

RFM segmentation

https://www.kaggle.com/datasets/gabrielramos87/an-online-shop-business

1. Overview RFM

RFM Analysis (Recency, Frequency, Monetary) is a widely used customer segmentation technique that analyzes customer behavior based on three key dimensions:

1. Recency (R):

- **Definition:** How recently a customer has made a purchase.
- Interpretation: Customers who purchased more recently are typically more engaged and likely to respond to promotions.
- In Practice: A lower recency value (i.e., fewer days since the last transaction) indicates a higher likelihood of repeat business.

2. Frequency (F):

- **Definition:** How often a customer makes a purchase within a given timeframe.
- Interpretation: More frequent purchases indicate a higher level of loyalty and engagement.
- In Practice: This is often calculated as the average number of days between purchases (or the total number of transactions in a period). A lower average interval means the customer is purchasing more frequently.

3. Monetary (M):

- **Definition:** How much money a customer spends on average per purchase.
- Interpretation: Customers who spend more per transaction are typically more valuable.
- **In Practice:** This is usually measured as the average order value or total spending divided by the number of transactions.

How RFM Analysis Works in My Project

• Data Preparation:

I aggregate transactional data from our sales database to compute:

• Recency: Calculated as the number of days from the most recent transaction to a defined reporting date.

- **Frequency:** Calculated as the average number of days between the first and the most recent transaction (if the customer has more than one purchase).
- Monetary: Calculated as the average revenue per transaction.

Scoring:

Using percentile-based thresholds (derived via functions by PERCENTILE_DISC), I assign scores (1 to 5) for each RFM dimension:

- Recency Score: Lower recency (more recent purchase) gets a higher score (e.g., 5 is best).
- Frequency Score: Lower average gap (i.e., more frequent purchases) gets a higher score.
- **Monetary Score:** Higher average spending gets a higher score when inverted, so that a score of 5 represents the top 20% of spenders.

Customer segment	Scores
1. Champions	555, 554, 544, 545, 454, 455, 445
2. Loyal	543, 444, 435, 355, 354, 345, 344, 335
3. Potential loyalist	553, 551, 552, 541, 542, 533, 532, 531, 452, 451, 442, 441, 431, 453, 433, 432, 423, 353, 352, 351, 342, 341, 333, 323
4. New customers	512, 511, 422, 421, 412, 411, 311
5. Promising	525, 524, 523, 522, 521, 515, 514, 513, 425, 424, 413, 414, 415, 315, 314, 313
6. Need attention	535, 534, 443, 434, 343, 334, 325, 324
7. About to sleep	331, 321, 312, 221, 213, 231, 241, 251
8. Cannot lose them but losing	155, 154, 144, 214, 215, 115, 114, 113
9. At risk	255, 254, 245, 244, 253, 252, 243, 242, 235, 234, 225, 224, 153, 152, 145, 143, 142, 135, 134, 133, 125, 124
10. Hibernating customers	332, 322, 233, 232, 223, 222, 132, 123, 122, 212, 21
11. Losing but engaged (last email campaign clicked in the last 180 days or last session_start in the last 90 days)	111, 112, 121, 131, 141, 151
12. Lost customers	111, 112, 121, 131, 141, 151

https://documentation.bloomreach.com/engagement/docs/rfm-segmentation

Benefits of PERCENTILE_DISC Over NTILE

Feature	PERCENTILE_DISC	NTILE	
Precision	Picks an actual value from the dataset, ensuring percentile cutoffs align with real data points.	May create artificial boundaries by evenly distributing rows.	
Use Case	Ideal for percentile-based segmentation, such as RFM scoring (top 20%, 40%, etc.).	Good for distributing data into equal-sized buckets but may not reflect true percentiles.	
Handling of Ties	Always selects a valid data point, avoiding interpolation.	Can place tied values into different buckets, making segmentation less precise.	
Flexibility	Allows defining exact percentile cutoffs (e.g., top 20% customers).	Forces equal groups, which may not align with business needs.	
Suitability for RFM	Matches percentile-based ranking well, ensuring fair customer segmentation.	May create unequal groups when data is skewed.	

Example: Disadvantage of NTILE (Distributing Data into Equal-Sized Buckets)

Scenario:

Imagine we have **100 customers** and we want to segment them into **4 RFM groups** based on recency. We use NTILE(4) OVER (ORDER BY recency) to create quartiles.

Dataset (Sorted by Recency - Days Since Last Purchase)

Customer	Recency (days)
C1	1
C2	2
C3	2
C4	3
C5	4
C96	200
C97	210
C98	220
C99	230
C100	250

Using NTILE(4) OVER (ORDER BY recency)

Since NTILE(4) forces an equal number of customers in each bucket, each quartile will contain 25 customers.

NTILE Group	Recency Range (Days)
Quartile 1 (Top 25%)	1 - 50 days
Quartile 2 (25-50%)	51 - 100 days
Quartile 3 (50-75%)	101 - 150 days
Quartile 4 (Bottom 25%)	151 - 250 days

Problem 1: Artificial Cutoffs

- A customer with 51 days recency is placed in Quartile 2, while a customer with 50 days recency is in Quartile 1.
- These two customers are almost identical in behavior but are assigned to different groups.

Problem 2: Uneven Real-World Distribution

Imagine 80 customers have recency ≤ 50 days, but NTILE(4) forces each quartile to have only 25 customers.

• As a result, NTILE(4) ignores the natural data distribution and forces an even split instead of reflecting the true purchasing behavior.

How PERCENTILE_DISC Solves This Issue

Instead of blindly splitting into 4 equal groups, PERCENTILE_DISC(0.25) would **pick the actual recency value** closest to the 25th percentile.

 This ensures that recency cutoffs align with actual customer behavior, rather than forcing an equal distribution of customers.

2. Analysis

Caculate Recency, Frequency, Monetary

-- 1. Set up date parameters DECLARE @year INT = 2019;

DECLARE @start_date DATE = DATEFROMPARTS(@year, 1, 1);

DECLARE @end_date DATE = DATEADD(DAY, 1, DATEFROMPARTS(@year, 12, 31));

-- 2. Create and populate RFM base metrics

IF OBJECT_ID('tempdb..#RFM_Base') IS NOT NULL DROP TABLE #RFM_Base;

SELECT

customerno,

DATEDIFF(DAY, MAX(date), @end_date) AS recency,

DATEDIFF(DAY, MIN(date), MAX(date))/ NULLIF(COUNT(*), 0) AS frequency,

SUM(price * quantity) / NULLIF(COUNT(*), 0) AS monetary

INTO #RFM_Base

FROM Uk_Sale_Transaction

WHERE YEAR(date) = @year

GROUP BY customerno

HAVING DATEDIFF(DAY, MIN(Date), MAX(Date)) / NULLIF(COUNT(*), 0) > 0;

Select * from #RFM_Base

	customerno 🗸	recency 🗸	frequency	monetary 🗸
1	135690	40	2	23.411129
2	151840	52	1	108.846464
3	176480	83	2	75.092307
4	158000	130	1	34.250504
5	147020	24	1	48.251987
6	171660	61	12	96.786923
7	182480	145	1	128.963829
8	148360	33	4	93.850000
9	154520	52	4	58.496724
1	181490	73	13	226.153750
1	159180	213	2	47.459500
1	138370	234	5	111.387894
1	127150	27	4	95.259523
1	135880	38	1	161.737241
1	166680	38	3	65.878260
1	139710	41	1	138.034966
1	148200	44	8	104.446666
1	152030	48	1	100.154046
1	158190	72	1	118.951707
2	151870	24	2	217.402666

There are 1935 rows on the table above

Use Percentile_Disc to deviding data into 5 parts

-- 3. Create and populate percentile values

IF OBJECT_ID('tempdb..#Percentiles') IS NOT NULL DROP TABLE #Percentiles; SELECT

PERCENTILE_DISC(0.2) WITHIN GROUP (ORDER BY recency) OVER() AS recency_20,

```
PERCENTILE_DISC(0.4) WITHIN GROUP (ORDER BY recency) OVER() AS recency_40,
PERCENTILE_DISC(0.6) WITHIN GROUP (ORDER BY recency) OVER() AS recency_60,
PERCENTILE_DISC(0.8) WITHIN GROUP (ORDER BY recency) OVER() AS recency_80,

PERCENTILE_DISC(0.2) WITHIN GROUP (ORDER BY frequency) OVER() AS frequency_20,
PERCENTILE_DISC(0.4) WITHIN GROUP (ORDER BY frequency) OVER() AS frequency_40,
PERCENTILE_DISC(0.6) WITHIN GROUP (ORDER BY frequency) OVER() AS frequency_60,
PERCENTILE_DISC(0.8) WITHIN GROUP (ORDER BY frequency) OVER() AS frequency_80,

PERCENTILE_DISC(0.2) WITHIN GROUP (ORDER BY monetary * -1) OVER() * -1 AS monetary_20,
PERCENTILE_DISC(0.4) WITHIN GROUP (ORDER BY monetary * -1) OVER() * -1 AS monetary_40,
PERCENTILE_DISC(0.6) WITHIN GROUP (ORDER BY monetary * -1) OVER() * -1 AS monetary_60,
PERCENTILE_DISC(0.8) WITHIN GROUP (ORDER BY monetary * -1) OVER() * -1 AS monetary_80

INTO #Percentiles

FROM #RFM_Base;
select * from #Percentiles
```

recency_20	recency_40	recency_60	recency_80	frequency_20	frequency_40	frequency_60	frequency_80
33	46	69	114	1	2	3	5

Recency (R):

- recency_20 = 33 → The top 20% of customers (best customers in terms of recency) made a purchase within the last 33 days.
- recency_40 = 46 → The top 40% of customers made a purchase within the last 46 days.
- Similarly, recency_60 and recency_80 show that as recency increases, customers are less recent.

Frequency (F):

- frequency_20 = 1 → The top 20% of customers purchase every day
- frequency_40 = 2 \rightarrow The top 40% of customers purchase every 2 days on average.
- frequency_80 = 5 → The top 80% of customers purchase every 5 days on average, and so on.

Monetary (M):

- monetary_20 = 194.70 \rightarrow The top 20% of customers (best spenders) spent at least \$194.70.
- monetary_40 = 131.58 \rightarrow The top 40% of customers spent at least \$131.58.
- monetary_80 = 63.99 \rightarrow The top 80% of customers spent at least \$63.99.
- · Higher monetary values mean the customer spends more.

Store percentile values in variables

```
-- Store percentile values in variables
-- Using DECLARE allows the percentile_disc values to update dynamically as the data is updated
DECLARE @recency_20 INT, @recency_40 INT, @recency_60 INT, @recency_80 INT;
DECLARE @frequency_20 FLOAT, @frequency_40 FLOAT, @frequency_60 FLOAT, @frequency_80 FLOAT;
DECLARE @monetary_20 FLOAT, @monetary_40 FLOAT, @monetary_60 FLOAT, @monetary_80 FLOAT;

SELECT

@recency_20 = recency_20, @recency_40 = recency_40,
@recency_60 = recency_60, @recency_80 = recency_80,
@frequency_20 = frequency_20, @frequency_40 = frequency_40,
@frequency_60 = frequency_60, @frequency_80 = frequency_80,
```

```
@monetary_20 = monetary_20, @monetary_40 = monetary_40,
@monetary_60 = monetary_60, @monetary_80 = monetary_80
FROM #Percentiles;
```

Create and populate RFM Scores

```
IF OBJECT_ID('tempdb..#RFM_Scores') IS NOT NULL DROP TABLE #RFM_Scores;
SELECT
 CustomerNo,
 CONCAT(
    CASE
     WHEN recency <= @recency_20 THEN 5
     WHEN recency <= @recency_40 THEN 4
     WHEN recency <= @recency_60 THEN 3
     WHEN recency <= @recency_80 THEN 2
     ELSE 1
    END,
    CASE
     WHEN frequency <= @frequency_20 THEN 5
     WHEN frequency <= @frequency_40 THEN 4
     WHEN frequency <= @frequency_60 THEN 3
     WHEN frequency <= @frequency_80 THEN 2
     ELSE 1
    END,
    CASE
     WHEN monetary >= @monetary_20 THEN 5
     WHEN monetary >= @monetary_40 THEN 4
     WHEN monetary >= @monetary_60 THEN 3
     WHEN monetary >= @monetary_80 THEN 2
     ELSE 1
    END
 ) AS rfm_score
INTO #RFM_Scores
FROM #RFM_Base;
```

Create and populate Segment Classification

```
WHEN rfm_score IN ('512', '511', '422', '421', '412', '411', '311')
       THEN 'New Customers'
     WHEN rfm_score IN ('525', '524', '523', '522', '521', '515', '514',
                '513', '425', '424', '413', '414', '415', '315', '314', '313')
       THEN 'Promising'
     WHEN rfm_score IN ('535', '534', '443', '434', '343', '334', '325', '324')
       THEN 'Need Attention'
     WHEN rfm_score IN ('331', '321', '312', '221', '213', '231', '241', '251')
       THEN 'About to Sleep'
     WHEN rfm_score IN ('155', '154', '144', '214', '215', '115', '114', '113')
       THEN 'Cannot Lose Them But Losing'
     WHEN rfm_score IN ('255', '254', '245', '244', '253', '252', '243', '242',
                '235', '234', '225', '224', '153', '152', '145', '143',
                '142', '135', '134', '133', '125', '124')
       THEN 'At Risk'
     WHEN rfm_score IN ('332', '322', '233', '232', '223', '222', '132', '123',
                '122', '212', '211')
       THEN 'Hibernating'
    WHEN rfm_score IN ('111', '112', '121', '131', '141', '151')
       THEN 'Lost Customers'
    ELSE 'Unclassified'
  END AS segment
INTO #RFM_Segments
FROM #RFM_Scores;
```

Question

Question 1: "What is the RFM score and corresponding customer segment for each distinct customer?"

```
SELECT DISTINCT
s.CustomerNo,
s.rfm_score,
seg.segment
FROM #RFM_Scores s
JOIN #RFM_Segments seg ON s.rfm_score = seg.rfm_score;
```

CustomerNo 🗸	rfm_score 🗸	rfm_segment 🗸
122930	515	Promising
123210	525	Promising
123500	552	Potential Loyalist
124140	422	New Customers
124320	311	New Customers
124630	123	Hibernating
125570	131	Lost Customers
126490	333	Potential Loyalist
126520	523	Promising
126920	545	Champions
127150	144	Cannot Lose Them
127170	523	Promising
127470	132	Hibernating
127490	114	Cannot Lose Them
127790	112	Lost Customers
128200	115	Cannot Lose Them
128230	451	Potential Loyalist
128240	424	Promising
128260	143	At Risk
128270	114	Cannot Lose Them

Question 2: How many customers are in each Rfm segment?

SELECT
seg.segment,
COUNT(DISTINCT s.CustomerNo) AS customer_count
FROM #RFM_Scores s
JOIN #RFM_Segments seg ON s.rfm_score = seg.rfm_score

	rfm_segment 🗸	num_customers 🗸
1	Promising	396
2	Potential Loyalist	348
3	Cannot Lose Them But Losing	232
4	At Risk	221
5	Hibernating	162
6	Lost Customers	127
7	About to Sleep	125
8	New Customers	119
9	Need Attention	80
10	Loyal	80
11	Champions	53

Question 3 : How many customers are in each rfm_score and total customers in each rfm_segment ?

```
SELECT

seg.segment,
s.rfm_score,
COUNT(DISTINCT s.CustomerNo) AS customer_count,
SUM(COUNT(DISTINCT s.CustomerNo)) OVER (PARTITION BY seg.segment) AS segment_total
FROM #RFM_Scores s
JOIN #RFM_Segments seg ON s.rfm_score = seg.rfm_score
GROUP BY seg.segment, s.rfm_score
ORDER BY
seg.segment,
customer_count DESC;
```

	rfm_segment 🗸	rfm_score 🗸	num_customers 🗸	total_segment_customers 🗸
1	About to Sleep	213	31	125
2	About to Sleep	251	29	125
3	About to Sleep	312	26	125
4	About to Sleep	331	14	125
5	About to Sleep	321	8	125
6	About to Sleep	231	6	125
7	About to Sleep	241	6	125
8	About to Sleep	221	5	125
9	At Risk	225	20	221
10	At Risk	124	19	221
11	At Risk	125	18	221
12	At Risk	254	15	221
13	At Risk	244	14	221
14	At Risk	242	13	221
15	At Risk	134	11	221
16	At Risk	224	11	221
17	At Risk	153	10	221
18	At Risk	133	10	221
19	At Risk	252	9	221
20	At Risk	152	8	221
~ 4		055	_	~~4