Dijkstra Algorithm | Example | Time Complexity

► Design & Analysis of Algorithms

Dijkstra Algorithm-

- Dijkstra Algorithm is a very famous greedy algorithm.
- It is used for solving the single source shortest path problem.
- It computes the shortest path from one particular source node to all other remaining nodes of the graph.

Also Read-Shortest Path Problem

Meet Toucan, the simple tool that helps you learn a new language while browsing the web.

0

① X

Toucan

Conditions-

It is important to note the following points regarding Dijkstra Algorithm-

- Dijkstra algorithm works only for connected graphs.
- Dijkstra algorithm works only for those graphs that do not contain any negative weight edge.
- The actual Dijkstra algorithm does not output the shortest paths.
- It only provides the value or cost of the shortest paths.
- By making minor modifications in the actual algorithm, the shortest paths can be easily obtained.

 Dijkstra algorithm works for directed as well as undirected graphs.

Dijkstra Algorithm-

```
dist[S] \leftarrow 0
      // The distance to source vertex is set to 0
 2.
      \Pi[S] \leftarrow NIL
      // The predecessor of source vertex is set as
      for all v \in V - \{S\}
      // For all other vertices
      do dist[v] ← ∞
 4.
      // All other distances are set to \infty
      \Pi[V] \leftarrow NIL
      // The predecessor of all other vertices is
      set as NIL
      S \leftarrow \emptyset
      // The set of vertices that have been visited
      'S' is initially empty
      // The queue 'Q' initially contains all the
      vertices
      while Q \neq \emptyset
      // While loop executes till the queue is not
      do u ← mindistance (Q, dist)
      // A vertex from Q with the least distance is
     selected
      S \leftarrow S \cup \{u\}
10.
      // Vertex 'u' is added to 'S' list of
      vertices that have been visited
      for all v ∈ neighbors[u]
11.
      // For all the neighboring vertices of vertex
      do if dist[v] > dist[u] + w(u,v)
      // if any new shortest path is discovered
13.
                        then dist[v] ← dist[u] +
                          // The new value of the
      w(u, v)
     shortest path is selected
14.
      return dist
```

Implementation-

The implementation of above Dijkstra Algorithm is explained in the following steps-

Learn to Medita¹ Pray

Meditation, Prayer, Yoga an Spiritual Life

Real Spiritual Teaching

Step-01:

In the first step. two sets are defined-

- One set contains all those vertices which have been included in the shortest path tree.
- In the beginning, this set is empty.
- Other set contains all those vertices which are still left to be included in the shortest path tree.
- In the beginning, this set contains all the vertices of the given graph.

Step-02:

For each vertex of the given graph, two variables are defined as-

- Π[v] which denotes the predecessor of vertex 'v'
- d[v] which denotes the shortest path estimate of vertex 'v' from the source vertex.

Initially, the value of these variables is set as-

- The value of variable 'Π' for each vertex is set to NIL
 i.e. Π[v] = NIL
- The value of variable 'd' for source vertex is set to 0
 i.e. d[S] = 0
- The value of variable 'd' for remaining vertices is set to ∞ i.e. d[v] = ∞

Step-03:

The following procedure is repeated until all the vertices of the graph are processed-

- Among unprocessed vertices, a vertex with minimum value of variable 'd' is chosen.
- · Its outgoing edges are relaxed.
- After relaxing the edges for that vertex, the sets created in step-01 are updated.

What is Edge Relaxation?

Consider the edge (a,b) in the following graph-

Here, d[a] and d[b] denotes the shortest path estimate for vertices a and b respectively from the source vertex 'S'.

Now,

If
$$d[a] + w < d[b]$$

then $d[b] = d[a] + w$ and $\Pi[b] = a$

This is called as edge relaxation.

Time Complexity Analysis-

Case-01:

This case is valid when-

- The given graph G is represented as an adjacency matrix.
- Priority queue Q is represented as an unordered list.

Here,

- A[i,j] stores the information about edge (i,j).
- Time taken for selecting i with the smallest dist is O(V).
- For each neighbor of i, time taken for updating dist[j] is O(1) and there will be maximum V neighbors.
- Time taken for each iteration of the loop is O(V) and one vertex is deleted from Q.
- Thus, total time complexity becomes O(V²).

Case-02:

This case is valid when-

- The given graph G is represented as an adjacency list.
- Priority queue Q is represented as a binary heap.

Here,

- With adjacency list representation, all vertices of the graph can be traversed using BFS in O(V+E) time.
- In min heap, operations like extract-min and decrease-key value takes O(logV) time.
- So, overall time complexity becomes O(E+V) x
 O(logV) which is O((E + V) x logV) = O(ElogV)

 This time complexity can be reduced to O(E+VlogV) using Fibonacci heap.

PRACTICE PROBLEM BASED ON DIJKSTRA ALGORITHM-

Problem-

Using Dijkstra's Algorithm, find the shortest distance from source vertex 'S' to remaining vertices in the following graph-

Also, write the order in which the vertices are visited.

Solution-

Step-01:

The following two sets are created-

• Unvisited set : {S , a , b , c , d , e}

• Visited set : { }

Step-02:

The two variables Π and d are created for each vertex and initialized as-

- $\Pi[S] = \Pi[a] = \Pi[b] = \Pi[c] = \Pi[d] = \Pi[e] = NIL$
- d[S] = 0
- $d[a] = d[b] = d[c] = d[d] = d[e] = \infty$

Step-03:

- · Vertex 'S' is chosen.
- This is because shortest path estimate for vertex 'S' is least.
- The outgoing edges of vertex 'S' are relaxed.

Before Edge Relaxation-

Now,

∴
$$d[a] = 1$$
 and $\Pi[a] = S$

∴
$$d[b] = 5$$
 and $\Pi[b] = S$

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

• Unvisited set : {a , b , c , d , e}

• Visited set : {S}

Step-04:

- Vertex 'a' is chosen.
- This is because shortest path estimate for vertex 'a' is least.
- The outgoing edges of vertex 'a' are relaxed.

Before Edge Relaxation-

Now,

- $d[a] + 2 = 1 + 2 = 3 < \infty$
 - \therefore d[c] = 3 and Π [c] = a
- $d[a] + 1 = 1 + 1 = 2 < \infty$
 - ∴ d[d] = 2 and $\Pi[d] = a$
- d[b] + 2 = 1 + 2 = 3 < 5
 - ∴ d[b] = 3 and $\Pi[b] = a$

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

- Unvisited set : {b, c, d, e}
- Visited set: {S, a}

Step-05:

- · Vertex 'd' is chosen.
- This is because shortest path estimate for vertex 'd' is least.
- The outgoing edges of vertex 'd' are relaxed.

Before Edge Relaxation-

Now,

•
$$d[d] + 2 = 2 + 2 = 4 < \infty$$

$$\therefore$$
 d[e] = 4 and Π [e] = d

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

• Unvisited set: {b, c, e}

• Visited set: {S, a, d}

Step-06:

- Vertex 'b' is chosen.
- This is because shortest path estimate for vertex 'b' is least.
- Vertex 'c' may also be chosen since for both the vertices, shortest path estimate is least.

• The outgoing edges of vertex 'b' are relaxed.

Before Edge Relaxation-

Now,

- d[b] + 2 = 3 + 2 = 5 > 2
 - ∴ No change

After edge relaxation, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

• Unvisited set : {c , e}

• Visited set: {S, a, d, b}

Step-07:

- · Vertex 'c' is chosen.
- This is because shortest path estimate for vertex 'c' is least.
- The outgoing edges of vertex 'c' are relaxed.

Before Edge Relaxation-

Now,

•
$$d[c] + 1 = 3 + 1 = 4 = 4$$

∴ No change

After edge relaxation, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

• Unvisited set : {e}

• Visited set : {S, a, d, b, c}

Step-08:

- · Vertex 'e' is chosen.
- This is because shortest path estimate for vertex 'e' is least.
- The outgoing edges of vertex 'e' are relaxed.
- There are no outgoing edges for vertex 'e'.
- So, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

• Unvisited set: {}

• Visited set: {S, a, d, b, c, e}

Now,

- All vertices of the graph are processed.
- Our final shortest path tree is as shown below.
- It represents the shortest path from source vertex 'S' to all other remaining vertices.

Shortest Path Tree

The order in which all the vertices are processed is :

To gain better understanding about Dijkstra Algorithm,

Watch this Video Lecture

Next Article- Floyd-Warshall Algorithm

Get more notes and other study material of **Design and Analysis of Algorithms**.

Watch video lectures by visiting our YouTube channel **LearnVidFun**.

Summary

Shortest Path Tree

Article Name Dijkstra Algorithm | Example | Time

Complexity

Description Dijkstra Algorithm is a Greedy

algorithm for solving the single source shortest path problem.

Dijkstra Algorithm Example, Pseudo

Code, Time Complexity, Implementation & Problem.

Author Akshay Singhal

Publisher Name Gate Vidyalay

Publisher Logo

(i)

Toucan Helps You Learn

Ad Toucan