Chapter 1

Groups

Definition 1.1

A group (G, *) is a set G, together with a binary operator * such that

Additive Group	Multiplicative Group
Let G be a set, and $+$ be an operation, then $(G, +)$ is an additive group provided	Let G be a set, and be an operation, then (G, \circ) is an multiplicative group provided
$1. \ \forall a, b \in G, \ a+b \in G$	6. $\forall a, b \in G, \ a \circ b \in G$
2. $\forall a, b, c \in G, \ a + (b + c) = (a + b) + c$	7. $\forall a, b, c \in G, \ a \circ (b \circ c) = (a \circ b) \circ c$
3. $\forall a \in G, \exists 0 \in G \text{ (identity) s.t.}$	8. $\forall a \in G, \exists 1 \in G \text{ (unity) s.t.}$
a + 0 = a = 0 + a	$a \circ 1 = a = 1 \circ a$
4. $\forall a \in G, \exists -a \in G \text{ (additive inverse) s.t.}$	9. $\forall a \in G, \exists a^{-1} \in G \text{ (unity) s.t.}$
a + (-a) = 0 = (-a) + a	$a \circ a^{-1} = 1 = a^{-1} \circ a$
5. (Commutative) $\forall a, b \in G, a + b = b + a$	10. (Commutative) $\forall a, b \in G, \ a \circ b = b \circ a$

Joining additive and multiplicative groups together, we form a ring with distributive laws

11.
$$\forall a, b, c \in G, (a + b) \circ c = (a \circ c) + (b \circ c)$$

12.
$$\forall a, b, c \in G, c \circ (a+b) = (c \circ a) + (c \circ b)$$

• Abelian group: (1-5) or (6-10)

• Associative Ring: 1-6, with 11 and 12

• Semigroup: 1, 2 only

• Monoid: 1, 3 only

• Commutative ring: 1-5, 6, 10, 11, and 12

• Ring: 1-5, with 11 and 12

• Ring with unity: 1-6, with 8, 11, and 12

• Field: 1-12

Lemma 1.1 Uniqueness of group identity

In a group G, there is one and only one identity element e.

Proof. For the sake of contradiction. Suppose not, Suppose that e and e' are both identity elements of group G. Since e is an identity element of G, then $e \in G$ and

$$ea = a = ae \quad \forall a \in G.$$
 (\heartsuit)

Since e' is also an identity element of G, we said that $e' \in G$ and

$$e'a = a = ae' \quad \forall a \in G.$$

From (\heartsuit) , if we take a = e', then $e \cdot e' = e'$.

From $(\)$, if we take a=e, then $e=e\cdot e'$.

Combining the results we have $e = e \cdot e' = e'$, and so e = e'. There is only one identity element in G. We proved the uniqueness of identity.

Lemma 1.2 Cancellation rule

In a group G, ba = ca implies b = c; and ab = ac implies b = c.

Proof. Consider G is a group, then

$$\forall a \in G, \exists a' \in G \quad s.t. \quad aa' = e = a'a.$$

To show the right cancellation works, we further consider ba = ca. Multiplying a' on both sides of the previous equation on right, we obtained

$$(ba)a' = (ca)a'$$

Then, b(aa') = c(aa') and so $be = ce \Rightarrow b = c$. The proof is now complete.

Theorem 1.1 Socks-shoes property

$$(a \circ b)^{-1} = b^{-1} \circ a^{-1}$$
 (1.1)

Proof. Since we know that G is a group, then $ab \in G$ for all $a, b \in G$ since G is closure. Next, we consider the following equation

$$(ab)(b^{-1}a^{-1})=a(bb^{-1})a^{-1}$$
 G is associative
$$=aea^{-1}$$

$$=aa^{-1}$$

$$=\boxed{e}$$
 cancellation rule returns identity

this equation states that

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = e$$

now we cancel off ab from both sides of the equations, we now arrive at

$$(ab)^{-1} = b^{-1}a^{-1}$$

and we have done the proof.

Remark. In abstract algebra, the position of inputs in binary operator is very important! The commutative property no necessary hold. $a \circ b \neq b \circ a$. E.g. matrix multiplication $AB \neq BA$.

Example 1.0.1. Consider (a, b) to be a fixed point on the 2-dimensional cartesian plane \mathbb{R}^2 , we define a translation map $T_{a,b}: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$T_{a,b}(x,y) = (x+a, y+b)$$

we again define $G = \{T_{a,b} \mid a, b \in \mathbb{R}\}$. Show that (G, \circ) is a group under function composition.

Solution 1. (Closure) We want to show:

$$\forall T_{a,b}, T_{c,d} \in G, \quad T_{a,b} \circ T_{c,d} \in G$$

We compute the composition

$$\begin{split} (T_{a,b} \circ T_{c,d})(x,y) &= T_{a,b}(T_{c,d}(x,y)) \\ &= T_{a,b}(x+c,y+d) \\ &= (x+a+c,y+b+d) \\ &= (x+(a+c),y+(b+d)) \qquad \text{asscoiativity of ordinary addition} \\ &= T_{a+c,b+d}(x,y) \end{split}$$

which closed under G.

2. ()

Theorem 1.2

The following statements are equivalent.

- 1. Every subgroup of a cyclic group (multiplicative group) is cyclic.
- 2. If $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n.
- 3. For each positive divisor $k|n, \langle a \rangle$ has exactly one subgroup of order k. $\langle a^{n/k} \rangle$ if multiplicative group, $\langle \frac{n}{k} a \rangle$ if additive group.

Proof. Let G be a cyclic group and H be a subgroup of G. We need to show that H is also cyclic. Example: $H = \langle a^m \rangle$ s.t. m is the least positive integer.

By randomly pick integer $b \in H$, $b = a^k, k \in \mathbb{Z}^+$. By division algorithm, k = qm + r, where $0 \le r < m$.

$$b = a^k = a^{qm+r} = (a^m)^q a^r \Rightarrow a^r = (a^m)^{-q} b \in H$$
$$\Rightarrow a^r \in H, \quad 0 \le r < m$$
$$\Rightarrow r = 0$$

1.1Finite groups and Subgroups

Remark. We use the notation $H \leq G$ to mean that H is a subgroup of G. We use the notation H < G to denote that H is a proper subgroup of G.

The subgroup $\{e\}$ is called the trivial subgroup of G; a subgroup that is not $\{e\}$ is called a nontrivial subgroup of G.

1.2 Cyclic groups

Cyclic groups are groups in which every element is a power of some fixed element. In additive group, then every element is a multiple of some fixed element. For instance,

$$\underbrace{a+a+\cdots+a}_{n \text{ times}} = na, \quad n \text{ is integer}$$

Definition 1.2 Generating subgroup

If G is a multiplicative group and $g \in G$, then the subgroup generated by element g is

$$\langle g \rangle = \{\underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}} \mid n \in \mathbb{Z}\} = \{g^n \mid n \in \mathbb{Z}\}$$
 (1.2)

If the group is abelian and is additive, then

$$\langle g \rangle = \{ \underbrace{a + a + \dots + a}_{n \text{ times}} \mid n \in \mathbb{Z} \} = \{ ng \mid n \in \mathbb{Z} \}$$
 (1.3)

Remark. $\langle g \rangle$ is called a cyclic subgroup generated by g in group G. When $G = \langle g \rangle$, then G is called a cyclic group.

Definition 1.3 Cyclic group

A group G is **cyclic** if $G = \langle g \rangle$ for some $g \in G$. g is a **generator** of $\langle g \rangle$.

Lemma 1.3

 $\langle g \rangle$ is a subgroup of G.

Proof. We can use 2-step subgroup test to verify $\langle g \rangle \leq G$:

1. Since $g \in \langle g \rangle \neq \emptyset$.

2. For all $g_1, g_2 \in \langle g \rangle$, we have

$$g_1 = g^{n_1}, \quad g_2 = g^{n_2}$$

where n_1 and n_2 are integers. And since

$$g_1 g_2 = g^{n_1} g^{n_2} = g^{n_1 + n_2}$$

and $n_+n_2 \in \mathbb{Z}$ implies that $g_1 g_2 \in \langle g \rangle$.

3. For all $g_1 \in \langle g \rangle$, we have $g_1 = g^k$, where k is integer. We compute the inverse

$$g_1^{-1} = (g^k)^{-1} = g^{-k}, -k \in \mathbb{Z}$$

which tells us that $g_1^{-1} \in \langle g \rangle$.

Therefore, by 2-step subgroup test, $\langle g \rangle$ is a subgroup of G.

Lemma 1.4

If G is a cyclic group, then G is abelian.

Proof. Consider a cyclic group G. We want to show G is also an abelian group. Since G is a group, we say

$$\forall g_1, g_2 \in G, \quad g_1 = g^{n_1}, \quad g_2 = g^{n_2}$$

where n_1 and n_2 are integers. In order to show that G is abelian, we need to show that the commutative law applied in group G.

now compute

$$g_1 g_2 = a^{n_1} a^{n_2}$$

$$= g^{n_1+n_2}$$

$$= g^{n_2+n_1}$$
 commutative in normal addition
$$= g^{n_2} g^{n_1} = \boxed{g_2 g_1}$$

thus G is an abelian group.

Definition 1.4 Center of group

The **center**, Z(G), of a group G is a subset of elements in G that commute with every element of G, that is,

$$Z(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \}.$$

$$(1.4)$$

Lemma 1.5

The center of a group G is also a subgroup of G.

Proof. We use one-step subgroup test to verify:

1. Since we know that G is a group, certainly the identity $e \in G$ and

$$ex = x = xe \quad \forall x \in G.$$

implies that $e \in Z(G)$ and Z(G) is nonempty.

2. For any a_1, a_2 in Z(G), we need to show

$$a_1 a_2^{-1} \in Z(G)$$
.

Since Z(G) is the center, we have $a_1 x = xa_1$ and $a_2 x = xa_2$ for all $x \in G$. Proving $a_1 a_2^{-1} \in Z(G)$ is equivalent to show

$$a_1 a_2^{-1} x = x a_1 a_2^{-1} \quad \forall x \in G$$

compute

$$a_1 a_2^{-1} x = a_1(a_2^{-1} x)$$
 Associativity of $Z(G)$

$$= a_1(x a_2^{-1})$$
 Since $a_2^{-1} x = x a_2^{-1}$

$$= (a_1 x) a_2^{-1}$$
 Associativity of $Z(G)$

$$= (x a_1) a_2^{-1}$$
 Since $a_1 x = x a_1$

$$= \boxed{x a_1 a_2^{-1}}$$

which is what we desired.

Therefore the center Z(G) is a subgroup of G by one-step subgroup test.

Definition 1.5 Group centralizer

Let a be a **fixed** element of a group G. The centralizer of a in G is

$$C(a) = \{ g \in G \mid ga = ag \}. \tag{1.5}$$

Theorem 1.3

Let \mathfrak{a} be a **fixed** element in group G. If \mathfrak{a} has infinite order, then $\mathfrak{a}^i = \mathfrak{a}^j$ if and only if i = j. However, if \mathfrak{a} has finite order, said, n, then

$$\langle \mathfrak{a} \rangle = \{e, \mathfrak{a}, \mathfrak{a}^2, \dots, \mathfrak{a}^{n-1}\}$$
 (1.6)

and $\mathfrak{a}^i = \mathfrak{a}^j$ if and only if n|i-j.

Proof. Consider a group G, and take an \mathfrak{a} from G. If \mathfrak{a} has infinite order, say, $\operatorname{ord}(\mathfrak{a}) = \infty$, then there is no nonzero integer n such that $\mathfrak{a}^n = e$. We assume an equation $\mathfrak{a}^i = \mathfrak{a}^j$ for some $i, j \in \mathbb{Z}$, we have

$$\mathfrak{a}^{i-j} = e \Rightarrow i - j = 0 \Rightarrow \boxed{i = j}.$$

and we are done.

On the other hand, if \mathfrak{a} has finite order, just say $\operatorname{ord}(\mathfrak{a}) = n$. We want to show

$$\langle \mathfrak{a} \rangle = \{e, \mathfrak{a}, \mathfrak{a}^2, \dots, \mathfrak{a}^{n-1}\}.$$

Apparently, $e, \mathfrak{a}, \mathfrak{a}^2, \dots, \mathfrak{a}^{n-1}$ are all belongs to $\langle \mathfrak{a} \rangle$, so $\{e, \mathfrak{a}, \mathfrak{a}^2, \dots, \mathfrak{a}^{n-1}\} \subseteq \langle \mathfrak{a} \rangle$. Now we continue to check if $\{e, \mathfrak{a}, \mathfrak{a}^2, \dots, \mathfrak{a}^{n-1}\} \supseteq \langle \mathfrak{a} \rangle$.

By division algorithm, there exists some integers q and r such that

$$k = qn + r, \quad 0 \le r < n$$

compute

$$\mathfrak{a}^k = \mathfrak{a}^{qn+r} = (\mathfrak{a}^n)^q \, \mathfrak{a}^r = e^q \mathfrak{a}^r = \mathfrak{a}^r$$

this implies $\mathfrak{a}^k = \mathfrak{a}^r \in \{e, \mathfrak{a}, \mathfrak{a}^2, \dots, \mathfrak{a}^{n-1}\}$. Thus we have

$$\{e,\mathfrak{a},\mathfrak{a}^2,\ldots,\mathfrak{a}^{n-1}\}\supseteq\langle\mathfrak{a}\rangle.$$

Now the final part is to show $\mathfrak{a}^i = \mathfrak{a}^j$ iff n|i-j, we are going to proof on two directions.

 (\Rightarrow) If $\mathfrak{a}^i = \mathfrak{a}^j$, we need to show that n is divisible by i-j. Again we applying the division algorithm,

$$i - j = nq + r, \quad 0 \le r < n$$

which q is quotient and r is remainder.

compute

$$\mathfrak{a}^{i-j} = e \Rightarrow \mathfrak{a}^{nq+r} = e$$
 dividion algorithm
$$\Rightarrow \mathfrak{a}^{nq} \, \mathfrak{a}^r = e$$

$$\Rightarrow (\mathfrak{a}^n)^q \, \mathfrak{a}^r = e$$

$$\Rightarrow e^q \, \mathfrak{a}^r = e$$
 since $\mathfrak{a}^n = e$

$$\Rightarrow e \, \mathfrak{a}^r = e$$

but n is the least integer such that $\mathfrak{a}^n = e$ and so the condition $0 \le r < n$ implies r = 0. Now we continue on the opposite side of the statement.

 (\Leftarrow) This part is more straightforward. Conversely, if n|i-j, then

$$\mathfrak{a}^{i-j}=\mathfrak{a}^{nq+r}$$
 dividion algorithm
$$=\mathfrak{a}^{nq}$$
 remainder r is zero
$$=(\mathfrak{a}^n)^q$$

$$=e^q$$
 since $\mathfrak{a}^n=e$
$$=e$$

and we are done.

1.2.1Subgroup tests

Theorem 1.4 One step subgroup test

Suppose G is a multiplicative group and $H \subseteq G$. If

- 1. $H \neq \emptyset$, 2. $\forall a, b \in H, ab^{-1} \in H$

then H is a subgroup of G.

Example 1.2.1. Let

1.3 Sylow's theorem

Theorem 1.5

 $C_5 \times C_2$ and C_{10} are two isomorphism classes.

Proof. From the Third Sylow's theorem, the number of Sylow 5-groups divides 2 and is $1 \pmod{5}$, so there is only one Sylow 5-group. And there is a normal subgroup $K \leq G$ such that |K| = 5.

1.4 Automorphism

Example 1.4.1. Compute $Aut(\mathbb{Z}_{10})$.

Solution For any $\alpha \in \operatorname{Aut}(\mathbb{Z}_{10})$ and for any $k \in \mathbb{Z}_{10}$. We define $k \mapsto k\alpha(1)$ such that

$$1 \mapsto \alpha_1 : \quad \mathbb{Z}_{10} \to \mathbb{Z}_{10}, \quad \alpha_1(x) = x$$
$$3 \mapsto \alpha_3 : \quad \mathbb{Z}_{10} \to \mathbb{Z}_{10}, \quad \alpha_3(x) = 3x$$
$$7 \mapsto \alpha_7 : \quad \mathbb{Z}_{10} \to \mathbb{Z}_{10}, \quad \alpha_7(x) = 7x$$
$$9 \mapsto \alpha_9 : \quad \mathbb{Z}_{10} \to \mathbb{Z}_{10}, \quad \alpha_9(x) = 9x$$

In fact, $\operatorname{Aut}(\mathbb{Z}_{10})$ is isomorphic to $U(10) = \{1, 3, 7, 9\}$.

1.5 Cosets

Example 1.5.1. Consider $G = \mathbb{Z}_9 = \{0, 1, 2, \dots, 8\} \pmod{9}$. We take a cyclic subgroup

$$H = \langle 3 \rangle = \{0, 3, 6\}$$

which came from (G, \oplus) . All **left cosets** of G with respect to H are $\{H, 1 \oplus H, 2 \oplus H\}$ where

$$0 \oplus H = \{0+0,0+3,0+6\} \pmod{9} = \{0,3,6\} = H$$

$$1H = 1 \oplus H = \{1+0,1+3,1+6\} \pmod{9} = \{1,4,7\}$$

$$2H = 2 \oplus H = \{2+0,2+3,2+6\} \pmod{9} = \{2,5,8\}$$

$$3H = 3 \oplus H = \{3+0,3+3,3+6\} \pmod{9} = \{3,6,0\} = H$$

As for the right cosets of G with respect to H are $\{H, H \oplus 1, H \oplus 2\}$. Pay attention that now the element of coset are being added to right-hand side instead of from left side.

$$0 \oplus H = \{0+0,0+3,0+6\} \pmod{9} = \{0,3,6\} = H$$

$$H1 = H \oplus 1 = \{0+1,3+1,6+1\} \pmod{9} = \{1,4,7\}$$

$$H2 = H \oplus 2 = \{0+2,3+2,6+2\} \pmod{9} = \{2,5,8\}$$

$$H3 = H \oplus 3 = \{0+3,3+3,6+3\} \pmod{9} = \{3,6,0\} = H$$

1.6 Normal subgroups, Quotient groups

1.6.1 Normal subgroups

Definition 1.6 Normal subgroups

A subgroup H of (G,\cdot) is called a normal subgroup if for all $g\in G$ we have

$$gH = Hg. (1.7)$$

We shall denote that H is a subgroup of G by H < G, and that H is a normal subgroup of G by $H \lhd G$.

If H is a normal subgroup of G, and the order of H is equal to the order of G, we called H the proper normal subgroup, write as $H \subseteq G$.

You should be very careful here. The equality gH = Hg is a set equality. They are not constants or numbers! It says that a right coset is equal to left a coset, it is not an equality elementwise.

Example 1.6.1. Let $\mathbb{R}[x]$ denote the group of all polynomial with real coefficients under normal addition.

For any f in $\mathbb{R}[x]$, let f' denote the derivative of f. Then the mapping $f \to f'$ is a homomorphism from $\mathbb{R}[x]$ to itself. The kernel of the derivative mapping is the set of all constant polynomials f(x) = c.

Now suppose we have a group (G, cdot), and H is a normal subgroup of G, just said $H \triangleleft G$. The set G/H is defined by

$$G/H = \{ gH \mid g \in H \}$$

Theorem 1.6 Orbit-Stabilizer theorem

For any group action $\phi: G \to \operatorname{Permutation}(S)$, and for any $s \in S$,

$$|\operatorname{Orb}(s)| \cdot |\operatorname{Stab}(s)| = |G|.$$
 (1.8)

Theorem 1.7

The group of rotations of a cube is isomorphic to S_4 .

1.7 Group homomorphisms

Definition 1.7

A group homomorphism is a map $f:(G, \diamond_G) \to (H, \bullet_H)$ that respects binary operations:

$$f(a) \bullet_H f(b) = f(a \diamond_G b) \quad \forall a, b \in G$$
 (1.9)

1.8 Tutorials

Exercise 1.8.1 Prove whether the following group G together with operation * is a group.

- 1. Let * defined on $G = \mathbb{R}$ by letting $a * b = ab \quad \forall a, b \in \mathbb{R}$.
- 2. Let * defined on $G = 2\mathbb{Z}$ by letting $a * b = a + b \quad \forall a, b \in 2\mathbb{Z}$.
- 3. Let * defined on $G = \mathbb{R}^{\times}$ by letting $a * b = \sqrt{ab} \quad \forall a, b \in \mathbb{R}^{\times}$.
- 4. Let * defined on $G = \mathbb{Z}$ by letting $a * b = \max\{a, b\} \quad \forall a, b \in \mathbb{Z}$.

Exercise 1.8.2 Determine whether the given set of matrices under the specified operation, matrix addition or multiplication, is a group.

- 1. All 2×2 diagonal matrices under matrix addition.
- 2. All 2×2 diagonal matrices under matrix multiplication.
- 3. All 2×2 diagonal matrices with no zero diagonal entry under under matrix multiplication.
- 4. All 2×2 diagonal matrices with all diagonal entries either 1 or -1 under matrix multiplication.

- 5. All 2×2 upper-triangular matrices under matrix multiplication.
- 6. All 2×2 upper-triangular matrices under matrix addition.
- 7. All 2×2 upper-triangular matrices with determinant 1 under matrix multiplication.
- 8. All 2×2 upper-triangular matrices with determinant either 1 or -1 under matrix multiplication.

Exercise 1.8.3 Prove whether

$$G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| ad - bc \neq 0, \ a, b, c, d \in \mathbb{Z} \right\}$$

is a group under matrix multiplication.

Exercise 1.8.4 Prove whether

$$G = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \middle| ad \neq 0, \ a, b, d \in \mathbb{Z} \right\}$$

is a non-abelian group under matrix multiplication.

Exercise 1.8.5 Prove whether

$$G = \left\{ \begin{bmatrix} a & b \\ 0 & a^{-1} \end{bmatrix} \middle| a \neq 0, \ a, b \in \mathbb{Z} \right\}$$

is an abelian group under matrix multiplication.

Exercise 1.8.6 Let (G, *) be a group and suppose that

$$a * b * c = e \quad \forall a, b, c \in G.$$

Show that b * c * a = e.

Exercise 1.8.7 Show that if every element of the group G is its own inverse, then G is abelian.

Exercise 1.8.8 Show that every group with identity e and $x \cdot x = x$ for all $x \in G$ is abelian.

Exercise 1.8.9 Show that if G is a finite group with identity e and with even number of elements, then there is an $a \neq e$ in G such that a * a = e.

Exercise 1.8.10 Suppose G is a group such that

$$(ab)^2 = a^2 b^2 \quad \forall a, b \in G.$$

Show that G is abelian.

Exercise 1.8.11 Find the order of the following cyclic groups.

- 1. The subgroup of U(6) generated by $\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$.
- 2. The subgroup of U(5) generated by $\cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)$.
- 3. The subgroup of $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ generated by (1,5).

Exercise 1.8.12 Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has order n.

Exercise 1.8.13 Show that a group with no proper nontrivial subgroup is cyclic.

Exercise 1.8.14 Let G be a nonabelian group with center Z(G). Show that there exists an abelian subgroup H of G such that $Z(G) \subset H$ but $Z(G) \neq H$.

Exercise 1.8.15 Find all subgroups of the following groups and draw the subgroups diagram for the subgroups. Hence, list all orders of the subgroups of the given groups.

- 1. **Z**₃₆
- 2. \mathbf{Z}_{60}

Exercise 1.8.16

- 1. Find all the proper nontrivial subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 2. Find all the subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_4$ of order 4.

Exercise 1.8.17

- 1. Are the groups $\mathbb{Z}_2 \times \mathbb{Z}_{12}$ and $\mathbb{Z}_4 \times \mathbb{Z}_6$ isomorphic?
- 2. Are the groups $\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$ and $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}$ isomorphic?

Exercise 1.8.18 Find the conjugacy classes of dihedral group D_8 .

Exercise 1.8.19 Show that a group that has only finite number of subgroups must be a finite group.

Exercise 1.8.20 Find all cosets of the subgroup $4\mathbb{Z}$ of \mathbb{Z} .

Exercise 1.8.21 Compute the quotient group $\mathbb{Z}_{12}/\langle 2 \rangle$.

Exercise 1.8.22 Show that if H is a subgroup of index 2 in a finte group G, then every left coset of H is also a right coset of H.

Exercise 1.8.23 Let $\phi: G \to G$ be a mapping defined by

$$\phi(x) = x^3 \quad \forall x \in G$$

where $G = \mathbb{R} \setminus \{0\}$ is a group defined under usual multiplication. Show that ϕ is a homomorphism, and hence find $ker(\phi)$.

Exercise 1.8.24 Let $\phi: G \to G$ be a mapping defined by

$$\phi(x) = 5^x \quad \forall x \in G$$

where $G = \mathbb{R} \setminus \{0\}$ is a group defined under usual multiplication. Show that ϕ is a homomorphism, and hence find $ker(\phi)$.

Exercise 1.8.25 Let $\phi: G \to G$ be a mapping defined by

$$\phi(x) = 7x \quad \forall x \in G$$

where $G = \mathbb{Z}$ is a group defined under usual addition. Show that ϕ is a homomorphism, and hence find $ker(\phi)$.

Exercise 1.8.26 Let G be a group and g an element in G. Consider the mapping $\phi: G \to G$ defined as $\phi(x) = gxg^{-1}$. Show that ϕ is an isomorphism.

Exercise 1.8.27 Find $ker(\phi)$ for map $\phi : \mathbb{Z}_{10} \to \mathbb{Z}_{20}$ such that $\phi(1) = 8$.

Exercise 1.8.28 Find $ker(\phi)$ for map $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ such that $\phi(1,0) = (2,-3)$ and $\phi(0,1) = (-1,5)$.

Exercise 1.8.29 Let $\phi: G \to H$ be a group homorphism. Show that $\phi(G)$ is abelian if and only if $xyx^{-1}y^{-1} \in ker(\phi) \quad \forall x,y \in G.$

Exercise 1.8.30 Consider A the set of affine maps of \mathbb{R} , that is

$$A = \{ f : x \mapsto ax + b, a \in \mathbb{R}^*, b \in \mathbb{R} \}$$

- 1. Show that A is a group with respect to the composition of map.
- 2. Let

$$N = \{ g : x \mapsto x + b, b \in \mathbb{R} \}$$

Show that $N \triangleleft A$.

3. Show that the quotient group A/N is isomorphic to \mathbb{R}^* .

Exercise 1.8.31 Let $G = S_4$ and let

$$H = \{e, (12)(34), (13)(24), (14)(23)\}$$

- 1. Show that H is a normal subgroup of G.
- 2. Let $\overline{H} = \{ \sigma \in S_4 \mid \sigma(4) = 4 \}$. Define $\sigma : \overline{H} \to \operatorname{Aut}(H)$ by $\sigma(\tau) = \sigma \tau \sigma^{-1}$ for $\sigma \in \overline{H}$. Prove that

$$\overline{H} \ltimes_{\sigma} H \cong S_4.$$

Exercise 1.8.32 Find (up to isomorphism) all abelian groups of order 45.

Exercise 1.8.33 Show that any group of order p^2 is abelian.

Exercise 1.8.34 Let G be a group of order pq, where p and q are prime numbers. Show that every proper subgroup of G is cyclic.

Exercise 1.8.35 If $H, K \leq G$, show that $H \cap K \leq G$.

Exercise 1.8.36 If $N \triangleleft G$ and $H \leq G$, show that $NH \leq G$.

Exercise 1.8.37 If $N_1, N_2 \triangleleft G$, show that $N_1 \cap N_2 \triangleleft G$.

Exercise 1.8.38 If $N \triangleleft G$ and $H \leq G$, show that $H \cap N \triangleleft G$.