Networking basics

ID2010 Fredrik Kilander OSI

TCP/IP

Data types

Application

Presentation

Application

Authentication Session mgmt

Session

Reliable end-to-end data transfer

Transport

Routing

Network

Reliable point-to-point data transfer

Data link

Point-to-point bit transfer

Physical

Transport

Internet

Host-to-network

Shared medium access

OSI

TCP/IP

Application

Application

Data types

Presentation

Middleware

Authentication Session mgmt

data transfer

data transfer

Point-to-point

bit transfer

Routing

Reliable end-to-end

Reliable point-to-point

Session

Transport

Network

Data link

Physical

Transport

Internet

Host-to-network

Shared medium access

Communication

Layers, interfaces, and protocols in the OSI (Open Systems Interconnection) reference model.

• Divided into 7 layers each deals with one specific aspects of the communication

reliable	Transport	
unreliable	Network	Packets are lost, duplicated, reordered
reliable	Data link	
unreliable	Physical	Frames are corrupted by physical phenomena

Reliable data transmission

- Divide data into packets
- Add error-detection/correction to payload
- Add sequence numbers
- Add a timer for each packet sent
- Keep resending packets until they are ack'd.
- Acknowledge received packets
- Reassemble data by sequence numbers

Error-correcting codes 1 bit error

Block transmission

0123456789abcde**fghij**klmnopqrstuvwxyzABCD Bit positions

One 5-bit burst error

Arrange bits in a rectangular block by rows

Send bits by columns

Transmisson sequence

08qow19hpx2aiqy3bjrz4cksA5dltB6emuC7fnvD One 5-bit burst error

012**3**456789a**b**cdefghi**j**klmnopq**r**stuvwxy**z**ABCD 5 one-bit errors

Point-to-point connection

Common media, no longer point-to-point

Coaxial cable or radio channel (wave propagation medium)

MAC layer negotiates access to shared medium

Ethernet history – thick cable

Ethernet history – thick cable

Ethernet history – thinwire

Ethernet history – CAT6/WiFi

Stations share the broadcast medium

Only one station may send - all listen

Transmissions are addressed

- to an interface (unicast)
- or to a group (multicast)
- or to all (broadcast)

Stations share the broadcast medium

The MAC-address depends on the medium 00:1F:3B:BF:CA:35

Ethernet BlueTooth

48 bits vv:vv:vv:ss:ss:ss

48 bits NAP(16)UAP(8)LAP(24)

NAP:Non-significant address portion

LAP:Lower address portion UAP:Upper address portion

Stations share the broadcast medium

Simultaneous broadcasts leads to collisions

Stations share the broadcast medium Simultaneous broadcasts leads to collisions

Stations share the broadcast medium Simultaneous broadcasts leads to collisions

Listen while transmitting – detect collision Wait random time and try again Ca 30% max throughput

Wi-Fi and 802.11*

- The medium consists of shared radio channels
- Sending saturates the receiver
- Collision Avoidance instead of Collision Detect
- The hidden station problem $A \longleftrightarrow B \longleftrightarrow C$
- RTS/CTS Request To Send, Clear To Send

Data network: routers and links

Network/Internet layer – routing of packets

Each router selects the best output line for the packet

Transport layer – virtual connection

Endpoints simulate a continuous stream of bytes

The End