DEEP LEARNING

(SOME SLIDES FROM HU LI)
NORTHWESTERN UNIVERSITY EECS 349

WHAT IS MACHINE LEARNING?

- Machine Learning: automatically learning functions from inputs to outputs, e.g.
 - Input Features = Does news release text include "X acquired Y"?
 Are X,Y in company database? ... etc.
 - Output = estimate that Acquired(X,Y) is true
- Trained on examples, e.g. news releases labeled as an acquisition, or not

MACHINE LEARNING YESTERDAY AND TODAY

- Yesterday: Conventional Analytics
 - Emphasis on Feature Design
 - Still important today
- Today: Deep Learning
 - Emphasis on Raw Data, Scale, **Model** Design
 - Needs up to millions of examples (100s of each kind of output)
 - Especially applicable when features are hard to design
 - Image/speech recog, language modeling hard for humans to explain how they do it

WHY DEEP LEARNING?

- Deep Learning is not a new learning technique
 - Neural nets date to the late 1940s
 - Have gone furiously in and out of vogue since then
- So why now? We have:
 - More data (ImageNet, Web-scale corpora, EMR, high-throughput bio, IoT, ...)
 - More compute (GPU-based training, cloud)
 - A handful of new optimization tricks (e.g. dropout)
 - Democratizing software packages (Theano, Torch, Tensor Flow, Caffe)
 - An interest in tasks for which features are hard to design

LANGUAGE MODELS: RNNS AND LSTMS

- Estimate string probabilities:
 - P("lowan touts Ide") << P("I went outside")</p>
 - Speech, handwriting recognition
- Or map string to label
 - "This movie is totally awesome" => positive sentiment (sentiment analysis)
- Or map string to string
 - Machine Translation
 - Summarization
 - Definition modeling

RNNS

LSTMS

INTUITION BEHIND LSTMS

- Harness long-range dependencies
- "She's _____ so I hope that she will _____ ."
 brilliant join us not breathe on me

WHAT DEEP NEURAL NETS OF LANGUAGE DO

- Simultaneously, learn:
 - embeddings of words (vectors of numbers e.g. 300 dimensions) and
 - A predictor of which words occur around other words, in terms of the embeddings.
- Embeddings have been shown to capture syntax and semantics
 - But, what *exactly* do they capture?

LSTM EXAMPLE

RESULTS

- Incredibly good language modeling results
 - Good Turing Smoothing: ~160 perplexity (lower is better)
 - Kneser-Ney smoothing: ~I40 perplexity
 - Today's best LSTMs: ~50 perplexity [Salesforce, ca 2017]

WHAT'S NEW WITH NEURAL NETS

- What model features are well-suited to deep neural networks?
 - Recurrence
 - Convolution
 - Multi-task

WHAT IS CONVOLUTION?

1 _{×1}	1,0	1 _{×1}	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

WHAT CAN CONVOLUTION DO?

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

CONVOLUTIONAL NEURAL NETWORK

CONVOLUTIONAL NEURAL NETWORK

1 _{×1}	1,0	1,	0	0
O _{×0}	1 _{×1}	1,0	1	0
0,	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

MAX POOLING

max pool with 2x2 filters and stride 2

6	8
3	4

CONVOLUTIONAL NEURAL NETWORK

MULTI-TASK

- Inputs: retail sales, gross metro product, population, %millennials, percentage of jobs in growth industries, existing stock, total inventory, etc. etc.
- Outputs: the same variables, but in the next time period

 Often, training a single network to perform many prediction tasks outperforms individual models trained on a single task

POINTERS

- Tensorflow, Keras, PyTorch
 - Libraries that make training neural nets not too hard
- Bengio's textbook:
 - http://www.deeplearningbook.org/
- Image demos:
 - http://cs.stanford.edu/people/karpathy/deepimagesent/
 - https://www.captionbot.ai/
- Word embedding demos:
 - http://thor.cs.northwestern.edu:24603/
 - https://rare-technologies.com/word2vec-tutorial/