Homework Assignment 5

Due in class, Monday April 23rd

SDS 384-11 Theoretical Statistics

- 1. (VC dimension) Compute the VC dimension of the following function classes
 - (a) Circles in \mathbb{R}^2
 - (b) Axis aligned rectangles in \mathbb{R}^2
 - (c) Axis aligned squares in \mathbb{R}^2
- 2. In class, you upper bounded the Rademacher complexity of a function class. Now you will derive a lower bound.
 - (a) For function classes \mathcal{F} with function values in [0,1], prove that $E\|\hat{P}_n P\|_{\mathcal{F}} \geq \frac{\mathcal{R}_{\mathcal{F}}}{2} \sqrt{\frac{\log 2}{2n}}$.
 - (b) Now prove that $||P \hat{P}_n||_{\mathcal{F}} \ge E||P \hat{P}_n||_{\mathcal{F}} \epsilon$ with probability at least $1 \exp(-cn\epsilon^2)$ for some constant c.
 - (c) Recall the class of all subsets with finite size in [0, 1]? Prove that then Rademacher complexity of this class is at least 1/2. What does this imply?
- 3. In this exercise, we explore the connection between VC dimension and metric entropy. Given a set class S with finite VC dimension ν , we show that the function class $\mathcal{F}_S := 1_S, S \in S$ of indicator functions has metric entropy at most

$$N(\delta; \mathcal{F}_{\mathcal{S}}, L^1(P)) \le \left(\frac{K \log(3e/\epsilon)}{\epsilon}\right)^{\nu}$$
 For a constant K (1)

Let $\{1_{S^1}, \ldots, 1_{S^N}\}$ be a maximal delta packing in the $L^1(P)$ norm, so that:

$$||1_{S_i} - 1_{S_j}||_1 = E[|1_{S_i}(X) - 1_{S_j}(X)|] > \delta$$
 for all $i \neq j$

This is an upper bound on the δ covering number.

- (a) Suppose that we generate n samples X_i , i = 1, ..., n drawn i.i.d. from P. Show that the probability that every set S_i picks out a different subset of $\{X_1, ..., X_n\}$ is at least $1 {N \choose 2}(1-\delta)^n$.
- (b) Using part (a), show that for $N \geq 2$ and $n = \lceil 2 \log N/\delta \rceil$, there exists a set of n points from which \mathcal{S} picks out at least N subsets, and conclude that $N \leq \left(\frac{3e \log N}{\nu \delta}\right)^{\nu}$.
- (c) Use part (b) to show that Eq (1) holds with $K := 3e^2/(e-1)$.