skorka.bence@gmail.com

Feladat

Valósítsa meg az egész számokat tartalmazó felsőháromszög mátrixtípust (a mátrixok a főátlójuk alatt csak nullát tartalmaznak)! Ilyenkor elegendő csak a főátló és afeletti elemeket reprezentálni egy sorozatban, amelyet egy dinamikus helyfoglalású tömbben helyezzünk el. Implementálja önálló metódusként a mátrix iedik sorának j-edik elemét visszaadó műveletet, valamint hatékony összeadás és szorzás műveleteket, továbbá a mátrix (négyzetes alakú) kiírását, és végül a másoló konstruktort és az értékadás operátort!

Felsőháromszög mátrix osztály

A feladat lényege egy felsőháromszög mátrix típusnak a megvalósítása.

Típusérték-halmaz

Olyan számokat tartalmazó $n \times n$ ($n \in \mathbb{N}$) -es négyzetes mátrixokkal akarunk dolgozno, amelyek csak a felső háromszögben tartalmaznak nullától különböző elemeket. Az $n \in \mathbb{N}$ ennek a típusnak egy paramétere, amely a típusérték-halmaz mátrixának méretét határozza meg.

Típus-műveletek

Lekérdezés

A mátrix j-edik sorának i-edik pozícióján $(i, j \in [1..n])$ álló érték kiolvasása e := a[i, j]

Megjegyezzük, hogy ez a művelet csak $i \ge j$ esetén igényel tényleges tevékenységet, hiszen egyébként a visszaadott elem nulla.

Felülírás

A mátrix *i*-edig sorának *j*-edig pozíciójára $(i, j \in [1..n])$ új érték beírása: a[i, j] := e. A felső háromszögön kívüli elemet nem szabad felülírni, azaz $i \ge j$.

Megjegyezzük, hogy ez a művelet csak $i \ge j$ esetén igényel tényleges tevékenységet; i < j esetén hibás, amennyiben egy nemnulla értéket akarunk a mátrixba tenni.

Összeadás

Két mátrix összeadása: c := a + b. Az összeadásban szereplő mátrixos azonos méretűek.

$$\forall i,j \in [1..n] \colon c[i,j] \coloneqq a[i,j] + b[i,j]$$

Szorzás mátrixal

Két mátrix összeszorzása: c := a * b. A szorzásban szereőlő mátrixok azonos méretűek.

$$\forall i, j \in [1..n]: c[i,j] \coloneqq \sum_{k=1}^{n} a[i,k] * b[k,i]$$

De mivel felső háromszög mátrixról van szó, így a szorzások száma csökkenthető azzal, hogy kihagyjuk a főátló alatti területeket:

$$\forall i,j \in [1..n] : c[i,j] \coloneqq \sum_{k=M_1}^{M_2} a[i,k] * b[k,i], M_1 = Min\{i,j\}, \ M_2 = Max\{i,j\}$$

Skorka Bence DOMJ1R Objektumelvű Alkalmazások Fejlesztése

Feladat: 2.

skorka.bence@gmail.com

Szorzás számmal

Egy mátrix szorzása egy számmal: $c \coloneqq a * \lambda \ (\lambda \in \mathbb{N})$.

$$\forall i,j \in [1..n] \colon c[i,j] \coloneqq a[i,j] * \lambda$$

skorka.bence@gmail.com

Reprezentáció

Egy $n \times n$ -es felsőháromszög mátrixban csak a felső háromszöget kell ábrázlni:

$$egin{array}{lll} a_{1,1} & a_{2,1} & a_{3,1}...a_{n,1} \ 0 & a_{2,2} & a_{3,2}...a_{n,2} \ 0 & 0 & a_{3,3}...a_{n,3} \end{array}$$

Ehhez egy 0-tól $\frac{n(n+1)}{2}$ -ig indexelt egydimenziós tömbre (v) van szükségünk. Ennek segítségével a felsőháromszög mátrix bármelyik elemét meghatározhatjuk az alábbi függvény alapján: (az index függvény az implementációban)

$$a[i,j] = \begin{cases} v[index(i,j)] & i \ge j \\ 0 & i < j \end{cases}$$

Implementáció Segédfüggvények

$$\frac{VektorMeret(n)}{Return\left(\frac{n(n+1)}{2}\right)}$$

$$\frac{index(i,j)}{Return\left(i-j+\frac{(2n-j+1)\times j}{2}\right)}$$

Lekérdezés

Lekerdezes(i, j)

i :	≥j	
Return(v[index(i,j)])	Return(0)	

Felülírás

Módosítás(i, j, ertek)

		$i \ge j$	
	$v[index(i,j)] \coloneqq ertek$	SKIP	

skorka.bence@gmail.com

Összeadás

$Osszeg(m_1, m_2)$	
$m_1.meret() = m_2.meret()$	
$o \coloneqq new\ Matrix(m_1.meret())$	SKIP
 $i \coloneqq 1VektorMeret(o.meret())$	
$o.v[i] \coloneqq m_1.v[i] + m_2.v[i]$	
Return(o)	

Szorzás

Igen, ez egy n^3 -ös algoritmus, de egyszerű implementációban nincs is sokkal jobb sajnos:

Skorka Bence DOMJ1R skorka.bence@gmail.com

Osztály

A felsőháromszög matrixok típusát osztály segíségével úgy valósítjuk meg, hogy a matrix méretét a konstruktorban paraméterként át kell adni. Ennek hátránya, hogy minden művelet előtt ellenőrizni kell, hogy a műveletet végző mátrixok azonos méretűek e. Előnye, hogy a matrix mérete később dinamikusan változhat másolás, vagy fileból betöltés esetén.

```
UpperTriangularMatrix
                                     -size: int
      -data: int[0..k], ahol k értékét a calculateVectorLength függvény számolja.
                           -calculateVectorLength(): int
                       -calculateVectorPosition(int, int): int
                       -copyFrom(UpperTriangularMatrix)
                           +UpperTriangularMatrix(int)
                 +UpperTriangularMatrix(UpperTriangularMatrix)
                              +operator()(int, int): int
+operator + (UpperTriangularMatrix, UpperTriangularMatrix): UpperTriangularMatrix
          +operator * (UpperTriangularMatrix, int): UpperTriangularMatrix
+operator*(UpperTriangularMatrix, UpperTriangularMatrix): UpperTriangularMatrix
                               +writeData(ostream)
                               +readData(istream)
              +operator « (ostream), nem ugyanaz, mint a writeData!!
                                 +getSize():int
```

Az adatokat tároló tomb egy saját vektortípus, ami kezeli a dinamikus helyfoglalást. Így a hely lefoglalásával nem a felső háromszög matrix osztály törődik, mert nem neki a feladata.

Feladat: 2.

Feladat: 2.

Tesztelési terv

Vektorosztály

A vektorosztályból csak a mátrixot érintő funkciók tesztelése érdemes, így a *push_back*, *pop_back*, egyéb függvények nem.

- 1. Vektor méretezhetősége
 - a. Létrehozható e vektor adott mérettel
 - b. Átméretezhető e a vektor
- 2. Vektorelemek elérhetősége
 - a. Egy n méretű ektor 0..n 1 elemei közül mindegyik elérhető?
 - b. ~ módosítható?
 - c. ~ megtartja az értékét?

Mátrixosztály

- 1. Új *n* méretű üres
 - a. A mátrix létrejön?
 - b. Minden eleme 0?
- 2. Helyes pozíciók elérése
 - a. Elérhető?
 - b. Alapértelmezetten 0?
- 3. Helytelen pozíciók elérése
 - a. Hibát dob?
- 4. Szorzás számmal
- 5. Összeadás mátrixal
- 6. Szorzás mátrixal