JEE Main Crash Course

Functions

Questions

1.	Consider $f(x) =$	e^x and $a(x)=2x$	- 5. 1	Then $(aof)^{-1}$ ed	nuals:				

1. Consider
$$f(x) = e^x$$
 and $g(x) = 2x - 5$. Then $(g \circ f)^{-1}$ equals:

(1) $2e^x - 5$

(2)
$$e^{2x-5}$$

$$(3)$$
 $\frac{5 + \ln x}{2}$ go /// mathongo /// mathongo ///

4)
$$\ln\left(\frac{x+5}{2}\right)$$
 /// mathor

(4)
$$\ln\left(\frac{x+5}{2}\right)$$
 /// mathongo /// mathongo /// matho

2. Let
$$f:A\to B$$
 be a function defined by $f(x)=\sqrt{3}\sin x+\cos x+4$. If f is invertible, then

(1)
$$A = \left[\frac{-2\pi}{3}, \frac{\pi}{3}\right], B = [2, 6]$$

(2)
$$A = \left[\frac{\pi}{6}, \frac{5\pi}{6}\right], B = [-2, 2]$$

(3)
$$A = \left[\frac{-\pi}{2}, \frac{\pi}{2}\right], B = [2, 6]$$

(5) none of these.

(4)
$$A = \left[\frac{-\pi}{3}, \frac{\pi}{3}\right], B = [2, 6]$$

(4)
$$A = \left[\frac{-\pi}{3}, \frac{\pi}{3}\right], B = [2, 6]$$

(1)
$$f(t) = \frac{(1-t)}{(1+t)}$$

(2)
$$f(t) = \frac{(1-t^2)}{(1+t^2)}$$

(3)
$$f(t) = 4^{\log t}$$

(4)
$$f(t) = 2^t$$

(2)
$$f(t) = \frac{(1-t^2)}{(1+t^2)}$$
 mathongo /// mathongo ///

$$(1) 10^{10}$$

$$(3) 2^{10}$$

(4)
$$2^{10} - 1$$

5. If
$$A = \{a, b, c\}$$
, then total number of one-one onto functions which can be defined from A to A is

6. Let
$$f:(-\infty, 1]{\rightarrow}(-\infty, 1]$$
 defined by $f(x)=x(2-x)$, then $f^{-1}(x)=$

(1)
$$1 - \sqrt{1-x}$$

(2)
$$1 + \sqrt{1-x}$$

(3)
$$\frac{1}{x(2-x)}$$

(1)
$$1-\sqrt{1-x}$$

(2) $1+\sqrt{1-x}$
(3) $\frac{x+1}{x(2-x)}$ // mathongo // mathongo // mathongo // mathongo // mathongo //

7. Number of solution of
$$\log_{10} x + |x| = 0$$
 is (1) 0 hongo (2) 2 ongo (3) mathongo (4) mathongo (4) mathongo (5) 2 ongo (6) mathongo (7) mathongo

$$(1) \ 0$$

8. The number of roots of the equation
$$\cot x = \frac{\pi}{2} + x$$
 in $\left[-\pi, \frac{3\pi}{2} \right]$ is

$$(1)$$
 3

(1)
$$f(x) = (2^x + 2^{-x})$$

(1)
$$f(x) = (2^x + 2^{-x})$$
 athongo /// mathongo /// $f(x) = \left[\log\left(x + \sqrt{1 + x^2}\right)\right]^2$ /// mathongo /// mat

(3)
$$f(x+y)=f(x)+f(y)\forall x,y\in R$$

10. The number of solution of the equation
$$|\cos x| = x^2 + x + 2$$
 is