CS5691: Pattern Recognition and Machine Learning

Assignment 3

Report

Course Instructor: Arun Rajkumar

Submitted By: Vennapareddy Abhigna

Roll Number: ME19B059

Date: 27/04/2022

Indian Institute of Technology Madras Chennai 600036, India

SPAM or HAM

We built a spam classifier by training the data taken from Kaggle.

Dataset:

The dataset has been chosen from

 $\underline{https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset?resource=download}\ .$

This dataset consists of 5572 labeled messages with 87% being labeled as ham (0) and 13% labeled as spam (1).

Reading files from test folder:

Give the path directory of the test folder in the second cell of the code file. Each file in this folder will be a test email and will be named 'email#.txt' ('email1.txt', 'email2.txt', etc).

The contents in these files are converted from rtf to text files and then stored in a dataframe. For each of these emails, the classifier predicts +1 (spam) or 0 (non Spam)

Problem Analysis with dataset:

The below observed results prove that the dataset that we chose is not enough to give best possible results.

	С	Train_Accuracy	Test_Accuracy
0	5.0	0.999551	0.98296
1	10.0	0.999776	0.98296
2	15.0	1.000000	0.98296
3	20.0	1.000000	0.98296
4	25.0	1.000000	0.98296

Hence we add another dataset to this to get more training data. Dataset can be downloaded from: https://drive.google.com/file/d/1IgoNFcTD4PbUKyL-8ZT9UXgWYwSO6pFg/view?usp=sharing

Now, by adding a new dataset we revisit all the results.

This final dataset consists of 10743 labeled messages with 79% being labeled as ham (0) and 21% labeled as spam (1)

Vectorizing:

We use the CountVectorizer function as it is used to convert a collection of text documents to a vector of term/token counts. It also enables the pre-processing of text data prior to generating the vector representation.

It produced 54003 features by mentioning the presence of each feature in each message by 0 or 1. These are then saved as a dataframe to train the model.

Training and Testing using SVM Models:

The SVM kernel is a function that takes low dimensional input space and transforms it into higher-dimensional space making it separable. Compared the results of kernel SVM with gaussian and sigmoid functions by splitting the data into 75% train and 25% test set.

Gaussian:
$$K(x_i, x_i) = exp(-\gamma ||x_i - x_i||)^2$$

Sigmoid:
$$K(x_i, x_j) = tanh(\alpha x^a y + c)$$

In gaussian kernel, C for which the best test accuracy is obtained is chosen and predicted on the test emails.

3

	С	Train_Accuracy	Test_Accuracy
0	10.0	0.991932	0.972822
1	20.0	0.995159	0.971705
2	30.0	0.996525	0.971705
3	40.0	0.997766	0.970588
4	50.0	0.998759	0.970961
5	60.0	0.998883	0.969844
6	70.0	0.999255	0.968354
7	80.0	0.999379	0.967238
8	90.0	0.999379	0.967982
9	100.0	0.999628	0.967982
10	110.0	0.999752	0.967982
11	120.0	0.999752	0.967610
12	130.0	0.999752	0.966121
13	140.0	0.999752	0.965748
14	150.0	0.999876	0.965748
15	160.0	0.999876	0.966121
16	170.0	0.999876	0.966121
17	180.0	0.999876	0.966493
18	190.0	0.999876	0.966121

Confusion matrix for C = 10

	Predicted 0	Predicted 1
Actual 0	2121	19
Actual 1	54	492

In sigmoid kernel, C for which the best test accuracy is obtained is chosen and predicted on the test emails.

	С	Train_Accuracy	Test_Accuracy
0	10.0	0.947127	0.928891
1	20.0	0.945017	0.925168
2	30.0	0.966737	0.932614
3	40.0	0.939928	0.913999
4	50.0	0.937818	0.913254
5	60.0	0.935956	0.910648
6	70.0	0.935336	0.909531
7	80.0	0.934839	0.908414
8	90.0	0.934219	0.906925
9	100.0	0.933598	0.905808
10	110.0	0.933226	0.903574
11	120.0	0.933102	0.902829
12	130.0	0.932605	0.902085
13	140.0	0.932481	0.900596
14	150.0	0.932357	0.900596
15	160.0	0.931985	0.899851
16	170.0	0.931736	0.900596
17	180.0	0.931240	0.897990
18	190.0	0.931364	0.899479

Confusion matrix for C = 30

	Predicted 0	Predicted 1
Actual 0	2051	89
Actual 1	92	454

Compared to both gaussian and sigmoid kernels, Gaussian kernel gave best results.

By both the functions, the given sample emails are labeled correctly as 0 and 1 respectively for email1.txt and email2.txt.