Homework 5

Hamza Bouhelal

March 2021

Problem 5.1:

a) Fibonacci.py

b)

n	Naive recursive	Buttom up	Closed form	Matrix representation
0	6.88769999896976	8.414000035	1.9273000020	2.01130000050397
	5e-05	372737e-06	80301e-05	94e-05
1	1.31599995256692	1.887000053	2.9833999974	1.62800006364705
	64e-06	1023834e-06	471226e-05	04e-06
2	2.44800003201817	4.227999966	9.5320000355	1.77530000655679
	16e-06	133211e-06	05916e-06	03e-05
3	2.27900000027148	2.405000032	3.1223999940	1.85129999863420
	05e-06	0130493e-06	26637e-05	38e-05
4	3.08699998186057	1.717999907	2.2360000002	2.73079999715264
	2e-06	6688546e-06	663583e-06	42e-05
5	4.67699999262549	1.914999984	2.0219999896	1.67070000998137
	7e-06	36484e-06	653462e-06	4e-05
6	0.00022366400003	1.005699994	2.1629999764	2.68490000507881
	19312	0388778e-05	627428e-06	63e-05
8	1.92740000102276	2.666999989	2.1959999685	4.85350000190010
	1e-05	7421803e-06	35034e-06	2e-05
10	6.59649999761313	2.960000074	2.1050000214	7.53130000248347
	7e-05	3812416e-06	017928e-06	6e-05
13	0.00025961599999	3.564000053	1.9599999632	4.09839999520045
	391183	302152e-06	19161e-06	24e-05
16	0.00091547800002	4.366999974	1.9579999843	8.49870000365626
	445	081409e-06	699625e-06	8e-05
20	0.01186202700000	8.585999921	2.0160000531	8.71979999601535
	6492	706389e-06	177502e-06	4e-05
25	0.09882025299998	1.025100004	1.9569999949	6.89329999659094
	531	8810965e-05	45363e-06	e-05
30	1.29401628599998	1.203499994	1.9579999843	8.38260000364243
	73	0624402e-05	699625e-06	8e-05

c) For n, all methods return the same Fibonacci Number except for the closed method since round is used, the larger n gets the less precise the closed method is.

Problem 5.2:

a)the asymptotic time complexity depending on the number of bits n for a brute-force implementation of the multiplication is $\Theta(n^2)$, it multiplies each bit of a with each bit of b, whenever there is a multiplication of a bit of a to a bit of b, the result is bit-shifted by the position of the bit in a, then the result is calculated by summing up all the results obtained before (and shifted).

For the addition, we see that the time complexity is $\Theta(n^2)$, We conclude that:

$$T(n) = \Theta(n^2) + \Theta(n^2)$$

$$T(n) = 2\Theta(n^2)$$

$$T(n) = \Theta(n^2)$$

b)derive a devide and Conquer algorith by splitting the problem into two subproblems, with n a power of 2.

first we rewrite a and b in base B

a = a1B(m) + a2 with a1 and a2 the left side and right side of a and m smaller

b = b1B(m) + b2 with b1 and b2 the left side and right side of b and m smaller than n.

for B is base 2 and m is
$$\frac{n}{2}$$
:
 $a \times b = (2^{\frac{n}{2}}.a1 + a2)(2^{\frac{n}{2}}.b1 + b2)$
 $= 2^n a1 \times b1 + 2^{\frac{n}{2}}(a12 + a2 \times b1) + a2 \times b2$

There is 4 multiplications, therefore:
$$T(n) = 4T(\frac{n}{2}) + \Theta(n)$$
 let's try to reduce $a1 \times b2 + a2 \times b1$ $a1 \times b2 + a2 \times b1 = (a1 + a2)(b1 + b2) - a1b1 - a2b2$ $= a1b2 + a1b1 + a2b2 + a2b1 - a1b1 - a2b2$ $= a1b2 + a2b1$

Now let's replace that in the expression obtained before:

$$a \times b = (2^{\frac{n}{2}}.a1 + a2)(2^{\frac{n}{2}}.b1 + b2)$$

$$=2^{n}a1 \times b1 + 2^{\frac{n}{2}}((a1+a2)(b1+b2) - a1b1 - a2b2) + a2 \times b2$$

we can therefore do one multiplication less using this approach.

c)Since we can do one multiplication less using this approach, T becomes:

$$T(n) = 3T(\frac{n}{2}) + \Theta(n)$$

e) The Master method can be used here:

$$a = 3$$

$$b = 3$$

$$b = 2 n^{\log_2(3)} = n^{1.58}$$

$$f(n) = n$$

$$f(n) = O(n^{\log_2^(3-e)}) = O(n^{\log_2^(3-e)})O(n^{1.58-e)withe = \log_2^3 - 1 = 0.58}$$

Case 1:

$$T(n) = \Theta(n^{\log_2^3}) = \Theta(n^{1.58})$$