```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns

data = pd.read_csv("/content/Energy efficiencigy.csv")
```

data.head(5)

-		_
-	→	₩
	÷	_

	LMK_KEY	ADDRESS1	POSTCODE	UPR	CURRENT_ENERGY_RATING	POTENTIAL_ENERGY_RATING	CURRENT_ENER
0	247421689062019061120570969138651	225, Westfield	CM18 6AP	5699849568	D	В	
1	672074579042011083012190381997908	170, Carters Mead	CM17 9EU	4035079868	С	С	
2	1696733829922019021205502602208431	11, Brickcroft Hoppit	CM17 9FJ	3096272678	С	В	
3	1638944259742018061021015856880218	174, Long Ley	CM20 3NW	782458578	D	В	
4	406114810922009121612110180158541	102, The Hides	CM20 3QP	4807140768	С	С	

5 rows × 71 columns

data.columns

we want to understnd how the data we interact with the model before preprocessing this is will prpovide a benchmark for preprocessing and how to improve the model

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error

for column in data.columns:
    mode = data[column].mode()[0]
    data[column].fillna(mode, inplace=True)
```

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are settin

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[c

data[column].fillna(mode, inplace=True)

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are settin

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[c

data[column].fillna(mode, inplace=True)

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are settin

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col] =

data[column].fillna(mode, inplace=True)

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are settin

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[c

data[column].fillna(mode, inplace=True)

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are settin

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[c

data[column].fillna(mode, inplace=True)

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are settin

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col] =

data[column].fillna(mode, inplace=True)

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are settin

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[c

data[column].fillna(mode, inplace=True)

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are settin

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col] =

data[column].fillna(mode, inplace=True)

/tmp/ipython-input-1864977839.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained. The behavior will change in pands 3.0. This implace method will never work because the intermediate object on which we are setting.

data.isnull().sum()

0
0
0
0
0
0
0
0
0
0
0

71 rows × 1 columns

dtype: int64

```
'POTENTIAL_ENERGY_EFFICIENCY', 'PROPERTY_TYPE', 'BUILT_FORM',
                                      'INSPECTION_DATE', 'LOCAL_AUTHORITY', 'CONSTITUENCY', 'LODGEMENT_DATE',
'TRANSACTION_TYPE', 'ENVIRONMENT_IMPACT_CURRENT',
                                      'ENVIRONMENT_IMPACT_POTENTIAL', 'ENERGY_CONSUMPTION_CURRENT', 'ENERGY_CONSUMPTION_POTENTIAL', 'CO2_EMISSIONS_CURRENT', 'CO2_EMISS_CURR_PER_FLOOR_AREA', 'CO2_EMISSIONS_POTENTIAL',
                                     'COZ_EMISS_CURR_PER_FLOOR_AREA', 'COZ_EMISSIONS_POTENTIAL',

'LIGHTING_COST_CURRENT', 'LIGHTING_COST_POTENTIAL',

'HEATING_COST_CURRENT', 'HEATING_COST_POTENTIAL',

'HOT_WATER_COST_CURRENT', 'HOT_WATER_COST_POTENTIAL',

'TOTAL_FLOOR_AREA', 'ENERGY_TARIFF', 'MAINS_GAS_FLAG',

'MAIN_HEATING_CONTROLS', 'MULTI_GLAZE_PROPORTION', 'GLAZED_TYPE',

'GLAZED_AREA', 'EXTENSION_COUNT', 'NUMBER_HABITABLE_ROOMS',

'NUMBER_HEATED_ROOMS', 'LOW_ENERGY_LIGHTING', 'NUMBER_OPEN_FIREPLACES',

'HOTWATER_DESCRIPTION', 'HOT_WATER_ENERGY_EFF', 'HOT_WATER_ENV_EFF',

'ELOOP_DESCRIPTION', 'HUTNOOMS_DESCRIPTION', 'HINDOOMS_ENERGY_EFF',
                                      'FLOOR_DESCRIPTION', 'WINDOWS_DESCRIPTION', 'WINDOWS_ENERGY_EFF',
'WINDOWS_ENV_EFF', 'WALLS_DESCRIPTION', 'WALLS_ENERGY_EFF',
'WALLS_ENV_EFF', 'SECONDHEAT_DESCRIPTION', 'ROOF_DESCRIPTION',
'ROOF_ENERGY_EFF', 'ROOF_ENV_EFF', 'MAINHEAT_DESCRIPTION',
                                      'MAINHEAT_ENERGY_EFF', 'MAINHEAT_ENV_EFF', 'MAINHEATCONT_DESCRIPTION',

'MAINHEAT_ENERGY_EFF', 'MAINHEATC_ENV_EFF', 'LIGHTING_DESCRIPTION',

'LIGHTING_ENERGY_EFF', 'LIGHTING_ENV_EFF', 'MAIN_FUEL',

'MECHANICAL_VENTILATION', 'ADDRESS', 'POSTTOWN', 'Unnamed: 67',
                                      'LODGEMENT_DATETIME', 'TENURE', 'UPRN_SOURCE'],
                                  dtype='object')
data = data.drop(columns=['LMK KEY', 'ADDRESS1','LODGEMENT DATE','LODGEMENT DATETIME','INSPECTION DATE'])
 Double-click (or enter) to edit
ordinal_features =[
             "CURRENT_ENERGY_RATING",
             "POTENTIAL_ENERGY_RATING",
             "HOT_WATER_ENERGY_EFF",
             "HOT_WATER_ENV_EFF"
             "WINDOWS_ENERGY_EFF",
             "WINDOWS_ENV_EFF",
             "WALLS_ENERGY_EFF",
             "WALLS_ENV_EFF",
             "ROOF_ENERGY_EFF"
             "ROOF_ENV_EFF",
             "MAINHEAT_ENERGY_EFF",
             "MAINHEAT_ENV_EFF",
             "MAINHEATC ENERGY EFF",
             "MAINHEATC_ENV_EFF",
             "LIGHTING_ENERGY_EFF",
             "LIGHTING_ENV_EFF"
]
Categorical_features = data.select_dtypes(include=['object']).columns
data.head(2)
 \overline{\mathbf{x}}
                           POSTCODE
                                                                               UPR CURRENT_ENERGY_RATING POTENTIAL_ENERGY_RATING CURRENT_ENERGY_EFFICIENCY POTENTIAL_ENERGY_EFFICIENCY PROTECTION PROTECTION OF THE PROTE
                                      CM18
                                                         5699849568
                                                                                                                                                           D
                                                                                                                                                                                                                                                                                                                           60
                  0
                                                                                                                                                                                                                                         В
                                                                                                                                                                                                                                                                                                                                                                                                                   84
                                         6AP
                                      CM17
                                                         4035079868
                                                                                                                                                                                                                                                                                                                          69
                                                                                                                                                                                                                                                                                                                                                                                                                    70
                                         9EU
               2 rows × 66 columns
Categorical_features
 index(['POSTCODE', 'CURRENT_ENERGY_RATING', 'POTENTIAL_ENERGY_RATING',
                                       'PROPERTY_TYPE', 'BUILT_FORM', 'LOCAL_AUTHORITY', 'CONSTITUENCY'
                                      'TRANSACTION_TYPE', 'ENERGY_TARIFF', 'MAINS_GAS_FLAG', 'GLAZED_TYPE', 'GLAZED_AREA', 'HOTWATER_DESCRIPTION', 'HOT_WATER_ENERGY_EFF',
                                      'GLAZED_AREA', 'HOIWAIER_DESCRIPTION', 'HOI_WAIER_ENERGY_EFF',
'HOT_WATER_ENV_EFF', 'FLOOR_DESCRIPTION', 'WINDOWS_DESCRIPTION',
'WINDOWS_ENERGY_EFF', 'WINDOWS_ENV_EFF', 'WALLS_DESCRIPTION',
'WALLS_ENERGY_EFF', 'WALLS_ENV_EFF', 'SECONDHEAT_DESCRIPTION',
'ROOF_DESCRIPTION', 'ROOF_ENERGY_EFF', 'ROOF_ENV_EFF',
'MAINHEAT_DESCRIPTION', 'MAINHEAT_ENERGY_EFF', 'MAINHEAT_ENV_EFF',
```

'MAINHEATCONT_DESCRIPTION', 'MAINHEATC_ENERGY_EFF', 'MAINHEATC_ENV_EFF',

```
'LIGHTING_DESCRIPTION', 'LIGHTING_ENERGY_EFF', 'LIGHTING_ENV_EFF',
    'MAIN_FUEL', 'MECHANICAL_VENTILATION', 'ADDRESS', 'POSTTOWN',
    'Unnamed: 67', 'TENURE', 'UPRN_SOURCE'],
    dtype='object')

# Define the category lists
energy_rating_categories = ["G", "F", "E", "D", "C", "B", "A"]
efficiency_categories = ["Very Poor", "Poor", "Average", "Good", "Very Good", "Excellent"]

# Create the list of categories for all 16 features
categories = [energy_rating_categories, energy_rating_categories] + [efficiency_categories] * 14

# Initialize and fit the OrdinalEncoder
order_encoder = OrdinalEncoder(categories=categories)
data[ordinal_features] = order_encoder.fit_transform(data[ordinal_features])

label_encoder = LabelEncoder()
for column in Categorical_features:
    data[column] = label_encoder.fit_transform(data[column])
```

data

	POSTCODE	UPR	CURRENT_ENERGY_RATING	POTENTIAL_ENERGY_RATING	CURRENT_ENERGY_EFFICIENCY	POTENTIAL_ENERGY_EFFICIENC
	384	5699849568	3	5	60	84
1	1 223	4035079868	4	4	69	7(
2	2 233	3096272678	4	5	72	8.
3	1332	782458578	3	5	66	8.
4	1362	4807140768	4	4	72	7:
474	461 731	10007592502	3	5	64	8.
474	462 474	4004917378	4	4	76	7!
474	463 364	10007542914	5	5	83	8.
474	164 918	10007604622	4	5	70	8!
474	165 1370	10007663254	4	4	72	7

47466 rows × 66 columns

```
x = data.drop(columns=['CURRENT_ENERGY_EFFICIENCY'])
y = data['CURRENT_ENERGY_EFFICIENCY']
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model=RandomForestRegressor()
model.fit(x_train, y_train)
r_squared = model.score(x_test, y_test)
print(f"R-squared: {r_squared}")
R-squared: 0.9918313243693793
from sklearn.metrics import mean_squared_error
y_pred = model.predict(x_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
→ Mean Squared Error: 0.76223795028439
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Values")
plt.ylabel("Predicted Values")
plt.title("Actual vs. Predicted Values")
plt.show()
```

Actual vs. Predicted Values

we want to understand which features are most significant, because it would be tiring to input over 20 features into a
 Model to make prediction. we are going to use features importance to determine the most dominat features in the model.

```
# Get feature importances from the trained model
importances = model.feature_importances_

# Create a dataframe of feature importances
feature_importances = pd.DataFrame({'feature': x.columns, 'importance': importances})

# Sort the features by importance
feature_importances = feature_importances.sort_values('importance', ascending=False)

# Plot the feature importances
plt.figure(figsize=(10, 6))
sns.barplot(x='importance', y='feature', data=feature_importances.head(10))
plt.title('Top 10 Feature Importances')
plt.show()
```


These model is dominated by Current _Energy _rating which i feel is making the model bias, we are going to drop these features and see how the model behave.

```
x = data.drop(columns=['CURRENT_ENERGY_EFFICIENCY', "CURRENT_ENERGY_RATING", 'ENVIRONMENT_IMPACT_CURRENT'])
y = data['CURRENT_ENERGY_EFFICIENCY']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model=RandomForestRegressor()
model.fit(x_train, y_train)
r_squared = model.score(x_test, y_test)
print(f"R-squared: {r_squared}")
R-squared: 0.9845827077065052
from sklearn.metrics import mean_squared_error
y_pred = model.predict(x_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
Mean Squared Error: 1.4386230777333056
# Get feature importances from the trained model
importances = model.feature_importances_
# Create a dataframe of feature importances
feature_importances = pd.DataFrame({'feature': x.columns, 'importance': importances})
# Sort the features by importance
feature_importances = feature_importances.sort_values('importance', ascending=False)
# Plot the feature importances
plt.figure(figsize=(10, 6))
\verb|sns.barplot(x='importance', y='feature', data=feature\_importances.head(10))|\\
plt.title('Top 10 Feature Importances')
plt.show()
₹
```


Co2 emmisssion seems to be dominating the model, but in reality CO2 Emmison might not be a handy information to go by we are going to reduce the features further to see how the model perform

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model=RandomForestRegressor()
model.fit(x_train, y_train)
r_squared = model.score(x_test, y_test)
print(f"R-squared: {r_squared}")
R-squared: 0.979321655039248
importances = model.feature_importances_
# Create a dataframe of feature importances
feature_importances = pd.DataFrame({'feature': x.columns, 'importance': importances})
# Sort the features by importance
feature_importances = feature_importances.sort_values('importance', ascending=False)
# Plot the feature importances
plt.figure(figsize=(10, 6))
sns.barplot(x='importance', y='feature', data=feature_importances.head(10))
plt.title('Top 10 Feature Importances')
plt.show()
```


Top 10 Feature Importances

While Energy Consumption and Heating cost were highly predictive, they are derived from the same energy assessments that generate the target variable.

Including them would introduce data leakage, inflating performance but making the model unusable in real-world scenarios where such data is unavailable prior to inspection.

feature_importances = pd.DataFrame({'feature': x.columns, 'importance': importances})

Create a dataframe of feature importances

```
These features will be removed, and the model retrained using only realistics features.
x.drop(columns=['HOT_WATER_COST_CURRENT', 'ENERGY_CONSUMPTION_POTENTIAL', 'POTENTIAL_ENERGY_EFFICIENCY', 'HOT_WATER_COST_POTENTIAL', 'HEATIN'
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model=RandomForestRegressor()
model.fit(x_train, y_train)
r_squared = model.score(x_test, y_test)
print(f"R-squared: {r_squared}")
R-squared: 0.8865204021318152
importances = model.feature_importances_
```

```
# Sort the features by importance
feature_importances = feature_importances.sort_values('importance', ascending=False)

# Plot the feature importances
plt.figure(figsize=(10, 6))
sns.barplot(x='importance', y='feature', data=feature_importances.head(10))
plt.title('Top 10 Feature Importances')
plt.show()
```



```
features_to_drop = [
    'HOT_WATER_ENV_EFF',
    'ENVIRONMENT_IMPACT_POTENTIAL',
    'WALLS_ENERGY_EFF',
    'WALLS_ENERGY_EFF',
    'WALLS_ENV_EFF',
    'ROOF_ENV_EFF',
    'ROOF_ENV_EFF',
    'MAINHEAT_ENERGY_EFF','MAINHEAT_ENV_EFF','MAINHEAT_DESCRIPTION',"LIGHTING_DESCRIPTION",
    'MAINHEATC_ENERGY_EFF','LOW_ENERGY_LIGHTING',
    'MAINHEATC_ENV_EFF','LOW_ENERGY_LIGHTING',
    'MAINHEATC_ENV_EFF','Unnamed: 67','UPR',"MAIN_HEATING_CONTROLS",'MAINHEATCONT_DESCRIPTION',"LIGHTING_ENERGY_EFF","LIGHTING_ENV_EFF"
]

x = x.drop(columns=features_to_drop)
```

x.head(2)

_		POSTCODE	PROPERTY_TYPE	BUILT_FORM	LOCAL_AUTHORITY	CONSTITUENCY	TRANSACTION_TYPE	TOTAL_FLOOR_AREA	MULTI_GLAZE_PROPORTION	G
	0	384	2	3	0	0	7	138.0	100.0	
	1	223	3	5	0	0	16	85.0	100.0	

```
# Plot the feature importances
plt.figure(figsize=(10, 6))
sns.barplot(x='importance', y='feature', data=feature_importances.head(10))
plt.title('Top 10 Feature Importances')
plt.show()
```


from sklearn.metrics import mean_squared_error
y_pred = model.predict(x_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

→ Mean Squared Error: 25.797221969533346

Top Feature Selection for Model Testing

We selected the top 10 most important features from the original model to evaluate performance with a reduced and interpretable set. The feature ADDRESS was excluded even though it ranked high in importance. This is because:

- It poses a risk of overfitting due to its specificity.
- It may introduce bias or redundancy, especially when combined with POSTCODE.
- It lacks generalization value for new/unseen addresses.

The remaining top features include key attributes such as wall and roof descriptions, main heating controls, and total floor area.

```
x = x[["WALLS_DESCRIPTION", "POSTCODE", "ROOF_DESCRIPTION", "FLOOR_DESCRIPTION", 'TOTAL_FLOOR_AREA', "MAIN_FUEL", "NUMBER_HEATED_ROOMS", "NUMB
x['avg_room_area'] = x['TOTAL_FLOOR_AREA']/x['NUMBER_HABITABLE_ROOMS']
x["Avg_heated_area"] = x["avg_room_area"]*x["NUMBER_HEATED_ROOMS"]
```

₹		WALLS_DESCRIPTION	POSTCODE	ROOF_DESCRIPTION	FLOOR_DESCRIPTION	TOTAL_FLOOR_AREA	MAIN_FUEL	NUMBER_HEATED_ROOMS	NUMBER_HA
	0	98	384	68	70	138.00	21	6.0	
	1	119	223	72	1	85.00	21	4.0	
	2	97	233	59	68	81.00	15	3.0	
	3	119	1332	74	66	71.00	21	3.0	
	4	119	1362	0	66	46.43	22	2.0	
	47461	114	731	99	0	59.00	21	3.0	
	47462	97	474	0	64	43.00	21	3.0	
	47463	8	364	1	5	48.00	1	3.0	
	47464	100	918	97	66	96.00	21	5.0	
	47465	99	1370	0	66	46.00	21	2.0	

47466 rows × 10 columns

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model=RandomForestRegressor()
model.fit(x_train, y_train)
r_squared = model.score(x_test, y_test)
print(f"R-squared: \{r\_squared\}")
R-squared: 0.6443267949107855
from sklearn.metrics import mean_squared_error
y_pred = model.predict(x_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
→ Mean Squared Error: 33.18868652367816
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Values")
plt.ylabel("Predicted Values")
plt.title("Actual vs. Predicted Values")
```


This means your model explains about 64% of the variance in the actual values, and from the scatter plot we can see that the spread follows an upward spread but its quite unnoticeable. we are now going to see how e can improve this model.

_ →		WALLS_DESCRIPTION	POSTCODE	ROOF_DESCRIPTION	FLOOR_DESCRIPTION	TOTAL_FLOOR_AREA	MAIN_FUEL	NUMBER_HEATED_ROOMS	NUMBER_HA
	0	98	384	68	70	138.00	21	6.0	
	1	119	223	72	1	85.00	21	4.0	
	2	97	233	59	68	81.00	15	3.0	
	3	119	1332	74	66	71.00	21	3.0	
	4	119	1362	0	66	46.43	22	2.0	
	47461	114	731	99	0	59.00	21	3.0	
	47462	97	474	0	64	43.00	21	3.0	
	47463	8	364	1	5	48.00	1	3.0	
	47464	100	918	97	66	96.00	21	5.0	
	47465	99	1370	0	66	46.00	21	2.0	

47466 rows × 10 columns

Start coding or generate with AI.

plt.title('Top 10 Feature Importances')

```
importances = model.feature_importances_
# Create a dataframe of feature importances
feature_importances = pd.DataFrame({'feature': x.columns, 'importance': importances})
# Sort the features by importance
feature_importances = feature_importances.sort_values('importance', ascending=False)
# Plot the feature importances
plt.figure(figsize=(10, 6))
sns.barplot(x='importance', y='feature', data=feature_importances.head(10))
```


plt.boxplot(x=x['TOTAL_FLOOR_AREA'])
plt.show()

plt.boxplot(x=y)
plt.show()

plt.boxplot(x=x['MAIN_FUEL'])
plt.show()

import numpy as np

plt.hist(np.array(y))
plt.show()

from sklearn.ensemble import GradientBoostingRegressor
model= GradientBoostingRegressor()
model.fit(x_train, y_train)
r_squared = model.score(x_test, y_test)
print(f"R-squared: {r_squared}")

R-squared: 0.6198765735253268

from sklearn.metrics import mean_squared_error
y_pred = model.predict(x_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

→ Mean Squared Error: 35.470193034108085

Х

 →	WALLS_DESCRIPTION	POSTCODE	ROOF_DESCRIPTION	FLOOR_DESCRIPTION	TOTAL_FLOOR_AREA	MAIN_FUEL	NUMBER_HEATED_ROOMS	NUMBER_HA
0	98	384	68	70	138.00	21	6.0	
1	119	223	72	1	85.00	21	4.0	
2	97	233	59	68	81.00	15	3.0	
3	119	1332	74	66	71.00	21	3.0	
4	119	1362	0	66	46.43	22	2.0	
47461	114	731	99	0	59.00	21	3.0	
47462	97	474	0	64	43.00	21	3.0	
47463	8	364	1	5	48.00	1	3.0	
47464	100	918	97	66	96.00	21	5.0	
47465	99	1370	0	66	46.00	21	2.0	

47466 rows × 10 columns

 $\verb"import shap"$

```
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(x_test)
shap.summary_plot(shap_values, x_test)
shap.dependence_plot("POSTCODE", shap_values, x_test)
shap.force_plot(explainer.expected_value, shap_values[0,:], x_test.iloc[0,:])
```

