

Álgebra Superior I Semestre 2020-2

Prof. Alejandro Dorantes Aldama Ayud. Elmer Enrique Tovar Acosta Ayud. Alejandro Ríos Herrejón

Tarea II

Kevin Ariel Merino Peña²

3. Demuestre que toda función $f: \mathbb{R} \to \mathbb{R}$ lineal

$$f(x) = ax + b$$

Es biyectiva siempre que $a \neq 0$

Sean f(x) y $f(z) \in \mathbb{R}$ entonces,

$$f(x) = f(z)$$

$$ax + b = az + b$$

$$ax = az$$

$$x = z$$

Tomemos estas dos imágenes

Por la regla de correspondencia de f

Sumando el inverso aditivo de b en ambos miembros

porque $a \neq 0$

 $\therefore f$ es inyectiva

Luego, sea $x \in \mathbb{R}$

$$x = r + b$$
$$x = rn + b$$

Esto puede ocurrir para todo número real, con $r, b \in \mathbb{R}$

Además podemos ver a cualquier real como el producto de dos reales $n \in \mathbb{R}$

$$\therefore x \in Img(f) \implies \mathbb{R} \subseteq Img(f)$$

La otra contención está dada por definición de la imagen de una función

$$\therefore Img(f) = \mathbb{R} \implies f \text{ es suprayectiva.}$$

 $\therefore f \text{ es biyectiva.}$

Además, si g(x) = cx + d es otra función lineal, demuestre que

$$f = q$$

si y sólo si $a=c,\,b=d$ si y sólo si

$$f(0) = g(0)$$
 y $f(1) = g(1)$

 \implies 1

$$f(0) = g(0) \implies a(0) + b = c(0) + d$$
$$b = d$$

Por regla de correspondecia de f, g

Porque
$$a \cdot 0 = 0 \forall a \in \mathbb{R}$$

$$f(1) = g(1) \implies a(1) + b = c(1) + d$$

$$a+b=c+d$$

$$a+b=c+b$$

$$a = c$$

Por regla de correspondecia de f,g

Porque $x \cdot 1 = 0 \forall x \in \mathbb{R}$

Porque de lo anterior dedcimos que b = d

Sumando en ambos miembros el inverso aditivo de b

 \iff 1

$$a = c$$

$$ax = cx$$

$$ax + b = cx + d$$

$$a(1) + b = c(1) + d$$

$$a(0) + b = c(0) + d$$

Por hipótesis

multiplicando ambos miembros por x

Pues por hipótesis b = d

Sustituyendo x = 1

Evalando en x = 0

 $^{^2\}mathrm{N\'umero}$ de cuenta: 317031326

De lo anterior tenemos que

$$a = c \wedge b = d \iff f(0) = g(0) \wedge f(1) = g(1)$$

 $\implies 2$

$$f = g \implies f(1) = a(1) + b$$
$$= c(1) + d$$
$$= g(1)$$

Por regla de corespondencia de f por la regla de correspondencia de g pues suponemos que f=g

$$f = g \implies f(0) = a(0) + b$$

$$= b$$

$$= c(0) + d$$

$$= g(0)$$

Por regla de corespondencia de fPor propiedades de los reales por la regla de correspondencia de gpues suponemos que f=g

 \iff 2 (Emplearemos la transitividad de \iff)

$$\begin{aligned} a &= c \wedge b = d \implies f(x) = a(x) + b \\ &\implies = c(x) + d \\ &\implies = g(x) \end{aligned}$$

Por regla de correspondencia de fSutituyendo lo que estamos suponiendo Por la regla de correspondencia de g

$$\therefore \quad f = g \iff a = c \land b = d \iff f(0) = g(0) \land f(1) = g(1)$$

8. Sea $X = \{f : \mathbb{N} \to \{1,0\} \mid f \text{ es función } \}$. Dé una biyección entre X y $\mathcal{P}(\mathbb{N})$ Sea $g \in X$ y supongamos que

$$g(x) = \begin{cases} 1, \text{ si } x = 1, 2, 3, 7 \\ 0, \text{ en cualquier otro caso} \end{cases}$$

entonces sea γ una relación de X en $\mathcal{P}(\mathbb{N})$ dada por:

$$(h, A) \in \gamma \iff A = \{x \in \mathbb{N} \mid h(x) = 1\}$$

Sea $r \in X$, proponemos $S \in \mathcal{P}(\mathbb{N})$ como $S = \{x \in \mathbb{N} \mid r(x) = 1\}$ entonces $(r, S) \in \gamma$ y como r es arbitrario entonces $Dom(\gamma) = X$.

Sea $t \in X$ y sean $S, W \in \mathcal{P}(\mathbb{N})$ supongamos que $(r, s), (r, w) \in \gamma$ i.e. $S = \{x \in \mathbb{N} \mid r(x) = 1\}$ y $W = \{x \in \mathbb{N} \mid r(x) = 1\}$, es claro que sus elementos son los mismos, por lo tanto S = W

 \therefore γ es función.

Así, tenemos $\gamma: X \to \mathcal{P}(\mathbb{N}), \ \gamma(v) = A \text{ donde } A = \{x \in \mathbb{N} \mid v(x) = 1\}.$

Sean $v(z), v(w) \in \mathcal{P}(\mathbb{N})$.

$$\gamma(z) = \gamma(w)$$
 Supongamos esto
$$\{x \in \mathbb{N} \mid z(x) = 1\} = \{x \in \mathbb{N} \mid w(x) = 1\}$$
 Por la regla de correspondencia de γ Por la elección del conjunto de funciones

 \therefore γ es inyectiva

Observemos que $Img(\gamma) \subseteq \mathcal{P}(\mathbb{N})$ por definición de imagen.

Sea $Q \in \mathcal{P}(\mathbb{N})$, proponemos $f \in X$ $\cdot \cdot \cdot \cdot \cdot Img(f) = V$, entonces $V \in Img(\gamma)$

 $\begin{array}{ll} \therefore & \mathcal{P}(\mathbb{N}) \subseteq Img(\gamma) \\ \therefore & \gamma \text{ es suprayectiva} \\ \therefore & \gamma \text{ es biyectiva} \end{array}$

12. Sea X un conjunto. Defina una relación R en $\mathcal{P}(\mathbb{N})$ como sigue

$$(U,V) \in R \iff |U| = |V|$$

Demuestre que R es reflexiva, transitiva y simétrica. (emplearemos \sim para denotar que dos elementos están relacionados) Sea $X \in \mathcal{P}(\mathbb{N})$, como |X| = |X|, entonces

$$X \sim X$$

y como
$$X$$
 es arbitrario, $\therefore \forall X \in \mathcal{P}(\mathbb{N}) \quad X \sim X$
 $\therefore \quad R$ es reflexiva

Sean $X, Y, Z \in \mathcal{P}(\mathbb{N})$ Supongamos $X \sim Y$ y $Y \sim Z$, lo anterior es |X| = |Y| y |Y| = |Z|, como = es una relación binaria transitiva, entonces |X| = |Z| i.e. $X \sim Z$

y como
$$X,Y,Z$$
 son arbitrarios, $\therefore \forall X,Y,Z \in \mathcal{P}(\mathbb{N})$ $X \sim Y \wedge Y \sim Z \implies X \sim Z$ \therefore R es transitiva.

Sean $X, Y \in \mathcal{P}(\mathbb{N})$ supongamos $X \sim Y$ entonces |X| = |Y| y como = es una relación simétrica, entonces |Y| = |X| i.e. $Y \sim X$.

y como
$$X,Y$$
 son arbitrarios, $\therefore \forall X,Y \in \mathcal{P}(\mathbb{N}) \quad X \sim Y \implies Y \sim X$
 $\therefore \quad R$ es simétrica.
(entonces es relación de equivalencia)

20. Demuestre por inducción:

$$1 + r + r^2 + r^3 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

Caso base

n=1, El primer sumando del primer miembro es 1 el último es $r^1,$ así tenemos:

$$1 + r = \frac{1 - r^2}{1 - r}$$
$$1 + r = \frac{(1 + r)(1 - r)}{1 - r}$$
$$1 + r = 1 + r$$

 \therefore Se cumple para n=1

Hipótesis de inducción

Suponemos que la proposición es válida para $n \in \mathbb{N}$.

$$1 + r + r^2 + r^3 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

Paso inductivo

P.d. Se cumple para n = n + 1

$$1+r+r^2+r^3+\ldots+r^n+r^{n+1}=\frac{1-r^{n+1}}{1-r}+r^{n+1}\ldots \qquad \qquad \text{Por hipótesis de inducción}$$

$$=\frac{1-r^{n+1}+r^{n+1}-r^{n+2}}{1-r} \qquad \qquad \text{Operando suma de fracciones}$$

$$=\frac{1-r^{(n+1)+1}}{1-r} \qquad \qquad \text{Reduciendo términos}$$

 \therefore Se cumple $\forall n \in \mathbb{N}$

Dado $A \subseteq \mathbb{N}$, decimos que $x \in A$ es el máximo de A si para todo $y \in A$, se cumple $y \le x$. Demuestree que todo subconjunto finito de números naturales tiene máximo usando inducción sobre la cardinalidad del conjunto.

24. Usando el ejercicio anterior, demuestre que $\mathbb N$ no es finito.

Procederemos por contradicción, suponiendo que $\mathbb N$ es finito, entonces por el ejercicio anterior podemos hallar un máximo.

Sea x el elemento máximo, entonces se cumple que

$$\forall y \in \mathbb{N}, \quad y \leq x$$

Ahora veamos al sucesor de x, pues por un axioma de Peano sabemos todos los elementos de $\mathbb N$ tienen un sucesor, así que

$$\exists x + 1 \in \mathbb{N}$$

luego

$$x < x + 1!$$

entonces x ya no sería elemento máximo, esta contradicción vino de suponer que \mathbb{N} es finito

:. N tiene una cantidad infinita de elementos.