Homework 4

Joe Baker, Brett Schreiber, Brian Knotten

January 22, 2018

5

Definition 1:

A language L is recursively enumerable \leftrightarrow there is a Turing machine M_1 such that if $x \in L$ then M_1 accepts x and if $x \notin L$ then M_1 loops forever on x.

Definition 2:

A language L is recursively enumerable \leftrightarrow there a Turing machine M_2 , with a read/write tape that is initially empty and a write-only output tape, such that only elements of L are written to the output tape, and every element of L is eventually written to the output tape.

Claim:

Definition 1 is logically equivalent to definition 2.

Proof:

We will prove that assuming we have the TM M_1 from definition 1, that we can construct TM M_2 of definition 2. Next we will show the converse, assuming we have TM M_2 from definition 2, that we can construct TM M_1 . Finally, we will have M_1 exists $\leftrightarrow L$ recursively enumerable $\leftrightarrow M_2$ exists.

First, assume that M_1 exists. Then construct M_2 such that M_2 has an input tape, an initially empty read/write tape, and a write-only output tape. Let M_2 operate in the following way:

- 1. M_2 writes a counter (0 if starting, 1 + previous value otherwise)
- 2. M_2 reads the counter value and appends a combination of symbols using the counter value as an encoding of the symbols
- 3. M_2 calls M_1 with the combination of symbols as input
- 4. M_2 writes the combination of symbols to the output tape if M_1 accepts
- 5. M_2 repeats steps 1...4

 M_2 will construct every valid input from its alphabet in a countable manner. Each input will be checked with M_1 and written to the output tape iff the input is in L. Thus, M_1 exists $\to M_2$ exists.

Now, assume that M_2 exists. Then construct M_1 as a modified copy of M_2 with an addition read-only input tape which contains input x. Also, add the following behavior to M_1 :

- 1. M_1 reads input x
- 2. M_1 calls the steps of M_2 until M_2 writes to output
- 3. After M_2 writes to output, M_1 accepts if the most recent output matches x
- 4. Otherwise, M_1 goes back to step 1

If $x \in L$ M_1 will detect x in the output tape while running M_2 and accept, otherwise M_1 will never stop reading the output tape of M_2 and loop forever. Thus, M_2 exists $\to M_1$ exists.

Finally, M_1 exists $\leftrightarrow L$ recursively enumerable $\leftrightarrow M_2$ exists.

6

Define the proof rule as:

 $\forall x \ P(x)$ one can deduce the countably infite number of statements $P(0), P(1), \dots$

Let A be a finite set of axioms, S be a statement, and define the language

 $L = \{S \mid S \text{ statement } S \text{ is provable from the finite set of } A \text{ axioms } \}$

Claim:

L is recursively enumerable.

Proof:

We will show that all possible proofs can be mapped to a tree that can be traversed by a Turing machine M such that M takes as input a statement S, accepts if $x \in L$, and loops forever if $x \notin L$. Thus we will construct M in a way that shows L is recursively enumerable.

Consider a tree where each node is a proof using the proof rule. The value of the root node is the axioms of A and its children are the various applications of the proof rule on the axioms. Each internal node has a proof and infinite children derived from applying the proof rule on its proof. Since the proof rule yields infinite statements, this tree has infinite breadth and depth.

Each node in the tree is mapped onto a two-dimensional Cartesian plane. The root is given the coordinates (0,0). Map the nodes of level l onto the plane such that children from each parent in l-1 are enumerable. For example, if the parent level l-1 had parents $\{a,b,c...\}$ and $children(a)=\{a_1,a_2,a_3...\}$, $children(b)=\{b_1,b_2,b_3...\}$, $children(c)=\{c_1,c_2,c_3...\}$, then the children would be mapped in level l similar to the mapping of $\mathbb{N}toQ$: $\{a_1,b_1,a_2,c_1,b_2,a_3,d_1,c_2...\}$ with coordinates (l,0) through (l,3).

Construct a Turing machine M that takes statement S as input and traverses the aforementioned tree to find a proof of S. M will traverse the tree by iterating over each level starting at 0 and moving up and over to the right diagonally. For example, the first few iterations will be (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), Then, M will accept the proof at coordinate (x,y) iff it can prove S, meaning $S \in L$.

Clearly if S is not provable by the proofs in the tree, M will iterate forever trying to find it. Now consider S is provable by a proof in the tree. This proof will be in a node which has a path from the root so it will be mapped to some coordinate (x, y). By our construction, M will at some point iterate over that pair and accept. Thus M accepts iff $S \in L$. Finally, L is recursively enumerable.