Busca Local Iterada Aplicada à Minimização do Uso de Estoque Intermediário em Sistemas Industriais

Douglas Matuzalem Pontes Belo Lança Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

30 de agosto de 2017

Conteúdo

- Introdução
- 2 Contribuições
- 3 Experimentos Computacionais
- 4 Conclusões

Contexto Industrial

- Uma única máquina produz diferentes produtos com demandas pré-definidas;
- A produção é dividida em estágios a cada estágio um tipo de produto é fabricado;
- Diferentes clientes depositam ordens de compra;
- Estoque intermediário é utilizado para armazenar pedidos de compra incompletos;
- Pedidos de compra completamente produzidos são despachados.

O **Espalhamento de Ordem** é o número de estágios entre a produção do primeiro produto de uma ordem de compra e a produção do último produto da mesma ordem.

O Problema de Minimização do Espalhamento de Ordem (Minimization of Order Spread Problem, MORP) visa minimizar o espalhamento máximo (ou médio) das ordens de compra por meio do sequenciamento da produção.

Motivação

- ► Trata-se de um problema NP-Difícil (Garey & Johnson, 1979);
- Aplicação prática industrial ampla;
- Literatura restrita;
- ► Equivalência com outros problemas da literatura, como o problema de minimização do comprimento de redes em circuitos eletrônicos (De Giovanni et al., 2013).

	Painel	Batente	Rodapé	Sarrafo
Alice	√	Х	✓	X
Bob	\checkmark	\checkmark	X	\checkmark
Chico	\checkmark	\checkmark	\checkmark	X
Davi	X	X	X	\checkmark

Instância

- Conjunto J de produtos;
- Conjunto I de ordens de compra;
- ▶ Matriz $P(|I| \times |J|)$.

	j_1	j_2	j_3	j_4
$\overline{i_1}$	1	1	0	0
i_2	1	0	1	0
i_2 i_3	0	0	0	1
i_4	0	0	0	1

Solução

Uma solução para o MORP é uma permutação π das colunas da matriz P, gerando uma matriz permutação Q^π .

Para identificar o comprimento dos espalhamentos de ordens a matriz Q^{π} é definida com a propriedade de 1s consecutivos de acordo com a equação abaixo:

$$q_{ij}^{\pi} = \begin{cases} 1 & \text{se } \exists x, \exists y \mid \pi[x] \le j \le \pi[y] \text{ e } p_{ix} = p_{iy} = 1 \\ 0, & \text{caso contrário} \end{cases}$$
 (1)

	$ j_1 $	j_6	j_5	j_4	j_3	j_2
$\overline{i_1}$	1	0	0	0	0	1
i_2	1	0	0	0	1	0
i_3	0	0	1	1	0	0
i_4	0	1	0	1	0	0
i_5	0	0	1	0	0	1
i_6	0	1	0	0	1	0
<i>(a)</i>						

	$ \begin{array}{c c} j_1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	j_6	j_5	j_4	j_3	j_2
$\overline{i_1}$	1	1	1	1	1	1
i_2	1	1	1	1	1	0
i_3	0	0	1	1	0	0
i_4	0	1	1	1	0	0
i_5	0	0	1	1	1	1
i_6	0	1	1	1	1	0
			(b)			

Métodos Propostos

Visão Geral

A proposta deste trabalho é a implementação de um método em duas fases para solução do MORP:

- Na primeira, gera-se uma solução inicial por meio de uma heurística gulosa;
- Na segunda, aprimora-se a solução pela aplicação da metaheurística Busca Local Iterada (*Iterated Local Search*, ILS).

Solução Inicial

A solução inicial é gerada por uma heurística rápida:

- Pré-processamento: remoção de dados redundantes;
- Construção gulosa: método Best Insertion;

Solução Inicial: Best Insertion

Princípio

Partir de uma solução π vazia e adicionar cada um dos produtos, iterativamente, na melhor posição possível, até que se obtenha uma solução π completa.

	j_2	j_1	
i_1	1	1	
i_2	0	1	
i_3	0	0	
i_4	0	0	
i_5	1	1	
i_6	0	0	
	(a)		

	j_1	j_2			
i_1	1	1			
i_2	1	0			
i_3	0	0			
i_4	0	0			
i_5	1	1			
i_6	0	0			
(b)					

Solução Inicial: Best Insertion

	j_3	j_2	j_1			
i_1	0	1	1			
i_2	1	0	1			
i_3	0	0	0			
i_4	0	0	0			
i_5	0	1	1			
i_6	1	0	0			
(a)						

	j_2	j_1	j_3			
$\overline{i_1}$	1	1	0			
i_2	0	1	1			
i_3	0	0	0			
i_4	0	0	0			
i_5	1	1	0			
i_6	0	0	1			
(c)						

Busca Local Iterada

Descrição

- Proposta por Lourenço et al. (2003);
- Parte de uma solução inicial viável;
- Alterna iterativamente etapas de intensificação e diversificação da busca no espaço de soluções;
- Tende a não ficar presa em ótimos locais;

ILS Aplicada ao MORP

- Solução inicial heurística;
- ▶ Buscas locais (100%): 2-swap e agrupamento de 1-blocks (Paiva e Carvalho, 2017);
- Perturbação (20%): 2-opt;
- ► Critério de parada: 100 iterações.

Busca Local Iterada

Busca Local: 2-swap

Princípio

Trocar sucessivamente dois elementos de posição, mantendo as trocas que aprimorem a solução. A cada melhoria, o método é reiniciado.

	j_2	j_3	j_1	j_4	j_5	j_6	
i_1	1	0	1	0	1	0	
i_2	0	1	1	0	1	0	
i_3	1	0	0	1	1	0	
i_4	0	0	0	1	0	1	
i_5	1	0	1	1	0	1	
i_6	0	1	0	0	0	1	
<i>(a)</i>							

	j_5	j_3	j_1	j_4	j_2	j_6
i_1	1	0	1	0	1	0
i_2	1	1	1	0	0	0
i_3	1	0	0	1	1	0
i_3 i_4	0	0	0	1	0	1
i_5	0	0	1	1	1	1
i_6	0	1	0	0	0	1
			(b)			

Busca Local: Agrupamento de 1-blocks

Princípio

Movimentar as colunas de uma matriz binária de maneira a agrupar os elementos não nulos em uma linha específica.

	$ \begin{array}{c} j_1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} $	j_2	j_3	j_4	j_5	j_6
i_1	1	1	0	0	1	0
i_2	1	0	1	0	1	0
i_3	0	1	0	1	1	0
i_4	0	0	0	1	0	1
i_5	1	1	0	1	1	0
i_6	0	0	1	0	0	1

Busca Local: Agrupamento de 1-blocks

Princípio

Movimentar as colunas de uma matriz binária de maneira a agrupar os elementos não nulos em uma linha específica.

	j_1	j_3	j_2	j_4	j_5	j_6
i_1	1	0	1	0	1	0
i_1 i_2	1	1	0	0	1	0
i_3	0	0	1	1	1	0
i_3 i_4	0	0	0	1	0	1
i_5	1	0	1	1	1	0
i_6	0	1	0	0	0	1
			(a)			

	j_1	j_3	j_4	j_5	j_2	j_6
$\overline{i_1}$	1	0	0	1	1	0
i_1 i_2	1	1	0	1	0	0
i_3 i_4	0	0	1	1	1	0
i_4	0	0	1	0	0	1
i_5	1	0	1	1	1	0
i_6	0	1	0	0	0	1
			(b)			

Busca Local: Agrupamento de 1-blocks

	j_3	j_1	j_4			j_6		
$\overline{i_1}$	0	1	0	0	1	0		
i_2	1	1	0	1	0	0		
i_3	0	0	1	1	1	0		
i_4	0	0	1	0	0	1		
i_5	0	1	1	1	1	0		
i_6	1	0	0	0	0	1		
(a)								

	j_3	j_4	j_5	j_2	j_1	j_6
$\overline{i_1}$	0	0	0	1	1	0
i_1 i_2	1	0	1	0	1	0
i_3	0	1	1	1	0	0
i_4	0	1	0	0	0	1
i_5	0	1	1	1	1	0
i_6	1	0	0	0	0	1
			(b)			

Perturbação: 2-opt

Princípio

Inverter os elementos dentro de um intervalo definido aleatoriamente.

	j_2	j_3	j_1	j_4	j_5	j_6	
i_1	1	0	1	0	1	0	
i_2	0	1	1	0	1	0	
i_3	1	0	0	1	1	0	
i_4	0	0	0	1	0	1	
i_5	1	0	1	1	0	1	
i_6	1 0 1 0 1 0	1	0	0	0	1	
(a)							

	j_4	j_1	j_3	j_2	j_5	j_6		
i_1	0	1	0	1	1	0		
i_2	0	1	1	0	1	0		
i_3	1	0	0	1	1	0		
i_4	1	0	0	0	0	1		
$i_4 i_5$	1	1	0	1	0	1		
i_6	0	0	1	0	0	1		
<i>(b)</i>								

Instâncias MORP de Fink & Voss (1999)

Conjunto de 797 instâncias artificiais para o MORP é dividido em 8 grupos, com aproximadamente 100 instâncias cada, geradas aleatoriamente.

Comparação

Estado da arte relacionado ao MORP: Busca Tabu Reativa (TSRE5000) de Fink & Voss (1999).

Setup

- ▶ Métodos implementados utilizando a linguagem C++ e compilados utilizando g++ 4.4.1 e a opção de otimização -O3;
- Computador Intel i5 Quad Core de 3.2GHz, 8 GB de RAM, e sistema operacional Ubuntu 15.10.

		TSRE5000		ILS-MORP					
m	v	BKS	T(s)	S	S^*	<i>gap</i> (%)	σ	T(s)	
50	0,25	14,04	142,6	14,90	14,31	1,92	0,49	0,48	
50	0,50	12,43	79,5	15,03	14,56	17,13	0,30	0,44	
50	0,75	4,87	58,6	3,04	2,71	-37,57	0,24	0,41	
50	1,00	1,38	35,1	1,48	1,29	-6,52	0,19	0,70	
60	0,25	16,41	159,5	18,18	17,44	6,27	0,54	0,97	
60	0,50	14,61	142,6	16,84	16,35	11,90	0,35	0,80	
60	0,75	5,33	98,2	4,18	3,79	-28,89	0,31	0,92	
60	1,00	1,45	58,9	1,66	1,32	-8,96	0,29	0,83	

Instâncias GMLP e MOSP

Diferentes conjuntos com um total de 68 instâncias reais e artificiais para o problema de minimização do comprimento de redes em circuitos eletrônicos e equivalentes.

Número de padrões $m \in \{20, 50, 75, 100, 141\}$.

Comparação

Algoritmo genético (GA) de De Giovanni et al. (2013).

Setup

Computador Intel i5 Quad Core de 3.2GHz, 8 GB de RAM, e sistema operacional Ubuntu 15.10.

Resumo

- Soluções iguais em 10 instâncias;
- ► ILS obteve melhores soluções em 30 instâncias;
- GA obteve melhores soluções em 28 instâncias;
- gap médio de 3,18%;
- ► Melhoria de 34,67% da solução inicial em média;
- ► Tempo de execução máximo de 23,27 s;
- Convergência média em 45,02% do tempo de execução.

Conclusões

- O MORP é um importante problema no contexto industrial, que pode auxiliar no ritmo de atendimento das ordens de compra e melhor utilização de estoque intermediário;
- Existem poucas propostas na literatura para a resolução do MORP;
- ▶ O ILS proposto gerou novos melhores resultados para parte das instâncias, especificamente as esparsas;
- ► Trabalhos futuros se concentrarão em aprimorar o algoritmo proposto a fim de se obter melhores resultados para instâncias densas.

Agradecimentos

Apoio

- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq);
- ► Fundação de Apoio à Pesquisa do Estado de Minas Gerais (FAPEMIG); e
- ▶ Universidade Federal de Ouro Preto (UFOP).

Perguntas?

