Maximizing Accuracy under
Fairness Constraints
(C-LR and C-SVM)
&
Information Theoretic
Measures for Fairness-Aware
Feature selection (FFS)

**Group 5:** Chang Lu, Jiaxin Yu, Marcus Loke, Xiran Lin, Zaigham Khan

Presenter: Xiran Lin



## **Exploratory Data Analysis**



```
## Call:
## glm(formula = two_year_recid ~ ., family = "binomial", data = df)
## Deviance Residuals:
                                           Max
                      Median
                                   30
  -3.0379 -1.0104
                     -0.6439
                                        1.9708
## Coefficients:
                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                         0.38552
                                    0.09604
                                              4.014 5.96e-05 ***
## sexMale
                                    0.07143
                                              4.428 9.52e-06 ***
                         0.31628
## age cat25 - 45
                        -0.72934
                                    0.07091 -10.285 < 2e-16 ***
## age_cat> 45
                                                    < 2e-16 ***
                        -1.44579
                                            -15.576
## raceAfrican-American
                        0.09351
                                                      0.1133
## priors count
                                                    < 2e-16 ***
                         0.74182
                                             19.375
## c charge degreeM
                        -0.12941
                                    0.06026
                                             -2.148
                                                      0.0317 *
## length of stay
                         0.14413
                                    0.03232
                                              4.459 8.22e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 8188.2 on 5914 degrees of freedom
## Residual deviance: 7338.3 on 5907 degrees of freedom
## AIC: 7354.3
## Number of Fisher Scoring iterations: 4
```

## A2 Algorithm

A2: Maximizing accuracy under fairness constraints

$$\begin{aligned} & \text{minimize} & & -\sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i, \boldsymbol{\theta}) \\ & \text{subject to} & & \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{z}_i - \bar{\mathbf{z}}\right) \boldsymbol{\theta}^T \mathbf{x}_i \leq \mathbf{c}, \\ & & & \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{z}_i - \bar{\mathbf{z}}\right) \boldsymbol{\theta}^T \mathbf{x}_i \geq -\mathbf{c}, \end{aligned}$$



**C-LR**: minimize -ve log likelihood subject to cross-covariance between sensitive variables and the distance to the hyperplane.

minimize 
$$\|\mathbf{b}\|^2 + C \sum_{i=1}^n \xi_i$$
  
subject to  $y_i(\mathbf{b}^T[-1 \mathbf{x}_i]) \ge 1 - \xi_i, \forall i \in \{1, \dots, n\}$   
 $\xi_i \ge 0, \forall i \in \{1, \dots, n\},$   
 $\frac{1}{N} \sum_{i=1}^N (\mathbf{z}_i - \overline{\mathbf{z}}) \mathbf{b}^T[-1 \mathbf{x}_i] \le \mathbf{c},$   
 $\frac{1}{N} \sum_{i=1}^N (\mathbf{z}_i - \overline{\mathbf{z}}) \mathbf{b}^T[-1 \mathbf{x}_i] \ge -\mathbf{c}.$ 



**C-SVM**: minimize the margin between support vectors under penalty where **b** is the weight vectors; subject to cross-covariance between sensitive variables and the distance to the hyperplane.

In both case, **c** controls the trade-offs between accuracy and parity (or p-rule).

### A7 Algorithm

A7: Information Theoretic Measures for Fairness-aware Feature selection (FFS)

In this paper, the authors propose two information-theoretic measures that separately quantify the accuracy and discriminatory impact of subsets of features. They also deduce the marginal impacts of each feature using Shapley-value analysis

Accuracy Coefficient is given by:

$$v^{Acc}(X_S) = I(Y; X_S | \{A, X_{S^c}\}) = UI(Y; X_S \setminus \{A, X_{S^c}\}) + CI(Y; X_S, \{A, X_{S^c}\}).$$

Discrimination coefficient is given by:

$$v^D(X_S) \triangleq SI(Y; X_S, A) \times I(X_S; A) \times I(X_S; A|Y)$$

Marginal impact of each feature is then calculated using the Shapley values. The Shapley value is a solution concept used in game theory that involves fairly distributing both gains and costs to several actors working in coalition.

## A7 Algorithm

A7: Information Theoretic Measures for Fairness-aware Feature selection (FFS)

|   | Feature         | Shapley Discrimination | Shapley Accuracy |
|---|-----------------|------------------------|------------------|
| 0 | priors_count    | 25508,281363           | 1.264251         |
| 1 | length_of_stay  | 25483.034007           | 1.048422         |
| 2 | age_cat         | 21627.423734           | 1.096104         |
| 3 | sex             | 20962,580750           | 0.941318         |
| 4 | c_charge_degree | 20764.750822           | 1.036236         |

### Results Summary and Evaluation

We evaluate the performance of each model using accuracy and calibration.

| Classifier        | LR        | C-LR      | SVM       | C-SVM     | FFS-LR    | FFS-SVM   |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Set               | Test      | Test      | Test      | Test      | Test      | Test      |
| Accuracy (%)      | 64.957746 | 46.084507 | 65.183099 | 46.028169 | 65.070423 | 65.577465 |
| P-rule (%)        | 61.64272  | 99.955856 | 60.848593 | 99.955856 | 61.94468  | 61.602509 |
| Protected (%)     | 33.888889 | 99.861111 | 30.972222 | 99.861111 | 34.583333 | 33.75     |
| Not protected (%) | 54.976303 | 99.905213 | 50.900474 | 99.905213 | 55.829384 | 54.78673  |
| Calibration (%)   | 1.005793  | 9.53594   | 2.262375  | 9.441153  | 0.115192  | 0.664165  |

- FFS-LR was selected because of good calibration scores and high accuracy
- But if parity is important to user, then we will use the constrained models
- Although FFS takes slightly longer to run (~10sec), it is not detrimental to our project

Q&A



# References

- https://towardsdatascience.com/optimization-with-scipy-and-application-ideas-to-machine-learning-81d39c7938b8
- https://github.com/mbilalzafar/fair-classification/tree/master/disparate\_impact
- https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
- https://arxiv.org/abs/2106.00772
- https://github.com/SreeranjaniD/Fairness-in-Classification-using-SVM