第6章 时序逻辑电路 Sequential Logic Circuits

§ 6.1 概述 Introduction

```
时序电路

{ 输入 以前状态 记忆 基本单元: FF(逻辑门+反馈线)
```

逻辑 「同步 所有的触发器在CLK 同一边沿触发电路 「异步

时序电路结构:

组合电路+记忆元件

W: 控制输入 -- J, K, D, T

Q: 触发器输出(状态)

外输入
$$X$$
 外输出 Z

控制输入W状态Q

关系:

$$Z = F(X, Q)$$

$$W = H(X, Q)$$

$$Q^{n+1} = G(W, Q^n)$$

按照电路中输出变量是否和输入变量直接相关

时序电路
$$\left\{\begin{array}{ccc} ** \times \mathbb{P}^n \\ ** \times \mathbb{P}^n \end{array}\right.$$
 (Mealy) 输出 $\left\{\begin{array}{ccc} Q^n \\ X \end{array}\right\}$

§ 6.2 同步时序电路分析

Sequential Logic Circuits Analysis

分析:已知电路,描述电路原理及功能.

例1: 分析下图时序逻辑电路

1) 输入 X 输出 Z

控制输入 J_0 , K_0 , J_1 , K_1 状态 Q_1 (MSB), Q_0

2) 方程

输出方程
$$Z = (X \oplus Q_1^n) \cdot Q_0^n$$

$$\begin{cases} J_0 = X \oplus Q_1^n \\ K_0 = 1 \end{cases}$$

驱动方程
$$\begin{cases} J_0 = X \oplus Q_1^n \\ K_0 = 1 \end{cases} \qquad \begin{cases} J_1 = X \oplus Q_0^n \\ K_1 = 1 \end{cases}$$

特征方程
$$\begin{cases} Q_0^{n+1} = J_0 Q_0^n + \overline{K_0} Q_0^n = (X \oplus Q_1^n) \cdot Q_0^n \\ Q_1^{n+1} = J_1 \overline{Q_1}^n + \overline{K_1} Q_1^n = (X \oplus Q_0^n) \cdot \overline{Q_1}^n \end{cases}$$

3) 状态表和状态图

已知:输入 X, Q^n

求:输出 Z, Qⁿ⁺¹

状态表

$$X = 0$$

$$\begin{cases}
X & Q_1^n & Q_0^n & Q_1^{n+1} & Q_0^{n+1} & Z \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{cases}$$

$$X=1$$

$$\begin{cases}
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{cases}$$

$$Q_1^{n+1} = (X \oplus Q_0^n) \cdot \overline{Q_1^n}$$

$$Q_0^{n+1} = (X \oplus \overline{Q_1^n}) \overline{Q_0^n}$$

$$Z = (X \oplus Q_1^n) \cdot \overline{Q_0^n}$$

$$X=0 \begin{cases} Q_1^{n+1} = Q_0^n \cdot \overline{Q}_1^n \\ Q_0^{n+1} = \overline{Q_1^n} \cdot \overline{Q_0^n} = \overline{Q_1^n + Q_0^n} \\ Z = Q_1^n \cdot \overline{Q_0^n} \end{cases}$$

$$X=1 \begin{cases} Q_1^{n+1} = \overline{Q_0^n} \cdot \overline{Q_1^n} \\ Q_0^{n+1} = Q_1^n \cdot \overline{Q_0^n} \\ Z = \overline{Q_1^n} \cdot \overline{Q_0^n} \end{cases}$$

状态图

状态表

X	Q_1^n Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Z
0	0 0	0	1	0
0	0 1	1	0	0
0	1 0	0	0	1
0	1 1	0	0	0
1	00	1	0	1
1	0 1	0	0	0
1	10	0	1	0
1	11	0	0	0

→ 对应一个CLK

输出Z是原状态下的输出。

每条转换线对应真值表的一行

4) 电路功能

状态图主循环:模3加减双向计数器

X=0, M-3 加法计数: Z=1, 进位输出;

X=1, M-3 减法计数: Z=1, 借位输出。

例 2. 分析下图时序电路

无外输入, 无外输出

$$\begin{cases} J_{3} = Q_{2}^{\text{n}} & \begin{cases} J_{2} = Q_{1}^{\text{n}} & \begin{cases} J_{1} = Q_{2}^{\text{n}} + Q_{3}^{\text{n}} \\ K_{3} = \overline{Q_{2}^{\text{n}} \oplus Q_{1}^{\text{n}}} \end{cases} & \begin{cases} K_{1} = \overline{Q_{2}^{\text{n}}} + \overline{Q_{3}^{\text{n}}} & \begin{cases} K_{1} = \overline{Q_{2}^{\text{n}}} + \overline{Q_{3}^{\text{n}}} & \overline{Q_{2}^{\text{n}}} & \overline{Q_{2}^{\text{n}}} \end{cases} \end{cases}$$

$$Q_{3}^{n+1} = J_{3}\overline{Q_{3}^{n}} + \overline{K}_{3}Q_{3}^{n} = Q_{2}^{n}\overline{Q_{3}^{n}} + (Q_{2}^{n} \oplus Q_{1}^{n})Q_{3}^{n}$$

$$Q_{2}^{n+1} = J_{2}\overline{Q_{2}^{n}} + \overline{K}_{2}Q_{2}^{n} = Q_{1}^{n}\overline{Q_{2}^{n}} + Q_{3}^{n}Q_{2}^{n}$$

$$Q_{1}^{n+1} = J_{1}\overline{Q_{1}^{n}} + \overline{K}_{1}Q_{1}^{n} = (Q_{2}^{n} + Q_{3}^{n})\overline{Q_{1}^{n}} + Q_{2}^{n}Q_{3}^{n}Q_{1}^{n}$$

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	1	$\overline{0}$
1	1	0	1	1	1
1	1	1	0	1	1

$$Q_{3}^{n+1}$$
 $\begin{cases} Q_{2}^{n} & Q_{3}^{n} = 0, \\ Q_{2}^{n} \oplus Q_{1}^{n} & Q_{3}^{n} = 1, \end{cases}$
 Q_{2}^{n+1} $\begin{cases} Q_{1}^{n} & Q_{2}^{n} = 0, \\ Q_{3}^{n} & Q_{2}^{n} = 1, \end{cases}$
 Q_{2}^{n+1} $\begin{cases} Q_{2}^{n} + Q_{3}^{n} & Q_{1}^{n} = 0, \\ Q_{2}^{n} Q_{3}^{n} & Q_{1}^{n} = 1, \end{cases}$

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	1	1

000 孤立状态

自启动

课堂练习

分析题图所示的同 步时序电路,画出状 态图。

$$Q_{1}^{n+1} = J_{1}\overline{Q_{1}^{n}} + \overline{K}_{1}Q_{1}^{n}$$

$$= \overline{Q_{1}^{n}} + \overline{Q_{2}^{n}}Q_{1}^{n}$$

$$= \overline{Q_{1}^{n}} + \overline{Q_{2}^{n}}$$

$$= \overline{Q_{1}^{n}} + \overline{Q_{2}^{n}}$$

$$Q_2^{n+1} = T_2 \oplus Q_2^n = Q_1^n \oplus Q_2^n$$

$Q_2^{\text{ n}} Q_1^{\text{ n}}$	$Q_2^{n+1}Q_1^{n+1}$	Z
0 0	0 1	0
0 1	1 1	0
1 0	1 1	0
1 1	0 0	1

§ 6.3 同步时序电路设计

Synchronous Sequential Circuit Design

已知 → 功能或状态图

求 → 电路

设计步骤:

- 1) 确定状态和状态图
- 2) 状态化简
- 3) 状态分配 (编码)
- 4) 选择触发器类型
- 5) 状态方程 Q^{n+1} 及控制输入-J, K, D, T
- 6) 画出电路
- 7) 自启动

例 1. 设计同步5进制加法计数器 (例6.4)

1) 确定状态及状态图

M-5 计数器, 5 个状态: S_0 , S_1 , S_2 , S_3 , S_4

在计数脉冲CLK作用

下,5个状态周期性变换,在 S_4 状态下进位输出Y=1。

2) 状态化简

M-5,5个状态,不须再化简

3) 状态分配、编码

n: 二进制位数 3位

状态表

Q_3^n	$Q_2^n Q_1^n$	Q_3^{n+}	Q_2^{n+1}	Q_1^{n+1}	Y
0	00	0	0	1	0
0	01	0	1	0	0
0	10	0	1	1	0
0	11	1	0	0	0
1	00	0	0	0	1

4) 选择 FF,确定状态方程 Q^{n+1} 及输入

方法 1: 先不确定用哪种触发器

由状态表填卡诺图

状态表

Q_3^n	$Q_2^n Q_1^n$	Q_3^{n+}	Q_2^{n+1}	Q_1^{n+1}	Y
0	00	0	0	1	0
0	01	0	1	0	0
0	10	0	1	1	0
0	11	1	0	0	0
1	00	0	0	0	1

直接填卡诺图

Z_{Q}	$_{3}^{\mathrm{n}}Q_{2}^{\mathrm{n}}$			
$Q_1^{\rm n}$	00	01	11	10
0	0	0	Φ	1
1	0	0	Ф	Ф

$$Q_{2}^{n+1}$$
 $Q_{3}^{n}Q_{2}^{n}$
 Q_{1}^{n}
 $00 \quad 01 \quad 11 \quad 10$
 $0 \quad \mathbf{1} \quad \mathbf{\Phi} \quad \mathbf{0}$
 $1 \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{\Phi} \quad \mathbf{\Phi}$

$$Q_3^{n+1} = Q_2^n Q_1^n$$

$$= D_3$$

$$D_3 = Q_2^n Q_1^n$$

$$Q_2^{n+1} = Q_1^n \overline{Q}_2^n + \overline{Q}_1^n Q_2^n$$

$$= Q_1^n \oplus Q_2^n$$

$$= T_2 \oplus Q_2^n$$

$$T_2 = Q_1^n$$

$$Q_1^{n+1} = \overline{Q}_3^n \overline{Q}_1^n$$

$$= D_1$$
或
$$\begin{cases} J_1 = \overline{Q}_3^n \\ K_1 = 1 \end{cases}$$

$$Z = Q_3^n$$

$$D_3 = Q_2^{\text{n}} Q_1^{\text{n}}$$
 $T_2 = Q_1^{\text{n}}$
$$\begin{cases} J_1 = Q_3^{\text{n}} \\ K_1 = 1 \end{cases}$$
 $Z = Q_3^{\text{n}}$

5) 电路

与门可以省略 同步5进制加法计数器

方法 2: 确定用哪种触发器

4) 选择 FF

选 JK-FFs

5) 状态方程 Q^{n+1} 及控制输入-J,K

状态图

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
	1		0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

JK-FF 驱动表

Q^n	$\rightarrow Q^{n+1}$	J K
0	0	0 ×
0	1	1 ×
1	0	× 1
1	1	\times 0

$Q_2^n \Rightarrow Q_2^{n+1} \quad J_2$

0 0 0

0 0 0

0 0 0

0 1 1

 $1 \qquad 0 \qquad \mathbf{X}$

 $\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$

 $\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$

 $X \quad X \quad X$

得到 $2^{\#}$ -FF 控制输入 J_2 驱动卡诺图

状态图

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

JK-FF 驱动表

Q^n	$\rightarrow Q^{n+1}$	J	K
0	0	0	X
0	1	1	X
1	0	×	1
1	1	×	0

$$Q_1^n \Rightarrow Q_1^{n+1} \quad K_1$$

0	0	X
---	---	---

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

得到 $1^{\#}$ -FF 控制输入 K_1 驱动卡诺图

得到各个触发器控制输入驱动卡诺图及控制输入

$$J_2 = \mathcal{Q}_1^n \mathcal{Q}_0^n$$

$$J_1 = \mathcal{Q}_0^n$$

$$J_0 = \overline{Q_2^n}$$

$$K_1 = \mathcal{Q}_0^n$$

$$K_0 = 1$$

输出卡诺图

状态表

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0 0 1 1	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

$$Y = Q_2^n \qquad \begin{cases} J_2 = Q_1^n Q_1^n \\ K_2 = 1 \end{cases}$$

$$\begin{cases} J_1 = Q_0^n \\ K_1 = Q_0^n \end{cases} \begin{cases} J_0 = \overline{Q_2^n} \\ K_0 = 1 \end{cases}$$

$$\begin{cases} J_0 = \mathcal{Q}_2^n \\ K_0 = 1 \end{cases}$$

例 2. 设计 M-6 减法计数器

6个状态

直接用3位数编码

借位输出 Z

/Z

$Z_{Q_3^{\mathbf{n}}Q_2^{\mathbf{n}}}$ $Q_1^{\mathbf{n}} = 00 01 11 10$					
$\begin{bmatrix} \mathbf{z}_1 \\ 0 \end{bmatrix}$	1	0	Ф	0	
1	0	0	Ф	0	

$$Q_{3}^{n+1}Q_{2}^{n}Q_{2}^{n}$$

$$Q_{1}^{n}Q_{2}^{n}Q_{2}^{n}$$

$$0 \quad 1 \quad 0 \quad \Phi \quad 0$$

$$1 \quad 0 \quad \Phi \quad 1$$

Q_1^{n+1}	3 ⁿ Q2 ⁿ	01	11	10
Q_1^n	1	1	Φ	10
1	0	0	Φ	0

$$Q_3^{n+1} = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + Q_3 Q_1 \qquad Q_2^{n+1} = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$D_3 = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + Q_3 Q_1$$

$$Q_2^{n+1} = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$D_2 = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$Q_1^{n+1} = \overline{Q_1}$$

$$D_1 = \overline{Q_1}$$

$$Z = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1}$$

电路图略

例 3. (例6.5)

设计一个串行数据检测器。该检测器有一个输入端X。电路的功能是对输入信号进行检测。当连续输入三个1(以及三个以上1)时,该电路输出Y=1,否则输出Y=0。

1)根据设计要求,设定状态,画出状态转换图。

 S_0 —初始状态或没有收到1时的状态;

 S_1 —收到一个1后的状态;

 S_2 —连续收到两个1后的状态;

 S_3 —连续收到三个1(以及三个以上1)后的状态。

X=1, 收到一个"1"

 S_0 —初始状态或没有收到1时的状态;

 S_1 —收到一个1后的状态;

 S_2 —连续收到两个1后的状态;

 S_3 —连续收到三个1(以及三个以上1)后的状态。

X=1, 收到一个"1"

输入三个1(以及三个以上1)时,输出Y=1

2) 状态化简

状态化简: 合并等效状态

等效状态:

在相同的输入条件下,输出相同、次态也相同的状态。 S_2 和 S_3 是等效状态,将 S_2 和 S_3 合并为 S_2

3) 状态分配、编码

Set
$$S_0 = 00$$

 $S_1 = 01$ 编码可以
 $S_2 = 11$

编码后的状态图

状态表

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Φ	Φ	Φ
1	1	1	1	1	1

4) 选触发器及控制输入

$$Q_1^{n+1} = XQ_0^n = D_1 \quad D_1 = XQ_0^n$$

$$Q_0^{n+1} = X = D_0 \qquad D_0 = X$$

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Φ	Φ	Φ
1	1	1	1	1	1

$$Y = XQ_1^n$$

5) 电路

$$D_1 = XQ_0^n \quad D_0 = X \qquad Y = XQ_1^n$$

$$Q_1^{n+1} = XQ_0^n$$

$$Q_0^{n+1} = X$$

$$Y = XQ_1^n$$

6) 自启动

从电路的状态图分析

可以自启动

但其功能错误, 输出应设置为0,才符合题意

检测 连续输入三个及以上个1时,电路输出Y=1。

自启动

让110对应的输出为0.

状态表

$X Q_1^n Q_0^n$	Q_1^{n+1}	Q_0^{n+1}	Y
0 0 0	0	0	0
0 0 1	0	0	0
0 1 0	0	0	0
0 1 1	0	0	0
1 0 0	0	1	0
1 0 1	1	1	0
1 1 0	0	1	0
1 1 1	1	1	1

Y X Q	2^n_1 00	01	11	10
0	0	0	0	0
1	0	0	1	0

$$Y = XQ_1^nQ_0^n$$

既实现自启动,也符号题意.

可以在最初设计时就考虑自启动问题.

例 4. 按照下面状态图设计电路 (例6.6)

确定状态及状态表

状态数 ^{确定} FF 个数

 $n \text{ FFs } \rightarrow 2^n$ 状态

 $2^{n-1} \le$ 状态数 $\le 2^n \to n$ FFs

 $3 < 2^2$ 需要2个FF

状态表 (根据状态图)

X/Z

X	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0
0	0	1	ф	ф	ф
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	ф	ф	ф
1	1	0	1	1	0
1	1	1	0	0	1

选择 FF (K-map, 圈 1)

2# FF

$$Q_2^{n+1} = \overline{X}Q_2^n + X\overline{Q_1}^n$$

2 个圈, 选择 JK-FF

$$Q_2^{n+1} = J_2 \bar{Q}_2^n + \bar{K}_2 Q_2^n$$

找到
$$J_2 = ?$$
 $K_2 = ?$

不能按上面方法圈,必须圈成 $Q_2^{n+1} = \bar{Q}_2^{n} + \bar{Q}_2^{n}$

$$Q_{2}^{n+1} = X\overline{Q}_{2}^{n} + (\overline{X} + \overline{Q}_{1}^{n})Q_{2}^{n}$$

$$= X\overline{Q}_{2}^{n} + \overline{X}Q_{1}^{n}Q_{2}^{n}$$

$$\therefore \begin{cases} J_{2} = X \\ K_{2} = XQ_{1}^{n} \end{cases}$$

能找到系数(控制变量)时 尽量化简;找不到系数时,牺牲 化简也要找到系数。

1# FF

X	Q_2^n	Q_1^n	$Q_2^{n+1}Q_1^{n+1}Z$
0	0	0	0 0 0
0	0	1	ффф
0	1	0	1 0 0
0	1	1	1 1 0
1	0	0	1 0 0
1	0	1	ффф
1	1	0	1 1 0
1	1	1	0 0 1

JK-FF

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n$$
$$= X Q_2^n \overline{Q}_1^n + \overline{X} Q_1^n$$

$$\therefore \begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

输出 Z

$$Z = XQ_1^n$$

电路

$$\begin{cases}
J_2 = X \\
K_2 = XQ_1^n
\end{cases}$$

$$\begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

讨论: 01 状态

分析卡诺图 K-map

$$XQ_2^nQ_1^n = 001, (Z=0)$$

Next state $Q_2^{n+1}Q_1^{n+1} = 01$,

$$XQ_2^nQ_1^n = 101$$
时,(Z=1)

Next state $Q_2^{n+1}Q_1^{n+1} = 10$,

实现自启动

Z X Q	2_{2}^{n} 00	01	11	10
O	0	0	0	0
1	0	0	1	1

但是要分析输出的物理意义(即电路功能)是否正确。

此电路为可控模3加 法计数器。

X=0,保持原状态;

X=1,作加法计数。

输出Y=1,为进位输出。

显然自启动之后电路功能出现错误。

应该将X=1时01状态的输出设为0。

在设计电路时

X=0,保持原状态; X=1,作加法计数 (从0开始)。

在填状态表时不能填↓

状态表

X	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	1	1	0
1	1	1	0	0	1

才能符合电路要求

例5. 设计一个自动售饮料机的逻辑电路。它的投币口每次只能投入一枚五角或一元的硬币。投入一元五角钱硬币后,机器会自动给出一杯饮料;投入两元(两个一元)硬币后,在给出饮料的同时找回一枚五角硬币。

解:

输入: $\begin{cases} 投入 & ¥1.0, A=1 \\ 投入 & ¥0.5, B=1 \end{cases}$ 输出: $\begin{cases} 出饮料, Y=1 \\ 找钱, Z=1 \end{cases}$

状态:

状态

 $(S_0: 初始 (未投币))$

3个 S₁:投入¥0.5,

S₂:投入 ¥1.0 (一个 ¥1.0 或两个 ¥0.5)

再投入 ¥0.5, 返回 S_0 , 输出 Y=1, Z=0;

再投入¥1.0, 返回 S_0 , 输出 Y=1, Z=1 (找回 ¥0.5). 多输入,多输出

42

AB/YZ

A: Y1.0

B: Y = 0.5

Y: 饮料

Z:找钱

 S_0 :初始

 $S_1 : \Psi 0.5$

 $S_2: Y1.0$

 S_0 : 投入 ¥0.5, S_1 S_0 : 投入 ¥1.0, S_2

S₁:投入¥0.5, S₂
S₁:投入¥1.0, S₀
饮料

S₂:投入¥0.5, S₀ 饮料

S₂:投入¥1.0, S₀ 饮料和 找钱

$Q_1^n Q_0^n$ $\left\{egin{array}{l} \mathbf{S_0} ightarrow \mathbf{00} \ & \mathbf{S_1} ightarrow \mathbf{01} \ & \mathbf{S_2} ightarrow \mathbf{10} \end{array} ight.$

状态表:

$A B Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1} Y Z$
0 0 0 0	0 0 0 0
0 0 0 1	0 1 0 0
0 0 1 0	1 0 0 0
0 0 1 1	ФФФФ
0 1 0 0	0 1 0 0
0 1 0 1	1 0 0 0
0 1 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 1 1 1	ФФФФ
1 0 0 0	1 0 0 0
1 0 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 0 1 0	$0 \ 0 \ 1 \ 1$
1 0 1 1	ФФФФ
1 1 0 0	ФФФФ
1 1 0 1	ФФФФ
1 1 1 0	ФФФФ
1 1 1 1	ФФФФ

$$Q_1^{n+1} = BQ_0 + A\overline{Q}_1\overline{Q}_0 + \overline{A} \cdot \overline{B}Q_1$$

$$Y = AQ_0 + AQ_1 + BQ_1$$

$$Q_0^{n+1} = B\overline{Q}_1 \cdot \overline{Q}_0 + \overline{A} \cdot \overline{B}Q_0$$

$$Z = AQ_1$$

用 D-FF

$$D_{1} = BQ_{0} + A\overline{Q}_{1}\overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{1}$$

$$D_{0} = B\overline{Q}_{1} \cdot \overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{0}$$

$$Y = AQ_0 + AQ_1 + BQ_1$$
$$Z = AQ_1$$

由电路得到状态图

在电路处于"11"状态时,

若 AB = 00 (无输入), $Q_1Q_0 = 11$, 电路不能自启动;

若AB = 01 或 10, 电路可以自启动, 但是找钱系统出错;

A: Y1.0

B: Y0.5

Y: 饮料

Z:找钱

所以,电路初始工作时,应首先将 \overline{R}_D 设置为低电平,电路状态从"00"开始.

电路状态图应设计成:

状态表:

$oldsymbol{A}$	B	Q_1^n	Q_0^n	Q_1^n	^{+1}Q	0^{n+1}	YZ
0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	1	0	0	0
0	0	1	1	1	1	0	0
0	1	0	0	0	1	0	0
0	1	0	1	1	0	0	0
0	1	1	0	0	0	1	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	0	1	1
1	0	1	1	1	0	0	0
1	1	0	0	Φ	Ф	Φ	Þ
1	1	0	1	Φ	Ф	Φ	Þ
1	1	1	0	Φ	Ф	Φ	Þ
1	1	1	1	Φ	Ф	Φ	Þ

§ 6.4 计数器 Counter

计数器:记录CLK个数的电路

6.4.1 集成计数器 74161

74161: 二进制同步模16加法计数器, 异步清0功能.

计数器74161 电路

符号

IEEE

输出 $Q_3Q_2Q_1Q_0$

数据输入 $D_3D_2D_1D_0$

异步清零 CLR

控制端 $ENT(CT_T)$, $ENP(CT_P)$

预置端 \overline{LOAD} (\overline{LD})

进位输出 RCO (CO)

74161 功能表

CLR	LD ENT ENP CLK		功能
0	XXXX	XXXX	Direct set 0
1	0 X X †	$D_0D_1D_2D_3$	Load 预置
_	1 0 X X 1 X 0 X	X X X X X X X X	保持 <i>RCO</i> =0 保持
1	1 1 1 1	XXXX	M-16 计数

 $RCO = ENT \cdot Q_3 \cdot Q_2 \cdot Q_1 \cdot Q_0$ 计数时,ENT = 1, 当 $Q_3Q_2Q_1Q_0 = 1111$ 时,(M-16) RCO = 1. 其他时刻,RCO = 0 $Q_3Q_2Q_1Q_0 = 0000$ $Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0$

例1: 用 74161 实现模11加法计数器 (例6.7)

方法1: 预置归0法 (\overline{LD})

$$ENT = ENP = 1$$
, $\overline{CLR} = 1$, $D_3D_2D_1D_0 = 0000$

最大状态 1010 最大状态中1端连入一个与非门

输出 $\rightarrow LD$

$$0 \rightarrow 9$$
,与非门 = 1 (\overline{LD} =1),计数

 10^{th} *CLK* 到来, $Q_3Q_2Q_1Q_0=1010$, $\overline{LD}=0$

下一个 CLK (11th) 到来, $Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0 = 0000$

方法 2: 预置补数法

0000~1111 16 个状态

0000~1010 11 个状态

5 (0101) ~ 15 (1111) 11 个状态

状态图

课堂练习:

用预置补数法接模11 计数器。要求初始状 态为3.

方法 3: 反馈归 0 法 (CLR)

$$ENT = ENP = \overline{LD} = 1$$
 $D_3D_2D_1D_0 = \Phi \Phi \Phi \Phi$
 $Q_3Q_2Q_1Q_0 = 1011$
与非门 $\rightarrow \overline{CLR}$

状态图

方法1最好,用 \overline{LD} 端归0。

用虚线连接不稳定状态

例 2: 用74161 设计模 24 计数器

最大状态: 23 (10111)

两个 74161

例 3: 求下图计数器电路的模值.

M = ?

CLK

终点: 01010100 = 84

补: 01001010 = 74

M = 84 - 74 + 1 = 11

6.4.2 IC 计数器 74160 (M-10)

(8421BCD码同步加法计数器)

模10, 其它与74161相同. 异步清0

$$RCO = ENT \cdot Q_3 \cdot Q_0$$

当
$$Q_3Q_2Q_1Q_0 = 1001$$
, $RCO = 1$

例: 用74160 设计一个 60 s 计数器. 59

6.4.3 IC 计数器 74163 (M-16)

同步清0, 其它与74161相同(模16)

图中: 5CT=0 在 5 端有效时清0

74163 功能表

CLR	LD ENT ENP CLK	$ D_0 D_1 D_2 D_3 $	功能
0	$X X X \uparrow$	XXXX	Direct set 0
1	0 X X †	$D_0D_1D_2D_3$	Load 预置
1	1 0 X X		保持 RCO=0
1	1 X 0 X	XXXX	保持
1	1 1 1 1	XXXX	M-16 计数

CLK有效边沿

同步清零0: 当CLR = 0 时,下一个 CLK 到达,

$$Q_3Q_2Q_1Q_0 = 0000$$

例: 用74163的同步清零功能设计一个模11计数器. (*CLR*)

最大状态 1010

没有毛刺

用 LD 端, 与74161相同, 初始为0000.

6.4.4 IC 计数器 74290

1.74290 功能

模 2-5-10 异步计数器

框图

两个独立的下降沿FF

M-2 计数器,输出 Q_0

M-5 计数器, 输出 $Q_3Q_2Q_1$

功能

(1) 异步清0

$$\begin{cases} S_{9(1)} \cdot S_{9(2)} = 0 & \text{(low)} \\ R_{0(1)} = R_{0(2)} = 1 & \text{(high)} \end{cases}$$

$$Q_3 Q_2 Q_1 Q_0 = 0000$$

(2) 异步置9

$$\stackrel{\text{\tiny 4}}{=} S_{9(1)} = S_{9(2)} = 1$$

$$Q_3Q_2Q_1Q_0 = 1001$$

(3) 计数

$$\begin{cases} S_{9(1)} \cdot S_{9(2)} = 0 \\ R_{0(1)} \cdot R_{0(2)} = 0 \end{cases}$$

同时满足,CLK下降沿实现计数

2.74290应用

(1) 模 2 计数器

$$\begin{cases} S_{9(1)} \bullet S_{9(2)} = 0 \\ R_{0(1)} \bullet R_{0(2)} = 0 \end{cases}$$

CLK 从 CLK_A 接入, Q_0 输出,实现 模 2加计数

(2) 模 5 计数器

$$\begin{cases} S_{9(1)} \cdot S_{9(2)} = 0 \\ R_{0(1)} \cdot R_{0(2)} = 0 \end{cases}$$

CLK 从 CLK_B 接入, $Q_3Q_2Q_1$ 输出,实现 模 5加计数

两种用法完全独立。构成更大模数时,需外接线连接

(3) 8421BCD 码模10 计数器

$$S_{9(1)} \cdot S_{9(2)} = 0$$
, $R_{0(1)} \cdot R_{0(2)} = 0$
 CLK 接 CLK_A , $Q_0 \longrightarrow CLK_B$

在 Q_0 下降沿(CLK_B CLK_A).

$$CLK_{A}$$
 CLK_{B} CLK_{B}

触发 M-5 计数

输出位权

 $Q_3Q_2Q_1Q_0:8421$

(4) 8421 BCD码任意进制计数器

"直接置 $0 R_0$ "高电平清 0

例:M-7 计数器

- ②接:8421 BCD 模10

$$Q_0 \rightarrow CLK_B$$

- ④ 输出 $Q_3Q_2Q_1Q_0 = 0111$ \rightarrow 与门
- ⑤ 与门 $\rightarrow R_0$ (直接清0)

当 $Q_3Q_2Q_1Q_0$ = 0111时, 立即清0,0111只是一 闪,出现 毛刺

主循环7个状态: 0000~0110.

LS290 $R_{0(1)}$ **CTR** & CT=0& Z3**CKA** DIV₂ CLK 3CT=1DIV5 CKB 3CT=48421 BCD

不稳定状态用虚线连接

(5) 8421 BCD 级联计数器

当计数模值>10

74290 级联

例: 用74290 设计

一个 8421BCD

码模 46 计数器.

8421 十进制

进位

个位: 6 (0110)

十位: 4(0100)

电路连接方式 也可以

注意: 进位

波形:

利用 Q_3 第10个CLK下降沿触发十位片的 CLK_A (不用连 Q_0Q_3)

§ 6.5 寄存器 Registers

寄存器用于寄存一组二进制代码。主要由触发器构成。

一个触发器能够存储 1 位二进制代码,所以用 n 个触发器组成的寄存器可以存储一组 n 位二进制信息。

寄存器广泛地应用于各类数字系统和数字计算机中。 移位型寄存器在数字通信中的应用极其广泛。如在计 算机串行数据通信中,需要发送的信息总是先放在发 送端的移位寄存器中,然后由移位寄存器将其逐位移 出。接收端的寄存器逐位从线路上接收信息,收完一 个完整的数据后才从移位寄存器中取走数据。

6.5.1 寄存器分类

Classifications of Registers

1. 并入/并出型寄存器

例如,4个 D-FFs 构成寄存器

74LS175

在CLK 正边沿, 4 个数据并行输入,状态 $Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0$ 并行输出

2. 左移串入/串出型寄存器

一个CLK到来, 左移一位.

例:

初始 $Q_3Q_2Q_1Q_0 = 1001$

串入: 1011 (D_{SL}),

CLK	串出	Q ₃ Q ₂ Q ₁ Q ₀ 串入
1	1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2	0	0 1 1 0
3	1	1101/
4	1	1 0 1 1

4 个CLK后, $Q_3Q_2Q_1Q_0 = 1011$

3. 左移串入/并出型寄存器

并行输出

4. 左移环型寄存器

串出端与串入端相连

各FF 输出接彩灯

当输出为0001时,接高电平的灯亮

灯亮时间:

取四位中只有一个1的状态为主循环

环形计数器

注意: n FFs $\rightarrow n$ 个状态 $\rightarrow \notin n$

波形图

5. 左移扭环寄存器

扭环计数器 $n \text{ FF} \rightarrow \text{ Ø } 2n$

6. 右移串入/串出寄存器

7. 右移串入/并出寄存器

8. 右移环型寄存器

9. 右移扭环寄存器

扭环计数器

6.5.3 集成寄存器 74194 IC Register 74194

多功能寄存器: 四位并行存取双向移位寄存器

电路 P. 139 符号

$$-D_{SR} & D_{0} & Q_{1} & Q_{2} & Q_{3} & M_{1} \\ -D_{SL} & 74194 & M_{0} \\ \hline CLK & D_{0} & D_{1} & D_{2} & D_{3} \\ \hline & & & & & & & \\ \hline \end{pmatrix}$$

$$D_{
m SR}$$
在 Q_0 一侧, $D_{
m SL}$ 在 Q_3 一侧 $Q_3Q_2Q_1Q_0$ 数据输出 $D_3D_2D_1D_0$ 数据输入 $D_{
m SR}$ $D_{
m SL}$ 串入 $1 o$ shift right $2\leftarrow$ shift left

 $\overline{CLR} = 0$, 异步清0

CLK 正边沿触发

 $M_1 M_0$ 控制 (模式), M_1 高位

 M_1M_0 组成4种模式

74194 功能

$M_1 M_0$	功能			
0 0	保持			
0 1	右移			
1 0	左移			
1 1	并入			

 $Q_0 Q_1 Q_2 Q_3$ $\uparrow \uparrow \uparrow \uparrow$ $D_0 D_1 D_2 D_3$

实现前面9种功能

注: $Q_0Q_1Q_2Q_3$ 只有排列顺序,没有高、低位。

(1) 并入/并出

(2) 左移串入/串出

串入 shift left

经过4个触发器

(3) 左移串入/并出

串入 shift left

(4) 左移环形

$$Q_0 \! o \! D_{
m SL}$$

先置 M_1 =1, M_0 =1, 在 CLK 上升沿并入, $Q_0Q_1Q_2Q_3$ = $D_0D_1D_2D_3$ = 0001

再置 M_0 =0, CLK 边 沿到来 \rightarrow 左移 \rightarrow M-4 计数

(5) 左移扭环寄存器

 $D_0D_1D_2D_3$ 接 Φ ,都可以构成扭环

(6) 右移串入/串出 寄存器

(7) 右移串入/并出 寄存器

(8) 右移环形寄存器

模 4 计数器

(9) 右移扭环寄存器

$$\overline{Q}_3$$
 接 D_{SR}
 $M_0 = 1$,
 $M_1 = \begin{cases} 1, # \lambda \\ Q_0 Q_1 Q_2 Q_3 = D_0 D_1 D_2 D_3 \\ 0, 扭环 \end{cases}$

 $D_0D_1D_2D_3$ 接 Φ ,都可以构成扭环

只有两种状态图 $Q_0Q_1Q_2Q_3$

注意: 从并入的 $D_0D_1D_2D_3$ 开始循环 模 8 计数器

例1. 用74194 设计模 6 环形计数器

右移

左移

例2. 用74194设计模6 扭环计数器,画出状态图

3 FFs

Shift left

例3:分析如图所示的芯片功能,画出状态图。

§ 6.6 序列信号发生器 Series Signal Generator

计数器和寄存器的应用

序列信号:一组特定的循环数字信号

序列信号发生器:

Counter-type 计数型
Shift-type 移位型

6.6.1 计数型序列信号发生器 Counter-type Series Signal Generator

例:

设计一个产生7位序列信号 1010110 的序列信号 发生器(时间顺序:从左到右).

结构:

M-7 计数器 → 7位 → 74161
 8-1 MUX → 选择 1010110 → 74151

波形

例2. 用序列信号发生器实现数据并/串转换

Counter and MUX

例3.分析下图电路.

计数器从000 到100 循环, 相应的输出为 01010.

74161: M-5 计数器

(000)~(100) (110)毛刺

$$Z = Q_0 \cdot \overline{Q}_2$$

输出为原状态的输出

状态表

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Z			
		0	0	0 1	1	0			
0	0	1	0	1	0	1			
0	1	0	0	1	1	0			
0	1	1	1	0	0	1			
1	0	0	0	0	0	0			

电路功能:产生01010序列信号的序列信号发生器.

作业:

6.2 6.3

6.8 6.9

6.12 6.15

6.19 6.21