

MINI SWARM ROBOTS

Grado en Ingeniería Informática Trabajo Fin de Grado

Autor: Luis José Llamas Pérez

Director: Asier Ruperto Marzo Pérez

Co-Director: Josu Irisarri Erviti

Pamplona, 19/01/2023

¿Qué es la inteligencia colectiva?

"Collective intelligence is a form of universally distributed intelligence, constantly enhanced, coordinated in real time, and resulting in the effective mobilization of skills"

Pierre Lévy "Collective Intelligence: Mankind's Emerging World in Cyberspace" (1994)

"La inteligencia colectiva es una forma de inteligencia distribuida universalmente, constantemente mejorada, coordinada en tiempo real, y que resulta en la movilización efectiva de habilidades."

¿Qué tipos de implementación hay?

Centralizada

Jerárquica

Descentralizada

Híbrida

La inteligencia colectiva...

¿Qué ventajas ofrece?

■ Diseño escalable

Flexibilidad

Redundancia

Cubrir grandes áreas

¿Qué problemas tiene?

Difícil de implementar

Muchas variables

Coste

Difícil de replicar

¿Cómo podemos solucionarlo?

¿Qué problemas tiene? Solución

■ Difícil de implementar

Software escalable

Muchas variables

Enfocar

Coste

Componentes de bajo coste

Difícil de replicar

Hardware/Software accesible

Objetivos

- Material accesible.
- Software ampliable y modificable.
- Arquitectura de Sistema centralizado.
- Sistema comunicación Wifi UDP.
- Crear dos robots con distintos componentes.
- Control movimiento de los robots.

Software

- TDD (Desarrollo guiado por pruebas)
- Inyección de dependencias
- Movimiento
- Multihilo
- Simulador

TDD (Desarrollo guiado por pruebas)

Inyección de Dependencias

Diagrama de clases del Robot

Multihilo

Simulador

Hardware

- Microcontrolador
 - ESP32 WROOM
- Motores
 - Corriente continua (CC / DC)
 - Servos (rotación continua)
- Circuitos integrados
 - L293D para controlar los motores DC
- Impresión 3D
 - Creación del chasis
 - Creación de las ruedas
- Alimentación
 - Batería powerbank 5V

Microcontrolador (ESP32)

Wifi y Bluetooth

Bajo coste

■ Fácil de obtener

Compatibilidad con Arduino

Motores

Motor DC + L293D

- 3 pines por motor
- Control de velocidad más preciso
- Circuito más complejo

Motor Servo

- 1 pin por motor
- Control de velocidad menos preciso
- Necesita modificación

Impresión 3D

Diseño

Impresión

Resultado

Presupuesto

Robot con motores DC

Componente	Cantidad	Precio unitario	Total
ESP32-WROOM	1	3.57€	3.57€
<u>IC L293D</u>	1	0.22€	0.22€
Motor DC	2	0.73€	1.46€
<u>Powerbank</u>	1	1.29€	1.29€
Chasis (3D)	1	1.00€	1.00€

Robot con motores Servo

Componente	Cantidad	Precio unitario	Total
ESP32-WROOM	1	3.57€	3.57€
Motor servo	2	0.73€	1.46€
<u>Powerbank</u>	1	1.29€	1.29€
Chasis (3D)	1	1.00€	1.00€
Rueda (3D)	2	1.48€	2.96€

Total 7.54€

Total 1	12.00€
---------	--------

Líneas futuras

Software

- Aumentar la precisión del robot
- Algoritmo de Path Finding para evitar obstáculos
- Mapeado dinámico del área
- Simulador en Unity

Hardware

- Minimizar el tamaño del robot
- Utilizar drones
- Mejorar el consumo del robot
- Explorar otras formas de alimentación (energía solar, ...)
- Pasar a una arquitectura jerárquica

Conclusiones

- Proyecto muy versátil
- Muchas utilidades
 - Equipos de rescate
 - Trabajos en zonas desfavorables (mar, sitios estrechos, ...)
 - Traslado de objetos
- Objetivos cumplidos
- Mejorable
- Alto potencial

DEMO MINI SWARM ROBOTICS

Grado en Ingeniería Informática Trabajo Fin de Grado

Autor: Luis José Llamas Pérez

Director: Asier Ruperto Marzo Pérez

Co-Director: Josu Irisarri Erviti

Pamplona, 19/01/2023