7.6 1) Soient x et y la largeur et la longueur de la bibliothèque. Si p désigne le prix linéaire de la brique, alors le prix linéaire du verre vaut 2p.

Le coût des matériaux vaut $f(x,y) = (x+2y)p + x \cdot 2p = 3px + 2py$.

- 2) Comme la bibliothèque doit avoir une superficie de 2400 m², on tire que $x\,y=2400$.
- 3) Il en résulte $y = \frac{2400}{r}$.

Ainsi le coût des matériaux vaut $f(x)=3\,p\,x+2\,p\,\frac{2400}{x}=3\,p\,x+\frac{4800\,p}{x}$.

Vu que la largeur de la bibliothèque doit être positive, on a $D_f =]0; +\infty[$.

4) Recherchons le minimum de la fonction $f(x) = 3px + \frac{4800p}{x}$ sur l'intervalle $D_f =]0; +\infty[$.

$$f'(x) = \left(3px + \frac{4800p}{x}\right)' = (3px + 4800px^{-1})' = 3p - 4800px^{-2}$$

$$= 3p - \frac{4800p}{x^2} = \frac{3px^2 - 4800p}{x^2} = \frac{3p(x^2 - 1600)}{x^2}$$

$$= \frac{3p(x + 40)(x - 40)}{x^2}$$

	-40 0) 40	
3p	+	+	+	+
x + 40	- () +	+	+
x - 40	_	-	- 0	+
x^2	+	+	+	+
f'	+ () —	- 0	+
f	7 m	ax 📐	\searrow_{mi}	

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} 3 p x + \frac{4800 p}{x} = 0 + \infty = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 3 p x + \frac{4800 p}{x} = +\infty + 0 = +\infty$$

$$f(40) = 3p \cdot 40 + \frac{4800p}{40} = 240p$$

5) Le coût des matériaux est minimal si la bibliothèque a une largeur de $x=40~\mathrm{m}.$

Dans ce cas, elle mesure $y = \frac{2400}{40} = 60$ m de long.

Le coût s'élève alors à 240 p, où p désigne le prix linéaire de la brique.