Задачи к лекции 6

В этом листке используется обозначение $R = K[x_1, \dots, x_n]$, где K — некоторое поле. При сравнении одночленов от нескольких переменных всегда используется лексикографический порядок.

- **1.** Пусть $M_0 \subset R$ множество всех одночленов с коэффициентом 1. Найдите все одночлены $m \in M_0$, для которых существует лишь конечное число одночленов $m' \in M_0$ с условием $m' \prec m$.
- **2.** Пусть $f,g \in R$ два ненулевых многочлена и L(f), L(g) их старшие члены. Докажите, что $L(f \cdot g) = L(f) \cdot L(g)$.
- **3.** Многочлен $f(x_1, \ldots, x_n) \in R$ называется симметрическим, если

$$f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = f(x_1, \dots, x_n)$$

для всякой подстановки $\sigma \in S_n$. Докажите, что если $ax_1^{k_1}x_2^{k_2}\dots x_n^{k_n}$ — старший член некоторого симметрического многочлена, то $k_1 \geqslant k_2 \geqslant \ldots \geqslant k_n$.

- 4. Проверьте, что операция редукции заданного монома относительно заданного многочлена является линейным оператором на векторном пространстве R.
- **5.** Пусть $F = \{x_1 + x_2, x_3 + x_4\}$ и $g = x_2x_3^2x_4 x_1x_3x_4^2$. Найдите (какой-нибудь один) остаток многочлена q относительно системы F.
- 6. Покажите, что остаток многочлена g относительно системы F определён неоднозначно, если

 - (a) $F = \{xy + 1, y^2 1\}$ и $g = xy^2 x$; (б) $F = \{xy 1, y^2 1\}$ и $g = x^2y + xy^2 + y^2$.
- 7. Докажите, что если для некоторых многочленов $g_1,g_2\in K[x_1,\ldots,x_n]$ их разность g_1-g_2 редуцируется к нулю относительно системы $F \subset R \setminus \{0\}$, то многочлены g_1 и g_2 можно редуцировать к одному и тому же многочлену.
- 8. Пусть F произвольное непустое множество. Докажите, что все многочлены, обладающие единственным остатком относительно F, образуют подпространство в $K[x_1, \ldots, x_n]$ и что операция взятия остатка линейна на данном подпространстве.
- 9. Пусть $F\subset R\setminus\{0\}$ некоторая система многочленов и S(F) множество всех S-многочленов системы F. Для каждого $f \in S(F)$ найдём какой-нибудь один остаток многочлена f относительно F. Докажите, что
 - (1) если все найденные остатки равны 0, то F является системой Грёбнера;
 - (2) если хотя бы один из остатков отличен от нуля, то F не является системой Γ рёбнера.
- 10. Выясните, какие из следующих множеств многочленов являются системами Грёбнера:
 - (a) система F из задачи 5;

 - (6) $\{x^2y y^2, x^2z z^2\};$ (B) $\{x^2y y^2, x^2z z^2, y^2z yz^2\}.$

Домашнее задание

- 1. Какие значения может принимать длина убывающей (в лексикографическом порядке) цепочки одночленов от переменных x_1, x_2, x_3 , начинающейся с одночлена $x_1^2 x_2^3 x_3$?
- **2.** Найдите остаток многочлена g относительно системы $\{f\}$, где

$$g = x_2^4 x_3^6 + 2x_1 x_2^4 x_3 + x_1^2 x_2^2, \quad f = x_2^4 x_3 - x_1 x_2 x_3^2 + x_1 x_2^2.$$

3. Выясните, является ли множество $\{f_1, f_2, f_3\}$ системой Грёбнера, где

$$f_1 = 2x_1x_2 + 4x_1x_3 + x_2x_3^2$$
, $f_2 = 4x_1x_3^2 + x_2x_3^3 + 4$, $f_3 = x_2^2x_3^3 + 4x_2 + 8x_3$.

4. Пусть $f_1, f_2 \in K[x_1, \dots, x_n]$ — два ненулевых многочлена, у которых старшие члены взаимно просты. Докажите, что старший член многочлена $S(f_1, f_2)$ делится либо на $L(f_1)$, либо на $L(f_2)$.