From: Leslie Ray for Katherine Borvat

Attorney Docket 112.P14097

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior version, and listings, of claims in the application. Where claims have been amended and/or canceled, such amendments and/or cancellations are done without prejudice and/or waiver and/or disclaimer to the claimed and/or disclosed subject matter, and the applicant and/or assignee reserves the right to claim this subject matter and/or other disclosed subject matter in a continuing application.

Listing of Claims:

1. (Currently amended): An image correction method able to avoid error images, comprising:

obtaining a first correction digital signal by scanning a first correction document during black correction, and extracting only a plurality of last bits of the first correction digital signal; and

obtaining a second correction digital signal by scanning a second correction document during white correction, and extracting only a plurality of first bits of the second correction digital signal, and setting the most significant bit of the second correction digital signal to a value of 1.

- (Currently amended): The method according to claim 1, wherein the extracted last bits
 of the first correction digital signal are stored in a memory.
- (Currently amended): The method according to claim 2, wherein the memory includes comprises a random access memory.

- 4. (Original): The method according to claim 1, wherein the extracted first bits of the second correction digital signal are stored in a memory.
- 5. (Currently amended): The method according to claim 4, wherein the memory includes comprises a random access memory.
- 6. (Currently amended): The method according to claim 1, wherein the first correction document includes comprises a black correction document.
- 7. (Currently amended): The method according to claim 1, wherein the second correction document includes comprises a white correction document.
- 8. (Currently amended): The method according to claim 1, wherein the step of black correction includes comprises:

scanning the first correction document to obtain the a first correction optical signal; using an image extracting device to obtain a first correction analog signal; and using an analog/digital converter to convert the first correction analog signal into a first correction digital signal.

- 9. (Currently amended): The method according to claim 8, wherein the image extraction device includes comprises a charge-coupled device.
- 10. (Currently amended): The method according to claim 8, wherein the step of white correction includes comprises:

scanning the second correction document to obtain the a second correction optical signal;

using an image extracting device to obtain a second correction analog signal; and using an analog/digital converter to convert the second correction analog signal into a second correction digital signal.

- 11. (Currently amended): The method according to claim 10, wherein the image extraction device includes comprises a charge-coupled device.
- 12. (Currently amended): An image correction apparatus able-to-avoid error images, comprising:

means for obtaining a first correction digital signal, said means for obtaining a first correction digital signal being configured to scan a first correction document during black correction, and being configured to extract only a plurality of last bits of the first correction digital signal; and

means for obtaining a second correction digital signal by scanning a second correction document during white correction, said means for obtaining a second correction digital signal being configured to extract only a plurality of first bits of the second correction digital signal; and

means for setting the most significant bit of the second correction digital signal to a value of 1.

13. (Previously presented): The apparatus according to claim 12, said means for obtaining a first correction digital signal being configured to store the extracted last bits of the first correction digital signal in a memory.

- 14. (Currently amended): The apparatus according to claim 13, wherein the memory includes comprises a random access memory.
- 15. (Previously presented): The apparatus according to claim 12, said means for obtaining a second correction digital signal being configured to store the extracted first bits of the second correction digital signal in a memory.
- 16. (Currently amended): The apparatus according to claim 15, wherein the memory includes comprises a random access memory.
- 17. (Currently amended): The apparatus according to claim 12, wherein the first correction document includes comprises a black correction document.
- 18. (Currently amended): The apparatus according to claim 12, wherein the second correction document includes comprises a white correction document.
- 19. (Previously presented): The apparatus according to claim 12, wherein said means for obtaining a first correction digital signal comprises:

means for scanning the first correction document to obtain the a first correction optical signal; an image extracting device to obtain a first correction analog signal; and an analog/digital converter to convert the first correction analog signal into a first correction digital signal.

- 20. (Currently amended): The apparatus according to claim 19, wherein the image extraction device includes comprises a charge-coupled device.
- 21. (Previously presented): The apparatus according to claim 19, wherein said means for obtaining a second correction digital signal comprises:

means for scanning the second correction document to obtain the a second correction optical signal; an image extracting device to obtain a second correction analog signal; and an analog/digital converter to convert the second correction analog signal into a second correction digital signal.

- 22. (Currently amended): The apparatus according to claim 21, wherein the image extraction device includes comprises a charge-coupled device.
- 23. (New): An article, comprising: a storage medium having stored thereon instructions, that, if-executed, result in:

obtaining a first correction digital signal by scanning a first correction document during black correction, and extracting only a plurality of last bits of the first correction digital signal; and

obtaining a second correction digital signal by scanning a second correction document during white correction, and extracting only a plurality of first bits of the second correction digital signal, and setting the most significant bit of the second correction digital signal to a value of 1.

24. (New): The article of claim 23 wherein said storage medium has further instructions stored thereon, that, if executed, result in:

storing the extracted last bits of the first correction digital signal in a memory.

25. (New): The article of claim 23 wherein said storage medium has further instructions stored thereon, that, if executed, result in:

storing the extracted last bits of the second correction digital signal in a memory.

26. (New): The article of claim 23 wherein the black correction comprises:

scanning the first correction document to obtain the a first correction optical signal; using an image extracting device to obtain a first correction analog signal; and using an analog/digital converter to convert the first correction analog signal into a first correction digital signal.

27. (New): The article of claim 26 wherein the white correction comprises:

scanning the second correction document to obtain the a second correction optical signal;

using an image extracting device to obtain a second correction analog signal; and using an analog/digital converter to convert the second correction analog signal into a second correction digital signal.

28. (New): An image made by a method comprising:

obtaining a first correction digital signal by scanning a first correction document during black correction, and extracting only a plurality of last bits of the first correction digital signal; and

obtaining a second correction digital signal by scanning a second correction document during white correction, and extracting only a plurality of first bits of the second correction

Attorney Docket 112.P14097

digital signal, and setting the most significant bit of the second correction digital signal to a value of 1.

- 29. (New): The image of claim 28 made by a method further comprising: storing the extracted last bits of the first correction digital signal in a memory.
- 30. (New): The image of claim 28 made by a method further comprising:
 storing the extracted last bits of the second correction digital signal in a memory.
- 31. (New): The image of claim 28 wherein the black correction comprises:

 scanning the first correction document to obtain the a first correction optical signal;
 using an image extracting device to obtain a first correction analog signal; and using an
 analog/digital converter to convert the first correction analog signal into a first correction digital
 signal.
- 32. (New): The image of claim 31 wherein the white correction comprises: scanning the second correction document to obtain the a second correction optical signal;

using an image extracting device to obtain a second correction analog signal; and using an analog/digital converter to convert the second correction analog signal into a second correction digital signal.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.