Day 6: The Central Limit Theorem I ★

Central Limit Theorem

The central limit theorem (CLT) states that, for a large enough sample (n), the distribution of the sample mean will approach normal distribution. This holds for a sample of independent random variables from any distribution with a finite standard deviation.

Let $\{X_1, X_2, X_3, \dots, X_n\}$ be a random data set of size n, that is, a sequence of independent and identically distributed random variables drawn from distributions of expected values given by μ and finite variances given by σ^2 . The sample average is:

$$s_n := rac{\sum_i X_i}{N}$$

For large $m{n}$, the distribution of sample sums $m{S_n}$ is close to normal distribution $m{\mathcal{N}}(\mu', \sigma')$ where:

- $\mu' = n \times \mu$
- $\sigma' = \sqrt{n} \times \sigma$