BACK PROPAGATION

MUKESH KUMAR

WHAT IS LOSS FUNCTION?

Definition

 Backpropagation, short for "backward propagation of errors," is a fundamental algorithm used in training artificial neural networks.

• It is a supervised learning technique that adjusts the weights of the network to minimize the error between the predicted output and the actual target output.

BackProp Algorithm

Forward Pass:

The input data is passed through the network layer by layer to compute the output. Each neuron performs a weighted sum of its inputs, applies an activation function, and passes the result to the next layer.

2. Loss Calculation:

 The loss function, such as Mean Squared Error (MSE) for regression or Cross-Entropy Loss for classification, computes the difference between the predicted output and the actual target values.

3. Backward Pass (Backpropagation):

 The error is propagated backward through the network to update the weights.

Detailed Backward Pass Process

1. Calculate the Gradient of the Loss with Respect to the Output:

 Compute how the loss changes with respect to the output of each neuron in the output layer.

2. Propagate the Gradient Backwards through the Network:

- Using the chain rule, compute the gradient of the loss with respect to the weights in each layer. This involves:
 - Calculating the gradient of the loss with respect to the output of the previous layer.
 - Multiplying this gradient by the derivative of the activation function to get the gradient with respect to the weighted input to the neurons.
 - Calculating the gradient with respect to the weights and biases.

Detailed Backward Pass Process

3. Update the Weights and Biases:

 Adjust the weights and biases using a learning rate to minimize the loss. This can be done using optimization algorithms like Stochastic Gradient Descent (SGD), Adam, RMSprop, etc.

Weight	Shoulder	Height(Y)
68	14	5.7
89	18	6.0

STEP1:FORWARD PASS

Layer1

Forward Pass:

- 1. Input Layer: The inputs are X1 (Weight) and X2 (Shoulder).
- 2. First Hidden Layer: The first hidden layer has two neurons.
 - Neuron 1:

$$Z1 = W1 \cdot X1 + W2 \cdot X2 + b1$$

Neuron 2:

$$Z2 = W3 \cdot X1 + W4 \cdot X2 + b2$$

Layer1

- 3. Activation Function: Apply an activation function (e.g., ReLU, sigmoid) to Z1 and Z2 to get A1 and A2.
 - Neuron 1:

$$A1 = f(Z1)$$

• Neuron 2:

$$A2 = f(Z2)$$

Weight	Shoulder	Height(Y)
68	14	5.7
89	18	6.0
X1	W1	b1
No	A .	
X2	W3	b
		Outp

Weight	Shoulder	Height(Y)
68	14	5.7
89	18	6.0

 $Y_{pred} = W5 \cdot A1 + W6 \cdot A2 + b3$

Output:

$$Y_{pred} = W5 \cdot A1 + W6 \cdot A2 + b3$$

BACKWARD PASS (BACKPROPAGATION):

Weight	Shoulder	Height(Y)
68	14	5.7
89	18	6.0

Loss:

$$L=rac{1}{2}(Y-Y_{pred})^2$$

- Derivative
- Partial Differentiation

Explain with example record

Weight	Shoulder	Height(Y)
68	14	5.7
89	18	6.0

Lets find gradients at output layer

Lets find gradients at output layer

- 2. **Output Layer**: Calculate the gradient of the loss with respect to the weights W5 and W6, and bias b3. $Y_{pred} = W5 \cdot A1 + W6 \cdot A2 + b3$
 - Gradient w.r.t W5:

$$rac{\partial L}{\partial W5} = rac{\partial L}{\partial Y_{pred}} \cdot rac{\partial Y_{pred}}{\partial W5} = (Y_{pred} - Y) \cdot A1$$

• Gradient w.r.t W6:

$$\frac{\partial L}{\partial W6} = (Y_{pred} - Y) \cdot A2$$

• Gradient w.r.t b3:

$$\frac{\partial L}{\partial b3} = (Y_{pred} - Y)$$

Lets find the gradients at first hidden layer

Lets find the gradients at first hidden layer

3. First Hidden Layer: Calculate the gradient of the loss with respect to the weights W1, W2, W3, W4 and biases b1, b2.

$$Y_{pred} = W5 \cdot A1 + W6 \cdot A2 + b3$$

$$Z1 = W1 \cdot X1 + W2 \cdot X2 + b1$$

- For Neuron 1:
 - Gradient w.r.t Z1:

$$\frac{\partial L}{\partial Z1} = \frac{\partial L}{\partial Y_{pred}} \cdot \frac{\partial Y_{pred}}{\partial A1} \cdot \frac{\partial A1}{\partial Z1} = (Y_{pred} - Y) \cdot W5 \cdot f'(Z1)$$

• Gradient w.r.t W1:

$$\frac{\partial L}{\partial W1} = \frac{\partial L}{\partial Z1} \cdot \frac{\partial Z1}{\partial W1} = (Y_{pred} - Y) \cdot W5 \cdot f'(Z1) \cdot X1$$

• Gradient w.r.t W2:

$$rac{\partial L}{\partial W2} = (Y_{pred} - Y) \cdot W5 \cdot f'(Z1) \cdot X2$$

Gradient w.r.t b1:

$$\frac{\partial L}{\partial b1} = (Y_{pred} - Y) \cdot W5 \cdot f'(Z1)$$

• For Neuron 2:

$$Y_{pred} = W5 \cdot A1 + W6 \cdot A2 + b3$$

 $Z2 = W3 \cdot X1 + W4 \cdot X2 + b2$

• Gradient w.r.t Z2:

$$\frac{\partial L}{\partial Z2} = (Y_{pred} - Y) \cdot W6 \cdot f'(Z2)$$

• Gradient w.r.t W3:

$$\frac{\partial L}{\partial W3} = \frac{\partial L}{\partial Z2} \cdot \frac{\partial Z2}{\partial W3} = (Y_{pred} - Y) \cdot W6 \cdot f'(Z2) \cdot X1$$

• Gradient w.r.t W4:

$$\frac{\partial L}{\partial W4} = (Y_{pred} - Y) \cdot W6 \cdot f'(Z2) \cdot X2$$

Gradient w.r.t b2:

$$\frac{\partial L}{\partial b2} = (Y_{pred} - Y) \cdot W6 \cdot f'(Z2)$$

- For Neuron 2:
 - Gradient w.r.t Z2:

$$\frac{\partial L}{\partial Z^2} = (Y_{pred} - Y) \cdot W6 \cdot f'(Z^2)$$

• Gradient w.r.t W3:

$$\frac{\partial L}{\partial W3} = \frac{\partial L}{\partial Z2} \cdot \frac{\partial Z2}{\partial W3} = (Y_{pred} - Y) \cdot W6 \cdot f'(Z2) \cdot X1$$

• Gradient w.r.t W4:

$$\frac{\partial L}{\partial W^4} = (Y_{pred} - Y) \cdot W6 \cdot f'(Z^2) \cdot X^2$$

• Gradient w.r.t b2:

$$\frac{\partial L}{\partial b2} = (Y_{pred} - Y) \cdot W6 \cdot f'(Z2)$$

4. **Update Weights and Biases**: Use the gradients to update the weights and biases using a learning rate η .

$$W5 = W5 - \eta \cdot \frac{\partial L}{\partial W5}$$

$$W6 = W6 - \eta \cdot \frac{\partial L}{\partial W6}$$

$$b3 = b3 - \eta \cdot \frac{\partial L}{\partial b3}$$

$$W1 = W1 - \eta \cdot \frac{\partial L}{\partial W1}$$

$$W2 = W2 - \eta \cdot \frac{\partial L}{\partial W2}$$

$$W3 = W3 - \eta \cdot \frac{\partial L}{\partial W3}$$

$$W4 = W4 - \eta \cdot rac{\partial L}{\partial W4}$$

$$b1 = b1 - \eta \cdot \frac{\partial L}{\partial b1}$$

$$b2 = b2 - \eta \cdot \frac{\partial L}{\partial b2}$$

Back Propagation Intuition

Let's build a NN that identifies 2 digits

Let's build a NN that identifies 2 digits

There are three classes in output hence we have 3 neurons in output layer one for each class

Start Training

• Let's feed first record to the network

Feeding digit '2' in the network

(Forward Propagation)

label = 2

Model doesn't understand anything so it spits out random numbers

Feeding 2 in the network Forward Propagation

label = 2

Right now, as per the output Model says it's a 1 not 2

Reduce orange and white and increase black

During back prop network adjusts weights to correct the output

After Back propagation

Model adjust the weights such that only the neuron corresponding to output 2 has highest output

After Back propagation

This is repeated for all the records in the training data , then model recognizes all the letters correctly