Classical linear codes

Applications of classical codes: wireless communication, DVDs, SSDs, RAM (for larger computers)

 $\forall x_1, x_2 \in C \quad \forall y_1, y_2 \text{ such that } (x_1, y_1), (x_2, y_2) \in E, \quad x_1 \neq x_2 \Rightarrow y_1 \neq y_2.$ $N = \{0, 1\}^n, \quad |C| = 2^k.$

code blocks:

$$V: \{0,1\}^{k} \to \{0,1\}^{k}$$

$$C = Image(V)$$

Code of type [n, k]:

Definition. A code $C \subseteq N$ protects from a set of errors $E \subseteq N \times N$ if

Definition. A code
$$C \subseteq N$$
 protects from a set of errors $E \subseteq N \times N$ if

Error set (should include the most likely errors for a given application)

Independent bit flips

$$E = E(n,r) = \{(x,y): dist(x,y) \leq r\}$$

Hamming distance (between binary words):

dist
$$(x,y) = \#$$
 of distinct lits in x, y

The 3-bit repetition code protects from errors in E(3,1)

*****01D

00

Burst errors (e.g. scratches on a DVD): Allow V_1 consequtive and V_2 independent flips

Parity check:

(type
$$[n,1,n]$$
) Rep(h) = $\{0,1\}$
Parity check:
(type $[n,n-1,2]$) Par(h) = $\{(u_1,...,u_n) \in \mathbb{R} \}$

$$Par(n) = \{(u_1, ..., u_n): \sum_{i} u_{i} \equiv 0 \mod 2\}$$

Rep(n) protects from
$$\left\lfloor \frac{h-1}{2} \right\rfloor$$
 bit flips,

In general, code
$$C$$

$$\begin{cases}
x_1 \\
x_2
\end{cases}$$

$$\begin{cases}
\text{protects from } r \text{ errors if} \\
\text{detects } q \text{ errors if}
\end{cases}$$

 $d = \min \left\{ dist(x_1, x_2) : x_1, x_2 \in C, x_1 \neq x_2 \right\}$

$$d = dist(o_{j}^{n} i^{n}) = N$$

$$mod 2$$

$$d = dist(o_{j}^{n} 110...0) = 2$$

$$Par(n) \text{ detects 1 flip}$$

of logical bits

Code of type [n,k,d]:

$$\Rightarrow r_{\text{max}} = \left\lfloor \frac{d-1}{2} \right\rfloor$$

$$\Rightarrow q_{\text{max}} = d-1$$

Linear codes

$$C \subseteq \mathbb{F}_2^n$$
 is linear subspace of the *n*-dimensional vector space over the field $\mathbb{F}_2 = \{0, 1\}$ (A field is a commutative ring in which every nonzero element is invertible)

(For example, the repetition and parity codes are linear)

For linear codes, one can use the usual concepts of linear algebra: linear independence, basis, subspace dimensionality.

dist(x-y) = |x-y|

(# of nonzero elements in x-y, a.k.a. the *Hamming weight*)

Generalization: Additive codes

$$N$$
 is an Abelian group, $C \subseteq N$ is a subgroup

Group of residues modulo q: $\mathbb{Z}_{q} = \{0, ..., q-1\}$ $\mathbb{Z}_{q} = \mathbb{F}_{q} \text{ is a field if } q \text{ is a prime number}$

In general, it is a ring (i.e. multiplication is defined)

 $x \in \{0,...,q-1\}$ is an invertible element of \mathbb{Z}_{p} if x and q are mutually prime

Examples

$$Rep_{q}(n) = \{ (u,...,u) : u \in \mathbb{Z}_{q} \}$$

$$Par_{q}(n) = \{ (u,...,u_{n}) : u_{1},...,u_{n} \in \mathbb{Z}_{q}, \sum_{i} u_{i} \equiv 0 \mod q \}$$

By linear equations, or a check matrix
$$H$$

$$C = \left\{ U \in F^n : h_j U^T = 0 \text{ for } j = 1,..., n-K \right\}$$
The check matrix has rows $h_1,...,h_{n-K}$

Different descriptions of a linear code

(rows of the generator matrix G)

By basis elements $q_1, \dots, q_k \in C$

The check matrix is the generator matrix for the dual code:
$$H_c = G_{c^+}$$

$$C^{\perp} = \left\{ v \in F^n : \forall u \in C \quad \underline{(v, u)} = 0 \right\}$$

$$\operatorname{Rep}(h)^{\perp} = \operatorname{Par}(h), \quad \operatorname{Par}(h)^{\perp} = \operatorname{Rep}(h)$$
Caveat: Since the inner product is computed

modulo 2, a vector can be orthogonal to itself

$$H_{Rep(s)} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad H_{Par(s)} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

 $G_{\text{Par(s)}} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$

 $Rep(2)^{\perp} = Rep(2)$

code:
$$H_c = G_{c^4}$$

$$(\mathcal{V}, \mathcal{U}) = \mathcal{V} \mathcal{U}^{\mathsf{T}} = \sum_{j=1}^{n} \mathcal{V}_{j} \mathcal{U}_{j} \in \mathsf{F}$$
In general,
$$(C^{\perp})^{\perp} = C$$

$$(1 \ 1) \binom{1}{1} = 0$$

$$\operatorname{Rep}(2)^{\perp} = \operatorname{Rep}(2)$$

 $x = \overline{x_m \cdot x_1} = \sum_{s=1}^{\infty} x_s \cdot z^{s-1}$ The 2^{m} -1 bits are indexed by nonzero binary numbers x of length m: Rows of the check matrix: $(h_s)_x = H_{sx} = \chi_s$ $U \in C \iff (h_s, \mathcal{U}) := \sum_{\alpha} x_s \, \mathcal{U}_{\alpha} = 0$ for s=1,...,mthe s-th least significant bit of x

The 7 bits are associated with

vertices of a 3-dimensional cube:

Example: the 7-bit Hamming code
$$(m=3)$$

$$\mathcal{U}_{001} + \mathcal{U}_{011} + \mathcal{U}_{101} + \mathcal{U}_{111} = 0$$

$$\mathcal{U}_{010} + \mathcal{U}_{011} + \mathcal{U}_{110} + \mathcal{U}_{111} = 0$$

$$\mathcal{U}_{100} + \mathcal{U}_{101} + \mathcal{U}_{110} + \mathcal{U}_{111} = 0$$

Hamming code Ham (m) of type $\lceil 2^m - 1 \rceil 2^m - m - 1 \rceil$

 $H \mathcal{U}^{T} = 0, \qquad H = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$ $G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$ 011 Description in terms of a basis or a generator matrix:

1) There is no
$$UEHam(m)$$
 with Hamming weight 1 or 2.

The Hamming code has distance 3

Extended Hamming code:

2)
$$\exists u \in Ham(m), |u| = 3.$$
 (Easy: $u = (1, 1, 1, 0, ..., 0)$)

Proof of (1): We will show that if
$$|\mathcal{U}| = 1$$
 or $|\mathcal{U}| = 2$, then $\mathcal{U} \notin \mathcal{C}$.
a) $|\mathcal{U}| = 1$: $\mathcal{U} = (0...010...0)$ i.e. $\mathcal{U}_{\infty} = 1$ for a s

a)
$$|\mathcal{U}| = 1$$
: $\mathcal{U} = (0...010...0)$, i.e. $\mathcal{U}_{\alpha} = 1$ for a single $\alpha = \overline{\alpha_{m-1} \alpha_{1}}$

$$\mathfrak{T} = \{0, \dots, 0, \dots, 0\},$$

$$\mathfrak{T} = \{0, \dots, 0, \dots, 0\},$$

$$\mathfrak{T} = \{0, \dots, 0, \dots, 0\},$$

$$\mathfrak{I}_{S} = 1$$
 for some s \Rightarrow $(h_{S}, \mathcal{U}) = \mathcal{I}_{S} = 1$ $\Rightarrow \mathcal{U} \notin C$

$$\chi_{S} \neq \chi_{S}$$
 for some s $\Rightarrow (h_{S}, \mathcal{U}) = \chi_{S} + \chi_{S} \neq 0 \Rightarrow \mathcal{U} \notin C$

b)
$$|\mathcal{U}| = 2$$
: $\mathcal{U} = \begin{pmatrix} \cdots & 1 & \cdots & 1 \\ x & y & y \end{pmatrix}$, i.e. $\mathcal{U}_{z} = \begin{cases} 1, & \text{if } z = x, y \\ 0, & \text{otherwise} \end{cases}$

$$u_z = \begin{cases} 1, \\ 0 \end{cases}$$

add a bit \mathcal{X}_{obo} and the overall parity check:

$$(\mu) = 0$$

type [n,k,d], where $N = 2^{m}$, $K = 2^{m}$, M = 4

⇒ the code protects from 1 bit flip

$$= x_s = x_s$$

$$x = \overline{0}$$

$$\overline{\alpha_{i}}$$

 $h_{0} = (1, ..., 1)$

Reed-Muller codes RM(
$$m$$
, l) of type $[n,k]$, where $N = 2^m$, $K = \sum_{p=0}^{k} {m \choose p}$
We interpret binary words of length 2^m as functions $U : \{0,1\}^m \to \{0,1\}$

The codewords are multilinear polynomials in
$$x_1,...,x_M$$
 of degree $\leqslant \ell$:

 $\mathcal{U} \in \mathcal{C} \iff \mathcal{U}(x) = \sum_{A \subseteq \{1,...,M\}} \mathcal{C}_A x^A$ for some set of coefficients $\mathcal{C}_A \in \{0,1\}$
 $|A| \le \ell$

where $x^A = \prod_{S \in \mathcal{S}} x_S$ denotes a monomial with support A

Example:
$$\mathcal{U} = 1 + \mathcal{X}_2 + \mathcal{X}_4 \mathcal{X}_3 \in RM(3,2)$$

Example:
$$\mathcal{U}=1+\mathcal{X}_2+\mathcal{I}_1\mathcal{X}_3 \in RM(3,2)$$

Important special case:
$$RM(M,1) = \{C_0 + \sum_{S=1}^{M} C_S \chi_S: C_{o_j} C_{1,\cdots,j} C_{m} = 0,1\} = \{Ext. Hamming (m)\}^{\perp}$$

 $u(x_1, x_2) = x_1 + x_2 + x_1 x_2$

For example, u = (0,1,1,1)is interpreted as the function

Some properties of monomials

Monomials χ^A form a basis of the space of functions $\{0,1\}^n \rightarrow \{0,1\}$

Proof by induction in *m*

Induction step:

The base case
$$(m=0)$$
 is trivial Induction step:
$$\mathcal{U}\left(\underbrace{\mathcal{X}_{1},...,\mathcal{X}_{m-1}}_{\mathcal{X}_{l}},\mathcal{X}_{m}\right) = \underbrace{\mathcal{U}\left(\mathcal{X}_{l}^{\prime},0\right)}_{\mathcal{X}_{l}} + \underbrace{\left(\mathcal{U}\left(\mathcal{X}_{l}^{\prime},l\right) - \mathcal{U}\left(\mathcal{X}_{l}^{\prime},0\right)\right)}_{\mathcal{X}_{l}} \cdot \mathcal{X}_{m}$$

Part 2: the monomials are linearly independent

Part 1: the monomials span the space of functions

This follows from part 1 because # of monomials = 2^m = dimension of the space

This follows from part 1 because # of monomials =
$$2^{-}$$
 = dimension of the space

For example, let $m=4$

sums of monomials in $\chi_{1,...}\chi_{m-1}$

 $RM(m, l)^{\perp} = lin. span \left\{ x^{A} : AVB \neq \{1,..,m\} \text{ for all } B \text{ s.t. } |B| \leq l \right\} = RM(m, m-l-1)$

The code RM(m, l) has distance $d = 1^{m-l}$ $d \leq 2^{m-l}$ because any monomial X^A such that |A| = l has Hamming weight 2^{m-l} Proof that $d \geqslant 2^{m-\ell}$ by induction in m

Proof that
$$d \geqslant 2^m$$
 by induction in m

Base case
$$(m=0)$$
: $d\left(RM(0,0)\right) = 1$ because $RM(0,0)$ has type $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ \Rightarrow $C = \mathbb{F}_2 \subseteq \mathbb{F}_2$
Induction step: we assume that $d\left(RM(m-1,\ell')\right) \geqslant 2^{m-1-\ell'}$ for all ℓ'

Let
$$u \in RM(m, l)$$
, $u \neq 0$
Define $u_0, u_1 \in RM(m-1, l)$ as follows: $u_1(x') := u_1(x', a)$, $a = 0, 1$

$$\frac{u_0, u_1 \in RM(m-1, l-1)}{u_1 = u_0 \in RM(m-1, l-1)} \quad \text{because} \quad \left(\chi^A\right)_1 - \left(\chi^A\right)_0 = \begin{cases} 0 & \text{if } m \notin A \\ \chi^{A-\{m\}} & \text{if } m \in A \end{cases}$$

Case 1:
$$u_o = u_1 \neq 0 \implies |u_o| \geqslant d(RM(m-1, l)) = 2^{m-1-l} \implies |u| = 2|u_o| \geqslant 2^{m-l}$$

Case 2: $u_1 - u_0 \neq 0 \implies |u_1 - u_0| \geqslant d(RM(m-1, l-1)) = 2^{m-l} \Rightarrow |u| \geqslant |u_1 - u_0| \geqslant 2^{m-l}$

Error correction algorithm

In general the error correction problem is NP-hard (may require exhaustive search through all codewords).

However, for Reed-Muller codes, there is an efficient algorithm.

Input:
$$\widetilde{\mathcal{U}} \in \{0,1\}^{2^m}$$
 such that $\exists \ \mathcal{U} \in \mathbb{RM}(m,\ell)_{j} \ |\widetilde{\mathcal{U}} - \mathcal{U}| < 2^{m-\ell-1}$
Output: \mathcal{U}

Top-level procedure

let
$$\mathcal{V} = \widetilde{\mathcal{U}}$$

for $P = \ell, ..., D$
for all $A \subseteq \{1, ..., m\}$ such that $|A| = P$
find C_A using \mathcal{V} main subroutine
update \mathcal{V} as follows: $\mathcal{V}(x) := \mathcal{V}(x) - C_A x^A$

Consider these functions of

Main subroutine

A={1,..,m}, |A|=l

 $\widetilde{\mathcal{U}} \in \{0,1\}^{2^m}$ such that $\exists \mathcal{U} = \sum_{\mathcal{B}: |\mathcal{B}| \leq \ell} C_{\mathcal{B}} \chi^{\mathcal{B}}, \quad |\widetilde{\mathcal{U}} - \mathcal{U}| < 2^{m-\ell-1}$

W.l.o.g. we may assume that

Input:

 $A = \{1, ..., \ell\},$ $\mathcal{X}_{\overline{\Lambda}}$:

Bit string interpretation:

$$\sum_{x_A} \mathcal{U}(x_A, x_{\overline{A}})$$

$$f(x_{\overline{A}}) := \sum_{x_{A}} \mathcal{U}(x_{A}, x_{\overline{A}}) = \sum_{x_{A}} \sum_{B} c_{B}(x_{A})^{B}$$
$$= \sum_{B} c_{B} \sum_{x_{A}} x_{A}^{B/A} x_{A}$$

 $f = (C_{\underline{A}}, \dots, C_{\underline{A}})$ (2^{m-l}bits) $\widehat{f} = (\widehat{f}(\underline{...}00), \widehat{f}(\underline{...}01), ...)$ $\chi_{\overline{A}} \text{ for different } \overline{A}$

$$\chi_{i},\chi_{i}$$

 $\widehat{f}(x_{\overline{A}}) := \sum_{x_{\overline{A}}} \widehat{\mathcal{U}}(x_{\overline{A}}, x_{\overline{A}})$ 0 otherwise $C_{\Delta} = MAJ(\hat{f}(x_{\overline{A}}): x_{\overline{A}} \in \{0,1\}^{2^{M-1}})$ Computing $C_{\Lambda} \in \{0, 1\}$:

Punctured Reed-Muller codes

Let us remove the bit with index x = (0, ..., 0).

The trivial monomial, $x^{\phi} = 1$ may or may not be included:

$$RM'(m,l): u(x) = \sum_{A:|A| \leq l} C_A x^A \qquad \left[2^{m-l}, \sum_{P=0}^{\ell} {m \choose P}, 2^{m-\ell} \right]$$

$$RM''(m,l): u(x) = \sum_{1 \leq |A| \leq l} C_A x^A \qquad \left[2^{m-1}, \sum_{P=1}^{\ell} {m \choose P}, 2^{m-\ell} \right]$$

$$RM'(m, \ell)^{\perp} = RM''(m, m-\ell-1)$$

Special case: Ham
$$(m) = (RM''(m, 1))^{\perp} = RM'(m, m-2)$$