Devoir surveillé n°11

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

1. D'après le cours, la fonction $t \mapsto \frac{1}{1-t}$ est développable en série entière sur]-1,1[et son développement en série entière est :

$$\forall t \in]-1,1[, \frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n.$$

On en déduit que G_X est développable en série entière sur]-2,2[et que son développement en série entière est :

$$\forall t \in]-2, 2[, G_X(t) = \frac{1}{2-t} = \frac{1}{2} \frac{1}{1-t/2} = \frac{1}{2} \sum_{n=0}^{+\infty} \left(\frac{t}{2}\right)^n = \sum_{n=0}^{+\infty} \frac{t^n}{2^{n+1}}$$

2. D'après le cours, pour $\alpha \in \mathbb{R}$, la fonction $t \mapsto (1+t)^{\alpha}$ est développable en série entière sur]-1,1[et son développement en série entière est :

$$\forall t \in]-1,1[, (1+t)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} t^n \text{ où } {\alpha \choose n} = \frac{1}{n!} \prod_{k=0}^{n-1} (\alpha - k)$$

Notamment, pour $\alpha = 1/2$, la fonction $t \mapsto (1+t)^{1/2}$ est développable en série entière sur]-1,1[et son développement en série entière est :

$$\forall t \in]-1,1[, (1+t)^{1/2} = \sum_{n=0}^{+\infty} {1/2 \choose n} t^n$$

De plus, $\binom{1/2}{0} = 1$ et, pour tout $n \in \mathbb{N}^*$,

1

On remarque que cette expression est encore valide pour n = 0. On en déduit que

$$\forall t \in]-1,1[, (1+t)^{1/2} = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{4^n(2n-1)} {2n \choose n} t^n$$

3. D'après la question précédente, on a :

$$\begin{split} \forall t \in]-2, 2[, \ G_{Y}(t) &= 2 - \sqrt{2}\sqrt{1 - t/2} \\ &= 2 - \sqrt{2} \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{4^{n}(2n-1)} \binom{2n}{n} (-t/2)^{n} \\ &= 2 + \sqrt{2} \sum_{n=0}^{+\infty} \frac{1}{8^{n}(2n-1)} \binom{2n}{n} t^{n} \\ &= 2 - \sqrt{2} + \sqrt{2} \sum_{n=1}^{+\infty} \frac{1}{8^{n}(2n-1)} \binom{2n}{n} t^{n} \end{split}$$

4. D'après les questions précédentes,

$$\forall n \in \mathbb{N}, \ \mathbb{P}(X = n) = \frac{1}{2^{n+1}}$$

et

$$\mathbb{P}(Y = 0) = 2 - \sqrt{2} \text{ et } \forall n \in \mathbb{N}^*, \ \mathbb{P}(Y = n) = \frac{\sqrt{2}}{8^n (2n - 1)} \binom{2n}{n}$$

5. Comme X et Y sont indépendantes,

$$\forall t \in]-1,1[, G_{S}(t) = G_{X+Y}(t) = G_{X}(t)G_{Y}(t) = \frac{1}{1-t/2} - \frac{1}{\sqrt{2}}(1-t/2)^{-1/2}$$

On sait d'une part que

$$\forall t \in]-2, 2[, \frac{1}{1-t/2} = \sum_{n=0}^{+\infty} \frac{t^n}{2^n}$$

D'autre part, on a vu précédemment que

$$\forall t \in]-1,1[, (1+t)^{1/2} = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{4^n(2n-1)} {2n \choose n} t^n$$

donc, en dérivant terme à terme,

$$\begin{split} \forall t \in]-1,1[, \ \frac{1}{2}(1+t)^{-1/2} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}n}{4^n(2n-1)} \binom{2n}{n} t^{n-1} \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n(n+1)}{4^{n+1}(2n+1)} \binom{2n+2}{n+1} t^n \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n(n+1)}{4^{n+1}(2n+1)} \cdot \frac{(2n+2)(2n+1)}{(n+1)^2} \binom{2n}{n} t^n \\ &= 2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{4^{n+1}} \binom{2n}{n} t^n \end{split}$$

puis

$$\forall t \in]-1, 1[, (1+t)^{-1/2} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{4^n} \binom{2n}{n} t^n$$

puis enfin

$$\forall t \in]-2, 2[, (1-t/2)^{-1/2} = \sum_{n=0}^{+\infty} \frac{1}{8^n} {2n \choose n} t^n$$

Finalement,

$$\forall t \in]-1,1[, G_{S}(t) = \sum_{n=0}^{+\infty} \left(\frac{1}{2^{n}} - \frac{1}{8^{n}\sqrt{2}} {2n \choose n}\right) t^{n}$$

On en déduit que

$$\forall n \in \mathbb{N}, \ \mathbb{P}(S=n) = \frac{1}{2^n} - \frac{1}{8^n \sqrt{2}} \binom{2n}{n}$$

6. a. X est à valeurs dans \mathbb{N} et $\mathbb{P}(X = n) = \frac{1}{2^{n+1}}$ pour tout $n \in \mathbb{N}$. Ainsi X + 1 est à valeurs dans \mathbb{N}^* et pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X + 1 = n) = \mathbb{P}(X = n - 1) = \frac{1}{2^n}$. Ainsi $X \sim \mathcal{G}(1/2)$.

- **b.** D'après la cours, $\mathbb{E}(X+1)=\frac{1}{1/2}=2$ et $\mathbb{V}(X+1)=\frac{1-1/2}{(1/2)^2}=2$. Par linéarité de l'espérance, $\mathbb{E}(X+1)=\mathbb{E}(X)+\mathbb{E}(1)=\mathbb{E}(X)+1$ donc $\mathbb{E}(X)=1$. De plus, $\mathbb{V}(X)=\mathbb{V}(X+1)=2$.
- c. La fonction G_Y est dérivable sur]-2,2[et

$$\forall t \in]-2,2[, G'_{\mathbf{Y}}(t) = \frac{1}{2\sqrt{2-t}}$$

Notamment, G_Y est dérivable en 1 et $G_Y'(1) = \frac{1}{2}$. D'après le cours, Y admet une espérance et $\mathbb{E}(Y) = \frac{1}{2}$. La fonction G_Y est en fait deux fois dérivable sur] -2, 2[et

$$\forall t \in]-2,2[, G_{Y}''(t) = \frac{1}{4}(2-t)^{-3/2}$$

Or

$$\forall t \in]-2, 2[, G_{\mathbf{Y}}(t) = \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{Y} = n)t^n$$

donc, par dérivation d'une série entière :

$$\forall t \in]-2,2[, G_{\mathbf{Y}}''(t) = \sum_{n=0}^{+\infty} n(n-1)\mathbb{P}(\mathbf{Y}=n)t^{n-2}$$

Notamment,

$$G''_{Y}(1) = \frac{1}{4} = \sum_{n=0}^{+\infty} n(n-1)\mathbb{P}(Y=n)$$

D'après la formule de transfert, Y(Y-1) admet une espérance et $\mathbb{E}(Y(Y-1))=\frac{1}{4}$.

d. Comme $Y^2 = Y(Y - 1) + Y$, Y^2 admet également une espérance et

$$\mathbb{E}(Y^2) = \mathbb{E}(Y(Y-1)) + \mathbb{E}(Y) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$$

On en déduit que

$$\mathbb{V}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$$

e. Par linéarité de l'espérance,

$$\mathbb{E}(S) = \mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y) = 1 + \frac{1}{2} = \frac{3}{2}$$

Par indépendance de X et Y,

$$\mathbb{V}(S) = \mathbb{V}(X + Y) = \mathbb{V}(X) + \mathbb{V}(Y) = 2 + \frac{1}{2} = \frac{5}{2}$$

Problème 1

1 1.a Si f est positive sur $[a, +\infty[$, les propositions (i) et (ii) sont équivalentes.

1.b Si f n'est pas positive sur $[a, +\infty[$, la proposition (i) implique la proposition (ii) mais la réciproque peut être fausse.

2 2.a On a clairement $E \subset \mathcal{F}(\mathbb{R}_+, \mathbb{R})$, la fonction nulle appartient à E et E est stable par combinaison linéaire car une combinaison linéaire de fonctions continues/intégrables sur \mathbb{R}_+ est continue/intégrable sur \mathbb{R}_+ . Par conséquent, E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}_+, \mathbb{R})$.

2.b La fonction nulle appartient clairement à F et F est clairement stable par combinaison linéaire. Soient $f \in F$ et x > 0. Alors $t \mapsto f(t)e^{-xt}$ est clairement continue (par morceaux) sur \mathbb{R}_+ . De plus, $f(t)e^{-xt} = \mathcal{O}(e^{-xt})$. De plus, $t \mapsto e^{-xt}$

estr positive sur \mathbb{R}_+ et $\lim_{u \to +\infty} \int_0^u e^{-xt} dt = \lim_{x \to +\infty} \frac{1}{x} - \frac{1}{xu} = \frac{1}{x}$ donc, d'après la question **1.a**, $t \mapsto e^{-xt}$ est intégrable sur \mathbb{R}_+ . Par domination, $t \mapsto f(t)e^{-xt}$ est également intégrable sur \mathbb{R}_+ . Ainsi $F \subset E$. Par conséquent, F est un sous-espace vectoriel de E.

2.c Evident.

 $|\mathbf{3}|$ 3.a Pour tout x > 0.

$$\mathcal{L}(\mathbf{U})(x) = \int_0^{+\infty} e^{-xt} \, dt = -\frac{1}{x} \left[e^{-xt} \right]_{t=0}^{t \to +\infty} = \frac{1}{x}$$

3.b h_{λ} est continue et bornée sur \mathbb{R}_+ . Ainsi $h_{\lambda} \in F \subset E$. De plus,

$$\forall x > 0, \ \mathcal{L}(h_{\lambda})(x) = \int_0^{+\infty} e^{-(\lambda + x)t} \ \mathrm{d}t = \frac{1}{\lambda + x}$$

4 Soit x > 0. Tout d'abord, $g_n : t \mapsto t^n f(t)$ est continue sur \mathbb{R}_+ car f l'est. De plus, pour tout $t \in \mathbb{R}_+$,

$$g_n(t)e^{-xt} = t^n e^{-xt/2} f(t)e^{-xt/2}$$

 $g_n(t)e^{-xt}=t^ne-xt/2f(t)e^{-xt/2}$ Or $\lim_{t\to +\infty}t^ne-xt/2=0$ donc $g_n(t)e^{-xt}=\sup_{t\to +\infty}o\left(f(t)e^{-xt/2}\right)$. Or x/2>0 et $f\in E$ donc $t\mapsto f(t)e^{-xt/2}$ est intégrable sur \mathbb{R}_+ . On en déduit que $t\mapsto g_n(t)e^{-xt}$ est intégrable sur \mathbb{R}_+ et donc que $g_n\in E$.

| 5 | Soit $x \in \mathbb{R}_+^*$. Par intégration par parties, pour tout $u \ge 0$

$$\int_0^u f'(t)e^{-xt} dt = [f(t)e^{-xt}]_{t=0}^{t=u} + x \int_0^u f(t)e^{-xt} dt = f(u)e^{-xu} - f(0) + x \int_0^u f(t)e^{-xt} dt$$

Comme f est bornée, $\lim_{u \to +\infty} f(u)e^{-xu} = 0$. De plus, $f \in E$ donc $t \mapsto f(t)e^{-xt}$ dt est intégrable sur \mathbb{R}_+ . D'après la question **1.b**, $u \mapsto \int_0^u f(t)e^{-xt} dt$ admet une limite finie en $+\infty$, à savoir $\mathcal{L}(f)(x)$.

$$\lim_{u \to +\infty} \int_0^u f'(t)e^{-xt} dt = x\mathcal{L}(f)(x) - f(0)$$

Comme f est croissante sur \mathbb{R}_+ , $t\mapsto f'(t)e^{-xt}$ est positive sur \mathbb{R}_+ et la question 1.a garantit que cette fonction est intégrable sur \mathbb{R}_+ i.e. $f' \in \mathbb{E}$. Ce qui précède montre également que

$$\mathcal{L}(f')(x) = x\mathcal{L}(f)(x) - f(0)$$

- **6 6.a** On applique le théorème de dérivation des intégrales à paramètre :
 - pour tout $x \in \mathbb{R}_+^*$, $t \mapsto f(t)e^{-xt}$ est intégrable sur \mathbb{R}_+ ;
 - pour tout $t \in \mathbb{R}_+$, $x \mapsto f(t)e^{-xt}$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , de dérivée $x \mapsto -g_1(t)e^{-xt}$;
 - pour tout $x \in \mathbb{R}_+^*$, $t \mapsto -g_1(t)e^{-xt}$ est continue (par morceaux) sur \mathbb{R}_+ ;

$$\forall (x,t) \in [a,+\infty[\times \mathbb{R}_+, |-g_1(t)e^{-xt}] \le |g_1(t)|e^{-at}$$

et $t \mapsto |g_1(t)|e^{-at}$ est intégrable sur \mathbb{R}_+ puisque $g_1 \in \mathbb{E}$.

On en déduit que $\mathcal{L}(f)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ et que

$$\forall x > 0, \ \mathcal{L}(f)'(x) = -\int_0^{+\infty} g_1(t)e^{-xt} \ dt = -\mathcal{L}(g_1)(x)$$

6.b On montre par récurrence que pour tout $n \in \mathbb{N}$, $\mathcal{L}(f)$ est de classe \mathcal{C}^n sur \mathbb{R}_+^* et que $\mathcal{L}(f)^{(n)} = (-1)^n \mathcal{L}(g_n)$. Le résultat est vrai pour n = 0 ($\mathcal{L}(f)$ est de classe \mathcal{C}^1 donc a fortiori \mathcal{C}^0 sur \mathbb{R}_+). Supposons le résultat vrai pour un certain $n \in \mathbb{N}$. On a donc $\mathcal{L}(f)^{(n)}$ de classe \mathcal{C}^n sur \mathbb{R}_+ et $\mathcal{L}(f)^{(n)} = (-1)^n \mathcal{L}(g_n)$. En appliquant la question précédente à $g_n \in \mathbb{E}$, $\mathcal{L}(g_n)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et $\mathcal{L}(g_n)' = -\mathcal{L}(g_{n+1})$. On en déduit que $\mathcal{L}(f)$ est de classe \mathcal{C}^{n+1} et que $\mathcal{L}(f)^{(n+1)} = (-1)^{n+1} \mathcal{L}(g_{n+1})$. On conclut par récurrence.

7 7.a Comme f est bornée,

$$\forall x > 0, \ |\mathcal{L}(f)(x)| \le \int_0^{+\infty} |f(t)| e^{-xt} \ dt \le \|f\|_{\infty} \int_0^{+\infty} e^{-xt} \ dt = \frac{\|f\|_{\infty}}{x}$$

On en déduit que $\lim_{t \to \infty} \mathcal{L}(f) = 0$.

7.b Par hypothèse, f est de classe \mathcal{C}^1 , croissante et bornée. On peut appliquer la question $\mathbf{5}$:

$$\forall x > 0, \ x\mathcal{L}(f)(x) = \mathcal{L}(f')(x) + f(0)$$

Comme f' est bornée sur \mathbb{R} , $f' \in \mathbb{F}$ et on peut appliquer la question précédente : $\lim_{t \to \infty} \mathcal{L}(f') = 0$. On en déduit que

$$\lim_{x \to +\infty} x \mathcal{L}(f)(x) = f(0)$$

- **8** 8.a Comme f admet une limite finie en $+\infty$, elle est bornée au voisinage de $+\infty$: il existe $A \in \mathbb{R}_+$ tel que f est bornée sur $]A, +\infty[$. Par ailleurs, f est continue sur le segment [0,A]; elle y est donc bornée. Comme f est bornée sur [0,A] et sur $]A, +\infty[$, elle est bornée sur \mathbb{R}_+ . On en déduit que $f \in F$.
- **8.b** Comme $a_n > 0$, en effectuant le changement de variable linéaire $x = a_n t$ dans l'intégrale convergente $a_n \mathcal{L}(f)(a_n) = \int_0^{+\infty} a_n f(t) e^{-a_n t} dt$, on obtient bien

$$a_n \mathcal{L}(f)(a_n) = \int_0^{+\infty} h_n(x) \, \mathrm{d}x$$

8.c On vérifie qu'on peut bien appliquer le théorème de convergence dominée :

- pour tout $n \in \mathbb{N}$, h_n est continue (par morceaux) sur \mathbb{R}_+ ;
- (h_n) converge simplement vers $x \mapsto \ell e^{-x} \operatorname{car}(a_n)$ converge vers 0 par valeurs supérieures ;
- $x \mapsto \ell e^{-x}$ est continue (par morceaux) sur \mathbb{R}_+ ;
- comme f est bornée, il existe $K \in \mathbb{R}_+$ tel que $|f| \leq K$ sur \mathbb{R}_+ de sorte que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}_+, \ |h_n(x)| \le Ke^{-x}$$

et $x \mapsto Ke^{-x}$ est intégrable sur \mathbb{R}_+ .

On en déduit que

$$\lim_{n \to +\infty} \int_0^{+\infty} h_n(x) \, \mathrm{d}x = \int_0^{+\infty} \ell e^{-x} \, \mathrm{d}x$$

c'est-à-dire

$$\lim_{n \to +\infty} a_n \mathcal{L}(f)(a_n) = \ell$$

- **8.d** Le résultat de la question précédente étant valable pour toute suite (a_n) strictement positive convergeant vers 0, on en déduit par caractérisation séquentielle de la limite que $\lim_{x\to 0^+} x\mathcal{L}(f)(x) = \ell$. Notamment, si $\ell \neq 0$, $\mathcal{L}(f)(x) \sim \frac{\ell}{x\to 0^+} \frac{\ell}{x}$.
- **9.a** C'est du cours mais on peut détailler. Pour tout $x \in \mathbb{R}_+$,

$$R(x) = \int_0^{+\infty} f(t) dt - \int_0^x f(t) dt$$

Comme f est continue sur \mathbb{R}_+ , le théorème fondamental de l'analyse garantit que $x \mapsto \int_0^x f(t) dt$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ de dérivée f. Ainsi \mathbb{R} est de classe \mathcal{C}^1 sur \mathbb{R}_+ et $\mathbb{R}' = -f$.

Soit x > 0. Ainsi $t \mapsto e^{-xt}$ et $-\mathbb{R}$ sont de classe \mathcal{C}^1 sur \mathbb{R}_+ de dérivées respectives, $t \mapsto -xe^{-xt}$ et f. Par intégration par parties,

 $\mathcal{L}(f)(x) = \int_0^{+\infty} f(t)e^{-xt} dt = -\left[R(t)e^{-xt}\right]_{t=0}^{t \to +\infty} - x \int_0^{+\infty} R(t)e^{-xt} dt$

Cette intégration par parties est légitime car $\lim_{t\to +\infty} \mathbf{R}(t)e^{-xt} = 0$. En effet, $\lim_{t\to +\infty} \mathbf{R}(t) = \lim_{t\to +\infty} e^{-xt} = 0$. On en déduit que

$$\mathcal{L}(f)(x) = R(0) - x\mathcal{L}(R)(x)$$

9.b On vient de voir que $\lim_{t\to\infty} R = 0$. Il existe donc $A \in \mathbb{R}_+$ tel que $\forall t \in [A, +\infty[, |R(t)| \le \varepsilon]$. D'après la question précédente,

$$\mathcal{L}(f)(x) - R(0) = -x \int_{0}^{+\infty} R(t)e^{-xt} dt = -x \int_{0}^{A} R(t)e^{-xt} dt - x \int_{A}^{+\infty} R(t)e^{-xt} dt$$

Par inégalité triangulaire,

$$|\mathcal{L}(f)(x) - \mathbf{R}(0)| \le x \int_0^{\mathbf{A}} |\mathbf{R}(t)| e^{-xt} \, \mathrm{d}t + x \int_{\mathbf{A}}^{+\infty} |\mathbf{R}(t)| e^{-xt} \, \mathrm{d}t$$

D'une part, $0 \le e^{-xt} \le 1$ pour tout $t \in \mathbb{R}_+$ donc

$$\int_0^A |\mathbf{R}(t)| e^{-xt} \, \mathrm{d}t \le \int_0^A |\mathbf{R}(t)| \, \mathrm{d}t$$

D'autre part, $|R(t)| \le \varepsilon$ pour tout $t \in [A, +\infty[$ donc

$$\int_{A}^{+\infty} |\mathbf{R}(t)| e^{-xt} \, dt \le \varepsilon \int_{A}^{+\infty} e^{-xt} \, dt \le \varepsilon \int_{0}^{+\infty} e^{-xt} \, dt = \frac{\varepsilon}{x}$$

On en déduit que

$$|\mathcal{L}(f)(x) - \mathbf{R}(0)| \le x \int_0^{\mathbf{A}} |\mathbf{R}(t)| \, \mathrm{d}t + \varepsilon$$

9.c Posons
$$K = x \int_0^A |R(t)| dt \ge 0$$
. Pour $x \in \left[0, \frac{\varepsilon}{K+1}\right]$,

$$|\mathcal{L}(f)(x) - R(0)| \le 2\varepsilon$$

Par définition de la limite, $\lim_{x\to 0^+} \mathcal{L}(f)(x) = \mathrm{R}(0) \in \mathbb{R}$. Ainsi $\mathcal{L}(f)$ se prolonge par continuité en 0. La valeur de ce prolongement en 0 est $\mathrm{R}(0) = \int_0^{+\infty} f(t) \, \mathrm{d}t$.

10 Soit x > 0. Par intégration par parties,

$$\int_{1}^{x} \frac{\sin t}{t} dt = -\left[\frac{\cos t}{t}\right]_{1}^{x} - \int_{1}^{x} \frac{\cos t}{t^{2}} dt = \cos(1) - \frac{\cos x}{x} - \int_{1}^{x} \frac{\cos t}{t^{2}} dt$$

D'une part, $\lim_{x \to +\infty} \frac{\cos x}{x} = 0$ car cos est bornée sur \mathbb{R} . D'autre part, $\frac{\cos t}{t^2} = \mathcal{O}\left(\frac{1}{t^2}\right)$ donc $t \mapsto \frac{\cos t}{t^2}$ est intégrable sur $[1, +\infty[$ et $x \mapsto \int_{1}^{x} \frac{\cos t}{t^2} \, dt$ admet une limite finie en $+\infty$.

Par conséquent, $x \mapsto \int_{1}^{x} \frac{\sin t}{t} dt$ admet une limite finie en $+\infty$ et donc F également.

11 Remarquons que

$$u_n \ge \frac{1}{(n+1)\pi} \int_{n\pi}^{(n+1)\pi} |\sin t| \, dt = \frac{1}{(n+1)\pi} \int_0^{\pi} \sin(t) \, dt = \frac{2}{(n+1)\pi}$$

en utilisant la π -périodicité de $|\sin|$. On en déduit que la série $\sum u_n$ diverge puis que $\int_0^{+\infty} |f(t)| dt$ diverge. Ainsi f n'est pas intégrable sur \mathbb{R}_+ .

12 Soit X > 0. On utilise un passage en complexes :

$$\begin{split} \int_0^X \sin(t) e^{-xt} \, \, \mathrm{d}t &= int_0^X \, \mathrm{Im}(e^{it}) e^{-xt} \, \, \mathrm{d}t \\ &= \mathrm{Im} \left(\int_0^X e^{(i-x)t} \, \, \mathrm{d}t \right) \\ &= \mathrm{Im} \left(\left[\frac{e^{(i-x)t}}{i-x} \right]_{t=0}^{t=X} \right) \\ &= \mathrm{Im} \left(\frac{e^{(i-x)X} - 1}{i-x} \right) \\ &= -\frac{1}{1+x^2} \, \mathrm{Im} \left((i+x) \left(e^{-xX} e^{iX} - 1 \right) \right) \\ &= -\frac{1}{1+x^2} \left(e^{-xX} (x \sin X + \cos X) - 1 \right) \end{split}$$

Tout d'abord, $t \mapsto \sin(t)e^{-xt}$ est continue sur \mathbb{R}_+ . Puisque $\sin(t)e^{-xt} = \mathcal{O}(e^{-xt})$ et que $t \mapsto e^{-xt}$ est intégrable sur \mathbb{R}_+ , $t \mapsto \sin(t)e^{-xt}$ est également intégrable sur \mathbb{R}_+ . Par conséquent,

$$\int_0^{+\infty} \sin(t)e^{-xt} dt = \lim_{X \to +\infty} \int_0^X \sin(t)e^{-xt} dt = \lim_{X \to +\infty} -\frac{1}{1+x^2} \left(e^{-xX} (x \sin X + \cos X) - 1 \right) = \frac{1}{1+x^2}$$

car sin et cos sont bornées sur \mathbb{R} et $\lim_{X \to +\infty} e^{-xX} = 0$.

Est intégrable sur \mathbb{R}_+ . On en déduit que $f \in E$. De plus, pour tout x > 0, $f(t)e^{-xt} = o(e^{-xt})$ donc $t \mapsto f(t)e^{-xt}$ est intégrable sur \mathbb{R}_+ . On en déduit que $f \in E$. D'après la question **6.a**, $\mathcal{L}(f)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et

$$\forall x > 0, \ \mathcal{L}(f)'(x) = -\int_0^{+\infty} \sin(t)e^{-xt} \ dt = -\frac{1}{1+x^2}$$

On en déduit qu'il existe une constante C telle que

$$\forall x > 0, \ \mathcal{L}(f)(x) = C - \arctan(x)$$

De plus, $f \in F$ d'après la question **8.a**. Donc, d'après la question **7.a**, $\lim_{+\infty} \mathcal{L}(f) = 0$. On en déduit que $C = \lim_{+\infty} \arctan = \frac{\pi}{2}$. D'après le résultat admis,

$$\ell = \lim_{x \to 0} \mathcal{L}(f)(x) = \lim_{x \to 0} \frac{\pi}{2} - \arctan(x) = \frac{\pi}{2}$$