Algèbre linéaire 3 (L2 - 2023/2024) Feuille de TD nº 1 — Réduction des endomorphismes.

Cette feuille est tirée des feuilles de TD proposées par Guillaume Legendre (2020 à 2022), disponibles ici : https://www.ceremade.dauphine.fr/~legendre/enseignement/alglin3/

Dans toute cette feuille, \mathbb{K} désigne un corps qui peut être \mathbb{R} ou \mathbb{C} .

Exercice 1. Calculer les valeurs propres et les vecteurs propres des matrices à coefficients réels suivantes :

1.
$$\begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix}$$
. 2. $\begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$. 3. $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. 4. $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$.

Que dire si l'on considère que ces matrices sont à coefficients complexes? Dans ce dernier cas, vérifier que la trace d'une matrice est la somme de ses valeurs propres et que son déterminant est le produit de ses valeurs propres.

Exercice 2. Soit n un entier naturel non nul et A une matrice de $GL_n(\mathbb{K})$, λ une valeur propre de A et X un vecteur propre associé à λ . Montrer que $\lambda \neq 0$, puis que $\frac{1}{\lambda}$ est une valeur propre de A^{-1} ayant X pour vecteur propre associé.

Exercice 3. Soit n un entier naturel non nul supérieur ou égal à 2 et A une matrice de $M_n(\mathbb{R})$ de rang 1. Montrer que $A + I_n$ ou $A - I_n$ est inversible.

Exercice 4. Soit A une matrice de $M_n(\mathbb{K})$. Les matrices A et A^{\top} ont-elles les mêmes vecteurs propres?

Exercice 5. Soit θ un réel. Déterminer le spectre de la matrice

$$\begin{pmatrix} 0 & \sin(\theta) & \sin(2\theta) \\ \sin(\theta) & 0 & \sin(2\theta) \\ \sin(2\theta) & \sin(\theta) & 0 \end{pmatrix}.$$

Exercice 6. (matrice stochastique) Une matrice de $M_n(\mathbb{C})$ est dite stochastique si ses coefficients sont des réels positifs ou nuls et la somme des coefficients de chacune de ses lignes est égale à 1. Soit M une telle matrice.

- 1. Montrer que si λ est une valeur propre complexe de M, alors $|\lambda| \leq 1$.
- 2. Montrer que 1 est valeur propre de M et donner un vecteur propre associé.
- 3. Montrer que si tous les coefficients diagonaux de M sont strictement positifs et que λ est une valeur propre complexe de M, alors $|\lambda| = 1$ implique que $\lambda = 1$.

Exercice 7. Soit n un entier naturel non nul, A et B deux matrices de $M_n(\mathbb{R})$ telles que AB - BA = A.

- 1. Montrer que, pour tout entier naturel k, on a $A^kB BA^k = kA^k$.
- 2. On considère l'application f_B de $M_n(\mathbb{R})$ dans $M_n(\mathbb{R})$ définie par $f_B(M) = MB BM$. Vérifier que f_B est un endomorphisme de $M_n(\mathbb{R})$.
- 3. Justifier qu'un entier naturel k est une valeur propre de f_B si $A^k \neq 0$.
- 4. En déduire l'existence d'un entier naturel m tel que $A^m = 0$.

Exercices supplémentaires

Exercice 8. Déterminer le spectre et les vecteurs propres de l'endomorphisme f lorsque :

- f est une projection de l'espace sur un plan parallèlement à une droite,
- f est la rotation du plan d'angle de mesure π ,
- f est la rotation du plan d'angle de mesure $\frac{\pi}{3}$.

Exercice 9. \diamond Soit n un entier naturel supérieur ou égal à 2 et $(a_1, \ldots, a_n) \in \mathbb{R}^n$. Chercher le spectre de la matrice

$$\begin{pmatrix} 0 & \dots & 0 & a_1 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & a_{n-1} \\ a_1 & \dots & a_{n-1} & a_n \end{pmatrix},$$

en distinguant les cas $(a_1, \ldots, a_{n-1}) \neq (0, \ldots, 0)$ et $(a_1, \ldots, a_{n-1}) = (0, \ldots, 0)$. En déduire le spectre de la matrice

$$\begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & n-1 \\ 1 & \dots & n-1 & n \end{pmatrix}.$$

Exercice 10. Soit $E = \mathbb{C}^{\mathbb{N}}$ l'espace des suites à coefficients complexes et f l'endomorphisme de E qui à une suite $(u_n)_{n\in\mathbb{N}}$ associe la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_0=u_0$ et, pour tout $n\geq 1$,

$$v_n = \frac{u_n + u_{n-1}}{2}.$$

Déterminer le spectre et les vecteurs propres de f.

Exercice 11. \diamond Soit n un entier naturel non nul, $E = \mathbb{K}_{2n}[X]$ et f l'endomorphisme de E défini par f(P) = X(X-1)P' - 2nXP. Chercher le spectre et les vecteurs propres de f.

Exercice 12. \diamond Soit E l'espace vectoriel des fonctions continues de \mathbb{R}_+ dans \mathbb{R} et T l'application qui à toute fonction f de E associe la fonction F = T(f) définie par

$$F(0) = f(0) \text{ et}, \forall x \in]0, +\infty[, F(x) = \frac{1}{x} \int_0^x f(t) dt.$$

- 1. Montrer que T est un endomorphisme de E. Est-il injectif?
- 2. Déterminer les réels λ et les fonctions f vérifiant $T(f) = \lambda f$.

Exercice 13. Soit $E = C^{\infty}(\mathbb{R})$ l'espace des fonctions de \mathbb{R} dans \mathbb{R} indéfiniment dérivables et f l'endomorphisme de E qui à toute fonction u de E associe sa dérivée u'. Déterminer le spectre de f et les sous-espaces propres associés.

Exercice 14. Soit m et n deux entiers naturels non nuls, f une application linéaire de \mathbb{R}^m dans \mathbb{R}^n et g une application linéaire de \mathbb{R}^n dans \mathbb{R}^m .

- 1. Montrer que $f \circ g$ et $g \circ f$ ont les mêmes valeurs propres non nulles (s'il y en a).
- 2. Lorsque m=n, montrer que $f\circ g$ et $g\circ f$ ont les mêmes valeurs propres.