Subsegmental language detection in Celtic language text

Akshay Minocha IIIT-Hyderabad(India)

akshay.minocha@students.iiit.ac.in

Francis Tyers UiT Norgga árktalaš universitehta

Special Thanks to, Kevin Scannell

Apertium

francis.tyers@uit.no

Introduction

We aim to perform language identification on sub segmental basis -

- *Typical case is to detect the language of documents and sentences.
- *We are focussing on cases where A single sentence may have different **code switching points**
- * [en You're a] [ga Meiriceánach, cén fáth] [en are you] [ga foghlaim Gaeilge?!]
- @afaltomkins [cy gorfod cael bach o tan] [en though init]
- [en omg] [cy mar cwn bach yn] [en black and tan] [cy a popeth,] [en even cuter!!]

Dataset

Simplifying the task by taking into account Celtic languages and a corresponding majority language.

Manual annotation of about 40-50 tweets for each of the three language pairs.

Pair	Language	Statistics (%)		
ran	Language	Tokens	Segments	
Irish—English	Irish	332	40	
	English	379	42	
Welsh—English	Welsh	419	64	
	English	378	66	
Breton—French	Breton	388	54	
	French	379	53	

Chunking algorithm

Require: s : sentence to chunk

buffer = [] /*Undecided expanding window of chunk*/
chunks = [] /*Decided labelled segment*/

buffer language ← LANGPREDICT(s[0]) /*Language of first word */

```
flag ← 0
```

for all $w \in s$ do

if LANGPREDICT(w)=buffer language then

```
if flag = 1 then
```

buffer ← buffer + [word buffer, w]

flag ← 0 else

buffer ← buffer + [w]

if LANGPREDICT(w)≠buffer language then

if flag= 0 then

flag ← 1

word buffer ← w

continue

else

chunks ← chunks + [(buffer,buffer language)]

buffer ← [word buffer,w]

buffer language ← LANGPREDICT(w)

/*Language of new expanding chunk */

flag ← 0

if length(buffer)≠0 then

chunks ← chunks + [(buffer,buffer language)]

Methodology

Alphabet n-gram Approach -

- •Character Language model
- •Using IRSTLM we build a language model for the five languages
- •For English and French Europarl [1]
- •Breton, Welsh and Irish Corpora of text crawled from the web
- •Size of the corpus from which this language model was built 1.5 million tokens

Example - 'slainte!' would be - { 's', 's l', 'l a', ' 'a i', 'i n', 'n t', 't e', 'e !', '! ' '}

Word-based Prediction -

- •Generate word lists for the languages using aspell which is widely used on Unix systems.
- Word are labeled according to their presence in the particular word list.
- In case of a confusion the word is added to the previous segment

Word-based prediction with character backoff

•Same as Word-based prediction, but in case of confusion this falls back to the Alphabet bi-gram approach.

Baseline

•Using langid.py[2] labeled all the lines in a particular dataset according to the majority classification

Langid character trigram prediction

- •Trigram probabilities from langid were taken into account.
- •All other heuristics and chunking algorithm are same as for other methods.

References

- [1] Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine translation. In MT summit, volume 5, pages 79–86.
- [2] Marco Lui and Timothy Baldwin. 2012. langid. py: An off-the-shelf language identification tool.
- [3] Ben King and Steven P Abney. 2013. Labeling the languages of words in mixed-language documents using weakly supervised methods. In HLT-NAACL, pages 1110–1119.

Evaluation

- We followed the footsteps of *CoNLL*2000 shared task on language independent named entity recognition.
- Divide the text into non-overlapping segments.
- **Precision** percentage of correctly detected phrases.
- **Recall** number of phrases in the data that were found by the chunker.

Results

System		Irish—English		Welsh—English		Breton—French	
		Irish	English	Welsh	English	Breton	French
baseline	p	2.50	0.0	0.0	0.0	0.0	0.0
	r	2.56	0.0	0.0	0.0	0.0	0.0
langid-3character	p	5.00	14.29	0.0	21.21	1.85	20.75
	r	5.41	8.45	0.0	14.58	1.92	12.36
wordlist	p	32.50	28.57	26.69	40.91	57.41	33.96
	r	23.64	26.09	26.03	33.75	47.69	33.33
character bigram	p	32.50	35.71	23.44	19.70	57.41	52.83
	r	22.41	26.79	15.31	16.67	41.33	37.84
	p	52.50	50.00	32.81	31.82	70.37	67.92
wordlist+character bigram	r	38.18	43.75	24.14	25.61	57.58	57.14

System	Accuracy (%)				
	Irish—English	Welsh—English	Breton—French		
baseline	42.76	42.16	44.07		
langid-3character	57.24	45.92	43.16		
wordlist	79.75	74.28	83.96		
character bigram	81.29	65.62	76.79		
wordlist+character bigram	85.79	72.40	88.79		

Conclusions

- A very preliminary investigation into subsegment language identification in Celtic language texts.
- We would like to include supervised methods and features talked about by King and Abney (2013) [3]
- We would also like to check our methods with higher order n-grams and more options in backoff.
- Explore a lattice technique where each word is a lattice node and the inclusions of the words are done using probability.