Circuitos Eletrônicos Analógicos

1a Avaliação - 06/05/14

Sem Consulta - Duração: 2h 40min

Nome: Gustavo Schinkel

Justifique sucintamente as passagens/respostas A interpretação é parte integrante da questão

(Valor 5.5) - Questão 1 - Considere o circuito da Figura 1 e parâmetros listados. Transistores têm mesma densidade de corrente de saturação e possuem uma razão entre áreas de junção emissor/base conforme indicado pelo fator X.

- a) (valor 0.5) Determine os pontos quiescentes de Q1, Q2 e Q5.
- b) (valor 1.25) Determine o modelo equivalente para pequenos sinais do circuito amplificador completo, a partir dos modelos equivalentes para pequenos sinais de cada estágio.
- c) (valor 0.75) Determine numericamente o ganho vc₅/(v₁-v₂).
- d) Utilizando v_1 = 1sen ω t [mV] como referência, esboce <u>detalhadamente</u> as formas de onda de tensão (dc + ac) V_{C1} , V_{C2} , V_E , VC_5 e de corrente (dc + ac) nos coletores de Q_1 , Q_2 e Q_5 nos casos

(valor 0.75) i)
$$v_1 = v_2$$

(valor 0.75) ii.) $v_1 = -v_2$

- e) Considere o amplificador diferencial em aberto e com R_{CD} → ∞. (valor 0.5) i). Admitindo Q₁ e Q₂ casados, qual a máxima tolerância entre os resistores de coletor que limitaria a tensão de offset em relação à entrada a ±0.5mV?
 - (valor 0.5) ii). Admitindo R_{C1} e R_{C2} casados, e admitindo uma variação de 4% entre as correntes de saturação de Q₁ e Q₂, qual a tensão de offset em relação à entrada?
 - (valor 0.5) iii). Qual a estimativa da tensão de offset em relação à entrada, considerando-se ambas condições expressas nos itens i e ii? Justifique.

$$\begin{split} V_{\rm CC} &= 5 V \\ R_{\rm REF} &= 2.15 K \Omega \\ R_{\rm C1} &= R_{\rm C2} = R_{\rm C3} = 1.0 K \Omega \\ R_{\rm B} &= 170 K \Omega \\ R_{\rm E} &= 110 \Omega \\ R_{\rm CD} &= 2.4 K \Omega \\ R_{\rm L2} &= 1 K \Omega \end{split}$$

$$\begin{aligned} &C_{\text{C1}} = C_{\text{C2}} = C_{\text{E}} \rightarrow \infty \\ &\text{Para } Q_1 - Q_6: \\ &V_{\text{BE}} = 0.7V & V_{\text{CE sat}} = 0.3V \\ &r_{\text{ce}} \rightarrow \infty & \beta = 100 \end{aligned}$$

(Valor 4.5) - Questão 2: Considere o circuito linear da Figura 2, com V_{in} senoidal e especificações listadas. Deseja-se enviar à carga uma potência de 0.5W. Assumindo as hipóteses necessárias:

- a) (valor 0.75) Dimensione I₁. Comente.
- b) (valor 0.25) Qual o nível DC associado a Vin?
- c) (valor 1.25) Qual o ganho de pequenos sinais Vout/Vin? Qual a amplitude necessária de Vin?
- d) (valor 0.75) Determine a eficiência de potência do estágio.
- e) (valor 1.0) Assuma que durante o processo de fabricação, I₁ tenha sofrido uma variação de -20% em seu valor nominal, calculado em a). Para a entrada senoidal com amplitude determinada em c), esboce detalhadamente as formas de onda das tensões na base e no emissor de Q₁, assim como as formas de onda das correntes I_{Q1}, I e I_{RL}.
- f) (valor 0.5) Proponha uma alteração no circuito de modo a se operar apenas com uma única alimentação +V_{CC}. Justifique.

Figura 2

$$V_{CC} = 5V; V_{EE} = -5V$$

$$R_{L} = 8\Omega$$

$$\beta_{1} = 100$$

$$V_{BE} \cong 0.7V$$

$$V_{CEsat} = 0.3V$$

$$r_{ce} \rightarrow \infty$$