Bell Work

Graph then state the domain, range, x-intercept, y-intercept, vertical and horizontal asymptotes, holes. If an item does not exist, write 'none'

$$y = \frac{x^2 - 25}{x - 5}$$

Follow up question...

How would this change if we had:

$$y = \frac{x - 5}{x^2 - 25}$$

For Last Time...

Page 190 #9-15(odd), 21, 25, 27, 41, 43, 79

PRE-CALC TRIG

Day 18

12.1 Limits an Intro to Calculus

■ Objective: Use definition of limits to determine if limits exist and evaluate them

■ HLQ: How would a limit that approaches infinity impact a rational expression with the only variable being located in the denominator?

Definition of Limit

If f(x) becomes arbitrarily close to a unique number L as x approaches c from either side, the limit of f(x) as x approaches c is L.

$$\lim_{x \to c} f(x) = L$$

Estimating a Limit Numerically (whether f(x) at x = c exists or not)

■ Example 1: $\lim_{x \to 2} (3x - 2)$

```
x 1.9 1.99 1.999 2.0 2.001 2.01 2.1
```

f(x) |

Estimating a Limit Numerically (whether f(x) at x = c exists or not)

Example 1: $\lim_{x \to 2} (3x - 2)$

x 1.9	9 1.99	1.999	2.0	2.001	2.01	2.1
f(x) 3.7	3.97	3.997		4.003	4.03	4.3

Two sets (one from both the left and the right) of x-values approach 4...

Example 1 Solution:

$$\lim_{x\to 2} (3x-2) = 4$$

* Note: You can find the limit with direct substitution 3(2) - 2 = 4 *

Example 2: $\lim_{x \to 2} \frac{x-2}{x^2-4}$

```
x | 1.9 1.99 1.999 2.0 2.001 2.01 2.1
```

f(x) |

Example 2: $\lim_{x \to 2} \frac{x-2}{x^2-4}$

Χ	1.9	1.99	1.999	2.0	2.001	2.01	2.1
f(x)	1.2564	.2506	.25006		.2499	.2493	.2439

Example 2 Solution

Two sets (one from both the left and the right) of x-values approach 0.25...

$$\lim_{x\to 2}\frac{x-2}{x^2-4}=0.25$$

Even though x=2 is undefined we say the limit as x approaches 2 is 0.25

Example 3:
$$\lim_{x \to 3} \frac{x+3}{x^2-9} = \frac{x+3}{(x+3)(x-3)}$$

$$\lim_{x \to 3} \frac{x+3}{x^2-9}$$
 does not exists...

Because f(x) is not approaching a unique number L as x approaches 3 we can conclude that this limit does not exist.

Additional Note on Example 3

Note:
$$\lim_{x \to -3} \frac{x+3}{x^2-9} = -0.17$$

Therefore, a hole exists at -3 and a vertical asymptote at 3

For next time...

Page 858 #5, 7, 9, 13, 29, 30, 31, 33, 49, 53, 61