Numerical Analysis: homework 03

Due on Tuesday, March 21, 2017

102061149 Fu-En Wang

1 Introduction

For modern circuit design, the scale of circuit is always such large that human cannot handle it manually. To overcome this, we frequently use a lot of EDA tool such as **hspice** to solve these problems. However, the license of these EDA tool is usually expensive. As a result, EDA provider such as **Synopsys** benefits a lot from it every year, which means these circuit analysis technology is quite valuable.

In this project, we will implement several simple **Resistor Networks** and use **LU Decomposition** to analyze it.

1.1 Resistor Networks

Each resistor networks only consists of several resistors as shown in Figure 1.

Figure 1: Simple resistor network

In this assignment, there are six networks to implement:

- 1. 2 resistors each side and resistance is $1K\Omega$
- 2. 4 resistors each side and resistance is 500Ω
- 3. 10 resistors each side and resistance is 200Ω
- 4. 20 resistors each side and resistance is 100Ω
- 5. 40 resistors each side and resistance is 50Ω
- 6. 50 resistors each side and resistance is 40Ω

For each of them, we have to show the equivalent resistance and the voltage of V_{ne} , V_{ea} and V_{sw} .

2 Implementation

2.1 Algorithm

To model the problem into A and b, I divide the network into two segments by horizontal and vertical resistor as shown in Figure 1. And then update matrix A and b with **Algorithm 1.4.1** in class material.

Algorithm 1.4.1 System Equation for a Resistor Network

```
For a network with N nodes in each side, create N^2 \times N^2 zero matrix A and N^2 zero vector b.
nodeIndex = 0
G = resistance^{-1}
for each i \in \{1 \dots N\} do
   for each j \in \{1 \dots N-1\} do
      A[nodeIndex][nodeIndex] += G
      A[nodeIndex][nodeIndex+1] -= G
      A[nodeIndex+1][nodeIndex+1] += G
      A[nodeIndex+1][nodeIndex] -= G
      nodeIndex += 1
   end for
   nodeIndex += 1
end for
nodeIndex = 0
for each i \in \{1 \dots N-1\} do
   for each j \in \{1 \dots N\} do
      A[nodeIndex][nodeIndex] += G
      A[nodeIndex][nodeIndex+N] -= G
      A[nodeIndex+N][nodeIndex+N] += G
      A[nodeIndex+N][nodeIndex] -= G
      nodeIndex += 1
   end for
end for
for v,i \in voltage and index at fixed voltage point do
   A[i] = 0
   A[i][i] = 1
   b[i] = v
end for
LU = luDecompose(A)
Y = forwardSub(LU, b)
X = backwardSub(LU, Y)
X is the voltage of each node.
```

3 Discussion

3.1 Complexity

In all the following part, I will refer N as the square of the number of nodes at each side of networks. For the network in Figure 1, N is $3 \times 3 = 9$.

When solving the problem, the most time-comsuming part is the **LU Decomposition**, which is $O(n^3)$. As a result, the system is a $O(n^3)$ problem.

3.2 Performance Evaluation

In this project, I use five numbers to indicate the efficiency of our method:

- 1. **Runtime**(total execution time of program)
- 2. PROBLEM(execution time of modeling problem into martrix A and vector b)
- 3. LU(time taken by LU Decomposition)
- 4. **FWD**(time taken by forward substitution)
- 5. **BCK**(time taker by backward substitution)

The detail result of each resistor networks is show in Table 1

N	9	25	121	441	1681	2601
R(each)	1000	500	200	100	50	40
R(equivalent)	1000	681.818182	376.009408	229.423008	136.042809	114.395519
V_{ne}	0.75	0.7	0.648693	0.622178	0.603088	0.598084
V_{ea}	0.5	0.5	0.5	0.5	0.5	0.5
V_{sw}	0.25	0.3	0.351307	0.377822	0.396912	0.401916
Runtime(s)	0.003	0.003	0.007	0.2	9.948	36.1
PROBLEM(s)	1.50E-05	2.10E-05	0.000199	0.001173	0.020578	0.052503
LU(s)	2.00E-06	3.30E-05	0.003537	0.194482	9.89144	35.9966
FWD(s)	1.00E-06	5.00E-06	4.40E-05	0.000489	0.008348	0.017034
BCK(s)	1.00E-06	3.00E-06	4.60E-05	0.000532	0.010656	0.019895

Table 1: Experiment result

3.3 Runtime and LU

Because LU Decomposition should be the most time-consuming part of algorithm, so after N is large enough, LU should be very close to Runtime. Figure 2 shows the result of Runtime/LU and N^3 with log-scale:

Page 4 of 6

Figure 2: Runtime/LU vs N

Because when N is small, execution time will have huge error, so we should ignore former part of the line of Runtime. However, when N is large, we can see that Runtime and LU almost overlap and their slope is same as N^3 , which means the system is a $O(n^3)$ problem and satisfies my analysis in Section 3.1.

3.4 Forward/Backward Substitution

Because the complixity of Forward/Backward Substitution is $O(n^2)$ as we discuss in last homework assignment, the slope of them should be same as N^2 in log-scale plot. Figure 3 shows the result with log-scale.

Figure 3: FWD/BCK vs N

From Figure 3, we can clearly see that the slope of FWD and BCK is same as N^2 , which means they are $O(n^2)$ problem.

4 Code Usage

To compile the code, just type \$ g++ hw03.cpp MAT.cpp VEC.cpp in terminal.

To run the program, use \$./a.out 10, 10 means there are 10 resistors at each side of the resistor network.

Page 6 of 6