Global Linear Models Part 2: The Perceptron Algorithm for Tagging

Michael Collins, Columbia University

Recap: Three Components of Global Linear Models

- ▶ **f** is a function that maps a structure (x,y) to a **feature** vector $\mathbf{f}(x,y) \in \mathbb{R}^d$
- ► **GEN** is a function that maps an input x to a set of candidates **GEN**(x)
- $ightharpoonup \mathbf{v}$ is a parameter vector (also a member of \mathbb{R}^d)
- ▶ Training data is used to set the value of v

Recap: Putting it all Together

- \triangleright \mathcal{X} is set of sentences, \mathcal{Y} is set of possible outputs (e.g. trees)
- ▶ Need to learn a function $F: \mathcal{X} \to \mathcal{Y}$
- ► **GEN**, **f**, **v** define

$$F(x) = \underset{y \in \mathbf{GEN}(x)}{\operatorname{arg max}} \mathbf{f}(x, y) \cdot \mathbf{v}$$

Choose the highest scoring candidate as the most plausible structure

• Given examples (x_i, y_i) , how to set \mathbf{v} ?

She announced a program to promote safety in trucks and vans

Recap: A Variant of the Perceptron Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: $\mathbf{v} = 0$

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{f}(x, y) \cdot \mathbf{v}$

Algorithm: For t = 1 ... T, i = 1 ... n $z_i = F(x_i)$

 $z_i = \mathbf{r}(x_i)$ If $(z_i \neq y_i)$ $\mathbf{v} = \mathbf{v} + \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)$

Output: Parameters v

Tagging Problems

TAGGING: Strings to Tagged Sequences

a b e e a f h j \Rightarrow a/C b/D e/C e/C a/D f/C h/D j/C

Example 1: Part-of-speech tagging

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

Example 2: Named Entity Recognition

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

Tagging using Global Linear Models

- ▶ Inputs x are sentences $w_{[1:n]} = \{w_1 \dots w_n\}$
- lacktriangle Define ${\mathcal T}$ to be the set of possible tags
- ▶ **GEN** $(w_{[1:n]}) = \mathcal{T}^n$ i.e. all tag sequences of length n
- ▶ Note: The size of **GEN** is exponential in the sentence length
- ► How do we define **f**?

Representation: Histories

- A **history** is a 4-tuple $\langle t_{-2}, t_{-1}, w_{[1:n]}, i \rangle$
- ▶ t_{-2}, t_{-1} are the previous two tags.
- $w_{[1:n]}$ are the n words in the input sentence.
- i is the index of the word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- ▶ $t_{-2}, t_{-1} = \mathsf{DT}$, JJ
- $\blacktriangleright w_{[1:n]} = \langle Hispaniola, quickly, became, \dots, Hemisphere, . \rangle$
- $\rightarrow i = 6$

Local Feature-Vector Representations

- ▶ Take a history/tag pair (h, t).
- ▶ $g_s(h,t)$ for $s=1\dots d$ are **local features** representing tagging decision t in context h.

Example: POS Tagging

• Word/tag features

$$\begin{array}{lll} g_{100}(h,t) & = & \left\{ \begin{array}{l} 1 & \text{if current word } w_i \text{ is base and } t = \mathtt{VB} \\ 0 & \text{otherwise} \end{array} \right. \\ g_{101}(h,t) & = & \left\{ \begin{array}{l} 1 & \text{if current word } w_i \text{ ends in ing and } t = \mathtt{VBG} \\ 0 & \text{otherwise} \end{array} \right. \end{array}$$

Contextual Features

$$g_{103}(h,t) = \begin{cases} 1 & \text{if } \langle t_{-2}, t_{-1}, t \rangle = \langle \text{DT, JJ, VB} \rangle \\ 0 & \text{otherwise} \end{cases}$$

A tagged sentence with n words has n history/tag pairs

 $Hispaniola/NNP\ quickly/RB\ became/VB\ an/DT\ important/JJ\ base/NN$

		History		Tag
t_{-2}	t_{-1}	$w_{[1:n]}$	i	t
*	*	$\langle Hispaniola, quickly, \ldots, \rangle$	1	NNP
*	NNP	$\langle Hispaniola, quickly, \ldots, \rangle$	2	RB
NNP	RB	$\langle Hispaniola, quickly, \ldots, \rangle$	3	VB
RB	VB	$\langle Hispaniola, quickly, \ldots, \rangle$	4	DT
VP	DT	$\langle Hispaniola, quickly, \ldots, \rangle$	5	JJ
DT	JJ	$\langle Hispaniola, quickly, \dots, \rangle$	6	NN

A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History				
t_{-2}	t_{-1}	$w_{[1:n]}$	i	t
*	*	$\langle Hispaniola, quickly, \dots, \rangle$	1	NNP
*	NNP	$\langle Hispaniola, quickly, \dots, \rangle$	2	RB
NNP	RB	$\langle Hispaniola, quickly, \dots, \rangle$	3	VB
RB	VB	$\langle Hispaniola, quickly, \ldots, \rangle$	4	DT
VP	DT	$\langle Hispaniola, quickly, \ldots, \rangle$	5	JJ
DT	JJ	$\langle Hispaniola, quickly, \dots, \rangle$	6	NN

Define global features through local features:

$$\mathbf{f}(t_{[1:n]}, w_{[1:n]}) = \sum_{i=1}^{n} g(h_i, t_i)$$

where t_i is the *i*'th tag, h_i is the *i*'th history

Global and Local Features

• Typically, local features are indicator functions, e.g.,

$$g_{101}(h,t) \ = \ \left\{ \begin{array}{ll} 1 & \mbox{if current word} \ w_i \ \mbox{ends in ing and} \ t = \mbox{VBG} \\ 0 & \mbox{otherwise} \end{array} \right.$$

• and global features are then counts,

 $f_{101}(w_{[1:n]},t_{[1:n]})=\mbox{Number of times a word ending in ing is tagged as VBG in }(w_{[1:n]},t_{[1:n]})$

Putting it all Together

- ▶ **GEN** $(w_{[1:n]})$ is the set of all tagged sequences of length n
- ► GEN, f, v define

$$F(w_{[1:n]}) = \underset{t_{[1:n]} \in \mathbf{GEN}(w_{[1:n]})}{\operatorname{arg}} \underbrace{\max_{t_{[1:n]} \in \mathbf{GEN}(w_{[1:n]})} \mathbf{v} \cdot \mathbf{f}(w_{[1:n]}, t_{[1:n]})}_{\mathbf{v} \cdot \mathbf{f}(w_{[1:n]}, t_{[1:n]})$$

$$= \underset{t_{[1:n]} \in \mathbf{GEN}(w_{[1:n]})}{\operatorname{max}} \sum_{i=1}^{n} \mathbf{v} \cdot g(h_i, t_i)$$

$$= \underset{t_{[1:n]} \in \mathbf{GEN}(w_{[1:n]})}{\operatorname{max}} \sum_{i=1}^{n} \mathbf{v} \cdot g(h_i, t_i)$$

Dynamic programming can be used to find the argmax!

A Variant of the Perceptron Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: $\mathbf{v} = 0$

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{f}(x, y) \cdot \mathbf{v}$

Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$ $z_i = F(x_i)$

If $(z_i \neq y_i)$ $\mathbf{v} = \mathbf{v} + \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)$

Output: Parameters v

Training a Tagger Using the Perceptron Algorithm

Inputs: Training set $(w_{[1:n_i]}^i, t_{[1:n_i]}^i)$ for $i = 1 \dots n$.

Initialization: $\mathbf{v} = 0$

Algorithm: For $t = 1 \dots T, i = 1 \dots n$

$$z_{[1:n_i]} = \arg\max_{u_{[1:n_i]} \in \mathcal{T}^{n_i}} \mathbf{v} \cdot \mathbf{f}(w_{[1:n_i]}^i, u_{[1:n_i]})$$

 $z_{[1:n_i]}$ can be computed with the dynamic programming (Viterbi) algorithm

If $z_{[1:n_i]} \neq t^i_{[1:n_i]}$ then

$$\mathbf{v} = \mathbf{v} + \mathbf{f}(w_{[1:n:]}^i, t_{[1:n:]}^i) - \mathbf{f}(w_{[1:n:]}^i, z_{[1:n:]})$$

Output: Parameter vector **v**.

An Example

Say the correct tags for i'th sentence are

the/DT man/NN bit/VBD the/DT dog/NN

Under current parameters, output is

the/DT man/NN bit/NN the/DT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs Parameters incremented:

$$\langle NN, VBD \rangle, \langle VBD, DT \rangle, \langle VBD \rightarrow bit \rangle$$

Parameters decremented:

$$\langle NN, NN \rangle, \langle NN, DT \rangle, \langle NN \rightarrow bit \rangle$$

Experiments

► Wall Street Journal part-of-speech tagging data

Perceptron = 2.89% error, Log-linear tagger = 3.28% error

► [Ramshaw and Marcus, 1995] NP chunking data

Perceptron = 93.63% accuracy, Log-linear tagger = 93.29% accuracy