Lógica para Computação 2014/2

Profa: Daniela Scherer dos Santos daniela.santos37@ulbra.edu.br

Roteiro

- Teoria dos Conjuntos;
 - representação;
 - operações:
 - união, intersecção e complemento;
- Cálculo proposicional x Teoria dos Conjuntos x Álgebra Booleana;
- Diagramas de Venn.

É de fundamental importância para algumas áreas da computação, exemplos:

- Banco de Dados (operações da álgebra relacional são oriundas da Teoria dos Conjuntos);
- Linguagens Formais;
- etc.

Um conjunto é qualquer coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada.

Exemplos:

- O conjunto de todas as cadeiras da sala de aula de lógica;
- O conjunto de todos os estudantes desta universidade.
- O conjunto das regras de uso do laboratório de informática.

Representando um conjunto por:

- Extensão:
 - P = {a,e,i,o,u} → P é o conjunto das vogais do nosso alfabeto
 - A = {1, 3, 5, 7, ... 997, 999} → A é o conjunto de números naturais ímpares menores que 1000
 - I = {1, 3, 5, 7, ...} → I é o conjunto de todos os números naturais ímpares

Representando um conjunto por:

Diagramas de Venn-Euller:

Conjunto A dos números primos menores que 15.

Representando um conjunto por:

Diagramas de Venn-Euller:

Conjunto A dos números primos menores que 15.

Elementos exteriores ao círculo não fazem parte do conjunto.

 Conjunto Universo: No diagrama de Venn o conjunto universo e representado por um retângulo, isto é, pelos pontos interiores ao retângulo. Qualquer conjunto é desenhado como sendo uma curva fechada (círculo ou elipse), inteiramente contida no retângulo.

- Operações com conjuntos:
 - União;
 - Intersecção;
 - Complemento.
 - .

União

A união de dois conjuntos A e B é um conjunto que contém todos os elementos de A, todos os elementos de B, e nada mais além disso: A U B.

Exemplo:Se A = {a,b,c,d} e B = {c,d,e,f,g} então A ∪ B = {a,b,c,d,e,f,g}

Intersecção

A intersecção entre A e B é o conjunto dos elementos que são comuns a A e a B, isto é, a coleção dos elementos que pertencem a A e também pertencem a B:

Exemplos:

Se A = $\{a,b,c,d\}$ e B = $\{c,d,e\}$ então A \cap B = $\{c,d\}$

DIAGRAMA DE VENN PARA INTERSECÇÃO

Complemento

O complemento é uma operação definida em relação ao conjunto universo

A'

Exemplos:Se U = {a,b,c,d,e} e A = {c,d,e} então A' = {a,b}

Cálculo Proposicional x Teoria dos Conjuntos x Álgebra Booleana

O Cálculo Proposicional e a Teoria dos Conjuntos possuem estruturas semelhantes.

A Álgebra Booleana incorpora as propriedades básicas do Cálculo Proposicional e da Teoria dos Conjuntos.

NEGAÇÃO (~)(') corresponde à COMPLEMENTAÇÃO (') CONJUNÇÃO (^)(.) corresponde à INTERSECÇÃO (△) DISJUNÇÃO (v)(+) corresponde à UNIÃO (∪)

Exemplo: ((A + B) . A') corresponde a ((A U B) \(\cap A'\)

Forma geométrica capaz de representar funções lógicas → será utilizada para a representação de expressões de até três variáveis

COMPLEMENTO: A' corresponde à NEGAÇÃO (~A)

Diagrama para uma variável

COMPLEMENTO: A' corresponde à NEGAÇÃO (~A)

	Α	A'
1	1	0
2	0	1

As linhas 1 e 2 da tabela correspondem às regiões 1 e 2 do diagrama respectivamente.

UNIÃO: A ∪ B corresponde à DISJUNÇÃO (A v B), ou seja, SOMA LÓGICA (A+B)

Diagrama para duas variáveis

UNIÃO: A ∪ B corresponde à DISJUNÇÃO (A v B), ou seja, SOMA LÓGICA (A+B)

	Α	В	A+B
1	1	1	1
2	1	0	1
3	0	1	1
4	0	0	0

As linhas 1, 2, 3 e 4 da tabela correspondem às regiões 1, 2, 3 e 4 do diagrama respectivamente.

A região pintada de cinza no diagrama corresponde às linhas da tabela onde a fórmula (A + B) assume valor V.

INTERSECÇÃO: A ∩ B corresponde à CONJUNÇÃO (A ^ B), ou seja, MULTIPLICAÇÃO LÓGICA (A . B)

Diagrama para duas variáveis

INTERSECÇÃO: A ∩ B corresponde à CONJUNÇÃO (A ^ B), ou seja, MULTIPLICAÇÃO LÓGICA (A . B)

	Α	В	A.B
1	1	1	1
2	1	0	0
3	0	1	0
4	0	0	0

As linhas 1, 2, 3 e 4 da tabela correspondem às regiões 1, 2, 3 e 4 do diagrama respectivamente.

A região pintada de cinza no diagrama corresponde à linha 1 da tabela onde a fórmula (A . B) assume valor V.

Representação de Diagrama para três variáveis. Temos 8 regiões que correspondem às 8 linhas da tabela verdade:

	р	q	r
1	1	1	1
2	1	1	0
3	1	0	1
4	1	0	0
5	0	1	1
6	0	1	0
7	0	0	1
8	0	0	0

