KDS 47 10 70 : 2019

터널

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개 정 연혁은 다음과 같다.

건설기준 주요내용		제정 또는 개정 (년.월)
철도설계기준(철도교편)	• 철도설계기준(철도교편)을 제정	제정 (1999.7)
철도설계기준(철도교편)	• 국제흐름에 부응하기 위해 단위체계를 국제단위 계인 SI단위로 통일하여 반영, 미비사항을 보완하여 안전한 구조물이 되도록 함	개정 (2004.12)
철도설계기준(노반편)	• 철도노반공사의 총괄적인 시행기준과 총 6편으로 구성되어 설계에 필요한 일반적인 기준을 가급적 쉽게 이해하도록 서술	제정 (2001.12)
철도설계기준(노반편)	• 산악터널의 해석과 터널지보재, 콘크리트라이닝, 계측, 배수 및 방수, 환기, 조명, 방재설비 등을 다 루었으며 특히 TBM 터널과 내진설계 등을 언급	개정 (2004.12)
철도설계기준(노반편)	• 하·해저터널의 지반 조사시 고려사항을 신설하고, 고강도 숏크리트 설계기준 추가 • 인버트 형상 및 콘크리트라이닝 설치에 관한 규정을 상세화 • 철도터널 안정성해석 방법을 수치해석적 방법, 이론해를 이용하는 방법, 경험적 방법 등으로 분류 하여 각 방법에 대해서 기준을 제시 • Open과 Shield의 영역구분이 어려워지는 여건과 터널설계기준(2007)을 참조하여 통합 • 환기조명시설과 분리하였으며"철도시설안전기준 에 관한 규칙" 및 "철도시설안전 세부기준"을 따르 도록 하고, 터널특성에 맞게 내용을 신규 작성	개정 (2011.5)

건설기준	주요내용	제정 또는 개정 (년.월)
철도설계기준(노반편)	• 신기술·신공법 기준 마련 등 기술적 환경변화에 대응하기 위하여 관련 법규 및 규정의 폐지, 신설 및 개정내용 과 설계기준 개정 내용 반영, 기술적 환경변화 대응을 위한 기준을 마련	개정 (2011.12)
철도설계기준(노반편)	지반조사의 한 종류인 "시공중 조사"부분 삭제 지역, 지반 특성별 시추공 배치간격 및 수량 변 동이 가능하도록 조치 주파수 대역에 따른 기준치 설정하였고, 내공변 위 뿐만 아니라 천단침하 까지도 상대변위 측정 명시	개정 (2013.11)
철도설계기준(노반편)	• '철도시설 안전기준에 관한 규칙' 및 '철도시설 안전세부기준'폐지되고'철도시설의 기술기준'으로 제 정으로 관련기준 명칭을 수정 • 지반함몰 예방을 위한 조사를 신설하고, 특정제 품명(THP관) 배제하였으며, 지반함몰 예방을 위한 개선안을 제시 • 철도설계기준(시스템편, 2013)의 조명설비와 통일 • 콘크리트 구조설계기준에서 콘크리트구조기준으 로 명칭을 수정	개정 (2015.12)
KDS 47 10 70 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)
KDS 47 10 70 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항1
	1.1 목적
	1.2 적용 범위1
	1.3 참고 기준1
	1.4 용어의 정의1
	1.5 기호의 정의1
2.	조사 및 계획1
	2.1 조사
	2.2 계획
3.	재료
4.	설계
	4.1 설계의 기본방향
	4.2 터널라이닝
	4.3 단면확폭부 및 접속부
	4.4 접속부 설계
	4.5 연직갱 및 경사갱
	4.6 TBM터널
	4.7 환기설비
	4.8 조명설비
	4.9 방재설비
	4.10 개착터널

터널 KDS 47 10 70 : 2019

1. 일반사항

1.1 목적

(1) 이 기준은 철도분야 터널 구조물의 설계, 시공 및 유지관리 단계에서 필요한 사항을 기술하여 구조물의 안정성, 사용성 및 내구성을 확보하는 것을 목적으로 한다.

1.2 적용범위

- (1) 이 터널장은 지반을 개착하지 않고 굴착(Mined)하여 시공하는 철도터널공사의 계획, 설계에 대한 기준이다.
- (2) 이 설계기준에서 규정하지 않는 사항은 KDS 27 00 00을 따른다.

1.3 참고 기준

1.3.1 관계법령

- 철도의 건설 및 철도시설 유지관리에 관한 법률과 그의 시행령, 시행규칙(국토교통부)
- 철도사업법과 그의 시행령, 시행규칙(국토교통부)
- 철도안전법과 그의 시행령, 시행규칙(국토교통부)
- 시설물 안전관리에 관한 특별법

1.3.2 참고 기준

철도시설의 기술기준

1.4 용어의 정의

내용 없음

1.5 기호의 정의

내용 없음

2. 조사 및 계획

2.1 조사

2.1.1 조사일반

(1) 조사는 터널의 노선선정, 설계, 시공 및 완공 후의 유지관리에 중대한 영향을 미치는 사항으로 필요로 하는 기초자료를 얻을 수 있도록 실시해야 하며, 상세한 내용은 KDS 47 10 15(5) 및 KDS 11 10 10을 따른다.

2.1.2 환경조사

(1) 환경·입지조건조사는 터널건설에 영향을 미치는 관련 환경, 법규 및 기타 사항에 대하여 조사하는 것으로서 조사내용, 방법, 범위 등에 대해서는 조사목적, 단계, 철도의 특성 등을 고려하여 계획해야 하며, 상세한 내용은 KDS 47 10 15(5)를 따른다.

2.1.3 지장물조사

(1) 지장물조사 시에는 다음 사항을 고려해야 하며, 상세한 내용은 KDS 47 10 15(5)를 따른다.

2.1.4 공동 또는 지반함몰 조사

- (1) 터널 계획 시 지하공동 및 지반함몰의 유무, 규모, 상태, 발생원인 등을 확인하기 위한 조사를 실시하여야 한다.
- (2) 터널 시공 시 용출수 및 지하수위 측정 등을 통해 주변 지하수 변동을 파악하여야 한다.
- (3) 터널 시공에 의해 영향을 받을 수 있는 범위를 선정하고 이 범위에 포함되는 근접구조물 및 지하매설물 등에 대하여 각 시설물의 관리 주체 및 관리대장, 노후도, 장래확장 계획 여부 등을 조사하고 누수 등으로 인하여 지반함몰이 예상되는 경우에는 상세조사를 시행하여 설계시 기초자료로 활용한다.

2.2 계획

- (1) 종단선형 계획
 - ① 터널의 기울기는 자연배수가 가능하도록 3‰ 이상으로 계획하고, 설계속도에 따라 철도 건설규칙에 규정된 설계속도에서 정하는 기울기 이하가 되도록 계획해야 한다.
- (2) 내공단면 계획
 - ① 내공단면은 터널목적 및 기능에 따른 건축한계(시설한계)와 평면선형이 곡선인 구간은 캔트에 의한 차량경사량과 슬랙량을 더하여 확대하고 측량(궤도)중심으로부터 구축중심 이격거리를 설정하고, 터널 내 신호, 통신 등 설비의 시설공간, 유지관리에 필요한 여유폭, 보도 등을 고려하여 정하며 시공 중 터널변형 등 시공오차에 대한 여유를 예상하여 결정해야 한다.
 - ② 건축한계(시설한계)는 KDS 47 10 15 (4.3)를 따른다.
 - ④ 정거장 전후구간 또는 지하터널식 정거장일 경우의 터널은 단선, 복선 또는 대단면 터널을 조합하여 기능과 목적에 부합하도록 종합적인 검토를 하여 안정성, 시공성, 경제성 및 유지관리성 등을 고려하여 계획해야 한다.
 - ⑧ 내공단면 계획 시에는 열차의 고속주행에 의하여 터널 내에 발생되는 공기저항 및 공기압 변화와 차량 밀폐도, 승차감 및 미기압파의 영향 등을 고려해야 한다.
- (3) 터널길이에 따른 단면계획
 - ① 본선터널의 길이가 15 km 이상인 터널에서 방재 요구조건이 미흡하다고 판단되는 경우에는 해당 터널특성에 적합한 별도의 대책을 수립해야 한다.
 - ② 장대터널과 초장대터널에서는 열차가 비교적 오랜 시간 터널 내부에서 운행되므로 이에

따른 열차 내 승객의 쾌적성, 안전성, 비상시 대피 및 터널의 유지보수 등을 검토하고 취약한 부분의 성능이 개선될 수 있도록 관련 구조물이나 설비를 설계에 반영해야 한다.

(4) 환기계획

KDS 27 60 00 (4.1.3)을 따른다.

(5) 방재시설

KDS 27 60 00 (4.3.3)을 따른다.

3. 재료

내용 없음

4. 설계

4.1 설계의 기본방향

(1) 터널설계는 터널단면에 따라 단선터널, 복선터널, 대단면터널 등으로 구분하여 전철화를 고려하여 설계해야 한다.

4.2 터널라이닝

4.2.1 터널라이닝의 형상 및 두께

(1) 콘크리트라이닝의 두께는 소단면 철도터널을 기준으로 300 mm를 표준으로 하되 단면크기, 형상 및 지반조건 등 현장여건을 감안하여 증감할 수 있다.

4.3 단면확폭부 및 접속부

4.3.1 터널 단면확폭부 설계방안

- (1) 단선터널과 복선터널 기본단면에서 대피소, 신호기, 전철기, 변압기, 터널내 교행역 설비 등 시설을 계획해야 할 경우 단면이 크고 복잡하며 특수한 형상이 되기 때문에 그 기능, 목적 및 지반조건을 고려하여 다음 경우의 터널과 주변지반의 안정을 확보할 수 있도록 설계해야 한 다
- (2) 터널 단면을 확폭해야 하는 경우는 다음과 같다.
 - ① 단선터널 내 교행역이나 대피역 등의 시설로 확대 확폭하는 구간
 - ② 터널 내 분기기 설치로 확폭하는 구간
 - ③ 터널이 평면선형상 곡선부에 위치하여 건축한계(시설한계) 폭을 확폭하는 경우
 - ④ 터널 내 환기설비 설치로 확폭하는 구간
 - ⑤ 터널 내 본선이 단선병렬에서 복선으로 또는 복선에서 단선병렬로 선로간격이 변화되는 구가
 - ⑥ 대피소, 신호기, 전철기, 변압기 등 시설의 설치로 단면확폭이 필요한 구간

4.4 접속부 설계

(1) 접속부는 교행역, 대피역 및 분기기 설치개소 등이 해당된다.

- (2) 교행 대피역이나 분기기 설치개소는 터널 단면들이 여러 형태이므로 이에 대한 안정성을 검토하여 설계해야 한다.
- (3) 교행 대피역이나 분기기의 구조 및 형상은 안정성이 확보되도록 계획해야 하며, 부득이하게 지반조건이 불량한 위치에 계획된 경우에는 별도의 상세한 지반조사를 시행해야 하고, 필요 시 3차원 해석 등을 통해 안정성을 검토해야 한다.

4.5 연직갱 및 경사갱

4.5.1 설계일반

(1) 차량의 터널 진입 시 발생하는 공기압 증가에 따른 이명감 및 공기 저항 증가 등을 해소하기 위하여 연직갱 또는 경사갱을 설계할 경우에는 사전에 필요로 하는 조사 및 검토를 실시해야 한다.

4.5.2 연직갱 설계

- (1) 연직갱의 단면을 결정할 때에는 다음 사항을 고려해야 한다.
 - ① 공기압의 저감을 위하여 설계하는 연직갱의 단면은 본선 터널의 단면, 열차속도 등 관련사항을 고려하여 결정해야 한다.
 - ② 환기용 연직갱은 본선 터널 내의 소요 환기량을 확보할 수 있는 단면적 이상이어야 하며, 연직갱의 단면은 연직갱 내 풍속이 20 m/sec 이하가 되도록 결정해야 한다.

4.6 TBM 터널

4.6.1 계획

- (1) 선형
 - ① TBM 터널의 경우 궤도가 중요시되므로 TBM 굴진오차를 감안하여 선로중심 확인측량을 계획해야 한다.
- (2) 종단기울기
 - ① 종단기울기는 터널 정거장처럼 부득이한 경우를 제외하고는 TBM 장비의 굴진효율 향상과 시공 중 및 운영 중 용출수를 자연유하시킬 수 있도록 3% 이상의 오르막을 원칙으로 하되 현장조건에 따라 조정할 수 있다. 또한 작업구 조건이나 지장물의 제약으로 종단기울기가 20%를 초과하는 경우에는 배수, TBM의 추진, 시공 중의 버력 및 재료의 운반 등 작업능률 저하와 안전을 고려해야 한다.
- (3) 내공단면
 - ① TBM 터널의 내공단면 크기와 형태를 계획할 때에는 철도건설규칙 건축한계(시설한계)를 고려하여 계획해야 한다.

- ② TBM 터널의 내공단면 크기는 단선터널과 복선터널의 경우, 건축한계(시설한계), 유지보수 관리용 통로, 환기설비, 전기 및 신호, 통신 등의 케이블과 변압기설비, 배수설비, 재해대책, 향후 전철화계획 등을 고려하여 계획해야 한다.
- ③ 곡선부에서의 내공단면은 철도건설규칙 건축한계(시설한계) 규정내용을 고려하여 계획 해야 한다.
- ④ TBM 터널 내공단면 형태는 원형이므로 철도 단선터널이나 복선터널에서 인버트부의 여유공간에 배수로, 대피시설 등 부대설비를 계획할 수 있다.

4.6.2 세그먼트 설계

- (1) 세그먼트라이닝의 구조해석
 - ① 세그먼트라이닝에 걸리는 하중 산정 시에는 추진 잭의 추력, 연직 및 수평지반압, 수압, 자중, 상재하중의 영향, 지반반력, 내부하중, 시공 시 하중, 병설터널의 영향, 지반침하의 영향 등을 고려해야 하며 특히 철도 운행진동(반복진동)에 견딜 수 있도록 설계해야 한다.

4.6.3 방수설계

- (1) 방수방법의 선정
 - ① 세그먼트라이닝은 지하수압에 견딜 수 있고 방수가 될 수 있도록 반드시 세그먼트 사이의 이음부, 뒤채움 주입구 등에 방수설계를 해야 한다.
 - ② 방수방법의 선정 시에는 쉴드TBM 터널의 사용목적과 작업환경에 적합한 방법을 선정해야 한다.
 - ③ 방수는 실(Seal), 코킹, 볼트 등이 있으며, 사용목적과 현장여건에 부합하도록 한 가지 또는 여러 가지의 방법을 조합하여 설계할 수 있다.
- (2) 방수재료 및 특성
 - ① 실(Seal)재는 합성고무계, 복합고무계, 수팽창 고무계 등이 있으며, 현장조건을 고려하여 수밀성, 내구성, 압착성, 복원성, 시공성 등이 우수한 재료를 선택하여 설계해야 한다.
 - ② 코킹재는 에폭시, 치오클계, 요소수지계 등의 재료가 있으며, 현장조건을 고려하여 적합한 재료를 설계해야 한다.

4.7 환기 설비

4.7.1 설계일반

- (1) 터널을 통과하는 차량 열차에 의해서 발생하는 오염물질 및 발생열을 처리하여 공기질 및 열환경을 유지할 수 있도록 환기설비를 계획해야 한다.
- (2) 환기설비는 터널제원과 통과열차의 특성을 고려하여 소요환기량을 검토하고 자연환기가 불가능한 경우에 설치해야 한다.
- (3) 환기설비는 터널화재 시 제연 또는 배연설비를 겸할 수 있으며, 환기설비계획 시에는 이를 고려하여 계획해야 한다.

(4) 이 기준에 기재되지 않은 사항은 KDS 27 60 00에 따라 설계해야 한다.

4.7.2 환기설계

KDS 27 60 00 (4.1.3)을 따른다.

4.8 조명 설비

KDS 27 60 00 (4.2.3)을 따른다.

4.9 방재 설비

KDS 27 60 00 (4.3.3)을 따른다.

4.10 개착터널

4.10.1 설계일반

- (1) 개착터널은 갱구부와 갱문사이 및 터널중간 계곡부의 개착부분이나 터널과 터널 사이의 거리가 가까워 하나의 터널로 연결하기 위해 지반을 굴착하고 구조물을 설치한 후 다시 되메우기 하는 터널을 말한다.
- (2) 설계 시 지형, 지질조건, 지하수 조건 및 기상 등의 자연조건과 민가, 구조물의 유무 등의 사회 적 조건, 경사의 안정, 편토압, 기상재해의 가능성 및 주변경관과의 조화 등을 고려해야 한다.
- (3) 개착터널부는 특별한 경우를 제외하고는 콘크리트 지중구조물 설계에 준하여 설계해야 한다.(KDS 47 10 40 지하구조물 참조)
- (4) 개착터널의 종류는 크게 설치위치, 사용 용도 및 구조물 형태에 따라 다음과 같이 구별할 수 있다.
 - ① 설치위치에 따른 분류 가. 돌출형 갱문에서의 개착터널 나. 면벽형 갱문에서의 개착터널 다. 계곡부 통과시 개착터널
 - ② 사용용도에 따른 분류 가. 피암용 개착터널 나. 환경생태용 개착터널
 - ③ 구조물 형태에 따른 분류 가. 마제형 개착터널 나. 박스 컬버트형 개착터널

터널 KDS 47 10 70 : 2019

표4.10-1.개착터널의분류

- (5) 돌출형 갱문에서의 개착터널은 터널본체와 동일 이상의 내공단면을 갖는 형상으로 터널 갱구부에 연속해서 만들어지며, 완성 후에 성토에 의한 상재하중, 토압, 기타하중(적설하중 등)을 고려해서 단면력, 지반의 지지력에 대하여 설계해야 한다.
- (6) 면벽형 갱문에서의 개착터널은 구조상 터널 본체에서 독립하여 외력에 저항하는 입체적 형 상이므로 갱문 뒷면의 되메우기 흙에 대한 하중과 주동토압이 작용했을 때 구조적으로 안정 해야 한다.
- (7) 계곡부 통과시 터널의 상부 토피고가 낮으면 터널 굴착에 따른 붕괴의 우려가 있어 누수가 발생될 소지가 있으므로 누수방지 대책과 개착터널 상부의 세굴방지 대책을 수립해야 한다.
- (8) 피암용 개착터널은 낙석 또는 비탈면 급경사에 의해 도로, 택지, 철도 등의 이격부에 여유가 없거나 혹은 낙석의 규모가 커서 낙석방지울타리, 낙석방지옹벽 등으로는 안전을 기대하기 어려운 경우에 설치할 수 있다.
- (9) 환경생태터널은 철도 건설로 단절된 지형을 복원하여 자연생물의 이동과 번식을 유도하기

위해 설치하는 개착터널로서 이용 동물의 종류와 이동경로를 파악하여 적정한 형식을 선정해야 한다.

4.10.2 단면설계

- (1) 개착터널은 터널 본체와 동일 이상의 내공단면으로 연속해서 설치해야 하며 완성후의 쌓기에 대한 상재하중, 토압 등의 하중을 고려해야 한다. 또한, 개착터널에 작용하는 단면력, 지반의 지지력을 계산하여 적정 단면을 선정해야 한다.
- (2) 개착터널은 온도변화, 건조수축, 지진의 영향 등을 받기 쉽기 때문에 필요에 따라 이를 고려하여 설계해야 한다.

4.10.3 적용하중

- (1) 개착터널의 설계 시에는 터널외부에서 작용하는 하중, 자중, 터널 내부의 하중 및 이에 의해 생기는 지반반력을 고려해야 한다.
- (2) 개착터널의 적용하중은 KDS 47 10 40 (4.2.2)를 따른다.

4.10.4 구조해석

- (1) 개착터널의 구조공학적 해석은 KDS 47 10 40을 따른다.
- (2) 개착터널의 내진설계는 KDS 47 10 15 (4.4)를 따른다.
- (3) 개착터널의 부재안정검토는 KDS 14 20 00의 해당사항을 따른다.

4.10.5 접합부 및 되메움 세부사항

- (1) 갱문 구조물과 본선터널, 개착터널과 본선터널이 접합하는 개소는 양 구조간 거동차이에 따라 접합부는 분리구조로 하고 조인트를 설치하여 구조물 손상을 방지해야 한다.
- (2) 접합부의 구조물 계획시 누수 및 부등침하에 대한 대책을 사전에 수립해야 한다.
- (3) 개착터널부의 되메움시에는 구조물에 가해지는 수압을 감소시키고 배면용출수를 원활히 배수하기 위하여 양 측면에 유공관을 매설하고 유공관이 막히지 않도록 대책을 수립해야 한다.

<u>터널</u> KDS 47 10 70 : 2019

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속
구웅회	㈜서영엔지니어링	정혁상	동양대학교
안태봉	우송대학교	조성호	중앙대학교

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

국	투	교	톳	부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KDS 47 10 70: 2019

터널

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 031-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr