Stochastic Gradient Descent in NPIV estimation

Anonymous Author(s)

Affiliation Address email

1 Problem setup

2 1.1 Basic definitions

³ Fix a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Given $X \in L^2(\Omega; \mathbb{X} \subseteq \mathbf{R}^p)$, we define

$$L^2(X) \triangleq \left\{h: \mathbb{X} \to \mathbf{R} \ : \ \mathbb{E}[h(X)^2] < \infty \right\},$$

- 4 that is, $L^2(X) = L^2(X, \mathcal{B}(X), \mathbb{P}_X)^1$, a Hilbert space equipped with the inner product $\langle h, g \rangle_{L^2(X)} =$
- ${\mathbb E}[h(X)g(X)].$ The regression problem we are interested in has the form

$$Y = h^{\star}(X) + \varepsilon, \tag{1}$$

- 6 where $h^* \in L^2(X)$ and ε is an integrable r.v. such that $\mathbb{E}[\varepsilon \mid X] \neq 0$. We assume there exists
- 7 $Z \in L^2(\Omega; \mathbb{Z} \subseteq \mathbf{R}^q)$ such that $Z \not\perp \!\!\! \perp X$, Z influences Y only through X and $\mathbb{E}[\varepsilon \mid Z] = 0$.
- 8 This variable is called the instrumental variable. The problem consists of estimating h^\star based on
- 9 independent joint samples from X, Z and Y.
- 10 Conditioning (1) in Z, we find

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h^*(X) \mid Z]. \tag{2}$$

This motivates us to introduce the operator $\mathcal{T}:L^2(X)\to L^2(Z)$ defined by

$$\mathcal{T}[h](z) \triangleq \mathbb{E}[h(X) \mid Z = z].$$

- 12 Clearly \mathcal{T} is linear and, using Jensen's inequality, one may prove that it's bounded. It's also interesting
- to notice that its adjoint $\mathcal{T}^*: L^2(Z) \to L^2(X)$ satisfies

$$\mathcal{T}^*[g](x) = \mathbb{E}[g(Z) \mid X = x]. \tag{3}$$

- Define $r_0: \mathbb{Z} \to \mathbf{R}$ by $r_0(Z) = \mathbb{E}[Y \mid Z]$. Again by Jensen's inequality, we have $r_0 \in L^2(Z)$, and
- thus we can rewrite (2) as

$$\mathcal{T}[h^*] = r_0. \tag{4}$$

Hence, (1) can be formulated as an inverse problem, where we wish to invert the operator \mathcal{T} .

7 1.2 Risk measure

- Let $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ be a pointwise loss function, which, with respect to its second argument, is
- 19 convex and differentiable. We use the symbol ∂_2 to denote a derivative with respect to the second
- argument. The example to keep in mind is the quadratic loss function $\ell(y,y')=(y-y')^2$. Given
- $h \in L^2(X)$, we define the *populational risk* associated with it to be

$$\mathcal{R}(h) \triangleq \mathbb{E}[\ell(r_0(Z), \mathcal{T}[h](Z))].$$

22 We would like to solve

$$\inf_{h \in \mathcal{T}} \mathcal{R}(h)$$

where $\mathcal{F} \subseteq L^2(X)$ is a closed, convex set such that $h^\star \in \mathcal{F}$.

Assumption

Discuss the other implication, that if h satisfies $\mathcal{T}[h] = r_0$, then $h = h^*$. This

can be connected to

the strength of the in-

¹We denote by \mathbb{P}_X the distribution of the r.v. X and by $\mathcal{B}(\mathbb{X})$ the Borel σ -algebra in \mathbb{X} .

24 2 Gradient computation

We'd like to compute $\nabla \mathcal{R}(h)$ for $h \in L^2(X)$. We start by computing the directional derivative of \mathcal{R} at h in the direction f, denoted by $D\mathcal{R}[h](f)$:

$$D\mathcal{R}[h](f) = \lim_{\delta \to 0} \frac{1}{\delta} \left[\mathcal{R}(h + \delta f) - \mathcal{R}(f) \right]$$

$$= \lim_{\delta \to 0} \frac{1}{\delta} \mathbb{E} \left[\ell(r_0(Z), \mathcal{T}[h + \delta f](Z)) - \ell(r_0(Z), \mathcal{T}[h](Z)) \right]$$

$$= \lim_{\delta \to 0} \frac{1}{\delta} \mathbb{E} \left[\ell(r_0(Z), \mathcal{T}[h](Z) + \delta \mathcal{T}[f](Z)) - \ell(r_0(Z), \mathcal{T}[h](Z)) \right]$$

$$= \lim_{\delta \to 0} \frac{1}{\delta} \mathbb{E} \left[\delta \partial_2 \ell(r_0(Z), \mathcal{T}[h](Z)) \mathcal{T}[f](Z) \right]$$

$$+ \frac{\delta^2}{2} \partial_2^2 \ell(r_0(Z), \mathcal{T}[h + \theta f](Z)) \mathcal{T}[f](Z)^2 \right]$$

$$= \mathbb{E} \left[\partial_2 \ell(r_0(Z), \mathcal{T}[h](Z)) \mathcal{T}[f](Z) \right]$$

$$+ \lim_{\delta \to 0} \mathbb{E} \left[\frac{\delta}{2} \partial_2^2 \ell(r_0(Z), \mathcal{T}[h + \theta f](Z)) \mathcal{T}[f](Z)^2 \right]$$

$$= \mathbb{E} \left[\partial_2 \ell(r_0(Z), \mathcal{T}[h](Z)) \mathcal{T}[f](Z) \right],$$

27 where $\theta \in \mathbf{R}$ is due to Taylor's formula and can be assumed to be inside a fixed interval $(-\theta_0, \theta_0)$, Assumption

with θ_0 arbitrarily small. We have assumed at the last step that there exists $\theta_0 > 0$ such that

$$\sup_{|\theta| < \theta_0} \mathbb{E}\left[\partial_2^2 \ell(r_0(Z), \mathcal{T}[h + \theta f](Z)) \mathcal{T}[f](Z)^2\right] < \infty.$$

- 29 This is a mild integrability condition which can be shown to hold in the quadratic case.
- We can in fact expand the calculation a bit more, as follows:

$$D\mathcal{R}[h](f) = \mathbb{E}\left[\partial_2 \ell(r_0(Z), \mathcal{T}[h](Z)) \mathcal{T}[f](Z)\right]$$

= $\langle \partial_2 \ell(r_0(\cdot), \mathcal{T}[h](\cdot)), \mathcal{T}[f] \rangle_{L^2(Z)}$
= $\langle \mathcal{T}^*[\partial_2 \ell(r_0(Z), \mathcal{T}[h](\cdot))], f \rangle_{L^2(X)},$

- where we are assuming that $\partial_2 \ell(r_0(\cdot), \mathcal{T}[h](\cdot)) \in L^2(Z)$. This shows that \mathcal{R} is Gateux-differentiable, Assumption
- with Gateux derivative at h given by

$$D\mathcal{R}[h] = \mathcal{T}^*[\partial_2 \ell(r_0(\cdot), \mathcal{T}[h](\cdot))].$$

- If we assume that $h \mapsto D\mathcal{R}[h]$ is a continuous mapping from $L^2(Z)$ to $L^2(Z)$, then \mathcal{R} is also
- Fréchet-differentiable, and both derivatives coincide. Therefore, under this assumption, which we
- henceforth make, $\nabla \mathcal{R}(h) = \mathcal{T}^*[\partial_2 \ell(r_0(\cdot), \mathcal{T}[h](\cdot))].$

Assumption

Assumption

Talk about which conditions ℓ can satisfy so that this is continuous

Should we discuss this

6 3 Unbiased estimator of the gradient

37 We have found that

$$\nabla \mathcal{R}(h)(x) = \mathcal{T}^*[\partial_2 \ell(r_0(\cdot), \mathcal{T}[h](\cdot))](x) = \mathbb{E}[\partial_2 \ell(r_0(Z), \mathcal{T}[h](Z)) \mid X = x].$$

- This turns out to be hard to estimate in practice, as we have two nested conditional expectation
- operators. Our objective in this section is to find a random element $u_h \in L^2(X)$ such that $\mathbb{E}[u_h(x)] =$
- 40 $\nabla \mathcal{R}(h)(x)$, so we can replace $\nabla \mathcal{R}(h)(x)$ by $u_h(x)$ in a gradient descent algorithm, obtaining a
- stochastic version which will be easier to compute.
- Our strategy to obtain u_h will be to write $\nabla \mathcal{R}(h)(x) = \mathbb{E}[\Phi(x,Z)\partial_2 \ell(r_0(Z),\mathcal{T}[h](Z))]$, for some
- suitable kernel Φ . To ease the notation, define $\xi_h(z) \triangleq \partial_2 \ell(r_0(z), \mathcal{T}[h](z))$. Assuming that X and

²It is if ℓ is quadratic.

- Z have a joint distribution which is absolutely continuous with respect to Lebesgue measure in \mathbf{R}^{p+q} ,
- we can write

$$\nabla \mathcal{R}(h)(x) = \mathbb{E}[\xi_h(Z) \mid X = x]$$

$$= \int_{\mathbb{Z}} p(z \mid x) \xi_h(z) \, dz$$

$$= \int_{\mathbb{Z}} p(z) \frac{p(z \mid x)}{p(z)} \xi_h(z) \, dz$$

$$= \mathbb{E}\left[\frac{p(Z \mid x)}{p(Z)} \xi_h(Z)\right].$$

Thus, we must take

$$\Phi(x,z) = \frac{p(z \mid x)}{p(z)} = \frac{p(x \mid z)}{p(x)} = \frac{p(x,z)}{p(x)p(z)}.$$

With this choice, setting $u_h(x) = \Phi(x, Z)\xi_h(Z)$ we clearly have $\mathbb{E}[u_h(x)] = \nabla \mathcal{R}(h)(x)$

Must discuss why $u_h \in L^2(X)$

Discuss everything we

timate each unknown

Discuss necessity of

estimate.

Algorithm

Having an unbiased estimator of the gradient, we can construct an SGD algorithm for estimating h^* .

Algorithm 1: SGD-NPIV

input: Datasets $\mathcal{D}_{r_0} = \{(y_i, z_i)\} \overset{\text{iid}}{\sim} \mathbb{P}_{YZ}, \mathcal{D}_{\Phi} = \{(x_i, z_i)\} \overset{\text{iid}}{\sim} \mathbb{P}_{XZ}, \mathcal{D}_{\Phi} =$

output : $\left\{\widehat{h}(oldsymbol{x}_k)
ight\}_{k=1}^K$ Compute $\{\widehat{r_0}(\boldsymbol{z}_m; \mathcal{D}_{r_0})\}_{m=1}^M$;

Compute $\widehat{\Phi}(\boldsymbol{x}, \boldsymbol{z}; \mathcal{D}_{\Phi})$;

for $1 \le m \le M$ do

Compute
$$\widehat{\mathcal{T}[\widehat{h}_{m-1}]}(\boldsymbol{z}_m; \mathcal{D}_{\mathcal{T}})$$
;
Set $u_m(\boldsymbol{x}_k) = \widehat{\Phi}(\boldsymbol{x}_k, \boldsymbol{z}_m) \partial_2 \ell \left(\widehat{r_0}(\boldsymbol{z}_m, \mathcal{D}_{r_0}), \widehat{\mathcal{T}[\widehat{h}_{m-1}]}(\boldsymbol{z}_m; \mathcal{D}_{\mathcal{T}}) \right)$ for $1 \leq k \leq K$;
Set $\widehat{h}_m(\boldsymbol{x}_k) = \widehat{h}_{m-1}(\boldsymbol{x}_k) - \alpha_m u_m(\boldsymbol{x}_k)$ for $1 \leq k \leq K$;

Set
$$\hat{h} = \frac{1}{M} \sum_{m=1}^{M} \hat{h}_m$$
;

An option we have is to project onto the closed, convex, bounded set \mathcal{F} after applying the stochastic \mathbf{f} Should we do this?

gradient, that is, constructing the new estimate as

$$\widehat{h}_m = P_{\mathcal{F}} \left[\widehat{h}_{m-1} - \alpha_m u_m \right].$$

- From what I can see, this would require minor changes to the proof and would justify the assumption
- that $\hat{h}_m \in \mathcal{F}$ for all m. 54
- A possible choice for the set \mathcal{F} is

$$\mathcal{F} \triangleq \left\{ h \in L^2(X) : \|h\|_{\infty} \le M \right\},\,$$

- where M>0 is a constant chosen a priori. This set is obviously closed, convex and bounded in
- the $L^2(X)$ norm. Furthermore, the operator $P_{\mathcal{F}}$ is very easy to compute, as $P_{\mathcal{F}}[h]$ is obtained by 57
- cropping h inside [-M, M]. More formally,

$$P_{\mathcal{F}}[h] = h^+ \wedge M - h^- \wedge M.$$

59 **Proof of convergence**

- The first problem is proving our sequence of estimates is, in fact, contained in $L^2(X)$. This amounts
- to proving $u_m \in L^2(X)$ for every m. It's not even immediate why $u_h(x) = \Phi(x,Z)\xi_h(Z)$ (the
- unbiased gradient when we know r_0, Φ and \mathcal{T}) belongs to $L^2(X)$
- After doing this, we check that \mathcal{R} is convex in \mathcal{F} : if $h,g\in\mathcal{F}$ and $\lambda\in[0,1]$, then

We'll need to bound the norm of u_m by a constant later in the proof.

$$\mathcal{R}(\lambda h + (1 - \lambda)g) = \mathbb{E}[\ell(r_0(Z), \mathcal{T}[\lambda h + (1 - \lambda)g](Z))]$$

$$= \mathbb{E}[\ell(r_0(Z), \lambda \mathcal{T}[h](Z) + (1 - \lambda)\mathcal{T}[g](Z))]$$

$$\leq \lambda \mathbb{E}[\ell(r_0(Z), \mathcal{T}[h](Z))] + (1 - \lambda)\mathbb{E}[\ell(r_0(Z), \mathcal{T}[g](Z))]$$

$$= \lambda \mathcal{R}(h) + (1 - \lambda)\mathcal{R}(g).$$

- To lighten the notation, the symbols $\|\cdot\|$ and $\langle\cdot,\cdot\rangle$, when written without a subscript to specify which
- space they refer to, will act as the norm and inner product, respectively, of $L^2(X)$. By the Algorithm
- 66 1 procedure, we have

$$\begin{split} \frac{1}{2} \left\| \widehat{h}_{m} - h^{\star} \right\|^{2} &= \frac{1}{2} \left\| \widehat{h}_{m-1} - \alpha_{m} u_{m} - h^{\star} \right\|^{2} \\ &= \frac{1}{2} \left\| \widehat{h}_{m-1} - h^{\star} \right\|^{2} - \alpha_{m} \langle u_{m}, \widehat{h}_{m-1} - h^{\star} \rangle + \frac{\alpha_{m}^{2}}{2} \left\| u_{m} \right\|^{2} \end{split}$$

After adding and subtracting $\alpha_m \langle \nabla \mathcal{R}(\widehat{h}_{m-1}), \widehat{h}_{m-1} - h^* \rangle$, we are left with

$$\frac{1}{2} \left\| \widehat{h}_{m-1} - h^{\star} \right\|^{2} - \alpha_{m} \langle u_{m} - \nabla \mathcal{R}(\widehat{h}_{m-1}), \widehat{h}_{m-1} - h^{\star} \rangle + \frac{\alpha_{m}^{2}}{2} \left\| u_{m} \right\|^{2} - \alpha_{m} \langle \nabla \mathcal{R}(\widehat{h}_{m-1}), \widehat{h}_{m-1} - h^{\star} \rangle.$$

68 Applying the basic convexity inequality on the last term give us, in total,

$$\frac{1}{2} \| \widehat{h}_{m} - h^{\star} \|^{2} \leq \frac{1}{2} \| \widehat{h}_{m-1} - h^{\star} \|^{2} - \alpha_{m} \langle u_{m} - \nabla \mathcal{R}(\widehat{h}_{m-1}), \widehat{h}_{m-1} - h^{\star} \rangle
+ \frac{\alpha_{m}^{2}}{2} \| u_{m} \|^{2} - \alpha_{m} (\mathcal{R}(\widehat{h}_{m-1}) - \mathcal{R}(h^{\star})).$$

69 Rearranging terms, we get

$$\mathcal{R}(\widehat{h}_{m-1}) - \mathcal{R}(h^{\star}) \leq \frac{1}{2\alpha_m} \left(\left\| \widehat{h}_{m-1} - h^{\star} \right\|^2 - \left\| \widehat{h}_m - h^{\star} \right\|^2 \right) + \frac{\alpha_m}{2} \left\| u_m \right\|^2 - \langle u_m - \nabla \mathcal{R}(\widehat{h}_{m-1}), \widehat{h}_{m-1} - h^{\star} \rangle.$$

Finally, summing over $1 \le m \le M$ leads to

$$\begin{split} \sum_{n=1}^{M} \left[\mathcal{R}(\widehat{h}_{m-1}) - \mathcal{R}(h^{\star}) \right] &\leq \sum_{m=1}^{M} \frac{1}{2\alpha_{m}} \left(\left\| \widehat{h}_{m-1} - h^{\star} \right\|^{2} - \left\| \widehat{h}_{m} - h^{\star} \right\|^{2} \right) \\ &+ \sum_{m=1}^{M} \frac{\alpha_{m}}{2} \left\| u_{m} \right\|^{2} \\ &- \sum_{m=1}^{M} \langle u_{m} - \nabla \mathcal{R}(\widehat{h}_{m-1}), \widehat{h}_{m-1} - h^{\star} \rangle. \end{split}$$

- We then treat each of the three terms in the RHS of the inequality above separately:
- First term By assumption, we have diam $\mathcal{F} = D < \infty$. Hence

$$\sum_{m=1}^{M} \frac{1}{2\alpha_{m}} \left(\left\| \hat{h}_{m-1} - h^{\star} \right\|^{2} - \left\| \hat{h}_{m} - h^{\star} \right\|^{2} \right) = \sum_{m=2}^{M} \left(\frac{1}{2\alpha_{m}} - \frac{1}{2\alpha_{m-1}} \right) \left\| \hat{h}_{m-1} - h^{\star} \right\|^{2} + \frac{1}{2\alpha_{1}} \left\| \hat{h}_{0} - h^{\star} \right\|^{2} - \frac{1}{2\alpha_{M}} \left\| \hat{h}_{M} - h^{\star} \right\|^{2}$$

$$\leq \sum_{m=2}^{M} \left(\frac{1}{2\alpha_{m}} - \frac{1}{2\alpha_{m-1}} \right) D^{2} + \frac{1}{2\alpha_{1}} D^{2} = \frac{D^{2}}{2\alpha_{M}}.$$

- **Second term** We are fixing the offline data $\mathcal{D}_{\Phi,\mathcal{T},r_0}$ and averaging with respect to the other samples of the instrumental variable. Therefore, what we wish to compute is

$$\mathbb{E}_{\boldsymbol{z}_{1:M}} \left[\|u_m\|^2 \mid \mathcal{D}_{\Phi,\mathcal{T},r_0} \right] = \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\mathbb{E}_{X} \left[\widehat{\Phi}(X,\boldsymbol{z}_m)^2 \partial_2 \ell \left(\widehat{r_0}(\boldsymbol{z}_m), \widehat{\mathcal{T}}[\widehat{h}_{m-1}](\boldsymbol{z}_m) \right)^2 \right] \mid \mathcal{D}_{\Phi,\mathcal{T},r_0} \right] \\
= \mathbb{E}_{X} \left[\mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\widehat{\Phi}(X,\boldsymbol{z}_m)^2 \partial_2 \ell \left(\widehat{r_0}(\boldsymbol{z}_m), \widehat{\mathcal{T}}[\widehat{h}_{m-1}](\boldsymbol{z}_m) \right)^2 \mid \mathcal{D}_{\Phi,\mathcal{T},r_0} \right] \right].$$

Since $z_{1:m}$ is independent from $\mathcal{D}_{\Phi,\mathcal{T},r_0}$, this is equal to

$$\mathbb{E}_{X}\left[\mathbb{E}_{\boldsymbol{z}_{1:m}}\left[\widehat{\Phi}(X,\boldsymbol{z}_{m})^{2}\partial_{2}\ell\left(\widehat{r_{0}}(\boldsymbol{z}_{m}),\widehat{\mathcal{T}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m})\right)^{2}\right]\right].$$

Reversing back the expectations, we get

$$\mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\mathbb{E}_{X} \left[\widehat{\Phi}(X, \boldsymbol{z}_{m})^{2} \partial_{2} \ell \left(\widehat{r_{0}}(\boldsymbol{z}_{m}), \widehat{\mathcal{T}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) \right)^{2} \right] \right]$$

$$= \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\mathbb{E}_{X} \left[\widehat{\Phi}(X, \boldsymbol{z}_{m})^{2} \right] \partial_{2} \ell \left(\widehat{r_{0}}(\boldsymbol{z}_{m}), \widehat{\mathcal{T}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) \right)^{2} \right].$$

Now we use Assumption 14.5.1 in [1], which states that

$$\sup_{\boldsymbol{w}\in\mathbb{W}}k(\boldsymbol{w},\boldsymbol{w})\leq 1,$$

- where $\mathbb{W} = \mathbb{X} \times \mathbb{Z}$, w = (x, z) and $k : \mathbb{W} \times \mathbb{W} \to \mathbf{R}$ is the kernel corresponding to the RKHS used
- to estimate Φ , which we denote by $\mathcal{R}_{\mathbb{W}}$. This assumption implies

$$\begin{split} \widehat{\Phi}(\boldsymbol{w}) &= \langle \widehat{\Phi}, k(\boldsymbol{w}, \cdot) \rangle_{\mathcal{R}_{\mathbb{W}}} \leq \left\| \widehat{\Phi} \right\|_{\mathcal{R}_{\mathbb{W}}} \left\| k(\boldsymbol{w}, \cdot) \right\|_{\mathcal{R}_{\mathbb{W}}} = \left\| \widehat{\Phi} \right\|_{\mathcal{R}_{\mathbb{W}}} \sqrt{\langle k(\boldsymbol{w}, \cdot), k(\boldsymbol{w}, \cdot) \rangle} = \\ &= \left\| \widehat{\Phi} \right\|_{\mathcal{R}_{\mathbb{W}}} \sqrt{k(\boldsymbol{w}, \boldsymbol{w})} \leq \left\| \widehat{\Phi} \right\|_{\mathcal{R}_{\mathbb{W}}} \end{split}$$

for all $w \in \mathbb{W}$. Therefore,

$$\begin{split} \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\mathbb{E}_{\boldsymbol{X}} \left[\widehat{\boldsymbol{\Phi}}(\boldsymbol{X}, \boldsymbol{z}_{m})^{2} \right] \partial_{2} \ell \left(\widehat{r_{0}}(\boldsymbol{z}_{m}), \widehat{\boldsymbol{\mathcal{T}}}[\widehat{\boldsymbol{h}}_{m-1}](\boldsymbol{z}_{m}) \right)^{2} \right] \\ &\leq \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\mathbb{E}_{\boldsymbol{X}} \left[\left\| \widehat{\boldsymbol{\Phi}} \right\|_{\mathcal{R}_{\mathbb{W}}}^{2} \right] \partial_{2} \ell \left(\widehat{r_{0}}(\boldsymbol{z}_{m}), \widehat{\boldsymbol{\mathcal{T}}}[\widehat{\boldsymbol{h}}_{m-1}](\boldsymbol{z}_{m}) \right)^{2} \right] \\ &= \left\| \widehat{\boldsymbol{\Phi}} \right\|_{\mathcal{R}_{\mathbb{W}}}^{2} \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\partial_{2} \ell \left(\widehat{r_{0}}(\boldsymbol{z}_{m}), \widehat{\boldsymbol{\mathcal{T}}}[\widehat{\boldsymbol{h}}_{m-1}](\boldsymbol{z}_{m}) \right)^{2} \right]. \end{split}$$

To bound the expectation, we assume the loss is quadratic and then

Assumption

$$\begin{split} \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\left(\widehat{\mathcal{T}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) - \widehat{r_{0}}(\boldsymbol{z}_{m}) \right)^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\left(\left(\widehat{\mathcal{T}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) - \mathcal{T}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) \right) + (r_{0}(\boldsymbol{z}_{m}) - \widehat{r_{0}}(\boldsymbol{z}_{m})) \right. \\ &+ \left. \left(\mathcal{T}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) - r_{0}(\boldsymbol{z}_{m}) \right) \right)^{2} \right] \\ &\leq 3 \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\left(\widehat{\mathcal{T}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) - \mathcal{T}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) \right)^{2} + (r_{0}(\boldsymbol{z}_{m}) - \widehat{r_{0}}(\boldsymbol{z}_{m}))^{2} \right. \\ &+ \left. \left(\mathcal{T}[\widehat{h}_{m-1}](\boldsymbol{z}_{m}) - r_{0}(\boldsymbol{z}_{m}) \right)^{2} \right] \\ &= 3 \left\{ \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\left\| (\widehat{\mathcal{T}} - \mathcal{T})[\widehat{h}_{m-1}] \right\|_{L^{2}(\mathbb{Z})}^{2} \right] + \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\left\| r_{0} - \widehat{r_{0}} \right\|_{L^{2}(\mathbb{Z})}^{2} \right] \right. \\ &+ \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\left\| \mathcal{T}[\widehat{h}_{m-1}] - r_{0} \right\|_{L^{2}(\mathbb{Z})}^{2} \right] \right\} \end{split}$$

We treat each part of this expression separately. Firstly,

$$\left\| (\widehat{\mathcal{T}} - \mathcal{T})[\widehat{h}_{m-1}] \right\|_{L^2(\mathbb{Z})}^2 \le \left\| \widehat{\mathcal{T}} - \mathcal{T} \right\|_{\text{op}}^2 \left\| \widehat{h}_{m-1} \right\|_{L^2(\mathbb{X})}^2 \le M^2 \left\| \widehat{\mathcal{T}} - \mathcal{T} \right\|_{\text{op}}^2.$$

We leave the second part as $\|r_0-\widehat{r_0}\|_{L^2(\mathbb{Z})}^2$. Finally, for the third part, we have

$$\begin{split} \left\| \mathcal{T}[\widehat{h}_{m-1}] - r_0 \right\|_{L^2(\mathbb{Z})}^2 &= \mathbb{E}_Z \left[\left(\mathcal{T}[\widehat{h}_{m-1}](Z) - r_0(Z) \right)^2 \right] \\ &= \mathbb{E}_Z \left[\left(\mathbb{E} \left[\widehat{h}_{m-1}(X) - Y \mid Z \right] \right)^2 \right] \\ &\leq \mathbb{E}_{(X,Y)} \left[\left(\widehat{h}_{m-1}(X) - Y \right)^2 \right] \\ &\leq 2 \left(\mathbb{E}_X \left[\widehat{h}_{m-1}(X)^2 \right] + \mathbb{E} \left[Y^2 \right] \right) \\ &= 2 \left(\left\| \widehat{h}_{m-1} \right\|_{L^2(\mathbb{X})}^2 + \mathbb{E} \left[Y^2 \right] \right) \\ &\leq 2 \left(M^2 + \mathbb{E} \left[Y^2 \right] \right). \end{split}$$

Putting everything together, what we conclude is

$$\mathbb{E}_{\boldsymbol{z}_{1:m}}\left[\left\|u_{m}\right\|_{L^{2}(\mathbb{X})}^{2}\mid\mathcal{D}_{\Phi,\mathcal{T},r_{0}}\right]\leq3\left\|\widehat{\Phi}\right\|_{\mathcal{R}_{\mathbb{W}}}^{2}\left(M^{2}\left\|\widehat{\mathcal{T}}-\mathcal{T}\right\|_{\mathrm{op}}^{2}+\left\|r_{0}-\widehat{r_{0}}\right\|_{L^{2}(\mathbb{Z})}^{2}+2\left(M^{2}+\mathbb{E}[Y^{2}]\right)\right).$$

- We still have to use convergence results for $\widehat{\mathcal{T}}$ and $\widehat{r_0}$ to finish this bound. It doesn't need to be good,
- we only need to bound this by something which remains bounded as $|\mathcal{D}_{\Phi,\mathcal{T},r_0}|$ and the number of
- 87 iterations grow. Another idea is to simply say that this whole thing is $\mathcal{O}_p(1)$, that is, almost surely
- finite, and rely on the (fast enough) decay of the learning rate to achieve convergence.

89 Third term

- 90 Our goal is to open up the inner product and make explicit the estimation errors of our model's
- different components, like we did before. Here, we define $\Psi_m(Z) \triangleq \partial_2 \ell(r_0(Z), \mathcal{T}[\widehat{h}_{m-1}](Z))$. The
- hat version $\widehat{\Psi}_m$ is defined accordingly, replacing r_0 and \mathcal{T} by their estimators.

$$\begin{split} \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\left\langle \nabla \mathcal{R}(\widehat{h}_{m-1}) - u_{m}, \widehat{h}_{m-1} - h^{\star} \right\rangle \mid \mathcal{D}_{\Phi,\mathcal{T},r_{0}} \right] \\ &= \mathbb{E}_{\boldsymbol{z}_{1:m}} \left[\left\langle \nabla \mathcal{R}(\widehat{h}_{m-1}) - u_{m}, \widehat{h}_{m-1} - h^{\star} \right\rangle \right] \\ &= \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\mathbb{E}_{\boldsymbol{z}_{m}} \left[\left\langle \nabla \mathcal{R}(\widehat{h}_{m-1}) - u_{m}, \widehat{h}_{m-1} - h^{\star} \right\rangle \right] \right] \\ &= \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\left\langle \nabla \mathcal{R}(\widehat{h}_{m-1}) - \mathbb{E}_{\boldsymbol{z}_{m}} \left[u_{m} \right], \widehat{h}_{m-1} - h^{\star} \right\rangle \right] \\ &\leq \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\left\| \nabla \mathcal{R}(\widehat{h}_{m-1}) - \mathbb{E}_{\boldsymbol{z}_{m}} \left[u_{m} \right] \right\| \left\| \widehat{h}_{m-1} - h^{\star} \right\| \right] \\ &\leq D \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\left\| \nabla \mathcal{R}(\widehat{h}_{m-1}) - \mathbb{E}_{\boldsymbol{z}_{m}} \left[u_{m} \right] \right\| \right] \\ &\leq D \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\mathbb{E}_{\boldsymbol{X}} \left[\left(\nabla \mathcal{R}(\widehat{h}_{m-1})(\boldsymbol{X}) - \mathbb{E}_{\boldsymbol{z}_{m}} \left[u_{m} \right] \right)^{2} \right]^{\frac{1}{2}} \\ &\leq D \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\mathbb{E}_{\boldsymbol{X}} \left[\left(\mathbb{E}_{\boldsymbol{Z}} \left[\Phi(\boldsymbol{X}, \boldsymbol{Z}) \Psi_{m}(\boldsymbol{Z}) \right] - \mathbb{E}_{\boldsymbol{z}_{m}} \left[\widehat{\Phi}(\boldsymbol{X}, \boldsymbol{Z}) \widehat{\Psi}_{m}(\boldsymbol{z}_{m}) \right] \right)^{2} \right]^{\frac{1}{2}} \end{aligned} \qquad \text{(Jensen)} \\ &= D \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\mathbb{E}_{\boldsymbol{X}} \left[\mathbb{E}_{\boldsymbol{Z}} \left[\Phi(\boldsymbol{X}, \boldsymbol{Z}) \Psi_{m}(\boldsymbol{Z}) - \widehat{\Phi}(\boldsymbol{X}, \boldsymbol{Z}) \widehat{\Psi}_{m}(\boldsymbol{Z}) \right]^{2} \right]^{\frac{1}{2}} \\ &= D \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\mathbb{E}_{\boldsymbol{X}} \left[\mathbb{E}_{\boldsymbol{Z}} \left[\Phi(\boldsymbol{X}, \boldsymbol{Z}) \Psi_{m}(\boldsymbol{Z}) - \widehat{\Phi}(\boldsymbol{X}, \boldsymbol{Z}) \widehat{\Psi}_{m}(\boldsymbol{Z}) \right]^{2} \right]^{\frac{1}{2}} \end{aligned} \qquad (\boldsymbol{Z} \overset{\text{iid}}{\sim} \boldsymbol{z}_{m}) \end{aligned}$$

$$\begin{split} &=D\mathbb{E}_{\boldsymbol{z}_{1:m-1}}\left[\mathbb{E}_{X}\left[\mathbb{E}_{Z}\left[\Psi_{m}(Z)\left(\Phi(X,Z)-\widehat{\Phi}(X,Z)\right)\right.\right.\right.\\ &\left.\left.\left.\left.\left.\left(\Psi_{m}(Z)-\widehat{\Psi}_{m}(Z)\right)\right\right]^{2}\right]\right]^{\frac{1}{2}}\\ &\leq D\mathbb{E}_{\boldsymbol{z}_{1:m-1}}\left[\mathbb{E}_{X}\left[\left(\|\Psi_{m}\|_{L^{2}(Z)}\right\|\Phi(X,\cdot)-\widehat{\Phi}(X,\cdot)\right]_{L^{2}(Z)}\right.\right.\\ &\left.\left.\left.\left.\left.\left(\|\Psi_{m}\|_{L^{2}(Z)}\right\|\Phi(X,\cdot)-\widehat{\Phi}(X,\cdot)\right|\right|_{L^{2}(Z)}\right)^{2}\right]\right]^{\frac{1}{2}}\\ &\leq \sqrt{2}D\mathbb{E}_{\boldsymbol{z}_{1:m-1}}\left[\mathbb{E}_{X}\left[\|\Psi_{m}\|_{L^{2}(Z)}^{2}\right]\Phi(X,\cdot)-\widehat{\Phi}(X,\cdot)\right]_{L^{2}(Z)}^{2}\right.\\ &\left.\left.\left.\left.\left.\left(\|\Psi_{m}\|_{L^{2}(Z)}^{2}\right)\|\Phi(X,\cdot)-\widehat{\Phi}(X,\cdot)\right\|_{L^{2}(Z)}^{2}\right)\right]\right]^{\frac{1}{2}}\\ &=\sqrt{2}D\left(\mathbb{E}_{\boldsymbol{z}_{1:m-1}}\left[\left\|\Psi_{m}\|_{L^{2}(Z)}^{2}\right)\mathbb{E}_{X}\left[\left\|\Phi(X,\cdot)-\widehat{\Phi}(X,\cdot)\right\|_{L^{2}(Z)}^{2}\right]\right]\right)^{\frac{1}{2}}\\ &=\sqrt{2}D\left(\mathbb{E}_{X}\left[\left\|\Phi(X,\cdot)-\widehat{\Phi}(X,\cdot)\right\|_{L^{2}(Z)}^{2}\right]\mathbb{E}_{\boldsymbol{z}_{1:m-1}}\left[\left\|\Psi_{m}\|_{L^{2}(Z)}^{2}\right]\right]\\ &+\mathbb{E}_{X}\left[\left\|\widehat{\Phi}(X,\cdot)\right\|_{L^{2}(Z)}^{2}\right]\mathbb{E}_{\boldsymbol{z}_{1:m-1}}\left[\left\|\Psi_{m}-\widehat{\Psi}_{m}\right\|_{L^{2}(Z)}^{2}\right]\right]\\ &=:\sqrt{2}D(A+B)^{\frac{1}{2}}. \end{split}$$

- 93 We proceed to analyze each term separately:
 - To bound A, first notice that

94

95

96

97

98

99

$$\mathbb{E}_{X}\left[\left\|\Phi(X,\cdot)-\widehat{\Phi}(X,\cdot)\right\|^{2}\right]=\mathbb{E}_{X}\left[\mathbb{E}_{Z}\left[\left(\Phi(X,Z)-\widehat{\Phi}(X,Z)\right)^{2}\right]\right]=\left\|\Phi-\widehat{\Phi}\right\|_{L^{2}(X\otimes Z)}^{2},$$

where $L^2(X \otimes Z)$ is the space of square integrable functions with respect to the measure induced by independent copies of X and Z. If we estimate $\widehat{\Phi}$ using the uLSIF algorithm described in [1], under some regularity conditions, and decreasing the regularization parameter according to a specific rate, we have the following estimate:

Create section describing how we are estimating each term.

$$\left\|\Phi - \widehat{\Phi}\right\|_{L^2(X \otimes Z)}^2 = \mathcal{O}_p\left(\left(\frac{\log |\mathcal{D}_{\Phi}|}{|\mathcal{D}_{\Phi}|}\right)^{\frac{2}{2+\gamma}}\right).$$

Furthermore, we can bound $\|\Psi_m\|_{L^2(Z)}^2$ as follows:

$$\|\Phi_{m}\|_{L^{2}(Z)}^{2} = \|r_{0} - \mathcal{T}[\widehat{h}_{m-1}]\|_{L^{2}(Z)}^{2}$$

$$\leq 2 \left(\|r_{0}\|_{L^{2}(Z)}^{2} + \|\mathcal{T}[\widehat{h}_{m-1}]\|_{L^{2}(Z)}^{2}\right)$$

$$\leq 2 \left(\mathbb{E}[Y^{2}] + \|\mathcal{T}\|_{\text{op}}^{2} \|\widehat{h}_{m-1}\|_{L^{2}(Z)}^{2}\right)$$

$$\leq 2 \left(\mathbb{E}[Y^{2}] + M^{2}\right) \qquad (\|\mathcal{T}\|_{\text{op}} \leq 1).$$

In total, what we have is

$$A = \mathbb{E}_{X} \left[\left\| \Phi(X, \cdot) - \widehat{\Phi}(X, \cdot) \right\|_{L^{2}(Z)}^{2} \right] \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[\left\| \Psi_{m} \right\|_{L^{2}(Z)}^{2} \right]$$

$$\leq \left\| \Phi - \widehat{\Phi} \right\|_{L^{2}(Z)}^{2} \cdot 2(\mathbb{E}[Y^{2}] + M^{2})$$

$$= \mathcal{O}_{p} \left(\left(\frac{\log |\mathcal{D}_{\Phi}|}{|\mathcal{D}_{\Phi}|} \right)^{\frac{2}{2+\gamma}} \right).$$

• To bound B, notice that, by Assumption 14.15 of [1], we have

$$\mathbb{E}_{X}\left[\left\|\widehat{\Phi}(X,\cdot)\right\|_{L^{2}(Z)}^{2}\right] = \mathbb{E}_{X}\left[\mathbb{E}_{Z}\left[\widehat{\Phi}(X,Z)^{2}\right]\right] \leq \left\|\widehat{\Phi}\right\|_{\mathcal{R}_{\mathbb{W}}}^{2}.$$

We still need to bound this norm somehow.

Furthermore, we also have

$$\begin{split} \left\| \Psi_{m} - \widehat{\Psi}_{m} \right\|_{L^{2}(Z)}^{2} &= \left\| \left(\mathcal{T}[\widehat{h}_{m-1}] - r_{0} \right) - \left(\widehat{\mathcal{T}}[\widehat{h}_{m-1}] - \widehat{r_{0}} \right) \right\|_{L^{2}(Z)}^{2} \\ &= \left\| \left(\mathcal{T}[\widehat{h}_{m-1}] - \widehat{\mathcal{T}}[\widehat{h}_{m-1}] \right) - (r_{0} - \widehat{r_{0}}) \right\|_{L^{2}(Z)}^{2} \\ &\leq 2 \left(\left\| \mathcal{T}[\widehat{h}_{m-1}] - \widehat{\mathcal{T}}[\widehat{h}_{m-1}] \right\|_{L^{2}(Z)}^{2} + \left\| r_{0} - \widehat{r_{0}} \right\|_{L^{2}(Z)}^{2} \right) \\ &\leq 2 \left(\left\| \mathcal{T} - \widehat{\mathcal{T}} \right\|_{\text{op}}^{2} \left\| \widehat{h}_{m-1} \right\|_{L^{2}(Z)}^{2} + \left\| r_{0} - \widehat{r_{0}} \right\|_{L^{2}(Z)}^{2} \right) \\ &\leq 2 \left(M^{2} \left\| \mathcal{T} - \widehat{\mathcal{T}} \right\|_{\text{op}}^{2} + \left\| r_{0} - \widehat{r_{0}} \right\|_{L^{2}(Z)}^{2} \right). \end{split}$$

Therefore,

103

$$\begin{split} B &= \mathbb{E}_{X} \bigg[\bigg\| \widehat{\Phi}(X, \cdot) \bigg\|_{L^{2}(Z)}^{2} \bigg] \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \bigg[\bigg\| \Psi_{m} - \widehat{\Psi}_{m} \bigg\|_{L^{2}(Z)}^{2} \bigg] \\ &\leq \bigg\| \widehat{\Phi} \bigg\|_{\mathcal{R}_{\mathbb{W}}}^{2} \mathbb{E}_{\boldsymbol{z}_{1:m-1}} \left[2 \left(M^{2} \bigg\| \mathcal{T} - \widehat{\mathcal{T}} \bigg\|_{\text{op}}^{2} + \| r_{0} - \widehat{r_{0}} \|_{L^{2}(Z)}^{2} \right) \right] \\ &= 2 \bigg\| \widehat{\Phi} \bigg\|_{\mathcal{R}_{\mathbb{W}}}^{2} \left(M^{2} \bigg\| \mathcal{T} - \widehat{\mathcal{T}} \bigg\|_{\text{op}}^{2} + \| r_{0} - \widehat{r_{0}} \|_{L^{2}(Z)}^{2} \right) . \end{split}$$

105 What's left to do:

106

107 108

112

113

114

115

116

117

118 119

- Bound $\|\widehat{\Phi}\|_{\mathcal{R}_{\mathbb{W}}}$. (May not be strictly necessary. This is finite, and since it multiplies something which is \mathcal{O}_p of something which goes to zero, we may not need to further bound it.)
- Use some estimate on $\|\mathcal{T} \widehat{\mathcal{T}}\|_{\text{op}}$ (Adapt notation and setup in the KIV paper).

110 Conclusion (20/08/2023): We might need the extra hypothesis that $\operatorname{Im}(\operatorname{id}_{L^2(X)} - \iota_X \iota_X^*) \subseteq \ker \mathcal{T}$, where $\iota_X : \mathcal{H}_X \to L^2(X)$ is the inclusion operator, whose adjoint is given by

$$\iota_X^*(f) = (x \mapsto \mathbb{E}_X[f(X)k_X(X,x)]),$$

with $k_X: \mathbb{X} \times \mathbb{X} \to \mathbf{R}$ being the kernel associated with \mathcal{H}_X . Then $\mathcal{T} = \mathcal{T} \circ \iota_X \iota_X^*$ and we can directly apply the result on KIV's paper, since $\mathcal{T} \circ i_X$ can be seen as the restriction of \mathcal{T} to \mathcal{H}_X . We then also need the further hypothesis that $\mathrm{Im}(\mathcal{T} \circ \iota_X) \subseteq \mathcal{H}_Z$, or something like this (because, rigorously speaking, $\mathcal{T}f$ is an equivalence class of functions, so in what way can we say that this equivalence class is "in \mathcal{H}_Z "?). This hypothesis is implicitly made in the KIV paper, when they say that $E: \mathcal{H}_X \to \mathcal{H}_Z$ without providing any assumptions on \mathcal{H}_X and \mathcal{H}_Z , other than saying that they are RKHS. Who can guarantee that $(z \mapsto \mathbb{E}[f(X) \mid Z = z]) \in \mathcal{H}_Z$ for every $f \in \mathcal{H}_X$?

• Find way to estimate r_0 which gives estimate on $||r_0 - \widehat{r_0}||_{L^2(Z)}$. Maybe use the same estimation technique we have for \mathcal{T} as an operator from $L^2(Y) \to L^2(Z)$ applied to the identity and employ the same bound?

For the rest of the paper:

120

121

122

124

125

126

127

128

129

- Create section which describes, in detail, how we are estimating Φ , \mathcal{T} and r_0 , lists all the references, states the main convergence theorems and lists all of the assumptions that are being made.
- Adapt the algorithm section to use the KIV first stage, which directly estimates \mathcal{T} .
- Find better letter for either the number of iterations or the upper bound for the set \mathcal{F} . Right now, both are being denoted by the letter M.

130 References

[1] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. *Density Ratio Estimation in Machine Learning*. Cambridge University Press, 2012. DOI: 10.1017/CB09781139035613.