

Ingeniería Mecatrónica

Control Analógico

LGR

Práctica #3

1. Objetivo y competencias a desarrollar por el participante

Objetivos:

 Examinar la posición de los polos se un sistema en lazo cerrado conforme varía la ganancia.

Competencia a desarrollar

o Analizar y predecir el comportamiento de los sistemas lineales mediante la variación de la ganancia, utilizando el método del lugar de las raíces.

2. Competencias previas.

- Conocimiento de las reglas generales para la construcción del LGR
- Conocimiento del criterio de estabilidad de Routh
- Manejo de matlab

3. Equipo, Materiales e Insumos

- o Computadora.
- Software Matlab

4. Descripción de la Práctica

En esta práctica se construirá el LGR de para un sistema de control en lazo cerrado, tanto paso a paso como utilizando la función rlocus de Matlab.

5. Procedimiento

Dibuje los lugares de las raíces para el sistema de control en lazo cerrado con

Considere el sistema de control en lazo cerrado con:

$$G(s) = \frac{k}{s(s+1)(s^2+4s+5)}; H(s) = 1$$

LGR paso a paso:

5.1 Encontrar el número de polos y ceros en lazo abierto.

- 5.2 Dibujar los ceros y polos en el plano complejo.
- 5.3 Encontrar las asíntotas.
- 5.4 Encontrar el punto de cruce de las asíntotas con el eje real.
- 5.5 Encontrar los puntos de ruptura.
- 5.6 Encontrar el cruce con el eje imaginario de las asíntotas.
- 5.7 Dibujar las asíntotas.
- 5.8 Encontrar el ángulo de partida y de llegada utilizando:

$$\varphi = \sum \phi_P - \sum \phi_Z$$

$$\phi d = 180^{\circ} - \varphi$$

$$\phi a = 180^{\circ} + \varphi$$

5.9 Dibujar el LGR.

LGR con MATLAB.

- 5.10 Utilizar la función rlocus para obtener el LGR y comparar con el resultado obtenido en el paso previo.
- 5.11 Describa la interpretación del LGR obtenido.

6. Bibliografía

6.1 Ogata, K. (2003). Ingeniería de control moderna. Pearson Educación.

