

VIRTUAL DISSECTION FOR SUPPLEMENTING LEARNING OF ANATOMY

Ciara Cafazzo

HOW VIRTUAL DISSECTION CAN EXPAND ANATOMICAL UNDERSTANDING AND MAXIMIZE THE IMPACT OF CADAVERIC DISSECTION

TRADITIONAL CADAVERIC DISSECTION

Current Gold Standard for Anatomical Learning

Common Drawbacks:

Expensive

Limited Accessibility

Ethical Concerns

Advanced Age of Specimens

Lab Environment Risks

Time Inefficient

Educational Limitations

3 METHODS OF VIRTUAL DISSECTION DELIVERY

COMPUTER BASED

Online or Software Based Simulations of Anatomy

VIRTUAL OR AUGMENTED REALITY

3D Simulations in a Virtual Reality or Superimposed into the Real World

ANATOMAGE TABLE

Advanced Technology that can Simulate a Range of Anatomical Scenarios

COMPUTER BASED

- · Downloadable or free to use online
- Used in lower-level undergraduate anatomy learning
- Establish a basic understanding of 3D anatomical relationship
- Ex. Anatomy 3D Atlas or Zygote Body

AUGMENTED AND VIRTUAL REALITY

Source: https://todaysveterinarypractice.com/news/virtual-reality-brings-dogs-anatomy-to-life-for-veterinary-students/

Benefits

- More accurate Scale than Computer Based
- Can be used for practice and simulations

Drawbacks

Can be expensive

Often used in Medical Education Virtual Reality (VR)

- Brings user into a simulated environment
- Controlled by remote or keyboard

Augmented Reality (AR)

- Superimposes 3D images into your environment
- Allows interactions with your environment

(Uribe et al., 2023)

Source: https://www.atsu.edu/news/atsu-soma-anatomy-department-introduces-augmented-reality-learning-for-first-year-students

(Ujiie et al., 2021) (Bölek et al., 2021) (Uribe et al., 2023)

ANATOMAGE TABLE

Video from: https://anatomage.com/table/

WHY VIRTUAL DISSECTION SHOULD BE ADOPTED

BENEFITS

- Students gain a better understanding of Anatomical Relationships
- Allows students to break down and isolate systems or layers
- Helps students engage and feel confident in their learning
- Helps develop better understanding of cross-sectional anatomy
- Can simulate tissue changes and variations
- Can allow for practice of surgical techniques

DRAWBACKS

- Lack of tactile/haptic elements
- Can be expensive
- Access to technology could be limited
- Resolution may decrease accuracy
- Keyboard and remote control have limitations

REFERENCES

- Bölek, K. A., De Jong, G., & Henssen, D. (2021). The effectiveness of the use of augmented reality in anatomy education: a systematic review and meta-analysis. *Sci Rep*, *11*(1), 15292. https://doi.org/10.1038/s41598-021-94721-4
- Boscolo-Berto, R., Tortorella, C., Porzionato, A., Stecco, C., Picardi, E. E. E., Macchi, V., & De Caro, R. (2021). The additional role of virtual to traditional dissection in teaching anatomy: a randomised controlled trial. Surg Radiol Anat, 43(4), 469-479. https://doi.org/10.1007/s00276-020-02551-2
- Darras, K. E., de Bruin, A. B. H., Nicolaou, S., Dahlström, N., Persson, A., van Merriënboer, J., & Forster, B. B. (2018). Is there a superior simulator for human anatomy education?

 How virtual dissection can overcome the anatomic and pedagogic limitations of cadaveric dissection. *Medical Teacher*, 40(7), 752-753.

 https://doi.org/10.1080/0142159X.2018.1451629
- Ghosh, S. K. (2017). Cadaveric dissection as an educational tool for anatomical sciences in the 21st century. *Anatomical Sciences Education*, *10*(3), 286-299. https://doi.org/https://doi.org/10.1002/ase.1649
- Jones, D. G. (1997). Reassessing the importance of dissection: A critique and elaboration. Clinical Anatomy, 10(2), 123-127. https://doi.org/https://doi.org/10.1002/(SICI)1098-2353(1997)10:2<123::AID-CA9>3.0.CO;2-W
- Kavvadia, E. M., Katsoula, I., Angelis, S., & Filippou, D. (2023). The Anatomage Table: A Promising Alternative in Anatomy Education. *Cureus*, 15(8), e43047. https://doi.org/10.7759/cureus.43047
- Said Ahmed, M. A. A. (2023). Use of the Anatomage Virtual Table in Medical Education and as a Diagnostic Tool: An Integrative Review. *Cureus*, 15(3), e35981. https://doi.org/10.7759/cureus.35981
- Ujiie, H., Yamaguchi, A., Gregor, A., Chan, H., Kato, T., Hida, Y., Kaga, K., Wakasa, S., Eitel, C., Clapp, T. R., & Yasufuku, K. (2021). Developing a virtual reality simulation system for preoperative planning of thoracoscopic thoracic surgery. *J Thorac Dis*, 13(2), 778-783. https://doi.org/10.21037/jtd-20-2197
- Uribe, J., Harmon, D., Laguna, B., & Courtier, J. (2023). Augmented-Reality Enhanced Anatomy Learning (A-REAL): Assessing the utility of 3D holographic models for anatomy education. *Annals of 3D Printed Medicine*, 9, 100090. https://doi.org/https://doi.org/https://doi.org/10.1016/j.stlm.2022.100090
- Warnick, B. R. (2004). Cadaver Dissection and the Limits of Simulation. The Journal of Clinical Ethics, 15(4), 350-362. https://doi.org/10.1086/jce200415413
- Washmuth, N. B., Cahoon, T., Tuggle, K., & Hunsinger, R. N. (2020). Virtual Dissection: Alternative to Cadaveric Dissection for a Pregnant Nurse Anesthesia Student. *Health Professions Education*, 6(2), 247-255. https://doi.org/https://doi.org/10.1016/j.hpe.2019.11.001