D ∈ Q and D ≰ P -----(1)

y € P and h ≰ Q -----(2

but since x is a packet there exists an n such that $b|h^n$ or $h|h^n$. Now if $b|h^n$ then $h^n \in \mathbb{Q}$ i.e. $h \in \mathbb{Q}$ which contradicts(2) and if $h|h^n$; $b \in P$ in contradiction to (1) and this establishes that a packet x in an HCF domain R cannot have more than one minimal subvalued primes.

Now going from packets to products of mutually co-prime

packets, we prove the following Theorem 3. An HCF domain R is a URD iff every non zero non

unit x in R has a finite number of minimal primes. . Proof. Let R be a URD and let x be a non wait in

R. We can write $x = x_1x_2...x_n$; $(x_1,x_1) = 1$ if $i \neq j$

where each of the x_i is a packet. Being mutually co-prime, no two of the x_i have a valued prime common to them and hence no subvalued prime, while each of the x_i has a single minimal subvalued prime(being a packet) and consequently x

has a finite number of minimal subvalued primes.

Conversely let x be a non zero non unit in an HCF

domain R and let q_1,q_2,\ldots,q_n be all the minimal subvalued primes containing x then following exactly the same lines as in the proof of Theorem 1, of this chapter we can show that $x=x_1x_2\ldots x_n \text{ ; where each of the } x_i \text{ is a packet}$

such that $(x_i,x_j)=1$ if $i\neq j$. And to conclude the proof we mention that a minimal prime of a principal ideal is a minimal subvalued prime. For if not let R_p be not a valuation domain. Then since R_p is an HCF domain and thus is essential