Beweisarchiv

Juli 2018

Dieses Heft steht unter der Creative-Commons-Lizenz CCO.

Inhaltsverzeichnis

1	Gru	ındlagen 5
	1.1	Aussagenlogik
	1.2	Prädikatenlogik
	1.3	Mengenlehre
		1.3.1 Definitionen
		1.3.2 Rechenregeln
	1.4	Abbildungen
		1.4.1 Definitionen
		1.4.2 Grundlagen
		1.4.3 Kardinalzahlen
2		alysis 17
	2.1	Folgen
		2.1.1 Konvergenz
	2.2	Stetige Funktionen
		Differentialrechnung
		· ·
3	Top	ologie 25
	3.1	Grundbegriffe
		3.1.1 Definitionen
	3.2	Metrische Räume
		3.2.1 Metrischer Räume
		3.2.2 Normierte Räume

1 Grundlagen

1.1 Aussagenlogik

Satz 1.1. (bool-dl: Distributivgesetze). Es gilt:

$$A \wedge (B \vee C) \iff A \wedge B \vee A \wedge C, \tag{1.1}$$

$$A \vee (B \wedge C) \iff (A \vee B) \wedge (A \vee C). \tag{1.2}$$

1.2 Prädikatenlogik

Definition 1.1. (bounded: beschränkte Quantifizierung).

$$\forall x \in M (P(x)) :\iff \forall x (x \in M \implies P(x)), \tag{1.3}$$

$$\exists x \in M (P(x)) : \iff \exists x (x \in M \land P(x)). \tag{1.4}$$

Satz 1.2. (general-dl: allgemeine Distributivgesetze). Es gilt:

$$A \wedge \exists x (P(x)) \iff \exists x (A \wedge P(x)),$$
 (1.5)

$$A \lor \forall x (P(x)) \iff \forall x (A \lor P(x)).$$
 (1.6)

Satz 1.3. (exists-dl: Distributivgesetz). Es gilt:

$$\exists x (P(x) \lor Q(x)) \iff \exists x (P(x)) \lor \exists x (Q(x)).$$

Satz 1.4. (exists-asym-dl: asymmetrisches Distributivgesetz). Es gilt:

$$\exists x (P(x) \land Q(x)) \implies \exists x (P(x)) \land \exists x (Q(x)).$$

Satz 1.5. Es gilt:

$$\forall x (P(x) \Longrightarrow A) \Longleftrightarrow \exists x (P(x)) \Longrightarrow A.$$

Satz 1.6. (exists-cl: Kommutativgesetz). Es gilt:

$$\exists x\exists y(P(x,y)) \iff \exists y\exists x(P(x,y)).$$

Satz 1.7. (all-cl: Kommutativgesetz). Es gilt:

$$\forall x \forall y (P(x, y)) \iff \forall y \forall x (P(x, y)).$$

Satz 1.8. (bounded-general-dl: allgemeine Distributivgesetze). Es gilt:

$$A \wedge \exists x \in M(P(x)) \iff \exists x \in M(A \wedge P(x)),$$
 (1.7)

$$A \vee \forall x \in M(P(x)) \iff \forall x \in M(A \vee P(x)). \tag{1.8}$$

Beweis. Nach Def. 1.1 (bounded) und Satz 1.2 (general-dl) gilt:

$$A \land \exists x \in M(P(x)) \iff A \land \exists x (x \in M \land P(x)) \iff \exists x (A \land x \in M \land P(x))$$

$$\iff \exists x (x \in M \land A \land P(x)) \iff \exists x \in M(A \land P(x)).$$

Nach Def. 1.1 (bounded) und Satz 1.2 (general-dl) gilt:

$$A \lor \forall x \in M(P(x)) \iff A \lor \forall x (x \in M \implies P(x)) \iff A \lor \forall x (x \notin M \lor P(x))$$

$$\iff \forall x (A \lor x \notin M \lor P(x)) \iff \forall x (x \in M \implies A \lor P(x))$$

$$\iff \forall x \in M(A \lor P(x)). \ \Box$$

Satz 1.9. Es gilt:

$$\exists x \in A \ \exists y \in B \ (P(x,y)) \iff \exists y \in B \ \exists x \in A \ (P(x,y)).$$

Beweis. Nach Def. 1.1 (bounded), Satz 1.2 (general-dl) und Satz 1.6 (exists-cl) gilt:

$$\exists x \in A \ \exists y \in B \ (P(x,y)) \iff \exists x (x \in A \land \exists y [y \in B \land P(x,y)])$$

$$\iff \exists x \exists y [x \in A \land y \in B \land P(x,y)] \iff \exists y \exists x [y \in B \land x \in A \land P(x,y)]$$

$$\iff \exists y (y \in B \land \exists x [x \in A \land P(x,y)]) \iff \exists y \in B \ \exists x \in A \ (P(x,y)). \ \Box$$

Satz 1.10. Es gilt:

$$\forall x \in A \ \forall y \in B \ (P(x,y)) \iff \forall y \in B \ \forall x \in A \ (P(x,y)).$$

Beweis. Nach Def. 1.1 (bounded), Satz 1.2 (general-dl) und Satz 1.7 (all-cl) gilt:

```
\forall x \in A \ \forall y \in B \ (P(x,y)) \iff \forall x(x \in A \Rightarrow \forall y[y \in B \Rightarrow P(x,y)])
\iff \forall x(x \notin A \lor \forall y[y \notin B \lor P(x,y)]) \iff \forall x \forall y[x \notin A \lor y \notin B \lor P(x,y)]
\iff \forall y \forall x[y \notin B \lor x \notin A \lor P(x,y)] \iff \forall y(y \notin B \lor \forall x[x \notin A \lor P(x,y)])
\iff \forall y(y \in B \Rightarrow \forall x[x \in A \Rightarrow P(x,y)]) \iff \forall y \in B \ \forall x \in A \ (P(x,y). \ \Box
```

Satz 1.11. Für eine Aussage P, die nicht von x abhängt, und ein nichtleeres Diskursuniversum gilt:

$$\exists x(P) \iff P.$$

Beweis. Nach 1.2 (general-dl) gilt:

$$\exists x(P) \iff \exists x(1 \land P) \iff \exists x(1) \land P \iff 1 \land P \iff P.$$

Im vorletzten Schritt wurde dabei ausgenutzt, dass für ein nichtleeres Diskursuniversum immer $\exists x(1) \iff 1$ gelten muss. \Box

$$\exists x \in M(P) \iff (M \neq \emptyset) \land P.$$

Beweis. Nach Def. 1.1 (bounded) und Satz 1.2 (general-dl) gilt:

$$\exists x \in M (P) \iff \exists x (x \in M \land P) \iff \exists x (x \in M) \land P \iff (M \neq \emptyset) \land P. \square$$

1.3 Mengenlehre

1.3.1 Definitionen

Definition 1.2. (seteq: Gleichheit von Mengen).

$$A = B : \iff \forall x (x \in A \iff x \in B).$$

Definition 1.3. (subseteq: Teilmenge).

$$A \subseteq B : \iff \forall x (x \in A \implies x \in B).$$

Definition 1.4. (filter: beschreibende Angabe).

$$a \in \{x \mid P(x)\} : \iff P(a).$$

Definition 1.5. (cap: Schnitt).

$$A\cap B:=\{x\mid x\in A\wedge x\in B\}.$$

Definition 1.6. (cup: Vereinigung).

$$A \cup B := \{x \mid x \in A \lor x \in B\}.$$

Definition 1.7. (intersection: Schnitt).

$$\bigcap_{i \in I} A_i := \{x \mid \forall i \in I (x \in A_i)\} = \{x \mid \forall i (i \in I \implies x \in A_i)\}.$$

Definition 1.8. (union: Vereinigung).

$$\bigcup_{i\in I}A_i:=\{x\mid \exists i\in I\,(x\in A_i)\}=\{x\mid \exists i\,(i\in I\land x\in A_i)\}.$$

Definition 1.9. (cart: kartesisches Produkt).

$$A \times B := \{(a, b) \mid a \in A \land b \in B\} = \{t \mid \exists a \exists b (t = (a, b) \land a \in A \land b \in B)\}.$$

1.3.2 Rechenregeln

Satz 1.13. (Kommutativgesetze). Es gilt $A \cap B = B \cap A$ und $A \cup B = B \cup A$.

Beweis. Nach Def. 1.2 (seteq) expandieren:

$$\forall x (x \in A \cap B \iff x \in B \cap A).$$

Nach Def. 1.5 (cap) und Def. 1.4 (filter) gilt:

$$x \in A \cap B \iff x \in A \land x \in B \iff x \in B \land x \in A \iff x \in B \cap A.$$

Satz 1.14. (Assoziativgesetze). Es gilt $A \cap (B \cap C) = (A \cap B) \cap C$ und $A \cup (B \cup C) = (A \cup B) \cup C$.

Beweis. Nach Def. 1.2 (seteq) expandieren:

$$\forall x[x \in A \cap (B \cap C) \iff x \in (A \cap B) \cap C].$$

Nach Def. 1.5 (cap) und Def. 1.4 (filter) gilt:

$$x \in A \cap (B \cap C) \iff x \in A \land x \in B \cap C \iff x \in A \land (x \in B \land x \in C)$$

 $\iff (x \in A \land x \in B) \land x \in C \iff x \in A \cap B \land x \in C \iff x \in (A \cap B) \cap C.$

Satz 1.15. Es gilt
$$a = b \iff \forall x (x = a \iff x = b)$$
.

Beweis. Die Implikation $a = b \implies \forall x (x = a \iff x = b)$. Wenn wir a = b voraussetzen, kann b gegen a ersetzt werden und es ergibt sich

$$\forall x(x=a\iff x=a)\iff \forall x(1)\iff 1.$$

Die andere Implikation bringen wir zunächst in ihre Kontraposition:

$$a \neq b \implies \exists x((x = a) \oplus (x = b)).$$

Auf einer leeren Grundmenge wird der Allquantifizierung über a,b immer genügt. Besitzt die Grundmenge nur ein Element, dann muss a=b sein, womit $a\neq b$ falsch ist und die Implikation somit erfüllt. Wir setzen nun $a\neq b$ voraus. Wählt man nun x=a, dann ist $x\neq b$, womit die Kontravalenz erfüllt wird. \square

Satz 1.16. Es gilt
$$a = b \iff \{a\} = \{b\}$$
.

Beweis. Es gilt:

$$\{a\} = \{b\} \iff \{x \mid x = a\} = \{x \mid x = b\} \iff \forall x(x = a \iff x = b).$$

Nach Satz 1.15 ist das aber äquivalent zu a = b. \Box

Satz 1.17. Es gilt:

$$\forall x \forall y (x = y \land P(x) \iff P(y))$$

Satz 1.18. Es gilt:

$$\forall t \in A \times B (P(t)) \iff \forall a \in A \ \forall b \in B (P(a, b)).$$

Beweis. Nach Def. 1.9 (cart) gilt:

$$\forall t \in A \times B \ (P(t)) \iff \forall t (t \in A \times B \implies P(t))$$

$$\iff \forall t(\exists a \exists b[t = (a, b) \land a \in A \land b \in B] \implies P(t))$$

Unter doppelter Anwendung von Satz 1.5 gilt weiter:

$$\iff \forall t \forall a \forall b [t = (a, b) \land a \in A \land b \in B \implies P(t)]$$

Substituiert man t := (a, b), dann ergibt sich:

$$\implies \forall a \forall b [a \in A \land B \in B \implies P(a, b)] \iff \forall a \in a \forall b \in B (P(a, b)),$$

wobei P(a, b) eine Kurzschreibweise für P((a, b)) ist. Von der Gegenrichtung bilden wir die Kontraposition:

$$\exists t \exists a \exists b [t = (a, b) \land a \in A \land b \in B \land \overline{P(t)}] \implies \exists a \exists b (a \in a \land b \in B \land \overline{P(a, b)}).$$

Dem $\exists t$ wird aber immer durch t := (a, b) genügt, so dass sich die äquivalente Formel

$$\exists a \exists b [a \in A \land b \in B \land \overline{P(a,b)}] \implies \exists a \exists b (a \in A \land b \in B \land \overline{P(a,b)}).$$
 ergibt. \Box

Satz 1.19. Es gilt:

$$\exists t \in A \times B (P(t)) \iff \exists a \in A \exists b \in B (P(a, b)).$$

Beweis. Nach Def. 1.9 (cart) gilt:

$$\exists t \in A \times B \ (P(t)) \iff \exists t (t \in A \times B \land P(t))$$

$$\iff \exists t (\exists a \exists b [t = (a, b) \land a \in A \land b \in B] \land P(t))$$

$$\iff \exists t \exists a \exists b [a \in A \land b \in B \land t = (a, b) \land P(t)]$$

$$\iff \exists a \in A \ \exists b \in B \ \exists t [t = (a, b) \land P(t)].$$

Nun gilt aber ganz offensichtlich

$$\exists t[t = (a, b) \land P(t)] \iff P(a, b).$$

Nimmt man P(a, b) an, dann lässt sich $\exists t[t = (a, b) \land P(t)]$ durch Wahl von t := (a, b) bestätigen. Nimmt man umgekehrt $\exists t[t = (a, b) \land P(t)]$ an, lässt sich P(a, b) daraus unter Anwendung von Satz 1.17 ableiten. Da $\exists t[t = (a, b) \land P(t)]$ gegen P(a, b) ersetzt werden darf, folgt die Behauptung. \Box

Satz 1.20. Es gilt:

$$\bigcup_{t \in I \times J} A_t = \bigcup_{i \in I} \bigcup_{j \in J} A_{ij}. \quad (t = (i, j))$$

Beweis. Nach Def. 1.8 (union) und Satz 1.19 gilt:

$$x \in \bigcup_{t \in I \times J} A_t \iff \exists t \in I \times J \ (x \in A_t) \iff \exists i \in I \ \exists j \in J \ (x \in A_{ij})$$
$$\iff \exists i \in I \ (x \in \bigcup_{j \in J} A_{ij}) \iff x \in \bigcup_{i \in I} \bigcup_{j \in J} A_{ij}.$$

Nach Def. 1.2 (seteq) folgt die Behauptung. □

Satz 1.21. Es gilt:

$$\bigcup_{i\in I}\bigcup_{j\in J}A_{ij}=\bigcup_{j\in J}\bigcup_{i\in I}A_{ij}.$$

Beweis. Nach Def. 1.8 (union) und Satz 1.9 gilt:

$$x \in \bigcup_{i \in I} \bigcup_{j \in J} A_{ij} \iff \exists i \in I \ (x \in \bigcup_{j \in J} A_{ij}) \iff \exists i \in I \ \exists j \in J \ (x \in A_{ij})$$
$$\iff \exists j \in J \ \exists i \in I \ (x \in A_{ij}) \iff \exists j \in J \ (x \in \bigcup_{i \in I} A_{ij}) \iff x \in \bigcup_{j \in J} \bigcup_{i \in I} A_{ij}.$$

Nach Def. 1.2 (seteq) folgt die Behauptung. □

1.4 Abbildungen

1.4.1 Definitionen

Definition 1.10. (app: Applikation). Für eine Abbildung f ist

$$y = f(x) : \iff (x, y) \in G_f$$
.

Definition 1.11. (img: Bildmenge).

Für eine Abbildung $f: A \rightarrow B$ und $M \subseteq A$ wird die Menge

$$f(M) := \{ y \mid \exists x \in M (y = f(x)) \} = \{ y \mid \exists x (x \in M \land y = f(x)) \}$$

als Bildmenge von M unter f bezeichnet.

Definition 1.12. (preimg: Urbildmenge). Für eine Abbildung $f: A \rightarrow B$ wird

$$f^{-1}(M) := \{x \mid f(x) \in M\}$$

als Urbildmenge von *M* unter *f* bezeichnet.

Definition 1.13. (inj: Injektion).

Eine Abbildung $f: A \rightarrow B$ heißt genau dann injektiv, wenn gilt:

$$\forall x_1 \forall x_2 (f(x_1) = f(x_2) \implies x_1 = x_2)$$

bzw. äquivalent

$$\forall x_1 \forall x_2 (x_1 \neq x_2 \implies f(x_1) \neq f(x_2)).$$

Definition 1.14. (sur: Surjektion).

Eine Abbildung $f: A \rightarrow B$ heißt genau dann surjektiv, wenn gilt:

$$B \subseteq f(A)$$
.

Definition 1.15. (composition: Verkettung).

Für Abbildungen $f: A \rightarrow B$ und $g: B \rightarrow C$ heißt

$$(g \circ f): A \to C, \quad (g \circ f)(x) := g(f(x))$$

Verkettung von f und g.

1.4.2 Grundlagen

Satz 1.22. (feq: Gleichheit von Abbildungen). Zwei Abbildungen $f: A \to B$ und $g: C \to D$ sind genau dann gleich, kurz f = g, wenn A = C und B = D und

$$\forall x(f(x) = g(x)).$$

Beweis. Nach Definition gilt f = g genau dann, wenn $(G_f, A, B) = (G_g, C, D)$, was äquivalent zu $G_f = G_g \wedge A = C \wedge B = D$ ist. Nach Def. 1.2 (seteq) gilt

$$G_f = G_q \iff \forall t (t \in G_f \iff t \in G_q).$$

Nach Satz 1.15 und Def. 1.10 (app) gilt

$$\forall x [f(x) = g(x)] \iff \forall x \forall y [y = f(x) \iff y = g(x)]$$

$$\iff \forall x \forall y [(x, y) \in G_f \iff (x, y) \in G_q] \iff \forall t (t \in G_f \iff t \in G_q).$$

Da die Quantifizerung auf $x \in A$, $y \in B$ und $t \in A \times B$ beschränkt ist, konnte im letzten

Satz 1.23. (preimg-dl: Distributivität der Urbildoperation).

Für $f: A \rightarrow B$ und beliebige Mengen M_i gilt:

$$f^{-1}(M_1 \cap M_2) = f^{-1}(M_1) \cap f^{-1}(M_2), \tag{1.9}$$

$$f^{-1}(M_1 \cup M_2) = f^{-1}(M_1) \cup f^{-1}(M_2), \tag{1.10}$$

$$f^{-1}(\bigcap_{i \in I} M_i) = \bigcap_{i \in I} f^{-1}(M_i), \tag{1.11}$$

$$f^{-1}(M_1 \cap M_2) = f^{-1}(M_1) \cap f^{-1}(M_2), \tag{1.9}$$

$$f^{-1}(M_1 \cup M_2) = f^{-1}(M_1) \cup f^{-1}(M_2), \tag{1.10}$$

$$f^{-1}(\bigcap_{i \in I} M_i) = \bigcap_{i \in I} f^{-1}(M_i), \tag{1.11}$$

$$f^{-1}(\bigcup_{i \in I} M_i) = \bigcup_{i \in I} f^{-1}(M_i). \tag{1.12}$$

Beweis. Nach Def. 1.2 (seteq) expandieren:

$$\forall x[x \in f^{-1}(M_1 \cap M_2) \iff x \in f^{-1}(M_1) \cap f^{-1}(M_2)].$$

Nach Def. 1.12 (preimg) und Def. 1.5 (cap) zusammen mit Def. 1.4 (filter) gilt:

$$x \in f^{-1}(M_1 \cap M_2) \iff f(x) \in M_1 \cap M_2 \iff f(x) \in M_1 \land f(x) \in M_2$$

$$\iff x \in f^{-1}(M_1) \land x \in f^{-1}(M_2) \iff x \in f^{-1}(M_1) \cap f^{-1}(M_2).$$

Für die Vereinigung ist das analog.

Schnitt von beliebig vielen Mengen. Nach Def. 1.2 (seteq) expandieren:

$$\forall x[x\in f^{-1}(\bigcap_{i\in I}M_i)\iff x\in\bigcap_{i\in I}f^{-1}(M_i)].$$

Nach Def. 1.12 (preimg) und Def. 1.7 (intersection) zusammen mit Def. 1.4 (filter) gilt:

$$x \in f^{-1}(\bigcap_{i \in I} M_i) \iff f(x) \in \bigcap_{i \in I} M_i \iff \forall i (i \in I \implies f(x) \in M_i)$$

$$\iff \forall i (i \in I \implies x \in f^{-1}(M_i)) \iff x \in \bigcap_{i \in I} f^{-1}(M_i).$$

Satz 1.24. (img-cup-dl: Distributivität der Bildoperation über die Vereini**gung).** Für $f: A \rightarrow B$ und Mengen $M_i \subseteq A$ gilt:

$$f(M_1 \cup M_2) = f(M_1) \cup f(M_2), \tag{1.13}$$

$$f(M_1 \cup M_2) = f(M_1) \cup f(M_2), \tag{1.13}$$

$$f(\bigcup_{i \in I} M_i) = \bigcup_{i \in I} f(M_i). \tag{1.14}$$

Beweis. Nach Def. 1.2 (seteq) expandieren:

$$\forall y(y\in f(M_1\cup M_2)\iff y\in f(M_1)\cup f(M_2)).$$

Nach Def. 1.11 (img), Def. 1.6 (cup), Satz 1.1 (bool-dl) und Satz 1.3 (exists-dl) gilt:

$$y \in f(M_1 \cup M_2) \iff \exists x [x \in M_1 \cup M_2 \land y = f(x)]$$

 $\iff \exists x [(x \in M_1 \lor x \in M_2) \land y = f(x)]$

$$\iff \exists x [x \in M_1 \land y = f(x) \lor x \in M_2 \land y = f(x)]$$

$$\iff \exists x[x \in M_1 \land y = f(x)] \lor \exists x[x \in M_2 \land y = f(x)]$$

$$\iff$$
 $y \in f(M_1) \lor y \in f(M_2) \iff y \in f(M_1) \cup f(M_2).$

Nach Def. 1.2 (seteg) expandieren:

$$\forall y[y\in f(\bigcup_{i\in I}M_i)\iff y\in\bigcup_{i\in I}f(M_i)].$$

Nach Def. 1.11 (img), Def. 1.8 (union), Satz 1.2 (general-dl) und Satz 1.6 (exists-cl) gilt:

$$y \in f(\bigcup_{i \in I} M_i) \iff \exists x (x \in \bigcup_{i \in I} M_i \land y = f(x))$$

$$\iff \exists x (\exists i (i \in I \land x \in M_i) \land y = f(x)) \iff \exists x \exists i (i \in I \land x \in M_i \land y = f(x))$$

$$\iff \exists i \exists x (i \in I \land x \in M_i \land y = f(x)) \iff \exists i (i \in I \land \exists x (x \in M_i \land y = f(x))$$

$$\iff \exists i (i \in I \land y \in f(M_i)) \iff y \in \bigcup_{i \in I} f(M_i). \ \Box$$

Satz 1.25. Es gilt:

$$f(M_1 \cap M_2) \subseteq f(M_1) \cap f(M_2),$$
 (1.15)

$$f(M_1 \cap M_2) \subseteq f(M_1) \cap f(M_2), \tag{1.15}$$

$$f(\bigcap_{i \in I} M_i) \subseteq \bigcap_{i \in I} f(M_i). \tag{1.16}$$

Beweis. Nach Def. 1.3 (subseteq) expandieren:

$$\forall y(y\in f(M_1\cap M_2) \implies y\in f(M_1)\cap f(M_2)).$$

Nach Def. 1.11 (img), Def. 1.5 (cap) und Satz. 1.4 (exists-asym-dl) gilt:

$$y \in f(M_1 \cap M_2) \iff \exists x (x \in M_1 \cap x \in M_2 \land y = f(x))$$

$$\iff \exists x (x \in M_1 \land x \in M_2 \land y = f(x))$$

$$\iff \exists x (x \in M_1 \land y = f(x) \land x \in M_2 \land y = f(x))$$

$$\implies \exists x (x \in M_1 \land y = f(x)) \land \exists x (x \in M_2 \land y = f(x))$$

$$\iff y \in f(M_1) \land y \in f(M_2) \iff y \in f(M_1) \cap f(M_2).$$

Nach Def. 1.3 (subseteq) expandieren:

$$\forall y (y \in f(\bigcap_{i \in I} M_i) \implies y \in \bigcap_{i \in I} f(M_i))$$

Nach Def. 1.11 (img) und Def. 1.7 (intersection) gilt:

$$y \in f(\bigcap_{i \in I} M_i) \iff \exists x [x \in \bigcap_{i \in I} M_i \land y = f(x)]$$

$$\iff \exists x [\forall i (i \in I \implies x \in M_i) \land y = f(x)]$$

$$\iff \exists x \forall i (i \in I \implies x \in M_i \land y = f(x))$$

$$\implies \forall i \exists x [i \in I \implies x \in M_i \land y = f(x)]$$

$$\iff \forall i (i \in I \implies \exists x [x \in M_i \land y = f(x)])$$

$$\iff \forall i (i \in I \implies y \in f(M_i)) \iff y \in \bigcap_{i \in I} f(M_i). \ \Box$$

Satz 1.26. Es gilt:

$$f(M) = \bigcup_{x \in M} \{f(x)\}.$$

Beweis. Nach Def. 1.11 (img) und Def. 1.8 (union) gilt:

$$y \in f(M) \iff \exists x \in M \ (y = f(x)) \iff \exists x \in M \ (y \in \{f(x)\}) \iff y \in \bigcup_{x \in M} \{f(x)\}.$$

Nach Def. 1.2 (seteq) folgt dann die Behauptung. □

Satz 1.27. Es gilt $(g \circ f)^{-1}(M) = f^{-1}(g^{-1}(M))$.

Beweis. Nach Def. 1.12 (preimg) und Def. 1.2 (seteq) expandieren und Def. 1.4 (filter) anwenden:

$$(g \circ f)(x) \in M \iff f(x) \in \{y \mid g(y) \in M\}.$$

Links Def. 1.15 (composition) anwenden und rechts nochmals Def. 1.4 (filter):

$$g(f(x)) \in M \iff g(f(x)) \in M$$
. \square

Satz 1.28. Es gilt $(g \circ f)(M) = g(f(M))$.

Beweis. Nach Def. 1.11 (img) und Def. 1.2 expandieren, dann 1.4 (filter) anwenden:

$$\exists x (x \in M \land z = (g \circ f)(x)) \iff \exists y (y \in f(M) \land z = g(y)).$$

Die rechte Seite mit Def. 1.11 (img) expandieren und Def. 1.4 (filter) anwenden. Unter Anwendung von Satz 1.2 (general-dl) und Satz 1.6 (exists-cl) ergibt sich

$$\exists y (\exists x (x \in M \land y = f(x)) \land z = g(y))$$

$$\iff \exists y \exists x (x \in M \land y = f(x) \land z = g(y))$$

$$\iff \exists x (x \in M \land \exists y (y = f(x) \land z = g(y)))$$

$$\iff \exists x(x \in M \land z = g(f(x)))$$

$$\iff \exists x (x \in M \land z = (g \circ f)(x)). \square$$

Satz 1.29. $f: A \to B$ eine Abbildung und $A \neq \emptyset$. Man nennt eine Funktion $g: B \to A$ mit $g \circ f = \mathrm{id}_A$ Linksinverse zu f. Die Abbildung f ist genau dann injektiv, wenn eine Linksinverse zu f existiert.

Beweis. Sei f injektiv. Man wähle ein $\alpha \in A$, das wegen $A \neq \emptyset$ existieren muss. Man definiert nun $g: B \rightarrow A$ mit

$$g(y) := \begin{cases} x \text{ wobei } y = f(x), \text{ wenn } y \in f(A), \\ \alpha \text{ wenn } y \notin f(A). \end{cases}$$

Diese Funktion ist eindeutig definiert, weil f injektiv ist. Gemäß ihrer Definition gilt g(f(x)) = x, bzw. $g \circ f = id$.

Sei nun eine Linksinverse g mit $g \circ f$ = id gegeben. Dann gilt

$$f(a) = f(b) \implies g(f(a)) = g(f(b))$$

und

$$g(f(a)) = g(f(b)) \iff (g \circ f)(a) = (g \circ f)(a) \iff id(a) = id(b) \iff a = b.$$

Es ergibt sich

$$f(a) = f(b) \implies a = b. \square$$

1.4.3 Kardinalzahlen

Satz 1.30. (acc: abzählbares Auswahlaxiom). Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge nichtleerer Mengen. Dann existiert eine Funktion $f: \mathbb{N} \to \bigcup_{n\in\mathbb{N}} A_n$ mit $f(n) \in A_n$.

Definition 1.16. (equipotent: Gleichmächtigkeit). Zwei Mengen A, B heißen genau dann gleichmächtig, wenn eine Bijektion $f: A \rightarrow B$ existiert.

Satz 1.31. Sei M eine beliebige Menge. Die Potenzmenge 2^M ist zur Menge $\{0,1\}^M$ gleichmächtig.

Beweis. Für eine Aussage A sei

$$[A] := \begin{cases} 1 & \text{wenn } A \text{ gilt,} \\ 0 & \text{sonst.} \end{cases}$$

Für $A \subseteq M$ betrachte man nun die Indikatorfunktion

$$\chi_A : M \to \{0, 1\}, \quad \chi_A(x) := [x \in A].$$

Die Abbildung

$$\varphi: 2^M \to \{0,1\}^M, \quad \varphi(A) := \chi_A$$

ist eine kanonische Bijektion.

Zur Injektivität. Nach Def. 1.13 (inj) muss gelten:

$$\varphi(A) = \varphi(B) \implies A = B$$
, d.h. $\chi_A = \chi_B \implies A = B$.

Nach Satz 1.22 (feq) und Def. 1.2 (seteq) wird die Aussage expandiert zu:

$$\forall x(\chi_A(x) = \chi_B(x)) \implies \forall x(x \in A \iff x \in B).$$

Es gilt aber nun:

$$\chi_A(x) = \chi_B(x) \iff [x \in A] = [x \in B] \iff (x \in A \iff x \in B).$$

Zur Surjektivität. Wir müssen nach Def. 1.14 (sur) prüfen, dass $\{0,1\}^M \subseteq \varphi(2^M)$ gilt. Expansion nach Def. 1.3 (subseteq) und Def. 1.11 (img) ergibt:

$$\forall f(f \in \{0, 1\}^M \implies \exists A \in 2^M [f = \varphi(A)]).$$

Um dem Existenzquantor zu genügen, wähle

$$A := f^{-1}(\{1\}) = \{x \in M \mid f(x) \in \{1\}\} = \{x \in M \mid f(x) = 1\}.$$

Es gilt $f = \chi_A$, denn

$$\chi_A(x) = [x \in A] = [x \in \{x \mid f(x) = 1\}] = [f(x) = 1] = f(x).$$

Da φ eine Bijektion ist, müssen 2^M und $\{0,1\}^M$ nach Def. 1.16 (equipotent) gleichmächtig sein. \square

Satz 1.32. Man setze Axiom 1.30 (acc) voraus. Die Vereinigung von abzählbar vielen abzählbar unendlichen Mengen ist abzählbar unendlich. Kurz $|\bigcup_{n\in\mathbb{N}}A_n|=|\mathbb{N}|$, wenn $|A_n|=|\mathbb{N}|$ für jedes n.

Beweis. Sei B_n die Menge der Bijektionen aus Abb(\mathbb{N} , A_n). Nach Axiom 1.30 (acc) kann aus jeder Menge B_n eine Bijektion $f_n \colon \mathbb{N} \to A_n$ ausgewählt werden. Man betrachte nun

$$\varphi: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n, \quad \varphi(n, m) := f_n(m).$$

Die Abbildung φ ist surjektiv, denn nach Satz 1.26 und Satz 1.20 gilt

$$\varphi(\mathbb{N} \times \mathbb{N}) = \bigcup_{(n,m) \in \mathbb{N} \times \mathbb{N}} \{f_n(m)\} = \bigcup_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \{f_n(m)\}$$
$$= \bigcup_{n \in \mathbb{N}} f_n(\bigcup_{m \in \mathbb{N}} \{m\}) = \bigcup_{n \in \mathbb{N}} f_n(\mathbb{N}) = \bigcup_{n \in \mathbb{N}} A_n.$$

Daher gilt $|\bigcup_{n\in\mathbb{N}}A_n|\leq |\mathbb{N}\times\mathbb{N}|=|\mathbb{N}|$. Für eine beliebige der Bijektionen $f_n\in B_n$ lässt sich die Zielmenge erweitern, so dass man eine Injektion $f\colon\mathbb{N}\to\bigcup_{n\in\mathbb{N}}A_n$ erhält. Daher ist auch $|\mathbb{N}|\leq |\bigcup_{n\in\mathbb{N}}A_n|$. Nach dem Satz von Cantor-Bernstein gilt also $|\bigcup_{n\in\mathbb{N}}A_n|=|\mathbb{N}|$. \square

Satz 1.33. Wenn R abzählbar ist, dann ist auch der Polynomring R[X] abzählbar.

Beweis. Zu jedem Polynom vom Grad $n \ge 1$ gehört auf kanonische Weise genau ein Tupel aus $M_n := R^{n-1} \times R \setminus \{0\}$. Da R abzählbar ist, sind auch R^{n-1} und $R \setminus \{0\}$ abzählbar. Dann ist auch M_n abzählbar. Nach Satz 1.32 gilt

$$|R[X]| = 1 + |\bigcup_{n \in \mathbb{N}} M_n| = 1 + |\mathbb{N}| = |\mathbb{N}|. \square$$

Satz 1.34. Es gibt nur abzählbar unendlich viele algebraische Zahlen.

Beweis 1. Zu zeigen ist |A| = |N| mit

$$\mathbb{A} := \{ \alpha \in \mathbb{C} \mid \exists p (p \in \mathbb{Q}[X] \setminus \{0\} \land p(\alpha) = 0) \}.$$

Dass \mathbb{A} unendlich ist, ist leicht ersichtlich, denn schon jede rationale Zahl q, von denen es unendlich viele gibt, ist Nullstelle von p(X) := X - q und daher algebraisch.

Ein Polynom vom Grad n kann höchstens n Nullstellen besitzen. Nach Satz 1.33 gilt $\mathbb{Q}[X] = |\mathbb{N}|$. Für $\mathbb{Q}[X]$ lässt sich also eine Abzählung angeben. Bei dieser Abzählung lässt sich für jedes Polynom p die Liste der Nullstellen von p einfügen. Streicht man alle Nullstellen, die schon einmal vorkamen, dann erhält man eine Abzählung der algebraischen Zahlen. Demnach gilt $|\mathbb{A}| = |\mathbb{N}|$. \square

Beweis 2. Jedem $p = \sum_{k=0}^n a_k X^k$ lässt sich eine Höhe $h := n + \sum_{k=0}^n |a_k|$ zuordnen. Zu einer festen Höhe kann es nur endlich viele Polynome $p \in \mathbb{Z}[X]$ geben, wodurch man eine Abzählung der Polynome erhält, wenn für h = 1, h = 2, h = 3 usw. jeweils die Liste der Polynome eingefügt wird. Für jedes Polynom p lässt sich die Liste der Nullstellen von p einfügen. Streicht man alle Nullstellen, die schon einmal vorkamen, dann erhält man eine Abzählung der algebraischen Zahlen. \square

Beweis 3. Für $n \in \mathbb{N}$ sei

$$A_n := \{x \in \mathbb{A} \mid x \text{ ist Nullstelle eines } p \in \mathbb{Z}[X] \setminus \{0\} \text{ mit deg}(p) = n,$$
 dessen Koeffizienten a_k alle $|a_k| \le n$ erfüllen $\}$.

Alle A_n sind endlich und es gilt $\mathbb{A} = \bigcup_{n \in \mathbb{N}} A_n$. Daher muss $|\mathbb{A}| \leq |\mathbb{N}|$ sein. \square

2 Analysis

2.1 Folgen

2.1.1 Konvergenz

Definition 2.1. (open-ep-ball: offene Epsilon-Umgebung). Sei (M, d) ein metrischer Raum. Unter der offenen Epsilon-Umgebung von $\alpha \in M$ versteht man:

$$U_{\varepsilon}(\alpha) := \{x \mid d(x, \alpha) < \varepsilon\}$$

Setze zunächst speziell d(x, a) := |x - a| bzw. d(x, a) := ||x - a||.

Definition 2.2. (lim: konvergente Folge, Grenzwert).

$$\lim_{n\to\infty} \alpha_n = \alpha :\iff \forall \varepsilon > 0 \; \exists n_0 \; \forall n \geq n_0 \; (\alpha_n \in U_\varepsilon(\alpha))$$

bzw

$$\lim_{n\to\infty} a_n = a :\iff \forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ (\|\alpha_n - \alpha\| < \varepsilon).$$

Definition 2.3. (bseq: beschränkte Folge). Eine Folge (a_n) mit $a_n \in \mathbb{R}$ heißt genau dann beschränkt, wenn es eine reelle Zahl S gibt mit $|a_n| < S$ für alle n.

Eine Folge (a_n) von Punkten eines normierten Raums heißt genau dann beschränkt, wenn es eine reelle Zahl S gibt mit $||a_n|| < S$ für alle n.

Satz 2.1. (Grenzwert bei Konvergenz eindeutig bestimmt).

Eine konvergente Folge von Elementen eines metrischen Raumes besitzt genau einen Grenzwert.

Beweis. Sei (a_n) eine konvergente Folge mit $a_n \to g_1$. Sei weiterhin $g_1 \neq g_2$. Es wird nun gezeigt, dass g_2 kein Grenzwert von a_n sein kann. Wir müssen also zeigen:

$$\neg \lim_{n \to \infty} \alpha_n = g_2 \iff \exists \varepsilon > 0 \ \forall n_0 \ \exists n \geq n_0 \ (\alpha_n \notin U_\varepsilon(g_2))$$

mit $a_n \notin U_{\varepsilon}(g_2) \iff d(a_n, g_2) \geq \varepsilon$.

Um dem Existenzquantor zu genügen, wählt man nun $\varepsilon = \frac{1}{2}d(g_1,g_2)$. Nach Def. 3.3 (metric-space) gilt $d(g_1,g_2) > 0$, daher ist auch $\varepsilon > 0$. Nach Satz 3.2 sind die Umgebungen $U_{\varepsilon}(g_1)$ und $U_{\varepsilon}(g_2)$ disjunkt. Wegen $a_n \to g_1$ gibt es ein n_0 mit $a_n \in U_{\varepsilon}(g_1)$ für alle $n \ge n_0$. Dann gibt es für jedes beliebig große n_0 aber auch $n \ge n_0$ mit $a_n \notin U_{\varepsilon}(g_2)$. \square

Satz 2.2. (lim-scaled-ep: skaliertes Epsilon). Es gilt:

$$\lim_{n \to \infty} a_n = \alpha \iff \forall \varepsilon {>} 0 \; \exists n_0 \; \forall n {\geq} n_0 \; (\|a_n - \alpha\| < R\varepsilon),$$

wobei R > 0 ein fester aber beliebieger Skalierungsfaktor ist.

Beweis. Betrachte $\varepsilon > 0$ und multipliziere auf beiden Seiten mit R. Dabei handelt es sich um eine Äguivalenzumformung. Setze $\varepsilon' := R\varepsilon$. Demnach gilt:

$$\varepsilon > 0 \iff \varepsilon' > 0$$
.

Nach der Ersetzungsregel düfen wir die Teilformel $\varepsilon > 0$ nun ersetzen. Es ergibt sich die äquivalente Formel

$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon' > 0 \ \exists n_0 \ \forall n \geq n_0 \ (\|a_n - a\| < \varepsilon').$$

Das ist aber genau Def. 2.2 (lim). □

Satz 2.3. Es gilt:

$$\lim_{n\to\infty}a_n=a\implies\lim_{n\to\infty}\|a_n\|=\|a\|.$$

Beweis. Nach Satz 3.4 (umgekehrte Dreiecksungleichung) gilt:

$$|||a_n|| - ||a||| \le ||a_n - a|| < \varepsilon.$$

Dann ist aber rest recht $||a_n|| - ||a||| < \varepsilon$. \square

Satz 2.4. Ist (a_n) eine Nullfolge und (b_n) eine beschränkte Folge, dann ist auch (a_nb_n) eine Nullfolge.

Beweis. Wenn (b_n) beschränkt ist, dann existiert nach Def. 2.3 (bseq) eine Schranke S mit $|b_n| < S$ für alle n. Man multipliziert nun auf beiden Seiten mit $|a_n|$ und erhält

$$|a_nb_n|=|a_n||b_n|<|a_n|S.$$

Wenn $a_n \to 0$, dann muss für jedes ε ein n_0 existieren mit $|a_n| < \varepsilon$ für $n \ge n_0$. Multipliziert man auf beiden Seiten mit S, und ergibt sich

$$|a_n b_n - 0| = |a_n b_n| < |a_n| S < S\varepsilon$$
.

Nach Satz 2.2 (lim-scaled-ep) gilt dann aber $a_n b_n \rightarrow 0$.

Satz 2.5. Sind (a_n) und (b_n) Nullfolgen, dann ist auch (a_nb_n) eine Nullfolge.

Beweis 1. Wenn (b_n) eine Nullfolge ist, dann ist (b_n) auch beschränkt. Nach Satz 2.4 gilt dann die Behauptung.

Beweis 2. Sei $\varepsilon > 0$ beliebig. Es gibt ein n_0 , so dass $|\alpha_n| < \varepsilon$ und $|b_n| < \varepsilon$ für $n \ge n_0$. Demnach ist

$$|a_n b_n| = |a_n||b_n| < |a_n|\varepsilon < \varepsilon^2$$
.

Wegen $\varepsilon > 0 \iff \varepsilon' > 0$ mit $\varepsilon' = \varepsilon^2$ gilt

$$\forall \varepsilon' > 0 \exists n_0 \forall n \geq n_0 (|\alpha_n b_n| < \varepsilon').$$

Nach Def. 2.2 (lim) gilt somit die Behauptung. □

Satz 2.6. (Grenzwertsatz zur Addition). Seien (a_n) , (b_n) Folgen von Vektoren eines normierten Raumes. Es gilt:

$$\lim_{n\to\infty} a_n = a \wedge \lim_{n\to\infty} b_n = b \implies \lim_{n\to\infty} a_n + b_n = a + b.$$

Beweis. Dann gibt es ein n_0 , so dass für $n \ge n_0$ sowohl $\|a_n - a\| < \varepsilon$ als auch $\|b_n - b\| < \varepsilon$. Addition der beiden Ungleichungen ergibt

$$\|a_n-a\|+\|b_n-b\|<2\varepsilon.$$

Nach der Dreiecksungleichung, das ist Axiom (N3) in Def. 3.5 (normed-space), gilt nun aber die Abschätzung

$$\|(a_n + b_n) - (a + b)\| = \|(a_n - a) + (b_n - b)\| \le \|a_n - a\| + \|b_n - b\|.$$

Somit gilt erst recht

$$||(a_n+b_n)-(a+b)||<2\varepsilon.$$

Nach Satz 2.2 (lim-scaled-ep) folgt die Behauptung. □

Satz 2.7. (Grenzwertsatz zur Skalarmultiplikation). Sei (a_n) eine Folge von Vektoren eines normierten Raumes und sei $r \in \mathbb{R}$ oder $r \in \mathbb{C}$. Es gilt:

$$\lim_{n\to\infty}a_n=a\implies \lim_{n\to\infty}ra_n\to ra.$$

Beweis. Sei $\varepsilon > 0$ fest aber beliebig. Es gibt nun ein n_0 , so dass $||a_n - a|| < \varepsilon$ für $n \ge n_0$. Multipliziert man auf beiden Seiten mit |r| und zieht Def. 3.5 (normed-space) Axiom (N2) heran, dann ergibt sich

$$||ra_n - ra|| = |r| ||a_n - a|| < |r| \varepsilon.$$

Nach Satz 2.2 (lim-scaled-ep) folgt die Behauptung. □

Satz 2.8. (Grenzwertsatz zum Produkt).

Seien (a_n) und (b_n) Folgen reeller Zahlen. Es gilt:

$$\lim_{n\to\infty} a_n = a \wedge \lim_{n\to\infty} b_n = b \implies \lim_{n\to\infty} a_n b_n = ab.$$

Beweis. Nach Voraussetzung sind $a_n - a$ und $b_n - b$ Nullfolgen. Da das Produkt von Nullfolgen wieder eine Nullfolge ist, gilt

$$(a_n - a)(b_n - b) = a_n b_n - a_n b - ab_n + ab \rightarrow 0.$$

Da nach Satz 2.7 aber $a_n b \rightarrow ab$ und $ab_n \rightarrow ab$, ergibt sich nach Satz 2.6 nun

$$(a_n-a)(b_n-b)+a_nb+ab_n=a_nb_n+ab\to 2ab.$$

Addiert man nun noch die konstante Folge -2ab und wendet nochmals Satz 2.6 an, dann ergibt sich die Behauptung

$$a_nb_n \rightarrow ab. \square$$

Satz 2.9. Sei M ein metrischer Raum und X ein topologischer Raum. Eine Abbildung $f: M \to X$ ist genau dann stetig, wenn sie folgenstetig ist.

Satz 2.10. (Satz zur Fixpunktgleichung). Sei M ein metrischer Raum und sei $f: M \to M$. Sei $x_{n+1} := f(x_n)$ eine Fixpunktiteration. Wenn die Folge (x_n) zu einem Startwert x_0 konvergiert mit $x_n \to x$, und wenn f eine stetige Abbildung ist, dann muss der Grenzwert x die Fixpunktgleichung x = f(x) erfüllen.

Beweis. Wenn $x_n \to x$, dann gilt trivialerweise auch $x_{n+1} \to x$. Weil f stetig ist, ist f nach Satz 2.9 auch folgenstetig. Daher gilt $\lim f(a_n) = f(\lim a_n)$ für jede konvergente Folge (a_n) . Somit gilt:

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x). \square$$

2.2 Stetige Funktionen

Definition 2.4. (Grenzwert einer Funktion). Sei $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ und sei p ein Häufungspunkt von D. Die Funktion f heißt konvergent gegen L für $x \to p$, wenn

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall (x \in D) (0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon).$$

Bei Konvergenz schreibt man $L = \lim_{x \to n} f(x)$ und nennt L den Grenzwert.

Definition 2.5. (cont: stetig). Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt stetig an der Stelle $x_0 \in D$, wenn

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall (x \in D) (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon).$$

Definition 2.6. (Lipschitz-stetig).

Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt Lipschitz-stetig, wenn eine Konstante L existiert, so dass

$$|f(b)-f(a)| \le L|b-a|$$

für alle $a, b \in D$.

Definition 2.7. (Lipschitz-stetig an einer Stelle).

Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt Lipschitz-stetig an der Stelle $x_0 \in D$, wenn eine Konstante L existiert, so dass

$$|f(x_0)-(a)|\leq L|x_0-a|$$

für alle $\alpha \in D$.

Korollar 2.11. Eine Funktion ist genau dann Lipschitz-stetig, wenn sie an jeder Stelle Lipschitz-stetig ist und die Menge der optimalen Lipschitz-Konstanten dabei beschränkt.

Beweis. Eine Lipschitz-stetige Funktion ist trivialerweise an jeder Stelle Lipschitz-stetig. Ist $f: D \to \mathbb{R}$ an der Stelle b Lipschitz-stetig, dann existiert eine Lipschitz-Konstante L_b mit

$$\forall (a \in D)(|f(b) - f(a)| \le L_b|b - a|).$$

Nach Voraussetzung ist $L = \sup_{b \in D} L_b$ endlich. Alle L_b können nun zu L abgeschwächt werden und es ergibt sich

$$\forall (b \in D) \forall (a \in D)(|f(b) - f(a)| \leq L|b - a|). \Box$$

Definition 2.8. (lokal Lipschitz-stetig).

Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt lokal Lipschitz-stetig in der Nähe einer Stelle $x_0 \in D$, wenn es eine Epsilon-Umgebung $U_{\varepsilon}(x_0)$ gibt, so dass die Einschränkung von f auf diese Umgebung Lipschitz-stetig ist. Die Funktion heißt lokal Lipschitz-stetig, wenn sie in der Nähe jeder Stelle Lipschitz-stetig ist.

Satz 2.12. Ist die Funktion $f: D \to \mathbb{R}$ an der Stelle x_0 differenzierbar, dann gibt es ein $\delta > 0$, so dass die Einschränkung von f auf $U_{\delta}(x_0)$ an der Stelle x_0 Lipschitzstetig ist.

Beweis. Def. 2.4 wird in Def. 2.9 (diff) eingesetzt. Es ergibt sich:

$$0 < |x - x_0| < \delta \implies \left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| < \varepsilon.$$

Nach der umgekehrten Dreiecksungleichung 3.4 gilt

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| - |f'(x_0)| \le \left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| < \varepsilon.$$

Daraus ergibt sich

$$|f(x)-f(x_0)| < (|f'(x_0)| + \varepsilon) \cdot |x-x_0|$$

und somit erst recht

$$|f(x)-f(x_0)| \le (|f'(x_0)|+\varepsilon) \cdot |x-x_0|,$$

wobei jetzt auch $x = x_0$ erlaubt ist. Demnach wird Def. 2.7 erfüllt:

$$\exists (\delta > 0) \forall (x \in U_{\delta}(x_0)) (|f(x) - f(x_0)| \le (|f'(x_0)| + \varepsilon) \cdot |x - x_0|). \ \Box$$

Satz 2.13. Eine differenzierbare Funktion ist genau dann Lipschitz-stetig, wenn ihre Ableitung beschränkt ist.

Wenn $f: I \to \mathbb{R}$ Lipschitz-stetig ist, dann gibt es L mit

$$\left| \frac{f(b) - f(a)}{b - a} \right| \le L$$

für alle $a, b \in D$ mit $a \neq b$. Daraus folgt

$$|f'(a)| = \left| \lim_{b \to a} \frac{f(b) - f(a)}{b - a} \right| = \lim_{b \to a} \left| \frac{f(b) - f(a)}{b - a} \right| \le L.$$

Demnach ist die Ableitung beschränkt.

Sei nun umgekehrt die Ableitung beschränkt. Für $a, b \in I$ mit $a \neq b$ gibt es nach dem Mittelwertsatz ein $x_0 \in (a, b)$, so dass

$$|f'(x_0)| = \left| \frac{f(b) - f(a)}{b - a} \right|.$$

Da die Ableitung beschränkt ist gibt es ein Supremum $L = \sup_{x \in I} |f'(x)|$. Demnach ist $|f'(x)| \le L$ für alle x. Es ergibt sich

$$\left|\frac{f(b)-f(a)}{b-a}\right| \leq L|b-a| \implies |f(b)-f(a)| \leq L|b-a|.$$

Nun darf auch a = b gewählt werden. \Box

Satz 2.14. Eine auf einem kompakten Intervall [a, b] definierte stetig differenzierbare Funktion ist Lipschitz-stetig.

Beweis. Sei $f: [a, b] \to \mathbb{R}$ stetig differenzierbar. Dann ist f'(x) stetig. Nach dem Satz vom Minimum und Maximum ist |f'(x)| beschränkt. Nach Satz 2.13 muss f Lipschitzstetig sein. \square

Korollar 2.15. Eine stetig differenzierbare Funktion ist lokal Lipschitz-stetig.

Beweis. Sei $f: D \to \mathbb{R}$ stetig differenzierbar. Sei $[a,b] \in D$. Sei $x_0 \in [a,b]$. Die Einschränkung von f auf [a,b] ist Lipschitz-stetig nach Satz 2.14. Dann ist auch die Einschränkung von f auf $U_{\varepsilon}(x_0) \subseteq [a,b]$ Lipschitz-stetig. \square

Satz 2.16. Es gibt differenzierbare Funktionen, die nicht überall lokal Lipschitz-stetig sind.

Beweis. Aus Satz 2.13 ergibt sich also Kontraposition, dass eine Funktion mit unbeschränkter Ableitung nicht Lipschitz-stetig sein kann.

Ist $f: D \to \mathbb{R}$ an jeder Stelle differenzierbar und ist f' in jeder noch so kleinen Umgebung der Stelle x_0 unbeschränkt, dann kann f also in der Nähe dieser Stelle auch nicht lokal Lipschitz-stetig sein.

Ein Beispiel für eine solche Funktion ist $f: [0, \infty) \to \mathbb{R}$ mit

$$f(0) := 0$$
 und $f(x) := x^{3/2} \cos(\frac{1}{x})$.

Einerseits gilt

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} (h^{1/2} \cos\left(\frac{1}{h}\right)) = 0.$$

Die Funktion ist also an der Stelle x=0 differenzierbar. Andererseits gilt nach den Ableitungsregeln

$$f'(x) = \frac{3}{2}\sqrt{x}\cos\left(\frac{1}{x}\right) + \frac{1}{\sqrt{x}}\sin\left(\frac{1}{x}\right).$$

für x > 0. Der Term $\frac{1}{\sqrt{x}}$ erwirkt für $x \to 0$ immer größere Maxima von |f'(x)|. Daher kann f in der Nähe von x = 0 nicht lokal Lipschitz-stetig sein. \Box

2.3 Differentialrechnung

Definition 2.9. (diff: differenzierbar, Ableitung). Eine Funktion $f: D \to \mathbb{R}$ heißt differenzieraber an der Stelle $x_0 \in D$, wenn der Grenzwert

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

existiert. Man nennt $f'(x_0)$ die Ableitung von f an der Stelle x_0 .

Satz 2.17. Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit der Eigenschaft f(x) = 0 für $x \le 0$ und f(x) > 0 für x > 0. Es gibt glatte Funktionen mit dieser Eigenschaft, jedoch keine analytische.

Beweis. Wegen f(x) = 0 für $x \le 0$ muss die linksseitige n-te Ableitung an der Stelle x = 0 immer verschwinden. Wenn die n-te Ableitung stetig sein soll, muss auch die rechtsseitige Ableitung bei x = 0 verschwinden. Da die Funktion glatt sein soll, muss das für jede Ableitung gelten. Daher verschwindet die Taylorreihe an der Stelle x = 0. Da aber f(x) > 0 für x > 0, gibt es keine noch so kleine Umgebung mit Übereinstimmung von f und ihrer Taylorreihe. Daher kann f an der Stelle x = 0 nicht analytisch sein.

Eine glatte Funktion lässt sich jedoch konstruieren:

$$f(x) := \begin{cases} e^{-1/x} & \text{wenn } x > 0, \\ 0 & \text{wenn } x \le 0. \end{cases}$$

Ist nämlich g(x) an einer Stelle glatt, dann ist es nach Kettenregel, Produktregel und Summenregel auch $e^{g(x)}$. Die n-te Ableitung lässt sich immer in der Form

$$\sum_{k} e^{g(x)} r_{k}(x) = e^{g(x)} \sum_{k} r_{k}(x) = e^{g(x)} r(x)$$

darstellen, wobei die $r_k(x)$ bzw. r(x) in diesem Fall rationale Funktionen mit Polstelle bei x=0 sind. Da aber $e^{-1/x}$ für $x\to 0$ schneller fällt als jede rationale Funktion steigen kann, muss die rechtsseitige Ableitung an der Stelle x=0 immer verschwinden. \square

3 Topologie

3.1 Grundbegriffe

3.1.1 Definitionen

Definition 3.1. (nhfilter: Umgebungsfilter).

$$U(x) := \{ U \subseteq X \mid \exists O(O \in T \land x \in O \land O \subseteq U) \}.$$

Definition 3.2. (int: offener Kern).

$$int(M) := \{x \in M \mid M \in \underline{U}(x)\}$$

Satz 3.1. Der offene Kern von M ist die Vereinigung der offenen Teilmengen von M. Kurz:

$$\operatorname{int}(M) = \bigcup_{O \in 2^M \cap T} O.$$

Beweis. Nach Def. 1.2 (seteq) und Def. 3.2 (int) expandieren:

$$\forall x[x\in M\land M\in\underline{U}(x)\iff x\in\bigcup_{O\in2^M\cap T}O].$$

Den äußeren Allquantor brauchen wir nicht weiter mitschreiben, da alle freien Variablen automatisch allquantifiziert werden. Nach Def. 3.1 (nhfilter) weiter expandieren, wobei die Bedingung $U \subseteq X$ als tautologisch entfallen kann, weil X die Grundmenge ist. Auf der rechten Seite wird nach Def. 1.8 (union) expandiert. Es ergibt sich:

$$x \in M \land \exists O(O \in T \land x \in O \land O \subseteq M) \iff \exists O(O \subseteq M \land O \in T \land x \in O).$$

Wegen $A \wedge \exists x (P(x)) \iff \exists x (A \wedge P(x))$ ergibt sich auf der linken Seite:

$$\exists O(x \in M \land O \in T \land x \in O \land O \subseteq M).$$

Wenn aber $O \subseteq M$ erfüllt sein muss, gilt $x \in O \implies x \in M$. Demnach kann $x \in M$ entfallen. Auf beiden Seiten steht dann die gleiche Bedingung. \square

3.2 Metrische Räume

3.2.1 Metrischer Räume

Definition 3.3. (metric-space: metrischer Raum). Man bezeichet (M, d) mit $d: M^2 \to \mathbb{R}$ genau dann als metrischen Raum, wenn die folgenden Axiome erfüllt sind:

(M1) $d(x, y) = 0 \iff x = y$, (Gleichheit abstandsloser Punkte)

(M2) d(x, y) = d(y, x), (Symmetrie)

(M3) $d(x, y) \le d(x, z) + d(z, y)$. (Dreiecksungleichung)

Definition 3.4. (open-ep-ball: offene Epsilon-Umgebung).

Für einen metrischen Raum (M, d) und $p \in M$:

$$U_{\varepsilon}(p) := \{x \mid d(p, x) < \varepsilon\}.$$

Bemerkung: Unter einer Epsilon-Umgebung ohne weitere Attribute versteht man immer eine offene Epsilon-Umgebung.

Satz 3.2. (Konstruktion disjunkter Epsilon-Umgebungen). Sei (M, d) ein metrischer Raum und $p, q \in M$ mit $p \neq q$. Betrachte die Streckenzerlegung d(p, q) = A + B. Für $a \leq A$ und $b \leq B$ sind die Epsilon-Umgebungen $U_a(p)$ und $U_b(q)$ disjunkt.

Beweis. Angenommen $U_a(p)$ und $U_b(q)$ wären nicht disjunkt, dann gäbe es mindestens ein x mit $x \in U_a(p)$ und $x \in U_b(q)$, d. h. d(p,x) < a und d(q,x) < b. Addition der beiden Ungleichungen bringt

$$d(p,x) + d(q,x) < a + b \le d(p,q).$$

Gemäß der Dreiecksungleichung Def. 3.3 Axiom (M3) gilt nun aber

$$d(p,q) \le d(p,x) + d(q,x)$$

für alle x. Sei c := d(p,x) + d(q,x). Wir erhalten damit nun $c < a + b \le c$ und somit den Widerspruch c < c. \square

Korollar 3.3. (Unterschiedliche Punkte eines metrischen Raumes besitzen disjunkte Epsilon-Umgebungen). Sei (M, d) ein metrischer Raum und $p, q \in M$. Wenn $p \neq q$ ist, dann gibt es disjunkte offene Epsilon-Umgebungen $U_q(p)$ und $U_b(q)$.

Beweis. Folgt trivial aus Satz 3.2. Wähle speziell z. B. $\alpha = b = d(p, q)/2$. \square

3.2.2 Normierte Räume

Definition 3.5. (normed-space: normierter Raum). Sei V ein Vektorraum über dem Körper der rellen oder komplexen Zahlen. Sei N(x) = ||x|| eine Abbildung, die jedem $x \in V$ eine reelle Zahl zuordnet. Man nennt (V, N) genau dann einen normierten Raum, wenn die folgenden Axiome erfüllt sind:

(N1) $||x|| = 0 \iff x = 0$, (Definitheit)

(N2) $\|\lambda x\| = |\lambda| \|x\|$, (betragsmäßige Homogenität)

(N3) $||x + y|| \le ||x|| + ||y||$. (Dreiecksungleichung)

Satz 3.4. (umgekehrte Dreiecksungleichung). In jedem normierten Raum gilt

$$|||x|| - ||y||| \le ||x - y||.$$

Beweis. Auf beiden Seiten von Def. 3.5 (normed-space) Axiom (N3) wird ||y|| subtrahiert. Es ergibt sich

$$||x + y|| - ||y|| \le ||x||$$
.

Substitution x := x - y bringt nun

$$||x|| - ||y|| \le ||x - y||$$
.

Vertauscht man nun x und y, dann ergibt sich

$$||y|| - ||x|| \le ||y - x|| \iff -(||x|| - ||y||) \le ||x - y||.$$

Wir haben nun $a \le b$ und $-a \le b$, wobei $a := \|x\| - \|y\|$ und $b := \|x - y\|$ ist. Multipliziert man die letzte Ungleichung mit -1, dann ergibt sich $a \ge -b$. Somit ist $-b \le a \le b$, kurz $|a| \le b$. \square

Index

Abbildungen, 10 abzählbares Auswahlaxiom, 14 algebraische Zahlen Kardinalität, 15 Assoziativgesetz Mengen, boolesche Algebra, 8 Aussagenlogik, 5 Auswahlaxiom abzählbares, 14
beschränkte Folge, 17 Bildmenge, 10
Distributivgesetz boolesche Algebra, 5 Urbildoperation, 11 Dreiecksungleichung, 26 umgekehrte, 26
Epsilon-Umgebung, 17
Fixpunktgleichung, 20 folgenstetig, 20
Gleichheit von Abbildungen, 10 von Mengen, 7 gleichmächtig, 14 Grenzwert, 17 Grenzwertsätze, 18
von Abbildungen, 10 von Mengen, 7 gleichmächtig, 14 Grenzwert, 17
von Abbildungen, 10 von Mengen, 7 gleichmächtig, 14 Grenzwert, 17 Grenzwertsätze, 18 Indikatorfunktion, 14
von Abbildungen, 10 von Mengen, 7 gleichmächtig, 14 Grenzwert, 17 Grenzwertsätze, 18 Indikatorfunktion, 14 Injektion, 10 kartesisches Produkt, 7 Kommutativgesetz Mengen, boolesche Algebra, 7 Komposition, 10
von Abbildungen, 10 von Mengen, 7 gleichmächtig, 14 Grenzwert, 17 Grenzwertsätze, 18 Indikatorfunktion, 14 Injektion, 10 kartesisches Produkt, 7 Kommutativgesetz Mengen, boolesche Algebra, 7 Komposition, 10 konvergente Folge, 17 Mengenlehre, 7

```
Prädikatenlogik, 5

Schnittmenge, 7
stetig
folgenstetig, 20
Surjektion, 10

Teilmenge, 7

Umgebungsfilter, 25
umgekehrte Dreiecksungleichung, 26
Urbildmenge, 10

Vereinigungsmenge, 7
Verkettung, 10
```