Operační systémy stanic

- Základní program, který "oživuje" technické díly počítače
- **Řídí využití** procesory, paměti a disků, síťovou komunikaci a tisk, ovládá všechen ostatní hardware
- **Zobrazuje** výstupy a čte vstupy z klávesnice, myši...
- Umožňuje instalaci a spouštění ostatních programů
- Poskytuje zobrazení oken a programy
- Zajišťuje zabezpečení počítače

Problémem je, že aplikace vytvořená pro Windows nefunguje na MacOS nebo Linuxu.

Příklady:

- <u>Linux</u> bezplatná varianta systému Unix, jedná se o open source software.
 Použití: od superpočítačů až po chytré hodinky
- BSD varianta systému Unix pro webové servery
- MacOS grafický OS od firmy Apple
- <u>Microsoft Windows</u> OS od firmy Microsoft, nejnovější verze je Windows 11.
 Existuje i verze pro servery

Start operačního systému

- Po zapnutí nebo resetu počítače je HW nastaven dle konfigurace BIOSu
- Jako první se načte instrukce BIOSu a spustí se <u>základní test</u> = test přítomnosti a funkčnosti HW
- Jádro OS je zavedeno do paměti a předává se mu řízení počítače

Dělení operačního systému podle počtu úloh

- 1. Jednoúlohový (single task)
 - Jednoduchý, rychlý, levný
 - Vývoj ukončen, má stabilní vlastnosti
- 2. Víceúlohový (multi task)
 - Umožňuje paralelní zpracování úloh
 - Má efektivní využití kapacity hardwaru
 - Nevýhody: obtížné programování, možnost zahlcení a problém s bezpečností
 - Vývoj probíhá, objevují se proto nové vlastnosti OS, ale také nové chyby

Nadstavby

- Jedná se o rozhraní, které výrobci přidávají na základní operační systém k přizpůsobení vzhledu, uživatelských rozhraní a specifických funkcí.
- Další funkce: odstraňování nepotřebných souborů, historie programů, systémových informací, správce procesů.

Příklady:

- PC Tools nadstavba DOS
- XTree nadstavba DOS
- Diskový manažer OS nemůže číst a zapisovat data do nenaformátovaného nebo cizího disku. Umožňuje dělit a formátovat disky, Windows využívá NTFS.
- Správce procesů poskytuje přehled o spuštěných procesorech (jméno souboru, cesta, obsazení paměti, využití procesoru, přidělení priority).

Struktura

- Jádro (kernel) zajišťuje spuštění programů, přístup k HW
- Spuštění programu poskytuje rozhraní mezi uživatelským programem a HW
- Ovladače SW, který umožňuje interakci s HW zařízeními
- Bezpečnost zadání uživatelského jména a hesla, OS zabezpečen pomocí antivirů a firewallu.
- Správa paměti

Konfigurační soubory config.sys, win.ini, autoexec.bat

config.sys

- Konfigurační soubor pro DOS i Windows
- Textový soubor, obsahuje instrukce pro zavádění systému do operační paměti

win.ini

 Textový konfigurační soubor, který se u Windows používal k uložení základního nastavení při bootování

autoexec.bat

- Textový dávkový soubor (dávkový = spouští příkazy ze souboru, každý příkaz je na samostatném řádku)
- Nachází se v kořenovém adresáři diskového oddílu, ze kterého je zaváděn DOS i Windows

Alokační strategie

1. first fit

- Výběr prvního dostatečně velkého bloku
- Správce paměti hledá dostatečně velký blok s požadovanou velikostí, následně ho alokuje a zbytek ponechá volný pro další alokaci.

2. best fit

- Výběr bloku, jehož velikost nejlépe odpovídá požadované velikosti
- správce paměti projde všechny volné bloky a z těch, které jsou dostatečně velké, vyhledá nejmenší

Správci procesů // kliknutí na nadpis umožní přesměrování na odpověď

Dědění práv

Proces, kdy například daný uživatel dědí přístupová práva k dané složce či souborům.

Certifikáty

// kliknutí na nadpis umožní přesměrování na odpověď

Multitasking

- Umožňuje chod více aplikací současně
- Rozděluje výpočetní čas procesoru
- Rozlišujeme: 1) Preemptivní multitasking OS rozhoduje o odebírání procesoru
 - 2) <u>Nepreemptivní (kooperativní)</u> Úlohy mají aktivní spoluúčast samy se po čase vzdají

procesoru

Popiš způsoby a důvody zabezpečení

Způsoby

- 1. Antivirové programy: detekce a odstranění malwaru a virů
- 2. Zálohování: pravidelné zálohování dat pro ochranu před ztrátou
- 3. <u>Firewall</u>: filtrace síťového provozu, blokování neautorizovaného přístupu
- 4. Autentizace: ověření identity uživatele (heslo, biometrie, tokeny)

Důvody

- Ochrana citlivých dat: prevence před krádeží nebo zneužitím osobních dat
- Prevence útoků: ochrana před hackery, malwarem a jinými kyberhrozbami
- Zajištění dostupnosti: prevence před ztrátou přístupu k důležitým informacím

Zabezpečení u OS Windows, certifikáty, Kerberos

Autentizace v OS Windows

- 1. Interaktivní přihlášení CTRL + ALT + DELETE při startu počítače
- 2. <u>Neinteraktivní přihlášení</u> uživatel požádá o přístup ke vzdáleným zdrojům

Certifikáty

- Obsahují veřejný klíč, jméno a další údaje
- Vydány certifikačními autoritami (CA), kterým ostatní důvěřují
- <u>Veřejný klíč</u> = slouží k zašifrování zpráv, ale nelze pomocí něj zprávy přečíst.

 Je volně dostupný, tudíž každý může poslat zašifrovanou zprávu,

 ale nemůže nic číst. Odšifrovat zprávu může jen ten, který má

 soukromý klíč.

Asymetrická kryptografie – metoda s odlišnými klíči pro šifrování a odšifrování komunikace.

<u>Kerberos</u> – autentizační protokol pro klient-server, který zajišťuje vzájemnou identifikaci a brání odposlechu – klient i server si ověří identitu své protistrany. (protokol, který brání odposlechu)

Praktické úkoly

Změň bootovací priority v BIOSu

Vytvoř podsložku složky test s názvem test1 a u ní zruš dědění práv a změň je