corDE « Groupes »

Pas de machines, pas de documents, pas de téléphone

sauf étudiants chinois : dictionnaire

Tous les résultats seront justifiés (par un calcul, un raisonnement, une définition, un théorème que l'on citera soit par son nom, soit par son contenu)

Exercice 1. (environ 2 pts)

On considère le groupe $(\mathbb{Z}/48\mathbb{Z}, +)$

Déterminer l'ordre de $\overline{20}$.

Solution. on cherche le plus petit k>0 tel que 48 divise 20k

ce qui équivaut à 12 divise 5k

appliquons le th de gauss 12 divise k

donc le plus petit k est 12

Exercice 2.

On considère l'anneau ($\mathbb{Z}/48\mathbb{Z}, +,...$) (environ 5 pts)

- a. Déterminer la liste des éléments inversibles.
- b. Déterminer l'inverse de $\bar{7}$.
- c. Résoudre l'équation $\overline{7}x+\overline{12}=\overline{5}$.

Solution.

a. Il s'agit des classes des entiers premiers avec 48: il y en a $\varphi(48) = \varphi(16)\varphi(3) = 82 = 16$

(par paresse vis àvis de mon éditeur j'oublierai les barres mais il faut les mettre)

 $\{1,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47\}$

b. l'inverse de $\bar{7}$: soit bezout, soit $7*7=49\equiv 1[48]$, donc $\bar{7}^{-1}=\bar{7}$

c. $\overline{7}x+\overline{12}=\overline{5}\Longleftrightarrow x+\overline{12}.\ \overline{7}=\overline{5}.\overline{7}\Longleftrightarrow x+\overline{36}=\overline{35}\Longleftrightarrow x=\overline{47}$

Exercice 3.

On considère le groupe $(R_{48},.)$ (environ 4 pts)

- a. Est-ce que $\overline{26}$ y appartient ?
- b. On désigne par f l'application définie pour tout x de R_{48} par x $\longrightarrow f(x)=x^{13}$; déterminer l'application f^{-1} .

Solution.

a. non puisque $26 \wedge 48 \neq 1$

b. c'est le principe de r
sa on cherche un entier e tel que 13e \equiv 1[$\varphi(48)=16$].

pour cela bezout ou 13*5=65=1[16]; d'où $f^{-1}: x \longmapsto x^5$

Exercice 4.

On considère le corps $({\cal F}_2,+,.)$ (environ 12 pts)

- a. Soit $P(X) = X^3 + X^2 + 1$; montrer qu'il est irréductible dans $(F_2[X], +, .)$.
- b. Quel est le nombre d'éléments du corps $(K = F_2[X]/P(X), +, .)$?
- c. On posera $\theta =$ classe de X; quel est l'ordre de θ dans le groupe $\ (K \backslash \{0\},.)$?
- d. Déterminer l'inverse de θ sous la forme d'une combinaison linéaire de puissances de $\theta.$
- e. Déterminer pour chaque combinaison linéaire de puissances de θ son expression sous la forme d'une puissance de θ .

Solution.

a. s'il n'est pas irréductible alors il existe a,b,c dans F_2 tels que $X^3 + X^2 + 1 = (X+a)(X^2+bX+c)$

cette égalité équivaut à
$$\left\{ \begin{array}{l} a+b=1 \\ {\rm ab}+c=0 \\ {\rm ac}=1 \end{array} \right.$$

alors a=c=1 d'où b=0 et b=1 impossible

b. il s'agit des expressions polynomiales en θ de degré inférieur ou égal à 2: comme il y a « deux choix » pour chaque

c. le nombre d'éléments de K*=K\{0} est 7, c'est un groupe cyclique engendré par θ , donc l'ordre de θ est 7.

d.
$$\theta^3 + \theta^2 = 1$$
 donc $\theta(\theta^2 + \theta) = 1$ donc $\theta^{-1} = \theta^2 + \theta$

$$\theta = \theta$$

$$\theta^2 = \theta^2$$

$$\theta^3 \ = \ \theta^2 + 1$$

e.
$$\theta^4 = \theta^3 + \theta = \theta^2 + \theta + 1$$

$$\theta^5 = \theta^3 + \theta^2 + \theta = \theta + 1$$

$$\theta^6 = \theta^2 + \theta$$

$$\theta^7 = 1$$

$$\theta^7 = 1$$