# Tutorial 8 - Belief Propagation and Sampling COMP9418 - Advanced Topics in Statistical Machine Learning

Lecturer: Gustavo Batista

Lecture: Belief Propagation and Sampling

**Topic:** Questions from lecture topics

Last revision: Thursday 19<sup>th</sup> November, 2020 at 15:21

### Question 1

Consider the following Bayesian network:



Suppose we condition on evidence e: D = true. Suppose that we have run the Parallel Iterative Belief Propagation (IBP) algorithm on the network, where it converges and yields the following set of messages and family marginals:

| $\overline{A}$ | $\pi_C(A)$ | $\pi_D(A)$ | $\lambda_C(A)$ | $\lambda_D(A)$ |
|----------------|------------|------------|----------------|----------------|
| +a             |            | .5         | .5             | .6             |
| -a             |            | .5         | .5             | .4             |

| B  | $\pi_C(B)$ | $\pi_D(B)$ | $\lambda_C(B)$ | $\lambda_D(B)$ |
|----|------------|------------|----------------|----------------|
| +b | .3         | .25        | .5             |                |
| -b | .7         | .75        | .5             |                |

| $\overline{A}$ | B  | C  | $\beta(A, B, C)$ |
|----------------|----|----|------------------|
| +a             | +b | +c | .162             |
| +a             | +b | -c | .018             |
| +a             | -b | +c |                  |
| +a             | -b | -c | .084             |
| -a             | +b | +c | .084             |
| -a             | +b | -c | .036             |
| -a             | -b | +c | .168             |
| -a             | -b | -c | .112             |

| $\overline{A}$ | B  | D  | $\beta(A,B,D)$ |
|----------------|----|----|----------------|
| +a             | +b | +d | .2             |
| +a             | +b | -d | 0              |
| +a             | -b | +d |                |
| +a             | -b | -d | 0              |
| -a             | +b | +d | .1             |
| -a             | +b | -d | 0              |
| -a             | -b | +d | .3             |
| -a             | -b | -d | 0              |

- a. Fill in the missing values for IBP messages.
- b. Fill in the missing values for family marginals.
- c. Compute marginals  $\beta(A)$  and  $\beta(B)$  using the IBP messages and those computed in (a).
- d. Compute marginals  $\beta(A)$  and  $\beta(B)$  by summing out the appropriate variables from the family marginals  $\beta(ABC)$  as well as  $\beta(ABD)$ .
- e. Compute joint marginal  $\beta(AB)$  by summing out the appropriate variables from family marginals  $\beta(ABC)$  as well as  $\beta(ABD)$ .
- f. Are the marginals computed in (d) consistent? What about those computed in (e)?

Consider the following IBP algorithm:

```
Data: N: Bayesian network
      Data: e: evidence
      Result: Approximate marginals, \beta(X\mathbf{U}) of P(X\mathbf{U}|e) for each family X\mathbf{U} in N
      begin
 1
  2
            t \leftarrow 0:
            initialize all messages;
  3
            while messages have not converged do
  4
  5
                  t \leftarrow t + 1;
                  \mathbf{for} \ each \ node \ X \ with \ parents \ \boldsymbol{U} \ \mathbf{do}
  6
                         for each parent U_i do
  7
                          | \lambda_X^t(U_i) = \eta \sum_{X \mathbf{U} \setminus \{U_i\}} \lambda_{\mathbf{e}}(X) \phi_X(X, \mathbf{U}) \prod_{k \neq i} \pi_X^{t-1}(U_k) \prod_j \lambda_{Y_j}^{t-1}(X); 
  8
                         end
  9
                        \begin{array}{l} \textbf{for } each \ child \ Y_j \ \textbf{do} \\ \big| \ \ \pi^t_{Y_j}(X) = \eta \sum_{\mathbf{U}} \lambda_{\mathbf{e}}(X) \phi_X(X,\mathbf{U}) \prod_i \pi^{t-1}_X(U_i) \prod_{k \neq j} \lambda^{t-1}_{Y_k}(X); \end{array}
10
11
                         end
12
                  end
13
            end
14
15
      return \beta(X\mathbf{U}) = \eta \lambda_{\mathbf{e}}(X)\phi_X(X,\mathbf{U}) \prod_i \pi_X^t(U_i) \prod_j \lambda_{Y_i}^t(X)
```

#### Answer

a. The following figure shows all messages:



Let's start computing  $\pi_C(A)$ . According to the IBP algorithm:

$$\pi_C(A) = \eta \phi_A(A) \lambda_D(A)$$

This simplified equation comes from the fact that node A has no parents and no evidence. Also, this message does not consider the message  $\lambda_C(A)$  coming from node C because we are computing a message directed to the same node C.

Therefore,

$$\begin{array}{c|cc}
A & \pi_C(A) \\
+a & .6 \\
-a & .4
\end{array}$$

Remember that the multiplication by the constant  $\eta$  renormalizes the message  $\pi_C(A)$  to sum to one.

Now, we compute  $\lambda_D(B)$  using the equation from the IBP algorithm:

$$\lambda_D(B) = \eta \sum_{A,B} \lambda_{\mathbf{e}}(D) \phi_D(D,A,B) \pi_D(A)$$

Also, notice that node B has no children, and we should not consider the message  $\pi_D(B)$  when computing a message to B.

We first compute the multiplication  $\lambda_{\mathbf{e}}(D)\phi_D(D,A,B)\pi_D(A)$ .

| $\overline{A}$ | B  | D  | $\lambda_{\mathbf{e}}(D)\phi_D(D,A,B)\pi_D(A)$ |
|----------------|----|----|------------------------------------------------|
| +a             | +b | +d | .3                                             |
| +a             | +b | -d | 0                                              |
| +a             | -b | +d | .2                                             |
| +a             | -b | -d | 0                                              |
| -a             | +b | +d | .15                                            |
| -a             | +b | -d | 0                                              |
| -a             | -b | +d | .15                                            |
| -a             | -b | -d | 0                                              |

After the elimination of variables A and B and renormalization, we get the message  $\lambda_D(B)$ 

$$\begin{array}{c|cc}
B & \lambda_D(B) \\
+b & .5625 \\
-b & .4375
\end{array}$$

b. We also use the equation from IBP algorithm to compute the family marginals

 $\beta(+a,-b,+c) = \eta \phi_C(+c,+a,-b)\pi_C(+a)\pi_C(-b) = \eta 0.8 \times 0.6 \times 0.7 = \eta 0.336$ . Since this factor is natually normalized,  $\eta = 1$ .

 $\beta(+a,-b,+d) = \eta \phi_D(+d,+a,-b)\pi_D(+a)\pi_D(-b) = \eta 0.4 \times 0.5 \times 0.75 = \eta 0.15$ . This factor does not sum to one naturally since we have evidence on D. In this case  $\eta \approx 2.667$  and  $\beta(+a,-b,+d) = 0.4$ .

c. According to the IBP algorithm:

 $\beta(A) = \eta \phi_A(A) \lambda_C(A) \lambda_D(A)$ . Therefore:

$$\begin{array}{c|cc}
\hline
A & \beta(A) \\
+a & .6 \\
-a & .4
\end{array}$$

Also,  $\beta(B) = \eta \phi_B(B) \lambda_C(B) \lambda_D(B)$ .

$$\begin{array}{c|cc}
B & \beta(B) \\
+b & .3 \\
-b & .7
\end{array}$$

d. We can compute  $\beta(A)$  by summing out variables B and C from  $\beta(A, B, C)$ :

$$\beta(A) = \sum_{B,C} \beta(A, B, C)$$

| $\overline{A}$ | B  | C  | $\beta(A, B, C)$ |
|----------------|----|----|------------------|
| +a             | +b | +c | .162             |
| +a             | +b | -c | .018             |
| +a             | -b | +c | .336             |
| +a             | -b | -c | .084             |
| -a             | +b | +c | .084             |
| -a             | +b | -c | .036             |
| -a             | -b | +c | .168             |
| -a             | -b | -c | .112             |

Summing out C, we get:

| $\overline{A}$ | B  | $\beta(A,B)$ |
|----------------|----|--------------|
| +a             | +b | .18          |
| +a             | -b | .42          |
| -a             | +b | .12          |
| -a             | -b | .28          |
|                |    |              |

Summing out B, we get:

$$\begin{array}{c|cc}
\hline
A & \beta(A) \\
+a & .6 \\
-a & .4
\end{array}$$

4

We can also compute  $\beta(B)$  from  $\beta(A,B)$  eliminating A

$$\begin{array}{c|c}
\hline
B & \beta(B) \\
+b & .3 \\
-b & .7
\end{array}$$

We will now sum out variables from the family marginal  $\beta(A, B, D)$ . We can compute  $\beta(A)$  by summing out variables B and D from  $\beta(A, B, D)$ :

| $\overline{A}$ | В  | D  | $\beta(A,B,D)$ |
|----------------|----|----|----------------|
| +a             | +b | +d | .2             |
| +a             | +b | -d | 0              |
| +a             | -b | +d | .4             |
| +a             | -b | -d | 0              |
| -a             | +b | +d | .1             |
| -a             | +b | -d | 0              |
| -a             | -b | +d | .3             |
| -a             | -b | -d | 0              |

Summing out D, we get:

| $\overline{A}$ | B  | $\beta(A,B)$ |
|----------------|----|--------------|
| +a             | +b | .2           |
| +a             | -b | .4           |
| -a             | +b | .1           |
| -a             | -b | .3           |
|                |    |              |

Summing out B, we get:

$$\begin{array}{c|c}
A & \beta(A) \\
+a & .6 \\
-a & .4
\end{array}$$

We can also compute  $\beta(B)$  from  $\beta(A, B)$  eliminating A

$$\begin{array}{c|cc}
B & \beta(B) \\
+b & .3 \\
-b & .7
\end{array}$$

e. We did this as an intermediate step of the previous answer. We copy the answer above to facilitate reference.

| $\overline{A}$ | В  | $\beta(A, B)$ from $\beta(A, B, C)$ |
|----------------|----|-------------------------------------|
| +a             | +b | .18                                 |
| +a             | -b | .42                                 |
| -a             | +b | .12                                 |

| $\overline{A}$ | В  | $\beta(A, B)$ from $\beta(A, B, C)$ |
|----------------|----|-------------------------------------|
| -a             | -b | .28                                 |

| A  | B  | $\beta(A, B)$ from $\beta(A, B, D)$ |
|----|----|-------------------------------------|
| +a | +b | .2                                  |
| +a | -b | .4                                  |
| -a | +b | .1                                  |
| -a | -b | .3                                  |

f. The marginals computed in (d) are consistent, while the ones in computed in (e) are not consistent.

## Question 2

Consider the following Bayesian network:



and the parameter  $\theta_{\bar{a}}$  representing the probability of A = false (i.e., it is not winter). For each of the following values of this parameter, 0.01, 0.4 and 0.99 do the following:

- a. Compute the probability of P(+d, +e): wet grass and slippery road. You can use the code from previous tutorials.
- b. Estimate P(+d, +e) using forward sampling with sample sizes ranging from n = 100 to n = 15,000.
- c. Generate a plot with n on the x-axis and the exact value of P(+d, +e) and the estimate for P(+d, +e) on the y-axis.
- d. Generate a plot with n on the x-axis and the exact variance of the estimate for P(+d, +e) and the sample variance on the y-axis.

### Answer

- a. We computed P(d,e) using our code from previous tutorials. We obtained the following results: P(+d,+e)=0.4608 for  $\theta_{\bar{a}}=0.01$  P(+d,+e)=0.3044 for  $\theta_{\bar{a}}=0.4$  P(+d,+e)=0.0679 for  $\theta_{\bar{a}}=0.99$
- b. The following code will estimate P(+d, +e) using forward sampling:

```
# Declare `factors`: a factor dictionary for the Bayesian network parameters
theta_na_list = [.01, .4, .99]
true_p_d_e_list = [0.4608, 0.3044, 0.0679]
sample_sizes = range(100,15000,100)
for j, theta_na in enumerate(theta_na_list):
    p_d_e_list = []
    sample_var_list = []
    sample_mean_var_list = []
    factors['A']['table'][1] = 1 - theta_na
    for s in sample_sizes:
        d = count = 0
        for i in range(s):
            a = random() < factors['A']['table'][1]</pre>
            b = random() < factors['B']['table'][(a,1)]</pre>
            c = random() < factors['C']['table'][(a,1)]</pre>
            d = random() < factors['D']['table'][(b,c,1)]</pre>
            e = random() < factors['E']['table'][(c,1)]</pre>
            if d and e:
                d_e_count = d_e_count + 1
        p_d_e = d_e_count / s
        p_d_e_list.append(p_d_e)
        sample_var_list.append((sum([(1-p_d_e)**2 for i in range(d_e_count)]) + \
                                 sum((0-p_d_e)**2 \text{ for i in range}(s-d_e_count))) / (s-1))
        sample_mean_var_list.append(true_p_d_e_list[j] * (1-true_p_d_e_list[j])/s)
    plt.figure()
    plt.axhline(y=true_p_d_e_list[j], color='r', linestyle='-')
    plt.suptitle('P(a)='+str(1-theta_na))
    plt.plot(range(100,15000,100), p_d_e_list, 'bo')
    plt.xlabel("Sample size")
    plt.ylabel("P(+d,+e)")
    plt.show()
    plt.figure()
    plt.suptitle('P(a)='+str(1-theta_na))
    plt.plot(range(100,15000,100), sample_var_list, 'b')
    plt.xlabel("Sample size")
    plt.ylabel("Sample variance")
    plt.show()
    plt.figure()
    plt.suptitle('P(a)='+str(1-theta na))
    plt.plot(range(100,15000,100), sample_mean_var_list, 'b')
    plt.xlabel("Sample size")
    plt.ylabel("Sample mean variance")
    plt.show()
```

c. You should get a plot like this, with the above code



d. Due to the difference in scale, the code creates separated plots for sample variance and the exact variance of the estimate.



