MCAL MT - DS - Sujet B

Durée: 1h30, sans document

- Si vous répondez sur le sujet, n'oubliez pas d'indiquer **Nom et Prénom** sur le sujet puis glissez le dans votre copie à la fin de l'épreuve.
- Commencez par lire tout le sujet pour repérer les questions faciles.
- Respectez les notations du cours.
- Le sujet est sur 22.5 points et comporte 4 exercices indépendants.
- Le barème est donné à titre indicatif.
- Tous les appareils électroniques sont interdits à l'exception des montres qui ne communiquent pas.

Exercice 1 : Codage des automates (à nombre) d'états fini en machines de Turing (15min, 5 pt)

L'objectif de l'exercice est de simuler un automate (à nombre) d'états fini (AEF) par une machine de Turing à une bande. Le mot ω à reconnaître sera inscrit sur la bande.

Q1. (0.75 pt) Rappelez la définition de l'acceptation d'un mot ω par un AEF. Autrement dit, donnez les conditions à satisfaire pour qu'un mot ω soit accepté par un AEF.

Des exemples d'automates (à nombre) d'états fini. On considère l'alphabet $\Sigma = \{0, 1\}$ pour les automates (à nombre) d'états fini et $\Sigma' = \{\Box, \$, 0, 1\}$ pour les machines de Turing.

Q2. (0.25 pt) On considère le langage L_1 constitué des mots binaires formés d'un nombre quelconque de 1 (éventuellement aucun) et terminés par un 0. Donnez trois mots binaires qui appartiennent au langage L_1 et trois mots binaires qui n'appartiennent pas à L_1 .

Q3. (0.5 pt) Donnez un AEF A_1 qui reconnaît le langage L_1 .

Q4. (0.25 pt) Décrivez en français le langage reconnu par l'AEF
$$A_2 = -$$

Q5. (0.25 pt) Donnez la traduction en MT d'une transition $(q) \xrightarrow{\ell} (q')$ d'un AEF A.

Q6. (1 pt) Donnez les transitions de MT qui traduisent (a) l'effet d'un état accepteur (q) de l'AEF, et (b) l'effet d'un état non-accepteur (q) de l'AEF.

Q7. (1 pt) Donnez la MT M_2 équivalente à l'AEF A_2 , c'est-à-dire qu'elle reconnaît le langage L_2 .

Q8. (1 pt) Donnez la MT M_1 équivalente à l'AEF A_1 , c'est-à-dire qu'elle reconnaît le langage L_1 .

Exercice 2: Machines de Turing à 3.. 2.. 1 bande(s) (30min, 7 pt)

On considère l'alphabet $\Sigma = \{\Box, \$, 1, 0, \S\}$. Le symbole \S servira de marqueur. On s'intéresse à l'opération $S : \{0,1\}^* \to 1^*0^*$ qui prend en paramètre un mot binaire $\omega \in \{0,1\}^*$ et range tous les 1 du mot avant les 0.

Exemple : S(000111) = 111000 et S(10101) = 11100 et $S(\epsilon) = \epsilon$

Le but de cet exercice est de réaliser l'opération S de trois façons : avec une MT à 3 bandes (B_1, B_2, B_3) , puis à 2 bandes (B_1, B_2) , puis à une seule bande (B_1) . Au départ le mot ω est inscrit sur la bande B_1 ; les autres bandes contiennent juste un \S ; la tête de lecture/écriture de chaque bande est positionnée sur le \S . À la fin de l'exécution, la bande B_1 doit contenir le mot $S(\omega)$.

Indication: On indiquera devant l'action $\ell/e:d$ le numéro de la bande concernée. Les transitions qui ont des actions simultanées sur plusieurs bandes seront notées $: @ \xrightarrow{(1)\ell_1/e_1:d_1} (2)\ell_2/e_2:d_2} (3)\ell_3/e_3:d_3 \rightarrow Q'$. Si une transition n'a pas d'action sur la bande B_2 , on ne décrit pas d'action $(2)\ldots$, on se contentera d'indiquer les actions sur B_1 et $B_3: @ \xrightarrow{(1)\ell_1/e_1:d_1} (3)\ell_3/e_3:d_3 \rightarrow Q'$.

- **Q9.** (0.5 pt) Donnez une MT $M_{\frac{3}{8}}$ qui recherche le symbole \S vers la droite et ramène la tête de lecture/écriture de B_1 sur le \S .
- Q10. (1 pt) (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec une MT M_3 à 3 bandes (B_1, B_2, B_3) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_3(10101)$.
- Q11. (1pt) Donnez les transitions de la MT M_3 à trois bandes qui réalise S.
- Q12. (1.25 pt) (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec un MT M_2 à 2 bandes (B_1, B_2) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_2(10101)$.
- Q13. (1.25 pt) Donnez les transitions de la MT M_2 à deux bandes qui réalise S.
- Q14. (1 pt) (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec un MT M_1 à une bande (B_1) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_1(10101)$.
- Q15. (1 pt) Donnez les transitions de la MT M_1 à une bande qui réalise S.

Exercice 3: Génération de graphes en Gamma (30min, 5.5 pt)

Q16. (1 pt) Exécutez le programme Gamma Γ_1 ci-dessous sur le multi-ensemble $\{ITV(1,8)\}$ où \div est la division entière, c'est-à-dire $5 \div 2 = 2$.

$$\Gamma_1 \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{ll} \text{ITV}(x,y) & \xrightarrow{x \leq y+1} & \text{ITV}(x,\ (x+y) \div 2), & \text{ITV}(1+(x+y) \div 2,\ y) \\ \text{ITV}(x,x) & \longrightarrow & \text{N}(x) \end{array} \right.$$

- Q17. (0.5 pt) (a) Combien d'applications de règles sont nécessaires avant d'arriver à la stabilité du multi-ensemble? (b) En combien d'étapes ¹ atteint-on la stabilité?
- Q18. Généralisation (1 pt) (a) Expliquez l'effet du programme Γ_1 sur le multi-ensemble $\{ITV(1, n)\}$ où n est un entier > 1. (b) En combien d'applications de règles et combien d'étapes obtient-on la stabilité?

^{1.} une étape = une application en parallèle des règles

Q19. (0.5 pt) (a) Donnez le multi-ensemble correspondant au graphe 1 et (b) dessinez le graphe correspondant au multi-ensemble $\{ARC(1,1),ARC(2,3)\}$
Q20. (1.25 pt) On considère un multi-ensemble \mathcal{M} qui contient des nœuds $N(i)$ numérotés de 1 à n . Donnez un programme Gamma qui – à partir des nœuds de \mathcal{M} et de l'atome $G(p) \in \mathcal{M}$ – construit un graphe à exactement p arcs différents entre des nœuds de \mathcal{M} .
Indication : L'atome $G()$ de ${\mathcal M}$ qui sert à contrôler l'arrêt de la réaction.
Q21. (1.25 pt) Notre but est d'adapter le programme précédent pour garantir qu'on construit un graphe connexe c'est-à-dire un graphe qui ne contient pas de sous-graphes disjoints 2 . Cette fois on commence avec un atome $G'(p)$ dans un multi-ensemble \mathcal{M}' de nœuds primés, notés $N'(i)$ pour indiquer qu'il ne font pas partie du graphe connexe. L'idée est de changer un nœud $N'(i)$ en $N(i)$ lorsqu'il se trouve connecté au graphe. Donnez un programme Gamma qui – à partir des nœuds de \mathcal{M}' et de l'atome $G'(p)$ – construit un graphe connexe à exactement p arcs différents entre des nœuds de \mathcal{M}' .
Exercice $4: \mathbb{N} \to \mathbb{B}$ non-dénombrable (15min, 5.5 pt)
Q22. Complétez (1 pt) On note $\mathbb B$ l'ensemble des booléens $\{\mathbb V,\mathbb F\}$. $\mathbb N\to\mathbb B$ $\mathscr E$
de, c'e
associent un $: \mathbb{N} \to \mathbb{B} = \{P \mid \dots \}. $
Considérons un
tableau $[0N[$ qui indique pour chaque entier i la valeur
Q23. (0.75 pt) Donnez quatre éléments de $\mathbb{N} \to \mathbb{B}$.
Q24. (0.75 pt) Rangez vos 4 éléments dans un tableau de booléens à deux dimensions $[0N[\times[0N[$; donnez les 4 premières lignes, 6 premières colonnes du tableau.
Q25. Complétez la preuve (3 pt) On montre que $\mathbb{N} \to \mathbb{B}$ e
d'une preuve par:
Sque l'ensemble $\mathbb{N} o \mathbb{B}$ soit dénombrable c'e
avec N. Holors il existe une entre N et
$\mathbb{N} o \mathbb{B}$ qui, à un entier ℓ , le prédicat P_ℓ . On peut alors ranger
le [0N[×[0N[à la manière de George
ligne : la ligne ℓ définit le prédicat P_ℓ .

Représentation d'un graphe par un multi-ensemble On peut décrire un graphe par l'ensemble

de ses arcs. On notera $\mathrm{Arc}(i,j)$ un arc entre le nœud i et le nœud j.

^{2.} Un nœud N(i) sans arc ne constitue pas un graphe.

Considérons la du tableau et exhibons une contradic-
$ extbf{tion}: ext{Puisque le tableau contient} \qquad \qquad P: \mathbb{N} ightarrow$
\mathbb{B} défini par $P(i) \stackrel{\textit{def}}{=}$ doit
tableau à une certaine ligne, disons ℓ , donc P
Exemple : Le prédicat P correspond à la de la du
tableau. Dans le cas du tableau de la question précédente, le prédicat ${\cal P}$ serait
$P(0) = \dots, P(1) = \dots, P(2) = \dots, P(3) = \dots, \text{etc}$
Évaluons P au point ℓ :
$P(\ell)=$; mais, par ailleurs,
$P(\ell) = \dots$: Contradiction.
Conclusion: En suppo $\mathbb{N} \to \mathbb{B}$, on aboutit à
, donc $\mathbb{N} \to \mathbb{B}$

.