Horizon 2020 European Union funding for Research & Innovation

Introduction to Optimal Control

Ludovic Righetti (NYU) Nicolas Mansard (CNRS)

Outline

- What can we do with optimal control?
- Where is optimal-control is the robot galaxy?
- What is dynamic programming?
- Should you shoot or collocate?
- Why make your dynamic program differential?
- Is multiple shooting about guns?
- What is Crocoddyl good for, and what is beyond?

What can we do with optimal control?

VIDEO INTRODUCTION

Autonomous Driving

Information Theoretic Model Predictive Control [Williams et al. 2018]

Legged Locomotion

OC with Linear Inverted Pendulum Model [Herdt et al. 2010]

OC with Centroidal Momentum Dynamics and Full Body Kinematics
[Ponton et al. 2018], [Carpentier et al. 2018],
[Dai et al. 2014], [Herzog et al. 2015]

Full-body Optimal Control

Synthesis and stabilization of complex behaviors with online trajectory optimization

Yuval Tassa, Tom Erez and Emo Todorov

Movement Control Laboratory University of Washington

IROS 2012

[Tassa et al. 2010] DDP with Full-Body Dynamics (realtime control)

[Mordatch et al. 2012] Nonlinear Optimization for Multi-Contact Tasks

Discovery of complex behaviors through Contact-Invariant Optimization

Igor Mordatch, Emo Todorov and Zoran Popovic

Movement Control Laboratory and GRAIL University of Washington

SIGGRAPH 2012

MEMMO: Memory of

INTRODUCTION TO BELMAN'S EQUATIONS

$$\min_{u_0,\cdots,u_{T-1}} \sum_{t=0}^{T-1} l_t(x_t,u_t) + l_T(x_T)$$
 Find control inputs to minimize cost stage costs to minimize cost

$$x_{t+1} = f_t(x_t, u_t)$$

 $g(x_t, u_t) \leq 0$

deterministic dynamics

state and control constraints

$$\{x\} = x_0, \dots, x_T$$

 $\{u\} = u_0, \dots, u_{T-1}$

$$\{x'\} = x_0', \dots, x'_T$$

 $\{u'\} = u'_0, \dots, u'_{T-1}$

$$\{u\}^*$$
 the optimal control trajectory

$$\pi^*(x)$$
 the optimal control policy

Principle of Optimality

How can we find the optimal control?
The Principle of Optimality breaks down the problem

Subpath of optimal paths are also optimal for then own subproblem

Principle of Optimality

How can we find the optimal control?

The Principle of Optimality breaks down the problem

Optimal Cost to Go or Value Function

$$V_t(x_t) = \min_{u_t, \dots, u_{N-1}} \sum_{k=t}^{T-1} l_k(x_k, u_k) + l_T(x_T)$$

Bellman's Principle of Optimality

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

$$x_{t+1} = f_t(x_t, u_t)$$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Final States Stage T $V_T(x_T)$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

 $egin{aligned} ext{Stage T-1} & ext{Final States} \ ext{Stage T} \ V_{T-1}(x_{T-1}) & V_T(x_T) \end{aligned}$

 $\pi_{T-1}(x_{T-1})$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Stage T-1 $\frac{\text{Final States}}{\text{Stage T}}$ $V_{T-1}(x_{T-1})$ $V_{T}(x_{T})$ $V_{T-1}(x_{T-1})$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Stage 0

 $V_0(x_0)$

 $\pi_0(x_0)$

 $\begin{array}{c} \mathsf{Stage}\,\mathsf{T-1} & \mathsf{Final}\,\mathsf{States} \\ \mathsf{Stage}\,\mathsf{T} \\ V_{T-1}(x_{T-1}) & V_T(x_T) \end{array}$

 $\pi_{T-1}(x_{T-1})$

Linear Quadratic Problems

Problems with linear dynamics and quadratic costs can be solved explicitly!

$$x_{t+1} = F_x x_t + F_u u_t$$

Linear dynamics

$$\min \sum_{t=0}^{T-1} (x_t^T L_x x_t + u_t^T L_u u_t) + x_T^T L_x x_T$$

Quadratic cost

$$L_x \ge 0$$
 $L_u > 0$

Linear Quadratic Problems

$$\square$$
 Set $W_T = L_x$

□ For t from T-1 to 0, do backward recursion

$$K_t = -(Fu^T W_{t+1} F_u + L_u)^{-1} F_u^T W_{t+1} F_x \qquad \underline{\text{Discrete-time}}$$

$$Q_t = L_x + F_x^T W_t + F_x + F_x^T W_{t+1} F_u K_t \qquad \underline{\text{Riccati equation}}$$

- The cost-to-go at stage t is
- □ The optimal policy is $\pi^*(X_t) = K_t X_t$

The policy is a linear feedback controller with gain K_t

 $V_t(X_t) = X_t^T W_t X_t$

Bellman Equation
$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Problems:

- Curse of dimensionality
- minimization in Bellman equation

⇒ Approximate solution to Bellman equation (DDP, trajectory optimization, reinforcement learning, etc)

Solving Bellman's Equations

- [1] Bonnali'19 ArX:1903.00155
- [2] Mordach'14 DOI:2185520.2185539
- [3] Posa'14 DOI:0278364913506757
- [4] Winkler'18 IEEE:2798285
- [5] Rajamaki'17 DOI:3099564.3099579

Resolution Method:

Stochastic - Deterministic

Indirect Methods Pontryagin's Maximum Principle

LQR

(exact solution)

Rockets, Cars (small dimensions)

GuSTO [1]

Non LQR

(approximate solution)

Direct Methods (Most popular in robotics)

"local" Trajectory optimization

Shooting

Guided policy search

Explicit MPC
Q learning

"global"

Value/Policy optimization

Actor Critic

DDPG, TRPO, PPO

Collocation

CIO [2] TOWR [4]

TrajOpt

<u>"Direct" trajectory optim [3]</u>

DDP
Multiple shooting
CMAES, PI²

Should we collocate or shoot?

TRANSCRIPTION

Transcribing:

"representing" the reality

$$\min_{\underline{x}:t \to x(t) \atop \underline{u}:t \to u(t)} \int_0^T l(x(t), u(t))dt + l_T(x(T))$$
s.t. $\forall t, \dot{x}(t) = f(x(t), u(t))$

Optimal control problem (OCP) with continuous variables (infinite-dimension)

$$\min_{\underline{x}:t\to x(t)} \int_{0}^{1} l(x(t), u(t))dt + l_{T}(x(T)) \left| \min_{\underline{x}=\theta_{x_{1}}...\theta_{x_{n}}} \sum_{t} l(x(t|\theta), u(t|\theta)) + l_{T}(x(T|\theta)) \right|$$

$$\underline{u}:t\to u(t)$$
s.t. at some $t, \dot{x}(t|\theta) = f(t|\theta_{x_{1}}, \theta_{y_{1}})$

Nonlinear optimization problem (NLP) with static variables (finite dimension)

 θ_x θ_u represents the continuous $\underline{x},\underline{u}$ trajectories

shooting versus collocation

- \underline{u} is easy to represent (piecewise polynomials)
 - what about x?
- \Box Collocation: \underline{x} is represented by another polynomials

Polynomials(θ_u)

Polynomials(θ_{x})

MEMMO: Memory of Motion - www.memmo-project.eu

shooting versus collocation

- \underline{u} is easy to represent (piecewise polynomials)
 - what about x?
- \Box Collocation: \underline{x} is represented by another polynomials

Problems:

The solution to $\dot{x}(t) = f(x(t), u(t))$ is not polynomial

The dynamics is only checked at some remote points

shooting versus collocation

- \underline{u} is easy to represent (piecewise polynomials)
 - what about x?
- lacktriangle Shooting: \underline{x} is represented by and integrator and only evaluated sparsely

Polynomials(θ_u)

$$\theta_{x} = (x_{I}, \dots x_{T})$$

shooting versus collocation

- \underline{u} is easy to represent (piecewise polynomials)
 - what about x?
- ullet Shooting: \underline{x} is represented by and integrator and only evaluated sparsely

Problems:

The state is sparsely and approximately known

You may need an accurate integrator (complex+costly)

imo

Shooting as control-only problem

where $x(u_0...u_{t-1}|x_0)$ if a function of \underline{u}

- Unconstrained optimization
- □ The function $\underline{u}(\underline{x})$ is numerically unstable

Shooting, pro and cons

- Easy to implement
 - Integrator, derivatives, Newton-descent
- Side effect: you can focus on efficiency

- Numerically unstable
- $lue{}$ The initial-guess $heta_{xu}$ should be meaningful

At then end, maybe we don't care so much ...

Why make your dynamic program differential?

D.D.P.

Tassa et al., IROS' 12

Multiple views on DDP

1. DDP as iterative LQR

"Next-step" is a nonlinear function

$$\Delta x' = f(x + \Delta x, u + \Delta u) - f(x, u)$$

"Next-step" is a nonlinear function

$$\Delta x' = f(x + \Delta x, u + \Delta u) - f(x, u)$$

Approximate by

$$\Delta X' = f(x, u) + F_x \Delta X + F_u \Delta u - f(x, u)$$

Nonlinear optimal control problem

$$\min_{\substack{\{x\},\{u\}\\ \text{s.t.}}} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T) + l_T(x_T)$$
s.t. $\forall t=0...T-1 \quad x_{t+1} = f(x_t, u_t)$

Linear-Quadradic problem ... solved in Part 1.

$$\min_{\{\Delta x\},\{\Delta u\}} \sum_{t=0}^{T-1} {L_x \choose L_u}^T {\Delta x_t \choose \Delta u_t} + \frac{1}{2} {\Delta x_t \choose \Delta u_t}^T {L_{xx} \choose L_{ux}} {L_{xu} \choose \Delta u_t} + \cdots$$

s.t.
$$\forall t=0...T-1 \Delta x_{t+1} = F_x \Delta x_t + F_u \Delta u_t$$

Algorithm iLQR

```
Initialize with a given trajectory \{x_0\}, \{u_0\} Repeat

Linearize/Quadratize the OCP

Compute the LQR policy

Simulate (roll-out) with LQR regulator

Until local minimum is reached
```


Multiple views on DDP

2. DDP as a 2-pass algorithm

$$V_t = \min_{u_t} l(x_t, u_t) + V_{t+1}(f(x_t, u_t))$$

Backward propagation

$$Q_t = l(x_t, u_t) + V_{t+1}(f(x_t, u_t))$$

Greedy optimization

$$V_t = \min_{u_t} Q_t(x_t, u_t)$$

$$Q = l + V'$$

$$V = \min_{u} Q$$

- Pass 1: back-propagate an approximation of V
 - We can solve Belman for quadratic cost and linear dynamics

Pass 2: forward propagate gains and trajectory

Pass 1: backpropagate an approximation of V

Pass 2: forward propagate gains and trajectory

- Globalization (because nonconvexity)
- Line search
 - $u = u^* + k + K (x-x^*)$
 - \square x' = f(x,u)

- Regularization
 - $Q_{uu} = L_{uu} + F_u^T V_{xx} F_u$
 - $\mathbf{Q}_{\mathbf{q}} = \mathbf{Q}_{\mathbf{q}}^{-1} \mathbf{Q}_{\mathbf{q}}$
 - \square K = Q_{uu}^{-1} Q_{ux}

Multiple views on DDP

3. DDP as sparse SQP

$$\min_{\{x\},\{u\}} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T)$$

s.t.
$$\forall t = 0...T-1 \quad x_{t+1} = f(x_t, u_t)$$

DDP as iterative LQR

- Reminder
- Non linear problem

$$\min_{y} l(y)$$

s.t. $f(y)=0$

Resulting "linearization"

$$\min_{\Delta y} l(y) + L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y$$
s.t.
$$f(y) + F_v \Delta y = 0$$

$$\min_{\Delta y} l(y) + L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y$$
s.t.
$$f(y) + F_y \Delta y = 0$$

Lagrangian on the NLP

$$\mathcal{L}(y,\lambda) = l(y) + \lambda^T f(y)$$
lagrangian

Primal variable Dual variable (multipliers)

$$\min_{\Delta y} l(y) + L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y$$
s.t.
$$f(y) + F_y \Delta y = 0$$

Lagrangian on the QP

$$\mathcal{L}(\Delta y, \lambda) = L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y + \lambda^T (F_v \Delta y - f(y))$$

$$\min_{\Delta y} l(y) + L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y$$
s.t. $f(y) + F_v \Delta y = 0$

Lagrangian on the QP

$$\mathcal{L}(\Delta y, \lambda) = L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y + \lambda^T (F_v \Delta y - f(y))$$

Newton step

$$\begin{pmatrix} L_{yy} & F_y^T \\ F_v & 0 \end{pmatrix} \begin{pmatrix} \Delta y \\ \lambda \end{pmatrix} = \begin{pmatrix} -L_y \\ -f(y) \end{pmatrix}$$

$$\min_{\{\Delta x\},\{\Delta u\}} \sum_{t=0}^{T-1} {L_x \choose L_u}^T {\Delta x_t \choose \Delta u_t} + \frac{1}{2} {\Delta x_t \choose \Delta u_t}^T {L_{xx} \choose L_{ux}} {L_{xu} \choose \Delta u_t} {\Delta x_t \choose \Delta u_t} + \cdots$$

s.t.
$$\forall t=0...T-1$$
 $\Delta x_{t+1} = F_x \Delta x_t + F_u \Delta u_t + f_t$

$$\begin{pmatrix} L_{yy} & F_y^T \\ F_y & 0 \end{pmatrix} \begin{pmatrix} \Delta y \\ \lambda \end{pmatrix} = \begin{pmatrix} -L_y \\ -f(y) \end{pmatrix}$$

$$\min_{\{\Delta x\},\{\Delta u\}} \sum_{t=0}^{T-1} {L_x \choose L_u}^T {\Delta x_t \choose \Delta u_t} + \frac{1}{2} {\Delta x_t \choose \Delta u_t}^T {L_{xx} \choose L_{ux}} {L_{xu} \choose \Delta u_t} {\Delta x_t \choose \Delta u_t} + \cdots$$

s.t.
$$\forall t=0...T-1$$
 $\Delta x_{t+1} = F_x \Delta x_t + F_u \Delta u_t + f_t$

$\int L_{xx}$	L_{xu}	$-I$ F_x^T	$] [\Delta x_0] [L_x]$
·	٠	· ·	
L_{xx}	L_{xu}	$-I$ F_x^T	$ \Delta x_{T-1} $ L_x
L_{xx}		-I	$ \Delta x_T L_x $
L_{ux}	L_{uu}	F_u^T	$ \Delta u_0 L_u $
·	٠	·	
L_{ux}	L_{uu}	F_u^T	$\left \Delta u_{T-1} \right \left L_u \right $
-I			$ \lambda_0 f_0 $
$F_x -I$	F_u		
·. ·.	٠		
$F_x -I$	F_u		$\rfloor \lfloor \lambda_{T-1} \rfloor \qquad \lfloor f_{T-1} \rfloor$

$$\min_{\{\Delta x\},\{\Delta u\}} \sum_{t=0}^{T-1} {L_x \choose L_u}^T {\Delta x_t \choose \Delta u_t} + \frac{1}{2} {\Delta x_t \choose \Delta u_t}^T {L_{xx} \choose L_{ux}} {L_{xu} \choose \Delta u_t} + \cdots$$

s.t.
$$\forall t=0..T-1$$
 $\Delta x_{t+1} = F_x \Delta x_t + F_u \Delta u_t + f_t$

L_{xx}	L_{xu}	$-I$ F_x^T	$] [\Delta x_0]$	$\lceil L_x \rceil$
·	·	· ·		:
L_{xx}	L_{xu}	$-I$ F_x^T	$ \Delta x_{T-1} $	L_x
L_{xx}		-I	Δx_T	L_x
L_{ux}	L_{uu}	F_u^T	$ \Delta u_0 $	L_u
·	٠٠.	··.		;
L_{ux}	L_{uu}	F_u^T	$ \Delta u_{T-1} $	$\mid L_u \mid$
-I			λ_0	f_0
F_x $-I$	F_u			f_1
٠ ٠	٠			
$F_x -I$	F_u			$\lfloor f_{T-1} \rfloor$

What is Crocoddyl good for, and what is beyond?

BEYOND DDP

Multiple shooting

Single shooting "Your control is bad! "

Multiple shooting "Your control is bad! "

Multiple shooting

"Your control is bad! "

"Still bad, but better"

Interpretation of dynamics violation

... and they do not match

Interpretation of dynamics violation

... and the integrator does not reach them

Example of jumping

Thanks Rohan for the illustration

Single Multiple

Constraints: penalty and projection

$$\min_{\{x\},\{u\}} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T)$$

s.t.
$$\forall t=0...T-1 \quad x_{t+1} = f(x_t, u_t)$$

$$\forall t=0..T \ g(x_t,u_t) \leq 0$$

By projection

SQP, active set

By penalty

Interior point, augmented lagrangian

Model predictive control

Closing the loop on the real robot

Importance of the warm start

Start to warm-up your fingers

THE END

Take-home messages

Numerical problems (few/none discrete constraints)

- nonconvex ... warm start needed
- very constrained ... mostly feasibility problems

The formulation/transcription is our central problem

- expert+math knowledge
- keep generalization

Optimal control = reinforcement learning

- train offline
- generalize online

