Documentatie Lab3

Cerinta

- 1. Să se implementeze un algoritm evolutiv pentru problema rucsacului.
 - a. Codificare binară
 - b. Operatori specifici (încrucișare, mutație)
 - c. Algoritm şi parametrizare
 - d. Experimente pe cele două instanțe primite la Tema 1

a. Codificare binara

Solutiile sunt reprezentate de siruri binare unde fiecare bit rreprezinta un cromozom

b.Operatori specifici

Am implementat doua variante de algoritm evolutiv care difera prin operatorii de incrucisare si mutatie

Incrucisare

Single Crossover(Incrucisare cu un punct de taietura)

Incrucisarea cu un punct de taietura

- Un punct de taietura este un numar intreg $k \in \{1,2,...,r-1\}$
- X multimea tuturor cromozomilor de lungime fixata r
- C operatorul de incrucisare
- $C: X \times X \rightarrow X \times X$
- C(x,y) = (x',y')

```
Parintix = x_1 x_2 \dots x_k x_{k+1} \dots x_ry = y_1 y_2 \dots y_k y_{k+1} \dots y_r
```

```
Cromozomii copii vor fi:

x' = x_1 x_2 ... x_k y_{k+1} ... y_r
y' = y_1 y_2 ... y_k x_{k+1} ... x_r
```

```
def single_cross_over(self, parent1, parent2):
    """
    Perform a crossover with one cut between two parents
    :param parent1: first parent
    :param parent2: second parent
    :return: two children
    """
    cut_point = random.randint(3, self.knapsack objects_number - 3)
    child1 = [0] * self.knapsack objects_number
    child2 = [0] * self.knapsack objects_number

for index, bit in enumerate(parent1):
        if index < cut_point:
            child1[index] = bit
    else:
        child2[index] = bit

for index, bit in enumerate(parent2):
    if index < cut_point:
        child2[index] = bit
</pre>
```

```
child1[index] = bit
return child1, child2
```

Incrucisare adaptiva

Incrucisarea uniforma

- · Nu foloseste puncte de taietura
- Parametru: p probabilitatea ca gena unui descendent sa provina din primul sau al doilea parinte

```
• x = x_1 x_2 ... x_k ... x_r
```

- $y = y_1 y_2 ... y_k ... y_r$
- Pentru fiecare pozitie i din x' se alege parintele care va da valoarea pozitiei respective cu prob p
- Pentru y' se ia valoarea pozitiei corespunzatoare din celalalt parinte;
 Alternativ: independent de x'
- Poate combina caracteristici indiferent de pozitia relativa

```
def uniform_cross_over(self, parent1, parent2, prob):
    """
    Perform a uniform crossover with a probability between two
parents
    :param parent1: first parent
    :param parent2: second parent
    :param prob: the probability that a gene comes from one parent
or the other
    float number between 0 and 1
    :return: two children
    """
    child1 = []
    child2 = []
for i in range(self.knapsack.objects_number):
```

```
choice = np.random.choice([1, 2], p=[prob, 1-prob])
  if choice == 1:
      child1.append(parent1[i])
      child2.append(parent2[i])
  else:
      child1.append(parent2[i])
      child2.append(parent1[i])
return child1, child2
```

Mutatie

Mutatia tare

Mutatia tare

- P1. Pentru fiecare cromozom al populatiei curente si pentru fiecare pozitie a cromozomului se executa:
 - P1.1. Se genereaza un numar aleator q in intervalul [0,1].
 - P1.2. Daca q< p_m atunci se executa mutatia pozitiei respective, schimband 0 in 1 si 1 in 0.

In caz contrar ($q \ge p_m$), pozitia respectiva nu se schimba

```
for index, bit_gene in enumerate(entity):
    q = random.uniform(0, 1) # a random number between 0 and 1
    if q < mutation_probability:
        entity[index] = int(not bit_gene) # flip the bit

return entity</pre>
```

Mutatia slaba

Mutatia slaba

- P1. Pentru fiecare cromozom al populatiei curente si pentru fiecare pozitie a cromozomului se executa:
 - P1.1. Se genereaza un numar aleator q in intervalul [0,1].
 - P'1.2. Daca $q < p_m$ atunci se alege aleator una din valorile $\,0$ sau 1. Se atribuie pozitiei curente valoarea astfel selectata.

Daca $q \ge p_m$ atunci pozitia curenta nu se schimba.

```
def weak_mutation(self, entity, mutation_probability):
    """
    Performs a weak mutation on a population entity on binary
representation
    :param mutation_probability: the probability that the mutation
occurs
    :param entity: a guy from population
    :return: the modified entity
    """
    for index, bit_gene in enumerate(entity):
        q = random.uniform(0, 1) # a random number between 0 and 1
        if q < mutation_probability:
            val = random.randint(0, 1)
            entity[index] = val</pre>
```

c. Algoritm si parametrizare

Implementarea a fost facuta utilizand pseudocodul din cursul 4

Un algoritm evolutiv standard

```
BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END
```

1. Initializarea populatiei

Populatia se initializeaza aleator (din indivizi generati aleator)

2. Selectia parintilor

Parintii i-am ales cu o probabilitate direct proportionala cu fitnessul individual

p = fitness_individual / fitness total, unde fitnessul total este suma fitness-urilor tuturor indivizilor din populatie

3. Selectia supravietuitorilor

Supravietuitorii se aleg descrescator dupa fitness din reuniunea parintilor si copiilor astfel incat pentru noua generatie astfel incat sa se pastreze dimensiunea initiala a populatiei

Observatii

- Daca unul dintre copiii rezultati dupa incrucisare si mutatie nu reprezinta o solutie valida va fi adaugat in populatie, insa cu o penalizare a fitnessului(acesta va fi 0)
- Pentru prima varianta a algoritmului am folosit incrucisarea cu un punct de taietura si mutatie tare

- Pentru a doua varianta am folosit incrucisarea uniforma si mutatia slaba
- Initializarea populatiei, selectia parintilor si selectia supravietuitorilor raman la fel

d. Experimente

Grafice

rucsac20.txtpopulatie=100, generatii=10

Rezumat 10 rulari

Serie 1 = best sol, Serie 2 = avg sol

populatie=100, generatii=100

10 rulari

Serie 1 = best sol, Serie 2 = avg sol

• rucsac200.txt populatie=100, generatii=100

10 rulari

Serie 1 = best sol, Serie 2 = avg sol

populatie=100, generatii=1000

10 rulari

Serie 1 = best sol, Serie 2 = avg sol

Tabele cu rezultatele experimentelor

Rucsac 2	20		T	T	I	Г	Г
				Best	Average	Best Average	Running time
Alg 1	p=100	g=10	m=0.1	711	667.24	693.3	0.5 s
		g=100	m=0.1	726	718.59	722.61	1.9 s
	p=200	g=10	m=0.1	726	680.6	697.4	1.79 s
	p=1000	g=500	m=0.1	726	711.39	725.28	117.43 s
	p=1000	g=500	m=0.3	726	712.06	725.47	109.17 s
Alg 2	p=100	g=10	m=0.1	726	663.05	688.7	1.12 s
		g=100	m=0.1	726	717.36	724.33	7.82 s
	p=200	g=10	m=0.1	711	664.20	680.5	2.2 s
	p=1000	g=500	m=0.1	726	725.07	725.58	376 s
	p=1000	g=500	m=0.3	726	724.38	724.96	387 s

1.6		1 1 224 7	1 1 1
p=populatie,	g=generatie,	m=probabilitatea	de mutatie

Rucsac 200								
				Best	Average	Best Average	Running time	
Alg 1	p=100	g=100	m=0.1	134316	133273.30	133664.82	24.1 s	
		g=1000	m=0.1	135058	134453.24	134632.61	128.52 s	
	p=1000	g=500	m=0.1	135294	134525.02	134721.78	642.76 s	
Alg 2	p=100	g=100	m=0.1	133915	133060.83	133234.95	74.53 s	
		g=1000	m=0.1	136031	134724.34	134901.71	702.83 s	
	p=1000	g=500	m=0.1	135578	134484.62	134606.65	3570 s	
p=populatie, g=generatie, m=probabilitatea de mutatie								

Concluzii

Comparand rezultatele din tabele cu cele din tabelele din laboratoarele precendente, se observa ca acesta abordare cu algoritmi evolutivi ofera cele mai bune rezultate de pana acum

Cerinta

- 2. Să se implementeze un algoritm evolutiv pentru problema comis-voiajorului.
 - a. Codificare prin permutări
 - b. Operatori specifici (încrucișare, mutație)
 - c. Algoritm şi parametrizare
 - d. Experimente pe instanţa primită la Tema 2

a. Codificare prin permutari

Solutiile sunt reprezentate de permutari unde fiecare lement din permutare reprezinta un oras

a. Operatori specifici

Am implementat doua variante de algoritm evolutiv care difera prin operatorii de mutatie

Incrucisarea - Order Crossover

OX (Order Crossover)

 Alege o subruta dintr-un parinte si pastreaza ordinea relativa a oraselor din celalalt parinte

Algoritm:

- 1. Alege aleator o parte (i...j) din primul parinte
- 2. Pentru primul descendent
 - 2.1 Copiaza partea (i...j)
 - 2.2 Seteaza celelalte pozitii astfel:
 - Incepand de la pozitia imediat urmatoare lui j
 - Folosind **ordinea** din al doilea parinte
 - · Continuand circular pana la pozitia dinaintea lui i
- 3. Al doilea descendent se creaza similar cu primul dar cu rolurile parintilor schimbate


```
def order_crossover(self, parent1, parent2):
    """
    Alege o subruta dintr-un parinte si pastreaza ordinea
relativa a oraselor din celalalt parinte
    :param parent1: first parent
    :param parent2: second parent
    :return: two children
    """
    parent1_cities = parent1_cities
    parent2_cities = parent2_cities

# randomly choose a sub route from one parent to keep in one
child

i = random_randrange(4, self_dimension - 4)
    j = random_randrange(4, self_dimension - 4)
    if i > j:
        temp = i
        i = j
        j = temp
    sub_route1 = parent1_cities[i:j]
    sub_route2 = parent2_cities[i:j]
```

```
parent2 cities [ ]
if city not in cities1]
   for elem in range(j, self.dimension): # se adauga circular in
       cities1 append(remaining cities 2 pop(0))
parent1 cities [ j
    remaining cities 1 = [city for city in shifted ordered parent1
        cities2 append(remaining cities 1 pop(0))
    for elem in range (0, i)
    child2 = Route(self.dimension, cities2)
    return child1 child2
```

Mutatia - mutatia interschimbare(2-swap)

Mutatia interschimare (swap)

- · Selecteaza aleator 2 pozitii
- · Interschimba valorile
- · Ordinea afectata mai tare

123456789

Implementare

- -implementata in laboratorul 2, folosita de acolo
- Mutatia mutatia amestec(scramble)

Mutatia amestec (scramble)

- Selecteaza aleator un segment din permutare
- Reordoneaza aleator pozitiile din segment

1 2 3 4 5 6 7 8 9

```
def scramble_mutation(self, entity):
    """
    Randomly selects a sub route from the entity and shuffles the elements
    :param entity: the entity from population
    :return: the mutated entity
```

```
new_cities = entity.cities
index1 = random.randrange(5, self.dimension-5)
index2 = random.randrange(5, self.dimension-5)
indices = [index1, index2]
indices.sort()
selected_sub_route = new_cities[indices[0]:indices[1]]
random.shuffle(selected_sub_route)
new_cities[indices[0]:indices[1]] = selected_sub_route
entity.cities = new_cities
return entity
```

c. Algoritm si parametrizare

Acelasi pseudocod ca la problema rucsacului, iar initializarea populatiei, selectia parintilor si a supravietuitorilor se face in mod analog

d. Experimente

Experimentele au fost efectuate pe fisierul lin105.tsp, iar din documentatia corespunzatoare, cel mai bun rezultat obtinut este 14379.

Grafice

p=500, g=10000, alg 1

Serie 1 = best sol, Serie 2 = avg sol

p=500, g=10000 alg 2

Serie 1 = best sol, Serie 2 = avg sol

Tabele

			Best	Average	Best Average	Running time
Alg 1	p=100	g=100	69032.73	84918.02	82360.39	17.56 s
		g=500	43279.55	63043.91	58380.34	35.42 s
		g=5000	19542.54	33829.33	30015.66	366 s ~ 6 min
	p=500	g=10000	15573.91	22399.63	21129.60	3170.01 s ~ 52 min
		g=50000	15585.04	17445.75	16740.67	15981.31 s ~ 4.43 ore
	p=1000	g=500	38378.30	57928.67	54946.211	320.31 s ~ 5 min
		g=1000	26437.18	45620.62	43987.54	644 s ~ 10 min
		g=2500	18953.12	32935.63	31314.91	1591 s ~ 26.5 min
		g=25000	15035.57	18112.50	17216.84	16684 s ~ 4.6 ore
	p=10000	g=1000	25278.40	42238.84	41741.94	6543 s ~ 1.8 ore
Alg 2	p=100	g=100	81095.46	93584.63	89245.35	4.41 s
		g=500	60399.89	77596.23	73757.10	22.5 s
		g=5000	31619.92	47188.08	44889.96	246 s ~ 4 min
	p=500	g=10000	18363.84	30744.57	28556.07	2216 s ~ 37 min
	p=1000	g=500	54880.48	72464.43	69061.33	219.2 s ~ 3.6 min
		g=1000	42974.95	62678.06	59864.64	438 s ~ 7.3 min
		g=2500	27335.19	47419.88	45160.70	1809 s ~ 18.15 min
		g=25000	15995.89	21393.39	20711.79	11224 s ~ 3.11 ore
	p=10000	g=1000	38114.10	57223.27	56275.58	4481 s ~ 1.2 ore

p=populatie, g=generatie

Concluzii

- un numar mai mare de generatii are mai multa pondere in oferirea unei solutii mai bune decat numarul de indivizi din populatie
- rezultatele sunt mult mai bune decat cu metoda simulating annealing din laboratorul 2 (se poate consulta tabelul din documentatia pentru lab2)
- pe aceleasi configuratii de parametri, varianta 2 a algoritmului(cea care are operator de mutatie scramble mutation) da rezultate mai slabe