Logic and Computer Design Fundamentals

Midterm Review

Ming Cai cm@zju.edu.cn College of Computer Science and Technology, Zhejiang University

Previous Year's Final Exam

- 1. Fill in the blank (20 points, 2pt/per)
- 2. Single Choice (20 points, 2pt/per)
- 3. Optimization (12 points, 6pt/per)
- 4. Circuit Analysis (18 points)
 - Combinational circuit
 - Sequential circuit
- 5. Logic Design (30 points)
 - Combinational circuit
 - Sequential circuit

Course Review

HIGHLIGHTS & PROBLEMS

- Conversion between number systems
 - Binary number, hexadecimal number
 - Eg. $(1101\ 1111)_2 = (DF)_{16}$

Decimal	Binary	Octal	Hexadecimal
369.3125	101110001.0101	561.24	171.5
189.625	10111101.101	275.5	BD.A
214.625	11010110.101	326.5	D6.A
62407.625	1111001111000111.101	171707.5	F3C7.A

- Conversion between binary number and decimal code
 - BCD (binary-coded decimal)
 - Eg. $(1001\ 0101)_{BCD} \rightarrow (0101\ 1111)_2 \rightarrow (5F)_{16}$
 - Parity Bit
 - 100 0001 -> 0100 0001 (with even parity) -> 1100 0001 (with odd parity)
 - How to generate odd parity bit P for any 5-bit binary number $D_4D_3D_2D_1D_0$?
- Gray Code & ASCII Character Code

- Boolean algebra
 - DeMorgan's law: $(\overline{X} + \overline{Y}) = \overline{X} \overline{Y}$ and $(\overline{X}\overline{Y}) = \overline{X} + \overline{Y}$
 - Distributive laws: X+YZ=(X+Y)(X+Z)
 - Dual of an algebraic expression: $OR \leftarrow \rightarrow AND$, 0's $\leftarrow \rightarrow 1$'s
 - Consensus theorem: $XY + \overline{XZ} + YZ = XY + \overline{XZ}$, $(X+Y)(\overline{X}+Z)(Y+Z) = (X+Y)(\overline{X}+Z)$
- Complement of a function
 - OR $\leftarrow \rightarrow$ AND, 0's $\leftarrow \rightarrow$ 1's, $X \leftarrow \rightarrow \overline{X}$
- Standard forms
 - Minterms, Maxterms, Canonical forms (SOM, POM)
 - Product terms, sum terms, SOP, POS
 - Relationship between SOM and POM? SOM and SOP?
- Two-level circuit optimization
 - Cost criteria: gate input cost
 - Karnaugh map (K-map), Prime Implicants, Essential Prime Implicants
 - Simplifying in SOP form (with don't care conditions)

- Other gates
 - NAND/NOR, XOR/XNOR, Odd/Even Function, Buffer, 3-state buffer
- Exclusive-OR operator and gates
 - Identities of XOR operation:

$$X \oplus \overline{Y} = \overline{X} \oplus Y = (\overline{X} \oplus \overline{Y}) \qquad X \oplus (\overline{Y} \oplus \overline{Z}) = (\overline{X} \oplus \overline{Y}) \oplus \overline{Z} = (\overline{X} \oplus \overline{Y} \oplus \overline{Z})$$

- Odd function and even function
 - Use odd function to generate even parity bit
 - Use even function to generate odd parity bit
 - The even function is obtained by replacing the output gate with an XNOR gate. $P_{odd} = X \oplus Y \oplus Z$, $P_{even} = \overline{P_{odd}} = (X \oplus Y \oplus Z)$
- High-impedance outputs
 - 3-state buffer
 - Transmission gates

EN	IN	OUT
0	X	Hi-Z
1	0	0
1	1	1

Problems:

- The dual of an algebraic expression is obtained by 1) <u>interchanging OR and AND operations</u> and 2) replacing 1's by 0's and 0's by 1's.
- Use DeMorgan's Theorem to complement a function: 1) <u>interchange AND and OR operators</u> and 2) 2. complement each constant value and literal
- Four variables odd function has _____ C___ "1" squares in its corresponding K-Map. 3.
 - A. 4
- B. 7

C. 8

- D. 14
- The gate input cost G of function F = AB(C+D) + C(BD+AD) is <u>A</u>. 4.
 - A. 15
- B. 14

C. 13

- D. 12
- Which of the following logical gates can be used as a controllable inverter? _____B____. 5.
 - A. AND gate
- B. XOR gate
- C. Buffer gate
- D. OR gate
- The Essential Prime Implicants in the K-Map given below are _____B___. 6.
 - A. Y'Z', XZ'

- B. X'Y', XY C. XY, XZ' D. Y'Z', X'Y'
- Given below are the waveforms of input A, B and output F of a logic device. Then the device is a 7. <u>C</u> gate.

Problems:

1. According to the following logic circuit diagram, write down the corresponding Boolean function and optimize it to the form of SOP

2. Given a Boolean function

$$F(W, X, Y, Z) = \sum m(4, 6, 7, 8, 12, 15) + \sum d(2, 3, 5, 10, 11)$$

Optimize F together with the don't-care conditions d using a K-map

- Technology parameters
 - fan-in, fan-out, noise margin, cost, transition time, propagation delay, power dissipation

- Delay Model: transport delay, inertial delay, rejection time
- How to calculate gate delay based on fan-out?

- Methods of Describing Logic Events
 - Truth Table, Timing Diagram, Boolean Function, Karnaugh Maps, Logic Circuit
- Design procedure: specification, formulation, optimization, technology mapping, verification
 - Hierarchical Design
- Seven-segment display
 - How to design a BCD-to-Seven-Segment decoder? example 3-2
- Technology mapping
 - How to implement a Boolean function with NAND gates?

- n-to-m-Line Decoder
 - n inputs and m outputs with $n \le m \le 2^n$
- m-to-n-Line Encoder
 - m inputs and n outputs with $n \le m \le 2^n$
- Multiplexer
 - n control inputs (selection inputs), m inputs and one output with $m < 2^n$
- Demultiplexer: Decoder with Enable
- Combinational Function Implementation
 - Decoders and OR gates,
 - Multiplexers
 - ROMs
 - PALs: doesn't provide full decoding of the variables, so it doesn't generate all the minterms
 - PLAs: similar to the PALs
 - Lookup Tables

- Combinational Function Implementation
 - Any combinational circuit with *n* inputs and *m* outputs can be implemented with
 - an n-to- 2^n -line decoder, and m OR gates (one for each output)
 - Implement *m* functions of *n* variables with
 - an m-wide 2^n -to-1-line multiplexer
 - Implement m functions of n+1 variables with
 - an m-wide 2^n -to-1-line multiplexer and a single inverter

Problem: Design a 4-to-16 line decoder with Enable input using five 2-2x4Decoder D_1 to-4 line decoders with **Enable** inputs. D_2 D_3 2x4Decoder Decoder D_5 X_3 Decoder D_{10} D_{11} D_{12} Decoder D_{13} D_{14} X_1 D_{15}

 Problem: Give the canonical sum of product expression for the function which is implemented using the following circuit.

 $Y(A, B, C, D) = \Sigma_m(1, 2, 3, 6, 9, 10, 11, 13)$

• Problem: Give the canonical sum of product expression for the function which is implemented using the following circuit.

- Half Adder
- Full Adder
 - carry generate: X Y
 - *carry propagate:* X⊕Y
- Binary Ripple Carry Adder
- Carry Lookahead Adder
- Binary subtraction
 - Unsigned 2's Complement subtraction
 - Signed 2's Complement subtraction
 - **1**100 0011 = 1001
 - 0011 1100 = 0111
- Signed-Complement Arithmetic
- Binary adder-subtractors

Design by Contraction

2. simplifying the logic \Rightarrow contracting

Arithmetic circuit design

S	elect	Input	G = A	+Y+C _{in}
S ₁	S ₀	Υ	C _{in} 0	C _{in} 1
0 0 1	0 1 0 1	all 0's $\frac{B}{B}$ all 1's	G = A (transfer) $G = A + \underline{B}$ (add) $G = A + \overline{B}$ G = A - 1 (decrement)	G = A + 1 (increment) G = A + B + 1 $G = A + \overline{B} + 1$ (subtract) G = A (transfer)

 Problem: Implement a binary full adder with a dual 4-to-1-line multiplexer and a single inverter.

	X	Y	C_{in}	S	C	
•	0	0	0	0	0	$S = C_{in}$
_	0	0	1	1	0	C = 0
	0	1	0	1	0	$S = \overline{C}_{in}$
_	0	1	1	0	1	$C = C_{in}$
•	1	0	0	1	0	$S = \overline{C}_{in}$
	1	0	1	0	1	$C = C_{in}$
	1	1	0	0	1	$S = C_{in}$
	1	1	1	1	1	C = 1

- Problem: Using A Full Adder and logic gates to design a combinational circuit with three inputs, x, y, and z, and three outputs, A, B, and C.
- 1) When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input.
- 2) When the binary input is 4, 5, 6, or 7, the binary output is one less than the input.

						<u>√</u>
X	y	Z	A	В	С	x\yz 00 01 11 10
0	0	0	0	0	1	$0 \qquad 1 \qquad A = xy + xz = 0$
0	0	1	0	1	0	$x \uparrow 1 1 1 1$
0	1	0	0	1	1	<u>у</u>
0	1	1	1	0	0	
1	0	0	0	1	1	
1	0	1	1	0	0	$x \uparrow \boxed{1} \qquad 1 \qquad C = z'$
1	1	0	1	0	1	$B = x \oplus y \oplus z$
1	1	1	1	1	0	$y \longrightarrow Full-Adder $ $A = xy + xz + yz$
	•					z — C

Problems

- Given a 4-bit full adder, design a 4-bit Incrementer-Decrementer circuit.
 - Inputs: $D = D_3D_2D_1D_0$ and S, Outputs: $Y = Y_3Y_2Y_1Y_0$ and C.
 - (1). When S = 0, circuit is an Incrementer: Y = D + 1. If Y > 1111, C = 1; other C = 0.
 - (2). When S = 1, circuit is a Decrementer: Y = D 1. If Y < 0000, C = 0; other C = 1.
- Using a Full Adder and logic gates to design a combinational circuit that compares two 4-bit unsigned numbers A and B to see whether B is greater than A. The circuit has one output X, so that X = 1 if A < B and X = 0 if A >= B.

- Programmable implementation technologies
 - PROM, PAL, PLA, FPGA

AND	OR	DEVICE
Fixed	Fixed	Not Programmable
Fixed	Programmable	PROM
Programmable	Fixed	PAL
Programmable	Programmable	PLA

- Programmable implementation technologies
 - PROM
 - Can any combinational circuit with *n* inputs and *m* outputs be implemented with
 - a PROM with *n* inputs and *m* outputs?
 - a PLA with *n* inputs and *m* outputs?
 - a PAL with *n* inputs and *m* outputs?

- Programmable implementation technologies
 - PAL

$$\mathbf{W} = \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\mathbf{B}\mathbf{C}$$

$$F1 = X = ABC + ABC + W$$

$$F2 = Y = AB + BC + AC$$

- Programmable implementation technologies
 - PLA

- Programmable implementation technologies
 - FPGA
 - Lookup tables (LUTs) are used for implementing FPGAs

- Methods of designing combinational circuits
 - Design by truth table
 - Design by bisection
 - Design in a hierarchical structure
 - Design by iteration
 - Design by contraction/expansion

Design by truth table

Design by bisection

Decoder expansion

Lookup tables

Design in a hierarchical structure

Large shifters using layers of mux

256K * 8 RAM with four 64K * 8 RAM

Design by iteration

A four-bit Ripple Carry Adder

Design by contraction/expansion

Contraction of Adder to Incrementer

Expansion of inputs for constructing substractor

Expansion of inputs for constructing ALU

Information Representation

classical computing

quantum computing

Information Representation

classical computing

quantum computing

superposition

$$\begin{array}{c|c} |00\rangle \\ & \downarrow^{\text{quantum}} \\ \sqrt{1/2} \cdot |01\rangle + \sqrt{1/2} \cdot |10\rangle \\ & \downarrow^{\text{quantum}} \\ \text{gate} \\ \end{array}$$

$$\sqrt{1/2} \cdot |01\rangle + \sqrt{1/6} \cdot |10\rangle + \sqrt{1/3} \cdot |11\rangle$$

Information Representation

classical computing

quantum computing

cross-coupled gates

entanglement

Logic Gate and Logic Operator

classical computing

quantum computing

$$|00\rangle$$

$$|00\rangle$$

$$|01\rangle + \sqrt{1/2} \cdot |10\rangle$$

$$|01\rangle + \sqrt{1/2} \cdot |10\rangle + \sqrt{1/3} \cdot |11\rangle$$

$$|01\rangle + \sqrt{1/6} \cdot |10\rangle + \sqrt{1/3} \cdot |11\rangle$$

 $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\text{quantum gate 1}} \begin{bmatrix} 0 \\ \sqrt{1/2} \\ \sqrt{1/2} \\ 0 \end{bmatrix} \xrightarrow{\text{quantum gate 2}} \begin{bmatrix} 0 \\ \sqrt{1/2} \\ \sqrt{1/6} \\ \sqrt{1/3} \end{bmatrix} \xrightarrow{\text{observe}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

boolean operator

unitary operator

Logic Gate and Logic Operator

classical computing

boolean operator

1		
Inp	outs	Outputs
Х	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	0

quantum computing

unitary operator

- •linear transformation
- •reversible logic

K			
inp	out	ou	tput
X	У	Χ	y⊕ x
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

XOR gate

Controlled NOT gate

Computational Model

classical computing

quantum computing

sequential computing

parallel computing

Appendix A: Chapter 3

• Problem: Construct a 10-to-1 line multiplexer with three 4-to-1 line multiplexers. The selection codes 0000 through 1001 can be directly applied to the multiplexer selections inputs without added logic.

Appendix B: Chapter 5

Problem: Given a 256 x 8 ROM chip with Enable input, show the external connections 256 x 8 D₀ - 7 ROM necessary to construct a 2K x 8 ROM with eight chips and a decoder. Е 256 x 8 D₀ - 7 Decodei ROM Е 256 x 8 D₀ - 7 ROM Е

• Problem: Given a 1K x 4 ROM chip with Enable input, show the external connections necessary to construct a 4K x 8 ROM with eight chips and a decoder.

