ONKAR PATIL

Graduate Research Assistant, Visa - F1(India) North Carolina State University, Raleigh, North Carolina February 15, 1990 3722 Burt Dr Apt 106 Raleigh NC 27606 opatil@ncsu.edu, +1(669)-265-5086

Personal Statement

I am a motivated and passionate individual with a zest for research in High Performance Computing. My primary interest lie in Memory architectures, Compilers, Programming Languages and System Software. I aspire to achieve excellence by contributing to my field of interest in every way possible. I wish to work with other aspirants and the stalwarts in Computer Science to gain immense technical expertise and intellect.

Skills

Programming/Scripting Languages C, C++, Java, HTML, Python, Perl, Shell

Platforms/Architectures x86, Power9, Intel Optane DC, KNL, ARM9, NVIDIA Tesla **Tools** MPI, CUDA, OpenMP, OpenACC, MATLAB, GDB, qOp

CompilersCetus, OpenARC, LLVM, ClangOperating SystemsLinux, EV3RT, XINU, ONTAP

Education

Ph.D. Computer Science GPA: 3.182

North Carolina State University, Raleigh, NC 2016 - Current

- Research: Intelligent Data Placement for hybrid memory systems in HPC

MS. Computer Science GPA: 3.125

North Carolina State University, Raleigh, NC 2012 - 2014

- Thesis: Efficient and Lightweight Inter-process Collective Operations for Massive Multi-core Architectures

BE. Information Technology Avg: 69.2%

Fr. Conciecao Rodrigues College of Engineering, Mumbai, MH, India 2008 - 2012

- Thesis: Design and Implementation of a Parallelized and Distributed Web Crawler

Publications

•	Symbiotic HW Cache and SW DTLB Prefetching for DRAM/NVM Hybrid Memory O. Patil, F. Mueller, L. Ionkov, J. Lee, M. Lang	MASCOTS 2020 <i>Nov.</i> 2020
	Performance characterization of a DRAM-NVM hybrid memory architecture	MEMSYS 2019
•	for HPC applications using Intel Optane DC Persistent Memory Modules	
	O. Patil, L. Ionkov, J. Lee, F. Mueller, M. Lang	Sept. 2019
•	Using Non Volatile Memories to build cost and energy efficient clusters	SC 2019
	O. Patil, L. Ionkov, J. Lee, F. Mueller, M. Lang	Nov. 2019
•	Exploring Use-cases for Non-Volatile Memories in support of HPC Resilience	SC 2017
	O. Patil, S. Hukerikar, F. Mueller, C. Englemann	Nov. 2017
•	Persistent Regions that Survive NVM Media Failure	NVM 2017
	O. Patil, M. Kuscu, T. Tran, C. Johnson, J. Tucek, H. Kuno	Mar. 2017
•	Efficient & Predictable Group Communication Messaging over Manycore NoCs	ISC 2016
	K. Yagna, O. Patil, F. Mueller	May. 2016
•	End-to-end Resilience for HPC Applications (GCS Award)	ISC 2019
	A. Rezai, H. Khetawat, O. Patil, F. Mueller, P. Hargrove, E. Roman	Jun. 2019
_	Sequential memory access on a high performance computing system	USPTO
•	C. Johnson, O. Patil, M. Kuscu, T. Tran, J. Tucek, H. Kuno, M. Chabbi, W. Scherer	Jan. 2020

C. Johnson, M. Kuscu, O. Patil, J. H. Park, H. Kuno, R. Schreiber

Research/Work Experience

High Performance Computing with Heterogeneous memory systems

NCSU, Raleigh, NC

Ph.D candidate and Graduate Research Assistant under Dr. Frank Mueller

Aug. 2016 - Current

- Exploring possibilities for novel software architectures that can take advantage of heterogeneous memory systems to improve resiliency, scalability and performance of HPC applications
- Performing static code analysis to enable automated memory allocation at compiler level to improve performance and supplement resilience against hard errors
- Developing framework for front-end and intermediate stage analysis using LLVM and Clang to extract critical code information in order to optimize HPC applications for systems with multiple memory technologies

Summer Research Intern

New Mexico Consortium(LANL), Los Alamos, NM

Computer Science Research

May. 2018/2019/2020 - Aug. 2018/2019/2020

- Analyzed the performance characteristics of Intel's Optane DC PMMs in a DRAM-NVM hybrid memory system for HPC applications
- Developed a Compiler framework to identify critical code information for HPC applications to optimize for hybrid memory systems

Summer Research Intern

Oak Ridge National Laboratory, Oak Ridge, TN

Computer Science Research

May. 2017 - Aug. 2017

 Designed, prototyped and evaluated a Runtime system to support Resilience Design Patterns for systems with persistent memory

Graduate Teaching Assistant

North Carolina State University, Raleigh, NC

Department of Computer Science

Jan. 2018 - May. 2018; Aug. 2016 - Dec. 2016

- Assisted in organizing curriculum and syllabus for a seminar in Quantum Computing
- Assisted in organizing and grading Paper reviews and talks for Advanced Distributed Systems
- Assisted in organizing the Operating systems course for undergraduate students

Research Associate

Hewlett Packard Labs, Palo Alto, CA

Software and Data Analytics

May 2016 - Aug. 2016

 Designed and Developed a framework for HPC Stencil applications to survive hardware failures in non-volatile memory systems with large pool of byte-addressable non-volatile memory

Member of Technical Staff-II

NetApp Inc., Sunnyvale, CA

Engineering Product Support

Aug. 2014 - May 2016

- Provided solutions and code fixes for existing bugs related to External Authentication, CIFS, WAFL, OS, NAS

Pico/micro kernels for a scalable Multi-core Operating System

NCSU, Raleigh, NC

Graduate Research Assistant under Dr. Frank Mueller

May. 2013 - May. 2014

 Developed and implemented pico-kernels for efficient point-to-point and collective inter-process communication avoiding contention and exploiting the shared memory architecture to achieve optimal performance up to 9x times other libraries

Graduate Course Projects

Centre Power Awareness(Independent Study)

Spring 2013

Under Dr. Frank Mueller

- Developed a dynamic runtime environment for HPC which would provide trade-off between performance, energy and thermal characteristics of the system with the help of monitoring, analysis and feedback

Code Optimization for Scalar and Parallel Programs

Spring 2017

Under Dr. Xipeng Shen

 Implemented a source-to-source compiler using Cetus to allocate data structures in the correct MCDRAM based on the thread location on Intel KNL architecture for OpenMP programs