

ELECTRICAL, STRUCTURAL, AND CHEMICAL CHARACTERIZATION OF SILICON SHEET MATERIALS

CORNELL UNIVERSITY

D. G. Ast
S. L. Hyland

Study of Stress in Web Silicon Ribbons
Using High-Temperature Creep Experiments

Dislocation Motion Around an Obstacle

PRECEDING PAGE BLANK NOT FILMED

ADVANCED SILICON SHEET

Deformation in Silicon

Resolving Applied Stress on a Dislocation

ADVANCED SILICON SHEET

Calculation of Slip Systems

ACTING ON			
STRESS	PLANE	DIRECTION	SCHMIDT FACTOR
σ_{xx}	$\bar{1}\bar{1}\bar{1}$	$10\bar{1}$	0
		011	0.2722
		110	0.2722
σ_{yy}	$\bar{1}\bar{1}\bar{1}$	110	-0.1361
		011	0.4082 *
		101	0.2722
σ_{zz}	$\bar{1}\bar{1}1$	110	0.4082 *
		011	-0.1361
		101	0.2722
σ_{xy} or σ_{yz}	$\bar{1}\bar{1}\bar{1}$	101	0
		110	0
		011	0
σ_{yy} , or σ_{zz}	$\bar{1}\bar{1}\bar{1}$	011	-0.4082
		110	-0.4082
σ_{xy} , or σ_{yz}	$\bar{1}\bar{1}\bar{1}$	101	0.9428

Resultant Stresses

ADVANCED SILICON SHEET

Deflection Versus Time for Four-Point Bending

IR Transmission Versus Wavenumber for Czochralski Silicon

ADVANCED SILICON SHEET

IR Transmission Versus Wavenumber for Web Silicon

IR Transmission Versus Wavenumber for Web Silicon

IR Transmission Versus Wavenumber

Conclusions

Creep behavior of Web is very different from any seen for single crystal silicon.

Perhaps modeled between single crystal and polycrystalline

Perhaps related to strain in the ribbon.

Oxygen level in Web silicon is near the saturation level at the melting point of silicon.

Interstitial oxygen is only about 1/2 the total oxygen content.

The rest of the oxygen is in a state close to that of interstitial oxygen that is affected by its environment.