Analysis in einer Variable für LAK Roland Steinbauer, Wintersemester 2012/13

4. Prüfungstermin (14.6.2013)

Gruppe A

- 1. Definitionen, Sätze, Beweise.
 - (a) Definiere die folgenden Begriffe: (je 1 Punkt) Striktes lokales Extremum, Treppenfunktion, C^k -Funktion $(k \in \mathbb{N})$
 - (b) Formuliere die Regel(n) von de l'Hospital. (2 Punkte)
 - (c) Formuluiere den Hauptsatz der Differential- und Integralrechnung. Beschreibe in Worten den Beweisgang für beide Teilaussagen und führe dann den Beweisgenau aus. Wo wird die Stetigkeit des Integranden f verwendet? (7 Punkte)
- 2. Beispiele und Gegenbeispiele.
 - (a) Berechne die Ableitung der Arcussinus-Funktion. Begründe jeden deiner Schritte. (2 Punkte)
 - (b) Gib je ein Beispiel einer reellen Funktion mit den folgenden Eigenschaften an:
 - f hat ein striktes lokales Minimum in ξ aber $f'(\xi) \neq 0$.
 - \bullet f ist integrierbar aber nicht differenzierbar. (je 1 Punkt)
 - (c) Berechne $\int_0^{\pi/6} \cos(3t) dt$. (2 Punkte)
- 3. Grundideen.
 - (a) Integral für Treppenfunktionen. Definiere das Integral für Treppenfunktionen und erläutere die Bedeutung der Aussage: Das Integral ist ein lineares und monotones Funktional auf dem Vektorraum $\mathcal{T}[a,b]$ der Treppenfunktionen auf [a,b]. (3 Punkte)
 - (b) Mittelwertsatz der Integralrechnung. Die einfache Version des Mittelwertsatzes der Integralrechnung lautet: Sei $f[a,b] \to \mathbb{R}$ stetig, dann existiert ein $\xi \in [a,b]$ mit

$$\int_{a}^{b} f(t)dt = f(\xi) (b - a).$$

Erkläre anhand einer Skizze anschaulich die Bedeutung dieser Aussage. Welches prominente Resultat wird im Beweis verwendet. Leite aus dem Satz eine wichtige Abschätzung für Integrale her. (3 Punkte)

Bitte umblättern!

4. Vermischtes.

(a) Differenzierbarkeit. Sei $f: I \to \mathbb{R}$ differenzierbar an der Stelle ξ im Intervall I. Zeige, dass dann eine Zahl $a \in \mathbb{R}$ und eine Funktion r existieren mit

$$f(\xi + h) - f(\xi) = ah + r(h) \text{ und } \lim_{0 \neq h \to 0} \frac{r(h)}{h} = 0.$$

Fertige eine Skizze an, um die Sitation zu veranschaulichen. (4 Punkte)

- (b) Satz von Rolle. Formuliere den Satz von Rolle und begründe anschaulich die Plausibilität der Aussage. (2 Punkte)
- (c) Lipschitz-Stetigkeit. Sei $f:[a,b] \to \mathbb{R}$ stetig und differenzierbar auf (a,b) mit beschränkter Ableitung, d.h. $\exists C:|f'(x)| \leq C \ \forall x \in (a,b)$. Zeige, dass f dann Lipschitz-stetig ist. (2 Punkte)
- (d) Hinreichende Bedingung für Extrema. Für eine hinreichend oft differenzierbare Funktion $f:(a,b)\to\mathbb{R}$ formuliere hinreichende Bedingungen für die Existenz von Extremstellen und beweise sie. (4 Punkte)

5. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (je 2 Punkte)

- (a) Jede Lipschitz-stetige Funktion ist differenzierbar.
- (b) Ist F eine Stammfunktion von f, dann ist auch F+c für jedes $c\in\mathbb{R}$ eine Stammfunktion von f