TIME SERIES MODEL-ARIMA

- ARIMA models are statistical models that use lagged values of the dependent variable and/or random disturbance terms as explanatory variables.
- ARIMA models rely heavily on the autocorrelation pattern in the data
- ARIMA models can also be developed in the presence of seasonality in the time series. (SARIMA- to be discussed in the next session)

- ARIMA models thus essentially **ignore domain theory** (by ignoring "traditional" explanatory variables),
- Why use them?
- The use of ARIMA is appropriate when:
 - Little or nothing is known about the dependent variable being forecasted,
 - The independent variables known to be important cannot be forecasted effectively
 - Objective is to obtain short term forecasts

Three basic ARIMA models for a stationary time series y_t :

(1) Autoregressive model of order p (AR(p))

$$y_{t} = b_{0} + b_{1}y_{t-1} + b_{2}y_{t-2} + \dots + b_{p}y_{t-p} + \varepsilon_{t},$$

i.e., y_t depends on its *p* previous values

(2) Moving Average model of order q (MA(q))

$$y_t = a_o + \varepsilon_t + a_1 \varepsilon_{t-1} + a_2 \varepsilon_{t-2} + \dots + a_q \varepsilon_{t-q},$$

i.e., y_t depends on q previous random error terms

(3) Autoregressive-moving average model of order p and q (ARMA(p,q))

$$y_{t} = b_{0} + b_{1}y_{t-1} + b_{2}y_{t-2} + \dots + b_{p}y_{t-p}$$

$$+ \varepsilon_{t} + a_{1}\varepsilon_{t-1} + a_{2}\varepsilon_{t-2} + \dots + a_{q}\varepsilon_{t-q},_{\text{rms}}$$

A Five-Step Modeling Procedure

- 1) Stationarity Checking and Differencing
- 2) Model Identification
- 3) Parameter Estimation
- 4) Diagnostic Checking
- 5) Forecasting

Step One: Stationarity Checking

Stationary Time Series

• Time series process is called **stationary** if the **statistical properties** of the process remain unchanged over time.

i.e if Y_t is a time series t=1,2,3,...

- $E(Y_t) = \mu_t = \mu$ (constant) \forall t=1,2,...
- $Var(Y_t) = \sigma_t^2 = \sigma^2 (constant) \ \forall t=1,2...$
- $cov(Y_t, Y_{t-s})$ depends only on s(lag), and is independent of t (time).

Stationary Time Series

Stationary Time Series

Non-stationary Time Series

Assessing Stationarity of Time Series

Stationarity of a time series can be assessed using:

- Time Series Plot (Time vs. Variable)
- Correlogram
- Dickey-Fuller Test

Non-Stationary time series can be converted into stationary using 'differencing'.

ndiffs() function in forecast package provides number of times time series should be differenced to achieve stationarity.

Differencing

Differencing continues until stationarity is achieved.

$$\Delta y_t = y_t - y_{t-1}$$

$$\Delta^2 y_t = \Delta(\Delta y_t) = \Delta(y_t - y_{t-1}) = y_t - 2y_{t-1} + y_{t-2}$$

The differenced series has n-1 values after taking the first-difference, n-2 values after taking the second difference, and so on.

- The number of times that the original series must be differenced in order to achieve stationarity is called the <u>order of integration</u>, denoted by d.
- In practice, it is not required to go beyond second difference.

GDP Time Series Data Snapshot

Year	GDP	
1950-51	224786	
1951-52	230034	
1952-53	236562	
1953-54	250960	
1954-55	261615	
1955-56	268316	
1956-57	283589	
1957-58	280160	
1958-59	301422	
1959-60	308018	
1960-61	329825	
1961-62	340060	
1962-63	347253	
1963-64	364834	
1964-65	392503	
1965-66	378157	
1966-67	382006	
1967-68	413094	
1968-69	423874	

This is partial data.
The data has GDP values
for 1950-51 to 2006-07

Time Series Analysis in R Plot Time Series

gdpdata<-read.csv(file.choose(),header=T)
gdpseries<-ts(gdpdata\$GDP,start=1950,end=2006)
plot(gdpseries,col="red")</pre>

Clearly a nonstationary time series.

How Many Times Should Time Series Be Differenced to Make Stationary?

```
install.packages("forecast")
library(forecast)
ndiffs(gdpseries) # gives 2
gdpdiff2<-diff(gdpseries,differences=2)
plot(gdpdiff2,col="red")</pre>
```


Time Series Analysis in R Correlograms

Stationarity is achieved with second order difference | DATA SCIENCE INSTITUTE

Time Series Analysis in R Dickey Fuller Test...

library(urca)
df<-ur.df(gdpseries,lag=0)
summary(df)</pre>

Value of test-statistic is: 19.2745

Critical values for test statistics:

1pct 5pct 10pct tau1 -2.6 -1.95 -1.61

Inference: Time series is non-stationary. Value of test statistic is greater than 5% critical value.

Time Series Analysis in R Dickey Fuller Test

library(urca)
df<-ur.df(gdpdiff2,lag=0)
summary(df)</pre>

Value of test-statistic is: -11.9083

Critical values for test statistics:

1pct 5pct 10pct tau1 -2.6 -1.95 -1.61

Inference: Time series is stationary. Value of test statistic is less than 5% critical value.

Step Two: Model Identification

Model Identification

- When the data are confirmed stationary, one may proceed to tentative identification of models through visual inspection of correlogram and partial correlogram.
- Some guidelines exist to identify models using correlogram and partial correlogram.
- In practice, it is not always easy to identify model using visualization.
 - However, R /Python has built in function to identify best model which can be used for forecasting.

Summary of the Behaviour of Autocorrelation and Partial Autocorrelation Functions

Model	AC	PAC
Autoregressive of order p	Dies down	Cuts off
		after lag p
Moving Average of order q	Cuts off	Dies down
	after lag q	
Mixed Autoregressive-Moving Average of order (p,q)	Dies down	Dies down

The meaning of dies down is "gradual decrease"

Model Identification

Indicative Statistical Model – ARIMA(1,2,1) Where,

number of autoregressive terms= 1 order of differencing= 2 number of moving average terms= 1

Step Three: Parameter Estimation

Parameter Estimation

- The method of least squares can be used. However, for models involving an MA component MLE is used.
- Given n observations y_1 , y_2 , ..., y_n , the likelihood function L is defined to be the probability of obtaining the data actually observed.
- The maximum likelihood estimators (M.L.E.) are those value of the parameters for which the data actually observed are most likely, that is, the values that maximize the likelihood function L.

Time Series Analysis in R ARIMA Model in R

```
gdpmodel<-arima(gdpseries,order=c(1,2,1))
coef(gdpmodel)</pre>
```

```
coef(gdpmodel)ar1 ma1-0.3654655 -0.1202087
```

AIC(gdpmodel)

```
> AIC(gdpmodel)
[1] 1285.361
```

Smaller the AIC value, better is the model. We need to try out various combinations of AR and MA terms to arrive at final model.

Time Series Analysis in R ARIMA Model in R...

library(forecast)
gdpmodel<-auto.arima(gdpseries,d=2,max.p=1,max.q=1,trace=TRUE,ic="aic")

> auto.arima(gdpseries,d=2,max.p=1,max.q=1,trace=TRUE,ic="aic")

ARIMA(1,2,1) : 1285.361 ARIMA(0,2,0) : 1294.497 ARIMA(1,2,0) : 1283.644 ARIMA(0,2,1) : 1285.212

Best model: ARIMA(1,2,0)

Time Series Analysis in R ARIMA Model in R...

coef(gdpmodel)

coef(gdpmodel)ar1-0.4555743

AIC(gdpmodel)

> AIC(gdpmodel) [1] 1283.644

Brief Note Model Selection Criteria

- Akaike Information Criterion (AIC) AIC = -2 In(L) + 2k
- Schwartz Bayesian Criterion (SBC)
 SBC = -2 ln(L) + k ln(n)

where L = likelihood function k = number of parameters to be estimated, n = number of observations.

• Ideally, the AIC and SBC should be as small as possible

Step Four: Diagnostic Checking

Residual Analysis

- If an ARMA(p,q) model is an adequate representation of the data generating process, then the residuals should be 'White Noise'.
- A white noise process is a serially uncorrelated, zero-mean, constant and finite variance process.
- Under the null hypothesis that y_t is a white noise process, the Box-Pierce Q-statistic (based on autocorrelations upto lag m and T observations in a time series)

$$Q_{BP} = T \sum_{\tau=1}^{m} \hat{\rho}^2(\tau) \sim \chi^2(m)$$
 for large T.

Another closely connected statistical test is Ljung-Box test.

Time Series Analysis in R ARIMA Model in R...

resi<-residuals(gdpmodel)
Box.test(resi)
plot(resi,col="red")

Box-Pierce test

data: resi

X-squared = 0.5391, df = 1, p-value = 0.4628

Do not reject Ho.

Errors follow white noise

Step Five: Forecasting

Time Series Analysis in R ARIMA Model in R...

predict(gdpmodel,n.ahead=3)

```
Time Series:

Start = 2007

End = 2009

Frequency = 1

[1] 3078683 3315176 3548951
```

THANK YOU!!

