4. Stromverstärkung mit Transistoren

Wir haben gerade gesehen, dass eine Spannungsverstärkung allein nicht ausreicht, wenn gleichzeitig auch hohe Ausgangs*ströme* gebraucht werden.

Zur Stromverstärkung eignet sich die Schaltung des sogenannten Emitterfolgers.

Bauen Sie die folgende Schaltung auf; R1 = $10 \text{ k}\Omega$, R2 = $1 \text{ k}\Omega$, R3 = 100Ω , U = 10 V.

Geben Sie durch verändern von R1 verschiedene Gleichspannungen U_e auf den Eingang und messen Sie $U_a = f(U_e)$ und $I_R = f(I_B)$.

Wichtig: Für T1 nehmen Sie jetzt den BD137, zur Messung von I_R ein Amperemeter mit 2A-Meßbereich!

Wie groß ist die Spannungsverstärkung in dieser Schaltung? Wie groß ist die Stromverstärkung?

Was passiert, wenn Sie zwei Transistoren hintereinanderschalten? Fügen Sie wie dargestellt einen zweiten Transistor ein (T2 = BC550, T1 = BD137), der den Basisstrom verstärkt und diesen verstärkten Strom in die Basis des anderen Transistors gibt. Nehmen Sie auch hier $R1 = 10 \ k\Omega$, $R2 = 1 \ k\Omega$.

Messen Sie wieder $I_R = f(I_B)$. Messen Sie außerdem für ein oder zwei Werte $U_a = f(U_e)$ und vergleichen Sie das Ergebnis mit dem der letzten Schaltung, bei der nur *ein* Transistor verwendet wurde. Was fällt auf?

Falls es zu unerwünschten Schwingungen durch das Netzgerät kommt, schalten Sie einen Kondensator 1 nF parallel zu R3. Außerdem kann ein Tiefpaßfilter helfen (RF = $10~\Omega$, CF = 10~bis $100~\mu\text{F}$), das zwischen Netzgerät und Schaltung gesetzt wird.