Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по практическим работам

Дисциплина: Теория вероятностей и математическая статистика

Выполнил студент гр. 3530901/10001	(подпись)	Д.Л. Симоновский
Руководитель	(подпись)	К.В. Никитин

"<u>02</u>" <u>май </u>2023 г.

Санкт-Петербург 2023

Оглавление

1.	Задания	
2.	Решение	
– - а.	Задача 1.7	
b.	Задача 2.6	
c.	Задача 3.22	
d.	Задача 4.23	
e.	Задача 5.3	
f.	Задача 6.14	6
g.	Задача 7.16	7
3.	Моделирование	9
a.	Задача 2.6	9
b.	Задача 3.22	10
c.	Задача 4.23	11
d.	Задача 5.3	13
e.	Задача 6.14	14
f.	Задача 7.16	15
1	Ссыпки	10

1. Задания

Задания для теоретического решения: 1.7, 2.6, 3.22, 4.23, 5.3, 6.14, 7.16, 8.40, 9.20, 10.7, 11.16, 12.17, 13.1, 14.4, 15.6, 16.6, 17.8, 18.10, 19.4, 20.34, 21.10, 22.17, 23.12, 35.19, 36.25, 37.5, 38.17, 39.30.

Задания для моделирования: 2.6, 3.22, 4.23, <mark>5.3, 6.14, 7.16, 8.40, 9.20</mark>, 10.7, 11.16, 12.17, 13.1, 14.4, 15.6, 17.8, 19.4, 21.10, 22.17.

2. Решение

а. Задача 1.7 THO 139 Pelles Ogno as unesusuxca бракованных argemi elletile I um 2 um 3 uc Oznaraem, zmo Онти ba Ump Ожагает Dobumue uno OZKaralm. Sparo Bannoce 439 esus DIKARALMI Spanobarnoux Umbem: DOGNOBA HHERIX MIDO Hem.

b. Задача 2.6 Dano: 20 kgn З монеты 3 Kon. Fuorem bepemea workernor, вторая Uselm Hamman 20 веродтность, emo u nepeas 11 prema Ullem HOMELHAY 20 Perrene. Jalobuar 60009 mx0cm6 UZBRERRIUR REPBORT nou your suro 20 KON Woklemou bmapag Монета 20 non: P(20+20) (1) P(3+20)+P(20+20) EDOG MHO CMG, IMO ode HOMUKARON whemer kon: (20-20) = 10 90 beposimuacióno, umo CHARala golmakym Hamkai nomou 20 11090 ma bude 90 27

с. Задача 3.22

1 1	дача 3.22 Дловие
	госкость разделена парамельными прамыци, отстоящими
09/	la om apploen Ha pacimograce to inpegetions begognicoms moro
Kak	10 naygary Exouvernax na niocnocimo una guinoù l (lel) repecent
Pe	werever
1	Проведем через изито шило прашую в, параменния
	горизонтанной прямой.
2.	Обозначим бинастичь к ней парамельную шкию
	cepe3 l2
3	Пусть х-дасстачние от центра илы до бизнайшей
	праной
Ü	у-угол метру прямой в, и той састью шин, которах
	Sunce K &
	Outract in 22
	lh -
	l esines
<i>r</i> :	Chiasana haringania
5.	Область возможных значения х и 4
	$X \in [0, \frac{L}{2}]$ $Y \in [0, M]$
	Bu boznamener znarenna.
	$\frac{1}{2}$
6.	Odiacono Esarorgianoux grareneia
	Una repecerer normyo, en pacincorrire om normoù l, go mas union
	Sue mai mero K la Double X: lsing x en
7	110111 a 06 mon or a come: 6 z (lsing dy = 2 cos v = 2 (1 - (-1)) = 1
9	Mousage mon obsains: $S = \int \frac{l\sin \varphi}{2} d\varphi = \frac{1}{2} \cos \varphi = \frac{1}{2} \left(1 - (-1)\right) = l$ Uchosca & beyon muccine $P(A) = \frac{S}{2} = \frac{2l}{\pi L}$
0.	when some sepond of the sepond

d. Задача 4.23

4.23 Mullius	
O somethe us copona maise decembe between bumpounce	nagapt
на три билета Определить:	
а верогткость получения хога бы очного изетого выперыша на	
б) сколько необходино приобрести билегов, тобы полушть верохіность ромуне	us .
ценного выпроша была не шелее 0.5.	
Plucence	
Paristy rong roses Montager Dance Theman	211 100/11/10
Peuven ucrossages against amounterecon raimon	eoc cecicias;
W(A): m m- war northerwite n-wice windinance	
2000 20002/1000/39000/ 39993/39000/	N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/4
	N. Dr.
$0) = \frac{3997}{n} = \frac{39997}{9000} = \frac{39997}{210000} = \frac{39997}{10000} = \frac{39997}{100000} = \frac{39997}{100000} = \frac{39997}{100000} = \frac{39997}{10000000} = \frac{39997}{1000000} = \frac{39997}{10000000} = \frac{39997}{10000000000} = \frac{39997}{1000000000000000000000000000000000000$. (452)
- Copeo	
=> N = 8252	

f. Задача 6.14

6.14 Dano
В яньше 15 теншескогх мягей, 9 из них новые.
Для первой игры наугад берутся три мяга.
После игры они возврощаютья в андик
Для г игры наугад берутся 3 илга.
Maumu:
Вероятность, гто все и ш , взятые для 2 игры новые.
В коробке: 15 магей: 6 старох, 9 новых
lanomegu:
Ні = Дія ! игра Знов мяга. Станет 9 старых и в новых мягей
Hz = Des 1 urps 2 noboex u 1 cmap us. Emanem 8 cmapeex u 7 noboex use.
H3= D19 1 urper 1 robber u2 cmap usz. marem 7 cmap u 8 rob ure.
Ну = Для 1 шры 3 старых ияг. Станет в стар и 9 нов. ияг.
Benoamnooms runomes.
$P(H_1)^2 \frac{C_9^3}{C_{15}^3} = \frac{84}{455}$ $P(H_2)^2 \frac{C_9^2}{C_{15}^3} = \frac{216}{455}$
$P(H_3) = \frac{C_9^{15}}{C_{15}^3} = \frac{135}{455} \qquad P(H_4) = \frac{C_6^3}{C_{15}^3} = \frac{20}{455}$
A-019 2 490H 3 40688X 4919
P(A(H)) = C3 = 20 P(A/H2) = C3 = 455
P(A) H3) = C3 = 256 P(A) H4) = C3 = 284 255
вероятность А:
P=P(AIH)P(H,)+P(AIH2)P(H2)+P(AIH3)P(H3)+P(AIH4)P(H4)=0.089
Ombem 0.089

g. Задача 7.16

7.16 Dano:
п-студентов
ny (K=1,2,3) - Ha K-on rogy
Haunce
Среди надрагу выбранных 2-х студентов
ogien yriema gousaire omoporo.
один учита дольше второго. Налова вероятность, гто этот студент ушта
3 209.
Peurence
$P(H_1) = \frac{n_2}{n-1} - cmygen, romopen yource gouere, yource 2 rog.$
D(11) - n3 - consequent vamanus 112 mas 2000 18 mas 2000
$P(H_2) = \frac{n_3}{n-1} - cmygenm, которий учитая даньше учития 3 год.$
A-ogun uz emigenmol yeurna gaiseur gpyroro
1 (H H1)= n-1-(1111) Emyg Menblue 2, Kom. Guernex 2 209 Redox.
выбирать среди 1 года
11/10/11. 12:00
boloupamo colle 1 um 2 roga.
$P(H_1A)_2$ $P(A1H_2) \cdot P(H_2)$ $\frac{n_1 \cdot n_2}{n_1 \cdot n_2} \cdot \frac{n_3}{n_1 \cdot n_2}$
$P(A1H_1) \cdot P(H_1) + P(A1H_2) \cdot P(H_2) = \frac{n_1}{n_1} \cdot \frac{n_2}{n_2} + \frac{n_1 + n_2}{n_3} = \frac{n_3}{n_3}$
$P(H_{1} H_{2}) = \frac{n}{n-1} - 2mo\delta + cmyg \text{ were } 2, \text{ nomop } y_{2} = 3 \text{ reg neo} \delta x$ $b \in \text{dupam6} cpegu + um + 2 \text{ rega}$ $P(H_{1} H_{2}) = \frac{P(H_{1} H_{2}) \cdot P(H_{2})}{P(H_{1} H_{1}) \cdot P(H_{1})} = \frac{n_{1} \cdot n_{2}}{n-1} = \frac{n_{2}}{n-1}$ $P(H_{1} H_{1}) \cdot P(H_{1}) + P(H_{1} H_{2}) \cdot P(H_{2}) = \frac{n_{1} \cdot n_{2}}{n-1} = \frac{n_{1} \cdot n_{2}}{n-1} = \frac{n_{3}}{n-1}$
$z = \frac{(n_1 + n_2) \cdot n_3}{(n_1 + n_2) \cdot n_3} - \frac{bepormnocm6}{cmygennob} (ogun ug komapoux yn gaisaue) ogun yunnes mpernut rog.$
yumes mpermit rog.
Ombem: $\frac{(n_1+n_2)\cdot n_3}{n_1\cdot n_2+(n_1+n_2)n_3}$

h. Задача 8.40

8.40	Дако	
	GUIZUN: 20 Servix 2 reprosix	
	Haumu	
	Mas uzbieraemes n paz no 1 u bozep.	
	Onpegenume muss ruero n , 2mo 8 bep.	герного
	иеара . > 0.5	
	Penienie. In (1-P)	
	900001634 encs coopiusion: Uz En(1-6)	, 29 e
	1 = 0.5 - mped. wanc = = 1 => n = 7	27=>n=8
	p = 12 - Wanc. Represso Mapa	
	Umbem: 8	

і. Задача 9.20

3. Моделирование

а. Задача 2.6

Условие:

В кошельке лежат три монеты достоинством по 20 коп. и семь монет по 3 коп. Наудачу берется одна монета, а затем извлекается вторая монета, оказавшаяся монетой в 20 коп. Определить вероятность того, что и первая извлеченная монета имеет достоинство в 20 коп.

Решение:

Создадим функцию для получения количества 20-ок и 3-ек:

```
def get_input_data():
    count_20 = 3
    count_3 = 7
    return count_20, count_3
```

Далее необходимо сделать функцию, которая будет возвращать результат броска, принимая на вход общее количество монет, количество 20-ок и 3-ек:

Также реализуем функцию одной итерации вытягивания двух монет, если вторая монета не 20-ка, вернем None, иначе результат первого броска:

```
def one_iteration(count_20, count_3):
    """
    Oдна итерация вытягивания двух монет
    """
    first_coin = get_random_coin(count_20, count_3)
    if first_coin == 20:
        count_20 -= 1
    else:
        count_3 -= 1
    second_coin = get_random_coin(count_20, count_3)
    if second_coin != 20:
        return
    return 1 if first_coin == 20 else 0
```

Ну и последнее – основной цикл программы на 1 000 000 итераций одиночной программы:

```
def main():
   Основной цикл, запускающий одну итерацию несколько раз
    count_20, count_3 = get_input_data()
   iteration_counter = 0
   event counter = 0
    while iteration counter < 1 000 000:
        iteration = one_iteration(count_20, count_3)
        if iteration is None:
            continue
        event_counter += iteration
        iteration counter += 1
    print(f'Количество 20-ок: {count_20}, количество 3-ек: {count_3}\n'
          f'Количество попыток, когда второй раз выпала 20: {iteration_counter}\n'
          f'Количество выпадений двух 20 подряд: {event_counter}\n'
          f'Итоговая вероятность: {event_counter / iteration_counter}\n'
          f'Ожидаемая вероятность: {(count_20 - 1) / (count_20 + count_3 - 1)}')
if __name__ == '__main_ ':
   main()
```

Выполним запуск программы и посмотрим на результат:

```
Количество 20-ок: 3, количество 3-ек: 7
Количество попыток, когда второй раз выпала 20: 1000000
Количество выпадений двух 20 подряд: 223004
Итоговая вероятность: 0.223004
Ожидаемая вероятность: 0.2222222222222
```

Таким образом результат моделирования близок к результатам моделирования.

b. Задача 3.22

Условие:

Плоскость разграфлена параллельными прямыми, отстоящими одна от другой на расстояние L. Определить вероятность того, что наудачу брошенная на плоскость игла длинной l (l<L) пересечет какую-либо прямую (задача Бюффона).

Решение:

Создадим функцию для получения начальных данных (расстояние между отстоящими прямыми и длина иглы):

Далее необходимо сделать функцию, которая будет возвращать результат броска иглы, как расстояние до ближайшей прямой и угол между прямой и «горизонтом».

```
def get_random_x_fi(L):
    """
    Получение результата броска иголки
    """
    x = random() * L / 2
    fi = random() * math.pi
    return x, fi
```

Также реализуем функцию одной итерации броска иголки, которая будет возвращать результат броска и подставлять в условие попадания, полученное в ходе аналитического решения $(\frac{lsin(fi)}{}>x)$:

```
def one_iteration(L, 1):

Одна итерация

"""

x, fi = get_random_x_fi(L)
return 1 * math.sin(fi) / 2 > x
```

Ну и последнее – основной цикл программы на 1 000 000 итераций одиночной программы:

```
def main():
    Основной цикл, запускающий одну итерацию несколько раз
    1, L = get_input_data()
    event_counter = 0
    count_iterations = 1_000_000
    for i in range(0, count_iterations):
        iteration = one_iteration(L, 1)
        event_counter += iteration
    print(f'Paccтояние между прямыми: {L}, длина прямой: {1}\n'
          f'Количество падений иглы на прямую: {event counter}\n'
         f'Количество падений иглы мимо прямой: {count_iterations - event_counter}\n'
          f'Смоделированная вероятность падения иглы на прямую: {event_counter /
count iterations}\n'
          f'Расчетная вероятность падения иглы на прямую: \{2 * 1 / (math.pi * L)\}')
if __name__ == '__main__':
    main()
```

Выполним запуск программы и посмотрим на результат:

```
Расстояние между прямыми: 7, длина прямой: 3
Количество падений иглы на прямую: 273378
Количество падений иглы мимо прямой: 726622
Смоделированная вероятность падения иглы на прямую: 0.273378
Расчетная вероятность падения иглы на прямую: 0.272837045300392
```

Таким образом результат моделирования близок к результатам моделирования.

с. Задача 4.23

Условие:

В лотерее из сорока тысяч билетов ценные выигрыши падают на три билета, определить:

- а) Вероятность получения хотя бы одного ценного выигрыша на тысячу билетов
- b) Сколько необходимо приобрести билетов, чтобы вероятность получения ценного выигрыша была не менее 0.5

Решение:

Создадим функцию для получения начальных данных (общее число билетов и количество выигрышных):

```
def get_input_data():

Начальные данные

"""

N = 40000

win = 3

return N, win
```

Далее необходимо сделать функцию, которая будет возвращать результат одной покупки в лотерее, причем нужно учесть, что несколько одинаковых билетов быть не может, для этого воспользуемся set()

```
def one_iteration(x, win, n, N):
    """
    Oдна покупка n билетов
    """
    x = set()
    while len(x) < n:
        m = randint(0, N)
        if m < win:
            return True
        x.add(m)
    return False</pre>
```

Эта функция достаточно долгая, поэтому необходимо воспользоваться многопоточностью для ускорения подсчетов. Вот как будет выглядеть функция для вызова one_iteration много раз:

```
def do_iterations(N, win, n, count_iterations):
    """
        Функция для выполнения нескольких покупок
        """
        with Pool(processes=8) as pool:
            one_iteration_partial = partial(one_iteration, win=win, n=n, N=N)
            results = pool.map(one_iteration_partial, range(count_iterations))
        return results
```

Вместо 8 необходимо указать количество ядер процессора, которые вы собираетесь задействовать для расчетов.

В функции main() получим данные, используя get_input_data()

```
N, win = get_input_data()
```

После этого решим пункт а:

Для решения пункта в уменьшим точность подсчетов до 1000. Считать будем вероятность от 1000 и до 20000 с шагом 500, чтоб получить график изменения погрешности:

```
count_iterations = 1_000
chance = []
real_chance = []
points = list(range(1000, 20000, 500))
for n in points:
    event_counter = sum(do_iterations(N, win, n, count_iterations))
    chance.append(event_counter / count_iterations)
    real_chance.append(1 - math.comb(N - win, n) / math.comb(N, n))
plt.plot(points, chance, label='Model', linestyle='--', color='r', marker='o', markersize=3)
plt.plot(points, real_chance, label='Real', linestyle='--', color='g', marker='o',
markersize=3)
plt.savefig(f"Chance.jpg")
plt.show()
```

Выполним запуск программы и посмотрим на результат:

Пункт а:

```
Пункт а:Количество билетов: 40000, количество победных: 3
Количество покупок с выигрышным билетом: 737
Количество покупок без выигрышного билета: 9263
Смоделированная вероятность получения билета: 0.0737
Расчетная вероятность получения билета: 0.07314240749538414
```

Видно, что результат моделирования близок к теоретическому. Пункт b:

Как видно из графика искомое значение равно примерно 8110, что достаточно близко к ответу при теоретическом решении, точность можно повысить путем увеличения количества итераций.

d. Задача 5.3

Условие:

Квадрат разделен на n^2 одинаковых квадратов.

 P_{ij} ($\sum_{j=1}^{n} P_{kj} = 1$) — вероятность попадания шарика в пересечение і-й горизонтальной и ј-й вертикальной полосы.

Залача

Найти вероятность попадания в к-ю горизонтальную полосу.

Решение:

Создадим функцию для получения входных данных – в данной задаче это лишь размерность n:

```
def get_input_data():
    # Размерность массива
    n = 10
    return n
```

Создадим массив вероятностей P_{ii} , сумма элементов этого массива n на n равна единице:

```
def generate_array(n):
    """
    Создает массив случайных чисел, сумма которых равна 1, размерности п на п
"""
    random_nums = np.random.rand(n, n)
    total_sum = np.sum(random_nums)
    result_array = random_nums / total_sum
    return result_array
```

Получим входные данные и массив n на n, так же номер горизонтали k и количество итераций:

```
n = get_input_data()
P = generate_array(n)
k = randint(0, n - 1)
count_in_k = 0
count_iterations = 1000000
```

Создадим основной цикл программы:

```
for i in range(count_iterations):
    chance = random()
    sum_chance = 0
    counter = 0
    while chance > sum_chance:
        sum_chance += P[counter // n][counter % n]
        counter += 1
    if (counter - 1) // n == k:
        count_in_k += 1
```

Выведем итоговый результат:

```
print(f'Teopeтическая вероятность: {np.sum(P[k, :])}\n'
    f'Полученная вероятность: {count_in_k / count_iterations}')
```

Полученный вывод:

```
Теоретическая вероятность: 0.098022
Полученная вероятность: 0.09798
```

Как видно из вывода программа работает корректно.

е. Задача 6.14

Условие:

В ящике находятся 15 теннисных мячей, из которых 9 новых. Для первой игры наугад берутся три мяча, которые после игры возвращаются в ящик. Для второй игры также наугад берутся три мяча.

Задача:

Найти вероятность того, что все мячи, взятые для второй игры, новые.

Решение:

Создадим функцию для получения входных данных – в данной задаче это состав коробки и количество вытаскиваемых шаров:

```
def get_input_data():
   box = [1] * 9 + [0] * 6
   count_to_taken = 3
   return box, count_to_taken
```

Далее создадим симуляцию одной игры:

```
def simulate_game(box, count_to_taken):
    random.shuffle(box)
    first_game = random.sample(box, count_to_taken) # выбираем 3 мяча для первой игры
    for ball in first_game:
        box.remove(ball) # удаляем выбранные мячи из ящика
        box.extend([0] * count_to_taken)
        second_game = random.sample(box, count_to_taken) # выбираем 3 мяча для второй игры
        return all(ball == 1 for ball in second_game) # проверяем, все ли мячи новые
```

Напишем основную функцию, вызывая симуляцию множество раз:

```
def main():
    box, count_to_taken = get_input_data()
    num_experiments = 1000000 # количество экспериментов
    num_successes = 0 # количество успешных экспериментов

for _ in range(num_experiments):
    if simulate_game(box.copy(), count_to_taken):
        num_successes += 1

probability = num_successes / num_experiments
    print(f'Bepoятность того, что все мячи для второй игры будут новыми: {probability}\n'
        f'Teopeтическая вероятность: 0.089 для коробки 9 новых мячей и 6 старых')
```

Полученный вывод:

```
Вероятность того, что все мячи для второй игры будут новыми: 0.089452
Теоретическая вероятность: 0.089 для коробки 9 новых мячей и 6 старых
```

Как видно результат моделирования совпадает с теоретическими ожиданиями.

f. Задача 7.16

Условие:

n - студентов

 n_k (k = 1, 2, 3) – на k-ом году обучения

Залача

Наудачу берут 2 студента, один из которых учится дольше второго.

Какова вероятность, что этот студент учится 3-й год

Решение:

Создадим функцию для получения начальных данных – сколько студентов на каждом году обучения:

```
def get_input_data():
    n1 = 3
    n2 = 4
    n3 = 3
    return n1, n2, n3
```

После этого создадим основной цикл, где выбираем двух студентов случайным образом:

```
first_student = random.randint(0, n - 1)
second_student = random.randint(0, n - 1)
while students[second_student] == students[first_student]:
    second_student = random.randint(0, n - 1)
if students[first_student] == 3 or students[second_student] == 3:
    count += 1
```

Будем делать это множество раз:

```
n = n1 + n2 + n3
print("n =", n)
print("n1 =", n1)
print("n2 =", n2)
print("n3 =", n3)
N = 100000
count = 0
students = [1 for _ in range(n1)] + [2 for _ in range(n1, n1 + n2)] + [3 for _ in range(n1 + n2, n)]
for j in range(N):
    first_student = random.randint(0, n - 1)
    second_student = random.randint(0, n - 1)
    while students[second_student] == students[first_student]:
        second_student = random.randint(0, n - 1)
    if students[first_student] == 3 or students[second_student] == 3:
        count += 1
```

Выведем результат на экран:

```
print('Вероятность того, что среди двух выбранных студентов\n'
    '(один из которых учится дольше другого) один учится третий год:\n'
    f'Моделирование: P = {count / N:.05f}\n'
    f'Аналитически: P = {((n1 + n2) * n3) / (n1 * n2 + (n1 + n2) * n3):.05f}')
```

Полученный вывод:

```
n = 10
n1 = 3
n2 = 4
n3 = 3
Вероятность того, что среди двух выбранных студентов
(один из которых учится дольше другого) один учится третий год:
Моделирование: P = 0.63178
Аналитически: P = 0.63636
```

Видно, что полученный результат вполне соответствует ожиданиям.

g. Задача 8.40

Условие:

Ящик: 20 белых 2 черных шара.

Залача

Шар извлекается n раз по 1 и возвращается. Определить минимальное число n, чтоб вероятность черного шара была больше 0.5

Решение:

Создадим функцию для получения начальных данных – сколько студентов на каждом году обучения:

```
def get_input_data():
    count_black = 2
    count_white = 20
    return count_white, count_black
```

Далее сделаем функцию для получения одного мяча:

```
def get_one_black_ball(count_black, count_white):
    return random.randint(1, count_black + count_white) <= count_black</pre>
```

Будем вытаскивать мячи до тех пор, пока не встретим черный. Если встретили черный, записали, каким именно он выпал:

```
count_white, count_black = get_input_data()
try_to_get = 1_000_000
max_n = 200
count_black_mas = np.zeros(max_n)
n_now = 1
count_iterations = 0
for i in range(try_to_get):
    if get_one_black_ball(count_black, count_white):
        count_black_mas[n_now - 1] += 1
        count_iterations += 1
        n_now = 0
    n_now += 1
```

Основываясь на этом, получим шансы выпадения:

```
chance = count_black_mas
for i in range(1, max_n):
    chance[i] += chance[i - 1]
chance = chance / count_iterations
```

Выведем график, сравнивающий данные при теоретическом решении и полученные в ходе моделирования:

Полученный график:

Как можно видеть, графики совпадают, что значит, что результат моделирования соответствует теоретическом решению.

h. Задача 9.20

Условие:

Дано п игральных костей

Задача:

Найти вероятность того, что сумма очков на верхних гранях равна заданному числу m; не больше m.

Решение:

Зададим начальные данные:

Создадим модель, а в качестве точно решения оставим число:

```
def model():
    sumPoints = 0
    for i in range(n):
        sumPoints += random.randint(1, 6)
    return sumPoints <= m

def solve():
    return 0.0029</pre>
```

Проведем симуляцию:

```
def main():
   allResults = ∅
   goodResults = 0
   x = []
   y = []
   moda = \{\}
   while allResults != MAX_NUM:
       if model():
            goodResults += 1
        allResults += 1
        x.append(allResults)
        value = goodResults / allResults
        y.append(value)
        if moda.get(value) is None:
            moda[value] = 0
        moda[value] += 1
```

Выведем полученные результаты на экран в виде графика и в таблицы:

```
def print table with graph(x, y, modaOfY, analytic, name):
                  values = []
                  for item in modaOfY.items():
                                     values.append(item)
                  values.sort(key=lambda v: v[1], reverse=True)
                  print(f'Аналитически ответ: {analytic}')
                  th = ['MOJA', '3HAYEHNE', 'ПОГРЕШНОСТЬ']
                  table = PrettyTable(th)
                  for v in values[:3]:
                                     table.add\_row([v[1], \ "\{0:.10f\}".format(v[0]), \ "\{0:.6f\}".format(abs(analytic - abs(analytic - abs(analytic
v[0]))])
                  print(table)
                  plt.xlabel('Кол-во экспериментов', color='black')
                  plt.ylabel('Вероятность хорошего исхода', color='black')
                  plt.grid(True)
                  plt.plot(x, y)
                  plt.savefig(name)
                  plt.show()
```

Полученный вывод:

МОДА	ЗНАЧЕНИЕ	ПОГРЕШНОСТЬ I
		+
248	0.0028818444	0.000018
196	0.0028901734	0.000010
158	0.0028735632	0.000026

Как видно из таблицы и графика, ответ совпадает с аналитическим.

4. Ссылки

Ссылка на репозиторий с моделированием: github.com