

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Series de Tiempo II

Profesor: Duván Cataño 25 de Septiembre de 2018

VT = 1	C
Nombre:	Carne:

Nota: El examen consta de 5 numerales para ser resueltos en un tiempo máximo de 2 horas. Los procedimientos empleados para llegar a cada respuesta deben ser justificados y quedar registrados en el examen.

1. (30 %) Suponga que los residuos \hat{a}_t del modelo $(1-B)x_t = (1+0,6B)a_t$, ajustado de una serie de 80 observaciones, proporcionan las siguientes autocorrelaciones:

- a) Analice la adecuación del modelo ajustado y si existe alguna indicación de falta de ajustamiento del modelo. Si esto ocurre, sugiera un modelo modificado.
- b) Calcular la densidad espectral del modelo encontrado en el numeral anterior. Haga las suposiciones necesarias para garantizar su existencia.
- 2. **(20**%) Probar que

$$\gamma(h) = \begin{cases} 1, & h = 0 \\ \rho, & h = \pm 1 \\ 0, & o.c \end{cases}$$

es una función de autocovarianza si y sólo si $|\rho| < 1/2$.

- 3. (30%) Sea $y_t = a_t + ca_{t-1} + ca_{t-2} + \ldots + ca_1$, para t > 0, donde $c \in \mathbb{R}$ y $a_t \sim RB(0, \sigma_a^2)$.
 - a) Calcular la media y autocovarianza de y_t . ¿Es estacionaria?
 - b) Demostrar que la serie $z_t = (1 B)y_t$ es estacionaria.
 - c) Calcular el espectro de z_t y determinar la frecuencia donde alcanza el máximo.
- 4. (10%) Para el proceso $y_t = \sum_{j=-\infty}^{\infty} a_j x_{t-j}$, con $\sum_{j=-\infty}^{\infty} |a_j| < \infty$. Demostrar que si x_t tiene espectro $f_x(w)$, entonces el espectro de la serie filtrada de salida, y_t , $f_y(w)$, está relacionada con el espectro de la serie de entrada x_t mediante

$$f_y(w) = |A(w)|^2 f_x(w)$$

donde la función de respuesta frecuencia es dada $A(w) = \sum_{j=-\infty}^{\infty} a_j e^{-2\pi i w j}$.

5. (10%) Considere la serie

$$x_t = \sin(2\pi U t),$$

para t = 1, 2, ..., donde U tiene distribución uniforme sobre el intervalo (0, 1). Demostrar que x_t no es estrictamente estacionaria.