DETECÇÃO DE FALHAS EM ROLAMENTOS DE MÁQUINAS ROTATIVAS

Alunos:

Henrique Gomes Medeiros

Paulo Marconi

DRE: 117047496

DRE: 117042519

Prof: Dr. -Ing Fernando Castro Pinto

TIPOS MAIS COMUNS DE FALHAS EM ROLAMENTOS:

Desgaste- Ocorre devido ao atrito contínuo entre os elementos rolantes e os anéis

Escorregamento - Ocorre quando os elementos rolantes não se mantêm adequadamente em contato com os anéis. Isso pode resultar em movimentos irregulares, causando vibrações excessivas

Fadiga- Ocorre devido a cargas repetitivas ao longo do tempo

TIPOS DE MANUTENÇÕES UTILIZADAS:

Corretiva - Somente com quebra ou defeitos claros

Preventiva - troca com base no tempo esperado de durabilidade para evitar a corretiva Preditiva - por meio de instrumentos de medição. Visa determinar quando e como fazer intervenção na máquina

ESTRATÉGIAS DE MANUTENÇÃO PREDITIVA

- Análise de vibrações, termografia, análise de óleo, ensaios não destrutivos, partículas magnéticas, ultrassom e emissão acústica.
- Domínio do tempo e frequência
- técnicas de análise de sinais como a técnica espectral e técnica do envelope para identificação da falha

Fractal Analysis

- No domínio do tempo são utilizados parâmetros estatísticos para determinação da ocorrência da falha, tais como RMS e curtose. Já no domínio da frequência, uma das técnicas mais utilizadas para detecção e diagnóstico de falhas em rolamentos baseia-se na estimativa de Densidade Espectral de Potência (PSD) do envelope modulante do sinal temporal de falha.
- Finalmente, no domínio do tempo-frequência, uma técnica bastante utilizada é a Transformada de Wavelet, especialmente para sinais com características não estacionárias.

$$pico = \frac{1}{2} [max(x(t)) - \min(x(t))]$$

Valor de pico do sinal é simplesmente definido como metade da diferença entre o máximo e mínimo níveis de vibração.

$$RMS = \sqrt{\frac{1}{T} \int_0^T (x(t) - \bar{x})^2) dt}$$

Valor RMS (Root Mean Square) do sinal normalizado é o segundo momento estatístico do sinal (desvio padrão) e mede a energia do sinal de vibração.

$$Fc = \frac{pico}{RMS}$$

Fator de Crista (Fc) é definido como a razão entre o valor de pico e valor RMS do sinal, descrito pela seguinte equação:

$$Curtose = \frac{\frac{1}{T} \int_0^T (x(t) - \bar{x})^4}{(RMS)^4}$$

Curtose é o momento estatístico de quarta ordem normalizado do sinal. Para sinais contínuos no tempo é definida como:

TÉCNICAS NO DOMÍNIO DO TEMPO

Para um rolamento sem defeitos com uma distribuição gaussiana, o valor do coeficiente de curtose é próximo a 3. Um valor superior ao citado é considerado como uma indicação de uma falha iminente. Entretanto, percebe-se que esse valor se reduz à medida que o defeito atinge estágios avançados, o que caracteriza uma desvantagem para confiabilidade de diagnósticos feitos a partir de sua utilização. Alguns estudos apontam ineficiências na detecção de falhas incipientes. Logo, esse método não se tornou popular na indústria para o monitoramento de mancais de rolamento.

Acompanhamento do RMS

TÉCNICA HFRT (ENVELOPE)

- 1- Inicialmente, aplica-se a transformada de Fourier ao sinal coletado. A partir da resposta no domínio da frequência podese definir a faixa de frequências com intuito de se determinar a faixa de filtragem, isto é, qual a região foi mais excitada pela falha;
- 2- Aplica-se o filtro passa banda. O objetivo desse filtro é eliminar as frequências indesejáveis, como por exemplo, as baixas frequências de alta amplitude que em geral estão associadas ao desalinhamento e desbalanceamento;
- 3- Aplica-se o Filtro Passa Alta para eliminação da componente DC;
- 4- Aplica-se a transformada de Hilbert para obtenção do envelope do sinal do defeito. Essa transformada é responsável por evidenciar quantas vezes o pulso se repetiu num segundo, ou seja, ela diz qual é a frequência característica de defeito do rolamento:
- 5- Com o sinal no tempo, aplica-se novamente a Transformada de Fourier ao envelope do sinal para obtenção das frequências características do defeito.

frequência (Hz)

ROLAMENTO SEM DEFEITO

Frequências de defeitos sujeitas a variação de 1 a 2% por deslizamentos, e o método de obtenção desses valores está no próximo slide:

CARACTERÍSTICAS EXTRAIDAS DO DOMINIO DO TEMPO

1 - Valor RMS = 0.072687 2 - Valor de Pico = 0.2987

3 - Fator de Crista = 4.1093 4 - Fator de Impulso = 5.0913

5 - Curtose = 2.7642

CARACTERÍSTICAS DO SINAL DO MANCAL DE ROLAMENTO

Item	Nome	Valor
1-	Ressonância (Hz)	2850
2-	Rotação do Eixo (Hz)	29.95
3-	Frequência de Passagem - Defeito na Pista Interna (Hz)	162.5702
4-	Frequência de Passagem - Defeito na Pista Externa (Hz)	0
5-	Frequência de Passagem - Defeito na Esfera(Hz)	0
6-	Frequência de Amostragem (Hz)	12000
7-	Comprimento do Sinal (pontos)	243938

FREQUÊNCIAS	VALOR EM (Hz)
Defeito na Pista Interna	162,57
Defeito na Pista Externa	106,97
Defeito na Esfera	69,51
Defeito na Gaiola	11,88

CARACTERÍSTICAS DO ROLAMENTO OBSERVADO:

$$f_{dpi} = \frac{nf_r}{2} \left(1 + \frac{d}{D} \cos \emptyset \right)$$

$$f_{de} = \frac{Df_r}{2d} \left(1 + \left[\frac{d}{D} \cos \emptyset \right]^2 \right)$$

$$f_g = \frac{f_r}{2} \left(1 - \frac{d}{D} \cos \emptyset \right)$$

Rolamento	SKF 6205-2RS JEM			
Geometria (mm)	Diâmetro	externo	51,9	99
	Diâmetro interno Diâmetro <i>Pitch</i> Diâmetro da esfera Número de esferas Ângulo de contato		25,012 38,5 7,94	
			9	
			0_0	
Frequências de defeito [Hz]	$f_{ m dpe}$	$f_{ m dpi}$	$f_{ m de}$	$f_{ m g}$
	107,37	162,57	69,52	11,89

n= número de esferas

D= Diâmetro Pitch do rolamento

d= diâmetro da esfera

Ø = ângulo de contato

DEFEITO NA PISTA INTERNA

CARACTERÍSTICAS EXTRAIDAS DO DOMINIO DO TEMPO

1 - Valor RMS = 0.31357 2 - Valor de Pico = 1.6667 3 - Fator de Crista = 5.3153 4 - Fator de Impulso = 7.4364

5 - Curtose = 5.2911

	CARACTERÍSTICAS DO SINAL DO MANCAL DE ROLAMENTO	
Item	Nome	Valor
1-	Ressonância (Hz)	2850
2-	Rotação do Eixo (Hz)	28.8333
3-	Frequência de Passagem - Defeito na Pista Interna (Hz)	156.5088
4-	Frequência de Passagem - Defeito na Pista Externa (Hz)	0
5-	Frequência de Passagem - Defeito na Esfera(Hz)	0
6-	Frequência de Amostragem (Hz)	12000
7-	Comprimento do Sinal (pontos)	122917

Observações:

Aumento da energia (RMS) de 0,07 para 0,31 e da curtose para um valor acima de 3, que caracteriza um defeito pelas especificações definidas.

$$f_{dpi} = \frac{nf_r}{2} \left(1 + \frac{d}{D} \cos \emptyset \right)$$

DEFEITO NA PISTA EXTERNA

CARACTERISTICAS EXTRAIDAS DO DOMINIO DO TEMPO

1 - Valor RMS = 0.559 2 - Valor de Pico = 6.6494

3 - Fator de Crista = 11.8951 4 - Fator de Impulso = 24.4285

5 - Curtose = 23.542

CARACTERISTICAS DO SINAL DO MANCAL DE ROLAMENTO

Item	Nome	Valor
1-	Ressonancia (Hz)	2850
2-	Rotacao do Eixo (Hz)	29
3-	Frequencia de Passagem - Defeito na Pista Interna (Hz)	0
4-	Frequencia de Passagem - Defeito na Pista Externa (Hz)	103.5865
5-	Frequencia de Passagem - Defeito na Esfera(Hz)	0
6-	Frequencia de Amostragem (Hz)	12000
7-	Comprimento do Sinal (pontos)	121991

$$f_{dpe} = \frac{nf_r}{2} \left(1 - \frac{d}{D} \cos \emptyset \right)$$

Observações:

Podemos ver, no espectro da frequência, um pico na região de 103 Hz. Esse valor está próximo da frequência de defeito teórica na pista externa.

Além disso, o fator de crista também apresenta crescimento significativo.

DEFEITO NA ESFERA

CARACTERISTICAS EXTRAIDAS DO DOMINIO DO TEMPO

1 - Valor RMS = 2.1449 2 - Valor de Pico = 11.3449

3 - Fator de Crista = 5.2893 4 - Fator de Impulso = 7.0003

5 - Curtose = 3.8991

CARACTERISTICAS DO SINAL DO MANCAL DE ROLAMENTO

Item	Nome	Valor
1-	Ressonancia (Hz)	2850
2-	Rotacao do Eixo (Hz)	29
3-	Frequencia de Passagem - Defeito na Pista Interna (Hz)	0
4-	Frequencia de Passagem - Defeito na Pista Externa (Hz)	0
5-	Frequencia de Passagem - Defeito na Esfera(Hz)	67.3182
6-	Frequencia de Amostragem (Hz)	12000
7-	Comprimento do Sinal (pontos)	120984

- Nesse caso é mais complicado de identificar, especialmente utilizando a curtose.
- Esses impulsos gerados são influenciados pela gaiola, que possui uma frequência de defeito de 11,88Hz, além de ter bastante ruído pela movimentação.

$$f_{de} = \frac{Df_r}{2d} \left(1 + \left[\frac{d}{D} \cos \emptyset \right]^2 \right)$$

$$f_g = \frac{f_r}{2} \left(1 - \frac{d}{D} \cos \emptyset \right)$$

PROBLEMAS NA ABORDAGEM DE NÍVEL DE ENERGIA (RMS)

- Aumentos das vibrações somente nos estágios finais.
- Não fornece informação do local onde a falha ocorre.
- Não detecção de todas as falhas e atraso na detecção, o que pode ser ruim para manutenção preditiva.

OUTROS MÉTODOS

- Ao contrário do valor eficaz de um sinal, os indicadores específicos, como o valor de pico e curtose, são mais adequados para representar um sinal induzido por forças de impulso de rolamentos com falhas.
- O valor de pico tem a vantagem da detecção de falhas antes do valor eficaz. Isto ocorre porque para um rolamento sem falha, a proporção permanece substancialmente constante e aumenta quando a degradação ocorre, enquanto o valor de pico aumenta à medida que o valor eficaz permanece, praticamente, constante.

RELAÇÃO RMS E VALOR DE PICO

- A relação entre os parâmetros de valor de pico e de valor RMS gera o fator de crista.
- Este fator pode ser bom para identificar um defeito, pois ao sofrer o mesmo é gerada uma elevação mais acentuada da aceleração em relação ao nível RMS.
- Condições normais: fator de crista = 5 a 6
- Quando começam a surgir as falhas: fator de crista aumenta para até 12
- PQuando as falhas se propagam: RMS acompanha o aumento de aceleração, logo o fator de crista volta a descer. Em resumo, um fator de crista maior do que 5 começa a sugerir falha no rolamento.

AGLOMERAÇÃO DOS PARÂMETROS ESTATÍSTICOS

Aqui podemos acompanhar os 4 principais indicadores de vibração e sua evolução ao longo do desenvolvimento de defeitos no Rolamento, separado em 16 estágios.

► OBRIGADO