Going Deeper ©©©© into Sentiment **Analysis with** CNN's

Sam Liu, Nabeel Sidiqqi

Executive Summary: Project goals

Background and motivation

Design & Implementation

Executive Summary: Project Goals

Goal: Leverage training speed and CNN architecture to predict sentiment of text Yelp reviews

Why: Faster than state of the art (RNN), more accurate than traditional ML

Result: Our CNN model outperformed SVM by 4 percentage points

Metrics (F1 Macro):

- o CNN 94%
- SVM 90%

Executive Summary: Project goals

Background and motivation

Design & Implementation

Sentiment analysis a hot topic for companies

Use cases:

- Better understanding of their products
- Timely customer support to unhappy customers
- Politicians understand the online sentiment of public opinion

CNN is a practical tool for text sentiment analysis

CNN: relatively new for language, traditionally used for image

- Can learn embedding directly from text
- Fast to train (optimized for GPU)
- Better than traditional ML (tf-idf+SVM): learns order context

New architecture: CV applications show deeper is better

Show performance at different levels of depth

Hypothesis: deeper CNN will perform better

Executive Summary: Project goals

Background and motivation

Design & Implementation

Design & Implementation

Hyperparameter decisions

- Filter size: size of the convolutional layer
- Kernel size: number of words to include in each pass
- **Activation:** choice of activation to potentially avoid dying ReLU's
- **Embedding Size:** Size of the embedding layer
- Number of convolutional layers: depth of model

Data exploration and pre-processing

Data processing:

- 1. Convert multinomial dataset to binary classification
- 2. Balanced skew by undersampling majority class

Executive Summary: Project goals

Background and motivation

Design & Implementation

Deeper models tend to perform well

conv_layers	filter_size	kernel_size	embedding_size	activation	f1
5	128	3	500	relu	0.941688
3	64	3	500	leakyrelu	0.939556
1	64	3	500	relu	0.938586
1	128	3	500	relu	0.934110
5	64	3	500	leakyrelu	0.931836
3	128	1	500	relu	0.518116
3	128	3	500	relu	0.123827
3	128	1	1000	relu	0.054609

Deeper models tend to perform well

First iteration:

Second iteration:

Positive review predictions are less confident than negative reviews

Positive reviews that contains more negative words throws off model confidence

Document id: 95 True class: pos

Prediction probabilities

neg 0.18

pos 0.82

CNN not always able to detect sentiment where strong pos and neg words shows up

Conclusion & future research

 Showed that 5 layer deep models did perform better than shallower models but embedding size matters as well

- What is the relationship between depth and size of data?
- What is the optimal order of convolutional, activation and normalization layers? Ioffe & Szegedy recommended Conv-BN-ReLU but other permutations perform well (He 2016)
- What is the relationship between embedding and data size?