1-mavzu."Termodinamika va issiqlik uzatish asoslari" faniga kirish.

Reja:

- 1.Umumiy ma'lumotlar
- 2. Termodinamika tizimi
- 3. Termodinamikaning holat parametrlari

1.Umumiy ma'lumotlar

"Termodinamika va issiqlik uzatish asoslari" fani issiqlik mashinalari va qurilmalari yordamida issiqlik hosil qilish, uni boshqa turdagi energiyaga aylantirish, taqsimlash hamda uzatish usullarini nazariy va amaliy jihatdan qamrab olgan umumtexnikaviy fandir.

19-asrda issiqlik dvigatellaridan foydalanish fan oldiga issiqlik dvigatellarining ishlashini nazariy jihatdan oʻrganish va ularning samaradorligini oshirish yoʻllarini aniqlash vazifasini qoʻydi. Keyinchalik termodinamika muammolari kengayib, uni oʻrganish sohasi texnik, biologik, axborot va boshqa tizimlarning turli sohalarini qamrab oldi.

Termodinamika issiqlik texnikasi ehtiyojlaridan kelib chiqqan. Issiqlik dvigatellari va ularning samaradorligi, issiqlik mashinalari, kompressorlar, muzlatgichlar, havo-bug trubkalari, xonadagi havo almashinuvi, konditsionerlik, qishloq xo'jaligi mahsulotlarini quritish va saqlashni loyihalash uchun hisob-kitoblar qo'llaniladi.

Issiqlikdan oqilona foydalanish, qoida tariqasida, qishloq xo'jaligi ishlab chiqarishining texnologik jarayonlarida asosiy bo'lgan issiqlik nazariyasini o'zlashtirmasdan mumkin emas.

Issiqlik va ventilyatsiyaga, chorvachilik va parrandachilik binolari, omborxonalar va qo'riqlanadigan yer inshootlarida zarur mikroiqlim parametrlarini ta'minlash, qishloq xo'jaligi mahsulotlarini quritish, ozuqa tayyorlash, sun'iy sovuqni olish va boshqa maqsadlarda katta miqdorda issiqlik sarflanadi. Bu barcha

holatlarda issiqlik almashinuvi issiqlik va massa almashinuvi bilan birga keladi. Bu hodisalar o'zaro bog'liqdir. Qishloq xo'jaligi ishlab chiqarishining texnologik jarayonlarida issiqlik uzatish qonuniyatlarini oshkor qilish mutaxassisga ushbu jarayonlarni boshqarishning optimal usullarini aniqlash imkonini beradi.

Bu texnologik jarayonlar hayvonlar va oʻsimliklar hayoti uchun sharoitlarni ta'minlovchi texnik, biologik, fiziologik va boshqa omillarning murakkab majmuidir. Qishloq xoʻjaligi issiqlik iste'molchilarining katta dispersiyasi, issiqlik yuklarining sezilarli notekis zichligi bilan tavsiflanadi.

Issiqlik ta'minoti usullari issiqlik yuklarining kontsentratsiyasiga bog'liq. Yirik chorvachilik majmualari, issiqxona majmualari, qishloq xoʻjaligi mahsulotlarini qayta ishlash va saqlash korxonalari, jamoat va kommunal binolar markazlashtirilgan issiqlik ta'minotini talab qiladi. Yakka tartibdagi chorvachilik binolari va qo'riqlanadigan erlarning dehqonchilik inshootlari, past zichlikdagi kichik uy-joy qurilishlari uchun mahalliy issiqlik ishlab chiqaruvchi qurilmalardan markazlashtirilmagan issiqlik ta'minotiga ustunlik berish kerak.

Issiqlik harakati ko'p sonli mikrozarralar orasidagi harakat va o'zaro ta'sirga bog'liq. Materiya harakatining issiqlik shaklini o'rganishning 2 usuli mavjud. Statik fizika usuli fizik tizimlarning molekulyar modeliga asoslanadi va matematik ehtimollar nazariyasi imkoniyatlaridan foydalanadi. Fenomenologik usul deb ataladigan termodinamik usul tizim holatining o'zgarishini belgilovchi makroskopik parametrlar o'rtasidagi munosabatni o'rnatadi va moddaning molekulyar tuzilishiga murojaat qilishni talab qilmaydi. Ushbu yondashuv juda qulay va amaliy jihatdan muhim muammolarni hal qilish uchun etarli. Termodinamika empirik tarzda olingan ikkita qonunga (tamoyilga) asoslanadi.

Termodinamikaning birinchi qonuni energiyaning aylanish va saqlanish qonuni, energiya yo'q bo'lmaydi, yo'qdan bor bo'lmaydi.

Termodinamikaning ikkinchi qonuni qaytariladigan va qaytarilmas jarayonlarda entropiya o'zgarishi prinsipi bilan bog'liq bo'lgan issiqlik shaklida energiya uzatish shaklidagi sifat farqini ko'rsatadi еки, ish sarflamay issiqlikni harorati past jismdan harorati yuqori jismga o'tkazib bo'lmaydi (Klauzius ta'rifi).

Issiqlik texnikalari barcha sohalar kabi, qishloq va suv xo'jaligi sohalarida ham keng foydalaniladi. Yuqorida ta'kidlaganimizdek, qishloq va suv xo'jaligi energetika balansining 80 % ni issiqlik energiyasi tashkil etadi. Energiyaning eng qulay, ekologik toza bo'lgan elektr energiyasi ushbu balansning 6-7 % ni tashkil etadi xolos.

Olim va mutaxassislarining oldida quyosh energiyasidan to'la foydalanish, insoniyatni energetik taqchillikdan butunlay ozod etish muammolari turibdi. Ma'lumki, quyosh energiyasi ta'sirida hosil bo'lgan torf, toshko'mir, neft, turli gazlarni quyosh energiyasining yerdagi akkumulyatorlari deb atash mumkin. Chunki, yerning 1m² yuzasiga tushadigan quyosh nurining energiyasi taxminan 1 kW ga teng. Biroq quyosh energiyasini elektr energiyasiga to'la aylantirish uchun hozirgi asbob-uskunalarning foydali ish koeffitsentlari yetarli emas.

2. Termodinamika tizimi

Termodinamik tizim - bir-biri bilan va tizimni o'rab turgan tashqi jismlar bilan termal va mexanik ta'sirda bo'lgan moddiy jismlar to'plami (ikkinchisi atrofmuhitni tashkil qiladi), ya'ni Termodinamik tizimlar termodinamik muvozanatda bo'lgan makroskopik tizimlar deb ataladi.Termodinamik tizimning taxminiy sxemasi: issiqlik-ishchi jism- mexanik ish.

Atrof-muhit bilan energiya yoki modda almashmaydigan tizim izolyatsiyalangan, yopiq deb ataladi. Agar tizim tashqi muhit bilan issiqlik almashmasa, u termal izolyatsiyalangan yoki adiabatik deb ataladi. Ochiq tizimda u va muhit o'rtasida modda paydo bo'ladi (massa uzatish o'zaro ta'siri).

Termodinamik tizimga ishchi gazlar (gazlar, havo, bug'lar) va issiqlik manbalari kiradi.

Biz molekulalar orasidagi o'zaro ta'sir kuchlarining ta'sirini va molekulalarning hajmini e'tiborsiz qoldirishimiz mumkin bo'lgan, ya'ni bir xil xususiyatlarga ega, yuzlab va o'zaro ta'sir qilmaydigan nuqtalar tizimiga ega bo'lgan gazlar ideal deb ataladi, aks holda ular rial gazlardir. Gazlar va suv bug'lari o'rtasida aytarlik farq yo'q. Gazlarni ma'lum bir suyuqlikning bug'i (to'yinish holatidan uzoq bo'lgan) sifatida qarash mumkin. Gazlar, asosan o'zining agregat holatini o'zgartirmaydigan, ya'ni suyuq holatiga yoki bug' holatiga o'zgarmaydigan turg'un ishchi jism hisoblanadi. Ma'lumki, bug' gaz va suyuqlik orasidagi oraliq element hisoblanadi.

3. Termodinamikaning holat parametrlari

Makroskopik miqdorlar, ya'ni. sistemaning ma'lum bir momentdagi holatini belgilovchi kattaliklar holat parametrlari deyiladi. Davlatning termal va kaloriya parametrlari mavjud. Birinchisiga mutlaq bosim \mathbf{p} , solishtirma hajm \mathbf{v} va absolut harorat kiradi \mathbf{T} ; ikkinchisiga - ichki energiya u, entalpiya \mathbf{h} va entropiya \mathbf{s} kiradi .

Jisimning massasiga yoki tizimdagi zarrachalar soniga bog'liq bo'lmagan parametrlar intensiv deb ataladi (masalan, bosim, harorat); qiymati tizimdagi zarrachalar massasi yoki soniga mutanosib bo'lgan parametrlarga qo'shimcha yoki ekstensiv (energiya, entropiya) deyiladi.

Izolyatsiya qilingan termodinamik tizimning holat parametrlarining vaqt va tizim egallagan butun hajmdagi doimiyligi bilan tavsiflanishi, muvozanat deyiladi. Muvozanat tizimida energiya va materiya oqimlari mavjud emas. Izolyatsiya qilingan tizimlarda muvozanat holati tashqi sharoitlar (bosimlarning qiymatlari va tizimdan tashqaridagi muhit harorati) bilan belgilanadi. Agar tizim hajmining turli qismlari harorat, bosim va hokazolarda farqlar mavjud bo'lsa, u holda bu tizim muvozanatda bo'lmaydi.

Bosim ishchi gazning xaotik harakatlanuvchi mikrozarralari idish devoriga ta'sir qilish natijasidir. Molekulyar kinetik nazariyaga asosan gazning bosimini quyida tenglama bilan aniqlanadi.

$$\rho = \frac{2}{3}nm\varpi^2/2 \qquad (1.1)$$

bu erta n -hajm birligiga to'g'ri keladigan molekulalar soni, $n = \frac{N}{V}$;

m - 1 ta molekulaning massasi (bir xil tarkibdagi gazlar uchun molekulalar massalari teng);

 ω - molekula ilgarilanma harakatining o'rtacha kvadratik tezligi.

Malumki, bosim normal yo'nalishda jism sirtining birlik maydoniga ta'sir qiladigan kuchga tengdir. Bosim paskallarda o'lchanadi, ya'ni 1 Pa = 1 N / m^2 . Demak, 1 Pa 1 m^2 sirt ustida normal yo'nalishda bir tekis taqsimlangan 1 N kuch ta'sirida yuzaga keladigan bosimga teng (1 Pa=0,102*10⁻⁴ kg/sm²). Amaliy hisobkitoblarda 1 kPa = 10^3 Pa va 1 MPa = 10^6 Pa ishlatiladi.

Bosimni o'lchash uchun manometrlar ,barometirlar va vakuummetrlardan foydalaniladi. Agar idishdagi gazning absolyut bosimi $\mathbf{p_a}$ tashqi muhit bosimi $\mathbf{p_{bar}}$ dan yuqori bo'lsa, ortiqcha yoki manometrik bosim $\mathbf{p_{man}}$ manometr yordamida o'lchanadi.

Agar absolyut bosimi $p>p_a$ bo'lsa, ortiqcha bosim o'lchangan muhitning mutlaq bosimi va atmosfera bosimi o'rtasidagi farqga teng bo'ladi, ya'ni $p_i = p_a$ - p. Agar p q bo'lsa, u holda ortiqcha bosim q p bo'ladi. Bunday holda, qurilma (vakuum o'lchagich) o'lchanadigan vosita joylashgan idishdagi kamdan-kam uchraydigan (vakuum) qiymatini ko'rsatadi.

Gazlarning molekulyar-kinetik nazariyasiga muvofiq harorat T ishchi gazlarning zarralarining translatsiya harakatining kinetik energiyasiga proportsionaldir yoki **harorat** - jismning qizitilganlik darajasini ifodalaydi va turli harorat shkalalarida o'lchanadi.

$$kT = \frac{2}{3} \frac{m\varpi^2}{2} \tag{1.2}$$

by erda k - Boltsman doimiysi, $1,38 * 10^{-23} \frac{j}{K}$ ga teng.

Tenglama (1.2) haroratning issiqlik harakati intensivligining o'lchovi ekanligini ko'rsatadi. (1.1) va (1.2) tenglamalardan kelib chiqadiki, ko'p sonli tasodifiy hodisalar (molekulalarning harakati va o'zaro ta'siri) ma'lum bir qonuniyati-qiymati, makroskopik parametrlar shaklida ifodalanadi. Bu erda dinamik va statik qonuniyatlar o'rtasidagi o'zaro bog'liqlikning uslubiy jihati namoyon bo'ladi. Tizimdagi ko'p miqdordagi mexanik harakatlanuvchi mikrozarralar miqdoriy o'zgarishlarni sifatga aylantiradi.

Harorat faqat termodinamik muvozanatli tizimlarda mavjud bo'lib, ular birbiri bilan o'zaro ta'sir qilmaydi, ya'ni harorat termodinamik muvozanat parametridir.

(1.2) tenglamadan aniqlangan harorat termodinamik (mutlaq) deb ataladi.

Termodinamik harorat tushunchasi termodinamikaning ikkinchi qonunidan kelib chiqadi [qarang. formula (3.31)]. Mutlaq harorat shkalasi uchun ikkita mos yozuvlar nuqtasi mavjud. Mutlaq nol mos yozuvlar nuqtasi sifatida qabul qilinadi, bunda molekulalarning issiqlik harakati toʻxtaydi. Yana bir mos yozuvlar nuqtasi (suvning uchlik nuqtasining harorati, ya'ni uch faza oʻrtasidagi muvozanat harorati: muz, suv va bugʻ) 273,16 K (0,01 °C). Ikki mos yozuvlar nuqtasi orasidagi intervalning 1/273,16 nisbati termodinamik harorat shkalasi boʻyicha oʻlchov birligi K (Kelvin). Harorat Selsiy shkalasi boʻyicha ham oʻlchanadi, bu erda nol muzning erish harorati va 100 °C suvning 101,325 Pa (normal bosim deb ataladigan) bosimdagi qaynash

nuqtasidir.Termodinamik harorat T (K) va harorat t (⁰C) o'rtasidagi bog'liqlik quyidagicha:

Haroratning yana bir o'lchov birligi Farengeyt shkalasi bo'yicha muzning erish harorati va suvni qaynash harorati fizik normal sharoitda 32 va 212 0 F ga teng. Farengeyt shkalasi va Selsiy shkalasi o'zaro quyidagi tenglik orqali bog'langan, $T=1.8 t + 32 \, ^{0}$ F.

Haroratni o'lchash uchun suyuqlik termometrlari, pirometrlar va boshqa asboblar qo'llaniladi.

Ularning harakati moddalarning issiqlik nurlanishi, ikkita kontaktli metallar orasidagi EMF, elektr qarshiligi, o'rganish intensivligi va boshqalar kabi xususiyatlaridan foydalanishga asoslangan.

Solishtirma hajm ϑ - moddaning birlik massasi egallagan hajmi.

Massasi m va hajmi V bo'lgan bir jism uchun u formula bilan aniqlanadi θ =V/m.

Zichlik hajm birligidagi massa bo'lib, ρ harfi bilan belgilanadi. Unga teskari bo'lgan kattalik solishtirma hajm – massa birligidagi hajm hisoblanadi. Ular o'zaro quyidagicha bog'lanadi: ρ =1/v, demak, ρ v=1. Maxsus hajmning o'lchov birligi m³/kg, zichligi esa kg/m³ ga teng.

Nazorat savollari va topshiriqlar

1. Termodinamika nimani o'rganadi? Qishloq va suv xo'jaligi ishlab chiqarishi sohalarida amaliy masalalar yechishda texnikaviy termodinamikaning ahamiyatini ta'riflang. 2. Termodinamika tizimi nima? 3. Holat parametrlari tavsifini va aniqlanishini keltiring. Mos hollarda misollar keltiring. 4. Holat issiqlik parametrlari asosiy ma'lumotlarini gapirib bering.