Sieci komputerowe

Enkapsulacja

Wykład 2 — Modele sieci, protokoły i standardy

Marta Szarmach Zakład Telekomunikacji Morskiej Wydział Elektryczny Uniwersytet Morski w Gdyni

02.2022

Enkapsulacja

Plan prezentacji

- Model OSI
 - Definicja
 - Warstwy niższe
 - Warstwy wyższe
- Model TCP/IP
- 3 Enkapsulacja
 - Definicja
 - Przykład w modelu OSI
 - Dekapsulacja
- Organizacje standaryzacyjne
 - Standardy komunikacyjne
 - Standardy internetowe

1. Model OSI

Warstwy sieci według modelu OSI i ich funkcje

1.1 Model OSI. Definicia

Definicia

Model OSI — określony standardami model budowania sieci komputerowych, według którego sieć składa się z tzw. warstw. Każda warstwa realizuje inną funkcjonalność za pomocą określonych protokołów.

Enkapsulacja

Podstawowym założeniem modelu OSI jest modułowość sieci protokoły w ramach jednej warstwy można wymieniać bez wpływu na działanie sąsiednich warstw.

1.1 Model OSI. Definicia

Definicja

Protokół komunikacyjny — formalnie zdefiniowany sposób porozumiewania się dwóch urządzeń, obejmujący m.in.:

- formatowanie i kodowanie wiadomości.
- identyfikacja urządzenia nadawczego i odbiorczego,
- sprawdzanie poprawności przesłanych danych (np. poprzez sumy kontrolne).

1.1 Model OSI. Definicia

Budowa sieci według modelu OSI:

- Warstwy niższe: fizyczna, łącza danych, sieciowa, transportowa
- Warstwy wyższe: sesji, prezentacji, aplikacyjna

Warstwa 1: Fizyczna

Rola:

Organizacja przesyłu bitów poprzez medium transmisyjne (kablowe, światłowodowe czy bezprzewodowe):

- regulacja sygnałów elektrycznych/ świetlnych/ radiowych,
- formalizowanie budowy złączy.

Standardy (przykładowo):

- IEEE 802.3 (Ethernet)
- IEEE 802.11 (Wi-Fi), 802.15.1 (Bluetooth)
- ITU-T G.984 (GPON)

Urządzenie:

Enkapsulacja

Koncentrator

Jednostka danych:

Bity

Warstwa 2: Łacza danych

Rola:

Przekazanie danych na poziomie lokalnym:

- ramkowanie danych,
- organizacja dostępu do medium transmisyjnego,
- kontrola błędów w ramkach.

Identyfikacja poprzez:

Adres MAC

Protokoły:

Enkapsulacja

- Ethernet
- Point-to-Point Protocol (PPP)
- Token Ring

Urządzenia:

- Przełącznik
- Most

Jednostka danych:

Ramka

Warstwa 3: Sieciowa

Rola:

Zapewnienie łączności pomiędzy urządzeniami z różnych sieci:

- trasowanie (routing)
- regulacja obciążenia łączy,
- adresowanie urządzeń sieciowych.

Identyfikacja poprzez:

Adres sieciowy (np. IP)

Protokoły:

Enkapsulacja

- IPv4, IPv6 (oraz wspomagający ICMP)
- IPX

Urządzenie:

Router

Jednostka danych:

Pakiet.

Warstwa 4: Transportowa

Rola:

Połączenie pomiędzy konkretnymi urządzeniami (i usługą na nich):

- segmentowanie ruchu,
- gwarancja niezawodności komunikacji (w przypadku TCP) poprzez potwierdzenia odbioru.

Protokoły:

Enkapsulacja

- TCP
- UDP

Jednostki danych:

- segment (dla TCP)
- datagram (dla UDP)

Identyfikacja poprzez:

Numery portów

1.3 Model OSI. Warstwy wyższe

Warstwa 5: Sesji

Rola:

Synchronizuje dane pochodzące od wielu aplikacji

Protokoły:

PPTP

Warstwa 6: Prezentacji

Rola:

Enkapsulacja

Zapewnia spójny format danych spływających do niższych warstw

Protokoły:

TSL, JPEG, GIF, MPEG...

1.3 Model OSI. Warstwy wyższe

Warstwa 7: Aplikacyjna

Rola:

Udostępnianie użytkownikom/aplikacjom interfejsu do wprowadzania danych do sieci:

- tworzenie wiadomości,
- przekazywanie wiadomości do niższych warstw.

Protokoły:

Enkapsulacja

- klienckie: HTTP, POP3. SMTP, IMAP, FTP, telnet, SSH
- sieciowo-kontrolne: DHCP. DNS. NTP. SNMP

Urządzenie:

Komputer (klient/serwer)

2. Model TCP/IP

Warstwy sieci według modelu TCP/IP, porównanie z modelem OSI

2. Model TCP/IP

Porównanie z modelem OSI.

Model TCP/IP składa się z 4 warstw:

 warstwa fizyczna i łącza danych tworzą warstwę dostępu do sieci.

- warstwa sieciowa nazywana jest tu warstwą internetową,
- warstwa transportowa pozostaje bez zmian,
- warstwy wyższe (sesji, prezentacji i aplikacji) tworzą warstwę aplikacyjną.

2. Model TCP/IP

Porównanie z modelem OSI:

Aplikacji
Prezentacji
Sesji
Transportowa
Sieciowa
Łącza Danych
Fizyczna
Model OSI
Prezentacji
Aplikacji

3. Enkapsulacja

Czym jest enkapsulacja i jak przebiega w modelu OSI

Enkapsulacja ●○○○○

3.1 Enkapsulacja. Definicja

Definicia

Enkapsulacja to proces zachodzący podczas przesyłania danych w dół modelu OSI — od użytkownika w kierunku impulsów w medium transmisyjnym, podczas wysyłania danych. Polega na tym, że dane z wyższej warstwy zamykane są w całości (jako ładunek) w strukture danych w warstwie niższej poprzez dodanie do nich odpowiedniego dla danej warstwy nagłówka, zawierającego informacje niezbędne do prawidłowego działania tej warstwy (np. zapewniające zlokalizowanie urządzenia docelowego).

3.2 Enkapsulacja. Przykład na podstawie modelu OSI

Reprezentacja graficzna:

3.2 Enkapsulacja. Przykład na podstawie modelu OSI

Jednostki danych (PDU, Protocol Data Unit) na kolejnych warstwach modelu OSI:

- dane z warstw wyższych (aplikacyjnej-sesji) zamykane są na warstwie transportowej w tzw. segmenty (jeśli protokołem działającym na warstwie transportowej jest TCP) lub datagramy (dla UDP),
- segmenty z warstwy transportowej stanową zawartość pakietów na warstwie sieciowej,
- pakiet otoczony nagłówkiem wartswy łącza danych tworzy ramkę,
- na warstwie najniższej (fizycznej) ramki konwertowane są na bity, a bity na poziomy napięć, impulsy świetlne, zmodulowane fale elektromagnetyczne, itp.

3.3 Enkapsulacja. Dekapsulacja

Definicia

Dekapsulacja to proces odwrotny do enkapsulacji. Zachodzi podczas przepływu danych w górę modelu OSI (tj. przy odbieraniu danych). Polega na wyodrębnianiu na każdej warstwie ładunku (przesyłanych danych wyższej warstwy) od nagłówka.

4. Organizacje standaryzacyjne IETF, W3C, ISO, ITU, ANSI, IEEE

4. Organizacje standaryzacyjne

Organizacje standaryzacyjne określają normy, które określają funkcjonowanie i budowę protokołów komunikacyjnych czy Internetu:

- Standardy komunikacyjne IEEE, ITU-T, ISO, ANSI
- Standardy internetowe IANA, ICANN, IETF, W3C

4.1 Organizacje standaryzacyjne. Standardy komunikacyjne

Enkapsulacia

Organizacje definiujące standardy standaryzacyjne:

- IEEE (Institute of Electrical and Electronics Engineers) ustala standardy dotyczące m.in. przesyłania danych, głównie na warstwie fizycznej/łącza danych (np. IEEE 802.3 Ethernet, 802.11 Wi-Fi)
- ITU-T (International Telecommunications Union) standaryzuje oraz reguluje rynek telekomunikacyjny, określa standardy dla m.in. kompresji wideo, protokołów telewizji internetowej IPTV oraz łączności szerokopasmowej

4.1 Organizacje standaryzacyjne. Standardy komunikacyjne

Enkapsulacja

Organizacje definiujące standardy komunikacyjne:

- ISO (Międzynarodowa Organizacja Normalizacyjna) organizuje standardy na poziomie międzynarodowym, określiła m.in. model OSI
- ANSI (American National Standards Institute) tworzy standardy dotyczące m.in. kodowania i szyfrowania danych czy ich przesyłu

4.2 Organizacje standaryzacyjne. Standardy internetowe

Enkapsulacja

Organizacje definiujące standardy internetowe:

- **IETF** (Internet Engineering Task Force) opracowuje dokumenty formalizujące protokoły dla stosu TCP/IP
- W3C (World Wide Web Consortium) rekomenduje stantardy pisania, kodowania i przesyłania stron www
- IANA (Internet Assigned Numbers Authority) oraz ICANN (Internet Corporation for Associated Names and Numbers) zarządzają przydzielaniem adresów IP i nazw domenowych