

Institutt for matematiske fag

Eksamensoppgave i Løsningsskisse TMA4240/TMA4245
Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48221896
Eksamenstid (fra–til): 09.00-13.00
Hjelpemiddelkode/Tillatte hjelpemidler: Tabeller og formler i statistikk, Akademika, K. Rottmann: Matematisk formelsamling, Kalkulator Casio fx-82ES PLUS, CITIZEN SR-270X, CITIZEN SR-270X College eller HP30S, Gult stemplet A5-ark med egne håndskrevne notater.
Annen informasjon: Alle svar skal begrunnes og besvarelsen skal inneholde naturlig mellomregning.
Målform/språk: bokmål Antall sider: 9 Antall sider vedlegg: 0
Kontrollert av:

Sign

Dato

Oppgave 1

a) Kan bestemme c ut fra kravet

$$\int_{-\infty}^{\infty} f(x; \theta) \mathrm{d}x = 1.$$

Siden $f(x;\theta) = 0$ for $x < \theta$ får vi

$$\int_{-\infty}^{\infty} f(x; \theta) dx = \int_{\theta}^{\infty} c \exp \{-(x - \theta)\} dx$$
$$= c \left[-\exp \{-(x - \theta)\}\right]_{x = \theta}^{\infty}$$
$$= c \left(-0 + e^{0}\right) = \underline{c = 1}.$$

Sannsynligheten det spørres etter er

$$P(X > \theta + 1) = \int_{\theta+1}^{\infty} f(x;\theta) dx = \int_{\theta+1}^{\infty} \exp\{-(x - \theta)\} dx$$
$$= [-\exp\{-(x - \theta)\}]_{x=\theta+1}^{\infty}$$
$$= -0 + \exp\{-(\theta + 1 - \theta)\} = \underline{e}^{-1} = 0.3679.$$

b) For å finne sannsynlighetsmaksimeringsestimatoren starter vi med å finne rimelighetsfunksjonen $L(\theta)$. Siden observasjonene er uavhengige, og ved å huske på at hvilken formel som gjelder for $f(x;\theta)$ avhenger av om $x < \theta$ eller $x \ge \theta$, får vi at

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} \prod_{i=1}^{n} e^{-(x_i - \theta)} & \text{hvis } x_1, \dots, x_n \ge \theta, \\ 0 & \text{ellers} \end{cases}$$

$$= \begin{cases} \exp\left\{-\sum_{i=1}^{n} x_i + n\theta\right\} & \text{hvis } \min\{x_1, \dots, x_n\} \ge \theta, \\ 0 & \text{ellers} \end{cases}$$

$$= \begin{cases} \exp\left\{-\sum_{i=1}^{n} x_i + n\theta\right\} & \text{hvis } \theta \le x_{(1)}, \\ 0 & \text{ellers} \end{cases}$$

der vi har benyttet at alle $x_1, \ldots, x_n \ge \theta$ hvis of bare hvis $\min\{x_1, \ldots, x_n\} \ge \theta$ og at $x_{(1)} = \min\{x_1, \ldots, x_n\}$. Et plott av rimelighetsfunksjonen $L(\theta)$ er vist i figur 1. Vi ser at $L(\theta)$ har sitt maksimum for

$$\theta = x_{(1)} = \min\{x_1, \dots, x_n\}.$$

Sannsynlighetsmaksimeringsestimatoren blir dermed

$$\underline{\widehat{\theta}} = X_{(1)} = \min\{X_1, \dots, X_n\}.$$

Figur 1: Skisse av rimelighetsfunksjonen $L(\theta)$ som funksjon av θ .

c) For å finne sannsynlighetstettheten for $W = \min\{X_1, X_2, \dots, X_N\}$ lønner det seg først å finne den tilhørende kumulative fordeling $F_W(w)$,

$$F_{W}(w) = P(W \le w) = P(\min\{X_{1}, X_{2}, \dots, X_{n}\} \le w)$$

$$= 1 - P(\min\{X_{1}, X_{2}, \dots, X_{n}\} > w)$$

$$= 1 - P(X_{1} > w \cap X_{2} > w \cap \dots \cap X_{n} > w)$$

$$= 1 - P(X_{1} > w) \cdot P(X_{2} > w) \cdot \dots \cdot P(X_{n} > w)$$

$$= 1 - (1 - P(X_{1} \le w)) \cdot (1 - P(X_{2} \le w)) \cdot \dots \cdot (1 - P(X_{n} \le w))$$

$$= 1 - (1 - F_{X}(w)) \cdot (1 - F_{X}(w)) \cdot \dots \cdot (1 - F_{X}(w))$$

$$= 1 - (1 - F_{X}(w))^{n}.$$

Kan da finne sannsynlighetstettheten til W ved å derivere denne med hensyn på w, men først finner ved kumulativ fordeling for X. For $x \ge \theta$ får vi

$$F_X(x) = \int_{-\infty}^x f(x) dx = \int_{\theta}^x e^{-(x-\theta)} dx = \left[-e^{-(x-\theta)} \right]_{x=\theta}^x = -e^{-(x-\theta)} + e^0 = 1 - e^{-(x-\theta)},$$

mens $F_X(x) = 0$ for $x < \theta$. Sannsynlighetstettheten til W blir da

$$f_W(w) = F'_W(w) = -n (F_X(w))^{n-1} \cdot (-f_X(w))$$

$$= \begin{cases} n (1 - F_X(w))^{n-1} f_X(w) & \text{for } w \ge \theta, \\ 0 & \text{ellers} \end{cases}$$

$$= \begin{cases} n (1 - 1 + e^{-(w - \theta)})^{n-1} e^{-(w - \theta)} & \text{for } w \ge \theta, \\ 0 & \text{ellers} \end{cases}$$

$$= \begin{cases} n e^{-n(w - \theta)} & \text{for } w \ge \theta, \\ 0 & \text{ellers}. \end{cases}$$

Sannsynligheten det spørres etter blir da

$$P(W > \theta + 1) = \int_{\theta+1}^{\infty} f_W(w) dw = \int_{\theta+1}^{\infty} n e^{-n(w-\theta)} dw$$
$$= \left[-e^{-n(w-\theta)} \right]_{w=\theta+1}^{\infty}$$
$$= -0 + e^{-n(\theta+1-\theta)} = \underline{e^{-n}}.$$

Oppgave 2

a) Finner forventingsverdien til $\hat{\mu}$ ved å bruke regneregler for forventingsverdi, samt at vi vet at $E[X_i] = E[Y_i] = \mu$ for alle i,

$$E[\widehat{\mu}] = E\left[\frac{1}{2}(\bar{X} + \bar{Y})\right] = \frac{1}{2}E\left[\bar{X} + \bar{Y}\right]$$

$$= \frac{1}{2}(E[\bar{X}] + E[\bar{Y}])$$

$$= \frac{1}{2}(E[\bar{X}] + E[\bar{Y}])$$

$$= \frac{1}{2}(E[\bar{X}] + E[\bar{Y}]) + E[\bar{X}] + E[\bar{X}]$$

Dermed har vi vist at $\hat{\mu}$ er forventingsrett.

Ved å benytte regneregler for varians, at X_i 'ene og Y_i 'ene alle er uavhengige,

og at $\operatorname{Var}[X_i] = \operatorname{Var}[Y_i] = \sigma^2$ for alle i, får vi at variansen til $\widehat{\mu}$ blir

$$\operatorname{Var}\left[\widehat{\mu}\right] = \operatorname{Var}\left[\frac{1}{2}\left(\bar{X} + \bar{Y}\right)\right] = \left(\frac{1}{2}\right)^{2} \operatorname{Var}\left[\bar{X} + \bar{Y}\right] \\
= \frac{1}{4}\left(\operatorname{Var}\left[\bar{X}\right] + \operatorname{Var}\left[\bar{Y}\right]\right) \\
= \frac{1}{4}\left(\operatorname{Var}\left[\frac{1}{7}\sum_{i=1}^{7}X_{i}\right] + \operatorname{Var}\left[\frac{1}{6}\sum_{i=1}^{6}Y_{i}\right]\right) \\
= \frac{1}{4}\left(\left(\frac{1}{7}\right)^{2} \operatorname{Var}\left[\sum_{i=1}^{7}X_{i}\right] + \left(\frac{1}{6}\right)^{2} \operatorname{Var}\left[\sum_{i=1}^{6}Y_{i}\right]\right) \\
= \frac{1}{4}\left(\frac{1}{49}\sum_{i=1}^{7} \operatorname{Var}\left[X_{i}\right] + \frac{1}{36}\sum_{i=1}^{6} \operatorname{Var}\left[Y_{i}\right]\right) \\
= \frac{1}{4}\left(\frac{1}{49}\sum_{i=1}^{7}\sigma^{2} + \frac{1}{36}\sum_{i=1}^{6}\sigma^{2}\right) \\
= \frac{1}{4}\left(\frac{7\sigma^{2}}{49} + \frac{6\sigma^{2}}{36}\right) = \frac{1}{4}\left(\frac{1}{7} + \frac{1}{6}\right)\sigma^{2} = \frac{1}{4} \cdot \frac{6 + 7}{42}\sigma^{2} = \frac{13}{\underline{168}}\sigma^{2}.$$

b) Når $\mu_A = \mu_B$ og $\sigma_A = \sigma_B$ kommer alle $X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n$ fra samme populasjon og man får dermed en forventingsrett estimator med mindre varians ved å estimere μ ved gjennomsnittet av disse variablene, dvs

$$\mu^* = \frac{1}{13} \left(\sum_{i=1}^7 X_i + \sum_{i=1}^6 Y_i \right).$$

For å sjekke at den er forventingsrett går man tilsvarende som for $\hat{\mu}$ over,

$$E[\mu^{\star}] = E\left[\frac{1}{13}\left(\sum_{i=1}^{7} X_{i} + \sum_{i=1}^{6} Y_{i}\right)\right] = \frac{1}{13}E\left[\sum_{i=1}^{7} X_{i} + \sum_{i=1}^{6} Y_{i}\right]$$

$$= \frac{1}{13}\left(E\left[\sum_{i=1}^{7} X_{i}\right] + E\left[\sum_{i=1}^{6} Y_{i}\right]\right)$$

$$= \frac{1}{13}\left(\sum_{i=1}^{7} E\left[X_{i}\right] + \sum_{i=1}^{6} E\left[Y_{i}\right]\right)$$

$$= \frac{1}{13}\left(\sum_{i=1}^{7} \mu + \sum_{i=1}^{6} \mu\right)$$

$$= \frac{1}{13}\left(7\mu + 6\mu\right) = \mu.$$

Variansen til μ^* finner man også tilsvarende som for $\widehat{\mu}$,

$$\operatorname{Var} \left[\mu^{\star} \right] = \operatorname{Var} \left[\frac{1}{13} \left(\sum_{i=1}^{7} X_{i} + \sum_{i=1}^{6} Y_{i} \right) \right] = \left(\frac{1}{13} \right)^{2} \operatorname{Var} \left[\sum_{i=1}^{7} X_{i} + \sum_{i=1}^{6} Y_{i} \right]$$

$$= \frac{1}{13^{2}} \left(\operatorname{Var} \left[\sum_{i=1}^{7} X_{i} \right] + \operatorname{Var} \left[\sum_{i=1}^{6} Y_{i} \right] \right)$$

$$= \frac{1}{13^{2}} \left(\sum_{i=1}^{7} \operatorname{Var} \left[X_{i} \right] + \sum_{i=1}^{6} \operatorname{Var} \left[Y_{i} \right] \right)$$

$$= \frac{1}{13^{2}} \left(\sum_{i=1}^{7} \operatorname{Var} \left[X_{i} \right] + \sum_{i=1}^{6} \operatorname{Var} \left[Y_{i} \right] \right)$$

$$= \frac{1}{13^{2}} \left(\sum_{i=1}^{7} \sigma^{2} + \sum_{i=1}^{6} \sigma^{2} \right)$$

$$= \frac{1}{13^{2}} \left(7\sigma^{2} + 6\sigma^{2} \right) = \frac{\sigma^{2}}{13}.$$

Siden $\text{Var}\left[\widehat{\mu}\right] = \frac{13}{168}\sigma^2 \approx 0.0774\sigma^2$ og $\text{Var}\left[\mu^\star\right] = \frac{\sigma^2}{13} \approx 0.0769\sigma^2$ ser vi at μ^\star har mindre varians enn $\widehat{\mu}$.

c) For å utlede et konfidensintervall for $\delta = \mu_A - \mu_B$ er det naturlig å ta utgangspunkt i

$$T = \frac{\bar{X} - \bar{Y} - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}}$$

som er tilnærmet t-fordelt med

$$\nu = \frac{\left(\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}\right)^2}{\frac{\left(\frac{s_A^2}{n_A}\right)^2}{n_A - 1} + \frac{\left(\frac{s_B^2}{n_B}\right)^2}{n_B - 1}}$$

frihetsgrader. Vi har dermed at

$$P\left(-t_{\frac{\alpha}{2},\nu} \le \frac{\bar{X} - \bar{Y} - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}} \le t_{\frac{\alpha}{2},\nu}\right) = 1 - \alpha.$$

Må så løse hver av ulikhetene inne i sannsynlighetsuttrykket over med hensyn

på $\delta = \mu_A - \mu_B$. Starter med den venstre ulikheten,

$$-t_{\frac{\alpha}{2},\nu} \leq \frac{\bar{X} - \bar{Y} - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}}$$

$$\Leftrightarrow -t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}} \leq \bar{X} - \bar{Y} - (\mu_A - \mu_B)$$

$$\Leftrightarrow -\bar{X} - \bar{Y} - t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}} \leq -(\mu_A - \mu_B)$$

$$\Leftrightarrow \bar{X} - \bar{Y} + t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}} \geq \mu_A - \mu_B$$

$$\Leftrightarrow \mu_A - \mu_B \leq \bar{X} - \bar{Y} + t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}$$

Den høyre ulikheten løses tilsvarende,

$$\frac{\bar{X} - \bar{Y} - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}} \leq t_{\frac{\alpha}{2},\nu}$$

$$\Leftrightarrow \bar{X} - \bar{Y} - (\mu_A - \mu_B) \leq t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}$$

$$\Leftrightarrow -(\mu_A - \mu_B) \leq -(\bar{X} - \bar{Y}) + t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}$$

$$\Leftrightarrow \mu_A - \mu_B \geq \bar{X} - \bar{Y} - t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}$$

$$\Leftrightarrow \bar{X} - \bar{Y} - t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}} \leq \mu_A - \mu_B$$

Ved å sette de to ulikhetene sammen igjen inne i sannsynlighetsuttrykket får man dermed at

$$P\left(\bar{X} - \bar{Y} - t_{\frac{\alpha}{2},\nu}\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}} \le \mu_A - \mu_B \le \bar{X} - \bar{Y} + t_{\frac{\alpha}{2},\nu}\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}\right) = 1 - \alpha,$$

slik at et $(1-\alpha)\cdot 100\%$ konfidensintervall for $\delta=\mu_A-\mu_B$ er gitt ved

$$\left[\bar{X} - \bar{Y} - t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}, \bar{X} - \bar{Y} + t_{\frac{\alpha}{2},\nu} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}} \right].$$

Innsatt de oppgitte tallene får vi ved å benytte $t_{0.05,9} = 1.833$ at intervallet blir

$$\left[15.22 - 14.56 - 1.833\sqrt{\frac{0.32}{7-1}} + \frac{0.47}{6-1}, 15.22 - 14.56 - 1.833\sqrt{\frac{0.32}{7-1}} + \frac{0.47}{6-1}\right]$$

$$= [0.3803, 0.9397].$$

d) Vi ønsker å finne ut om resultatene tyder på at metode A gir bedre utmattingsfasthet enn metode B. Hvis metode A er bedre enn metode B vil $\mu_A > \mu_B$ og vi velger derfor dette som vår alternative hypotese, dvs vi skal teste

$$H_0: \mu_A = \mu_B \mod H_1: \mu_A > \mu_B.$$

Som testobservator bruker vi

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}}$$

som, når H_0 er riktig, er tilnærmet t-fordelt med ν frihetsgrader. Antall frihetsgrader ν er gitt ved samme formel som i forrige punkt. Dersom H_1 er riktig vil T tendere til å være stor. Vi forkaster derfor H_0 dersom T > k, der kritisk verdi k bestemmes fra det generelle kravet

$$P(\text{Forkast } H_0|H_0 \text{ er riktig}) = \alpha.$$

I vår situasjon blir kravet

$$P(T > k | H_0 \text{ er riktig}) = \alpha \implies k = t_{\alpha,\nu}.$$

Dvs. vi forkaster H_0 dersom $T > t_{\alpha,\nu}$.

Innsatt observerte verdier får vi at observert verdi for testobservatoren Tblir

$$t_{\text{obs}} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} = \frac{15.22 - 14.56}{\sqrt{\frac{\frac{0.32}{7-1}}{7} + \frac{\frac{0.47}{6-1}}{6}}} = 4.325,$$

mens kritisk verdi når $\alpha=0.05$ er $k=t_{0.05,9}=1.833$. Vi har dermed at $t_{\rm obs}>t_{\alpha,\nu}$ og vi forkaster H_0 .

Oppgave 3

- a) La Y være antall infiserte bokser i en k-gruppe. Da er Y binomisk fordelt fordi
 - man undersøker k bokser,
 - hver boks er enten infisert eller ikke infisert,
 - for hver boks er det samme sannsynlighet p for at den er infisert, og
 - de ulike boksene er infisert eller ikke infisert uavhengig av hverandre.

Dermed er Y binomisk fordelt med k forsøk og sannsynlighet p for suksess. En blanding av innholdet i k bokser gir positivt testresultat hvis og bare hvis minst en av de k boksene er infisert, dvs. hvis $Y \ge 1$,

$$P(Y \ge 1) = 1 - P(Y = 0) = 1 - \binom{k}{0} p^0 (1 - p)^{k - 0} = \underbrace{\frac{1 - (1 - p)^k}{\dots}}_{}.$$

b) Betinget sannsynlighet for en hendelse A gitt en annen hendelse B er definert som

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

La Y være antall i en k-gruppe som er infisert og la A være hendelsen at en bestemt boks i denne blandingen er infisert. Da har vi at

$$\underline{P(A|Y \ge 1)} = \frac{P(A \cap (Y \ge 1))}{P(Y \ge 1)} = \frac{P(A)}{P(Y \ge q)} = \frac{p}{1 - (1 - p)^k}.$$

c) For i = 1, 2, ..., m la

$$Z_i = \left\{ \begin{array}{ll} 1 & \text{ hvis blandingen fra eske } i \text{ er positiv,} \\ 0 & \text{ ellers.} \end{array} \right.$$

Fra a) vet vi da at

$$P(Z_i = 1) = 1 - (1 - p)^k$$

slik at vi får

$$E[Z_i] = \sum_{z_i=0}^{1} z_i P(Z_i = z_i) = 0 \cdot P(Z_i = 0) + 1 \cdot P(Z_i = 1) = P(Z_i = 1) = 1 - (1 - p)^k.$$

Dessuten har vi at

$$X = \sum_{i=1}^{m} (1 + Z_i \cdot k).$$

Ved å bruke regneregler for forventningsverdi får vi da

$$E[X] = E\left[\sum_{i=1}^{m} (1 + Z_i \cdot k)\right]$$

$$= \sum_{i=1}^{m} E[1 + Z_i \cdot k]$$

$$= \sum_{i=1}^{m} (1 + k \cdot E[Z_i])$$

$$= \sum_{i=1}^{m} (1 + k \left(1 - (1 - p)^k\right))$$

$$= m \left(1 + k \left(1 - (1 - p)^k\right)\right)$$

$$= m + mk \left(1 - (1 - p)^k\right).$$

Dersom man tester alle boksene enkeltvis vil man trenge mk tester. Man får dermed at den benyttede fremgangsmåten er å foretrekke dersom (for k = 4)

$$E[X] = m + 4m \left(1 - (1 - p)^4\right) < 4m$$

$$\Leftrightarrow 4m \left(1 - (1 - p)^4\right) < 3m$$

$$\Leftrightarrow 1 - (1 - p)^4 < \frac{3}{4}$$

$$\Leftrightarrow -(1 - p)^4 < -\frac{1}{4}$$

$$\Leftrightarrow (1 - p)^4 > \frac{1}{4}$$

$$\Leftrightarrow 1 - p > \frac{1}{\sqrt{2}}$$

$$\Leftrightarrow p - 1 < -\frac{1}{\sqrt{2}}$$

$$\Leftrightarrow p < 1 - \frac{1}{\sqrt{2}} = 0.2929$$

Den benyttede fremgangsmåten er dermed å foretrekke dersom p < 0.2929.