Uporaba ultrazvoka

Ву

Matic Tonin

ID No. (28181098)

Mentor

(Rok Dolenec)

Pod okvirom:

FAKULTETE ZA FIZIKO IN MATEMATIKO, LJUBLJANA

22. 3. 2020

1 Naloga

- 1. Opazuj odboj longitudinalnega ultrazvocnega valovanja na razlicnih ploskvah priloženega merjenca nepravilnih oblik z izvrtinami in zarezami. Kalibriraj skalo na zaslonu osciloskopa v mm poti valovanja v jeklu.
- 2. Poišci odboj na izvrtini premera 1mm in doloci njen položaj glede na zunanje ploskve merjenca. Oceni globinsko ostrino meritve.
- 3. Doloci hitrost longitudinalnega in transverzalnega ultrazvocnega valovanja v jeklu in aluminiju, ali v drugem materialu. Uporabi ultrazvocni interferometer. Izracunaj prožnostni modul E, strižni modul G in Poissonovo število μ .

2 Meritve

2.1 Kalibracija skale na zaslonu

Za ta del naloge smo najprej izračunali, glede na potovanje našega signala po snovi, kolikšna je njegova hitrost. Izmerili smo,

Smer	d [mm]	$t[\mu s]$
x-smer	91	31.2
y-smer	100	34.8
z-smer	24.5	9.2

Tabela 1: Prikaz kalibracije hitrosti glede na izbiro površine

S to tabelo lahko izračunamo nato hitrost za naš predmet, ker vemo da je $c = \frac{2d}{t}$:

Slika 1: Graf odvisnosti poti od časa potovanja po snovi

Torej je hitrost potovanja signala po snovi enaka:

$$c = 5950 \frac{m}{s} + / - 447 \frac{m}{s}$$

Napaka meritve hitrosti Ocena naše napake je:

- Ocena napake meritve debeline:
 Ker smo merili z milimeterskim merilom je napaka potem kar 0.5 mm.
- 2. Ocena napake meritve časa: Ker smo odčitavali iz osciloskopa in si lahko pomagali s funkcijo Cursor, ki nam pomaga določiti točno lokacijo novega signala, ocenjujem napako 0.5 mus.

2.2 Odboj pri izvrtini

Da smo izmerili lokacijo izvrtine, smo signalno sondo postavili najprej na nekaj mm pred izrvtino ter na določenih lokacijah merili, kako se spreminja čas odboja z premikanjem naše sonde. Izmerili smo,

Smer	$t[\mu s]$	$d[mm] = \frac{ct}{2}$	dejanske vrednosti
1	31.6	94	91
2	29.4	101	100
3	34.8	85	84

Tabela 2: Meritve lokacije luknje v našem predmetu

Vidimo, da se naše vrednosti zelo ujemajo z vrednostmi, ki smo jih dejansko izmerili z merilom.

Slika 2: Grafični prikaz meritev iz tabele 2.

Za globinsko ostrino slike smo nastavili merilnik kot je bilo prikazano na Sliki 3. ter nato opazovali, kako se izoblikujejo odboji na osciloskopu.

Slika 3: Prikaz opazovanja globinske ostrine

Na mojih meritvah sem ocenil, da je bila debelina reže v enotah signala vredna okoli $3\mu s$. Iz tega lahko izračunamo, da je globina naše jame $d_{jame}=1$ mm.

Signal se je pojavil pri 28.5 μ s, kar pomeni, da je globinska ostrina naše sonde:

$$d_{ostrina} = 0.085m$$

2.3 Hitrost longituginalnega in transferzalnega valovanja

Kot prvo smo morali izmeriti temperaturo zraka, da smo tako lahko določili, kolikšna je hitrost valovanja v vodi. Torej, če sta $k=2.5\frac{m}{Ks}$, $T_0=20$ stopinj in $c_0=1483.1\frac{m}{s}$:

Temperatura	$c = c_0 + k(T - T_0)\frac{m}{s}$	Napaka T	Rezultat z napako
22.5 stopinj	1489.35	$0.1 \text{ stopinje} => \delta T = 0.0044$	$1489.35 + / -6.617 \frac{m}{s}$

Tabela 3: Meritve hitrosti zvoka v vodi

Da pa bi izmerili hitrosti valovanja v vodi in v izbranem merjencu pa lahko zapišemo tako. Če z premikanjem ploščice odboja preverjamo, kje se časa odboja v vodi in v snovi ujemata, lahko dobimo enačbo, ki je:

$$t_v = \frac{2d_v}{c_v}$$
 $t_m = \frac{2nd_m}{c_m}$ $t_v = t_m$ $c_m = c_v d_m \frac{n}{d_v}$

Ker smo opravili več meritev lahko zapišemo razmerje razdalje z številom odbojev kot nek koeficient premice, ki ga uprizorimo na grafu. Torej:

$$K = \frac{d_v}{n}$$

Izmerimo lahko brez težav debeline naših predmetov in sicer: Tako lahko merimo hitrost tran-

Snov	debelina z napako
Jeklo	$2,51 \pm 0,01 \text{cm}$
Aluminij	$2,62 \pm 0,01 { m cm}$
Medenina	$2,52 \pm 0,01 \text{cm}$

Tabela 4: Meritve debeline merjencev

sverzalnega in longituginalnega valovanja.

2.3.1 Longitudinalnega valovanje

Za merjenje longitudinalnega smo gledali, kdaj se pojavi ojačitev na naši sondi in sicer Iz tega

Jeklo [n]	d_v [cm]	Medenina [n]	d_v [cm]	Aluminij [n]	d_v [cm]
1	0.3	1	0.5	1	0.2
2	0.9	2	1.3	2	0.8
3	1.5	3	2.1	3	1.4
4	2.1	4	2.9	4	2.0

Tabela 5: Meritve razdalj odbojev

smo lahko lahko izmerili koeficiente $K = \frac{d_v}{n}$ in nato izračunali hitrost valovanja v longitudinalni smeri $c_m = c_v d_m K^{-1}$.

Snov	Koeficient z napako	$c_{long} \left[\frac{m}{s} \right]$	Koeficient E [N/mm]
Medenina	$7.00 \ 10^{-03} \ \mathrm{m}$	4937	11000
Aluminij	5.9	6362	71000
Jeklo	$6.00 \ 10^{-03}$	6231	218500

Tabela 6: Meritve koeficientov in ocene hitrosti valovanja ter koeficienta E za longitudinalno valovanje

Kako smo dobili koeficient E?

Če pogledamo enačbo:

$$c_{long} = \frac{E}{\rho}$$

vidimo, da imamo za izračun prožnostnega modula že vse podatke, če seveda imamo izračunan c, podane in tako lahko samo vstavimo v naš program, ki računa naklone premic.

Dodajam pa še grafe za izračun koeficienta K za vse snovi.

Slika 4: Prikaz grafa odbojev v odvisnosti od poti v vodi, Medenina

Slika 5: Prikaz grafa odbojev v odvisnosti od poti v vodi, Jeklo

Slika 6: Prikaz grafa odbojev v odvisnosti od poti v vodi, Aluminij

DRUGI DEL VAJE, POJASNILO ZAKAJ GA NI IN KAKO BI SE MORAL IZVESTI:

Kot sem vam že v mailu navedel, na žalost 2 dela vaje nisem opravljal, saj je bil kabel za priključek Atenuatorja pokvarjen in so bile tako meritve neuporabne. Če pa bi dobil meritve, pa bi z njimi moral ravnati, tako kot za prvi del 3 naloge. Torej bi rabili izračunati hitrost valovaja po vsaki snovi in nato bi lahko določili, kakšno je Poissonovo število iz enačbe:

$$\mu = \frac{c_{long}^2 - 2c_{trans}^2}{2(c_{long}^2 - c_{trans}^2)}$$

Kar je v resnici zgolj ta enačba z vstavljenim $c_{long} = \frac{E}{\rho}.$

$$c_{\rm trans}^2 = \frac{E}{2\rho(1+\mu)}$$

Ko dobimo Poissonovo število za vsak material posebej, pa lahko dobimo tudi strižni modul ali G in sicer iz enačbe:

$$\frac{G}{\rho} = c_{\text{trans}}^2 = \frac{E}{2\rho(1+\mu)}$$

Ampak ker meritve transverzalnega valovanja nisem uspel opraviti, sem lahko izračunal le Prožnostni modul za vsako snov, vse ostalo pa je na žalost odvisno od c_{trans} .