集合	运算	封闭	交换	结合	幂等	消去	分配	吸收	单位元	零元
\mathbb{Z}	普通减法	是	否	否	否	是	_	_	无	无
\mathbb{Z}^*	普通乘法	是	是	是	否	是	_	_	1	无
N _奇	普通加法	否	_	_	_	_	_		_	_
	普通乘法	是	是	是	否	是	_		1	无
$M_n(\mathbb{R})$	矩阵加法	是	是	是	否	是	否	否	全0矩阵	无
	矩阵乘法	是	否	是	否	否	对加法		单位矩阵	全0矩阵
$GL_n(\mathbb{R})$	矩阵加法	否	_	_	_	_	_		_	_
	矩阵乘法	是	否	是	否	是	_		单位矩阵	无
$n\mathbb{Z}$	普通加法	是	是	是	否	是	否	否	0	无
	普通乘法	是	是	是	否	是	对加法		无 ^注	0
\mathbb{R}^+	ab-a-b	否	_	_	_	_	_	_	_	_
$\{a_i\}$	$a \circ b = b$	是	否	是	是	否	_	_	无	无
R(A)	关系合成	是	否	是	否	否	_	_	I_A	Ø
\mathbb{Z}^+	gcd(a,b)	是	是	是	是	否	对 lcm	是	无	1
	lcm(a, b)	是	是	是	是	否	对 gcd		1	无

注: 仅当n=1时, $n\mathbb{Z}$ 有乘法单位元 1。

15.5

- (1) 不能,除非允许 a, b, c 全等(此时令 a = b = c = 0 即可)。

15.6

- (1) 构成代数系统。运算适合交换律、结合律。单位元是取值恒为0的常数函数,无零元。
- (2) 构成代数系统。运算不适合交换律,也不适合结合律。无单位元(取值恒为0的常数函数是右单位元),无零元。
- (3) 构成代数系统。运算适合交换律、结合律。单位元是取值恒为1的常数函数,零元是取值恒为0的常数函数。
- (4) 不构成代数系统。当 g(x) 取值为 0 时,函数 $f/g \notin S$ 。故运算在 S 上不封闭。

15.7

- (1) 构成代数系统。运算适合交换律、结合律、幂等律。单位元是1,无零元。
- (2) 构成代数系统。运算适合交换律、结合律、幂等律。零元是1,无单位元。
- (3) 构成代数系统。运算不适合交换律、结合律或幂等律。1是左零元和右单位元。运算无右零元和左单位元,因而没有零元和单位元。
- (4) 不构成代数系统。当 $ab \nmid a + b$ 时,函数 $a/b + b/a \notin \mathbb{Z}^+$ 。故运算在 \mathbb{Z}^+ 上不封闭。

15.8

结论 1: 运算满足交换律当且仅当 p=q。

证明: 充分性显然。下面证必要性:

取 a=1,b=0,若运算满足交换律,则有:

 $a \circ b = b \circ a$

$$\iff pa + qb + r = qa + pb + r$$
 (\circ 运算定义)

$$\iff p+r=q+r \tag{a=1,b=0}$$

$$\iff p = q$$
 (加法消去律)