Final D Term, 2021

Show all work needed to reach your answers.

1. (10 points) If  $A = \{2, 4, 8\}$ , then the power set of A is



- 2. (20 points) Consider the implication  $A \Rightarrow B$  where A and B are themselves statements or predicates. For this implication, please state the following: 5 pts each
  - (a) contrapositive:



(b) converse:



(c) negation:



(d) inverse:

- 3. (10 points) Please give (a) the contrapositive and then (b) the negation of the following statement: "If xy is an irrational number, then y > 6 but x < 0." Please avoid the use of the words "not" and "no".
  - (a) Contrapositive:



(b) Negation:



4. (20 points) Please show that  $\sqrt{5}$  is irrational.

Pf (Contradiction): Suppose  $15 \in \Omega$ . Then  $1p, q \in \mathbb{Z}^+$  such that  $15 = \frac{12}{5}p_q$  where p and p have no common divisors, and hence  $p^2 = \frac{12}{5}p_q^2$ . Thus  $5|p^2 \Rightarrow 5|p_q^2 \Rightarrow p = 5k$  for some  $k \in \mathbb{Z}^+$ . It then follows that  $p^2 = (5k)^2 = 25k^2 = 5p_q^2 \Rightarrow 5k^2 = g_q^2$ . So  $5|p_q^2 \Rightarrow 5|p_q^2 \Rightarrow 5|$ 

04

5. (10 points) Consider a sequence  $\{a_n\}$  where  $a_n = p_n/q_n$  and  $p_n < q_n$  (so each element of the sequence is a fraction). Suppose that  $a_n$  is increasing. Does  $\{a_n\}$  necessarily converge? Please either explain why it converges, or give a counterexample to show that such a sequence might diverge.

Because  $a_n = P_n/q_n$  and  $0 < p_n < q_n$ ,  $a_n < 1 \ \forall n \in \mathbb{Z}^+$ .

Since  $\{a_n\}$  is an increasing Esequence that is bounded to bound the property of the real numbers.

Could be the LUB Axiom

6. (20 points) Please explain why  $i^2 + j^2$  is never equal to 3 (mod 4), that is,  $i^2 + j^2 \neq 4k + 3$  for any  $i, j, k \in \mathbb{Z}$ .

**Hint**: Consider the cases where i and j are each either even or odd; what do these imply?

If i is even, then i In for some  $n \in \mathbb{Z}$ , so  $i = 4n^2 \Leftrightarrow i^2 = 0 \pmod{4}$ . If i is bold, then i Int! for some  $n \in \mathbb{Z}$ , so  $i^2 = (2n+1)^2$ .  $= 4n^2 + 4n + 1 \stackrel{43}{=} 1 \pmod{4}$ . The same is true for  $1 \pmod{3}$ .

Thus  $i^2 + j^2$  must equal 0,  $1 \stackrel{44}{\text{or}} 2 \pmod{4} \Rightarrow i^2 + j \stackrel{42}{=} 3 \pmod{4}$ .

7. (10 points) Consider the graph below; it is one possible drawing of  $K_5$ , the complete graph on five vertices. Recall that by the Euler formula, one might expect that |V| - |E| + |F| = 2. But for this graph, it seems that |V| = 5, |E| = 10 and |F| = 8, meaning that the Euler formula is not satisfied. Please explain what is wrong here.



Ks is not planar, thus the Euler 11+10 formula does not apply.

Alternately, one could point to
this edge crossing (which makes
this graph nonplonar). One could
add a vertex here to make this graph
planer and then the Euler formula
applies, with two additional vertices.