K-nearest neighbours

distance netrics

euclidean
$$d(x, z) = \sqrt{\|x - z\|_{2}^{2}} = \sum_{j=1}^{n} (x_{j} - z_{j})^{2}$$

d(x, x:)

1 0.05

2 0.25

40.8

-1

-1

+1

manhattan
$$d(x,z) = \|x - z\|_1 = \sum_{j=1}^{\infty} |x_j - z_j|$$

classification

for a datapoint
$$\infty$$
:

1-NN \Rightarrow $\hat{y} = +1$

2-NN \Rightarrow $\hat{y} = ??$ tie

- · weighted K-NN
- random selection

prediction :
$$\hat{y} = \frac{1}{k} \underbrace{\leq}_{i=1} y_i$$

weighted:
$$\hat{y} = \frac{\sum_{i=1}^{K} \omega_i y_i}{\sum_{i=1}^{K} \omega_i}$$

$$2-NN \implies \hat{y} = \frac{10+20}{2} = 15$$

weighted
$$Q - NN \Rightarrow \hat{y} = \frac{1}{0.5} (10) + \frac{1}{1} (20)$$

$$\hat{y} = \frac{20 + 20}{3} = 13.3$$

decision trees

for	the	sake	of	time,	1/5	only	do	first	split
						U			١ ١

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

using entropy & info gain:

H =
$$- \le P_i \log_2(P_i)$$

i=1

Info gain = $H_{root} - \ge \omega_i H_i$

i=1

freq. ω_i root

$$H_{root} = -\left(\frac{5}{14} \log_{10} \frac{5}{14} + \frac{9}{14} \log_{2} \frac{9}{14}\right) = 0.94$$

Outlook?

Sunny

Ouercost

V: 4

V: 3

N: 3

V: 0

V: 2

V: 4/14

$$V: 2$$

V: 4

V: 3

V: 5/14

 $V: 4$

V: 5/14

 $V: 5/14$
 $V: 5/14$

and so on ...

Now, gini index: # of classes

Gini (number) = 1 -
$$\sum_{i=1}^{\infty} p_i^2$$

Gini (number) = 1 - $\sum_{i=1}^{\infty} p_i^2$

Gini (number) = 1 - $\sum_{i=1}^{\infty} p_i^2$

Outlook?

Outlook?

Outlook?

N: 2

N: 3

N: 0

N: 2

U = $\sum_{i=1}^{\infty} y_i^2$
 y_i^2
 y_i^2

Outlook?

tsallis entropy:
$$S_q(x) = \frac{1}{q-1} \left(1 - \frac{c}{s} p_i^q\right)$$

$$q=2 \Rightarrow Gini Index = \frac{1}{2-1} \left(1-\frac{2}{2} \cdot \rho_i^2\right) = 1-\frac{2}{2} \cdot \rho_i^2$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1}$$

$$q=1$$
 \Rightarrow Entropy = $\lim_{q\to 1} \frac{1}{q-1} \left(1-\sum_{i=1}^{c} P_i\right) = -\sum_{i=1}^{c} P_i \log_2(P_i)$

using L'Hopital