1. (amended) An interleaved clock generator for generating N interleaved clock signals in response to an input clock signal, where N is a non-prime integer, the interleaved clock generator comprising:

-2-

interleaved clock generator means of a first type for receiving the input clock signal and for generating in response thereto M interleaved intermediate clock signals, where M is a factor of N and is an integer greater than unity, the interleaved clock generator means of the first type including one of (a) a multistage serial-delay circuit and (b) a ring counter circuit; and

M interleaved clock generator means of a second type, each for receiving a respective one of the intermediate clock signals from the clock generator means of the first type and for generating in response thereto N/M of the N interleaved clock signals, each of the interleaved clock generator means of the second type including the other of (a) the multi-stage serial-delay circuit and (b) the ring counter circuit, wherein:

corresponding edges of temporally adjacent ones of the interleaved clock signals differ in time by a time delay Td;

the interleaved clock signals have a frequency of 1/(N*Td);

the input clock signal has a frequency of 1/(M*Td) when the interleaved clock generator means of the first type includes the multi-stage serial delay circuit; and

the input clock signal has a frequency of M/(N*Td) when the interleaved clock generator means of the first type includes the ring counter circuit.

8. (amended) An interleaved clock generator for generating N interleaved clock signals in response to an input clock signal, where N is a non-prime integer, the interleaved clock generator comprising:

interleaved clock generator means of a first type for receiving the input clock signal and for generating in response thereto M interleaved intermediate clock signals, where M is a factor of N and is an integer greater than unity, the

15

20

10

5

8

5

Fax:6504855487

USSN 10/061,504

-3-

PATENT

Ch 210

15

interleaved clock generator means of the first type including a multi-stage serialdelay circuit; and

M interleaved clock generator means of a second type, each for receiving a respective one of the intermediate clock signals from the clock generator means of the first type and for generating in response thereto N/M of the N interleaved clock signals, each of the interleaved clock generator means of the second type including a ring counter circuit, wherein:

the input clock signal comprises differential clock signals each having a 50% duty cycle; and

the multi-stage serial-delay circuit includes M/2 delay stages, each providing two of the intermediate clock signals.

9. (amended) An interleaved clock generator for generating N interleaved clock signals in response to an input clock signal, where N is a non-prime integer, the interleaved clock generator comprising:

interleaved clock generator means of a first type for receiving the input clock signal and for generating in response thereto M interleaved intermediate clock signals, where M is a factor of N and is an integer greater than unity, the interleaved clock generator means of the first type including a ring counter circuit; and

M interleaved clock generator means of a second type, each for receiving a respective one of the intermediate clock signals from the clock generator means of the first type and for generating in response thereto N/M of the N interleaved clock signals, each of the interleaved clock signal generator means of the second type including a multi-stage serial-delay circuit.

10

5

USSN 10/061,504

4

PATENT

5

12. (amended) The interleaved clock generator of claim 9, in which:
each intermediate clock signal comprises differential clock signals each
having a 50% duty cycle; and

the multi-stage serial-delay circuit includes N/2M delay stages, each providing two of the interleaved clock signals.

USSN 10/061,504

-5-

PATENT

10

15

20

13. (amended) An interleaved clock generator for generating *N* interleaved clock signals in response to an input clock signal, where *N* is a non-prime integer, the interleaved clock generator comprising:

an interleaved clock generator of a first type, including a clock input connected to receive the input clock signal, M intermediate clock outputs, where M is a factor of N and is an integer greater than unity, and one of (a) a multistage serial-delay circuit and (b) a ring counter circuit, the interleaved clock generator of the first type operating in response to the input clock signal to output a respective intermediate clock signal at each of the intermediate clock outputs; and

M interleaved clock generators of a second type, each including an intermediate clock input connected to a different one of the M intermediate clock outputs of the interleaved clock signal generator of the first type, N/M clock outputs and the other of (a) the multi-stage serial-delay circuit and (b) the ring counter circuit, each of the interleaved clock generators of the second type operating in response to the intermediate clock signal to output a respective one of N/M of the interleaved clock signals at each of the clock outputs, wherein:

corresponding edges of temporally adjacent ones of the interleaved clock signals differ in time by a time delay Td;

the interleaved clock signals have a frequency of 1/(N×Td);

the input clock signal has a frequency of 1/(M×Td) when the interleaved clock generator of the first type includes the multi-stage serial delay circuit;

the input clock signal has a frequency of M/(N×Td) when the interleaved clock generator of the first type includes the ring counter circuit.

Fax:6504855487

Ch Ch

5

10

15

5

5

18. (amended) An interleaved clock generator for generating N interleaved clock signals in response to an input clock signal, where N is a non-prime integer, the interleaved clock generator comprising:

an interleaved clock generator of a first type, including a clock input connected to receive the input clock signal, M intermediate clock outputs, where M is a factor of N and is an integer greater than unity, and a ring counter circuit, the interleaved clock generator of the first type operating in response to the input clock signal to output a respective intermediate clock signal at each of the intermediate clock outputs; and

M interleaved clock generators of a second type, each including an intermediate clock input connected to a different one of the M intermediate clock outputs of the interleaved clock signal generator of the first type, N/M clock outputs and a multi-stage serial-delay circuit, each of the interleaved clock generators of the second type operating in response to the intermediate clock signal to output a respective one of N/M of the interleaved clock signals at each of the clock outputs multi-stage serial-delay circuit.

2

21. (new) The interleaved clock generator of claim 18, in which:

corresponding edges of temporally-adjacent ones of the interleaved clock
signals differ in time by a time delay Td;

the interleaved clock signals have a frequency of $1/(N\times Td)$; and the input clock signal has a frequency of $M/(N\times Td)$.

22. (new) The interleaved clock generator of claim 18, in which:
each intermediate clock signal comprises differential clock signals each
having a 50% duty cycle; and

the multi-stage serial-delay circuit includes N/2M delay stages, each providing two of the interleaved clock signals.

USSN 10/061,504

--7-

PATENT

(h

19. (amended) An interleaved clock generator for generating N interleaved clock signals in response to an input clock signal, where N is a non-prime integer, the interleaved clock generator comprising:

a multi-stage serial-delay circuit connected to receive the input clock signal, the multi-stage serial-delay circuit including M intermediate clock outputs where M is a factor of N and is an integer greater than unity; and

connected to each of the *M* intermediate clock outputs, a ring counter circuit that generates N/M of the *N* interleaved clock signals.

S

5

23. (new) The interleaved clock generator of claim 19, in which:
corresponding edges of temporally-adjacent ones of the interleaved clock
signals differ in time by a time delay Td;

the interleaved clock signals have a frequency of $1/(N\times Td)$; and the input clock signal has a frequency of $1/(M\times Td)$.

24. (new) The interleaved clock generator of claim 19, in which:
each intermediate clock signal comprises differential clock signals each
having a 50% duty cycle; and

the multi-stage serial-delay circuit includes M/2 delay stages, each providing two of the intermediate clock signals.

Fax:6504855487

USSN 10/061,504

-8-

PATENT

25. (new) An interleaved clock generator for generating N interleaved clock signals in response to an input clock signal, where N is a non-prime integer, the interleaved clock generator comprising:

a ring counter circuit connected to receive the input clock signal, the ring counter circuit including M intermediate clock outputs, where M is a factor of N and is an integer greater than unity; and

connected to each of the M intermediate clock outputs, a multi-stage delay circuit that generates N/M of the N interleaved clock signals.

26. (new) The interleaved clock generator of claim 25, in which the ring counter circuit comprises an M-stage ring counter.

27. (new) The interleaved clock generator of claim 25, in which: corresponding edges of temporally-adjacent ones of the interleaved clock signals differ in time by a time delay Td;

the interleaved clock signals have a frequency of $1/(N\times Td)$; and the input clock signal has a frequency of $M/(N\times Td)$.

28. (new) The interleaved clock generator of claim 25, in which:
each intermediate clock signal comprises differential clock signals each
having a 50% duty cycle; and

the multi-stage serial-delay circuit includes N/2M delay stages, each providing two of the interleaved clock signals.

In the Drawings

The applicant respectfully requests the Examiner's approval of the proposed changes indicated in red ink in Figures 1A, 1B, 2A, 2B, 3A and 3B of the drawings.

Cunto

5

5