Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе №12

Дисциплина: Телекоммуникационные технологии.

Выполнил студент гр. 5130901/10201	(подпись)	Еременко Д.А.
Руководитель	(подпись)	Богач Н. В.

14 июня 2024 г.

Содержание

Оглавление

1.	Задача.	2
2.	Ход работы.	2
3.	Вывод.	5

1. Задача.

Изучить принципы работы узкополосного FM-сигнал (NBFM), как он может генерироваться и приниматься. Вместо использования какого-либо реального оборудования для передачи сигнал отправляется через сокет из секции передачи в секцию приема. Единственное задействованное аппаратное обеспечение — это вход микрофона и выход динамика компьютера.

2. Ход работы.

Используя gnuradio-companion (GRC), построю блок-схему для раздела приемника.

Рис. 2.1. Схема приемника

- Данные принимаются от передатчика через ZMQ_SUB_Source с частотой дискретизации 576 кГц.
- Он фильтруется до полосы пропускания 6 кГц и прореживается (уменьшается) в 3 раза с помощью FFT Filter, что дает выходную частоту дискретизации 192 кГц.
- Simple_Squelch отключает звук, когда уровень входного сигнала меньше уровня шумоподавления.
- Блок NBFM_Receive демодулирует входной сигнал и создает выходную частоту дискретизации 48 кГц, которая соответствует желаемой частоте аудио.
- Блок Multiply Const реализует регулятор громкости.
- Выход динамика определяется блоком Audio Sink.

Без передатчика тестировать особо нечего, сгенерирую и запущу блок-график. Можно увидеть окно графического интерфейса с элементами управления громкостью и шумоподавлением, а также отображением каскадного спектра.

Рис. 2.2 Окно NFM_rcv

Используя gnuradio-companion (GRC), построю блок-схему для раздела передатчика.

Рис. 2.3 Схема передатчика

- Вход микрофона определяется блоком Audio_Source.
- Звук фильтруется в диапазоне от 300 до 5000 Гц с помощью Band Pass Filter.
- Блок Multiply Const реализует элемент управления Audio Gain.
- Тон PL (частная линия) можно выбрать с помощью QT_GUI_Chooser. Использование значения 0,0 отключает PL.
- Signal_Source генерирует тон PL.
- Аудиосигнал плюс тон PL подаются в блок NBFM_Transmit. Выходная частота дискретизации составляет 192 кГц.

- Low_Pass_Filter ограничивает сигнал до 5 кГц.
- Блок повтора интерполирует (умножает) частоту дискретизации на 3, давая выходную частоту 576 кГц.
- Сигнал передачи подается на ZMQ_PUB_Sink с адресом `tcp://127.0.0.1:49203`, соответствующим порту приемника.

Протестирую полученный прибор, одновременно запустив приемник и передатчик.

Рис 2.4 Окна RFM_xmt

В результате работы устройства слова, сказанные в микрофон, транслировались в сигнал и отображались на графиках, а также передавались на выходное устройство (наушники).

3. Вывод.

В результате работы были изучены принципы работы узкополосного FM-сигнал (NBFM), как он может генерироваться и приниматься. Было создано две схемы, моделирующие работу приемника и передатчика сигналов, их работа была промоделирована и проверена на практике, результаты были зафиксированы и прикреплены к отчету.

Исследование позволило глубже понять принципы передачи узкополосного FM сигнала и его применимость в практических задачах обработки сигналов в среде GNU Radio.