BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Sistemas Distribuidos

Programa de Asignatura: Sistemas Operativos Distribuidos y en Red

Código: MCOM 20800

Tipo: Obligatoria

Créditos: 9

Fecha: Noviembre 2012

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación	
Modalidad Académica:	Escolarizada	
Nombre de la Asignatura:	Sistemas Operativos Distribuidos y en Red	
Ubicación:	Segundo semestre (Obligatoria)	

2. REVISIONES Y ACTUALIZACIONES

Autores:	Dra. Bárbara Sánchez Rinza	
Fecha de diseño:	Noviembre 2012	
Fecha de la última actualización:	Marzo 2017	
Revisores:	Dra. Hilda Castillo Zacatelco	
Sinopsis de la revisión y/o actualización:	Actualización de referencias	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

3. OBJETIVOS:

General:

Que el alumno conozca la problemática y las diferentes soluciones al conectar un conjunto de computadoras para disponer del poder del cómputo y de los recursos que ofrecen.

Específicos:

Que el alumno conozca la problemática y las posibles soluciones para la comunicación, sincronización y el manejo de procesos distribuidos. Así como para el manejo de archivos distribuidos.

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS DE LA COMPUTACION

4. CONTENIDO

Unidad	Contenido Temático/Actividades de aprendizaje	
1 Características de los sistemas	1.1 Introduccion 1.2 Heterogeneidad, escalabilidad, apertura y	
distribuidos	extensibilidad 1.3 Estrategia migratoria y balance de la carga de	
	trabajo 1.4 Seguridad, Transparencia, y eficiencia	
	1.5 Flexibilidad, Robustez y comunicación	
2 Objetos distribuidos e	2.1 Comunicación entre objetos distribuidos	
invocación remota	2.2 Llamadas a un proceso remoto2.3 Eventos y notificaciones	
invocacion remota	2.4. El caso de estudio Java RMI	
3 Sincronización en	3.1 Sincronización de relojes	
los sistemas	3.2 Exclusión mutua	
distribuidos	3.3 Algoritmos de elección	
	3.4. ransacciones atómicas	
4 Procesos y	3.5 Interbloqueos distribuidos 4.1. Hilos de control	
procesadores en los	4.1. Hilos de control 4.2. Modelos de sistema	
sistemas distribuidos	4.3. Asignación de procesadores	
	4.4. Despacho de procesos	
5 Sistema de	5.1. Introducción	
archivos distribuidos	5.2. Arquitectura del servicio de archivos	
	5.3. Sistema de archivos en red	
6 Transacciones y	6.1. Introducción	
control de concurrencia	6.2. Transacciones 6.3. Transacciones anidadas	
Concurrencia	6.4. Bloques	
	6.5. Control optimista de la concurrencia	
	6.6. Ordenación por marcas de tiempo	
	6.7. Comparación de métodos para el control de concurrencia	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS DE LA COMPUTACION

Bibliografía				
Básica		gra	Complementaria	
1	Tanenbaum,S.A Sistemas Operativos	1.	Yichuan Jiang. A Survey of Task Allocation	
١.	Modernos Prentice Hall, 2003.	٠.	and Load Balancing in Distributed	
	Casavant T.L. And Singhal M. Eds.		Systems. IEEE Transactions on parallel	
	Reading In Distributed Computing		and distributed systems, Vol. 27, No. 2,	
	Systems. IEEE Computer Society		February, 2016.	
	Press, Los Alamitos, Calif. 1994.	2.	Muhammad Fayyaz, Tanya Vladimirova.	
2.	Chow, R. And Johnson T.Distributed	۷.	• • • • • • • • • • • • • • • • • • • •	
۷.	Operating System And Algorithms		Survey and future directions of fault-tolerant distributed computing on board	
			·	
_	Addison- Wesley, 1997.		spacecraft. Advances in Space Research	
3.	Coloruis G, Dollimore, J. And	2	58 (2016) 2352–2375.	
	Kimdberg, T. Distributed Sytems	3.	, ,	
	Concepts And Desingn. Addison-		Parimalam, N. Murali, S.A.V. Satya Murty.	
	Wesñey Publishing Company. Reading,		Fault tolerant distributed real time	
	Mass. 2005.		computer systems for I&C of prototype fast	
4.	Lammpson B.W., Paul, M. And Siefert		breeder reactor Nuclear Engineering and	
	H.J. Eds. Disributed Systems:		Design 268 (2014) 96– 103.	
	Architecture and Implementation.	4.	, ,	
_	Springer-Verlag, Berlin. 1983.		Fault Tolerant Software System for	
5.	Mullender, Sape Ed. Distributed		Desktop Grid Middleware. Procedia	
	System i Edition Addison-Wesley		Computer Science 85 (2016) 987 – 994.	
	Publishing. Company, 1993.	5.	Anju Khandelwal. Task Allocation for	
6.	Tanenbaum, Andrew S. Sistemas		Distributed Computing Systems: From Past	
	Operativos Distribuidos. Prentice Hall /		to Present. Volume 3, No. 2, March-April	
	Pearson, 1ra.edición, 1996.		2012. International Journal of Advanced	
7.	Andrew Tanenbaum, Maarten Van		Research in Computer Science.	
	Steen. Distributed Systems. Principles	6.	Bharti Sharma, Ravinder Singh Bhatia,	
	and Paradigms. Pearson Education,		Awadhesh Kumar Singh. A logical structure	
	2da. edición, 2007.		based fault tolerant approach to handle	
8.	William Stallings Sistemas Operativos,		leader election in mobile ad hoc networks.	
	2 da edición, Pearson, 2015		Journal of King Saud University –	
			Computer and Information Sciences (2015)	
			http://dx.doi.org/10.1016/j.jksuci.2015.03.0	
			<u>01</u>	
		7.	Mikel Larrea, Cristian Martín, Iratxe	
			Soraluze. Communication-efficient leader	
			election in crash–recovery systems. The	
			Journal of Systems and Software 84 (2011)	
			2186– 2195.	
		8.	Christian Fernández-Campusano, Mikel	
			Larrea, Roberto Cortiñas. A distributed	
			leader election algorithm in crash-recovery	
			and omissive systems. Information	
			Processing Letters 118 (2017) 100–104.	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS DE LA COMPUTACION

- Alex A. Aravind. Simple, space-efficient, and fairness improved FCFS mutual exclusion algorithms. J. Parallel Distrib. Comput. 73 (2013) 1029–1038.
- Hoda Taheri, Peyman Neamatollahi, Mahmoud Naghibzadeh. A hybrid tokenbased distributed mutual exclusion algorithm using wraparound twodimensional array logical topology. Information Processing Letters 111 (2011) 841–847.
- Peyman Neamatollahi, Hoda Taheri, Mahmoud Naghibzadeh. Info-based approach in distributed mutual exclusion algorithms J. Parallel Distrib. Comput. 72 (2012) 650–665.
- Ivan Grasso, Simone Pellegrini, Biagio Cosenza, Thomas Fahringer. A uniform approach for programming distributed heterogeneous computing systems. J. Parallel Distrib. Comput. 74 (2014) 3228– 3239.
- Fatma A. Omara, Mona M. Arafa. Genetic algorithms for task scheduling problem. J. Parallel Distrib. Comput. 70 (2010) 13_22.
- Qinma Kang, Hong He, Jun Wei. An effective iterated greedy algorithm for reliability-oriented task allocation in distributed computing systems. J. Parallel Distrib. Comput. 73 (2013) 1106–1115.
- 15. Nuno Diegues, Paolo Romano. Bumper: Sheltering distributed transactions from conflicts. Future Generation Computer Systems 51 (2015) 20–35.
- 16. Dhruba Borthakur. The Hadoop Distributed File System: Architecture and Design (2008).
- 17. John Bent, Douglas Thain, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Miron Livny. Explicit Control in a Batch-Aware Distributed File System. Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI '04).

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	50%
Participación en clase	
Tareas	5%
Exposiciones	
Simulaciones	
Trabajo de investigación y/o de	
intervención	
 Prácticas de laboratorio 	15%
Visitas guiadas	
 Reporte de actividades académicas y 	
culturales	
Mapas conceptuales	
Portafolio	
Proyecto final	30%
Otros	
Total	100%