COL216 Assignment 2 Stage 4

Rishabh Dhiman 2020CS10837

6 March 2022

1 Objective

Test the processor designed in previous stages using ARM assembly codes.

2 Technical Details

- The VHDL code was analyzed, and simulated using GHDL 1.0.0.
- The waveform viewer used is GTKWave Analyzer v3.3.104.

3 Documentation

The submission contains a single arm directory along with a makefile.

The arm directory contains three folders, scripts, assembly and binary.

- scripts directory contains two bash scripts to-bin.sh and create-mem.sh.
- assembly directory contains three assembly codes, fact.s, range-sum.s, and neg-fib.s.
- binary directory contains three text files fact.txt, range-sum.txt, and neg-fib.txt.

4 Testing Procdure

The code was analyzed, and simulated using GHDL. It was synthesized using Quartus 21.1. You can simulate it yourself by copying the files to the folder containing the stage 3 submission.

- 1. Ensure that you are using a Linux machine with Make and GHDL installed.
- 2. Create a directory simulation/arm-tests/ exists (if it doesn't already exist).
- 3. In the commandline, run make testarm INPUT= X where $X \in \{\text{fact, range-sum, neg-fib}\}$.
- 4. A X.ghw waveform file will be created in the simulation/arm-tests directory. Note that the earlier file will be overwritten.

5 Script Description

The script, to-bin.sh takes as argument the path to an ARM file and outputs the corresponding binary instruction code. It assumes that arm-linux-gnueabi toolchain is installed, along with some common linux binaries.

The script, create-mem.sh takes as argument the path to an ARM file and outputs the corresponding VHDL memory file with the ARM code hardcoded into it.

6 Program Descriptions

The description of the three programs follow,

6.1 fact

This computes 3! and stores the result in r0. The code and the corresponding binary-encoded instructions are,

```
@ Code for storing 3! in r0
                          .text
                         mov r0, #1
                         mov r1, #7
                         mov r2, #1
                         mov r3, #0
   e3a00001
                         fact_loop:
   e3a01007
   e3a02001
                          @ this bit between comments does
   e3a03000
                          @ mul r0, r2
   e1a04000
                         mov r4, r0
   e3a00000
                         mov r0, #0
   e3a05000
                         mov r5, #0
   e1550002
                         mul_loop:
   0a000003
9
                          cmp r5, r2
   e0800004
10
                         beq terminate_mul
   e2855001
11
                         add r0, r4
   eafffffa
12
                         add r5, #1
   e1a00004
13
                         b mul_loop
   e2822001
14
                         mov r0, r4
   e1510002
                          terminate_mul:
   1afffff3
                          @ by adding r0, r2 times
                         add r2, #1
                          cmp r1, r2
                         bne fact_loop
                          .end
```

6.2 range-sum

This computes and stores $0+1+\cdots+i$ at memory location 64+i, for $0 \le i < 5$. This computation is done as a[i] = a[i-1]+i, a[0] = 0. So that 1dr and str are properly tested.

```
.text
                         mov r0, #255
                         add r0, #1
                         0 \ r0 = 4 * base
                         Q in base, base + 1, ..., base + 5 - 1, where base = 64
                         @ store 0, 0 + 1, 0 + 1 + 2, 0 + 1 + 2 + 3, ...
                         @ we do this as follows,
                         0 \ a[0] = 0;
                         Q for (i = 1; i < 5; ++i)
                                a[i] = a[i - 1] + i;
                         @ we implement it like this,
   e3a000ff
1
                         @ \ a[0] = 0;
   e2800001
                         @ for (i = 1; i < 5; ++i) {
   e3a01000
                                x = a[i - 1];
                         0
   e5801000
4
                                x += i;
                         0
   e5901000
                                a[i] = x;
                         0
   e2811001
                         0 }
   e5801004
   e5901004
                         @ we manually unroll the loop to test the immediate offsets of
   e2811002
9
                             ldr and str
   e5801008
10
   e5901008
11
                         mov r1, #0
   e2811003
                         str r1, [r0]
   e580100c
13
   e590100c
14
                         ldr r1, [r0, #0]
   e2811004
15
                         add r1, #1
   e5801010
16
                         str r1, [r0, #4]
                         ldr r1, [r0, #4]
                         add r1, #2
                         str r1, [r0, #8]
                         ldr r1, [r0, #8]
                         add r1, #3
                         str r1, [r0, #12]
                         ldr r1, [r0, #12]
                         add r1, #4
                         str r1, [r0, #16]
                         .end
```

6.3 neg-fib

This computes the negative Fibonacci numbers, F_{-i} . If $a_i = F_{-i}$, then

```
F_{i+2} = F_{i+1} + F_i \implies F_i = F_{i+2} - F_{i+1} \implies a_i = F_{-i} = F_{-i+2} - F_{-i+1} = a_{i-2} - a_{i-1}.
 F_{-i} is stored in memory location, 64 + i, for 0 \le i \le 8.
                            {\it @ compute negative fibonacci as a[i] = a[i - 2] - a[i - 1]}
                            0 where a = mem[64], a[0] = 0, a[1] = 1
                           mov r0, #255
                           add r0, #1
                            @ location of a
                           mov r1, #0
                           str r1, [r0]
                           mov r1, #1
                           str r1, [r0, #4]
   e3a000ff
                            0 \text{ set } a[0] = 0, a[1] = 1
   e2800001
2
   e3a01000
                           mov r1, #8
   e5801000
                            @ ie,
   e3a01001
                            Q a[0] = 0
   e5801004
6
                            Q a[1] = 1
   e3a01008
7
                            @ for (i = 1; i \le 8; ++i)
   e2800004
                               a[i + 1] = a[i - 1] - a[i]
   e3a02001
9
   e5103004
10
                           add r0, #4
   e5904000
11
                           mov r2, #1 @ index variable
   e0433004
12
                           loop:
   e5803004
13
                            0 \ r3 = a[r0 - 1]
   e2800004
14
                            Q r4 = a[r0]
   e2822001
15
                            0 r4 -= r3
   e1520001
16
                            0 \ a[r0 + 1] = r4
   1afffff7
                           ldr r3, [r0, #-4]
                           ldr r4, [r0]
                           sub r3, r4
                           str r3, [r0, #4]
                            0 update things
                           add r0, #4
                           add r2, #1
                           cmp r2, r1
                           bne loop
```

7 Results

All the testbenches gave the expected results.

The output waveform of the testbench results can be viewed in .ghw and .pdf files in the output folder.

The pdf files of the simulation are also attached at the end of this report.

Time			100 ts		200 ns		31 IS		410	IS	5	III is	
reg[0][31:0]		00+ (00000001	(00000+ (000000+ (00000002	(00000+ (000000+ (000000+ (000	00006	(00000+)(000000+)(000	000+ X 000000+ X 00000018	(00000+)(000000+)(0	00000+ X 000000+ X 000	000+ X 00000078	(00000+ (000000+ (000000+ (000001+ X 000001+ X 000002+	(000002D0
reg[1][31:0]	uu+ (00000007												
reg[2][31:0]	uuuu+ (00000001	X 00000	0002 X 0	00000003	X 00000	0004	X 000	00005		X 00000	0006		X 00000007
reg[3][31:0]													
reg[4][31:0]				X 00000002		X 00000006		X 00000018			X 00000078		
reg[5][31:0]			(00000+ (000000+ (00000002				00000+ X 000000+ X 00000004	(00000+ (000000+	X000000+ X000000+ X0			X000000+ X000000+ X000000	+ X 00000006
				+ X Ymov									
instr_class				X X dp									
	VL-	300230000000			,400-00			, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		70000-000000000	
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													
1													

Timα	1		11/15		20 h	\$		3) (s		40 ts		50 ts		60	ts		N is
Time reg[0][31:0]	uuuuuuu	000000FF	X00000100						1 1 1 1 1		1 1 1 1 1	1 1 1		1 1 1 1			
instr_class	none (dp			X dt		X dp	X dt		/ dp	X dt		X dp	X dt		X dp	X dt	/dp
operation	andop mov	add	mov	orr		X add	orr		(add	orr		Xadd	orr		X add	orr	andop
		·			load	X store		X load	store		load	store		X load	store		
reg[1][31:0]	иииииии			00000000		· ·	(00000001		Х	0000003			X 00000006			X0000000A	
mem[64][31:0]	00000000																
mem[65][31:0]								00000001									
mem[66][31:0]	00000000										(00000003						
mem[67][31:0]	00000000													00000006			
mem[68][31:0]	00000000)(c	000000A

Time mem[64][31:0]				100 rs			200	S	
mem[64][31:0]	0								
mem[65][31:0]	0	(1							
mem[66][31:0]) -1						
mem[67][31:0]			,	12					
mem[68][31:0]				*	/ -3				
mem[69][31:0]	0				,	(5			
mem[70][31:0]						Α) -8		
mem[71][31:0]	0						,	13	
mem[72][31:0]	0								[-21
reg[0][31:0]	XXX X 255 X 256	X 260	X 264	X 268	X 272	X 276	X 280	X 284	X 288
reg[1][31:0]		X 1 X 20		,					^
reg[2][31:0]	XXX	11	X 2	χ3	χ4	Х2	X 6	χη	χ8
reg[3][31:0]		<u> </u>) -1)1)2	[-1 [-3)(2)(5	X -3 X -8	X5 X13	X-8 X-21
reg[4][31:0]			γ1	(-1	12	X -3	χ5	χ-8	X 13
				,			,		,
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
I									
1									
1									
1									