Self-Test 2

For Exercises 1-6, refer to the figure.

- 1. $R_x \circ \mathcal{R}_{O_x, 90}: B \rightarrow ?$
- 2. $R_x \circ H_0: A \rightarrow ?$
- 3. $\mathcal{R}_{0.110} \circ \mathcal{R}_{0.70} : C \to \frac{?}{}$
- **4.** $D_{Q,\frac{1}{2}} \circ D_{R,\frac{1}{2}} : P \to \frac{?}{}$
- **5.** What is the symmetry line of $\triangle ABC$?
- **6.** Does $\triangle ABC$ have point symmetry?
- 7. For any transformation $T, T^{-1} \circ T: P \to \frac{?}{}$.
- 8. The composite of any transformation T and the identity is $\frac{?}{}$.
- **9.** If line a is parallel to line b, then the composite $R_a \circ R_b$ is a $\frac{?}{}$.
- 10. Give the inverse of each transformation.
 - **a.** $D_{0,5}$
- **b.** $\mathcal{R}_{O, -70}$
- $\mathbf{c.} R_{\mathrm{v}}$
- **d.** $S:(x, y) \to (x + 2, y 3)$
- 11. How many lines of symmetry does a regular hexagon have?

Extra

Symmetry Groups

Cut out a cardboard or paper rectangle and color each corner with a color of its own on both front and back. Also on the front and back draw symmetry lines j and k and label symmetry point O. The rectangle has four symmetries: I, R_j , R_k , and H_O . The effect of each of these on the original rectangle is shown below.

Effect of *I*: Rectangle unchanged

Effect of R_j Effect of R_k

Effect of H_0

Our goal is to see how the four symmetries of the rectangle combine with each other. For example, if the original rectangle is mapped first by R_j and then by H_O , the images look like this:

