FINAL PRESENTATION

Project System Design

Group 1

Apollinaire Criquet Johan Klassén Hendrik Lindgen

Nell Party Omid Najafi

PLAN

INTRODUCTION

2 DESIGN

INTRODUCTION

VISUALIZATION

- Volume
- Balance
 - Frequencies analyses
- Oscilloscope

DESIGN | KEYBOARD

KEY	SCANCODE	ACTION
Up arrow	E075	Increase the volume
Down arrow	E072	Decrease the volume
Left arrow	E06B	Shift the balance to the left speaker
Right arrow	E074	Shift the balance to the right speaker
М	3A	Toggle mute on the sound output

DESIGN | VOLUME & BALANCE

DESIGN | FIR FILTER

- 4 different frequency band
- Lowpass, bandpass and highpass fir filters
- Sample memory and coefficient memory inside the FPGA

DESIGN | FIR FILTER

SIMULATION IN MODELSIM

25/10/2022 TSIU03 – Final Presentation

DESIGN | POWER CALCULATOR

that can be print

DESIGN | POWER CALCULATOR

CALCULATION OF THE POWER

In this way we have the formula:

$$P = \sum_{n=0}^{\infty} x[n] \cdot (1 - H)^n$$

DESIGN | POWER CALCULATOR

LOGARITHMIC SCALE

We take the 3 bits after to improve the display

DESIGN | OSCILLOSCOPE

OSCILLOSCOPE

The goal is to send where to put the pixel of the oscilloscope for each line

DESIGN | OSCILLOSCOPE

DESIGN | VGA CONTROL

CONTROL PART: generate all the control signals needed to use the VGA screen

COLOR PART: decides and generates the color code for each pixel

25/10/2022

DESIGN | VGA CONTROL

Convert power values into gauge limits between colored area and the rest of the gauge

DESIGN | VGA CONTROL

- Decides the color of the pixel depending all the parameters
 gauge limits, warnings, mute and oscilloscope
- IF statements
- Background picture store in the SRAM

CHALLENGES & EXPERIENCES | CHALLENGES

TIME-CONSUMING (FIR FILTER): lot of adjustments needed to obtain the expected result

 ${\sf COMMUNICATION}$: different schedules that reduce the time together to talk about the project

CHALLENGES & EXPERIENCES | EXPERIENCES

some problems just need TIME to be solved

simulation TESTBENCHES are a very powerful and useful tool

ORGANIZE the project well to make the integration of all individual parts smooth

writing some DESIGN SPECIFICATIONS before doing any code

have good (OMMUNICATION to keep track of the advance in the project

TIME SUMMARY

USER MANUAL FUNCTIONALITIES

USER MANUAL CONTROLS

- Volume control: up arrow increase the volume and down arrow decrease the volume
 - Balance control: left arrow shifts the balance to the right and right arrow shifts the balance to the left
 - Mute control: turn off the sound on the speakers

USER MANUAL VISUALIZATION

Frequencies Analyses

Volume visualization

Balance visualization

An oscilloscope is visible on the background