Different convergences in L(X) = L(X, X)

Convergence in Norm (Uniform convergence): A sequence of operators A_n , converges in the norm to an operator $A_n A_n \rightarrow A$ if $\|A_n - A\| \rightarrow 0$ if $n \rightarrow \infty$.

Strong Convergence: $A_n \longrightarrow A$ strongly if $\forall x \in X$, we have that $A_n \times A_x$.

The strong convergence is weaker that the norm convergence, because if $A_n \longrightarrow A$ (in norm) so $\forall x \in X$, $A_n X \longrightarrow A_x$, $||A_n X - A_x|| = ||(A_n - A)_x||$

The contrary claim is not true, since let $L_2([0,1])$ defined for En70

$$P_{\varepsilon_n} f = \begin{cases} f(t) & \text{if } t < \varepsilon_n \\ 0 & \text{if } t > \varepsilon_n \end{cases}$$

We can see that $P_{En}f \rightarrow 0$ if $E_{n} \rightarrow 0$ $\forall f \in L^{2}([0,1])$ i.e., P_{En} converges in the strong sence to 0.

But IIPEn 11=1 not converges to zero.

Weak convergence: A sequence of operators An converges weakly to A, $A_n \xrightarrow{\omega} A$, if for all $x \in X$ and $f \in X^*$, $f(A_n X) \longrightarrow f(A_n X)$.

Example: Let the displacement operator A in l2.

For this operator $f(A^n x) \longrightarrow 0$ for all $f = \sum_{i=1}^{\infty} b_i e_i$ and $x = \sum_{i=1}^{\infty} a_i e_i$

$$f(A_v^X) = \sum_{i=n+1}^{\infty} p_i Q_{i-n}$$

$$|f(A^{n}x)| \leq \left(\sum_{j=1}^{\infty} |a_{j}|^{2}\right)^{1/2} \left(\sum_{j=n+1}^{\infty} |b_{j}|^{2}\right)^{1/2} \longrightarrow 0$$

but ||Ax|| = ||x||, $\forall x \in l_2$. Thus $||A^n_x|| = ||x||$, then $||A^n_x|| = ||x||$, $||A^n_x|| = ||x||$

Invertible operators

Let $A \in L(X)$, we will call to $B := \overline{A}^n$, the inverse operator of A if and only if BA = Id and AB = Id.

Properties:

1. If A and B are invertible operators, then AB is invertible and satisfies

$$(AB)^{-1} = B^{-1}A^{-1}$$

Proof:

$$AB(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A(B)A^{-1} = Id$$

 $(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}(Id)B = Id.$

11. If ||A|| = q < 1, (I - A) is invertible and $(I - A)^{-1} = \sum_{k=0}^{\infty} A^{k}$

more over

$$\|(I - A)^{-1}\| \leq \frac{1}{(1 - \|A\|)}$$

Proof: As $\|A^{K}\| \leq \|A\|^{K} = q^{K} \longrightarrow 0$ if $K \longrightarrow \infty$. Let $S_{n} = \sum_{k=0}^{\infty} A^{k}$ is Cauchy and converges. Moreover $(I - A)S_{n} = I - A^{n+1} \longrightarrow I$ if $n \longrightarrow \infty$. Finally $\lim_{n \to \infty} S_{n}$ is the inverse of (I - A).

III. Let A invertible and B such that $||A - B|| < \frac{1}{||A^{-1}||}$

then B is invertible.

Proof: As $B = A(I - A^{-1}(A - B))$

The operator A is invertible and $I - A^{-1}(A-B)$ is invertible by (11).

As $||A^{-1}(A-B)||<1$, B is invertible by (1).

Theorem (The open mapping): Let X, Y Banach spaces and let $A:X \longrightarrow Y$ a bound linear operator, if it is one-to-one (i.e., Ker A=0) and onto (Im A=Y) the inverse operator A^{-1} is bounded.