Danmarks Tekninske Universitet

DISCRETE MATHEMATICS 2: ALGEBRA Course number: 01018

Assignment 2

Author: Mads Esben Hansen, s174434

Question 1.

a) As usual, let $(Z_n, +_n, \cdot_n)$ denote the ring of integers modulo n. Prove that the map $\psi : Z_{12} \to Z_4$ given by $\psi(i) = i \mod 4$, for $i \in Z_{12}$ is a ring homomorphism.

We can use definition 154 to check if ψ is in fact a ring homomorphism.

$$0_{12} = (\mathbb{Z} \cdot 12) \mod 12 = 0$$

 $0_4 = (\mathbb{Z} \cdot 4) \mod 4 = 0$
 $\psi(0_{12}) = 0 \mod 4 = 0 \iff \psi(0_{12}) = 0_4$

Let $r_1, r_2 \in \mathbb{Z}$.

$$\psi(r_1 + r_2) = \psi((r_1 + r_2) \bmod{12}) = ((r_1 + r_2) \bmod{12}) \bmod{4} = r_1 + r_2 \bmod{4}$$

$$\psi(r_1) +_4 \psi(r_2) = ((r_1 \bmod{4}) + (r_2 \bmod{4})) \bmod{4} = r_1 + r_2 \bmod{4} \implies \psi(r_1 + r_2 + r_2) = \psi(r_1) +_4 \psi(r_2)$$

Since we chose $r_1, r_2 \in \mathbb{Z}$ freely, it holds for all combination of r_1, r_2 . So criteria 1 of definition 154 is fulfilled. Now let us look at the second criteria.

$$1_{12} = 1$$
 $1_4 = 1$
 $\psi(1_{12}) = \psi(1) = 1 \mod 4 = 1 = 1_4$

The second criteria is also fulfilled. Let us now look at the third and final. Let r_1, r_2 be as before.

$$\psi(r_1 \cdot_{12} r_2) = ((r_1 \cdot r_2) \bmod 12) \bmod 4 = (r_1 \cdot r_2) \bmod 4$$

$$\psi(r_1) \cdot_4 \psi(r_2) = (r_1 \cdot r_2) \bmod 4 \quad \Leftrightarrow \quad \psi(r_1 \cdot_{12} r_2) = \psi(r_1) \cdot_4 \psi(r_2)$$

So the third and final criteria is also fulfilled. We can now conclude that ψ is in fact a ring homomorphism.

b) Compute the image and the kernel of ψ .

The image is found directly as:

$$Im(\psi) = \{\psi(r) \mid r \in \mathbb{Z}_{12}\} = \{r \bmod 4 \mid r \in \mathbb{Z}_{12}\}\$$

 $Im(\psi) = \{0, 1, 2, 3\}$

Following definition 155 we find the kernel as:

$$ker(\psi) = \{r \in \mathbb{Z} | \psi(r) = 0_4\} = \{r \in \mathbb{Z} | \psi(r) = 0\} = \{r \in \mathbb{Z} | r \equiv 0 \pmod{4}\}$$

 $ker(\psi) = \mathbb{Z} \cdot 4 = \{..., -4, 0, 4, ...\}$

c) Is the map $\phi: Z_{14} \to Z_4$ given by $\phi(i) = i \mod 4$, for $i \in Z_{14}$ a ring homomorphism?

It is if is satisfies all 3 criteria mentioned in definition 154. Let us check:

$$0_{14} = \mathbb{Z} \cdot 14 = \{..., -14, 0, 14, ..\}$$

$$\phi(0_{14}) = (\mathbb{Z} \cdot 14) \mod 4 = \{0, 2\} \neq 0_4$$

So it is not even a group homomorphism and there is therefore no way it can be a ring homomorphism.

Question 2.

Let (D_4, \circ) be the dihedral group consisting of the symmetries of a square. As usual we write $D_4 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$. The symmetries r and s satisfy $r^{-1} = r^3, s^{-1} = s$ and $sr = r^{-1}s$. For a group homomorphism $\phi : D_4 \to S_8$ it is given that $\phi(r) = (1357)(2468)$ and $\phi(s) = (18)(27)(36)(45)$.

a) Compute $\phi(a)$ for all $a \in D_4$.

They are directly computed by:

$$\phi(e) = id$$

$$\phi(r) = (1357)(2468)$$

$$\phi(r^2) = \phi(r) \cdot \phi(r) = (1357)(2468)(1357)(2468) = (15)(26)(37)(48)$$

$$\phi(r^3) = \phi(r^2) \cdot \phi(r) = (15)(26)(37)(48)(1357)(2468) = (1753)(2864)$$

$$\phi(s) = (18)(27)(36)(45)$$

$$\phi(rs) = \phi(r) \cdot \phi(s) = (1357)(18)(27)(36)(45) = (16)(25)(34)(78)$$

$$\phi(r^2s) = \phi(r^2) \cdot \phi(s) = (15)(26)(37)(48)(18)(27)(36)(45) = (14)(23)(58)(67)$$

$$\phi(r^3s) = \phi(r^3) \cdot \phi(s) = (1753)(2864)(18)(27)(36)(45) = (12)(38)(47)(56)$$

b) Determine a subgroup $H \subset S_8$ of (S_8, \circ) such that (D_4, \circ) is isomorphic to (H, \circ) .

In the previous exercise, we computed the image of ϕ . We further saw that $ker(\phi) = e$. According to theorem 118 in the book, we can now directly use the isomorphism given by:

$$\phi: (D_4, \circ) \to im(\phi)$$

We can in turn define H to be the image of ϕ :

$$H = im(\phi) = \{id, (1357)(2468), (15)(26)(37)(48), (18)(27)(36)(45), \dots$$

$$(16)(25)(34)(78), (14)(23)(58)(67), (12)(38)(47)(56)\}$$

We do not even need to check that this is in fact a group, since this is guaranteed by theorem 118.

c) What is the smallest integer n such that (D_4, \circ) is isomorphic to a subgroup of (S_n, \circ) ?

We know that (S_3, \circ) contains 3! = 6 different cycles. It is therefore not possible to find a map from (S_3, \circ) with a image that is larger than 6. Since D_4 contains 8 elements, finding a isomorphic subgroup with $n \le 3$ is not possible. Now we look at (S_4, \circ) , which contains 4! = 24 different cycles. If we now define a map $\psi: D_4 \to S_4$, where $\psi(e) = id, \psi(r) = (1234)$, and $\psi(s) = (14)(23)$, we have a group homomorphism. We further have that $ker(\psi) = e$ (this will not be proved formally). We can now do the same trick as in b) to find a subgroup $H \subset S_4$, s.t. (H, \circ) is isomorphic to (D_4, \circ) . So for n = 4 (D_4, \circ) is isomorphic to subgroup of (S_n, \circ) .