Lecture 7: Min-Cost Transshipment

Outline

- Min-Cost Max-Flow: shortest-path augmenting
- Min-Cost Uncapacitated TS: wide shortest-path augmenting
- · Min-Cost Circulation: circuit canceling

Assumption: nonnegative edge capacities

1. Min-Cost Max-Flow

Generic method for min-cost max-flow

Assumption: no negative circuits (so that 0 is an extreme flow) Idea:

- Maintain an extreme flow f (initially 0)
- Progress toward max-flow (excess feasibility)

```
Ford-Fulkerson [1958]: f \leftarrow 0; while there is an s-t path in D_f find a shortest s-t path P in D_f f \leftarrow f \oplus P; return f
```

Invariant: f is an extreme flow

Distance-based potentials

Remark: same as in the Hungarian algorithm for Max-Weight BM

Def. $p_f(v) := \text{distance from } s \text{ to } v \text{ in } D_f$, for each $v \in V$.

Claim. p_f is a potential for $D_{f \oplus P}$ Pf. For each $a = (u, v) \in A_{f \oplus P} \setminus A_f \subseteq P^{-1}$, $(v, u) \in P$ hence $p_f(v) = p_f(u) - \ell(v, u) = p_f(u) + \ell(u, v)$

Implementation

```
\begin{array}{l} \text{MinCost-MF}\left(\mathsf{G}\right) \\ \\ \text{Initialization of } f \! = \! 0 \, , \mathbf{p} \\ \\ \text{repeat} \\ \\ \text{reweight all arcs in } D_f \text{ using } p \\ \\ \text{apply Dijkstra's algorithm to compute } P \text{ and } p \\ \\ \text{if } P \text{ is not found return } f \\ \\ \text{else } f \leftarrow f \oplus P \end{array}
```

Initialization of p: Dijkstra's algorithm if nonnegative edge prices or acyclic, or Bellman-Ford algorithm in general

Excluding the initialization, $O(\varphi)$ Dijkstra's SP-computations, where φ is the max-flow value

2. Min-Cost Uncapacitated TS

Min-Cost Uncapacitated b-TS

Assumptions:

- no negative circuits (otherwise, no finite solution)
- $_{\square}$ D is strongly connected.
 - if necessary, add artificial arcs (s, v) and (v, s) for each v and assigning a large price. No such arc would appear in a minimum cost solution.

Idea:

- Maintain an extreme pseudoflow f (initially 0)
- Progress toward excess feasibility

Excess gap and feasibility gap

f: a pseudoflow

Def. The excess-gap of each node $v \in V$ is $gap(v) := f(\delta^{in}(v)) - b(v)$

Def. A node $v \in V$ is b-excessive (resp, b-deficient, b-balanced) if gap(v) > (resp., <, =) 0.

Def. The feasibility gap of f is the total excess-gaps of all b-excessive nodes.

Fact. total excess-gaps of all nodes = 0, hence total excess-gaps of all b-excessive nodes = |total excess-gaps of all b-deficient nodes|

Gap-reducing augmenting path

s: b-excessive

t: b-deficient

P: an s-t path in D_f

Fact. For any $0 < \varepsilon \le |gap(s)| \wedge |gap(t)| \wedge \Delta_f(P)$,

- $f + \varepsilon \chi_P$ has smaller feasibility gap than f by ε
- · no excessive node becomes deficient, and vice versa.

Recap. If f is extreme and P is a shortest s-t path, then $f+\varepsilon\chi_P$ is also extreme.

Generic gap-reducing method

```
Goldberg-Tarjan [1988]: f \leftarrow 0; while f is not a b-TS  \text{pick a } b\text{-excessive node } s;  \text{pick a } b\text{-deficient node } t;  \text{find a shortest s-t path } P \text{ in } A_f;  \text{pick } 0 < \varepsilon \leq |gap(s)| \wedge |gap(t)| \wedge \Delta_f(P);  f \leftarrow f + \varepsilon \chi_P;  \text{return } f
```

f is an extreme pseudoflow, and its feasibility gap is strictly decreasing.

Excess-gap scaling

Intuition: Choose a shortest but wide gap-reducing augmenting path Analogy: Edmonds-Karp capacity-scaling algorithm for max-flow

b is integral

Excess-gap scaling factor Δ : a nonnegative integer power of 2

$$S(\Delta) \coloneqq \{ v \in V : gap(v) \ge \Delta \}$$

$$T(\Delta) \coloneqq \{ v \in V : gap(v) \le -\Delta \}$$

Initial
$$\Delta\coloneqq 2^{\lfloor\log\ \rfloor}$$
 where $B\coloneqq\min\left\{\max_{v:b(v)>0}|b(v)|,\max_{v:b(v)<0}|b(v)|\right\}$ so that either $S(2\Delta)$ or $T(2\Delta)$ is \emptyset

Δ-Scaling Phase

Invariant: At the beginning of the phase, either $S(2\Delta)$ or $T(2\Delta)$ is \emptyset

```
while S(\Delta) \neq \emptyset and T(\Delta) \neq \emptyset

pick s \in S(\Delta) and t \in T(\Delta);

P \leftarrow a shortest s-t path P in A_f;

f \leftarrow f + \Delta \chi_P;
```

Divisibility: The pseudoflow carried on each edge and the excess-gap of every node are integer multiples of Δ

$$\Delta \leq |gap(s)| \wedge |gap(t)| \wedge \Delta_f(P);$$

At the end of 1-scaling phase, both S(1) and T(1) are \emptyset , and f is a b-TS

Distance-based potentials

- Initial potential for f = 0: Bellman-Ford or Dijkstra
- Each subsequent augmentation uses the shortest-path length as the potential

Running Time

Claim. There are at most 2n augmentations per scaling phase.

Pf. Δ -phase:

- In the beginning, the feasibility gap $< n(2\Delta) = 2n\Delta$.
- Each augmentation decreases the feasibility gap by Δ .

Totally, $O(n \log B)$ augmentations, each using Dijkstra's algorithm.

Overall running time: $O((n \log B)((m + n \log n))$

Enhanced excess-gap scaling algorithm

[Orlin 1988,1993]

- b is fractional
- strongly polynomial time: $O((n \log n)((m + n \log n))$
- after each phase, Δ is decreased by a factor either 2 or > 8n
- · an excessive node may become deficient, and vice versa
- · amortized analysis of running time.

Overview of algorithm design

```
f \leftarrow 0, \Delta \coloneqq \max_{v \in V} |b(v)|; while f is not a b-TS // \Delta\text{-phase} abundant-path augmentations;  \text{shortest-path augmentations;}  // \text{update } \Delta  if \max_{v \in V} |gap(v)| = 0 then \text{return } f; if \max_{v \in V} |gap(v)| > \Delta/(8n) then \Delta \coloneqq \Delta/2;  \text{else } \Delta \coloneqq \max_{v \in V} |gap(v)|.   \text{return } f
```

Fact. At the beginning of Δ -phase, $\max_{v \in V} |gap(v)| > \Delta/(4n)$

Max-gap invariant in Δ -phase

initial max-gap
$$\leq 2(1-1/n)\Delta$$

final max-gap $\leq (1-1/n)\Delta$

Def. A node v is Δ -large if $|gap(v)| > (1 - 1/n)\Delta$

Initial max-gap invariant is satisfied

- · in the first phase: max-gap = Δ .
- in each subsequent phase due to the final max-gap invariant in the previous phase.

Final max-gap invariant is ensured (easily) by the SP-augmentations.

Abundant edges and components

Initially, all arcs are non-abundant

At the beginning of the Δ -phase, all nonabundant arcs e with $f(e) \geq 8n\Delta$

are marked abundant.

abundant subgraph: (V, abundant arcs). abundant components: weak components in the abundant subgraph roots: the minimum index node in an abundant component

Divisibility invariant in Δ -phase

flow on each nonabundant arc is an integer multiple of Δ

- satisfied trivially by f = 0
- ensured (easily) by the SP-augmentations and resetting of Δ

Abundance invariant in Δ -phase

for all abundant arcs e,

- initial full-abundance: $f(e) \ge 8n\Delta$
- subsequent half-abundance: $f(e) \ge 4n\Delta$

Initial full abundance is satisfied

- in the first phase: trivial
- · in each subsequent phase: new abundant arcs and final half-abundance in the previous phase.

Half-abundance is ensured jointly by AP & SP augmentations.

Merging of components

- Occurs after additional edges are marked abundant.
- Some roots before merging become non-roots after merging.

n' := number of new non-roots = drop on the # of components

Excursion: gap shift

Inner shift:

- make all non-roots balanced
- > abundant-path augmentations

Outer shift:

- \rightarrow eliminate Δ -large nodes
- shortest-path augmentations

Inner gap shift

n' inner pairs (s, t): new non-root t and its root s

```
for each inner pair (s, t)

gap(t) \leftarrow 0;

gap(s) \leftarrow gap(s) + gap(t);
```

The shift for (s, t) is

- constructive if $|gap(s) + gap(t)| \le gap(s)$
- destructive if |gap(s) + gap(t)| > gap(s)

Eligible root-pairs

Def. A root-pair (s,t) is Δ -eligible if

- either $gap(s) > (1 1/n)\Delta$ and $gap(t) < -\Delta/n$
- or $gap(s) > \Delta/n$ and $gap(t) < -(1-1/n)\Delta$

Fact: There is an Δ -eligible root-pair \Leftrightarrow there is a Δ -large node

Outer gap shift

```
L \leftarrow \emptyset;
while there is a \Delta-large node
(s,t) \leftarrow a \Delta-eligible root-pair;
append (s,t) to L;
gap(s) \leftarrow gap(s) - \Delta;
gap(t) \leftarrow gap(t) + \Delta,
```

- s may become deficient but $|gap(s)| < (1 1/n)\Delta$
- · t may become excessive but $|gap(t)| < (1 1/n)\Delta$
- · no Δ -large nodes in the end

Counting pairs in L

n'' := # of remaining roots which are Δ -large before inner shift

Lemma. $|L| \leq n'' + 2n'$

Charging scheme:

- Each pair charges 1 coin to a Δ -large root
- For each root v receiving at least one charge:
 - first collects 2 coins from each new non-root in its component;
 - \rightarrow if not covering the charge, then pays 1 coin by its own

Claim. charges on $v \le$ coins collected by v; and if v pays 1 coin itself, then it is Δ -large before inner shift

total # of coins collected $\leq n'' + 2n'$

Counting pairs in L

Claim. charges on $v \le$ coins collected by v; and if v pays 1 coin itself, then it is Δ -large before inner shift

Pf. Let k := # of new non-root nodes in its component. The inner shift for each of them increases |gap(v)| by $\leq 2(1-1/n)\Delta$.

Case 1: v is not Δ -large before inner shift. After inner shift,

$$|gap(v)| \le (2k+1)(1-1/n)\Delta.$$

Hence, v can be Δ -large for $\leq 2k$ times.

Case 2: Otherwise. After inner shift,

$$|gap(v)| \le 2(k+1)(1-1/n)\Delta.$$

Hence, v can be Δ -large for $\leq 2k+1$ times.

Total gap shift

total inner gap shift $\leq 2n'(1-1/n)\Delta \leq 2n'\Delta$

total outer gap shit $\leq (n'' + 2n')\Delta$

total gap shift
$$\leq 2n'\Delta + (n'' + 2n')\Delta = (n'' + 4n')\Delta \leq 4n\Delta$$

Abundant-path augmentations

```
for each inner pair (s,t)

P \leftarrow \text{an abundant } s\text{-t path};

augment f along P by |gap(t)| units;
```

- · Half-abundance & divisibility are maintained
- No change to A_f , hence f is extreme throughout
- Running time: O(n'm)

Shortest-path augmentations

```
while there is a \Delta-large node (s,t) \leftarrow a \Delta-eligible root-pair; P \leftarrow a shortest s-t path in A_f; f \leftarrow f + \Delta \chi_P;
```

- · Half-abundance & divisibility are maintained
- Each P has bottleneck capacity $\geq \Delta$
- $\cdot f$ is extreme throughout

Divisibility after resetting Δ

 Δ' : the scaling factor in the next phase

<u>Case 1</u>: $\Delta' = \Delta/2$. Trivial.

<u>Case 2</u>: $\Delta' < \Delta/2$. All arcs e with f(e) > 0 become abundant: $f(e) \ge \Delta \ge 8n\Delta'$.

Hence all non-abundant arcs carry 0 flow.

Running time

Thm. There are $O(n \log n)$ scaling phases and $O(n \log n)$ shortest-path augmentations.

Running time:

- merging and abundant-path augmentations: O(nm)
- shortest-path augmentations: $O((n \log n)((m + n \log n))$
- resetting Δ : $O(n^2 \log n)$

Overall: $O((n \log n)((m + n \log n))$

Component merging

S: a component with $|gap(S)| \ge \Delta/(4n)$ at the beginng of the Δ -phase.

Lemma. Within $k := \lceil \log(36n^2m) \rceil = O(\log n)$ additional scaling phases, S will be merged into a larger component.

Claim. $|b(S)| \ge \Delta/(4n)$ at the beginng of the Δ -phase.

Pf. If
$$f(\delta^{in}(S)) = 0$$
 then $|b(S)| = |gap(S)| \ge \Delta/(4n)$.
Otherwise,
 $|b(S)| \ge |f(\delta^{in}(S))| - |gap(S)| \ge \Delta - 2(1 - 1/n)\Delta > \Delta/(4n)$.

By contradiction. Otherwise, within k scaling phases, the scaling factor will be $\Delta' \leq \Delta/(36n^2m)$, or $\Delta/(4n) \geq 9nm\Delta'$.

Component merging

Claim. At the beginning of the Δ' -phase, $\delta(S)$ contains an abundant edge.

Pf.

$$\left| f\left(\delta^{in}(S)\right) \right| \ge |b(S)| - |gap(S)| \ge \Delta/(4n) - 2(1 - 1/n)\Delta'$$

$$> 9nm\Delta' - 2\Delta' \ge 8nm\Delta'.$$

Hence $\delta(S)$ contains an e with $f(e) > 8n\Delta'$.

After AP-augmentations, S gets merged into a larger component, a contradiction.

Counting scaling phases

Thm. There are $O(n \log n)$ scaling phases.

Pf.

S: a component with largest |gap(S)| at the beginng of the Δ -phase.

$$|gap(S)| \ge \Delta/(4n)$$

S will be merged into a larger component within $O(\log n)$ scaling phases.

Counting shortest-path augmentations

Thm. There are $O(n \log n)$ shortest-path augmentations.

Charging + coin collection scheme

- Each new non-root pays ≤ 2 coins $\Rightarrow \leq 2n$ coins from new non-roots.
- Each root v pays $O(\log n)$ coins before its component S gets merged.

Pf. Suppose v pays > 1 coins before S gets merged. At the beginning of the Δ -phase where v pays its second coin,

$$|gap(S)| = |gap(v)| > (1 - 1/n)\Delta > \Delta(4n).$$

 $\leq 2n$ different components $\Rightarrow \leq O(n \log n)$ coins from roots

3. Min-Cost Circulation

Generic Circuit Canceling Method

Idea:

- Maintain a feasible circulation (capacity & excess constraints).
- Progress toward optimality (no negative circuit)

```
Klein [1967]: f \leftarrow \text{an initial circulation;} while there is a negative circuit in A_f find a negative circuit C in A_f; f \leftarrow f \oplus C; return f
```

Min-Mean Circuit Canceling

Goldberg-Tarjan [1988]

- Each iteration finds a min-mean circuit in time O(mn).
- Conceptually simple yet strongly polynomial

Thm. Total number of iterations is $O(m^2 n \log n)$.

- f_0, f_1, f_2, \dots : sequence of circulations
- $A_i \coloneqq A_{f_i}$

For all i except the last one,

- $C_i := \min \max circuit in A_i$
- $\mu_i \coloneqq -\ell(C_i)/|C_i|$: "optimality gap"
- · C_i^* : the set of bottleneck edges in C_i

$$A_{i+1} = [(A_i \setminus C_i^*) \cup C_i^{-1}]$$

Overview of the analysis

$$l \coloneqq mn[\ln(2n-1)]$$

 C_i has an edge a s.t. neither a nor a^{-1} appears in any C_j with $j \ge i + l$.

 \Rightarrow total number of iterations O(ml)

Decreasing sequence: $\mu_0 \ge \mu_1 \ge \mu_2 \ge \cdots$

- after m iterations: $\mu_{i+m} \leq (1-1/n)\mu_i$
- after mn iterations: $\mu_{i+mn} \leq (1-1/n)^n \mu_i < \mu_i/e$
- after l iterations: $\mu_{i+l} < \mu_i/e^{\ln(2n-1)} = \mu_i/(2n-1)$.

Recap: Adjusted edge lengths (prices)

- Raising the length of each edge in A_i by μ_i makes all circuits in A_i non-negative.
- □ Node price function p_i : $p_i(v) p_i(u) \le \ell(u, v) + \mu_i$, $\forall (u, v) \in A_i$
- ℓ_i : p_i -adjusted edge length function on A.

$$\ell_i(u, v) \coloneqq \ell(u, v) + p_i(u) - p_i(v), \forall (u, v) \in A$$

- for any circuit C in A, $\ell_i(C) = \ell(C)$
- $\ell_i(a) \ge -\mu_i$ for each $a \in A_i$; $\ell_i(a) = -\mu_i$ for each $a \in C_i$
 - \triangleright each $a \in A$ with $\ell_i(a) < -\mu_i$ is not in A_i , i.e., $f_i(a) = c(a)$
 - \triangleright $\ell_i(a) \leq \mu_i$ for each $a \in A_i^{-1}$; $\ell_i(a) = \mu_i$ for each $a \in C_i^{-1}$

Frozen effect

$$C_i' \coloneqq \{a \in C_i : \ell_{i+l}(a) \le -\mu_i\}$$

- $C_i' \neq \emptyset$ since $\ell_{i+l}(C_i)/|C_i| = \ell(C_i)/|C_i| = -\mu_i$
- Each $a \in C'_i$ is extraordinarily cheap: $\ell_{i+l}(a) \le -\mu_i < -(2n-1)\mu_{i+l}$

Thm. For each $a \in C'_i$, $f_j(a) = c(a)$ (i.e., $a \notin A_j$) for all $j \ge i + l$.

Coro. For each $a \in C'_i$, and $a^{-1} \notin C_j$ for all $j \ge i + l$ except the last one.

Pf.

$$a^{-1} \in C_j \Rightarrow f_{j+1}(a^{-1}) > f_j(a^{-1})$$

 $\Rightarrow f_{j+1}(a) < f_j(a) = c(a)$

Frozen effect

Thm. For each $a \in C'_i$, $f_j(a) = c(a)$ (i.e., $a \notin A_j$) for all $j \ge i + l$.

Pf.
$$\ell_{i+l}(a) < -(2n-1)\mu_{i+l} < -\mu_{i+l} \Rightarrow a \notin A_{i+l} \Rightarrow f_{i+l}(a) = c(a)$$
.

Assume by contradiction $f_j(a) < c(a) = f_{i+l}(a)$ for some j > i+l. Then $A^+(f_{i+l} - f_j)$ contains a circuit C s.t. $a \in C \subseteq A_j \cap A_{i+l}^{-1}$.

$$a \in C \subseteq A_{i+l}^{-1} \Rightarrow$$

$$\ell(C) = \ell_{i+l}(C) = \ell_{i+l}(a) + \ell_{i+l}(C \setminus \{a\})$$

$$< -(2n-1)\mu_{i+l} + (|C|-1)\mu_{i+l} = -(2n-|C|)\mu_{i+l} \leq -|C|\mu_{i+l}$$

 \cdot j is not the last one, and $C \subseteq A_j \Rightarrow \ell(C) = \ell_j(C) \ge -|C|\mu_j \ge -|C|\mu_{i+1}$

a contradiction!

Drop after single-iteration

Lemma. $\mu_{i+1} \leq \mu_i$

Pf.

$$C_{i+1} \subseteq A_{i+1} \subseteq A_i \cup C_i^{-1}$$

 $\Rightarrow \ell_i(a) \ge -\mu_i \text{ for each } a \in C_{i+1}$
 $\Rightarrow \ell_i(C_{i+1}) \ge -|C_{i+1}|\mu_i$
 $\Rightarrow \mu_{i+1} = -\ell(C_{i+1})/|C_{i+1}| = -\ell_i(C_{i+1})/|C_{i+1}| \le \mu_i$.

Geometric drop after m iterations

Lemma. $\mu_{i+m} \leq (1 - 1/n)\mu_i$.

Pf.

$$C_i \subseteq A^- \coloneqq \{ a \in A : \ell_i(a) < 0 \}$$
$$k \coloneqq \max\{ j \ge i : C_j \subseteq A^- \}$$

Claim. $A_j \cap A^-$ is strictly decreasing for $i \leq j \leq k+1$. Pf. For each $i \leq j \leq k$, $\emptyset \neq C_j^* \subseteq C_j \subseteq A_j \cap A^-$, hence $A_{j+1} \cap A^- = [(A_j \setminus C_j^*) \cup C_j^{-1}] \cap A^- = (A_j \cap A^-) \setminus C_j^* \subset A_j \cap A^-$.

Claim. k < i + m.

Pf. Otherwise,

$$|A^-| \ge |A_i \cap A^-| \ge |A_k \cap A^-| + k - i \ge |C_k| + m > m.$$

Geometric drop after m iterations

Claim. $\mu_{k+1} \le (1 - 1/n)\mu_i$.

Pf.

$$\ell_i(C_{k+1}) \ge \ell_i(C_{k+1} \cap A^-)$$
 // keeping only negative edges
 $\ge -|C_{k+1} \cap A^-|\mu_i$ // $C_{k+1} \cap A^- \subseteq A_{k+1} \cap A^- \subseteq A_i \cap A^- \subseteq A_i$
 $\ge -(|C_{k+1}| - 1)\mu_i$ // $C_{k+1} \not\subseteq A^-$ by the choice of k

Thus,

$$\mu_{k+1} = -\frac{\ell(C_{k+1})}{|C_{k+1}|} = -\frac{\ell_i(C_{k+1})}{|C_{k+1}|} \le \left(1 - \frac{1}{|C_{k+1}|}\right) \mu_i \le \left(1 - \frac{1}{n}\right) \mu_i.$$

Finally, since $i + m \ge k + 1$, $\mu_{i+m} \le \mu_{k+1}$

Summary

- Shortest-path augmenting
 - Maintain extremeness (i.e., no negative circuit), and move toward excess feasibility
- · Circuit canceling
 - Maintain excess feasibility, and move toward optimality (i.e., no negative circuit)
- Advanced variants
 - generalized flow: linear gain/loss
 - . convex cost
 - submodular transshipment (flow): the excesses satisfy
 submodular constraints