

AD-A046761

Periodic Technical Report

Extend CoCrAlY and Pt Sputter-Deposition Technology to Provide Coatings on FT4 Turbine Vanes for At-Sea Evaluation

J. W. Patten, R. W. Moss, D. D. Hays, E. D. McClanahan and R. A. Lundgren

December 16, 1976

Report Period: January 16, 1976

to Decmber 31, 1976

Prepared under Contract Number N00024-75-C-4332, for The Naval Sea Systems Command 9 NOV 1977

Navai Sea Systems Command Public Affairs-0002 Cleared for public release. Distribution Statement A

LOBasses # 1713

EXTEND CoCrAly AND Pt SPUTTER-DEPOSITION TECHNOLOGY TO PROVIDE COATINGS ON FT4 TURBINE VANES FOR AT-SEA EVALUATION

REPORT PERIOD: JANUARY 16 TO DECEMBER 31, 1976

Principal Investigator

Contract Number

Contract Sponsor

Effective Date of Contract

Contract Expiration Date

Amount of Contract

J.W. Patten
N00024-75-C-4332
Naval Sea Systems Command
February 27, 1975
July 28, 1976
\$168,000

BA DISTRIBUTION/VAVAIFVBIFITA CODEZ	RTIS	White Section
BA BASSILISMINAVANITUBITILA CODEZ	98C	Batt Section
DISTRIBUTION/ANAILABITITA CODEZ	BNANNOUNCE	10 C
DISTRIBUTION/AVAILABILITY CODES	JUSTIFICATIO	KC
		on and the contract of the
	DISTRIBUTI	OM/AYAILABILITY CODES AYAIL, and/or SPECIAL

December 16, 1976

Work Performed by
PACIFIC NORTHWEST LABORATORIES
a division of
Battelle Memorial Institute
P.O. Box 999
Richland, Washington 99352

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

UNCLASSIFIED ABSTRACT

100

The application of high-rate dc triode sputtering technology to the deposition of CoCrAlY alloy and Pt coatings on first-stage FT4 and LM-2500 blades and FT4 vanes for sulfidation protection in marine gas turbines is described. The CoCrAlY coatings were approximately 0.005 inch thick and were applied directly to superalloy blades and vanes and to burner rig test pins. In addition, a ~ 0.0002 inch thick layer of Pt was sputter deposited both as an overlayer on the CoCrAlY and as an interlayer between the superalloy airfoil and/or test pin and the CoCrAlY. The Pt coatings were applied on both sputter-deposited CoCrAlY and electron beam evaporated CoCrAlY. Features of the sputter-deposition technology applied are discussed. Microstructural, chemical composition, and thickness distribution results are presented. FT4 vanes coated with CoCrAlY of two Al contents and Pt were delivered to the Navy for at-sea testing.

DISTRIBUTION

Organization	Number of <u>Copies</u>
Naval Ship Engineering Center	40
Naval Sea Systems Command	1
Cognizant OAO	2
Battelle-Northwest	57

O

TABLE OF CONTENTS

				IAD	LL	01	U	UN	1 5	. 14 1	3										Pa	g e
UNCLASSIFIED	ABS	TRAC	T																		i	i i
DISTRIBUTION																						i v
LIST OF FIGU	RES	AND	TA	BLE	S																	v i
INTRODUCTION			•	٠,٠.																		1
SUMMARY																						2
BACKGROUND																						3
PLATINUM COA	TING	DEV	EL	OPM	EN	Γ																
PROCEDURE			•																			6
Pt SPUTTER CoCrAly SP	C O A U T T E	TING RED	6 0 C0	F F ATI	T4 NGS	V <i>F</i>	NE	S	IN T-	SE	OM A	IB I T E	NA ST	TI	ON G	W A N	IIT ID	H	ÀL	UAT	ION	6
CoCrAly COAT	ING	DEVE	EL0	PME	NT																	
OBJECTIVE																						7
PROCEDURE																						
Sputteri	ng C	hamb	er																			7
CoCrAly	Sput	teri	ng	Ta	rge	ets																8
Prelimin	ary	Expe	eri	men	ts																	8
COATING OF	16	VANE	S	FOR	A	T-S	EΑ	Т	ES	TI	NG	i										10
ACKNOWLEDGME	NT		•																			11
REFERENCES																						12

FIGURES Page 1. Sputtering chamber for deposition. 13 2. Pt coating on Ni tip mask. 14 BNW-developed CoCrAlY sputtering chamber 15 As-sputtered CoCrAlY coating on Ni tip and root . . . 16 masks, experiment 146. 5. As-sputtered CoCrAlY coating on Ni tip and root . . . 17 masks, experiment 147. 6. CoCrAly sputtered deposit on Ni mask from 18 experiment 157 (10-12% A1), vane L-2. 7. CoCrAly sputtered deposit on Ni mask from 19 experiment 159 (6-9% Al), vane C-8. 8. Typical heat-treated structure of sputter 20 deposited CoCrAIY (10-12% A1) with Pt underlayer on FT4 turbine vane for at-sea testing. Experiment 169, vane V-2. TABLES I. Pt Sputtering Parameters for Coating on FT4 21 Vanes II. Composition of CoCrAlY Targets (wt%) 22 III. Experiments Conducted to Establish Sputtering 23 Parameters for the Sputter Deposition of CoCrAlY on FT4 Vanes from a Single Target IV. Experiments to Establish Sputtering Parameters 24 for Al Addition from a Second Target V. Measured and Derived Al Concentrations for 25 Sputtered CoCrAly Coatings on FT4 Vanes Compared to Masks VI. Deposition History for CoCrAly Coatings on 26 Sixteen Vanes Delivered for At-Sea Testing VII. Coatings on Delivered Vanes 27

INTRODUCTION

This report describes progress on the application of BNW high-rate sputtering technology to the formation of CoCrAlY and CoCrAlY plus Pt coatings on FT4 hot-stage turbine vanes.

The contract objective was to coat a total of 16 vanes for at-sea evaluation by NAVSEC. Details on coating requirements are given in the following:

- Four vanes will have a nominal 0.005 inch coating of sputter-deposited CoCrAlY -- two with 6-9 wt% Al and two with 10-12 wt% Al.
- Six vanes will have a nominal 0.005 inch coating of sputter-deposited CoCrAlY followed by a sputterdeposited Pt layer with a nominal thickness of 0.0002 inch. Three vanes will have CoCrAlY with 6-9 wt% Al and three will have CoCrAlY with 10-12 wt% Al.
- Six vanes will have a nominal 0.0002 inch layer of sputter-deposited Pt followed by a nominal 0.005 inch coating of sputter-deposited CoCrAlY -- three will have CoCrAlY with 6-9 wt% Al and three will have CoCrAlY with 10-12 wt% Al.

SUMMARY

Two techniques were developed by Battelle-Northwest aimed at increasing the life of CoCrAlY coatings on first-stage turbine components during marine use.

The first technique was the sputter deposition of adherent, defect-free, relatively uniform thickness CoCrAlY coatings. A total of sixteen FT4 hot-stage turbine vanes were coated with sputter-deposited CoCrAlY of two Al compositions, 6-9% Al and 10-12% Al, for at-sea testing by NAVSEC. An important part of this work was the development of fabrication procedures for a 9-inch diameter CoCrAlY target.

The second technique involves providing a Pt coating.

This was accomplished by the sputter deposition of Pt as an over or inner layer on either PVD or sputter-deposited

CoCrAly. The Pt is intended to provide additional corrosion resistance by acting as an Al reservoir.

The results of the at-sea tests will add to the data regarding the effect of Pt additions on the CoCrAlY coating corrosion resistance and provide the first indication of the influence of high integrity CoCrAlY coating structured on corrosion resistance.

BACKGROUND

Current state-of-art for production coatings to protect gas turbine hot stages is a CoCrAlY alloy coating \sim 0.005 in. thick applied by physical vapor deposition (PVD). These coatings, as deposited, typically exhibit relatively large grain size and columnar growth defects (leaders) perpendicular to the plane of the coating. The defects are actually interfaces between adjacent growth columns, each column originating at a separate nucleation site on the substrate (vane or blade) surface and resulting in coating discontinuities through at least a large fraction of the coating thickness. Several post-coating techniques are used in production to close up these leaders, but the techniques are only partially and add to the cost of the complete production Nevertheless, such PVD deposited and CO process. modified CoCrAlY coatings greatly enhance the hot corrosion resistance of gas turbine hot stages and are invaluable to the performance of gas turbines for certain types of service.

Progress in the investigation of two possibilities for improving the performance of these coatings is presented in this report. First, a technique was developed independently by Battelle-Northwest to sputter deposit CoCrAlY coatings without producing any columnar growth defects or coating discontinuities. Second, Pt layers were sputter deposited either as underlayers or overlayers to PVD deposited and sputter deposited CoCrAlY coatings and heat treatments were

conducted to produce extensive diffusion between Pt and CoCrAlY layers. The desired effect of the Pt layer was to retain Al near the free surface for corrosion resistance by forming very stable Pt-Al compounds which would then give up Al to form Al oxides. The results of initial burner-rig results indicate that the Pt addition did in fact provide a significant increase in life over current production PVD CoCrAly. (1)

The sputter deposition techniques developed by Battelle-Northwest were expected to offer several advantages for the application of the CoCrAlY and Pt coatings to complex turbine component geometries. For CoCrAlY coatings, extremely good coating-to-substrate adherence is observed even for low substrate temperatures during deposition. This adherence is expected because of the atomically clean substrate surface produced immediately before deposition by ion bombardment etching and because of the high kinetic energies of the sputtered Co, Cr, Al, and Y adatoms. Because of this good adherence it is possible to simultaneously provide high-rate deposited coatings with very fine uniform grain size of a few microns. It is speculated that this grain structure in CoCrAlY coatings may be an aid to coating ductility and to hot corrosion resistance. Further, Battelle-Northwest sputtering techniques offer the freedom to investigate elemental additions to the CoCrAlY coatings without regard to vapor pressure, melting point or other physical properties that place constraints on PVD techniques. The process also is conducted in a very clean vacuum environment so that concentrations of impurities are quite low. A final advantage is the capability to routinely monitor and adjust 30 separate sputter deposition parameters by computer control. This assures reproducibility of deposit properties and minimizes manpower requirements.

With respect to Pt, sputter deposition procedures in general are simplified because a single element is much easier to work with than a quaternary system such as CoCrAlY. Further, the Pt is deposited either as an underlayer or overlayer to CoCrAlY coatings and is diffused into the CoCrAlY coatings so that microstructure of the Pt coating is relatively unimportant. Perhaps one of the most significant advantages offered by Battelle-Northwest sputter deposition technology to Pt coating is high material efficiency. the system used to perform the work described in this paper more than 50% of the Pt removed from the sputtering targets was deposited in desired locations on vanes, blades, or burner rig test pins. This could be increased by decreasing target-target gap and/or increasing target length, both of which decrease end losses, or by increasing substrate area, i.e. more or larger substrates coated in each run.

PLATINUM COATING DEVELOPMENT

PROCEDURE

The sputtering chamber used is shown schematically in Figure 1. The two concentric Pt targets used were of the same composition as those used in earlier work. (2) A total of three vanes per run were coated in the annulus between the targets.

The sputter deposition conditions developed in previous Pt coating research $^{(3)}$ were used in all Pt coating work described in this report.

Pt SPUTTER COATING OF FT4 VANES IN COMBINATION WITH CoCraly SPUTTERED COATINGS FOR AT-SEA TESTING AND EVALUATION

Table I contains the deposition parameters for sputter coating of ~ 0.0002 inch Pt on both bare and CoCrAly sputter coated FT4 vanes. The deposition rate was approximately 0.0003 inch/hr. This rate was selected to allow sufficient deposition time for accurate thickness control. Run-to-run reproducibility of coating quality was provided by: monitoring the sputtering system's atmosphere with a quadrapole mass spectrometer, computer control over sputter deposition parameters, monitoring the change in weight of the vanes and the Pt targets, and sectioning and metallographically examining the Ni foil mask from each end of a vane from each deposition. A typical microstructure of the Pt coating on the Ni foil end masks is illustrated in Figure 2.

COCTATY COATING DEVELOPMENT

OBJECTIVE

The objective of this work was to sputter coat FT4 first-stage turbine vanes for at-sea testing to provide information demonstrating the advantages of sputter deposited coatings for hot corrosion protection. To accomplish this objective the following combinations of coatings were provided:

	Coating Combination	Vanes to be Delivered
Α.	CoCrAlY alloy with approximately 6-9% Al.	2
В.	CoCrAlY alloy with approximately 10-12% Al.	2
С.	Coating A with a 0.0002 inch Pt underlayer.	3
D.	Coating A with a 0.0002 inch Pt overlayer.	3
Ε.	Coating B with a 0.0002 inch Pt underlayer.	3
F.	Coating B with a 0.0002 inch Pt overlayer.	3

PROCEDURE

0

Sputtering Chamber

The sputtering chamber used to deposit CoCrAlY is shown schematically in Figure 3. Note the flat plate CoCrAlY target and the provision for use of a second electrically independent flat plate target. This feature was introduced to allow continuous variations in the chemistry of CoCrAlY (or CoCrAlY + X) deposits to be produced using the same CoCrAlY target.

CoCrAly Sputtering Targets

The previous Periodic Technical Report (3) discussed the difficulties experienced in obtaining suitable CoCrAlY sputtering targets. At the time of that report the only available CoCrAlY targets were 5 inches in diameter which had been purchased on an earlier NAVSEC contract. These targets were not large enough for FT4 vane coating.

During the period from January to March 1976, hot pressing techniques were developed jointly by BNW and Wayne Castledyne of UDIMET Powder Division of Special Metals Corporation, for fabrication of suitable 9-inch diameter CoCrAlY targets. It is believed that improved bonding of the CoCrAlY to the mild steel support and a higher pressing temperature contributed to the successful performance of these targets during sputtering. Analytical and other information on the CoCrAlY targets used in this work are presented in Table II.

Preliminary Experiments

0

The data for initial experiments to resolve system design problems (electrical shorting between removable shields and targets, peeling of stray deposit material from shields and fixturing), and establish deposition parameters to produce low Al content deposits from a CoCrAlY target are shown in Table III. The data for experiments to refine the design of a second target (Al) and establish deposition parameters for higher Al content deposits are presented in

Table IV. Analysis of aluminum content on portions of the vane airfoil and adjacent Ni mask, Figure 3, resulted in the data presented in Table V. The data in Table V should be considered preliminary as our x-ray fluorescence techniques were not fully developed and not enough examples of coating composition distribution on airfoil shapes were examined to allow reliable prediction of variations in Al content.

Also, no determination of Y concentration has been made as that capability is not available at BNW although it is currently being acquired.

With respect to Cr content in the CoCrAlY deposit, the data obtained by x-ray fluorescence indicated a nominal value of 20%. This is essentially identical to the 20.0-20.3% Cr values reported for the targets in Table II.

The data in Table V indicate that the parameters used in Experiments 146 and 156 with a single CoCrAlY target result in an Al content on the vane ranging from 6-9%. The parameters of Experiment 157 for the addition of Al from an Al target resulted in values of 8-11% Al on the airfoil. Since it was not possible to obtain Al content data on the vanes to be delivered, the data obtained on the Ni masks provide additional assurance, over and above the run-to-run control exercised on deposition parameters, that the expected Al content (based on deposition parameters) was obtained on the vanes.

In addition to the chemical analysis data obtained on the Ni masks, sections were taken for metallographic evaluation, again primarily for assurance of run-to-run reproducibility. Typical microstructures are illustrated in Figures 4, 5, 6 and 7. They demonstrate the high integrity, leader-free, fine-grained microstructure obtained. Note the lighter shaded band in the coating in Figure 4, center arrow. This was caused by two interruptions in the experiments, one at the beginning and one at the end of the band. The microstructure indicates that a very good bond was achieved in spite of the experiment interruptions. This characteristic might be quite useful in a production application for restarting after equipment shutdown or for recoating blades or vanes to extend service life after consumption of an initial coating.

Based on the information developed from the work described in the preceding section, the 16 vanes required for at-sea testing were coated using the deposition parameters presented in Table VI. Reproducibility of coating quality and properties was assured by constant monitoring of deposition conditions, periodic data logging by computer, microstructural and compositional evaluation of Ni masks and visual examination and evaluation of coated vanes. In general, it was felt that the Al composition and coating thickness (0.003 - 0.005 inch) for the vanes fell within desired ranges. Coating integrity or quality appeared be excellent. A

typical microstructure after heat treat for 4 hours at 1080°C in vacuum for the 10--12% Al CoCrAlY with Pt underlayer is illustrated in Figure 8. A summary of the 16 delivered vanes and their coatings is presented in Table VII.

<u>ACKNOWLEDGMENT</u>

The authors gratefully acknowledge the technical support of L.K. Fetrow, R.F. Stratton, and E.L. McDonald for the conduct of the sputter deposition experiments, and R.H. Beauchamp for metallography.

REFERENCES

- Dapkunas, S.J., "Evaluation of the Hot-Corrosion Resistance of Duplex Coatings Containing Sputter Deposited Platinum," David W. Taylor, Naval Ship Research & Development Center, Annapolis, MD, Report 4550, December 1975.
- Patten, J.W., et al, "Preliminary Report on the Sputter Deposition of Platinum Coatings on Superalloy Pins," NAVSEA Contract N00600-73-C-0583, Battelle-Northwest, Richland, WA, January 25, 1974.
- 3. Patten, J.W., et al, "Extend CoCrAlY and Pt Sputter-Deposition Technology to Provide Coatings on FT4 Turbine Vanes for At-Sea Evaluation," Periodic Technical Report, NAVSEA Contract NO0024-75-C-4332, Battelle-Northwest, Richland, WA, February 2, 1976.

FIGURE 1. Sputtering chamber for Pt deposition.

FIGURE 2. Pt coating (top arrow) on Ni tip mask (bottom arrow). Note extensive inter-diffusion resulting from elevated temperature of the Ni mask during deposition.

As-polished. 500X

FIGURE 3. BNW-Developed CoCrAlY Sputtering Chamber.

FIGURE 4. As-sputtered CoCrAlY coating on Ni tip and root masks, experiment 146. In Figure 4c, the left arrow indicates the CoCrAlY coating, the center arrow indicates material deposited between two sputtering interruptions, and the right arrow indicates the Ni mask material.

Tip Mask. As-Polished, 250X

Root Mask. As-Polished, 250X

Tip Mask. Etched, 500X Figure 5c

Root Mask. Etched, 500X Figure 5d

FIGURE 5. As-sputtered CoCrAlY coating on Ni tip and root masks, experiment 147. In Figure 5c, the left arrow indicates the CoCrAlY coating, the right arrow indicates the Ni mask material. The voids at the coating-mask interface resulted from the grooved as-rolled surface of the Ni foil. The absence of growth defects at these grooves illustrate the potential of this coating method for high integrity coatings.

As-Polished, 250X

Etched, 500X

FIGURE 6. CoCrAlY sputtered deposit on Ni mask from experiment 157 (10-12% A1), vane L-2. Arrows indicate CoCrAlY coating.

Etched, 500X

FIGURE 7. CoCrAlY sputtered deposit on Ni mask from experiment 159 (6-9% Al), vane C-8.
Arrows indicate CoCrAlY coating. The white layer between the CoCrAlY and Ni is the Pt underlayer, as the same Ni mask was used during Pt sputter coating.

FIGURE 8. Typical heat-treated structure of sputter deposited CoCrAlY (10-12% A1) with Pt underlayer on FT4 turbine vane for at-sea testing. Experiment 169, vane V-2. Bottom arrow indicates vane, middle arrow indicates Pt deposit plus diffusion, top arrow indicates CoCrAlY deposit. 425X

Avg. Substrate Wt. Gain (g) 4.36 4.32 3.21 3.57 3.9 Deposition Time (min) Pt Sputtering Parameters for Coating on FT4 Vanes 45 45 46 46 45 Substrate Temperature (CC) 750 740 730 750 750 Target (1) Current(1) (amps) 3.3 3.3 3.6 3.6 3.3 V-2, V-3 -- bare superalloy. V-1 superalloy plus sputtered CoCrAlY Substrate Material Superalloy plus sputtered CoCrAlY Superalloy plus sputtered CoCrAlY Bare superalloy TABLE I. Vane 0-0 0-7 0-8 C-2 C-5 L-3 1-6 L-6 V-2 V-3 L-2 L-4 158 158A Exp. No. 162 162A 152 164 168

(1) Target potential: 500 volts.

(% + m)	1001
Tannate	id i ge to
Of Cornal	בוטוסס וס ווסוס
Composition	o mora rendino
11	
TARIE	200

	(1)	(1)	$\frac{\gamma}{\chi}$ (2) $\frac{\gamma}{2}$ (3)		N (3) (Density (g/cc)	Sputtering Runs (4)
	20.3	12.3	0.58	0.041	0.0029 7.38	7.38	147-159
	20.0	12.2	0.53	0.046	0.0025	7.24	160-170
KB1 40-9 ⁽⁵⁾ KB1 40-10 ⁽⁵⁾	20.3	12.3	0.58		0.0029	7.24	

Determined by wet chemistry.
" x-ray techniques.
" inert gas fusion. E (3 (5)

See Table V. These targets were made from the same batch of powder and were hot isostatic pressed at the same time.

Experiments Conducted to Establish Sputtering Parameters for the Sputter Deposition of CoCrAlY on FT4 Vanes from a Single Target TABLE III.

Exp.	Vane Number	Target Potential (volts)	Target Current (amps)	Substrate Temp. (OC)	Deposition Time (hr)	Avg. Substrate Wt. Gain (9)
130	6-3	2000	3.1	730	4.0	6.4
131	Test Section	Run Terminated, target short	arget short	!	;	1
132	CJ-4222	1500	Run Terminated, target short	target short	;	1
133	CJ-4222	2000	2.8	720	1.5	6.3
134	CJ-4222	2500	3.0	750	5.0	15.5
135	C-3	2400	2.8	750	3.0	8.2
136	Test Section	1500	2.5	650	4.5	5.1
144	В	2400	.45	750	4.0	8.8
145	P-4	2400	2.7	750	4.0	1
146	9-d	2400	2.7	750	8.1	15.3

Substrate etch potential: 100 volts. Substrate etch time: 8 minutes. Note:

TABLE IV. Experiments to Establish Sputtering Parameters for Al Addition from a Second Target

						3.0	-	
Exp.	Vane	Target Poten (volts)	tential ts)	Target Current (amps)	rent	Substrate Temp.	Deposition Time	Avg. Substrate Wt. Gain
No.	Number	COCrAIY	Al	CoCrA1Y	A]	(3,2)	(hr)	(6)
137	Test Section	2400	1000	2.7	.03	730	3.0	8.8
138	Test Section	2400	200	2.7	2.7	700 - 750	1.5	1.7
139	Test Section	2400	2000	2.7	4.	740 - 580	3.0	3.4
140	Р7	Run Termin	nated, anode short	short	1	;	;	1
141	P7	Run Termin	nated, anode short	short	1	;	1	1
142	Р7	2400	2000	2.7	4.	750	1.5	က
143*	P7	2400	2000	2.7	4.5.	765 700 640	12.55	17.2
157	L-2	2400	1050	2.4	.45	750	6.5	13.5
169	V-2	2400	1100	2.5	4.	750-800	6.25	13.0

*Three stages, each at a different temperature.

Note: Substrate etch potential = 100 volts. Substrate etch time = 8 minutes.

TABLE V. Measured and Derived Al Concentrations of Sputtered CoCrAly Coatings on FT4 Vanes Compared to Masks

Experiment Number	Al Concent on Mask Root		Al Conce on Airfo Near Root		Desired Al Concentration (%)
146	9.0 ⁽²⁾	11.5 ⁽²⁾	7.0 ⁽³⁾	9.0 ⁽³⁾	6 - 9
147	9.0 ⁽²⁾	11.5 ⁽²⁾	7.0 ⁽³⁾	9.0 ⁽³⁾	
148	9.4 ⁽³⁾	10.0 ⁽³⁾	8.2 ⁽²⁾	7.8 ⁽²⁾	n
154	9.37 ⁽³⁾	9.4 ⁽³⁾	8.2 ⁽²⁾	7.3 ⁽²⁾	n .
155	8.64 ⁽³⁾	8.31 ⁽³⁾	7.6 ⁽²⁾	6.5 ⁽²⁾	п
156 ⁽¹⁾	9.28(3)	7.82 ⁽³⁾	8.2 ⁽²⁾	6.1 ⁽²⁾	п
156 ⁽¹⁾	9.0 ⁽³⁾	10.0 ⁽³⁾	7.8 ⁽²⁾	7.9 ⁽²⁾	п
157(1)	9.04(3)	13.05 ⁽³⁾	10.2 ⁽³⁾	8.0(3)	10 - 12
157(1)	12.4 ⁽³⁾	14.3 ⁽³⁾	11.2 ⁽³⁾	10.9 ⁽³⁾	п
159	9.66 ⁽³⁾	9.23 ⁽³⁾	8.5 ⁽²⁾	7.2 ⁽²⁾	6 - 9
160	11.93 ⁽³⁾	9.74 ^(3,4)	10.5 ⁽²⁾	7.6 ^(2,4)	10 - 12
161	11.09 ⁽³⁾	13.05 ⁽³⁾	10.2 ⁽²⁾	9.8(2)	и
163	11.98 ⁽³⁾	13.46 ⁽³⁾	10.5 ⁽²⁾	10.5 ⁽²⁾	п
165	12.07 ⁽³⁾	13.52 ⁽³⁾	10.6 ⁽²⁾	10.5 ⁽²⁾	п
166	11.57 ⁽³⁾	13.55 ⁽³⁾	10.6 ⁽²⁾	10.2 ⁽²⁾	n

In some cases samples were examined two times with slightly different analysis techniques as experience was gained with new x-ray fluorescence equipment and modification of this equipment.

⁽²⁾ These Al concentrations were derived from the relationships root concentration = mask concentration x .88 and tip concentration = mask concentration x .78. The relationships were obtained from Experiment 157 where both mask and airfoil concentrations were measured.

⁽³⁾ Measured by x-ray fluorescence techniques.

⁽⁴⁾ This value is probably low but the analysis has not yet been repeated.

TABLE VI. Deposition History for CoCrAly Coatings on Sixteen Vanes Delivered for At-Sea Testing

				Sixteen valles Delivered	Dellyered	TOT AL-Sed Testing	711	
	2007	Target Po	tential	Target C	urrent	Substrate	Deposition	Avg. Substrate
No.	Number	COCHAIN AT	Al	CoCrA1Y A1	AT	(00)	(hr)	(9)
147	C-2	2400	:	2.7	:	750	6.0	11
148	C-4	2400	:	2.7	:	092	5.4	9.5
149	C-4	2400	:	2.7	:	750	Anode short	run terminated
149A	C-4	2400	:	2.7	:	750	3.3	6.3
150	C-5	2400	2400	2.7	:	750	Target shor	t run terminated
151	6-5	2400	:	2.8	:	750	Plasma limi	Plasma limiter failed run terminated
151A/B	6-5	2400	:	2.8	:	750	5.5	13.9
153	Ξ	2400	1	2.4	;	725	6.	Run terminated
153A	L-2	2400	1	2.5	:	730	6.1	13.8
154	1-3	- SYSTEM	DOWN DUE TO	O ANODE SHO	IRT -	1	1	1
154A	L-3	2400	:	2.5	:	750	7.0	13.9
155	9-0	2400	1	2.5	!	750	7.2	14.3
156	C-7	2400	1	2.5	:	750	6.9	13.8
159	8-0	2400	:	2.5	:	750	6.75	13.7
091	L-4	2400	1050	2.4	.45	750-800	Heat dam broke	broke run terminated
160A	L-4	2400	1100	2.4	.45	785	6.5	
191	L-7	2400	1100	2.4	.45	790	6.55	13.7
163	F-8	2400	1100	2.4	4.	750-800	6.5	13.8
165	F-5	2400	1100	2.5	4.	750-800	6.5	13.4
991	9-T	2400	1100	2.5	4.	750-800	6.25	13.6
191	V-1	2400	1100	2.5	4.	750-800	6.75	
170	V-3	2400	1100	2.5	4.	750-800	5.75	12.3

TABLE VII. Coatings on Delivered Vanes

Experiment No.	Vane No.	Desired Composition
148, 149, 149A 153, 153A	C-4 L-1	CoCrAlY (6-9% Al)
155 156 159	C-6 C-7 C-8	CoCrAlY (6-9% Al) + Pt Underlayer
147 150, 151, 151A/B 154, 154A	C-2 C-5 L-3	CoCrAlY (6-9% Al) + Pt Overlayer
161 163	L-7 L-8	CoCrAlY (10-12% Al)
165 166 170	L-5 L-6 V-3	CoCrAlY (10-12% Al) + Pt Underlayer
157 160, 160A 167	L-2 L-4 V-1	CoCrAlY (10-12% Al) + Pt Overlayer