

Description:

This N-Channel MOSFET uses advanced trench technology and design to provide excellent $R_{DS(on)}$ with low gate charge. It can be used in a wide variety of applications.

Features:

- 1) V_{DS} =30V, I_D =55A, $R_{DS(ON)}$ <10m Ω @ V_{GS} =10V
- 2) Low gate charge.
- Green device available.
- 4) Advanced high cell denity trench technology for ultra low R_{DS(ON)}.
- 5) Excellent package for good heat dissipation.

Absolute Maximum Ratings: (T_c=25℃ unless otherwise noted)

Symbol	Parameter	Ratings	Units
V _{DS}	Drain-Source Voltage	30	V
V _{GS}	Gate-Source Voltage	±20	V
	Continuous Drain Current-T $_{\rm C}$ =25 $^{\circ}{ m C}^1$	55	
I _D	Continuous Drain Current-T _C =100 °C	30	А
	Pulsed Drain Current ²	112	
E _{AS}	Single Pulse Avalanche Energy ³	24.2	mJ
I _{AS}	Avalanche Current	22	А
P _D	Power Dissipation, $T_C=25^{\circ}C^4$	37.5	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +175	$^{\circ}\!\mathrm{C}$

Thermal Characteristics:

Symbol	Parameter	Max	Units
R _{eJC}	Thermal Resistance, Junction to Case ¹	4	°C/W

www.doingter.cn

_				
$R_{\theta JA}$	Thermal Resistance Junction-Ambient 1	62	°C/W	

Package Marking and Ordering Information:

Part NO.	Marking	Package
DC010NG	C010N	TO-252

Electrical Characteristics: (T_c=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Off Characteristics							
BV _{DSS}	Drain-Sourtce Breakdown Voltage	V _{GS} =0V,I _D =250 μ A	30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} =0V, V _{DS} =30V			1	μА	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0A$			±100	nA	
On Characteristics							
V _{GS(th)}	GATE-Source Threshold Voltage	V _{GS} =V _{DS} , I _D =250 μ A	1.2		2.5	V	
		V _{GS} =10V,I _D =30A		7.5	10	m Ω	
R _{DS(ON)}	Drain-Source On Resistance ²	V _{GS} =4.5V,I _D =15A		11	18		
Dynamic Characterist	ics						
C _{iss}	Input Capacitance			940			
C _{oss}	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1MHz		131		pF	
C _{rss}	Reverse Transfer Capacitance			109			
Switching Characteris	tics						
t _{d(on)}	Turn-On Delay Time			4		ns	
t _r	Rise Time	V _{DD} =15V, I _D =15A,	-	8		ns	
t _{d(off)}	Turn-Off Delay Time	V_{GS} =10V,R _{GEN} =3.3 Ω		31		ns	
t _f	Fall Time			4		ns	
\mathbf{Q}_{g}	Total Gate Charge			9.8		nC	
\mathbf{Q}_{gs}	Gate-Source Charge	V _{GS} =4.5V, V _{DS} =15V,		4.2		nC	
\mathbf{Q}_{gd}	Gate-Drain "Miller" Charge	I _D =15A		3.6		nC	
Drain-Source Diode C	Drain-Source Diode Characteristics						

V _{SD}	Source-Drain Diode Forward Voltage	V _{GS} =0V,I _S =1A	 	1	V
Is	Continuous Source Current ^{1.5}		 	43	А
I _{SM}	Pulsed Source Current ^{2.5}	$V_G=V_D=0V$, Force Current	 	112	Ns
Trr	Reverse Recovery Time	I=30A , dI/dt=100A/μs ,	 8.5		
Qrr	Reverse Recovery Charge	T _J =25°C	 2.2		

Notes:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =22A
- 4. The power dissipation is limited by 175°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics: (T_c=25℃ unless otherwise noted)

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.2 On-Resistance vs. G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.7 Capacitance

Fig.6 Normalized R_{DSON} vs. T_{J}

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

www.doingter.cn