# ЛЕКЦИЯ 11. Регуляризация: Lasso-регрессия— модель, которая выбирает главное

## Введение

В предыдущей лекции вы узнали, как регуляризация помогает **обуздать сложную модель**, удерживать коэффициенты от "разлёта" и снижать переобучение.

Ridge-регрессия делает модель **более устойчивой**, но она не может сказать вам:

"А какие переменные на самом деле важны, а какие просто мешают?" **Lasso-регрессия** решает именно эту задачу.

#### Когда вы строите модель с множеством переменных...

...вы можете столкнуться с проблемой:

- R<sup>2</sup> высокий,
- коэффициенты есть у всех переменных,
- но некоторые из них почти ничего не значат.

Они "висят" в модели, создают шум, снижают интерпретируемость, увеличивают сложность.

#### Ваша цель:

**упростить модель**, оставить только то, что действительно влияет на результат.

### Что такое Lasso-регрессия?

Lasso (Least Absolute Shrinkage and Selection Operator) — это метод регуляризации, который:

- "сжимает" коэффициенты,
- а незначимые делает точно нулевыми,

• то есть удаляет переменные из модели автоматически.

#### Формула:

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n + \lambda * (|b_1| + |b_2| + ... + |b_n|)$$

#### Разница с Ridge:

• Ridge: штрафует квадраты (b²)

• Lasso: штрафует модули (|b|)

• В результате: **Lasso может занулить переменные**, Ridge — нет

#### Как это работает?

| Без регуляризации       | Ridge-регрессия          | Lasso-регрессия          |
|-------------------------|--------------------------|--------------------------|
| Все переменные в модели | Все в модели, но "сжаты" | Некоторые переменные = 0 |

### <u></u> Пример

Вы изучаете, что влияет на академическую успеваемость:

• сон, стресс, мотивация, возраст, активность, питание, доход семьи

Обычная модель даст коэффициенты всем.

### Lasso-регрессия может сказать:

"Возраст и доход семьи не влияют — я убираю их".

В результате модель становится короче, понятнее, проще в интерпретации.

### Как выбрать λ (лямбда)

Как и в Ridge:

- λ = 0 → обычная регрессия
- $\lambda \rightarrow$  большое  $\rightarrow$  модель становится жёсткой, может убрать всё
- Оптимальный λ подбирается через **кросс-валидацию** (об этом позже)

### Визуальное поведение

Если вы построите график коэффициентов при разных  $\lambda$  — то увидите:

- сначала все переменные имеют веса
- по мере роста λ одни коэффициенты "тают"
- потом остаются 2-3 самых устойчивых признака



🕴 Это и есть "отбор признаков" — одна из задач Lasso.

### Когда использовать Lasso?

| Ситуация                           | Lasso подходит?   |
|------------------------------------|-------------------|
| Много переменных                   | ✓ Да              |
| Вы хотите выбрать только главное   | <b>√</b> Да       |
| Переменные коррелируют между собой | <u>.</u> Частично |
| Все признаки важны, но шумные      | <b>X</b> Не очень |

### Lasso vs Ridge

| Характеристика               | Ridge        | Lasso              |
|------------------------------|--------------|--------------------|
| Удаляет переменные           | <b>X</b> Нет | ✓ Да               |
| Сжимает коэффициенты         | ✓ Да         | ✓ Да               |
| Лучше при сильной корреляции | ✓ Да         | <u>.</u> Не всегда |
| Делает модель компактной     | <u>.</u> Нет | ✓ Да               |

### Как сделать Lasso в курсе (Excel/Sheets)

Как и с Ridge, встроенной формулы нет,

#### но вы можете:

- 1. Построить обычную регрессию
- 2. Выделить переменные с маленькими коэффициентами
- 3. Ввести вручную  $\lambda * (|b_1| + |b_2| + ... + |b_n|)$
- 4. Посмотреть, какие переменные "пропали" при добавлении штрафа

Если используете Python или Google Colab — можно показать студентам LassoCV из sklearn (по желанию).

#### Использование ИИ

| Инструмент    | Что делает                               |
|---------------|------------------------------------------|
| ChatGPT       | Объяснит, чем отличается Lasso от Ridge  |
| Excel Copilot | Поможет сократить переменные вручную     |
| Notion AI     | Сформулирует объяснение в отчётном стиле |

# 🚫 Запрещено:

- Писать "Lasso убрал переменные", если вы их не исключали
- Игнорировать объяснение, почему осталась та или иная переменная
- Использовать Lasso "для красоты"
- Сравнивать модели без единого критерия (например, без одинакового λ)

### Вывод



Lasso — это не просто техника.

Это мышление: оставить главное, убрать лишнее.

Вы превращаете сложную модель в ясный инструмент принятия решений.

И это делает вас ближе к реальной прикладной аналитике.