wrangle_report

December 17, 2018

1 Wrangle report

1.1 Data

We use three datasets in this project, twitter-archive-enhanced.csv, image_predictions.tsv and tweet_json.txt. We also create a new dataframe dogs_information.csv

twitter-archive-enhanced.csv:

This dataset record almost every basic attribute about tweet data.

image_predictions.tsv:

This dataset do a prediction about pictures in tweets in twitter-archive-enhanced.csv.

tweet_json.txt:

This file record every detail about tweets in twitter-archive-enhanced.csv.

dogs_information.csv

This dataset include 'name', 'doggo', 'floofer', 'pupper', 'puppo', 'rating_numerator', 'rating_denominator', 'tweet_id' and some columns in image_prediction.tsv.

1.2 Collect

twitter-archive-enhanced.csv:

We use this dataset as default one, just upload it to the workspace.

image_predictions.tsv:

We use requests package to download the data from internet and save it into the file image_predictions.tsv.

tweet_json.txt:

We download it from provided link and upload it into workspace.

Conclude

We have three dataset to store above information:

tweet_info to store twitter-archive-enhanced.csv (pandas dataframe)

image_info to store image_predictions.tsv (pandas dataframe)

tweet_json_info to store tweet_json.txt (list, if we decide to use some attributes, we'll extract those attributes directly from this list)

1.3 Assess

1.3.1 Quality

twitter-archive-enhanced.csv:

First, as requested, we notice there are some retweeted tweets in this dataset, and tweets don't have photos.

Next, we observe type of each columns, and find:

- tweet_id is type int64
- in_reply_to_status_id is type float64
- in_reply_to_user_id is type float64
- retweeted_status_id is type float64
- retweeted_status_user_id is type float64
- timestamp is object type
- retweeted_status_timestamp is type object

Then, we take a close look at each column. From left to right, we have found following problems:

- timestamp column has +0000 at end
- source column seems has tag a, and href link
- retweeted_status_id, retweeted_status_user_id and retweeted_status_timestamp maybe not need.(If we delete all retweeted tweets, then there's no need to keep these three columns.)
- name column has name displayed as None, which isn't np.nan in pandas
- name column have name begin with [a-z], like 'a', 'an', 'the', and others, obviously not a dog name.
- In doggo, puppo, pupper and floofer columns, there are data displayed as None, which is not a np.nan type.
- There are 12 records have doggo and pupper, 1 record has doggo and puppo, and 1 has doggo and floofer.
- There are some wrong values in rating_denominator and rating_numerator columns.

image_predictions.tsv:

First, it has too many columns we don't need.

Second, tweet_id column is type int64.

tweet_json.txt:

It has too many information won't be used.

1.3.2 Tidy

twitter-archive-enhanced.csv

- Last four columns, doggo floofer pupper puppo can be integrate into one column Stage
- columns numerator and denomitor can be one column score

image_predictions.tsv:

• image_info should be a part of tweet_info

tweet_json.txt

• There are some attributes we need, these attributes should in tweet_info dataframe.

1.4 Clean

We copy three original datasets.

Retweeted tweets

We choose to solve this quality problem first. We find those retweeted tweets and delete them.

Redundant columns

After delete those retweeted tweets, we find retweeted_status_id, retweeted_status_user_id, retweeted_status_timestamp, in_reply_to_status_id and in_reply_to_user_idseems useless, so we drop them.

Wrong score

We first extract score from text directly, then we examin some strange data one by one and fix them.

Missing data

To add attributes in tweet_json.txt into tweet_info_clean dataframe(which is the copy of tweet_info), we extract followers_count, retweet_count and favorite_count from tweet_json_info then merge them into tweet_info_clean.

Multi Stage

We build a new dataframe df_stage to solve this problem.

From task, we only need doggo, floofer, pupper, puppo, rating_numerator and rating_denominator columns in df_stage and drop those columns in tweet_info_clean at the same time. For completeness, we also include tweet_id in case we need to query from tweet_info_clean.

Then we check tweets have multi stage, and fix them.

Image info drop

We choose the most confident prediction and preserve it to merge with tweet_info_clean and df_stage.

Merge four Stage columns

It make sence to merge four stage columns doggo, puppo, pupper and floofer into one column Stage. Set None value in and Stage at the same time. This work is done on df_stage.

Calculate numerator/denominator

Calculate result of numerator/deominator, store it in the new column score, then drop columns rating_numerator and rating_denominator, this work is done on df_stage.

Add image_info

We merge image information processed in **Image info drop** step with tweet_info_clean and df_stage.

Timestamp

Extract time in timestamp column as form: %Y-%m-%d %H%M%S, make it easier for next process.

Wrong types

- change tweet_id type to string (both tweet_info_clean and df_stage)
- change in_reply_to_status_id to type string
- change in_reply_to_user_id to type string
- change timestamp to object datetime
- chnge img_num to type string

Some columns have been deleted, so there are less columns need change type.

Source with tag < a >

We extract text betweet tag < a >, and save them in source column.

Name column

We turn None in name column into np.nan, and extract those words begin with [a-z], set them to np.nan, too.

1.5 Save

Finally, we save tweet_info_clean into twitter_archive_master.csv , save df_stage into dogs_information.csv and use them in the following analyse.