

Introduction to basic Electronic devices and Electronic Components Part 2

Instructed By: Mr. Supun Dissanayaka

Bhavat Ngamdeevilaisak

Formation of a diode

Thermal excitation Or Doping

Working principle of a diode

Working principle of a diode

Applied Voltage > barrier voltage

Forward biased diode

Reverse biased diode

Reverse biased diode

Light emitting diode

LED resistor calculation

$$R = \frac{(V_S - V_f)}{I_f}$$

Where:

Vs is source voltage
Vf is LED forward voltage
If is LED forward current
R is a series resistor

LED Color	Forward Voltage(V) @ 20mA		Dominant wavelength(mm)K @ 20mA	
	Red	2.1	2.4	620
Yellow	2.1	2.4	580	590
Green	3.4	3.8	520	530
Blue	3.4	3.8	460	465
White	3.4	3.8	6000	6500
Warm- White	3.4	3.8	3000	3500

Function Generator

Waveform Characteristics

$$oldsymbol{\omega} = 2\pi f$$
 (f : Cycles per second) $f = rac{1}{T}$ (T : time period)

Waveform Characteristics

Complex waveforms

Function Generator

 $dB = 10log_{10}[P_2/P_1]$

Coaxial cable and Bayonet Neill-Concelman (BNC)

Function generator output

$$V_{int} = I \times R_{int} + I \times R_L$$

$$V_{ext} = \frac{V_{int} \times R_L}{(R_L + 50)}$$

$$V_{ext} = \frac{V_{int} \times 50}{(50 + 50)}$$

Function generator output (corrected) : High Z

$$V_{int} = I \times R_{int} + I \times R_L$$

$$R_{L,t} = \frac{R_{L,img} \times R_L}{(R_{L,img} + R_L)}; R_{L,t} = \frac{50 \times R_L}{(50 + R_L)}$$

$$V_{ext} = \frac{V_{int} \times R_{L,t}}{\left(R_{L,t} + 50\right)}$$

Oscilloscope

The Oscilloscope & its uses

Oscilloscope (Contd.)

Systems in your oscilloscope

Oscilloscope (Contd.)

Oscilloscope (Contd.)

Scope probes

Thanks for your patience...