EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2000224608

PUBLICATION DATE

11-08-00

APPLICATION DATE

02-02-99

APPLICATION NUMBER

11025523

APPLICANT: FUJI PHOTO FILM CO LTD:

INVENTOR:

ICHIKAWA CHIAKI;

INT.CL.

H04N 9/73 H04N 9/04

TITLE

AUTOMATIC WHITE BALANCE

CONTROL METHOD

ABSTRACT:

PROBLEM TO BE SOLVED: To perform white balance control suitable for a light source type by exactly discriminating that light source type.

SOLUTION: When a photographing EV value is acquired while pressing a shutter button half (step S10), on the basis of that photographing EV value, whether it is low luminance emission or not is discriminated (step S12). In this case, when the low luminance emission is discriminated, white balance control suitable for stroboscopic light is performed (step S14). When no low luminance emission is discriminated, on the other hand, color information for each area, for which a picture is divided into plural areas, is found and on the basis of color information for each area, the number of areas included in a shade detection frame (frame showing the range of color distribution corresponding to the shade) is found. Then, it is discriminated on the basis of the above mentioned acquired photographing EV value and the number of areas included in the shade detection area whether the light source type is the shade or daylight (step S20) and white balance control suitable for that discriminated light source type is performed (steps S22 and S24).

COPYRIGHT: (C)2000, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-224608 (P2000-224608A)

(43)公開日 平成12年8月11日(2000.8.11)

(51) Int.Cl.7

截別記号

FI

テーマコード(参考)

H04N 9/73

9/04

H 0 4 N 9/73

A 5C065

9/04

B 5C066

審査請求 未請求 請求項の数8 〇L (全 9 頁)

(21)出顧番号

特願平11-25523

(22) 川顧日.

平成11年2月2日(1999.2.2)

(71)出願人 000005201

富士写真フイルム株式会社

神奈川県南足柄市中沼210番地

(72)発明者 兵藤 学

埼玉県朝霞市泉水3丁目11番46号 富士写

真フイルム株式会社内

(72)発明者 小西 正弘

埼玉県朝霞市泉水3丁目11番46号 富士写

真フイルム株式会社内

(74)代理人 100083116

弁理士 松浦 憲三

最終頁に続く

(54) 【発明の名称】 オートホワイトバランス制御方法

(57)【要約】

【課題】光源種を的確に判別し、その判別した光源種に 適したホワイトバランス制御を行うことができるように する。

【解決手段】シャッタボタンの半押し時に撮影EV値を取得すると(ステップS10)、その撮影EV値に基づいて低輝度発光するか否かを判別する(ステップS12)。ここで、低輝度発光することが判別されると、ストボロ光に適したホワイトバランス制御を行う(ステップS14)。一方、低輝度発光しないと判別されると、画面を複数のエリアに分割した各エリアごとの色情報を求め、各エリアごとの色情報に基づいて日隆検出枠(日陰に対応する色分布の範囲を示す枠)に入るエリアの個数を求める。そして、前記取得した撮影EV値及び日陰検出枠に入るエリアの個数に基づいて光源種が日陰かデーライトかを判別し(ステップS20)、その判別した光源種に適したホワイトバランス制御を行う(ステップS22、ステップS24)。

【特許請求の範囲】

【請求項1】 被写体の輝度レベルを検出するステップ と、

被写体が撮像された画面を複数のエリアに分割し、各エ リアごとに色情報を取得するステップと、

少なくとも光源種に対応する色分布の範囲を示す検出枠を設定し、前記取得した各エリアごとの色情報に基づいて前記検出枠に入るエリアの個数を求めるステップと、前記検出した被写体の輝度レベル及び検出枠に入るエリアの個数に基づいて光源種を判別するステップと、

前記判別した光源種に適したホワイトバランス制御を行うステップと。

を含むオートホワイトバランス制御方法。

【請求項2】 前記色情報は、エリア内のR、G、B信号の比R/G、B/Gであり、前記検出枠は、R/Gの範囲とB/Gの範囲とによって画成される枠である請求項1のオートホワイトバランス制御方法。

【請求項3】 前記検出枠は、日陰の色分布の範囲を示す日陰検出枠を含み、該日陰検出枠内に入るエリアの個数は、そのエリアの輝度が所定の輝度以下のものである請求項1のオートホワイトバランス制御方法。

【請求項4】 前記検出枠は、青空の色分布の範囲を示す青空検出枠を含み、該青空検出枠内に入るエリアの個数は、そのエリアの輝度が所定の輝度以上のものである請求項3のオートホワイトバランス制御方法。

【請求項5】 前記光源種の判別は、日陰らしさの評価値を、次式、

日陰らしさの評価値 = F (屋外らしさ) * F (日陰ら しさ) * F (青空)

但し、F (屋外らしさ):輝度レベルを変数とする屋外 日陰らしさを表すメンバシップ関数の値

F(日陰らしさ): 所定の輝度以下のエリアであって、 日陰検出枠内に入るエリアの個数を変数とする日陰らし さを表すメンバシップ関数の値

F(青空): 所定の輝度以上のエリアであって、 青空検出枠内に入るエリアの個数を変数とする青空を表 すメンバシップ関数の値

に基づいて計算し、この評価値が所定値以上のときには 屋外日陰を光源として判別し、所定値以下のときにはデ ーライトを光源として判別することを特徴とする請求項 4のオートホワイトバランス制御方法。

【請求項6】 前記検出した被写体の輝度レベルに基づいてストロボ発光するか否かを判別し、ストロボ発光しないと判別されたときのみ請求項5のオートホワイトバランス制御方法を適用し、ストロボ発光すると判別されると、ストロボ光に適したホワイトバランス制御を行うことを特徴とするオートホワイトバランス制御方法。

【請求項7】 前記光源種は、日陰、蛍光灯、及び電球を含み、前記検出枠は、日陰検出枠、蛍光灯検出枠、電球検出枠、青空検出枠、及び肌色検出枠を含む請求項1

のオートホワイトバランス制御方法。

【請求項8】 前記光源種の判別は、日陰らしさの評価値、蛍光灯らしさの評価値、及び電球らしさの評価値を、次式、

日陰らしさの評価値 = F (屋外らしさ)*F (日陰ら しさ)*F (青空)

蛍光灯らしさの評価値 $-F_1$ (屋内らしさ) *F(蛍光灯らしさ)

電球らしさの評価値 == F2(屋内らしさ) * F (電球ら しさ) * F (肌)

但し、F (屋外らしさ):輝度レベルを変数とする屋外 日陰らしさを表すメンバシップ関数の値

 F_1 (屋内らしさ):輝度レベルを変数とする蛍光灯らしさを表すメンバシップ関数の値

F₂(屋内らしさ):輝度レベルを変数とする電球らしさを表すメンバシップ関数の値

F(日陰らしさ): 所定の輝度以下のエリアであって、 日陰検出枠内に入るエリアの個数を変数とする日陰らし さを表すメンバシップ関数の値

F (青空) : 所定の輝度以上のエリアであって、 青空検出枠内に入るエリアの個数を変数とする青空を表 すメンバシップ関数の値

F(蛍光灯らしさ):蛍光灯検出枠内に入るエリアの個数を変数とする蛍光灯らしさを表すメンバシップ関数の値

F(電球らしさ):電球検出枠内に入るエリアの個数を 変数とする電球らしさを表すメンバシップ関数の値

F(肌) : 肌色検出枠内に入るエリアの個数を変数とする肌色らしさを表すメンバシップ関数の値に基づいて計算し、これらの評価値のうちの最大値が所定値以上のときにはその最大値の光源種を光源として判別し、所定値以下のときにはデーライトを光源として判別することを特徴とする請求項7のオートホワイトバランス制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はオートホワイトバランス制御方法に係り、特に光源種に応じて適正なホワイトバランス制御を行うオートホワイトバランス制御方法に関する。

【0002】

【従来の技術】従来、赤(R)、緑(G)、青(B)の 色信号のうち、画面全体におけるR信号の平均値とB信号の平均値との差信号(R-B)を計算し、この差信号 (R-B)がOになるようにR信号及びB信号のゲイン を制御し、ホワイトバランスを制御するようにしたもの がある。このオートホワイトバランス制御方法の場合、 被写体の色温度分布が不均一であったり、単一色が多い 場合にはホワイトバランスを誤補正するという問題がある。 【0003】これに対し、被写体の輝度レベルに応じて R信号及びB信号のゲインの制御範囲を制限し、誤補正 の少ないホワイトバランス制御を行うようにしたものが ある(特開平5-64219号公報)。

[0004]

【発明が解決しようとする課題】しかしながら、前記差信号(R-B)をOにするようなホワイトバランス制御では、差信号(R-B)がOにならないシーンの場合には、輝度レベルに応じてR信号及びB信号のゲインの制御範囲を制限するようにしても、誤補正を少なくするにとどまり、そのシーンに適したホワイトバランス制御を行うことができない。

【0005】本発明はこのような事情に鑑みてなされたもので、光源種を的確に判別することができ、その判別した光源種に適したホワイトバランス制御を行うことができるオートホワイトバランス制御方法を提供することを目的とする。

[0006]

【課題を解決するための手段】前記目的を達成するために、本願請求項1に係るオートホワイトバランス制御方法は、被写体の輝度レベルを検出するステップと、被写体が撮像された画面を複数のエリアに分割し、各エリアごとに色情報を取得するステップと、少なくとも光源種に対応する色分布の範囲を示す検出枠を設定し、前記取得した各エリアごとの色情報に基づいて前記検出枠に入るエリアの個数を求めるステップと、前記検出した被写体の輝度レベル及び検出枠に入るエリアの個数に基づいて光源種を判別するステップと、前記判別した光源種に適したホワイトバランス制御を行うステップと、を含むことを特徴としている。

【0007】即ち、被写体の輝度レベルと、光源種に対 応する色分布の範囲を示す検出枠に入る画面分割された エリアの個数とに基づいて光源種を判別する。光源種が 判別されると、その光源種に適したホワイトバランス制 御を行う。光源種に適したホワイトバランス制御は、例 えばR、G、B信号のゲインを光源種に応じて予め設定 したゲインに設定することによって行うことができる。 【0008】前記色情報は、本願請求項2に示すように エリア内のR、G、B信号の比R/G、B/Gであり、 前記検出枠は、R/Gの範囲とB/Gの範囲とによって 画成される枠である。前記検出枠は、本額請求項3、4 に示すように日陰、青空の色分布の範囲を示す日陰検出 枠、青空検出枠を含み、日陰検出枠内に入るエリアの個 数は、そのエリアの輝度が所定の輝度以下のものであ り、青空検出枠内に入るエリアの個数は、そのエリアの 輝度が所定の輝度以上のものである。これは、高い色温 度シーンでも日陰で青いのか、空で青いのかを区別して

【0009】本願請求項与に示すように、前記光源種の 判別は、日陰らしさの評価値を、次式、 日陰らしさの評価値 = F (屋外らしさ) * F (日陰ら しさ) * F (青空)

但し、F (屋外らしさ): 輝度レベルを変数とする屋外 日陰らしさを表すメンバシップ関数の値

F(日陰らしさ):所定の輝度以下のエリアであって、 日陰検出枠内に入るエリアの個数を変数とする日陰らし さを表すメンバシップ関数の値

F(青空) : 所定の輝度以上のエリアであって、 青空検出枠内に入るエリアの個数を変数とする青空を表 すメンバシップ関数の値

に基づいて計算し、この評価値が所定値以上のときには 屋外日陰を光源として判別し、所定値以下のときにはデ ーライトを光源として判別することを特徴としている。 尚、F (青空)は、日陰らしさの評価値を下げる方向に 作用する値をとる。

【0010】また、本願請求項6に示すように前記検出した被写体の輝度レベルに基づいてストロボ発光するか否かを判別し、ストロボ発光しないと判別されたときのみ請求項5のオートホワイトバランス制御方法を適用し、ストロボ発光すると判別されると、ストロボ光に適したホワイトバランス制御を行うことを特徴としている。

【 0 0 1 1 】前記光源種は、本願請求項7に示すように 日陰、蛍光灯、及び電球を含み、前記検出枠は、日陰検 出枠、蛍光灯検出枠、電球検出枠、青空検出枠、及び肌 色検出枠を含むことを特徴としている。更に、前記光源 種の判別は、本願請求項8に示すように日陰らしさの評価値、蛍光灯らしさの評価値及び電球らしさの評価値 を、次式、

日陰らしさの評価値 =F(屋外らしさ)*F(日陰らしさ)*F(青空)

蛍光灯らしさの評価値= F_1 (屋内らしさ) * F(蛍光灯らしさ)

電球らしさの評価値 $=F_2(屋内らしさ)*F(電球らしさ)*F(肌)$

但し、F(屋外らしさ):輝度レベルを変数とする屋外 日陰らしさを表すメンバシップ関数の値

 F_1 (屋内らしさ) : 輝度レベルを変数とする蛍光灯らしさを表すメンバシップ関数の値

F₂(屋内らしさ):輝度レベルを変数とする電球らしさ を表すメンバシップ関数の値

F(日陰らしさ): 所定の輝度以下のエリアであって、 日陰検出枠内に入るエリアの個数を変数とする日陰らし さを表すメンバシップ関数の値

F (青空) : 所定の輝度以上のエリアであって、 青空検出枠内に入るエリアの個数を変数とする青空を表 すメンバシップ関数の値

F(蛍光灯らしさ): 蛍光灯検出枠内に入るエリアの個数を変数とする蛍光灯らしさを表すメンバシップ関数の値

F(電球らしさ):電球検出枠内に入るエリアの個数を変数とする電球らしさを表すメンバシップ関数の値 F(肌): 肌色検出枠内に入るエリアの個数を変数とする肌色らしさを表すメンバシップ関数の値に基づいて計算し、これらの評価値のうちの最大値が所定値以上のときにはその最大値の光源種を光源として判別し、所定値以下のときにはデーライトを光源として判別することを特徴としている。

[0012]

【発明の実施の形態】以下添付図面に従って本発明に係るオートホワイトバランス制御方法の好ましい実施の形態について詳説する。図1は本発明に係るオートホワイトバランス制御方法が適用されたデジタルカメラの実施の形態を示すブロック図である。

【0013】撮影レンズ10及び絞り12を介して固体 撮像素子(CCD)14の受光面に結像された被写体像 は、各センサで光の入射光量に応じた量の信号電荷に変 換される。このようにして蓄積された信号電荷は、CC D駆動回路16から加えられるリードゲートパルスによってシフトレジスタに読み出され、レジスタ転送パルス によって信号電荷に応じた電圧信号として順次読み出さ れる。尚、このCCD14は、蓄積した信号電荷をシャッタゲートパルスによって掃き出すことができ、これに より電荷の蓄積時間(シャッタスピード)を制御する、 いわゆる電子シャッタ機能を有している。

【①014】CCD14から順次読み出された電圧信号は、相関二重サンプリング回路(CDS回路)18に加えられ、ここで各画素ごとのR、G、B信号がサンプリングホールドされ、A/D変換器20に加えられる。A/D変換器20は、CDS回路18から順次加えられるR、G、B信号を10ビット(0~1023)のデジタルのR、G、B信号に変換して出力する。尚、CCD駆動回路16、CDS回路18及びA/D変換器20は、タイミング発生回路22から加えられるタイミング信号によって同期して駆動されるようになっている。

【0015】前記A/D変換器18から出力されたR、G、B信号は、一旦メモリ24に格納され、その後、メモリ24に格納されたR、G、B信号は、デジタル信号処理回路26に加えられる。デジタル信号処理回路26は、同時化回路28、ホワイトバランス調整回路30、ガンマ補正回路32、YC信号作成回路、及びメモリ36から構成されている。

【0016】同時化回路28は、メモリ24から読み出された点順次のR、G、B信号を同時式に変換し、R、G、B信号を同時にホワイトバランス調整回路30に出力する。ホワイトバランス調整回路30は、R、G、B信号のデジタル値をそれぞれ増減するための乗算器30R、30G、30Bに加えられる。乗算器30R、30G、30Bの他の入力には、

中央処理装置(CPU)38からホワイトバランス制御するためのゲイン値Rg、Gg、Bgが加えられており、乗算器30R、30G、30Bはそれぞれ2入力を乗算し、この乗算によってホワイトバランス調整されたR'、G'、B'信号をガンマ補正回路32に出力する。尚、CPU38からホワイトバランス調整回路30に加えられるゲイン値Rg、Gg、Bgの詳細については後述する。

【0017】ガンマ補正回路32は、ホワイトバランス調整されたR'、G'、B'信号が所望のガンマ特性となるように入出力特性を変更し、また、10ビットの信号が8ビットの信号となるように変更し、YC信号作成回路34に出力する。YC信号作成回路34は、ガンマ補正されたR、G、B信号から輝度信号Yとクロマ信号Cr、Cbとを作成する。これらの輝度信号Yとクロマ信号Cr、Cb(YC信号)は、メモリ36に格納される。

【0018】撮影時にメモリ36に格納されたYC信号は、図示しない圧縮回路によって所定のフォーマットに圧縮されたのち、メモリカードなどの記録媒体に記録される。CPU38は、シャッタボタン等を含むカメラ操作部40からの入力に基づいて各回路を統括制御するとともに、オートフォーカス、自動露光制御、オートホワイトバランス等の制御を行う。このオートフォーカス制御は、例えばG信号の高周波成分が最大になるように撮影レンズ10を移動させるコントラストAFであり、シャッタボタンの半押し時にG信号の高周波成分が最大になるように駆動部42を介して撮影レンズ10を合焦位置に移動させる。

【0019】また、自動露光制御は、1フレームのR、G、B信号を積算した積算値に基づいて被写体輝度(撮影EV)を求め、この撮影EVに基づいて被り値とシャッタスピードを決定し、絞り12を絞り駆動部44を介して駆動するとともに、決定したシャッタスピードとなるように電子シャッタによって電荷の蓄積時間を制御し、再度1フレームのR、G、B信号を取得して再度撮影EVを求める。シャッタボタンの半押し時に上記測光動作を複数回繰り返して正確な撮影EVを求め、この撮影EVに基づいて撮影時の絞り値とシャッタスピードを最終的に決定した絞り値になるように絞り駆動部44を介して絞り12を駆動し、また、決定したシャッタスピードとなるように電子シャッタによって電荷の蓄積時間を制御する。

【0020】次に、ホワイトバランス制御方法について説明する。このデジタルカメラは、ストロボ46を有し、図示しないストロボキーを操作することにより、低輝度時にストロボ46を自動的に発光させる低輝度自動発光モード、被写体輝度にかかわらずストロボ46を発光させる強制発光モード、ストロボ46の発光を禁止さ

せる発光禁止モード等を有している。そして、これらの モードに応じたホワイトバランス制御を行うようにして いる。

【0021】まず、低輝度自動発光モードの場合のホワイトバランス制御について、図2のフローチャートを参照しながら説明する。この場合、シャッタボタンの半押し時に撮影EV値を取得すると(ステップS10)、その撮影EV値に基づいて低輝度発光するか否かを判別する(ステップS12)。ここで、撮影EV値が所定の値(10EV)以下の場合には、低輝度発光すると判別し、ストロボ光に適したホワイトバランス制御を行う(ステップS14)。即ち、ストロボ光に対して良好なホワイトバランスを行うためのホワイトバランスゲイン値Rg、Gg、Bgが示ワイトバランス調整回路30に加えられる。

【0022】一方、低輝度発光しないと判別されると、全画面を複数のエリア(64×64)に分割し、各エリアごとにR、G、B信号の色別の平均積算値を求め、R信号の積算値とG信号の積算値との比B/Gを求める(ステップS16)。尚、各エリアごとのR、G、B信号の平均積算値は、図1の積算回路48によって算出され、CPU38に加えられている。また、積算回路48とCPU38との間には乗算器50R、50G、50Bが設けられており、乗算器50R、50G、50Bには、機器のバラツキを調整するための調整ゲイン値が加えられるようになっている。

【0023】次に、日陰らしさを検出する(ステップS 18)。この日陰らしさの検出は、以下に示す日陰らし さの評価値を計算することによって行う。

[0024]

【数1】日陰らしさの評価値 =F(屋外らしさ)*F(日陰らしさ)*F(青空)

上記式において、F(屋外らしさ)は、図5に示すように撮影EV値を変数とする屋外日陰らしさを表すメンバシップ関数の値である。また、F(日陰らしさ)は、図7に示すように所定の輝度以下のエリアであって、日陰検出枠内に入るエリアの個数を変数とする日陰らしさを表すメンバシップ関数の値であり、F(青空)は、図8に示すように所定の輝度以上のエリアであって、青空検出枠内に入るエリアの個数を変数とする青空を表すメンバシップ関数の値である。

【0025】ここで、各エリアの輝度(EV値Evi)は、次式、

[0026]

【数2】Evi=Ev+log₂(Gi/45)

但し、Ev: 摄影E V値

Gi: 各エリアのGの平均積算値

に基づいて計算する。尚、上記式中の45は、A/D変

換後の値の中での適正値である。

【0027】また、日陰検出枠、青空検出枠等は、図4 に示すように横軸をR/Gとし、縦軸をB/Gとするグ ラフ上に表された枠であり、各検出枠ごとに光源種など の色分布の範囲を規定するものである。さて、前記F (日陰らしさ)の値は、〔数2〕式によって求めたエリ アのE V値Eviが12以下のエリアであって、エリアご とに求めたR/G、B/Gが、図4上の日陰検出枠に入 るエリアの個数を求め、その個数に基づいて図7に示す メンバシップ関数から求める。、同様に、F(青空)の 値は、エリアのEV値Eviが12.5を越えるエリアで あって、エリアごとに求めたR/G、B/Gが、図4上 の青空検出枠に入るエリアの個数を求め、その個数に基 づいて図8に示すメンバシップ関数から求める。尚、F (青空)は、青空検出枠に入るエリアの個数が多い程、 日陰らしさの評価値を下げる方向に作用する値をとる。 【0028】図2のステップS18では、F (屋外らし ざ)と、F(日陰らしさ)と、F(青空)の各メンバシ ップ関数の値を積算して日陰らしさの評価値を求める。 そして、ステップS20では、上記ステップS18で求 めた日陰らしさの評価値が、所定の基準値(この実施の 形態では、0.47)以上か否かを判別し、日陰らしさ の評価値が0.47以上の場合には、屋外の日陰である と判別し、屋外の日陰に適したホワイトバランス制御を 行う(ステップS22)。

【0029】一方、日陰らしさの評価値が、0.47未満の場合には、デーライト(晴れ)と判別し、デーライトに適したホワイトバランス制御を行う(ステップS24)。尚、日陰やデーライトに適したホワイトバランス制御は、日陰やデーライトに対して良好なホワイトバランスを行うためのホワイトバランスゲイン値Rg、Gg、Bgが予め準備されており、これらのゲイン値Rg、Gg、Bgがホワイトバランス調整回路30に加えられることによって行われる。

【0030】次に、発光禁止モードの場合のホワイトバランス制御について、図3のフローチャートを参照しながら説明する。この場合、シャッタボタンの半押し時に撮影EV値を取得するとともに(ステップS30)、図2のステップS16と同様に全画面が64×64に分割された各エリアごとのR/G、B/Gを求める(ステップS32)。

【0031】次に、前述した日陰らしさの評価値の他に、蛍光灯(昼光色、昼白色、白色)らしさの評価値、及びタングステン電球らしさの評価値を、次式、

[0032]

【数3】 昼光色らしさの評価値 $=F_1$ (屋内らしさ)*F(昼光色蛍光灯らしさ)

[0033]

【数4】 量白色らしさの評価値 $=F_1$ (屋内らしさ) *F(量白色蛍光灯らしさ)

[0034]

【数5】白色らしさの評価値 = F_(屋内らしさ)*F(白色蛍光灯らしさ)

[0035]

【数6】電球らしさの評価値 = F₂(屋内らしさ)*F(電球らしさ)*F(肌)

に基づいて算出する。ここで、〔数3〕式乃至〔数5〕式における F_1 (屋内らしさ)は、図6に示すように撮影 EV値を変数とする屋内(蛍光灯)らしさを表すメンバシップ関数の値であり、〔数6〕式における F_2 (屋内らしさ)は、図6に示すように撮影EV値(カッコ内の数値)を変数とする屋内(タングステン電球)らしさを表すメンバシップ関数の値である。

【0036】また、〔数3〕式乃至〔数6〕式における F(昼光色蛍光灯らしさ)、F(昼白色蛍光灯らしさ)、F(昼白色蛍光灯らしさ)、F(自色蛍光灯らしさ)及びF(電球らしさ)は、それぞれ図4に示した昼光色検出枠、昼白色検出枠、白色検出枠、及びタングステン電球検出枠内に入るエリアの個数を変数とする、図9に示す蛍光灯・電球らしさを表すメンバシップ関数の値である。

【0037】更に、〔数6〕式におけるF(肌)は、図4に示した肌色検出枠内に入るエリアの個数を変数とする、図10に示す肌色を表すメンバシップ関数の値である。尚、F(肌)は、肌色検出枠内のエリア数が多くなるにしたがって電球らしさの評価値を下げるように作用する。これは、肌色があるシーンで、タングステン電球色に対するホワイトバランス制御を強くかけると、赤味がとんで白っぱくなり顔色が悪くなるからである。

【0038】さて、日陰らしさの評価値(〔数1〕式参照)、及び昼光色らしさの評価値、昼白色らしさの評価値、日色らしさの評価値、電球らしさの評価値が算出されると、これらの5つの評価値のうちの最大値が、0.47以上が否かを判別する(図3のステップS36)。そして、最大値が0.47以上の場合には、その最大値をとる評価値の光源色に適したホワイトバランス制御を行う(ステップS38)。

【0039】一方、最大値が、0.47未満の場合には、デーライトと判別し、デーライトに適したホワイトバランス制御を行う(ステップS40)。ここで、日陰、昼光色蛍光灯、昼白色蛍光灯、白色蛍光灯、タングステン電球、及びデーライトの各光源色に適したホワイトバランス制御は、各光源色に対して良好なホワイトバランスを行うためのホワイトバランスゲイン値Rg、Gg、Bgが子め準備されており、これらのゲイン値Rg、Gg、Bgがホワイトバランス調整回路30に加えられることによって行われる。

[0041]

【数7】R'=Rg×R

 $G' = Gg \times G$

 $B' = Bg \times B$

によって表される。

【0042】また、次式に示すようにシーンの度合い (評価値)に応じてゲイン値を変えるようにしてもよい。

[0043]

【数8】R'={(Rg-1)/評価値+1}×R

G' = { (Gg-1) | >評価値+1 | \ G

B' = {(Bg-1) \評価値+1} \B

尚、子め設定される光源種別のゲイン値 Rg_{SGS} , Bg Gg_{SGS} , Gg_{GG} , $Gg_{$

【0044】また、この実施の形態では、光源種検出のための評価値を〔数1〕式や、〔数3〕式乃至〔数6〕式に基づいて算出するようにしたが、更に他の要素(他のメンバシップ関数)を付加して算出するようにしてもよい。更に、光源種はこの実施の形態に限定されず、例えば、蛍光灯は1種類又は2種類でもよい。

[0045]

【発明の効果】以上説明したように本発明によれば、光源種を的確に判別することができ、これにより光源種に適した良好なホワイトバランス制御を行うことができる。

【図面の簡単な説明】

【図1】本発明に係るオートホワイトバランス制御方法 が適用されたデジタルカメラの実施の形態を示すブロック図

【図2】低輝度発光モード時のオートホワイトバランス 制御方法を説明するために用いたフローチャート

【図3】発光禁止モード時のオートホワイトバランス制 御方法を説明するために用いたフローチャート

【図4】光源種などの色分布の範囲を示す検出枠を示す グラフ

【図5】屋外らしさを表すメンバシップ関数を示すグラ フ

【図6】屋内らしさを表すメンバシップ関数を示すグラ

【図7】日陰らしさを表すメンバシップ関数を示すグラフ

【図8】青空を表すメンバシップ関数を示すグラフ

【図9】蛍光灯・電球らしさを表すメンバシップ関数を 示すグラフ

【図10】肌色を表すメンバシップ関数を示すグラフ 【符号の説明】

10…撮影レンズ、12…絞り、14…固体撮像素子 (CCD)、30…ホワイトバランス調整回路、30 R、30G、30B…乗算器、38…中央処理装置(C

PU)、46…ストロボ、48…積算回路

【図1】

【図2】

【図7】

【図9】

フロントページの続き

(72) 発明者 市川 千明 埼玉県朝霞市泉水3丁目11番46号 富士写 真フイルム株式会社内 F 夕一ム(参考) 5C065 AA03 BB02 BB08 BB11 BB12 BB41 CC01 DD02 GG12 GG18 GG23 GG26 GG32 5C066 AA01 CA08 EA15 GA01 HA03 KE03 KE07 KE17 KE19 KG08 KM02