

## Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur



## Algoritmos y Complejidad

## Trabajo Práctico 0 Repaso Notación Asintótica

primer semestre de 2024

- 1. Dada una función f(n), definir formalmente los siguientes conjuntos: O(f(n)),  $\Omega(f(n))$  y  $\Theta(f(n))$ . ¿Qué representa cada uno de estos conjuntos?.
- 2. ¿Qué dice la Regla del Límite?

## 1, 2 v 3 en el libro (Brassard)

- 3. Enunciar y demostrar la Regla del Umbral (threshold rule) y la Regla del Máximo.
- 4. Determinar cuáles de las siguientes afirmaciones son ciertas, justificando adecuadamente en cada caso.
  - (a)  $\frac{1}{2}n^2 3n \in \Theta(n^2)$
  - (b)  $n^3 \in O(n^2)$
  - (c)  $n^2 \in \Omega(n^3)$
  - (d)  $2^n \in \Theta(2^{n+1})$
  - (e)  $n! \in O((n+1)!)$
  - (f) para toda función  $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$ ,  $f(n) \in O(n)$  implica  $[f(n)]^2 \in O(n^2)$
  - (g) para toda función  $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$ ,  $f(n) \in O(n)$  implica  $2^{f(n)} \in O(2^n)$
  - (h) para toda función  $f:\mathbb{N}\to\mathbb{R}^{\geq 0}$ y todo  $k\in\mathbb{R}^{\geq 0},\,kf(n)\in O(f(n))$
  - (i) para todo polinomio p(n) de grado  $m, p(n) \in O(n^m)$
  - (j) si  $\alpha, \beta \in \mathbb{R}$  son tales que  $\alpha < \beta$  entonces  $n^{\alpha} \in O(n^{\beta})$
- 5. Dada la función  $f_k(n)$  definida como

$$f_k(n) = 1^k + 2^k + \ldots + n^k$$

Demostrar que  $f_k(n) \in \Theta(n^{k+1})$ .

6. Demostrar que para cualquier par de funciones  $q, h : \mathbb{N} \longrightarrow \mathbb{R}^{\geq 0}$  se verifica:

Si 
$$g(n) \in O(h(n))$$
 entonces  $O(g(n)) \subseteq O(h(n))$ 

- 7. Hallar dos funciones f(n) y g(n) tales que  $f(n) \notin O(g(n))$  y  $g(n) \notin O(f(n))$ .
- 8. Probar las siguientes afirmaciones para todo  $a, b \in \mathbb{R}^{>1}$ :
  - (a)  $\log_a n \in \Theta(\log_b n)$
  - (b)  $2^{\log_a n} \notin \Theta(2^{\log_b n})$ , si  $a \neq b$ .
- 9. Considere la siguiente función:

$$T(n) = \begin{cases} 1 & \text{si } n = 1\\ T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + 2 & \text{si } n \ge 2 \end{cases}$$

Demostrar que  $T(n) \in O(n)$ , para ello demostrar por inducción constructiva que existen constantes b y d tales que T(n) = bn + d.