Úvod do teorie grup

Zápisky z přednášky doc. Mgr. Jana Šarocha. Ph.D.

Dominik Doležel

Úvodní informace

- skripta: DRÁPAL, Aleš. Teorie grup: základní aspekty. Praha: Karolinum, 2000.
- email: saroch@karlin.mff.cuni.cz

Značení

Množinou přirozených čísel rozumíme množinu $\mathbb{N}=\{1,2,\dots\}$, pak je $\mathbb{N}_0=\mathbb{N}\cup\{0\}$. Zobrazení skládáme zprava doleva, tj. jsou-li $f:A\to B,\ g:B\to C$ dvě zobrazení, pak $g\circ f=gf:A\to C$, tj. pro $a\in A$ je $(g\circ f)(a)=g(f(a))$. Identické zobrazení z A do A značíme id $_A$ nebo $\mathbf{1}_A$.

Kapitola 1

Operátorové grupy

Definice 1. At Ω je množina. Množina G spolu s:

- (i) binární operací $\cdot: G \times G \to G$ (zapisujeme infixem¹),
- $(ii)\,$ unární operací $^{-1}:G\to G$ (zapisujeme postfixem²),
- (iii) nulární operací, tj. konstantou $1 \in G$,
- (iv) unárními operacemi $\omega \in \Omega : G \to G$ (zapisované prefixem³)

se nazývá Ω -grupou, pokud:

- $(i)\,\cdot$ je asociativní, tj. $\forall a,b,c\in G:(a\cdot b)\cdot c=a\cdot (b\cdot c),$
- (ii) 1 je neutrální prvek vzhledem k operaci \cdot , tj. $\forall a \in G : a \cdot 1 = 1 \cdot a = a$,
- (iii) $\forall a \in G \text{ je } a^{-1} \text{ inverzní prvek } k a, \text{ tj. } a \cdot a^{-1} = a^{-1} \cdot a = 1,$
- $(iv) \ \forall \omega \in \Omega \ \text{je } \omega \ \text{slučitelná s} \ \text{operaci} \cdot, \ \text{tj.} \ \forall a,b \in G : \omega(a \cdot b) = \omega(a) \cdot \omega(b).$

Poznámka 1.

- i. Je-li $\Omega = \emptyset$, pak místo o Ω -grupě hovoříme jen o **grupě**.
- ii. Pro všechna $a, b, c \in G$ platí:

$$(a \cdot b = a \cdot c \implies b = c) \land (b \cdot a = c \cdot a \implies b = c).$$

Dokážeme aplikací a^{-1} :

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot (a \cdot c)$$
$$(a^{-1} \cdot a) \cdot b = (a^{-1} \cdot a) \cdot c$$
$$1 \cdot b = 1 \cdot c.$$

¹mezi argumenty

²za argumentem

³před argumentem, tady $\omega()$

iii. Z předchozího plyne $(a^{-1})^{-1} = a$, neboť

$$a^{-1} \cdot (a^{-1})^{-1} = a^{-1} \cdot a \implies a = (a^{-1})^{-1}$$
.

- iv. Inverzní k $a \in G$ je právě jeden prvek, a sice a^{-1} . neutrální prvek vzhledem k operaci \cdot je právě jeden, a sice 1. (Sporem předpokládejme, že existuje i $1' \neq 1$, ale zároveň $a \cdot 1 = a \cdot 1' \implies 1 = 1'$, což je spor.)
- v. Symbol \cdot se často nepíše.

Definice 2. At G je Ω -grupa. **Řádem** Ω -grupy G rozumíme mohutnost množiny G, značíme |G| nebo ord G.

Definice 3. Buďte G, H Ω -grupy, $f: G \to H$ zobrazení. Řekneme, že f je **homomorfismus** Ω -grup G, H, jestliže

- (i) $\forall a, b \in G : f(a \cdot b) = f(a) \cdot f(b)$ a
- (ii) $\forall a, b \in G, \forall \omega in \Omega : f(\omega(a)) = \omega(f(a)).$

Lemma 1. Je-li $f: G \to H$ homomorfismus Ω -grup, pak f(1) = 1 a $\forall a \in G: f(a^{-1}) = (f(a))^{-1}$.

Důkaz. □