Overview of File Organizations and Indexing

SUN YAT-SEN UNIVERSITY

重要概念:

<u>Record id</u> = <page id, slot #> 即 <u>Record id</u> 由存储这个记录的槽所在的页**ID**和槽的编号组成。

Query Optimization and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

- 深刻理解文件、页和记录之间的关系
 - □ 在逻辑上,文件由记录组成;
 - □ 在物理上,文件由页组成,而每个页包含一组记录。
- 结论: 从随机访问的角度来说,读写一条记录需要一次磁盘 IO。
- 一次磁盘(块) IO= seek time (寻道时间)
 - + rotational delay (旋转延迟)
 - + transfer time (块传输)

Goal for Today

- Big picture of overheads for data access 数据访问开销
 - We'll simplify things to get focused
 - Still, a bit of discipline:
 - Clearly identify assumptions
 - Then estimate cost(估算开销) in a principled way
- Foundation for query optimization(查询优化)
 - Can't choose the fastest scheme without an estimate of speed!

Alternative File Organizations(文件组织)

- Many alternatives exist, each good for some situations, and not so good in others:
 - □ <u>Heap files(维文件):</u> Suitable when typical access is a file scan retrieving all records.
 - Sorted Files(排序文件): Best for retrieval in search key order, or only a "range" of records is needed.
 - □ Clustered Files (with Indexes) (聚簇文件): Coming soon...

Cost Model(代价模型) for Analysis

- B: The number of data blocks
- R: Number of records per block
- D: (Average) time to read or write a disk block
 - □ 一次磁盘(块)IO的开销(代价)
- Average-case analyses for uniform random workloads
- We will ignore:
 - Sequential vs. Random I/O
 - Pre-fetching
 - Any in-memory costs

More Assumptions

- Single record insert and delete.
- Equality selection(等值选择)
 - exactly one match
- For Heap Files:
 - Insert always appends to end of file.
- For Sorted Files:
 - Files compacted after deletions.
 - Selections on search key.

B: The number of data pages

	Heap File	Sorted File	Clustered File
Scan all records			
Equality Search			
Range Search			
Insert			
Delete			7

B: The number of data pages

	Heap File	Sorted File	Clustered File
Scan all records	BD	BD	
Equality Search			
Range Search			
Insert			
Delete			Q

B: The number of data pages

	Heap File	Sorted File	Clustered File
Scan all records	BD	BD	
Equality Search	0.5 BD	(log ₂ B) * D	
Range Search			
Insert			
Delete			

B: The number of data pages

	Heap File	Sorted File	Clustered File
Scan all records	BD	BD	
Equality Search	0.5 BD	(log ₂ B) * D	
Range Search (范围检索)	BD	[(log ₂ B) + #match pg]*D	
Insert			
Delete			10

B: The number of data pages

	Heap File	Sorted File	Clustered File
Scan all records	BD	BD	
Equality Search	0.5 BD	$(\log_2 B) * D$	
Range Search	BD	[(log ₂ B) + #match pg]*D	
Insert	2D • 最后一块: • 读1次, 写1次	((log ₂ B)+B)D • 查找 • 插入新记录 • 后移后续所有记录: 对于后半部分(0.5 B)的每一块,读1次,写1次	
Delete			11

B: The number of data pages

	Heap File	Sorted File	Clustered File
Scan all records	BD	BD	
Equality Search	0.5 BD	(log ₂ B) * D	
Range Search	BD	[(log ₂ B) + #match pg]*D	
Insert	2D	$((\log_2 B) + B)D$	
Delete	0.5BD + D • 查找 • 对找到的那块, 写1次	((log ₂ B)+B)D • 查找 • 删除记录 • 前移后续所有记录: 对于后 半部分 (0.5 B) 的每一块, 读1次, 写1次	12

Indexes - 索引

- 用途: Allow record retrieval by value in one or more fields
 - Find all students in the "CS" department
 - Find all students with a gpa > 3
- Index: disk-based data structure for fast lookup by value
 - □ Search key(搜索键): any subset of columns in the relation.
 - Search key need not be a key of the relation
 - Can have multiple items matching a lookup
 - □ 索引是为关系文件建立的索引文件
 - □ 索引文件由两部份组成
 - 1. 数据项部分
 - □ Data Entry(数据项) <⇒ data record (数据记录)
 - 2. 引导部份
 - □ 树索引技术
 - 」 Hash索引

Indexes - 索引(Contd.)

索引是文件

Index contains a collection of data entries (数据项)

Data Entry(数据项) ← data record (数据记录)

- Items associated with each search key value k -- k*
- Data entries come in various forms, as we'll see

1st Question to Ask About Indexes

- What kinds of selections (lookups) do they support?
 - Selection: <key> <op> <constant>
 - Equality selections (op is =)?
 - Range selections (op is one of <, >, <=, >=, BETWEEN)?

Index Breakdown

- What selections does the index support
- Representation of data entries in index
 - □ i.e., what kind of info is the index actually storing?
 - 3 alternatives here
- Clustered vs. Unclustered Indexes
- Single Key vs. Composite Indexes
- Tree-based, hash-based, other

Alternatives for Data Entry k* in Index

Data entries

- Three alternatives:
 - 1. Actual data record (with key value k) -- 数据记录
 - 2. <k, rid>, rid is record id of matching data record
 - 3. <k, rid-list>, rid-list is list of rids of matching data records
- Choice is orthogonal to the indexing technique.
 数据项形式的选择与采用的索引技术无关
 - B+ trees, hash-based structures, ...
- Can have multiple (different) indexes per file.
 - E.g. file sorted by age, with
 - a hash index on salary,
 - and a B+tree index on name.

Alternatives for Data Entries (Contd.)

- Alternative 1: Data Entry(数据项) ⇔ data record (数据记录)
 Actual data record (with key value *k*)
 - Index as a file organization for records (这种索引也是一种记录文件组织方式)

- A long side Heap files or sorted files
 Hash B+树
- At most one Alternative 1 index per relation
- No "pointer lookups" to get data records

Alternatives for Data Entries (Contd.)

Data Entry(数据项)⟨⇒⇒ data record (数据记录)

- <k, list of rids of matching data records>
 - Alternative 3 more compact than Alternative 2, but variable sized data entries
- Must use Alternatives 2 or 3 to support >1 index per relation.

Index Classification —索引分类

- Clustered(聚簇索引、主索引) vs. Unclustered (非聚簇索引、辅助索引):
 - Cost of retrieving data records through index varies greatly based on whether index is clustered or not!
- Clustered index 聚簇索引(或主索引):
 - order of data records the same as, or `close to', order of index data entries

Alternative 1 implies clustered, but not vice-versa.

Clustered vs. Unclustered Index

- Alternative 2 data entries, data records in a Heap file.
 - To build clustered index, first sort the Heap file
 - with some free space on each block for future inserts
 - □ Overflow blocks(溢出块) may be needed for inserts.

Thus, order of data records is `close to', but not identical to, the sort order.

Unclustered vs. Clustered Indexes

- Clustered Pros –优点
 - Efficient for range searches
 - Possible locality benefits
 - Disk scheduling, prefetching, etc.

- Clustered Cons-缺点
 - More expensive to maintain
 - on the fly or "sloppily" via reorganizations
 - Heap file usually only packed to 2/3 to accommodate inserts

B: The number of data pagesR: Number of records per pageD: (Average) time to read or write disk page

	Heap File	Sorted File	Clustered File Alternative 1
Scan all records	BD	BD	1.5 BD clustered index direct data e
Equality Search	0.5 B D	(log ₂ B) * D	(log _F 1.5B) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	[(log _F 1.5B) + #match pg]*D
Insert	2 D	((log ₂ B)+B)D	$((\log_{F} 1.5B)+1) * D$
Delete	0.5BD + D	$((\log_2 B) + B)D$ (because R, W 0.5)	$((\log_{F} 1.5B)+1) * D$

Composite Search Keys(复合搜索键)

- Search on a combination of fields.
 - Equality query: Every field value is equal to a constant value. E.g. wrt <age,sal> index:
 - age=20 and sal =75
 - Range query: Some field value is not a constant. E.g.:
 - age > 20; or age=20 and sal > 10
- Data entries in index can be sorted by search key to support range queries.
 - □ Lexicographic order(字典次序)
 - Like the dictionary, but on fields, not letters!

Examples of composite key indexes using lexicographic order.

sorted by <sal,age>

sorted by <sal>

Summary

- Many alternative file organizations exist, each appropriate in some situation.
- If selection queries are frequent, sorting the file or building an index is important.
 - Hash-based indexes only good for equality search.
 - Sorted files and tree-based indexes best for range search; also good for equality search. (Files rarely kept sorted in practice; B+ tree index is better.)

Index is a collection of data entries plus a way to quickly find entries with given key values.

Summary (Contd.)

- Data entries in index can be one of 3 alternatives: (1) actual data records, (2) <key, rid> pairs, or (3) <key, rid-list> pairs.
 - □ Choice orthogonal to *indexing structure* (i.e., tree, hash, etc.).
- Usually have several indexes on a given file of data records, each with a different search key.
- Indexes can be classified as clustered vs. unclustered
 - Differences have important consequences for utility/performance.
- 要求: 深刻理解
 - □ Cost of Operations 表格
 - 区分索引中的 Data Entry(数据项) 与记录文件中的 data record (数据记录)
 - □ Data Entry(数据项)的3种形式