01/04/2020

Conditional, Joint & Marginal Probability

a)
$$NR - HT - NL$$

$$\frac{2}{3} \times \frac{1}{4} \times \frac{3}{4} = \frac{1}{8}$$

b) L =
$$\frac{1}{3} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{2} \times \frac{1}{4} + \frac{2}{3} \times \frac{1}{4} \times \frac{1}{4}$$

+ $\frac{2}{3} \times \frac{3}{4} \times \frac{1}{8}$
= $\frac{11}{48}$

C)
$$P(R/L) = \frac{P(R \cap L)}{P(L)} = \frac{\frac{1}{3} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{4}}{\frac{11}{48}}$$

$$= \frac{6}{11}$$

a) H =
$$\frac{2}{3}x\frac{1}{2} + \frac{1}{3}x1 = \frac{2}{3}$$

b)
$$P(f/H) = \frac{P(f \cap H)}{P(H)} = \frac{1/3}{2/3} = \frac{1/2}{2}$$

Even of we toss probability is still 1/2

$$P(F/H) = \frac{F(F/H)}{P(H)} = \frac{1/3}{2/3} = \frac{1/2}{2}$$

$$P(\text{cotfee}/\text{cake}) = \frac{P(\text{cotfee} \cap \text{cake})}{P(\text{cake})} = \frac{20}{40} = \frac{1}{2}$$

P(W/A saying white ball) = \(\frac{5}{5} \text{ x} \frac{1}{9} + \frac{1}{6} \text{ x} \frac{9}{9} \)

P(W/A saying white ball) = \(\frac{13}{54} \)

P(W \cappa A saying white ball) = \(\frac{P(W \cappa A saying white ball)}{P(A saying white ball)} \)

$$= \frac{5/6 \times \frac{1}{9}}{\frac{13}{54}} = \frac{5/13}{-13}$$

9 T/F
415 115 P(6) =
$$\frac{4}{5}$$
 x $\frac{1}{6}$ + $\frac{1}{5}$ x $\frac{5}{6}$
6/N6 6/N6 = 9130
116 116 116 = 9130

P(Actual 6 when A reports 6)

= P(Actual 6 / A Reporting 6)

$$= \frac{415^{1/6}}{9150} = \frac{419}{9150}$$

$$P(S/M) = \frac{P(S \cap M)}{P(M)} = \frac{40}{60} = \frac{2}{3}$$

(1) a)		C1	PG	T	
	M	19	41	60	
	F	12	28	40	+
	T	131	69	100	1.