# **Contents**

CONTENTS

### Chapter 1

# **Real Analysis**

```
(1.5)
                             \mathbf{y}[<,S] := \forall_{x,y \in S} (x < y \lor x = y \lor y < x)
          r[<,S] := (OrderTrichotomy[<,S]) \land (OrderTransitivity[<,S])
(1.7)
  Bounded Above [E,S,<]:=(Order[<,S]) \land (E\subset S) \land \Big(\exists_{\beta\in S} \forall_{x\in E} (x\leq \beta)\Big)
 Bounded Below [E,S,<]:=(Order[<,S]) \land (E\subset S) \land \Big(\exists_{\beta\in S}\forall_{x\in E}(\beta\leq x)\Big)
                   \operatorname{nd}[\beta, E, S, <] := (\operatorname{Order}[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E} (x \le \beta))
                    \operatorname{id}[\beta, E, S, <] := (\operatorname{Order}[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E}(\beta \leq x))
(1.8)
LUB[\alpha, E, S, <] := (UpperBound[\alpha, E, S, <]) \land (\forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound[\gamma, E, S, <]))
\boxed{\textbf{G1.B}[\alpha,E,S,<] := (LowerBound[\alpha,E,S,<]) \land \Big(\forall_{\beta}(\alpha < \beta \implies \neg LowerBound[\beta,E,S,<])\Big)}
(1.10)
 \text{$LU$ B Property}[S,<] := \forall_E \Big( \big( (\emptyset \neq E \subset S) \land (Bounded Above[E,S,<]) \implies \exists_{\alpha \in S} (LUB[\alpha,E,S,<]) \Big) \Big) 
 \textbf{GLBP roperty}[S, <] := \forall_E \Big( \big( (\emptyset \neq E \subset S) \land (Bounded Below[E, S, <]) \implies \exists_{\alpha \in S} (GLB[\alpha, E, S, <]) \Big) \Big) 
(1.11)
(1) LUBProperty[S, <] \implies ...
   (1.1) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \dots
      (1.1.1) Order[<, S] \land \exists_{\delta' \in S}(LowerBound[\delta', B, S, <])
      (1.1.2) |B| = 1 \implies ...
          (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u' : u' \in B\}) \quad \blacksquare \ B = \{u\}
          (1.1.2.2) \quad GLB[u, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])
       (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])
      (1.1.4) |B| \neq 1 \Longrightarrow \dots
                                                                                                                                                                                                                    from: LUBProperty, 1
          (1.1.4.1) \quad \forall_E \left( (\emptyset \neq E \subset S \land Bounded Above[E, S, <]) \implies \exists_{\alpha \in S} (LUB[\alpha, E, S, <]) \right)
         (1.1.4.2) L := \{s \in S : LowerBound[s, B, S, <]\}
          (1.1.4.3) \quad |B| > 1 \land OrderTrichotomy[<, S] \quad \blacksquare \quad \exists_{b_1' \in B} \exists_{b_0' \in B} (b_0' < b_1')
          (1.1.4.4) \quad b_1 := choice(\{b_1' \in B : \exists_{b_0' \in B}(b_0' < b_1')\}) \quad \blacksquare \neg LowerBound[b_1, B, S, <]
          (1.1.4.5) b_1 \notin L \blacksquare L \subset S
                                                                                                                                                                                                                             from: 1.1.1
          (1.1.4.6) \quad \delta := choice(\{\delta' \in S : LowerBound[\delta', B, S, <]\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
          (1.1.4.7) \quad \emptyset \neq L \subset S
          (1.1.4.8) \quad \forall_{y \in L}(\underline{LowerBound}[y_0, B, S, <]) \quad \blacksquare \quad \forall_{y \in L} \forall_{x \in B}(y_0 \le x)
```

```
(1.1.4.9) \quad \forall_{x \in B} \left( x \in S \land \forall_{y \in L} (y_0 \le x) \right) \quad \blacksquare \quad \forall_{x \in B} (UpperBound[x, L, S, <])
          (1.1.4.10) \quad \exists_{x \in S}(UpperBound[x, L, S, <]) \quad \blacksquare \quad Bounded Above[L, S, <]
                                                                                                                                                                                                                                       from: 1.1.4.7.1.1.4.10
          (1.1.4.11) \emptyset \neq L \subset S \land Bounded Above[L, S, <]
          (1.1.4.12) \quad \exists_{\alpha' \in S}(LUB[\alpha', L, S, <]) \quad \blacksquare \quad \alpha := choice(\{\alpha' \in S : (LUB[\alpha', L, S, <])\})
          (1.1.4.13) \quad \forall_{x}(x \in \overline{B} \implies \underline{UpperBound[x, L, S, <]})
          (1.1.4.14) \quad \forall_x (\neg UpperBound[x, L, S, <] \implies x \notin B)
          (1.1.4.15) \gamma < \alpha \implies \dots
                                                                                                                                                                                                                                from: LUB, 1.1.4.12, 1.1.4.14
              (1.1.4.15.1) \quad \neg UpperBound[\gamma, L, S, <] \quad \blacksquare \quad \gamma \notin B
          (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \blacksquare \quad \gamma \in B \implies \gamma \ge \alpha
          (1.1.4.17) \quad \forall_{\gamma \in B} (\alpha \leq \gamma) \quad \blacksquare \quad LowerBound[\alpha, B, S, <]
          (1.1.4.18) \alpha < \beta \implies \dots
                                                                                                                                                                                                                                from: LUB, 1.1.4.12, 1.1.4.18
              (1.1.4.18.1) \quad \forall_{v \in L} (y_0 \le \alpha < \beta) \quad \blacksquare \quad \forall_{v \in L} (y_0 \ne \beta)
              (1.1.4.18.2) \beta \notin L \ \square \neg LowerBound[\beta, B, S, <]
          (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound[\beta, B, S, <] \quad \blacksquare \quad \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
          (1.1.4.20) \quad LowerBound[\alpha, B, S, <] \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
          (1.1.4.21) \quad \mathbf{GLB}[\alpha, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_1 \in S} (\mathbf{GLB}[\epsilon_1, B, S, <])
      (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <])
      (1.1.6) \quad \left( |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <]) \right) \land \left( |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <]) \right)
       (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <]) \quad \blacksquare \quad \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <])
   (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \exists_{\epsilon \in S} (GLB[\epsilon, B, S, <])
   (1.3) \quad \forall_{B} \left( (\emptyset \neq B \subset \overline{S \land Bounded Below}[B, S, <]) \implies \exists_{\epsilon \in S} (GLB[\epsilon, B, S, <]) \right)
   (1.4) GLBProperty[S, <]
(2) LUBProperty[S,<] \Longrightarrow GLBProperty[S,<]
```

(1.12)

$$(1.12) \\ Field[F, +, *] := \exists_{0,1 \in F} \forall_{x,y,z \in F} \begin{cases} x + y \in F & \land & x * y \in F & \land \\ x + y = y + x & \land & x * y = y * x & \land \\ (x + y) + z = x + (y_0 + z) & \land & (x * y) * z = x * (y_0 * z) & \land \\ 1 \neq 0 & \land & x * (y_0 + z) = (x * y) + (x * z) & \land \\ 0 + x = x & \land & 1 * x = x & \land \\ \exists_{-x \in F} (x + (-x) = 0) & \land (x \neq 0 \implies \exists_{1/x \in F} (x * (1/x) = 1)) \end{cases}$$

(1) 
$$y = 0 + y = (x + (-x)) + y = ((-x) + x) + y = (-x) + (x + y) = \dots$$

(2) 
$$(-x) + (x+z) = ((-x) + x) + z = (x + (-x)) + z = 0 + z = z$$

Additive I dentity Uniqueness :=  $(x + y = x) \implies y = 0$ 

(1) 
$$x + y = x = 0 + x = x + 0$$

$$(2) \quad y = 0$$

veInverseUniqueness :=  $(x + y = 0) \implies y = -x$ 

(1) 
$$x + y = 0 = x + (-x)$$

(2) 
$$y = -x$$

from: AdditiveCancellatio

**Double Negative** 
$$:= x = -(-x)$$

(1) 
$$0 = x + (-x) = (-x) + x \quad 0 = (-x) + x$$

from: AdditiveInverseUnique (2) x = -(-x)(1.15)iplicative I dentity Uniqueness:  $= (x \neq 0 \land x * y = x) \implies y = 1$ iplicative I nver se Uniqueness:  $= (x \neq 0 \land x * y = 1) \implies y = 1/x$ Couble Reciprocal :=  $(x \neq 0) \implies x = 1/(1/x)$ (1.16)Domination := 0 \* x = 0(1) 0 \* x = (0 + 0) \* x = 0 \* x + 0 \* x 0 \* x = 0 \* x + 0 \* xfrom: AdditiveIdentityUniquene  $(2) \quad \mathbb{0} * x = \mathbb{0}$ (1)  $(x \neq 0 \land y \neq 0) \implies \dots$  $(1.1) \quad (x * y = 0) \implies \dots$  $(1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = (x * (1/x)) * (y * (1/y)) = (x * y) * ((1/x) * (1/y)) = \mathbb{0} * ((1/x) * (1/y)) = \mathbb{0}$  $(1.1.2) \quad 1 = 0 \land 1 \neq 0 \quad \blacksquare \perp$  $(1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0$  $(2) \quad (x \neq 0 \land y \neq 0) \implies x * y \neq 0$ (1) x \* y + (-x) \* y = (x + -x) \* y = 0 \* y = 0 x \* y + (-x) \* y = 0(2) (-x) \* y = -(x \* y)(3)  $x * y + x * (-y) = x * (y_0 + -y) = x * 0 = 0$  x \* y + x \* (-y) = 0(4) x \* (-y) = -(x \* y)(5) (-x) \* y = -(x \* y) = x \* (-y) $(1) \quad (-x) * (-y) = -(x * (-y)) = -(-(x * y)) = x * y$ (1.17)
$$\begin{split} I[F,+,*,<] := \left( \begin{array}{ccc} Field[F,+,*] & \wedge & Order[<,F] & \wedge \\ \forall_{x,y,z \in F}(y_0 < z \implies x+y < x+z) & \wedge \\ \forall_{x,y \in F} \left( (x > 0 \wedge y > 0) \implies x * y > 0 \right) \end{array} \right) \end{split}$$
 $(1.1) \quad 0 = (-x) + x > (-x) + 0 = -x \quad \blacksquare \quad 0 > -x \quad \blacksquare \quad -x < 0$  $(2) \quad x > 0 \implies -x < 0$  $(3) -x < 0 \implies \dots$  $(3.1) \quad 0 = x + (-x) < x + 0 = x \quad 0 < x \quad x > 0$ (4)  $-x < 0 \implies x > 0$  $(5) \quad x > 0 \implies -x < 0 \land -x < 0 \implies x > 0 \quad \blacksquare \quad x > 0 \iff -x < 0$ ositive Factor Preserves Order :=  $(x > 0 \land y < z) \implies x * y < x * z$ 

(1.1) (-y) + z > (-y) + y = 0  $\blacksquare z + (-y) = 0$ (1.2) x \* (z + (-y)) > 0  $\blacksquare x * z + x * (-y) > 0$ 

```
from: Field, NegationCommutativity
   (1.3) \quad x * z = 0 + x * z = (x * y + -(x * y)) + x * z = (x * y + x * (-y)) + x * z = \dots
  (1.4) \quad x * y + (x * z + x * (-y)) > x * y + 0 = x * y
                                                                                                                                                                                       from: 1.3, 1.4
   (1.5) x * z > x * y
(2) \quad \overline{(x > 0 \land y < z)} \implies x * z > \overline{x * y}
  (1.1) -x > 0
  (1.2) \quad (-x) * y < (-x) * z \quad 0 = x * y + (-x) * y < x * y + (-x) * z \quad 0 < x * y + (-x) * z
  (1.3) \quad 0 < (-x) * (-y+z) \quad \blacksquare \quad 0 > x * (-y+z) \quad \blacksquare \quad 0 > -(x*y) + x * z
  (1.4) x * y > x * z
  Square 1 s Positive := (x \neq 0) \implies x * x > 0
(1) (x > 0) \implies x * x > 0
(2) \quad (x < 0) \implies \dots
  (2.1) \quad -x > 0 \quad \boxed{\quad} x * x = (-x) * (-x) > 0 \quad \boxed{\quad} x * x > 0
(3) (x < 0) \implies x * x > 0
\underline{OnelsPositive} := \overline{1 > 0}
(1) \quad 1 \neq 0 \quad \blacksquare \quad 1 = 1 * 1 > 0
(1) \quad (0 < x < y) \implies \dots
  (1.1) \quad x * (1/x) = 1 > 0 \quad \blacksquare \ x * (1/x) > 0
  (1.2) \quad 1/x < 0 \implies x * (1/x) < 0 \land x * (1/x) > 0 \implies \bot \quad \boxed{1/x > 0}
  (1.3) \quad y * (1/y) = 1 > 0 \quad \blacksquare \quad y * (1/y) > 0
  (1.4)  1/y < 0 \implies y * (1/y) < 0 \land y * (1/y) > 0 \implies \bot   1/y > 0
  (1.5) \quad (1/x) * (1/y) > 0
  (1.6) \quad 0 < 1/y = ((1/x) * (1/y)) * x < ((1/x) * (1/y)) * y = 1/x
(1.19)
   rdered Field \underline{Q} := Ordered Field [\mathbb{Q}, +, *, <]
             I[K, F, +, *] := Field[F, +, *] \land K \subset F \land Field[K, +, *]
                         I[K, F, +, *, <] := Ordered Field[F, +, *, <] \land K \subset F \land Ordered Field[K, +, *, <]
      [\alpha] := \emptyset \neq \alpha \subset \mathbb{Q}
        I[\alpha] := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q 
        [\alpha] := \forall_{p \in \alpha} \exists_{r \in \alpha} (p < r)
    := \{ \alpha \in \mathbb{Q} : CutI[\alpha] \land CutII[\alpha] \land CutIII[\alpha] \}
    \text{uCorollary!} := (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
(1) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots
  (1.1) \quad \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)
```

 $(1.2) \quad q$ 

 $(1.3.2) \quad (q=p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p$ 

 $(1.3) \quad (q \notin \alpha) \implies \dots$   $(1.3.1) \quad q \ge p$ 

```
(1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q
    (1.4) \quad q \notin \alpha \implies p < q \quad \blacksquare \quad p < q
(2) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
   \overline{\text{CutCorollaryll}} := (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
(1) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
    (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
    (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
  <_{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
      rderTrichotomyOfR:=OrderTrichotomy[\mathbb{R},<_{\mathbb{R}}]
(1) \quad (\overline{\alpha, \beta \in \mathbb{R}}) \implies \dots
    (1.1) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \dots
         (1.1.1) \quad \alpha \not\subset \beta \land \alpha \neq \beta
         (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' : p' \in \alpha \land p' \notin \beta\})
         (1.1.3) q \in \beta \implies \dots
          (1.1.3.1) \quad p, q \in \mathbb{Q}
             (1.1.3.2) q < p
             (1.1.3.3) q \in \alpha
        (1.1.4) \quad q \in \beta \implies q \in \alpha
         (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
         (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta <_{\mathbb{R}} \quad \alpha
     (1.2) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \beta <_{\mathbb{R}} \alpha
     (1.3) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \quad \blacksquare \ (\beta <_{\mathbb{R}} \alpha) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta)
    (1.4) \quad \alpha = \beta \implies \neg(\alpha <_{\mathbb{R}} \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.5) \quad \alpha <_{\mathbb{R}} \beta \implies \neg(\alpha = \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.6) \quad \beta <_{\mathbb{R}} \alpha \implies \neg(\alpha = \beta \lor \alpha <_{\mathbb{R}} \beta)
    (1.7) \quad \alpha <_{\mathbb{R}} \beta \vee \alpha = \beta \vee \alpha <_{\mathbb{R}} \beta
(2) \ (\alpha,\beta\in\mathbb{R}) \implies (\alpha<_{\mathbb{R}}\beta\veebar\alpha=\beta\veebar\alpha<_{\mathbb{R}}\beta)
(3) \quad \forall_{\alpha,\beta \in \mathbb{R}} (\alpha <_{\mathbb{R}} \beta \underline{\vee} \alpha = \beta \underline{\vee} \alpha <_{\mathbb{R}} \beta)
(4) OrderTrichotomy[\mathbb{R}, <_{\mathbb{R}}]
                        ansitivityOfR := OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
(1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha <_{\mathbb{R}} \beta \wedge \beta <_{\mathbb{R}} \gamma) \implies \dots
        (1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma
         (1.1.2) \quad \overline{\forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)}
         (1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \quad \alpha \subset \gamma \quad \blacksquare \quad \alpha <_{\mathbb{R}} \quad \gamma
  (1.2) \quad (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left( (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)
(3) \quad \forall_{\alpha,\beta,\gamma\in\mathbb{R}} \left( (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)
(4) OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
```

OrderOf  $R := Order[<_{\mathbb{R}}, \mathbb{R}]$  III B Property Of <math>R := III B P

 $LUBPropertyOfR := LUBProperty[\mathbb{R}, <_{\mathbb{R}}]$ 

(1)  $(\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \dots$ 

 $(1.1) \quad \gamma := \{ p \in \mathbb{Q} : \exists_{\alpha \in A} (p \in \alpha) \}$ 

wts:

```
(1.2) \quad A \neq \emptyset \quad \blacksquare \ \exists_{\alpha} (\alpha \in A) \quad \blacksquare \ \alpha_0 := choice(\{\alpha : \alpha \in A\})
     (1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \quad \exists_a (a \in \alpha_0) \quad \blacksquare \quad a_0 := choice(\{a : a \in \alpha_0\}) \quad \blacksquare \quad a_0 \in \gamma \quad \blacksquare \quad \gamma \neq \emptyset
     (1.4) Bounded Above [A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \exists_{\beta}(U \text{ pper Bound } [\beta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.5) \quad \beta_0 := choice(\{\beta : UpperBound[\beta, A, \mathbb{R}, <_{\mathbb{R}}]\})
     (1.6) \quad \textit{UpperBound}[\beta_0, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \subseteq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} \forall_{\alpha \in A} (\alpha \in \beta_0)
     (1.7) \quad (\alpha \in A \land a \in \alpha) \iff a \in \gamma \quad \blacksquare \quad \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \quad \gamma \subseteq \beta_0
     (1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subset \mathbb{Q}
     (1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad CutI[\gamma]
     (1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots
         (1.10.1) \quad p \in \gamma \quad \blacksquare \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_1 := choice(\{\alpha \in A : p \in \alpha\})
          (1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q 
      (1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII[\gamma]
     (1.12) \quad p \in \gamma \implies \dots
          (1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_2 := choice(\{\alpha \in A : p \in \alpha\})
          (1.12.2) \quad \alpha_2 \in \mathbb{R} \quad \blacksquare \quad CutII[\alpha_2] \quad \blacksquare \quad \exists_{r \in \alpha_2} (p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 : p < r\})
          (1.12.3) \quad r_0 \in \alpha_2 \quad \boxed{r_0 \in \gamma}
          (1.12.4) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)
      (1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII[\gamma]
     (1.14) \quad CutI[\gamma] \wedge CutII[\gamma] \wedge CutIII[\gamma] \quad \boxed{\gamma} \in \mathbb{R}
     (1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma)
     (1.16) \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma) \land \gamma \in \mathbb{R} \quad \blacksquare \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.17) \quad \delta <_{\mathbb{R}} \gamma \implies \dots
          (1.17.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := choice(\{s \in \mathbb{Q} : s \in \gamma \land s \notin \delta\})
          (1.17.2) \quad s_0 \in \gamma \quad \blacksquare \quad \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \quad \alpha_3 := choice(\{\alpha \in A : s_0 \in \alpha\})
          (1.17.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
          (1.17.4) \delta \geq_{\mathbb{R}} \alpha_3 \implies \dots
             (1.17.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
               (1.17.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \quad \bot
          (1.17.5) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \bot \quad \blacksquare \quad \delta <_{\mathbb{R}} \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\delta <_{\mathbb{R}} \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\neg (\alpha \leq_{\mathbb{R}} \delta))
           (1.17.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \delta) \quad \blacksquare \quad \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.18) \quad \delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]) \quad \blacksquare \quad \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.19) \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \land \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.20) \quad LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \, \exists_{\gamma \in S}(LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(2) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S}(LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(3) \ \forall_{A} \Big( (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S} (LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}]) \Big) \ \blacksquare \ LUBProperty[\mathbb{R}, <_{\mathbb{R}}]
     _{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land (\alpha +_{\mathbb{R}} \beta) = \{r + s : r \in \alpha \land s \in \beta\}
   \mathbf{D}_{\mathbb{R}} := \{ x \in \mathbb{Q} : x < 0 \}
     CeroInR := 0_{\mathbb{R}} \in \mathbb{R}
(1) \quad -1 \in 0_{\mathbb{R}} \land 1 \notin 0_{\mathbb{R}} \quad \blacksquare \quad \emptyset \neq 0_{\mathbb{R}} \subseteq \mathbb{Q} \quad \blacksquare \quad CutI[0_{\mathbb{R}}]
(2) \quad (x \in \overline{0_{\mathbb{R}} \land y \in \mathbb{Q} \land y < x)} \implies y < x < 0 \implies y < 0 \implies y \in 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \forall_{y \in \mathbb{Q}} (y_0 < x \implies y \in 0_{\mathbb{R}}) \quad \blacksquare \quad CutII[0_{\mathbb{R}}]
(3) \quad y := x/2 \quad \blacksquare \quad (x \in 0_{\mathbb{R}}) \implies (x < y < 0) \implies \exists_{y \in 0_{\mathbb{R}}} (x < y) \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \exists_{y \in 0_{\mathbb{R}}} (x < y) \quad \blacksquare \quad CutIII[0_{\mathbb{R}}]
(4) \quad CutI[0_{\mathbb{R}}] \wedge CutII[0_{\mathbb{R}}] \wedge CutIII[0_{\mathbb{R}}] \quad \blacksquare \quad 0_{\mathbb{R}} \in \mathbb{R}
                                                        reOfR := (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
```

(1)  $(\alpha, \beta \in \mathbb{R}) \implies \dots$ 

 $(1.1) \quad (\alpha +_{\mathbb{R}} \beta) = \{r + s : r \in \alpha \land s \in \beta\}$ 

 $(1.2) \quad \emptyset \neq \alpha \subset \mathbb{Q} \land \emptyset \neq \beta \subset \mathbb{Q}$ 

```
(1.5) \quad \forall_{r \in \alpha}(r < x_0) \; ; \; \forall_{s \in \beta}(s < y_0) \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in \beta}(r + s < x_0 + y_0) \quad \blacksquare \quad x_0 + y_0 \notin \alpha +_{\mathbb{R}} \beta
     (1.6) \quad \emptyset \neq \alpha +_{\mathbb{R}} \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\alpha +_{\mathbb{R}} \beta]
     (1.7) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies \dots
         (1.7.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare \quad (r_0, s_0) := choice((r, s) \in \alpha \times \beta : p = r + s)
         (1.7.2) \quad q 
         (1.7.3) \quad s_0 \in \beta \quad \blacksquare \quad q = (q - s_0) + s_0 \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad q \in \alpha +_{\mathbb{R}} \beta
     (1.8) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad CutII[\alpha +_{\mathbb{R}} \beta]
     (1.9) \quad p \in \alpha \implies \dots
         (1.9.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_1, s_1) := choice(\{(r, s) \in \alpha \times \beta : p = r + s\})
         (1.9.2) \quad r_1 \in \alpha \quad \blacksquare \quad \exists_{t \in \alpha} (r_1 < t) \quad \blacksquare \quad t_0 := choice(\{t \in \alpha : r_1 < t\})
         (1.9.3) \quad s_1 \in \beta \quad \blacksquare \quad t + s_1 \in \alpha +_{\mathbb{R}} \beta \land p = r_1 + s_1 < t + s_1 \quad \blacksquare \quad \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r)
     (1.10) \quad p \in \alpha \implies \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad CutIII[\alpha +_{\mathbb{R}} \beta]
    (1.11) \quad CutI[\alpha +_{\mathbb{R}} \beta] \wedge CutII[\alpha +_{\mathbb{R}} \beta] \wedge CutIII[\alpha +_{\mathbb{R}} \beta] \quad \boxed{\alpha +_{\mathbb{R}} \beta \in \mathbb{R}}
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
      \underline{eld} \, \underline{AdditionCommutativityOf} \, \underline{R} \, := (\alpha, \beta \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta = \beta +_{\mathbb{R}} \alpha)
(1) \quad \alpha +_{\mathbb{R}} \beta = \{r + s : r \in \alpha \land s \in \beta\} = \{s + r : s \in \beta \land r \in \alpha\} = \beta +_{\mathbb{R}} \alpha
                                                                 \text{it yOf } R := (\alpha, \beta, \gamma \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma))
(1) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
   (1.1) \quad (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \{ (a+b) + c : a \in \alpha \land b \in \beta \land c \in \gamma \} = \dots
    (1.2) \quad \{a + (b+c) : a \in \alpha \land b \in \beta \land c \in \gamma\} = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
  \overline{C_{iold} \, Addition \, Identity \, O_f \, R} := (\alpha \in \mathbb{R}) \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies \dots
     (1.1.1) \quad s < 0 \quad \blacksquare r + s < r + 0 = r \quad \blacksquare r + s < r \quad \blacksquare r + s \in \alpha
    (1.2) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies r + s \in \alpha \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in 0_{\mathbb{R}}} (r + s \in \alpha)
     (1.3) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \iff (r + \overline{s} \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}} (p \in \alpha) \quad \blacksquare \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha
    (1.4) p \in \alpha \implies ...
        (1.4.1) \quad \exists_{r \in \alpha} (p < r) \quad \blacksquare \quad r_2 := choice(\{r \in \alpha : p < r\})
         (1.4.2) \quad p < r_2 \quad \blacksquare \quad p - r_2 < r_2 - r_2 = 0 \quad \blacksquare \quad (p - r_2) < 0 \quad \blacksquare \quad (p - r_2) \in 0_{\mathbb{R}}
         (1.4.3) \quad r_2 \in \alpha \quad \blacksquare \quad p = r_2 + (p - r_2) \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.5) \quad p \in \alpha \implies p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{p \in \alpha} (p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.6) \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha \wedge \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(2) \quad \alpha \in \mathbb{R} \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
     ield\ Addition\ Inverse\ Of\ R:=(\alpha\in\mathbb{R}) \implies \overline{\exists_{-\alpha\in\mathbb{R}} \big(\alpha+_{\mathbb{R}}(-\alpha)=\overline{0}_{\mathbb{R}}\big)}
\overline{(1)} \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad \beta := \{ p \in \mathbb{Q} : \exists_{r>0} (-p - r \notin \alpha) \}
    (1.2) \quad \alpha \subset \mathbb{Q} \quad \blacksquare \ \exists_{s \in \mathbb{Q}} (s \notin \alpha) \quad \blacksquare \ s_0 := choice(\{s : s \notin \alpha\}) \quad \blacksquare \ p_0 := -s_0 - 1
     (1.3) \quad -p_0 - 1 = -(-s_0 - 1) - 1 = s_0 \not\in \alpha \quad \blacksquare \quad -p_0 - 1 \not\in \alpha \quad \blacksquare \quad \exists_{r > 0} (-p_0 - r \not\in \alpha) \quad \blacksquare \quad p_0 \in \beta
     (1.4) \quad \emptyset \neq \alpha \quad \blacksquare \quad \exists_{q \in \alpha} \quad \blacksquare \quad q_0 := choice(\{q \in \mathbb{Q} : q \in \alpha\})
     (1.5) r > 0 \Longrightarrow \dots
     (1.5.1) \quad q_0 \in \alpha \quad \blacksquare \quad -(-q_0) - r = q_0 - r < q_0 \quad \blacksquare \quad -(-q_0) - r < q_0 \quad \blacksquare \quad -(-q_0) - r \in \alpha
     (1.6) \quad \forall_{r>0} \left( -(-q_0) - r \in \alpha \right) \quad \blacksquare \quad \neg \exists_{r>0} \left( -(-q_0) - r \notin \alpha \right) \quad \blacksquare \quad -q_0 \notin \beta
```

 $(1.3) \quad \exists_a(a \in \alpha) \; ; \exists_b(b \in \beta) \quad \blacksquare \; a_0 := choice(\{a : a \in \alpha\}) \; ; \; b_0 := choice(\{b : b \in \beta\}) \quad \blacksquare \; a_0 + b_0 \in \alpha +_{\mathbb{R}} \beta$ 

 $(1.4) \quad \exists_{x}(x \notin \alpha) \; ; \; \exists_{y}(y_{0} \notin \beta) \quad \blacksquare \; x_{0} \mathrel{\mathop:}= choice(\{x : x \notin \alpha\}) \; ; \; y_{0} \mathrel{\mathop:}= choice(\{y : y \notin \beta\})$ 

 $(1.7) \quad \emptyset \neq \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\beta]$ 

```
(1) (x, y \in \mathbb{R} \land x > 0) \Longrightarrow \dots
      (1.1) \quad \overline{A} := \{nx : n \in \mathbb{N}^+\} \quad \blacksquare \quad (\emptyset \neq A \subset \mathbb{R}) \land (a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a))
      (1.2) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \dots
            (1.2.1) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{n \in \mathbb{N}^+} (nx \le y) \quad \blacksquare \quad UpperBound[y_0, A, \mathbb{R}, <] \quad \blacksquare \quad Bounded Above[A, \mathbb{R}, <]
             (1.2.2) CompletenessOf R \parallel LUBProperty[\mathbb{R}, <]
            (1.2.3) \quad (\underline{LU} BProperty[\mathbb{R}, <]) \land (\emptyset \neq A \subset \mathbb{R}) \land (\underline{Bounded Above}[A, \mathbb{R}, <]) \quad \blacksquare \ \exists_{\alpha \in \mathbb{R}} (\underline{LUB}[\alpha, A, \mathbb{R}, <]) \ \ldots
            (1.2.4) \quad \dots \alpha_0 := choice(\{\alpha \in \mathbb{R} : LUB[\alpha, A, \mathbb{R}, <]\}) \quad \blacksquare LUB[\alpha_0, A, \mathbb{R}, <]
             (1.2.5) x > 0   \alpha_0 - x < \alpha_0
             (1.2.6) \quad (\alpha_0 - x < \alpha_0) \land (LUB[\alpha_0, A, \mathbb{R}, <]) \quad \blacksquare \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <]
             (1.2.7) \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <] \quad \blacksquare \quad \exists_{c \in A}(\alpha_0 - x < c) \quad \dots
            (1.2.8) \quad \ldots c_0 := choice(\{c \in A : \alpha_0 - x < c\}) \quad \blacksquare (c_0 \in A) \land (\alpha_0 - x < c_0)
            (1.2.9) \quad (c_0 \in A) \land \left(a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)\right) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (mx = c_0) \quad \dots
             (1.2.10) \quad \ldots m_0 := choice(\{m \in \mathbb{N}^+ : mx = c_0\}) \quad \blacksquare \quad (m_0 \in \mathbb{N}^+) \land (m_0 x = c_0)
            (1.2.11) \quad (\alpha_0 - x < c_0) \land (m_0 x = c_0) \quad \blacksquare \quad \alpha_0 - x < c_0 = m_0 x \quad \blacksquare \quad \alpha_0 < m_0 x + x \quad \blacksquare \quad \alpha_0 < (m_0 + 1) x
             (1.2.12) m_0 \in \mathbb{N}^+ \mid m_0 + 1 \in \mathbb{N}^+
            (1.2.13) \quad (m_0 + 1 \in \mathbb{N}^+) \land \left(a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)\right) \quad \blacksquare \quad (m_0 + 1)x \in A
            (1.2.14) \quad (\alpha_0 < (m_0 + 1)x) \land ((m_0 + 1)x \in A) \quad \blacksquare \quad \exists_{c \in A} (\alpha_0 < c)
            (1.2.15) \quad \underline{LUB}[\alpha_0, A, \mathbb{R}, <] \quad \boxed{\hspace{-0.5cm} UpperBound}[\alpha_0, A, \mathbb{R}, <] \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \forall_{c \in A}(c \leq \alpha_0) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(c > \alpha_0) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0
             (1.2.16) \quad \left( \exists_{c \in A} (\alpha_0 < c) \right) \land \left( \neg \exists_{c \in A} (\alpha_0 < c) \right) \quad \blacksquare \perp
      (1.3) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \bot \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (nx > y)
(2) \quad (x, y \in \mathbb{R} \land x > 0) \implies \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} \left( x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y) \right)
(1) (x, y \in \mathbb{R} \land x < y) \implies \dots
      (1.1) \quad x < y \quad \blacksquare \quad (0 < y - x) \land (y - x \in \mathbb{R})
      (1.2) \quad Archimedean Property Of R \wedge (0 < y - x) \wedge (y - x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (n(y - x) > 1) \quad \dots
      (1.3) \quad \dots \quad n_0 := choice(\{n \in \mathbb{N}^+ : n(y-x) > 1\}) \quad \blacksquare \quad (n_0 \in \mathbb{N}^+) \land (n_0(y-x) > 1)
      (1.4) \quad (n_0 \in \mathbb{N}^+) \land (x \in \mathbb{R}) \quad \blacksquare \quad n_0 x, -n_0 x \in \mathbb{R}
      (1.5) \quad Archimedean Property Of R \land (1 > 0) \land (n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (m(1) > n_0 x) \dots
      (1.6) 	 \dots m_1 := choice(\{m \in \mathbb{N}^+ : m(1) > n_0 x\}) \blacksquare (m_1 \in \mathbb{N}^+) \land (m_1 > n_0 x)
      (1.7) \quad Archimedean Property Of R \land (1 > 0) \land (-n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} \left( m(1) > -n_0 x \right) \dots
      (1.8) 	 \dots m_2 := choice(\{m \in \mathbb{N}^+ : m(1) > -n_0 x\}) 	 \blacksquare (m_2 \in \mathbb{N}^+) \land (m_2 > -n_0 x)
      (1.9) \quad (m_1 > n_0 x) \land (m_2 > -n_0 x) \quad \blacksquare \quad -m_2 < n_0 x < m_1
      (1.10) \quad m_1, m_2 \in \mathbb{N}^+ \quad || |m_1 - (-m_2)| \ge 2
      (1.11) \quad (-m_2 < n_0 x < m_1) \land (|m_1 - (-m_2)| \ge 2) \quad \blacksquare \quad \exists_{m \in \mathbb{Z}} ((-m_2 < m < m_1) \land (m-1 \le n_0 x < m)) \quad \dots
      (1.12) \quad \dots \quad m_0 := choice \left( \{ m \in \mathbb{Z} : (-m_2 < m < m_1) \land (m-1 \le n_0 x < m) \} \right) \quad \blacksquare \quad (-m_2 < m_0 < m_1) \land (m_0 - 1 \le n_0 x < m_0) 
      (1.13) \quad \left( n_0(y-x) > 1 \right) \land \left( m_0 - 1 \le n_0 x < m_0 \right) \quad \blacksquare \quad n_0 x < m_0 \le 1 + n_0 x < n_0 y \quad \blacksquare \quad n_0 x < m_0 < n_0 y 
      (1.14) \quad (n_0 \in \mathbb{N}^+) \land (n_0 x < m_0 < n_0 y) \quad \blacksquare \ x < m_0 / n_0 < y
      (1.15) m_0, n_0 \in \mathbb{Z} \mid m_0/n_0 \in \mathbb{Q}
      (1.16) \quad (m_0/n_0 \in \mathbb{Q}) \land (x < m_0/n_0 < y) \quad \blacksquare \ \exists_{p \in \mathbb{Q}} (x < p < y)
(2) \quad (x,y \in \mathbb{R} \land x < y) \implies \exists_{p \in \mathbb{Q}} (x < p < y) \quad \blacksquare \quad \forall_{x,y \in \mathbb{R}} \left( x < y \implies \exists_{p \in \mathbb{Q}} (x < p < y) \right)
(1.21)
                                na := (0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})
(1) \quad (0 < a < b) \implies \dots

\overline{(1.1)} \quad b^n - \overline{a^n} = \overline{(b - a) \sum_{i=1}^n (b^{n-i} a^{i-1})}

      (1.2) 0 < a < b \mid b/a > 1
```

12 CHAPTER 1. REAL ANALISI

```
(1.3) \quad b/a > 1 \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} \left( b^{n-i}a^{i-1}(b/a)^{i-1} \right) = \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} = nb^
```

$$(1.4) \quad b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i}a^{i-1}) \le (b - a)nb^{n-1} \quad \blacksquare \quad b^n - a^n \le (b - a)nb^{n-1}$$

(2) 
$$(0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})$$

 $Root Existence InR := \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists !_{0 < y \in \mathbb{R}} (y_0^n = x)$ 

- (1)  $(0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \dots$
- $(1.1) \quad E := \{ t \in \mathbb{R} : t > 0 \land t^n < x \} \quad \blacksquare \quad t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)$
- $(1.2) \quad t_0 := x/(1+x) \quad \blacksquare \quad \left(t_0 = x/(1+x)\right) \land (t_0 \in \mathbb{R})$
- (1.3)  $0 < x \mid 0 < x < 1 + x \mid t_0 = x/(1+x) > 0 \mid t_0 > 0$
- $(1.4) \quad 1 = (1+x)/(1+x) > x/(1+x) = t_0 \quad \blacksquare \quad 1 > t_0$
- $(1.5) \quad (t_0 > 0) \land (1 > t_0) \quad \blacksquare \quad 0 < t_0 < 1$
- $(1.6) \quad (0 < n \in \mathbb{Z}) \land (0 < t_0 < 1) \quad \blacksquare \ t_0^n \le t_0$
- (1.7)  $0 < x \mid x > x/(1+x) = t_0 \mid x > t_0$
- $(1.8) \quad (t_0^n \le t_0) \land (x > t_0) \quad \blacksquare \ t_0^n < x$
- $(1.9) \quad \left(t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)\right) \land (t_0 \in \mathbb{R}) \land (t_0 > 0) \land (t_0^n < x) \quad \blacksquare \quad t_0 \in E \quad \blacksquare \quad \emptyset \neq E$
- $(1.10) \quad t_1 := choice(\{t \in \mathbb{R} : t > 1 + x\}) \quad \blacksquare \quad (t_1 \in \mathbb{R}) \land (t_1 > 1 + x)$
- $(1.11) \quad x > 0 \quad \blacksquare \ t_1 > 1 + x > 1 \quad \blacksquare \ t_1 > 1 \quad \blacksquare \ t_1^n \ge t_1$
- $(1.12) \quad (t_1^n \ge t_1) \land (t_1 > 1 + x) \land (1 > 0) \quad \blacksquare \quad t_1^n \ge t_1 > 1 + x > x \quad \blacksquare \quad t_1^n > x$
- $(1.13) \quad \left(t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)\right) \land (t_1^n > x) \quad \blacksquare t_1 \notin E \quad \blacksquare E \subset \mathbb{R}$
- $(1.14) \quad (\emptyset \neq E) \land (E \subset \mathbb{R}) \quad \blacksquare \quad \emptyset \neq E \subset \mathbb{R}$
- $(1.15) \quad t \in E \implies \dots$ 
  - $(1.15.1) \quad (t \in E) \land (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \quad \blacksquare t^n < x$
  - $(1.15.2) \quad (t_1^n > x) \land (t^n < x) \quad \blacksquare \ t^n < x < t_1^n \quad \blacksquare \ t < t_1$
- $(1.16) \quad t \in E \implies t < t_1 \quad \blacksquare \quad \forall_{t \in E} (t \le t_1) \quad \blacksquare \quad UpperBound[t_1, E, \mathbb{R}, <] \quad \blacksquare \quad Bounded \ Above[E, \mathbb{R}, <]$
- (1.17) CompletenessOf  $R \mid LUBProperty[\mathbb{R}, <]$
- $(1.18) \quad (LUBProperty[\mathbb{R}, <]) \land (\emptyset \neq E \subset \mathbb{R}) \land (Bounded Above[E, \mathbb{R}, <]) \quad \blacksquare \ \exists_{v \in \mathbb{R}} (LUB[y, E, \mathbb{R}, <]) \ \dots$
- (1.19) ...  $y_0 := choice(\{y \in \mathbb{R} : LUB[y, E, \mathbb{R}, <]\}) \mid LUB[y_0, E, \mathbb{R}, <]$
- $(1.20) \quad (LUB[y_0, E, \mathbb{R}, <]) \land (t_0 \in E) \land (t_0 > 0) \quad \blacksquare \quad 0 < t_0 \le y_0 \in \mathbb{R} \quad \blacksquare \quad 0 < y_0 \in \mathbb{R}$
- $(1.21) \quad y_0^n < x \implies \dots$ 
  - $(1.21.1) \quad k_0 := \frac{x y_0^n}{n(y_0 + 1)^{n 1}} \quad \blacksquare \quad k_0 \in \mathbb{R}$
  - $(1.21.2) \quad y_0^n < x \quad \blacksquare \quad 0 < x y_0^n$
  - $(1.21.3) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \ 0 < n(y_0 + 1)^{n-1}$
  - $(1.21.4) \quad (0 < x y_0^n) \land \left(0 < n(y_0 + 1)^{n-1}\right) \quad \blacksquare \quad 0 < \frac{x y_0^n}{n(y_0 + 1)^{n-1}} = k_0 \quad \blacksquare \quad 0 < k_0$
  - $(1.21.5) \quad \overline{(0 < 1 \in \mathbb{R}) \land (0 < k_0 \in \mathbb{R})} \quad \blacksquare \quad 0 < \min(\overline{1, k_0}) \in \mathbb{R}$
  - $(1.21.6) \quad \underline{QDenseInR} \land \left(0, min(1, k_0) \in \mathbb{R}\right) \land \left(0 < min(1, k_0)\right) \quad \blacksquare \quad \exists_{h \in \mathbb{Q}} \left(0 < h < min(1, k_0)\right) \quad \dots$
  - $(1.21.7) \quad \dots \quad h_0 := choice \left( \{ h \in \mathbb{Q} : 0 < h < min(1, k_0) \} \right) \quad \blacksquare \quad (0 < h_0 < 1) \land \left( h_0 < k_0 = \frac{x y_0^n}{n(y_0 + 1)^{n-1}} \right)$
  - $(1.21.8) \quad (y_0 > 0) \land (h_0 > 0) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0$
  - $(1.21.9) \quad \textit{Root Lemma} \wedge (0 < y_0 < y_0 + h_0) \quad \blacksquare (y_0 + h_0)^n y_0^n < h_0 n (y_0 + h_0)^{n-1}$
  - $(1.21.10) \quad h_0 < 1 \quad \blacksquare \quad h_0 n(y_0 + h_0)^{n-1} < h_0 n(y_0 + 1)^{n-1}$
  - $(1.21.11) \quad \left( (y_0 + h_0)^n y_0^n < h_0 n (y_0 + h_0)^{n-1} \right) \wedge \left( h_0 n (y_0 + h_0)^{n-1} < h_0 n (y_0 + 1)^{n-1} \right) \quad \blacksquare \quad (y_0 + h_0)^n y_0^n < h_0 n (y_0 + 1)^{n-1}$
  - $(1.21.12) \quad \left(0 < n(y_0 + 1)^{n-1}\right) \land \left(h_0 < k_0 = \frac{x y_0^n}{n(y_0 + 1)^{n-1}}\right) \quad \blacksquare \quad h_0 n(y_0 + 1)^{n-1} < x y_0^n$
  - $(1.21.13) \quad \left( (y_0 + h_0)^n y_0^n < h_0 n (y_0 + 1)^{n-1} \right) \wedge \left( h_0 n (y_0 + 1)^{n-1} < x y_0^n \right) \quad \blacksquare \quad (y_0 + h_0)^n y_0^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n < x y_0^n \quad (y_0 + h_0)^n < x y_0^n < x -$
  - $(1.21.14) \quad (y_0 + h_0)^n y_0^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x$
  - $(1.21.15) \quad (0 < y_0 \mathbb{R}) \land (0 < h_0 < \mathbb{R}) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0 \in \mathbb{R}$
- $(1.21.16) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land ((y_0 + h_0)^n < x) \land (0 < y_0 + h_0 \in \mathbb{R}) \quad \blacksquare (y_0 + h_0)^n \in E$

```
(1.21.17) \quad \left( (y_0 + h_0)^n \in E \right) \land (y_0 < y_0 + h_0) \quad \blacksquare \quad \exists_{e \in E} (y_0 < e)
        (1.21.18) \quad \overline{LUB}[y_0, E, \mathbb{R}, <] \quad \boxed{UpperBound}[y_0, E, \mathbb{R}, <] \quad \boxed{U} \quad \forall_{e \in E}(e \leq y_0) \quad \boxed{\Box} \quad \exists_{e \in E}(e > y_0)
        (1.21.19) \quad \left(\exists_{e \in E} (e > y_0)\right) \land \left(\neg \exists_{e \in E} (e > y_0)\right) \quad \blacksquare \perp
    (1.22) \quad y_0^n < x \implies \bot \quad \blacksquare \quad y_0^n \ge x
    (1.23) \quad y_0^n > x \implies \dots
        (1.23.1) \quad k_1 := \frac{y_0^{n-x}}{ny_0^{n-1}} \quad \blacksquare \quad (k_1 \in \mathbb{R}) \land (k_1 ny_0^{n-1} = y_0^{n} - x)
        (1.23.2) \quad (0 < x) \land (0 < n \in \mathbb{Z}) \quad \blacksquare \quad y_0^n - x < y_0^n \le n y_0^n \quad \blacksquare \quad y_0^n - x < n y_0^n
        (1.23.3) \quad y_0^n - x < ny_0^n \quad \blacksquare \quad k_1 = \frac{y_0^n - x}{ny_0^{n-1}} < \frac{ny_0^n}{ny_0^{n-1}} = y_0 \quad \blacksquare \quad k_1 < y_0
         (1.23.4) \quad y_0^n > x \quad \blacksquare \quad 0 < y_0^n - x
        (1.23.5) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \quad 0 < ny_0^{n-1}
        (1.23.6) \quad (0 < y_0^n - x) \land 0 < (ny_0^{n-1}) \quad \blacksquare \quad 0 < \frac{y_0^n - x}{ny_0^{n-1}} = k_1 \quad \blacksquare \quad 0 < k_1
         (1.23.7) \quad (k_1 < y_0) \land (0 < k_1) \quad \blacksquare \quad (0 < k_1 < y_0) \land (0 < y_0 - k_1 < y_0)
        (1.23.8) t \ge y_0 - k_1 \implies \dots
            (1.23.8.1) \quad t \ge y_0 - k_1 \quad \blacksquare \quad t^n \ge (y_0 - k_1)^n \quad \blacksquare \quad -t^n \le -(y_0 - k_1)^n \quad \blacksquare \quad y_0^n - t^n \le y_0^n - (y_0 - k_1)^n
            (1.23.8.2) \quad \textit{RootLemma} \land (0 < y_0 - k_1 < y_0) \quad \blacksquare \ y_0{}^n - (y_0 - k_1)^n < k_1 n y_0{}^{n-1}
            (1.23.8.3) \quad \left(y_0^n - t^n \le y_0^n - (y_0 - k_1)^n\right) \wedge \left(y_0^n - (y_0 - k_1)^n < k_1 n y_0^{n-1}\right) \quad \blacksquare \quad y_0^n - t^n < k_1 n y_0^{n-1}
            (1.23.8.4) \quad \overline{(k_1 n y_0^{n-1} = y_0^n - x) \wedge (y_0^n - t^n < k_1 n y_0^{n-1})} \quad \blacksquare \quad y_0^n - t^n < y_0^n - x \quad \blacksquare \quad -t^n < \overline{-x} \quad \blacksquare \quad t^n > x
            (1.23.8.5) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t^n > x) \quad \blacksquare \ t \notin E
         (1.23.9) \quad t \geq y_0 - k_1 \implies t \not\in E \quad \blacksquare \quad t \in E \implies t < y_0 - k_1 \quad \blacksquare \quad \forall_{t \in E} (t \leq y_0 - k_1) \quad \blacksquare \quad \overline{U} \quad pperBound[y_0 - k_1, E, \mathbb{R}, <]
        (1.23.10) \quad (LUB[y_0, E, \mathbb{R}, <] \land (y_0 - k_1 < y_0)) \quad \blacksquare \quad \neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]
         (1.23.11) \quad (UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \land (\neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \quad \blacksquare \ \bot
    (1.24) \quad y_0^n > x \implies \bot \quad \blacksquare \quad y_0^n \le x
    (1.25) Order[\mathbb{R}, <] \ \square \ OrderTrichotomy[\mathbb{R}, <]
    (1.26) \quad (OrderTrichotomy[\mathbb{R}, <]) \land (y_0^n \ge x) \land (y_0^n \le x) \quad \blacksquare \ y_0^n = x
    (1.27) \quad (y_0^n = x) \land (y_0 \in \mathbb{R}) \quad \blacksquare \quad \exists_{v \in \mathbb{R}} (y^n = x)
    (1.28) y_1, y_2 := choice(\{y \in \mathbb{R} : y^n = x\})
    (1.29) \quad y_1 \neq y_2 \implies \dots
        (1.29.1) \quad (OrderTrichotomy[\mathbb{R}, <]) \land (y_1 \neq y_2) \quad \blacksquare \quad (y_1 < y_2) \lor (y_2 < y_1) \quad \dots
        (1.29.2) 	 \dots (x = y_1^n < y_2^n = x) \lor (x = y_2^n < y_1^n = x) \blacksquare (x < x) \lor (x > x) \blacksquare \bot \lor \bot \blacksquare \bot
   (1.30) \quad y_1 \neq y_2 \implies \bot \quad \blacksquare \quad y_1 = y_2 \quad \blacksquare \quad \forall_{a,b \in \mathbb{R}} \left( (a^n = x \land b^n = x) \implies a = b \right)
   (1.31) \quad \left(\exists_{y \in \mathbb{R}} (y^n = x)\right) \land \left(\forall_{a,b \in \mathbb{R}} \left( (a^n = x \land b^n = x) \implies a = b \right) \right) \quad \blacksquare \quad \exists!_{y \in \mathbb{R}} (y^n = x)
(2) \quad (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \exists!_{v \in \mathbb{R}} (y^n = x) \quad \blacksquare \quad \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists!_{0 < v \in \mathbb{R}} (y_0^n = x)
                                             \text{Corollary} := \forall_{0 < a \in \mathbb{R}} \forall_{0 < b \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \left( (ab)^{1/n} = a^{1/n} b^{1/n} \right)
          unded Real System [\bar{\mathbb{R}}, +, *, <] := 

\begin{bmatrix}
\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} & \wedge & -\infty < x < \infty & \wedge \\
x + \infty = +\infty & \wedge & x - \infty = -\infty & \wedge & \frac{x}{+\infty} = \frac{x}{-\infty} = 0 & \wedge \\
(x > 0) \implies (x * (+\infty) = +\infty \wedge x * (-\infty) = -\infty) \wedge \\
(x < 0) \implies (x * (+\infty) = -\infty \wedge x * (-\infty) = +\infty)
\end{bmatrix}

\mathbb{C} := \{ \langle a, b \rangle \in \mathbb{R} \times \mathbb{R} \}
    [\langle a, b \rangle, \langle c, d \rangle] := \langle a +_{\mathbb{R}} c, b +_{\mathbb{R}} d \rangle
     [\langle a, b \rangle, \langle c, d \rangle] := \langle a *_{\mathbb{R}} c - b *_{\mathbb{R}} d, a *_{\mathbb{R}} d + \underline{b} *_{\mathbb{R}} c \rangle
        ubfieldC := Subfield[\mathbb{R}, \mathbb{C}, +, *]
i := \langle 0, 1 \rangle \in \mathbb{C}
    Property: =i^2=-1
                     y := (a, b \in \mathbb{R}) \implies (\langle a, b \rangle = a + bi)
```

14 CHAPTER I. KEAL AWALISIS

Conjugate 
$$[\overline{a+bi}] := a-bi$$

Conjugate Properties :=  $(w, z \in \mathbb{C}) \implies \dots$  —

- $(1) \quad \overline{z+w} = \overline{z} + \overline{w}$
- $(2) \quad \overline{z*w} = \overline{z}*\overline{w}$
- $\overline{(3) \quad Re(z) = (1/2)(z+\overline{z}) \wedge Im(z) = (1/2)(z-\overline{z})}$
- $(4) \quad 0 \le z * \overline{z} \in \mathbb{R}$

AbsoluteV alueC[|z|] = 
$$(z * \overline{z})^{1/2}$$
  
AbsoluteV alueProperties :=  $(z, w \in \mathbb{C}) \implies \dots$ 

(1) 123123

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

## Chapter 2

## Abstract Algebra

 ${}^{\mathsf{L}}\mathbf{D}(a,b,c) := CD(a,b,c) \land \forall_d \big( (d:b \land d:c) \implies d:a \big)$ 

```
Relation(f, X) := f \subseteq X
 Function(f, X, Y) := X \neq \emptyset \neq Y \land Relation(f, X \times Y) \land \forall_{x \in X} \exists !_{y \in Y} ((x, y) \in f)
(Function(f, X, Y) \land A \subseteq X \land B \subseteq Y) \implies \dots
(1) Domain(f) := X; Codomain(f) := Y
(2) Image(f, A) := \{f(a) : a \in A\}; Preimage(f, B) := \{a : f(a) \in B\}
(3) \quad Range(f) := Image(Domain(f))
Injective(f, X, Y) := Function(f, X, Y) \land \forall_{x_1, x_2 \in X} (x_1 \neq x_2 \implies f(x_1) \neq f(x_2))
Surjective(f, X, Y) := Function(f, X, Y) \land \forall_{y \in Y} \exists_{x \in X} (y_0 = f(x))
 Bijective(f, X, Y) := Injective(f, X, Y) \land Surjective(f, X, Y)
                              t := (Range(f) = Codomain(f)) \implies Surjective(f)
(Function(f, X, Y) \land Function(g, Y, Z)) \implies (f \circ g)(x) := f(g(x)); Function(f \circ g, X, Z)
               of Functions := (Function(f, A, B) \land Function(g, B, C) \land Function(h, C, D)) \implies \dots
(1) h \circ (g \circ f) = (h \circ g) \circ f
(2) \quad (Injective(f) \land Injective(g)) \implies Injective(g \circ f)
(3) \quad \left( Surjective(f) \land Surjective(g) \right) \implies Surjective(g \circ f)
(4) \quad \left(Bijective(f,A,B)\right) \implies \exists_{f^{-1}} \left(Function(f^{-1},B,A) \land \forall_{a \in A} \left(f^{-1}\left(f(a)\right) = a\right)\right) \land \forall_{b \in B} \left(f\left(f^{-1}(b)\right) = b\right)
 (a,b) := a, b \in \mathbb{Z} \land a \neq 0 \land \exists_{c \in \mathbb{Z}} (b = ac)
   ivisibility \overline{Theorems} := (a, b, c, m, x, y \in \mathbb{Z}) \implies \dots
(1) (a|b) \Longrightarrow a|bc
(2) (a|b \wedge b|c) \implies a|c|
(3) (a|b \wedge b|c) \implies a|(bx + cy)
(4) (a|b \wedge b|a) \implies a = \pm b
(5) (a|b \land a > 0 \land b > 0) \implies (a \le b)
(6) (a|b) \iff (m \neq 0 \land ma|mb)
   \underbrace{\text{ivisionAlgorithm}} := (a, b \in \mathbb{Z} \land a > 0) \implies \exists !_{q,r \in \mathbb{Z}} (b = aq + r)
  (\mathbf{D}(a,b,c) := a,b,c \in \mathbb{Z} \land a : b \land a : c)
```

### **Chapter 3**

# Linear Algebra

 $Matrix[A, m, n] := [a_{i,j}]_{m \times n} := m \text{ rows, } n \text{ columns of real numbers}$ 

```
\mathcal{M}_{m,n} := \{A : Matrix[A, m, n]\}
O_{m,n} := (Matrix[O, m, n]) \land (a_{i,j} = 0)
Square[A, n] := Matrix[A, n, n]
UpperTriangular[A] := (Square[A]) \land (i > j \implies a_{i,j} = 0)
LowerTriangular[A] := (Square[A]) \land (i < j \implies a_{i,j} = 0)
Diagonal[A, n] := (Square[A, n]) \land (i \neq j \implies a_{i,j} = 0)
Scalar[A, n, k] := (Diagonal[A, n]) \land (a_{i,i} = k)
I_n := Scalar[I, n, 1]
+(A, B) := ((Matrix[A, m, n]) \land (Matrix[B, m, n])) \implies (A + B = [a_{i,j} + b_{i,j}]_{m \times n})
*\: (r,A) := \left( (r \in \mathbb{R}) \land (M\: atrix[A,m,n]) \right) \implies (r\: \overline{*\: A} = [ra_{i,j}]_{m \times n})
*(A,B) := ((Matrix[A,m,p]) \land (Matrix[B,p,n])) \implies (A*B = \left[\sum_{k=1}^{p} (a_{i,k}b_{k,j})\right]_{m \times n})
^{T}[A] := (Matrix[A, m, n]) \implies (A^{T} = [a_{i,i}]_{n \times m})
AddCom := \forall_{A,B \in \mathcal{M}} (A + B = B + A)
\overline{(1) \ A + B = [a_{i,i} + b_{i,j}] = [b_{i,j} + a_{i,j}] = B + A}
AddAssoc := \forall_{A,B,C \in \mathcal{M}} ((A+B) + C = A + (B+C))
\overline{(1) \ (A+B) + C = [(a_{i,j} + b_{i,j}) + c_{i,j}] = [a_{i,j} + (b_{i,j} + c_{i,j})] = A + (B+C)}
```

 $AddId := \forall_{A \in \mathcal{M}} \exists !_{O \in \mathcal{M}} (A + O = A = O + A)$ 

$$\overline{(1) \ A + O = [a_{i,j} + 0] = A = [0 + a_{i,j}] = O + A}$$

$$(2) \quad A + O_1 = A = A + O_2 \quad \blacksquare \quad O_1 = O_2$$

 $AddInv := \forall_{A \in \mathcal{M}} \exists !_{(-A) \in \mathcal{M}} \big( A + (-A) = O = (-A) + A \big)$ 

$$\overline{(1)} \ A + (-A) = [a_{i,j} - a_{i,j}] = O = [-a_{i,j} + a_{i,j}] = (-A) + A$$

$$\overline{(2) \ A + (-A_1) = O = A + (-A_2) \ \blacksquare \ -A_1 = -A_2 \ \blacksquare \ A_1 = A_2}$$

 $MulAssoc := \forall_{A,B,C \in \mathcal{M}} ((A * B) * C = A * (B * C))$ 

$$\overline{(1) \quad (A * B) * C = \left[\sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,j})\right] * C = \left[\sum_{k_2=1}^{p_2} \left(\sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,k_2}) c_{k_2,j}\right)\right] = \left[\sum_{k_2=1}^{p_2} \sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j})\right] = \dots$$

$$(2) \quad \dots \left[ \sum_{k_1=1}^{p_1} \sum_{k_2=1}^{p_2} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j}) \right] = \left[ \sum_{k_1=1}^{p_1} \left( a_{i,k_1} \sum_{k_2=1}^{p_2} (b_{k_1,k_2} c_{k_2,j}) \right) \right] = \dots = A * (B * C)$$

 $MulId := \forall_{A:Square[A,n]} (A * I_n = A = I_n * A)$ 

(1) 
$$A * I_n = \left[ \sum_{k=1}^n \left( a_{i,k} \left( \begin{cases} 1 & k=j \\ 0 & k \neq j \end{cases} \right) \right) \right] = [a_{i,j}] = A$$

(2) TODO = A

 $ScalAssoc := \forall_{r,s \in \mathbb{R}} \forall_{A \in \mathcal{M}} (r(sA) = (rs)A = s(rA))$ 

- (1)  $r(sA) = r[sa_{i,j}] = [rsa_{i,j}]$
- $(2) \quad (rs)A = [rsa_{i,j}]$
- (3)  $s(rA) = s[ra_{i,j}] = [sra_{i,j}] = [rsa_{i,j}]$

 $TransCancel := \forall_{A \in \mathcal{M}} (A = (A^T)^T)$ 

(1) 
$$A = [a_{i,j}] = [a_{j,i}]^T = ([a_{i,j}]^T)^T = (A^T)^T$$

 $Scal MulCom := \forall_{r \in \mathbb{R}} \forall_{A,B \in \mathcal{M}} \big( (rA) * B = r(A * B) = A * (rB) \big)$ 

$$\overline{(1) \ (rA) * B = [ra_{i,l}] * [b_{l,j}] = \left[ \sum_{k=1}^{p} (ra_{i,k}b_{k,j}) \right] = r(A * B)}$$

(2) 
$$A * (rB) = [a_{i,l}] * [rb_{l,j}] = \left[\sum_{k=1}^{p} (a_{i,k}rb_{k,j})\right] = \left[\sum_{k=1}^{p} (ra_{i,k}b_{k,j})\right] = r(A * B)$$

 $ScalDistLeft := \forall_{r,s \in \mathbb{R}} \forall_{A \in \mathcal{M}} ((r+s)A = rA + sA)$ 

(1) TODO

 $ScalDistRight := \forall_{r \in \mathbb{R}} \forall_{A,B \in \mathcal{M}} (r(A+B) = rA + rB)$ 

(1) TODO

 $MulDistRight := \forall_{A,B,C \in \mathcal{M}} ((A+B) * C = A * C + B * C)$ 

(1) 
$$(A+B)*C = [a_{i,j}+b_{i,j}]*C = \left[\sum_{k=1}^{p} \left((a_{i,k}+b_{i,k})c_{k,j}\right)\right] = \dots$$

$$\overline{(2) \quad \dots \left[ \sum_{k=1}^{p} (a_{i,k} c_{k,j} + b_{i,k} c_{k,j}) \right] = \left[ \sum_{k=1}^{p} (a_{i,k} c_{k,j}) \right] + \left[ \sum_{k=1}^{p} (b_{i,k} c_{k,j}) \right] = A * C + B * C}$$

 $MulDistLeft := \forall_{A,B,C \in \mathcal{M}} (C * (A + B) = C * A + C * B)$ 

(1) TODO

 $TransAddDist := \forall_{A,B \in \mathcal{M}} ((A+B)^T = A^T + B^T)$ 

(1) TODO

 $TransMulDist := \forall_{A,B \in \mathcal{M}} ((A * B)^T = B^T * A^T)$ 

$$\overline{(1) \quad (A * B)^T = \left[\sum_{k=1}^p (a_{i,k} b_{k,j})\right]^T = \left[\sum_{k=1}^p (a_{j,k} b_{k,i})\right] = \left[\sum_{k=1}^p (b_{k,i} a_{j,k})\right] = \left[\sum_{k=1}^p (b_{i,k}^T a_{k,j}^T)\right] = B^T * A^T}$$

 $Sym[A] := A = A^T$ 

$$SkewSym[A] := A = -A^T$$

$$Invertible[A] := (Square[A, n]) \land \left(\exists_{A^{-1} \in \mathcal{M}} (A * A^{-1} = I_n = A^{-1} * A)\right)$$

 $SymGen := \forall_{A \in \mathcal{M}} (Sym[A + A^T])$ 

$$\overline{(1) (A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T}$$

$$\frac{SkewSymGen := \forall_{A \in \mathcal{M}}(SkewSym[A - A^T])}{(1) \quad -(A - A^T)^T = -\left(A^T - (A^T)^T\right) = -(A^T - A) = (A - A^T)}$$

 $SymDecomp := \forall_{A \in \mathcal{M}} \exists !_{B:Sym[B]} \exists !_{C:SkewSym[C]} (A = B + C)$ 

- (1)  $B := (1/2) * (A + A^T) ; C := (1/2) * (A A^T)$
- $\overline{(2) \quad SymGen[B] \land SkewSymGen[C]}$
- (3)  $A = (1/2) * (A + A^T) + (1/2) * (A A^T) = B + C$
- (4)  $(1/2) * (A_1 + A_1^T) = (1/2) * (A_2 + A_2^T) \blacksquare A_1 = A_2$
- (5)  $(1/2) * (A_3 A_3^T) = (1/2) * (A_4 A_4^T) \blacksquare A_3 = A_4$

 $InvId := \forall_{A:Invertible[A]} \Big( \exists !_{A^{-1} \in \mathcal{M}} (A * A^{-1} = I_n = A^{-1} * A) \Big)$ 

$$\overline{(1) \quad A^{-1}{}_1 = A^{-1}{}_1 * I_n = A^{-1}{}_1 * (A * A^{-1}{}_2) = (A^{-1}{}_1 * A) * A^{-1}{}_2 = I_n * A^{-1}{}_2 = A^{-1}{}_2}$$

 $InvCancel := \forall_{A:Invertible[A]} ((A^{-1})^{-1} = A)$ 

- $\overline{(1) (A * A^{-1})^{-1} = I_n^{-1} = I_n}$
- $(2) \quad (A^{-1})^{-1} * A^{-1} = I_n \quad \blacksquare \quad A^{-1})^{-1} = I_n * A = A$

 $InvDist := \forall_{A:Invertible[A]} \forall_{B:Invertible[B]} \Big( (A * B)^{-1} = B^{-1} * A^{-1} \Big)$ 

$$\overline{(1) \ (A*B)*(A*B)^{-1} = I \ \blacksquare \ B*(A*B)^{-1} = A^{-1} \ \blacksquare \ (A*B)^{-1} = B^{-1}*A^{-1}}$$

 $InvTrans := \forall_{A:Invertible[A]} \left( (A^T)^{-1} = (A^{-1})^T \right) \blacksquare \Leftarrow$ 

$$\overline{(1) \ A^T * (A^{-1})^T = (A^{-1} * A)^T = I^T = I \ \blacksquare \ (A^{-1})^T = (A^T)^{-1} }$$

 $Sys[A, B] := (Matrix[A, m, n]) \wedge (Matrix[B, m, 1])$ 

 $Sol[X, A, B] := (Sys[A, B]) \land (Matrix[X, n, 1]) \land (A * X = B)$ 

Consistent  $Sys[A, B] := (Sys[A, B]) \land \exists_X (Sol[X, A, B])$ 

 $TrivSol[X, A] := (Sol[X, A, O]) \land (X = O)$ 

 $NonTrivSol[X, A] := (Sol[X, A, O]) \land (X \neq O)$ 

 $HomoSysProps := (Sys[A, O]) \implies \dots$ 

- (1)  $u_0 := O ; u_1 := choice(\{X \in \mathcal{M} | X \neq O\}) ; k := choice(\mathbb{R})$
- (2)  $TrivSol[u_0, A]$
- (3)  $(NonTrivSol[u_1, A]) \implies (Sol[u_1 + ku_0])$
- $(4) \ (TrivSol[\overrightarrow{X}, A]) \implies \left(TrivSol[LC(\overrightarrow{X}), A]\right)$

 $ElemMat[E] := (E = Swap[I_n, i, j]) \lor \left(Scale_*(I_n, i, c)\right) \lor \left(Combine_*(I_n, i, c, j)\right)$ 

$$ElemMatProd[E^*] := \exists_{\langle E \rangle} \bigg( \forall_{E_i \in E^*} (ElemMat[E_i]) \land \bigg( E^* = \Pi_{E_i \in E^*}(E_i) \bigg) \bigg)$$

 $RowEquiv[A, B] := \exists_{E^*} ((ElemMatProd[E^*]) \land (B = E^* * A))$ 

 $ElemMatInv := \forall_{E \in \mathcal{M}} ((ElemMat[E]) \implies (Invertible[E]))$ 

$$\overline{(1) \ E - RowSwap[E] \implies TODO; E - RowScale_*(E) \implies TODO; E - RowCombine_*(E) \implies TODO}$$

 $ElemMatProdInv := \forall_{E^*} \big( (ElemMatProd[E^*]) \implies (Invertible[E^*]) \big)$ 

 $\overline{(1)}$  TODO

 $RowEquivSys := \forall_{A,B,C,D,X \in \mathcal{M}} \Big( \big( (Sys[A,B]) \wedge (Sys[C,D]) \wedge (RowEquiv[[AB],[CD]]) \big) \implies (Sol[X,A,B] \iff Sol[X,C,D]) \Big) \Big) + (Sol[X,A,B] \iff Sol[X,C,D]) \Big) + (Sol[X,C,D]) \Big) + (Sol[X,C,D]) \Big) + (Sol[X,C,D]) \Big) + (Sol[X,C,D]) + (Sol[X,C,D]) \Big) + (Sol[X,C,D]) \Big) + (Sol[X,C,D]) + (Sol[X,C,D]) \Big) + (Sol[X,C,D$ 

- $\overline{(1) \ \exists_{E^*: ElemMatProd[E^*]}([CD] = E^* * [AB])}$
- (2)  $(E^* * A = C) \wedge (E^* * B = D)$
- $\overline{(3) \ Sol[Y,A,B] \implies \dots}$ 
  - (3.1) A \* Y = B

CHAPTER 3. LINEAR ALGEDI

```
(3.2) \quad C * Y = (E^* * A) * Y = E^* * (A * Y) = E^* * B = D \quad Sol[Y, C, D]
```

 $(4) \quad Sol[Y, A, B] \implies Sol[Y, C, D]$ 

(5) 
$$\left(A = (E^*)^{-1} * C\right) \wedge \left(B = (E^*)^{-1} * D\right)$$

(6)  $Sol[Z, C, D] \implies \dots$ 

(6.1) 
$$C * Z = D$$

(6.2) 
$$A * Z = ((E^*)^{-1} * C) * Z = (E^*)^{-1} * (C * Z) = (E^*)^{-1} * D = B$$

- (7)  $Sol[Z, C, D] \implies Sol[Z, A, B]$
- (8)  $Sol[X, A, B] \iff Sol[X, C, D]$

 $RowEquivHomoSysSol := \forall_{A,C,X \in \mathcal{M}} \Big( (RowEquiv[A,C]) \implies \Big( (Sol[X,A,O]) \iff (Sol[X,C,O]) \Big) \Big)$ 

 $\overline{(1) \quad \text{Set } B = D = O}$ 

$$RREF[A] := (A \in \mathcal{M}) \land$$
All zero rows are at the bottom of the matrix.  $\land$ 
The leading entry after the first occurs to the right of the leading entry of the previous row.  $\land$ 
The leading entry in any nonzero row is 1.  $\land$ 
All entries in the column above and below a leading 1 are zero.  $\land$ 

 $Gauss Jordan Elim := \forall_{A \in \mathcal{M}} \exists !_{B \in \mathcal{M}} \big( (RREF[B]) \land (Row Equiv[A, B]) \big)$ 

- $\overline{(1)}$  Hit A with ElemMat's until it becomes B
- $(2) \quad (B=E^**A) \wedge (RREF[B])$

$$HasZero[A] := (Matrix(A, m, n)) \land (\exists_{i \le m}(A_{i,:} = O))$$

 $HasZeroNonInvertible := \forall_{A \in \mathcal{M}} ((HasZero[A]) \implies (\neg Invertible[A]))$ 

- $(1) \quad i := choice(\{i \le m | A_{i,:} = O\})$
- $\overline{(2)} (B \in \mathcal{M}) \implies \dots$ 
  - (2.1)  $(A * B)_{i,:} = O \neq I_{ni,:} \quad \blacksquare A * B \neq I_n$

$$\overline{(3) \ (B \in \mathcal{M}) \implies (A * B \neq I_n) \ \blacksquare \ \forall_{B \in \mathcal{M}} (A * B \neq I_n) \ \blacksquare \ \neg Invertible[A]}$$

 $InvIffRowEquivI := \forall_{A \in \mathcal{M}} (Invertible[A]) \iff (RowEquiv[A, I_n])$ 

- (1)  $(Invertible[A]) \implies ...$ 
  - (1.1)  $(RREF[B]) \land (RowEquiv[A, B])$
- $(1.2) \quad B = E^* * A$
- (1.3)  $(Invertible[E^*]) \land (Invertible[A]) \quad Invertible[B]$
- (1.4)  $Invertible[B] \quad \neg HasZero[B]$
- $(1.5) \quad (RREF[B]) \land (\neg HasZero[B]) \quad \blacksquare \quad B = I_n$
- (1.6)  $RowEquiv[A, I_n]$
- (2)  $(Invertible[A]) \implies (RowEquiv[A, I_n])$
- $\overline{(3) \ (RowEquiv[A, I_n])} \Longrightarrow \overline{\ldots}$ 
  - (3.1)  $I_n = E^* * A \blacksquare (E^*)^{-1} = A$
  - (3.2)  $A^{-1} = E_{DescSort}^*$  Invertible[A]
- $(4) \ (RowEquiv[A, I_n]) \implies (Invertible[A])$
- (5)  $(Invertible[A]) \iff (RowEquiv[A, I_n])$

$$RowEquivIIffTrivSol := \forall_{A \in \mathcal{M}} \bigg( (RowEquiv[A, I_n]) \iff \bigg( \forall_X \big( (X = O) \iff (Sol[X, A, O]) \big) \bigg) \bigg)$$

- (1)  $(RowEquiv[A, I_n]) \implies \dots$ 
  - (1.1)  $RowEquiv[A, I_n]$  Invertible[A]
- $(1.2) (Sol[X, A, O]) \implies \dots$

$$(1.2.1) \quad A * X = O \quad \blacksquare \quad X = A^{-1} * O = O \quad \blacksquare \quad X = O$$

 $(1.3) (Sol[X, A, O]) \implies (X = O)$ 

```
(1.4) \quad (X = O) \implies (Sol[X, A, O])
    (1.5) \quad (X = O) \iff (Sol[X, A, O]) \quad \blacksquare \quad \forall_X ((X = O) \iff (Sol[X, A, O]))
(2) (RowEquiv[A, I_n]) \Longrightarrow (\forall_X ((X = O) \iff (Sol[X, A, O])))
(3) \left( \forall_X \big( (X = O) \iff (Sol[X, A, O]) \big) \right) \implies \dots
    (3.1) (RREF[B]) \land (RowEquiv[A, B])
    (3.2) Sol[X, B, O]
    (3.3) (B \neq I_n) \Longrightarrow \dots
       (3.3.1) \quad \left(\exists_{Y\neq X}(Sol[Y,B,O])\right)
       (3.3.2) Sol[Y, A, O] 	 Y = X
      (3.3.3) (Y \neq X) \land (Y = X)  \bot
    (3.4) \quad (B \neq I_n) \implies \bot \blacksquare B = I_n
    (3.5) (RowEquiv[A, B]) \land (B = I_n) \mid RowEquiv[A, I_n]
(4) \left( \forall_X \left( (X = O) \iff (Sol[X, A, O]) \right) \right) \implies (RowEquiv[A, I_n])
(5) \quad (RowEquiv[A, I_n]) \iff \Big( \forall_X \Big( (X = O) \iff (Sol[X, A, O]) \Big) \Big)
 InvIffUniqSol := \forall_{A \in \mathcal{M}} \Big( (Invertible[A]) \iff \Big( \forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B]) \Big) \Big)
\overline{(1)} (Invertible[A] \land B \in \mathcal{M}) \Longrightarrow \dots
    (1.1) \quad (Invertible[A]) \land (Sys[A, B])
    (1.2) \quad (X = A^{-1} * B) \iff (Sol[X, A, B]) \quad \blacksquare \ \exists !_{X \in \mathcal{M}} (Sol[X, A, B]) 
(2) \left( \forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B]) \right) \implies \dots
    (2.1) \quad X_i := choice(\{X_i | Sol[X_i, A, I_{n:i}]\})
    (2.2) \quad A * [X_1 \dots X_n] = [(A * X_1) \dots (A * X_n)] = [I_{n:1} \dots I_{n:n}] = I_n
    (2.3) \quad A^{-1} = [X_1 \dots X_n]
(3) \quad \left( \forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B]) \right) \implies (Invertible[A])
SquareTheorems_4 := \forall_{A \in \mathcal{M}} \left( \begin{array}{ccc} (Invertible[A]) & \Longleftrightarrow & \\ (RowEquiv[A,I_n]) & \Longleftrightarrow & \\ \left( \forall_X \left( (X=O) \iff (Sol[X,A,O]) \right) \right) & \Longleftrightarrow & \\ \left( \forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X,A,B]) \right) & \Longrightarrow & \\ \end{array} \right)
VectorSpace[V,+,*] := \forall_{\alpha,\beta \in \mathbb{R}} \forall_{u,v,w \in V} \exists_{O \in V} \left( \begin{array}{ccc} (u+v \in V) & \wedge & (u+v=v+u) & \wedge & \left((u+v)+w=u+(v+w)\right) \\ (u+O=u) & \wedge & \left(\exists_{-u \in V} \left(u+(-u)=O\right)\right) & \wedge \\ (\alpha*u \in V) & \wedge & \left(\alpha*(\beta*u)=(\alpha\beta)*u\right) & \wedge & (1*u=u) & \wedge \end{array} \right)
                                                                                          (\alpha * (u+v) = (\alpha * u) + (\alpha * v)) \wedge ((\alpha + \beta) * u = (\alpha * u) + (\beta * u))
 ZeroVectorUniq := \forall_{u,v \in V} ((v + u = v) \implies (u = O))
(1) (v + u = v) \quad \blacksquare \quad -v + v + u = -v + v \quad \blacksquare \quad u = O
```

 $\overline{ZeroVectorGen} := \forall_{\alpha \in \mathbb{R}} \forall_{u \in V} \left( (\alpha * u = O) \iff \left( (u = O) \lor (\alpha = 0) \right) \right)$ 

(1)  $(u = O) \implies \dots$ 

(1.1)  $\alpha * u = \alpha * O = \alpha * (O + O) = (\alpha * O) + (\alpha * O)$ 

 $(1.2) \quad \alpha * O = (\alpha * O) + (\alpha * O) \quad \blacksquare \quad \alpha * O = O \quad \blacksquare \quad \alpha * u = O$ 

 $(2) \quad (u = O) \implies (\alpha * u = O)$ 

 $(3) (\alpha = 0) \Longrightarrow \dots$ 

(3.1)  $\alpha * u = 0 * u = (0 + 0) * u = (0 * u) + (0 * u)$ 

(3.2)  $0 * u = (0 * u) + (0 * u) \quad 0 * u = O \quad \alpha * u = O$ 

(4)  $(\alpha = 0) \implies (\alpha * u = 0)$ 

 $(5) \quad ((u=O) \implies (\alpha * u=O)) \land ((\alpha = 0) \implies (\alpha * u=O)) \quad \blacksquare \quad ((u=O) \lor (\alpha = 0)) \implies (\alpha * u=O))$ 

```
(6) (\alpha * u = 0) \Longrightarrow \dots
```

$$(6.1)$$
  $(\alpha \neq 0) \Longrightarrow \dots$ 

$$(6.1.1) \quad \alpha^{-1} \in \mathbb{R}$$

(6.1.2) 
$$O = \alpha^{-1} * O = \alpha^{-1} * (\alpha * u) = (\alpha^{-1} * \alpha) * u = 1 * u = u \quad \blacksquare u = O$$

$$(6.2) \quad (\alpha \neq 0) \implies (u = O)$$

(6.3) 
$$(\alpha = 0) \lor (\alpha \neq 0) \quad \square \quad (\alpha = 0) \lor (u = 0)$$

(7) 
$$(\alpha * u = O) \implies ((\alpha = 0) \lor (u = O))$$

(8) 
$$(\alpha * u = O) \iff ((\alpha = 0) \lor (u = O))$$

 $NegVectorGen := \forall_{u \in V} ((-1) * u = -u)$ 

$$(1) \quad O = 0 * u = (1 + (-1)) * u = (1 * u) + ((-1) * u) = u + ((-1) * u) \quad \blacksquare \quad O = u + ((-1) * u) \quad \blacksquare \quad -u = (-1) * u$$

 $Subspace[S,V,+,*] := (VectorSpace[V,+,*]) \land (\emptyset \neq S \subseteq V) \land (VectorSpace[S,+,*])$ 

$$SubspaceEquiv := \forall_{V,S} \left( \begin{array}{l} \left( (VectorSpace[V,+,*]) \land (\emptyset \neq S \subseteq V) \right) \\ \left( (Subspace[S,V,+,*]) \iff \left( \left( \forall_{r,s \in S} (r+s \in S) \right) \land \left( \forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right) \right) \right) \end{array} \right)$$

(1)  $(Subspace[S, V, +, *]) \Longrightarrow$ 

$$(1.1) \quad VectorSpace[S, +, *] \quad \blacksquare \quad \left( \forall_{r,s \in S} (r + s \in S) \right) \land \left( \forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right)$$

$$\overline{(2) \ (Subspace[S,V,+,*]) \implies \Big( \big( \forall_{r,s \in S} (r+s \in S) \big) \land \big( \forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \big) \Big)}$$

$$(3) \quad \left( \left( \forall_{r,s \in S} (r + s \in S) \right) \land \left( \forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right) \right) \implies \dots$$

$$(3.1) \quad ((\alpha, \beta \in \mathbb{R}) \land (u, v, w \in S)) \implies \dots$$

$$(3.1.1)$$
  $u, v \in V \quad u + v = v + u$ 

$$(3.1.2) \quad u, v, w \in V \quad \blacksquare (u+v) + w = u + (v+w)$$

$$(3.1.3) \quad (ZeroVectorGen) \land (u \in S) \quad \blacksquare \quad 0 * u = O \in S$$

$$(3.1.4)$$
  $u \in V \quad u + O = u$ 

$$(3.1.5) \quad (NegVectorGen) \land (u \in S) \quad \blacksquare \quad (-1) * u = -u \in S$$

$$(3.1.6) \quad u \in V \quad \blacksquare \quad \alpha * (\beta * u) = (\alpha \beta) * u$$

$$(3.1.7)$$
  $u \in V 1 * u = u$ 

(3.1.8) 
$$u, v \in V \quad \square \quad \alpha * (u + v) = (\alpha * u) + (\alpha * v)$$

(3.1.9) 
$$u \in V \mid (\alpha + \beta) * u = (\alpha * u) + (\beta * u)$$

$$(4) \quad \left( \left( \forall_{r,s \in S} (r+s \in S) \right) \land \left( \forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right) \right) \implies (Subspace[S,V,+,*])$$

$$(5) \quad (Subspace[S, V, +, *]) \iff \left( \left( \forall_{r,s \in S} (r + s \in S) \right) \land \left( \forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right) \right)$$

$$LinComb[c, U, K, V, +, *] := (VectorSpace[V, +, *]) \land (U \subseteq V) \land (K \subseteq \mathbb{R}) \land (n = |U| = |K| \in \mathbb{N}) \land \left(c = \sum_{i=1}^{n} (k_i * u_i)\right)$$

$$LinSpan[S', S, V, +, *] := \begin{pmatrix} (VectorSpace[V, +, *]) \land (S \subseteq V) \land \left((S = \emptyset) \implies (S' = \{O\})\right) \land \\ \left((S \neq \emptyset) \implies \left(S' = \{c \in V | \exists_{K \subseteq \mathbb{R}} (LinComb[c, S, K, V, +, *])\}\right) \end{pmatrix}$$

Spans[S, V, +, \*] := LinSpan[V, S, V, +

 $LSSubspaceContaining := \forall_{S',S,V} \Big( (LinSpan[S',S,V,+,*]) \implies \Big( (Subspace[S',V,+,*]) \land (S \subseteq S') \Big) \Big)$ 

$$(1) \quad LinSpan[S', S, V, +, *] \quad \blacksquare \quad O \in S' \quad \blacksquare \quad \emptyset \neq S'$$

(2) 
$$(\emptyset \neq S') \land (S' \subseteq V) \blacksquare \emptyset \neq S' \subseteq V$$

$$(3) \quad (u, v \in S') \implies \dots$$

$$(3.1) \quad u \in S' \quad \blacksquare \quad \exists_{K \subseteq \mathbb{R}} (LinComb[u, S, K, V, +, *]) \quad \blacksquare \quad \exists_{K \subseteq \mathbb{R}} \left( u = \sum_{i=1}^{n} (k_i * s_i) \right)$$

$$(3.2) \quad v \in S' \quad \blacksquare \quad \exists_{L \subset \mathbb{R}} (LinComb[v, S, L, V, +, *]) \quad \blacksquare \quad \exists_{L \subset \mathbb{R}} \left( v = \sum_{i=1}^{n} (l_i * s_i) \right)$$

(3.3) 
$$u + v = \sum_{i=1}^{n} (k_i * s_i) + \sum_{i=1}^{n} (l_i * s_i) = \sum_{i=1}^{n} ((k_i + l_i) * s_i)$$
  
(3.4)  $M := \{k_i + l_i \in \mathbb{R} | (1 \le i \le n) \land (i \in \mathbb{N})\} \ \blacksquare \ M \subseteq \mathbb{R}$ 

$$(3.4) \quad M := \{k_i + l_i \in \mathbb{R} | (1 \le i \le n) \land (i \in \mathbb{N})\} \quad \blacksquare \quad M \subset \mathbb{R}$$

$$(3.5) \quad \exists_{M \subseteq \mathbb{R}} \left( u + v = \sum_{i=1}^{n} (m_i * s_i) \right) \quad \blacksquare \quad \exists_{M \subseteq \mathbb{R}} \left( LinComb[u + v, S, M, V, +, *] \right) \quad \blacksquare \quad u + v \in S'$$

```
(4) \quad (u, v \in S') \implies (u + v \in S') \quad \blacksquare \quad \forall_{u,v \in S'} (u + v \in S')
(5) ((r \in \mathbb{R}) \land (u \in S')) \implies \dots
  (5.1) \quad u \in S' \quad \blacksquare \quad \exists_{K \subset \mathbb{R}} (LinComb[u, S, K, V, +, *]) \quad \blacksquare \quad \exists_{K \subset \mathbb{R}} \left( u = \sum_{i=1}^{n} (k_i * s_i) \right)
   (5.2) r * u = r * \sum_{i=1}^{n} (k_i * s_i) = \sum_{i=1}^{n} (r * (k_i * s_i)) = \sum_{i=1}^{n} (rk_i) * s_i
   (5.3) \quad M := \{ rk_i \in \mathbb{R} | (1 \le i \le n) \land (i \in \mathbb{N}) \} \quad \boxed{M} \subseteq \mathbb{R}
  (5.4) \quad \exists_{M \subseteq \mathbb{R}} \left( r * u = \sum_{i=1}^n (m_i * s_i) \right) \quad \blacksquare \quad \exists_{M \subseteq \mathbb{R}} (LinComb[r * u, S, M, V, +, *]) \quad \blacksquare \quad r * u \in S'
\overline{(6) \ \left( (r \in \mathbb{R}) \land (u \in S') \right)} \implies (r * u \in S') \ \blacksquare \ \forall_{r \in \mathbb{R}} \forall_{u \in S'} (r * u \in S')
(7) SubspaceEquiv \ \square Subspace[S', V, +, *]
(8) (s_i \in S) \implies \dots
  (8.1) K := \left\{ \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \middle| (1 \le i \le n) \land (i \in \mathbb{N}) \right\} \quad \blacksquare \quad K \subseteq \mathbb{R}
   (8.2) \quad \dots \quad \blacksquare \ \exists_{K \subseteq \mathbb{R}}(LinComb[s_j, S, K, V, +, *]) \quad \blacksquare \ s_j \in S'
(9) \quad (s_i \in S) \implies (s_i \in S') \quad \blacksquare \quad \forall_{x \in S} (x \in S') \quad \blacksquare \quad S \subseteq S'
(10) (Subspace[S', V, +, *]) \land (S \subseteq S')
LSSubspaceIdentity := (LinSpan[W', W, V, +, *]) \implies ((W' = W) \iff (Subspace[W, V, +, *])
(1) (W' = W) \implies \dots
  (1.1) LSSubspaceContaining \quad Subspace[W', V, +, *] \quad Subspace[W, V, +, *]
(2) (W' = W) \implies (Subspace[W, V, +, *])
(3) (Subspace[W, V, +, *]) \implies \dots
  (3.1) \quad Subspace Equiv \quad \blacksquare \quad \left( \forall_{r,s \in W} (r+s \in W) \right) \land \left( \forall_{\alpha \in \mathbb{R}} \forall_{s \in W} (\alpha * s \in W) \right) \quad \blacksquare \quad \forall_{w \in W} (LinComb[w,W,K,V,+,*])
  (3.2) \quad (w \in W) \iff (LinComb[w, W, K, V, +, *]) \iff (w \in W') \quad \blacksquare W = W' \quad \blacksquare W' = W
(4) (Subspace[W, V, +, *]) \implies (W' = W)
(5) (W' = W) \iff (Subspace[W, V, +, *])
LSSubspaceSubset := \big((LinSpan[S', S, V, +, *]) \land (Subspace[W, V, +, *]) \land (S \subseteq W)\big) \implies (Subspace[S', W, +, *])
(1) (LinSpan[S', S, V, +, *]) \land (S \subseteq W)  \blacksquare (LinSpan[S', S, W, +, *])
(2) (LSSubspaceContaining) \land (LinSpan[S', S, W, +, *])  \blacksquare Subspace[S', W, +, *]
SmallestSubspaceContaining := \forall_{W,S',S,V} \Big( (LinSpan[S',S,V,+,*]) \land (Subspace[W,V,+,*]) \land (S\subseteq W) \Big) \implies (S'\subseteq W) \Big)
(1) ((Subspace[W,V,+,*]) \land (S \subseteq W)) \implies ...
  (1.1) LSSubspaceSubset \quad Subspace[S', W, +, *] \quad S' \subseteq W
(2) ((Subspace[W, V, +, *]) \land (S \subseteq W)) \implies (S' \subseteq W)
NullSpace[N, A, m, n] := (Matrix[A, m, n]) \land (N = \{x \in \mathbb{R}^n | A * x = O\})
RowSpace[R, A, m, n] := (Matrix[A, m, n]) \land (R = \{x^T * A \in \mathbb{R}^n | x \in \mathbb{R}^m\})
ColSpace[C, A, m, n] := (Matrix[A, m, n]) \land (C = \{A * x \in \mathbb{R}^m | x \in \mathbb{R}^n\})
NullSubspace := (NullSpace[N, A, m, n]) \implies (Subspace[N, \mathbb{R}^n, +, *])
(1) TODO
RowSubspace := (RowSpace[R, A, m, n]) \implies (Subspace[R, \mathbb{R}^n, +, *])
(1) TODO
```

 $ColSubspace := (ColSpace[C, A, m, n]) \implies (Subspace[C, \mathbb{R}^m, +, *])$ 

 $LinInd[S,V,+,*] := (VectorSpace[V,+,*]) \land (\emptyset \neq S \subseteq V) \land \Big( \forall_{K \subseteq \mathbb{R}} \Big( (LinComb[O,S,K,V,+,*]) \implies (K = \{0\}) \Big) \Big)$ 

(1) TODO

TODO, SAY K is a sequence instead of a set  $K \subseteq \mathbb{R}^n$  instead ??

$$LinInd[U, V, +, *] := \begin{pmatrix} (VectorSpace[V, +, *]) \land (U \subseteq V) \land (n = |U| \in \mathbb{N}) \land \\ \left( \forall_{\Gamma \in \mathbb{R}^n} \left( \left( \sum_{i=1}^n (\gamma_i * u_i) = O \right) \implies (\Gamma = \{0\}^n) \right) \right) \end{pmatrix}$$

 $SingletonZeroDependent := \neg LinInd[\{O\}, V, +, *]$ 

(1) 
$$(1 * O = O) \land (1 \neq 0)$$

 $SingletonNonZeroIndependent := (\alpha \neq O) \implies (LinInd[\{\alpha\}, V, +, *])$ 

- (1)  $(r * \alpha = O) \iff ((r = 0) \lor (\alpha \neq O))$
- (2)  $\alpha \neq O \mid r = 0$
- (3)  $\forall_{r \in \mathbb{R}^1} ((r * \alpha = 0) \implies (r = 0))$

$$SubIndependent := \forall_{V,A,B} \left( \begin{array}{l} \left( (VectorSpace[V,+,*]) \land (A \subseteq B \subseteq V) \land (|B| \in \mathbb{N}) \right) \implies \\ \left( (LinInd[B,V,+,*]) \implies (LinInd[A,V,+,*]) \right) \end{array} \right)$$

- (1)  $U := B \setminus A$
- $(2) \quad \left(\sum (\gamma_i * a_i = O)\right) \implies \dots$ 
  - (2.1)  $\sum (0 * u_i) = 0$
  - (2.2)  $\sum (\gamma_i' = b_i) = \sum (\gamma_i * a_i) + \sum (0 * u_i) = O + O = O$
  - (2.3)  $LinInd[B, V, +, *] \blacksquare \Gamma' = \{0\}^{|B|}$
  - (2.4)  $\Gamma' = \{0\}^{|B|} = \Gamma \times \{0\}^{|U|} \quad \blacksquare \quad \Gamma = \{0\}^{|A|}$
- $\overline{(3) \ \left(\sum (\gamma_i * a_i = O)\right)} \implies (\Gamma = \{0\}^{|A|}) \ \blacksquare \ LinInd[A, V, +, *]$

$$SuperDependent := \forall_{V,A,B} \left( \begin{array}{l} \left( (VectorSpace[V,+,*]) \land (A \subseteq B \subseteq V) \land (|B| \in \mathbb{N}) \right) \implies \\ \left( (\neg LinInd[A,V,+,*]) \implies (\neg LinInd[B,V,+,*]) \right) \end{array} \right)$$

- (1)  $U := B \setminus A$
- $(2) \quad \sum (0 * u_i) = O$

(3) 
$$\left( \exists_{\Gamma \in \mathbb{R}^{|A|}} \left( \left( \sum (\gamma_i * a_i) = O \right) \wedge (\Gamma \neq \{0\}^{|A|}) \right) \right)$$

$$\overline{(4) \ \left(\sum (\gamma_i * b_i) = \sum (\gamma_i * a_i) + O = O + O = O\right) \wedge (\Gamma' = \Gamma \times \{0\}^{|U|} \neq \{0\}^{|B|})}$$

$$LinIndEquiv := \forall_{U,V} \bigg( (LinInd[U,V,+,*]) \iff \bigg( \forall_{j \in U} (\neg LinComb[j,U \setminus \{j\},+,*]) \bigg) \bigg)$$

- (1)  $\Gamma' = \Gamma \setminus \{j\}$
- $(2) (\neg LinInd[U,V,+,*]) \implies \dots$

$$(2.1) \quad \left( \exists_{\Gamma \in \mathbb{R}^{|U|}} \left( \left( \sum (\gamma_i * u_i) = O \right) \wedge (\Gamma \neq \{0\}^{|U|}) \right) \right)$$

- $(2.2) \quad \exists_{\gamma_k \in \Gamma} (\gamma_k \neq 0)$
- (2.3)  $\sum (\gamma_i' * u_i) = \sum (\gamma_i * u_i) \gamma_k * u_k = -\gamma_k * u_i$

$$(2.4) \quad u_k = (-1/\gamma_k) \Big( \sum (\gamma_i' * u_i) \Big) = \sum \Big( (-\gamma_i'/\gamma_k) * u_i \Big) \quad \blacksquare \quad \exists_{j \in U} (LinComb[j, U \setminus \{j\}, +, *])$$

(3) 
$$(\neg LinInd[U, V, +, *]) \Longrightarrow \left(\exists_{j \in U}(LinComb[j, U \setminus \{j\}, +, *])\right)$$

$$(4) \left( \forall_{j \in U} (\neg LinComb[j, U \setminus \{j\}, +, *]) \right) \Longrightarrow (LinInd[U, V, +, *])$$

(5) 
$$\left(\exists_{j \in U}(LinComb[j, U \setminus \{j\}, +, *])\right) \implies \dots$$

$$(5.1) \quad \exists_{j \in U} \left( j = \sum (\gamma_i' * u_i) \right)$$

(5.2) 
$$\Gamma := \Gamma' \cup \{-1\}$$

$$(5.3) \quad \left(\sum (\gamma_i * u_i) = \sum (\gamma_i' * u_i) + (-1) * \gamma_j = O\right) \wedge (\Gamma \neq \{0\}^n) \quad \blacksquare \quad \neg LinInd[U, V, +, *]$$

(6) 
$$\left(\exists_{j \in U}(LinComb[j, U \setminus \{j\}, +, *])\right) \Longrightarrow (\neg LinInd[U, V, +, *])$$

```
___
```

```
(7) (LinInd[U, V, +, *]) \Longrightarrow \left( \forall_{j \in U} (\neg LinComb[j, U \setminus \{j\}, +, *]) \right)
```

(8) 
$$(LinInd[U, V, +, *]) \iff \left( \forall_{j \in U} (\neg LinComb[j, U \setminus \{j\}, +, *]) \right)$$

 $Basis[S, V, +, *] := (Spans[S, V, +, *]) \land (LinInd[S, V, +, *])$ 

$$UniqueLinComb := \forall_{S,V} \Biggl( Basis[S,V]) \implies \Biggl( \forall_{v,\Gamma,\Delta} \Biggl( \Bigl( \bigl(v = \sum (\gamma_i * u_i) \bigr) \wedge \bigl(v = \sum (\delta_i * u_i) \bigr) \Bigr) \implies (\Gamma = \Delta) \Biggr) \Biggr) \Biggr)$$

 $\overline{(1)} \ (v \in V) \implies \dots$ 

$$(1.1) \quad Spans[V, S, +, *] \quad \blacksquare \left( \exists_{\Gamma \in \mathbb{R}^n} \left( v = \sum (\gamma_i * s_i) \right) \right) \land \left( \exists_{\Gamma \in \mathbb{R}^n} \left( v = \sum (\gamma_i * s_i) \right) \right)$$

$$(1.2) \quad O = v - v = \sum (\gamma_i * s_i) - \sum (\delta_i * s_i) = \sum ((\gamma_i - \delta_i) * s_i) \quad \blacksquare \quad \sum ((\gamma_i - \delta_i) * s_i) = O$$

$$(1.3) \quad (LinInd[S,V,+,*]) \land \left(\sum \left((\gamma_i - \delta_i) * s_i\right) = O\right) \quad \blacksquare \quad \{\gamma_i - \delta_i\} = \{0\}^n \quad \blacksquare \quad \{\gamma_i\} = \{\delta_i\} \quad \blacksquare \quad \Gamma = \Delta$$

 $\overline{(2)} \Gamma = \Delta$ 

$$\textit{BasisSubSpan} := \forall_{S,V} \Big( (\textit{Spans}[S,V,+,*]) \implies \left( \exists_{B \subseteq S} (\textit{Basis}[B,V,+,*]) \right) \Big)$$

- $\overline{(1)} \quad A = B$
- $(2) \quad \text{While } \neg LinInd(A, V, +, *), \ \exists_{i \in A}(LinearCombination[j, A \setminus \{j\}, +, *]), \ A' = A \setminus \{j\}$
- (3) Spans[A', S, +, \*], until  $(LinInd[A', V, +, *]) \land (Spans[A', V, +, *])$

$$BasisLinearIndCard := \forall_{S,T,V} \Big( \big( (Basis[S,V,+,*]) \land (LinInd[T,V,+,*]) \Big) \implies (|T| \leq |S|) \Big)$$

- (1)  $(Basis[S, V, +, *]) \implies \dots$ 
  - $(1.1) (|T| > |S|) \Longrightarrow \dots$

(1.1.1) 
$$(Spans[S, V, +, *]) \land (T \subseteq V) \mid t_{1...t_i} = \sum (\gamma_i * s * i) ...$$

$$(1.1.2) \quad \dots \quad t_i = \sum (\gamma_i' * t_i) \quad \blacksquare \quad \neg LinInd[T, V, +, *]$$

$$(1.2) \quad (|T| > |S|) \implies (\neg LinInd[T, V, +, *]) \quad \blacksquare \quad (LinInd[T, V, +, *]) \implies (|T| \le |S|)$$

 $(2) \quad \left( (Basis[S, V, +, *]) \land (LinInd[T, V, +, *]) \right) \implies (|T| \le |S|)$ 

$$BasisCardProp := \forall_{S,T,V} \Big( \big( (Basis[S,V,+,*]) \land (Basis[T,V,+,*]) \big) \implies (|T| = |S|) \Big)$$

- (1) Basis[S, V, +, \*]  $\blacksquare LinInd[S, V, +, *]$
- (2)  $(Basis[T, V, +, *]) \land (LinInd[S, V, +, *]) \mid |S| \le |T|$
- (3) Basis[T, V, +, \*]  $\blacksquare LinInd[T, V, +, *]$
- (4)  $(Basis[S, V, +, *]) \land (LinInd[T, V, +, *]) \mid | |T| \le |S|$
- (5)  $(|S| \le |T|) \land (|T| \le |S|) \mid |T| = |S|$

$$Dim[d,V,+,*] := \left(\exists_B(Basis[B,V,+,*])\right) \land \left((V=\{O\}) \implies (d=0)\right) \land \left((V\neq\{O\}) \implies (d=|B|)\right)$$

 $Nullity[n, A] := (NullSpace[N, A]) \land (Dim[n, N, +, *])$ 

??????????????????????????????