Chapter 3: Facts about Common Statistical Models *

3 Facts about common statistical models

Bayes Models

• Probability Model on Data We have distributions $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\}$ for X on $(\mathcal{X}, \mathcal{B})$, where $\mathcal{P} \ll \mu \; (\sigma - \text{ finite measure })$ and R -N derivatives

$$\frac{dP_{\theta}}{d\mu}(x) = f_{\theta}(x)$$

Prior on Parameter We now add an assumption of a distribution G on (Θ, \mathcal{C}) with $G \ll \nu(\sigma)$ -finite measure) and R-N derivative

$$\frac{dG}{d\nu}(\theta) = g(\theta)$$

• Joint Distribution for (X, θ) : Here we consider $f_{\theta}(x)$ as a function of both x and θ (i.e., measurable in (x, θ)). If $f_{\theta}(x)$ is $\mathcal{B} \times \mathcal{C}$ -measurable, then there exists a joint probability distribution for (X, θ) on $(\mathcal{X} \times \Theta, \mathcal{B} \times \mathcal{C})$ defined, for $A \in \mathcal{B} \times \mathcal{C}$, by

$$\pi^{X,\theta}(A) \equiv P((X,\theta) \in A) = \int_A f_{\theta}(x) d(\mu \times G)(x,\theta) = \int f_{\theta}(x) g(\theta) d(\mu \times \nu)(x,\theta)$$

where

$$\frac{d\pi^{X,\theta}}{d(\mu \times G)} \equiv f_{\theta}(x), \quad \frac{d\pi^{X,\theta}}{d(\mu \times \nu)} \equiv f_{\theta}(x)g(\theta)$$

- Marginal Distributions
 - for X $(B \in \mathcal{B})$

$$\pi^{X}(B) \equiv P(X \in B) = \pi^{X,\theta}(B \times \Theta) = \int_{B \times \Theta} f_{\theta}(x) d(\mu \times G)(x,\theta) \stackrel{Fubini}{=} \int_{B} \left[\int_{\Theta} f_{\theta}(x) dG(\theta) \right] d\mu(x)$$
$$= \int_{B} \left[\int_{\Theta} f_{\theta}(x) g(\theta) d\nu \right] d\mu(x)$$
$$0 \le \frac{d\pi^{X}(x)}{2} - \int_{B} f_{\theta}(x) dG(\theta) = \int_{B} f_{\theta}(x) g(\theta)$$

$$0 \le \frac{d\pi^X(x)}{d\mu} = \int_{\Theta} f_{\theta}(x) dG(\theta) = \int_{\Theta} f_{\theta}(x) g(\theta)$$

- for θ $(C \in \mathcal{C})$

$$\pi^{\theta}(C) \equiv P(\theta \in C) = \pi^{X,\theta}(\mathcal{X} \times C) = \int_{\mathcal{X} \times C} f_{\theta}(x) d(\mu \times G)(x,\theta) = \int_{C} \left[\int_{\mathcal{X}} f_{\theta}(x) d\mu(x) \right] dG(\theta) = G(C)$$

Marginal distribution of θ is prior distribution G.

- Conditional distributions
 - for $X \mid \theta$

$$\pi^{X\mid\theta}(B\mid\theta)\equiv P_{X\mid\theta}(X\in B\mid\theta)=\int_B f_\theta(x)d\mu(x)=P_\theta(B),\quad B\in\mathcal{B}$$

$$\frac{d\pi^{X|\theta}(x)}{d\mu} = \frac{dP_{\theta}(x)}{d\mu} = f_{\theta}$$

^{*}STA643: Advanced Theory of Statistical Inference. Instructed by Dr. Daniel Nordman. Arranged by Zhiling Gu

$$-$$
 for $\theta \mid X$

$$\pi^{\theta|X}(C\mid x) \equiv P_{\theta|X}(\theta \in C\mid X = x) = \int_{C} \left[\frac{f_{\theta}(x)}{\int_{\Theta} f_{\theta}(x) dG(\theta)} \right] dG(\theta) = \int_{C} \frac{f_{\theta}(x)g(\theta)}{\int_{\Theta} f_{\theta}(x)g(\theta) d\nu(\theta)} d\nu(\theta)$$

$$\frac{d\pi^{\theta|X}(\theta)}{dG} = \frac{f_{\theta}(x)g(\theta)}{\int_{\Theta} f_{\theta}(x) dG(\theta)}, \quad \frac{d\pi^{\theta|X}(\theta)}{d\nu} = \frac{f_{\theta}(x)g(\theta)}{\int_{\Theta} f_{\theta}(x)g(\theta) d\nu(\theta)}, G \ll \nu$$

Note priors does not necessarily have a density, i.e. G is not necessarily dominated by some ν . But you can always write the density of posterior with respect to G.