Math 63: Real Analysis

Winter 2024

PSET 1 — 01/06/2024

Prof. Erchenko

Student: Amittai Siavava

Problems

Problem 1.

Let A, B, C be subsets of a set S. Prove that

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

To show that the two sets are equal, we will show that each set is a subset of the other. That is, any arbitrary element in the first set must be in the second set, and vice versa.

- (i) Let $x \in A \cup (B \cap C)$. Then either $x \in A$ or $x \in (B \cap C)$.
 - **1.** If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$. Therefore, $x \in (A \cup B) \cap (A \cup C)$.
 - **2.** If $x \in (B \cap C)$, then x is in **both** B and C.

Therefore, $x \in (A \cup B)$ and $x \in (A \cup C)$.

Therefore, $x \in (A \cup B) \cap (A \cup C)$.

(ii) Let $x \in (A \cup B) \cap (A \cup C)$.

Then $x \in (A \cup B)$ and $x \in (A \cup C)$. Since $x \in (A \cup B)$, either $x \in A$ or $x \in B$. Similarly, since $x \in (A \cup C)$, either $x \in A$ or $x \in C$. Thus, either $x \in A$ or $x \in C$.

- **1.** If $x \in A$, then $x \in A \cup (B \cap C)$.
- **2.** If x is in **both** B and C, then $x \in (B \cap C)$, so $x \in A \cup (B \cap C)$.

Problem 2.

If A, B, C are sets, show that

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$$

To show that the two sets are equal, we will show that each set is a subset of the other. That is, any arbitrary element in the first set must be in the second set, and vice versa.

- (i) Let $x \in (A \cup B) \setminus (A \cap B)$. Then $x \in (A \cup B)$ and $x \notin (A \cap B)$.
 - **1.** If $x \in A$, then $x \in (A \setminus B)$.
 - **2.** If $x \in B$, then $x \in (B \setminus A)$.

Therefore, $x \in (A \setminus B) \cup (B \setminus A)$.

- (ii) Let $x \in (A \setminus B) \cup (B \setminus A)$. Then either $x \in (A \setminus B)$ or $x \in (B \setminus A)$.
 - **1.** If $x \in (A \setminus B)$, then $x \in A$ and $x \notin B$. Therefore, $x \in (A \cup B)$ and $x \notin (A \cap B)$.
 - **2.** If $x \in (B \setminus A)$, then $x \in B$ and $x \notin A$. Therefore, $x \in (A \cup B)$ and $x \notin (A \cap B)$.

Therefore, $x \in (A \cup B) \setminus (A \cap B)$.