

equivalent definitions of analytic sets

 ${\bf Canonical\ name} \quad {\bf Equivalent Definitions Of Analytic Sets}$

Date of creation 2013-03-22 18:48:28 Last modified on 2013-03-22 18:48:28

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282) Entry type Theorem Classification msc 28A05 For a paved space (X, \mathcal{F}) the \mathcal{F} -http://planetmath.org/AnalyticSet2analytic sets can be defined as the http://planetmath.org/GeneralizedCartesianProductprojections of sets in $(\mathcal{F} \times \mathcal{K})_{\sigma\delta}$ onto X, for compact paved spaces (K, \mathcal{K}) . There are, however, many other equivalent definitions, some of which we list here.

In conditions ?? and ?? of the following theorem, Baire space $\mathcal{N} = \mathbb{N}^{\mathbb{N}}$ is the collection of sequences of natural numbers together with the product topology. In conditions ?? and ??, Y can be any uncountable Polish space. For example, we may take $Y = \mathbb{R}$ with the standard topology.

Theorem. Let (X, \mathcal{F}) be a paved space such that \mathcal{F} contains the empty set, and A be a subset of X. The following are equivalent.

- 1. A is \mathcal{F} -analytic.
- 2. There is a closed subset S of \mathcal{N} and $\theta \colon \mathbb{N}^2 \to \mathcal{F}$ such that

$$A = \bigcup_{s \in S} \bigcap_{n=1}^{\infty} \theta(n, s_n).$$

3. There is a closed subset S of \mathcal{N} and $\theta \colon \mathbb{N} \to \mathcal{F}$ such that

$$A = \bigcup_{s \in S} \bigcap_{n=1}^{\infty} \theta(s_n).$$

- 4. A is the result of a Souslin scheme on \mathcal{F} .
- 5. A is the projection of a set in $(\mathcal{F} \times \mathcal{G})_{\sigma\delta}$ onto X, where \mathcal{G} is the collection of closed subsets of Y.
- 6. A is the projection of a set in $(\mathcal{F} \times \mathcal{K})_{\sigma\delta}$ onto X, where \mathcal{K} is the collection of compact subsets of Y.

For subsets of a measurable space, the following result gives a simple condition to be analytic. Again, the space Y can be any uncountable Polish space, and its Borel σ -algebra is denoted by \mathcal{B} . In particular, this result shows that a subset of the real numbers is analytic if and only if it is the projection of a Borel set from \mathbb{R}^2 .

Theorem. Let (X, \mathcal{F}) be a measurable space. For a subset A of X the following are equivalent.

- 1. A is \mathcal{F} -analytic.
- 2. A is the projection of an $\mathcal{F} \otimes \mathcal{B}$ -measurable subset of $X \times Y$ onto X.

We finally state some equivalent definitions of analytic subsets of a Polish space. Again, \mathcal{N} denotes Baire space and Y is any uncountable Polish space.

Theorem. For a nonempty subset A of a Polish space X the following are equivalent.

- 1. A is \mathcal{F} -http://planetmath.org/AnalyticSet2analytic.
- 2. A is the projection of a closed subset of $X \times \mathcal{N}$ onto X.
- 3. A is the projection of a Borel subset of $X \times Y$ onto X.
- 4. A is the http://planetmath.org/DirectImageimage of a continuous function $f: Z \to X$ for some Polish space Z.
- 5. A is the image of a continuous function $f: \mathcal{N} \to X$.
- 6. A is the image of a Borel measurable function $f: Y \to X$.