Point count of the variety of modules over the quantum plane over a finite field

Yifeng Huang

University of Michigan

Dec. 1, 2021

Background

Given a field $\mathbb F$ and $n\geq 0$, define the n-th commuting variety over F as

$$K_{1,n}(\mathbb{F}) := \{ (A, B) \in \operatorname{Mat}_n(\mathbb{F}) \times \operatorname{Mat}_n(\mathbb{F}) : AB = BA \}.$$

(The meaning of the notation will be clear later.)

What's known:

- When $\mathbb{F}=\mathbb{C}$, the commuting variety $K_{1,n}(\mathbb{C})$ is a complex algebraic variety. Motzkin and Taussky (1955) and Gerstenhaber (1961) showed that $K_{1,n}(\mathbb{C})$ is irreducible.
- When $\mathbb{F} = \mathbb{F}_q$, the finite field of q elements, the set $K_{1,n}(\mathbb{F}_q)$ is a finite set. Feit and Fine (1960) gave its cardinality by the formula:

$$\sum_{n=0}^{\infty} \frac{|K_{1,n}(\mathbb{F}_q)|}{(q^n-1)(q^n-q)\dots(q^n-q^{n-1})} x^n = \prod_{i,j>1} \frac{1}{1-x^i q^{2-j}}.$$
 (1)

Background

A quantum deformation of the commuting variety has also been considered. Let ζ be a nonzero element of \mathbb{F} , define the n-th ζ -commuting variety as

$$K_{\zeta,n}(\mathbb{F}) := \{ (A,B) \in \operatorname{Mat}_n(\mathbb{F}) \times \operatorname{Mat}_n(\mathbb{F}) : AB = \zeta BA \}.$$

If $\zeta = 1$, then it simply becomes the commuting variety, hence the notation $K_{1,n}$ for the commuting variety.

Efforts have been to spent to extend the work of Motzkin, Taussky and Gerstenhaber to the ζ -commuting variety:

- Chen and Wang (2018) described the irreducible components of the anti-commuting variety $K_{-1,n}(\mathbb{C})$. There are more than one, unlike the $\zeta=1$ case.
- ullet Chen and Lu (2019) further extended the above result to general ζ .

Main result

We give a direct generalization of Feit-Fine's formula.

Theorem 1 (H., 2021).

Let ζ be a nonzero element of \mathbb{F}_q , and let m be the smallest positive integer such that $\zeta^m=1$. Then

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{(q^n-1)(q^n-q)\dots(q^n-q^{n-1})} x^n = \prod_{i=1}^{\infty} F_m(x^i;q),$$

where

$$F_m(x;q) := \frac{1 - x^m}{(1 - x)(1 - x^m q)} \cdot \frac{1}{(1 - x)(1 - xq^{-1})(1 - xq^{-2})\dots}.$$

When $\zeta=1$, we have m=1, so $F_1(x^i;q)=\prod_{j\geq 1}\frac{1}{1-x^iq^{2-j}}$ and we recover Feit–Fine.

Variety of modules

The commuting variety $K_{1,n}(\mathbb{F})$ parametrizes and classifies finite- \mathbb{F} -dimensional modules over the polynomial ring $\mathbb{F}[X,Y]$. So $K_{1,n}(\mathbb{F})$ is also called the **variety of modules** over $\mathbb{F}[X,Y]$. To specify an $\mathbb{F}[X,Y]$ -module with underlying space \mathbb{F}^n , it suffices to specify the x-action $A:\mathbb{F}^n\to\mathbb{F}^n$ and the y-action $B:\mathbb{F}^n\to\mathbb{F}^n$ under the constraint AB=BA. This constraint is because x and y commmute in $\mathbb{F}[X,Y]$.

Similarly, the ζ -commuting variety parametrizes finite- \mathbb{F} -dimensional modules over the associative algebra $\mathbb{F}\{X,Y\}/(XY-\zeta YX)$. This algebra is called the **quantum plane**, and is considered as a quantum deformation of $\mathbb{F}[X,Y]$.

Remarks on Theorem 1

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{(q^n-1)(q^n-q)\dots(q^n-q^{n-1})} x^n = \prod_{i=1}^{\infty} F_m(x^i;q),$$

$$F_m(x;q) := \frac{1-x^m}{(1-x)(1-x^mq)} \cdot \frac{1}{(1-x)(1-xq^{-1})(1-xq^{-2})\dots}.$$

- The cardinality of $K_{\zeta,n}(\mathbb{F}_q)$ depends only on the order of ζ as a root of unity of \mathbb{F}_q . This is expected.
- The denominator $(q^n-1)(q^n-q)\dots(q^n-q^{n-1})$ is precisely the size of $\mathrm{GL}_n(\mathbb{F}_q)$. This is the natural denominator in this type of generating function. In fact, the coefficient $|K_{\zeta,n}(\mathbb{F}_q)|/|\mathrm{GL}_n(\mathbb{F}_q)|$ is the number of n-dimensional modules over the quantum plane up to isomorphism, each measured with a weight of 1/(size of automorphism group).
- Bavula (1997) classified simple modules over the quantum plane;
 Theorem 1 should encode statistical information about this classification.

Main result: further breakdown

We now state a refinement of Theorem 1. Let

$$U_{\zeta,n}(\mathbb{F}_q) := \{(A,B) \in \operatorname{GL}_n(\mathbb{F}_q) \times \operatorname{Mat}_n(\mathbb{F}_q) : AB = \zeta BA\},\$$

and

$$N_{\zeta,n}(\mathbb{F}_q):=\{(A,B)\in \operatorname{Nilp}_n(\mathbb{F}_q)\times \operatorname{Mat}_n(\mathbb{F}_q): AB=\zeta BA\}.$$

It turns out that the varieties $U_{\zeta,n}(\mathbb{F}_q)$ and $N_{\zeta,n}(\mathbb{F}_q)$ are building blocks of $K_{\zeta,n}(\mathbb{F}_q)$, in the sense that

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \left(\sum_{n=0}^{\infty} \frac{|U_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right) \left(\sum_{n=0}^{\infty} \frac{|N_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right)$$

Recall that the left-hand side is the content of Theorem 1.

Main result: further breakdown

Theorem 2 (H., 2021)

Let m be the order of ζ . Then

$$\sum_{n=0}^{\infty} \frac{|U_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \prod_{i=1}^{\infty} G_m(x^i; q),$$

where

$$G_m(x;q) := \frac{1 - x^m}{(1 - x)(1 - x^m q)}.$$

$$\sum_{n=0}^{\infty} \frac{|N_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \prod_{i=1}^{\infty} H(x^i; q),$$

where

$$H(x;q) := \frac{1}{(1-x)(1-xq^{-1})(1-xq^{-2})\dots}.$$

Remarks on Theorem 2

Theorem 2 can be interpreted as that in the formula

$$F_m(x;q) := \frac{1 - x^m}{(1 - x)(1 - x^m q)} \cdot \frac{1}{(1 - x)(1 - xq^{-1})(1 - xq^{-2})\dots}$$

related to the count of $\{(A,B):AB=\zeta BA\}$, the factor $\frac{1-x^m}{(1-x)(1-x^mq)} \text{ is the contribution of invertible A, while the factor } \frac{1}{(1-x)(1-xq^{-1})(1-xq^{-2})\dots} \text{ is the contribution of nilpotent A.}$

Note that the latter does not depend on m, so $|N_{\zeta,n}(\mathbb{F}_q)|$ does not depend on $\zeta.$

Ideas of proof: decomposition

- Given $A, B \in \operatorname{Mat}_n(\mathbb{F}_q)$ such that $AB = \zeta BA$, by Fitting's lemma, there is a unique direct sum decomposition $\mathbb{F}_q^{\ n} = V \oplus W$ such that $A(V) \subseteq V, A(W) \subseteq W$, $A|_V$ is invertible, and $A|_W$ is nilpotent.
- It turns out that B must satisfy $B(V) \subseteq V, B(W) \subseteq W$. All we need in the proof is that $\zeta \neq 0$.
- This allows $K_{\zeta,n}(\mathbb{F}_q)$ to be "decomposed" into $U_{\zeta,n}(\mathbb{F}_q)$ (requiring invertible A) and $N_{\zeta,n}(\mathbb{F}_q)$ (requiring nilpotent A), in the sense of

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \left(\sum_{n=0}^{\infty} \frac{|U_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right) \left(\sum_{n=0}^{\infty} \frac{|N_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right)$$

Ideas of proof: nilpotent part

- To compute $|N_{\zeta,n}(\mathbb{F}_q)|=|\{(A,B):AB=\zeta BA,A \text{ nilp}\}|$, we first fix A and count the number of B.
- The number of B only depends on the similarity class of A, so we may assume A is in the Jordan canonical form.
- ullet The general form of B can then be determined entry-wise.
- In particular, the number of B does not depend on ζ (even if $\zeta = 0$).

Ideas of proof: invertible part

- To compute $|U_{\zeta,n}(\mathbb{F}_q)| = |\{(A,B) : AB = \zeta BA, A \text{ invertible}\}|$, we first fix B and count the number of A. (Opposite to the nilpotent case!!)
- Not every B contributes. In order for the number of A to be nonzero, we must have that B is similar to ζB (by the definition of similarity).
- Using the standard orbit-stabilizer argument, it suffices to count the number of similarity classes of B such that B is similar to ζB .
- This is where m, the order of ζ , matters. The similarity class corresponds to a finite sequence (g_1,g_2,\dots) of monic polynomials over \mathbb{F}_q such that g_i divides g_{i+1} . Requiring B to be similar to ζB is equivalent to requiring every g_i in the sequence of polynomials associated to B to be of the following form: $t^d + c_1 t^{d-m} + c_2 t^{d-2m} + \dots$

An interdependence phenomenon

- The numbers $|U_{\zeta,n}(\mathbb{F}_q)|$ and $|N_{\zeta,n}(\mathbb{F}_q)|$ look like two independent building blocks of $|K_{\zeta,n}(\mathbb{F}_q)|$.
- However, in the commutative case $\zeta=1$, the data of $|U_{1,n}(\mathbb{F}_q)|$ for all n and $|N_{1,n}(\mathbb{F}_q)|$ for all n recover each other.
- The reason is from (commutative) algebraic geometry. This idea was used in an alternative proof of Feit-Fine formula given by Bryan and Morrison (2015). I will explain it in the next few slides.
- For general ζ , the number $|N_{\zeta,n}(\mathbb{F}_q)|$ does not seem to determine $|U_{\zeta,n}(\mathbb{F}_q)|$ because the former does not depend on ζ while the latter does.

Work of Bryan and Morrison

We sketch their alternative proof of Feit-Fine's formula.

- Compute $|\{(A,B)\in \operatorname{Nilp}_n(\mathbb{F}_q)\times\operatorname{GL}_n(\mathbb{F}_q):AB=BA\}|$ using the orbit-stabilizer argument.
- Use the notion of "power structure" due to Gusein-Zade, Luengo and Melle-Hernandez to recover $|K_{1,n}(\mathbb{F}_q)|$ for all n from $|\{(A,B)\in \operatorname{Nilp}_n(\mathbb{F}_q)\times\operatorname{GL}_n(\mathbb{F}_q):AB=BA\}|$ for all n. QED.

Remarks:

- The power structure is in the language of Grothendieck ring of complex varieties, but I will explain its consequence on point counting over finite fields in an elementary way.
- The point is that any one of $|U_{1,n}(\mathbb{F}_q)|$, $|N_{1,n}(\mathbb{F}_q)|$ or their variants determines the rest. No variant is special; the one chosen by Bryan and Morrison is just the easiest to compute.

The reason why these quantities determine each other is that any of these counts and $\nu_{n,q}:=|\{(A,B)\in \operatorname{Nilp}_n(\mathbb{F}_q)\times\operatorname{Nilp}_n(\mathbb{F}_q):AB=BA\}|$ determine each other; so $\nu_{n,q}$ serves as a bridge to connect any two such quantities. I illustrate how $|K_{1,n}(\mathbb{F}_q)|$ and $\nu_{n,q}$ determine each other; other variants work the same way.

Recall that $|K_{1,n}(\mathbb{F}_q)|$ "counts" (finite- \mathbb{F}_q -dimensional) modules over $\mathbb{F}_q[X,Y]$. Such a module is determined by its localization at closed points of the affine plane $\operatorname{Spec} \mathbb{F}_q[X,Y]$. In other words, to classify $\mathbb{F}_q[X,Y]$ -modules, it suffices to classify $\mathbb{F}_q[X,Y]$ -modules supported at each given closed point.

On the other hand, $\nu_{n,q}$ "counts" $\mathbb{F}_q[X,Y]$ -modules supported at the origin (i.e., the maximal ideal (x,y)).

The key is that every closed point of $\operatorname{Spec} \mathbb{F}_q[X,Y]$ "looks like" the origin, in the sense of Cohen's structure theorem: for any maximal ideal m of $\mathbb{F}_q[X,Y]$, the complete localization of $\mathbb{F}_q[X,Y]$ at m is isomorphic to $\mathbb{F}[[X,Y]]$, where \mathbb{F} is a finite extension of \mathbb{F}_q .

Hence $\nu_{n,q}$ determines $|K_{1,n}|$. In terms of formula, given

$$\sum_{n=0}^{\infty} \frac{\nu_{n,q}}{|GL_n(\mathbb{F}_q)|} x^n = \prod_{i,j \ge 1} \frac{1}{1 - x^i q^{-j}},$$

the geometric argument above shows that $\sum_{n=0}^{\infty} \frac{|K_{1,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n$ is obtained by replacing $\frac{1}{1-x^iq^{-j}}$ by $Z_{\mathbb{F}_q[X,Y]}(x^iq^{-j})$, where $Z_{\mathbb{F}_q[X,Y]}$ is the Hasse–Weil zeta function of $\mathrm{Spec}\,\mathbb{F}_q[X,Y]$. The reason why the Hasse–Weil zeta function appears is because its Euler product over all closed points.

Using $Z_{\mathbb{F}_q[X,Y]}(u)=1/(1-uq^2)$, we get

$$\sum_{n=0}^{\infty} \frac{|K_{1,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \prod_{i,j \ge 1} Z_{\mathbb{F}_q[X,Y]}(x^i q^{-j}) = \prod_{i,j \ge 1} \frac{1}{1 - x^i q^{2-j}},$$

precisely the formula of Feit and Fine. This is how $\nu_{n,q}$ for all n determines $|K_{1,n}(\mathbb{F}_q)|$ for all n.

In fact, the above process can be reversed, which is not surprising because $|K_{1,n}(\mathbb{F}_q)|$ is determined by $\nu_{n,q}$ alone, again thanks to the homogeneity of $\operatorname{Spec} \mathbb{F}_q[X,Y]$. We can recover $\nu_{n,q}$ from $|K_{1,n}(\mathbb{F}_q)|$ as well.

This finishes the explanation why $K_{1,n}(\mathbb{F}_q)$ and $\nu_{n,q}$ determines each other.

Similarly, $N_{1,n}(\mathbb{F}_q)$ classifies $\mathbb{F}_q[X,Y]$ -modules supported on the axis X=0, while $U_{1,n}(\mathbb{F}_q)$ classifies $\mathbb{F}_q[X,Y]$ -modules supported on the open set $X\neq 0$. Since each of these subsets consist of closed points that "look the same", the same argument applies and we have

$$|N_{1,n}(\mathbb{F}_q)|$$
 for all $n \longleftrightarrow \nu_{n,q}$ for all $n \longleftrightarrow |U_{1,n}(\mathbb{F}_q)|$ for all n ,

where \longleftrightarrow means "determines each other".

We note that the notion of **localization** plays a key role; if we could not break down to closed points, the numbers $|N_{1,n}(\mathbb{F}_q)|$ and $|U_{1,n}(\mathbb{F}_q)|$ would not have been related because X=0 and $X\neq 0$ are disjoint! Of course, another necessary ingredient is Cohen's structure theorem: **closed points look the same everywhere**.

Noncommutative case?

Question

Can we find a geometric connection between $|N_{\zeta,n}(\mathbb{F}_q)|$ and $|U_{\zeta,n}(\mathbb{F}_q)|$, similar to the $\zeta=1$ case explained before?

Recall that m is the order of ζ , and

$$\sum_{n=0}^{\infty} \frac{|N_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n \leadsto \frac{1}{(1-x)(1-xq^{-1})(1-xq^{-2})\dots}.$$

$$\sum_{n=0}^{\infty} \frac{|U_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n \leadsto \frac{1-x^m}{(1-x)(1-x^mq)};$$

It seems impossible that $|N_{\zeta,n}(\mathbb{F}_q)|$ determines $|U_{\zeta,n}(\mathbb{F}_q)|$, since the former doesn't depend on m while the latter does. However, it is still possible that $|U_{\zeta,n}(\mathbb{F}_q)|$ can be recoverd from $|N_{\zeta,n}(\mathbb{F}_q)|$ together with the geometry of the quantum plane $XY=\zeta YX$ (which depends on m).

Final takeaway

- We extend a formula that counts matrix pairs AB=BA to the case $AB=\zeta BA$ where ζ is nonzero. The answer depends on the order of ζ as a root of unity.
- The count of $AB = \zeta BA$ encodes statistical information about modules over the quantum plane.
- The count in question has two seemingly independent building blocks that turn out to be interdependent in the $\zeta=1$ case, using ingredients from (commutative) algebraic geometry. I hope that the study of a possible interdependence in the case of general ζ will inspire interesting noncommutative geometry.