2021年 TI 杯大学生电子设计竞赛

信号失真度测量装置(A题)

2021年11月7日

摘 要

本设计为信号失真度测量装置,采用基于 ARM Cortex-M4F 的 MCU TM4C123GlaunchPad,对来自函数/任意波形发生器的周期信号进行采集分析,测得输入信号的总谐波失真 THD,并可在手机上显示测量信息。对输入谐波的放大分析,使其实现对信号的控制增益,利用傅里叶变换计算出总谐波失真度,显示输入信号的一个周期波形以及基波与谐波的归一化幅值,在串口屏上显示,并通过蓝牙连接手机显示波形。经测试,输入信号基频范围为 1k-100kHz 失真度误差值基本在 2%之内且能够显示周期波形与归一化幅值,一键启动之后 8 秒内可以在手机 App 上显示测量信息,可以显示输入信号基波与谐波的归一化幅值。完全符合要求。

关键词: 总谐波失真、失真测量值、傅里叶变换、蓝牙传输

目录

一,	方案证	分计	1		
	1.1.	系统总体框图	1		
	1.2.	主控芯片的论证与选择	1		
	1.3.	放大电路的论证与选择	2		
	1.4.	开关的论证与选择	2		
二、	理论分	分析与计算	3		
	2.1	快速傅里叶变换的分析	3		
	2.2	谐波的分析与计算	3		
	2.3	归一化幅值的分析和计算	4		
三、	电路与	与程序设计	4		
	3. 1	放大电路模块	4		
	3.3	1.1 增益控制放大器	4		
	3.3	1.2 加法与加法控制电路	5		
	3.3	1.3 滤波及反向放大电路	5		
	3.2	程序设计	5		
四、	测试プ	方案与测试结果	6		
	4.1.	测试方案	6		
	4.2.	测试仪器与条件	6		
	4.3.	测试结果与分析	7		
	4.3	3.1. 测试结果	7		
	4.3	3.2. 测试分析与结论	8		
五、	、 结论与心得				
六、	参考文献				
七、	附录-	一 电路原理图	9		
八、	附录二	二 PCB 图	10		

2021年 TI 杯大学生电子设计竞赛(A题) 【本科组】

一、方案设计

本系统结构,主要由主控芯片、二阶滤波、电压跟随器,反相放大器、控制增益放大器、加法器、串口屏,无线通信组成。

1.1. 系统总体框图

该系统由微控制器、数据采集模块,放大电路模块,无线通信模块,显示模块组成。系统总体框图如

为了更好的实现各个部分的功能,下面分别对以下几个模块进行论证与选择:

1.2. 主控芯片的论证与选择

方案一: TM4C123G

TM4C123G 是高性能的基于 ARMe Cortex- m 架构, 具有广泛的集成能力和

强大的软件和开发工具生态系统。拥有顶尖的性能和先进的集成,单个芯片参数为32位,拥有80MHz的CPU工作赫兹,Flash SRAM256k,以及2k的EEPROM。

方案二: MSP430

MSP430 单片机称之为混合信号处理器,是由于其针对实际应用需求,将多个不同功能的模拟电路、数字电路模块和微处理器集成在一个芯片上,以提供"单片机"解决方案。但这种单片机工作电压偏低,1.8V-3.6V,对于很多 5V 的系统来说接口电路颇为麻烦;而且 I/O 无保护,过压过流会立即击穿。

综合以上两种方案,基于性能以及功能方面,我们选择方案一。

1.3. 放大电路的论证与选择

方案一: 阻容耦合式多级放大电路

将放大电路的前级输出端通过电容接到后级输入端,称为阻容耦合方式。

只要输入信号频率较高, 耦合电容容量较大, 前级的输出信号可几乎没有 衰减地传递到后级的输入端。因此, 在分立元件电路中阻容耦合方式得到非常广 泛的应用, 但低频特性差, 不能放大变化缓慢的信号; 在集成电路中制造大容量 的电容很困难, 因此阻容耦合方式不便于集成化。

方案二: 可控增益放大电路

其线性好,具有足够的增益来抑制后级电路的噪声对系统的影响,并且增益可调,当输入信号大范围变化时,能自动控制增益,输出稳定的信号,另外输出功率也能达到最大。

方案一和方案二都适用于电路,但二能够用于发挥部分题目,且效率很高。 所以采用方案二。

1.4. 开关的论证与选择

方案一:模拟开关

模拟开关是用晶体管做的电子开关,这个方案的优点是体积小,导通速度块,耗电小;其缺点是导通电阻大,工作电压低,电流小,存在误差,常用在信号选择回路中或对精准度要求不高的 $5-100\,\Omega$ 电路。

方案二:继电器是机械开关,导通电阻小于 0.1 Ω,通道隔离程度高。

综上分析:选择方案二。本设计对误差要求高,太大的导通电阻会影响计算精度,而且此部分在电子设备中只起接通信号或断开信号的作用,故选择方案二。

二、理论分析与计算

2.1 快速傅里叶变换的分析

基于傅里叶变换的谐波测量主要是通过对信号的同步采样,然后用离散傅里叶变换(DFT)进行频谱分析进而得出各次谐波的幅值和相位。

对于放大电路产生的非正弦波,须用傅里叶级数描述。根据傅里叶变换原理, 瞬时输出电压可表为

$$\mathbf{u}(\mathbf{t}) = \sum_{n=1}^{\infty} a_n \sin(n\omega t) + \sum_{n=1}^{\infty} b_n \cos(n\omega t)$$
 (1)

式中, n 是谐波次数, 傅里叶级数 a 和 b 分别表为:

$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} i(t) \sin(n\omega t) d(\omega t)$$

$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} i(t) \cos(n\omega t) d(\omega t)$$

2.2 谐波的分析与计算

根据傅立叶分析的基本理论,任何一周期信号都可以分解为其直流分量,基 波分量和个次谐波分量的加权。所谓谐波,就是频率为基波整数倍的余弦信号。 若为基波的 N 倍,即称为 N 次谐波。

总谐波失真(THD):是指用信号源输入系统到时,输出信号比输入信号多出的额外谐波成分。表明功放工作时,由于电路不可避免的振荡或其他谐振产生的二次,三次谐波与实际输入信号叠加,在输出端输出的信号就不单纯是与输入信号完全相同的成分,而是包括了谐波成分的信号,这些多余出来的谐波成分与实际输入信号的对比,用百分比来表示就称为总谐波失真。

$$THD = \frac{\sqrt{U_{02}^2 + U_{03}^2 + U_{04}^2 + U_{05}^2}}{U_{01}} \times 100\%$$
 (2)

也是在放大器中提的最多的一种失真。其定义方式为输入单一频率的余弦信

号,输出的各次谐波总有效值和基波功率有效值之比的平方根。

$$\Delta = |THD_x - THD_0| \le 3\% \tag{3}$$

$$\cos(\omega t + \varphi_1) + U_{02}\cos(2\omega t + \varphi_2) + U_{03}\cos(3\omega t + \varphi_3) + \cdots \tag{4}$$

$$u_i = U_i \cos \omega t \tag{5}$$

2.3 归一化幅值的分析和计算

当输入信号的基波幅值为 U_{m1} ,各次谐波幅值 分别为 U_{m2} 、 U_{m3} …,基波与谐波的归一化幅值为: 1、 $\left(\frac{U_{m2}}{U_{m1}}\right)$ 、 $\left(\frac{U_{m3}}{U_{m1}}\right)$ …。

三、电路与程序设计

3.1 放大电路模块

本模块含有增益控制放大器电路、加法电路、滤波反向放大电路组成。放大器模块原理图如图 3-1 所示。

图 3-1 放大器模块原理图

3.1.1 增益控制放大器

本部分设计的主控芯片为 VCA810,是一个高增益调节范围,宽带,电压放大器与电压控制增益。基础部分与发挥部分的电压范围不同,其所需要放大的倍

数也不同, 故选用可控增益放大器。

用可控增益放大器可以对输入信号进行分别控制增益,使其即使面对十分宽泛的信号范围也可以进行控制放大,可控增益的放大器。

3.1.2 加法与加法控制电路

本部分使用了 LM285 的芯片,将基准电压控制在 1.235V,通过跟随器的跟随,进行阻抗的匹配,匹配后通过加法电路与增益放大器输出信号相加,使信号始终保持在 1.235 上下波动的状态,即始终保持在 0 之上,更宜控制幅值,送入程序进行采集与分析计算。

3.1.3 滤波及反向放大电路

本部分内容由两个运放组成低通滤波器和反相器。因为 VCA810 需要直流电压来提供和控制增益,TM4C123G 无 ADC 模块,需要人工制造直流电压,故想到用 PWM 的直流滤波,通过低通滤波器可初步滤除谐波等分量,只留下直流分量,与其占空比成正比,控制其占空比即可控制输出的信号,加上跟随器和反相器,形成-2~0V 范围的控制电压,去控制 VCA810 的增益倍数。与下方加法器部分的基准跟随器通过相加得到一个平均值为 1.235V 的波形,即将波形上移大于0V,使其更易被读取,只要控制幅值小于 1.235V,便能送入程序进行采集。

3.2 程序设计

如图 3-3,当程序开始后,检测波形输入进入采集测量模块,通过对信号的 采集测量,计算出波形的 THD,然后在液晶屏上显示,并利用蓝牙模块向手机 发送信息。

采集测量子函数是利用 AD 转换模块,进行数据采集,当采集数达到要求时进行快速傅里叶变换(FFT)然后进行波形的 THD 计算。

图 3-3 程序流程图

四、测试方案与测试结果

4.1. 测试方案

连接仪器,并进行安全检查后上电,使用函数发生器输出带有谐波的正弦波,接入装置,查看手机 App 内显示的 THD 测量值,与理论值进行对比,求出误差绝对值。改变输出函数的幅度、频率、谐波,多次测量。使得误差绝对值始终<5%。

4.2. 测试仪器与条件

测量仪器: DG1062 函数发生器一台,含有 App 的手机一部

4.3. 测试结果与分析

4.3.1. 测试结果

根据测试,在基波幅度 1kHz,10kHz,100kHz 的基波幅度下分别设置二次至五次谐波幅度,显示屏显示归一化幅值以及 THD 结果。

以下是测试显示屏显示以及 THD 显示结果展示。

图 4.3.1 显示屏结果展示

表一 部分测试结果

基波幅度	1kHz	1kHz	10kHz	100kHz
基波频率	600mV	400mV	600mV	400mV
二次谐波幅度	80	90	80	30
二次谐波归一化幅值	0.131	0.221	0.131	0.075
三次谐波幅度	60	60	60	30
三次谐波归一化幅值	0.106	0.152	0.106	0.086
四次谐波幅度	40	30	40	30
四次谐波归一化幅值	0.066	0.074	0.067	0.076
五次谐波幅度	20	15	20	30
五次谐波归一化幅值	0.036	0.04	0.036	0.075
测量值 THD	18.39%	28.30%	18.47%	15.28%
理论值 THD	18.25%	28.30%	18.25%	15%
绝对误差值	0.14%	0	0.22%	0.28%

4.3.2. 测试分析与结论

经过调试和测试,本次设计要求基本完成,测量输入波形的 THD 值与理论值的绝对误差值基本<2%。在波形输入,一键启动之后 8 秒内可以在手机 App 上显示测量信息,可以显示输入信号基波与谐波的归一化幅值。

五、结论与心得

经过这几天的努力,团队最终设计出信号失真度测量装置,此次课题设计过程中,遇到了许多难易程度不等的问题,包括前期各个模块的选择,以及后期的硬件调试,但是团队分工明确、各司其职,通过查阅资料、讨论分析,解决了大部分问题。前两天团队重点进行电路设计和电路参数的取值,之后在调试过程里面就遇到了如何选用芯片、如何收集采样频率、如何对波形进行整形等一系列的问题,最后确定了一个相对合理的方案。调试过程里,频谱出现了泄露,后发现采样频率没有是最高信号频率的两倍,此时利用FFT分析会产生频谱泄露现象。因此在选择用插值的方法实现显示归一化。在这四天三夜中,同时也明白了的团队合作的重要性,正是在团队默契合作下才最终有了完美的结果,而且学会了许多单相在线式不间断电源相关的知识,这次的锻炼让我们受益匪浅!

六、参考文献

- [1] 李少东.基波跟踪的小信号谐波失真的测量装置及方法:, CN101639499B[P]. 2011.
- [2] 李航,何昭,郭晓涛.基于基波抑制法测量谐波失真度时的数值修正与误差分析 [J]. 计量技术, 2015, 000(003):47-49.
- [3] 周厚平. 基于数模转换器的集成电路测试系统自动校准装置及方法:, CN109375126A[P]. 2019.
- [4] 毛筱, 肖雁鸿, 等. FFT 应用于谐波测量中频谱泄漏的分析与处理[J]. 电工技术杂志. 2001.

七、附录一 电路原理图

附图 1 放大电路原理图

八、附录二 PCB图

附图 2 放大电路 PCB 图