

Build a simple low power DC-DC boost converter

	Pain
Introduction to the course:	Very often a low power boost converter is used to convert low voltage to a higher voltage is required in a system. This build exercise is to learn to build one such simple converter, using an open loop.
What does this course aim to achieve?	 To drive an LED To drive a single lithium-ion cell from low volt to high volt. To drive automotive device such as a fan from 5V to 12 V
What is being built in this course:	Boost converter (5V DC input to 12V DC output).
How is it being tested:	Based on the design requirements, the components are mounted on dot board. With the required input supply, the output results are monitored using multimeter.
Course Prerequisite s	 Principle of boost converter Basics of RLC circuits Soldering techniques

Contents

Prerequisites

Aim

Components

Connections - Circuit Diagram - Detailed Steps

Software - Launching the IDE for our project - Code

Task - Exercise

Prerequisites

Topic	Resources		
Soldering technique	https://youtu.be/oqV2xU1fee8		
Principle document of DC-to- DC converter manual	Build club website DC to DC project		

<u>Aim</u>

Very often a low power boost converter used to convert some low voltage to a higher voltage is required in a system. This build exercise is to learn to build one such simple converter, using an open loop.

Components

Components	Specification	Cost Per Quantity	Quantity
PCB Dot board	10*15cm	40	1
Inductor	1mH	50	1
Capacitor	100-470uf (63V)	25	1
MOSFET	IRLZ24NPBF OR NVMFS6H818NL	160	1

		I	
Schottky Diode	STPSC406D OR NXPSC046506Q OR WNSC6D04650Q	150	1
DC Fan (Load)	12V- 0.27A	95	1
Resistor	1K,2K,340K ohm (Through hole)	15	3 Each one
Soldering station (Lead, flux, IP)		250	1
Power supply	5V Phone Adapter	100	1
Connecting wires	26AWG	20	1(meter)
Digital multimeter		175	1
Jumper wire Male to male		15	6
Dexter board			1
USB cable	Туре В	200	2

Note:

- All the components are reusable after desoldering.
- Measure the resistor values by multimeter.

Capacitor

MOSFET

Schottky Diode

Jumper wires

USB

Power supply

Resistor

DOT Board

Soldering station

Dexter Board

MOSFET PINOUT:

Pin 1 = gate

Pin 2 = drain

Pin 3 = source

IRLZ24NPBF

NVMFS6H818NL

Note: While choosing the MOSFET, check from the datasheet that MOSFET Vgs should be less than 2.5V.

Connections

Circuit Diagram

NOTE: Do not touch the tip of the soldering iron, its temperature can be as high as 380°C and can cause severe burns. Keep the cleaning sponge wet when soldering.

Detailed Connection Steps

Step 1: Solder inductor, diode, capacitor, MOSFET and resistor on PCB dot board as per the circuit diagram fig1.

Step 2: Set the power supply voltage to 5V or take a 5V phone adapter.

Step 3: Solder positive side (A) of power supply to Inductor leg and negative side of the power supply to the ground (G).

Fig 1.

Step 4: Solder another inductor leg(B) to the drain of the MOSFET(D).

- Solder one male to male jumper wire to the MOSFET gate and connect another side of jumper wire to PA8 pin of Dexter.
- Solder one male to male jumper wire to the MOSFET source and connect another side of jumper wire to GND pin of Dexter.

Step 5: Solder anode of the diode to point B. And cathode C of the diode to positive of the capacitor.

K = cathode

A = anode

- Negative side of capacitor to the ground (G).
- Connect (C) with one leg of resistor and another with (G).

Step 6: Solder two male to male jumper wire across the capacitor and connect to the 12V DC load fan.

Step 7: Switch ON the power supply and measure the output voltage using digital multimeter across the capacitor.

Step 8: To change the duty cycle write two commands in STM IDE.

Software

Downloads & Installation

- Download the Project Workspace file 'dc_dc_dexter_open loop.zip' given in the project page on the Build Club website.
- 2) Then go in downloads and extract all.
- 3) i) Launch the STM IDE, ii) click on Import project iii) Now click on the directory and select the extracted file dc_dc_dexter_open loop iv) Click on dc_dc_dexter_change then core then src and then app.c

Implementing the Code

Write the following command to change the period and duty cycle and run the code.

 The Set_Period() function allows you to change the frequency.

To change Period = $\frac{\text{system clock frequency}}{\text{required frequency}}$

Note: system clock frequency will always be 4MHz

Example: Change frequency to 20KHz

Period =
$$\frac{4 \text{MHz}}{20 \text{KHz}}$$
 = 200

Set Period(200); // for 20KHz frequency

 The Set_Duty() function allows you to change the duty cycle.

To change Duty = period \times (%percentage of duty cycle)

Example: Change duty cycle to 58%

Duty = 200*(58/100)

= 116

Set_Duty(116); // for 58% duty cycle

Hurray you have learnt how to drive a boost circuit!!!!!!!

Tasks: for open loop

- On the same boost converter change the duty cycle 50%, 60% and 70% keeps the frequency 20Khz and measure the voltage.
- 2. Measure the output voltage keeping R =12ohm. Compute the expected voltage using mathematical formula for each of the duty cycle. Check measure voltage and compute voltage are matching.

Exercise:

- 1. Calculate the losses and the efficiency using the formula.
- 2. Make a graph
 - between ripple voltage and duty
 - between ripple voltage and load