Transience - Récurrence Exple: (1-2) (3) (4)*Prenons l'état 3 456 Si on démarre par l'était 3, c.à. d. X=3 alus après un certain temps, la chaine retourneura éventuellement à l'état (3), en d'autre terme, si X = (3), La chaîne ne pourra jamais quitter cet état sommetour, car le chemin (trajectoire) du retournéaiste topas. * Par contre, si on prend l'état (2). Xo=2; il existe une possibilité de ned mais retourner à 2

L'état 2 est dit récurrent B, par contre l'état 3 est dit transient ou transitoire D. Définition: Un état (i) eE est dit récurtrent si après chaque visite de l'étate) la chaîne de Markov rebourne éventuellement pour one autre visite avec proba. 1. Sinon, il est dit "transiboire" * Le temps du l'er retour à l'état (): Ti Ti = min {n>1: Xn=i} (Xo=i).

avec: Ti = 00 si la C.M. ne retourne. ra jamais à (i). Par exemple: \ti=n\ = \(X=i, X, \displain, \times \displain \) Remaque: LTi < 00) i.e. là C.M. retournera à

de quitter (i) soms retour.
Intoition:
Intornor. Il existe une grande différence entre les états récurrents et les états
les états recurrents et sus
(transitoires). * La C.M. passe la plupart de son
temps en basculant entre les états
recurrents.
* À long-terme, la C.M. quitte les
états récurrents soms retour.
Exple: 12 1 1/2 3 3 4 4 1
1-La C.M. est-elle irréductible?
2-Classifier les états soivant la réc. (R) et la trans. (F).
~ ra IIIIs

1- 3 3 classes de communication.
E, = 11/24, E2=33, E3=345.
La c.n. n'est pas irréductible.
2. La récurrence et la transière
Intritivement. i=1: 8: Xo=1, la proba. de ne jamais retourner à 10 est nulle.
$(-a.d. 1-f_1=0)=0$ $f_1=1$
D'a l'état (1) est récurrent (8).
o de m. pour i=6. F2=1=00.es-R
· i=3, on voit bien d'après le graphe,
que le protes 73 du Met robors à 3 = 1, T3 7 1 insulant

La C.M. peut quitter l'état 3 (vers 4) Sans refour = 3 (3) est transitoire (5) i.e. $f_3 < 1$. (1-fi>0)· Pour i = (4), on peut toujour refourner ā 4 = 4 est (B): |f4=1/ Formellement: · 1-f, = IP (de ne jamaio, retourner à D/X=0) = IP(passer à 2) et y rester pour toujours/Xo2D) $= \left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right)^{n}$ $= \left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right)^{n}$ rester das (2) bon forgans = P [f_=1] = 10 (B) (B)

Scanné avec CamScanner

01-f2 = 0 = 0 fr=1 Den (2) ost (5) · L'état i=3 Calculons 1-fz. 1-f3 = IP [de ne jamais nevisiter 3/X=3] = IP [passer à 4] / X023] = P34 => \frac{1}{3} = \frac{1}{4} < \frac{1}{2} = \frac{3}{4} \tag{5}. · L'état i=4 1-fy = IP [quitter (4) saw retour / X=4] Impossible. L'étut Dest R. fy=1/

(19)