침몰하는 타이타닉

유럽에서 가장 유명했던 유람선 타이타닉이 침몰하고 있습니다. 유람선에는 N명의 승객이 타고 있습니다. 구명보트를 타고 탈출해야 하는데 타이타닉에 있는 구명보트는 2명 이하로만 탈 수 있 으며, 보트 한 개에 탈 수 있는 총 무게도 M kg 이하로 제한되어 있습니다.

N명의 승객 몸무게가 주어졌을 때 승객 모두가 탈출하기 위한 구명보트의 최소개수를 출력하는 프로그램을 작성하세요.

□ 입력설명

매개변수 nums에 N(5<=N<=200,000)명의 몸무게가 주어집니다. 매개변수 m에 M(70<=M<=10,000)이 주어집니다. 승객의 몸무게는 50이상 1,000이하 이며, 각 승객의 몸무게는 M을 넘지는 않습니다.

■ 출력설명

구명보트의 최소 개수를 반환합니다.

■ 매개변수 형식 1[90, 50, 70, 100, 60], 140

■ 반환값 형식 1

3

가격책정

미술 작품에 가격을 매기는 일은 쉽지 않습니다. 작품의 가치를 매길 수 있는 정확한 지표가 없기 때문입니다. 그렇기 때문에 사람의 주관이 많이 들어가게 됩니다.

이런 문제를 해결하기 위해 여러 전문가들에게 감정을 맡겨보기로 했습니다. 하지만 전문가도 항상 정당한 값을 매기기는 어렵습니다. 또 의도적으로 높게 혹은 낮게 가격을 매길 수 있습 니다. 그래서 다음과 같은 4가지 방법으로 판매가를 결정하려고 합니다. 1번 방법부터 적용시 킬수 있으며 적용시켜서 판매가를 결정하고, 적용시킬 수 없다면 다음 방법으로 차례차례 넘 어갑니다.

- 1. 가장 비싸게 책정한 가격과 가장 싸게 책정한 가격의 차가 d원이하라면, 모두 정당한 가격으로 책정했다고 판단해 전문가들이 제시한 모든 가격의 평균값으로 판매가를 결정합니다.
- 2. 가장 비싸게 책정한 가격 하나와 가장 싸게 책정한 가격 하나를 제외시킵니다. 나머지 가격 중 가장 비싸게 책정한 가격과 가장 싸게 책정한 가격의 차가 d원 이하라면, 앞서 제외한 두 가격 외에는 모두 정당한 가격이라고 판단해, 두 가격을 제외한 모든 가격의 평균값으로 판매가를 결정합니다.
- 3. 전문가들이 매긴 모든 가격에서 임의로 k개의 가격을 골랐을 때 가장 비싸게 책정한 가격 과 가장 싸게 책정한 가격의 차가 d원 이하라면, 그 k개의 가격이 정당하다고 판단해 그 k 개의 평균값을 판매가로 결정합니다. 만약 정당한 가격을 책정한 k개의 가격을 고르는 방법이 여러 개라면, 그중에서 평균값이 가장 낮은 것을 판매가로 결정합니다.
- 4. 중앙값을 판매가로 결정합니다. 즉, 전문가들이 매긴 모든 가격을 오름차순으로 정렬했을 때, 가운데 위치하는 가격을 판매가로 결정합니다. 가격의 개수가 짝수라면, 가운데 위치하는 두 가격 중에 크지 않은 가격을 판매가로 결정합니다.

[주의사항] : 평균값을 계산할 때 모든 소수점 이하는 버립니다.

전문가들이 매긴 가격들을 담은 정수 배열 prices, 정수 d, 정수 k가 주어질 때, 미술 작품의 판매가를 return 하도록 solution 함수를 완성해 주세요.

제한사항

- 3 ≤ prices의 길이 ≤ 1,000,000
- 1 ≤ prices의 원소 ≤ 2,000
- $0 \le d \le 2,000$

• 1 ≤ k ≤ prices의 길이

입출력 예

prices	d	k	result
[4, 5, 6, 7, 8]	4	3	6
[4, 5, 6, 7, 8]	2	1	6
[4, 5, 6, 7, 8]	1	2	4
[8, 4, 5, 7, 6]	1	3	6
[1, 8, 1, 8, 1, 8]	6	4	1

입출력 예#1

가장 비싸게 책정된 가격-가장 싸게 책정된 가격=8-4=4

4 ≤ d=4이기 때문에, 1번 방법에 따라 전체 가격의 평균을 판매가로 결정합니다.

입출력 예#2

가장 비싸게 책정된 가격-가장 싸게 책정된 가격=8-4=4

4 > d=2이기 때문에, 1번 방법을 적용시킬 수 없습니다.

2번 방법에 따라 가장 비싸게 책정된 가격과 가장 싸게 책정된 가격을 제외하고, 가격 차를 확인합니다.

[5, 6, 7]에서 가장 비싸게 책정된 가격은 7, 가장 싸게 책정된 가격은 5입니다.

따라서, 가장 비싸게 책정된 가격-가장 싸게 책정된 가격=7-5=2

2 ≤ d=2이기 때문에 [5, 6, 7]의 평균 가격을 판매가로 결정합니다.

입출력 예#3

입출력 예#2에서 확인할 수 있듯이 1번 방법과 2번 방법을 모두 적용시킬 수 없습니다.

따라서 3번 방법을 적용시켜야 합니다. 전문가들이 매긴 모든 가격에서 k개의 가격을 고르는 방법은 다음과 같습니다.

[4, 5], [4, 6], [4, 7], [4, 8], [5, 6], [5, 7], [5, 8], [6, 7], [6, 8], [7, 8] 이 중,

가장 비싸게 책정된 가격-가장 싸게 책정된 가격≤ d=1

위 부등식을 만족하는 결과만 나열해 보면 다음과 같습니다.

[4, 5], [5, 6], [6, 7], [7, 8]

이 네 가격 모두 정당하다고 판단하지만, 3번 방법에 따라 평균 가격이 가장 낮은 것을 판매 가로 결정합니다. [4, 5]의 평균에서 소수점 이하를 버린 4원을 판매가로 결정합니다.

팀구성

당신은 새로 만들어진 두 개의 팀 중 한 팀을 이끄는 리더입니다. 당신은 상대팀 리더와 경쟁을 통해 사람들을 팀으로 데려옵니다. 매 라운드마다 각 리더는 사람을 한 명씩 선택할 수 있으며, 항상 상대 팀 리더가 먼저 선택합니다. 대신, 당신에게는 원할 때 쓸 수 있는 우선권 k개가 주어집니다. 우선권을 사용한 라운드는 당신이 상대 리더보다 먼저 선택할 수 있습니다.

당신을 포함하여 리더는 항상 남은 사람들 중 가장 능력치가 높은 사람을 먼저 데려갑니다. 당신은 이 우선권을 이용해 팀원의 능력치 합이 최대한 높은 팀을 만들려고 합니다.

예를 들어 사람들의 능력치를 담은 배열이 [2, 8, 3, 6, 1, 9, 1, 9]이고 당신에게 우선권이 2 개 있는 경우, 다음과 같이 행동할 수 있습니다.

- 1. 첫 번째 라운드에서는 우선권을 사용하지 않습니다. 상대는 능력치가 9인 사람을 데려가고, 당신은 능력치가 9인 사람을 데려갑니다. 남은 사람들의 능력치는 [2, 8, 3, 6, 1, 1]입니다.
- 2. 두 번째 라운드에서는 우선권을 사용합니다. 당신은 능력치가 8인 사람을 데려가고, 상대는 능력치가 6인 사람을 데려갑니다. 남은 사람들의 능력치는 [2, 3, 1, 1]입니다.
- 3. 세 번째 라운드에서도 우선권을 사용합니다. 당신은 능력치가 3인 사람을 데려가고, 상대는 능력치가 2인 사람을 데려갑니다. 남은 사람들의 능력치는 [1, 1]입니다.
- 4. 네 번째 라운드부터는 우선권을 모두 소진했기 때문에 나중에 선택할 수밖에 없습니다. 당신과 상대는 각각 능력치가 1인 사람을 데려갑니다.

위와 같이 행동할 경우 당신의 능력치 합이 9+8+3+1=21인 팀을 만들 수 있습니다. 다른 방법으로 팀원을 선택할 수도 있지만, 능력치 합이 21보다 큰 팀은 만들 수 없습니다.

만약 사람들의 수가 홀수인 경우, 마지막에 남은 한 사람은 우선권을 사용한 경우에만 당신이 데려갈 수 있습니다. 즉, 진행되는 라운드의 총횟수는 (사람수+1)를 2로 나눈 몫과 같습니다.

사람들의 능력치를 담은 정수 배열 abilities와 우선권의 개수를 나타내는 정수 k가 매개변수로 주어집니다. 우선권을 k 번 이하로 사용하여 만들 수 있는 팀의 능력치 합의 최댓값을 return 하도록 solution 함수를 완성해 주세요.

제안사항

- 2≤abilities의 길이≤300,000
- 。 1≤abilities의 원소≤10⁹
- 0≤2*k≤abilities의 길이+1

입출력 예

abilities	k	result
[2, 8, 3, 6, 1, 9, 1, 9]	2	21
[7, 6, 8, 9, 10]	1	22

입출력 예 설명

입출력 예 #1

문제 예시와 같습니다.

입출력 예 #2

다음과 같이 행동하면 됩니다.

- 1. 첫 번째 라운드에서는 우선권을 사용하지 않습니다. 상대 리더는 능력치 10인 사람을, 당신은 능력치 9인 사람을 데려갑니다.
- 2. 두 번째 라운드에서도 우선권을 사용하지 않습니다. 상대 리더는 능력치 8인 사람을, 당신은 능력치 7인 사람을 데려갑니다.
- 3. 첫 번째 라운드에서는 우선권을 사용합니다. 상대 리더는 능력치 6인 사람을 데려갑니다.

그 결과, 당신은 능력치 합이 9+7+6=22인 팀을 만들 수 있습니다. 다른 방법으로 팀원을 선택할 수 있지만, 능력치 합이 22보다 큰 팀은 만들 수 없습니다. 따라서 22를 return 합니다.

선긋기

현수는 수직선 위에 선을 그을려고 합니다. 선을 그을 때에는 수직선상의 한 점에서 다른 한 점까지 긋게 된다. 선을 그을 때에는 이미 선이 있는 위치에 겹쳐서 그릴 수도 있는데, 여러 번 그은 곳과 한 번 그은 곳의 차이를 구별할 수 없다고 하자.

이와 같은 식으로 선을 그었을 때, 현수가 그린 선(들)의 총 길이를 구하는 프로그램을 작성하 시오.

□ 입력설명

매개변수 nums에 N(5<=N<=200,000)개의 현수가 그은 선의 정보가 좌표(x, y)로 주어집니다. 선의 정보는 수직선상의 좌표인데 x는 선의 시작점이고, y는 선의 끝점입니다. (x<=y) 1<=x, y<=1,000,000,000

■ 출력설명

선의 총 길이를 반환합니다.

■ 매개변수 형식 1[[1, 3], [2, 5], [7, 10]]

■ 반환값 형식 1

7

■ 매개변수 형식 2[[5, 6], [1, 3], [7, 8], [9, 10]]

■ 반환값 형식 2

5

회의실 배정

한 개의 회의실이 있는데 이를 사용하고자 하는 n개의 회의들에 대하여 회의실 사용표를 만들려고 한다. 각 회의에 대해 시작시간과 끝나는 시간이 주어져 있고, 각 회의가 겹치지 않게 하면서 회의실을 사용할 수 있는 최대수의 회의를 찾아라. 단, 회의는 한번 시작하면 중간에 중단될 수 없으며 한 회의가 끝나는 것과 동시에 다음 회의가 시작될 수 있다.

■ 입력설명

매개변수 times에 각 회의의 시작시간과 끝나는 시간의 정보가 주어집니다. times의 길이는 100,000을 넘지 않습니다.

■ 출력설명

최대 회의수를 반환합니다.

■ 매개변수 형식 1

[[1, 4], [2, 3], [3, 5], [4, 6], [5, 7]]

■ 반환값 형식 1

3

예제설명

(2, 3), (3, 5), (5, 7)이 회의실을 이용할 수 있다.

결혼식

현수는 다음 달에 결혼을 합니다.

현수는 결혼식 피로연을 장소를 빌려 10,000일간 쉬지 않고 하려고 합니다.

피로연에 참석하는 친구들 N명의 참석하는 시간정보를 현수는 친구들에게 미리 요구했습니다.

각 친구들은 자신이 몇 시에 도착해서 몇 시에 떠날 것인지 현수에게 알려주었습니다.

현수는 이 정보를 바탕으로 피로연 장소에 동시에 존재하는 최대 인원수를 구하여 그 인원을 수용할 수 있는 장소를 빌리려고 합니다. 여러분이 현수를 도와주세요.

만약 한 친구가 오는 시간 13, 가는시간 15라면 이 친구는 13시 정각에 피로연 장에 존재하는 것이고 15시 정각에는 존재하지 않는다고 가정합니다.

□ 입력설명

매개변수 times에 각 친구들의 오는 시간과 가는 시간의 정보가 주어집니다.

times의 길이는 100,000을 넘지 않습니다.

시간은 첫날 0시를 0으로 해서 마지막날 밤 12시를 240,000로 하는 타임라인으로 오는 시간과 가는 시간이 음이 아닌 정수로 표현됩니다.

■ 출력설명

피로연장에 동시에 존재하는 최대 인원을 반환하세요.

■ 매개변수 형식 1

[[14, 18], [12, 15], [15, 20], [20, 30], [5, 14]]

■ 반환값 형식 1

2

씨름 선수(그리디)

현수는 씨름 감독입니다. 현수는 씨름 선수를 선발공고를 냈고, N명의 지원자가 지원을 했습니다. 현수는 각 지원자의 키와 몸무게 정보를 알고 있습니다.

현수는 씨름 선수 선발 원칙을 다음과 같이 정했습니다.

"다른 모든 지원자와 일대일 비교하여 키와 몸무게 중 적어도 하나는 크거나, 무거운 지원자 만 뽑기로 했습니다."

만약 A라는 지원자보다 키도 크고 몸무게도 무거운 지원자가 존재한다면 A지원자는 탈락입니다.

□ 입력설명

매개변수 body에 N(5<=N<=100,000)명의 키와 몸무게 정보가 차례로 주어집니다. 각 선수의 키와 몸무게는 모두 다릅니다.

■ 출력설명

씨름 선수로 뽑히는 최대 인원을 반환하세요.

■ 매개변수 형식1

[[172, 67], [183, 65], [180, 70], [170, 72], [181, 60]]

■ 반환값 형식 1

3

출력설명

(183, 65), (180, 70), (170, 72)가 선발됩니다. (181, 60)은 (183, 65) 때문에 탈락하고, (172, 67)은 (180, 70) 때문에 탈락합니다.

최대 수입 스케쥴

현수는 유명한 강연자이다. N개이 기업에서 강연 요청을 해왔다. 각 기업은 D일 안에 와서 강연을 해 주면 M만큼의 강연료를 주기로 했다.

각 기업이 요청한 D와 M의 정보를 바탕으로 가장 많을 돈을 벌 수 있도록 강연 스케쥴을 짜야 한다.

단 강연의 특성상 현수는 하루에 하나의 기업에서만 강연을 할 수 있다.

□ 입력설명

매개변수 nums에 N(1<=N<=10,000)개의 기업이 요청한 강연 M, D가 차례로 주어집니다.

■ 출력설명

현수가 최대로 벌 수 있는 수입을 반환합니다.

■ 매개변수 형식 1

[[50, 2], [20, 1], [40, 2], [60, 3], [30, 3], [30, 1]]

■ 반환값 형식 1

150

■ 매개변수 형식 2

[[50, 2], [40, 2], [20, 1], [10, 1]]

■ 반환값 형식 2

90

입력설명 :

현수의 스케쥴의 시작은 1일부터 출발합니다.

[[50, 2], [20, 1], [40, 2], [60, 3], [30, 3], [30, 1]]이면 첫 번째 기업의 강연정보인 [50, 2]는 2일 안에(2일포함) 와서 강연을 해주면 50의 강연료를 주겠다는 의미입니다. 네 번째 정보인 [60, 3]은 3일 안에 와서 강연을 해주면 60의 강연료를 주겠다는 의미입니다. 즉 현수가 1일, 2일, 3일 중 아무 날에 가서 강연을 하면 60의 강연료를 받습니다.