(2 pts)

This exam is **no book**, **no gadgets**. You may use **one sheet of notes** (letter size, two sides), which you submit with the exam. There are 30 questions, worth 62 points. Marks will be curved.

	with the exam.	There are 30 questions, worth 62 points. Marks will be curved.				
		This exam is my own work. I understand it is governed by the Emory Honor Code.				
	Signature:					
	Fill in the Bl	ank: fill each blank appropriately. An answer could be a word, a phrase, or a formula.				
		Divide and Conquer				
)	1. Solve the re	ecurrence $T(n) = 7 T(n/2) + n^3$. (big-Oh)				
	2. Consider the a, b, d implies	the recurrence $T(n) = aT(n/b) + O(n^d)$, with constants $a > 0$, $b > 1$, and $d \ge 0$. What condition on the sides $T(n) = \Theta(n^d \log n)$?				
		2. logba=d, bd=a				
	3. Recall Quic did we find	ekSelect. It resembles QuickSort, but we only want to output one value (the kth). What recurrence bounding $T(n)$, the expected running time of QuickSelect on an input of size n ? 3. $T(n) = T(\frac{3}{4}n) + O(n)$				
	4. What algor	with did we associate with the recurrence $T(n) = 3 T(n/2) + O(n)$?				
		4 integer mult, Karatsuba				
	5. Given n nu $r_2)\cdots(x-r_n)$	mbers r_1, r_2, \ldots, r_n , how much time did we need to compute the polynomial $P(x) = (x - r_1)(x - r_n)$? (homework, big-Oh)				
		5. O(n lg ² n)				
	6. In the discre $a_2x^2 + \cdots a_n$	ete Fourier transform, we are given a number ω (with $\omega^n = 1$) and a polynomial $A(x) = a_0 + a_1 x^1 + a_1 x^{n-1}$. We want to compute the vector $\vec{y} = (y_0, y_1, \dots y_{n-1})$, where y_j equals what?				
		$A(\omega^j)$				
	7. In the FFT butterflies a	circuit, a single "butterfly" computes two values from two other values (it looks like \square). How many are in an FFT circuit with n inputs and n outputs $(n=2^k)$?				
		7. nk/2, ½ngn				
]	Dynamic Prog	gramming (DP)				
8	time compu	3. To compute the LCS (longest common subsequence) of two sequences of lengths m and n , we first spend $O(mn)$ time computing a matrix of numbers. How much additional time do we need for backtracking, to find the actual				
	sequence? (O(m+n) 8.				
	9. Recall the all What is the	lgorithm for the chain matrix multiplication problem, finding the fastest way to multiply n matrices. e total space (words of memory) used by the algorithm? (big-Oh)				
		9. U(N)				

(2 pts)	10.	In our DP algorithm for the TSP, a subproblem is to compute $C(S,j)$, the cost of a shortest tour starting at 1, ending at j, and visiting the points of $S \subseteq \{1,2,\ldots,n\}$ (so $\{1,j\}\subseteq S$). d_{kj} is the distance from k to j. For $ S \geq 3$, give the formula for $C(S,j)$ in terms of smaller subproblems. 10. $K \in S - \{1,2,\ldots,n\}$
(2 pts)	11.	We are given graph G with n vertices, and a tree decomposition of G with treewidth k , and N tree nodes. We want to decide whether G has a 3-coloring. In our dynamic programming approach, how many subproblems are there? (big-Oh, homework) $O(N-3^{k}) O(n-3^{k})$
	Gr	reed and Approximation
(2 pts)	12.	Suppose a boolean formula is an AND of clauses, each clause is an OR of literals, and each literal is either a positive variable or a negated variable. What additional property would make it a Horn formula?
		12. at most one positive per clause
(2 pts)	13.	In the Set Cover problem, suppose there are n points to cover, and an optimal solution uses k sets. After t iterations of the greedy algorithm, at most how many points are still not covered?
(2 pts)	14.	"PTAS" is an acronym for what? 13
(2 pts)	15.	Baker's algorithm reduces the $(1 - \varepsilon)$ -approximate MIS problem in planar graphs, to the exact MIS problem in bounded treewidth graphs. What was the treewidth bound in terms of ε ? (Include leading constant.) 15. $3/\varepsilon$ ± 0 (i)
(2 pts)	16.	We saw two different 2-approximation algorithms for VC (minimum vertex cover). What is an advantage of the algorithm using LP relaxation? 16. allows weights
(2 pts)	17.	What is a minimization problem, other than vertex cover, for which we saw a 2-approximation algorithm? 17. **L-center*, T5P**
	Ma	EXFlow: Here G is a flow network with $\underline{n} = V $ vertices, $\underline{m} = E $ edges, and each edge e has capacity $c(e)$.
(2 pts)		Suppose we run Ford-Fulkerson, always picking a shortest augmenting path from s to t . What was our bound on the number of augmenting paths needed? (big-Oh, slides) 18. $O(nm)$, $O(VE)$

(2 pts) 19. Suppose Ford-Fulkerson has stopped. We have a flow f, and we cannot find a path from s to t in the residual network G_f . How can we find a min-cut S? (It should have $s \in S$ and $t \in V - S$.)

19. $V : S \rightarrow V$ in G_f

(2 pts) 20. Suppose f is a max-flow and (S, V - S) is a min-cut $(s \in S, t \in V - S)$. What can we say about f(e), the flow on an edge e from S to V - S?

20. ____f(e) = c(e)

	Fage 5 of 5
21.	Given a flow f in G , we can decompose f into at most how many path flows? (homework)
	21. m, (E)
Du	nality: Suppose we have dual LP's: MAX= $\max\{c \cdot x \colon Ax \leq b, x \geq 0\}$ and MIN= $\min\{b \cdot y \colon A^t y \geq c, y \geq 0\}$.
	Suppose x and y are feasible points for the two LP's (not necessarily optimal points). What relation do we know between $c \cdot x$ and $b \cdot y$?
	22. C. X & biy
23.	Suppose feasible vectors x^* and y^* achieve MAX=MIN. What condition on the constraints of x^* would imply that y_1^* (the first value in y^*) must be zero? First not tight, 23. (Ax*), < b
24.	Suppose we modify the MAX LP, allowing its first variable x_1 to be any real value (possibly negative). How should we modify the MIN LP, to maintain duality? First becomes equality, 24. $(A^{t}y^{*}) = C_{t}$
Ot	her Stuff
25.	We saw a simple reduction from the boolean circuit value problem (CVP) to linear programming (LP). What did this imply about LP? P-complete, 25probably_not_in_NC
26.	What algorithm (a named algorithm from linear algebra) did we use as a "separation oracle" for the convex domain of the MAXCUT' problem? 26. Cholesky decomposition
27.	Suppose \vec{v}_1 and \vec{v}_2 are two unit vectors in our MAXCUT' solution, with angle α between them (so $0 \le \alpha \le \pi$). What is the probability that edge $\{1,2\}$ is cut, when we randomly round to a MAXCUT solution?
28.	To do branch-and-bound for a minimization problem, the book required three routines: "chooose" (picking the next subproblem from a list), "expand" (replacing a subproblem by smaller subproblems), and what?
29.	We want to find s minimizing $cost(s)$. We try simulated annealing, at temperature T . In one iteration, we first pick a random a neighbor s' of our current s . What is the probability that we then replace s with s' ? 29. $min(l, e^{-(cost(s') - cost(s))} / e^{-(cost(s) - cost(s))} / e^{-(cost($
Sho	ort Answer (you may use the back!)
	State the "minimax theorem".
	In a two-player matrix game with mixed strategies, it does not matter which player announces strategy first.
	not matter which player announces strategy first.
	22. 23. 24. 25. 26. 27. 28. 29.

(P.C. for other "min/max" theorems.)