# AL 4 - ESPACES PRÉHILBERTIENS

Dans tout le chapitre E désigne un  $\mathbb{R}$ -espace vectoriel, I un ensemble quelconque.

# 1 Produit scalaire et norme associée

### 1.1 Produit scalaire

#### Définition 1

Soit  $\varphi: E \times E \to \mathbb{R}$ . On dit que  $\varphi$  est :

- une forme bilinéaire si  $\forall \alpha \in E, u \mapsto \varphi(\alpha, u)$  et  $u \mapsto \varphi(u, \alpha)$  sont linéaires;
- symétrique si  $\forall (u, v) \in E^2, \varphi(u, v) = \varphi(v, u)$ ;
- définie-positive si  $\forall u \in E, \varphi(u, u) \geq 0$ , et  $\varphi(u, u) = 0 \Leftrightarrow u = 0$ .

#### Définition 2

Une forme bilinéaire, symétrique, définie-positive sur E s'appelle un produit scalaire sur E.

# Remarque 1

- Pour montrer qu'une application  $\varphi: E \times E \to \mathbb{R}$  est un produit scalaire, il suffit de montrer qu'elle est symétrique, linéaire à droite (par rapport à la deuxième composante), définie-positive.
- Un produit scalaire  $\varphi(u, v)$  se note souvent (u|v) ou < u|v> ou, s'il n'y a pas d'ambigüité  $u \cdot v$ .

### Définition 3

- Un espace préhilbertien réel est un  $\mathbb{R}$ -espace vectoriel E muni d'un produit scalaire  $(\cdot|\cdot)$ . On note  $(E,(\cdot|\cdot))$ .
- Un espace euclidien est un espace préhilbertien réel de dimension finie.

# Exemple 1

- Sur  $E = \mathbb{R}^n$ , on définit le produit scalaire euclidien canonique par :  $(x|y) = \sum_{k=1}^n x_k y_k$  où  $x = (x_1, ..., x_n)$  et  $y = (y_1, ..., y_n)$ .
- Sur  $E = \mathcal{C}([a,b],\mathbb{R})$ , on définit un produit scalaire par  $(f|g) = \int_a^b f(t)g(t)dt$ .
- Sur  $E = \mathbb{R}[X]$ , on a deux produits scalaires usuels :
  - celui provenant du produit scalaire sur  $\mathbb{R}^n$ , défini par :  $(P|Q) = \sum_{k=0}^{+\infty} a_k b_k$

où 
$$P = \sum_{k=0}^{+\infty} a_k X^k$$
 et  $Q = \sum_{k=0}^{+\infty} b_k X^k$ ;

. celui provenant du produit scalaire sur  $\mathcal{C}([a,b],\mathbb{R})$  défini par :  $(P|Q)=\int_a^b P(t)Q(t)\mathrm{d}t$ 

Dans la suite du chapitre,  $(E, (\cdot | \cdot))$  désigne un espace préhilbertien réel.

#### 1.2 Norme associée à un produit scalaire

#### Définition 4

L'application:

$$\|\cdot\|: u \to \|u\| = \sqrt{(u|u)}$$

est appelée norme euclidienne associée au produit scalaire  $(\cdot|\cdot)$ .

Un vecteur  $u \in E$  tel que ||u|| = 1 est dit unitaire ou normé.

# Proposition 1

 $\forall (u,v) \in E^2$ , on a les identités de polarisation :

• 
$$(u|v) = \frac{1}{2} (\|u+v\|^2 - \|u\|^2 - \|v\|^2)$$

• 
$$(u|v) = \frac{1}{2} (\|u+v\|^2 - \|u\|^2 - \|v\|^2)$$
  
•  $(u|v) = \frac{1}{2} (\|u+v\|^2 - \|u\|^2 - \|v\|^2)$   
•  $(u|v) = \frac{1}{2} (\|u\|^2 + \|v\|^2 - \|u-v\|^2)$   
•  $(u|v) = \frac{1}{4} (\|u+v\|^2 - \|u-v\|^2)$ 

• 
$$(u|v) = \frac{1}{4} (\|u+v\|^2 - \|u-v\|^2)$$

On a également *l'identité du parallélogramme* :

• 
$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

# Remarque 2

- Les trois premières identités se nomment identités de polarisation car elles permettent de retrouver les angles, c'est-à-dire le produit scalaire, à partir de la seule connaissance des normes. En effet
- l'angle  $\theta$  de deux vecteurs non nuls u et v vérifie :  $\cos(\theta) = \frac{(u|v)}{\|u\|.\|v\|}$ .

   La dernière identité se nomme *identité du parallélogramme* car elle donne une relation entre les carrés des longueurs des côtés  $\|u\|^2$  et  $\|v\|^2$  et les carrés des longueurs des diagonales  $\|u+v\|^2$  et  $\|u-v\|^2$ .

# Théorème 1

 $\forall (u,v) \in E^2$ , on a:

• Inégalité de Cauchy-Schwarz

$$|(u|v)| \le ||u|| \cdot ||v||$$

avec égalité si, et seulement si les vecteurs sont liés.

• Inégalité de Minkowski

$$||u + v|| \le ||u|| + ||v||$$

avec égalité si, et seulement si les vecteurs sont positivement liés.

#### $\mathbf{2}$ Orthogonalité

#### 2.1 Vecteurs orthogonaux

# Définition 5

- Deux vecteurs u et v de E sont dits orthogonaux si (u|v) = 0.
- Deux sev  $F_1$  et  $F_2$  de E sont dits orthogonaux si les vecteurs de  $F_1$  sont orthogonaux aux vecteurs de  $F_2$ , c'est-à-dire  $\forall (u_1, u_2) \in F_1 \times F_2, (u_1|u_2) = 0.$

# Remarque 3

• Le singleton  $\{0_E\}$  est orthogonal à tout sev de E.

#### Notation

Le symbole  $\perp$  est le symbole d'orthogonalité.

- Pour  $(u, v) \in E^2$ ,  $u \perp v$  se lit u orthogonal à v.
- Pour  $F_1$  et  $F_2$  des sev de E,  $F_1 \perp F_2$  se lit  $F_1$  et  $F_2$  sont orthogonaux.

# Théorème 2 Théorème de Pythagore

 $\forall (u,v) \in E^2$ , on a:

$$u \perp v \Leftrightarrow ||u + v||^2 = ||u||^2 + ||v||^2$$

#### Définition 6

Soit  $(u_i)_{i\in I}$  une famille de vecteurs de E.

- La famille est dite *orthogonale* si ses vecteurs sont deux à deux orthogonaux, c'est-à-dire si  $\forall (i,j) \in I^2, i \neq j \Rightarrow (u_i|u_j) = 0$ .
- La famille est dite orthonormale ou orthonormée si elle est orthogonale et si tous ses vecteurs sont normés, c'est-à-dire si  $\forall (i,j) \in I^2, (u_i|u_j) = \delta_{i,j}$  (où  $\delta_{i,j}$  est le symbole de Kronecker:  $\forall (i,j) \in I^2, \delta_{i,i} = 1$  et  $\delta_{i,j} = 0$  si  $i \neq j$ )

# Proposition 2

Toute famille orthogonale de vecteurs non nuls de E est libre.

# Proposition 3 Généralisation du théorème de Pythagore

Soit  $(u_i)_{1 \le i \le n}$  une famille orthogonale de vecteurs de E.Alors :

$$\left\| \sum_{i=1}^{n} u_i \right\|^2 = \sum_{i=1}^{n} \|u_i\|^2$$

# 2.2 Orthogonal d'une partie de E

#### Définition 7

Soit A une partie non vide de E. On appelle orthogonal de A l'ensemble noté  $A^{\perp}$  des vecteurs orthogonaux à tous les vecteurs de A:

$$A^{\perp} = \{ u \in E / \forall v \in A, (u|v) = 0 \}$$

# Proposition 4

Pour toute partie non vide  $A \subset E$ ,  $A^{\perp}$  est un sev de E et  $A^{\perp} = (\operatorname{Vect}(A))^{\perp}$ .

# Remarque 4

• Si F est un sev E de base  $(u_i)_{i \in I}$ , on a :

$$u \in F^{\perp} \Leftrightarrow \forall i \in I, (u_i|u) = 0$$

•  $E^{\perp} = \{0_E\} \text{ et } \{0_E\}^{\perp} = E.$ 

# **Proposition 5**

Pour toutes parties non vides A et B de E:

- $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$ .
- $A \subset A^{\perp \perp}$ .
- Si  $0_E \in A, A \cap A^{\perp} = \{0_E\}$

# 3 Bases orthonormales d'un espace euclidien

#### 3.1 Existence

#### **Définition 8**

On appelle base orthonormale ou base orthonormée de E, notée b.o.n., toute base de E qui soit aussi une famille orthonormée.

# **Proposition 6**

Si E est un espace euclidien de dimension  $n \in \mathbb{N}^*$ , alors toute famille orthonormée de n vecteurs de E forme une base de E.

#### Théorème 3 Procédé d'orthonormalisation de Gram-Schmidt

Soit  $(e_1, ..., e_p)$  une famille **libre** finie de E. Alors il existe une unique famille orthonormée  $(u_1, ..., u_p)$  telle que :

- $\forall k \in [1, p], Vect(e_1, ..., e_k) = Vect(u_1, ..., u_k)$
- $\forall k \in [1, p], (e_k | u_k) > 0$

#### Corollaire

Tout espace euclidien admet une b.o.n.

# 3.2 Coordonnées dans une b.o.n.

# **Proposition 7**

Soit  $\mathcal{B} = (e_1, ..., e_n)$  une b.o.n. d'un espace euclidien E. Alors les coordonnées  $(x_1, ..., x_n)$  dans la base  $\mathcal{B}$  d'un vecteur x de E sont données par :  $\forall i \in [1, n], x_i = (e_i | x)$ . Ainsi, on a :

$$\forall x \in E, x = \sum_{i=1}^{n} (e_i|x)e_i$$

# **Proposition 8**

Soit  $\mathcal{B} = (e_1, ..., e_n)$  une b.o.n. d'un espace euclidien E. Soient x et y des vecteurs de E de coordonnées respectives  $(x_1, ..., x_n)$  et  $(y_1, ..., y_n)$  dans  $\mathcal{B}$ . Alors :

$$(x|y) = \sum_{i=1}^{n} x_i y_i,$$

en particulier:

$$||x|| = \sqrt{\sum_{i=1}^n x_i^2}$$

#### Remarque 5

• En notant  $X = \operatorname{Mat}_{\mathcal{B}}(x)$  et  $Y = \operatorname{Mat}_{\mathcal{B}}(y)$ , on a :  $(x|y) = {}^t XY = {}^t YX$ , et  $||x||^2 = {}^t XX$ .

# Proposition 9 Matrice d'un endomorphisme

Soient  $\mathcal{B} = (e_1, ..., e_n)$  une b.o.n. d'un espace euclidien E, et  $f \in \mathcal{L}(E)$  dont on note  $M = (m_{i,j})$  la matrice dans la base  $\mathcal{B}$ . Alors :

$$\forall (i,j) \in [1,n]^2, m_{i,j} = (e_i|f(e_j))$$

# 4 Projection orthogonale

# 4.1 Supplémentaire orthogonal d'un sev

### Théorème-Définition 1

Si F est un sev de **dimension finie** d'un espace préhilbertien E, alors F et  $F^{\perp}$  sont supplémentaires dans E. On dit que le sev  $F^{\perp}$  est le supplémentaire orthogonal de F; on note :  $E = F \oplus F^{\perp}$ 

# **Proposition 10**

Dans un espace euclidien, toute famille orthonormale peut être complétée en une base orthonormale.

# 4.2 Projection orthogonale

Dans la suite du chapitre, F désigne un sev de dimension finie  $p \in \mathbb{N}^*$  de E.

#### Définition 9

La projection orthogonale  $p_F$  sur F est la projection sur F parallèlement à  $F^{\perp}$ .

# **Proposition 11**

Soit  $(e_1, ..., e_p)$  une b.o.n. de F.

$$\forall x \in E, p_F(x) = \sum_{i=1}^{p} (x|e_i)e_i$$

# Proposition 12 Inégalité de Bessel

Soit  $(e_1, ..., e_p)$  une base orthonormale de vecteurs de F.

$$\forall x \in E, \|p_F(x)\|^2 = \sum_{i=1}^p (x|e_i)^2 \le \|x\|^2$$

#### 4.3 Distance à un sev

#### Définition 10

Soit F un sev de E. Soit  $x \in E$ . La distance de x à F est le réel positif :

$$d(x,F) = \inf_{y \in F} ||x - y||$$

# Théorème 4

Soient F un sev de **dimension finie** de E, et  $x \in E$   $p_F(x)$  l'unique vecteur  $y_0$  de F tel que :  $||x - y_0|| = d(x, F)$ .



#### Corollaire

$$\forall x \in E, (d(x, F))^2 = ||x||^2 - ||p_F(x)||^2$$