

4

Optimizarea rețelelor locale

25-26 octombrie 2016

Obiective

- Rolul VLAN-urilor în rețele
- Stabilirea conectivității între VLAN-uri
- STP

Cursul 4

VLAN

- Probleme în LAN-uri
- Ce este un VLAN
- Trunking
- Comutarea în VLAN-uri
- Exemple

Securitate

Securitate

- Broadcast-urile ajung la toate dispozitivele din rețea și pot conține date confidențiale
- Un host poate încerca să acceseze orice alt host din rețeaua sa
- Soluție: blocarea accesului direct între dispozitive din departamente diferite

Eficiență

Eficiență

- Într-o rețea cu multe switch-uri, impactul unui broadcast poate fi foarte costisitor
- Soluție: limitarea domeniilor de broadcast

Securitate

Eficiență

Administrare

Administrare

- Într-o rețea pot exista politici diferite (de securitate, de adresare, de control al calității) pentru departamente cu scop diferit, dar locație comună
- Soluție: aplicarea unor politici per departament și nu per switch

Securitate

Eficiență

Administrare

Calitate

Calitate (QoS)

- Unele dispozitive (IP phones, Videoconferencing)
 necesită politici speciale pentru asigurarea calității
- Soluție: separarea traficului pe o rețea dedicată, cu o politică proprie

Securitate

Eficiență

Administrare

Calitate

Cost

Cost

- Echipamentele folosite trebuie să asigure cerințele fără să necesite investiții mult prea mari
- Soluție: găsirea unei metode software pentru a rezolva toate cerințele, folosind echipamentele existente

Securitate

Eficiență

Administrare

Calitate

Cost

Pentru unele lucruri există

...pentru acestea există VLAN-uri

- Uneori dispozitive de la departamente diferite pot fi situate în aceeași locație fizică
- Ruterele sunt mai scumpe
- Ruterele fac operații mai costisitoare deci impun o latență mai mare
- Segmentează domeniile de broadcast și vrem ca stațiile unui departament să fie în același domeniu

Ce este un VLAN?

- Virtual LAN
- Reprezintă un domeniu de broadcast compus doar din anumite porturi ale unor switch-uri
- Un VLAN este definit prin porturile ce îi aparțin

Ce este un VLAN?

- Dispozitive din două VLAN-uri diferite nu pot comunica între ele în absența unui dispozitiv de nivel 3 care să facă rutarea
- Un broadcast se va propaga doar în VLAN-ul respectiv:

- VLAN-urile sunt identificate prin numere numite VLAN ID
- Un VLAN ID este reprezentat pe 12 biţi (1 4096)
- Intern, fiecare switch asociază unui port un VLAN ID
- Pe switch-urile Cisco, toate porturile aparțin inițial VLAN-ului 1
- Un port ce aparține unui singur VLAN poartă numele de Access
 Port
- Pentru stațiile conectate la un Access Port, faptul că aparțin unui VLAN este transparent

Configurarea VLAN-urilor

- Un VLAN trebuie creat pe un switch înainte să îi fie asociate porturi
- Pentru a comuta trafic aparţinând VLAN-ului <X> un switch trebuie să aibă configurat VLAN-ul <X>

 Ce se întâmplă când două switch-uri trebuie să transporte date aparținând mai multor VLAN-uri între ele?

- Prea multe porturi folosite pentru a transporta toateVLAN-urile
- Soluţia: trunking

Trunking

- Porturile nu pot funcționa doar ca Access Ports, ci și ca Trunk
 Ports
- Acestea au proprietatea că pot trimite trafic aparținând mai multor VLAN-uri pe același port
- O linie trunk trebuie să aibă la ambele capete port-uri configurate ca Trunk Ports

În loc de 3 port-uri, este folosit doar unul

Trunking

- Setul de VLAN-uri ce pot fi trimise pe o linie trunk este configurabil și trebuie stabilit de administrator
- Implicit, setul va include toate VLAN-urile
- Problemă: dacă switch-ul 1 trimite un cadru aparținând VLAN-ului
 10, cum își dă seama switch-ul 2 în ce VLAN să-l plaseze?

Formatul 802.1q

- Soluţia: 802.1q
- Recapitulare formatul Ethernet:

Adresă Adresă Destinație Sursă	Lungime/ Tip	Date	FCS
-----------------------------------	-----------------	------	-----

 Pentru a reține informația de VLAN, se introduce un câmp nou format din 4 octeți: 802.1q tag

Adresă Adresă Destinație Sursă	802.1Q Tag	Lungime/ Tip	Date	FCS	
-----------------------------------	------------	-----------------	------	-----	--

 Noul format al cadrului poartă numele de formatul 802.1q și e folosit pe legăturile trunk

VLAN nativ

- O legătură trunk are un VLAN special numit VLAN nativ
- Cadrele aparţinând VLAN-ului nativ circulă pe trunk în format Ethernet standard (nu 802.1q)
- Porturile de la capătul legăturii trebuie să aibă configurat același
 VLAN nativ

- A trimite un broadcast; la ce stații va ajunge respectivul broadcast?
 - R: **B**
- Pe ce cale ajunge la fiecare destinație?
 - R: $A \rightarrow SW1 \rightarrow SW0 \rightarrow SW2 \rightarrow B$

- Ce format va avea broadcastul anterior pe legătura SW0 SW1?
 - R: Ethernet
- Ce format va avea broadcastul anterior pe legătura SW0 SW2?
 - R: Ethernet

- Stația E trimite un unicast către stația C; toate switch-urile au tabela CAM vidă; la ce dispozitive de rețea va ajunge unicast-ul?
 - R: SW0, SW1, SW2, C (switch-urile fac flood)
- Ce format va avea cadrul pe legătura SW2 SW1?
 - R: Ethernet

- Ce format va avea cadrul pe legătura SW0– SW2?
 - R: 802.1q (VLAN 20 este conținut în dot1q tag)

Rutare inter-VLAN

- Conectivitatea între VLAN-uri
- Ce este un ruter
- Soluţia clasică
- Soluția router-on-a-stick

- A vrea să comunice cu E; cum ar putea trimite un cadru către E în topologia de mai sus?
 - R: nu se poate, este necesar un Ruter

- Ruterul este un echipament ce funcționează la nivelul 3.Rețea al stivei OSI
- Funcția lui este de a dirija trafic între domenii de broadcast distincte
- Ruterul și procesul de rutare vor fi discutate în detaliu în cursul 6

- Putem folosi un ruter pentru a asigura conectivitatea întreVLANuri diferite
- Traficul va intra în ruter pe un VLAN și va ieși pe un altul
- Există două soluții:
 - Soluţia "clasică"
 - Soluţia "router-on-a-stick"

- Folosește multiple interfețe pe ruter
 - fiecare interfață se va găsi într-un VLAN diferit

Soluția clasică: Exemplu

- A îi trimite un cadru lui E; switch-urile au tabele CAM complete
 - A \rightarrow SW1 \rightarrow Fa0/1 R1
 - Are loc procesul de rutare în R1: Fa0/1 R1 \rightarrow Fa0/2 R1
 - Fa0/2 R1 → SW1 → SW2 → E

Avantaje:

- Apartenența la VLAN-uri este transparentă ruterului
- Folosește eficient capacitatea de transfer a mediului

Dezavantaje:

- Interfețele pe rutere sunt puține și abordarea consumă un număr mare de interfețe
- Este necesară o cantitate mare de cabluri pentru a realiza legăturile
- Nu scalează

Soluția Router-on-a-stick

- Folosește o singură interfață fizică
 - Interfața fizică este separată în mai multe interfețe logice numite subinterfețe

Soluția Router-on-a-stick: Subinterfețe

- O interfață fizică poate fi împărțită în mai multesubinterfețe
- Abordarea router-on-a-stick presupune crearea unei subinterfețe pentru fiecare VLAN
- Fiecare subinterfață va avea adresa sa proprie de nivel 3
- Subinterfețele sunt identificate prin id-ul de subinterfață (de exemplu Fa0/1 poate avea subinterfața cu id-ul 42: Fa0/1.42

Soluția Router-on-a-stick: Subinterfețe

- Legătura dintre switch și ruter va fi configurată catrunk
- Fiecare subinterfață trebuie informată că traficul va veni în format 802.1q și nu Ethernet
- Când se configurează încapsularea 802.1q se asociază și VLAN-ul corespunzător subinterfeței

Fa0/1.30 - 802.1q; VLAN 30

Fa0/1.10 - 802.1q, VLAN 10

Fa0/1.20 - 802.1q; VLAN 20

Soluția Router-on-a-stick: Exemplu

- A îi trimite un cadru lui E; switch-urile au tabele CAM complete
 - $A \rightarrow SW1 \rightarrow Fa0/1 R1$
 - R1 vede în tag-ul 802.1q că VLAN-ul e 10 și primește pe Fa0/1.10
 - Are loc procesul de rutare în R1: Fa0/1.10 \rightarrow Fa0/1.20
 - R1 trimite pe Fa0/1.20 cadrul în format 802.1q cu VLAN-ul 20
 - Fa0/1 R1 \rightarrow SW1 \rightarrow SW2 \rightarrow E

Soluția Router-on-a-stick

Avantaje:

- Este utilizată o singură interfață a ruterului
- Este necesar un număr redus de legături
- Scalează bine

Dezavantaje:

- Lățimea de bandă a interfeței fizice este împărțită între cele logice (poate apărea un bottleneck)
- Funcționalitatea nu este disponibilă pe toate ruterele
- VLAN-urile nu mai sunt transparente ruterului

STP

- Redundanța în rețea
- STP
- Algoritmul STA
- Exemple
- Variante STP

- Dacă legătura dintre SW1 și SW2 cade, stațiile nu mai pot comunica între ele
- Soluția este introducerea unei legături alternative cabackup în cazul căderii legăturii principale

- Redundanța se poate implementa la nivele diferite
 - La nivel de link (2 uplink-uri)
 - La nivel de dispozitiv de nivel 2 (multiple căi prin bucle fizice nivel 2)
 - La nivel de dispozitiv de nivel 3 (multiple gateway-uri HSRP, VRRP)

Probleme introduse de redundanță - 1

Cum va circula cadrul între switch-uri?

Dacă TTL inițial e 40, la ce pas va fi aruncat cadrul?

Т	1	2	3	4	5	6	7
Cadre	A → SW1	SW1 → SW3 SW1 → SW2	$SW3 \rightarrow SW2$ $SW2 \rightarrow SW3$ $SW2 \rightarrow B$	$SW2 \rightarrow SW1$ $SW2 \rightarrow B$ $SW3 \rightarrow SW1$	$SW1 \rightarrow SW3$ $SW1 \rightarrow SW2$ $SW1 \rightarrow A$ $SW1 \rightarrow A$	$SW3 \rightarrow SW2$ $SW2 \rightarrow SW3$ $SW2 \rightarrow B$	

Probleme introduse de redundanță - 2

- Va ajunge pachetul la destinație?
 - R: Da, de o infinitate de ori.

T	1	2	3	4	5	6	7
Cadre	A → SW1	SW1 → SW3 SW1 → SW2	$SW3 \rightarrow SW2$ $SW2 \rightarrow SW3$ $SW2 \rightarrow B$	$SW2 \rightarrow SW1$ $SW2 \rightarrow B$ $SW3 \rightarrow SW1$	$SW1 \rightarrow SW3$ $SW1 \rightarrow SW2$ $SW1 \rightarrow A$ $SW1 \rightarrow A$	$SW3 \rightarrow SW2$ $SW2 \rightarrow SW3$ $SW2 \rightarrow B$	

Probleme introduse de redundanță - 3

- După câteva secunde, pe ce port crede SW1 că este stația A?
 - R: Fa0/2 sau Fa0/3

T	1	2	3	4	5	6	7
Cadre	A → SW1	SW1 → SW3 SW1 → SW2	$SW3 \rightarrow SW2$ $SW2 \rightarrow SW3$ $SW2 \rightarrow B$	$SW2 \rightarrow SW1$ $SW2 \rightarrow B$ $SW3 \rightarrow SW1$	$SW1 \rightarrow SW3$ $SW1 \rightarrow SW2$ $SW1 \rightarrow A$ $SW1 \rightarrow A$	$SW3 \rightarrow SW2$ $SW2 \rightarrow SW3$ $SW2 \rightarrow B$	

Motivația pentru STP

- Avem nevoie de redundanță în rețea
 - ... dar creăm bucle (fizice și logice)
- Un broadcast storm este cauzat de buclele logice (din cauza modului în care funcționează switching-ul într-o buclă fizică)
 - trebuie deci eliminate buclele logice
- Ideea protocolului STP:
 - se acceptă existența unei bucle fizice (redundanță)
 - închiderea temporară a unei bucle logice prin închiderea la nivel logic a unui port din buclă
 - deschiderea portului blocat în cazul în care unuplink cedează

- Spanning Tree Protocol
- Specificat în standardul 802.1d
- Operează pe o rețea de switch-uri
- Elimină buclele din rețea prin închiderea unor porturi
- Algoritmul STP poartă numele de STA (Spanning Tree Algorithm)
- Operație similară cu determinarea arborelui de acoperire pe un graf

Rolurile switch-urilor

- În terminologia STP, switch-ul poartă numele de bridge
- Există două roluri pentru switch-uri:
 - Root bridge rădăcina arborelui de switch-uri
 - Non-root bridge toate celelalte switch-uri

Rolurile porturilor

- Există trei roluri pentru porturi:
 - Designated port trimite și primește trafic de date

- **Root port** trimite și primește trafic de date; reprezintă calea cea mai eficientă spre root bridge 🛕
- Blocked port nu trimite şi nu primeşte trafic de date
- Pe o legătură, există următoarele două perechi de roluri:
 - Designated Root:
 - Dacă legătura face parte din arborele de acoperire
 - Designated Blocked:
 - Dacă legătura nu face parte din arborele de acoperire

Costurile legăturilor

 Costul unei muchii din graful STA este dependent de lățimea de bandă a legăturii respective:

Lățime de bandă	Cost
10 Mbps	100
100 Mbps	19
1 Gbps	4
10 Gbps	2

• În cazul unor switch-uri cu legături mult mai rapide, se pot folosi alte sisteme de costuri:

Lățime de bandă	Cost
10 Mbps	2,000,000
100 Mbps	200,000
1 Gbps	20,000
10 Gbps	2,000

Bridge ID

- Fiecare switch are un ID unic (BID)
- Valoare pe 64 biţi
 - 16 biţi prioritatea
 - 48 biţi adresa MAC
- Prioritatea este implicit 32768
- Switch-ul cu BID-ul cel mai mic va deveni root bridge

BPDU

- Mesajele folosite de STP pentru a comunica informații între bridge-uri
- Transmise o dată la două secunde pe toate porturile
- Informații transmise:
 - root bridge ID
 - cost până la root bridge
 - bridge ID
 - port ID
- Observație: blocked ports încă primesc BPDU-uri

2. Alegerea unui **root port** pe fiecare bridge (cu excepția root bridge)

3. Alegerea designated ports

4. Alegerea și închiderea blocked ports

Pasul 1 – Alegerea Root Bridge

- Bridge-urile trimit BPDU-uri până când toate cunosc cel mai mic BID din rețeaua de bridge-uri
- Bridge-ul cu ID-ul minim devine Root Bridge
- Cine ar deveni root bridge în fiecare din situațiile următoare?

Nume	Prioritate	MAC
Α	32768	00E0.A3C9.6AB8
В	32768	0001.97DA.86E8
С	32768	00D0.BC0C.844D
D	32768	0003.E496.C80E

Nume	Prioritate	MAC
Α	16384	00E0.A3C9.6AB8
В	32768	0001.97DA.86E8
С	8192	00D0.BC0C.844D
D	16384	0003.E496.C80E
Е	8192	0060.2F07.EB2B
F	8192	0060.7058.D0A5

R: B în prima situație. E în a doua situație.

Pasul 2: Root ports

Fiecare switch non-root trebuie să aibă un root port

Pasul 2: Root ports - tiebreaker

Bridge-ul E va decide root port-ul pe baza BID-ul vecinului

Pasul 3: Designated ports

Un root port este cuplat pe link cu un designated port

Pasul 3: Designated ports

Pe fiecare legătură trebuie să existe un designated port

Pasul 3: Designated ports - tiebreaker

• Pe fiecare legătură trebuie să existe un designated port

Pasul 4: Blocked ports

Toate porturile rămase sunt blocked ports

Un ultim tiebreaker

Poate apărea situația în care costurile și BID-urile sunt egale:

- Pentru această situație se definește conceptul de PID (Port ID), care este un număr format din:
 - prioritatea portului (configurată static de administrator)
 - indexul portului (de exemplu 7 pentru Fa0/7)
- Va fi folosită legătura care are PIDul mai mic pe bridge-ul mai prioritar (root bridge, cost minim către root, BID mai mic)
- În cazul acesta, Fa0/9 devine root port deoarece Fa0/4 are un port id mai mic decât Fa0/7

• În decursul STA, un port face tranziția între mai multe stări:

Stare port	Acțiune la nivel de Switch	Acțiune la nivel de Port
Disabled	Nu se acceptă nici un fel de trafic	Nu se transmit cadre Nu se transmit BPDU-uri
Blocking	Se primesc doar BPDU-uri	Nu se transmit cadre Se primesc BPDU-uri
Listening	Se construiește topologia STP	Nu se transmit cadre Se transmit BPDU-uri
Learning	Se construiește tabela de adrese MAC	Nu se transmit cadre Se învață adrese MAC Se transmit BPDU-uri
Forwarding	Se transmite traficul normal	Se transmit cadre Se învață adrese MAC Se transmit BPDU-uri

Timpi de tranziție

- Timere de tranziție
 - stabilite de root bridge
 - Hello time: 2 sec
 - Forwarding delay: 15 sec
 - Max Age: 20 sec

timp total de convergență: 50 sec

Nume	Prioritate	MAC
Α	16384	00E0.A3C9.6AB8
В	32768	0001.97DA.86E8
С	8192	00D0.BC0C.844D
D	16384	0003.E496.C80E
Е	8192	0060.7058.EB2B
F	8192	0060.702E.D0A5

Exemplu

Nume	Prioritate	MAC
Α	16384	00E0.A3C9.6AB8
В	32768	0001.97DA.86E8
С	8192	00D0.BC0C.844D
D	16384	0003.E496.C80E
E	8192	0060.7058.EB2B
F	8192	0060.702E.D0A5

 Root Port

Designated Port

Blocked Port

- Deoarece calculele STP durează foarte mult, s-a introdus RSTP care are o viteză de calcul a arborelui mult mai bună
- Deoarece VLAN-urile separă domeniile de broadcast, deși există bucle fizice pot să nu fie bucle logice
- Pentru a funcționa în rețele cu VLAN-uri, au fost introduse variante noi de STP:
 - PVST, RPVST (Cisco)
 - MSTP (IEEE)

Cuvinte cheie

