Ministère de la Jeunesse, de l'Education nationale et de la Recherche Nantes, Rennes, Caen, Martinique, Guadeloupe/ BTS IRIS / session 2015

BTS IRIS

Informatique et Réseaux pour l'Industrie et les Services techniques

E6 – PROJET INFORMATIQUE

Dossier de présentation et de validation du sujet de projet

Groupement académique : Nantes, Rennes, Caen, Martinique, Guadeloupe Session		
Lycée ou Centre de formation : <u>Lycée Chevalier de Saint-Georges</u>		
Ville : Les Abymes	Académie : Guadeloupe	
Nom du projet : Système d'alerte précoce « spécifique » SAPS	Référence : 2015_CSG4	

Récapitulatif des projets du Lycée ou du Centre de Formation :	Nb. d'étudiants concernés sur	22
Projet N°1:	2015_CSG1 :	
Projet N°2:	2015_CSG2:	
Projet N°3:	2015_CSG3:	
Projet N°4 : Système d'alerte précoce « spécifique »	2015_CSG4: SAPS	4
Projet N°5 : Dispositif d'Appel à Distance	2015_CSG5: DAD	3
Projet N°6 : Douchette Sans Fils	2015_CSG6: DSF	4
Projet N°7:		

Sommaire

 Prés 1.1. 	sentation et situation du projet dans son environnement	
1.2.	Situation du projet	4
1.3.	Objectifs professionnels du projet	4
2. Prés	sentation du projet	
	ression du besoin	
4. Mo <u>y</u> 4.1.	yens préliminaires disponibles et contraintes de réalisation	
4.1.		
4.1.		
4.2.	•	
4.2.		
4.2.		
4.2.		
4.2.		
4.2.		
4.2.		
4.3.	Diagrammes	
4.3.		
4.3.		
4.3.	· ·	
4.3.	•	
4.3.	•	
4.3.	6. Diagramme de déploiement	14
4.4.	Contrainte de l'environnement	
4.5.	Contrainte économique	15
4.6.	Documents et moyens technologiques mis à disposition	
4.7.	Exigences qualité à respecter	
4.7.	Exigences qualité sur le produit à réaliser	15
4.7.	2. Exigences qualité sur le développement	15
4.7.	Exigences qualité sur la documentation à produire	15
4.7.	4. Exigences qualité sur la livraison	15
4.7.	5. Exigences qualité sur l'environnement d'exploitation	15
5. Plar	nification temporelle prévisionnelle	16
5.1.	Calendrier prévisionnel :	
6. Exp 6.1.	loitation pédagogiqueCompétences terminales susceptibles d'être abordées et évaluées	
	partition des tâches par étudiant	
7. Kep 7.1.	Taches communes à l'équipe	
7.2.	Tache de l'étudiant 1	
7.3.	Tache de l'étudiant 2	
7.4.	Tache de l'étudiant 3	22
7.5.	Tache de l'étudiant 4	23

Ministère de la Jeunesse, de l'Education nationale et de la Recherche

		Nantes, Rennes, Caen, Martinique, Guadeloupe/ Bl	
8.	Evalu	ation pour l'épreuve E6	25
8	.1.	Faisabilité	25
8	.2.	Suivi De Projet	26
	8.2.1.	Revue De Projet 1	27
	8.2.2.	Revue De Projet 2	28
8	.3.	Epreuve	29
	8.3.1.	Dossier Technique De Projet	29
	8.3.2.	Déroulement De L'épreuve	29
	8.3.3.	Evaluation	30
9.	Obser	vation de la commission d'harmonisation	32
	Anne		34

1. Présentation et situation du projet dans son environnement

4	1	 7			/ 1		4.5
		Ont	texte	\mathbf{q}	ragi	nco	tion
		 JUII	LUALL	uc	La	цэа	UUI

Projet proposé et suivi par :	M : BARREAU professeur				
	M:	professe	eur		
Statut des étudiants	Candidats scolarisés: en ten	nps plein	×	en alternance	1
Projet développé:	au lycée ou en centre de formation	on 🗷		en entreprise	
	Constitution de l'équipe de dével	oppement	t:		
Si le projet est développé au lycée ou en centre de formation :	Etudiant E1 : e1 Etudiant E2 : e2 Etudiant E3 : e3 Etudiant E4 : Aucun				
	Entreprise partenaire :	oui	×	non	
	Origine du projet :				
	- idée :	lycée		entreprise	×
	- cahier des charges :	lycée		entreprise	×
	Suivi du projet :	lycée	×	entreprise	
	Nom de l'étudiant :				
Si le projet est développé	Nom de l'entreprise : EDF				
en entreprise :	Adresse de l'entreprise : JARRY	Sud			
	Chef de projet dans l'entreprise :				
	Tél. :	Courriel:			
Budget alloué :	Montant : 1000€				
	A la charge de : centre de format	ion			

1.2. Situation du projet

Dans quelle (s) catégorie (s) de systèmes s'insère le projet à étudier :	
Moyens de production	
Services techniques.	×
Biens d'équipements	

1.3. Objectifs professionnels du projet

Tion objectile professionales au projec	
Domaines d'Activités Professionnelles abordés et développés avec le projet : (cf. le Référentiel des Activités Professionnelles)	
Analyser et spécifier le système informatique à développer	×
Réaliser la conception générale et détaillée	×
Coder et réaliser	×
Tester, mettre au point et valider	×
Intégrer et interconnecter des systèmes	
Installer, exploiter, optimiser et maintenir	
Assurer l'évolution locale ou la rénovation d'un système informatique	
Gérer le projet	×
Coopérer et communiquer en langue française et langue anglaise	

[2015_CSG4_BAR_CDCF.docx]

2. Présentation du projet

Les Antilles françaises présentent une population importante et un bâti relativement vulnérable aux séismes. La réduction du risque sismique dans ces îles passe donc en premier lieu par des mesures de reconstruction et de mise aux normes des bâtiments. Compte-tenu du coût économique et du temps de mise en œuvre qu'elles nécessitent, ces mesures ne sont cependant pas suffisantes. Il est donc nécessaire d'envisager d'autres approches permettant de réduire l'impact des séismes dans cette région qui présente le plus fort aléa sismique du territoire français.

Pour répondre à ces aléas, le site de production EDF dispose aujourd'hui d'une approche semi-automatique, ou un intervenant humain déclenche les alarmes pour initier les évacuations des bâtiments.

Le présent projet propose une automatisation complète de la procédure en place en s'appuyant sur un système d'alertes sismiques précoces (SASP) à développer. Il permettra ainsi de fournir une alerte dès les premières secondes suivant l'occurrence d'un séisme.

L'EWS (Early Warning System) « spécifique » retenu s'appuie sur l'intervalle de temps qui existe entre l'arrivée, en un même site, des ondes de compression (ondes P) et des ondes de cisaillement (ondes S) responsables des forts mouvements du sol.

Dès qu'une onde P est correctement détectée en un point A, B, C, énergiquement autonome par une alimentation solaire ou de batteries, les organes de signalisations du détecteur s'activent. Puis celui-ci transfère par onde radio, réseau 802.15.4, cette information à l'ensemble des points du site. Les informations pertinentes du système sont mémorisées sur une base de données Niv_1, localisée sur un système embarqué (C), et répliquées sur la base de données Niv_2 (D) de l'entreprise lorsque celle-ci devient disponible. Un administrateur du site (E) peut hors séisme, par application tierce ou par navigateur http, adapter la sensibilité de chacun des capteurs, en se basant éventuellement sur l'historique des secousses intervenues sur le site. Il a aussi la possibilité de créer et lancer un exercice « séisme » en choisissant comme point détectant l'un des points du site. Enfin, les usagers du site peuvent visualiser, par un navigateur (F), pour une période donnée, les secousses passées survenues.

Figure 2-1

3. Expression du besoin

EDF souhaite pouvoir détecter l'arrivée imminente d'un séisme afin d'assurer la protection des biens et des personnes. Cela permettra ainsi par exemple de différer une intervention sur les moteurs produisant l'électricité, ainsi que de mettre son personnel à l'abri.

Le système à réaliser et à déployer devra :

- détecter un séisme imminent afin d'avertir l'ensemble du site,
- permettre par simulation de lancer des exercices de procédures d'évacuations,
- permettre à tous de visualiser les dernières secousses enregistrées,
- Archiver les données (ondes/simulation) ayant déclenchées une alarme.

4. Moyens préliminaires disponibles et contraintes de réalisation

4.1. Spécifications

4.1.1. Cas d'utilisation métier

Figure 4-1

4.1.2. Cas d'utilisation système

Figure 4-2

4.2. Scenarii

4.2.1. Cas détecter séisme.

But	: Detaille les étapes lors la prise en compte d'un séisme imminent
Acteur principal	Une onde sismique
Acteur secondaire	Capteurs sismique, Réseau de capteur, Base de données de niveau 1, dispositifs de signalisation
Assignation	
Séquencement	Le cas d'utilisation commence lorsque l'amplitude du signal P franchit le seuil d'alerte pendant un temps supérieur aux limites minimales.
Préconditions	Les seuils d'amplitudes et de durées minimales sont connus pour le capteur recevant l'onde P.
Enchainement nominal	Le cas « Gérer évacuation » est exécuté avec comment point d'extension : UnSeismeEstDetecté.
Post condition	

4.2.2. Cas gérer évacuation.

But	: Detaille les étapes pour gérer une évacuation
Acteur principal	aucun
Acteur secondaire	Autres bâtiments du site, base de données de niveau 1, dispositifs de signalisation
Assignation	
Séquencement	Le cas d'utilisation commence comme point d'extension du cas « détecter séisme » ou lors d'une demande de simulation de séisme ou encore lors de la propagation entre bâtiments du site.
Préconditions	Une demande d'origine (séisme, simulation, réseau)/action (évacuation, silence, finie) est connue.
Enchainement nominal	 Les éléments signalisation de ce détecteur se conforment à 'action'. Le message 'action' est diffusé aux divers nœuds du site La date, l'heure, l'origine, les caractéristiques ayant déclenché la demande sont mémorisées dans la base de niveau 1. Si la base de niveau 2 est disponible les informations sont répliquées.
Post condition	Les organes de signalisation sont dans l'état requis.

4.2.3. Cas simuler séisme

But	:	Detaille les étapes pour simuler un séisme
Acteur principal		Administrateur du système
Acteur secondaire		Autres bâtiments du site, base de données de niveau 1, dispositifs de signalisation
Assignation		
Séquencement		Le cas d'utilisation commence si aucun séisme n'est en cours.
Préconditions		L'administrateur est identifié
Enchainement nominal		 Les données amplitudes/temps relatives à P/S, durée total séisme sont renseignées. Les 'actions' sont calculées et séquencées Le cas « gérer évacuation est appelé » (origine simulation)
Post condition		La progression des actions est retournée conformément aux prévisions.

4.2.4. Cas configurer capteur

But	:	Detaille les étapes pour configurer un capteur
Acteur principal		Administrateur du système
Acteur secondaire		Autres bâtiments du site, base de données de niveau 1, base de données de niveau 2.
Assignation		
Séquencement		Le cas d'utilisation commence si aucun séisme n'est en cours.
Préconditions		Les capteurs sur les bâtiments sont actifs, l'administrateur est identifié
Enchainement nominal		- L'administrateur choisit un capteur parmi ceux disponibles.
		- Il renseigne les informations de localisation, de nature, de signalisation,
		disponible pour ce capteur.
		- Le système propose des valeurs seuils par défaut, qui sont modifiables.
		 Le système transmet ces valeurs seuils au capteur.
		- Le système mémorise toutes ces informations dans la BDD niveau 1 et celle
		de Niveau 2 si cette dernière est disponible.
Post condition		La Bdd niveau 1 est renseignée.

4.2.5. Cas utiliser BDD

But	: Detaille les étapes pour utiliser les BDD Niv1 et DBB Niv2				
Acteur principal	Aucun				
Acteur secondaire	base de données de niveau 1, base de données de niveau 2.				
Assignation					
Séquencement	Le cas d'utilisation commence dès une écriture sur BDD niv1. Par les cas « detecter				
	séismes », « gérer évacuation », « configurer capteurs »				
Préconditions	Possibilité d'écrire dans BDD Niv1, BDD Niv2				
Enchainement nominal	- La demande est accomplie sur BDD Niv1 puis BDD Niv 2				
Enchainement Alternatif	BDD Niv 1 écriture impossible				
	- Effacer les données de la table « RelevesSeisme »				
	 Cas « Consulter historique », « gerer evacuation » origine simulation 				
	- Utiliser BDD Niv2				
Post condition					

4.2.6. Cas consulter historique

But	:	Detaille les étapes pour consulter les historiques de secousses sur un site
Acteur principal		Utilisateur
Acteur secondaire		base de données de niveau 2.
Assignation		
Séquencement		Le cas d'utilisation commence quand l'utilisateur sélectionne « consulter historique » sur la page du site
Préconditions		Possibilité de lire BDD Niv2
Enchainement nominal		 Le système laisse l'utilisateur choisir sa période de consultation et son capteur. Le système retourne le graphique des secousses de la période
Post condition		

4.3. Diagrammes

4.3.1. Entités relations

Figure 4-3

4.3.2. Séquence : Consulter Historique

Figure 4-4

4.3.3. Séquence : Détection séisme

Figure 4-5

4.3.4. Séquence : Simulation séisme

Figure 4-6

4.3.5. Diagrammes de classes

A: Niveau Système embarqué

Figure 4-7

B: Niveau consultation secousses

Figure 4-8

C: Niveau configuration/Simulation

Figure 4-9

4.3.6. Diagramme de déploiement

Figure 4-10

Contrainte de l'environnement 4.4.

Réseau de capteurs (802.15.4) basé sur les composants Jennic. Ide Eclipse. Système portable. Base de données répartie (ODBC).

Contrainte économique

Limité à un budget de 1200€.

Documents et moyens technologiques mis à disposition 4.6.

Kit de développement 802.15.4 (cartes diverses, documentation, exemple de code en C et C++). Douchette avec interface clavier. Ide Eclipse.

Exigences qualité à respecter

4.7.1. Exigences qualité sur le produit à réaliser

Le système doit pouvoir être autonome et permettre un travail sur au moins une semaine.

4.7.2. Exigences qualité sur le développement

- La modélisation du système respectera le formalisme UML2.
- La méthode sera du type itératif et incrémental.
- Le développement devra respecter le modèle des activités de développement d'un système informatique
- Application des normes de codages en vigueur dans la section.
- Développement en C/C++.
- Suivi des versions de chaque document à l'aide de Git.
- Cartouche pour chaque fonction écrite, en respectant les tags doxygen pour la production de la documentation du code. Respect de la convention de nommage des fonctions en vigueur dans la section. On veillera pour chaque fonction à expliciter son prototype et à donner une description suffisante à la compréhension de son rôle.

4.7.3. Exigences qualité sur la documentation à produire

- On veillera à produire un manuel utilisateur du produit en parallèle au dossier de l'épreuve E6. Le manuel technique de description des fonctions ainsi que leur graphe des appels seront à réaliser séparément.
- Sur la forme : Respect des normes et de standards de représentation, maniabilité, homogénéité, lisibilité ; traçabilité entre les différents documents.
- Sur le fond : complétude, cohérence, précision.
- Modifications consignées, datées et approuvées par le responsable du projet.

4.7.4. Exigences qualité sur la livraison

A: Point de vu client

Remettre une version papier du manuel d'utilisation ou/et de configuration. Prévoir un support amovible pour une installation sur site du produit.

B: Point de vu examen

Voir le descriptif en page 29.Les documentations diverses, manuels de mise en œuvre et d'utilisation, les annexes, les codes sources, les exécutables, les interfaces matérielles, etc.).

4.7.5. Exigences qualité sur l'environnement d'exploitation

Le système doit pouvoir rester mobile en termes d'autonomie énergétique. Il faudra indiquer le nombre d'heures minimales que le système peut rester actif avant une réactualisation énergétique.

CDCF 2015 CSG4

5. Planification temporelle prévisionnelle

5.1. Calendrier prévisionnel:

Remise des sujets de projet (début janvier)	semaine 1
Revue N°1	semaine 8.
Revue N°2	semaine 16
Remise des dossiers techniques (au chef de centre)	Semaine 20
Epreuve E6	semaine 21/22

6. Exploitation pédagogique

6.1. Compétences terminales susceptibles d'être abordées et évaluées

		1	2	3	4
T1	Analyser et spécifier le système informatique à développer				
C3.4	choisir un module matériel pour un cas d'utilisation	X	X	X	X
T2	Réaliser la conception générale et détaillée				
C3.4	choisir un module matériel pour un cas d'utilisation	X	X	X	X
T3	Coder et réaliser				,
C4.1	câbler des modules matériels	X			
C4.3	intégrer une carte d'interface dans un système informatique	X			
C4.6	assembler les éléments matériels assurant la liaison physique dans un système de communication	X	X	X	X
C4.7	installer les différentes couches logicielles d'un système de communication sur une station	X	X	X	X
C4.8	coder un module logiciel	X	X	X	X
C4.9	intégrer un module logiciel dans une application	X	X	X	X
T5	Intégrer et interconnecter des systèmes				
C4.1	câbler des modules matériels	X			
C4.3	intégrer une carte d'interface dans un système informatique	X	X		X
C4.6	assembler les éléments matériels assurant la liaison physique dans un système de communication	X	X		X
C4.7	installer les différentes couches logicielles d'un système de communication sur une station	X	X	X	X
C4.9	intégrer un module logiciel dans une application	X	X	X	X
T6	Installer, exploiter, optimiser et maintenir				
C5.1	installer un module matériel dans un système informatique	X			
C5.2	installer un système d'exploitation	X	X	X	X
C5.3	déployer une application client / serveur sur deux machines hétérogènes	X	X	X	
C5.4	exploiter un réseau local industriel ou un bus de terrain	X	X	X	X
C5.5	installer des services techniques Internet		X	X	
C5.6	installer une application logicielle	X	X	X	
C5.7	mettre en œuvre un environnement de programmation	X	X	X	
T4	Tester, mettre au point et valider		1		
C6.1	mettre en œuvre des procédures de tests unitaires sur un module matériel	X			
C6.2	dépanner un système informatique				X
C6.3	relever les performances d'un réseau	X			
C6.4	corriger des dysfonctionnements observés sur un réseau		***	***	X
C6.5 C6.6	mettre en œuvre des procédures de tests unitaires sur un module logiciel dépanner un module logiciel	X	X	X	X
		Α_	А	А	А
T7	Assurer l'évolution locale ou la rénovation d'un système informatique		Ī		1
C6.1	mettre en œuvre des procédures de tests unitaires sur un module matériel				
C6.2	dépanner un système informatique				
C6.3 C6.4	relever les performances d'un réseau corriger des dysfonctionnements observés sur un réseau				
C6.5	mettre en œuvre des procédures de tests unitaires sur un module logiciel	\vdash	1		-
C6.6	dépanner un module logiciel				
T8	Gérer le projet	<u> </u>	1		
C2.1		v	v	v	v
C2.1 C2.2	s'intégrer dans une équipe de projet structurer son intervention dans une démarche de projet	X	X	X	X
C2.2	intervenir dans la gestion de projet	X	X	X	X
C2.4	prévenir des risques d'échec dans la mise en œuvre d'une solution au cours d'un projet	X	X	X	X
T9	Coopérer et communiquer		1		
C1.5	s'entretenir d'une problématique professionnelle avec un interlocuteur d'un autre service	X	X	X	X
C1.5	présenter la mise en œuvre d'une solution informatique	X	X	X	X
C1.7	assister des utilisateurs	X	X	X	X
		<u> </u>			

[2015_CSG4_BAR_CDCF.docx]

CDCF 2015_CSG4

Système d'alerte précoce « spécifique »

SAPS

7. Répartition des tâches par étudiant

On se reportera aux pages 14 à 15 pour les cas d'utilisations.

	Fonctions à développer et tâches à effectuer
Elève 1 :	 Déclencher les organes de signalisations sur chacun des nœuds du réseau de capteur.
М	- IHM Supervision permettant le contrôle unitaire des nœuds sismique.
Elève 2 :	- Récupérer les valeurs du/des capteurs sismiques.
<u> </u>	- S'assurer de la bonne détection d'une onde P.
M	- Emettre les valeurs clefs à mémoriser.
Elève 3 :	 récupération des valeurs clefs de E2 et les inscrire dans Bdd1 et Bdd2
<u> </u>	- Visualisation graphique des valeurs (Web/Qt)
M	
Elève 4 :	- IHM Supervision permettant la simulation séisme.
<u> </u>	- Séquenceur séisme.
M	- Sauvegarde des cas de déclanchement des organes de signalisation

3 incréments sont prévus :

1. Compréhension

Lecture de la modélisation, des exemples simples, suivi de la mise en œuvre de chaque sous-système indépendamment avec des fonctions élémentaires.

2. **Application**

Complétion de la modélisation puis réalisation de chaque sous-système indépendamment avec toutes les fonctions nécessaires.

3. Intégration

Rassemblement de chacun des sous-systèmes en vue de l'application complète.

7.1. Taches communes à l'équipe

CTerm	Désignation	Réf.	Départ	Fin	Echéance
C5.7	Installation chaine de développements	T6.1	Fourniture des logiciels : - Eclipse - Jennic - Modelio - QT - Git/GitLab - C++, PHP5, SQLITE	Logiciel installé. Dépôts créés, serveur Actif	R1
C5.6	Installation des logiciels nécessaires à la production documentaire	T6.2	Fourniture des logiciels : - Doxygen, Graphiz - Suite bureautique - Éditeur de pages web - Navigateur web	Logiciel actif.	
C4.7 C5.1 C6.1	Mise en service de Pc (Windows, Linux, Androïde). Linux ou Androïde (pour l'embarqué) Mise en service du Smartphone ou Tablette Mise en service des Pc de supervision/Consultation	T6.3	PC: Outils de Développement et documentation Carte Linux/Androïde (avec SQLITE ou MYSQL) Ethernet, Wifi,	Notice d'installation et de configuration Procédure de test des E/S Procédure de test d'accès à la base de données Procédure de test de communication par Ethernet (wifi) Programme de démonstration	
C4.6 C5.3 C6.4	Mise en service des modules élémentaires constructeur	T6.4	Documentation/Exemple Jennic	Notice d'Installation et de configuration serveur de base de données opérationnelles	
Cl.5 Cl.6 Cl.7	Rédaction du dossier technique	T9.1	Cahier des charges Fiches d'activité	Compte-rendu remis à la fin de l'activité Document rédigé dans le respect des critères qualité Documentation technique mise à jour	Revues 1 & 2 Fin
C2.1 C2.2 C2.3	Rédaction du journal de bord (cahier de texte)	T9.2	Planning initial Utilisation d'outils de travail collaboratif	Déroulement des activités mis à jour chaque semaine Planning réel mis à jour chaque semaine	

7.2. Tache de l'étudiant 1

Premier incrément	Premier incrément Deuxième incrément		
 S'approprier le kit de développement « Jennic » Proposer une maquette IHM Mettre en œuvre : JN-AN-1085-JenNet-Tutorial-1v4 JN-AN-1002-Light-Switch-Application-2v1 JN-AN-1074-Jenie-Battery-Monitor-1v1 	 Compléter les diagrammes UML de l'étude préliminaire. Choisir des entrées/sorties permettant le câblage de voyants. Choisir des entrées/sorties permettant la mise en œuvre de PWM. Coder les programmes embarqués mettant en œuvre ces entrées/sorties. Coder L'IHM Web/Qt commandant ces organes. Mettre en œuvre des procédures de tests unitaires 	 Etablir un format de trame de messages avec les autres membres du groupe. Tester l'envoi de messages entre nœuds pour activer ces i/o. Effectuer les tests d'intégration 	

CTerm	Désignation	Réf.	Départ	Fin	Echéance
C4.1	Câbler les organes de signalisation	T3.0a	Composant disponible	Connexion sur les bonnes Io du Jennic	
C4.8	Coder un module logiciel pour la signalisation	T3.1a	Modélisation Classe signalisation	Complétion des classes, de la	R1
	(TOR/PWM)			modélisation. Code sur Jennic pour 1 module OK. Planification des TU.	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.1a	Planification des tests unitaires approuvés	Fiches de tests complètes	R1
C4.8	Coder un module logiciel pour la propagation entre nœud.	T3.2a	Classe wifiCapteur	Complétion des classes, de la	R1
				modélisation. Code sur Jennic entre	
				module OK.	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.2a	Planification des tests unitaires approuvés	Fiches de tests complètes	R1
C4.8	Coder un module logiciel : sélection nœud unitaire/réseau	T3.3a	Classe IhmSuperviseur (Qt)	Complétion des classes, de la	R2
	Sous Qt pour activer la/les signalisations			modélisation. Code Qt IHM	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.3a	Planification des tests unitaires approuvés	Fiches de tests complètes	R2
C4.8	Coder un module logiciel : sélection nœud unitaire/réseau	T3.4a	Classe IhmSuperviseur (Web)	Complétion des classes, de la	R2
	Sous Qt pour activer la/les signalisations			modélisation. Code Web IHM	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.4a	Planification des tests unitaires approuvés	Fiches de tests complètes	Fin
C4.9	Intégrer les modules logiciels	T5.1	Modules logiciels testés	Conclusion (Tests de validations)	Fin

7.3. Tache de l'étudiant 2

Premier incrément	Deuxième incrément	Troisième incrément	
 S'approprier le kit de développement « Jennic » Caractériser une onde sismique Fréquence/Amplitude Mettre en application les capteurs disponibles. Mettre en œuvre : JN-AN-1085-JenNet-Tutorial-1v4 JN-AN-1073-Jenie-Analogue-Peripherals-1v2 JN-AN-1044-Storing-Data-In-Flash-1v0 	 Compléter les diagrammes UML de l'étude préliminaire. Choisir des entrées permettant le câblage des capteurs. Coder les programmes embarqués mettant en œuvre ces entrées pour déterminer l'onde P. Coder le transfert d'information. Mettre en œuvre des procédures de tests unitaires 	 Etablir un format de trame de messages avec les autres membres du groupe. Tester l'envoi de messages vers la passerelle. Effectuer les tests d'intégration 	

CTerm	Désignation	Réf.	Départ	Fin	Echéance
C4.1	Câbler les capteurs de choc	T3.0a	Capteur disponible	Connexion sur les bonnes Io du Jennic	R1
C4.8	Coder un module logiciel pour lire les valeurs du capteur	T3.1a	Modélisation Classe Capteur	Complétion des classes, de la modélisation. Code sur Jennic pour 1 module OK. Planification des TU.	R1
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.1a	Planification des tests unitaires approuvés	Fiches de tests complètes	R1
C4.8	Coder un module logiciel pour la détection d'une onde P.	T3.2a	Modélisation Classe Détecteur	Complétion des classes, de la modélisation. Code de détection unique d'une onde P.	R1
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.2a	Planification des tests unitaires approuvés	Fiches de tests complètes	R1
C4.8	Coder un module logiciel : pour le transfert des variations d'amplitude du capteur de choc	T3.3a	Classe WifiCapteur	Complétion des classes, de la modélisation. Code émission vers passerelle ok.	R2
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.3a	Planification des tests unitaires approuvés	Fiches de tests complètes	R2
C4.9	Intégrer les modules logiciels	T5.1	Modules logiciels testés	Conclusion (Tests de validations)	Fin

7.4. Tache de l'étudiant 3

Premier incrément	Deuxième incrément	Troisième incrément
 S'approprier le kit de développement « Jennic » Proposer des maquettes IHM Web/Qt Prendre en main un serveur de base de données. Mettre en œuvre : - JN-AN-1085-JenNet-Tutorial-1v4 	 Compléter les diagrammes UML de l'étude préliminaire. Coder un programme permettant de se connecter à une base de données et d'insérer une donnée. Coder les programmes embarqués récupérant les données séismes Coder L'IHM Web/Qt visualisant les valeurs en bases de données. Mettre en œuvre des procédures de tests unitaires 	 Etablir un format de trame de messages avec les autres membres du groupe. Effectuer les tests d'intégration

CTerm	Désignation	Réf.	Départ	Fin	Echéance
C4.8	Coder un module logiciel pour récupérer une valeur	T3.1a	Modélisation Classe Bdd	Complétion des classes, de la	R1
	séismes et la sauvegarder dans la base (l'origine de la			modélisation. Code sur Jennic pour	
	demande est aussi mémorisée)			lecture OK. Ecriture en base Db1,	
				Db2. Planification des TU.	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.1a	Planification des tests unitaires approuvés	Fiches de tests complètes	R1
C4.8	Coder un module logiciel pour la connexion à la	T3.2a	Classe réseau	Complétion des classes, de la	R1
	passerelle.			modélisation. Lien entre passerelle et	
				pc effectif.	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.2a	Planification des tests unitaires approuvés	Fiches de tests complètes	R1
C4.8	Coder un module logiciel : Sous Qt pour récupérer les	T3.3a	Classe IhmSuperviseur (Qt)	Complétion des classes, de la	R2
	valeurs séismes et les visualiser			modélisation. Code Qt IHM	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.3a	Planification des tests unitaires approuvés	Fiches de tests complètes	R2
C4.8	Coder un module logiciel : Sous PHP/Flash pour	T3.4a	Classe IhmSuperviseur (Web)	Complétion des classes, de la	R2
	récupérer les valeurs séismes et les visualiser			modélisation. Code Web IHM	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.4a	Planification des tests unitaires approuvés	Fiches de tests complètes	Fin
C4.9	Intégrer les modules logiciels	T5.1	Modules logiciels testés	Conclusion (Tests de validations)	Fin

7.5. Tache de l'étudiant 4

Premier incrément	Deuxième incrément	Troisième incrément
 Proposer une IHM Proposer une machine a état fini pour le séquenceur séisme. Mettre en œuvre une lecture/écriture dans une BDD. 	 Compléter les diagrammes UML de l'étude préliminaire. Coder les programmes du séquenceur. Coder L'ihm de supervision QT Coder l'ihm de supervision Web. Mettre en œuvre des procédures de tests unitaires 	 Etablir un format de trame de messages avec les autres membres du groupe. Tester le simulateur. Effectuer les tests d'intégration

CTerm	Désignation	Réf.	Départ	Fin	Echéance
C4.8	Coder un module logiciel pour écrire/lire des données	T3.1a	Modélisation Classe Bdd	Complétion des classes, de la	R1
	séismes			modélisation Planification des TU.	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.1a	Planification des tests unitaires approuvés	Fiches de tests complètes	R1
C4.8	Coder un module logiciel pour le séquenceur.	T3.2a	Classe Séquenceur	Complétion des classes, de la	R1
				modélisation. Planification des Tus.	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.2a	Planification des tests unitaires approuvés	Fiches de tests complètes	R1
C4.8	Coder un module logiciel : superviseur	T3.3a	Classe IhmSuperviseur (Qt)	Complétion des classes, de la	R2
	Sous Qt pour activer la simulation			modélisation. Code Qt IHM	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.3a	Planification des tests unitaires approuvés	Fiches de tests complètes	R2
C4.8	Coder un module logiciel : superviseur	T3.4a	Classe IhmSuperviseur (Web)	Complétion des classes, de la	R2
	Sous PHP/FLASH pour activer la simulation			modélisation. Code Web IHM	
C6.5	Effectuer les tests unitaires du module logiciel précédant	T4.4a	Planification des tests unitaires approuvés	Fiches de tests complètes	Fin
C4.9	Intégrer les modules logiciels	T5.1	Modules logiciels testés	Conclusion (Tests de validations)	Fin

Nantes, Rennes, Caen, Martinique, Guadeloupe/ BTS IRIS / session 2015

Désignation de la tâche	Référence	Itéra.	E1	E2	E3	E4	S2	S3	S4	S5	S6	S7	7 S	8	S9 :	S10 S	511	S12 S1	3 S	14 5	515	S16	S17	S18	S19	S20	S21	Ş
Installation de la chaîne de développement	T6.1																											
Installation des logiciels nécessaires à la production documentaire	T6.2	_																					L					
Mise en service du système	T6.3	Τ̈́Υ																					L					
Mise en service des parties opératives	T64	CC																					L					
Mise en service des bases de données	T6.5	Travail commun																					<u> </u>		<u> </u>	<u> </u>	1	
		nu Li	-										_											\vdash	—	 	-	
		en									_		_							-		\longrightarrow		\vdash	₩	┿	-	
		Ħ									-		_							H		\longrightarrow		\vdash	₩	┼─	-	
																	_								†	1		
Coder et tester un module logiciel de test de classes (Modélisation puis	T3.1a & T4.1a		† <u></u>													-						\rightarrow	ſ	\vdash	†	† 	1	
génération de code des classes et tests)		1.0	Х																				1			Ī		
Coder et tester un module logiciel de validation de classes (génération	T3.2a & T4.2a																										Ak	
de code puis tests de validation des classes)		2.0	Х																				l				ŏ	ł
Coder et tester un module logiciel complet (création de prototype, test,	T3.3a &T4.3a	2.0														Ì									1	1	F	
validation du prototype.		3.0	Х																								ti	1
Coder et tester un module logiciel de test de classes (Modélisation puis	T3.1b & T4 .1b	1.0		Х																. [1				g	
génération de code des classes et tests)		1.0		^							a	Re]					Þ.	(D _			Ь—	<u> </u>	↓	↓	- <mark>ф</mark>	
Coder et tester un module logiciel de validation de classes (génération	T3.2b & T4.2b	2.0		Х							Carna	Revue						Pâques	4	Peville			l				де	
de code puis tests de validation des classes)		2.0		^								<u></u> 6						це	í	D							ш	
Coder et tester un module logiciel complet (création de prototype, test, validation du prototype.	T3.3b & T4.3b	3.0		Х							al	H	_					W	t	S							, eg	
Coder et tester un module logiciel de test de classes (Modélisation puis génération de code des classes et tests)	T3.1C&T4.1C	1.0			Х																						cla	
Coder et tester un module logiciel de validation de classes (génération	T3.2C&T4.2C		1								_		_									\longrightarrow		igwdapprox	₩	₩	4	
de code puis tests de validation des classes)	13.20014.20	2.0			Χ						_		_									\longrightarrow		igwdapprox	₩	₩	ag	
Coder et tester un module logiciel complet (création de prototype, test,	T3.3C & T4.3C		1								=		\vdash	-		-									┼	+-	Ū	
validation du prototype.	15.50 & 14.50	3.0			Χ						-		_											-	+	+	-	
Coder et tester un module logiciel de test de classes (Modélisation puis	T3.1d & T4 .1d																			-		\dashv	Г	\vdash	\vdash	+	1	
génération de code des classes et tests)		1.0				Х																\rightarrow	<u> </u>	\vdash	 	+	1	
Coder et tester un module logiciel de validation de classes (génération	T3.2d & T4.2d					.,																\neg	Ī	\vdash	1	1	1	
de code puis tests de validation des classes)		2.0				Х																\neg	<u> </u>	\vdash		†	1	
Coder et tester un module logiciel complet (création de prototype, test,	T3.3d & T4.3d	2.0				V																						
validation du prototype.		3.0				Х																						
Intégrer tous les modules logiciels	T5.1	4.0																					1					
		4.0	Х	Х	Х	Х																						
Rédaction du dossier technique et du journal de bord (cahier de textes)	T9.1 & T9.2		.,			l .,																						
			Х	Х	х	х																ļ	i	'				

[2015_CSG4_BAR_CDCF.docx]

CDCF 2015_CSG4

Système d'alerte précoce « spécifique »

SAPS

Ministère de la Jeunesse, de l'Education nationale et de la Recherche

3.1.	Faisabilité	
	ponibilité des équipements	
	quipement sera-t-il disponible ? ss du projet développé en entreprise)	Oui ▼ non □
	Si non:	Comment procèdera-t-on ? (explications, sur quelle base, etc.)
Atte	eintes des objectifs du point de	vue client
	•	t qui témoignera de l'atteinte des objectifs fixés, du point de vue
	e devra-t-on observer a la fin du proje client :	i qui temoignera de l'attenne des objectifs fixes, du point de vue
-	Une vibration ayant les caractéristiq et sonore pendant une durée T_1 .	ues proche d'une onde P déclenchera une alarme visuelle
-		•
-	et sonore pendant une durée T_1 . Si $T_1 > L_{\text{\'egal}}$ alors les alarmes prendre	•
-	et sonore pendant une durée T_1 . Si $T_1 > L_{\rm égal}$ alors les alarmes prendre A la disparition de l'onde P. Une al l'alerte sismique.	ont fin
-	et sonore pendant une durée T_1 . Si $T_1 > L_{\rm égal}$ alors les alarmes prendre A la disparition de l'onde P. Une al l'alerte sismique. Pour chacun des détecteurs présen personnalisé.	ont fin arme caractéristique (visuelle/sonore) annoncera la fin de es il sera possible de configurer un seuil de réactivité ser sur un navigateur web en sélectionnant la période, les
- - -	et sonore pendant une durée T_1 . Si $T_1 > L_{\rm égal}$ alors les alarmes prendre A la disparition de l'onde P. Une al l'alerte sismique. Pour chacun des détecteurs présen personnalisé. Des usagers simples pourront visualiséismes déclencheurs d'alarme de ce	ont fin arme caractéristique (visuelle/sonore) annoncera la fin de es il sera possible de configurer un seuil de réactivité ser sur un navigateur web en sélectionnant la période, les ux qui ne le sont pas. ne des sondes sismique sera possible depuis un navigateur

Recours à une	ou plusieurs entreprises sous-traitantes ?	oui 🗖	non 🗖
Si oui :	Liste des sous-traitants :	missions:	Pilotage : (par qui?)

[2015_CSG4_BAR_CDCF.docx] CDCF 2015_CSG4

8.2. Suivi De Projet

Chaque membre de l'équipe de projet consigne dans le dossier de suivi les tâches qu'il réalise pour une période donnée (une à deux semaines). Les documents relatifs à la vie du projet (devis, bons de commandes, etc.) sont joints au dossier.

L'équipe pédagogique doit pouvoir mettre en correspondance les tâches effectuées et les compétences développées pendant cette période

A intervalles de temps réguliers, un bilan doit mettre en évidence :

- Ce qui a été réalisé ;
- Ce qui reste à réaliser ;
- Les réajustements éventuels du planning.

En cours d'année, les élèves sont notés individuellement par leurs professeurs STI d'informatique à l'occasion de deux revues de projet.

La note attribuée à chaque candidat, lors de chacune des revues de projet prend en compte :

- son exposé;
- la qualité des documents produits ;
- la qualité du compte rendu d'activité dont il est responsable.
- son travail individuel;
- son intégration dans l'équipe ;
- son degré d'autonomie;
- sa capacité à prendre en compte des conseils d'ordre méthodologique et technique énoncés par les professeurs,
- l'état d'avancement du rapport

8.2.1. Revue De Projet 1

Présentation orale par les candidats de leurs travaux en utilisant les moyens de communication les plus adaptés.

A: Critères D'appréciation

- Capacité à rendre compte oralement
 - qualité de la présentation :
 - précision,
 - rigueur,
 - clarté

• Capacité à s'intégrer et travailler en équipe

- * Répartition des tâches clairement établie
- Plan de développement et échéancier prévisionnels établis
- Choix des moyens communs effectués
- * Ressources utilisables identifiées.

Travail individuel

- Fonctions à satisfaire identifiées
- Contraintes du cahier des charges identifiées
- Indicateurs du projet définis

• Problématique

- Le problème est identifié
- Son analyse a débuté
- Les principales contraintes sont prises en compte

• <u>Documents produits</u>

- Pertinents
- Planifie l'avancement des travaux
- Précisent les liaisons avec les différents acteurs

• Comptes rendus d'activité

- Exploitables
- Pertinents
- Respectent les normes

• Travail individuel

- Degré d'autonomie pour l'élaboration des documents
- Recherche des caractéristiques fonctionnelles

• *Qualité d'écoute et de dialogue*

- Capacité à prendre en compte des conseils d'ordre méthodologique et technique énoncés par les professeurs
- Etat d'avancement du rapport

8.2.2. Revue De Projet 2

Présentation orale par les candidats de leurs travaux en utilisant les moyens de communication les plus adaptés.

A: Critères D'appréciation

- Capacité à rendre compte oralement
 - Qualité de la présentation,
 - précision,
 - rigueur,
 - clarté

• Capacité à s'intégrer et travailler en équipe

- ❖ Tous les membres sont informés de l'état d'avancement et des problèmes éventuels
- Répartition des tâches respectée
- * Ressources matérielles et logicielles énoncées.
- Dates limites du planning prévisionnel respectées
- . Etc.

• Travail individuel

- Réalisation codage
- Installation
- Exploitation
- Mise en œuvre matérielle et ou logicielle
- Test unitaire
- Solutions techniques matérielles et logicielles arrêtées.
- Coûts des matériels et logiciels évalués avec précision
- Indicateurs renseignés
- Démonstration du fonctionnement d'un sous-ensemble logiciel ou matériel
- Qualité du compte rendu d'activité.

• Capacité à travailler en autonomie

- Commandes matérielles
- * Recherche des solutions
- ❖ Mise en œuvre de celles-ci.

Capacité d'écoute

- Etre capable de prendre en compte des conseils d'ordre méthodologique et technique énoncés par les professeurs lors de la précédente revue
- Etat d'avancement du rapport satisfaisant

CDCF 2015 CSG4

8.3. Epreuve

Épreuve orale. Durée : 1 heure. Coefficient : 6.

8.3.1. Dossier Technique De Projet

A l'issue du projet, l'équipe d'étudiants remet au centre d'examen un dossier de projet unique.

Ce dossier comprend une partie commune à tous les membres de l'équipe et la partie personnelle de chacun d'entre eux.

A: Partie commune: (de 20 à 30 pages)

- Introduction, situation du projet dans son contexte industriel;
- Dossier de spécifications ;
- ❖ Dossier de conception préliminaire et plan de tests d'intégration.

Suivant la nature du projet et ses points d'entrée, certains éléments de ce dossier peuvent être présents dans les parties personnelles.

B: Partie personnelle: (de 20 à 30 pages)

- Situation de la partie personnelle dans l'ensemble du projet
- Dossier de conception détaillée et plan de tests unitaires
- Eléments de codage

Chaque page du dossier doit être clairement identifiée (Le pied de page comporte le nom du ou des auteurs).

A chaque partie personnelle est attribuée une couleur particulière des pages. En fonction des spécificités du projet et des contraintes de documentation imposées par le cahier des charges, des documents annexes peuvent être joints (annexes techniques, manuel d'utilisation, notice de maintenance, sources complets, etc.)

Lors de l'épreuve de soutenance, le jury doit disposer du dossier initial remis à l'équipe de projet, du rapport de projet, du dossier de suivi et des avenants éventuels.

Le dossier technique de projet est établi idéalement en :

- Deux exemplaires pour les membres du jury,
- Un exemplaire pour l'équipe pédagogique,
- Un exemplaire par étudiant

Chaque équipe remet le dossier technique de son projet au chef de centre d'examen, au plus tard le jour de la fin des projets.

8.3.2. Déroulement De L'épreuve

Deux semaines avant la date des soutenances, les membres de la commission doivent disposer des dossiers des candidats, afin d'en prendre connaissance de façon approfondie et de les noter.

Le jour de l'épreuve, le candidat doit soutenir son projet devant la commission.

L'épreuve se déroule en trois phases d'une durée maximale de vingt minutes chacune :

- la soutenance du dossier du projet ;
- la présentation de la réalisation ;
- l'entretien avec la commission.

A: Soutenance dossier

Au cours de la soutenance du dossier, le candidat expose, sans être interrompu par la commission, le concept du produit final et la partie du dossier technique correspondant au travail dont il a la charge.

B: Présentation de la réalisation

La présentation de la réalisation et sa mise en fonctionnement permettront au candidat de démontrer le respect des contraintes du cahier des charges.

C: Entretien/questions diverses

Pendant l'entretien avec la commission d'interrogation, le candidat doit répondre à des questions qui ont pour but d'évaluer la part du travail réel qu'il a réalisé, son niveau d'implication au sein de son équipe.

La commission d'interrogation est composée de deux professeurs STI d'informatique et éventuellement d'un professionnel

8.3.3. Evaluation

Lors de l'épreuve ponctuelle, à l'issue de la soutenance du projet, la commission attribue une note à chaque candidat, laquelle porte, à minima, sur :

- la qualité et le contenu du dossier technique ;
- l'adéquation entre les solutions techniques retenues et les contraintes de la spécification,
- le respect des contraintes économiques imposées par le cahier des charges ;
- la qualité de l'exposé oral;
- l'état de la réalisation examinée ;
- la précision et l'exactitude de ses réponses ;
- la maîtrise des savoir-faire définis dans le référentiel de certification.

Pour arrêter la note finale du candidat à l'épreuve professionnelle de synthèse, la commission d'interrogation prend en compte les deux notes proposées lors des revues de projet et la note de soutenance de projet :

- 2 points de coefficient pour la moyenne des notes attribuées par les professeurs de la section, lors des deux revues de projet ;
- 4 points de coefficient pour la note attribuée par la commission d'interrogation, à l'issue de la soutenance du projet.

Système d'alerte précoce « spécifique »

A: <u>Critères D'évaluation Du Projet Informatique</u>

• Dossier technique et Documentations diverses

- Capacité à rendre compte à l'écrit (qualité des documents, précision, rigueur, clarté)
- Capacité à décrire son travail personnel au sein d'un travail d'équipe
- Capacité à participer à l'organisation d'une production écrite
- Capacité à produire des documents

• Soutenance du dossier de l'étude (20 mn)

- Capacité à rendre compte oralement (qualité de la présentation, précision, rigueur, clarté)
- Capacité à exposer son travail personnel et à le situer au sein du travail de l'équipe de projet.
- Capacité à synthétiser
- Capacité à gérer le temps imparti
- Capacité à conclure

• Présentation de la réalisation (20 mn)

- Capacité à procéder à la mise en service d'un système et à démontrer que toutes les fonctionnalités sont assurées
- Capacité à effectuer les tests de conformité au dossier de conception
- Capacité à effectuer les recettes intermédiaires et à participer à la mise en œuvre de la recette finale
- Capacité à s'intégrer et travailler en équipe dans une démarche de projet

• Entretien (20 mn)

- Qualité d'écoute et de dialogue
- Capacité à argumenter et à réagir aux objections
- Capacité à répondre avec pertinence, précision et exactitude
- Capacité à rechercher et à exploiter une documentation
- Capacité à être autonome dans l'exécution des tâches de réalisation, de codage, de test, d'installation, dont il assume la responsabilité
- Capacité à effectuer une analyse critique du projet dans le processus de formation

• Qualité de la réalisation

- Capacité à mettre en œuvre les solutions techniques retenues dans le respect des contraintes de la spécification
- Capacité à respecter les contraintes économiques imposées par le cahier des charges
- Capacité à respecter et suivre l'organisation prévisionnelle des tâches à effectuer
- Capacité à réaliser tout ou partie d'un prototype informatique (logiciel et/ou matériel) en collaboration avec une équipe de projet
- Etat et qualité de la réalisation

CDCF 2015 CSG4

9. Observation de la commission d'harmonisation

(A remplir par la commission d'harmonisation qui valide le sujet de projet)

Ce document initial a été utilisé par la Commission Inter Académique d'harmonisation qui s'est tenu le $18 \, / \, 11 \, / \, 2014$

Il comprend 34 pages et les documents annexes suivants : .Product brief JN5148.

Contenu du thème :		Défini		Insuffisamment défini	non défini
Complexité technique : (liée au support)		Suffisante		Insuffisante	exagérée C
Conformité par rapport au r la définition de l'épreuve :	éférentiel et à	oui			non 🗆
Planification des tâches den étudiants, délais prévus :	nandées aux	Défini		Insuffisamment défini	non défini
Les revues de projet sont-el (dates, modalités, évaluation		oui			non C
Avis formulé par la c Sujet accepté en l'éta Sujet à revoir :	t 🗖 Conformit	é par rapport	au R	téférentiel de Certification	
	☐ Définition☐ Critères d'☐ Autres :	évaluation		es tâches	
☐ Sujet rejeté					

[2015_CSG4_BAR_CDCF.docx]

Nom des membres de la commission d'harmonisation inter académique :

Nom	Etablissement	Académie	Signature

Visa de l'autorité inter académique :

(Nom, qualité, Académie, signature)

Nota:

Ce document est contractuel pour l'épreuve E6 (Projet Informatique) et sera joint au "Dossier Technique" de l'élève.

En cas de modification du cahier des charges, un avenant sera élaboré et joint au dossier du candidat pour présentation au jury, en même temps que le carnet de suivi.

Avenant:
Date de(s) avenant(s):
Nombre de pages :

10. Annexes

10.1. Modules Jennic

Product Brief – JN5148 Module

JenNet, ZigBee PRO and IEEE802.15.4 Module

Overview

The JN5148-001-Myy family is a range of ultra low power, high performance surface mount modules targeted at low-power wireless networking applications, enabling users to realise products with minimum time to market and at the lowest cost. They remove the need for expensive and lengthy development of custom RF board designs and test suites. The modules use NXP's JN5148 wireless microcontroller to provide a comprehensive solution with large memory, high CPU and radio performance and all RF components included. All that is required to develop and manufacture wireless control or sensing products is to connect a power supply and peripherals such as switches, actuators and sensors, considerably simplifying product development.

Three module variants are available: JN5148-001-M00 with an integrated antenna, JN5148-001-M03 with an antenna connector and the JN5148-001-M04 with an antenna connector, power amplifier and LNA for extended range. All modules can run networking stacks such as JenNet and ZigBee PRO as well as customer applications.

Block Diagram

Benefits

- · Microminiature module solutions
- · Ready to use in products
- Minimises product development time
- · No RF test required for systems
- Compliant with FCC part 15 rules, IC Canada RSS 210e, ETSI ETS 300-328 and Japan ARIB STD-T66
- Production volumes supplied pre-programmed with application software

Applications

- Robust and secure low power wireless applications
- ZigBee PRO and JenNet networks
- Home and commercial building automation
- · Utilities metering (e.g. AMR)
- Location Aware services (e.g. Asset Tracking)
- Toys and gaming peripherals
- · Industrial systems
- Telemetry
- Remote Control

Features: Module

- 2.4GHz IEEE802.15.4 and ZigBee PRO applications
- Sleep current (with active sleep timer) 2.6µA
- JN5148-001-M00/03

Up to 1km range (Ext antenna) M00: integral antenna 18x32mm M03: uFI connector 18x30mm

- TX power +2.5dBm
- Receiver sensitivity –95dBm
- TX current 15mA
- RX current 17.5mA
- o 2.3-3.6V operation

JN5148-001-M04

Up to 4km range (Ext Antenna)

- 20dBm TX power
- Receiver sensitivity -98dBm
- uFI connector
- o TX current 110mA
- o RX current 23mA
- o 18x41mm

2.7-3.6V operation Features: Microcontroller

- 32-bit RISC CPU, up to 32MIPs with low power
- 128kB ROM stores system code
- 128kB RAM stores system data and bootloaded program code
- 4Mbit serial flash for program code and data
- On chip OTP efuse
- JTAG debug interface
- 4-input 12-bit ADC, 2 12-bit DACs, 2 comparators
- 3 application timer/counters, 3 system timers
- 2 UARTs
- · SPI port with 5 selects
- 2-wire serial interface
- 4-wire digital audio interface
- Watchdog timer
- Up to 21 DIO

Industrial temp (-40°C to +85°C) Lead-free and RoHS compliant

JN5148-MO-PBv1.1

© NXP Laboratories UK Ltd 2010

Page 1 of 2