WASTES CLASSIFICATION FOR REVERSE VENDING MACHINE

Riko Edhi Prasetya - 2101652510

Hans Michael - 2101665450

2013 WASTES DATA IN JAKARTA

Kaca(Glass)

2.3% 54.6 kg/hh/year

Plastik(*Plastic*)

335.2 kg/hh/year

13.9%

Kaleng(*Metal*)

96.9 kg/hh/year

4.0%

Total

2416.2 kg/household/year

"Jakarta is pumping out between 1900 and 2400 tons of plastic thrash everyday"

	Waste categories (Average, kg/household/year)											Total
	Food scraps (kitchen waste)	Garden (yard) & park waste	Paper & card- board	Wood	Textile	Disposa -ble diapers	Rubber & leather	Plastic	Metal	Glass (pottery & ceramics)	Other (ash, dirt, dust, soil, e-waste)	household waste generated per year
Kg/household /year	1260.0	167.6	284.6	34.7	24.8	96.9	14.9	335.2	96.9	54.6	46.4	2416.2
Avg./household/ year	252	33.5	56.9	6.9	5.0	19.4	3.0	67.1	19.4	10.9	9.3	483.3
Percentage	52.1%	6.9%	11.8%	1.4%	1.0%	4.0%	0.6%	13.9%	4.0%	2.3%	1.9%	100.0%

DATASET 419 344 376 Glass Bottle Images Plastic Bottle Images Metal Can Images

DATASETS

IMAGE CLASSIFICATION

TRAIN FEATURE CALCULATE TRAIN **EXTRACTION** DATA **HISTOGRAM CLASSIFIER TEST** CALCULATE **FEATURE** CLASSIFIER **PREDICT DATA EXTRACTION HISTOGRAM**

Features Extraction

Speeded Up Robust Features (SURF)

To find similarity between images with box filter

- -Feature Extraction
- -Feature Description

Histogram Normalization

Standard Scaler

Transform the data that its distribution will have a mean value 0 and standard deviation of 1. Then scaling to unit variance means dividing all the values by the standard deviation.

Classifier Model

Support Vector Machine

Supervised machine learning algorithm to solve classification or regression problems.

- -Find the points closest to the line from both classes
- -compute the distance between the line and support vectors
- -maximize the margin to make the boundaries between two classes as wide as possible

Reverse Vending Machine

Automatic Wastes Sorting

Using image classification to classify between wastes, then automatically sort the wastes to their own container.

Implementing image classification in the camera inside the reverse vending machine.

Using multiple camera to validate the object as the qualified object.

Camera Placement

Parameter Tuning

Grid Search Cross Validation

Choosing a set of optimal hyperparameters for learning algorithm.

List of the parameters:

- -C Value:
- -Gamma Value
- -Kernel

Lastly select the architecture which produces best result

RESULT

Glass Bottle

Metal Can

Plastic Bottle

DEMO

Result plastic RECORDED WITH
SCREENCAST
MATIC

REFERENCES

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://www.kaggle.com/ishivinal/model-tuning-grid-random-search-and-baysian-op

https://pdfs.semanticscholar.org/9cf4/3b88c08acac634665822cdf34dcad5c43e68.pdf

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html

https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989

http://benalexkeen.com/feature-scaling-with-scikit-learn/

https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html#sphx-glr-auto-examples-

applications-plot-face-recognition-py

https://www.thejakartapost.com/news/2018/08/10/jakarta-generates-up-to-2400-tons-of-plastic-waste-daily.html

DATASET SOURCE

https://github.com/garythung/trashnet/blob/master/data/dataset-resized.zip

http://www.slipguru.unige.it/Data/glassense_vision/

http://www.multimediauts.org/dataset/WSID-100.html