실험계획법 실습 - 14 주차

기말고사 대비 및 E-miner 실습

proc glm data=bibd;
class treat block;
model y=treat block;
means treat block/tukey;
run;

The Randomized Complete Block Design

Data

	자동차							
	1	2	3	4				
브	C(12)	A(14)	D(10)	A(13)				
브 랜 드	A(17)	A(13)	C(11)	D(9)				
	D(13)	B(14)	B(14)	B(8)				
	D(11)	C(12)	B(13)	C(9)				
	자동차							
	1	2	3	4				
ы	D (4.4)							
	B(14)	D(11)	A(13)	C(9)				
_ 랜 ㄷ	B(14) C(12)	D(11) C(12)	A(13) B(13)	C(9) D(9)				
브 랜 드								

The Randomized Complete Block Design

● 랜덤화완비블록설계(randomized complete block desing, RCBD)

- 모형: $y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}, \varepsilon_{ij} \sim NID(o, \sigma^2)$
- $-\tau_i$: 처리 i에 대한 효과.(i = 1, 2, 3, 4)
- $-\beta_i$: 블록 j에 대한 효과.(j = 1, 2, 3, 4)
- $-\sum_{i=1}^{4} \tau_i = 0 \& \sum_{j=1}^{4} \beta_j.$

여기서는 차(블록)에 기인한 변동이 분리하여, 블록효과에 대한 검정이 가능하지만, 주 목적은 브랜드 차이의 검정에 있다.

따라서 가설의 경우는 H_0 : $\tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$ vs H_1 : $not H_0$

The Latin Square Design

Data

	자동차							
	1	2	3	4				
브	B(14)	D(11)	A(13)	C(9)				
랜 드	C(12)	C(12)	B(13)	D(9)				
	A(17)	B(14)	D(11)	B(8)				
	D(13)	A(14)	C(10)	A(13)				
01+1	자동차							
위치	1	2	3	4				
1	C(12)	D(11)	A(13)	B(8)				
2	B(14)	C(12)	D(11)	A(13)				
3	A(17)	B(14)	C(10)	D(9)				
4	D(13)	A(14)	B(13)	C(9)				

The Latin Square Design

Latin Square Design

- 모형: $y_{ijk} = \mu + \tau_i + \beta_j + \gamma_k + \varepsilon_{ijk}, \varepsilon_{ijk} \sim NID(o, \sigma^2)$
- $-\tau_i$: 처리 i에 대한 효과.(i = 1, 2, 3, 4)
- $-\beta_{j}$: j 번째 블록(열)에 대한 효과.(j = 1, 2, 3, 4): 차에 대한 효과
- $-\gamma_k$: k 번째 블록(행)에 대한 효과. (k = 1, 2, 3, 4): 위치에 대한 효과

Balanced Incomplete Block Designs

● 예시: 처리는 3개이지만 한 블록에 2개 처리만 가능한 경우

처리	블록					
	1	2	3			
Α	Α		Α			
В	В	В				
С		С	С			

● 예시: 처리는 4개이지만 한 블록에 2개 처리만 가능한 경우

처리	블록							
	1	2	3	4	5	6		
Α	Α	Α	Α					
В	В			В	В			
С		C		C		C		
D	•		D		D	D		

Balanced Incomplete Block Designs

BIBD

- 모형: $y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}, \varepsilon_{ij} \sim NID(o, \sigma^2)$
- $-\tau_i$: 처리 i에 대한 효과.(i = 1, 2, 3, ..., a)
- $-\beta_i$: j 번째 블록(열)에 대한 효과.(j = 1, 2, 3, ..., b)
- 랜덤화 블록 설계(RCBD)와 모형은 같지만 다른 점?
 - 1) 일부 y_{ij} 에 대한 값이 존재 하지 않음.
 - 2) $a \times b \neq$ 총관측치수
 - 3) $SST = SS_{block} + SS_{treatment} + SSE 의 차이!!!$

● 재 구매 고객 모델링

- 5월 ~ 9월 데이터를 가지고 10월에 재 구매 할 고객 10,000명을 예측

● 재 구매 고객 모델링 변수 설명

변수	형태	설명
CUST_ID	숫자	고객 ID
AGE	숫자	나이
JOB_CD	문자	직업
sex	문자	성별
COUNT_of_CUST_ID	숫자	구매횟수
SUM_of_PRICE	숫자	총 금액
SUM_of_BUY_5	숫자	5월 달에 구매한 횟수
SUM_of_BUY_6	숫자	6월 달에 구매한 횟수
SUM_of_BUY_7	숫자	7월 달에 구매한 횟수
SUM_of_BUY_8	숫자	8월 달에 구매한 횟수
SUM_of_BUY_A	숫자	A 구매한 횟수
SUM_of_BUY_B	숫자	B 구매한 횟수
SUM_of_BUY_C	숫자	C 구매한 횟수
Target	숫자	5~8월 달에 구매를 하고 9월에 구매했으면 타겟 1

● Modeling_Data 변수 설정

이름	역할	레벨	리포트	순서	제거	하한	상한
AGE	Input	Interval	OLIA		OLIB		
COUNT_of_CUST_ID	Input	Interval	OLIB		OLIA		
CUSTLID	ID	Nominal	OLIB		OLIA		
JOB_CD	Input	Nominal	OLIB		애니요		
sex	Input	BINARY	OLIB		매요		
SUM_of_BUY_5	Input	Interval	OLIB		ዐዚነ요		
SUM_of_BUY_6	Input	Interval	OLIB		ዐዚነ요		
SUM_of_BUY_7	Input	Interval	OLIB		OLIA		
SUM_of_BUY_8	Input	Interval	OLIB		OLIA		
SUM_of_BUY_A	Input	Interval	OLIB		OLIA		
SUM_of_BUY_B	Input	Interval	OLIB		OLIA		
SUM_of_BUY_C	Input	Interval	OLIB		OLIA		
SUM_of_PRICE	Input	Interval	OLIB		OLIA		
Target	Target	BINARY	OLIA		아니요		

● Scoring_Data 변수 설정(역할: Score)

이름	역할	레벨	리포트	순서	제거	하한	상한
AGE	Input	Interval	아니요		아니요		
COUNT_of_CUST_ID	Input	Interval	아니요		아니요		
CUSTLID	ID	Nominal	아니요		아니요		
JOB_CD	Input	Nominal	아니요		애니요		
sex	Input	BINARY	아니요		애니요		
SUM_of_BUY_5	Input	Interval	아니요		ዐዚነ요		
SUM_of_BUY_6	Input	Interval	아니요		ዐዚነ요		
SUM_of_BUY_7	Input	Interval	아니요		ዐዚነ요		
SUM_of_BUY_8	Input	Interval	아니요		ዐዚነ요		
SUM_of_BUY_A	Input	Interval	아니요		애니요		
SUM_of_BUY_B	Input	Interval	아니요		애니요		
SUM_of_BUY_C	Input	Interval	아니요		애니요		
SUM_of_PRICE	Input	Interval	아니요		애니요		
Target	Rejected	Interval	아니요		아니요		

● 노드 구성 및 실행

