Дискретная математика. Задачи про паросочетания.

Горбунов Егор Алексеевич

10 декабря 2015 г.

12.10

Условие: пусть в двудольном графе G = (X, Y) подмножество $S \subseteq X$ покрыто паросочетанием M, а подмножество $T \subseteq Y$ покрыто паросочетанием M'. Доказать, что в G найдётся паросочетание, покрывающее как S, так и T.

Решение: Достаточно объединить паросочетания M' и M (повторившиеся рёбра просто удаляем). Полученное паросочетание покроет как T так и S.

12.11

Условие: пусть в двудольном графе G = (X, Y) степень любой вершины блока X больше или равна степени любой вершины Y. Доказать, что в этом графе существует X-насыщенное паросочетание.

Решение: Если граф G не содержит рёбер и $\Delta(Y) = 0$, то утверждение не верно, но положим, что $\Delta(Y) > 0$. Тогда рассмотрим $S \subseteq X$. Если $|S| \le \Delta(Y)$, то, т.е. $\forall v \in X \ (d(v) \le \Delta(Y))$, то $|N(S)| \ge |S|$. Пускай $|S| > \Delta(Y)$, рассмотрим N(S). Предположим, что |N(S)| < |S|. Т.е. из каждой вершины $u \in S$ тянется как минимум $\Delta(Y)$ рёбер, а вершин в S ровно $k = |S| > \Delta(Y)$, то по принципу Дирихле (распихивание $k\Delta(Y)$ «кроликов» по < k клеткам) в какой-то вершине $u' \in N(S)$ будет $d(u') > \Delta(Y)$, что противоречит тому, что $\Delta(Y)$ — максимальная степень вершины в Y. Итого, пришли к противоречию, а значит для любого $S \subseteq X$ ($|S| \le |N(S)|$).

12.12

Условие: пусть в двудольном графе G = (X,Y) |N(S)| > |S| для любого $S \neq \emptyset$, $S \subseteq X$. Доказать, что в таком графе любое ребро принадлежит какому-нибудь X-насыщенному паросочетанию.

Решение: Возьмём любое ребро $e = (u, v) \in E(G)$, где $u \in X, v \in Y$ (граф двудолен, все рёбра такие) и удалим из G вершину v. Если в исходном графе G было для любого $S \subseteq X$ верно, что |S| < |N(S)|, то после удаление v (т.е. в графе $G \setminus v$) в N(S) число вершин могло уменьшиться

лишь на 1, т.е. $|S| \leq |N(S)|$. По теореме Холла в графе $G \setminus v$ есть X-насыщенное паросочетание M. Пускай e' = (u, v') — ребро, которое покрывает вершину u в паросочетании M (тут u та же, что и в ребре e = (u, v) правый конец которого удалили в начале). Рассмотрим паросочетание M' в графе G построенное так: $M' = (M \setminus e') \cup \{e\}$. Ясно, что это X-насыщенное паросочетание в исходном графе G, содержащее случайно выбранное ребро e.

12.13

Условие: Доказать, что в двудольном графе G совершенное паросочетание существует тогда и только тогда, когда для произвольного подмножества X множества V(G) вершин графа G справедливо неравенство $|X| \leq |N(X)|$

Решение: Будем рассматривать двудольный граф G = (X, Y).

 $[\Rightarrow]$ Пусть в G есть совершенное паросочетание. Тогда очевидно, что в G есть X-насыщенное и Y-насыщенное паросочетание, а значит, что $\forall S_x \subset X \ (|S_x| \le |N(S_x)|)$ и $\forall S_y \subset Y \ (|S_y| \le |N(S_y)|)$. Но тогда для $S = S_x \cup S_y$, т.к. $S_x \cap S_y = \emptyset$ и $N(S_x) \cap N(S_y) = \emptyset$ (т.к. $N(S_x) \subseteq Y$, $N(S_y) \subseteq X$ верно:

$$|S_x \cup S_y| = |S_x| + |S_y| \le |N(S_x)| + |N(S_y)| = |N(S_x) \cup N(S_y)| = |N(S_x \cup S_y)|$$

Т.к. S_x и S_y любые и $\forall S \subseteq V(G)$ $(S = S_x \cup S_y, S_x \subseteq X, S_y \subseteq Y)$, то $\forall S \subseteq V(G)$ $(|S| \le |N(S)|)$. Необходимость доказана.

 $[\Leftarrow]$ Т.к. неравенство $|S| \le |N(S)|$ верно для любого подмножества V(G), то оно верно и для S = X, а значит в G существует X-насыщенное паросочетание, аналогично в G существует Y-насыщенное паросочетание. Так же, |X| = |Y|. Но тогда по задаче 12.10 в G существует паросочетание покрывающее как X так и Y, т.е. совершенное паросочетание. Достаточно показана.

2