TUTORIAL 11: Surface Integrals, The 3D Divergence Theorem, Stokes' Theorem

- 1. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{A}$, where $\mathbf{F} = x^2 \mathbf{i} + y^3 \mathbf{j} + z^4 \mathbf{k}$ and S is the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
- 2. Evaluate $\iint_S z^2 dA$, where S is the hemispherical shell given by $x^2 + y^2 + z^2 = a^2$ with $z \ge 0$.
- 3. Let S be the spherical shell given by $x^2 + y^2 + z^2 = 1$ with $x \ge 0$ (not $z \ge 0$). Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{A}$, where $\mathbf{F} = (1, -z, y)$.

4.

- (a) Let S be the cylindrical surface given parametrically by $x = a\cos(\theta)$ and $y = a\sin(\theta)$ with $0 \le \theta \le 2\pi$ and $0 \le z \le b$. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{A}$, where $\mathbf{F} = (x^2, y, 0)$.
- (b) Now let E be the solid region bounded by S together with the planes z=0 and z=b. Evaluate $\iiint_E div(\mathbf{F})dV$.
- 5. Use the 3D Divergence Theorem to evaluate $\iint_S \mathbf{F} \cdot d\mathbf{A}$, where $\mathbf{F} = (y^2x, z^2y, x^2z)$ and S is the surface of the sphere of radius a centred at the origin.
- 6. Let E be the solid cylinder with equations $0 \le x^2 + y^2 \le a^2$ and $0 \le z \le b$. Let S be the surface of E, and let \mathbf{F} be the vector field (x^3, y^3, z^3) . Use the 3D Divergence Theorem to evaluate $\iint_S \mathbf{F} \cdot d\mathbf{A}$.
- 7. Let E be the cone whose top is a flat disc of radius a centred on the z-axis at height b, and whose point is at the origin. Let S_1 be the flat top of E, and let S_2 be the lower curved surface (so S_1 and S_2 together form the whole boundary of E).
 - (a) Give the equations for S_1 , S_2 and E in cylindrical polar coordinates.
 - (b) Put $\mathbf{F} = grad(f)$, where $f = x^2 + y^2 + z^2$. Show that $\int_{S_2} \mathbf{F} \cdot d\mathbf{A} = 0$, and calculate $\int_{S_1} \mathbf{F} \cdot d\mathbf{A}$.
 - (c) Use the 3D Divergence Theorem to deduce the volume of E.
- 8. Let C be the vertical circle given by $y = a \sin(t)$ and $z = a \cos(t)$ with x = 0. Use Stokes's Theorem to evaluate $\int_C (x^2 y, z, 0) \cdot d\mathbf{r}$. Check your answer by calculating the integral directly.
- 9. Consider the points

$$P = (0, 0, c)$$
 $Q = (a, 0, c)$ $R = (a, b, c).$

Let C be the triangular path that goes from P to Q to R and back to P. Use Stokes's Theorem to evaluate $\int_C (yz^2, x^3, xy^2).d\mathbf{r}$.

10. Let E be the solid region where $-1 \le x, y \le 1$ and $0 \le z \le (1 - x^2)(1 - y^2)$. Let S be the surface of E, and let **u** be the vector field (x, y, 0). Verify the divergence theorem.

Useful identities

$$\sin(\alpha)\cos^2(\alpha) = \frac{1}{4}(\sin(3\alpha) + \sin(\alpha))$$

$$\cos^3(\alpha) = \frac{1}{4}\cos(3\alpha) + \frac{3}{4}\cos(\alpha).$$

The spherical position vector

$$\mathbf{r} = (r\cos\theta\cos\phi, r\sin\theta\sin\phi, r\cos\phi)$$

The spherical area and volume element

$$dA = r^2 \sin \theta d\theta d\phi, \quad dV = r^2 \sin \theta dr d\theta d\phi$$

Answers

1.

$$\int_{S} \mathbf{F} \cdot d\mathbf{A} = 3$$

- 2. $2\pi a^4/3$;
- 3. π ; 4 $a^2b\pi$;
- 5. $4\pi a^{5}/5$

$$\iint_{S} \mathbf{F} \cdot d\mathbf{A} = \pi a^{2} b \left(\frac{3a^{2}}{2} + b^{2} \right)$$

- 7b. $2\pi a^2 b$; 7c. $\pi a^2 b/3$
- 8. πa^2 ; 9. $3a^3b/4 abc^2/2$; 10. 32/9