激子的数值重整化群计算

Khunyang DU 2024年6月11日

目录

1	引言		1	
	1.1	激子的概念	1	
	1.2	超导中的技术	1	
2	MODEL			
	2.1	Hamiltonian	2	
	2.2	激子配对算符	2	
3	DO	WNFOLDING	3	
	3.1	实空间	3	
	3.2	k 空间	4	
	3.3	Differences	4	
参	考文繭	· · · · · · · · · · · · · · · · · · ·	4	

1 引言

1.1 激子的概念

1.2 超导中的技术

singlet 超导配对关联算符(实空间)

$$\Delta_{ij} = \frac{1}{\sqrt{2}} \left(c_{i\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} - c_{i\downarrow}^{\dagger} c_{j\uparrow}^{\dagger} \right) \tag{1}$$

注意到系统电荷的 U(1) 对称性,有

$$\langle \Psi | c^{\dagger} c^{\dagger} | \Psi \rangle = 0 \tag{2}$$

这是因为在算符 $c^{\dagger}c^{\dagger}$ 的作用下, $c^{\dagger}c^{\dagger}|\Psi\rangle$ 的量子数发生变化,因此与 $|\Psi\rangle$ 正交,因此 $\langle \Delta_{ij} \rangle = 0$ 。 超导配对关联分布能通过 singlet 配对算符的二体密度矩阵求得 [2]

$$\rho_S(i,j;k,l) = \left\langle \Delta_{ij}^{\dagger} \Delta_{kl} \right\rangle \tag{3}$$

此矩阵本征值谱的主导阶意味着系统态 $|\Psi\rangle$ 中 ODLRO 序的存在 cite。其对应本征态为超导的可能的配对模式,包含全部的对称性的分类,即

$$\Delta^n = \sum_{i,j} g_{ij}^n \Delta_{ij} \tag{4}$$

不同的 n 对应系统可能的配对模式,有着不同的对称性。

与此对应的, k 空间中的 singlet 配对算符的二体密度矩阵

$$\rho_S(\mathbf{k}, \mathbf{k}; \mathbf{k}', \mathbf{k}\mathbf{k}') = \left\langle \Delta_{\mathbf{k}, \mathbf{k}'}^{\dagger} \Delta_{\mathbf{k}, \mathbf{k}'} \right\rangle \tag{5}$$

对角化后的本征值谱主导阶对应本征态

$$\Delta^n = \sum_{\mathbf{k},\mathbf{k}'} f_{\mathbf{k},\mathbf{k}'}^n \Delta_{\mathbf{k},\mathbf{k}'} \tag{6}$$

不同的 n 对应系统可能的配对模式,有着不同的对称性。其中 $f_{\mathbf{k},\mathbf{k}'}^n$ 称为形状因子,与 g_{ij}^n 唯一对应。

2 MODEL

2.1 Hamiltonian

Extended Hubbard Model

$$H = -t \sum_{\langle i,j \rangle, \sigma, \alpha} \left(c_{i\sigma\alpha}^{\dagger} c_{j\sigma\alpha} + \text{H.c.} \right) - t' \sum_{\langle \langle i,j \rangle \rangle, \sigma, \alpha} \left(c_{i\sigma\alpha}^{\dagger} c_{j\sigma\alpha} + \text{H.c.} \right)$$

$$+ U \sum_{i,\alpha} n_{i\uparrow\alpha}^{d} n_{i\downarrow\alpha}^{d} + V \sum_{\langle i,j \rangle, \sigma, \alpha} n_{i\sigma\alpha} n_{j\sigma\alpha}$$

$$(7)$$

n-Extended Hubbard Model

$$H = -t_n \sum_{\langle i,j\rangle_n,\sigma,\alpha} \left(c_{i\sigma\alpha}^{\dagger} c_{j\sigma\alpha} + \text{H.c.} \right) + V_n \sum_{\langle i,j\rangle_n,\alpha} n_{i\sigma\alpha} n_{j\sigma\alpha}$$
(8)

2.2 激子配对算符

引入单电子近似,考虑系统对角化的哈密顿量

$$H = \sum_{\mathbf{k}, n, \sigma} E_n(\mathbf{k}) c_{\mathbf{k}n\sigma}^{\dagger} c_{\mathbf{k}n\sigma} \tag{9}$$

对应导带的产生算符

$$c_{\mathbf{k}c\sigma}^{\dagger} = \sum_{i,\alpha,\sigma} A_{c,i\alpha\sigma}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{R}_i} c_{i\alpha\sigma}^{\dagger}$$
(10)

约定:

- $c_{i\alpha\sigma}^{\dagger}$ 为点 \mathbf{R}_i 处自旋为 σ 的波函数为 α 轨道的原子轨道波函数的电子产生算符。
- $A_{c,i\alpha\sigma}(\mathbf{k})$ 为导带 c、波矢 \mathbf{k} 对应的本征态在基 $\left\{c_{i\alpha\sigma}^{\dagger}\right\}$ 上的坐标。

可以写出 k 空间中的激子配对算符

Singlet
$$\Delta_{\mathbf{k}+\mathbf{q},\mathbf{k}S}^{\dagger} = \frac{1}{\sqrt{2}} \left(c_{\mathbf{k}+\mathbf{q}c\uparrow}^{\dagger} c_{\mathbf{k}v\downarrow} - c_{\mathbf{k}+\mathbf{q}c\downarrow}^{\dagger} c_{\mathbf{k}v\uparrow} \right)$$

Triplet $\Delta_{\mathbf{k}+\mathbf{q},\mathbf{k}T}^{\dagger,0} = \frac{1}{\sqrt{2}} \left(c_{\mathbf{k}+\mathbf{q}c\uparrow}^{\dagger} c_{\mathbf{k}v\downarrow} + c_{\mathbf{k}+\mathbf{q}c\downarrow}^{\dagger} c_{\mathbf{k}v\uparrow} \right)$
 $\Delta_{\mathbf{k}+\mathbf{q},\mathbf{k}T}^{\dagger,1} = c_{\mathbf{k}+\mathbf{q}c\uparrow}^{\dagger} c_{\mathbf{k}v\uparrow}, \quad \Delta_{\mathbf{k}+\mathbf{q},\mathbf{k}T}^{\dagger,-1} = c_{\mathbf{k}+\mathbf{q}c\downarrow}^{\dagger} c_{\mathbf{k}v\downarrow}$ (11)

和超导类比,计算 $\left<\Delta_{ij}^\dagger\Delta_{kl}\right>$,再通过单电子近似过渡到 $\mathbf k$ 空间。 多体系统的 $\mathbf k$ 空间?

3 DOWNFOLDING

3.1 实空间

计算单粒子等时关联矩阵

$$M_{\alpha\beta} = \langle c_{\alpha}^{\dagger} c_{\beta} \rangle \tag{12}$$

对角化后取本征值谱的主导阶

$$\mathbf{M} = \sum_{n=1}^{N} \lambda_n |\psi_n\rangle \langle \psi_n| \approx \sum_{n=1}^{N_c} \lambda_n |\psi_n\rangle \langle \psi_n|$$
(13)

对应得到 $|\psi_n\rangle$, $n \leq N_c$ 张成子空间的投影算符 $P = \sum_{n=1}^{N_c} |\psi_n\rangle \langle \psi_n|$ 。

物理含义 单粒子等时关联矩阵 **M** 的可以看做态 $\{c_{\alpha} | \Psi \rangle\}$ 这组向量的 Gram 矩阵,其正交相似对角化可以看作 Gram 矩阵的相合变换(Unitary 矩阵的 $A^T = A^{-1}$)性质。

假设将 **M** 对角化得到本征值 λ_n^1 ,本征态 $c_n |\Psi\rangle = \sum_{\alpha} c_\alpha |\Psi\rangle$ 。因此对角化过程等价于寻找新的一组电子湮灭算符 $\{c_n\}$,满足

$$\langle \Psi | c_m^{\dagger} c_n | \Psi \rangle = \delta_{n,m} \langle \hat{n}_n \rangle \tag{14}$$

即态 $|\Psi\rangle$ 在新的电子湮灭算符 $\{c_n\}$ 对应的电子能级上满足

- 1. $\lambda_n = \langle \hat{n}_n \rangle$, 占据数逐级递减。
- 2. $\langle \hat{n}_n \rangle_{n \neq m} = 0$,不同能级的电子之间无 hopping。

若满足 $\lambda_n \approx 0, n \geq N_c$, 则可以在 N_c 处截断, 因为以后的能级占据数为 0。

由于 c_n 在实空间的直观性较差,因此可以对 c_n 进行重新排列组合,比如选取 Lattice 上的 个 N_c 个点,构造此点的 Wannier 函数。数学表述为

构造 Wannier 函数 以 $\{c_{\alpha}\}$ 为基, c_n 可表示为向量形式 $\mathbf{c}_n \in \mathcal{R}^{N \times 1}$ 。选择 $\{\alpha\}$ 中的 N_c 个点 $\{m\}$,重新构造向量 \mathbf{C}_m ,满足

- 1. 在第 {m} 上取值最大,其它取值尽量能小。
- 2. 不同 \mathbf{C}_m 正交。

参考文献 [1] 中展示了完成以上要求的方法,最终能得到转移矩阵 A,联系着 downfolding Wannier 函数与原 Wannier 函数

$$c_{i} = \sum_{j} A_{ij} C_{j} \quad \Leftrightarrow \quad \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{N} \end{pmatrix} = A \begin{pmatrix} C_{1} \\ C_{2} \\ \vdots \\ C_{N} \end{pmatrix}$$

$$(15)$$

可以看作是不同能带对应的电子湮灭算符将原 Wannier 电子的湮灭算符进行展开。

在向量表示下,转移矩阵 A 可以根据 C_m 的向量表示直接求得。

$$A\begin{pmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \cdots & \mathbf{C}_N \end{pmatrix} = \begin{pmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_N \end{pmatrix} \equiv I \quad \Leftrightarrow \quad A = \begin{pmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \cdots & \mathbf{C}_N \end{pmatrix}^{-1} = \sim^T$$
(16)

通过此技术,可以得到最终的 Downfolding Wannier 函数电子对应的湮灭算符 $C_j = \sum_i A_{ij} c_i$ 。

¹按照降序排列

3.2 k 空间

假设系统相互作用不很强,可以单电子近似(Sing.Elec.Appr.)下的能带还近似成立,即

$$H_{S.E.A.} = \sum_{n,\mathbf{k}} E_n(\mathbf{k}) c_{n\mathbf{k}}^{\dagger} c_{n\mathbf{k}} \tag{17}$$

 c_{nk} 为 Bloch 电子的湮灭算符。

$$c_{n\mathbf{k}} = \sum_{i,\alpha} e^{i\mathbf{k}\cdot\mathbf{R}_i} A_{n,\alpha}(\mathbf{k}) c_{i,\alpha}$$
(18)

 c_i 为位置的 \mathbf{R}_i 中第 α 个轨道的 Wannier 电子的湮灭算符。

在选定能带以后,根据 c_{nk} 在基 $\{c_i\}$ 上的向量表示 \mathbf{c}_{nk} ,利用文献 [1] 中提供的技术,可以得到系统 Downfolding 后的 Wannier 函数 C_i ,满足

$$c_i = \sum_{j=1}^{N_c} A_{ij} C_j + \text{other bands}$$
(19)

其中因为我们 downfolding 过程中只考虑前 N_c 列对应的忽略了其它能带的贡献,将上式代入系统的哈密顿量

$$H = \sum_{n} \sum_{\substack{\langle i,j\rangle_n \\ \alpha,\beta,\sigma}} t_n c_{i\alpha\sigma}^{\dagger} c_{j\beta\sigma} + \sum_{n} \sum_{\substack{\langle i,j\rangle_n \\ \alpha,\beta,\sigma,\sigma'}} V_n n_{i\alpha\sigma}^{\dagger} n_{j\beta\sigma'}$$
 (20)

从而可以得到 Downfolding 后的哈密顿量。

3.3 Differences

两种 Downfolding 的差别仅在于系统主导本征态的确定方法不同:

- 1. $A_{n,\alpha}(\mathbf{k})$: 从第一性原理的角度出发计算**单电子近似成立**的前提下的主导本征态。认为系统单电子近似依然近似成立(即能带依然存在)的条件下。等价于认为系统的基态就存在于这些本征态之间。

参考文献

- [1] Shengtao Jiang, Douglas J. Scalapino, and Steven R. White. Density matrix renormalization group based downfolding of the three-band hubbard model: Importance of density-assisted hopping. *Phys. Rev. B*, 108:L161111, Oct 2023. 3.1, 3.2
- [2] Alexander Wietek. Fragmented cooper pair condensation in striped superconductors. Phys. Rev. Lett., 129:177001, Oct 2022. 1.2