Approximate Linear Programming for First-order MDPs

Scott Sanner

Craig Boutilier

University of Toronto

University of Toronto

Outline

- 1. Background for factored MDPs (ALP and constraint gen)
- 2. Background for first-order MDPs (FOMDPs)
- 3. Approximate linear programming (ALP) for FOMDPs
 - Backup operators
 - First-order factored max (FOMax)
 - First-order constraint generation (FOCG)
- 4. Experimental results
- 5. Conclusions and future work

Factored MDPs

Factored representation of MDPs:

Transition DBN:

CPT for P(S_3 '| S_2 , S_3 , S_4):

Reward $R(S_1, S_2, S_3)$

Bellman backup for factored MDPs:

$$V^{t+1}(s_1, ..., s_n) = R(s_1, ..., s_n) +$$

$$\gamma \max_{a} \sum_{s'_1 ... s'_n} \left[\prod_{i=1}^n P(s'_i | Parents(s'_i), a) \right] V^t(s'_1, ..., s'_n)$$

Approx. LP for Factored MDPs

• Approximate $V(s_1, \ldots, s_n)$ with basis functions:

$$V(s_1, ..., s_n) = w_1 B_1(s_x, ..., s_y) + \cdots + w_k B_k(s_z, ..., s_w)$$

Define backup operator:

$$B^a(B_i)(s_x,\ldots,s_y) = \sum_{s_x'\ldots s_y'} \left[\prod_{i=1}^n P(s_i'|Par(s_i'),a)\right] B_i(s_x',\ldots,s_y')$$

Solve for approx. optimal value function using LP:

Variables: w_1, \ldots, w_k

Minimize:
$$\sum_{s_1,\ldots,s_n} \sum_{i=1}^{\kappa} w_i B_i(s_x,\ldots,s_y)$$

Subject to:
$$0 \ge R(\cdots) + \gamma \sum_{i=1}^k w_i B^a(B_i)(\cdots) - \sum_{i=1}^k w_i B_i(\cdots)$$
; $\forall a, s$

Constraint Generation

Constraints are of the form:

$$0 \geq F(s_x, \dots, s_y) + \dots + F(s_z, \dots, s_w); \forall a, s$$

$$\geq \max_{s_1, \dots, s_n} (F(s_x, \dots, s_y) + \dots + F(s_z, \dots, s_w)); \forall a$$

- Can find max efficiently in cost network!
- So use this to iteratively solve LP:
 - 1. Initialize LP with $\vec{w} = \vec{0}$ and empty constraint set
 - 2. For all $a \in A$, find maximally violated constraint c_a using cost network max, and add c_a to LP constraint set
 - 3. Solve LP, if solution \vec{w} not within tolerance, goto step 2

Situation Calculus

- Deterministic actions: upS(e), downS(e), openS(e)
- Situations: S_0 , $do(upS(e), S_0)$, $do(openS(e), do(upS(e), S_0))$
- Fluents: OnE(p,e,s), PAt(p,f,s), EAt(e,f,s), but not Dst(p,f)
- Successor-state axioms ($\Phi_F(\vec{x}, a, s)$) for fluents F:

```
PAt(p, f, do(a, s)) \equiv
(\exists e \ EAt(e, f, s) \land OnE(p, e, s) \land Dst(p, f) \land a = openS(e)) \lor
PAt(p, f, s) \land
\neg(\exists e \ EAt(e, f, s) \land \neg Dst(p, f) \land a = openS(e))
```

• Regression: $Regr(F(\vec{x}, do(a, s))) = \Phi_F(\vec{x}, a, s)$ $Regr(\neg \psi) = \neg Regr(\psi), Regr((\exists x)\psi) = (\exists x) Regr(\psi)$ $Regr(\psi_1 \land \psi_2) = Regr(\psi_1) \land Regr(\psi_2)$

Stochastic Actions in SitCalc

Stochastic actions decompose into deterministic
 Nature's choice actions (usually success/failure):

$$prob(openS(e), open(e), s) = 0.9$$

 $prob(openF(e), open(e), s) = 0.1$

Use case notation to specify probability distribution:

$$pCase(n_j(\vec{x}), A(\vec{x}), s) = case[\phi_1^j(\vec{x}, s), p_1^j; \dots; \phi_n^j(\vec{x}, s), p_n^j]$$

Restate more complex version of above example:

$$pCase(openS(e), open(e), s) = case[\neg old(e), 0.9; old(e), 0.7]$$

$$pCase(openF(e), open(e), s) = case[\neg old(e), 0.1; old(e), 0.3]$$

First-order MDPs (FOMDPs)

Represent reward and value functions using cases:

$$rCase(s) = case[\forall p, fPAt(p, f, s) \supset Dst(p, f), 10; \neg ", 0]$$

• Define operations $\{\oplus, \otimes, \ominus\}$ on cases:

Define first-order decision-theoretic regression:

$$FODTR(vCase(s), A(\vec{x})) =$$

$$\gamma \left[\bigoplus_{j} \{ pCase(n_{j}(\vec{x}), s) \otimes Regr(vCase(do(n_{j}(\vec{x}), s))) \} \right]$$

Symbolic Dynamic Programming for FOMDPs

• Define a free-variable backup operator $B^{A(\vec{x})}$:

$$B^{A(\vec{x})}(vCase(s)) = rCase(s) \oplus \gamma \ FODTR(vCase(s), A(\vec{x}))$$

• Define a quantified backup operator B^A :

$$B^{A}(vCase(s)) = rCase(s) \oplus \gamma \; \exists \vec{x} \; FODTR(vCase(s), A(\vec{x}))$$

Now can generalize Bellman equation for FOMDPs:

$$vCase^{t+1}(s) = \max_{A} \gamma \cdot B^{A}(vCase^{t+1}(s))$$

Approximate LP for FOMDPs I

• Represent vCase(s) as sum of weighted basis functions:

$$vCase(s) = \bigoplus_{i=1}^{k} w_i \cdot bCase_i(s)$$

• Redefine free-variable backup operator $B^{A(\vec{x})}$:

$$B^{A(\vec{x})}(\bigoplus_{i} w_{i} \cdot bCase_{i}(s)) =$$

$$rCase(s) \oplus (\bigoplus_{i} w_{i} \ FODTR(bCase_{i}(s), A(\vec{x})))$$

• Redefine quantified backup operator B^A where F are basis functions affected by action, N are not affected:

$$B^{A}(\bigoplus_{i} w_{i} \cdot bCase_{i}(s)) = rCase(s) \oplus (\bigoplus_{i \in N} w_{i} \ bCase_{i}(s))$$
$$\oplus \exists \vec{x} \ (\bigoplus_{i \in F} w_{i} \ FODTR(bCase_{i}(s), A(\vec{x})))$$

Not all fluents affected by action, so retains additivity!

Approximate LP for FOMDPs II

Generalize approximate LP from propositional case:

Variables:
$$w_i$$
; $\forall i \leq k$

Minimize: $\sum_{s} \sum_{i=1}^{k} w_i \cdot bCase_i(s)$

Subject to: $0 \geq B^A(\bigoplus_{i=1}^k w_i \cdot bCase_i(s)) \ominus (\bigoplus_{i=1}^k w_i \cdot bCase_i(s))$; $\forall A, s$

Objective ill-defined (infinite), need to redefine:

$$\sum_{s} \sum_{i=1}^{k} w_{i} \cdot bCase_{i}(s) = \sum_{i=1}^{k} w_{i} \sum_{s} bCase_{i}(s)$$

$$\sim \sum_{i=1}^{k} w_{i} \sum_{\langle \phi_{j}, t_{j} \rangle \in bCase_{i}} \frac{t_{j}}{|bCase_{i}|}$$

Preserves intent of original approx. LP formulation!

Constraint Generation II

Constraints are of the form:

$$0 \geq case_1(s) \oplus \cdots \oplus case_j(s); \forall A, s$$

$$\geq \max_{s} (case_1(s) \oplus \cdots \oplus case_j(s)); \forall A$$

- Infinite situations s so \max_s appears to be impossible.
- But only finite number of constant-valued partitions of s!
- Suggests a generalization of propositional cost network max and constraint generation.

First-order Factored Max Algorithm

- 1. Convert the FOL formulae in each case partition to a set of CNF clauses.
- 2. For each relation $R \in R_1 \dots R_n$ (under given ordering):
 - (a) Remove all *case* statements in c containing R and store \oplus in tmp.
 - (b) Do the following for each partition in tmp:
 - ullet Resolve all clauses on relation R, afterward remove remaining clauses containing R (ordered resolution).
 - \bullet If a resolvent of \emptyset exists in this partition, remove this partition from tmp and continue.
 - Remove dominated partitions whose clauses are a superset of another partition with greater value.
 - (c) Insert tmp back into c.
- 3. Return max of partitions remaining in c.

FO Constraint Gen. Algorithm

- 1. Initialize the weights: $w_i = 0$; $\forall i \leq k$
- 2. Initialize the LP constraint set: $C = \emptyset$
- 3. Initialize $C_{new} = \emptyset$
- 4. For each constraint inequality:
 - (a) Calculate $\varphi = \arg\max_s \oplus_i \ case_i(s)$ using FOMAX.
 - (b) If $eval(\varphi) \geq tol$, let c encode $0 \geq \bigoplus_i case_i(\varphi)$.
 - (c) $C_{new} = C_{new} \cup \{c\}$
- 5. If $C_{new} = \emptyset$, terminate with w_i as the solution to this LP.
- 6. $C = C \cup C_{new}$
- 7. Re-solve the LP with updated constraints C, goto step 3.

FOALP Error Bounds

 Based on Schuurmans and Patrascu (2001), we can also compute error bounds that apply equally to all domains:

$$\max_{s} \ vCase^{*}(s) \ominus vCase_{\pi_{greedy}}(\oplus_{i} \ w_{i} \cdot bCase_{i})(s)$$

$$\leq \frac{\gamma}{1-\gamma} \max_{s} \min_{A} \left[(\oplus_{i} \ w_{i} \cdot bCase_{i}(s)) \right]$$

$$\ominus B^{A}(\oplus_{i} \ w_{i} \cdot bCase_{i}(s))$$

$$\ominus B^{A}(\oplus_{i} \ w_{i} \cdot bCase_{i}(s))$$

$$\ominus B^{A}(\oplus_{i} \ w_{i} \cdot bCase_{i}(s))$$

Final inequality can be efficiently computed via FOMax!

Experimental Results I

Applied FOALP with FOCG to Elevator domain:

```
光团 🗵
Elevator Sim: fodt/foalp/elev_pol.txt
            Step = 62/500, Action=Down, Immed/Accum Value = 4/42.672
 V B
```

Augmented with VIPs (V), Attended (A), Groups (Color)

Experimental Results II

Elevator domain used additive reward criteria:

```
+2: \forall p, f \ PAt(p, f, s) \supset Dst(p, f)
+2: \forall p, f \ VIP(p) \land PAt(p, f, s) \supset Dst(p, f)
+4: \forall p, e \ OnE(p, e, s) \land Attended(p) \supset \exists p_2 OnE(p_2, e, s)
+2: \forall p, f \ Dst(p, f) \land \neg PAt(p, f, s) \supset \exists e \ On(p, e, s)
+2: \forall p, f \ VIP(p) \land Dst(p, f) \land \neg PAt(p, f, s)
\supset \exists e \ OnE(p, e, s)
+8: \forall p_1, p_2, g_1, g_2, e \ OnE(p_1, e, s) \land OnE(p_2, e, s)
\land p_1 \neq p_2 \land Group(p_1, g_1) \land Group(p_2, g_2) \supset g_1 = g_2
```

- Also made basis functions for each of these formulae.
- Ran FOALP using 1-6 basis functions in given order.

Experimental Results III

- Implementation based on Otter and CPLEX (5 min 6 hours)
- Evaluated accumulated discounted reward for domain with 10 floors and arrivals distributed according to N(0.1, 0.35)
- Averaged accumulated value at time step 50 over 100 trials
- Compared to heuristic policies:

Policy	Acc. Value
Always-Pickup	106.2
Prioritize VIP $\{V\},\{V,A\}$	108.1
No attended conflict $\{\mathtt{A}\}$	106.2
No group conflict $\{G\}$, $\{A,G\}$	119.1
$\{V,G\}$	115.3
$\{$ V,A,G $\}$	115.3

Policy	Acc. Value	Max Error
FOALP-1	114.5	177.3
FOALP-2	119.3	175.5
FOALP-3	122.3	173.7
FOALP-4	123.1	171.9
FOALP-5	124.2	168.3
FOALP-6	127.7	166.5

FOALP with 3+ bases outperforms heuristic policies!

Related Work

- SDP and ReBel require difficult FOL simplification
- Both ALP for Rel MDP (Guestrin et al, 2003) and Approx.
 Policy Iteration (Fern et al, 2003) require domain sampling
- Approx. Policy Iteration (Fern et al, 2003) and Gretton and Thiebaux (2004) use inductive methods requiring substantial simulation
- Guestrin et al (2003) provide PAC-bounds under assumption that prob. of domain falls off exponentially with size; ... in contrast, FOALP bounds apply equally to all domains

Conclusions and Future Work

Conclusions:

- FOALP is an efficient approx. LP technique that exploits first-order structure without grounding
- Implemented with highly optimized off-the-shelf software
- Error bounds apply equally to all domains
- Empirical results promising, but need more comparison

• Future work:

- Is uniform weighting the best approach?
- Can we dynamically reweight based on Bellman error?