

EMIPAK 1B PressFit Power Module 800 V Half Controlled Single Phase Bridge, 20 A 600 V PFC and Half Bridge MOSFET, 40 A

EMIPAK 1B (package example)

PRIMARY CHARACTE	RISTICS						
HALF CONTROLLED S	HALF CONTROLLED SINGLE PHASE BRIDGE						
I _O at T _{SINK} = 115 °C	20 A						
D1,	, D2						
V_{RRM}	800 V						
V _{FM} typical at 20 A	1.10 V						
SCR1,	SCR2						
V_{RRM}/V_{DRM}	800 V						
V _{TM} typical at 20 A	1.29 V						
QB1 - QB2 -	QB3 MOSFET						
V_{DSS}	600 V						
$R_{DS(on)}$ typical at $I_C = 40 A$	37 mΩ						
I _D at T _{SINK} = 39 °C	40 A						
D3 SILICON CARB	IDE CLAMP DIODE						
V_{RRM}	600 V						
V _{FM} typical at 30 A	1.72 V						
I _F at T _C = 46 °C	30 A						
Туре	Modules - MOSFET						
Package	EMIPAK 1B						
Circuit configuration	Half controlled input bridge plus MOSFET boost PFC leg and MOSFET half bridge inverter						

FEATURES

- E series power MOSFET with fast body diode
- (Pb)
- MOAT and SiC diode technology
- Merti and ele diede teemieleg
- Thyristor phase control
 Exposed Al₂O₃ substrate with low thermal resistance
- Low input capacitance
- · Low switching and conduction losses
- Ultra low gate charge Qq
- Low internal inductances
- Qualified using AQG324 guideline as reference
- PressFit pins locking technology PATENT(S): www.vishay.com/patents
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The EMIPAK 1B package is easy to use thanks to the PressFit pins. The exposed substrate provides improved thermal performance.

The optimized layout also helps to minimize stray parameters, allowing for better EMI performance.

PATENT(S): www.vishay.com/patents

This Vishay product is protected by one or more United States and international patents.

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Operating junction temperature	Operating junction temperature T _J		150	^^	
Storage temperature range	T _{Stg}		-40 to +150	°C	
RMS isolation voltage	V _{ISOL}	T _J = 25 °C, all terminals shorted, f = 50 Hz, t = 1 s	3500	V	
HALF CONTROLLED SINGLE PHASE			'		
Mariana DO autout aumant of builder		T _{SINK} = 25 °C	44		
Maximum DC output current of bridge	I _O	T _{SINK} = 80 °C	31	Α	
One-cycle non-repetitive on-state peak or forward current	I _{FSM} /I _{TSM}	10 ms sine or 6 ms rectangular pulse, T _J = 150 °C, no voltage reapplied	273	^	
Maximum I ² t for fusing	l ² t	10 ms sine pulse, no voltage reapplied	374	A ² s	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied	3740	A²√s	
Value of threshold voltage	V _{F(TO)}	T _J = 150 °C	1.04	V	
Slope resistance	r _t	T _J = 150 °C	38.9	mΩ	
Repetitive peak reverse diode	V_{RRM}		800	V	
Repetitive peak direct and reverse thyristor	V _{RRM} /V _{DRM}		800	V	
Maximum critical rate of rise of off-state voltage - thyristor	dV/dt	V _{DRM} = 80 % of rated voltage, T _J = 125 °C	500	V/µs	
Maximum non-repetitive rate of rise of turned on current - thyristor	dl/dt	T _J = 125 °C	150	A/µs	
QB1 - QB2 - QB3 MOSFET					
Drain to source voltage	V_{DSS}		600	V	
Gate to source voltage	V_{GS}		± 30	V	
Pulsed drain current	I _{DM}	V _{GS} = 10 V	135	Α	
Continuous drain current	I-	T _{SINK} = 25 °C	42	Α	
Continuous drain current	Ι _D	T _{SINK} = 80 °C	32	A	
Power dissipation	D.	T _{SINK} = 25 °C	174	W	
Fower dissipation	P_{D}	T _{SINK} = 80 °C	97] vv	
Single pulse avalanche energy	E _{AS}	$L = 10 \text{ mH}, I_{AS} = 23 \text{ A}, T_{J} = 25 ^{\circ}\text{C}$	2645	mJ	
Pulsed source current (body diode)	I _{SM}		135	Α	
D3 SILICON CARBIDE CLAMP DIODE					
Cathode to anode voltage	V_{RRM}		600	V	
Single pulse forward current	I _{FSM}	10 ms sine or 6 ms rectangular pulse, T _J = 25 °C	234	Α	
Diada continuous formanda accel		T _{SINK} = 25 °C	33	^	
Diode continuous forward current	I _F	T _{SINK} = 80 °C	23	A	
Power discipation	D.	T _{SINK} = 25 °C	96	W	
Power dissipation	P_{D}	T _{SINK} = 80 °C	54	V V	

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
INPUT SINGLE PHASE BRIDGE	•					
D1, D2						
Forward voltage drep		I _F = 20 A	-	1.10	1.32	V
Forward voltage drop	V_{FM}	I _F = 20 A, T _J = 150°C	-	1.02	-	V
Breakdown voltage	V_{BR}	I _R = 500 μA	800	-	-	V
Reverse leakage current	,	V _R = 800 V	-	0.7	100	μΑ
Reverse leakage current	I _{RM}	V _R = 800 V, T _J = 150 °C	-	0.7	-	mA
SCR1, SCR2						
Dools on state valtage		I _{TM} = 20 A	-	1.29	1.70	.,
Peak on state voltage	V _{TM}	I _{TM} = 20 A, T _J = 150 °C	-	1.24	-	V
Breakdown voltage	V _{RRM} /V _{DRM}	I _R = 500 μA	800	-	-	V
	I _{RM} /I _{DM}	V _R = 800 V	-	1.0	100	μΑ
Reverse and direct leakage current I _{RN}		V _R = 800 V, T _J = 150°C	-	4.5	-	mA
QB1 - QB2 - QB3 MOSFET	•					
Drain to source breakdown voltage	BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	600	-	-	
	Б	V _{GS} = 10 V, I _D = 40 A V _{GS} = 10 V, I _D = 40 A, T _J = 150 °C	-	37	48	mΩ
Drain to source on resistance	R _{DS(on)}		-	87	-	1
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.8	2.7	4.4	V
Temperature coefficient of threshold voltage	$\Delta V_{GS(th)}/\Delta T_{J}$	V _{DS} = V _{GS} , I _D = 250 μA (25 °C to 125 °C)	-	-11.4	-	mV/°C
Forward transconductance	9 _{fs}	V _{DS} = 20 V, I _D = 40 A	-	48	-	S
Transfer characteristics	V _{GS}	V _{DS} = 20 V, I _D = 40 A	-	5.3	-	V
Zara gata valtaga drain avrent		V _{GS} = 0 V, V _{DS} = 600 V	-	0.7	10	μΑ
Zero gate voltage drain current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 600 V, T _J = 150 °C	-	1.1	-	mA
Gate to source leakage current	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	± 150	nA
QB1 - QB2 - QB3 MOSFET BODY DIOD	E			•	•	•
Source-to-drain voltage drop	V_{SD}	I _{SD} = 40 A, V _{GS} = 0 V	-	0.92	1.32	V
D3 SILICON CARBIDE CLAMP DIODE	•			•	•	•
Famusard voltage drags	\/	I _F = 30 A	-	1.72	1.98	.,
Forward voltage drop	V_{FM}	I _F = 30 A, T _J = 150 °C	-	2.37	-	V
Breakdown voltage	V _{BR}	I _R = 1.5 mA	600	-	-	V
Reverse leakage current		V _R = 600 V	-	0.6	300	
	I _{RM}	V _B = 600 V, T _J = 150 °C	_	4.2	_	μA

TRIGGERING (T _J = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
SCR1, SCR2					
Maximum peak gate power	P_{GM}		8.0	W	
Maximum average gate power	P _{G(AV)}		2.0	W	
Maximum peak gate current	I _{GM}		1.5	А	
Maximum peak negative gate voltage	V_{GM}		10	V	
Maximum acts valtage required to triager	V	$T_J = 25$ °C, anode supply = 6 V resistive load 2.0	2.0	V	
Maximum gate voltage required to trigger	V_{GT}	T _J = 125 °C, anode supply = 6 V resistive load	0.75	V	
Maximum gate current required to trigger	,	T _J = 25 °C, anode supply = 6 V resistive load	45	- mA	
iviaximum gate current required to trigger	I _{GT}	T _J = 125 °C, anode supply = 6 V resistive load	14		
Maximum gate voltage that will not trigger	V_{GD}	T _J = 125 °C, 100 % V _{DRM} applied	0.2	V	
Maximum gate current that will not trigger	I _{GD}	T _J = 125 °C, 100 % V _{DRM} applied	1.0	mA	

SWITCHING (T _J = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	YMBOL TEST CONDITIONS VALUES UNITS				
SCR1, SCR2						
Typical turn-on time	t _{gt}	T _J = 25 °C	0.9			
Typical reverse recovery time	t _{rr}	T _J = 125 °C	4	μs		
Typical turn-off time	t _g	T _J = 125 °C	110			

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
QB1 MOSFET with D3 CLAMP DI	ODE		l			
Total gate charge (turn-on)	Q _g	I _D = 32 A,	-	240	-	
Gate to source charge (turn-on)	Q _{gs}	$V_{DS} = 480 \text{ V},$	-	58	-	nC
Gate to drain charge (turn-on)	Q_{gd}	V _{GS} = 10 V	-	96	-	1
Turn-on switching loss	E _{ON}		-	0.53	-	mJ
Turn-on delay time	t _{d(on)}		-	43	-	
Rise time	t _r	$I_D = 40 \text{ A}, V_{DD} = 450 \text{ V},$	-	26	-	ns
Turn-off switching loss	E _{OFF}	$V_{GS} = +10 \text{ V} / -10 \text{ V},$ $R_0 = 10 \Omega$, L = 500 μH	-	0.19	-	mJ
Turn-off delay time	t _{d(off)}	- 1 1 1 2 1 2 1 2 2 2 2 2 2 1 1 1 2	-	160	-	
Fall time	t _f		-	18	-	ns
Turn-on switching loss	E _{ON}		-	0.63	-	mJ
Turn-on delay time	t _{d(on)}		-	39	-	
Rise time	t _r	$I_D = 40 \text{ A}, V_{DD} = 450 \text{ V},$	-	29	-	ns
Turn-off switching loss	E _{OFF}	V_{GS} = +10 V / -10 V, R_0 = 10 Ω, L = 500 μH, T_J = 125 °C	=	0.23	-	mJ
Turn-off delay time	t _{d(off)}	11g = 10 32, Ε = 000 μπ, 1g = 120 0	-	162	-	
Fall time	t _f	1	-	19	-	ns
Input capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 100 V, f = 1 MHz	-	7500	-	
Output capacitance	Coss		-	378	-	pF
Reverse transfer capacitance	C _{rss}		=	5	-	
Reverse bias safe operating area	RBSOA	$T_J = 150 ^{\circ}\text{C}, I_D = 100 \text{A}, V_{DD} = 400 \text{V}, \ V_P = 600 \text{V}, R_q = 10 \Omega, V_{GS} = +10 \text{V} / 0 \text{V}$		1		1
QB2 - QB3 MOSFET						
Total gate charge (turn-on)	Qg	I _D = 32 A,	-	240	-	
Gate-source charge	Q _{gs}	$V_{DS} = 480 \text{ V},$	=	58	-	nC
Gate-drain charge	Q_{gd}	$V_{GS} = 10 \text{ V}$	-	96	-	
Turn-off switching loss	E _{OFF}	I _D = 40 A, V _{DD} = 450 V,	-	0.17	-	mJ
Turn-off delay time	t _{d(off)}	$V_{GS} = +10 \text{ V/} -10 \text{ V},$	=	157	-	
Fall time	t _f	R_g = 10 Ω, L = 500 μH	-	18	-	ns
Turn-off switching loss	E _{OFF}	I _D = 40 A, V _{DD} = 450 V,	-	0.19	-	mJ
Turn-off delay time	t _{d(off)}	$V_{GS} = +10 \text{ V/} -10 \text{ V},$	=	164	-	
Fall time	t _f	R_g = 10 Ω, L = 500 μH, T_J = 125 °C	-	19	-	ns
Input capacitance	C _{iss}	V _{GS} = 0 V,	-	7500	-	
Output capacitance	C _{oss}	$V_{DS} = 100 \text{ V},$	-	378	-	pF
Reverse transfer capacitance	C _{rss}	f = 1 MHz	-	5	-	
Reverse bias safe operating area	RBSOA	$T_J = 150 ^{\circ}\text{C}, I_D = 150 \text{A}, V_{DD} = 400 \text{V}, \ V_P = 600 \text{V}, R_g = 10 \Omega, V_{GS} = +10 \text{V} / 0 \text{V}$				
QB1 - QB2 - QB3 MOSFET BODY	DIODE	, ,	u .			
Diode reverse recovery time	t _{rr}	V _R = 200 V, T _J = 25 °C,	-	211	-	ns
Diode reverse recovery current	I _{rr}	$V_R = 200 \text{ V}, \text{ IJ} = 25 \text{ C},$ $I_S = 40 \text{ A},$	-	17	-	Α
Diode reverse recovery charge	Q _{rr}	dl/dt = 100 A/μs	-	1775	-	nC
D3 SILICON CARBIDE CLAMP DI		<u> </u>	1	I .	ı	I .

INTERNAL NTC - THERMISTOR SPECIFICATIONS						
PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS VALUE		UNITS		
Resistance	R25	T _C = 25 °C	5000	Ω		
nesistance	R100	T _C = 100 °C	493 ± 5 %	52		
B-value	B _{25/50}	$R_2 = R_{25} \text{ exp. } [B_{25/50}(1/T2 - 1/(298.15K))]$	3375 ± 5 %	K		
Maximum operating temperature			220	°C		
Dissipation constant			2	mW/°C		
Thermal time constant			8	S		

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS		
INPUT SINGLE PHASE BRIDGE - Junction to sink thermal resistance (per diode) (1)		-	1.28	-			
INPUT SINGLE PHASE BRIDGE - Junction to sink thermal resistance (per thyristor) (1)		-	1.11	-	°C/W		
QB1 - QB2 - QB3 MOSFET - Junction to sink thermal resistance (per switch) (1)		-	0.64	-			
D3 SILICON CARBIDE CLAMP DIODE - Junction to sink thermal resistance (per diode) (1)		-	1.07	-			
Case to sink thermal resistance (per module) (1)		-	0.1	-			
Mounting torque (M4)		2	-	3	Nm		
Weight		-	28	-	g		

Note

 $^{^{(1)}}$ Mounting surface flat, smooth, and greased, λ_{grease} = 0.67 W/mK

Fig. 1 - Current Rating Characteristics

Fig. 2 - Total Power Loss Characteristics

Fig. 3 - Typical D1 - D2 Forward Voltage Drop vs. Instantaneous Forward Current

Fig. 4 - Typical D1 - D2 Reverse Current vs. Reverse Voltage

Fig. 5 - Typical Scr1 - Scr2 On-State Voltage Drop vs. Instantaneous On-State Current

Fig. 6 - Typical Scr1 - Scr2 Forward Leakage Current vs.
Direct Blocking Voltage

Fig. 7 - Typical Scr1 - Scr2 Reverse Leakage Current vs. Reverse Blocking Voltage

Fig. 8 - Maximum Non-Repetitive Surge Current vs. Number of Current Pulses

Fig. 9 - Maximum Non-Repetitive Surge Current vs. Pulse Train Duration

Fig. 10 - Maximum QB1 - QB3 Continuous Drain Current vs. Sink Temperature

Fig. 11 - QB1 - QB3 Power Dissipation Curve

Fig. 12 - Typical QB1 - QB3 Drain to Source Current Output Characteristics at T_{J} = 25 °C

Fig. 13 - Typical QB1 - QB3 Drain to Source Current Output Characteristics at T_J = 150 °C

Fig. 14 - Typical QB1 - QB3 Drain-to-Source On-Resistance vs. Temperature

Fig. 15 - Typical QB1 - QB3 Transfer Characteristics

Fig. 16 - Typical QB1-QB3 Gate Threshold Voltage Characteristics

Fig. 17 - Typical QB1 - QB3 Zero Gate Voltage Drain Current

Fig. 18 - Typical QB1 - QB3 Drain to Source Breakdown Voltage vs. Temperature

Fig. 19 - Typical QB1 - QB3 Drain - State Resistance vs. Gate-to-Source Voltage

Fig. 20 - Typical QB1 - QB3 Source-to-Drain Current Characteristics at T_J = 125 °C

Fig. 21 - Typical QB1 - QB3 Source-to-Drain Current Characteristics at T_{J} = 125 °C

Fig. 22 - Typical QB1 - QB3 Body Diode Source-to-Drain Current Characteristics

Fig. 23 - Typical QB1 - QB3 Gate charge vs. Gate-to-Source Voltage

Fig. 24 - Typical QB2 - QB3 Turn-off Energy Loss vs. I_D $V_{DD} = 450$ V, $R_g = 10~\Omega, V_{GS} = \pm~10~V, L = 500~\mu H$

Fig. 25 - Typical QB2-QB3 Turn-off Switching Time vs I_D $V_{DD}=450$ V, $R_g=10~\Omega, V_{GS}=\pm~10$ V, L = $500~\mu H$

Fig. 26 - Typical QB2-QB3 Turn-off Energy Loss vs Rg $V_{DD} = 450$ V, $I_{D} = 40$ A, $V_{GS} = \pm$ 10 V, L = 500 μH

Fig. 27 - Typical QB2-QB3 Turn-off Switching Time vs Rg V_{DD} = 450 V, I_D = 40 A, V_{GS} = \pm 10 V, L = 500 μH

Fig. 28 - QB2 - QB3 MOSFET Reverse BIAS SOA $T_J = 150 \, ^{\circ}\text{C}, \, V_{GS} = 10 \, \text{V}$

Fig. 29 - Typical QB1 Turn-off Energy Loss vs. I_D V_{DD} = 450 V, R_q = 10 Ω , V_{GS} = \pm 10 V, L = 500 μ H

Fig. 30 - Typical QB1 Turn-off Switching Time vs. I_D V_{DD} = 450 V, R_q = 10 $\Omega,$ V_{GS} = \pm 10 V, L = 500 μH

Fig. 31 - Typical QB1 Turn-off Energy Loss vs. R_g V_{DD} = 450 V, I_D = 40 A, V_{GS} = \pm 10 V, L = 500 μ H

Fig. 32 - Typical QB1 Turn-off Switching Time vs. R_g $V_{DD}=450$ V, $I_D=40$ A, $V_{GS}=\pm$ 10 V, $L=500~\mu H$

Fig. 33 - Typical QB1 Turn-on Energy Loss vs. I_D $V_{DD}=450~V,~R_g=10~\Omega,~V_{GS}=\pm~10~V,~L=500~\mu H$

Fig. 34 - Typical QB1 Turn-on Switching Time vs. I_D V_{DD} = 450 V, R_q = 10 Ω , V_{GS} = ± 10 V, L = 500 μ H

Fig. 35 - Typical QB1 Turn-on Energy Loss vs. R_g V $_{DD}$ = 450 V, I $_{D}$ = 40 A, V $_{GS}$ = \pm 10 V, L = 500 μH

Fig. 36 - Typical QB1 Turn-on Switching Time vs. R_g $V_{DD}=450$ V, $I_D=40$ A, $V_{GS}=\pm~10$ V, $L=500~\mu H$

Fig. 37 - QB1 MOSFET Reverse BIAS SOA T_{J} = 150 °C, V_{GS} = 10 V

Fig. 38 - QB1 - QB3 Safe Operating Area

Fig. 39 - Typical D3 Diode Forward Characteristics

Fig. 40 - Maximum D3 Diode Continuous Forward Current vs. Sink Temperature

Fig. 41 - Typical D3 Diode Reverse Leakage Current

Fig. 42 - Maximum D1 - D2 Z_{thJS} Thermal Impedance Characteristic

Fig. 43 - Maximum Scr1 - Scr2 Z_{thJS} Thermal Impedance Characteristic

Fig. 44 - Maximum QB1 - QB3 Z_{thJS} Thermal Impedance Characteristic

Fig. 45 - Maximum D3 Z_{thJS} Thermal Impedance Characteristics

ORDERING INFORMATION TABLE

- Vishay Semiconductors product
- Package indicator (EN = EMIPAK 1B)
- Circuit configuration (M = Half controlled input bridge plus MOSFET boost PFC leg and MOSFET half bridge inverter) Current rating (040 = 40 A)

- Switch die technology (M = SiC diodes + Power MOSFET + MOAT)
- 6 Voltage rating (60 = 600 V)
- Diode technology (P = SiC diodes + MOAT + SCR)

LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95558</u>				
Application Note	www.vishay.com/doc?95580			

EMIPAK-1B PressFit

DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.