HKDSE MATH M2 2020

1. HKDSE Math M2 2020 Q1

- (a) Expand $(1-x)^4$.
- (b) Find the constant k such that the coefficient of x^2 in the expansion of $(1 + kx)^9(1 x)^4$ is -3.

(4 marks)

2. HKDSE Math M2 2020 Q2

Define $f(x) = \frac{x}{\sqrt{2+x}}$, for all x > -2. Find f'(2) from first principles. (4 marks)

3. HKDSE Math M2 2020 Q3

- (a) Let x be an angle which is not a multiple of 30° . Prove that
 - (i) $\tan 3x = \frac{3\tan x \tan^3 x}{1 3\tan^2 x}$, (ii) $\tan x \tan(60^\circ x) \tan(60^\circ + x) = \tan 3x$.
- (b) Using (a)(ii), prove that $\tan 55^{\circ} \tan 65^{\circ} \tan 75^{\circ} = \tan 85^{\circ}$.

(6 marks)

4. HKDSE Math M2 2020 Q4

- (a) Find $\int \sin^2 \theta \, d\theta$.
- (b) Define $f(x) = 4x(1-x^2)^{\frac{1}{4}}$ for all $x \in [0,1]$. Denote the graph of y = f(x) by G. Let R be the region bounded by G and the x-axis. Find the volume of the solid of revolution generated by revolving R about the x-axis.

(6 marks)

5. HKDSE Math M2 2020 Q5

- (a) Using mathematical induction, prove that $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$ for all positive integers n.
- (b) Using (a), evaluate $\sum_{k=4}^{123} \frac{50}{k(k+1)(k+2)}$.

(7 marks)

6. HKDSE Math M2 2020 Q6

Consider the curve $C_1: y=2^{x-1}$, where x>0. Denote the region by O. Let P(u,v) be a moving point on C_1 such that the area of the circle with OP as a diameter increases at a constant rate of 5π square units per second.

1

- (a) Define $S = u^2 + v^2$. Does S increase at a constant rate? Explain your answer.
- (b) Let C_2 be the curve $y = 2^x$, where x > 0. The vertical line passing through P cuts C_2 at the point Q. Find the rate of change of the area of $\triangle OPQ$ when u = 2.

(7 marks)

7. HKDSE Math M2 2020 Q7

Let f(x) be a continuous function defined on \mathbb{R} . Denote the curve y = f(x) by Γ . It is given that Γ passes through the point (1,2) and f'(x) = -2x + 8 for all $x \in \mathbb{R}$.

- (a) Find the equation of Γ .
- (b) Let L be a tangent to Γ such that L passes through the point (5, 14) and the slope of L is negative. Denote the point of contact of Γ and L by P. Find
 - (i) the coordinates of P,
 - (ii) the equation of the normal to Γ at P.

(8 marks)

8. HKDSE Math M2 2020 Q8

Define $P = \begin{pmatrix} -5 & -2 \\ 15 & 6 \end{pmatrix}$ and $Q = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Let $M = \begin{pmatrix} 1 & a \\ b & c \end{pmatrix}$ such that |M| = 1 and PM = MQ, where a, b and c are real numbers.

- (a) Find a, b and c.
- (b) Define $R = \begin{pmatrix} 6 & 2 \\ -15 & -5 \end{pmatrix}$.
 - (i) Evaluate $M^{-1}RM$.
 - (ii) Using the result of (b)(i), prove that $(\alpha P + \beta R)^{99} = \alpha^{99}P + \beta^{99}R$ for any real numbers α and β .

(8 marks)

9. HKDSE Math M2 2020 Q9

Let $f(x) = \frac{(x+4)^3}{(x-4)^2}$ for all real numbers $x \neq 4$. Denote the graph of y = f(x) by H.

- (a) Find the asymptote(s) of H.
 - (3 marks)
- (b) Find f''(x).

(2 marks)

- (c) Someone claims that there are two turning points of H. Do you agree? Explain your answer. (2 marks)
- (d) Find the point(s) of inflexion of H.

(2 marks)

(e) Find the area of the region bounded by H, the x-axis and the y-axis. (3 marks)

10. HKDSE Math M2 2020 Q10

- (a) Using integration by substitution, prove that $\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \ln\left(\sin\left(\frac{\pi}{4} x\right)\right) dx = \int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \ln\left(\sin x\right) dx.$ (3 marks)
- (b) Using (a), evaluate $\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \ln(\cot x 1) dx.$ (3 marks)
- (c) (i) Using $\cot (A B) = \frac{\cot A \cot B + 1}{\cot B \cot A}$, or otherwise, prove that $\cot \frac{\pi}{12} = 2 + \sqrt{3}$.
 - (ii) Using integration by parts, prove that $\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \frac{x \csc^2 x}{\cot x 1} dx = \frac{\pi}{8} \ln (2 + \sqrt{3})$ (7 marks)

11. HKDSE Math M2 2020 Q11

(a) Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x & - & y & - & 2z = 1 \\ x & - & 2y + hz = k \\ 4x & + hy - 7z = 7 \end{cases}$$
, where $h, k \in \mathbb{R}$.

- (i) Assume that (E) has a unique solution.
 - (1) Prove that $h \neq -3$.
 - (2) Solve (E).
- (ii) Assume that h = -3 and (E) is consistent.
 - (1) Prove that k = -2.
 - (2) Solve (E).

(9 marks)

(b) Consider the system of linear equations in real variables $x,\,y,\,z$

$$(F): \begin{cases} x & - & y & - & 2z & = & 1\\ x & - & 2y & + & hz & = & -2\\ 4x & + & hy & - & 7z & = & 7 \end{cases}$$
 where $h \in \mathbb{R}$.

Someone claims that there are at least two values of h such that (F) has a real solution (x, y, z) satisfying $3x^2 + 4y^2 - 7z^2 = 1$. Do you agree? Explain your answer. (4 marks)

12. HKDSE Math M2 2020 Q12

Let $\overrightarrow{OP} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OQ} = 5\mathbf{i} - 7\mathbf{j} - 4\mathbf{k}$, where O is the origin. R is a point lying on PQ such that PR : RQ = 1 : 3.

- (a) Find $\overrightarrow{OP} \times \overrightarrow{OR}$. (2 marks)
- (b) Define $\overrightarrow{OS} = \overrightarrow{OP} + \overrightarrow{OR}$. Find the area of the quadrilateral OPSR. (2 marks)
- (c) Let N be a point such that $\overrightarrow{ON} = \lambda(\overrightarrow{OP} \times \overrightarrow{OR})$, where λ is a real number.
 - (i) Is \overrightarrow{NR} perpendicular to \overrightarrow{PQ} ? Explain your answer.
 - (ii) Let μ be a real number such that \overrightarrow{NQ} is parallel to $11\mathbf{i} + \mu\mathbf{j} 10\mathbf{k}$.
 - (1) Find λ and μ .
 - (2) Denote the angle between $\triangle OPQ$ and $\triangle NPQ$ by θ . Find $\tan \theta$.

(8 marks)