La fonction Nest

La suite (a_n) définie dans le TP2 est définie par itération de la fonction $f(t) = \frac{1}{2}(t + \frac{2}{t})$. (i.e. $a_{n+1} = f(a_n)$, $a_0 = 1$).

n fois

Pour calculer la valeur de $\widehat{f \circ f \circ \cdots \circ f}(a)$ pour une fonction f à partir de la valeur initiale a, Mathematica peut réaliser ces calculs à l'aide de la fonction Nest.

Pour conserver l'ensemble des valeurs $(f(a), f \circ f(a), \dots, f^{(n)}(a))$ dans une liste on utilise alors la fonction NestList. Évaluer les entrées suivantes :

Nest[f,x0,3]

NestList[f,x0,3]

- En définissant f[x_]:=1/2*(x+2/x), programmer le calcul des premiers termes de la suite (a_n) à l'aide de la fonction Nest.
 Comparer NestList[f,1,4] et NestList[f,1,4]
- 2. À l'aide de la fonction Nest, programmer une fonction permettant de calculer les termes des suites (x_n) et (y_n) définies par les relations :

$$x_0 = a, \ y_0 = b, \ x_{n+1} = \frac{x_n + y_n}{2}, \ y_{n+1} = \sqrt{x_n y_n}.$$

(indication : on utilisera la fonction $(x,y) \mapsto (\frac{x+y}{2}, \sqrt{xy})$. On écrira $f[\{x_{-},y_{-}\}] := \dots$)

 $3.\ (\textit{Extrait oraux Centrale 2007},\ \textit{voir TP2})$

Soit $(x_n)_{n\geq 1}$ définie par $x_1=x$ et $\forall n\in\mathbb{N}^*,\ x_{n+1}=x_n+n/x_n$.

Reprogrammer le calcul des termes de cette suite à l'aide de la fonction Nest.

(on pourra utiliser la fonction $(x, n) \mapsto \dots$)

4. Utiliser la fonction Nest pour calculer les premiers termes de la suite de Fibonacci. (i.e. $u_1 = 1, u_2 = 1, \text{ et } \forall n \in \mathbb{N}^*, u_{n+2} = u_{n+1} + u_n$)

Exercices divers, au choix

- 1. Pour tout x réel, on appelle arrondi de x le réel $\alpha(x) = \lfloor x + \frac{1}{2} \rfloor$. On pose $\delta(x) = |x \alpha(x)|$.
 - (a) Tracer le graphe de la fonction α , de la fonction δ .
 - (b) Tracer la graphe, pour différentes valeurs de l'entier n, de la fonction

$$x \mapsto \sum_{k=0}^{n} \frac{\delta(2^k x)}{2^k}.$$

2. La fonction RandomInteger permet de simuler le « tirage au sort » d'un entier (par exemple RandomInteger [15] simule le tirage au sort d'un entier de $\{0, 1, ..., 15\}$).

À l'aide de RandomInteger, construire une fonction hasard $[p_n, n_n]$ permettant de tirer au hasard p entiers distincts de $\{1, 2, ..., n\}$. (on pourra sélectionner au hasard un entier de la liste $\{1, ..., n\}$, ex-

(on pourra selectionner au hasard un entier de la liste $\{1, ..., n\}$, extraire cet entier de la liste, sélectionner un 2^e entier de cette nouvelle liste, ainsi de suite Voir la fct Delete.)

- 3. (a) Vérifier que pour plusieurs valeurs d'entiers naturels n supérieur ou égal à 2, le nombre $n^5 + n^4 + 1$ n'est pas premier.
 - (b) **Prouver** que quel que soit n supérieur ou égal à 2, $n^5 + n^4 + 1$ n'est pas premier.
- 4. (Extrait Centrale 2011)

À l'aide de Mathematica déterminer le plus petit entier naturel non nul k tel que $10^k \equiv 1[49]$ puis, à l'aide de Mathematica, évaluer

$$\sum_{k=1}^{42} \cos(2\pi 10^k/49).$$

Conjecturer le résultat. Le démontrer (« à la main »).

5. (Extrait Centrale 2011)

On se place dans le plan euclidien canonique.

- (a) Soient H, I, J trois points distincts. Programmer un fonction permettant de calculer les coordonnées du projeté orthogonal de H sur (IJ). Les points étant donnés par leur coordonnées dans un repère orthonormé, on écrira :
 - f[{h1_,h2_},{i1_,i2_},{j1_,j2_}]:=.....
- (b) Soient A, B, C trois points non alignés. Si $M \in (AB)$, on note P_1 le projeté orthogonal de M sur (BC), P_2 le projeté orthogonal de P_1 sur (AC), et N le projeté orthogonal de P_2 sur (AB). Programmer une fonction ayant A, B, C, M pour paramètres d'entrées et qui retourne N.
 - (Les point A, B, C, M seront à nouveau donnés par leurs coordonnées)
- (c) On munit la droite (AB) d'un repère. Si M a pour coordonnée x, on note $\varphi(x)$ la coordonnée de N. On considère alors la suite (x_n) définie par son premier terme x_0 et la relation $x_{n+1} = \varphi(x_n)$. Vérifier expérimentalement sur plusieurs exemples que la suite (x_n) converge.