Combinatorial Models for Type A Specialized Non-symmetric Macdonald Polynomials and Affine Demazure Crystals

Sam Spellman

March 7, 2023

Motivation

Many known connections between:

- representation theory of semisimple Lie algebras
- Schubert calculus and geometry of flag manifolds

Motivation

Many known connections between:

- representation theory of semisimple Lie algebras
- Schubert calculus and geometry of flag manifolds
- We want to develop a quantum/affine version of these connections.

Motivation

Many known connections between:

- representation theory of semisimple Lie algebras
- Schubert calculus and geometry of flag manifolds
- We want to develop a quantum/affine version of these connections.

Part of this story involves nonsymmetric Macdonald polynomials, affine Demazure crystals, and combinatorics.

Macdonald Polynomials

Polynomials in $(x_1, x_2, ..., x_n)$ associated to an irreducible rank n affine root system, with coefficients a rational function in q and t.

Macdonald Polynomials

Polynomials in $(x_1, x_2, ..., x_n)$ associated to an irreducible rank n affine root system, with coefficients a rational function in q and t.

There are two versions:

• symmetric (under the Weyl group action) $P_{\lambda}(x, q, t)$, for a dominant weight λ .

Macdonald Polynomials

Polynomials in $(x_1, x_2, ..., x_n)$ associated to an irreducible rank n affine root system, with coefficients a rational function in q and t.

There are two versions:

- symmetric (under the Weyl group action) $P_{\lambda}(x, q, t)$, for a dominant weight λ .
- non-symmetric $E_{\mu}(x,q,t)$, for an arbitrary weight μ .

Specialized Macdonald Polynomials

Various specializations of these polynomials give characters of representations:

- $P_{\lambda}(x,0,0)$ are the irreducible characters of simple Lie algebras.
- $P_{\lambda}(x,q,0)$ are graded charaters of KR modules for affine Lie algebras.

Specialized Macdonald Polynomials

Various specializations of these polynomials give characters of representations:

- $P_{\lambda}(x,0,0)$ are the irreducible characters of simple Lie algebras.
- $P_{\lambda}(x,q,0)$ are graded charaters of KR modules for affine Lie algebras.
- $E_{\mu}(x,0,0)$ are characters of Demazure modules of simple Lie agebras.
- $E_{\mu}(x,q,0)$ are graded characters of Demazure submodules of KR modules.

Crystals

- A crystal is a nonempty set B along with operators
 e_i: B → B ∪ {0} and f_i: B → B ∪ {0} subject to some conditions.
- Can be thought of as a finite, colored, directed graph.

Crystals

- A crystal is a nonempty set B along with operators
 e_i: B → B ∪ {0} and f_i: B → B ∪ {0} subject to some conditions.
- Can be thought of as a finite, colored, directed graph.
- All the representations in the last slide have a crystal structure.

There are two main combinatorial formulas:

1. (2008) Ram-Yip formula, sum over alcove walks. Valid in all Lie types.

There are two main combinatorial formulas:

- 1. (2008) Ram-Yip formula, sum over alcove walks. Valid in all Lie types.
 - For $P_{\lambda}(x, q, 0)$, $E_{\mu}(x, q, 0)$ the quantum alcove model of [LNSSS].
 - $P_{\lambda}(x,q,0)$ has crystal structure due to Lenart, Lubovsky.

There are two main combinatorial formulas:

- 1. (2008) Ram-Yip formula, sum over alcove walks. Valid in all Lie types.
 - For $P_{\lambda}(x, q, 0)$, $E_{\mu}(x, q, 0)$ the quantum alcove model of [LNSSS].
 - $P_{\lambda}(x,q,0)$ has crystal structure due to Lenart, Lubovsky.
- 2. (2005) Haglund-Haiman-Loehr formula, sum over fillings of Young diagrams subject to certain conditions. Valid in type A only.

There are two main combinatorial formulas:

- 1. (2008) Ram-Yip formula, sum over alcove walks. Valid in all Lie types.
 - For $P_{\lambda}(x, q, 0)$, $E_{\mu}(x, q, 0)$ the quantum alcove model of [LNSSS].
 - $P_{\lambda}(x,q,0)$ has crystal structure due to Lenart, Lubovsky.
- (2005) Haglund-Haiman-Loehr formula, sum over fillings of Young diagrams subject to certain conditions. Valid in type A only.
 - For $E_{\mu}(x,q,0)$ the relevant fillings are the semistandard key tabloids (SSKT) defined by Assaf and Gonzalez.
 - SSKT come with a crystal structure.

We want to establish a connection between the non-symmetric type A Ram-Yip formula to the HHL formula when t=0.

We want to establish a connection between the non-symmetric type A Ram-Yip formula to the HHL formula when t=0.

Main Results

- In type A for t = 0 we define an explicit bijection with inverse map from alcove walks to SSKT.
- We construct an affine Demazure crystal structure on alcove walks (colored directed graph).
- Conjecture: the bijection is compatible with our crystal operators and the operators between semistandard key tabloids by Assaf, Gonzalez.

- $V = \mathbb{R}^n/span(1,1,\ldots,1)$
- The finite Weyl group is S_n
- The root system is $\Phi := \{\epsilon_i \epsilon_j | i, j \leq n\}$

- $V = \mathbb{R}^n/span(1,1,\ldots,1)$
- The finite Weyl group is S_n
- The root system is $\Phi := \{\epsilon_i \epsilon_j | i, j \leq n\}$
- Denote by (i,j) the root $\alpha_{ij} = \varepsilon_i \varepsilon_j$ and the transposition t_{ij} ;

- $V = \mathbb{R}^n/span(1,1,\ldots,1)$
- The finite Weyl group is S_n
- The root system is $\Phi := \{\epsilon_i \epsilon_j | i, j \leq n\}$
- Denote by (i,j) the root $\alpha_{ij} = \varepsilon_i \varepsilon_j$ and the transposition t_{ij} ;
- Identify a dominant weight λ with the partition $\lambda = (\lambda_1 \ge \dots \lambda_{n-1} \ge \lambda_n = 0)$

- $V = \mathbb{R}^n/span(1,1,\ldots,1)$
- The finite Weyl group is S_n
- The root system is $\Phi := \{\epsilon_i \epsilon_j | i, j \leq n\}$
- Denote by (i,j) the root $\alpha_{ij} = \varepsilon_i \varepsilon_j$ and the transposition t_{ij} ;
- Identify a dominant weight λ with the partition $\lambda = (\lambda_1 \ge \dots \lambda_{n-1} \ge \lambda_n = 0)$
- an arbitrary weight μ with the weak composition $(\mu_1, \mu_2, \cdots, \mu_n) \in \mathbb{Z}^n$

For a positive root α Let $H_{\alpha,k}$ be the hyperplane defined by

$$H_{\alpha,k} = \{\lambda \in V | \langle \lambda, \alpha \rangle = k \text{ for } k \in \mathbb{Z} \}$$

For a positive root α Let $H_{\alpha,k}$ be the hyperplane defined by

$$H_{\alpha,k} = \{\lambda \in V | \langle \lambda, \alpha \rangle = k \text{ for } k \in \mathbb{Z} \}$$

Alcoves: connected components of $V \setminus (\bigcup H_{\alpha,k})$.

For a positive root α Let $H_{\alpha,k}$ be the hyperplane defined by

$$H_{\alpha,k} = \{\lambda \in V | \langle \lambda, \alpha \rangle = k \text{ for } k \in \mathbb{Z} \}$$

Alcoves: connected components of $V \setminus (\bigcup H_{\alpha,k})$.

Fundamental alcove A_{\circ} , with a vertex at 0.

For a positive root α Let $H_{\alpha,k}$ be the hyperplane defined by

$$H_{\alpha,k} = \{\lambda \in V | \langle \lambda, \alpha \rangle = k \text{ for } k \in \mathbb{Z} \}$$

Alcoves: connected components of $V \setminus (\bigcup H_{\alpha,k})$.

Fundamental alcove A_{\circ} , with a vertex at 0.

An Alcove path is a shortest sequence of adjacent alcoves

$$\Gamma = A_{\circ} \xrightarrow{-\gamma_1} A_1 \xrightarrow{-\gamma_2} A_2 \xrightarrow{-\gamma_3} \dots \xrightarrow{-\gamma_m} A_m$$

For a positive root α Let $H_{\alpha,k}$ be the hyperplane defined by

$$H_{\alpha,k} = \{\lambda \in V | \langle \lambda, \alpha \rangle = k \text{ for } k \in \mathbb{Z} \}$$

Alcoves: connected components of $V \setminus (\bigcup H_{\alpha,k})$.

Fundamental alcove A_{\circ} , with a vertex at 0.

An Alcove path is a shortest sequence of adjacent alcoves

$$\Gamma = A_{\circ} \xrightarrow{-\gamma_{1}} A_{1} \xrightarrow{-\gamma_{2}} A_{2} \xrightarrow{-\gamma_{3}} \dots \xrightarrow{-\gamma_{m}} A_{m}$$

 Γ is encoded by the sequence of roots $(\gamma_1, \gamma_2, \dots, \gamma_m)$

Alcove picture in type A_2 for $\mu = (0,3,1)$

$$\Gamma = ((12)(13)|(12)|(32)(12))$$

Quantum Bruhat Graph

Directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_{\alpha}$$
, if:

$$\ell(\textit{ws}_{lpha}) = \ell(\textit{w}) + 1$$
 (covers of Bruhat order), or
$$\ell(\textit{ws}_{lpha}) = \ell(\textit{w}) - 2\textit{ht}(lpha^{\lor}) + 1$$

Special alcove paths (μ -chains)

Fix an arbitrary weight $\mu = (\mu_1, \dots, \mu_n)$ with $\mu = v\lambda$, $v \in S_n$ of maximal length, and λ a dominant weight (partition).

Special alcove paths (μ -chains)

Fix an arbitrary weight $\mu = (\mu_1, \dots, \mu_n)$ with $\mu = v\lambda$, $v \in S_n$ of maximal length, and λ a dominant weight (partition).

Construct an alcove path

$$\Gamma := (A_0 = A_\circ \xrightarrow{-\gamma_1} A_1 \xrightarrow{-\gamma_2} \dots \xrightarrow{-\gamma_m} A_m = wA_\circ + \mu).$$

where w depends on μ .

Special alcove paths (μ -chains)

Fix an arbitrary weight $\mu = (\mu_1, \dots, \mu_n)$ with $\mu = v\lambda$, $v \in S_n$ of maximal length, and λ a dominant weight (partition).

Construct an alcove path

$$\Gamma := (A_0 = A_\circ \xrightarrow{-\gamma_1} A_1 \xrightarrow{-\gamma_2} \dots \xrightarrow{-\gamma_m} A_m = wA_\circ + \mu).$$

where w depends on μ .

We will need a closely related path to Γ :

$$\Gamma' := -v^{-1}\Gamma = (\beta_1, \beta_2, \dots \beta_m)$$

The β roots are all positive

v-admissible Subsets

From the path $\Gamma' = (\beta_1, \beta_2, \dots, \beta_m)$, select a subset of positions $J = \{j_1 < j_2 < \dots < j_s\} \subseteq [m]$

v-admissible Subsets

From the path $\Gamma' = (\beta_1, \beta_2, \dots, \beta_m)$, select a subset of positions $J = \{j_1 < j_2 < \dots < j_s\} \subseteq [m]$

We say J is v-admissible if we have a path in the quantum Bruhat graph:

$$v \leftarrow v s_{\beta_{j_1}} \leftarrow v s_{\beta_{j_1}} s_{\beta_{j_2}} \leftarrow \cdots \leftarrow v s_{\beta_{j_1}} s_{\beta_{j_2}} \ldots s_{\beta_{j_s}}$$

where s_{β_i} is the transposition (i_1, i_2) if $\beta_i = \epsilon_{i_1} - \epsilon_{i_2}$.

v-admissible Subsets

From the path $\Gamma' = (\beta_1, \beta_2, \dots, \beta_m)$, select a subset of positions $J = \{j_1 < j_2 < \dots < j_s\} \subseteq [m]$

We say J is v-admissible if we have a path in the quantum Bruhat graph:

$$\textit{v} \leftarrow \textit{vs}_{\beta_{j_1}} \leftarrow \textit{vs}_{\beta_{j_1}} \textit{s}_{\beta_{j_2}} \leftarrow \cdots \leftarrow \textit{vs}_{\beta_{j_1}} \textit{s}_{\beta_{j_2}} \ldots \textit{s}_{\beta_{j_s}}$$

where s_{β_i} is the transposition (i_1,i_2) if $\beta_i=\epsilon_{i_1}-\epsilon_{i_2}.$

J can be viewed geometrically as a folding of Γ along hyperplanes.

Example for $\mu = (0, 3, 1)$, $\nu = 231$, $J = \{1, 2, 5\}$

 $\Gamma = ((12)(13)|(12)|(32)(12))$ $\Gamma' = ((13)(23)|(13)|(12)(13))$

Quantum Bruhat graph for $W = S_3$

Semistandard Key Tabloids (SSKT(μ))

Semistandard Key Tabloids (SSKT(μ))

A diagram $dg(\mu)$ of the weak composition μ consists of μ_i boxes left-justified in row i.

For example, $dg(\mu)$ is shown below for $\mu = (1, 0, 3, 1)$:

Semistandard Key Tabloids (SSKT(μ))

A semistandard key tabloid of shape μ is a filling of $dg(\mu)$ with positive integers from 1 to n, subject to some conditions on entries in pairs and triples of boxes.

$$\mu = (0, 2, 1, 2)$$

4	4
3	
2	2

3	3
2	
1	4

4	2
3	
1	1

Filling map from v-admissible subsets to $\mathsf{SSKT}(\mu)$

From an alcove path Γ' and a ν -admissible subset J:

- Start from the permutation v.
- v^j is the permutation obtained by applying to v all transpositions in J up to the j-th segment of Γ' .
- The entry in row i, column j is

$$fill(J)(i,j) := v^j v^{-1}(i)$$

Filling map from v-admissible subsets to $SSKT(\mu)$

From an alcove path Γ' and a v-admissible subset J:

- Start from the permutation *v*.
- v^j is the permutation obtained by applying to v all transpositions in J up to the j-th segment of Γ' .
- The entry in row i, column j is

$$fill(J)(i,j) := v^j v^{-1}(i)$$

Recall $\Gamma' = ((13)(23)|(13)|(12)(13)), J = \{1, 2, 5\}, v = 231$

Filling map from v-admissible subsets to $SSKT(\mu)$

From an alcove path Γ' and a v-admissible subset J:

- Start from the permutation v.
- v^j is the permutation obtained by applying to v all transpositions in J up to the j-th segment of Γ' .
- The entry in row i, column j is

$$fill(J)(i,j) := v^j v^{-1}(i)$$

Recall $\Gamma' = ((13)(23)|(13)|(12)(13)), J = \{1, 2, 5\}, v = 231$

$$\begin{array}{c|c} \hline 1 \\ \hline 3 \\ \hline 2 \\ \hline \end{array} \xrightarrow{(1,3)} \begin{array}{c} \hline 2 \\ \hline 3 \\ \hline 1 \\ \hline \end{array} \xrightarrow{(2,3)} \begin{array}{c|c} \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline \end{array} \mid \begin{array}{c} \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline \end{array} \mid \begin{array}{c} (1,3) \\ \hline 2 \\ \hline 3 \\ \hline \end{array}$$

$$fill(J) = \begin{array}{c|c} \hline 2 \\ \hline \hline 1 & 1 & 3 \\ \hline \end{array}$$

Theorem

Given a v-admissible subset J, fill(J) is a semistandard key tabloid of shape μ with inverse map given by a "greedy" algorithm.

Theorem

The set of v-admissible subsets of Γ' , together with operators $e_0, e_1, \ldots, e_{n-1}$ and $f_0, f_1, \ldots, f_{n-1}$ defined by

$$e_i(J) = J \setminus \{m\} \cup \{k\}$$

$$f_i(J) = J \setminus \{k\} \cup \{m\}$$

form an affine Demazure crystal, where k and m are positions in the alcove path Γ (or possibly ∞), and are determined by J and i.

Affine Demazure Crystal for $\mu = (0,3,1)$

