Polynomial-Time Approximation Scheme

DANG Vu Lam GUILLOTEAU Quentin

Monday 1st April, 2019

Table of Contents

- 1 PTAS: Definition
- 2 Application to the Bin packing problem
 - The Bin packing problem
 - First Fit Algorithm
 - Restricted instances
 - Number of sizes is less than n
 - ullet All sizes > arepsilon
 - General Case
 - Comparison

PTAS: Definition

PTAS: Definition

Definition (Minimization problem)

A PTAS is an algorithm A, which takes an instance of an optimization problem I and a parameter $\varepsilon > 0$ and produces, in **polynomial time** (in n and ε) a solution $A(I) \leq (1 + \varepsilon) \times OPT(I)$

Definition (Maximization problem)

A PTAS is an algorithm A, which takes an instance of an optimization problem I and a parameter $\varepsilon>0$ and produces, in polynomial time (in n and ε) a solution $A(I)\geq (1-\varepsilon)\times OPT(I)$

Where OPT(I) is the optimal solution of the optimization problem for the instance I.

Application to the Bin packing problem

The Bin packing problem

The Bin Packing Problem (BPP)

Setup

Given a set of bins $S_1, S_2 ...$ with the same size 1 and a set of n items with sizes $s_1, s_2, ..., s_n$ and $\forall i, 1 \le i \le n, s_i \in [0, 1]$.

Goal

Find

- the minimal (integer) number of bins B
- **a** B-partition $S_1 \bigcup \cdots \bigcup S_B$ of $\{1, \ldots, n\}$ such that: $\forall k \in \{1, \ldots, B\}, \sum_{i \in S_k} s_i \leq 1$

First Fit Algorithm

First Fit Algorithm

Algorithm

- 1 For each items s_i find the first bin that fit
- 2 If no bins fit, order new bin
- 3 Until no more items left

Remark

- 2 approximation
- How can we improve?

Restricted instances

PTAS for BPP - Number of sizes is less than n

Theorem

For all instances of the BPP where the number of different item-sizes is K (K < n), there is a **polynomial algorithm** for solving these instances.

Proof

We can represent a bin as a K-uplet (x_1, \ldots, x_K) , where x_i represents the number of element of size s_i in the bin.

As, $\forall i, x_i \leq n$, there are $O(n^K)$ possible bins.

A feasible solution requires at most n bins.

Thus, there are $O(n^{K+1})$ feasible packings.

Algorithm

Brute force all the feasible packings !

PTAS for BPP - All sizes $\geq \varepsilon$

Theorem

For all instances of the BPP where $\forall i, s_i \geq \varepsilon$, there is a $(1 + \varepsilon)$ -approximation algorithm

PTAS for BPP - All sizes $\geq \varepsilon$

Algorithm

- I Sort the sizes s_i such that $s_1 \leq s_2 \leq \cdots \leq s_n \ (O(n \log n))$
- 2 Partition the items into K groups, each with the same number of elements inside $(Q = \frac{n}{K})$ (except the last one)
- 3 Round every size in each group to the maximum size in the group (O(n))
- 4 Brute force the solution for this new instance J (as seen before) $(O(n^{K+1}))$
- 5 Return the packing of J as a packing of I

PTAS for BPP - Finding K

Instances Memo

- I : Input instance
- *J* : Ouput instance
- J': I rounded down
- J_Q : J without the last group
- J'_Q : J' without the first group

Computation of K

$$A(J) \le OPT(J_Q) + Q \le OPT(J_Q') + Q$$

$$\le OPT(J') + Q \le OPT(I) + Q$$

PTAS for BPP - Finding K

$$A(J) \leq OPT(I) + Q$$

$$\leq OPT(I) + \frac{n}{K}$$

$$\leq OPT(I) + \frac{1}{K} \sum_{i=1}^{n} \frac{s_i}{\varepsilon}$$

$$\leq OPT(I) + \frac{1}{K\varepsilon} \sum_{i=1}^{n} s_i$$

$$\leq OPT(I) + \frac{1}{K\varepsilon} OPT(I)$$

$$\leq \left(1 + \frac{1}{K\varepsilon}\right) OPT(I)$$

PTAS for BPP - Finding K

Value of K

$$\frac{1}{\varepsilon K} = \varepsilon \implies K = \frac{1}{\varepsilon^2}$$

General Case

PTAS for BPP - General Case

Algorithm

- I Consider I' the instance obtained by keeping only from I (input instance) all the items with a size $\geq \varepsilon$
- 2 Solve I' with the $(1+\varepsilon)$ -approximation algo $(O(n^{K+1}))$
- Apply First Fit on the resulting packing using items with a size $< \varepsilon$ (O(n))
- 4 Return the packing

General case algorithm:
$$O(n^{K+1}) = O(n^{\frac{1}{\varepsilon^2}+1})$$

If $\varepsilon = 0.01$, algorithm in $O(n^{10001})$

PTAS for BPP - General Case

Theorem

The previous algorithm finds a packing with at most $(1+2\varepsilon) \times OPT(I) + 1$ bins (for $\varepsilon \in \left]0, \frac{1}{2}\right]$)

Proof

Let B be the number of bins returned by the algorithm.

- If no extra bin is needed: $B \le (1 + 2\varepsilon) \times OPT(I') \le (1 + 2\varepsilon) \times OPT(I)$
- Else: The available space in each of the first B-1 bins is less than ε

$$OPT(I) \ge \sum_{i} s_{i} > (B-1) \times (1-\varepsilon) \implies B < \frac{OPT(I)}{1-\varepsilon} + 1$$

$$\frac{OPT(I)}{1-\varepsilon} + 1 \le (1+2\varepsilon)OPT(I) + 1$$

Comparison

Comparison

$$n = 20$$

Figure: First Fit (12 bins) Figure: PTAS with $\varepsilon = 0.5$ (11 bins)