Controlling Fake Reviews

Yuta Yasui

August 25, 2020

1 / 26

- ► Rating systems play key roles in platform markets:
 - ► Hollenbeck et al (2019): ratings vs advertisement in hotel industry
 - ► Reimers and Waldfogel (2020): ratings vs professtional reviews for books

- ► Rating systems play key roles in platform markets:
 - ► Hollenbeck et al (2019): ratings vs advertisement in hotel industry
 - ► Reimers and Waldfogel (2020): ratings vs professtional reviews for books
- ► At the same time, the incentive to make fake reviews is growing.

- ► Rating systems play key roles in platform markets:
 - ► Hollenbeck et al (2019): ratings vs advertisement in hotel industry
 - ► Reimers and Waldfogel (2020): ratings vs professtional reviews for books
- ► At the same time, the incentive to make fake reviews is growing.
- ► Effort to reduce fake reviews:

- ► Rating systems play key roles in platform markets:
 - ► Hollenbeck et al (2019): ratings vs advertisement in hotel industry
 - ► Reimers and Waldfogel (2020): ratings vs professtional reviews for books
- ▶ At the same time, the incentive to make fake reviews is growing.
- ► Effort to reduce fake reviews:
 - ► Amazon is strictly prohibiting incentivized reviews since 2016.

- ► Rating systems play key roles in platform markets:
 - ► Hollenbeck et al (2019): ratings vs advertisement in hotel industry
 - ► Reimers and Waldfogel (2020): ratings vs professtional reviews for books
- ▶ At the same time, the incentive to make fake reviews is growing.
- ► Effort to reduce fake reviews:
 - ► Amazon is strictly prohibiting incentivized reviews since 2016.
 - ► In 2019, FTC filed the first case challenging fake paid reviews: Cure Encapsulations:
 - selling a weight loss pill (\$12.8 million in sales on Amazon)
 - paid AmazonVerifiedReview.com for fake reviews

► Are fake reviews harmful?

- ► Are fake reviews harmful?
 - ▶ Rational buyers might not be fooled by the fake reviews.

- ► Are fake reviews harmful?
 - Rational buyers might not be fooled by the fake reviews.
 - Costly fake reviews might work as a signal of good quality.
 - It might pay off only for high quality sellers through future sales. (Nelson; 70,74)

- ► Are fake reviews harmful?
 - Rational buyers might not be fooled by the fake reviews.
 - Costly fake reviews might work as a signal of good quality.
 - It might pay off only for high quality sellers through future sales.
 (Nelson; 70,74)
- ► Instruments of the platform:
 - 1. intensity of censorship on fake reviews
 - 2. weights on previous reviews and new reviews,

- ► The number of fake reviews is increasing in quality, decreasing in reputation.
- ► The stringent censorship reduces
 - ▶ the number of fake reviews in expectation,
 - ▶ the effects of fake reviews.

- ► The number of fake reviews is increasing in quality, decreasing in reputation.
- ► The stringent censorship reduces
 - ▶ the number of fake reviews in expectation,
 - the effects of fake reviews.
- ► For rational consumers:

► For credulous consumers:

- ► The number of fake reviews is increasing in quality, decreasing in reputation.
- ► The stringent censorship reduces
 - ▶ the number of fake reviews in expectation,
 - the effects of fake reviews.
- ► For rational consumers:
 - a rating with fake reviews can be more informative than one without fake reviews
 - transition speed of the rating should be slower than the optimal level without fake reviews.
- ► For credulous consumers:

- ► The number of fake reviews is increasing in quality, decreasing in reputation.
- ► The stringent censorship reduces
 - ▶ the number of fake reviews in expectation,
 - the effects of fake reviews.
- ► For rational consumers:
 - a rating with fake reviews can be more informative than one without fake reviews
 - transition speed of the rating should be slower than the optimal level without fake reviews.
- ► For credulous consumers:
 - the stringent censorship reduces bias for the credulous consumers as long as positive number of fake reviews are observed.

Design of Rating Systems

- ► [certification] Lizzeri (1999), Harbaugh and Rasmusen (2018), DeMarzo, Kremer, Skrzypacz (2019), Hopenhayn and Saeedi (2019), Hui et al (2018), Zapechelnyuk (2020)
- [scoring][one-shot] Ball (2019), [dynamic] Vellodi (2019): entry/exit, directed search; Horner and Lambert (2018), Bonatti and Cisternas (2020), this paper: signal jamming

	platform controls			
	weights	censorship	eqm action	credulous consumer
HL2018				
BC2020				
This paper				

Design of Rating Systems

- ► [certification] Lizzeri (1999), Harbaugh and Rasmusen (2018), DeMarzo, Kremer, Skrzypacz (2019), Hopenhayn and Saeedi (2019), Hui et al (2018), Zapechelnyuk (2020)
- **[scoring][one-shot]** Ball (2019), **[dynamic]** Vellodi (2019): entry/exit, directed search;

Horner and Lambert (2018), Bonatti and Cisternas (2020), this paper: signal jamming

	platform controls			
	weights	censorship	eqm action	credulous consumer
HL2018				
BC2020				
This paper				

Design of Rating Systems

- ► [certification] Lizzeri (1999), Harbaugh and Rasmusen (2018), DeMarzo, Kremer, Skrzypacz (2019), Hopenhayn and Saeedi (2019), Hui et al (2018), Zapechelnyuk (2020)
- ► [scoring][one-shot] Ball (2019), [dynamic] Vellodi (2019): entry/exit, directed search; Horner and Lambert (2018), Bonatti and Cisternas (2020), this paper: signal jamming

platform controls..

weights censorship eqm action credulous consumer

HL2018 Y (Y)

BC2020 Y N

This paper Y Y

Design of Rating Systems

- ► [certification] Lizzeri (1999), Harbaugh and Rasmusen (2018), DeMarzo, Kremer, Skrzypacz (2019), Hopenhayn and Saeedi (2019), Hui et al (2018), Zapechelnyuk (2020)
- ► [scoring][one-shot] Ball (2019), [dynamic] Vellodi (2019): entry/exit, directed search;

Horner and Lambert (2018), Bonatti and Cisternas (2020), this paper: signal jamming platform controls..

	platform controls			
	weights	censorship	eqm action	credulous consumer
HL2018	Y	(Y)	constant	
BC2020	Y	N	Markov	
This paper	Y	Y	Markov	

Design of Rating Systems

- ► [certification] Lizzeri (1999), Harbaugh and Rasmusen (2018), DeMarzo, Kremer, Skrzypacz (2019), Hopenhayn and Saeedi (2019), Hui et al (2018), Zapechelnyuk (2020)
- ► [scoring][one-shot] Ball (2019), [dynamic] Vellodi (2019): entry/exit, directed search; Horner and Lambert (2018), Bonatti and Cisternas (2020), this paper: signal jamming

platform controls.. weights censorship eam action credulous consumer HL2018 Υ (Y) constant N BC2020 Markov Υ N N This paper Υ Υ Markov Y

Design of Rating Systems

- ► [certification] Lizzeri (1999), Harbaugh and Rasmusen (2018), DeMarzo, Kremer, Skrzypacz (2019), Hopenhayn and Saeedi (2019), Hui et al (2018), Zapechelnyuk (2020)
- ► [scoring][one-shot] Ball (2019), [dynamic] Vellodi (2019): entry/exit, directed search; Horner and Lambert (2018), Bonatti and Cisternas (2020), this paper: signal jamming

	platform controls			
	weights	censorship	eqm action	credulous consumer
HL2018	Y	(Y)	constant	N
BC2020	Y	N	Markov	N
This paper	Y	Υ	Markov	Υ

Promotion and Signaling (Q: The higher quality, the more promotion?)

▶ Nelson (1970, 1974), Kihlstrom and Riordan (1984), Milgrom and Roberts (1986), Horstmann and Moorthy (2003), Mayzlin (2006), Dellarocas (2006): **One shot promotion**

Design of Rating Systems

- ► [certification] Lizzeri (1999), Harbaugh and Rasmusen (2018), DeMarzo, Kremer, Skrzypacz (2019), Hopenhayn and Saeedi (2019), Hui et al (2018), Zapechelnyuk (2020)
- ► [scoring][one-shot] Ball (2019), [dynamic] Vellodi (2019): entry/exit, directed search;

Horner and Lambert (2018), Bonatti and Cisternas (2020), this paper: signal jamming platform controls..

	platform controls			
	weights	censorship	eqm action	credulous consumer
HL2018	Y	(Y)	constant	N
BC2020	Y	N	Markov	N
This paper	Y	Y	Markov	Y

- ▶ Nelson (1970, 1974), Kihlstrom and Riordan (1984), Milgrom and Roberts (1986), Horstmann and Moorthy (2003), Mayzlin (2006), Dellarocas (2006): **One shot promotion**
- ► Horstmann and MacDonald (1994), Saraiva (2020) [numerical/empirical], and this paper: Repeated promotions; true quality and reputation play different/interactive roles

Fake reviews with "verified purchase" on Amazon

Fake reviews with "verified purchase" on Amazon

Fake reviews with "verified purchase" on Amazon

- ► cf) official review programs on Amazon
 - Early Reviewer Program: Amazon offers \$1-3 for a review of a previously purchased product
 - Vine Voice: Reviews for free not-yet-released products (invitation only)

Fake reviews with "verified purchase" on Amazon

- ► cf) official review programs on Amazon
 - Early Reviewer Program: Amazon offers \$1-3 for a review of a previously purchased product
 - Vine Voice: Reviews for free not-yet-released products (invitation only)
- 2. The platform takes a transaction fee from each transaction

Fake reviews with "verified purchase" on Amazon

- ► cf) official review programs on Amazon
 - Early Reviewer Program: Amazon offers \$1-3 for a review of a previously purchased product
 - Vine Voice: Reviews for free not-yet-released products (invitation only)
- 2. The platform takes a transaction fee from each transaction
- 3. The platform can detect a part of fake reviews.

▶ Time: $t \in [0, \infty)$

- ▶ Time: $t \in [0, \infty)$
- ▶ Players: a long lived seller, many short lived buyers
 - ► (a platform can control parameters before the game starts)

- ▶ Time: $t \in [0, \infty)$
- ▶ Players: a long lived seller, many short lived buyers
 - ▶ (a platform can control parameters before the game starts)
- ► Action at time t
 - ► Seller:
 - (sell one unit of the product: fixed)
 - choose the amount of the fake reviews: $F_t \in \mathbb{R}$
 - ► Buyers:
 - buy the product, or not
 - \rightarrow form the equilibrium price: p_t

- ▶ Time: $t \in [0, \infty)$
- ▶ Players: a long lived seller, many short lived buyers
 - ▶ (a platform can control parameters before the game starts)
- ► Action at time t
 - ► Seller:
 - (sell one unit of the product: fixed)
 - choose the amount of the fake reviews: $F_t \in \mathbb{R}$
 - ► Buyers:
 - buy the product, or not
 - \rightarrow form the equilibrium price: p_t
- ► State:
 - θ_t : seller's type (quality of the product) at t
 - ► Y_t: seller's rating at t

- ▶ Time: $t \in [0, \infty)$
- ▶ Players: a long lived seller, many short lived buyers
 - ▶ (a platform can control parameters before the game starts)
- ► Action at time t
 - ► Seller:
 - (sell one unit of the product: fixed)
 - choose the amount of the fake reviews: $F_t \in \mathbb{R}$
 - ► Buyers:
 - buy the product, or not
 - \rightarrow form the equilibrium price: p_t
- ► State:
 - θ_t : seller's type (quality of the product) at t
 - ► Y_t: seller's rating at t
- ► Information:
 - ▶ Seller at time t: the whole history so far = $(\theta_s, Y_s, F_s, p_s)_{s \in [0, t]}$
 - ▶ Buyers at time t: current rating = Y_t

- ▶ Time: $t \in [0, \infty)$
- ▶ Players: a long lived seller, many short lived buyers
 - ▶ (a platform can control parameters before the game starts)
- ► Action at time t
 - ► Seller:
 - (sell one unit of the product: fixed)
 - choose the amount of the fake reviews: $F_t \in \mathbb{R}$
 - ► Buyers:
 - buy the product, or not
 - \rightarrow form the equilibrium price: p_t
- ► State:
 - \bullet θ_t : seller's type (quality of the product) at t
 - ► Y_t: seller's rating at t
- ► Information:
 - ▶ Seller at time t: the whole history so far = $(\theta_s, Y_s, F_s, p_s)_{s \in [0, t]}$
 - ▶ Buyers at time t: current rating = Y_t

- ▶ Time: $t \in [0, \infty)$
- ▶ Players: a long lived seller, many short lived buyers
 - ► (a platform can control parameters before the game starts)
- ► Action at time t
 - ► Seller:
 - (sell one unit of the product: fixed)
 - choose the amount of the fake reviews: $F_t \in \mathbb{R}$
 - ► Buyers:
 - buy the product, or not
 - \rightarrow form the equilibrium price: p_t
- ► State:
 - \bullet θ_t : seller's type (quality of the product) at t
 - ► Y_t: seller's rating at t
- ► Information:
 - ▶ Seller at time t: the whole history so far = $(\theta_s, Y_s, F_s, p_s)_{s \in [0, t]}$
 - ▶ Buyers at time t: current rating = Y_t

- ▶ Time: $t \in [0, \infty)$
- ▶ Players: a long lived seller, many short lived buyers
 - ► (a platform can control parameters before the game starts)
- ► Action at time t
 - ► Seller:
 - (sell one unit of the product: fixed)
 - choose the amount of the fake reviews: $F_t \in \mathbb{R}$
 - ► Buyers:
 - buy the product, or not \rightarrow form the equilibrium price: $p_t = E\left[\theta_t|Y_t\right] \equiv M_t$ Details
- ► State:
 - θ_t : seller's type (quality of the product) at t
 - ► Y_t: seller's rating at t
- ► Information:
 - ▶ Seller at time t: the whole history so far = $(\theta_s, Y_s, F_s, p_s)_{s \in [0, t]}$
 - ▶ Buyers at time t: current rating = Y_t

- ► State transition:
 - quality θ_t follows

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_\theta dZ_t^\theta$$

exogenous for players (seller/buyers) and for the platform

- ► State transition:
 - ightharpoonup quality θ_t follows

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

exogenous for players (seller/buyers) and for the platform

$$Y_{t+dt} = Y_t (1 - \phi dt) + (\text{new reviews})$$

- ► State transition:
 - quality θ_t follows

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

exogenous for players (seller/buyers) and for the platform

$$Y_{t+dt} = Y_t (1 - \phi dt) + (fake reviews) + ("organic" reviews)$$

- ► State transition:
 - quality θ_t follows

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

exogenous for players (seller/buyers) and for the platform

$$Y_{t+dt} = Y_t (1 - \phi dt) + (fake reviews) + ("organic" reviews)$$

- ► State transition:
 - ightharpoonup quality θ_t follows

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

exogenous for players (seller/buyers) and for the platform

$$Y_{t+dt} = Y_t (1 - \phi dt) + (\text{fake reviews}) + \frac{\theta_t dt}{\theta_t dt} + \frac{\sigma_{\xi} dZ_t^{\xi}}{\sigma_{\xi}}$$

- ► State transition:
 - ightharpoonup quality θ_t follows

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

exogenous for players (seller/buyers) and for the platform

$$Y_{t+dt} = Y_t (1 - \phi dt) + \text{(fake reviews)} + \theta_t dt + \sigma_{\xi} dZ_t^{\xi}$$

- ► State transition:
 - ightharpoonup quality θ_t follows

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

exogenous for players (seller/buyers) and for the platform

ightharpoonup rating Y_t follows

$$Y_{t+dt} = Y_t (1 - \phi dt) + {}_{a}F_{t}dt + \theta_{t}dt + \sigma_{\xi}dZ_{t}^{\xi}$$

a > 0: effectiveness of fake reviews. (low a = stringent censorship)

- ► State transition:
 - ightharpoonup quality θ_t follows

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

exogenous for players (seller/buyers) and for the platform

ightharpoonup rating Y_t follows

$$Y_{t+dt} = Y_t (1 - \phi dt) + aF_t dt + \theta_t dt + \sigma_{\xi} dZ_t^{\xi}$$

a > 0: effectiveness of fake reviews. (low a = stringent censorship)

- ► State transition:
 - ightharpoonup quality θ_t follows

$$d\theta_t = -\kappa \left(\theta_t - \mu\right) dt + \sigma_\theta dZ_t^\theta$$

exogenous for players (seller/buyers) and for the platform

ightharpoonup rating Y_t follows

$$dY_t = -\phi Y_t dt + aF_t dt + \theta_t dt + \sigma_{\xi} dZ_t^{\xi}$$

a > 0: effectiveness of fake reviews. (low a = stringent censorship)

► Seller's instantaneous payoff:

$$\pi_t = \underbrace{(1 - \tau) \, p_t \, (1 + F_t)}_{\text{revenue}} - \underbrace{p_t \cdot F_t}_{\text{costs of refund}} - \underbrace{\frac{c}{2} F_t^2}_{\text{additional costs}}$$

ightharpoonup au: transaction fee imposed by the platform.

► Seller's instantaneous payoff:

$$\pi_{t} = \underbrace{(1-\tau) p_{t} (1+F_{t})}_{\text{revenue}} - \underbrace{p_{t} \cdot F_{t}}_{\text{costs of refund}} - \underbrace{\frac{c}{2} F_{t}^{2}}_{\text{additional costs}}$$
$$= (1-\tau) p_{t} - \tau p_{t} \cdot F_{t} - \frac{c}{2} F_{t}^{2}$$

ightharpoonup au: transaction fee imposed by the platform.

► Seller's instantaneous payoff:

$$\pi_{t} = \underbrace{(1-\tau) \, p_{t} \, (1+F_{t})}_{\text{revenue}} - \underbrace{p_{t} \cdot F_{t}}_{\text{costs of refund}} - \underbrace{\frac{c}{2} F_{t}^{2}}_{\text{additional costs}}$$
$$= (1-\tau) \, p_{t} - \tau p_{t} \cdot F_{t} - \frac{c}{2} F_{t}^{2}$$

- ightharpoonup au: transaction fee imposed by the platform.
- ▶ The market determines $p_t = E[\theta_t|Y_t] \equiv M_t$

$$\pi_t = (1 - \tau) M_t - \tau M_t \cdot F_t - \frac{c}{2} F_t^2$$

ightharpoonup au= 0: a. la. Holmstrom (1999), a special case of Horner and Lambert (2018)

Yuta Yasui Controlling Fake Reviews 9 / 26

Definition of Equilibrium

Stationary Linear Markov equilibrium

Definition

A linear Markov strategy $F = (F_t)_{t\geq 0}$ s.t. $F_t = \alpha \theta_t + \beta Y_t + \gamma$ is a stationary linear Markov equilibrium if

$$1. \ F = \arg\max_{\left(\tilde{F}_{t}\right)_{t \geq 0}} E_{0}\left[\int_{0}^{\infty} \mathrm{e}^{-tr}\left(\left(1 - \tau\right) \mathit{M}_{t} - \tau \mathit{M}_{t} \cdot \tilde{F}_{t} - \frac{c}{2}\tilde{F}_{t}^{2}\right)\right]$$

- 2. $M_t = E^F [\theta_t | Y_t]$
- 3. $(\theta_t, Y_t)_{t\geq 0}$ induced by F is stationary Gaussian

$$\theta_{t+dt} = \theta_t \left(1 - \kappa dt \right) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

$$Y_{t+dt} = Y_t (1 - \phi dt) + aF_t dt + \theta_t dt + \sigma_{\xi} dZ_t^{\xi}$$

$$\theta_{t+dt} = \theta_t (1 - \kappa dt) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

$$Y_{t+dt} = Y_t (1 - \phi dt) + aF_t dt + \theta_t dt + \sigma_{\xi} dZ_t^{\xi}$$

$$\theta_{t+dt} = \theta_{t} (1 - \kappa dt) + \mu \kappa dt + \sigma_{\theta} dZ_{t}^{\theta}$$

$$Y_{t+dt} = Y_t (1 - \phi dt) + a(\alpha \theta_t + \beta Y_t + \gamma) dt + \theta_t dt + \sigma_\xi dZ_t^{\xi}$$

$$\theta_{t+dt} = \theta_{t} (1 - \kappa dt) + \mu \kappa dt + \sigma_{\theta} dZ_{t}^{\theta}$$

$$Y_{t+dt} = \frac{\mathbf{Y_t}}{\mathbf{I}} (1 - \phi dt) + a (\alpha \theta_t + \beta \mathbf{Y_t} + \gamma) dt + \theta_t dt + \sigma_\xi dZ_t^{\xi}$$

▶ Transition of (θ_t, Y_t) (in discrete analogue):

$$\theta_{t+dt} = \theta_t (1 - \kappa dt) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

$$Y_{t+dt} = \frac{Y_t}{t} (1 - (\phi - a\beta) dt) + \theta_t (1 + a\alpha) dt + a\gamma dt + \sigma_\xi dZ_t^\xi$$

11 / 26

$$\theta_{t+dt} = \theta_t (1 - \kappa dt) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

$$Y_{t+dt} = Y_t \left(1 - \left(\phi - a\beta\right)dt\right) + \theta_t \left(1 + a\alpha\right)dt + a\gamma dt + \sigma_\xi dZ_t^{\xi}$$

▶ Transition of (θ_t, Y_t) (in discrete analogue):

$$\theta_{t+dt} = \theta_t (1 - \kappa dt) + \mu \kappa dt + \sigma_{\theta} dZ_t^{\theta}$$

$$Y_{t+dt} = Y_t \left(1 - \left(\phi - a\beta\right)dt\right) + \theta_t \left(1 + a\alpha\right)dt + a\gamma dt + \sigma_\xi dZ_t^{\xi}$$

• (θ_t, Y_t) is stationary Gaussian if $\phi - a\beta > 0$

$$\theta_{t+dt} = \theta_{t} (1 - \kappa dt) + \mu \kappa dt + \sigma_{\theta} dZ_{t}^{\theta}$$

$$Y_{t+dt} = Y_t \left(1 - \left(\phi - a\beta\right)dt\right) + \theta_t \left(1 + a\alpha\right)dt + a\gamma dt + \sigma_\xi dZ_t^{\xi}$$

- (θ_t, Y_t) is stationary Gaussian if $\phi a\beta > 0$
- ▶ When (θ_t, Y_t) is stationary Gaussian, then

$$M_{t} \equiv E\left[\theta_{t}|Y_{t}\right] = \underbrace{E\left[\theta_{t}\right]}_{\equiv \mu} + \underbrace{\frac{Cov\left(\theta_{t}, Y_{t}\right)}{Var\left(Y_{t}\right)}}_{\equiv \lambda} [Y_{t} - \underbrace{E\left[Y_{t}\right]}_{\equiv \bar{Y}}]$$

Characterize Equilibrium

HJB equation:

$$rV\left(\theta, Y\right) = \sup_{F \in \mathbb{R}} \left(1 - \tau\right) M \cdot q - \tau M \cdot F - \frac{c}{2}F^{2}$$
$$-\kappa \left(\theta - \mu\right) V_{\theta} + \left\{-\phi Y_{t} + aF + \theta\right\} V_{Y}$$
$$+ \frac{\sigma_{\theta}^{2}}{2}V_{\theta\theta} + \frac{\sigma_{\xi}^{2}}{2}V_{YY}$$
s.t. $M = \mu + \lambda[Y - \bar{Y}]$

Characterize Equilibrium

► HJB equation:

$$\begin{split} rV\left(\boldsymbol{\theta}, \, \boldsymbol{M} \right) &= \sup_{F \in \mathbb{R}} \left(1 - \tau \right) \boldsymbol{M} \cdot \boldsymbol{q} - \tau \boldsymbol{M} \cdot \boldsymbol{F} - \frac{c}{2} \boldsymbol{F}^2 \\ &- \kappa \left(\boldsymbol{\theta} - \boldsymbol{\mu} \right) \boldsymbol{V}_{\boldsymbol{\theta}} + \left\{ - \phi \boldsymbol{Y}_t + a \lambda \boldsymbol{F} + \boldsymbol{\theta} \right\} \boldsymbol{V}_{\boldsymbol{M}} \\ &+ \frac{\sigma_{\boldsymbol{\theta}}^2}{2} \boldsymbol{V}_{\boldsymbol{\theta}\boldsymbol{\theta}} + \frac{\sigma_{\boldsymbol{\xi}}^2}{2} \boldsymbol{V}_{\boldsymbol{Y}\boldsymbol{Y}} \\ \text{s.t.} \, \, \boldsymbol{M} &= \boldsymbol{\mu} + \lambda [\boldsymbol{Y} - \bar{\boldsymbol{Y}}] \end{split}$$

▶ Note: θ appears in the transition of states

Characterize Equilibrium

HJB equation:

$$\begin{split} rV\left(\theta,\ Y\right) &= \sup_{F \in \mathbb{R}} \left(1 - \tau\right) M \cdot q - \tau M \cdot F - \frac{c}{2}F^2 \\ &- \kappa \left(\theta - \mu\right) V_{\theta} + \left\{-\phi Y_t + aF + \theta\right\} V_Y \\ &+ \frac{\sigma_{\theta}^2}{2} V_{\theta\theta} + \frac{\sigma_{\xi}^2}{2} V_{YY} \\ \text{s.t. } M &= \mu + \lambda [Y - \bar{Y}] \end{split}$$

- ▶ Note: θ appears in the transition of states
- ► The equilibrium is characterized by guess-and-verify of
 - $F = \alpha\theta + \beta Y + \gamma$ (linear strategy)
 - $V = v_0 + v_1\theta + v_2Y + v_3\theta^2 + v_4Y^2 + v_5Y\theta$ (quadratic value function)
 - $\phi a\beta > 0$ (stationarity)

There exists a stationary linear Markov equilibrium.

▶ Reminder: $F_t = \alpha \theta_t + \beta Y_t + \gamma$

There exists a stationary linear Markov equilibrium. In this equilibrium, $\alpha > 0$, $\beta < 0$, $\lambda > 0$.

▶ Reminder: $F_t = \alpha \theta_t + \beta Y_t + \gamma$

13 / 26

There exists a stationary linear Markov equilibrium. In this equilibrium, $\alpha > 0$, $\beta < 0$, $\lambda > 0$. The equilibrium is unique and continuously differentiable in parameters if a loose condition in parameters holds.

▶ Reminder: $F_t = \alpha \theta_t + \beta Y_t + \gamma$

- ► Reminder: $F_t = \alpha \theta_t + \beta Y_t + \gamma$
- ▶ Uniqueness holds if $\phi > \kappa$ (rating evolves faster than underlying quality).

- ▶ Reminder: $F_t = \alpha \theta_t + \beta Y_t + \gamma$
- ▶ Uniqueness holds if $\phi > \kappa$ (rating evolves faster than underlying quality).
- *β* < 0:
 </p>
 - ► Intuition: Higher rating, higher price, higher marginal cost of fake reviews, less fake reviews ▶ Details

- ▶ Reminder: $F_t = \alpha \theta_t + \beta Y_t + \gamma$
- ▶ Uniqueness holds if $\phi > \kappa$ (rating evolves faster than underlying quality).
- ▶ *β* < 0:
 - ► Intuition: Higher rating, higher price, higher marginal cost of fake reviews, less fake reviews ▶ Details
- α > 0:

- ▶ Reminder: $F_t = \alpha \theta_t + \beta Y_t + \gamma$
- ▶ Uniqueness holds if $\phi > \kappa$ (rating evolves faster than underlying quality).
- ▶ *β* < 0:
 - ► Intuition: Higher rating, higher price, higher marginal cost of fake reviews, less fake reviews ▶ Details
- $ightharpoonup \alpha > 0$:
 - ▶ Note: $\alpha > 0$ is **not from** the incentive to increase **revenue**
 - Higher θ_t , higher p_{t+dt} even without fake reviews
 - $\frac{dp_{t+dt}}{dF_t}$ does not depend on θ_t

- ▶ Reminder: $F_t = \alpha \theta_t + \beta Y_t + \gamma$
- ▶ Uniqueness holds if $\phi > \kappa$ (rating evolves faster than underlying quality).
- **▶** *β* < 0:
 - ► Intuition: Higher rating, higher price, higher marginal cost of fake reviews, less fake reviews ▶ Details
- ightharpoonup $\alpha > 0$:
 - ▶ Note: $\alpha > 0$ is **not from** the incentive to increase **revenue**
 - Higher θ_t , higher p_{t+dt} even without fake reviews
 - $\frac{dp_{t+dt}}{dF_t}$ does not depend on θ_t
 - ► Higher quality, more **cost-saving** in the future
 - Once its rating is boosted, the future self will reduce the fake reviews.
 - This effect remains for a long time, given high θ_t . Details

Implication to empirical literature:

- β < 0 is consistent with Luca and Zervas (2016)
 - ► More manipulation after a drop of a rating

Implication to empirical literature:

- β < 0 is consistent with Luca and Zervas (2016)
 - ► More manipulation after a drop of a rating

Implication to empirical literature:

► Hard to capture positive relationship b/w promotion level and quality.

- β < 0 is consistent with Luca and Zervas (2016)
 - ► More manipulation after a drop of a rating

Implication to empirical literature:

- ► Hard to capture positive relationship b/w promotion level and quality.
 - 1. The rating should **not** be used as a proxy for quality

- β < 0 is consistent with Luca and Zervas (2016)
 - ► More manipulation after a drop of a rating

Implication to empirical literature:

- ► Hard to capture positive relationship b/w promotion level and quality.
 - 1. The rating should **not** be used as a proxy for quality
 - 2. Even with true quality index, researcher needs to control reputation.

Consistency to data:

- β < 0 is consistent with Luca and Zervas (2016)
 - ► More manipulation after a drop of a rating

Implication to empirical literature:

- ► Hard to capture positive relationship b/w promotion level and quality.
 - 1. The rating should **not** be used as a proxy for quality
 - 2. Even with true quality index, researcher needs to control reputation.

Consistency to data:

- β < 0 is consistent with Luca and Zervas (2016)
 - ► More manipulation after a drop of a rating

Implication to empirical literature:

- ► Hard to capture positive relationship b/w promotion level and quality.
 - 1. The rating should **not** be used as a proxy for quality
 - 2. Even with true quality index, researcher needs to control reputation.

Assume that the platform can change a and ϕ

- ► Recall:
 - ► Rating: $Y_{t+dt} = Y_t \times (1 \frac{\phi}{\phi} dt) + d\xi_t$ (higher ϕ , a higher weight on today's review & faster transition)
 - New review: $d\xi_t = {}_aF_t dt + \theta_t dt + \sigma_\xi dZ_t^\xi$ (smaller a, more stringent filtering)
- \blacktriangleright [In the paper, I am working on comparative statics about τ and $\sigma_{\xi}]$

Proposition

 $E[F_t]$ is increasing in a. $E[F_t] \ge 0$ for sufficiently large a.

Proposition (The effects of fake reviews)

 $a \cdot \alpha$, $a \cdot \beta$, $a \cdot \gamma$ goes to zero as $a \rightarrow 0$.

- ► Reminder: $aF_t = a\alpha\theta_t + a\beta Y_t + a\gamma$ = the effect of fake reviews
- Stringent censorship can reduce the expected amount and the effects of fake reviews.
- ▶ Note: $(\alpha, \beta, \gamma) \rightarrow 0$ even when $E[F_t] \rightarrow 0$ or $(a\alpha, a\beta, a\gamma) \rightarrow 0$

Criteria:
$$\rho^2 = \frac{Cov(\theta_t, Y_t)^2}{Var(\theta_t)Var(Y_t)}$$

► Motivation:

Criteria:
$$\rho^2 = \frac{Cov(\theta_t, Y_t)^2}{Var(\theta_t)Var(Y_t)}$$

- ► Motivation:
- ▶ Regulators often want to make rating sytems informative.

Criteria:
$$\rho^2 = \frac{Cov(\theta_t, Y_t)^2}{Var(\theta_t)Var(Y_t)}$$

- ► Motivation:
- ▶ Regulators often want to make rating sytems informative.
- ► For the platform, if the rating system is not informative, the sellers and buyers might move out to other platforms.

Criteria:
$$\rho^2 = \frac{Cov(\theta_t, Y_t)^2}{Var(\theta_t)Var(Y_t)}$$

- ► Motivation:
- ► Regulators often want to make rating sytems informative.
- ► For the platform, if the rating system is not informative, the sellers and buyers might move out to other platforms.
 - ▶ Maximization of ρ^2 is equivalent to minimizing $Var(\theta|Y)$

$$Var(\theta|Y) = \underbrace{Var(\theta)}_{\text{exogenous}} (1 - \rho^2)$$

▶ Note: M_t is an unbiased estimate of θ_t ($E[E[\theta_t|Y_t]] = E[\theta_t]$)

Q: Should the platform reduce fake reviews? Criteria: $\rho^2 = \frac{Cov(\theta_t, Y_t)^2}{Var(\theta_t)Var(Y_t)}$

Criteria: $\rho^2 = \frac{\phi}{(\kappa + \phi)} \frac{1}{(1 + \kappa(\sigma_\xi/\sigma_\theta)^2(\kappa + \phi))}$ (without fake reviews)

Criteria: $\rho^2 = \frac{\phi}{(\kappa + \phi)} \frac{1}{(1 + \kappa(\sigma_{\xi}/\sigma_{\theta})^2(\kappa + \phi))}$ (without fake reviews)

► Impacts of the fake reviews:

Criteria: $\rho^2 = \frac{\phi}{(\kappa + \phi)} \frac{1}{(1 + \kappa(\sigma_{\xi}/\sigma_{\theta})^2(\kappa + \phi))}$ (without fake reviews)

► Impacts of the fake reviews:

Criteria: $\rho^2 = \frac{\phi}{(\kappa + \phi)} \frac{1}{(1 + \kappa(\sigma_\xi/\sigma_\theta)^2(\kappa + \phi))}$ (without fake reviews)

► Impacts of the fake reviews:

Criteria: $\rho^2 = \frac{\phi}{(\kappa + \phi)} \frac{1}{(1 + \kappa(\sigma_{\epsilon}/\sigma_{\theta})^2(\kappa + \phi))}$ (without fake reviews)

- ► Impacts of the fake reviews:
 - 1. $\mathbf{a} \cdot \mathbf{\alpha} > 0$ enhances the positive relationship between the true quality θ_t and the rating Y_t .
 - 2. $-a\beta > 0$ increases the transition speed of the rating Y_t .

Criteria:
$$\rho^2 = \frac{(\phi - a\beta)}{(\kappa + \phi - a\beta)} \frac{(a\alpha + 1)^2}{((a\alpha + 1)^2 + \kappa(\sigma_\xi/\sigma_\theta)^2(\kappa + \phi - a\beta))}$$
 (given any α , β , δ)

- ► Impacts of the fake reviews:
 - 1. $\mathbf{a} \cdot \mathbf{\alpha} > 0$ enhances the positive relationship between the true quality θ_t and the rating Y_t .
 - 2. $-a\beta > 0$ increases the transition speed of the rating Y_t .

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

1. the censorship is sufficiently loose, or

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

- 1. the censorship is sufficiently loose, or
- 2. (i) the censorship is sufficiently **strict** and (ii)the transition speed of the rating is sufficiently **slow**

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

- 1. a is sufficiently large, or
- 2. (i)a is sufficiently small and (ii)the transition speed of the rating is sufficiently **slow**

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

- 1. a is sufficiently large, or
- 2. (i)a is sufficiently small and

(ii)
$$\phi^2 < \frac{\sigma_\theta^2}{\sigma_\xi^2} + \kappa^2$$

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

- 1. a is sufficiently large, or
- 2. (i)a is sufficiently small and

(ii)
$$\phi^2 < \frac{\sigma_\theta^2}{\sigma_\xi^2} + \kappa^2$$

Intuition:

1. Higher a, higher $a \cdot \alpha$, more informative.

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

- 1. a is sufficiently large, or
- 2. (i)a is sufficiently small and

(ii)
$$\phi^2 < \frac{\sigma_\theta^2}{\sigma_\xi^2} + \kappa^2$$

- 1. Higher a, higher $a \cdot \alpha$, more informative.
- 2. $a\beta < 0$ makes the reputation transition speed $\phi a\beta$ faster.

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

- 1. a is sufficiently large, or
- 2. (i)a is sufficiently small and

(ii)
$$\phi^2 < \frac{\sigma_\theta^2}{\sigma_\xi^2} + \kappa^2$$

- 1. Higher a, higher $a \cdot \alpha$, more informative.
- 2. $a\beta < 0$ makes the reputation transition speed $\phi a\beta$ faster.
 - \blacktriangleright This is good if ϕ was too small, and

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

- 1. a is sufficiently large, or
- 2. (i)a is sufficiently small and

(ii)
$$\phi^2 < \frac{\sigma_\theta^2}{\sigma_\xi^2} + \kappa^2$$

- 1. Higher a, higher $a \cdot \alpha$, more informative.
- 2. $a\beta < 0$ makes the reputation transition speed $\phi a\beta$ faster.
 - \blacktriangleright This is good if ϕ was too small, and
 - \blacktriangleright bad if ϕ was already sufficiently high.

The **equilibrium** strategy is **more informative than no-fake** strategy under a set of parameters such that

- 1. a is sufficiently large, or
- 2. (i)a is sufficiently small and

(ii)
$$\phi^2 < \frac{\sigma_\theta^2}{\sigma_\xi^2} + \kappa^2$$

- 1. Higher a, higher $a \cdot \alpha$, more informative.
- 2. $a\beta < 0$ makes the reputation transition speed $\phi a\beta$ faster.
 - \blacktriangleright This is good if ϕ was too small, and
 - \blacktriangleright bad if ϕ was already sufficiently high.
- ► First effect dominates for large *a*, and second effect dominate for small *a*.

- - ► L (eqm effect on the transition speed) is positive and increasing in a.

- - ▶ L (eqm effect on the transition speed) is positive and increasing in a.
- 1. $\lim_{L\to\infty} \rho^2 = 1$

► L (eqm effect on the transition speed) is positive and increasing in a.

1.
$$\lim_{L\to\infty} \rho^2 = 1$$

2.
$$\frac{\partial \rho^2}{\partial L}|_{L=0} > 0$$
 iff $\phi^2 < \frac{\sigma_\theta^2}{\sigma_\xi^2} + \kappa^2$

Q: How does the optimal ϕ (transition speed of the rating) change due to the fake reviews?

Proposition

Q: How does the optimal ϕ (transition speed of the rating) change due to the fake reviews?

lacktriangle Comparison with the optimal ϕ without fake reviews, ϕ^0

Proposition

 ${\bf Q} :$ How does the optimal ϕ (transition speed of the rating) change due to the fake reviews?

- lacktriangle Comparison with the optimal ϕ without fake reviews, ϕ^0

Proposition

Q: How does the optimal ϕ (transition speed of the rating) change due to the fake reviews?

- lacktriangle Comparison with the optimal ϕ without fake reviews, ϕ^0

Proposition

 $\rho^{2}(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^{0}$.

 ${\bf Q}{:}$ How does the optimal ϕ (transition speed of the rating) change due to the fake reviews?

- lacktriangle Comparison with the optimal ϕ without fake reviews, ϕ^0

Proposition

 $\rho^2(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^0$.

 ${\bf Q} \colon {\bf How\ does\ the\ optimal\ } \phi$ (transition speed of the rating) change due to the fake reviews?

- lacktriangle Comparison with the optimal ϕ without fake reviews, ϕ^0

Proposition

 $ho^{2}\left(L\left(\phi
ight),\,\phi
ight)$ is decreasing in ϕ at $\phi=\phi^{0}$. Furthermore, $ho^{2}\left(0,\phi^{0}
ight)<
ho^{2}\left(L\left(\phi^{*}
ight),\phi^{*}
ight)$ for sufficiently small r.

Intuition

 $ightharpoonup
ho^2(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^0$.

- $\rho^2(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^0$.
 - \blacktriangleright w.o./ fake reviews: the platform can control the transition speed ϕ

- $\rho^2(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^0$.
 - \blacktriangleright w.o./ fake reviews: the platform can control the transition speed ϕ
 - lacktriangle w/ fake reviews: effective transition speed is $\phi+L$

- $\rho^2(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^0$.
 - lacktriangle w.o./ fake reviews: the platform can control the transition speed ϕ
 - w/ fake reviews: effective transition speed is $\phi + L$
 - lacktriangleright ightarrow the platform should adjust ϕ downward.

- $\rho^2(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^0$.
 - lacktriangle w.o./ fake reviews: the platform can control the transition speed ϕ
 - w/ fake reviews: effective transition speed is $\phi + L$
 - lacktriangleright ightarrow the platform should adjust ϕ downward.
- $\rho^{2}\left(0,\phi^{0}\right)<\rho^{2}\left(L\left(\phi^{L}\right),\phi^{L}\right)$ for sufficiently small r

- $ightharpoonup
 ho^2(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^0$.
 - \blacktriangleright w.o./ fake reviews: the platform can control the transition speed ϕ
 - w/ fake reviews: effective transition speed is $\phi + L$
 - ightharpoonup the platform should adjust ϕ downward.
- ho $\rho^2 \left(0,\phi^0\right) < \rho^2 \left(L\left(\phi^L\right),\phi^L\right)$ for sufficiently small r
 - ▶ small r ⇒ high weight on the future ⇒ high $\alpha > 0$ ⇒ informative (ie, $\rho^2(0,\phi^0) < \rho^2(L(\phi^0),\phi^0)$ given small r)

- $ightharpoonup
 ho^2(L(\phi), \phi)$ is decreasing in ϕ at $\phi = \phi^0$.
 - \blacktriangleright w.o./ fake reviews: the platform can control the transition speed ϕ
 - w/ fake reviews: effective transition speed is $\phi + L$
 - ightharpoonup the platform should adjust ϕ downward.
- $ho^2(0,\phi^0)<\rho^2(L(\phi^L),\phi^L)$ for sufficiently small r
 - ▶ small r ⇒ high weight on the future ⇒ high $\alpha > 0$ ⇒ informative (ie, $\rho^2(0,\phi^0) < \rho^2(L(\phi^0),\phi^0)$ given small r)
 - ▶ By definition of ϕ^* , $\rho^2(L(\phi^0), \phi^0) < \rho^2(L(\phi^*), \phi^*)$

► Credulous consumers believe that

► Reputation:

- ► Credulous consumers believe that
 - ▶ they face a stationary Gaussian distribution of (θ_t, Y_t)
- ► Reputation:

- Credulous consumers believe that
 - ▶ they face a stationary Gaussian distribution of (θ_t, Y_t)
 - there is no fake reviews by the seller. (ie, assume $\alpha = \beta = \gamma = 0$)
- ► Reputation:

- Credulous consumers believe that
 - ▶ they face a stationary Gaussian distribution of (θ_t, Y_t)
 - ▶ there is no fake reviews by the seller. (ie, assume $\alpha = \beta = \gamma = 0$)
- ► Reputation:
 - ▶ rational consumers: $M_t = E^F \left[\theta_t | Y_t\right] = \mu + \lambda \left(\alpha, \beta\right) \left[Y_t \bar{Y}\left(\alpha, \beta, \gamma\right)\right]$

- Credulous consumers believe that
 - ▶ they face a stationary Gaussian distribution of (θ_t, Y_t)
 - there is no fake reviews by the seller. (ie, assume $\alpha = \beta = \gamma = 0$)
- ► Reputation:
 - $\blacktriangleright \ \ \text{rational consumers:} \ \ \textit{M}_{t} = \textit{E}^{\textit{F}}\left[\theta_{t}|\textit{Y}_{t}\right] = \mu + \lambda\left(\alpha,\,\beta\right)\left[\textit{Y}_{t} \bar{\textit{Y}}\left(\alpha,\,\beta,\,\gamma\right)\right]$
 - redulous consumers: $\widetilde{M}_t = \widetilde{E}\left[\theta_t|Y_t\right] = \mu + \lambda\left(0,0\right)\left[Y_t \overline{Y}\left(0,0,0\right)\right]$
 - belief based an wrong joint distribution of $(heta_t,\ Y_t)$
- ► Seller's payoff:

- Credulous consumers believe that
 - ▶ they face a stationary Gaussian distribution of (θ_t, Y_t)
 - there is no fake reviews by the seller. (ie, assume $\alpha = \beta = \gamma = 0$)
- ► Reputation:
 - $\blacktriangleright \ \ \text{rational consumers:} \ \ \textit{M}_{t} = \textit{E}^{\textit{F}}\left[\theta_{t}|\textit{Y}_{t}\right] = \mu + \lambda\left(\alpha,\,\beta\right)\left[\textit{Y}_{t} \bar{\textit{Y}}\left(\alpha,\,\beta,\,\gamma\right)\right]$
 - redulous consumers: $\widetilde{M}_t = \widetilde{E}\left[\theta_t|Y_t\right] = \mu + \lambda\left(0,0\right)\left[Y_t \overline{Y}\left(0,0,0\right)\right]$
 - belief based an wrong joint distribution of $(\theta_t,\ Y_t)$
- Seller's payoff:

- Credulous consumers believe that
 - they face a stationary Gaussian distribution of (θ_t, Y_t)
 - there is no fake reviews by the seller. (ie, assume $\alpha = \beta = \gamma = 0$)
- Reputation:
 - rational consumers: $M_t = E^F [\theta_t | Y_t] = \mu + \lambda(\alpha, \beta) [Y_t \bar{Y}(\alpha, \beta, \gamma)]$
 - credulous consumers: $\widetilde{M}_t = \widetilde{E} [\theta_t | Y_t] = \mu + \lambda (0, 0) [Y_t \overline{Y}(0, 0, 0)]$ - belief based an wrong joint distribution of (θ_t, Y_t)
- Seller's payoff:
 - $\pi_t = (1 \tau) p_t \tau p_t \cdot F_t \frac{c}{2} F_t^2$
 - ▶ $p_t = \eta M_t + (1 \eta) M_t$ where $\eta \in [0, 1]$

- Credulous consumers believe that
 - ▶ they face a stationary Gaussian distribution of (θ_t, Y_t)
 - there is no fake reviews by the seller. (ie, assume $\alpha = \beta = \gamma = 0$)
- ► Reputation:
 - ▶ rational consumers: $M_t = E^F[\theta_t|Y_t] = \mu + \lambda(\alpha, \beta)[Y_t \bar{Y}(\alpha, \beta, \gamma)]$
 - ► credulous consumers: $\widetilde{M}_t = \widetilde{E} \left[\theta_t | Y_t \right] = \mu + \lambda \left(0, 0 \right) \left[Y_t \overline{Y} \left(0, 0, 0 \right) \right]$ belief based an wrong joint distribution of $\left(\theta_t, Y_t \right)$
- ► Seller's payoff:

 - $p_t = \eta M_t + (1 \eta) M_t$ where $\eta \in [0, 1]$
 - ► Interpretation:

- Credulous consumers believe that
 - ▶ they face a stationary Gaussian distribution of (θ_t, Y_t)
 - there is no fake reviews by the seller. (ie, assume $\alpha = \beta = \gamma = 0$)
- ► Reputation:
 - $\blacktriangleright \ \ \text{rational consumers:} \ \ \textit{M}_{t} = \textit{E}^{\textit{F}}\left[\theta_{t}|\textit{Y}_{t}\right] = \mu + \lambda\left(\alpha,\,\beta\right)\left[\textit{Y}_{t} \bar{\textit{Y}}\left(\alpha,\,\beta,\,\gamma\right)\right]$
 - ► credulous consumers: $\widetilde{M}_t = \widetilde{E}\left[\theta_t|Y_t\right] = \mu + \lambda\left(0, 0\right)\left[Y_t \overline{Y}\left(0, 0, 0\right)\right]$
 - belief based an wrong joint distribution of (θ_t, Y_t)
- Seller's payoff:

 - $p_t = \eta M_t + (1 \eta) \widetilde{M}_t$ where $\eta \in [0, 1]$
 - ► Interpretation:
 - η captures the rationality of all consumers

- Credulous consumers believe that
 - they face a stationary Gaussian distribution of (θ_t, Y_t)
 - there is no fake reviews by the seller. (ie, assume $\alpha = \beta = \gamma = 0$)
- Reputation:
 - rational consumers: $M_t = E^F [\theta_t | Y_t] = \mu + \lambda(\alpha, \beta) [Y_t \bar{Y}(\alpha, \beta, \gamma)]$
 - credulous consumers: $\widetilde{M}_t = \widetilde{E} [\theta_t | Y_t] = \mu + \lambda (0, 0) [Y_t \overline{Y}(0, 0, 0)]$
 - belief based an wrong joint distribution of (θ_t, Y_t)
- Seller's payoff:
 - $\bullet \ \pi_t = (1 \tau) p_t \tau p_t \cdot F_t \frac{c}{2} F_t^2$
 - ▶ $p_t = \eta M_t + (1 \eta) M_t$ where $\eta \in [0, 1]$
 - ► Interpretation:
 - η captures the rationality of all consumers
 - η is the ratio of rational consumers in the market. ightharpoonup

Theorem

Existence and uniqueness given the same condition as the baseline model

Theorem

Existence and uniqueness given the same condition as the baseline model

Proposition

Existence of the credulous consumers decreases $E[F_t]$.

Theorem

Existence and uniqueness given the same condition as the baseline model

Proposition

Existence of the credulous consumers decreases $E[F_t]$.

- ► Intuition:
 - Credulous consumers are less sensitive to the rating than rational consumers.
 - Rational consumers regard the rating infomative because of $a\alpha > 0$.
 - ▶ Less marginal benefit with credulous consumers.
 - Less fake reviews with credulous consumers.

$$\mathit{Bias} = \mathit{E}\left[\widetilde{\mathit{E}}\left[\theta_t|\mathit{Y}_t\right] - \theta_t\right]$$

$$\mathit{Bias} = E\left[\widetilde{E}\left[\theta_t|Y_t\right] - \theta_t\right]$$

Lemma

Bias ≥ 0 iff $E[F_t] \geq 0$.

$$\mathit{Bias} = \mathit{E}\left[\widetilde{\mathit{E}}\left[\theta_{t}|\mathit{Y}_{t}\right] - \theta_{t}\right]$$

Lemma

Bias
$$\geq$$
 0 iff $E[F_t] \geq$ 0.

Suppose there are only credulous consumers in the market.

$$\mathit{Bias} = \mathit{E}\left[\widetilde{\mathit{E}}\left[\theta_{t}|\mathit{Y}_{t}\right] - \theta_{t}\right]$$

Lemma

Bias ≥ 0 iff $E[F_t] \geq 0$.

Suppose there are only credulous consumers in the market.

Proposition

Stringent censorship policy reduces Bias as long as Bias ≥ 0 .

$$Bias = E\left[\widetilde{E}\left[\theta_t|Y_t\right] - \theta_t\right]$$

Lemma

Bias ≥ 0 iff $E[F_t] \geq 0$.

Suppose there are only credulous consumers in the market.

Proposition

Stringent censorship policy reduces Bias as long as $E[F_t] \ge 0$.

Positive Analysis:

Normative Analysis:

Positive Analysis:

- ► The number of fake reviews is increasing in quality, decreasing in reputation.
- ► The stringent censorship
 - reduces fake reviews in expectation, but
 - ► reduces the effects of fake reviews.

Normative Analysis:

Positive Analysis:

- ► The number of fake reviews is increasing in quality, decreasing in reputation.
- ► The stringent censorship
 - reduces fake reviews in expectation, but
 - ► reduces the effects of fake reviews.

Normative Analysis:

► For rational consumers:

► For credulous consumers:

Positive Analysis:

- ► The number of fake reviews is increasing in quality, decreasing in reputation.
- ► The stringent censorship
 - reduces fake reviews in expectation, but
 - reduces the effects of fake reviews.

Normative Analysis:

- ► For rational consumers:
 - a rating with fake reviews can be more informative than without fake reviews
 - Transition speed of the rating should be slower than the optimal level without fake reviews.
- ► For credulous consumers:

Positive Analysis:

- ► The number of fake reviews is increasing in quality, decreasing in reputation.
- ► The stringent censorship
 - reduces fake reviews in expectation, but
 - reduces the effects of fake reviews.

Normative Analysis:

- ► For rational consumers:
 - a rating with fake reviews can be more informative than without fake reviews
 - Transition speed of the rating should be slower than the optimal level without fake reviews.
- ► For credulous consumers:
 - As long as $E[F_t] \ge 0$, the more stringent censorship, the less bias for the credulous consumers.

Intuition of the Equilibrium Strategy

▶ Back to Theorem

- ► Reminder: $V = v_0 + v_1\theta + v_2Y + v_3\theta^2 + v_4Y^2 + v_5\theta Y$
- ► FOC: $F_t = -\frac{\tau}{c}M_t + \frac{a}{c}\{v_2 + 2Y_tv_4 + \theta v_5\}$
- β < 0
 </p>
 - $\beta = -\frac{\tau}{c}\lambda + 2\frac{a}{c}v_4 = -\frac{\tau}{c}\lambda + \frac{a}{c}\frac{-\beta\lambda\tau}{(-a\beta+r+2\phi)}$
 - $\rightarrow \beta < 0$ since today's cost saving incentive dominates.
- - ► Higher reputation, less promotion, less costly.
- α > 0
 - $\sim \alpha = \frac{a}{c} v_5$

feedback to future Y_t

- Driving Force: Higher quality, higher reputation in the future, cost reduction in the future.
- Counteracting effect: Higher quality, more promotion today/in the near future (if $\alpha>0$)

Microfoundation of the price: $p_t = M_t$

▶ Back to Model

- (Reminder: $M_t \equiv E[\theta_t|Y_t]$)
- ▶ Suppose there is a mass (2) of buyers.
- ▶ Consumer $i \in [0, 2]$ feels

$$u_i = \begin{cases} \theta + \epsilon_i - p & \text{if the consumer purchase the product} \\ 0 & \text{otherwise} \end{cases}$$

- $\epsilon_i \sim_{i.i.d.} F(\cdot)$ where $F(\cdot)$ is symmetric around zero
- ▶ Given Y, rational consumer purchases iff $M + \epsilon_i p \ge 0$
- ► Market clearing

$$1 = 2q \cdot (1 - F(p - M))$$

$$\Leftrightarrow p = M$$

Mixture of the rational/credulous consumers

→ Back to Model

- ▶ $M = E[\theta|Y]$: rational consumer's belief (on the seller's quality)
- $ightharpoonup \widetilde{M} = \widetilde{E}[\theta|Y]$: credulous consumer's belief (on the seller's quality)

Ratinale:

- 2η rational consumers and $2(1-\eta)$ credulous consumers in mkt
- ▶ Consumer $i \in [0, 2]$ feels

$$u_i = \begin{cases} \theta + \epsilon_i - p & \text{if the consumer purchase the product} \\ 0 & \text{otherwise} \end{cases}$$

- $\epsilon_i \sim U(-C, C)$: iid over the consumer types.
- ▶ Rational consumer purchases iff $M_t + \epsilon_i p \ge 0$
- ▶ Credulous consumer purchases iff $M_t + \epsilon_i p \ge 0$
- Market clearing

$$1 = 2\eta \cdot (1 - F(p - M)) + 2(1 - \eta) \cdot \left(1 - F(p - \widetilde{M})\right)$$

$$\Leftrightarrow p = \eta M + (1 - \eta)\widetilde{M}$$