Fennec Platform Product Definition

VO.5 XIAOHAI LI DEC-2017

Reversion History

Version	Date	Description
0.1	2016-03-13	First draft
0.2	2016-03-21	Add GPIO definition & BMC part
0.3	2016-03-22	Update pre-layout, add critical BOM
0.4	2016-08-07	Update HW info according to prototype
0.5	2017-12-13	Update HW spec and proto info, clean out-of-date stuff

Background

Heterogeneous Computing System

- We started open heterogeneous system investigating on AP SoC, MCU, PLD, and AFE @2015.
- The goal of RK3288 project is to design an platform (both HW & SW) which can combine the computing power of ARM processor and the GPGPU for multi applications like IoT, computing cluster, industrial, robotic (drone esp.), DAQ, and auto-test system. It's part of the open heterogeneous program.

Project Code

Fennec RK3288 Platform

Product Requirement

Hardware Requirement

- 1. Single board computer (Standalone Mode)
 - 1) HW01: 1GB-4GB memory capability, 4GB-16GB eMMC
 - 2) HW02: 5V power from DC jack/micro USB connector
 - 3) HW03: HDMI (Micro), 1000M Ethernet, 2x USB host,
 - 4) HW04: USB OTG, audio input/output
 - 5) HW05: TF card slot, CSI camera, WiFi & BT module, LVDS display
 - 6) HW06: GPIO header: UART, 2x SPI, 2x I2C, * interrupt

2. Cluster

- 1) HW11: Horizontal (90°) 2.54mm GPIO header for backplane connection
- 2) HW12: 5V power from GPIO header
- 3) HW13: Heatsink mounting hole reserved. Heatsink should cover both processor and memory
- 4) HW14: 3x Front panel LED
- 5) HW15: *Onboard MCU/PSoC for subrack management

(* means optional, red means not fulfilled)

Product Requirement

Software Requirement

1. Operating System

- 1) SW01: Linux Kernel mainline support (3.18.x, 4.4.x)
- 2) SW02: Debian/Ubuntu rootFS with GUI desktop support
- 3) SW03: *Windows 10 IoT core support
- 4) SW04: TF card has higher boot priority than eMMC

2. GPU and Codec Support

- 1) SW11: Open source GPU Kernel driver
- 2) SW12: OpenGL X11 GUI acceleration user space lib
- 3) SW13: OpenCL user space lib
- 4) SW14: Video codec (decode & encode) kernel driver & user space lib, and *ffmpeg/gstreamer transcoding support

(* means optional)

Hardware Architecture

Block Diagram

Reference BOM

Component pre-placement is based on this BOM.

Just for reference.

Function Block	Part Name	Note
СРИ	RK3288	
Memory	Not specified	Min: 1GB LPDDR3, max: 2GB LPDDR3 x2
Storage	Not specified	8GB – 64GB eMMC
Ethernet	RT8211E	QFN package
Audio	ES8323	I2S to analog input/output
WiFi/BT/FM	AP6212 Module	WiFi + BT4.0
Power Management	RK808	
ВМС	STM32F411	Details on next page

Chassis Management

BMC -- IPMI Lite

- Reduced subrack management functions
 - Communication with RMC via backplane (I2C)
 - Accessible by CPU via SPI/UART & interrupt GPIO
 - Monitor onboard voltage of each power stage & temperature
 - I2C Digital temp sensor under heatsink near CPU
 - Control main 5V power from backplane
 - Use MOSFET to turn on/off main 5V
 - Reserved fuse/0ohm resistor to bypass the MOSFET
 - Independent 3.3V power supply for BMC
 - Selected from backplane or onboard 3.3V by diodes
- MCU selection
 - STM32F051K8U6 (\$1.5) Low cost
 - STM32F411CEU6 (\$4.5) High performance, cost-effective
 - CY8C5888LTI-LP097 (\$9.8) Best flexibility

GPIO Definition

CPU GPIO PINOUT (Raspberry Pi Compatible)					
PinNum	Function	PinNum	Function		
1	3.3V	2	5V		
3	I2C1_SDA	4	5V		
5	I2C1_SCL	6	GND		
7	10	8	UART_TXD		
9	GND	10	UART_RXD		
11	10	12	IO/PWM		
13	10	14	GND		
15	10	16	10		
17	3.3V	18	10		
19	SPI0_MOSI	20	GND		
21	SPI0_MISO	22	10		
23	SPIO_SCK	24	SPIO_CSO#		
25	GND	26	SPIO_CS1#		
27	I2C3_SDA	28	I2C3_SCL		
29	10	30	GND		
31	IO/PWM	32	IO/PWM		
33	IO/PWM	34	GND		
35	GPIO	36	GPIO		
37	10	38	GPIO		
39	GND	40	GPIO		

Interface Preview

SBC Appearance (Just for reference)

• PCB size: 90x62mm, heatsink size: 43x33mm

Standalone vs. Cluster

- Standalone Mode
 - Light-weight applications
 - Optimized power efficiency
 - Customized products

- Micro Cluster
 - Heavy computing tasks
 - Interface flexibility & extensible
 - Virtualization & containerization

Fennec: Single platform for both form factors

Mechanical Preview

Standalone Mode -- Connecting peripheral boards

Mechanical Preview

Micro Cluster -- Connecting backplane

• Slides on case and dowel pins on backplane are needed to locate the connection

Application -- IoT Home Center

IoT control and database server for offline condition

WSN and Ethernet gateway

• WiFi, BT, sub 1GHz, 1000M Ethernet uplink

Video processing and security camera

GPU accelerated OpenCV and deep learning face/body detection

Human interface

- LCD display and touchscreen
- Cloud based voice control and interaction

Application -- Computer Vision (1)

Hardware Architecture

- Video Input
 - Multi-channel MIPI-CSI interfaces to cameras
 - USB2.0/3.0 as alternative
- Video Output
 - HDMI/DP interfaces for standard display
 - MIPI-DSI/LVDS interfaces for embedded display
- Communication & Connectivity
 - GE LAN interface
 - WiFi 802.11ac/b/g/n MIMO + BLE
 - Telecom interface: LTE/5G modules
- Accelerators
 - Internal: GPU/NPU
 - External: USB/PCle interface to FPGA/ASIC

Application -- Computer Vision (2)

Software Frameworks

- OpenCV/dlib
 - Image pre-processing & transformation
 - Object detection
- NN Frameworks
 - Classification & Recogination
 - OpenCL enabled Torch7 / Caffe
- Hardware Acceleration
 - Video transcoding acceleration
 - OpenCL GPGPU computing

Application -- Industrial & DAQ

AFE board

AD data buffer, low jitter clock reference, and sensor hub

Application board

- Network and GUI applications
- GPGPU accelerated DSP calculation

Application -- Integrated Test Box

Blades in subrack

- Ethernet switching & power management blade
- Generic computing blade
- AFE & DAQ blade
- I/O expansion blade

Computing blade roles

- DAQ and test server
- Cluster computing node
- Video transcoding node
- Subrack manager

Specific feature

- HW transcoding acceleration
- OpenCL GPGPU computing

Prototype Brief

Fennec prototype: alpha

- Designed by Rockchips, showed on 2016 RK IDC
- Open issues
 - Chip issue: USB EHCl controller incompatible with USB 1.1 (only support USB 2.0)
 - Keyboard/mouse not working.
 - Solution: Remove USB EHCI host on formal version
 - Mech & appearance
 - To be modified: silkscreen, heatsink, board edge and corners.
 - System not ready
 - GPU: OpenCL & OpenGL application not working
 - VPU: ffmpeg not working
 - Peripherals: Audio codec, wireless module not working
 - Solution: RK keeps developing software

Prototype from RK, JUL-2016

Prototype Brief

Fennec prototype: R01 Pro (4GB RAM + 16GB eMMC)

- Modified by Rockchips
- Status Update
 - Remove USB EHCI host, only one host left
 - Add nightWiring C & Python peripheral lib (wiringPi like)
 - Software that works now (on specific Kernel and rfs version)
 - GPU: OpenCL + OpenGL ES
 - VPU: gstreamer encoder & decoder
 - Peripherals: Audio codec, wireless module
- Open Issues
 - Wrong SPI pinout on extend connector
 - MIPI CSI and DSI are not fully verified
 - Need to continuous verifying & maintaining RK Kernel, rootfs and bootloader

Prototype from RK, JAN-2017

Manufactured as pcDuino9 of Linksprite

