

Table of contents

- 1. Introduction
- 2. Data preprocessing
- 3. Exploring the data
- 4. Building the models
- 5. Wrap up

Data preprocessing

Dropping null values.

Dropping duplicates: 450 duplicated rows.

Aggregating the track genre to avoid data redundancy.

Feature selection: (Dropping track_id, energy)

Exploring the data

What are the most popular Genres in our data?

> Pop-film is the most popular genre in our dataset followed by k-pop and chill.

Who are the most influential Artists in our data?

> George Jones, The Beatles, Stevie Wonder, Ella Fitzgerald, Prateek Kuhad are the most influential artists with over 200 songs produced.

- > Time signature 0 corresponds to white/brown noise.
- > The data doesn't contain tracks with Time Signature 2.

Does the track Key affect popularity?

- > Key 3 has the highest average popularity.
- > All keys seem to be used across all genres.

Can we identify genres by visualizing their features?

It's difficult to pinpoint the genre just by looking at the distribution of its music features.

Clustering the data using K-means

Independent features: 'danceability', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'time_signature'

K = 114 clusters

Clustering the data using K-means

Adjusted Rand Index (ARI): A metric that measures the similarity between two data clusterings.

Adjusted Rand Index: 0.010877535748024246

An ARI close to 0 indicates that the clustering does not align well with the track_genre labels.

> This is not a good technique to infer the genre of a track.

Natural Language Processing

Using NLP to conduct topic modeling (Latent Dirichlet Allocation) on album names

- > Our dataset contains tracks that are found in playlists and soundtracks
- Feature extraction: Playlist, Soundtrack (Binary variables)

What track genres are being added to playlists the most?

Jazz is the most popular genre for songs contained in playlists, followed by soul and rock.

What track genres are being used in soundtracks the most?

Pop-film, disney and k-pop are the most popular tracks genres that are being used in soundtracks.

Methodology

Extracting new features from the artists and genre columns: **Artist_influence** and **Genre_influence**. These variables store the average Popularity for each artist and genre respectively.

Approach 1:

Feeding the whole pre-processed data to the model.

Approach 2:

Filtering the data based on a popularity threshold that minimizes the correlation between the dependent feature 'Popularity' and 'Artist_influence'.

Approach 1: Correlation Matrix

- Popularity is highly correlated with Artist influence and Genre influence, 0.89 and 0.60 respectively.
- The music features don't seem to correlate well with our target variable.

Approach 2: Correlation Matrix

- Correlation is reduced for the extracted features and increased for the original music features.
- Instrumentalness,
 Duration, and
 Danceability are the most correlated with Popularity out of the original features.

Feature Engineering

Feature extraction: Artist_influence, Genre_influence, Playlist, Soundtrack, Featuring.

Identifying significant categorical variables:

1st approach: Using ANOVA, we determined that all the categorical features except for Mode are significant in predicting Popularity.

2nd approach: All categorical features except for Featuring are significant in predicting Popularity.

The Models

Algorithms: Linear Regression, Random Forest, XGBoost Evaluation metrics: MSE, RMSE, R-Squared

	Approach 1			Approach 2		
	MSE	RMSE	R²	MSE	RMSE	R²
Linear Regression	78.77	8.875	79%	5.728	2.393	15%
Random Forest	86.870	9.320	77%	2.752	1.659	60%
XGBoost	71.769	8.472	81%	2.578	1.606	62%

Wrap up

- Audio features are not sufficient in predicting popularity due to their overlap across different tracks and genres.
- Genre is the most important predictor of popularity outside of Artist influence.
- The most popular genres used in soundtracks are pop-film, disney, and k-pop.
- The most popular genres added to playlists are jazz, soul, and rock.
- Less popular tracks tend to be added to more playlists for marketing purposes.
- Up and coming artists should be inclined to produce pop-film, chill, or sad songs. They should also collaborate with other musicians since featurings seem to gain more popularity on average.

Luiss Unleash

Thank you!