

PRÁCTICA 4

CONTROL AUTOMÁTICO DE MOTORES DE CD

PROFESOR: ATOANY FIERRO

UNIDAD DE FORMACIÓN: MR2022 - ANÁLISIS DE ELEMENTOS DE LA MECATRÓNICA

PRÁCTICA 4

CONTROL AUTOMÁTICO DE MOTORES DE CD

OBJETIVO

Diseñar y construir una maqueta funcional de una cortina industrial controlada por un motor de corriente directa (CD) que opere en dos modos: manual y automático. Los estudiantes desarrollarán habilidades en integración de hardware y programación avanzada para implementar un sistema que responda a entradas de botones y sensores de contacto, reforzando conceptos de control automático y seguridad en sistemas mecatrónicos.

INTRODUCCIÓN

El control de sistemas automáticos es esencial en aplicaciones industriales para mejorar la eficiencia y la seguridad. En esta práctica, los estudiantes construirán y programarán una maqueta de cortina industrial que puede ser operada manualmente mediante botones o de forma automática con sensores de contacto. Este sistema no solo asegura el correcto funcionamiento de la cortina dentro de sus límites, sino que también integra medidas de seguridad al detener y reiniciar el movimiento al detectar un objeto durante el descenso. Esta actividad fomenta el desarrollo de habilidades en el diseño y control de sistemas electro-mecánicos.

MATERIAL

- 1 Motor de corriente directa (CD).
- 1 Driver para el motor (puente H o módulo L298N).
- 5 Push buttons.
- 2 Sensores de contacto para los límites superior e inferior.
- 1 Sensor infrarrojo para detección de objetos.
- 1 Protoboard o base para conexiones.
- 1 Fuente de alimentación adecuada para el motor.
- Cables al ras del protoboard (no se permiten jumpers).
- Componentes adicionales para la magueta (estructura de la cortina, poleas, cuerda, etc.).
- IDE de Arduino instalado en la computadora.

ACTIVIDADES

Parte A: Preparación del entorno

Instrucciones

- 1. Reúne todos los componentes necesarios.
- 2. Verifica el correcto funcionamiento del motor, los botones y los sensores.

Parte B: Conexión del circuito

Instrucciones

- 1. Conecta el motor al puente H para permitir el control del sentido de giro.
- 2. Conecta los cuatro botones a pines digitales del Arduino.
- 3. Conecta los sensores de contacto para los límites superior e inferior a pines digitales del Arduino.
- 4. Conecta el sensor infrarrojo a un pin digital.

Parte B: Programación del Arduino

Instrucciones

- 1. Abre el IDE de Arduino y crea un nuevo sketch.
- 2. Crea un programa el cual permita el control manual y automático de una cortina industrial.
 - a. Manual: en este modo, por medio de dos push buttons se podrá subir y bajar la cortina
 - b. Automático: en este modo, la cortina subirá y bajará de manera automática. Al subir, luego de llegar al punto máximo, se deberá de esperar 5 segundos para posteriormente bajar. Si al bajar, se detecta un objetivo, la cortina deberá de subir al punto mpaximo, esperar 5 segundos y bajar. En este modo, el modo manual esta deshabilitado. Utiliza un push button de paro de emergencia.
- 3. Por medio de dos botones se selecciona el modo manual o el modo automático.

ENTREGABLES

- Maqueta funcional.
 - o Construcción de la cortina industrial con su estructura, motor y sensores.
- Código fuente.
 - o Archivo.ino nombrado como Practica4 NombreApellido.ino.
- Evidencia visual.
 - o Fotografías del circuito y la maqueta en funcionamiento.
 - Video de 2-3 minutos mostrando el funcionamiento en modo manual y automático, así como también la explicación del código y las conexiones.
- Reporte.
 - o Documento en PDF.

El reporte debe de incluir lo siguiente:

- 1. Portada con título, nombre, matrícula, grupo y fecha.
- 2. Objetivo e introducción.
- 3. Diagrama del circuito.
- 4. Código utilizado con explicaciones breves.
- 5. Observaciones y reflexiones sobre la práctica.

RÚBRICA DE EVALUACIÓN

El reporte se evaluará con la siguiente rúbrica de evaluación:

	Destacado	Sólido	Básico	Incipiente
Criterio	95-100	85-94	75-84	0-74
Funcionamiento de la maqueta	Funciona perfectamente y cumple con todos los requisitos.	Funciona correctamente, con errores menores.	Funciona parcialmente o con errores significativos.	La maqueta no funciona o tiene fallas graves.
Construcción del circuito	Ensamblado impecable, con cables al ras y sin jumpers.	Bien ensamblado, sin jumpers, pero conexiones mejorables.	Ensamblado funcional pero desordenado, algunos jumpers.	Mal ensamblado, uso de jumpers, conexiones incorrectas.
Código fuente	Código claro, funcional y bien comentado.	Funciona correctamente pero con áreas de mejora.	Funciona parcialmente o es incompleto.	No cumple con los requisitos o tiene errores graves.
Reporte y evidencias	Reporte completo, bien estructurado y con evidencias claras.	Completo y con evidencias adecuadas pero mejorables.	Básico, con poca profundidad y evidencias limitadas.	Incompleto, sin detalles o evidencias visuales inadecuadas.