2.1-3. For each of the following, determine the constant c so that f(x) satisfies the conditions of being a pmf for a random variable X.

(a)
$$f(x) = x/c$$
, $x = 1, 2, 3, 4$.

(b)
$$f(x) = cx$$
, $x = 1, 2, 3, ..., 10$.

(c)
$$f(x) = c(x+1)^2$$
, $x = 0,1,2,3$.

- **2.1-8.** A fair four-sided die has two faces numbered 0 and two faces numbered 2. Another fair four-sided die has its faces numbered 0, 1, 4, and 5. The two dice are rolled. Let X and Y be the respective outcomes of the roll. Let W = X + Y.
- (a) Determine the pmf of W. as a table.
- (b) Write the cdf as a table.
- (c) Find P(W < 5), $P(W \ge 2)$, and $P(1 \le W \le 4)$.
- (d) Plot the cdf.
- **2.1-12.** Let X be the number of accidents per week in a factory. Let the pmf of X be

$$f(x) = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}, \quad x = 0, 1, 2, \dots$$

Find the conditional probability of $X \geq 4$, given that

- **3.1-2.** Let $f(x) = 1/2, -1 \le x \le 1$, be the pdf of X.
 - (a) Plot the pdf.
 - (b) Find the cdf and plot it.
 - (c) Find the median m, IQR, E(X), and V(X).
 - (d) Find E[-4X(1+X)].
- **3.1-16.** Let f(x) = (x+1)/2, -1 < x < 1.
 - (a) Find P(X < -0.25) and $P(X \ge -0.25)$.
 - (b) Find the 29th percentile.
 - (c) Find the cutoff for the upper 33rd percent.
 - (d) Using the cdf, find $P(-0.5 < X \le 0.75)$ and P(X > 0).
 - (e) Find the mode.
- **3.1-7.** For each of the following functions, (i) find the constant c so that f(x) is a pdf of a random variable X, (ii) find the cdf, $F(x) = P(X \le x)$, (iii) find μ and σ^2 :

(a)
$$f(x) = 4x^c$$
, $0 \le x \le 1$.

(b)
$$f(x) = c\sqrt{x}, \quad 0 \le x \le 4.$$

2.2-2. Let the random variable X have the pmf

$$f(x) = \frac{(|x|+1)^2}{9}, \quad x = -1, 0, 1.$$

Compute E(X), $E(X^2)$, and $E(3X^2 - 2X + 4)$. and V(X) by hand.

- **2.3-3.** Given E(X + 4) = 10 and $E[(X + 4)^2] = 116$, determine **(a)** Var(X + 4), **(b)** $\mu = E(X)$, and **(c)** $\sigma^2 = Var(X)$.
- **2.3-8.** Let X equal the larger outcome when a pair of fair four-sided dice is rolled. The pmf of X is

$$f(x) = \frac{2x - 1}{16}, \qquad x = 1, 2, 3, 4.$$

- (a) Find the mean, variance, and standard deviation of X. using your calculator.
- (b) If Y = 2X 1, find E(Y) and SD(Y).

select **Answers**

2.1-8) c)
$$P(W < 5) = 10/16$$

 $P(W \ge 2) = 12/16$
 $P(1 \le W \le 4) = 8/16$

$$2.1-12$$
) Prob = 0.4

3.1-16) a)
$$P(X < -0.25) = 9/64$$

 $P(X \ge -0.25) = 55/64$
b) $x_{0.29} \approx 0.0770$
d) $P(-0.5 < X \le 0.75) \approx 0.7031$
 $P(X > 0) = 0.75$

3.1-7) a) c = 3,
$$F(x) = x^4$$
, $E(X) = 4/5$, $V(X) = 2/75$
b) c = 3/16, $F(x) = (1/8)x^{3/2}$, $E(X) = 12/5$, $V(X) = 192/175$

2.2-2)
$$E(X) = 0$$
, $E(X^2) = 8/9$, $E(3X^2-2X+4) = 20/3$, $V(X) = 8/9$

2.3-8) (a) E(X) = 3.125, V(X)
$$\approx$$
 55/64,
SD(X) \approx 0.927
(b) E(Y) =5.25, SD(Y) \approx 1.854