2. Операции с матрицами

2.1. Цель работы

Овладеть навыками матричной обработки данных в МАТLAB.

2.2. Краткая теоретическая справка

Как уже говорилось ранее (см. разд. 1.2.1), в MATLAB любая переменная по умолчанию считается матрицей.

Матрица представляется своим *именем* (идентификатором) и характеризуется размером и типом.

Pазмер, матрицы принято указывать произведением $m \times n$, где m, n — число строк и столбцов соответственно. Матрицу размером $n \times n$ называют κ вадратной порядка n. Bектор воспринимается как матрица размером $1 \times n$ (строка) или $m \times 1$ (столбец), а cкаляр — как матрица размером 1×1 .

Хранение матриц в оперативной памяти организовано по столбцам.

Тип матрицы определяется типом ее элементов. В этой работе по умолчанию под матрицей будем подразумевать *числовую* матрицу.

Ввод матриц рассматривался в разд. 1.2.1.

Вектор, формирующий регулярную сетку, вводят в виде:

<начальное значение>:[<шаг>:]<конечное значение>

Шаг, равный единице, можно не указывать, условным признаком чего служат квадратные скобки.

Например:

```
>> y = 0:pi/4:pi
y =
0 0.7854 1.5708 2.3562 3.1416
>> x = 0:9
x =
```

Элементы матрицы могут быть представлены численными константами, простыми переменными, арифметическими выражениями и, в свою очередь, матрицами, например:

```
>> A = [5.3 sin(pi/4) 3+4*i]
A = 5.3000 0.7071 3.0000 + 4.0000i
```

Обращение к элементу матрицы происходит по ее имени с указанием индексов строки и столбца в круглых скобках (нижняя граница индексов равна единице):

```
>> B(2,4) ans = 7
```

По обращению B(i) матрица B воспринимается как *вектор*, элементы которого сформированы по столбцам:

```
>> B(5)
ans =
```

Размер матрицы — число строк и столбцов — определяется с помощью функции:

size(x)

Длина вектора — число элементов строки (столбца) — определяется с помощью функции:

length(x)

Матрица нулевой размерности — пустая матрица — обозначается как **A=[]**:

```
>> A = []; size(A)
ans =
0 0
```

Имя пустой матрицы сохраняется в Workspace и в дальнейшем может использоваться для формирования матрицы любого размера.

2.2.1. Функции генерации типовых матриц

В MATLAB можно генерировать большое разнообразие типовых матриц с помощью встроенных функций, список которых может быть выведен по команде:

help elmat

Некоторые из них приведены в табл. 2.1.

Таблица 2.1. Функции генерирования типовых матриц

Функция	Типовая матрица
zeros(M,N)	Нулевая матрица м×N
ones (M,N)	Матрица единиц м×N
eye (N)	Единичная матрица порядка N
rand(M,N)	Матрица м \times N случайных чисел размера в диапазоне от 0 до 1, распределенных по <i>равномерному</i> закону
randn(M,N)	Матрица $M \times N$ случайных чисел, распределенных по <i>нормальному</i> закону с математическим ожиданием, равным 0, и дисперсией, равной 1
diag(V)	Вектор из диагональных элементов квадратной матрицы ∨
	Диагональная матрица — все элементы равны нулю, кроме диагональных, равных вектору V
toeplitz(r)	Матрица Теплица — квадратная матрица с одинаковыми элементами на диагоналях, равными соответствующим элементам первого столбца r

2.2.2. Преобразование матриц

K 0	перациям преооразования матриц относятся:
	выделение из матрицы вектора-столбца:
	A(:,N)
	где N — номер столбца;
	выделение из матрицы вектора-строки:
	A(M,:)
	где М — номер строки;
	выделение подматрицы с указанием граничных индексов:
	A (M1:M2,N1:N2)
	где:
	M1:M2 — номера строк с M1 по M2 включительно;
	N1:N2 — номера столбцов с N1 по N2 включительно;
	выделение подматрицы с указанием начальных индексов:
	A(M1:end;N1:end)
	где:
	${\tt M1:endcтроки\ c\ M1\ до\ последней\ включительно;}$
	${\tt N1:endcтолбцы\ c\ N1\ до\ последнего\ включительно;}$
	растягивание матрицы в вектор-столбец:

```
A(:)
□ горизонтальная конкатенация (объединение) подматриц (по столбцам):
    A = [A1, A2, A3, ...]
    где А1, А2, А3, . . . — объединяемые подматрицы с одинаковым числом строк;
□ вертикальная конкатенация подматриц (по строкам):
   A=[A1;A2;A3;...]
   где A1; A2; A3; \dots объединяемые подматрицы c одинаковым числом
    столбцов;
□ копирование матрицы, выполняемое с помощью функции:
   repmat(A,m,n)
   где:
   А — исходная матрица как элемент новой матрицы;
    m, n — число копий матрицы A по строкам и столбцам соответственно;
□ копирование квадратных матриц, выполняемое с помощью функции:
    repmat(A,n)
    гле:
    А — исходная квадратная матрица как элемент новой квадратной матрицы;
    n — число копий матрицы A по строкам и столбцам.
```

2.2.3. Поэлементные операции с матрицами

К поэлементным операциям с матрицами относятся арифметические операции и вычисление элементарных функций, аргументы которых — матрицы.

Признаком поэлементных арифметических операций является *точка* перед символом операции:

```
-8 5 -30

-7 8 9

>> A./sin(B)

ans =

-1.1884 -2.1995 -21.2585

2.6427 -1.0428 17.8945

-1.5221 1.0108 2.4265
```

2.2.4. Операции с матрицами в задачах линейной алгебры

Кı	простейшим	операциям	с матрицами	в задачах	линейной	алгебры	относятся
----	------------	-----------	-------------	-----------	----------	---------	-----------

□ ариф	метические	операции;
--------	------------	-----------

□ транспонирование и эрмитово сопряжение;

□ обращение;

□ матричное деление.

2.2.4.1. Арифметические операции с матрицами

К арифметическим операциям с матрицами относятся:

□ сложение и вычитание матриц одинакового размера;

Суммой (разностью) матриц A и B размером $m \times n$ называется матрица C того же размера с элементами, равными сумме (разности) соответствующих элементов матриц A и B. Для операций сложения и вычитания матриц справедливы обычные законы арифметики:

$$A + B = B + A;$$

$$A - B = -B + A.$$

Пример сложения матриц (вывод матриц А и В приведен в разд. 2.2.3):

```
>> A = [1 2 3;2 -1 5;1 -1 -1]; B=[-1 -2 -3;-4 -5 -6;-7 -8 -9];

>> C = A+B

C =

0 0 0

-2 -6 -1

-6 -9 -10
```

- □ умножение матрицы на скаляр (число), эквивалентное операции поэлементного умножения на скаляр;
- □ умножение матрицы на матрицу;

Операция умножения возможна только в том случае, если число столбцов матрицы A равно числу строк матрицы B.

Произведением матрицы A размером $m \times n$ на матрицу B размером $n \times p$ называется матрица C размером $m \times p$, элемент i-й строки и k-го столбца которой равен сумме произведений соответственных элементов i-й строки матрицы A и k-го столбца матрицы B:

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$
; $i = 1, 2, ..., m$; $k = 1, 2, ..., p$.

В общем случае умножение матриц не коммутативно:

$$AB \neq BA$$
.

Пример умножения матриц:

 \square возведение квадратной матрицы в целую степень q, эквивалентное умножению матрицы саму на себя q раз:

2.2.4.2. Транспонирование и эрмитово сопряжение матриц

Транспонирование матрицы — это операция замены каждой строки столбцом с тем же номером.

Эрмитово сопряжение матрицы — это операция транспонирования матрицы с одновременной заменой ее элементов на комплексно сопряженные.

Операции транспонирования и эрмитова сопряжения выполняются *с помощью одного и того же символа* " ' " (апостроф). Результат зависит от исходной матрицы — является она вещественной или комплексной. В первом случае получим транспонированную, а во втором — эрмитово сопряженную матрицу:

```
>> A = [1 2 3; 4 5 6; 7 8 9]
A =
    1
           2
                 3
     4
           5
                 6
           8
     7
>> A'
ans =
    1
           4
                 7
    2
           5
                 8
    3
           6
                 9
>> C = [3+2i \ 4-5i; 7-5i \ 1+i; 2+2i \ 1-8i]
C =
  3.0000 + 2.0000i
                      4.0000 - 5.0000i
  7.0000 - 5.0000i 1.0000 + 1.0000i
  2.0000 + 2.0000i
                      1.0000 - 8.0000i
>> C'
ans =
   3.0000 - 2.0000i
                      7.0000 + 5.0000i 2.0000 - 2.0000i
                      1.0000 - 1.0000i 1.0000 + 8.0000i
   4.0000 + 5.0000i
```

Транспонирование комплексной матрицы выполняется с помощью символа поэлементного транспонирования:

```
>> C.'
ans =
3.0000 + 2.0000i 7.0000 - 5.0000i 2.0000 + 2.0000i
4.0000 - 5.0000i 1.0000 + 1.0000i 1.0000 - 8.0000i
```

Матрицу с комплексно сопряженными элементами можно получить путем транспонирования эрмитово сопряженной матрицы или с помощью функции conj (см. табл. 1.4):

2.2.4.3. Обращение матриц

Матрица B называется *обратной* к матрице A, если произведение этих матриц дает единичную матрицу I:

$$AB = BA = I$$
.

Матрица, обратная к матрице A, обозначается как A^{-1} .

Операция обращения возможна только для квадратных матриц с определителем (детерминантом), не равным нулю.

Определитель матрицы вычисляется с помощью функции:

det(A)

а обратная матрица — с помощью функции:

inv(A)

Например:

2.2.4.4. Матричное деление

В списке символов арифметических операций содержатся *два* символа матричного деления с *квадратными* матрицами A и B порядка n (см. табл. 1.6):

- \square левое матричное деление A\B, эквивалентное алгебраической операции $A^{-1}B$, т. е. inv(A) *B;
- \square правое матричное деление A/B, эквивалентное алгебраической операции AB^{-1} , т. е. A*inv(B).

Символ левого матричного деления "\" используют при решении систем линейных алгебраических уравнений (СЛАУ):

$$AX = B, (2.1)$$

где:

A — матрица коэффициентов при неизвестных;

B, X — векторы-столбцы свободных членов и неизвестных соответственно.

Умножив обе части (2.1) на A^{-1} слева, получим решение системы в виде:

$$X = A^{-1}B, (2.2)$$

что в MATLAB соответствует выполнению операций inv(A)*B, т. е. *левому* матричному делению:

Пример решения системы уравнений (2.1):

$$\begin{cases} x_1 + 5x_2 = 4 \\ -x_1 + 7x_2 = 8 \end{cases}$$

$$>> A = [1 5; -1 7], B = [4 8]$$

A =

1

-1 7

в =

4 8

 $>> X = A \setminus B'$

X =

-1

1

Проверим правильность решения по (2.1) — получим вектор-столбец в:

ans =

4

Деление B/A будет ошибочным, т. к. эта операция соответствует BA^{-1} (B*inv(A)), а умножение матриц в общем случае не коммутативно: $A^{-1}B \neq BA^{-1}$ (см. разд. 2.2.4.1): >> B/A ans = 3.0000 -1.0000

2.2.5. Норма матрицы и вектора

Норма матрицы (вектора) — это скаляр, с помощью которого оцениваются значения элементов матрицы (вектора).

Среди норм матрицы A и вектора X выделим следующие основные:

 \square норма $\|A\|_1$, определяется как максимальная сумма модулей элементов в *столбце*:

$$||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|.$$
 (2.3)

Аналогичная норма для вектора равна сумме модулей элементов вектора:

$$||X||_1 = \sum_{i=1}^m |x_i|;$$
 (2.4)

 \Box норма $\|A\|_{\infty}$ определяется как максимальная сумма модулей элементов в строке:

$$||A||_{\infty} = \max_{i} \sum_{j=1}^{m} |a_{ij}|.$$
 (2.5)

Аналогичная норма для вектора равна максимальному элементу вектора:

$$||X||_{\infty} = \max_{i} |x_i|; \tag{2.6}$$

 \square норма $\|A\|_2$ (евклидова норма) определяется как корень квадратный из суммы квадратов модулей всех элементов матрицы:

$$||A||_2 = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$
 (2.7)

Аналогичная норма для вектора:

$$||X||_2 = \sqrt{\sum_{i=1}^m |x_i|^2}$$
 (2.8)

Норма матрицы и вектора вычисляется с помощью функции:

norm(A,p)

2.2.6. Операции с матрицами в задачах математической статистики

Для решения задач математической статистики предусмотрен набор встроенных функций, список которых может быть выведен по команде:

help datafun

Основные из них приведены в табл. 2.2.

Таблица 2.2. Функции математической статистики

Функция	Назначение
max(A)	Максимальные элементы столбца
min(A)	Минимальные элементы столбца
sort(A)	Сортировка элементов столбца по возрастанию
sum(A)	Сумма элементов столбца
prod(A)	Произведение элементов столбца
mean (A)	Математическое ожидание (среднее значение) элементов столбца
std(A)	Среднеквадратическое (стандартное) отклонение (СКО), вычисляемое по формуле:
	CKO = $\sqrt{\frac{(a_{1j} - \overline{a}_{j})^{2} + (a_{2j} - \overline{a}_{j})^{2} + + (a_{mj} - \overline{a}_{j})^{2}}{(m-1)}}$,
	где:
	a_{ij} , $i=1,2,,m;$, $j=1,2,$, n — элемент матрицы $A;$

	\overline{a}_j , $j=1,2,,n$, — математическое ожидание (среднее значение) элементов j -го столбца; m — количество строк, n — количество столбцов
std(A,1)	Среднеквадратическое (стандартное) отклонение (СКО), вычисляемое по формуле: ${\rm CKO} = \sqrt{\frac{\left(a_{1j} - \overline{a}_j\right)^2 + \left(a_{2j} - \overline{a}_j\right)^2 + \ldots + \left(a_{mj} - \overline{a}_j\right)^2}{m}}$
var(A)	Дисперсия элементов столбца, вычисляемая по формуле:
	$\sigma_{j}^{2} = \frac{\left(a_{1j} - \overline{a}_{j}\right)^{2} + \left(a_{2j} - \overline{a}_{j}\right)^{2} + \dots + \left(a_{mj} - \overline{a}_{j}\right)^{2}}{(m-1)}$
var(A,1)	Дисперсия элементов столбца, вычисляемая по формуле:
	$\sigma_{j}^{2} = \frac{\left(a_{1j} - \overline{a}_{j}\right)^{2} + \left(a_{2j} - \overline{a}_{j}\right)^{2} + \dots + \left(a_{mj} - \overline{a}_{j}\right)^{2}}{m}$

2.3. Литература

- 1. Солонина А. И., Арбузов С. М. Цифровая обработка сигналов. Моделирование в МАТLAB. СПб.: БХВ-Петербург, 2008, гл. 3.
- 2. Сергиенко А. Б. Цифровая обработка сигналов. 3-е издание СПб.: БХВ-Петербург, 2010, *Приложения 1—2*.

2.4. Содержание лабораторной работы

Содержание работы связано с изучением типовых операций с матрицами в МАТLAB в режиме прямых вычислений.

2.5. Задание на лабораторную работу

Задание на лабораторную работу включает в себя следующие пункты:

1. Определение длины вектора и размера матрицы.

Ввести:

- произвольную матрицу А;
- пустую матрицу Z;
- вектор В в виде регулярной сетки с начальным элементом $-\pi$, конечным π и нагом $\pi/32$

Определить размеры матриц и длину вектора.

Пояснить:

- что такое длина вектора и размер матрицы, и как они определяются в MATLAB:
- с какой целью и как вводится пустая матрица и каков ее размер;
- как вводится регулярная сетка; в каком случае допускается не указывать шаг изменения значения переменной.
- 2. Генерирование типовых матриц.

Сгенерировать следующие квадратные матрицы 3-го порядка:

- нулевую матрицу С;
- матрицу единиц D;
- единичную матрицу D1;
- матрицу Теплица т с произвольными вещественными элементами первого столбца;
- матрицу Е случайных чисел, распределенных по равномерному закону;
- матрицу F случайных чисел, распределенных по нормальному закону.

Пояснить:

- как выполняется генерация указанных матриц в MATLAB;
- что собой представляют матрицы: нулевая, единиц, единичная и Теплица.
- 3. Выделение элементов матрицы.

В матрице F (см. п. 2) выделить:

- второй элемент третьей строки;
- вектор диагональных элементов;
- первую строку;
- третий столбец;
- подматрицу с номерами строк 2:3 и номерами столбцов 1:3.

Пояснить, как происходит выделение подматриц.

4. Преобразование матриц.

Произвести с матрицей F (см. п. 2) следующие преобразования:

- выполнить горизонтальную конкатенацию матрицы F с матрицей С (см. п. 2);
- выполнить вертикальную конкатенацию матрицы F с матрицей D (см. п. 2);
- сформировать квадратную матрицу G 6-го порядка посредством копирования матрицы F.

Пояснить, как выполняются указанные преобразования.

5. Поэлементные операции с матрицами.

Для всех элементов матрицы F (см. п. 2) выполнить операцию возведения в квадрат и умножения на 2.

Пояснить, какие символы арифметических операций использованы.

6. Сложение и вычитание матриц.

Ввести квадратные матрицы А и В 3-го порядка с произвольными вещественными элементами.

Выполнить операции сложения и вычитания матриц A и B и присвоить результаты переменным C1 и C2.

Пояснить:

- что собой представляют переменные С1 и С2;
- является ли операция сложения (вычитания) матриц коммутативной.

7. Умножение матриц.

Ввести матрицы A и B с произвольными вещественными элементами. Размеры матриц выбрать так, чтобы для этих матриц была возможна операция умножения.

Выполнить умножение матрицы A на матрицу B и присвоить результат переменной C.

Пояснить:

- как должны быть согласованы размеры матриц А и В, чтобы для них была возможна операция умножения;
- что собой представляет переменная С;
- является ли операция умножения матриц коммутативной.
- 8. Транспонирование и эрмитово сопряжение матриц.

Выполнить следующие операции:

- транспонировать матрицу F (см. п. 2);
- сформировать квадратную матрицу Р 3-го порядка с произвольными комплексными элементами;
- транспонировать матрицу Р;
- сформировать матрицу R, эрмитово сопряженную с матрицей P;
- сформировать матрицу R1 с комплексно сопряженными элементами относительно матрицы P.

Пояснить, как указанные операции выполняются в MATLAB.

9. Обращение матриц.

Выполнить следующие операции:

- вычислить определитель матрицы F (см. п. 2);
- сформировать матрицу F1, обратную к матрице F;
- найти произведение матриц F и F1 и присвоить результат переменной F2.

Пояснить:

- для какой матрицы возможна операция обращения;
- какая функция служит для вычисления определителя матрицы;
- что собой представляет переменная F2,и с какой целью она вычислена.

10. Решить СЛАУ

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 14 \\ 2x_1 - x_2 - 5x_3 = -15 \\ x_1 - x_2 - x_3 = -4 \end{cases}$$

и проверить правильность решения.

Пояснить, какая операция матричного деления используется и почему.

11. Вычисление норм матрицы и вектора.

Для матрицы F (см. п. 2) вычислить нормы (2.3), (2.5) и (2.7).

Для вектора X = rand(1,100) вычислить нормы (2.4), (2.6) и (2.8).

Пояснить смысл указанных норм и способ их вычисления в MATLAB.

12. Операции с матрицами в задачах математической статистики.

Для матрицы F (см. п. 2) вычислить:

- максимальные и минимальные элементы столбцов;
- сумму и произведение элементов столбцов;
- средние значения элементов столбцов;
- СКО элементов столбцов с помощью функции std (F, 1);
- дисперсию элементов столбцов с помощью функции var (F, 1).

Пояснить:

- какие функции MATLAB использованы в каждом из этих случаев (кроме std и var);
- как проверить правильность результатов согласно определению среднего значения, СКО и дисперсии.

2.6. Задание на самостоятельную работу

Самостоятельное задание рекомендуется для закрепления полученных знаний и включает в себя следующие пункты:

1С. Операции с матрицами.

Привести пример арифметического выражения, в котором все переменные и результат вычисления — матрицы.

Вычислить статистические характеристики и нормы результирующей матрицы.

2С. Обращение, транспонирование и эрмитово сопряжение матрицы.

Выполнить для матрицы Теплица 5-го порядка.

3С. Решение СЛАУ:

$$\begin{cases} 5x_1 + 2x_2 - 7x_3 - 0, 5x_4 + 9 = 0 \\ x_1 - 0, 3x_2 + 9x_3 + 5 = 0 \\ 6x_1 + x_2 - 8x_3 - 19 = 0 \\ 3x_2 + 4x_3 - 2x_4 = 0 \end{cases}$$

2.7. Отчет и контрольные вопросы

Отчет составляется в редакторе Word и содержит результаты выполнения каждого пункта задания, копируемые из окна **Command Window** (шрифт Courier New), и ответы на поставленные вопросы (шрифт Times New Roman).

Защита лабораторной работы проводится на основании представленного отчета и контрольных вопросов из следующего списка:

- 1. Дайте определение матрицы.
- 2. Что такое размер и порядок матрицы?
- 3. Как вектор и скаляр воспринимаются в МАТLAB?
- 4. Чем определяется тип матрицы?
- 5. Как вводятся матрица, вектор и скаляр?
- 6. Чему равна нижняя граница индексов матрицы в MATLAB?
- 7. Как обратиться к элементу матрицы и вектора?
- 8. Что такое пустая матрица? С какой целью она вводится, и каков ее размер?
- 9. Что такое регулярная сетка, и как она вводится в МАТLАВ?
- 10. Как определить размер матрицы и длину вектора в МАТLАВ?
- 11. Как в MATLAB сформировать следующие матрицы: нулевую; единиц; единичную; случайных чисел, распределенных по равномерному и нормальному законам?
- 12. Как из матрицы выделить вектор-строку и вектор-столбец?
- 13. Как из матрицы выделить подматрицу с произвольными граничными индексами? С произвольными начальными индексами?
- 14. Как матрицу растянуть в вектор-столбец?
- 15. Как выполнить копирование матрицы?
- 16. Какие символы используются для поэлементных арифметических операций с матрицами?
- 17. Что такое транспонирование матрицы, и как оно выполняется в МАТLАВ?
- 18. Что такое эрмитово сопряжение матрицы, и как оно выполняется в МАТLАВ?
- 19. Дайте определение обратной матрицы и поясните, как она вычисляется в MATLAB.
- 20. Как в MATLAB вычислить определитель матрицы?
- 21. Для каких матриц допустима операция матричного умножения, и какой символ операции используется?
- 22. Какие символы матричного деления используются в MATLAB, и чем они отличаются? Какой из них используется при решении СЛАУ?

- 23. Как в МАТLАВ вычисляются различные нормы матрицы и вектора?
- 24. Как в МАТLAВ вычисляются среднее значение, дисперсия и СКО матрицы?

```
Вектор
                                                с матрицами, 5
  длина, 3
                                              Функции
  норма, 11
                                                генерирования типовых матриц, 3
  регулярная сетка, 2
                                                математической статистики, 12
                                              Функция
Матрица, 1
  возведение в степень, 7
                                                det, 9
  выделение векторов, 4
                                                diag, 3
  выделение подматриц, 4
                                                eye, 3
  деление, 9
                                                inv, 9
  диагональная, 3
                                                length, 3
  единиц, 3
                                                max, 12
  единичная, 3
                                                mean, 12
  конкатенация, 4
                                                min, 12
  копирование, 4
                                                norm, 11
                                                ones, 3
  норма, 11
  нулевая, 3
                                                prod, 12
  обращение, 9
                                                rand, 3
  пустая, 3
                                                randn, 3
  размер, 1, 3
                                                repmat, 4
  сложение и вычитание, 6
                                                size, 3
  случайных чисел, 3
                                                sort, 12
  Теплица, 3
                                                std, 12
  тип, 1
                                                sum, 12
  транспонирование, 7
                                                toeplitz, 3
  умножение, 6
                                                var, 13
  эрмитово сопряжение, 7
                                                zeros, 3
```

Операции