Norwegian University of Science and Technology

TTK4135 – Lecture 14 Line search

Lecturer: Lars Imsland

Learning goal Ch. 2, 3 and 6: Understand this slide **Line-search unconstrained optimization**

 $\min f(x)$

- Initial guess x_0
- While termination criteria not fulfilled
 - Find descent direction p_k from x_k
 - Find appropriate step length α_k ; set $x_{k+1} = x_k + \alpha_k p_k$
 - k = k + 1
- 3. $x_M = x^*$? (possibly check sufficient conditions for optimality)

A comparison of steepest descent and Newton's method. Newton's method uses curvature information to take a more direct route. (wikipedia.org)

Termination criteria:

Stop when first of these become true:

- $\|\nabla f(x_k)\| \le \epsilon$ (necessary condition)
- $||x_k x_{k-1}|| \le \epsilon$ (no progress)
- $||f(x_k) f(x_{k-1})|| \le \epsilon$ (no progress)
- $k \le k_{\text{max}}$ (kept on too long)

Descent directions:

- Steepest descent $p_k = -\nabla f(x_k)$
- Newton

$$p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Quasi-Newton

$$p_k = -B_k^{-1} \nabla f(x_k)$$

$$B_k \approx \nabla^2 f(x_k)$$

How to calculate derivatives - Ch. 8

Outline today: Line search

Objective of line search: make gradient algorithms work when you start far away from optimum

- These algorithms are sometimes called <u>globalization</u> strategies
- Two basic globalization strategies: <u>line search</u> (Ch. 3) and trust-region (Ch. 4, not syllabus)
 - Note again: "globalization" does not imply that we search for global optimum, but we make the algorithm work far from a (local or global) optimum!

Line search elements:

- Conditions on step-length: Wolfe conditions
- Step-length computation

Hessian modification for Newton

Reference: N&W Ch.3-3.1, 3.4, 3.5

$$\min_{x} f(x)$$

Quadratic approximation to objective function

$$f(x_k + p) \approx m_k(p) = f(x_k) + p^{\top} \nabla f(x_k) + \frac{1}{2} p^{\top} \nabla^2 f(x_k) p$$

Minimize approximation:

$$\nabla_p m_k(p) = 0 \Rightarrow p_k = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)$$

"Newton step":

$$x_{k+1} = x_k + p_k = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Figure 9.1 Quadratic approximation to the objective function using first and second derivatives. Chong & Zak, "An introduction to optimization"

Exact linesearch

Why sufficient decrease?

$$f(x_k) = 5/k \to 0$$
 when $k \to \infty$

• Decrease ($f(x_k + \alpha p_k) \le f(x_k)$) not enough, need sufficient decrease (1st Wolfe condition)

Condition 1: Sufficient decrease (Armijo)

$$l(\alpha) = \phi(0) + c_1 \alpha \phi'(0), \quad c_1 = 0.25$$

Sufficient decrease

Figure 3.3 Sufficient decrease condition.

Condition 2: Desired slope

Desired slope

Figure 3.4 The curvature condition.

Wolfe conditions

Good step lengths should fulfill the Wolfe conditions:

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha_k \nabla f_k^{\top} p_k$$
 Sufficient decrease (Armijo condition)
 $\nabla f(x_k + \alpha_k p_k)^{\top} p_k \ge c_2 \nabla f_k^{\top} p_k$ Desired slope (Curvature condition)

How do we compute such a step length?

Backtracking Line Search

```
Algorithm 3.1 (Backtracking Line Search). Choose \bar{\alpha} > 0, \rho \in (0, 1), c \in (0, 1); Set \alpha \leftarrow \bar{\alpha}; repeat until f(x_k + \alpha p_k) \leq f(x_k) + c\alpha \nabla f_k^T p_k \alpha \leftarrow \rho \alpha; end (repeat)
Terminate with \alpha_k = \alpha.
```


Desired slope (curvature condition) not needed since we start with long step length

Interpolation

Example: Line search for convex quadratic objective function

$$f(x) = \frac{1}{2}x^{\top}Gx + c^{\top}x, \quad G > 0$$
$$x_k, \ p_k \text{ given}$$

Newton: Hessian modification

$$x_{k+1} = x_k + \alpha_k p_k, \quad p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Line search Newton

```
Algorithm 3.2 (Line Search Newton with Modification). Given initial point x_0; for k=0,1,2,\ldots Factorize the matrix B_k=\nabla^2 f(x_k)+E_k, where E_k=0 if \nabla^2 f(x_k) is sufficiently positive definite; otherwise, E_k is chosen to ensure that B_k is sufficiently positive definite; Solve B_k p_k = -\nabla f(x_k); Set x_{k+1} \leftarrow x_k + \alpha_k p_k, where \alpha_k satisfies the Wolfe, Goldstein, or Armijo backtracking conditions; end
```

Local convergence rates (close to optimum)

Steepest descent: Linear convergence

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \le r \quad \text{for all } k \text{ sufficiently large, } r \in (0, 1)$$

Newton: Quadratic convergence

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} \le M \quad \text{for all } k \text{ sufficiently large, } M > 0$$

Quasi-Newton: Superlinear convergence

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

$$\frac{\|x_{k+1} - x^*\|}{\|x_0\|}$$

