Measuring Fairness in Ranked Outputs

	gender	GPA		income
20	F	4.0		50K
19	M	3.5		35K
21	F	3.2		30K
17	M	3.8		40K
20	F	3.6		60K
	•••		•••	•••

Disparate treatment is the illegal practice of treating an entity, such as a creditor or employer, differently based on a protected characteristic such as race, gender, age, religion, sexual orientation, or national origin.

Our goal: detect and mitigate the effects of disparate treatment in applications that output ranked results.

Set-wise fairness measures

Database $I(\underline{k}, s, x_1, ..., x_m)$ with N items, s denotes membership in protected group, x_1, \dots, x_m are descriptive attributes.

- $S^+ \subseteq I$ protected group, $S^- \subseteq I \setminus S^+$ remaining items
- c cut-off point in a ranking

Inspired by group fairness measures in binary classification

KL divergence

$$KL = D_{KL}(P_c||Q_N)$$
 $P_c = \left(\frac{S_c^+}{c}, \frac{S_c^-}{c}\right)$ $Q_N = \left(\frac{S_N^+}{N}, \frac{S_N^-}{N}\right)$

Normalized difference $ND = \left| \frac{S_c^+}{c} - \frac{S_N^+}{N} \right|$

Ratio difference

$$\mathbf{RD} = \left| min\left(\frac{S_c^+}{S_c^-}, \frac{S_N^+}{S_N^-}\right) - \frac{S_N^+}{S_N^-} \right|$$

Fairness: Assigning outcomes to individuals

Assumptions

- Protected group membership is binary (e.g. F / M)
- Item quality is independent of protected group membership

Fairness is concerned with how outcomes are assigned to individuals, and, for a specific formulation, to members of a protected group.

A well-studied case: binary classification

Individual with **Individual** with positive outcome

Positive Outcomes	Negative Outcomes				
offered employment	denied employment				
accepted to school	rejected from school				
offered a loan	denied a loan				
offered a discount	not offered a discount				

Rank-aware fairness

- SF_c: Set-wise fairness at cut-off **c**, one of KL, ND or RD
- Z: Normalizer

$$GF = \frac{1}{Z} \sum_{c=10,20,...}^{N} \frac{SF_c}{log_2 c}$$

 $GF \in [0,1]$ 0 is worst, 1 is best.

Ranking attributes: duration (month), credit amount, status of existing account, employment length.

KL

0.17

0.18

0.04

0.02

0.01

0.01

0.03

0.01

0.01

0.03

0.02

0.02

Score

Recidivism

Violent recidivism

Prior arrests

Recidivism

Violent recidivism

Prior arrests

Credit Amount

Duration Month

Score

Credit Amount

Duration Month

Score

Inspired by Normalized Discounted Cumulative Gain (NDCG) in IR

An example

Real data

German credit

ProPublica / COMPAS

Close to 7,000 criminal defendant records.

ProPublica

German

Credit

$$c = 6$$

$$KL_{c=6} = D_{KL}(P_c||Q_N) = 0$$

$$P_c = \left(\frac{3}{6}, \frac{3}{6}\right)Q_N = \left(\frac{3}{6}, \frac{3}{6}\right)$$

$$ND_{c=6} = \left|\frac{S_c^+}{c} - \frac{S_N^+}{N}\right| = \left|\frac{3}{6} - \frac{3}{6}\right| = 0$$

$$RD_{c=6} = \left|\frac{S_c^+}{S_c^-} - \frac{S_N^+}{S_N^-}\right| = \left|\frac{3}{3} - \frac{3}{3}\right| = 0$$

Racial & gender bias in predictions of future criminal activity.

Sensitive attributes: race (51% black) gender (19% female)

Sensitive

Attribute

Race

Gender

Gender

Age<25

Score: recidivism score, violent recidivism score, number of prior arrests.

Financial information about **1,000** individuals applying for loans.

Score: duration (months), credit amount, score by summation of all attributes.

Sensitive attributes: age (15% younger than 25) gender (69% female)

Compound:

$$GF = \frac{1}{Z} \left(\frac{SF_2}{log_2 2} + \frac{SF_4}{log_2 4} + \frac{SF_6}{log_2 6} \right)$$

$$= \begin{cases} 0.13, SF = KL \\ 0.29, SF = ND \\ 0.22, SF = RD \end{cases}$$

$$Z_{KL} = 0.705 \quad Z_{ND} = 0.423 \quad Z_{RD} = 1.468$$

0.58

0.57

0.36

0.02

0.01

0.00

0.32

0.00

0.00

0.06

0.27

0.44

0.23

0.15

0.12

0.12

0.16

0.09

0.11

0.06

0.11

Observe that protected group (F) is

50% of the population but only 20%

of the positive outcomes.

Synthetic data

Generate synthetic rankings

Protected group ratio: 20%, 50%, and 80%

Item number: 1000 **Mixing proportion**: [0,1]

References

- 1. Ke Yang and Julia Stoyanovich. Measuring Fairness in Ranked Outputs. http://arxiv.org/abs/1610.08559
- 2. More information: https://www.cs.drexel.edu/dbgroup/

What is a positive outcome in a ranking?

A ranking is relative. Being in the top-10 is better than in the top-20. Being in the top-20 is better than in the top-100, etc.

Is p_1 fair? Is p_2 fair? Is p_3 fair?

Intuition: Just as it is better (for an individual) to be ranked higher, it is more important to be fair (to groups) at higher ranks.

Idea: Look at a ranking at multiple cut-off points. Compute set-wise fairness at each point. Compound set-wise fairness progressively, in a rank-aware manner.

Synthetic data generator and optimization framework

Optimization Framework

Goal: Mitigate lack of fairness

Method: Learn a model to minimize the loss function L

Applied **L-BFGS** algorithm to minimize *L* Performed a simple **grid search** to find a good set of hyper-parameters A_x , A_y , A_z

Performance of optimization on German credit

Iterations(*10)

Ranked by sum of normalized attribute values Normalized discounted KL-divergence Normalized discounted difference Normalized discounted ratio Group fairness in optimization

Iterations(*10)

Acknowledgements

This research was supported in part by NSF Grants No. 1464327 & 1539856, and BSF Grant No. 2014391.