

Working with Git and GitHub

Be Boulder.

Working with Git and GitHub

Instructor: Brandon Reyes

Website: www.rc.colorado.edu

Helpdesk: <u>rc-help@colorado.edu</u>

My Goal

- Convince you that basic Git/GitHub fluency is:
 - Easy
 - Practical
 - An extremely important tool in your tool belt!

Learning Goals

- Understand the basics of version control
- Differences between Git, GitHub
- Basic Git fluency
- How to collaborate with Git

Outline

- Brief overview of Git and GitHub
 - What is version control?
- Creating your own repository locally
- Pushing local changes to GitHub
- Collaboration

Have you set up Git/GitHub?

This is meant to be a mostly hands on tutorial. If you haven't yet, you may still be able to get everything set up in time using the link:

https://github.com/ResearchComputing/Summer Camp 2023/blob/main/Day Three/Using git/README.md

Git vs GitHub

- Git: version control system
 - the actual software

- GitHub: Cloud-based storage website
 - Hosts repositories ("repos")
 - Provides a GUI for many Git features
 - Allows for easy collaboration
 - Issues, pull requests

What is version control?

Version control is the practice of tracking and managing changes to files.

- Why do I need it?
 - Revert to various states of files
 - You can think of this as a backup
 - Allows you to modify items without harming the original copy
 - Not limited to code
 - documents, images, etc...

Additional benefits of version control

- Using version control provides
 - Clear tracking of the repo's history
 - Management and view of different branches (work)
 - Collaboration through merging of branches

Images: nobledesktop.com

Be Boulder.

Different Version Control Systems

- Subversion (svn)
- Mercurial
- · CVS
- etx
- We're going to stick to Git
 - industry standard
 - widely known
 - most resources

Images from Wikipedia

Getting Started with Git (local)

Setting Git up locally

Many systems have Git installed; however, you may need to download it on your local machine

See https://git-scm.com/book/en/v2/Getting-Started-Installing-Git for more information

Today we are going to stick with using Git on a login node

Logging into RC via Terminal

To login to an RC login node:

```
$ ssh <username>@login.rc.colorado.edu
```

- Supply your IdentiKey password and your Duo app will alert you to confirm the login
- Confirm Git has been configured (by you using the README)

```
$ git config --list
```


Hands on tutorial

Goal: Create a simple project that contains some Python code

First let's create a new directory for our project:

```
$ cd /projects/$USER
$ mkdir git-tutorial
$ cd git-tutotial
```


Git Repository (Repo)

A Git repository tracks and saves the history of all changes made.

All of this information is stored in ".git", which is the repository folder

We can make a directory (folder) a Git repo using "git init"

Git Init

In your "git-tutorial" directory run

```
$ git init
```

Git creates the "hidden" directory called ".git"

```
$ 1s -a
```

- Your directory is now a repo!
 - Git is now ready to to be used
 - Allows us to tell Git what items to watch

Create the main branch

Now that we have a repo, we can create branches. Branches are a version of the repository.

- It is customary to name the primary branch "main"
- This can be done as follows (after an init)

```
$ git checkout -b main
```


Let's add a file!

It is customary to add a README.md

Description of repo and any helpful information

To add a README.md, in "git-tutorial" create and edit the file using nano (or an editor of your choice)

- \$ nano README.md
- Add anything you would like!
- Be sure to save the file when you exit.

Git does not know about README.md yet!!

Areas of Git

Working Area

- Items that you are currently working on
- Are not tracked by Git!
- Exists locally

Staging Area

- When Git starts tracking and saving your work
- Exists locally
- Items are added to this area by using "git add"

<u>GitHub</u>

- Exists locally and on GitHub!
- Items are added to this area using "git push"

Git Status

The git status command displays the state of the working and staging area.

Let's see what area README.md is in

- \$ git status
- We see it is an untracked file, so it is in the working area

Git Ignore

In you .gitignore you can choose to ignore output files:

```
*out # globbing, will get all files that end with "out"
```


Git Add

- The git add command adds a change in the working directory to the staging area (getting the "picture" ready for a snapshot)
- It tells Git that you want to include updates to a particular file.

```
$ git add hello_world.py # "git add ." to add all files
$ git status
```

**git add doesn't affect the repository - changes are not actually recorded until you run git commit

Git Ignore

- You may have some files that you don't want tracked
 - secret keys (passwords, API tokens, etc)
 - build files
 - data sets
- Create a ignore.txt file

```
$ echo "ignore this file!" > ignore.txt
```

Create a .gitignore file

```
$ vim .gitignore
```

list any files/directories you don't want tracked:

```
ignore.txt
```


Your Git timeline

Git commits are like savepoints or snapshots of your project

Git Commit

- The git commit command captures a snapshot of the project's currently staged changes.
- Committed snapshots can be thought of as "safe" versions of a project.
- Commits are logged with a brief message of what was changed
 - \$ git commit -m "initial commit"
 - \$ git status # clean working directory

Working Directory

Git Log

 git log lists the commits made in that repository in reverse chronological order; the most recent commits show up first

\$ git log

Repository

commit #5678 "third commit"

commit #2345 "second commit"

commit #1234 "initial commit"

. . .

Getting Started with GitHub (remote)

GitHub

- GitHub: Cloud-based storage (repository, or "repo") site
 - a common/shared area to host projects
 - many Git features as a web GUI
- We're going to demonstrate how to work with remote repositories using GitHub

GitHub

- Go to: https://github.com
- Sign in (or create an account)
- Click on "Create New Repository" or just "New"

Recent Repositories

Find a repository...

Create Repo in GitHub

- Create a new repo
- Call it whatever you would like
- Ignore directions for you, just change to ssh and copy the link
 - e.g. git@github.com:<user>/test-repo.git

Quick setup — if you've done this kind of thing before

r

HTTPS SSH

git@github.com:monaghaa/test-repo.git

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

Git Remote

 Git remote tells you which remote repositories you have linked to your local project.

To link our remote repository (accepts 2 values):

```
$ git remote add origin git@github.com:<user>/test-repo.git
```

View remote again

```
$ git remote
$ git remote -v  # view url as well
```


Git Push

- Sync up local code with remote GitHub repo!
- Git push **uploads a local repositories content to a remote repository**. Pushing is how you transfer commits from your local repo to a remote repo
 - \$ git push <name of remote repo> <branch>
 - \$ git push origin main

GitHub

- Go back to GitHub and refresh your page
 - should see the files we have added (and not the ones we've ignored)
- Some cool features!
 - look at our commits
 - directly edit/commit in the browser
- · Let's do that! Let's fix the typo and commit it
 - But now our remote repo is one commit ahead of our local one...

Git Fetch & Merge

Git fetch retrieves the changes from the remote repo

```
$ git fetch
```

Git merge combines two branches

```
$ git merge origin/main
```

But there's an easier way!

Git Pull

- Git pull combines the fetch and merge commands
- **Must have clear working directory!**

```
$ git pull origin main
```


Git Clone

 Git clone makes a clone or copy of a remote repo at in a new directory, at another location.

```
$ git clone <url> <optional new name>
```

- Easy way to grab third-party code, or pre-existing code you might need to work on
 - \$ cd /projects/\$USER
 - \$ git clone https://github.com/ResearchComputing/HPC_software_dev_course

Update your project! (practice)

- Create a new file in your test repo and Add + Commit it
- Then push up to your GitHub repo and ensure your new file is there!

Review: Learning Goals

- 1. Understand basics of version control
- 2.Differences between Git, GitHub
- 3.Basic Git fluency

Help! I'm stuck, where do I go?

Documentation: curc.readthedocs.io/

Trainings with Center for Research Data and Digital Scholarship (CRDDS):
 https://www.colorado.edu/crdds/

• Software Carpentries tutorial: https://swcarpentry.github.io/git-novice/index.html

Helpdesk: rc-help@colorado.edu

Questions

Survey and feedback

http://tinyurl.com/curc-survey18

