KM UII

King Mongkut's University of Technology

Machine Learning

Suthep Madarasmi, Ph.D.

Take Home Quiz 4 due Sun Feb 18, 2024

Name:
valiit.

I.D. Number:

Score: / 50

- 1. The following points (x_i, y_i) are discrete samples from a function $f(x) = ax^3 + bx^2 + cx + d$.
 - a. 5 points. 0.5 hrs. Show the update rule equation used to find the current a, b, c, and d after each iteration. Make sure you show the mathematics on how this is derived.
 - b. *15 points*. 2 hrs. Write a python program to find the best fit a, b, c, and d using gradient descent. You must write the gradient descent loop yourself and not use any gradient descent libraries. Attach the source code as well. *Hint*: You should get a, b, c, and d close to 2, -1, 1.3, and 6, respectively.

$\mathbf{X}_{\mathbf{i}}$	\mathbf{y}_{i}
-6	-470
-5	-276
-4	-143
-3	-61
-2	-17
-1	2
0	6
1	8
2	21
3	55
4	123
5	238
6	410

2. 10 points. 1 hrs. Redo problem 1b, but use the numerical method to calculate all your partial derivatives, where $h = x_i \sqrt{\epsilon}$.

$$rac{\partial}{\partial x_i} f(x_1, \ \dots, x_i, \ \dots, \ x_n) = \ rac{f(x_1, \ \dots, \ x_i \ + \ h, \ \dots, \ x_n) \ - \ f(x_1, \ \dots, \ x_i \ - \ h, \ \dots, \ x_n)}{2h}$$

- 3. *10 points*. 1 hrs. Solve problem 1b using Pseudo-Inverse Linear Regression to find (a, b, c, d). You can use numpy or other libraries to invert matrices.
- 4. 10 points. Change the function in "Simulated Annealing.ipynb" shown in class to the one in our lecture: $f(x,y) = x^2 + y^2$. Change the program to show more intermediate states (x_1, x_2, f) instead of only accepted states. Show the output movement image for (x_1, x_2) as a blue line.