## Dynamic sampling pointnet notes

xyz

Feb 2018

# 1 Quick notes for important events while using one file to test

### 1.1 batch size

### 1.1.1 bs=27 vs bs=81

batch size: 9,27,81

data: xyz-color\_1norm

model: 1AG

sampling & grouping: stride\_0d1\_step\_0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_bmap\_nh5\_0d1\_b

 $32\_12\text{-}0d2\_0d6\text{-}0d2\_0d6$ 



### 1.2 feed elements

 $\begin{array}{l} {\rm epoch\ num} = 100 \\ {\rm stride\_0d1\_step\_0d1\_bmap\_nh5\_2048\_0d5\_1\_fmn1-160\_32-32\_12-0d2\_0d6-0d2\_0d6} \end{array}$ 

Figure 2: bs=27



Figure 3: bs=81



| model | batch size | data elements | acc   | loss  |
|-------|------------|---------------|-------|-------|
| 1AG   | 9          | xyz color     | 0.890 | 0.356 |
| 1AG   | 27         | xyz color     | 0.920 | 0.240 |
| 3AG   | 27         | xyz color     | 0.912 | 0.273 |
| 2A    | 27         | xyz color     | 0.908 | 0.294 |
| 2AG   | 27         | xyz color     | 0.902 | 0.293 |
| 1A    | 27         | xyz color     | 0.883 | 0.351 |
| 1AG   | 81         | xyz color     | 0.978 | 0.072 |
| 1AG   | 9          | xyz           | 0.861 | 0.427 |
| 1AG   | 27         | xyz           | 0.907 | 0.257 |
| 1AG   | 81         | xyz           | 0.975 | 0.078 |
| 1A    | 27         | xyzmid color  | 0.889 | 0.357 |
| 3AG   | 27         | xyzmid color  | 0.933 | 0.193 |

- 1. large batch size is better
- 2. 1AG(0.92) > 3AG(0.912) > 2A(0.908) > 2AG(0.902) > 1A(883)

1AG is much better than 1A

#### 1AG is a bit better than 3AG???

- 3. xyz-color is only a bit better than xyz
- 4. xyzmid-color is much better than xyz-color
- 5. xyzmid-color is normally much better than xyz-xyzmid-color ???

### 1.3 model

batch size: 50

data: xyz\_midnorm\_block-color\_1norm

 $epoch_num = 600$ 

sampling & grouping: stride\_0d1\_step\_0d1\_bmap\_nh5\_12800\_1d6\_2\_fmn3-600\_64\_24-60\_16\_12-0d2\_0d6\_1d2-0d2\_0d6\_1d2

| model | acc   | loss  |
|-------|-------|-------|
| 3A    | 0.909 | 0.248 |
| 3AG   | 0.913 | 0.231 |
| 4AG   | 0.912 | 0.232 |

batch size: 32

data: xyz\_midnorm\_block-color\_1norm

sampling & grouping: stride\_0d1\_step\_0d1\_bmap\_nh5\_12800\_1d6\_2\_fmn6-2048\_256\_64-32\_32\_16-0d2\_0d6\_1d2-0d1\_0d3\_0d6

matterport3d

feed\_data\_elements:['xyz\_midnorm\_block', 'color\_1norm']

feed\_label\_elements:['label\_category', 'label\_instance']

train data shape: [ 362 12800 6] test data shape: [ 384 12800 6]

 $\max \text{ epoch} = 500$ 

| model | acc         | loss        |
|-------|-------------|-------------|
| 1AG   | 0.944/0.431 | 0.161/4.633 |
| 4AG   | 0.835/0.401 | 0.520/3.644 |

### 1.4 integration

| stride_0 | stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d6_1d2 17D_1LX_1pX_29h_2az |                                              |                                              |                                                                          |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| model    | batch size<br>batch num                                                                                      | lr<br>ds                                     | data elements                                | epoch-acc<br>train/eval                                                  |  |  |  |
| 1aG      | 30/1083                                                                                                      | 0.003                                        | 'xyz_midnorm_block', 'color_1norm', 'nxnynz' | 200-0.947                                                                |  |  |  |
| 1aG      | 30/1083                                                                                                      | 0.01                                         | 'xyz_midnorm_block', 'color_1norm'           | 200-0.783<br>500-0.791                                                   |  |  |  |
| 1aG      | 30/1083                                                                                                      | 0.003/30<br>300-0.00012                      | 'xyz_midnorm_block', 'color_1norm'           | 200-0.903<br>300-0.921                                                   |  |  |  |
| 1bG      | 25/1083                                                                                                      | 0.001-30<br>100-3e-4                         | 'xyz_midnorm_block', 'color_1norm', 'nxnynz' | 100-0.854<br>168-0.910                                                   |  |  |  |
| 1bG      | 25/1083                                                                                                      | 0.001-30<br>100-3e-4<br>300-4e-5             | 'xyz_midnorm_block', 'color_1norm', 'nxnynz' | 100-0.914<br>200-0.957<br>300-0.966                                      |  |  |  |
| 1bG      | 25/1083                                                                                                      | 0.02                                         | 'xyz_midnorm_block', 'color_1norm'           | 200-0.655<br>300-0.718                                                   |  |  |  |
| 1bG      | 25/1083                                                                                                      | 0.02                                         | 'xyz_midnorm_block', 'color_1norm', 'nxnynz' | 200-0.772<br>300-0.823                                                   |  |  |  |
| 4bG      | 25/1083                                                                                                      | 0.001-30<br>100-3e-4<br>200-1e-4<br>300-4e-5 | 'xyz_midnorm_block', 'color_1norm', 'nxnynz' | 100-0.752<br>200-0.816<br>300-0.832                                      |  |  |  |
| 1aG      | 30/19755                                                                                                     | 0.001-30<br>50-7e-4<br>100-3e-4              | 'xyz_midnorm_block', 'color_1norm','nxnynz'  | 50-0.752/0.580<br>100-0.843/0.574 (NoShuf)<br>102-0.806/0.570 (Shufle)   |  |  |  |
| 1bG      | 25/19755                                                                                                     | 0.001-30                                     | 'xyz_midnorm_block', 'color_1norm','nxnynz'  | 38-0.719/0.587<br>80-0.823/0.583 ( NoShuf )<br>81-0.782/0.587 ( Shufle ) |  |  |  |
| 1aG      | 30/19755                                                                                                     | 0.02                                         | 'xyz_midnorm_block', 'color_1norm'           | 56-0.562                                                                 |  |  |  |
| 1aG      | 30/19755                                                                                                     | 0.02<br>127-0.00483                          | 'xyz_midnorm_block', 'color_1norm', 'nxnynz' | 87-0.616<br>127-0.686                                                    |  |  |  |

- Conclusion:
  1: nxnynz helps a lot
  2: 1bG is much deeper than 1aG, why worse than 1aG
  3: learning rate is important, cannot be too large