test_latex

Peyman Kor

7/14/2021

 κ

$$\mu = [m(u_1), \cdots, m(u_M)]$$

$$\sum_{i,j} = \kappa$$
(1)

 $\mathbf{K}_{X,X}K$

$$\kappa(u, u') = \sigma_f^2 (1 + \frac{\sqrt{5}|h|}{\ell} \frac{5h^2}{3\ell^2}) exp(-\frac{-\sqrt{5}|h|}{\ell})$$
 (2)

Suppose we observe a training set $\mathcal{D}=(u_n,J(u_n):n=1:N)$ g, where $J(u_n)$ is the noise-free observation of the function evaluated at u_n . Now we consider the case of predicting the outputs for new inputs that may not be in \mathcal{D} . Specifically, given a test set (prediction set) set U^* of size $N_* \times D$, we want to predict the function outputs $J^* = [J(u_1), \cdots, J(x_{N_*})]$