Chapter 11: Quantal Response Data Analysis

11.1 Introduction

- Quantal response data analysis deals with subject response to a stimulus that occurs with greater and greater intensity
- Bioassay: process of determining potency or strength of reagent or stimuli based on elicited response in biological organisms
- Tolerance: amount of stimulus required to produce response
- Researchers interested in:
 - tolerance of subjects to stimulus or drug
 - relative potency of new drug to standard drug
- This chapter concerned with quantal responses (death or survival) analyzed with categorical analysis strategies

11.2 Estimating Tolerance Distributions

Status

Bacterial Dose	Dead	Alive
1.2×10^3	0	5
1.2×10^4	0	5
1.2×10^5	2	3
1.2×10^6	4	
1.2×10^7	5	1
1.2×10^8	5	0

- Assume responses of subjects determined through tolerance distribution
- Assume either logistic or normal distribution for tolerances
 - For the normal distribution, can use logarithms of tolerances
- If tolerances are assumed to follow a normal distribution, we can write the probability of death at level x_i of the drug as

$$p_i = \Phi\left(\frac{x_i - \mu}{\sigma}\right)$$

and

$$\Phi^{-1}(p_i) = -\frac{\mu}{\sigma} + \frac{1}{\sigma}x_i = \alpha + \beta x_i$$

• Φ is the cumulative distribution function for the standard normal distribution and $\Phi^{-1}(p_i)$ is called the probit

• Under the logistic assumption, probability of death at level x_i of drug

$$\Pr\{Y_i \le x_i\} = p_i = \frac{\exp\{\alpha + \beta x_i\}}{1 + \exp\{\alpha + \beta x_i\}},$$

where Y_i represents the tolerance for subject i

$$\log\left\{\frac{p_i}{1-p_i}\right\} = \alpha + \beta x_i$$

- Often interested in dose at which 50% of subjects produce a response (LD50 or ED50).
- Let $x_{50} = \log(\text{LD50})$ and $p_{50} = \text{probability of}$ response at median of tolerance distribution, then:

$$\log\left\{\frac{p_{50}}{1-p_{50}}\right\} = \log\left\{\frac{0.5}{0.5}\right\} = 0$$

• Then $\hat{\alpha} + \hat{\beta} x_{50}$ can be set to zero to obtain

$$\hat{x}_{50} = \frac{-\hat{\alpha}}{\hat{\beta}},$$

and
$$\operatorname{var}\{\hat{x}_{50}\} = \{\hat{x}_{50}\}^2 \left\{ \frac{V(\hat{\alpha})}{\hat{\alpha}^2} - \frac{2V(\hat{\alpha}, \hat{\beta})}{\hat{\alpha}\hat{\beta}} + \frac{V(\hat{\beta})}{\hat{\beta}^2} \right\},$$

where
$$V(\hat{\alpha}) = \text{variance of } \hat{\alpha}$$

 $V(\hat{\beta}) = \text{variance of } \hat{\beta}$
 $V(\hat{\alpha}, \hat{\beta}) = \text{covariance of } \hat{\alpha} \text{ and } \hat{\beta}$

• Then a confidence interval for log(LD50) is:

$$\hat{x}_{50} \pm z_{1-\alpha/2} \sqrt{\text{var}\{\hat{x}_{50}\}}$$

Linear Taylor Series Expansion

Let F and G be consistent and asymptotically normal estimators of respective parameters ξ and η . Let v_F , v_G , and v_{FG} be consistent estimators for the variances of F and G and their covariance. Also, note that v_F , v_G , and v_{FG} are of order (1/n) such that parts of them which do not correspond to the variances and covariance of F and G in large samples tend to 0 faster than (1/n). Then statistical behavior of R=(F/G) as an estimator of (ξ/η) corresponds in large samples to its linear Taylor series counterpart.

$$R_{TL} = (\xi/\eta) + (1/\eta)(F - \xi) - (\xi/\eta^2)(G - \eta)$$
$$= (\xi/\eta) \left\{ 1 + \frac{(F - \xi)}{\xi} - \frac{(G - \eta)}{\eta} \right\}$$

Note that $R = R_{TL} + \mathbf{O}(1/n)$.

$$\varepsilon\{R_{TL}\} = (\xi/\eta), \varepsilon(R) = (\xi/\eta) + \mathbf{O}(1/n) \to (\xi/\eta)$$

$$Var\{R_{TL}\} = (\xi/\eta)^{2} \left\{ \frac{Var(F)}{\xi^{2}} - \frac{2Cov(F,G)}{\xi\eta} + \frac{Var(G)}{\eta^{2}} \right\}$$

$$Var\{R\} = Var\{R_{TL}\} + \mathbf{O}\left(\frac{1}{n^{1+\delta}}\right) \text{ with } \delta \ge \frac{1}{2}$$

A consistent estimator for $Var\{R\}$ is given by

$$\nu_R = R^2 \left\{ \left(\frac{\nu_F}{F^2} \right) - \left(\frac{2\nu_{FG}}{FG} \right) + \left(\frac{\nu_G}{G^2} \right) \right\}$$

11.2.1 Analyzing the Bacterial Challenge Data

```
data bacteria;
   input dose status $ count @@;
  ldose = log(dose);
  datalines;
1200
            dead
                        1200
                                     alive
                                                 5
                                                 5
                        12000
                                    alive
12000
            dead
                                                 3
                    2
                                    alive
120000
           dead
                        120000
1200000
        dead
                    4
                        1200000 alive
                    5
12000000 dead
                        12000000 alive
120000000
           dead
                        120000000
                                   alive
run;
proc logistic data=bacteria descending;
  freq count;
  model status = ldose ldose*ldose / scale=none aggregate
        selection=forward include=1 details covb;
run;
```

		Analysis o	f Maximum L	ikelihood Estima	ates	
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSQ	
Intercept Ldose	1 1	-9.2680 0.7071	3.1630 0.2354	8.5857 9.0223	0.0034 0.0027	
		Esti	mated Covar	iance Matrix		
		Parameter	Inter	cept lo	dose	
		Intercept ldose	10.00 -0.7			

Residual	Chi-Squa	are Test	
Chi-Square	DF	Pr > ChiSq	
0.2580	1	0.6115	

To compute the log LD50, use the estimated values of $\hat{\alpha}$ and $\hat{\beta}$.

$$\log LD50 = \frac{-\hat{\alpha}}{\hat{\beta}} = \frac{9.2680}{0.7071} = 13.1070$$

Using the covariances from above in the formula for $var{\hat{x}_{50}}$ yields the value 0.6005. Thus, a confidence interval for the log LD50 is written

$$13.1070 \pm 1.96\sqrt{0.6005}$$

Thus, the confidence interval for log LD50 is (11.588, 14.626).

To determine the LD50 on the actual dose scale, exponentiate the LD50 for the log scale. Exponentiate bounds of the confidence interval to get corresponding CI.

Actual LD50 =
$$e^{13.1070} = 4.9238 \times 10^5$$

Confidence Interval: $(1.0780 \times 10^5, 2.2490 \times 10^6)$

PROC PROBIT vs. PROC LOGISTIC

- PROC LOGISTIC assumes an underlying logistic tolerance distribution, whereas PROC PROBIT can handle either
 - Default is normal distribution; specify logistic with DIST=LOGISTIC option
- PROC PROBIT computes LD50 automatically, as well as computing the estimates for the dose values that yield user-defined response rates and corresponding confidence intervals based on Fieller's Theorem
- PROC LOGISTIC provides residual score tests with the SELECTION=FORWARD option to assist in determining the fit of the model

Data Structures

	Stat	tus
Bacterial Dose	Dead	Alive
1.2×10^3	0	5
1.2×10^4	0	5
1.2×10^5	2	3
1.2×10^6	4	2
1.2×10^7	5	1
1.2×10^8	5	0

For PROC LOGISTIC, you should specify the number dead, the number alive, and differentiate them with a status variable. For PROC PROBIT, you only need to provide the number dead and the total count of alive and dead.

```
LOGISTIC:
                data bacteria;
                    input dose status $ count @@;
                    ldose = log(dose);
                   datalines;
                                                         alive
                1200
                              dead
                                            1200
                                                                       5
                                       0
                              dead
                                                         alive
                                                                       5
                12000
                                            12000
                                                         alive
                                                                       3
                120000
                              dead
                                            120000
                                                                       2
                              dead
                                       4
                                                         alive
                1200000
                                            1200000
                                            12000000
                12000000
                              dead
                                                         alive
                120000000
                              dead
                                            120000000
                                                         alive
                                                                       0
PROBIT:
                data bacteria2;
                    input dose dead total @@;
                    ldose = log(dose);
                   datalines;
                1200
                                   0
                                            5
                                            5
                12000
                                   0
                                            5
                120000
                                   2
                                            6
                1200000
                                   4
                                            6
                12000000
                                   5
                                   5
                                            5
                120000000
                run;
```

Probit Analysis

```
data bacteria2;
   input dose dead total @@;
   ldose = log(dose);
   datalines;
1200
               0
                       5
                       5
12000
                       5
120000
                       6
1200000
12000000
                       6
120000000
run;
ods graphics on;
proc probit data=bacteria2 log plot=ippplot;
   model dead/total = dose / dist=logistic lackfit
            inversec1 (prob=.25 .50 .75);
run;
ods graphics off;
```

Goodness-of-Fit Tests						
Statistic	Value	DF	Value/DF	Pr> ChiSq		
Pearson Chi-Square L.R. Chi-Square	1.3379 1.7508	4 4	0.3345 0.4377	0.8549 0.7815		

	Ana]	Lysis of M	aximum Li	kelihood Parameter	Estimat	es
Parameter	DF	Estimate	Standard Error	95% Confidence Limits	Chi- Square	Pr > ChiSq
Intercept Ln(dose)		-9.2680 0.7071		-15.4674 -3.0687 0.2457 1.1685	8.59 9.02	0.0034 0.0027

Probit Model	in	Terms of	Tolerance Distribution
	13	MU 1070197	SIGMA 1.41421791

Log Dose Analysis

Probit Analysis on Ln(dose)					
Probability	Ln(dose)	95% Fiduci	al Limits		
0.25	11.5533	7.5414	13.0735		
0.50 0.75	13.1070 14.6607	11.0067 13.1430	15.0196 18.2947		

Actual Dose Analysis

Probit Analysis on dose					
Probability	dose	95% Fiduc	ial Limits		
0.25 0.50	104124 492387	1885 60276	476140 3333723		
0.30	2328412	510434	88159975		

Inverse Probability Plot

```
ods graphics on;
proc probit data=bacteria2 plot=ippplot;
  model dead/total = ldose / dist=logistic;
run;
ods graphics off;
```


11.3 Comparing Two Drugs

Dose	Drug	Dead	Alive	Total
0.01	N	0	30	30
0.03	N	1	29	30
0.10	N	1	9	10
0.30	N	1	9	10
0.30	S	0	10	10
1.00	N	4	6	10
1.00	S	0	10	10
3.00	N	4	6	10
3.00	S	1	9	10
10.00	N	5	5	10
10.00	S	4	6	10
30.00	S	5	5	10
30.00	N	7	3	10
100.00	S	8	2	10

- Dilution assumption for doses z_s of somatostatin (S) and z_n of neurotensin: $z_s = \rho z_n$
 - ρ = relative potency
- If x_n and x_s represent log (doses), then

$$x_s = log \rho + x_n$$

Assume logistic model structure for somatostatin is

$$p_{s}(x_{si}) = \{1 + \exp(-\alpha_{s} - \beta x_{si})\}^{-1},$$

• Then implied structure for log(dose) levels x_{ni} of neurotensin is $p_n(x_{ni}) = p_s(\log \rho + x_{ni})$ $= \{1 + \exp(-\alpha_s - \beta \log \rho - \beta x_{ni})\}^{-1}$ $= \{1 + \exp(-\alpha_n - \beta x_{ni})\}^{-1},$ where $\alpha_n = \alpha_s + \beta \log \rho$

• By forming logit $(p_n(x_{ni}))$, the following equation results

$$\log \left\{ \frac{p_n(x_{ni})}{1 - p_n(x_{ni})} \right\} = \left\{ \alpha_s + \beta \log \rho \right\} + \beta x_{ni}$$
$$= \alpha_n + \beta x_{ni}$$

and

$$\log\left\{\frac{p_s(x_{si})}{1-p_s(x_{si})}\right\} = \alpha_s + \beta x_{si}$$

• Therefore: dilution assumption can be tested by fitting model with separate intercepts and slopes, and testing for common slope.

•
$$\rho = \text{ relative potency} = \exp\left\{\frac{\alpha_n - \alpha_s}{\beta}\right\}$$

- Fieller's theorem can be used to produce confidence intervals for relative potency, as well as LD50
- See example 11.3.1, pages 362-368

Analysis of the Peptide Data

The estimated log LD50s from this model are

$$\log LD50_n = \frac{-\hat{\alpha}_n}{\hat{\beta}} = \frac{1.1931}{0.7234} = 1.65$$

$$\log LD50_s = \frac{-\hat{\alpha}_s}{\hat{\beta}} = \frac{2.4445}{0.7234} = 3.38$$

The log relative potency is estimated as

$$\log\{\hat{\rho}\} = \frac{\hat{\alpha}_n - \hat{\alpha}_s}{\hat{\beta}} = \frac{-1.1931 - (-2.4476)}{0.7234} = 1.73$$

Tests for Quadratic Terms

Resi	Residual Chi-Square Test					
Chi-Squar	re DF	Pr > ChiSq				
1.48	17 2	0.4767				

Analysis of Maximum Likelihood Estimates							
Parameter	Standard Wald eter DF Estimate Error Chi-Square Pr						
int_n int_s int_n*ldose int_s*ldose	1 1 1	-1.1301 -3.3782 0.6199 1.0615	0.2948 0.8797 0.1240 0.2798	14.6983 14.7479 24.9907 14.3914	0.0001 0.0001 <.0001 0.0001		

	Contrast Test Results				
Label	DF	Wald Chi-Square	Pr > ChiSq		
Equal slope	1	2.0820	0.1490		

A parallel lines model is fit.

	Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
int_n int_s ldose	1 1 1	-1.1931 -2.4476 0.7234	0.3158 0.4532 0.1177	14.2781 29.1632 37.7681	0.0002 <.0001 <.0001		

	Estimated Cova	riance Matrix		
Variable	int_n	int_s	ldose	
int_n	0.099702	0.025907	-0.00984	
int_s	0.025907	0.20542	-0.03648	
ldose	-0.00984	-0.03648	0.013856	

You can use Fieller's formula to calculate confidence intervals. SAS macro available in Section 11.6 of text.

		95%	Exponentiated	Exponentiated
Estimate	Value	CI	Value	CI
log (Potency)	1.73	(0.4262, 2.9993)	5.64	(1.53, 20.07)
$\log (LD50_n)$	1.65	(0.8237, 2.6875)	5.21	(2.28, 14.69)
$\log (LD50_s)$	3.38	(2.4863, 4.4506)	29.37	(12.02, 85.68)

Fieller's Formula

When F and G are significantly different from 0 at two-sided level α , a $100(1-\alpha)\%$ two-sided confidence interval can be formed for (ξ/η) without the direct use of the ratio estimator R. It is done by solving

$$\frac{(F - \theta G)^2}{(\upsilon_F - 2\theta \upsilon_{FG} + \theta^2 \upsilon_G)} = \chi^2_{(1-\alpha)}(df = 1)$$

as a quadratic equation. The roots of the quadratic equation, θ_L and θ_U are the $100(1-\alpha)\%$ confidence limits for $\theta=(\xi/\eta)$. Here, $X\mathbb{P}^2_{(1-\alpha)}$ (df = 1) is the $100(1-\alpha)$ percentile of the chisquared distribution with df = 1. This method is called Fieller's formula. With $\alpha=0.05$, $X\mathbb{P}^2_{(1-\alpha)}$ (df = 1) = 3.84. The quadratic equation is

$$0 = (G^2 - 3.84\nu_G)\theta^2 - 2(FG - 3.84\nu_{FG})\theta + (F^2 - 3.84\nu_F)$$

$$\theta_L, \theta_U = \frac{(FG - 3.84\nu_{FG}) \pm \sqrt{(FG - 3.84\nu_{FG})^2 - (F^2 - 3.84\nu_F)(G^2 - 3.84\nu_G)}}{(G^2 - 3.84\nu_G)}$$

$$= \left(\frac{F}{G}\right) \left\{ \frac{\left(1 - 3.84 \frac{v_{FG}}{FG}\right) \pm \sqrt{\left(1 - \frac{3.84 v_{FG}}{FG}\right)^2 - \left(1 - \frac{3.84 v_F}{F^2}\right) \left(1 - \frac{3.84 v_G}{G^2}\right)}}{\left(1 - 3.84 v_G / G^2\right)} \right\}$$

$$\rightarrow \frac{F}{G} \left\{ 1 \pm \sqrt{\frac{3.84 \nu_F}{F^2} + \frac{3.84 \nu_G}{G^2} - \frac{2(3.84) \nu_{FG}}{FG}} \right\} \text{ as } n \rightarrow \infty$$

11.4 Analysis of Pain Study

	Diagno	sis I	Diagnosis II		
Dose	Adverse	Not	Adverse	Not	
1	3	26	6	26	
5	7	26	20	12	
10	10	22	26	6	
12	14	18	28	4	
15	18	14	31	1	

- Interest lies in investigating the association of adverse effects with dose and diagnosis
- Unlike the previous bioassay analysis, this does not compare the tolerance distributions of two drugs and is not strictly concerned with estimating the tolerance distribution for either drug. Can still use bioassay methods, however.

See page 362 for data input code.

Deviance	and Pearson	Goo	dness-of-Fit	Statistics
Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance Pearson	2.7345 2.7046	6 6	0.4557 0.4508	0.8414 0.8449

Parameter Estimates

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
<pre>i_diagI i_diagII i_diagI*dose i_diagII*dose</pre>	1 1 1 e 1	-2.2735 -1.4341 0.1654 0.3064	0.4573 0.3742 0.0414 0.0486	24.7197 14.6887 15.9478 39.8186	<.0001 0.0001 <.0001 <.0001			

Hypothesis Test

	Contrast Test Results					
Label	DF	Wald Chi-Square	Pr > ChiSq			
Equal slope	1	4.8787	0.0272			

With p=0.0272, The hypothesis of a common slope is rejected.

Try fitting model based on log doses:

Deviance	and Pearson	Goo	dness-of-Fit	Statistics
Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance Pearson	4.8774 4.4884	6 6	0.8129 0.7481	0.5596 0.6109

The goodness-of-fit tests are not as supportive of this model as they are for the actual dose model, but they are still entirely satisfactory.

Hypothesis Test

	Contrast Test Results					
Label	DF	Wald Chi-Square	Pr > ChiSq			
Equal slope	1	2.4034	0.1211			

- With p=0.1211, we do not reject the hypothesis of a common slope.
- Thus, both models fit the data, and one model offers the possibility of a parallel lines model.

11.5 Estimating Tolerance Distributions

- Quantal response data analysis techniques can be applied in other areas as well.
- Example: ED50 can be applied to describe the median ages at which certain types of physical development occur

Age	Onset Number	Total Girls
5	5	209
6	8	126
7	21	136
8	54	143
9	72	115
10	90	112
11	121	126
12	90	91

```
data development;
  input age onset total @@;
datalines;
5.5 5 209
6.5 8 126
7.5 21 136
8.5 54 143
9.5 72 115
10.5 90 112
11.5 121 126
12.5 90 91
data development2;
   set development;
   notonset=total-onset;
do;
  Response='yes'; count=onset; output;
  Response='no'; count=notonset; output;
end;
run;
```

```
ods graphics on;
proc probit order=data plots=predpplot;
  model onset/total = age / lackfit;
run;
ods graphics off;
```

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate	Standard Error	95% Confidence Limits	Chi- Square	Pr > ChiSq		
Intercept age	1 1	-5.5836 0.6215	0.2776 0.0310	-6.1277 -5.0395 0.5607 0.6823	404.55 401.44	<.0001 <.0001		

Probit Model in Terms	of Tolerance Distribution
MU	SIGMA
8.98464317	1.6091091

Predicted probabilities of onset by age

Odds Ratio As Criterion For Relative Risk

Let $\pi_0(\theta) = \frac{\theta}{(\theta+1)}$ be event proportion for non-exposed relative to role θ of background factors.

Let $\pi_1(\theta) = \frac{\psi\theta}{(\psi\theta+1)}$ be event proportion for exposed.

$$\frac{\pi_1(\theta)\{1-\pi_0(\theta)\}}{\pi_0(\theta)\{1-\pi_1(\theta)\}} = \psi \text{ for all } \theta$$

$$\pi_0(\theta) = \pi_1\left(\frac{\theta}{\psi}\right)$$
, or $\pi_0(\psi\theta) = \pi_1(\theta)$

$$\theta(x_1, x_2, ..., x_t) = \theta_0 \left\{ \prod_{k=1}^t \psi_k^{x_k} \right\} = \frac{\pi(x_1, x_2, ..., x_t)}{1 - \pi(x_1, x_2, ..., x_t)}$$

$$= \exp(\beta_0) \prod_{k=1}^t \exp(\beta_k x_k)$$

$$= \exp\left(\beta_0 + \sum_{k=1}^t \beta_k x_k\right)$$

where
$$\theta_0 = \exp(\beta_0)$$
 and $\psi_k = \exp(\beta_k)$.