# Human-Robot Collaborative Catching with High-speed Vision System and Deep Learning

Master 1<sup>st</sup>, Department of Mechanical Engineering, the University of Tokyo

Yuki Kawawaki



- Introduction of our laboratory
- My research
  - 1.Background
  - 2.Related Work
  - 3.Problem&Purpose
  - 4.Progress
  - 5.Summary

- Introduction of our laboratory
- My research
  - 1.Background
  - 2.Related Work
  - 3.Problem&Purpose
  - 4.Progress
  - 5.Summary



### **High-speed Flexible Robotics**

Intelligent system, Autonomous system





#### Robots and Solutions with High-speed and Flexible Technologies







High-speed robot system
Flexible ojbect manipulation
Human-robot interaction







### Win 100% in Rock-Scissors-Papers



http://www.hfr.iis.u-tokyo.ac.jp/research/index-j.html



http://www.hfr.iis.u-tokyo.ac.jp/research/index-j.html



### High-speed Knotting with Robot Arm



Dynamic Manipulation of a Linear Flexible Object with a High-speed Robot Arm



Manipulation of a Linear Flexible Object with a High-speed Robot Arm

http://www.hfr.iis.u-tokyo.ac.jp/research/index-j.html



### Folding a Towel with Robot Hand



- Introduction of our laboratory
- My research
  - 1.Background
  - 2.Related Work
  - 3.Problem&Purpose
  - 4.Progress
  - 5.Summary



#### Increase of Co-operating Robots

Number of HRC-relevant publications between 1996-2020



### **Human-Robot Collaboration (HRC)**













**Fully Programed** 

Co-existence

**Co-operation** 

Collaboration

#### **Conventional Robot**

Manufacturing Robot(KUKA)



#### Collaborative Robot

URe Robot (UR)



More and more robots are working with human closely

→ A Real-time Collaborative Robot moving smoothly according to human motion

- Introduction of our laboratory
- My research
  - 1.Background
  - 2.Related Work
  - 3.Problem&Purpose
  - 4.Progress
  - 5.Summary



### Related Work – Receiving tools from Human

P.Rosenberger et.al, "Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision" (2021)



- Success rate: 81.9%
- Processing Time(1~3): 0.196 sec (5.1 Hz)

 $\supset$  : No need of special environment settings like markers or lightning conditions  $\triangle$  : Processing time is slow  $\rightarrow$  difficult to work smoothly with human



### Related Work – Peg-in-Hole Task

Y.Yamakawa et.al, "Development of a Real-Time Human-Robot Collaborative System Based on 1kHz Visual Feedback Control and Its Application to a Peg-in-Hole Task" (2021)



O: • High Accuracy:  $\theta_{\chi}$  ~ 0.1 rad • Real-time Collaboration System(1000 Hz)

1 : • Necessity of Environment Settings like markers and Lightning Conditions

- Introduction of our laboratory
- My research
  - 1.Background
  - 2.Related Work
  - 3.Problem&Purpose
  - 4.Progress
  - 5.Summary



#### **Problem:**

✓ No HRC (Human-Robot Collaboration) System working in a normal environment with low-latency

### Purpose:

- ✓ No Environment Settings like markers or lightning conditions
- ✓ Working smoothly with low latency even if humans change their motion abruptly.



**Dynamic Object & Real-time Task** 

Human and Robot catch 2 balls separately



- Introduction of our laboratory
- My research
  - 1.Background
  - 2.Related Work
  - 3.Problem&Purpose
  - 4.Progress
  - 5.Summary



### System Overview





If  $||x_{b1} - x_h|| < ||x_{b2} - x_h||$ : Human: ball1,Robot: ball2 If  $||x_{b1} - x_h|| > ||x_{b2} - x_h||$ : Human: ball2,Robot: ball1





### © Object Detection – YOLO

#### **Object Detection with YOLOv7**

Class: Ball, Hand, Elbow, Body



Average accuracy: 0.81

| Ball     0.80       Hand     0.07       0.71 |            |       |      |      |       |      |  |  |  |  |  |
|----------------------------------------------|------------|-------|------|------|-------|------|--|--|--|--|--|
|                                              | Prediction | Ball  | 0.80 |      |       |      |  |  |  |  |  |
|                                              |            | Hand  | 0.07 | 0.71 |       |      |  |  |  |  |  |
| 6   Elbow   0.73                             |            | Elbow |      |      | 0.73  |      |  |  |  |  |  |
| Body 1.00                                    |            | Body  |      |      |       | 1.00 |  |  |  |  |  |
| Back- 0.13 0.29 0.27 ground                  |            |       | 0.13 | 0.29 | 0.27  |      |  |  |  |  |  |
| Ball Hand Elbow Body                         |            |       | Ball | Hand | Elbow | Body |  |  |  |  |  |
| Label                                        |            | Label |      |      |       |      |  |  |  |  |  |

- Ball, Hand and Elbow are wrongly classified as background
- Contours are likely to be vague → Can't detect objects
- ✓ Introduce Edge filter



### Object Tracking – System Overview







### Tracking of Ball – Template Matching

ROI Update every 5 frames with YOLO

Template: ROI from YOLO detection

Search Area: Around ROI









- MSE(Mean Squared Error): 8.0 pixel (3.4 pixel if first outliers are excluded)
- Tracking is not stable when ball passes around poles on the ceiling
- → Sensitive to the change of surrounding environment

10



### Tracking of Ball – Optical Flow

- ROI Update every 5 frames with YOLO
- Feature points:
   Shi-Tomashi method
- Search Area: ROI









MSE(Mean Squared Error) : 5.1 pixel
The faster the motion, the worse accuracy  $\rightarrow$  not problem in high-speed vision
Sensitive to the change of lightning condition  $\rightarrow$  Edged filter will be effective

| Method               | Merit                                     | Demerit                                                                                               | Solution                                                                                                                                                       |
|----------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Template<br>Matching | Accurate when<br>there is no<br>occlusion | <ul> <li>Sensitive to the change of the surroundings</li> <li>Necessary larger search area</li> </ul> | <ul> <li>Edge Filter</li> <li>Combine simple prediction</li> <li>x<sub>t+1</sub> = x<sub>t</sub> + v<sub>t</sub> · Δt</li> <li>→ Narrow search area</li> </ul> |
| Optical<br>Flow      | Only small area is necessary              | <ul> <li>Sensitive to the lightning change</li> <li>Error becomes larger as time passes</li> </ul>    | Edge Filter                                                                                                                                                    |

Detection: YOLO

Parallel Tracking: Template Matching and Optical Flow

→ High-speed and Robust Tracking System



### Tracking of Ball- Optical Flow + Template Matching

- ROI Update every 5 frames with YOLO
- Tracking:
   Optical Flow + Template Matching



MSE(Mean Squared Error): 3.2 pixel

(Template Matching: 8.1 pixel, Optical Flow: 5.1 pixel)

Error in Y axis is large after catching→ Edged filter will be necessary

- Introduction of our laboratory
- My research
  - 1.Background
  - 2.Related Work
  - 3.Problem&Purpose
  - 4.Progress
  - 5.Summary

### Summary & Future Plan

#### **Summary**

- Detection with YOLOv7
  - Accuracy: 81 %
- Tracking System combining YOLO detection and Tracking system
  - Template Matching : MSE= 8.1 pixel
  - Optical Flow : MSE = 5.1 pixel
  - Mix = 3.2 pixel

#### **Future Plan**

- Vision System
  - 1. 3D Reconstruction by Stereo Matching
  - 2. Real-time Multi-object Tracking system with YOLO and Template Matching and Optical Flow
  - Calculate the distance between balls and hand
  - 4. Making safety zone
- Control of Robot Arm
  - 5. Inverse Kinematics and PD control of torque
  - 6. Speed Control according to the Safety Zone
- 7. Experiment

| N 4 |   |   | 7 |   | 44 |   |
|-----|---|---|---|---|----|---|
| M   | 3 | 5 | 7 | 9 | 11 | 1 |
| 1   |   |   |   |   |    |   |
| 2   |   | 1 |   |   |    |   |
| 3   |   |   |   |   |    |   |
| 4   |   |   | • |   |    |   |
| 5   |   |   |   |   |    |   |
| 6   |   |   |   |   |    |   |
| 7   |   |   |   |   |    |   |



#### P4

- (1)https://ja.wikipedia.org/wiki/産業用ロボット
- (2) https://wiredworkers.io/cobot-arm
- (3) Inkulu, A.K, Bahubalendrumi, M.V.A.R, Dara, A and K, S.(2022) "Challenges and opportunities in human robot collaboration context of Industry 4.0 a state of the art review", Industrial Robot, Vol. 49 No.2, pp.226-239. https://doi.org/10.1108/IR-04-2021-0077
- (4) Debasmita, M., et.al, "A Survey of Robot Learning Strategies for Human-Robot Collaboration in Industrial Settings", Robotics and Computer-Integrated Manufacturing, 2022, Volume73, 102231, ISSN 0736-5845, <a href="https://doi.org/10.1016/j.rcim.2021.102231">https://doi.org/10.1016/j.rcim.2021.102231</a>

#### P6

P. Rosenberger *et al.*, "Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision," in *IEEE Robotics and Automation Letters*, vol. 6, no. 1, pp. 17-23, Jan. 2021, doi: 10.1109/LRA.2020.3026970

#### P7

Yamakawa, Y.; Matsui, Y.; Ishikawa, M. Development of a Real-Time Human-Robot Collaborative System Based on 1 kHz Visual Feedback Control and Its Application to a Peg-in-Hole Task . *Sensors* 2021, *21*, 663. <a href="https://youtu.be/xB9-vEiZwKY">https://youtu.be/xB9-vEiZwKY</a>

#### P9

URe: <a href="https://iot.aperza.com/2019/09/3789/">https://iot.aperza.com/2019/09/3789/</a>



## Thank you for listening