VERSUCH 701

Reichweite von Alpha-Strahlung

Annika Bennemann annika.bennemann@tu-dortmund.de

Paulin Vehling paulin.vehling@tu-dortmund.de

Durchführung: 19.04.2022 Abgabe: 26.04.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Durchführung	4
4	Auswertung4.1Bestimmung der mittleren Reichweite und Energie von Alpha-Teilchen4.2Statistik des radioaktiven Zerfalls	5 10
5	Diskussion	12
6	Anhang	14
Lit	teratur	15

1 Zielsetzung

Ziel des Versuches ist es, die Reichweite von Alpha-Strahlung in Luft und dadurch die Energie der Alpha-Strahlung zu bestimmen. Außerdem soll die Statistik des radioaktiven Zerfalls bestimmt werden.

2 Theorie

Wenn Alpha-Teilchen durch Luft laufen, kommt es zur Wechselwirkung mit anderen Atomen. Aufgrund von Ionisierungsprozessen, Anregung und Dissoziation von Mplekülen, kommt es zu Energieverlusten bzw. einer Abgabe von Energien. Dieser Energieverlust pro Wegstück ist abhängig von der Dichte, der durchlaufenen Materie und der Energie der Alpha-Strahlung. Die Wechselwirkungswahrscheinlichkeit nimmt bei kleinen Geschwindigkeiten zu, es gibt jedoch keine universelle Formel. Für alle Energiebereiche gelten unterschiedliche Formeln, bei hinreichend großen Energien gilt die Bete-Bloch-Gleichung

$$-\frac{dE_{\alpha}}{dx} = \frac{z^2 e^4}{4\pi\epsilon_0 m_e} \frac{nZ}{v^2} \ln\left(\frac{2m_e v^2}{I}\right). \tag{1}$$

wobei v die Geschwindigkeit der α -Strahlung, z die Ladung, n die Teilchendichte, I die Ionisierungsenergie des durchlaufenen Gases, Z die Ordnungszahl sind. Aufgrund von Ladungsaustauschprozessen gilt die Bete-Bloch-Gleichung nicht für kleine Energien. Deshalb wird eine empirisch gewonnene Kurve für die Alpha-Strahlung in Luft verwendet. Es muss

$$R_m = 3, 1 \cdot E_\alpha^{3/2} \tag{2}$$

gelten, weswegen nur Energien unter 2,5 MeV berücksichtigt werden. R_m ist die mittlere Reichweite von α -Teilchen, welche die Reichweite angibt, die die Hälfte der Teilche noch erreichen. Die Reichweite R eines Alpha-Teilchens lässt sich durch

$$R = \int_0^{E_\alpha} \frac{dE_\alpha}{-dE_\alpha/dx} \tag{3}$$

beschreiben, wobei die Energie in Megaelektronenvolt angegeben in einem Bereich unter 2,5 MeV liegen sollte und Rm in Millimeter angegeben wird. Wenn die Temperatur und das Volumen konstant bleiben, so ist die Reichweite R eines Alpha-Teilchens proportional zum Druck. Es wird eine Absorptionsmessung durchgeführt, sodass sich die effektive Länge x bei festem Abstand x_0 zwischen Probe und Detektor durch

$$x = x_0 \frac{p}{p_0} \tag{4}$$

ausdrücken lässt. Der Normaldruck p_0 beträgt hierbei $p_0=1013\,\mathrm{mbar}.$

3 Durchführung

Bei dem im Versuch verwendeten α -Strahler handelt es sich um $^{241}_{95}$ Am, welches mit einer Halbwertszeit von $T_{1/2}=458a$:

$$^{241}_{q5}$$
Am $\longrightarrow ^{237}_{q3}$ Np + $^{4}_{2}$ He (5)

zerfällt.

Abbildung 1: Versuchsaufbau zur Messung der Reichweite von Alphastrahlung[2, S. 2].

Wie in Abbildung 1 zu sehen, wird der Versuch aufgebaut. Das Präparat befindet sich auf einer beweglichen Halterung in einem evakuierbaren Glaszylinder. Im Glaszylinder befindet sich außerdem ein Detektor. Mit der beweglichen Halterung kann der Abstand x_0 zwischen Präparat und Detektor verändert werden. Bei dem Detektor handelt es sich um einen Halbleiter-Sperrschichtzähler, der ähnlich wie eine in Sperrichtung betriebene Diode funktioniert. Sobald ein Alpha-Teilchen auf den Detektor trifft enststeht ein Elektronen-Loch-Paar in der Verarmungszone, wodurch ein Stromimpuls entsteht. Dieser wird durch einen Vorverstärker verstärkt und an einen Vielkanalanalysator weitergeleitet. Die Auswertung des Vielkanalanalysators erfolgt über ein Computerprogramm.

Vor der Messung muss die Diskriminatorschwelle am Vielkanalanalysator eingestellt werden um Rauschen vom Verstärker zu unterdrücken, welches das Ergebnis verfälsche würde. Außerdem wird der Glaszylinder evakuiert. Das Präparat wird auf einen Abstand $x_0=1,7\,\mathrm{cm}$ zum Detektor platziert und die Messung gestartet. Der Messzeitraum beträgt jeweils 120 s. Der Druck im Glaszylinder wird um 50 mbar erhöht und die Messung wiederholt. Dieses Verfahren wird so lange wiederholt bis im Glaszylinder wieder Normaldruck herrscht. In einer Tabelle werden der Druck p, die Zählrate N und der Kanal des Energiemaximums notiert. Der Abstand x_0 wird auf $x_0=3,0\,\mathrm{cm}$ vergrößert und die Messung erneut durchgeführt.

Anschließend soll die Statistik des radioaktiven Zerfalls überprüft werden, indem bei vollkommen evakuiertem Zylinder 100 Messungen zu je 10s durchgeführt werden, in denen die Anzahl der Zerfälle aufgenommen wird. Danach werden hieraus die Varianz und der Mittelwert errechnet und mit einer Gauß- und Poissonverteilung verglichen.

4 Auswertung

4.1 Bestimmung der mittleren Reichweite und Energie von Alpha-Teilchen

Zur Berechnung der mittleren Reichweite der α -Teilchen wird der Versuch nach Abschnitt 3 mit einem Abstand $x_0=1,7\,\mathrm{cm}$ durchgeführt und die Ergebnisse in Tabelle 1 aufgelistet. Aus den Messwerten wird der effektive Abstand x mithilfe von Gleichung 4 berechnet und auch in Tabelle 1 eingetragen. Die Energie wird dadurch bestimmt, dass die Position des Maximums bei $p=0\,\mathrm{mbar}$, nachfolgend als N_0 bezeichnet, dem Energiewert 4 MeV entspricht und die restlichen Channel und Energien proportional dazu sind. Auch die Energiewerte werden in der Tabelle notiert. Dieselbe Messung wird für einen Abstand von $x_0=3,0\,\mathrm{cm}$ wiederholt und die Ergebnisse analog zur ersten Messreihe in Tabelle 2 notiert.

Tabelle 1: Messdaten zum Alpha-Zerfall bei einem Abstand von $x_0=1,7cm$.

Luftdruck p/mbar	Anzahl <i>N</i> der Intensitätsmaxima	Kanal des Energiema- ximums	effektiver Abstand x/cm	Energie E/MeV
0	162524	1023	0	4,00
50	163290	960	0,08	3,75
100	163917	1039	$0,\!17$	4,06
150	165093	1023	$0,\!25$	4,00
200	165693	1023	0,34	4,00
250	164583	1023	$0,\!42$	4,00
300	166084	1023	0,50	4,00
350	170833	1039	$0,\!59$	4,06
400	169738	1023	$0,\!67$	4,00
450	170667	1007	0,76	3,94
500	170908	1023	0,84	4,00
550	170471	1023	0,92	4,00
600	170319	1023	1,01	4,00
650	169636	975	1,09	3,81
700	158958	911	$1,\!17$	$3,\!56$
750	158632	903	1,26	$3,\!53$
800	156749	879	1,34	3,44
850	153795	847	1,43	3,31
900	150817	847	1,51	3,31
950	147773	815	1,59	3,19
1000	144032	803	1,68	$3{,}14$

Tabelle 2: Messdaten zum Alpha-Zerfall bei einem Abstand von $x_0=3cm.$

Luftdruck p/mbar	Anzahl <i>N</i> der Intensitätsmaxima	Kanal des Energiema- ximums	effektiver Abstand x/cm	Energie E/MeV
0	55548	1107	0,00	4,00
50	54994	1023	$0,\!15$	3,70
100	54486	1023	0,30	3,70
150	54186	987	$0,\!44$	$3,\!57$
200	53546	911	$0,\!59$	3,29
250	52861	911	0,74	3,29
300	52766	896	0,89	3,24
350	51527	896	1,04	$3,\!24$
400	50461	847	1,18	3,06
450	48665	847	1,33	3,06
500	45128	847	1,48	3,06
550	40047	751	1,63	2,71
600	42233	719	1,78	2,60
650	44238	655	1,92	$2,\!37$
700	33459	652	$2,\!07$	2,36
750	7126	688	2,22	2,49
800	1878	687	$2,\!37$	$2,\!48$
850	195	687	$2,\!52$	$2,\!48$
900	67	686	$2,\!67$	2,48
950	28	686	2,81	2,48
1000	23	686	2,96	2,48

Zur Bestimmung der Reichweite der α -Teilchen sind in Abbildung 2
a und Abbildung 2b die Messwerte der Anzahl N der Intensitätsmaxima gegen den effektiven Abstand x aufgetragen.

(a) Messdaten zur Bestimmung der mittleren Reichweite aus der Zählrate (Messreihe 1).

(b) Messdaten zur Bestimmung der mittleren Reichweite aus der Zählrate (Messreihe 2).

Abbildung 2: Messdaten zur Bestimmung der mittleren Reichweite aus der Zählrate.

In Abbildung 2a wird eine lineare Regression der abfallenden Werte im Intervall $x=1,17\,\mathrm{cm}$ bis $x=1,68\,\mathrm{cm}$ mittels des Pythonmoduls matplotlib [1] in der Form $N=m\cdot x+b$ durchgeführt. Für die lineare Regression in Abbildung 2b geht das Intervall von $x=1,48\,\mathrm{cm}$ bis $x=2,37\,\mathrm{cm}$, jedoch werden hier die Werte zwischen $x=1,78\,\mathrm{cm}$ bis $x=2,07\,\mathrm{cm}$ nicht mit berücksichtigt, da diese nicht dem linearen Verlauf folgen. Die Parameter betragen hierbei

$$\begin{split} m_1 = & (-30827.55 \pm 2675.73) \frac{1}{\mathrm{cm}}, \\ b_1 = & 196939.29 \pm 3843.14 \end{split}$$

und

$$\begin{split} m_2 = & (-47049.01 \pm 3437.24) \frac{1}{\text{cm}}, \\ b_2 = & 115016.41 \pm 7165.45. \end{split}$$

Eine horizontale Gerade ist außerdem auf Höhe von $\frac{N_0}{2}$ eingezeichnet. (Bei Abbildung 2a nicht im angezeigten Bereich.) Der Schnittpunkt der beiden Geraden wird durch

$$\frac{N_0}{2} = m \cdot x + b$$
$$x = \frac{1}{m} \left(\frac{N_0}{2} - b \right)$$

berechnet, wobei das errechnete x der mittleren Reichweite R_m der α -Teilchen entspricht. Da m und b, fehlerbehaftete Größen sind, muss der Fehler von R_m mithilfe der Gauß'schen Fehlerfortpflanzung

$$\varDelta R_m = \sqrt{\left(-\frac{1}{m^2} \bigg(\frac{N_0}{2} - b\bigg)\right)^2 \cdot (\varDelta m)^2 + \bigg(\frac{1}{m}\bigg)^2 \cdot (\varDelta b)^2}$$

berechnet werden. Somit ergibt sich für die mittleren Reichweiten R_m der α -Strahlung

$$R_{m1} = (6.40 \pm 0.60) \text{cm}$$

 $R_{m2} = (2.43 \pm 0.23) \text{cm}$.

Aus den mittleren Reichweiten lassen sich durch Umstellen der Gleichung 2 die zugehörigen Energien E_{α} zu

$$E_{\alpha,m1} = (1.62 \pm 0.10) \text{MeV}$$

 $E_{\alpha,m2} = (0.85 \pm 0.05) \text{MeV}$

berechnen.

Die Messwerte der Energie E aus Tabelle 1 und Tabelle 2 werden zudem in Abbildung 3a und Abbildung 3b jeweils gegen x aufgetragen.

(a) Bestimmung des Energieverlustes aus den Messdaten (Messreihe 1).

(b) Bestimmung des Energieverlustes aus den Messdaten (Messreihe 2).

Abbildung 3: Bestimmnung des Energieverlustes.

Auch hier werden Regressionsgeraden mittels Python erstellt und die Parameter der linearen Regressionen der Form $E=c\cdot x+d$ lauten

$$\begin{split} c = & (-1.199 \pm 0.120) \frac{\text{MeV}}{\text{cm}} \\ d = & (5.087 \pm 0.164) \text{MeV} \\ c_2 = & (-0.717 \pm 0.044) \frac{\text{MeV}}{\text{cm}} \\ d_2 = & (3.892 \pm 0.054) \text{MeV}. \end{split}$$

Die Änderung der Energie ist die Steigung der Ausgleichsgerade. Somit ergeben sich für

die Änderung der Energie $\frac{dE_{\alpha}}{dx}$

$$\begin{split} \frac{dE_{\alpha,m1}}{dx} &= c = (-1.199 \pm 0.120) \frac{\text{MeV}}{\text{cm}} \\ \frac{dE_{\alpha,m2}}{dx} &= c2 = (-0.717 \pm 0.044) \frac{\text{MeV}}{\text{cm}}. \end{split}$$

4.2 Statistik des radioaktiven Zerfalls

Nach Abschnitt 3 wird die Messung durchgeführt und die erhobenen Zählraten in Tabelle 3 notiert.

Tabelle 3: 100 statistische Messwerte der Zählrate bei $p=0\,\mathrm{mbar}$ und Abstand $x=3.0\,\mathrm{cm}.$

4361	4256	4627	4272	4460
4104	4177	4266	4433	4389
4524	4259	4270	4630	4357
4638	4394	4602	4570	4528
4459	4436	4378	4466	4585
4564	4320	4455	4617	4347
4570	4305	4514	4534	4399
4384	4196	4525	4413	4573
4379	4425	4290	4600	4153
4580	4606	4265	4439	4370
4529	4650	4506	4622	4488
4415	4643	4491	4321	4629
4379	4212	4080	4546	4298
4345	4402	4607	4589	4706
4539	4602	4371	4444	4173
4586	4451	4576	4435	4577
4419	4521	4455	4513	4483
4321	4340	4289	4381	4348
4580	4360	4560	4588	4723
4313	4414	4216	4396	4651

Aus den Daten in Tabelle 3 werden zunächst der Mittelwert

$$\mu = \frac{1}{n} \sum_{i=1}^n N_i = 4443,47$$

und die Standardabweichung

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (N_i - \mu)^2} = 141,70$$

bestimmt.

Abbildung 4: Gaußverteilung der Messwerte.

In Abbildung 4 sind die Werte gaußverteilt in einem Histogramm dargestellt. Die zugehörige Gaußkurve

$$G(N, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left(-\frac{(N-\mu)^2}{2\sigma^2}\right) .$$

ist außerdem abgebildet.

Um die Poissonverteilung zu berechnen werden die Werte zuerst normiert

$$M = N_{\rm i,\; norm} = \frac{N_i - N_{\rm min}}{n}.$$

 $N_{\rm min}=4080$ ist hierbei der kleinste der gemessenen Werte. Die normierten Werte M liegen nun zwischen 0 und 7. Der Mittelwert der normalverteilten Werte beträgt

$$\mu_P = 3.61.$$

In Abbildung 5 sind nun die normalverteilten Messwerte und die theoretische Poissonverteilung nach der Formel

$$p_{\mu_P}(M) = \frac{\mu_P^M}{M!} \cdot \mathrm{e}^{-\mu_P}$$

in einem Histogramm aufgetragen.

Abbildung 5: Poissonverteilung der Messwerte.

5 Diskussion

Im ersten Versuchsteil werden die mittleren Reichweiten der Alpha-Strahlung zu

$$\begin{split} R_{m1} = & (6.40 \pm 0.60) \mathrm{cm} \\ R_{m2} = & (2.43 \pm 0.23) \mathrm{cm} \end{split}$$

und die zugehörigen Energien zu

$$E_{\alpha,m1} = (1.62 \pm 0.10) \text{MeV}$$

 $E_{\alpha,m2} = (0.85 \pm 0.05) \text{MeV}$

bestimmt. Die Energieänderungen betragen

$$\begin{split} \frac{dE_{\alpha,m1}}{dx} &= c = (-1.199 \pm 0.120) \frac{\text{MeV}}{\text{cm}} \\ \frac{dE_{\alpha,m2}}{dx} &= c2 = (-0.717 \pm 0.044) \frac{\text{MeV}}{\text{cm}}. \end{split}$$

Es fällt auf, dass die Werte der beiden Messreihen stark voneinander abweichen, was so nicht zu erwarten war. Eine Fehlerquelle in der ersten Messreihe kann ein zu geringer

Abstand x_0 sein, weshalb unter anderem der Wert $\frac{N_0}{2}$ von der Zählrate während der Messung nicht erreicht wird. Daher sind die Messwerte aus Messreihe 1 eventuell nicht geeignet um die mittlere Reichweite und dementsprechend auch die zugehörige Energie zu bestimmen. Die Messreihe 2 entspricht eher den zu erwartenden Ergebnissen. Jedoch gibt es in Abbildung 2b wenige Werte die im Intervall der linearen Regression liegen, jedoch dem linearen Verlauf der Gerade nicht folgen. Diese Werte können als Äusreißer"beziehungsweise fehlerhafte Werte angenommen werden. Gleichung 2 gilt außerdem nur für Energien unter 2,5 MeV, was im Versuch auch nicht gegeben ist. Weitere Fehlerquellen sind der ungenau abzulesende Abstand x_0 und der Druck p.

Im zweiten Versuchsteil wird das Histogramm der Messwerte mit einer Gaußkurve und einer Poissonverteilung verglichen. Bei dem Vergleich mit der Gaußkurve fällt auf, dass die Werte im Bereich um N=4600 stark von der Gaußkurve abweichen, ansonsten aber recht nah an der Kurve liegen. Auch bei der Poissonverteilung lässt sich ein ähnliches Ergebnis im Bereich k=5 feststellen. Der Alpha-Zerfall ist ein zufälliger Prozess, sodass eine Anzahl von 100 Messungen zu gering ist um eine Häufigkeitsverteilung genau abbilden zu können.

6 Anhang

V701	Reichweite	Von		Druck !	Maxim	um Counts	Chank
lange	Pulses!		teit 120s			72	
			1203	0	5	23	1023
17 cm	162524			50 100			100
	116 5 (30						1023
	163817			150	25		4023
	165083			200			1023
	165633			750			1023
	164583			3 00			1039
	170833			400			1021
	169738			450			1007
	170667		-	500			2023
	170306			550			100
	17047-1			600			103
A	176339			650			378
	163636			700			911
	158958			750			903
	158632			800			879
	156743			850			847
	153755		1	900			847
	150917		100	350			815
	147773			1000			803
	144032			7000			
			-				-
2				0			110
3 cm	55548			50			102
	54394			100			102
	54486			150			987
	54186			200			911
	53546			250			911
	52861			300			856
	52766			350			896
	51527			400			847
	50461			450			847
	48665			500			847
	45128			550			751
	40047						7-16
	12233			600			655
	14238			650			652
3	3459			700			
	7126			750			688
	1878			800			687
	135			850			687
	67			500			686
	28			950			686
	23			1000			688
							000
+							
Pulse							
4361	8. 4266 15, 43	57 22 1	1436	25. 4617	36. 4384	43.4290	
. 4256	9.4433 16.46	20 72 (30 4347	37. 4196	44 4600	
	10, 4389 17, 43		1466	31. 4570	38. 4525	45. 4153	
4627	10, 4585 16 43	07 25		32. 4305	39. 4413	456 4 13 5	
4272	11,4524 18.46		1560			46. 4580	
4460	12,4259 13.45		4564	33. 4514	40, 4573	47 11606	
4104	13 4270 20-45		4320	34 4534	41, 4375	48. 4265	
4177	14. 4630 21. 44	59 78.	1455	35, 4356	42 4425	49. 4439	
7177		9		The second		1100	

Abbildung 6: Messwerte zum Versuch 701.

50, 4370 51, 4650 53, 4650 53, 4506 54 46 22 55 4488	56, 4415 57, 4643 58, 4401 59, 4321 60, 4625 61, 4379	62, 9212 63, 4080 64, 4546 65, 4298 66, 1345 67, 4402	68 4607 69 4585 10, 4706 14 4535 72, 4602 73, 4371	741. 75. 76. 77. 18. 15.	4413 4386 4451 4596 4435	
80. 4577 81. 4413 81. 4571	93, 4455 94, 4513 85, 4483	87. 4340 91	, ५४७१	4560 4566 4588	95, 4723 86, 4393 81, 4414	5), 4216 95,

Abbildung 7: Messwerte zum Versuch 701.

Literatur

- [1] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [2] Versuchsanleitung zu Versuch Nr. 701 Reichweite von -Strahlung. TU Dortmund, Fakultät Physik. 2022.