CONSIDERING 5 DATASET:

	MSSubClass M	SZoning	LotArea	LotConfig	BldgType	OverallCond	YearBuilt
0	60	RL	8450	Inside	1Fam	5	2003
1	20	RL	9600	FR2	1Fam	8	1976
2	60	RL	11250	Inside	1Fam	5	2001
3	70	RL	9550	Corner	1Fam	5	1915
4	60	RL	14260	FR2	1Fam	5	2000
	YearRemodAdd	Exterior	1st Bsm	ntFinSF2	TotalBsmtSF	SalePrice	
0	2003	Viny	1Sd	0.0	856.0	208500.0	
1	1976	Meta	1Sd	0.0	1262.0	181500.0	
2	2002	Viny	1Sd	0.0	920.0	223500.0	
3	1970	Wd S	dng	0.0	756.0	140000.0	
4	2000	Viny	1Sd	0.0	1145.0	250000.0	

HEAT MAP:

<u>Bar Plot 1</u>: Visualizes the number of unique values for each categorical feature in the dataset

<u>Bar Plot 2:</u> Plotted bar charts for the distribution of categorical features in the dataset. Each subplot shows how frequently each unique category appears in a particular categorical column

Checking features which have null values in the new dataframe

MSSubClass	0
MSZoning	0
LotArea	0
LotConfig	0
BldgType	0
OverallCond	0
YearBuilt	0
YearRemodAdd	0
Exterior1st	0
BsmtFinSF2	0
TotalBsmtSF	0
SalePrice	0
dtype: int64	

To Calculate Mean Absolute Percentage Error

$$\mathsf{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

- ➤ Mean absolute percentage error using **SVM**: **0.18705129**
- ➤ Mean absolute percentage error using Random Forest Regression: 0.1929469
- ➤ Mean absolute percentage error using Linear Regression: 0.187416838

Conclusion: Clearly SVM model is giving better accuracy as the mean absolute error is the least among all the other regressor models i.e. 0.18 approx.