Lecture #17 11/10/21

Today: Ch5 on DCM (today only)) efficiently over next few days

Look cheed: Inductor Design

- Dis continuous Conduction Mode (DCM) - Ch5

Buck example

All analysis so far is for "Continuous Conduction Mode" (CCM)

@ Boundary, we see

Kno- N. # L 25:

-> 100 € conf: 1

$$=>$$
 $V_3-V=L\frac{2\Delta i}{DT_5}$

solve for Az

$$\Delta \dot{i} = \frac{(V_3 - V)DT_5}{2L}$$
 (1)

Rewall, can use V-sec balance to derive
$$M = \frac{V}{V_2} = D$$

 $V = DV_2$ (2)

(2) -> (1) gives

$$\Delta i = \frac{(V_2 - DV_2)DT_3}{2L}$$

$$= \frac{V_2(1-D)DT_3}{2L}$$
 (3)

Look @ load
$$\frac{1}{L} = \frac{V}{R} \qquad \text{due to charge bolance}$$

$$= \frac{DV_0}{R} \qquad (4)$$

DCW .cons :t

Obtain DCM boundary equ:

DCM occurs:
$$\frac{1}{R} \angle \frac{(1-D)T_s}{2L}$$
 (6) for buck call Renit when $\frac{1}{Renit} = \frac{(1-D)T_s}{2L}$

Ly $Renit = \frac{2L}{D'T_s}$ (7)

Look closer @ (6) & rearrange it to get

- Crossing DCM boundary

Now Get 3 regions / ckts

-> in SRA for in no longer is true

N & V V SRA still okay for cap.

When does DCM happen?

-- "light load" -> large R, less power

-- inductor intentionally designed for large ripple

-- can get smaller/cheeper inductor

X Note D+D2+D3=1 Will have 2 charge balance egus

· Charge balance on load gide using KCL andysis

it

it

it

V

R

$$i_L(t) = i_C(t) + N/R$$
 $\int avy both sides$

$$\angle i_{\perp} \rangle = \angle i_{\parallel} \rangle + \frac{V}{R}$$

The most be 2 eroble 5.5.

$$=> \boxed{ I_{\mu} = \frac{V}{R} } \qquad ((0) \neq 0)$$

equal

· Compute <ic> using integral of in waveform

$$= \frac{1}{\sqrt{s}} \frac{1}{2} i_{pk} (D+D_2) \sqrt{s}$$

$$= \overline{I}_L$$

Last step: Do elselon to eliminate D_2 ... then can get V's \$ I's

Solve it. (9) gives

$$0 = D(V_{0} - V) + D_{2}(-V)$$

$$\Rightarrow D_{2} = D \frac{V_{2} - V}{V}$$
(12)

Equate (10)
$$\frac{1}{4}$$
 (1)

$$\frac{V}{R} = \frac{1}{2} \frac{DT_s}{U} (V_g - V) (D + D_z)$$

$$\Delta_{1L} \text{ epin when } \alpha_1 \text{ on}$$

$$= \frac{1}{2} \frac{DT_s}{L} (V_g - V) (D + D \frac{V_g - V}{V})$$

$$= \frac{1}{2} \frac{D^2 T_s}{L} (V_g - V) (\frac{V_g - V}{V})$$

$$= \frac{1}{2} \frac{D^2 T_s}{L} (V_g - V) (\frac{V_g}{V})$$

× by v

get quadratic form

$$\left(\frac{V}{V_g}\right)^2 + \frac{D^2}{k} \left(\frac{V}{V_g}\right) - \frac{D^2}{k} = 0$$

$$\text{Apply quadratic earn to}$$

$$\text{set} \quad M = \frac{V}{V_g}$$

Table 5.2. Summary of CCM-DCM characteristics for the buck, boost, and buck-boost converters

Converter	$K_{crit}(D)$	$DCM\ M(D,K)$	$DCM D_2(D,K)$	CCM M(D
Buck	(1-D)	$\frac{2}{1 + \sqrt{1 + 4K/D^2}}$	$\frac{K}{D}M(D,K)$	D
Boost	$D(1-D)^2$	$\frac{1 + \sqrt{1 + 4D^2 / K}}{2}$	$\frac{K}{D}M(D,K)$	$\frac{1}{1-D}$
Buck-boost	$(1 - D)^2$	$-\frac{D}{\sqrt{K_1}}$	\sqrt{K}	$-\frac{D}{1-D}$

with $K = 2L / RT_s$. DCM occurs for $K < K_{crit}$.

- DCM buck and boost characteristics are asymptotic to *M* = 1 and to the DCM buck-boost characteristic
- DCM buck-boost characteristic is linear
- CCM and DCM characteristics intersect at mode boundary. Actual *M* follows characteristic having larger magnitude
- DCM boost characteristic is nearly linear

