Exercise 0

AUTHOR
Collin Real (yhi267)

Import package, access the studentdata from package, and show part of the data.

```
library(LearnBayes)
data(studentdata)
attach(studentdata)
head(studentdata)
  Student Height Gender Shoes Number Dvds ToSleep WakeUp Haircut Job Drink
1
        1
              67 female
                            10
                                    5
                                         10
                                               -2.5
                                                       5.5
                                                                 60 30.0 water
        2
              64 female
2
                            20
                                    7
                                          5
                                                1.5
                                                       8.0
                                                                  0 20.0
                                                                           pop
3
              61 female
        3
                            12
                                          6
                                               -1.5
                                                       7.5
                                                                 48
                                                                     0.0 milk
4
              61 female
                             3
                                    6
                                         40
                                                2.0
                                                       8.5
                                                                     0.0 water
                                                                 10
5
        5
                    male
                             4
                                    5
                                          6
                                                0.0
                                                       9.0
                                                                 15 17.5
              70
                                                                           pop
              63 female
6
                            NA
                                          5
                                                1.0
                                                       8.5
                                                                 25 0.0 water
```

1a) Construct a histogram of this variable using the hist command in R.

```
hist(studentdata$Dvds,
    main="DVDs Owned by Students - Histogram",
    xlab="Total DVDs",
    ylab="Frequency",
    col="blue",
    border="black")
```

DVDs Owned by Students - Histogram

0 200 400 600 800 1000

Total DVDs

1b) Summarize this variable using the summary command in R.

```
summary(studentdata$Dvds)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 10.00 20.00 30.93 30.00 1000.00 16
```

1c) Use the table command in R to construct a frequency table of the individual values of Dvds that were observed. If one constructs a barplot of these tabled values using the command barplot(table(Dvds), col='red')
one will see that particular response values are very popular. Is there any explanation for these popular values for the number of DVDs owned?

```
table(studentdata$Dvds)
                 2.5
  0
        1
              2
                         3
                               4
                                     5
                                           6
                                                 7
                                                      8
                                                            9
                                                                 10
                                                                       11
                                                                             12
                                                                                  13
                                                                                        14
 26
       10
             13
                    1
                        18
                               9
                                    27
                                          14
                                               12
                                                     12
                                                            7
                                                                 78
                                                                        3
                                                                             20
                                                                                   7
                                                                                         4
 15
       16
             17 17.5
                        18
                              20
                                    21
                                          22 22.5
                                                     23
                                                           24
                                                                 25 27.5
                                                                             28
                                                                                  29
                                                                                        30
 46
       1
             3
                         4
                              83
                                     3
                                           3
                                                           2
                                                                 31
                                                                        3
                                                                                   1
                                                                                        45
                    1
                                                 1
                                                      3
                                                                              1
 31
       33
            35
                  36
                        37
                              40
                                    41
                                          42
                                               45
                                                     46
                                                           48
                                                                 50
                                                                       52
                                                                             53
                                                                                  55
                                                                                        60
  1
        1
            12
                   4
                              26
                                     1
                                           1
                                                 5
                                                      1
                                                            2
                                                                 26
                                                                        1
                                                                              2
                                                                                   1
                                                                                         7
                         1
 62
       65
                        73
                              75
                                                           97
                                                                      120
                                                                                 130
             67
                  70
                                    80
                                          83
                                               85
                                                     90
                                                                100
                                                                           122
                                                                                       137
  1
        2
              1
                         1
                               3
                                     4
                                           1
                                                 1
                                                      1
                                                            1
                                                                 10
                                                                        2
                                                                              1
                                                                                    2
                                                                                         1
150
      152
           157
                 175
                       200
                             250
                                   500
                                         900 1000
  6
                         8
                               1
        1
              1
                    1
                                     1
                                           1
                                                 1
barplot(table(studentdata$Dvds),
         main = 'Dvds Owned By Students - Barplot',
         xlab ='DVDs Count',
         ylab = 'Student Count',
```

Dvds Owned By Students - Barplot

col = 'blue',
border = 'black')

1c) Explanation: There are significant spikes in student count at intervals of 5 & 10, indicating that many students in the survey might not have inputted their exact DVD counts, but rather an estimate.

Question 2a) Construct parallel boxplots of the heights using the Gender variable.

```
boxplot(Height ~ Gender,
    data = studentdata,
    main = "Heights by Gender - Boxplot",
    xlab = "Gender",
    ylab = "Height (inches)",
    col = c("blue", "green"))
```

Heights by Gender - Boxplot

Question 2b) If one assigns the boxplot output to a variable output=boxplot(Height~Gender) then output is a list that contains statistics used in constructing the boxplots. Print output to see the statistics that are stored.

```
output = boxplot(Height ~ Gender)
```


print(output)

\$stats

[,1] [,2]
[1,] 57.75 65
[2,] 63.00 69
[3,] 64.50 71
[4,] 67.00 72
[5,] 73.00 76

\$n

[1] 428 219

\$conf

[,1] [,2]

[1,] 64.19451 70.6797

[2,] 64.80549 71.3203

\$out

[1] 56 76 55 56 76 54 54 84 78 77 56 63 77 79 62 62 61 79 59 61 78 62

Question 2c) On average, how much taller are male students than female students?

[1] "Male height: 70.51 inches."

[1] "Female height: 64.76 inches."

[1] "On average, male students are 5.75 inches taller than females."

Question 3a) Construct a scatterplot of ToSleep and WakeUp.

```
plot(ToSleep, WakeUp,
    xlab = "Sleep Time",
    ylab = "WakeUp Time",
    main = "ToSleep and WakeUp - Scatterplot",
    pch = 19,
    col = "blue")
```

ToSleep and WakeUp - Scatterplot

Question 3b) Find a least-squares fit to these data using the Im command and then place the least-squares fit on the scatterplot using the abline command.

```
Call:
lm(formula = WakeUp ~ ToSleep)
Residuals:
             10 Median
                               30
                                      Max
-4.4010 -0.9628 -0.0998 0.8249 4.6125
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.96276
                         0.06180 128.85
                                            <2e-16 ***
ToSleep
             0.42472
                         0.03595
                                    11.81
                                            <2e-16 ***
                 0 | Statest | 0 001 | State | 0 01 | St. | 0 05 | 1 0 1 | 1 1
```

ording codes. A the property of the codes.

Residual standard error: 1.282 on 651 degrees of freedom

(4 observations deleted due to missingness)

Multiple R-squared: 0.1765, Adjusted R-squared: 0.1753 F-statistic: 139.5 on 1 and 651 DF, p-value: < 2.2e-16

Add the least-squares fit line to the scatterplot
abline(fit, col = "black", lwd = 2)

ToSleep and WakeUp - Scatterplot

