CS5841/EE5841 Machine Learning

Lecture 6: Clustering and dimensionality reduction

Evan Lucas

Overview

- Course updates
- Dimensionality reduction
- Clustering

Class updates

- HW1 due soon
- HW2 progress?
- HW3 released last Friday
- Clustering/dimensionality reduction quiz instead of homework?
- Decision tree/ensemble learning quiz coming up
- Probability quiz deadlines extended
- Review day for half of class on Wednesday

Dimensionality Reduction

Bishop 12

Curse of dimensionality

- Increasing the number of features will not always improve classification accuracy.
- In practice, the inclusion of more features might actually lead to worse performance.
- When dimensionality increases, the volume of the space increases exponentially so that the data becomes sparce.
- The number of training examples required increases exponentially with dimensionality d.

Curse of dimensionality (KNN example)

In KNN, points tend to never be close together in high dimensional space

Credit: Bill Howe

Curse of dimensionality (KNN example)

- $oldsymbol{:}$ Consider a **hypersphere** with radius r and dimension d
- Distance between center and the corners is $r\sqrt{d}$

•
$$\sqrt{r^2 + r^2}$$

Consider hypercube with edge of length 2r

$$rac{V_{hypersphere}}{V_{hypercube}} = rac{\pi^{d/2}}{d2^{d-1}\Gamma(d/2)}
ightarrow 0$$
 as $d
ightarrow \infty$.

Hypercube consist almost entirely of the "corners"

Data Compression

- Reduces the required time and storage space
- Removing multi-collinearity improves the interpretation of the parameters of the machine learning model.

$$x^{(1)} \in R^2 \to z^{(1)} \in R$$

 $x^{(2)} \in R^2 \to z^{(1)} \in R$

:

$$x^{(m)} \in R^2 \to z^{(m)} \in R$$

Data Compression

Reduce data from 3D to 2D

In reality: 1000D to 100D

Principal Component Analysis (PCA)

Find a single line onto which to project this data

Principal Component Analysis (PCA)

Find a single line onto which to project this data

minimize the projection error

Principal Component Analysis (PCA)

 PCA tries to find the surface (a straight line in this case) which has the minimum projection error

• Reduce n-D to k-D: find $u^{(1)}, u^{(2)}, \cdots, u^{(k)} \in \mathbb{R}^n$ onto which to project the data, so as to minimize the projection error

Feature scaling is important before PCA

Normalization/Standardization is Important before PCA

Linear regression vs. PCA

Bonus point: What is the difference?

Data pre-processing

- Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$
- Preprocessing (feature scaling/mean normalization)

$$\mu_j = \frac{1}{m} \sum_i x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j - \mu_j$

If different features on different scales, scale features to have comparable range of values

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_i}$$

 s_i : Biggest – smallest, Standard deviation (more commonly)

Principal Component Analysis Algorithm

- Goal: Reduce data from n-dimensions to k-dimensions
- Step 1: Compute "covariance matrix"

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathsf{T}} \implies \text{an } [\mathsf{n} \times \mathsf{n}] \text{ matrix}$$

 Step 2: Compute "eigenvectors" of the covariance matrix (e.g., using singular value decomposition)

$$[U, S, V] = svd(\Sigma)$$

$$\Sigma \mathbf{u_i} = \lambda_i \mathbf{u_i}$$

we assume eigenvalue $\lambda_1 > \lambda_2 > \dots > \lambda_n$ and $u_1, u_2, \dots u_n$ are the corresponding eigenvectors

$$U = \begin{bmatrix} \begin{vmatrix} & & & & \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ & & & \end{vmatrix} \in \mathbb{R}^{n \times n}$$

Principal Component Analysis Algorithm

- Goal: Reduce data from n-dimensions to kdimensions
- Principal components: $u^{(1)}$, $u^{(2)}$, \cdots , $u^{(k)} \in \mathbb{R}^n$
 - Just take the first k-vectors from U (first k columns)

$$U = \begin{bmatrix} \begin{vmatrix} & & & & \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ & & & \end{vmatrix} \in \mathbb{R}^{n \times n}$$

- Ureduce = U(:, 1:k) \implies an $[n \times k]$ matrix
- $z = Ureduce^{T} * x$ $\longrightarrow a[k x 1] vector$

$$z = U_{reduce}^T x$$

PCA algorithm summary

- Preprocessing
- Calculate sigma (covariance matrix)
- Calculate eigenvectors with svd
- Take k vectors from U (Ureduce = U(:, 1:k))
- Calculate z ($z = U_{reduce}^T x$)

Clustering

ESL 14.3

Clustering Examples

- Market segmentation
 - group customers into different market segments
- Organizing computer clusters and data centers
 - for network layout and location
- Astronomical data analysis
 - understanding galaxy formation

K-means

Take unlabeled data and group into two clusters

Randomly allocate K points as cluster centroids

Assign each point depending on which centroid it's closest to

Move centroid to the average centroid of all points

Iterate

Animations

K-means algorithm

- Input:
 - K (number of clusters)
 - Training set $\left\{x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(m)}\right\}$

K-means algorithm

• Randomly initialize K cluster centroids $\mu_1, \mu_2, \cdots, \mu_K \in \mathbb{R}^n$ Repeat{

```
for i = 1 to m
c^{(i)} \coloneqq \text{index (from 1 to } K) \text{ of cluster centroid } 
\text{closest to } x^{(i)}
\text{Cluster assignment step}
```

```
for k=1 to K \mu_k \coloneqq \text{average (mean) of points assigned to cluster } k
```

Centroid update step

K-means optimization objective

- $c^{(i)} = \text{Index of cluster (1, 2, ... K) to which}$ example $x^{(i)}$ is currently assigned
- μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)
- $\mu_{c^{(i)}} =$ cluster centroid of cluster to which example $x^{(i)}$ has been assigned
- Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - \mu_{c^{(i)}}\|^2$$

$$\min_{\substack{c^{(1)},\cdots,c^{(m)}\\\mu_1,\cdots,\mu_K}} J(c^{(1)},\cdots,c^{(m)},\mu_1,\cdots,\mu_K)$$

Example:

$$x^{(i)} = 5$$
 $c^{(i)} = 5$
 $\mu_{c^{(i)}} = \mu_{5}$

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

Repeat{ for i = 1 to m

Cluster assignment step
$$J(c^{(1)},\cdots,c^{(m)},\mu_1,\cdots,\mu_K) = \frac{1}{m}\sum_{i=1}^m \left\|x^{(i)}-\mu_{c^{(i)}}\right\|^2$$

 $c^{(i)} \coloneqq \text{index (from 1 to } K) \text{ of cluster centroid closest to } x^{(i)}$

for k = 1 to K

Centroid update step
$$J(c^{(1)},\cdots,c^{(m)},\mu_1,\cdots,\mu_K) = \frac{1}{m}\sum_{i=1}^m \left\|x^{(i)}-\mu_{c^{(i)}}\right\|^2$$

= average (mean) of points assigned to

K-means algorithm

- Stopping criterion
 - no (or minimum) re-assignments of data points to different clusters
 - no (or minimum) change of centroids
 - minimum decrease in the optimization objective
 - Maximum iterations

Random initialization

- $oldsymbol{\epsilon}$ Randomly pick K training examples
- Set $\mu_1, \mu_2, \cdots, \mu_K$ equal to those K examples

Local Optimum

Solutions to Local Optimum

Multiple random initialization

Furthest Point Heuristic

1) Multiple random initialization

```
For i = 1 to 100 { Randomly initialize K-means. Run K-means. Get c^{(1)}, \cdots, c^{(m)}, \mu_1, \cdots, \mu_K Compute the cost function (distortion) J(c^{(1)}, \cdots, c^{(m)}, \mu_1, \cdots, \mu_K) }
```

Pick clustering that gave the lowest cost $J(c^{(1)},\cdots,c^{(m)},\mu_1,\cdots,\mu_K)$

2) Furthest Point Heuristic

Choose μ_1 arbitrarily (or at random)

For j = 2 to K

Pick μ_j among data points $x^{(1)}, x^{(2)}, \cdots, x^{(m)}$ that is farthest from previously chosen $\mu_1, \mu_2, \cdots, \mu_{j-1}$

Slide credit: Maria-Florina Balcan

How to choose K?

Cluster validity indices!!
An assessment of how "good" a given clustering is
Generally based on inter-cluster separation and intra-cluster spread
Ex: Davies-Bouldin Index, Silhouette

Score, etc.

 Can also use visualizations to do it manually

How to choose K?

• 1) Elbow method

Credit: Andrew Ng

How to choose K?

• 2) Try multiple K and use performance from downstream tasks for selection (ie. "engineering decision")

K=3 or K=5?

- cost of making extra sizes vs. how well distributed the products are
- How important are those sizes though?

Summary

- k-means is the most popular clustering algorithm
- Pros
 - Simple: easy to understand and to implement
 - Efficient
 - Time complexity: O(tkn), where n is the number of data points, k is the number of clusters, and t is the number of iterations.
 - Since both k and t are small. k-means is considered a linear algorithm.

Cons

- The user needs to specify k
- Sensitive to outliers
- Not suitable for special data structure

Geometric interpretation of PCA

- PCA chooses the eigenvectors of the covariance matrix corresponding to the largest eigenvalues.
- The eigenvalues correspond to the variance of the data along the eigenvector directions.

 Therefore, PCA projects the data along the directions where the data varies most.

u₁: direction of max variance

u₂: orthogonal to u₁

Reconstruction from compressed representation

Compression:

$$z^{(i)} = U_{\text{reduce}}^{\mathsf{T}} x^{(i)}$$

• Reconstruction: $x_{
m approx}^{(i)} = U_{
m reduce} z^{(i)}$

• $x_{\text{approx}}^{(i)} \in \mathbb{R}^n$

Application of PCA

- Compression
 - Reduce memory/disk needed to store data
 - Speed up learning algorithm
- Visualization (k=2, k=3)
- Bad use of PCA
 - Use it to prevent over-fitting
 - Fewer features □ less likely overfitting?
 - Might work OK, but not a good way to address overfitting
 - PCA does not look at y, may throw away some critical information
 - Use regularization instead.

Questions + Comments?