MATH1231/1241 Revision Seminar

(Higher) Mathematics 1B Calculus

- Functions of Several Variables
- 2 Integration Techniques
- ODE's
- **4** Taylor Series
- 5 Applications of Integration

Taylor Series

Functions of Several Variables

- Let $F(x,y) = x^2 + xy + y^2$. Since this is a function of more than one variable, in order to find the rate of change with respect to x or y, we must use partial differentiation.
- This involves treating all variables other than the one you're differentiating with, as constants.

Example

Using the example above

$$F(x,y) = x^2 + xy + y^2$$

•
$$\frac{\partial F}{\partial x} = F_x = 2x + y$$
, • $\frac{\partial F}{\partial y} = F_y = x + 2y$.

$$\frac{\partial F}{\partial y} = F_y = x + 2y.$$

Tangent Planes

Suppose that z = F(x, y). Then, a tangent plane to this curve, evaluated at point $P = (x_0, y_0, z_0)$ has normal vector

$$\mathbf{n} = \begin{pmatrix} F_x \\ F_y \\ -1 \end{pmatrix} \text{ evaluated at } P.$$

Thus, using the point-normal representation of a plane, the equation of a tangent plane is given by

$$\mathbf{n}\cdot(\mathbf{x}-P)=0,$$

where
$$\mathbf{x} = (x, y, z)^T$$

General Case

Functions of Several Variables

• More generally, given a function of the form g(x, y, z) = 0, the normal vector at a point P on g is given by

$$= \begin{pmatrix} g_x \\ g_y \\ g_z \end{pmatrix} \text{ evaluated at } P.$$

Example

The equation of the tangent plane to $z = 4x^3 + 3y^4$ at point (1,1,7) is given by

$$\mathbf{n} \cdot (\mathbf{x} - P) = \begin{pmatrix} 12 \\ 12 \\ -1 \end{pmatrix} \begin{pmatrix} x - 1 \\ y - 1 \\ z - 7 \end{pmatrix} = 12x + 12y - z - 17 = 0$$

Total Differential Approximation

Given some F(x, y)

$$\Delta F \approx \frac{\partial F}{\partial x} \Delta x + \frac{\partial F}{\partial y} \Delta y.$$

Rationale

- Since F is a function of two variables, the change in $F(\Delta F)$ is dependent on Δx and Δy .
- Since partial differentiation yields the rate of change of F w.r.t x or y, we can approximate the rate of change of F through the expression above.

Error Estimation

The total differential approximation can be used to estimate the error of a variable that's dependent on other variables. For instance, if F is a function of x and y, then

$$|\Delta F| = \left| \frac{\partial F}{\partial x} \Delta x + \frac{\partial F}{\partial y} \Delta y \right|$$

$$\leq \left| \frac{\partial F}{\partial x} \right| |\Delta x| + \left| \frac{\partial F}{\partial y} \right| |\Delta y|$$

Chain Rule I

Let's say we have F(x, y) such that x = x(t) and y = y(t). In this case, dividing the Total Differential Approximation by Δt yields,

$$\frac{\Delta F}{\Delta t} = \frac{\partial F}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial F}{\partial y} \frac{\Delta y}{\Delta t}$$

Now, as $\Delta t \rightarrow 0$, we have that

•
$$\frac{\Delta F}{\Delta t} \rightarrow \frac{dF}{dt}$$
 • $\frac{\Delta x}{\Delta t} \rightarrow \frac{dx}{dt}$

$$\bullet \ \frac{\Delta x}{\Delta t} \to \frac{dx}{dt}$$

And so,

$$\frac{dF}{dt} = \frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt}$$

Let's say we have F(x, y) such that x = x(t) and y = y(t). In this case, dividing the Total Differential Approximation by Δt yields,

$$\frac{\Delta F}{\Delta t} = \frac{\partial F}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial F}{\partial y} \frac{\Delta y}{\Delta t}$$

Now, as $\Delta t \rightarrow 0$, we have that

•
$$\frac{\Delta F}{\Delta t} \rightarrow \frac{dF}{dt}$$
 • $\frac{\Delta x}{\Delta t} \rightarrow \frac{dx}{dt}$

$$\bullet \ \frac{\Delta x}{\Delta t} \to \frac{dx}{dt}$$

$$\bullet \ \frac{\Delta y}{\Delta t} \to \frac{dy}{dt}$$

And so,

$$\frac{dF}{dt} = \frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt}$$

We can attempt to simplify that expression through use of a chain rule diagram, seen here.

Taylor Series

Chain Rules II

Now, let's say we have a function F(x, y) such that x = x(s, t)and y = y(s, t). Drawing out our Chain Rule diagram, we have,

Hence, the chain rule expression becomes

$$\frac{\partial F}{\partial t} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial t}$$

and similarly

$$\frac{\partial F}{\partial s} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial s}$$

Chain Rules III

Now, let's say we have F(u) where u = u(x, y). In this case,

Let F be a function F(x, y, z) where x = x(s, t), y = y(s, t) and z = z(s, t), where s = s(u) and t = t(u).

The truly monstrous expression we end up with is

$$\begin{split} \frac{dF}{du} &= \frac{ds}{du} \left(\frac{\partial F}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial s} \right) \\ &+ \frac{dt}{du} \left(\frac{\partial F}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial t} \right) \end{split}$$

Functions of Several Variables

Trigonometric Integrals

$$\int \sin^m(x) \cos^n(x) \ dx$$

Case 1: n odd

 $u = \sin x$ $du = \cos x dx$

 $\cos^2 x = 1 - \sin^2 x$

Case 2: m odd

 $u = \cos x$ $du = -\sin x \, dx$

 $\sin^2 x = 1 - \cos^2 x$

$$\int \sin^2 x \cos^5 x \, dx = \int \sin^2 x \cos^4 x (\cos x \, dx)$$
$$= \int u^2 (1 - u^2)^2 \, du = \frac{\sin^3 x}{3} - \frac{2\sin^5 x}{5} + \frac{\sin^7 x}{7} + c$$

Trigonometric Integrals

Case 4: m, n even

Pray.

Functions of Several Variables

Trigonometric Integrals

Case 1

$$\sin(mx)\cos(nx) = \frac{1}{2} \Big(2\sin(mx)\cos(nx) \Big)$$
$$= \frac{1}{2} \Big(\sin((m+n)x) + \sin((m-n)x) \Big)$$

Case 2

$$\cos(mx)\cos(nx) = \frac{1}{2}\Big(\cos((m+n)x) + \cos((m-n)x)\Big)$$

Case 3

$$\sin(mx)\sin(nx) = \frac{1}{2}\Big(\cos((m-n)x) - \cos((m+n)x)\Big)$$

Important Identities

$$\tan^2 x + 1 = \sec^2 x$$
 $\frac{d}{dx} \tan x = \sec^2 x$ $\frac{d}{dx} \sec x = \sec x \tan x$

$$\int \tan^2 x \ dx = \int \sec^2 x - 1 \ dx = \tan x - x + C$$

$$\int \sec^4 x \tan x \, dx = \int (\sec^3 x)(\sec x \tan x) \, dx$$
$$= \int u^3 \, du$$
$$= \frac{u^4}{4} + C = \frac{\sec^4 x}{4} + C$$

Reduction Formulae

Let I_n be defined as

$$I_n = \int_0^{\pi/4} \tan^n x \ dx.$$

Find a reduction formula in terms of I_{n-2} .

$$\int_0^{\pi/4} \tan^n x \, dx = \int_0^{\pi/4} \tan^{n-2} x \tan^2 x \, dx$$

$$= \int_0^{\pi/4} \tan^{n-2} x (\sec^2 x - 1) \, dx$$

$$= \int_0^{\pi/4} \tan^{n-2} \sec^2 x \, dx - \int_0^{\pi/4} \tan^{n-2} x \, dx$$

$$= \left[\frac{u^{n-1}}{n-1} \right]_0^1 - I_{n-2} = \frac{1}{n-1} - I_{n-2}.$$

Reduction Formulae, continued

Use the reduction forumula obtained on the previous slide to work out the value of

$$\int_0^{\pi/4} \tan^5 x.$$

$$\int_0^{\pi/4} \tan^5 x = I_5$$

$$= \frac{1}{4} - I_3$$

$$= \frac{1}{4} - \frac{1}{2} + I_1$$

$$= -\frac{1}{4} + \int_0^{\pi/4} \tan x \, dx$$

$$= \left[\ln(\sec x) \right]_0^{\pi/4} - \frac{1}{4} = \frac{1}{2} \ln 2 - \frac{1}{4}$$

Trigonometric Substitutions

Substitution 1

$$\sqrt{a^2 - x^2} \iff x = a \sin \theta$$
$$dx = a \cos \theta \ d\theta$$

Substitution 2

$$\sqrt{a^2 + x^2} \quad \Longleftrightarrow \quad x = a \tan \theta$$
$$dx = a \sec^2 \theta \ d\theta$$

Substitution 3

$$\sqrt{x^2 - a^2} \iff x = a \sec \theta$$
$$dx = a \sec \theta \tan \theta \ d\theta$$

Substitution 1

$$\sqrt{a^2 - x^2} \quad \rightleftarrows \quad x = a \tanh \theta$$
$$dx = a \operatorname{sech} \theta \ d\theta$$

Substitution 2

$$\sqrt{a^2 + x^2} \quad \rightleftarrows \quad x = a \sinh \theta$$
$$dx = a \cosh \theta \ d\theta$$

Substitution 3

$$\sqrt{x^2 - a^2} \quad \rightleftarrows \quad x = a \cosh \theta$$
$$dx = a \sinh \theta \ d\theta$$

Using Trig Substitutions

Solve the integral

$$\int \frac{dx}{\sqrt{4-x^2}}$$

through use of the substitution $x = 2 \tanh \theta$.

$$\int \frac{dx}{\sqrt{4 - x^2}} = \int \frac{2 \operatorname{sech} \theta \ d\theta}{\sqrt{4 - 4 \tanh^2 \theta}}$$

$$= \int \frac{2 \operatorname{sech} \theta}{2 \operatorname{sech} \theta} d\theta$$

$$= \int d\theta = \theta + C = \tanh^{-1}(x/2) + C.$$

Hyperbolic Trig Identities

$$1 - \tanh^2 x = \operatorname{sech}^2 x$$

What are ODE's

Definition

An ordinary differential equation is an equation which describes a relationship between a variable, and its first- (and second-) derivatives.

Some examples

$$\frac{dP}{dt} = \pm kP$$

$$\frac{d^2x}{dt^2} = -kx$$

$$\frac{dT}{dt} = k(T - T_s)$$

Initial Value Problems

Definition

An initial value problem is an nth order ODE, with a set of values for the variable itself, as well as all the derivatives until n-1.

Example

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} - 4y = 0.$$

When t = 0, then y = 17 and y' = -1.

Solving an IVP

Solving a IVP

Solve

$$\frac{d^2y}{dx^2} = x^3,$$

given y'(2) = 5 and y(0) = 1.

We first integrate both sides of the ODE

$$y' = \frac{dy}{dx} = \frac{x^4}{4} + C.$$

Since y'(2) = 5,

$$\frac{2^4}{4} + C = 5$$
$$C = 1$$

Hence, $y' = x^4/4 + 1$.

Solving an IVP, continued

Now, we integrate both sides of the equation again, ending up with

$$y=\frac{x^5}{20}+x+C.$$

Now, we know that y(0) = 1, so

$$0 + 0 + C = 1$$

 $C = 1$.

Hence,

$$y = \frac{x^5}{20} + x + 1.$$

Separable ODE's

Definition

A separable ODE is one where both of the variables involved in the ODE (e,g, y and x) can be separated fully into two halves of the equation.

This makes it easier to solve the differential equation, as we can integrate both sides.

Separating ODE's

$$\frac{dy}{dx} = 4x^4y^2$$

$$\int \frac{dy}{y^2} = 4 \int x^4 dx$$

Solving Separable ODE's

Solve

$$\frac{dy}{dx} = yx^4$$
.

$$\int \frac{dy}{y} = \int x^4 dx$$

$$\ln y = \frac{x^5}{5} + C$$

$$y = \exp\left(\frac{x^5}{5} + C\right)$$

$$= A \exp\left(\frac{x^5}{5}\right).$$

First-Order Linear ODE's

Definition

A first-order linear ODE is one that can be expressed in the following form,

$$\frac{dy}{dx} + f(x)y = g(x),$$

where f and g are functions in x.

$$2\frac{dy}{dx} + 4x^3y = 3x,$$

is an example of a first order linear ODE.

Solving First-Order Linear ODE's

$$\frac{dy}{dx} + f(x)y = g(x).$$

Method

- 1. Write the ODE in the above form.
- 2. Calculate $h(x) = e^{\int f(x) dx}$ (ignore the constant).
- 3. Multiply the ODE by h(x) to get

$$\frac{dy}{dx}h(x)+h(x)f(x)y=h(x)g(x).$$

4. Because of the product rule, this is equivalent to

$$\frac{d}{dx}\Big(h(x)y\Big)=g(x)h(x).$$

Solving First-Order Linear ODE's, continued

Solve

$$(x-1)^3 \frac{dy}{dx} + 4(x-1)^2 y = x+1, \quad y(0) = 2$$

Firstly, expressing ODE in the proper form leads to

$$\frac{dy}{dx} + 4y(x-1)^{-1} = \frac{x+1}{(x-1)^3}.$$

Now.

$$e^{\int 4(x-1)^{-2}dx} = e^{4\ln(x-1)} = (x-1)^4.$$

Multiplying through the *integrating factor*

$$(x-1)^4 \frac{dy}{dx} + 4y(x-1)^3 = (x+1)(x-1)$$

Solving First-Order Linear ODE's, continued

$$(x-1)^4 \frac{dy}{dx} + 4y(x-1)^3 = x^2 - 1.$$

Now, by the product rule, this simplifies to

$$\frac{d}{dx}\left(4y(x-1)^4\right) = x^2 - 1.$$

Upon integrating both sides with respect to x,

$$4y(x-1)^4 = \frac{x^3}{3} - x + C$$

Since y(0) = 2, substituting x = 0, y = 2,

$$4(2)(-1)^4 = 8 = 0 - 0 + C.$$

Solving First-Order Linear ODE's, continued

$$4(2)(-1)^4 = 8 = 0 + 0 + C.$$

Hence, C=8, and upon dividing by $4(x-1)^4$, we get our solution,

$$y = \frac{x^3 - 3x + 24}{12(x - 1)^4}$$

Exact ODE's

Definition

Exact ODE's are ODE's of the form

$$F(x,y) + G(x,y)\frac{dy}{dx} = 0,$$

such that,

$$\frac{\partial F}{\partial y} = \frac{\partial G}{\partial x}.$$

In this case, the solution to the ODE is given by H(x, y) = C, where

$$\frac{\partial H}{\partial x} = F$$
 and $\frac{\partial H}{\partial v} = G$,

and C is just a constant.

Solving Exact ODE's

Show that

$$\frac{dy}{dx} = -\frac{2x+y+1}{2y+x+1}$$

is exact, and hence find its solution.

Rearranging, we have

$$2x + y + 1 + (2y + x + 1)\frac{dy}{dx} = 0,$$

which is in the form of an exact ODE, since

$$\frac{\partial F}{\partial y} = 1 = \frac{\partial G}{\partial x}$$

Solving Exact ODE's, continued

Hence, there must exist a H(x, y) such that

$$\frac{\partial H}{\partial x} = 2x + y + 1 = F$$
$$\frac{\partial H}{\partial y} = 2y + x + 1 = G.$$

Now, when we integrate F with respect to x, we get

$$H(x, y) = x^2 + xy + x + C_1(y),$$

where the constant of integration is with respect to y, since it's treated as a constant w.r.t x.

Solving Exact ODE's, continued

Similarly, when integrating G with respect to y, we obtain

$$H(x, y) = y^2 + xy + y + C_2(x),$$

where the constant is a function of x.

Now, comparing these two forms, we can see that the final form is

$$H(x,y) = x^2 + xy + y^2 + x + y.$$

The solution to this exact ODE is

$$x^2 + xy + y^2 + x + y = C,$$

the value of C dependent on initial conditions.

Second-Order Linear ODE's I

The Homogeneous Case

A second order linear ODE is homogeneous if it is of the form:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0.$$

- If y_1 and y_2 are two solutions to this ODE, then any linear combination (i.e. $Ay_1 + By_2$) is also a solution.
- If y_1 and y_2 are two linearly independent solutions to the above ODE, then every solution can be written in the form $y = Ay_1 + By_2$.

Second-Order Linear ODE's II

Finding Homogeneous Solutions

• To solve second-order linear ODE's of the form:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0,$$

substitute in the solution $y = Ae^{\lambda x}$:

$$\lambda^{2}(Ae^{\lambda x}) + a\lambda(Ae^{\lambda x}) + b(Ae^{\lambda x}) = 0$$

• Factorising out $Ae^{\lambda x}$ produces the **characteristic equation**, which allows us to find the λ 's:

$$\lambda^2 + a\lambda + b = 0$$

Second-Order Linear ODE's III

Finding Homogeneous Solutions Continued

Solving the characteristic equation leads to one of three cases:

i) If there are two distinct, real roots (λ_1 and λ_2), then the general solution is:

$$y=Ae^{\lambda_1x}+Be^{\lambda_2x}.$$

ii) If there is one repeated real root (λ_1) , then the general solution is:

$$y = Ae^{\lambda_1 x} + Bxe^{\lambda_1 x}.$$

iii) If there are two complex conjugate roots ($\alpha \pm \beta i$), then the general solution is:

$$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x).$$

MATH1251 (S2, 2018) Q3 iii)

a) If y is a function of x, find the general solution of the following differential equation for y.

$$y'' + 6y' + 9y = 0$$

MATH1251 (S2, 2018) Q3 iii)

a) If y is a function of x, find the general solution of the following differential equation for y.

$$y^{\prime\prime}+6y^{\prime}+9y=0$$

a) First, solve the corresponding characteristic equation:

$$\lambda^{2} + 6\lambda + 9 = 0$$
$$(\lambda + 3)^{2} = 0$$
$$\lambda = -3$$

Since there is a repeated root, the general solution will be in the form:

$$y = Ae^{-3x} + Bxe^{-3x}$$

Second-Order Linear ODE's IV

Non-homogeneous ODE's

Functions of Several Variables

• A non-homogeneous ODE will be in the form:

$$y'' + ay' + by'' = f(x).$$

• To solve this, we first find the homogeneous solution before looking for a particular solution. The general solution will then be a sum of these two:

$$y = y_H + y_P$$
.

• To find the particular solution (y_P) , we make a "guess", which will depend on the form of f.

Second-Order Linear ODE's V

f(x)	Guess for particular solution y_p
P(x) (polynomial of degree n)	Q(x) (polynomial of degree n)
$P(x)e^{sx}$	$Q(x)e^{sx}$
$P(x)\cos(sx)$ or $P(x)\sin(sx)$	$Q_1(x)\cos(sx) + Q_2(x)\sin(sx)$
$P(x)e^{sx}\cos(tx)$ or $P(x)e^{sx}\sin(tx)$	$Q_1(x)e^{sx}\cos(tx) + Q_2(x)e^{sx}\sin(tx)$

If P(x) is a constant, then Q(x) is also a constant.

Second-Order Linear ODE's VI

Non-homogeneous ODE's Continued

- If any term for the guess for y_P is a homogeneous solution, then multiply it by x. If it is still a homogeneous solution, then multiply it by x again.
- After making the appropriate guess for the particular solution, substitute it into the ODE and equate to find the unknown coefficients.
- Add the particular solution to the homogeneous solution to get the general solution.
- If initial values are given, substitute them in at this point to find the coefficients from the homogeneous solution.

b) What form of the trial solution would you use to find a particular solution to the following differential equation?

$$y'' + 6y' + 9y = e^{-3x}$$

b) What form of the trial solution would you use to find a particular solution to the following differential equation?

$$y'' + 6y' + 9y = e^{-3x}$$

b) As e^{-3x} and xe^{-3x} are part of the solution for the homogeneous equation, the particular solution should be in the form:

$$y = Cx^2e^{-3x}$$

MATH1231 (T1, 2019) Q2 d)

Find the general solution the following ordinary differential equation

$$y''(x) + 4y'(x) + 4y(x) = 8x$$

MATH1231 (T1, 2019) Q2 d)

Find the general solution the following ordinary differential equation

$$y''(x) + 4y'(x) + 4y(x) = 8x$$

First, solve the homogeneous equation by solving the characteristic equation:

$$\lambda^{2} + 4\lambda + 4 = 0$$
$$\lambda = -2$$
$$y_{H} = Ae^{-2x} + Bxe^{-2x}$$

Next, find the particular solution:

$$y_P = Cx + D$$
$$y_P' = C$$
$$y_P'' = 0$$

Substitute into ODE:

$$0 + 4C + 4(Cx + D) = 8x$$
$$4Cx + 4C + 4D = 8x$$
$$4C = 8 \implies C = 2$$
$$4C + 4D = 0 \implies D = -2$$

$$y = Ae^{-2x} + Be^{-2x} + 2x - 2$$

MATH1251 (S2, 2017) Q3 ii)

Solve the following initial-value problem

$$y'' - 5y' + 6y = 10e^{2x}$$
, $y(0) = 1$, $y'(0) = 1$.

MATH1251 (S2, 2017) Q3 ii)

Solve the following initial-value problem

$$y'' - 5y' + 6y = 10e^{2x}, \quad y(0) = 1, \quad y'(0) = 1.$$

Solve the characteristic equation for the homogeneous problem:

$$\lambda^{2} - 5\lambda + 6\lambda = 0$$
$$\lambda = 2,3$$
$$y_{H} = Ae^{2x} + Be^{3x}$$

Find the particular solution:

$$y_P = Cxe^{2x}$$

 $y'_P = C(e^{2x} + 2xe^{2x})$
 $y''_P = C(4e^{2x} + 4xe^{2x})$

Substitute into the equation:

$$C\left[(4e^{2x} + 4xe^{2x}) - 5(e^{2x} + 2xe^{2x}) + 6(xe^{2x}) \right] = 10e^{2x}$$
$$C\left[(4-5)e^{2x} + (4-10+6)xe^{2x} \right] = 10e^{2x}$$

$$-Ce^{2x} = 10e^{2x}$$
$$C = -10$$

$$y = y_H + y_P$$

= $Ae^{2x} + Be^{3x} - 10xe^{2x}$

ODE's

Substitute initial values:

$$y(0) = Ae^{0} + Be^{0} - 10(0)e^{0} = 1$$

$$\implies A + B = 1$$

$$y'(0) = 2Ae^{0} + 3Be^{0} - 10e^{0} - 20(0)e^{0} = 1$$

$$\implies 2A + 3B - 10 = 1$$

$$\implies 2A + 3B = 11$$

$$A = -8$$

$$B = 9$$

$$y = -8e^{2x} + 9e^{3x} - 10xe^{2x}$$

Taylor Series

Applications to Stationary Points

Classifying Stationary Points

- Suppose that a function f is n times differentiable at a and that f'(a) = 0. Then to classify this stationary point, we can keep differentiating f at a (up to n times) until we find a non-zero value.
- Suppose that k is the least integer such that k < n and $f^{(k)}(a) \neq 0$. Then
 - i) a is a local minimum point if k is even and $f^{(k)}(a) > 0$ (e.g. f''(a) > 0;
 - ii) a is a local maximum if k is even and $f^{(k)}(a) < 0$;
 - iii) a is a horizontal point of inflection if k is odd.

Sequences I

Definition of a Sequence

• A **sequence** is a function with the natural numbers as its domain and real numbers as its codomain. Sequences have their own notation:

$$\{a_n\}$$
 or $\{a_n\}_0^{\infty}$

 Sequences are defined by a rule which tells us how to find each term. For example:

$$a_n = n^2$$

$$a_n = a_{n-1} + a_{n-2}$$

Sequences II

Convergence and Divergence

• A sequence a_n is **convergent** if it approaches some finite number L as n approaches infinity.

$$\lim_{n\to\infty}a_n=L$$

• A sequence that is not convergent is **divergent**. A divergent sequence can either be boundedly divergent or unboundedly divergent. An example of a boundedly divergent sequence is:

$$a_n = \sin n$$
.

• If $a_n = f(n)$ for all large n and $\lim_{x \to \infty} f(x)$ exists, then

$$\lim_{n\to\infty}a_n=\lim_{x\to\infty}f(x)$$

Taylor Series Example I

MATH1231 (S2, 2016) Q2 i) a)

Determine whether the sequence

$$\sqrt{n+\sqrt{n}}-\sqrt{n}$$

converges or diverges as $n \to \infty$. If it converges, find its limit.

Taylor Series Example I

MATH1231 (S2, 2016) Q2 i) a)

Determine whether the sequence

$$\sqrt{n+\sqrt{n}}-\sqrt{n}$$

converges or diverges as $n \to \infty$. If it converges, find its limit.

Substituting large numbers into your calculator will indicate that the sequence converges to 0.5.

Taylor Series

Taylor Series Example I

For a more intuitive answer, it can be shown that,

$$\sqrt{n+\sqrt{n}} - \sqrt{n} = \frac{\sqrt{n}}{\sqrt{n+\sqrt{n}} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{\frac{n+\sqrt{n}}{n}} + 1}$$

$$= \frac{1}{\sqrt{1+\frac{1}{\sqrt{n}}} + 1}$$

$$\to 0.5 \text{ as } n \to \infty.$$

Sequences III

Combination of Sequences

• Since sequences are a type of function with the same domain (\mathbb{N}) , they can be added, subtracted, multiplied and divided to produce a new sequence.

$${a_n} + {b_n} = {a_n + b_n}$$

• If two sequences are convergent, then the same applies to their limits.

$$\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \times \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}$$

Sequences IV

Order of Growth

 To determine the convergence/divergence of a sequence composed of elementary functions, it is important to know the order of growth between them.

a _n	growth rate as $n \to \infty$
1	constant
log n	grows slowly
n^k , where $k > 0$	growth rate is faster for larger k
c^n , where $c > 1$	growth rate is faster for larger c
n!	grows rapidly
n ⁿ	grows very rapidly

Sequences V

Pinching Theorem For Sequences

• Suppose that $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are sequences and that for all n > N for some N, the following inequality holds.

$$a_n \leq b_n \leq c_n$$

If $\{a_n\}$ and $\{c_n\}$ both converge to some value L, then $\{b_n\}$ converges to L.

Sequences VI

Another Test For Convergence

- A sequence is **monotonic** if it is either non-increasing or non-decreasing for all n.
- A sequence is **bounded** above if there exists an M such that $a_n < M$ for all natural numbers n.
- A non-decreasing (non-increasing) sequence or real numbers that is bounded above (below) will converge to some real number L.

Sequences VII

Suprema and Infima

- The **supremum** of a sequence $\{a_n\}_{n=0}^{\infty} M$ is its least upper bound. It has two conditions:
 - i) $a_n < M$ for all n.
 - ii) If K is an upper bound, then $K \geq M$.
- Similarly, the **infimum** of a sequence is its greatest lower bound.
- According to the least upper bound axiom, every nonempty set of real numbers that is bounded above, has a least upper bound.

Taylor Series Example II

MATH1231/1241 Calculus Notes Q16

Find the supremum and infimum of each of the following sets.

a)
$$\left\{ \frac{n}{1+n^2} : n=1,2,\ldots \right\}$$

e)
$$\{x \in (0, \infty) : \sin x < 0\}$$

Taylor Series Example II

MATH1231/1241 Calculus Notes Q16

Find the supremum and infimum of each of the following sets.

a)
$$\left\{ \frac{n}{1+n^2} : n=1,2,\ldots \right\}$$

- e) $\{x \in (0, \infty) : \sin x < 0\}$
- a) Since the sequence is strictly decreasing for n = 1, 2, ..., its supremum will be $\frac{1}{2}$ (at n=1).

Since the sequence converges to 0, its infimum will be 0.

Taylor Series Example II

MATH1231/1241 Calculus Notes Q16

Find the supremum and infimum of each of the following sets.

a)
$$\left\{ \frac{n}{1+n^2} : n = 1, 2, \ldots \right\}$$

- e) $\{x \in (0, \infty) : \sin x < 0\}$
- a) Since the sequence is strictly decreasing for n = 1, 2, ..., its supremum will be $\frac{1}{2}$ (at n=1). Since the sequence converges to 0, its infimum will be 0.
- e) This sequence does not have a supremum due to the periodicity of $\sin x$. Its infimum is π .

Infinite Series I

Sums

• A partial sum s_n represents the sum of terms of a sequence up to n.

$$s_n = a_0 + a_1 + \cdots + a_n = \sum_{k=0}^n a_k$$

 If the partial sum approaches some finite L as n → ∞, then the infinite series is summable and converges to L.

$$\lim_{n\to\infty} s_n = \sum_{k=0}^{\infty} a_k = L$$

• If the series does not approach some finite number, then it diverges.

Infinite Series II

Summable Series

• Since summable series can be equated to real numbers, the summations can be manipulated as regular sums:

$$\sum_{k=0}^{\infty} a_k + b_k = \sum_{k=0}^{\infty} a_k + \sum_{k=0}^{\infty} b_k$$

$$\sum_{k=0}^{\infty} (\alpha a_k) = \alpha \sum_{k=0}^{\infty} a_k$$

• As a finite sum (of finite terms) will always be finite, the first N (where $N \in \mathbb{Z}^+$) terms are irrelevant to the convergence of a sum.

$$\sum_{k=0}^{\infty} a_k \quad \text{converges iff} \quad \sum_{k=N}^{\infty} a_k \quad \text{converges.}$$

Tests for Series Convergence I

The kth Term Test for Divergence

- If $\{a_k\}$ diverges as $k \to \infty$, then the series $\sum_{k=1}^{\infty} a_k$ diverges.
- This test is for divergence only.

MATH1231 (S2, 2018) Q4 vi)

Suppose that $\sum a_n$ is a convergent series with $a_n > 0$ for all n.

- a) State $\lim_{n\to\infty} a_n$.
- b) Use the *n*th test to show that $\sum_{n=0}^{\infty} \ln(a_n)$ diverges.
- c) Given that $f(x) = x \ln(1+x)$ is positive for x > 0, determine whether $\sum_{n=0}^{\infty} \ln(1+a_n)$ converges or diverges. Explain your answer.

a) For the series to converge, we must have $\lim_{n\to\infty}a_n=0.$

- For the series to converge, we must have $\lim_{n\to\infty} a_n = 0$.
- b) From a), $\lim_{n\to\infty} \ln(a_n) = -\infty$. Thus, the sequence $\{\ln(a_n)\}$ diverges, and by kth test, the infinite sum diverges.

- a) For the series to converge, we must have $\lim_{n\to\infty} a_n = 0$.
- b) From a), $\lim_{n\to\infty} \ln(a_n) = -\infty$. Thus, the sequence $\{\ln(a_n)\}$ diverges, and by kth test, the infinite sum diverges.
- c) Rearranging, we know that for x > 0,

$$x>\ln\left(1+x\right)>0$$

Then, by substituting $x = a_n$ (as we know $a_n > 0$ for all n), we obtain

$$a_n > \ln\left(1 + a_n\right) > 0$$

By the comparison test, since $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} \ln (1+a_n)$ also converges.

Tests for Series Convergence II

The Comparison Test

- Suppose that $0 \le a_k \le b_k$ for every natural number k. Then
 - i) If $\sum_{\substack{k=0 \ \infty}}^{\infty} b_k$ converges, then $\sum_{\substack{k=0 \ \infty}}^{\infty} a_k$ also converges.
 - ii) If $\sum_{k=0}^{\infty} a_k$ diverges, then $\sum_{k=0}^{\infty} b_k$ also diverges.
- A **p-series** will converge if p > 1 and will diverge if $p \le 1$.

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

MATH1231 (T1, 2019) Q1 d)

Giving brief reasons, state whether the following is true or false?

$$\sum_{s=1}^{\infty} \frac{1}{n^s} \text{ diverges if } s = \frac{2}{3}.$$

MATH1231 (T1, 2019) Q1 d)

Giving brief reasons, state whether the following is true or false?

$$\sum_{n=1}^{\infty} \frac{1}{n^s} \text{ diverges if } s = \frac{2}{3}.$$

True. This is a p-series and will diverge since s < 1.

Taylor Series

The Limit Form of the Comparison Test

• Suppose that a_n , b_n are positive sequences and suppose that $\lim_{n\to\infty}\frac{a_n}{b_n}=L$, where L is some non-zero, finite number. Then $\sum_{n=0}^{\infty}a_n$ converges if and only if $\sum b_n$ converges.

Tests for Series Convergence IV

The Integral Test

- Replace the formula for a_k with f(x). If f(x) is a continuous, positive function that is decreasing on $[1,\infty)$, then we can use it to apply the integral test:
 - i) If $\int_{1}^{\infty} f(x)dx$ converges, then so does $\sum_{k=1}^{\infty} a_k$.
 - ii) If $\int_{1}^{\infty} f(x)dx$ diverges, then so does $\sum_{k=1}^{\infty} a_{k}$.

Taylor Series

Tests for Series Convergence V

The Ratio Test

• Suppose that $\sum a_k$ is an infinite series with positive terms and that

$$\lim_{k\to\infty}\frac{a_{k+1}}{a_k}=r$$

- i) If r < 1, then $\sum a_k$ converges.
- ii) If r > 1, then $\sum a_k$ diverges.
- iii) If r = 1, then the test is inconclusive.

MATH1231 (S2, 2016) Q2 ii)

By using an appropriate test, determine whether each of the following series converges or diverges.

a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

MATH1231 (S2, 2016) Q2 ii)

By using an appropriate test, determine whether each of the following series converges or diverges.

$$a) \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

a) We use the ratio test:

$$\lim_{n \to \infty} \left[\frac{(n+1)^2}{2^{n+1}} / \frac{n^2}{2^n} \right] = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{2n^2}$$
$$= \frac{1}{2}$$

Since the ratio is less than 1, the series converges.

b) $\sum_{k=3}^{\infty} \frac{1}{k(\ln k)^2}$

b)
$$\sum_{k=3}^{\infty} \frac{1}{k(\ln k)^2}$$

b) We use the integral test:

$$\int_{3}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \int_{\ln 3}^{\infty} \frac{du}{u^{2}}$$
$$= \left[-\frac{1}{u} \right]_{\ln 3}^{\infty}$$
$$= \frac{1}{\ln 3}$$

As the integral is finite, series converges.

Taylor Series

Tests for Series Convergence VI

Leibniz' Test for Convergence

• An **alternating series** is whose terms have alternating signs. They exist in the form:

$$a_0 - a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - \cdots$$

- An alternating series of real numbers will converge if the positive versions of its terms satisfy the following:
 - i) $a_k > 0$;
 - ii) $a_k \geq a_{k+1}$ for all k;
 - iii) $\lim_{k\to\infty} a_k = 0$.

Absolute and Conditional Convergence

Absolute and Conditional Convergence

A series is absolutely convergent if the following is convergent.

$$\sum_{k=0}^{\infty} |a_k|$$

- Absolute convergence implies convergence.
- If a series converges, but does not converge absolutely, then it is conditionally convergent.
- A series that converges absolutely will converge to a unique value. A series that converges conditionally can be rearranged to converge to any real number, or even to diverge.

MATH1251 (S2, 2018) Q3 iv)

Determine whether the series

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log(n)}$$

absolutely or conditionally converges, or diverges. Provide reasons.

MATH1251 (S2, 2018) Q3 iv)

Determine whether the series

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log(n)}$$

absolutely or conditionally converges, or diverges. Provide reasons.

First, apply Leinbiz' Test.

- i) $\frac{1}{n \log(n)}$ is non-negative for $n \ge 2$.
- ii) $\frac{1}{(n+1)\log(n+1)} < \frac{1}{n\log(n+1)} < \frac{1}{n\log(n)}$. Therefore the terms are decreasing.
- iii) $\lim_{n \to \infty} \frac{1}{n \log(n)} = 0$ since $\lim_{n \to \infty} n \log(n) \to \infty$.

As it passes the Leibniz' test, the series converges. To test for absolute convergence, use the integral test.

$$\int_{2}^{\infty} \frac{1}{n \log(n)} dx = \int_{\log(2)}^{\infty} \frac{du}{u}$$
$$= \left[\log(u)\right]_{\log(2)}^{\infty}$$

As this tends to infinity, the positive series fails the integral test and so the series converges conditionally.

Taylor Series I

Introduction to Taylor Series

• Taylor Series are infinite sums used to approximate "smooth" functions.

$$\sum_{n=0}^{\infty} \frac{f''(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots$$

• By approximating functions as polynomials, they become easier to understand as well as to compute.

Taylor Series II

Taylor Polynomials

• The nth taylor polynomial for a "smooth" function f about a is defined by:

$$p_n(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)(x - a)^n}{n!}$$
$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$$

Taylor Series III

Taylor's Theorem

• **Taylor's theorem** states that a function f that has n+1continuous derivatives on an open interval I containing a can be approximated using a Taylor polynomial.

$$f(x) = p_n(x) + R_{n+1}(x)$$

• The remainder can be found exactly as:

$$R_{n+1}(x) = \frac{1}{n!} \int_{2}^{x} f^{(n+1)}(t)(x-t) dt$$

Taylor Series IV

Lagrange Form

 Since this is usually difficult to compute, a more convenient form is the Lagrange form of the remainder:

$$R_{n+1}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

for some real number c between a and x.

MATH1241 (T1, 2020) Q6

Let P(x) be a real polynomial of degree N and $c \in \mathbb{R}$. Using Taylor Polynomials, we can always write:

$$P(x) = \sum_{i=0}^{M} a_i (x - c)^i$$

Explain why this is true. In particular:

- state any theorem you would use to prove the equality above;
- give an expression for the largest M such that $a_M \neq 0$ in terms of N and/or P(x);
- explain how the numbers a_i are obtained in terms of P(x).

$$P(x) = \sum_{i=0}^{M} a_i (x - c)^i$$

- Since P(x) is a polynomial, it is infinitely differentiable and by Taylor's theorem, we can always approximate it using a Taylor Polynomial of any degree M.
- As P(x) is of degree N, $P^{(N+1)}(a) = 0$ (for any a). Therefore, for M > N, from the Lagrange form $R_{M+1}(x) = 0$ and so we have $P(x) = p_M(x)$.

Taylor Series

Taylor Series Example VII

$$P(x) = \sum_{i=0}^{M} a_i (x - c)^i$$

- Since P(x) is a polynomial, it is infinitely differentiable and by Taylor's theorem, we can always approximate it using a Taylor Polynomial of any degree M.
- As P(x) is of degree N, $P^{(N+1)}(a) = 0$ (for any a). Therefore, for M > N, from the Lagrange form $R_{M+1}(x) = 0$ and so we have $P(x) = p_M(x)$.
- The largest M such that $a_M \neq 0$ is M = N.
- $\bullet \ a_i = \frac{P^{(i)}(c)}{i!}.$

Taylor Series V

Taylor Series

• A **Taylor Series** for a function f about a is its Taylor polynomial where $n \to \infty$. For the case where a = 0, the series is also called the **Maclaurin Series** for f.

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$$

• If $\lim_{n\to\infty} R_{n+1}(x) = 0$, then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Taylor Series VI

Some examples of convergent Taylor Series:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots \qquad x \in (-1,1)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \qquad x \in \mathbb{R}$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad x \in \mathbb{R}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \qquad x \in \mathbb{R}$$

$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} + \cdots \qquad x \in (-1,1]$$

Power Series I

Power Series

 A Taylor Series is a type of **power series**, which is just a sum of integer powers of x:

$$\sum_{k=0}^{\infty} a_k (x-a)^k,$$

where $\{a_k\}_{k=0}^{\infty}$ is a sequence of real coefficients.

Power Series II

Convergence / Divergence of Power Series

- As with any series, a power series may converge or diverge. However, its convergence/divergence depends on the value of x.
- If a power series of the form $\sum a_k(x-a)^k$ converges for all points in some interval (-R + a, R + a), then R is called the **radius of** convergence and this interval is called the interval of convergence.

Power Series III

Radius of Convergence

• Suppose that for the sequence of coefficients $\{a_k\}_{k=0}^{\infty}$,

$$\lim_{k\to\infty}\left|\frac{a_k}{a_{k+1}}\right|=R$$

for some real number R. Then R is the radius of convergence and the respective power series will:

- i) converge absolutely whenever |x a| < R;
- ii) diverge whenever |x a| > R.
- If the limit does not exist, the radius of convergence can still exist.
- To test at the endpoints, substitute the appropriate values for x and determine convergence/divergence using the previous methods for series.

MATH1251 (S2, 2018) Q4 i)

Find the interval of convergence for the power series

$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{3^n+1}$$

Make sure that you consider the behaviour at the end-points of your interval and provide reasons for your answers.

MATH1251 (S2, 2018) Q4 i)

Find the interval of convergence for the power series

$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{3^n+1}$$

Make sure that you consider the behaviour at the end-points of your interval and provide reasons for your answers.

First, we find R:

$$\lim_{n \to \infty} \left| \frac{1}{3^n + 1} / \frac{1}{3^{n+1} + 1} \right| = \lim_{n \to \infty} \frac{3^{n+1} + 1}{3^n + 1}$$

$$= 3$$

Taylor Series Example VIII

So we know our interval of convergence is (0, 6). At the endpoints, both series diverge

$$\sum_{n=0}^{\infty} \frac{(-3)^n}{3^n + 1} \quad \text{or} \quad \sum_{n=0}^{\infty} \frac{3^n}{3^n + 1}$$

since the sequences approach 1 rather than 0.

Therefore the series does not converge at either endpoint and so the interval of convergence is (0, 6).

Power Series IV

Manipulation of Power Series

 Within their respective intervals of convergence, power series can be added or multiplied together, differentiated or integrated. For example:

$$f(x) = \sum_{k=0}^{\infty} a_k (x - a)^k$$

$$f'(x) = \sum_{k=1}^{\infty} k a_k (x - a)^{k-1}$$

$$F(x) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x - a)^{k+1} + C$$

 Any function that can be expressed as a power series is continuous and differentiable (for all orders) within its radius of convergence.

Taylor Series Example IX

MATH1251 (S2, 2018) Q4 ii)

a) Write down the Taylor Series for $f(x) = \sin(x^2)$ about x = 0 and state its radius of convergence.

Taylor Series

Taylor Series Example IX

MATH1251 (S2, 2018) Q4 ii)

- a) Write down the Taylor Series for $f(x) = \sin(x^2)$ about x = 0 and state its radius of convergence.
- a) We can use the Taylor Series for $\sin(x)$ about x = 0:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$\sin(x^2) = x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \frac{x^{14}}{7!} + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{x^{2(2k+1)}}{(2k+1)!}$$

As the series will always converge, the radius of convergence is infinite.

Taylor Series Example IX

b) Use part (a) to determine an infinite series for the integral

$$I = \int_0^1 \sin\left(x^2\right) dx.$$

Taylor Series

Taylor Series Example IX

b) Use part (a) to determine an infinite series for the integral

$$I = \int_0^1 \sin\left(x^2\right) dx.$$

b)

$$I = \sum_{k=0}^{\infty} \int_{0}^{1} \frac{x^{2(2k+1)}}{(2k+1)!}$$

$$= \sum_{k=0}^{\infty} \left[\frac{x^{4k+3}}{(4k+3)(2k+1)!} \right]_{0}^{1}$$

$$= \sum_{k=0}^{\infty} \frac{1}{(4k+3)(2k+1)!}$$

Functions of Several Variables

Average Value of a Function I

Average Value of a Function

• Suppose that f is integrable on a closed interval [a, b]. Then the **average value** of f in this interval is defined as:

$$\bar{f} = \frac{1}{b-a} \int_a^b f(x) dx$$

Mean Value Theorem for Integrals

• Suppose that f is continuous on [a, b]. Then, there exists a $c \in (a, b)$ such that

$$\int_a^b f(t)dt = f(c)(b-a).$$

 This can be rewritten to resemble the typical mean value theorem in the following way:

$$\frac{F(b) - F(a)}{b - a} = F'(c).$$

Arc Length of a Curve I

Functions of Several Variables

Arc Length of a Parametrised Curve

• Curves are typically expressed in the following parametric form:

$$\mathcal{C} = \{(x(t), y(t)) \in \mathbb{R}^2 : a \leq t \leq b\}.$$

• The length of of the curve can calculated by the formula:

$$\ell = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt.$$

• It is important that the path does not retrace its steps.

Arc Length of a Curve II

Arc Length of a Function

• Where the curve is expressed as a function of x, the arc length on the interval [a, b] is given by:

$$\ell = \int_a^b \sqrt{1 + f'(x)^2} dx.$$

Taylor Series

Applications of Integration Example I

MATH1131 (S2, 2015) Q4 vi)

Let $h(x) = \cosh(x)$ where $a \le x \le b$. Define L to be the arc length of the graph of h between x = a and x = b and define A to be the area bounded by the graph of h and the x-axis between x = a and x = b. Prove that L = A for all $a, b \in \mathbb{R}$.

Applications of Integration Example I

MATH1131 (S2, 2015) Q4 vi)

Let $h(x) = \cosh(x)$ where $a \le x \le b$. Define L to be the arc length of the graph of h between x = a and x = b and define A to be the area bounded by the graph of h and the x-axis between x = a and x = b. Prove that L = A for all $a, b \in \mathbb{R}$.

Using the properties $\frac{d}{dx} \cosh x = \sinh x$ and $\cosh^2 x - \sinh^2 x = 1$, we know that

$$L = \int_{a}^{b} \sqrt{1 + \sinh^{2}(x)} dx$$
$$= \int_{a}^{b} \sqrt{\cosh^{2}(x)} dx$$
$$= \int_{a}^{b} \cosh(x) dx$$

Additionally,

$$A = \int_{a}^{b} \cosh(x) dx$$

Therefore, L = A.

Arc Length of a Curve III

Arc Length of a Polar Curve

• Where the curve is expressed using polar coordinates in the form

$$r = f(\theta),$$

the length of the arc is then given by:

$$\ell = \int_{\theta_0}^{\theta_1} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

Functions of Several Variables

Surface Area Formulae

• Suppose we have have a curve $\mathcal C$ that is **simple** and lies above or on the x-axis. When rotated around the x-axis, the surface area can be found using one of the following:

$$A = \int_{a}^{b} 2\pi y(t) \sqrt{x'(t)^{2} + y'(t)^{2}} dt, \tag{1}$$

$$A = \int_{a}^{b} 2\pi f(x) \sqrt{1 + f'(x)^{2}} dx, \qquad (2)$$

$$A = \int_{\theta_0}^{\theta_1} 2\pi r \sin \theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta. \tag{3}$$

Applications of Integration Example II

MATH1131 (S2, 2018) Q4 v)

A surface is formed by rotating the curve $y = \frac{1}{4}x^2 - 1$ for $2 \le x \le 3$ around the *y*-axis. What is its surface area?

Applications of Integration Example II

MATH1131 (S2, 2018) Q4 v)

A surface is formed by rotating the curve $y = \frac{1}{4}x^2 - 1$ for 2 < x < 3 around the y-axis. What is its surface area?

Notice that the curve is rotated around the y-axis. Then the equation becomes $x = \sqrt{4(y+1)}$, with the bounds as $0 \le y \le \frac{5}{4}$.

$$f(y) = 2\sqrt{y+1}$$

$$f'(y) = \frac{2}{2\sqrt{y+1}}$$

$$= \frac{1}{\sqrt{y+1}}$$

$$A = \int_0^{\frac{5}{4}} 2\pi \left(2\sqrt{y+1}\right) \sqrt{1 + \left(\frac{1}{\sqrt{y+1}}\right)^2} dy$$

Applications of Integration Example II

$$A = 4\pi \int_0^{\frac{5}{4}} \sqrt{y+1} \sqrt{1+\frac{1}{y+1}} dy$$

$$= 4\pi \int_0^{\frac{5}{4}} \sqrt{y+1} \sqrt{\frac{y+2}{y+1}} dy$$

$$= 4\pi \int_0^{\frac{5}{4}} \sqrt{y+2} dy$$

$$= 4\pi \left[\frac{2}{3} (y+2)^{\frac{3}{2}} \right]_0^{\frac{5}{4}}$$

$$= \frac{8\pi}{3} \left[\left(\frac{13}{4} \right)^{\frac{3}{2}} - 2^{\frac{3}{2}} \right]$$

$$= \frac{(13\sqrt{13} - 16\sqrt{2})\pi}{3}$$