DATA ESPERIENZA: 10/03/2015

RISULTATI DELL'ESPERIENZA N° 1

(Misura della densità di due corpi di forma regolare: O1 e O2)

Strumenti di misura a disposizione:

	Intervallo di funz.	Errore di sensibilità	Azzeramento
Metro a nastro	0 – 2000 mm	± 0.5 mm (standard) ± 0.2 mm (interpolato)	Non necessario (0 mm)
Calibro ventesimale (analogico)	0 – 150 mm	± 0.025 mm	Non necessario (0 mm)
Calibro ventesimale (digitale)	0 – 150 mm	± 0.005 mm	Ottenuto digitalmente
Calibro Palmer (analogico)	0 – 25 mm	± 0.005 mm	Non necessario (0 mm)
Calibro Palmer (digitale)	0 – 25 mm	± 0.0005 mm	Ottenuto digitalmente

OGGETTO: 01

Disegno schematico dell'oggetto:

(Parallelepipedo retto di dimensione maggiore l_1 , dimensione intermedia l_2 e dimensione minore l_3)

Formula per il volume e l'errore:

Volume dell'oggetto: $V = l_1 \cdot l_2 \cdot l_3$

Errore relativo sul volume: $\frac{\Delta V}{V} = \frac{\Delta l_1}{l_1} + \frac{\Delta l_2}{l_2} + \frac{\Delta l_3}{l_3}$

Errore assoluto sul volume: $\Delta V = V \cdot \left(\frac{\Delta l_1}{l_1} + \frac{\Delta l_2}{l_2} + \frac{\Delta l_3}{l_3} \right)$

Dimensioni dell'oggetto:

	$l_1 \pm \Delta l_1$ (mm)	$l_2 \pm \Delta l_2$ (mm)	$l_3 \pm \Delta l_3$ (mm)
Metro a nastro	100.0 ± 0.5	20.0 ± 0.5	2.0 ± 0.5
Calibro ventesimale (analogico)	100.100 ± 0.025	20.050 ± 0.025	2.000 ± 0.025
Calibro ventesimale (digitale)	100.130 ± 0.005	Non effettuata	Non effettuata
Calibro Palmer (analogico)	Fuori intervallo	Non effettuata	Non effettuata
Calibro Palmer (digitale)	Fuori intervallo	20.0020 ± 0.0005	2.0040 ± 0.0005

Le misure sono tra loro compatibili? Sì, eccetto che per l_2 (ultima misurazione). L'incompatibilità è legata a irregolarità costruttive proprie dell'oggetto considerato.

Ulteriori misure nello stesso punto e in punti diversi (usando lo strumento più preciso, caso per caso):

DATA ESPERIENZA: 10/03/2015

$l_1 \pm \Delta l_1$ (mm)	$l_2 \pm \Delta l_2$ (mm)	$l_3 \pm \Delta l_3$ (mm)	$l_1 \pm \Delta l_1$ (mm)	$l_2 \pm \Delta l_2$ (mm)	$l_3 \pm \Delta l_3$ (mm)
Stesso punto	Stesso punto	Stesso punto	Vari punti diff.	Vari punti diff.	Vari punti diff.
100.15	20.006	<u>2.0040</u>	100.13	20.000	2.0010
100.14	19.999	2.0020	<u>100.17</u>	19.997	2.0020
100.13	20.009	2.0020	100.13	<u>19.996</u>	2.0040
<u>100.11</u>	20.001	2.0010	100.13	19.997	2.0020
100.14	20.001	<u>2.0010</u>	<u>100.11</u>	19.998	<u>2.0040</u>
Err. Ass.: ± 0.02	Err. Ass.: ± 0.005	Err. Ass.: ± 0.0015	Err. Ass.: ± 0.03	Err. Ass.: ± 0.002	Err. Ass.: ± 0.0015
Ventesimale dig.	Palmer digitale	Palmer digitale	Ventesimale dig.	Palmer digitale	Palmer digitale

Valori usati per il calcolo del volume:

$l_1 \pm \Delta l_1$ (mm)	$l_2 \pm \Delta l_2$ (mm)	$l_3 \pm \Delta l_3$ (mm)
100.140 ± 0.030	20.0025 ± 0.0065	2.0025 ± 0.0015

Motivazione: Sono stati forniti – per ciascuna delle tre dimensioni dell'oggetto O1 (misurate con lo strumento disponibile a precisione maggiore) – come valore della misura e valore dell'errore relativo (semiampiezza dell'intervallo) – rispettivamente – la semisomma (valor medio) e la semidifferenza (errore assoluto massimo) del valore massimo e del valore minimo tra quelli misurati per detta dimensione.

La scelta è giustificata del fatto che tali errori sono da imputarsi ad eventuali asimmetrie costruttive dell'oggetto o a errori di misurazione, piuttosto che ad errori di sensibilità dello strumento o errori casuali, di entità ben minori.

Volume dell'oggetto ed errore:

Volume dell'oggetto: $V = 4011.1 \pm 5.5 \, \text{mm}^3$

Errore relativo sul volume: $\frac{\Delta V}{V} = 1.4 \times 10^{-3}$

Errore assoluto sul volume: $\Delta V = 5.5 \, \text{mm}^3$

Massa dell'oggetto ed errore:

Massa dell'oggetto: $m=31.170\pm0.005g$

Errore relativo sulla massa: $\frac{\Delta m}{m} = 1.6 \times 10^{-4}$

Errore assoluto sulla massa: $\Delta m = 5.0 \times 10^{-3} g$

Densità dell'oggetto ed errore:

Densità dell'oggetto: $\rho_m = \frac{m}{V} = m \cdot V^{-1} = 7.771 \times 10^{-3} \pm 1.2 \times 10^{-5} \, g/mm^3 \approx 7.771 \, Kg/dm^3$

Errore relativo sulla densità: $\frac{\Delta \rho_m}{\rho_m} = \frac{\Delta m}{m} + \frac{\Delta V}{V} = 1.5 \times 10^{-3}$

Errore assoluto sulla densità: $\Delta \rho_m = \rho_m \cdot \left(\frac{\Delta m}{m} + \frac{\Delta V}{V} \right) = 1.2 \times 10^{-5} \text{g/mm}^3$

DATA ESPERIENZA: 10/03/2015

OGGETTO: O2

Disegno schematico dell'oggetto:

(Cilindro retto con cavità interna cilindrica retta, a basi concentriche. Diametro maggiore l_1 , diametro minore l_2 , altezza l_3)

Formula per il volume e l'errore:

$$\textit{Volume dell'oggetto:} \quad V \!=\! \frac{\pi \, l_3}{4} \cdot \! \left((l_1)^2 \!-\! (l_2)^2 \right) \! = \! \frac{\pi \, l_3 \cdot (l_1)^2}{4} - \frac{\pi \, l_3 \cdot (l_2)^2}{4}$$

Errore relativo sul volume: $\frac{\Delta V}{V}$

Errore assoluto sul volume:
$$\Delta V = \left| \frac{\partial V}{\partial l_1} \right| \cdot \Delta l_1 + \left| \frac{\partial V}{\partial l_2} \right| \cdot \Delta l_2 + \left| \frac{\partial V}{\partial l_3} \right| \cdot \Delta l_3 \quad t.c. \quad \partial l_i = l_i \quad \forall i \in [1,3]$$

in cui:
$$\left| \frac{\partial V}{\partial l_1} \right| = \frac{l_3 \cdot l_1 \cdot \pi}{2}; \quad \left| \frac{\partial V}{\partial l_2} \right| = \frac{l_3 \cdot l_2 \cdot \pi}{2}; \quad \left| \frac{\partial V}{\partial l_3} \right| = \frac{\left((l_1)^2 - (l_2)^2 \right) \cdot \pi}{4}$$

Dimensioni dell'oggetto:

	$l_1 \pm \Delta l_1$ (mm)	$l_2 \pm \Delta l_2$ (mm)	$l_3 \pm \Delta l_3$ (mm)
Metro a nastro	40.0 ± 0.5	20.0 ± 0.5	27.0 ± 0.5
Calibro ventesimale (analogico)	40.100 ± 0.025	19.800 ± 0.025	27.100 ± 0.025
Calibro ventesimale (digitale)	40.110 ± 0.005	19.790 ± 0.005	27.250 ± 0.005
Calibro Palmer (analogico)	Fuori intervallo	Fuori intervallo	Fuori intervallo
Calibro Palmer (digitale)	Fuori intervallo	Fuori intervallo	Fuori intervallo

Le misure sono tra loro compatibili? Sì, eccetto che per l_3 a causa di irregolarità costruttive dell'oggetto.

Ulteriori misure nello stesso punto e in punti diversi (usando lo strumento più preciso, caso per caso):

$l_1 \pm \Delta l_1$ (mm)	$l_2 \pm \Delta l_2$ (mm)	$l_3 \pm \Delta l_3$ (mm)	$l_1 \pm \Delta l_1$ (mm)	$l_2 \pm \Delta l_2$ (mm)	$l_3 \pm \Delta l_3$ (mm)
Stesso punto	Stesso punto	Stesso punto	Vari punti diff.	Vari punti diff.	Vari punti diff.
40.01	19.71	27.140	40.04	19.62	27.08
40.03	19.80	<u>27.160</u>	40.03	19.65	27.08
40.09	19.87	27.150	40.08	19.61	27.09
40.07	19.78	27.110	40.03	<u>19.89</u>	27.13
40.04	19.76	27.130	40.04	<u>19.60</u>	<u>27.03</u>
Err. Ass.: ± 0.04	Err. Ass.: ± 0.08	Err. Ass.: ± 0.025	Err. Ass.: ± 0.025	Err. Ass.: ± 0.15	Err. Ass.: ± 0.05
Ventesimale dig.					

DATA ESPERIENZA: 10/03/2015

Valori usati per il calcolo del volume:

$l_1 \pm \Delta l_1 (mm)$	$l_2 \pm \Delta l_2$ (mm)	$l_3 \pm \Delta l_3$ (mm)
40.05 ± 0.04	19.75 ± 0.15	27.095 ± 0.065

Motivazione: Sono stati forniti – per ciascuna delle tre dimensioni dell'oggetto O2 (misurate con lo strumento disponibile a precisione maggiore) – come valore della misura e valore dell'errore relativo (semiampiezza dell'intervallo) – rispettivamente – la semisomma (valor medio) e la semidifferenza (errore assoluto massimo) del valore massimo e del valore minimo tra quelli misurati per detta dimensione.

La scelta è giustificata del fatto che tali errori sono da imputarsi ad eventuali asimmetrie costruttive dell'oggetto o a errori di misurazione, piuttosto che ad errori di sensibilità dello strumento o errori casuali, di entità ben minori.

Volume dell'oggetto ed errore:

Volume dell'oggetto: $V = 25837 \pm 260 \, \text{mm}^3$

Errore relativo sul volume: $\frac{\Delta V}{V} = 9.9 \times 10^{-3}$

Errore assoluto sul volume: $\Delta V = 260 \, \text{mm}^3$

Massa dell'oggetto ed errore:

Massa dell'oggetto: $m=200.980\pm0.005 g$

Errore relativo sulla massa: $\frac{\Delta m}{m} = 2.5 \times 10^{-5}$

Errore assoluto sulla massa: $\Delta m = 5.0 \times 10^{-3} g$

Densità dell'oggetto ed errore:

Densità dell'oggetto: $\rho_m = \frac{m}{V} = m \cdot V^{-1} = 7.779 \times 10^{-3} \pm 7.8 \times 10^{-5} \, g/mm^3 \approx 7.779 \, Kg/dm^3$

Errore relativo sulla densità: $\frac{\Delta \rho_m}{\rho_m} = \frac{\Delta m}{m} + \frac{\Delta V}{V} = 9.9 \times 10^{-3}$

Errore assoluto sulla densità: $\Delta \rho_m = \rho_m \cdot \left(\frac{\Delta m}{m} + \frac{\Delta V}{V} \right) = 7.7 \times 10^{-5} \, \text{g/mm}^3$

COMMENTI CONCLUSIVI:

I valori di densità calcolati per i due oggetti sono tra loro compatibili, nell'ipotesi secondo cui essi siano costituiti dal medesimo materiale.

All'analisi visiva e tattile, il materiale in esame risulta essere di natura metallica.

Pertanto, confrontando il valore di densità dei due corpi $(\rho_m \approx 7.77 \, Kg/dm^3)$ con la densità di elementi metallici puri, quello avente densità più vicina al valore trovato risulta essere il ferro $(\rho_m \approx 7.86 \, Kg/dm^3)$. Estendendo il confronto anche alle leghe metalliche contenenti ferro, la densità calcolata per il materiale risulta essere maggiormente compatibile con l'acciaio inossidabile al carbonio-cromo, classe eterogenea avente densità $(\rho_m = 7.48 \div 8.00 \, Kg/dm^3)$.