

Predicting Length of Stay in the ICU with Temporal Pointwise Convolutional Networks

Emma Rocheteau¹, Prof. Pietro Liò¹, and Dr Stephanie Hyland²

¹Department of Computer Science and Technology, University of Cambridge, UK

²Microsoft Research, Cambridge, UK

HSYS2020 Spotlight 17th July, 2020

Contents

Task: Length of Stay Prediction

Data: elCU

Methods: Model Architecture

Results

Length of Stay

Why Length of Stay?

- It's a key determinant of hospital costs.
- ► Long stays increase the risk of hospital acquired infections.

Efficient bed management could mitigate costs and risk. We need to know how long the patients are going to remain in the ICU.

Remaining Length of Stay Prediction

Length of Stay Labels

Data: Electronic Health Records in Intensive Care

elCU

- ▶ 200,859 ICU stays from 208 different hospitals across the US.
- ▶ Contains:
 - Time Series e.g. heart rate, blood pressure
 - Lab Results e.g. blood glucose
 - ► Demographics e.g. age, gender, ethnicity
 - Diagnoses
 - ▶ Medications

Example

What do we want the model to extract?

▶ Temporal trends

► Inter-feature relationships

Example

Temporal Convolution

Pointwise Convolution

Skip Connections

Temporal Receptive Fields

Model

Loss Function

Why do we expect TPC to do well on LoS?

▶ It has been specifically designed to be able to extract trends and inter-feature relationships.

It can theoretically choose it's own temporal receptive field sizes (independently for each feature) because of the skip connections.

Results

Ablation Study

Any Questions?

Please do email me with any questions! ecr38@cam.ac.uk

Or if you would like a copy of the full length paper straight away (it is 'on hold' for arxiv)

Thank you!

To my funders:

- ► The Armstrong Fund
- ▶ The Frank Elmore Fund
- ► The Clinical School

To my supervisor/mentor:

Prof. Pietro Lio and Dr Stephanie Hyland

Model Reliability

ICU Simulation Study

Data Type Ablation

Training Data Size

