

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: December 08 ~ 14, 2006 Test Report S/N: LR500110612D Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

UVBSR-3200

APPLICANT

conncom.co.LTD

FCC Classification : FHSS Sequence Spread Spectrum (FHSS)

Manufacturing Description : Wireless Microphone

Manufacturer : conncom.co.LTD

Model name : SR-3200

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

Frequency Range : 2402 ~ 2481MHz

RF power : 0.368mW - Conducted
Data of issue : December 15, 2006

This test report is issued under the authority of:

The test was supervised by:

Dong -Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

3. TEST REPORT	6
3.1 SUMMARY OF TESTS	6
3.2 TECHNICAL CHARACTERISTICS TEST	
3.2.1 CARRIER FREQUENCY SEPARATION	
3.2.2 NUMBER OF HOPPING FREQUENCIES	9
3.2.3 20 dB BANDWIDTH	11
3.2.4 TIME OF OCCUPANCY (Dwell Time)	13
3.2.5 TTANSMITTER OUTPUT POWER	
3.2.6 BAND - EDGE	
3.2.7 FIELD STRENGTH OF HARMONICS	26
3.2.8 AC CONDUCTED EMISSIONS	28

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2007-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2007-07-13	EMC accredited Lab.
FCC	U.S.A	610755	2008-03-28	FCC filing
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration
IC	CANADA	IC5799	2008-04-23	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name : conncom.co.LTD

Address : #407 Daeryung Techno Town 2nd, 569-21, Kasan-Dong,

Keumchun-ku, Seoul, Korea

TEL / FAX : ++82-2-860-7255 / 82-2-3275-3898

2-2 Equipment Under Test (EUT)

Trade name : Wireless Microphone

Model name : SR-3200

Serial No.: : Identical prototype

Date of receipt : December 02, 2006

EUT condition : Pre-production, not damaged

Frequency Range : $2402 \sim 2481 \text{MHz}$

Type of transmitter : Half-Duplex

RF output power : 0.368mW - Conducted

Antenna Gain : Max. 2.85 dBi Wire Antenna

Number of channels : 16 CH – random hopping

Channel spacing : 1MHz

Channel Access Protocol : Frequency Hopping

Type of Modulation : QFSK

Power Source(for EUT) : 3.0V (AA Size)

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2402	2439	2481

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
-	-	-	-

→ Frequency Channel List

Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
1	2402	31	2432	61	2462
2	2403	32	2433	62	2463
3	2404	33	2434	63	2464
4	2405	34	2435	64	2465
5	2406	35	2436	65	2466
6	2407	36	2437	66	2467
7	2408	37	2438	67	2468
8	2409	38	2439	68	2469
9	2410	39	2440	69	2470
10	2411	40	2441	70	2471
11	2412	41	2442	71	2472
12	2413	42	2443	72	2473
13	2414	43	2444	73	2474
14	2415	44	2445	74	2475
15	2416	45	2446	75	2476
16	2417	46	2447	76	2477
17	2418	47	2448	77	2478
18	2419	48	2449	78	2479
19	2420	49	2450	79	2480
20	2421	50	2451	80	2481
21	2422	51	2452		
22	2423	52	2453		
23	2424	53	2454		
24	2425	54	2455		
25	2426	55	2456		
26	2427	56	2457		
27	2428	57	2458		
28	2429	58	2459		
29	2430	59	2460		
30	2431	60	2461		

3. Test Report

3.1 Summary of tests

FCC Part	Parameter	Limit	Test	Status
Section(s)	rarameter	Lillit	Condition	(note 1)
15.247(a)	Carrier Frequency Separation	> 25 kHz		С
15.247(a)	Number of Hopping Frequencies	≥ 15 hops		С
15.247(a)	20 dB Bandwidth	< 1 MHz		С
15.247	Dwell Time	< 0.4 seconds	Conducted	С
15.247(b)	Transmitter Output Power	< 1Watt		С
15.247(d)	Conducted Spurious emission	> 20 dBc		С
15.247(d)	Band Edge	> 20 dBc		С
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	Radiated	С
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	NA
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = 3 MHz (wide enough to capture the peaks of two adjacent channels)

RBW = 30 kHz (1% of the span or more) Sweep = auto

VBW = 30 kHz Detector function = peak

Trace = max hold

Measurement Data:

Test Results		
Carrier Frequency Separation (MHz) Result		
1.005	Complies	

- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Figure 1: Measurement setup for the carrier frequency separation

Carrier Frequency Separation

3.2.2 Number of Hopping Frequencies

Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

Frequency range 1: Center = 2440MHz, Span = 100 MHz RBW = 300 kHz (1% of the span or more) Sweep = auto

 $VBW = 300 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = max hold

Measurement Data: Complies

Total number of Hopping Channels	16
----------------------------------	----

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 15 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Number of Hopping Frequencies

3.2.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 30 kHz (1% of the 20 dB bandwidth)

 $VBW = 30 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

Span = 3 MHz Detector function = peak

Trace = max hold

Measurement Data:

Frequency	Test Res	sults
(MHz)	Measured Bandwidth (MHz) Result	
2402	0.960	Complies
2441	0.960	Complies
2481	0.930	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

The transmitter shall have a maximum 20dB bandwidth of 1 MHz.

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

20 dB Bandwidth

3.2.4 Time of Occupancy (Dwell Time)

Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2439 MHz Span = zero

RBW = 1 MHz $VBW = 1 MHz (VBW \ge RBW)$

Trace = max hold Detector function = peak

Measurement Data:

Channel		Test Results	
Frequency (MHz)	Number of transmission in a 6.4 (16Hopping x 0.4)	Length of transmission time (msec)	Dwell Time (sec)
2439	82 times/3sec x 6.4 = 174.93	1.0125	0.177

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

0.4 seconds

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Time of Occupancy for PACKET

3.2.5 Transmitter Output Power

Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 5 MHz (approximately 5 times of the 20 dB bandwidth)

RBW = 1 MHz (greater than the 20dB bandwidth of the emission being measured)

 $VBW = 1 MHz (VBW \ge RBW)$

Detector function = peak

Trace = max hold

Sweep = auto

Measurement Data:

Frequency	Test Results		
(MHz)	dBm	mW	Result
2402	-6.42	0.228	Complies
2440	-5.84	0.261	Complies
2481	-4.34	0.368	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:	< 1W

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Peak Output Power

3.2.6 Band - edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 10 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Band - edge (with Hopping)

Band - edge (without Hopping)

Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

- Continues

Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics. - Continues

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics. - Continues

3.2.7 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

 $VBW \ge RBW$

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

RBW = $100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = $\max \text{ hold}$ Sweep = auto

Measurement Data: Complies - Harmonics

Low channel		Mid channel		High channel	
Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)
4804	39.8	4880	36.3	4962	31.9
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
Measurement uncertainty		± 6 dB			

Note: No other emissions were detected at a level greater than 10dB below limit.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m	
30 ~ 88	100 **	
88 ~ 216	150 **	
216 ~ 960	200 **	
Above 960	500	

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data: Complies - Other Frequency

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: SR-3200 Temp/Humi: 11 / 27

Test Mode : Tx Tested by: K.T. LEE

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.8 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Not Applicable

- This device is operating by a Battery(AA Size * 2ea)

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15 ~ 0.5	66 to 56 *	56 to 46 *	
0.5 ~ 5	56	46	
5~30	60	50	

^{*} Decreases with the logarithm of the frequency

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	НР	Dec-06
2	Signal Generator	8657A	3430U02049	НР	Dec-06
3	Attenuator (3dB)	8491A	37822	НР	Dec-06
4	Attenuator (3dB)	8491A	28881	НР	Dec-06
5	EMI Test Receiver	ESVD	843748/001	R&S	Dec-06
6	Spectrum Analyzer	8591E	3649A05888	НР	Jan-07
7	Spectrum Analyzer	8563E	3425A02505	НР	Jan-07
8	RF Amplifier	8447D	2949A02670	НР	Jan-07
9	RF Amplifier	8447D	2439A09058	НР	Jan-07
10	RF Amplifier	8449B	3008A02126	НР	Jun-07
11	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	Feb-07
12	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Feb-07
13	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Feb-07
14	Horn Antenna	3115	00055005	ETS LINDGREN	Jun-07
15	Horn Antenna	BBHA 9120D	0499	Schwarzbeck	Jun-07
16	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Feb-07
17	Splitter (BNC)	ZFM-150	15542	Mini-Circuits	-
18	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
19	Power Divider	11636A	6243	НР	Apr-07
20	DC Power Supply	6622A	3448A03079	HP	Apr-07
21	Attenuator (30dB)	8498A	1801A06689	НР	Apr-07
22	Attenuator (10dB)	8491A	63196	HP	Apr-07
23	Power Meter	EPM-441A	GB32481702	HP	Apr-07
24	Power Sensor	8481A	2702A64048	HP	Apr-07
25	Audio Analyzer	8903B	3729A18901	HP	May-07
26	Modulation Analyzer	8901B	3749A05878	HP	May-07
27	Dipole Antenna	VHA9103	2116	Schwarzbeck	Nov-07
28	Dipole Antenna	VHA9103	2117	Schwarzbeck	Nov-07
29	Dipole Antenna	UHA9105	2261	Schwarzbeck	Nov-07
30	Dipole Antenna	UHA9105	2262	Schwarzbeck	Nov-07
31	Digital Multimeter	34401A	US36062141	HP	Apr-07
32	LISN	KNW-407	8-1430-1	Kyoritsu	Jan-07
33	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Jan-07
34	Test Receiver	ESHS10	828404009	R&S	Jan-07
35	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	-