Apresentação e objetivos

Aula 1 – 1ª Parte

Agenda

- Objetivos
- Dinâmica das aulas
 - Aulas expositivas
 - Laboratório
- Seminários e avaliação
- Google Classroom

Objetivo: processos de DT e OI

- Desenvolvimento tecnológico como um processo complexo e evolucionário
 - Sem premissa de racionalidade substantiva
 - Impossibilidade de análise de todas as alternativas possíveis mas existem expectativas (enviesadas) sobre o futuro
 - Interação com outras áreas da economia: processo endógeno
- Organização industrial em desequilíbrio dinâmico
 - Dinâmica dominada pelo processo de busca e adoção de novas tecnologias e formas organizacionais
 - Inovação e sua difusão são determinantes (não únicos) do crescimento e a sobrevivência das firmas
 - Heterogeneidade persistente das firmas (tamanho, crescimento, capacidades etc.) fora do equilíbrio neoclássico

Estrutura do curso

- Organização industrial convencional
- Fundamentos da teoria da complexidade
- Fundamentos da economia evolucionária neoschumpeteriana
- Modelagem com simulação baseada em agentes (ABM)
- Redes sociais complexas
- Regulação

Parte I: introdução à organização industrial moderna

1. Competição e colusão

Competição "tradicional", cartéis, colusão tácita, regulação

2. Entrada e saída

 Taxonomia, estratégias de custo e demanda, barreiras a entrada

3. Pesquisa e desenvolvimento

Incentivos de mercado, cooperação e spillovers

4. Patentes

Apropriabilidade, proteção da propriedade intelectual, sistema de patentes

Laboratório: curso LSD

Parte II: complexidade, incerteza, aprendizado e tecnologia

- 1. Teoria da complexidade
 - Introdução e intuição
- 2. Modelo de inovação
 - Exploration, exploitation e difusão
- 3. Modelo industrial básico
 - Heterogeneidade persistente
- 4. Modelos evolucionários clássicos
 - Organização da indústria
- 5. Modelos evolucionários avançados
 - Path dependence
- 6. Modelos history-friendly
 - Aprendizado

Laboratório: curso LSD

Parte III: redes sociais complexas e regulação

- 1. Aspectos teóricos e metodológicos
 - Teoria dos grafos, métricas de redes
- 2. Modelos de redes de patentes
 - Dinâmica do conhecimento e desenvolvimento técnico
 - Trajetórias tecnológicas
- 3. Modelos de difusão em redes
 - Difusão de inovações
- 4. Internet e neutralidade de rede
- 5. Mercados das indústrias em rede

Laboratório: introdução ao Pajek e projeto dos alunos

Seminários

- Um grupo de 3-4 alunos em cada seminário
 - 60 minutos para cada grupo apresentar o tema
 - 30 minutos para debate com todos
- Temas
 - Seminário 1: tópicos do programa (Parte II)
 - Seminário 2: tópico dos alunos (com modelo ABM)
 - Temas acordados com os professores
- Conteúdo
 - Texto(s) obrigatório(s): completo(s)
 - Texto(s) complementar(es): insights, inserts, "pílulas" etc.
- Material
 - Apresentação (slides) a ser compartilhada no Classroom

Google Classroom

 O material do curso estará disponível no Google Classroom (Sala de Aula):

https://classroom.google.com

- Existe também o aplicativo para celular
- O aluno deve se conectar com a conta da Unicamp no Google Apps:

xXXXXXX@g.unicamp.br

- A senha é a mesma usada nos sistemas da DAC
- Não é possível acessar com contas externas (com domínio diferente de "@g.unicamp.br")