Raster Conversion Algorithms

DDA line algorithm

Bresenham line algorithm

Pixel Addressing in Raster Graphics

Raster conversion Algorithms: Requirements

- visual accuracy
- spatial accuracy
- speed

Line – Raster Representation

Basis for Line Drawing Algorithms

- The Cartesian slope-intercept for a straight line is
 - - m= Slope of the line
 - b= y intercept
- The slope of the line is defined as

$$\mathbf{m} = (\mathbf{y}_2 \cdot \mathbf{y}_1)/(\mathbf{x}_2 \cdot \mathbf{x}_1) \longrightarrow 2$$

The y intercept b is defined as

$$b=y1-m \cdot x1-\cdots \rightarrow 3$$

- Algorithms for displaying straight lines are based on the above 3 eqns.
- For any given x interval x along a line, we compute the y-interval y.

- Similarly we can obtain x.
 - $\mathbf{x} = \mathbf{y/m} \cdots \rightarrow 5$
- The eqns 4 and 5 form the basis for determining the deflection voltage in analog devices.

Cases to handle

- Case 1:**Slope** |**m**| < **1**
 - x=small horizontal deflection voltage
 - \Box y is calculated proportional to slope.(y =m. x)
- Case 2:**Slope** |**m**| >**1**
 - y=small vertical deflection voltage
 - \Box x is calculated proportional to slope.(x = y/m)
- Case 3:Slope m = 1
 - \Box x= y (Both the voltages are same)

Line drawing – DDA algorithm

- (DDA) is a scan-conversion line algorithm based on calculating either Δy or Δx .
- we have many cases based on sign of the slope, value of the slope, and the direction of drawing.
 - Slope sign: positive or negative.
 - □ Slope value: <= 1 or >1.
 - Direction: (left right) or (right left)

- Positive slope and left to right:
- If slope <= 1 then:</p>

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{1}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \mathbf{m}$$

■ If slope > 1 then:

$$\mathbf{x}_{\mathbf{k}+1} = \mathbf{x}_{\mathbf{k}} + 1/\mathbf{m}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \mathbf{1}$$

□Positive slope and right to left:

□If slope <= 1 then:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - 1$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k - \mathbf{m}$$

 \Box If slope > 1 then:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 1/\mathbf{m}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k - \mathbf{1}$$

■Negative slope and left to right:

$$\Box$$
If $|m| <= 1$ then:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{1}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k - \mathbf{m}$$

$$\Box$$
If $|m| > 1$ then:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + 1/\mathbf{m}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k - \mathbf{1}$$

■Negative slope and right to left:

$$\Box$$
If $|m| <= 1$ then:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 1$$

$$\mathbf{y}_{\mathbf{k}+1} = \mathbf{y}_{\mathbf{k}} + \mathbf{m}$$

$$\Box$$
If $|m| > 1$ then:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - 1/\mathbf{m}$$

$$\mathbf{y}_{k+1} = \mathbf{y}_k + \mathbf{1}$$

Digital Differential Algorithm

- Input line endpoints, (x_1,y_1) and (x_2, y_2)
- set pixel at position (x_1,y_1)
- calculate slope $m=(y_2.y_1)/(x_2.x_1)$
- For +ve slope (left to right)
 - □ Case |m| 1: Sample at unit x intervals and compute each successive y.
 - \Box Repeat the following steps until (x_2, y_2) is reached:

$$\mathbf{y_{k+1}} = \mathbf{y_k} + \mathbf{m} \text{ where}(\mathbf{m} = \Delta \mathbf{y} / \Delta \mathbf{x})$$

 $\mathbf{x_{k+1}} = \mathbf{x_k} + \mathbf{1}$
set pixel at position $(\mathbf{x_{k+1}}, \mathbf{Round}(\mathbf{y_{k+1}}))$

- □ Case $|\mathbf{m}| > 1$: Sample at unit y intervals and compute each successive x.
- \Box Repeat the following steps until (x_2, y_2) is reached:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + 1/\mathbf{m}$$

 $\mathbf{y}_{k+1} = \mathbf{y}_k + 1$
set pixel at position (**Round**(\mathbf{x}_{k+1}), \mathbf{y}_{k+1})

Digital Differential Algorithm

- For +ve slope (right endpoint to left endpoint)
 - □ Case |m| 1: Sample at unit x intervals and compute each successive y.
 - \Box Repeat the following steps until (x_2, y_2) is reached:

$$\mathbf{y_{k+1}} = \mathbf{y_k} - \mathbf{m}$$
 where $(\mathbf{m} = \Delta \mathbf{y} / \Delta \mathbf{x})$
 $\mathbf{x_{k+1}} = \mathbf{x_k} - \mathbf{1}$
set pixel at position $(\mathbf{x_{k-1}}, \text{Round}(\mathbf{y_{k-1}}))$

- \Box Case |m|>1: Sample at unit y intervals and compute each successive x.
- \Box Repeat the following steps until (x_2, y_2) is reached:

$$\mathbf{x_{k+1}} = \mathbf{x_k}$$
 .1/m
$$\mathbf{y_{k+1}} = \mathbf{y_k} - \mathbf{1}$$
 set pixel at position (Round($\mathbf{x_{k-1}}$), $\mathbf{y_{k-1}}$)

Scan Conversion Process

DDA (Digital Differential Algorithm)

DDA (Digital Differential Algorithm)

For m > 1, If we sample along x

DDA (Digital Differential Algorithm)

For m > 1, we sample along y

- y=small horizontal deflection voltage
 (y=1)
- x proportional to slope m (x=y/m)

DDA Line algorithm - Procedure

- Procedure lineDDA(xa,xb,ya,yb:integer);
- Var
 - dx,dy,steps,k: integer;
 - xIncrement, yIncrement, x , y: real;
 - Begin
 - dx := xb xa;
 - dy:=yb-ya;
 - if abs(dx) > abs(dy) then steps:=abs(dx)
 - else steps:=abs(dy)
 - xIncrement :=dx/steps;
 - yIncrement :=dy/steps;
 - x:=xa;
 - y:=ya;

DDA Line algorithm – Procedure contd.

```
    setPixel(round(x),round(y),1);
    for k:=1 to steps do
    Begin

            x:=x+xIncrement;
            y:=y+yIncrement;
            setPixel(round(x), round(y),1);
            End

    End {lineDDA}
```

Example

- **Consider endpoints:** P1 (0,0) P2 (7,3)
- m = (3 0)/(7 0)= 0.429 (m<1)(+ve slope)
- dx = 1
- $x_0 = 0, y_0 = 0$
- $x_1 = x_0 + 1 = 1$
- $y_1 = y_0 + 0.429$ = 0.429 0
- $x_1 = 1, y_1 = 0.429$
- $x_2 = x_1 + 1 = 2$
- $y_2 = y_1 + 0.429$ = 0.859 1

Example contd.

$$x_2 = 2, y_2 = 0.858$$

$$x_3 = x_2 + 1 = 3$$

$$y_3 = y_2 + 0.429$$

= 1.287 1

$$x_3 = 3, y_3 = 1.287$$

$$x_4 = x_3 + 1 = 4$$

$$y_4 = y_3 + 0.429$$

= 1.716 2

$$x_4 = 4, y_4 = 2$$

$$x_5 = x_4 + 1 = 5$$

$$y_5 = y_4 + 0.429$$

= 2.145 2

Example contd.

$$x_5 = 5, y_5 = 2$$

$$x_6 = x_5 + 1 = 6$$

$$y_6 = y_5 + 0.429$$
$$= 2.574 3$$

$$x_6 = 6, y_6 = 3$$

$$x_7 = x_6 + 1 = 7$$

$$y_7 = y_6 + 0.429$$

= 3.003 3

$$x_7 = 7, y_7 = 3$$

Disadvantages of DDA algorithm

- DDA works with floating point arithmetic
- Rounding to integers necessary

Bresenham's Line Algorithm

- □An accurate and efficient raster line generating-algorithms developed by Bresenham.
- □Scan converts lines using only incremental integer calculations.

Figure 3-11

Vertical distances between pixel positions and the line y coordinate at sampling position $x_k + 1$.

Bresenham's line algorithm (slope ≤ 1)

- Input line endpoints, (x_0,y_0) and (x_n, y_n)
- calculate $Ux = x_n x_0$ and $Uy = y_n y_0$
- Assuming the pixel (x_k, y_k) is to displayed
 - Determine the positions whether at (x_k+1, y_k) and (x_k+1, y_k+1)
- From x_k+1 we label vertical pixel separations from line as d1 and d2
- The y coordinate at pixel column position x_k+1 is calculated as
 - $y=m(x_k+1)+b.$
 - □ Then
 - $\mathbf{d1} = \mathbf{y} \mathbf{y}_{\mathbf{k}} = \mathbf{m}(\mathbf{x}_{\mathbf{k}} + \mathbf{1}) + \mathbf{b} \mathbf{y}_{\mathbf{k}}$

and

$$d2=y_k+1-y=y_k+1-m(x_k+1)-b.$$

Bresenham's line algorithm (slope ≤ 1)

- $d1-d2=2 \mathbf{m}(\mathbf{x_k}+1)-2\mathbf{y_k}+2\mathbf{b}-1$
- Decision parameter p_k for the kth step in line algorithm obtained by rearranging the above equations.
- Substitute m = y/x, where y, x are horizontal and vertical seperations.
 - $P_{k} = x(d1-d2) = 2$ y. $x_k 2$ x. $y_k + c$
 - \Box C is constant has the value 2 y+ x(2b-1)
 - \Box When P_k is negative plot the lower pixel else plot the upper pixel.
- Coordinate changes along the line occur in unit steps in x and y directions.
- The values of successive decision parameter can be evaluated from

- Subtracting 1 & 2 we get
 - $P_{k+1} = P_k + 2$ y- 2 x (y_{k+1}, y_k) (since $x_{k+1} = x_k + 1$)
 - \Box The term (y_{k+1}, y_k) is either 1 or 0 depending on the sign of parameter p_k
 - □ The recursive calculation of decision parameters is performed at each integer x position.
- The parameter p_0 is evaluated from eq1 p_0 =2 **y x**

Bresenham's Line Algorithm

- Input line endpoints, (x_0,y_0) and (x_n, y_n)
- Load (x_0,y_0) into the frame buffer that is first point
- Calculate the constants Δx , Δy , $2\Delta y$ and $2\Delta y$ $2\Delta x$
- calculate parameter $p_0 = 2 \Delta y \Delta x$
- Set pixel at position (x_0,y_0)
- repeat the following steps until (x_n, y_n) is reached:
- $if p_k < 0$
- set the next pixel at position $(x_k + 1, y_k)$
- calculate new $p_{k+1} = p_k + 2 \Delta y$
- $\bullet \qquad \text{if } p_k = 0$
- set the next pixel at position $(x_k + 1, y_k + 1)$
- calculate new $pk_{+1} = p_k + 2(\Delta y \Delta x)$
- Repeat last step Δx times.

Advantages of Bresenham's Line Algorithm

- Bresenham's algorithm uses integer arithmetic
- Constants need to be computed only once
- Bresenham's algorithm generally faster than DDA

Bresenham's line drawing Procedure

- procedure lineBres (xa, ya, xb, yb : integer)
- var
 - \Box dx, dy, x, y, xEnd, p: integer;
- begin
 - \Box dx :=abs(xa-xb);
 - \Box dy :=abs(ya-yb);
 - p:=2*dy-dx;
 - \Box if xa > xb then
 - begin
 - \Box x:= xb;
 - \Box y:= yb;
 - \Box xEnd := xa;
 - else
 - begin
 - x:=xa;
 - y:=ya;

Contd...

```
xEnd := xb;
end;
setPixel (x,y,1);
while x < xEnd do
begin
\Box x:=x+1;
 \Box if p < 0 then p := p+2 * dy
 else
    begin
       y := y+1;
    p:=p+2*(dy-dx)
    end;
    setPixel (x,y,1);
    end
    end; {lineBres}
```

Bresenham's Line Algorithm (Example)

- Note: Bresenham's algorithm is used when slope is <= 1.
- using Bresenham's Line-Drawing Algorithm, Digitize the line with endpoints (20,10) and (30,18).
- $\Delta y = 18 10 = 8$
- $\Delta x = 30 20 = 10$
- plot the first point (x0, y0) = (20, 10)
- $p0 = 2 * \Delta y \Delta x = 2 * 8 10 = 6$, so the next point is (21, 11)

Example (cont.)

K	P_k	(x_{k+1}, y_{k+1})	K	P _k	(x_{k+1}, y_{k+1})
0	6	(21,11)	5	6	(26,15)
1	2	(22,12)	6	2	(27,16)
2	-2	(23,12)	7	-2	(28,16)
3	14	(24,13)	8	14	(29,17)
4	10	(25,14)	9	10	(30,18)

Example (cont.)

Thank you