SRFuzzer: An Automatic Fuzzing Framework for Physical SOHO Router Devices to Discover Multi-Type Vulnerabilities

{**Yu Zhang**, Wei Huo, Kunpeng Jian, Ji Shi, Haoliang Lu, Longquan Liu, Chen Wang, Dandan Sun} ^{1,2}, Chao Zhang³, Baoxu Liu^{1,2}

Institute of Information Engineering, Chinese Academy of Sciences¹ School of Cyber Security, University of Chinese Academy of Sciences² Institute for Network Science and Cyberspace, Tsinghua University³

Outline

Introduction

- ➤ Security of the SOHO Router is Important
- ➤ How to Find the Vulnerability
- ➤ Challenge of Fuzzing the SOHO Router

Example—— NTP configuration

SRFuzzer—Our Solution

- >Seed Generation
- ➤ Seed Mutation
- ➤ Exceptional Behavior Triggering and Monitoring
- ➤ Power Control

Evaluation

- > Experiment Overview
- ➤ Analysis of Issues
- ➤ Performance of Monitors
- Comparison with Popular Fuzzers

Discussion

Summary

Q&A

Security of the SOHO Router is Important

SOHO routers are in prominent position in nowadays life.

➤ Smart phone, personal computer, camera, printer, etc

SOHO routers are one of the essential exploiting targets by adversaries.

➤ VPNFilter infected at least 500,000 devices in at least 54 countries [1]

Find Vulnerabilities in Routers

Fuzzing is popular in discovering vulnerabilities of IoT devices

Technique	Andrei Costin et al.	FIRMADYNE	IoTFuzzer	Muench et al.	FIRM-AFL
Technique	Static and Dynamic Analysis	PoC	Blackbox Fuzzing	Blackbox Fuzzing	Greybox Fuzzing
Emulation	YES	YES	NO	YES	YES
Multi-Type Vulnerability	YES	NO	NO	NO	NO
Zero-Day Detection	YES	NO	YES	NO	YES
Coverage-guide	NO	NO	NO	NO	YES

Challenge of Fuzzing the SOHO Router

Example——NTP configuration

- CONF-READ communication model
 - ➤ GET request is a READ operation
 - ➤ POST request is a CONF operation
- KEY-VALUE data model
 - ➤ ntpserver1=time.test1.com

 Several different phases to trigger multi-type vulnerabilities

of SOHO router

Example——NTP configuration

- 2 functions to handle the variable ntpserver1
- A command injection vulnerability in conf_ntpserver1() function
 - ➤ Data type inconsistency
- A stack-based overflow vulnerability in read_ntpserver1() function
 - ➤ Length limitation inconsistency in 2 related functions
- The memory corruption can cause crash, what about the command injection, XSS and info disclosure?

```
POST /apply.cgi?/NTP debug.htm HTTP/1.1
       Host: 192.168.66.1
       Connection: keep-alive
 Raw
       Content-Length: 209
Request
       submit_flag=ntp_debug&conflict wanlan=&ntpserver1=time.test1.com
       &ntpserver2=time.test2.com&ntpadjust=0&hidden ntpserver=GMT8&h
       idden dstflag=0&hidden select=33&dif timezone=0&time zone=GMT-
       8&ntp type=0&pri ntp=
      int conf_ntpserver1(char * input) {ntpserver1=;reboot;
         char buf[0x100];
         char * ntp = read from request("ntpserver1", input)
         if (strlen(ntp) > \overline{0} \times 80)
           return -1;
         //use varaiable "ntp" to build config command.
         sprintf(buf, "/usr/bin/config ntpserver=%s.", ntp);
         //command injection occurs.
         system(buf);
         return 0;
                                       ntpserver1=aaa.....aaa
                                                         0x70
    9 int read ntpserver1() {
         //the \overline{l}ength of info is no more than 0x80.
         char info[0x50];
         char * ntp = get config("ntpserver1");
         //stack-based overflow occurs.
    12 sprintf(info, "ntpserver=%s", ntp);
       return 0;
```

SRFuzzer

- Fuzz the physical devices directly and automatically
- Trigger multi-type vulnerabilities with KEY-VALUE data model and CONF-READ communication model
- Generate information and monitor it when triggering exceptional behaviors
- Use smart plug to restore the device from "zombie" state
- Modular design and well extendibility

Seed Generation

- Crawler
 - ➤ General crawler
 - ➤ Passive crawler
- KEY-VALUE parser with labeling
 - ➤ Variable string
 - > Fixed string
 - **≻**Number

POST /apply.cgi?/NTP_debug.htm HTTP/1.1
Host: 192.168.66.1
Connection: keep-alive
Content-Length: 209
submit_flag=ntp_debug&conflict_wanlan=&ntpserver1=time.test1.com
&ntpserver2=time.test2.com&ntpadjust=0&hidden_ntpserver=GMT8&hidden_dstflag=0&hidden_select=33&dif_timezone=0&time_zone=GMT-8&ntp_type=0&pri_ntp=

URL: http://FUZZING_IP/apply.cgi?/NTP_debug.htm

METHOD: POST

Tuple SET:

kev attributes value submit flag ntp debug fixed str, variable str conflict wanlan variable str time.test1.com variable str ntpserver1 hidden dstflag number, variable str 33 hidden select number, variable str

Seed Mutation

Key	Original Value	Attribute	Mutation Rule	Example of Mutated Value	
ntpserver1	time.test1.com	variable string	Overflow	time.test1.comtime.test1.com (repeat 20 times)	
			NULL-Pointer dereference	(empty value)	
			Command Injection	time.test1.com";wget http://192.168.1.2/ntpserver1;	
			Stored XSS	time.test1.com"; <script> alert('xss_ntpserver1')</script>	
submit_flag	ntp_debug	fixed string	fixed string	ntp_debug	
		variable string			
hidden_dstflag	0	number	number	-1	
		variable string			

Exceptional Behavior Triggering and Monitoring

- A CONF operation for the first step
- A READ operation after a CONF operation
- Three typical monitoring mechanisms
 - > Response-based monitor
 - ➤ Proxy-based monitor
 - ➤ Signal-based monitor

这里应该说明如何判定一 种漏洞是否触发

Power Control

- Use an extra hotpot to connect the Smart Plug and Fuzzing Node
- Use Mi Smart Plug and python-miio package in practice

Experiment Overview

- We selected 10 devices from 5 different popular vendors
- We obtained 101 unique issues, 97 of which were assigned vulnerability IDs
- We manually crafted the PoCs for all unique issues

ID	Vendor	Product	Firmware Version	Architecture	Signal-based Monitor
1	NETGEAR	Orbi	V15.03.05.19 (6318)_CN	ARM32 (LE)	Device Feature, Serial Port
2	NETGEAR	Insight Managed Smart Cloud Wireless Access Point	WAC505-510_firmware_V5.0.5.4	ARM32 (LE)	Not Support
3	NETGEAR	WNDR-4500v3	WNDR4500v3-V1.0.0.50	MIPS32 (BE)	Device Feature, Serial Port
4	NETGEAR	R8500	R8500-v1.0.2.100, R8500-V1.0.2.116	ARM32 (LE)	Device Feature, Serial Port
5	NETGEAR	R7800	R7800-V1.0.2.44, R7800-V1.0.2.46	ARM32 (LE)	Device Feature, Serial Port
6	TP-Link	TL-WVR900G	V3.0_170306	MIPS32 (BE)	Not Support
7	Mercury	Mer450	MER1200GV1.0	MIPS32 (BE)	Not Support
8	Tenda	G3	V15.11.0.5	ARM32 (LE)	Existed Vulnerability
9	Tenda	AC9	V15.03.05.19	ARM32 (LE)	Existed Vulnerability
10	Asus	RT-AC1200	RT-AC1200-3.0.0.4.380.9880	MIPS32 (LE)	Device Feature

Analysis of Issues

- 101 confirmed issues
 - ➤ 48 memory corruption
 - ➤ 39 command injection
 - ➤ 9 stored XSS
 - > 5 info disclosure
- 67.33% are triggered in CONF
- 32.67% are triggered in READ
- Device specificity
 - > TP-Link TL- WVR900G

PRODUCT	CONF		READ				SUM	
PRODUCT	MEM	CMD	MEM	CMD	XSS	INFO	JOIVI	
Orbi	0	0	0	0	1	1*	2	
Insight	0	1	0	0	0	0	1	
WNDR- 4500v3	6	2	7	0	0	1*	16	
R8500	9	0	0	0	3	1*	13	
R7800	0	8	10	0	5	1*	24	
TL- WVR900G	0	24	0	1	0	0	25	
Mer450	0	2	0	0	0	0	2	
G3	5	0	0	0	0	0	5	
AC9	11	0	0	1	0	0	12	
RT-AC1200	0	0	0	0	0	1	1	
SUM	31	37	17	2	9	5	101	

Analysis of Issues

• 97 assigned IDs (43 CVEs + 52 PSVs + 2 CNVDs)

Performance of Monitors

- 77.23% confirmed issues are caught by the general mechanism (response-based and proxy-based monitor).
- Signal-based monitor can catch the silent memory corruption
- Device rebooted 6.8 times on average
 - > Handle requests in one process
 - > Handle requests in subprocesses
 - ➤ Backend is developed on top of OpenWRT

PRODUCT	MEM		CMD	XSS		INFO
PRODUCT	R	S	Р	Р	R	R
■ Orbi	0	0	0	1	0	1
Insight	0	N/A	1	0	0	0
WNDR-4500v3	3	10	2	0	0	1
R8500	7	2	0	1	2	1
R7800	2	8	8	2	3	1
TL-WVR900G	0	N/A	25	0	0	0
Mer450	0	N/A	2	0	0	0
G3	4	1	0	0	0	0
AC9	9	2	1	0	0	0
RT-AC1200	0	0	0	0	0	1
SUM	25	23	39	4	5	5

Comparison with Popular Fuzzers

- Selected 7 devices randomly
- More memory corruption issues than customized boofuzz by 53.57%
- More command injection issues than Commix by 25.81%
- Similar performance with wfuzz on XSS detection

Discussion

- Limitation of the scope
 - ➤ More types of device
 - ➤ More types of protocol
- Vulnerability of severity
 - ➤ More critical issues
- Research on data inconsistency
 - To find more issues and help vendors to harden their products.
- Monitoring
 - ➤ Make the efficient monitoring mechanism more general

Summary

- We present SRFuzzer for physical SOHO routers to automatically discover multi-type vulnerabilities
- We reveal the root cause of the different types of vulnerability as data inconsistency
- We obtain 97 assigned vulnerability IDs by fuzzing 10 popular real-world devices

REFERENCE

[1] 2018. New VPNFilter malware targets at least 500K networking devices worldwide.

https://blog.talosintelligence.com/2018/05/VPNFilter.html.

THANKS

Q&A