Early Childhood Education Impacts

Does participation in SABER early childhood goals help reduce a countrys primary school dropout rate?

Dataset and Research Question

Almost 900,000 Rows

Min 35,000 Values

Dataset

World Bank Education Statistics (1970-2017)

- Education Enrollment and Attainment
- Education Assessment and Learning Outcomes
- Economic and Labor Indicators
- Population and Health Statistics

This dataset is sparsely populated

• Min Year: 4%

Max Year: 27%

Max 240,000 Values

Aclass 'nandas co	re.frame.DataFrame'>
	0 entries, 0 to 886929
Data columns (tot	
Country Name	886930 non-null object
Country Code	886930 non-null object
Indicator Name	886930 non-null object
Indicator Code	886930 non-null object
1970	72288 non-null float64
1971	35537 non-null float64
1971	35619 non-null float64
1973	35545 non-null float64
1974	35730 non-null float64
1975	87306 non-null float64
1976	37483 non-null float64
1977	37574 non-null float64
1978	37576 non-null float64
1979	36809 non-null float64
1980	89122 non-null float64
1981	38777 non-null float64
1982	37511 non-null float64
1983	38460 non-null float64
1984	38606 non-null float64
1985	90296 non-null float64
1986	39372 non-null float64
1987	38641 non-null float64
1988	38552 non-null float64
1989	37540 non-null float64
1990	124405 non-null float64
1991	74437 non-null float64
1992	75543 non-null float64
1993	75793 non-null float64
1994	77462 non-null float64
1995	131361 non-null float64
1996	76807 non-null float64
1997	73453 non-null float64
1998	84914 non-null float64
1999	118839 non-null float64
2000	176676 non-null float64
2001	123509 non-null float64
2002	124205 non-null float64
2003	130363 non-null float64
2004	128814 non-null float64
2005	184108 non-null float64
2006	140312 non-null float64
2007	137272 non-null float64
2008	134387 non-null float64
2009	142108 non-null float64
2010	242442 non-null float64
2011	146012 non-null float64
2012	147264 non-null float64
2013	137509 non-null float64
2014	113789 non-null float64
2015	131058 non-null float64
2016	16460 non-null float64

Research Questions

Early Performance of SABER Programs (Systems Approach for Better Education Results)

- Does participation in the SABER early childhood goals lead to improved outcomes for children?
 - Improved outcome?
 - Measuring SABER participation?
 - Other meaningful indicators?
 - What's missing?

Feature Selection and Engineering

Feature Selection

Stage 1: Feature Density, Outcome Variable Selection and Initial Model

- 413 Variables > 2 Values in 150+ Countries
- Outcome: Avg. Change in Rate of
 Out-of-School Primary-aged Children
- Initial Models: overfit, no standout indicators

Feature Engineering

Null Handling, Change Variables, and Current Variables

• Backfill, forward fill

```
# Make a copy of the data frame that has only the features for the model, backfill then frontfill any NaNs
features_df = features_df.fillna(method='bfill', axis=1)
features_df.iloc[:, 2:] = features_df.iloc[:, 2:].fillna(method='ffill', axis=1)|
```

Numpy Mean of (Diff)

```
# For each row, take the mean of the year to year differences, ignoring NaNs

for i in range(len(features_arr)):
    features_arr[i] = np.append(features_arr[i], np.nanmean(np.diff(features_arr[i][2:])))
```

2015 (if NaN work backwards)

```
# For each row, check find the most current year where the value is not NaN
for i in range(len(features_arr)):
    for x in features_arr[i][-2:2:-1]:
        if not isnan(x):
            features_arr[i] = np.append(features_arr[i], x)
            break
```

Feature Selection

Stage 2: SelectKBest and Lasso Regression

- Select 75 best
- Models no longer overfit
- Lasso reduces 50+ variable coefficients to 0
 - o All but 5 < 0.01

Feature Selection

Stage 3: Indicators of Theoretical Interest

SP.POP.TOTL: Population, total

SE.PRM.AGES: Official entrance age to primary education (years)

SE.COM.DURS: Duration of compulsory education (years)

SH.DYN.MORT: Mortality rate, under-5 (per 1,000)

SL.UEM.TOTL.ZS: Unemployment, total (% of total labor force) **SL.TLF.TOTL.FE.ZS:** Labor force, female (% of total labor force)

UIS.FEP.2.GPV: Percentage of students in lower secondary

general education who are female (%)

UIS.GOER.56: Gross outbound enrolment ratio, all regions, both sexes (%)

NY.GNP.PCAP.PP.CD: GNI per capita, PPP (current international \$)

UIS.ROFST.1: Rate of out-of-school children of primary school age, both sexes (%)

* GNI = total domestic and foreign output within country

*PPP = nurchasing nower parity

Dropped Countries

Afghanistan, American Samoa, Andorra,
Aruba, Austria, Bermuda, Bosnia and Herzegovina,
British Virgin Islands, Brunei Darussalam, Cayman Islands,
Channel Islands, China, Congo, Dem. Rep., Curacao,
Czech Republic, Dominica, Faroe Islands, French Polynesia,
Gabon, Gibraltar, Greenland, Guam, Haiti,
Hong Kong SAR, China, Iraq, Isle of Man, Jamaica, Kosovo,
Libya, Liechtenstein, Madagascar,
Macao SAR, China, Malawi, Maldives, Micronesia, Fed. Sts.,
Monaco, Nauru, New Caledonia,
Northern Mariana Islands, Puerto Rico, Singapore,
Sint Maarten (Dutch part), Slovak Republic, Somalia,

South Africa, St. Martin (French part), St. Lucia,

Turkmenistan, Turks and Caicos Islands,

Virgin Islands (U.S.)

Model Building and Validation

Model Performance

Model	Features	Parameters	Model Score
OLS	All - Scaled	None	0.17
OLS	Change	None	0.08
OLS	Current	None	0.14
Random Forest Regressor	All - Scaled	{criterion: mae, min_impurity_decrease: 0.001, n_estimators: 200}	-0.12
Random Forest Regressor	Change	{criterion: mse, min_impurity_decrease: 0.01, n_estimators: 200}	-0.21
Random Forest Regressor	Current	{criterion: mae, min_impurity_decrease: 0.01, n_estimators: 100}	-0.14
Gradient Boosting Regression	All - Scaled	{learning_rate: 0.0001, n_estimators: 500}	-0.03
Gradient Boosting Regression	Change	{learning_rate: 0.001, n_estimators: 100}	-0.02
Gradient Boosting Regression	Current	{learning_rate: 0.0001, n_estimators: 100}	-0.04

Distribution of Outcome Variable

Linear Regression Model Assumptions: Linear Relationship Change Features

Linear Regression Model Assumptions: Linear Relationship Current Features

Linear Regression Model Assumptions: Low Multicollinearity

- Relatively low collinearity
- Keep all
 - Model all
 - Model avg change features
 - Model current features

NY.GNP.PCAP.PP.CDAverageChange SH.DYN.MORTAverageChange SL.TLF.TOTL.FE.ZSAverageChange

S. Dem. 10 IL. Sourien
SP. POP. TOTLCuren
US. FEP. 2. GPVOuren
US. GOER, Séduren
SABERParticipation
US. ROFST. 1 Average Change

Linear Regression Model Assumptions: Homoscedasticity

Linear Regression Features Coefficients

Linear Regression Features Coefficients

Linear Regression Feature Significance

Linear Regression Feature Significance

Random Forest Regressor Results

Random Forest Regressor Results

Gradient Boosting Regressor Results

Gradient Boosting Regressor Results

Conclusion

Assumptions and Shortcomings

- Data is sparse
- Problem is complex
- Features don't meet all linear regression assumptions

Conclusions and Next Steps

- Little statistical significance for SABER participation 2010-2015
- Correlation with:
 - Labor force, female (% of total labor force)
 - Mortality rate, under-5 (per 1,000)
 - Percentage of students in lower secondary general education who are female (%)
- Get change in score data with next measurement year

Questions? Comments? Concerns?