O' ANUSANDRAN LES	ITER, SIKSHA 'O' ANUSANDHAN (Deemed to be University)		ASSIGNMENT	
Branch	Computer Science and Engineering, Computer Science and Information Technology	B.Tech		
Course Name	Semiconductor Materials And Devices Semester		VIII	
Course Code	EET4609	Year/Period	2025/Even	
ASSIGNMENT- 01	Submit All Assignments	Maximum Marks	10	GP-6
Learning Level	L1: Remembering	L3: Application	L5: Evaluation	
(LL)	L2: Understanding	L4 : Analysis	L6: Creation	
Q. No.	Questions		COs	LL
1	Derive the relationship between Resistivity a	nd Conductivity.	CO3	L4
2	Define Node, Bonding and Anti-bonding Orb	oital.	CO1	L2
3	State Pauli's Exclusion Principle.		CO1	L3
4	Differentiate between Metal, Semiconductor the help of the energy band diagram.	and Insulator with	CO5	L5
5	How would you define Fermi energy?	CO3, CO5	L5	
6	Classify the semiconductors with proper example.	CO5	L6	
7	Write down the difference between I Semiconductor and Indirect band gap Semiconductor	CO4	L6	
8	Discuss the properties of Semiconductor.	CO2	L3	
9	Write the equation for Barrier potential an width.	CO6	L5	
10	State 'Mass Action Law'.	CO2	L4	
11	Define 'Effective Mass'.	CO3	L4	
12	Illustrate the mechanism of Drift, Recombination of electron-hole pairs with pr	CO1	L2	
13	How would you explain the position of Fern Intrinsic and Extrinsic Semiconductor (for type) with sketch?	CO1	L3	
14	Define Diffusion with Einstein's Relationship	CO5	L5	
15	Find the concentration of donor atoms to intrinsic Ge sample to produce an n-conductivity 480 9S/m. The electron mobili 0.38m ² /V.s.	CO3, CO5	L5	
16	The intrinsic carrier density is $1.5 \times 10^{16} \text{m}^{-3}$ electron and hole are 0.13 and 0.05 m ² V ⁻ conductivity and intrinsic resistivity.	CO5	L6	
17	The band gap of a sample of GaAsP is 1.98 wavelength of the electromagnetic radiation upon direct recombination of electrons a sample. What is the color of the emitted radia	CO4	L6	
18	The reverse saturation current at 300K of diode is 5µA. Find the voltage to be applied to obtain a forward current of 50mA	CO2	L3	
19	How Ohmic Junction and Schottky Junction	CO6	L5	
20	Define Ohmic contact with appropriate ene of a metal and n-type ohmic contact.	CO2	L4	

21	Write a short note on Schottky diode.	CO2	L4
22	Explain 'Depletion Region' with proper diagram.	CO3	L4
23	Explain the mechanism of Forward and Reverse-biased p-n junction with proper circuit representation.	CO1	L2
24	Explain the Current-Voltage characteristics of a p-n junction with proper graphical representation and equation.	CO1	L3
25	A Si pn junction has 10^{16} cm ⁻³ acceptors on the p-side and $5x10^{16}$ cm ⁻³ donors on the n-side. What is the built-in potential and total depletion width of the junction? Also, what are the depletion widths on the p and n sides? Take dielectric constant for Si to be 11.2.	CO5	L5
26	Explain the factors on which the conductivity of a semiconductor depends.		L4
27	What is cutin voltage and Breakdown Voltage of the diode?	CO3 L4	
28	Define the DOS and its significance.	CO1	L2
29	Explain the temperature effect on Intrinsic carrier concentration	CO1	L3
30	Differentiate n type and p type doping in extrinsic semiconductors	CO5	L5

Assignment -01	Topic: Electronic Materials, Semiconductors: Introduction,	Date of	Date of
	Electron Statistics in a Solid, Intrinsic and Extrinsic	Assignment-	submission:
	Semiconductors, Metal-Semiconductor Junctions, pn	01:	10.04.25
	Junctions	02.04.25	

Note:

- 1. The Assignments in total carry weightage of 20 marks out of 100
- 2. Course outcome CO1 to CO4 was covered.

Course Outcomes	CO1	Have a thorough understanding of semiconductor material properties to underlying physics		
	CO2	The ability to understand, analyse charge carrier dynamics and will be able understand the fundamentals of Semiconductors		
	CO3	To understand the metal-semiconductor junction to charge carrier action		
	CO4	Analyse and classify the characteristics of various electronic devices (Dioc BJT, JEFT, MOSFET)		
	CO5	Illustrate the device manufacturing process including wafer growth and IC fabrication		
	CO6	Understanding the various steps behind fabrication of devices and explain the challenges		