PHASE 4

To build the market basket insights project by:

- Performing association analysis
- Generating insights.

Creating a Market Basket Insights project involves two key steps: performing association analysis and generating insights. Here's a brief overview of each step:

Performing Association Analysis:

- Start by gathering transaction data, which includes a list of items purchased in each transaction.
- Utilize data mining techniques like Apriori or FP-growth to identify frequent itemsets and association rules. These rules reveal patterns of items that tend to be purchased together.
- Set a minimum support and confidence threshold to filter out less relevant associations.
- Calculate lift or other relevant metrics to prioritize and refine the rules.
- Visualize the associations using tools like scatter plots or network diagrams.

Generating Insights:

- Analyze the association rules to gain insights into customer behavior and purchasing patterns.
- Identify cross-selling opportunities by finding items frequently bought together.
- Understand which items are commonly bought alone, indicating potential bundling opportunities.
- Explore the impact of promotions or discounts on item associations.
- Create recommendations for optimizing product placement, marketing strategies, and pricing

CODE & OUTPUT:

```
Import numpy as np
Import pandas as pd
Import matplotlib.pyplot as plt
From mlxtend.frequent patterns import apriori
From mlxtend.frequent patterns import association rules
Dataset = pd.read excel('C:\\ELCOT\\downloads\\Assignment-
1 Data.xlsx')
# Split the 'Itemname' column into individual items
Items df = transaction data['Itemname'].str.split(', ', expand=True)
# Concatenate the original DataFrame with the new items DataFrame
Transaction data = pd.concat([transaction data, items df], axis=1)
# Drop the original 'Itemname' column
Transaction data = transaction data.drop('Itemname', axis=1)
# Display the resulting DataFrame
Print(transaction data.head())
```

Convert items to boolean columns

Df_encoded = pd.get_dummies(transaction_data, prefix=",
prefix sep=").groupby(level=0, axis=1).max()

Save the transaction data to a CSV file

Df_encoded.to_csv('transaction_data_encoded.csv', index=False)

Load transaction data into a DataFrame

Df_encoded = pd.read_csv('transaction_data_encoded.csv')

Association Rule Mining

Frequent_itemsets = apriori(df_encoded, min_support=0.007,
use_colnames=True)

Rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=1)

Display information of the rules

Rules.head(100)

Antecedents consequents antecedent support consequent support support confidencelift leverage conviction zhangs_metric

- 0 (10 COLOUR SPACEBOY PEN) (LUNCH BAG APPLE DESIGN) 0.024070 0.061269 0.010941 0.454545 7.418831 0.009466 1.721007 0.886547
- 1 (LUNCH BAG APPLE DESIGN) (10 COLOUR SPACEBOY PEN) 0.061269 0.024070 0.010941 0.178571 7.418831 0.009466 1.188089 0.921678

- 2 (PLASTERS IN TIN SPACEBOY) (10 COLOUR SPACEBOY PEN) 0.107221 0.024070 0.008753 0.081633 3.391466 0.006172 1.062679 0.789828
- 3 (10 COLOUR SPACEBOY PEN) (PLASTERS IN TIN SPACEBOY) 0.024070 0.107221 0.008753 0.363636 3.391466 0.006172 1.402938 0.722534
- 4 (10 COLOUR SPACEBOY PEN) (ROUND SNACK BOXES SET OF4 WOODLAND) 0.024070 0.245077 0.008753 0.363636 1.483766 0.002854 1.186308 0.334081

...

- 95 (36 PENCILS TUBE WOODLAND) (JUMBO BAG APPLES) 0.026258 0.061269 0.008753 0.333333 5.440476 0.007144 1.408096 0.838202
- 96 (36 PENCILS TUBE WOODLAND) (JUMBO BAG PINK POLKADOT) 0.026258 0.035011 0.008753 0.333333 9.520833 0.007833 1.447484 0.919101
- 97 (JUMBO BAG PINK POLKADOT) (36 PENCILS TUBE WOODLAND) 0.035011 0.026258 0.008753 0.250000 9.520833 0.007833 1.298322 0.927438
- 98 (36 PENCILS TUBE WOODLAND) (JUMBO BAG RED RETROSPOT) 0.026258 0.078775 0.008753 0.333333 4.231481 0.006684 1.381838 0.784270
- 99 (JUMBO BAG RED RETROSPOT) (36 PENCILS TUBE WOODLAND)

Rules = rules.sort_values(by='lift', ascending = False)
Rules

- Antecedents consequents antecedent support consequent support support confidencelift leverage conviction zhangs_metric
- 58982 (SPACEBOY BIRTHDAY CARD, PINK VINTAGE SPOT BEA... (SPACEBOY CHILDRENS CUP, RED VINTAGE SPOT BEAK... 0.008753 0.008753 0.008753 1.000000 114.250000 0.008676 inf 1.000000
- 57294 (PLASTERS IN TIN WOODLAND ANIMALS, JUMBO BAG P... (JUMBO BAG WOODLAND ANIMALS, PLASTERS IN TIN V... 0.008753 0.008753 1.000000 114.250000 0.008676 inf 1.000000
- 2611 (MONSTERS STENCIL CRAFT) (HAPPY STENCIL CRAFT) 0.008753 0.008753 1.000000 114.250000 0.008676 inf 1.000000
- 56376 (CHILDRENS CUTLERY SPACEBOY, LUNCH BAG PINK PO... (SKULL LUNCH BOX WITH CUTLERY, LUNCH BAG SPACE... 0.008753 0.008753 1.000000 114.250000 0.008676 inf 1.000000
- 66328 (ROUND SNACK BOXES SET OF4 WOODLAND, CARD PSYC... (REGENCY CAKESTAND 3 TIER, RED HARMONICA IN B... 0.008753 0.008753 0.008753 1.000000 114.250000 0.008676 inf 1.000000

...

3769 (MEMO BOARD COTTAGE DESIGN) (ROUND SNACK BOXES SET OF 4 FRUITS) 0.054705 0.157549 0.008753 0.160000 1.015556 0.000134 1.002918 0.016204

- 5552 (REGENCY CAKESTAND 3 TIER) (STRAWBERRY LUNCH BOX WITH CUTLERY) 0.137856 0.078775 0.010941 0.079365 1.007496 0.000081 1.000641 0.008629
- 5553 (STRAWBERRY LUNCH BOX WITH CUTLERY) (REGENCY CAKESTAND 3 TIER) 0.078775 0.137856 0.010941 0.138889 1.007496 0.000081 1.001200 0.008076
- 3594 (REGENCY CAKESTAND 3 TIER) (LUNCH BAG WOODLAND) 0.137856 0.078775 0.010941 0.079365 1.007496 0.000081 1.000641 0.008629
- 3595 (LUNCH BAG WOODLAND) (REGENCY CAKESTAND 3 TIER)