§ 3.6 时序电路的分析

一、时序电路的特点:

逻辑功能: 任一时刻的输出状态,不仅取决于当时的输入信号,而且与前一时刻电路的状态有关。

电路结构:组合电路+触发器。

分类

按触发方式, 时序电路分:

同步时序电路: 所有触发器共用一个时钟信号。

异步时序电路: 触发器无统一的时钟信号。

按输出方式,分:

莫尔型(Moore):输出Y仅与电路的现态有关(式中无x)。

米勒型 (Mealy):输出 Y 是 电路现态和外部输入量的函数。

时序逻辑电路可用三个方程来描述:

有时钟

$$Y = F_1 (X, Q^n)$$
 输出方程 $W = F_3 (X, Q^n)$ 激励方程 $Q^{n+1} = F_2 (W, Q^n)$ 状态方程

二、同步时序电路的分析方法

1. <u>目的:</u>

得到电路状态、外部输出的变化规律,逻辑功能。

2. 步骤:

例1: 试分析下图所示的时序逻辑电路。

1

输出方程:

$$Y = Q_2^n \overline{Q_1}^n$$

写

方程

式

激励方程:

$$J_2 = Q_1^n$$

$$J_1 = Q_0^n$$

$$J_0 = \overline{Q}_2^n$$

$$K_2 = \overline{Q}_1^n$$

$$K_1 = \overline{Q}_0^n$$

$$K_0 = Q_2^n$$

$$J_{2} = Q_{1}^{n}, K_{2} = \overline{Q_{1}}^{n}$$

$$J_{1} = Q_{0}^{n}, K_{1} = \overline{Q_{0}}^{n}$$

$$J_{0} = \overline{Q_{2}}^{n}, K_{0} = Q_{2}^{n}$$

状态方程

$$Q_2^{n+1} = J_2 \overline{Q}_2^n + \overline{K}_2 Q_2^n = Q_1^n \overline{Q}_2^n + Q_1^n Q_2^n = Q_1^n$$

$$Q_1^{n+1} = Q_0^n \overline{Q}_1^n + Q_0^n Q_1^n = Q_0^n$$

$$Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_0^n + \overline{Q}_2^n Q_0^n = \overline{Q}_2^n$$

计算、列真值表

	$Q_2^{n+1} = Q_1^n$
	$Q_1^{n+1} = Q_0^n$
	$Q_0^{n+1} = \overline{Q}_2^n$
Y	$V = Q_2^n \overline{Q}_1^n$

现		态		次	态	输出
Q_2^n	Q_1^n	Q_0^n	Q_2^{n+}	$^{1}Q_{1}^{n+}$	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	1	0
0	1	0	1	0	1	0
0	1	1	1	1	1	0
1	0	0	0	0	0	1
1	0	1	0	1	0	1
1	1	0	1	0	0	0
1	1	1	1	1	0	0

画状态图

现态	次态	输出
$Q_2^n Q_1^n Q_0^n$	$Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$	Y
0 0 0	0 0 1	0
0 0 1	0 1 1	0
0 1 0	1 0 1	0
0 1 1	1 1 1	0
1 0 0	0 0 0	1
1 0 1	0 1 0	1
1 1 0	1 0 0	0
1 1 1	1 1 0	0

主循环: 000、001、~100这六个状态构成一个循环。

有效状态: 主循环中的状态。

无效状态:不在主循环中的状态。

自启动: 无效状态在CP脉冲作用下能 进入主循环。

无自启动能力的,用格雷码表示的六进制计数器。

时序图(波形图)

在CP和外部输入的作用下,电路状态、输出随时间变化的波形图。

例2: 分析同步时序逻辑电路

$$Z = XQ_1^n Q_0^n$$

$$J_1 = K_1 = XQ_0^n$$

$$J_0 = K_0 = X$$

$$Q_1^{n+1} = XQ_0^n Q_1^n + XQ_0^n Q_1^n$$

$$Q_0^{n+1} = X\overline{Q_0^n} + \overline{X}Q_0^n = X \oplus Q_0^n$$

$$Q_1^{n+1} = XQ_0^n \overline{Q_1^n} + \overline{XQ_0^n} Q_1^n$$

$$Q_0^{n+1} = X \overline{Q_0^n} + \overline{X} Q_0^n = X \oplus Q_0^n$$

$$Z = XQ_1^n Q_0^n$$

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	0
1_	1	11	0	0	1

可控的2位二进制计数器;

X=0时, 状态不变, 输出Z=0; X=1时, 完成加1计数的功能。

例3:分析时序电路的逻辑功能

$$Z = X \cdot \overline{Q_2^n} \cdot Q_1^n$$

$$D_2 = X$$

$$D_1 = \overline{X + \overline{Q_2^n} + Q_1^n} = \overline{X} \cdot Q_2^n \cdot \overline{Q_1^n}$$

$$Q_2^{n+1} = X$$

$$Q_1^{n+1} = \overline{X} \cdot Q_2^n \cdot \overline{Q_1^n}$$

$$\begin{cases} Q_2^{n+1} = X \\ Q_1^{n+1} = \overline{X} Q_2^n \overline{Q_1^n} \end{cases}$$
$$Z = X \overline{Q}_2^n Q_1^n$$

输	入	现态	次	态	输出
X	Q_2'	Q_1^n	Q_2^{n+1}	Q_{l}^{n+1}	Z
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	1	0
0	1	1	0	0	0
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	0	0
1	1	1	1	0	0

<u>X</u>	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	1	0
0	1	1	0	0	0
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	0	0
1_	1	1	1	0	0

状态: 记忆

A: 初始

B: 1

C: 10

该电路可重叠检测序列101。

例4: 分析时序电路的逻辑功能

$$F = X \cdot Q_2^n \cdot Q_1^n$$

$$J_2 = XQ_1^n$$

$$K_2 = \overline{X}$$

$$J_1 = X$$

$$K_1 = \overline{XQ_2^n}$$

$$Q_2^{n+1} = X \overline{Q_2^n} Q_1^n + X Q_2^n$$

$$Q_1^{n+1} = X\overline{Q_1^n} + XQ_2^nQ_1^n$$

X	$X Q_2^n Q_1^n$			$Q_2^{n+1}Q_1^{n+1}$	
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	0
1_	1	1	1	1	1

X	$X Q_2^n Q_1^n$			Q_1^{n+1}	F
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	0
1 _	1	1	1	1	1

A: 初始

B: 1

C: 11

D: 111

可重叠检测序列1111。

A: 初始

B: 1

C: 10

D: 101 可重叠检测序列10110。

E: 1011