NCEA Level 2 Mathematics

3. Trigonometry

We are now going to look at triangles inside circles. Now, last year we learned that any triangles with two equal angles are similar; in particular, if we take ratios of sides, we obtain the same value. This means that if we have any right-angled triangle with angle θ like the one above, then the ratios $\frac{\text{opposite}}{\text{hypotenuse}}$, $\frac{\text{adjacent}}{\text{hypotenuse}}$, and $\frac{\text{opposite}}{\text{adjacent}}$ all depend only on the angle θ ; we call them the sine, cosine, and tangent of the angle respectively:

$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}} \qquad \cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}} \qquad \tan\theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sin\theta}{\cos\theta}.$$

In particular, if we draw our triangle inside a unit circle then we can draw the following:

In fact, we can take this as our definition of sin and cos. To show that $\tan \theta$ is indeed the line segment marked, first notice that since the triangle OPR is right-angled, the angle at the intersection of the horizontal line and the tangent line is $90^{\circ} - \theta$; so the other non-right-angle in the triangle PQR is θ . Hence the hypotenuse of PQR is $\frac{\text{adjacent}}{\cos \theta} = \frac{\sin \theta}{\cos \theta}$, as proposed.

Note also that, from this diagram, we have

$$\sin^2 \theta + \cos^2 \theta = 1$$

for every angle θ .

Since the sin of an angle is just the height of the point above the x-axis in the diagram above, we have that $-1 \le \sin \theta \le 1$; similarly, $-1 \le \cos \theta \le 1$. Note that when $\theta = 90^{\circ}$, the tangent line becomes horizontal and so never intersects the x-axis: so $\tan 90^{\circ}$ is undefined. We can even graph $\sin \theta$ (red), $\cos \theta$ (blue), and $\tan \theta$ (green):

If we graph them in radians, only the labels on the x-axis change:

Let us now begin to look at more general triangles:

Theorem (Sine rule). In any triangle, with the angles and sides labelled as above, we have

$$\frac{\alpha}{\sin a} = \frac{\beta}{\sin b} = \frac{\gamma}{\sin c}.$$

Proof. Drop an altitude from B to AC, creating two new right-angled triangles. Then the length of this line can be calculated using both of the resulting right-angled triangles: so $c \sin \alpha = a \sin \gamma$ and $\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$. This proves the theorem.

Theorem (Cosine rule). In any triangle, with the angles and sides labelled as above, we have

$$a^2 = b^2 + c^2 - bc\cos\alpha.$$

Proof. Drop an altitude from B to AC, creating two new right-angled triangles. Then the length b can be split into two lengths, $c\cos\alpha$ and $b-c\cos\alpha$; the length of the altitude is $c\sin\alpha$. Now, apply the Pythagorean theorem to the triangle including the angle γ :

$$a^{2} = (b - c\cos\alpha)^{2} + c^{2}\sin^{2}\alpha = b^{2} - 2bc\cos\alpha + c^{2}\cos^{2}\alpha + c^{2}\sin^{2}\alpha = b^{2} + c^{2} - 2bc\cos\alpha.$$

Questions

- 1. A beam of gamma rays is to be used to treat a tumor known to be 5.7 cm beneath the patient's skin. To avoid damaging a vital organ, the radiologist moves the source over by 8.3 cm.
 - (a) At what angle to the patient's skin must the radiologist aim the gamma ray source to hit the tumor?
 - (b) How far will the beam have to travel through the patient's body before reaching the tumor?
- 2. A surveyor measures the three sides of a triangular field and finds that they are 117, 165, and 257 metres long.
 - (a) What is the measure of the largest angle of the field?
 - (b) What is the area of the field?
- 3. A field has the shape of a quadrilateral (four-sided shape) that is not a rectangle. Three sides measure 2.33, 3.97, and 3.9 kilometres, and two angles measure $\alpha = 131.06^{\circ}$ and $\gamma = 86.05^{\circ}$ (as in the figure).

- (a) By dividing the quadrilateral into two triangles, find its area.
- (b) Find the length of the fourth side.
- (c) Find the measures of the other two angles, β and δ .
- 4. A surveyor is standing on top of a peak. She can see two prominent peaks ahead of her, and from previous measurements she knows that one of them is 8 km away from her and the other is 11 km away. She measures the angle between them to be 120°. How far apart are the two peaks (measured along the ground):
 - (a) If that they have same height?
 - (b) If the surveyor and the closer peak are at the same height, but the peak which is further away is $200\,\mathrm{m}$ higher?
- 5. Consider a triangle with sides of 5, 7, and 10 kilometres.
 - (a) Find the measure of the largest angle of this triangle.
 - (b) Find the area of the triangle.
- 6. Find the area of the triangle below.

- 7. For each item below, decide whether or not such a triangle exists. If at least one does, how many exist?
 - (a) Exactly one angle greater than 90°.
 - (b) Two angles greater than $\pi/2$.
 - (c) Two sides of length 200,000.
 - (d) Three sides of length 200,000.
 - (e) Sides of length 90, 30, and 30.
- 8. Prove that, if a quadrilateral has equal diagonals, then it is a rectangle. (We used this fact last week!)
- 9. Let A and B be points in three dimensional space. Show that

$$d(A,B) = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2}.$$

- 10. Let ABC be a triangle.
 - (a) Let X = m(A, B), Y = m(B, C), and Z = (C, A) be the midpoints of the sides; then the lines CX, AY, and BZ are called the *medians* of the triangle. Show that the three medians always intersect at a single point N (the *centroid*).
 - (b) Let k be the perpendicular bisector of AB, ℓ be the perpendicular bisector of BC, and m be the perpendicular bisector of CA. Show that k, ℓ , and m intersect at a single point O (the *circumcentre*). Show that O is the centre of the circle passing through A, B, and C.
 - (c) Let λ be the line passing through A that bisects the angle of the triangle at A. Define μ and ν similarly as the angle bisectors at B and C. Show that λ , μ , and ν intersect at a single point P (the *incentre*). Show that P is the centre of the circle which is tangent to the three sides of the triangle.
 - (d) Let ρ be the line through A perpendicular to BC; define σ and τ similarly to be lines through B and C. These lines are known as the *altitudes* of the triangle. Show that ρ , σ , and τ intersect at a single point (the *orthocentre*).
- 11. This question requires you to find exact values for trig functions without using a calculator. [Schol 1999]
 - (a) Sketch an equilateral triangle of side 2 units. Hence, or otherwise, show that $\cos \frac{\pi}{3} = \frac{1}{2}$, $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$, and $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$.
 - (b) Sketch a right angled isosceles triangle whose equal sides enclose the right angle and are of length 1. Hence, or otherwise, show that $\cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$.
- 12. Consider the 75-75-36 triangle ABC given in the figure. The angle α has been bisected into two angles, and the resulting line meets the triangle at D.

- (a) Show that ABC and ABD are similar triangles.
- (b) Hence, or otherwise, show that $\frac{AB}{BD}=\frac{AB+BD}{AB}.$
- (c) Show that the ratio of the long side of the triangle to the short side of the triangle is $\frac{AB}{BD} = \frac{1+\sqrt{5}}{2} = \phi$.
- (d) Show that $\cos 72^{\circ} = \frac{1}{2\phi}$.
- (e) Find $\sin 36^{\circ}$ and $\sin 72^{\circ}$.