Development of New Photocatalytic Water Splitting into H_2 and O_2 using Two Different Semiconductor Photocatalysts and a Shuttle Redox Mediator IO_3^-/I^-

Ryu Abe,* Kazuhiro Sayama, and Hideki Sugihara

National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Received: May 30, 2005

A new type of photocatalytic reaction that splits water into H_2 and O_2 was designed using a two-step photoexcitation system composed of an iodate/iodide (IO_3^-/I^-) shuttle redox mediator and two different photocatalysts, one for H_2 evolution and the other for O_2 evolution. Photocatalytic oxidation of water to O_2 and reduction of IO_3^- to I^- selectively proceeded with good efficiencies over TiO_2 -rutile and $Pt-WO_3$ photocatalysts under UV and visible light irradiations, respectively. The O_2 evolution selectively proceeded even in the presence of a considerable amount of I^- in the solutions, although the oxidation of water is thermodynamically less favorable than oxidation of I^- . Both the adsorption property of IO_3^- anions and the oxidation property of the photocatalysts are doubtless responsible for the selective oxidation of water. On the other hand, photocatalytic reduction of water to H_2 and oxidation of I^- to IO_3^- proceeded over $Pt-TiO_2$ -anatase and $Pt-SrTiO_3$:Cr/Ta (codoped with Cr and Ta) photocatalysts under UV and visible light, respectively. The combination of two different photocatalysts results in a stoichiometric evolution of H_2 and O_2 via the redox cycle of IO_3^- and I^- . The photocatalytic water splitting under visible light irradiation ($\lambda > 420$ nm) was demonstrated by using the $Pt-SrTiO_3$:Cr/Ta, $Pt-WO_3$, and IO_3^-/I^- shuttle redox mediator.

Introduction

Photocatalytic splitting of water into H_2 and O_2 by semiconductors has received much attention because of the potential production of clean fuel H_2 from water utilizing solar energy. ^{1–10} The development of a photocatalyst system that can efficiently function in visible light ($\lambda > 400$ nm), which occupies almost half the solar spectrum, is indispensable for practical utilization of solar light.

A two-step water splitting system utilizing a reversible redox couple (A/D) shown in Figure 1a, mimicking a system of the Z-scheme mechanism of photosynthesis, is possibly the most promising way of achieving photocatalytic water splitting under visible light due to the reduction of energy required for both processes. 11-20 Over the H₂ evolution photocatalyst, water is reduced to H₂ by photoexcited electrons, and the electron donor (D) is then oxidized to an electron acceptor (A) by holes. On the O₂ evolution photocatalyst, the photoexcited electrons reduce the electron acceptor (A) back to the electron donor (D), while holes oxidize water to O2. However, the demonstration of the simultaneous evolution of H2 and O2 is extremely difficult in the two-step water splitting system because backward reactions easily proceed over each photocatalyst, as shown in Figure $2.^{12-14,16,17}$ Over the H_2 evolution photocatalyst, the desirable forward reactions, the reduction of H⁺ to H₂, and the oxidation of D to A (shown in Figure 2 as a solid line), proceed only in an initial period where the solution contains mainly D. The H₂ evolution terminates when the concentration of A in the solution reaches a certain level. The reduction of the A to D (shown in Figure 2 as broken lines), a thermodynamically advantageous

backward reaction, proceeds preferentially instead of the reduction of $H^+.$ On the contrary, the rate of O_2 evolution over the O_2 evolution photocatalyst decreases with the increasing concentration of D in the solution because of the backward oxidation of D to A. To realize the two-step water splitting system, it is therefore necessary to construct the photocatalytic system with a high selectivity for the forward reactions. With this strategy, we had first demonstrated the two-step water splitting into H_2 and O_2 by combining two different photocatalysts and an iodate/iodide (IO $_3^-/I^-$) shuttle redox mediator, 18,19 and Kudo et al. have recently reported the two-step water splitting using iron redox mediator $(Fe^{3+}/Fe^{2+}).^{20}$

In the present study, the detailed mechanism of the two-step water splitting into H_2 and O_2 using two different photocatalysts and an iodate/iodide (IO_3^-/I^-) shuttle redox mediator is investigated. First, we report the selective and efficient O_2 evolution over TiO_2 -rutile and Pt-WO₃ photocatalysts using IO_3^- as an electron acceptor, the key process of achieving a two-step water splitting system using a shuttle redox mediator. The reaction selectivity is discussed from the standpoints of the adsorption properties of the IO_3^-/I^- redox and the oxidation properties of photocatalysts. We finally combine two visible-light driven photocatalysts, Pt-SrTiO₃:Cr/Ta for H_2 evolution and Pt-WO₃ for O_2 evolution, using the IO_3^-/I^- shuttle redox mediator and demonstrate the photocatalytic water splitting into H_2 and O_2 under visible light irradiation.

Experimental Procedures

Materials. Commercially available TiO_2 powders such as TiO_2 -A1 (anatase, 320 m²/g, Ishihara Co. Ltd. ST-01), TiO_2 -R1 (rutile, 40 m²/g, Ishihara Co. Ltd. TTO-55N), and TiO_2 -R2 (rutile, 2 m²/g, Toho titanium Co. Ltd. HT0210) were used.

^{*} Corresponding author. Phone: 81-298-61-9405; fax: 81-298-61-4750; e-mail: r-abe@aist.go.jp.

Figure 1. Conceptual scheme of water splitting systems: (a) two-step system and (b) one-step system.

Figure 2. Forward and backward reactions that take place over semiconductor photocatalysts in the two-step water-splitting system.

The TiO₂-anatase photocatalyst (48 m²/g), hereafter denoted TiO₂-A2, was prepared by hydrolysis of titanium tetra-propoxide in a distilled water solution followed by air-drying and calcination at 500 °C for 1 h. A WO₃ powder (99.99%) was provided by Koujyundo Chemical. Other chemicals used in these experiments were purchased from commercial sources as guaranteed reagents and used without any further purification. Monoclinic BiVO₄ and a SrTiO₃ codoped with chromium/tantalum (denoted hereafter as SrTiO₃:Cr/Ta) were prepared according to the reports by Kudo et al.^{21–23} Pt-loaded TiO₂ and SrTiO₃:Cr/Ta photocatalysts were prepared by a photochemical deposition method. The powder photocatalyst was stirred in a 1% methanol aqueous solution containing H₂PtCl₆ and irradiated by a highpressure Hg lamp for 12 h. Photoreduction of H₂PtCl₆ took place, and highly dispersed Pt metal particles were deposited on the surface of the photocatalyst. After filtrating and washing by distilled water, the powder was evacuated at 200 °C for 2 h to remove the methanol adsorbed on the surface of the catalyst. The preparation of Pt-loaded WO₃ and BiVO₄ was carried out by an impregnation method from H₂PtCl₆ aqueous solutions followed by calcination in air at 500 °C for 1 h.

Photocatalytic Reaction. The photocatalytic reactions were performed using a closed gas-circulating system with two different types of reactors. The photocatalytic reaction under UV irradiation was carried out using an inner irradiation type reactor, in which a light source (400 W high-pressure Hg lamp,

Riko Kagaku) was covered with a Pyrex glass-made cooling water jacket (cutoff $\lambda < 300$ nm) to keep the reactor temperature constant at 20 °C. The reaction under visible light irradiation was performed using a Pyrex glass-made outer irradiation type reactor. The irradiation to the aqueous suspension of catalyst was carried out from outside the reactor using a 300 W xenon lamp through a water filter and a UV cutoff filter. The photocatalyst powder was suspended in distilled water using a magnetic stirrer, and the required amount of solute, such as NaI, was added to the suspension. The pH of the solution was adjusted to a fixed value between 3 and 13 using H₂SO₄ or NaOH. Finally, the suspension was thoroughly degassed after which argon gas (35 Torr) was introduced into the system and exposed to irradiation. Evolved H₂ and O₂ gases were analyzed by on-line gas chromatography (TCD, molecular sieve 5A, Ar carrier). The amount of I_3^- and IO_3^- anions produced after reactions were determined by UV-vis absorption spectroscopy and ion chromatography (Shimadzu SPD-6AV, UV at 240 nm, column IC-A1) using a Na₂HPO₄ aqueous solution as the mobile phase.

The quantum yield was determined using a Pyrex outer irradiation type reactor under the irradiation of monochromatic light obtained through two band-pass filters. The light intensity was measured with a thermopile power meter.

Photoelectrochemical Measurements. To study photoelectrochemical properties of TiO₂ photocatalysts, porous TiO₂ film

Figure 3. (a) Photocatalytic O_2 evolution over TiO_2 -R2 photocatalyst using iodate (IO_3^-) as the electron acceptor under UV light irradiation. The reaction was carried out in aqueous solution (400 mL, pH = 11 adjusted by NaOH) containing NaIO₃ (2.5 mM) and NaI (0, 30, and 50 mM). The broken line shows the upper limit of O_2 evolution expected from the amount of IO_3^- added to the solutions. (b) Energy diagram of O_2 evolution over a semiconductor photocatalyst in the presence of IO_3^- and I^- anions.

electrodes were prepared by spreading a viscous slurry of TiO₂ paste on conducting glass supports (F-doped SnO₂). They were then dried and calcined at 500 °C for 1 h. A platinum wire and an Ag/AgCl electrode were used as a counter and a reference electrode, respectively. The Pt counter electrode was separated from the TiO₂ electrode by an ion-exchange membrane (Nafion). The potential of the TiO₂ electrodes was controlled by a potentiostat. The Na₂SO₄ aqueous solution (10 mM, pH 11 adjusted by NaOH) was used as an electrolyte solution for electrochemical measurements. The solution was purged with nitrogen gas for more than 30 min before the measurements.

Results and Discussion

Selective Water Oxidation Over TiO_2 -Rutile and WO_3 Photocatalysts in an Aqueous Solution Containing Both IO_3^- and I^- Anions. We investigated photocatalytic H_2 or O_2 evolutions using various semiconductor photocatalysts suspended in an aqueous solution containing an electron donor (D) or an electron acceptor (A). In most cases, the gas evolution readily terminated when the concentration of the product in the solution reached a certain level because of the backward reactions, shown in Figure 2. However, we found that efficient and selective O_2 evolution proceeded over TiO_2 -rutile photocatalysts in the aqueous solution (pH 7 to \sim 13) containing an IO_3^- anion as an electron acceptor (A) with the following reactions:

$$h\nu \rightarrow e^- + h^+$$
 (photoexcitation of photocatalyst) (1)

$$IO_3^- + 3H_2O + 6e^- \rightarrow$$

 $I^- + 6OH^-$ (reduction of IO_3^- to I^- by electrons) (2)

$$2H_2O + 4h^+ \rightarrow$$

 $O_2 + 4H^+$ (oxidation of water to O_2 by holes) (3)

Figure 3a shows time courses of O_2 evolution over the TiO_2 -R2 photocatalyst in the aqueous solution (400 mL, pH 11) containing 1 mmol of $NaIO_3$ under UV light irradiation. When the reaction was initiated in the absence of I^- anions, O_2 evolution proceeded with a fairly high efficiency (rate of O_2

evolution: ca. 1 mmol/h, Q.E. at 350 nm: ca. 10%). The O₂ evolution continued until the total amount of O2 gas reached 1.5 mmol, agreeing with the stoichiometric amount expected from the amount of IO_3^- anions (1 mmol) in the solution. No IO₃⁻ anion was detected in the solution after the photoreaction. These results indicate that the photocatalytic oxidation of water over TiO2-R2 proceeded until almost all IO3- anions in the solution were reduced into I- anions. Interestingly, the O2 evolution over TiO2-R2 continued until the total amount of O2 gas reached 1.5 mmol even when considerable amounts of Ianions were present in the solution, as shown in Figure 3a, while the rate of O2 evolution was lowered to some extent by the increase in the I⁻ concentration. This behavior of the TiO₂rutile photocatalyst is very unique from the thermodynamic standpoint of the reactions, as shown in Figure 3b. The oxidation of water, which is a thermodynamically less favorable reaction as compared with the oxidation of I-, preferentially proceeded over TiO₂-R2 even in the presence of I⁻. On the other hand, the preferential oxidation of water was not observed over TiO₂anatase photocatalysts. Figure 4 shows the rates of O₂ evolution over TiO₂ photocatalysts in the solution containing both IO₃⁻ and I- anions. The rates of O2 evolution over TiO2-anatase photocatalysts markedly decreased with the increasing concentration of I⁻. The O₂ evolution was negligible when the concentration of I⁻ was above 40 mM, in the case of TiO₂-A1, or 10 mM, in the case of TiO₂-A2, while steady O₂ evolution was observed over TiO2-rutile photocatalysts even with the Iconcentration above 50 mM. It is thus presumed that over TiO₂anatase photocatalysts, the oxidation of I-, which is a thermodynamically favorable reaction, proceeds preferentially in the aqueous solution containing a considerable amount of I-.

$$I^- + 6OH^- + 6h^+ \rightarrow IO_3^- + 3H_2O$$
 (backward oxidation of I^- to IO_3^-) (4)

Consequently, the undesirable recycled reaction $(IO_3^- \leftrightarrow I^-)$, a combination of reactions 2 and 4), which consumes electrons (e^-) and holes (h^+) , occurred over TiO_2 -anatase photocatalysts instead of O_2 evolution. It should be noted that TiO_2 -A2 (surface area: 48 m²/g) and TiO_2 -R1 (surface area: 40 m²/g), which have similar surface areas, show quite different reactivity.

Figure 4. Rates of O₂ evolution over TiO₂ photocatalysts in the solutions (pH = 11) containing both 2.5 mM NaIO₃ and different concentrations of NaI between 0 and 100 mM under UV light irradiation ($\lambda > 300$ nm, 400 W Hg lamp).

TABLE 1: Rates of O₂ Evolution over WO₃ and BiVO₄ Photocatalysts Suspended in NaIO₃ (4 mM) Aqueous Solution under Visible Light Irradiation^a

catalyst	rates of O2 evolution (µmol)	
WO_3	tr. ^b	
$Pt(0.5 \text{ wt \%})-WO_3$	75	
$RuO_2(0.5 \text{ wt } \%)-WO_3$	22	
$IrO_2(0.5 \text{ wt } \%)-WO_3$	15	
$BiVO_4$	2.1	
Pt(0.5 wt %)-BiVO ₄	22	
RuO ₂ (0.5 wt %)-BiVO ₄	10	
IrO ₂ -(0.5 wt %)-BiVO ₄	20	
WO ₃ (Ag ⁺ acceptor)	126^{c}	
BiVO ₄ (Ag ⁺ acceptor)	240	

^a Catalyst: 0.25 g of water: 250 mL. ^b NaIO₃: 1 mmol. ^c AgNO₃: 2.5 mmol of Pyrex reactor of outer irradiation type. Xe lamp (300 W) with cut-off filter (>420 nm).

Figure 5. Rates of O₂ evolution over Pt(0.5 wt %)-WO₃ and Pt(0.5 wt %)-BiVO₄ photocatalysts in the solutions (without pH adjustment) containing both 2.5 mM NaIO₃ and different concentrations of NaI between 0 and 100 mM under UV light irradiation.

Therefore, the factor governing the reactivity undoubtedly rests on the difference in the crystal form instead of the surface area.

We found that the selective oxidation of water also proceeds over the WO₃ photocatalyst. As shown in Table 1, the WO₃ and BiVO₄ photocatalysts showed activity for water oxidation to O2 in the presence of IO3- as an electron acceptor under visible light irradiation ($\lambda > 420$ nm), although the loading of a cocatalyst, such as Pt, was indispensable for efficient O2 evolution. When the reaction was carried out in the presence of I⁻ anions, the Pt-WO₃ and Pt-BiVO₄ photocatalysts showed quite different reactivity to each other. The reaction was carried out in aqueous solution with a neutral pH around 7 because WO₃ is unstable in alkaline conditions. As shown in Figure 5, the O2 evolution over Pt-BiVO4 under UV light irradiation was

significantly suppressed by the addition of I⁻ anions into the initial NaIO₃ aqueous solution, similar to the case of TiO₂anatase photocatalysts. This suggests that the backward reaction, oxidation of I⁻ to IO₃⁻ (or I₃⁻), preferentially proceeds over the Pt-BiVO₄ photocatalyst instead of the oxidation of water. On the other hand, Pt-WO₃ can produce O₂ even in the presence of a considerable amount of I in the solution, as in the case of TiO₂-rutile photocatalysts. A similar trend was observed under visible light irradiation.

We also investigated photocatalytic O₂ evolution using I₃⁻ as an electron donor instead of the IO_3^- anion.

$$I_3^- + 2e^- \rightarrow 3I^-$$
 (reduction of I_3^- to I^- by electrons) (5)

However, efficient O₂ evolution was not observed over any photocatalysts examined, despite the similar standard potential of the I_3^-/I^- redox couple (+0.54 V vs NHE at pH 7) to that of IO_3^-/I^- (+0.67 V vs NHE at pH 7).

From these results, we can conclude that the TiO₂-rutile and Pt-WO₃ photocatalysts have a unique property of oxidation, which enables preferential oxidation of water to produce O2 in the presence of both IO₃⁻ and I⁻, regardless of the thermodynamic disadvantage of water oxidation when compared to the oxidation of I⁻. This is a desired property in a photocatalyst for an O₂ evolution system and is useful to achieve two-step water splitting as shown in Figure 1.

Unique Adsorption Property of IO₃⁻ Anion onto Photocatalysts. To clarify the reason for efficient and selective water oxidation over the TiO₂-rutile photocatalysts in the presence of both IO_3^- and I^- , we measured the adsorptivity of IO_3^- and $I^$ anions on TiO₂-R2. The amounts of IO₃⁻ and I⁻ anions adsorbed on TiO2-R2 were determined by analyzing the concentration of the anions in the solutions before and after the addition of measured amounts of TiO₂ powder to the solutions while in darkness. As shown in Figure 6a, the IO₃⁻ anions are easily adsorbed on the surface of TiO2-R2, while I- anions show a much lower adsorptivity. The adsorption isotherm of the IO₃⁻ anions indicates that the adsorption of IO₃⁻ onto TiO₂-R2 almost saturates with the concentration above 0.3 mM. Figure 6b shows the initial rates of O₂ evolution over the TiO₂-R2 photocatalyst in the presence of various concentrations of IO_3^- anions. The rate of O₂ evolution is almost independent of the concentration of IO_3^- anions. An efficient O_2 evolution proceeds even in the solution containing only 0.1 mM IO₃⁻.

The preferential adsorption of IO₃⁻ was also observed on the Pt-WO₃ photocatalyst. The initial rate of O₂ evolution under visible light irradiation ($\lambda > 420 \text{ nm}$) was almost independent of the IO_3^- concentration as shown in Figure 7. It should be

Figure 6. (a) Adsorption isotherms of IO_3^- and I^- anions on TiO_2 -R2 powder at 25 °C. (b) Initial rates of O_2 evolution over TiO_2 -R2 in the solutions (pH = 11) containing both 50 mM NaI and different concentrations of NaIO₃ under UV light irradiation.

Figure 7. Photocatalytic O_2 evolution over Pt(0.5 wt %)-WO₃ using iodate (IO_3^-) as the electron acceptor at different concentrations under visible light irradiation ($\lambda \geq 420 \text{ nm}$). The reaction was carried out in aqueous solution (250 mL) containing NaI (10 mM) and NaIO₃ (0.4, 0.2, and 0.08 mM). The broken lines show the upper limits of O_2 evolution expected from the amount of IO_3^- added to the solutions.

noted that the O_2 evolution over the Pt-WO₃ photocatalyst continued until almost all IO_3^- anions in the solution were reduced to I^- , as in the case of TiO₂-rutile. For example, the amount of O_2 reached the expected value (35 μ mol) even when the reaction was carried out in the presence of quite small amounts of IO_3^- (20 μ mol).

We can therefore conclude that the IO_3^- anions in the solution, even in low concentrations, easily adsorbed onto the surface of TiO_2 -rutile and Pt-WO $_3$ photocatalysts and efficiently reacted with the photogenerated electrons there. Consequently, efficient O_2 evolution proceeded over the TiO_2 -rutile and Pt-WO $_3$ photocatalysts. On the other hand, we could not observe such a preferential adsorption property of I_3^- anions onto the photocatalysts. The poor adsorption property of I_3^- anions is certainly due to the quite low efficiency of O_2 evolution over the photocatalysts using I_3^- anions as the electron acceptors. The adsorption property of IO_3^- anions is most certainly one

Figure 8. I–V characteristics of porous TiO_2 electrodes (ca. 4 cm²) in an aqueous solution containing different concentrations of NaI from 0 to 100 mM (pH = 11 adjusted by NaOH).

Figure 9. Percentage of oxidation of I^- to the total oxidation current on TiO_2 electrodes in a solution containing different concentrations of NaI (pH = 11, adjusted with NaOH).

of the reasons for efficient and selective water oxidation over the TiO_2 -rutile and $Pt\text{-}WO_3$ photocatalysts in the presence of both IO_3^- and I^- . However, the preferential adsorption of IO_3^- was observed not only on TiO_2 -rutile but also on TiO_2 -anatase. Therefore, another factor will contribute to the efficient and selective O_2 evolution over TiO_2 -rutile.

Different Reactivity in Oxidation between TiO2-Anatase and Rutile. To clarify the different reactivity in oxidation over anatase and rutile, photoelectrochemical measurements were conducted using two porous TiO₂ photoelectrodes made of TiO₂-A2 and TiO₂-R1 powders with similar surface areas in the aqueous solution of NaI (pH = 11, by NaOH). The photocurrent over the anatase TiO₂-A2 electrode was markedly increased by the addition of I⁻ to the solution, as shown in Figure 8a. Almost 100% of the photogenerated holes over the anatase electrode was consumed for the production of IO_3^- in the presence of 10 mM I⁻, as shown in Figure 9. This reaction was carried out under UV irradiation and with an anodic bias (0 V vs Ag/AgCl). These results suggest that the oxidation of I⁻ mainly proceeded over the TiO₂-A2 photocatalyst in the aqueous solution containing more than 10 mM I⁻. This agrees with the result that O₂ evolution was negligible over the TiO₂-A2 photocatalyst in the presence of more than 10 mM I-, as shown in Figure 4a. Clearly, the I⁻ anions act as a strong hole scavenger on TiO₂anatase.

On the other hand, the increase of a photocurrent over the TiO₂-R1 electrode was negligibly small in the presence of 10 mM I⁻, as shown in Figure 8b. Approximately 80% of the photogenerated holes was consumed to produce O₂, while the remainder were consumed to produce IO₃⁻. Although both the photocurrent and the percentage of I⁻ oxidation gradually increased with the rising I⁻ concentration, the oxidation of water proceeded over the rutile electrode even in the presence of 50

Figure 10. Time course of photocatalytic evolution of H_2 using a Pt-(0.5 wt %)-TiO₂-A1 (Anatase, Ishihara ST-01) photocatalyst suspended in 0.1 M NaI aqueous solution under UV light irradiation ($\lambda > 300$ nm, 400 W Hg lamp).

mM I^- . This also agreed with the results on the O_2 evolution over TiO_2 -R1, as shown in Figure 4b.

These results clearly indicate that anatase and rutile have a different reactivity in the oxidation of I⁻ and water. Extensive studies had been made on the competitive oxidation of I- and water over TiO_2 -rutile photoanode, $^{\hat{2}4-26}$ but there are no reports regarding a TiO₂-anatase photoanode that we know of. Ohno and co-workers have also reported the preferential oxidation of water over TiO2-rutile powder photocatalysts in the presence of an Fe³⁺/Fe²⁺ redox couple.²⁷ Therefore, rutile itself surely possesses an active site for the effective oxidation of water, as suggested by some researchers. For example, Nakato and coworkers have suggested that the (100) face of TiO2-rutile possesses favorable properties for water oxidation.²⁸ Ohno and co-workers have studied the roles of the crystal faces of anatase and rutile particles in photocatalytic reactions. They suggest that the crystal faces help in the separation of electrons and holes. This effect is stronger for the rutile particles than for the anatase particles.²⁹ Further studies to explain the different reactivity of anatase and rutile are now under investigation.

From these results, we can conclude that the reasons for the efficient and selective water oxidation over the TiO_2 -rutile photocatalyst using IO_3^- as an electron acceptor are (i) preferential adsorption properties of IO_3^- anions that enable efficient consumption of photoexcited electrons generated over TiO_2 -rutile and (2) the oxidation property of TiO_2 -rutile itself that enables the thermodynamically less favorable water oxidation in the presence of an I^- electron donor.

Photocatalytic H₂ Evolution over Pt-Loaded TiO₂-Anatase Photocatalyst using I⁻ as an Electron Donor under UV Light **Irradiation.** The results in Figures 4 and 9 indicate that I⁻ anions act as an effective electron donor over TiO2-anatase. Thus, we examined a photocatalytic reduction of water to H₂ over TiO₂-anatase photocatalysts using the I⁻ anion as an electron donor and found that the Pt-loaded TiO2-anatase photocatalysts showed activity for H₂ evolution under UV light irradiation. Figure 10 presents the time courses of the H₂ evolution over Pt(0.5 wt %)-TiO₂-A1 suspended in a NaI (0.1 M) aqueous solution with different pH values. In an acidic aqueous solution of pH \leq 5, the I_3^- anion was mainly produced as the oxidation product with H₂ evolution, as reported by Ohno and co-workers.³⁰ We found that the IO₃⁻ anion was produced over TiO2-anatase photocatalyst as the oxidation product of Iin a basic solution of pH > 9. In solutions of pH 5 to \sim 9, both I₃⁻ and IO₃⁻ were produced. These results indicate that the following reactions had taken place over a TiO2-anatase photocatalyst under UV light irradiation

$$2H^+ + 2e^- \rightarrow H_2$$
 (reduction of water to H_2 by electrons) (6)

$$3I^- + 2h^+ \rightarrow I_3^-$$
 (oxidation of I^- to I_3^- by holes) (7)

$$I^- + 6OH^- + 6h^+ \rightarrow$$

 $IO_3^- + 3H_2O$ (oxidation of I^- to IO_3^- by holes) (8)

The IO_3^- anions in basic solution were possibly produced via the following disproportional reaction from I_3^- :

$$3I_3^- + 6OH^- \rightarrow 8I^- + IO_3^- + 3H_2O$$
 (9)

The rates of H_2 evolution gradually decreased with the irradiation time, as shown in Figure 10. The H_2 evolution terminated when the concentration of the products $(I_3^- \text{ or } IO_3^-)$ in the solution reached a certain level. These results indicate that the backward reactions, the reduction of I_3^- (reaction 5) or IO_3^- (reaction 2), proceeded over the reduction site of the photocatalyst. The facile termination of H_2 evolution in the basic solution clearly proves that the IO_3^- anions react more efficiently than I_3^- , as discussed in a previous section.

Simultaneous Evolution of H₂ and O₂ using a Mixture of Pt-TiO₂-Anatase and TiO₂-Rutile under UV Light Irradiation. We attempted water splitting using a combination of Pt-TiO₂-anatase for H₂ evolution and TiO₂-rutile for O₂ evolution, respectively. As shown in Table 2, the combinations of Pt-TiO₂anatase and bare TiO2-rutile photocatalysts exhibited simultaneous evolution of H2 and O2 with a stoichiometric ratio from basic NaI aqueous solutions (0.1 M, pH = 11). No simultaneous evolutions of H₂ and O₂ were observed when each photocatalyst was used separately or in combination, such as Pt-TiO₂-anatase and bare TiO₂-anatase. Figure 11 shows the time course of gas evolution using the mixture of Pt(0.5 wt %)-TiO₂-A1 and TiO₂-R2, suspended in a basic aqueous solution of NaI (0.1 M, pH = 11), in which simultaneous evolution of H_2 and O_2 with a stoichiometric ratio was observed. The rate of gas evolution gradually decreased with gas accumulation in the closed system because the backward reaction from H2 and O2 into H2O took place on Pt metal particles. 1,31,32 However, the initial rate of gas evolution was recovered by the evacuation of evolved gases. When a 200 h long-term photoreaction was carried out in an aqueous solution of NaI (40 mM, pH = 11) with periodical evacuation of the gas phase, the total amount of H₂ and O₂ reached ca. 15.6 and 7.8 mmol, respectively. The amount of H₂ gas evolved exceeded the stoichiometric amount of TiO₂ powder (6.3 mmol) and I⁻ (14 mmol) in the solution. No structural change of the TiO₂ photocatalysts was observed after the reaction. These results clearly indicate that both H2 and O2 evolutions proceeded photocatalytically. The stoichiometric evolution of H₂ and O₂ was also observed in the case of aqueous LiI and KI solutions but not in the case of NaBr, NaCl, or NaOH solutions. From these results, we can conclude that the overall water splitting proceeds by the redox cycle between IO3reduction and I⁻ as follows: (i) water reduction to H₂ and I⁻ oxidation to IO_3^- over Pt-TiO₂-anatase and (ii) IO_3^- reduction to I⁻ and water oxidation to O₂ over TiO₂-rutile. It should be noted that the rate of H₂ evolution over the combination of Pt-TiO₂-anatase and bare TiO₂-rutile was higher than over Pt-TiO₂antase alone, as shown in Table 2. The prompt reduction of IO₃[−] to I[−] over TiO₂-rutile, indicated by the result in Figure 6b, kept the concentration of IO_3^- in the solution very low during photoreaction. Consequently, the IO₃⁻ reduction to I⁻ over Pt-TiO2-anatase, the undesirable backward reaction to

TABLE 2: Photocatalytic Activities of Various Photocatalysts Suspended in NaI Aqueous Solution under UV Light Irradiationa

	_	rates of gas evolution ^b (µmol h ⁻¹)	
photocatalyst	H_2	O_2	
Pt(0.5 wt %)-TiO ₂ -A1	20^{c}	tr.d	
Pt(0.5 wt %)-TiO ₂ -A2	6e	tr.	
TiO ₂ -A1	0	0	
TiO ₂ -A2	0	0	
Pt(0.5 wt %)-TiO ₂ -R1	tr.	0	
Pt(0.5 wt %)-TiO ₂ -R2	tr.	0	
TiO ₂ -R1	0	0	
TiO ₂ -R2	0	0	
$Pt(0.5 \text{ wt }\%)-TiO_2-A1 + TiO_2-R1$	125	62	
$Pt(0.5 \text{ wt \%})-TiO_2-A1 + TiO_2-R2$	220	110	
$Pt(0.5 \text{ wt \%})-TiO_2-A2 + TiO_2-R1$	8	4	
$Pt(0.5 \text{ wt \%})-TiO_2-A2 + TiO_2-R2$	18	9	
$Pt(0.5 \text{ wt \%})-TiO_2-R1 + TiO_2-A1$	tr.	tr.	
$Pt(0.5 \text{ wt \%})-TiO_2-A2 + TiO_2-A2$	tr.	tr.	
$Pt(0.5 \text{ wt \%})-TiO_2-A1 + Pt(0.5 \text{ wt \%})-WO_3$	95	47^e	
$Pt(0.5 \text{ wt \%})-TiO_2-A1 + Pt(0.5 \text{ wt \%})-BiVO_4$	tr.	0	

 a Catalyst: 0.5 g (in the case of mixture 0.25 + 0.25 g); water: 400 mL; NaI: 40 mmol; Pyrex reactor of inner irradiation type; high-pressure Hg lamp (400 W). b Rate in steady state. c Initial rate. d pH 11 adjusted by NaOH. e Without pH adjustment.

Figure 11. Time course of photocatalytic evolution of H_2 and O_2 using a mixture of Pt-TiO₂-A1 and TiO₂-R2 photocatalysts suspended in 0.1 M NaI aqueous solution (pH 11, adjusted by NaOH) under UV irradiation.

decrease the rate of H₂ evolution, was minimized when the combination of Pt-TiO₂-anatase and bare TiO₂-rutile was used.

The quantum efficiency of overall water splitting was ca. 4% at 350 nm using the combination of Pt(0.5 wt %)-TiO₂-A1 and TiO₂-R2 suspended in a basic aqueous solution of NaI (0.1 M, pH = 11). When Pt(0.5 wt %)-TiO₂-A1 was independently used in a basic aqueous solution of NaI (0.1 M, pH = 11), the quantum efficiency for the initial rate of H₂ evolution was determined to be ca. 1% at 350 nm. On the other hand, ca. 10% of high quantum efficiency was observed in O₂ evolution over TiO₂-R2 in a 2.5 mM NaIO₃ aqueous solution (pH = 11) and was ca. 4% in the aqueous mixture of 2.5 mM NaIO₃ and 0.1 M NaI (pH = 11). From these results, the H₂ and IO₃⁻ production over Pt-TiO₂-anatase is the rate-determining step in this water splitting system. Therefore, the total water splitting reaction will proceed more efficiently by improvement of the H₂ evolution system.

The simultaneous evolution of H_2 and O_2 was also observed by using a Pt-WO₃ photocatalyst for O_2 evolution instead of TiO₂-rutile, as shown in Table 2. The reaction was carried out in an aqueous NaI solution with neutral pH condition because WO_3 is unstable in basic conditions. Steady gas evolution was not observed when using Pt-BiVO₄. These results clearly indicate that the selective O_2 evolution ability from the aqueous solution containing both IO_3^- and I^- is indispensable for the photocatalyst used as an O_2 evolution system in the present water splitting reaction. The Pt-WO₃ photocatalyst as well as TiO₂-rutile can be used as a photocatalyst for an O_2 evolution system.

Effects of pH and NaI Concentration on Water Splitting using a Combination of Pt-TiO₂-Anatase and TiO₂-Rutile. Figure 12a shows the rates of gas evolution over the mixture of Pt(0.5 wt %)-TiO₂-A1 and bare TiO₂-R2 suspended in 0.1 M NaI aqueous solutions with different pH values. The rates significantly increased with the increase of the pH value from 3 to 9 and decreased again above pH 11. The O2 evolution was negligible at pH 3 because the main oxidative product over Pt-TiO₂-A1 was I₃⁻, which cannot work as an efficient electron acceptor for O₂ evolution over TiO₂-R2, as described previously. At pH 5 to \sim 7, O₂ evolution was observed after some induction period. The amount of O2 evolved was less than the stoichiometric ratio to the H₂ evolved because of the accumulation of I₃⁻ in the solution. The accumulation of I₃⁻ also causes a light loss due to the strong absorption of the I₃⁻ anion around 350 nm, resulting in a lower efficiency of the photocatalytic reaction. In basic conditions of pH \geq 9, the simultaneous evolution of H_2 and O_2 , with a stoichiometric ratio (2:1), was observed during the initial period. The gas evolution rates were much higher than those in acidic conditions. These results indicate that a basic condition is more favorable for efficient water splitting because the redox cycle of IO_3^-/I^- has mainly taken place.

The rate of water splitting over the mixture of Pt(0.5 wt %)-TiO₂-A1 and bare TiO₂-R2 was examined in aqueous solutions (pH = 11, by NaOH) with different concentrations of NaI (0 to ~ 100 mM). No O₂ evolved in the absence of I⁻ and only small amounts of H₂ evolved. As shown in Figure 12b, the rate of water splitting greatly increased with the increase in NaI concentration, up to 40 mM, and gradually decreased above 40 mM. The presence of I⁻ anions, even at such low concentrations as 10 mM, results in the water splitting in a stoichiometric ratio $(H_2/O_2 = 2)$. As for the H_2 evolution over Pt(0.5 wt %)- TiO_2 -A1 alone, the rate of H₂ evolution increased with the increase in the NaI concentration up to 40 mM. As suggested previously, the H₂ evolution over Pt-TiO₂-anatase is the rate-determining step in overall water splitting. Therefore, the rate of overall water splitting appreciably increased with the increase of the H₂ evolution rate over Pt-TiO₂-A1. However, the higher concentration of I⁻ results in the decrease of the O₂ evolution rate over TiO₂-R2 because of the competitive oxidation of I⁻ with the oxidation of water, as indicated by the results in Figures 4b and 9. Thus, the efficiency of overall water splitting gradually dropped with the increase in the NaI concentration above 40 mM. In the two-step water splitting system using a redox couple, the concentration of the redox is a significant factor determining the efficiency of the overall reaction.

Simultaneous Evolution of H_2 and O_2 under Visible Light Irradiation using a Combination of Two Visible-Light Driven Photocatalysts. Finally, we investigated visible light-driven photocatalysts with H_2 production ability in the presence of an I^- electron donor to achieve water splitting under visible light with the O_2 evolution photocatalyst Pt-WO₃. We found that Pt-loaded SrTiO₃ codoped with Cr and Ta (denoted as SrTiO₃:Cr/Ta) showed an activity for both H_2 and IO_3^- production from aqueous NaI solution under visible light irradiation ($\lambda > 420$ nm), as shown in Figure 13. This photocatalyst was originally developed by Kudo and co-workers

Figure 12. (a) Dependence of rates of gas evolution over a mixture of Pt-TiO₂-A1 and TiO₂-R2 photocatalysts upon the pH value of NaI solution (NaI: 0.1 M). (b) Dependence of rates of gas evolution over a mixture of Pt-TiO₂-A1 and TiO₂-R2 photocatalysts upon the concentration of NaI aqueous solution (pH 11).

Figure 13. Time course of photocatalytic evolution of H2 using Pt-(0.3 wt %)-SrTiO₃ (Cr, Ta 4 mol % doped) photocatalyst suspended in 30 mM NaI aqueous solution (pH 6.5 without adjustment) under visible light irradiation ($\lambda > 420$ nm).

Figure 14. Diffuse reflection spectra of (a) SrTiO₃, (b) WO₃, and (c) SrTiO₃ codoped with Cr(4%)/Ta(4%).

for the photocatalytic H2 production from water under visible light irradiation using methanol as a sacrificial electron donor.^{22,23} The UV-vis spectra of WO₃, SrTiO₃, and SrTiO₃:Cr/ Ta are presented in Figure 14. SrTiO3:Cr/Ta showed broad adsorption in the visible region up to ca. 600 nm and actually exhibited photocatalytic activity under visible light even through a 500 nm cutoff filter. As shown in Figure 15, the combinations of the Pt(0.3 wt %)- SrTiO₃:Cr/Ta and Pt(0.5 wt %)-WO₃ photocatalysts exhibited simultaneous H2 and O2 evolution (initial rate H₂: 16 µmol/h and O₂: 8 µmol/h) from NaI aqueous solutions (5 mM, pH = 7) under the visible light irradiation (λ > 420 nm). No gas evolution was observed in darkness (fifth

Figure 15. Time course of photocatalytic evolution of H₂ and O₂ using a mixture of Pt(0.3 wt %)-SrTiO₃ (Cr, Ta 4 mol % doped) and Pt(0.5 wt %)-WO₃ photocatalysts suspended in 5 mM NaI aqueous solution (pH 6.5 without adjustment) under visible light irradiation ($\lambda > 420$

run). The reaction proceeded without notable deactivation even in long-term reactions, as shown in Figure 15. The total amount of H₂ gas evolved reached ca. 1.9 mmol, exceeding the stoichiometric amount of the photocatalysts (SrTiO₃:Cr/Ta: 1.1 mmol and WO₃: 1.4 mmol) and I⁻ (1.25 mmol) in the solution. The reaction mechanism is certainly the same as that of the Pt-TiO₂-anatase/TiO₂-rutile system. That is, the H₂ and IO₃⁻ production proceeded over the Pt-SrTiO3:Cr/Ta photocatalyst. The IO_3^- reduction and water oxidation to O_2 take place over Pt-WO₃ under visible light irradiation. The quantum efficiency for overall water splitting was determined to be ca. 1% at 420 nm with the same conditions as in Figure 15.

Figure 16 shows the dependence of gas evolution rates over the combination of Pt-SrTiO₃:Cr/Ta and Pt-WO₃ photocatalysts upon the dopants on SrTiO₃:Cr/Ta. The equal molar amounts of Ta to Cr were codoped to SrTiO₃. The rates of gas evolution increased with the increasing amount of Cr doped up to 4 mol %. Further amounts of doping decreased the efficiency. Kudo and co-workers reported a similar trend for H₂ evolution over a SrTiO3:Cr/Ta photocatalyst using methanol as a sacrificial electron donor.²³ The increase in the doping amount of Cr enhances visible light absorption. However, it works as a recombination center between photogenerated electrons and holes. Consequently, volcano-type dependence was obtained.

Figure 16. Dependence of rates of gas evolution over a mixture of Pt-SrTiO₃ (Cr, Ta doped) and Pt-WO₃ photocatalysts upon the amount of chromium.

Figure 17. Dependence of rates of gas evolution over a mixture of Pt- $SrTiO_3$ (Cr, $Ta\ 1$ mol % doped) and Pt- WO_3 photocatalysts upon the concentration of NaI aqueous solution (without pH adjustment).

Effects of NaI Concentration on Water Splitting using a Combination of Pt-SrTiO₃:Cr/Ta and Pt-WO₃ under Visible **Light Irradiation.** The rate of water splitting over the mixture of Pt(0.5 wt %)-SrTiO₃:Cr(1%)/Ta(1%) and Pt(0.5 wt %)-WO₃ was examined in aqueous solutions (pH \sim 7, without adjustment) with different concentrations of NaI (0 to ~50 mM) under visible light irradiation ($\lambda > 420$ nm). Gas evolutions were not observed in the absence of I-. The rates of gas evolution increased with increasing I- concentration up to 10 mM and gradually decreased with further concentration, as shown in Figure 17. The decrease is due to the competitive oxidation of I- over the Pt-WO₃ photocatalysts, which decrease the rate of O₂ evolution, as indicated by the result in Figure 5. The decrease of gas evolution rates with high I- concentration was also observed in the combination of Pt-TiO₂-anatase and TiO₂-rutile, shown in Figure 12b. However, in the present system, the ratio of H_2 and O_2 gases evolved was not stoichiometric $(O_2/H_2 =$ 0.5) with the I^- concentration above 10 mM, as shown in Figure 17. The O₂/H₂ value decreased with the increasing I⁻ concentration above 10 mM, and accumulations of I₃⁻ were confirmed after the reactions. It should be noted that the reaction was carried out in a neutral condition around pH 7 because WO₃ is unstable in basic solutions. In a neutral condition, the oxidation products of I⁻ over Pt-WO₃ are both I₃⁻ and IO₃⁻. The produced I₃⁻ anions accumulate in the solution because I₃⁻ cannot work as an efficient electron acceptor. As mentioned previously, a basic pH condition is favorable for the Pt-TiO₂-anatase/TiO₂rutile system. The rates of gas evolution were drastically improved with the change of pH from 7 to 9. Therefore, the

development of a visible-light driven photocatalyst with both good stability in basic solution and good selectively for water oxidation is strongly desired to improve the efficiency of overall water splitting under visible light irradiation.

Conclusion

A novel photocatalytic system that splits water into H_2 and O_2 was realized using a two-step photoexcitation system composed of an IO_3^-/I^- redox mediator and two different semiconductor photocatalysts. This reaction mechanism is new and significantly different from the conventional water splitting system. We demonstrated photocatalytic water splitting into H_2 and O_2 under visible light irradiation ($\lambda > 420$ nm) for the first time by using the IO_3^-/I^- redox couple, Pt-SrTiO₃:Cr/Ta for H_2 evolution and Pt-WO₃ for O_2 evolution. Our main conclusions are summarized as follows.

(i) Selective O₂ evolutions proceeded over TiO₂-rutile and Pt-WO₃ photocatalysts using the IO₃⁻ anion as an electron acceptor under UV light and visible light irradiation, respectively. The characteristic property of this reaction is that the water oxidation to O2, a thermodynamically less favorable reaction as compared to the oxidation of I-, proceeds efficiently even in the presence of a considerable amount of I⁻ anions. The selective O_2 evolution is the key property for the construction of our two-step water splitting system. (ii) The IO₃⁻ anions easily adsorbed onto the surface of the photocatalysts and efficiently reacted with photoexcited electrons there. The TiO₂rutile photocatalysts possess unique reactivity in oxidation, enabling preferential water oxidation in the presence of I⁻. (iii) Pt-TiO2-anatase and Pt-SrTiO3:Cr/Ta photocatalysts exhibited good activity for H₂ production from water in the presence of an I⁻ electron donor under UV light and visible light irradiation, respectively. The oxidation products of I- were mainly I₃- in acidic solutions and IO_3^- in basic solutions. (iv) Efficient evolutions of H2 and O2 were observed over the mixture of Pt-TiO₂-anatase and bare TiO₂-rutile suspended in NaI aqueous solutions under UV light irradiation. The combination of Pt-SrTiO₃:Cr/Ta and Pt-WO₃ photocatalysts demonstrated the photocatalytic water spitting into H₂ and O₂ under visible light irradiation. (v) The efficiency of the overall water splitting reaction was significantly affected by the pH value of the NaI aqueous solution. The basic condition is more favorable for efficient water splitting because the redox cycle of IO₃⁻/I⁻ has mainly taken place. On the contrary, the efficiency in acidic condition was lower than that in the basic condition because of the accumulation of I₃⁻ anion that could not work as an efficient electron acceptor.

Acknowledgment. This work was supported by the Fund for Young Researchers, Ministry of Education, Culture, Sports, Science, and Technology.

References and Notes

- (1) Sato, S.; White, J. M. Chem. Phys. Lett. 1980, 72, 83-86.
- (2) Lehn, J.-M.; Sauvage, J.-P.; Ziessel, R. Nouv. J. Chim. 1980, 4, 623-627.
- (3) Domen, K.; Kudo, A.; Onishi, T.; Kosugi, N.; Kuroda, H. J. Phys. Chem. 1986, 90, 292–295.
- (4) Kudo, A.; Sayama, K.; Tanaka, A.; Asakura, K.; Domen, K.; Muruya, K.; Onishi, T. *J. Catal.* **1989**, *120*, 337–352.
- (5) Inoue, Y.; Ogura, S.; Kohno, M.; Sato, K. Appl. Surf. Sci. 1997, 121/122, 521-524.
- (6) Inoue, Y.; Kohno, M.; Kaneko, T.; Ogura, S.; Sato, K. J. Chem. Soc., Faraday Trans. 1998, 94, 89-94.
- (7) Takata, T.; Shinohara, K.; Tanaka, A.; Hara, M., Kondo, J. N.; Domen, K. J. Photochem. Photobiol., A 1997, 106, 45–49.

- (8) Kim, H. G.; Hwang, D. W.; Kim, J.; Kim. Y. G.; Lee, J. S. Chem. Commun. 1999, 1077–1078.
- (9) Kudo, A.; Kato, H.; Nakagawa, S. J. Phys. Chem. B 2000, 104, 571–575.
- (10) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082–3089.
- (11) Bard, A. J. J. Photochem. 1979, 10, 59-75.
- (12) Tennakone, K.; Pushpa, S. J. Chem. Soc., Chem. Commun. 1985, 1435–1437.
- (13) Tennakone, K.; Wickramanayake, S. J. Chem. Soc., Faraday Trans. 2, 1986, 82, 1475–1479.
- (14) Tennakone, K.; Tantrigoda, R.; Abeysinghe, S.; Punchiheya, S., Fernando, C. A. N. *J. Photochem. Photobiol.*, A **1990**, *52*, 43–46.
- Fernando, C. A. N. *J. Photochem. Photobiol.*, A **1990**, 32, 43–46. (15) Sayama, K.; Yoshida, R.; Kusama, H.; Okabe, K.; Abe, Y.; Arakawa, H. *Chem. Phys. Lett.* **1997**, 277, 387–390.
- (16) Fujihara, K.; Ohno, T.; Matsumura, M. J. Chem. Soc., Faraday Trans. 1998, 94, 3705–3709.
- (17) Ohno, T.; Fujihara, K.; Sarukawa, K.; Tanigawa, F.; Matsumura, M. Z. Phys. Chem. **1999**, 213, 165–174.
- (18) Abe, R.; Sayama, K.; Domen, K.; Arakawa, H. Chem. Phys. Lett. **2001**, *344*, 339–344.
- (19) Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. *Chem. Commun.* **2001**, 2416–2417.
 - (20) Kudo, A.; Kato, H.; Tsuji, I. Chem. Lett. 2004, 33, 1534-1535.

- (21) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459–11467.
- (22) Ishii, T.; Nakagawa, S.; Kato, H.; Kudo, A. Abstract of the Japan Chemical Society Spring Meeting; 2000; Vol. 78, p 32.
- (23) Ishii, T.; Kato, H.; Kudo, A. J. Photochem. Photobiol., A 2004, 163, 181–186.
- (24) Fujishima, A.; Inoue, T.; Honda, K. J. Am. Chem. Soc. 1979, 101, 5582-5588.
- (25) Kobayashi, T.; Yoneyama, H.; Tamura, H. *J. Electroanal. Chem.* **1981**, *122*, 133–145.
- (26) Gutierrez, C.; Salvador, P. J. Electrochem. Soc. 1986, 133, 924–929.
- (27) Ohno, T.; Haga, D.; Fujihara, K.; Kaizaki, K.; Matsumura, M. J. Phys. Chem. B **1997**, 101, 6415–6419.
- (28) Tsujiko, A.; Kisumi, T.; Magari, Y.; Murakoshi, K.; Nakato, Y. J. Phys. Chem. B **2000**, 104, 4873–4879.
- (29) Ohno, T.; Sarukawa, K.; Matsumura, M. New J. Chem. 2002, 26, 1167–1170.
- (30) Ohno, T.; Saito, S.; Fujihara, K.; Matsumura, M. Bull. Chem. Soc. Jpn. 1996, 69, 3059–3064.
- (31) Moon, S. C.; Mametsuka, H.; Tabata, S.; Suzuki, E. *Catal. Today* **2000**, *58*, 125–132.
- (32) Abe, R.; Sayama, K.; Arakawa, H. Chem. Phys. Lett. **2003**, 371, 360–364.