```
import pandas as pd
import numpy as np
```

import matplotlib.pyplot as plt

import seaborn as sns import warnings

warnings.filterwarnings("ignore")

df = pd.read_csv("airlines_delay.csv")

df

	Flight	Time	Length	Airline	AirportFrom	AirportTo	DayOfWeek	Class	2
0	2313.0	1296.0	141.0	DL	ATL	HOU	1	0	
1	6948.0	360.0	146.0	00	cos	ORD	4	0	
2	1247.0	1170.0	143.0	В6	BOS	CLT	3	0	
3	31.0	1410.0	344.0	US	OGG	PHX	6	0	
4	563.0	692.0	98.0	FL	BMI	ATL	4	0	
539377	6973.0	530.0	72.0	00	GEG	SEA	5	1	
539378	1264.0	560.0	115.0	WN	LAS	DEN	4	1	
539379	5209.0	827.0	74.0	EV	CAE	ATL	2	1	
539380	607.0	715.0	65.0	WN	BWI	BUF	4	1	
539381	6377.0	770.0	55.0	00	CPR	DEN	2	1	

539382 rows × 8 columns

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 539382 entries, 0 to 539381 Data columns (total 8 columns):

Data	COTUMITS (COC	ar o corumns).	
#	Column	Non-Null Count	Dtype
0	Flight	539382 non-null	float64
1	Time	539382 non-null	float64
2	Length	539382 non-null	float64
3	Airline	539382 non-null	object
4	AirportFrom	539382 non-null	object
5	AirportTo	539382 non-null	object
6	DayOfWeek	539382 non-null	int64
7	Class	539382 non-null	int64
dtype	es: float64(3)), int64(2), obje	ct(3)

memory usage: 32.9+ MB

df.describe()

	Flight	Time	Length	DayOfWeek	Class	7
count	539382.000000	539382.000000	539382.000000	539382.000000	539382.000000	
mean	2427.927988	802.728161	132.202104	3.929666	0.445443	
std	2067.431700	278.045546	70.117045	1.914666	0.497015	
min	1.000000	10.000000	0.000000	1.000000	0.000000	
25%	712.000000	565.000000	81.000000	2.000000	0.000000	
50%	1809.000000	795.000000	115.000000	4.000000	0.000000	
75%	3745.000000	1035.000000	162.000000	5.000000	1.000000	
max	7814.000000	1439.000000	655.000000	7.000000	1.000000	

sns.pairplot(df)

GUM 10 ADK 9 ABR 2

Name: AirportTo, Length: 293, dtype: int64

from sklearn.preprocessing import OrdinalEncoder

oe = OrdinalEncoder()

df.iloc[:,3:6] = oe.fit_transform(df.iloc[:,3:6])

df.head()

	Flight	Time	Length	Airline	AirportFrom	AirportTo	DayOfWeek	Class	1
0	2313.0	1296.0	141.0	5.0	16.0	129.0	1	0	
1	6948.0	360.0	146.0	12.0	65.0	208.0	4	0	
2	1247.0	1170.0	143.0	3.0	35.0	60.0	3	0	
3	31.0	1410.0	344.0	14.0	203.0	217.0	6	0	
4	563.0	692.0	98.0	8.0	32.0	16.0	4	0	

x = df.iloc[:,0:-1]

Χ

	Flight	Time	Length	Airline	AirportFrom	AirportTo	DayOfWeek	1
0	2313.0	1296.0	141.0	5.0	16.0	129.0	1	
1	6948.0	360.0	146.0	12.0	65.0	208.0	4	
2	1247.0	1170.0	143.0	3.0	35.0	60.0	3	
3	31.0	1410.0	344.0	14.0	203.0	217.0	6	
4	563.0	692.0	98.0	8.0	32.0	16.0	4	
539377	6973.0	530.0	72.0	12.0	111.0	252.0	5	
539378	1264.0	560.0	115.0	15.0	153.0	79.0	4	
539379	5209.0	827.0	74.0	6.0	47.0	16.0	2	
539380	607.0	715.0	65.0	15.0	45.0	43.0	4	
539381	6377.0	770.0	55.0	12.0	67.0	79.0	2	

539382 rows × 7 columns

```
y = df.iloc[:,-1]
```

У

0	0
1	0
2	0
3	0
4	0
539377	1
539378	1
539379	1
539380	1
F20201	

Name: Class, Length: 539382, dtype: int64

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

```
x = sc.fit\_transform(x)
х
     array([[-0.05558979, 1.77407013, 0.12547455, ..., -1.61396926,
               -0.1908345 , -1.53012021],
             [ 2.18632432, -1.59228795, 0.19678395, ..., -0.99668319,
               0.80471616, 0.03673449],
             [-0.57120585, \ 1.32090654, \ 0.15399831, \ \dots, \ -1.37461344,
              -1.06036608, -0.48555041],
             [ 1.3451833 , 0.08729455, -0.83007146, ..., -1.22344134, -1.61484999, -1.00783531],
             [-0.88076896, -0.31551753, -0.95842839, ..., -1.24863669,
             -1.2745985 , 0.03673449],
[ 1.91013598, -0.11770802, -1.10104719, ..., -0.97148784,
               -0.82092985, -1.00783531]])
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.3,random_state=1)
xtrain
     array([[-0.61570555, 1.83161471, -0.8728571 , ..., -1.61396926, 0.03599983, 1.08130429],
             [-0.9605782 , 0.67352999 , -0.0599299 , ..., 0.80478431,
             -1.53923855, -1.53012021],
[-1.16904961, 1.23099313, -0.67319077, ..., 0.11191219,
               1.43481151, -0.48555041],
             [ 2.01993415, 0.40378976, -0.18828683, ..., -0.92109714,
              -1.53923855, 0.03673449],
             [-0.39610921, 0.9612529, -0.88711898, ..., 1.24570293, 0.11161127, 1.60358918],
             [1.50238332, -1.32254772, -0.47352444, ..., -1.29902739,
               -1.61484999, 1.08130429]])
xtest
     \verb"array" ([[-0.10105687, 0.22396294, 0.45349781, \ldots, 0.66620988,
               -1.58964618, -0.48555041],
             [-0.70712341, -1.16070358, 0.41071216, ..., 1.06933548,
             -1.06036608, 1.60358918],
[-0.18570304, 0.59080965, -0.77302394, ..., 0.64101453,
              -1.0855699 , 1.60358918],
             [-0.45125014, 0.05492572, 0.36792652, ..., 0.35126801,
               0.36364941, 1.60358918],
             [-0.05607348, 0.85335681, 1.46609134, ..., 0.12450987, 0.38885323, 1.08130429],
             [-0.31726736, \ -0.84061184, \ \ 0.6103785 \ , \ \dots, \ -1.05967157,
               -0.80832794, -1.53012021]])
ytrain
     186108
                0
     245254
                0
     369689
     282188
                0
     120575
                0
     371403
                1
     491263
                0
     470924
                1
     491755
                0
     128037
     Name: Class, Length: 377567, dtype: int64
ytest
     21403
                0
     121631
                0
     535152
                1
     487001
                0
     69899
                0
```

```
186290
    91478
               1
    304596
    483940
               1
    328383
               0
    Name: Class, Length: 161815, dtype: int64
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(xtrain,ytrain)
     ▼ LogisticRegression
     LogisticRegression()
ypred = lr.predict(xtest)
from sklearn.metrics import classification_report
print(classification_report(ytest,ypred))
                   precision
                                recall f1-score
                                                   support
                0
                        0.60
                                  0.77
                                            0.67
                                                     89585
                        0.55
                                            0.43
                                                     72230
                                                    161815
         accuracy
                                            0.58
        macro avg
                        0.57
                                  0.56
                                            0.55
                                                    161815
    weighted avg
                        0.58
                                  0.58
                                            0.56
                                                    161815
from \ sklearn. ensemble \ import \ Random Forest Classifier
rfc = RandomForestClassifier(n_estimators=45,min_samples_leaf=4)
rfc.fit(xtrain,ytrain)
ypred1 = rfc.predict(xtest)
print(classification_report(ytest,ypred1))
                   precision
                                recall f1-score
                                                  support
                0
                        0.67
                                  0.74
                                            0.71
                                                     89585
                                                     72230
                        0.63
                                  0.56
                                            0.59
         accuracy
                                            0.66
                                                    161815
       macro avg
                        0.65
                                  0.65
                                            0.65
                                                    161815
                                                    161815
    weighted avg
                        0.66
                                  0.66
                                            0.66
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.callbacks import EarlyStopping
es = EarlyStopping(monitor = "val_loss", mode = "min", verbose = 1, patience=20)
d = Sequential()
d.add(Dense(units=25,activation="relu"))
d.add(Dense(units=25,activation="relu"))
d.add(Dense(units=22,activation="relu"))
```

```
d.add(Dense(units=1,activation="sigmoid"))
```

```
d.compile(optimizer = 'adam',loss = "binary_crossentropy", metrics = ["accuracy"])
d.fit(xtrain,ytrain,epochs=200,validation data=(xtest,ytest),verbose=1,batch size=100,callbacks=[es])
  Epoch 98/200
  Epoch 99/200
  3776/3776 [======
           ============= ] - 13s 3ms/step - loss: 0.6229 - accuracy: 0.6485 - val_loss: 0.6253 - val_accuracy: 0.6476
  Fnoch 100/200
  Epoch 101/200
          3776/3776 [=====
  Epoch 102/200
  Epoch 103/200
  Epoch 104/200
  Epoch 105/200
  Epoch 106/200
  Fnoch 107/200
  3776/3776 [============] - 13s 3ms/step - loss: 0.6227 - accuracy: 0.6494 - val loss: 0.6264 - val accuracy: 0.6464
  Epoch 108/200
  Epoch 109/200
  3776/3776 [===========] - 13s 3ms/step - loss: 0.6226 - accuracy: 0.6496 - val_loss: 0.6252 - val_accuracy: 0.6471
  Epoch 110/200
          3776/3776 [=====
  Epoch 111/200
  3776/3776 [=====
          =============================== ] - 13s 3ms/step - loss: 0.6226 - accuracy: 0.6494 - val_loss: 0.6251 - val_accuracy: 0.6475
  Epoch 112/200
  3776/3776 [=====
          Epoch 113/200
  Epoch 114/200
  3776/3776 [===========] - 13s 3ms/step - loss: 0.6226 - accuracy: 0.6493 - val_loss: 0.6254 - val_accuracy: 0.6473
  Epoch 115/200
  Epoch 116/200
  3776/3776 [======
          Epoch 117/200
  3776/3776 [=====
          Epoch 118/200
  3776/3776 [=====
           =============== ] - 13s 3ms/step - loss: 0.6226 - accuracy: 0.6494 - val_loss: 0.6249 - val_accuracy: 0.6479
  Epoch 119/200
  3776/3776 [==========] - 12s 3ms/step - loss: 0.6225 - accuracy: 0.6500 - val_loss: 0.6251 - val_accuracy: 0.6470
  Epoch 120/200
  Epoch 121/200
  3776/3776 [====
             ============== ] - 12s 3ms/step - loss: 0.6224 - accuracy: 0.6499 - val_loss: 0.6248 - val_accuracy: 0.6482
  Epoch 122/200
  3776/3776 [============] - 12s 3ms/step - loss: 0.6224 - accuracy: 0.6494 - val_loss: 0.6256 - val_accuracy: 0.6475
  Epoch 123/200
  3776/3776 [====
           Epoch 124/200
  3776/3776 [==============] - 13s 3ms/step - loss: 0.6225 - accuracy: 0.6497 - val_loss: 0.6252 - val_accuracy: 0.6464
  Epoch 124: early stopping
  <keras.callbacks.History at 0x7f85369740d0>
```

d.history.history

```
U.040058241/488098,
0.6486234068870544,
0.6471835374832153,
0.6472638249397278,
0.6442418694496155,
0.6465593576431274,
0.6479806900024414,
0.6477644443511963,
0.646979570388794,
0.648308277130127,
0.6460093259811401,
0.6478818655014038,
0.6478015184402466,
0.6477644443511963,
0.6485739946365356,
0.6482958793640137,
0.6468003392219543,
0.6475728750228882,
0.6463121175765991,
0.6484936475753784,
0.6468559503555298,
0.6476778984069824,
0.6477397084236145,
0.6485307216644287,
0.6486666798591614,
0.6463924646377563,
0.6470599174499512,
0.647084653377533,
0.6484256982803345.
0.6475481390953064,
0.6475048661231995,
0.6472885608673096,
0.6473132967948914,
0.6472391486167908,
0.6473256349563599,
0.6461390852928162,
0.6478633284568787,
0.6469733715057373,
0.6469486951828003,
0.6481537818908691,
0.6475234031677246,
0.6481661200523376,
0.6464172005653381]}
```

l=pd.DataFrame(d.history.history) l.plot()

ypred2 = ypred2>0.5

print(classification_report(ytest,ypred2))

	precision	recall	f1-score	support
0 1	0.65 0.64	0.78 0.48	0.71 0.55	89585 72230
accuracy macro avg weighted avg	0.64 0.65	0.63 0.65	0.65 0.63 0.64	161815 161815 161815

✓ 0s completed at 2:13 PM