Randy Gallistel on Memory

A presentation by Otto Mättas

Charles Ransom Gallistel

- b. 1941
- Professor Emeritus of Psychology at Rutgers.
- Known for challenging established neuroscience perspectives on memory.

The Nature of Memory

memory is a fact-based system, full of facts.

mainstream neuroscience does not address memory as being filled with explicit, retrievable facts.

Desert Ant Navigation Case Study

The Problem

- Desert ants return home in straight lines after complex foraging paths
- Navigate accurately in featureless terrain
- Store and compute exact distances and angles

Why it matters?

- Requires precise numerical storage
- Path integration involves ongoing calculations
- Can't be explained by simple associative learning

Implications

- Demonstrates need for exact number storage
- Shows active computational processes
- Supports Gallistel's symbolic memory theory

Computational Theory of Mind

- the brain must have an addressable, read-write memory mechanism that encodes, stores, and retrieves facts similar to a computer.
- memory involves symbolic processing, contrasting with the dominant connectionist model focusing on associative synaptic connections (associationism).

Synaptic Plasticity

- can not be the basis / register of memory.
- does not explain how specific information, like numerical data, is stored:
 - distances,
 - directions,
 - temporal durations.
- How do you store a number in a synapse?

Memory Storage Theory

- memory might be stored within individual neurons rather than across synapses.
- memories could be encoded in polynucleotides, such as DNA or RNA, which allows for stable, symbol-based storage.

Two Views of Memory Storage

VS

Traditional

Synaptic Storage

Stores patterns through connection strengths

Gallistel

Intracellular Storage

Stores precise values like computer memory

_

Engrams are hypothetical units of memory stored in the brain or other tissue.

Memory's Physical Trace

- engram is the hypothesised physical trace of memory.
- memories are stored intracellularly and not as distributed synaptic patterns.
- understanding intracellular mechanisms, like RNA-based storage, might reveal how memories are encoded.

The Xenotext

Universal Approximation Theorem

- neural networks can approximate functions.
- this does not equate to genuine symbol manipulation or memory encoding.

П

Memory, Facts, and Symbolism

- the necessity of symbols in cognitive processing, contrasting with current models of artificial neural networks.
- he believes computational theories must address the symbolic nature of memory.
- symbols are fundamental for memory and cognition, beyond associative links.

Practical Implications

For Medicine

- New approach to memory disorders
- Target molecular mechanisms inside neurons
- Potential for more precise interventions

For AI Development

- Rethinking neural network design
- Combining symbolic and neural processing
- More accurate memory storage systems

For Future Research

- Focus on intracellular mechanisms
- Develop new tools for memory investigation
- Bridge gap between AI and biological memory

Implications for the Future

Information Retrieval Process

- potential impacts of Gallistel's ideas on neuroscience and cognitive science.
 - reshape memory studies and influence computational models of the brain.
 - impacts on AI or machine learning if we incorporate symbolic models of memory.

Gallistel's Legacy

- questioning the fundamentals.
- explore new possibilities for cognitive processes.
- ongoing interdisciplinary dialogue.

How do you store a number in a synapse?

