Principia Mathematica

Al Caveman

 $\mathrm{June}\ 5,\ 2015$

Contents

1 Integration		egration	2
	1.1	Areas of Lots of Extremely Tiny Rectangular Columns	2
	1.2	Approximating the Area	4
	1.3	The Precise Area Under The Bitch	6
2	Diff	erentiation	7

Chapter 1

Integration

The goal here is to integrate the area under f(x) from when x = 0 until we reach $x = x_{end}$. What follows here is bunch of steps that shows my thinking process because shadodaemon asked for it (and also because I am happy now).

1.1 Areas of Lots of Extremely Tiny Rectangular Columns

So to integrate $f(x) = x^2$ we have to keep summing extremely skinny columns of, each of width d.

$$(x+d-x)(x)^{2}+$$

$$(x+2d-(x+d))(x+d)^{2}+$$

$$(x+3d-(x+2d))(x+2d)^{2}+$$

$$(x+4d-(x+3d))(x+3d)^{2}+$$

$$(x+5d-(x+4d))(x+4d)^{2}+$$

$$(x+6d-(x+5d))(x+5d)^{2}+$$

$$(x+7d-(x+6d))(x+6d)^{2}+$$

$$(x+8d-(x+7d))(x+7d)^{2}+$$

$$(x+9d-(x+8d))(x+8d)^{2}+$$

$$(x+10d-(x+9d))(x+9d)^{2}+$$

$$(x+11d-(x+10d))(x+10d)^{2}+$$
...

You see, if d is extremely tiny (near zero), then we will have to sum an infinite number of those tiny skinny areas. But for simplicity I put ... instead.

We can simplify things:

$$d(x)^{2}+$$

$$d(x+d)^{2}+$$

$$d(x+2d)^{2}+$$

$$d(x+3d)^{2}+$$

$$d(x+4d)^{2}+$$

$$d(x+5d)^{2}+$$

$$d(x+6d)^{2}+$$

$$d(x+7d)^{2}+$$

$$d(x+9d)^{2}+$$

$$d(x+10d)^{2}+$$

Let's expand those squares:

$$d(x)(x) + d(x+d)(x+d) + d(x+2d)(x+2d) + d(x+3d)(x+3d) + d(x+4d)(x+4d) + d(x+5d)(x+5d) + d(x+6d)(x+6d) + d(x+7d)(x+7d) + d(x+8d)(x+8d) + d(x+9d)(x+9d) + d(x+10d)(x+10d) + d(x+10d)(x+10d)(x+10d) + d(x+10d)(x+10d)(x+10d) + d(x+10d)(x$$

Let's multiply them square bitches:

$$dx^{2} +$$

$$d(x^{2} + 2dx + d^{2}) +$$

$$d(x^{2} + 4dx + 4d^{2}) +$$

$$d(x^{2} + 6dx + 9d^{2}) +$$

$$d(x^{2} + 8dx + 16d^{2}) +$$

$$d(x^{2} + 10dx + 25x^{2}) +$$

$$d(x^{2} + 12dx + 36d^{2}) +$$

$$d(x^{2} + 14dx + 49d^{2}) +$$

$$d(x^{2} + 16dx + 64d^{2}) +$$

$$d(x^{2} + 18dx + 81d^{2}) +$$

$$d(x^{2} + 20dx + 100d^{2}) +$$

Let's now multiply those bitches with d so that the shit gets spread even more:

$$dx^{2} +$$

$$dx^{2} + 2d^{2}x + d^{3} +$$

$$dx^{2} + 4d^{2}x + 4d^{3} +$$

$$dx^{2} + 6d^{2}x + 9d^{3} +$$

$$dx^{2} + 8d^{2}x + 16d^{3} +$$

$$dx^{2} + 10d^{2}x + 25x^{3} +$$

$$dx^{2} + 12d^{2}x + 36d^{3} +$$

$$dx^{2} + 14d^{2}x + 49d^{3} +$$

$$dx^{2} + 16d^{2}x + 64d^{3} +$$

$$dx^{2} + 18d^{2}x + 81d^{3} +$$

$$dx^{2} + 20d^{2}x + 100d^{3} +$$

1.2 Approximating the Area

Now this is a critical point. Below is basically saying that each row is an approximation for the area under f(x) from x = 0 till $x = x_{end}$. So the 1^{st} one is a shit approximation where were approximate the area under that curve by only one big fat column; so d is so huge here, in fact $d = x_{end}$.

Then, the 2nd line show a slightly less shit approximation where we approximate the area under the curve by two fat ass rectangular columns. So here $d = \frac{x_{end}}{2}$.

So the approximation of the area under the curve gets more and more accurate in each line.

$$dx^{2}$$

$$2dx^{2} + 2d^{2}x + d^{3}$$

$$3dx^{2} + 6d^{2}x + 5d^{3}$$

$$4dx^{2} + 12d^{2}x + 14d^{3}$$

$$5dx^{2} + 20d^{2}x + 30d^{3}$$

$$6dx^{2} + 30d^{2}x + 55d^{3}$$

$$7dx^{2} + 42d^{2}x + 91d^{3}$$

$$8dx^{2} + 56d^{2}x + 140d^{3}$$

$$9dx^{2} + 72d^{2}x + 204d^{3}$$

$$10dx^{2} + 90d^{2}x + 285d^{3}$$

$$11dx^{2} + 110d^{2}x + 385d^{3}$$

So basically, you see there is a pattern. The coefficient of the 1^{st} term is easy peasy (just incrementing from 1 to ∞). The coefficient from the 2^{nd} term is kinda interesting, it follows the equation (i^2+i) where i is the line number. Note that we start counting lines from 0. So the 1^{st} has i=0 and the 2^{nd} line has i=1, etc. Finally, the last term is kinda cool, it follows the pattern $\underbrace{(i^2+i)(2i+1)}_{(2i+1)}$.

Now you may ask, how did I find these patterns? Well these are well known number series. You can look them up in the On-Line Encyclopedia of Integer Sequences¹.

So, the area under the curve of f(x) from x = 0 up to x_{end} , by any d (and its corresponding i) is:

$$dx^{2} + (i^{2} + i)d^{2}x + \frac{(i^{2} + i)(2i + 1)}{6}d^{3}$$

Now we are almost done. We know that x = 0, so we can cancel a few terms:

$$d0^{2} + (i^{2} + i)d^{2}0 + \frac{(i^{2} + i)(2i + 1)}{6}d^{3}$$

$$\frac{(i^{2} + i)(2i + 1)}{6}d^{3}$$
(1.1)

Of course, we could've canceled those terms that multiply against zero earlier, but I didn't for random reasons. I just didn't. That's the randomness of life. But it's all mathematically correct as my caveman balls tell.

You can code a simple script that you give it x_{end} and d, by which it automatically finds $i = x_{end}/d$. You will notice that as d gets smaller, you end up approaching some limit after which reduction in d does not cause any change in the estimated area under the curve.

¹http://oeis.org/

1.3 The Precise Area Under The Bitch

Now let's find the ultimate precision in the limit as $i \to \infty$ which also means that $d \to 0$. But how about not? Cause it's too hard to solve the limit when two variables are approaching different limits.

To simplify the limits in an easier way, let's represent i in terms of d and x_{end} as follows $i = x_{end}/d$. Then the same equation would become as follows:

$$\frac{((x_{end}/d)^2 + (x_{end}/d))(2(x_{end}/d) + 1)}{6}d^3$$

$$\frac{(\frac{x_{end}^2}{d^2} + \frac{x_{end}}{d})(\frac{2x_{end}}{d} + 1)}{6}d^3$$

$$\frac{(\frac{x_{end}^2}{d^2} + \frac{x_{end}}{d})(\frac{2x_{end}}{d} + 1)}{6}d^3$$

$$\frac{\frac{1}{d}(\frac{x_{end}^2}{d} + x_{end})(\frac{2x_{end}}{d} + 1)}{6}d^3$$

$$\frac{(\frac{x_{end}^2}{d} + x_{end})(\frac{2x_{end}}{d} + 1)}{6}d^2$$

$$\frac{(\frac{x_{end}^2}{d} + x_{end})(\frac{2x_{end}}{d} + 1)}{6}d^2$$

$$\frac{2x_{end}^3}{d^2} + \frac{x_{end}^2}{d} + \frac{2x_{end}^2}{d} + x_{end}d^2$$

$$\frac{2x_{end}^3}{d^2} + \frac{x_{end}^2}{d} + \frac{2x_{end}^2}{d} + x_{end}d^2$$

$$\frac{2x_{end}^3}{d^2} + x_{end}^2 + 2x_{end}^2 + x_{end}d^2$$

$$\frac{2x_{end}^3}{d^2} + x_{end}^2 + x_{end}^2 + x_{end}d^2$$

Now, it's super easy. We have to find the limit of that equation as a single variable approaches 0 (we got rid of i). The equation becomes:

$$\frac{2x_{end}^3}{6}$$

$$\frac{x_{end}^3}{3}$$

That's it. Integration re-invented bitch :) — $\frac{x_{end}^2}{3}$. Q.E. freaking DEE.

Chapter 2

Differentiation

Here we want to find the slope of f(x) at point x. This is easy so I won't say much here.

```
Differentiate x^2.
\frac{f(x+d)-f(x)}{x+d-x}
\frac{(x+d)^2-x^2}{x+d-x}
\frac{(x+d)^2-x^2}{d}
\frac{(x+d)(x+d)-x^2}{d}
\frac{x^2+xd+xd+d^2-x^2}{d}
\frac{x^2}{d}+\frac{2xd}{d}+\frac{d^2}{d}-\frac{x^2}{d}
\frac{x^2}{d}+2x+d-\frac{x^2}{d}
2x+d
```

Now, as $d \to \infty$, it becomes 2x. Done.