CLAIMS

1	 A method to pattern a workpiece with improved CD uniformity using a 	
2	partially coherent electromagnetic radiation source, including the	
3	actions of:	
4	determining, for a plurality of layers in said workpiece, CD	
5	uniformity as a function of a number of exposure flashes,	
6	- determining, for a plurality of layers in said workpiece, the	
7	cost of patterning as a function of the number of exposure	
8	flashes,	
9	- selecting the number of exposure flashes on a layer by layer	
10	basis, which gives a predetermined CD uniformity	
11	corresponding to a preferred cost.	
1	2. The method according to claim 1, further comprising the action of:	
2.	- selecting a combination of values of the following	٠
3	parameters:	
4	 radiation bandwidth 	
5	• pulse length	
6	 radiation flash frequency 	
7	so that a calculated illumination non-uniformity (3 sigma) from	
8	speckle amounts to less than 0.5%.	
1	3. The method according to claim 1 or 2, further comprising the action of:	
2	- determining a value of a slit width so that a calculated	
3	illumination non-uniformity (3 sigma) from speckle amounts	
4	to less than 0.5%.	

1	4.	A computer assisted apparatus for printing a workpiece with improved
2		CD uniformity by using a partially coherent radiation source,
3		comprising:
4		- logic and resources that determine, for a plurality of layers in
5		said workpiece, CD uniformity as a function of the number of
6		exposure flashes,
7	•	- logic and resources that determine, for the plurality of layers
8		in said workpiece, a cost of patterning as a function of the
9		number of exposure flashes,
0		- logic and resources that select the number of exposure flashes
1		on a layer by layer basis, which gives a predetermined CD
2	-	uniformity at a minimum of patterning cost.
1	5.	A method for printing a workpiece with improved CD-uniformity,
2		including the action of:
3		- changing a number of exposure flashes per surface element
4 -		on a layer by layer basis.
1	6.	A method for printing a workpiece with improved CD-uniformity,
2		including the action of:
3		- changing a pulse length of exposure flashes per surface
4		element on a layer by layer basis.
1 .	7.	A method for printing a workpiece with improved CD-uniformity,
2		including the action of:
3	·	- changing a radiation bandwidth of exposure flashes per
4	·	surface element on a layer by layer basis.

1	8. A method for printing a workpiece with improved CD-uniformity,
2	including the action of:
3	- changing a slit width of exposure flashes per surface element
4	on a layer by layer basis.
1	9. The method according to any one of claims 5-8, wherein said changing
2	is performed for critical layers in the microelectronic device only.
1	10. A procedure to improve CD uniformity of a layer exposed in a scanner
2	or stepper using partially coherent light, including the actions of:
3	- providing a scanner system with an optical field larger than 10 mm,
4	- increasing one or more of the following parameters
5 .	a. slit width,
6	b. laser bandwidth,
7	c. pulse length,
8	d. laser flash frequency,
9	e. number of flashes,
10	f. number of flashes per field,
11	g. number of scan cycles per field
12	until the calculated illumination non-uniformity (3 sigma) from speckle
13	amounts to less than 0.5%.
1	11. The procedure as in claim 10 but with calculated speckle less than 1%.
1	12. The procedure as-in-claim-10-but with calculated speckle less than 2%.
1	13. The procedure as claimed in claim 10 but with calculated speckle less than
2	3%.

1	14. The procedure according to claim 10, wherein non-polarised light is used.
1	15. The procedure according to claim 10, wherein refractive optics is used.
1	16. The procedure according to claim 15, wherein at least one diffractive
2	element is used.
1	17. The procedure according to claim 15, wherein catadioptric optics with at
2	least one diffractive element is used.
1	18. A procedure to improve CD uniformity of a layer exposed in a maskless
2	scanner using partially coherent light comprising the steps of:
3	- providing a maskless scanner systems with an optical field larger than
4	0.5mm,
5	- increasing one or more of the following parameters:
6	a. laser bandwidth,
7	b. pulse length,
8	c. number of overlayed flashes,
9	until the calculated illumination non-uniformity (3 sigma) from speckle
0	amounts to less than 0.5%.
1	19. The procedure according to claim 18, wherein said calculated speckle is less
2	than 1%.
1	20. The procedure according to claim 18, wherein said calculated speckle is less
2	than 2%.
1	21. The procedure according to claim 18, wherein said calculated speckle is less
2	than 3%.
1	22. The procedure according to claim 18, wherein non polarized light is used.
1	23. An apparatus for printing a workpiece with improved CD uniformity
2	including:

- logic and resources to calculate the speckle,
- logic and resources that change the number of pulses per surface element on
a layer to layer basis.
24. A procedure for optimizing the speckle during microlithographic printing
including the actions of:
- providing a model for the value of improved CD uniformity,
- calculating the CD uniformity as a function of the number of flashes,
 providing a model for the cost of printing with a particular number of
pulses,
- providing logic and resources that select a number of flashes that
corresponds to a preferred result,
- providing a control adapted to change the number of flashes, and
- setting said approximately optimized number of flashes.
25. An electronic device with improved CD uniformity printed with speckle less
than 1% (3 sigma).
26. The method according to claim 23, further including the actions of:
- determining, for a plurality of layers in said workpiece, CD uniformity as a
function of a number of exposure flashes,
- determining, for the plurality of layers in said workpiece, the cost of
patterning as a function of the number of exposure flashes,
- selecting the number of exposure flashes on a layer by layer basis, which
gives a predetermined CD uniformity corresponding to a preferred cost.