Prescreening for Fatty Liver Disease Using Blood Markers

Andy Vong

Late Stages of NASH Deadly; Early Stages of NASH Reversible

http://www.hcv-trials.com/nash/NAFLD-NASH.asp

Pre-screening for Fibrosis Staging Saves Costs and Improves Patient Care

Liver Biopsy (Gold Standard)

Invasive

MRI-PDFF (Currently used by FDA for clinical trial enrollment)

- Costly
- Need specialized equipment

Biomarkers Correlate with Fibrosis Staging; Blood Tests Detect Fibrosis Staging

- Higher scores trend with fibrosis staging
- Bilirubin builds up in blood as liver is compromised
- Albumin levels decrease as liver is compromised
- Aspartate aminotransferase (AST) is liver enzyme
- Platelet count decreases with liver damage, cause is multifactorial
- Alanine aminotransferase (ALT) also liver enzyme

Purpose: Prescreen for Fatty Liver Disease Using Only Blood Test Results

With focus on F3 due to limitations with data

Trained with 306 Patient Records Provided by Mayo Clinic

- Benchmarks
 - Random Guess
 - ALBI Score
 - APRI Score
 - FIB-4 Score
- Result:
 - Logistic Regression model outperforms benchmarks and other machine learning models

Data Cannot Reliably Classify F2 and Below

- No healthy patients
- Insufficient data points to classify F1
- Group F1 and F2 to balance data
- Focus on classifying F3

Features Not Well Separable by Staging

ALBI Scoring Sets Baseline F1-score 0.45

Random		Predicted				ALBI		Predicted			
		F1/F2	F3	F4				F1/F2	F3	F4	
True	F1/F2	21.4	31.8	27.8	81	True	F1/F2	20.0	38.0	23.0	81
	F3	31.8	47.0	41.2	120		F3	9.0	52.0	59.0	120
	F4	27.8	41.2	36.0	105		F4	1.0	19.0	85.0	105
		81	120	105				30	109	167	
	Precision:	0.26	0.39	0.34			Precision:	0.67	0.48	0.51	
	Recall:	0.26	0.39	0.34			Recall:	0.25	0.43	0.81	
	F1-Score:	0.26	0.39	0.34			F1-Score:	0.36	0.45	0.63	

Logistic Regression Model Outperforms Benchmarks and Random Forest

Randor	n Forest	P	redicted			Logist	ic Reg	P	redicted		
		F1/F2	F3	F4				F1/F2	F3	F4	
True	F1/F2	20.1	52.7	8.2	81	True	F1/F2	10.8	65.3	4.9	81
	F3	20.5	77.3	22.2	120		F3	6.8	96.5	16.7	120
	F4	4.0	45.8	55.2	105		F4	1.4	57.5	46.1	105
		44.6	175.8	85.6				19	219.3	67.7	
	Precision:	0.45	0.44	0.64			Precision:	0.57	0.44	0.68	
	Recall:	0.25	0.64	0.53			Recall:	0.13	0.80	0.44	
	F1-Score:	0.32	0.52	0.58			F1-Score:	0.22	0.57	0.53	

Randor	n Forest	P	redicted			Logist	ic Reg	Р	redicted		
		F1/F2	F3	F4				F1/F2	F3	F4	
True	F1/F2	20.1	52.7	8.2	81	True	F1/F2	10.8	65.3	4.9	81
	F3	20.5	77.3	22.2	120		F3	6.8	96.5	16.7	120
	F4	4.0	45.8	55.2	105		F4	1.4	57.5	46.1	105
		44.6	175.8	85.6				19	219.3	67.7	
	Precision:	0.45	0.44	0.64			Precision:	0.57	0.44	0.68	
	Recall:	0.25	0.64	0.53			Recall:	0.13	0.80	0.44	
	F1-Score:	0.32	0.52	0.58			F1-Score:	0.22	0.57	0.53	

Random		Predicted			ALBI		Predicted				
		F1/F2	F3	F4				F1/F2	F3	F4	
True	F1/F2	21.4	31.8	27.8	81	True	F1/F2	20.0	38.0	23.0	81
	F3	31.8	47.0	41.2	120		F3	9.0	52.0	59.0	120
	F4	27.8	41.2	36.0	105		F4	1.0	19.0	85.0	105
		81	120	105				30	109	167	
	Precision:	0.26	0.39	0.34			Precision:	0.67	0.48	0.51	
	Recall:	0.26	0.39	0.34			Recall:	0.25	0.43	0.81	
	F1-Score:	0.26	0.39	0.34			F1-Score:	0.36	0.45	0.63	

Summary

- Pre-screening for NASH with cheap, non-invasive tests can improve patient care and reduce costs
 - Treating F3 NASH reduce risk of cancer and liver-related deaths
- Data is limited
 - 306 patients not sufficient to simulate larger population
 - Lacked healthy population
 - Data rather homogeneous
- Machine learning models can outperform the best non-invasive diagnostic tests for fatty liver disease
- Additional data needed

ALBI Model

• Idea:

- Choose threshold of ALBI value
- Those with ALBI < threshold, assign as non-advanced or noncirrhotic
- Those with ALBI > threshold, assign as advanced or cirrhotic

ALBI Model

		Advanced Fibrosis (F3)	Cirrhosis (F4)
ALBI Score	AUC	0.705	0.733
	Best cutoff	-1.180	-0.300
	Sensitivity	0.956	0.810
	Specificity	0.247	0.592
	Accuracy	0.768	0.667
	Precision	0.779	0.509
	Neg Precision	0.667	0.856
	F1-Score	0.858	0.625
	F1-Precision	0.718	0.638

```
array([[20, 38, 23],
[ 9, 52, 59],
[ 1, 19, 85]], dtype=int64)
```

- Thresholds were chosen such that they maximize F1-score (thus balancing positive prediction rate and positive occurrence)
- For predicting advanced fibrosis, false negative rate is about the same as random guessing (1 in 3 of negative predictions are incorrectly labeled)
- For predicting cirrhosis, false negative rate is much better (1 in 7 of negative predictions are incorrectly labeled)
 - At same time, predict negative at much higher rate (48.7% for cirrhosis vs 9.8% for advanced fibrosis)
 - Meaning, much better false negative rate and NOT by making less false predictions

```
array([[0.06535948, 0.19934641], [0.03267974, 0.70261438]])
```

```
array([[0.38888889, 0.26797386], [0.06535948, 0.27777778]])
```

APRI Model

• Idea:

- Choose threshold of APRI value
- Those with APRI < threshold, assign as non-advanced or noncirrhotic
- Those with APRI > threshold, assign as advanced or cirrhotic

APRI Model

array([[1,	60,	20],	
[0,	71,	49],	
]	0,	38,	67]],	dtype=int64)

		Advanced Fibrosis (F3)	Cirrhosis (F4)
APRI Score	AUC	0.673	0.660
	Best cutoff	-1.060	-0.22
	Sensitivity	1.000	0.638
	Specificity	0.012	0.657
	Accuracy	0.739	0.65
	Precision	0.738	0.493
	Neg Precision	1.000	0.776
	F1-Score	0.849	0.556
	F1-Precision	0.849	0.603

- Thresholds were chosen such that they maximize F1-score (thus balancing positive prediction rate and positive occurrence)
- For predicting advanced fibrosis, predict negative only 1 time, but does so correctly
 - Assign all patients as having advanced fibrosis, precision is no better than random guessing
- For predicting cirrhosis, predict negative 55.5% of the time with 2 in 9 being incorrectly labeled
 - Compared to random guessing, predict negative less frequently, but still catch same number of true negatives
 - Improves purely on false negatives
 - Even though predicts positive more often, also significantly improves quality of positive prediction (49.3% are true positives, whereas would be 34.3% for random guessing). Also catches more true positives (86% more true positives)

```
array([[0.00326797, 0.26143791], array([[0.43137255, 0.2254902], [0. , 0.73529412]]) [0.12418301, 0.21895425]])
```

FIB-4 Model

• Idea:

- Choose threshold of FIB-4 value
- Those with FIB-4 < threshold, assign as non-advanced or noncirrhotic
- Those with FIB-4 > threshold, assign as advanced or cirrhotic

FIB-4 Model

		Advanced Fibrosis (F3)	Cirrhosis (F4)
FIB-4 Score	AUC	0.624	0.659
	Best cutoff	-2.000	-0.16
	Sensitivity	1.000	0.590
	Specificity	0.000	0.687
	Accuracy	0.735	0.654
	Precision	0.735	0.496
	Neg Precision	0.000	0.762
	F1-Score	0.660	0.539
	F1-Precision	0.000	0.601

- Thresholds were chosen such that they maximize F1-score (thus balancing positive prediction rate and positive occurrence)
- For predicting advanced fibrosis, it predicts everyone as having advanced fibrosis
- For cirrhosis, predict negative 59.1% of the time (compared to 65.7% for guessing)
 - Also of the negative predictions, only 23.8% are false negatives, where as for guessing that would be 34.3%
 - Even though predicts positive more often, also significantly improves quality of positive prediction (49.6% are true positives, whereas would be 34.3% for random guessing). Also catches more true positives (72% more true positives

```
array([[0. , 0.26470588], array([[0.45098039, 0.20588235], [0. , 0.73529412]]) [0.14052288, 0.20261438]])
```

RF

```
array([[20.1, 52.7, 8.2], [20.5, 77.3, 22.2], [4., 45.8, 55.2]])
```

Advanced fibrosis, then cirrhosis

```
7, 0.18300645],
                                       precision neg_precision f1-score
7, 0.6682129 ]]) recall
                           specificity
                                                                                    accuracy support_pos support_neg
                                0.314
                                                            0.565
                                                                                         0.75
                                                                                                    45.552
                   0.91
                                             0.786
                                                                          0.842
                                                                                                                  16.448
    mean
 95.0% CI [0.819, 0.979] [0.118, 0.538] [0.679, 0.889] [0.25, 0.875] [0.766, 0.904] [0.645, 0.839] [39.0, 52.0]
                                                                                                              [10.0, 23.0]
```

```
516, 0.09054839],
839, 0.19185806]]) recall specificity
                                                                           f1-score
                                             precision neg_precision
                                                                                         accuracy support_pos support_neg
                      0.564
                                   0.863
                                                                0.791
                                                                                            0.758
                                                                                                         21.254
                                                                                                                       40.746
                                                 0.684
                                                                              0.609
        mean
     95.0% CI [0.348, 0.789] [0.75, 0.952] [0.474, 0.889] [0.667, 0.907] [0.432, 0.758] [0.661, 0.855]
                                                                                                     [15.0, 28.0]
                                                                                                                   [34.0, 47.0]
```

Log Regression

```
array([[10.8, 65.3, 4.9],
[ 6.8, 96.5, 16.7],
[ 1.4, 57.5, 46.1]])
```

```
0.07347097, 0.1906129 ],
                                      specificity
                                                     precision neg_precision
                                                                                f1-score
                            recall
                                                                                              accuracy support_pos support_neg
0.07696774, 0.65894839]])
                             0.896
                                           0.286
                                                         0.777
                                                                        0.512
                                                                                     0.83
                                                                                                  0.732
                                                                                                              45.627
                                                                                                                             16.373
               mean
            95.0% CI [0.773, 0.98] [0.067, 0.536] [0.661, 0.887] [0.2, 0.875] [0.753, 0.9] [0.629, 0.839]
                                                                                                           [39.0, 52.0]
                                                                                                                         [10.0, 23.0]
```

```
0.57569677, 0.08158065],
                                      specificity precision neg_precision
                                                                                 f1-score
                             recall
                                                                                               accuracy support_pos support_neg
0.15047742, 0.19224516]])
                             0.564
                                           0.877
                                                       0.707
                                                                      0.794
                                                                                    0.619
                                                                                                  0.768
                                                                                                               21.249
                                                                                                                              40.751
               mean
            95.0% CI [0.346, 0.769] [0.759, 0.974] [0.5, 0.923] [0.673, 0.905] [0.437, 0.765] [0.677, 0.855]
                                                                                                           [15.0, 28.0]
                                                                                                                          [34.0, 47.0]
```

Adv Fibrosis

- RF and log regression nearly identical results, but RF slightly better (may not be statistically significant against larger population) at differentiating TP vs FP and TN vs FN
- ALBI model may be over predicting positive cases (90% positive prediction), but at least might lower FN rate than either RF or LR

Fibrosis

- Again, RF and LR are nearly identical, but this time LR is slightly better at distinguishing between TP vs FP and TN vs FN
- While ALBI model has lower FN rate, both RF and LR are more confident in N predictions (precision of negatives is higher)
- Both RF and LR also have higher precision