

Machine Learning in Kombination mit Operations Research

Ein Überblick und Ausblick

Interdisziplinäres Forschungsprojekt

I³-Lab Business Analytics in Maritime Logistics

Jorin Dornemann, M.Sc. Prof. Dr. Anusch Taraz Institut für Mathematik

Nicolas Rückert, M.Sc.
Prof. Dr. Kathrin Fischer
Institut für Quantitative
Unternehmensforschung und
Wirtschaftsinformatik

Hannah Pache, M.Sc. Prof. Dr. Carlos Jahn Institut für Maritime Logistics

Pauline Reinecke, M.Sc. Prof. Dr. Thomas Wrona Institut für Strategisches & Internationales Management

Abgrenzung von Operations Research und Künstlicher Intelligenz

Künstliche Intelligenz

Programme, die kognitive Funktionen imitieren und in der Lage sind, sich anzupassen

Machine Learning

Algorithmen, die ihre Modellparameter iterativ verbessern

Deep Learning

Mehrschichtige neuronale Netze, die aus großen Datenmengen lernen und Muster erkennen

Operations Research

Entwicklung und Anwendung quantitativer Modelle und Methoden zur optimalen Entscheidungsunterstützung für Planungsprobleme

Heuristiken

Methode, die nicht garantiert zu einer optimalen Lösung führt, aber ausreichend ist, um schnell zu einer hoffentlich zufriedenstellenden Lösung zu gelangen

Simulationen

Einsatz eines mathematischen Modells zur experimentellen Untersuchung eines Systems und seiner Eigenschaften und Annäherung an eine optimale Lösung durch experimentelles Ausprobieren einer Vielzahl von Möglichkeiten

Bengio, Lodi, Prouvost, 2018; Le Roux, Bengio, Fitzgibbon, 2011; Bishop, 2006; Mohri, Rostamizadeh and Talwalkar 2012; Werners 2013; Suhl, Mellouli 2013

Verknüpfung von Operations Research und Künstlicher Intelligenz

Ende-zu-Ende Lernen

 Nutzung von KI, um eine Lösung direkt aus der Problemdefinition zu entwickeln

Lernen von Eigenschaften für ein Optimierungsproblem

 KI wird verwendet, um vor der eigentlichen Optimierung weitere Informationen für die Parametrisierung zu generieren

Machine Learning im Austausch mit Operations Research

 OR-Verfahren fordert wiederholt maschinelle Lernverfahren zur weiteren Optimierung

Bengio, Lodi, Prouvost, 2018

Literaturüberblick

Ergebnisse des Literature Review

Themen

- Zeithorizont: 2010 bis März 2020
- Datenbanken: Scopus, Web of Science, IEEE and arxiv
- N=50
- Planungsprobleme der maritimen Logistik
 - Routing der Schiffe
 - Liegeplatz- und Terminalplanung
 - Hinterlandlogistik

Kombination von OR and Al

- Ende-zu-Ende Lernen (Heuristiken)
- Ende-zu-Ende Lernen
- Lernen von Eigenschaften für ein Optimierungsproblem
- Machine Learning im Austausch mit Operations Research
- Nicht spezifiziert

Lernen von Eigenschaften für ein Optimierungsproblem

Anwendungsgebiete in der maritimen Logistik

- Vorhersage der geschätzten Ankunftszeit (ETA) des Schiffes unter Verwendung von AIS-Daten
 - → Optimierung von Liegeplätzen
- Prognose von Fahrzeiten auf dem Straßennetz
 - → Optimierung von Routen und Austausch von Kundenaufträgen

Vorbereitung

- AIS Daten filtern
- AIS Daten aufteilen in Trainings- und Testdaten

Machine Learning

- k-Nearest-Neighbor
- Decision Tree
- Lineare Regression

Optimierung

- Überführung in drei Szenarien
- Robuste Liegeplatzplanung (ro-BAPC)

Interdisziplinäre Forschung

Machine Learning im Austausch mit Operations Research

Anwendungsgebiete in der maritimen Logistik

- Hottung et al. 2020: Container Pre-marshalling Problem (CPMP) Kombination eines Tree Search Ansatzes mit Deep Learning
 - → Unterstützung der Heuristik durch DNNs Übertrifft gängige CPMP-Heuristiken
- Trampschiffrouting Problem
 Kostenreduziertes Routing von Schiffen
 - → Deep Learning zur Unterstützung von Heuristiken

Deep Neural Network

Vielen Dank für Ihre Aufmerksamkeit

Mehr Informationen zum Projekt: https://www2.tuhh.de/i3-ba-ml/
E-Mail:

Nicolas.Rueckert@tuhh.de