Subgroups

1. Subgroups Definition

Cyclic subgroups
Solutions to exercises

Definition

Definition 1

Let (G, \star) denote a group. A subgroup H < G is a subset of G such that (H, \star) is also a group.

Example 1

The set $6\mathbb{Z}\subset\mathbb{Z}$ of multiples of 6 forms a subgroup of $\mathbb{Z}.$

Proof: We must verify the group axioms:

• Is + binary on $6\mathbb{Z}$? (Verifying this condition is sometimes called "showing $6\mathbb{Z}$ is closed under addition".)

Suppose $g, h \in 6\mathbb{Z}$. Since g and h are multiples of 6 then there exist (integers) n and m such that g = 6n and h = 6m. We must show $g + h \in 6\mathbb{Z}$:

$$g + h = 6n + 6m$$

$$= \underbrace{n + \dots + n}_{6 \text{ times}} + \underbrace{m + \dots + m}_{6 \text{ times}}$$

$$= \underbrace{(n + m) + \dots + (n + m)}_{6 \text{ times}} \text{ (by associativity in } G)$$

$$= 6(n + m).$$

Since \mathbb{Z} is a group $n+m\in\mathbb{Z}$ and hence g+h=6(n+m) is an integer multiple of 6. Therefore $g+h\in 6\mathbb{Z}$.

• Is + associative in $6\mathbb{Z}$?

In general we never have to prove this property since $6\mathbb{Z}\subset\mathbb{Z}$ and therefore + inherits associativity from \mathbb{Z} .

Does 6ℤ contain the identity element?

In our case we need to show the identity element is a multiple of 6. The additive identy of $\mathbb Z$ is $0=6\cdot 0$, so $0\in 6\mathbb Z$.

• Does every element in $6\mathbb{Z}$ have an inverse in $6\mathbb{Z}$ (i.e., is $6\mathbb{Z}$ is "closed under inverses")?

Suppose $g \in 6\mathbb{Z}$, and write g = 6n for some integer n. Then g + (-g) = (6n) + (-6n) = 0 = (-6n) + (6n). We conclude -g = -6n. And, $-g = -6n = 6(-n) \in 6\mathbb{Z}$.

Example 1 also holds when we replace 6 with any integer k (see also,

Example 3).

The following is a shortcut for proving a subset is a subgroup.

Proposition 1

Suppose $G = (G, \star)$ is a group and H is a non-empty subset of G. Then H < G if $gh^{-1} \in H$ for every $g, h \in H$.

Question

Why do we suppose H is non-empty?

Exercise 1

Prove Proposition 1. Is the converse true?

Example 2 (cf. Problem 49)

Suppose H is a subset of $G = (G, \star)$ satisfying the following:

- (i) *H* is closed under ★.
- (ii) If $g \in H$ then $g^{-1} \in H$.

Then H < G.

Proof: We must verify the group axioms. Item (i) implies \star is binary on H and associativity is inherited from G. We must check the identity element e is in H. From (ii), if an element g is in H, then so is its inverse. Combine that with (i) then $gg^{-1} = e \in H$. Finally, the existence of inverse elements is given by (i).

Quicker Proof: Suppose $g, h \in H$. By (i) $h^{-1} \in H$ and by (ii) $gh^{-1} \in H$. It follows from Proposition 1 that H < G.

Exercise 2 (cf. Problem 50)

Let $G = \mathbb{Z}_{12}$, as defined in Exercise ??. Show that $H = \{0, 3, 6, 9\}$ is a subgroup of G.

Cyclic subgroups

Definition 2

Suppose G is a group and $g \in G$. Define

$$\langle g \rangle := \{ g^n \mid n \in \mathbb{Z} \}$$

as the cyclic subgroup of G generated by g.

Exercise 3

For Definition 2 to make sense, we must check $\langle g \rangle$ actually is a subgroup.

As alternative notation, authors may write $gG = \langle g \rangle$ to denote the subgroup in G generated by g (see Example 1).

Example 3

For any integer k, the subgroup $k\mathbb{Z} < \mathbb{Z}$ is cyclic.

(Recall, from Section $\ref{eq:condition}$, the subgroups $0\mathbb{Z}<\mathbb{Z}$ and $1\mathbb{Z}<\mathbb{Z}.$)

Question

What is $0\mathbb{Z}$? What is $1\mathbb{Z}$?

We can define subgroups with more than one generator, though we do not describe such subgroups as cyclic.

Definition 3

Let $S = \{s_1, \dots, s_k\}$ denote some set of elements in the group G. The subgroup generated by S is defined as

$$\langle S \rangle = SG := \{s_1^{n_1} \cdots s_k^{n_k} \mid n_i \in \mathbb{Z} \text{ for all } i = 1, \dots k\}.$$

Elements in $\langle S \rangle$ are called words.

Question

How would you rewrite Definition 3 in additive notation?

Exercise 4 (cf. Problem 51)

Prove $\langle S \rangle$ in Definition 3 is a subgroup of G.

Example 4 (cf. Problem 52)

In \mathbb{Z}_{12} , we list the elements of the subgroup $H = \langle 2, 3 \rangle$ by writing down \mathbb{Z} -linear combinations of the generators, i.e., all possible elements of the form $n_1 \cdot 2 + n_2 \cdot 3$ for $n_1, n_2 \in \mathbb{Z}$:

Having exhausted all possible elements, we conclude $\langle 2,3 \rangle = \mathbb{Z}_{12}$.

Solutions to exercises

Exercise 1 (cf. notes)

Solution: Take $g,h\in H$. We shall exploit the hypothesis statement: $gh^{-1}\in H$. In the case where g=h, we have $gg^{-1}=e\in H$. Using the hypothesis again, $e,h\in H$ implies $eh^{-1}=h^{-1}\in H$. Therefore every element in H has an inverse in G. Finally, we must show closure of the binary operation, i.e., that $gh\in H$. Since $h\in H$, so is h^{-1} . Then the hypothesis says $g(h^{-1})^{-1}=gh\in H$.

The converse states that if H is a subgroup then for all $g, h \in H$, we have $gh^{-1} \in H$. This statement is **true** and follows directly from the group axioms for H.

Exercise 2 (cf. Problem 50)

Solution: By Example 2 it suffices to show closure under \oplus_{12} and the presence of inverse elements. H consists of multiples of 3 modulo 12, and so adding two of them results in a multiple of 3 as well. The inverses are -0 = 0, -3 = 9, -6 = 6.

Exercise 3

Solution: We appeal to Example 2. Take $g^n, g^m \in \langle g \rangle$. Then $g^n g^m = g^{n+m} \in G$, i.e., $\langle g \rangle$ is closed under the operation in G. For inverses, the definition of $\langle g \rangle$ includes inverses, since $(g^n)^{-1} = g^{-n}$.

Exercise 4 (cf. Problem 51)

Solution: We modify the arguments used in Exercise 3. If $s_1^{n_1} \cdots s_k^{n_k}$ and $s_1^{m_1} \cdots s_k^{m_k}$ are in $\langle S \rangle$, then their product is

$$(s_1^{n_1}\cdots s_k^{n_k})\cdot (s_1^{m_1}\cdots s_k^{m_k})=s_1^{n_1+m_1}\cdots s_k^{n_k+m_k}\in \langle S\rangle.$$

For the presence of inverses, put

$$s := (s_1^{n_1} \cdots s_k^{n_k})^{-1} = s_k^{-n_k} \cdots s_1^{-n_1}.$$

By definition, each of $s_i^{-n_i} \in \langle S \rangle$, for $i=1,\ldots,k$. Since we showed closure under the group operation, $s \in \langle S \rangle$.