UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Tjaša Vrhovnik

MINIMALNE PLOSKVE

Magistrsko delo

Mentor: prof. dr. Franc Forstnerič

Zahvala

Kazalo

P	rogra	m dela	vii
1	Uvo	od	1
2	Osn	ovni pojmi	1
	2.1	Mnogoterosti	1
	2.2	Vektorska polja in diferencialne 1-forme	4
	2.3	Ukrivljenost ploskve	5
	2.4	Holomorfne in harmonične funkcije	7
	2.5	Aproksimacijski izreki za Riemannove ploskve	8
3	Mir	nimalne ploskve	9
	3.1	Variacija ploščine	9
	3.2	Weierstrassova formula	11
		3.2.1 Plateaujev problem in Dirichletov energijski integral	12
		3.2.2 Rezultati	13
	3.3	Gaussova preslikava	15
	3.4	Primeri minimalnih ploskev	17
		3.4.1 Katenoida	17
		3.4.2 Helikoid	19
		3.4.3 Enneperjeva ploskev	20
4	Izre	ki o aproksimaciji in interpolaciji minimalnih ploskev	21
	4.1	Prostori preslikav in posplošene minimalne imerzije	21
	4.2	Periodno dominantni spreji	24
	4.3	Aproksimacija in interpolacija preslikav v punktirano ničelno kvadriko	27
	4.4	Glavni izrek	30
		4.4.1 Nekritični primer	30
		4.4.2 Glavni izrek	31

Program dela

Osnovna literatura

Literatura mora biti tukaj posebej samostojno navedena (po pomembnosti) in ne le citirana. V tem razdelku literature ne oštevilčimo po svoje, ampak uporabljamo okolje itemize in ukaz plancite, saj je celotna literatura oštevilčena na koncu.

[?]

[?]

[?]

[?]

Podpis mentorja:

Minimalne ploskve

Povzetek

Tukaj napišemo	povzetek	vsebine.	Sem	sodi	razlaga	vsebine	in ne	opis	tega,	kako	je
delo organiziran	ο.										

English translation of the title

Abstract

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2010): oznake kot 74B05, 65N99, na voljo so na naslovu http://www.ams.org/msc/msc2010.html

Ključne besede:

Keywords:

1 Uvod

2 Osnovni pojmi

2.1 Mnogoterosti

Definicija 2.1. Naj bo $n \in \mathbb{N}$. Topološki prostor M z lastnostmi:

- 1. M je Hausdorffov,
- 2. M je 2-števen,
- 3. M je lokalno Evklidski prostor dimenzije n (za vsak $p \in M$ obstajata odprta okolica $U \subset M$ in homeomorfizem $\phi \colon U \to V \subset \mathbb{R}^n$, kjer je V odprta množica),

imenujemo $topološka \ mnogoterost$ dimenzije n.

Na topološki mnogoterosti M dimenzije n definiramo $atlas \mathcal{U} = \{(U_i, \phi_i); i \in I\}$ kot družino parov (U_i, ϕ_i) , kjer je $\{U_i\}_{i \in I}$ odprto pokritje mnogoterosti M, preslikave $\phi_i \colon U_i \to \phi_i(U_i) \subset \mathbb{R}^n$ pa so homeomorfizmi za vse i. Par (U_i, ϕ_i) imenujemo $lokalna \ karta$. Vzemimo lokalni karti (U_i, ϕ_i) in (U_j, ϕ_j) , $i \neq j$, za kateri velja $U_{ij} = U_i \cap U_j \neq \emptyset$. Difeomorfizmu $\phi_{ij} = \phi_j \circ \phi_i^{-1} \colon \phi_i(U_{ij}) \to \phi_j(U_{ij})$ med odprtima podmnožicama \mathbb{R}^n pravimo $prehodna \ preslikava$ med lokalnima kartama. Atlas je razreda \mathcal{C}^r za $r \geq 1$, kadar so prehodne preslikave med vsemi lokalnimi kartami difeomorfizmi razreda \mathcal{C}^r . V tem primeru rečemo, da je M $mnogoterost \ razreda \ \mathcal{C}^r$. V posebnem gladek atlas določa gladko mnogoterost.

Definicija 2.2. Naj bo X mnogoterost razreda \mathcal{C}^r razsežnosti dim X=n in $M\subset X$ njena podmnožica. Če za vsako točko $p\in M$ obstaja lokalna karta (U,ϕ) glede na atlas \mathcal{U} mnogoterosti X, tako da je preslikava $\phi\colon U\to V\subset\mathbb{R}^n$ homeomorfizem in velja $\phi(M\cap U)=V\cap(\mathbb{R}^m\times\{0\}^{n-m})$, potem M imenujemo podmnogoterost razreda \mathcal{C}^r razsežnosti dim M=m.

Definicija 2.3 (Orientacija mnogoterosti). Naj bo M gladka mnogoterost in \mathcal{U} pripadajoč gladek atlas. Lokalni karti (U,ϕ) in (V,ψ) določata isto orientacijo na M, če za poljubno točko $p \in U \cap V \neq \emptyset$ velja $\det(d(\psi \circ \phi^{-1})_{\phi(p)}) > 0$. Kadar poljubni lokalni karti glede na izbrani atlas \mathcal{U} določata isto orientacijo, pravimo, da je atlas \mathcal{U} orientiran. Nadalje je mnogoterost orientabilna, če premore orientiran atlas. Orientacija mnogoterosti M je izbor maksimalnega orientiranega atlasa na M.

Definirati želimo še tangentni prostor mnogoterosti. Naj bo M gladka mnogoterost in izberimo atlas $\mathcal{U} = \{(U_i, \phi_i); i \in I\}$ na njej. Naj bo točka $p \in U_i \subset M$ za nek indeks i. Gladki krivulji¹ $\gamma_1, \gamma_2 : (-\varepsilon, \varepsilon) \to M$ sta ekvivalentni, če izpolnjujeta pogoja $\gamma_1(0) = \gamma_2(0) = p$ in $\frac{d}{dt}|_{t=0}\phi_i(\gamma_1(t)) = \frac{d}{dt}|_{t=0}\phi_i(\gamma_2(t))$ za vse $t \in (-\varepsilon, \varepsilon)$. Ekvivalenco krivulj označimo z $\gamma_1 \sim \gamma_2^2$.

 $^{^1}$ Krivulja γ_j je gladka, če je preslikava $\phi_i\circ\gamma_j\colon (-\varepsilon,\varepsilon)\to\mathbb{R}^n,\ j=1,2,$ gladka v običajnem smislu.

 $^{^{2}}$ Relacija \sim je ekvivalenčna relacija.

Definicija 2.4. Naj bo M mnogoterost in $p \in M$ točka na njej. Tangentni vektor v_p na M v točki p ustreza ekvivalenčnemu razredu $[\gamma]$ krivulje $\gamma \colon (-\varepsilon, \varepsilon) \to M$, za katero velja $\gamma(0) = p$.

Unija vseh tangentnih vektorjev na M v točki p določa tangentni prostor T_pM mnogoterosti M v točki p.

Naj bosta M in N mnogoterosti dimenzij dim M=m, dim N=n $(m,n\in\mathbb{N})$. Naj bo $r\geq 0$. Pravimo, da je zvezna preslikava $f\colon M\to N$ razreda \mathcal{C}^r v točki $p\in M$, če obstajata taki \mathcal{C}^r karti (U,ϕ) na M v okolici točke $p\in M$ in (V,ψ) na N v okolici točke $f(p)\in N$, da je preslikava $F=\psi\circ f\circ \phi^{-1}$ razreda \mathcal{C}^r v okolici točke $\phi(p)$. Če to velja za poljubno točko $p\in M$, je f razreda \mathcal{C}^r ; pišemo $f\in \mathcal{C}^r(M,N)$.

Vzemimo gladki (oz. razreda C^r , $r \ge 1$) mnogoterosti M in N ter točko $p \in M$. Diferencial gladke (oz. razreda C^r) preslikave $f: M \to N$ je linearna preslikava $df: T_pM \to T_{f(p)}N$, definirana s predpisom

$$(df_n)[\gamma] = [f \circ \gamma]. \tag{2.1}$$

Definicija 2.5. Naj bo $f\colon M\to N$ gladka preslikava med gladkima mnogoterostima. Preslikava f se imenuje

- 1. imerzija v točki $p \in M$, če je njen diferencial $df_p : T_pM \to T_{f(p)}N$ injektiven;
- 2. submerzija v točki $p \in M$, če je njen diferencial df_p surjektiven;
- 3. lokalni difeomorfizem v točki $p \in M$, če obtstajata taki okolici $U \subset M$ za p in $V \subset N$ za f(p), da je zožitev $f|_{U}: U \to V$ difeomorfizem;
- 4. vložitev, če je f injektivna preslikava in slika $f(M) \subset N$ podmnogoterost.

Opomba 2.6. Z uporabo izreka o implicitni preslikavi dokažemo naslednje: Če je $f: M \to N$ submerzija v okolici točke $p \in U$ ($U \subset M$ odprta), potem je praslika $f^{-1}(f(p))$ podmnogoterost v M razsežnosti dim M – dim N.

Definicija 2.7. Naj bo M gladka mnogoterost. Za vsako točko $p \in M$ definiramo simetrično pozitivno-definitno bilinearno preslikavo $g_p \colon T_pM \times T_pM \to \mathbb{R}$, ki je gladko odvisna od p. Družino preslikav g_p imenujemo $Riemannova\ metrika\ g$ na mnogoterosti M. Gladki mnogoterosti, opremljeni z Riemannovo metriko, pravimo $Riemannova\ mnogoterost$, in jo označimo z (M,g).

Izkaže se, da vsaka mnogoterost razreda \mathcal{C}^{r+1} premore Riemannovo metriko razreda \mathcal{C}^r .

Naj bo M domena v \mathbb{R}^n s koordinatami $x=(x_1,\ldots,x_n)$. Riemannova metrika na M je tedaj oblike

$$g_p = \sum_{i,j=1}^n g_{i,j}(p) dx_i dx_j, \quad p \in M,$$
(2.2)

kjer je $G(p) = [g_{i,j}(p)]_{i,j=1}^n$ simetrična pozitivno-definitna matrika za vse $p \in M$. Za tangentna vektorja $\xi = (\xi_1, \dots, \xi_n), \ \eta = (\eta_1, \dots, \eta_n) \in \mathbb{R}^n$ velja

$$g_p(\xi, \eta) = \sum_{i,j=1}^n g_{i,j}(p)\xi_i \eta_j = G(p)\xi \cdot \eta.$$
 (2.3)

Vzemimo gladko imerzijo $x \colon M \to \widetilde{M}$ in Riemannovo metriko \widetilde{g} na \widetilde{M} . Povlečeno metriko $g = x^*\widetilde{g}$ na M, definirano na paru tangentnih vektorjev $\xi, \eta \in T_pM$, podaja predpis

$$g_p(\xi, \eta) = \tilde{g}_{x(p)}(dx_p(\xi), dx_p(\eta)). \tag{2.4}$$

Če je metrika \tilde{g} razreda \mathcal{C}^r in imerzija x razreda \mathcal{C}^{r+1} , potem je tudi povlečena metrika $g = x^* \tilde{g}$ razreda \mathcal{C}^r .

Primer 2.8 (Prva fundamentalna forma). Oglejmo si primer Riemannove metrike na realnem n-razsežnem Evklidskem prostoru \mathbb{R}^n . Če izberemo standardne koordinate $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, Evklidsko metriko definira predpis

$$ds^{2} = (dx_{1})^{2} + \dots + (dx_{n})^{2}; \tag{2.5}$$

to je Riemannova metrika, ki ustreza identični matriki I_n . Naj bo D domena v \mathbb{R}^2 in $x \colon D \to \mathbb{R}^n$ imerzija, podana s predpisom $x(u_1, u_2) = (x_1(u_1, u_2), \dots, x_n(u_1, u_2))$ za $(u_1, u_2) \in D$. Pripadajoča metrika na D je enaka

$$g = x^* ds^2 = g_{1,1} du_1^2 + g_{1,2} du_1 du_2 + g_{2,1} du_2 du_1 + g_{2,2} du_2^2,$$

$$g_{1,1} = |x_{u_1}|^2, \ g_{1,2} = g_{2,1} = x_{u_1} \cdot x_{u_2}, \ g_{2,2} = |x_{u_2}|^2$$

in jo imenujemo prva fundamentalna forma ploskve M = x(D).

Definicija 2.9. Riemannova ploskev je kompleksna mnogoterost kompleksne dimenzije 1.

Definicija 2.10. Naj bo M mnogoterost brez roba in K njena zaprta podmnožica. Povezano komponento v $M \setminus K$, katere zaprtje je kompaktno v M, imenujemo luknja množice K v M.

Definicija 2.11. *Jordanov lok* je pot v ravnini, ki je topološko izomorfna intervalu [0, 1]. *Jordanova krivulja* je ravninska krivulja, ki je topološko ekvivalentna enotski krožnici.

Spomnimo se še enega topološkega pojma. Naj bo M povezana mnogoterost in $x_0 \in M$ izbrana točka. Zanimajo nas zanke v M, ki gredo skozi izbrano točko, natančneje, zvezne preslikave $\gamma \colon [0,1] \to M$, $\gamma(0) = \gamma(1) = x_0$. Označimo množico vseh takih zank z $\Gamma(x_0)$ in na njej vpeljimo ekvivalenčno relacijo \sim na naslednji način:

 $\gamma_1 \sim \gamma_2 \iff$ obstaja zvezna preslikava $H \colon [0,1] \times [0,1] \to M$, ki zadošča

- $H(0,s) = H(1,s) = x_0$ za vse $s \in [0,1]$,
- $H(t,0) = \gamma_1(t)$ in $H(t,1) = \gamma_2(t)$ za vse $t \in [0,1]$.

Preslikavo H imenujemo homotopija, zanki, ki premoreta homotopijo pa homotopsko ekvivalentni. Kvocient $\pi_1(M, x_0) = \Gamma(x_0)/_{\sim}$ imenujemo prva fundamentalna grupa mnogoterosti M glede na točko x_0 , njeno abelizacijo $H_1(M, \mathbb{Z})$ pa prva homološka grupa mnogoterosti M s celimi koeficienti.

2.2 Vektorska polja in diferencialne 1-forme

Definicija 2.12. Naj bo $r \geq 1$ ter E in B mnogoterosti razreda \mathcal{C}^r . Surjektivno preslikavo $\pi \colon E \to B$ imenujemo realen *vektorski sveženj* ranga n in razreda \mathcal{C}^r , če

- 1. je vsako vlakno $\pi^{-1}(b) = E_b, b \in B$, n-razsežen realen vektorski prostor: $E_b \cong \mathbb{R}^n$,
- 2. za vsak $b \in B$ obstajata okolica $b \in U \subset B$ in difeomorfizem $\tau : E|_U \to U \times \mathbb{R}^n$ razreda \mathcal{C}^r , tako da je za vsak $x \in U$ preslikava $\tau_x : E_x \to \{x\} \times \mathbb{R}^n$ linearni izomorfizem. Preslikavi τ_x pravimo lokalna trivializacija.

Če ima vlakno strukturo kompleksnega vektorskega prostora, na ustreznih mestih v definiciji zamenjamo \mathbb{R}^n s \mathbb{C}^n – v tem primeru dobimo kompleksen vektorski sveženj.

Definicija 2.13. Prerez vektorskega svežnja $\pi: E \to B$ je preslikava $s: B \to E$, za katero velja $\pi \circ s = id_B$. Ekvivalentno, za vsak $b \in B$ je $s(b) \in \pi^{-1}(b) = E_b$, torej prerez vsako točko baznega prostora slika v točko v vlaknu nad b.

Omenimo poseben primer vektorskega svežnja, ki bo pomemben v nadaljevanju. Naj bo X mnogoterost razreda \mathcal{C}^r z $r \geq 1$. Njen tangentni sveženj je disjunktna unija tangentnih prostorov na X v točkah $x \in X$:

$$TX = \bigsqcup_{x \in X} T_x X. \tag{2.6}$$

Tangentni sveženj je vektorski sveženj ranga $n = \dim X$ in razreda \mathcal{C}^{r-1} .

Definicija 2.14. Naj bo X mnogoterost razreda \mathcal{C}^r , kjer je $r \geq 1$. Prerez njenega tangentnega svežnja, to je preslikava

$$V: X \to TX, \quad V(x) = V_x \in T_x X, \quad x \in X,$$
 (2.7)

se imenuje vektorsko polje na X. Prostor vektorskih polj na X označimo z $\Gamma(X)$.

Definicija 2.15. Naj bo V vektorsko polje na mnogoterosti X in $x \in X$ točka, v kateri je vektorsko polje neničelno. Pot $\gamma_x \colon (-\varepsilon, \varepsilon) \subset \mathbb{R} \to X$ razreda \mathcal{C}^1 je integralna krivulja vektorskega polja V skozi x, če je $\gamma_x(0) = x$ in

$$\dot{\gamma}_x(t) = V(\gamma_x(t)) \in T_{\gamma_x(t)}X, \ t \in (-\varepsilon, \varepsilon).$$
 (2.8)

Naj bo $U \subset X$ odprta množica, na kateri je vektorsko polje V neničelno. Tok vektorskega polja V na U je 1-parametrična družina preslikav $\Phi_t \colon U \to \Phi_t(U)$, definiranih s predpisi $\Phi_t(x) = \gamma_x(t)$.

Vektorsko polje V lahko v lokalnih koordinatah $x=(x_1,\ldots,x_n)$ na odprti podmnožici $U\subset X$ zapišemo kot

$$V(m) = \sum_{i=1}^{n} V_i(m) \frac{\partial}{\partial x_i} \Big|_{m}, \tag{2.9}$$

kjer so V_i realne funkcije na U, diferenciali $\frac{\partial}{\partial x_i}$ pa v vsaki točki $m \in U$ sestavljajo bazo tangentnega prostora $T_m X$. Pot $\gamma(t) = (\gamma_1(t), \ldots, \gamma_n(t))$ na X je po definiciji integralna krivulja vektorskega polja V natanko takrat, ko zadošča enakosti

$$\dot{\gamma}(t) = \sum_{i=1}^{n} V_i(\gamma(t)) \frac{\partial}{\partial x_i}.$$

Rešujemo sistem n navadnih diferencialnih enačb $(i \in \{1, ..., n\})$

$$\dot{\gamma}_i(t) = V_i(\gamma_1(t), \dots, \gamma_n(t)),$$

katerega lokalna rešitev je tok vektorskega polja V na X, $\Phi_t(m)$. Po eksistenčnem izreku za navadne diferencialne enačbe lokalna rešitev vedno obstaja.

Zanimajo nas duali tangentnih prostorov ter prerezi pripradajočih svežnjev.

Definicija 2.16. Naj bo X gladka mnogoterost. Dualni sveženj njenega tangentnega svežnja imenujemo $kotangentni\ sveženj$

$$T^*X = (TX)^* = \bigsqcup_{x \in X} T_x^*X.$$
 (2.10)

Tu je T_x^*X kotangentni prostor mnogoterosti X v točki $x\in X$, ki je sestavljen iz linearnih funkcionalov $T_x^*X\to\mathbb{R}$.

(Diferencialna) 1-forma na mnogoterosti X je prerez $\alpha \colon X \to T^*X$ kotangentnega svežnja. Prostor diferencialnih 1-form na X označimo z $\Omega^1(X)$.

Diferencialno 1-formo $\omega \in \Omega^1(X)$ imenujemo eksaktna, če velja $\omega = df$ za neko funkcijo $f \colon X \to \mathbb{R}$.

Podobno kot vektorska polja lahko tudi 1-forme predstavimo lokalno. Naj bo U odprta podmnožica v X z lokalnimi koordinatami $x = (x_1, \ldots, x_n)$. Če so a_i realne funkcije na U in dx_i diferenciali koordinatnih funkcij, ki v vsaki točki $m \in U$ tvorijo bazo kotangentnega prostora T_m^*X , potem ima poljubna 1-forma na U obliko

$$\alpha(m) = \sum_{i=1}^{n} a_i(m) dx_i \Big|_{m}. \tag{2.11}$$

Baza kotangentnega prostora je dualna bazi tangentnega prostora; natančneje,

$$dx_i(m)\left(\frac{\partial}{\partial x_j}(m)\right) = \delta_{ij},$$

kjer δ_{ij} označuje Kroneckerjev delta.

2.3 Ukrivljenost ploskve

Naj bo M ploskev, $n \geq 3$ in $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Izberimo lokalno karto (U, ϕ) na M in koordinate $u = (u_1, u_2) \in U$, tako da je zožitev $x|_U \colon U \to \mathbb{R}^n$ vložitev na orientabilno ploskev $S = x(U) \subset \mathbb{R}^n$. Izberimo točko $q \in U$ in s $p = x(q) \in S$ označimo njeno sliko na ploskvi S. Naj bo $t \mapsto (u_1(t), u_2(t)) \in U$ parametrizacija

krivulje razreda C^2 ter $q = (u_1(t_0), u_2(t_0))$ za nek $t_0 \in \mathbb{R}$. Vsaka krivulja, vložena v S, ki vsebuje točko p, je tedaj oblike

$$\alpha(t) = x(u_1(t), u_2(t)). \tag{2.12}$$

Označimo z s=s(t) ločno dolžino krivulje α . Predpostavimo, da izbrana točka p ustreza $p=\alpha(s_0)\in S$, označimo pripadajoč tangentni vektor $\nu=\alpha'(s_0)\in T_pS$ ter enotsko normalo $N\in N_pS$ v točki p. Količino

$$\kappa^{N}(p,\nu) = \alpha''(s_0) \cdot N \tag{2.13}$$

imenujemo normalna ukrivljenost ploskve S v točki p v tangentni smeri ν in smeri enotske normale N.

Oglejmo si preslikavo $\kappa^N(p,\cdot)$: $\{\nu\in T_pS;\ |\nu|=1\}\to\mathbb{R},\ \nu\mapsto\kappa^N(p,\nu)$, kjer je $p\in S$ izbrana fiksna točka. Kot zvezna preslikava na kompaktni množici doseže minimalno in maksimalno vrednost,

$$\kappa_1^N(p) = \min_{|\nu|=1} \kappa^N(p, \nu), \quad \kappa_2^N(p) = \max_{|\nu|=1} \kappa^N(p, \nu),$$
(2.14)

katerima pravimo glavni ukrivljenosti ploskve S (v točki p in normalni smeri N).

Definicija 2.17. 1. Povprečna ukrivljenost ploskve S v točki p in normalni smeri N je povprečje glavnih ukrivljenosti,

$$H^{N}(p) = \frac{1}{2} \left(\kappa_{1}^{N}(p) + \kappa_{2}^{N}(p) \right). \tag{2.15}$$

2. Njun produkt

$$K^{N}(p) = \kappa_1^{N}(p) \cdot \kappa_2^{N}(p) \tag{2.16}$$

definira Gaussovo ukrivljenost ploskve S v točki p in normalni smeri N.

3. Projekcijo povprečne ukrivljenosti na normalni prostor N_pS v smeri tangentnega prostora T_pS imenujemo vektor povprečne ukrivljenosti ploskve S v točki p in označimo s \mathbf{H} . Enačba (2.15) se v tej notaciji glasi $H^N(p) = \mathbf{H} \cdot N$ za vsak $N \in N_pS$.

Primer 2.18 (Vektor povprečne ukrivljenosti v trirazsežnem prostoru.). Naj bo $U \subset M$ odprta podmnožica, $x \colon U \to \mathbb{R}^3$ imerzija in označimo z S = x(U) sliko, ki je ploskev, vložena v \mathbb{R}^3 . V poljubni točki $p \in S$ je zato normalni prostor N_pS enorazsežen, torej premore natanko dve enotski normalni vektorski polji, ki se razlikujeta za predznak $(\pm N)$. Izbor orientacije na U enolično določa enotsko normalno vektorsko polje, zato ga lahko predstavimo kot preslikavo

$$N \colon S \to \mathbb{S}^2$$
,

imenovano Gaussova preslikava vložene ploskve S. Če je $x=x(u_1,u_2)$ za $(u_1,u_2)\in U$ lokalna parametrizacija ploskve, dobimo eksplicitno formulo $N=\frac{x_{u_1}\times x_{u_2}}{|x_{u_1}\times x_{u_2}|}$.

Vektor povprečne ukrivljenosti je po definiciji pravokoten na S, zato obstaja funkcija λ , da velja $\mathbf{H}=\lambda N$. Vemo še, da je normalni vektor enotski, kar nam da zvezo

$$H = H^{N} = \mathbf{H} \cdot N = \lambda N \cdot N = \lambda,$$

$$\mathbf{H} = H \cdot N.$$
 (2.17)

Z besedami je vektor povprečne ukrivljenosti enak produktu povprečne ukrivljenosti in Gaussove preslikave.

Glavni ukrivljenosti sta odvisni od enotske normale; če namesto pozitivno predznačene izberemo negativno enotsko normalo, se glavnima ukrivljenostma in posledično povprečni ukrivljenosti spremeni predznak. Po zgornji formuli pa vidimo, da je vektor povprečne ukrivljenosti neodvisen od izbora enotskega normalnega vektorskega polja.

Lema 2.19. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Tedaj velja

$$\Delta x = 2\mathbf{H},\tag{2.18}$$

kjer je Δ Laplaceov operator glede na Riemannovo metriko $g = x^*ds^2$ v točki $q \in M$ in \mathbf{H} vektor povprečne ukrivljenosti v točki $p = x(q) \in S$.

2.4 Holomorfne in harmonične funkcije

Naj boMRiemannova ploskev in $\zeta=u+iv$ lokalna holomorf
na koordinata na njej. Definiramodiferencial

$$d = \frac{\partial}{\partial u}du + \frac{\partial}{\partial v}dv = \partial + \bar{\partial} = \frac{\partial}{\partial \zeta}d\zeta + \frac{\partial}{\partial \bar{\zeta}}d\bar{\zeta}$$
 (2.19)

in konjugirani diferencial

$$d^{c} = 2\Im(\partial) = i(\bar{\partial} - \partial). \tag{2.20}$$

Velja

$$\begin{split} d+id^c &= 2\partial, \quad d-id^c = 2\bar{\partial}, \\ dd^c &= 2i\partial\bar{\partial} = \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}\right)du \wedge dv = \Delta du \wedge dv, \end{split}$$

kjer je Δ Laplaceov operator glede na Evklidsko metriko.

Po definiciji je diferenciabilna funkcija f = x + iy: $M \to \mathbb{C}^n$ holomorfna ($\bar{\partial} f = 0$) natanko tedaj, ko v poljubnih lokalnih holomorfnih koordinatah reši Cauchy-Riemannov sistem enačb $x_u = y_v$, $x_v = -y_u$.

Funkcija $x: M \to \mathbb{C}^n$ razreda $\mathcal{C}^2(M)$ je harmonična, če velja $dd^cx = 0$. Harmonične funkcije karakteriziramo z naslednjimi ekvivalentnimi pogoji:

$$x \in \mathcal{C}^2(M)$$
 je harmonična $\iff dd^c x = 0 \iff \partial \bar{\partial} x = 0 \iff \Delta x = 0.$

Vsaka holomorfna funkcija je torej harmonična. Vzemimo realno harmonično funkcijo $x \colon M \to \mathbb{R}^n$ razreda $\mathcal{C}^2(M)$ in naj bo $D \subset M$ enostavno povezana³ domena. Zaradi pogoja o harmoničnosti vemo, da je 1-forma d^cx eksaktna. Za izbrano fiksno točko $p_0 \in D$ definirajmo funkcijo $y \colon D \to \mathbb{C}^n$ razreda $\mathcal{C}^2(D)$ s predpisom

$$y(p) = \int_{p_0}^{p} d^c x + C, \tag{2.21}$$

kjer je C konstanta. Imenujemo jo harmonična konjugiranka funkcije x. Velja enakost $dy = d^c x$, nova funkcija $z \colon D \to \mathbb{C}^n$, z = x + iy, imenovana $kompleksna krivulja v <math>\mathbb{C}^n$, pa je holomorfna. Zaključimo, da je zožitev realne harmonične funkcije na enostavno povezano domeno v M enaka realnemu delu holomorfne funkcije x+iy, pri čemer je y harmonična konjugiranka od x, ki jo definira enakost (2.21).

Definicija 2.20. Naj bo $x: M \to \mathbb{R}^n$ harmonična preslikava. Njen *pretok* je homomorfizem grup $\mathrm{Flux}_x \colon H_1(M,\mathbb{Z}) \to \mathbb{R}^n$, definiran s predpisom

$$Flux_x([C]) = \int_C d^c x. \tag{2.22}$$

V definiciji pretoka je $[C] \in H_1(M,\mathbb{Z})$, integral pa je po Greenovi formuli odvisen le od homološkega razreda poti $C \subset M$, zato bomo v nadaljevanju pisali kar $\mathrm{Flux}_x(C)$. V zgornjem smislu lahko rečemo, da pretok meri, koliko 1-formi d^cx manjka do eksaktnosti. Realna harmonična preslikava x premore harmonično konjugiranko na M natanko tedaj, ko je d^cx eksaktna 1-forma na M, to pa je ekvivalentno pogoju $\mathrm{Flux}_x(C) = 0$ za vsako sklenjeno krivuljo $C \subset M$.

2.5 Aproksimacijski izreki za Riemannove ploskve

Izrek 2.21 (Rungejev aproksimacijski izrek za Riemannove ploskve). Naj bo M Riemannova ploskev in K njena kompaktna podmnožica. Potem lahko vsako funkcijo f, ki je holomorfna na okolici K, aproksimiramo enakomerno na K z meromorfnimi funkcijami F na M brez polov na K, ter s holomorfnimi funkcijami na M, če K nima lukenj. Funkcije F lahko izberemo tako, da se z dano funkcijo f na končni množici točk v K ujemajo do izbranega končnega reda in da ima F pole v podmnožici $E \subset M \setminus K$, kjer E vsebuje točko v vsaki luknji množice K.

Definicija 2.22. Naj bo K kompaktna podmnožica Riemannove ploskve M. Njena $holomorfna\ ogrinjača\ je\ množica$

$$\widehat{K}_{\mathcal{O}(M)} = \{ p \in M; \ |f(p)| \le \max_{K} |f| \text{ za vse } f \in \mathcal{O}(M) \}.$$
 (2.23)

Če velja $K = \widehat{K}_{\mathcal{O}(M)}$, množico K imenujemo $Rungejeva\ množica.$

Izrek 2.23 (Bishop-Mergelyanov aproksimacijski izrek). Naj bo M odprta Riemannova ploskev in K njena kompaktna podmnožica brez lukenj (K je Rungejeva v M). Potem lahko vsako funkcijo v $\mathcal{A}(K)$ aproksimiramo enakomerno na K s funkcijami v $\mathcal{O}(M)$.

³Topološki prostor X je enostavno povezan natanko tedaj, ko je s potmi povezan in ima v vsaki točki trivialno prvo fundamentalno grupo, $\pi_1(X) = 0$.

Izrek 2.24 (Weierstrass-Florackov interpolacijski izrek). Naj bo M odprta Riemannova ploskev in K njena Rungejeva podmnožica. Naj bo $A = \{a_i\}_{i=1}^{\infty}$ zaprta diskretna podmnožica v M, U odprta podmnožica M, tako da je $A \cup K \subset U$ in f meromorfna funkcija na U z ničlami in poli le v točkah množice A. Potem za izbrane $\varepsilon > 0$ in števila $k_i \in \mathbb{N}$ obstaja meromorfna funkcija F na M, za katero velja:

- 1. $|F(z) f(z)| < \varepsilon$ za vse $z \in K$,
- 2. v točkah a_i je razlika F f ničelna do reda k_i ,
- 3. F nima ničel in polov na $M \setminus A$.

3 Minimalne ploskve

3.1 Variacija ploščine

V tem razdelku bomo navedli klasično definicijo minimalne ploskve ter variacijski formuli, s katerima minimalne ploskve opišemo kot ploskve z ničelnim vektorjem povprečne ukrivljenosti.

Definicija 3.1. 1. Naj bo M gladka kompaktna ploskev z robom, $n \geq 3$ in naj bo preslikava $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Variacija preslikave x s fiksnim robom je 1-parametrična družina \mathcal{C}^2 preslikav

$$x^t \colon M \to \mathbb{R}^n, \quad t \in (-\varepsilon, \varepsilon) \subset \mathbb{R},$$
 (3.1)

če je $x^0=x$ in za vset z intervala velja $x^t=x$ na bM.

2. Naj bo $p \in M$. Variacijsko vektorsko polje preslikave x^t je vektorsko polje, definirano s predpisom

$$E(p,t) = \frac{\partial x^t(p)}{\partial t} \in \mathbb{R}^n. \tag{3.2}$$

Opazimo, da je za dovolj majhne vrednosti t preslikava x^t imerzija. Po definiciji je na množici $bM \times (-\varepsilon, \varepsilon)$ variacijsko vektorsko polje E konstantno ničelno.

Definicija 3.2 (Minimalna ploskev). Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Sliko x(M) imenujemo minimalna ploskev, če za vsako kompaktno domeno $D \subset M$ z gladkim robom bD in vsako gladko variacijo x^t preslikave x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Area}\left(x^{t}(D)\right) = 0. \tag{3.3}$$

Ekvivalentno pravimo, da je minimalna ploskev stacionarna točka ploskovnega funkcionala Area.

Levo stran enakosti (3.3) imenujemo prva variacija ploščine pri t=0. Slednjo z geometrijskimi lastnostmi preslikave x, natančneje z ukrivljenostjo, povezuje prva variacijska formula v naslednjem izreku.

Izrek 3.3 (Prva variacijska formula). Naj bo M gladka kompaktna ploskev z robom, $n \geq 3$ in $x \colon M \to \mathbb{R}^n$ imerzija razreda C^2 . Naj bo $E = \partial x^t/\partial t|_{t=0}$ variacijsko vektorsko polje preslikave x^t pri t=0, \mathbf{H} vektorsko polje povprečne ukrivljenosti preslikave x in dA ploščinski element glede na Riemannovo metriko x^*ds^2 , definirano na M. Potem za vsako gladko variacijo $x^t \colon M \to \mathbb{R}^n$ imerzije x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} Area\left(x^t(M)\right) = -2\int_M E \cdot \mathbf{H} dA. \tag{3.4}$$

Kaj nam prva variacijska formula pove, če se osredotočimo na poseben razred variacij imerzije? Predpostavimo, da je imerzija $x: M \to \mathbb{R}^n$ razreda \mathcal{C}^4 , tj. je preslikava **H** vsaj razreda \mathcal{C}^2 . Variacijo definirajmo s predpisom

$$x^t = x + tf\mathbf{H},\tag{3.5}$$

kjer za f izberimo gladko nenegativno funkcijo na M, ki je ničelna na robu bM. Po definiciji je $x^t \in \mathcal{C}^2(M)$ variacija imerzije x s fiksnim robom. Računajmo

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Area}\left(x^{t}(M)\right) = -2 \cdot \int_{M} E \cdot \mathbf{H} dA = -2 \cdot \int_{M} f \mathbf{H} \cdot \mathbf{H} dA$$
$$= -2 \cdot \int_{M} f |\mathbf{H}|^{2} dA \leq 0.$$

Če je $\mathbf{H}=0$ na M, je ploščina konstantna $(x^t=x)$. Sicer obstaja točka, v kateri je $\mathbf{H}\neq 0$, in dodatno zahtevajmo, da je f>0 v okolici neke take točke. Potem je $\frac{d}{dt}\Big|_{t=0} \operatorname{Area}(x^t(M)) < 0$. To pomeni, da z deformacijo ploskve $x(M) \subset \mathbb{R}^n$ v smeri vektorja povprečne ukrivljenosti \mathbf{H} ploščina za majhne t>0 strogo pada.

Po prvi variacijski formuli (3.4) v primeru $\mathbf{H}=0$ na M imerzija x očitno da minimalno ploskev. V nasprotnem z ustrezno izbiro vektorskega polja E na M ploščina variiranih ploskev $x^t(M)$ za majhne t>0 in $x^t=x+tE$ strogo pada. Ta razmislek združuje naslednji rezultat.

Izrek 3.4. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda C^2 . Ploskev x(M) je minimalna natanko tedaj, ko je na M vektor povprečne ukrivljenosti \mathbf{H} preslikave x identično enak 0.

Po zadnjem izreku je vsaka točka minimalne ploskve sedlo. Ker je $\mathbf{H}=0$, je $\kappa_2=-\kappa_1$, torej sta glavni ukrivljenosti v vsaki točki enako veliki, a nasprotnega predznaka. Geometrijsko to pomeni, da je minimalna ploskev v vsaki točki enako ukrivljena v obeh glavnih smereh, ti pa kažeta v nasprotni normalni smeri.

Gaussova ukrivljenost minimalne ploskve x(M) = S je povsod nepozitivna, saj je $K = -\kappa_1^2 \le 0$. Njen integral,

$$TC(x) = \int_{M} KdA \in [-\infty, 0], \tag{3.6}$$

imenujemo totalna Gaussova ukrivljenost. Pri tem dA označuje ploščinski element glede na Riemannovo metriko $g = x^*ds^2$ na Riemannovi mnogoterosti (M, g). Vrednost je enaka 0 natanko takrat, ko je ploskev del ravnine. Res, TC(x) = 0 natanko

tedaj, ko je Gaussova ukrivljenost K=0, kar je ekvivalentno $\kappa_1=\kappa_2=0$. Vemo pa, da imajo le kosi ravnine obe glavni ukrivljenosti ničelni v vsaki točki. Minimalne ploskve s končno totalno Gaussovo ukrivljenostjo so najpreprostejše in jih običajno preučujemo ločeno, saj zanje velja več lastnosti, ki jih splošnejše minimalne ploskve (z neskončno totalno Gaussovo ukrivljenostjo) ne premorejo.

S podobnimi tehnikami kot v dokazu Izreka 3.3 izpeljemo drugo variacijsko formulo: naj bo M kompaktna ploskev z robom, preslikava $x\colon M\to\mathbb{R}^n$ pa gladka minimalna imerzija. Potem velja

$$\frac{d^2}{dt^2}\Big|_{t=0} \operatorname{Area}\left(x^t(M)\right) = \int_M \left(4|E|^2 K^E + |\nabla E|^2\right) dA,\tag{3.7}$$

kjer $K^E = K^N$ označuje Gaussovo ukrivljenost ploskve x(M).

Opomba 3.5. Za M in x kot zgoraj definirajmo funkcijo f=|E| ter enotsko normalno vektorsko polje $N=\frac{E}{|E|}$ na množici $M^*=\{x\in M;\ f(x)\neq 0\}$. Sledi $E=f\cdot N,\ \nabla E=(\nabla f\cdot N,f\cdot \nabla N)$ in $|\nabla E|^2=|\nabla f|^2+f^2\cdot |\nabla N|^2$. Enakost (3.7) se zato glasi

$$\frac{d^2}{dt^2}\Big|_{t=0} \text{Area}\left(x^t(M)\right) = \int_M \left(|\nabla f|^2 + f^2(4K^N + |\nabla N|^2)\right) dA.$$
 (3.8)

3.2 Weierstrassova formula

Naj bosta (M,g) in $(\widetilde{M},\widetilde{g})$ Riemannovi mnogoterosti z dim $(M) \leq \dim(\widetilde{M})$. Imerzija $x \colon (M,g) \to (\widetilde{M},\widetilde{g})$ se imenuje konformna, če ohranja kote. Z drugimi besedami je povlečena metrika $x^*\widetilde{g}$ konformno ekvivalentna metriki g, kar pomeni, da za pozitivno funkcijo $\mu > 0$ na M velja $x^*\widetilde{g} = \mu g$.

Podobno pravimo, da je lokalna karta (U, ϕ) Riemannove ploskve (M, g) izotermna glede na Riemannovo metriko g, če za neko pozitivno funkcijo $\mu \colon \phi(U) \to \mathbb{R}_+$, $\phi(U) \subset \mathbb{R}^2_{(x,y)}$, velja

$$(\phi^{-1})^* g = \mu \cdot (dx^2 + dy^2) = \mu \cdot ds_{\mathbb{R}^2}^2. \tag{3.9}$$

Lokalne koordinate na U tedaj imenujemo izotermne koordinate.

Naj bo ploskev M orientabilna in $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Potem preslikava x določa enolično strukturo Riemannove ploskve na M, kjer je x konformna imerzija. Zato bomo v nadaljevanju obravnavali Riemannove ploskve in pripadajoče konformne imerzije v Evklidski prostor.

Brez dokaza navedimo še ekvivalentne pogoje, ki karakterizirajo konformne imerzije na domeni v Evklidski ravnini. Nanje se bomo v nadaljevanju večkrat sklicali.

Lema 3.6. Naj bodo $D \subset \mathbb{R}^n$ domena z lokalnima koordinatama (u, v), $n \geq 2$ in preslikava $x = (x_1, \dots, x_n) \colon D \to \mathbb{R}^n$ imerzija. Naslednje trditve so ekvivalentne:

1. Imerzija x je konformna v Evklidskih metrikah na \mathbb{R}^2 in \mathbb{R}^n .

2. Za parcialna odvoda $\frac{\partial x}{\partial u} = x_u$ in $\frac{\partial x}{\partial v} = x_v$ velja

$$|x_u| = |x_v| > 0, \quad x_u \cdot x_v = 0.$$
 (3.10)

3. Vektorji $x_u \pm ix_v \in \mathbb{C}^n_*$ pripadajo ničelni kvadriki⁴ (so ničelni vektorji)

$$\mathbf{A} = \mathbf{A}^{n-1} = \{ z = (z_1, \dots, z_n) \in \mathbb{C}^n; \ z_1^2 + \dots + z_n^2 = 0 \}.$$
 (3.11)

4. Matrika, ki pripada Riemannovi metriki $g = x^*ds^2$ na D, je enaka $G = \mu I$, kjer je $\mu = |x_u|^2 = |x_v|^2$ ter I identiteta.

3.2.1 Plateaujev problem in Dirichletov energijski integral

Drugi razlog za študij konformnih imerzij je fizikalen. Na minimalne ploskve lahko gledamo kot na rešitve Plateaujevega problema, katerega moramo najprej natančno formulirati.

Označimo z $\bar{\mathbb{D}}$ zaprt enotski disk z lokalnimi koordinatami (u_1, u_2) in izberimo gladko orientirano Jordanovo krivuljo $\Gamma \subset \mathbb{R}^n$. Naj bo $x \colon \bar{\mathbb{D}} \to \mathbb{R}^n$ kosoma zvezno odvedljiva imerzija, katere zožitev na rob diska \mathbb{T} je monotona⁵ parametrizacija $x|_{\mathbb{T}} \colon \mathbb{T} \to \Gamma$ Jordanove krivulje Γ . Spomnimo se, da je površina ploskve, določene z imerzijo x enaka

Area(x) =
$$\int_{\mathbb{D}} \sqrt{|x_{u_1}|^2 |x_{u_2}|^2 - |x_{u_1} \cdot x_{u_2}|^2} du_1 du_2.$$
 (3.12)

Naloga je poiskati preslikavo, ki zadošča zgornjim zahtevam, površina pripadajoče ploskve pa je minimalna. Dodatno je smiselno obravnavati preslikave, ki dajo končno površino.

Ključ je Dirichletov energijski integral

$$\mathcal{D}(x) = \int_{\mathbb{D}} |\nabla x|^2 du_1 du_2 = \int_{\mathbb{D}} (|x_{u_1}|^2 + |x_{u_2}|^2) du_1 du_2, \tag{3.13}$$

ki ga s površino ploskve povezuje naslednji rezultat.

Lema 3.7. Za preslikavo x kot zgoraj je Area(x) $\leq \frac{1}{2}\mathcal{D}(x)$. Enačaj velja natanko tedaj, ko je x konformna.

Dokaz. Poljubna vektorja $x,y\in\mathbb{R}^n$ zadoščata

$$|x|^2|y|^2 - |x \cdot y|^2 \le |x|^2|y|^2 \le \frac{1}{4}(|x|^2 + |y|^2)^2.$$

Res, prva neenakost je očitna, druga pa je ekvivalentna neenakosti $(|x|-|y|)^2 \geq 0$, ki drži. Sledi $\sqrt{|x|^2|y|^2-|x\cdot y|^2} \leq \frac{1}{2}(|x|^2+|y|^2)$. Če namesto vektorjev x,y izberemo vektorja $x_{u_1},x_{u_2} \in \mathbb{R}^n$, dobimo neenakost iz leme.

Preslikava x je konformna natanko tedaj, ko velja $|x_{u_1}| = |x_{u_2}| > 0$ in $x_{u_1} \cdot x_{u_2} = 0$. Enakost Dirichletovega energijskega integrala in površine je torej ekvivalentna konformnosti.

 $^{^4}$ Ničelna kvadrika \mathbf{A} v (n-1)-spremenljivkah je kompleksni stožec s singularno točko 0.

 $^{^5}$ Pravimo, da je zvezna preslikava $f\colon \mathbb{T}\to \Gamma$ monotona, če je praslika $f^{-1}(x)$ povezana za vsak $x\in \Gamma.$

Preslikava, ki minimizira Dirichletov energijski integral, minimizira tudi površino, je konformna, in parametrizira minimalno ploskev z robom Γ . J. Douglas in T. Radó sta l. 1932 dokazala, da vsaka Jordanova krivulja v \mathbb{R}^3 določa minimalno ploskev.

Opomba 3.8. Analog minimalnih ploskev v enorazsežnem primeru so geodetke. Z minimizacijo enorazsežnega energijskega integrala dobimo krivulje z minimalno dolžino, ki so poleg tega parametrizirane z večkratnikom ločne dolžine.

3.2.2 Rezultati

Prvi rezultat, ki ga navajamo, opisuje ekvivalentne pogoje minimalnosti ploskve M.

Izrek 3.9. Naj bo M odprta Riemannova ploskev, $n \geq 3$ in $x = (x_1, \ldots, x_n) : M \rightarrow \mathbb{R}^n$ konformna imerzija razreda \mathcal{C}^2 . Naslednje trditve so ekvivalentne:

- 1. x je minimalna ploskev.
- 2. Vektorsko polje povprečne ukrivljenosti preslikave x je ničelno, tj. $\mathbf{H} = 0$.
- 3. x je harmonična, tj. $\Delta x = 0$ oziroma $dd^c x = 0$.
- 4. 1-forma $\partial x = (\partial x_1, \dots, \partial x_n)$ z vrednostmi v \mathbb{C}^n je holomorfna in velja

$$(\partial x_1)^2 + \dots + (\partial x_n)^2 = 0.$$
 (3.14)

5. Naj bo θ holomorfna 1-forma na M, ki ni nikjer enaka 0. Potem je preslikava $f = 2\partial x/\theta \colon M \to \mathbb{C}^n$ holomorfna z vrednostmi v ničelni kvadriki

$$\mathbf{A} = \{ (z_1, \dots, z_n) \in \mathbb{C}^n; \ z_1^2 + \dots + z_n^2 = 0 \}.$$
 (3.15)

Nadalje je Riemannova metrika na M, inducirana s konformno imerzijo x, enaka

$$g = x^* ds^2 = |dx_1|^2 + \dots + |dx_n|^2 = 2(|\partial x_1|^2 + \dots + |\partial x_n|^2).$$
 (3.16)

Dokaz. Predstavimo le osnovne ideje dokaza zgornjega izreka.

Ekvivalentnost prvih dveh trditev smo zapisali v Izreku 3.4.

Ekvivalentnost druge in tretje trditve sledi iz Leme 2.19, saj je $\Delta x = 2\mathbf{H}$.

Naj bo $\zeta = u + iv$ lokalna holomorfna koordinata na M. Tedaj je

$$2\partial x = dx + id^{c}x = (x_{u}du + x_{v}dv) + i(-x_{v}du + x_{u}dv) =$$

$$= (x_{u} - ix_{v})(du + idv) = (x_{u} - ix_{v})d\zeta,$$

$$\partial x = (\partial x_{1}, \dots, \partial x_{n}) = \frac{1}{2}(x_{u} - ix_{v})d\zeta.$$

Preslikava x je konformna natanko takrat, ko je $\sum_{i=1}^{n} ((x_i)_u \pm i(x_i)_v)^2 = |x_u|^2 - |x_v|^2 \pm 2ix_u \cdot x_v = 0$, kar je ekvivaletno

$$(\partial x_1)^2 + \dots + (\partial x_n)^2 = \frac{1}{4} (|x_u|^2 - |x_v|^2 - 2ix_u \cdot x_v) d\zeta^2 = 0,$$

ki je enakost (3.14). Ker velja $dd^cx = -2i\bar{\partial}(\partial x)$, je x harmonična natanko tedaj, ko je ∂x holomorfna; to je ekvivalenca tretje in četrte trditve.

Funkcija $f=2\partial x/\theta$ je kvocient 1-form, ki je zaradi pogoja na θ dobro definirana. Ker je x imerzija, f ne zavzame vrednosti 0. Četrta in peta trditev sta očitno ekvivalentni.

Zvezo (3.16) dobimo s krajšim računom v lokalnih holomorfnih koordinatah $\zeta = u + iv$ na M in upoštevanjem, da za konformno preslikavo x velja $|x_u| = |x_v| > 0$, $x_u \cdot x_v = 0$.

V razdelku o holomorfnih in harmoničnih funkcijah na Riemannovih ploskvah smo govorili o harmoničnih konjugirankah in kompleksnih krivuljah izbrane holomorfne funkcije. Sedaj opazujmo konformno minimalno imerzijo $x \colon M \to \mathbb{R}^n$ ter njeno harmonično konjugiranko y na odprti podmnožici $D \subset M$. Tedaj o preslikavi $z = x + iy \colon M \to \mathbb{C}^n$, ki je imerzija in holomorfna krivulja, vemo več, saj njeni parcialni odvodi zadoščajo ničelnemu pogoju.

- **Definicija 3.10.** 1. Naj bo M odprta Riemannova ploskev in $n \geq 3$. Holomorfno imerzijo $z = (z_1, \ldots, z_n) \colon M \to \mathbb{C}^n$, za katero velja $(\partial z_1)^2 + \cdots + (\partial z_n)^2 = 0$, imenujemo holomorfna ničelna krivulja v \mathbb{C}^n .
 - 2. Naj bo $z=x+\imath y\colon M\to\mathbb{C}^n$ holomorfna ničelna krivulja. Njena realni del in imaginarni del, $x,y\colon M\to\mathbb{R}^n$ imenujemo konjugirani minimalni ploskvi.
 - 3. Naj bo $t \in \mathbb{R}$. Predstavnike 1-parametrične družine $x^t = \Re(e^{\imath t}z) \colon M \to \mathbb{R}^n$ imenujemo pridružene minimalne ploskve holomorfne ničelne krivulje z.

Izrek pravi, da vsaka odprta Riemannova ploskev premore povsod neničelno eksaktno 1-formo. Naj bosta $z \colon M \to \mathbb{C}^n$ holomorfna ničelna krivulja in θ povsod neničelna holomorfna 1-forma na M. Diferencial dz je 1-forma in obstaja holomorfna preslikava $f \colon M \to \mathbf{A}_*$, ki 1-formi povezuje z enakostjo $dz = f\theta$. Tu je množica $\mathbf{A}_* = \mathbf{A} \setminus \{0\}$ punktirana ničelna kvadrika v \mathbb{C}^n .

Enneper-Weierstrassova formula je posledica Izreka 3.9, zato jo bomo navedli brez dokaza. Rezultat je pomemben, saj predstavlja konformne minimalne ploskve in holomorne ničelne krivulje, konstruirane na univerzalen način. Metodo konstrukcije bomo v naslednjih poglavjih pogosto uporabljali.

Izrek 3.11 (Enneper-Weierstrassova formula). Naj bo $n \geq 3$ in M odprta Riemannova ploskev, na kateri definiramo holomorfno 1-formo $\Phi = (\phi_1, \ldots, \phi_n)$ z vrednostmi v \mathbb{C}^n , ki je povsod neničelna, in zadošča

1.
$$\sum_{j=1}^{n} \phi_j^2 = 0$$
,

2.
$$\Re \int_C \Phi = 0$$
 za vse $[C] \in H_1(M, \mathbb{Z})$.

Potem za poljuben izbor točk $p_0 \in M$ in $x_0 \in \mathbb{R}^n$ predpis $x \colon M \to \mathbb{R}^n$,

$$x(p) = x_0 + \Re \int_{p_0}^p \Phi, \quad p \in M,$$
 (3.17)

podaja dobro definirano konformno minimalno imerzijo. Zanjo velja

$$2\partial x = \Phi \quad in \quad g = x^* ds^2 = |dx|^2 = \frac{1}{2} |\Phi|^2.$$
 (3.18)

Če velja še $\int_C \Phi = 0$ za vse $[C] \in H_1(M, \mathbb{Z})$, potem za poljuben izbor točk $p_0 \in M$ in $z_0 \in \mathbb{C}^n$ predpis $z \colon M \to \mathbb{C}^n$,

$$z(p) = z_0 + \int_{p_0}^p \Phi, \quad p \in M,$$
 (3.19)

podaja dobro definirano holomorfno ničelno krivuljo. Zanjo velja

$$\partial z = \Phi \quad in \quad z^* ds^2 = |dz|^2 = |\partial z|^2 = |\Phi|^2.$$
 (3.20)

Opomba 3.12. Pogoj $\Re \int_C \Phi = 0$, da so vse realne periode po sklenjenih krivuljah v M ničelne, zagotavlja, da je integral (3.17) dobro definiran. Natančneje, neodvisen je od izbire poti med točkama $p_0 \in M$ in $p \in M$ po kateri integriramo. Podobno, pogoj $\int_C \Phi = 0$ za vse $[C] \in H_1(M, \mathbb{Z})$ zagotavlja dobro definiranost integrala (3.19).

V primeru, ko je M enostavno povezana ploskev, pogoja o ničelnosti period nista potrebna, saj sledita iz definicije enostavne povezanosti.

Opomba 3.13. Dodatek k izreku pravi, da je vsaka konformna minimalna imerzija $x: M \to \mathbb{R}^n$ oblike (3.17), vsaka holomorfna ničelna krivulja $z: M \to \mathbb{C}^n$ pa oblike (3.19). Prav zato je Enneper-Weierstrassova formula elegantna metoda za konstrukcijo opisanih preslikav.

Kot smo omenili zgoraj, včasih pišemo $\Phi = f\theta$, pri čemer je θ povsod neničelna holomorfna 1-forma na M in $f = \Phi/\theta \colon M \to \mathbf{A}_*$ holomorfna preslikava.

Če konformno minimalno imerzijo $x \colon M \to \mathbb{R}^n$ poznamo, potem pripadajočo povsod neničelno holomorfno 1-formo $\Phi = 2\partial x$ z vrednostmi v \mathbb{C}^n imenujemo Weierstrassovi podatki preslikave x. Analogno, za holomorfno ničelno krivuljo $z \colon M \to \mathbb{C}^n$ pripadajočo 1-formo $\Phi = \partial z = dz$ imenujemo Weierstrassovi podatki preslikave z.

3.3 Gaussova preslikava

V razdelku o ukrivljenosti ploskve smo pri računanju vektorja povprečne ukrivljenosti v trirazsežnem prostoru omenili Gaussovo preslikavo. Sedaj bomo formalno definirali Gaussovo preslikavo minimalne ploskve ter se ponovno osredotočili na trirazsežni primer – izpeljali bomo klasično Weierstrassovo formulo za minimalne ploskve v prostoru \mathbb{R}^3 .

Definicija 3.14. Naj bo M odprta Riemannova ploskev in $n \geq 3$. (Posplošena) Gaussova preslikava konformne minimalne imerzije $x = (x_1, \ldots, x_n) \colon M \to \mathbb{R}^n$ je holomorfna preslikava

$$\mathcal{G} = [\partial x_1 : \dots : \partial x_n] : M \to \mathbf{Q}^{n-2} \subset \mathbb{CP}^{n-1}.$$
 (3.21)

Gaussova preslikava holomorfne ničelne krivulje $z=(z_1,\ldots,z_n)\colon M\to\mathbb{C}^n$ je holomorfna preslikava

$$\mathcal{G} = [dz_1 : \cdots : dz_n] : M \to \mathbf{Q}^{n-2} \subset \mathbb{CP}^{n-1}.$$

Pri tem je množica $\mathbf{Q}^{n-2} = \{[z_1 : \cdots : z_n] \in \mathbb{CP}^{n-1}; \sum_{i=1}^n z_i^2 = 0\}$ hiperkvadrika v \mathbb{CP}^{n-1} , ki jo dobimo s projektivizacijo punktirane ničelne kvadrike $\mathbf{A}_*^{n-1} \subset \mathbb{C}^n$.

Oglejmo si Gaussovo preslikavo v primeru trirazsežnega prostora. Hiperkvadriko $\mathbf{Q}^1\subset\mathbb{CP}^2$, ki je racionalna krivulja, parametrizirajmo z biholomorfno preslikavo

$$\tau \colon \mathbb{CP}^1 \to \mathbf{Q}^1,$$

$$\tau(t) = \left[1 - t^2 : i(1 + t^2) : 2t\right].$$
(3.22)

Koordinate slike označimo z $u = 1 - t^2$, $v = i(1 + t^2)$ in w = 2t, ter od tod izrazimo

$$t = \frac{w}{u - iv} \in \mathbb{CP}^1.$$

Naj bo M odprta Riemannova ploskev in $x=(x_1,x_2,x_3)\colon M\to\mathbb{R}^3$ konformna minimalna imerzija. Ker želimo povezavo med imerzijo in hiperkvadriko, parcialne odvode označimo z $2\partial x=2(\partial x_1,\partial x_2,\partial x_3)=(\phi_1,\phi_2,\phi_3)=\Phi$, nato pa definirajmo holomorfno preslikavo (ki izhaja iz izražave spremenljivke t zgoraj)

$$\mathfrak{g} \colon M \to \mathbb{CP}^1, \quad \mathfrak{g} = \frac{\phi_3}{\phi_1 - i\phi_2} = \frac{\partial x_3}{\partial x_1 - i\partial x_2}.$$
 (3.23)

Imenujemo jo kompleksna Gaussova preslikava konformne minimalne imerzije x. (Kompleksna Gaussova preslikava $\mathfrak{g} \colon M \to \mathbb{CP}^1$ je z običajno Gaussovo preslikavo $N \colon M \to \mathbb{S}^2$ minimalne ploskve x(M) povezana preko stereografske projekcije glede na severni pol (0,0,1), ki identificira 2-sfero \mathbb{S}^2 z Riemannovo sfero \mathbb{CP}^1 .) Kompozitum

$$\mathcal{G}: M \to \mathbf{Q}^1 \subset \mathbb{CP}^2, \quad \mathcal{G} = \tau \circ \mathfrak{g}$$
 (3.24)

je iskana (posplošena) Gaussova preslikava.

Od tod lahko izpeljemo Enneper-Weierstrassovo formulo za minimalne ploskve v \mathbb{R}^3 , o kateri smo govorili v prejšnjem razdelku. Recimo, da je konformna minimalna imerzija x podana. Računajmo njene Weierstrassove podatke. Velja⁶

$$2\partial x = \Phi = \left(\frac{1}{2}\left(\frac{1}{\mathfrak{g}} - \mathfrak{g}\right), \frac{i}{2}\left(\frac{1}{\mathfrak{g}} + \mathfrak{g}\right), 1\right)\phi_3. \tag{3.25}$$

Obratno, če poznamo holomorfno preslikavo $\mathfrak{g}\colon M\to\mathbb{CP}^1$ in holomorfno 1-formo ϕ_3 na M, potem je 1-forma Φ , določena z enakostjo (3.25) meromorfna na M in zadošča pogoju $\phi_1^2+\phi_2^2+\phi_3^2=0$ po definiciji preslikave \mathfrak{g} . Kadar je dodatno Φ brez ničel in polov na M in je $\Re\int_C\Phi=0$ za vse sklenjene krivulje $C\subset M$, potem po Izreku 3.11 konformno minimalno imerzijo $x\colon M\to\mathbb{R}^3$ definira predpis

$$x(p) = p_0 + \Re \int_{p_0}^p \Phi = p_0 + \Re \int_{p_0}^p \left(\frac{1}{2} \left(\frac{1}{\mathfrak{g}} - \mathfrak{g}\right), \frac{i}{2} \left(\frac{1}{\mathfrak{g}} + \mathfrak{g}\right), 1\right) \phi_3, \tag{3.26}$$

kjer sta $p_0 \in M$, $x_0 \in \mathbb{R}^3$ poljubni izbrani točki ter je $p \in M$ spremenljivka.

$$\begin{split} &\frac{1}{2} \left(\frac{1}{\mathfrak{g}} - \mathfrak{g} \right) \phi_3 = \frac{1}{2} \left(\frac{\phi_1 - i\phi_2}{\phi_3} - \frac{\phi_3}{\phi_1 - i\phi_2} \right) \phi_3 = \frac{\phi_1^2 - 2i\phi_1\phi_2 - \phi_2^2 - \phi_3^2}{2(\phi_1 - i\phi_2)} = \frac{\phi_1^2 - i\phi_1\phi_2}{\phi_1 - i\phi_2} = \phi_1, \\ &\frac{i}{2} \left(\frac{1}{\mathfrak{g}} + \mathfrak{g} \right) \phi_3 = \frac{i}{2} \frac{\phi_1^2 - 2i\phi_1\phi_2 - \phi_2^2 + \phi_3^2}{\phi_1 - i\phi_2} = \frac{i}{2} \frac{-2i\phi_1\phi_2 - 2\phi_2^2}{\phi_1 - i\phi_2} = \frac{-i\phi_2(i\phi_1 + \phi_2)}{\phi_1 - i\phi_2} = \phi_2. \end{split}$$

⁶Res, če upoštevamo zvezo $\phi_1^2 + \phi_2^2 + \phi_3^2 = 0$, dobimo

3.4 Primeri minimalnih ploskev

Oglejmo si nekaj najpreprostejših in tudi zgodovinsko zanimivih primerov minimalnih ploskev. Trivialni primer je ravnina oziroma del ravnine.

Vzemimo holomorfno ničelno krivuljo $z = x + iy : \mathbb{C} \to \mathbb{C}^3$, definirano s predpisom

$$z(\zeta) = (\cos \zeta, \sin \zeta, -i\zeta), \quad \zeta = u + iv \in \mathbb{C}.$$
 (3.27)

Imenujemo jo helikatenoida. Ker je z(0) = (1,0,0) in $z'(\zeta) = (-\sin\zeta,\cos\zeta,-i)d\zeta$, je Enneper-Weierstrassova formula helikatenoide enaka

$$z(\zeta) = (1,0,0) + \int_0^{\zeta} (-\sin\xi, \cos\xi, -i)d\xi$$

= $(1,0,0) + \int_0^{\zeta} \left(\frac{1}{2} \left(\frac{1}{e^{i\xi}} - e^{i\xi}\right), \frac{i}{2} \left(\frac{1}{e^{i\xi}} + e^{i\xi}\right), 1\right) (-i)d\xi.$ (3.28)

Iz zadnje preberemo njeno kompleksno Gaussovo preslikavo $\mathfrak{g}(\zeta) = e^{i\zeta}$.

Pridružene minimalne ploskve k helikatenoidi predstavlja družina preslikav (za $t \in \mathbb{R}$), $x^t = \Re(e^{it}z) \colon \mathbb{C} \to \mathbb{R}^3$, definiranih s predpisom

$$x^{t}(\zeta) = \Re(e^{it}\cos\zeta, e^{it}\sin\zeta, -ie^{it}\zeta)$$

$$= \cos t \begin{pmatrix} \cos u \cdot \cosh v \\ \sin u \cdot \cosh v \\ v \end{pmatrix} + \sin t \begin{pmatrix} \sin u \cdot \sinh v \\ -\cos u \cdot \sinh v \\ u \end{pmatrix}. \tag{3.29}$$

Res, izračunajmo komponente:

$$\Re(e^{it}\cos\zeta) = \Re\left((\cos t + i\sin t) \cdot \cos(u + iv)\right)
= \Re\left((\cos t + i\sin t) \cdot (\cos u\cosh v - i\sin u\sinh v)\right)
= \cos t \cdot \cos u\cosh v + \sin t \cdot \sin u\sinh v,
\Re(e^{it}\sin\zeta) = \Re\left((\cos t + i\sin t) \cdot \sin(u + iv)\right)
= \Re\left((\cos t + i\sin t) \cdot (\sin u\cosh v + i\cos u\sinh v)\right)
= \cos t \cdot \sin u\cosh v - \sin t \cdot \cos u\sinh v,
\Re(-ie^{it}\zeta) = \Re\left(-i(\cos t + i\sin t) \cdot (u + iv)\right)
= \cos t \cdot v + \sin t \cdot u.$$

Podrobneje bomo opisali dve pridruženi minimalni ploskvi k helikatenoidi, katenoido in helikoid.

3.4.1 Katenoida

Začnimo s holomorfno ničelno krivuljo $z\colon \mathbb{C}\to \mathbb{C}^3$, podano s predpisom (3.27). Njenemu realnemu delu, ki je preslikava $x\colon \mathbb{R}^2\to \mathbb{R}^3$ s parametrizacijo

$$x(u,v) = (\cos u \cdot \cosh v, \sin u \cdot \cosh v, v), \tag{3.30}$$

pravimo katenoida. Po drugi strani do njene konformne parametrizacije pridemo preko pridruženih minimalnih ploskev k izbrani holomorfni ničelni krivulji – katenoida ustreza parametrom $t = k\pi$, $k \in \mathbb{Z}$.

Geometrijsko je obravnavana minimalna ploskev rotacijska ploskev, ki nastane z rotacijo grafa hiperboličnega kosinusa (t. i. verižnice) okoli izbrane osi v prostoru \mathbb{R}^3 . Katenoida z osjo rotacije x=y=0 na primer nastane, če graf krivulje $z\mapsto (\cosh z,0,z),\ z\in\mathbb{R}$, zavrtimo okrog z-osi. Implicitna enačba nastale minimalne ploskve se glasi

$$x^2 + y^2 = \cosh^2 z. (3.31)$$

Slika 1: Katenoida z implicitno enačbo (3.31).

Opazimo, da je parametrizacija katenoide (3.30) 2π -periodična glede na spremenljivko u. V Enneper-Weierstrassovo formulo helikatenoide (3.28) uvedimo novo spremenljivko $w=e^{i\zeta}\in\mathbb{C}\setminus\{0\}$ in vzemimo njen realni del. Računajmo

$$z(\zeta) = (1,0,0) + \int_0^{\zeta} \left(\frac{1}{2} \left(\frac{1}{e^{i\xi}} - e^{i\xi}\right), \frac{i}{2} \left(\frac{1}{e^{i\xi}} + e^{i\xi}\right), 1\right) (-i)d\xi$$

$$= (1,0,0) + \int_1^w \left(\frac{1}{2} \left(\frac{1}{\eta} - \eta\right), \frac{i}{2} \left(\frac{1}{\eta} + \eta\right), 1\right) (-i) \frac{-i}{\eta} d\eta$$

$$= (1,0,0) - \int_1^w \left(\frac{1}{2} \left(\frac{1}{\eta} - \eta\right), \frac{i}{2} \left(\frac{1}{\eta} + \eta\right), 1\right) \frac{d\eta}{\eta},$$

kar nam da parametrizacijo katenoide $x\colon \mathbb{C}\setminus\{0\}\to\mathbb{R}^3$ z Enneper-Weierstrassovo formulo

$$x(w) = (1, 0, 0) - \Re \int_{1}^{w} \left(\frac{1}{2} \left(\frac{1}{\eta} - \eta \right), \frac{i}{2} \left(\frac{1}{\eta} + \eta \right), 1 \right) \frac{d\eta}{\eta}.$$
 (3.32)

Sledi, da je kompleksna Gaussova preslikava katenoide enaka $\mathfrak{g}(w)=w$ za $w\in\mathbb{C}\setminus\{0\}$, ki jo holomorfno razširimo do identične preslikave na \mathbb{CP}^1 . Identiteta je

preslikava stopnje d=1, zato iz teorije o Gaussovih preslikavah dobimo vrednost totalne Gaussove ukrivljenosti katenoide, ki znaša -4π . Izkaže se, da je to edini primer iz družine pridruženih minimalnih ploskev k helikatenoidi s končno totalno Gaussovo ukrivljenostjo.

Katenoido je kot rotacijsko ploskev prvi opisal Leonhard Euler l. 1744. Dobro stoletje kasneje je P. O. Bonnet pokazal, da je to (razen ravnine) edina rotacijska minimalna ploskev v trirazsežnem prostoru. Ker je razmeroma enostavna in ima še več posebnih topoloških lastnosti, jo običajno spoznamo kot prvi primer pri študiju minimalnih ploskev.

3.4.2 Helikoid

Negativno predznačeni imaginarni del helikatenoide imenujemo helikoid. Natančneje, to je preslikava $y = -\Im z = \Re(iz) \colon \mathbb{R}^2 \to \mathbb{R}^3$ s konformno parametrizacijo

$$y(u,v) = (\sin u \cdot \sinh v, -\cos u \cdot \sinh v, u). \tag{3.33}$$

Helikoid je pridružena minimalna ploskev k helikatenoidu, ki ustreza parametrom $t = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. (Res, $e^{it}z = iz$ natanko tedaj, ko je $t = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$. Z izbiro $t = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, pa dobimo levi in desni helikoid.) Po definiciji sta katenoida in helikoid konjugirani minimalni ploskvi.

Geometrijsko helikoid dobimo na naslednji način: premico rotiramo okrog izbrane osi v \mathbb{R}^3 (tj. v ravnini v \mathbb{R}^3) in jo hkrati premikamo vzdolž te osi (v pravokotni smeri glede na ravnino, v kateri premico rotiramo).

Enneper-Weierstrassovo formulo helikoida dobimo iz izraza (3.28):

$$y(\zeta) = \Re(iz(\zeta)) = \Re\left((i,0,0) + \int_0^{\zeta} \left(\frac{1}{2}\left(\frac{1}{e^{i\xi}} - e^{i\xi}\right), \frac{i}{2}\left(\frac{1}{e^{i\xi}} + e^{i\xi}\right), 1\right)(-i)id\xi\right)$$
$$= \Re\int_0^{\zeta} \left(\frac{1}{2}\left(\frac{1}{e^{i\xi}} - e^{i\xi}\right), \frac{i}{2}\left(\frac{1}{e^{i\xi}} + e^{i\xi}\right), 1\right)d\xi, \quad \zeta \in \mathbb{C}. \tag{3.34}$$

Njegova kompleksna Gaussova preslikava je $\mathfrak{g}(\zeta) = e^{i\zeta}$, kar nam pove, da ima helikoid negativno neskončno totalno Gaussovo ukrivljenost; $TC(y) = -\infty$.

O helikoidu sta prva pisala L. Euler in J. B. Meusnier v 80.-ih letih 18. stoletja, brez znanja o konjugiranih minimalnih ploskvah in povezavi s kompleksno analizo. Omenimo še dve zanimivi lastnosti obravnavane minimalne ploskve:

- Za vsako točko na helikoidu obstaja premica, ki leži na njem in gre skozi to točko.
- Za vsako točko na helikoidu obstaja vijačnica, ki leži na njem in gre skozi to točko.

Prvo lastnost kot minimalni ploskvi v \mathbb{R}^3 premoreta le helikoid in ravnina, kar je l. 1842 dokazal E. C. Catalan. Druga lastnost namiguje na izvor imena – helikoid spominja na latinsko besedo "helix", kar v slovenščini imenujemo vijačnica.

Slika 2: Helikoid v \mathbb{R}^3 z z-osjo kot osjo rotacije.

3.4.3 Enneperjeva ploskev

Recimo, da poznamo par (\mathfrak{g}, ϕ_3) , kjer sta $\mathfrak{g}(z) = z$ holomorfna preslikava in $\phi_3(z) = 2z$ holomorfna 1-forma $(z \in \mathbb{C})$. Potem po zvezi (3.25) vemo, da je meromorfna 1-forma Φ enaka

$$\Phi = \left(\frac{1}{2} \left(\frac{1}{z} - z\right), \frac{i}{2} \left(\frac{1}{z} + z\right), 1\right) \cdot 2z = \left(1 - z^2, i(1 + z^2), 2z\right).$$

Enneper-Weierstrassova formula preslikave $x\colon \mathbb{C} \to \mathbb{R}^3$ se glasi

$$x(\zeta) = \Re \int_0^{\zeta} (1 - z^2, i(1 + z^2), 2z) dz$$
 (3.35)

in določa minimalno ploskev, imenovano *Enneperjeva ploskev*, ki jo je l. 1868 odkril A. Enneper.

Če za $u,v\in\mathbb{R}$ pišemo $\zeta=u+iv\in\mathbb{C}$ in po komponentah izračunamo realne dele zgornjega integrala, dobimo konformno parametrizacijo $x\colon\mathbb{R}^2\to\mathbb{R}^3$,

$$x(u,v) = \left(\frac{u}{3}\left(3(1+v^2) - u^2\right), \frac{v}{3}\left(v^2 - 3(1+u^2)\right), u^2 - v^2\right). \tag{3.36}$$

Iz izbire podatkov vemo, da je kompleksna Gaussova preslikava Enneperjeve ploskve enaka $\mathfrak{g}(z)=z$, zato ima le-ta podobno kot katenoida totalno Gaussovo

ukrivljenost enako -4π . Izkaže se, da sta to edini polni⁷ neravni orientabilni minimalni ploskvi vloženi v \mathbb{R}^3 , katerih totalna Gaussova ukrivljenost znaša -4π . Poleg tega je Enneperjeva ploskev konjugirana sama sebi.

4 Izreki o aproksimaciji in interpolaciji minimalnih ploskev

Glavni cilj magistrske naloge so izreki o aproksimaciji in interpolaciji minimalnih ploskev, ki jih bomo predstavili v tem poglavju. Osnovna ideja so klasični aproksimacijski in interpolacijski izreki za holomorfne funkcije – Rungejev, Bishop-Mergelyanov in Weierstrass-Florackov izrek (Izreki 2.21, 2.23, 2.24), katere je potrebno ustrezno prilagoditi.

Osredotočili se bomo na povezane odprte Riemannove ploskve M z izbrano fiksno strukturo kompleksne mnogoterosti, na katerih bomo definirali konformne minimalne imerzije $x \colon M \to \mathbb{R}^n$ oziroma holomorfne ničelne krivulje $z \colon M \to \mathbb{C}^n$ $(n \geq 3)$. V nekaterih primerih bomo za M izbrali kompaktno Riemannovo ploskev z robom, natančneje, kompaktno domeno M z gladkim robom bM, ki je podmnožica odprte Riemannove ploskve.

4.1 Prostori preslikav in posplošene minimalne imerzije

Najprej definirajmo različne tipe konformnih minimalnih imerzij glede na njihovo sliko ter pripadajoče prostore preslikav.

Definicija 4.1. Naj bo M povezana odprta Riemannova ploskev ali kompaktna Riemannova ploskev z robom, na kateri je definirana povsod neničelna holomorfna 1-forma θ . Konformno minimalno imerzijo $x \colon M \to \mathbb{R}^n$ imenujemo:

- 1. ravna, če je slika x(M) vsebovana v afini ravnini v \mathbb{R}^n ; sicer pravimo, da je x neravna;
- 2. polna, če je preslikava $f = 2\partial x/\theta \colon M \to \mathbf{A}_*^{n-1}$ polna, tj. \mathbb{C} -linearna ogrinjača slike f(M) je enaka \mathbb{C}^n ;
- 3. neizrojena, če slika x(M) ni vsebovana v nobeni afini hiperravnini v \mathbb{R}^n .

V dimenziji n=3 za konformno minimalno imerzijo vsi zgornji pojmi sovpadajo. V višjih dimenzijah $(n\geq 4)$ veljata implikaciji

$$polna \Rightarrow neizrojena \Rightarrow neravna.$$
 (4.1)

Obratne implikacije ne vejajo.

Naj bosta M in X kompleksni mnogoterosti. Prostor holomorfnih preslikav $M \to X$ označimo z $\mathcal{O}(M, X)$. Če je K kompaktna podmnožica v M, množico

Pot $\gamma \colon [0,a) \to M$, $a \in (0,+\infty]$, je divergentna, če za vsako kompaktno podmnožico $K \subset M$ velja: $\gamma(t) \notin K$, ko $t \to a$. Če je vsaka divergentna pot v M razreda \mathcal{C}^1 neskončne dolžine, Riemannovi mnogoterosti M pravimo polna.

preslikav $K \to X$ razreda $\mathcal{C}^r(M)$, ki so holomorfne v notranjosti $K^{\circ} \subset K$, označimo z $\mathcal{A}^r(K,X)$. V primeru, ko je $X = \mathbb{C}$, ustrezna prostora označimo z $\mathcal{O}(M)$ oziroma $\mathcal{A}^r(K)$.

Naj bo M odprta Riemannova ploskev in $n \geq 3$. Prostor konformnih minimalnih imerzij $M \to \mathbb{R}^n$ označimo s $\mathrm{CMI}(M,\mathbb{R}^n)$, prostor holomorfnih ničelnih krivulj $M \to \mathbb{C}^n$ pa z $\mathrm{NC}(M,\mathbb{C}^n)$. Oba prostora sta opremljena s kompaktno-odprto topologijo⁸. Nadalje $\mathrm{CMI}_{full}(M,\mathbb{R}^n)$ in $\mathrm{CMI}_{nf}(M,\mathbb{R}^n)$ označujeta prostora polnih oziroma neravnih konformnih minimalnih imerzij na povezanih komponentah M. Po zvezi (4.1) velja inkluzija

$$\mathrm{CMI}_{full}(M,\mathbb{R}^n) \subset \mathrm{CMI}_{nf}(M,\mathbb{R}^n).$$

Podobno je

$$NC_{full}(M, \mathbb{C}^n) \subset NC_{nf}(M, \mathbb{C}^n)$$

v primeru polnih ter neravnih holomorfnih ničelnih krivulj, saj analogna definicija k Definiciji 4.1 velja za holomorfne ničelne krivulje. Vsi ti prostori so odprti podprostori v $\mathrm{CMI}(M,\mathbb{R}^n)$ oziroma $\mathrm{NC}(M,\mathbb{C}^n)$.

Če je M kompaktna Riemannova ploskev z nepraznim gladkim robom bM in $r \in \mathbb{N}$, tedaj prostor konformnih minimalnih imerzij $M \to \mathbb{R}^n$ razreda $\mathcal{A}^r(M)$ označimo s $\mathrm{CMI}^r(M,\mathbb{R}^n)$, prostor holomorfnih ničelnih krivulj $M \to \mathbb{C}^n$ razreda $\mathcal{A}^r(M)$ pa z $\mathrm{NC}^r(M,\mathbb{C}^n)$. Odprte podprostore polnih in neravnih preslikav tokrat označimo podobno kot prej; zanje velja

$$\mathrm{CMI}^r_{full}(M,\mathbb{R}^n) \subset \mathrm{CMI}^r_{nf}(M,\mathbb{R}^n), \quad \mathrm{NC}^r_{full}(M,\mathbb{C}^n) \subset \mathrm{NC}^r_{nf}(M,\mathbb{C}^n).$$

Opomba 4.2. Imerzija $x \colon M \to \mathbb{R}^n$ razreda $\mathcal{A}^r(M)$ na kompaktni Riemannovi ploskvi z nepraznim gladkim robom bM je element prostora $\mathrm{CMI}^r(M,\mathbb{R}^n)$ natanko tedaj, ko je pripadajoča 1-forma $\partial x = (\partial x_1, \dots, \partial x_n)$ holomorfna na $M^\circ = M \setminus bM$ in zadošča ničelnemu pogoju $(\partial x_1)^2 + \dots + (\partial x_n)^2 = 0$.

Lema 4.3. Naj bo M povezana Riemannova ploskev in \mathbf{A}_* punktirana ničelna kvadrika. Holomorfna preslikava $f: M \to \mathbf{A}_*$ je neravna natanko tedaj, ko je linearna ogrinjača tangentnih prostorov $T_{f(p)}\mathbf{A} \subset T_{f(p)}\mathbb{C}^n \cong \mathbb{C}^n$ po vseh $p \in M$ enaka \mathbb{C}^n .

Dokaz. Oglejmo si preslikavo $\Phi \colon \mathbb{C}^n \to \mathbb{C}$, definirano s predpisom $\Phi(z) = \sum_{j=1}^n z_j^2$. Ničelno kvadriko (3.15) tedaj lahko zapišemo v obliki $\mathbf{A} = \Phi^{-1}(\{0\})$. Njen tangentni prostor v točki $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ je enak jedru diferenciala, ki kvadriko določa, zato je

$$T_z \mathbf{A} = \ker(d\Phi_z) = \ker(z \mapsto \sum_{j=1}^n z_j dz_j).$$

Naj bosta vektorja $z, w \in \mathbb{C}_*^n$. Potem sta njuna tangentna prostora enaka, $T_z \mathbf{A} = T_w \mathbf{A}$, natanko takrat, ko velja $z_j = \lambda w_j$ za vse $j = 1, \ldots, n$ in nek $\lambda \in \mathbb{C}$, kar je ekvivalentno pogoju, da sta vektorja z in w kolinearna.

⁸Naj bosta X in Y topološka prostora ter $\mathcal{C}(X,Y)$ prostor zveznih preslikav med njima. Množica $\mathcal{V} = \{f \in \mathcal{C}(X,Y); \ f(K) \subset U, \ K \subset X \ \text{kompaktna}, \ U \subset Y \ \text{odprta} \}$ tvori podbazo $kompaktno-odprte \ topologije$ na prostoru $\mathcal{C}(X,Y)$.

Po definiciji je preslikava f neravna, če njena slika f(M) ni vsebovana v nobeni afini kompleksni premici v \mathbb{C}^n . Skupaj z zgornjim je slednje ekvivalentno $\mathcal{L}in\{T_{f(p)}\mathbf{A};\ p\in M\}=\mathbb{C}^n$, kar smo želeli dokazati.

V aproksimacijskih in interpolacijskih izrekih bomo v dokazih namesto običajnih konformnih minimalnih imerzij in ničelnih krivulj operirali s splošnejšimi preslikavami, imenovanimi posplošene minimalne imerzije ter ničelne krivulje; naravno pa se bodo zaradi topoloških lastnosti množic, na katerih bomo preslikave aproksimirali, pojavile tudi množice iz naslednje definicije.

Definicija 4.4 (Dopustna množica). Naj bo M gladka ploskev, K končna unija paroma disjunktnih kompaktnih domen s kosoma zvezno odvedljivimi robovi v M ter $E = S \setminus K^{\circ}$ unija končno mnogo paroma disjunktnih gladkih Jordanovih lokov in zaprtih Jordanovih krivulj, ki se dotikajo K kvečjemu v svojih krajiščih in sekajo rob K transverzalno. Kompaktno podmnožico v M oblike $S = K \cup E$ imenujemo dopustna množica.

Definicija 4.5 (Posplošena konformna minimalna imerzija). Naj bo $S = K \cup E$ dopustna podmnožica Riemannove ploskve M in θ povsod neničelna holomorfna 1-forma, definirana v okolici $S \subset M$. Naj bosta $n \geq 3$ in $r \in \mathbb{N}$. Posplošena konformna minimalna imerzija $S \to \mathbb{R}^n$ razreda C^r je par $(x, f\theta)$, kjer je $x: S \to \mathbb{R}^n$ preslikava razreda C^r , njena zožitev na $S^\circ = K^\circ$ je konformna minimalna imerzija in preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ zadošča naslednjima pogojema:

- 1. na množici K velja $f\theta = 2\partial x$;
- 2. za vsako gladko pot α v M, ki parametrizira povezano komponento množice $E = \overline{S \setminus K}$, velja $\Re(\alpha^*(f\theta)) = \alpha^*(dx) = d(x \circ \alpha)$.

Posplošena konformna minimalna imerzija $(x, f\theta)$ je neravna oziroma polna natanko tedaj, ko je preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ neravna oziroma polna na vsaki relativno odprti podmnožici S.

Prostor posplošenih konformnih minimalnih imerzij $S \to \mathbb{R}^n$ razreda \mathcal{C}^r označimo z $GCMI^r(S, \mathbb{R}^n)$. Analogno kot v primeru konformnih minimalnih imerzij velja

$$\operatorname{GCMI}_{full}^r(S,\mathbb{R}^n) \subset \operatorname{GCMI}_{nf}^r(S,\mathbb{R}^n) \subset \operatorname{GCMI}^r(S,\mathbb{R}^n).$$

Opomba 4.6. Spomnimo se diferenciala in konjugiranega diferenciala v kompleksnem. Zanju velja $d + id^c = 2\partial$ oziroma drugače, $\Re(2\partial x) = dx$. Prvi pogoj iz definicije posplošene konformne minimalne imerzije pravi $f\theta = 2\partial x$, od koder sledi $\Re(f\theta) = \Re(2\partial x) = dx$. Zato je drugi pogoj iz zgornje definicije skladen s prvim.

Tudi za posplošene konformne minimalne imerzije velja Enneper-Weierstrassova formula. Naj bo S povezana dopustna množica in $(x, f\theta) \in \operatorname{GCMI}^r(S, \mathbb{R}^n)$. Za poljubno točko $p_0 \in S$ in poznano preslikavo f lahko posplošeno konformno minimalno imerzijo $x \colon S \to \mathbb{R}^n$ konstruiramo s formulo

$$x(p) = x(p_0) + \Re \int_{p_0}^p f\theta, \quad p \in S.$$
 (4.2)

Obratno, če za preslikavo $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ velja $\Re \int_C f\theta = 0$ za vsako sklenjeno krivuljo C v S, potem le-ta določa posplošeno konformno minimalno imerzijo, dano z Enneper-Weierstrassovo formulo (4.2).

Definicija 4.7 (Posplošena ničelna krivulja). Naj bo $S = K \cup E$ dopustna podmnožica Riemannove ploskve M in θ povsod neničelna holomorfna 1-forma, definirana v okolici $S \subset M$. Naj bosta $n \geq 3$ in $r \in \mathbb{N}$. Posplošena ničelna krivulja $S \to \mathbb{C}^n$ razreda \mathcal{C}^r je par $(z, f\theta)$, kjer preslikavi $z \in \mathcal{A}^r(S, \mathbb{C}^n)$ in $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ zadoščata naslednjima pogojema:

- 1. na množici K velja $f\theta = dz = \partial z$;
- 2. za vsako gladko pot α v M, ki parametrizira povezano komponento množice $E = \overline{S \setminus K}$ velja $\alpha^*(f\theta) = \alpha^*(dz) = d(z \circ \alpha)$.

Posplošena ničelna krivulja $(z, f\theta)$ je neravna oziroma polna natanko tedaj, ko je preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ neravna oziroma polna na vsaki relativno odprti podmnožici S.

Prostori neravnih, polnih in posplošenih ničelnih krivulj ustrezajo verigi inkluzij

$$\mathrm{GNC}^r_{full}(S,\mathbb{C}^n) \subset \mathrm{GNC}^r_{nf}(S,\mathbb{C}^n) \subset \mathrm{GNC}^r(S,\mathbb{C}^n).$$

Opomba 4.8. Iz prvega pogoja v definiciji posplošene ničelne krivulje sledi, da je zožitev $z \colon K^{\circ} \to \mathbb{C}^n$ holomorfna ničelna krivulja.

Za povezano dopustno množico S, par $(z, f\theta) \in GNC^r(S, \mathbb{C}^n)$, znano preslikavo f in poljubno točko $p_0 \in S$ posplošeno ničelno krivuljo $z \colon S \to \mathbb{C}^n$ konstruiramo s pomočjo Enneper-Weierstrassove formule

$$z(p) = z(p_0) + \int_{p_0}^{p} f\theta, \quad p \in S.$$
 (4.3)

Velja tudi obrat; preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$, ki zadošča $\int_C f\theta = 0$ za vsako sklenjeno krivuljo C v S, določa posplošeno ničelno krivuljo, dano z Enneper-Weierstrassovo formulo (4.3).

4.2 Periodno dominantni spreji

V tem razdelku bomo definirali pojem periodno dominantnega spreja holomorfnih preslikav v punktirano ničelno kvadriko. Glavni rezultat bo lema, ki opisuje neravne holomorfne preslikave iz dopustne množice v punktirano ničelno kvadriko – izkaže se, da je vsaka taka preslikava jedro periodno dominantnega spreja. Lema je pomembna pri aproksimaciji konformnih minimalnih imerzij. Natančneje, namesto imerzij bomo najprej aproksimirali periodno dominantne spreje in s tem dobili nove, bližnje preslikave z želenimi topološkimi lastnostmi, nato pa zanje uporabili Enneper-Weierstrassovo formulo ter končno dobili bližnje konformne minimalne imerzije.

Definicija 4.9 (Periodna preslikava). Naj bo M povezana odprta Riemannova ploskev in θ fiksna povsod neničelna holomorfna 1-forma na M. Naj bo $\mathcal{C} = \{C_1, \ldots, C_l\}$ družina gladkih orientiranih vloženih lokov in zaprtih Jordanovih krivulj v M ter $C = \bigcup_{i=1}^l C_i$. Družini \mathcal{C} in številu $n \in \mathbb{N}$ priredimo periodno preslikavo

$$\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_l) \colon \mathcal{C}(C, \mathbb{C}^n) \to (\mathbb{C}^n)^l,$$

$$\mathcal{P}_i(f) = \int_{C_i} f\theta, \quad i = 1, \dots, l.$$
(4.4)

Tu je $f \in \mathcal{C}(C, \mathbb{C}^n)$ in $\mathcal{P}_i(f) \in \mathbb{C}^n$.

Lema 4.10. Naj bo M odprta Riemannova ploskev in $S = K \cup E$ njena dopustna podmnožica. Naj bo $C = \{C_1, \ldots, C_l\}$ taka družina gladkih orientiranih Jordanovih krivulj in lokov v S, da je unija $C = \bigcup_{i=1}^{l} C_i$ Rungejeva v S. Naj za neko število $r \in \mathbb{Z}_+$ preslikava $f: S \to \mathbf{A}_*$ pripada razredu A^r . Nadalje predpostavimo, da vsaka krivulja $C_i \in C$ vsebuje netrivialen lok $I_i \subset C_i$, disjunkten $z \cup_{i \neq j} C_j$, preslikava $f: I_i \to \mathbf{A}_*$ pa je neravna.

Potem obstaja odprta okolica $U \subset \mathbb{C}^{ln}$ točke 0 in preslikava $\Phi_f \in \mathcal{A}^r(S \times U, \mathbf{A}_*)$, tako da velja $\Phi_f(\cdot, 0) = f$ in je preslikava

$$\frac{\partial}{\partial t}\Big|_{t=0} \mathcal{P}(\Phi_f(\cdot,t)) \colon (\mathbb{C}^n)^l \to (\mathbb{C}^n)^l \text{ izomorfizem.}$$
(4.5)

Nadalje, za končno podmnožico $P \subset S$ lahko preslikavo Φ_f izberemo tako, da se za $t \in U$ preslikave $\Phi_f(\cdot,t) \colon S \to \mathbf{A}_*$ ujemajo z f v vsaki točki $P \setminus S^{\circ}$, v točkah $P \cap S^{\circ}$ pa se z f ujemajo do danega končnega reda.

Za vsako preslikavo $f_0 \in \mathcal{A}^r(S, \mathbf{A}_*)$, ki zadošča zgornjim predpostavkam, obstaja okolica $\Omega \subset \mathcal{A}^r(S, \mathbf{A}_*)$ in holomorfna preslikava $f \mapsto \Phi_f$, $f \in \Omega$, z zgornjimi lastnostmi.

Definicija 4.11 (Periodno dominantni sprej). Preslikavo Φ_f , ki ustreza Lemi 4.10 imenujemo periodno dominantni sprej preslikav $S \to \mathbf{A}_*$ za družino krivulj \mathcal{C} z jedrom $\Phi_f(\cdot,0) = f$. Lastnosti (4.5) pravimo periodno dominantna lastnost.

Dokaz. Prvi del leme bomo dokazali tako, da bomo konstruirali periodno dominantni sprej. Potrebovali bomo Lemo 4.3, Bishop-Mergelyanov izrek o aproksimaciji 2.23 in pojem toka vektorskega polja. Zaradi enostavnosti postavimo r=0 (za r>0 dokaz poteka analogno).

Po predpostavki je za vse $i \in \{1, \ldots, l\}$ lok $I_i \subset C_i \in \mathcal{C}$ netrivialen, za katerega velja $I_i \cap (\cup_{i \neq j} C_j) = \emptyset$ in je zožitev preslikave $f|_{I_i}$ neravna. Po Lemi 4.3 zato obstajajo točke $p_{i,j} \in I_i$ in taka holomorfna vektorska polja $V_{i,j}$ na \mathbb{C}^n , $j \in \{1, \ldots, n\}$, ki so tangentna na \mathbf{A} , da je $\mathcal{L}in\{V_{i,j}(f(p_{i,j})); j = 1, \ldots, n\} = \mathbb{C}^n$ za vse i.

Za $k=1,\ldots,l$ označimo $t_k=(t_{k,1},\ldots,t_{k,n})\in\mathbb{C}^n$ in $t=(t_1,\ldots,t_l)\in\mathbb{C}^{nl}$. Naj $\Phi_t^{i,j}$ označuje tok vektorskega polja $V_{i,j}$, definiran za majhne t. (Seveda so tokovi holomorfne preslikave.) Okolico $U_0\subset\mathbb{C}^{nl}$ točke 0 izberimo tako, da za vse $t\in U_0$ in $p\in S$ predpis

$$(p,t) \mapsto \Phi_{t_{1,1}}^{1,1} \circ \cdots \circ \Phi_{t_{1,n}}^{1,n} \circ \Phi_{t_{2,1}}^{2,1} \circ \cdots \circ \Phi_{t_{l,n}}^{l,n}(f(p))$$
 (4.6)

podaja dobro definirano preslikavo $S \times U_0 \to \mathbf{A}_*$. Sedaj za vse pare (i, j) izberimo gladke preslikave $g_{i,j} \colon C \to \mathbb{C}$, pri čemer je nosilec od $g_{i,j}$ vsebovan v majhnem delu loka I_i okrog točke $p_{i,j} \in I_i$. Modificirana preslikava (4.6), $\Phi \colon C \times U_1 \to \mathbf{A}_*$,

$$\Phi(p,t) = \Phi_{g_{1,1}(p)t_{1,1}}^{1,1} \circ \cdots \circ \Phi_{g_{1,n}(p)t_{1,n}}^{1,n} \circ \Phi_{g_{2,1}(p)t_{2,1}}^{2,1} \circ \cdots \circ \Phi_{g_{l,n}(p)t_{l,n}}^{l,n}(f(p)), \qquad (4.7)$$

kjer je $U_1 \subset \mathbb{C}^{nl}$ primerno majhna okolica točke 0, je tedaj dobro definirana, za vse $p \in C$ pa je preslikava $\Phi(p,\cdot) \colon U_1 \to \mathbf{A}_*$ holomorfna. Po lastnostih toka vektorskega polja sledi še $\Phi(p,0) = f(p)$ za vse $p \in C$ in

$$\left. \frac{\partial \Phi(p,t)}{\partial t_{m,j}} \right|_{t=0} = g_{m,j}(p) \cdot V_{m,j}(f(p)). \tag{4.8}$$

Naj bo $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_l)$ periodna preslikava, prirejena družini krivulj \mathcal{C} . Z uporabo enakosti (4.8) dobimo za vse indekse $i, m \in \{1, \dots, l\}$ in $j \in \{1, \dots, n\}$

$$\frac{\partial \mathcal{P}_i(\Phi(\cdot,t))}{\partial t_{m,j}}\Big|_{t=0} = \frac{\partial}{\partial t_{m,j}}\Big|_{t=0} \int_{C_i} \Phi(\cdot,t) \cdot \theta = \int_{C_i} g_{m,j} \cdot (V_{m,j} \circ f) \cdot \theta \in \mathbb{C}^n.$$
 (4.9)

Matrika diferencialov (4.5) iz leme je sestavljena iz blokov velikosti $n \times n$, ki pripadajo indeksom $i, m \in \{1, ..., l\}$. Z ustrezno izbiro preslikav $g_{i,j}$, opisanih zgoraj, lahko dosežemo, da je matrika bločno diagonalna z obrnljivimi bloki na diagonali. (To pomeni, da so vektorji (4.9) blizu vektorjem $V_{i,j}(f(p_{i,j}))$ za i = m, medtem ko so za $i \neq m$ vektorji (4.9) ničelni.) S tem postane celotna matrika obrnljiva.

V naslednjem koraku bomo modificirali še preslikavo Φ , kar nam bo dalo iskani periodno dominantni sprej. Preslikave $g_{i,j}$ so definirane na množici C, ki je po predpostavki Rungejeva v S. Bishop-Mergelyanov izrek o aproksimaciji pove, da vsako funkcijo $g_{i,j}$ lahko enakomerno na C aproksimiramo s holomorfnimi funkcijami $\tilde{g}_{i,j}$ v okolici S.

Definirajmo preslikavo $\Phi_f \colon S \times U \to \mathbf{A}_*$ tako, da v predpisu (4.7) nadomestimo $g_{i,j}$ z novimi preslikavami $\tilde{g}_{i,j}$ in je $U \subset U_1 \subset \mathbb{C}^{nl}$ ustrezno majhna okolica točke $0 \in \mathbb{C}^{nl}$. Po konstrukciji takšna preslikava Φ_f zadošča sklepom leme, zato je periodno dominantni sprej, ki smo ga iskali.

Sedaj poglejmo še interpolacijski del leme. Naj bo $P \subset S$ končna podmnožica in $q \in \mathbb{N}$ izbrano fiksno število. Vzemimo holomorfno funkcijo $h \colon S \to \mathbb{C}$, ki ima ničle natanko v točkah množice P, le-te pa so reda q+1. Kot prej obstajajo točke $p_{i,j} \in I_i \setminus P$, holomorfna vektorska polja $V_{i,j} \in \mathbb{C}^n$ ter gladke preslikave $g_{i,j}$ s kompaktnimi nosilci okrog točk $p_{i,j}$. V predpisu (4.7) najprej nadomestimo $g_{i,j}$ s preslikavami $h \cdot g_{i,j}$, da dobimo preslikavo Φ , ki zadošča analogu k (4.9). Nato preslikave $g_{i,j}$ aproksimiramo z $\tilde{g}_{i,j} \in \mathcal{O}(S)$ ter v predpis (4.7) vstavimo produkte $h \cdot \tilde{g}_{i,j}$ – nova preslikava Φ_f definira periodno dominantni sprej, ki dodatno zadošča interpolacijskim zahtevam. Res, preslikava $(p,t) \mapsto \Phi_{h(p)\tilde{g}_{m,j}(p)t}^{m,j}(f(p))$ se z f ujema v točkah množice P, v točkah $p \in P \cap S^\circ$ pa se ujemata do reda q. (To vidimo tako, da tok vektorskega polja zapišemo s Taylorjevim razvojem do 2. reda in upoštevamo stopnje ničel funkcije h v točkah $p \in P$.) Zato enako velja tudi za njihov kompozitum.

Za zadnji del leme opazimo naslednje: če je preslikava $f_0 \in \mathcal{A}^r(S, \mathbf{A}_*)$ dana, potem lahko za vse preslikave f iz okolice $\Omega \subset \mathcal{A}^r(S, \mathbf{A}_*)$ za f_0 pri konstrukciji periodno dominantnih sprejev uporabimo iste aproksimacijske preslikave $\tilde{g}_{i,j}$.

Opomba 4.12. Če v zgornjem dokazu izberemo polna holomorfna vektorska polja $V_{i,j} \in \mathbb{C}^n$, namesto lokalnega konstruiramo globalno definiran periodno dominantni sprej $\Phi_f \colon S \times \mathbb{C}^n \to \mathbf{A}_*$.

4.3 Aproksimacija in interpolacija preslikav v punktirano ničelno kvadriko

Prvi rezultat o aproksimaciji in interpolaciji je Lema 4.16, ki opisuje preslikave iz povezane dopustne podmnožice odprte Riemannove ploskve v punktirano ničelno kvadriko $\mathbf{A}_* \subset \mathbb{C}^n$. V dokazu leme bomo potrebovali pojem Oka mnogoterosti, katerega definicija sledi, z lastnostjo povezanih dopustnih množic, ki premorejo končno Rungejevo bazo homologije, pa bomo lahko uporabili rezultat prejšnjega razdelka o periodno dominantih sprejih (Lema 4.10). Za iskanje bližnjih preslikav tistih, ki nastopajo v periodno dominantnem spreju, se bomo sklicali na različice Izrekov 2.21, 2.23 in 2.24, tokrat za preslikave v (Oka) mnogoterosti, ter preslikave, definirane na dopustnih množicah.

Definicija 4.13 (Oka mnogoterost). Naj bo X kompleksna mnogoterost in $n \in \mathbb{N}$. Če za poljubno kompaktno konveksno množico $K \subset \mathbb{C}^n$ vsako holomorfno preslikavo $f \colon U \to X$, kjer je U okolica K, lahko aproksimiramo enakomerno na K s celimi preslikavami $F \colon \mathbb{C}^n \to X$, potem mnogoterosti X pravimo Oka mnogoterost.

Primer 4.14 (\mathbf{A}_* je Oka mnogoterost). Naj bo $z=(z_1,\ldots,z_n)\in\mathbb{C}^n$ in $n\geq 2$. Tedaj homogen kvadratni polinom $p(z)=z_1^2+\cdots+z_n^2$ določa ničelno kvadriko $\mathbf{A}=\{z;\ p(z)=0\}\subset\mathbb{C}^n$. Za indekse $1\leq i\neq j\leq n$ definirajmo holomorfna vektorska polja na $\mathbf{A}_*=\mathbf{A}\setminus\{0\}$ s predpisi

$$V_{ij} = z_i \frac{\partial}{\partial z_i} - z_j \frac{\partial}{\partial z_i}.$$

Očitno so vektorska polja \mathbb{C} -linearna in polna, tangentna na punktirano ničelno kvadriko \mathbf{A}_* in $\mathcal{L}in\{V_{ij}(x); x \in \mathbf{A}_*\} = T_x\mathbf{A}_*$. Po definiciji je zato kompleksna mnogoterost \mathbf{A}_* fleksibilna mnogoterost, kar pomeni, da je tudi Oka mnogoterost.

Naslednja lema, ki jo navajamo brez dokaza, trdi, da ima povezana dopustna množica posebno bazo homologije. Ideja dokaza, to je konstrukcija Jordanovih krivulj, ki tvorijo homološko bazo, bo za nas pomembna v nadaljevanju. Natančneje, pri aproksimaciji in interpolaciji minimalnih ploskev bomo interpolacijskim pogojem med drugim zadostili s kontroliranjem integralov po teh krivuljah.

Lema 4.15 (Rungejeva baza homologije povezane dopustne množice). Naj bo S povezana dopustna množica. Obstaja baza homologije $C = \{C_1, \ldots, C_l\}$ za S, sestavljena iz takih zaprtih odsekoma gladkih Jordanovih krivulj v S, da je unija $C = \bigcup_{i=1}^{l} C_i$ povezana in Rungejeva v vsaki regularni okolici S_{ε} množice S, vsaka krivulja C_i pa vsebuje netrivialen lok I_i , za katerega je $I_i \cap (\bigcup_{j \neq i} C_j) = \emptyset$. Prva homološka grupa povezane dopustne množice S je končno generirana: $H_1(S, \mathbb{Z}) \cong \mathbb{Z}^l$.

Za $\varepsilon > 0$ je regularna okolica dopustne množice $S \subset M$ enaka

$$S_{\varepsilon} = \{ x \in M; \ d(x, S) < \varepsilon \}. \tag{4.10}$$

Množica S_{ε} je odprta okolica za S, slednja nima lukenj v S_{ε} , zato je S Rungejeva podmnožica svoje regularne okolice.

Sedaj imamo pripravljena vsa orodja za razumevanje aproksimacije in interpolacije preslikav v punktirano ničelno kvadriko.

Lema 4.16. Naj bo M povezana odprta Riemannova ploskev in $S = K \cup E$ njena Rungejeva dopustna podmnožica. Izberimo tako družino gladkih orientiranih Jordanovih krivulj in lokov v S, $C = \{C_1, \ldots, C_l\}$, da je unija $C = \bigcup_{i=1}^l C_i$ Rungejeva v M, vsaka krivulja C_i pa vsebuje netrivialen lok I_i , za katerega je $I_i \cap (\bigcup_{j \neq i} C_j) = \emptyset$. Naj bo \mathcal{P} periodno dominantni sprej, ki pripada družini krivulj C, $A = \{a_1, \ldots, a_m\} \subset S$ končna množica točk in $r \geq 1$. Tedaj lahko vsako preslikavo $f \in \mathcal{A}^r(S, \mathbf{A}_*)$ aproksimiramo v $C^r(S)$ s polnimi holomorfnimi preslikavami $F \in \mathcal{O}(M, \mathbf{A}_*)$, pri čemer velja naslednje:

- 1. $\mathcal{P}(F) = \mathcal{P}(f)$;
- 2. preslikavi F in f se ujemata v točkah množice A, v točkah množice $A \cap S^{\circ}$ pa se ujemata do danega končnega reda.

Dokaz. Lemo bomo dokazali v dveh korakih. Najprej bomo $f \in \mathcal{A}^r(S, \mathbf{A}_*)$ aproksimirali in interpolirali s polno preslikavo $g \in \mathcal{A}^r(S, \mathbf{A}_*)$, za katero je $\mathcal{P}(f) = \mathcal{P}(g)$. V drugem delu bomo s pomočjo Leme 4.10 konstruirali periodno dominantni sprej preslikav iz množice $\mathcal{A}^r(S, \mathbf{A}_*)$ z jedrom g. Nato bomo z izrekoma Mergelyana in Rungeja o aproksimaciji in interpolaciji preslikav iz odprtih Riemannovih ploskev v \mathbf{A}_* periodno dominantni sprej aproksimirali in interpolirali s sprejem iz $\mathcal{O}(M, \mathbf{A}_*)$, ki nam bo dal preslikavo $F \in \mathcal{O}(M, \mathbf{A}_*)$, ustrezno zaključkom leme.

1. korak: Naj bo S = K povezana kompaktna množica. (Za splošnejšo dopustno množico $S = K \cup E$ je korak enak, le da ga ponovimo na vsaki povezani komponenti K, na E pa polno preslikavo dobimo z manjšo gladko deformacijo preslikave f.) Predpostavimo, da f ni polna. Sicer nadaljujemo z drugim korakom. Označimo $\Sigma(f) = \mathcal{L}in(f(K)) \subset \mathbb{C}^n$, ki je po predpostavki pravi podprostor v \mathbb{C}^n . Izberimo točke $x_1, \ldots, x_j \in K \setminus A$ tako, da je $\Sigma(f) = \mathcal{L}in\{f(x_1), \ldots, f(x_j)\}$. Ker je dim $\Sigma(f) \leq n-1$, obstaja holomorfno vektorsko polje V na \mathbb{C}^n tangentno na A, za katerega velja $V(f(x_0)) \notin \Sigma(f)$ za neko točko $x_0 \in K \setminus (A \cup \{x_1, \ldots, x_j\})$.

Naj bo $t \mapsto \Phi_t(z)$ tok vektorskega polja V in $s \in \mathbb{N}$. Izberimo holomorfno funkcijo $h \colon K \to \mathbb{C}$ z lastnostmi:

- $h(x_1) = \cdots = h(x_i) = 0$;
- h ima ničle reda s v točkah množice A;
- $h(x_0) = 1$.

Za poljubno funkcijo $\eta \in \mathcal{A}^r(K)$, ki je blizu ničelne funkcije, definirajmo preslikavo $\Psi(\eta) \in \mathcal{A}^r(K, \mathbf{A}_*)$ s predpisom

$$\Psi(\eta)(x) = \Phi_{\eta(x)h(x)}f(x), \quad x \in K. \tag{4.11}$$

Obstaja taka nekonstantna funkcija $\xi \in \mathcal{A}^r(K)$, ki je poljubno blizu ničelne funkcije, da je

$$\mathcal{P}(\Psi(\xi)) = \mathcal{P}(\Psi(0)) = \mathcal{P}(f).$$

Označimo $g = \Psi(\xi)$. Velja naslednje:

- $g(x_i) = \Psi(\xi)(x_i) = \Phi_{\xi(x_i)h(x_i)}f(x_i) = f(x_i)$ za $i \in \{1, \dots, j\}$, saj je $h(x_i) = 0$. Sledi $\Sigma(f) \subset \Sigma(g)$.
- Produkt ξh je nekonstanten na kompaktu K, zato lahko dosežemo $\xi(x_0) \neq 0$ in $h(x_0) \approx 1$. Potem velja $g(x_0) = \Psi(\xi)(x_0) = \Phi_{\xi(x_0)h(x_0)}f(x_0) \approx f(x_0) + \xi(x_0)h(x_0)V(f(x_0)) \notin \Sigma(f)$ po izboru V in x_0 .
- Ker ima h ničle reda s v točkah množice A, s podobnim razvojem kot v prejšnji točki vidimo, da je $g|_A = f|_A$, v točkah $A \cap S^{\circ}$ pa se funkciji ujemata do reda s.

Induktivno nadaljujemo postopek tako, da višamo razsežnost prostora $\Sigma(f)$. Ko je dim $\Sigma(f) = n - 1$, dobimo polno preslikavo $g \in \mathcal{A}^r(S, \mathbf{A}_*)$, ki aproksimira in interpolira f ter zadošča pogoju $\mathcal{P}(g) = \mathcal{P}(f)$.

2. korak: Novo preslikavo g iz 1. koraka preimenujmo v f. Ta je polna in zato neravna. Lema 4.15 pove, da povezana dopustna množica S premore končno bazo homologije, sestavljeno iz posebnih Jordanovih krivulj. Skupaj z Lemo 4.10 in Opombo 4.12 tako dobimo periodno dominantni sprej $\Phi_f \colon S \times \mathbb{C}^N \to \mathbf{A}_*$ z jedrom f.

Po predpostavki je S Rungejeva podmnožica M, iz Primera 4.14 pa vemo, da je kvadrika \mathbf{A}_* Oka mnogoterost. Izreka Rungeja in Mergelyana o aproksimaciji in interpolaciji preslikav v Oka mnogoterosti zagotavljata obstoj holomorfne preslikave $\tilde{f}: M \to \mathbf{A}_*$, ki v $\mathcal{C}^r(S)$ aproksimira preslikavo f, \tilde{f} se z f ujema v točkah množice A, v točkah preseka $A \cap S^\circ$ pa se ujemata do danega končnega reda.

Podobno kot v dokazu Leme 4.10 lahko po Mergelyanovem izreku o aproksimaciji na dopustnih množicah funkcije $g_{i,j} \in \mathcal{A}^r(S)$ iz predpisa (4.7) v $\mathcal{C}^r(S)$ aproksimiramo s funkcijami $\tilde{g}_{i,j} \in \mathcal{O}(M)$, tako da se $g_{i,j}$ z $\tilde{g}_{i,j}$ ujemajo na A in do danega končnega reda na $A \cap S^{\circ}$.

Preslikava $\Phi_{\tilde{f}} \colon M \times \mathbb{C}^N \to \mathbf{A}_*,$ definirana s predpisom

$$\Phi_{\tilde{f}}(p,t) = \Phi_{\tilde{g}_{1,1}(p)t_{1,1}}^{1,1} \circ \cdots \circ \Phi_{\tilde{g}_{l,n}(p)t_{l,n}}^{l,n}(\tilde{f}(p)), \tag{4.12}$$

določa periodno dominantni sprej z jedrom \tilde{f} , ki aproksimira Φ_f na $S \times U$, kjer je $U \subset \mathbb{C}^N$ okolica izhodišča. Sprej Φ_f zadošča periodno dominantni lastnosti, zato izrek o implicitni preslikavi zagotavlja obstoj točke $t_0 \in \tilde{U} \subset U$, za katero preslikava $F = \Phi_{\tilde{f}}(\cdot, t_0) \in \mathcal{O}(M, \mathbf{A}_*)$ po konstrukciji izpolnjuje pogoj $\mathcal{P}(F) = \mathcal{P}(f)$, je polna ter interpolira f na množici A.

4.4 Glavni izrek

4.4.1 Nekritični primer

Trditev 4.17. Naj bo M odprta Riemannova ploskev in θ povsod neničelna holomorfna 1-forma na M. Predpostavimo, da je S povezana dopustna množica, ki je Rungejeva v M, ter $A = \{a_1, \ldots, a_k\} \subset S$ končna množica točk. Naj bosta $r, s \in \mathbb{N}$. Tedaj velja naslednje:

- 1. Vsako posplošeno konformno minimalno imerzijo $(x, f\theta) \in GCMI^r(S, \mathbb{R}^n)$ lahko v $C^r(S)$ aproksimiramo s konformnimi minimalnimi imerzijami $X: M \to \mathbb{R}^n$, za katere je $Flux_X = Flux_x$.
- 2. Vsako posplošeno ničelno krivuljo $(z, f\theta) \in GNC^r(S, \mathbb{C}^n)$ lahko v $\mathcal{C}^r(S)$ aproksimiramo s holomorfnimi ničelnimi krivuljami $Z: M \to \mathbb{C}^n$.

Dodatno, preslikave X oz. Z lahko izberemo tako, da se s preslikavama x oz. z ujemajo v točkah množice A ter do danega končnega reda v točkah iz množice $A \cap S^{\circ}$.

Dokaz. Dokaz trditve je sestavljen iz dveh delov. Prvi del je algoritmičen; v njem bomo konstruirali družino krivulj, katere unija je povezana Rungejeva množica in vsebuje bazo homologije za S, na podoben način, kot poteka dokaz Leme 4.15. V drugem delu bomo s pomočjo Leme 4.16 našli konformno minimalno imerzijo oz. holomorfno ničelno krivuljo, ki ustrezata zaključkom trditve.

Pišimo $S = K \cup E$ in naj bo $K = \bigcup_{i=1}^m K_i$, kjer so K_i povezane komponente K. Rob vsake komponente K_i je unija končno mnogo zaprtih Jordanovih krivulj: $bK_i = \bigcup_{j=1}^{m_i} \Gamma_{ij}$ za $m_i \geq 1$. Ker je S povezana, je $E = \bigcup_{i=1}^n E_i$, in so E_i gladke paroma disjunktne krivulje v S.

Naj bo \mathcal{C} Rungejeva baza homologije za S, konstruirana po Lemi 4.15. Ker je S po predpostavki Rungejeva podmnožica M, je družina \mathcal{C} tudi baza homologije za M.

Množici točk A iz predpostavke trditve dodajmo naslednje elemente:

- krajišča povezanih komponent $E_i \subset E = \overline{S \setminus K}$;
- točke $q_i \in K_i^{\circ}$, imenovana *vozlišča*;
- točke $a_{ij} \in \Gamma_{ij}$, pri čemer točki a_{ij} in q_i povežemo s takim gladkim vloženim lokom $A_{ij} \subset K_i^{\circ} \cup \{a_{ij}\}$, da se nastali loki med seboj ter z elementi homološke baze \mathcal{C} sekajo kvečjemu v točki q_i . (Opomnimo, da homološko bazo povezane komponente K_i po konstrukciji sestavlja končno mnogo Jordanovih krivulj v K_i° , ki se sekajo le v vozlišču q_i , njihova unija pa je Rungejeva v K_i .)

Sedaj konstruirajmo družino lokov in zaprtih krivul
j $\tilde{\mathcal{C}}$ v Sv treh korakih.

1. Če krivulja $C \in \mathcal{C}$ ne vsebuje elementov množice A razen točke q_1 , potem krivuljo C dodamo v $\tilde{\mathcal{C}}$. Sicer obstaja končno točk iz A, ki ležijo na krivulji C. Slednjo razdelimo na tako končno unijo lokov, da so točke iz preseka $A \cap C$ skupna krajišča dveh zaporednih lokov in vse tako nastale loke dodamo v $\tilde{\mathcal{C}}$.

- 2. Če obstaja krivulja $E_k \subset E$, ki ni vsebovana v nobeni izmed krivulj iz prejšnje točke, potem naredimo naslednje: krajišče od E_k , ki je element K_i za nek i, povežemo z vozliščem q_i tako, da gremo najprej po bK_i do ustrezne točke a_{ij} in nato po loku A_{ij} do q_i . To ponovimo za obe vozlišči od E_k in novonastalo krivuljo (ki povezuje dve morda isti vozlišči) razdelimo na končno zaporedje lokov s krajišči v točkah iz A (kot v prejšnjem primeru). Vse te loke dodamo v $\tilde{\mathcal{C}}$.
- 3. Označimo $A' = \{a \in A; a \text{ pripada vsaj eni krivulji iz } \tilde{\mathcal{C}}\}$. Vsaka točka njenega komplementa, tj. $a \in A \setminus A'$, pripada neki komponenti $K_i \subset K$. Opazujmo sedaj take točke. Izberimo lok $\Lambda_a \subset K_i$, ki povezuje točko a z vozliščem q_i in se ne dotika niti nobene krivulje iz $\tilde{\mathcal{C}}$ niti loka $\Lambda_{a'}$ za $a \neq a' \in A \setminus A'$, razen v točki q_i . (Tak lok obstaja, saj je unija krivulj iz $\tilde{\mathcal{C}}$, konstruirane do sedaj, Rungejeva v S.) Vse nastale loke Λ_a , $a \in A \setminus A'$ dodamo v $\tilde{\mathcal{C}}$.

Po konstrukciji je unija elementov družine $\tilde{\mathcal{C}}$ povezana Rungejeva množica v S. Hkrati vsaka krivulja iz te družine vsebuje netrivialen lok, ki ni vsebovan v nobeni drugi krivulji iz družine, ter $\tilde{\mathcal{C}}$ vsebuje bazo homologije za S, torej tudi za M. \square

4.4.2 Glavni izrek

Izrek 4.18. Naj bo M odprta Riemannova ploskev, Θ povsod neničelna holomorfna 1-forma na M, $n \geq 3$ in $r \geq 1$. Naj bo S dopustna Rungejeva množicca v M in Λ zaprta diskretna podmnožica M. Naj bo $x \colon S \to \mathbb{R}^n$ posplošena konformna minimalna imerzija razreda $C^r(S,\mathbb{R}^n)$, ki je konformna minimalna imerzija v okolici vsake točke iz Λ .

Za izbrane $\varepsilon > 0$, preslikavo $k \colon \Lambda \to \mathbb{N}$ in homomorfizem grup $\mathfrak{p} \colon H_1(M, \mathbb{Z}) \to \mathbb{R}^n$, $\mathfrak{p}|_{H_1(S,\mathbb{Z})} = \operatorname{Flux}_x$, obstaja konformna minimalna imerzija $\tilde{x} \colon M \to \mathbb{R}^n$, za katero velja:

- 1. $||\tilde{x} x||_{\mathcal{C}^r(S)} < \varepsilon;$
- 2. Razlika $\tilde{x} x$ je ničelna do reda k(p) v vsaki točki $p \in \Lambda$;
- 3. $Flux_{\tilde{x}} = \mathfrak{p} \ na \ H_1(M, \mathbb{Z});$
- 4. Če je $n \geq 5$ in je $x \colon \Lambda \to \mathbb{R}^n$ injektivna preslikava, potem je \tilde{x} injektivna imerzija;
- 5. Če je n=4 in ima x enostavne dvojne točke na množici Λ , potem je \tilde{x} imerzija z enostavnimi dvojnimi točkami na Λ .