Measurement Of Convective Heat Transfer Coefficient Over a Flat Surface

Bill Of Materials

	Price	Source
Heater	1547	https://www.ubuy.co.in/pr heating-element-thermos srsltid=AR5OiO2PMcXU_S bg
Insulator	700	https://m.indiamart.com/p
Copper Plate	1000	Offline Dealer

Theoretical Approach

Theoretically, we can find the average heat transfer coefficient for a given flow rate using the relation between Nusselt Number, Reynold's Number, and Prandtl Number.

Where,

$$Nu=rac{h_lL}{k}, \ Re=rac{
ho VL}{\mu}\,, ext{ and } \ Pr=rac{\mu C_p}{k}$$

For Laminar Flow

$$Nu = 0.664 (Re)^{0.5} (Pr)^{0.33}$$

For Turbulent Flow

$$Nu = 0.037(Re)^{0.8}(Pr)^{0.33}$$

Practical Approach

From experimental readings, we can find average heat transfer coefficient using,

$$\dot{q} = hA(T_s - T_\infty) = V * I$$

where,

 $T_s o$ Temperature of surface

 T_{∞} ightarrow Temperature of Air inside wind tunnel

Schematic

