SOCC 2025

Pin-Efficiency Chip-to-Chip Communication?

SPI and I2C use too much Pin count!

Motivation

Why fewer Pins matter?

Pin count cause high cost and area!

Contributions of our work

Outline

01

Motivation

Chip-to-Chip communication and pin count optimization

02

Background & Related Work

State-of-the-art and scope for improvements

03

LinkBo Protocol

Proposed single-wire protocol and system model evaluation

04

Hardware Architecture

Propsed LinkBo hardware architecture (TX, RX, Driver)

05

Results

Experimental evaluation of proposed designs

06

Conclusions

Summary and scope for related future research

Background & Related Wors

- I-Wire Protocol
- Async communication Code

I-wire Protocol (ADI)

Basic Operations:

- I. Reset: 960 μs
- 2. Write Bit 0: 70 μs
- 3. Write Bit 1:70 μs
- 4. Read Bit: 70 µs

- 1 Reset Pulse: 960 µs
- ② Devices Select Message:

8-bit Family Code	48-bit Address Code	8-bit CRC
-------------------	---------------------	-----------

3 Command Message:

16-bit Command (RO	OM Function)
--------------------	--------------

Onl

Hardware Arch

Only One Host

Cons:

Low Bitrate / High Latency

Pros: One Pin

Long Distance

Current I-wire protocol has very long bit slot!

64-bit Data

Asynchronous communication Code

Manchester code is better for Asynchronous Communication!

Results

Commercial Product

Protocol	I-wire (TI ^[1] ,ADI)	UNI/O (MicroChip ^[2])	SWIM ^[3] /debugWIRE
Sync/Async	Async	Async	Async
Speed	8.33-111 kbps	10-100 kbps	I 0kbps-I Mbps
Туре	Master/slave	Master/slave	Point to Point
Duplex	Half	Half	Half
Pin count	1	1	1
Application	EEPROM, Sensor	EEPROM, Sensor	Debug system

Limitations:

- Bit slot and reset use too much time
- No ACK or Every 8-bit with 2-bit ACK.
- Can't check error

Motivation

Only one host control bus

Commercial product still have low bitrate and high latency!

LinkBo Protocol

- Protocol Definition
- System Model

Protocol Definition

Priority

• High Priotiy (HP) / Low Priotity (LP)

SYNC

- 2 Manchester bits (Mbs)
- Different SYNC for different priority

SIZE

Motivation

- Only LP has SIZE field
- 3 Manchester bits (Mbs)

PALOAD

- HP have 8 Mbs
- LP can support up to 7 Byte (7*8 Mbs)

• CRC

4 bits CRC for each HP/LP message

ACK

- I Manchester bits (Mbs)
- RX send back ACK

Reduce Manchester slot and add 2 priority messages

Re-Synchronization

- Important for variable-distance communication
 - Because longer wires introduce more distortion and skew

- Simple mechanism
 - Only need a prescaler counter (PSC) to count the cycle of Manchester bit slot.

Make sure every transition edge at middle of Manchester slot

Scalability for multi-device

Wire-AND logic

• First high signal will lose arbitration

Multi-device:

- SIZE=000
- Fist message carry 8-Mb device code
- Second message carry real data

Support multi-device transmission theoretically

Motivation

System Model

Simulate the real parameter of PCB!

★: Low pass filter condition

Motivation

Hardware Architecture

- TOP Level Architecture
- Transmitter (TX)
- Receiver (RX)
- Driver

TOP and DriverArchitecture

Background

LinkBo Protocol

Hardware Arch

TX/RX Architecture

ACK Check: check ack and report error

detect priority and calculate $\boldsymbol{T}_{\text{manc}}$

Re-SYNC:

reset prescaler counter when bus wrong

LowBus Detector (LBDET): Detect high-priority sync interrupt

Experiments and Result

- FPGA test
- Latency Analysis
- Sensitivity Analysis
- Protocol Comparison

FPGA Test Setup

Latency Analysis

Motivation

Hardware Arch

Sensitivity Analysis

Bit rate= 300 kbps

Motivation

Background

LinkBo Protocol

Hardware Arch

Results

Model Result Recap:

Conclusion

Sensitivity Analysis

High priority can tolerate higher bit rates!

Shorter wire lengths can tolerate higher bit rates!

Protocol Comparison

CLK=3MHz

Protocol	I-wire (TI,ADI)	UNI/O (MicroChip)	LinkBo (our solution)
Туре	Asynchronous	Asynchronous	Asynchronous
Duplex	Half Duplex	Half Duplex	Half Duplex
Bit Rate (kbps)	8.33 - 111	10 - 100	294.8 - 297.6
EBR (kbps)	5.8 - 77.2	7.97 - 79.7	158.7 - 252.5
Latency (µs)	1520 - 4480	810 - 1410	50.4 - 223.8
Interrupt	No	No	Yes
Multi-byte	No	Yes, no upper limit	Yes, max 7-byte
CRC	Yes, 8 bits	No	Yes, 4 bits
Acknowledge	No	Yes, 2-bit ack	Yes
Distance (m)	20 - 100	N/A	5.6 - 15

Bit Rate: $R_b = \frac{B_{\text{total}}}{T}$

Effective Bit Rate (EBR): $EBR = \frac{B_{data}}{T}$

Maximum Latency: time of 7-byte message

Minimum Latency: time of one byte message

Conclusion

- Summary
- Looking Ahead

Summary

Motivation

<u>Background</u>

LinkBo Protocol

Hardware Arch

Results

Conclusion

Looking Ahead ...

- Single-wire Protocol for Extreme-Edge Specific Application
 - Towards an area-efficiency and cost-efficiency Domain-specific Application design.
- Latency and Distance trade-off
 - Improve distance and decrease latency as much as possible.
- Multi-device Single-wire Protocol
 - Explore high-efficient arbitration for multi-drop/peer-to-peer transmission of Single-wire protocol

