

Sequence Model

Jie Wei

Xi'an Jiaotong University

2021-11

Contents

- 1 Recurrent Neural Network
- 2 Sequence-to-sequence Learning
- 3 Attention Mechanism
- 4 Transformer
- 5 References

Recurrent Neural Network

Examples of sequence data

Text Sentence

XJTU is a C9 League university located in Xi'an.

Audio

Video

Why RNN?

Temporal relationship learning → Contextual information

1.2 RNN Structure

X: input

S: hidden-layer output

O: output-layer output

U: input → hidden weight matrix

W: t-1 hidden \rightarrow t hidden weight matrix

V: hidden → output weight matrix

1.2 RNN Structure

Formula:

$$O_t = g(V \cdot S_t)$$

$$S_t = f(U \cdot X_t + W \cdot S_{t-1})$$

Disadvantages:

Gradient vanishing problems.

It cannot process very lengthy sequences.

LSTM & GRU:

only preserves important and relevant information

Sequence-to-sequence Learning

Analysis and Recognition

Analysis and Generation

Input .	Single -	Sequence 4	₽
Output -			
Single #	\	Image Description	٠
		Music Generation	
Sequence -	Sentiment Classification	Speech Recognition	۰
	Video Activity Recognition	Machine Translation	

RNN exist problem:

the length of output remains the same as input sequence

Input: a sequence

Output: a sequence

** The length of the input and output sequences is variable

Encoder & Decoder

Encoder: a sequence → context vector

Decoder: context vector → a sequence

Cho RNN Encoder-Decoder [1]

Decoder

$$egin{aligned} h_t &= tanh(W[h_{t-1}, y_{t-1}, extbf{c}] + b) \ o_t &= softmax(Vh_t + b) \end{aligned}$$

$$egin{aligned} h_t &= tanh(W[h_{t-1}, x_t] + b) \ o_t &= softmax(Vh_t + b) \ egin{aligned} c &= tanh(Uh_T) \end{aligned}$$

Sutskever Encoder-Decoder [1]

Encoder:

$$egin{aligned} h_t &= tanh(W[h_{t-1}, x_t] + b) \ o_t &= softmax(Vh_t + b) \ oldsymbol{c} &= tanh(Uh_T) \end{aligned}$$

Decoder:

$$egin{aligned} h_t &= tanh(W[h_{t-1}, y_{t-1}] + b) \ & o_t = softmax(Vh_t + b) \ & h_0 = oldsymbol{c} \end{aligned}$$

Attention Mechanism

Leverage the complete information from Encoder

Same scene, different people with different attention

3.2 Principle

Key **Value** Query

$$s\left(q_t,k_s
ight)=W[q_t,k_s]$$

$$a(q_t, k_s) = rac{exp(s(q_t, k_s))}{\sum_{i=1}^{N} exp(s(q_t, k_i))}$$

$$Attention(q_t, K, V) = \sum_{s=1}^m a(q_t, k_s) v_s$$

1) Context vector

$$egin{aligned} oldsymbol{c_t} & e_t = \sum_{i=1}^T lpha_{ti} h_i \ lpha_{ti} & = rac{exp(e_{ti})}{\sum_{k=1}^T exp(e_{tk})} \ e_{ti} & = v_a^ op tanh(W_a[s_{i-1},h_i]) \end{aligned}$$

2) Hidden layer parameters

$$egin{aligned} s_t &= tanh(W[s_{t-1}, y_{t-1}, extbf{c_t}]) \ o_t &= softmax(Vs_t) \end{aligned}$$

3.5 Luong Attention

1) Hidden layer parameters

$$egin{aligned} s_t = tanh(W[s_{t-1}, y_{t-1}]) \end{aligned}$$

2) Context vector

$$egin{aligned} oldsymbol{c_t} & = \sum_{i=1}^T lpha_{ti} h_i \ lpha_{ti} & = rac{exp(e_{ti})}{\sum_{k=1}^T exp(e_{tk})} \ e_{ti} & = s_t^ op W_a h_i \end{aligned}$$

3) Hidden layer parameters

$$egin{aligned} ilde{s}_t &= tanh(W_c[s_t, extbf{c_t}]) \ o_t &= softmax(V ilde{s}_t) \end{aligned}$$

Transformer

4.2 Multi-Head Attention

Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions.

References

Paper:

- [1] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
- [2] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]//Advances in neural information processing systems. 2014: 3104-3112.
- [3] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
- [4] Luong M T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation[J]. arXiv preprint arXiv:1508.04025, 2015.
- [5] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.

Blog:

https://zhuanlan.zhihu.com/p/30844905

https://easyai.tech/ai-definition/rnn/

https://blog.csdn.net/weijie_home/article/details/116407137

Github:

https://github.com/pprp/awesome-attention-mechanism-in-cv

Thank you for watching!

weijie_xjtu@stu.xjtu.edu.cn

