

Fundamentals of Acoustics:

Diffuse Field Model

Prof. Livio Mazzarella

Dipartimento di Energia

2

Application of the Diffuse Field Model

Diffuse Field: Average Time between Reflections

For a plane wave propagating in a generic direction \vec{n} (identified by Ω subscript) the components of its propagation speed c are:

$$v_{p,x} = c \sin \theta \cos \psi$$
$$v_{p,y} = c \sin \theta \sin \psi$$
$$v_{p,z} = c \cos \theta$$

The wave front traces on each axis move from one end to another before a reflection can occurs; the related elapsed times are:

$$t_x = L_x/v_{p,x}$$
 ; $t_y = L_y/v_{p,y}$; $t_z = L_z/v_{p,z}$

the reflection frequencies (number of reflections in one second) along each axis are then

$$f_x = 1/t_x = v_{p,x}/L_x = c \sin\theta \cos\psi/L_x$$

$$f_y = 1/t_y = v_{p,y}/L_y = c \sin\theta \sin\psi/L_y$$

$$f_y = 1/t_y = v_{p,y}/L_y = c \cos\theta/L_y$$

Prof. Livio Mazzarella - Dipartimento di Energia

POLITECNICO DI MILANO

Diffuse Field: Average Frequency of Reflections

For a plane wave propagating in a generic direction \vec{n} (identified by Ω subscript) the reflection frequency f_n is then

$$f_n = f_x + f_y + f_z$$

(how may times reflections occur in 1 second when traveling from one side to the other of the space)

If the wave field is diffuse (infinite number of

incoherent plane equal waves traveling in all directions) the probable mean reflection frequency for all waves through a generic point *P* is

$$f_m = \frac{1}{\Omega} \int_{\Omega = sphere} |f_n| \, d\Omega = \frac{8}{4\pi} \int_0^{\pi/2} d\psi \int_0^{\pi/2} f_n \sin\theta \, d\theta$$

i.e.

$$f_m = \frac{2c}{\pi} \int_0^{\pi/2} d\psi \int_0^{\pi/2} \left[\frac{\sin\theta \cos\psi}{L_x} + \frac{\sin\theta \sin\psi}{L_y} + \frac{\cos\theta}{L_z} \right] \sin\theta \ d\theta$$

Prof. Livio Mazzarella - Dipartimento di Energia

Diffuse Field: Reflection Mean Time

Thus

$$f_m = \frac{2c}{\pi} \frac{\pi}{4} \left(\frac{1}{L_x} + \frac{1}{L_y} + \frac{1}{L_z} \right)$$

$$V = L_x L_y L_z$$
; $S = 2(S_x + S_y + S_z)$
 $S_x = L_y L_z$; $S_y = L_x L_z$; $S_z = L_x L_y$;

 $f_m = \frac{cS}{4V}$ mean frequency = mean value of a stochastic distribution

Then, the probable mean time between two reflections is

and the free mean path

$$t_m = \frac{1}{f_m} = \frac{4V}{cS}$$

$$l_m = ct_m = 4V/S$$

Prof. Livio Mazzarella - Dipartimento di Energia

Acoustic Energy Balance of a Room

The integral acoustic energy balance on a confined space of volume $V = L_x L_y L_z$ is

where

W acoustic energy, [J]

acoustic energy "flow" through the

boundary, [W]

acoustic energy source inside V, [W] Σ_W

For

$$W = \int_{V} w dV = \langle \overline{w} \rangle_{V} V$$

volume-averaged acoustic energy density times V

$$\Phi_W = - \bar{\dot{W}}_{abs}$$

absorbed sound power by the boundary

$$\Sigma_W = \overline{\dot{W}}_S$$

internal sound sources power

Prof. Livio Mazzarella - Dipartimento di Energia

The integral acoustic energy balance becomes

$$V\frac{d\langle \overline{w}\rangle_V}{dt} = \overline{\dot{W}}_S - \overline{\dot{W}}_{abs}$$

Assuming to have a quasi-diffuse sound field, compound of a **direct** sound field produced by a sound source (\mathbf{d}) and a **reverberant** sound field due to infinite reflections on the bounding surfaces (\mathbf{r}), (ideally diffuse), then

$$\langle \overline{w} \rangle_V = \langle \overline{w}_d \rangle_V + \langle \overline{w}_r \rangle_V = \langle \overline{w}_d \rangle_V + \overline{w}_r$$

and

$$\overline{\dot{W}}_{ahs} = \overline{\dot{W}}_{ahsd} + \overline{\dot{W}}_{ahsr}$$

with

 $\overline{\dot{W}}_{abs,d}$ absorbed sound power – direct sound from the source $\overline{\dot{W}}_{abs,r}$ absorbed sound power – from reverberant field ONLY

$$V\frac{d}{dt}[\langle \overline{w}_d \rangle_V + \overline{w}_r] = \overline{\dot{W}}_S - \overline{\dot{W}}_{abs,d} - \overline{\dot{W}}_{abs,r}$$

Prof. Livio Mazzarella - Dipartimento di Energia

POLITECNICO DI MILANO

Acoustic Energy Balance of a Room

Defining the room average apparent absorption coefficient as

$$\alpha_{av} \equiv \sum_{i=1}^{N} \alpha_i S_i / \sum_{i=1}^{N} S_i = \frac{1}{S} \sum_{i=1}^{N} \alpha_i S_i$$

indicating the reverberant field power incident on the bounding surface with \bar{W}_r , it is

$$\bar{W}_{abs,d} = \alpha_{av} \bar{W}_S
\bar{W}_{abs,r} = \alpha_{av} \bar{W}_r$$

it is

$$V\frac{d}{dt}\left[\langle \overline{w}_{d}\rangle_{V}+\overline{w}_{r}\right]=(1-\alpha_{av})\dot{\overline{W}}_{S}-\alpha_{av}\dot{\overline{W}}_{r}$$

Introducing the statistical follow up of the diffuse field hypothesis:

• $t_m = 4V/cS$ mean travel time of volume V

$$\overline{\dot{W}}_r = V \, \overline{w}_r / t_m = \overline{w}_r c S / 4$$

Prof. Livio Mazzarella - Dipartimento di Energia

Acoustic Energy Balance of a Room

Under diffuse field hypothesis

$$V\frac{d}{dt}[\langle \overline{w}_d \rangle_V + \overline{w}_r] = (1 - \alpha_{av})\overline{\dot{W}}_S - \frac{c\alpha_{av}S}{4}\overline{w}_r \qquad 1)$$

or, using the energy density of the whole acoustic field (d+r), $\langle \overline{w} \rangle_V$

$$V\frac{d\langle \overline{w}\rangle_V}{dt} = \overline{W}_S - \frac{c\alpha_{av}S}{4}\langle \overline{w}\rangle_V$$
 2)

- Steady-state solutions
 - From 1)

$$\overline{w}_r = \frac{4\overline{W}_S}{c\alpha_{av}S/(1-\alpha_{av})} = \frac{4\overline{W}_S}{cR} \qquad \text{with} \quad R = \frac{\alpha_{av}S}{1-\alpha_{av}} \quad \frac{\text{Room}}{\text{constant}}$$

• From 2)

$$\langle \overline{w} \rangle_V = \frac{4\overline{W}_S}{c\alpha_{av}S} = \frac{4\overline{W}_S}{cA}$$
 with $A = \alpha_{av}S$

Room Acoustic Energy Density

10

Under diffuse field hypothesis and Steady-State condition

Reverberant field ONLY energy density

$$\overline{w}_r = \frac{4\overline{\dot{W}}_S}{cR}$$

$$\overline{w}_r = \frac{4\overline{W}_S}{cR} \qquad with \quad R = \frac{\alpha_{av}S}{1 - \alpha_{av}} \qquad \begin{array}{c} \text{Room} \\ \text{constant} \end{array}$$

$$\langle \overline{w} \rangle_V = \frac{4\overline{W}_S}{cA} \qquad with \quad A = \alpha_{av}S \qquad \begin{array}{c} \text{equivalent sound} \\ \text{absorption area} \end{array}$$

Whole direct + reverberant field energy density

$$\langle \overline{w} \rangle_V = \frac{4\overline{\dot{W}}_S}{cA}$$

with
$$A = \alpha_{av}S$$

If a **point source** of sound power \bar{W}_S and directivity Q is considered, the direct field energy density can be expressed through the isotropic spherical far field energy density as

$$\overline{w}_d(r,\theta,\psi) = Q(\theta,\psi) \frac{\overline{\dot{W}}_S}{c4\pi r^2}$$

and the whole energy density spatial distribution can be seen as the sum of the direct field energy density distribution and the uniform reverberant (diffuse) field distribution.

Prof. Livio Mazzarella - Dipartimento di Energia

11

Under **diffuse field hypothesis** and **Steady-State** condition, the energy density space distribution in a close reverberant space is given by:

$$\overline{w}_{SS}(r,\theta,\psi) = \overline{w}_d(r,\theta,\psi) + \overline{w}_r$$

Thus

$$\overline{w}_{SS}(r,\theta,\psi) = Q(\theta,\psi)\frac{\overline{W}_S}{c4\pi r^2} + \frac{4\overline{W}_S}{cR} = \frac{\overline{W}_S}{c} \left[\frac{Q(\theta,\psi)}{c4\pi r^2} + \frac{4}{R} \right]$$

Sound Decay Solutions from Steady-State condition

At time $t = t_0 - t_m$ the sound source is switched off $\rightarrow \overline{W}_S = 0$

At time $t=t_0$ the energy density due to direct sound field $\langle \overline{w}_d \rangle_V$ is null and the reverberant field energy density \overline{w}_r starts to decay according to

equivalent sound absorption area

$$\frac{d\overline{w}_r(t)}{dt} = -\frac{cA}{4V}\overline{w}_r(t)$$

Sabine's Continuity Hypothesis

Prof. Livio Mazzarella - Dipartimento di Energia

POLITECNICO DI MILANO

Sabine's Reverberation Time $T_{60,\omega}$

12

From

$$\frac{d\overline{w}_r(t)}{dt} = -\frac{cA}{4V}\overline{w}_r(t)$$

Sabine's Continuity Hypothesis

integrating

$$\overline{w}_r(t) = \overline{w}_r(t_0)e^{-\frac{cA}{4V}(t-t_0)}$$

In terms of levels:

$$10\log_{10}\frac{\overline{w}_r(t)}{\overline{w}_r(t_0)} = 10\log_{10}\frac{\Delta p_{RMS}^2(t)}{\Delta p_{RMS}^2(t_0)} = L_p(t) - L_P(t_0) = 10\log_{10}e^{-\frac{CA}{4V}(t-t_0)}$$

fixing

$$T_{60,\omega} = t - t_0 : L_{p,\omega}(t) - L_{p,\omega}(t_0) = -60 \ dB$$

it follows

$$-60 = 10 \log_{10} e^{-\frac{cA_{\omega}}{4V}T_{60,\omega}} = \frac{10}{\ln 10} \ln e^{-\frac{cA_{\omega}}{4V}T_{60,\omega}} = -\frac{10}{\ln 10} \frac{cA_{\omega}}{4V} T_{60,\omega}$$

Sabine's Reverberation Time

$$T_{60,\omega} = \frac{24 \ln 10}{V} = 0.16 \frac{V}{V}$$
artimento di Energia

Prof. Livio Mazzarella - Dipartimento di Energia

Sabine's Reverberation Time formula, $T_{60,\omega}=0.16\,V/A$, fails for poorly reverberant or very large rooms; specifically

$$\lim_{\alpha_{\alpha \nu} \to 1} T_{60,\omega} = 0.16 \, V/S > 0$$

while it should be zero (anechoic chamber).

This is due to that the Sabine's hypothesis of continuous decay is not correct:

 statistically a sound wave travels for t_m before to hit a surface and loose some energy: it is a step-wise process.

At
$$t = t_0$$

$$\overline{w}_r(t) = \overline{w}_r(t_0) = \overline{w}_{r,SS} = 4\overline{\dot{W}}_S/cR$$

$$t = t_0 + t_m$$

$$\overline{w}_r(t) = \overline{w}_{r,SS}(1 - \alpha_{av})$$

$$t = t_0 + 2t_m$$

$$\overline{w}_r(t) = \overline{w}_{r,SS}(1 - \alpha_{av})^2$$

$$t = t_0 + nt_m$$

$$\overline{w}_r(t) = \overline{w}_{r,SS}(1 - \alpha_{av})^n$$

Prof. Livio Mazzarella - Dipartimento di Energia

POLITECNICO DI MILANO

Eyring's Reverberation Time $T_{60,\omega}$

14

Thus for $t = t_0 + nt_m$

$$\overline{w}_r(t) = \overline{w}_r(t_0)(1 - \alpha_{av})^n$$

In terms of levels:

$$10\log_{10}\frac{\overline{w}_r(t)}{\overline{w}_r(t_0)} = 10\log_{10}\frac{\Delta p_{RMS}^2(t)}{\Delta p_{RMS}^2(t_0)} = L_p(t) - L_p(t_0) = 10\log_{10}(1 - \alpha_{av})^n$$

Fixing

$$T_{60,\omega} = t - t_0 : L_{p,\omega}(t) - L_{p,\omega}(t_0) = -60 \ dB$$

it follows, for $n=(t-t_0)/t_m=T_{60,\omega}/t_m$ and $t_m=4V/cS$

$$-60 = 10 \log_{10} (1 - \alpha_{av})^n = \frac{10}{\ln 10} n \ln(1 - \alpha_{av}) = \frac{10}{\ln 10} \frac{cS}{4V} \ln(1 - \alpha_{av}) T_{60,\omega}$$

Eyring's Reverberation Time

$$T_{60,\omega} = \frac{24 \ln 10}{c} \frac{V}{-S \ln(1 - \alpha_{av,\omega})} = 0.16 \frac{V}{S \ln[1 - \alpha_{av,\omega}]}$$

Prof. Livio Mazzarella - Dipartimento di Energia

Eyring's versus Sabine's Reverberation Time¹⁵

Eyring's Reverberation Time

$$T_{60,\omega} = 0.16 \frac{V}{S \ln |1 - \alpha_{av,\omega}|}$$

$$\lim_{\alpha_{av}\to 1}T_{60,\omega}=0$$

Sabine's Reverberation Time

$$T_{60,\omega} = 0.16 \frac{V}{A_{\omega}}$$

$$\lim_{\alpha_{av} \to 1} T_{60,\omega} = 0.16 \, V/S > 0$$

The real energy density decay is a "staircase" or "step" function. The step depth is the mean time between two reflections t_m , the step height is proportional to the average absorption coefficient α_{av} .

When t_m and α_{av} are very small (small, highly reflecting room) the step function is very close to the continuous decay curve: $T_{60,Sabine} \approx T_{60,Eyring}$

Prof. Livio Mazzarella - Dipartimento di Energia