

CHORDAL GRAPHS AND VERTEX SEPARATORS

Why

We characterize chordal graphs using vertex separators, and vice versa.¹

Main Result

Proposition 1 (Chordal Graphs and Vertex Separators). An undirected graph is chordal if and only if all minimal vertex separators are complete.

Proof. Let G = (V, E) be an undirected graph.

First, suppose that all minimal vertex separators of G are complete. Let c be a cycle of length greater than 3. Let v, w be nonconsecutive vertices in c. If v and w are adjacent in G, then $\{v, w\} \in E$ is a chord. If v and w are nonadjacent, then vw-separator exists.

The key insight is that there exists two non-consecutive vertices in the cycle that are also included in any vw-separator T. Split the cycle into the path from v to w, call it p_1 and the path from w to v, call it p_2 . T must include an interior point of p_1 , call it u_1 , otherwise v and w are connected. Similarly, T must include an interior point of p_2 , call it u_2 . u_1 and u_2 are not consecutive in c, since they are distinct from x and y.

Let S be a minimal vw-separator. Let $s, t \in S$ be two non-consecutive vertices in the cycle different from v and w

¹Future editions will expand and may include graphics.

By assumption S is complete, so s and t are adjacent in G.

Second, let G = (V, E) be a chordal graph. Let S be a minimal vw-separator. Let C_v and C_w be the connected components containing v and w of the subgraph induced by V - S.

If |S|=1, then S is complete. Otherwise, let $x,y\in S$ by distinct. We want to show $\{x,y\}\in E$. The key insight is that x is adjacent to vertices in C_v and C_w . If there were no such vertex, $S-\{x\}$ would be a vw-separator and S would not be minimal. Similarly with y. Also, $|C_v|, |C_w| \geq 1$.

With these observations, there exists a path from x to y through C_v . Let $p_v = (x, v_1, \ldots, v_k, y)$ be a path of shortest length with at least one interior vertex (so $k \geq 1$) from x to y using interior vertices in $v_1, \ldots, v_k \in C_v$. Let $p_w = (y, w_1, \ldots, w_l, x)$ be a path of shortest length with at least one interior vertex (so $l \geq 1$) from y to x using interior vertices $w_1, \ldots, w_k \in C_w$. Use p_v and p_w to define the cycle $c = (x, v_1, \ldots, v_k, y, w_1, \ldots, w_l, x)$ which has length at least four. G is chordal, so c has a chord.

We argue that the chord of c is $\{x,y\}$. Since C_w and C_V are different connected components (whose vertices are not included in S), there are no edges $\{v_i, w_j\}$ for i = 1, ..., k and j = 1, ..., l. Since p_v and p_w are paths of shortest length, they have no chords. In particular, there is no edge $\{v_i, v_j\}$ for |i - j| > 1 or $\{v_i, x\}$ for i = 1, ..., l. Similarly, there is no edge $\{w_i, w_j\}$ for |i - j| > 1 or $\{w_i, y\}$ for i = 1, ..., l. The only remaining pair is $\{x, y\}$, and so it must be the chord. \square

