TD 5 - Statistiques - corrections

Exercice 1 - Analogie du Polygraphe

(a) Type I: rejeter l'hypothèse nulle alors qu'elle est vraie, donc penser qu'il ment alors que non. Il y en a 9/140.

Type II: acepter l'hypothèse nulle alors qu'elle est fausse, donc penser qu'il dit la vérité alors que non. Il y en a 15/140.

(b) Le niveau de signification α = p(rejeter $H_0 \mid H_0$ vraie) = p(Type I) = 9/140 La puissance β = p(rejeter $H_0 \mid H_A$ vraie) = 1 - p(rejeter $H_A \mid H_A$ vraie) = 1 - p(Type 2) = 1 - 15/140 = 125/140

Exercice 2 - Test de Student

Le test de Student sert à comparer une moyenne d'échantillon à une valeur théorique. On a n=16, $\overline{x}=11$, $s^2=4$.

On calcule la statistique de Student sous l'hypothèse nulle, $Z = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{11 - 10}{\frac{2}{\sqrt{16}}} = \frac{1}{\frac{2}{4}} = 2$.

Z suit une loi de Student à (n-1) degrés de liberté (donc 15 degrés de liberté).

- (a) On calcule la p-value, c'est à dire la probabilité d'observer Z au moins aussi loin de 0 si H_0 est vraie. $P = p(|Z| > 2 | H_0) = 2 * (1 pt(2,15)) = 0,063945$. On a $P > \alpha$, on ne rejette pas H_0 , car cette situation arrive suffisamment souvent par hasard quand H_0
- est vraie. Donc on considèrera que $\mu = 10$.
- (b) Si H'_A : $\mu > 10$, la p-value est la probabilité d'observer Z au moins aussi supérieure à 0 si H_0 est vraie. Dans ce cas, $P = p(Z > 2 \mid H_0) = 1 pt(2,15) = 0,031973$.

Cette fois, $P < \alpha$, on rejette donc H_0 , car cette situation est trop rare pour le cas ou H_0 est vraie. On accepte H'_A à la place : on considérera que $\mu > 10$.

Exercice 3 - Radars mobiles

(a) Soit μ la vitesse réelle de la voiture. Les mesures x_i suivent une loi normale $N(\mu, 25)$, donc par le théorème central limite, \bar{x} suit une loi normale $N(\mu, 25/3)$. On définit les hypothèses suivantes:

 H_0 : pas d'infraction, $\mu \le 40$

 H_A : infraction, $\mu > 40$.

Ce sont des inégalités, donc les hypothèses sont composées.

(b) Rejeter H_0 quand elle est vraie (contravention incorrecte), c'est faire une erreur de type 1. On fixe sa probabilité à 4%, c'est à dire qu'on prend p(type 1) = α = 0,04.

On cherche la valeur de vitesse critique $c_{0.04}$ telle que seulement 4% des voitures qui ne sont pas en infraction soient détectées comme roulant plus vite que $c_{0.04}$.

Note : Si la voiture ne roule pas à μ = 40 km/h mais 39 par exemple, ou moins, la courbe bleue se décale vers la gauche, et donc l'aire sous la courbe entre $c_{0.04}$ et l'infini devient inférieure à 4%. On raisonne ici avec le pire des cas, c'est à dire en considérant que toutes les voitures roulent à μ = 40 km/h.

Le quantile à 96% d'une loi de N(40, 25/3) vaut 45,054 km/h. Il faut donc verbaliser les voitures détectées au delà de 45,054 km/h pour que moins de 4% des contraventions soient attribuées à tort.

(c) En considérant H_A : μ = 45, on décale la courbe bleue vers la droite jusqu'à ce que μ = 45 \approx $c_{0.04}$. Dans ce cas, la moitié environ des voitures sera détectée en dessous du seuil et l'autre moitié au dessus et sera verbalisée. La puissance sera d'environ 1/2. Le calcul rigoureux au cas où:

$$\beta = p(\text{ rejet de } H_0 \mid H_A) = p(\overline{x} > c_{0,04} \mid \mu = 45) = 1 - p(\overline{x} < c_{0,04} \mid \mu = 45) = 1 - \frac{1}{\sqrt{\frac{50\pi}{3}}} e^{-3(x-45)^2/50} dx = 0,493$$

(d) Le nombre de radars a une influence sur la forme de la courbe bleue (la loi normale), puisque rappelons-le, elle est définie comme N(μ , 25/n), et donc n influence aussi la valeur de $c_{0.04}$. Si n augmente, la largeur de la courbe diminue, et donc $c_{0.04}$ se rapproche de μ .

On pose l'équation «Aire à droite du seuil pour N(40, 25/n) = Aire à gauche du seuil pour N(45, 25/n)».