Complex Analysis General Exam Fall 2021

August 13, 2021

Solve as many problems as you can. Full solutions on a smaller number of problems will be worth more than partial solutions on several problems. You may assume earlier parts of a problem on later parts. E.g. if you solve part (b) of a problem assuming part (a), but cannot solve part (a), you will get full points for part (b). Throughout $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Don't use any of the Picard theorems.

Problem 1.

Compute, for $\xi > 0$,

$$\int_{-\infty}^{\infty} \frac{e^{-ix\xi}}{x^2 - 2x + 2} \, dx.$$

Show all estimates.

Problem 2.

Suppose that $f: \mathbb{C} \to \mathbb{C}$ is entire and that

$$\lim_{|z| \to +\infty} \frac{|f(z)|}{|z|} = 0,$$

show that f is constant.

Problem 3.

Suppose that $f: \mathbb{C} \to \mathbb{C}$ is entire and that there exists constants R, C > 0 so that $|f(z)| \ge C$ if $|z| \ge R$. Show that f is a polynomial.

Hint: it may be helpful to consider $g: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ given by g(z) = f(1/z).

Problem 4.

Let $U \subseteq \mathbb{C}$ be a nonempty connected and open set. Suppose $(f_n)_{n=1}^{\infty}$ is a sequence of holomorphic functions $f_n \colon U \to \mathbb{D}$ and that $(f_n)_n$ converges uniformly on compact sets to $f \colon U \to \mathbb{C}$. Show that if there is a $p \in U$ with |f(p)| = 1, then f is constant.

Problem 5.

Let $f_n : \mathbb{D} \to \mathbb{D}$ be a sequence of holomorphic functions such that $f_n \to 0$ pointwise on $\{z \in \mathbb{C} : |z| \le 1/2\}$.

- 1. Suppose that $f: \mathbb{D} \to \mathbb{C}$ is a limit (uniformly on compact sets) of a subsequence of $(f_n)_n$. Show that f = 0.
- 2. Show that $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . (You are allowed to use that there is a metric so that convergence with respect to that metric is the same as uniform convergence on compact sets).