3. Estruturas de Repetição (Ciclos)

3.1. Teste no Início do Ciclo (Repetição "enquanto"):

• A Expressão Lógica é calculada e, <u>enquanto</u> se mantiver verdadeira, a Instrução (Simples ou Composta) é executada.

Exemplo:

Imprimir uma tabela das potências inteiras de 2 inferiores a 1000.

Programa:

```
program potenciasde2 (output);
var i, potencia: integer;
begin (* Inicializacoes *)
       i:= 1; potencia:= 2;
       while potencia < 1000 do
              begin writeln(i:5, potencia:5);
                     (* Formulas Iterativas *)
                     i:=i+1;
                     potencia:= potencia * 2
              end
end.
```

• Se a Expressão Lógica for falsa à Entrada do Ciclo, este nunca chega a ser executado.

Problema: Dado: $n \in \mathbb{N}_0$

Resultado: 2ⁿ

```
program potenciade2 (input, output);
type natural = 0..maxint;
var i, n, potencia : natural;
begin read(n);
       i:= 0; potencia:= 1;
       while i < n do
              begin i:=i+1;
                      potencia:= potencia * 2
              end:
       (* aqui i = n *)
       writeln('2 elevado a', n:5, ' = ', potencia:5)
end.
```

Problema: Imprimir uma tabela de senos e cossenos dos valores de $x \in [0, \pi/2[$ com intervalos de 0.01 radianos.

sin(x)	cos(x)
0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600	1.0000 1.0000 0.9998 0.9996 0.9992 0.9988 0.9982
0.9982 0.9987 0.9992 0.9995 0.9998 0.9999	0.0608 0.0508 0.0408 0.0308 0.0208 0.0108 0.0008
	0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.9982 0.9987 0.9995 0.9995 0.9999

Problema: Dados: $a, b \in \mathbb{N}_0$ não simultaneamente nulos,

Calcular: mdc(a, b) pelo Algoritmo de Euclides.

Exemplos:

mdc(380,55) = ?

mdc(55,380) = ?

а	b	resto	а	b	resto
380	55	50	55	380	55
55	50	5	380	55	50
50	5	0	55	50	5
5	0		50	5	0
			5	0	

mdc(380,55) = 5

mdc(55,380) = 5

Notas:

- No programa anterior, os valores iniciais de <u>a</u> e <u>b</u> são destruídos.
- Para o valor inicial b=0, o ciclo nunca é executado, pois mdc(a,0) = a.

Problema: Calcular também o mmc(a,b) = a * b / mdc(a,b).

Programa:

```
program Euclides2 (input, output);
type natural = 0..maxint;
var a, aa, b, bb, resto : natural;
begin writeln('Escreva dois numeros naturais, nao
                                      simultaneamente nulos');
        read(a, b);
        (* tirar cópias de a e de b *)
        aa:=a:
        bb:=b:
        (* aplicar o Algoritmo de Euclides às cópias *)
        while bb <> 0 do
               begin resto:= aa mod bb;
                      aa:=bb:
                      bb:= resto
               end:
        (* aqui bb = 0 e aa = mdc(a,b) *)
        writeln('mdc = ', aa, ' e mmc = ', a*b div aa)
end.
```

Exercício: Aperfeiçoar a escrita dos resultados, por forma a que escreva:

$$mdc(380,55) = 5 e mmc(380,55) = 4180$$

Algoritmo original de Euclides:

Na sua sua forma original, o Algoritmo de Euclides para o cálculo do mdc não utilizava divisões. Consistia em:

Dados dois números inteiros e positivos, subtrair sucessivamente o menor ao maior, até ficarem iguais.

а	b		
9	30		
9	21		
9	12		
9	3		
6	3		
3	3		

mdc(9,30)=3

```
program EuclidesOriginal (input, output);
type intpos = 1..maxint;
var a, b : intpos;
begin writeln('Escreva dois numeros inteiros e positivos');
    read(a, b);
    while a <> b do
        if a < b
        then b:= b - a
        else a:= a - b;
        (* aqui a = b *)
        writeln('mdc = ', a)
    end.</pre>
```

Problema: Calcular **e**^x por desenvolvimento em **Série de Taylor** desprezando termos, em grandeza, inferiores a 10⁻⁷.

Um pouco de Análise Infinitesimal:

Desenvolvimento em série de Taylor da função exponencial:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots, convergente \ \forall x \in \mathbb{R}$$

Somas parciais de ordem $n \in n + 1$:

$$S_n = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

$$S_{n+1} = S_n + \frac{x^{n+1}}{(n+1)!}$$

Termos de ordem $n \in n + 1$:

$$t_n = \frac{x^n}{n!}$$

$$t_{n+1} = \frac{x^{n+1}}{(n+1)!} = t_n \frac{x}{n+1}$$

A série é convergente $\forall x \in \mathbb{R}$, isto é:

$$\lim_{n \to \infty} \{S_n\} = e^x$$

E, nesse caso:

$$\lim_{n\to\infty} \{t_n\} = 0$$

Diagrama de Estrutura do Algoritmo:

```
|er(x)| \\ n \leftarrow 0 \\ soma \leftarrow 0 \\ termo \leftarrow 1
|enquanto| |termo| \ge erro
|soma| \leftarrow soma + termo \\ n \leftarrow n + 1 \\ termo| \leftarrow termo * x / n
|escrever| (soma)
```

```
program exponencial (input, output);
const erro = 1.0E-7;
var x, termo, soma : real;
begin writeln('Escreva um numero real);
       read(x);
       (* inicializações *)
       soma:=0;
       n := 0;
       termo:= 1;
       while abs(termo) >= erro do
              begin (* somar termo válido *)
                     soma:= soma + termo;
                     (* calcular novo termo *)
                     n := n + 1;
                     termo:= termo * x / n
              end:
       (* aqui abs(termo) < erro *)
       writeln('Valor da soma = ', soma:20:7)
  end.
```

Notas:

• Caso particular para x=1: e = 2.7182818284...

Resultados do programa: n termo s

 n
 termo
 soma

 0
 1.0000000
 0.0000000

 1
 1.0000000
 1.0000000

 2
 0.5000000
 2.0000000

 3
 0.1666667
 2.5000000

 4
 0.0416667
 2.6666667

 5
 0.0083333
 2.7183333

 6
 0.0013889
 2.7166667

 7
 0.0001984
 2.7182540

 9
 0.0000028
 2.7182788

 10
 0.0000003
 2.7182815

Que garantia temos, mesmo no caso geral, de que o ciclo vai parar?

$$\lim_{n\to\infty} \{t_n\} = 0 \iff \forall \varepsilon \in \mathbb{R}_+, \ \exists N : \forall n \ge N \Rightarrow |t_n| < \varepsilon$$

• Que pode acontecer, quando não conhecemos a convergência da série?

Exercícios:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots, \ \forall x \in \mathbb{R}$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots, \ \forall x \in \mathbb{R}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, -1 < x \le 1$$

```
Outra vez o exemplo: Se o dia 1 de Novembro de 1999 foi uma
Segunda-Feira calcular os restantes.
(ver Cap.III, pág. 9)
```

Um programa educado e paciente, para com o utilizador distraído, que escreve valores de dia ∉ [1, 30]:

```
program Novembro2(input, output);
var dia: integer;
begin writeln('Por favor, indique o valor de um dia de Novembro');
       read(dia);
       (* Validação dos Dados *)
       while (dia < 1) or (dia > 30) do
              begin writeln(dia, 'Não é valor de dia de Novembro,
                                                      tente outra vez');
                     read(dia)
              end:
       (* Aqui (dia >= 1) and (dia <= 30) *)
       write('O dia ', dia, ' de Novembro de 1999 é ');
       case dia mod 7 of
             0 : writeln('um Domingo');
             1: writeln('uma Segunda Feira');
             2: writeln('uma Terca Feira');
             3: writeln('uma Quarta Feira');
             4: writeln('uma Quinta Feira');
             5: writeln('uma Sexta Feira');
             6: writeln('um Sabado')
       end
end.
```

Mas não será paciência a mais? E se o utilizador nunca acertar?

Vamos impôr um limite ao número de "distrações":

```
program Novembro3(input, output);
var dia, tentativas : integer;
     erro: boolean:
begin writeln('Por favor, indique o valor de um dia de Novembro');
       read(dia);
       (* Validação dos Dados *)
       tentativas:= 1:
       erro:= (dia < 1) or (dia > 30);
       while erro and (tentativas < 10) do
              begin writeln('Enganou-se. Tente outra vez');
                     read(dia);
                     tentativas:= tentativas + 1:
                     erro:= (dia < 1) or (dia > 30)
              end:
       (* Agui (not erro) or (tentativas >= 10) *)
       if erro
       then writeln('Enganou-se 10 vezes. Eu desisto!')
       else begin write('O dia ', dia, ' de Novembro de 1999 é ');
                   case dia mod 7 of
                          0: writeln('um Domingo');
                          1 : writeln('uma Segunda Feira');
                          2 : writeln('uma Terca Feira');
                          3: writeln('uma Quarta Feira');
                          4: writeln('uma Quinta Feira');
                          5 : writeln('uma Sexta Feira');
                          6: writeln('um Sabado')
                   end
            end
end.
```

3.2. Teste no Fim do Ciclo (Repetição "até que"):

- A Instrução (ou Sequência de Instruções) é repetida <u>até que</u> a Expressão Lógica se torne verdadeira.
- A Sequência de Instruções é executada pelo menos uma vez.

Problema: Calcular a soma de vários números inteiros, dados pelo utilizador, um por linha. A última linha contem 0.

```
soma \leftarrow 0
ler (numero)
soma \leftarrow soma+numero
até que numero = 0
escrever (soma)
```

```
program somar(input, output);
var numero, soma : integer;

begin writeln('Escreva numeros inteiros, um por linha, terminando com zero.');

soma:= 0;
repeat readln(numero);
soma:=soma+numero;
until numero = 0;

writeln('Soma = ', soma)
end.
```

- O utilizador tem de escrever, pelo menos, o número zero.
- O zero é efectivamente somado.

Problema: O dono de um hotel, resolveu estabelecer os seus preços de uma forma bastante original:

• Pela primeira noite cobrava 100 000\$00, pela segunda noite 50 000\$00 e, de um modo geral, pela noite de ordem **n** cobrava **100 / n!** milhares de escudos.

Um cliente aceitou ficar, mas apenas enquanto o preço de uma noite fosse superior a 10\$00.

Quantas noites ficou e qual o total da sua conta?

```
noites
            preco
                        total
    1 100000.00
                    100000.00
    2.
         50000.00 150000.00
         16666.67 166666.67
    3
          4166.67
                    170833.33
           833.33
                    171666.67
           138.89
                    171805.56
    7
            19.84
                    171825.40
    8
             2.48
Ficou 7 noites e pagou
                       171825.40
```

E mais uma vez o programa da Calculadora: (ver Cap.II - pág. 8 e Cap.III - pág. 10)

```
program calculadora4(input, output);
var oper: char;
     x, y, res: real;
     opcerto, divcerta: boolean;
begin repeat writeln('Qual a Operacao?');
                opcerto:= true;
                divcerta:= true:
                read(x, oper, y);
                case oper of
                       '+': res := x+y;
                       '-': res := x-y;
                       '*': res := x*v:
                       '/': if v = 0
                          then divcerta:= false
                          else res := x/y;
                otherwise opcerto:= false
                end:
                if opcerto and divcerta
                then writeln(x, oper, y, '=', res)
                else begin write('ERRO: ');
                              if opcerto
                              then write ('Divisão por zero, ')
                              else write('Operador nao Previsto, ');
                              writeln('Tente outra vez.')
                       end
        until opcerto and divcerta
end.
```

Exercício: Incluir a possibilidade do utilizador responder se Sim/Não pretende resolver <u>outra</u> expressão. 3.3. Ciclo com Contador:

- O Ciclo é executado um número fixo de vezes.
- O Incremento da Variável pode ser +1 (<u>to</u>) ou −1(<u>downto</u>).

A Variável e as Expressões:

- São do mesmo Tipo;
- São Escalares (não Reais);
- Não podem ser alteradas dentro do Ciclo.

Problema: Calcular a soma dos <u>k</u> primeiros termos da Série Harmónica


```
program Harmonica(input, output);
var k, n : integer;
   soma : real;

begin writeln('Quantos termos?');
   read(k);
   soma:= 0;
   for n:=1 to k do
        soma:= soma + 1/n;
   writeln(soma)
end.
```

- Os <u>valores</u> das duas Expressões são calculados no início e funcionam como constantes, durante a execução do Ciclo.
- No caso do Incremento Positivo (<u>to</u>) se, o valor da primeira Expressão for superior ao da segunda, o Ciclo não é executado.
- No caso do Incremento Negativo (<u>downto</u>) se, o valor da primeira Expressão for inferior ao da segunda, o Ciclo não é executado.
- O valor da Variável torna-se indefinido após a execução do Ciclo.

Problema:

Construir uma pirâmide de números como, por exemplo, para n=6:

1 121 12321 1234321 123454321 12345654321


```
program Piramide(input, output);
var linha, k, n : integer;

begin writeln('Qual o tamanho da piramide?');
    read(n);

for linha:=1 to n do
    begin write(' ':40-linha);
    for k:=1 to linha do
        write(k:2);
    for k:=linha-1 downto 1 do
        write(k:2);
    writeln
    end
end.
```

Exercícios:

Problema: Verificar se um dado número natural é ou não um Número Primo.

Algoritmo:

ler (numero)
estabelecer um limite
primo ← true

para n de 2 até limite

numero mod n = 0

primo ← false

Mas que <u>limite</u>?

$$n/2$$
? \sqrt{n} ?

Teorema: Se um dado número natural \underline{n} não possuir divisores \leq sqrt(n), então \underline{n} é um Número Primo.

Demonstração (por absurdo):

Suponhamos que $\underline{\mathbf{n}}$, sem divisores \leq sqrt(n), **não era** um Número Primo. Então, existiriam a,b > sqrt(n), tais que $\mathbf{n} = \mathbf{a} * \mathbf{b}$. Nesse caso teríamos:

```
n = a * b > (sqrt(n))^2 = n
ou, n > n, o que seria absurdo.
```

• Com base neste resultado, podemos utilizar o valor de: limite = trunc(sqrt(número)).

```
program TestaPrimos(input, output);
var numero, limite, n : 1..maxint;
    primo : boolean;

begin writeln('Qual o numero?');
    read(numero);
    limite:= trunc(sqrt(numero));
    primo:= true;

for n:=2 to limite do
    if numero mod n = 0
        then primo:= false;

if primo
    then writeln(numero, 'É um Número Primo')
    else writeln(numero, 'Não é um Número Primo')
end.
```

- Note-se que a variável lógica primo só mantem o valor verdadeiro inicial, se não for encontrado <u>nenhum divisor</u>.
- Se a variável lógica tomar, <u>pelo menos uma vez</u> o valor falso, <u>nunca</u> mais pode passar a ser verdadeira.

• Mas o que acontece, se for encontrado um divisor, logo nas primeiras tentativas?

Versão mais Eficiente:

Testar só até encontrar o primeiro divisor.

Programa mais Eficiente:

```
program TestaPrimos2(input, output);
var numero, limite, n: 1..maxint;
    primo: boolean;
begin writeln('Qual o numero?');
      read(numero);
      limite:= trunc(sqrt(numero));
      primo:= true;
      n:=2;
      while primo and (n <= limite) do
             begin primo:= (numero mod n) <> 0;
                    n = n + 1
             end:
      (* Aqui not primo or (n>limite) *)
      if primo
      then writeln(numero, 'É um Número Primo')
      else writeln(numero, 'Não é um Número Primo')
end.
```

Exercícios:

- Qual seria <u>outro teste</u> possível, após a Saída do Ciclo?
- O mesmo programa, <u>sem</u> a variável lógica.
- O mesmo problema, com um ciclo **repeat**.
- Imprimir a Lista de todos os Números Primos até 1000.
- Imprimir a Lista dos 1000 primeiros Números Primos.

Problema: No século I D.C., os números inteiros positivos dividiam-se em três categorias:

Perfeitos – aqueles que são iguais à soma dos seus divisores.

$$(p.ex. 6 = 1 + 2 + 3)$$

Abundantes – inferiores à soma dos seus divisores.

(p.ex.
$$12 < 1 + 2 + 3 + 4 + 6 = 16$$
)

Reduzidos – superiores à soma dos seus divisores.

$$(p.ex. 9 > 1 + 3 = 4)$$

Note-se que, neste caso, eram considerados <u>divisores</u> de um número, a unidade mas não o próprio número.

Imprima a lista dos inteiros de 1 até 500, classificando-os em perfeitos, abundantes ou reduzidos. Calcule também a quantidade de elementos de cada categoria.

Métodos de Programação (1999/2000)

Programa:

```
program Historico(output);
const max = 500:
var numero, n, soma, nperf, nabund, nred: 0..max;
begin nperf:= 0;
      nabund:= 0;
      nred:=0;
      for numero:=1 to max do
          begin write(numero);
                 soma:= 1;
                 for n:=2 to (numero div 2) do
                     if numero mod n = 0
                     then soma:= soma + n;
                 if soma = numero
                 then begin writeln(' Número Perfeito');
                              nperf:= nperf+1
                       end
                 else if soma > numero
                       then begin writeln(' Número Abundante');
                                    nabund:= nabund+1
                             end
                       else begin writeln(' Número Reduzido');
                                    nred:= nred+1
                             end
          end:
      writeln;
      writeln('Total de', nperf, 'Números Perfeitos');
      writeln('Total de', nabund, 'Números Abundantes');
      writeln('Total de', nred, 'Números Reduzidos')
end.
```

Exercício: Incluir também a classe dos Números Primos.