# Duration of Erasmus+ mobility periods

Ulrik Bernhardt Danielsen & Alexander Johansen Ohrt

**UPC** 

May 18, 2022

## Outline

- Data
- Goal
- Models

#### Data

- https://data.europa.eu/data/datasets/
  erasmus-mobility-statistics-2014-2019-v2?locale=
  en
- All Erasmus+ students who finished their stay during 2019
- $\sim$  730000 rows, 24 columns

#### Data

- Contains on students—age,gender,recieving country, sending country, . . .
- ... and duration of mobility period
- Data cleaning  $\rightarrow$  ≈ 210000 rows











### Goal

- Model the data using bayesian models
- Is there a difference for the genders?
- Does age matter?
- Is there a difference in mobility periods for countries?

### Models

- Two (unknown) groups: finite mixture models
- Prior knowledge about duration length
- Regression



### Bimodal mixture models

$$f(y_i|\theta, p) = p_1 f(y_i|\theta_1) + p_2 f(y_i|\theta_2).$$

Two approaches:

- 1 Latent variable z<sub>ih</sub>
  - Multinomial with Dirichlet prior—hierarchical

$$y_i | \theta, z_{ih} \sim f(y_i | \theta_{z_{ih}})$$

- Does not work with Stan
- 2 Marginalize out z<sub>ih</sub>
  - Using  $Pr(z_i = h) = p_h$  we obtain

$$f(y_i|\theta,p) = pf(y_i|\theta_1) + (1-p)f(y_i|\theta_2)$$

Here we let p have an uniform prior

#### Our models

- Bimodal Gaussian with equal variance
- Bimodal Gaussian with different variance
- Hierarchical bimodal Gaussian—variance is related between groups, but allowed to be different
- Regression model—age, gender, ...

## Initial model

```
\mu_1 N(120, \sigma)

\mu_2 N(280, \sigma)

\sigma InverseGamma(1, 1)

p \sim U[0, 1]
```



# Regression model

$$y|x \sim pN(y|\beta_{01} + \beta_1 age + \beta_2 gender, \sigma_1)$$
  
  $+ (1-p)N(y|\beta_{02} + \beta_1 age + \beta_2 gender, \sigma_2)$ 

