$\begin{array}{lll} \mbox{Phone}: +91\ 789\ 387\ 5280 & \mbox{www.linkedin.com/in/aamodatre} \\ \mbox{Email}: aamodatre51297\ [at]\ gmail\ [dot]\ com & \mbox{Homepage}: \mbox{https://aamodatre.github.io} \end{array}$

AAMOD ATRE

In Pursuit | M. Sc. Quantum Science and Technology

About Me

- 1. INTERESTED in understanding molecular and optical interactions & their dynamics across various timescales
- 2. ENJOY delving into the theoretical underpinnings of a problem and exploring the system computationally
- 3. INTEND to pursue the development of theoretical frameworks in atomic, molecular and optical sciences

Education History		
Post-Graduate	Technical University of Munich	Oct 2022 - Present
-	M. Sc. Quantum Science and Technology	
Undergraduate	Birla Institute of Technology and Science, Pilani	Aug 2017 - Aug 2021
GPA 8.65/10.0	B.E. Chemical Engg. Minor : Physics	
Higher Secondary	FIITJEE Junior College, Kukatpally, Hyderabad	Apr 2015 - Aug 2017
Percentage : 96.5 $\%$	Grades XI & XII	
Senior Secondary	Delhi Public School, Nacharam, Hyderabad	Mar 2013 - Mar 2015
GPA: 10.0/10.0	Grades IX & X	

Work Experience

Remote Research Assistantship

Oct. 2021 - Oct. 2022

Dr. Aaron Kelly | Max Planck Institute for the Structure and Dynamics of Matter, Hamburg

Benchmarking a semiclassical mapping-based dynamics method (spin-PLDM) by modelling the interactions between an atomic subsystem and cavity-modified field modes.

Remote Research Internship

July 2021 - Sept. 2021

Dr. Pengfei Huo | University of Rochester, New York

Compared the performance of standard and spin-based partially linearized density matrix (PLDM) algorithms in calculating linear absorption spectra of a bi-exciton coupled dimer model.

Undergraduate Thesis | Research Internship

Jan. 2021 - June 2021

Dr. Jeremy Richardson | ETH Zürich

Gauged the efficacy of a spin-mapping-based semiclassical dynamics technique by studying the population and coherence dynamics of exciton relaxation in a 1D polymer chain. Formulated a spin-mapping for tight-binding polymer chains which conform to SU(2) symmetry.

Research Internship May 2019 - July 2019

Prof. Bibek Dash | CSIR Institute of Minerals and Materials Technolgy, India

DFT-based computational designing of triazole-based molecular precursors for selective CO_2 capture. Statistically determined the optimum functional-basis combination to model the CO_2 -triazole interactions with DFT. Studied CO_2 interactions with the aromatic building blocks to propose a new triazole moiety design.

Technical Skills			Language	
Programming	Softwa	re Packages	English (Native/Bilingual)	
Python	MATLAB	LAMMPS	German (Elementary - A2)	
Fortran	Maple	Quantum Espresso	French (Elementary)	
C	Mathematica	Gaussian 09	Marathi Hindi (Native)	

Undergraduate Teaching Experience	
Teaching Assistant Dr. S. D. Manjare Process Design Principles - I	Aug. 2020 - Dec. 2020
Teaching Assistant Dr. Radhika Vathsan Quantum Mechanics - II	Aug. 2020 - Dec. 2020

Standardized Tests

GRE General Test: 335/340 | Quant : 168/170 | Verbal : 167/170 | Analytical Writing : 5/6 **TOEFL**: 115/120 | Reading : 30/30 | Listening : 30/30 | Speaking : 25/30 | Writing : 29/30 **Aug. 2021 Sept. 2021**

Academic Interests

- 1. Dynamics of many-body, optical and open quantum systems.
- 2. Development of techniques in theoretical and computational chemistry.
- 3. Development of molecular and optical tools towards quantum technology.

Relevant Academic Credit Courses

Quantum Mechanics I & II	Solid State Physics	Statistical and Molecular
Statistical Mechanics	Atomic and Molecular Physics	thermodynamics
Nonlinear Dynamics and Chaos		Transport Phenomenon
Theory		

Featured Undergraduate Projects

Designing Lithium-based metal organic frameworks for hydrogen production Design Project | Dr. Paramita Haldar

Jan. 2020 - June 2021

Ab initio computational study of graphene-based Li-MOFs, employing density functional theory implementation in Quantum Espresso for electronic structure calculations & reactive molecular dynamics within LAMMPS framework to study hydrogen evolution amongst proposed models.

Study of cavity QED formalism and modern quantum control techniques Study Project | Dr. Raghunath Ratabole

Aug. 2020 - Dec. 2020

Literature survey of modern qubit implementations, entangled state preparation and quantum gate implementations in molecule-coupled cavity systems. Study of field quantization, cavity QED formalism and the applications of Jaynes-Cummings model.

Modelling kinetics of photo-catalytic reactions involved in waste-water treatment Study Project | Dr. Sharad Sontakke

Aug. 2019 - Dec. 2019

Modelled TiO_2 -based photocatalytic degradation of phenol and extraction of Cr and Cu ions with MATLAB. Optimizated TiO_2 catalyst concentration and reaction rates for varying contamination levels.

Study of metal-organic frameworks as tools for adsorptive CO_2 capture $Study\ Project\ |\ Dr.\ Richa\ Singhal$

Jan. 2019 - May. 2019

Literature review of thermodynamic and electronic properties of MOFs. Studied the methodologies and developments in the field of CO_2 capture, focusing on MOFs.

Other Academic Projects

Aug. 2018 - Dec. 2020

- BITS Pilani
- · Simulation of Hamiltonian maps and transport in structured fluids
- \cdot Fugacity coefficient estimation of pure CO_2 and H_2O using Van der Waals and Soave-Redlich-Kwong EOS modelling
- \cdot Derivation of various thermodynamic relations for a grand canonical ensemble of NO_2

Extracurricular Activities

Quantum Computing	 Cleared Quantum Open Source Foundation (QOSF) cohort 4 assesment task 	
	· Completed IBM Quantum's Global Summer School	June 2020, July 2022
Positions of Responsibility	· Core Member : Kala - Fine Arts Club	Mar. 2018 - May 2020
Hobbies	· Long distance running, swimming and squash sports	
	· Avid reader of fiction and non fiction literature	

Last Updated January 23, 2023 | Munich, Germany 81825