we are in a position to solve some problems now.

Example 1: Use cohen-Sutherland algorithm to clip the line $P_1(70, 20)$ and $P_2(100, 10)$ against a window lower left hand corner (50, 10) and upper right hand corner (80, 40).

[UPTU, B. Tech (CSE)- 5th sem., 2005-06]

Solution 1. Given: P_1 (70, 20)

P₂ (100, 10)

Window's lower left corner is (50, 10)

Window's upper right corner is (80, 40)

∴ The window must be—

Here, we assign a 4 bit outcode,

 \therefore Point P_1 is inside window, so outcode $(P_1) = 0000$ Point P_1 is inside window, so outcode is 0010 (if our 4 bits are TBRL then R_2 and as point P_2 is outside window). point P_2 is to the right of window).

$$P_{1} \text{ AND } P_{2} = 0000$$

$$= 0010$$

$$0000 = \text{Zero i.e, line is partially visible.}$$

$$P_{1} \text{ AND } P_{2} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{10 - 20}{100 - 70} = \frac{-10}{30}$$

$$= \frac{-1}{3}$$

Now, we have to find point of intersection, P_3 .

Say,
$$P_3(x, y)$$

$$y = ?$$
 (to find)

$$P_2(x_2, y_2) = P_2(100, 10)$$

x = 80

then
$$m = \text{slope of line} = \frac{y - y_2}{x - x_2}$$

or
$$\frac{-1}{3} = \frac{y - 10}{80 - 100}$$

or
$$\frac{-1}{3} = \frac{y-10}{-20}$$

$$\frac{20}{3} = y - 10$$

or
$$y = 10 + \frac{20}{3}$$
$$= 10 + 6.667$$
$$y = 16.667$$

Now, the part P_2 P_3 of line P_1 P_2 is clipped as it is outside the window.

$$P_3(x, y) = P_3(80, 16.667)$$

Example 2. Find the normalization transformation for window to viewport which uses the rectangle whose lower left corner at (2, 2) and upper right corner at (6, 10) as a window and the viewport that has lower left corner at (0, 0) and upper right corner at (1, 1).

[UPTU, B.Tech (CSE 5th sem., 2005-06)]

Solution.

Now,
$$S_x = \frac{\text{Viewport } x \text{ -extent}}{\text{Window's } x \text{ -extent}} = \frac{1}{6-2} = \frac{1}{4}$$

$$S_y = \frac{\text{Viewport } y \text{ -extent}}{\text{Window's } y \text{ -extent}} = \frac{1}{10-2} = \frac{1}{8}$$

- : Overall transformation will be
- (a) Translate the window to origin.
- (b) Scale w.r.t. Origin to the required scaling factors $(S_x \text{ and } S_y)$.
- (c) Return it to viewport position.
- :. In matrix form we can write-

$$\begin{bmatrix} T_s \end{bmatrix}_A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -xw_{\min} & -yw_{\min} & 1 \end{bmatrix} \cdot \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ xV_{\min} & yV_{\min} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ -S_x x w_{\min} + x V_{\min} & -S_y y w_{\min} + y V_{\min} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{8} & 0 \\ -\frac{1}{4}.2 + 0 & -\frac{1}{8}.2 + 0 & 1 \end{bmatrix}$$

$$(: S_x = \frac{1}{4}, S_y = \frac{1}{8}, xw_{\min} = 2, xV_{\min} = 0, yw_{\min} = 2, yV_{\min} = 1)$$

$$[T] = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{8} & 0 \\ -\frac{1}{2} & -\frac{1}{4} & 1 \end{bmatrix}$$

÷.

Example 3. Use any line-clipping algorithm to obtain the visible portion of the following line segments -

(a)
$$P_1 = (0.5, 0.4)$$
 and $P_2 (1.6, 0.7)$

(b)
$$P_1 = (0.4, -1.6)$$
 and $P_2 (0.4, 2.7)$

(b) $P_1 = (0.4, -1.6)$ and $P_2 = (0.7, 2.7)$ For window $(x_{umin}, y_{umin}) = (0, 0)$ & $(x_{wmax}, y_{wmax}) = (1, 1)$. In each case determine the points of clipped line.

··· (A)

 $[0 \le t \le 1]$

Solution. The region code for point (x, y) are as follows—

Bit 1 = sign
$$(y - y_{wmax})$$
 = Sign $(y - 1)$

Bit
$$2 = \text{sign} (y_{w\min} - y) = \text{Sign} (-y)$$

Bit 3 = sign
$$(x - x_{wmax})$$
 = Sign $(x - 1)$

Bit
$$4 = \text{sign } (x_{wmin} - x) = \text{Sign } (-x)$$

Here, sign
$$(a) = \begin{cases} 1 & \text{If } a \text{ is positive} \\ 0 & \text{otherwise} \end{cases}$$

We use Cohen – Sutherland's approach here –

(a)
$$P_1(_{0.5}^x, _{0.4}^y)$$
 and $P_2(_{1.6}^x, _{0.7}^y)$

$$\therefore \text{ Outcode for } P_1 = 0000$$

Outcode for
$$P_2 = 0010$$

[Putting P_1 & P_2 coordinates in equation A]

Now, parametric form of the line P_1P_2 is

$$x = x_1 + t (x_2 - x_1)$$

$$y = y_1 + t (y_2 - y_1)$$

or
$$x = 0.5 + t (1.1)$$

$$y = 0.4 + t (0.3)$$

Because line P_1P_2 crosses the line x = 1

$$y = y_1 + \left(\frac{a - x_1}{x_2 - x_1}\right) (y_2 - y_1)$$

$$= 0.4 + \left(\frac{1 - 0.5}{1.1}\right)(0.3)$$

$$\therefore \qquad \qquad y = 0.57$$

Intersection Point,
$$I = (1, 0.57)$$

Now, Region code for point I is 0000

: Both points P_1 and I have outcode of 0000, so line is visible and having end points P_1 (0.5, 0.4) and I (1, 0.57).

(b) Again for P_1 (0.4, -1.6) outcode is 0100 and for P_2 (1.4, 2.7) outcode is 1000.

$$P_1 \text{ AND } P_2 = 0100$$

$$1000$$

$$0000$$

- \therefore This line is the candidate for clipping. This line intersects two lines x = 0 and y = 1.
- \therefore Parametric form of the line P_1P_2 is

$$x = 0.4 + t(0) = 0.4$$

$$y = -1.6 + t (4.3)$$

rical plate line is solvable with equation of any line segments. Also note that if equation of the candidate line comments. please note that any window is formed with four line segments. Also note that if equation of the very the end points of the line segment then the candidate line crosses the window. For v = 0, $v_1 = 0$ Now, for y = 0, $y_I = 0$

$$y = 0.4 + \left(\frac{0 - 1.6}{2.7 + 1.6}\right)(0.4 - 0.4)$$
$$= 0.4$$

. Intersection point I is (0.4, 0)

Region code for I is 0000 and Region code for P_2 is 1000

$$I \text{ AND } P_2 = 0000$$

0000 1000

As P_2 is outside the window, so we clip $\overline{P_1}I$.

Also, line segement, IP_2 intersects the $y = y_{\text{max}} = 1$

$$y I_1 =$$

and
$$xI_1 = 0.4 + \left(\frac{1-0}{2.7-0}\right)(0.3)$$

= 0.4

Since both the end points of H_1 have region code of 0000, so, it is completely inside the window \therefore Region code for intersection point I_1 (0.4, 1) is 0000. So, we clip the line segment I_1P_2 . and has the end points as (0.4,0) and (0.4, 1).

Example 4. Find the coordinate of the line segment when a line y = x + 2 is clipped against a circular window of radius $\sqrt{20}$ and centre at (0, 0).

Solution. The equations of circle, at (x_c, y_c) is

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

$$(x - 0)^2 + (y - 0)^2 = r^2$$

$$x^2 + y^2 = \left(\sqrt{20}\right)^2$$

or

$$= 20$$

$$x^2 + y^2 = 20$$

Now, Equations of line is
$$y = x + 2$$

Put (2) in (1) and we get-

$$x^2 + (x+2)^2 = 20$$
$$x^2 + x^2 + 4x + 4 = 20$$

5 9

$$2x^2 + 4x = 20 - 4$$

$$x^2 + 2x = 8$$

or 5

$$x^2 + 2x - 8 = 0$$

.. It is a quadratic equation with roots x = 2 or x =

$$y = x + 2 = 2 + 2 = 4$$

 $y = x + 2 = -4 + 2 = -2$

$$y = x + 2 = -4 + 2 = -2$$

Pure

Line segment bounded by (2, 4) and (-4, -2) will be visible in the circular window.

Example 5. Find the normalization transformation N, which uses the rectangle transformation N, which uses the r Example 5. Find the normalization transformation a normalized device screen as a window onto a normalized device screen as a life by a l where x-extent is from 0 to 1 and y-extent from 0 to 1. o 1. [UPTU, B.Tech (CSE) ~ 5th sent

Find the normalization transformation that maps a window whose corners that the normalized devices the contract of viewport which is the entire normalized devices Find the normalization transformation that the entire normalized device senting (10, 6), (8, 10) and (0, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (0, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (0, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (0, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (0, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (0, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (10, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (10, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (10, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (10, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (10, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (10, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (10, 6) onto a viewport which is the entire normalized device senting (10, 6), (8, 10) and (10, 6) onto a viewport which is the entire normalized device senting (10, 6). lower left corners at A. C (4, 5)

Solution.

Firstly, we rotate the window (rectangle) clock wise about A so that it is aligned with

sin
$$\theta = \frac{BE}{AB} = \frac{3-1}{\sqrt{(5-1)^2 + (3-1)^2}}$$

$$= \frac{2}{\sqrt{4^2 + 2^2}} = \frac{2}{\sqrt{16+4}} = \frac{2}{\sqrt{20}}$$

$$= \frac{2}{\sqrt{2 \times 2 \times 5}} = \frac{2}{2\sqrt{5}} = \frac{1}{\sqrt{5}}$$
Similarly, $\cos \theta = \frac{AE}{AB} = \frac{5-1}{\sqrt{(5-1)^2 + (3-1)^2}}$

$$= \frac{4}{\sqrt{16+4}}$$

$$= \frac{4}{\sqrt{20}}$$

$$= \frac{4}{\sqrt{2} \times 2 \times 5}$$

$$= \frac{4}{2\sqrt{5}}$$

$$= \frac{2}{\sqrt{5}}$$

But this ye

$$\sin(-\theta) = -\frac{1}{\sqrt{5}}$$

$$\cos (-\theta) = \cos \theta = \frac{2}{\sqrt{5}}$$

.. Rotation matrix about A (1, 1) is given by a matrix-

$$\begin{bmatrix} R_{-\theta} \end{bmatrix}_{A} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \left(1 - \frac{3}{\sqrt{5}}\right) \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & \left(1 - \frac{1}{\sqrt{5}}\right) \\ 0 & 0 & 1 \end{bmatrix}$$

The x-extent of the rotated window is the length of AB = $\sqrt{2^2 + 4^2} = 2\sqrt{5}$ & the y-extent of rotated window is the length of AD = $\sqrt{1^2 + 2^2} = \sqrt{5}$

 \therefore x and y extent of the normalized device screen are 1 then

$$\frac{V_{x \max} - V_{x \min}}{W_{x \max} - W_{x \min}} = \frac{1 - 0}{2\sqrt{5} - 0} = \frac{1}{2\sqrt{5}} \text{ and } \frac{V_{y \max} - V_{y \min}}{W_{y \max} - W_{y \min}} = \frac{1 - 0}{\sqrt{5} - 0} = \frac{1}{\sqrt{5}}$$

:.

$$N = T_{\overline{V}} . S_{sx},_{sy} . T_{-\overline{V}}$$

$$= \begin{bmatrix} \frac{1}{2\sqrt{5}} & 0 & -\frac{1}{2\sqrt{5}} \\ 0 & \frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ 0 & 0 & 1 \end{bmatrix}$$

: Normalization transformation is -

$$[N_R] = [N]. [R_{-\theta}]_A$$

$$= \begin{bmatrix} \frac{1}{2\sqrt{5}} & 0 & -\frac{1}{2\sqrt{5}} \\ 0 & \frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \left(1 - \frac{3}{\sqrt{5}}\right) \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & \left(1 - \frac{1}{\sqrt{5}}\right) \\ 0 & 0 & 1 \end{bmatrix}$$

or

$$NR = \begin{vmatrix} \frac{1}{5} & \frac{1}{10} & -\frac{3}{10} \\ -\frac{1}{5} & \frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 1 \end{vmatrix}$$

We are in a position to solve some problems now.

Solution. Given:

Example 1. Use Liang-Barsky line clipping algorithm to clip the line $P_1 (-15, -30)$ to 0, (30, 60) against the window having diagonally opposite corners as (0, 0) and (15, 15).

$$y_{\text{min}} = 0 \\ y_{\text{max}} = 15$$

$$\therefore \qquad dx = 30 - (-15) = 45 \qquad \text{(or } \Delta x) \\ dy = 60 - (-30) = 90 \qquad \text{(or } \Delta y)$$

$$\therefore \qquad p_1 = -\Delta x = -45 \\ p_2 = \Delta x = 45 \\ p_3 = -\Delta y = -90 \\ p_4 = \Delta y = 90$$
Also,
$$q_1 = x_1 - x_{\text{min}} = -15 - 0 = -15 \\ q_2 = x_{\text{max}} - x_1 = 15 - (-15) = 30 \\ q_3 = y_1 - y_{\text{min}} = -30 - 0 = -30 \\ q_4 = y_{\text{max}} - y_1 = 15 - (-30) = 45$$

$$\therefore \qquad u_1 = \frac{q_1}{p_1} = \frac{-15}{-45} = \frac{1}{3}$$

$$u_2 = \frac{q_2}{p_2} = \frac{30}{+45} = \frac{2}{3}$$

$$u_3 = \frac{q_3}{p_3} = \frac{-30}{-90} = \frac{1}{3}$$
and
$$u_4 = \frac{q_4}{p_4} = \frac{45}{90} = \frac{1}{2}$$

$$\therefore \qquad u_1 = \left(\max\left(\frac{1}{3}, \frac{1}{3}, 0\right) \right) = \frac{1}{3} \qquad \text{(for } p_i < 0)$$

 $u_2 = \left(\min\left(\frac{2}{3}, \frac{1}{2}, 1\right)\right) = \frac{1}{2}$ and (for $p_i > 0$) $u_1 < u_2$ So there is a visible section.

.. New endpoints are-

$$x_{1}' = x_{1} + (\Delta x \times u_{1}) = -15 + \left(45 \times \frac{1}{3}\right) = -15 + 15 = 0$$

$$y_{1}' = y_{1} + (\Delta y \times u_{1}) = -30 + \left(90 \times \frac{1}{3}\right) = 0$$

$$x_{2}' = x_{1} + (\Delta x \times u_{2}) = -15 + \left(45 \times \frac{1}{2}\right) = 7.5$$

$$y_{2}' = y_{1} + (\Delta y \times u_{2}) = -30 + \left[90 \times \frac{1}{2}\right] = 15$$
Here with $x_{1} = x_{1}$

.. Visible line will be $P_1'(0, 0)$ to $P_2'(7.5, 15)$.

Example 2. Consider the following clip window with

$$x_{\min} = 1, x_{\max} = 9$$

 $y_{\min} = 2, y_{\max} = 8$

the lines as shown in Figure using Liang-Barsky algorithm-

Solution. For line AB

$$p_{1} = -\Delta x = 11 - 11 = 0$$

$$p_{2} = \Delta x = 0$$

$$p_{3} = -\Delta y = -(10 - 6) = -4$$

$$p_{4} = \Delta_{y} = 4$$

$$q_{1} = x_{1} - x_{\min} = 11 - 1 = 10$$

$$q_{2} = x_{\max} - x_{1} = 9 - 11 = -2$$

$$q_{3} = y_{1} - y_{\min} = 6 - 2 = 4$$

$$q_{4} = y_{\max} - y_{1} = 8 - 6 = 2$$

 $p_2 = 0$ and $q_2 < 0$; so the line AB is completely outside the boundary and thus can be

For line CB

and

$$p_1 = -6$$

$$q_1 = 1$$

$$\therefore$$
 $r_1 =$

$$p_2 = 6$$

$$q_2 = 7$$

$$q_1 = 1$$
 \therefore $r_1 = \frac{q_1}{p_1} = \frac{-1}{6}$

$$q_2 = 7$$
 $r_2 = \frac{q_2}{p_2} = \frac{7}{6}$

$$p_3 = -1$$

$$q_3 = 1$$

$$r_3 = \frac{q_3}{p_3} = -1$$

$$p_4 = 1$$

$$q_4 = 5$$

$$q_4 = 5$$
 $r_4 = \frac{q_4}{p_4} = 5$

$$u_1 = \max \left[0, -\frac{1}{6}, -1\right] = 0$$

$$u_2 = \min\left[1, \frac{7}{6}, 5\right] = 1$$

ppp

$$u_1 = 0 \quad \text{and} \quad u_2 = 1$$

.. Line EF is completely inside the clipping window.

For line GH

$$p_1 = 0$$
 $q_1 = 2$
 $p_2 = 0$ $q_2 = 6$

$$p_3 = -3 \quad q_3 = 5$$

$$\therefore p_3 < 0, r_3 = q_1$$

$$p_4 = 3 \quad q_4 = 1$$

$$\therefore p_4 > 0, r_4 = \underbrace{q_4}_{p_4}$$

$$u_1 = \max\left(0, \frac{-5}{3}\right) = 0 \text{ and } u_2 = \min\left(1, \frac{1}{3}\right) = \frac{1}{3}$$

 $u_1 < u_2$, so the two endpoints of the clipped line are (3, 7) and $\left(3, 7 + 3 \times \frac{1}{3}\right) = 0$

$$\begin{bmatrix} \because x = x_1 + \Delta t_1 \\ y = y_1 + \Delta y_1 \end{bmatrix}$$

For line EF

$$p_1 = -12$$
 $q_1 = -2$ \therefore $r_1 = \frac{1}{6}$

$$p_2 = 12$$
 $q_2 = 10$ $r_2 = \frac{5}{6}$

$$p_3 = 6$$
 $q_3 = 5$ $r_3 = \frac{5}{6}$

$$p_4 = -6 q_4 = 1 r_4 = -\frac{1}{6}$$

$$u_1 = \max\left(0, \frac{1}{6}, \frac{-1}{6}\right) = \frac{1}{6}$$

and
$$u_2 = \min\left(1, \frac{5}{6}, \frac{-5}{6}\right) = \frac{5}{6}$$

 $u_1 < u_2$, the endpoints of the clipped line are—

$$\left(-1+12\times\frac{1}{6},7+(-6)\times\frac{1}{6}\right) = (1,6)$$

and
$$\left(-1+12\times\frac{5}{6},7+(-6)\times\frac{5}{6}\right)=(9,2)$$

:. Endpoints of clipped line are (1, 6) and (9, 2).

and i Q is completely outside the window.

Q.3. Using Sutherland-Hodgeman algorithm, clip the following polygons against the rectangle -[UPTU, B.Tech (IE) - 5th sem., 2004

Ans. We need to clip polygon EFGHE against rectangle ABCD i.e.,

Clip the polygon against the line AB

Equation of line, AB is
$$y = 25$$
 ... (1)

Equation of line, EF is $y - 50 = -1$ ($x - 0$)

or

 $x + y = 50$

Find intersection of the line segment AB with the line segments EF and FG, we get $P_{1} = (25, 25)$

$$P_1 = (25, 25)$$

 $P_2 = (75, 25) = P_3$
 $P_4 = (75, 75) = P_5$
 $P_6 = (25, 75) = P_7$
 $P_8 = P_1 = (25, 25)$

Please note here that the intersection points of polygon and rectangle show that the polygon is totally outside the clipping boundaries i.e., not a single vertex is inside the clipping undow. Therefore, the output will be zero.

Q.4. A clipping window ABCD is specified as A(0,0), B(40,0), C(40,40), D(0,40). Use midpoint subdivision algorithm to find the visible portion, if any, of the line segment joining the points P(-10,20) and Q(50,10).

Ans. The outcodes of P is 0001 and Q is 0010. Both endpoint codes are not zero and their liquid AND is zero, hence we can conclude that line cannot be rejected as invisible.

Now midpoint is

$$x_m = \frac{x_1 + x_2}{2} = \frac{-10 + 50}{2} = 20$$

 $y_m = \frac{y_1 + y_2}{2} = \frac{20 + 10}{2} = 15$

Outcode of midpoint P_m (x_m, y_m) is 0000.

Neither segment PP_m nor P_mQ is either totally visible or trivially invisible. Lets keep segment P_m for later processing, and we continue with P_mQ . This subdivision process continues until we an intersection point with window edge i.e. (40, y). Table shows how the subdivision works.

P	Q	P _m	Comment
(-10, 20)	(50, 10)	(20, 15)	Save PP_m and continue with P_mQ
(20, 15)	(50, 10)	(35, 12)	Continue with P_mQ
(35, 12)	(50, 10)	(42, 11)	Continue with PP _m
(35, 12)	(42, 11)	(38, 11)	Continue with P_mQ
(38, 11)	(42, 11)	(40, 11)	This is the intersection pint of line with right window edge.
(-10, 20) (-10, 20)	(20, 15)	(5, 17)	Recall PP_m and continue with PP_m
(-3, 18)	(5, 17)	(-3, 18)	Continue with P_mQ
(-3, 18)	(5, 17)	(1, 17)	Continue with PP_m
(-1, 17)	(1, 17) (1, 17)	(-1, 17) (0, 17)	Continue with P_mQ This is the intersection point of line with left window edge

visible portion of line segment PQ is from (0, 17) to (40, 11).