DM N°1 (pour le 14/09/2012)

NOTATIONS:

- Dans tout le problème, I désigne l'intervalle [-1,1].
- Si f est une application continue sur I à valeurs dans \mathbb{C} , on notera $||f||_{\infty}$ le réel $||f||_{\infty} = \sup\{|f(x)|, x \in I\}$. On notera alors $\mathbb{E}(f)$ l'ensemble des points extrémaux de f, c'est-à-dire $\mathbb{E}(f) = \{x \in I \text{ tq } |f(x)| = ||f||_{\infty}\}$.
- On confondra les notions de « polynôme » et de « fonction polynôme ».

PARTIE 1 : Polynômes de Tchebychev

Dans toute cette partie, n désigne un entier naturel.

1. a) Établir l'existence d'un polynôme $T_n \in \mathbb{R}[X]$ tel que :

$$\forall \theta \in \mathbb{R}$$
, $T_n(\cos \theta) = \cos(n\theta)$ (*)

(on pourra remarquer que $\cos \theta$ est la partie réelle de $(\cos \theta + i \sin \theta)^n$).

- **b)** Montrer qu'un polynôme vérifiant (*) est unique. T_n s'appelle le polynôme de Tchebychev de première espèce d'indice n.
- 2. a) Montrer que:

$$\forall n \in \mathbb{N}$$
, $T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X)$

(on pourra calculer $T_{n+2}(\cos \theta) + T_n(\cos \theta)$).

- **b)** Calculer T_0, T_1, T_2, T_3 .
- c) Déterminer le degré de T_n et son coefficient dominant.
- **d)** Préciser la parité de T_n .
- **3.** Déterminer les racines du polynôme T_n pour $n \ge 1$.
- **4.** a) Établir l'existence d'un polynôme $U_n \in \mathbb{R}[X]$ tel que :

$$\forall \theta \in \mathbb{R}$$
, $\sin \theta \cdot U_n(\cos \theta) = \sin(n+1)\theta$ (**)

(un tel polynôme U_n est unique (on ne demande pas de le démontrer); il s'appelle le polynôme de Tchebychev de seconde espèce d'indice n.

b) Établir la relation :

$$\forall n \in \mathbb{N}^*$$
, $T'_n(X) = nU_{n-1}(X)$.

5. Déterminer les racines du polynôme T_n' pour $n \ge 2$; en déduire la valeur de $||T_n||_{\infty}$, et montrer que l'ensemble $E(T_n) = \{x \in I, |T_n(x)| = ||T_n||_{\infty}\}$ est égal à l'ensemble $\left\{\cos\left(\frac{k\pi}{n}\right), k \in [\![0,n]\!]\right\}$.

PARTIE 2 : Caractérisation des polynômes de Tchebychev à l'aide des points extrémaux

1. Soit P un polynôme à coefficients réels, de degré $n \ (n \in \mathbb{N}^*)$.

Montrer que $||P||_{\infty} > 0$, et que l'ensemble $E(P) = \{x \in I, |P(x)| = ||P||_{\infty}\}$ est un ensemble fini non vide, dont le cardinal est inférieur ou égal à n+1.

2. On se propose ici de déterminer tous les polynômes P à coefficients réels, de degré n, tels que :

$$\|P\|_{\infty} = 1$$
 et $\operatorname{card}(E(P)) = n + 1$.

P désignant un tel polynôme, on note $E(P) = \{x_0, x_1, \dots, x_n\}$ avec $-1 \le x_0 < x_1 < \dots < x_n \le 1$.

- a) Montrer que : $x_0 = -1$ et que : $x_n = 1$.
- **b)** Montrer que, pour 0 < i < n, x_i est racine double du polynôme $1 P^2$.
- c) En déduire que : $1 P^2 = \frac{1}{n^2} (1 X^2) P'^2(X)$.
- **d)** Montrer que, pour tout $x \in]x_{n-1}, 1[: \frac{\mathrm{P}'(x)}{\sqrt{1-\mathrm{P}^2(x)}} = \frac{\varepsilon n}{\sqrt{1-x^2}}$ où $\varepsilon = \pm 1$.
- e) En déduire que $P = \pm T_n$.
- **3.** En déduire quels sont tous les polynômes P à coefficients réels, de degré n, tels que : card(E(P)) = n + 1.

PARTIE 3 : Une autre caractérisation des polynômes de Tchebychev

n désigne ici un entier naturel non nul.

1. Soit $P \in \mathbb{R}_n[X]$ vérifiant : $\begin{cases} \text{Le coefficient de } X^n \text{ dans } P \text{ est égal à } 2^{n-1} \\ \forall x \in [-1,1] \text{ , } P(x) \in [-1,1] \end{cases}$

On note alors $Q = T_n - P$, et, pour $k \in [0, n]$, $x_k = \cos \frac{k\pi}{n}$.

- a) Pour $k \in [0, n-1]$, comparer les signes de $Q(x_k)$ et de $Q(x_{k+1})$.
- **b)** En déduire que Q possède au moins n racines dans I (comptées avec leur ordre de multiplicité). Que peut-on en déduire?
- **2.** Soit $P \in \mathbb{R}_n[X]$, normalisé, non constant.

Démontrer que $\|P\|_{\infty} \ge \frac{1}{2^{n-1}}$ (on raisonnera par l'absurde).

Dans quel cas y-a-t-il égalité?

PARTIE 4:

Dans toute cette partie, n désigne un entier naturel non nul.

- **1.** a) Montrer que T_n est solution de l'équation différentielle : $(1-x^2)y'' xy' + n^2y = 0$.
 - **b)** En déduire, si l'on pose $T_n(X) = \sum_{k=0}^n a_k X^k$:

$$\begin{cases} a_{n-1} = 0 \\ a_k = \frac{(k+1)(k+2)}{k^2 - n^2} a_{k+2} & \text{pour } 0 \le k \le n-2. \end{cases}$$

- c) En déduire une expression des coefficients de T_n .
- **2. a)** Déterminer toutes les fonctions polynomiales solutions de l'équation différentielle : $(1-x^2)y'' xy' + n^2y = 0$.
 - b) En déduire que les seules solutions polynomiales non constantes de l'équation différentielle : $(1-x^2)y'^2 n^2(1-y^2) = 0$ sont $\pm T_n$.
- 3. a) Démontrer que, pour tout $(p,q) \in \mathbb{N}^2$, $T_p \circ T_q = T_{pq}$.
 - b) n désignant un entier ≥ 2 , on cherche ici les polynômes non constants $P \in \mathbb{R}[X]$ tels que

$$P \circ T_n = T_n \circ P \quad (***)$$

i) Démontrer que, si P non constant vérifie (***), alors :

$$\frac{(P' \circ T_n)^2 (1 - T_n^2)}{1 - (P \circ T_n)^2} = \frac{P'^2 (1 - X^2)}{1 - P^2}$$

- ii) On note R la fraction rationnelle $R=\frac{P'^2(1-X^2)}{1-P^2}$. L'égalité précédente s'écrit donc : $R\circ T_n=R$. En déduire que R est constante.
- iii) Démontrer enfin que les seuls polynômes non constants $P \in \mathbb{R}[X]$ tels que $P \circ T_n = T_n \circ P$ sont les polynômes T_k ($k \in \mathbb{N}^*$) si n est pair, et les polynômes $\pm T_k$ ($k \in \mathbb{N}^*$) si n est impair.

