Departamento de Informática - UEM

Disciplina: Modelagem e Otimização Algorítmica

2ª Avaliação de 2017

Nome:

Descrição.

Implementação do algoritmo A* para a resolução do Jogo do Tabuleiro de 15 peças. A implementação deverá permitir entrar com qualquer estado inicial e o objetivo é encontrar a menor sequência de movimentos que leve ao estado final do jogo. Estado final desejado é apresentado a seguir:

Estado final desejado:

1	5	9	13
2	6	10	14
3	7	11	15
4	8	12	

Heurísticas a serem implementadas e analisadas:

- 1. $h'_1(n) = n$ úmero de peças foras de seu lugar na configuração final.
- 2. $h'_2(n)$ = número de peças fora de ordem na sequência numérica das 15 peças, seguindo a ordem das posições no tabuleiro.
- 3. $h'_3(n)$ = para cada peça fora de seu lugar somar a distância retangular (quantidade de deslocamentos) para colocar em seu devido lugar. Neste caso considera-se que o caminho esteja livre para fazer o menor número de movimentos.
- 4. $h'_4(n) = p_1 * h' 1(n) + p_2 * h' 2(n) + p_3 * h' 3(n)$, sendo $p_1 + p_2 + p_3$ são pesos (número real) tais que $p_1 + p_2 + p_3 = 1$. A escolha desses pesos deverão ser escolhidos conforme os resultado dos experimentos.
- 5. $h'_5(n) = \max(h'_1(n), h'_2(n), h'_3(n)).$

A avaliação se dará em duas partes, sendo que cada parte corresponde a 50% da nota.

Parte 1 (individual): Submissão e correção dos trabalhos pelo sistema Run.Code (https://run.codes/). O sistema só aceita código nas seguintes linguagens de programação: Java 8, C/C++, Python 3, Pascal, e Fortran90. Detalhes de como utilizar o sistema pode ser obtidos em support@run.codes. Cadastre-se no sistema com o código: L2PR. Esta parte da avaliação deve ser realizada individualmente.

Parte 2 (equipe): Relatório impresso, incluindo a análise do comportamento das 5 propostas de heurísticas de todos os casos disponibilizados pelo professor no Moodle. Nesta análise deve levar em consideração o consumo de memória e o tempo de processamento. Considerar todos os casos disponibilizados no *Moodle*. Como parte da avaliação, também, será considerado o relatório de atividades de todas as aulas práticas. Esta parte pode ser realizada por equipes de até dois membros.

Prazo para entrega: 06/07/2017.

Exemplo de como calcular a heurística h'2.

6	5	9	13
1	7	10	0
2	8	11	14
3	4	12	15

Primeiro passo considerar a sequências de "posições" no tabuleiro conforme a sequência "numérica" esperada para o estado final, ou seja, iniciando na posição [1,1] (linha 1 e coluna 1) e terminando na posição [4,4] (linha 4, coluna 4).

A partir da tabela acima, teremos a seguinte sequência:

6 1 2 3 5 7 8 4 9 10 11 12 13 0 14 15	6	5	1	2	3	5	7	8	4	9	10	11	12	13	0	14	15
---------------------------------------	---	---	---	---	---	---	---	---	---	---	----	----	----	----	---	----	----

Agora é verificada a sequência numérica. As posições em amarelo são posições contabilizadas por esta heurística. Conforme se observa, as ocorrências contabilizadas são estas:

- 1. Peça 1 após a peça 6, enquanto esperava a peça 7;
- 2. Peça 5 após a peça 3;
- 3. Peça 7 após a peça 5;
- 4. Peça 4 após a peça 8;
- 5. Peça 9 após a peça 9;
- 6. Espaço vazio (0) após a peça 13.

Note que após o espaço vazio não é feita a contabilização.

Portanto, para este caso h'₂= 6.