Petersson Inner Product of Binary Theta Series

A computational approach

Nicolas SIMARD

McGill University

September 17th, 2016

Table of Contents

Background and setup Modular forms Spaces of modular forms Newforms

Theta Series
The simplest example

Mobius transformations

Let $\mathcal H$ be the Poincarre upper-half plane. Recall that $GL_2(\mathbb R)_+$ acts on $\mathcal H$ via Mobius transformations :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}.$$

Definition

Let $N \ge 1$ and define the Hecke subgroup of level N as

$$\Gamma_0(\textit{N}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \textit{SL}_2(\mathbb{Z}) | c \equiv 0 \pmod{\textit{N}} \right\}.$$

Level N modular forms with characters

Definition

Let $N \ge 1$ and $k \ge 0$ be integers and let χ be a Dirichlet character mod N. A modular form of weight k, level N and character χ is a holomorphic function

$$f:\mathcal{H}\longrightarrow\mathbb{C}$$

such that

$$f(\gamma z) = \chi(d)(cz+d)^{-k}f(z)$$

for all $z \in \mathcal{H}$ and all $\gamma \in \Gamma_0(N)$, which satisfies certain growth conditions at the cusps. The \mathbb{C} -vector-space of such modular forms is denoted

$$M_k(\Gamma_0(N),\chi)$$
.

q-expansion of modular forms

Every modular form f has a Taylor (or Fourrier) expansion at infinity, called its q-expansion :

$$f(z)=\sum_{n=0}^{\infty}a_nq^n,$$

where $q = exp(2\pi iz)$. If

$$a_0(f)=0,$$

f is called a cusp form.

Example: weight k Eisenstein series

Let $k \ge 4$ be an even integer and define

$$G_k(z) = \sum_{m,n} \frac{1}{(mz+n)^k} \in M_k(\Gamma_0(1), 1).$$

After renormalisation, the q-expansion of G_k is

$$E_k(z) = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n.$$

Important non-example : weight 2 Eisenstein series

In level 1, there are no modular forms of weight 2. However, one can still define the weight 2 Eisenstein series as

$$E_2(2) = \frac{1}{8\pi\Im(z)} - \frac{1}{24} + \sum_{n=1}^{\infty} \sigma(n)q^n.$$

It is an example of an *almost holomorphic* modular form of level 1 and weight 2.

Spaces of modular forms

• $M_k(\Gamma_0(N), \chi)$ is finite dimensional.

Spaces of modular forms

- $M_k(\Gamma_0(N), \chi)$ is finite dimensional.
- For every integer $n \ge 1$, one can define a *Hecke operator* T_n (depending on k, N and χ) which acts on $M_k(\Gamma_0(N), \chi)$.

Spaces of modular forms

- $M_k(\Gamma_0(N), \chi)$ is finite dimensional.
- For every integer $n \ge 1$, one can define a *Hecke operator* T_n (depending on k, N and χ) which acts on $M_k(\Gamma_0(N), \chi)$.
- There exists a basis of common eigenvectors for all Hecke operators T_n with (n, N) = 1.

Petersson inner product

Let $f, g \in S_k(\Gamma_0(N), \chi)$ be two cusp forms. The Petersson inner product of f and g is defined as

$$\langle f,g\rangle = \frac{1}{\mathsf{Vol}(\Gamma_0(N)\setminus\mathcal{H})}\int_{\Gamma_0(N)\setminus\mathcal{H}} f(x+iy)\overline{g(x+iy)}y^k d\mu,$$

where

$$d\mu = \frac{dxdy}{y^2}$$

is the $SL_2(\mathbb{R})$ -invariant measure on \mathcal{H} . Note that the intergal does not converge if neither f nor g is a cusp form.

Newforms

The space $S_k(\Gamma_0(N), \chi)$ splits naturally as

$$S_k(\Gamma_0(N),\chi) = S_k(\Gamma_0(N),\chi)^{\mathsf{new}} \oplus S_k(\Gamma_0(N),\chi)^{\mathsf{old}}.$$

Theorem

The space $S_k(\Gamma_0(N),\chi)^{new}$ has an orthogonal basis of eigenvectors for all Hecke operators. Elements of this basis are called newforms (after suitable normalization).

Summary

1. The space $S_k(\Gamma_0(N), \chi)$ is a finite dimensional inner product space, equiped with an action of Hecke operators.

Summary

- 1. The space $S_k(\Gamma_0(N), \chi)$ is a finite dimensional inner product space, equiped with an action of Hecke operators.
- 2. The subspace $S_k(\Gamma_0(N),\chi)^{\text{new}}$ has distinguished elements (the newforms) which are mutually orthogonal and are eigenvectors for all Hecke operators.

Table of Contents

Background and setup

Modular forms

Spaces of modular forms

Newforms

Theta Series
The simplest example

A half-integral weight theta series

Consider the function

$$\theta(z) = \sum_{x \in \mathbb{Z}} q^{x^2} = 1 + 2q + 2q^4 + O(q^5).$$

Then

$$\theta(\gamma z) = \epsilon(cz + d)^{1/2}\theta(z),$$

for all $\gamma \in \Gamma_0(4)$ and some $\varepsilon_{c,d} \in \{\pm 1, \pm i\}$.

The setup for this talk