Intro to DB

CHAPTER 8 RELATIONAL DB DESIGN

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Functional Dependency Theory
- Algorithms
- Decomposition Using Multivalued Dependencies
- More Normal Form
- Database-Design Process
- Modeling Temporal Data

Pitfalls of Relational Database Design

Relational database design

```
R = (ABCDE) <---- single relation schema
```

- DB₁ = { R_1, \ldots, R_n } <---- DB schema (set of relation schemas)
- Design Goals:
 - Ensure that relationships among attributes are represented (information content)
 - Avoid redundant data
 - Facilitate enforcement of database integrity constraints
- A bad design may lead to
 - Inability to represent certain information
 - Repetition of Information
 - Loss of information

Example

Lending-schema = (branch-name, branch-city, assets, customer-name, loan-number, amount)

			customer-	loan-	
branch-name	branch-city	assets	name	number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

Redundancy:

- Wastes space
- Complicates updating, introducing possibility of inconsistency of assets value
- Null values
 - Can use null values, but they are difficult to handle.

Redundancy creates problems

- Anomalies (by Codd)
 - Insertion anomaly: cannot store information about a branch if no loans exist
 - Deletion anomaly: lose branch info when that last account for the branch is deleted
 - Update anomaly: what happens when you modify asset for a branch in only a single record?

- Solution
 - decompose schema so that each information content is represented only once (later)
 - information content: relationship between attributes

First Normal Form

- Domain is atomic if its elements are considered to be indivisible units
 - Examples of non-atomic domains:
 - set of names, composite attributes
 - identification numbers like CS101 that can be broken up into parts
- A relational schema is in first normal form (1NF)

- Atomicity is actually a property of how the elements of the domain are used
 - Student ID numbers: CS0012, EE1127, ...
- Non-atomic attributes leads to
 - encoding of information in the application program ...
 - ... rather than in the database
 - complication in storage and query processing
- We assume all relations are in first normal form.

Relational Theory

Goal: Devise a theory for the following

- Decide whether a particular relation R is in "good" form.
- In the case that a relation R is not in "good" form,
 - each relation is in good form
 - the decomposition is lossless (preserves the information in the original relation before decomposition)
- Our theory is based on:
 - functional dependencies
 - multivalued dependencies (not covered in this semester)

Functional Dependencies

- Constraints on the set of legal relations.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.

•

- Example
 - Which attribute's values depend on other attributes?

Student=(ID, Name, Dept, Dept_office, College, Dean, Advisor, Adv_phone)

Supplies=(Supplier, S-contact, Part-ID, Part-Name, Size, Proj-ID, Location, Manager, P-contact, Quantit y)

Functional Dependencies (Cont.)

Let R be a relation schema

$$\alpha \subseteq R$$
 and $\beta \subseteq R$

- The functional dependency $\alpha \to \beta$ holds on R if and only if
 - for any legal relations r(R),
 - whenever any two tuples t_1 and t_2 of r agree on the attributes α ,
 - they also agree on the attributes β .
 - That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

- Example
 - Consider r(A,B) with the following instance of r

Applications of FD

- K is a superkey for relation schema R if and only if $K \rightarrow R$
- K is a candidate key for R if and only if
 - $K \rightarrow R$, and
 - for no $\alpha \subset K$, $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys.

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

We expect the following functional dependencies to hold:

but would not expect the following to hold:

Applications of FD (Cont.)

- Specify constraints on the set of legal relations
 - We say that F holds on R if
 all legal relations on R satisfy the set of functional dependencies F
- Test relations to see if they are legal under a given set of FDs
 - If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.

Note:	

What causes redundancy?

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)

branch-name	branch-city	assets	customer- name	loan- number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

 $F = \{ b\text{-name} \rightarrow b\text{-city assets }; \ loan\# \rightarrow amount b\text{-name} \}, \ Key = \{ c\text{-name, loan\#} \}$

- Redundancy:
 - b-city, assets are repeated for each loan with the same branch
 - amount, b-name are repeated for each loan
- Observations

Boyce-Codd Normal Form - informally

- A relation R is in "good" form IF attributes are only dependent on keys
 - No non-key FDs!
 - Solution: Break R into smaller relations that hold tightly related attributes!

Example

```
Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)
F = \{ b\text{-name} \rightarrow b\text{-city assets} ; loan# \rightarrow amount b\text{-name} \}, \text{ Key} = \{ c\text{-name, loan#} \}
```

=> Decompose

```
Branch = (b-name, b-city, assets) { b-name \rightarrow b-city assets }

Loan = (loan#, amount, b-name) { loan#\rightarrow amount, b-name }

CustLoan = (c-name, loan#)
```

Trivial FD

- A functional dependency is trivial if it is satisfied by all instances of a relation
 - E.g.
 - customer-name, loan-number → customer-name
 - customer-name → customer-name

|--|

Closure of a Set of FDs

- Given a set F of FDs, there are other FDs that are logically implied by F
 - E.g. If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- **Definition**: The set of all functional dependencies logically implied by F is the *closure* of F (denoted F^+).
- We can find all of *F*⁺ by applying *Armstrong's Axioms*:

```
• if \beta \subseteq \alpha, then \alpha \to \beta
```

(reflexivity)

• if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$

(augmentation)

• if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)

- These rules are
 - sound

and

complete

Example

```
■ R = (A, B, C, G, H, I) F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H \}
```

- some members of F⁺
 - $A \rightarrow H$
 - •
 - $AG \rightarrow I$
 - •
 - ${}^{\circ}$ CG \rightarrow HI
 - from $CG \rightarrow H$ and $CG \rightarrow I$: "union rule"
 - can be inferred from definition of functional dependencies, or
 - Augmentation of CG → I to infer CG → CGI, augmentation of CG → H to infer CGI → HI, and then transitivity

Boyce-Codd Normal Form – formally

- We want a way to decide whether a particular relation R is in "good" form.
- **Definition**: A relation schema R is in BCNF (with respect to a set F of FDs) if for each FD $\alpha \rightarrow \beta$ in F⁺ ($\alpha \subseteq R$ and $\beta \subseteq R$), at least one of the following holds:

Example

$$R = (A, B, C), F = \{A \rightarrow B ; B \rightarrow C\}, Key = \{A\}$$

- R is not in BCNF
- Decompose into $R_1 = (A, B), R_2 = (B, C)$
 - R_1 and R_2 are in BCNF
- Is the decomposed set of schemas equivalent to the original schema?

Decomposition

- Decompose schema so that each information content is represented only once
- Definition: Let R be a relation scheme

```
\{R_1, ..., R_n\} is a decomposition of R
if R = R_1 \cup ... \cup R_n
```

- We will deal mostly with binary decomposition:
 - R into $\{R_1, R_2\}$ where $R = R_1 \cup R_2$

```
student(ID, name, dept, dept_chair, dept_phone, year)
=> student'(ID, name, year, dept)
department(dept, chair, phone)
```

```
Lending = (b_name, asset, b_city, loan#, c_name, amount)
=> Branch = (b_name, asset, b_city)
Loan = (loan#, c_name, amount)
```

Lossy Decomposition

- Careless decomposition leads to loss of information: Lossy decomposition
- Decompose schema so that each information content is represented only once

Lending = (b_name, asset, b_city, loan#, c_name, amount)

=> Branch = (b_name, asset, b_city) Loan = (loan#, c_name, amount)

=> Branch = (b_name, asset, b_city)

Loan = (loan#, c_name, amount, b_city)

Lossy Decomposition (cont.)

• Decomposition of R = (A, B) into

$$R_1 = (A) \text{ and } R_2 = (B)$$

 $\prod_{\mathcal{A}}(r)$

Lossy!

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

В

-

$$\Pi_{A}(r) \bowtie \Pi_{B}(r) \qquad A \qquad B$$

$$\begin{array}{c|ccc}
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\beta & 2
\end{array}$$

Lossless-join Decomposition

• **Definition**: Decomposition $\{R_1, R_2\}$ is a *lossless-join decomposition* of R if

$$r = \prod_{R1} (r) \bowtie \prod_{R2} (r)$$

The information content of the original relation r is always the basis

Lossless-join Decomposition

Lemma: $\{R_1, R_2\}$ is a *lossless join decomposition* if

i.e., if one of the two sub-schemas hold the key of the other sub-schema

BCNF Example

R = (bname, bcity, assets, cname, loan#, amount)
 F = { bname → assets bcity; loan# → amount bname }
 Key = {loan#, cname}

Decomposition

 R_1 = (bname, bcity, assets)

$$R_2 =$$

Final decomposition result: $\{R_1, R_3, R_4\}$

Dependency Preservation

Example

student(name, dept, college) name → dept, college

dept→ college

Decomposition 1

student1(name, dept) name → dept

department(dept, college) dept → college

Decomposition 2

student1(name, dept) $name \rightarrow dept$

student2(name, college) $name \rightarrow college$

Dependency Preservation (cont.)

Definition

Let F: set of FD on R. $\{R_1, ..., R_n\}$: decomposition of R. The **restriction** of F to R_i , denoted F_i , is the set of all FDs in F⁺ that include only attributes of R_i

Definition

Let
$$F = F_1 \cup ... \cup F_n$$
.

The decomposition is **dependency-preserving** if $F^+ = F^+$

Motivation:

- Accessing multiple tables can be expensive
- SQL does not provide a direct way of specifying functional dependencies other than superkeys
- (Assertions can be ad hoc and expensive)

Example

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow B, B \rightarrow C\}$

- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition: $R_1 \cap R_2 = \{B\}$ and $B \to BC$
 - Dependency preserving
- $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition: $R_1 \cap R_2 = \{A\}$ and $A \to AB$

BCNF and Dependency Preservation

- R = (Street, City, Zip)
 F = { Street City → Zip; Zip → City }
 Two candidate keys: Street City and Street Zip
 - R is not in BCNF
 - Any decomposition of R will fail to preserve
 Street City → Zip

St	Zp	С
S ₁	<i>Z</i> ₁	C ₁
S_2	<i>Z</i> ₁	<i>C</i> ₁
s_3	Z ₂	<i>C</i> ₁
null	Z_3	c ₂

- There are some situations where
 - BCNF is not dependency preserving, and
 - efficient checking for FD violation on updates is important
 - => solution: define a weaker normal form

BCNF and Dependency Preservation (cont.)

- BCNF decomposition has R₁(Street, Zip)
 R₂(Zip, City)
- R₁, R₂ are in BCNF
 - but not dependency-preserving
 => Testing for Street City → Zip requires a join

St	Zp	С
S ₁	<i>Z</i> ₁	<i>C</i> ₁
S_2	<i>Z</i> ₁	<i>C</i> ₁
s_3	Z ₂	<i>C</i> ₁
null	Z_3	c_2

St	Zp	Zp	С
S ₁	<i>Z</i> ₁	<i>Z</i> ₁	<i>C</i> ₁
S ₂	Z ₁	Z ₂	<i>C</i> ₁
s_3	Z ₂	Z_3	c_2

Third Normal Form

- Third Normal Form
 - Allows some redundancy (with resultant problems)
 - But FDs can be checked on individual relations without a join
 - There is always a lossless-join, dependency-preserving decomposition into 3NF
- A relation schema R is in *third normal form* (3NF) if for all $\alpha \to \beta$ in F^+ at least one of the following holds:
 - $\alpha \to \beta$ is trivial (i.e., $\beta \in \alpha$)
 - α is a superkey for R
 - Each attribute A in $\beta \alpha$ is contained in a candidate key for R. (NOTE: each attribute may be in a different candidate key)

Example

$$R = (Street, City, Zip)$$

 $F = \{Street City \rightarrow Zip; Zip \rightarrow City \}$

- Two candidate keys: Street City and Street Zip
- R is in 3NF

Street City
$$\rightarrow$$
 Zip: Street City is a superkey Zip \rightarrow City: City is contained in a candidate key

- But not in BCNF (nontrivial & zip is not key)
- There is some redundancy in this schema
 - repetition of information (e.g., the relationship z_1 , c_1)
 - need to use null values (e.g., to represent the relationship z_3 , c_2 where there is no corresponding value for St)

St	Zp	С
S ₁	<i>Z</i> ₁	<i>C</i> ₁
S_2	<i>Z</i> ₁	<i>C</i> ₁
s_3	Z ₂	<i>C</i> ₁
null	Z_3	c_2

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into relations in 3NF and
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into relations in BCNF and
 - the decomposition is lossless

Design Goals

- When we decompose a relation schema R with a set of functional dependencies F into R_1 , R_2 ,..., R_n we want
 - 1. Lossless decomposition
 - 2. No redundancy
 - 3. Dependency preservation
- First, try to achieve
 - BCNF
 - Lossless join
 - Dependency preservation
- If we cannot achieve this, we accept one of

Algorithms

- Testing for BCNF
- BCNF Decomposition
- Testing for 3NF
- 3NF Decomposition
- Closure of FDs
- Closure of attributes
- Cover
- Canonical cover

Closure of Attribute Sets

Definition: Given a set of attributes α , the *closure* of α under F (denoted by α^+) is the set of attributes that are functionally determined by α under F:

• Algorithm to compute α^+

```
result := \alpha;

while (changes to result) do

for each \beta \rightarrow \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma

end
```

Example

- R = (A, B, C, G, H, I)
- $F = \{ A \rightarrow B; A \rightarrow C; \}$

$$CG \rightarrow H$$
; $CG \rightarrow I$; $B \rightarrow H$ }

- (*AG*)+
 - 1. result =
 - 2. result =
 - 3. result =
 - 4. result =
- Is AG a candidate key?
 - Is AG a super key?
 - Does $AG \rightarrow R$?
 - Is any subset of AG a superkey?
 - Does $A^+ \rightarrow R$?
 - Does $G^+ \rightarrow R$?

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey: "is α a superkey?"
- Testing functional dependencies: "does α → β hold?"
 - Or, in other words, is $\alpha \rightarrow \beta$ in F^+
 - Just check if $\beta \subseteq \alpha^+$.
 - Is a very useful simple test
- Computing the closure of F: F⁺
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and
 - for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Testing for BCNF

- Check if $\alpha \rightarrow \beta$ cause a violation of BCNF
 - 1. compute α^+ (the attribute closure of α), and
 - 2. verify that it includes all attributes of *R* (i.e., it is a superkey of *R*)
- Check if R is in BCNF (w.r.t. F)

It can be shown that if none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F+ will cause a violation of BCNF either

Testing for BCNF (cont.)

- However, using only F is incorrect
 when testing a relation in a decomposition of R
- Example

Consider R(A, B, C, D) with $F = \{A \rightarrow B, B \rightarrow C\}$

- Decompose into $R_1(A, B)$ and $R_2(A, C, D)$
- Neither of the dependencies in F contain only attributes from (A, C, D) so we might be mislead into thinking R₂ satisfies BCNF.
- In fact, dependency $A \rightarrow C$ in F^+ shows R_2 is not in BCNF.

BCNF Decomposition Algorithm

```
result := \{R\}; done := false
compute F<sup>+</sup>
while (not done) do
if (there is a schema R_i in result that is not in
    BCNF)
    then begin
       let \alpha \rightarrow \beta \ (\alpha \cap \beta = \emptyset)
           be a nontrivial FD
           that holds on R_i, and
           \alpha \rightarrow R_i is not in F^+
       result := (result - R_i) \cup
                       (R_i - \beta) \cup (\alpha, \beta);
    end
    else done := true;
```

Decomposition

 R_1 = (bname, bcity, assets), R_2 = (bname, cname, loan#, amount) R_3 = (bname, loan#, amount) R_4 = (cname, loan#)

Final decomposition result:

$$R_1, R_3, R_4$$

^{*} Each R_i in result is in BCNF, and decomposition is lossless-join.

Overall Database Design Process

We have assumed schema R is given

R could have been

- a single relation containing all attributes that are of interest
 - called universal relation
 - Normalization breaks R into smaller relations.

-

the result of some ad hoc design of relations, which we then test/convert to normal form.

Denormalization for Performance

- May want to use non-normalized schema for performance
 - E.g. displaying customer-name along with account-number and balance requires join of account with depositor
- Alternative 1: Use denormalized relation containing attributes of account as well as depositor with all above attributes
 - faster lookup
 - extra space and extra execution time for updates
 - extra coding work for programmer and possibility of error in extra code
- Alternative 2: use a materialized view defined as account ⋈ depositor
 - benefits and drawbacks same as above

Other Design Issues

Some aspects of database design are not caught by normalization

Instead of earnings(company-id, year, amount), use

- earnings-2000, earnings-2001, earnings-2002, ...
 - all on the schema (company-id, earnings).
 - above are in BCNF
 - but make querying across years difficult and
 - needs new table each year
- company-year(comp-id, earnings2000, earnings2001, earnings2002)
 - Also in BCNF
 - makes querying across years difficult and
 - requires new attribute each year.
 - Is an example of a *crosstab*, where values for one attribute become column names => used in spreadsheets and data analysis tools

Testing for 3NF

- Need to check only FDs in F (not F+)
- For each dependency $\alpha \to \beta$,
 - Check if α is a superkey (attribute closure check)
- If α is not a superkey
 - we have to verify if each attribute in β is contained in a candidate key
 - this test is rather more expensive, since it involves finding candidate keys
- Testing for
- Interestingly, decomposition into third normal form can be done in polynomial time

Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of a functional dependency may be redundant
 - E.g. on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - E.g. on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$

- A FD $g \in F$ is redundant if $(F \{g\})^+ = F^+$ or $g \in (F \{g\})^+$
- F' is a nonredundant (minimal) cover of F if
 - $F'^+ = F^+$ and
 - F' contains no redundant FD

Extraneous Attributes

- Let $\alpha \rightarrow \beta$ in F.
 - $A \in \alpha$ is extraneous if $F \Rightarrow (F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$
 - $A \in \beta$ is extraneous if $F \Leftarrow (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$
- Note: implication in the opposite direction is trivial, since a "stronger" functional dependency always implies a weaker one
- Example
 - Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - B is extraneous in AB → C because

- Example
 - Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in $AB \rightarrow CD$ since

•

Testing if an Attribute is Extraneous

$$\alpha \rightarrow \beta \in F$$

- To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $(\{\alpha\} A)^+$ using the dependencies in F
 - 2. A is extraneous if $(\{\alpha\} A)^+$ contains β
- To test if attribute $B \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in
 - 2. B is extraneous if α^+ contains B,

Canonical Cover

Definition:

A canonical cover for F is a set of dependencies F_c such that

- $F_c^+ = F^+$
- No FD in F_c contains an extraneous attribute
- Each left side of a FD in F_c is unique
- Intuitively, F_c is
 - a "minimal" set equivalent to F

Algorithm for Canonical Cover

repeat

replace any
$$\alpha_1 \to \beta_1$$
 and $\alpha_1 \to \beta_1$
with $\alpha_1 \to \beta_1 \beta_2$ (union rule)

Find $\alpha \to \beta$ with extraneous attribute either in α or β and delete the extraneous attribute from $\alpha \to \beta$

until F does not change

- Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied
- $O(n^2)$

$$R = (A, B, C)$$
 $F = \{A \rightarrow BC \ B \rightarrow C \ A \rightarrow B \ AB \rightarrow C\}$

- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
- A is extraneous in $AB \rightarrow C$
 - $B \rightarrow C$ logically implies $AB \rightarrow C$.
- C is extraneous in $A \rightarrow BC$
 - $A \rightarrow BC$ is logically implied by $A \rightarrow B$ and $B \rightarrow C$.
- The canonical cover:

3NF Decomposition Algorithm

```
F_c (canonical cover for F)
i := 0
for each FD \alpha \rightarrow \beta in F_c do
   if no R_i, 1 \le i \le i contains \alpha \beta
   then \{ i := i + 1 \}
             R_i := \alpha \beta
if no R_i, 1 \le i \le i contains a candidate key for
    R then
    \{ i := i + 1; 
      R_i := any candidate key
                    for R }
```

Banker = (branch, cname, banker, office#)
F={ banker → branch office#
cname branch → banker }
Key= {cname, branch}

Follow the algorithm

Since *B2* contains a candidate key, we are done.

return $(R_1, R_2, ..., R_i)$

END OF CHAPTER 8