Armazenamento de Documentos XML

Vanessa Braganholo

XML em diferentes contextos

Como armazenar?

- 1. Sistema de arquivos
- Banco de Dados Relacional/Objeto Relacional/etc. com suporte a XML (habilitado a XML ou híbrido)
- Banco de Dados Nativo

1 – Sistema de arquivos

- Vantagens
 - Flexível

Desvantagens

- Segurança
- Impossibilidade de otimização de consultas (ausência de índices, etc.)

2 – Banco de Dados com suporte a XML

Alternativas:

- Fazer mapeamento "na mão"
 - Genérico ou
 - Específico para uma DTD ou XML Schema
- Utilizar um banco de dados Habilitado a XML
 - SGBDs com extensões para transferir dados entre documentos XML e suas estruturas.
- Utilizar um banco de dados híbrido
 - SGBD relacional/objeto-relacional que possui suporte a armazenamento XML nativo

3 – Banco de Dados Nativo

SGBDs que armazenam XML em sua forma nativa, geralmente como texto indexado ou como uma variante do DOM mapeado para uma estrutura proprietária.

Fazendo o mapeamento "na mão"...

O princípio...

- Proposta publicada em 1993 (ABITEBOUL; CLUET; MILO; 1993) intitulada "Querying and Updating the file" sugeria usar a tecnologia relacional para consultar arquivos textuais
 - Para isso, seria necessário armazenar tais arquivos em BDs relacionais
 - Ideia: explorar a estrutura intrínseca de arquivos tais como arquivos SGML, código fonte, etc., para armazenálos no BD

XML

- XML possui tal estrutura intrínseca, e portanto poderia se beneficiar das idéias lançadas em 93
- Várias propostas específicas para armazenamento de XML surgiram ao longo dos anos:
 - ► (FLORESCU; KOSSMANN, 1999)
 - ▶ (DEUTSCH; FERNANDEZ; SUCIU, 1999)
 - ► (SHANMUGASUNDARAM et al., 1999)
 - ▶ (LEE; CHU, 2000)
 - ▶ (CHEN; DAVIDSON; ZHENG, 2002, 2003)

Consultas

- Mas, não basta só armazenar os docs XML. É necessário também poder consultá-los. Propostas que exploram este problema são:
 - ► (SHANMUGASUNDARAM et al., 1999)
 - MANOLESCU; FLORESCU; KOSSMANN, 2001)
 - ► (SHANMUGASUNDARAM et al., 2001)
 - ► (TATARINOV et al., 2002)
 - ▶ (DEHAAN et al., 2003)

Tipos de proposta

Armazenamento:

- Técnicas que exploram a estrutura do XML (elementos, atributos, relação pai-filho)
 - ► (FLORESCU; KOSSMANN, 1999)
 - ▶ (DEHAAN et al., 2003)
 - ► (TATARINOV et al., 2002)
- Técnicas que exploram o esquema do doc. XML (DTD ou XML Schema)
 - ► (SHANMUGASUNDARAM et al., 1999)
- Técnicas que exploram alguma relação semântica entre os dados (ex. dependências funcionais)
 - ▶ (CHEN; DAVIDSON; ZHENG, 2002, 2003)
 - ▶ (LEE; CHU, 2000)

Técnicas que exploram a estrutura do XML

Documentos a serem armazenados

(FLORESCU; KOSSMANN, 1999)

```
(person id=1, age=55)
      (name)Peter(/name)
      (address)4711 Fruitdale Ave.(/address)
      (child)
            (person id=3, age=22)
                   (name)John(/name)
                   (address)5361 Columbia Ave.(/address)
                   (hobby)swimming(/hobby)
                   (hobby)cycling(/hobby)
            (/person)
      (/child)
      (child)
             (person id=4, age=7)
                   (name)David(/name)
                   (address)4711 Fruitdale Ave.(/address)
            (/person)
      (/child)
(/person)
```

Proposta *Edge* (Aresta)

 Armazenar todos os documentos em uma única tabela chamada Edge

Edge(source, ordinal, name, flag, target)

Nome do elemento ou atributo

Id que indica o documento XML ao qual aquele elemento pertence Numero para preservar a ordem entre os elementos de um mesmo documento

Proposta *Edge* (Aresta)

- Armazenar todos os documentos em uma única tabela chamada Edge
 - Edge(<u>source</u>, <u>ordinal</u>, name, flag, target)
- Para armazenar os valores, uma tabela V para cada tipo:
 - V_{type}(<u>vid</u>, value)

Proposta *Edge* (Aresta)

- Armazenar todos os documentos em uma única tabela chamada Edge
 - Edge(source, ordinal, name, flag, target)
- Para armazenar os valores, uma tabela V para cada tipo:
 - V_{type}(vid, value)

Edge				
source	ordinal	name	flag	target
1	1	age	int	v1
1	2	name	string	v2
1	3	address	string	v3
1	4	child	ref	3
1	5	child	ref	4
2	1	age	int	v_4

$V_{ m int}$	_	$V_{ m strin}$	g
vid	value	vid	value
v1	55	v2	Peter
v4	38	v3	4711 Fruitdale Ave.
v8	22	v_5	Mary
v13	7	v6	4711 Fruitdale Ave.
		v7	painting
		v15	4711 Fruitdale Ave.

```
(person id=1, age=55)
      (name)Peter(/name)
      (address)4711 Fruitdale Ave.(/address)
      (child)
            (person id=3, age=22)
                   (name)John(/name)
                   (address)5361 Columbia Ave.(/address)
                   (hobby)swimming(/hobby)
                   (hobby)cycling(/hobby)
            (/person)
      (/child)
      (child)
            (person id=4, age=7)
                   (name)David(/name)
                   (address)4711 Fruitdale Ave.(/address)
            (/person)
      (/child)
(/person)
(person id=2, age=38, child=4)
      (name)Mary(/name)
      (address)4711 Fruitdale Ave.(/address)
            (hobby)painting(/hobby)
(/person)
```

Edge	_	_		
source	ordinal	name	flag	target
1	1	age	int	v1
1	2	name	string	v_2
1	3	address	string	ψ3
1	4	child	ref	3
1	5	_ehild	ref	4
2	1	age	int	v4
. /			.,/.	
				•

Vint		$V_{ m strin}$	g
vid	value	vid	value
v1	55	v2	Peter
v4	38	v3	4711 Fruitdale Ave.
v8	22	v_5	Mary
v13	7	v6	4711 Fruitdale Ave.
		v7	painting
		v15	4711 Fruitdale Ave.

```
(person id=1, age=55)
      (name)Peter(/name)
       (address)4711 Fruitdale Ave.(/address)
      (child)
            (person id=3, age=22)
                   (name)John(/name)
                   (address)5361 Columbia Ave.(/address)
                   (hobby)swimming(/hobby)
                   (hobby)cycling(/hobby)
            (/person)
      (/child)
      (child)
            (person id=4, age=7)
                   (name)David(/name)
                   (address)4711 Fruitdale Ave.(/address)
            (/person)
      (/child)
(/person)
(person id=2, age=38, child=4)
      (name)Mary(/name)
      (address)4711 Fruitdale Ave.(/address)
            (hobby)painting(/hobby)
(/person)
```

(/person)

	Edge				
	source	ordinal	name	flag	target
Ī	1	1	age	int	v1
	1	2	name	string	v2
	1	3	address	string	v3
	1	4	child	ref	3
	1	5	child	ref	4
	2	1	age	int	v_4

$V_{ m int}$	_	$V_{ m strin}$	g
vid	value	vid	value
v1	55	v2	Peter
v4	38	v3	4711 Fruitdale Ave.
v8	22	v_5	Mary
v13	7	v6	4711 Fruitdale Ave.
		v7	painting
		v15	4711 Fruitdale Ave.

```
Elemento Complexo:

valor armazenado
na própria tabela
(address)4711 Fruitd

(child)

Elemento Complexo:

valor armazenado
na própria tabela
Edge
```

```
(person id=3, age=22)
                   (name)John(/name)
                    address 5361 Columbia Ave. (/address)
                   (hobby)swimming(/hobby)
                   (hobby)cycling(/hobby)
            (/person)
      (/child)
      (child)
             (person id=4, age=7)
                   (name)David(/name)
                   (address)4711 Fruitdale Ave.(/address)
            (/person)
      (/child)
(/person)
(person id=2, age=38, child=4)
      (name)Mary(/name)
       (address)4711 Fruitdale Ave.(/address)
            (hobby)painting(/hobby)
```

- Propõem também várias variações, a mais usada é chamada de inlining...
 - Armazenar tudo em uma única tabela
 - Duas variações:
 - Uma coluna para cada tipo de valor Edge(<u>source</u>, <u>ordinal</u>, name, v_{string}, v_{int},..., target)
 - Uma coluna única para todos os tipos de valores (todos os valores seriam convertidos para string)

Edge(source, ordinal, name, v, target)

Processamento de consultas

Reconstrução do documento:

Tabela Edge: junção com tabelas V, seleção pelo *source*, ordenar pelo *ordinal*

Tabela Inlinning: não há necessidade de junção, seleção pelo *source*, ordenar pelo *ordinal*

Processamento de consultas

 Consultas com seleção (ex. selecionar todos os elementos hobby="swimming")

Tabela Edge: junção com tabelas V, seleção pelo *source* e por *value="swimming"*

Tabela Inlinning: não há necessidade de junção, seleção pelo *source* e por *value="swimming"*

Dynamic Interval (DEHAAN et al., 2003)

```
<site>
 <people>
  <person id="person0">
   <name>Jaak Tempesti</name>
   <emailaddress>mailto:Tempesti@labs.com</emailaddress>
   <phone>+0 (873) 14873867</phone>
   <homepage>http://www.labs.com/~Tempesti</homepage>
  </person>
  <person id="person1">
   <name>Cong Rosca</name>
   <emailaddress>mailto:Rosca@washington.edu</emailaddress>
   <phone>+0 (64) 27711230</phone>
   <homepage>http://www.washington.edu/~Rosca</homepage>
  </person>
 </people>
 <closed_auctions>
  <closed_auction>
   <seller person="person0" />
   <buyer person="person1" />
   <itemref item="item1" />
   <price>42.12</price>
   <date>08/22/1999</date>
   <quantity>1</quantity>
   <type>Regular</type>
  </closed_auction>
 </closed_auctions>
</site>
```

 Relação muito simples que guarda o elemento e a codificação do intervalo que o engloba

Dynamic Interval (DEHAAN et al., 2003)

```
() <site>
    <people>
     <person id="person0">
      <name>Jaak Tempesti</name>
      <emailaddress>mailto:Tempesti@labs.com</emailaddress>
      <phone>+0 (873) 14873867</phone>
      <homepage>http://www.labs.com/~Tempesti</homepage>
     </person>
     <person id="person1">
      <name>Cong Rosca</name>
      <emailaddress>mailto:Rosca@washington.edu</emailaddress>
      <phone>+0 (64) 27711230</phone>
      <homepage>http://www.washington.edu/~Rosca</homepage>
     </person>
    </people>
    <closed_auctions>
     <closed_auction>
      <seller person="person0" />
      <buyer person="person1" />
      <itemref item="item1" />
      <price>42.12</price>
      <date>08/22/1999</date>
      <quantity>1</quantity>
      <type>Regular</type>
     </closed_auction>
    </closed_auctions>
85</site>
```

8	1	r
<site></site>	0	85
<people></people>	1	46
<person></person>	2	23
@id	3	6
person0	4	5
<name></name>	7	10
Jaak Tempesti	8	9
_	_	_
:	:	:

Dynamic Interval (DEHAAN et al., 2003)

 Tradução das consultas – operações matemáticas sobre os intervalos

```
CREATE VIEW T_XNODE_item AS
   SELECT s, 1+i*92 AS 1, r+i*92 AS r
   FROM   I,
      ( SELECT '<item>' AS s, 0 AS 1, 91 AS r
      FROM      UNIT
   UNION ALL
      SELECT s, 1+1 AS 1, r+1 AS r
   FROM
      ( SELECT s, 1-i*90 AS 1, r-i*90 AS r
      FROM      T_e
      WHERE   i*90<=1 AND r<(i+1)*90
      )
      )
      )
}</pre>
```


Opções para armazenar ordem

(TATARINOV et al., 2002)

- Global Order
- Local Order (irmãos)
- Dewey Order

Proposta de Armazenamento

(TATARINOV et al., 2002)

 Variação do esquema Edge proposto por FLORESCU

Proposta de Armazenamento

(TATARINOV et al., 2002)

 Variação do esquema Edge proposto por FLORESCU

Edge(id, parent_id, name, value)

Ao invés do nome, o caminho do nodo pode ser armazenado (ex. /play/act ao invés de act)

Para poupar espaço, uma tabela Path pode ser usada

Path(path_id, path)

Mas ainda falta a ordem...

(TATARINOV et al., 2002)

Global Order:

```
Edge(<u>id</u>, parent_id, end_desc_id, path_id, value)

Id – é o Global Order do nodo

end_desc_id – id do último descendente do nodo
```

Local Order:

```
Edge(<u>id</u>, parent_id, sIndex, path_id, value)

Id – um ID único (que não precisa seguir a ordem do doc.)

sIndex – Local Order do nodo
```

Dewey Order:

Edge(dewey, path_id, value)

Atualização

(TATARINOV et al., 2002)

Figure 2. The worst case renumbering scenarios for Global, Local, and Dewey order encodings.

Consultas

(TATARINOV et al., 2002)

Consultas suportadas: XPath

Técnicas que exploram o esquema do doc. XML

SHANMUGASUNDARAM et al., 1999

```
<!ELEMENT book (booktitle, author)
<!ELEMENT article (title, author*, contactauthor)>
<!ELEMENT contactauthor EMPTY>
<!ATTLIST contactauthor authorID IDREF IMPLIED>
<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor (monograph*)>
<!ATTLIST editor name CDATA #REQUIRED>
<!ELEMENT author (name, address)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT name (firstname?, lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT address ANY>
```

```
<book>
  <booktitle> The Selfish Gene </booktitle>
  <author id = "dawkins">
         <name>
             <firstname> Richard </firstname>
             <lastname> Dawkins </lastname>
         </name>
         <address>
             <city> Timbuktu </city>
             <zip> 99999 </zip>
         </address>
  </author>
</book>
```


SHANMUGASUNDARAM et al., 1999

Técnicas:

- Basic Inlining
- Shared Inlining
- Hybrid Inlining

Basic Inlining

SHANMUGASUNDARAM et al., 1999

Basic Inlining

- Criar uma tabela para cada elemento da DTD, pq um documento XML pode usar como raiz qualquer um dos elementos de uma DTD (por isso declaramos a raiz em DOCTYPE)
- Para lidar com elementos que se repetem (*), um grafo é construído a partir da DTD

Basic Inlining

SHANMUGASUNDARAM et al., 1999

- <!ELEMENT book (booktitle, author)
- <!ELEMENT article (title, author*, contactauthor)>
- <!ELEMENT contactauthor EMPTY>
- <!ATTLIST contactauthor authorID IDREF IMPLIED>
- <!ELEMENT monograph (title, author, editor)>
- <!ELEMENT editor (monograph*)>
- <!ATTLIST editor name CDATA #REQUIRED>
- <!ELEMENT author (name, address)>
- <!ATTLIST author id ID #REQUIRED>
- <!ELEMENT name (firstname?, lastname)>
- <!ELEMENT firstname (#PCDATA)>
- <!ELEMENT lastname (#PCDATA)>
- <!ELEMENT address ANY>

Basic Inlining

SHANMUGASUNDARAM et al., 1999

- O esquema para armazenar documentos que seguem uma DTD é a união dos conjuntos de relações criadas para cada elemento
- Para determinar o conjunto de relações necessário para armazenar um determinado elemento, construímos um grafo chamado "element graph"
 - Um elemento é escolhido para percorrer o grafo
 - Grafo vai sendo percorrido e cada elemento vai sendo marcado como visitado
 - Se o algoritmo tentar visitar um nodo já marcado, adicionar um "backpointer"
 - O resultado é uma árvore

Basic Inlining

SHANMUGASUNDARAM et al., 1999

Grafo

Element Graph para elemento editor

Basic Inlining

SHANMUGASUNDARAM et al., 1999

- Dado um element graph, as relações são criadas como segue:
 - Uma relação é criada para o elemento raiz do element graph
 - Todos os descendentes são aninhados dentro desta relação, exceto:
 - ▶ Filhos de * são acomodados em relações separadas
 - Todo nodo que tem um backpointer é armazenado em uma relação separada (nova relação para lidar com recursão)
 - Ligações são feitas por chave estrangeira

Resultado SHANMUGASUNDARAM et al., 1999

book (bookID: integer, book.booktitle: string, book.author.name.firstname: string, book.author.name.lastname: string, book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.title: string)

article.author (article.authorID: integer, article.author.parentID: integer, article.author.name.firstname: string, article.author.address: string, article.author.author.authorid: string)

contactauthor (contactauthorID: integer, contactauthor.authorid: string)

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.aut

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

Resultado SHANMUGASUNDARAM et al.,

book (bookID: integer, book.booktitle : string, book.author.name.firstname.dook.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.t

article.author (article.authorID: integer, article.author.parentID: intege article.author.name.lastname: string, article.author.add

contactauthor (contactauthorID: integer, contactauthor.authorid: string

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.aut

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

Resultado SHANMUGASUNDARAM et al.,

book (bookID: integer, book.booktitle : string, book.author.name.firstname.dook.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.t

article.author (article.authorID: integer, article.author.parentID: intege article.author.name.lastname: string, article.author.add

contactauthor (contactauthorID: integer, contactauthor.authorid: string

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.aut

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

Resultado SHANMUGASUNDARAM et al.,

book (bookID: integer, book.booktitle : string, book.author.name.firstname.book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.t

article.author (article.authorID: integer, article.author.parentID: intege article.author.name.lastname: string, article.author.add

contactauthor (contactauthorID: integer, contactauthor.authorid: string

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.authorid: string)

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.authorid: string)

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

Basic Inlining SHANMUGASUNDARAM et al., 1999

- Eficiente para consultas do tipo: me dê todos os autores dos livros
- Provavelmente muito ineficiente para outros tipos de consulta
 - Ex.: Liste todos os autores cujo primeiro nome é Jack
 - União de 5 consultas separadas
- Pensem nas atualizações! Redundância de informações! Péssima prática de modelagem!

Resultado SHANMUGASUNDARAM et al., 1999

book (bookID: integer, book.booktitle: string, book.author.name.firstname: string, book.author.name.lastname: string, book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.title: string)

article.author (article.authorID: integer, article.author.parentID: integer, article.author.name.firstname: string, article.author.author.name.lastname: string, article.author.address: string, article.author.authorid: string)

contactauthor (contactauthorID: integer, contactauthor.authorid: string)

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, monograph.author.name.lastname: string, monograph.author.address: string, monograph.author.

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, editor.monograph.author.authorid: string)

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

SHANMUGASUNDARAM et al., 1999

- Garante que cada elemento é representado em apenas uma tabela
- Para isso: identificar que nodos são representados várias vezes

SHANMUGASUNDARAM et al., 1999

Usar o grafo:

- Nodos que têm mais de uma aresta entrando são transformados em relações próprias
- Restantes são colocados dentro de tabelas já existentes

SHANMUGASUNDARAM et al., 1999

Usar o grafo:

- Relações próprias:
 - Nodos que têm mais de uma aresta entrando
 - Nodos com zero arestas entrando (pois eles não são acessíveis de nenhum outro nodo)
 - Elementos depois de *
 - Elementos mutuamente recursivos (elementos fortemente conectados – editor e monograph) – um deles é transformado em relação única
- Restantes são colocados dentro de tabelas já existentes

Shared Inlining Resultado

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle: string)

article (articleID: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string)

monograph (monographID: integer,monograph.parentID: integer, monograph.parentCODE: integer, monograph.editor.isroot: boolean, monograph.editor.name: string)

title (titleID: integer, title.parentID: integer, title.parentCODE: integer, title: string)

author (authorID: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean, author.name.firstname.isroot: boolean, author.name.firstname: string, author.name.lastname: string, author.author

SHANMUGASUNDARAM et al., 1999

Considerações

- Uniões não são mais necessárias
- No entanto, dependendo da consulta, junções são necessárias
- Abordagem que tenta balancear as vantagens das técnicas Basic e Shared: Hybrid

Hybrid Inlining

SHANMUGASUNDARAM et al., 1999

Mesmo que Shared:

Exceção: não cria relação separada para elementos que tem in-degree maior do que 1 e que não são recursivos e que não são filhos de *

Hybrid Inlining

SHANMUGASUNDARAM et al., 1999

Mesmo que Shared:

Exceção: não cria relação separada para elementos que tem in-degree maior do que 1 e que não são recursivos e que não são filhos de *

Hybrid Inlining Resultado

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle: string, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

article (articleID: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string, article.title.isroot: boolean, article.title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.parentCODE: integer, monograph.title: string, monograph.editor.isroot: boolean, monograph.editor.name: string, author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

author (authorID: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean, author.name.firstname.isroot: boolean, author.name.string, author.name.lastname.isroot: boolean, author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.author.authorid: string)

Referências

- CHEN, Y.; DAVIDSON, S. B.; ZHENG, Y. Constrain Preserving XML storage in Relations. In: INTERNATIONAL WORKSHOP ON THE WEB AND DATABASES, WEBDB, 2002, Madison, Wisconsin. Proceedings... [S.I.: s.n.], 2002. p.712.
- CHEN, Y.; DAVIDSON, S. B.; ZHENG, Y. RRXS: redundancy reducing XML storage in relations. In: INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, VLDB, 2003, Berlin, Germany. Proceedings... San Francisco:Morgan Kaufmann, 2003.
- ▶ DEHAAN, D.; TOMAN, D.; CONSENS, M.; OZSU, M. T. A Comprehensive XQuery to SQL Translation using Dynamic Interval Encoding. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 2003, San Diego, CA. Proceedings. . . [S.I.: s.n.], 2003.
- DEUTSCH, A.; FERNANDEZ, M.; SUCIU, D. Storing semistructured data with STORED. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 1999, Philadelphia, Pennsylvania. Proceedings... [S.I.: s.n.], 1999. p.431442.

Referências

- FLORESCU, D.; KOSSMANN, D. A performance evaluation of alternative mapping schemes for storing XML data in a relational database. France:INRIA, 1999. (Technical Report 3684).
- ▶ LEE, D.; CHU, W. W. Constraints-Preserving Transformation from XML Document Type Denition to Relational Schema. In: INTERNATIONAL CONFERENCE ON ENTITY RELATIONSHIP, ER, 2000, Salt Lake City, Utah, USA. Proceedings... [S.I.: s.n.], 2000. p.323338.
- MANOLESCU, I.; FLORESCU, D.; KOSSMANN, D. Pushing XML Queries inside Relational Databases. France: INRIA, 2001. (Technical Report 4112).
- SHANMUGASUNDARAM, J.; TUFTE, K.; ZHANG, C.; HE, G.; DEWITT, D. J.; NAUGHTON, J. F. Relational Databases for Querying XML Documents: limitations and opportunities. In: INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, VLDB, 1999, Edinburgh, Scotland, UK. Proceedings... San Francisco: Morgan Kaufmann, 1999. p.302314.

Referências

- SHANMUGASUNDARAM, J.; SHEKITA, E.; KIERNAN, J.; KRISHNAMURTHY, R.; VIGLAS, E.; NAUGHTON, J.; TATARINOV, I. A general technique for querying XML documents using a relational database system. Sigmod Record, [S.I.], v.30, n.3, p.2026, Sept. 2001.
- ► TATARINOV, I.; VIGLAS, E.; BEYER, K.; SHANMUGASUNDARAM, J.; SHEKITA, E. Storing and Querying Ordered XML Using a Relational Database System. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 2002, Madison, Wisconsin. Proceedings... [S.I.: s.n.], 2002.

SGBDs XML Nativos

Um SGBD nativo:

- Define um modelo lógico para um documento XML e armazena e recupera documentos de acordo com este modelo.
 - No mínimo, o modelo deve incluir elementos, atributos,
 PCDATA e a ordem dos elementos
 - Exemplos de modelos: modelo de dados do XPath data model, modelo DOM, etc.

Um SGBD nativo:

- Possui um documento como unidade fundamental de armazenamento lógico
 - Paralelo com tuplas dos bancos relacionais
- Não é exigido que exista nenhum modelo de armazenamento físico em particular
 - Exemplo: pode ser construído sobre um banco relacional, hierárquico, OO ou usar um formato proprietário qualquer (ex. arquivos compactados indexados)

Pontos principais

- Um SGBD nativo é um banco de dados especializado para armazenar dados XML
 - Armazena todos os componentes do modelo XML (elementos, atributos, etc.)
- Documents go in and documents come out
- Um SBGD nativo pode não ser um banco de dados isolado (pode ter um outro SGBD por "baixo dos panos")

Alguns SGBDs nativos...

Berkley DB XML	Developer: Sleepycat Software URL: http://www.sleepycat.com/products/bdbxml.html Database type: Key-value	
eXist	Developer: Wolfgang Meier URL: http://exist.sourceforge.net Database type: Proprietary	
Tamino	Developer: Software AG (Germany), Consist (Brasil) URL: http://www.softwareag.com/tamino/ Database type: Proprietary. Relational data through ODBC	
Timber	Developer: University of Michigan URL: http://www.eecs.umich.edu/db/timber Database type: Shore, Berkeley DB	
XIndice	Developer: Apache Software Foundation URL: http://xml.apache.org/xindice Database type: Proprietary	

Product	Developer	License	DB Type	Fonte:	
4Suite, 4Suite Server	FourThought	Open Source	Object-oriented		
BaseX	University of Konstanz	Open Source	Proprietary	http://www.rpbourret.com/xml/	
Berkeley DB XML	Oracle	Open Source	Key-value	XMLDatabaseProds.htm#native	
DBDOM	K. Ari Krupnikov	Open Source	Relational		
dbXML	dbXML Group	Open Source	Proprietary	(tela capturada em Maio de 2012)	
Dieselpoint	Dieselpoint, Inc.	Commercial	None (indexes only)		
DOMSafeXML	Ellipsis	Commercial	File system(?)		
EMC Documentum xDB	X-Hive Corporation	Commercial	Proprietary. Relational through JDBC		
eXist	Wolfgang Meier	Open Source	Proprietary		
eXtc	M/Gateway Developments Ltd.	Free	Post-relational		
Extraway	3D Informatica	Commercial	Files plus indexes		
Infonyte DB	Infonyte	Commercial	Proprietary		
Ipedo XML Database	Ipedo	Commercial	Proprietary		
Lore	Stanford University	Research	Semi-structured Semi-structured		
MarkLogic Server	Mark Logic Corp.	Commercial	Proprietary		
M/DB:X	M/Gateway Developments Ltd.	Free	Hierarchical		
MonetDB/XQuery	CWI Database Group	Open Source	Proprietary		
myXMLDB	Mladen Adamovic	Open Source	MySQL		
Natix	University of Mannheim	Free / non-commercial	Proprietary		
ozone	ozone-db.org	Open Source	Object-oriented		
Qizx	XMLMind	Commercial	Proprietary		
Sedna XML DBMS	ISP RAS MODIS	Free	Proprietary		
Sekaiju / Yggdrasill	Media Fusion	Commercial	Proprietary		
SQL/XML-IMDB	QuiLogic	Commercial	Proprietary (native XML and relational)		
Sonic XML Server	Sonic Software	Commercial	Object-oriented (ObjectStore). Relational and other data through Data Junction		
Tamino	Software AG	Commercial	Proprietary. Relational through ODBC.		
TeraText DBS	TeraText Solutions	Commercial	Proprietary		
TEXTML Server	IXIASOFT, Inc.	Commercial	Proprietary		
TigerLogic XDMS	Raining Data	Commercial	Pick		
Timber	University of Michigan	Open Source (non-commercial only)	Shore, Berkeley DB		
TOTAL XML	Cincom	Commercial	Object-relational?		
Virtuoso	OpenLink Software	Commercial	Proprietary. Relational through ODBC		
XediX TeraSolution	AM2 Systems	Commercial	Proprietary		
Xindice	Apache Software Foundation	Open Source	Proprietary		
xml.gax.com	GAX Technologies	Commercial	Proprietary		
Xpriori XMS	Xpriori	Commercial	Proprietary		
XQuantum XML Database Server	Cognetic Systems	Commercial	Proprietary		
XStreamDB Native XML Database	Bluestream Database Software Corp.	Commercial	Proprietary		
Xyleme Zone Server	Xyleme SA	Commercial	Proprietary		

Características de SGBDs nativos

- Armazena documentos
- Gerenciam "coleções" de documentos
- Suportam consultas XPath e XQuery
- Atualizações: linguagens próprias ou XQuery (XQuery Update Facility -

http://www.w3.org/TR/xquery-update-10/

Podem oferecer o que os outros oferecem e mais?

- Suportar transações
- Acesso integrado a legados
- Suporte à distribuição
- Escalabilidade para grandes volumes

- Beneficiar-se da autodescrição do XML
- Consultas complexas (mistas)
- Ter melhor desempenho que SGBDs padrão
- Usar XSL stylesheet para controlar o retorno do resultado
- Integração com outras aplicações de E-Business
- ...

Situação dos SGBDs Nativos

- Grande número de SGBDs nativos em oferta no mercado e na academia
- Armazenamento baseado em texto ou baseado em modelo proprietário
 - Ver discussão em http://www.rpbourret.com/xml/XMLAndDatabases.htm#na tivearchitecture
- Lidam com grande volumes de documentos, alto throughput
- Grande eficiência das consultas
 - Consultas Full text

Alguns pontos que merecem consideração

- Nenhuma arquitetura padrão comum
- Nenhum padrão para benchmark de desempenho
 - Xmach 1 (XML Data Management benchmark, September 2000, Timo Böhme, Erhard Rahm, University of Leipzig, Germany)
 - XBench (A Family of Benchmarks for XML DBMSs, Benjamin Bin Yao, M. Tamer Ozsu, and John Keenleyside)
 - XMark (XMark: A Benchmark for XML Data Management, Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana Manolescu, Ralph Busse. VLDB 2002: 974-985)

Sedna

- SGBD XML nativo, Open Source
 - http://www.modis.ispras.ru/sedna/
- Implementado em C
- Forma de armazenamento
 - Lista encadeada de blocos que armazenam nós XML
 - Índices são implementados usando Árvores B+
- Consultas: XQuery e Path
- Atualizações: XQuery

Arquivos para Instalação

- SGBD:
 - http://modis.ispras.ru/sedna/download.html
 - Funciona via linha de comando
- Interface de Administração:
 - Existem duas: uma oficial, outra da UFC
 - Vamos usar a UFC, que funciona melhor
 - http://sednaadmin.great.ufc.br/

Instalação

SGBD

- Basta descompactar o arquivo
- Editar a variável de ambiente PATH, adicionando o diretório bin do Sedna
- Interface de Administração
 - Basta descompactar o arquivo
 - Informar qual o diretório raiz do Sedna

Para executar

Iniciar a interface de Administração

Iniciar o Servidor Sedna

Menu Server/Start

Criar um database

- Menu Database/Create
- Informar o nome do database: ACME

Criar um database

Iniciar o database

Menu Database/Start

Conectar ao Database

Menu Database/Connect

Conectar ao Database

Criar uma coleção

- Menu Collection/Create collection
- Digitar o nome da coleção
 - Vamos criar uma coleção chamada "pedidos" para armazenar os pedidos que são recebidos via Web pela empresa ACME

Agora vamos inserir documentos

- Baixar arquivo zip da página da disciplina que contém os documentos
- Menu Document/Load Document
- Selecione o documento pedido1.xml

Verifique o nome que o documento terá (chave

primária)

 Selecione o nome da coleção onde o documento deve ser inserido (pedidos)

Outra forma de inserir

- O Sedna possui uma funcionalidade que permite carregar vários documentos de uma única vez para uma coleção
- A funcionalidade exige que os documentos sejam especificados através de um comando LOAD
- O comando LOAD tem 3 parâmetros
 - 1. Nome do arquivo a ser carregado
 - 2. Chave que vai ser usada para identificar o documento
 - 3. Nome da coleção (opcional)
 - Se houver o uso de mais de um comando LOAD, separá-los com &

Exemplo: arquivo load-data.xquery

LOAD "pedido2.xml" "pedido2.xml" "pedidos" & LOAD "pedido3.xml" "pedido3.xml" "pedidos" & LOAD "pedido4.xml" "pedido4.xml" "pedidos"

Carregamento de arquivos

- O carregamento deve ser feito via linha de comando
- A interface de administração ainda não permite isso
- Digitar o comando
 - se_term -file load-data.xquery ACME

Carregamento de arquivos

```
C:\Windows\system32\cmd.exe
                           ⟨BIR⟩
15/11/2010
                                              load-data.xquery
                                      1.559 pedido.xsd
                                         481 pedido1.xml
                                             pedido2.xml
pedido3.xml
                                              pedido4.dtd
                                             pedido4.xml
                                         596 pedidoComDTD.xml
                                         643 pedidoComERROSSchema.xml
670 pedidoComSchema.xml
24/05/2006
                                      1.082 xupdate.xml
                  11 File(s)
2 Dir(s)
                               7.383 bytes
77.907.456.000 bytes free
C:\Users\vanessa\Documents\Disciplinas\2010-2-XML\Aulas\06-ArmazenamentoNativo\d
ocṣ-iṇserir>se_term -file load-data.xquery ACME
Bulk load succeeded
Bulk load succeeded
Bulk load succeeded
C:\Users\vanessa\Documents\Disciplinas\2010-2-XML\Aulas\06-ArmazenamentoNativo\d
ocs-inserir>
```


Na interface de Administração

- Existe um problema de refresh
- É necessário conectar novamente ao database para ver os documentos que acabamos de inserir
- Menu Database/Connect

Fazendo consultas XQuery...

Consultas

Para ver o conteúdo de um document

Para consultar uma coleção uso de **collection**

- Consultar os pedidos que foram feitos por clientes do estado RJ
- Retornar razao_social e cgc

Exercícios

- Faça uma consulta que retorna o elemento itens_pedido de todos os pedidos em que a razão social do cliente é "ABC".
- 2. Faça uma consulta que retorna todos os produtos de todos os pedidos.
- Crie mais 2 documentos XML e os insira na coleção pedidos. Repita as consultas anteriores.
- Faça uma consulta que retorne todos os itens cujo preço é igual à quantidade comprada.
- Faça uma consulta que retorna todos os itens que possuem "caneta" como parte do nome do produto.

Usar o Sedna em aplicações...

- Developer Guide: ProgGuide.pdf dentro do diretório docs do Sedna
- Exercício: fazer uma aplicação Java que:
 - Se conecta no Sedna
 - Cria uma coleção
 - Insere documentos na coleção
- IMPORTANTE: a senha do usuário SYSTEM é MANAGER

Ao terminar

- Database/Stop
- Server/Stop

Banco de Dados Habilitado a XML/ Banco de Dados Híbrido

Motivação

- Empresas que já investiram enormes quantias em licenças de SGBDs relacionais/objeto relacionais
 - Não estão dispostas a adotar outros tipos de SGBDs para armazenar seus documentos XML
 - Necessidade de manter DBAs treinados nestes novos SGBDs implica em aumento de custos
 - Empresas fabricantes dos principais SGBDs perceberam este filão de mercado e investiram para permitir armazenamento de docs. XML em seus SGBDs

Primeira geração: SGBDs Habilitados a XML

- Novo tipo de coluna (XML), que era capaz de armazenar um DOC XML; e/ou
- Uso de arquivos de mapeamento para "espalhar" o conteúdo dos docs XML em diversas tabelas do SGBD

Suporte a consultas limitado

Nova geração: SGBDs híbridos

Suporte a armazenamento de docs. XML em sua forma nativa, ao mesmo tempo em que mantém suporte a armazenamento de dados relacionais/objeto-relacionais

Tarefa em dupla:

- Cada dupla pesquisa sobre um dos BDs habilitados a XML/híbridos (Oracle, DB2, SQL Server – ou outro que vcs encontrarem)
- Ver o suporte que o banco escolhido dá para XML
 - Como armazenar um DOC XML no banco?
 - Como recuperar o documento armazenado?
 - É possível gerar um doc. XML a partir de dados relacionais pré-existentes? Como?
- Apresentar no final da aula

