Part 2 僅考慮病毒成長、擴散、原生量

第0期期末病毒分佈情形 Q₀^{k,0}

第1期網格k承接自鄰近格擴散進來的 總病毒量為 $Q_2^{k,1} := \sum_{k \in \{k \mid d_{kk=1}\}} Q_0^{k,0} q_{k,1}$ 其中 病毒擴散率 $q_{k,1} = q = 5\%$

第1期病毒成長後之總量 $Q_1^{k,1} := Q_0^{k,0} (1 + s_{k,1})$ 病毒成長率 $s_{k,1} = s = 20\%$

第1期網格k病毒原生量為 $Q_3^{k,1} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

第1期期末病毒分佈情形 Q₀^{k,1}

第2期網格k承接自鄰近格擴散進來的總病毒量為 $Q_2^{k,2} := \sum_{k \in \{k \mid d_{kk=1}\}} Q_0^{k,1} q_{k,2}$ 其中病毒擴散率 $q_{k,2} = q = 5\%$

第2期病毒成長後之總量 $Q_1^{k,2}$:= $Q_0^{k,1}(1+s_{k,2})$ 病毒成長率 $s_{k,2}=s=20\%$

Q3	[k,2]					
٧	0	1	2	3	4	5
0	0.0	0.0	0.0	0.0	0.0	40.0
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0
3	60.0	0.0	0.0	0.0	60.0	40.0

第2期網格k病毒原生量為 $Q_3^{k,2} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

第2期期末病毒分佈情形 Q₀^{k,2}

第3期網格k承接自鄰近格擴散進來的總病毒量為 $Q_2^{k,3} := \sum_{k \in \{k \mid d_{kk=1}\}} Q_0^{k,2} q_{k,3}$ 其中病毒擴散率 $q_{k,3} = q = 5\%$

第3期病毒成長後之總量 $Q_1^{k,3}:=Q_0^{k,2}(1+s_{k,3})$ 病毒成長率 $s_{k,3}=s=20\%$

第3期網格k病毒原生量為 $Q_3^{k,3} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

第3期期末病毒分佈情形 Q₀^{k,3}

第4期網格k承接自鄰近格擴散進來的總病毒量為 $Q_2^{k,4} := \sum_{k \in \{k \mid d_{kk=1}\}} Q_0^{k,3} q_{k,4}$ 其中病毒擴散率 $q_{k,4} = q = 5\%$

第4期病毒成長後之總量 $Q_1^{k,4}$:= $Q_0^{k,3}(1+s_{k,4})$ 病毒成長率 $s_{k,4}=s=20\%$

第4期網格k病毒原生量為 $Q_3^{k,4} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

第4期期末病毒分佈情形 Q₀^{k,4}

第5期網格k承接自鄰近格擴散進來的總病毒量為 $Q_2^{k,5} := \sum_{k \in \{k \mid d_{kk=1}\}} Q_0^{k,4} q_{k,5}$ 其中病毒擴散率 $q_{k,5} = q = 5\%$

第5期病毒成長後之總量 $Q_1^{k,5}$:= $Q_0^{k,4}(1+s_{k,5})$ 病毒成長率 $s_{k,5}=s=20\%$

第5期網格k病毒原生量為 $Q_3^{k,5} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

```
Q0[k,5]
V 0 1 2 3 4 5
0 96.6 94.2 161.4 90.4 256.8 197.3
1 139.3 130.2 176.4 273.3 130.8 367.6
2 306.5 310.5 313.3 154.1 223.2 301.7
3 355.7 171.5 244.9 444.9 600.4 232.6
```

第5期期末病毒分佈情形 Q₀^{k,5}

Part 3

考慮投藥後的病毒成長、擴散、原生量

第0期期末網格k病毒分佈情形Q₀^{k,0}

第1期網格k承接自鄰近格擴散進來的總病毒量為 $Q_2^{k,1} := \sum_{k \in \{k \mid d_{-}\}} Q_0^{k,0} q_{k,1}$ 其中若網格未投入藥劑則病毒擴散率 $q_{k,1} = q = 5\%$;反之,病毒擴散率為0

若第1期決定於座標(3,4)投入撲殺率80%範圍為1的藥劑

第1期未被投入藥劑網格的病毒成長後總量為 $Q_1^{k,1}:=Q_0^{k,0}(1+s_{k,1})$ 其中病毒成長率 $s_{k,1}=s=20\%$,而投入藥劑網格的病毒總量維持不變 $Q_1^{k,1}:=Q_0^{k,0}$

第1期網格k病毒原生量為 $Q_3^{k,1} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

Q1[k,1]+Q2[k,1]+Q3[k,1] V 0 1 2 3 4 5 0 12.0 0.5 40.0 6.1 61.2 6.4 1 42.5 2.8 6.6 86.4 10.0 93.6 2 90.8 71.0 114.8 9.1 0.0 63.9 3 2.0 42.8 45.5 100.0 97.5 0.0

未考慮殘存率前之病毒量為 $Q_1+Q_2+Q_3$

Q0[k,1]
V 0 1 2 3 4 5
0 12.0 0.5 40.0 6.1 61.2 6.4
1 42.5 2.8 6.6 86.4 10.0 93.6
2 90.8 71.0 114.8 9.1 0.0 63.9
3 2.0 42.8 45.5 60.0 19.5 0.0

第1期期末病毒分佈情形 Q₀^{k,1}

若第2期決定於座標(2,2)投入撲殺率80%範圍為1的藥劑 於座標(1,3)投入撲殺率60%範圍為2的藥劑

第2期未被投入藥劑網格的病毒成長後 總量為 $Q_1^{k,2}:=Q_0^{k,1}(1+s_{k,2})$ 其中病毒成長率 $s_{k,2}=s=20\%$,而投入藥劑網格的病毒總量 維持不變 $Q_1^{k,2}:=Q_0^{k,1}$

Q2	[k,2]					
				3		
0	2.2	2.7	0.7	5.1	1.1	7.7
1	5.3	6.0	2.1	1.6	7.7	4.0
				3.0		
				3.7		

第2期網格k承接自鄰近格擴散進來的 總病毒量為 $Q_2^{k,2} := \sum_{k \in \{k \mid d_1\}} Q_0^{k,1} q_{k,2}$ 其中 若網格未投入藥劑則病毒擴散率 $q_{k,2} = q = 5\%$;反之,病毒擴散率為0

Q1	.[k,2]+	Q2[k,2	2]+Q3[k	ر,2]		
٧	0	1				5
						55.5
1	56.3	9.3	10.1	88.0	19.8	116.3
2	114.7	92.0	121.4	13.9	5.1	81.4
3	69.1	57.2	59.7	75.7	86.4	44.2

未考慮殘存率前之病毒量為 $Q_1 + Q_2 + Q_3$

Q3	[k,2]					
V	0	1	2	3	4	5
0	0.0	0.0	0.0	0.0	0.0	40.0
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0
3	60.0	0.0	0.0	0.0	60.0	40.0

第2期網格k病毒原生量為 $Q_3^{k,2} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

第2期網格k之病毒殘存率 %

Q0[k,2] V 0 1 2 3 4 5 0 16.5 3.3 41.4 8.7 63.4 55.5 1 56.3 7.9 4.2 35.2 13.9 98.9 2 114.7 55.2 20.6 5.8 4.4 81.4 3 69.1 57.2 35.8 64.3 86.4 44.2

第2期期末病毒分佈情形 Q₀^{k,2}

Q2	[k,3]					
٧	0	1	2	3	4	5
					3.9	
1	1.2	6.0	5.3	1.6	10.1	7.5
2	9.0	4.3	5.1	6.2	9.4	7.4
3	2.9	8.0	7.1	6.4	5.6	8.4

第3期網格k承接自鄰近格擴散進來的 總病毒量為 $Q_2^{k,3} := \sum_{k \in \{k \mid d_{-1}\}} Q_0^{k,2} q_{k,3}$ 其中 若網格未投入藥劑則病毒擴散率 $q_{k,3} = q = 5\%$;反之,病毒擴散率為0

若第3期決定於座標(2,0)投入撲殺率100%範圍為1的藥劑

Q1	.[k,3]					
٧	0	1	2	3	4	5
	19.9					
1	67.5	9.5	5.1	42.2	16.6	118.7
2	114.7	66.2	24.8	7.0	5.2	97.6
3	82.9	68.7	43.0	77.2	103.7	53.0

第3期未被投入藥劑網格的病毒成長後 總量為 $Q_1^{k,3}:=Q_0^{k,2}(1+s_{k,3})$ 其中病毒成長率 $s_{k,3}=s=20\%$,而投入藥劑網格的病毒總量 維持不變 $Q_1^{k,3}:=Q_0^{k,2}$


```
Q1[k,3]+Q2[k,3]+Q3[k,3]

V 0 1 2 3 4 5

0 22.8 47.3 90.4 17.4 120.0 74.7

1 68.8 55.5 10.3 43.9 26.7 166.2

2 123.7 110.5 29.8 13.2 54.6 145.0

3 145.8 76.7 50.1 123.6 169.3 101.4
```

未考慮殘存率前之病毒量為 $Q_1 + Q_2 + Q_3$

第3期期末病毒分佈情形 Q₀^{k,3}

若第4期決定不投入藥劑

Q1[k,4] V 0 1 2 3 4 5 0 27.4 56.8 108.5 20.9 144.0 89.6 1 41.3 66.6 12.4 52.6 32.1 199.4 2 0.0 66.3 35.8 15.9 65.5 174.0 3 87.5 92.0 60.1 148.3 203.2 121.7

第4期未被投入藥劑網格的病毒成長後 總量為 $Q_1^{k,4}:=Q_0^{k,3}(1+s_{k,4})$ 其中病毒成長率 $s_{k,4}=s=20\%$,而投入藥劑網格的病毒總量 維持不變 $Q_1^{k,4}:=Q_0^{k,3}$ Q2[k,4]
V 0 1 2 3 4 5
0 4.1 8.4 3.8 12.7 5.9 14.3
1 3.9 7.4 11.0 3.4 19.2 12.3
2 8.1 8.1 6.4 12.6 17.7 16.1
3 3.8 8.9 11.5 11.6 14.0 15.7

第4期網格k承接自鄰近格擴散進來的 總病毒量為 $Q_2^{k,4} := \sum_{k \in \{k \mid d_{-}\}} Q_0^{k,3} q_{k,4}$ 其中 若網格未投入藥劑則病毒擴散率 $q_{k,4} = q = 5\%$;反之,病毒擴散率為0

r[k,4]
V 0 1 2 3 4 5
0 100.0 100.0 100.0 100.0 100.0 100.0
1 100.0 100.0 100.0 100.0 100.0 100.0
2 100.0 100.0 100.0 100.0 100.0 100.0
3 100.0 100.0 100.0 100.0 100.0

第4期網格k之病毒殘存率 %

第3期網格k病毒原生量為 $Q_3^{k,4} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

第4期期末病毒分佈情形 Q₀^{k,4}

若第5期決定於座標(1,5)投入撲殺率80%範圍為3的藥劑 座標(3,3)投入撲殺率80%範圍為1的藥劑

Q1[k,5] V 0 1 2 3 4 5 0 85.8 78.2 134.8 40.4 179.9 172.7 1 54.2 88.7 28.0 67.2 61.6 211.8 2 9.8 89.3 50.7 34.2 99.9 228.1 3 157.5 121.1 86.0 220.0 308.6 164.9

第5期未被投入藥劑網格的病毒成長後 總量為 $Q_1^{k,5}:=Q_0^{k,4}(1+s_{k,5})$ 其中病毒成長率 $s_{k,5}=s=20\%$,而投入藥劑網格的病毒總量 維持不變 $Q_1^{k,5}:=Q_0^{k,4}$

Q3[k,5]0.0 0.0 0.0 0.0 40.0 0.0 60.0 60.0 0.0 0.0 60.0 40.0 0.0 0.0 0.0 40.0 40.0 60.0 0.0 40.0 0.0 40.0 0.0

第4期網格k病毒原生量為 $Q_3^{k,5} := F_i$ with probability p_i 其中 $F_1 = 60$, $p_1 = 10\%$ $F_2 = 40$, $p_2 = 20\%$ $F_3 = 0$, $p_1 = 70\%$

Q2	[k,5]						
٧	0	1	2	3	4	5	
						7.5	
1	7.7	10.4	14.2	6.8	14.5	19.3	
						11.0	
3	5.5	13.9	7.2	17.9	11.0	22.4	

第5期網格k承接自鄰近格擴散進來的 總病毒量為 $Q_2^{k,5} := \sum_{k \in \{k \mid d_{k}\}} Q_0^{k,4} q_{k,5}$ 其中 若網格未投入藥劑則病毒擴散率 $q_{k,5} = q = 5\%$;反之,病毒擴散率為0

Q1[k,5]+Q2[k,5]+Q3[k,5] V 0 1 2 3 4 5 0 91.3 91.1 140.9 56.3 231.3 180.2 1 61.9 99.1 102.3 134.1 76.0 291.0 2 62.3 100.6 60.6 43.3 166.2 279.2 3 223.0 135.0 133.1 237.8 359.6 187.2

未考慮殘存率前之病毒量為 $Q_1+Q_2+Q_3$

r[k,5]								
٧	0	1	2	3	4	5		
0	100.0	100.0	100.0	90.0	80.0	60.0		
1	100.0	100.0	90.0	80.0	60.0	20.0		
			100.0					
3	100.0	100.0	60.0	20.0	54.0	80.0		

第5期網格k之病毒殘存率 %

Q0[k,5]
V 0 1 2 3 4 5
0 91.3 91.1 140.9 50.7 185.1 108.1
1 61.9 99.1 92.0 107.3 45.6 58.2
2 62.3 100.6 60.6 23.4 133.0 167.5
3 223.0 135.0 79.9 47.6 194.2 149.8

第5期期末病毒分佈情形