Home Assignment 3

ECE 602 - Introduction to Optimization

Due: April 24, 2020

Exercise 1

Derive the conjugates of the following functions.

- (a) Max function: $f(x) = \max_{i=1,\dots,n} x_i$ on \mathbb{R}^n .
- (b) Sum of largest elements: $f(x) = \sum_{i=1}^{r} x_{[i]}$ on \mathbf{R}^n .
- (c) *p-norm*: $f(x) = ||x||_p$ on \mathbb{R}^n .

Exercise 2

The relative entropy between two vectors $x, y \in \mathbb{R}^n_{++}$ is defined as

$$\sum_{k=1}^{n} x_k \log \left(\frac{x_k}{y_k} \right) .$$

This is a convex function, jointly in x and y. In the following problem we calculate the vector x that minimizes the relative entropy with a given vector y, subject to the following constraints on x:

minimize
$$\sum_{k=1}^{n} x_k \log \left(\frac{x_k}{y_k} \right)$$
 subject to
$$Ax = b$$

$$\mathbf{1}^T x = 1$$

$$x \ge \mathbf{0}.$$

The given parameters are $y \in \mathbf{R}_{++}^n$, $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$. Note that $\mathbf{1}^T x = 1$ and $x \geq \mathbf{0}$ mean that x is a probability vector. Derive the Lagrange dual of this problem and simplify it to get

$$\underset{\nu}{\text{maximize}} \quad b^T \nu - \log \sum_{k=1}^n y_k e^{a_k^T \nu} \,,$$

where a_k is the k-th column of A. Note that $\nu \in \mathbf{R}^m$ is the Lagrange multiplier associated with the constraint Ax = b.

Exercise 3

In class, we formulated the problem of finding the largest Euclidean ball that lies in a polyhedron described by linear inequalities,

$$\mathcal{P} = \{ x \in \mathbf{R}^n \mid a_i^T x \le b_i, i = 1, \cdots, m \},\,$$

as a linear program. What if we find the largest ball in the l_{∞} -norm, i.e.,

$$\mathcal{B} = \left\{ x_c + ru \mid ||u||_{\infty} \le 1 \right\},\,$$

instead of the largest Euclidean ball? Can it still be formulated as a linear program?

Exercise 4

Consider the equality constrained least-squares problem

minimize
$$||Ax - b||_2^2$$

subject to $Cx = h$,

where $A \in \mathbf{R}^{m \times n}$ with rank A = n, and $C \in \mathbf{R}^{p \times n}$ with rank C = p. Give the KKT conditions, and derive expressions for the primal solution x^* and the dual solution ν^* .