MODERN CRYPTOGRAPHY

Bachelor Computer Science, University of Amsterdam, 2018/19 TEACHER: Christian Schaffner, TA: Jan Czajkowski, Christian Majenz

Problem Set 7

Problem 1: RSA Signatures

- (a) Consider the plain RSA signature scheme with modulus $N=85=5\cdot 17$.
 - 1. Compute $\phi(N)$.
 - 2. Say the public exponent is e=5. Find the private exponent d. (Hint: look at the sequence $\phi(N)+1, 2\cdot \phi(N)+1, \ldots$ until you find a multiple of e.)
 - 3. Compute the signature on the message 3. Hint: Note that $[3^4 \mod 85] = [81 \mod 85] = [(-4) \mod 85]$.
- (b) Consider a padded RSA signature scheme, where to sign a message $m \in \{0,1\}^{80}$ the signer chooses random r with $r \| m < N$ (where $\|$ denotes concatenation), computes $\sigma = [(r \| m)^d \mod N]$, and outputs signature σ .
 - 1. How would verification be done?
 - 2. Is this scheme secure? If yes, give a 1-2 sentence explanation; if not, show an attack.

Problem 2: Not a PRF

Consider the keyed function $H:\{0,1\}^n\times\{0,1\}^n\to\{0,1\}^{2n}$ defined as: $H_k(x)=G(k)\oplus G(x)$, where $G:\{0,1\}^n\to\{0,1\}^{2n}$ is a pseudorandom generator.

- (a) Describe and formally analyze an explicit attack showing that *H* is not a PRF.
- (b) Is there a successful attack making a single query that distinguishes H_k (for random k) from a random function $f: \{0,1\}^n \to \{0,1\}^{2n}$? Why or why not?

Problem 3: A randomized variable-length MAC from a PRF

Let F be a pseudorandom function. Show that the following MAC is insecure for variable-length messages. Gen outputs a uniform $k \in \{0,1\}^n$. Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.

To authenticate a message $m = m_1 \| \dots \| m_\ell$, where $m_i \in \{0, 1\}^{n/2}$, choose a uniform $r \leftarrow \{0, 1\}^n$, compute $t := F_k(r) \oplus F_k(\langle 1 \rangle \| m_1) \oplus \dots \oplus F_k(\langle \ell \rangle \| m_\ell)$ and let the tag be (r, t).

Problem 4: Cryptographic Mechanisms

For each of the following, identify the most appropriate cryptographic mechanism(s) (from among private-key encryption, pseudorandom generators, pseudorandom functions, message authentication codes, hash functions, public-key encryption, or digital signatures) for addressing the problem. Points will be deducted if you list extraneous mechanisms. **Explain your answer in 1-2 sentences.**

- (a) A company wants to distribute authenticated software updates to its customers.
- **(b)** A user wants to ensure secrecy of the files stored on his hard drive.
- (c) A customer wants to send his credit card number (confidentially) to a merchant over the web to complete a purchase.
- (d) A general wants to send a message to a lieutenant, and wants to ensure both confidentiality and integrity.
- **(e)** A client wants to store a short record of a large file he uploads to a server, so that the client can verify that the file has not been altered when it downloads the file later.
- (f) A user needs 1,000,000 random bits in order to run a simulation, but obtaining truly random bits is expensive.

Problem 5: Mode of Encryption

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher, and consider the following mode of encryption: to encrypt an ℓ -block message m_1, \ldots, m_ℓ using key k, choose uniform $c_0 \in \{0,1\}^n$ and then for $i=1,\ldots,\ell$ set $c_i:=F_k(m_i)\oplus c_{i-1}$. Output the ciphertext $c_0,\ldots c_\ell$.

- (a) How would decryption of a ciphertext c_0, \ldots, c_ℓ be done?
- **(b)** Describe and analyze an explicit attack showing that this scheme is not EAV- secure.
- (c) Is this scheme CPA-secure? Provide a brief justification of your answer.

Problem 6: Padded RSA

Let $\tilde{\Pi}=(\tilde{\mathsf{Gen}},\tilde{\mathsf{Enc}},\tilde{\mathsf{Dec}})$ be the plain RSA encryption scheme for 2n bit messages, and consider the padded encryption scheme $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ where $\mathsf{Gen}=\tilde{\mathsf{Gen}}.$ To encrypt a plaintext $m\in\{0,1\}^n$, sample $r\leftarrow\{0,1\}^n$ and output $\tilde{\mathsf{Enc}}_{\mathsf{pk}}(x\|r).$ Decryption is done by decrypting with $\tilde{\mathsf{Dec}}_{\mathsf{sk}}$ and outputting the first half of the resulting string.

(a) Find a chosen ciphertext attack on Π .