√ الفقرات الرئيسية المط<mark>لوبة بهذه المحاضرة</mark>

• خوارزمية السمبلكس المعدلة

(المحاضرة 5)

- جدول خوارزمية السمبلكس المعدلة.
- خطوات الانتقال من جدول السمبلكس المعدلة إلى الجدول التالي.
 - حل بعض التمارين.

مراجعة للمحاضرات السابقة

- الإجابة على أسئلة الطلاب.
- طرح بعض الأسئلة على الطلاب، والتي تتعلق بالآتي (على سبيل المثال):
- ✓ مناقشة وحدانية الحل الأمثل أثناء استخدام خوارزمية السمبلكس.
 (تترك الإجابة للطالب).
 - ✓ اذكر القواعد التي يجب أن تتحقق في جداول السمبلكس.
 (تمت الإجابة أثناء شرح المحاضرة السابقة).
- ✓ حل التمرين 3 (الموجود بنهاية المحاضرة السابقة) باستخدام خوارزمية السعبلكس ذات التقنية M. (تترك الإجابة للطالب ويجب على الطالب مناقشة النتيجة حتى لو لم يطلب ذلك صراحة).
 - تمهيد للمحاضرة اللاحقة<mark>.</mark>
 - مقدمه عن ال<mark>مسألة المرافقة.</mark>

الصفحة 1 من 8

المحاضرة 5

بحوث العمليات - سنة 4 رياضيات تطبيقية

• خوار زمية السمبلكس المعدلة

نبدأ بالتذكير بجدول خوارزمية السمبلكس وهو كالآتي:

القاعدة	<mark>ئاع</mark> دة	ناعدة ومتحولات غير الق	متح <mark>ولات الف</mark>	الحل
Z				•••
متعولات ا	$\begin{bmatrix} \mu \\ \alpha \end{bmatrix}$	λ	i:	
ब्रिंड	:		:	;

نفترض أن الجدول الحالي للسمبلكس غير أمثل، ولكتابة الجدول التالي نحدد العنصر المحوري وليكن α ثم يتم تحديد متحولات القاعدة الجديدة حيث يأخذ المتحول الداخل مكان المتحول الخارج، ونستخدم التحويلات الأولية المناسبة والتي تتوافق مع التعليمات الآتية:

- المحوري α عناصر السطر المحوري على العنصر المحوري α
 - 2- بقية عناصر العمود المحوري ت<mark>كون أصفار.</mark>
- 3- بالنسبة للعناصر التي ليست في السطر المحوري أو العمود المحوري نطبق القاعدة التالية:

$$\bar{\lambda} = \frac{\alpha \lambda - \mu \beta}{\alpha} \iff \bar{\lambda} = \lambda - \frac{\mu \beta}{\alpha}$$

أما بالنسبة لجدول خوارزمية السمبلكس المعدلة فهو كالآتي:

			_	
القاعدة	متحولات غير القاعدة			الحل
Z				
نگ	÷		ŧ	:
تحولات القاعدة				:
3	:		:	:

نفترض أن الجدول الحالي للسمبلكس المعدلة هو الجدول رقم (t):

القاعدة	 x_p	 	 الحل
Z	 	 •••	
:	:	÷	1
:	 μ	 λ	 :
<u>:</u>	1	:	<u> </u>
$\begin{bmatrix} x_k \end{bmatrix}$	 a	 β	
i	:(:	ŀ

الجدول رقم (t) لخوارزمية السمبلكس المعدلة

ونفترض أن المتحول الداخل في الجدول رقم (t) هو x_p ، والمتحول الخارج هو x_k الذي يحقق قاعدة النسبة الأصغر، ويكون الجدول رقم (t+1) لخوارزمية السمبلكس المعدلة هو:

القاعدة	 $\left[x_{k}\right]$))		الحل
Z	 	<u></u>	2		
:					i
:	 $\frac{\mu}{-\alpha}$	<u></u>	$ar{\lambda}$:
:	:		:		
x_p	 $\frac{1}{\alpha}$	277	$\frac{\beta}{\alpha}$		·
:			:		:

الجدول رقم (t+1) لخوارزمية السمبلكس المعدلة

ولكتابة الجدول رقم (t+1) لخوارزمية السمبلكس المعدلة نتبع التعليمات الآتية:

1- يتم التبادل بين المتحولين الداخل والخارج.

تستبدل قيمة العنصر المحوري $\frac{1}{\alpha}$ بالقيمة $\frac{1}{\alpha}$.

-3تقسم بقية عناصر السطر المحوري على العنصر المحوري -3

-4تقسم بقية عناصر العمود المحو<mark>ري على -4.</mark>

5- بالنسبة لبقية العناصر (وهي ليست في السطر المحوري أو العمود المحوري) نطبق القاعدة التالية:

$$\bar{\lambda} = \lambda - \frac{\mu\beta}{\alpha}$$

الصفحة 3 من 8

المحاضرة 5

تمارین تتعلق بالمحاضرة 5

تمرين 1: استخدم خوارزمية السمبلكس المعدلة لحل مسألة البرمجة الخطية الآتية:

$$\max z = 4x_1 + 3x_2$$

subject to

$$2x_1 + x_2 \le 10$$

$$5x_1 + 3x_2 \le 26$$

$$x_1 + x_2 \leq 8$$

$$x_1, x_2 \ge 0$$

الحل: تكتب الصياغة القياسية كالآتي:

max
$$z = 4x_1 + 3x_2$$

subject to
$$2x_1 + x_2 + x_3 = 10$$

$$5x_1 + 3x_2 + x_4 = 26$$

$$x_1 + x_2 + x_5 = 8$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

حل القاعدة الممكن هو: $x_3 = 10, x_4 = 26, x_5 = 8$ والجدول الأول لخوارزمية السمبلكس المعدلة هو:

القاعدة	x_1	x_2	الحل
Z	4	-3	0
x_3	2	1	10
x_4	5	3	<mark>2</mark> 6
<i>x</i> ₅	1_	Y	8

الجدول الأول لخوار زمية السمبلكس المعدلة

القاعدة	x_3	x_2	الحل
Z	2	-1	20
x_1	0.5	0.5	5
x_4	-2.5	0.5	1
<i>x</i> ₅	-0.5	0.5	3

الجدول الثاني لخوارزمية السمبلكس المعدلة

القاعدة	x_3	x_4	الحل
Z	-3	2	<mark>2</mark> 2
x_1	3	-1	4
x_2	-5	2	2
x_5	2	-1	2

الجدول الثالث لخوارزمية السمبلكس المعدلة

القاعدة	x_5	x_4	الحل
Z	1.5	0.5	2 5
<i>x</i> ₁	-1.5	0.5	1
<i>x</i> ₂	2.5	-0.5	7
x_3	0.5	-0.5	1

الجدول الرابع (الأمثل) لخوارزمية السمبلكس المعدلة

$$z=25$$
 الحل الأمثل هو: $x_1=1, x_2=7, x_3=1$ الحل الأمثل هو:

تمرين 2: استخدم خوارزمية السمبلكس المعدلة لحل مسألة البرمجة الخطية الآتية:

$$\max z = -x_1 + 3x_2$$

subject to

$$3x_1 + x_2 \leq 3$$

$$x_1 + 2x_2 \ge 2$$

$$x_1, x_2 \ge 0$$

الحل:

نكتب الصياغة القياسية الموسعة، وهي <mark>كالآتي:</mark>

 $\max z = -x_1 + 3x_2 - MR$ subject to

$$3x_1 + x_2 + x_3 = 3$$

$$x_1 + 2x_2 - x_4 + R = 2$$

$$x_1, x_2, x_2, x_4, R \ge 0$$

 $\frac{x_3}{x_3} = 3, R = 2$ حل القاعدة الممكن هو

المحاضرة 5

بحوث العمليات ـ سنة 4 رياضيات تطبيقية

من القيد الثاني نجد $x_4 = 2 - x_1 - 2x_2 + x_4$ ، وبالتالي فان:

$$z = (-1 + M)x_1 + (3 + 2M)x_2 - Mx_4 - 2M$$

والجدول الأول لخوارزمية السمبلكس المعدلة هو:

القاعدة	x_1	x_2	x_4	الحل
Z	1 - <i>M</i>	-3-2 <i>M</i>	M	-2 <i>M</i>
<i>x</i> ₃	3 (1	0	3
R	1	2	-1	2

الجدول الأول لخوارزمية السمبلكس المعدلة

القاعدة	x_1	R	x_4	الحل
z	$\frac{5}{2}$	$M+\frac{3}{2}$	$-\frac{3}{2}$	3
x_3	$\frac{5}{2}$	$\frac{1}{2}$	1 2	2
x_2	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	1

الجدول الثاني لخوارزمية السمبلكس المعدلة

القاعدة	x_1	R	x_3	الحل
Z	10	M	3	9
x_4	5	<u> </u>	2	4
x_2	3	70	1	3

الجدول الثالث (الأمثل) لخوارزمية السمبلكس المعدلة

الحل الأمثل هو: $x_1 = 0, x_2 = 3$ ، والقيمة المثلى هي: z = 9

الصفحة 6 من 8

تمرين 3: استخدم خوارزمية السمبلكس المعدلة لحل مسألة البرمجة الخطية الآتية:

$$\max_{x} z = 3x_1 + x_2 + 2x_3 + 4$$
subject to

$$x_1 + 2x_2 + x_3 \le 5$$

$$3x_1 + 2x_2 + x_3 \le 6$$

$$x_1 + x_2 + 2x_3 \ge 7$$

$$x_1, x_2, x_3 \ge 0$$

نكتب الصياغة القياسية الموسعة، وهي <mark>كالآتي:</mark>

$$max z = 3x_1 + x_2 + 2x_3 + 4 - MR$$

$$x_1 + 2x_2 + x_3 + x_4 = 5$$

$$3x_1 + 2x_2 + x_3 + x_5 = 6$$

$$x_1 + x_2 + 2x_3 - x_6 + R = 7$$

$$x_1, x_2, x_3, x_4, x_5, x_6, R \ge 0$$

$$x_4 = 4, x_5 = 6, R = 7$$
 حل القاعدة الممكن هو

من القيد الثالث نجد
$$x_6 = 7 - x_1 - x_2 - 2x_3 + x_6$$
 من القيد الثالث نجد

z =

والجدول الأول لخوارزمية السمبلكس المعدل<mark>ة هو:</mark>

القاعدة)	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₆	الحل
Z						
x_4		1	1	1	0	5
x_5		3	2	1	0	6
R		1	1	2	-1	7

الجدول الأول لخوار زمية السميلكس المعدلة

2023	-2024	است	الدر	العاد

		_		حاضرة 5	الم	7	ت تطبيقيا		
	لقاعدة	II	x_1	x_2	R	<i>x</i> ₆	الحل		
	Z								
	x_4								
	<i>x</i> ₅								
10	x_3								
		لة	الجدول الثاني لخوارزمية السمبلكس المعدلة						
	لقاعدة	11	x_5	x_2	R	x_6	الحل		
	z								
	x_4								
	x_1			1	\				
	x_3								
		الجدول الثالث لخوارزمية السمبلكس المعدلة							
	لقاعدة	11	x_5 (x_2	R	<i>x</i> ₄	الحل		
	z						$\frac{29}{2}$		
	<i>x</i> ₆						$\frac{5}{2}$		
	<i>x</i> ₁		ď				$\frac{1}{2}$		
	x_3						$\frac{9}{2}$		
	دلة	لمعا	اسمبلکس ا	خوار زمية ال	ع (الأمثل) ا	جد <mark>ول الراب</mark>	11		