anordnung von Körpern

Der Körper \mathbb{R} ist angeordnet da:

- 1. $\forall a \in \mathbb{R}$ gilt entweder:
 - a = 0 oder
 - a > 0 oder
 - *a* < 0
- 2. $\forall a, b \in \mathbb{R} \text{ mit } a, b > 0 \text{ gilt:}$
 - a+b>0 und
 - $a \cdot b > 0$

Der Körper $\mathbb C$ kann nicht angeordnet werden da:

- Angenommen: Sei $a \in \mathbb{C}$ und $a \neq 0$ dann muss entweder:
 - -a > 0, und laut definition von Anordnung auch $a \cdot a > 0$ oder
 - -a > 0, und somit auch $(-a) \cdot (-a) = a^2 > 0$
- Somit gilt in jedem Fall $a^2 > 0$
 - Sei a = i dann gilt $a^2 = -1$
 - Das ist ein Widerspruch

1.2 Eigenschaften der reellen Zahlen

Beschränktheit

Eine Menge $M \subseteq \mathbb{R}$ ist nach oben beschränkt, falls sein $s_0 \in \mathbb{R}$ existiert, sodass $\forall s \in M$ gilt: $s \leq s_0$

- Die Zahl s_0 heißt obere Schranke von M

Supremumsaxiom in den reellen Zahlen

Jede nichtleere, nach oben beschränkte Menge von $\mathbb R$ hat eine kleinste obere Schranke, diese heißt sup $M\in\mathbb R$

Jede nichtleere, nach unten beschränkte Menge von $\mathbb R$ hat eine größte untere Schranke, diese heißt inf $M \in \mathbb R$

Falls das Supremum oder das Infimum einer Menge M auch selbst in M liegt, dann wird es auch als Maximum bzw. Minimum von M bezeichnet

- Konventionen:
 - $-\sup M = \infty$ falls M nicht nach oben beschränkt ist
 - $-\inf M = -\infty$ falls Mnicht nach unten beschränkt ist
 - $-\sup\emptyset = -\infty$

\mathbb{R} ist archimedisch

 $\forall a \in \mathbb{R}$ existiert $n \in \mathbb{N}$ mit a < n

Die rationalen Zahlen liegen dicht in \mathbb{R}

 $\forall a, b \in \mathbb{R} \text{ mit } a < b \text{ existiert } r \in \mathbb{N} \text{ mit } a < r < b$

1.3 Wichtige Ungleichungen

Dreiecksungleichung

 $\forall x, y \in \mathbb{R} \text{ gilt:}$

- $\begin{array}{ll} \bullet & |x+y| \leq |x| + |y| \\ \bullet & |x+y| \geq ||x| |y|| \end{array}$

Cauchy-Schwarz Ungleichung

 $\forall x, y \in \mathbb{R} \text{ gilt:}$

- $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
- "Der Betrag vom Skalarprodukt ist kleiner oder gleich dem Produkt der Beträge der Vektoren"

2. Folgen

2.0 Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung $\mathbb{N}\to\mathbb{R}$ mit $n\mapsto a_n$

Rechenregeln Grenzwerte:

Falls $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ dann gilt:

- $\lim_{n \to \infty} (a_n + b_n) = a + b$ $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$

- $\lim_{\substack{n \to \infty \\ n \to \infty}} (c \cdot a_n) = c \cdot a$ $\lim_{\substack{n \to \infty \\ n \to \infty}} \frac{a_n}{b_n} = \frac{a}{b} \text{ falls } b \neq 0$

2.1 Konvergenz

Definition Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert nach $a\in\mathbb{C}$ falls:

• $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 |a_n - a| < \varepsilon$

Kurzschreibweisen:

- $\lim_{n \to \infty} a_n = a$ $a_n \stackrel{n \to \infty}{\longrightarrow} a$

Definition Divergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert falls:

• $\forall a \in \mathbb{R} \exists \varepsilon > 0 \forall n_0 \in \mathbb{N} \exists n > n_0 |a_n - a| \ge \varepsilon$

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert gegen ∞ / konvergiert uneigentlich falls:

• $\forall K > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 a_n \geq K$

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert gegen $-\infty$ / konvergiert uneigentlich falls:

• $\forall K > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 a_n \leq -K$

Asymptotische Äquivalenz

Falls $a_n \stackrel{n \to \infty}{\longrightarrow} a$ und $b_n \stackrel{n \to \infty}{\longrightarrow} b$ mit $a, b \neq 0$ dann gilt:

• $a_n \simeq b_n$ falls $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ bzw. $\lim_{n \to \infty} \frac{b_n}{a_n} = 1$

Außerdem: Falls $a_n \simeq b_n$ dann gilt:

- Es sind entweder beide Folgen konvergent oder beide divergent
- $\lim_{n\to\infty} (b_n a_n) = 0$ gilt nur für konvergente, asymptotisch gleiche Folgen.

Beschränktheit

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist beschränkt falls $\exists K\in\mathbb{R}\forall n\in\mathbb{N}|a_n|\leq K$

• Insbesondere ist eine Folge beschränkt falls sie konvergiert

Einschließungsregel

Falls $a_n \leq b_n \leq c_n$ für alle bis auf endlich viele n dann gilt:

• Falls $a \in \mathbb{R}$ mit $\lim_{n \to \infty} a_n = a = \lim_{n \to \infty} c_n$ dann gilt $\lim_{n \to \infty} b_n = a$

2.2 Monotone Folgen

Definition

Eine folge $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ Eine folge $(a_n)_{n\in\mathbb{N}}$ ist monoton fallend falls $a_n \geq a_{n+1}$ für alle $n \in \mathbb{N}$

- Zusammenhang mit Supremum und Infimum
 - Falls $(a_n)_{n\in\mathbb{N}}$ eine monoton wachsende Folge ist dann gilt:

$$* \lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n$$

– Falls $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge ist dann gilt:

$$* \lim_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} a_n$$

Hilfreiche Formeln

Bernoulli-Ungleichung

•
$$(1+x)^n \ge 1 + nx$$
 für $x > -1$ und $n \in \mathbb{N}$

Binomialkoeffizienten

•
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Endliche Geometrische Summe

•
$$\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$$

3. Reihen

3.1 Definition

Definition

Eine Reihe $(s_n)_{n\in\mathbb{N}}$ ist eine Reihe für die Folge $(a_n)_{n\in\mathbb{N}}$ mit

- $\bullet \quad s_n = \sum_{k=0}^n a_k$
- Hierbei ist s_n die n-te Partialsumme der Reihe.

Falls s_n konvergiert, dann heißt die Reihe konvergent. Der Grenzwert heißt dann der Wert der Reihe.

Falls die Reihe der Absolutbeträge einer Folge konvergiert, dann heißt die ursprüngliche Reihe absolut konvergent

Hilfreiche Reihen

Harmonische Reihe

- $s_n = \sum_{k=1}^n \frac{1}{k}$ s_n divergiert nach ∞

Geometrische Reihe

- $\bullet \quad s_n = \sum_{k=0}^n q^k$
- s_n divergiert nach ∞ falls $|q| \ge 1$ und konvergiert nach $\frac{1}{1-q}$ falls |q| < 1

Teleskopreihe

- $s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n (\frac{1}{k} \frac{1}{k+1})$ s_n konvergiert gegen 1

3.2 Konvergenzkriterien

Notwendige Bedingung

Damit s_n konvergieren kann muss $\lim_{n\to\infty} a_n = 0$ gelten.

Majorantenkriterium

Falls $|a_n| \leq b_n$ für alle $n \in \mathbb{N}$, und $\lim_{n \to \infty} b_n = b$, dann ist a_n konvergent.

Beispiel:

- $s_n = \sum_{k=1}^n \frac{k}{k^3 + k}$ $a_k = \frac{k}{k^3 + k} \le \frac{k}{k^3} = \frac{1}{k^2}$
- Da $\sum_{k=1}^{n} \frac{1}{k^2}$ konvergiert, ist auch s_n konvergent.

Minorantenkriterium

Falls $|a_n| \leq b_n$ für alle $n \in \mathbb{N}$, und a_n divergiert, dann ist auch b_n divergent.

•
$$s_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

• $a_k = \frac{1}{\sqrt{k}} \ge \frac{1}{k}$

•
$$a_k = \frac{1}{\sqrt{k}} \ge \frac{1}{k}$$

• Da $\sum_{k=1}^{n} \frac{1}{k}$ divergiert, ist auch s_n divergent.

Quotientenkriterium

Sei
$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
.

- Falls q < 1, dann ist konvergiert die Summe $\sum_{n=1}^{\infty} a_n$.
- Für q > 1 divergiert diese.
- Ansonsten ist keine Aussage möglich.

Beispiel:

$$\bullet \quad s_n = \sum_{k=1}^n \frac{1}{n!}$$

•
$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} \right| = \lim_{n \to \infty} \frac{1}{n+1} = 0$$
• Da $q < 1$, ist s_n konvergent.

Leibnitz Kriterium (Alternierende Reihen)

Sei $(a_n)_{n\in\mathbb{N}_{\neq}}$ monoton fallend mit $\lim_{n\to\infty} a_n = 0$

• Dann konvergiert die alternierende Reihe $s = \sum_{k=0}^{\infty} (-1)^k a_k$

Beispiel:

•
$$s_n = \sum_{k=0}^n (-1)^k \frac{1}{2^k}$$

• Da $a_k = \frac{1}{2^k}$ monoton fallend ist, und gegen 0 konvergiert, ist s_n konvergent.

3.3 Rechenregeln Reihen

Addition von Reihen

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergente Reihen. Dann folgt, dass auch die Summe der Beiden Reihen konvergiert:

•
$$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$$
.

Multiplikation mit einer Konstanten

Falls $\sum_{k=1}^{\infty} a_k$ eine konvergente Reihe ist, dann konvergiert auch $\sum_{k=1}^{\infty} c \cdot a_k$ mit $c \in \mathbb{R}$.

Addition von konvergenten und divergenten Reihen

Seien $\sum_{k=1}^{\infty} a_k$ eine konvergente Reihe und $\sum_{k=1}^{\infty} b_k$ eine divergente Reihe. Dann divergiert auch die Reihe $\sum_{k=1}^{\infty} (a_k + b_k)$.

9

Divergenz des Kehrwertes

Sei $\sum_{k=1}^{\infty} a_k$ eine konvergente Reihe positiver Zahlen. Dann divergiert $\sum_{k=1}^{\infty} \frac{1}{a_k}$.

Umordnungssatz

$$\sum\limits_{k=1}^{\infty}a_k$$
konvergiert absolut $\iff \sum\limits_{k=1}^{\infty}a_{\sigma(k)}=\sum\limits_{k=1}^{\infty}a_k$

Jede Umordnung von Reihenelementen muss gegen denselben Grenzwert konvergieren.

Multiplikation von Reihen

Sind
$$\sum_{k=0}^{\infty} a_k$$
 und $\sum_{k=0}^{\infty} b_k$ absolut konvergent, dann ist auch $\sum_{k=0}^{\infty} c_k$ mit $c_k = \sum_{l=0}^{\infty} a_l b_{k-l}$ (Cauchy-Produkt) absolut konvergent.

3.4 Eigenschaften der Exponentialfunktion

$$\exp(z) = \sum_{k=1}^{\infty} \frac{z^k}{k!}$$

- $\exp(w+z) = \exp(w) + \exp(z)$ $\exp(0) = 1 \ \forall z \in \mathbb{C}$ $\exp(-z) = \frac{1}{\exp(z)} \ \forall z \in \mathbb{C}$ $\exp(x) > 0 \ \forall x \in \mathbb{R}$

- $\exp : \mathbb{R} \to \mathbb{R}$ ist streng monoton wachsend
- $|\exp(z)| \le \exp(|z|) \ \forall z \in \mathbb{C}$

4. Stetigkeit

4.1 Definition

Definition Stetigkeit

Eine Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}^q$ mit Definitionsbereich \mathbb{D} ist stetig im Punkt x falls:

- Für alle Folgen $(x_n)_{n\in\mathbb{N}}$ in \mathbb{D} mit $\lim_{n\to\infty} x_n = x$ gilt:
 - $-\lim_{n\to\infty} f(x_n) = f(x)$
- Man schreibt auch:
 - $-\lim_{x \to x_0} f(x) = f(x_0)$

Ist eine Funktion in allen Punkten $x \in \mathbb{D}$ stetig, nennt man sie auch stetig.

Beispiel Stetigkeit einer Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}$

Um die Stetigkeit einer Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}$ zu prüfen zeige, dass:

•
$$\lim_{x \to x_0} |f(x) - f(x_0)| = 0$$

Beispiel: f(x) = |x|

• $|f(x) - f(x_0)| = ||x| - |x_0|| \le |x_n - x_0|$ - Für $x_n \to x_0$ gilt $|x_n - x_0| \to 0$ - $\implies f$ ist stetig

Konvergenz von Folgen in \mathbb{R}^d

Eine Folge $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R}^d konvergiert gegen einen Punkt $x\in\mathbb{R}^d$, falls alle Komponten der Folge gegen die entsprechenden Komponenten von x konvergieren.

Beispiel:

- $x_n = (1 + \frac{1}{n}, \frac{1}{n^2})$
- Die Folge konvergiert gegen den Punkt (1,0) da die Komponenten gegen 1 bzw. 0 konvergieren

Stetigkeit der Exponentialfunktion in \mathbb{C}

Die Exponentialfunktion e^x ist in \mathbb{C} stetig.

Komposition stetiger Funktionen

Seien $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}^q$ und $g: \mathbb{R}^q \to \mathbb{R}^{\times}$ stetige Funktionen. Dann ist auch $g \circ f$ stetig.

Beispiele für stetige Funktionen:

- f(x) = c
- f(x) = x
- f(x,y) = x + y
- $f(x,y) = x \cdot y$

• $f(x,y) = \frac{x}{y} \text{ mit } \mathbb{D} = \mathbb{R} \times (\mathbb{R} \setminus \{0\})$

Damit sind auch Summen und Produkte stetiger Funktionen stetig.

- Somit sind insbesondere auch Polynome stetig
- Rationalen Funktionen mit $f(z) = \frac{p(z)}{q(z)}$ mit p und q Polynomen sind auf ihrem Definitionsbereich stetig

4.2 Zwischenwertsatz

Falls eine Funktion $f:[a,b]\to\mathbb{R}$ stetig auf dem Intervall [a,b] ist, dann nimmt sie jeden Wert zwischen f(a) und f(b) an.

Beispiel:

- Hat $f(x) = \cos(x) x$ eine Nullstelle auf $[0, \pi/2]$?
 - f(0) = 1 und $f(\pi/2) = -\pi/2$
 - Da die Funktion stetig ist, nimmt sie auf $[0,\pi/2]$ jeden Wert zwischen 1 und $-\pi/2$ an. Somit $\exists x \in [0,\pi/2]$ mit f(x)=0

4.3 Häufungspunkte

Sei $(a_{n_k})_{k\in\mathbb{N}}$ eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$

• Dann heißt a^* ein $H\ddot{a}ufungspunkt$ von $(a_n)_{n\in\mathbb{N}}$ falls es eine Teilfolge mit $\lim_{k\to\infty}a_{n_k}=a^*$ gibt

Falls die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert, dann ist der Häufungspunkt der Folge gleich dem Grenzwert.

Beispiel:

- $a_n = (-1)^n$
- Diese Folge hat die Teilfolgen $(a_{2k})_{k\in\mathbb{N}}$ und $(a_{2k+1})_{k\in\mathbb{N}}$ welche jeweils konstant 1 bzw -1 sind. Somit hat die Folge a_n den Häufungspunkt 1 und -1

Satz von Bolzano-Weierstrass

Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ hat mindestens eine konvergente Teilfolge und somit auch mindestens einen Häufungspunkt.

Diese Aussage lässt sich auch auf \mathbb{R}^d mit $d \geq 2$ übertragen. Dabei heißt eine Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_n \in \mathbb{R}^d$ beschränkt, falls:

• $\exists M > 0 \ \forall n \in \mathbb{N} \ ||x_n||_2 \leq M$.

4.4 Existenz von Maxima und Minima

Ein Punkt $x \in D$ heißt:

- Minimumstellen von f falls $f(x) \leq f(y)$ für alle $y \in D$
- Maximumstellen von f falls $f(x) \ge f(y)$ für alle $y \in D$

Es ist möglich dass eine Funktion weden ein Maximum als auch ein Minimum besitzt. Da z.B.: nur das Infimum: $\inf_{x \in D} f(x)$ bzw. das Supremum: $\sup_{x \in D} f(x)$ bekannt ist und das dafür benötigte x nicht in D liegt.