Chapter V. Frequency Analysis of Discrete Systems

Response of LTI systems to harmonic signals

- ▶ We consider an LTI system with h[n]
- ▶ Input signal = complex harmonic (exponential) signal

$$x[n] = Ae^{j\omega_0 n}$$

▶ Output signal = convolution

$$y[n] = \sum_{k=-\infty}^{\infty} h[n]x[k-n]$$
$$= \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega_0 k}Ae^{j\omega_0 n}$$
$$= H(\omega_0) \cdot x[n]$$

ullet $H(\omega_0)=$ Fourier transform of h[[n] evaluated for $\omega=\omega_0$

Eigen-function

- Complex exponential signals are eigen-functions (functii proprii) of LTI systems:
 - ▶ output signal = input signal × a (complex) constant
- $ightharpoonup H(\omega_0)$ is a constant that multiplies the input signal
 - Amplitude of input gets multiplies by $|H(\omega_0)|$
 - ▶ Phase of input signal is added with $\angle H(\omega_0)$
- Why are sin/cos/exp functions important?
 - ▶ If input signal = sum of complex exponential (= coses + sinuses),
 - since the system is linear,
 - then output = same sum of complex exponentials, each scaled with some coefficients

Response to cosine and sine

- ▶ Cosine / sine = sum of two exponentials, via Euler
- System is linear and real =>
 - amplitude is multiplied by $|H(\omega_0)|$
 - ▶ phase increases by $\angle H(\omega_0)$
- See proof at blackboard

Frequency response

- Names
 - $H(\omega)$ = frequency response of the system
 - ▶ $|H(\omega)|$ = amplitude response
 - $ightharpoonup \angle H(\omega) = \text{phase response}$
- ▶ Phase response might have jumps of 2π
- ▶ Stitching the pieces in a continuous function = phase *unwrapping*
 - Example: at blackboard
- ▶ Wrapped phase: $\in [-\pi, \pi]$, may have jumps of 2π
- ▶ Unwrapped phase: continuous function, may go outside interval

Permanent and transient response

- ▶ The above harmonic signals start at $n = -\infty$, not at 0.
- ▶ What if the signal starts at some time n = 0?
- ► Total response = transient response + permanent response
 - transient response goes towards 0 as $n \to \infty$
 - permanent response = the above
- ► So the above relations are valid only in **permanent regime**
 - ▶ i.e. after the transient regime has passed
 - i.e. after the transient response has practically vanished
 - i.e. when the signal started very long ago (from $n=-\infty$)
- Example at blackboard