TRACK DESCRIPTION DATA BASE PRINCIPLES

OBJECT

This document gives an example of possible use of the data base to calculate the Most Restrictive Speed Profile.

The perimeter of the values and packets is voluntarily reduced in order to simplify the presentation of the calculations.

2. TECHNICAL ASSUMPTIONS

2.1. BUFFER OF THE TRACK DATABASE

The database, which contains the track events, is build from a buffer.

The length of the buffer is large enough to receive a complete MA description, for example, 20 km. It means a buffer of 20 km / 100 m = 200 steps or 20 km / 10 m = 2000 steps.

The buffer is initialized at Start of Mission, which is the reference 0m of the absolute position of the train. It means that the absolute position of the train, in the buffer, is not the real absolute position but the real absolute position modulo 20 km. Example, for a 100m step:

real	buffer		real	buffer
0 m	0		20000 m	0
100 m	100		20100 m	100
200 m	200		20200 m	200
300 m	300		20300 m	300
400 m	400		20400 m	400
500 m	500		20500 m	500
600 m	600		20600 m	600
700 m	700		20700 m	700
		>		
19200 m	19200		39200 m	19200
19300 m	19300		39300 m	19300
19400 m	19400		39400 m	19400
19500 m	19500		39500 m	19500
19600 m	19600		39600 m	19600
19700 m	19700		39700 m	19700
19800 m	19800		39800 m	19800
19900 m	19900		39900 m	19900

The calculation needs two identical buffers

- one in use for the breaking curves calculation
- another one is empty and ready to receive data from a new BG. When the acquisition of the new data is finished, it becomes the reference buffer for the braking curves calculation.

2.2. INPUTS AND ACQUISITIONS

In order to calculate a simplified MRSP, we need the following packets: 15 (MA), 27(SSP), 65(TSR). And two data: the length of the train and the max Speed of the train.

Assumptions:

- The information is provided by BG only,
- NID_C (Country identifier) is not used => NID_LRBG id is limited to 14b
- A previous treatment was in charge of BG acquisition and supplied:
 - Two BG data: BG identifier (NID_BG) and absolute BG position in the train reference system (Dabs_BG),
 - Extracted packets information.
- Only valid packets are transmitted,
- Packets 15 and 27 are supplied together in a BG which becomes LRBG when overpassed
- Packet 65 is supplied alone, from another BG (which can not be used as LRBG)
- Max Speed at End of MA = 0 km/h

Transmitted inputs are:

2.3. LENGTH AND MAX SPEED OF THE TRAIN

L_Train = 100m MaxSpeed Train = 230 km/h

2.4. FIRST BALISE GROUP DATA

BG Header	NID_BG Dabs BG	1345 21200 m	Integer 14b Integer 32b fixed point 256	
Pkt 15	NID_PACKET Q_SCALE N_ITER L_SECTION (1) L_ENDSECTION	15 2 1 60 80	Integer 8b Integer 2b Integer 5b Integer 15b Integer 15b	2 = 10m x Q_SCALE x Q_SCALE
Pkt 27	NID_PACKET Q_SCALE D_STATIC V_STATIC N_ITER D_STATIC(1) V_STATIC(1) D_STATIC(2) V_STATIC(2) V_STATIC(2) V_STATIC(2) V_STATIC(2)	27 2 0 200 km/h 3 20 240 km/h 30 220 km/h 50 180 km/h	Integer 8b Integer 2b Integer 15b Integer 7b Integer 5b Integer 15b Integer 7b Integer 7b Integer 15b Integer 15b Integer 7b Integer 7b Integer 7b	2 = 10m x Q_SCALE x Q_SCALE x Q_SCALE x Q_SCALE

How to read packet 15?

BG n° 1345 (NID BG) is at 21200m (Dabs BG) from the Start of Mission train location

The given MA is built from to sections:

- the last section is 80 (L_ENDSECTION) x 10 (Q_SCALE) = 800 meter long
- there is one section before the last one (N_ITER), and the length of this section is 60 (L_SECTION (1)) x 10 (Q_SCALE) = 600 meter long

How to read packet 27?

And so on...

A the beginning of the MA (D_STATIC = 0) the max speed is 220 km/h (V_STATIC) After 20 (D_STATIC(1)) \times 10m (Q_SCALE) = 200m, the max speed becomes 240 km/h (V_STATIC(1))

2.5. SECOND BALISE GROUP DATA

BG Header	NID_BG Dabs BG	1347 21500 m	Integer 14b Integer 32b fixed point 256	
Pkt 65	NID_PACKET Q_SCALE	65 2	Integer 8b Integer 2b	2 = 10m
	NID_TSR	22	Integer 8b	
	D_TSR	50	Integer 15b	x Q_SCALE
	L_TSR	30	Integer 15b	x Q_SCALE
	Q_FRONT	0	Integer 1b	Train lenght shall be taken in account
	V_TSR	80 km/h	Integer 7b	

How to read packet 65?

At a distance of 50 (D_TSR) x 10m (Q_SCALE) = 500m from the absolute position 21500m (D abs BG) of the BG n° 1347 (NID_BG), the train shall apply a maximum speed of 80 km/h (V_TSR) on 30 (L_TSR) x 10m (Q_SCALE) = 300m

The rear end of the train shall have leaved the complete speed reduction zone before acceleration. It is why a distance of 100m (L_Train) has to be added to L_TSR

2.6. RESULTING MRSP CURVE

What is needed at the end is the following MRSP curve:

3. MRSP CALCULATION

3.1. FIRST STEP: INITIALIZATION

During Start of Mission, database buffer and tables are initialized, as empty.

3.2. SECOND STEP: RECEPTION OF THE FIRST BG DATA

When received, data are homogenized and put in two tables: section table and SSP table.

Speed is converted in m/s (type = integer fixed point).

NIB BG (1345) and D Abs BG (21200) are memorized as LRBG Data.

D Abs shall take in account the size of the buffer (20000m) when introducing the data. Therefore it is not 21200, but 21200 modulo 20000 = 1200

Section table				
End flag	Length (m)			
N Y	600 800			

SSP table					
End Flag	D (m)	Value m/s			
N N N Y	0 200 300 500	55,56 66,67 61,11 50,00			

Then, section table is used to modify the data base buffer. For MRSP, it means:

- 1. introduce the max Speed of the train
- 2. introduce 0 km/ at the EOA place and takes the min values
- 3. introduce SSP values from LRBG Location to EOA and takes the min values

These values erase the previous section and SSP values.

4. introduce previous TSR values (in our case, there are none) and takes the min values Previous TSR values shall be maintained.

3.3. THIRD STEP: RECEPTION OF THE SECOND BG DATA

Data are put in the TSR Table

- Length of the train is added
- Speed is converted in m/s (type = integer fixed point)

TSR Table						
N°	D Abs (m)	D / BG (m)	Length (m)	Max speed (km/h)		
22	1500	500	400	22,22		

The buffer is modified in the same way as the previous BG (introduce the data and select the min values)

The introduced data and the final result are these one:

			Max			MRSP
BG		EOA	Speed	SSP	TSR	(min)
	0	-	63.89	-	-	63.89
	100	-	63.89	-	-	63.89
	200	-	63.89	-	-	63.89
	300	-	63.89	-	-	63.89
	400	-	63.89	-	-	63.89
	500	-	63.89	-	-	63.89
	600	-	63.89	-	-	63.89
	700	-	63.89	-	-	63.89
	800	-	63.89	-	-	63.89
	900	-	63.89	-	-	63.89
	1000	-	63.89	-	-	63.89
	1100	-	63.89	-	-	63.89
1345	1200	-	63.89	55.56	-	55.56
	1300	-	63.89	55.56	-	55.56
	1400	-	63.89	66.67	-	63.89
1347	1500	-	63.89	66.67	-	63.89
	1600	-	63.89	66.67	-	63.89
	1700	-	63.89	61.11	-	61.11
	1800	-	63.89	61.11	-	61.11
	1900	-	63.89	61.11	-	61.11
	2000	-	63.89	61.11	22.22	22.22
	2100	-	63.89	61.11	22.22	22.22
	2200	-	63.89	50.00	22.22	22.22
	2300	-	63.89	50.00	22.22	22.22
	2400	-	63.89	50.00	-	50.00
	2500	-	63.89	50.00	-	50.00
	2600	0	63.89	50.00	-	0
	2700	-	63.89	-	-	63.89
	2800	-	63.89	-	-	63.89
	2900	-	63.89	-	-	63.89
	3000	-	63.89	-	-	63.89

3.4. NEXT BALISE GROUP

When the train passes over a new LRBG, the MA and SSP information is updated but the TSR information is written out again:

			Max			MRSP
BG		EOA	Speed	SSP	TSR	(min)
1345	1200	-	63.89	55.56	-	55.56
	1300	-	63.89	55.56	-	55.56
	1400	-	63.89	66.67	-	63.89
1347	1500	-	63.89	66.67	-	63.89
	1600	-	63.89	66.67	-	63.89
	1700	-	63.89	61.11	-	61.11
1349	1800	-	63.89	61.11	-	61.11
	1900	-	63.89	61.11	-	61.11
	2000	-	63.89	61.11	22.22	22.22
	2100	-	63.89	61.11	22.22	22.22
	2200	-	63.89	50.00	22.22	22.22
	2300	-	63.89	50.00	22.22	22.22
	2400	-	63.89	50.00	-	50.00
	2500	-	63.89	50.00	-	50.00
	2600	-	63.89	50.00	-	50.00
	2700	-	63.89	50.00	-	50.00
	2800	-	63.89	50.00	-	50.00
	2900	-	63.89	55.56	-	55.56
	3000	-	63.89	55.56	-	55.56
	3100	-	63.89	55.56	-	55.56
	3200	-	63.89	55.56	-	55.56
	3300	0	63.89	-	-	0
	3400	-	63.89	-	-	63.89
	3500	-	63.89	-	-	63.89
	3600	-	63.89	-	-	63.89
	3700	-	63.89	-	-	63.89
	3800	-	63.89	-	-	63.89
	3900	-	63.89	-	-	63.89
	4000	-	63.89	-	-	63.89
	4100	-	63.89	-	-	63.89
	4200	-	63.89	-	-	63.89