

Redes de Computadores 2 EEL 879

Parte VI IPv6

Luís Henrique M. K. Costa

luish@gta.ufrj.br

Universidade Federal do Rio de Janeiro -PEE/COPPE P.O. Box 68504 - CEP 21945-970 - Rio de Janeiro - RJ Brasil - http://www.gta.ufrj.br

Porque do IPv6?

- Esgotamento dos endereços IPv4
 - > IPv4: apenas 4,3 bilhões de endereços
- Cabeçalho simplificado
 - Processamento mais eficiente nos roteadores
- Melhor suporte a opções
- Segurança

Requisitos do IPv6 (RFC 1752)

- Serviço de datagrama não confiável (~IPv4)
- Suporte unicast e multicast
- Endereçamento adequado para além de um futuro imediato
- Compatibilidade com o IPv4 (não renumerar redes)
- Suporte para autenticação e criptografia
- Não fazer suposições sobre a topologia física
- Não fazer nada que afete o desempenho dos roteadores
- Protocolo extensível e capaz de evoluir
- Suporte para estações móveis, redes e interconexão de redes
- O Permitir interconexões de redes privadas em cima da infra da Internet

Esgotamento dos Endereços IPv4

Fatores de pressão

- Número de redes
- Dispositivos móveis
- Internet das coisas

Fatores de alívio

- CIDR, melhor gerenciamento de endereços Classe A
- Network Address Translation (NAT)

Outro aspecto: tamanho das tabelas

- > IPv6 em si, não reduz
- Alocação mais cuidadosa >> maior agregação

IPv4 x IPv6: Endereços

• IPv4 (1981)

- > Tamanho: 32 bits
- Notação: 192.168.27.134(4 decimais separados por .)
- Baseado em classes

IPv6 (1999)

- > Tamanho: 128 bits
- Notação: 3FFE:F200:234:AB00:123:4567:8901:FEFE (8 grupos de 4 hexadecimais, separados por :)
- Sem classes

Quantidade de Endereços

o IPv4

 $ightharpoonup 2^{32}$ endereços = 4.294.967.296 (~4,2 bilhões)

o IPv6

- $ightharpoonup 2^{128}$ endereços = 3.40282 x 10³⁸
- > = 340.282.366.920.938.463.463.374.607.431.768.211.456

Tipos de Comunicação no IPv6

- O IPv4
 - Unicast
 - Multicast
 - Broadcast
- o IPv6
 - Unicast
 - Multicast
 - Anycast

Tamanho da Unidade de Transmissão

- MTU Maximum Transfer Unit
 - Máxima quantidade de dados transportados em um quadro da camada 2
 - Exemplos
 - Ethernet (IEEE 802.3): MTU = 1500 Bytes (tamanho da carga útil)
- No IPv6, há uma MTU mínima que deve ser suportada pela camada 2
 - 1280 Bytes

Tempo de Vida do Endereço IPv6

- Endereços IPv6 não são "dados, mas emprestados"
- Tempo de vida associado a cada endereço
 - Quando termina, o endereço torna-se inválido e pode ser reutilizado por outra interface
 - Tempo de vida padrão: 30 dias
 - Endereços local-ao-enlace possuem tempo de vida ilimitado
- Permite a renumeração dos endereços
 - Desejável que se faça de forma suave, para não quebrar conexões em andamento

Tempo de Vida do Endereço IPv6

- Mecanismo de obsolescência
 - Vários endereços IPv6 podem ser associados a uma interface...
 - > Escolha do endereço a utilizar: baseada no estado do endereço
- Estados do endereço com respeito ao tempo de vida
 - Preferível
 - Endereço pode ser utilizado sem restrições
 - Depreciado
 - Não deve ser usado como endereço fonte para novas comunicações
 - Mas pode ser endereço fonte em comunicações em andamento
 - Inválido
- Na atribuição de um endereço, são definidos o tempo de vida (validade) e o tempo de duração preferencial

Endereços IPv6: Representação

2033:0000:0123:00FD:000A:0000:0000:0C67

Retirada de zeros no início de palavras

2033:0:123:FD:A:0:0:C67

Retirada de blocos "todos-zeros" (compressão)

2033:0:123:FD:A::C67

- Compressão pela omissão de zeros
 - Uma única vez: seria impossível saber quantas palavras em zero, senão

Estrutura do Endereço IPv6

8145:010C:0000:0000:1100:1A06:8800:0001 parte de rede

parte de estação

- Parte de Rede
 - 64 bits MSB
 - Configurável (sub-campos)
- Parte de Estação
 - > 64 bits LSB
 - > Fixa
 - Calculada pela própria estação

Estrutura do Endereço IPv6

8 MSB do endereço IPv6:

Format Prefix (FP)

Definem o tipo de endereço

Bits FP	Uso	Número de endereços	Faixa
0000 0000	Reservados	2 ¹²⁰	0000::/8
0000 0001	Não atribuídos	2 ¹²⁰	0100::/8
0000 001	NSAPs	2 ¹²¹	0200::/7
0000 01	Não atribuídos	2 ¹²²	0400::/6
0000 1	Não atribuídos	2 ¹²³	0800::/5
0001	Não atribuídos	2 ¹²⁴	1000::/4
001	Endereços Unicast Globais	2 ¹²⁵	2000::/3
01	Não atribuídos	2 ¹²⁶	4000::/2
10	Não atribuídos	2 ¹²⁶	8000::/2
110	Não atribuídos	2 ¹²⁵	C000::/3
1110	Não atribuídos	2 ¹²⁴	E0000::/4
1111 0	Não atribuídos	2 ¹²³	F0000::/5
1111 10	Não atribuídos	2 ¹²²	F800::/6
1111 110	Não atribuídos	2 ¹²¹	FC00::/7
1111 1110 0	Não atribuídos	2119	FE00::/9
1111 1110 10	Endereços unicast locais ao enlace	2118	FE80::/10
1111 1110 11	Endereços unicast locais ao site	2118	FEC0::/10
1111 1111	Endereços multicast	2 ¹²⁰	FF00::/8

Tipos de Endereços IPv6

- Unicast Global
- Unicast Local ao Enlace
- Unicast Local ao Site
- Multicast
- NSAP (Network Service Access Point)

Endereço IPv6 Unicast Global

- Top Level Aggregation ID (13 bits)
- Reserved (8bits)
- Next Level Aggregation ID (24 bits)
- Site Level Aggregation ID (16 bits)
- Interface ID (64 LSB)

Endereço IPv6 Unicast Global (cont.)

Topologia Pública

- Top Level Aggregation ID (13 bits)
 - Identificadores para grandes operadores de rede, tipicamente, provedores da DFZ (default-free zone)
- Reserved (8bits)
 - Reserva, permite aumentar o número de TLAs ou de NLAs
- Next Level Aggregation ID (24 bits)
 - Identificador do site (ou domínio)

Topologia do Site

- Site Level Aggregation ID (16 bits)
 - Endereço de sub-rede
 - Permite a hierarquização do site
- Interface ID (64 bits)
 - Endereço da Interface

Endereço IPv6 Unicast Local ao Enlace

- Não-roteável
 - Comunicação entre máquinas no mesmo enlace apenas
- o Faixa
 - > FE80::/10
- Equivalente IPv4
 - **169.254.0.0/16**

Endereço IPv6 Unicast Local ao Enlace (cont.)

- Utilização
 - Protocolo de configuração de endereço global (subst. do ARP)
 - Protocolo de descoberta de vizinhos (neighbor discovery)
 - Protocolo de descoberta de roteadores (router discovery)
- Devem ser únicos no enlace
 - Garantia: Protocolo de detecção de endereço duplicado
- Podem repetir em enlace ou redes diferentes
- Normalmente não são usados em aplicações clássicas
 - Alcance limitado ao enlace

Endereço IPv6 Unicast Local ao Site

- Escopo
 - > Rede de um site, roteadores de borda devem filtrá-los
- Faixa
 - > FEC0::/10
- Equivalente IPv4
 - > 10.0.0.0/8

Endereço IPv6 Unicast Local ao Site (cont.)

Utilização

Rede de um site que ainda não está conectado à Internet

Dificuldades de utilização

- Definição exata de um site
- Plano de endereçamento SLA ID é o mesmo para os endereços globais?
- Como definir se um parceiro está no mesmo site
- Que endereço o servidor DNS deve informar

Vantagem

Não há a necessidade de renumeração quando se troca o provedor de acesso à Internet

Endereços IPv6 Unicast: Interface ID

- Endereços MAC
 - > 48 bits (IEEE 802) ou 64 bits (IEEE EUI-64)
- Interface ID no IPv6: 64 bits

Endereços Unicast IPv6 Especiais

- Endereço indeterminado
 - > 0:0:0:0:0:0:0 (ou ::)
 - Utilizado unicamente durante inicialização da máquina
- Endereço de loopback
 - > 0:0:0:0:0:0:0:1 (ou ::1)

Endereços Unicast IPv6 Especiais

- Endereços "IPv4-mapped IPv6"
 - > 80 '0's + FF + endereço IPv4 (32 bits)
 - Exemplos
 - ::FFFF:129.144.52.38 (forma IPv6-IPv4 decimal)
 - ::FFFF:8190:3426 (forma IPv6-comprimida)
- Utilização
 - > Dupla pilha:
 - Máquina IPv6 pode conversar com máquinas IPv6 ou IPv4
 - Na transmissão:
 - Se endereço de destino IPv4 mapeado em IPv6, pacote emitido na pilha IPv4
 - Na recepção:
 - Um pacote IPv4 recebido na pilha IPv4 é apresentado à aplicação na forma de um pacote IPv6 com endereço de destino IPv4 mapeado em IPv6

Endereços Unicast IPv6 Especiais

- Endereços "Compatíveis IPv4"
 - 96 '0's + endereço IPv4 (32 bits)
 - Exemplos
 - ::129.144.52.38 (forma IPv6-IPv4 decimal)
 - ::8190:3426 (forma IPv6-comprimida)

Utilização

- Túnel IPv6/IPv4 automático
 - Pacote transmitido a ::a.b.c.d é encapsulado em um pacote IPv4
 - No destino, o pacote IPv6 é desencapsulado e entregue à aplicação
- Uso generalizado é desaconselhável
 - Gestão de uma rede IPv4 com endereços acrescidos de 96 '0's...
 - Melhor opção: tunelamento na Entrada/Saída do Site

Endereço IPv6 Multicast

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 2 3 4 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 7 8 9 1 2 3 4 7 8 9 1 2 3 4 7 8 9 1 2 3 4 7 8 9 1 2 3 4 7 8 9 1 2 3 4 7 8 9 1 2 3 4 7 8 9 1 2 3 4 7 8 9 1 2 3 4 7 8 9
```

- Flags: Reserved (3 bits) + T (1 bit)
 - ➤ T = 0: endereço permanente
 - ➤ T = 1: endereço temporário
- Escopo (4 bits)
 - Alcance do tráfego
- ID do Grupo (112 bits)

Endereço IPv6 Multicast

- o Faixa
 - > FF00::/8
- Exemplos
 - > FF02::1
 - "All-nodes": equivalente ao broadcast IPv4
 - > FF02::2
 - "All-routers": equivalente ao broadcast IPv4

Endereço IPv6 Multicast: Escopo

- Interface-local
- Link-local
- Subnet-local
- Site-local
- Admin-local
- Organization-local
- Global
- Substitui a limitação do escopo através do campo TTL no IPv4

Endereço IPv6 Multicast: Escopo

• Exemplos

- FF02::101 : todos os servidores NTP no mesmo enlace que o emissor
- FF05::101 : todos os servidores NTP no mesmo site que o emissor
- > FF0E::101 : todos os servidores NTP na Internet

Endereços Multicast Especiais IPv6

All-nodes multicast groups

- Interface-local all-nodes group (FF01::1)
- Link-local all-nodes group (FF02::1)

All-routers multicast groups

- Interface-local all-routers group (FF01::2)
- Link-local all-routers group (FF02::2)
- Site-local all-routers group (FF05::2)
- Solicited-node multicast group

Endereços Multicast Nó-Solicitado

Formação

Prefixo FF02::1:FF00/104 + 24 LSB do endereço unicast ou anycast do nó

Utilização

- A máquina constrói endereços multicast nó solicitado a partir de seus endereços unicast e/ou anycast
- Outra máquina que conheça o endereço IPv6 da máquina, mas não seu endereço MAC, pode utilizar o endereço nó solicitado para se comunicar (~ARP do IPv4)

Utilidade

- Protocolo de detecção de endereços duplicados e de descoberta de vizinhos
- Mais eficiente que 255.255.255.255 no IPv4

Exemplo de Formação do Endereço Multicast Nó-Solicitado

```
Endereço alvo (notação comprimida):
fe80::3ab:ff:fe54:5a9f
Endereço alvo (últimos 24 bits)
fe80:0000:0000:0000:03ab:00ff:fe54:5a9f
Prefixo Solicited-node Multicast Address (notação comprimida)
ff02::1:ff00:0/104
Prefixo Solicited-node Multicast Address (primeiros 104 bits)
ff02:0000:0000:0000:0001:ff00:0000/104
Resultado:
ff02:0000:0000:0000:0000:0001:ff54:5a9f
Resultado (notação comprimida):
ff02::1:ff54:5a9f
```

Endereço IPv6 NSAP

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

FP=0000 001

NSAP codificado (cont.)

NSAP codificado (cont.)

- Network Service Access Point (NSAP)
 - > Formato de endereço generalizado, definido pela ISO

IPv6 - O Cabeçalho

Todos os campos são fixos

Cabeçalho IPv4 x IPv6

- Campos eliminados em relação ao IPv4
 - > IHL (4bits)
 - Cabeçalho IPv6 tem tamanho fixo
 - Identification, Flags e Fragment Offset (16, 8 e 8 bits)
 - No IPv6, o roteador não faz fragmentação
 - Header Checksum (4bits)
 - O IPv6 não faz controle de erros, deixado para outras camadas
- Campos acrescidos em relação ao IPv4
 - Flow Label (16 bits)
 - Identificação de fluxo

Cabeçalho IPv4 x IPv6

- Campos modificados em relação ao IPv4
 - ToS >> Traffic Class
 - Total Length >> Payload Length
 - Tamanho da carga útil, sem o cabeçalho do IPv6 (40 bytes)
 - > TTL >> Hop Limit
 - Protocol >> Next Header
 - Indica o tipo de protocolo transportado, ou
 - Campo opcional (substitui as Opções do IP)

Campos do Cabeçalho IP

- Versão (4bits)
 - Versão atual = 6
- Traffic Class (8 bits)
 - Differentiated Services, como no IPv4 (RFC 2474)

Campos do Cabeçalho IP

- Flow Label (20 bits)
 - Número único escolhido pela fonte
 - Utilidade
 - Qualidade de Serviço: uso pelo RSVP (ReSource reserVation Protocol)
 - Tratamento específico: Escolha de uma rota
- Identificação de fluxo no IPv4
 - Fluxo geralmente identificado por uma tupla
 - (@-orig; @-dest; #porta orig; #porta dest)
- No IPv6: maior eficiência
 - Um campo específico
 - Se utilizada confidencialidade, o número de porta de pode estar escondido

Campos do Cabeçalho IP

- Payload Length (16 bits)
 - Tamanho da carga útil, sem considerar o tamanho do cabeçalho
 - Se houver cabeçalhos de extensão, são contados no Payload Length
 - Para pacotes de tamanho maior que 65535
 - Payload Length = 0
 - Opção "jumbograma" é utilizada
- Next Header (8bits)
 - Protocolo de nível superior (ICMP, UDP, TCP, ...)
 - Ou identificação do próximo cabeçalho de extensão

Campos do Cabeçalho IP

- Hop Limit (8 bits)
 - Número de saltos
 - Deixa de significar tempo em segundos, como no IPv4

- Source Address e Destination Adress (128 bits cada)
 - Endereços IP de Origem e de Destino do pacote

Cabeçalhos de Extensão

Tratamento de opções no IPv6

- Apenas as extensões "hop-by-hop" são tratadas por todos os roteadores
- Todas as outras são tratadas apenas no destino em questão
- Maior eficiência que no IPv4, onde pacotes com opções sempre seguem pelo slow-path dos roteadores

Cabeçalho de Extensão: Considerações

- Comprimento: múltiplo de 8 bytes
- Início: campo Next Header (1 byte)
- Se extensão de tamanho variável
 - Próximo byte: comprimento da extensão, em palavras de 8 bytes, sem contar a primeira palavra
 - (Uma extensão de 16 bytes possui comprimento "1"

Cabeçalho de Extensão: Considerações

- Ordem recomendada (RFC 2460)
 - Salto-a-salto (sempre deve ser a primeira extensão)
 - Destino (será também tratada pelos roteadores da rota pela fonte)
 - Roteamento pela fonte
 - Fragmentação
 - Autenticação
 - Destino (será tratada apenas pelo equipamento destino final)

Valores de Próximo Cabeçalho

Valor	Extensão
0	Opções salto-a-salto
43	Roteamento pela fonte
44	Fragmentação
50	Encapsulamento seguro de payload
51	Autenticação
59	Fim de cabeçalho sem payload
60	Opções de destino

Valor	Protocolo
6	TCP
17	UDP
41	IPv6
58	ICMPv6

Opções no Cabeçalho de Extensão

- Cabeçalho seguinte: indica o próximo cabeçalho de extensão
- Tamanho da extensão: inteiro em unidades de 8 bytes
- Opções TLV
 - Opções salto-a-salto (Tipo 0)
 - Opções que são aplicadas a cada salto do caminho
 - Opções de destino intermediárias (Tipo 60)
 - Opções que são aplicadas ao próximo salto definido na rota pela origem

Opções Salto-a-salto: Considerações

- São Opções TLV
- Codificação do Tipo da Opção
 - > 2 MSB: tratamento de uma opção desconhecida pelo roteador
 - 00: o roteador ignora a opção
 - 01: o roteador descarta o pacote
 - 10: o roteador descarta o pacote e retorna uma mensagem ICMPv6 de "inalcançabilidade"
 - 11: o roteador descarta o pacote e retorna uma mensagem ICMPv6 de "inalcançabilidade" se o destino não for multicast
 - Próximo bit
 - =1: o roteador pode modificar o conteúdo do campo de opções
 - =0: o roteador não pode modificar o conteúdo do campo de opções

Tipos de Opções Salto-a-salto

- Pad1 (tipo 0): introduz um byte de enchimento
- PadN (tipo 1): introduz dois ou mais bytes de enchimento (de acordo com campo comprimento)
- Jumbograma (tipo 194 ou 0xC2):
 - Permite pacotes maiores que 65535 bytes
 - Usada geralmente em conexões da alta velocidade entre duas máquinas
 - Neste caso, o tamanho da carga útil no cabeçalho principal vale zero
 - > Obs: inicia com "11": o roteador informa à fonte se não suportar o jumbograma
- Router Alert (tipo 5)
 - Solicitação ao roteador de examinar o pacote
 - Normalmente, a tarefa do roteador é encaminhar o pacote o mais rápido possível
 - Utilização
 - Protocolo de reserva de recursos RSVP
 - Protocolo de gerenciamento de grupo MLD

Extensão de Roteamento pela Fonte

Cabeçalho Seguinte	Tamanho da Extensão	Tipo de roteamento	Segmentos Restantes
reservados			
Endereço de Roteador 1 (128 bits)			
Endereço de Roteador N (128 bits)			

Cabeçalho de Extensão tipo 43

- > Tipo = 0: roteamento pela fonte, semelhante ao *loose source routing* do IPv4
 - (A utilização do strict source routing tornou-se rara)

Conteúdo

- Número de segmentos (saltos) restantes até o destino
- Lista dos próximos roteadores até o destino

Extensão de Fragmentação

- Fragmentação: ineficiente no IPv4
 - Mecanismos de descoberta de MTU servem para evitá-la
 - Porém, algumas aplicações supõem que a rede realiza a fragmentação, eliminá-la no IPv6 significaria reescrever as aplicações
- IPv6: realizada no emissor
- Cabeçalho de Extensão tipo 44
 - Algoritmo semelhante ao IPv4
 - Conteúdo:
 - Lugar do fragmento (13 bits) posição em número de palavras de 8 bytes
 - Bit M "More fragments", como no IPv4

Cabeçalhos de Extensão de Segurança

- Authentication Header (AH)
 - Autenticação da Fonte
- Encapsulation Security Payload (ESP)
 - Criptografia dos Dados

Checksum no Nível de Transporte

- IPv4: checksum protege o cabeçalho IP
 - > IPv6: checksum eliminado do cabeçalho
- o IPv6
 - Todos os protocolos acima do IPv6 devem considerar no checksum os dados do cabeçalho IPv6
 - TCP: modificação do cálculo, que era obrigatório
 - UDP: modificação do cálculo e torná-lo obrigatório
 - Criação de um pseudo-cabeçalho, que não é transmitido
 - Checksum: mesmo cálculo do IPv4
 - Soma em complemento a 1 das palavras de 16 bits

Checksum no Nível de Transporte

- Campos do pseudo-cabeçalho
 - Endereço da Fonte (128 bits) e Endereço do Destino (128 bits)
 - Comprimento dos dados da camada superior (32 bits)
 - Ex. Cabeçalho TCP + Dados
 - Comporta o valor do comprimento da opção jumbograma, se utilizada
 - Campo Cabeçalho Seguinte
 - Não contém necessariamente o valor do campo do pacote que será transmitido
 - Extensões não são levadas em conta no cálculo do checksum

ICMPv6

- Internet Control Message Protocol (ICMP)
- Funções semelhantes ao ICMP do IPv4
 - Detecção de erros
 - Ex. destino inalcançável, tempo expirado
 - Teste e diagnóstico
 - Ex. ping
 - Configuração automática de equipamentos
 - Ex. Redirecionamento ICMP, descoberta de roteador
- Novas Funções
 - Gerenciamento de grupos multicast
 - Integra o MLD (Multicast Listener Discovery) (IGMP no IPv4)
 - > Função do ARP no IPv4

ICMPv6

Formato Geral de uma Mensagem ICMPv6

- Campo Tipo (8 bits)
 - Tipos < 127: mensagens de erro</p>
 - Outros: mensagens de informação
 - Ex. Mensagens do protocolo de descoberta de vizinhos
- Campo Código (8 bits)
 - Causa da mensagem ICMP
- Campo Checksum (16 bits)
 - Calculado com o pseudo-cabeçalho IPv6

ICMPv6

Campo Dados ICMP

- Nas mensagens de erro
 - (Parte da) Carga útil do datagrama que gerou o erro
 - Comprimento da mensagem ICMPv6 é limitado a 1280 bytes para evitar fragmentação
- Outras mensagens
 - Campos dependentes do protocolo

Tipos de Mensagens ICMPv6: Gerenciamento de Erros

Tipo	Código	Significado
1		Destino inalcançável:
	0	- não há rota para o destino
	1	- comunicação com o destino impedida administrativamente
	2	- destino fora do alcance do endereço fonte
	3	- endereço inacessível
	4	- número de porta inacessível
2		Pacote grande demais
3		Tempo expirado:
	0	- atingido limite do número de saltos
	1	- tempo de remontagem expirado
4		Erro de parâmetro:
	0	- algum campo de cabeçalho incorreto
	1	- campo de próximo cabeçalho (next header) desconhecido
	2	- opção não reconhecida

Tipos de Mensagens ICMPv6: Informação e Multicast

Informação

Tipo	Código	Significado
128		Echo Request
129		Echo Response

Gerenciamento de grupos multicast (MLD)

Tipo	Código	Significado
130		Demanda de grupos multicast (Query)
131		Relatório de grupos multicast (Report)
132		Fim de interesse no grupo

Tipos de Mensagens ICMPv6: Descoberta de Vizinhos

Tipo	Código	Significado
133		Solicitação de roteador
134		Anúncio de roteador
135		Solicitação de vizinho
136		Anúncio de vizinho
137		Redirecionamento (redirect)

ICMPv6: Destino Inalcançável

Mensagem Tipo 1 emitida quando

- o roteador não possui rota para o destino (Código 0)
- a mensagem foi filtrada por um firewall (Código 1)
- endereço inacessível, p. ex. a tentativa de rotear um endereço de tipo local ao enlace (*link-local*) (Código 3)
- não há aplicação associada à porta de destino (Código 4)

ICMPv6: Pacote Grande Demais

- Mensagem emitida quando o pacote é maior que a MTU do próximo enlace
 - utilizada no procedimento de descoberta de MTU
- Campo MTU: unidade de transferência máxima que o roteador pode aceitar
 - Este campo não existia no IPv4, facilita a descoberta de MTU
- Campo Dados
 - > Parte do pacote que provocou o erro, limitando a msg. ICMPv6 a 1280 B

ICMPv6: Tempo Estourado

- A mensagem indica que o datagrama foi descartado pelo roteador
 - porque o campo número de saltos (hop limit) chegou a zero (Código = 0)
 - ou porque um fragmento se perdeu e o tempo máximo de remontagem foi ultrapassado (Código = 1)
- Mensagem utilizada pelo programa traceroute, como no IPv4

ICMPv6: Erro de Parâmetro

- A mensagem indica erro no cabeçalho ou nos cabeçalhos de extensão do datagrama
- Causa do erro (campo Código)
 - erro de sintaxe no cabeçalho (Código 0)
 - número de próximo cabeçalho (next header) desconhecido (Código 1)
 - uma opção do cabeçalho de extensão desconhecida (e os 2 primeiros bits da opção definem o envio de uma mensagem ICMPv6) (Código 2)
- Ponteiro
 - Indica o byte do datagrama onde ocorreu o erro

ICMPv6: Echo Request e Response

- Utilizadas no programa ping, funcionamento semelhante ao do IPv4
- Campo Identificador
 - Serve para distinguir diversas instâncias do ping sobre a mesma máquina
- Campo Número de Sequência
 - associa uma resposta a um pedido
 - permite medir o tempo de ida e volta e detectar perdas
- Campo Dados
 - permite estatísticas com diferentes tamanhos de datagrama

Gestão de Grupos Multicast

- MLDv1
 - Operação idêntica ao IGMPv2 do IPv4
- MLDv2
 - Operação idêntica ao IGMPv3 do IPv4

ICMPv6: Configuração Automática e Controle

- Protocolo de Descoberta de Vizinhos (ND Neighbor Discovery)
 - Permite a uma estação se comunicar com outros equipamentos na mesma rede física
 - Utiliza 5 tipos de mensagem ICMPv6
 - Campo número de saltos deve ser 255
 - As mensagens n\u00e3o devem ser roteadas: se o valor recebido < 255, datagrama rejeitado
- Funções do Neighbor Discovery
 - Resolução de endereços: substitui o ARP do IPv4
 - Detecção de inalcançabilidade de vizinhos
 - Configuração
 - Redirecionamento

ND: Funções de Configuração

Descoberta de Roteadores

> Permite aos equipamentos descobrir os roteadores no enlace físico

Descoberta de prefixos

- Permite conhecer o(s) prefixo(s) utilizados na rede
- Prefixos podem ser utilizados para construir o(s) endereço(s) dos equipamentos (auto-configuração)

Detecção de endereços duplicados

> Há riscos de erros, dada a configuração automática

Descoberta de parâmetros

- Permite conhecer parâmetros do enlace físico, ex.:
 - Tamanho da MTU
 - Número máximo de saltos
 - Se a configuração automática com estado (DHCP) está disponível

Dados das Mensagens de Descoberta de Vizinhos

- Maior parte das mensagens da Descoberta de Vizinhos utiliza opções comuns
 - Endereço físico da fonte
 - Endereço físico do alvo
 - Informação de prefixo
 - Cabeçalho redirecionado
 - > MTU
- Formato
 - Tipo
 - Comprimento (em palavras de 64 bits)
 - Dados

Dados das Mensagens ND: Endereço Físico da Fonte/do Alvo

- Campo Comprimento
 - > Tamanho da opção em palavras de 64 bytes
 - Ex. Endereço MAC de 48 bits (6 bytes) Comprimento = 1
- Tipo 1: endereço físico da fonte
- Tipo 2: endereço físico do alvo

Dados das Mensagens ND: Informação de Prefixo

- Campo Comprimento do Prefixo
 - Número de bits significativos do prefixo anunciado

Dados das Mensagens ND: Informação de Prefixo

- Bit L = 1
 - Indica que todos os equipamentos que compartilham o prefixo estão no mesmo enlace físico
 - (O IPv6 permite que eles n\u00e3o estejam; neste caso os datagramas devem ser enviados por padr\u00e3o ao roteador)
- Bit A = 1
 - Indica que o prefixo anunciado pode ser utilizado para construir o endereço do equipamento (auto-configuração)
- Campo Duração de Validade
 - Tempo durante o qual o prefixo é válido
- Campo Duração Preferível
 - Tempo durante o qual um endereço construído a partir deste prefixo estará preferível

Dados das Mensagens ND: Informação de Prefixo

- Obs.
 - Para os dois campos de Duração, o valor 0xffffffff representa "duração infinita"
- Campo Reservado2
 - Permite o alinhamento em palavras de 64 bits
- Campo Prefixo
 - > O prefixo anunciado
 - Tamanho fixo de 128 bits para manter o alinhamento

Dados das Mensagens ND: Cabeçalho Redirecionado

- Opção utilizada na Mensagem de Redirecionamento
 - Campo Cabeçalho IP e Dados
 - Parte do Pacote que provocou a mensagem de redirecionamento (limitada de forma à mensagem < 1280 bytes)
 - Campos Reservado
 - Alinhamento em palavras de 64 bits

Dados das Mensagens ND: MTU

- Campo MTU
 - Tamanho máximo dos dados que podem ser transmitidos sobre o enlace físico
- Campo Reservado
 - Alinhamento em palavras de 64 bits
- Comprimento = 1

Funções do Protocolo de Descoberta de Vizinhos

- Descoberta de Roteadores
 - Mensagens Router Sollicitation e Router Announcement
- Descoberta de Vizinhos
 - Mensagens Neighbor Sollicitation e Neighbor Announcement
- Redirecionamento

Mensagem de Solicitação de Roteador

- Emitida por um equipamento durante inicialização
 - Obtenção rápida de informações sobre o roteador
- Enviada a ff02::2 (multicast "todos os roteadores no enlace")
- Campo Opções contém o endereço físico do equipamento fonte

Mensagem de Anúncio de Roteador

Tipo = 134	Código = 0	Ckecksum		
Máx. de saltos	os MO	Tempo de Vida do Roteador		
	Tempo	Alcançável		
	Temporizador	de Retransmissão		
	(Endereço Informação so	oções ísico da fonte, ore o(s) prefixo(s), ITU)		

- Enviada pelo roteador, periodicamente ou em resposta a uma mensagem de solicitação de roteador
 - > Endereço fonte: endereço link-local do roteador
 - Endereço destino: do equipamento que solicitou, ou ff02::01
- Campo Limite de Saltos Atual (Current Hop Limit)
 - Valor padrão sugerido para o campo Hop Limit dos datagramas enviados na rede
 GTA/UFRJ

Mensagem de Anúncio de Roteador

- Bit M ("Managed address configuration")=1: o endereço do equipamento deve ser obtido através do protocolo de configuração DHCP
- Bit O ("Other configuration") = 1: o protocolo de configuração DHCP fornece outras informações além do endereço (ex. DNS)
- Tempo de vida do roteador
 - Tempo (em segundos) durante o qual o roteador serve como roteador default
 - Máximo: 18h12m, mas não impõe limite já que mensagem periódica
- Campo Tempo Alcançável (Reachable Time)
 - > Tempo em ms de validade de informações guardadas no cache
 - Ao final do tempo, procedimento de detecção de inacessibilidade inicia

Mensagem de Anúncio de Roteador

- Campo Temporizador de Retransmissão (Retransmission Timer)
 - Período (em ms) entre transmissões não solicitadas de anúncios
 - Permite detectar se o roteador ficou inacessível
- Campo Opções pode conter
 - endereço físico da fonte
 - > MTU
 - informação sobre um ou mais prefixos

Mensagem de Solicitação de Vizinho

- Obtenção de informações sobre um equipamento vizinho
 - enviada explicitamente ao vizinho
 - ou a um endereço de difusão (corresponde ao ARP Request no IPv4)
- Endereço de Origem
 - Endereço link-local, global, ou não especificado

Mensagem de Solicitação de Vizinho

- Endereço de Destino
 - > Endereço Multicast Nó-Solicitado correspondente ao endereço procurado
 - ou endereço do equipamento (caso de detecção de inacessibilidade NUD)
- Campo Reservado
 - Alinhamento em palavras de 64 bits
- Campo Endereço do Alvo
 - Endereço IPv6 do equipamento procurado
- Campo Opções
 - Endereço físico da fonte
 - deve ser incluído em solicitações multicast
 - pode ser incluído em solicitações unicast
 - não deve ser incluído em solicitações com endereço de origem não especificado

Mensagem de Anúncio de Vizinho

0	11	2	3	
0 1 2 3 4 5 6 7 Tipo = 136	Código = 0	6 7 8 9 0 1 2 3 4 Ckecks		
RSO				
	Opções (Endereço físico do alvo)			

- Enviada em resposta a uma solicitação
 - > ou enviada espontaneamente em caso de mudança de endereço físico
 - ou de "status de roteador"
- Corresponde ao ARP Response do IPv4 no caso de determinação do endereço físico

 GTA/UFRJ

Mensagem de Anúncio de Vizinho

- Bit R (Router flag) = 1: o emissor é um roteador
 - O bit R permite detectar um roteador que se torna um equipamento "normal"
- Bit S (Solicited flag) =1: o anúncio foi enviado em resposta a uma solicitação
- Bit O (Override) =1: o anúncio deve apagar informações anteriores dos caches dos equipamentos, em especial a tabela de endereços físicos
- Campo Endereço do Alvo
 - Se S=1, contém o Endereço do Alvo da mensagem de solicitação à qual este anúncio corresponde
 - > Se S=0, contém o endereço IPv6 link-local do equipamento emissor
- Campo Opção
 - Contém o endereço físico do emissor da mensagem

Mensagem de Redirecionamento

- Função de Redirecionamento semelhante ao IPv4
- Também serve para que estações sobre um mesmo meio físico, porém com prefixos diferentes, comuniquem-se diretamente
- Campo Endereço Alvo
 - Endereço IPv6 do equipamento para o qual os pacotes devem ser enviados (próximo salto melhor)
- Campo Endereço Destino
 - > Endereço IPv6 do equipamento para o qual o redirecionamento se aplica

Configuração Automática

- Objetivo: Conexão à rede local sem intervenção humana
 - Instalação automática de rotas
 - ICMPv6 Router Solicitation/Announcement
 - Auto-configuração de endereços
- Obtenção de um endereço quando
 - A máquina se conecta à rede pela primeira vez
 - Renumeração da rede, após uma mudança de provedor de rede

Processo

- Criação de um endereço link-local
- Verificação da unicidade do endereço link-local
- Determinação do endereço unicast global

Configuração Automática

- Determinação do endereço unicast global:
 - Autoconfiguração sem estado (stateless autoconfiguration)
 - Útil quando não é necessária gestão administrativa dos endereços atribuídos
 - Autoconfiguração com estado (stateful autoconfiguration)
 - Útil quando é necessário controle estrito dos endreços atribuídos
 - Realizada pelo protocolo DHCPv6
- Anúncios de Roteador indicam o método utilizado
 - ▶ Bit M=0: autoconfiguração sem estado do endereço
 - ▶ Bit M=1: o endereço deve ser solicitado a um servidor DHCPv6
 - ▶ Bit O=1: além do endereço, informações adicionais disponibilizadas pelo servidor DHCPv6

Etapas do Procedimento de Autoconfiguração do Endereço

- Criação do endereço link-local
 - (Comunicação com outras máquinas no enlace é possível)
- Recebimento de uma mensagem de anúncio de roteador
 - Determinação do método de obtenção do endereço unicast global
- Autoconfiguração sem estado
 ou
- Autoconfiguração com estado (DHCPv6)

Obs.: Se não houver roteador, autoconfiguração com estado

Duplicate Address Detection (DAD)

- Endereço em estado provisório enquanto DAD em execução
- Passos do Algoritmo de Detecção de Endereço Duplicado
 - Entrada no grupo multicast nó-solicitado correspondente
 - Envio de uma mensagem de Solicitação de Vizinho
 - Campo Endereço Alvo: endereço provisório
 - Endereço fonte: endereço IPv6 não especificado (::/128)
 - Espera por resposta durante 1 segundo (tempo padrão sugerido)
 - Casos possíveis de acordo com a resposta:
 - Mensagem de anúncio de vizinho é recebida: o endereço provisório já era considerado válido por outra máquina e não pode ser utilizado
 - Mensagem de solicitação de vizinho/DAD é recebida: outro nó pretendia usar o mesmo endereço provisório; este não será utilizado por nenhum dos dois
 - Nenhuma resposta recebida: o endereço passa de provisório a válido

Criação do Endereço Link-local

- Endereço link-local = prefixo + identificador da interface
- Prefixo link-local
 - > FE80::/64
- Identificador
 - > EUI-64
- Endereço provisório > DAD > Endereço válido

Autoconfiguração Sem Estado

- Geração do endereço de uma estação a partir de informações locais e informações fornecidas por um roteador
 - Autoconfiguração funciona para estações, não para roteadores
- Endereço global = prefixo + identificador da interface
- O Prefixo
 - Opção "Informação sobre Prefixo" das mensagens Anúncio de Roteador
- DAD não é obrigatório, já que foi realizada para escolha do endereço link-local