

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE161003002

FCC REPORT

(BLE)

Applicant: SUN CUPID TECHNOLOGY (HK) LIMITED

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Hong Kong

Equipment Under Test (EUT)

Product Name: LTE mobile phone

Model No.: A3L

Trade mark: NUU

FCC ID: 2ADINNUUA3L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 Oct., 2016

Date of Test: 20 Oct., to 17 Nov., 2016

Date of report issued: 18 Nov., 2016

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Reviewed by:

Version No.	Date	Description
00	18 Nov., 2016	Original

Date:

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 18 Nov., 2016

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	20
	6.6.2	Radiated Emission Method	22
	6.7	SPURIOUS EMISSION	27
	6.7.1	Conducted Emission Method	27
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
ጸ	FUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SUN CUPID TECHNOLOGY (HK) LIMITED
Address of Applicant:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Hong Kong
Manufacturer/ Factory:	Sun cupid (Shen Zhen) Electronic Ltd
Address of Manufacturer/ Factory:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7

5.2 General Description of E.U.T.

Product Name:	LTE mobile phone
Model No.:	A3L
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.09 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: HJ-0501000E1-US
	Input: AC100-240V 50/60Hz 0.2A
	Output: DC 5.0V, 1A

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCISE161003002

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	liated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
12	Coaxial Cable	N/A	N/A	CCIS0018	04-01-2016	03-31-2017
13	Coaxial Cable	N/A	N/A	CCIS0020	04-01-2016	03-31-2017

Con	ducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: F

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.09 dBi.

6.2 Conducted Emission

Test Requirement: FCC Part 15 C Section 15.207 Test Method: ANSI C63.4: 2014 Test Frequency Range: Class J Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average (MHz) Quasi-peak Average (MHz) 0.15-0.5 66 to 56* 56 to 44 0.5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.), which procedure stabilization network (L.I.S.N.), which procedure a LISN that provides a 50ohm/50uH coupling impedance with termination. (Please refer to the block diagram of the test services are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with termination. (Please refer to the block diagram of the test services are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with termination. (Please refer to the block diagram of the test services are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with termination. (Please refer to the block diagram of the test services are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with termination. (Please refer to the block diagram of the test services are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with termination.	through a
Test Frequency Range: Class / Severity: Class B Receiver setup: Emit: Frequency range (MHz) Quasi-peak Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46 5-30 Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.), which procedure to the main power to line impedance for the measuring equipment 2. The peripheral devices are also connected to the main power a LISN that provides a 500hm/50uH coupling impedance with the provides a 500hm/50uH coupling impedance with t	through a
Class / Severity: Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak O.15-0.5 66 to 56* 5-30 Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.), which prospective impedance for the measuring equipment 2. The peripheral devices are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with the provides a 50ohm/50uH coupli	through a
Receiver setup: RBW=9kHz, VBW=30kHz	through a
Limit: Frequency range (MHz) Quasi-peak O.15-0.5 Get to 56* O.5-5 56 46 5-30 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.), which procedure to the measuring equipment to sooh m/50uH coupling impedance for the measuring equipment at LISN that provides a 50ohm/50uH coupling impedance with the provides a 50o	through a
Test procedure Comparison of the frequency of the first procedure	through a
Test procedure 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.), which procedure to the measuring equipment 2. The peripheral devices are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with the second stabilization of the measuring equipment to the measuring equipment to the peripheral devices are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with the second stabilization of the second sta	through a
Test procedure 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.), which procedure to the measuring equipment 2. The peripheral devices are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.), which procedure to the measuring equipment at LISN that provides a 50ohm/50uH coupling impedance with the logarithm of the frequency.	through a
* Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power t line impedance stabilization network (L.I.S.N.), which procedure 500hm/50uH coupling impedance for the measuring equipment 2. The peripheral devices are also connected to the main power a LISN that provides a 500hm/50uH coupling impedance with the provides a 500hm/50uH coupling impedance with the logarithm of the frequency.	ovides a
Test procedure 1. The E.U.T and simulators are connected to the main power to line impedance stabilization network (L.I.S.N.), which procedure 500hm/50uH coupling impedance for the measuring equipment 2. The peripheral devices are also connected to the main power a LISN that provides a 500hm/50uH coupling impedance with the provides a 500hm/50	ovides a
line impedance stabilization network (L.I.S.N.), which pro 500hm/50uH coupling impedance for the measuring equipment 2. The peripheral devices are also connected to the main power a LISN that provides a 500hm/50uH coupling impedance with the prov	ovides a
photographs). 3. Both sides of A.C. line are checked for maximum or interference. In order to find the maximum emission, the positions of equipment and all of the interface cables must be according to ANSI C63.4: 2014 on conducted measurement.	th 500hm setup and conducted e relative
Test setup: Reference Plane LISN 40cm 80cm Filter AC po AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m	ower
Test Instruments: Refer to section 5.7 for details	
Test mode: Refer to section 5.3 for details	
Test results: Passed	

Measurement Data:

Neutral:

Trace: 19

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : LTE mobile phone

Model : A3L Test Mode

: BLE mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: YT

Remark

Temark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.178	30.54	0.14	10.77	41.45	64.59	-23.14	QP
2	0.178	18.95	0.14	10.77	29.86	54.59	-24.73	Average
3	0.337	35.17	0.21	10.73	46.11	59.27	-13.16	QP
1 2 3 4 5 6 7 8	0.337	23.79	0.21	10.73	34.73	49.27	-14.54	Average
5	0.417	35.85	0.23	10.73	46.81	57.51	-10.70	QP
6	0.417	22.72	0.23	10.73	33.68	47.51	-13.83	Average
7	0.573	20.89	0.28	10.77	31.94	46.00	-14.06	Average
8	0.735	34.38	0.32	10.79	45.49	56.00	-10.51	QP
9	0.735	21.60	0.32	10.79	32.71	46.00	-13.29	Average
10	1.303	19.27	0.26	10.90	30.43	46.00	-15.57	Average
11	1.585	33.06	0.26	10.93	44.25	56.00	-11.75	QP
12	3.207	35.03	0.31	10.91	46.25	56.00	-9.75	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : LTE mobile phone

Model : A3L Test Mode : BLE mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: YT

Remark

200	Read Level				Limit Line	Over Limit	Remark
MHz	dBu∜	<u>d</u> B	dB	dBu₹	dBu₹	<u>dB</u>	
0.150	32.62	0.14	10.78	43.54	66.00	-22.46	QP
0.178	33.00	0.15	10.77	43.92	64.59	-20.67	QP
0.178	19.13	0.15	10.77	30.05	54.59	-24.54	Average
0.358	36.07	0.21	10.73	47.01	58.78	-11.77	QP
0.358	24.45	0.21	10.73	35.39	48.78	-13.39	Average
0.415	36.08	0.24	10.73	47.05	57.55	-10.50	QP
0.415	23.60	0.24	10.73	34.57	47.55	-12.98	Average
0.582	19.88	0.28	10.77	30.93	46.00	-15.07	Average
0.627	34.31	0.29	10.77	45.37	56.00	-10.63	QP
0.708	20.13	0.32	10.77	31.22	46.00	-14.78	Average
1.123	19.30	0.27	10.88	30.45	46.00	-15.55	Average
3.258	34.95	0.33	10.91	46.19	56.00	-9.81	QP
	Freq 0.150 0.178 0.178 0.358 0.415 0.415 0.582 0.627 0.708 1.123	Read Level MHz dBuV 0.150 32.62 0.178 33.00 0.178 19.13 0.358 36.07 0.358 24.45 0.415 36.08 0.415 23.60 0.582 19.88 0.627 34.31 0.708 20.13 1.123 19.30	Read LISN Level Factor MHz dBuV dB 0.150 32.62 0.14 0.178 33.00 0.15 0.178 19.13 0.15 0.358 36.07 0.21 0.358 24.45 0.21 0.415 36.08 0.24 0.415 23.60 0.24 0.415 23.60 0.24 0.415 23.60 0.24 0.582 19.88 0.28 0.627 34.31 0.29 0.708 20.13 0.32 1.123 19.30 0.27	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.150 32.62 0.14 10.78 43.54 0.178 33.00 0.15 10.77 43.92 0.178 19.13 0.15 10.77 30.05 0.358 36.07 0.21 10.73 47.01 0.358 24.45 0.21 10.73 35.39 0.415 36.08 0.24 10.73 35.39 0.415 23.60 0.24 10.73 34.57 0.582 19.88 0.28 10.77 30.93 0.627 34.31 0.29 10.77 45.37 0.708 20.13 0.32 10.77 31.22 1.123 19.30 0.27 10.88 30.45	Read LISN Cable Loss Level Limit Line MHz dBuV dB dB dBuV dBuV 0.150 32.62 0.14 10.78 43.54 66.00 0.178 33.00 0.15 10.77 43.92 64.59 0.178 19.13 0.15 10.77 30.05 54.59 0.358 36.07 0.21 10.73 47.01 58.78 0.358 24.45 0.21 10.73 35.39 48.78 0.415 36.08 0.24 10.73 34.57 47.55 0.582 19.88 0.28 10.77 30.93 46.00 0.627 34.31 0.29 10.77 45.37 56.00 0.708 20.13 0.32 10.77 31.22 46.00 1.123 19.30 0.27 10.88 30.45 46.00	MHz dBuV dB dB dBuV dBuV dB 0.150 32.62 0.14 10.78 43.54 66.00 -22.46 0.178 33.00 0.15 10.77 43.92 64.59 -20.67 0.178 19.13 0.15 10.77 30.05 54.59 -24.54 0.358 36.07 0.21 10.73 47.01 58.78 -11.77 0.358 24.45 0.21 10.73 35.39 48.78 -13.39 0.415 36.08 0.24 10.73 47.05 57.55 -10.50 0.415 23.60 0.24 10.73 47.05 57.55 -12.98 0.582 19.88 0.28 10.77 30.93 46.00 -15.07 0.627 34.31 0.29 10.77 45.37 56.00 -10.63 0.708 20.13 0.32 10.77 31.22 46.00 -14.78 1.123 19.30 0.27

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.1.1				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.09		
Middle	-1.17	30.00	Pass
Highest	-1.77		

Test plot as follows:

Date: 20.0CT.2016 20:51:11

Lowest channel

Date: 20.0CT.2016 20:51:31

Middle channel

Date: 20.0CT.2016 20:51:49

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.720			
Middle	0.726	>500	Pass	
Highest	0.732			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.026			
Middle	Middle 1.026		N/A	
Highest	1.026			

Test plot as follows:

Date: 20.OCT.2016 20:54:09

Lowest channel

Date: 20.0CT.2016 20:53:17

Middle channel

Date: 20.OCT.2016 20:52:41

Highest channel

Date: 20.OCT.2016 20:55:51

Lowest channel

Date: 20.0CT.2016 20:56:10

Middle channel

Date: 20.0CT.2016 20:56:39

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	NSI C63.10:2013 and KDB558074v03r05 section 10.2					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

moded offer bata.								
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result					
Lowest	-1.86							
Middle	-1.93	8.00	Pass					
Highest	-2.46							

Test plots as follow:

Date: 20.OCT.2016 20:59:26

Lowest channel

Date: 20.0CT.2016 20:59:45

Middle channel

Date: 20.0CT.2016 21:00:06

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

- . -	500 D					
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 20.0CT.2016 20:58:45

Lowest channel

Date: 20.OCT.2016 20:57:47

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013 and KDB 558074v03r05 section 12.1						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VI	BW	Remark	
·	Above 1GHz	Peak	1MHz	3N	ЛHz	Peak Value	
		RMS	1MHz		ИHz	Average Value	
Limit:	Frequen	ncy I	Limit (dBuV/m @3	Bm)		Remark	
	Above 10	GHz —	54.00			verage Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenr tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower that the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi- 					5 meters above ed 360 degrees ce-receiving e-height antenna meters above eld strength. In a are set to d to its worst in 1 meter to 4 is to 360 degrees inction and 0 dB lower than the peak values ons that did not	
Test setup:	sheet.	AE EUT (Tumtable)	Ground Reference Plane Test Receiver		Antenna Tow	wer	
Test Instruments:	Refer to section	n 5.7 for det	ails				
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						
	•						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : LTE mobile phone

Model : A3L

Test mode : BLE-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

LTAM.	N.									
	Fr	eq		Antenna Factor				Limit Line	Over Limit	Remark
-	N	Ήz	dBu∜	dB/m			$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2338.2	274	20.13	23.67	4.64	0.00	48.44	74.00	-25.56	Peak
2	2338.2	274	9.35	23.67	4.64	0.00	37.66	54.00	-16.34	Average
3	2390.0	000	17.36	23.68	4.69		45.73	74.00	-28.27	Peak
4	2390 0	000	7 55	23 68	4 69	0.00				Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : LTE mobile phone Condition

EUT

Model : A3L

Test mode : BLE-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: YT REMARK :

шлипи			Antenna Factor				Limit Line		Remark
2	MHz	dBu₹	— <u>dB</u> /m		<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
1	2340.420			4.64		48.65			
2	2340.420	8.73	23.67	4.64	0.00	37.04	54.00	-16.96	Average
3	2390.000	17.62	23.68	4.69	0.00	45.99	74.00	-28.01	Peak
4	2390.000	7.34	23.68	4.69					Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: LTE mobile phone EUT

Model : A3L

Test mode : BLE-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: YT

REMARK

Trancara									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∀	$\overline{-dB}/\overline{m}$		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	2483.500	19.21	23.70	4.81	0.00	47.72	74.00	-26.28	Peak
2	2483.500	7.37	23.70	4.81	0.00	35.88	54.00	-18.12	Average
3	2492.322	20.82	23.70	4.82			74.00		
4	2492.322	9.67	23.70	4.82	0.00	38.19	54.00	-15.81	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : LTE mobile phone

Model : A3L

Test mode : BLE-H Mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: YT

Huni:55%

REMARK

1234

	Freq		Antenna Factor						Remark	
_	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500 2483.500 2494.041 2494.041	7.72 19.33	23.70	4.81 4.81 4.82 4.82	0.00 0.00	36.23 47.85	54.00 74.00	-26.15	Average	

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:									
	Spectrum Analyzer E.U.T Non-Conducted Table								
	Ground Reference Plane								
Test Instruments:	Refer to section 5.7 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

Date: 15.NOV.2016 07:28:03

30MHz~25GHz

Date: 20.OCT.2016 22:43:25

30MHz~25GHz

Date: 20.OCT.2016 22:45:54

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	5.209	and 15.205						
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency Detector RBW VBW Remark									
·	30MHz-1GHz	Quasi-pe	eak	120KHz 300k		KHz Quasi-peak Value				
	Above 1GHz	Peak		1MHz	3M		Peak Value			
		RMS		1MHz	3M	Hz	Average Value			
Limit:	Frequency		Lim	it (dBuV/m @	3m)		Remark			
	30MHz-88M			40.0			uasi-peak Value			
	88MHz-216M			43.5			uasi-peak Value			
							•			
	960MHz-1G	Hz								
	Above 1GF	-lz				_				
	4 The FUT	waa nlaa	od or		f o rot	otina				
Test Procedure:	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data									

Below 1GHz:

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : LTE mobile phone Condition

EUT

: A3L Model Test mode : BLE Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK

CHICATUR									
	Freq		Antenna Factor						
-	MHz	dBu∇	<u>dB</u> /m		<u>ab</u>	dBu√/m	dBuV/m	<u>dB</u>	
1	30.000	45.45	11.80	0.72	29.98	27.99	40.00	-12.01	QP
2	40.988	28.85	17.06	1.22	29.89	17.24	40.00	-22.76	QP
3	120.699	36.13	11.83	2.18	29.39	20.75	43.50	-22.75	QP
4	181.283	36.83	9.28	2.74	28.96	19.89	43.50	-23.61	QP
5	366.823	35.13	14.78	3.09	28.64	24.36	46.00	-21.64	QP
6	776, 878	36, 00	20, 51	4, 35	28, 32	32, 54	46,00	-13.46	ΩP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : LTE mobile phone

Model : A3L

Test mode : BLE Mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK:

ŒMARK	:		1004							
	Freq		Antenna Factor				Limit Line		Remark	
1000	MHz	—dBu∜		<u>d</u> B	<u>dB</u>	dBu√/m	dBuV/m	<u>d</u> B		-
1	35.375	40.46	14.96	1.07	29.95	26.54	40.00	-13.46	QP	
2 3 4	116.132	48.07	11.25	2.12	29.42	32.02	43.50	-11.48	QP	
3	123.699	49.29	12.01	2.21	29.37	34.14	43.50	-9.36	QP	
4	205.675	40.56	10.47	2.86	28.79	25.10	43.50	-18.40	QP	
5	284.977	36.47	12.25	2.90	28.48	23.14	46.00	-22.86	QP	
6	836.244	40.29	20.91	4.23	28.06	37.37	46.00	-8.63	QP	

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	58.15	35.99	6.80	41.81	59.13	74.00	-14.87	Vertical
4804.00	57.62	35.99	6.80	41.81	58.60	74.00	-15.40	Horizontal
Т	est channel	•	Lowest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	50.36	35.99	6.80	41.81	51.34	54.00	-2.66	Vertical
4804.00	49.14	35.99	6.80	41.81	50.12	54.00	-3.88	Horizontal

Т	est channel	:	Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	55.61	36.38	6.86	41.84	57.01	74.00	-16.99	Vertical
4884.00	54.23	36.38	6.86	41.84	55.63	74.00	-18.37	Horizontal
Т	est channel	•	Middle		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	47.16	36.38	6.86	41.84	48.56	54.00	-5.44	Vertical
4884.00	48.26	36.38	6.86	41.84	49.66	54.00	-4.34	Horizontal

Т	est channel	:	Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	52.18	36.71	6.91	41.87	53.93	74.00	-20.07	Vertical	
4960.00	53.47	36.71	6.91	41.87	55.22	74.00	-18.78	Horizontal	
Т	est channel		Highest		Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	46.21	36.71	6.91	41.87	47.96	54.00	-6.04	Vertical	
4960.00	47.92	36.71	6.91	41.87	49.67	54.00	-4.33	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.