Sammanfattning

Harmonisk svängning

Rörelse som kan beskrivas $x(t) = A\sin(\omega t + \rho)$.

Erhålls då F = -kx.

A innebär amplitud, ω vinkelfrekvens (rad/s), t tid och ρ fas / tidsförskjutning. Det handlar alltså om något som rör sig fram och tillbaka med mjukhet.

Den konserverande kraften F har som mål att återfå rörelsen till jämviktsläge. Kraften ökar linjärt med avståndet från jämviktsläget.

Energin hos en harmonsik svängning beskrivs med sambandet $E=rac{kA^2}{2}$. När massan är i jämviktsläget är energin potentiell i fjädern. I andra lägen är den kinetisk.

Frekvensen beror på vinkelfrekvens, $f=rac{\omega}{2\pi}\mathrm{Hz}$. Frekvensen beskriver antalet varv per sekund.

Vinkelfrekvensen kan i sin tur därför skrivas $\omega=2\pi f$. Vinkelfrekvensen beskriver antalet delar av en hel svängning (radianer) per sekund (r/s).

Vinkelfrekvensen har även ett samband med fjäderkonstanten k och massan m i $\omega=\sqrt{\frac{k}{m}}$. Detta samband fick vi från beviset ovan.

Svängningens periodtid beskrivs med $T=\frac{1}{f}.$

Fjäderkonstanten k anges i N/m.

Dämpad svängning

Rörelse som beskrivs av $x(t) = A_0 e^{-\frac{\gamma}{2}t} \sin(\omega t + \rho).$

Erhålls då F = -kx - bv.

Här innebär γ dämpningen, ett värde som saknar en bestämd enhet. A_0 är den ursprungliga amplituden. Med dämpning menas att amplituden avtar med tiden. Värdet b beskriver den bromsande kraften eller motståndskoefficienten.

Den ursprungliga vinkelfrekvensen får samma samband som vinkelfrekvensen för harmonisk svängning - $\omega_0=\sqrt{\frac{k}{m}}$.

Vinkelfrekvensen får istället sambandet $\omega=\sqrt{\omega_0^2-rac{\gamma}{4}^2}.$

För dämpningen gäller $\gamma = \frac{b}{m}$.

Tvungen svängning

Erhålls då ett dämpat system utsätts för en extern harmonisk *kraftpåverkan* (fysikers termer) eller *störning* (civilingenjörers termer).

Uttrycks
$$F=-kx-bv+F_0\sin(\mu t)$$
.

Här är F_0 kraftamplituden och μ vinkelfrekvens likt ω . Man använder ω alternativt ω_0 för att uttrycka systemets frekvens och μ för att beskriva den *tvingande frekvensen*.

Inom mekaniska system är man nästan alltid intresserad av jämviktsläget, men sällan vad som händer första millisekunderna. Vi kan alltså försumma en homogen lösning. Vi säger därför att $x(t)=x_p(t)$. I tidigare svängningar har vi enbart tagit hänsyn till den homogena lösningen.

Svängningen beskrivs med funktionen $x(t) = A(\mu)\sin(\mu t + \rho)$. Här innebär $A(\mu)$ respons och ρ fasskillnaden mellan störning och svängning.

När μ går mot noll blir responsen låg, men den går inte mot noll. När μ växer och går mot oändligheten går dock responsen mot noll. Detta kallas *osynlighetsområdet*.

För amplituden gäller
$$A=rac{C}{\sqrt{(\omega_0^2-\mu^2)^2+\gamma^2\mu^2}}.$$
 För fjädrar gäller $C=rac{F_0}{m}.$

Energin $E = E_0 e^{-\gamma t}$.

Resonans

Resonans vid
$$\mu=\omega_0, \omega_0=\sqrt{rac{k}{m}}.$$

Kvalitetsfaktorn $Q=\frac{\omega_0}{\gamma}$ svarar på frågan "är systemet känsligt för interferens?". Lågt Q ges av ett mindre känsligt system, ett högt Q innebär ett mer känsligt system.

$$E_{res}=rac{D}{\gamma^2\omega_0^2}$$

TODO: responskurva

Vågor

Vågfunktion $s(r,t) = A(r)\sin(\omega t - kr + \rho)$.

Vågtal
$$k = \frac{2\pi}{\lambda}$$
.

Vågfart
$$u = \frac{\omega}{k} = \lambda f$$
.

Våglängden λ är avståndet mellan två vågtoppar.

Vidare gäller $\ddot{S}=u^2s''$ för alla vågor där \ddot{S} är tidsderivata för S och s'' är x-derivata för s. Vidare är u vågfarten.

 ${\cal I}_u$ betecknar intensiteten en meter från källan. ${\cal A}_u$ betecknar amplituden en meter från källan.

Vågor i en dimension

$$S(r,t) = A_u \sin(\omega t - kr + \rho).$$

$$A(r) = A_u$$
.

För dämpat fall gäller $A=A_0e^{-lpha(r-1)}$

För snöre gäller $u=\sqrt{\frac{T}{\rho}}$ där T står för tension och ρ för densitet. För snöre gäller $\rho=\frac{m}{l}$.

Vågor i två dimensioner

$$S(r,t)=rac{A_u}{\sqrt{r}}{
m sin}(\omega t-kr+
ho).$$

$$A(r)=rac{A_u}{\sqrt{r}}$$

 $I=rac{I_u}{r}.$ Intensiteten är i detta fall effekt per area, $I=rac{P}{r^2}.$

För ljud så är A_u samma sak som $\it tryckamplitud$.

Generellt gäller i två dimensioner att vågen varar länge.

Dämpat fall

$$S(r,t) = rac{A_u}{\sqrt{r}} e^{-lpha(r-1)} \sin(\omega t - k r +
ho).$$

För dämpat fall gäller $A=e^{-\alpha(r-1)}$.?????

Vågor i tre dimensioner

$$S(r,t) = \frac{A_u}{r} \sin(\omega t - kr + \rho).$$

$$A(r)=rac{A_u}{r}$$
 där $A_u=A$ vid en meter från källan.

$$I=rac{I_u}{r^2}$$

$$I=rac{P}{4\pi r^2}$$
 (effekt per volym).

Generellt gäller i tre dimensioner att vågen är kortvarig.

Dämpat fall

$$S(r,t) = \frac{A_u}{r}e^{-\alpha(r-1)}\sin(\omega t - kr + \rho).$$

För dämpat fall gäller $A=e^{-\alpha(r-1)}$.????

Interferens

Vi begränsar oss till vågor som svänger i fas.

$$\Delta r = |r_2 - r_1|$$

Amplituden för varje punkt ges av $A(\Delta r)=\sqrt{A_1^2+A_2^2+2A_1A_2\cos(k\Delta r)}$ där k är vågtalet.

Vid positiv interferens gäller $A=A_1+A_2 \iff \Delta r=n\lambda$

Vid negativ interferens gäller $A=|A_2-A_1| \iff \Delta r=n\lambda+rac{\lambda}{2}$

Stående våg

Interferens längs en linje mellan källorna. Vid reflektion möts två likadana vågor, varvid en stående våg uppstår. Vi begränsar oss inte längre till vågor som svänger i fas.

 $S_1=A_1\sin(\omega t-kr)$ och $S_2=A_2\sin(\omega t+k(r-L)+
ho)$ där vi använder r-L för att nollställa S_2 s origo till punkten L. Konstanten ρ betecknar här fasskillnaden.

Vågen i en punkt längs linjen ges av $S_f = S_1 + S_2 = A \sin(\omega t + \delta)$.

$$A=\sqrt{A_1A_2+2A_1A_2\cos(kr+rac{ heta}{2})}$$

$$\delta = rctanig(rac{(A_1 + A_2)\cos(kr + rac{ heta}{2})}{(A_2 - A_1)\sin(kr + rac{ heta}{2})}ig)$$

$$\theta = \rho - kL$$

Med **bukar** menas punkter där vågen svänger som mest ($S_f=0$, i A gäller $\cos=\pm 1$). Med **noder** menas punkter som inte svänger alls (i A gäller $\cos=0$). Avståndet mellan bukar är $\frac{\lambda}{2}$. Mellan bukar finns en nod.

För två vågkällor som svänger i fas finns alltd en buk mitt mellan vågkällorna.

Toner

Återkommande reflektion.

Vid lika sidor gäller $L=rac{n\lambda}{2}$ där L är den inneslutande längden. $f=rac{u}{2Ln}$.

Vid olika sidor gäller $L=rac{n\lambda}{2}+rac{\lambda}{4}$

TODO: buk, hårda?

Dopplereffekten

$$f_m = rac{u - v_m}{u - v_s} f_s$$
 där $_m$ är mottagare och $_s$ sändare

Positiv med signalens riktning gentemot mottagaren (minus kvar i formeln).

Toppvinkel

TODO: bild här

 $\Theta = 2\arcsin(\frac{u}{v})$

Kärnfysik

Termer

Atomnummer (z) - antal protoner - ämnet ("alla atomer med kärnor som har 26 protoner är järn").

 ${f Protoner}$ - laddade med +1e (lika många elektroner som protoner).

Masstal (m) - antal protoner + neutroner (nukleoner). Förklarar vilken isotop det rör sig om. Det finns ungefär 90 stabila ämnen - många fler isotoper.

Beteckna isotop - $^7\mathrm{Li}$ är en isotop av litium (atomnummer 3) som har 4 neutroner). $^{58}\mathrm{Fe}$ är en isotop av järn (atomnummer 26) som har 32 neutroner.

Strålning

$$E_{tot} = \Delta m * c^2$$

$$1 \text{ eV} = 1.602 * 10^{-19} \text{ J}$$

$$1~\mathrm{u} = 1.6605402*10^{-27}~\mathrm{kg}$$

TODO: infoga bild över instabil och stabil kärna

Alfastrålning

En alfapartikel består av 2 protoner och 2 neutroner - $^4{\rm He}$. Alfastrålning är den minst farliga strålningen utanför kroppen, men den mest farliga inuti.

$$E_{\alpha} = \underbrace{E_{k\alpha}}_{\text{kinetisk energi}} + \underbrace{E_{0\alpha}}_{viloenerqi}.$$

$$E_{0\alpha} = 3.72738 \text{ GeV}$$

$$E_0 = m_0 c^2$$

$$_{z}^{m}\mathrm{A}
ightarrow\ _{z-2}^{m-4}\mathrm{B}+\ _{2}^{4}\mathrm{He}$$

TODO: infoga spektrum här.

Betastrålning

$$_{z}^{m}\mathrm{A}\rightarrow\ _{z+1}^{m}\mathrm{B}+e^{\pm}+\overset{\left(-\right) }{\cup}$$

 $_{z+1}^m \mathrm{B}$ och e^\pm har motsatt laddning. Neutrinon $\overset{(-)}{\cup}$ har samma laddning som elektronen.

TODO: infoga spektrum här

Relativitetsteorin

Den relativistiska kinetisk energin $E_k=(\gamma-1)E_0$ där $E_0=mc^2$, gammafaktorn $\gamma=\frac{1}{\sqrt{1-r^2}}$ och rapiditeten $r=\frac{v}{c}$.

Fission

TODO: infoga bild över fission här

En kärna delas i två eller fler dotterkärnor. Spontan fission sker från ett grundtillstånd. Stimulerad fission sker från ett eciterat tillstånd - exempelvis neutroninducerat.

Antal reaktioner i en viss isotop med massan $M(^mA)$ för en viss massa m är $\frac{m}{M(^mA)}$. Exempelvis är antalet reaktioner för $1~{
m kg}~^2H$ med massan $M(^2H)=2.014102$ $n=\frac{1}{2.1014102~{
m u}}=2.866*10^{26}~{
m st.}$

Uran:

 $^{235}\mathrm{u}+n
ightarrow \ ^{236}\mathrm{u}*
ightarrow \mathrm{massa}$ kärnor + neutroner + energi

I snitt 215 MeV och 2.4 neutroner.

Plutonium:

 $^{239}\mathrm{Pu} + n
ightarrow ~^{240}\mathrm{Pu}*
ightarrow \mathrm{massa}~\mathrm{karnor} + \mathrm{neutroner} + \mathrm{energi}$

Fusion

Två kärnor "smälter" samman till en.

PP-kedjan

$$p+p
ightarrow\ ^{2} ext{He}\stackrel{eta}{
ightarrow}\ ^{2} ext{H} \
ightarrow\ ^{4} ext{He} \ p+p
ightarrow\ ^{2} ext{He}\stackrel{eta}{
ightarrow}\ ^{2} ext{H}$$

CNO-cykeln

$$\underbrace{\overset{12}{\text{C}}}_{\text{stabil}} + 4p \rightarrow \underbrace{\overset{13}{\text{N}}}_{\text{instabil}} + 3p \overset{\beta}{\rightarrow} \underbrace{\overset{13}{\text{C}}}_{\text{instabil}} + 3p \rightarrow \underbrace{\overset{14}{\text{N}}}_{\text{stabil}} + 2p \rightarrow \underbrace{\overset{15}{\text{O}}}_{\text{instabil}} + p \overset{\beta}{\rightarrow} \overset{15}{\text{N}} + p \rightarrow \underbrace{\overset{16}{\text{O}}}_{\text{N}} \overset{\alpha}{\rightarrow} \overset{12}{\text{C}} + \underbrace{\overset{4}{\text{He}}}_{\text{Stabil}}$$

Gaslagen

PV=nRT där n är antal mol

 $PV=Nk_BT$ där N är antal partiklar och k_B är Boltzmanns konstant

Med adiabatisk menas att inget är konstant.

Isoterm innebär att temperaturen är konstant, vilket innebär att PV är konstant. TODO: infoga bild här. $\Delta E = P_i V_i * ln(\frac{V_B}{V_A})$

 Isobar innebär att trycket är konstant, vilket innebär att $rac{V}{T}$ är konstant. TODO: infoga bild här. $\Delta E = P\Delta V$

 \emph{Isokor} innebär att volymen är konstant vilket innebär att $rac{P}{T}$ är konstant. TODO: infoga bild här. $\Delta E=0$

Energin per partikel varierar. För en atom gäller $E=\frac{3}{2}k_BT$. För två atomer gäller $E=\frac{5}{2}k_BT$. För tre atomer gäller $E=3k_BT$. Allitd gäller $\frac{mv^2}{2}=\frac{3}{2}k_BT$.

Reflektion

Effekten $P=T^nP$ där T=1-R

Ljud

Reflektansen $R=\left(\frac{Z_2-Z_1}{Z_2+Z_1}\right)^2$ där $Z=\rho*u$ där ρ är densiteten och u ljudets hastighet för ett vist medium.

Hastigheten $u=rac{Z}{
ho}$ där Z är den akustiska impedansen för ett visst medium.

Ljus

Reflektansen $R=\left(rac{n_2-n_1}{n_2+n_1}
ight)^2$ där brytningsindexet $n=rac{c}{u}$

Brewstervinkeln: Vid Θ_B (Brewstervinkeln) blir allt reflekterat ljus polariserat.