1. Objetivo Principal

Desarrollar una plataforma gráfica que permita al usuario, sin conocimientos avanzados, cargar, consultar y analizar sesiones electroquímicas generadas por PStrace 5.9, de forma rápida e intuitiva. El sistema debe:

- Leer y procesar archivos .pssession (voltametría cíclica).
- Insertar datos en PostgreSQL (sessions, measurements, curves, points).
- Aplicar procesamiento de ciclos (eliminar el primero, promediar los siguientes cuatro).
- Generar un Análisis de Componentes Principales (PCA) y estimar concentraciones en ppm.
- Ofrecer búsquedas simples (ID) y avanzadas (fecha, umbral, dispositivo, curva_count).
- Visualizar curvas individuales y promedio $(\pm \sigma)$, PCA con anotaciones, tabla de ppm con resaltado de alertas.
- Exportar resultados (CSV/PNG) sin salir de la interfaz.

2. Requerimientos de la Directora (Profesora Angela)

- 1. Ciclos: descartar el primer ciclo; usar ciclos 2–5 para promedio de corriente vs. potencial.
- 2. Matriz: transformar los promedios en filas para construir la matriz PCA.
- 3. PCA: clasificar muestras y mostrar varianza acumulada con % en componentes clave.
- 4. PPM: mapear resultados PCA a valores ppm via limits_ppm.json.
- 5. Interfaz:
 - Carga de .pssession con mensaje claro del Session ID.

- Consulta por ID y por fecha (luego filtros avanzados).
- Visualización de datos: alertas (♥/ 1), curvas, PCA, ppm.
- Exportación de tablas y gráficas.

3. Estructura de la Base de Datos (PostgreSQL)

La base de datos se llama deteccion_metales y se compone de las siguientes tablas principales:

- sessions:
 - o id: serial (PK)
 - o filename: nombre del archivo .pssession
 - loaded_at: timestamp (NOT NULL)
- measurements:
 - o id: serial (PK)
 - session_id: FK a sessions
 - o title: título de la medición
 - timestamp: fecha de medición
 - device_serial: número de serie del dispositivo
 - o curve_count: número de curvas
 - o pca_data: arreglo de floats
 - ppm_estimations: arreglo de floats
- curves, points (no utilizados directamente hasta este punto, pero forman parte del esquema completo)

4. Estructura del Proyecto

COINVESTIGACION1/

---- .venv/

vscode/		
├— data/		
BD/		
Captura de pantalla 2025-03-01 150555.png		
Coinvestigacion_UM.docx		
CV SPE-M11_Induma.pssession		
CV SPE-M39_Induma.pssession		
INFORME 2.pdf		
informe.pdf		
│		
Planificador de proyectos de Gantt_Coinvesti		
ultima_medicion.pssession		
sdk/		
PSPythonSDK/		
pspython/		
cv.psmethod		
CVPeakExample.py		
│		
eis.1161.b.pssession		
LoadEISWithCircuitFit.py		
LoadExample.py		
MeasurementExample.py		
PSDiffPulse.psmethod		

4. Esquema de Base de Datos (PostgreSQL)

- sessions
 - o id SERIAL PK
 - filename TEXT
 - loaded_at TIMESTAMP
- measurements

- o id SERIAL PK
- o session_id FK → sessions(id)
- title TEXT, timestamp TIMESTAMP, device_serial TEXT
- o curve_count INT, pca_data FLOAT[], ppm_estimations FLOAT[]
- curves, points (para graficación detallada)

5. Metodología de Desarrollo por "Bloques"

Para mantener claridad y facilitar ampliaciones, la GUI se desarrolló en secciones independientes:

Bloque	Funcionalidad
1. Carga	Botón "Seleccionar .pssession" \rightarrow ejecuta pstrace_session.py \rightarrow inserta en BD \rightarrow muestra ID
2. Consultas	Pestaña "Q Consultas" con:- Búsqueda simple por ID- Búsqueda avanzada (fecha, umbral)- Tabla de resultados (☑/ ⚠)- Exportación a CSV- Metadatos dinámicos (total mediciones, último dispositivo, curvas)
3. Detalle	Panel de texto con JSON de session_info (metadatos extraídos del SDK)
4. Curvas	Pestaña " Curvas":– Combobox de índice de medición– Gráfica de ciclos individuales (opacidad) + promedio (línea roja) + banda ±σ– Exportar gráfico
5. PCA	Pestaña "✓ Análisis PCA":– Botón "Mostrar PCA" → gráfica de varianza acumulada con anotaciones de % para los primeros 3 componentes–Exportar gráfico

6. Avances y Problemas Solucionados

- Extracción y CSV: se eliminó el primer ciclo, se generó matriz_pca.csv con encabezados de PCA y PPM.
- Carga en BD: corregidos errores de loaded_at null y Python-NET; ahora inserta datetime actual.
- Mensaje de ID: el usuario recibe un popup con el Session ID al cargar un archivo.
- Consultas: implementada búsqueda simple (ID) y avanzada (fecha, umbral); tabla con estado de contaminación.
- Metadatos: ahora muestra recuento de mediciones y datos de la última medición.
- Graficación: curvas individuales + promedio ±σ, PCA con anotaciones, tabla de ppm con colores de alerta.
- Exportación: todas las pestañas permiten guardar resultados (CSV/PNG).

7. Pendientes e Implementaciones Futuras

- 1. Ayuda contextual: tooltips explicando cada campo y gráfica.
- 2. Filtros adicionales: dispositivo, rango de curvas, búsqueda por ppm.
- 3. Reportes en PDF: generar informe completo con gráficas y tablas.
- 4. Autenticación: manejo de roles si se expande a multiusuario.
- 5. Monitor en tiempo real: integrar la Mini PC y conexión remota para data streaming.

8. Enfoque Actual para el "Bloque 2: Consultas"

- Qué debe mostrar:
 - 1. ID Sesión (requisito fundamental).
 - 2. Fecha de carga.
 - 3. Dispositivo (device_serial).
 - 4. # Curvas (curve_count).
 - 5. Estado de contaminación (max corriente > umbral).
 - 6. Metadatos adicionales: total de mediciones, último dispositivo y curvas.
- Búsqueda simple: por ID único.
- Búsqueda avanzada: por fecha; luego extiende a filtros de dispositivo y curvas.
- Flujo de usuario:
 - 1. Ingresar ID o seleccionar fecha.
 - 2. Ver tabla de sesiones filtradas.
 - 3. Seleccionar fila → Consulta y muestra metadatos.
 - 4. Exportar resultados con un clic.

Con este informe exhaustivo, disponemos de una visión global del estado actual, los desafíos superados y las tareas pendientes, organizadas por bloques modulares. La siguiente iteración se centrará en optimizar la experiencia de consulta y añadir filtros avanzados, manteniendo siempre la sencillez e intuitividad que demanda la directora.