### NATIONAL UNIVERSITY OF SINGAPORE

#### **EXAMINATION**

| 1 | 20 |
|---|----|
|   |    |

#### ST 2334 PROBABILITY AND STATISTICS

(Semester 2: AY 2007/2008)

April 2008 - Time Allowed: 2 Hours

### **INSTRUCTIONS TO CANDIDATES**

- 1. This examination paper contains SIX (6) Questions and comprises TWENTY ONE (21) printed pages (inclusive of this cover page).
- 2. Candidates must answer ALL questions. The total mark for this paper is 120.
- 3. Please show work and answers in the space provided for each question.

  <u>DO NOT</u> use pencils to write answers.
- 4. This is a <u>CLOSED BOOK</u> examination. ONE A-4 size cheat sheet is allowed.
- 5. Hand in this booklet at the end of the examination.
- 6. Non-programmable calculators may be used.
- 7. Appendix A: Some key formulae

Appendix B: Standardized Normal Distribution Table (Z Table)

Appendix C: Student's t-Distribution Table (t Table)

| Matriculation No | : |
|------------------|---|
| Seat Number      |   |

| Question | 1  | 2  | 3  | 4  | 5  | 6  | Total |
|----------|----|----|----|----|----|----|-------|
| Marks    |    |    |    |    |    |    |       |
| Max      | 12 | 22 | 20 | 25 | 16 | 25 | 120   |

# Question 1 (12 Marks)

The speed of the cars, in kilometre per hour on a certain stretch of the Orchid Road for 40 randomly selected cars is given below.

| 46 | 44 | 49 | 28 | 28 | 39 | 76 | 58 | 38 | 34 |
|----|----|----|----|----|----|----|----|----|----|
| 43 | 99 | 28 | 52 | 79 | 29 | 57 | 32 | 60 | 38 |
| 46 | 27 | 87 | 41 | 39 | 55 | 32 | 38 | 67 | 62 |
| 27 | 47 | 43 | 84 | 55 | 78 | 39 | 67 | 33 | 66 |

(i) Draw a stem-and-leaf plot for the above data.

[4 Marks]

(ii) Identify the shape of the distribution.

[2 Marks]

# **Question 1 (Continued)**

(iii) Are there any outliers?

[3 Marks]

(iv) Which measure of the central tendency is most suitable for this dataset? Why? [3 Marks]

### Question 2 (22 Marks)

(A) Two dice are rolled in a game. You win if the sum of the outcomes of two dice is seven or eleven and you lose if the sum is two, three or twelve. You keep rolling until one of these sums occurs. Using conditional probability, find the probability of winning this game.

[5 marks]

(B) There are three production lines in a factory, two of them are new. All three production lines produce components at the same rate. The old production line has 8% defective rate while the new production lines have only 3% defective rate. The components are shipped to customers in 100-unit lots. A buyer received a lot and tested five components. One failed. What is the probability that the lot was produced by

(i) The old line?

[6 Marks]

(ii) One of the new lines?

[2 Marks]

### Question 2 (Continued)

- (C) Of the six robots available, two have electronic defects, another one has defect in the memory and only three are in good working order. A sample of two robots is selected at random. Let X be the number of robots with electronic defects, and Y be the number of robots with defect in memory in the sample.
- (i) Find the probability of at most one defect in the sample.

[3 Marks]

(ii) Find the marginal distribution of X.

[3 marks]

(iii) Find the conditional probability distribution of Y given X = 1.

[3 marks]

### Question 3 (20 Marks)

85% of the students in a university is right handed (use right hand to complete most tasks such as writing) and 14% is left handed. The remaining are ambidextrous (use both hands equally well). There are 25 students at the bus stop outside the library. It is known that on average, 3 buses arriving at the bus stop in every 20 minutes.

(i) Find the probability that there are 20 right handed students at the bus stop. [4 marks]

(ii) Find the probability that there are 22 right handed students and 1 ambidextrous student at the bus stop. [4 marks]

# **Question 3 (Continued)**

(iii) Find the probability that at least 2 buses arriving in a 10-minute interval.

[4 marks]

(iv) Find the probability that the waiting time for the next bus is at least 30 minutes. [4 marks]

(v) What assumptions do you need to compute the above probabilities? [4 marks]

### Question 4 (25 Marks)

STAT is a factory that produces electronic components. Currently there are three types of components in production, i.e. *Type A*, *Type B* and *Type C*. The lifetimes of the components are modelled closely with different distributions. The lifetimes of *Type A* are log-normally distributed with parameter  $\alpha = 1$  and  $\beta = 0.5$  year, the lifetimes of *Type B* are normally distributed with  $\mu = 20$  and  $\sigma = 3$  months while the lifetimes of *Type C* has a Weibull distribution with  $\alpha = 1.5$  and  $\beta = 0.0001$  hours.

(i) Find the probability that a *Type A* component lasts longer than four years. [4 Marks]

(ii) Find the third quartile of the lifetime of *Type A* components. [4 Marks]

(iii) The manufacturer is thinking to give a warranty for the lifetimes of Type B. if the component fails within the warranty period, the customer can get a free replacement of a new component. How long the manufacturer should specify as the warranty period so that at most 5% of the products will be replaced under warranty?
[4 Marks]

# **Question 4 (Continued)**

(iv) Find the probability that a *Type C* component lasts for more than 10,000 hours? [4 Marks]

(v) Show that the expected lifetime of *component* C is  $\alpha^{-\frac{1}{\beta}}\Gamma(\frac{1}{\beta}+1)$ . [4 marks]

(vi) Type C will be produced only when there is an order. Sometimes, the total quantity of orders is too large and some of the orders cannot be fulfilled within the time. Over many observations, the manufacturer found that the proportion of the orders being fulfilled could be modelled by a beta distribution with  $\alpha = 4$  and  $\beta = 2$ . Find the probability that the manufacturer can fulfil at least 90% of the orders.

## Question 5 (16 Marks)

(A) Let  $X_1, X_2, ..., X_n$  be a sample from the geometric distribution. Find the maximum likelihood estimator for the parameter. [5 marks]

- (B) Refer to the data in question 1.
- (i) Construct a 90% confidence interval for the percentage of all drivers who drive below 40 kilometres per hour on a certain stretch of Orchid road. Leave your answers up to two decimal places. [5 marks]

# **Question 5 (Continued)**

(ii) Interpret the confidence interval above.

[3 marks]

(iii) How large a sample will we need to be at least 98% confident that the error of the estimate is at most 5%? [3 marks]

### Question 6 (25 Marks)

The human resources unit of a company is interested to know whether the time spent in employment is different for men and women. A sample is taken and some descriptive statistics for the weekly number of hours spent in employment are given below.

| Group | Size | Mean | Standard deviation |
|-------|------|------|--------------------|
| Men   | 14   | 31.8 | 22.6               |
| Women | 15   | 18.4 | 20.0               |

(i) Does it seem plausible that time spent in employment has a normal distribution for each gender? Explain. [3 marks]

(ii) State the null and alternative hypotheses.

[2 marks]

(iii) Compute the standard error for the estimate.

[2 marks]

(iv) What is the degrees of freedom for the test statistic?

[2 marks]

(v) Compute the test statistic.

[2 marks]

(vi) What is the P-value? Interpret.

[4 marks]

(vii) Is the test significant at the 0.05 significance level? What is the conclusion? [2 marks]

| Question 6 | (Continued) |
|------------|-------------|
|------------|-------------|

(viii) What is the possible error you could have made? Explain. [2 marks]

(ix) Construct a 80% confidence interval for the difference in average time spent in employment between men and women. [3 marks]

(x) What assumptions do you need for the above inference? [3 marks]

# Appendix A: Some Key formulae

Mean: 
$$\mu = \frac{\sum x}{N}$$
 (population) or  $\overline{x} = \frac{\sum x}{n}$  (sample)

Quartile positions: 
$$Q_1 = \frac{n+1}{4}$$
  $Q_2 = \frac{n+1}{2}$   $Q_3 = \frac{3(n+1)}{4}$ 

Standard deviation: 
$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$
 or  $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$ 

(population) (sample)

Coefficient of variation 
$$cv = \frac{\sigma}{\mu} \times 100\%$$
 or  $cv = \frac{s}{\overline{x}} \times 100\%$  (population) (sample)

For Discrete Random Variables:

Expected Value 
$$E(X) = \mu_x = \sum_i x_i P(x_i)$$

Variance 
$$Var(X) = \sigma_x^2 = \sum_i (x_i - \mu)^2 P(x_i) = E(X^2) - [E(X)]^2$$

Covariance 
$$Cov(X,Y) = \sigma_{XY} = \sum_{i} [x_i - E(X)][y_i - E(Y)]p(x_iy_i)$$

For linear transformation of a random variable:

Expected Value 
$$E(a+bX) = a + bE(X)$$

Variance 
$$Var(a+bX) = b^2 Var(X)$$

For linear combination of 2 random variables:

Expected Value 
$$E(aX + bY) = aE(X) + bE(Y)$$

Variance 
$$Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X,Y)$$

$$P(A) = \sum_{i=1}^{n} P(B_i) \cdot P(A \mid B_i)$$
Bayes' Theorem
$$P(B_r \mid A) = \frac{P(B_r) \cdot P(A \mid B_r)}{\sum_{i=1}^{n} P(B_i) \cdot P(A \mid B_i)}$$

Chebyshev's Theorem 
$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

$$P(X=x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

n = sample size

x = # of successes in sample

$$E(X) = np$$

$$Var(X) = np(1-p)$$

## Hypergeometric Distribution

$$P(X=x) = \frac{\binom{a}{x}\binom{N-a}{n-x}}{\binom{N}{n}}$$

N = population size

a = # of successes in population

n =sample size

x = # of successes in sample

$$E(X) = n \frac{a}{N}$$

$$Var(X) = n \frac{a}{N} \left( 1 - \frac{a}{N} \right) \left( \frac{N - n}{N - 1} \right)$$

### Poisson Distribution

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$
  $x = 0, 1, 2, ...$ 

$$x = 0, 1, 2, ...$$

$$E(X) = \lambda$$

$$Var(X) = \lambda$$

### Geometric Distribution

$$P(X = x) = p(1-p)^{x-1}$$
  $x = 1, 2, ...$ 

$$E(X) = \mu_x = \frac{1}{p}$$

$$Var(X) = \sigma_x^2 = \frac{1-p}{p^2}$$

### Multinomial Distribution

$$P(X=x) = \frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$

### Continuous Probability Distributions:

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$$

where 
$$-\infty < a < \infty$$
 and

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$

$$f(x)$$
 is a density function

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$$

$$Var(X) = \sigma^2 = E[(X - \mu)^2] = E(X^2) - \mu^2$$

### Normal Distribution

$$X \sim N(\mu, \sigma^2)$$

$$X \sim N(\mu, \sigma^2)$$
 pdf:  $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$ 

$$Z = \frac{X - \mu}{\sigma}$$

$$Z = \frac{X - \mu}{\sigma} \qquad \text{pdf}: \ f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

| Log-Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\ln X \sim N(\alpha, \beta^2)$ $\ln X - \alpha$ | ,                                                                                                                              |                                           | . a² a¹                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|
| About the second of the second | $Z = \frac{1}{\beta}$                            | $\mu=e^{a+r/2}$                                                                                                                | $\sigma = \sqrt{e^{2a}}$                  | $(e^{\beta}-1)$                        |
| Exponential Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $X \sim Exp(\lambda)$                            | $\mu = e^{\alpha + \beta^{2}/2}$ $pdf: f(x) = \begin{cases} \lambda e^{-\lambda} \\ 0 \end{cases}$                             |                                           | $\lambda=$ success rate per ${f u}$    |
| Gamma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gamma Function:                                  | $\Gamma(x)$ $\int_{-\infty}^{\infty} \alpha - 1 - x$                                                                           |                                           |                                        |
| Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$ $\Gamma(\alpha + 1) = c\Gamma(\alpha) \text{ are}$                   |                                           | 131                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\Gamma(\alpha+1) = \alpha\Gamma(\alpha) \text{ and}$                                                                          | $ar(\alpha) = (\alpha - x)$               | = 1):<br>> $0, \alpha > 0, \beta > 0$  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $X \sim Gamma(\alpha, \beta)$                    | pdf: $f(x) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \end{cases}$                                                | $x^{a-1}e^{-\gamma_{\beta}}$              | otherwise                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\mu = \alpha \beta$                                                                                                           | $\sigma = \sqrt{\alpha \beta^2}$          |                                        |
| Beta<br>Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $X \sim Beta(\alpha, \beta)$                     | $\mu = \alpha \beta$ $pdf: f(x) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \end{cases}$ | $\frac{1}{3}x^{\alpha-1}(1-x)^{\alpha-1}$ | $0 < x < 1, \alpha > 0, \beta > 0$     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                | 0                                         | otherwise                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\mu = \frac{\alpha}{\alpha + \beta}$                                                                                          | $\sigma = \sqrt{{(\alpha + )^2}}$         | $\frac{\alpha\beta}{(\alpha+\beta+1)}$ |
| Weibull<br>Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $X \sim Weibull(\alpha, \beta)$                  | $\mu = \frac{\alpha}{\alpha + \beta}$ $pdf: f(x) = \begin{cases} \alpha \beta x' \\ 0 \end{cases}$                             | $\stackrel{eta_{-1}}{e}^{-lpha^{eta}}$    | $x > 0, \alpha > 0, \beta > 0$         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                | 0                                         | otherwise                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $F(X \le t) = 1 - e^{-\alpha t^{\beta}}$                                                                                       |                                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\mu = \alpha^{-1/\beta} \Gamma \left( 1 + \frac{1}{\beta} \right)$                                                            |                                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\sigma = \sqrt{\alpha^{-\frac{2}{\beta}} \left\{ \Gamma \left( 1 + \frac{2}{\beta} \right) - \left[ \right] \right\}}$        | $\Gamma\left(1+\frac{1}{\beta}\right)^2$  |                                        |
| Uniform<br>Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $X \sim U(\alpha, \beta)$                        | $\mu = \frac{\alpha + \beta}{2}$                                                                                               | $\sigma = \sqrt{(\beta - 1)^2}$           | $(\alpha)^2/12$                        |
| Continuous –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f(x, y) is a joint density                       | y for random variables                                                                                                         | s X, Y                                    |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P(a \le X \le b, c \le Y \le d)$                | $=\int_a^b\int_c^d f(x,y)dydx$                                                                                                 | where a, l                                | o, c, d are constants                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$    | $f_{Y}($                                                                                                                       | $y)=\int_{-\infty}^{\infty}f(x,y)$        | y)dx                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_X(x \mid y) = \frac{f(x, y)}{f_Y(y)}$         | $f_{Y}($                                                                                                                       | $y \mid x) = \frac{f(x, y)}{f_{yy}(x)}$   | <u>y)</u>                              |

| Sampling | Distributions | for | $\overline{X}$ : |
|----------|---------------|-----|------------------|
| 1        |               |     |                  |

$$\mu_{\overline{X}} = \mu$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Sampling Distributions for 
$$\hat{p}$$
:

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Finite population correction factor is  $\left(\frac{N-n}{N-1}\right)$ 

One-sample Inference:

Test statistic:

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

100(1-
$$\alpha$$
)% Confidence Interval for  $p$ 

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \text{ or } t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

$$100(1-α)$$
% Confidence Interval for μ

$$\overline{X} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$$

Two-sample Inference:

Test statistic:

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - \delta_0}{\sqrt{p_0(1 - p_0)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

 $100(1-\alpha)\%$  Confidence Interval for  $p_1$ -  $p_2$ 

$$\hat{p}_1 - \hat{p}_2 \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

100(1-α)% Confidence Interval for  $\mu_1$  -  $\mu_2$ 

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - \mu_{\Delta}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$(\overline{X}_1 - \overline{X}_2) \pm t_{\frac{\alpha}{2}, \nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$(\overline{X}_{1} - \overline{X}_{2}) \pm t_{\frac{\alpha}{2}, \nu} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \qquad \nu = \frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{1} - 1} + \frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2} - 1}}$$

(Equal Variance)

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \mu_{\Delta}}{\sqrt{\frac{\left(n_{1} - 1\right)s_{1}^{2} + \left(n_{2} - 1\right)s_{2}^{2}}{n_{1} + n_{2} - 2}} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

100(1- $\alpha$ )% Confidence Interval for  $\mu_1$  -  $\mu_2$ 

$$\left(\overline{X}_{1} - \overline{X}_{2}\right) \pm t_{\frac{\alpha}{2}, \nu} \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$$

$$v = n_{1} + n_{2} - 2$$

Matched Pairs Analysis

Test statistic:

$$t = \frac{\overline{X}_d}{\frac{S_d}{\sqrt{n}}}$$

 $100(1-\alpha)\%$  Confidence Interval for  $\mu_d$ 

$$\overline{X}_d \pm t_{\alpha/2,n-1} \frac{s_d}{\sqrt{n}}$$

# Appendix B: Standard Normal Table (Z Table)

|                                                                       |                                                | Sta                                            | ndard No         | rmal Dist                                | ribution F                                     | unction                                        |                                                | f i z                                          |                                                |                                                |
|-----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------|------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                                                                       |                                                |                                                | F(z) =           | $\frac{1}{\sqrt{2\pi}}\int_{-\pi}^{\pi}$ | $e^{-j^2/2}\epsilon$                           | lı                                             |                                                |                                                | · · · · · · · · · · · · · · · · · · ·          |                                                |
|                                                                       | ().(X)                                         | 0.01                                           | 0.02             | 0.03                                     | 0.04                                           | 0.05                                           | 0.06                                           | 0.07                                           | 0.08                                           | 0,09                                           |
| - 5.0<br>- 4.0<br>- 3.5                                               |                                                |                                                |                  |                                          |                                                |                                                |                                                |                                                |                                                |                                                |
| -3.4<br>-3.3<br>-3.2<br>-3.1<br>-3.0                                  | 0.0003<br>0.0005<br>0.0007<br>0.0010<br>0.0013 | 0.0003<br>0.0005<br>0.0007<br>0.0009<br>0.0013 | 0.0005<br>0.0006 | 4000.0<br>6000.0                         | 0.0003<br>0.0004<br>0.0006<br>0.0008<br>0.0012 | 0.0003<br>0.0004<br>0.0006<br>0.0008<br>0.0011 | 0.0003<br>0.0004<br>0.0006<br>0.0008<br>0.0011 | 0.0003<br>0.0004<br>0.0005<br>0.0008<br>0.0011 | 0.0003<br>0.0006<br>0.0005<br>0.0007<br>0.0010 | 0.0002<br>0.0003<br>0.0005<br>0.0007<br>0.0010 |
| -2.9                                                                  | 0.0019                                         | 0.0018                                         | 0.0018           | 0.0017                                   | 0.0016                                         | 0.0016                                         | 0.0015                                         | 0.0015                                         | 0.0014                                         | 0.0014                                         |
| -2.8                                                                  | 0.0026                                         | 0.0025                                         | 0.0024           | 0.0023                                   | 0.0023                                         | 0.0022                                         | 0.0021                                         | 0.0021                                         | 0.0020                                         | 0.0019                                         |
| -2.7                                                                  | 0.0035                                         | 0.0034                                         | 0.0033           | 0.0032                                   | 0.0031                                         | 0.0030                                         | 0.0029                                         | 0.0028                                         | 0.0027                                         | 0.0026                                         |
| -2.6                                                                  | 0.0047                                         | 0.0045                                         | 0.0044           | 0.0043                                   | 0.0041                                         | 0.0040                                         | 0.0039                                         | 0.0038                                         | 0.0037                                         | 0.0036                                         |
| -2.5                                                                  | 0.0062                                         | 0.0060                                         | 0.0059           | 0.0057                                   | 0.0055                                         | 0.0054                                         | 0.0052                                         | 0.0051                                         | 0.0049                                         | 0.0048                                         |
| $ \begin{array}{r} -2.4 \\ -2.3 \\ -2.2 \\ -2.1 \\ -2.0 \end{array} $ | 0.0082                                         | 0.0080                                         | 0.0078           | 0.0075                                   | 0.0073                                         | 0.0071                                         | 0.0069                                         | 0,0068                                         | 0.0066                                         | 0.0064                                         |
|                                                                       | 0.0107                                         | 0.0104                                         | 0.0102           | 0.0099                                   | 0.0096                                         | 0.0094                                         | 0.0091                                         | 0.0089                                         | 0.0087                                         | 0.0084                                         |
|                                                                       | 0.0139                                         | 0.0136                                         | 0.0132           | 0.0129                                   | 0.0125                                         | 0.0122                                         | 0.0119                                         | 0.0116                                         | 0.0113                                         | 0.0110                                         |
|                                                                       | 0.0179                                         | 0.0174                                         | 0.0170           | 0.0166                                   | 0.0162                                         | 0.0158                                         | 0.0154                                         | 0.0150                                         | 0.0146                                         | 0.0143                                         |
|                                                                       | 0.0228                                         | 0.0222                                         | 0.0217           | 0.0212                                   | 0.0207                                         | 0.0202                                         | 0.0197                                         | 0.0192                                         | 0.0188                                         | 0.0183                                         |
| -1.9                                                                  | 0.0287                                         | 0.0281                                         | 0.0274           | 0.0268                                   | 0.0262                                         | 0.0256                                         | 0.0250                                         | 0.0244                                         | 0.0239                                         | 0.0233                                         |
| -1.8                                                                  | 0.0359                                         | 0.0351                                         | 0.0344           | 0.0336                                   | 0.0329                                         | 0.0322                                         | 0.0314                                         | 0.0307                                         | 0.0301                                         | 0.0294                                         |
| -1.7                                                                  | 0.0446                                         | 0.0436                                         | 0.0427           | 0.0418                                   | 0.0409                                         | 0.0401                                         | 0.0392                                         | 0.0384                                         | 0.0375                                         | 0.0367                                         |
| -1.6                                                                  | 0.0548                                         | 0.0537                                         | 0.0526           | 0.0516                                   | 0.0505                                         | 0.0495                                         | 0.0485                                         | 0.0475                                         | 0.0465                                         | 0.0455                                         |
| -1.5                                                                  | 0.0668                                         | 0.0655                                         | 0.0643           | 0.0630                                   | 0.0618                                         | 0.0606                                         | 0.0594                                         | 0.0582                                         | 0.0571                                         | 0.0559                                         |
| -1.4                                                                  | 0.0808                                         | 0.0793                                         | 0.0778           | 0.0764                                   | 0.0749                                         | 0.0735                                         | 0.0721                                         | 0.0708                                         | 0.0694                                         | 0.0681                                         |
| -1.3                                                                  | 0.0968                                         | 0.0951                                         | 0.0934           | 0.0918                                   | 0.0901                                         | 0.0885                                         | 0.0869                                         | 0.0853                                         | 0.0838                                         | 0.0823                                         |
| -1.2                                                                  | 0.1151                                         | 0.1131                                         | 0.1112           | 0.1093                                   | 0.1075                                         | 0.1056                                         | 0.1038                                         | 0.1020                                         | 0.1003                                         | 0.0985                                         |
| -1.1                                                                  | 0.1357                                         | 0.1335                                         | 0.1314           | 0.1292                                   | 0.1271                                         | 0.1251                                         | 0.1230                                         | 0.1210                                         | 0.1190                                         | 0.1170                                         |
| -1.0                                                                  | 0.1587                                         | 0.1562                                         | 0.1539           | 0.1515                                   | 0.1492                                         | 0.1469                                         | 0.1446                                         | 0.1423                                         | 0.1401                                         | 0.1379                                         |
| -0.9                                                                  | 0.1841                                         | 0.1814                                         | 0.1788           | 0.1762                                   | 0.1736                                         | 0.1711                                         | 0.1685                                         | 0.1660                                         | 0.1635                                         | 0.1611                                         |
| -0.8                                                                  | 0.2119                                         | 0.2090                                         | 0.2061           | 0.2033                                   | 0.2005                                         | 0.1977                                         | 0.1949                                         | 0.1922                                         | 0.1894                                         | 0.1867                                         |
| -0.7                                                                  | 0.2420                                         | 0.2389                                         | 0.2358           | 0.2327                                   | 0.2296                                         | 0.2266                                         | 0.2236                                         | 0.2206                                         | 0.2177                                         | 0.2148                                         |
| -0.6                                                                  | 0.2743                                         | 0.2709                                         | 0.2676           | 0.2643                                   | 0.2611                                         | 0.2578                                         | 0.2546                                         | 0.2514                                         | 0.2483                                         | 0.2451                                         |
| -0.5                                                                  | 0.3085                                         | 0.3050                                         | 0.3015           | 0.2981                                   | 0.2946                                         | 0.2912                                         | 0.2877                                         | 0.2843                                         | 0.2810                                         | 0.2776                                         |
| -0.4                                                                  | 0.3446                                         | 0.3409                                         | 0.3372           | 0.3336                                   | 0.3300                                         | 0.3264                                         | 0.3228                                         | 0.3192                                         | 0.3156                                         | 0.3121                                         |
| -0.3                                                                  | 0.3821                                         | 0.3783                                         | 0.3745           | 0.3707                                   | 0.3669                                         | 0.3632                                         | 0.3594                                         | 0.3557                                         | 0.3520                                         | 0.3483                                         |
| -0.2                                                                  | 0.4207                                         | 0.4168                                         | 0.4129           | 0.4090                                   | 0.4052                                         | 0.4013                                         | 0.3974                                         | 0.3936                                         | 0.3897                                         | 0.3859                                         |
| -0.1                                                                  | 0.4602                                         | 0.4562                                         | 0.4522           | 0.4483                                   | 0.4443                                         | 0.4404                                         | 0.4364                                         | 0.4325                                         | 0.4286                                         | 0.4247                                         |
| -0.0                                                                  | 0.5000                                         | 0.4960                                         | 0.4920           | 0.4880                                   | 0.4840                                         | 0.4801                                         | 0.4761                                         | 0.4721                                         | 0.4681                                         | 0.4641                                         |

<sup>\*</sup> Entries in the table represent area under the standard normal density curve from  $-\infty$  to z

### Appendix B: (Continued from the previous page)

#### Standard Normal Distribution Function $F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$ ₩÷ 0.00 0.010.02 0.031),()4 0.050.06 0.070.080.090.0 0.5000 0.5040 0.5080 0.5120 0.51600.5199 0.5239 0.52790.5359 0.5319 0.5398 0.1 0.5438 0.5478 0.5557 0.55170.5596 0.5636 0.5675 0.5714 0.57530.2 0.5973 0.5832 0.58710.5910 0.59480.59870.60260.6064 0.6103 0.61410.3 0.6179 0.62170.6255 0.6293 0.6331 0.63680.6406 0.6443 0.64800.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.6915 0.5 0.6950 0.6985 0.70190.7054 0.70880.71230.7157 0.7190 0.7224 0.60.7257 0.72910.7324 0.7357 0.7389 0.74220.7454 0.74860.7517 0.75490.7 0.7580 0.7611 0.7642 0.7704 0.7673 0.7734 0.77640.7794 0.78230.78520.8 0.78810.7910 0.7939 0.7967 0.79950.80230.80510.80780.8106 0.8133 0.90.8159 0.8186 0.8212 0.8264 0.8238 0.82890.83150.83400.83650.83891.0 0.8413 0.84380.8461 0.8485 0.85080.85310.85540.8577 0.85990.86211.1 0.86430.86650.8686 0.87080.8729 0.87490.8770 0.8790 0.88100.8830 1.2 0.88490.88690.88880.89070.8925 0.89440.8962 0.89800.8997 0.9015 1.3 0.90320.90490.9066 0.90820.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.92070.9222 0.92360.92510.92650.9279 0.9292 0.9306 0.9319 0.9370 0.9357 1.5 0.93320.9345 0.93820.93940.9406 0.9418 0.9429 0.94410.9452 0.9463 1.6 0.9474 0.94840.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.95640.9573 0.9582 0.95910.9599 0.9608 0.9616 0.96250.9633 1.8 0.96410.9649 0.9656 0.9664 0.96710.96780.96860.9693 0.96990.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.97440.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.97930.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.98210.9826 0.9830 0.98340.98380.98420.98460.9850 0.9854 0.9857 2.2 2.3 0.98610.98640.98680.98710.98750.9878 0.9881 0.9884 0.9887 0.9890 0.98930.9896 0.98980,9901 0.99040.9906 0.99090.99110.99130.99162.4 0.9918 0.99200.9922 0.9925 0.99270.9929 0.9931 0.9932 0.9934 0.99362.5 0.9938 0.9940 0.99410.9943 0.9946 0.9945 0.99480.99490.9951 0.99522.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.99600.9961 0.9962 0.99630.99642.7 0.9966 0.9965 0.9967 0.9968 0.9969 0.99700.9971 0.9972 0.99730.9974 $\frac{2.8}{2.9}$ 0.99740.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.99800.9981 0.99810.99820.9982 0.9983 0.99840.99840.9985 0.99850.99860.99863.0 0.99870.99870.9987 0.9988 0.9988 0.99890.99890.99890.99900.9990 3.1 0.9991 0.99900.99910.99910.9992 0.99920.9992 0.9992 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.99940.99940.9994 0.9995 0.9995 0.9995 3.3 0.99950.99950.9995 0.9996 0.9996 0.99960.9996 0.9996 0.99960.99973.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.99970.9997 0.99970.9997 0.99983.5 0.99984.0 0.999975.0 0.9999997

<sup>\*</sup> Entries in the table represent area under the standard normal density curve from  $-\infty$  to z

Appendix C: Student's t-Table



| contractions with process of the | frage can be many growth order of the principles of the last of th |                 |                |                 |                    |                    | U               | ia.  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|--------------------|--------------------|-----------------|------|
| ν                                | $\alpha = 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\alpha = 0.05$ | $\alpha=0.025$ | $\alpha = 0.01$ | $\alpha = 0.00833$ | $\alpha = 0.00625$ | $\alpha = 0.00$ | 15 ν |
|                                  | 1 3.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.314           | 12.706         | 31.821          | 38.204             | 50.923             | 63.657          |      |
|                                  | 2 1.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.920           | 4.303          | 6.965           | 7.650              | 8.860              | 9.925           | ł    |
|                                  | 3 1.638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.353           | 3.182          | 4.541           | 4.857              | 5.392              | 5.841           | 3    |
|                                  | 4 1.533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.132           | 2.776          | 3.747           | 3.961              | 4.315              | 4.604           | i    |
|                                  | 5 1.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.015           | 2.571          | 3.365           | 3.534              | 3.810              | 4.032           | 1    |
|                                  | 6 1.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.943           | 2.447          | 3.143           | 3.288              | 3.521              | 3.707           | 6    |
|                                  | 7 1.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.895           | 2.365          | 2.998           | 3.128              | 3.335              | 3.499           | 7    |
|                                  | 8 1.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.860           | 2.306          | 2.896           | 3.016              | 3.206              | 3.355           | 8    |
| •                                | 1.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.833           | 2.262          | 2.821           | 2.934              | 3.111              | 3.250           | 9    |
| 10                               | 1.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.812           | 2.228          | 2.764           | 2.870              | 3.038              | 3.169           | 10   |
| 1.                               | 1.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.796           | 2.201          | 2.718           | 2.820              | 2.891              | 3.106           | 11   |
| 12                               | 1.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.782           | 2.179          | 2.681           | 2.780              | 2.934              | 3.055           | 12   |
| 13                               | 1.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.771           | 2.160          | 2.650           | 2.746              | 2.896              | 3.012           | 13   |
| 14                               | 1.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.761           | 2.145          | 2.624           | 2.718              | 2.864              | 2.977           | 14   |
| 15                               | 1.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.753           | 2.131          | 2.602           | 2.694              | 2.837              | 2.947           | 15   |
| 16                               | 1.337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.746           | 2.120          | 2.583           | 2.673              | 2.813              | 2.921           | 16   |
| 17                               | 1.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.740           | 2.110          | 2.567           | 2.655              | 2.793              | 2.898           | 17   |
| 18                               | 1.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.734           | 2.101          | 2.552           | 2.639              | 2.775              | 2.878           | 18   |
| 19                               | 1.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.729           | 2.093          | 2.539           | 2.625              | 2.759              | 2.861           | 19   |
| 20                               | 1.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.725           | 2.086          | 2.528           | 2.613              | 2.744              | 2.845           | 20   |
| 21                               | 1.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.721           | 2.080          | 2.518           | 2.602              | 2.732              | 2.831           | 21   |
| 22                               | 1.321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.717           | 2.074          | 2.508           | 2.591              | 2.720              | 2.819           | 22   |
| 23                               | 1.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.714           | 2.069          | 2.500           | 2.582              | 2.710              | 2.807           | 23   |
| 24                               | 1.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.711           | 2.064          | 2.492           | 2.574              | 2.700              | 2.797           | 24   |
| 25                               | 1.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.708           | 2.060          | 2,485           | 2.566              | 2.692              | 2,787           | 25   |
| 26                               | 1.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.706           | 2.056          | 2.479           | 2.559              | 2.684              | 2.779           | 26   |
| 27                               | 1.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.703           | 2.052          | 2.473           | 2.553              | 2.676              | 2.771           | 27   |
| 28                               | 1.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.701           | 2.048          | 2.467           | 2.547              | 2.669              | 2.763           | 28   |
| 29                               | 1.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.699           | 2.045          | 2.462           | 2.541              | 2.663              | 2.756           | 29   |
| inf.                             | 1.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.645           | 1.960          | 2.326           | 2.394              | 2.498              | 2.576           | inf. |