5	(a)	State Kirchhoff's second law.	
			٠.
		ŗ	יכ
			_

(b) Two batteries, each of electromotive force (e.m.f.) 6.0 V and negligible internal resistance, are connected in series with three resistors, as shown in Fig. 5.1.

Fig. 5.1

Resistor X has resistance 4.0Ω and resistor Y has resistance 1.5Ω .

(i) The resistance *R* of the variable resistor is changed until the voltmeter in the circuit reads zero.

Calculate

1. the current I in the circuit,

2. the resistance *R*.

 $R = \dots \Omega[2]$

(ii)	Resistors X and Y are wires made from the same material. The diameter of the wire of X is twice the diameter of the wire of Y.
	Determine the ratio
	$\frac{\text{average drift speed of free electrons in X}}{\text{average drift speed of free electrons in Y}}.$
	ratio =[2]
(iii)	The resistance R of the variable resistor is now increased.
(iii)	The resistance <i>R</i> of the variable resistor is now increased. State and explain the effect of the increase in <i>R</i> on the power transformed by each of the batteries.
(iii)	State and explain the effect of the increase in R on the power transformed by each of the
(iii)	State and explain the effect of the increase in R on the power transformed by each of the
(iii)	State and explain the effect of the increase in <i>R</i> on the power transformed by each of the batteries.
(iii)	State and explain the effect of the increase in <i>R</i> on the power transformed by each of the batteries.
(iii)	State and explain the effect of the increase in <i>R</i> on the power transformed by each of the batteries.
(iii)	State and explain the effect of the increase in <i>R</i> on the power transformed by each of the batteries. [3]
(iii)	State and explain the effect of the increase in <i>R</i> on the power transformed by each of the batteries. [3]
(iii)	State and explain the effect of the increase in <i>R</i> on the power transformed by each of the batteries. [3]
(iii)	State and explain the effect of the increase in <i>R</i> on the power transformed by each of the batteries. [3]