Basic Math Review

Some Greek letters

Greek letters are frequently used to denote either specific population properties, to name specific statistical test or as mathematical operator.

Greek Letter	Phonetic	Usage
α	alpha	error of first type
β	beta	error of second type / regression parameters
ε	epsilon	regression population error term
γ	gamma	parameter in some distributions and functions
λ	lambda	parameter in some distributions and functions
μ	mu	expected population mean
π	pi	population probability in binomial distribution
ρ	rho	population correlation coefficient
σ	sigma	population standard deviation
X	chi	χ^2 -test
П	capital pi	multiplication symbol
Σ	capital sigma	summation symbol

Standard Symbols and Definition

Operation	Meaning
Numerator	ratio between the numerator and the denominator
Denominator	
\times or \cdot , and \div or $/$, $+$, $-$	multiplication and division take precedence over addition and subtraction
X < Y	X is less than Y
$X \leq Y$	X is less or equal than Y
$X \pm Y$	X plus minus Y , i.e., the two values $X + Y$ and $X - Y$
X	The absolute value $ X = \begin{cases} X & \text{for } X \ge 0 \\ -X & \text{for } X < 0 \end{cases}$
$\frac{1}{X} = X^{-1}$	Reciprocal of X
X^n	The n^{th} power of X ; for n being integer we get $x^n = \underbrace{x \cdot x \cdots x}_{n-\text{times}}$
$\sqrt{X} = X^{\frac{1}{2}}$	square root of X
$i \in \{1, 2, \dots n\}$	i is an element in the set $\{1, 2, n\}$. It takes the values $1, 2, n$.

Notation of Variables

A variable is denoted by a capital letter X while a lower case letter with a subscript index x_i relates to a specific observation. The index i ranges from 1, 2, ..., n. The number of observations in a variable is n. Therefore, $X = x_i$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}. \text{ For example, if } X \text{ has } n=4 \text{ observation then } X = \begin{pmatrix} x_1=3 \\ x_2=2 \\ x_3=5 \\ x_4=4 \end{pmatrix}.$$

Ranked Data

• Statisticians frequently work with an ascending sorted sequence of observations which is denoted by square

brackets
$$X_{[ranked]} = \begin{pmatrix} x_{[1]} \\ x_{[2]} \\ \vdots \\ x_{[n]} \end{pmatrix}$$
. For example, $X_{[ranked]} = \begin{pmatrix} x_{[1]} = 2 \\ x_{[2]} = 3 \\ x_{[3]} = 4 \\ x_{[4]} = 5 \end{pmatrix}$ with $x_{[1]} \le x_{[2]} \le x_{[3]} \le x_{[4]}$.

• Should two observations have the same rank, such as $x_i = 5$ and $x_j = 5$, then the ranks [r] and [r+1] will be assigned arbitrarily, that is, $x_{[r]} = 5$ and $x_{[r+1]} = 5$, respectively.

Basic Summation Σ **–Rules:**

- $\sum_{i=1}^{n} x_i \equiv x_1 + x_2 + \dots + x_n$. The lower index i = 1 express the starting value of the summation sequence and the upper index n the value where the summation index i stops.
- more specifically $\sum_{i=2}^{5} x_i = x_2 + x_3 + x_4 + x_5$
- for a sum over a constant c we get $\sum_{i=1}^{n} c = n \cdot c$
- for a mixture of a constant and a variable $\sum_{i=1}^{n} c \cdot x_i = c \cdot \sum_{i=1}^{n} x_i$
- for an additive mixture of variables $\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$
- Inequalities (so do not confuse either side of the expression; they lead to different results):

$$\sum_{i=1}^{n} x_{i} \cdot y_{i} \neq \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}$$
$$\sum_{i=1}^{n} x_{i}^{2} \neq \left(\sum_{i=1}^{n} x_{i}\right)^{2}$$

- Special rule used when we are dealing with ranks: $\sum_{i=1}^{n} i = \frac{n}{2} \cdot (n+1)$
- Doubly index variables x_{ij} in a cross-tabulation (or matrix) with I rows and J columns:

Let:
$$\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1j} & \cdots & x_{1J} \\ x_{21} & x_{22} & \cdots & x_{2j} & \cdots & x_{2J} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & x_{i2} & \cdots & x_{ij} & \cdots & x_{iJ} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{I1} & x_{I2} & \cdots & x_{Ij} & \cdots & x_{IJ} \end{bmatrix}$$

Then the i^{th} row sum is $x_{i+} = \sum_{j=1}^{J} x_{ij}$ and the j^{th} column sum is $x_{i+} = \sum_{j=1}^{I} x_{ij}$ and the total sum becomes

$$x_{++} = \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} = \sum_{i=1}^{I} x_{i+} \text{ or } \sum_{j=1}^{J} x_{+j}$$

- Applications (not test relevant):
 - o Rewrite: $\sum_{i=1}^{n} (x_i + y_i)^2 = \sum_{i=1}^{n} (x_i^2 + 2 \cdot x_i \cdot y_i + y_i^2) = \sum_{i=1}^{n} x_i^2 + 2 \cdot \sum_{i=1}^{n} x_i \cdot y_i + \sum_{i=1}^{n} y_i^2$
- The @ function for summations:
 - o sum () calculated the sum over the elements of a vector
 - o rowSums () calculates along the rows of a matrix a vector of row sums.
 - o colSums () calculates along the columns of a matrix a vector of column sums.

Finding the minimum of a quadratic function (not test relevant)

• In statistic, we encounter frequently the need to find an optimal value of an estimation function, such as for the central tendency.

- The minimum is found at that point, where the slope of the function is zero. The slope of a function is measured by the first derivative.
- Basic rules of derivatives:

$$\frac{\partial}{\partial x} a \cdot x^{n} = a \cdot n \cdot x^{n-1} \text{ Example: } \frac{\partial}{\partial x} 3 \cdot x^{2} = 6 \cdot x$$

$$\frac{\partial}{\partial x} (f(x) + g(x)) = \frac{\partial}{\partial x} f(x) + \frac{\partial}{\partial x} g(x) \text{ Example: } \frac{\partial}{\partial x} (3 \cdot x^{2} + 5 \cdot x^{-1}) = 3 \cdot 2 \cdot x + 5 \cdot -1 \cdot x^{-2}$$

• Example: The Arithmetic Mean

Which value of θ (theta) minimizes the quadratic expression $\sum_{i=1}^{n} (x_i - \theta)^2$?

Analysis Steps:

[a] Multiply the term under the square out:

$$f(\theta) = \sum_{i=1}^{n} (x_i - \theta)^2 = \sum_{i=1}^{n} x_i^2 - 2 \cdot \theta \cdot \sum_{i=1}^{n} x_i + n \cdot \theta^2$$

[b] Take the first derivative with regard to θ , which is the slope of $f(\theta)$ at θ :

$$\frac{\partial}{\partial \theta} \left(\sum_{i=1}^{n} x_i^2 - 2 \cdot \theta \cdot \sum_{i=1}^{n} x_i + n \cdot \theta^2 \right) = -2 \cdot \sum_{i=1}^{n} x_i + 2 \cdot n \cdot \theta$$

[c] At its maximum or minimum the first derivative (that is, the slope) is zero.

Therefore set the expression to zero:

$$-2 \cdot \sum_{i=1}^{n} x_i + 2 \cdot n \cdot \theta = 0$$

[d] Solve the expression for the unknown parameter θ :

$$\theta = \frac{\sum_{i=1}^{n} x_i}{n}$$

⇒ This is the well-know arithmetic mean!!!

Example: The data values are $x_i \in \{2,5,4,6,8\}$.

Thus the function to be minimized with respect to θ is

$$f(\theta) = (2-\theta)^2 + (5-\theta)^2 + (4-\theta)^2 + (6-\theta)^2 + (8-\theta)^2$$

The solution is found at $\theta \Rightarrow \overline{x} = 5$.

The exponential and logarithmic functions (not test relevant)

• Both functions are inversely related: $x = \exp(\log(x))$ and $x = \log(\exp(x))$.

Note: the support (valid arguments for the variable x) of the logarithmic function is limited from below by zero, that is, $x \in]0, \infty]$.

Minimizing the Squared Differences Around θ for $x_i \in \{2, 4, 5, 6, 8\}$

Graph of the Functions exp(x) and log(x)

Tiefelsdorf: GISC6301 GISC Data Fundamental (Fall 2019)

• The both functions distort the constant distance units in the variable x.

E.g.,
$$\Delta x_1 = 10 - 1 = 9$$
 and $\Delta x_2 = 20 - 11 = 9$ but $\log (10) - \log(1) = 2.302585$ but $\log (20) - \log(11) = 0.597837$, respectively.

- Basic rules:
 - Logarithmic function:

$$\log(x \cdot y) = \log(x) + \log(y),$$

$$\log(x/y) = \log(x) - \log(y) \text{ and }$$

$$\log(x^y) = y \cdot \log(x)$$

Exponential function:

$$\exp(x + y) = \exp(x) \cdot \exp(y),$$

$$\exp(x - y) = \exp(x)/\exp(y) \text{ and }$$

$$[\exp(x)]^y = \exp(x \cdot y)$$