Ignorance priors and transformation groups

 \leftarrow Back to Chapters

Comments on 12.4

I find the discussion in 12.4 somewhat off the mark. "Statistical decision theory and bayesian analysis" by James O. Berger is a better reference. The summary below is largely based on it, particularly sections 3.3.2 and 6.6.

The word "invariance" presupposes a group action. The most natural setting is that in which a group G acts on the space X in which we get data.

Example 1: (location- scale in1D) Take X = \mathbb{A}^1 the affine line, and G the group of (orientationpreserving) affine ${\it trans-}$ formations of X. As is common (for example in computer graphics), we repre- sent elements of Xas vectors $\vec{x} = \begin{pmatrix} x \\ 1 \end{pmatrix}$

(the line y = 1 inside \mathbb{R}^2) and then

is indeed affine-linear. The product in G is then:

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}$$

This is a noncommutativegroup. We have the following pair of group homomorphisms (known as a short

$$\mathbb{R} \hookrightarrow G \twoheadrightarrow \mathbb{R}_+$$

exact sequence):

Here

 \mathbb{R} is

the

real

num-

bers

un-

 ${\rm der}$

addition,

and

 \hookrightarrow

 ${\rm sends}$

a

num-

ber

to a

trans-

la-

tion

by

that

amount;

on

 $\quad \text{the} \quad$

other

hand

 \mathbb{R}_+ is

posi-

tive

reals

un-

 der

multipli-

ca-

tion,

and

 \longrightarrow

 ${\rm sends}$

an

affine

 $_{\mathrm{map}}$

to its

 $\operatorname{stretch}$

ing

factor.

These

maps

 ${\rm do}$

onumber not
onu

de-

pend

on

any

par-

ticu-

lar

way

of repre-

sent-

ing

X

and

G.

 ${\rm On}$

the

other

hand,

there

are

"back-

ward

maps"

 \mathbb{R}_{+} \rightarrow

G

and

 $G \rightarrow$

 $\mathbb{R},$

but

those

are

de-

pend

on

addi-

tional choices,

like

the

choice

to

repre-

sent

X

and

G in

 $_{\rm of}^{\rm terms}$

vec-

tors

Example

2:

(Location-

scale

in

higher

di-

men-

sions)

When

X =

 \mathbb{A}^n

the

location-

scale

group

G is

the

sub-

group

of

those

affine

trans-

forms

of X

whose

lin-

ear

part

is a

pure

 ${\it rescal-}$

ing

by a

(posi-

tive)

fac-

tor.

We

then

have

 $\mathbb{R}^n \hookrightarrow$

 $G \twoheadrightarrow$

 $\mathbb{R}_{+}.$

We are interested in distribution of the data, i.e. in probability distributions over X. Thus we consider a collection of \mathcal{P} of distributions over X.

Defintion: The collection \mathcal{P} is said to be invariant under the action of G if for any $p \in P$ and any $g \in G$ the pushforward distribution g_*p is also in \mathcal{P} .

Since $(g \cdot h)_* p = g_*(h_* p)$, this means that G acts on \mathcal{P} as well. If \mathcal{P} is a parametric family, parametrized by space Θ then we conclude that G acts on Θ .

Example 1 continued:

a) Let \mathcal{P} be the collection of all normal distributions on \mathbb{A}^1 . Note that in order to talk about the collection \mathcal{P} specifying the origin is not necessary. This collection is a invariant under the action of G. If we pick an origin, then we can use mean μ and standard deviation σ as parameters for \mathcal{P} . We can also use representation of G by matrices that we have discussed above. Then $\Theta = \mathbb{R} \times \mathbb{R}_+$ is the parameter space and G acts on by sending (μ, σ) to $(a\mu + b, a\sigma)$.

(Together with x being sent to ax + b this appears as 12.30 in Jaynes.)

- b) Let \mathcal{P} be the collection of all normal distributions on \mathbb{A}^1 ; after choice of the origin this is the family with pdfs $\frac{1}{\pi\gamma\left[1+\left(\frac{(x-x_0)}{\gamma}\right)^2\right]}$. We no longer have mean or standard deviation available as a parameters, but we do have location x_0 and scale γ . They transform under G by the same formulas as (μ, σ) did before.
- c) Let \mathcal{P} be the collection of all mixures of normal distributions on \mathbb{A}^1 . After picking the origin, this is the collection of distributions which can be written as $p = \sum_{i=1}^{m} w_i \mathcal{N}(\mu_i, \sigma_i^2)$ for some $m \in \mathbb{N}$ and $w_i > 0$ with $\sum w_i = 1$. This collection is invariant under G. When m is fixed the supbfamily \mathcal{P}_m it is parametric, with parameters being 3m dimensional vectors (μ_i, σ_i, w_i) . If m is not fixed, however, the collection \mathcal{P} is not parametric in the usual sense of the word.

Example 3: Consider the family \mathcal{P} of all Gamma distributions on $X = \mathbb{R}_+$, with pdfs $\Gamma_{(k,\theta)}(x) = \frac{1}{\Gamma(k)\theta} (\frac{x}{\theta})^{k-1} \exp(-\frac{x}{\theta})$. Here $G = \mathbb{R}_+$ acts on X by multiplication, \mathcal{P} is invariant, and the action of $a \in G$ sends (k,θ) to $(k,a\theta)$.