

Énoncé

Vous travaillez sur la prochaine version de l'application officielle du réseau de transport de votre ville. À la requête des usagers, vous devez implémenter une nouvelle fonctionnalité permettant de trouver un itinéraire en métro d'un point à un autre en effectuant le moins de correspondances possibles. Pas question ici de prendre en compte le temps de trajet.

Format des données

Entrée

Ligne 1 : deux entiers **N** et **M** compris respectivement entre 1 et 50 et entre 1 et 1500 indiquant respectivement le nombre de lignes et le nombre total de stations sur le réseau.

Ligne 2 : deux entiers compris entre 1 et **M** indiquant, dans l'ordre, le numéro de la station de départ et le numéro de la station d'arrivée.

Ligne 3 : \mathbf{N} entiers compris entre 1 et \mathbf{M} indiquant pour chaque ligne \mathbf{i} de 1 à \mathbf{N} le nombre de stations présentes sur la ligne de métro correspondante. On notera chaque valeur $\mathbf{P}(\mathbf{i})$.

Lignes 4 à N+3: pour chaque ligne P(i) entiers compris entre 1 et M et séparés des espaces représentant les stations de la ligne.

Sortie

Un entier représentant le nombre minimal de lignes que vous emprunterez lors de votre itinéraire. Dans le cas où aucun trajet ne serait possible d'une station à l'autre, renvoyez -1!

Exemple

```
Pour l'entrée:

5 50
9 11
13 17 9 9 12
22 40 15 33 16 29 36 27 39 43 21 17 50
13 5 8 42 49 23 30 50 12 40 20 25 47 44 34 9 41
45 23 6 28 31 18 2 26 29
48 29 4 3 24 26 7 11 32
46 10 35 26 14 37 50 23 38 40 19 1

La sortie est:
3
```

Pour vous rendre à la station 11, depuis la station 9. Vous prenez d'abord la ligne 2 vous changez station 23 (pour la ligne 3) et vous changez station 29 pour la ligne 4 et vous arrivez station 11. Vous avez donc utilisé 3 lignes (2,3 et 4).