A MATLAB LIBRARY OF TEMPORAL DISAGGREGATION METHODS: SUMMARY

Enrique M. Quilis¹

Instituto Nacional de Estadística Paseo de la Castellana, 183 28046 - Madrid (SPAIN)

First version: December, 2002 This version: November, 2003

¹ The author thanks Ana Abad, Juan Bógalo and Silvia Relloso for their help.

1. INTRODUCTION

The library includes a set of function to perform temporal disaggregation (distribution, averaging and interpolation), according to the following structure:

Adjustment or quadratic programming methods:

- bfl
- denton_uni
- sw (Stram-Wei method)

served by: tduni_print (ASCII output), tduni_plot (graphic output)

Model-based (or BLUE) methods:

- chowlin
- fernandez
- litterman
- ssc (Santos Silva-Cardoso method: a dynamic version of Chow-Lin)

served by: td_print (ASCII output), td_plot (graphic output)

Multivariate methods that include a transversal restriction:

- denton
- difonzo

served by: mtd_print (ASCII output), mtd_plot (graphic output)

Extrapolation is feasible using chowlin, fernandez, litterman, ssc and difonzo. Constrained extrapolation can be performed also by means of difonzo.

The presentation of the functions is self-contained: help text, script to run the function and output (ASCII file and plots).

Matlab source code is freely available if requested at: www.ine.es/info

2. BOOT-FEIBES-LISMAN

```
PURPOSE: Temporal disaggregation using the Boot-Feibes-Lisman method
SYNTAX: res=bfl(Y,ta,d,s);
OUTPUT: res: a structure
    res.meth = 'Boot-Feibes-Lisman';
    res.N = Number of low frequency data
    res.ta = Type of disaggregation
    res.s = Frequency conversion
    res.d = Degree of differencing
    res.y = High frequency estimate
    res.et = Elapsed time
INPUT: Y: Nx1 ---> vector of low frequency data
    ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
    d: objective function to be minimized: volatility of ...
      d=0 ---> levels
      d=1 ---> first differences
      d=2 ---> second differences
    s: number of high frequency data points for each low frequency data point
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
LIBRARY: sw
SEE ALSO: tduni_print, tduni_plot
REFERENCE: Boot, J.C.G., Feibes, W. y Lisman, J.H.C. (1967)
"Further methods of derivation of quarterly figures from annual data",
Applied Statistics, vol. 16, n. 1, p. 65-75.
```

Application:

```
Y=load('c:\x\td\data\Y.anu');
res=bfl(Y,1,1,12);
tduni_print(res,'td.sal');
tduni_plot(res);
edit td.sal
```

```
*************
TEMPORAL DISAGGREGATION METHOD: Boot-Feibes-Lisman
************
Number of low-frequency observations
Frequency conversion
                                     12
Number of high-frequency observations:
                                     264
Degree of differencing
Type of disaggregation: sum (flow).
High frequency series (columnwise):
4972.2800
4971.1389
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
7898.7692
7899.3631
7899.6600
Elapsed time:
              0.3200
```


3. STRAM-WEI

```
% PURPOSE: Temporal disaggregation using the Stram-Wei method.
% SYNTAX: res = sw(Y,ta,d,s,v);
% ------
% OUTPUT: res: a structure
      res.meth = 'Stram-Wei';
      res.N = Number of low frequency data
      res.ta = Type of disaggregation
%
      res.d = Degree of differencing
%
      res.s = Frequency conversion
%
%
      res.H = nxN temporal disaggregation matrix
%
      res.y = High frequency estimate
      res.et = Elapsed time
% INPUT: Y: Nx1 ---> vector of low frequency data
      ta: type of disaggregation
%
        ta=1 ---> sum (flow)
%
        ta=2 ---> average (index)
%
        ta=3 ---> last element (stock) ---> interpolation
%
      d: number of unit roots
%
      s: number of high frequency data points for each low frequency data point
%
       s= 4 ---> annual to quarterly
%
        s=12 ---> annual to monthly
%
        s= 3 ---> quarterly to monthly
      v: (n-d)x(n-d) VCV matrix of high frequency stationary series
% LIBRARY: aggreg, aggreg_v, dif, movingsum
% SEE ALSO: bfl, tduni print, tduni plot
% REFERENCE: Stram, D.O. & Wei, W.W.S. (1986) "A methodological note on the
% disaggregation of time series totals", Journal of Time Series Analysis,
% vol. 7, n. 4, p. 293-302.
```

Application:

```
Y = load('c:\x\td\data\Y.anu'); \\ N = length(Y); \ n = s*N; \\ \% \ Defining the \ VCV \ matrix of stationary high-frequency time series \\ \% \ Assumption of the example: IMA(d,2) \\ th1 = 0.9552; \ th2 = -0.0015; \ va = 0.87242* ((223.5965)^2); \\ acf0 = va* (1+th1^2+th2^2); \ acf1 = -va*th1* (1-th2); \ acf2 = -va*th2; \\ a0(1:n-d) = acf0; \ a1(1:n-d-1) = acf1; \ a2(1:n-d-2) = acf2; \\ v = diag(a0) + diag(a1,-1) + diag(a2,-2); \ v = v + tril(v)'; \\ res = sw(Y,1,1,4,v); \\ tduni\_print(res,'sw.sal'); \\ tduni\_plot(res); \\ edit \ sw.sal
```

```
*************
TEMPORAL DISAGGREGATION METHOD: Stram-Wei
************
Number of low-frequency observations :
Frequency conversion
                                    4
Number of high-frequency observations:
                                   88
Degree of differencing
Type of disaggregation: sum (flow).
High frequency series (columnwise):
4792.4658
5015.8665
. . . . . . . .
. . . . . . . .
28880.7153
28822.8148
Elapsed time:
             0.1100
```


4. DENTON

```
PURPOSE: Temporal disaggregation using the Denton method
 SYNTAX: res=denton_uni(Y,x,ta,d,s);
 OUTPUT: res: a structure
      res.meth = 'Denton':
      res.N = Number of low frequency data
      res.ta = Type of disaggregation
      res.s = Frequency conversion
      res.d = Degree of differencing
      res.y = High frequency estimate
      res.U = Low frequency residuals
      res.u = High frequency residuals
      res.et = Elapsed time
 INPUT: Y: Nx1 ---> vector of low frequency data
     x: nx1 ---> vector of low frequency data
     ta: type of disaggregation
        ta=1 ---> sum (flow)
        ta=2 ---> average (index)
        ta=3 ---> last element (stock) ---> interpolation
     d: objective function to be minimized: volatility of ...
        d=0 ---> levels
        d=1 ---> first differences
        d=2 ---> second differences
     s: number of high frequency data points for each low frequency data point
        s= 4 ---> annual to quarterly
        s=12 ---> annual to monthly
        s= 3 ---> quarterly to monthly
 LIBRARY: aggreg, bfl
 SEE ALSO: tduni_plot, tduni_print
 REFERENCE: Denton, F.T. (1971) "Adjustment of monthly or quarterly
 series to annual totals: an approach based on quadratic minimization",
 Journal of the American Statistical Society, vol. 66, n. 333, p. 99-102.
Application:
           Y=load('c:\x\td\data\Y.prn');
           x=load('c:\x\td\data\x.ind');
           res=denton uni(Y,x,1,1,4);
```

ASCII file containing detailed output:

tduni_plot(res); edit td.sal

tduni print(res,'td.sal');

```
************
TEMPORAL DISAGGREGATION METHOD: Denton
***********
Number of low-frequency observations :
                                    22
Frequency conversion
                                     4
Number of high-frequency observations :
                                    88
Degree of differencing
Type of disaggregation: sum (flow).
High frequency series (columnwise):
15374.9285
15169.7571
. . . . . . . . . .
. . . . . . . . . .
24883.3098
20609.0705
24415.4509
             0.0500
Elapsed time:
```


5. CHOW-LIN

```
PURPOSE: Temporal disaggregation using the Chow-Lin method
SYNTAX: res=chowlin(Y,x,ta,s,type);
OUTPUT: res: a structure
     res.meth ='Chow-Lin';
     res.ta = type of disaggregation
     res.type = method of estimation
     res.N = nobs. of low frequency data
res.n = nobs. of high-frequency data
     res.pred = number of extrapolations
     res.s = frequency conversion between low and high freq.
     res.p = number of regressors (including intercept)
     res.Y = low frequency data
     res.x = high frequency indicators
     res.y = high frequency estimate
     res.y_dt = high frequency estimate: standard deviation
     res.y_lo = high frequency estimate: sd - sigma
     res.y up = high frequency estimate: sd + sigma
     res.u = high frequency residuals
     res.U = low frequency residuals
     res.beta = estimated model parameters
     res.beta sd = estimated model parameters: standard deviation
     res.beta_t = estimated model parameters: t ratios
     res.rho = innovational parameter
     res.aic = Information criterion: AIC
     res.bic = Information criterion: BIC
     res.val = Objective function used by the estimation method
     res.r
              = grid of innovational parameters used by the estimation method
INPUT: Y: Nx1 ---> vector of low frequency data
    x: nxp ---> matrix of high frequency indicators (without intercept)
    ta: type of disaggregation
      ta=1 ---> sum (flow)
      ta=2 ---> average (index)
      ta=3 ---> last element (stock) ---> interpolation
    s: number of high frequency data points for each low frequency data points
      s= 4 ---> annual to quarterly
      s=12 ---> annual to monthly
      s= 3 ---> quarterly to monthly
    type: estimation method:
      type=0 ---> weighted least squares
      type=1 ---> maximum likelihood
LIBRARY: aggreg
SEE ALSO: litterman, fernandez, td plot, td print
REFERENCE: Chow, G. y Lin, A.L. (1971) "Best linear unbiased
distribution and extrapolation of economic time series by related
series", Review of Economic and Statistics, vol. 53, n. 4, p. 372-375.
```

Application:

```
Y=load('c:\x\td\data\Y.prn');
x=load('c:\x\td\data\x.ind');
res=chowlin(Y,x,1,4,1);
td_print(res,'td.sal',1); % op1=1: series are printed in ASCII file
td_plot(res);
edit td.sal
```

```
************
TEMPORAL DISAGGREGATION METHOD: Chow-Lin
*************
Number of low-frequency observations: 22
Frequency conversion
Number of high-frequency observations: 88
Number of extrapolations : 0
Number of indicators (+ constant) :
Type of disaggregation: sum (flow).
_____
Estimation method: Maximum likelihood.
_____
Beta parameters (columnwise):
 * Estimate
 * Std. deviation
 * t-ratios
_____
215.4518 111.7079 1.9287
0.9828 0.0069 142.0272
_____
Innovational parameter: 0.7600
AIC: 10.0340
BIC: 10.1828
Low-frequency correlation
- levels : 0.9998
- yoy rates : 0.9617
High-frequency correlation
- levels : 0.9998
- yoy rates : 0.9812
High-frequency volatility of yoy rates
- estimate : 8.4282
- indicator : 9.0226
- ratio : 0.9341
```

High frequency series (columnwise):

- * Estimate
- * Std. deviation
- * 1 sigma lower limit
- * 1 sigma upper limit
- * Residuals

5400.9896 5311.2409	114.8247 83.7296	5286.1649 5227.5112	5515.8143 5394.9705	112.3095 128.7034
	• • • • • • •			
• • • • • • • •	• • • • • •			
30079.6885 25874.7702 29614.4998	86.7557 86.2867 116.3242	29992.9328 25788.4835 29498.1756	30166.4443 25961.0569 29730.8240	-97.4913 -43.9249 -16.2417

Elapsed time: 1.8100

A variant to be applied with a fixed innovational parameter:

PURPOSE: Temporal disaggregation using the Chow-Lin method rho parameter is fixed (supplied by the user)

SYNTAX: res=chowlin_fix(Y,x,ta,s,type,rho);

6. FERNÁNDEZ

```
PURPOSE: Temporal disaggregation using the Fernandez method
SYNTAX: res=fernandez(Y,x,ta,s);
OUTPUT: res: a structure
      res.meth ='Fernandez':
      res.ta = type of disaggregation
      res.type = method of estimation
      res.N = nobs. of low frequency data
      res.n = nobs. of high-frequency data
      res.pred = number of extrapolations
      res.s = frequency conversion between low and high freq.
      res.p = number of regressors (including intercept)
      res.Y = low frequency data
      res.x = high frequency indicators
res.y = high frequency estimate
      res.y_dt = high frequency estimate: standard deviation
      res.y_lo = high frequency estimate: sd - sigma
      res.y up = high frequency estimate: sd + sigma
      res.u = high frequency residuals
                = low frequency residuals
      res.U
      res.beta = estimated model parameters
      res.beta_sd = estimated model parameters: standard deviation
      res.beta t = estimated model parameters: t ratios
      res.aic = Information criterion: AIC
      res.bic = Information criterion: BIC
INPUT: Y: Nx1 ---> vector of low frequency data
    x: nxp ---> matrix of high frequency indicators (without intercept)
    ta: type of disaggregation
       ta=1 ---> sum (flow)
       ta=2 ---> average (index)
       ta=3 ---> last element (stock) ---> interpolation
    s: number of high frequency data points for each low frequency data points
       s= 4 ---> annual to quarterly
       s=12 ---> annual to monthly
       s= 3 ---> quarterly to monthly
LIBRARY: aggreg
SEE ALSO: chowlin, litterman, td_plot, td_print
REFERENCE: Fernández, R.B.(1981)"Methodological note on the
estimation of time series", Review of Economic and Statistics,
vol. 63, n. 3, p. 471-478.
```

Application:

```
Y=load('c:\x\td\data\Y.prn');
x=load('c:\x\td\data\x.tri');
res=fernandez(Y,x,1,4);
td_print(res,'td.sal',1); % op1=1: series are printed in ASCII file
td_plot(res);
edit td.sal
```

```
***************
TEMPORAL DISAGGREGATION METHOD: Fernandez
*************
Number of low-frequency observations : 22
Frequency conversion :
Number of high-frequency observations: 90
Number of extrapolations :
Number of indicators (+ constant) : 2
______
Type of disaggregation: sum (flow).
_____
Estimation method: Maximum likelihood.
Beta parameters (columnwise):
 * Estimate
 * Std. deviation
 * t-ratios

      564.9834
      195.9404
      2.8834

      0.9360
      0.0292
      32.0284

Innovational parameter: 1.0000
AIC: 9.6079
BIC: 9.7567
Low-frequency correlation
 - levels : 0.9998
 - yoy rates : 0.9617
High-frequency correlation
 - levels : 0.9997
 - yoy rates : 0.9817
High-frequency volatility of yoy rates
 - estimate : 8.3477
 - indicator : 9.1506
 - ratio : 0.9123
```

```
High frequency series (columnwise):
```

- * Estimate
- * Std. deviation
- * 1 sigma lower limit
- * 1 sigma upper limit
- * Residuals

91.6250 60.8871	5305.0492 5237.0327	5488.2992 5358.8069	-0.0000 2.3349
73.6977 108.3992 92.9937	29947.4856 25913.9852 29493.1750	30094.8810 26130.7837 29679.1625	920.9566 977.8951 1006.3644
140.8431 176.5235	28225.7028 29285.1557	28507.3889 29638.2027	1006.3644 1006.3644
	60.8871 73.6977 108.3992 92.9937	60.8871 5237.0327 	60.8871 5237.0327 5358.8069 5358.8

Elapsed time: 0.0500

Graphs are the same than in the Chow-Lin case, except that the first one (objective function vs innovational parameter) is not generated.

7. LITTERMAN

```
PURPOSE: Temporal disaggregation using the Litterman method
SYNTAX: res=litterman(Y,x,ta,s,type);
OUTPUT: res: a structure
      res.meth ='Litterman':
      res.ta = type of disaggregation
      res.type = method of estimation
      res.N = nobs. of low frequency data
      res.n = nobs. of high-frequency data
      res.pred = number of extrapolations
      res.s = frequency conversion between low and high freq.
      res.p = number of regressors (including intercept)
      res.Y = low frequency data
      res.x = high frequency indicators
res.y = high frequency estimate
      res.y_dt = high frequency estimate: standard deviation
      res.y_lo = high frequency estimate: sd - sigma
      res.y up = high frequency estimate: sd + sigma
      res.u = high frequency residuals
                = low frequency residuals
      res.U
      res.beta = estimated model parameters
      res.beta_sd = estimated model parameters: standard deviation
      res.beta t = estimated model parameters: t ratios
      res.rho = innovational parameter
      res.aic = Information criterion: AIC
      res.bic = Information criterion: BIC
      res.val = Objective function used by the estimation method
               = grid of innovational parameters used by the estimation method
      res.r
INPUT: Y: Nx1 ---> vector of low frequency data
    x: nxp ---> matrix of high frequency indicators (without intercept)
    ta: type of disaggregation
       ta=1 ---> sum (flow)
       ta=2 ---> average (index)
       ta=3 ---> last element (stock) ---> interpolation
     s: number of high frequency data points for each low frequency data points
       s= 4 ---> annual to quarterly
       s=12 ---> annual to monthly
       s= 3 ---> quarterly to monthly
    type: estimation method:
       type=0 ---> weighted least squares
       type=1 ---> maximum likelihood
LIBRARY: aggreg
SEE ALSO: chowlin, fernandez, td plot, td print
REFERENCE: Litterman, R.B. (1983a) "A random walk, Markov model
for the distribution of time series", Journal of Business and
Economic Statistics, vol. 1, n. 2, p. 169-173.
```

Application:

```
Y=load('c:\x\td\data\Y.prn');
x=load('c:\x\td\data\x.tri');
res=litterman(Y,x,1,4,0);
td_print(res,'td.sal',0); % op1=0: series are not printed in ASCII file
td_plot(res);
edit td.sal
```

ASCII file containing detailed output:

```
****************
TEMPORAL DISAGGREGATION METHOD: Litterman
***************
Number of low-frequency observations : 22
Frequency conversion
Number of high-frequency observations:
Number of extrapolations :
Number of indicators (+ constant) :
Type of disaggregation: sum (flow).
 _____
Estimation method: Weighted least squares.
_____
Beta parameters (columnwise):
 * Estimate
 * Std. deviation
 * t-ratios
1205.4851 233.5241 5.1621
0.7910 0.0480 16.4821
______
Innovational parameter: 0.9700
_____
AIC: 7.9478
BIC: 8.0966
Low-frequency correlation
- levels : 0.9998
- yoy rates : 0.9617
High-frequency correlation
- levels : 0.9994
- yoy rates : 0.9735
_____
High-frequency volatility of yoy rates
- estimate : 7.6249
- indicator : 9.1506
- ratio : 0.8333
Elapsed time: 2.5300
```

A variant to be applied with a fixed innovational parameter:

PURPOSE: Temporal disaggregation using the Litterman method mu parameter is fixed (supplied by the user)

SYNTAX: res=litterman(Y,x,ta,s,type,mu);

Graphical output contains the same information than in the Chow-Lin case.

8. SANTOS SILVA-CARDOSO (ssc)

```
function res=ssc(Y,x,ta,s,type)
% PURPOSE: Temporal disaggregation using the dynamic Chow-Lin method
             proposed by Santos Silva-Cardoso (2001).
% SYNTAX: res=ssc(Y,x,ta,s,type);
% OUTPUT: res: a structure
       res.meth
                            ='Santos Silva-Cardoso':
%
       res.ta
                            = type of disaggregation
%
       res.type
                            = method of estimation
%
                            = nobs. of low frequency data
       res.N
%
       res.n
                            = nobs. of high-frequency data
%
                            = number of extrapolations
       res.pred
%
                            = frequency conversion between low and high freq.
       res.s
%
                            = number of regressors (+ intercept)
       res.p
%
                            = low frequency data
       res.Y
%
                            = high frequency indicators
       res.x
%
       res.y
                            = high frequency estimate
%
                            = high frequency estimate: standard deviation
       res.y dt
%
       res.y_lo
                            = high frequency estimate: sd - sigma
%
                            = high frequency estimate: sd + sigma
       res.y up
%
                            = high frequency residuals
       res.u
%
       res.U
                            = low frequency residuals
%
                            = estimated model parameters (including y(0))
       res.gamma
%
                            = estimated model parameters: standard deviation
       res.gamma_sd
%
                              = estimated model parameters: t ratios
       res.gamma t
%
                         = dynamic parameter phi
       res.rho
%
       res.beta
                             = estimated model parameters (excluding y(0))
%
       res.beta sd
                            = estimated model parameters: standard deviation
                             = estimated model parameters: t ratios
%
       res.beta_t
%
                         = Information criterion: AIC
       res.aic
%
                         = Information criterion: BIC
       res.bic
%
                        = Objective function used by the estimation method
       res.val
%
                         = grid of dynamic parameters used by the estimation method
       res.r
%
                         = elapsed time
       res.et
% -
% INPUT: Y: Nx1 ---> vector of low frequency data
%
      x: nxp ---> matrix of high frequency indicators (without intercept)
%
       ta: type of disaggregation
%
         ta=1 ---> sum (flow)
%
         ta=2 ---> average (index)
%
         ta=3 ---> last element (stock) ---> interpolation
%
       s: number of high frequency data points for each low frequency data points
%
         s= 4 ---> annual to quarterly
%
         s=12 ---> annual to monthly
%
         s= 3 ---> quarterly to monthly
%
       type: estimation method:
%
         type=0 ---> weighted least squares
%
         type=1 ---> maximum likelihood
% LIBRARY: aggreg
```

```
% -------
% SEE ALSO: chowlin, litterman, fernandez, td_plot, td_print
% ------
% REFERENCE: Santos, J.M.C. y Cardoso, F.(2001) "The Chow-Lin method
% using dynamic models", Economic Modelling, vol. 18, p. 269-280.
```

```
****************
TEMPORAL DISAGGREGATION METHOD: Santos Silva-Cardoso
****************
Number of low-frequency observations: 32
Frequency conversion :
Number of high-frequency observations: 128
Number of extrapolations : 0
Number of indicators (+ constant) : 2
-----
Type of disaggregation: sum (flow).
______
Estimation method: Maximum likelihood.
_____
Beta parameters (columnwise):
 * Estimate
 * Std. deviation
 * t-ratios
______
 1.09463.78170.28950.67180.0049136.9983
Dynamic parameter: 0.2600
Long-run beta parameters (columnwise):
  1.4792
  0.9078
Truncation remainder: expected y(0):
 * Estimate
 * Std. deviation
 * t-ratios
310.3328 90.5351 3.4278
AIC: 5.2524
BIC: 5.3898
Low-frequency correlation
- levels : 0.9994
 - yoy rates : 0.8561
High-frequency correlation
 - levels : 0.9993
- yoy rates : 0.8881
High-frequency volatility of yoy rates
 - estimate : 2.0592
- indicator : 2.3430
 - ratio : 0.8789
_____
```

Graphical output contains the same information than in the Chow-Lin case and includes a plot of the implied impulse-response function:

A variant to be applied with a fixed innovational parameter:

PURPOSE: Temporal disaggregation using the Santos Silva-Cardoso method Phi parameter is fixed (supplied by the user)

SYNTAX: res=ssc(Y,x,ta,s,type,phi);

9. MULTIVARIATE DENTON

```
function res = denton(Y.x.z.ta.s.d):
% PURPOSE: Multivariate temporal disaggregation with transversal constraint
% ------
% SYNTAX: res = denton(Y,x,z,ta,s,d);
% ------
% OUTPUT: res: a structure
      res.meth = 'Multivariate Denton':
%
      res.N = Number of low frequency data
%
      res.n = Number of high frequency data
%
      res.pred = Number of extrapolations (=0 in this case)
%
      res.ta = Type of disaggregation
%
      res.s = Frequency conversion
      res.d = Degree of differencing
%
      res.y = High frequency estimate
      res.et = Elapsed time
% INPUT: Y: NxM ---> M series of low frequency data with N observations
%
      x: nxM ---> M series of high frequency data with n observations
%
      z: nzx1 ---> high frequency transversal constraint
%
      ta: type of disaggregation
       ta=1 ---> sum (flow)
%
        ta=2 ---> average (index)
%
        ta=3 ---> last element (stock) ---> interpolation
%
      s: number of high frequency data points for each low frequency data points
%
        s= 4 ---> annual to quarterly
        s=12 ---> annual to monthly
%
%
       s= 3 ---> quarterly to monthly
%
      d: objective function to be minimized: volatility of ...
%
       d=0 ---> levels
       d=1 ---> first differences
%
       d=2 ---> second differences
% LIBRARY: aggreg, aggreg_v, dif, vec, desvec
% ------
% SEE ALSO: difonzo, mtd print, mtd plot
% REFERENCE: di Fonzo, T. (1994) "Temporal disaggregation of a system of
% time series when the aggregate is known: optimal vs. adjustment methods",
% INSEE-Eurostat Workshop on Quarterly National Accounts, Paris, december
```

Application:

```
Y=load('YY.anu'); % Loading low frequency data x=load('x.tri'); % Loading high frequency data z=load('z.prn'); % Loading high frequency transversal restriction res=denton(Y,x,z,2,4,1); mtd_print(res,'mtd.sal'); edit mtd.sal; mtd_plot(res,z);
```

```
***************
TEMPORAL DISAGGREGATION METHOD: Multivariate Denton
************
Number of low-frequency observations :
Frequency conversion
                                    4
Number of high-frequency observations :
                                    92
Number of extrapolations
Degree of differencing
                                     1
Type of disaggregation: average (index).
High frequency series (columnwise):
  * Point estimate
3752.9096 4982.6505
3459.3681 5257.1693
. . . . . . . . .
2757.8458 8545.8074
2825.1411 8624.4561
2867.5816 8657.9733
Elapsed time: 0.2800
```


10. DI FONZO

```
function res = difonzo(Y,x,z,ta,s,type,f);
% PURPOSE: Multivariate temporal disaggregation with transversal constraint
% SYNTAX: res = difonzo(Y,x,z,ta,s,type,f);
% OUTPUT: res: a structure
       res.meth = 'Multivariate di Fonzo';
       res.N = Number of low frequency data
%
       res.n = Number of high frequency data
%
       res.pred = Number of extrapolations
%
       res.ta = Type of disaggregation
%
       res.s = Frequency conversion
%
       res.type = Model for high frequency innovations
%
       res.beta = Model parameters
%
       res.y = High frequency estimate
%
       res.d_y = High frequency estimate: std. deviation
       res.et = Elapsed time
% -
% INPUT: Y: NxM ---> M series of low frequency data with N observations
   x: nxm ---> m series of high frequency data with n observations, m>=M see (*)
%
      z: nzx1 ---> high frequency transversal constraint with nz obs.
%
      ta: type of disaggregation
%
         ta=1 ---> sum (flow)
%
         ta=2 ---> average (index)
%
         ta=3 ---> last element (stock) ---> interpolation
%
      s: number of high frequency data points for each low frequency data points
         s= 4 ---> annual to quarterly
%
%
         s=12 ---> annual to monthly
%
         s= 3 ---> quarterly to monthly
%
      type: model for the high frequency innvations
%
         type=0 ---> multivariate white noise
%
         type=1 ---> multivariate random walk
% (*) Optional:
%
      f: 1xM ---> Set the number of high frequency indicators linked to
%
              each low frequency variable. If f is explicitly included,
%
              the high frequency indicators should be placed in
%
              consecutive columns
% NOTE: Extrapolation is automatically performed when n>sN.
%
      If n=nz>sN restricted extrapolation is applied.
%
      Finally, if n>nz>sN extrapolation is perfored in constrained
%
      form in the first nz-sN observatons and in free form in
      the last n-nz observations.
% LIBRARY: aggreg, dif, vec, desvec
% SEE ALSO: denton, mtd_print, mtd_plot
% REFERENCE: di Fonzo, T. (1990) "The estimation of M disaggregate time
% series when contemporaneous and temporal aggregates are known", Review
% of Economics and Statistics, vol. 72, n. 1, p. 178-182.
```

Application:

```
Y=load('YY.anu'); % Loading low frequency data x=load('x.tri'); % Loading high frequency data z=load('z.prn'); % Loading high frequency transversal restriction res = difonzo(Y,x,z,2,4,1); mtd_print(res,'mtd.sal'); edit mtd.sal; mtd_plot(res,z);
```

```
***************
TEMPORAL DISAGGREGATION METHOD: Multivariate di Fonzo
***************
Number of low-frequency observations : 23
Frequency conversion
                             4
Number of high-frequency observations: 92
Number of extrapolations : 0
Model for the innovations: random walk.
Type of disaggregation: average (index).
_____
High frequency series (columnwise):
 * Point estimate
3413.3839 5322.1762
3447.4092 5269.1282
2758.4657 8545.1875
2817.9882 8631.6090
2856.1605 8669.3944
```

Elapsed time: 0.3300

APPENDIX: RELATIONSHIPS AMONG FUNCTIONS IN THE LIBRARY

The " $X \rightarrow Y$ " notation means "X function calls Y function".

- bfl → sw
- denton_uni → aggreg, bfl
- sw → aggreg, aggreg_v, dif, movingsum
- chowlin → aggreg
- fernandez → aggreg
- litterman → aggreg
- ssc → aggreg
- denton → aggreg, aggreg_v, dif, vec, desvec
- difonzo → aggreg, dif, vec, desvec
- bal → vec, desvec
- td_print → tasa, aggreg
- td_plot → tasa
- tduni_plot → temporal_agg