The theory of games Lecture 3

Jonathan Shapiro

School of Computer Science University of Manchester

Announcements

Reading for today: pp 30 — 39

Reading for week: pp 40 —44 (proofs optional). Start reading Section 2.5.

Reading notes:

- Between page 42 and 47, "equilibrium" means with pure strategies.
- ▶ In general, "Nash equilibrium" includes mixed strategies (as we will see).
- Throughout, equilibrium and Nash equilibrium are equivalent.

Next topic - How to find winning strategies

New concepts:

- 1. Best response;
- 2. Nash equilibrium.

Best response

- ► For player *i*,
- With all the opponent strategies fixed,
- ► The best response is a strategy which gives the highest payoff to Player i.

Best response

(Page 30 of the notes.)

- Let s_i be the strategy of player i, i = 1, ..., k.
- Definition: s_i* is a best response to the collection of opponent strategies if and only if
 - no other strategy which player i can play gives a higher payoff.

(There can be more than one best response strategy.)

Existence of best response strategies

Question: is it always possible to find a best response to a fixed set of opponent strategies?

Finite strategy space: Yes. Check all strategies. Play (one of) the best one(s).

Infinite strategy space: Perhaps not. Counter example on the next slide.

A game with no best response

A zero-sum game in Normal form (Simultaneous play).

- 1. Player 1 chooses a *positive* real number X_1 .
- 2. Player 2 chooses a *positive* real number X_2 .
- 3. If $X_2 > X_1$ Player 1 wins.
- 4. If $X_2 < X_1$ Player 2 wins.

Optimal strategies: Each player needs to play the smallest real number greater than zero.

No such number exists!

Nash Equilibrium

(page 31 of the notes)

Definition: A strategy profile $(s_1^*, s_2^*, \dots, s_k^*)$ for a game with k players, is a *Nash equilibrium* if each strategy is a best response to all of the others.

- It is not a strategy; it is a choice of strategy for all players in the game.
- If the players are playing the Nash, no player has any incentive to change its strategy unilaterally.

Relation to solving the game

For a two-player, zero-sum game with perfect information and no chance:

- Solving the game means finding the Nash equilibrium.
- Each is playing best response to the other.
- Which has the winning strategy. (Or do they both draw?)

Simple examples

```
(Just check all four strategy pairs)
             Column
Row
           Column
Row
             Column
```

Chicken

Two teenagers drive their cars straight at each other at high speed to prove they are not chicken.

- If one swerves and the other doesn't, the swerver is chicken and loses face.
- If both swerve, neither loses face.
- If neither swerve, the cars crash, and they both get smashed in the face.

		800		
		swerve	drive straight	
Alice	swerve	(0,0)	(-10, 10)	
AllCe	drive straight	(10, -10)	(-1000, -1000)	

Dah

Are there any Nash equilibria?

Two-player, zero-sum games — finding equilibria

In what follows, two-player, zero-sum games are considered. "The payoff" will mean *the payoff to Player 1*.

- Player 1 wants to maximize this;
- Player 2 wants to minimize this.

Two-player, zero-sum games — the mini-max approach

(Example 2.3; Section 2.3 of notes)

A worst-case analysis

Player 1 (the maximizing player): for each of his strategies identifies the opponent strategy which gives the lowest payoff. Plays the strategy which maximizes this.

Player 2 (the minimizing player): for each of her strategies identifies the opponent strategy which gives the highest payoff¹. Plays the strategy which minimizes this

If both find the same pair of strategies, this strategy pair is a Nash equilibrium.

¹to Player 1

In mathematics

- Definition: Let a_{ij} be payoff to player 1, when player 1 plays its *i*th strategy, and player 2 plays its *j*th strategy.
 - Player 1: \blacktriangleright For each strategy i, find $m_i^1 = \min_j a_{ij}$.
 - ▶ Play the strategy $i^* = \operatorname{argmax}_i m_i^1$
 - Player 2: \blacktriangleright For each strategy j, find $m_j^2 = \max_i a_{ij}$.
 - ▶ Play the strategy $j^* = \arg \min_j m_j^2$
 - Result: if $\max_i \min_j a_{ij} = a_{i^*j^*} = \min_j \max_i a_{ij}$, that point is a Nash equilibrium.

Side note on argmax

Argmax is the argument which maximizes.

So, if f(x) is a function on the unit interval, $x \in [0, 1]$,

- ▶ $\max_{x' \in [0,1]} f(x')$ is the maximum value which f(x) takes on the unit interval
- ightharpoonup arg $\max_{x' \in [0,1]} f(x')$ is the x that achieves that value.

So,

$$\begin{aligned} \text{If } x^* &= \arg\max_{x' \in [0,1]} f(x'), \\ \text{then } f(x^*) &= \max_{x' \in [0,1]} f(x'). \end{aligned}$$

Mini-max approach

Mini-max approach is a worst-case analysis.

- ► The goal is to *minimize* the harm your opponent does to you.
- (rather than maximizing your own benefit).

A zero-sum example

From the notes, Example 2.3 (page 33)

		Scott			
		1	2	3	4
	1	7	2	5	1
Amelia	2	2	2	3	4
Alliella	3	5	3	4	4
	4	3	2	1	6

Dominance

(From Section 2.6, p51)

- A strategy s_i dominates a strategy s'_i if the payoff of s against any opponent strategy is not less than that of s' against the same opponent strategy, for all opponent strategies.
- In math:
 - let s_i be a strategy for player i; s_{-i} be the strategies of all players except i.
 - strategy s_i dominates a strategy s'_i means

$$payoff(s_i, s_{-i}) \ge payoff(s'_i, s_{-i}),$$

for all possible opponent strategies, s_{-i} .

Strategies which are dominated can be removed.

Example of dominance in a zero-sum game

Player 1: strategy 3 dominates all others.

Player 2: strategy 4 dominates all others.

So, player 1 plays strategy 3, player 2 plays strategy 4.

Dominance can be used to eliminate some strategies

		Player 2			
		1	2	3	4
	1	2	-2	1	-1
Player 1	2	0	0	1	0
	3	1	2	1	0

Player 1: strategy 3 dominates strategy 2 (so remove strategy 2).

Player 2: strategy 4 dominates strategies 1 and 3 (so remove them).

After elimination of dominated strategies

```
Player 2
2 4
Player 1 1 -2 -1
3 2 0
Then
Player 2
4
Player 1 3 0
```

Solving yields:

Player 1: Strategy 3, Player 2: Strategy 4, forms a Nash equilibrium.

Next topic

What about games with no *apparent* mini-max solutions?

Row
$$\begin{pmatrix} 1 & (-1,1) & (1,-1) \\ 2 & (1,-1) & (-1,1) \end{pmatrix}$$

Does this have a mini-max solution? We will answer this

Note here $\min_{j} \max_{i} a_{ij} > \max_{i} \min_{j} a_{ij}$.

Mixed Strategies

A mixed strategy is a strategy for a player in which:

- plays probabilistic combination of pure strategies;
- receives a probabilistic combination of payoffs.

Normal Form:

- Assign probability q_i to the pure strategy i.
- ▶ Where $0 \le q_i \le 1$ and $\sum_i q_i = 1$.
- Choose strategy i with probability qi.
- ▶ Get the appropriate payoff with probability q_i .

Mixed strategies in extensive form

Extensive form:

At each node where the player has a decision, assign a probability function to each of the possible choices.

Mixed strategies in extensive form

Extensive form: Needed when there is hidden information!

Celebrated theorems

John von Neumann (1928): von Neumann showed that every zero-sum game with perfect information has solutions which minimize the maximum losses for the players, but mixed strategies may be required. von Neumann invented game theory as a mathematical discipline.

Nash (1950): Every game with a finite number of players in which each player has a finite number of pure strategies has at least one Nash equilibrium. Some will involve mixed strategies.

When mixed strategies are needed

Mixed strategies *may* be required when there is hidden information

- Extensive form games with hidden information (e.g. poker).
- Normal form games always have hidden information (the hidden strategy of the opponent(s).)

The prisoners dilemma

Alice and Bob commit a crime and are caught. They are taken to separate interrogation rooms, they can not communicate, and are told:

If one of you gives evidence: that person will go free; the other fully prosecuted.

If both give evidence: both will be prosecuted, with a bit of leniency.

If neither give evidence: both will be prosecuted on whatever evidence they have, for a lessor crime.

The prisoners dilemma

		Bob		
		Talk	Be silent	
Alice	Talk			
	Be silent	(-10,0)	(-2, -2)	

- What is the Nash Equilibrium?
- What is the "best solution" for the pair of players?

stay silent: Usually referred to as Cooperate

Talk: Usually referred to as *Defect*

Why do we cooperate? What does game theory have to say about it?

Conclusions

To find *pure-strategy* Nash equilibria in two-player, zero-sum games with no chance:

- 1. Exhaustive search over all strategy pairs
- Use the mini-max method
- Use dominance

To find *mixed-strategy* Nash equilibria in two-player, zero-sum games with no chance:

Come to the next lecture

New concepts

- Best response: The action(s) for a player which gives the highest payoff, against a set of fixed strategies for the other players.
- 2. A **Nash equilibrium** is a collection of strategies for all players such that each player is playing best response to all the others. Exists in general sum games.
- 3. **Mini-max approach:** For a zero-sum, two-player game in normal form, a strategy pair which is maximal in its columns and minimal in its rows is a Nash equilibrium.
- Dominance can be used to reduce the number of strategies.