Ejercicos monitoría semana 4

Rodrigo Castillo

3 de septiembre de 2020

1. Sea R un anillo, demuestre que

1.1. si existe la identidad 1 es única

Demostracion:

Supongamos que existen dos indentidades llamados1 y 1'.

por lo tanto para todo $a \in R$ se tiene que $a \times 1 = a$

tambien se tiene que $a \times 1' = a$, por lo tanto ...

 $a \times 1 = a$

 $a \times 1' = a$

y por transitividad...

1 = 1'

por lo tanto solamente existe un inverso multiplicativo

si un elemento a tiene inverso multiplicativo este es único

Supongamos que un elemento $a \in R$ tiene múltiples inversos multiplicativos, es decir que para todo $a \in R$ existen $b, b' \in R$ tales que ab = 1 y ab' = 1. por lo tanto

 $b = \frac{1}{a} \\
 b' = \frac{1}{a}$

b = b'

luego el inverso multiplicativo en un anillo es único

(no sé que tanto sentido tenga esta demostración jaja, preguntar)

2. Demuestre que los siguientes son subanillos de C

2.1. Los enteros de Gauss

$$Z[i] = \{a + bi, a, b \in Z\}$$

$$\tag{1}$$

Demostracion:

sean $c, c' \in \mathbb{Z}[i]$, luego c - c' es de la forma

 $a-a'+bb'ia,a',b,b'\in Z$, por lo tanto, note que $a+a'\in Z$ y que $bb'\in Z0$, por lo tanto $c, c' \in Z$

de forma análoga, se tiene que $c*c' \in Z$, luego Z[i] es un subanillo de R .

2.2. Los enteros de einstein

$$Z[w] = \{a + bw, a, b \in Z\}$$

$$(2)$$

donde $w = e^{\frac{2\pi i}{3}} = \frac{-1+\sqrt{3}}{3}$

2.2.1. Demostracion

tengo que $w=e^{\frac{2\pi i}{3}}=\frac{-1+\sqrt{3}}{3}$ sean $n,m\in Z[w]$ luego $n-m=a_1-a_2-b_1-b_2w$

por lo tanto , claramente, $a_1-a_2\in Z$, sin embargo falta ver que $b_1-b_2-2w\in Z$, por lo

$$b_1b_2 - 2(e^{\frac{2\pi i}{3}} = \frac{-1+\sqrt{3}}{2})$$

 $b_1b_2-2(e^{\frac{2\pi i}{3}}=\frac{-1+\sqrt{3}}{3})$ note que $b\in Z$, por lo tanto la resta está bien definida por lo tanto la expresion anterior pertenece a Z

Demuestre que si $\theta: R \to S$ es un homomorfismo 3. invertible de anillos $\Rightarrow \theta^{-1}: S \rightarrow R$ también es un homomorfismo de anillos

forma de demostracion

$$\theta a + b = \theta a + \theta b \ \theta ab = \theta a \theta b$$

demostracion 3.2.

supongamos que $\varphi:R\to S$ es un homomorfismo invertible de anillos , por lo tanto , si $phi(p) = s \implies phi^{-1}s = p.$

demostracion de que es un homomorfismo:

$$\varphi^{-1}a + \varphi^{-1}b = \varphi^{-1}a + b$$

 $\varphi^{-1}a + \varphi^{-1}b = \varphi^{-1}a + b$ como $\varphi^{-1}a \in R \text{ y } \varphi^{-1}b \in R \text{ entonces } ...$

$$\varphi(\varphi^1 a) + \varphi(\varphi^{-1} b) = \varphi^{-1} a + \varphi^{-b}$$

4. Encuentre el nucleo de los siguientes homomorfismos

4.1. el nucleo es el kernel y es donde llegan todos los 0's

 $\theta: [x,y] \to R$

$$f(x,y) \rightarrow f(0,0)$$

donde R[x, y] es el anillo de los polinomios en dos indeterminadas x y y, es decir: cada monomio tiene la forma $a_{ij}x^iy^j$ con $a_{ij} \in Ry$ $i, j \in N$

•
$$\theta: R[x] \to C$$
,
 $f(x) \to f(2+i)$

sugerencia, encuentre el polinomo p(x) de grado minimo en $ker(\theta)$ y después muestre que cualquier elemento de $ker(\theta)$ es de la forma p(x)q(x) por algún $q(x) \in R[x]$.