SOP	Total lipid extraction from pure	
	isolates, tissues, and	
	environmental sample	
	en in en in en ar sample	

1. Scope

This SOP describes a total lipid extraction method using modified Bligh-dyer method. The protocol is optimized for soil samples and can be used with pure isolates of different soil organisms. The amount of extraction solvent described here can be further improved according to the freeze-dried biomass available.

2. Principle

Soluble compounds are extracted from the samples and hydrophobic compounds are separated from hydrophilic compounds by phase separation. The lower organic phase which contain most of the lipid fraction are then loaded into and LC MS system to identify and quantify the compounds.

3. References

The method is based on Buyer and Sasser (2012), with modifications derived from Dr. Yolima Carrilo (WSU).

- Buyer, J. S., & Sasser, M. (2012). High throughput phospholipid fatty acid analysis of soils. Applied Soil Ecology, 61, 127-130.
- Frostegård Å, Tunlid A, Bååth E. 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods 14(3): 151-163.
- Kaiser C, Frank A, Wild B, Koranda M, Richter A. 2010a. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2 omega 6,9 and 18:1 omega 9. Soil Biology & Biochemistry 42(9): 1650-1652.
- Schnecker J, Wild B, Fuchslueger L, Richter A. 2012. A field method to store samples from temperate mountain grassland soils for analysis of phospholipid fatty acids. Soil Biology and Biochemistry 51(0): 81-83.

4. Chemicals

Chemicals	Read and observe the chemical-related safety regulations (MSDS, Material Safety Data Sheet) before starting to work!		
	Milli-Q water	Freshly generated by Millipore device	

Citric acid monohydrate	Riedel- de Haën 33114	<u> </u>
Sodium hydroxide 50%	J. T. Baker 7067	
Chloroform	Sigma-Aldrich 34854	\$ (!)
Methanol	Sigma-Aldrich 34885	
Ethanol (only for washing)	denatured, 96% Nr.?	
Extrane (only for washing)	Merck MA01 107555	(1)
Acetone (only for washing)	technical, 99% Nr.?	
Acetone	Fluka 00570	<u> </u>

5. General working instructions

Gloves	In order to prevent contamination of the samples, unpowdered lab gloves have to be
	worn at all steps of the protocol. Since many organic solvents are used, nitrile gloves
	are recommended.
Safety	Use the fume hood whenever working with organic solvents. Collect the solvent waste
	according to lab safety regulations.
Pipettes	Use pipettes with Pasteur glass pipettes as tips unless indicated otherwise (muffle
	Pasteur pipettes as described below). You should use PFA pipette tips if possible, when
	plastic is necessary.
	Repeatedly draw up the organic solvents to saturate the internal airspace of the pipette
	with the respective solvent in order to assure a precise pipetting.
	The maximum volume of Pasteur pipettes is 2 ml!
Glassware	Glassware should be used throughout the procedure wherever possible.

	If necessary (e.g. for used extraction vials), soak glassware in diluted extrane solution		
	and clean it with tap water until no stains are left. Clean all glassware in the dishwasher		
	let it dry and cover all openings with thick aluminum foil. For extraction vials, cover a		
	group of vials completely in foil. Put Pasteur pipettes into a large beaker and cover the		
	opening with foil. Muffle all glassware (packed in foil) in the furnace at 500°C for 4		
	hours and let it cool down before use. Store with foil until use.		
Caps and septa	Plastic caps and septa are washed intensively before use: Soak them in diluted extrane		
	solution to remove traces of lipids and rinse them with tap water until no foam is visible		
	any more. Rinse caps and septa with de-ionized water, then with ethanol and acetone.		
	Let them dry before use. When closing vials, make sure the Teflon seals of the septa are		
	on the inside.		
	Do not muffle caps and septa! They will melt in the furnace.		
Chemicals	Chemicals of highest purity available should be used throughout the protocol. For		
	washing of caps and septa, chemicals of lower quality can be applied.		

6. Sample preparation

Sampling	Remove living roots after sampling.	
Sample storage	(1) If possible, fresh samples should be used.	
	(2) Alternatively, samples can be freezedried.	(2) Freeze the samples immediately and freeze-dry before extraction. In this case, the water content of the samples can be assumed zero.

	(3) It is also possible to extract frozen	(3) If continuous freezing of the samples
	samples directly (although freeze-drying	cannot be guaranteed (e.g. when working
	should be preferred). In this case, samples	in remote field sites), samples can be
	must not thaw during storage or transport	stored in RNAlater. In this case, use the
	and have to be extracted in frozen state.	SOP modified for RNAlater storage
Water content	Determine the water content of all samples	For freeze-dried samples, the water
	before extraction.	content can be set zero.

------ Day 1 ------ Soil preparation

Weigh soil	Weigh around 2 g of freeze-dried soil into 10 ml	Use a permanent marker to label,
	round bottom vials. Each well plate fits 90	and make sure it does not
	samples – allow space for 3 blanks and 3 repeats	dissolve during the process!
	to check for consistency.	

Lipid Extraction

Citrate buffer	Prepare a 0.15 M citrate buffer. Adjust the pH to 4.0 with NaOH (liquid, 50 %).	e.g. 17.237 g of citric acid monohydrate for 500 ml buffer. This amount is sufficient for the CMB and phase separation (day 2).
СМВ	 200 ml citrate buffer 500 ml methanol 250 ml chloroform Mix fresh daily, or at least weekly if many runs are anticipated C:M:B (1:2:0.8) 	950 ml is sufficient for a batch of 96 samples.
PLFA-dispenser	Before using PLFA-dispenser, rinse it with chloroform.	
Extraction	Add 6 ml of CMB to 10 ml round bottom vials that contains your soil.	Calibrate the PLFA-dispenser with Milli-Q, and note the weight of three volumes. The volume here is important, but not crucial, because this volume of extractant will not get saturated.
Sonication	Cap samples and sonicate for 10 min in sonic bath. Vortex for 30 s.	Make sure the sonicator can maintain room temperature, otherwise add ice.
	Incubate overnight at room temperature in the dark (or at least for 6 hours).	

------ Day 2 ------ Phase separation

Centrifuge	Centrifuge samples and blanks at 3500 rpm for 10	
	min. Transfer the supernatant into new into 10 ml	
	flat bottom vials or 40 ml glass vials.	
Re-extraction	Re-extract the pellet with 2.6 ml CMB. Vortex for	
	30 s and centrifuge again. Transfer the	
	supernatant into the same new 10ml glass vial.	
Phase	Add 1.5 ml chloroform and 1.5 ml of citrate buffer.	Calibrate the PLFA-dispenser with
separation	Vortex for 30 s.	MQ, and note the weight of three
	Allow overnight separation in the dark at room	volumes.
	temperature.	For the citrate buffer, the brown
		PLFA-dispenser can be used.

------ Day 3 ------

	Label and weigh empty 10 ml flat bottom vials	
	with caps. Note the weight.	
	Transfer the lower (lipid) phase to the pre-	It is not necessary to transfer all of
	weighed 10 ml vials. Take as much of the phase as	the lower phase (see below).
	possible, but make sure not to transfer anything of	
	the upper phase.	
	Weigh the full flat bottom vials and note the	By weighing the transferred liquid,
	weight.	it is possible to account for losses.
N ₂ -drying	Rinse the needles of the N2-dryer first with	
	ethanol, then with acetone.	
	Dry the extract at room temperature under a	Drying under N ₂ prevents the
	constant stream of N ₂ . Immediately after drying,	oxidation of fatty acids.
	close the vials.	
Storage	Dried samples can be stored frozen at -20 °C until	
	further processing.	