Elementare Funktibnen

1. Intervalnotation & spezielle Teilmengen von IR

Def. (Intervall). Eine Teilmenge I ⊆/R heißt Intervall, falls (vralle a,b ∈ I mit a<b und ∀C ∈ IR mit a < c < b gilt, das<

c ∈ I.

Schreibweise

$$[a,b] = \{x \in |R| | a \leq x \leq b\}$$

$$= \left[a, \infty \right[= \left\{ \times \in \mathbb{N} \middle| \times \right\}, \alpha \right]$$

Bei Termen wie
$$[x-2, \ln(5-2x), \frac{1}{x(x-1)}]$$

ist der Maximale Definitionsbereich $(x-1)$
explicit zu bestimmen.
 $[x-2: I = {x \in |R| \times > 2}]$

$$0.\sqrt{x-2}: I = \{x \in |R| \times \ge 2\}$$

... SO/DASS...

Minituma. Gib Bild & Usbild an:
$$f(x)=x^2$$

wit $D=[-2,3]$. Bestimme $f([-2,0])=[0,14]$
 $f(x)$
 $f(x$

· Injektiv: nenn $f(x_1) = f(x_2) \rightarrow x_1 = x_2$ (Horizontaler Geradetest: jede Horizontale Gerade schnidet den Graphen hochsten einmal.)

schnidet den Graphen hochsten einmal)

Surjektiv: Für jedes y EW gibt es x ED

mit f(x)=y.

(Jede horizontale Gerade in W schneidet mindestens
einmal).

· Bijehtiv: injehtiv & surjehtiv.

WICHTIGE CHARACTERISIERUNG:

f INJEKTIV (-> es] eine Linksinverse gof=id.

f SURJENTIV (-> es] eine Rechtsinverse foh=id

BIENTIV (-> eindertige Inverse f-1:W->Dexistient

Beispiel:

a>1: f(x)=a ist streng monoton WACHSEND.

Sein Bild ax ist IR+ SURJEKTIV ay IR.
Also BIJEKTIV zw. IR & IR+

thang. $f(x) = \frac{3\times2}{\times11}$ $\times \xi -1, \infty [\rightarrow f(x) \in] = \frac{3\times2}{\times11}$ Injektive Funktion?

$$f'(x) = \frac{5}{(x+i)^2} > 0 \rightarrow \text{streng} \rightarrow \text{inventiv}$$
.

Surjektive Funktion?

$$y = \frac{3x-2}{x+1} \rightarrow x = \frac{y+2}{3-y}$$
 $f^{-1}(y) = \frac{y+2}{3-y}$ im $\int_{-0.5}^{0.5} 3[$ Surjectiv.

Bijtentiv im interval $\int_{-0.5}^{0.5} 3[$

Thoung $\int_{-0.5}^{0.5} 1R^{\frac{1}{5}} \rightarrow 1R^{\frac{1}{5}} f(x) = x^{2}$ Injectiv.

Eigentiv.

 $f(x) = 2x > 0 \rightarrow 1$

Surjectiv.

 $f(y) = y + 1$

Surjectiv.

 $f(y) = y + 1$
 $f(x) = x^{2} + 1$

Surjectiv.

 $f(y) = y + 1$
 $f(x) = y + 1$

Therefore $f(x) = y + 1$
 $f(x) = y$

Tibing. a) e x>0	Berechne bitte die Inverse Funktion (b) ex-a c) $\frac{3x-7}{x-2}$ x>a $x \in \mathbb{Z}^2$	∾ U :
	J , L	