

Presentación del equipo

Tomás Gaviria

David Ruiz

Simón Marín

Mauricio Toro

Proceso de entrenamiento

Imágenes de ganado enfermo

Imágenes del ganado sano

Proceso de validación

Diseño del algoritmo de compression con perdidas

En el algoritmo de escalamiento utilizamos la idea del vecino cercano, este agrupa los valores cercanos y los convierte en uno solo

Complejidad del algoritmo de compression con perdida

	La complejidad del tiempo	Complejidad de la memoria
Algoritmo de compresión	O (n*m)	O(n*m)
Algoritmo de decompresión	O(n*m)	O(n*m)

Complejidad temporal de los algoritmos de compresión y descompresión de imágenes. N y M son las columnas y filas ingresadas

Diseño del algoritmo de compresión sin perdida

Se crean arboles los cuales se basan en la frecuencia de aparición de los datos y luego con base a estos arboles se crea un código binario

Complejidad del algoritmo de compression sin perdida

	La complejidad del tiempo	Complejidad de la memoria
Algoritmo de compresión	m*n* Log(n*m)	O(K)
Algoritmo de decompresión	m*n* Log(n*m)	O(K)

Complejidad temporal de los algoritmos de compresión y descompresión de imágenes. N y M son las columnas y filas ingresadas. K es el numero de pixeles unicos

Consumo de tiempo y memoria

Consumo de Tiempo en la Compresión Con Respecto al Tamaño del Archivo

Consumo de Memoria en la Compresión y Descompresión con Respecto al Tamaño del Archivo en el Algoritmo Huffman

Tasa de compresión promedio

	Tasa de compresión
Ganado sano	2.49 : 1
El ganado enfermo	2.51 : 1

Promedio redondeado de la tasa de compresión de todas las imágenes de ganado sano y ganado enfermo con el algoritmo huffman

