# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Московский физико-технический институт (национальный исследовательский университет)

# Физтех-школа электроники, фотоники и молекулярной физики

Отчёт о научно-исследовательской работе

## Определение оптических свойств мутных сред с помощью подвижных интегрирующих сфер

выполнили студенты 654а группы ФЭФМ

Карпова Татьяна Смирнов Артур

### Содержание

| 1 | Цель работы                                              | 2 |
|---|----------------------------------------------------------|---|
| 2 | Описание экспериментальной установки                     | 2 |
| 3 | Порядок проведения эксперимента                          | 3 |
|   | 3.1 Подготовка исследуемых образцов                      | 3 |
|   | 3.2 Измерение отклика фотодетекторов                     |   |
|   | 3.3 Определение вспомогательных коэффициентов            | 3 |
|   | 3.4 Обработка экспериментальных данных                   |   |
| 4 | Результаты измерений и определение оптических свойств    | 4 |
|   | 4.1 Зависимость коэффициента $C_3$ от диаметра диафрагмы | 4 |
|   | 4.2 Результаты математического моделирования             | 5 |
| 5 | Вывод                                                    | 5 |

#### 1 Цель работы

Определение оптических свойств (коэффициент рассеяния  $\mu_s$ , коэффициент поглощения  $\mu_a$ , анизотропия рассеяния g, показатель преломления n) различных мутных сред (майонез 67% жирности, смесь воды и коровьего молока 3.2% жирности, раствор Липофундина 10% в желатине)

#### 2 Описание экспериментальной установки

Схема установки для определения оптических свойств мутных сред представлена на рис. 1. Одномодовое лазерное излучение с длиной волны 580 нм, шириной пучка 2 см и регулируемой мощностью  $P_{las}$  попадает на стеклянную призму. Отраженное от призмы излучение  $P_{cal}$  регистрируется измерителем мощности. Прошедший через призму пучок модулируется оптическим прерывателем с частотой 128  $\Gamma$ ц и падает на диафрагму (D1) диаметром d. Далее пучок заводится непосредственно на измерительную систему с образцом и интегрирующими сферами, предварительно проходя через диафрагму D2. Мощность лазерного излучения у границы образца обозначается как  $P_{in}$ .

Исследуемый образец расположен на платформе, которую можно перемещать между интегрирующими сферами, тем самым изменяя расстояния от поверхности образца до входов сфер. Интенсивность света при прохождении через образец и при отражении от него изменяется; по измеренным значениям пропускания и отражения можно определить оптические свойства образца. Интегрирующие сферы IS1 и IS2 покрыты слоем отражающего покрытия (сульфид бария  $BaSO_4$ , коэффициент отражения на длине волны 600 нм составляет 98.22%). К сферам присоединены фотодетекторы, сигнал с которых передаётся на синхронный детектор. Также на синхронный детектор подаётся опорный сигнал с оптического прерывателя.



Рис. 1: Установка для определения оптических свойств мутных сред

#### 3 Порядок проведения эксперимента

#### 3.1 Подготовка исследуемых образцов

Для исследования с помощью подвижных интегрирующих сфер вещества с различными оптическими свойствами помещаются между двумя предметными стёклами. Толщину образца при изготовлении можно регулировать, подкладывая между предметными стёклами одно или несколько покровных стёкол.

#### 3.2 Измерение отклика фотодетекторов

Для каждого исследуемого образца проводится две серии измерений (регистрация отражённого образцом излучения сферой IS1 и прошедшего сквозь образец излучения сферой IS2). С периодичностью в 30 секунд расстояние от входа интегрирующей сферы до образца изменяется вручную на 4 мм, начиная от 0 мм (образец вплотную придвинут к сфере) и заканчивая 36 мм; в конце эксперимента регистрируются показания приборов в положении, когда вход сферы и поверхность образца отодвинуты друг от друга на расстояние порядка 100 мм. Во время эксперимента непрерывно снимаются показания фотодетектора, присоединённого к используемой интегрирующей сфере (показания синхронного детектора  $U_{pd}^{lower}$  для интегрирующей сферы IS1, далее — нижняя интегрирующая сфера; и  $U_{pd}^{upper}$  для интегрирующей сферы IS2, далее — верхняя интегрирующая сфера). Также для учета временной нестабильности выходной мощности используемого лазера в ходе эксперимента постоянно измеряется значение мощности  $P_{cal}$ .

#### 3.3 Определение вспомогательных коэффициентов

Основной целью измерений является определение зависимости коэффициентов пропускания T и отражения R исследуемого образца от расстояния между образцом и входом интегрирующей сферы. Коэффициенты  $T=\frac{P_{pd}^{upper}}{P_{in}}$  и  $R=\frac{P_{pd}^{upper}}{P_{in}}$  нельзя измерить непосредственно, поэтому в эксперименте они определяются косвенно по результатам измерений  $U_{pd}^{lower}, U_{pd}^{upper}$  и  $P_{cal}$  с учётом вспомогательных коэффициентов  $C_1=\frac{P_{in}}{U_{pd}}, C_2=\frac{P_{las}}{P_{cal}}$  и  $C_3=\frac{P_{in}}{P_{las}}$  (см. формулу (1)).

$$\frac{P_{pd}}{P_{in}} = \frac{U_{pd} \frac{P_{in}}{U_{pd}}}{P_{cal} \frac{P_{in}}{P_{cal}} \frac{P_{in}}{P_{loc}}} = \frac{U_{pd} C_1}{P_{cal} C_2 C_3} \tag{1}$$

Коэффициент  $C_1$  отвечает за эффективность регистрации излучения интегрирующей сферой (и, вообще говоря, разный для двух используемых в эксперименте сфер); величина, обратная  $C_2$ , показывает, какая часть лазерного излучения отражается от призмы в первом отсеке установки. Коэффициент  $C_3$  определяет потери мощности при прохождении излучения от выхода лазера до поверхности образца, эта величина зависит от диаметра d диафрагмы D1.

Значения коэффициентов  $C_1, C_2, C_3$  зависят от параметров установки (например, значение  $C_2$  зависит от расположения измерительной головы относительно призмы), а также от различных внешних факторов (температура в помещении, время работы лазера), и поэтому в идеале измеряются непосредственно перед каждым экспериментом.

Все значения мощности лазерного излучения  $(P_{las}, P_{cal}, P_{in})$ , необходимые для вычисления коэффициентов, определялись с помощью измерителя мощности; значения  $U_{pd}$  определялись по показаниям синхронного детектора.

#### 3.4 Обработка экспериментальных данных

Обработка массивов экспериментальных данных проводится с помощью программы, написанной в среде Wolfram Mathematica. Для каждого временного отрезка (и, соответственно,

для каждого расстояния от границы образца до входа интегрирующей сферы) вычисляются медианы всех измеренных значений  $U_{pd}$  и  $P_{cal}$ . Далее по формуле (1) пересчитываются коэффициенты R и T. Наконец, строятся зависимости R(z) и T(z).

#### 4 Результаты измерений и определение оптических свойств

В период с 11.02.20 по 04.03.20 было проведено несколько экспериментов по определению коэффициентов пропускания и отражения различных образцов. Параметры образцов приведены в таблице 1. Толщина предметных стёкол равнялась 1.066 мм и 1.053 мм. Было проведено математическое моделирование распространения излучения через образцы (см. пункт 4.2), по результатам моделирования оценены оптические свойства образцов.

Вещество Дата Толщина 1 11.02.20 Майонез 67%  $d_{1.1} = 0.83 \text{ MM}$  $d_{2.1} = 0.34 \text{ mm}$ Майонез 67%  $d_{2.2} = 0.48 \text{ mm}$ 18.02.20 2  $d_{2.3} = 0.66 \text{ MM}$  $d_{3.1} = 1.09 \text{ mm}$ Молоко 3.2% + вода $\overline{d}_{3.2} = 1.58 \text{ mm}$ 25.02.20 3  $d_{3.3} = 0.49 \text{ mm}$  $d_{3.1} = 0.19 \text{ MM}$ Липофундин 10% + желатин  $d_{3.2} = 0.37 \text{ MM}$ 04.03.204  $d_{3.3} = 0.49 \text{ mm}$ 

Таблица 1: Эксперименты и исследуемые образцы

#### 4.1 Зависимость коэффициента $C_3$ от диаметра диафрагмы

В эксперименте №1 помимо зависимостей R(z) и T(z) измерялась также зависимость вспомогательного коэффициента  $C_3$  от диаметра d диафрагмы D1. Результаты соответствующих измерений приведены в таблице 2.

Таблица 2: Зависимость величины коэффициента  $C_3$  от диаметра диафрагмы D1

| d, mm | 5.05  | 1     | 2.35  | 3.7   |
|-------|-------|-------|-------|-------|
| $C_3$ | 0.067 | 0.002 | 0.015 | 0.050 |

Значения коэффициентов  $C_1$  и  $C_2$  в первом эксперименте:

$$C_1^{upper} = 37.8~\mathrm{Bt/B} \qquad \qquad C_1^{lower} = 38.7~\mathrm{Bt/B}$$
 
$$C_2 = 56.1$$

Графики зависимости R(z) и T(z) для одного образца при различных значениях диаметра диафрагмы с учётом изменения коэффициента  $C_3$  приведены на рис. 2. Графики практически идентичны; это позволяет сказать, что результат эксперимента не зависит от диаметра диафрагмы D1 при условии, что для конкретного диаметра измерен коэффициент  $C_3$ .



Рис. 2: Зависимость коэффициента пропускания от расстояния между образцом и входом сферы при различных диаметрах диафрагмы D1



Рис. 3: Зависимость коэффициента отражения от расстояния между образцом и входом сферы при различных диаметрах диафрагмы D1

#### 4.2 Результаты математического моделирования

Математическое моделирование распространения света в образце проводилось методом Монте-Карло и методом сложения-удвоения (adding-doubling). Решалась прямая задача — построение зависимостей коэффициентов отражения и пропускания от расстояния между входом сферы и образцом по известным коэффициентам рассеяния  $\mu_s$  и поглощения  $\mu_a$ , анизотропии рассеяния g и показателю преломления n. Для каждого образца эти параметры подбирались так, чтобы зависимость T(z), полученная в результате моделирования, совпала с измеренной в эксперименте. Также необходимо было, чтобы для каждого вещества набор  $\mu_s$ ,  $\mu_a$ , g и n не зависел от толщины образца.

Необходимо отметить, что при моделировании методом Монте-Карло не учитывалось наличие предметных стёкол, граничащих с образцом. Значения коэффициентов, полученные этим методом, оказались меньше тех, что были получены при использовании метода сложения-удвоения (где наличие предметных стёкол было учено).

Графики зависимостей T(z) для различных образцов, полученные экспериментально и при помощи математического моделирования, приведены на рис. 4. Полученные в результате моделирования значения  $\mu_s$ ,  $\mu_a$ , g и n приведены в таблице 3.

Таблица 3: Оптические свойства образцов, определённые с помощью математического моделирования (AD – метод сложения-удвоения, MC – метод Монте-Карло)

|                         | $\mu_s,  {\rm M}^{-1}$ |       | $\mu_a,  {\rm M}^{-1}$ |     | g    |      | n    |      |
|-------------------------|------------------------|-------|------------------------|-----|------|------|------|------|
| Вещество                | AD                     | MC    | AD                     | MC  | AD   | MC   | AD   | MC   |
| Майонез 67%             | 13000                  | 25000 | 700                    | 800 | 0.6  | 0.6  | 1.4  | 1.4  |
| Раствор молока 3.2%     | 2370                   | 2350  | 180                    | 180 | 0.55 | 0.55 | 1.4  | 1.34 |
| Раствор Липофундина 10% | 6000                   | 6300  | 850                    | 930 | 0.8  | 0.4  | 1.26 | 1.26 |

#### 5 Вывод

Метод подвижных интегрирующих сфер позволяет оценить порядок коэффициентов поглощения и рассеяния. Для получения более точных результатов необходимо реализовать решение обратной задачи методом сложения-удвоения, а также учесть наличие предметных стёкол вокруг образца при вычислениях методом Монте-Карло.



Рис. 4: Сравнение экспериментальных и смоделированных зависимостей коэффициентов пропускания образцов различной толщины от расстояния между образцом и входом сферы. На графиках а) и б) изображены зависимости для майонеза 67%, на в) и г) – для раствора молока 3.2%, на д) и е) – для раствора Липофундина 10%. На графиках а), в) и д) экспериментальные зависимости сравниваются с зависимостями, полученными с помощью математического моделирования методом сложения-удвоения; на графиках б), г) и е) – с зависимостями, полученными с помощью метода Монте-Карло