Interpretable Machine Learning

Shapley Values for Local Explanations

Learning goals

- See model predictions as a cooperative game
- Transfer the Shapley value concept from game theory to machine learning

• Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**

- Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**
- Players: Features $x_i, j \in \{1, \dots, p\}$ which cooperate to produce a prediction
 - --- How can we make a prediction with a subset of features without changing the model?
 - ightharpoonup PD function: $\hat{f}_S(\mathbf{x}_S) := \int_{X_S} \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)

- Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation \mathbf{x}
- Players: Features x_j, j ∈ {1,...,p} which cooperate to produce a prediction
 → How can we make a prediction with a subset of features without changing the model?
 → PD function: f̂_S(x_S) := ∫_{X s} f̂(x_S, X_{-S})dP_{X-s} ("removing" by marginalizing over -S)
- Value function / payout of coalition $S \subseteq P$ for observation **x**:

$$u(S) = \hat{\mathit{f}}_{S}(\mathbf{x}_{S}) - \mathbb{E}_{\mathbf{x}}(\hat{\mathit{f}}(\mathbf{x})), \text{ where } \hat{\mathit{f}}_{S}: \mathcal{X}_{S} \mapsto \mathcal{Y}$$

 \leadsto subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that ν is a value function with $\nu(\emptyset)=0$

- Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation \mathbf{x}
- Players: Features x_j, j ∈ {1,...,p} which cooperate to produce a prediction
 → How can we make a prediction with a subset of features without changing the model?
 → PD function: f̂_S(x_S) := ∫_{X ∈} f̂(x_S, X_{-S})dP_{X-S} ("removing" by marginalizing over -S)
- Value function / payout of coalition $S \subseteq P$ for observation **x**:

$$u(S) = \hat{\mathit{f}}_{S}(\mathbf{x}_{S}) - \mathbb{E}_{\mathbf{x}}(\hat{\mathit{f}}(\mathbf{x})), \text{ where } \hat{\mathit{f}}_{S}: \mathcal{X}_{S} \mapsto \mathcal{Y}$$

 \leadsto subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that ν is a value function with $\nu(\emptyset)=0$

• Marginal contribution: $v(S \cup \{j\}) - v(S) = \hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - \hat{f}_{S}(\mathbf{x}_{S})$ $\rightarrow \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ cancels out due to the subtraction of value functions Shapley value ϕ_i of feature j for observation **x** via **order definition**:

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \hat{f}_{S_j^{\tau} \cup \{j\}}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}) - \hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$$
marginal contribution of feature j

- Interpretation: Feature x_i contributed ϕ_i to difference between $\hat{f}(\mathbf{x})$ and average prediction Note: Marginal contributions and Shapley values can be negative
- For exact computation of $\phi_i(\mathbf{x})$, the PD function $\hat{f}_S(\mathbf{x}_S) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)})$ for any set of features S can be used which yields

$$\phi_j(\mathbf{x}) = \frac{1}{|P|! \cdot n} \sum_{\tau \in \Pi} \sum_{i=1}^n \hat{f}(\mathbf{x}_{S_j^\tau \cup \{j\}}, \mathbf{x}_{-\{S_j^\tau \cup \{j\}\}}^{(i)}) - \hat{f}(\mathbf{x}_{S_j^\tau}, \mathbf{x}_{-S_j^\tau}^{(i)})$$

 \rightarrow Note: \hat{f}_S marginalizes over all other features -S using all observations $i=1,\ldots,n$

• Exact Shapley value computation is problematic for high-dimensional feature spaces \rightsquigarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features

- Exact Shapley value computation is problematic for high-dimensional feature spaces \rightsquigarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^\tau}$: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets

- Exact Shapley value computation is problematic for high-dimensional feature spaces \rightsquigarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^\tau}$: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of M random samples of τ to build coalitions S_i^{τ}

- Exact Shapley value computation is problematic for high-dimensional feature spaces \rightsquigarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^\tau}$: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of M random samples of τ to build coalitions S_j^{τ}

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size M:

• For m = 1, ..., M do:

- For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$

- For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **Q** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:
 - $\bullet \ \mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j}_{\mathcal{Z}_{\tau^{(|S_m|+1)}}, \dots, \mathcal{Z}_{\tau^{(p)}}}) \text{ takes features } S_m \cup \{j\} \text{ from } \mathbf{x}$

- For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:

$$\bullet \ \ \mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}}) \text{ takes features } S_m \cup \{j\} \text{ from } \mathbf{x}$$

$$\bullet \ \mathbf{x}_{-j}^{(m)} = \underbrace{(x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, \underbrace{z_j^{(m)}, z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(n)}}^{(m)}})}_{\mathbf{z}^{(m)}} \text{ takes features } S_m \text{ from } \mathbf{x}$$

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:

$$\bullet \ \ \mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}}) \text{ takes features } S_m \cup \{j\} \text{ from } \mathbf{x}$$

$$\bullet \ \mathbf{x}_{-j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m}}, \underbrace{z_j^{(m)}, z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-S_m}^{(m)}}) \text{ takes features } S_m \text{ from } \mathbf{x}$$

• Compute difference
$$\phi_j^m = \hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)})$$

 $\leadsto \hat{f}_{S_m}(\mathbf{x}_{S_m})$ is approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}_{S_m \cup \{j\}}(\mathbf{x}_{S_m \cup \{j\}})$ by $\hat{f}(\mathbf{x}_{+j}^{(m)})$ over M iters

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:

$$\bullet \ \ \mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}}) \text{ takes features } S_m \cup \{j\} \text{ from } \mathbf{x}$$

$$\bullet \ \mathbf{x}_{-j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m}}, \underbrace{z_j^{(m)}, z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-S_m}^{(m)}}) \text{ takes features } S_m \text{ from } \mathbf{x}$$

- Compute difference $\phi_j^m = \hat{f}(\mathbf{x}_{+j}^{(m)}) \hat{f}(\mathbf{x}_{-j}^{(m)})$ $\leadsto \hat{f}_{S_m}(\mathbf{x}_{S_m})$ is approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}_{S_m \cup \{j\}}(\mathbf{x}_{S_m \cup \{j\}})$ by $\hat{f}(\mathbf{x}_{+j}^{(m)})$ over M iters
- **2** Compute Shapley value $\phi_j = \frac{1}{M} \sum_{m=1}^{M} \phi_j^m$

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

x: obs. of interest

 \mathbf{x} with feature values in S_m (other are replaced)

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

x with feature values in $S_m \cup \{j\}$

	Temperature	Humidity	Windspeed	Year
\boldsymbol{x}	10.66	56	11	2012
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$
				i

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

$$:= \Delta(j, S_m)$$
Contribution of feature j to coalition S_m

- $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+j}^{(m)}) \hat{f}(\mathbf{x}_{-j}^{(m)})$ is the marginal contribution of feature j to coalition S_m
- Here: Feature *year* contributes +700 bike rentals if it joins coalition $S_m = \{temp, hum\}$

	Temperature	Humidity	Windspeed	Year	Count	
\boldsymbol{x}	10.66	56	11	2012		
$x_{+j} $	10.66	56	$random: z_{windspeed}^{(m)}$	2012	5600	700
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$	4900	700
				•	Ž	$\Delta(j,S_m)$
				${\mathcal J}$	f	marginal contribution

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

- Compute marginal contribution of feature j towards the prediction across all randomly drawn feature coalitions S_1, \ldots, S_m
- Average all M marginal contributions of feature i
- Shapley value ϕ_j is the payout of feature j, i.e., how much feature year contributed to the overall prediction in bicycle counts of a specific observation \mathbf{x}

We take the general axioms for Shapley Values and apply it to predictions:

• Efficiency: Shapley values add up to the (centered) prediction: $\sum_{i=1}^{p} \phi_i = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$

We take the general axioms for Shapley Values and apply it to predictions:

- **Efficiency**: Shapley values add up to the (centered) prediction: $\sum_{i=1}^{p} \phi_i = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- Symmetry: Two features j and k that contribute the same to the prediction get the same payout → interaction effects between features are fairly divided

$$\hat{f}_{S\cup\{j\}}(\mathbf{x}_{S\cup\{j\}}) = \hat{f}_{S\cup\{k\}}(\mathbf{x}_{S\cup\{k\}})$$
 for all $S \subseteq P \setminus \{j,k\}$ then $\phi_j = \phi_k$

We take the general axioms for Shapley Values and apply it to predictions:

- Efficiency: Shapley values add up to the (centered) prediction: $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- **Symmetry**: Two features j and k that contribute the same to the prediction get the same payout \hookrightarrow interaction effects between features are fairly divided $\hat{f}_{S\cup\{i\}}(\mathbf{x}_{S\cup\{i\}}) = \hat{f}_{S\cup\{k\}}(\mathbf{x}_{S\cup\{k\}})$ for all $S \subseteq P \setminus \{j,k\}$ then $\phi_i = \phi_k$
- **Dummy** / **Null Player**: Shapley value of a feature that does not influence the prediction is zero \leadsto if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero $\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) = \hat{f}_S(\mathbf{x}_S)$ for all $S \subseteq P$ then $\phi_i = 0$

We take the general axioms for Shapley Values and apply it to predictions:

- Efficiency: Shapley values add up to the (centered) prediction: $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- **Symmetry**: Two features j and k that contribute the same to the prediction get the same payout \rightarrow interaction effects between features are fairly divided $\hat{f}_{S \cup \{i\}}(\mathbf{x}_{S \cup \{i\}}) = \hat{f}_{S \cup \{k\}}(\mathbf{x}_{S \cup \{k\}})$ for all $S \subseteq P \setminus \{j, k\}$ then $\phi_i = \phi_k$
- **Dummy / Null Player**: Shapley value of a feature that does not influence the prediction is zero \rightsquigarrow if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero $\hat{f}_{S\cup\{I\}}(\mathbf{x}_{S\cup\{I\}}) = \hat{f}_S(\mathbf{x}_S)$ for all $S \subseteq P$ then $\phi_i = 0$
- **Additivity**: For a prediction with combined payouts, the payout is the sum of payouts: $\phi_j(v_1) + \phi_j(v_2) \rightsquigarrow$ Shapley values for model ensembles can be combined

BIKE SHARING DATASET

- Shapley values of observation i = 200 from the bike sharing data
- Difference between model prediction of this observation and the average prediction of the data is fairly distributed among the features (i.e., $4434 4507 \approx -73$)
- Feature value temp = 28.5 has the most positive effect, with a contribution (increase of prediction) of about +400

ADVANTAGES AND DISADVANTAGES

Advantages:

- Solid theoretical foundation in game theory
- Prediction is fairly distributed among the feature values → easy to interpret for a user
- Contrastive explanations that compare the prediction with the average prediction

Disadvantages:

- Without sampling, Shapley values need a lot of computing time to inspect all possible coalitions
- Like many other IML methods, Shapley values suffer from the inclusion of unrealistic data observations when features are correlated