

Experimento 02

Laboratório de Princípios de Comunicação

Autoria Pedro Henrique Dornelas Almeida **Matrícula** 18/0108140

Engenharia de Redes de Comunicação Universidade de Brasília

1 de Março de $2021\,$

1 Introdução

O objetivo deste experimento é lidar com modulações em amplitude e também demodulações. Portanto, aqui estarão descritos os passos mais importante para a realização do experimento, bem como a análise dos resultados que foram obtidos. Para isso, é importante entender os conceitos de modulação e demodulação em comunicações, bem como como é feito no campo da amplitude.

2 Desenvolvimento

AR 01

Passos

• Aqui foi necessário configurar um ambiente de experimentação em que um sinal foi modulado em amplitude por uma onda portadora, e os sinais foram, respectivamente, uma onda triangular(m(t)) e uma cossenóide($cos(2\pi f_c t)$). Neste ponto, as duas ondas podem ser vistas nas figuras seguintes:

Figura 1.1 m(t)

Figura 1.2 $cos(2\pi f_c t)$

Note que na figura ?? pode-se observar uma cossenóide de frequência 10kHz, como o roteiro indica, e posteriormente, para o preenchimento da tabela, essa frequência será em 33kHz.

• Em seguida, o circuito completo foi montado a fim de implementar um modulador de sinais em amplitude, este está como a foto abaixo:

Figura 1.3

• Após a implementação devida do circuito completo, pode-se então analisar os sinais em um osciloscópio para visualizar como está sendo feita a

modulação em amplitude diretamente, fazemos isso mostrando a mensagem, bem como o sinal modulado, ambos em um osciloscópio para conseguimos fazer um paralelo entre elas.

Figura 1.4

- Neste ponto acima, note que temos uma análise importante a fazer, neste momento, perceba que a amplitude da cossenóide, ou seja, sua envoltória, carrega o sinal da mensagem. Isto era esperado e aqui conseguimos ver claramente o efeito de um modulador de amplitude.
- Seguindo com o experimento, aqui é possível obter os valores para preenchimento da tabela 1.1. De acordo com as fórmulas abaixo para A_{max} , A_{min} , μ_+ , μ_- , μ descritos no material de apoio:

$$\text{Índice de modulação positiva} \quad \Rightarrow \qquad \mu_+ = \frac{A_{\max} - A_c}{A_c} = \frac{\max[k_a m(t)]}{A_c} = \frac{k_a m_{p+}}{A_c} \tag{4}$$

Índice de modulação negativa
$$\Rightarrow$$
 $\mu_- = \frac{A_c - A_{\min}}{A_c} = \frac{-\min[k_a m(t)]}{A_c} = \frac{k_a m_{p-}}{A_c}$ (5)

Índice de modulação
$$\Rightarrow \mu = \frac{\mu_+ + \mu_-}{2} = \frac{A_{\text{max}} - A_{\text{min}}}{2A_c}$$
 (6)

onde

$$A_{\text{max}} = \max[A_c + k_a m(t)] = A_c + k_a \max[m(t)] = A_c + k_a m_{p+}$$

$$A_{\text{min}} = \min[A_c + k_a m(t)] = A_c + k_a \min[m(t)] = A_c - k_a m_{p-}$$

$$m_{p+} = \max[m(t)]$$

$$m_{p-} = -\min[m(t)]$$
(7)

• Neste momento nos deparamos com um conceito muito importante para o assunto que é a medição indireta da profundidade de modulação. Neste momento foi utilizado o método do trapézio para ver como a profundidade da modulação está ocorrendo, então, a área de trabalho foi configurada da seguinte maneira para verificação desses valores:

Figura 1.5

 Para exemplificar como é este gráfico, foi realizado o sinal 1 e 5 descritos no roteiro, e abaixo estão os gráficos correspondentes ao QT GUI Constellation Sink.

Figura 1.6 Sinal 1

Figura 1.7 Sinal 5

 \bullet Neste momento, temos todas as informações necessárias para que a Tabela 1.2 seja preenchida.

Resultados

		A_{max}		A_{min}		μ_+		μ		μ	
Sinal	K_a	Teórico	Medido	Teórico	Medido	Teórico	Medido	Teórico	Medido	Teórico	Medido
(1)	6	14	13,92	2	2,01	0,75	0,74	0,75	0,748	0,75	0,744
(2)	0	8	7,99	8	?	0	0,001	0	0,001	0	0,001
(3)	4	12	11,68	4	3,95	0,5	0,46	0,5	0,506	0,5	0,48
(4)	8	16	15,58	0	0,35	1	0,94	1	0,95	1	0,94
(5)	12	20	19,47	-4	-3,78	1,5	1,43	1,5	1,47	1,5	1,45

Tabela 1.1 - Valores medidos e calculados

		A_{max}	A_{min}	μ_+	μ_{-}	μ
Sinal	K_a	Medido	Medido	Medido	Medido	Medido
(1)	6	13,69	2,28	0,711	0,715	0,713
(2)	0	8	8	0	0	0
(3)	4	11,77	4,17	0,47	0,478	0,47
(4)	8	15,76	0,01	0,97	0,99	0,98
(5)	12	19,94	-3,78	1,49	1,48	1,48

Tabela 1.2 - Valores medidos

AR 02

Nesta parte o objetivo é observar a banda passante do sinal, bem como observar em qual parte do sinal se encontra a maior energia dele, e assim, conseguir estimar a banda ocupada de um sinal ainda não modulado. Também observar como o coeficiente K_a altera nas componentes harmônicas do sinal

A2.1)

Aqui deve-se variar o K_a de forma a perceber o que acontece com as componentes harmônicas modulas. Dessa maneira, foi realizado tanto quanto $K_a = 1$ e $K_a = 12$ para ver as diferenças, e os resultados estão abaixo:

Figura 1: $K_a = 1$

Figura 2: $K_a = 12$

O que pode-se perceber é que as componentes harmônicas tem um ganho maior quanto maior for K_a , o que faz sentido, pois quando aumentamos este valor, estamos aumentando a força deste sinal, ou seja, ele será menos atenuado conforme for misturado com o sinal da portadora.

A2.2)

Aqui deve-se variar a frequência f_c do sinal mensagem e observar o que acontece com os harmônicos rebatidos em 0Hz e em samp_rate/2, para tentar observar o que é chamado de Aliasing, para isso, os valores observados foram:

Figura 3: $f_c = 10000 Hz$

Figura 4: $f_c = 28000 Hz$

Aqui é possível observar que nas frequências mais altas perto de samp_rate/2 as componentes são rebatidas e voltam para o centro, isso acontece por conta

do teorema de Nyquist. Já perto de 0Hz as frequências se somam aumentando o ganho e por consequência o ruído que pode ser observado, isto é o chamado Aliasing, note como em 28kHz perto do 0Hz o ganho era bem menor que quando a frequência estava em 10Khz.

2.0.1 A2.3)

Aqui o objetivo é de observar como a taxa de amostragem pode proporcionar um controle melhor de espúrios apesar de que seja mais difícil distinguir picos vizinhos:

Figura 5: $Samp_rate = 32kbps$

Figura 6: $Samp_rate = 128kbps$

Note que com o aumento do samp_rate é possível observar que aumentase as componentes harmônicas que pode-se visualizar, porém, o nível de detalhamento das componentes é menor, note que quando o samp_rate é menor, o nível de detalhamento para cada componente harmónica é melhor, sendo possível separar mais a nível do 0Hz por exemplo, é possível ver várias harmônicas próximas que devem ser atenuadas, o que não é possível notar quando aumenta-se o samp_rate.

2.0.2 A2.4)

Aqui o objetivo é observar os diferentes tipos de janelamento existentes para a FFT para a formação do espectro de frequência. Dessa maneira, usaremos 3 tipos de janelamento diferentes, observando sempre os 3 picos de maior energia desse espectro e como o janelamento influencia no espectro.

Figura 7: Blackman-Harris

Figura 8: Flat-Top

Figura 9: None

Aqui é possível observar que o janelamento em None é o que mais apresenta um ganho nestes picos, aumentando muito se pensarmos em uma escala linear, visto que os espectros acima são apresentados em dB. Após o None o que apresenta mais ganho é o janelamento Blackman, em seguida o Flat-top, com o menor ganhor nestes 3 picos de maior energia. Lembre que mostramos somente para frequências positivas, porém, vale também para as frequências negativas, e o ganho é o mesmo para elas.

AR 03

3 Conclusão

Pode-se concluir do experimento que foi possível fazer operações com sinais, dentre estas operações usando técnicas de modulação e demodulação, podendo observar como o janelamento da FFT afeta no espectro, dentre os diversos componentes como o K_a , f_c , e como pode-se alterar esses componentes para planejar o sistema de comunicação que se deseja obter.