Содержание

- 1. Оглавление
- 2. Теория суперсимметрии трёх битов
- 3. Основы языка **N3Lang**
- 4. Дополнения к языку **N3Lang**
- 5. Представление языка **N3Lang**
- 6. Управляемый обмен и безусловная перестановка
- 7. Авторские права, лицензия

Теория суперсимметрии трёх битов

0	0	0	Частица 1 Симметричная			
1	1	1	Античастица 1 Симметричная			
0	1	0	Частица 2 Симметричная			
1	0	1	Античастица 2 Симметричная			
1	0	0	Частица 3 Асимметричная			
0	1	1	Античастица 3 Асимметричная			
0	0	1	Частица 4 Асимметричная			
1	1	0	Античастица 4 Асимметричная			

Суперсимметрия в физике

Суперсимметрия, или симметрия Ферми — Бозе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот.

Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счёт наличия суперпартнёров. Для фотона — фотино, кварка — скварк, хиггса — хиггсино, W-бозон — ви́но, глюон — глюино и так далее. Суперпартнёры должны иметь значение спина, на полуцелое число отличающееся от значения спина у исходной частицы

Основы языка N3Lang

N P	N P	N P	Безусловное отрицание одного, двух или трех битов (Not)		
Р	Р	Р	Не производит никаких действий, входящие биты без изменений подаются на выход (Pass)		
S	S	0 1	обозначенных как S, меняются местами (Control Swap и Anti-Control Swap)		
S	0 1	S	или единице, то два других,		
0 1	S	S	На один из входов подаётся управляющий бит, если бит равен нулю		
Р	S	S	изменений (Pass)		
S	Р	S	Безусловный обмен двух битов (Swap), третий бит Р остаётся без		
S	S	Р			
N 0 1 P	N 0 1 P		Одно- и двухбитное отрицание (Not), 0 и 1 — управляющие биты, Р — бит остаётся без изменений (Pass)		

Дополнения к языку N3Lang

D	D	D	D	Для отладки при пошаговом выполнении D (Debug) будет заменено на текущее значение бита. Символ D может быть указан произвольное число раз
E	E	N S	N S	Символ E (Equal) указывается два или более раз. При равенстве всех битов Е производится действие в остальных битах: отрицание N (Not) или обмен двух битов S (Swap)
M	L	N S	N S	Если бит М (More) больше бита L (Less) производится действие в остальных битах: отрицание N (Not) или обмен двух битов S (Swap)

Язык N3Lang служит для преобразования бинарных входящих данных, поскольку все операции обратимы, то длина входа равна длине выхода, поэтому язык может быть представлен в табличном виде. Кроме этого, все вышеописанные операции легко масштабируются, указывая, например, много условий равенства с помощью символа Е (Equal) или множества действий отрицания N (Not). Также можно указывать множество управляющих битов как 0 или 1.

N

D

N S

S D

>

символом звёздочка,

только первые символы

Однострочный

символ в строке)

Последняя строка программы содержит в конце строки

входа-выхода и ширины программы

Эквивалентное представление в текстовом виде

6:#, 8:*, 11:*;

#

*

*

N

0:S + 1:P + 2:S, 7:N;

1:S + 1 + S, 8:N + 9:N + 10:P; 0:D:6 + 7:N;2:L + 3:M + 4:S:2;0:E + 1:S + 2:E + 3:S + 4:N;

представления от табличного в том, что программа выполняется слева направо (приоритет) и сверху вниз, также незначимая информация, например, пустое пространство, не указывается

Отличие текстового

> в начале строки - вход, > в

точка – пустое пространство (не

символом решетка # (только первый

Однобитовые операции

комментарий задаётся

символ стрелок 5, за который можно потянуть, удерживая левую кнопку мыши, используется для изменения размера

комментарий

выполняет никаких действий)

конце строки - выход,

Многострочный

Пример №1. Управляемый обмен и безусловная перестановка

Преобразование выше эквивалентно перестановке первого и последнего входов

Очевидно, что эти преобразования обратимы, так как в первом случае мы использовали обратимый логический вентиль Control Swap и его противоположность Anti-Control Swap, вовтором случае обмен первого и последнего входов безусловен, то есть тоже обратим.

Авторские права

Это бесплатное и ничем не обремененное программное обеспечение, общедоступное. Любой человек имеет право копировать, изменять, публиковать, использовать, компилировать, продавать или распространять это программное обеспечение либо в виде исходного кода, либо в виде скомпилированного двоичный, для любых целей, коммерческих или некоммерческих, и любых других.

В юрисдикциях, признающих законы об авторском праве, автор или авторы этого программного обеспечения, заявляем обо всех авторских правах на программное обеспечение в общественное достояние. Мы делаем это ради пользы общества в целом и в ущерб нашим наследникам и преемники. Мы хотим, чтобы это посвящение стало явным актом отказ навечно от всех настоящих и будущих прав на это программное обеспечение согласно закону об авторском праве.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ПРЕДОСТАВЛЯЕТСЯ «КАК ЕСТЬ», БЕЗ КАКИХ-ЛИБО ГАРАНТИЙ, ЯВНЫЕ ИЛИ ПОДРАЗУМЕВАЕМЫЕ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАЯСЬ, ГАРАНТИИ ТОВАРНАЯ ПРИГОДНОСТЬ, ПРИГОДНОСТЬ ДЛЯ ОПРЕДЕЛЕННОЙ ЦЕЛИ И НЕНАРУШЕНИЕ ПРАВ. НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ АВТОРЫ НЕ НЕСУТ ОТВЕТСТВЕННОСТИ ЗА КАКИЕ-ЛИБО ПРЕТЕНЗИИ, УБЫТКИ ИЛИ ДРУГАЯ ОТВЕТСТВЕННОСТЬ ПО ДОГОВОРУ, ПРАВИЛАМ ИЛИ ДРУГИМ ОБРАЗУ, ВОЗНИКАЮЩИЕ ИЗ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ИЛИ ИСПОЛЬЗОВАНИЯ ИЛИ В СВЯЗИ С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ ИЛИ ИСПОЛЬЗОВАНИЕМ ИЛИ ДРУГИЕ ДЕЛА В ПРОГРАММНОМ ОБЕСПЕЧЕНИИ.

Для получения дополнительной информации посетите https://unlicense.org.

N3Lang — экспериментальный язык, основанный на суперсимметрии трёх бит; базовые языковые операции имеют три входа и три выхода. Программа состоит из конечной последовательности таких инструкций.

Автор: Белянин Алексей Анатольевич

Логин: хауат

Почта: xayam@yandex.ru

Проект N3Lang на GitHub https://github.com/xayam/N3Lang