Nom:	Prénom:		Groupe:
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS			
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2014/2015		Note / 20
École d'ingénieurs POLYTECH' NICE-SOPHIA	DS électronique analogique No2		7 20

Lundi 4 mai 2015 Durée : 1h30

- □ Cours et documents non autorisés.
- □ Calculatrice de type collège autorisée
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous devez:
 - indiquer votre nom et votre prénom.
 - éteindre votre téléphone portable (- 1 point par sonnerie).

RAPPELS:

Impédance d'une capacité $C: 1/(jC\omega)$ [Ω]	$\omega = 2\pi F$
Filtre passe bas : $G(\omega) = \frac{H}{1 + j\omega RC} = \frac{H}{1 + j\frac{\omega}{\omega_0}}$	Filtre passe haut : $G(\omega) = \frac{H}{1 - j\frac{1}{\omega RC}} = \frac{H}{1 - j\frac{\omega_0}{\omega}}$

On se propose d'étudier le petit amplificateur audio de la figure I.1.

Figure I.1.

I.1. Etude en statique du montage

0.25

0.25 | I.1.1. Dans quel régime se trouve le transistor pour pouvoir amplifier le signal E_G(t)?

A Bloqué B Linéaire C Saturé

I.1.2. Comment doit-on considérer les capacités en régime statique ?

A Comme des courts-circuits B Comme des circuits ouverts

C Comme des fils D Comme des résistances

I.1.3. Donner l'expression du courant I_{B0} en fonction de V_{DD} , R_1 , R_2 , R_8 , V_8 , R_E et β. Vous pourrez vous aider d'un générateur de Thévenin équivalent si vous voulez.

0.25

 $I_{\rm C0} =$

I.1.5. Donner l'expression de la tension V_{CE0} en fonction de $V_{\text{DD}},\,R_{\text{C}},\,R_{\text{E}},\,I_{\text{B0}}$ et $\beta.$

$^{\circ}$	_	
	2	

 $V_{\rm CE0} =$

Brouillon	

I.2. Etude en régime dynamique du montage

On se place aux fréquences du signal E_G(t)

0.25

- I.2.1. Quel est le rôle de la capacité C1 (entourer la bonne réponse) ?
 - A Augmenter le gain en alternatif en court-circuitant la résistance R₂
 - B Empêcher que la partie statique de E_G modifie le point de polarisation du transistor.
 - C Eviter l'échauffement du transistor
 - D Court-circuiter la base pour laisser passer la partie alternative de Eg
 - E Empêcher que la partie statique de V_{DD} modifie le point de polarisation du transistor.

0.25

I.2.2. Pour le circuit, la capacité C1 représente un filtre :

A Passe Bas

B Passe Haut

C Passe Cifique

0.25

- I.2.3. Quel est le rôle de la capacité CE?
 - A Augmenter la valeur de la résistance R_E.
 - B Empêcher la tension V_E de varier et ainsi augmenter la valeur du gain $A_V = v J_{eg}$.
 - C Stabiliser thermiquement le transistor.
 - D Augmenter l'effet de la capacité C₁

0.25

I.2.4. Pour l'émetteur et Eg, la capacité CE forme un filtre?

A Passe Bas

B Passe Haut

C Passe Moile-sel

0.25

- I.2.5. Quel est le rôle de la capacité RE?
 - A Stabiliser thermiquement le transistor.
 - B Diminuer le gain de l'amplificateur.
 - C Empêcher la tension V_E de varier et ainsi augmenter la valeur du gain $A_V = v J_{eg}$.
 - D Augmenter l'effet de la capacité CE

1

I.2.6. Donner le schéma en régime petit signal du circuit de la figure I.1. Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b, et β.i_b.

$$A_{V} = \frac{v_{c}}{e_{g}} =$$

I.2.8. On souhaite amplifier un signal audio dont les fréquences sont comprises entre $20~\mathrm{Hz}$ et $20~\mathrm{kHz}$. Représenter l'allure des filtres liés aux capacités C_1 et C_{E} .

0,5

Brouillon

On se propose d'étudier le petit amplificateur audio de la figure II.1. Les deux transistors sont identiques.

On suppose que $\beta >> 2$ et on fera les simplifications en conséquence.

Figure II.1.

II.1. Etude en statique du montage

0,5 II.1.1. Donner l'expression du courant qui circule dans $R_{\rm C}$ en fonction de $I_{\rm B10}$

 $I_{\rm RC} =$

0,5 **II.1.2.** Donner l'expression de la tension V_C en fonction de E_G , R_G , V_S , V_{DD} , R_C et β .

 $V_{\rm C} =$

II.2. Etude en régime dynamique du montage

On se place aux fréquences du signal $E_{\text{G}}(t)$

II.2.1. A partir de la question II.1.2, donner l'expression du gain en tension.

$$A_V = \frac{\partial V_C}{\partial E_G} =$$

0,5

II.2.3. Donner l'expression du gain en tension.

$$Av = \frac{v_c}{e_g} =$$

Brouillon

On se propose d'étudier le petit amplificateur audio de la figure III.1.

Si nécessaire, on posera $R_A = (R_1 // R_2) + R_3$

Figure III.1.

III.1. Donner le schéma en régime petit signal du circuit de la figure (III.1). Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b , et $\beta.i_b$. On se place aux fréquences du signal $E_G(t)$

III.1.2. Donner l'expression du gain en tension.

$$A_V = \frac{v_e}{e_g} =$$

1

III.1.3. Donner l'expression de la résistance d'entrée vue par le générateur Eg(t).

 $R_{\rm e} =$

Brouillon		

On se propose d'étudier le petit amplificateur audio de la figure IV.1. Les deux transistors sont identiques.

Figure IV.1.

2

IV.1. Donner le schéma en régime petit signal du circuit de la figure IV.1. Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b , et $\beta.i_b$. Vous utiliserez les indices 1 et 2 pour différencier les deux transistors sauf pour R_S et V_S . On se place aux fréquences du signal $E_G(t)$

0,5

IV.2. Donner l'expression du gain en tension sur le premier transistor.

$$A_{V1} = \frac{v_{c1}}{e_g} =$$

$$A_{V2} = \frac{v_{c2}}{v_{c1}} =$$

IV.4. Donner alors l'expression du total de l'amplificateur.

0,5

$$A_V = \frac{v_{c2}}{e_g} =$$

Brouillon

EXERCICE V: Amplificateur n°5 (3,5 pts)

On se propose d'étudier le schéma petit signal de la figure V.1. On supposera que $\beta >> 1$.

Figure V.1.

V.1. Donner l'expression du gain en tension en respectant la forme suivante. Il faudra identifier H, ω_{C1} et ω_{C2} .

$$Av = \frac{v_c}{e_g} = \frac{H}{1 + j\frac{\omega}{\omega_{C1}}} \left(1 + j\frac{\omega}{\omega_{C2}}\right)$$

 $Avec \; H = \qquad \qquad , \quad \omega_{C1} = \qquad \qquad et \qquad \qquad \omega_{C2} =$

V.2. Vers quelles valeurs tend A_V lorsque ω tend vers 0 et l'infini ? Dans ce dernier cas, vous pouvez vérifier avec votre réponse avec celle de la question I.2.7.

0,5

$$A_{\mathbf{v}}(\omega \rightarrow 0) =$$

$$A_{\mathbf{v}}(\omega \to \infty) =$$

V.3. Est-ce que:

A $\omega_{C1} = \omega_{C2}$ B $\omega_{C1} > \omega_{C2}$

 $C \omega_{C1} < \omega_{C2}$

0,5

V.4. On souhaite amplifier un signal audio dont les fréquences sont comprises entre 20 Hz 0,5 et 20 kHz. Représenter l'allure du gain Av en faisant apparaître F_{C1} et F_{C2} .

Brouillon

Brouillon	