MIA - Crowd-assisted Medical Image Annotation

Arthur Jochems

Deniz Iren

Amrapali Zaveri

Lung Cancer

Claims
2.5 Million
lives
yearly

Problem — Personalized treatment

- For cases in which surgery is not an option, chemoradiotherapy is the standard treatment modality.
- However, numerous other treatment options exist, such as immunotherapy and a variety of systemic anti-cancer therapies.
- In order to **personalize treatment**, we <u>extract quantitative imaging features</u> from the tumor of the patient.

Problem — Annotating images

- <u>Extract quantitative imaging features</u> is done by domain experts i.e. doctors
 - Time consuming
 - Not scalable
 - Expensive
- Automated methods such as machine-learning require large amounts of input data to perform accurately
- Non-experts
 - Fast
 - Scalable
 - Inexpensive

Research Question(s)

Can we use non-experts via crowdsourcing to curate open clinical imaging data?

Can we assist non-experts to carry out a mission-critical labeling task?

Related Work - Image Annotation

Figure 1: An example of bounding box annotations for the "bottle" category.

A flock of pigeons was able to correctly spot cancer in breast tissue biopsy images with 99% accuracy, on par with human experts. R. M. LEVENSON *ET AL.*, *PLOS ONE* (18 NOVEMBER 2015)

Pigeons spot cancer as well as human experts

By John Bohannon | Nov. 18, 2015, 2:00 PM

Methodology — Dataset

- medical images of cancer, available for public download and re-use
- data is organized as "Collections", typically of patients related by a common disease
 e.g. lung cancer
- images are available in a DICOM format
- 422 non-small cell lung cancer (NSCLC) patients*
 - pretreatment CT scans, manual delineation by a radiation oncologist of the 3D volume of the gross tumor volume and clinical outcome data are available
- of these 422, 360 images have been contoured by experts (doctors).
- the remaining 62 require precise contouring, which will be our dataset for the crowdsourcing experiment.

^{*}https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics

Preliminary Experiment on Figure Eight

figure eight

No. of Tasks: 15

• No. of Workers: 3 per task

Task Design: bounding box

Payment: 5 cents/task

Preliminary Results

Preliminary Results

figure eight

Figure Eight Results & Issues

- 6/15 correctly identified
- Difficult to measure precision in the interface
- Only allow bounding boxes, we require precise contours
- No support for interactive training

To overcome these issues we need a custom crowdsourcing image annotation software.

Interactive Interface

- Interactive training
- In-built quality control measures
- Allow the workers to choose different methods for contouring
 - Free hand
 - Polygon
 - Point of interest
- Each HIT consists of 4 microtasks (with 4 different methods)
 - Randomized across HITs
 - Multiple workers per microtask (optimal number determined via CrowdED*)

^{*}CrowdED: Guideline for Optimal Crowdsourcing Experimental Design
A Zaveri, PH Serrano, M Desai, M Dumontier. Companion of the The Web Conference 2018 on The Web
Conference 2018, 1109-1116

Interactive Interface - Design

Quality Assurance & Evaluation

 threshold of contour overlap with experts

OK

- comparison of different methods of contouring
- comparison of cost and time of annotation between experts and non-experts

Expected Results

- Determine the **feasibility** of using non-experts for contouring clinical images
- Learn how non-experts compare with respect to expert annotated images in the precise contouring of images along with costs and time involved by each group.
- Complete annotated dataset of the Cancer Imaging Archive collection on lung cancer
- A scalable and reproducible methodology that can be re-used in other use cases by researchers with similar research questions
- Feed data into an existing Machine Learning image recognition software developed at BISS

Impact

- Annotated data can be fed into machine learning algorithms* to increase precision of automated contouring
- Identify the best treatment (in terms of survival and quality of life) for the patients
- Enable patients to be properly informed about each treatment option and has the potential to save lives and increase quality of life for cancer patients

*Bradley J. Erickson, Panagiotis Korfiatis, Zeynettin Akkus, Timothy L. Kline. Machine Learning for Medical Imaging. Radiographics. 2017

Questions?

http://bit.ly/medical-image-annotation

Arthur Jochems

Deniz Iren

Amrapali Zaveri

BE the crowd!

Your chance to contribute!

Instructions

- Go to http://out5.net/workshop/
 - a) Find your name on the list and click on it. You will be redirected to the annotation platform.
- 2) Check the instructions, and positive and negative examples.
- 3) Start the interactive **training session**
 - a) Interact with the platform,
 - b) Annotate and check the accuracy your annotations,
 - c) Keep an eye on the Normal CT Scan of the Chest (upper-right corner)
 - d) Complete the 11 step training. **Begin annotating!**
- 4) Complete the annotation tasks (50 in total)
 - a) **Submit** your annotation or mark **Nothing to label** if you do not see a tumor.
 - b) Check the overall progress
 - c) You can take the training again using the link on the bottom-left corner

