

On Biased Compression for Distributed Learning

Samuel Horváth³ Peter Richtárik³

Mher Safaryan³

Aleksandr Beznosikov^{1,2}

²Sirius University $^{ot}\mathsf{MIPT}$

³KAUST

The Problem

Communication Bottleneck in Distributed Systems

Biased vs. Unbiased Compression

Figure 1: Comparison of empirical variance $\|\mathcal{C}(x) - x\|^2 / \|x\|^2$ during training procedure of ResNet18, GoogleNet, and VGG19 on CIFAR10 dataset for two pairs of methods deterministic biased against unbiased $\mathcal{C}_{\mathrm{nat}}$, and Top-k against Rand-k, where k = d/5.

Classes of Compression Operators

Definition 1 [1]. $C \in U(\zeta)$ for some $\zeta \geq 1$ if $C(x) = x, \|C(x)\|_{2}^{2} \le \zeta \|x\|_{2}^{2}, \forall x \in \mathbb{R}^{d}.$

Definition 2. $\mathcal{C} \in \mathbb{B}^1(\alpha, \beta)$ for some $\alpha, \beta > 0$ if $\|\alpha\|x\|_2^2 \le \|\mathcal{C}(x)\|_2^2 \le \beta \langle \mathcal{C}(x), x \rangle, \ \forall x \in \mathbb{R}^d.$

Definition 3. $\mathcal{C} \in \mathbb{B}^2(\gamma,\beta)$ for some $\gamma,\beta>0$ if $\max \left\{ \gamma \|x\|_2^2, \frac{1}{\beta} \|\mathcal{C}(x)\|_2^2 \right\} \le \langle \mathcal{C}(x), x \rangle, \ \forall x \in \mathbb{R}^d.$

Definition 4 [2]. $C \in \mathbb{B}^3(\delta)$ for some $\delta > 1$ if $\|\mathcal{C}(x) - x\|_2^2 \le (1 - 1/\delta) \|x\|_2^2, \ \forall x \in \mathbb{R}^d.$

• Rand- $k \in \mathbb{U}(\frac{d}{k})$, Top- $k \in \mathbb{B}^1(\frac{k}{d}, 1)$, $\mathbb{B}^2(\frac{k}{d}, 1)$, $\mathbb{B}^3(\frac{d}{k})$.

Lyapunov function $\mathbb{E}\Big[f(x^k)\Big] - f(x^*)$	<i>l</i> _z ⊥ 1	$x^{k+1} = x^k - \eta \mathfrak{C}^k(\nabla f(x^k))$		
Compressor	$\mathfrak{C} \in \mathbb{U}(\zeta)$	$\mathfrak{C} \in \mathbb{B}^1(\alpha,\beta)$	$\mathfrak{C} \in \mathbb{B}^2(\gamma,\beta)$	$\mathfrak{C} \in \mathbb{B}^3(\delta)$
Complexity	$O\!\!\left(\zeta \frac{L}{\mu}\!\log\!\frac{1}{arepsilon}\right)$	$O\!\!\left(rac{oldsymbol{eta}^2}{lpha}rac{L}{\mu}\!\log\!rac{1}{arepsilon} ight)$	$O\!\left(\frac{\beta}{\gamma}\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$	$O\!\!\left(\delta \frac{L}{\mu}\!\log\!\frac{1}{arepsilon}\right)$

scaling parameter $\lambda > 0$	\mathbb{B}^1	\mathbb{B}^2	\mathbb{B}^3
$\mathfrak{C} \in \mathbb{B}^1(\alpha, \beta)$ $\beta^2 \ge \alpha \ge 0$	$\lambda \mathfrak{C} \in \mathbb{B}^1(\lambda^2 \alpha, \lambda \beta)$	$\mathfrak{C} \in \mathbb{B}^2(\alpha, \beta^2)$	$\frac{1}{\beta}\mathfrak{C} \in \mathbb{B}^3\left(\frac{\beta^2}{\alpha}\right)$
$\mathfrak{C} \in \mathbb{B}^2 (\gamma, \beta)$ $\beta \ge \gamma \ge 0$	$\mathfrak{C} \in \mathbb{B}^1(\gamma^2, \boldsymbol{\beta})$	$\lambda \mathfrak{C} \in \mathbb{B}^2 (\lambda \gamma, \lambda \beta)$	$\frac{1}{\beta}\mathfrak{C} \in \mathbb{B}^3\left(\frac{\beta}{\gamma}\right)$
$\mathfrak{C} \in \mathbb{B}^3(\delta)$ $\delta \ge 1$	$\mathfrak{C} \in \mathbb{B}^1 \left(\frac{1}{4\delta^2}, 2 \right)$	$\mathfrak{C} \in \mathbb{B}^2\left(\frac{1}{2\delta},2\right)$	_
$\mathfrak{C} \in \mathbb{U}(\zeta)$ $\zeta \ge 1$	$\lambda \mathfrak{C} \in \mathbb{B}^1 (\lambda^2, \lambda \zeta)$	$\lambda \mathfrak{C} \in \mathbb{B}^2 (\lambda, \lambda \zeta)$	$\frac{1}{\zeta}\mathfrak{C} \in \mathbb{B}^3\left(\frac{1}{\zeta}\right)$

Exponential Divergence with Biased Compressor

Consider n = d = 3 and $x^0 = (t, t, t)$. Define $f_1(x) = \langle a, x \rangle^2 + \frac{1}{4} ||x||_2^2, \ a = (-3, 2, 2)$ $f_2(x) = \langle b, x \rangle^2 + \frac{1}{4} ||x||_2^2, \ b = (2, -3, 2)$ $f_3(x) = \langle c, x \rangle^2 + \frac{1}{4} ||x||_2^2, \ c = (2, 2, -3).$ After k iterations with Top-1 compression, we get

 $x^k = (1 + \frac{11\eta}{6})^k x^0 \to \infty.$

A Fix: Error Feedback [2,3]

$$x^{k+1} = x^k - \eta \frac{1}{n} \sum_{i=1}^n \tilde{g}_i^k$$

$$\tilde{g}_i^k = \mathfrak{C}_i^k (\boldsymbol{e}_i^k + \eta \boldsymbol{g}_i^k)$$

$$\boldsymbol{e}_i^{k+1} = \boldsymbol{e}_i^k + \eta \boldsymbol{g}_i^k - \tilde{\boldsymbol{g}}_i^k$$

Experiments

Figure 2:CGD on Quadratic problems (1st row) and Linear Regression (2nd row) with Top-5 and Rand-5 compression.

Figure 3:Training/Test loss and accuracy for VGG19 on CI-FAR10 distributed among 4 nodes for 4 compression operators.

References

- [1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient SGD via gradient quantization and encoding. NeurIPS, 2017.
- [2] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes SignSGD and other gradient compression schemes. ICML, 2019.
- [3] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for SGD with delayed gradients and compressed communication. *arXiv:1909.05350*, *2019*.