SPECTRAL MODULI PROBLEMS FOR LEVEL STRUCTURES AND AN INTEGRAL JACQUET-LANGLANDS DUAL OF MORAVA E-THEORY

XUECAI MA AND YIFEI ZHU

ABSTRACT. Given an \mathbb{E}_{∞} -ring spectrum R, with motivation from chromatic homotopy theory, we define relative effective Cartier divisors for a spectral Deligne–Mumford stack and prove that, as a functor from connective R-algebras to topological spaces, it is relatively representable. We then solve various moduli problems of level structures on spectral abelian varieties, overcoming difficulty at primes dividing the level. In particular, we obtain higher-homotopical refinement for finite levels of the Lubin–Tate tower as \mathbb{E}_{∞} -rings, which generalize Morava, Hopkins, Miller, Goerss, and Lurie's spectral realization at the ground level. Moreover, passing to the infinite level and then descending along the equivariantly isomorphic Drinfeld tower, we obtain a Jacquet–Langlands dual to the Morava E-theory spectrum, along with homotopy fixed point spectral sequences dual to those studied by Devinatz and Hopkins. These serve as potential tools for computing higher-periodic homotopy types from pro-étale cohomology of p-adic general linear groups.

Contents

1. Introduction	2
Outline	3
Notation and terminology	5
2. Effective Cartier divisors of spectral Deligne–Mumford stacks	5
2.1. Isogenies of spectral elliptic curves	5
2.2. Cartier divisors and an exercise of spectral Artin representab	oility 9
3. Level structures for spectral abelian varieties	19
3.1. Level structures on elliptic curves	19
3.2. Level structures on <i>p</i> -divisible groups	21
4. Moduli problems of derived level structures	27
4.1. Spectral elliptic curves with level structure	27
4.2. Higher-homotopical Lubin–Tate towers	29
4.3. Topological lifts of power operation rings	32
5. More applications	34
5.1. Jacquet–Langlands spectra	34
5.2. Jacquet–Langlands duals of Morava E-theory spectra	36
5.3. Further problems	37
Acknowledgements	38
References	39

Date: July 20, 2025. Some parts need polishing – please read with caution and understanding.

1. Introduction

The stable homotopy category is a central topic in algebraic topology. Structured ring spectra are the most common examples studied, such as H_{∞} spectra and \mathbb{E}_{∞} spectra. In [Lur09a] and [Lur18b], Lurie uses spectral algebraic methods gives a proof of the Goerss-Hopkins-Miller theorem for topological modular forms. Except for the application of elliptic cohomology, Lurie also proved the \mathbb{E}_{∞} structures of Morava E-theories [Lur18b], which use the spectral version of deformation theory of certain p-divisible groups. The earliest proof of \mathbb{E}_{∞} structures of Morava E-theories is due to Goerss, Hopkins, and Miller [GH04]. They turned the problem into a moduli problem and developed an obstruction theory. One can finish the proof by computing the André–Quillen groups. Comparing with their method, Lurie's proof is more conceptual. There are more and more applications of spectral algebraic geometry in algebraic topology. Such as topological automorphic forms [BL10], Morava E-theories over any \mathbb{F}_p -algebra [Lur18b], not only just for a perfect field k. The construction of equivariant topological modular forms [GM23], elliptic Hochschild homology [ST23], and more.

On the other hand, moduli problems concerning deformations of formal groups with level structures are also representable, and moduli spaces of different levels form a Lubin-Tate tower [RZ96, FGL08, SW13]. We know that the universal objects of deformations of formal groups have higher algebraic analogs which are the Morava E-theories. A natural question is what are higher categorical analogues of moduli problems of deformations with level structures? And can we find higher categorical analogs of Lubin-Tate towers? Although the \mathbb{E}_{∞} -structure of topological modular forms with level structures can be obtained from [HL16], we still hope that there exists a derived stack of spectral elliptic curves with level structures that provide us with a more moduli interpretation. Except this, in the computation of unstable homotopy groups of spheres, after applying the EHP spectral sequences and the Bousfield-Kuhn functor, we observe that some terms on the E_2 page also arise from the universal deformation of isogenies of formal groups. They are computed by the Morava E-theories on the classifying spaces of symmetric groups [Str97, Str98]. They can be viewed as sheaves on the Lubin-Tate tower. We hope to provide a more conceptual perspective on this fact within the higher categorical Lubin-Tate tower.

In this paper, we give an attempt to address this problem by studying specific moduli problems in spectral algebraic geometry. The main ingredient of our work is the derived version of Artin's representability theorem established in [Lur04, TV08]. We will use the spectral algebraic geometry version [Lur18c] in this paper. We study relative effective Cartier divisors in the context of spectral algebraic geometry. By imposing certain conditions, we define derived level structures of certain geometric objects in spectral algebraic geometry. Using this Artin representability theorem, we prove some representable results of moduli problems that arise from our derived level structures. We give some examples of applications involving derived level structures. We consider the moduli problem of spectral deformations with derived level structures of p-divisible groups. We prove that these moduli problems are representable by certain formal affine spectral Deligne–Mumford stacks and the corresponding spectra can provide us many interesting general cohomology theories.

We note here that the Goerss-Hopkins-Miller-Lurie sheaf does not directly apply to the moduli problems here due to the failure of étaleness (cf. [Dev23]). This is

fixed by relative effective Cartier divisors analogous to Drinfeld's original approach to arithmetic moduli of (classical) elliptic curves [KM85, Introduction].

Outline. We work on spectral algebraic geometry in this paper. In Section 2, we define derived isogenies and prove that the kernel of a derived isogeny in some cases has the same phenomenon as in the classical case. This provides evidence that our derived versions of level structures must induce classical level structures. For representability reasons, we use moduli associated with sheaves to detect higher homotopy of derived versions of level structures. We define relative effective Cartier divisors in the context of spectral algebraic geometry. For a spectral Deligne–Mumford stack X over a spectral Deligne–Mumford stack S, a relative effective Cartier divisor is a morphism $D \to S$ of spectral Deligne–Mumford stacks such that $D \to X$ is a closed immersion, the ideal sheaf of D is a line bundle over X, and the morphism $D \to S$ is flat, proper and locally almost of finite presentation. We use Lurie's representability theorem to prove that the relative effective Cartier divisor is representable in certain cases. The main part of our proof involves computing of cotangent complex. Here is our first main result.

Theorem A (Theorem 2.17). Suppose that E is a spectral algebraic space over a connective \mathbb{E}_{∞} -ring R, such that $E \to R$ is flat, proper, locally almost of finite presentation, geometrically reduced, and geometrically connected. Then the functor

$$\mathrm{CDiv}_{E/R}$$
 : $\mathrm{CAlg}_R^{cn} \to \mathcal{S}$
 $R' \mapsto \mathrm{CDiv}(E_{R'}/R')$

is representable by a spectral algebraic space which is locally almost of finite presentation over R.

In Section 3, we define derived level structures of spectral elliptic curves. Roughly speaking, for an abstract finite abelian group A, usually equals $\mathbf{Z}/N\mathbf{Z}$, $\mathbf{Z}/N\mathbf{Z} \times \mathbf{Z}/N\mathbf{Z}$, a derived level-A structure of a spectral elliptic curve E over an \mathbb{E}_{∞} -ring R is just a relative effective Cartier divisor $D \to E$ satisfying its restriction to the heart comes from an ordinary level-A structure. We let Level(A, E/R) denote the space of derived level-A structures of a spectral elliptic curve E/R. We prove that moduli problems associated with derived level structures are representable.

Theorem B (Theorem 3.6). Suppose that E is a spectral elliptic curve over a connective \mathbb{E}_{∞} -ring R. Then the functor

$$\operatorname{Level}_{E/R} : \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}$$

 $R' \mapsto \operatorname{Level}(\mathcal{A}, E_{R'}/R')$

is representable by an affine spectral Deligne–Mumford stack which is locally almost of finite presentation over the \mathbb{E}_{∞} -ring R.

In classical algebraic geometry, except one-dimensional group curves, we also care level structures of p-divisible groups, which come from the full sections of commutative finite flat group schemes. In Section 3.2, we consider derived level structures of spectral p-divisible groups. Let Level $(k, G_R/R)$ denote the space of derived level- $(\mathbf{Z}/p^k\mathbf{Z})^n$ structures of a height n spectral p-divisible group G/R.

Theorem C (Theorem 3.19). Suppose G is a spectral p-divisible group of height n over a connective \mathbb{E}_{∞} -ring R. Then the functor

$$\operatorname{Level}_{G/R}^k : \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}; \quad R' \to \operatorname{Level}(k, G_{R'}/R')$$

is representable by an affine spectral Deligne–Mumford stack $S(k) = \operatorname{Sp\'et} \mathcal{P}^k_{G/R}$.

In Section 4, we give some applications of derived level structures. We first prove that the moduli problem of spectral elliptic curves with derived level-A structures is representable by a spectral Deligne–Mumford stack.

Theorem D (Theorem 4.6). Let Ell(A)(R) denote the space of spectral elliptic curves with derived level-A structures over the \mathbb{E}_{∞} -ring R. Then the functor

$$\mathcal{M}_{\mathrm{ell}}(\mathcal{A})$$
 : $\mathrm{CAlg^{cn}} \to \mathcal{S}$
 $R \longmapsto \mathcal{M}_{\mathrm{ell}}(\mathcal{A})(R) = \mathrm{Ell}(\mathcal{A})(R)$

is representable by a spectral Deligne–Mumford stack and this stack is locally almost of finite presentation over the sphere spectrum \mathbb{S} .

In [Lur18b], Lurie considers the spectral deformations of classical p-divisible groups. As we have the concept of derived level structures, it is natural to consider the moduli of spectral deformations with derived level structures of certain p-divisible groups. Suppose G_0 is a p-divisible group of height n over a perfect \mathbb{F}_p -algebra R_0 . We consider the following functor

$$\mathcal{M}_k^{\mathrm{or}}$$
 : $\mathrm{CAlg}_{cpl}^{ad} \to \mathcal{S}$
 $R \to \mathrm{DefLevel}^{\mathrm{or}}(G_0, R, k)$

where DefLevel^{or} (G_0, R, k) is the ∞ -category spanned by those quadruples (G, ρ, e, η)

- (1) G is a spectral p-divisible group over R.
- (2) ρ is a equivalence class of G_0 -taggings of R.
- (3) e is an orientation of the identity component of G.
- (4) $\eta: D \to G$ is a derived $(\mathbf{Z}/p^k\mathbf{Z})^n$ -level structure of G/R.

Our next main result is the following.

Theorem E (Theorem 4.10). The functor $\mathcal{M}_k^{\text{or}}$ is co-representable by an \mathbb{E}_{∞} -ring \mathcal{JL}_k , where \mathcal{JL}_k is an $R_{G_0}^{\text{or}}$ -algebra such that $\pi_0 \mathcal{JL}_k$ is finite over $\pi_0 R_{G_0}^{\text{or}}$, $R_{G_0}^{\text{or}}$ is the orientation deformation ring of G_0 defined in [Lur18b].

We will give another example of spectra constructed by considering moduli of spectral deformations with p-power order subgroups level structures, which can be viewed as topological realizations of universal objects of Strickland's deformations of Frobenius.

Finally, in Section 5, for every classical p-divisible group, we construct an \mathbb{E}_{∞} -spectrum \mathcal{JL} called the Jacquet–Langlands spectrum. By taking homotopy fixed points, we get a Jacquet–Langlands dual of Morava E-theories. We have a diagram in algebraic geometry:

where LT_K is the moduli space of deformation of formal groups, \mathcal{X} is the moduli space of deformation with level structures of formal groups, and \mathcal{H} is the Drinfled

upper half plane. It can be lifted to the following diagram in the level of \mathbb{E}_{∞} -spectra.

Question 1.1. Compute higher homotopy groups of the finite-level and infinite-level Jacquet–Langlands spectra. These should encode more refined arithmetic-geometric information. Cf. Remark 4.16 (and higher algebraic K-theory, higher stable motivic stems, classification of knots not just up to isotopy, and the Habiro ring of a number field (elementless vs. categorification of elements)). It is relevant to compute the (co)tangent complex of the corresponding moduli problem (cf., e.g., [MPR24]).

Notation and terminology.

- Let CAlg denote the ∞ -category of \mathbb{E}_{∞} -rings and CAlg^{cn} denote the ∞ -category of connective \mathbb{E}_{∞} -rings.
- Let S denote the ∞ -category of spaces (∞ -groupoids).
- Given a spectral Deligne–Mumford stack $X = (\mathcal{X}, \mathcal{O}_{\mathcal{X}})$, let $\tau_{\leq n}X$ denote its *n*-truncation $(\mathcal{X}, \tau_{\leq n}\mathcal{O}_{\mathcal{X}})$ and X^{\heartsuit} denote its underlying ordinary stack $(\mathcal{X}^{\heartsuit}, \tau_{\leq 0}\mathcal{O}_{\mathcal{X}})$.
- By a spectral Deligne—Mumford stack X over an E_∞-ring R, we mean a
 morphism of spectral Deligne—Mumford stacks X → Spét R. Given an Ralgebra S, we sometimes write X×_RS for the fiber product X×_{Spét R}Spét S.
- Let \mathcal{M}_{ell} denote the spectral Deligne–Mumford stack of spectral elliptic curves, as defined in [Lur18a], and \mathcal{M}_{ell}^{cl} denote the (classical) Deligne–Mumford stack of (classical) elliptic curves.

2. Effective Cartier divisors of spectral Deligne–Mumford stacks

A main innovation of this paper concerns derived level structures. We begin with a derived version of isogenies and prove that, in certain cases, the kernel of a derived isogeny behaves similarly as in the classical setting. This gives evidence that our derived version of level structures must induce classical level structures. In Section 2.2, we define relative effective Cartier divisors in the setting of spectral algebraic geometry. We then use Lurie's representability theorem to prove that certain functors associated with relative effective Cartier divisors are representable by spectral Deligne–Mumford stacks. This paves the way for Section 3, where we establish specifically the representability of derived level structures for spectral elliptic curves and spectral p-divisible groups.

2.1. Isogenies of spectral elliptic curves. To define derived level structures, the first question we must address is what higher-categorical analogues of finite abelian groups are. Let us recall from [Lur17, Section 7.2.4] and [Lur18c, Section 2.7] some finiteness conditions in the context of \mathbb{E}_{∞} -rings.

Let A be an \mathbb{E}_{∞} -ring and M be an A-module. We say that M is

- perfect, if it is a compact object of the ∞ -category LMod_A of left A-modules;
- almost perfect, if there exists an integer k such that $M \in (\operatorname{LMod}_A)_{\geq k}$ and M is an almost compact object of $(\operatorname{LMod}_A)_{\geq k}$, that is, $\tau_{\leq n}M$ is a compact object of $\tau_{\leq n}((\operatorname{LMod}_A)_{\geq k})$ for all $n \geq 0$;

- perfect to order n, if given any filtered diagram $\{N_{\alpha}\}$ in $(\operatorname{LMod}_A)_{\leq 0}$, the canonical map $\varinjlim_{\alpha} \operatorname{Ext}_A^i(M, N_{\alpha}) \to \operatorname{Ext}_A^i(M, \varinjlim_{\alpha} N_{\alpha})$ is injective for i = n and bijective for i < n;
- finitely n-presented, if M is n-truncated and perfect to order n+1; and

Next we recall finiteness conditions on algebras. We say that a morphism $\phi:A\to B$ of connective \mathbb{E}_{∞} -rings is

- of finite presentation, if B belongs to the smallest full subcategory of $CAlg_A$ which contains $CAlg_A^{free}$ and is stable under finite colimits;
- locally of finite presentation, if B is a compact object of $CAlg_A$;
- almost of finite presentation, if B is an almost compact object of CAlg_A;
- of finite generation to order n, if the following condition holds; Let $\{C_{\alpha}\}$ be a filtered diagram of connective \mathbb{E}_{∞} -rings over A having colimit C. Assume that each C_{α} is n-truncated and that each of the transition maps $\pi_n C_{\alpha} \to \pi_n C_{\beta}$ is a monomorphism. Then the canonical map

$$\varinjlim_{\alpha} \operatorname{Map}_{\operatorname{CAlg}_A}(B, C_{\alpha}) \to \operatorname{Map}_{\operatorname{CAlg}_A}(B, C)$$

is a homotopy equivalence.

• of finite type, if it is of finite generation to order 0.

Proposition 2.1 ([Lur18c, Propositions 2.7.2.1 and 4.1.1.3]). Let $\phi: A \to B$ be a morphism of connective \mathbb{E}_{∞} -rings. Then the following conditions are equivalent.

- The morphism ϕ is perfect to order 0 (resp. of finite type).
- The commutative ring $\pi_0 B$ is finite (resp. of finite type) over $\pi_0 A$.

Definition 2.2 (cf. [Lur18c, Definition 4.2.0.1]). Let $f: X \to Y$ be a morphism of spectral Deligne–Mumford Stacks. We say that f is locally of finite type (resp. locally of finite generation to order n, locally almost of finite presentation, locally of finite presentation) if the following condition holds. Given any commutative diagram

$$\begin{array}{ccc} \operatorname{Sp\acute{e}t} B & \longrightarrow & \mathsf{X} \\ & & & \downarrow_f \\ & & & \mathsf{Sp\acute{e}t} A & \longrightarrow & \mathsf{Y} \end{array}$$

where the horizontal morphisms are étale, the \mathbb{E}_{∞} -ring B is of finite type (resp. of finite generation to order n, almost of finite presentation, locally of finite presentation) over A.

Definition 2.3 ([Lur18c, Definition 5.2.0.1]). Let $f: (\mathcal{X}, \mathcal{O}_{\mathcal{X}}) \to (\mathcal{Y}, \mathcal{O}_{\mathcal{Y}})$ be a morphism of spectral Deligne–Mumford stacks. We say that f is *finite* if the following conditions hold.

- The morphism f is affine.
- The pushforward $f_*\mathscr{O}_{\mathcal{X}}$ is perfect to order 0 as a $\mathscr{O}_{\mathcal{V}}$ -module.

Remark 2.4. By [Lur18c, Example 4.2.0.2], a morphism $f: X \to Y$ of spectral Deligne–Mumford stack is locally of finite type if and only if the underlying map of ordinary stacks is locally of finite type in the sense of classical algebraic geometry. Moreover, by [Lur18c, Remark 5.2.0.2], a morphism of $f: X \to Y$ is finite if and only if the underlying map $f^{\heartsuit}: X^{\heartsuit} \to Y^{\heartsuit}$ is finite. In particular, if X and Y are

spectral algebraic spaces, then f is finite if and only if f^{\heartsuit} is finite in the classical sense.

Recall that a morphism $f: X \to Y$ of spectral Deligne–Mumford stacks is surjective if for every field k and any map Spét $k \to Y$, the fiber product Spét $k \times_Y X$ is nonempty [Lur18c, Definition 3.5.5.5].

Definition 2.5. Let R be a connective \mathbb{E}_{∞} -ring and $f: X \to Y$ be a morphism of spectral abelian varieties over R. We call f an *isogeny* if it is finite, flat, and surjective.

Lemma 2.6. Let $f: X \to Y$ be an isogeny of spectral abelian varieties. Then $f^{\heartsuit}: X^{\heartsuit} \to Y^{\heartsuit}$ is an isogeny in the classical sense.

Proof. For ordinary abelian varieties, f^{\heartsuit} being an isogeny means that it is surjective and its kernel is finite. This is equivalent to f^{\heartsuit} being finite, flat, and surjective [Mil86, Proposition 7.1]. From Definition 2.5, it is clear that f^{\heartsuit} is finite and flat. We need only show that f^{\heartsuit} is surjective.

By the definition of surjectivity above for morphisms of spectral Deligne–Mumford stacks, we get a commutative diagram

$$\begin{array}{ccc}
\operatorname{Sp\'et} k' & \longrightarrow \mathsf{X} \\
\downarrow & & \downarrow \\
\operatorname{Sp\'et} k & \longrightarrow \mathsf{Y}
\end{array}$$

The upper horizontal morphism corresponds to a morphism Spét $k' \to X^{\heartsuit}$ by the inclusion–truncation adjunction [Lur18c, Proposition 1.4.6.3]. On underlying topological spaces, this then corresponds to a point $|\text{Spét }k'| \to |\text{X}^{\heartsuit}|$. It is clear that this point in $|\text{X}^{\heartsuit}|$ is a preimage of |Spét k| in $|\text{Y}^{\heartsuit}|$. Therefore f^{\heartsuit} is surjective. \square

Lemma 2.7. Let $f: X \to Y$ be an isogeny of spectral elliptic curves over a connective \mathbb{E}_{∞} -ring R. Then $\mathrm{fib}(f)$ exists and is a finite and flat nonconnective spectral Deligne–Mumford stack over R.

Proof. By [Lur18c, Proposition 1.4.11.1], finite limits of nonconnective spectral Deligne–Mumford stacks exist, so we can define $\mathrm{fib}(f)$. Let us consider the commutative diagram

where the square is a pullback diagram. We find that $\operatorname{fib}(f)$ is over Spét R. By [Lur18c, Remark 2.8.2.6], $f': \operatorname{fib}(f) \to *$ is flat because it is a pullback of a flat morphism. Clearly $i: * \to \operatorname{Sp\'et} R$ is flat, so by [Lur18c, Example 2.8.3.12] (being a flat morphism is a property local on the source with respect to the flat topology), $i \circ f': \operatorname{fib}(f) \to \operatorname{Sp\'et} R$ is flat.

Next we show that fib(f) is finite over R. Since *, X , and Y are all spectral algebraic spaces, so is fib(f). Moreover, Spét R is a spectral algebraic space [Lur18c,

Example 1.6.8.2]. By Remark 2.4, we need only prove that the underlying morphism is finite. Since the truncation functor is a right adjoint, it preserves limits. Thus we get a pullback diagram

So we are reduced to showing that given an isogeny $f^{\heartsuit}: \mathsf{X}^{\heartsuit} \to \mathsf{Y}^{\heartsuit}$ of ordinary abelian varieties over a commutative ring R, its kernel is finite over R. This is true in classical algebraic geometry [Mil86, Proposition 7.1].

Lemma 2.8. Given an integer $N \geq 1$, let $f_N : \mathsf{E} \to \mathsf{E}$ be an isogeny of spectral elliptic curves over a connective \mathbb{E}_{∞} -ring R such that the underlying morphism is the multiplication-by-N map $[N] : \mathsf{E}^{\heartsuit} \to \mathsf{E}^{\heartsuit}$. Then $\mathrm{fib}(f_N)$ is finite flat of degree N^2 in the sense of [Lur18c, Definition 5.2.3.1]. Moreover, if N is invertible in $\pi_0 R$, then $\mathrm{fib}(f_N)$ is an étale-locally constant sheaf.

Proof. By [KM85, Theorem 2.3.1], we know that $[N]: \mathsf{E}^{\heartsuit} \to \mathsf{E}^{\heartsuit}$ is finite locally free of rank N^2 in the classical sense. When N is invertible in $\pi_0 R$, its kernel is an étale-locally constant sheaf. Now, from Lemma 2.7, $\mathsf{fib}(f_N)$ is a spectral algebraic space that is finite and flat, and its underlying space $\mathsf{fib}(f_N)^{\heartsuit} = \ker[N]$ is locally free of rank N^2 . We need to prove that $\mathsf{fib}(f_N) \to \mathsf{Sp\'et}\,R$ is locally free of rank N^2 in spectral algebraic geometry. Observe that since $\mathsf{fib}(f_N)$ is finite and flat, it is affine. We are thus reduced to proving the above for affines, i.e., $f_N|_{\mathsf{Sp\'et}\,S}\colon \mathsf{Sp\'et}\,S \to \mathsf{Sp\'et}\,R$ is locally free of rank N^2 for any affine substack $\mathsf{Sp\'et}\,S$ of $\mathsf{fib}(f_N)$. This is equivalent to proving that $R \to S$ is locally free of rank N^2 in the sense of [Lur18c, Definition 2.9.2.1]. Therefore we need to prove the following:

- (1) The ring S is locally free of finite rank over R (by [Lur17, Proposition 7.2.4.20], this is equivalent to saying that S is a flat and almost perfect R-module).
- (2) For every \mathbb{E}_{∞} -ring maps $R \to k$ with k a field, the vector space $\pi_0(k \otimes_R S)$ is an N^2 -dimensional k-vector space.

For (1), we know that $\pi_0 S$ is a projective $\pi_0 R$ -module and that S is a flat R-module, so by [Lur17, Proposition 7.2.2.18], S is a projective R-module. By [Lur17, Corollary 7.2.2.9], since $\pi_0 S$ is a finitely generated $\pi_0 R$ -module, S is a retract of a finitely generated free R-module, and is therefore locally free of finite rank.

For (2), by [Lur17, Corollary 7.2.1.23], since R and S are connective, we have $\pi_0(k \otimes_R S) \simeq k \otimes_{\pi_0 R} \pi_0 S$, which is an N^2 -dimensional k-vector space, as $\pi_0 S$ is a rank- N^2 free $\pi_0 R$ -module from above.

We next show that if N is invertible in $\pi_0 R$, then $\mathrm{fib}(f_N)$ is a locally constant sheaf. Since $\mathrm{fib}(f_N)$ is a spectral Deligne–Mumford stack, its associated functor of points $\mathrm{fib}(f_N)\colon \mathrm{CAlg}_R\to \mathcal{S}$ is nilcomplete and locally almost of finite presentation. By [KM85, Theorem 2.3.1], $\mathrm{fib}(f_N)|_{\mathrm{CAlg}_{\pi_0 R}^{\heartsuit}}$ is a locally constant sheaf. The desired result then follows from the lemma below.

Lemma 2.9. Let R be a connective \mathbb{E}_{∞} -ring. Let $\mathscr{F} \in Shv^{\text{\'et}}(CAlg^{cn}_R)$ be nilcomplete and locally almost of finite presentation. Suppose that $\mathscr{F}|_{(CAlg^{cn}_R)^{\heartsuit}}$ is a locally constant presheaf. Then \mathscr{F} is a (homotopy) locally constant sheaf (i.e., sheafification of a homotopy-locally constant presheaf).

Proof. Let us choose an étale cover $\{U_i^0\}$ of $\pi_0 R$ such that $\mathscr{F}|_{U_i^0}$ is a constant sheaf for each i. By [Lur17, Theorem 7.5.1.11], this corresponds to an étale cover $\{U_i\}$ of R such that $\pi_0 U_i = U_i^0$. For each i and n, we consider the diagram

$$\tau_{\leq 0}R \longrightarrow \tau_{\leq 0}U_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tau_{\leq n}R \longrightarrow \tau_{\leq n}U_i$$

which is a pushout diagram, since U_i is an étale R-algebra. This is a colimit diagram in $\tau_{\leq n} \mathrm{CAlg}_R$. Since \mathscr{F} is a sheaf locally almost of finite presentation, we then get a pushout diagram

$$\begin{split} \mathscr{F}(\tau_{\leq 0}R) & \longrightarrow \mathscr{F}(\tau_{\leq 0}U_i) \\ \downarrow & \qquad \qquad \downarrow \\ \mathscr{F}(\tau_{\leq n}R) & \longrightarrow \mathscr{F}(\tau_{\leq n}U_i) \end{split}$$

Without loss of generality, we may assume that each U_i is connective. Thus the values $\mathscr{F}(\tau_{\leq 0}U_i)$ is independent of i. This implies that $\mathscr{F}(\tau_{\leq n}U_i)$ are all equivalent. Since \mathscr{F} is nilcomplete, $\mathscr{F}(U_i) \simeq \varinjlim_n \mathscr{F}(\tau_{\leq n}U_i)$, and so all $\mathscr{F}(U_i)$ are equivalent.

2.2. Cartier divisors and an exercise of spectral Artin representability. In this subsection, we define relative effective Cartier divisors in the context of spectral algebraic geometry. We then use Lurie's spectral Artin representability theorem to prove that relative effective Cartier divisors are representable in certain cases. Let us first recall this spectral analogue of Artin's representability criterion in classical algebraic geometry.

Theorem 2.10 ([Lur18c, Theorem 18.3.0.1]). Let $X : \operatorname{CAlg^{cn}} \to \mathcal{S}$ be a functor. Suppose that we have a natural transformation $f : X \to \operatorname{Spec} R$, where R is a Noetherian \mathbb{E}_{∞} -ring with $\pi_0 R$ a Grothendieck ring. Given $n \geq 0$, X is representable by a spectral Deligne–Mumford n-stack which is locally almost of finite presentation over R if and only if the following conditions are satisfied:

- (1) For every discrete commutative ring A, the space X(A) is n-truncated.
- (2) The functor X is a sheaf for the étale topology.
- (3) The functor X is nilcomplete, infinitesimally cohesive, and integrable.
- (4) The functor X admits a connective cotangent complex L_X .
- (5) The natural transformation f is locally almost of finite presentation.

Given a locally spectrally ringed topos $X = (\mathcal{X}, \mathcal{O}_{\mathcal{X}})$, we can consider its functor of points

$$h_{\mathsf{X}} \colon \infty \mathrm{Top^{loc}_{CAlg}} \to \mathcal{S}, \quad \mathsf{Y} \mapsto \mathrm{Map}_{\infty \mathrm{Top^{loc}_{CAlg}}}(\mathsf{Y}, \mathsf{X})$$

In particular, by [Lur18c, Remark 3.1.1.2], a closed immersion $f:(\mathcal{Y}, \mathscr{O}_{\mathcal{Y}}) \to (\mathcal{X}, \mathscr{O}_{\mathcal{X}})$ of locally spectrally ringed topoi corresponds to a morphism $\mathscr{O}_{\mathcal{X}} \to f_*\mathscr{O}_{\mathcal{Y}}$ of sheaves over \mathcal{X} of connective \mathbb{E}_{∞} -rings such that $\pi_0\mathscr{O}_{\mathcal{X}} \to \pi_0 f_*\mathscr{O}_{\mathcal{Y}}$ is an epimorphism. We denote this epimorphism by α . Given a closed immersion $f: \mathsf{D} \to \mathsf{X}$ of spectral Deligne–Mumford stacks, we let $\mathcal{I}(\mathsf{D})$ denote $\ker(\alpha)$, called the ideal sheaf of D .

To prove relative representability for effective Cartier divisors below, we need the representability of Picard functors. Given a map $f: X \to \operatorname{Sp\'et} R$ of spectral Deligne–Mumford stacks, we can define a functor

$$\mathscr{P}ic_{X/R}: CAlg_R^{cn} \to \mathcal{S}, \quad R' \mapsto \mathscr{P}ic(\operatorname{Sp\'et} R' \times_{\operatorname{Sp\'et} R} X)$$

If f admits a section $x : \operatorname{Sp\'{e}t} R \to \mathsf{X}$, then pullback along x gives a natural transformation of functors $\mathscr{P}\mathrm{ic}_{\mathsf{X}/R} \to \mathscr{P}\mathrm{ic}_{R/R}$. We let

$$\mathscr{P}ic_{\mathsf{X}/R}^x \colon \mathrm{CAlg}_R^\mathrm{cn} \to \mathcal{S}$$

denote the fiber of this map.

Theorem 2.11 ([Lur18c, Theorem 19.2.0.5]). Let $f: X \to \operatorname{Sp\'et} R$ be a map of spectral algebraic spaces which is flat, proper, locally almost of finite presentation, geometrically reduced, and geometrically connected over an \mathbb{E}_{∞} -ring R. Suppose that $x: \operatorname{Sp\'et} R \to X$ is a section of f. Then the functor $\operatorname{\mathscr{P}ic}^x_{X/R}$ is representable by a spectral algebraic space which is locally of finite presentation over R.

In the classical setting, schemes representing relative effective Cartier divisors are open subschemes of Hilbert schemes [Kol96, Theorem 1.13]. However, in the derived setting, the Hilbert functor is representable by a spectral algebraic space [Lur04, Theorem 8.3.3], and it is hard to establish an analogous relationship. We will directly study relative effective Cartier divisors and their spectral moduli as follows.

Definition 2.12 (Relative effective Cartier divisor). Let X be a spectral Deligne–Mumford stack over a spectral Deligne–Mumford stack S. Define a *relative effective Cartier divisor of* X/S to be a closed immersion $D \to X$ such that it is flat, proper, locally almost of finite presentation and that the associated ideal sheaf of D over X is locally free of rank 1. We let CDiv(X/S) denote the ∞ -category of such closed immersions.

Remark 2.13. It is not hard to see that given any spectral Deligne–Mumford stack X over S, $\mathrm{CDiv}(X/S)$ is a Kan complex, since all objects are closed immersions of X. Let $D \to D'$ be a morphism. Then we have a diagram

By the definition of closed immersions, they are all equivalent to the same substack of X, so f is an isomorphism (cf. [Lur18c, Remark 3.1.1.2]).

Lemma 2.14. Let X/S be a spectral Deligne–Mumford stack as above, and $T \to S$ be a map of spectral Deligne–Mumford stacks. If we have a relative effective Cartier divisor $D \to X$, then D_T is a relative effective Cartier divisor of X_T .

Proof. This is straightforward to check. We simply note that D_T is a closed immersion of X_T [Lur18c, Corollary 3.1.2.3]. After base change, D_T is flat, proper, and locally almost of finite presentation over T. It remains to show that $\mathcal{I}(D_T)$ is a line bundle over X_T . Indeed, we have a fiber sequence

$$\mathcal{I}(\mathsf{D}) \to \mathscr{O}_{\mathcal{X}} \to \mathscr{O}_{\mathcal{D}}$$

By the flatness of D, pullback along the base change $f: \mathsf{T} \to \mathsf{S}$ gives another fiber sequence

$$f^*(\mathcal{I}(\mathsf{D})) \to \mathscr{O}_{\mathcal{X}_\mathsf{T}} \to \mathscr{O}_{\mathcal{D}_\mathsf{T}}$$

So we have that $\mathcal{I}(D_T)$ is just $f^*(\mathcal{I}(D))$, which is invertible.

Suppose that X is a spectral Deligne–Mumford stack over an affine spectral Deligne–Mumford stack S = Sp'et R. From Definition 2.12, we then have a functor

$$\operatorname{CDiv}_{X/R} : \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}, \quad R' \mapsto \operatorname{CDiv}(X_{R'}/R')$$

Our main goal in this section is to prove that this functor is representable when X/R is a spectral algebraic space satisfying certain conditions. To achieve this, we need some preparations for computing the cotangent complex of a relative effective Cartier divisor functor. The main issue has to do with square-zero extensions, for which we need the following facts about pushouts of two closed immersions.

By [Lur18c, Theorem 16.2.0.1 and Proposition 16.2.3.1], given a pushout square of spectral Deligne–Mumford stacks

$$X_{01} \xrightarrow{i} X_{0}$$

$$\downarrow^{j} \qquad \downarrow^{j'}$$

$$X_{1} \xrightarrow{i'} X$$

such that i and j are closed immersions, the induced square of ∞ -categories

$$\operatorname{QCoh}(\mathsf{X}_{01}) \longleftarrow \operatorname{QCoh}(\mathsf{X}_0)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\operatorname{QCoh}(\mathsf{X}_1) \longleftarrow \operatorname{QCoh}(\mathsf{X})$$

determines an embedding $\theta \colon \mathrm{QCoh}(X) \to \mathrm{QCoh}(X_0) \times_{\mathrm{QCoh}(X_{01})} \mathrm{QCoh}(X_1)$, which restricts to an equivalence

$$\operatorname{QCoh}(X)^{\operatorname{cn}} \to \operatorname{QCoh}(X_0)^{\operatorname{cn}} \times_{\operatorname{QCoh}(X_{01})^{\operatorname{cn}}} \operatorname{QCoh}(X_1)^{\operatorname{cn}}$$

between connective objects. Moreover, let $\mathscr{F} \in \mathrm{QCoh}(\mathsf{X})$ and set

$$\mathscr{F}_0 = j'^* \in \operatorname{QCoh}(\mathsf{X}_0), \quad \mathscr{F}_1 = i'^* \mathscr{F} \in \operatorname{QCoh}(\mathsf{X}_1)$$

Then \mathscr{F} is *n*-connective if and only if \mathscr{F}_0 and \mathscr{F}_1 are *n*-connective, and this statement is also true for the conditions of almost connective, Tor-amplitude $\leq n$, flat, perfect to order n, almost perfect, perfect, and locally free of finite rank, respectively.

Also, by [Lur18c, Theorem 16.3.0.1], we have a pullback square of ∞ -categories

$$\begin{array}{ccc} \operatorname{SpDM}_{/X} & \longrightarrow & \operatorname{SpDM}_{/X_0} \\ & & \downarrow & & \downarrow \\ \operatorname{SpDM}_{/X_1} & \longrightarrow & \operatorname{SpDM}_{/X_{01}} \end{array}$$

Let $f: Y \to X$ be a map of spectral Deligne–Mumford stacks. Let $Y_0 = X_0 \times_X Y$, $Y_1 = X_1 \times_X Y$, and let $f_0: Y_0 \to X_0$ and $f_1: Y_1 \to X_1$ be the projection maps. Then we have that f is locally almost of finite presentation if and only if both f_0 and f_1 are locally almost of finite presentation. The statement remains true for

the following individual conditions: locally of finite generation to order n, locally of finite presentation, étale, equivalence, open immersion, closed immersion, flat, affine, separated, and proper [Lur18c, Proposition 16.3.2.1].

Now, let $X = (\mathcal{X}, \mathscr{O}_{\mathcal{X}})$ be a spectral Deligne–Mumford stack, $\mathscr{E} \in \mathrm{QCoh}(\mathsf{X})^{\mathrm{cn}}$ be a connective quasi-coherent sheaf, and $\eta \in \mathrm{Der}(\mathscr{O}_{\mathcal{X}}, \Sigma\mathscr{E})$ be a derivation, i.e., a morphism $\eta \colon \mathscr{O}_{\mathcal{X}} \to \mathscr{O}_{\mathcal{X}} \oplus \Sigma\mathscr{E}$. We let $\mathscr{O}_{\mathcal{X}}^{\eta}$ denote the square-zero extension of $\mathscr{O}_{\mathcal{X}}$ by \mathscr{E} determined by η , so that we have a pullback diagram

$$\begin{array}{ccc}
\mathcal{O}_{\mathcal{X}}^{\eta} & \longrightarrow & \mathcal{O}_{\mathcal{X}} \\
\downarrow & & \downarrow^{\eta} \\
\mathcal{O}_{\mathcal{X}} & \xrightarrow{0} & \mathcal{O}_{\mathcal{X}} \oplus \Sigma \mathcal{E}
\end{array}$$

By [Lur18c, Proposition 17.1.3.4], $(\mathcal{X}, \mathscr{O}_{\mathcal{X}}^{\eta})$ is a spectral Deligne–Mumford stack, which we will denote by X^{η} . In the case of $\eta = 0$, we denote it by $\mathsf{X}^{\mathscr{E}} = (\mathcal{X}, \mathscr{O}_{\mathcal{X}} \oplus \mathscr{E})$. We then have a pushout square of spectral Deligne–Mumford stacks

$$\begin{array}{ccc}
X^{\mathscr{E}} & \longleftarrow & X \\
\uparrow & & \uparrow \\
X & \longleftarrow & X^{\Sigma\mathscr{E}}
\end{array}$$

such that f and g are closed immersions. In turn, by [Lur18c, Theorem 16.2.0.1], there is a pullback diagram

of categories spanned by almost connective quasi-coherent sheaves. Passing to homotopy fibers over some $\mathscr{F} \in \mathrm{QCoh}(\mathsf{X})^\mathrm{acn}$, we obtain an equivalence

$$\operatorname{QCoh}(\mathsf{X}^\mathscr{E})^{\operatorname{acn}} \times_{\operatorname{QCoh}(\mathsf{X})} \{\mathscr{F}\} \simeq \operatorname{Map}_{\operatorname{QCoh}(\mathsf{X})} \big(\mathscr{F}, \Sigma(\mathscr{E} \otimes \mathscr{F})\big)$$

as in [Lur18c, Proposition 19.2.2.2]. Similarly, by passing to the homotopy fibers over some $Z \in \mathrm{SpDM}_{/X}$ with $f: Z \to X$, we obtain the classification of first-order deformations of X:

$$\mathrm{SpDM}_{/\mathsf{X}^{\mathscr{E}}} \times_{\mathrm{SpDM}_{/\mathsf{X}}} \{\mathsf{Z}\} \simeq \mathrm{Map}_{\mathrm{QCoh}(\mathsf{Z})}(L_{\mathsf{Z}/\mathsf{X}}, \Sigma f^*\mathscr{E})$$

[Lur18c, Proposition 19.4.3.1].

Lemma 2.15. Let $f: X \to \operatorname{Sp\'et} R$ be a morphism of spectral Deligne–Mumford stacks, and M be a connective R-module. Consider the ∞ -category of Deligne–Mumford stacks X' equipped with a morphism $f': X' \to \operatorname{Sp\'et} (R \oplus M)$ that fits into the pullback diagram

$$\begin{array}{ccc} \mathsf{X} & \longrightarrow & \mathsf{X}' \\ f & & & \downarrow^{f'} \\ \mathsf{Sp\acute{e}t} \, R & \longrightarrow & \mathsf{Sp\acute{e}t} \, (R \oplus M) \end{array}$$

Then this ∞ -category is a Kan complex, and it is canonically homotopy equivalent to the mapping space $\operatorname{Map}_{\operatorname{QCoh}(X)}(L_{X/\operatorname{Sp\'et} R}, \Sigma f^*M)$. Moreover, if f is flat, proper, and locally almost of finite presentation, then so is f'.

Proof. We have a pullback square of \mathbb{E}_{∞} -rings

$$\begin{array}{cccc} R \oplus M & \longrightarrow & R \\ & & & & \downarrow^{(\mathrm{Id},0)} \\ R & \longrightarrow & R \oplus \Sigma M \end{array}$$

which corresponds to a pushout square of spectral Deligne-Mumford stacks

such that the morphisms $\operatorname{Sp\'et}(R \oplus \Sigma M) \to \operatorname{Sp\'et} R$ are closed immersions. This exhibits $\operatorname{Sp\'et}(R \oplus M)$ as an "infinitesimal thickening" of $\operatorname{Sp\'et} R$ determined by $R \xrightarrow{(\operatorname{Id},0)} R \oplus \Sigma M$.

The first part of this lemma follows from the formula for first-order deformations of [Lur18c, Proposition 19.4.3.1]. The second part follows from properties of pushout of two closed immersions [Lur18c, Corollary 16.4.2.1]. \Box

Lemma 2.16. Suppose that we are given a pushout diagram of spectral Deligne–Mumford stacks

$$X_{01} \xrightarrow{i} X_{0}$$

$$\downarrow^{j} \qquad \downarrow$$

$$X_{1} \longrightarrow X$$

where i and j are closed immersions. Let $f: Y \to X$ be a map of spectral Deligne–Mumford stacks. Let $Y_0 = X_0 \times_X Y$, $Y_1 = X_1 \times_X Y$, and let $f_0: Y_0 \to X_0$ and $f_1: Y_1 \to X_1$ be the projection maps. If f_0 and f_1 are both closed immersions and determine line bundles over Y_0 and Y_1 respectively, then f is a closed immersion and determines a line bundle over Y.

Proof. The statement concerning closed immersions follows from [Lur18c, Proposition 16.3.2.1]. For the line-bundle part, we note that by [Lur18c, Theorem 16.2.0.1 and Proposition 16.2.3.1], f determines a sheaf locally free of finite rank. To show that this sheaf is a line bundle, we proceed locally. By [Lur18c, Theorem 16.2.0.2], given a pullback diagram of connective \mathbb{E}_{∞} -rings

$$A \longrightarrow A_0$$

$$\downarrow \qquad \qquad \downarrow$$

$$A_1 \longrightarrow A_{01}$$

such that $\pi_0 A_0 \to \pi_0 A_{01} \leftarrow \pi_0 A_1$ are surjective, there is an equivalence $F: \operatorname{Mod}_{A_0}^{\operatorname{cn}} \to \operatorname{Mod}_{A_0}^{\operatorname{cn}} \times_{\operatorname{Mod}_{A_{01}}^{\operatorname{cn}}} \operatorname{Mod}_{A_1}^{\operatorname{cn}}$. Moreover, this is a symmetric monoidal equivalence. Indeed, since $F(M) = (A_0 \otimes_A M, A_1 \otimes_A M, A_{01} \otimes_{A_0} A_0 \otimes_A M \simeq A_{01} \otimes_{A_1} \otimes_A M \otimes_$

 $A_1 \otimes_A M$), we have $F(M \otimes_A N) \simeq F(M) \otimes F(N)$. By [Lur18c, Proposition 2.9.4.2], line bundles over A_1 , A_{01} , and A_0 determine invertible objects of $\operatorname{Mod}_{A_1}^{\operatorname{cn}}$, $\operatorname{Mod}_{A_{01}}^{\operatorname{cn}}$, and $\operatorname{Mod}_{A_1}^{\operatorname{cn}}$ respectively, which in turn determine an invertible object of $\operatorname{Mod}_A^{\operatorname{cn}}$, hence a line bundle over A.

Here is the main result of this section and the technical heart of the paper.

Theorem 2.17. Given a connective \mathbb{E}_{∞} -ring R, let E/R be a spectral algebraic space that is flat, proper, locally almost of finite presentation, geometrically reduced, and geometrically connected. Then the functor

$$\mathrm{CDiv}_{\mathsf{E}/R} \colon \mathrm{CAlg}_R^\mathrm{cn} \to \mathcal{S}$$

 $R' \mapsto \mathrm{CDiv}(\mathsf{E}_{R'}/R')$

is representable by a spectral algebraic space which is locally almost of finite presentation over $\operatorname{Sp\'{e}t} R$.

Proof. We apply Lurie's spectral Artin representability theorem and verify the 5 criteria from Theorem 2.10 one by one, in the case of n = 0, as follows:

- (1) Lemma 2.18;
- (2) Lemma 2.19;
- (3) Lemmas 2.20, 2.21, 2.22;
- (4) Lemma 2.24; and
- (5) Lemma 2.23.

These statements and their proofs occupy the rest of this section.

Lemma 2.18. For every discrete commutative R_0 , the space $CDiv_{\mathsf{E}/R}(R_0)$ is 0-truncated.

Proof. Recall that $CDiv_{E/R}(R_0)$ consists of closed immersions $D \to E \times_R R_0$ such that D is flat and proper over R_0 . Therefore, if R_0 is discrete, so are the objects D, and so $CDiv_{E/R}(R_0)$ is 0-truncated.

Lemma 2.19. The functor $CDiv_{E/R}$ is a sheaf for the étale topology.

Proof. Let $\{R' \to U_i\}_{i \in I}$ be an étale cover of Spét R', and U_{\bullet} be the associated Čech-simplicial object. We need to prove that the map

$$\mathrm{CDiv}_{\mathsf{E}/R}(R') \to \varprojlim_{\Delta} \mathrm{CDiv}_{\mathsf{E}/R}(U_{\bullet})$$

is an equivalence. Unwinding the definitions, we need only prove the following general result: Given a spectral Deligne–Mumford stack X/S and an étale cover $T_i \to S$, we have a homotopy equivalence

$$\operatorname{CDiv}(X/S) \to \varprojlim_{ \boldsymbol{\Delta}} \operatorname{CDiv}(X \times_S T_{\bullet})$$

This follows from the fact that our conditions on relative effective Cartier divisors from Definition 2.12 are local with respect to the étale topology.

Lemma 2.20. The functor $CDiv_{E/R}$ is nilcomplete.

Proof. By [Lur18c, Definition 17.3.2.1], we need to show that the canonical map

$$\mathrm{CDiv}_{\mathsf{E}/R}(R') \to \varprojlim_n \mathrm{CDiv}_{\mathsf{E}/R}(\tau_{\leq n}R')$$

is a homotopy equivalence for every \mathbb{E}_{∞} -ring R'. This can be deduced from the following: Given a flat, proper, locally almost of finite presentation spectral algebraic space X over a connective \mathbb{E}_{∞} -ring S, we have an equivalence

$$\mathrm{CDiv}(\mathsf{X}/S) \to \varprojlim_n \mathrm{CDiv}(\mathsf{X} \times_S \tau_{\leq n} S)$$

Let us now prove this equivalence. Given a relative effective Cartier divisor $D \to X$, we have the following commutative diagram

where we get an induced map $D \times_S \tau_{\leq n}S \to X \times_S \tau_{\leq n}S$. It is not hard to prove that this map is a closed immersion [Lur18c, Corollary 3.1.2.3]. Moreover, the map $D \times_S \tau_{\leq n}S \to \operatorname{Sp\'{e}t} \tau_{\leq n}S$ is flat, proper, and locally almost of finite presentation, since $D \times_S \tau_{\leq n}S$ is the base change of D along Sp\'{e}t $\tau_{\leq n}S \to \operatorname{Sp\'{e}t} S$. The associated ideal sheaf of $D \times_S \tau_{\leq n}S$ remains a line bundle over $X \times_S \tau_{\leq n}S$. Therefore $D \times_S \tau_{\leq n}S$ is a relative effective Cartier divisor of $X \times_S \tau_{\leq n}S$. Thus we define a functor

$$\theta \colon \mathrm{CDiv}(\mathsf{X}/S) \to \varprojlim_n \mathrm{CDiv}(\mathsf{X} \times_S \tau_{\leq n} S)$$

$$\mathsf{D} \mapsto \{\mathsf{D} \times_S \tau_{\leq n} S\}_n$$

This functor is fully faithful, since we have from [Lur18c, Proposition 19.4.1.2] an equivalence $\mathrm{SpDM}_{/S} \to \varprojlim_n \mathrm{SpDM}_{/\tau_{\leq n}S}$ defined by $\mathsf{X} \mapsto \mathsf{X} \times_S \tau_{\leq n}S$. For θ to be an equivalence, we need only show that it is essentially surjective.

Suppose $\{D_n \to X \times_S \tau_{\leq n} S\}_n$ is an object in $\varprojlim_n \mathrm{CDiv}(X \times_S \tau_{\leq n} S)$. It is a morphism in $\varprojlim_n \mathrm{SpDM}_{/\tau_{\leq n} S}$. By [Lur18c, Proposition 19.4.1.2], there is a morphism $D \to X$ in $\mathrm{SpDM}_{/S}$ such that $D \times_S \tau_{\leq n} S \to X \times_S \tau_{\leq n} S$ are equivalent to $D_n \to X \times_S \tau_{\leq n} S$.

Next, we need to show that $D \to X$ from above is a relative effective Cartier divisor. The conditions that $D \to X$ is flat, proper, and locally almost of finite presentation follow immediately from [Lur18c, Proposition 19.4.2.1]. It remains to prove that $D \to X$ is a closed immersion and determines a line bundle over X.

Without loss of generality, we may assume that $X = \operatorname{Sp\'et} B$ is affine, so that we have closed immersions $D_n \to (\operatorname{Sp\'et} B) \times_S \tau_{\leq n} S \simeq \operatorname{Sp\'et} (B \otimes_S \tau_{\leq n} S)$, the last equivalence from [Lur18c, Proposition 1.4.11.1(3)]. By [Lur18c, Theorem 3.1.2.1], each $D \times_S \tau_{\leq n} S$ is equivalent to $\operatorname{Sp\'et} B'_n$ for some B'_n such that $\pi_0(B \otimes_S \tau_{\leq n} S) \to \pi_0 B'_n$ is surjective. Since $\tau_{\leq n+1} S \to B'_{n+1}$ is flat, we have

Spét
$$B'_n = (\operatorname{Spét} B'_{n+1}) \times_{\tau_{\leq n+1}S} \tau_{\leq n}S = \operatorname{Spét} (B'_{n+1} \otimes_{\tau_{\leq n+1}S} \tau_{\leq n}S)$$

 $\simeq \operatorname{Spét} \tau_{\leq n} B'_{n+1}$

Thus we obtain a spectrum B' such that $\operatorname{Sp\'et} \tau_{\leq n} B' \simeq \operatorname{Sp\'et} B'_n = \mathsf{D} \times_S \tau_{\leq n} S$. Consequently, $\mathsf{D} = \operatorname{Sp\'et} B'$ and $\pi_0 B \to \pi_0 B'$ is surjective, and so $\mathsf{D} = \operatorname{Sp\'et} B' \to \operatorname{Sp\'et} B = \mathsf{X}$ is a closed immersion.

Finally, to prove that the associated ideal sheaf of D is a line bundle, we note the pullback diagrams

$$I_n \longrightarrow B \otimes_S \tau_{\leq n} S$$

$$\downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow B' \otimes_S \tau_{\leq n} S$$

where each I_n is an invertible module over $B \otimes_S \tau_{\leq n} S = \tau_{\leq n} B$. Passing to inverse limits, we obtain a pullback diagram

$$\varprojlim I_n \longrightarrow B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow B'$$

Consequently, we have $I(D) \simeq \varprojlim I_n$. Now, by nilcompleteness of the Picard functor $\mathscr{P}ic_{X/S}$ from [Lur18c, Proposition 19.2.4.7(1)], I(D) is an invertible B-module. Therefore the associated ideal sheaf of D is a line bundle over X.

Lemma 2.21. The functor $CDiv_{E/R}$ is infinitesimally cohesive.

Proof. This follows from Proposition 2.16 and [Lur18c, Proposition 16.3.2.1].

Lemma 2.22. The functor $CDiv_{E/R}$ is integrable.

Proof. Given a local Noetherian \mathbb{E}_{∞} -ring R' which is complete with respect to its maximal ideal $\mathfrak{m} \subset \pi_0 R'$, we need to prove that the inclusion functor $\operatorname{Spf} R' \hookrightarrow \operatorname{Spec} R'$ induces a homotopy equivalence

$$\operatorname{Map}_{\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}, \mathcal{S})}(\operatorname{Spec} R', \operatorname{CDiv}_{\mathsf{E}/R}) \to \operatorname{Map}_{\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}, \mathcal{S})}(\operatorname{Spf} R', \operatorname{CDiv}_{\mathsf{E}/R})$$

This can be deduced from the following result: Given a flat, proper, and separated spectral algebraic space X locally almost of finite presentation over a connective local Noetherian \mathbb{E}_{∞} -ring S which is complete with respect to its maximal ideal, we have an equivalence

$$CDiv(X/S) \simeq CDiv(X \times_{Sp\acute{e}t, S} Spf S)$$

Indeed, let $\operatorname{Hilb}(X/S)$ denote the full subcategory of $\operatorname{SpDM}_{/X}$ consisting of those $D \to X$, such that each $D \to X$ is a closed immersion and is flat, proper, and locally almost of finite presentation. Then by the formal GAGA theorem [Lur18c, Corollary 8.5.3.4] and the base-change properties of being flat, proper, and locally almost of finite presentation, we have $\operatorname{Hilb}(X/S) \simeq \operatorname{Hilb}(X \times_{\operatorname{Sp\acute{e}t} S} \operatorname{Sp\acute{e}t} S)$.

To prove the above equivalence for relative effective Cartier divisors, we need to further check that $D \to X$ associates a line bundle over X if and only if $D \times_{\operatorname{Sp\acute{e}t} S} \operatorname{Spf} S$ associates a line bundle over $X \times_{\operatorname{Sp\acute{e}t} S} \operatorname{Spf} S$. Note that the morphism $f: X \times_{\operatorname{Sp\acute{e}t} S} \operatorname{Spf} S \to X$ is flat by [Lur18c, Corollary 7.3.6.9], and so we have $\mathcal{I}(D \times_{\operatorname{Sp\acute{e}t} S} \operatorname{Spf} S) = \mathcal{I}(f^*D) \simeq f^*\mathcal{I}(D)$ over the pullback square

$$\begin{array}{ccc} \mathsf{D} \times_{\operatorname{Sp\acute{e}t} S} \operatorname{Spf} S & \longrightarrow \mathsf{D} \\ & & \downarrow \\ & & \downarrow \\ \mathsf{X} \times_{\operatorname{Sp\acute{e}t} S} \operatorname{Spf} S & \xrightarrow{f} \mathsf{X} \end{array}$$

By [Lur18c, proof of Proposition 19.2.4.7], we have an equivalence

$$\operatorname{QCoh}(X/S)^{\operatorname{aperf,cn}} \simeq \operatorname{QCoh}(X \times_{\operatorname{Sp\'et} S} \operatorname{Spf} S)^{\operatorname{aperf,cn}}$$

We need only restrict to the subcategories spanned by invertible objects via [Lur18c, Proposition 2.9.4.2] to complete the proof. \Box

Lemma 2.23. The functor $CDiv_{E/R}$ is locally almost of finite presentation over Spec R.

Proof. By [Lur18c, Definition 17.4.1.1(b)], we need to prove that

$$\operatorname{CDiv}_{\mathsf{E}/R} \colon \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}, \quad R' \mapsto \operatorname{CDiv}(\mathsf{E}_{R'}/R')$$

commutes with filtered colimits when restricted to each $\tau_{\leq n} CAlg_R^{cn}$. We note that $CDiv(\mathsf{E}_{R'}/R')$ is a full subcategory of $SpDM_{/(\mathsf{E}_{R'}\to Sp\acute{e}t\,R')}$ and first consider instead the functor

$$\operatorname{Var}^+ : \operatorname{CAlg}_R^{\operatorname{cn}} \to \widehat{\operatorname{Cat}}_{\infty}, \quad R' \mapsto \operatorname{Var}^+_{/(\mathsf{E}_{R'} \to \operatorname{Sp\'{e}t} R')}$$

where $\operatorname{Var}^+_{/(\mathsf{E}_{R'} \to \operatorname{Sp\'et} R')}$ consists of diagrams

such that $D \to \operatorname{Sp\'et} R'$ is flat, proper, and locally almost of finite presentation. Then by [Lur18c, Proposition 19.4.2.1], this functor commutes with filtered colimits when restricted to $\tau_{\leq n}\operatorname{CAlg}_R^{\operatorname{cn}}$. It remains to verify that when $\{D_i \to \mathsf{E}_{i,R'}\}_{i\in I}$ are closed immersions and determine line bundles over $\{\mathsf{E}_{i,R'}\}$, $\varinjlim_{i\in I} \mathsf{D}_i \to \varinjlim_{i\in I} \mathsf{E}_{i,R'}$ are closed immersions and determine line bundles over $\varinjlim_{i\in I} \mathsf{E}_{i,R'}$. As we recalled earlier in this subsection, this follows from properties of closed immersions and the property of Picard functors that they are locally almost of finite presentation. \square

Lemma 2.24. The functor $CDiv_{E/R}$ admits a cotangent complex which is connective and almost perfect.

Proof. Let S be a connective R-algebra, $\eta \in \mathrm{CDiv}_{\mathsf{E}/R}(S)$, and M be a connective S-module. We then have a pullback diagram

$$F_{\eta}(M) \longrightarrow \mathrm{CDiv}_{\mathsf{E}/R}(S \oplus M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{\eta\} \longrightarrow \mathrm{CDiv}_{\mathsf{E}/R}(S)$$

From this we obtain a functor

$$F_n : \mathrm{Mod}_S \to \mathcal{S}, \quad M \mapsto F_n(M)$$

We first need to prove that the above functor is corepresentable. Here, η is to a morphism $D \to E \times_R S$, and $E \times_R (S \oplus M)$ is a square-zero extension of $E \times_R S$.

Thus by the classification of first-order deformations [Lur18c, Proposition 19.4.3.1], the space of spectral algebraic spaces D' which fit into the pullback diagram

$$\begin{array}{ccc}
\mathsf{D} & \longrightarrow & \mathsf{D}' \\
\downarrow^{\eta} & & \downarrow \\
\mathsf{E} \times_R S & \longrightarrow & \mathsf{E} \times_R (S \oplus M) \\
\downarrow^p & & \downarrow \\
\mathsf{Sp\'et} S & \longrightarrow & \mathsf{Sp\'et} (S \oplus M)
\end{array}$$

is equivalent to $\operatorname{Map}_{\operatorname{QCoh}(\mathsf{D})}(L_{\mathsf{D}/(\mathsf{E}\times_R S)}, \Sigma \eta^*(p^*M))$. Pushing forward along $p \circ \eta$, by [Lur18c, Proposition 6.4.5.3], we then have

$$\operatorname{Map}_{\operatorname{QCoh}(\mathsf{D})} \left(L_{\mathsf{D}/(\mathsf{E} \times_R S)}, \Sigma \eta^*(p^*M) \right) \simeq \operatorname{Map}_{\operatorname{QCoh}(\operatorname{Sp\'{e}t} S)} \left(\Sigma^{-1} p_+(\eta_+ L_{\mathsf{D}/(\mathsf{E} \times_R S)}), M \right)$$

By Lemma 2.16, any such $\mathsf{D}' \to \mathsf{E} \times_R (S \oplus M)$ is a closed immersion and determines a line bundle over $\mathsf{E} \times_R (S \oplus M)$. Since the diagram

$$\begin{array}{c} \mathsf{D} & \longrightarrow \mathsf{D}' \\ \downarrow & & \downarrow \\ \mathsf{Sp\acute{e}t} \, S & \longrightarrow \mathsf{Sp\acute{e}t} \, (S \oplus M) \end{array}$$

is a pullback square, D' is a square-zero extension of D. By [Lur18c, Proposition 16.3.2.1], D' \rightarrow Spét $(S \oplus M)$ is flat, proper, and locally almost of finite presentation. Combining these facts, we find that

$$F_{\eta}(M) = \operatorname{Map}_{\operatorname{QCoh}(\operatorname{Sp\acute{e}t} S)} \left(\Sigma^{-1} p_{+}(\eta_{+} L_{\mathsf{D}/(\mathsf{E} \times_{R} S)}), M \right)$$

Consequently, the functor $\mathrm{CDiv}_{\mathsf{E}/R}$ satisfies condition (a) from [Lur18c, Example 17.2.4.4]. Condition (b) therein follows from the compatibility of $(p \circ \eta)_+$, as a left adjoint of the functor $(p \circ \eta)^*$, with base change (cf. [Lur18c, Construction 6.4.5.1 and Proposition 6.4.5.3]). Therefore the functor $\mathrm{CDiv}_{\mathsf{E}/R}$ admits a cotangent complex $L_{\mathrm{CDiv}_{\mathsf{E}/R}}$ satisfying $\eta^*L_{\mathrm{CDiv}_{\mathsf{E}/R}} = \Sigma^{-1}p_+(\eta_+L_{\mathsf{D}/(\mathsf{E}\times_R S)})$. Since the quasicoherent sheaf $L_{\mathsf{D}/(\mathsf{E}\times_R S)}$ is connective and almost perfect [Lur18c, Proposition 17.1.5.1(3)], the S-module $\Sigma^{-1}p_+(\eta_+L_{\mathsf{D}/(\mathsf{E}\times_R S)})$ is (-1)-connective.

Next, we show that $L_{\text{CDiv}_{\text{E}/R}}$ is almost perfect. This follows from [Lur18c, 17.4.2.2] and Lemma 2.23.

Finally, we show that it is connective. As above, let S be a connective R-algebra and $\eta \in \mathrm{CDiv}_{\mathsf{E}/R}(S)$. We need to prove that $M_{\eta} := \eta^* L_{\mathrm{CDiv}_{\mathsf{E}/R}} \in \mathrm{Mod}_S$ is connective. We already knew that M_{η} is (-1)-connective and almost perfect. In particular, the homotopy group $\pi_{-1}M_{\eta}$ is a finitely generated π_0S -module. To prove that it in fact vanishes, by Nakayama's lemma, we note that this is equivalent to proving that

$$\pi_{-1}(\kappa \otimes_{\pi_0 S} M_{\eta}) \simeq \operatorname{Tor}_0^{\pi_0 S}(\kappa, \pi_{-1} M_{\eta})$$

equals 0 for every residue field κ of $\pi_0 S$. Thus we may replace S by κ and assume κ is an algebraically closed field.

Let $A = \kappa[\epsilon]/(\epsilon^2)$. Unwinding the definitions, we find that the dual space $\operatorname{Hom}_{\kappa}(\pi_{-1}M_{\eta},\kappa)$ can be identified with the set of automorphisms of the base change

 η_A such that they restrict to be the identity of η . It remains to prove that this set is trivial. This boils down to the following assertion in classical algebraic geometry.

Let X/κ be a scheme, L be a line bundle over X, and assume L_A is also a line bundle over X_A . If f is an automorphism of L_A such that f|L is the identity on L, then f is the identity.

This can be proved, mutatis mutandis, as in the last part of [Lur18a, proof of Proposition 2.2.6].

3. Level structures for spectral abelian varieties

For spectral Deligne–Mumford stacks, Theorem 2.17 gives the relative representability (with respect to a fixed E/R) of relative effective Cartier divisors (over Spét R). Their analogues in classical algebraic geometry are crucial to Drinfeld's approach to arithmetic moduli of elliptic curves with level structure over \mathbf{Z} , as developed in [KM85], which applies nicely at primes dividing the level. In this section, we define level structures on spectral abelian varieties and related objects from effective Cartier divisors. The applications we aim at are of a similar nature to those considered by the earlier authors, i.e., incorporating ramification or regardless of failure of étaleness, which we will discuss in the next two sections.

3.1. Level structures on elliptic curves. Let C be a one-dimensional smooth commutative group scheme over a base scheme S, and A be an abstract finite abelian group. Recall from [KM85, 1.5.1] that a homomorphism of abstract groups

$$\phi: A \to C(S)$$

is said to be an A-structure on C/S if the effective Cartier divisor $\sum_{a\in A} [\phi(a)]$ is a subgroup scheme of C/S.

The following result gives the relative representability of moduli problems of level structures.

Proposition 3.1 ([KM85, Proposition 1.6.2]). Let C be a one-dimensional smooth commutative group scheme over S. Then the functor

$$\operatorname{Level}_{C/S}^A \colon \operatorname{Sch}_S \to \operatorname{Set}$$

$$T \mapsto the \ set \ of \ level\text{-}A \ structures \ on \ C_T/T$$

is represented by a closed subscheme of $\operatorname{Hom}_{\operatorname{Grp}/S}(A,C)$.

Definition 3.2. Let R be an \mathbb{E}_{∞} -ring and E/R be a spectral elliptic curve. A (derived) level-A structure on E is a pair (D,ϕ) , where $\mathsf{D}\to\mathsf{E}$ is a relative effective Cartier divisor, and $\phi:A\to\mathsf{E}^\heartsuit(\pi_0R)$ is an A-structure on $\mathsf{E}^\heartsuit/\pi_0R$ as above, such that the underlying morphism $\mathsf{D}^\heartsuit\to\mathsf{E}^\heartsuit$, necessarily a closed immersion, equals the inclusion of the associated relative effective Cartier divisor $\sum_{a\in A} [\phi(a)]$ into E^\heartsuit . We denote by Level $(A,\mathsf{E}/R)$ the ∞ -category of level-A structures on E/R , whose objects can be viewed as relative effective Cartier divisors satisfying an extra property.

Given a spectral elliptic curve E/R , the ∞ -category $\mathsf{Level}(A,\mathsf{E}/R)$ is an ∞ -groupoid, since it is a full subcategory of $\mathsf{CDiv}(\mathsf{E}/R)$, which is an ∞ -groupoid (see Remark 2.13).

We note that derived level structures are stable under base change, as follows.

Lemma 3.3. Let E/R be a spectral elliptic curve, $S = \operatorname{Sp\acute{e}t} R$, and (D, ϕ) be a level structure. Suppose that $T \to S$ is a morphism of nonconnective spectral Deligne–Mumford stacks. Then the induced pair (D_T, ϕ_T) is a level structure on E_T/T .

Proof. The induced closed immersion $D_T \to E_T$ is a relative effective Cartier divisor by Lemma 2.14. It remains to check that $\phi_T : A \to E^{\heartsuit}(T^{\heartsuit}) = E_T^{\heartsuit}(T^{\heartsuit})$ is a classical level structure, so that D_T^{\heartsuit} is the associated classical relative effective Cartier divisor. This follows from the base-change property of classical level structures observed in [KM85, Section 1.5.1].

We next recall a result on when a divisor becomes a (finite flat) subgroup.

Proposition 3.4 ([KM85, Corollary 1.3.7]). Given a smooth curve C/S which is a group scheme over a scheme S along with a relative effective Cartier divisor D of C, there exists a closed subscheme Z of S with the property that, for any $T \to S$, D_T is a subgroup of C_T if and only if $T \to S$ factors through Z.

Here we have an analogous incidence object for the relation " D^{\heartsuit} is a subgroup."

Lemma 3.5. Let $E/\operatorname{Sp\'et} R$ be a spectral elliptic curve and $D \to E$ be a relative effective Cartier divisor. Then there exists a closed spectral Deligne–Mumford substack $\operatorname{Sp\'et} B \subset \operatorname{Sp\'et} R$ satisfying the following universal property:

Given any $R' \in \operatorname{CAlg}_R^{\operatorname{cn}}$, $\mathsf{D}_{R'}^{\heartsuit}$ is a subgroup of $\mathsf{E}_{R'}^{\heartsuit}$ if and only if $R \to R'$ factors through B.

Proof. By the preceding proposition, if $\mathsf{D}_{R'}^{\heartsuit}/\pi_0 R'$ is a subgroup of $\mathsf{E}_{R'}^{\heartsuit}/\pi_0 R'$, the morphism $\operatorname{Spec} \pi_0 R' \to \operatorname{Spec} \pi_0 R$ must factor through a closed subscheme $Z = \operatorname{Spec} B_0$ of $\operatorname{Spec} \pi_0 R$. This corresponds to a closed spectral subscheme $\operatorname{Sp\acute{e}t} B$ of $\operatorname{Sp\acute{e}t} R$. In fact, since the map $R \to R'$ satisfies that $\pi_0 R \to \pi_0 R'$ factors through $\pi_0 R/I$ for some ideal I of $\pi_0 R$, we obtain a factorization of $R \to R'$ through $\Gamma_I R$ (see [Lur18c, Chapter 7, esp. Definition 7.1.2.1] for details about I-nilpotent R-modules). Conversely, suppose that $R \to R'$ factors through B. Then $\mathscr{O}_{\operatorname{Sp\acute{e}t} R'}$ vanishes on some $I \subset \pi_0 R$. In other words, we have that $\pi_0 R \to \pi_0 R'$ factors through $\pi_0 R/\sqrt{I}$. This is equivalent to $\operatorname{Spec} \pi_0 R' \to \operatorname{Spec} \pi_0 R$ factoring through $\operatorname{Spec} \pi_0 R/I = \operatorname{Spec} B_0 = Z$, and so $\mathsf{D}_{R'}^{\heartsuit}$ is a subgroup of $\mathsf{E}_{R'}^{\heartsuit}$.

Below is our main result in this subsection on relative representability of level structures over the spectral moduli stack of spectral elliptic curves.

Theorem 3.6. Let E/R be a spectral elliptic curve and A be an abstract finite abelian group. Then the functor

$$\operatorname{Level}_{\mathsf{E}/R}^A \colon \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}$$

$$R' \mapsto \operatorname{Level}(A, \mathsf{E}_{R'}/R')$$

is represented by a closed substack S(A) of $CDiv_{E/R}$. Moreover, $S(A) = Sp\acute{e}t \mathcal{P}_{E/R}$ for some \mathbb{E}_{∞} -ring $\mathcal{P}_{E/R}$, which is locally almost of finite presentation over R.

Proof. By definition, the functor $\text{Level}_{\mathsf{E}/R}^A$ is a subfunctor of the representable functor $\text{CDiv}_{\mathsf{E}/R}$ from Theorem 2.17. In view of Lemma 3.5, we consider a spectral Deligne–Mumford stack GrpCDiv defined by the pullback diagram of spectral

Deligne-Mumford stacks

$$\begin{array}{ccc} \operatorname{GrpCDiv}_{\mathsf{E}/R} & \longrightarrow \operatorname{CDiv}_{\mathsf{E}/R} \\ & & \downarrow & \\ & & \downarrow & \\ \operatorname{Sp\'et} B & \longrightarrow & \operatorname{Sp\'et} R \end{array}$$

where B is associated to the universal object $\mathsf{D}_{\mathrm{univ}} \to \mathsf{E} \times_R \mathrm{CDiv}_{\mathsf{E}/R}$. We verify that $\mathrm{GrpCDiv}_{\mathsf{E}/R}$ valued on an R-algebra R' is the space of relative effective Cartier divisors D of $\mathsf{E}_{R'}$ such that D^{\heartsuit} is a finite flat subgroup of $\mathsf{E}_{R'}^{\heartsuit}$.

Moreover, there is a clopen substack $\mathrm{CDiv}_{\mathsf{E}/R}^A$ of $\mathrm{Grp}\mathrm{CDiv}_{\mathsf{E}/R}$ whose value on an R-algebra R' is the space of relative effective Cartier divisors D of $\mathsf{E}_{R'}$ such that D^\heartsuit is a subgroup of $\mathsf{E}_{R'}^\heartsuit$ finite locally free over $\pi_0 R'$ of rank equal to #A. We then evoke [KM85, Proposition 1.6.5] and obtain $\mathsf{S}(A)$ representing Level $^A_{\mathsf{E}/R}$ as a closed substack of $\mathrm{CDiv}_{\mathsf{E}/R}^A$ similarly as in Lemma 3.5.

To prove the remaining statement, we consider the morphism $S(A) \to Sp\acute{e}t R$, both being spectral algebraic spaces. By [Lur18c, Remark 5.2.0.2], a morphism between spectral algebraic spaces is finite if and only if its underlying morphism between ordinary algebraic spaces is finite in the sense of classical algebraic geometry. Thus we need only prove that $S(A)^{\heartsuit}$ is finite over $Spec \pi_0 R$. This is precisely the classical case: $S(A)^{\heartsuit}$ is the representing object of the classical level-A structures, which is a finite $\pi_0 R$ -scheme of finite presentation by [KM85, Corollary 1.6.3].

- 3.2. Level structures on p-divisible groups. Before we move on and introduce derived level structures for spectral p-divisible groups, let us first recall some classical facts needed about level structures of commutative finite flat group schemes.
- 3.2.1. Classical finite flat group schemes. Let S be a scheme and X/S be a finite flat S-scheme of finite presentation and rank N. It can be proved that X/S is finite locally free of rank N. This means that for every affine scheme $\operatorname{Spec} R \to S$, the pullback scheme $X \times_S \operatorname{Spec} R$ over $\operatorname{Spec} R$ has the form $\operatorname{Spec} R'$, where R' is an R-algebra which is locally free of rank N. For an element $f \in R'$ acting on R' by multiplication, define an R-linear endomorphism of R'. Because R' is locally free of rank N, multiplication by f has a characteristic polynomial

$$\det(T - f) = T^N - \operatorname{trace}(f) T^{N-1} + \dots + (-1)^N \operatorname{norm}(f)$$

Recall the following definition from [KM85, 1.8.2]. Let $\{P_1, \ldots, P_N\}$ be a set of N points not necessarily distinct in X(S). We call it a *full set of sections of* X/S if one of the following two equivalent conditions is satisfied.

(1) For any Spec $R \to S$ and $f \in R' = H^0(X_R, \mathcal{O})$, we have

$$\det(T - f) = \prod_{i=1}^{N} (T - f(P_i))$$

(2) For any Spec $R \to S$ and $f \in R' = H^0(X_R, \mathcal{O})$, we have

$$norm(f) = \prod_{i=1}^{N} f(P_i)$$

Given N not necessarily distinct points P_1, \ldots, P_N in X(S), we have a morphism

$$\mathscr{O}_X \to \bigotimes_i (P_i)_* (\mathscr{O}_S)$$

of sheaves over X. It is not hard to see that this morphism is surjective and defines a closed subscheme D of X which is flat and proper over S. Thus, given an abstract finite abelian group A and a map $\phi: A \to X(S)$ of sets, we can define a closed subscheme D of X by the sheaf $\bigotimes_{a \in A} \phi(a)_* \mathscr{O}_S$.

Lemma 3.7. Given a finite flat S-scheme Z of finite presentation, Hom(A, Z) is an open subscheme of $Hilb_{Z/S}$.

Proof. Let $T \to S$ be an S-scheme. For any $D \to Y := T \times_S Z$ in Hilb(Y), we need to prove that the set of points $t \in T$ over which $D_t \to Y_t$ comes from the closed subscheme associated to $\phi \colon A \to Z(T) = Y(T)$ is open in T. Since D is the closed subscheme defined by $\mathscr{O}_Y \to \mathscr{O}_D$, if D_t comes from $\mathscr{O}_{Y,t} \to \bigotimes_{a \in A} \phi(a)_* \mathscr{O}_{T,t}$, then by the definition of a stalk, there exists an open subset U of T such that $t \in U$ and D_U is defined by $\mathscr{O}_Y|_U \to \bigotimes_{a \in A} \phi(a)_* \mathscr{O}_T|_U$.

Suppose that G/S is a finite flat commutative group scheme of finite presentation and A is an abstract finite abelian group of order N. Let K be a finite flat S-subgroup-scheme of G locally free of rank N, and $\phi: A \to G(S)$ be a homomorphism landing in K(S). Recall from [KM85, Remark 1.10.10] that the pair (K, ϕ) is called an A-structure on G/S if the N points $\phi(a), a \in A$ form a full set of sections of K.

Lemma 3.8. Suppose that G/S is a finite flat commutative group scheme of finite presentation and $K \subset G$ is a closed subscheme which is finite flat and finite presentation. Then there exists a closed subscheme $Z \subset S$ such that given any morphism of schemes $T \to S$, K_T is a subgroup scheme of G_T if and only if the morphism $T \to S$ factors through Z.

Proof. This is an analogue of [KM85, Corollary 1.3.7] for finite flat group schemes. Following the proof strategy there, we need only prove: Given finite flat closed subschemes K_1, K_2 of G, there exists a closed subscheme $Z \subset S$ such that given any morphism of schemes $T \to S$, $(K_1)_T$ is a closed subscheme of $(K_2)_T$ if and only if the morphism $T \to S$ factors through Z (cf. [KM85, Lemma 1.3.4(1)]).

Since we consider the case of finite flat group schemes of finite presentation and the question is local on S, we are reduced to proving:

Let B be a finite free A-algebra, and $\operatorname{Spec} B/I_1$, $\operatorname{Spec} B/I_2$ be two closed subschemes of $\operatorname{Spec} B$ such that B/I_1 and B/I_2 are also free. Then there exits a closed subscheme $\operatorname{Spec} W$ of $\operatorname{Spec} A$ such that given any $A \to A'$, $\operatorname{Spec} (B/I_1 \otimes_A A')$ is a closed subscheme of $\operatorname{Spec} (B/I_2 \otimes_A A')$ if and only if $A \to A'$ factors through W.

Let $\bar{1} \in B/I_2$ be the identity. Since B/I_1 is a free A-module of finite rank, the image of $\bar{1}$ under the map

$$B/I_2 \rightarrow B/I_2 \otimes_A B/I_1$$

can be written as $\sum_{i=1}^{d} r_i e_i$, where d is the rank and $\{e_i\}_{1 \leq i \leq d}$ is an A-basis of $B/I_2 \otimes_A B/I_1$. It is not hard to see that $V(\{r_1, \cdots, r_d\})$ is the desired closed subscheme of Spec A.

Proposition 3.9. Hypotheses and notations as above, the functor A-Str(G/S) on S-schemes defined by

$$T \mapsto \{ (K \subset G_T, \phi : A \to G(T)) \mid (K, \phi) \text{ is an } A\text{-structure on } G_T \}$$

is representable by a finite S-scheme of finite presentation.

Proof. This is a variant of [KM85, Lemma 1.10.11 and Proposition 1.10.13 (1)]. Let us proceed in 3 steps.

First, the functor

$$T \mapsto \{D_T \subset G_T \mid D_T \text{ is a closed subscheme finite flat over } T \text{ of rank } N\}$$

is representable by a finite S-scheme $\mathrm{Hilb}_{G/S}^N$ (a Grassmannian).

Second, applying the preceding lemma to the universal example over $\operatorname{Hilb}_{G/S}^N$, we obtain a finite S-scheme Z classifying finite flat subgroup schemes of G locally free of rank N.

Third, given such a subgroup scheme $K \subset G$, observe that the functor

$$T \mapsto \{\phi \colon A \to G(T) \mid (K_T, \phi) \text{ is an } A\text{-level structure on } G_T\}$$

is equivalent to the functor

$$T \mapsto \{\phi \colon A \to K(T) \mid \phi \text{ is an } A\text{-generator of } K_T\}$$

(cf. [KM85, Remark 1.10.10 and 1.10.5]). Since the latter is representable by a finite S-scheme of finite presentation by [KM85, Proposition 1.10.13 (1)], we further apply this representability to the universal example $K_{\rm univ} \subset G_Z$ to complete the proof.

3.2.2. Spectral finite flat group schemes. Let R be a connective \mathbb{E}_{∞} -ring and G be a commutative finite flat group scheme over R. By the definition of finite-flatness, we have $G = \operatorname{Sp\'et} B$ for a finite flat R-algebra B [Lur18a, Definition 6.1.2]. We let $\operatorname{Hilb}(G/R)$ denote the full subcategory of $\operatorname{SpDM}_{/G}$ spanned by those $\mathsf{D} \to G$ such that $\mathsf{D} \to G$ is a closed immersion of spectral Deligne–Mumford stacks and that the composite $\mathsf{D} \to G \to \operatorname{Sp\'et} R$ is flat, proper, and locally almost of finite presentation. Then $\operatorname{Hilb}(G/R)$ is equivalent to the ∞ -category of diagrams of \mathbb{E}_{∞} -rings

such that S is flat, proper, and locally almost of finite presentation over R subject to certain additional conditions. It is not hard to see that Hilb(G/R) is a Kan complex (cf. Remark 2.13), so that we can define a functor

$$\operatorname{Hilb}_{G/R} : \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}, \quad R' \mapsto \operatorname{Hilb}(G_{R'}/R')$$

The representability of this functor is a special case of [Lur04, Theorem 8.3.3], which we record below. Like that theorem and Theorem 2.17, it can be deduced from the spectral Artin representability theorem 2.10.

Theorem 3.10. Suppose that G is a commutative finite flat group scheme over a connective \mathbb{E}_{∞} -ring R. Then $\mathrm{Hilb}_{G/R}$ is representable by a spectral Deligne–Mumford stack which is locally almost of finite presentation over R.

Corollary 3.11. Hypotheses and notations as above, for each positive integer N, there exists a substack $\mathrm{Hilb}_{G/R}^N$ of $\mathrm{Hilb}_{G/R}$ such that given any R' in $\mathrm{CAlg}_R^{\mathrm{cn}}$, the space $\mathrm{Hilb}_{G/R}^N(R') =: \mathrm{Hilb}^N(G_{R'}/R') \subset \mathrm{Hilb}(G_{R'}/R')$ consists of those $D \to G_{R'}$ locally free of rank N over R'.

Definition 3.12. Let R be a connective \mathbb{E}_{∞} -ring and G be a spectral commutative finite flat group scheme over R. Given an abstract finite abelian group A of order N, a level-A structure on G is a pair (D,ϕ) , where $i\colon\mathsf{D}\to G$ is an object in $\mathsf{Hilb}^N(G/R)$ and $\phi\colon A\to G^{\heartsuit}(\pi_0R)$ is a homomorphism, such that $(\mathsf{D}^{\heartsuit},\phi)$ is an A-structure in the sense of [KM85, Remark 1.10.10], i.e., $\pi_0 i_* \mathscr{O}_{\mathsf{D}} = \bigotimes_{a\in A} \phi(a)_* \mathscr{O}_{\mathrm{Spec}\,\pi_0R}$. We denote by $\mathsf{Level}(A,G/R)$ the ∞ -category of level-A structures on G/R.

Remark 3.13. Given a level-A structure (D, ϕ) on G, D is locally free of rank N over R, since $D \to G$ is a closed immersion, $D \to \operatorname{Sp\'et} R$ is flat, and $\pi_0 i_* \mathscr{O}_D = \bigotimes_{a \in A} \phi(a)_* \mathscr{O}_{\operatorname{Spec} \pi_0 R}$. The last identity also ensures the group structure on D^{\heartsuit} .

Remark 3.14. Comparing Definition 3.12 with Definition 3.2, we see that [KM85, Proposition 1.10.6] establishes an equivalence between the two definitions in the classical case when $G^{\heartsuit}/\pi_0 R$ is embeddable as a closed subscheme of an elliptic curve $E^{\heartsuit}/\pi_0 R$. Thus these two definitions are compatible if the spectral group scheme G/R is embeddable as a closed substack of a spectral elliptic curve E/R.

To prove representability for the functor of level-A structures, we present a second result concerning the existence of incidence spectral Deligne–Mumford stacks (cf. Lemma 3.5).

Lemma 3.15. Let G/R be a spectral commutative finite flat group scheme over a connective \mathbb{E}_{∞} -ring R. Let A be an abstract finite abelian group of order N. Given an object $D \to G$ in $\mathrm{Hilb}^N(G/R)$, there exists an \mathbb{E}_{∞} -ring W satisfying the following universal property:

For any $R \to R'$ in $\mathrm{CAlg}_R^\mathrm{cn}$, $\mathsf{D}_{R'}$ supports a level-A structure on $G_{R'}$ if and only if $R \to R'$ factors through W.

Proof. Given R' in $\operatorname{CAlg}_R^{\operatorname{cn}}$, it is clear that $\mathsf{D}_{R'}$ is in $\operatorname{Hilb}(G_{R'}/R')$. For $\mathsf{D}_{R'}$ to support a level-A structure as in Definition 3.12, $\operatorname{Spec} \pi_0 R' \to \operatorname{Spec} \pi_0 R$ must factor through $\operatorname{Hom}(A, G^{\circ})$, which is open in $\operatorname{Hilb}_{G^{\circ}/\pi_0 R}$ by Lemma 3.7. Thus $\pi_0 R \to \pi_0 R'$ factors through B_0 for some localization B_0 of $\pi_0 R$. This lifts to a factorization of $R \to R'$ through an \mathbb{E}_{∞} -ring B, which is a localization of R with $\pi_0 B \simeq B_0$ (see [Lur18c, Remark 1.1.4.2]).

By now, along the map Spét $R' \to \operatorname{Sp\acute{e}t} B$, we already have $i: \mathsf{D}_{R'} \to G_{R'}$ in $\operatorname{Hilb}^N(G_{R'}/R')$ and a map $\phi: A \to G^\heartsuit(\pi_0 R')$ associated with $\pi_0 i_* \mathscr{O}_{\mathsf{D}_{R'}}$. For $(\mathsf{D}_{R'}, \phi)$ to be a level-A structure, $\bigotimes_{a \in A} \phi(a)_* \mathscr{O}_{\operatorname{Spec} \pi_0 R'} \to \pi_0 i_* \mathscr{O}_{\mathsf{D}_{R'}}$ needs to be an isomorphism, i.e., the N points $\phi(a), a \in A$ must form a full set of sections of $\mathsf{D}_{R'}^{\heartsuit}$. By [KM85, Proposition 1.9.1], $\operatorname{Spec} \pi_0 R' \to \operatorname{Spec} \pi_0 B$ must then factor through a closed subscheme of $\operatorname{Spec} \pi_0 B$. Thus $\pi_0 B \to \pi_0 R'$ factors through $W_0 = B_0/I$ for some ideal I. This lifts to a factorization of $B \to R'$ through the \mathbb{E}_∞ -ring $W = \Gamma_I(B)$, as desired.

We can show the converse by a similar argument to the one in the proof of Lemma 3.5.

Proposition 3.16. Suppose that G is a spectral commutative finite flat group scheme over a connective \mathbb{E}_{∞} -ring R and A is an abstract finite abelian group.

Then the functor

$$\operatorname{Level}_{G/R}^A \colon \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}$$

 $R' \mapsto \operatorname{Level}(A, G_{R'}/R')$

is representable by an affine spectral Deligne-Mumford stack $S(A) = \operatorname{Sp\'et} \mathcal{P}_{G/R}$.

Proof. We first prove the representability. By definition, the functor $\operatorname{Level}_{G/R}^A$ is a subfunctor of the representable functor $\operatorname{Hilb}_{G/R}^N$, where N=#A. In view of the previous lemma and its proof, let us consider from right to left the consecutive pullbacks of universal objects

$$(G, \text{univ. level-} A \text{ str. on } G) \longrightarrow (G, \mathsf{D}_{\text{univ}}, \phi_{\text{univ}}) \longrightarrow (G, \mathsf{D}_{\text{univ}}) \longrightarrow G$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$W \longrightarrow B \longrightarrow \text{Hilb}_{G/R}^{N} \longrightarrow \text{Sp\'et } R$$

It is straightforward to verify that S(A) := W valued on an R-algebra R' is precisely the space of level-A structures on $G_{R'}$.

For the affineness property, we need to prove that S(A) is finite over R in the sense of spectral algebraic geometry. By [Lur18c, Remark 5.2.0.2], a morphism between spectral algebraic spaces is finite if and only if its underlying morphism between ordinary algebraic spaces is finite in the sense of classical algebraic geometry. Thus we need only prove that $S(A)^{\heartsuit}$ is finite over $\pi_0 R$, which follows from Proposition 3.9.

3.2.3. Spectral p-divisible groups. Given an \mathbb{E}_{∞} -ring R, let FFG(R) denote the ∞ -category of spectral commutative finite flat group schemes over R. Let X: $(\mathrm{Ab}_{\mathrm{fin}}^p)^{\mathrm{op}} \to \mathrm{FFG}(R)$ be a spectral p-divisible group of height h over an \mathbb{E}_{∞} -ring R (see [Lur18a, Definition 6.5.1] and cf. [Lur18b, Definition 2.0.2]). For each nonnegative integer r, we write $X[p^r]$ for the image of $\mathbf{Z}/p^r\mathbf{Z}$ under X, which is a degree- $(p^r)^h$ spectral commutative finite flat group scheme over R.

Definition 3.17. Let **G** be a spectral p-divisible group of height h over a connective \mathbb{E}_{∞} -ring R. A level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure on **G** is a level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure on $\mathbf{G}[p^r]$ as in Definition 3.12. We let $Level(r, \mathbf{G}/R)$ denote the ∞ -groupoid of level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structures on \mathbf{G}/R .

Remark 3.18. Recall that a level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure on $\mathbf{G}[p^r]$ is a pair (D,ϕ) , where $\mathsf{D} \subset \mathbf{G}[p^r]$ is a finite flat closed substack of rank $(\mathbf{Z}/p^r\mathbf{Z})^h$ over R, and $\phi: (\mathbf{Z}/p^r\mathbf{Z})^h \to \mathbf{G}[p^r]^\heartsuit(\pi_0R)$ is a homomorphism such that $(\mathsf{D}^\heartsuit,\phi)$ is a level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure on $\mathbf{G}[p^r]^\heartsuit/\pi_0R$. Given such a structure (D,ϕ) , since $\mathbf{G}[p^r]$ is locally free of rank $(p^r)^h$ over R, the rank of D^\heartsuit over π_0R equals that of $\mathbf{G}[p^r]^\heartsuit$. Since D^\heartsuit is a closed subscheme of $\mathbf{G}[p^r]^\heartsuit$, they must then equal. Thus ϕ is a $(\mathbf{Z}/p^r\mathbf{Z})^h$ -generator of $\mathbf{G}[p^r]^\heartsuit(\pi_0R)$ in the sense of [KM85, 1.10.5]. Note that as spectral Deligne–Mumford stacks, even though D has the same rank as $\mathbf{G}[p^r]$, they are not equivalent, since closed immersions in spectral algebraic geometry are not categorical monomorphisms (see [Lur18a, Warning 6.2.3]). For this reason, we do not introduce the concept of A-generators when discussing derived level structures, and this is where the higher homotopical information of derived level structures resides.

Theorem 3.19. Let G be a spectral p-divisible group of height h over a connective \mathbb{E}_{∞} -ring R. Then the functor

$$\operatorname{Level}_{\mathbf{G}/R}^r \colon \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}$$

 $R' \mapsto \operatorname{Level}(r, \mathbf{G}_{R'}/R')$

is representable by an affine spectral Deligne-Mumford stack $S(r) = \operatorname{Sp\'et} \mathcal{P}^r_{\mathbf{G}/R}$.

Proof. We just notice that by the definition of a spectral p-divisible group, $\mathbf{G}[p^r]$ is a spectral commutative finite flat group scheme. Thus the theorem follows from Proposition 3.16 above about general spectral commutative finite flat group schemes.

Remark 3.20. Our derived level structure functor is defined over CAlg^{cn}. More generally, in view of [Lur18a, Remark 6.1.3], we can define such structures on \mathbf{G}/R where R is not necessarily connective. We let

$$Level(r, \mathbf{G}/R) := Level(r, \tau_{>0}\mathbf{G}/\tau_{>0}R)$$

The corresponding functor

$$\operatorname{Level}_{\mathbf{G}/R}^r \colon \operatorname{CAlg}_R \to \mathcal{S}$$

is also representable. This will be useful in Section 4.2 when we consider *oriented* spectral p-divisible groups.

3.2.4. Non-full level structures. So far we have treated only full level structures on commutative finite flat group schemes. Here let us consider more general level structures, such as those relevant for power operations in Morava E-theories (see Section 4.3).

Definition 3.21. Suppose that G is a spectral commutative finite flat group scheme over a connective \mathbb{E}_{∞} -ring R. We let $\operatorname{Level}_1(r, G/R)$ denote the ∞ -groupoid of derived level- $(\mathbf{Z}/p^r\mathbf{Z})$ structures on G/R. We let $\operatorname{Level}_0(r, G/R)$ denote the ∞ -groupoid of equivalence classes (D, ϕ) in $\operatorname{Level}_1(r, G/R)$ where two objects (D, ϕ) and (D', ϕ') are equivalent if the scheme-theoretic image of D^{\heartsuit} under ϕ and that of $(\mathsf{D}')^{\heartsuit}$ under ϕ' equal in $G^{\heartsuit}/\pi_0 R$.

Proposition 3.22. Hypotheses and notations as above, the functor

$$\operatorname{Level}_{G/R}^{1,r} : \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}, \quad R' \to \operatorname{Level}_1(r, G_{R'}/R')$$

is representable by an affine spectral Deligne-Mumford stack $S_1(r) = \operatorname{Sp\'et} \mathcal{P}^{1,r}_{G/R}$. The functor

$$\operatorname{Level}_{G/R}^{0,r} : \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}, \quad R' \to \operatorname{Level}_0(r, G_{R'}/R')$$

is representable by an affine spectral Deligne-Mumford stack $S_0(r) = \operatorname{Sp\'et} \mathcal{P}_{G/R}^{0,r}$.

Proof. The first statement is a direct consequence of the more general Proposition 3.16. For the second, we just notice that the classical level structure functor $\operatorname{Level}_{G^{\heartsuit}/\pi_0R}^{0,r}$ is representable by a closed subscheme of the Grassmannian of all rank- p^r quotients of $G^{\heartsuit}[p^r]$ (cf. [KM85, Theorem 6.6.1 and proof of Proposition 6.5.1]). By an argument analogous to that for the case of full level structures, we obtain the desired result.

Remark 3.23. From the above proposition, we obtain analogous representability results for spectral p-divisible groups as in Section 3.2.3.

4. Moduli problems of derived level structures

In this section, we apply the derived level structures and their representability results from Section 3 and discuss several related spectral moduli problems.

4.1. **Spectral elliptic curves with level structure.** In Section 3.1, given an abstract finite abelian group A, we defined level-A structures for spectral elliptic curves (Definition 3.2) and showed their representability relative to an object E/R (Theorem 3.6). Here, we consider their absolute representability (cf. [KM85, Sections 4.2–4.3]).

There exists a spectral Deligne–Mumford stack \mathcal{M}_{ell} whose functor of points is

$$\mathcal{M}_{\mathrm{ell}} \colon \mathrm{CAlg}^{\mathrm{cn}} \to \mathcal{S}, \quad R \mapsto \mathcal{M}_{\mathrm{ell}}(R)$$

where $\mathcal{M}_{\mathrm{ell}}(R) = \mathrm{Ell}(R)^{\simeq}$ is the underlying ∞ -groupoid of the ∞ -category of spectral elliptic curves over R [Lur18a, Theorem 2.4.1].

In classical algebraic geometry, we have the Deligne–Mumford stack of (ordinary) elliptic curves, which can be viewed as a spectral Deligne–Mumford stack

$$\mathcal{M}_{\mathrm{ell}}^{\mathrm{cl}} \colon \mathrm{CAlg}^{\mathrm{cn}} \to \mathcal{S}, \quad R \mapsto \mathcal{M}_{\mathrm{ell}}^{\mathrm{cl}}(\pi_0 R)$$

where $\mathcal{M}_{\mathrm{ell}}^{\mathrm{cl}}(\pi_0 R)$ is the groupoid of elliptic curves over the commutative ring $\pi_0 R$. Moreover, if A equals $\mathbf{Z}/N\mathbf{Z}$ or $(\mathbf{Z}/N\mathbf{Z})^2$ with $N \geq 1$ an integer, we have the Deligne–Mumford stack of elliptic curves with level-A structures, which can also be viewed as a spectral Deligne–Mumford stack

$$\mathcal{M}_{\mathrm{ell}}^{\mathrm{cl},A} \colon \mathrm{CAlg^{cn}} \to \mathcal{S}, \quad R \mapsto \mathcal{M}_{\mathrm{ell}}^{\mathrm{cl},A}(\pi_0 R)$$

where $\mathcal{M}_{\text{ell}}^{\text{cl},A}(\pi_0 R)$ is the groupoid of elliptic curves with level-A structure over the commutative ring $\pi_0 R$.

In Section 3.1, for derived level-A structures, the construction $X \mapsto \text{Level}(A, X/R)$ determines a functor $\text{Ell}(R) \to \mathcal{S}$ which classifies a left fibration $\text{Ell}^A(R) \to \text{Ell}(R)$ of ∞ -categories by the unstraightening construction (see [Lur09b, Definition 3.3.2.2 and Section 2.2.1]). Objects of $\text{Ell}^A(R)$ are triples $(\mathsf{E},\mathsf{D},\phi)$ where E is a spectral elliptic curve over R and (D,ϕ) is a derived level-A structure on E as in Definition 3.2.

For each $R \in \mathrm{CAlg}^\mathrm{cn}$, consider all spectral elliptic curves over R with level-A structure. This moduli problem can be thought of as a functor

$$\mathcal{M}_{\mathrm{ell}}^{A} \colon \mathrm{CAlg}^{\mathrm{cn}} \to \mathcal{S}, \quad R \mapsto \mathrm{Ell}^{A}(R)^{\simeq}$$

where $\mathrm{Ell}^A(R)^{\simeq}$ is the space of spectral elliptic curves E/R with a derived level-A structure (D,ϕ) . To prove its representability, we proceed as follows.

Lemma 4.1. For every discrete commutative R_0 , the space $\mathcal{M}_{\mathrm{ell}}^A(R_0)$ is 1-truncated.

Proof. This follows from the fact that the classical moduli problem above is represented by a Deligne–Mumford 1-stack. \Box

Lemma 4.2. The functor $\mathcal{M}_{\text{ell}}^A$: CAlg^{cn} $\to \mathcal{S}$ is an étale sheaf.

Proof. Let $\{R \to U_i\}$ be an étale cover of R, and U_{\bullet} be the associated Čech-simplicial object. Consider the diagram

$$\operatorname{Ell}^{A}(R)^{\simeq} \xrightarrow{f} \varprojlim_{\Delta} \operatorname{Ell}^{A}(U_{\bullet})^{\simeq}$$

$$\downarrow^{p} \qquad \qquad \downarrow^{q}$$

$$\operatorname{Ell}(R)^{\simeq} \xrightarrow{g} \varprojlim_{\Delta} \operatorname{Ell}(U_{\bullet})^{\simeq}$$

The map p is a left fibration between Kan complexes, and so is a Kan fibration by [Lur09b, Lemma 2.1.3.3]. The map q is a pointwise Kan fibration. By picking the projective model structure for the homotopy limit we may assume that q is a Kan fibration as well. The map q is an equivalence by [Lur18a, Theorem 2.4.1]. To show that q is an equivalence, we need only show that for every $E \in Ell(R)$, the map

$$p^{-1}(\mathsf{E}) \simeq \mathrm{Level}(A, \mathsf{E}/R) \to \varprojlim_{\Delta} \mathrm{Level}(A, \mathsf{E} \times_R U_{\bullet}/U_{\bullet}) \simeq q^{-1}g(\mathsf{E})$$

is an equivalence. Observe that $\operatorname{Level}(A,\mathsf{E}/R)$ is a full ∞ -subcategory of $\operatorname{CDiv}(\mathsf{E}/R)$ and $\varprojlim_{\mathbf{\Delta}} \operatorname{Level}(A,\mathsf{E} \times_R U_{\bullet}/U_{\bullet})$ is a full ∞ -subcategory of $\varprojlim_{\mathbf{\Delta}} \operatorname{CDiv}(\mathsf{E} \times_R U_{\bullet}/U_{\bullet})$. Since $\operatorname{CDiv}_{\mathsf{E}/R}$ is an étale sheaf by Lemma 2.19, the functor

$$\operatorname{Level}(A, \mathsf{E}/R) \to \varprojlim_{\Delta} \operatorname{Level}(A, \mathsf{E} \times_R U_{\bullet}/U_{\bullet})$$

is fully faithful. To show that it is an equivalence, we need only show that it is essentially surjective.

Given any $\{(\mathsf{D}_{U_{\bullet}},\phi_{U_{\bullet}})\}$ in $\varprojlim_{\Delta} \mathrm{Level}(A,\mathsf{E}\times_R U_{\bullet}/U_{\bullet})$, clearly we can find a morphism $\mathsf{D}\to\mathsf{E}$ in $\mathrm{CDiv}(\mathsf{E}/R)$ whose image under the equivalence $\mathrm{CDiv}(\mathsf{E}/R)\simeq \varprojlim_{\Delta} \mathrm{CDiv}(\mathsf{E}\times_R U_{\bullet}/U_{\bullet})$ is $\{\mathsf{D}_{U_{\bullet}}\to\mathsf{E}\times_R U_{\bullet}\}$, along with $\phi:A\to\mathsf{E}^{\heartsuit}(\pi_0R)$ lifting $\{\phi_{U_{\bullet}}\}$. It remains to show that (D,ϕ) is a derived level-A structure. This is true because in the classical case, $\mathrm{Level}(A,\mathsf{E}^{\heartsuit}/\pi_0R)\simeq \varprojlim_{\Delta} \mathrm{Level}(A,\mathsf{E}^{\heartsuit}\times_{\pi_0R}\pi_0U_{\bullet}/\pi_0U_{\bullet})$.

Lemma 4.3. The functor \mathcal{M}_{ell}^A : $CAlg^{cn} \to \mathcal{S}$ is nilcomplete, infinitesimally cohesive, and integrable.

Proof. Consider the following diagram in Fun(CAlg^{cn}, \mathcal{S}):

$$\mathcal{M}_{\text{ell}}^{A} \xrightarrow{f} \mathcal{M}_{\text{ell}}$$

By [Lur18c, Remark 17.3.7.3], since $\mathcal{M}_{\mathrm{ell}}$ is nilcomplete, infinitesimally cohesive, and integrable from [Lur18a, Theorem 2.4.1], we need only prove that f is so. By [Lur18c, Proposition 17.3.8.4], f has these properties if and only if each fiber of f does, i.e., for each $R \in \mathrm{CAlg}^\mathrm{cn}$ and a point $\eta_{\mathsf{E}} \in \mathcal{M}_{\mathrm{ell}}(R)$ which represents a spectral elliptic curve E , the functor

$$\mathrm{CAlg}_R^\mathrm{cn} \to \mathcal{S}, \quad R' \mapsto \mathcal{M}_{\mathrm{ell}}^A(R') \times_{\mathcal{M}_{\mathrm{ell}}(R')} \{\eta_{\mathsf{E}}\}$$

is nilcomplete, infinitesimally cohesive, and integrable. This functor is precisely Level $_{\mathsf{E}/R}^A$, which is so by Theorem 3.6.

Lemma 4.4. The functor \mathcal{M}_{ell}^A admits a cotangent complex which is connective and almost perfect.

Proof. Again, let us consider the diagram (4.1). Then [Lur18c, Proposition 17.3.9.1] reduces us to proving that f admits a cotangent complex.

By [Lur18c, Proposition 17.2.4.7], a morphism $j: X \to Y$ in Fun(CAlg^{cn}, S) admits a cotangent complex if, for any corepresentbale $Y' \simeq \operatorname{Map}(R, -) : \operatorname{CAlg}^{\operatorname{cn}} \to S$ and any natural transformation $Y' \to Y$, j' in the following pullback diagram admits a cotangent complex:

$$Y' \times_Y X \longrightarrow X$$

$$\downarrow^{j'} \qquad \qquad \downarrow^{j}$$

$$Y' \longrightarrow Y$$

Thus, to prove that $\mathcal{M}_{\mathrm{ell}}^A \to \mathcal{M}_{\mathrm{ell}}$ admits a cotangent complex, we need only prove that, for any $R \in \mathrm{CAlg}^{\mathrm{cn}}$ and any spectral elliptic curve E which corresponds to a natural transformation Spét $R \to \mathcal{M}_{\mathrm{ell}}$, or to $\eta_{\varepsilon} \in \mathcal{M}_{\mathrm{ell}}(R)$, the functor

$$\mathrm{CAlg}_R^\mathrm{cn} \to \mathcal{S}, \quad R' \mapsto \mathcal{M}_\mathrm{ell}^A(R') \times_{\mathcal{M}_\mathrm{ell}(R')} \{\eta_\mathsf{F}\}$$

admits a cotangent complex. Again we identify this functor as $\text{Level}_{\mathsf{E}/R}^A$ and apply Theorem 3.6. Moreover, the properties of the desired cotangent complex being connective and almost perfect also follow from those associated with $\text{Level}_{\mathsf{E}/R}^A$. \square

Lemma 4.5. The functor \mathcal{M}_{ell}^A is locally almost of finite presentation.

Proof. The morphism $h: \mathcal{M}_{\text{ell}}^A \to *$ in (4.1) is infinitesimally cohesive and admits an almost perfect cotangent complex. By [Lur18c, 17.4.2.2], it is locally almost of finite presentation. Therefore $\mathcal{M}_{\text{ell}}^A$ is locally almost of finite presentation, since * is a final object of Fun(CAlg^{cn}, \mathcal{S}).

Here is a generalization of [Lur18a, Theorem 2.4.1].

Theorem 4.6. The functor

$$\mathcal{M}_{\mathrm{ell}}^{A} \colon \mathrm{CAlg^{cn}} \to \mathcal{S}$$

$$R \mapsto \mathcal{M}_{\mathrm{ell}}^{A}(R) = \mathrm{Ell}^{A}(R)^{\simeq}$$

is representable by a spectral Deligne-Mumford 1-stack which are locally almost of finite presentation over the sphere spectrum.

Proof. We apply Theorem 2.10 and verify the set of conditions one by one through the above series of lemmas. \Box

4.2. **Higher-homotopical Lubin–Tate towers.** Based on Section 3.2, specifically Section 3.2.3, our goal in this section is to generalize to higher levels some of the representability results on *deformations* of p-divisible groups from [Lur18b, §3].

Let \mathbf{G}_0 be a nonstationary p-divisible group over a commutative ring R_0 of height h, and $R \in \mathrm{CAlg}_{\mathrm{cpl}}^{\mathrm{ad}}$. Recall from [Lur18b, Definitions 3.1.4 and 3.1.1] that a deformation of \mathbf{G}_0 over R is a spectral p-divisible group \mathbf{G} over R together with an equivalence class of \mathbf{G}_0 -taggings of \mathbf{G} . A main result therein is a representability theorem with the spectral deformation ring $R_{\mathbf{G}_0}^{\mathrm{un}}$ representing the moduli problem of such deformations [Lur18b, Theorem 3.0.11] (see also [Lur18b, Theorems 3.1.15 and 3.4.1]).

Definition 4.7. As in Section 3.2.3, we let Level $(r, \mathbf{G}/R)$ denote the space of derived level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structures on \mathbf{G} . Consider the functor

$$\operatorname{Def}_{\mathbf{G}_0}^r : \operatorname{CAlg}_{\operatorname{cpl}}^{\operatorname{ad}} \to \mathcal{S}$$

$$R \mapsto \operatorname{Def}(r, \mathbf{G}_0, R)$$

where $\operatorname{Def}(r, \mathbf{G}_0, R)$ denotes the ∞ -category whose objects are triples (\mathbf{G}, ρ, η) such that

- \mathbf{G} is a spectral *p*-divisible group over R,
- ρ is an equivalence class of \mathbf{G}_0 -taggings of \mathbf{G} , and
- $\eta \in \text{Level}(r, \mathbf{G}/R)$ as in Definition 3.17.

We call each object (\mathbf{G}, ρ, η) a deformation of \mathbf{G}_0 over R with level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure.

Remark 4.8. Given ρ as above, a derived level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure η on \mathbf{G}/R determines a level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure on \mathbf{G}_0/R_0 (up to an extension of scalars) by base change along ρ .

Theorem 4.9. With the above hypotheses and notations, the functor $\operatorname{Def}_{\mathbf{G}_0}^r$ is corepresentable by an \mathbb{E}_{∞} -ring whose 0'th homotopy group is finite over that of the spectral deformation ring $R_{\mathbf{G}_0}^{\operatorname{un}}$.

Proof. Following [KM85, 4.3.4], we view this moduli problem as a product of a representable one and a relatively representable one, and apply [Lur18b, Theorem 3.1.15] and Theorem 3.19 consecutively.

To be specific, let $\mathbf{G}_{\text{univ}}/R_{\mathbf{G}_0}^{\text{un}}$ denote the universal deformation of \mathbf{G}_0/R_0 from [Lur18b, Theorem 3.1.15]. Suppose that \mathbf{G} is a spectral deformation of \mathbf{G}_0 to R classified by a map of \mathbb{E}_{∞} -rings $R_{\mathbf{G}_0}^{\text{un}} \to R$, along which $\mathbf{G} \simeq \mathbf{G}_{\text{univ}} \times_{R_{\mathbf{G}_0}^{\text{un}}} R$ as spectral p-divisible groups over R. We then obtain from Theorem 3.19 and Remark 3.20

$$\operatorname{Level}(r,\mathbf{G}/R) \simeq \operatorname{Level}(r,\mathbf{G}_{\operatorname{univ}} \times_{R_{\mathbf{G}_0}^{\operatorname{un}}} R/R) \simeq \operatorname{Map}_{\operatorname{CAlg}_{R_{\mathbf{G}_0}^{\operatorname{un}}}}(\mathcal{P}_{\mathbf{G}_{\operatorname{univ}}/R_{\mathbf{G}_0}^{\operatorname{un}}}^r, R)$$

where $\mathcal{P}^r_{\mathbf{G}_{\mathrm{univ}}/R^{\mathrm{un}}_{\mathbf{G}_0}}$ classifies derived level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structures on the universal deformation $\mathbf{G}_{\mathrm{univ}}/R^{\mathrm{un}}_{\mathbf{G}_0}$ as a spectral p-divisible group, with $\pi_0 \mathcal{P}^r_{\mathbf{G}_{\mathrm{univ}}/R^{\mathrm{un}}_{\mathbf{G}_0}}$ finite over $\pi_0 R^{\mathrm{un}}_{\mathbf{G}_0}$ by affineness (cf. [Lur18c, Remark 5.2.0.2]).

Let us verify that the \mathbb{E}_{∞} -ring $\mathcal{P}^r_{\mathbf{G}_{\mathrm{univ}}/R^{\mathrm{un}}_{\mathbf{G}_0}}$ is as desired. Indeed, consider the functor

$$\operatorname{CAlg}^{\operatorname{ad}}_{\operatorname{cpl}} \to \mathcal{S}, \quad R \mapsto \operatorname{Map}_{\operatorname{CAlg}^{\operatorname{ad}}_{\operatorname{cpl}}}(\mathcal{P}^r_{\mathbf{G}_{\operatorname{univ}}/R^{\operatorname{un}}_{\mathbf{G}_0}}, R)$$

Given $R \in \operatorname{CAlg}^{\operatorname{ad}}_{\operatorname{cpl}}$, $\operatorname{Map}_{\operatorname{CAlg}^{\operatorname{ad}}_{\operatorname{cpl},R_0}}(\mathcal{P}^r_{\mathbf{G}_{\operatorname{univ}}/R^{\operatorname{un}}_{\mathbf{G}_0}},R)$ can be viewed as the ∞ -category of pairs (α,f) where

$$\alpha \colon R_{\mathbf{G}_0}^{\mathrm{un}} \to R$$

along the structure morphism of Spét $\mathcal{P}^r_{\mathbf{G}_{\text{univ}}/R^{\text{un}}_{\mathbf{G}_0}}$ over $R^{\text{un}}_{\mathbf{G}_0}$ classifies a deformation (\mathbf{G}, ρ) over R of \mathbf{G}_0/R_0 , and

$$f \in \operatorname{Map}_{\operatorname{CAlg}_{R_{\mathbf{G}_0}^{\operatorname{un}}}}(\mathcal{P}^r_{\mathbf{G}_{\operatorname{univ}}/R_{\mathbf{G}_0}^{\operatorname{un}}}, R) \simeq \operatorname{Level}(r, \mathbf{G}/R)$$

along the restriction from CAlg_{cpl}^{ad} to CAlg (cf. claim (ii) in [Lur18b, proof of Theorem 3.4.1]) is a derived level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure on \mathbf{G}/R . Thus we recover precisely the functor $\mathrm{Def}_{\mathbf{G}_0}^r$ as in Definition 4.7.

Although we have obtained \mathbb{E}_{∞} -rings as classifying objects associated with the above spectral moduli problems, these spectra may be complicated, and we do not know yet their homotopy groups in general (see Section 5.3.1 below). In algebraic topology, the orientation of an \mathbb{E}_{∞} -ring spectrum makes the E_2 -page of its associated Atiyah–Hirzebruch spectral sequence degenerate and gives us certain information of its homotopy groups.

Let G_0 be a height-h p-divisible group over R_0 as above. Consider the functor

$$\mathrm{Def}_{\mathbf{G}_0}^{\mathrm{or},r} : \mathrm{CAlg}_{\mathrm{cpl}}^{\mathrm{ad}} \to \mathcal{S}, \quad R \mapsto \mathrm{Def}^{\mathrm{or}}(r,\mathbf{G}_0,R)$$

where $\operatorname{Def}^{\operatorname{or}}(r, \mathbf{G}_0, R)$ is the space of quadruples $(\mathbf{G}, \rho, e, \eta)$ with

- **G** a spectral *p*-divisible group over *R*,
- ρ an equivalence class of \mathbf{G}_0 -taggings of \mathbf{G} ,
- $e: S^2 \to \Omega^{\infty} \mathbf{G}^{\circ}(\tau_{\geq 0} R)$ an orientation of the identity component of \mathbf{G} , and
- η a derived level- $(\mathbf{Z}/p^r\mathbf{Z})^h$ structure on \mathbf{G} .

Theorem 4.10. Hypotheses and notations as above, for each nonnegative integer r, the functor $\operatorname{Def}_{\mathbf{G}_0}^{\operatorname{or},r}$ is corepresentable by an \mathbb{E}_{∞} -ring, depending functorially on \mathbf{G}_0/R_0 , as an algebra over the oriented deformation ring $R_{\mathbf{G}_0}^{\operatorname{or}}$. Moreover, its 0'th homotopy group is finite over $\pi_0 R_{\mathbf{G}_0}^{\operatorname{or}}$.

Proof. Let $Def^{or}(\mathbf{G}_0, R)$ denote the ∞ -groupoid of triples (\mathbf{G}, ρ, e) where \mathbf{G} is a p-divisible group of over R, ρ is an equivalence class of \mathbf{G}_0 -taggings of \mathbf{G} , and e is an orientation of the identity component of \mathbf{G} . By [Lur18b, Remark 6.0.7], the functor

$$\mathrm{Def}^{\mathrm{or}}_{\mathbf{G}_0} \colon \mathrm{CAlg}^{\mathrm{ad}}_{\mathrm{cpl}} \to \mathcal{S}, \quad R \mapsto \mathrm{Def}^{\mathrm{or}}(\mathbf{G}_0, R)$$

is corepresented by $R_{\mathbf{G}_0}^{\text{or}}$, that is, we have an equivalence of spaces

$$\operatorname{Map}_{\operatorname{CAlg}^{\operatorname{ad}}_{\operatorname{cpl}}}(R^{\operatorname{or}}_{\mathbf{G}_0},R) \simeq \operatorname{Def}^{\operatorname{or}}(\mathbf{G}_0,R)$$

Let $\mathbf{G}_{\mathrm{univ}}^{\mathrm{or}}$ be the associated universal oriented deformation of \mathbf{G}_{0} over $R_{\mathbf{G}_{0}}^{\mathrm{or}}$. Then, analogous to the unoriented case discussed above, $\mathcal{P}_{\mathbf{G}_{\mathrm{univ}}^{\mathrm{rr}}/R_{\mathbf{G}_{0}}^{\mathrm{or}}}^{r}$ from Theorem 3.19 is the desired spectrum.

Remark 4.11. We call this \mathbb{E}_{∞} -ring from Theorem 4.10 a Jacquet–Langlands spectrum and denote it by \mathcal{JL}_r . Indeed, by functoriality, \mathcal{JL}_r admits an action of $\mathrm{GL}_h(\mathbf{Z}/p^r\mathbf{Z}) \times \mathrm{Aut}(\mathbf{G}_0)$. Moreover, since $(\mathbf{Z}/p^r\mathbf{Z})^h \subset (\mathbf{Z}/p^{r+1}\mathbf{Z})^h$, we obtain a tower

whose 0'th homotopy recovers the Lubin–Tate tower of G_0/R_0 (by unwinding the definitions). In classical arithmetic geometry, the Lubin–Tate tower can be used

to realize the Jacquet–Langlands correspondence [HT01]. Naturally one may ask if there is a topological (or higher-homotopical) realization of this correspondence. In a recent article [SS23], Salch and Strauch have constructed a version of topological Jacquet–Langlands correspondence. In contrast to our approach, their methods are based on the Goerss–Hopkins–Miller–Lurie sheaf, by considering certain degenerate level structures whose representing objects are *étale* over those carrying universal deformations. *Integrally*, it would be interesting if our higher-categorical analogues of Lubin–Tate towers above can also lead to a topological version of the classical Jacquet–Langlands correspondence, which means that we construct representations in the category of spectra (see further Section 5.3.2 below).

4.3. Topological lifts of power operation rings. We recall the deformation of formal groups. Let G_0 be a formal group over a perfect field k such that char k = p, a deformation of G_0 to R is a triple (G, i, Φ) satisfying

- G is a formal group over R,
- There is a map $i: k \to R/m$
- There is an isomorphism $\Phi : \pi^*G \cong i^*G_0$ of formal groups over R/m.

Suppose that we have a complete local ring R whose residue filed has characteristic p. Let $\phi: R \to R, x \mapsto x^p$ be the Frobenius map. For each formal group G over R, the **Frobenius isogeny** Frob: $G \to \phi^*G$ is the homomorphism of the formal group over R induced by the relative Frobenius map on rings. We write $\operatorname{Frob}^r: G \to (\phi^r)^*G$ which is the composition $\phi^*(\operatorname{Frob}^{r-1}) \circ \operatorname{Frob}$

Let G_0 be a formal group over k, (G, i, α) and (G', i', α') be two deformations of G_0 to R. A deformation of Frob^r is a homomorphism $f: G \to G'$ of formal groups over R which satisfying

(1)
$$i \circ \phi^r = i'$$
 and $i^*(\phi^r)^*G_0 = (i')^*G_0$.

$$k \xrightarrow{i'} R/m$$

$$\phi^r \downarrow \qquad \qquad i$$

$$k$$

(2) the square

$$i^*G_0 \xrightarrow{i^*(\operatorname{Frob}^r)} i^*(\phi^r)^*G_0$$

$$\downarrow^{\alpha'}$$

$$\pi^*G \xrightarrow{\pi^*(f)} \pi^*G'$$

of homomorphisms of formal groups over R/m commutes.

We let Def_R denote the category whose objects are deformations fo G_0 to R, and whose morphisms are deformations of Frob^r for some $r \geq 0$. We will say that a morphism in Def_R has height r, if it is a deformation of Frob^r , and then we denote the corresponding subcategory as $\operatorname{Sub}^r R$. Let G be the deformation of G_0 to R, then it can be proved that the assignment $f \to \operatorname{Ker} f$ is a one-to-one correspondence between the morphisms in Sub_R^r with source G and the finite subgroup of G which have rank p^r .

Theorem 4.12. [Str97] Let G_0/k be a height n formal group over a perfect field k. For each r > 0, there exists a complete local ring A_r which carries a universal height

r morphism $f_{univ}^r: (G_s, i_s, \alpha_s) \mapsto (G_t, i_t, \alpha_t) \in \operatorname{Sub}^r(A_r)$. That is the operation $f_{univ}^r \to g^*(f_{univ}^r)$ define a bijective relation from the set of local homomorphism $g: A_r \to R$ to the set Sub_R^r . Furthermore, we have:

- (1) $A_0 \approx W(k)[[v_1, \dots, v_{n-1}]]$ is the Lubin-Tate ring.
- (2) There is a map $s: A_0 \to A_r$ which classifies the source of the universal height r map, i.e. $G_s = s^*G_E$, where $G_E = G_{univ}/A_0$ be the universal deformation of G_0 , and A_r is finite and free as an A_0 module.
- (3) There is a map $t: A_0 \to A_r$ which classifies the target of the universal height r map, i.e. $G_t = t^*G_E$.
- (4) And there is a bijection $\{g: A_r \to R\} \to \operatorname{Sub}^r(R)$ given by $g \to g^*(f_{univ}^r)(g^*G_s \to g^*G_t)$.

We know that those rings $A_r, r \geq 0$ have topological meanings.

Theorem 4.13. [Str98] The ring A_r in the universal deformation of Frobenius is isomorphic to $E^0(B\Sigma_{p^r})/I$, i.e,

$$A_r \cong E^0(B\Sigma_{p^r})/I$$

where I is the transfer ideal.

The collections $\{A_r\}$ have the structures of graded coalgerbas, for $s = s_k, t = t_k : A_0 \to A_k$, which is induced by E^0 cohomology on $B\Sigma \to *$, we have

$$\mu = mu_{k,l} : A_{k+l} : A_{k+l} \to A_k{}^s \otimes_{A_0}{}^t A_l$$

which classifies the source, target, and composite of morphisms. So for the power operation $R^k(X) \to R^k(X \times B\Sigma_m)$. For x = *, we have

$$\pi_0 R \to E^0(B\Sigma_{p^r})/I \otimes \pi_0 R = A[r] \otimes \pi_0 R$$

This make $\pi_0 R$ becomes a Γ -module, where Γ are duals of A[r].

For more details about power operation in Morava E-theory, one can see [Rez24, Rez09] and [Rez13]. Direct computations are in [Rez08] for height 2 at the prime 2, [Zhu14] for height 2 at prime 3, [Zhu19] for height 2 at all primes. Cases of height > 2 are still lack of computations.

Because we have the assignment $f \to \operatorname{Ker} f$ is a one-to-one correspondence between the morphisms in Sub_R^r with source G and the finite subgroup of G which have rank p^r . So it is easy to see that A_r corepresents the following moduli problem

$$\mathcal{M}_{0,r}$$
: $\operatorname{CAlg}_k^{\heartsuit} \to \mathcal{S}$
 $R \to \operatorname{Def}(G_0, R, p^r)$

where $Def(G_0, R, p^r)$ consists of pairs (G, H) where G is an deformation G_0 to R, and H is a rank p^r subgroup of G.

Proposition 4.14. For every integer $r \geq 1$, there exists an \mathbb{E}_{∞} -ring $E_{n,r}$, such that $\pi_0 E_{n,r} = A_r$.

Proof. For the formal group G_0 over a field k of characteristic p. We just consider the functor $\operatorname{CAlg}_{cpl}^{ad} \to \mathcal{S}$ by sending an \mathbb{E}_{∞} -ring R to quadruples (G, ρ, e, η) , where (G, ρ) is spectral deformation of G_0 to R. e is an orientation of G° , the identity component G, and $\eta \in \operatorname{Level}_0(r, G/R)$ is a derived level structure. Using the same argument in full-level structure and the fact $\operatorname{Level}_{G/R}^{0,r}$ is representable, see Remark 3.22. We get this proposition.

Remark 4.15. The \mathbb{E}_{∞} -rings $E_{n,r}$ from above are not K(n)-local or complex oriented, in light of [Dev20, Theorems 1.3 and 3.5] and [Lur18b, Construction 5.1.1 and Remark 5.1.2]. They are not even a *finite* algebra over the Morava E-theory spectrum E, even though the morphism Spét $E_{n,r} \to \text{Spét } E$ of spectral Deligne–Mumford stacks is finite (cf. [Lur17, Definition 7.2.2.1], [Lur18c, Proposition 2.7.2.1], and the finiteness conditions we recalled at the beginning of Section 2.1).

Remark 4.16. Although we obtained spectra whose 0'th homotopy groups recover the power operation rings of Morava E-theories, we do not know yet the higher homotopy groups of these spectra concretely or explicitly, as these spectra are not 2-periodic in general unless r=0 and they are not étale over E-theory spectra. This non-2-periodicity with r>0 should be a manifestation of the structure of a pile, i.e., a presheaf of categories (rather than of groupoids), as indicated in [Rez14, Section 4.3].

5. More applications

- 5.1. **Jacquet–Langlands spectra.** The Langlands program is a project in mathematics which aims to relate many fileds in mathematics together, including number theory, representation theory, and harmonic analysis. The global Langlands correspondence is conjectural (bijection) between
 - (1) n-dimensional complex linear representations of the Galois group $\operatorname{Gal}(\bar{F}/F)$ of a given number field F.
 - (2) certain representations-called automorphic representations of the n dimensional general linear group $GL_n(\mathbb{A}_F)$ with coefficients in the ring of adeles of F, arising within the representations given by functions on the double coset space $GL_n(F) \setminus GL_n(\mathbb{A}_F)/GL_n(\mathcal{O})$ (where $\mathcal{O} = \prod_v \mathcal{O}_p$ is the ring of integers of all formal completions of F).

which compatible with certain L-function conditions. Moreover, the group GL_n can be replaced by any reductive group. The Langlands correspondence has many specific examples in number theory. For the group GL_1 , this correspondence is just global class field theory. The Langlands correspondence for GL_2 leads to the famous modularity theorem [Wil95], [TW95].

The Langlands correspondence has a local version. Let E be a local field, and G be a reductive group over E. The local Langlands correspondence predicts that for any irreducible smooth representation π of G(E), we can naturally associate an L-parameter

$$\phi_E:W_E\to G(\mathbb{C}).$$

What we want to say in this paper is the Jacquet–Langlands correspondence. Let K be a p-adic filed, and D a division algebra with center K and dimension d^2 over K. We fix an integer $r \leq 1$, and Let $G = \operatorname{GL}_n$, $G' = \operatorname{GL}_r(D)$, where n = rd. The Jacquet Langlands correspondence aims to relate smooth irreducible representations of G to those of G', whereas the Langlands correspondence relates such representations to degree n-representations of the absolute Galois group of K.

We care about the case r = 1, i.e, D is a center algebra over K of dimension n^2 . There is a bijection between

- (1) square integrable irreducible representations of D^{\times} and,
- (2) square integrable irreducible representations of $GL_n(K)$.

In classical arithmetic geometry, the Lubin–Tate tower can be used to realize the Jacquet–Langlands correspondence [HT01]. Is there a topological realization of the Jacquet–Langlands correspondence? Actually, in a recent paper [SS23], they already realized a version of topological Jacquet–Langlands correspondence. But their method is based on the Goerss-Hopkins-Miller-Lurie sheaf. They actually consider the degenerate level structures such that representing objects are *étale* over representing objects of universal deformations. We hope our higher categorical analogues of Lubin–Tate towers can also establish a topological version of the classical Langlands correspondence, which means that we construct representations on the category of spectra. Our derived level structure gives an attempt on this idea by considering certain function spectra.

On the other hand, we know the actions of certain Galois groups and automorphism groups on certain objects, like Morava E-theories, THH, TC. This means that these groups act on their homotopy groups. For example, we have the action of Morava stabilizer groups \mathbb{G}_n on Morava E-theories E_n , it can be used to compute the stable homotopy groups of sphere spectrum by the following spectral sequence

$$E_2^{s,t} \cong H_{cts}^s(\mathbb{G}_n, \pi_t E_n) \Longrightarrow \pi_{t-s} L_{K(n)} S^0.$$

But usually, it is complicated to compute the continuous cohomology of \mathbb{G}_n . This is common in Langlands correspondence that the Galois side is usually harder to understand than the automorphic side. One strategy for relevant problems is to transfer the problems in the Galois side to the automorphic side. Let's see an example first.

Theorem 5.1. ([BSSW24b]) There is an isomorphism of graded Q-algebras

$$\mathbf{Q} \otimes \pi_* L_{K(n)} S^0 \cong \Lambda_{\mathbf{Q}_n}(\zeta_1, \zeta_2, \cdots \zeta_n),$$

where the latter is the exterior \mathbf{Q}_n -algebra with generators ζ_i in degree 1-2i.

The main idea of their proof of this theorem is transfering the computation of cohomology of \mathbb{G}_n to the cohomology of Drinfeld symmetric space \mathcal{H} .

In a continuous work [BSSW24a], they compute the Picard group of K(n)-local spectra by using some results of computation of Drinfeld symmetric space, which is due to Colmez–Dospinescu–Nizio [CDN20], [CDN21].

We know that LT has a higher categorical refinement, Morava E-theories. So it is a natural question how to lift this diagram to higher categorical setting and how to establish a more conceptual theory to transfer the computation of cohomology of \mathbb{G}_n to the computation of cohomology of \mathcal{H} .

Let G_0 be a height n p-divisible group over R_{G_0} . We consider the following functor

$$\mathcal{M}_k^{\mathrm{or}}$$
: $\mathrm{CAlg}_{cpl}^{ad} \to \mathcal{S}$
 $R \to \mathrm{DefLevel}^{\mathrm{or}}(G_0, R, k)$

In subsection 3.3, we prove that this functor is corepresentable by an \mathbb{E}_{∞} -ring \mathcal{JL}_k . We defined the Jacquet-Langlands spectrum \mathcal{JL} to be the limit of those \mathcal{JL}_k , i.e.,

$$\mathcal{JL} = \varprojlim_{k} \mathcal{JL}_{k}$$

Lemma 5.2. \mathcal{JL} is an \mathbb{E}_{∞} -ring.

Proof. This is because the ∞ -category of \mathbb{E}_{∞} -rings admits inverse limits, see Lur17, Corollary 3.2.2.4 for details.

The spectrum is the higher categorical realization of \mathcal{X} , the moduli of deformations with level structures. It was proved by Scholze and Weinstein [SW13] that \mathcal{X} is a perfectoid space.

5.2. Jacquet-Langlands duals of Morava E-theory spectra. By the construction of Jacquet-Langlands spectra above, it is easy to see that this \mathcal{JL}_k admits an action of $GL_n(Z/p^kZ) \times \mathbb{G}_n$. \mathcal{JL} is the limit of \mathcal{JL}_k , so it admits an action of $\lim \operatorname{GL}_n(Z/p^kZ) \times \mathbb{G}_n = \operatorname{GL}_n(\mathbf{Z}_p) \times \mathbb{G}_n.$

Definition 5.3. We define the dual Morava E-theories ${}^{L}E_{n}$ to be $\mathcal{JL}^{hG_{n}}$.

The generic fibre of $\pi_0{}^L E_n$ is just the Drinfled symmetric space. The Drinfled symmetric space was invented in [Dri76]. It is the rigid analytic space

$$\mathcal{H} = \mathbb{P}_K^{n-1} \setminus \bigcup_H H,$$

where \mathbb{P}_{K}^{n-1} is a rigid analytic projective space, and H run over all K-rational hyperplanes in \mathbb{P}_K^{n-1} . It has a formal model \mathfrak{h} which parametrizes the deformations of a special formal \mathcal{O}_D -module related to G_0 . In future work, we will prove that $^{L}E_{n}$ can also come from some derived moduli problem.

In [Rog08], the author defines the Galois extension for commutative ring spectra. Suppose that E is an \mathbb{E}_{∞} -ring spectra and F is an \mathbb{E}_{∞} E-algebra with an action of a finite group G. We say that F is a G-Galois extension of E if

- (1) $F^{hG} \simeq E$, and (2) $F \otimes_E F \to \prod_G F$ is an equivalence.

Proposition 5.4. For every k, \mathcal{JL}_k is a Galois extension of $R_{G_0}^{\text{or}}$.

Proof. Let $d = \sharp |\mathrm{GL}_n(\mathbf{Z}/p^k\mathbf{Z})|$. It is easy to see that $\mathcal{JL}_k^{\mathrm{hGL}_n(\mathbf{Z}/p^k\mathbf{Z})}$ is equivalent to $R_{G_0}^{\mathrm{or}}$, so we only need to prove that $\mathcal{JL}_k \otimes_{R_{G_0}^{\mathrm{or}}} \mathcal{JL}_k \simeq \prod_{\mathrm{GL}_n(\mathbf{Z}/p^r\mathbf{Z})} \mathcal{JL}_k$. By [Lur18c,

Proposition 1.4.11.1], this is equivalent to say that Spét $\mathcal{JL}_k \otimes_{\operatorname{Sp\acute{e}t} R_{G_0}^{\operatorname{or}}} \operatorname{Sp\acute{e}t} \mathcal{JL}_k \simeq$ Spét \mathcal{JL}_k . We will prove this by using the moduli explanation. For a connective \mathbb{E}_{∞} -ring R, we consider the diagram

(1) The moduli space Spét $\mathcal{JL}_k \otimes_{R_{G_0}^{or}}$ Spét \mathcal{JL}_k parametrizes

$$\{(G_1, \rho_1, e_1, \eta_1), (G_2, \rho_2, e_2, \eta_2)\},\$$

where (G_i, ρ_i, e_i) is a spectral oriented deformation of G_0 to R, e_i is an orientation of G_i^o , η_i is a derived level structure of G_i . Since the tensor product is over Spét $R_{G_0}^{or}$, so we have $G_1 = G_2$, $\rho_1 = \rho_2$ and $e_1 = e_2$.

product is over Spét $R_{G_0}^{\text{or}}$, so we have $G_1 = G_2$, $\rho_1 = \rho_2$ and $e_1 = e_2$.

(2) The moduli space $\coprod_{GL_n(\mathbf{Z}/p^k\mathbf{Z})}$ Spét \mathcal{JL}_k parametrizes

$$\{(G_1, \rho_1, e_1, \eta_1), \cdots, (G_d, \rho_d, e_d, \eta_d)\},\$$

such that $(G_1, \rho_1, e_1) = \cdots$, $= (G_d, \rho_d, \eta_d)$ is an oriented deformation of G_0 , and η_i is the derived level structure obtained from $\eta_a g_i \eta b$ for two derived level structures η_a, η_b .

It is clear that these two moduli spaces are equivalent, so we get

$$\mathcal{JL}_k \otimes_{R_{G_0}^{\mathrm{or}}} \mathcal{JL}_k \simeq \prod_{\mathrm{GL}_n(\mathbf{Z}/p^k\mathbf{Z})} \mathcal{JL}_k$$

Theorem 5.5. E_n^L is an \mathbb{E}_{∞} -ring spectrum.

Proof. We have ${}^LE_n = \mathcal{JL}^{h\mathbb{G}_n} \simeq \varprojlim_{r} \mathcal{JL}_k^{h\mathbb{G}_n}$. It is sufficient to prove that $\mathcal{JL}_r^{h\mathbb{G}_n}$ is an \mathbb{E}_{∞} -spectrum. We have the Galois extension

$$L_{K(n)}S^0 \to E(n) \to \mathcal{JL}_k$$
.

We notice that \mathcal{JL}_k is profinite $\mathbb{G}_n \times \mathrm{GL}_n(\mathbf{Z}/p^k\mathbf{Z})$ -spectra in the sense of [Qui13] and [DQ16]. This means that \mathcal{JL}_k is a \mathbb{G}_n -profinite spectra. By [Qui13, Proposition 3.23], we have

$$\mathcal{JL}_k^{h\mathbb{G}_n} \cong \operatorname{Tot}(\operatorname{Map}(G^{\bullet}), \mathcal{JL}_k).$$

The category of CAlg admits inverse limits, so $\mathcal{JL}_k^{h\mathbb{G}_n}$ is also an \mathbb{E}_{∞} -ring.

Proposition 5.6. There are convergent spectral sequences

$$E_2^{s,t} \cong H^s_{cts}(\mathbb{G}_n \times GL_n(\mathbf{Z}_p), \pi_t \mathcal{JL}) \Longrightarrow \pi_{t-s} L_{K(n)} S^0.$$

$$E_2^{s,t} \cong H^s_{cts}(GL_n(\mathbf{Z}_p), \pi_t^L E_n) \Longrightarrow \pi_{t-s} L_{K(n)} S^0.$$

Proof. This is just because for any profinite group G, and E is a G-equivariant spectrum, we always have

$$E_2^{s,t} \cong H^s_{cts}(G, \pi_t E) \Longrightarrow \pi_{t-s} E^{hG}.$$

see [May96] or [Qui13, Theorem 3.17] for more details.

5.3. Further problems.

5.3.1. Higher homotopy groups of $E_{n,r}$ and \mathcal{JL}_r for r > 0. In this paper, we study the derived level stuctures in the context of spectral algebraic geometry. We construct the higher categorical Lubin-Tate towers, but we still don't know the higher homotopy groups of this tower and their arithmetic meanings. One way to understand this is useing the spectral sequence

$$E_2^{s,t} = H^s(\pi_* E_n, \pi_{*-t} \mathbb{L}_{E_{n,r}/E_n}) \Rightarrow \pi_{s-t} E_{n,r},$$

where $\mathbb{L}_{E_{n,r}/E_n}$ is the topological cotangent complex defined in [Lur18c]. It can be proved that there is an equivalence

$$\mathbb{L}_{E_{n,r}/E_n} \simeq \mathrm{TAQ}^{E_n}(E_{n,r}).$$

- 5.3.2. Derived level structures and representations. In [GV18], Galatius and Venkatesh define and study derived Galois deformations. In [Ven19], Venkatesh defines the derived Hecke algebra to be the derived enhancement of the classical Hecke algebra. It satisfies certain good properties like the classical Hecke algebra. In this paper, we construct the moduli stack of spectral elliptic curves derived level structures. We still don't know what kinds of Hecke algebra acting on the function over it. In recent papers [CS24] and [Dav24], there are some constructions of Hecke operation on topological modular forms. We hope to establish a general theory of Hecke algebra in the derived algebraic geometry context. But their construction is based on Lurie's theorem, not involving derived level structures. We want to find a reasonable construction of the derived Hecke stack that is compatible with Hecke algebra of topological modular forms.
- 5.3.3. Relation with categorical local Langlands correspondence. By recent development of categorical Langlands correspondence, the Langlands correspondence should be thought of an equivalence of categories of certain geometric objects, see [EGH22] for more introduction. For example, for local Langlands correspondence, let F be a finite extension of \mathbf{Q}_p , and let \mathcal{O}_E be the ring of integers in a finite extension of E of \mathbf{Q}_l , then the category of smooth $\mathrm{GL}_d(F)$ representations on:E mouldes should equivalent to a subcategories of quasi-coherent sheaves on a moduli stack \mathcal{X} which parametrizing d-dimensional l-adic representations of the absolute Galois group Gal_F . For $l \neq p$, such stack was introduced in [Zhu20] and [DHKM24]. In [FS21], this stack is realized by a stack of equivariant vector bundles on the Fargues-Fontain curve. For l = p, this stack was constructed in [EG22], which is the stack of (ϕ, Γ) -modules.

On the other hand, the \mathbb{E}_{∞} -ring spectra \mathcal{JL} defines a functor

$$p$$
 – complete spectra \rightarrow GL $_h$ – equivriant spectra.

This can upgrade to a functor

 $QCoh(\mathcal{M}_{FG}) \to GL_h$ equivariant sheaves on certian stacks.

ACKNOWLEDGEMENTS

This paper has its impetus from ongoing joint work of Guozhen Wang and the second author, and grew out of the first author's doctoral thesis. The authors would like to thank ... yet to be written.

References

- [BL10] Mark Behrens and Tyler Lawson. Topological automorphic forms. Mem. Amer. Math. Soc., 204(958):xxiv+141, 2010.
- [BSSW24a] Tobias Barthel, Tomer M. Schlank, Nathaniel Stapleton, and Jared Weinstein. On Hopkins' Picard group. 2024. arXiv:2407.20958.
- [BSSW24b] Tobias Barthel, Tomer M. Schlank, Nathaniel Stapleton, and Jared Weinstein. On the rationalization of the K(n)-local sphere. 2024. arXiv:2402.00960.
- [CDN20] Pierre Colmez, Gabriel Dospinescu, and Wiesława Nizioł. Cohomology of p-adic Stein spaces. Invent. Math., 219(3):873–985, 2020.
- [CDN21] Pierre Colmez, Gabriel Dospinescu, and Wiesława Nizioł. Integral p-adic étale cohomology of Drinfeld symmetric spaces. Duke Math. J., 170(3):575–613, 2021.
- [CS24] L. Candelori and A. Salch. Topological Hecke eigenforms. Math. Z., 307(4):Paper No. 75, 40, 2024.
- [Dav24] Jack Morgan Davies. Hecke operators on topological modular forms. Adv. Math., 452:Paper No. 109828, 71, 2024.
- [Dev20] Sanath Devalapurkar. Roots of unity in K(n)-local rings. Proc. Amer. Math. Soc., $148(7):3187-3194,\ 2020.$
- [Dev23] Sanath K. Devalapurkar. Hodge theory for elliptic curves and the Hopf element ν . Bull. Lond. Math. Soc., 55(2):826–842, 2023.
- [DHKM24] Jean-François Dat, David Helm, Robert Kurinczuk, and Gilbert Moss. Moduli of langlands parameters, 2024.
- [DQ16] Daniel Davis and Gereon Quick. Profinite and discrete g-spectra and iterated homotopy fixed points. Algebraic & Geometric Topology, 16(4):2257–2303, 2016.
- [Dri76] V.G. Drinfel'd. Coverings of p-adic symmetric regions. Funct. Anal. Appl., 10(2):107– 115, 1976.
- [EG22] Matthew Emerton and Toby Gee. Moduli stacks of étale (φ, Γ) -modules and the existence of crystalline lifts. Number 215. Princeton University Press, 2022.
- [EGH22] Matthew Emerton, Toby Gee, and Eugen Hellmann. An introduction to the categorical p-adic langlands program. arXiv preprint arXiv:2210.01404, 2022.
- [FGL08] Laurent Fargues, Alain Genestier, and Vincent Lafforgue. L'isomorphisme entre les tours de Lubin-Tate et de Drinfeld, volume 262 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2008.
- [FS21] Laurent Fargues and Peter Scholze. Geometrization of the local langlands correspondence. arXiv preprint arXiv:2102.13459, 2021.
- [GH04] P. G. Goerss and M. J. Hopkins. Moduli spaces of commutative ring spectra. In Structured ring spectra, volume 315 of London Math. Soc. Lecture Note Ser., pages 151–200. Cambridge Univ. Press, Cambridge, 2004.
- [GM23] David Gepner and Lennart Meier. On equivariant topological modular forms. Compos. Math., 159(12):2638–2693, 2023.
- [GV18] S. Galatius and A. Venkatesh. Derived Galois deformation rings. Adv. Math., 327:470–623, 2018.
- [HL16] Michael Hill and Tyler Lawson. Topological modular forms with level structure. Invent. Math., 203(2):359–416, 2016.
- [HT01] Michael Harris and Richard Taylor. The geometry and cohomology of some simple Shimura varieties, volume 151 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich.
- [KM85] Nicholas M. Katz and Barry Mazur. Arithmetic moduli of elliptic curves, volume 108 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985.
- [Kol96] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996.
- [Lur04] Jacob Lurie. Derived algebraic geometry. ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)-Massachusetts Institute of Technology.
- [Lur09a] J. Lurie. A survey of elliptic cohomology. In Algebraic topology, volume 4 of Abel Symp., pages 219–277. Springer, Berlin, 2009.

- [Lur09b] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
- [Lur17] Jacob Lurie. Higher algebra. 2017. https://www.math.ias.edu/~lurie/papers/HA.pdf.
- [Lur18a] Jacob Lurie. Elliptic cohomology I: Spectal abelian varietes. 2018. https://www.math.ias.edu/~lurie/papers/Elliptic-I.pdf.
- [Lur18b] Jacob Lurie. Elliptic cohomology II: Orientations. 2018. https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf.
- [Lur18c] Jacob Lurie. Spectral algebraic geometry. 2018. https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf.
- [May96] J. P. May. Equivariant homotopy and cohomology theory, volume 91 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner.
- [Mil86] J. S. Milne. Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 103–150. Springer, New York, 1986.
- [MPR24] Sergej Monavari, Emanuele Pavia, and Andrea T. Ricolfi. Derived hyperquot schemes. 2024. arXiv:2409.16858.
- [Qui13] Gereon Quick. Continuous homotopy fixed points for Lubin-Tate spectra. Homology Homotopy Appl., 15(1):191–222, 2013.
- [Rez08] Charles Rezk. Power operations for Morava E-theory of height 2 at the prime 2. 2008. arXiv:0812.1320.
- [Rez09] Charles Rezk. The congruence criterion for power operations in Morava E-theory. Homology Homotopy Appl., 11(2):327–379, 2009.
- [Rez13] Charles Rezk. Power operations in Morava *E*-theory: structure and calculations (Draft). 2013. https://rezk.web.illinois.edu/power-ops-ht-2.pdf.
- [Rez14] Charles Rezk. Isogenies, power operations, and homotopy theory. In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, pages 1125–1145. Kyung Moon Sa, Seoul, 2014.
- [Rez24] Charles Rezk. Lectures on power operations. 2024. https://rezk.web.illinois.edu/power-operation-lectures.pdf.
- [Rog08] John Rognes. Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups: Stably Dualizable Groups, volume 192. American Mathematical Soc., 2008.
- [RZ96] M. Rapoport and Th. Zink. Period spaces for p-divisible groups, volume 141 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1996.
- [SS23] Andrew Salch and Matthias Strauch. \(\ell\)-adic topological Jacquet-Langlands duality. 2023. With an appendix by Andrew Salch and Matthias Strauch. arXiv:2311.10225.
- [ST23] Nicolò Sibilla and Paolo Tomasini. Equivariant elliptic cohomology and mapping stacks I. 2023. arXiv:2303.10146.
- [Str97] Neil P. Strickland. Finite subgroups of formal groups. J. Pure Appl. Algebra, 121(2):161–208, 1997.
- [Str98] N. P. Strickland. Morava E-theory of symmetric groups. Topology, 37(4):757-779, 1998.
- [SW13] Peter Scholze and Jared Weinstein. Moduli of p-divisible groups. Camb. J. Math., 1(2):145–237, 2013.
- [TV08] Bertrand Toën and Gabriele Vezzosi. Homotopical algebraic geometry. II. Geometric stacks and applications, volume 193. 2008.
- [TW95] Richard Taylor and Andrew Wiles. Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2), 141(3):553–572, 1995.
- [Ven19] Akshay Venkatesh. Derived Hecke algebra and cohomology of arithmetic groups. Forum Math. Pi, 7:e7, 119, 2019.
- [Wil95] Andrew Wiles. Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2), 141(3):443–551, 1995.
- [Zhu14] Yifei Zhu. The power operation structure on Morava E-theory of height 2 at the prime 3. Algebr. Geom. Topol., 14(2):953–977, 2014.
- [Zhu19] Yifei Zhu. Semistable models for modular curves and power operations for Morava E-theories of height 2. Adv. Math., 354:Paper No. 106758, 29, 2019.

[Zhu20] Xinwen Zhu. Coherent sheaves on the stack of langlands parameters. $arXiv\ preprint$ $arXiv:2008.02998,\ 2020.$

Institute for Theoretical Sciences, Westlake University, Hangzhou, Zhejiang 310030, P.R. China

 $Email\ address:$ maxuecai@westlake.edu.cn

Department of Mathematics, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China

 $Email\ address: {\tt zhuyf@sustech.edu.cn}$