计网第六次作业

彭程 2020011075

第一题:

1. 1

第一个:

EstimatedRTT =
$$(1-\alpha) \times EstimatedRTT + \alpha \times SampleRTT$$

= $(1-0.125) \times 100 + 0.125 \times 140 = 105ms$

$$DevRTT = (1 - \beta) \times DevRTT + \beta \times |SampleRTT - EstimatedRTT|$$
$$= (1 - 0.25) \times 10 + 0.25 \times |140 - 105| = 16.25ms$$

$$TimeoutInterval = EstimatedRTT + 4 \times DevRTT$$

= $105 + 4 \times 16.25 = 170ms$

计算结果如下:

SampleRTT	EstimatedRTT	DevRTT	TimeoutInterval
140ms	105.00ms	16.25ms	170.00ms
90ms	103.13 ms	15.47 ms	165.01 ms
80ms	100.24 ms	16.66 ms	166.88 ms
110ms	101.46 ms	14.63 ms	159.98 ms
80ms	98.78 ms	15.67 ms	161.45 ms

第二题:

2. 1

10240 为 10K, 1+2+4+3=10K, 即在窗口为 8 后又接受了 3 个数据段得到 ACK10240, 所以此时窗口大小为 11K 字节。

2. 2

32768/1024=32K, 1+2+4+8+16+1=32K, 即在窗口为 32 后又接受了 1 个数据段得到 ACK32768, 此时已经进入拥塞避免状态, 故此时窗口大小为 32K 字节

2.3

ssthresh = cwnd/2 = 20

cwnd = 1

第三题:

3. 1

拥塞窗口达到 W 后发生丢包,此后阈值变为 W/2,拥塞窗口大小变为 1,然后经过 n-1 个 RTT 后,拥塞窗口大小变为 2^{n-1} ,达到阈值进入拥塞避免状态,然后经过 2^{n-1} 个 RTT 后,拥塞窗口大小达到 W,发生丢包。

平均而言,在 $(n-1) + 2^{n-1}$ 个 RTT 中,可以传 $1 + 2 + \dots + 2^{n-1} + (2^{n-1} + 1) + (2^{n-1} + 2) + \dots + (2^n - 1) = 3 \times 2^{2n-3} + 2^{n-2} - 1$ 个 MSS。 故平均传输速率为:

$$\frac{(3 \times 2^{2n-3} + 2^{n-2} - 1)MSS}{((n-1) + 2^{n-1})RTT}$$