ДС-1 второ контролно (2019-01-13)

Задача 1. (1.5 т.) Даден е графът Γ от фигурата по-долу.

- а) (0.75 т.) Намерете теглата на най-леките пътища от върха D до всички останали върхове на Γ , като използвате алгоритъма на Дейкстра;
- b) (0.75 т.) Намерете минималното покриващо дърво на Γ , като използвате алгоритъма на Крускал.

Решение:

a)

A	В	С	D	Ε	F	Н	непосетени
∞	∞	∞	0	∞	∞	∞	A,B,C,D,E,F,H
∞	8	5	_	2	∞	∞	A,B,C,E,F,H
∞	8	4	_	-	6	3	A,B,C,F,H
∞	5	4	_	_	6	_	A,B,C,F
∞	5	-	_	_	6	_	A,B,F
10	_	_	_	_	6	_	A,F
9	-	_	_	_	-	_	Α
_	_	_	_	_	-	_	Ø

b) Тук числата по ребрата на графа репрезентират последователността на избиране, а не техните тегла.

Задача 2. (1.5 т.) Нека Γ е граф с 2n на брой върхове $(n \ge 2)$, в който има точно един връх от степен n-1, а всички останали върхове са от степен поне n. Докажете, че Γ е свързан.

Доказателство:

Допускаме, че Γ не е свързан. Тогава той ще има поне две компоненти на свързаност, като в едната ще има точно един връх от степен n-1. В тази компонента с този връх от степен n-1 ще има и други върхове, които ще са поне n на брой, а в другите компоненти на свързаност ще има по поне n+1 на брой върхове. Тоест Γ има поне n+(n+1)=2n+1 върхове, което е противоречие с условието, че Γ има точно 2n на брой върхове. Това противоречие е породено от допускането, че Γ не е свързан. Следователно Γ е свързан граф.

Задача 3. (1.5 т.) Нека $n \geq 3$ и $U = \{u_1, u_2, \dots, u_n\}$. Намерете броя на елементите на множеството $\{(A,B) | A \subseteq B \subseteq U \land | (U \backslash A) \cap B| \geq 2\}$.

Решение:

Hека
$$T=\{(A,B)|A\subseteq B\subseteq U\wedge |(U\backslash A)\cap B|\geq 2\}$$
 , $S=\{(A,B)|A\subseteq B\subseteq U\}$ и $K=\{(A,B)|A\subseteq B\subseteq U\wedge |(U\backslash A)\cap B|<2\}.$

Тъй като $T, K \subseteq S, T \cap K = \emptyset$ и $T \cup K = S$, то T и K са разбиване на S и от прицнипа на събирането имаме, че |S| = |T| + |K| или |T| = |S| - |K|.

На всяка наредена двойка (A,B) съпоставяме думата β . $(A,B) \longmapsto \beta = u_1u_2\dots u_n$. Конструираме следната азбука: $\Sigma = \{XX,\, X\overline{Y},\, \overline{X}Y,\, \overline{X}\overline{Y}\}$, където за всяка буква $u_k,\, k \leq n$ имаме:

$$u_k = \begin{cases} XY, \text{ ако } u_k \in A, u_k \in B, \\ X\overline{Y}, \text{ ако } u_k \in A, u_k \notin B, \\ \overline{X}X, \text{ ако } u_k \notin A, u_k \in B, \\ \overline{X}\overline{Y}, \text{ ако } u_k \notin A, u_k \notin B. \end{cases}$$

Съществува биекция между множеството на думите α и множеството на наредените двойки (A,B) (принцип на взаимното еднозначно съпоставяне). Всяка дума β ще е над азбуката Σ . Следователно ще броим възможните думи.

$$S:S=\{(A,B)|A\subseteq B\subseteq U\}$$
 $(A,B)\in S\Leftrightarrow A\subseteq B\subseteq U\Leftrightarrow (\forall_{k\leq n})[u_k\in A\Rightarrow u_k\in B]$ $\Leftrightarrow (\forall_{k\leq n})\lnot [u_k\in A\land u_k\not\in B]\Leftrightarrow (\forall_{k\leq n})\lnot [u_k=X\overline{Y}]$ $\Leftrightarrow X\overline{Y}$ не участва в думата $\beta_{(A,B)}$, тоест $\beta_{(A,B)}$ е дума над азбука от три типа букви $\Sigma\backslash\{X\overline{Y}\}$. Следователно $|S|=3^n$.

$$K: K = \{(A, B) | A \subseteq B \subseteq U \land | (U \backslash A) \cap B | < 2\} =$$

$$= \{(A, B) | A \subseteq B \subseteq U \land | (U \backslash A) \cap B | = 0\} \cup \{(A, B) | A \subseteq B \subseteq U \land | (U \backslash A) \cap B | = 1\}$$

$$K_0$$

 $\begin{cases} |(U\backslash A)\cap B|=0\Rightarrow A=B\\ \Rightarrow \overline{X}Y$ и $X\overline{Y}$ не може да участват в думата $\beta_{(A,B)}\Rightarrow\beta_{(A,B)}$ е дума над азбука от два типа букви и $|K_0|=2^n$.

 $K_1:B$ има точно един елемент повече от A. Буква от тип $X\overline{Y}$ участва точно веднъж.

$$\binom{n}{1} \times 2^{n-1} = n \times 2^{n-1}.$$

Окончателно: $|T| = |S| - |K| = |S| - |K_0| - |K_1| = 3^n - 2^n - n \times 2^{n-1}$.