Измеримые функции

Опр. 1 Пусть на измеримом пространстве (X, A) задана вещественнозначная функция $f(x), x \in X$. Эта функция называется измеримой, если для любого вещественного $c \in \mathbb{R}$ множество $\{x \in X : f(x) < c\} \in A$.

Теорема 1 (Лемма о вариантах определения измеримости) Пусть $(X, \mathcal{A}) - u$ змеримое пространство, $f: X \to \mathbb{R}$. Функция f(x) измерима <=> выполнено одно из четырёх эквивалентных условий:

```
1) \forall c \in \mathbb{R} \{x \in X : f(x) \ge c\} \in \mathcal{A};
```

- 2) $\forall c \in \mathbb{R} \{x \in X : f(x) > c\} \in \mathcal{A};$
- 3) $\forall c \in \mathbb{R} \{x \in X : f(x) \le c\} \in \mathcal{A};$
- 4) $\forall c \in \mathbb{R} \{x \in X : f(x) < c\} \in \mathcal{A}.$
- 1. Считая f(x) измеримой, установить измеримость функций:
- a) |f(x)|;
- б) $f^n(x)$, $n \in \mathbb{N}$;
- B) $f_{+}(x) = \max\{f(x), 0\}, f_{-}(x) = \min\{f(x), 0\}.$
- 2. Пусть на прямой \mathbb{R} задана σ -алгера измеримых по Лебегу множеств $\tilde{\mathcal{B}}_1$. Приведите пример функции, не являющейся измеримой относительно измеримого пространства $(\mathbb{R}, \tilde{\mathcal{B}}_1)$.
 - 3. Покажите, что из измеримости |f(x)| не следует измеримость f(x).
 - 4. Пусть μ полная мера. Если f(x) = 0 вне множества меры 0, то f(x) измерима.
- 5. Если f(x) определена на всём $\mathbb R$ и имеет конечное число точек разрыва, то она измерима по Лебегу. Сначала решите задачу для непрерывной функции.