```
In [1]: # import datetime
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datlib.FRED import *
from datlib.plots import *
import pandas_datareader.data as web

%matplotlib inline

# Import Statsmodels

from statsmodels.tsa.api import VAR
from statsmodels.tsa.stattools import adfuller
from statsmodels.tools.eval_measures import rmse, aic
```

```
In [2]: #data cleaning, importing

d_parser = lambda x: pd.datetime.strptime(x, '%m/%d/%Y')

df = pd.read_csv('M4-5.csv', parse_dates=['Date'], date_parser=d_parser)

df
```

C:\Users\HP\AppData\Local\Temp/ipykernel_2724/2883410668.py:3: FutureWarning: T he pandas.datetime class is deprecated and will be removed from pandas in a fut ure version. Import from datetime module instead.

d_parser = lambda x: pd.datetime.strptime(x, '%m/%d/%Y')

Out[2]:

	Date	М4	Log Total Assets	Effective Federal Funds Rate (%)	Log Currency in Circulation (\$ Bil)	Unemployment Rate
0	2010- 01-31	0.00	0.000000e+00	0.00	6.83	0.0
1	2010- 02-28	-0.01	0.000000e+00	0.00	6.83	0.0
2	2010- 03-31	-0.01	2.000000e-02	0.02	6.84	0.1
3	2010- 04-30	0.01	-1.000000e- 02	-0.01	6.84	-0.1
4	2010- 05-31	0.00	-1.000000e- 02	-0.03	6.84	-0.3
115	2019- 08-31	0.01	0.000000e+00	-0.29	7.47	0.1
116	2019- 09-30	0.00	2.000000e-02	0.18	7.47	-0.3
117	2019- 10-31	0.01	3.000000e-02	-0.12	7.48	0.3
118	2019- 11-30	0.01	-2.000000e- 02	-0.07	7.49	-0.1
119	2019- 12-31	0.00	-1.780000e- 15	0.28	7.49	0.0

120 rows × 6 columns

```
In [3]: df['Date_at_year_month'] = df['Date'].dt.strftime('%Y-%m')
```

Out[4]:

	Date	M4	TA	FFR	СС	U	DATE
0	2010-01-31	0.00	0.000000e+00	0.00	6.83	0.0	2010-01
1	2010-02-28	-0.01	0.000000e+00	0.00	6.83	0.0	2010-02
2	2010-03-31	-0.01	2.000000e-02	0.02	6.84	0.1	2010-03
3	2010-04-30	0.01	-1.000000e-02	-0.01	6.84	-0.1	2010-04
4	2010-05-31	0.00	-1.000000e-02	-0.03	6.84	-0.3	2010-05
115	2019-08-31	0.01	0.000000e+00	-0.29	7.47	0.1	2019-08
116	2019-09-30	0.00	2.000000e-02	0.18	7.47	-0.3	2019-09
117	2019-10-31	0.01	3.000000e-02	-0.12	7.48	0.3	2019-10
118	2019-11-30	0.01	-2.000000e-02	-0.07	7.49	-0.1	2019-11
119	2019-12-31	0.00	-1.780000e-15	0.28	7.49	0.0	2019-12

120 rows × 7 columns

```
In [5]: df = df.set_index('DATE')
```

Out[5]:

	Date	M4	TA	FFR	CC	U
DATE						
2010-01	2010-01-31	0.00	0.000000e+00	0.00	6.83	0.0
2010-02	2010-02-28	-0.01	0.000000e+00	0.00	6.83	0.0
2010-03	2010-03-31	-0.01	2.000000e-02	0.02	6.84	0.1
2010-04	2010-04-30	0.01	-1.000000e-02	-0.01	6.84	-0.1
2010-05	2010-05-31	0.00	-1.000000e-02	-0.03	6.84	-0.3
2019-08	2019-08-31	0.01	0.000000e+00	-0.29	7.47	0.1
2019-09	2019-09-30	0.00	2.000000e-02	0.18	7.47	-0.3
2019-10	2019-10-31	0.01	3.000000e-02	-0.12	7.48	0.3
2019-11	2019-11-30	0.01	-2.000000e-02	-0.07	7.49	-0.1
2019-12	2019-12-31	0.00	-1.780000e-15	0.28	7.49	0.0

120 rows × 6 columns

Out[6]:

	M4	TA	FFR	СС	U
DATE					
2010-01	0.00	0.000000e+00	0.00	6.83	0.0
2010-02	-0.01	0.000000e+00	0.00	6.83	0.0
2010-03	-0.01	2.000000e-02	0.02	6.84	0.1
2010-04	0.01	-1.000000e-02	-0.01	6.84	-0.1
2010-05	0.00	-1.000000e-02	-0.03	6.84	-0.3
2019-08	0.01	0.000000e+00	-0.29	7.47	0.1
2019-09	0.00	2.000000e-02	0.18	7.47	-0.3
2019-10	0.01	3.000000e-02	-0.12	7.48	0.3
2019-11	0.01	-2.000000e-02	-0.07	7.49	-0.1
2019-12	0.00	-1.780000e-15	0.28	7.49	0.0

120 rows × 5 columns

In [7]: data = df
data

Out[7]:

	M4	TA	FFR	СС	U
DATE					
2010-01	0.00	0.000000e+00	0.00	6.83	0.0
2010-02	-0.01	0.000000e+00	0.00	6.83	0.0
2010-03	-0.01	2.000000e-02	0.02	6.84	0.1
2010-04	0.01	-1.000000e-02	-0.01	6.84	-0.1
2010-05	0.00	-1.000000e-02	-0.03	6.84	-0.3
2019-08	0.01	0.000000e+00	-0.29	7.47	0.1
2019-09	0.00	2.000000e-02	0.18	7.47	-0.3
2019-10	0.01	3.000000e-02	-0.12	7.48	0.3
2019-11	0.01	-2.000000e-02	-0.07	7.49	-0.1
2019-12	0.00	-1.780000e-15	0.28	7.49	0.0

120 rows × 5 columns

```
In [8]: #ADF test
        X = data["M4"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
        X = data["FFR"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
        X = data["TA"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
        X = data["CC"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
```

```
X = data["U"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
        ADF Statistic: -14.773444
        p-value: 0.000000
        Critical Values:
                 1%: -3.487
                 5%: -2.886
                 10%: -2.580
        Reject Ho - Time Series is Stationary
        ADF Statistic: -3.996996
        p-value: 0.001426
        Critical Values:
                 1%: -3.491
                 5%: -2.888
                 10%: -2.581
        Reject Ho - Time Series is Stationary
        ADF Statistic: -10.281226
        p-value: 0.000000
        Critical Values:
                 1%: -3.487
                 5%: -2.886
                 10%: -2.580
        Reject Ho - Time Series is Stationary
        ADF Statistic: -3.653973
        p-value: 0.004809
        Critical Values:
                 1%: -3.492
                 5%: -2.889
                 10%: -2.581
        Reject Ho - Time Series is Stationary
        ADF Statistic: -8.219365
        p-value: 0.000000
        Critical Values:
                 1%: -3.491
                 5%: -2.888
                 10%: -2.581
        Reject Ho - Time Series is Stationary
In [9]: | df = data
```

```
In [16]: import statsmodels.api as sm
         #perform KPSS test
         sm.tsa.stattools.kpss(df["M4"], regression='ct')
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\stattools.py:2022: Inte
         rpolationWarning: The test statistic is outside of the range of p-values availa
         ble in the
         look-up table. The actual p-value is greater than the p-value returned.
           warnings.warn(
Out[16]: (0.0547214358889738,
          0.1,
          {'10%': 0.119, '5%': 0.146, '2.5%': 0.176, '1%': 0.216})
In [17]: | sm.tsa.stattools.kpss(df["FFR"], regression='ct')
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\stattools.py:2022: Inte
         rpolationWarning: The test statistic is outside of the range of p-values availa
         ble in the
         look-up table. The actual p-value is greater than the p-value returned.
           warnings.warn(
Out[17]: (0.07533063409509935,
          0.1,
          {'10%': 0.119, '5%': 0.146, '2.5%': 0.176, '1%': 0.216})
In [18]:
         sm.tsa.stattools.kpss(df["CC"], regression='ct')
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\stattools.py:2018: Inte
         rpolationWarning: The test statistic is outside of the range of p-values availa
         ble in the
         look-up table. The actual p-value is smaller than the p-value returned.
           warnings.warn(
Out[18]: (0.39483205140890026,
          0.01,
          6,
          {'10%': 0.119, '5%': 0.146, '2.5%': 0.176, '1%': 0.216})
```

```
In [19]:
         sm.tsa.stattools.kpss(df["TA"], regression='ct')
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\stattools.py:2022: Inte
         rpolationWarning: The test statistic is outside of the range of p-values availa
         ble in the
         look-up table. The actual p-value is greater than the p-value returned.
           warnings.warn(
Out[19]: (0.07963189413717638,
          0.1,
          {'10%': 0.119, '5%': 0.146, '2.5%': 0.176, '1%': 0.216})
In [20]: sm.tsa.stattools.kpss(df["U"], regression='ct')
Out[20]: (0.17877024133327776,
          0.023961159500020836,
          34,
          {'10%': 0.119, '5%': 0.146, '2.5%': 0.176, '1%': 0.216})
In [10]: ## Johansen test
         from statsmodels.tsa.vector ar.vecm import coint johansen
         def cointegration test(df, alpha=0.05):
             """Perform Johanson's Cointegration Test and Report Summary""
             out = coint_johansen(df,-1,5)
             d = \{ 0.90':0, 0.95':1, 0.99':2 \}
             traces = out.lr1
             cvts = out.cvt[:, d[str(1-alpha)]]
             def adjust(val, length= 6): return str(val).ljust(length)
             # Summary
             print('Name :: Test Stat > C(95%)
                                                    =>
                                                          Signif \n', '--'*20)
             for col, trace, cvt in zip(df.columns, traces, cvts):
                 print(adjust(col), ':: ', adjust(round(trace,2), 9), ">", adjust(cvt, 8),
         cointegration test(df)
                :: Test Stat > C(95%)
                                               Signif
         Name
                                          =>
         Μ4
                :: 166.56
                              > 60.0627 =>
                                               True
         TΑ
                :: 97.62
                              > 40.1749 =>
                                               True
         FFR
                :: 60.85
                             > 24.2761 =>
                                               True
         CC
                :: 33.67
                             > 12.3212
                                               True
                                          =>
         U
                :: 12.02
                              > 4.1296
                                               True
                                          =>
```

In [11]: ##Testing Causation using Granger's Causality Test from statsmodels.tsa.stattools import grangercausalitytests maxlag=12 test = 'ssr_chi2test' def grangers_causation_matrix(data_new, variables, test='ssr_chi2test', verbose="f") df = pd.DataFrame(np.zeros((len(variables), len(variables))), columns=variabl for c in df.columns: for r in df.index: test_result = grangercausalitytests(data_new[[r, c]], maxlag=maxlag, p_values = [round(test_result[i+1][0][test][1],4) for i in range(max] if verbose: print(f'Y = {r}, X = {c}, P Values = {p_values}') min_p_value = np.min(p_values) df.loc[r, c] = min_p_value df.columns = [var + '_x' for var in variables] df.index = [var + '_y' for var in variables] return df grangers_causation_matrix(df, variables = df.columns)

Out[11]:

	M4_x	TA_x	FFR_x	CC_x	U_x
M4_y	1.0000	0.0000	0.3924	0.0004	0.0108
TA_y	0.0002	1.0000	0.0077	0.2116	0.1110
FFR_y	0.0625	0.2477	1.0000	0.0156	0.1985
CC_y	0.0019	0.0216	0.7152	1.0000	0.2312
Uу	0.1152	0.0000	0.5653	0.0048	1.0000

```
In [12]: from statsmodels.tsa.stattools import kpss
         def kpss test(df):
             statistic, p value, n lags, critical values = kpss(df.values)
             print(f'KPSS Statistic: {statistic}')
             print(f'p-value: {p value}')
             print(f'num lags: {n lags}')
             print('Critial Values:')
             for key, value in critical_values.items():
                 print(f'
                            {key} : {value}')
         print('KPSS Test: M4')
         kpss test(df['M4'])
         print('KPSS Test: FFR')
         kpss test(df['FFR'])
         print('KPSS Test: TA')
         kpss_test(df['TA'])
         KPSS Test: M4
         KPSS Statistic: 0.7310020008542962
         p-value: 0.010727090831427614
         num lags: 3
         Critial Values:
            10%: 0.347
            5%: 0.463
            2.5%: 0.574
            1%: 0.739
         KPSS Test: FFR
         KPSS Statistic: 0.07556965458914269
         p-value: 0.1
         num lags: 19
         Critial Values:
            10%: 0.347
            5%: 0.463
            2.5%: 0.574
            1%: 0.739
         KPSS Test: TA
         KPSS Statistic: 0.08352134889349987
         p-value: 0.1
         num lags: 13
         Critial Values:
            10%: 0.347
            5%: 0.463
            2.5%: 0.574
            1%: 0.739
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\stattools.py:2022: In
         terpolationWarning: The test statistic is outside of the range of p-values av
         look-up table. The actual p-value is greater than the p-value returned.
           warnings.warn(
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\stattools.py:2022: In
         terpolationWarning: The test statistic is outside of the range of p-values av
         ailable in the
```

look-up table. The actual p-value is greater than the p-value returned.

```
warnings.warn(
```

In [21]: var = VAR(df)

C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning: No frequency information was provided, so inferred frequency MS w ill be used.

self._init_dates(dates, freq)

```
In [22]: x= var.select_order()
x.summary()
```

Out[22]: VAR Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC
0	-31.71	-31.58	1.696e-14	-31.66
1	-39.17	-38.42	9.737e-18	-38.87
2	-39.81	-38.44*	5.139e-18	-39.26*
3	-39.88	-37.88	4.856e-18*	-39.07
4	-39.80	-37.18	5.317e-18	-38.74
5	-39.68	-36.43	6.151e-18	-38.36
6	-39.52	-35.65	7.475e-18	-37.95
7	-39.59	-35.09	7.329e-18	-37.77
8	-39.55	-34.43	8.213e-18	-37.47
9	-39.59	-33.85	8.621e-18	-37.26
10	-39.85	-33.48	7.482e-18	-37.27
11	-39.95	-32.96	7.924e-18	-37.12
12	-39.86	-32.24	1.064e-17	-36.77
13	-40.10*	-31.85	1.082e-17	-36.75

```
In [24]: model = VAR(df)
         for i in [1,2,3,4,5,6,7,8,9]:
             result = model.fit(i)
             print('Lag Order =', i)
             print('AIC : ', result.aic)
             print('BIC : ', result.bic)
             print('FPE : ', result.fpe)
             print('HQIC: ', result.hqic, '\n')
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471:
         ValueWarning: No frequency information was provided, so inferred frequency MS w
         ill be used.
           self. init dates(dates, freq)
         Lag Order = 1
         AIC: -38.86078211668317
         BIC: -38.16016274867186
         FPE: 1.3278915406121078e-17
         HQIC: -38.57628270825603
         Lag Order = 2
         AIC: -39.486465573246335
         BIC: -38.19504477370725
         FPE: 7.119094641989602e-18
         HQIC: -38.96211065467247
         Lag Order = 3
         AIC: -39.64941137643481
         BIC: -37.76074543811156
         FPE: 6.084484381378661e-18
         HQIC: -38.882636302281455
         Lag Order = 4
         AIC: -39.49836574273318
         BIC: -37.005891862852415
         FPE: 7.158792165057362e-18
         HQIC: -38.48656372485281
         Lag Order = 5
         AIC: -39.36769094399398
         BIC: -36.26472419019204
         FPE: 8.319388611277759e-18
         HQIC: -38.10821221950964
         Lag Order = 6
         AIC: -39.17946700791118
         BIC: -35.45919718772568
         FPE: 1.0352542000694361e-17
         HQIC: -37.66961799359197
         Lag Order = 7
         AIC: -39.25706692725263
         BIC: -34.91255535762235
         FPE: 1.001744886686661e-17
         HQIC: -37.49410936060666
```

AIC : -39.43154410718428 BIC : -34.45572028026022 FPE : 8.962628136202133e-18 HQIC: -37.412694174675075

Lag Order = 9

AIC : -39.459317556121846 BIC : -33.84497569754674 FPE : 9.510178545581809e-18 HQIC: -37.18174500900278

In [30]: x = model.select_order(maxlags=13)
x.summary()

Out[30]:

VAR Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC
0	-31.71	-31.58	1.696e-14	-31.66
1	-39.17	-38.42	9.737e-18	-38.87
2	-39.81	-38.44*	5.139e-18	-39.26*
3	-39.88	-37.88	4.856e-18*	-39.07
4	-39.80	-37.18	5.317e-18	-38.74
5	-39.68	-36.43	6.151e-18	-38.36
6	-39.52	-35.65	7.475e-18	-37.95
7	-39.59	-35.09	7.329e-18	-37.77
8	-39.55	-34.43	8.213e-18	-37.47
9	-39.59	-33.85	8.621e-18	-37.26
10	-39.85	-33.48	7.482e-18	-37.27
11	-39.95	-32.96	7.924e-18	-37.12
12	-39.86	-32.24	1.064e-17	-36.77
13	-40.10*	-31.85	1.082e-17	-36.75

```
In [31]: results = model.fit(maxlags=13, ic='aic')
results.summary()
```

Out[31]: Summary of Regression Results

Model: VAR Method: OLS Date: Wed, 27, Apr, 2022 Time: 21:05:33

______ No. of Equations: 5.00000 BIC: -31.8525 107.000 HQIC: -36.7541 Nobs: Log likelihood: 1716.00 FPE: 1.08164e-17 Det(Omega_mle): AIC: -40.0958 9.78976e-19

.....

Results for equation M4

=========	=======================================	============	=============	=======
	coefficient	std. error	t-stat	prob
const	-0.010154	0.061304	-0.166	0.868
L1.M4	-0.351056	0.150643	-2.330	0.020
L1.TA	0.113330	0.091123	1.244	0.214
L1.FFR	-0.009368	0.015050	-0.622	0.534
L1.CC	0.197373	0.143857	1.372	0.170
L1.U	0.010131	0.006114	1.657	0.097
L2.M4	-0.187186	0.157219	-1.191	0.234
L2.TA	0.099267	0.096044	1.034	0.301
L2.FFR	-0.006114	0.015509	-0.394	0.693
L2.CC	-0.327550	0.168426	-1.945	0.052
L2.U	0.016291	0.010490	1.553	0.120
L3.M4	-0.037137	0.160434	-0.231	0.817
L3.TA	-0.044694	0.107418	-0.416	0.677
L3.FFR	-0.008602	0.017486	-0.492	0.623
L3.CC	0.037761	0.168082	0.225	0.822
L3.U	0.023047	0.013460	1.712	0.087
L4.M4	0.082684	0.154908	0.534	0.594
L4.TA	0.014259	0.104764	0.136	0.892
L4.FFR	-0.003310	0.017686	-0.187	0.852
L4.CC	-0.049561	0.169033	-0.293	0.769
L4.U	0.020344	0.015666	1.299	0.194
L5.M4	0.270228	0.152783	1.769	0.077
L5.TA	-0.034992	0.109536	-0.319	0.749
L5.FFR	0.014465	0.019084	0.758	0.448
L5.CC	0.118714	0.177426	0.669	0.503
L5.U	0.010933	0.017062	0.641	0.522
L6.M4	-0.071392	0.154466	-0.462	0.644
L6.TA	-0.021534	0.097905	-0.220	0.826
L6.FFR	0.003603	0.019565	0.184	0.854
L6.CC	-0.126382	0.168435	-0.750	0.453
L6.U	0.009874	0.017536	0.563	0.573
L7.M4	-0.114941	0.172471	-0.666	0.505
L7.TA	-0.020286	0.087500	-0.232	0.817
L7.FFR	0.025035	0.020220	1.238	0.216
L7.CC	0.055011	0.160517	0.343	0.732
L7.U	0.004001	0.017335	0.231	0.817
L8.M4	0.184361	0.201125	0.917	0.359
L8.TA	0.000217	0.092117	0.002	0.998

			• •	
L8.FFR	0.016512	0.020806	0.794	0.427
L8.CC	-0.014507	0.157415	-0.092	0.927
L8.U	0.004426	0.016440	0.269	0.788
L9.M4	0.123313	0.212771	0.580	0.562
L9.TA	-0.103341	0.090980	-1.136	0.256
L9.FFR	0.015365	0.020623	0.745	0.456
L9.CC	-0.070997	0.148447	-0.478	0.632
L9.U	-0.001642	0.015255	-0.108	0.914
L10.M4	0.121578	0.218787	0.556	0.578
L10.TA	-0.220970	0.092512	-2.389	0.017
L10.FFR	0.002255	0.022287	0.101	0.919
L10.CC	0.472067	0.147486	3.201	0.001
L10.U	0.000622	0.013579	0.046	0.963
L11.M4	0.028059	0.201746	0.139	0.889
L11.TA	0.009058	0.097979	0.092	0.926
L11.FFR	-0.020890	0.021344	-0.979	0.328
L11.CC	-0.303771	0.151094	-2.010	0.044
L11.U	-0.009221	0.011378	-0.810	0.418
L12.M4	-0.061586	0.169627	-0.363	0.717
L12.TA	0.065874	0.103625	0.636	0.525
L12.FFR	-0.004264	0.019033	-0.224	0.823
L12.CC	0.170396	0.162574	1.048	0.295
L12.U	-0.007225	0.008353	-0.865	0.387
L13.M4	-0.100686	0.141660	-0.711	0.477
L13.TA	0.075054	0.087439	0.858	0.391
L13.FFR	-0.027063	0.018268	-1.481	0.138
L13.CC	-0.156395	0.143627	-1.089	0.276
L13.U	-0.006134	0.005480	-1.119	0.263
========			=======================================	========

Results for equation TA

========							
	coefficient	std. error	t-stat	prob			
const	0.150506	0.102053	1.475	0.140			
L1.M4	0.161852	0.250777	0.645	0.519			
L1.TA	-0.470895	0.151693	-3.104	0.002			
L1.FFR	-0.004708	0.025054	-0.188	0.851			
L1.CC	-0.276814	0.239481	-1.156	0.248			
L1.U	0.010635	0.010178	1.045	0.296			
L2.M4	0.338347	0.261724	1.293	0.196			
L2.TA	-0.508959	0.159885	-3.183	0.001			
L2.FFR	-0.041902	0.025817	-1.623	0.105			
L2.CC	-0.187784	0.280380	-0.670	0.503			
L2.U	0.011361	0.017463	0.651	0.515			
L3.M4	0.678268	0.267076	2.540	0.011			
L3.TA	-0.342083	0.178819	-1.913	0.056			
L3.FFR	-0.050968	0.029109	-1.751	0.080			
L3.CC	0.614209	0.279807	2.195	0.028			
L3.U	-0.001354	0.022407	-0.060	0.952			
L4.M4	0.358210	0.257878	1.389	0.165			
L4.TA	-0.403491	0.174401	-2.314	0.021			
L4.FFR	-0.019485	0.029442	-0.662	0.508			
L4.CC	-0.465900	0.281390	-1.656	0.098			
L4.U	0.001011	0.026079	0.039	0.969			
L5.M4	0.238761	0.254340	0.939	0.348			
L5.TA	-0.151409	0.182346	-0.830	0.406			

	111-	Tillodol Willi lixod dalaoot ot	apyter recessor	
L5.FFR	-0.027764	0.031770	-0.874	0.382
L5.CC	0.252494	0.295362	0.855	0.393
L5.U	-0.021056	0.028403	-0.741	0.458
L6.M4	0.736816	0.257141	2.865	0.004
L6.TA	-0.023016	0.162984	-0.141	0.888
L6.FFR	-0.020907	0.032570	-0.642	0.521
L6.CC	-0.106153	0.280396	-0.379	0.705
L6.U	-0.030803	0.029192	-1.055	0.291
L7.M4	1.078341	0.287115	3.756	0.000
L7.TA	-0.179133	0.145663	-1.230	0.219
L7.FFR	-0.002316	0.033661	-0.069	0.945
L7.CC	-0.370334	0.267215	-1.386	0.166
L7.U	-0.036825	0.028858	-1.276	0.202
L8.M4	0.705000	0.334815	2.106	0.035
L8.TA	-0.291335	0.153349	-1.900	0.057
L8.FFR	-0.017741	0.034637	-0.512	0.609
L8.CC	0.227138	0.262050	0.867	0.386
L8.U	-0.034570	0.027368	-1.263	0.207
L9.M4	0.634004	0.354203	1.790	0.073
L9.TA	-0.169010	0.151456	-1.116	0.264
L9.FFR	-0.034441	0.034332	-1.003	0.316
L9.CC	0.037223	0.247121	0.151	0.880
L9.U	-0.030481	0.025395	-1.200	0.230
L10.M4	0.437344	0.364217	1.201	0.230
L10.TA	-0.102331	0.154006	-0.664	0.506
L10.FFR	-0.040022	0.037102	-1.079	0.281
L10.CC	0.455499	0.245521	1.855	0.064
L10.U	-0.021001	0.022605	-0.929	0.353
L11.M4	-0.455661	0.335848	-1.357	0.175
L11.TA	-0.058989	0.163106	-0.362	0.718
L11.FFR	-0.067470	0.035531	-1.899	0.058
L11.CC	-0.044937	0.251528	-0.179	0.858
L11.U	-0.014359	0.018940	-0.758	0.448
L12.M4	-0.309032	0.282380	-1.094	0.274
L12.TA	0.140581	0.172505	0.815	0.415
L12.FFR	0.010702	0.031685	0.338	0.736
L12.CC	-0.154686	0.270638	-0.572	0.568
L12.U	-0.009560	0.013905	-0.688	0.492
L13.M4	-0.399750	0.235824	-1.695	0.090
L13.TA	0.276067	0.145561	1.897	0.058
L13.FFR	-0.045785	0.030411	-1.506	0.132
L13.CC	-0.001298	0.239098	-0.005	0.996
L13.U	0.004053	0.009122	0.444	0.657

Results for equation FFR

	coefficient	std. error	t-stat	prob	
const	-0.118475	0.711350	-0.167	0.868	
L1.M4	1.329502	1.748012	0.761	0.447	
L1.TA	0.668148	1.057356	0.632	0.527	
L1.FFR	-0.298245	0.174638	-1.708	0.088	
L1.CC	2.491483	1.669270	1.493	0.136	
L1.U	0.009623	0.070943	0.136	0.892	
L2.M4	-2.271899	1.824312	-1.245	0.213	
L2.TA	-0.080470	1.114461	-0.072	0.942	

	"	14 model with fixed dataset	oupyter Notebook	
L2.FFR	-0.391628	0.179956	-2.176	0.030
L2.CC	1.579825	1.954356	0.808	0.419
L2.U	0.018999	0.121720	0.156	0.876
L3.M4	-1.936567	1.861622	-1.040	0.298
L3.TA	0.916087	1.246438	0.735	0.462
L3.FFR	-0.040797	0.202901	-0.201	0.841
L3.CC	-3.363305	1.950362	-1.724	0.085
L3.U	0.060027	0.156183	0.384	0.701
L4.M4	-1.736900	1.797504	-0.966	0.334
L4.TA	-0.018017	1.215644	-0.015	0.988
L4.FFR	-0.115780	0.205220	-0.564	0.573
L4.CC	-1.061880	1.961396	-0.541	0.588
L4.U	0.081067	0.181783	0.446	0.656
L5.M4	0.548013	1.772846	0.309	0.757
L5.TA	0.131858	1.271022	0.104	0.917
L5.FFR	-0.412799	0.221448	-1.864	0.062
L5.CC	0.537375	2.058787	0.261	0.794
L5.U	0.114187	0.197981	0.577	0.564
L6.M4	0.513473	1.792366	0.286	0.775
L6.TA	-0.561721	1.136060	-0.494	0.621
L6.FFR	0.135196	0.227026	0.596	0.552
L6.CC	-1.346024	1.954468	-0.689	0.491
L6.U	0.124737	0.203480	0.613	0.540
L7.M4	0.539000	2.001297	0.269	0.788
L7.TA	-0.731469	1.015326	-0.720	0.471
L7.FFR	-0.171525	0.234629	-0.731	0.465
L7.CC	3.953172	1.862587	2.122	0.034
L7.U	0.070852	0.201150	0.352	0.725
L8.M4	-1.202137	2.333788	-0.515	0.606
L8.TA	-1.459001	1.068899	-1.365	0.172
L8.FFR	-0.247906	0.241430	-1.027	0.305
L8.CC	0.361417	1.826587	0.198	0.843
L8.U	0.068974	0.190762	0.362	0.718
L9.M4	0.373815	2.468924	0.151	0.880
L9.TA	0.785121	1.055703	0.744	0.457
L9.FFR	0.035280	0.239304	0.147	0.883
L9.CC	-1.561051	1.722526	-0.906	0.365
L9.U	0.058659	0.177014	0.331	0.740
L10.M4	-0.119938	2.538730	-0.047	0.962
L10.TA	0.309601	1.073477	0.288	0.773
L10.FFR	-0.399196	0.258614	-1.544	0.123
L10.CC	-2.302247	1.711374	-1.345	0.179
L10.U	-0.002833	0.157565	-0.018	0.986
L11.M4	3.745470	2.340988	1.600	0.110
L11.TA	-0.056995	1.136913	-0.050	0.960
L11.FFR	0.158154	0.247668	0.639	0.523
L11.CC	-1.044679	1.753243	-0.596	0.551
L11.U	-0.011467	0.132021	-0.087	0.931
L12.M4	1.074226	1.968294	0.546	0.585
L12.TA	-0.632154	1.202426	-0.526	0.599
L12.FFR	-0.005756	0.220854	-0.026	0.979
L12.CC	3.352744	1.886448	1.777	0.076
L12.U	0.009942	0.096921	0.103	0.918
L13.M4	1.173703	1.643779	0.714	0.475
L13.TA	-1.148842	1.014617	-1.132	0.258
L13.FFR	-0.163840	0.211973	-0.773	0.440
L13.CC	-1.591184	1.666603	-0.955	0.340

0.186

L13.U -0.084166 0.063584 -1.324

Results for equation CC

	coefficient	std. error	t-stat	prob
const	0.095499	0.068292	1.398	0.162
L1.M4	0.206950	0.167815	1.233	0.217
L1.TA	0.038115	0.101510	0.375	0.707
L1.FFR	0.000866	0.016766	0.052	0.959
L1.CC	0.524289	0.160255	3.272	0.001
L1.U	-0.005099	0.006811	-0.749	0.454
L2.M4	0.249504	0.175140	1.425	0.154
L2.TA	-0.014090	0.106992	-0.132	0.895
L2.FFR	0.021740	0.017276	1.258	0.208
L2.CC	0.114708	0.187624	0.611	0.541
L2.U	-0.015001	0.011686	-1.284	0.199
L3.M4	0.102788	0.178722	0.575	0.565
L3.TA	-0.068645	0.119662	-0.574	0.566
L3.FFR	0.021171	0.019479	1.087	0.277
L3.CC	0.089952	0.187241	0.480	0.631
L3.U	-0.022035	0.014994	-1.470	0.142
L4.M4	-0.033127	0.172566	-0.192	0.848
L4.TA	-0.039271	0.116706	-0.336	0.736
L4.FFR	0.002141	0.019702	0.109	0.913
L4.CC	0.329191	0.188300	1.748	0.080
L4.U	-0.028823	0.017452	-1.652	0.099
L5.M4	-0.001752	0.170199	-0.010	0.992
L5.TA	0.020585	0.122022	0.169	0.866
L5.FFR	0.022413	0.021260	1.054	0.292
L5.CC	-0.246330	0.197650	-1.246	0.213
L5.U	-0.025587	0.019007	-1.346	0.178
L6.M4	-0.235150	0.172073	-1.367	0.172
L6.TA	-0.011825	0.109065	-0.108	0.914
L6.FFR	-0.005189	0.021795	-0.238	0.812
L6.CC	0.111994	0.187635	0.597	0.551
L6.U	-0.018926	0.019535	-0.969	0.333
L7.M4	-0.192321	0.192131	-1.001	0.317
L7.TA	-0.030560	0.097475	-0.314	0.754
L7.FFR	-0.004860	0.022525	-0.216	0.829
L7.CC	0.020541	0.178814	0.115	0.909
L7.U	-0.012268	0.019311	-0.635	0.525
L8.M4	0.134115	0.224051	0.599	0.549
L8.TA	-0.042134	0.102618	-0.411	0.681
L8.FFR	-0.022075	0.023178	-0.952	0.341
L8.CC	0.023969	0.175358	0.137	0.891
L8.U	-0.007936	0.018314	-0.433	0.665
L9.M4	-0.255484	0.237025	-1.078	0.281
L9.TA	0.012429	0.101351	0.123	0.902
L9.FFR	-0.019628	0.022974	-0.854	0.393
L9.CC	-0.051065	0.165368	-0.309	0.757
L9.U	-0.004612	0.016994	-0.271	0.786
L10.M4	0.011762	0.243726	0.048	0.962
L10.TA	-0.084096	0.103057	-0.816	0.414
L10.FFR	-0.010445	0.024828	-0.421	0.674

L10.U	-0.003238	0.015127	-0.214	0.831
L11.M4	0.194145	0.224742	0.864	0.388
L11.TA	0.060995	0.109147	0.559	0.576
L11.FFR	-0.005560	0.023777	-0.234	0.815
L11.CC	0.009666	0.168317	0.057	0.954
L11.U	-0.003054	0.012674	-0.241	0.810
L12.M4	-0.010244	0.188963	-0.054	0.957
L12.TA	-0.089226	0.115437	-0.773	0.440
L12.FFR	0.017028	0.021203	0.803	0.422
L12.CC	0.265206	0.181105	1.464	0.143
L12.U	-0.000127	0.009305	-0.014	0.989
L13.M4	-0.011809	0.157808	-0.075	0.940
L13.TA	-0.011719	0.097406	-0.120	0.904
L13.FFR	0.009309	0.020350	0.457	0.647
L13.CC	-0.102742	0.159999	-0.642	0.521
L13.U	-0.002171	0.006104	-0.356	0.722

Results for equation U

	coefficient	std. error	t-stat	prob	
const	-2.871000	1.479136	-1.941	0.052	
L1.M4	4.121291	3.634705	1.134	0.257	
L1.TA	-0.464041	2.198600	-0.211	0.833	
L1.FFR	0.408497	0.363130	1.125	0.261	
L1.CC	4.511599	3.470974	1.300	0.194	
L1.U	-1.376923	0.147514	-9.334	0.000	
L2.M4	-1.699078	3.793359	-0.448	0.654	
L2.TA	2.233701	2.317339	0.964	0.335	
L2.FFR	0.417901	0.374189	1.117	0.264	
L2.CC	-5.976411	4.063765	-1.471	0.141	
L2.U	-1.330214	0.253098	-5.256	0.000	
L3.M4	2.556066	3.870939	0.660	0.509	
L3.TA	3.751247	2.591764	1.447	0.148	
L3.FFR	0.340517	0.421898	0.807	0.420	
L3.CC		1.327	0.185		
L3.U	-1.323527	0.324757	-4.075	0.000	
L4.M4	4.195899	3.737616	1.123	0.262	
L4.TA	2.652969	2.527732	1.050	0.294	
L4.FFR	-0.032525	0.426721	-0.076	0.939	
L4.CC	0.405499	4.078403	0.099	0.921	
L4.U	-1.247878	0.377987	-3.301	0.001	
L5.M4	3.373987	3.686344	0.915	0.360	
L5.TA	3.826524	2.642882	1.448	0.148	
L5.FFR	0.202375	0.460464	0.440	0.660	
L5.CC	4.745521	4.280911	1.109	0.268	
L5.U	-1.122643	0.411670	-2.727	0.006	
L6.M4	-8.847740	3.726933	-2.374	0.018	
L6.TA	3.722344	2.362251	1.576	0.115	
L6.FFR	-0.655745	0.472063	-1.389	0.165	
L6.CC	-3.728888	4.063997	-0.918	0.359	
L6.U	-0.870236	0.423103	-2.057	0.040	
L7.M4	-6.493525	4.161371	-1.560	0.119	
L7.TA	5.316672	2.111204	2.518	0.012	
L7.FFR	-0.149244	0.487873	-0.306	0.760	
L7.CC	-2.079581	3.872946	-0.537	0.591	

			17	
L7.U	-0.661573	0.418259	-1.582	0.114
L8.M4	-5.109789	4.852732	-1.053	0.292
L8.TA	3.433722	2.222601	1.545	0.122
L8.FFR	-0.180430	0.502014	-0.359	0.719
L8.CC	0.300267	3.798090	0.079	0.937
L8.U	-0.482083	0.396659	-1.215	0.224
L9.M4	-3.788690	5.133725	-0.738	0.461
L9.TA	-1.058897	2.195162	-0.482	0.630
L9.FFR	0.096648	0.497593	0.194	0.846
L9.CC	-3.907601	3.581711	-1.091	0.275
L9.U	-0.447613	0.368072	-1.216	0.224
L10.M4	-3.749175	5.278875	-0.710	0.478
L10.TA	-2.768511	2.232120	-1.240	0.215
L10.FFR	0.310715	0.537746	0.578	0.563
L10.CC	8.770319	3.558524	2.465	0.014
L10.U	-0.151913	0.327632	-0.464	0.643
L11.M4	-5.604326	4.867703	-1.151	0.250
L11.TA	-1.725422	2.364025	-0.730	0.465
L11.FFR	0.311223	0.514985	0.604	0.546
L11.CC	-5.687085	3.645583	-1.560	0.119
L11.U	-0.069420	0.274516	-0.253	0.800
L12.M4	-5.434843	4.092745	-1.328	0.184
L12.TA	2.136109	2.500248	0.854	0.393
L12.FFR	0.605472	0.459230	1.318	0.187
L12.CC	-0.527999	3.922560	-0.135	0.893
L12.U	-0.166408	0.201531	-0.826	0.409
L13.M4	-3.371887	3.417969	-0.987	0.324
L13.TA	4.666779	2.109730	2.212	0.027
L13.FFR	0.191958	0.440763	0.436	0.663
L13.CC	-1.828102	3.465428	-0.528	0.598
L13.U	-0.232108	0.132212	-1.756	0.079
========	-==========		=============	========

Correlation matrix of residuals

	M4	TA	FFR	CC	U
M4	1.000000	-0.086158	-0.235988	-0.082634	0.000437
TA	-0.086158	1.000000	-0.224708	0.153547	-0.128980
FFR	-0.235988	-0.224708	1.000000	-0.104136	-0.045316
CC	-0.082634	0.153547	-0.104136	1.000000	0.181906
U	0.000437	-0.128980	-0.045316	0.181906	1.000000

```
In [34]: from arch.unitroot import engle_granger
          eg_test = engle_granger(df.M4, df.TA, trend="n")
          eg_test
Out[34]:
          Engle-Granger Cointegration Test
                    Test Statistic -1.643
                        P-value 0.392
                  ADF Lag length
            Estimated Root \rho (\gamma+1) 0.747
           Trend: Constant
           Critical Values: -2.50 (10%), -2.82 (5%), -3.43 (1%)
           Null Hypothesis: No Cointegration
           Alternative Hypothesis: Cointegration
           Distribution Order: 1
In [35]: eg_test.cointegrating_vector
Out[35]: M4
                  1.000000
                  0.086207
           dtype: float64
 In [ ]:
 In [ ]:
 In [ ]:
```