Матрицы

конспект от TheLostDesu

22 сентября 2021 г.

1 Алгоритм приведения матрицы к ступенчатому виду

- 1. Найти первый ненулевой элемент в строке і это «ведущий элемент».
- 2. Теперь для k ой строки берем число $-\frac{A_{kj}}{A_{ij}}$. И с этим коэфицентом прибавляем i-ю строку к k-ой.
- 3. і-ю строку делим на значение ведущего элемента. (для улучшеного ступенчатого вида).
- 4. Выбираем новый элемент смещаясь в матрице на следующую строку.
- 5. Повторяем до того, как 4е действие сделать возможно.

Почему этот алгоритм всегда работает?

Так как матрица имеет конечные размеры, в частности конечное число столбцов, а за 1 шаг алгоритма в одном из столбцов на всех местах кроме і становятся нули(значит, что за шаг мы перемещаемся минимум на один столбец). Значит, что процесс закончится. Алгоритм называется «Методом Гаусса»

2 Решение систем линейных уравнений методом Гаусса

Пусть есть несколько уравнений (не обязательно столько же, сколько переменных) вида: $a_1*x_1+a_2*x_2...+a_n*x_n=b_1$. Назовем это координатной формой записи. Заметим, что система таких уравнений - произведение матрицы системы на матрицу с $x_1...x_n$.

Назовем расширеной матрицей системы матрицу вида

3 Определитель матрицы

Всякое расположение чисел от одного до n в любом порядке называют перестановкой.

Инверсия - случай, когда $\alpha_j > \alpha_i$, но, i > j Знак перестановки = $(-1)^- sgn(\alpha)$ Транспозиция - преобразование, когда в перестановке меняются местами два элемента, остальные остаются на своих местах. Любая транспозиция меняет четность перестановки.

Подстановка. $\sigma = \frac{1}{\sigma(1)} \dots \frac{n}{\sigma(n)}$ Т.е биекция чисел от одного до n в се-

бя. Знаком подстановки называют знак перестановки в нижней строке. Есть несколько вариантов записи: например, последовательно записать вершины в циклах вот так: (134)(2).

Если σ - подстановка сама в себя, то мы называем ее тождественной. Обозначается за id.

На множесте подстановок можно ввести умножение: последовательное применение (композицию отображений).

Определитель(детерминант) квадратной матрицы. $(\det(A)) = \sum_{\sigma \in S_n} sgn(\sigma) * a_{1\sigma(1)} * a_{2\sigma(2)} ... * a_{n\sigma(n)}.$