

Programming the QPU

/tbabej

@tomasbabej

Tomas Babej & Mark Fingerhuth ProteinQure Inc.

> Creative Destruction Lab Toronto, CA July 12, 2018

/m-fingerhuth in

QPU: Accessing the real device

QPU | API | Decoherence & Noise | Compilation

Rigetti 19Q-Acorn

QPU | API | Decoherence & Noise | Compilation

Latest generation QPU (currently offline)

19 superconducting qubits

Rigetti 8Q-Agave

QPU | API | Decoherence & Noise | Compilation

Previous generation QPU (currently online)

8 superconducting qubits

QPU | API | Decoherence & Noise | Compilation

How does QPUs differ from one another? It's not just about the **qubits**..

QPU | API | Decoherence & Noise | Compilation

Table 1 | Rigetti 8Q performance

	$\omega_{ m r}^{ m max}/2\pi$	$\omega_{01}^{ m max}/2\pi$	T_1	T_2^*	$F_{1\mathrm{q}}$	F_{RO}
	MHz	MHz	μs	$\mu \mathrm{s}$		
0	5863	4586	10.72	10.6	0.957	0.784
1	5293	3909	10.04	9.2	0.951	0.910
2	5713	4524	15.52	12.5	0.982	0.943
3	5411	4054	14.17	18.5	0.970	0.912
4	5620	4660	14.58	26.2	0.969	0.678
5	5171	4081	14.86	12.8	0.962	0.832
6	5751	4760	14.17	12.9	0.969	0.753
7	5454	4110	13.19	17.7	0.932	0.895

QPU | API | Decoherence & Noise | Compilation

T1/T2 relaxation time

Table 1 | Rigetti 8Q performance

	$\omega_{ ext{r}}^{ ext{max}}/2\pi$	$\omega_{01}^{ m max}/2\pi$	T_1	T_2^*	$F_{1\mathrm{q}}$	F_{RO}
	MHz	MHz	$\mu \mathrm{s}$	$\mu \mathrm{s}$		
0	5863	4586	10.72	10.6	0.957	0.784
1	5293	3909	10.04	9.2	0.951	0.910
2	5713	4524	15.52	12.5	0.982	0.943
3	5411	4054	14.17	18.5	0.970	0.912
4	5620	4660	14.58	26.2	0.969	0.678
5	5171	4081	14.86	12.8	0.962	0.832
6	5751	4760	14.17	12.9	0.969	0.753
7	5454	4110	13.19	17.7	0.932	0.895

QPU | API | Decoherence & Noise | Compilation

Gate fidelities

Table 1 | Rigetti 8Q performance

	$\omega_{ m r}^{ m max}/2\pi$	$\omega_{01}^{ m max}/2\pi$	T_1	T_2^*	F _{1q}	F_{RO}
	MHz	MHz	$\mu \mathrm{s}$	$\mu \mathrm{s}$		
0	5863	4586	10.72	10.6	0.957	0.784
1	5293	3909	10.04	9.2	0.951	0.910
2	5713	4524	15.52	12.5	0.982	0.943
3	5411	4054	14.17	18.5	0.970	0.912
4	5620	4660	14.58	26.2	0.969	0.678
5	5171	4081	14.86	12.8	0.962	0.832
6	5751	4760	14.17	12.9	0.969	0.753
7	5454	4110	13.19	17.7	0.932	0.895

QPU | API | Decoherence & Noise | Compilation

Readout fidelities

Table 1 | Rigetti 8O performance

Table 1 Rigetti 8Q performance							
	$\omega_{ m r}^{ m max}/2\pi$	$\omega_{01}^{ m max}/2\pi$	T_1	T_2^*	$F_{1\mathrm{q}}$	F_{RO}	
	MHz	MHz	$\mu \mathrm{s}$	$\mu \mathrm{s}$			
0	5863	4586	10.72	10.6	0.957	0.784	
1	5293	3909	10.04	9.2	0.951	0.910	
2	5713	4524	15.52	12.5	0.982	0.943	
3	5411	4054	14.17	18.5	0.970	0.912	
4	5620	4660	14.58	26.2	0.969	0.678	
5	5171	4081	14.86	12.8	0.962	0.832	
6	5751	4760	14.17	12.9	0.969	0.753	
7	5454	4110	13.19	17.7	0.932	0.895	

QPU | API | Decoherence & Noise | Compilation

Table 3 | Rigetti 19Q performance

	$\omega_{ ext{\tiny T}}^{ ext{max}}/2\pi$	$\omega_{01}^{ m max}/2\pi$	$\eta/2\pi$	T_1	T_2^*	F _{1q}	F_{RO}
	MHz	MHz	MHz	$\mu \mathrm{s}$	$\mu \mathrm{s}$		
0	5592	4386	-208	15.2 ± 2.5	7.2 ± 0.7	0.9815	0.938
1	5703	4292	-210	17.6 ± 1.7	7.7 ± 1.4	0.9907	0.958
2	5599	4221	-142	$\textbf{18.2} \pm \textbf{1.1}$	10.8 ± 0.6	0.9813	0.97
3	5708	3829	-224	31.0 ± 2.6	16.8 ± 0.8	0.9908	0.886
4	5633	4372	-220	23.0 ± 0.5	5.2 ± 0.2	0.9887	0.953

Notice the substantial **improvement in all the metrics** compared to previous generation.

QPU | API | Decoherence & Noise | Compilation

Not just the number of qubits, but also:

- Decoherence times
- Readout fidelities
- Gate fidelities

Circuit depth

Chip topology

Chip topology

QPU | API | Decoherence & Noise | Compilation

Not fully connected -> might require topological SWAPs

Working with the QPU

QPU | API | Decoherence & Noise | Compilation

Just replace QVMConnection with **QPUConnection**!

```
>>> from pyquil.api import QVMConnection()
```

```
>>> qvm = QVMConnection()
```


- >>> **from** pyquil.api **import** QPUConnection, get_devices
- >>> acorn = get_devices(as_dict=True)['19Q-Acorn']
- >>> qpu = QPUConnection(device=acorn)

Simulating the QPU

QPU | API | Decoherence & Noise | Compilation

Specify the **device** you want the QVM to simulate

```
>>> from pyquil.api import QVMConnection()
```

```
>>> qvm = QVMConnection()
```


- >>> **from** pyquil.api **import** QVMConnection, get_devices
- >>> acorn = get_devices(as_dict=True)['19Q-Acorn']
- >>> qvm = QVMConnection(device=acorn)

Simulating the QPU

QPU | API | Decoherence & Noise | Compilation

```
>>> from pyquil.api import QVMConnection, get devices
>>> from pyquil.gates import H, MEASURE
>>> from pyquil.quil import Program
>>> acorn = get_devices(as_dict=True)['19Q-Acorn']
>>> qvm = QVMConnection(device=acorn)
>>  program = Program([H(^{\circ}), H(^{\circ}), MEASURE(^{\circ}, ^{\circ})])
>>> qvm.run(program, trials=10)
([0], [0], [0], [0], [0], [0], [0], [1], [0])
```

Simulating the QPU

QPU | API | **Decoherence & Noise** | Compilation

- >>> **from** pyquil.api **import** QVMConnection, get_devices
- >>> acorn = get_devices(as_dict=True)['19Q-Acorn']
- >>> qvm = QVMConnection(device=acorn)

Provides a way of **estimating the performance** of your circuit

- Simulates readout error
- Uses simulated noisy gates to implement gate fidelities
- Has no notion of time

QPU | API | Decoherence & Noise | **Compilation**

QPU | API | Decoherence & Noise | Compilation

Why make things more complex?

QPU | API | Decoherence & Noise | Compilation

QPUs implements only a **restricted set of quantum gates** (by definition, since there are infinitely many!)

$$RZ(\theta)$$
, $RX(k\pi/2)$ and CZ

Still universal, but gate decomposition is required.

Problems with compilation

QPU | API | Decoherence & Noise | Compilation

Gate decomposition **introduces overhead** in your circuit

Problems with compilation

QPU | API | Decoherence & Noise | Compilation

QPU instructions **must respect** graph topology

Problems with compilation

QPU | API | Decoherence & Noise | Compilation

QPU instructions **must respect** graph topology

QPU | API | Decoherence & Noise | Compilation

```
>>> from pyquil.api import CompilerConnection, get_devices
>>> from pyquil.gates import H, CNOT, MEASURE
>>> from pyquil.quil import Program

>>> program = Program((H(O), CNOT(O, 1), MEASURE(O, O), MEASURE(1, 1)))

>>> agave = get_devices(as_dict=True)('8Q-Agave')
>>> compiler = CompilerConnection(device=agave)
>>> compiled = compiler.compile(program)
```

QPU | API | Decoherence & Noise | Compilation

```
>>> from pyquil.api import CompilerConnection, get_devices
>>> from pyquil.gates import H, CNOT, MEASURE
>>> from pyquil.quil import Program

>>> program = Program((H(O), CNOT(O, 1), MEASURE(O, O), MEASURE(1, 1)))

>>> agave = get_devices(as_dict=True)('8Q-Agave')
>>> compiler = CompilerConnection(device=agave)
>>> compiled = compiler.compile(program)
```

Why compile manually?

Benefits of manual compilation

QPU | API | Decoherence & Noise | Compilation

Compilation usually happens behind the scenes

```
>>> program = Program((H(0), H(0), MEASURE(0, 0)))
>>> qpu = QPUConnection(device=acorn)
>>> qpu.run(program)

then run on QPU
```

Compiled version enables you to:

- Properly debug actual circuit run on the device
- Accurately **observe** the circuit depth
- Appreciate all layers of complexity that make your quantum code work

rigetti

Now, please start working through the exercises in the Jupyter Notebook for

Tutorial 4

Brought to you by

/tbabej

/m-fingerhuth

@tomasbabej

@mark_fingerhuth