Statistical Inference Course Project Part 2

Sven Koerbitz

Overview

Now in the second portion of the class, we're going to analyze the ToothGrowth data in the R datasets package.

1. Load the ToothGrowth data and perform some basic exploratory data analyses

```
library(datasets)
library(ggplot2)
data(ToothGrowth)
plot <- ggplot(ToothGrowth, aes(x=factor(dose),y=len,fill=factor(dose)))
plot + geom_boxplot() +
    facet_grid(.~supp) +
    scale_x_discrete("Dose") +
    scale_y_continuous("Length")</pre>
```


2. Provide a basic summary of the data.

```
head(ToothGrowth)
##
     len supp dose
## 1 4.2
          VC 0.5
## 2 11.5
          VC 0.5
## 3 7.3
         VC 0.5
## 4 5.8
         VC 0.5
## 5 6.4
          VC 0.5
## 6 10.0
         VC 0.5
str(ToothGrowth)
                  60 obs. of 3 variables:
## 'data.frame':
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
summary(ToothGrowth)
##
                               dose
        len
                  supp
## Min. : 4.20
                  OJ:30 Min. :0.500
## 1st Qu.:13.07 VC:30 1st Qu.:0.500
## Median :19.25
                          Median :1.000
## Mean :18.81
                          Mean :1.167
## 3rd Qu.:25.27
                          3rd Qu.:2.000
## Max. :33.90
                          Max. :2.000
ToothGrowth$dose <- as.factor(ToothGrowth$dose)</pre>
table(ToothGrowth$supp, ToothGrowth$dose)
##
##
       0.5 1 2
    OJ 10 10 10
##
    VC 10 10 10
```

3. Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.

```
# T-Test by Supp Type
t.test(len ~ supp, data = ToothGrowth)

##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
## -0.1710156 7.5710156
## sample estimates:
## mean in group OJ mean in group VC
           20.66333
                            16.96333
##
# Subsetting Data by Dose
dose0.5 = subset(ToothGrowth, dose == 0.5)
dose1.0 = subset(ToothGrowth, dose == 1.0)
dose2.0 = subset(ToothGrowth, dose == 2.0)
# T-Test Supp by Dose
t.test(len~supp, data=dose0.5)
##
## Welch Two Sample t-test
## data: len by supp
## t = 3.1697, df = 14.969, p-value = 0.006359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.719057 8.780943
## sample estimates:
## mean in group OJ mean in group VC
##
              13.23
                                7.98
t.test(len~supp, data=dose1.0)
## Welch Two Sample t-test
##
## data: len by supp
## t = 4.0328, df = 15.358, p-value = 0.001038
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.802148 9.057852
## sample estimates:
## mean in group OJ mean in group VC
              22.70
                               16.77
t.test(len~supp, data=dose2.0)
##
## Welch Two Sample t-test
## data: len by supp
## t = -0.0461, df = 14.04, p-value = 0.9639
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.79807 3.63807
## sample estimates:
## mean in group OJ mean in group VC
              26.06
                               26.14
##
```

Given a dose of 0.5 the null hypothesis that the supplement type (OJ/VC) has no influence on the growth of teeth can be rejected because the p-value is 0.006359 which is way below a significance level of 0.05.

Given a dose of 1.0 the null hypothesis that the supplement type (OJ/VC) has no influence on the growth of teeth can be rejected because the p-value is 0.001038 which is way below a significance level of 0.05.

Given a dose of 2.0 the null hypothesis that the supplement type (OJ/VC) has no influence on the growth of teeth can not be rejected because the p-value is 0.9639 which is above a significance level of 0.05. The data is not conclusive.

4. State your conclusions and the assumptions needed for your conclusions.

Based on the basic exploratory data analyses the assumption was made that - the growth of teeth depends on the dose (Higher dose = longer theeth) and - the supplement type OJ has a higher effect on the growth of teeth than the supplement type VC

Based on the hypothesis tests it can be concluded that - the growth of teeth increases with the dose and - the supplement type OJ has a higher effect in the doses of 0.5 and 1.0 but not in doses of 2.0