ベイズ決定

1 ベイズの定理

確率変数 θ_i , の生起確率を $p(\theta_i)$ とし、事象 z が結果として起こったと分かったとき、それが θ_i , のもとで起こった

$$p(\theta_i|z) = \frac{p(z|\theta_i)p(\theta_i)}{\sum_i p(z|\theta_i)p(\theta_i)}$$

標本のデータ z は、パラメータ θ に依存するとすると、z が与えられたもとでの θ の事後分布は、 $p(\theta_i|z)$ で与えられる。

2 ベイズ推定

パラメータ θ の値として一つの値 (行動 a) を事後分布による損失 $L(\theta, a)$ の期待値を最小にするように決定すること。

3 統計的決定理論

例として、ネルソン氏の雨の問題 (Mr. Nelson's rain problem) (Chernoff & Moses "Elementary Decision Theory", John Wiley & Sons, 1959.)を考える。

	(晴天用)	(レインコート)	(レインコート・) シューズ・傘)
	a_1	a_2	a_3
$\overline{(睛) \theta_1}$	0	1	3
$(雨) \theta_2$	5	3	2

	(高)	(中)	(低)
	z_1	z_2	z_3
$(\mathbf{\mathfrak{h}}) \; \theta_1$ $(\mathbf{\mathfrak{h}}) \; \theta_2$	0.60	0.25	0.15
$(雨) \theta_2$	0.20	0.30	0.50

$$p(z_1) = p(z_1|\theta_1)p(\theta_1) + p(z_1|\theta_2)p(\theta_2)$$

= 0.60p(\theta_1) + 0.20p(\theta_2)

ベイズの定理より

$$p(\theta_i|z_1) = \frac{p(z_1|\theta_i)p(\theta_i)}{p(z_1)}, \quad i = 1, 2$$

ここで、

$$r(a_i; z_1) = a_i p(z_1 | \theta_1) p(\theta_1) + a_i p(z_1 | \theta_2) p(\theta_2)$$

とおくと、
$$p(\theta_1) + p(\theta_2) = 1$$
 だから、

$$r(a_1; z_1) = 0 \times 0.60 \times p(\theta_1) + 5 \times 0.20 \times p(\theta_2) = 1 - p(\theta_1),$$

$$r(a_2; z_1) = 1 \times 0.60 \times p(\theta_1) + 3 \times 0.20 \times p(\theta_2) = 0.6,$$

$$r(a_3; z_1) = 3 \times 0.60 \times p(\theta_1) + 2 \times 0.20 \times p(\theta_2) = 0.4 + 1.4p(\theta_1).$$

ここで、z1だった場合の損失を

$$\ell_1(a, z_1) = min\{r(a_1, z_1), r(a_1, z_1), r(a_1, z_1)\}\$$

とおくと、損失 $\ell(a, z_1)$ が最小となる $a_i (i = 1, \dots, 3)$ は、

$$0 \le p(\theta_1) \le \frac{1}{4}$$
ならば、 a_3
$$\frac{1}{4} \le p(\theta_1) \le \frac{2}{5}$$
ならば、 a_2
$$\frac{2}{5} \le p(\theta_1) \le 1$$
ならば、 a_1

となる。

結果がz₂だった場合には、

$$p(z_2) = p(z_2|\theta_1)p(\theta_1) + p(z_2|\theta_2)p(\theta_2)$$

= 0.25p(\theta_1) + 0.30p(\theta_2)

$$r(a_i; z_2) = a_i p(z_2 | \theta_1) p(\theta_1) + a_i p(z_2 | \theta_2) p(\theta_2)$$

だから、

$$r(a_1; z_2) = 0 \times 0.25 \times p(\theta_1) + 5 \times 0.30 \times p(\theta_2) = 1.5 - 1.5p(\theta_1)$$

$$r(a_2; z_2) = 1 \times 0.25 \times p(\theta_1) + 3 \times 0.30 \times p(\theta_2) = 0.9 - 0.65p(\theta_1)$$

$$r(a_3; z_2) = 3 \times 0.25 \times p(\theta_1) + 2 \times 0.30 \times p(\theta_2) = 0.6 + 0.15p(\theta_1)$$

ここで、z2だった場合の損失を

$$\ell_2(a, z_2) = min\{r(a_1, z_2), r(a_1, z_2), r(a_1, z_2)\}\$$

とおくと、損失 $\ell(a, z_2)$ が最小となる $a_i (i = 1, \dots, 3)$ は、

$$0 \le p(\theta_1) \le \frac{3}{8}$$
 ならば、 a_3 $\frac{3}{8} \le p(\theta_1) \le \frac{12}{17}$ ならば、 a_2 $\frac{12}{17} \le p(\theta_1) \le 1$ ならば、 a_1

となる。

結果が z3 だった場合には、

$$p(z_3) = p(z_3|\theta_1)p(\theta_1) + p(z_3|\theta_2)p(\theta_2)$$

= 0.15p(\theta_1) + 0.50p(\theta_2)

$$r(a_i; z_3) = a_i p(z_3 | \theta_1) p(\theta_1) + a_i p(z_3 | \theta_2) p(\theta_2)$$

だから、

$$r(a_1; z_3) = 0 \times 0.15 \times p(\theta_1) + 5 \times 0.50 \times p(\theta_2) = 2.5 - 2.5p(\theta_1)$$

$$r(a_2; z_3) = 1 \times 0.15 \times p(\theta_1) + 3 \times 0.50 \times p(\theta_2) = 1.5 - 1.35p(\theta_1)$$

$$r(a_3; z_3) = 3 \times 0.15 \times p(\theta_1) + 2 \times 0.50 \times p(\theta_2) = 1.0 - 0.55p(\theta_1)$$

ここで、 z_2 だった場合の損失を

$$\ell_3(a, z_3) = min\{r(a_1, z_3), r(a_1, z_3), r(a_1, z_3)\}\$$

とおくと、損失 $\ell(a,z_3)$ が最小となる $a_i(i=1,\ \cdots,\ 3)$ は、

$$0 \le p(\theta_1) \le \frac{5}{8}$$
 ならば、 a_3 $\frac{5}{8} \le p(\theta_1) \le \frac{10}{13}$ ならば、 a_2 $\frac{10}{13} \le p(\theta_1) \le 1$ ならば、 a_1

となる。

損失の期待値は、

$$\mathcal{L}(s) = \ell_1(a, z_1) + \ell_2(a, z_2) + \ell_3(a, z_3)$$

で与えられる。従って、ネルソン氏の戦略は、与えられた $p(\theta)$ の下で $\mathcal{L}(s)$ が最小となるような s を観測された z_i から求めることにある。

範囲	z_1	z_2	z_3
$0 \le p(\theta_1) \le \frac{1}{4}$	a_3	a_3	a_3
$\frac{1}{4} \le p(\theta_1) \le \frac{3}{8}$	a_2	a_3	a_3
$\frac{3}{8} \le p(\theta_1) \le \frac{2}{5}$	a_2	a_2	a_3
$\frac{2}{5} \le p(\theta_1) \le \frac{5}{8}$	a_1	a_2	a_3
$\frac{5}{8} \le p(\theta_1) \le \frac{12}{17}$	a_1	a_2	a_2
$\frac{12}{17} \le p(\theta_1) \le \frac{10}{13}$	a_1	a_1	a_2
$\frac{10}{13} \le p(\theta_1) \le 1$	a_1	a_1	a_1