Ориентированные графы

Зухба А. В.

Ориентированным графом(орграфом) G называется пара (V, E), где

- ullet V некоторое множество, элементы которого называются вершинами
- E множество, элементы которого называются рёбрами и являются упорядоченными парами вершин (v,v') : $v,v'\in V$

Во многих ситуациях неориентированные графы можно считать частным случаем ориентированных, в которых для каждого ребра существует и обратное. Но когда речь заходит о количестве ребер, приходится соблюдать осторожность. Например, при подсчете стеменей вершин.

Степени в орграфе

В ориентированном графе отдельно определяют входящую и исходящую степени вершин, как количество входящих и исходящих ребер соответственно.

Утверждение В ориентированном графе сумма входящих степеней всех вершин равна сумме исходящих степеней всех вершин и равна количеству ребер в графе.

Понятия маршрута, пути и простого пути звучат для ориентированного графа аналогично с той лишь разницей, что от пары последовательных вершин v_i и v_{i+1} маршрута (пути, простого пути) требуют не просто смежности, а существования ребра из v_i в v_{i+1} . То есть подчеркивается, что существует ориентрованное ребро необходимого направления.

В ориентированном графе отношение достижимости несимметрично, но можно определить симметричное отношение «достижимости в обе стороны». Будем говорить, что вершина u сильно связана с вершиной v, если v достижима из u и наоборот, то есть если есть путь из u в v, а также путь из v в u.

Отношение частичного порядка

Говорят, что бинарное отношение R является **строгим частичным порядком**, если выполнены такие свойства:

- \bullet если R(a,b) и R(b,c), то R(a,c) (транзитивность)
- \bullet R(a, a) всегда ложно (антирефлексивность)

Из этих свойств следует антисимметричность: R(a,b) и R(b,a) не могут выполняться одновременно. В самом деле, тогда по транзитивности (взяв c=a) получаем R(a,a), что противоречит антирефлексивности.

Для наглядности, говоря об отношениях строгого частичного порядка, часто используют обозначение a < b вместо R.

Отношение частичного порядка

Можно определить также отношение нестрогого частичного порядка \leq .

- рефлексивность: ($a \le a$)
- ullet антисимметричность: $(a \leq b)$ и $(b \leq a) \Rightarrow (a = b)$
- ullet транзитивность: $(a \leq b)$ и $(b \leq c) \Rightarrow (a \leq c)$

Если любые два элемента порядка сравнимы $(x \le y \$ или $y \le x)$, такой порядок называется **линейным**.

Порядки P и Q называются **изоморфными**, если есть такая биекция $\phi:P\to Q$, что $x\le y$ равносильно $\phi(x)\le \phi(y)$ для всех пар x, y.

Диаграмма Xácce

- Вершины графа соответствую элементам множества
- Для дополнительной наглядности принято "большие"элементы изображать "выше"
- Ребра рисуют только для тех пар $x \leq y$, для которых не существует такого элемента z, что x < z < y

От ориентированных графов к частичному порядку

Теорема Следующие свойства ориентированного графа равносильны:

- Каждая сильно связная компонента состоит из одной вершины.
- 2 В графе нет циклов.
- Вершины графа можно пронумеровать натуральными числами таким образом, чтобы все рёбра вели «вверх»: из вершины с меньшим номером в вершину с большим.

-									
		0	7					i i	