Lecture 5

- Recap MLJ
- Regularisation
- Gradient Descent
- Autodiff and more optimisation

Motivation

In the old days

Typically n > p (much more data than predictors)

For example: predict blood pressure based on age, gender and body mass index (BMI) (e.g. n = 200 patients, p = 3).

Nowadays: Big Data

Often $n \approx p$ or n < p

For example: predict blood pressure based on $500\,000\,\text{single}$ nucleotide polymorphisms (SNP) $(n=200, p=500\,000)$.

⇒ Linear Model perfectly fits the training data.

Beyond Least Squares Regression

Recall: A linear regression model is given by

$$Y = X\beta + \epsilon$$

where

 $X \in \mathbb{R}^{n \times p}$ is a matrix of covariates, $\beta \in \mathbb{R}^p$ is the vector of regression coefficients, $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$.

Ordinary least squares regression:

$$\hat{\beta}_{OLS} = \underset{\beta}{\operatorname{arg \, min}} S(\beta)$$

$$S(\beta) = \frac{1}{2} \| Y - X\beta \|_{2}^{2} = \sum_{i=1}^{n} (Y_{i} - \sum_{k=1}^{p} X_{ik}\beta_{k})^{2}$$

Motivation

- 1. predictive accuracy trade bias against variance
- 2. In case $n \ll p$, $\hat{\beta}$ is not uniquely identified

Genetics: n patients participate and p genes observed

- 3. interpretation a small number of predictors captures the main effect
- 4. robustness
- 5. non-linear

Hence, even if a model is correctly specified, we should consider alternative approaches!

Question: How can we adapt the approach to reduce variance?

Let's add a constraint

Ridge Regression

$$\min_{\beta} \frac{1}{2} \| Y - X\beta \|_{2}^{2}$$
subject to
$$\sum_{i=1}^{p} |\beta_{i}|^{2} \leq c$$

LASSO: least absolute shrinkage and selection operator;

$$\min_{\beta} \frac{1}{2} \| Y - X\beta \|_{2}^{2}$$
subject to
$$\sum_{i=1}^{p} |\beta_{i}| \leq c$$

Source: Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: the lasso and generalizations. CRC press.

Example

Example: Analysing the crime-rate in US states with respect to education and deprivation

Covariates:

funding: annual police funding in dollars per resident

hs: percent of people 25 years and older with four years of high school

not-hs: percent of 16- to 19-year olds not in high school and not high school graduates

college: percent of 18- to 24-year olds in college

college4 and percent of people 25 years and older with at least four years of college

(Hastie et al., "Statistical learning with sparsity: the lasso and generalizations.")

Varying the constraint $\|\beta\|_1 \le c$

Penalised regression

Generalisation: Let Ω be a constraint on β such that

$$\Omega(\beta) \leq c$$
.

Examples:

•
$$\Omega(\beta) = \| \beta \|_{0} = \#\{i \mid \beta_{i} \neq 0\}$$

Sparsity: means $\|\beta\|_0 \ll p$ e.g. genes effecting an illness.

bridge regression

$$\sum_{i=1}^{p} |\beta_p|^{a}$$

where d=1 Lasso

and d=2 Ridge

Definition:

A function $f: X \to \mathbb{R}$ is convex if $\forall x_1, x_2 \in X, \forall t \in [0,1]$

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Remarks:

- $f \in C^2(X)$ convex iff $\nabla^2 f$ is positive-semi-definite
- every local minima is a global minima (proof by contradiction)

Let Ω be convex. Then

$$\min_{\beta} S(\beta)$$
 subject to $\Omega(\beta) \leq c$

is equivalent to

$$\min_{\beta} S(\beta) + \lambda \Omega(\beta)$$
for convex Ω

Aim: Explore the computational complexity of solving LASSO

$$\min_{\beta} S(\beta) + \lambda \|\beta\|_1$$

Coordinate descent

AIM: To minimize
$$f(\beta) = S(\beta) + |\beta|_1 = \frac{1}{2} \| Y - X\beta \|_2^2 + \lambda \| \beta \|_1^{1.5}$$

Initialise $\beta_0 \in \mathbb{R}^p$

Repeat

$$\begin{split} \beta_1^{(k)} &= \underset{\beta_1}{\text{arg min}} f(\beta_1, \beta_2^{(k-1)}, \beta_3^{(k-1)}, \ldots, \beta_p^{(k-1)}) \\ \beta_2^{(k)} &= \underset{\beta_2}{\text{arg min}} f(\beta_1^{(k)}, \beta_2, \beta_3^{(k-1)}, \ldots, \beta_p^{(k-1)}) \\ \beta_3^{(k)} &= \underset{\beta_3}{\text{arg min}} f(\beta_1^{(k)}, \beta_2^{(k)}, \beta_3, \beta_4^{(k-1)}, \ldots, \beta_p^{(k-1)}) \\ &\vdots &\vdots \\ \beta_p^{(k)} &= \underset{\beta_p}{\text{arg min}} f(\beta_1^{(k)}, \beta_2^{(k)}, \beta_3^{(k)}, \ldots, \beta_p^{(k)}, \beta_p^{(k-1)}) \\ \text{until } \|\beta^k - \overset{\beta_p}{\beta}^{k-1}\| \leq \epsilon \end{split}$$

Note: Order can be randomised

Exercise 1: Given a convex differentiable function f, and a point x such that f(x) is minimised along each coordinate axis.

Have we found a local minimiser?

Source: WikiCommons

Coordinate descent for LASSO

Lemma

The update for the j-th coordinate is given in closed form. For $r_i^{(j)} = y_i - \sum_{k \neq j} x_{ik} \beta_k^t$

$$\beta_{j}^{t+1} = \frac{1}{\sum_{i=1}^{n} x_{ij}^{2}} \begin{cases} 0 & \left| \sum_{i=1}^{n} r_{i}^{(j)} x_{ij} \right| < \lambda \\ \sum_{i=1}^{n} r_{i}^{(j)} x_{ij} - \lambda & \sum_{i=1}^{n} r_{i}^{(j)} x_{ij} \ge \lambda \\ \sum_{i=1}^{n} r_{i}^{(j)} x_{ij} + \lambda & \sum_{i=1}^{n} r_{i}^{(j)} x_{ij} \le -\lambda \end{cases}$$

LASSO path

After running coordinate descent for multiple λ

Least Angle Regression (Efron et al., 2004)

Let x_1,\dots,x_p be the columns of X. After a change of coordinates we may assume that $\sum_{i=1}^n X_{ij} = 0$ and $\sum_{i=1}^n X_{ij}^2 = 1$ $\min_{\beta} S(\beta) + \lambda \|\beta\|_1$

- Let A be the set of active covariates (i.e. those coordinates of β that are currently changing).
- Initially, let $A=\{x_{j_1}\}$ with the smallest angle with Y
- Step in the direction of x_{j_1} until another predictor enters A (equal same angle).
- Continue in the direction such that the angle from x_{j_1} to the residual and x_{j_2} to the residual are equal. Add new predictor x_{j_3} if it has the same same angle and add it to A.
- * NOTE: For the LASSO direction can drop out of active set.

Computing the equiangular direction

Recall computational complexity in the big O notation: f(x) is O(g(x)) as $x \to \infty$ $\exists M \exists C > 0$ such that for all $x \in M$ for some $i, |f(x)| \le C|g(x)|$

Equiangular direction

$$X_A(X_A^tX_A)^{-1}X_A^T(Y-\beta_{current}X)$$

The active set grows $A = \{x_{j_1}\}, A = \{x_{j_1}, x_{j_2}\}, ..., A = \{x_{j_1}, x_{j_2}, ..., x_{j_k}\}$ for k = 1, ..., p

Before: Computation of
$$(X_A^T X_A)^T$$
 $O(k^3 + ...)$

Cholishy decomposition

XIX=LLT with L being lower triangular $L_x = \binom{k_{1}}{k_{2}} e_{1} - e_{1}$

Thus solving linear equation $O(k^3)$

We need to compute L at cost $O(k^3)$.

But we can use Matrix aleyebra to a p date L

Empirical complexity for n=p

Estimation of polynomial complexity

```
\log y = a \log x + b \Leftrightarrow y = C \cdot x^a
library(tidyverse)
library(lars)
library(microbenchmark)
library(matlab)
eps=0.2;p=10000;n=20
ps=round(logspace(2,4,n=4))
df=data.frame()
for(p in ps){
 n=p
truth=matrix(1.0*rbernoulli(p,p=0.4),ncol=1)*rnorm(n=
p)
 X=matrix(rnorm(n=p*n),ncol=p)
  y=as.numeric(X %*% truth[1:p]+eps*rnorm(n=n))
df=bind_rows(df,data.frame(n=n,p=p,t=microbenchmark(
  lars(X,y,type="lasso",max.steps = 100*p),times =
  R),
  alg="lars"))
```


Suggests $\mathcal{O}(p^3)$ instead of $\mathcal{O}(p^4)$

Computing the equiangular direction

Recall: the computational complexity in the "big O notation" f(x) is O(g(x)) as $x \to \infty$

if a fixed multiple of g(x) is an upper bound for large values of x

The active set grows
$$A = \{x_{j_1}\}, A = \{x_{j_1}, x_{j_2}\}, ..., A = \{x_{j_1}, x_{j_2}, ..., x_{j_k}\}$$
 for $k = 1, ..., p$

Equiangular direction (check)
$$X_A(X_A^tX_A)^{-1}X_A^T(Y-\beta_{current}X)$$

Empirical comparison LARS vs Coordinate Descent

-3 -

2.00

2.25

- Comparison
 - Lars to compute entire path
 - Coordinate descent for a single $\lambda = 1$ -
 - stopping criteria parameter changes less than 1e-
- R-package glmnet (Friedman et. all) is based on coordinate descent to compute the entire LASSO path. Speedup is gained through
 - warm starts
 - "strong rules" temporarily leave out portion of variables

2.50

log₁₀p

2.75

3.00

GLMNET is much faster and based on coordinate descent

Practical considerations

Problem

Assume we find in multiple linear regression on the weather data the following parameters

$$X_1$$
 LUZ_pressure [hPa] $\theta_1 = -1$ [km/h/hPa] X_2 LUZ_temperature [°C] $\theta_2 = 0.5$ [km/h/°C]

We could have measured the pressure in Pa and get the equivalent result

$$X_1$$
 LUZ_pressure [Pa] $\theta_1 = -1/100$ [km/h/Pa] X_2 LUZ_temperature [°C] $\theta_2 = 0.5$ [km/h/°C]

With regularization $\lambda(\theta_1^2 + \theta_2^2)$ we would get different results for measurements in hPa and in Pa, because θ_1 contributes less to the penalty in the latter case.

Solution

Standardize all predictors, such that they have mean 0 and variance 1:

$$\tilde{X}_i = (X_i - \bar{X}_i)/\sqrt{\operatorname{Var}(X_i)}$$

Practical considerations

Problem

Assume we find in multiple linear regression on the weather data the following parameters

$$X_1$$
 LUZ_pressure [hPa] $\theta_1 = -1$ [km/h/hPa] X_2 LUZ_temperature [°C] $\theta_2 = 0.5$ [km/h/°C]

We could have measured the pressure in Pa and get the equivalent result

$$X_1$$
 LUZ_pressure [Pa] $\theta_1 = -1/100$ [km/h/Pa] X_2 LUZ_temperature [°C] $\theta_2 = 0.5$ [km/h/°C]

With regularization $\lambda(\theta_1^2 + \theta_2^2)$ we would get different results for measurements in hPa and in Pa, because θ_1 contributes less to the penalty in the latter case.

Solution

Standardize all predictors, such that they have mean 0 and variance 1:

$$\tilde{X}_i = (X_i - \bar{X}_i)/\sqrt{\operatorname{Var}(X_i)}$$

Practical considerations

With loss $L(\theta) = \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \|\theta\|_2^2$ the effective regularization depends on the size of the data set.

One can use instead an average loss $L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \|\theta\|_2^2$ or (equivalently) scale the regularization term $L(\theta) = \sum_{i=1}^{n} \ell(y_i, f(x_i)) + n \cdot \lambda \|\theta\|_2^2$

Summary

Today's lecture

- 1. Penalised regression and its induced sparsity
- 2. Coordinate descent
- 3. LARS and the importance of getting linear algebra right

Further topics:

Non-convex penalises

Thank you for your attention

coordinate descent being stuck

Figure 5.8 Failure of coordinate-wise descent in a fused lasso problem with 100 parameters. The optimal values for two of the parameters, β_{63} and β_{64} , are both -1.05, as shown by the dot in the right panel. The left and middle panels show slices of the objective function f as a function of β_{63} and β_{64} , with the other parameters set to the global minimizers. The coordinate-wise minimizer over both β_{63} and β_{64} (separately) is -0.69, rather than -1.05. The right panel shows contours of the two-dimensional surface. The coordinate-descent algorithm is stuck at the point (-0.69, -0.69). Despite being strictly convex, the surface has corners, in which the

LARS vs LASSO

LASSO and LAR path for diabetes using LARS

Cholesky updating

Given
$$A = \begin{pmatrix} A_{11} & A_{13} \\ A_{13}^T & A_{33} \end{pmatrix}$$

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{13} \\ 0 & \mathbf{L}_{33} \end{pmatrix},$$

$$\text{Update} \quad \tilde{\mathbf{A}} = \begin{pmatrix} \mathbf{A}_{11} \mathbf{A}_{12} \mathbf{A}_{13} \\ \mathbf{A}_{12}^T \mathbf{A}_{22} \mathbf{A}_{23} \\ \mathbf{A}_{13}^T \mathbf{A}_{23}^T \mathbf{A}_{33} \end{pmatrix} \quad \tilde{\mathbf{S}} = \begin{pmatrix} \mathbf{S}_{11} \mathbf{S}_{12} \mathbf{S}_{13} \\ 0 \mathbf{S}_{22} \mathbf{S}_{23} \\ 00 \quad \mathbf{S}_{33} \end{pmatrix}.$$

$$\tilde{\mathbf{S}} = \begin{pmatrix} \mathbf{S}_{11} \mathbf{S}_{12} \mathbf{S}_{13} \\ 0 \mathbf{S}_{22} \mathbf{S}_{23} \\ 0 0 \quad \mathbf{S}_{33} \end{pmatrix}.$$

$$\mathbf{S}_{11} = \mathbf{L}_{11},$$

$$\mathbf{S}_{12} = \mathbf{L}_{11}^{\mathrm{T}} \backslash \mathbf{A}_{12},$$

$$\mathbf{S}_{13}=\mathbf{L}_{13},$$

$$S_{22} = \text{chol}(A_{22} - S_{12}^{T}S_{12}),$$

$$\mathbf{S}_{23} = \mathbf{S}_{22}^{\mathrm{T}} \setminus (\mathbf{A}_{23} - \mathbf{S}_{12}^{\mathrm{T}} \mathbf{S}_{13}),$$

$$S_{33} = \text{chol}(L_{33}^T L_{33} - S_{23}^T S_{23}).$$

Title Text

Sketch of **Proof**: Let us consider (1) first. Let $\hat{\theta}_{Ridge}$ be the minimum of $g_{\lambda}(\theta)$. Necessarily, the gradient of g_{λ} at $\hat{\theta}_{Ridge}$ is 0:

$$\nabla g_{\lambda}(\hat{\boldsymbol{\theta}}_{Ridge}) = -2\boldsymbol{y}^T\boldsymbol{X} + 2(\hat{\boldsymbol{\theta}}_{Ridge})^T\boldsymbol{X}^T\boldsymbol{X} + 2\lambda(\hat{\boldsymbol{\theta}}_{Ridge})^T = 0.$$

We show that we can find a value t such that $\hat{\theta}_{Ridge}$ is also the optimal solution to problem (2).

Problem

Assume we find in multiple linear regression on the weather data the following parameters

$$X_1$$
 LUZ_pressure [hPa] $\theta_1 = -1$ [km/h/hPa] X_2 LUZ_temperature [°C] $\theta_2 = 0.5$ [km/h/°C]

We could have measured the pressure in Pa and get the equivalent result

$$X_1$$
 LUZ_pressure [Pa] $\theta_1 = -1/100$ [km/h/Pa] X_2 LUZ_temperature [°C] $\theta_2 = 0.5$ [km/h/°C]

With regularization $\lambda(\theta_1^2+\theta_2^2)$ we would get different results for measurements in hPa and in Pa, because θ_1 contributes less to the penalty in the latter case.

Solution

Convergence

```
\frac{m d \beta \|\mathbf{w}^{\star}\|_{2}^{2}}{\varepsilon}, \quad \text{find of the loss at } O(m d \beta \|\mathbf{w}^{\star}\|_{1}^{2}/\varepsilon).
```

We calculate the Lagrangian of (2)

$$L(\boldsymbol{\theta}, \alpha) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}\|^2 + \alpha(\|\boldsymbol{\theta}\|_2^2 - t).$$

The first KKT condition says:

$$\nabla_{\theta} L(\boldsymbol{\theta}, \alpha) = -2 \boldsymbol{y}^T \boldsymbol{X} + 2 \boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{X} + 2 \alpha \boldsymbol{\theta}^T = 0.$$

Since $\nabla g_{\lambda}(\hat{\theta}_{Ridge}) = 0$, this condition is satisfied if we set $\theta = \hat{\theta}_{Ridge}$ and $\alpha = \lambda$.

The KKT-conditions also require that complementarity is fulfilled:

$$\alpha(\|\boldsymbol{\theta}\|_2^2 - t) = 0.$$

This is satisfied if we set $t = \|\hat{\theta}_{Ridge}\|^2$.

The converse is also true: The optimal solution to problem (2) is also a solution to problem (1) if we set $\lambda = \alpha$.