Devoir Maison nº 12

Entrée

Exercice 56 du chapitre 14.

Problème - Saturation d'un sous-ensemble pour une relation d'équivalence

On se donne dans tout le problème un ensemble E muni d'une relation d'équivalence \sim . Si A est une partie de E, on définit la saturation de A pour la relation \sim par :

$$A^s = \{ y \in E \mid \exists x \in A, x \sim y \}$$

On dit que l'ensemble A est saturé si $A = A^s$. Enfin, on note S(E) l'ensemble des parties saturées de E.

- 1. Donner A^s lorsque $A = \{0\}$, $E = \mathbb{Z}$ et \sim la relation « être congru modulo 2 » (il n'est pas demandé de prouver que c'est effectivement une relation d'équivalence). On se replace dans la suite dans le cas général.
- 2. Montrer que pour tout $A \in \mathcal{P}(E), A \subset A^s$.
- 3. Déterminer E^s .
- 4. Montrer que pour tout $A \in \mathscr{P}(E), (A^s)^s = A^s$.
- 5. Soit $A \in \mathscr{P}(E)$.
 - (a) Montrer que

$$A^s = \bigcup_{x \in A} \operatorname{cl}(x)$$

où, comme d'habitude, cl(x) est la classe d'équivalence de x.

(b) Montrer que

$$A^s = \bigcap_{B \in S(E), A \subset B} B$$

- 6. Soient A et B dans $\mathscr{P}(E)$.
 - (a) Montrer que $(A \cup B)^s = A^s \cup B^s$.
 - (b) Montrer que l'une seulement des deux inclusions $(A \cap B)^s \subset A^s \cap B^s$ et $A^s \cap B^s \subset (A \cap B)^s$ est vraie en général, et donner un contre-exemple pour l'autre.
- 7. Établir une inclusion entre \overline{A}^s et \overline{A}^s .
- 8. On définit sur $\mathscr{P}(E)$ la relation R par :

$$ARB \iff (\forall x \in A, \exists y \in B, x \sim y)$$

Montrer que R est réflexive et transitive, mais pas forcément symétrique ou antisymétrique.

Page 1/4 2023/2024

MP2I Lycée Faidherbe

Problème (facultatif) - Conjuguée de Fenchel d'une fonction convexe

On se donne dans tout le problème (sauf indication contraire, par exemple dans la partie I quand nous étudierons des cas particuliers) un intervalle I non vide, non réduit à un point, et $f: I \to \mathbb{R}$ une fonction convexe.

On note I^* l'ensemble des s tels que l'ensemble $\{sx - f(x) \mid x \in \mathbb{R}\}$ est majoré.

Enfin, on définit la fonction f^* , appelée conjuguée de Fenchel de f (ou plus simplement conjuguée de f) par :

$$\forall s \in I^*, f^*(s) = \sup_{x \in I} (sx - f(x))$$

Graphiquement, pour tout $s \in \mathbb{R}$, on trace sur le même dessin les graphes de f et de $x \mapsto sx$:

Alors $s \in I^*$ si et seulement si la fonction $x \mapsto sx - f(x)$ est majorée, et alors $f^*(s)$ est « l'écart maximal » (ou plutôt la borne supérieure des écarts, puisqu'il n'y a pas forcément de maximum). Ci-dessus, à gauche, une valeur de s qui appartient à I^* et on a indiqué $f^*(s)$ sur le graphe (en pointillés, flèche vers le bas car $f^*(s) < 0$), et à droite, une valeur de s qui n'appartient pas à I^* puisque $sx - f(x) \xrightarrow[x \to -\infty]{} +\infty$.

Attention, quand on parle d'écart « maximal » (au sens d'une borne supérieure, encore une fois), on ne parle pas de distance entre les deux graphes : quand on parle de distance, on parle souvent d'un nombre positif (par exemple, la distance entre deux réels x et y est |x-y|), tandis que là, il n'y a pas de valeur absolue donc l'écart sx-f(x) peut être négatif! Par exemple, sur le graphe de gauche ci-dessus, l'écart maximal est « la plus petite distance » car l'écart est toujours négatif, et donc il est maximal lorsque cet écart est le plus petit en valeur absolue!

Partie I - Exemples

- 1. Dans cette question uniquement, $I = \mathbb{R}$ et $f: x \mapsto x^2/2$. Vérifier que f est convexe, puis que $I^* = \mathbb{R}$. Montrer enfin que $f^*: s \mapsto s^2/2$. Illustrer par un dessin.
- 2. (a) Montrer que si φ est convexe sur I et g convexe croissante sur $\varphi(I)$, alors $g \circ \varphi$ est convexe sur I. Contre-exemple si g n'est pas croissante?
 - (b) Dans la suite de cette question, on suppose que $I = \mathbb{R}$, que p est un réel (pas forcément un entier) strictement supérieur à 1, et que $f: x \mapsto |x|^p/p$. Montrer que f est convexe (on pourra utiliser sans démonstration la convexité de la valeur absolue, vue en classe).
 - (c) Montrer que $I^* = \mathbb{R}$. On pourra appliquer l'inégalité de Young (cf. exercice 17 du chapitre 15) à $|x|^p$ et $|s|^q$, où q est l'exposant conjugué de p, c'est-à-dire que q est tel que $\frac{1}{p} + \frac{1}{q} = 1$.

Page 2/4 2023/2024

MP2I Lycée Faidherbe

(d) Montrer enfin que $f^*: s \mapsto |s|^q/q$. On pourra chercher une valeur ¹ de x pour laquelle il y a égalité dans la majoration obtenue à la question précédente (attention : s n'est pas forcément positif!). En quoi ce résultat généralise-t-il celui de la question 1?

- 3. Dans cette question uniquement, $I = \mathbb{R}$ et f est la valeur absolue. Prouver que $I^* = [-1; 1]$ et que f^* est la fonction nulle.
- 4. Soit $\alpha \in \mathbb{R}$. Donner la conjuguée de la fonction (définie sur $I = \mathbb{R}$) $f: x \mapsto \alpha x$.
- 5. Donner la conjuguée de la fonction (définie sur $I = \mathbb{R}$) exponentielle.

Partie II - Quelques propriétés des dérivées à droite et à gauche des fonctions convexes

Le but de cette partie est de prouver certains résultats concernant les fonctions convexes. Certains de ces résultats sont des résultats du cours : il est donc demandé de les redémontrer.

- 1. Existence de f_g et f_d Prouver que f est dérivable à droite et à gauche en tout élément de I. En déduire que f est continue. Dans la suite, comme en classe, f_d et f_g désigneront respectivement la dérivée à droite et la dérivée à gauche.
- 2. Comparaison entre f_g et f_d Justifier que, pour tout $x \in I$, f_g ' $(x) \le f_d$ '(x).
- 3. Croissance de f_g' et f_d' Prouver que f_d' et f_g' sont deux fonctions croissantes. On pourra se donner deux réels x < y dans I puis deux éléments z et t de I vérifiant x < z < y < t.
- 4. Continuité à gauche de f_g' Le but de cette question est de prouver que f_g' est continue à gauche. On se donne donc $x_0 \in I$, ainsi que deux éléments x et y de I vérifiant $x < y < x_0$.
 - (a) Justifier que $\tau_y(x) \leq f_g{'}(y)$ puis que $f_g{'}$ admet une limite finie lorsque $y \to x_0^-$. En déduire que :

$$\tau_{x_0}(x) \le \lim_{y \to x_0^-} f_g'(y)$$

- (b) Prouver que $f_g'(x) \le f_d'(x) \le \tau_{x_0}(x) \le \lim_{y \to x_0^-} f_g'(y)$ et conclure. On prouverait de même (et donc on l'admettra) que f_d' est continue à droite. Que peut-on en déduire si f est dérivable?
- 5. IAF pour une fonction convexe dérivable à droite On suppose dans cette question que $a = -\infty$, c'est-à-dire que l'intervalle I n'est pas minoré. On suppose de plus que f_d est majorée par une constante strictement négative M, et le but de cette question est de montrer que $f(x) \xrightarrow[x \to -\infty]{} +\infty$.

- (a) Prouver le résultat si f est supposée dérivable.
- (b) Soit $x_0 \in I$ et soit $x < x_0$. Justifier que $f_d'(x_0) \ge \tau_{x_0}(x)$.
- (c) Conclure.

- 6. Sous-différentiel d'une fonction convexe.
 - (a) Soit $x_0 \in I$ et soit $s \in [f_g'(x_0); f_d'(x_0)]$. S'inspirer de la question précédente pour prouver que :

$$\forall x \in I, f(x) \ge s(x - x_0) + f(x_0)$$

(b) Réciproquement, montrer que si $s \notin \left[f_g'(x_0) ; f_d'(x_0) \right]$, alors :

$$\exists x \in I, f(x) < s(x - x_0) + f(x_0)$$

Page 3/4 2023/2024

 $^{1. \ \} En \ d'autres \ termes : on pourra \ chercher \ une \ condition \ suffisante \ pour \ avoir \ égalit\'e. \ On \ ne \ demande \ pas \ une \ CNS \ demande \ pas \ une \ demande \ pas \ une \ CNS \ demande \ pas \ une \ demande \ pas \ une \ demande \ pas \ demande \ pas \ une \ demande \ pas \ une \ demande \ pas \ demande \ p$

MP2I Lycée Faidherbe

Partie III - Étude de I^*

On suppose dans cette question que I est un intervalle ouvert]a;b[avec $-\infty \le a < b \le +\infty$ (I n'est donc pas forcément borné) et que f n'est pas affine sur I. Enfin, on pose $J =]\alpha;\beta[$ où :

$$\alpha = \lim_{x \to a^+} f_d'(x)$$
 et $\beta = \lim_{x \to b^-} f_g'(x)$

ces limites pouvant être infinies. On pourra dans toute cette partie utiliser la partie précédente.

- 1. (a) Justifier l'existence de α et de β .
 - (b) On suppose que $\alpha \geq \beta$. Soient x et y deux éléments de I avec x < y. Justifier que :

$$f_d'(x) \ge \alpha \ge \beta \ge f_g'(y) \ge f_d'(x)$$

En déduire une absurdité.

- 2. On se donne dans cette question un élément s de J.
 - (a) Prouver l'existence de $x_0 = \inf\{t \in I \mid s \leq f_d'(t)\}$. On pourra prouver l'existence d'un réel x_1 tel que $f_d'(x_1) < s$ et prouver que tout élément $t \leq x_1$ n'appartient pas à $\{t \in I \mid s \leq f_d'(t)\}$.
 - (b) Montrer que, pour tout n tel que $x_0 + 1/n \in I$, $s \le f_d'\left(x_0 + \frac{1}{n}\right)$.
 - (c) Justifier que $f_g'(x_0) \le s \le f_d'(x_0)$.
 - (d) Prouver que $s \in I^*$ et calculer $f^*(s)$ en fonction de $f(x_0)$. On vient en particulier de prouver que $J \subset I^*$.
 - (e) Montrer que si $a = -\infty$ (i.e. si I n'est pas minoré) et si $s < \alpha$ (par conséquent, on suppose que $\alpha \neq -\infty$, et on ne suppose plus que $s \in J$) alors $s \notin I^*$.

Partie IV - Convexité de f^*

- 1. Montrer que la borne supérieure d'une famille de fonctions convexes est convexe sur son ensemble de définition. Plus précisément, montrer que si A est un ensemble non vide, $(f_{\alpha})_{\alpha \in A}$ une famille de fonctions convexes indexée par A et si, pour tout $x \in I$, l'ensemble $\{f_{\alpha}(x) \mid \alpha \in A\}$ est majoré, alors : $x \mapsto \sup\{f_{\alpha}(x) \mid \alpha \in A\}$ est convexe. En déduire que f^* est convexe sur I^* .
- 2. La question précédente permet d'affirmer que f^* est convexe dans le cas général, mais nous allons le redémontrer dans un cas particulier. On suppose dans cette question uniquement que :
 - f est dérivable deux fois.
 - f'' est strictement positive.

On pose enfin J = f'(I) et on définit

$$g: \begin{cases} J \longrightarrow I \\ x \longmapsto (f')^{-1}(x) \end{cases}$$

- (a) Montrer que g est bien définie. En particulier, prouver f' admet bien une bijection réciproque, et que les domaines de définition et d'arrivée sont les bons.
- (b) Montrer que, pour tout $s \in J$, $f^*(s) = sg(s) f(g(s))$.
- (c) Montrer que f^* est dérivable sur J de dérivée g.
- (d) Montrer que f^* est convexe sur J.

Partie V - Biconjugaison

- 1. Vérifier que, pour les exemples des questions 1 et 5 de la partie I, on a $f^{**} = f$ (vérifier en particulier que ces deux fonctions ont le même domaine de définition), où on a évidemment défini f^{**} comme la conjuguée de f^* .
- 2. On se place dans les hypothèses de la question 2 de la partie IV (c'est-à-dire que f, et pas f', est dérivable deux fois et que f'' est strictement positive sur I qui est un intervalle ouvert). Vérifier que f^{**} est définie en tout point de I et que $f^{**}(x) = f(x)$ pour tout $x \in I$. On pourra utiliser la question 2.(b) de la partie IV pour déterminer f^{**} .

Page 4/4 2023/2024