Amendments to the Claims

The listing of claims will replace all prior versions, and listings of claims in the application.

Claims 1-5 (canceled)

Claim 6 (currently amended): A method of modulating the expression of a target gene in a host cell, wherein the host cell includes a first gene expression cassette comprising a first polynucleotide encoding a first polypeptide comprising:

- (i) a transactivation domain;
- (ii) a DNA-binding domain; and
- (iii) a Group H nuclear receptor ligand binding domain; a second gene expression cassette comprising:
 - (i) a response element capable of binding to said DNA binding domain;
 - (ii) a promoter that is activated by the transactivation domain; and
 - (iii) said target gene;

the method comprising contacting said host cell with a compound of formula:

wherein Q^1 is and Q^2 are independently selected from the group consisting of O and S; n=1 or 2;

R¹ is

- i. (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)halocycloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, (C₁-C₆)halocycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)halocycloalkylamino, di(C₃-C₆)halocycloalkylamino, (C₁-C₆)alkylamino, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or C₆)alkyl; or
- ii. unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where the substituents are independently selected from one to four of the following:
 - cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C_3-C_6) alkadienyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₂- C_6)alkynyloxy, (C_1 - C_6)alkythio, (C_3 - C_6)cycloalkylthio, (C_1 -C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂- C_6)alkynylthio, (C_1 - C_6)alkylsulfinyl, (C_3 - C_6)cycloalkysulfinyl, (C_1 -C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₃-C₆)cycloalkysulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)(cycloalkyl)amino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁-

C₆)alkylthio(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, (C₃-C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)cycloalkylaminocarbonyl, cyano(C₁-C₆)alkyl, or tri(C₁-C₆)alkylsilyl; or

ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl or cyano(C₁-C₃)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein:

the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)

- C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino; R² and R³ are independently selected from:
- (a) cyano, aminocarbonyl, carboxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, halo(C₁-C₆)alkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkylcarbonyl(C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkylaminocarbonyl(C₁-C₆)alkylaminocarbonyl(C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, cyano(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, or carboxy(C₁-C₆)alkyl; or
- (b) unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, benzoyl, naphthyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, heterocyclylcarbonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁- C_3)alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, and cyano (C_1-C_3) alkyl; wherein R² and R³ may be joined together with the carbon to which they are attached to form an unsubstituted or substituted, partially unsaturated or saturated 3-, 4-, 5-, 6-, 7- or 8-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from O, N, or S; and one to four substituents are

independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylamino(C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, (C₁-C₄)alkoxycarbonyl(C₁-C₄)alkyl, (C₁-C₄)alkoxycarbonylcarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, methoxyimino, and spiro-(C₁-C₄)alkadioxy; and R⁴ is selected from:

- (a) (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₄-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkenyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)halocycloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)cycloalkylamino, (C₁-C₆)halocycloalkylamino, (C₁-C₆)haloalkylamino, (C₃-C₆)cycloalkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)halocycloalkylamino, di(C₃-C₆)halocycloalkylamino, di(C₃-C₆)halocycloalkylamino, (C₁-C₆)alkylamino, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or
- (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, wherein one to four substituents are independently selected from:
 - i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C₃-C₆)alkadienyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)alkynyloxy, (C₁-C₆

C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂-

C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₃-C₆)cycloalkysulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)(cycloalkyl)amino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁-C₆)alkylthio(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁- C_6)alkylsulfonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 - C_6)alkylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, (C_3 -C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁- C_6)alkyl, or tri(C_1 - C_6)alkylsilyl; or ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁- C_3)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl C_2)alkylamino(C_1 - C_2)alkyl, (C_1 - C_3)alkylcarbonyl, (C_1 - C_3)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl and cyano(C₁-C₃)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions on R⁴ may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6or 7-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylamino, di (C_1-C_3) alkylamino, (C_1-C_2) alkoxy (C_1-C_3) alkylamino, di $(C_$ C_2)alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkyl C_2)alkylamino(C_1 - C_2)alkyl, di(C_1 - C_2)alkylamino(C_1 - C_2)alkyl, (C_1 - C_3)alkylcarbonyl, (C_1 - C_3)alkoxycarbonyl, (C_1-C_3) alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino; R⁵-is:

(a) (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where one to four substituents are independently selected from:

i eyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C_1-C_6) alkyl, (C_3-C_6) eycloalkyl, (C_1-C_6) haloalkyl, (C_3-C_6) halocycloalkyl, (C_2-C_6) alkenyl, (C_3-C_6) eycloalkenyl, (C_3-C_6) alkadienyl, (C_3-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) eycloalkoxy,

(C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₂-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C_1-C_6) alkylsulfonyl, (C_3-C_6) cycloalkysulfonyl, (C_1-C_6) haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C₁-C₆)alkylamino, di(C₂-C₆)(cycloalkyl)amino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁- C_6)alkylthio(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfinyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 -C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, (C₃-C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁- C_6)alkyl, or tri(C_1 - C_6)alkylsilyl; or ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₂)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₂)alkythio, (C₁-C₂)haloalkylthio, (C₁-C₂)alkylsulfonyl, (C₁-C₂)alkylamino, di(C₁- C_2)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl,

 (C_1-C_3) alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, and cyano (C_1-C_3) alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₂)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6-or 7 membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₂)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkyl C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₂)alkylcarbonyl, (C₁-C₂)alkoxycarbonyl, (C₁-C₂)alkylaminocarbonyl, di(C₁-C₂)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino; and R⁶ and R⁷ are independently selected from:

(a) (C₁-C₆)alkyl, (C₃-C₆)eyeloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)haloeyeloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkoxy, (C₃-C₆)eyeloalkoxy, (C₁-C₆)haloalkoxy, (C₂-C₆)haloeyeloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)eyeloalkylthio, (C₁-C₆)haloalkylthio, (C₁-C₆)alkylamino, (C₁-C₆)haloeyeloalkylamino, (C₁-C₆)haloeyeloalkylamino, di(C₁-C₆)haloeyeloalkylamino, di(C₃-C₆)haloeyeloalkylamino, di(C₃-C₆)haloeyeloalkylamino, di(C₁-C₆)alkylamino, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkyl, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocycloxy, phenylthio, heterocyclylthio, naphthyl, phenylamino,

heterocyclylamino, N phenyl N (C₁-C₆)alkylamino, or N heterocyclyl N (C₁-C₆)alkylamino wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₂)alkyl, (C₁-C₂)haloalkyl, (C₁-C₂)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₂)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁- C_2)alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylearbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, and cyano(C₁-C₃)alkyl; wherein R⁶ and R⁷ may be joined together with the phosphorus to which they are attached to form an unsaturated, partially unsaturated, or saturated, unsubstituted or substituted 4- to 7-membered heterocyclic ring wherein the heterocyclic ring contains one phosphorus and from zero to three heteroatoms selected from N, O, or S; and from one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, earbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-G₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, $di(C_1-C_3)$ alkylaminocarbonyl, cyano (C_1-C_3) alkyl, oxo, and methoxyimino.

Claim 7 (currently amended): The method of claim 6 wherein the compound is of the specified formula and:

 Q^1 is O and Q^2 is S,

n - 2;

 R^1 is unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where the substituents are independently selected from the group consisting of one to four of the following groups:

cyano, nitro, halo, amino, (C_1-C_3) alkyl, (C_1-C_3) haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) alkoxy C₃)haloalkoxy, (C₃)alkenyloxy, (C₃)alkynyloxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₃)alkenylthio, (C₃)alkynylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)haloalkylsulfonyl, (C₁-C₃)alkylsulfinyl, (C₁-C₃)haloalkylsulfinyl (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁- C_2)alkvy (C_1-C_2) alkvy (C_1-C_2) alkvy((C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁- C_3)alkylaminocarbonyl, di(C_1 - C_3)alkylaminocarbonyl, and cyano(C_1 - C_3)alkyl; and wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein: the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of: cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁- C_3)alkythio, (C_1-C_3) haloalkylthio, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylamino, di (C_1-C_3) C_3)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkyl C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁- C_2)alkyl, (C_1-C_3) alkylcarbonyl, (C_1-C_3) alkoxycarbonyl, (C_1-C_3) alkylaminocarbonyl, $di(C_1-C_3)alkylaminocarbonyl, cyano(C_1-C_3)alkyl, oxo, and methoxyimino; and$ R⁴ is selected from unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl (C_1-C_3) alkyl, phenyl (C_2-C_3) alkenyl, naphthyl (C_1-C_3) alkyl, phenoxy (C_1-C_3) alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, wherein one to four substituents are independently selected from:

- (a) cyano, nitro, halo, carboxy, formyl, hydroxy, amino, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)haloalkoxy, (C₃)alkenyloxy, (C₃)alkynyloxy, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfinyl, (C₁-C₃)haloalkylsulfinyl, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylsulfinyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkylsulfinyl(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylaminocarbonyl, (C₁-C₃)alkylaminocarbonyl, or cyano(C₁-C₃)alkyl; or
- (b) unsubstituted or substituted phenyl, phenyl(C₁-C₂)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylsulfonyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkyl, di(C₁-C₂)alkylsulfonyl, (C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, and cyano(C₁-C₃)alkyl; and wherein two adjacent positions on R⁴ may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring

the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and

wherein:

one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C_1-C_3) alkyl, (C_1-C_3) haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) haloalkylthio, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylamino, di (C_1-C_3) alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyla

C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, $di(C_1-C_3)$ alkylaminocarbonyl, cyano (C_1-C_3) alkyl, oxo, and methoxyimino; and R⁶ and R⁷ are independently selected from: (a) (C₁-C₂)alkyl, (C₁-C₂)haloalkyl, (C₁-C₂)alkoxy, (C₂)alkenyloxy, C_2)alkoxy(C_1 - C_2)alkyl, (C_1 - C_2)alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl C_2)alkylamino(C_1 - C_2)alkyl, (C_1 - C_2)alkylcarbonyl(C_1 - C_2)alkyl, or cyano(C_1 - C_3)alkyl; or (b) unsubstituted or substituted phenyl, phenyl(C₁-C₂)alkyl, phenoxy, phenylthio, naphthyl, phenylamino, or N-phenyl N-(C₁-C₃)alkylamino, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, formyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₄)alkythio, (C₁-C₂)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃) C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)a C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₂)alkylaminocarbonyl, and cyano(C₁-C₂)alkyl; wherein R⁶ and R⁷ may be joined together with the phosphorus to which they are attached to form an unsaturated, partially unsaturated, or saturated, unsubstituted or substituted 4- to 7-membered heterocyclic ring wherein the heterocyclic ring contains one phosphorus and from zero to three heteroatoms selected from N, O, or S; and from one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, earbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₂)alkythio, (C₁-C₂)haloalkylthio, (C₁-C₂)alkylsulfonyl, (C₁-C₂)alkylamino, di(C₁-C₁)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkyl C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-

C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl,

 $di(C_1-C_2)alkylaminocarbonyl, cyano(C_1-C_2)alkyl, oxo, and methoxyimino.$

Claim 8 (currently amended): The method of Claim 7 wherein the compound is of the specified formula and R¹ is unsubstituted or substituted phenyl, 1-naphthyl, 2naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 -C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, wherein the substituents are independently selected from the group consisting of one to four of the following groups: halo, (C₁-C₃)alkyl, (C₁-C₃)alkoxy, (C₁-C₃)alkythio, (C₁- C_3)alkylsulfonyl, (C_1-C_3) alkylsulfinyl, (C_1-C_3) alkylamino, and di (C_1-C_3) alkylamino; wherein in said substituted phenyl, naphthyl or heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein: the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of: cyano, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, (C_1-C_3) alkythio, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylamino, di(C₁-C₃)alkylamino, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, oxo, and methoxyimino; R² and R³ are independently selected from the group consisting of: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, halo(C₁-C₆)alkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃- C_6)cycloalkenyl, (C_2-C_6) haloalkenyl, (C_2-C_6) alkynyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_3)althylthio(C_1 - C_3)alkyl, (C_1 - C_3)alkylsulfinyl(C_1 - C_3)alkyl, (C_1 - C_3)alkylsulfonyl(C_1 - C_3)alkyl, (C_1-C_3) alkylamino (C_1-C_3) alkyl, di (C_1-C_3) alkylamino (C_1-C_3) alkyl, (C_1-C_3) alkyl C₆)alkylcarbonyl, (C₁-C₃)alkylcarbonyl(C₁-C₃)alkyl, (C₁-C₆)alkylaminocarbonyl, di(C₁- C_6)alkylaminocarbonyl, (C_1-C_3) alkylaminocarbonyl (C_1-C_3) alkyl, di (C_1-C_3) alkyl C₃)alkylaminocarbonyl(C₁-C₃)alkyl, (C₁-C₃)alkylcarbonylamino(C₁-C₃)alkyl, (C₁- C_6)alkoxycarbonyl, (C_1-C_3) alkoxycarbonyl (C_1-C_3) alkyl, cyano (C_1-C_6) alkyl, hydroxy(C_1 - C_6)alkyl, and carboxy(C_1 - C_6)alkyl; wherein R² and R³ may be joined together with the carbon to which they are attached to form an unsubstituted or substituted, partially unsaturated or saturated 3-, 4-, 5-, 6- or 7membered carbocyclic or heterocyclic ring, wherein the heterocyclic ring contains from

one to three heteroatoms selected from O or S; and one to four substituents are independently selected from the group consisting of cyano, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, (C_1-C_3) alkythio, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylamino, (C_1-C_3) alkylamino, (C_1-C_2) alkyl, (C_1-C_2) alkyl, (C_1-C_2) alkyl, (C_1-C_2) alkyl, (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkylamino (C_1-C_2) alkylamino (C_1-C_3) alkylaminocarbonyl, (C_1-C_4) alkoxycarbonyl, (C_1-C_3) alkylaminocarbonyl, and (C_1-C_3) alkylaminocarbonyl; and

R⁴ is selected from unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, (C_1-C_3) alkyl, (C_1-C_3) haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) haloalkoxy C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfinyl, (C₁-C₃)haloalkylsulfinyl, (C₁-C₃)alkylsulfonyl, (C₁-C₃)haloalkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfinyl (C_1-C_2) alkyl C_2)alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁- C_3)alkylaminocarbonyl, and di(C_1 - C_3)alkylaminocarbonyl; wherein two adjacent positions on R⁴ may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, (C_1-C_3) alkythio, (C_1-C_3) alkylsulfonyl, $(C_$ C_3)alkylamino, di (C_1-C_3) alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₄)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, oxo, and methoxyimino; R⁵-is unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino,

pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl,

benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where one to four substituents are independently selected from the group consisting of: cyano, nitro, halo, amino, (C₁- C_3)alkyl, (C_1-C_3) haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_3) alkenyloxy, (C₃)alkynyloxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₃)alkenylthio, (C₃)alkynylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)haloalkylsulfonyl, (C₁-C₃)alkylsulfinyl, (C₁-C₃)haloalkylsulfinyl (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁- C_2)alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfinyl (C_1-C_2) alkyl, $(C_1-C_$ C_2)alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkylamino (C_1-C_2) alk C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, and cyano(C₁-C₃)alkyl; wherein two adjacent positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4, 5, 6- or 7-membered carbocyclic or heterocyclic ring, wherein: the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃) C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl C₂)alkyl, (C₁-C₃)alkylearbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C1-C2)alkylaminocarbonyl, cyano(C1-C3)alkyl, oxo, and methoxyimino; and R⁶ and R⁷ are independently selected from the group consisting of (C₁-C₃)alkyl, (C₁-C₃)alkoxy, (C₁-C₃)alkylthio, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, and unsubstituted or substituted phenyl, wherein the substituents are from one to four and are independently selected from the group consisting of cyano, nitro, halo, formyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₁)haloalkylthio, (C₁-C₂)alkylsulfonyl, (C₁-C₂)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₃)alkylamino, (C₁-C₃)alkylamin C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl,

(C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, and eyano(C₁-C₃)alkyl, wherein R⁶ and R⁷ may be joined together with the phosphorus to which they are attached to form an unsaturated, partially unsaturated, or saturated, unsubstituted or substituted 5 or 6 membered heterocyclic ring wherein the heterocyclic ring contains one phosphorus and from zero to three heteroatoms selected from N, O or S; and from one to four substituents are independently selected from the group consisting of (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, oxo, and methoxyimino.

Claim 9 (currently amended): The method of Claim 8 wherein the compound is of the specified formula and:

 R^1 is substituted phenyl wherein one to two substituents are independently selected from the group consisting of (C_1-C_2) alkyl and (C_1-C_2) alkoxy;

wherein in said substituted phenyl, two adjacent positions are joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein:

the heterocyclic ring contains from one to two oxygen atoms; and one to four substituents are independently selected from the group consisting of: cyano, (C₁-C₂)alkyl, (C₁-C₂)alkylamino, di(C₁-C₂)alkylamino, (C₁-C₂)alkoxycarbonyl, (C₁-C₂)alkylaminocarbonyl, di(C₁-C₂)alkylaminocarbonyl, oxo, and methoxyimino; R² and R³ are independently selected from the group consisting of: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, halo(C₁-C₆)alkyl, (C₁-C₃)alkoxy(C₁-C₃)alkyl, (C₁-C₃)althylthio(C₁-C₃)alkyl, (C₁-C₃)alkylsulfinyl(C₁-C₃)alkyl, (C₁-C₃)alkylsulfonyl(C₁-C₃)alkyl, di(C₁-C₃)alkylamino(C₁-C₃)alkyl, (C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl(C₁-C₃)alkyl, (C₁-C₃)alkyl, (C₁-C₃)alkyl, di(C₁-C₃)alkylaminocarbonyl, and C₁-C₃)alkoxycarbonyl(C₁-C₃)alkyl;

wherein R² and R³ may be joined together with the carbon to which they are attached to form an unsubstituted or substituted, partially unsaturated or saturated 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein: the heterocyclic ring contains one heteroatom selected from O or S; and

one to four substituents are independently selected from the group consisting of (C₁-C₃)alkyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₄)alkoxycarbonyl, (C₁-

 C_3) alkylaminocarbonyl, and di $(C_1$ - C_3) alkylaminocarbonyl; and

 R^4 is selected from unsubstituted or substituted phenyl or pyridyl wherein one to four substituents are independently selected from the group consisting of (C_1-C_3) alkyl and (C_1-C_3) alkoxy;

 R^5 -is unsubstituted or substituted phenyl wherein one to two substituents are independently selected from the group consisting of (C_1-C_2) alkyl and (C_1-C_2) alkoxy; wherein two adjacent positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 5, 6- or 7-membered carbocyclic or heterocyclic ring, wherein: the heterocyclic ring contains from one to two oxygen atoms; and one to four substituents are independently selected from the group consisting of cyano, (C_1-C_2) alkyl, (C_1-C_2) alkylamino, $di(C_1-C_2)$ alkylamino, (C_1-C_2) alkoxycarbonyl, (C_1-C_2) alkylaminocarbonyl, oxo, and methoxyimino; and R^6 -and R^7 -taken together with the phosphorus to which they are attached form a saturated, unsubstituted or substituted 5- or 6-membered heterocyclic ring, wherein the heterocyclic ring contains one phosphorus and from one to two heteroatoms selected from N, O or S; and from one to four substituents are independently selected from the group consisting of (C_1-C_3) alkyl and (C_1-C_3) haloalkyl.

Claim 10 (currently amended): The method of Claim 9 wherein the compound is of the specified formula and R¹ is selected from the group consisting of 2-methyl-3,4-methylenedioxyphenyl, 2-ethyl-3,4-methylenedioxyphenyl, 2-methyl-3,4-ethylenedioxyphenyl, 2-methyl-3,4-oxydimethylenephenyl, 2-methyl-3,4-oxydimethylenephenyl, 2-methyl-3,4-oxydimethylenephenyl, and 2-ethyl-3,4-oxytrimethylenephenyl;

R⁵-is selected from the group consisting of 4 ethylphenyl, 3-fluoro 4 ethylphenyl, 2-fluoro 4 ethylphenyl, 2,3-diethylphenyl, 2 methyl 3-methylphenyl, 2-diethylphenyl, 2-methyl 3-methylphenyl, 2-methyl-3,4-methylenedioxyphenyl, 2-ethyl-3,4-ethylenedioxyphenyl, 2-methyl-3,4-ethylenedioxyphenyl, 2-methyl-3,4-oxydimethylenephenyl, 2-ethyl-3,4-oxydimethylenephenyl, 2-methyl-3,4-oxydimethylenephenyl, 2-methyl-3,4-dimethyleneoxyphenyl, 2-ethyl-3,4-dimethyleneoxyphenyl, 2-methyl-3,4-dimethyleneoxyphenyl, 2-methyl-3,4-trimethyleneoxyphenyl, and 2-ethyl-3,4-trimethyleneoxyphenyl; and

R⁶ and R⁷ taken together with the phosphorus to which they are attached form a saturated 6-membered heterocyclic ring, wherein the heterocyclic ring contains one phosphorus and two oxygen atoms, and the two oxygen atoms are joined by three carbon atoms having up to four substituents of (C₁-C₂)alkyl.

Claim 11 (original): The method of Claim 10 wherein the compound is of the specified formula and R¹ is 2-methyl-3-methoxyphenyl, R² and R³ taken together with the carbon to which they are attached form a cyclohexane ring and R⁴ is 3,5-dimethylphenyl or 2-methoxyphenyl.

Claim 12 (currently amended): A method to modulate the expression of one or more exogenous genes in a subject, comprising administering to the subject an effective amount of a ligand of the formula:

wherein Q^1 is and Q^2 are independently selected from the group consisting of O and S; n = 1 or 2; R^1 is

- (a) (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, (C_1-C_6) haloalkyl, (C_3-C_6) halocycloalkyl, (C_2-C_6) alkenyl, (C_2-C_6) haloalkenyl, (C_2-C_6) alkynyl, (C_2-C_6) haloalkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C_1-C_6) haloalkoxy, (C_3-C_6) halocycloalkoxy, (C_2-C_6) alkenyloxy, (C_2-C_6) alkynyloxy, (C_1-C_6) alkylthio, (C_3-C_6) cycloalkylthio, (C_1-C_6) halocycloalkylthio, (C_1-C_6) alkylamino, (C_3-C_6) cycloalkylamino, (C_1-C_6) halocycloalkylamino, (C_3-C_6) cycloalkylamino, (C_3-C_6) halocycloalkylamino, (C_3-C_6) halocycloalkylamino, (C_3-C_6) halocycloalkylamino, (C_1-C_6) alkylamino, (C_1-C_6) alkylamino, (C_1-C_6) alkyl, (C_1-C_6) alkyl
- (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where the substituents are independently selected from one to four of the following:
 - i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C₃-C₆)alkadienyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₁-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₁-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₃-C₆)cycloalkylsulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₃-C₆)cycloalkylsulfinyl, (C₃-C

C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)(cycloalkyl)amino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁-C₆)alkylthio(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, (C₃-C₆)cycloalkylcarbonyl, (C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁-C₆)alkyl, or tri(C₁-C₆)alkylsilyl; or

ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl or cyano(C₁-C₃)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein:

the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino; R² and R³ are independently selected from:

- (a) cyano, aminocarbonyl, carboxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, halo(C₁-C₆)alkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl, (C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkylaminocarbonyl(C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, cyano(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, or carboxy(C₁-C₆)alkyl; or
- (b) unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, benzoyl, naphthyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, heterocyclylcarbonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₃)alkylamino(C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, and cyano(C₁-C₃)alkyl;

wherein R² and R³ may be joined together with the carbon to which they are attached to form an unsubstituted or substituted, partially unsaturated or saturated 3-, 4-, 5-, 6-, 7- or 8-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from O, N, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylamino(C₁-C₃)alkylamino(C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, methoxyimino, and spiro-(C₁-C₄)alkadioxy; and R⁴ is selected from:

- (a) (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₂-C₆)halocycloalkyl, (C₂-C₆)halocycloalkyl, (C₂-C₆)haloalkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)haloalkenyl, (C₁-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₂-C₆)haloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C₁-C₆)alkylthio, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, (C₁-C₆)haloalkylamino, (C₃-C₆)halocycloalkylamino, di(C₁-C₆)alkylamino, di(C₁-C₆)alkylamino, di(C₁-C₆)alkylamino, di(C₁-C₆)alkylamino, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or
- (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzoturanyl, isoxazolyl, imidazolyl or other heterocyclyl, wherein one to four substituents are independently selected from:
 - i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-

C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl,

 (C_3-C_6) alkadienyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₃-C₆)cycloalkysulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C1-C6)alkylamino, di(C3-C6)(cycloalkyl)amino, (C1-C6)alkoxy(C1-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁- C_6)alkylthio(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfinyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 - C_6)alkylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, (C_3 -C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁- C_6)alkyl, or tri(C_1 - C_6)alkylsilyl; or ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁- C_3)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl

 C_2)alkylamino(C_1 - C_2)alkyl, (C_1 - C_3)alkylcarbonyl, (C_1 - C_3)alkoxycarbonyl, (C_1 - C_3)alkylaminocarbonyl, di(C_1 - C_3)alkylaminocarbonyl and cyano(C_1 - C_3)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁- C_3)haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) alkythio, (C_1-C_3) haloalkylthio, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylamino, di (C_1-C_3) alkylamino, (C_1-C_2) alkoxy (C_1-C_3) alkylamino, di $(C_$ C_2)alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁- C_3)alkoxycarbonyl, (C_1-C_3) alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, cyano(C_1 - C_3)alkyl, oxo, and methoxyimino; R⁵ is:

(C₁-C₆)alkyl, (C₃-C₆)eyeloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)haloeyeloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, or eyano(C₁-C₆)alkyl; or (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenyllogialkyl, pyriazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where one to four substituents are independently selected from:

-cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₂-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C_3-C_6) alkadienyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₃-C₆)cycloalkysulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C1-C6)alkylamino, di(C2-C6)(cycloalkyl)amino, (C1-C6)alkoxy(C1-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁-C₆)alkylthio(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁- C_6)alkylsulfonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 -C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, (C₃-C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁- C_6)alkyl, or tri(C_1 - C_6)alkylsilyl; or ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of eyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₂)haloalkyl, (C₁-C₂)alkoxy, (C₁-C₂)haloalkoxy, (C₁-C₂)alkythio, (C₁-C₂)haloalkylthio, (C₁-C₂)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-

 C_3)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, (C_1-C_3) alkylaminocarbonyl, (C_1-C_3) alkylaminocarbonyl, and cyano (C_1-C_3) alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4, 5, 6 or 7 membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)haloalkylthio, (C₁-C₂)alkylsulfonyl, (C₁-C₂)alkylamino, di(C₁-C₂)alkylamino, (C₁-C₂)alkoxy(C₁-C2)alkyl, (C1-C2)alkylthio(C1-C2)alkyl, (C1-C2)alkylsulfonyl(C1-C2)alkyl, (C1-C2)alkyl, (C1-C2)alkyl C_2)alkylamino(C_1 - C_2)alkyl, di(C_1 - C_2)alkylamino(C_1 - C_2)alkyl, (C_1 - C_3)alkylcarbonyl, (C_1 -C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, evano(C1-C2)alkyl, oxo, and methoxyimino; and R⁶ and R⁷ are independently selected from:

 $(a) \qquad (C_1-C_6)alkyl, (C_3-C_6)cycloalkyl, (C_1-C_6)haloalkyl, (C_3-C_6)haloalkyl, (C_3-C_6)haloalkyl, (C_3-C_6)haloalkyl, (C_2-C_6)haloalkynyl, (C_1-C_6)alkoxy, (C_2-C_6)alkynyl, (C_2-C_6)haloalkynyl, (C_1-C_6)alkoxy, (C_3-C_6)cycloalkoxy, (C_2-C_6)alkenyloxy, (C_2-C_6)alkynyloxy, (C_1-C_6)alkylthio, (C_3-C_6)cycloalkylthio, (C_1-C_6)haloalkylthio, (C_3-C_6)cycloalkylamino, (C_1-C_6)haloalkylthio, (C_1-C_6)alkylamino, di(C_1-C_6)alkylamino, di(C_3-C_6)cycloalkylamino, di(C_3-C_6)cycloalkylamino, di(C_3-C_6)cycloalkylamino, di(C_3-C_6)alkylamino, di(C_1-C_6)alkylamino, di(C_1-C_6)alkylamino, di(C_1-C_6)alkylamino, di(C_1-C_6)alkylamino, di(C_1-C_6)alkylamino, di(C_1-C_6)alkyl, (C_1-C_6)alkyl, (C_1-C_6)alkyl$

 (C_1-C_6) alkylsulfonyl (C_1-C_6) alkyl, (C_1-C_6) alkylamino (C_1-C_6) alkyl, di (C_1-C_6) alkyl C_6)alkylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl(C_1 - C_6)alkyl, or cyano(C_1 - C_6)alkyl; or (b) unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocycloxy, phenylthio, heterocyclylthio, naphthyl, phenylamino, heterocyclylamino, N phenyl N (C1-C6)alkylamino, or N heterocyclyl N (C1-C₆)alkylamino wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylearbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, and cyano(C₁-C₃)alkyl; wherein R⁶ and R⁷ may be joined together with the phosphorus to which they are attached to form an unsaturated, partially unsaturated, or saturated, unsubstituted or substituted 4 to 7 membered heterocyclic ring wherein the heterocyclic ring contains one phosphorus and from zero to three heteroatoms selected from N, O, or S; and from one to four substituents are independently selected from the group consisting of cyano. nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, earbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)haloalkoxy, (C₁-C₃)haloal C₂)alkythio, (C₁-C₂)haloalkylthio, (C₁-C₂)alkylsulfonyl, (C₁-C₂)alkylamino, di(C₁- C_3)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkyl C₂)alkyl, (C₁-C₂)alkylcarbonyl, (C₁-C₂)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino; wherein the cells of the subject contain:

- a) an ecdysone receptor complex comprising:
 - 1) a DNA binding domain;
 - 2) a binding domain for the ligand; and
 - 3) a transactivation domain; and
- b) a DNA construct comprising:

- 1) the exogenous gene; and
- 2) a response element; and

wherein the exogenous gene is under the control of the response element, and binding of the DNA binding domain to the response element in the presence of the ligand results in activation or suppression of the gene.

Claim 13 (currently amended): A method for producing a polypeptide comprising the steps of:

a) selecting a cell which is substantially insensitive to exposure to a ligand of the formula:

wherein Q^1 is and Q^2 are independently selected from the group consisting of O and S; n=1 or 2; R^1 is:

(a) (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)halocycloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₁-C₆)alkylamino, (C₁-C₆)haloalkylamino, (C₁-C₆)haloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)halocycloalkylamino, di(C₁-C₆)alkylamino, (C₁-C₆)alkylamino, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl,

- (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or
- (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where the substituents are independently selected from one to four of the following:
 - i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C_3-C_6) alkadienyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C_1-C_6) alkylsulfonyl, (C_3-C_6) cycloalkysulfonyl, (C_1-C_6) haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)(cycloalkyl)amino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁- C_6)alkylthio(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfinyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 - C_6)alkylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, (C_3 -C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁- C_6)alkyl, or tri (C_1-C_6) alkylsilyl; or

ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl or cyano(C₁-C₃)alkyl;

phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein: the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)alkoxy, (C₁-C₃)alkythio, (C₁-C₃)alkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₃)alkylamino(C₁-C₂)alkyl, di(C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino;

R² and R³ are independently selected from:

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl,

- 1. cyano, aminocarbonyl, carboxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, halo(C₁-C₆)alkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkylaminocarbonyl(C₁-C₆)alkylaminocarbonyl(C₁-C₆)alkyl, di(C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, or carboxy(C₁-C₆)alkyl; or
- 2. unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, benzoyl, naphthyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, heterocyclylcarbonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁- C_3)haloalkoxy, (C_1-C_3) alkythio, (C_1-C_3) haloalkylthio, (C_1-C_3) alkylsulfonyl, (C_1-C_3) C_3)alkylamino, di(C_1 - C_3)alkylamino, (C_1 - C_2)alkoxy(C_1 - C_2)alkyl, (C_1 - C_2)alkylthio(C_1 - C_2)alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁- C_3)alkylaminocarbonyl, di(C_1 - C_3)alkylaminocarbonyl, and cyano(C_1 - C_3)alkyl; wherein R² and R³ may be joined together with the carbon to which they are attached to form an unsubstituted or substituted, partially unsaturated or saturated 3-, 4-, 5-, 6-, 7- or 8-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from O, N, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁- C_3)haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) alkythio, (C_1-C_3) haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁- C_2)alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-

 C_4)alkoxycarbonyl, (C_1-C_4) alkoxycarbonyl (C_1-C_4) alkyl, (C_1-C_4) alkoxycarbonylcarbonyl, (C_1-C_3) alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, cyano (C_1-C_3) alkyl, oxo, methoxyimino, and spiro- (C_1-C_4) alkadioxy; and R^4 is selected from:

- (a) (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₂-C₆)halocycloalkyl, (C₂-C₆)haloalkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)haloalkenyl, (C₁-C₆)alkynyl, (C₁-C₆)haloalkoxy, (C₃-C₆)cycloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, (C₁-C₆)halocycloalkylamino, (C₃-C₆)cycloalkylamino, di(C₃-C₆)halocycloalkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)halocycloalkylamino, di(C₃-C₆)halocycloalkylamino, (C₁-C₆)alkylamino, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or
- (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, wherein one to four substituents are independently selected from:
 - i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C₃-C₆)alkadienyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)alkynylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₁-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)alkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₃-C₆)alkylsulfinyl, (C₃-C₆)alkylsulfinyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)alkylsulfonyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkylsulfonyl, (C₃-C₆)alkylsulfonyl, (C₃-C₆

C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)cycloalkylamino, (C₃-C₆)cycloalkylamino, di(C₁-C₆)alkylamino, di(C₁-C₆)alkylamino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁-C₆)alkylthio(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkylamino(C₁-C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)cycloalkylaminocarbonyl, cyano(C₁-C₆)alkyl, or tri(C₁-C₆)alkylsilyl; or

ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl and cyano(C₁-C₃)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from

one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylamino(C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino; $\mathbb{R}^{\frac{5}{3}}$ is:

(a)—(C₁-C₆)alkyl, (C₃-C₆)eyeloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)haloeyeloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, or eyano(C₁-C₆)alkyl; or (b)—unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₂)alkyl, phenyl(C₂-C₃)alkyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where one to four substituents are independently selected from:

i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₂-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C₃-C₆)alkadienyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₂-C₆)alkenylthio, (C₂-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkylsulfinyl, (C₁-C₆)alkylsulfinyl, (C₂-C₆)alkylsulfinyl, (C₂-C₆)alkylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₂-C₆)alkylsulfinyl, (C₂-C₆)alkylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₁-C₆)alkynylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₃-C₆)cycloalkysulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₁-C

(C₃-C₆)halocycloalkylsulfonyl, (C₄-C₆)alkylsulfinyl, (C₃-C₆)eycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C₁-C₆)alkylamino, di(C₂-C₆)(cycloalkyl)amino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁-C₆)alkylthio(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁- C_6)alkylsulfonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 -C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, (C₃-C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁- C_6)alkyl, or tri(C_1 - C_6)alkylsilyl; or ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₂)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁- C_3)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₂)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₂)alkylaminocarbonyl, di(C₁-C₂)alkylaminocarbonyl, and cyano(C₁-C₃)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_1 - C_3)alkyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or

7 membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, (C₄-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, eyano(C₁-C₃)alkyl, oxo, and methoxyimino; and R⁶ and R⁷ are independently selected from:

(a) (C₁-C₆)alkyl, (C₃-C₆)eycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)haloalkenyl, (C₄-C₆)alkoxy,

 (C_2-C_6) alkenyl, (C_2-C_6) haloalkenyl, (C_2-C_6) alkynyl, (C_2-C_6) haloalkynyl, (C_1-C_6) alkoxy, (C₃-C₆)cycloalkoxy, (C₁-C₆)haloalkoxy, (C₂-C₆)halocycloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkylthio, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, (C₁-C₆)haloalkylamino, (C₃-C₆)halocycloalkylamino, di(C₄-C₆)alkylamino, di(C₃-C₆)cycloalkylamino, di(C₁-C₆)haloalkylamino, di(C₃-C₆)halocycloalkylamino, (C₄- C_6)alkoxy(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_1-C_6) alkylsulfonyl (C_1-C_6) alkyl, (C_1-C_6) alkylamino (C_1-C_6) alkyl, di (C_1-C_6) alkyl C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or (b) unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocycloxy, phenylthio, heterocyclylthio, naphthyl, phenylamino, heterocyclylamino, N-phenyl N (C₁-C₆)alkylamino, or N-heterocyclyl N (C₁-C₆)alkylamino wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₃)alkylamino, di(C₁-C₂)alkylamino, di(C₁-C₂-C₂)alkylami C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkyl

C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylearbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, and cyano(C₁-C₃)alkyl; wherein R⁶-and R⁷-may be joined together with the phosphorus to which they are attached to form an unsaturated, partially unsaturated, or saturated, unsubstituted or substituted 4- to 7-membered heterocyclic ring wherein the heterocyclic ring contains one phosphorus and from zero to three heteroatoms selected from N, O, or S; and from one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)alkylamino, (C₁-C₃)alkylthio, (C₁-C₃)alkylthio, (C₁-C₃)alkylthio, (C₁-C₃)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, (C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkylsulfonyl, (C₁-C₃)alkylamino(C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino;

- b) introducing into the cell:
 - 1) a DNA construct comprising:
 - a) an exogenous gene encoding the polypeptide; and
 - b) a response element;

wherein the gene is under the control of the response element; and

- 2) an ecdysone receptor complex comprising:
 - a) a DNA binding domain;
 - b) a binding domain for the ligand; and
 - c) a transactivation domain; and
- c) exposing the cell to the ligand.

Claim 14 (currently amended): A method for regulating endogenous or heterologous gene expression in a transgenic subject comprising contacting a ligand with an ecdysone receptor complex within the cells of the subject wherein the cells further contain a DNA binding sequence for the ecdysone receptor complex when in combination with the ligand and wherein formation of an ecdysone receptor complex-

ligand-DNA binding sequence complex induces expression of the gene, and where the ligand has the following formula:

wherein Q^1 is and Q^2 are independently selected from the group consisting of O and S; n = 1 or 2;

R¹ is:

- (a) (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkoxy, (C₃-C₆)cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)halocycloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, (C₁-C₆)halocycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)cycloalkylamino, di(C₃-C₆)halocycloalkylamino, di(C₃-C₆)halocycloalkylamino, di(C₃-C₆)halocycloalkylamino, (C₁-C₆)alkylamino, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or
- (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C_1 - C_3)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, isoxazolyl, imidazolyl or other heterocyclyl, where the substituents are independently selected from one to four of the following:
 - i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-

C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C_3-C_6) alkadienyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C_1-C_6) alkylsulfonyl, (C_3-C_6) cycloalkysulfonyl, (C_1-C_6) haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)(cycloalkyl)amino, (C₁-C₆)alkoxy(C₁- C_6)alkyl, (C_3-C_6) cycloalkoxyalkyl, (C_1-C_6) alkoxy (C_3-C_6) cycloalkyl, (C_1-C_6) alkoxy C_6)alkylthio(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfinyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 - C_6)alkylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, (C_3 - C_6)cycloalkylcarbonyl, (C_1 - C_6)alkoxycarbonyl, (C_1 -C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁- C_6)alkyl, or tri(C_1 - C_6)alkylsilyl; or ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁- C_3)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl

 C_2)alkylamino(C_1 - C_2)alkyl, (C_1 - C_3)alkylcarbonyl, (C_1 - C_3)alkylaminocarbonyl, di(C_1 - C_3)alkylaminocarbonyl or cyano(C_1 - C_3)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein: the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C_1-C_3) alkyl, (C_1-C_3) haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁- C_3)alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkyl, C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino; R^2 and R^3 are independently selected from:

(a) cyano, aminocarbonyl, carboxy, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, halo(C₁-C₆)alkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl(C₁-C₆)alkylaminocarbonyl(C₁-C₆)alkyl, di(C₁-C₆)alkylaminocarbonyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, cyano(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, or carboxy(C₁-C₆)alkyl; or

- (b) unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, benzoyl, naphthyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, heterocyclylcarbonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁- C_3)alkylamino, di (C_1-C_3) alkylamino, (C_1-C_2) alkoxy (C_1-C_2) alkyl, (C_1-C_2) alkylthio (C_1-C_3) alkylamino, di (C_1-C_3) alkylamino, C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁- C_3)alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, and cyano (C_1-C_3) alkyl; wherein R² and R³ may be joined together with the carbon to which they are attached to form an unsubstituted or substituted, partially unsaturated or saturated 3-, 4-, 5-, 6-, 7- or 8-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from O, N, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁- C_3)haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) alkythio, (C_1-C_3) haloalkylthio, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylamino, di (C_1-C_3) alkylamino, (C_1-C_2) alkoxy (C_1-C_3) alkylamino, di $(C_$ C_2)alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkyl C_2)alkylamino(C_1 - C_2)alkyl, di(C_1 - C_2)alkylamino(C_1 - C_2)alkyl, (C_1 - C_3)alkylcarbonyl, (C_1 - C_4)alkoxycarbonyl, (C_1-C_4) alkoxycarbonyl (C_1-C_4) alkyl, (C_1-C_4) alkoxycarbonylcarbonyl, (C_1-C_3) alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, cyano (C_1-C_3) alkyl, oxo, methoxyimino, and spiro-(C₁-C₄)alkadioxy; and R⁴ is selected from:
- (a) (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, (C_4-C_6) haloalkyl, (C_3-C_6) halocycloalkyl, (C_2-C_6) alkenyl, (C_2-C_6) haloalkenyl, (C_2-C_6) alkynyl, (C_2-C_6) haloalkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C_1-C_6) haloalkoxy, (C_3-C_6) halocycloalkoxy, (C_2-C_6) alkynyloxy, (C_1-C_6) alkylthio, (C_3-C_6) cycloalkylthio, (C_1-C_6) haloalkylthio, (C_3-C_6) cycloalkylamino, (C_1-C_6) halocycloalkylamino, (C_3-C_6) cycloalkylamino, (C_1-C_6) haloalkylamino, (C_3-C_6) halocycloalkylamino, (C_3-C_6) halocycloalkylamino, (C_3-C_6) alkylamino, (C_3-C_6) halocycloalkylamino, (C_3-C_6) alkylamino, (C_3-C_6) halocycloalkylamino, (C_3-C_6) alkylamino, (C_3-C_6) alkylamino

C₆)cycloalkylamino, di(C₁-C₆)haloalkylamino, di(C₃-C₆)halocycloalkylamino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or (b) unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, wherein one to four substituents are independently selected from:

i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C1-C6)alkyl, (C3-C6)cycloalkyl, (C1-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C_3-C_6) alkadienyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C₁-C₆)haloalkoxy, (C₃-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₃-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₃-C₆)cycloalkysulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₃-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, $di(C_1-C_6)alkylamino, di(C_3-C_6)(cycloalkyl)amino, (C_1-C_6)alkoxy(C_1-C_6)alkylamino, di(C_3-C_6)(cycloalkyl)amino, di(C_1-C_6)alkylamino, di(C_3-C_6)(cycloalkyl)amino, di(C_1-C_6)alkylamino, di(C_3-C_6)(cycloalkyl)amino, di(C_1-C_6)alkylamino, di$ C_6)alkyl, (C_3-C_6) cycloalkoxyalkyl, (C_1-C_6) alkoxy (C_3-C_6) cycloalkyl, (C_1-C_6) alkoxy C_6)alkylthio(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfinyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, di(C_1 -C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, (C₃-C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-

 C_6)alkylaminocarbonyl, di(C_3 - C_6)(cycloalkyl)aminocarbonyl, cyano(C_1 - C_6)alkyl, or tri(C_1 - C_6)alkylsilyl; or

ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylamino(C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl and cyano(C₁-C₃)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C_2 - C_3)alkenyl, naphthyl(C_1 - C_3)alkyl, phenoxy(C_1 - C_3)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁- C_3)haloalkyl, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) alkythio, (C_1-C_3) haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁- C_2)alkyl, (C_1-C_2) alkylthio (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁- C_3)alkoxycarbonyl, (C_1-C_3) alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, cyano(C₁-C₃)alkyl, oxo, and methoxyimino;

R⁵ is:

(a) — (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkynyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, di(C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl, or cyano(C₁-C₆)alkyl; or (b) — unsubstituted or substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, where one to four substituents are independently selected from:

i cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₂-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆)cycloalkenyl, (C_3-C_6) alkadienyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C₁-C₆)haloalkoxy, (C₂-C₆)cyclohaloalkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkythio, (C₂-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkythio, (C₂-C₆)alkenylthio, (C₂-C₆)alkynylthio, (C₁-C₆)alkylsulfinyl, (C₂-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₂-C₆)alkenylsulfinyl, (C₂-C₆)cycloalkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)cycloalkysulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₃-C₆)halocycloalkylsulfonyl, (C₁-C₆)alkylsulfinyl, (C₂-C₆)cycloalkysulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₃-C₆)halocycloalkylsulfinyl, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, $di(C_1-C_6)alkylamino, di(C_3-C_6)(cycloalkyl)amino, (C_1-C_6)alkoxy(C_1-C_6)alkylamino, di(C_3-C_6)(cycloalkyl)amino, di(C_1-C_6)alkylamino, di(C_1-C_6)(cycloalkyl)amino, di(C_1-C_6)(cycloalkyl)a$ C₆)alkyl, (C₃-C₆)cycloalkoxyalkyl, (C₁-C₆)alkoxy(C₃-C₆)cycloalkyl, (C₁-C₆)alkylthio(C₁-C₆)alkyl, (C₁-C₆)alkylsulfinyl(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-Ca)alkvlamino(C1-Ca)alkvl. (C1-Ca)alkvlcarbonvl. (C2-C₆)cycloalkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-

C₆)alkylaminocarbonyl, (C₃-C₆)cycloalkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, di(C₃-C₆)(cycloalkyl)aminocarbonyl, cyano(C₁- C_6)alkyl, or tri (C_1-C_6) alkylsilyl; or ii unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocyclyloxy, benzoyl, heterocyclylcarbonyl, phenylthio, heterocyclylthio, phenylsulfonyl, or heterocyclylsulfonyl, wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, earboxy, formyl, hydroxy, amino, earbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₂)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₂)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C_1-C_2) alkylsulfonyl (C_1-C_2) alkyl, (C_1-C_2) alkylamino (C_1-C_2) alkyl, di (C_1-C_2) alkyl C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylcarbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, di(C₁-C₃)alkylaminocarbonyl, and cyano(C₁-C₃)alkyl;

wherein in said substituted phenyl, 1-naphthyl, 2-naphthyl, phenyl(C₁-C₃)alkyl, phenyl(C₂-C₃)alkenyl, naphthyl(C₁-C₃)alkyl, phenoxy(C₁-C₃)alkyl, phenylamino, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, thiophenyl, benzothiophenyl, benzothiophenyl, benzofuranyl, isoxazolyl, imidazolyl or other heterocyclyl, two adjacent substituted positions may be joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 4, 5-, 6- or 7-membered carbocyclic or heterocyclic ring wherein the heterocyclic ring contains from one to three heteroatoms selected from N, O, or S; and one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)alkylthio, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₃)alkyl₁, (C₁-C₂)alkyl₁, (C₁-C₂)alkyl₁, (C₁-C₂)alkyl₁, (C₁-C₂)alkyl₁, (C₁-C₂)alkyl₁, (C₁-C₂)alkyl₁, (C₁-C₂)alkyl₂, di(C₁-C₂)alkyl₃, di(C₁-C₂)alky

 C_3)alkoxycarbonyl, (C_1-C_3) alkylaminocarbonyl, di (C_1-C_3) alkylaminocarbonyl, eyano (C_1-C_3) alkyl, oxo, and methoxyimino; and R^6 -and R^7 -are independently selected from:

(a) (C₁-C₆)alkyl, (C₂-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₂-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkoxy, (C_3-C_6) eyeloalkoxy, (C_1-C_6) haloalkoxy, (C_3-C_6) haloeyeloalkoxy, (C_2-C_6) alkenyloxy, (C₂-C₆)alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkylthio, (C₁-C₆)alkylamino, (C₃-C₆)cycloalkylamino, (C₁-C₆)haloalkylamino, (C₃-C₆)halocycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆)cycloalkylamino, di(C₁-C₆)haloalkylamino, di(C₂-C₆)halocycloalkylamino, (C₁- C_6)alkoxy(C_1 - C_6)alkyl, (C_1 - C_6)althylthio(C_1 - C_6)alkyl, (C_1 - C_6)alkylsulfinyl(C_1 - C_6)alkyl, (C_1-C_6) alkylsulfonyl (C_1-C_6) alkyl, (C_1-C_6) alkylamino (C_1-C_6) alkyl, di (C_1-C_6) alkyl C_6)alkylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl(C_1 - C_6)alkyl, or cyano(C_1 - C_6)alkyl; or (b) unsubstituted or substituted phenyl, phenyl(C₁-C₆)alkyl, heterocyclyl, phenoxy, heterocycloxy, phenylthio, heterocyclylthio, naphthyl, phenylamino, heterocyclylamino, N-phenyl-N-(C₁-C₆)alkylamino, or N-heterocyclyl-N-(C₁-C₆)alkylamino wherein one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, carbamoyl, (C₁-C₂)alkyl, (C₁-C₂)haloalkyl, (C₁-C₂)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)alkythio, (C₁-C₃)haloalkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₂)alkylamino, di(C₁-C₂)alkylamino, (C₁-C₂)alkoxy(C₁-C₂)alkyl, (C₁-C₂)alkylthio(C₁-C₂)alkyl, (C₁-C₂)alkylsulfonyl(C₁-C₂)alkyl, (C₁-C₂)alkylamino(C₁-C₂)alkyl, di(C₁-C₂)alkyl, C₂)alkylamino(C₁-C₂)alkyl, (C₁-C₃)alkylearbonyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₁)alkylaminocarbonyl, di(C₁-C₂)alkylaminocarbonyl, and cyano(C₁-C₁)alkyl; wherein R⁶ and R⁷ may be joined together with the phosphorus to which they are attached to form an unsaturated, partially unsaturated, or saturated, unsubstituted or substituted 4- to 7-membered heterocyclic ring wherein the heterocyclic ring contains one phosphorus and from zero to three heteroatoms selected from N, O, or S; and from one to four substituents are independently selected from the group consisting of cyano, nitro, halo, aminocarbonyl, aminothiocarbonyl, carboxy, formyl, hydroxy, amino, earbamoyl, (C₁-C₂)alkyl, (C₁-C₃)haloalkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, (C₁-C₃)

 $C_3) alkythio, (C_1-C_3)haloalkylthio, (C_1-C_3)alkylsulfonyl, (C_1-C_3)alkylamino, di(C_1-C_3)alkylamino, (C_1-C_2)alkyl, (C_1-C_2)alkyl, (C_1-C_2)alkyl, (C_1-C_2)alkyl, (C_1-C_2)alkylsulfonyl(C_1-C_2)alkyl, (C_1-C_2)alkylamino(C_1-C_2)alkyl, di(C_1-C_2)alkylamino(C_1-C_2)alkyl, (C_1-C_3)alkylaminocarbonyl, (C_1-C_3)alkylaminocarbonyl, di(C_1-C_3)alkylaminocarbonyl, eyano(C_1-C_3)alkyl, oxo, and methoxyimino.$

Claim 15 (original): The method of Claim 14, wherein the ecdysone receptor complex is a chimeric ecdysone receptor complex and the DNA construct further comprises a promoter.

Claim 16 (original): The method of Claim 14, wherein the subject is a plant.

Claim 17 (original): The method of Claim 14, wherein the subject is a mammal.

Claim 18 (canceled)