

Go-no go pilot WPJ uitbreiding Technologie

Namens projectteam uitbreiding WPJ

Jink Gude

Achtergrond project uitbreiding WPJ

- Extra capaciteit nodig (MLTHP 2019)
 - Extra capaciteit tbv uitbreiding Heemskerk
 - Vergroten redundantie WRK systeem
 - Huidige WPJ levert minder dan de ontwerpcapaciteit en dat gaat nu knellen
- Sinds eind 2020 is er een interne projectgroep om uitbreiding WPJ voor te bereiden
 - Technologisch (Bedrijfsvoering, PT, BPD, PWNT)
 - Inkoop (Bas Stoop)
 - Projectmanagement en aanbesteding (Marcel Wink)
- Sinds zomer 2021
 - Pilot en technology provider en aannemer geselecteerd: Nijhuis GMB
 - Onderdeel van het project is technologisch meest aantrekkelijke processchema vast te stellen en de ontwerpgrondslagen bepalen
- Maar waarom pilot en niet letterlijk WPJ technologie uitbreiden?

Projectachtergrond Initiatieffase

Definitie	Wie	Opmerking
Basis eisen; Wat zijn de kaders van het project?	Project team PWN	• Beslisdocument
Waterkwaliteitseisen	PWN/PWNT	Analyse alle gebruikersKijk naar de toekomstIn aanbestedingsleidraad
Concept keuze. Welke concepten zijn kansrijk en willen we testen?	PWN/PWNT	Literatuur onderzoekErvaring ander bedrijvenKosten analyseMarkt consultatie
Pilot definitie (voor aanbesteding)	PWN/PWNT	Aanbestedingsleidraad
Pilot definitie definitief	PWN/PWNT/Nijhuis	In bouwteam Nijhuis
Onderzoeksplan	PWN/PWNT/Nijhuis	In bouwteam

Waarom geen WPJ kopie

- 1. WPJ is voor 14.400 m³/h ontworpen maar doet afhankelijk van het seizoen 7.000 tot 9.000 m³/h
- 2. Waterkwaliteitseisen voor de nieuwe WPJ gaan omhoog
- 3. Optimalisatievraag: kan het sowieso beter?
 - Duurzaamheid!
 - 2. Kosten
 - 3. Ect?

Randvoorwaarde technologie

Andere technologieën zouden hiervoor mogelijk in aanmerking kunnen komen, maar WRK/PWN heeft besloten om zich te beperken tot: microzeven-coagulatie-flocculatie-vlokafscheiding-snelfiltratie met het oog op;

- Beperkte onderzoeks- en realisatietijd;
- Ervaring met proces;
- Bekende reststromen.

Bestaand WPJ

- In bedrijf sinds 1981, ontwerpcapaciteit 14.400 m³/h, reele capaciteit max. 9000 m³/h
- Processtappen:
 - Trommelzeven, 200 μm
 - Coagulatie d.m.v. FeCl₃, c.a. 14 26 mg Fe/l
 - Flocculatie 15 min ontwerp
 - Lamellenseparators (1,6 m³/ m²/h ontwerp → 0,9 m³/ m²/h reeel)
 - Opwaartse zandfiltratie 20 m/h
 - Slibverwerking in bezinkvijvers en slibdroogbedden

		WPJ	WPJ	WPJ
productie		14000	9000	6000
aantal straten		6	6	6
totaal productie	[m3/h]	2333,333	1500	1000
Surface load	[m/h]	1,62	1,04	0,70
Verblijftijd flocculatie	[min]	14,91	23,20	34,80
Filtratiesnelheid	m/h	20	12	9

PWN system en WPJ gebruikers

- Voorgezuiverd water t.b.v. drinkwaterproductie:
 - PWN
 - UF/HF t.b.v. ontharding
 - UV/H2O2 t.b.v. duininfiltratie
 - UV/H2O2–AKF t.b.v. (back-up) PSA
 - Waternet
 - Infiltratiewater (direct?)
- Industrie water:
 - Bestaande WRK contractanten (Tata, CvG)
 - Nieuwe klanten?

2. Waterkwaliteitseisen

Parameter	Units	Target new extension	WPJ actual (average) 2000 – 2020
Total suspended solids	mg/l	< 0.1	0.01
Turbidity	FTE	< 0.15	0.03
DOC	mg/l C	<3	3.2
UV-Transmissie 254	%	> 89%	85%
Iron	μg/l Fe	<30	15
Manganese	μg/l Mn	< 1	0.2
Ammonium	mg/l N	< 0.1	0.015
Bicarbonate	mg/l HCO3	> 90	140
Chloride	mg/l Cl	Minimum addition	160
Sodium	mg/l Na	Minimum addition	90
Sulphate	mg/l SO4	Minimum addition	62
SI	рН	0.1 - 0.4	0.15
Hydrobiologie		Zo goed als PSA1	

Identified Process Improvements WPJ

- Enhanced coagulation possibly with additional pH correction (CO₂)
 - Improvement in water quality (UV-T, removal of organic material)
 - Lower iron dosage and chemical use (NaOH)
 - Minimize floc-agent
- CO₂ removal after sedimentation
 - Lower chemical usage (NaOH)
- Rapid sand filtration flow direction (change from upwards to downwards)
 - Flowrate estimates from 7 to 20 m/h
 - Improvement in water quality (TSS?, hydrobiology?)
 - Lower losses during backwashing? Relevant?
- Use of a smaller screen size (35 μm instead of 200 μm
 - Possible positive influence on all downstream processes (including mussels?)
- Finding optimal design

Chemicaliënverbruik optimalisatie

		FeCl ₃ (40%)	CO ₂	NaOH (50%)
Prijs	Eur/ton	95	72	265
Co2-eq	kg/kg/CO2-eq	0,18	0,78	1,36

Chemicaliënverbruik optimalisatie

Saanaria	Eanhaid	FaCL /400/\	CO (100%)	Na OH (50%)	TOTAAL
Scenario	Eenheid	reci ₃ (40%)	CO ₂ (100%)	NaOH (50%)	TOTAAL
WPJ bestaand	ton/j	5596	0	2744	
+cascade	ton/j	5596	0	1326	
+cascade en CO ₂	ton/j	4197	848	1326	
-					
WPJ bestaand	ton CO ₂ -eq	1.007	0	2744	3.752
+cascade	ton CO ₂ -eq	1.007	0	1326	2.333
+cascade en CO ₂	ton CO ₂ -eq	755	661	1326	2.743
WPJ bestaand	Euro / jaar	€ 532.000	€0	€ 727.000	€ 1.259.000
+cascade	Euro / jaar	€ 532.000	€0	€ 351.000	€ 883.000
+cascade en CO ₂	Euro / jaar	€ 399.000	€ 61.000	€ 351.000	€ 811.000
			Totaal	WPJ bestaand	€ 1.634.028
Cl Na	SI	UVT	kosten incl.	+cascade	€ 1.116.305
mg/L mg/L	31	-	CO ₂	+cascade en CO ₂	€ 1.085.414

	HCO3	Cl	Na	SI	UVT
	mg/L	mg/L	mg/L		-
WPJ bestaand	156	38	20	0,3	80
+cascade	128	38	10	0,3	85,8
+cascade en CO ₂	156	29	10	0,3	86,1

Samenvatting: waarom pilot?

- Geen voorbeeld aan bestaande WPJ
 - Ontwerpuitgangspunten "uit het lood"
 - Nieuwe ontwerpuitgangspunten valideren
 - Waterkwaliteit voldoet op aantal punten niet
- Verbeterde/efficiëntere vlokafscheiding?
 - Flotatie meer en meer toegepast (m.n. Evides)
 - Kleinere footprint
 - Mogelijk minder chemicaliën
 - Elektrificeer ambitie
 - Robuuster bij lagere temperaturen

Figure 1 Typical DAF system schematic.

Project en pilot

Begroting RHDHV in Aanbestedingsleidraad (max. kosten van Lamellen separator)

Onderdeel	Waarde
Fase 1	4400 m ³ /h
CAPEX	46 M€
Exploitatie (Ex. CO2 uitstoot)	3,8 M€/jaar
Levensduur	30 jaar
"Total cost of Ownership"	160 M€

- Kunnen we dit minimaliseren en projectdoelen halen? (ook duurzaamheid CO₂)
- Is een DAF beter dan een LS?
- Hoe minder we testen hoe meer veiligheid we moeten inbouwen.
 - Het zal wel werken maar niet optimaal zijn?

Investeren in een pilot onderzoek

Er zit ook verbanden tussen, systeem analysis nodig

Ramingen ontwerp keuzes

- Ruwe inschatting voor initiële motivatie concept keuze en pilot onderzoekplan, (RHDHV calculator, voor 4400 m³/h)
- Alles moet worden gecheckt na conclusies pilot en kennis Nijhuis
- Let op! Is maar één aspect in TOM analysis

Onderdeel	Range	САРЕХ	OPEX
MZ zeefwijdte	200 – 35 μm	4,6 - 8,7 M€	Vergelijkbaar verhouding als CAPEX Mosselen verwijdering moet ook worden meegenomen
Flocculatie verblijfstijd	LS 20 - 30 min DAF 10 - 20 min	300 k€/min LS 5,9 - 8,8 M€ DAF 2,9 - 5,9 M€	≈
Floc-agent, WISPRO	Wel of niet	700 k€	60 k€/jaar
LS oppervlakte belasting	0,6 - 0,9 m/h	1.3 M€/(m/h) 10,4 -14.4 M€	≈
Separatie concept	LS of DAF	LS 10,4 - 14.4 M€ DAF 4,3 - 5,9 M€	Hoger voor DAF (energie = CO2)
ZF concept	Opwaarts (16-19 m/h) Neerwaarts (7-9 m/h)	Op. 5,1 - 5,7 M€ Neer. 8,3 - 9,7 M€	Neerwaarts 30-50% hogere (met afschrijving)
ZF korrelgrote (opwaarts)	Gem Grof 7-15 m/h	c.a. 700 k€/(m/h) Δ 4,9 M€	Hoger voor kleinere fractie

Concept keuze en pilot

Figure 1 Pilot block scheme

Puur water & natuur

Puur water & natuur

Hoe gaan we de pilot bedrijven

- Gedetailleerd pilotschema, 5 weekse cyclus met dagelijks veranderende instellingen, afgestemd tussen PWN(T) en Nijhuis
- Bedrijfsvoering in de proevenloods in Andijk door pilotoperator PWNT
- Pilotengineer (PWNT en Nijhuis) om proevenprogramma en dataverzameling te coordineren
- Kernteam om voortgang te bespreken
- Medio Q3 tussenrapport om voorzichtig voor te sorteren op concept
- Veel automatische bedrijfsvoering (muv steeds nieuwe instellingen) en dataverzameling in datalake en processoftware van GMB Nijhuis (relatie met Digitale Transformatie PWN)
- Eind Q4 raportage pilot WPJ en afweging PWN tot voortzetting pilot

Pilot onderzoeksplan

Uitdaging	Oplossing / Strategie
Heel veel variabelen, wat gaan we onderzoeken?	Samen met Nijhuis hebben we primair variabelen geïdentificeerd dat een significant invloed zal hebben op de TOM analyse en waar er onvoldoende kennis is om ontwerp te definiëren = primair variabelen
Seizoensinvloeden meenemen voor alle variabelen, en onderlinge invloed van variabelen	Herhalende pilot cyclus van 5 weken, waarin alle primair variabelen worden onderzocht, en hun onderlinge invloed
Extreem koud periode kan bepalend zijn (<3 degC)	Strategie vastgelegd voor extreem koud weer, buiten herhalende pilot cyclus
Optimaal operatie vastsleggen	Tussen testen in pilot cyclus continu verbetering van operatie besproken wekelijks met pilot kernteam Ondersteuning door 2 wekelijks bekerglas proven
Tijdsdruk om definitie fase te beginnen	Tussen rapportage in Q2 maken met voorlopige conclusies van winter. Q3 en Q4 voor verificatie

Activiteiten en projectplanning

Wat	Wanneer	Wie
Definitie pilot plan	Q4 2021	Pilot kernteam
Start pilot onderzoek	Week 1, 2022	Pilot kern team
Uitvoering	Tot eind 2022	Pilot kern team
Tussentijdse pilot resultaten rapportage, Met voorlopig aanbevolen ontwerp parameters	Eind Q2	Pilot kern team
Begroting en door berekenen van voorlopige keuzes uit tussentijdse rapport (CAPEX, OPEX, TCO, CO2 eq., enz.) en uitvoeren van TOM*	Q3	Project kern team
Voorlopige keuze van zuiveringstrein*	Q4	Project kern team
Definitief pilot rapport	Eind Q4	Pilot kern team
Definitief begroting en door berekenen van opties (CAPEX, OPEX, TCO, CO2 eq., enz.) en uitvoeren van TOM*	Eind Q4	Breed project team
Definitieve keuze van zuiveringstrein*	Eind Q4	Kern project team

^{*}Onderdeel van definitiefase

Projectorganisatie

Taak/Groep	Naam	Kernverantwoordelijkheden
Pilot operator	"Nog in te vullen" (PWNT)	Dagelijks operatie van pilot en monstername
Pilot engineer Extern water	"Nog in te vullen" (PWNT en NI) HWL	 Wekelijks data aggregatie/validatie Samenstellen en presenteren van week en maand rapporten Checken dat pilot plan wordt gevolgd en loggen van afwijkingen Ophalen monsters en analyse, online meter onderhoud/kalibratie
analyse		
Pilot breed team	"Nog in te vullen" (PWNT) J. Plooij (PWN) J. Gude (PWN) H. Teeuw (NI) Operator (PWNT) Pilot engineer (PWNT/NI) Kern team + M. Wink (PWN) M. Visser (PWN) Proces technoloog (PWN) B. Martijn (PWNT) E. Prest (PWNT) M. Welling (PWNT) A. Kluit (NI)	 Rapporteren van bekerglasproeven (elk 2 weken en eindrapport) Bespreken van week rapportage Analyseren van resultaten betreft van project doel Besluiten maken over aanpassingen van instellingen (optimalisatie) Besluiten maken van aanpassingen van pilot plan Samenstelling van maand en kwartaalrapportage Bespreken van maand, kwartaal, tussen en eind rapportage Samenstelling van kwartaal, tussen en eind rapportage Analyseren van resultaten betreft van project doel Bewaking project doel
Breed projectteam	J v. Bastelaar (NI) Zie PMP (inclusief GMB)	Resultaten van pilot spiegelen aan overal project doel

Pilotbudget

Exclusief huur en levering piloot

Onderdeel	Begroting
Totaal uren pilot onderzoek	537 k€
Uren lab. onderzoek	33 k€
Monstername PWNT lab	7 k€
Monstername en analyse kosten (HWL)	158 k€
Chemicaliën gebruik	35 k€
Totaal:	770 k€

Pilot deliverables

Het verkrijgen van betrouwbare resulaten om:

- De geselecteerde technologieen te vergelijken (DAF en LS) gebaseerd op:
 - Waterkwaliteit;
 - CAPEX (investeringskosten);
 - OPEX (operationele kosten);
 - Duurzaamheid
 - Robuustheid proces;
 - Onderhoud;
- 2. Definieren van ontwerpuitgangspunten voor beste passende technologie:
 - Uitgangspunten geschikt voor betrouwbaar opschalen;
 - Testen en valideren equipment

Puur water & natuur

Namen projectteam invullen

