福建省青少年信息学奥林匹克冬令营

FCS NOI 2018

模拟训练

时间: 2018 年 2 月 8 日 12:30 ~ 17:00

题目名称	最大真因数	欧拉函数	残缺的算式
题目类型	传统型	传统型	传统型
目录	factor	phi	expr
可执行文件名	factor	phi	expr
输入文件名	factor.in	phi.in	expr.in
输出文件名	factor.out	phi.out	expr.out
每个测试点时限	2 秒	2 秒	2 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	10	20	25
每个测试点分值	10	5	4

提交源程序文件名

对于 C++ 语言	factor.cpp	phi.cpp	expr.cpp
对于 C 语言	factor.c	phi.c	expr.c
对于 Pascal 语言	factor.pas	phi.pas	expr.pas

编译选项

对于 C++ 语言	-O2 -lm	-O2 -lm	-O2 -lm
对于 C 语言	-O2 -lm	-O2 -lm	-O2 -lm
对于 Pascal 语言	-02	-02	-02

最大真因数 (factor)

【题目描述】

一个合数的真因数是指这个数不包括其本身的所有因数,例如 6 的正因数有 1,2,3,6,其中真因数有 1,2,3。一个合数的最大真因数则是这个数的所有真因数中最大的一个,例如 6 的最大真因数为 3。

给定正整数 l 和 r,请你求出 l 和 r 之间 (包括 l 和 r) 所有合数的最大真因数之和。

【输入格式】

从文件 factor.in 中读入数据。 输入共一行,包含两个正整数 l 和 r。保证 $l \le r$ 。

【输出格式】

输出到文件 factor.out 中。输出共一行,包含一个整数,表示 [l,r] 内所有合数的最大真因数之和。

【样例1输入】

1 10

【样例1输出】

17

【样例 1 解释】

在 1 至 10 之间的合数有 4,6,8,9,10,它们的最大真因数分别为 2,3,4,3,5,因此最大真因数之和为 2+3+4+3+5=17。

【样例 2 输入】

101 1000

【样例 2 输出】

163446

【样例3输入】

180208 975313

【样例3输出】

151642139152

【样例4输入】

339762200 340762189

【样例4输出】

112318862921546

【样例5输入】

250000000 5000000000

【样例5输出】

3094668961678105770

【子任务】

子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解决一部分测试数据。

每个测试点的数据规模及特点如下表:

测试点编号	l, r	约定	
1	≤ 100		
2	≤ 1000		
3	$\leq 10^4$	工	
4	$\leq 10^5$	无	
5	$\leq 5 \times 10^6$		
6	$\leq 10^7$		
7	$\leq 10^9$	$r - l \le 10^6$	
8	$\leq 5 \times 10^9$		
9	$\leq 10^9$	无	
10	$\leq 5 \times 10^9$		

欧拉函数 (phi)

【题目描述】

对于正整数 n,定义欧拉函数 $\varphi(n)$ 为小于等于 n 且与 n 互质的正整数个数。例如 $\varphi(1)=1$, $\varphi(8)=4$ 。

给定正整数序列 a_1, a_2, \dots, a_n , 请依次执行 q 个操作, 操作有以下三种类型:

- 0 i x: 修改 *a_i* 的值为 *x*;
- 1 1 r: 查询 $\varphi(a_l + a_{l+1} + \cdots + a_r)$ 的值,输出这个值对 $10^9 + 7$ 取模的结果;
- 2 1 r: 查询 $\varphi(a_l \times a_{l+1} \times \cdots \times a_r)$ 的值,输出这个值对 $10^9 + 7$ 取模的结果。

【输入格式】

从文件 phi.in 中读入数据。

输入的第一行包含两个正整数 n,q,分别表示序列长度及操作个数。

第二行包含 n 个正整数 a_1, a_2, \cdots, a_n ,表示初始序列。

接下来 q 行,每行三个整数 <u>0 i x</u> 或 <u>1 l r</u> 或 <u>2 l r</u>,表示一个操作。保证 1 < i < n, x > 1, 1 < l < r < n。

【输出格式】

输出到文件 phi.out 中。

对于每次形如 <u>1 1 r</u> 或 <u>2 1 r</u> 操作,输出一行,表示所求的值对 $10^9 + 7$ 取模的结果。

【样例1输入】

- 5 10
- 1 3 5 7 9
- 1 2 4
- 0 3 3
- 1 1 4
- 2 1 4
- 0 3 4
- 2 1 3
- 0 4 5
- 1 3 5
- 1 1 5
- 2 1 5

【样例1输出】

8

6

36

4

6

10

144

【样例1解释】

初始序列为 1,3,5,7,9, 依次进行的 10 个操作如下:

- 1. 查询 $\varphi(3+5+7) = \varphi(15) = 8$,输出 8;
- 2. 修改 a_3 的值为 3, 此时的序列为 1,3,3,7,9;
- 3. 查询 $\varphi(1+3+3+7) = \varphi(14) = 6$,输出 6;
- 4. 查询 $\varphi(1 \times 3 \times 3 \times 7) = \varphi(63) = 36$, 输出 36;
- 5. 修改 a_3 的值为 4, 此时的序列为 1,3,4,7,9;
- 6. 查询 $\varphi(1 \times 3 \times 4) = \varphi(12) = 4$,输出 4;
- 7. 修改 a_4 的值为 5, 此时的序列为 1,3,4,5,9;
- 8. 查询 $\varphi(4+5+9) = \varphi(18) = 6$,输出 6;
- 9. $\triangle = \varphi(1+3+4+5+9) = \varphi(22) = 10$, $\triangle = 10$,
- 10. 查询 $\varphi(1 \times 3 \times 4 \times 5 \times 9) = \varphi(540) = 144$, 输出 144。

【样例 2】

见选手目录下的 phi/phi2.in 与 phi/phi2.ans。该组样例的数据范围同第 9 个测试点。

【样例 3】

见选手目录下的 *phi/phi3.in* 与 *phi/phi3.ans*。 该组样例的数据范围同第 12 个测试点。

【样例 4】

见选手目录下的 *phi/phi4.in* 与 *phi/phi4.ans*。 该组样例的数据范围同第 16 个测试点。

【样例 5】

见选手目录下的 *phi/phi5.in* 与 *phi/phi5.ans*。 该组样例的数据范围同第 20 个测试点。

【子任务】

每个测试点的数据规模及特点如下表:

测试点编号	n	a_i, x	q	包含的操作类型
1		≤ 10	≤ 10	1
2				
3	≤ 5			2
4				
5				0,1,2
6	≤ 500	z 1000	< 100	
7		≤ 1000	≤ 100	
8		≤ 5000 ≤ 10000	≤ 1000	0,1
9			≤ 5000	
10	≤ 5000		≤ 1000	0,1,2
11			≤ 3000	
12			≤ 5000	
13	≤ 50000		≤ 50000	
14			≤ 75000	0,1
15			≤ 100000	0,1
16		< 40000	≥ 100000	
17		≤ 40000	≤ 25000	
18			≤ 50000	0,1,2
19			≤ 75000	0,1,2
20			≤ 100000	

表中"包含的操作类型"表示对应测试点中每个操作的**第一个数**的可能值,例如,包含的操作类型为"0,1"表示该测试点不会出现形如 2 1 r 的操作。

对于全部测试点, $n \le 50000$, $q \le 100000$,操作 0 的个数不超过 20000,所有的 a_i 、操作 0 中的 i,x 及操作 1,2 中的 l,r 均在给定的限制下内均匀随机生成。

残缺的算式(expr)

【题目描述】

小明有一套玩具卡片。这套卡片中,有 n 张是数字卡片,这 n 张数字卡片上分别写有一个正整数 $1,2,\dots,n$; 还有若干张符号卡片,每张符号卡片上写有符号 \pm 、 \pm 、 \pm 、 \pm 、 \pm 、 \pm 0、 \pm 1 之一。

小明最喜欢用这套卡片来摆算式,然后计算它的结果。当然,摆算式时不必用完所 有的卡片。

一天,小明摆好了一个算式。然而,准备计算前,一个熊孩子把算式中的数字卡片全部取走了,只剩下符号卡片和原来数字卡片所在的空位。也就是说,现在的算式可能是这样的: (_+_*_)*(_*__)+_(这里_代表原来放有数字卡片的空位)。

无奈小明已不记得原来每个位置填的数字卡片上的数分别是多少,他只能假设每种可能的算式作为原算式的概率相等。现在,小明想知道,原算式的结果的期望值是 多少?

形式化地,设有 m 种可能的算式,它们的运算结果分别为 s_1, s_2, \cdots, s_m ,那么原算式的结果的期望值 E 为

$$E = \frac{1}{m} \sum_{i=1}^{m} s_i$$

【输入格式】

从文件 expr.in 中读入数据。

第一行一个正整数 n,表示小明拥有的数字卡片的数量。

第二行一个字符串 S,表示数字卡片被取走后的算式。保证 S 中仅包含字符 _、±、 =、*、(、),其中 _ 不超过 n 个,且将所有 _ 当成整数时,S 是一个合法的算术表达式。

【输出格式】

输出到文件 expr.out 中。

输出一个整数,表示原算式的结果的期望值对 109+7 取模的结果。

假设所求的答案为 $\frac{a}{b}$ (a,b 为整数且互质),定义 $\frac{a}{b}$ 对正整数 p 取模的结果为一个整数 x,满足 $0 \le x < p$ 且 $bx \equiv a \pmod{p}$ 。可以证明,对于本题的答案及模数,这样的 x 是唯一存在的。

【样例1输入】

3

+

【样例1输出】

4

【样例1解释】

小明有 3 张数字卡片,分别写有数字 1,2,3,将这 3 张数字卡片填入算式 _+_,可能得到 6 种不同的算式,结果分别如下:

- 1. 1+2=3;
- 2. 1+3=4;
- 3. 2+1=3;
- 4. 2+3=5;
- 5. 3+1=4;
- 6. 3+2=5°

因此结果的期望为 $\frac{1}{6}(3+4+3+5+4+5) = 4$ 。

【样例 2 输入】

3

+*_

【样例 2 输出】

666666677

【样例2解释】

将数字卡片 1,2,3 填入算式 _+_*_, 可能得到 6 种不同的算式, 结果分别如下:

- 1. $1+2\times 3=7$;
- 2. $1 + 3 \times 2 = 7$;
- 3. $2+1\times 3=5$;
- 4. $2+3\times 1=5$;
- 5. $3 + 1 \times 2 = 5$;
- 6. $3 + 2 \times 1 = 5$.

因此结果的期望为 $\frac{1}{6}(7+7+5+5+5+5)=\frac{17}{3}$ 。因为 $3\times 666666677\equiv 17\pmod{1000000007}$,所以 $\frac{17}{3}$ 对 10^9+7 取模的结果是 666666677。

【样例 3】

见选手目录下的 *expr/expr3.in* 与 *expr/expr3.ans*。

该组样例的数据范围同第 4 个测试点。

【样例 4】

见选手目录下的 expr/expr4.in 与 expr/expr4.ans。 该组样例的数据范围同第 7.8 个测试点。

【样例 5】

见选手目录下的 expr/expr5.in 与 expr/expr5.ans。 该组样例的数据范围同第 14 个测试点。

【样例 6】

见选手目录下的 expr/expr6.in 与 expr/expr6.ans。 该组样例的数据范围同第 16 个测试点。

【样例 7】

见选手目录下的 expr/expr7.in 与 expr/expr7.ans。 该组样例的数据范围同第 21 个测试点。

【说明】

本题中,算术表达式的格式如下: (格式中 \leq 、 \geq 代表一个整体,并不是表达式的一部分)

< 表达式 > : < 运算数 1>< 运算符 1>< 运算数 2>< 运算符 2>...< 运 算符 k-1>< 运算数 k>(k 为正整数)

其中,运算数或者是一个数(在本题中,算式中所有的数都被换成了 _),或者是 <u>(< 表达式 >)</u> 的形式,即包含在括号内的表达式;运算符为 \pm 、 \pm 、 \pm 、 \pm 之一,其中 \pm 、 \pm 、 \pm 分别代表算术加、减、乘运算。

计算时,按照先乘后加减的顺序计算,同级运算从左到右进行。对于表达式中的括号,应先计算括号内的结果;**括号可能有嵌套**,应从内到外计算括号内的表达式。

【提示】

- 1. 表达式中 _ 不会作为负号(即 _ 和 ±、* 一样总是出现在两个运算数之间),也不会出现连续的两个 _ (即不会有多个数连接形成一个数的情况)。
- 2. 请注意, n 不是字符串 S 中 _ 的个数。

【子任务】

我们记 |S| 为字符串 S 的长度,每个测试点的数据规模及特点如下表所示:

测试点编号	n	S	特殊性质 1	特殊性质 2
1		≤ 1		Ħ
2	≤ 5	≤ 3	Ħ	是
3		≥ 0	是	否
4				
5	≤ 8			是
6		≤ 20	不	l
7	≤ 10		否	
8	≥ 10			
9	≤ 20		是	
10	≤ 20		否	
11	≤ 25	≤ 60	是	
12	≤ 30		不	
13	≥ 50		否	
14	≤ 100	≤ 200	是	
15	≤ 300	≥ 200		
16	≤ 500	≤ 500	否	否
17	≤ 1000	≤ 2000	是	
18	≤ 3000	≤ 5000	疋	
19	≤ 5000	≤ 3000 $\leq 10^4$		
20	≥ 5000			
21	$\leq 10^{7}$			
22	$\leq 10^{8}$	≤ 500	否	
23	$\leq 10^9$			
24	$\leq 10^{7}$	$\leq 10^4$		
25	$\leq 10^9$	≤ 10°		

其中,部分数据具有的特殊性质意义如下:

- 特殊性质 1: 字符串 S 中仅包含 $\underline{\ \ }$ 、 $\underline{\ \ }$ 、 $\underline{\ \ }$ 三种字符;
- 特殊性质 2: 保证答案是小于 10⁹ + 7 的非负整数;对于这类数据,输出答案对 10⁹ + 7 取模的结果和直接输出答案是一致的。