Divide-and-Conquer: Searching in an Array

Neil Rhodes

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures

Outline

1 Main Idea of Divide-and-Conquer

2 Linear Search

3 Binary Search

a problem to be solved

Divide: Break into non-overlapping subproblems of the same type

Divide: Break into non-overlapping subproblems of the same type

Divide: Break into non-overlapping subproblems of the same type

Divide: Break into non-overlapping subproblems of the same type

not the same type

overlapping

Divide: break apart

Divide: break apart

Conquer: combine

- Break into non-overlapping subproblems of the same type
- Solve subproblems

Combine results

Outline

1 Main Idea of Divide-and-Conquer

2 Linear Search

3 Binary Search

Ann	Pat		Joe	Bob
-----	-----	--	-----	-----

Linear Search in Array

Ann Pat ... Joe Bob

Linear Search in Array

Ann Pat ... Joe Bob

Real-life Example

english	french	italian	german	spanish
house	maison	casa	Haus	casa
car	voiture	auto	Auto	auto
table	table	tavola	Tabelle	mesa

Searching in an array

Input: An array A with n elements.

A key k.

Output: An index, i, where A[i] = k.

If there is no such i, then

NOT FOUND.

```
if high < low:
    return NOT_FOUND
if A[low] = key:
    return low</pre>
```

```
if high < low:
    return NOT_FOUND
if A[low] = key:
    return low
return LinearSearch(A, low + 1, high, key)</pre>
```

```
if high < low:
    return NOT_FOUND
if A[low] = key:
    return low
return LinearSearch(A, low + 1, high, key)</pre>
```

Definition

A recurrence relation is an equation recursively defining a sequence of values.

Definition

A recurrence relation is an equation recursively defining a sequence of values.

Fibonacci recurrence relation

$$F(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$

Definition

A recurrence relation is an equation recursively defining a sequence of values.

Fibonacci recurrence relation

$$F(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$
$$0, 1, 1, 2, 3, 5, 8, \dots$$

LinearSearch(A, low, high, key)

if high < low: return NOT FOUND

if A[low] = key:

return low

return LinearSearch(A, low + 1, high, key)

LinearSearch(A, low, high, key)

```
if high < low:
    return NOT_FOUND
if A[low] = key:
    return low
return LinearSearch(A, low + 1, high, key)</pre>
```

$$T(n) = T(n-1) + c$$

Recurrence defining worst-case time:

LinearSearch(A, low, high, key)

```
if high < low:
    return NOT_FOUND
if A[low] = key:
    return low
return LinearSearch(A, low + 1, high, key)</pre>
```

Recurrence defining worst-case time:

$$T(n) = T(n-1) + c$$
 $T(0) = c$

Runtime of Linear Search

Runtime of Linear Search

work

Runtime of Linear Search

work Total: $\sum_{i=0}^{n} c = \Theta(n)$

Iterative Version

```
LinearSearchIt(A, low, high, key)

for i from low to high:

if A[i] = key:

return i

return NOT_FOUND
```

Create a recursive solution

- Create a recursive solution
- Define a corresponding recurrence relation, T

- Create a recursive solution
- Define a corresponding recurrence relation, T
- Determine T(n): worst-case runtime

- Create a recursive solution
- Define a corresponding recurrence relation, T
- Determine T(n): worst-case runtime
- Optionally, create iterative solution

Outline

1 Main Idea of Divide-and-Conquer

2 Linear Search

3 Binary Search

Searching Sorted Data

atorial /diktato;rial e a dictator. 2 overbearing orially adv. [Latin: related diction /'dikf(a)n/ n. manner ciation in speaking or singing dictio from dico dict- say) dictionary /dikfeneri/ n. (p book listing (usu. alphabetic explaining the words of a lar giving corresponding words i language. 2 reference book

Input: A sorted array A[low . . . high] $(\forall low \leq i < high: A[i] \leq A[i+1]).$ A key k.

Output: An index, i, (low $\leq i \leq high$) where

A[i] = k. Otherwise, the greatest index i,

where A[i] < k. Otherwise (k < A[low]), the result is low - 1.

search(2) → 0
search(3) → 1

$$3 \ 5 \ 8 \ 20 \ 20 \ 50 \ 60$$

 $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

```
search(2) \rightarrow 0
search(3) \rightarrow 1
search(4) \rightarrow 1
        3 5 8 20 20 50 60
1 2 3 4 5 6 7
```

$$search(2) \rightarrow 0 \quad search(20) \rightarrow 4$$

 $search(3) \rightarrow 1$
 $search(4) \rightarrow 1$
 $3 \mid 5 \mid 8 \mid 20 \mid 20 \mid 50 \mid 60$
 $1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7$

$$search(2) \rightarrow 0 \quad search(20) \rightarrow 4$$

 $search(3) \rightarrow 1 \quad search(20) \rightarrow 5$
 $search(4) \rightarrow 1$
3 5 8 20 20 50 60
1 2 3 4 5 6 7

$$search(2) \rightarrow 0$$
 $search(20) \rightarrow 4$
 $search(3) \rightarrow 1$ $search(20) \rightarrow 5$
 $search(4) \rightarrow 1$ $search(60) \rightarrow 7$
 $search(70) \rightarrow 7$
 $3 \mid 5 \mid 8 \mid 20 \mid 20 \mid 50 \mid 60$
 $1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7$

BinarySearch(A, low, high, key)

```
if high < low:
```

return low - 1

BinarySearch(A, low, high, key)

```
if high < low:
```

return low - 1

 $mid \leftarrow \left| low + \frac{high-low}{2} \right|$

```
if high < low:</pre>
```

 $return\ low - 1$ $mid \leftarrow \left\lfloor low + \frac{high-low}{2} \right\rfloor$ $if\ key = A[mid]:$ $return\ mid$

```
if high < low:
  return low - 1
```

 $mid \leftarrow \left| low + \frac{high-low}{2} \right|$ if key = A[mid]:

return mid else if key < A[mid]:

return BinarySearch(A, low, mid - 1, key)

```
if high < low:
   return low - 1
mid \leftarrow \left| low + \frac{high-low}{2} \right|
```

if key = A[mid]: return mid

else if key < A[mid]:

return BinarySearch(A, low, mid - 1, key)

else: return BinarySearch(A, mid + 1, high, key)

			_	4	_	_	-	_	_		
	3	5	8	10	12	15	18	20	20	50	60
•											

BinarySearch(A, 1, 11, 50)

BinarySearch(A, 1, 11, 50)

BinarySearch(A, 1, 11, 50)BinarySearch(A, 7, 11, 50)

BinarySearch(A, 1, 11, 50)BinarySearch(A, 7, 11, 50)

```
BinarySearch(A, 1, 11, 50)
   BinarySearch(A, 7, 11, 50)
   BinarySearch(A, 10, 11, 50)
1 2 3 4 5 6 7 8 9 10 11
3 5 8 10 12 15 18 20 20 50 60
                         high
low
             mid
```

```
BinarySearch(A, 1, 11, 50)
  BinarySearch(A, 7, 11, 50)
  BinarySearch(A, 10, 11, 50)
1 2 3 4 5 6 7 8 9 10 11
  5 | 8 | 10 | 12 | 15 | 18 | 20 | 20 | 50 | 60
low
             mid
```

```
\begin{array}{l} \texttt{BinarySearch}(A,1,11,50) \\ \texttt{BinarySearch}(A,7,11,50) \\ \texttt{BinarySearch}(A,10,11,50) \rightarrow 10 \end{array}
```

Break problem into non-overlapping subproblems of the same type.

- Break problem into non-overlapping subproblems of the same type.
- Recursively solve those subproblems.

- Break problem into non-overlapping subproblems of the same type.
- Recursively solve those subproblems.
- Combine results of subproblems.

```
if high < low:
  return low - 1
```

 $mid \leftarrow \left| low + \frac{high-low}{2} \right|$ if key = A[mid]: return mid else if key < A[mid]:

return BinarySearch(A, low, mid - 1, key) else: return BinarySearch(A, mid + 1, high, key)

Binary Search Recurrence Relation

$$T(n) = T\left(\left|\frac{n}{2}\right|\right) + c$$

Binary Search Recurrence Relation

$$T(n) = T\left(\left|\frac{n}{2}\right|\right) + c$$

Binary Search Recurrence Relation

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + c$$
 $T(0) = c$

Runtime of Binary Search

Runtime of Binary Search

work

Runtime of Binary Search

work Total: $\sum_{i=0}^{\log_2 n} c = \Theta(\log_2 n)$

$$\Theta(\log_2 n)$$

```
while low \leq high:
mid \leftarrow \left| low + \frac{high-low}{2} \right|
```

```
while low \leq high:
mid \leftarrow \left \lfloor low + \frac{high-low}{2} \right \rfloor
if key = A[mid]:
return\ mid
```

```
while low \leq high:
   mid \leftarrow \left| low + \frac{high-low}{2} \right|
   if key = A[mid]:
      return mid
   else if key < A[mid]:
      high = mid - 1
```

```
while low < high:
  mid \leftarrow \left| low + \frac{high-low}{2} \right|
  if key = A[mid]:
     return mid
   else if key < A[mid]:
     high = mid - 1
   else:
     low = mid + 1
```

```
BinarySearchIt(A, low, high, key)
while low \leq high:
   mid \leftarrow \left| low + \frac{high-low}{2} \right|
   if key = A[mid]:
```

return mid

else if key < A[mid]: high = mid - 1else:

low = mid + 1return low - 1

english	french	italian	german	spanish	
house	maison	casa	Haus	casa	
chair	chaise	sedia	Sessel	silla	
pimple	bouton	foruncolo	Pickel	espenilla	

_		italian (sorted)	_	•
chair	chaise	casa	Haus	casa
house	bouton	foruncolo	Pickel	espenilla
pimple	maison	sedia	Sessel	silla

english	french	italian	german	spanish
house	maison	casa	Haus	casa
chair	chaise	sedia	Sessel	silla
pimple	bouton	foruncolo	Pickel	espenilla

engl	span	ish		
sorte	d	sorted		
2		1		
1		3		
3		2		

english	french	italian	german	spanish
house	maison	casa	Haus	casa
chair	chaise	sedia	Sessel	silla
pimple	bouton	foruncolo	Pickel	espenilla
	english sorted		spanish sorted 1 3 2	

english	french	italian	german	spanish
house	maison	casa	Haus	casa
chair	chaise	sedia	Sessel	silla
pimple	bouton	foruncolo	Pickel	espenilla
	english sorted 2 1 3		spanish sorted 1 3	

english	french	italian	german	spanish
house	maison	casa	Haus	casa
chair	chaise	sedia	Sessel	silla
pimple	bouton	foruncolo	Pickel	espenilla
	english sorted 2 1 3		spanish sorted 1 3 2	

The runtime of binary search is $\Theta(\log n)$.