

Theoretische Informatik Sommersemester 2021

Übung 8

A1. Zeigen Sie, dass die Sprache $L_1 = \{a^n b^{n^2} \mid n \in \mathbb{N}\}$ nicht kontextfrei ist.

$L\ddot{O}SUNG$

Sei $n \ge 1$. Man wähle $z = a^n b^{n^2}$. Dann ist $z \in L_1$ mit $|z| = n + n^2 \ge n$. Sei nun z = uvwxy eine Zerlegung von z mit $|vx| \ge 1$ und $|vwx| \le n$.

- 1. Fall: vx enthält nur as, also $vx=a^k$ mit einem unbekannten $k \ge 1$ (da $|vx| \ge 1$). Dann ist $uv^2wx^2y=a^{n+k}b^{n^2}\notin L_1$ da $n\ne (n+k)^2$.
- 2. Fall: vx enthält mindestens ein b.

Sei $m = \#_b(vx)$, also die Anzahl an bs im Teilwort vx.

Dann gilt $\#_b(uv^2wx^2y) = \#_b(z) + \#_b(vx) = n^2 + m$ – die ursprüngliche Anzahl an bs im Wort plus die zusätzlichen bs durch das "Hochpumpen". Es gilt weiter $0 < m \le |vx| \le |vwx| \le n$.

Allerdings ist n^2+m keine Quadratzahl, da $n^2 < n^2+m \le n^2+n < n^2+2n+1=(n+1)^2$ ist. Wenn aber im Wort uv^2wx^2y durch "hochpumpen" zusätzliche bs hinzukommen, müsste laut Definition $z=a^nb^{n^2}$ die Gesamtanzahl an bs quadratisch sein.

Somit gilt $uv^2wx^2y \notin L_1$.

Also kann man in beiden Fällen den Pumpfaktor i=2 wählen.

A2. Zeigen Sie, dass die Sprache $L_2 = \{a^i b^j c^k \mid i < j < k\}$ nicht kontextfrei ist.

$L\ddot{O}SUNG$

Sei $n \ge 1$. Man wähle $z = a^n b^{n+1} c^{n+2}$. Dann ist $z \in L_2$ mit $|z| = 3n + 3 \ge n$.

Sei nun z = uvwxy mit $|vx| \ge 1$ und $|vwx| \le n$.

Wegen $|vwx| \leq n$ enthält vwx und damit auch vx höchstens zwei der drei Zeichen a, b, c.

Also existieren zwei benachbarte Zeichen (a, b oder b, c), von denen eines in vx vorkommt und das andere nicht. Damit bleiben die folgenden vier Fälle zu betrachten:

- 1. Fall: vx enthält mindestens ein a, aber kein b. Mit Pumpfaktor 2 erhält man $\#_a(uv^2wx^2y) > \#_a(z) = n$ und $\#_b(uv^2wx^2y) = \#_b(z) = n+1$, also $uv^2wx^2y \notin L_2$.
- 2. Fall: vx enthält mindestens ein b, aber kein c. Analog zum 1. Fall.
- 3. Fall: vx enthält mindestens ein b, aber kein a. Mit Pumpfaktor 0 erhält man $\#_b(uv^0wx^0y) < \#_b(z) = n+1$ und $\#_a(uv^0wx^0y) = \#_a(z) = n$, also $uv^0wx^0y \notin L_2$.
- 4. Fall: vx enthält mindestens ein c, aber kein b. Analog zum 3. Fall.

Damit ist in allen vier Fällen ein Pumpfaktor i gefunden mit $uv^iwx^iz \in L_2$, also ist L_2 nicht kontextfrei.