Algoritmus, algoritmická složitost

Algoritmus, algoritmická složitost, rekurze, náhodnost

Algoritmus

- Je schématický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků.
- Ne pouze v programování (například i recepty)
- Vlastnosti:
 - o Konečnost algoritmus má konečné množství kroků
 - Určitost všechny kroky jsou přesně definovány
 - Korektnost algoritmus skončí pro libovolná (korektní data správným výsledkem v konečném množství kroků)
 - Obecnost algoritmus řeší všechny úlohy daného typu

Prostorová složitost

- Pro konkrétní problém můžeme mít dva algoritmy takové, že jeden má menší prostorovou složitost a druhý zase časovou složitost
- Je-li časová složitost algoritmu O(f(n)) je i prostorová O(fn(n)) (počet použitých paměťových buněk nemůžeme být větší než počet provedených operací, protože v každém kroku se použije jen nějaký omezený počet buněk (omezený nějakou konstantou nezávislou na velikosti vstupu))
- Prostorová složitost může být mnohdy o dost menší než časová složitost například paměťová složitost algoritmu "Insertion-sort" jen O(n), zatímco časová O(n**2)

Algoritmická složitost

- Algoritmická složitost se zabývá tím, jestli je algoritmus schopen skončit v "rozumném čase"
- Rozumným časem se rozumí čas takový, který umožňuje výsledek smysluplně využít
- Pomocí algoritmické složitosti se určuje, kde je vhodné, jaký algoritmus použít s porovnání s jinými
- Porovnání podle:
 - Doby výpočtu podle daného algoritmu potřebná pro zpracování daného objemu dat (časová složitost)
 - Velikost paměti využívané při výpočtu (paměťová složitost)
- Pro složitost se používá symbol O()
- Příklad výpočetní náročnosti, kdy jedna operace trvá jednu nanosekundu:

Asymptotická složitost	Velikost vstupních dat								
	10	20	50	100	1 000	1 000 000	1 000 000 000	10 ²⁰	
$\log \log n$	2 ns	3 ns	3 ns	3 ns	4 ns	5 ns	5 ns	7 ns	
$\log n$	4 ns	5 ns	6 ns	7 ns	10 ns	20 ns	30 ns	67 ns	
\sqrt{n}	4 ns	8 ns	8 ns	10 ns	32 ns	1 µs	32 µs	10 s	
n	10 ns	20 ns	50 ns	100 ns	1 µs	1 ms	1 s	3 171 let	
$n \log n$	34 ns	87 ns	283 ns	665 ns	10 µs	20 ms	30 s	210 675 le	
n^2	100 ns	400 ns	3 µs	10 µs	1 ms	16 min 40 s	32 let		
n^3	1 µs	8 µs	125 µs	1 ms	1 s	32 let			
n^4	10 µs	160 µs	6 ms	100 ms	16 min 40 s	31 688 088 let			
2^n	1 µs	1 ms	13 dní	40×10 ¹² let					
3^n	59 µs	4 s	22 760 000 let						
n!	4 ms	77 let							
n^n	10 s	3,32×10 ⁹ let							
2^{2^n}	5,7×10 ²⁹¹ let								

Výpočet:

_

- Koukneme se na každý řádek, kolikrát se provede, než se problém vyřeší
- Příklad:

- Složitost:
 - 1. řádek se provede 1 (inicializace proměnných)
 - 2. řádek se provede n-krát vždy musíme projít celé pole, prvek po prvku, proto si nemůžeme dovolit se na nějaký prvek nepodívat
 - 3. řádek se provede n-krát prvek se vždy porovnává s MAX
 - 4. řádek se provede minimálně Okrát, maximálně n-krát -> provádí se jen pokud je MAX menší než prvek
 - 5. řádek se provede n-krát index se vždy zvětší
 - 6.řádek se provede 1krát konec bloku
 - 7. řádek se provádí 1krát na konci funkce se vrátí jednou hodnotu MAX
 - Nyní vypočítáme nejlepší případ a nejhorší případ.
 - Nejlepší:
 - \circ 1+n+n+0+n+1+1 = 3n + 3 = 0(n)
 - Nejhorší:
 - \circ 1+n+n+n+1+1 = 4n + 3 = 0(n)

Dělení algoritmů

- Iterativní algoritmus -> opakování určité své části (bloku)
- Rekurzivní algoritmus -> opakuje kód prostřednictvím volání sama sebe (lze převést do iterativní podoby)
- Převod řeší automatický kompilátor nebo virtuální stroj daného programovacího jazyka
- Výhoda rekurzivních algoritmů:
 - Snadná čitelnost
 - Kompaktní zápis
- Nevýhoda:
 - Spotřrba dodatečných systémových prostředků pro udržení jednotlivých rekurzivních volání
- Iterativní bubble sort, insertion sort
- Rekurzivní merge sort, quicksort

Deterministické a nedeterministické algoritmy

- Deterministický -> v každém kroku jedna možnost
- Nedeterministický -> více
- Př. Deterministický a nedeterministický automat

Sériové, paralelní a distribuované algoritmy

- Sériový algoritmus vykonává všechny kroky v sérii (jeden po druhém)
- Paralelní algoritmus tyto kroky vykonává zároveň (ve více vláken)
- Distribuovaný algoritmus kroky vykonává zároveň na více strojích

Rekurze

- Stav, kdy je určitý objekt v nějakém smyslu součástí sebe samotného
- Určitá procedura nebo funkce znovu volána dříve, než je dokončeno její předchozí volání
- Při optimalizaci programu se většinou snažíme rekurzi vyhnout
- Volání může probíhat přímo nebo nepřímo:
 - Přímá rekurze:
 - Nastává, když podprogram volá přímo sám sebe
 - Nepřímá rekurze:
 - Je situace kdy vzájemné volání podprogramů vytvoří "kruh" (např. ve funkci A se volá funkce B a ve funkci B se volá opět funkce A.)
- Podprogram může být volán jednou nebo vícekrát:
 - Lineární rekurze:
 - Volá sama sebe pouze jednou. Vytváří se takto lineární struktura postupně volaných podprogramů
 - Stromová rekurze:
 - Podprogram se v rámci jednoho vykonaní svého úkolu vyvolá vícekrát.
- Může mít velkou spotřebu paměti
- Nejčastěji se používá např. ke kontrole, zda výstupní parametry odpovídají stanoveným podmínkám

Náhodnost

- Náhodné algoritmy se snaží nalézt řešení problému náhodným rozhodováním o svém postupu
- Při vytváření musíme dokončit všechny směry, kterými se může program vydat
- Program se rozhoduje několika způsoby:
 - V každém uzlu rozhodne postup náhodně
 - Na začátku vybere jeden z deterministických algoritmů
- Generování pseudonáhodných čísel Kongruentní generátor zdánlivě náhodná čísla
- Pravý generátor náhodných čísel využívá náhodnost získanou z fyzikálních jevů