Merging 12 Months of Sales Data into a Single File

```
| import os
In [2]:
            files=[file for file in os.listdir('C:/Users/HP/Desktop/Data Science/sales analysis pandas/SalesAnalysis/Sales Dat
            all months data=pd.DataFrame()
            for file in files:
                df=pd.read_csv('C:/Users/HP/Desktop/Data Science/sales analysis pandas/SalesAnalysis/Sales_Data/'+file)
                all months data=pd.concat([all months data,df])
In [3]:
         ▶ all months data.shape
   Out[3]: (186850, 6)
In [4]:
         ▶ all months data.dtypes
   Out[4]: Order ID
                                object
                                object
            Product
            Quantity Ordered
                                object
                                object
            Price Each
                                object
            Order Date
            Purchase Address
                                object
            dtype: object
```

In [5]: | all_months_data.head()

Out[5]:

(Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
1	NaN	NaN	NaN	NaN	NaN	NaN
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215
3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001

Data Cleaning

In [7]: # see all the NaN values
all_months_data[all_months_data.isna()]

Out[7]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
0	NaN	NaN	NaN	NaN	NaN	NaN
1	NaN	NaN	NaN	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	NaN	NaN
11681	NaN	NaN	NaN	NaN	NaN	NaN
11682	NaN	NaN	NaN	NaN	NaN	NaN
11683	NaN	NaN	NaN	NaN	NaN	NaN
11684	NaN	NaN	NaN	NaN	NaN	NaN
11685	NaN	NaN	NaN	NaN	NaN	NaN

186850 rows × 6 columns

```
In [9]: | all_months_data.isna().sum()
```

```
Out[9]: Order ID 0
Product 0
Quantity Ordered 0
Price Each 0
Order Date 0
Purchase Address 0
dtype: int64
```

```
▶ all months data.shape
In [10]:
   Out[10]: (186305, 6)
          ▶ # removing the headers of different csv files that were merged
             all months data=all months data.loc[all months data['Order ID']!='Order ID']
          ▶ all months data.shape
In [12]:
   Out[12]: (185950, 6)
          ▶ | all months data.index=np.arange(1,len(all months data)+1)
In [13]:
          ▶ | all months data['Quantity Ordered']=all months data['Quantity Ordered'].astype('int')
In [14]:
             all months data['Price Each']=all months data['Price Each'].astype('float')
          ▶ all months data.dtypes
In [15]:
   Out[15]: Order ID
                                  object
                                  object
             Product
             Quantity Ordered
                                   int32
                                 float64
             Price Each
             Order Date
                                  object
                                  object
             Purchase Address
             dtype: object
         Adding New Columns to Dataset
          ▶ | all_months_data['Month']=pd.to_datetime(all_months_data['Order Date']).dt.month
In [16]:
```

localhost:8888/notebooks/New folder/Sales Analysis.ipynb

In [20]: ▶ all_months_data.head()

Out[20]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Year	Sales	City
1	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	2019	23.90	Dallas (TX)
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	2019	99.99	Boston (MA)
3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	2019	600.00	Los Angeles (CA)
4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	2019	11.99	Los Angeles (CA)
5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4	2019	11.99	Los Angeles (CA)

In [21]: ▶ all_months_data.dtypes Out[21]: Order ID object Product object Quantity Ordered int32 float64 Price Each Order Date object Purchase Address object Month int64 Year int64 Sales float64 City object dtype: object

Data Exploration

What was the best month for sale and how much was earned that month?

In [22]: N temp=all_months_data.groupby(['Month']).sum()[['Sales']]
temp

Out[22]:

Month		
	1	1822256.73
	2	2202022.42
	3	2807100.38
	4	3390670.24
	5	3152606.75
	6	2577802.26
	7	2647775.76
	8	2244467.88

9 2097560.13

10 3736726.88

11 3199603.20

12 4613443.34

Sales

From the above graph we can see that maximum sales are coming from December month followed by November, April respectively

Which city has the highest sales?

```
In [24]:
          M city_sales=all_months_data.groupby(['City']).sum()['Sales'].sort_values(ascending=True)
             city_sales
   Out[24]: City
              Portland (ME)
                                     449758.27
              Austin (TX)
                                   1819581.75
              Portland (OR)
                                   1870732.34
              Seattle (WA)
                                   2747755.48
              Dallas (TX)
                                    2767975.40
              Atlanta (GA)
                                    2795498.58
              Boston (MA)
                                    3661642.01
              New York City (NY)
                                   4664317.43
              Los Angeles (CA)
                                   5452570.80
              San Francisco (CA)
                                   8262203.91
             Name: Sales, dtype: float64
```


By observing the above, San Francisco accounted for the maximum sales followed by Los Angeles, New York City

What time should the advertisement be displayed to maximize the likelihood of customer's buying product?

In [26]: | all_months_data['Order Date']=pd.to_datetime(all_months_data['Order Date'])

In [27]: | all_months_data.head()

Out[27]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Year	Sales	City
1	176558	USB-C Charging Cable	2	11.95	2019-04-19 08:46:00	917 1st St, Dallas, TX 75001	4	2019	23.90	Dallas (TX)
2	176559	Bose SoundSport Headphones	1	99.99	2019-04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	2019	99.99	Boston (MA)
3	176560	Google Phone	1	600.00	2019-04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	1 2019	600.00	Los Angeles (CA)
4	176560	Wired Headphones	1	11.99	2019-04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	2019	11.99	Los Angeles (CA)
5	176561	Wired Headphones	1	11.99	2019-04-30 09:27:00	333 8th St, Los Angeles, CA 90001	4	2019	11.99	Los Angeles (CA)

 In [29]: | all_months_data.head()

Out[29]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Year	Sales	City	Hour
1	176558	USB-C Charging Cable	2	11.95	2019-04-19 08:46:00	917 1st St, Dallas, TX 75001	4	2019	23.90	Dallas (TX)	8
2	176559	Bose SoundSport Headphones	1	99.99	2019-04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	2019	99.99	Boston (MA)	22
3	176560	Google Phone	1	600.00	2019-04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	2019	600.00	Los Angeles (CA)	14
4	176560	Wired Headphones	1	11.99	2019-04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	2019	11.99	Los Angeles (CA)	14
5	176561	Wired Headphones	1	11.99	2019-04-30 09:27:00	333 8th St, Los Angeles, CA 90001	4	2019	11.99	Los Angeles (CA)	9

From the line chart above people likely to purchase product during 10 AM-2 PM and 5 PM-9 PM which is the right time to display the advertisement whereas least active during early morning between 1 AM-6 AM.

Top 10 Products Sold

7550

6849

6244

13457

Quantity Ordered

Products

Bose SoundSport Headphones

27in FHD Monitor -

27in 4K Gaming Monitor -

iPhone

Find the top products and why it is sold mostly

Out[34]:

	Product	Price Each
0	20in Monitor	109.99
1	27in 4K Gaming Monitor	389.99
2	27in FHD Monitor	149.99
3	34in Ultrawide Monitor	379.99
4	AA Batteries (4-pack)	3.84
5	AAA Batteries (4-pack)	2.99
6	Apple Airpods Headphones	150.00
7	Bose SoundSport Headphones	99.99
8	Flatscreen TV	300.00
9	Google Phone	600.00
10	LG Dryer	600.00
11	LG Washing Machine	600.00
12	Lightning Charging Cable	14.95
13	Macbook Pro Laptop	1700.00
14	ThinkPad Laptop	999.99
15	USB-C Charging Cable	11.95
16	Vareebadd Phone	400.00
17	Wired Headphones	11.99
18	iPhone	700.00

In [35]: H temp3=all_months_data.groupby(by=['Product']).sum()[['Quantity Ordered']].sort_values(by=['Product']).reset_index(

From the above graph it is seen that low average price resulted in High Sales and vice-a-versa