Exercices 3

IFT339 Structures de données (Été 2001) Daniel Lemire, Ph.D.

Note: il est fortement conseillé de faire ces exercices avant de se présenter à l'examen final.

Question 1. Dessinez tous les arbres AVL qui contiennent les cinq valeurs 1, 2, 3, 4 et 5.

Question 2. Dessinez tous les arbres rouges et noirs qui contiennent les cinq valeurs 1, 2, 3, 4 et 5.

Question 3. Est-ce que l'abre de la figure 1 est un arbre AVL? Sinon, le corriger en utilisant uniquement des rotations.

Question 4. Est-ce que vous pouvez colorer l'arbre de la figure 1 en arbre rouge et noir sans utiliser de rotation? Si oui, comment.

Question 5. Retirez la racine de l'arbre de la figure 1.

Question 6. Dans un arbre binaire de recherche, en général, est-ce qu'il est plus coûteux de trouver le successeur d'un noeud ou de faire une rotation autour d'un noeud? Pourquoi?

Question 7. Dessinez l'arbre binaire de recherche que l'on obtient en utilisant la fonction insérer sur chaque élément de cette liste: {32, 24, 18, 12, 19, 29, 41, 47, 45}. Est-ce qu'il s'agit d'un arbre AVL?

Question 8. Insérer la valeur 40 dans l'arbre AVL de la figure 2 (en supposant que la valeur en question n'y apparaît pas). Équilibrez l'arbre ensuite en justifiant toutes vos étapes.

Figure 2. (L'indice d'équilibre gauche-moins-droite est entre parenthèse.)

Question 9. On a vu que la fonction « successeurt » prend un temps $O(\log n)$ dans le pire des cas. Comment peut-on affirmer que le parcours complet d'un tel arbre peut prendre un temps O(n) plutôt que $O(n \log n)$.

Question 10. Construisez un tas à partir des valeurs {3,4,5,1,2,3,4,5,6} et appliquez l'algorithme « heapsort ».

Question 11. Qu'est-ce qu'une table à adressage direct? Quand est-ce que ça fonctionne? Quelles sont les limites de cette méthode? Qu'est-ce qu'une fonction de hachage?

Question 12. Dire de quel type de B-arbre il s'agit et insérer les lettres B, F, H, I, L en séquence.

