In [8]:	<pre># Importing packagies import tensorflow as tf import cv2 import imghdr import os</pre>
In [9]:	<pre>import matplotlib.pyplot as plt data_dir = 'C:/Users/Home/OneDrive/Desktop/Tech/CXR_Project'# name of image folder on my computer img_ex = ['jpeg', 'jpg', 'bmp', 'png'] # type of image extensions to consider for img_class in os.listdir(data_dir): for img in os.listdir(os.path.join(data_dir, img_class)): img_path = os.path.join(data_dir, img_class, img) try: img = cv2.imread(img_path) tip = imghdr.what(img_path) if tip not in img_ex: print(f'Not here {img_path}') os.remove(img_path) except Exception as e: print(f'img_issues {img_path}')</pre>
In [10]:	# Labeling, suffling and storing data into memory using tf.keras.utils import numpy as np import matplotlib.pyplot as plt data = tf.keras.utils.image_dataset_from_directory('C:/Users/Home/OneDrive/Desktop/Tech/CXR_Project')# Total of 5480 images with 2 classes data_itera = data_as_numpy_iterator() batch = data_itera.next() # each batch contains 32 images np.shape(batch[0]) # matrix of each images #batch[1][:4]# label of each images
Out[10]: In [11]:	<pre># Plotting the first four images with it's label fig, ax = plt.subplots(ncols = 4) for idx, img in enumerate(batch[0][:4]): ax[idx].imshow(img.astype(int)) # 0 = normal, 1 = pneumonia</pre>
	ax[idx].title.set_text(batch[1][idx]) 0
	<pre># Preprocessing data = data.map(lambda x, y: (x/255, y)) scaled_itera = data.as_numpy_iterator() scaled_batch = scaled_itera.next() scaled_batch[1]</pre>
	<pre>array([1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,</pre>
In [15]:	# Deep learning #import and initiate modules needed for classification from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout model = Sequential()
In [16]:	<pre>model = Sequential() ##Additing layers of network model.add(Conv2D(16, (3,3), 1, activation = 'relu', input_shape = (256,256,3))) model.add(MaxPooling2D()) model.add(Conv2D(32, (3,3), 1, activation = 'relu')) model.add(MaxPooling2D()) model.add(Conv2D(16, (3,3), 1, activation = 'relu')) model.add(MaxPooling2D())</pre>
In [17]:	<pre>model.add(Platten()) model.add(Dense(256, activation = 'relu')) model.add(Dense(1, activation = 'sigmoid')) # Compile my model</pre>
In [18]:	<pre>model.compile('adam', loss=tf.losses.BinaryCrossentropy(), metrics=['accuracy']) #Summary of model generated model.summary() Model: "sequential"</pre>
	Layer (type)
	conv2d_1 (Conv2D) (None, 125, 125, 32) 4640 max_pooling2d_1 (MaxPoolin (None, 62, 62, 32) 0 g2D) conv2d_2 (Conv2D) (None, 60, 60, 16) 4624
	max_pooling2d_2 (MaxPoolin (None, 30, 30, 16) 0 g2D) flatten (Flatten) (None, 14400) 0
	dense (Dense) (None, 256) 3686656 dense_1 (Dense) (None, 1) 257 ===================================
In [19]:	Non-trainable params: 0 (0.00 Byte) logdir ='logs' tensorboard = tf.keras.callbacks.TensorBoard(log_dir = logdir)
In [20]:	# 30 iterations hist = model.fit(train, epochs=12, validation_data=val, callbacks = [tensorboard]) Epoch 1/12 15/15 [====================================
	Epoch 3/12 15/15 [====================================
	Epoch 6/12 15/15 [====================================
	Epoch 9/12 15/15 [====================================
In [21]:	15/15 [====================================
Out[21]:	<pre><matplotlib.legend.legend 0x1f63d74f4d0="" at=""> 0.9 -</matplotlib.legend.legend></pre>
	0.7 - 0.6 -
	0.4 - 0.3 -
	0.2 - 0.1 -
In [22]:	<pre># plotting training_accuracy, val_accuracy plt.plot(hist.history['accuracy'], color = 'black', label = 'training_accuray') plt.plot(hist.history['val_accuracy'], color = 'blue', label = 'val_accuracy') plt.legend()</pre>
Out[22]:	<pre><matplotlib.legend.legend 0x1f63d7f3bd0="" at=""></matplotlib.legend.legend></pre> 0.95 - training_accuray - val_accuracy
	0.90
	0.75 - 0.70 -
	0.60
In [23]:	#Parameters to evaluate test data from tensorflow.keras.metrics import Precision, Recall, BinaryAccuracy pre = Precision() re = Recall()
In [24]:	<pre>acc = BinaryAccuracy() ims = 'C:/Users/Home/OneDrive/Desktop/Tech/CXR_Project/pneumonia/person22_virus_55.jpeg' imgr = cv2.imread(ims) size = tf.image.resize(imgr, (256,256)) plt.imshow(size.numpy().astype(int))# printing new image</pre>
	<pre>new_predu = model.predict(np.expand_dims(size/255, 0)) if new_predu < 0.5: print('Normal') else: print('Pneumonia')</pre>
	print(new_predu) 1/1 [===========] - 0s 128ms/step Pneumonia [[0.7404121]]
	50 -
	150 -
	200 -
In [25]:	
	<pre>imgr = cv2.imread(ims) size = tf.image.resize(imgr, (256,256)) plt.imshow(size.numpy().astype(int))# printing new image new_predu = model.predict(np.expand_dims(size/255, 0)) if new_predu < 0.5: print('Normal') else: print('Pneumonia') print(new_predu)</pre>
	1/1 [===========] - 0s 29ms/step Normal [[0.00075939]]
	50 - 100 - 150 - 200 - 250 -
In [26]:	0 50 100 150 200 250 #from tensorflow.keras.models import load_model #model.save(os.path.join('./savedmode', 'CXR_project.h5'))
In []:	