EDA

March 27, 2019

library packages

```
library(caret)
theme1 <- trellis.par.get()
theme1$plot.symbol$col <- rgb(.2, .4, .2, .2)
theme1$plot.symbol$pch <- 16
theme1$plot.line$col <- rgb(.8, .1, .1, 1)
theme1$plot.line$lwd <- 2
theme1$strip.background$col <- rgb(.0, .2, .6, .2)
trellis.par.set(theme1)

library(tidyverse)
library(patchwork)</pre>
```

Data cleaning

```
fifa = read_csv("..\\Data\\CompleteDataset.csv")
calc_expression = function(fmula) {
   eval(parse(text = fmula))
}
data = fifa %>%
    janitor::clean names() %>%
   select(-c(x1, name, photo, flag, club_logo, wage, overall, id)) %>%
   mutate(value = str_replace(value, "K", "/ 1000"),
           value = str_replace(value, "M", ""),
           value = str_replace(value, "\in", "")) %>%
   mutate(value = map(value, calc_expression),
           value = as.numeric(value)) %>%
   mutate(value = readr::parse_number(value)) %>%
   filter(preferred_positions == "GK") %>%
    select(-(cam:st))
trans2int cols = c(7:40)
trans2fct_cols = c(2, 4)
data[trans2int_cols] = map(data[trans2int_cols], as.integer)
data[trans2fct_cols] = map(data[trans2fct_cols], as.factor)
data = data %>%
   mutate(nationality = as.character(nationality))
#combining different nations on the same continent into a new variable
```

```
#which has fewer categories
eu = c("Germany", "Spain", "Italy", "Belgium", "Slovenia", "France",
       "Czech Republic", "Croatia", "Switzerland", "Portugal",
       "Denmark", "Poland", "Greece", "Bosnia Herzegovina", "England",
       "Norway", "Netherlands", "Finland", "Russia", "Turkey", "Ukraine",
       "Romania", "Albania", "Hungary", "Lithuania",
       "Republic of Ireland", "Austria", "Sweden", "Wales", "Scotland",
       "Bulgaria", "Serbia", "Georgia", "Kosovo", "Slovakia", "Latvia",
       "Belarus", "FYR Macedonia", "Northern Ireland", "Iceland",
       "Luxembourg", "Montenegro", "Israel", "San Marino")
as = c("China PR", "Korea Republic", "Japan", "Oman", "Saudi Arabia",
       "Egypt", "Iran", "Philippines", "India", "Lebanon", "Senegal",
       "Morocco", "Comoros", "Nigeria", "Algeria", "Ivory Coast",
       "Ghana", "DR Congo", "Benin", "Kenya", "Equatorial Guinea",
       "Gabon", " Burkina Faso", "Congo", "Tunisia", "Cape Verde", "Angola")
af = c("Cameroon", "South Africa", "Mali")
na = c("United States", "Guatemala", "Canada", "Puerto Rico",
       "Haiti", "Bermuda")
sa = c("Costa Rica", "Argentina", "Brazil", "Uruguay", "Chile",
       "Colombia", "Mexico", "Venezuela", "Curacao", "Peru",
       "Paraguay", "Ecuador", "Bolivia")
oc = c("Australia", "New Zealand")
nation_eu = function(name){
  if (name %in% eu)
     name_new = "eu"
  else if (name %in% as)
     name_new = "as"
  else if (name %in% na)
     name_new = "na"
  else if (name %in% sa)
     name new = "sa"
  else if (name %in% oc)
     name new = "oc"
  else name_new = "af"
 name_new
data = data %>%
   mutate(nationality = map(.x = nationality, ~nation_eu(.x))) %>%
   mutate(nationality = as.factor(unlist(nationality)))
```

Split the data set into training and testing data

```
set.seed(2)
trRows = createDataPartition(data$value, p = .75, list = FALSE)
data_split = data %>%
    select(-club)
```

```
train = data_split[trRows,]
test = data_split[-trRows,]
```

Variable transformation

Transform the response(value), based on the distribution of the response in the training dataset

```
#The effect of log transformation is not ideal
#data = data %>%
  mutate(value = log(value + 2)
p1 = train %>%
    ggplot(aes(x = value)) + geom_density(fill = "navy") + theme_bw() +
    labs(title = "Distribution of player's value")
train = train %>%
    mutate(value = value^(1/4)) %>%
    rename("transformed_value" = value)
test = test %>%
    mutate(value = value^(1/4)) %>%
    rename("transformed_value" = value)
train %>% write_csv("..\\exploratory analysis\\train.csv")
test %>% write_csv("..\\exploratory analysis\\test.csv")
data = train
p2 = data %>%
    ggplot(aes(x = transformed_value)) + geom_density(fill = "navy") +
    labs(title = "Distribution of transformed value")
p1 + p2
```


Checking NA's

NA's in each observation

Distribution of NA's in goal-keeper data

NA's in each variable

```
na_col = colSums(is.na(data)) %>%
  as.list() %>%
  as.data.frame() %>%
```

number of missing values for variables that have NA(s)

Tables for descriptive statistics

```
descrip_list = data %>%
    skimr::skim_to_list()

descrip_list[[1]] %>%
```

```
select(variable, n_unique, missing) %>%
dplyr::rename("unique levels" = n_unique) %>%
knitr::kable(caption = "Factor variables")
```

Table 1: Factor variables

variable	unique levels	missing
nationality	6	0

Table 2: Integer/numeric variables

variable	Min	1st Q	Mean	Median	3rd Q	Max	Std Dev	missing
acceleration	11	31	38.65	40	47	65	11.07	4
age	17	22	26.12	26	30	47	5.41	0
aggression	11	21	26.75	25	33	46	7.86	1
agility	14	33	40.47	38	48	74	11.55	4
balance	11	35	43.03	43	51	70	10.94	4
ball_control	8	16	19.96	20	23	54	5.7	3
composure	11	27	36.59	33	45	71	12.72	2
crossing	6	12	14.43	13	17	45	4.1	0
curve	6	12	14.81	14	17	65	4.63	0
dribbling	2	11	14.01	14	16	33	4.38	1
finishing	2	9	12.37	12	15	34	4.06	1
free_kick_accuracy	4	12	14.51	14	16	72	4.73	1
gk_diving	39	60	65.32	65	71	91	7.95	14
gk_handling	43	58	62.88	63	68	91	7.96	19
gk_kicking	35	56	61.57	61	67	95	7.98	12
gk_positioning	38	57	63.08	63	69	91	8.78	18
gk_reflexes	37	60	66.17	66	72	90	8.43	19
heading_accuracy	4	12	14.58	14	17	47	4.18	0
interceptions	4	13	17.47	18	22	55	5.86	2
jumping	13	52	58.24	59	66	85	11.45	4
long_passing	7	20	25.47	24	30	62	7.72	1
long_shots	3	10	13.12	13	16	40	4.48	1
marking	4	10	12.67	13	15	35	4.31	1
na_count	0	0	0.091	0	0	15	0.77	0
penalties	5	15	20.4	20	24	73	6.83	1
positioning	2	8	11.61	12	15	24	4.16	2
potential	46	65	69.68	70	74	94	6.49	0

variable	Min	1st Q	Mean	Median	3rd Q	Max	Std Dev	missing
reactions	28	52	59.16	60	67	88	10.36	7
short_passing	11	22	26.93	26	31	66	7.22	1
shot_power	3	19	22.52	22	24	70	6.99	1
sliding_tackle	4	12	14.1	13	16	35	3.43	0
special	736	966	1048.4	1061	1133	1493	127.75	0
sprint_speed	11	32	39.25	41	47	70	10.98	5
stamina	12	25	30.51	30	36	45	7.51	3
standing_tackle	4	12	14.17	14	16	34	3.46	0
strength	12	54	61.09	62	69	85	11.26	3
vision	10	27	35.92	35	45	72	12.81	3
volleys	4	10	12.9	13	16	40	4.55	1
transformed_value	0	0.61	0.86	0.78	0.99	2.83	0.39	0

Figures for descriptive statistics

Check the distribution for each numeric/integer predictor

```
#library(gridExtra)
p1 = data[,1:18] %>%
    select(-transformed_value) %>%
  keep(is.numeric) %>%
                                           # Keep only numeric columns
                                           # Convert to key-value pairs
  gather() %>%
  ggplot(aes(value)) +
                                           # Plot the values
    facet_wrap(~ key, scales = "free") + # In separate panels
    geom_density() +
    theme_bw()
p2 = data[,19:34] %>%
                                           # Keep only numeric columns
  keep(is.numeric) %>%
  gather() %>%
                                           # Convert to key-value pairs
  ggplot(aes(value)) +
                                           # Plot the values
   facet_wrap(~ key, scales = "free") + # In separate panels
    geom_density() +
    theme_bw()
p1/p2
```



```
data[,35:39] %>%
keep(is.numeric) %>%  # Keep only numeric columns
gather() %>%  # Convert to key-value pairs
ggplot(aes(value)) +  # Plot the values
facet_wrap(~ key, scales = "free") + # In separate panels
geom_density() +
theme_bw()
```


plot for variables

for factor variables

• nationality

plot the situation for nations with the most number of players:

```
nation_box = data %>%
   mutate(nationality = fct_lump(nationality, 12)) %>%
   mutate(nationality = fct_infreq(nationality)) %>%
   mutate(nationality = fct_rev(nationality)) %>%
    #move "Other" level to the last:
   mutate(nationality = fct_relevel(nationality, "Other", after = 0)) %>%
   ggplot(aes(x = nationality, y = transformed_value)) +
geom_boxplot() +
theme(legend.position = "bottom") +
labs( x = NULL) +
coord_flip() +
    theme(axis.text.x = element_text(face = "plain",
                                     color = "black",
                                     size = 8)) +
    theme_bw()
nation_hist = data %>%
    #If focus on most common nations:
   mutate(nationality = fct_lump(nationality, 12)) %>%
```

```
#nations that have fewer players will be denoted as "Other"
   mutate(nationality = fct_infreq(nationality)) %>%
   mutate(nationality = fct rev(nationality)) %>%
    #move "Other" level to the last:
   mutate(nationality = fct_relevel(nationality, "Other", after = 0)) %>%
    ggplot(aes(x = nationality)) +
    geom_bar(fill = "navy") +
   theme(legend.position = "bottom") +
   labs(title = "Player count/transformed_value by nationality",
         subtitle = "Nations with most players. This plot suggests that
         players' \n transformed_values vary between different nations") +
    coord_flip() +
    theme(axis.text.x = element_text(face = "plain",
                                     color = "black",
                                     size = 8)) +
    theme_bw()
nation_hist + nation_box
```

Player count/transformed_value by nationality

Nations with most players. This plot suggests that players'

plot the nations with highest players' transformed_values:

```
nation_box = data %>%
  group_by(nationality) %>%
  mutate(med_by_nation = median(transformed_value)) %>%
  ungroup() %>%
  mutate(nationality = fct_reorder(nationality, med_by_nation)) %>%
```

```
ggplot(aes(x = nationality, y = transformed_value)) +
    geom_boxplot() +
    theme(legend.position = "bottom") +
    labs( x = NULL) +
    coord_flip() +
    theme(axis.text.x = element_text(face = "plain",
                                     color = "black",
                                     size = 8)) +
    theme_bw()
nation_hist = data %>%
    group_by(nationality) %>%
    mutate(med_by_nation = median(transformed_value)) %>%
    ungroup() %>%
    mutate(nationality = fct_reorder(nationality, med_by_nation)) %>%
    ggplot(aes(x = nationality)) +
    geom_bar(fill = "navy") +
    theme(legend.position = "bottom") +
    labs(title = "Player count/transformed_value by nation",
         subtitle = "Nations with highest median player transformed_values.
         Those with the highest player\n transformed_values typically have
         very little player data recorded.") +
    coord_flip() +
    theme(axis.text.x = element_text(face = "plain",
                                     color = "black",
                                     size = 8)) +
    theme_bw()
nation_hist + nation_box
```

Player count/transformed_value by nation

Nations with highest median player transformed_values.
Those with the highest player
transformed_values typically have

for int/num variables

```
# matrix of predictors
data_num = data %>%
    keep(is.numeric) %>%
    select(-na_count, -transformed_value)
#for factor variables
data_fct = data %>%
    select(-transformed_value) %>%
    select if(~ is.factor(.))
# vector of response
y <- data$transformed_value
featurePlot(data_num,
plot = "scatter",
span = .5,
labels = c("Predictors","Y"),
type = c("p", "smooth"),
layout = c(4, 10)
```


FeaturePlots for factor variables

```
featurePlot(data$transformed_value, data_fct$nationality, "box", labels = c("Nationality","Y"))
```



```
featurePlot(data$transformed_value, data_fct$club, "box", labels = c("Club","Y"))
```

NULL

Correlation plot

```
library(corrplot)

cor_data = data %>%
    filter(na_count == 0) %>%
    select(-nationality, -na_count)

corrplot(cor(cor_data), tl.cex = 1.2)
```

