Parts of strings (Solutions)

1 Substrings

Exercise 1.

For each one of the gaps below, enter \sqsubseteq , \subsetneq , or $\not\sqsubseteq$ depending on whether the first string is a substring of the second string, a proper substring, or neither:

- 1. a_aaaa
- 2. a_b
- 3. ε b
- 4. ε ε
- 5. aa abbbca
- 6. bc abbbca
- 7. cb_abbbca

Solution

- 1. $a \sqsubseteq aaaa$
- 2. $a \not\sqsubseteq b$
- 3. $\varepsilon \sqsubseteq b$
- 4. ε ⊑ ε
- 5. aa ⊈ abbbca
- 6. bc

 abbbca
- 7. cb ⊈ abbbca

2 Subsequence

Exercise 2.

For each one of the gaps below, enter \sqsubseteq , \subsetneq , or $\not\sqsubseteq$ depending on whether the first string is a subsequence of the second string, a proper subsequence, or neither:

- 1. a_aaaa
- 2. *a_b*
- 3. ε b
- 4. ε ε
- 5. aa abbbca
- 6. bc abbbca
- 7. cb_abbbca

Solution

- 1. $a \not\sqsubseteq aaaa$
- 2. $a \not\sqsubseteq b$
- 3. $\varepsilon \not\sqsubseteq b$
- 4. ε ⊑ ε
- 5. aa ⊑ abbbca
- 6. $bc \subseteq abbbca$
- 7. cb ⊈ abbbca

Exercise 3.

Say whether the following is True or False: Every substring of some string *s* is also a subsequence of *s*, but not the other way round. Justify your answer.

Solution

This is correct. Suppose $u:=u_1\cdots u_n$ is a substring of some string s. Then it must be the case that u_1 appears before $u_2,u_3,\ldots,u_n,\,u_2$ appears before $u_3,\ldots,u_n,$ and so on. But this is all that is required for $u_1\cdots u_n$ to be a subsequence of s.