Farm and Agribusiness Management Lecture

Rodney Beard

October 17, 2016

Farm and Agribusiness Management Lecture 4

Rodney Beard

introduction

Technologists dilemma

Profit maximization

> qual marginal rinciple

Input substitutes

Least-cost

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introduction

Technologis:

Protit

maximizatio

principle

Input substitutes

Average Physical Product

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introduction

Technologist dilemma

Profit maximization

Equal marginal principle

Input substitutes

Least-cost

 $APP = \frac{totalphysicalproduc}{inputlevel}$

Marginal Physical Product

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introduction

Technologist dilemma

Profit maximization

Equal marginal principle

Input substitutes

Least-cost combination

 $MPP = \frac{\Delta total physical product}{\Delta in put level}$

Law of diminishing marginal returns

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introduction

Technologist dilemma

Profit

Equal margina principle

Input substitutes

Least-cost

maximization

principle

Input substitutes

Least-cost

What should an Agricultural Scientist or Agronomist maximize?

- ► Total (physical) product?
- Marginal (physical) product?
- Average (physical) product?

Total cost, total revenue and profit

profit	Agribusiness Management Lecture 4
	Rodney Beard

Input level	N applied	TPP	TC	TR	Profit
0	0	155	750	650	(100)
1	25	148	762.50	740	(22.50)
2	50	162	775.0	810	35
3	75	170	787.50	850	62.50
4	100	177	800	885	85
5	125	180	812.50	900	87.50
6	150	182	825	910	85
7	175	183	837.5	915	77.50
8	200	183	850	915	65

Introduction

Farm and

Technologists dilemma

Profit maximization

Equal marginal

Input substitutes

Profit maximization

principle

Input substitutes

Least-cost combination

Marginal physical product

$$MR = \frac{\Delta total \ revenue}{\Delta total \ physical \ product} = \frac{\Delta Total \ revenue}{MPP}$$

Marginal cost

$$MC = \frac{\Delta total \ cost}{\Delta total \ physical \ product} = \frac{\Delta total \ cost}{MPP}$$

Marginal revenue and marginal cost

Input	N	TPP	MPP	TR	TC	MR		MC
0	0	130		650	750			
			18			5	>	0.69
1	25	148		740	762.50			
			14			5	>	0.89
2	50	162		810	775			
			8			5	>	1.56
3	75	170		850	787.5			
			7			5	>	1.79
4	100	177		885	800			
			3			5	>	4.17
5	125	180		900	812.5			
			2			5	<	6.25
6	150	182		910	825			
			1			5	<	12.5
7	175	183		915	837.5			
			0			5	<	Infinite
8	200	183		915	850			

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introduc

Technologists dilemma

Profit maximization

qual marginal

nput substitutes

Profit maximization

Equal marginal principle

Input substitutes

Least-cost

$$MPP = \frac{P_I}{P_o}$$

Why?

$$\mathsf{Profit} = \Pi = P_o Y(X) - P_I X$$

$$\frac{d\Pi}{dX} = P_o Y'(X) - P_I X$$

$$= P_o MPP - P_I = 0$$

This implies

$$MPP = \frac{P_I}{P_o}$$

Profit maximization

Equal marginal principle

Input substitutes

$$\max \Pi = PY(X) - WX$$

$$\frac{d\Pi}{dX} = P\frac{dY}{dX} - W = 0$$

Use
$$Y = 6\sqrt{X}$$
, $P = 20 , $W = 12

$$\frac{d\Pi}{dX} = 20\left(\frac{3}{\sqrt{X}} - 12 = 0\right)$$
$$\frac{60}{\sqrt{X}} = 12$$

$$5 = X^{1/2}$$
 or $X = 25$

Marginal value product and Marginal Input cost

Input	N	Υ	MPP	TR	TC	MVP		MIC
0	0	130		650	750			
			18			3.6	>	0.5
1	25	148	- 1 4	740.00	762.50	0.0		0.5
2	50	162	14	810	775	2.8	>	0.5
2	50	102	8	010	115	1.6	>	0.5
3	75	170	O	850	787.5	1.0		0.5
· ·	. •	2.0	7			1.4	>	0.5
4	100	177		885	800			
			3			0.6	>	0.5
5	125	180	_	900	812.50			
6	150	100	2	010	005	0.4	<	0.5
6	150	182	1	910	825	0.2	<	0.5
7	175	183	1	915	837.5	0.2	_	0.5
,	113	100	0	313	007.0	0	<	0.5
8	200	183	-	915	850	-	-	

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introdu

echnologist ilemma

Profit maximization

ual marginal nciple

put substitutes

Profit naximization

Equal marginal principle

nput substitutes

Least-cost combination

A limited output should be allocated among alternative uses in such a way that the marginal value products of the last unit used in on each alternative are equal.

	-					
	Marginal value products					
Irrigation water	Wheat	Grain	Cotton			
0						
	1200	1600	1800			
4						
	800	1200	1500			
8						
	600	800	1200			
12						
	300	500	800			
16						
	50	200	400			
20						

Hint: Rank order the MVP's

Profit maximization

Equal marginal principle

Input substitutes

Least-cost combination

livestock can be trickier than crop production

- take weaned feeder calves, fatten on pasture or feed ration and finish on feedlot
- ▶ Fatter calves need more nutrients to maintain weight
- heavier calves process feed less efficiently this drives up costs
- Sales price falls as calfs get fatter, marginal revenue is not constant

$$\Pi(X) = P(W)W(X) - C(W(X))X$$

assume $W = X^2$ and P = a - bW(X) and C(W) = cW(X). Very simple model substituting

$$\Pi(X) = (a - bX^{2})X^{2} - cX^{3} = aX^{2} - bX^{4} - cX^{3}$$
$$\frac{d\Pi}{dX} = 2aX - 4bX^{3} - 3cX^{2} = 0$$

Check the second order conditions

$$2a - 12bX^2 - 6cX < 0$$

This is a polynomial inequality we can see the second-order conditions will be satisfied if

$$X \le 16c \pm \frac{\sqrt{36c^2 - 128cb}}{-24b}$$

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introdu

Technologists dilemma

> rofit Iaximization

Equal marginal principle

Input substitutes

Multiple inputs: choosing input combinations

Input substitution ratio = $\frac{\text{amount of input replaced}}{\text{amount of input added}}$

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introdu

Technologists

Profit maximization

Equal marginal

Input substitutes

Imperfect substitutes

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introdu

Technologist

Profit maximization

Equal marginal principle

Input substitutes

Least-cost

Perfect complements

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introduction

Technologist

Profit maximization

Equal marginal principle

Input substitutes

Least-cost

Least-cost combination

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introduction

Technologist dilemma

maximization

Equal marginal principle

Input substitutes

Least-cost combination

$$\min p_1 X_1 + p_2 X_2$$

subject to $Y = F(X_1, X_2)$

Lagrangian

$$L = p_1 X_1 + p_2 X_2 + \lambda \left[Y - F(X_1, X_2) \right]$$
$$\frac{\partial L}{\partial p_1} = X_1 - \lambda \frac{\partial F}{\partial X_1} = 0$$
$$\frac{\partial L}{\partial p_2} = X_2 - \lambda \frac{\partial F}{\partial X_2} = 0$$
$$\frac{\partial L}{\partial \lambda} = Y - F(X_1, X_2)$$

From the first two of these we get

$$\frac{p_1}{\frac{\partial F}{\partial X_1}} = \frac{p_2}{\frac{\partial F}{\partial X_2}}$$

or

$$\frac{p_1}{p_2} = \frac{\frac{\partial F}{\partial X_1}}{\frac{\partial F}{\partial X_2}}$$

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introdu

Technologists

Profit maximization

Equal marginal principle

Input substitutes

principle

Input substitutes

Least-cost combination

To find the slope of the iso-quant we can use the total derivative

$$dY = \frac{\partial F}{\partial X_1} dX_1 + \frac{\partial F}{\partial X_2} dX_2 = 0$$
$$\frac{\partial F}{\partial X_2} dX_2 = -\frac{\partial F}{\partial X_1} dX_1$$

SO

$$-\frac{dX_2}{dX_1} = \frac{\frac{\partial F}{\partial X_1}}{\frac{\partial F}{\partial X_2}} = \frac{p_1}{p_2}$$
$$\frac{\frac{\partial F}{\partial X_1}}{\frac{\partial F}{\partial X_2}} = MRTS$$

MRTS = Input substitution ratio (ISR) = input price ratio (IPR)

is the decision rule for determining the least-cost

Least-cost feed ration

Feed ration	Grain	Hay	ISR		IPR	TC
Α	825	1350				\$155.25
			2.93	\geq	1.5	
В	900	1130				\$148.80
			2.6	\geq	1.5	
C	975	935				\$143.85
			2.2	\geq	1.5	
D	1050	770				\$1450.70
			1.93	\geq	1.5	
Е	1125	625				\$138.75
			1.33	>	1.5	
F	1200	525		_		\$139.5
			1.07	>	1.5	
G	1275	445		_		\$141.45

Farm and Agribusiness Management Lecture 4

Rodney Beard

Introduc

Technologist dilemma

rofit naximization

qual marginal rinciple

Input substitutes