

Neural ODEs

Andriy Drozdyuk, andriy@drozdyuk.com Nov 29, 2020

Table of Contents

Some cool results

ML Part

Dynamical Systems Part

Adjoint method

Some cool results

Newton's Law of Cooling

Chemical Reaction Rate Law

ML Part

Neural ODE Presentation

Then we can wishe Fas a cont. func. of t:

The are given this as injusting the state of the stat

So that It is no larger a func. of Z, but we only need the input finitial value of Z.

Problem: How to backprop through ODESolve? * second insight *

Dynamical Systems Part

Dynamical Systems (and ODEs) Dynamical system is:) Some "state" that changes with time, e.g. 2) Some "rule" for how that state changes: Usually this is a system of ODEs (ordinary diff. equations) "Solution" to an ODE is a function Eg. So we can find 7(5.5) directly, without the "rule" off. Note: we are always given 7(0) -initial value (important later)

Finding a solution to a dynamical system

Given some dynamical system f(t, z, p) with an initial condition z_0 , find the solution z(t).

This way we can find Z(t) for any t.

Example : Pendulum

def pendulum
$$(y, t, b, c)$$
:

Assume

 $0, SC = y = state$
 $dy = [\Omega, -b\Omega - c \sin(\theta)]$

C = 5.0

from scipy integrate import ode int sol = ode int (pendulum, yo, t, args = (b,c))

Let's Plot solf:,1] solf:,1]

Adjoint method

From ResNET to ODENet

Starting from the input z(0) layer we can define output layer z(T) to be the solution to an ODE initial value problem:

$$\frac{dz(t)}{dt} = f(z(t), t, \theta)$$

Backprop through ODE solver

Continuous time backprop

Continuous-time Backpropagation

Residual network.
$$a_t := \frac{\partial L}{\partial z_t}$$

$$\label{eq:ackward:at} \text{Backward: } a_t = a_{t+h} + h a_{t+h} \frac{\partial f(z_t)}{\partial z_t}$$

Params:
$$\frac{\partial L}{\partial \theta} = h a_{t+h} \frac{\partial f(z(t), \theta)}{\partial \theta}$$

Forward:
$$z_{t+h} = z_t + hf(z_t)$$
 Forward: $z(t+1) = z(t) + \int_t^{t+1} f(z(t)) dt$

Backward:
$$a_t = a_{t+h} + ha_{t+h} \frac{\partial f(z_t)}{\partial z_t}$$
 Backward: $a(t) = a(t+1) + \int_{t+1}^t \underbrace{a(t) \frac{\partial f(z(t))}{\partial z(t)}}_{\text{(1)?}} dt$

We will show how to obtain adjoint differential equation (1) and gradients wr.t. θ (2) next!

Adjoint Method proof

Let $\mathbf{z}(t)$ follow the differential equation $\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), t, \theta)$, where θ are the parameters. We will prove that if we define an adjoint state

$$\mathbf{a}(t) = \frac{dL}{d\mathbf{z}(t)} \tag{34}$$

then it follows the differential equation

$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)\frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}(t)}$$
(35)

The adjoint state is the gradient with respect to the hidden state at a specified time t. In standard neural networks, the gradient of a hidden layer \mathbf{h}_t depends on the gradient from the next layer \mathbf{h}_{t+1} by chain rule

$$\frac{dL}{d\mathbf{h}_t} = \frac{dL}{d\mathbf{h}_{t+1}} \frac{d\mathbf{h}_{t+1}}{d\mathbf{h}_t}.$$
(36)

With a continuous hidden state, we can write the transformation after an ε change in time as

$$\mathbf{z}(t+\varepsilon) = \int_{t}^{t+\varepsilon} f(\mathbf{z}(t), t, \theta) dt + \mathbf{z}(t) = T_{\varepsilon}(\mathbf{z}(t), t)$$
(37)

and chain rule can also be applied

$$\frac{dL}{\partial \mathbf{z}(t)} = \frac{dL}{d\mathbf{z}(t+\varepsilon)} \frac{d\mathbf{z}(t+\varepsilon)}{d\mathbf{z}(t)} \quad \text{or} \quad \mathbf{a}(t) = \mathbf{a}(t+\varepsilon) \frac{\partial T_{\varepsilon}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}$$
(38)

The proof of (35) follows from the definition of derivative:

$$\frac{d\mathbf{a}(t)}{dt} = \lim_{\varepsilon \to 0^{+}} \frac{\mathbf{a}(t+\varepsilon) - \mathbf{a}(t)}{\varepsilon}$$
(39)

$$=\lim_{\varepsilon\to 0^+}\frac{\mathbf{a}(t+\varepsilon)-\mathbf{a}(t+\varepsilon)\frac{\partial}{\partial\mathbf{z}(t)}T_\varepsilon(\mathbf{z}(t))}{\varepsilon} \tag{by Eq 38}$$

$$= \lim_{\varepsilon \to 0^{+}} \frac{\mathbf{a}(t+\varepsilon) - \mathbf{a}(t+\varepsilon) \frac{\partial}{\partial \mathbf{z}(t)} \left(\mathbf{z}(t) + \varepsilon f(\mathbf{z}(t), t, \theta) + \mathcal{O}(\varepsilon^{2}) \right)}{\varepsilon}$$
 (Taylor series around $\mathbf{z}(t)$)

$$= \lim_{\varepsilon \to 0^{+}} \frac{\mathbf{a}(t+\varepsilon) - \mathbf{a}(t+\varepsilon) \left(I + \varepsilon \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}(t)} + \mathcal{O}(\varepsilon^{2})\right)}{\varepsilon}$$
(42)

$$= \lim_{\varepsilon \to 0^{+}} \frac{-\varepsilon \mathbf{a}(t+\varepsilon) \frac{\partial f(\mathbf{a}(t),t,\theta)}{\partial \mathbf{z}(t)} + \mathcal{O}(\varepsilon^{2})}{\varepsilon}$$
(43)

$$= \lim_{\varepsilon \to 0^{+}} -\mathbf{a}(t+\varepsilon) \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}(t)} + \mathcal{O}(\varepsilon)$$
(44)

$$= -\mathbf{a}(t) \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}(t)} \tag{45}$$

Gradients w.r.t θ

We can generalize (35) to obtain gradients with respect to θ -a constant wrt. t-and and the initial and end times, t_0 and t_N . We view θ and t as states with constant differential equations and write

$$\frac{\partial \theta(t)}{\partial t} = \mathbf{0}$$
 $\frac{dt(t)}{dt} = 1$ (47)

We can then combine these with z to form an augmented state $^{\rm l}$ with corresponding differential equation and adjoint state,

$$\frac{d}{dt} \begin{bmatrix} \mathbf{z} \\ \theta \\ t \end{bmatrix} (t) = f_{aug}([\mathbf{z}, \theta, t]) := \begin{bmatrix} f([\mathbf{z}, \theta, t]) \\ \mathbf{0} \\ 1 \end{bmatrix}, \ \mathbf{a}_{aug} := \begin{bmatrix} \mathbf{a} \\ \mathbf{a}_{\theta} \\ \mathbf{a}_{t} \end{bmatrix}, \ \mathbf{a}_{\theta}(t) := \frac{dL}{d\theta(t)}, \ \mathbf{a}_{t}(t) := \frac{dL}{dt(t)}$$
(48)

Note this formulates the augmented ODE as an autonomous (time-invariant) ODE, but the derivations in the previous section still hold as this is a special case of a time-variant ODE. The Jacobian of f has the form

$$\frac{\partial f_{aug}}{\partial [\mathbf{z}, \theta, t]} = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{z}} & \frac{\partial f}{\partial \theta} & \frac{\partial f}{\partial t} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} (t) \tag{49}$$

where each 0 is a matrix of zeros with the appropriate dimensions. We plug this into (35) to obtain

$$\frac{d\mathbf{a}_{aug}(t)}{dt} = -\begin{bmatrix} \mathbf{a}(t) & \mathbf{a}_{\theta}(t) & \mathbf{a}_{t}(t) \end{bmatrix} \frac{\partial f_{aug}}{\partial [\mathbf{z}, \theta, t]}(t) = -\begin{bmatrix} \mathbf{a} \frac{\partial f}{\partial \mathbf{z}} & \mathbf{a} \frac{\partial f}{\partial \theta} & \mathbf{a} \frac{\partial f}{\partial t} \end{bmatrix}(t)$$
(50)

Full backprop algorithm

Algorithm 2 Complete reverse-mode derivative of an ODE initial value problem

The End

References

Neural Ordinary Differential Equations, Best Paper NIPS 2018. Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud DiffEqFlux.jl - differential equations with machine learning library.

Neural Ordinary Differential Equations, UofT Lecture Notes by Ricky T. Q. Chen

The idea of a dynamical system, Math Insight.