PHYS121 Notes

Yash Thakur

 16^{th} October, 2023

Contents

1	Chapter 1	2
2	Chapter 2	2
3	Chapter 3	2
4	Chapter 4	2
5	Chapter 5	2
	5.1 Friction	2
	5.2 Ropes and Pulleys	2
6	Chapter 6	2
	6.1 Uniform Circular Motion	
	6.2 Dynamics of Uniform Circular Motion	:

- 1 Chapter 1
- 2 Chapter 2
- 3 Chapter 3
- 4 Chapter 4
- 5 Chapter 5

5.1 Friction

There are three kinds of friction:

- Static friction: $\vec{f_s} \leq \mu_s n$. Applies when object is not moving. It adjusts itself so that the net force is 0, but it can only increase to $\mu_s n$ at most.
- Kinetic friction: $\vec{f}_k = \mu_k n$. Applies when object is moving.
- Rolling friction: $\vec{f}_r = \mu_r n$. Applies when object is rolling.

Interacting Objects

According to Newton's Third Law:

- Every force occurs as one member of an action/reaction pair of forces.
- The two forces act on different objects.
- The two forces point in opposite directions and have the same magnitude.

5.2 Ropes and Pulleys

Ropes

Massless string approximation: Mass of rope is 0.

Generally, the tension in a massless string/rope equals the magnitude of the force pulling on the end of the string/rope. As a result:

- A massless string/rope "transmits" a force undiminished from one end to the other, i.e., if you pull on one end of a rope with force F, the other end pulls on whatever it's attached to with the same force.
- The tension in a massless string/rope is the same from one end to the other.

Pulleys

The tension in a massless string is unchanged by passing over a massless, frictionless pulley (assume such a pulley for problems in Chapter 5).

2

6 Chapter 6

6.1 Uniform Circular Motion

Speed is constant but not velocity, because direction is constantly changing.

Centripetal acceleration for uniform circular motion: $a = \frac{v^2}{r} = \left(\frac{2\pi}{T}\right)^2 r$

Period: Time taken to go around circle one time.

Frequency: Number of revolutions per second: $f = \frac{1}{T}$ (unit is s⁻¹)

Angular velocity: $\omega = 2\pi f$

Speed: Time taken to make one revolution: $v = \frac{2\pi r}{T} = 2\pi f r = r\omega$

6.2 Dynamics of Uniform Circular Motion

Net force producing the centripetal acceleration of uniform circular motion: $\vec{F}_{net} = m\vec{a}$