EPITA / InfoS2#	Novembre 2021		
NOM :	PRENOM :		
	Contrôle Architecture		
EDIT	Les calculatrices et les documents ne sont pas autorisés. Le barème est donné		
ÉCOLE D'INGÉNIEURS EN INFOR	à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.		
Exercice 1.	Nombres à virgule flottante (6 points)		
IEEE 754	issez, en détaillant chaque étape, les deux nombres ci-dessous dans le format flottan 4 simple précision. Vous exprimerez le résultat final sous forme <u>hexadécimale</u> . $-238,71875$		
b.	0,34375		

3. Donnez, en puissance de 2, le plus grand nombre positif à mantisse normalisée qu'il est possible de coder dans le format flottant IEEE 754 simple précision

<u>Exercice 2.</u> Logique Séquentielle (14 points)

1. On utilise une bascule RS synchrone à arrêt prioritaire.

Compléter les chronogrammes de la sortie Q (jusqu'après le dernier front descendant) selon que la bascule est synchronisée sur :

- a) état haut
- b) impulsion positive

(On prendra : Q = 0 à t = 0)

Rq : Sur un de ces chronogrammes, il existe un intervalle de temps où l'état de Q est indéterminé. Le faire apparaître clairement en hachurant la zone correspondante sur le bon chronogramme.

2. Compléter le chronogramme des sorties Q_0 , Q_1 et Q_2 du circuit suivant <u>jusqu'à retrouver l'état initial</u>. (On admettra que $Q_0=Q_1=Q_2=0$ à t=0)

Si on lit les sorties Q_2 , Q_1 et Q_0 comme un nombre avec Q_0 en poids faible et Q_2 en poids fort, quel est le modulo et le type du circuit ainsi réalisé ?

3. Compléter le chronogramme des sorties Q_0 et Q_1 du circuit suivant <u>jusqu'à retrouver l'état initial</u>. (On admettra que $Q_0=Q_1=0$ à t=0)

Si on lit les sorties Q_1 et Q_0 comme un nombre avec Q_0 en poids faible, quel est le modulo et le type du circuit ainsi réalisé ?

4. Compléter le chronogramme des sorties Q_0 , Q_1 , Q_2 et Q_3 du circuit suivant.(On admettra que $Q_i=0$ à t=0, $i\in [\![0,3]\!]$). Attention au signal d'horloge de chaque bascule !

Si on lit les sorties Q_3 , Q_2 , Q_1 et Q_0 comme un nombre avec Q_0 en poids faible et Q_3 en poids fort, quel est le modulo et le type du circuit ainsi réalisé ?

