

<u>Gameboard</u>

Maths

Advanced Trig Identities 4ii

Advanced Trig Identities 4ii

The acute angle A is such that $\tan A = 2$.

Part A $\csc A$

Find the exact value of $\csc A$.

The following symbols may be useful: A

Part B $\tan B$

The angle B is such that $\tan(A+B)=3$. Using an appropriate identity, find the exact value of $\tan B$.

The following symbols may be useful: B

Used with permission from UCLES A-level Maths papers, 2003-2017.

Home Gameboard Maths Statistics Probability Probability 3.7

Probability 3.7

A system consists of 1000 particles which can be in either one of two states A and B; any particle has a probability of 0.9 of being in state A. Find the following.

Part A 900 particles in state A

Find the probability that there are exactly 900 particles in state A. Give your answer to $3\ \mathrm{sf}$.

Part B 110 particles in state B

Find the probability that there are exactly 110 particles in state B. Give your answer to $3\ \mathrm{sf}$.

Part C Between 880 and 920 particles in state A

Find the probability that there are more than 880 but less than 920 particles in state A. Give your answer to $3~\rm sf$.

Part D Less than 120 in state B

Find the probability that there are less than 120 particles in state B. Give your answer to 3 sf.

Gameboard:

STEM SMART Single Maths 51 - Synoptic Revision 2

<u>Gameboard</u>

Maths

Modulus 3i

Modulus 3i

Part A
$$\left|x-250
ight|<10$$

Solve the inequality |x-250| < 10, and give the upper bound in the form x < a or $x \le a$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle =$, \times

Solve the inequaltity $\left|x-250\right|<10$, and give the lower bound in the form x>a or $x\geq a$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = , \times$

Part B
$$\left|1.02^n-250\right|<10$$

Hence determine the range of the integers n which satisfy the inequality

$$\left| 1.02^n - 250 \right| < 10.$$

Give the upper bound in the form n < a or $n \le a$.

The following symbols may be useful: <, <=, >, >=, n

Give the lower bound in the form n > a or $n \ge a$.

The following symbols may be useful: <, <=, >, >=, n

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 51 - Synoptic Revision 2

<u>Gameboard</u>

Maths

Trapezium Rule 4i

Trapezium Rule 4i

Figure 1 shows the curve $y = 1.25^x$.

Figure 1: The curve $y = 1.25^x$.

Part A x-Coordinate

A point on the curve has y-coordinate 2 , calculate its x-coordinate, giving your answer to 3 significant figures.

D . D			_
Dart R	Ilori	ソコキハノヘ	Δt
Part B	Dell	valive	UI (
		vative	- · · ·

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x.

The following symbols may be useful: Derivative(y, x), e, ln(), log(), x

Part C Trapezium Rule

Use the trapezium rule with 4 intervals to estimate the area of the region bounded by the curve, the axes and the line x=4. Give your answer to three significant figures.

Part D Overestimate or Underestimate?

Is the estimate found in part C an overestimate or an underestimate?

- Overestimate
- Underestimate

Part E More Accurate Estimates

How co	ould the trapezium rule could be used to find a more accurate estimate of the shaded region?
	Use rectangles instead of trapezia. Their shape will better fit this particular curve, and so give a more accurate approximation.
	Double the number of trapezia, keeping their width the same. Using more trapezia always results in a better approximation.
	Use the same number of trapezia, but reduce the width of the trapezia. Narrower trapezia are a better fit to the curve as they reduce the surplus area between the tops of the trapezia and the curve, and so will yield a better approximation to the area.
	Use a larger number of (narrower) trapezia over the same interval. This will reduce the surplus area between the tops of the trapezia and the curve, and so give a more accurate approximation.

Adapted with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 51 - Synoptic Revision 2

<u>Home</u> <u>Gameboard</u> Maths Statistics Data Analysis Data Analysis 5.4

Data Analysis 5.4

The distribution of the velocities of gas molecules in one dimension is given by a normal distribution with mean zero and variance which is proportional to the temperature of the gas.

At room temperature, $T_1=300\,\mathrm{K}$, 20% of the molecules have speeds greater than $370\,\mathrm{m~s^{-1}}$. At a higher temperature, T_2 , 30% of the molecules have speeds greater than $370\,\mathrm{m~s^{-1}}$. Answer the following questions and hence deduce the value of T_2 .

Part A σ_1 at T_1

At room temperature, $T_1=300\,\mathrm{K}$, 20% of the molecules have speeds greater than $370\,\mathrm{m~s^{-1}}$; find the value of the standard deviation in the velocities σ_1 . Give your answer to 2 sf.

Part B σ_2 at T_2

At T_2 , 30% of the molecules have speeds greater than $370 \,\mathrm{m\ s^{-1}}$; find the value of the standard deviation in the velocities σ_2 . Give your answer to 2 sf.

Part C The value of T_2

Use your answers to parts A and B and the information given above to deduce the temperature T_2 . Give your answer to 2 sf.

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 51 - Synoptic Revision 2

Gameboard

Maths

Parametrics & Implicit Differentiation

Parametrics & Implicit Differentiation

Part A Find $\frac{\mathrm{d}y}{\mathrm{d}x}$

The parametric equations of a curve are

$$x = rac{1}{\sqrt{2+t}} \, ext{and} \, y = t^3 - 3t \, ext{for} \, -2 < t \leq 0$$

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of t.

The following symbols may be useful: Derivative(y, x), t

Part B Stationary Point

The parametric equations of a curve are

$$x = rac{1}{\sqrt{2+t}} \, \mathrm{and} \, y = t^3 - 3t \, \mathrm{for} \, -2 < t \leq 0$$

Give the x and y coordinates of the stationary point. Write your answer in the form (x,y) with no spaces.

What is the nature of the stationary point?

- Minimum
- Maximum
- Point of inflection

Part C Domain and Range

The parametric equations of a curve are

$$x = rac{1}{\sqrt{2+t}} ext{ and } y = t^3 - 3t ext{ for } -2 < t \leq 0$$

State the domain of the resultant function. Write your answer in the form $x \geq a, \, x > a, \, x \leq a,$ or x < a.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = , \times$

State the upper bound of the range. Write your answer in the form $y \ge a$, $y \le a$, or y < a.

The following symbols may be useful: <, <=, >, >=, y

Give the lower bound of the range. Write your answer in the form $y \ge b$, $y \le b$, or y < b.

The following symbols may be useful: <, <=, >, >=, y

Part D Sketch

The parametric equations of a curve are

$$x = rac{1}{\sqrt{2+t}} \, ext{and} \, y = t^3 - 3t \, ext{for} \, -2 < t \leq 0$$

Sketch the graph of this function.

Easier question?

Part E $\frac{\mathrm{d}y}{\mathrm{d}x}$

Figure 2 shows the curve with equation $x^2 + y^3 - 8x - 12y = 4$. At each of the points P and Q the tangent to the curve is parallel to the y-axis. Find the coordinates of P and Q.

Figure 2: A diagram of the curve $x^2 + y^3 - 8x - 12y = 4$.

Find an expression for $\frac{dy}{dx}$.

The following symbols may be useful: Derivative(y, x), x, y

Part F Implicit Differentiation

The diagram shows the curve with equation $x^2 + y^3 - 8x - 12y = 4$. At each of the points P and Q the tangent to the curve is parallel to the y-axis. Find the coordinates of P and Q.

Figure 3: A diagram of the curve $x^2 + y^3 - 8x - 12y = 4$.

Give the x and y coordinates for point P. Write your answer in the form (x,y) without spaces.

Give the x and y coordinates for point Q. Write your answer in the form (x,y) without spaces.

Used with permission from UCLES A-level Maths papers, 2003-2017.