Dynamic Time Warping

Herman Kamper

http://www.kamperh.com/

Motivation for DTW

- How similar are two signals?
- Which points correspond to one another?

Motivation for DTW

- How similar are two signals?
- Which points correspond to one another?

K-nearest neighbours over sequences

Alignment

DTW algorithm

- Inputs: $x_{1:N}$ and $y_{1:M}$
- Cost matrix: $\mathbf{D} \in \mathbb{R}^{(N+1)} \times (M+1)$
- Initialization:

for
$$i = 1$$
 to N : $D_{i,0} = \infty$

for
$$j = 1$$
 to M : $D_{0,j} = \infty$

Calculate cost matrix:

for
$$i = 1$$
 to N :

for
$$j = 1$$
 to M :

$$D_{i,j} = d(x_i, y_j) + \min egin{cases} D_{i-1,j-1} & ext{(match)} \ D_{i-1,j} & ext{(insertion)} \ D_{i,j-1} & ext{(deletion)} \end{cases}$$

ullet Get alignment: Trace back from $D_{N,M}$ to $D_{0,0}$

DTW algorithm

- Inputs: $x_{1:N}$ and $y_{1:M}$
- Cost matrix: $\mathbf{D} \in \mathbb{R}^{(N+1)} \times (M+1)$
- Initialization:

for
$$i = 1$$
 to N : $D_{i,0} = \infty$

for
$$j = 1$$
 to M : $D_{0,j} = \infty$

Calculate cost matrix:

for
$$i = 1$$
 to N :

for
$$j = 1$$
 to M :

$$D_{i,j} = d(x_i, y_j) + \min egin{cases} D_{i-1,j-1} & ext{(match)} \ D_{i-1,j} & ext{(insertion)} \ D_{i,j-1} & ext{(deletion)} \end{cases}$$

ullet Get alignment: Trace back from $D_{N,M}$ to $D_{0,0}$

DTW algorithm

- Inputs: $x_{1:N}$ and $y_{1:M}$
- Cost matrix: $\mathbf{D} \in \mathbb{R}^{(N+1)} \times (M+1)$
- Initialization:

for
$$i = 1$$
 to N : $D_{i,0} = \infty$

for
$$j = 1$$
 to M : $D_{0,j} = \infty$

Calculate cost matrix:

for
$$i = 1$$
 to N :

for
$$j = 1$$
 to M :

$$D_{i,j} = d(x_i, y_j) + \min egin{cases} D_{i-1,j-1} & (\mathsf{match}) \\ D_{i-1,j} & (\mathsf{insertion}) \\ D_{i,j-1} & (\mathsf{deletion}) \end{cases}$$

ullet Get alignment: Trace back from $D_{N,M}$ to $D_{0,0}$

DTW on sequences of vectors

References

- D. Jurafsky, "Computing minimum edit distance," Stanford Lecture.
- D. Ellis, "Dynamic time warp (DTW) in Matlab," http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw/.
- Wikipedia, "Dynamic time warping," https://en.wikipedia.org/wiki/Dynamic_time_warping.