Stat 134: Section 21

Adam Lucas

April 22nd, 2019

Conceptual Review

- a. What is the method for finding $\mathbb{E}(Y)$ based on another random variable X?
- b. What is Bayes' Rule?
- c. Random variable or constant? For each of the following, indicate whether it is a random variable or a constant. For instance, $\mathbb{E}(X)$ would be a constant.
 - (i) $\mathbb{E}(Y | X)$;
 - (ii) $\mathbb{E}(Y | X = x)$;
 - (iii) $\mathbb{E}(\mathbb{E}(Y|X))$;
 - (iv) $\mathbb{E}(X|X)$;
 - (v) $\mathbb{E}(Y \mid X = Y)$.

Problem 1

Let $X \sim \text{Geom } (p)$ on $\{1, 2, ..., \}$. Let $Y \sim \text{Uniform } \{0, 1, ..., X\}$ (that is, given X = x, Y is uniformly distributed from 0 to x).

- 1. Find $\mathbb{E}(Y|X=k)$;
- 2. Find $\mathbb{E}(Y)$.

Let $X \sim \text{Exponential } (\lambda)$, and let $Y \sim \text{Poisson } (X)$ (that is, given X = x, Y follows the Pois (x) distribution).

- a. Find $P(X \in dx, Y = y)$;
- b. Use (a) to find the unconditional distribution of *Y*;
- c. Given Y = y, what is the conditional density of X? (Hint: use Bayes' Rule).

Problem 3: Conditioning on the First Toss

Let X be the number of tosses to get heads in a coin that lands heads with probability p.

- a. Argue that given the first toss is tails, the number of tosses to get heads is modeled by $1 + X^*$, where X^* and X have the same distribution.
- b. Let I_1 be the indicator of whether the first toss is heads. Use part (a) and the rule $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|I_1))$ to show $\mathbb{E}(X) = 1/p$.