# K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS Single Stage BJT Amplifier

#### Numerical 1

For the network shown in figure 1, determine

- a)  $r_{\pi}$
- b)  $V_B \& V_C$

c) 
$$Z_i \& A_V = \frac{V_o}{V_i}$$

Given:  $\beta = 180 \& r_o = 50k\Omega$ 



Figure 1: Circuit for Numerical 1

#### Solution:

Above circuit is a Common-Emitter BJT Amplifier.

#### DC Analysis:

During DC analysis, the capacitors become open circuit,

From figure 1 we get,

$$R_{th} = R_1 \mid\mid R_2 = 220k \mid\mid 56k$$

$$R_{th}=44.637k\Omega$$

We know that, 
$$V_{th}=\frac{R_2}{R_1+R_2}\times V_{CC}=\frac{56k}{56k+220k}\times 20$$

$$V_B=V_{th}=4.057V\,$$

The thevenin's equivalent circuit is shown in figure 2



Figure 2: Thevenin's Equivalent Circuit

Applying KVL to B-E loop in figure 2 we get,

$$V_{th} - I_B R_{th} - V_{BE_{ON}} - I_E R_E = 0$$

$$V_{th} - V_{BE_{ON}} = I_B R_{th} + (1 + \beta) I_B R_E \qquad (\because I_E = (1 + \beta) I_B)$$

$$I_B = \frac{V_{th} - V_{BE_{ON}}}{R_{th} + (1 + \beta) R_E} = \frac{4.057V - 0.7V}{44.637k + (181)2.2} \qquad (Assuming V_{BE_{ON}} = 0.7V)$$

$$\mathbf{I_B} = \mathbf{7.580} \mu \mathbf{A}$$

$$I_C = \beta I_B = 180 \times 7.580 \mu A$$

$$I_C = 1.364 \mathrm{mA}$$

Applying KVL to output C-E loop in figure 2 we get,

$$V_C = V_{CC} - I_C R_C = 20 - (1.364 mA \times 6.8 k\Omega)$$

$$V_C = 10.725V$$

#### **AC** Analysis:

Small Signal Parameter Calculation is given below

$$g_m = rac{I_{C_Q}}{V_T} = rac{1.364mA}{0.026} = \mathbf{52.46mA/V}$$
 $r_\pi = rac{V_T}{I_{B_Q}} = \mathbf{3.43k\Omega}$ 
 $r_o = \mathbf{50k\Omega}$  (Given)

The small signal hybrid pi model is shown in figure 3



Figure 3: Small Signal Hybrid Pi Model

#### Calculation of $A_V$ :

$$A_V = \frac{V_{out}}{V_{in}} = -g_m(r_o \mid\mid R_C) = -52.46(50k \mid\mid 6.8k)$$

$$\mathbf{A_V} = -314.021$$

#### Calculation of Z<sub>i</sub>:

$$Z_i = R_1 \parallel R_2 = 220k \parallel 56k$$

$$Z_i=44.63 k\Omega$$

#### SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:



.model npn npn ( bf = 180 vaf = 68.2) .tran 5ms

Figure 4: Circuit Schematic: Results

The input and output waveforms are shown in figure 5



Figure 5: Input and Output Waveforms

#### Comparison between theoretical and simulated values is given below:

| Parameters | Simulated Values | Theoretical Values |
|------------|------------------|--------------------|
| $V_B$      | 3.72V            | 4.0V               |
| $V_C$      | 10.94V           | 10.72V             |
| $I_C$      | 1.3mA            | 1.3mA              |
| $A_v$      | -313.75          | -314.021           |

Table 1: Numerical 1

#### Numerical 2

Given:  $\beta = 100$ 

For the emitter follower network shown in figure 1, calculate

- a)  $r_{\pi}$
- b)  $Z_i$
- c)  $Z_o$
- d)  $A_V$
- e) Repeat parts (b) through (d) with  $r_o=25k\Omega$  and compare results

VCC = 12V

R1
220K

PNPN
CC1
V1

RE
3.3K

Figure 6: Circuit for Numerical 2

Solution: Given is a Emitter-Follower BJT Network.

#### DC Analysis:

In DC analysis, the capacitors become open circuit.

The DC equivalent circuit is shown in figure 7.

Applying KVL to B-E loop in figure 7 we get,

$$V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0$$

$$V_{CC} - V_{BE} - I_B(R_B + (1+\beta)R_E)$$
 (:  $I_E = (1+\beta)I_B$ )

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (1+\beta)R_E} = \frac{12V - 0.7V}{220k + (100+1)3.3k}$$
 (Assuming  $V_{BE} = 0.7V$ )

 $\mathbf{I_B} = \mathbf{20.423} \mu \mathbf{A}$ 

$$I_C = \beta I_B = 100 \times 20.423 \mu A$$

$$I_C=2.0423 mA \\$$



Figure 7: DC Equivalent Circuit

#### **AC** Analysis:

Small Signal Parameter Calculation is given below

$$r_{\pi} = \frac{V_T}{I_{B_Q}} = \frac{26mV}{20.423\mu A}$$

$$\mathbf{r}_{\pi}=1.273\mathbf{k}\Omega$$

$$g_m = \frac{\beta I_B}{V_T} = \frac{100 \times 20.423 \mu A}{26 mV}$$

$$\mathbf{g_m} = \mathbf{78.55mA/V}$$

The small signal equivalent circuit is shown in figure 8



Figure 8: Small Signal Equivalent Circuit

#### Calculation of $A_v$ :

$$A_V = \frac{R_E}{\frac{1}{g_m} + R_E} = \frac{3.3k}{\frac{10^3}{78.55} + 3.3k}$$

$$\mathbf{A_V} = 0.996$$

#### Calculation of $Z_i \& Z_o$ :

$$Z_i = R_B \mid\mid [r_{\pi} + (1+\beta)R_E] = 220k \mid\mid [1.273k + (1+100)3.3k]$$

 $Z_i=132.725 k\Omega$ 

$$Z_o = \frac{1}{g_m} \parallel R_E = \frac{10^3}{78.55} \parallel 3.3k$$

$$Z_o=12.682\Omega$$

### $Case: \ r_o = 25k\Omega$

The small signal equivalent circuit is shown in figure 9



Figure 9: Small Signal Equivalent Circuit

# Calculation of $\mathbf{Z}_i$ & $\mathbf{Z}_o$ :

$$Z_i = R_B \mid\mid [r_{\pi} + (1+\beta)(R_E \mid\mid r_o)] = 220k \mid\mid [1.273k + (1+100)(3.3k \mid\mid 25k)]$$

 $Z_i=126.131 k\Omega$ 

$$Z_o = R_E \mid\mid \frac{1}{g_m} \mid\mid r_o \mid$$

$$Z_o=12.675\Omega\,$$

#### SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:



Figure 10: Circuit Schematic: Results

The input and output waveforms are shown in figure 11



Figure 11: Input and Output Waveforms

# Comparison between theoretical and simulated values is given below:

| Parameters | Simulated Values     | Theoretical Values   |
|------------|----------------------|----------------------|
| $I_B$      | $20.25\mu\mathrm{A}$ | $20.42\mu\mathrm{A}$ |
| $I_C$      | $2.02 \mathrm{mA}$   | $2.0 \mathrm{mA}$    |
| $A_v$      | 0.993                | 0.996                |

Table 2: Numerical 2

# Comparison between $\mathbf{Z}_i$ and $\mathbf{Z}_o$ values after and before $\mathbf{r}_o$ is given below:

| Parameters | with $r_o$       | without $r_o$    |
|------------|------------------|------------------|
| $Z_i$      | $126.131k\Omega$ | $132.725k\Omega$ |
| $Z_o$      | $12.68k\Omega$   | $12.67k\Omega$   |

Table 3: Numerical 2

#### Numerical 3

The transistor parameters for the circuit shown in figure 1 are  $\beta = 180 \& V_A = \infty$ 

- a) Find  $I_{CQ} \& V_{CEQ}$
- b) Calculate the small signal voltage gain
- c) Determine the input-output resistances  $R_i \& R_o$



Figure 12: Circuit for Numerical 3

#### Solution:

The given circuit is an Emitter-Follower amplifier.

#### DC Analysis:

In DC analysis, the capacitors become open circuit.

We know that 
$$V_{th} = \frac{R_2}{R_1 + R_2} \times (V_{CC} - V_{EE}) + V_{EE}$$

$$V_{th} = \left(\frac{10k}{10k + 10k}\right) \times [9V - (-9V)] + (-9V) = 0.5 \times (18V) - 9V$$

$$\mathbf{V_B} = \mathbf{V_{th}} = \mathbf{0V}$$

$$R_{th} = R_1 \mid\mid R_2 = 10k \mid\mid 10k$$

$$R_B=R_{th}=5k\Omega$$

Applying KVL to the Base-Emitter loop we get,

$$V_B - I_{BQ}R_B - V_{BE} - I_E R_E - V_{EE} = 0$$

$$V_B - I_{BQ}R_B - V_{BE} - (1+\beta)I_{BQ}R_E - V_{EE} = 0 \qquad (\because I_E = (1+\beta)I_B)$$

$$I_{BQ} = \frac{V_B - V_{BE} - V_{EE}}{R_B + (1+\beta)R_E} = \frac{0 - 0.7 - (-9V)}{5k + (1+180)0.5k}$$

$$\mathbf{I_{BQ}} = \mathbf{86.9} \mu \mathbf{A}$$

$$I_{CQ} = \beta \times I_{BQ} = 180 \times 86.91 \mu A$$

$$I_{\rm CQ}=15.64 mA$$

Applying KVL to Collector-Emitter loop we get,

$$V_{CC} - V_{CEQ} - I_E R_E - V_{EE} = 0$$

$$V_{CEQ} = V_{CC} - (I_C + I_B)R_E - V_{EE} \qquad (\because I_E = I_B + I_C)$$

$$V_{\rm CEQ} = 10.178 V$$

#### AC Analysis:

The small signal parameters calculations are shown below

$$g_m = \frac{I_C}{V_T} = \frac{15.64mA}{0.026V}$$

$$\mathbf{g_m} = \mathbf{601.69mA/V}$$

$$r_{\pi} = \frac{V_T}{I_{BQ}} = \frac{26mV}{86.91 \mu A}$$

$$\mathbf{r}_{\pi}=\mathbf{0.3k}\boldsymbol{\Omega}$$

The small signal equivalent circuit is shown in figure 2



Figure 13: Small Signal Equivalent Circuit

Calculation of  $A_V$ 

$$A_V = \frac{R_E \parallel R_L}{\frac{1}{g_m} + [R_E \parallel R_L]} = \frac{0.5k \parallel 0.3k}{\frac{10^3}{601.69} + (0.5k \parallel 0.3k)}$$

$$A_V = 0.991$$

$$A_{VS} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S} = A_V \times \frac{V_{in}}{V_S} \qquad \left( \because A_V = \frac{V_{out}}{V_{in}} \right)$$
$$A_{VS} = A_V \times \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_{sig}} = 0.991 \times \frac{10k \parallel 10k}{10k \parallel 10k + 1k}$$

 $\mathbf{A_{VS}} = \mathbf{0.825}$ 

Calculation of  $R_i \& R_o$ 

$$R_i = R_1 \parallel R_2 \parallel [r_\pi + (1+\beta)R_E \parallel R_L]$$

$$R_i = 10k \parallel 10k \parallel [0.3k + (1+181)0.5k \parallel 0.3k]$$

 $R_i=4.36k\Omega$ 

$$R_o = R_L \parallel \frac{1}{g_m} \parallel R_E$$

$$R_o = 0.3k \parallel \frac{10^3}{601.69} \parallel 0.5k$$

$$R_o=1.647\Omega\,$$

#### SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:



.model npn npn( bf=180) .tran 5ms

Figure 14: Circuit Schematic: Results

The input and output waveforms are shown in figure 4



Figure 15: Input and Output Waveforms

#### Comparison between theoretical and simulated values is given below:

| Parameters | Simulated Values | Theoretical Values |
|------------|------------------|--------------------|
| $I_{BQ}$   | $85.391 \mu A$   | $86.91 \mu A$      |
| $V_{CEQ}$  | 10.27V           | 10.17V             |
| $A_{VS}$   | 0.804            | 0.825              |

Table 4: Numerical 3

\*\*\*\*\*\*\*