Homework: Survey and Lottery

Statistical models

Lottery

The game 'Cash' is a lottery in France where each ticket costs 1 euro, offering the chance to win more than the ticket price. With 1,250,000 tickets considered, the odds of winning are presented in Table 1.

Table 1: Number of tickets and prize amounts for the 'Cash' lottery.

Number of tickets	Prize amount
1	25000
1	5000
2	1000
3	100
4	60
125	50
1900	20
3750	15
25500	10
23500	5
37500	2
214000	1
943714	0

- 1. Compute the expectation of the game and interpret your result.
- 2. Compute the variance of the game.
- 3. If you buy 100 tickets, what is the approximate probability that your gains or losses will exceed 0 euros? Hint: Use the central limit theorem to solve this.
- 4. How would you adjust the number of tickets for each prize amount to ensure that the probability of your gains or losses being more than 0 euros is about 50%?

Survey

The dataset 'Survey_netflix.xlsx' contains students' preferences between Netflix and Disney+. A value of 1 indicates a preference for Netflix. The purpose of this exercise is to review the concepts from the first chapter by determining whether both streaming platforms are equally preferred.

- 1. Compute the average and the empirical variance of the 'Netflix' variable.
- 2. Let us assume that the 'Netflix' variable is generated from a sequence of independent Bernoulli distributions with probability parameter p. The parameter p represents the population preference probability for watching movies on Netflix. Let us consider the following hypothesis:

$$H_0: p = 0.8 \text{ versus } H_A: p > 0.8$$

In your own words, explain what these hypotheses are testing.

- 3. Use the binomial distribution to compute the p-value of the one-sided hypothesis.
- 4. Consider again the one-sided test and assume that the central limit theorem applies. Use the Normal distribution to compute the p-value of the one-sided hypothesis.
- 5. Discuss the two p-values computed in the two last questions. Do you reach the same conclusion about the hypothesis?
- 6. Assume we want to find out whether Netflix is more preferred than Disney+ in Italy. How many individuals should we survey to ensure a 5% margin of error at a 95% confidence level? In other words, how many people should we survey to ensure the confidence interval's upper and lower bounds deviate by 5% from the estimated probability?