HOMEWORK 3

In the next 4 problems, use the Schwarz reflection principle.

- **1.** Find a conformal mapping, transforming the domain $D := \{|z| > 1\} \setminus ([-2, -1] \cup [i, 2i] \cup [-2i, -i])$ onto Π^+ .
- **2.** Find a conformal mapping, transforming the domain $D:=\{-2<\operatorname{Im} z<2\}\setminus\{\operatorname{Im} z=\pm 1,\operatorname{Re} z\leq 0\}$ onto $\Pi^+.$
- **3.** Find a conformal mapping, transforming the domain $D := \overline{\mathbb{C}} \setminus ([0,1] \cup [0,e^{2\pi i/3}] \cup [0,e^{4\pi i/3}])$ onto Π^+ .
- **4.** Determine the group Aut (Ω) , where $\Omega = \{1 < |z| < 2\}$ (you can use the Caratheodory Theorem for admissible domains).
- **5.** Find the index w.r.t. 0 of the parameterized curve f(C), where $f(z) = z^3 + 2z$ and C is the standardly parameterized circle $\{z = e^{it}, 0 \le t \le 2\pi\}$.
- **6.** How many roots (with multiplicities) does the equation $z^6 6z + 10 = 0$ have in the domain $\{|z| > 2\}$?
- 7. Show that the equation $z^4 + z^3 4z + 1 = 0$ has exactly 3 roots in the annulus $\{1 < |z| < 2\}$.
- **8.** Prove that the equation $\tan z = z$ has only real roots.