Propositional Language - Syntax

Lila Kari

The University of Western Ontario

Propositional language

- By using connectives, we can combine propositions, whether they are atomic themselves or compound.
- To prevent ambiguity, we introduce fully paranthesized expressions that can be parsed in a unique way.
- When possible, we will omit parantheses and use precedence rules.
- We construct the propositional language \mathcal{L}^p , which is the formal language of the propositional logic.

Propositional language \mathcal{L}^p : syntax

Propositional language \mathcal{L}^p is the formal language for propositional logic.

It consists of:

- propositional variables: p, q, r.
- propositional constants: 1 and 0 (true and false).
- logical connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$.

Oral reading of logical connectives

```
\begin{array}{lll} \neg & \text{not} & \text{negation} \\ \land & \text{and} & \text{conjunction} \\ \lor & \text{or (and/or)} & \text{(inclusive) disjunction} \\ \rightarrow & \text{if, then (imply)} & \text{implication} \\ \leftrightarrow & \text{iff (equivalent to)} & \text{equivalence} \\ \end{array}
```

left and right parantheses : (,).

Expressions of \mathcal{L}^p

- expressions = finite strings of symbols $-p, pq, (r), p \land \rightarrow q$ and $\neg (p \lor q)$ are expressions in \mathcal{L}^p .
- length of expression: the number of occurrences of symbols in it
 for expressions above, length is 1, 2, 3, 4 and 6
- empty expression = expression of length zero, \emptyset
- two expressions u and v are equal iff they are of the same length and have the same symbols in the same order.
- scanning of expressions proceeds from left to right

Expressions

- concatenating two expressions u, v in this order is denoted uv. Note that $\emptyset u = u\emptyset = u$
- if $u = w_1 v w_2$ where u, v, w_1, w_2 are expressions, then v is a segment of u.
- If $v \neq u$ then v is a proper segment of u.
- If u = vw, where u, v, w are expressions, then v is an initial segment of u. Similarly, w is a terminal segment of u.

Atoms and formulas

- An atom (atomic formula) is an expression consisting of a proposition variable or constant only.
- An expression in \mathcal{L}^p is called a formula (well-formed formula) iff it can be constructed according to the following formation rules:
 - 1. Every atomic formula is formula;
 - 2. If A is a formula then so is $(\neg A)$;
 - 3. If A, B are formulas then so are $(A \lor B)$, $(A \land B)$, $(A \to B)$ and $(A \leftrightarrow B)$.
 - 4. No other expression is a formula.

- Definition. (Negation, Conjunction, Disjunction, Implication, Equivalence).
 - † $(\neg A)$ is called a negation (formula). It is the negation of A.
 - † $(A \wedge B)$ is called a conjunction (formula). It is the conjunction of A and B. A and B are called the conjuncts of $(A \wedge B)$.
 - † $(A \lor B)$ is called a disjunction (formula). It is the disjunction of A and B. A and B are called the disjuncts of $(A \lor B)$.
 - † $(A \rightarrow B)$ is called an implication (formula). It is the implication of A and B. A and B are called the antecedent and consequent of $(A \rightarrow B)$.
 - † $(A \leftrightarrow B)$ is called an equivalence (formula). It is the equivalence of A and B.

Formulas

- The set of atomic formulas in \mathcal{L}^p is denoted by $Atom(\mathcal{L}^p)$.
- The set of all formulas (well-formed formulas, wff) in \mathcal{L}^p is denoted by $Form(\mathcal{L}^p)$.
- Form(\mathcal{L}^p) is the smallest class of expressions of \mathcal{L}^p closed under the formation rules of formulas.

Comments

- Every formula of \mathcal{L}^p has the same number of occurrences of left and right parantheses.
- Any proper initial segment of a formula in L^p has more occurrences of left than right parantheses. Any proper terminal segment of a formula in L^p has less occurrences of left than right parantheses.
 Thus neither a proper initial segment nor a proper terminal segment of a formula can itself be a formula of L^p.
- Every formula of \mathcal{L}^p is of exactly one of the six forms: an atom, $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, or $(A \leftrightarrow B)$, and in each case it is of the form in exactly one way.

Scope

- If $(\neg A)$ is a segment of a formula C, then A is called the scope of the negation \neg in the formula C.
- If $(A \wedge B)$ is a segment of a formula C, then A is called the left scope of the conjunction and B is called the right scope of the conjunction in the formula C.
- Similar definitions hold for left/right scopes of disjunction, implication and equivalence.

Suppose
$$A = (\neg((p \land q) \lor ((\neg p) \rightarrow r))).$$

Suppose
$$A = (\neg((p \land q) \lor ((\neg p) \rightarrow r))).$$

The scope of the first \neg is $((p \land q) \lor ((\neg p) \rightarrow r))$ and of the second \neg is p.

Suppose
$$A = (\neg((p \land q) \lor ((\neg p) \rightarrow r))).$$

The scope of the first \neg is $((p \land q) \lor ((\neg p) \rightarrow r))$ and of the second \neg is p.

The left and right scopes of \land are p and q.

Suppose
$$A = (\neg((p \land q) \lor ((\neg p) \rightarrow r))).$$

The scope of the first \neg is $((p \land q) \lor ((\neg p) \rightarrow r))$ and of the second \neg is p.

The left and right scopes of \wedge are p and q.

The left and right scopes of \vee are $(p \wedge q)$ and $((\neg p) \rightarrow r)$.

Suppose
$$A = (\neg((p \land q) \lor ((\neg p) \rightarrow r))).$$

The scope of the first \neg is $((p \land q) \lor ((\neg p) \rightarrow r))$ and of the second \neg is p.

The left and right scopes of \wedge are p and q.

The left and right scopes of \vee are $(p \wedge q)$ and $((\neg p) \rightarrow r)$.

The scopes of \rightarrow are $(\neg p)$ and r.

Example 1 (generating formulas)

Example 1 (generating formulas).

The expression

$$((p \lor q) \to ((\neg p) \leftrightarrow (q \land r)))$$

is a formula. How is it generated?

Example 2 (parsing formulas)

If Michelle wins at the Olympics, everyone will admire her, and she will get rich, but if she does not win, all her effort was in vain.

- p: Michelle wins at the olympics.
- q: Everyone admires Michelle.
- r: Michelle will get rich.
- s: Michelle's effort was in vain.

Example 2 (parsing formulas)

If Michelle wins at the Olympics, everyone will admire her, and she will get rich, but if she does not win, all her effort was in vain.

- p: Michelle wins at the olympics.
- q: Everyone admires Michelle.
- r: Michelle will get rich.
- s: Michelle's effort was in vain.

The compound proposition becomes

$$((p \to (q \land r)) \land ((\neg p) \to s))$$

One can use parse trees to analyze formulas.

Precedence rules

- \neg has precedence over \land
- \wedge has precedence over \vee
- \lor has precedence over \to
- ightarrow has precedence over ightarrow

Precedence rules

- \neg has precedence over \land
- \wedge has precedence over \vee
- \lor has precedence over \to
- ightarrow has precedence over $\ \leftrightarrow$

Examples:

- $\neg p \lor q$ is to be understood as $(\neg p) \lor q$.
- $p \land q \lor r$ is to be understood as $((p \land q) \lor r)$.
- $p \rightarrow q \lor r$ is to be understood as $p \rightarrow (q \lor r)$
- $p \leftrightarrow p \rightarrow q$ must be understood as $p \leftrightarrow (p \rightarrow q)$
- proposition about Michelle:

$$(p \rightarrow q \land r) \land (\neg p \rightarrow s)$$

• No work, no pay.

• No work, no pay.

```
Reword: "If no work is done, then there is no pay." p = "work was done", q = "there is pay".
```

• No work, no pay.

```
Reword: "If no work is done, then there is no pay." p = "work was done", q = "there is pay".
```

Translation into propositional language: $\neg p \rightarrow \neg q$.

• Goods bought into this store can be returned only if they are in good condition, and only if the purchaser brings a receipt.

• Goods bought into this store can be returned only if they are in good condition, and only if the purchaser brings a receipt.

```
Atomic propositions:

p= "goods can be returned",

q= "goods are in good condition",

r= "the purchaser must bring a receipt".
```

• Goods bought into this store can be returned only if they are in good condition, and only if the purchaser brings a receipt.

Atomic propositions:

p= "goods can be returned",

q= "goods are in good condition",

r= "the purchaser must bring a receipt".

Translation into propositional language:

$$p \rightarrow (q \wedge r)$$

• If p is a prime number then, for even integers n, n^p-n is divisible by p.

• If p is a prime number then, for even integers n, $n^p - n$ is divisible by p.

```
Atomic propositions:

p = "p \text{ is a prime"},

q = "n \text{ is an integer"},

r = "n \text{ is even"},

s = "n^p - n \text{ is divisible by } p."
```

• If p is a prime number then, for even integers n, $n^p - n$ is divisible by p.

Atomic propositions: $p = "p ext{ is a prime"},$ $q = "n ext{ is an integer"},$ $r = "n ext{ is even"},$ $s = "n^p - n ext{ is divisible by } p."$

Translation into propositional language:

$$p \rightarrow (q \land r \rightarrow s)$$

• Set C is the intersection of set A and set B if and only if every element of set C is an element of both A and B.

• Set *C* is the intersection of set *A* and set *B* if and only if every element of set *C* is an element of both *A* and *B*.

Atomic propositions:

```
p= "Set C is an intersection of set A and set B",
```

```
q= "Every element of C is an element of A",
```

r= "Every element of C is an element of B."

• Set C is the intersection of set A and set B if and only if every element of set C is an element of both A and B.

Atomic propositions:

p= "Set C is an intersection of set A and set B",

q= "Every element of C is an element of A",

r= "Every element of C is an element of B."

Translation into propositional language:

$$p \leftrightarrow q \wedge r$$

• Nobody is allowed to turn on freeway. Police officers on duty are exempt from this rule.

• Nobody is allowed to turn on freeway. Police officers on duty are exempt from this rule.

```
Atomic propositions:
```

```
p= "X is allowed to turn on a freeway,"
```

q = "X is a police officer",

r = "X is on duty.".

• Nobody is allowed to turn on freeway. Police officers on duty are exempt from this rule.

Atomic propositions:

p= "X is allowed to turn on a freeway,"

q = "X is a police officer",

r = "X is on duty.".

Translation into propositional language:

$$\neg p \lor (q \land r)$$

Converse and contrapositive

Definition. Given the proposition $p \to q$, the converse of $p \to q$ is the proposition $q \to p$ the contrapositive of $p \to q$ is the proposition $\neg q \to \neg p$.

Induction on the complexity of formulas

Theorem. Suppose R is a property. If

- For any atomic formula $p \in Atom(\mathcal{L}^p)$, p has the property R.
- **②** For any formula A in $Form(\mathcal{L}^p)$, if A has property R, then $(\neg A)$ has the property R.
- **③** For any formulas A and B in Form(\mathcal{L}^p), if A and B have property R then (A * B) has property R, where $* ∈ {\land, \lor, \rightarrow, \leftrightarrow}$.

then, any formula in $Form(\mathcal{L}^p)$ has property R.