3: Statistical Properties of Language Machine Learning and Real-world Data (MLRD)

Simone Teufel

Last session: You implemented a Naive Bayes classifier

- Smoothed vs Unsmoothed
- The accuracy of the un-smoothed classifier was seriously affected by unseen words.
- We implemented add-one (Laplace) smoothing:

$$\hat{P}(w_i|c) = \frac{count(w_i, c) + 1}{\sum_{w \in V}(count(w, c) + 1)} = \frac{count(w_i, c) + 1}{(\sum_{w \in V}count(w, c)) + |V|}$$

■ Smoothing helped!

Today: frequency distributions in language

Questions:

- Why did smoothing help? (or in other words:)
- What is it about the distribution of words in a language that affected the performance of the un-smoothed classifier?
- Two Laws: Zipf's Law and Heap's Law

Zipf's Law: Word frequency distributions obey a power law

- There are a small number of very high-frequency words
- There are a large number of low-frequency words
- Zipf's law: the nth most frequent word has a frequency proportional to 1/n

"a word's frequency in a corpus is inversely proportional to its rank"

The parameters of Zipf's law are language-dependent

Zipf's law:

$$f_w \approx \frac{k}{r_w{}^{\alpha}}$$

where

 f_w : frequency of word w

 r_w : frequency rank of word w

 α , k: constants (which vary with the language)

e.g. α is around 1 for English but 1.3 for German

The parameters of Zipf's law are language-dependent

Actually...

$$f_w \approx \frac{k}{(r_w + \beta)^\alpha}$$

where

 β : a shift in the rank

see summary paper by Piantadosi

https://link.springer.com/article/10.3758/ s13423-014-0585-6

we won't worry about the rank-shift today

There are a small number of high-frequency words...

Moby Dick has 206,052 words in total.

Top 10 most frequent words in some large language samples:

English

```
1 the
         6,187,267
2 of
         2,941,444
3 and
         2,682,863
4 a
         2,126,369
      1,812,609
5 in
6 to
         1,620,850
7 it
         1,089,186
8 is
          998,389
          923,948
9 was
10 to
          917,579
```

BNC, 100Mw

En	glish	German			
1 the 2 of 3 and 4 a 5 in 6 to 7 it 8 is 9 was 10 to	6,187,267 2,941,444 2,682,863 2,126,369 1,812,609 1,620,850 1,089,186 998,389 923,948 917,579	1 der 2 die 3 und 4 in 5 den 6 von 7 zu 8 das 9 mit 10 sich	7,377,879 7,036,092 4,813,169 3,768,565 2,717,150 2,250,642 1,992,268 1,983,589 1,878,243 1,680,106		
BNC, 100Mw	"Deutscher Wortschatz", 500Mw				

English		Ge	erman	Spanish		
1 the	6,187,267	1 der	7,377,879	1 que	32,894	
2 of	2,941,444	2 die	7,036,092	2 de	32,116	
з and	2,682,863	з und	4,813,169	3 no	29,897	
4 a	2,126,369	4 in	3,768,565	4 a	22,313	
5 in	1,812,609	5 den	2,717,150	5 la	21,127	
6 to	1,620,850	6 von	2,250,642	6 el	18,112	
7 it	1,089,186	7 ZU	1,992,268	7 es	16,620	
8 is	998,389	8 das	1,983,589	8 y	15,743	
9 was	923,948	9 mit	1,878,243	9 en	15,303	
10 to	917,579	10 sich	1,680,106	10 lo	14,010	
BNC, 100Mw		"Deutsch Wortsch 500Mw		subtitle 27.4Mv	- /	

English		German		Spanish		Italian	
1 the	6,187,267	1 der	7,377,879	1 que	32,894	1 non	25,757
2 of	2,941,444	2 die	7,036,092	2 de	32,116	2 di	22,868
з and	2,682,863	3 und	4,813,169	3 no	29,897	з che	22,738
4 a	2,126,369	4 in	3,768,565	4 a	22,313	4 è	18,624
5 in	1,812,609	5 den	2,717,150	5 la	21,127	5 e	17,600
6 to	1,620,850	6 von	2,250,642	6 el	18,112	6 la	16,404
7 it	1,089,186	7 ZU	1,992,268	7 es	16,620	7 i l	14,765
8 is	998,389	8 das	1,983,589	8 y	15,743	8 un	14,460
9 was	923,948	9 mit	1,878,243	9 en	15,303	9 a	13,915
10 to	917,579	10 sich	1,680,106	10 lo	14,010	10 per	10,501
BNC, 100Mw	"Deutscher Wortschatz", 500Mw		subtitles, 27.4Mw		subtitles, 5.6Mw		

Top 10 most frequent words in some large language samples:

English		German		Spanish		Italian		Dutch	
1 the 2 of	6,187,267 2,941,444	1 der 2 die	7,377,879 7,036,092	1 que 2 de	32,894 32,116	1 non 2 di	25,757 22,868	1 de 2 en	4,770 2,709
3 and 4 a 5 in	2,682,863 2,126,369 1.812.609	3 und 4 in 5 den	4,813,169 3,768,565 2,717,150	3 no 4 a 5 la	29,897 22,313 21.127	3 che 4 è 5 e	22,738 18,624 17.600	3 het/'t 4 van 5 ik	2,469 2,259 1.999
6 to 7 it	1,620,850 1,089,186	6 von 7 zu	2,717,150 2,250,642 1,992,268	6 el 7 es	18,112 16,620	6 la 7 il	16,404 14,765	6 te 7 dat	1,935 1,875
8 is 9 was	998,389 923,948	8 das 9 mit	1,983,589 1,878,243	8 y 9 en	15,743 15,303	8 un 9 a	14,460 13,915	8 die 9 in	1,807 1,639
10 to	917,579	10 sich	1,680,106	10 lo	14,010	10 per	10,501	10 een	1,637
BNC,	"Deutscher		subtitle	es,	subtitle	es,	subtitles	5,	

27.4Mw

Wortschatz", 500Mw

100Mw

5.6Mw

800Kw

It is helpful to plot Zipf curves in log-space

Reuters dataset: taken from https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf - chapter 5

By fitting a simple line to the data in log-space we can estimate the language specific parameters α and k (we will do this today!)

In log-space we can more easily estimate the language specific parameters

From Piantadosi https://link.springer.com/article/
10.3758/s13423-014-0585-6

Zipfian (or near-Zipfian) distributions occur in many collections

- Sizes of settlements
- Frequency of access to web pages
- Size of earthquakes
- Word senses per word
- Notes in musical performances
- machine instructions
- **...**

Zipfian (or near-Zipfian) distributions occur in many collections

There is also a relationship between vocabulary size and text length

So far we have been thinking about frequencies of particular words:

- we call any unique word a type: the is a word type
- we call an instance of a type a token: there are 13721 the tokens in Moby Dick
- the number of types in a text is the size of the vocabulary (also called dictionary)

Today you will also explore this relationship.

Heaps' law describes the relationship between vocabulary and text-length

Heaps' Law:

The relationship between the size of a vocabulary and the size of text that gave rise to it is

$$u_n = kn^{\beta}$$

where

 u_n : number of types (unique items), i.e. vocabulary size

n: total number of tokens, i.e.text size

 β , k: constants (language-dependent)

$$\beta$$
 is around $\frac{1}{2}$ $30 < k < 100$

Heaps' Law

- No saturation: there will always be more new types
- As we progress through a text it takes longer and longer to encounter a new type

It is helpful to plot Heaps' law in log-space

Zipf's law and Heaps' law affected our classifier

- The Zipfian curve has a lot of probability mass in the long tail.
- By Heaps' law, we need increasing amounts of text to see new word types in the tail

Zipf's law and Heaps' law affected our classifier

■ With MLE, only seen types receive a probability estimate: e.g. we used:

$$\hat{P}_{MLE}(w_i|c) = \frac{count(w_i, c)}{\sum_{w \in V_{training}} count(w, c)}$$

- True probability (e.g. for NEG class): orange; MLE: blue
- Total probabilities must sum to 1; in MLE all that probability mass is given to seen types
- MLE overestimates the probability of seen types (as opposed to unseen)

Smoothing redistributes the probability mass

Add-one smoothing redistributes the probability mass.

e.g. we used:

$$\hat{P}(w_i|c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c) + 1)} = \frac{count(w_i, c) + 1}{(\sum_{w \in V} count(w, c)) + |V|}$$

- It takes some portion away from the MLE overestimate.
- It redistributes this portion to the unseen types.
- Better estimate; still not perfect.

Today we will investigate Zipf's and Heaps' law in movie reviews

Follow task instructions on moodle to:

- Plot a frequency vs rank graph for larger set of movie reviews (you are given chart plotting code)
- Plot a log frequency vs log rank graph
- Indicate the location of your 10 chosen words from Tick 1, e.g. in colour, on this plot.
- Use least-squares algorithm to fit a line to the log-log plot (you are given best-fit code)
- Estimate the parameters of the Zipf equation
- Plot type vs token graph for the movie reviews

Ticking for Task 3

There is no automatic ticker for Task 3

- Write everything in your lab book
- Save all your graphs (as screenshots or otherwise)