Egzennin 2 zed 1

Zadamie 1

$$A=3B$$
 $Z-zdenente$ rhivés saldenbi

 $P(Z|A)=C.CA$
 $P(Z|B)=0.C4$

$$P(\lambda) = \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

a)
$$2 \sim 6(0,0.175)$$

 $P(k=1) = p(1-p)^{k-1} = 0,0.175 \cdot 0,8825^{0} = 0,0.175$

b)
$$A = \frac{1}{4} \cdot 4 \cdot 4 \cdot 4 = 0.0075$$

$$P(214) P(A) = \frac{3}{4} \cdot 4 \cdot 4 \cdot 4 = 0.0075$$

$$P(21B) P(B) = \frac{1}{4} \cdot 4 \cdot 4 \cdot 4 = 0.01$$

Zodenie Z					
_		C	1	2	0
v -	0	C.2		0.08	P(x=8)-C. 32
X	1	0.2	0.21	0.27	A(X=1) = C 68
		9(4=0)	0.25	P(4=2)	1 = F(X=n)

edanle 3 Egrennin II $F_{x}(x) = \begin{cases} 0 & \text{dle. } x < \Lambda \\ x - \Lambda & \text{dle. } x \in \{1, 1, 5\} \end{cases}$ $1 & \text{dle. } x \neq 1.5 \end{cases}$ Ugenace P(XE<1;1.5)) 15-1-1+1 = 0.5 Previdepedebienster rynosi & 50% Zedanie 4. Zty synik $f(x) = \begin{cases} \frac{3}{4}(-x^2+1) & \text{dle } x \in \langle -1, 1 \rangle \\ 0 & \text{dle } x \notin \langle -1, 1 \rangle \end{cases}$ Uyznacryć P(X € <-2,0)) P(XEL-2,0)) = F(0) - F(-2) = 0 - 0 = 0 Oblivein dipetry buents $F(X) = \int_{-1}^{1} (x) dx = \int_{-1}^{1} 0 dx + \int_{-1}^{2} (-x^{2} + 1) dx + \int_{-1}^{1} 0 dx = [0]^{\frac{1}{2}} + \frac{3}{4} [x]^{\frac{1}{2}}$ $F(x) = \begin{cases} -\frac{3}{12}x^3 - \frac{3}{4}x \text{ which } \\ 0 \end{cases}$ $\frac{1}{3}x^3 - \frac{3}{4}x \text{ which } \\ \frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 - \frac{3}{4}x \text{ which } \\ 0 \end{cases}$ $\frac{1}{3}x^3 - \frac{3}{4}x \text{ which } \\ 0 \end{cases}$ $\frac{1}{3}x^3 - \frac{3}{4}x \text{ which } \\ 0 \end{cases}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\frac{1}{3}x^3 + x \end{bmatrix}$ $\frac{1}{3}x^3$

Colp. Prandapadobilisku ren plegen probible

Dedanie 6.

P(x=3)= $\frac{2^3 \cdot e^{-2}}{5!} = \frac{8 \cdot e^{-2}}{63} = 0.18$ Premodo ped object two pryfsile wydoryny wynosi 18%.

Xemp > Xa; k-1/1-1) to hipotory ho drucamy

Zadante 8 egremin XNN Svední czer snu povýstou, ory možne wrneré, je svední czes rynasí 8h -16 = ilest povýstou $\sum x_i = 7/72$ $\sum (x_i - x)^2 = 73500$ X= 7/172 = 448,25 = 7,47h X=7,474 - 4,48,25 2 - 2(x; - 4,424) M= 480m=8h $\times \sim N(\mu, \sigma^2)$ 11 - prieristing ones sul X = 448,25 $S^2 = \frac{1}{N-1} \sum (x_i - \bar{x})^2 = \frac{1}{15} \cdot 75500 = 4900$ $t(\alpha; r) = t(0,05;15) = 3,2860$

Pu=\$\frac{5}{16.05,15}=\frac{70}{15} * 3,2860 = 18,0739 * 3,286 = 59,39

m=(44,8,55=59,39; 448,25+59,39)=(388,86,504,64) 6A