

AMENDMENTS TO SPECIFICATION

- Please replace the paragraph beginning at page 9, line 20 with the following amended paragraph:

On the other hand, when variation in temperature is occurred occurs, the operation of the bias current control circuit 13 in accordance with the present invention can be explained as follows.

- Please replace the paragraph beginning at page 9, line 24 with the following amended paragraph:

Assuming that the reference voltage V_{ref} is an external reference voltage independent of temperature and the bias current control circuit 13 is not considered, then as temperature rises, the voltage V_p at the node $[[p]]$ P will change since the voltage V_p is equal to the two base-emitter voltage drop $2V_{be}$ through transistors Q1 and Q2. In other words, as temperature rises, the base-emitter voltage drop V_{be} is reduced and thus V_p decreases. As a result, more current flows through resistor R_2 and thus the bias current I_B also increases. Inversely, as temperature is lowered, the V_{be} increases and thus V_p increases. That is, less current flows through resistor R_2 and thus the bias current I_B also decreases. Therefore, when temperature rises, the voltage V_p at the node P needs to be increased in order to maintain the bias current I_B substantially constant and, if otherwise, the voltage V_p has to be decreased.