1 Inner products

We describe points in 2D-space by their x- and y-coordinate. For example: $\begin{pmatrix} a \\ b \end{pmatrix}$ is the point with x-coordinate a and y-coordinate b. If we have two points $\vec{\mathbf{v}} = \begin{pmatrix} a \\ b \end{pmatrix}$ and $\vec{\mathbf{w}} = \begin{pmatrix} c \\ d \end{pmatrix}$, the "inner product" of $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ is:

$$\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = a \times c + b \times d.$$

In the exercises below, we will see why this definition is nice and meaningful.

(a) Simplify the inner product in the special case when the first vector is $\vec{\mathbf{v}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then: $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} c \\ d \end{pmatrix} = \dots$

(b) How does this relate to $\vec{\mathbf{v}}$? If $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = 0$, what is the angle between $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$?

(c) Now look at the inner product with $\vec{\mathbf{v}} = \begin{pmatrix} a \\ 0 \end{pmatrix}$. Compute: $\frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}}{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}} \times \vec{\mathbf{v}} = \begin{pmatrix} & \dots & \\ & 0 & \end{pmatrix}$.

(d) We can rotate a point $\vec{\mathbf{v}} = \begin{pmatrix} a \\ b \end{pmatrix}$ counter-clockwise by an angle of θ as follows: $\vec{\mathbf{v}}' = \begin{pmatrix} a\cos(\theta) - b\sin(\theta) \\ a\sin(\theta) + b\cos(\theta) \end{pmatrix}$.

(1) Verify the equation for $\theta = 90^{\circ}$. Then: $\vec{\mathbf{v}}' = \begin{pmatrix} \dots \\ \dots \end{pmatrix}$.

(2) Write $\vec{\mathbf{w}}'$ for the rotation of $\vec{\mathbf{w}}$ by an angle of θ . Show: $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = \vec{\mathbf{v}}' \cdot \vec{\mathbf{w}}'$.

(e) Describe the angle θ (using a, b and $\sin/\cos/\tan$) that rotates $\vec{\mathbf{v}} = \begin{pmatrix} a \\ b \end{pmatrix}$ to $\vec{\mathbf{v}}' = \begin{pmatrix} x \\ 0 \end{pmatrix}$ for some x > 0. What is x?

(f) The length of a vector $\vec{\mathbf{v}} = \begin{pmatrix} a \\ b \end{pmatrix}$ is given by $\|\vec{\mathbf{v}}\| = \sqrt{a^2 + b^2}$. Prove: $\|\vec{\mathbf{v}}\|^2 = \vec{\mathbf{v}} \cdot \vec{\mathbf{v}}$.

(g) Suppose the angle between $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ is θ . Prove (using the previous exercises):³

$$\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = \cos(\theta) \times ||\vec{\mathbf{v}}|| \times ||\vec{\mathbf{w}}||.$$

²Hint: recall $\cos^2(\theta) + \sin^2(\theta) = 1$.

¹Note: this fraction is a number. If z is some number, then $z \times \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} za \\ zb \end{pmatrix}$.

³Hint: use (5) to rotate $\vec{\mathbf{w}}$ with the same angle that rotates $\vec{\mathbf{v}}$ onto the x-axis.

2 Parallelograms

Recall that a basis for a lattice gives a tiling of space.

For (a), (b) and (c), assume $\vec{\mathbf{v}}$ is on the x-axis. First, we relate the area of the parallelogram to the basis.

- (a) Show: the parallelogram $O, \vec{\mathbf{v}}, \vec{\mathbf{v}} + \vec{\mathbf{w}}, \vec{\mathbf{w}}$, and the rectangle $O, A, \vec{\mathbf{w}}, C$ have equal area.⁴
- (b) Show: replacing $\vec{\mathbf{w}}$ by $\vec{\mathbf{w}} + z\vec{\mathbf{v}}$ does not change the area for any z (the area is independent of c).
- (c) What is the area in terms of x and d?

Figure 1: One tile

Figure 2: Tiling of 2D-space by the lattice basis $[\vec{\mathbf{v}}, \vec{\mathbf{w}}]$

Now consider the general case of $\vec{\mathbf{v}} = \begin{pmatrix} a \\ b \end{pmatrix}$ and $\vec{\mathbf{w}} = \begin{pmatrix} c \\ d \end{pmatrix}$.

- (d) Using (b), slide $\vec{\mathbf{v}}$ to a point on the x-axis. Show: the parallelogram has area ad bc.
- (e) How does the area change when you:
 - (1) swap $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$?
 - (2) replace $\vec{\mathbf{w}}$ by $\vec{\mathbf{w}} + \vec{\mathbf{v}}$?
 - (3) multiply $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ by 2?
- (f) Conclude from (1) and (2) that the area stays the same during lattice reduction.
- (g) Show: the circle in Figure 3 has radius $r = \frac{1}{2} \|\vec{\mathbf{v}}\|$. Show: the circle in Figure 2 has radius $r' = \frac{1}{2} \|\vec{\mathbf{v}}\| \times \sin(\theta) \le r$, where θ is the angle between $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$.

Figure 3: A different tiling of 2D-space, using a rectangular tile.

Encryption with lattices. With the secret key (the good basis $[\vec{\mathbf{v}}, \vec{\mathbf{w}}]$) only you can decrypt ciphertexts sent by others! Namely, a ciphertext is $\vec{\mathbf{t}} = \vec{\mathbf{m}} + \vec{\mathbf{e}}$, where $\vec{\mathbf{m}} = a\vec{\mathbf{v}} + b\vec{\mathbf{w}}$ (a, b integer) corresponds to a message, and $\vec{\mathbf{e}}$ is a short vector. With the secret key, you can find the tile containing $\vec{\mathbf{t}}$ and recover $\vec{\mathbf{m}}$, $if \|\vec{\mathbf{e}}\|$ is small enough.

(h) Show: decrypting with the tile in Fig. 2 works if $\|\vec{\mathbf{e}}\| \le r'$, and with the tile in Fig. 3, it works if $\|\vec{\mathbf{e}}\| \le r$. Which of the two tilings works best at decryption?

⁴Hint: go from one to the other by adding a triangle and removing a triangle (of same area).

⁵Hint: first determine for which value of z, the point $\vec{\mathbf{v}} - z\vec{\mathbf{w}}$ is on the x-axis. Then determine the x-coordinate of this point.

3 Gram-Schmidt and projections

Instead of 2D-space (\mathbb{R}^2), in this exercise we will look at *n*-dimensional space (\mathbb{R}^n). Now, vectors are described by *n* coordinates:

$$\vec{\mathbf{v}} = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{pmatrix}$$

We still have the inner product, which is: $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = v_1 \times w_1 + v_2 \times w_2 + \dots + v_n \times w_n$.

(a) Prove the following, where $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}$ are vectors and z is any number:

$$\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) + (\vec{\mathbf{u}} \cdot \vec{\mathbf{w}}), \qquad \vec{\mathbf{v}} \cdot (z \times \vec{\mathbf{w}}) = z \times (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}).$$

(b) There is no simple "division" operation with vectors, because you cannot express $\vec{\mathbf{w}}$ in terms of $\vec{\mathbf{v}}$ whenever it is not pointing in the same direction. Still, using (c) from sheet 1, we can make a vector $\vec{\mathbf{w}}$ orthogonal to $\vec{\mathbf{v}}$ by computing the following:

$$\pi_{\vec{\mathbf{v}}}(\vec{\mathbf{w}}) = \vec{\mathbf{w}} - \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}}{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}} \times \vec{\mathbf{v}}.$$

Show: $\pi_{\vec{\mathbf{v}}}(\vec{\mathbf{w}})$ satisfies $\vec{\mathbf{v}} \cdot \pi_{\vec{\mathbf{v}}}(\vec{\mathbf{w}}) = 0$ (use (a)).

(c) Consider the following process, called "Gram-Schmidt orthogonalization":

$$\vec{\mathbf{b}}_1^* = \vec{\mathbf{b}}_1, \qquad \vec{\mathbf{b}}_2^* = \pi_{\vec{\mathbf{b}}_1^*}(\vec{\mathbf{b}}_2), \qquad \vec{\mathbf{b}}_3^* = \pi_{\vec{\mathbf{b}}_2^*}(\pi_{\vec{\mathbf{b}}_1^*}(\vec{\mathbf{b}}_3)), \qquad \dots$$

Show: $\vec{\mathbf{b}}_3^*$ is orthogonal to both $\vec{\mathbf{b}}_1^*$ and $\vec{\mathbf{b}}_2^*$. (in general show: $\vec{\mathbf{b}}_i^* \cdot \vec{\mathbf{b}}_i^* = 0$ for all $1 \le i < j \le n$)

(d) For finding short basis vectors, we want to reduce $\vec{\mathbf{b}}_3$ by removing (integer) multiples of $\vec{\mathbf{b}}_1$ and $\vec{\mathbf{b}}_2$ that make $\vec{\mathbf{b}}_3$ as short as possible. Considering the tiling in Figure 3, we want that $\vec{\mathbf{b}}_3$ (when ignoring the third dimension) is in the tile containing the origin O, by removing some multiples of $\vec{\mathbf{b}}_1 = \vec{\mathbf{v}}$ and $\vec{\mathbf{b}}_2 = \vec{\mathbf{w}}$. This tile containing O is given by the points $\vec{\mathbf{x}}$ for which $-\frac{1}{2} \leq \frac{\vec{\mathbf{b}}_1^* \cdot \vec{\mathbf{x}}}{\vec{\mathbf{b}}_1^* \cdot \vec{\mathbf{b}}_1^*} \leq \frac{1}{2}$ and similarly for $\vec{\mathbf{b}}_2^*$.

Write $\lceil x \rfloor$ for rounding a number to its nearest integer. This means $-\frac{1}{2} \leq x - \lceil x \rfloor \leq \frac{1}{2}$. Given $\vec{\mathbf{b}}_3$, show:

$$\vec{\mathbf{x}} = \vec{\mathbf{b}}_3 - \Big\lceil \frac{\vec{\mathbf{b}}_2^* \cdot \vec{\mathbf{b}}_3}{\vec{\mathbf{b}}_2^* \cdot \vec{\mathbf{b}}_2^*} \Big\rfloor \vec{\mathbf{b}}_2,$$

satisfies $-\frac{1}{2} \le \frac{\vec{\mathbf{b}}_2^* \cdot \vec{\mathbf{x}}}{\vec{\mathbf{b}}_2^* \cdot \vec{\mathbf{b}}_2^*} \le \frac{1}{2}$.

Given $\vec{\mathbf{x}}$ as above, show:

$$\vec{\mathbf{y}} = \vec{\mathbf{x}} - \Big\lceil \frac{\vec{\mathbf{b}}_1^* \cdot \vec{\mathbf{x}}}{\vec{\mathbf{b}}_1^* \cdot \vec{\mathbf{b}}_1^*} \Big\rfloor \vec{\mathbf{b}}_1,$$

is in the tile containing O, that is it satisfies: $-\frac{1}{2} \le \frac{\vec{\mathbf{b}}_1^* \cdot \vec{\mathbf{y}}}{\vec{\mathbf{b}}_1^* \cdot \vec{\mathbf{b}}_1^*} \le \frac{1}{2}$, and $-\frac{1}{2} \le \frac{\vec{\mathbf{b}}_2^* \cdot \vec{\mathbf{y}}}{\vec{\mathbf{b}}_2^* \cdot \vec{\mathbf{b}}_2^*} \le \frac{1}{2}$.

The process is called "size-reduction" and forms the basis of lattice reduction!

In general, to size-reduce $\vec{\mathbf{b}}_n$, we update the value of $\vec{\mathbf{b}}_n$ n-1 times by computing the following first for i=n-1, then $i=n-2,\ldots$ down to i=1:

$$ec{\mathbf{b}}_n := ec{\mathbf{b}}_n - \Big\lceil rac{ec{\mathbf{b}}_i^* \cdot ec{\mathbf{b}}_n}{ec{\mathbf{b}}_i^* \cdot ec{\mathbf{b}}_i^*} \Big
floor ec{\mathbf{b}}_i,$$

where x := y means "put the value of y in the slot of x.

4 Lagrange reduction (dimension 2)

Lattice reduction in dimension 2 is easy. Namely, we can perform the following algorithm:

1. Perform size-reduction (Ex 3(d)) on $\vec{\mathbf{b}}_2$:

$$\vec{\mathbf{b}}_2' = \vec{\mathbf{b}}_2 - \left\lceil \frac{\vec{\mathbf{b}}_1 \cdot \vec{\mathbf{b}}_2}{\vec{\mathbf{b}}_1 \cdot \vec{\mathbf{b}}_1} \right\rfloor \vec{\mathbf{b}}_1, \tag{1}$$

(and replace $\vec{\mathbf{b}}_2$ by $\vec{\mathbf{b}}_2'$).

- 2. If $\|\vec{\mathbf{b}}_2\| \ge \|\vec{\mathbf{b}}_1\|$, the basis $[\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2]$ is reduced, so stop.
- 3. Otherwise, swap $\vec{\mathbf{b}}_1$ and $\vec{\mathbf{b}}_2$, then go back to step 1.

In Figure 4, $\vec{\mathbf{b}}_2$ becomes shorter than $\vec{\mathbf{b}}_1$ after size-reduction. Then, by size-reducing $\vec{\mathbf{b}}_1$ with respect to $\vec{\mathbf{b}}_2$ one may possibly shorten $\vec{\mathbf{b}}_1$ further.

Figure 4: Example of one iteration of Lagrange reduction.

- (a) Show that in each iteration (size reduction & swap) the length of $\vec{\mathbf{b}}_1$ stays the same, or decreases.
- (b) Conclude that the number of iterations is finite.⁶
- (c) When the process terminates, show that $\vec{\mathbf{b}}_2$ must be in the striped region.
- (d) Show: the area of the parallelogram spanned by $\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2$ is the same as the area of the rectangle spanned by $\vec{\mathbf{b}}_1$ and $\vec{\mathbf{b}}_2^*$. Show: this area is

$$\|\vec{\mathbf{b}}_1\| \times \|\vec{\mathbf{b}}_2^*\|.$$

- (e) Given a lattice in dimension 2, show that we can draw circles around each lattice point, with radius $\frac{1}{2} \|\vec{\mathbf{b}}_1\|$ if $\vec{\mathbf{b}}_1$ is one of the shortest vectors. Any lattice gives a so-called "sphere packing".
- (f) What is the densest (largest radius) sphere packing for a lattice in dimension 2, when you require that $\|\vec{\mathbf{b}}_1\| \times \|\vec{\mathbf{b}}_2^*\| = 1$?

Hint: (1) look at the ratio $\frac{\left(\frac{1}{2}\|\vec{\mathbf{b}}_1\|\right)^2}{\|\vec{\mathbf{b}}_1\| \times \|\vec{\mathbf{b}}_2^*\|} = \frac{\|\vec{\mathbf{b}}_1\|}{4 \times \|\vec{\mathbf{b}}_2^*\|}$, and assume $\vec{\mathbf{b}}_1$ lies on the *x*-axis.

- (2) What is the possible value of $\vec{\mathbf{b}}_2$ lying in the striped region that maximizes this ratio?
- (3) What lattice is this?

⁶Hint: show if $\|\vec{\mathbf{b}}_1\|$ stays the same in one iteration that the algorithm stops and the shortest vectors are found.