Primer Examen Parcial Lógica Matemática

Cristo Daniel Alvarado

17 de octubre de 2024

Problema 1

Las siguientes son tres fórmulas bien formadas en notación polaca, y utilizando las conectivas \neg , \land , \lor , \Rightarrow y \iff . Escriba estas fórmulas en la notación usual (usando tantos paréntesis como sea necesairo para evitar cualquier tipo de ambigüedad). Posteriormente, escriba la fórmula del primer inciso utilizando únicamente las conectivas \neg , \land , \lor , y escriba la fórmula del segundo inciso utilizando únicamente las conectivas \neg , \Rightarrow .

- $(a) \Rightarrow \neg \wedge p_1 p_4 \vee p_3 \wedge p_4 \neg p_{17}.$
- (b) $\wedge \Rightarrow p_2 \neg \wedge p_{12} p_4 \vee \neg p_{23} p_7$.
 - (c) $\vee p_{25} \wedge \Rightarrow p_3 \neg p_4 \vee \wedge \neg p_4 p_{10}$.

Solución:

Haremos la primera parte por cada inciso:

De (a): Formemos el árbol a partir de la primera fórmula en notación polaca:

Figura 1. Árbol de la fórmula (a).

traduciendo mediante este árbol la fórmula a la notación usual obtenemos la fórmula siguiente:

$$\neg (p_1 \land p_4) \Rightarrow (p_3 \lor (p_4 \land \neg p_{17}))$$

De (b): Nuevamente, formemos ahora el árbol a partir de la segunda fórmula en notación polaca:

Figura 2. Árbol de la fórmula (b).

traduciendo mediante este árbol la fórmula a la notación usual obtenemos la fórmula siguiente:

$$(p_2 \Rightarrow \neg (p_{12} \land p_4)) \land (\neg p_{23} \lor p_7)$$

De (c): Nuevamente, formemos ahora el árbol a partir de la terera fórmula en notación polaca:

Figura 3. Árbol de la fórmula (c).

traduciendo mediante este árbol la fórmula a la notación usual obtenemos la fórmula siguiente:

$$p_{25} \lor ((p_3 \Rightarrow \neg p_4) \land ((\neg p_4 \land p_{10}) \lor))$$

donde, notemos que el nodo hijo del nodo que tiene a \vee en la 3era fila está vacío (el nodo se dejó pues se sabe que la opearción \vee es binaria) y también en la reescritura de la ecuación, por lo que esta tercera fórmula no es una fórmula bien formada.

Ahora, escribamos la fórmula del primer inciso usando las conectivas \neg , \land y \lor . Notemos que tenemos una implicación y, recordemos que si φ y ψ son dos fórmulas se puede escribir φ \lor ψ como:

$$\neg \varphi \Rightarrow \psi$$

por lo cual, si en la primera fórmula hacemos a φ la fórmula $p_1 \wedge p_4$ y a ψ la fórmula $p_3 \vee (p_4 \wedge \neg p_{17})$, obtenemos que la primera fórmula puede ser reescrita como:

$$(p_1 \wedge p_4) \vee (p_3 \vee (p_4 \wedge \neg p_{17}))$$

Para reescribir la segunda fórmula usando únicamente las conectivas, recordemos que si φ y ψ . entonces $\varphi \wedge \psi$ puede ser reescrita como

$$\neg(\varphi \Rightarrow \neg\psi)$$

por lo cual, usando este hecho y el anterior, podemos reescribir la fórmula del segundo inciso como:

$$\neg ((p_2 \Rightarrow \neg \neg (p_{12} \Rightarrow \neg p_4)) \Rightarrow \neg (\neg \neg p_{23} \Rightarrow p_7))$$

y, si se nos permite quitar las dobles negaciones mediante los axiomas de la lógica proposicional y la única regla de inferencia Modus Ponens, obtenemos la fórmula reescrita:

$$\neg ((p_2 \Rightarrow (p_{12} \Rightarrow \neg p_4)) \Rightarrow \neg (p_{23} \Rightarrow p_7))$$

que a su vez usando otro axioma de la lógica proposicional puede ser reescrita como:

$$(p_{23} \Rightarrow p_7) \Rightarrow (p_2 \Rightarrow (p_{12} \Rightarrow \neg p_4))$$

Problema 2

Escriba una demostración formal de validez (renglón por renglón, y justificando apropiadamente cada paso) del siguiente argumento:

$$\begin{array}{ccccc} 1) & (\alpha \vee \beta) & \Rightarrow & (\gamma \Rightarrow \delta) & \text{Premisa} \\ 2) & \delta & \Rightarrow & \varepsilon & \text{Premisa} \\ 3) & \varepsilon & \Rightarrow & (\alpha \wedge \zeta) & \text{Premisa} \\ 4) & \gamma & & \text{Premisa} \end{array}$$

Solución:

Completemos la demostración:

	1)	$(\alpha \vee \beta)$	c¥O	$(\gamma \Rightarrow \delta)$	Premisa
	2)	δ	\Rightarrow	ε	Premisa
	3)	ε	\Rightarrow	$(\alpha \wedge \zeta)$	Premisa Premisa Premisa Premisa Premisa
	4)	γ			Premisa Premisa Suposición 5) Adición
	→ 5)	α			Suposición
	6)	$\alpha \vee \beta$			5) Adición
9	7)	γ	\Rightarrow	δ	1) y 6) Modus Ponens
	8)	δ		1.15W	7) y 4) Modus Ponens
	9)	ε	(C.F. F.	2) y 8) Modus Ponens
	10)	α	\Rightarrow	ε	Lineas 5)-9) Metateorema de Deducción
	→ 11)	ε			Suposición
	$12)_{\sim}$	$\alpha \wedge \zeta$			3) y 11) Modus Ponens
	13)	α			12) Simplificación
	14)	ε	\Rightarrow	α	Lineas 11)-13) Metateorema de Deducción
	15)	$(\alpha \Rightarrow \varepsilon)$	\wedge	$(\varepsilon \Rightarrow \alpha)$	10) y 14) Conjunción
	16)	α	\iff	ε	15) Reescritura
			$\ddot{\cdot}$	$\alpha \iff \varepsilon$	111.00
					: 1
					3 Daniel All
		.2120			· cto

Problema 3

Sea \mathcal{L} un lenguaje de primer oden equipado con un símbolo de función binaria *. Muestre que una de las siguientes dos \mathcal{L} -fórmulas implica lógicamente a la otra (¿cuál implica cuál?), y que esta implicación no es reversible.

(a)
$$(\exists x)(\forall y)(x * y = y)$$
.

(b)
$$(\exists x)(x * x = x)$$
.

Solución:

Afirmamos que la fórmula (a) implica a la fórmula (b). En efecto, se tiene la siguiente demostración de (b) a partir de (a):

pues, en en la tercera fila la variable z es sustituíble por y, ya que z no queda bajo el alcance de ningún cuanificador de la fórmula de la fila 2). Se tiene así que

$$\{(\exists x)(\forall y)(x*y=y)\} \vdash (\exists x)(x*x=x)$$

por el Teorema de Completud de Gödel se sigue que

$$\{(\exists x)(\forall y)(x*y=y)\} \vDash (\exists x)(x*x=x)$$

es decir, que la fórmula (a) implica lógicamente a la fórmula (b).

Ahora veamos que la fórmula (b) no implica lógicamente a la fórmula (a). Esto es equivalente a probar que

$$\Sigma \nvDash (\exists x)(\forall y)(x * y = y)$$

donde $\Sigma = \{(\exists x)(x * x = x)\}$. Tenemos que encontrar una \mathcal{L} -estructura \mathfrak{A} y una interpretación ι tales que

$$\mathfrak{A} \vDash \Sigma[\iota]$$
, pero $\mathfrak{A} \nvDash (\exists x)(\forall y)(x * y = y)[\iota]$

Considere la \mathcal{L} -estructura

$$\mathfrak{A}=(\mathbb{N},ullet)$$

donde \mathbb{N} es el conjunto de los números naturales y \bullet es la función de $\mathbb{N} \times \mathbb{N}$ en \mathbb{N} dada por:

$$m \bullet n = 1, \quad \forall m, n \in \mathbb{N}$$

Considere además la interpretación $\iota: \mathrm{Var} \to \mathbb{N}$ dada por:

$$\iota(v_i) = i$$

para toda variable v_i . Veamos que $\mathfrak{A} \models \Sigma[\iota]$, esto es que

$$\mathfrak{A} \vDash (\exists x)(x * x = x)[\iota]$$

en efecto, esto se cumple si y sólo si

$$\mathfrak{A} \vDash (x * x = x)[\iota_{n/x}]$$

para algún $n \in \mathbb{N}$. Tomando n = 1 obtenemos que:

$$\hat{\iota}_{1/x}(x * x) = \hat{\iota}_{1/x}(x) \bullet \hat{\iota}_{1/x}(x)$$

$$= 1 \bullet 1$$

$$= 1$$

y,

$$\hat{\iota}_{1/x}(x) = 1$$

por tanto, $\hat{\iota}_{1/x}(x)$ es lo mismo que $\hat{\iota}_{1/x}(x*x)$, se sigue así

$$\mathfrak{A} \vDash (x * x = x)[\iota_{n/x}]$$

Veamos ahora que

$$\mathfrak{A} \nvDash (\exists x)(\forall y)(x*y=y)[\iota] \text{ si y sólo si } \mathfrak{A} \nvDash (\exists x)(\neg((\exists y)\neg(x*y=y)))[\iota]$$
 si y sólo si
$$\mathfrak{A} \nvDash \neg((\exists y)(x*y\neq y))[\iota_{n/x}], \text{ para todo } n \in \mathbb{N}$$
 si y sólo si
$$\mathfrak{A} \vDash (\exists y)(x*y\neq y)[\iota_{n/x}], \text{ para todo } n \in \mathbb{N}$$
 si y sólo si
$$\mathfrak{A} \vDash (\exists x)(x*y\neq y)[\iota_{n/x}], \text{ para todo } n \in \mathbb{N}$$
 si y sólo si
$$\mathfrak{A} \vDash (x*y\neq y)[(\iota_{n/x})_{m/y}], \text{ para todo } n \in \mathbb{N} \text{ y para algún } m \in \mathbb{N}$$

en efecto, sea $n \in \mathbb{N}$ y $m = 1729 \in \mathbb{N}$, tenemos que:

$$(\hat{\iota}_{n/x})_{m/y}(x * y) = (\hat{\iota}_{n/x})_{m/y}(x) \bullet (\hat{\iota}_{n/x})_{m/y}(y)$$

$$= n \bullet m$$

$$= n \bullet 1729$$

$$= 1$$

y,

$$(\hat{\iota}_{n/x})_{m/y}(y) = m$$

$$= 1729$$

donde claramente 1 no es 1729, se sigue pues de las equivalencias anteriores que:

$$\mathfrak{A} \nvDash (\exists x)(\forall y)(x * y = y)[\iota]$$

De esta forma, \mathfrak{A} y ι son la \mathcal{L} -estructura e interpretación buscadas, respectivamente.

Problema 4

Sea $\mathcal{L} = \{\in\}$ el lenguaje de la teoría de conjuntos (es decir, \in es simplemene el símbolo de relación binaria). Demuestre que cualquier fórmula en la cual no aparezca el símbolo de negación \neg debe tener longitud impar.

Demostración:

Procederemos por inducción sobre la longitud de la \mathcal{L} -fórmula. Antes de ello, notemos que como nuestro lenguaje \mathcal{L} no posee constantes ni funciones, los únicos posibles términos serán las variables v_i .

- Caso base: Sea φ una \mathcal{L} -fórmula de longitud menor o igual a 3 en la que no aparece el símbolo de negación ¬. Se tienen 2 posibilidades:
 - φ es $v_1 = v_2$, donde v_1 y v_2 son variables.

• φ es $v_1 \in v_2$, donde v_1 y v_2 son variables.

esto pues φ en su forma más simple es atómica. En cualquiera de los tres casos, la longitud de φ es impar (más aún, es 3).

■ Paso Inductivo: Suponga que existe $n \in \mathbb{N}$ tal que para toda \mathcal{L} -fórmula φ de longitud menor o igual a 2n+1 en la que no aparezca el símbolo de negación \neg , implica que la longitud de φ es impar.

Sea φ una fórmula de longitud menor o igual a 2n+3, se tienen tres posibles casos para φ :

- φ tiene longitud menor o igual a 2n+1, por lo que de la hipótesis de inducción se sigue que φ tiene longitud impar.
- φ es $\psi \Rightarrow \phi$, donde ψ y ϕ son \mathcal{L} -fórmulas en las que no aparece el símbolo negación \neg , pues éste no aparece en φ . En particular, al tenerse que φ es de longitud menor o igual a 2n+3, se sigue que ψ y ϕ tienen longitud menor o igual a 2n+1. Por hipótesis de inducción se sigue que ambas tienen longitud impar, digamos:

$$2n_{\psi} + 1$$
 y $2n_{\phi} + 1$

respectivamente, con $n_{\psi}, n_{\phi} \in \mathbb{N}$. Por ende, la longitud de φ es

$$(2n_{\psi} + 1) + 1 + (2n_{\phi} + 1) = 2(n_{\psi} + n_{\phi} + 1) + 1$$

es decir, la longitud de φ es impar.

• φ es $(\exists x)\psi$, donde al tenerse que φ no tiene al símbolo negación \neg , tampoco lo puede tener ψ , así que como φ es de longitud menor o igual a 2n+3, debe tenerse que la longitud de ψ es menor o igual a 2n+1. Por hipotesis de inducción ψ es de longitud impar, digamos $2n_{\psi}+1$ con $n_{\psi} \in \mathbb{N}$, luego la longitud de φ será:

$$(2n_{\psi}+1)+2=2(n_{\psi}+1)+1$$

es decir, la longitud de φ es impar.

En cualquier caso, se sigue que la longitud de φ es impar.

Aplicando inducción, se sigue que para todo $n \in \mathbb{N}$ y para toda \mathcal{L} -fórmula φ en la que no aparezca \neg que tenga longitud menor o igual a 2n + 1, implica que φ tiene longitud impar.

En particular, si φ es una \mathcal{L} -fórmula en la que no aparece \neg , existe un número $m \in \mathbb{N}$ tal que la longitud de φ es menor o igual a 2m+1 (pues toda fórmula en este curso tiene longitud finita) luego, por lo anterior se sigue que φ tiene longitud impar, lo cual prueba el resultado.