Gradient Descent Methods

Consider the minimization problem

$$min_{x \in R^n} f(x)$$

- **Definition**: $x^* \in \mathbb{R}^n$ is said to be a
 - global minima of f if $f(x^*) \le f(x)$ for all $x \in R^n$.
 - a strict global minima of f if $f(x^*) < f(x)$ for all $x \in R^n$.
 - a local minima of f if ther exists a neighbourhood of x^* ($N(x^*, \varepsilon), \varepsilon > 0$) such that $f(x^*) \le f(x)$ for all $x \in N(x^*, \varepsilon)$.
- If f is a convex function then every local minima of f is a global minima of f.
- If f is a strict convex function then f has unique minima.

• **Descent direction:** Suppose $f: R^n \to R$ be a continuous function. $d \in R^n$ is said to be a decent direction of f at x if there exists $\overline{\alpha} > 0$ such that $f(x + \alpha d) < f(x)$

for all $\alpha \in (0, \overline{\alpha})$.

Example: Suppose $f(x) = x_1^2 + x_1^2$ and $x = (1,1)^T$. $d = (-4,1)^T$ is a descent direction of f at x since $f(x + \alpha d) < f(x)$

for all $\alpha \in (0, 0.3)$.

• x^* is a local minima of f if and only if there does not exist any descent direction of f at x^* .

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. If $\nabla f(x)^T d < 0$ for some $d \in \mathbb{R}^n$ then d is a descent direction of f at x.

In the previous example
$$\nabla f(x) = {2x_1 \choose 2x_2}$$
. So $\nabla f\left({1 \choose 1}\right) = {2 \choose 2}$

Cleary
$$\left(\nabla f \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)^T d = \begin{pmatrix} 2 \\ 2 \end{pmatrix}^T \begin{pmatrix} -4 \\ 1 \end{pmatrix} = -8 + 2 = -6 < 0$$

Hence
$$d = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$
 is a descent direction of f at $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• First order necessary condition: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. If $x^* \in \mathbb{R}^n$ is a local minima of f then $\nabla f(x^*) = 0$.

Proof: Suppose $x^* \in \mathbb{R}^n$ is a local minima of f and $\nabla f(x^*) \neq 0$.

Let $d = -\nabla f(x^*)$. Then

$$(\nabla f(x^*))^T d = -(\nabla f(x^*))^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0.$$

This implies d is a descent of f at x^* . Hence there exists $\alpha > 0$ such that $f(x^* + \alpha d) < f(x^*)$. This contradicts that x^* is a local minima of f.

• For $f(x) = x_1^2 + x_1^2$ then $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a local minima.

Clearly $\nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Descent methods:

Input: Unconstrained objective function (f) and initial approximation (x^0)

Output: An approximate stationary point (x^*)

Algorithm:

- Step 0 (Initialization): Supply f, x^0 , $\varepsilon > 0$ and other related scalars. Set $k \coloneqq 0$.
- Step 1 (Optimality check): If $||f(x^k)||^2 < \varepsilon$. Otherwise go to Step 2.
- Step 2 (Descent direction): Find a suitable descent direction d^k .
- Step 3 (Step length): Select a suitable step length $\alpha_k>0$ such that $f(x^k+\alpha_k d^k)< f(x^k)$
- Step 4 (Update): Update $x^{k+1} = x^k + \alpha_k d^k$. Set $k \coloneqq k+1$ and go to Step 1.

Selection of step length

• Exact line search: Suppose d^k be a descent direction of f at x^k . Step length α_k is as

$$\alpha_k = argmin_{\alpha > 0} f(x^k + \alpha d^k)$$

• Suppose $f(x) = x_1^2 + x_1^2$. $d^k = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ is a descent direction of f at $x^k = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Using exact line search

$$\alpha_k = \operatorname{argmin}_{\alpha > 0} (1 - 4\alpha)^2 + (1 + \alpha)^2$$

Suppose $f(\alpha) = (1 - 4\alpha)^2 + (1 + \alpha)^2$. For min of $f(\alpha)$, $f'(\alpha) = 0$.

This implies
$$-8(1-4\alpha) + 2(1+\alpha) = 0$$
, i.e $\alpha = \frac{6}{34} = 0.1765$

Clearly
$$f\left(\binom{1}{1} + 0.1765 \binom{-4}{1}\right) = 1.4706 < f\left(\binom{1}{1}\right)$$
.

- Inexact line search:
 - In exact line search, we have to solve an optimization problem at every iteration. This is computationally expensive.
 - Inexact line search techniques are developed to overcome these limitations.
 - We have to select step length to ensure:
 - Sufficient decrease in objective function
 - Step length not too small
 - Following **Armijo condition** ensures sufficient decrease in objective function $f(x + \alpha d) \le f(x) + \alpha \beta_1 \nabla f(x)^T d$, $0 < \beta_1 < 1$ (1)
 - Wolfe condition ensure that step length is not too small $\nabla f(x + \alpha d)^T d \ge \beta_2 \nabla f(x)^T d$, $\beta_1 < \beta_2 < 1$ (2)
 - Backtracking line search:
 - Set α : = 1
 - While either (1) or (2) does hold update α : = αr for some $r \in (0,1)$.

- Suppose $f(x) = 4x_1^2 + x_2^2$. At $x^0 = (1,1)^T$, $d = (-1,2)^T$ is a descent direction of f since $\nabla f(x^0)^T d = (8,2) \binom{-1}{2} = -4 < 0$.
- Set $\beta_1 = 10^{-4}$, $\beta_2 = 0.9$ and r = 0.5.
- For $\alpha = 1$,

$$f(x^0 + \alpha d) - \{f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d\} = 4.0004 > 0$$

Hence Armijo condition does not hold for $\alpha=1$. So update $\alpha=1*0.5=0.5$

• For $\alpha = 0.5$

$$f(x^0 + \alpha d) - \{f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d\} = 0.0002$$

Hence Armijo condition does not hold for $\alpha=0.5$. So update $\alpha=0.5*0.5=0.25$

• For $\alpha = 0.25$

$$f(x^0 + \alpha d) - \{f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d\} = -0.4999$$

Hence Armijo condition holds for $\alpha = 0.25$.

• Next verify Wolfe condition for $\alpha = 0.25$.

$$\nabla f(x^0 + 0.25d)^T d - \beta_2 \nabla f(x^0)^T d = 3.6 > 0$$

- Hence Armijo-Wolfe conditions are satisfied for $\alpha = 0.25$.
- Select $\alpha = 0.25$ and proceed further.

Algorithm:

- Step 0 (Initialization/Inputs): Choose f, x^0 (initialization), $\varepsilon(>0)$, β_1 , β_2 (0< β_1 < β_2 <1) and $r \in (0,1)$. (β_1 , β_2 , and r are required only if we use inexact line search technique). Set $k \coloneqq 0$.
- Step 1 (Optimality/Stopping condition check): Compute $\nabla f(x^0)$. If $\|\nabla f(x^0)\| < \varepsilon$ then stop. Otherwise go to Step 2.
- Step 2 (Compute descent direction) : Use different technique to compute suitable descent direction d^k .
- Step 3 (Step length selection): Use exact/inexact (Armijo-Wolfe backtracking) line search technique to find suitable step length ($\alpha_k > 0$).
- Step 4 (Update): Update x^{k+1} by $x^{k+1}=x^k+\alpha_k d^k$. Set $k \coloneqq k+1$ and go to Step 1.
- Output: An approximate stationary point.

Steepest Descent Method:

- In this method we use $d^k = -\nabla f(x^k)$.
- Clearly d^k is a descent direction since

$$d^{kT}\nabla f(x^k) = -\|\nabla f(x^k)\|^2 < 0$$

Example:

- Suppose $f(x) = 4x_1^2 + x_2^2 2x_1x_2$.
- Then $\nabla f(x) = \begin{pmatrix} 8x_1 2x_2 \\ -82x_1 + 2x_2 \end{pmatrix}$. Clearly $\nabla f(x) = 0$ implies $x_1 = 0 = x_2$. Now $\nabla^2 f(x) = \begin{pmatrix} 8x_1 2x_2 \\ -2x_1 2 \end{pmatrix}$.
- At $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\nabla^2 f(x)$ is positive definite (verify).
- Hence $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a local minima of f

Solve $min_{x \in R^2} f(x) = 4x_1^2 + x_2^2 - 2x_1x_2$ using steepest descent method.

- Choose initial approximation $x^0=\binom{2}{2}$, $\beta_1=10^{-4}$, $\beta_2=0.9$, r=0.5, and $\epsilon=10^{-3}$.
- Now $\nabla f(x^0) = {12 \choose 0}$, clearly $\|\nabla f(x^0)\| = 12 > \varepsilon$. So we calculate d^0 and proceed.
- $d^0 = -\nabla f(x^0) = \begin{pmatrix} -12 \\ 0 \end{pmatrix}$.
- Next select step length using exact line search technique:
 - $\alpha_0 = argmin_{\alpha > 0} \phi(\alpha) = 4(2 12\alpha)^2 + 4 2(2 12\alpha)^2$
 - $\phi'(\alpha) = -96(2-12\alpha) + 48$
 - If α_0 is a minimizer then $\phi'(\alpha_0)=0$. This implies $\alpha_0=0.125$

• So
$$x^1 = x^0 + \alpha_0 d^0 = {2 \choose 2} + 0.125 {-12 \choose 0} = {0.5 \choose 2}$$

- Clearly $f(x^1) = 3 < f(x^0) = 12$
- Now $\nabla f(x^0) = {0 \choose 3}$, clearly $\|\nabla f(x^0)\| = 3 > \varepsilon$. So we calculate d^1 and proceed.

•
$$d^1 = -\nabla f(x^1) = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$
.

- Next select step length using exact line search technique:
 - $\alpha_1 = argmin_{\alpha > 0} \phi(\alpha) = 1 + (2 3\alpha)^2 2 * 0.5(2 3\alpha)$
 - $\phi'(\alpha) = -6(2-3\alpha) + 3$
 - If α_1 is a minimizer then $\phi'(\alpha_1) = 0$. This implies $\alpha_1 = 0.5$

• Then
$$x^2 = x^1 + \alpha_1 d^1 = {0.5 \choose 2} + 0.5 {0 \choose -3} = {0.5 \choose 0.5}$$

• Clearly
$$f(x^2) = 0.75 < f(x^1) = 0$$

• Now
$$\nabla f(x^2) = \binom{3}{0}$$
, $d^2 = \binom{-3}{0}$.

Observe that

•
$$(d^0)^T d^1 = (-12,0) \begin{pmatrix} 0 \\ -3 \end{pmatrix} = 0$$

•
$$(d^1)^T d^2 = (0, -3) {\binom{-3}{0}} = 0$$

• In steepest descent method two consecutive descent directions are perpendicular to each other if step lengths are selected using exact line search technique.

Solve $min_{x \in R^2} f(x) = (x_1 - 2)^2 + (2x_2 - x_1)^2$ using steepest descent method (using Armijo-Wolfe inexact line search technique)

- Choose initial approximation $x^0 = {3 \choose 3}$, $\beta_1 = 10^{-4}$, $\beta_2 = 0.9$, r = 0.5, and $\varepsilon = 10^{-3}$.
- We, $f(x^0) = 10$.
- Now $\nabla f(x^0) = {-4 \choose 12}$, clearly $\|\nabla f(x^0)\| = 12.65 > \varepsilon$. So we calculate d^0 and proceed.
- $d^0 = -\nabla f(x^0) = \binom{4}{-12}$.

- Select step length using inexact line search technique:
 - For $\alpha = 1$, $f(x^0 + \alpha d^0) = 650 > f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d^0$.
 - Update $\alpha = \alpha r = 0.5$
 - For $\alpha = 0.5$, $f(x^0 + \alpha d^0) = 130 > f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d^0$.
 - Update $\alpha = \alpha r = 0.25$
 - For $\alpha = 0.25$, $f(x^0 + \alpha d^0) = 20 > f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d^0$.
 - Update $\alpha = \alpha r = 0.125$
 - For $\alpha = 0.125$, $f(x^0 + \alpha d^0) = 2.5 < f(x^0) + \alpha \beta_1 \nabla f(x^0)^T d^0$.
 - Also $\nabla f(x^0 + \alpha d^0)^T d^0 > \beta_2 \nabla f(x^0)^T d^0$ holds for $\alpha = 0.125$
 - So we choose $\alpha_0 = 0.125$

• Then
$$x^1 = x^0 + \alpha_0 d^0 = {3 \choose 3} + 1/8 {4 \choose -12} = {3.5 \choose 1.5}$$

- Clearly $f(x^1) = 2.5 < f(x^0) = 10$
- Final solution using stopping criteria $\|\nabla f(x^k)\| < \varepsilon$ is $x^{26} = {2.00022 \choose 1.00017} \cong {2 \choose 1}$
- Major limitation of steepest descent method is: it converges linearly that is rate of convergence is 1.

Mirror Descent Method

Consider the problem

$$min_{x \in R^n} f(x)$$

• Descent direction at x^k is obtained by solving the unconstrained problem

$$\min_{d} \Delta f(x^k)^T d + \frac{1}{2} d^T d$$

- The second term is same ae Euclidian distace.
- We observed that steepest descent method converges slowly.
- To increase the convergence rate, we replace Euclidian distance by some non-Euclidian distance called Bregman distance.

• Suppose $h: X \subseteq \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a strcitly convex function and X is a closed subset. Bregman distance induced by h is defined by

$$d_h(x, y) = h(x) - h(y) - \nabla h(y)^T (x - y)$$
 (b1)

- By mean value theorem $d_h(x,y)=\frac{1}{2}(x-y)^T\nabla^2h(\zeta)(x-y)$ for some ζ in x and y.
- Since h is strongly convex function
 - $d_h(x, y) \ge 0$ for all x and y.
 - $d_h(x, y) = 0$ iff x = y.
- But $d_h(x, y) \neq d_h(y, x)$ (Verify with counter example)
- Also triangular inequality does not hold for Bregman distance.
- Three point identity: For x, y, z

$$d_h(x, y) = d_h(x, z) + d_h(z, y) - (x - z)^T (\Delta h(y) - \nabla h(z))$$

from RHS, show LHS using (b1).

Examples

• Define $h(x) = x^T x$, then $d_h(x,y) = (x-y)^T (x-y) = \|x-y\|^2$

this is same as Euclidian distance.

• Define $h(x) = x^T Q x$, where Q is symmetric positive definite. Then $d_h(x,y) = (x-y)^T Q(x-y)$

This is known as elliptic norm or squared Mahalanobis distance

• Define $h(x) = \sum_{i=1}^{n} x_i log(x_i)$, with 0log(0) = 0. Then

$$d_h(x,y) = \sum_{i=1}^n \left(x_i \log \left(\frac{x_i}{y_i} \right) - x_i + y_i \right)$$

This is called Kullback-Leibler divergence (KL-divergence).

• Descent direction at x^k is obtained by solving the unconstrained problem

$$\frac{min}{d} \Delta f(x^k)^T d + \frac{1}{2} d_h(x^k + d, d)$$

Newton Method

• Consider the unconstrained optimization problem $min_{x \in R^n} f(x)$

where f is a strictly convex function.

ullet At any iterating point x^k , consider the quadratic approximation of f as

$$q(x; x^k) = f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2} (x - x^k)^T \nabla^2 f(x^k) (x - x^k)$$

• Choose next iterating point is the minimizer of $q(x; x^k)$, i.e.

$$x^{k+1} = argmin_{x \in R^n} q(x; x^k)$$

• Then

i.e.

$$\nabla q(x^{k+1}; x^k) = 0$$

• This implies

$$\nabla f(x^k) + \nabla^2 f(x^k)(x^{k+1} - x^k) = 0$$
$$x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$$

• Comparing above update formula with $x^{k+1} = x^k + \alpha_k d^k$ we have

$$\alpha_k = 1 \text{ and } d^k = -\left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$$

• d^k is a descent direction since

$$d^{k^T}\nabla f(x^k) = -\nabla f(x^k)^T \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k) < 0$$

• The last inequality holds since $\nabla^2 f(x^k)$ is positive definite (as f is strictly convex) implies $(\nabla^2 f(x^k))^{-1}$ is positive definite.

- Example: Let $f(x) = 3x_1^2 + x_2^2 3x_1x_2 + 3x_1 x_2$
- Choose $x^0 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$
- $\nabla f(x) = \begin{pmatrix} 6x_1 3x_2 + 3 \\ -3x_1 + 2x_2 1 \end{pmatrix}$, $\nabla^2 f(x) = \begin{pmatrix} 6 & -3 \\ -3 & 2 \end{pmatrix}$
- $\nabla f(x^0) = \begin{pmatrix} 12 \\ -4 \end{pmatrix}$
- $x^1 = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 6 & -3 \\ -3 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 12 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ -4 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
- $\nabla f(x^1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Hence $x^1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ is the solution
- If f is a quadratic function then Newton method converges to solution in first iteration.

- Suppose $f(x) = (x_1 2)^4 + (x_1 2x_2)^2$.
- Then $\nabla f(x) = \begin{pmatrix} 4(x_1 2)^3 + 2(x_1 2x_2) \\ -4(x_1 2x_2) \end{pmatrix}$

and
$$\nabla^2 f(x) = \begin{pmatrix} 12(x_1 - 2)^2 + 2 & -4 \\ -4 & 8 \end{pmatrix}$$

• Choose $x^0 = {0 \choose 3}$. Then $f(x^0) = 25$

k	x^k	$f(x^k)$	$\nabla f(x^k)$	$\nabla^2 f(x^k)$	$\left(\nabla^2 f(x^k)\right)^{-1}$	d^k	$x^{k+1} = x^k + d^k$
0	$\binom{0}{3}$	25	$\binom{-44}{6}$	$\begin{pmatrix} 56 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{96} \begin{pmatrix} 2 & 4 \\ 4 & 56 \end{pmatrix}$	$\binom{2/3}{-5/3}$	$\binom{0.6667}{1.3334}$
1	$\binom{0.6667}{1.3334}$	3.1605	$\binom{-9.4806}{0}$	$\begin{pmatrix} 29.332 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{42.664} \begin{pmatrix} 2 & 4 \\ 4 & 29.332 \end{pmatrix}$	$\binom{0.4444}{0.8888}$	$\binom{1.1111}{2.2222}$
2	$\binom{1.1111}{2.2222}$	0.62433	$\binom{-2.8093}{0}$	$\begin{pmatrix} 17.4815 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{18.963} \begin{pmatrix} 2 & 4 \\ 4 & 17.482 \end{pmatrix}$	$\binom{0.2963}{0.5926}$	$\binom{1.4074}{2.8148}$
3	$\binom{1.4074}{2.8148}$	0.12332	$\begin{pmatrix} -0.8324 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 12.214 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{8.428} \begin{pmatrix} 2 & 4 \\ 4 & 12.214 \end{pmatrix}$	$\binom{0.1975}{0.395}$	$\binom{1.6049}{3.2098}$
4	$\binom{1.6049}{3.2098}$	0.0244	$\binom{-0.2467}{0}$	$\begin{pmatrix} 9.8732 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{3.7464} \begin{pmatrix} 2 & 4 \\ 4 & 9.8732 \end{pmatrix}$	$\binom{0.1317}{0.2634}$	$\binom{1.7366}{3.4732}$
5	$\binom{1.7366}{3.4732}$	0.00481	$\begin{pmatrix} -0.0731\\0\end{pmatrix}$	$\begin{pmatrix} 8.8325 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{1.665} \binom{2}{4} \frac{4}{8.8325}$	$\binom{0.0877}{0.1755}$	(1.8243) 3.6487)

Observe that $\{x^k\}$ converging to $x^* = (2,4)^T$