

OFDM System

RTL Implementierung des Rx Pfades

Quantisieren der Matlab Kette

- Eingangsdaten: 12bit signed
 - interpretiert als s1.11 (Wertebereich: $(2^{11}-1..-2^{11})/2^{11} = +1-2^{-11}..-1$)
 - Verwendung von quantisierten floating point Zahlen
 - z.B.: s1.11 Quantisierung: x_quant=[round|floor|ceil](x*2^11)/2^11
- Interne Quantisierung soweit reduzieren bis sich Auswirkung im EVM zeigt
 - Quantisierung zwischen den Blöcken
 - Interne Quantisierung
 - Interen Quantisierung der FFT ist ohne einem quantisierten Modell der FFT schwer nachzubilden
 - Reduktion der Bitbreite ist besonders bei rechenintensiven Blöcken wichtig
 - Auswahl von Algorithmen geringer Komplexität
 - z.B.: CIC für Interpolation der RX-Filterdaten
 - Interpolationsrate minimieren (welche Überabtastung wird für die zeitliche Synchronisation benötigt)
 - Modellierung dieser Algorithmen in Matlab
 - Komplexe Algorithmen auf der niedrigstmöglichen Abtastrate implmentieren (FFT, CORDIC)

Aufgabenteilung der RX Kette

- Top-Level Integration
 - Testbench: File I/O und Instantiierung des Top-Level der RX Kette
 - Top-Level: Struktur und Verdrahtung
- Synchronisation
 - Timing- und Frequenzsynchronisation nach Schmidl/Cox
- RX Upsampling, Downsampling, Frequenz- und Phasensynchronisation mit CORDIC
 - Upsampling mit CIC zweiter Ordnung
 - Downsampling: Start gesteuert durch Synchronisationsblock und Timingtracking
 - Anzeigen des ersten Samples jedes OFDM Symbols
 - CORDIC korrigiert Frequenzoffset und Phasenoffset
- Remove of Cyclic Prefix und FFT
 - Auswahl einer FFT
 - Struktur um Datendurchsatz sicherzustellen
- Equalizer
 - Summation der Equalisierungssymbole, berechnen von H_K-1
 - Korrektur der Empfangen Daten nach der Ermittlung von H_K-1
- Phase und Timing Tracking + Modulation Demapper
 - Messen des Phasenverlaufes von Datensymbolen
 - Ermitteln von Zeitversatz und Phasenversatz
 - Rückmeldung an Frequenzkorrektur-CORDIC und Downsampler

Blockdiagramm Rx Kette

Top-Level Testbench

- Name: rx top tb-e/a/c.vhd
- Systemtakt 80MHz
- Reset active-low
- Einlesen der RX Daten (2x12bit @ 16MS/s) aus Datei
- Ausgabe der RX-Bits in Datei
- Instantiierung der Top-Level Hierarchie
- Dateiname der Eingangsdaten: rx data.txt
 - ein IQ Werte paar pro Zeile (integer, +2047...-2048, s1.11)
- Dateiname der Ausgangsdaten: rx bits.txt
 - zwei Bits pro Zeile in der Reihenfolge der Subträger

RX Top-Level

- Name: rx_top-e/a/c.vhd
- Instantiiert die Blöcke der RX Kette
 - rx sync
 - rx input
 - rx_fft
 - rx equalizer
 - rx_tracking
 - rx_demodulation

Portname	Mode	Breite	Beschreibung
sys_clk_i	In	1	Systemtakt, 80MHz
sys_rstn_i	In	1	Systemreset, low-aktiv
rx_data_i/q_i	in	12	Rx Daten von AD9361 (I/Q Paar)
rx_data_valid_i	in	1	Valid Signal der Eingangsdaten, aktiv für einen Taktzyklus pro Datum
rx_bits_o	out	2	Rx Bits eines Subträgers
rx_bits_valid_o	out	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum

VHDL Verhaltensmodell

- Schnittstellen und Datentypen wie im RTL Modell
- Struktur wie auf RTL
- Subblöcke auf Verhaltenseben modellieren
 - zeitliches Verhalten mit Clock modelliert
 - z.B.: Fclk=80MHz → neues Eingangssample jeden fünften Takt
 - Unterschied zu Matlabmodell: sequentielle Verarbeitung der Daten
 - rekursive Implementierung der Algorithmen

Ressourcen

- Intel (Altera) IP Cores:
 - https://www.intel.com/content/www/us/en/products/details/f pga/intellectual-property/dsp.html
 - FFT:
 - https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/dsp/fft.html
 - CIC:
 - https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/dsp/cic-compiler.html
 - https://elearning.fhooe.at/pluginfile.php/489300/mod_resource/content/2/Hogenauer19 81-AnEconomicalClassofDigitalFiltersforDecimationandInterpolation.pdf
 - CORDIC
 - https://www.intel.com/content/dam/www/programmable/us/en/pdf s/literature/ug/ug cordic.pdf

Aufgabenstellung – Teil 1

- Quantisieren Sie den von Ihnen zu bearbeitenden Teil der RX Kette
- Modellieren Sie diesen Teil der RX Kette in Matlab so, dass er die HW Implementierung abbildet
- Geben Sie ein Blockschaltbild der HW-Implementierung an
 - Schätzen Sie den HW Aufwand für den Block ab
- Erstellen Sie ein VHDL Verhaltensmodell, dass den Datenfluss auf RTL Ebene nachbildet (cycletrue)