Some impositant trem farmation

O
$$x_1, x_2 \sim C(0,1) \Rightarrow x_1+x_2 \sim C(0,2)$$
O $x_1, x_2, \cdots, x_m : \pi \cdot s$. From $C(M,1)$

Then $\Sigma x_i \sim C(mM, m)$ and $\overline{x} \sim C(M,1)$
O $\Delta M(A) = \overline{x}$ and $AM(A) = \frac{\pi}{\frac{\pi}{2}} \frac{1}{x_i}$ has

The same distant if $x_1, x_2, \cdots, x_m \stackrel{iid}{\sim} C(0,1)$

$$0 \times \sqrt{2} \times \sqrt{2$$

Then
$$x+y+z \sim \mathcal{P}(m+n+b)$$

$$\frac{y}{y+z} \sim \beta_{1}(n, b)$$

$$\frac{x}{x+y+z} \sim \beta_{1}(m, n+b)$$

$$\frac{x+y}{x+y+z} \sim \beta_{1}(m+n, b)$$

O D
$$\times \sim \gamma(n)$$
 > independent $1 \sim \gamma(n+\frac{1}{2})$ Then $2\sqrt{x}$ $\sim \gamma(2n)$

$$O_{X_1} \sim \beta_1(n_1, n_2) > \text{in depen dent} \Rightarrow \sqrt{x_1 x_2} \sim \beta_1(2n_1, 2n_2)$$

$$x_2 \sim \beta_1(n_1 + \frac{1}{2}, n_2) > \text{in depen dent} \Rightarrow \sqrt{x_1 x_2} \sim \beta_1(2n_1, 2n_2)$$

and
$$a = e + d$$
 then

 $0 \times N R(0,1) > independent$
 $1 \sim R(0,1) > independent$

O
$$x, y \approx N(0, 1)$$

Then $\frac{xy}{\sqrt{x^2+y^2}}, \frac{x^2-y^2}{2\sqrt{x^2+y^2}} \approx N(0, \frac{1}{4})$

O Suppose
$$x_i \stackrel{\text{iid}}{\sim} N(0,i)$$
, $i=1(i)4$.
Then $M_{x_1x_2}(x_2) = \frac{1}{\sqrt{1-x^2}}$, $1+1<1$
and $M_{x_1x_2} = x_3x_4(x_2) = \frac{1}{1-x^2}$, $1+1<1$
 $i\cdot e\cdot x_1x_2 - x_3x_4 \sim \text{Standard Laplace Distance}$

Of
$$x \sim C(0,1) \Rightarrow \frac{3^{x}}{1+x^{2}} \sim C(0,1)$$
[Using 3 to there result]

Of $x \sim U(0,1)$, $V = min(x,1-x)$, $V = mex(x,1-x)$

$$\Rightarrow \frac{U}{V} \sim Beta(2,1)$$
 of 2nd kind.

$$Y \sim F_{m_1, m_2}$$
Then $\alpha \circ m \to \infty$ How $Z : m_1 \vee \sim \chi^2_{m_1}$
$\times \sim \beta_1(\theta, 1)$ i'e. $f_{\chi}(a) : \frac{\chi^{\theta-1}}{\beta(\theta, 1)}$ $I_{\chi}(\theta, 1)$. $\alpha \circ m_2$
$\times \sim \beta_1(\theta, 1) : \gamma \sim \chi^2_{\chi}$
$\times \sim \beta_1(\theta, 1) : \gamma \sim \chi^2_{\chi}$

in paragraphics in soundary

1.90 - 5.5 - (M)

13 HI. - - (1) - (1) W & - XX H. Low

of all supplied - replaced - of the of x . 2.

Onder Statistics

The df of the nth ander statistic
$$X_{(D)}$$
 is.

$$f_{X_{(D)}}(x) = \int_{\mathbb{R}^{2}}^{\infty} \binom{n}{x} \binom{n}{x}$$

$$F(x_{(n)}) = \frac{\pi}{n+1}$$

$$F(x_1), F(x_2), \dots, F(x_n) : iid P(0,1)$$

$$= \sum_{i=1}^{n} F(x_{(n)}) = \frac{\pi}{n+1}$$

Then as n > 00 Hos Z:nya 22n. # x~ B, (0,1) i.e. f, (a): \(\frac{\chi^{\text{0.1}}}{B(0,1)} \) \(\frac{1}{2} \left(\frac{\chi^{\text{0.1}}}{2} \right) \). \(\frac{\chi^{\text{0.1}}}{2} \left(\frac{\chi^{\text{0.1}}}{2} \right) \). Then - 20 mx ~ 202 # If $f_{x}(x) = \frac{0}{x^{0+1}} I_{x>0} Hen hoto Bxp(mean)$ $# If <math>x_{i} \sim Bin(n_{i}, b)$ i=1,2 Hen # $\times \sim R(0.1) \Rightarrow -2m \times \sim \times^2$ x, | x,+x, -s ~ Bim Hypergeomo Forie (N=n,+m2.n=s, p.n. # Far xi'd Exp (meen = 1) i=1,2 Then x1-x2-DE(01) XI, 12, 13 i'd N (OI) Then define Y, = x1+2+3 , Y2 = x1-1/2 , Y3 = x1+2-23 where $\gamma_i \stackrel{1}{\sim} \stackrel{1}{\sim} N(0,1)$ (1.0) $\gamma_i = (1,2,3)$ 12111 . _____ bno ve. x, x, x, x, x Mondand Caplerer Distan (4) 2 Fin ~ (1990) Thing S. of Maple John M. La olon A ming and I have a line of Colonex 9 2 Blog B. J. J. J. S. S. S. S.