Assignment 2

Make sure to write complete proofs. Try to avoid skipping steps. Write clear sentences.

- 1. For each of the following statements, if the statement is true then say so and provide a proof. If it is false then say so and provide an example/proof. All variables involved are supposed to be natural numbers.
 - i. For all n and m, if n + m is odd then exactly one of n,m is odd.

ii. For every n there exists an m such that n+m is odd.

iii. There exists an m such that for every n we have that n+m is odd.

iv. For every m there exists an n so that $n^2 = m + 2$.

v. For all n, m we have that $n \neq m$.

vi. There exists an n so that for all m we have that $n \neq m$.

::	E _o	~~~~		+10 0 000	•	<u>~ 1</u> ,		+1a a +	/1_ :	~ ~		
VII.	ror	every	\mathbf{n}	uiere	1S	ак	SO	$\mathbf{mat} n$	/ K 18	s a	naturai	number

2. Prove that if
$$a$$
 is a rational number, then $a + \sqrt{2}$ and $a\sqrt{2}$ are both irrational.

3. Prove that for every number x, if x^2 is irrational then x must also be irrational.

4. True or False? If b is irrational, then $\frac{b}{b^2+1}$ is also irrational. Prove or disprove.