

Universidade Federal Fluminense Curso: Sistemas de Informação

Disciplina: Fundamentos Matemáticos para Computação

Professora: Raquel Bravo

Gabarito da lista de Exercícios sobre Técnicas de Demonstração

1. Prove que o conjunto dos números primos é infinito.

Demonstração. Vamos supor, por absurdo, que existe uma quantidade finita de números primos. Vejamos até onde ela nos leva. Por esta hipótese, há apenas n números primos, onde n é inteiro. Podemos colocar os primos $p_1, p_2, ..., p_n$ em ordem, de tal forma que:

$$p_1 < p_2 < \ldots < p_n$$

Com isto, teríamos que p_n é o maior primo de todos.

Considere o número $p_1.p_2....p_n + 1$. Ele não é divisível por nenhum dos primos $p_1, p_2, ..., p_n$, portanto ele também é primo e, além disso, é maior do que todos os demais números primos, incluindo p_n . Mas isto contradiz a afirmação de que p_n é o maior primo de todos, o que é um absurdo! Portanto, podemos garantir que existem infinitos números primos.

2. Prove que $\sqrt{2}$ é um número irracional.

Demonstração. Suponha, por absurdo, que $\sqrt{2}$ racional. Desta forma, seria possível encontrar números inteiros a,b, com $b\neq 0$, tais que $\sqrt{2}$ poderia ser representado como fração irredutível $\frac{a}{b}$. A partir disto, podemos afirmar que:

$$2 = (\sqrt{2})^2 = \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$$
$$2b^2 = a^2$$

Assim, temos que a^2 é par e, desta forma, a também é par. Como a é par, a=2k para algum inteiro k. Logo:

$$2b^{2} = a^{2} = (2k)^{2} = 4k^{2}(\div 2)$$
$$b^{2} = 2k^{2}$$

O que nos diz que b também é par. Mas isto é uma contradição, pois se a e b são pares, a fração irredutível $\frac{a}{b}$ poderia ser reduzida, um absurdo! Logo, podemos concluir que o número real pode ser racional, portanto é irracional.

3. Sejam dois círculos tangentes C_1 e C_2 com respectivos raios r_1 e r_2 , tais que r_1 é um número racional e r_2 irracional. Inicialmente os círculos estão parados com os pontos p_1 do círculo C_1 e p_2 do círculo C_2 coincidentes. Logo após o instante inicia, os círculos C_1 e C_2 começam um movimento uniforme de rotação sem deslizamento. Prove que uma vez o movimento iniciado, os pontos p_1 e p_2 nunca mais serão coincidentes novamente.

Demonstração. Supomos, por absurdo, que p_1 e p_2 se encontram em algum momento após os círculos terem iniciados seus movimentos. Como o movimento é uniforme e sem deslizamento, podemos afirmar que as velocidades lineares de C_1 e C_2 são iguais. Então seja esse encontro dado, após C_1 ter dado m voltas e C_2 , n voltas. Dessa forma temos:

$$2\pi r_1 m = 2\pi r_2 n$$

$$\frac{r_1}{r_2} = \frac{n}{m}$$

Nesse ponto obtemos um absurdo, pois sendo r_1 um número racional e r_2 irracional, temos que a razão $\frac{r_1}{r_2}$ é um número irracional, enquanto $\frac{n}{m}$ é um número racional, já que $\forall n, m \in \mathbb{Z}$. Logo, essas frações não podem ser iguais. Como nossa hipótese de que os dois pontos se encontrariam em algum momento nos levou a um absurdo, concluímos que eles nunca se encontrarão, o que prova o teorema original.

4. Prove que se n é um número inteiro, então $n^2 \ge n$.

Demonstração. A prova será dada por casos:

- (i) Quando n=0. Como $0^2=0$, então $n^2\geq 0$ é verdadeiro nesse caso.
- (ii) Quando $n \geq 1$. Multiplicando os dois lados da inequação pelo inteiro positivo n, obtemos $n.n \geq n.1$. Isso implica que $n^2 \geq n$, para $n \geq 1$.
- (iii) Quando $n \le -1$. Como $n^2 \ge 0$ então temos que $n^2 \ge 0 > -1 \ge n$, e portanto, $n^2 \ge n$.

Podemos concluir, pela análise dos três casos, que se n é um número inteiro, então $n^2 \geq n$.

5. Se n é um número inteiro ímpar, então n^2 é ímpar.

Demonstração. Suponhamos que n é impar, n=2k+1 para algum inteiro k. Logo:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2q + 1$$
, onde $q = 2k^2 + 2k$ é um inteiro. Portanto, n^2 é ímpar.

 $6.\$ Prove que o produto de dois números inteiros pares é par.

Demonstração. Suponhamos dois números inteiros n,m pares, isto é, n=2k e m=2q', com $q,q'\in\mathbb{Z}$. Logo:

$$n.m=(2k).(2q)=4k.q=2(2k.q)=2r,$$
 onde $r=2k.q$ é um inteiro. Portanto, $n.m$ é par. \Box

7.	Dê uma demonstração direta ao teorema "Se um inteiro é divisível por 6, então duas vezes esse inteiro é divisível por 4".
	Demonstração. Suponhamos que n é um inteiro divisível por 6, isto é, $n=6q,$ para algum inteiro $q.$
	Vamos analisar o dobro do número n , logo:
	2n = 2(6q) = 12q = 4(3q) = 4k, onde $k = 3q$ é um inteiro q .
8.	Prove pela contrapositiva que " Se $3n+2$ é ímpar, no qual n é um número inteiro, então n é ímpar".
	Demonstração. A prova desta afirmação será feita pela contrapositva: "Se n é par então $3n+2$ é par, com n um número inteiro.
	Suponhamos que n é par, isto é, $n=2k$ para algum inteiro k . Vamos analisar $3n+2$:
	$3n+2=3(2k)+2=6k+2=2(3k+1)=2q,$ onde $q=3k+1$ é um inteiro. Portanto, $3n+1$ é par. $\hfill\Box$
9.	Mostre que se $n=ab,$ com a e b inteiros positivos, então $a \leq \sqrt{n}$ ou $b \leq \sqrt{n}.$
	Demonstração. A prova desta afirmação será feita por absurdo.
	Suponhamos que $n = ab$ e $a > \sqrt{n}$ e $b > \sqrt{n}$. Vamos analisar ab :
	$ab > \sqrt{n}.\sqrt{n} = \sqrt{n^2} = n$, ou seja, $ab > n$, o que contradiz a hipótese.
	Portanto, se $n=ab$, com a e b inteiros positivos, então $a \leq \sqrt{n}$ ou $b \leq \sqrt{n}$.
10.	Se um número somado a ele mesmo é ele mesmo, então esse número é 0 .
	$Demonstração.$ Suponhamos que um número x é tal que $x+x=2x=x.$ Agora, vamos supor, por absurdo, que $x\neq 0.$
	Se $x \neq 0$ então, podemos dividir a equação $2x = x$ por x , e desta forma, temos que $2 = 1$. Absurdo!
	Portanto, se um número somado a ele mesmo é ele mesmo, então esse número é 0 $\hfill\Box$

11. $\forall n \in \mathbb{N}$, se $n \leq 5$ então $n^2 \leq 5n + 10$.

Demonstração. A prova será feita pela demonstração direta.

$$n \le 5$$

$$n \cdot n \le 5 \cdot n$$

$$n^2 \le 5n + 0$$

Como $0 \le 10$, podemos concluir que $n^2 \le 5n + 0 \le 5n + 10$.

Portanto, se
$$n \le 5$$
 então $n^2 \le 5n + 10$

12. Se n é um número inteiro par, então n^2 é par.

Demonstração. Suponhamos que n é par, isto é, n=2k para algum inteiro k. Logo:

$$n^2=(2k)^2=4k^2=2(2k^2)=2q,$$
onde $q=2k^2$ é um inteiro. Portanto, n^2 é par. $\hfill\Box$

13. Algum dia será possível criar um programa de computador que sempre ganhe no xadrez?

Demonstração. Suponha, por um momento, que a seguinte proposição é válida: p= "existe um programa de computador que sempre ganha no xadrez". Supondo que tal programa existe, instale a mesma cópia em dois computadores e coloque um para jogar contra o outro. Ou o jogo terminará empatado (sem nenhum ganhador), ou um dos computadores perderá. Em qualquer destes casos, pelo menos uma das duas cópias do programa não vai ganhar o jogo, uma contradição, já que assumimos que o programa sempre ganha. Portanto, não existe (nem nunca existirá) um programa que sempre ganhe no xadrez.