Composite sandwich structure for use in structural components of aircraft

Patent number:

DE19715529

Publication date:

1998-08-06

Inventor:

SCHOKE BEREND DIPL ING (DE); BERG HANS

DIETER DIPL ING (DE)

Applicant:

DAIMLER BENZ AEROSPACE AIRBUS (DE)

Classification:

- international: B31D3/00; B32B3/12; B32B3/18; B32B5/18; B64C1/00;

B31D3/00; B32B3/12; B32B3/18; B32B5/18; B64C1/00; (IPC1-7): B32B5/18; B29C70/00; B32B5/22; B32B7/00;

B32B31/00; B64C1/00

- european:

B31D3/00C; B31D31/00C; B32B3/12; B32B3/18;

B32B5/18; B64C1/00C

Application number: DE19971015529 19970414
Priority number(s): DE19971015529 19970414

Report a data error here

Abstract of DE19715529

A sandwich structure for structural components of aircraft comprises a foam core (1) and facing layers (2). The foam core (1) is constructed from foam-filled hollow body segments (3) or rigid foam body segments (3) of a hard/rigid foam. Segments (3) lie above and/or adjacent to each other to form a segment row and a fibre layer (5) runs along a meandering path between adjacent segments so that the segment side faces (31) are fibre covered in some areas and exposed in adjacent areas. Fibrous facing layers (2) cover the upper and lower faces of the resulting segmented plate. The fibre layer (5) and the fibre facing layer (2) are impregnated with a matrix material which on curing bonds the fibrous layer (5) to the segments, the facing layers (2) and non fibre-covered areas to give a reinforced composite plate. Also claimed is a resin injection process for manufacturing the sandwich structure.

Data supplied from the esp@cenet database - Worldwide

(19) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

Patentschrift _® DE 197 15 529 C 1

(5) Int. Cl.⁶: **B** 32 **B** 5/18

B 32 B 5/22 B 32 B 7/00 B 32 B 31/00 B 64 C 1/00 B 29 C 70/00

(21) Aktenzeichen:

197 15 529.4-16

② Anmeldetag:

14. 4.97

43 Offenlegungstag:

45 Veröffentlichungstag der Patenterteilung:

6. 8.98

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Daimler-Benz Aerospace Airbus GmbH, 21129 Hamburg, DE

(12) Erfinder:

Schoke, Berend, Dipl.-Ing., 27239 Twistringen, DE; Berg, Hans Dieter, Dipl.-Ing., 27721 Ritterhude, DE

66) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> GB 21 51 184 A 20 66 731 A GB **GB** 12 74 569 3 89 978 A2 EP

DE-Z: Fertigungstechnik und Betrieb, 12. Jahrg., Heft 8, 1962, S. 533-537;

Sandwichstruktur f
ür Strukturbauteile eines Flugzeuges

Die Erfindung bezieht sich auf eine Sandwichstruktur für Strukturbauteile eines Flugzeuges und einem Herstellungsverfahren dazu gemäß dem Oberbegriff der Ansprüche 1 und 15.

Die Sandwichstruktur besitzt einen variablen Verbund ihrer Formteile, mit dem eine den Beanspruchungen angepaßte Druck-, Schub- und Biegefestigkeit und -steifheit erreicht wird. Das Herstellungsverfahren dazu erzielt binnen weniger Verfahrensschritte einen Formteileverbund, der einer den mechanischen Beanspruchungen angepaßten Druck-, Schub- und Biegefestigkeit und -steifheit, denen die Sandwichstruktur ausgesetzt wird, standhält.

Die Sandwichstruktur besteht aus einem Schaumstoffkern mit steifer Stegstruktur, dem mehrere Decklagen aufliegen. Die Körpersegmente bilden eine Körpersegmentreihe, innerhalb der zwischen den Segmentseitenflächen der benachbarten Körpersegmente mäanderartig eine Faserschicht geführt ist. Die Faserschicht ist dabei fortlaufend der Körpersegmentreihe zwischen den benachbarten Körpersegmenten (3) zwischengeschichtet, so daß die Segmentseitenflächen der Körpersegmente bereichsweise faserbedeckt - oder -unbedeckt sind. Dabei berühren die faserbedeckten Segmentseitenflächen die Faserschicht oder die faserunbedeckten Segmentseitenflächen. Die Körpersegmentreihe ergibt mit der zwischengeschichteten Faserschicht eine Körpersegmentplatte, auf der plattenober- und -unterseitig eine faserartige Decklage angeordnet ist.

Die Faserschicht und die faserartige Decklage sind ...

Beschreibung

Die Erfindung bezieht sich auf eine Sandwichstruktur für Strukturbauteile eines Flugzeuges und einem Herstellungsverfahren dazu gemäß dem Oberbegriff der Ansprüche 1 und 15.

Es sind Sandwichstrukturen bekannt, nach denen eine Kernschicht, die eine Wabenstruktur oder eine geeignete Stützstruktur besitzt, mit Deckschichten verbunden ist. Eine derartige Konstruktion offenbart die EP 0 389 978 A2, nach 10 der eine Mehrschichtplatte eine Kernschicht aufweist, die eine Honigwaben-Struktur oder offenzellige Schaumstruktur besitzt. Die Wabenstruktur besteht aus einem kunststoffbeschichtetem Material (NOMEX-Papier), Aluminium oder thermoplastischem Kunststoff, wogegen sich die Schaum- 15 formteilen nach Fig. 7 im geschlossenen Zustand; stoffe aus Polyethersulfon oder Melamin/Formaldehyd-Polykondensat zusammensetzen. Die Verbindung der faserverstärkten thermoplastischen Deckschichten mit der Kernschicht wird durch Klebung gelöst. Dabei wird ein thermoplastischer Klebstoff, der mit dem Kunststoff der Deck- 20 schichten verträglich ist, nur an den Berührungslinien zwischen den Zellwänden der Kernschicht und der aufliegenden Deckschichten aufgetragen. Derartige Lösungen werden auch von Hintersdorf [Gert Hintersdorf: Fertigungstechnik und Betrieb; Heft 8; August 1962; Seiten 533-537] in einem 25 Aufsatz beschrieben. Diesen Lösungen haftet das Problem an, daß die in Wabenbauweise (aus den beiden Deckschichten und den dazwischenliegenden Waben) geklebten Konstruktionen bei den üblichen Belastungen (Druck-, Schubund Biegebeanspruchung) aufgrund der festgelegten Orien- 30 tierungsrichtung entsprechende Festigkeits- und Steifigkeitsnachteile besitzen. Ein variabeler Formteileverbund der Elemente läßt sich mit derartig aufgebauten Sandwich-Bauteilen nicht realisieren. Es sind ferner die Druckschriften: "GB 1 274 569, GB 2 151 184 und GB 2 066 731" bekannt, 35 die Lösungen zur Realisierung von Sandwichstrukturen vor-

Die angegebenen Lösungen schlagen keine Maßnahme vor, nach der die Festigkeits- und Steifigkeitsdefizite des Kernverbundes (hinsichtlich der Belastung auf Biege- und 40 Schubfestigkeit) überwunden werden, und die es gestatten, Sandwichstrukturen mit variabler Körpergeometrie fertigungstechnisch umzusetzen.

Demzufolge liegt der Erfindung die Aufgabe zugrunde, eine gattungsgemäße Sandwichstruktur derart zu gestalten, 45 daß mit dem variablen Verbund ihrer Formteile eine den Beanspruchungen angepaßte Druck-, Schub- und Biegefestigkeit und -steifheit erreicht wird. Dazu ist ein gattungsgemä-Bes Herstellungsverfahren aufzuzeigen, mit dem man binnen weniger Verfahrensschritte einen Formteileverbund er- 50 zielen wird, der einer den mechanischen Beanspruchungen angepaßten Druck-, Schub- und Biegefestigkeit und -steifheit, denen die Sandwichstruktur ausgesetzt wird, standhält.

Diese Aufgabe wird durch die in den Ansprüchen 1 und 15 angegebenen Maßnahmen gelöst. In den weiteren Unter- 55 ansprüchen sind zweckmäßige Ausgestaltungen angegeben.

Die Erfindung ist in einem Ausführungsbeispiel anhand der Zeichnungen näher beschrieben.

Fig. 1 die (trocken aufgebaute) Sandwichstruktur mit fa- 60 serverstärkten Stegen zwischen den Balkensegmenten einer Körpersegmentreihe;

Fig. 2 die Segmentgeometrie einer aus mehreren horizontal gereihten Balkensegmenten gebildeten Sandwichstruk-

Fig. 3 die Segmentgeometrie einer aus mehreren horizontal gereihten Quadersegmenten gebildeten Sandwichstruktur:

Fig. 4 die Segmentgeometrie einer aus mehreren überund nebeneinander liegenden Quadratwaben-Segmenten zusammengesetzten Sandwichstruktur;

Fig. 5 die Segmentgeometrie einer aus mehreren überund nebeneinander liegenden Dreieckwaben-Segmenten zusammengesetzten Sandwichstruktur;

Fig. 6 die Segmentgeometrie einer aus mehreren überund nebeneinander liegenden Hexagonalwaben-Segmenten zusammengesetzten Sandwichstruktur;

Fig. 7 die Positionierung der Sandwichformteile (zu einer aus quadratförmigen Balkensegmenten gebildeten horizontalen Körpersegmentreihe und der ihnen aufliegenden Decklagen) in einer Vorrichtung;

Fig. 8 die Vorrichtung mit den positionierten Sandwich-

Fig. 9 die Anordnung nach Fig. 8 mit einer der Vorrichtung angeschlossenen Imprägniermittel-Zuführeinrichtung;

Fig. 10 die Anordnung nach Fig. 9 nach geschehener Durchtränkung (der Stege und der Decklagen) der Sandwichstruktur.

In der Fig. 1 ist der trockene Aufbau einer Sandwichstruktur für Strukturbauteile in einem Flugzeug gezeigt. Die Sandwichstruktur besteht demnach aus einem Schaumstoffkern 1 mit steifer Stegstruktur, dem eine faserartige Decklage 2 auf- und (auch oder) unterliegt. Der Schaumstoff kern 1 ist aus mehreren nebeneinander liegenden Körpersegmenten 3 aufgebaut, deren Anordnung eine horizontale Körpersegmentreihe erzielt. Der Aufbau der Körpersegmentreihe erfolgt - analog dem Aufbau nach Fig. 2 - mit Balkensegmenten, deren schmale Segmentseitenflächen 31 zueinander benachbart angeordnet sind. Zwischen diesen benachbart liegenden Segmentseitenflächen 31 ist eine Faserschicht 5 geführt, die fortlaufend der Körpersegmentreihe mäanderartig (ober- oder unterliegend) über die nächstliegende breite Segmentseitenfläche 31 geleitet wird.

Der Aufbau erfolgt derart, daß die benachbarten schmalen Segmentseitenflächen 31 den ihnen zwischengeschichteten Bereich der Faserschicht 5 berühren. Daraus ergibt sich, daß fortlaufend der Körpersegmentreihe sich faserbedeckte und faserunbedeckte breite Segmentseitenfläche 31 abwechseln, die bereichsweise ober- und unterhalb der Breitseiten der Balkensegmente auftreten. Dabei liegt den breitseitigen Segmentseitenflächen 31 der Körpersegmentreihe die vorgenannte Decklage 2 auf und unter.

Die (bei diesem Aufbau) eingesetzten Balkensegmente verkörpern - wie alle allgemein genannten Körpersegmente 3 - einen hohlen Segmentkörper mit faserverstärkten Stegstrukturen, dessen Hohlraum man vollständig mit einem Schaumstoff 4 ausgeschäumt. Demgemäß wird der Hohlraum der Körpersegmente 3 mit einem Schaumstoff 4 befüllt, der auf Duromerschäumen, vorzugsweise mit Phenoloder Polyimidschaum, oder Thermoplastschäumen, vorzugsweise Polyetheremid- oder Polyethersulfonschaum, basiert.

Eine weitere Möglichkeit besteht darin, daß man (allgemein) Körpersegmente 3 einsetzt, die aus einem Hartschaumstoffblock herausgeschnitten werden. Diese Körpersegmente 3 bestehen nur aus Schaumstoff, sind also nicht immer ausgeschäumte Hohlkörper.

Derartig genannte Körpersegmente 3 werden auch als Schaumstoffsegment bezeichnet.

Den faserunbedeckten breitseitigen Segmentseitenflächen 31 der Körpersegmentreihe kann zusätzlich eine Faserdeckschicht aufgelegt und/oder unterlegt sein.

Die Faserschicht 5, die Faserdeckschicht und die faserartigen Decklagen 2 bestehen beispielgemäß aus einem Gewebe oder gewebeartigen Material. Diese Schichten und die Decklagen 2 lassen sich (bei einer derartigen Sandwichstruktur) alternativ auch mit einem Unidirektionalfasergebilde, einem Gestricke, einem Gewirke oder mit Fasermatten realisieren, deren Faserngebilde aus Glasfasern, Kohlenstoffasern, Polymerfasern, vorzugsweise Aramidfasern, Polyethylenfasern und Polyamidfasern, oder Naturfasern, vorzugsweise Ramie und Baumwolle, zusammengesetzt ist.

Das (mäanderartig geführte) Gewebe der Faserschicht 5, das Gewebe der Decklagen 2 (auch Decklagengewebe bezeichnet) und – bei zusätzlicher Auflage – das Gewebe der Faserdeckschicht wird beispielgemäß mit einem Glasgewebe oder glasartigem Gewebe ausgeführt, da die Glasoder glasartigen Fasern durch ihre Gewebe- (und Gestrick)fähigkeit für diesen Aufbau besonders geeignet sind.

Es wird ergänzt, daß Glasfasern für derartige Sandwichbauweisen nicht mehr oder weniger geeignet sind als die anderen Fasern. Sie werden beispielgemäß eingesetzt, da ihr Preis/Leistungsverhältnis (unter wirtschaftlichem Aspekt) den Bedürfnissen der Bauteile der Innenausstattung besonders gut entspricht.

Nach einem (später beschriebenen) Behandlungsprozeß, 20 dem der trockene Aufbau der Sandwichstruktur unterzogen wird, sind die Gewebeschichtbahnen (der Faserschicht 5, der Faserdeckschicht) mit den faserbedeckten Segmentseitenflächen 31 der Balkensegmente (d. h. mit der Segmentoberfläche) und das Decklagengewebe (der Decklagen 2) 25 mit dem mäanderartig geführten Gewebe (der Faserschicht 5) verklebt.

Auch ohne zusätzliche Auflage der Faserdeckschicht erfolgt eine Verklebung des Decklagengewebes (der Decklagen 2) mit den gewebeunbedeckten Bereichen der Körper- 30 segmentreihe.

Die Gewebeschichtbahnen und das (die) Decklagengewebe bilden – nach Abschluß des Behandlungsprozesses – mit den Balkensegmenten (der Körpersegmentreihe) einen linienförmigen segmentversteiften Verbund. Dabei bilden 35 die Gewebezwischenlagen, welche (gemäß dem später beschriebenen Behandlungsprozeß) hernach mit Harz imprägniert und danach ausgehärtet werden, Versteifungsstege. Die Bauteile mit einer derartig ausgehärteten Sandwichstruktur besitzen gegenüber bekannten Sandwichkonstruktionen den Vorteil, daß mit dem linienförmigen segmentversteiften Verbund eine den Beanspruchungen angepaßte Druck-, Schuh- und Biegefestigkeit und -steifheit ihrer Sandwichstruktur erreicht wird. Dieses Ergebnis wirkt auch bei der Belastbarkeit der Randbereiche der Konstruktion, 45 beispielsweise den Hatrackrändern, vorteilhaft.

Der in der Fig. 2 gewählte (trockene) Aufbau erganzt die vorangestellten Darstellungen. Es werden die zu einer Körpersegmentreihe formierten Balkensegmente, die in horizontaler Ebene angeordnet sind. Die als Körpersegmente 3 eingesetzten Balkensegmente sind - im Unterschied der Anordnung nach Fig. 1 - breit- und schmalseitig entlang dem gestreckten Längsverlauf vollständig von einer als Gewebeschicht ausgeführten Faserschicht 5 (strumpfartig) umhüllt. Dabei ist den breiten Segmentseitenflächen 31 eine als ge- 55 webeartig ausgeführte Decklage 2 auf- und unterlegt. Aufgrund der nicht mäanderartigen Führung der Faserschicht 5 berühren sich die den schmalen Körpersegmentseitenflächen 31 der Balkensegmente aufliegenden Bereiche der Faserschicht 5, sofern die Schmalseiten der Balkensegmente 60 nebeneinander liegend einander anstoßen. Die Balkensegmente sind gleichartig denen nach Fig. 1 mit einem Schaumstoff 4 vollständig ausgeschäumt. Nach Abschluß der (später beschriebenen) Behandlungsmethode dieses trockenen Sandwichaufbaus sind die Gewebeschichtbahnen 65 (die Bereiche der Faserschicht 5) mit den faserbedeckten Segmentseitenflächen 31 der Balkensegmente (d. h. mit der Segmentoberfläche) und das Decklagengewebe (der Decklagen 2) mit dem Gewebe (der Faserschicht 5) verklebt.

Die Gewebeschichtbahnen und das (die) Decklagengewebe bilden – nach Abschluß des Behandlungsprozesses – mit den Balkensegmenten (der Körpersegmentreihe) einen linienförmigen segmentversteiften Verbund. Die angegebenen Belastungs-Vorteile der dermaßen realisierten Bauteile mit einer derartig ausgehärteten Sandwichstruktur werden mit dem Realisierung des genannten linienförmigen segmentversteiften Verbundes gleichermaßen erreicht.

Eine weitere Möglichkeit der Ausführung derartiger belastungsstabiler Sandwichstrukturen wird mit dem (trockenen) Aufbau der Sandwich-Anordnung nach Fig. 3 erreicht. Im Unterschied der Lösungen nach den Fig. 1 und 2 werden hier Körpersegmente 3 eingesetzt, die als Quadersegment ausgeführt sind. Dabei sind gleichfalls die schmalen und breiten Körpersegmentseiten flächen 31 vollständig mit der als Gewebeschicht ausgeführten Faserschicht 5 (strumpfartig) überzogen. Aufgrund der nicht mäanderartigen Führung der Faserschicht 5 berühren sich die den schmalen Körpersegmentseitenflächen 31 der Quadersegmente aufliegenden Bereiche der Faser schicht 5, sofern die vertikal angeordneten Schmalseiten der Quadersegmente nebeneinander liegend einander anstoßen und eine erste horizontale Körpersegmentreihe bilden. Gleichermaßen ist eine zweite Körpersegmentreihe horizontal aufgebaut. Nach dieser Ausführung erfolgt eine vertikale Berührung der breiten Körpersegmentflächen 31 der beiden Körpersegmentreihen. Dabei berühren jeweils zwei einander anstoßende schmale Körpersegmentseitenflächen 31 der ersten Körpersegmentreihe jeweils eine breite Körpersegmentfläche 31 der zweiten Körpersegmen-

Die Berührung der versetzt angeordneten vertikalen Körpersegmentseitenflächen 31 erfolgt demnach im T-Stoß. Dem horizontalen Aufbau der Körpersegmentreihen ist aufliegend der gewebeunbedeckten Seitenflächen 31 jeweils ein Decklagengewebe 2 ober- und unterführt. Es ist vorteilhaft, den gewebeunbedeckten Bereich der Körpersegmentreihen mit einer Faserdeckschicht zu bedecken.

Der Hohlraum der Quadersegmente ist gleichartig (den vorangestellten Ausführungen) mit einem Schaumstoff 4 vollständig ausgeschäumt.

Nach Abschluß der (später beschriebenen) Behandlungsmethode dieses trockenen Sandwichaufbaus sind die Gewebeschichtbahnen (die Bereiche der Faserschicht 5 und der Faserdeckschicht) mit den faserbedeckten Segmentseitenflächen 31 der Quadersegmente (d. h. mit der Segmentoberfläche) und das Decklagengewebe (der Decklagen 2) mit den gewebeunbedeckten Bereichen [oder mit den faserdeckschichtigen Bereichen] der Körpersegment(doppel)reihe(n) verklebt.

Die Gewebeschichtbahnen und das (die) Decklagengewebe bilden – nach Abschluß des Behandlungsprozesses – mit den Quadersegmenten [der Körpersegment(doppel)reihe(n)] einen linienförmigen segmentversteiften Verbund. Die angegebenen Belastungs-Vorteile der dermaßen realisierten Bauteile mit einer derartig ausgehärteten Sandwichstruktur werden mit dem Realisierung des genannten linienförmigen segmentversteiften Verbundes gleichermaßen erreicht.

Die Fig. 4 bis 6 zeigen eine Auswahl ausführungsgemäßer Schaumstoffsegmentgeometrien. Es handelt sich dabei um mehrreihig aufgebaute (trockene) Sandwichstrukturen mit Schaumstoffkernwerkstoffen, die faserverstärkte Stegstrukturen aufweisen. Danach werden in der Fig. 4 Quadrat-Wabensegmente (Würfel-Segmente), in der Fig. 5 Dreieck-Wabensegmente und in der Fig. 6 Hexagonal-Wabensegmente, die beispielsweise strumpfartig mit einer als Gewebeschicht ausgeführten Faserschicht 5 überzogen sind, ge-

5

zeigt, die über- und nebeneinander liegend angeordnet sind und eine (aus mehreren horizontalen Körpersegmentreihen gebildete) integrierte horizontale Körpersegmentreihe ergeben. Ober- und unterliegend der horizontalen gewebebedeckten Oberfläche der integrierten Körpersegmentreihe wird (kann vorteilhafterweise) gleichermaßen jeweils ein Decklagengewebe (der Decklage 2) aufliegen.

Die Segmentgeometrie der Körpersegmente 3 ist bei diesen Ausführungen (und auch allgemein bezogen) äußerlich körperlich verschieden, die vorzugsweise eine waben-, quader- oder würfelförmige Gestalt besitzen, deren Segmentquerschnitt vieleckig, zumindestens acht-, sechs-, vier- oder dreieckförmig, ausgebildet ist.

Es wird (allgemein auf alle Ausführungen bezogen) ergänzt (aber figurlich nicht gesondert offenbart), daß es bei 15 derartigen Sandwichstrukturen vorteilhaft ist, wenn die Segmentseitenflächen 31 eine konvexe oder konkave Form besitzen, wobei die innerhalb der Körpersegmentreihe positionierten Körpersegmente 3 einen schubfesten Segmentverbund bilden.

Ebenso ist es von Vorteil, daß die Körpersegmente (3) zueinander konkordant sind und die Körpersegmentreihe durch Segmentverbundpflasterung (ähnlich der Art einer Verbundsteinpflasterung) gebildet ist.

Auch bei den Ausführungen nach den Fig. 4 bis 6 ergibt 25 die zwischen den Segmentseiten flächen 31 zwischengeschichtete Faserschicht 5 und die der faser- (bzw. gewebe)bedeckten Oberfläche horizontal aufliegende Gewebelage (der Decklage 2) nach erfolgter Aushärtung der (nachfolgend beschriebenen) Faserimprägnierung einen Zwischenlagen-Fasersteg mit steifer Stegstruktur. Die angegebenen Belastungs-Vorteile der dermaßen realisierten Bauteile mit einer derartig ausgehärteten Sandwichstruktur werden mit dem Realisierung des genannten linienförmigen segmentversteiften Verbundes gleichermaßen erreicht.

Unter Bezug auf die Fig. 7 bis 10 wird nachfolgend die Behandlungsmethode der vorbeschriebenen Ausführungen zur Erlangung einer ausgehärteten Sandwichstruktur mit dem einem linienförmigen segmentversteiften Verbund geschildert.

Es wird ein Verfahren zur Herstellung einer Sandwichstruktur für Strukturbauteile eines Flugzeuges, das auf den Aufbau der (trockenen) Sandwichstruktur (nach Fig. 4) zurückkommt.

Körpersegmente 3 horizontal nebeneinander angeordnet, deren Hohlraum man in einem vorgelagerten Prozeß mit Schaumstoff 4 vollständig ausschäumt, um Schaumstoffsegmente zu erzielen. Diese Schaumstoffsegmente werden gemäß der Darstellung nach Fig. 7 (und wie bereits vorbe- 50 schrieben) mit einer Faserschicht 5 bedeckt, genauer -(strumpfartig) mit Glasgewebe bedeckt oder mit Glasgewebestrümpfen überzogen. Die eine horizontale Körpersegmentreihe bildenden Schaumstoffsegmente werden innerhalb einer geschlossenen Vorrichtung (geschlossene Gestalt 55 nicht dargestellt), die horizontal angeordnete Wandungen 61, 62 aufweist. Dabei werden mehrere Schaumstoffsegmente mit der Glas- oder glasartigen Faserschicht 5 überzogen. Sie werden in der Vorrichtung 6 derart zu einer horizontalen Körpersegmentreihe zusammengesetzt, daß sich die 60 Segmentseitenflächen 31 mit der Faserschicht 5 (den inneren Glasfaserflächen) stegartig berühren.

Den Körpersegmenten 3 der Körpersegmentreihe wird auf der nicht faserverstärkten vertikalen Oberfläche eine faserartige Deckschicht (Glasgewebe) aufgelegt und danach – wie aus Fig. 8 (ohne Darstellung des geschlossenen Wandungsbereiches) – der gesamte Aufbau innerhalb der Vorrichtung vollständig abgedichtet verschlossen.

6

Dem innerhalb der Vorrichtung 6 befindlichen trockenen Sandwich-Aufbau wird – wie in Fig. 9 dargestellt – ein Imprägniermittel 8, das eine Imprägniermittel-Zuführeinrichtung 7 unter Druck über eine Rohr- bzw. Schlauchleitung, die einem der Wandung 62 installierten Rohr- bzw. Schlauchleitungsanschluß angeschlossen ist, zuleitet (genauer: injiziert), das eine Durchtränkung der unterhalb der Körpersegmentreihe liegenden faserartigen Decklage 2 (Glasgewebeschicht) auslöst. Dabei wird – wie aus Fig. 10 (abschließend der Behandlung) ersichtlich – das Imprägnier mittel 8, welches man als Harz oder harzartige Substanz injiziert, entlang dem stegartigen Verlauf der Gewebeschicht 5 in die oberhalb der Körpersegmentreihe liegende gewebeartige Decklage 2 aufsteigen, wodurch diese durchtränkt wird.

Der Verfahrensschritt wird allgemein als Harzinjektion bezeichnet, die bishin eine vollständige Durchtränkung der gewebeartigen Decklagen 2 inclusive der vertikalen Gewebestege bis in die obere Decklage 61 infolge des aufsteigenden Harzes erreicht.

Seitlich und oberhalb der (nicht gezeigten) vertikalen Wandungsbereiche der Vorrichtung 6 sind Entlüftungskanäle (wenigstens ein Entlüftungskanal) herausgeführt. Somit zeigt ein beginnender Imprägniermittel-Austritt (Harzüberschuß) die vollständige Durchtränkung der Gewebebahnen (der Faserschicht 5 (Glasgewebe) und der faserartige Deckschicht (Glasgewebe) an. Die Injektion wird abgebrochen und der Härteprozeß eingeleitet. Nach vollständiger Durchtränkung der Glasgewebeschichten wird die Injektion abgebrochen und deren Härteprozeß eingeleitet, infolge dessen sich nach deren Aushärtung ein linienförmiger segmentversteifter Verbund der Körpersegmente einstellen wird.

Es wird ergänzt, daß vor dem Einsetzen des Härteprozesses der imprägnierte Aufbau durch einen innerhalb der Vorrichtung aufgebauten Druck gepreßt wird. Danach wird der Härteprozeß durch Wärmezufuhr eingeleitet.

Die Wärmezufuhr wird durch direkte Beheizung des imprägnierten Aufbaus mittels vorrichtungsintemer (nicht dargestellter) installierter Heizelemente geschehen. Eine weiter Möglichkeit der Wärmezufuhr besteht durch indirekte Beheizung des imprägnierten Aufbaus vermittels abgegebener Kontaktwärme. Die Kontaktwärme wird über externe Wärmespender der (Wandung der) Vorrichtung aufgespeichert und von dort auf den Aufbau übertragen.

Eine gute Gewebeimprägnierung ohne Harzüberschuß in Danach werden mehrere als Würfelsegmente ausgeführte den Stegen (Faserschicht 5, faserartige Deckschicht) und Decklagen 2 läßt sich dermaßen umsetzen, wonach die Durchtränkung in der stegartig verlaufenden Faserschicht 5 haumstoff 4 vollständig ausschäumt, um Schaumstoffsegente zu erzielen. Diese Schaumstoffsegmente werden – mäß der Darstellung nach Fig. 7 (und wie bereits vorbehrieben) mit einer Faserschicht 5 bedeckt, genauer –

Mittels dieser Behandlungsmethode(n) lassen sich Sandwichbauteile erzeugen, deren Eigenschaften den Anforderungen (verschiedenen mechanischen Belastungen) weitestgehend angepaßt werden können. So sind für derartige Bauteile (Sandwichstrukturen) primär die auf Biegung und Schub in einer Orientierungsrichtung beanspruchten linienförmigen Stegstrukturen vorteilhaft. Dabei wird die Geometrie der Schaumstoffsegmente den Forderungen des Bauteils oder des Bauteilbereichs angepaßt. Die Größe der Körpersegmente 3 und der daraus resultierende Stegabstand sind dabei wichtige Einflußgrößen hinsichtlich der Steifigkeit, aber auch der Segmentdichte innerhalb einer Körpersegmentreihe. Das Erreichen der Kombination von steifen Stegstrukturen mit einem schaumstoffgefüllten Wabenaufbau und die Erzielung geschlossener Oberflächen bei derartigen Sandwichstrukturen stellen Ergebnisse dar, die für den Flugzeugbau besonders interessant sind. Sie werden da10

15

20

durch bereichert, wonach eine automatische Positionierung der einzelnen Schaumstoffsegmente zu einem Plattenverbund die Herstellung derartiger Sandwichbauteile für Strukturbauteile eines Flugzeuges, beispielsweise für die Innenausstattung, wirtschaftlich beeinflußt.

Bezugszeichenliste

1 Schaumstoffkern

2 Decklage; faserartig, gewebeartig

3 Körpersegment

31 Segmentseitenfläche

4 Schaumstoff

5 Faserschicht; Gewebeschicht

6 Vorrichtung; geschlossen

61 Wandung

62 Wandung

7 Imprägniermittel-Zuführeinrichtung

8 Imprägniermittel; Harz

9 Gewebeimprägnierung

Patentansprüche

- Sandwichstruktur für Strukturbauteile eines Flugzeuges, bestehend aus einem Schaum stoffkern (1) mit 25 steifer Stegstruktur, dem mehrere Decklagen (2) aufliegen, dadurch gekennzeichnet, daß
 - der Schaumstoffkern (1) aus mehreren hohlen Körpersegmenten (3), deren Hohlraum vollständig mit Schaumstoff (4) ausgeschäumt ist, oder 30 aus mehreren massiven Körperseg menten (3), die aus einem Hartschaumstoff bestehen, gebildet ist, - die Körpersegmente (3) über- und/oder nebeneinander liegen, wobei sie eine Körpersegmentreihe bilden, innerhalb der zwischen den Seg- 35 mentseitenflächen (31) der benachbarten Körpersegmente (3) mäanderartig eine Faserschicht (5) geführt ist, die fortlaufend der Körpersegmentreihe zwischen den benachbarten Körpersegmenten (3) zwischengeschichtet liegt, so daß die Seg- 40 mentseitenflächen (3) der Körpersegmente (3) bereichsweise faserbedeckt - oder -unbedeckt sind, derart, daß die faserbedeckten Segmentseiten flächen (31) die Faserschicht (5) oder die faserunbedeckten Segmentseitenflächen (31) sich berühren 45 und die Körpersegmentreihe mit der zwischengeschichtenen Faserschicht (5) eine Körpersegmentplatte ergibt, auf der plattenober- und -unterseitig eine faserartige Decklage (2) angeordnet ist, - die Faserschicht (5) und die faserartige Deck- 50 lage (2) vollständig mit einem Imprägniermaterial durchtränkt sind, derart, daß nach der erfolgten Aushärtung der Faserimprägnierung eine Verklebung der Faserschicht (5) mit den faserbedeckten Segmentseitenflächen (31) und den faserbedeck- 55 ten Bereichen der Körpersegmentplatte eintritt
- Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die Körpersegmentplatte bei vertikaler Anordnung der nebeneinander liegenden Körperseg mente (3) plattenober- und -unterseitig mit einer Faserdeckschicht bedeckt ist, die mit der Körpersegment-

eintrifft.

und die Verklebung der faserartigen Decklage (2)

mit der Faserschicht (5), die den faserbedeckten

Bereichen der Körpersegmentplatte aufliegt, und

erfolgt, wodurch ein linienförmiger segmentver-

steifter Plattenverbund der Körpersegmente (3)

den faserunbedeckten Segmentseiten flächen (31) 60

- platte und der ihr aufliegenden faserartigen Decklage (2) verklebt ist.
- 3. Sandwichstruktur nach Anspruch 2, dadurch gekennzeichnet, daß die Körpersegmentplatte bei horizontaler Anordnung der über- und/oder nebeneinander liegenden Körpersegmente (3) plattenober- und -unterseitig faserunbedeckte Bereiche aufweist, die mit der Faserdeckschicht bedeckt sind, die mit der Körpersegmentplatte und der ihr ausliegenden faserartigen Decklage (2) verklebt ist.
- 4. Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die Segmentgeometrie der Körpersegmente (3) äußerlich körperlich verschieden ist, die vorzugsweise eine waben-, quader- oder würfelförmige Gestalt besitzen, deren Segmentquerschnitt vieleckig, zumindestens acht-, sechs-, vier- oder dreieckförmig, ausgebildet ist.
- 5. Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die Segmentseitenflächen (31) eine konvexe oder konkave Form besitzen, wobei die innerhalb der Körpersegmentreihe positionierten Körpersegmente (3) einen schubfesten Segmentverbund bilden.
- Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die Körpersegmente (3) zueinander konkordant sind und die Körpersegmentreihe durch Segmentverbundpflasterung gebildet ist.
- 7. Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die Körpersegmentreihe aus mehreren Balken- oder Quadersegmenten zusammengesetzt ist, die sich durch die horizontale Aneinanderreihung der Balkenseitenflächen ergibt.
- Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die zwischen den Segmentseitenflächen (31) zwischengeschichtete Faserschicht (5) nach erfolgter Aushärtung der Faserimprägnierung einen Zwischenlagen-Fasersteg mit steifer Stegstruktur ergibt.
- 9. Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die Faserschicht (5) und die faserartige Decklage (2) nach erfolgter Aushärtung der Faserimprägnierung eine faserverstärkte Stegstruktur ergibt. 10. Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die Faserschicht (5) und die faserartige Decklage (2) mit einem Harz oder einem harzartiges Material durchtränkt ist.
- 11. Sandwichstruktur nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Faserschicht (5), die Faserdeckschicht und die faserartige Decklage (2) aus einem Gewebe, einem Unidirektionalfasergebilde, einem Gestricke, einem Gewirke oder aus Fasermatten bestehend ist, deren Faserngebilde aus Glasfasern, Kohlenstoffasern, Polymerfasern, vorzugsweise Aramidfasern, Polyethylenfasern und Polyamidfasern, oder Naturfasern, vorzugsweise Ramie und Baumwolle, zusammengesetzt ist.
- 12. Sandwichstruktur nach Anspruch 11, dadurch gekennzeichnet, daß die Faserschicht (5), die Faserdeckschicht und die faserartige Decklage (2) mit einem gewebe- und/oder gestrickfähigem Material realisiert ist. 13. Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die faserunbedeckte Seitensegmentfläche (31) des einem Körpersegment (3) nebenliegenden Körpersegmentes (3) der Körpersegmentreihe mit einer Faserdeckschicht bedeckt ist.
- Sandwichstruktur nach Anspruch 1, dadurch gekennzeichnet, daß der Schaumstoff (4) der hohlraumbeschäumten Körpersegmente (3) mit Duromerschäu-

men, vorzugsweise mit Phenol- oder Polyimidschaum, oder mit Thermoplastschäumen, vorzugsweise Polyetheremid- oder Polyethersulfonschaum, realisiert ist. 15. Verfahren zur Herstellung einer Sandwichstruktur nach Anspruch 1, gekennzeichnet durch folgende 5 Schritte:

- a) Mehrere schaumstoffgefüllte Körpersegmente oder Hartschaumstoff-Körpersegmente werden mit einer Faserschicht überzogen und in einer geschlossenen Vorrichtung derart zu einer Körpersegmentreihe zusammengesetzt, daß sich die Segmentseitenflächen mit der Faserschicht stegartig berühren,
- b) den Körpersegmenten der Körpersegmentreihe wird auf der nicht faserverstärkten horizontalen Oberfläche eine faserartige Deckschicht aufgelegt und danach der gesamte Aufbau innerhalb der Vorrichtung vollständig abgedichtet verschlossen,
- c) dem innerhalb der Vorrichtung befindlichen 20 Aufbau wird ein extern zugeführtes Imprägniermittel injiziert, das eine Durchtränkung der einseitig der Körpersegmentreihe liegenden faserartigen Decklage auslöst, wobei das Imprägniermittel entlang dein stegartigen Verlauf der Gewebeschicht 25 in die gegenüberliegende Körpersegmentreihe liegende gewebeartige Decklage aufsteigen wird, wodurch diese durchtränkt wird,
- d) nach vollständiger Durchtränkung der Faserschicht und der faserartigen Decklagen wird die 30 Injektion abgebrochen und deren Härteprozeß eingeleitet, infolge dessen sich nach deren Aushärtung ein linienförmiger segmentversteifter Verbund der Körpersegmente einstellen wird.
- 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß vor dem Einsetzen des Härteprozesses der imprägnierte Aufbau durch einen innerhalb der Vorrichtung aufgebauten Druck gepreßt wird und danach der Härteprozeß durch Wärmezufuhr eingeleitet wird.
- 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Wärmezufuhr durch direkte Beheizung des imprägnierten Aufbaus mittels vorrichtungsinterner installierter Heizelemente geschehen wird.
- 18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Wärmezufuhr durch indirekte Beheizung des imprägnierten Aufbaus vermittels abgegebener Kontaktwärme, die der Vorrichtung extern aufgespeichert wird, geschehen wird.
- 19. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Durchtränkung in der stegartig verlaufenden Faserschicht und in den faserartigen Decklagen ohne Imprägniermittelüberschuß durchgeführt wird, die dann durch eine thermische Expansion der schaumstoffgefüllten Körpersegmente während des 55 Härteprozesses unterstützt wird.

Hierzu 4 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 197 15 529 C1 B 32 B 5/18

6. August 1998

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 197 15 529 C1 B 32 B 5/18

Nummer: Int. Cl.⁶: Veröffentlichungstag:

DE 197 15 529 C1 B 32 B 5/186. August 1998

