

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Специальное машиностроение	
КАФЕДРА	CM1«Космические аппараты и ракеты-носители»	
	Домашнее задание №1	
по курсу «Динамика летательных аппаратов»		
Вариант №13		
Группа:		
Студент:	Новиков А.Р.	(Подпись, дата)
Препода	ватель: Гончаров Д.А.	

(Подпись, дата)

Условие задания

Согласно порядковому номеру в списке 13 принимаем схему I и номер варианта 7.

Рисунок 1 — Схема ракеты

Исходные данные:

• Координаты сечения

$$-x_1 = 1.7 м$$

$$-x_2 = 3.5 м$$

$$-x_3 = 4.0 м$$

$$-x_4 = 7.0 м$$

$$-x_5 = 10.0 м$$

$$-x_6 = 11.0 м$$

$$-x_7 = 15.0$$
 м

$$-x_8 = 19.0 м$$

$$-x_9 = 21.0 м$$

• Параметры АС

$$- w_0 = 25$$

$$-w_{p} = 70$$

$$-W_{2p} = 110$$

$$-k_{\rm p}=0.6$$

- $M_1 = 2.0 \text{ T}$
- $M_2 = 2.0 \text{ T}$
- $J_0 = 3.0 \text{ T} \cdot \text{M}^2$
- $x_{\Gamma\Pi} = 19.5 \text{ M}$

Требуется:

- 1. Для заданного варианта определить две первых собственные частоты упругих поперечных колебаний корпуса ракеты.
- 2. Построить эпюры формы упругой линии и угла поворота сечений для каждого тона колебаний сечения.
- 3. Построить эпюры изгибающих моментов и поперечных сил.
- 4. Выполнить пункты №1 и №2 для полностью заправленной ракеты (момент старта) и «сухой» ракеты (момент выключения ДУ при стрельбе на максимальную дальность).
- 5. Вычислить значения приведенных масс для расчетных случаев.

1 Решение

Решать задачу будем с помощью метода начальных параметров. Для этого распределим сосредоточенную массу в окрестности точки, в которой она расположена на расстоянии $0.1\,\mathrm{m}$ в обе стороны. Дифференциальное уравнение поперечных колебаний для i-го участка имеет вид

$$EJ_i \cdot f_i^{IV}(x) - \omega^2 m_i f_i(x) = 0 \tag{1.1}$$

Введем коэффициент колебаний b_i :

$$b_i^4 = \frac{\omega^2 m_i}{EJ_i} \tag{1.2}$$

Тогда уравнение колебаний (1.1) примет вид:

$$f_i^{IV}(x) - b_i^4 f_i(x) = 0 (1.3)$$

Решение системы уравнений (1.3) должно удовлетворять граничным условиям и условиям сопряжения участков стержня. Данная задача разрешима только для тех значений ω , которые являются частотами свободных колебаний неоднородного стержня. Решение уравнений (1.3) представим в виде линейной комбинации балочных функций Крылова:

$$f_i(x) = C_{1i}S(b_ix) + C_{2i}T(b_ix) + C_{3i}U(b_ix) + C_{4i}V(b_ix)$$
(1.4)

где балочные функции Крылова имеют вид

$$S(b_{i}x) = \frac{1}{2}(ch(b_{i}x) + \cos(b_{i}x))$$

$$T(b_{i}x) = \frac{1}{2}(sh(b_{i}x) + \sin(b_{i}x))$$

$$U(b_{i}x) = \frac{1}{2}(ch(b_{i}x) - \cos(b_{i}x))$$

$$V(b_{i}x) = \frac{1}{2}(sh(b_{i}x) - \sin(b_{i}x))$$
(1.5)

Функции Крылова обладают свойствами, делающими их удобными для решения задач поперечных колебаний стержня:

1.
$$S(0) = 1$$
; $T(0) = U(0) = V(0) = 0$

2.
$$S'(b_i x) = b_i V(b_i x)$$
; $V'(b_i x) = b_i U(b_i x)$; $U'(b_i x) = b_i T(b_i x)$; $T'(b_i x) = b_i S(b_i x)$

Введем вектор формы колебаний:

$$\overline{u}_{i}(x) = \begin{bmatrix} u_{1i}(x) \\ u_{2i}(x) \\ u_{3i}(x) \\ u_{4i}(x) \end{bmatrix}$$
(1.6)

где:

- $u_{1i}(x) = f_i(x)$ форма перемещений
- $u_{2i}(x) = f'_i(x)$ форма угла поворота
- $u_{3i}(x) = EJ_i \cdot f_i''(x)$ форма изгибающего момента
- $u_{4i}(x) = EJ_i \cdot f_i'''(x)$ форма поперечного момента

Так как на стыках меняются значения погонных масс и жесткостей и присутствуют сосредоточенные массы и момент инерции, то условие стыка примет вид

$$\overline{u}_{i+1}(0) = B_i \cdot \overline{u}_i(l_i) \tag{1.7}$$

где матрица перехода B_i имеет вид:

• если отсутствуют масса и момент инерции:

$$B_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (1.8)

• если присутствует только масса:

$$B_{i} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ M\omega^{2} & 0 & 0 & 1 \end{vmatrix}$$
 (1.9)

• если присутствует масса и момент инерции:

$$B_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -J_{0}\omega^{2} & 1 & 0 \\ M\omega^{2} & 0 & 0 & 1 \end{bmatrix}$$
 (1.10)

Исходя из свойств функций Крылова, можно связать между собой вектор формы в любой точке участка с вектором формы в его начале. Это условие связи имеет вид

$$\overline{u}_i(x) = A_i(x) \cdot \overline{u}_i(0) \tag{1.11}$$

где матрица A имеет вид

$$A_{i}(x) = \begin{bmatrix} S(b_{i}x) & \frac{T(b_{i}x)}{b_{i}} & \frac{U(b_{i}x)}{EJ_{i} \cdot b_{i}^{2}} & \frac{V(b_{i}x)}{EJ_{i} \cdot b_{i}^{3}} \\ V(b_{i}x) \cdot b_{i} & S(b_{i}x) & \frac{T(b_{i}x)}{EJ_{i} \cdot b_{i}} & \frac{U(b_{i}x)}{EJ_{i} \cdot b_{i}^{2}} \\ U(b_{i}x) \cdot EJ_{i} \cdot b_{i}^{2} & V(b_{i}x) \cdot EJ_{i} \cdot b_{i} & S(b_{i}x) & \frac{T(b_{i}x)}{b_{i}} \\ V(b_{i}x) \cdot EJ_{i} \cdot b_{i}^{3} & U(b_{i}x) \cdot EJ_{i} \cdot b_{i}^{2} & V(b_{i}x) \cdot b_{i} & S(b_{i}x) \end{bmatrix}$$

$$(1.12)$$

Из условия (1.7) следует

$$\overline{u}_{i+1}(x) = A_{i+1}(x) \cdot B_i \cdot A_i(l_i) \cdot \overline{u}_i(0) \tag{1.13}$$

Поэтому решение для произвольного участка можно выразить через вектор формы в начале первого участка:

$$\overline{u}_i(x) = A_i(x) \cdot \left(\prod_{j=i-1}^1 \left(B_j \cdot A_j(l_j) \right) \right) \cdot \overline{u}_1(0)$$
(1.14)

Введем матрицу P:

$$P = \prod_{j=k}^{1} (B_j \cdot A_j(l_j))$$
 (1.15)

Тогда выражение (1.14) примет вид

$$\overline{u}_i(L) = P \cdot \overline{u}_1(0) \tag{1.16}$$

или в скалярной форме:

$$u_r(l) = \sum_{s=1}^{4} p_{rs} u_s(0)$$
 (1.17)

где p_{rs} — коэффициенты матрицы P, зависящие от частоты свободных колебаний $\omega.$

Граничные условия на концах ракеты (свободные концы) будут иметь вид

$$\begin{cases} u_3(0) = 0 \\ u_4(0) = 0 \\ u_3(L) = 0 \\ u_4(L) = 0 \end{cases}$$
 (1.18)

С учетом граничных условий (1.18) выражение (1.17) примет вид

$$\begin{cases}
 u_1(L) = p_{11}u_1(0) + p_{12}u_2(0) \\
 u_2(L) = p_{21}u_1(0) + p_{22}u_2(0) \\
 0 = p_{31}u_1(0) + p_{32}u_2(0) \\
 0 = p_{41}u_1(0) + p_{42}u_2(0)
\end{cases}$$
(1.19)

Нетривиальным решением системы (1.19) явлется выражение

$$D(\omega) = p_{31} \cdot p_{42} - p_{32} \cdot p_{41} = 0 \tag{1.20}$$

Рисунок 1.1 — График для определения собственных частот

Получим первые 2 собственные частоты:

$$\begin{cases} \omega_1 = 4.573 \, \frac{\text{рад}}{\text{c}} \\ \omega_2 = 19.191 \, \frac{\text{рад}}{\text{c}} \end{cases}$$
 (1.21)

2 Построение эпюр формы упругой линии и угла поворота сечений для каждого тона колебаний

Из системы уравнений (1.19) получим:

$$u_2(0) = -\frac{p_{31}(\omega_n)}{p_{32}(\omega_n)} u_1(0)$$
(2.1)

Положим $u_1(0) = 1$, тогда вектор формы в начале первого участка будет иметь вид:

$$\overline{u}_{1}(0) = \begin{bmatrix}
1 \\
-\frac{p_{31}(\omega_{n})}{p_{32}(\omega_{n})} \\
0 \\
0
\end{bmatrix}$$
(2.2)

Форма собственных колебаний имеет вид:

$$f_n(x) = u_1(x) = p_{11}(x)u_1(0) + p_{12}(x)u_2(0)$$
(2.3)

С учетом (2.1) выражение (2.3) можно записать в виде:

$$f_n(x) = p_{11}(x) - \frac{p_{31}(L)}{p_{32}(L)} p_{12}(x)$$
(2.4)

Форма угла поворота имеет вид:

$$u_2(x) = p_{21}(x)u_1(0) + p_{22}(x)u_2(0)$$
(2.5)

или:

$$\theta(x) = u_2(x) = p_{21}(x) - \frac{p_{31}(L)}{p_{32}(L)} p_{22}(x)$$
(2.6)

Рисунок 2.1 — Форма колебаний

Рисунок 2.2 — Форма угла поворота

3 Построение эпюр изгибающих моментов и поперечных сил

Найдем форму изгибающего момента:

$$M(x) = u_3(x) = p_{31} - \frac{p_{31}(L)}{p_{32}(L)} p_{32}(x)$$
(3.1)

И форму поперечных сил:

$$Q(x) = u_4(x) = p_{41}(x) - \frac{p_{31}(L)}{p_{32}(L)}p_{42}(x)$$
(3.2)

Построим графики формы изгибающего момента и поперечных сил для первых двух собственных частот:

Рисунок 3.1 — Форма изгибающего момента

Рисунок 3.2 — Форма поперечной силы

4 Расчет полностью заправленной и «сухой» ракеты

4.1 Расчет полностью заправленной ракеты

Рисунок 4.1 — График для определения собственных частот полностью заправленной ракеты

Первые две собственные частоты равны:

$$\begin{cases} \omega_1 = 3.338 \, \frac{\text{рад}}{\text{c}} \\ \omega_2 = 12.906 \, \frac{\text{рад}}{\text{c}} \end{cases} \tag{4.1}$$

Рисунок 4.2 — Форма колебаний заправленной ракеты

Рисунок 4.3 — Форма угла поворота заправленной ракеты

Рисунок 4.4 — Форма изгибающего момента заправленной ракеты

Рисунок 4.5 — Форма поперечной силы заправленной ракеты

4.2 Расчет «сухой» ракеты

Рисунок 4.6 — График для определения собственных частот «сухой» ракеты

Первые две собственные частоты равны:

$$\begin{cases} \omega_1 = 5.826 \, \frac{\text{рад}}{\text{c}} \\ \omega_2 = 124.806 \, \frac{\text{рад}}{\text{c}} \end{cases} \tag{4.2}$$

Рисунок 4.7 — Форма колебаний «сухой» ракеты

Рисунок 4.8 — Форма угла поворота «сухой» ракеты

Рисунок 4.9 — Форма изгибающего момента «сухой» ракеты

Рисунок 4.10 — Форма поперечной силы «сухой» ракеты

5 Расчет приведенных масс для расчетных случаев

Найдем приведенные массы по формуле:

$$m_n = \int_0^L m(x) f_n^2(x) dx$$
 (5.1)

где m(x) — погонная масса, $f_n(x)$ — форма колебаний.

Найдем приведенные массы для расчетных случаев:

• Заданный вариант ракеты:

$$\begin{cases} m_1 = 970 \text{ кг} \\ m_2 = 2580 \text{ кг} \end{cases}$$
 (5.2)

• Полностью заправленная ракета:

$$\begin{cases} m_1 = 6436 \text{ кг} \\ m_2 = 797 \text{ кг} \end{cases}$$
 (5.3)

• «Сухая» ракета:

$$\begin{cases} m_1 = 262 \text{ кг} \\ m_2 = 898 \text{ кг} \end{cases}$$
 (5.4)