

Université Internationale de Casablanca

CPI2 : ALGÈBRE 3, 2016-2017. CONTRÔLE 29-12-2016

Exercice 0.0.1. Soit A une matrice carrée $n \times n$ inversible telle que

$$A + A^{-1} = I$$

Calculer

$$A^k + A^{-k}$$
, pour $k = 1, 2, 3, 4$

où on note $A^{-k} = (A^{-1})^k$

Exercice 0.0.2. Soit E l'ensemble des fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ telles qu'ils existent $a, b, c \in \mathbb{R}$ pour lesquels :

$$\forall x \in \mathbb{R}, \quad f(x) = ae^x + be^{-x} + csin(x)$$

- 1. Montrer que E est un sous-espace vectoriel de $F(\mathbb{R}, \mathbb{R})$.
- 2. Déterminer une base de E et sa dimension.

Exercice 0.0.3. $E = \mathbb{R}^3$ et $B_1 = (u_1, u_2, u_3)$ avec

$$u_1 = (1, 1, 0), \quad u_2 = (0, -1, 0), \quad u_3 = (3, 2, -1)$$

Et $B_2 = (v_1, v_2, v_3)$ avec

$$v_1 = (1, -1, 0), \quad v_2 = (0, 1, 0), \quad v_3 = (0, 0, -1)$$

- 1. Montrer que B_1 est une base de E.
- 2. Montrer que B_2 est une base de E.
- 3. Calculer la matrice de passage P de la base B_1 à la base B_2 et son inverse P^{-1}
- 4. Soit f une application linéaire de \mathbb{R}^3 dans lui même. On suppose que la matrice associée à f dans la base B_1 est

$$A = \begin{pmatrix} 1 & 0 & -6 \\ -2 & 2 & -7 \\ 0 & 0 & 3 \end{pmatrix}$$

- (a) Calculer la matrice A' de l'application linéaire f dans la base B_2
- (b) Calculer A'^n pour $n \in \mathbb{N}$.
- (c) En déduire Aⁿ

Exercice 0.0.4. Soit la matrice

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$

- 1. Calculer A²
- 2. Calculer $A^3 A$
- 3. En déduire que A est inversible et calculer A^{-1} .