CS 511 Formal Methods, Fall 2024

Instructor: Assaf Kfoury

Homework Assignment 01

September 12, 2024

Lucas Miguel Tassis

Exercise 1

Exercise 1.2.1 – (h): $p \vdash (p \rightarrow q) \rightarrow q$

1.	p	premise	
2.	$p \rightarrow q$	assumptio	

3.
$$q \rightarrow e 1, 2$$
4. $(p \rightarrow q) \rightarrow q \rightarrow i 2-3$

4.
$$(p \rightarrow q) \rightarrow q \rightarrow i \ 2-3$$

Exercise 1.2.1 – (i): $(p \rightarrow r) \land (q \rightarrow r) \vdash p \land q \rightarrow r$

1.
$$(p \to r) \land (q \to r)$$
 premise

2.
$$p \to r$$
 $\wedge e_1 1$

3.
$$p \wedge q$$
 assumption

4.
$$p \wedge e_1 3$$

5.
$$r oe 2, 4$$

6.
$$(p \land q) \rightarrow r \rightarrow i \ 3-5$$

Exercise 1.2.1 – (j): $q \rightarrow r \vdash (p \rightarrow q) \rightarrow (p \rightarrow r)$

3.

1.
$$q \to r$$
 premise

2.
$$p \to q$$
 assumption

3.
$$p$$
 assumption
4. q \rightarrow e 2, 3

5.
$$| r \rightarrow e 1, 4 |$$

6.
$$p \rightarrow r \rightarrow i 3-5$$

7.
$$(p \to q) \to (p \to r) \to i \ 2-6$$

Exercise 2

Exercise 1.4.2 – (g): $((p \rightarrow q) \rightarrow p) \rightarrow p$

p	q	$p \rightarrow q$	$(p \to q) \to p$	$ \mid ((p \to q) \to p) \to p $
T	Т	T	Т	Т
T	F	F	Т	Т
F	T	Т	F	Т
F	F	Т	F	Т

Exercise 1.4.2 – (h): $((p \lor q) \to r) \to ((p \to r) \lor (q \to r))$

p	q	$\mid r \mid$	$p \lor q$	$p \rightarrow r$	$ q \rightarrow r$	$\mid (p \vee q) \to r$	$\mid (p \to r) \lor (q \to r)$	$((p \lor q) \to r) \to ((p \to r) \lor (q \to r))$
Т	Т	Т	T	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	F	Т
Т	F	F	Т	F	Т	F	Т	Т
Т	F	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т	T
F	Т	F	Т	Т	F	F	Т	Т
F	F	F	F	Т	Т	Т	Т	Т

Exercise 1.4.2 – (i): $(p \rightarrow q) \rightarrow (\neg p \rightarrow \neg q)$

p	$\mid q \mid$	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg p \rightarrow \neg q$	$(p \to q) \to (\neg p \to \neg q)$
Т	T	F	F	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	T	Т	F	Т	F	F
F	F	Т	Т	Т	Т	T

Problem 1

Exercise 1.5.3 - (b)

Let us suppose that C contains neither \neg nor \bot . Now let us consider a formula ϕ that contains the connectives $\{\land, \lor, \rightarrow\}$. If every atom of ϕ is \mathbf{T} , then ϕ will be \mathbf{T} . We can prove this by using the truth tables of each connective in the set $\{\land, \lor, \rightarrow\}$ – in every single one, if all the atoms are \mathbf{T} , then the formula will be \mathbf{T} . The problem is that, considering only $\{\land, \lor, \rightarrow\}$ as the set of connectives, we cannot express the formula $\neg \phi$. Thus, C must contain \neg or \bot .

Exercise 1.5.3 - (c)

The set $\{\leftrightarrow, \neg\}$ is not an adequate set of connectives for propositional logic. This is because we cannot create $\{\land, \lor, \rightarrow\}$ using only $\{\leftarrow, \neg\}$. We can prove this by showing that any formula using only $\{\leftrightarrow, \neg\}$ will always have an even number of **T** and **F** in the truth table, and, therefore, we cannot create connectives such as $\{\land, \lor, \rightarrow\}$ (that have an odd number of **T** and **F** values). The proof that $\{\leftrightarrow, \neg\}$ will always have an even number of **T** and **F** in the truth table can be done by structural induction.

Exercise 3

Link to code on GitHub. The solution was:

```
-- Exercise 3: MoP Example 1.3.4

example {w : Q} (h1 : 3 * w + 1 = 4) : w = 1 := by

calc

w = ((3 * w + 1) / 3) - (1 / 3) := by ring

_ = (4 / 3) - 1 / 3 := by rw [h1]

_ = 1 := by ring
```

Exercise 4

Link to code on GitHub. The solution was:

```
-- Exercise 4: MoP Example 1.3.9

example {a b : Q} (h1 : a - 3 = 2 * b) : a ^ 2 - a + 3 = 4 * b ^ 2 + 10 * b + 9 := by

calc

a ^ 2 - a + 3 = ((a - 3) ^ 2 + 6 * a - 9) - a + 3 := by ring

_ = (a - 3) ^ 2 + 5 * a - 6 := by ring

_ = (a - 3) ^ 2 + 5 * ((a - 3) + 3) - 6 := by ring

_ = (a - 3) ^ 2 + 5 * (a - 3) + 9 := by ring

_ = (2 * b) ^ 2 + 5 * (2 * b) + 9 := by rw [h1]

_ = 4 * b ^ 2 + 10 * b + 9 := by ring
```

Problem 2

Solving by hand:

$$a = (a + 2b + 3c) - 2b - 3c$$

$$= 7 - 2b - 3c$$

$$= 7 - (b + 2c) - b - c$$

$$= 7 - 3 - b - 1$$

$$= -b - 2c + 2c + 3$$

$$= -(b + 2c) + 2c + 3$$

$$= -3 + 2 \cdot 1 + 3$$

$$= 2$$

Link to code on GitHub. The Lean solution was:

```
-- Problem 2: MoP Exercise 1.3.11

example {a b c : R} (h1 : a + 2 * b + 3 * c = 7) (h2 : b + 2 * c = 3)
    (h3 : c = 1) : a = 2 := by

calc

a = (a + 2 * b + 3 * c) - 2 * b - 3 * c := by ring

_ = 7 - 2 * b - 3 * c := by rw [h1]

_ = 7 - (b + 2 * c) - b - c := by ring

_ = 7 - 3 - b - 1 := by rw [h2, h3]

_ = - b - 2 * c + 2 * c + 3 := by ring

_ = - (b + 2 * c) + 2 * c + 3 := by ring

_ = - 3 + 2 * 1 + 3 := by rw [h2, h3]

_ = 2 := by ring
```