I. Exercices

I.1. Du texte aux quantificateurs

Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction. Exprimer à l'aide de quantificateurs les assertions suivantes :

- f est constante;
- f n'est pas constante;
- -f s'annule;
- f est périodique.

I.2. QCM

Pour chaque question, une seule réponse est juste. Laquelle?

- La somme $\sum_{k=0}^{n} 2$
 - **a**. n'a pas de sens **b**. vaut 2(n+1) **c**. vaut 2n.
- La somme $\sum_{p=0}^{2n+1} (-1)^p$ est égale à

a. 1 **b**.
$$-1$$
 c. 0.

— Le produit $\prod_{i=1}^{n} (5a_i)$ est égal à

a.
$$5 \prod_{i=1}^{n} a_i$$
 b. $5^n \prod_{i=1}^{n} a_i$ **c.** $5^{n-1} \prod_{i=1}^{n} a_i$.

II. Indicators

III. Du texte aux quantificateurs

pas d'indication :(

IV. QCM

2

V. Corriges

VI. Du texte aux quantificateurs

- On peut l'écrire sous la forme : $\exists C \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = C$; une autre écriture possible est $\forall x, y \in \mathbb{R}, f(x) = f(y)$.
- Si on nie l'assertion précédente, on trouve $\forall C \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) \neq C$. Si on nie la seconde, on trouve $\exists x, y \in \mathbb{R}, f(x) \neq f(y)$.
- $-\exists x \in \mathbb{R}, \ f(x) = 0;$
- $--\exists T \in \mathbb{R}^*, \forall x \in \mathbb{R}, f(x+T) = f(x).$

VII. QCM

- On somme (n+1) fois le nombre 2. La bonne réponse est b.
- On somme (n+1) fois le nombre 1 (pour les p correspondant à $0, 2, \ldots 2n$), et (n+1) faut le nombre -1 (pour les p correspondant à $1, 3, \ldots, 2p+1$). La bonne réponse est c. (Si vous n'êtes pas convaincu, essayez le calcul avec $n=2,3,\ldots$).
- Dans chaque produit, il y a le terme 5 qui ne dépend pas de i et qu'on peut extraire du produit. Comme il y a n termes dans le produit, la bonne réponse est b.