	47 YASH SARANG
1 X 66 7 1	Assignment 5: Triction
0	Determine the force P to cause motion to impend. Take masses & and B as 8kg and 4 kg repetively and coefficient of static friction as 0.3. The force P and rope are parallel to the incline plane source snooth pulley
	G C
•	30
->	As the force P is applied to the block A, it impends to pull it down the plane and at the same time Block B impende to travel upthe plane.
	to travel upthe plane. F.B.D of Block B: W. O.SM.
•	:. Applying COE, $\Sigma F_{x} = 0$ ($\rightarrow tre$) $\Sigma F_{y} = 0$ ($\uparrow tre$) -0.3 N, +T - W, sin 30° = 0 N, - W, cost 30° = 0 T = 0.3 ×338 + 8×9.81×sin 30° N, = 8×9.81×cost 30°.
*	== T= 29.81 N N1 = 33.98N
	F.B.D of Block A: Spolying COE, EFy=0 (Anc) :. N2 = 8x9.1xwx30° posning 30° hr
	P = 0.3 x 9.81 x 8 x cos 30° + 29.81 - 8 x 9.81 sin 30° P = 0.3 x 9.81 x 8 x cos 30° + 29.81 - 8 x 9.81 sin 30°
Sundaram)	FOR EDUCATIONAL USE

47_ Yash Sarlang are placed on 480N SON 4=0.25 40N 4=0.15 P is applied remains stationary with C : N = 80N P = 0.4 x80 P. = 2436N 32N SOR OHN, :, P= 0.25x130 Block A, B and C P2 = 0.15X170 :0 Pz = 25.5N takes place Sundaram FOR EDUCATIONAL USE

47_ Yash Sarlang 3) Two blocks A and B are resting against the wall and blood as shown in figure. Find I minimum value of P that will hold the system in equilibrium. 4=0.25 at the floor, 4=0.3 at the wall and 4=0.2 between blocks In this wedge problem, Wedge A and nove down pushing wadge B to the right. Force P prevents this and holds the system in equilibrium. F.B.D of wedge A: 1 1 02N3 ZF2=0 (-> (le) 11--> a2N, cos60 0.2N 3 6860 +N2 -N351,60=0 N3 W. N3 1860 : N2 - 0.766N3 = 0 _ 0 ZFy=0 (1 hre) ... N3cos 60° +0.3N2-500 @+0.2N3sin60°=0 .. 0.3N2 + 0.6732N3 = 500 _ 0 from @ and @ , we get N2 = 424N and N3 = 553.7N F.B.D of wedge B: .. EFy=0 (1 the) N1 - 0.2N3 sh60 - N3 cos 60 - 1000 =0 O. 2N3 CB 60 - /1 :. N, = 1372.7N 5Fx=0 (-the) : Nasin60 - 0.25N, -0.2Naus60 - P=0 .. P = 80,97N

	47 - Yash Savang	
49	A person of weight P = 600N asunds the 5m ladder of weight 400N as shown. How far up the ladder may the person climb before sliding motion of ladder takes place	
7	For maximum distance is the person climbs, 4000N the ladder empends to slip down and more away from the wall.	
	J.B.D of laddler 100N	<u>></u>
	0.3N, N, 0.3N, N, 0.3N, N, 0.3N, N, 0.3N, = 1000N	
	$\therefore \sum F_{u}=0 \text{ (1 tre)} \qquad \therefore R_{e}=0.3N_{c}=0.$ $\therefore R_{e}=300N_{c}$ $\sum M_{e}^{F}=0 \text{ (U tre)}$	<u>)</u>
	*(00x60x400 + 2.5(00x60x600 - Re 5sin60° =0.	
Sundaram)	FOR EDUCATIONAL USE	
(Junuaram)	TOR EDUCATIONAL COL	2814C115