

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift

® DE 100 11 013 A 1

Aktenzeichen:

100 11 013.4 7. 3.2000

Anmeldetag: (3) Offenlegungstag:

20. 9.2001

⑤ Int. Cl.⁷: C 01 B 31/02

C 08 J 9/22 B 01 J 21/18 C 10 B 1/00 C 23 C 16/24 C 23 C 16/32 H 01 B 3/42

(7) Anmelder:

Schunk Kohlenstofftechnik GmbH, 35452 Heuchelheim, DE

(4) Vertreter:

Stoffregen, H., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 63450 Hanau

(72) Erfinder:

Ebert, Marco, Dipl.-Ing., 35094 Lahntal, DE; Scheibel, Thorsten, Dipl.-Ing., 61231 Bad Nauheim, DE; Henrich, Martin, Dipl.-Ing., 35582 Wetzlar, DE; Weiß, Roland, Dr., 35625 Hüttenberg, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (§) Verfahren zur Herstellung eines Kohlenstoffschaums und Verwendung dieses
- Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Kohlenstoffschaums. Um Endprodukte mit hoher chemischer Beständigkeit und niedriger Dichte herzustellen, wird ein Verfahren, umfassend die folgenden
 - Verfahrensschritte vorgeschlagen:
 Versetzen eines carbonisierbaren Ausgangspolymers mit einem Treibmittel,
 - Aufschäumen so gewonnener Mischung und
- A- anschließendes Pyrolysieren der Mischung.

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Kohlenstoffschaums.

Aus der US 5.888.469 ist ein Verfahren zur Herstellung eines anisotropen Kohlenstoffschaums zu entnehmen, bei dem bituminöse Kohle hydriert und entascht wird, sodann die hydrierte bituminöse Kohle in einem Lösungsmittel in Asphalt und Öle überführt wird, die Asphalte sodann von den Ölen entfernt und bei einer Temperatur zwischen 325 10 und 500°C über einen Zeitraum von 10 Minuten bis 8 Stunden bei einem Druck von in etwa 15 bis 15000 psig zum Entfernen flüchtiger Bestandteile verkokt werden. Nach dem Verkoken und vor einem so hergestellten Kohlenstoffschaum wird dieser kalziniert. Ein entsprechendes Verfah- 15 ren ist aufwendig und durch die Vielzahl der Herstellungsschritte bedingt mit dem Nachteil behaftet, dass der hergestellte Kohlenstoffschaum häufig eine gewünschte Güte nicht aufweist. Auch sind zur Erzielung gewünschter Geometrien aufwendige Nachbehandlungsschritte erforderlich. 20

Um bei Hochtemperaturen wie im Ofenbau eine Isolation zwischen den Heizelementen und Gehäuseäußerem zu ermöglichen, werden im großen Umfang Graphitfilze benutzt, die jedoch aufgrund der geringen Eigensteifigkeit zu Problemen dann führen können, wenn z. B. in Bereichen eines 25 Hochtemperaturofens eine Isolierung in einem Bereich erfolgen soll, der schwer zugänglich ist oder derart dimensioniert ist, dass aufgrund der Flexibilität der Filze ein ordnungsgemäßes Positionieren recht aufwendig ist.

Der vorliegenden Erfindung liegt das Problem zu Grunde, 30 ein Verfahren zur Herstellung eines Kohlenstoffschaums zur Verfügung zu stellen, das kostengünstig und einfach durchführbar ist. Dabei soll das hergestellte Endprodukt ein hohe chemische Beständigkeit und niedrige Dichte aufweisen. Auch soll mit einfachen Maßnahmen eine gewünschte Endgeometrie vorgegeben sein, so dass ein unmittelbarer Einsatz möglich ist.

Erfindungsgemäß wird das Problem im Wesentlichen durch die Verfahrensschritte gelöst:

- Versetzen eines carbonisierbaren Ausgangspolymers mit einem Treibmittel,
- Aufschäumen so gewonnener Mischung und
- anschließendes Pyrolysieren der Mischung.

Dabei wird als Ausgangspolymer insbesondere ein phenolhaltiges oder -stämmiges Harz verwendet, wobei vorzugsweise selbsthärtende Phenolharze (Resole) benutzt werden. Als Treibmittel werden insbesondere n-Pentan, Cyclopentan, Frigene oder Carbonate verwendet. Ferner können der Mischung Additive wie Verstärkungsfasern (z. B. Kohlenstofffasern) oder Füllstoffe wie Graphitpulver, SiCund/oder Si-Pulver zugesetzt werden.

Insbesondere wird die aufgeschäumte Mischung bei einer Temperatur T_1 mit 850°C $\leq T_1 \leq 1100$ °C, insbesondere 55 900°C $\leq T_1 \leq 1000$ °C carbonisiert und/oder bei einer Temperatur T_2 mit 1700°C $\leq T_2 \leq 3100$ °C, insbesondere 1800°C $\leq T_2 \leq 2450$ °C graphitiert.

Des Weiteren besteht die Möglichkeit, den so gewonnenen Kohlenstoffschaum zu veredeln. Hierzu gehört auch 60 eine Hochtemperatur(HT)-Reinigung. Auch kann eine Siliziumcarbidoberflächenschicht durch Silizieren ausgebildet werden. Insbesondere ist vorgesehen, den Kohlenstoffschaum mit CVD-(chemical vapor desposition) oder CVI-(chemical vapor infiltration) Prozessen zu behandeln, um 65 SiC- oder PyC-(Pyrographit)-Schichten auszubilden und/ oder ein Verdichten des Kohlenstoffschaums zu erreichen: Nachverdichtung bedeutet, dass der poröse Kohlenstoff-

schaumkörper mittels flüssigem Pech oder Polymeren (vorzugsweise Phenolharzen) imprägniert wird. Die Imprägnierung kann durch ein Vakuum-/Druckverfahren erfolgen, als auch im Normaldruckverfahren. Anschließend wird der infiltrierte Kohlenstoffschaum einer Härtung bei Temperaturen zwischen 80°C und 200°C, vorzugsweise 160°C bis 180°C, unterzogen. (Eine Härtung ist nur für eine Polymerimprägnierung erforderlich). Darauf folgend wird der so infiltrierte und ausgehärtete Kohlenstoffschaum einer erneuten Pyrolyse (Re-Carbonisierung) unterzogen.

Auch besteht die Möglichkeit, den Kohlenstoffschaum in einen SiC- bzw. SiSiC-Schaum zu konvertieren.

Nach einem hervorzuhebenden Merkmal der Erfindung ist vorgesehen, dass die Mischung zum Aufschäumen in eine Endgeometrie des Kohlenstoffschaums vorgebende Aufschäumform gegeben wird. Somit erfolgt beim Aufschäumen gleichzeitig, also integriert eine Formgebung.

Das Endprodukt weist eine hohe chemische Beständigkeit aufgrund der zum Einsatz gelangenden reinen Ausgangsmaterialien auf. Gleichzeitig kann eine gewünschte bzw. variable Dichte des Kohlenstoffschaums zwischen 0,01 g/cm³ und 1,0 g/cm³ eingestellt werden.

Entsprechende Kohlenstoffschäume können z. B. zur Hochtemperaturisolation im Bereich Ofenanlagen- oder Reaktorbau, MHL-Anlagenbau (CZ-Prozesse), in Feuerungsanlagen in Filtern, als Katalysatoren, als Stärkungsmaterial für MMC/CMC, als Schalldämmung im Hochtemperaturbereich oder als Kernmaterial für Sandwichstrukturen verwendet werden. Insbesondere besteht auch die Möglichkeit, den erfindungsgemäßen Kohlenstoffschaum in tribologischen Anwendungen einzusetzen.

Weitere Einzelheiten, Vorteile und Merkmale der Erfindung ergeben sich nicht nur aus den Ansprüchen, den diesen zu entnehmenden Merkmalen für sich und/oder in Kombination –, sondern auch aus der nachfolgenden Beschreibung von bevorzugten Ausführungsbeispielen.

Der einzigen Figur ist ein Flussdiagramm zu entnehmen, anhand dessen das erfindungsgemäße Verfahren zur Herstellung eines Kohlenstoffschaums verdeutlicht werden soll. So werden zunächst ein Ausgangspolymer 10 wie phenolhaltiges oder -stämmiges Harz, insbesondere selbsthärtendes Phenolharz (Resole), ein insbesondere flüssiges Treibmittel 12 in Form von z. B. n-Pentan, Cyclopentan, Frigene oder Carbonat sowie gegebenenfalls Additive wie Verstärkungsfasern oder Füllstoffe 14 in einem ersten Verfahrensschritt 16 gemischt und homogenisiert. Anschließend wird die so hergestellte Mischung in einem Verfahrensschritt 18 bei einer Temperatur insbesondere im Bereich zwischen 40°C und 80°C bei gleichzeitiger Formgebung aufgeschäumt. Sodann erfolgt bei einer Temperatur zwischen 850°C und 1100 °C ein Carbonisieren (Schritt 20) wobei das Carbonisieren unter Schutzgas und/oder bei einem Druck P von insbesondere 100 bis 1000 mbar. Der gewonnene carbonisierte Schaumformkörper kann entweder unmittelbar als Kohlenstoffschaum 22 z. B. als Wärmedämmteil oder Schalldämpfer eingesetzt werden (Ablauf 24) oder den dem Flussdiagramm zu entnehmenden Behandlungen unterzogen werden:

- a) Graphitieren (26) bei einer Temperatur zwischen 1700°C und 3100°C unter Schutzgas und/oder einem Druck von P insbesondere im Bereich zwischen 100 und 1000 mbar und Verwendung als Kohlenstoffschaum (22) (Ablauf 25) oder
- b) Graphiticren (26), Hochtemperaturreinigung (28) und Verwendung als Kohlenstoffschaum (22) (Ablauf 27) oder
- c) Graphitieren (26). Hochtemperaturreinigung (28),

Oder ein Verdichten wird eine Mis

Ausbilden einer PyC-Schicht und/oder ein Verdichten des Körpers im CVI/CVD-Prozess (30) und Verwendung als Kohlenstoffschaum (22) (Ablauf 29) oder d) Graphitieren (26), Nachverdichten (Pech/Polymer) (32), Silizieren (34) und anschließendes unmittelbares Verwenden als Kohlenstoffschaum (22) (Ablauf 31) oder vorheriges Durchführen von CVD- oder CVI-Prozessen (30) (Ablauf 33) oder

e) Graphitieren (26), Nachverdichten und Recarbonisieren (32), erneutes Graphitieren (26) (Ablauf 33) und sodann einen dem Graphitieren nachfolgenden und zuvor erläuterten Verfahrensschritte durchführen.

Sofern bevorzugterweise nach dem Carbonisieren (20) ein Graphitieren sowie die zuvor erläuterten Verfahrensschritte durchgeführt werden, besteht auch die Möglichkeit, nach dem Carbonisieren zunächst eine Nachverdichtung (32), ein Silizieren (34) sowie das unmittelbare Einsetzen des so hergestellten Kohlenstoffschaums (22) oder zuvor einen CVI- oder CVD-Prozess durchzuführen. Gegebenenfalls kann nach der Nachverdichtung (32) auch ein Graphitieren (26) mit den sich anschließenden Möglichkeiten erfolgen.

Nachverdichtung bedeutet, dass der poröse Kohlenstoffschaumkörper mittels flüssigem Pech oder Polymeren (vorzugsweise Phenolharzen) imprägniert wird. Die Imprägnierung kann durch ein Vakuum-/Druckverfahren erfolgen, als auch im Normaldruckverfahren. Anschließend wird der infiltrierte Kohlenstoffschaum einer Härtung bei Temperaturen zwischen 80°C und 200°C, vorzugsweise 160°C bis 180°C, unterzogen. (Eine Härtung ist nur für eine Polymerimprägnierung erforderlich). Darauf folgend wird der so infiltrierte und ausgehärtete Kohlenstoffschaum einer erneuten Pyrolyse (Re-Carbonisierung) unterzogen.

Anhand nachstehender Beispiele werden weitere Herstellungsverfahrensschritte und -parameter sowie Anwendungsbeispiele des erfindungsgemäßen Kohlenstoffschaums bzw. des Verfahrens zu seiner Herstellung erläutert:

Beispiel 1

Es wird eine Mischung aus Phenolharz, Härter in Form von Phenolsulfonsäure sowie Cyclopenthan angesetzt. Die so hergestellte Mischung wird sodann in einer Form aufgeschäumt, wobei das Aufschäumen und die Formgebung in einem Heisslufttrockenschrank bei einer Temperatur zwischen 40°C und 80°C erfolgt. Anschließend wird der so hergestellte Schaumformkörper unter Schutzgas in einem Temperaturbereich zwischen 850°C und 1100 °C carbonisiert. Schließlich wird eine Graphitierung des Kohlenstoffschaums unter Schutzgas bei einer Temperatur zwischen 2000°C und 2450°C vorgenommen.

Der so erhaltene graphitierte Kohlenstoffschaumkörper weist folgende Eigenschaften auf: Dichte = 0.02 g/cm^3 55 offene Porosität $\geq 80\%$ Kohlenstoffgehalt > 99.9% Biegefestigkeit = $1.8 \mu\text{Pa}$ Ausdehnungskoeffizient = $3 \cdot 10^{-6} \text{ J/K}$ Druckfestigkeit = $2.2 \mu\text{Pa}$ 60

Beispiel 2

Um einen faserverstärkten Kohlenstoffschaum als Kernmaterial zur Herstellung von hochbiegefesten C/C-Sandwichstrukturen zum Einsatz in Tragstrukturen in Hochtemperauranlagen- und Reaktorbau-zur Verfügung zu stellenwerden folgende Verfahrensschritte durchgeführt. Zunächst

wird eine Mischung aus Phenolharz, Härter in Form von Phenolsulfonsäure sowie Treibmittel in Form von n-Penthan angesetzt. Es erfolgt anschließend ein Einmischen von Verstärkungsfasern in Form von Kurzschnitt-Kohlenstofffasern. Die so hergestellte Mischung wird in eine Form eingebracht und sodann in einem Heisslufttrockenschrank bei einer Temperatur zwischen 40°C und 80°C aufgeschäumt, wobei gleichzeitig die gewünschte Formgebung erfolgt. Der Schaumformkörper wird anschließend im Temperaturbereich zwischen 850°C und 1100°C carbonisiert, um eine Graphitierung unter Schutzgas bei einer Temperatur zwischen 2400°C und 2450°C vorzunehmen. Der Kohlenstoffschaumkörper bildet nunmehr einen Kern, der mit C/C-Deckplatten mittels eines Polymers wie Phenol- oder Furanharz verklebt wird. Die nächsten Verfahrensschritte erfolgen sodann unter Druck und einer Temperatur zwischen 80°C und 180°C, wobei vorzugsweise eine Plattenpresse verwendet wird, sowie Pyrolysieren so hergestellter Sandwichstruktur im Temperaturbereich zwischen 850°C und

Beispiel 3

Zur Herstellung eines silizierten Kohlenstoffschaums 25 zum Einsatz als Trägermaterial für Hochtemperaturkatalysatoren wird zunächst eine Mischung aus Phenolharz, Härter in Form von Phenolsulfonsäure und Carbonat angesetzt und die so hergestellte Mischung in einer Form bei einer Temperatur zwischen 40°C und 80°C in einem Heisslufttrockenschrank aufgeschäumt, wobei gleichzeitig eine gewünschte Formgebung erfolgt. Bei einer Temperatur zwischen 850°C und 1100°C wird der so gewonnene Schaumformkörper unter Schutzgas carbonisiert, um sodann den Kohlenstoffschaum unter Schutzgas im Temperaturbereich zwischen 1800°C und 2450°C zu graphitieren. Eine vollständige oder teilweise Umwandlung des hergestellten Kohlenstoffschaums erfolgt durch Silizierverfahren in eine SiC- oder SiSiC-Schaumstruktur bei einer Temperatur zwischen 1400°C und 2000°C. Als besonders geeignete Silizierverfahren haben sich Kapillar-, Flüssig-, Pack-, Vakuumdruck-Silizierung und deren Kombinationen herausgestellt.

Patentansprüche

- 1. Verfahren zur Herstellung eines Kohlenstoffschaums gekennzeichnet durch die Verfahrensschritte:
 - Versetzen eines carbonisierbaren Ausgangspolymers mit einem Treibmittel,
 - Aufschäumen so gewonnener Mischung und
 anschließendes Pyrolysieren der Mischung.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Ausgangspolymer ein phenolhaltiges oder -stämmiges Harz ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Ausgangspolymer ein phenolstämmiges Harz, insbesondere in Form eines Resols ist.
- 4. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Treibmittel insbesondere n-Pentan, Cyclopentan, Frigene oder Carbonate vorzugsweise in flüssiger Form verwendet wird.
- Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mischung aus dem Ausgangspolymer und dem Treibmittel zumindest ein Additiv und/oder ein Füllstoff zugemischt wird.
- 6. Verfahren nach zumindest einem der vorhergehen-

6

den Ansprüche, dadurch gekennzeichnet, dass als Additiv Verstärkungsfasern wie Kohlenstoffsiliziumkarbid- und/oder Aluminiumoxidfasern verwendet werden.

- 7. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Füllstoffe vorzugsweise Graphitpulver, Siliziumcarbidpulver und/oder Siliziumpulver verwendet werden.
- 8. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aufgeschäumte Mischung bei einer Temperatur von T, mit $850^{\circ}\text{C} \leq T_1 \leq 1100^{\circ}\text{C}$, insbesondere $900^{\circ}\text{C} \leq T_1 \leq 1000^{\circ}\text{C}$ carbonisiert und/oder bei einer Temperatur T_2 mit $1700^{\circ}\text{C} \leq T_2 \leq 3100^{\circ}\text{C}$, insbesondere $1800^{\circ}\text{C} \leq T_2 \leq 2450^{\circ}\text{C}$ graphitiert wird.
- 9. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kohlenstoffschaum nach dem Carbonisieren bzw. Graphitieren veredelt wird.
- 10. Verlahren nach zumindest einem der vorhergehen- 20 den Ansprüche, dadurch gekennzeichnet, dass der Kohlenstoffschaum siliziert wird.
- 11. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kohlenstoffschaum im CVD-Verfahren mit SiC, B₄C 25 oder Pyrographit beschichtet wird.
- 12. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kohlenstoffschaum im CVI-Verfahren mit SiC und/oder Pyrographit verdichtet wird.
- 13. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die auf den Kohlenstoffschaum mittels flüssigem Pech oder Polymer imprägniert wird.
- 14. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mischung zum Aufschäumen in eine einer Endgeometrie
 des Kohlenstoffschaums vorgebende Aufschäumform
 gegeben wird.
- 15. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zusammensetzung der Mischung und/oder die Carbonisierung bzw. Graphitierung der aufgeschäumten Mischung derart erfolgt, dass der Kohlenstoffschaum eine Enddichte im Bereich 0,1 g/cm³ bis 1,0 g/cm³ auf 45 weist.
- 16. Verwendung des Kohlenstoffschaums hergestellt nach zumindest einem der vorhergenden Ansprüche als Isolator, Katalysator, Kernmaterial für Sandwichstrukturen, Verstärkungsmaterial, tribologische Anwendunsen oder Teile dieser.

Hierzu 1 Seite(n) Zeichnungen

55

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 100 11 013 A1 C 01 B 31/0220. September 2001

Herstellschema eines Kohlestoffschaums

