타이타닉 EDA

2017010715허지혜

0. 캐글이란 ?

Kaggle : 예측 모델 및 분석 대회를 하는 플랫폼 https://www.kaggle.com/

0. 캐글이란 ?

Titanic: Machine Learning from Disaster

타이타닉에 탑승한 사람들의 신상정보를 활용하여, 승선한 사람들의 생존여부를 예측하는 모델을 생성

https://www.kaggle.com/c/titanic

1. 데이터 분석 진행 과정

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450

데이터 변수에 저장하기 ⇒ 확인 .head()

변수(feature, variable)	정의	설명	타입
survival	생존여부	target label 임. 1, 0 으로 표현됨	integer
Polass	티켓의 클래스	1 = 1st, 2 = 2nd, 3 = 3rd 클래스로 나뉘며 categorical feature	integer
sex	성별	male, female 로 구분되며 binary	string
Age	나이	continuous	integer
sibSp	함께 탑승한 형제와 배 우자의 수	quantitative	integer
parch	함께 탑승한 부모, 아 이의 수	quantitative	integer
ticket	티켓 변호	alphabat + integer	string
fare	탑승료	cont i nuous	float
cabin	객실 변호	alphabat + integer	string
embared	탑승 항구	C = Cherbourg, Q = Queenstown, S = Southampton	string

데이터 전체 타입 확인 =>.info()

In [4]:	df_	train	.desc	ribe()
---------	-----	-------	-------	--------

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223,500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3,000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [5]: df_test.describe()

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892,000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996,250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

데이터 통계치 확인

⇒ .describe()

옵션 include = 'all'을 통해 범주형 데이터도 분석이 가능

```
In [6]: for col in df train.columns:
             msg = 'column: {:>10}\t Percent of NaN value: {:.2f}%'.format(col, 100
        * (df_train[col].isnull().sum() / df_train[col].shape[0]))
             print(msg)
       column: Passengerld
                               Percent of NaN value: 0,00%
       column:
                 Survived
                               Percent of NaN value: 0.00%
        column:
                   Polass
                               Percent of NaN value: 0,00%
                               Percent of NaN value: 0.00%
        column:
                     Name
                               Percent of NaN value: 0,00%
        column:
                     Sex
                               Percent of NaN value: 19,87%
        column:
                     Age
                               Percent of NaN value: 0,00%
        column:
                    SibSp
        column:
                   Parch
                               Percent of NaN value: 0.00%
        column:
                   Ticket
                               Percent of NaN value: 0,00%
        column:
                    Fare
                               Percent of NaN value: 0,00%
                               Percent of NaN value: 77,10%
        column:
                    Cabin
        column:
                Embarked
                               Percent of NaN value: 0,22%
In [7]: for col in df_test.columns:
             msg = 'column: {:>10}\t Percent of NaN value: {:.2f}%'.format(col, 100
        * (df_test[col].isnull().sum() / df_test[col].shape[0]))
             print(msg)
       column: Passengerld
                               Percent of NaN value: 0.00%
       column:
                   Polass
                               Percent of NaN value: 0,00%
                               Percent of NaN value: 0,00%
        column:
                     Name
                               Percent of NaN value: 0,00%
        column:
                     Sex
                               Percent of NaN value: 20,57%
        column:
                               Percent of NaN value: 0,00%
        column:
                    SibSp
        column:
                    Parch
                               Percent of NaN value: 0,00%
                   Ticket
                               Percent of NaN value: 0.00%
        column:
                               Percent of NaN value: 0.24%
        column:
                    Fare
        column:
                    Cabin
                               Percent of NaN value: 78,23%
        column:
                Embarked
                               Percent of NaN value: 0,00%
```

데이터 빈 값 확인하기 ⇒ .isnull().sum()

MANO 라이브러리로 빈 값의 위치들을 살펴볼 수 있음


```
In [11]: f, ax = plt.subplots(1, 2, figsize=(18, 8))

df_train['Survived'].value_counts().plot.pie(explode=[0, 0.1], autopct='%
1.1f%%', ax=ax[0], shadow=True)
ax[0].set_title('Pie plot - Survived')
ax[0].set_ylabel('')
sns.countplot('Survived', data=df_train, ax=ax[1])
ax[1].set_title('Count plot - Survived')

plt.show()
```


데이터 분포 시각화로 보기

각 열에 있는 수 확인 ⇒ .count()


```
In [16]: y_position = 1.02
    f, ax = plt.subplots(1, 2, figsize=(18, 8))
    df_train['Pclass'].value_counts().plot.bar(color=['#CD7F32','#FFDF00','#D3
    D3D3'], ax=ax[0])
    ax[0].set_title('Number of Passengers By Pclass', y=y_position)
    ax[0].set_ylabel('Count')
    sns.countplot('Pclass', hue='Survived', data=df_train, ax=ax[1])
    ax[1].set_title('Pclass: Survived vs Dead', y=y_position)
    plt.show()
```


- 1. 클래스가 높을수록 생존 확률이 높다.
- 2. 생존에 Pclass 가 영향을 미친다.

```
f, ax = plt.subplots(1, 2, figsize=(18, 8))
    df_train[['Sex', 'Survived']].groupby(['Sex'], as_index=True).mean().plot.
    bar(ax=ax[0])
    ax[0].set_title('Survived vs Sex')
    sns.countplot('Sex', hue='Survived', data=df_train, ax=ax[1])
    ax[1].set_title('Sex: Survived vs Dead')
    plt.show()
```


1. 여자가 생존할 확률이 높다.

- 1. Female이 살 확률이 Male 보다 높다.
- 2. Pclass 가 높을수록 살 확률이 높다.

```
In [22]: print('제일 나이 많은 탑승객 : {:.1f} Years'.format(df_train['Age'].max()))
print('제일 어린 탑승객 : {:.1f} Years'.format(df_train['Age'].min()))
print('탑승객 평균 나이 : {:.1f} Years'.format(df_train['Age'].mean()))
제일 나이 많은 탑승객 : 80,0 Years
제일 어린 탑승객 : 0,4 Years
탑승객 평균 나이 : 29,7 Years
```

• 생존에 따른 Age의 histogram 을 그려보겠습니다.

```
In [23]: fig, ax = plt.subplots(1, 1, figsize=(9, 5))
    sns.kdeplot(df_train[df_train['Survived'] == 1]['Age'], ax=ax)
    sns.kdeplot(df_train[df_train['Survived'] == 0]['Age'], ax=ax)
    plt.legend(['Survived == 1', 'Survived == 0'])
    plt.show()
```


생존자 중 나이 어린 사람이 많다.

```
In [24]: # Age distribution withing classes
plt.figure(figsize=(8, 6))
df_train['Age'][df_train['Pclass'] == 1].plot(kind='kde')
df_train['Age'][df_train['Pclass'] == 2].plot(kind='kde')
df_train['Age'][df_train['Pclass'] == 3].plot(kind='kde')

plt.xlabel('Age')
plt.title('Age Distribution within classes')
plt.legend(['1st Class', '2nd Class', '3rd Class'])
```

<matplotlib, legend, Legend at 0x7fbbb20f9400>

Class가 높을 수록 나이 많은 사람 의 비중이 커진다.

```
In [26]: f,ax=plt.subplots(1,2,figsize=(18,8))
    sns.violinplot("Pclass", "Age", hue="Survived", data=df_train, scale='coun
    t', split=True,ax=ax[0])
    ax[0].set_title('Pclass and Age vs Survived')
    ax[0].set_yticks(range(0,110,10))
    sns.violinplot("Sex", "Age", hue="Survived", data=df_train, scale='count',
    split=True,ax=ax[1])
    ax[1].set_title('Sex and Age vs Survived')
    ax[1].set_yticks(range(0,110,10))
    plt.show()
```


Plcass, Sex, Age 관계 Violinplot

데이터 셋을 받을 때 모든 열을 다 사용할 필요가 없고 제거할 행들이 있고, 추출할 행들이 있다. 따라서 예측 모델링에 적합한 형태로 변환을 시켜야 한다.

Age

 $\label{local_data} $$ data['Age_band'].value_counts().to_frame().style.background_gradient(cmap='summe r') $$ $$ r') $$ $$ for each band $$$

sns.factorplot('Age_band','Survived',data=data,col='Pclass')
plt.show()


```
data['Family_Size']=0
data['Family_Size']=data['Parch']+data['SibSp']#family size
data['Alone']=0
data.loc[data.Family_Size==0,'Alone']=1#Alone

f,ax=plt.subplots(1,2,figsize=(18,6))
sns.factorplot('Family_Size','Survived',data=data,ax=ax[0])
ax[0].set_title('Family_Size vs Survived')
sns.factorplot('Alone','Survived',data=data,ax=ax[1])
ax[1].set_title('Alone vs Survived')
plt.close(2)
plt.close(3)
plt.show()

통행인 혼자 => 생존율 낮음
```


가족이 있는 여성보다 혼자 있는 여성이 더 생존 확률이 높다.

Fare

```
data['Fare_cat']=0
data.loc[data['Fare']<=7.91, 'Fare_cat']=0
data.loc[(data['Fare']>7.91)&(data['Fare']<=14.454), 'Fare_cat']=1
data.loc[(data['Fare']>14.454)&(data['Fare']<=31), 'Fare_cat']=2
data.loc[(data['Fare']>31)&(data['Fare']<=513), 'Fare_cat']=3</pre>
```

```
sns.factorplot('Fare_cat','Survived',data=data,hue='Sex')
plt.show()
```



```
data['Sex'].replace(['male', 'female'], [0,1], inplace=True)
data['Embarked'].replace(['S', 'C', 'Q'], [0,1,2], inplace=True)
data['Initial'].replace(['Mr', 'Mrs', 'Miss', 'Master', 'Other'], [0,1,2,3,4], inplace
=True)
```

Name : 카테고리 값으로 변환이 불가능 하므로 필요 없음

Age : 범주형으로 바꿔줌

Ticket : 분류할 수 없는 임의의 문자열임

Fare: 바꿔줌

Passengerld : 분류 불가능

2. Explore dataset

```
df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('test.csv')
```

df_train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

check!

• feature : Pclass, Age, SibSp, Parch, Fare

1. pclass: Ticket class (1>>3)

2. sibsp: # of siblings

3. parch: # of parents

4. fare: Passenger fare

target label to predict: Survived

패키지 불러오기

```
#importing all the required ML packages
from sklearn.linear_model import LogisticRegression #logistic regression
from sklearn import svm #support vector Machine
from sklearn.ensemble import RandomForestClassifier #Random Forest
from sklearn.neighbors import KNeighborsClassifier #KNN
from sklearn.naive_bayes import GaussianNB #Naive bayes
from sklearn.tree import DecisionTreeClassifier #Decision Tree
from sklearn.model_selection import train_test_split #training and testing data s
plit
from sklearn import metrics #accuracy measure
from sklearn.metrics import confusion_matrix #for confusion matrix
```

데이터 분리

```
train, test=train_test_split(data, test_size=0.3, random_state=0, stratify=data['Sur
vived'])
train_X=train[train.columns[1:]]
train_Y=train[train.columns[:1]]
test_X=test[test.columns[1:]]
test_Y=test[test.columns[:1]]
X=data[data.columns[1:]]
Y=data['Survived']
```

Model: SVM

Radial Support Vector Machines(rbf-SVM)

```
model=svm.SVC(kernel='rbf',C=1,gamma=0.1)
model.fit(train_X,train_Y)
prediction1=model.predict(test_X)
print('Accuracy for rbf SVM is ',metrics.accuracy_score(prediction1,test_Y))
```

Accuracy for rbf SVM is 0.835820895522

Linear Support Vector Machine(linear-SVM)

```
model=svm.SVC(kernel='linear',C=0.1,gamma=0.1)
model.fit(train_X,train_Y)
prediction2=model.predict(test_X)
print('Accuracy for linear SVM is',metrics.accuracy_score(prediction2,test_Y))
```

Accuracy for linear SVM is 0.817164179104

Model: Logistic Regression

Logistic Regression

```
model = LogisticRegression()
model.fit(train_X,train_Y)
prediction3=model.predict(test_X)
print('The accuracy of the Logistic Regression is',metrics.accuracy_score(prediction3,test_Y))
```

The accuracy of the Logistic Regression is 0.817164179104

Model: K-Nearest Neighbors

K-Nearest Neighbours(KNN)

```
model=KNeighborsClassifier()
model.fit(train_X,train_Y)
prediction5=model.predict(test_X)
print('The accuracy of the KNN is',metrics.accuracy_score(prediction5,test_Y))
```

The accuracy of the KNN is 0.832089552239

Model: Decision Tree

Decision Tree

```
model=DecisionTreeClassifier()
model.fit(train_X,train_Y)
prediction4=model.predict(test_X)
print('The accuracy of the Decision Tree is',metrics.accuracy_score(prediction4, test_Y))
```

The accuracy of the Decision Tree is 0.798507462687

Model : Gaussian Naïve Bayes

Gaussian Naive Bayes

```
model=GaussianNB()
model.fit(train_X,train_Y)
prediction6=model.predict(test_X)
print('The accuracy of the NaiveBayes is',metrics.accuracy_score(prediction6,test_Y))
```

The accuracy of the NaiveBayes is 0.813432835821

Model: Random Forest

Random Forests

```
model=RandomForestClassifier(n_estimators=100)
model.fit(train_X,train_Y)
prediction7=model.predict(test_X)
print('The accuracy of the Random Forests is',metrics.accuracy_score(prediction 7,test_Y))
```

The accuracy of the Random Forests is 0.820895522388

Cross Validation

	CV Mean	Std
Linear Svm	0.793471	0.047797
Radial Svm	0.828290	0.034427
Logistic Regression	0.805843	0.021861
KNN	0.813783	0.041210
Decision Tree	0.805868	0.025361
Naive Bayes	0.801386	0.028999
Random Forest	0.822684	0.026868

```
from sklearn.model_selection import KFold #for K-fold cross validation
from sklearn.model_selection import cross_val_score #score evaluation
from sklearn.model_selection import cross_val_predict #prediction
kfold = KFold(n_splits=10, random_state=22) # k=10, split the data into 10 equal
parts
xyz=[]
accuracy=[]
std=[]
classifiers=['Linear Svm', 'Radial Svm', 'Logistic Regression', 'KNN', 'Decision Tre
e', 'Naive Bayes', 'Random Forest']
models=[svm.SVC(kernel='linear'),svm.SVC(kernel='rbf'),LogisticRegression(),KNei
ghborsClassifier(n_neighbors=9), DecisionTreeClassifier(), GaussianNB(), RandomFore
stClassifier(n_estimators=100)]
for i in models:
    model = i
    cv_result = cross_val_score(model, X, Y, cv = kfold, scoring = "accuracy")
    cv_result=cv_result
    xyz.append(cv_result.mean())
    std.append(cv_result.std())
    accuracy.append(cv_result)
new_models_dataframe2=pd.DataFrame({'CV Mean':xyz,'Std':std},index=classifiers)
new_models_dataframe2
```

```
plt.subplots(figsize=(12,6))
box=pd.DataFrame(accuracy,index=[classifiers])
box.T.boxplot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fb162de2048>


```
new_models_dataframe2['CV Mean'].plot.barh(width=0.8)
plt.title('Average CV Mean Accuracy')
fig=plt.gcf()
fig.set_size_inches(8,5)
plt.show()
```


Confusion Matrix


```
f,ax=plt.subplots(3,3,figsize=(12,10))
y_pred = cross_val_predict(svm.SVC(kernel='rbf'), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[0,0],annot=True,fmt='2.0f')
ax[0,0].set_title('Matrix for rbf-SVM')
y_pred = cross_val_predict(svm.SVC(kernel='linear'), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[0,1],annot=True,fmt='2.0f')
ax[0,1].set_title('Matrix for Linear-SVM')
y_pred = cross_val_predict(KNeighborsClassifier(n_neighbors=9), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[0,2],annot=True,fmt='2.0f')
ax[0,2].set_title('Matrix for KNN')
y_pred = cross_val_predict(RandomForestClassifier(n_estimators=100), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,0],annot=True,fmt='2.0f')
ax[1,0].set_title('Matrix for Random-Forests')
v_pred = cross_val_predict(LogisticRegression(), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,1],annot=True,fmt='2.0f')
ax[1,1].set_title('Matrix for Logistic Regression')
y_pred = cross_val_predict(DecisionTreeClassifier(), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,2],annot=True,fmt='2.0f')
ax[1,2].set_title('Matrix for Decision Tree')
y_pred = cross_val_predict(GaussianNB(), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[2,0],annot=True,fmt='2.0f')
ax[2,0].set_title('Matrix for Naive Bayes')
plt.subplots_adjust(hspace=0.2,wspace=0.2)
plt.show()
```


Hyper-Parameters Tuning

```
from sklearn.model_selection import GridSearchCV
C=[0.05,0.1,0.2,0.3,0.25,0.4,0.5,0.6,0.7,0.8,0.9,1]
gamma=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]
kernel=['rbf','linear']
hyper={'kernel':kernel,'C':C,'gamma':gamma}
gd=GridSearchCV(estimator=svm.SVC(),param_grid=hyper,verbose=True)
gd.fit(X,Y)
print(gd.best_score_)
print(gd.best_estimator_)

Fitting 3 folds for each of 240 candidates, totalling 720 fits
0.828282828283
SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma=0.1, kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
```

[Parallel(n_jobs=1)]: Done 720 out of 720 | elapsed: 14.7s finished

Voting Classifier

다양한 머신 러닝의 예측을 결합 하는 가장 간단한 방법

하위 모델의 예측을 기반으로 평 균 예측 결과를 제공함

```
from sklearn.ensemble import VotingClassifier
ensemble_lin_rbf=VotingClassifier(estimators=[('KNN', KNeighborsClassifier(n_neig
hbors=10)),
                                                ('RBF', svm. SVC(probability=True, ke
rnel='rbf', C=0.5, gamma=0.1)),
                                                ('RFor', RandomForestClassifier(n_e
stimators=500, random_state=0)),
                                                ('LR', LogisticRegression(C=0.05)),
                                                ('DT', DecisionTreeClassifier(rando
m_state=0)),
                                                ('NB', GaussianNB()),
                                                ('svm', svm.SVC(kernel='linear', pro
bability=True))
                       voting='soft').fit(train_X, train_Y)
print('The accuracy for ensembled model is:',ensemble_lin_rbf.score(test_X,test_
cross=cross_val_score(ensemble_lin_rbf, X, Y, cv = 10, scoring = "accuracy")
print('The cross validated score is', cross.mean())
```

The accuracy for ensembled model is: 0.824626865672 The cross validated score is 0.823766031097

Bagging

일반적인 앙상블 방법

데이터 셋의 작은 파티션에 similar classifier를 적용한 다음 모든 예측의 평균을 구하는 방식

Bagged KNN

Bagging works best with models with high variance. An example for this can be Decision Tree or Random Forests. We can use KNN with small value of n_neighbours, as small value of n_neighbours.

```
from sklearn.ensemble import BaggingClassifier
model=BaggingClassifier(base_estimator=KNeighborsClassifier(n_neighbors=3),rando
m_state=0,n_estimators=700)
model.fit(train_X,train_Y)
prediction=model.predict(test_X)
print('The accuracy for bagged KNN is:',metrics.accuracy_score(prediction,test_Y))
result=cross_val_score(model,X,Y,cv=10,scoring='accuracy')
print('The cross validated score for bagged KNN is:',result.mean())
```

The accuracy for bagged KNN is: 0.835820895522
The cross validated score for bagged KNN is: 0.814889342867

Bagged DecisionTree

```
model=BaggingClassifier(base_estimator=DecisionTreeClassifier(),random_state=0,n
   _estimators=100)
model.fit(train_X,train_Y)
prediction=model.predict(test_X)
print('The accuracy for bagged Decision Tree is:',metrics.accuracy_score(predict ion,test_Y))
result=cross_val_score(model,X,Y,cv=10,scoring='accuracy')
print('The cross validated score for bagged Decision Tree is:',result.mean())
```

The accuracy for bagged Decision Tree is: 0.824626865672
The cross validated score for bagged Decision Tree is: 0.820482635342

Boosting

순차적 학습을 사용하는 앙상블

데이터셋을 학습하다 잘못 예측 한 데이터셋에 좀 더 많은 가중 치를 부여해서 올바르게 예측하 려는 방식

AdaBoost(Adaptive Boosting)

The weak learner or estimator in this case is a Decsion Tree. But we can change the dafault base_estimator to any algorithm of our choice.

```
from sklearn.ensemble import AdaBoostClassifier
ada=AdaBoostClassifier(n_estimators=200,random_state=0,learning_rate=0.1)
result=cross_val_score(ada,X,Y,cv=10,scoring='accuracy')
print('The cross validated score for AdaBoost is:',result.mean())
```

The cross validated score for AdaBoost is: 0.824952616048

Boosting

순차적 학습을 사용하는 앙상블

데이터셋을 학습하다 잘못 예측 한 데이터셋에 좀 더 많은 가중 치를 부여해서 올바르게 예측하 려는 방식

Stochastic Gradient Boosting

Here too the weak learner is a Decision Tree.

```
from sklearn.ensemble import GradientBoostingClassifier
grad=GradientBoostingClassifier(n_estimators=500,random_state=0,learning_rate=0.
1)
result=cross_val_score(grad,X,Y,cv=10,scoring='accuracy')
print('The cross validated score for Gradient Boosting is:',result.mean())
```

The cross validated score for Gradient Boosting is: 0.818286233118

Boosting

순차적 학습을 사용하는 앙상블

데이터셋을 학습하다 잘못 예측 한 데이터셋에 좀 더 많은 가중 치를 부여해서 올바르게 예측하 려는 방식

XGBoost

```
import xgboost as xg
xgboost=xg.XGBClassifier(n_estimators=900,learning_rate=0.1)
result=cross_val_score(xgboost,X,Y,cv=10,scoring='accuracy')
print('The cross validated score for XGBoost is:',result.mean())
```

The cross validated score for XGBoost is: 0.810471002156

Feature Importance

```
Family_Size
                                                                                                         Fate cat
                                                                                                         Age band
f, ax=plt.subplots(2,2,figsize=(15,12))
model=RandomForestClassifier(n_estimators=500, rando
                                                          Embarked
                                                                                                        Embarked
model.fit(X,Y)
pd.Series(model.feature_importances_, X.columns).sor
                                                                                                          Pairch
t.barh(width=0.8, ax=ax[0,0])
ax[0,0].set_title('Feature Importance in Random For
model=AdaBoostClassifier(n_estimators=200,learning_
                                                                     Feature Importance in Gradient Boosting
model.fit(X,Y)
                                                                                                                      Feature Importance in XgBoost
pd.Series(model.feature_importances_,X.columns).sor
                                                           Fare cat.
                                                                                                        Family Size
t.barh(width=0.8,ax=ax[0,1],color='#ddff11')
                                                             Inibal
ax[0,1].set_title('Feature Importance in AdaBoost') Family_Size
                                                                                                         Fare car
model=GradientBoostingClassifier(n_estimators=500,1 Embarket
                                                                                                          Initial
model.fit(X,Y)
                                                           Age band
                                                                                                        Emberked
pd.Series(model.feature_importances_, X.columns).sor
                                                                                                          Parch
t.barh(width=0.8,ax=ax[1,0],cmap='RdYlGn_r')
ax[1,0].set_title('Feature Importance in Gradient B
model=xg.XGBClassifier(n_estimators=900,learning_ra
model.fit(X,Y)
pd.Series(model.feature_importances_, X.columns).sort_values(ascending=True).plo
t.barh(width=0.8, ax=ax[1,1], color='#FD0F00')
ax[1,1].set_title('Feature Importance in XgBoost')
plt.show()
```

Feature Importance in Random Forests

initial

Feature Importance in AdaBoost

Initial

END