CSCI 3022 Spring 2021 Intro to Data Science

See: 200m poll!

Instructor: Dr. Zachary Mullen

HELLO AND WELCOME!

Syllabus Material

The course Canvas page will house:

- 1. The course syllabus and schedule
- 2. Annotated lectures and their videos posted after completion of the lecture
- 3. Homework Assignments and their turn-ins locations
- 4. Grades
- 5. Links to In-Class Notebooks, Data sets, and course Piazza page (register!)
- 6. Whatever else is necessary

Piazza: https://piazza.com/colorado/spring2021/csci3022

- 1. Ask questions in Q & A forum (and answer other students' questions!)
- 2. Discuss work, but do not post solutions/vital code
- 3. Send private messages to faculty instead of email (keeps things organized)

do this to learn more, better!

Learning Goals

At the end of this class, students should be able to:

- 0
 - load a data set into Python, clean and munge the data, perform exploratory data analysis, and report on patterns and correlations in the data,
 - 2. compute and interpret various measures of central tendency, such as the mean, median, and mode; and measures of dispersion, such as variance, and standard deviation,
 - 3. write the axioms of probability theory, prove basic theorems of probability theory, and apply those theorems to solve "real-world" problems involving chance events,
 - 4. estimate population parameters of interest by calculating point and interval estimates from a sample/data,
 - 5. perform statistical hypothesis tests,
 - construct and perform diagnostics on simple linear, multilinear, and logistic regression models to make predictions and inferences about data, and
 - construct basic data visualizations in Python and organize analyses, findings, and recommendations into easily interpretable reports in Jupyter Notebooks.

"Other" Courses

This course functions as a survey-level course for material sometimes found in:

- 1. Introduction to Data Science and Programming
- 2. Applied Probability (APPM 3570)
- 3. Introduction to Mathematical Statistics (APPM 4520)
- 4. Statistical Modeling/Regression (APPM 4590)

Coding Overview

- 1. We will use Python 3 and in particular (Numpy and Pandas)
- 2. Lot's of great data science libraries and decent plotting
- 3. We'll exclusively work in Jupyter Notebooks. We strongly recommend you install local copy
- 4. If not, you can use Microsoft Azure or Google Colab notebooks
- 5. Remote Learning can be tough for this: I'll partially work through the "in-class" notebooks most Fridays, but you're best suited spending some time before/after class making your own implementations!

Coding Assignments

 Homework will be done through Jupyter notebooks, submitted into Canvas assignments.

To install Jupyter on your computer:

Jupyter: http://jupyter.org/install.html

Anaconda Python: esset!

https://www.anaconda.com/download/

2. Back up your work! Use a regularly updating Google Drive, Github, secondary hard drive, etc. If it's a cloud-based backup, make the repo/drive private.

Python

What:

Python is free high-level programming language built for flexibility and simple syntax. It is commonly used in statistical computing and graphics.

Why we're using it:

It's widely used - especially in industry - free, and has a healthy repository of packages.

Common Syntax

Function Syntax: Functions use indents to determine the stopping point after a colon. The function def myfunction(x): ends after the indenting stops.

Indexing: Python is 0-indexed, and uses square brackets. For an $n\,x\,m$ matrix named mydata, mydata[3,2] accesses the entry in the fourth row and third column.

Comments: # comment

Favorite Reference: Official Documentation

Jupyter

What:

Jupyter notebook is free web application to combine running live code and visualizations.

Why we're using it:

Statistics is inherently interdisciplinary, and communication of clear results is paramount. The notebook environment encourages replicabile results and a clear workflow.

Common Syntax

Cells: The notebook is divided into cells. For our purpose, expository material will be done in Markdown cells with LATEX compatibility. Computational work will be done in Python 3 code cells, which may also generate plots, histograms, tables, and other output.

Formatting: # (with varying numbers of # signs) can be used to create section headers in markdown cells

Comments: % comment

Favorite Reference: "Cheat Sheet"

What:

LATEX is a typesetting software with a particular emphasis on mathematics, including matrices, greek letters, etc.

Why we're using it:

Microsoft Equation Editor is a pain. It's included in Jupyter for Markdown cells.

Common Syntax

Function Syntax: Functions use curly brackets; " $\text{textit}\{arg\}$ " would italicize the argument

Math mode: inputting "\$ arg \$" will apply mathematical typesetting to the argument.

Comments: % comment

Favorite Reference: https://en.wikibooks.org/wiki/LaTeX

What is Data Science?

1. Making the invisible visible

- Missing information
- 2. Recovering insights/trends hiding within the data
- 3. Using data to answer interesting questions
- 4. Catch-all: using data to understand the world around us

Warning Label: we will do a lot of the "science" side of "data science" **Probability!**

Statistics! Math!

Sciencel

- **Hypothesis**
- Observations
- 3. Analysis
- 4. Conclusions
- 5. Refinements (repeat!)

Foundations

Realms	Topics						
Probability	EDA, null models and hypotheses, Markov						
	models						
Statistical Inference	averages, regression models, MLEs						
Optimization and Calculus	model fitting, computational shortcuts						
Linear Algebra	Many many matrices						
CS /	data structures, rapid estimations, simula-						
	(tion)						
"best" <	naximums ~inimums						

Sinulations
are the
list 15-20
Y/S of
Stat. Heavy

The Plan

	an												
rek	Date	nb	txt	Topic	Slides	Hmwk		10	10.29	27	Practical HT & p	hw5 posted	
	8.27			Course & Computing Introduction	انور	Ĝ			10.31		Small-sample HT		
	8.29		16.1-3	EDA and Summary Statistics	Aa.				11.02		TBD		
	1.26		2	Introduction to Plate lity				11	11.05	18,23.3	Bootstrap Intro		
	9.03			LINEOR DAM NO CLASS					11.07		Bootstrap and Small n HT		
	9.05	-1	algr,	EDA and Data Visualization		hw1 posted			11.09	27	OLS/SLR Regression	hw5 due	
	HOTY	יק	0	Topic Course & Computing Introduction EDA and Summary Statistics Introduction to the Course Introduction to the Course EDA in Detar Visualization Data Wrangling How to Python				12	11.12		Inference in SLR	hw6 posted	MON
	9.10		2,3	How to Python					11.14		Hands on inference in SLR	di	Crio
	9.12		6	Axioms and Theorems of Probability					11.16		MLR	2 bles	
	9.14		3	Stochastic Simulation		hw1 due		13	11.19		FALL BREAK - NO CLASS	, יייו	
	9.17	⊕	4	Bayer' Jule and Intro to PDFs		hw2 pggftd			11.21		FALL BREAK - NO BOLES		
	9.19	17	(d)	Discont Mc PMFs, CMFs		Maria			11.23		OLISAL REPERSON Inference in SLR Hands on inference in SLR MLR FALL BREAK - NO CLASS FALL BREAK - NO CLASS Ofference in MLR		
	9.21	1		Discrete RVs Strike Back Q 9	<i>.,,,</i>			14	11.26	Jelon,	Interest in MLR More MLR and ANOVA I	practicum posted	1
	9.24		5	Return of the Discoul Ros					MO	ISL Ch3	More MLR and ANOVA I		
	9.26		- 12	Stochastic Simulation Bayer Dule and into to POFs Discrete Park Strike Back Return of the Discrete Park Strike Back Continuous RVs Last Continuous RVs Expectation					11:30	ISL Ch3	ANOVA II	hw6 due	
	9.28	No.	abili	The Last Continuous RVs		hw2 due		15	12.03		ANOVA + Inference in MLR		
	DY (o_L	19.00	Expectation		hw3 posted			12.05		Logistic Regr. & Classification		
	0.03			Variance					12.07		Logistic Regr. & Classification		
	10.05		5.5	More Expectation & Variance				16	12.10		Solution Techniques and SGD		
	10.08			The Normal Distribution					12.12		FINAL EXAM REVIEW	practicum due	
	10.10		14	MIDTERM EXAM REVIEW				х	12.XX	\ \	**FINAL EXAM **		
	10.10			The Central Limit Theorems			+			\	/		
	10.12			MIDTERM EXAM (PM)		hyadee	Stal			`	· , (
	10.15		23,24	The Central Limit Theorem and You	fer	posted						.)	
	10.17		23,24	Inference and CI Intro	110		Stat Heary)	U	
	10.19			Two-Sagojor S			10019					/	
	10.22		25,26	The Normal Distribution MIDTERM EXAM REVIEW The Central Limit Theorems MIDTERM EXAM (PM) The Central Limit Theorem and You Inference and Cl Intgo The Wild Hypothesis Testing Intro p-Values			/				(
	10.24	n	office.	Hypothesis Testing Intro									
	MN	٦,		p-Values		hw4 due	ullen: Day 1					Spring 202	1 13

Evaluations

Workload:

- ▶ (48%) Homework assignments (every 1-2 weeks, lowest dropped, late days) 1> } day see
- ► (13%) Midterm exam
- ► (13%) Final exam (cumulative)
- ► (10%) Practicum 1 (midterm)
- ► (10%) Practicum 2 (final)

- ► (6%) Participation (Canvas each Sunday)
- $\geq 55\%$ exam average required to earn a C- or higher in the class Let me know about any special needs in a timely manner Read the syllabus! More details can be found there regarding course policies (see: Late days!)

Remote Materials

All lectures for this class will be hosted remotely via Zoom. Our section is section 1, and meets from 10:20am-11:10am on MWF. The zoom link is https://cuboulder.zoom.us/j/96586645524, and will be open around 10:15am most days. All lectures will be recorded and posted to the course schedule.

- There will often be a warmup/intro problem to complete if you arrive between 10:15-10:20pm.
- I will try to make Zoom as interactive as possible: use Zoom reactions, raise your hand if you have questions, and answer polls as I put them out.
- It is my *strong* preference to have cameras on if your bandwidth can support it. It helps people feel invested and engaged in the process!
- Fridays will typically be coding/application based you are highly encouraged to follow along and attempt the exercises *before* class. M/W will be heavier on theory:

 pen-and-paper exercises and annotations on slides.

Attend!

Correlation...

Try to stay engaged! Take minute papers seriously, and ask questions through any/all mediums available (Zoom, Piazza, minute papers)

The curse of Laptops

"Results showed that students who used laptops in class spent considerable time multitasking and that the laptop use posed a significant distraction to both users and fellow students. Most importantly, the level of laptop use was negatively related to several measures of student learning, including self-reported understanding of course material and overall course performance."

I know it's a challenge learning remotely! Try to stay focused and hold yourself accountable to a routine with minimal distractions!

http://www.sciencedirect.com/science/article/pii/S0360131506001436 Also: http://journals.sagepub.com/doi/pdf/10.1177/0956797616677314 And: http://www.sciencedirect.com/science/article/pii/S0272775716303454

If at first you don't succeed...

- 1. When you're asking for help, be sure to explain...
- 2. what you're trying to do
- 3. what you think should happen
- 4. what you get instead (copy/pastes or screenshots work well)
- 5. what all you have tried
- 6. if you haven't tried anything, try something first

Learning New Software

There are 3 major tools to use in learning new software:

- 1. Pirating similar code found from course materials, etc.
- 2. Official documentation
- 3. Google searches, often directed to sites like stackexchange. (Don't Copy/Paste! Write from pseudo code, and *cite any sources* if you use them!)
- Use (1.) and (2.) often, but be very careful with #3..., and don't hesitate to
 - 1. Ask your instructor or peers for ideas on how to write specific routines, or for their syntax knowledge. Piazza is made for exactly this sort of thing!

Academic Integrity

- 1. See the CU Academic Integrity Policy for more details. Here are some highlights. "Examples of cheating include: copying the work of another student during an examination or other academic exercise (includes computer programming)"
- 2. "Examples of plagiarism include: ... copying information from computer-based sources"

Integrity Examples

Example 1: For an assignment, Chris searches the internet for relevant codes and copy-pastes them into his Jupyter Notebook. He properly cites the source of the codes.

Example 2: For an assignment, Maciej and Felix work together to figure out how to implement the codes, but each works on their own computer and develops their own software.

Example 3: For an assignment, Rhonda has a plan for how to implement an algorithm, but isn't sure how to manipulate a Python list in a particular way that she needs to. She searches the internet, finds a fix, and implements it in her code without copying it.

A Modern Introduction to Probability and Statistics (MIPS)

by Dekking (et al.)

International, older, and PDF editions will work: just make sure to match any section numbers that changed.

Free PDF edition through CU (CU network, or VPN):

https:

//www.springer.com/us/book/9781852338961 Additional reading will be linked to the course calendar as needed

Other Texts

Probability and Statistics for Programmers

Think Stats by Downey ("TS")

An Introduction to Statistical Learning ("ISL")

Moving Forward

Let's get to work!

- ► Before next class:
 - 1. Make sure you can access the Canvas page and read the syllabus
 - 2. Set up some way to back up your work
 - 3. Install Anaconda (or other reliable Jupyter notebook method)
 - 4. Review and complete Numpy/Pandas tutorial

