به نام خدا

مجموعه تمارين نظريه اعداد جلسه ششم دوره تابستاني المپياد رياضي ١۴٠١

مبحث چندجملهای های نظریهاعدادی و لم هنسل

- $\prod a_i \mid \prod (x+a_i):$ داشته باشیم $x\in \mathbb{Z}$ از اعداد صحیح را بیابید به طوری که برای هر $x\in \mathbb{Z}$ داشته باشیم از $\{a_1,\cdots,a_n\}$ از اعداد صحیح را بیابید به طوری که برای هر
- ۲. فرض کنید $P(x)\in\mathbb{Z}[x]$ یک چندجملهای با ضرایب صحیح باشد. دنباله $(a_i)_{i=0}^\infty$ تحت روابط $(a_i)_{i=0}^\infty$ تحت مفروض است. اگر فرض کنید $a_n=0, \forall n>0: a_n=P(a_{n-1})$ تحت روابط $a_n=0$ تحت باشد. دنباله $a_n=0$ مفروض است. اگر موجود باشد که $a_n=0$ به آنگاه ثابت کنید $a_n=0$ باشد.
 - $P(p) \mid 2^p-2$ فرد داشته باشیم $p \in \mathbb{P}$ با ضرایب صحیح را بیابید به طوری که برای هر $p \in \mathbb{P}$ فرد داشته باشیم $P(x) \in \mathbb{Z}[x]$ با ضرایب صحیح را بیابید به طوری که برای هر
- ۴. فرض کنید \mathbb{F} زیرمجموعهای از مجموعه اعداد طبیعی با حداقل دو عضو باشد. همچنین فرض کنید \mathbb{F} یک چندجملهای با ضرایب صحیح باشد به طوری که برای هر \mathbb{F} علی از مجموعه اعداد طبیعی با حداقل دو عضو باشد. همچنین فرض کنید \mathbb{F} برای هر \mathbb{F} متمایز، \mathbb{F} متمایز، \mathbb{F} و همچنین \mathbb{F} و همچنین اعداد طبیعی با حداقل دو عضو باشد به طوری که برای هر \mathbb{F} برای هر \mathbb{F} برای هر \mathbb{F} برای هر \mathbb{F} برای هر تعداد طبیعی با حداقل دو عضو باشد به طوری که
- $x_1=1, orall n>1$. فرض کنید $P(x)\in\mathbb{Z}[x]$ چندجملهای با ضرایب صحیح باشد و برای هر $\mathbb{N}=n$ داشته باشیم P(x)>n دنباله بر $P(x)\in\mathbb{Z}[x]$ را تحت روابط $P(x)\in\mathbb{Z}[x]$. فرض کنید $P(x)\equiv x+1$ چندجملهای با ضرایب صحیح باشد و برای هر $\mathbb{N}=n$ حداقل یک جمله از این دنباله بر $P(x)\equiv x+1$ خنیم. همچنین می دانیم برای هر $P(x)\equiv x+1$ حداقل یک جمله از این دنباله بر $P(x)\equiv x+1$
 - : داشته باشیم $P(x),Q(x)\in\mathbb{Z}[x]$ داشته باشیم باشیم وابع $f:\mathbb{Z}[x] o\mathbb{Z}$ داشته باشیم جمام توابع
 - f(P(x) + 1) = f(P(x)) + 1 (i)
 - $f(P(x)) \neq 0 \implies f(P(x)) \mid f(P(x)Q(x))$ (...)
- ه فرض کنید p^2 تشکیل دستگاه کامل ماندهها بدهد. ثابت کنید فرض کنید $P(x) \in \mathbb{Z}[x], p \in \mathbb{P}$ داده شده باشد، به نحوی که مجموعه وض کنید p^3 نشکیل دستگاه کامل ماندهها به پیمانه p^3 خواهد داد.
- $P(x)=R(x)^k$ فرض کنید $P(x)\in\mathbb{Q}[x]$ برای هر P(n) برابر با توان R(x)=R(x) عدد گویا باشد. ثابت کنید ابت کنید و برای هر P(x)=R(x) برای هر P(x)=R(x) فرض کنید ابت کنید و برای هر P(x)=R(x) برای هر
 - و همچنین : $e(p) \le n+1$ و اعداد طبیعی a_1, \cdots, a_{n+1} داده شده باشند. آیا چندجملهای $P(x) \in \mathbb{Z}[x]$ موجود است که n>1 موجود است که a_1, \cdots, a_{n+1}
 - $\forall i, j \le n+1 : \gcd(P(a_i), P(a_j)) > 1 \text{ (i)}$
 - $\forall 1 \le i < j < k \le n+1 : \gcd(P(a_i), P(a_j), P(a_k)) = 1 \ (\ensuremath{\wp})$
 - ۱۱. آیا چندجملهای غیرثابت $P(x)\in\mathbb{Z}[x]$ موجود است به طوری که برای هر $\mathbb{N}\in\mathbb{N}$ ،مقدار P(n)arphi(p(n) مربع کامل عددی طبیعی باشد؟
- مادله عادله وری که برای هر $\mathbb{N} = \mathbb{N}$ چندجملهای غیرثابت با ضرایب صحیح باشد. آیا تابع $\mathbb{Z} \to \mathbb{Z}$ موجود است به طوری که برای هر $\mathbb{N} = n$ تعداد ریشههای معادله f(x) = x برابر با f(x) = x
 - داریم : $\lambda\left(\sum a_ix^i\right)=\sum a_ix^{p^i}$ داریم باشد به طوری که $\lambda\left(\sum a_ix^i\right)=\sum a_ix^{p^i}$ داریم د کنید تابع $\lambda:\mathbb{Z}_p[x] o \mathbb{Z}_p[x]$ داریم د اوری که درض کنید تابع

$$\lambda (\gcd(f,g)) = \gcd(\lambda(f),\lambda(g))$$

- ۱۴. فرض کنید $Q \in \mathbb{Z}[x]$ و $Q \in \mathbb{Z}[x]$ داده شده باشند. همچنین فرض کنید $Q(0), Q^2(0), \cdots$ به پیمانه $Q \in \mathbb{Z}[x]$ تمام باقیمانده های ممکن را تولید کند. ثابت کنید برای هر $R \in \mathbb{N}$ این مجموعه به پیمانه n^k تمام باقیمانده های ممکن را تولید می کند.
 - $P(st)\in \mathbb{Z}$. تمام P(s) هایی را بیابید به طوری که برای هر \mathbb{R} $s,t\in \mathbb{R}$ باشند، داشته باشیم، ۱۵.
- عدد a را یک مانده ی طلایی به پیمانه m می نامیم اگر و فقط اگر \mathbb{Z} $x \in \mathbb{Z}$ موجود باشد به طوری که x = a. فرض کنید a به پیمانه a مانده ی طلایی باشد. ثابت کنید a به پیمانه a نیز مانده ی طلایی است.
 - ۱۷. فرض کنید $\mathbb{Z} \in k$ عددی فرد و بزرگتر از ۳ باشد. ثابت کنید چندجملهای P(x) با ضرایب غیرصحیح موجود است به طوری که :
 - f(0) = 0, f(1) = 1 (i)
 - (ب) نامتناهی $n\in\mathbb{N}$ موجود باشد به طوری که n به صورت مجموع کمتر از 2^k-1 عضو از مجموعه $\{f(i)\mid i\in\mathbb{N}\}$ قابل نمایش نباشد.
- ۱۸. تمام زوجهای c,d>1 مجموعه \mathbb{S} با حداکثر $q\in\mathbb{Z}[x]$ عضو موجود باشد به طوری که برای هر $Q\in\mathbb{Z}[x]$ عضو موجود باشد به طوری که $Q\in\mathbb{Z}[x]$ عضو موجود باشد به طوری که $\{s,Q(s),Q(Q(s)),\cdots\}$ عضو موجود باشد به طوری که $\{s,Q(s),Q(Q(s)),\cdots\}$ عضو موجود باشد به طوری که را بیابید به طوری که باشد.

- ا. تمام چندجملهای های $P(x)\in\mathbb{Z}[x]$ را بیابید به طوری که $P(x)\neq 0$ و همچنین برای هر $P(x)\in\mathbb{Z}[x]$ مربع کامل عددی طبیعی شود.
- ۲. فرض کنید چندجملهای $P(x_1,\cdots,x_n)$ داده شده باشد به نحوی که برای هر \mathbb{Z} هربی که برای مربع کامل باشد. ثابت کنید $P(x_1,\cdots,x_n)$ مربع کامل باشد. ثابت کنید چندجملهای $P(x_1,\cdots,x_n)$ موجود است به طوری که $Q \in \mathbb{Z}[x_1,\cdots,x_n]$ موجود است به طوری که فرص کنید جمله ای
- h(x)=f(c,x) و g(x)=f(x,c) هر g(x)=f(x,c) به طوری که g(x)=f(x,c) و ثابت، توابع g(x)=f(x,c) به طوری که g(x)=f(x,c) و g(x)=f(x,c) هر کنید g(x)=f(x,c) و g(x)=f(x,c) هر باشند. آیا می توان نتیجه گرفت g(x)=f(x,c) که چندجمله ای از g(x)=f(x,c) به طوری که و نتیجه گرفت g(x)=f(x,c) هر ثابت و نتیجه گرفت g(x)=f(x,c) و نتیجه گرفت g(x)=f(x,c) هر ثابت و نتیجه گرفت g(x)=f(x,c) و نتیجه گرفت g(x)=f(x,c) هر ثابت و نتیجه گرفت g(x)=f(x,c) و نتیجه گرفت و نتیجه گرفت و نتیجه و نت
 - ب. فرض کنید p(x) داده شدهاند به نحوی که برای هر $n\in\mathbb{N}$ داریم: $n\in\mathbb{N}$ داده شدهاند به نحوی که برای هر p(x) داریم: p(x) توانی صحیح از p(x) است.
- ه. فرض کنید $P(x)\in\mathbb{Z}[x]$ داده شده باشد به طوری که مجموع ارقام P(n) هیچگاه برابر با عضوی از دنباله فیبوناتچی نباشد. آیا لزوماً P چندجملهای ثابت است؟
 - ع تمام چندجملهای های $p(x)\in\mathbb{Z}[x]$ را بیابید به طوری که مجموعه $\{P(a)\mid a\in\mathbb{Z}\}$ شامل یک تصاعد هندسی نامتناهی باشد.
 - $n^3-3n+1\mid n!$ موجود است به طوری که $n\in\mathbb{N}$ منتاهی ۷.
- مربع کامل باشد. $P(a^n)$ فرض کنید چندجملهای $P(x) \in \mathbb{Z}[x]$ و $P(x) \in \mathbb{Z}[x]$ که مربع کامل نیست، داده شده باشد. همچنین فرض کنید برای هر $P(a^n)$ مقدار $P(a^n)$ مربع کامل باشد. $P(x) \equiv Q(x)^2$ موجود است به طوری که $P(x) \equiv Q(x)^2$.