Lifetime del cobalto-57

Gruppo III:

Erica Brisigotti, Emmanuele Lotano, Ylenia Mascolo

Docenti:

Prof.ssa Michela Prest Prof. Erik Silvio Vallazza

Assistenti di laboratorio:

Christian Petroselli Federico Ronchetti Alessia Selmi

Laboratorio di Fisica III A - Modulo di Fisica Subnucleare

Anno accademico 2020/2021

Università degli Studi dell'Insubria

Dipartimento di Scienza ed Alta Tecnologia

Indice

1 Introduzione				
2	Mist	ura della <i>lifetime</i>	6	
	2.1	Identificazione dei picchi e calibrazione	6	
	2.2	Identificazione delle regioni d'interesse	10	
	2.3	Stima della <i>lifetime</i>	12	
3	Font	ti	14	

1 Introduzione

La misura della *lifetime* di stati eccitati nei nuclei è una delle tecniche sperimentali più importanti in fisica nucleare. Per misurare la *lifetime* di uno stato eccitato, questo deve essere popolato e rimarrà eccitato per una vita media τ legata alla larghezza Γ dello stato stesso dalla relazione:

$$\Gamma \tau = \hbar \tag{1}$$

Inoltre, quando lo stato è eccitato ha una certa probabilità di decadere a uno stato a più bassa energia (figura (1)): questa probabilità è proporzionale a Γ ed è descritta dall'elemento di matrice che rappresenta il decadimento tra lo stato iniziale e quello finale:

$$\Gamma \propto |\langle \Psi_f | O_{decay} | \Psi_i \rangle|^2 \tag{2}$$

con O_{decay} operatore che descrive il modo di decadimento.

Figura 1: Schema del decadimento (di larghezza Γ) di uno stato eccitato di un nucleo.

La misura della *lifetime* nucleare ha come scopo quello di ottenere informazioni sugli elementi di matrice del tipo descritto nell'equazione (2) per ottenere un possibile confronto con i modelli nucleari. In particolare, poichè risulta ottimale avere degli elementi di matrice dove l'operatore è ben noto (in modo da ridurre le incertezze) come nel caso delle interazioni elettromagnetiche, di solito si studiano decadimenti elettromagnetici diretti come l'emissione di raggi γ , la conversione elettronica e la produzione di coppie. Il *range* di *lifetime* coperto dai diversi metodi sperimentali può essere diviso in metodi diretti (che misurano τ) e indiretti (che misurano essenzialmente Γ), come mostrato in figura (2).

Figura 2: Metodi di misura delle lifetime nucleari in funzione del valore della lifetime stessa.

La misura di una *lifetime* nucleare, tramite la tecnica della coincidenza, richiede la rivelazione del tempo che intercorre dalla produzione al decadimento e il *fit* con una successiva legge esponenziale. L'istante di produzione di uno stato nucleare è normalmente definito in due modi diversi: generando lo stato (che non è il caso considerato) o rivelando una qualsiasi radiazione emessa nella formazione dello stato. L'istante di decadimento viene misurato rivelando il raggio γ emesso nello spopolamento dello stato eccitato.

In questa esperienza è stata misurata la *lifetime* nucleare nel decadimento del ⁵⁷Co, come mostrato in figura (3).

Figura 3: Schema di decadimento del ⁵⁷Co.

Il ⁵⁷Co decade per cattura elettronica nel livello a 136 keV del ⁵⁷Fe, il quale può emettere direttamente un fotone da 136 keV oppure un fotone da 122 keV per arrivare così al livello a 14 keV dal quale, in un momento successivo, emette un fotone con l'energia residua.

La misura della *lifetime* dello stato a 14 keV (valore tabulato per l'emivita di 98 ns) è ricavabile dalla misura della distribuzione del tempo che intercorre tra gli eventi γ_1 e γ_2 in figura (3).

Il sistema di acquisizione è presentato in figura (4).

Figura 4: Sistema di acquisizione per la misura della lifetime nucleare.

L'emissione della sorgente di ⁵⁷Co può essere considerata isotropa, per cui una configurazione di acquisizione abbastanza semplice da realizzare consiste nel posizionare due cristalli inorganici (uno NaI(Tl) a finestra spessa ed uno NaI(Tl) a finestra sottile) *back to back* (come in figura (4)), uno dei quali rivela il fotone da 122 keV e l'altro quello da 14 keV. Il rivelatore per il fotone di bassa energia (NaI) ha una finestra sottile in modo da non limitare l'efficienza del sistema.

La catena è costituita dalle seguenti parti:

- i segnali di entrambi i rivelatori sono amplificati e formati (ORTEC, 471);
- i segnali formati vengono discriminati da una scheda *custom*;
- i segnali discriminati vengono messi in coincidenza per generare il trigger per il digitizer;
- il *digitizer* (Caen V1730C) campiona i segnali a una frequenza di 500 MHz (un campionamento ogni 2 ns) con una risoluzione di 14 bit. La forma d'onda viene analizzata dal programma di acquisizione per identificare il valore del massimo della *pulse height* e l'istante temporale di tale massimo. Questi valori vengono salvati in un file ascii per l'analisi *offline*.

L'esperienza prevede le seguenti misure:

- 1. identificazione dei picchi a 14 e 122 keV;
- 2. acquisizione dati in coincidenza;
- 3. analisi dati.

2 Misura della *lifetime*

L'esperienza analizzata a seguire ha richiesto in primo luogo il passaggio da energie espresse in ADC ad energie in keV, mediante una prima fase di calibrazione: in questo modo è stato possibile identificare le zone corrispondenti ai diversi decadimenti γ del ⁵⁷Co tramite la tecnica della coincidenza. Una delle zone è poi stata ulteriormente esaminata per stimare l'emivita $T_{1/2}$ a partire dalla distribuzione delle differenze tra gli istanti di tempo.

2.1 Identificazione dei picchi e calibrazione

I dati forniti consistono in un set di circa 7 milioni di eventi registrati per entrambi i rivelatori utilizzati. Tali dati sono stati rappresentati come istogrammi di frequenza in funzione dell'energia in ADC:

Figura 5: Spettri del ⁵⁷Co con rivelatori a finestra spessa e sottile.

Come è possibile osservare dalla figura (5), in entrambi gli spettri sono presenti picchi ad energie molto alte e molto basse caratterizzati da un'altezza superiore rispetto agli altri visibili:

• i picchi ad energia prossima a 16000 ADC consistono in picchi di saturazione nei quali affluiscono tutti i segnali con ampiezza analogica maggiore di quella registrabile, ovvero oltre la risoluzione massima del *digitizer* di 14 bit (con fondoscala a 16384 ADC). In particolare tali segnali sono dovuti alla registrazione sia di raggi cosmici da parte di entrambi i rivelatori che di fotoni molto energetici (da 122 keV) da parte del rivelatore a finestra sottile;

• le zone a bassa energia corrispondono, invece, sia al fondo ambientale sia ad eventi registrati da uno solo dei due rivelatori: infatti, per via del *trigger* in modalità *or*, è possibile che uno dei due rivelatori registri segnale anche quando il secondo non ne rivela. In particolare, questi segnali (ad esempio i raggi X caratteristici) sono visibili sotto forma di un unico picco di ampiezza ridotta ed altezza consistente prossima allo zero.

É stato quindi possibile escludere dall'analisi i picchi (a bassa ed alta energia) appena visti per evitare di inficiare la statistica e poichè non descrivono propriamente i decadimenti del ⁵⁷Co. Per tale motivo, i dati a seguire saranno visualizzati escludendo tali zone.

Dagli spettri in figura (5) è possibile notare la presenza di diversi picchi nella zona ad energia intermedia: non è facile, però, identificare i picchi utili corrispondenti ai decadimenti del ⁵⁷Co. Per tale motivo si ricorre alla tecnica della coincidenza che consiste nella rappresentazione di un istogramma bidimensionale di correlazione dei due rivelatori:

Figura 6: Rappresentazione dell'istogramma bidimensionale di correlazione dei due rivelatori.

Dalla figura (6) si possono osservare quattro diverse zone luminose contenenti i picchi d'interesse: ciascuna è stata esaminata effettuando una prima selezione rettangolare volta ad individuare gli eventi che ricadono nella zona, di cui è stato poi fatto un istogramma di frequenza.

Gli istogrammi in questione sono stati inizialmente analizzati utilizzando un *fit* gaussiano per localizzare il picco, ma la presenza di fondo ha richiesto l'utilizzo di una strategia di *fit* più elaborata: i parametri stimati dal *fit* gaussiano iniziale sono quindi stati utilizzati per guidare a convergenza un *fit* della forma:

$$y(x) = Ae^{-\frac{(x-\mu)^2}{2\delta^2}} + Be^{-bx}$$
 (3)

dove il primo termine gaussiano è volto a descrivere il picco (di cui si vuole stimare la posizione a partire dai parametri), mentre il secondo termine esponenziale modellizza il fondo.

I *fit* in questione sono stati utilizzati per stimare la posizione in ADC di ciascun picco, come il valore medio μ del termine gaussiano. Di seguito si riportano le posizioni dei picchi in ADC per il rivelatore a finestra sottile e il rivelatore a finestra spessa, stimate dai *fit*:

	Zona 1	Zona 2	Zona 3	Zona 4
μ spessa [ADC]	3223 ± 3	9130 ± 10	11991 ± 6	12062 ± 5
μ sottile [ADC]	11708 ± 6	3950 ± 20	2110 ± 10	870 ± 10

Tabella 1: Posizioni in ADC dei picchi stimate dai fit per i due rivelatori e per ciascuna zona.

Di seguito sono rappresentati gli istogrammi di frequenza esaminati:

Figura 7: Rappresentazione degli istogrammi di frequenza corrispondenti ai picchi di emissione del ⁵⁷Co (con rivelatori a finestra spessa e sottile) con *fit* della forma (3).

Una volta ottenuta la posizione in ADC di ciascun picco è stato possibile convertire il valore di energia stimato da ADC in keV, attraverso una calibrazione lineare basata sulla conoscenza teorica dei valori di emissione del ⁵⁷Co. Per effettuare tale calibrazione, i valori stimati in ADC sono stati rappresentati per ciascun rivelatore in funzione dei rispettivi in keV, in modo da eseguire un *fit* della forma:

$$ADC = m \cdot keV + q \tag{4}$$

per ricavare l'intercetta q e il coefficiente angolare m di calibrazione.

Di seguito sono rappresentate le rette di calibrazione per i due rivelatori:

Figura 8: Rappresentazione delle rette di calibrazione.

I parametri stimati dalla calibrazione sono i seguenti:

	m [ADC/keV]	q [ADC]
spessa	95 ± 1	444 ± 129
sottile	124 ± 2	243 ± 114

Tabella 2: Parametri stimati dal *fit* lineare per i rivelatori a finestra sottile e spessa.

e sono stati infine impiegati per trasformare gli spettri da ADC in keV rielaborando la formula (4):

Figura 9: Spettri del ⁵⁷Co con energie in keV, per rivelatori a finestra spessa e sottile.

Come si può notare dalla tabella (2), i valori ottenuti per i coefficienti delle rette di calibrazione sono caratterizzati da errori consistenti: una giustificazione di questa incertezza può essere trovata nell'esiguo numero di punti utilizzato per la calibrazione. Infatti, i *fit* lineari sono stati eseguiti soltanto su quattro punti nel caso del rivelatore a finestra spessa e su tre punti nel caso del rivelatore a finestra sottile. Tali parametri, però, risultano indispennsabili per convertire ed esaminare le correlazioni considerando le energie in keV, in modo tale da poter effettivamente associare a ciascuna delle quattro zone (osservate in figura (6)) le possibili modalità di decadimento coinvolto.

2.2 Identificazione delle regioni d'interesse

Poichè il *set* di dati iniziale conteneva 7 milioni di registrazioni, si è deciso di limitare il numero di dati ai soli corrispondenti alle zone d'interesse. Per selezionare esclusivamente gli eventi appartenenti a ciascuna zona, sono state sfruttate ancora una volta le proiezioni (trasformate in keV): su ciascuna di esse è stato eseguito un *fit* sia gaussiano che esponenziale, volto a stimarne il valore medio μ e la σ .

Figura 10: Proiezioni delle zone d'interesse con *fit* e limiti a 2 σ .

Di seguito si riportano i parametri μ e σ stimati:

	Zona 1	Zona 2	Zona 3	Zona 4
$\mu \text{ spessa} = x_0$	29.45 ± 0.04	91.5 ± 0.1	122.2 ± 0.1	122.8 ± 0.1
μ sottile = y_0	92.2 ± 0.1	30.5 ± 0.4	15.04 ± 0.02	5.01 ± 0.01
σ spessa = $a/2$	4.76 ± 0.05	9.6 ± 0.1	9.4 ± 0.1	9.3 ± 0.1
σ sottile = $b/2$	11.6 ± 0.3	6 ± 1	2.09 ± 0.03	1.40 ± 0.02

Tabella 3: Parametri μ e σ ricavati dai *fit* per ciascuna zona.

Questi sono stati utilizzati per delimitare le zone in analisi con ellissi di equazione:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} \le 1\tag{5}$$

cioè centrate in (x_0,y_0) e di semiassi (a,b), nell'istogramma bidimensionale di correlazioni in keV.

I risultati ottenuti sono riportati di seguito:

Figura 11: Rappresentazione dell'istogramma bidimensionale di correlazione dei due rivelatori convertito in keV, con zone d'interesse limitate da ellissi.

Le zone d'interesse identificate in figura (11) descrivono i seguenti fenomeni successivi al decadimento β^+ del 57 Co in 57 Fe allo stato eccitato (con 136.5 keV in più dello stato stabile):

♦ **Zona 1**: il contatore a finestra sottile rivela un segnale a E = 93 keV corrispondente alla registrazione dell'elettrone emesso per effetto fotoelettrico dal fotone incidente di energia $E_{\gamma} = 122$ keV. L'energia registrata ($E = E_{\gamma} - E_l$) risulta minore rispetto all'energia del fotone siccome una porzione di energia pari a $E_l = 29$ keV viene impiegata per rompere il legame che l'elettrone emesso aveva con il nucleo. L'emissione dell'elettrone porta alla formazione di una lacuna che a sua volta è riempita da un elettrone più esterno: nel processo di diseccitazione in questione viene quindi emesso un raggio X caratteristico dello iodio presente nel rivelatore, di energia $E_X = 29$ keV, registrato dall'altro rivelatore;

- ♦ **Zona 2**: simmetricamente a quanto descritto sopra, il contatore a finestra spessa rivela un segnale a E = 93 keV, corrispondente all'energia dell'elettrone emesso per effetto fotoelettrico dal fotone incidente di $E_{\gamma} = 122$ keV, mentre il contatore a finestra sottile rivela il raggio X caratteristico dello iodio a $E_{X} = 29$ keV;
- \diamond **Zona 3**: il contatore a finestra spessa rivela il segnale $E_{\gamma_1} = 122$ keV del fotone, mentre il rivelatore a finestra sottile registra un'energia di $E_{\gamma_2} = 14.4$ keV corrispondente sempre alla radiazione γ. La somma di tali energie $E_{\gamma_1} + E_{\gamma_2} = 136$ keV permette di ottenere l'energia dello stato eccitato del ⁵⁷Fe (dopo il decadimento β⁺) rispetto allo stato stabile;
- ♦ **Zona 4**: il contatore a finestra spessa rivela il segnale $E_{\gamma} = 122$ keV del fotone, mentre il rivelatore a finestra sottile registra un'energia di $E_X = 6.4$ keV corrispondente al raggio X caratteristico del ⁵⁷Fe che viene emesso da quest'ultimo, successivamente all'effetto fotoelettrico del fotone da $E_{\gamma_2} = 14.4$ keV con la sorgente stessa.

2.3 Stima della lifetime

In particolare, la zona 3 è stata ulteriormente analizzata per trovare l'emivita $T_{1/2}$ dell'isotopo di ⁵⁷Fe allo stato eccitato caratterizzato da energia $E_{\gamma_2} = 14.4$ keV rispetto allo stato stabile.

Il primo passaggio di questa ulteriore analisi è servito per identificare quale porzione di eventi possa essere ritenuta compatibile con il picco individuato dalle proiezioni e centrato in (122.2,15.04). Tale porzione di eventi è stata individuata a partire dalle σ trovate nelle proiezioni: in particolare, sono stati confrontati graficamente i limiti ottenuti considerando 1, 2, 3 σ .

Figura 12: Rappresentazione della zona 3 e dei diversi limiti ipotizzati (a 1, 2, 3 σ).

Come è possibile osservare nella figura (12), i limiti a 3 σ risultano troppo ampi in quanto includono parti di picchi adiacenti: tra le rimanenti opzioni si è deciso, quindi, di impiegare limiti a 2 σ (motivando la scelta di visualizzazione dei limiti in figura (10)) dato che l'ellisse ad 1 σ esclude porzioni ancora molto luminose della correlazione.

In secondo luogo, per stimare il valore di $T_{1/2}$ sono stati inizialmente considerati gli istanti di tempo registrati per ciascun rivelatore. I tempi di entrambi i rivelatori sono stati acquisiti con un medesimo istante iniziale, coincidente con il *trigger* di almeno di uno dei due rivelatori, e corrispondono agli istanti in cui l'energia è stata depositata. Si è quindi analizzata la distribuzione delle differenze tra gli istanti di decadimento del ⁵⁷Fe a 136.5 keV (in corrispondenza di cui si ha emissione di γ da 122 keV) e i rispettivi istanti di decadimento del ⁵⁷Fe a 14.4 keV.

Conoscendo infatti le energie tipiche dei decadimenti in questione (corrispondenti alla zona 3), è stato possibile isolare i relativi istanti di tempo per entrambi i rivelatori in modo da ridurre l'ampiezza della distribuzione degli istanti di tempo considerati.

Figura 13: Rappresentazione delle distribuzione degli istanti di tempo per entrambi i rivelatori, complete (in grigio) e limitate alla zona 3 (in rosso).

Le due serie di istanti di tempo così individuate sono state quindi analizzate a loro volta sottraendole ed analizzando nuovamente la distribuzione così ottenuta, riportata in figura (14).

Figura 14: Da sinistra: individuazione del limite ottimale (in corrispondenza del minimo valore del $\tilde{\chi}^2$) e rappresentazione della distribuzione delle differenze tra gli istanti di decadimento del cobalto-57, con *fit* esponenziale.

In particolare, per definire correttamente l'estremo sinistro dell'intervallo da analizzare con il *fit* esponenziale della forma:

$$y(x) = A \cdot e^{-x/\tau} \tag{6}$$

è stato considerato l'andamento del $\widetilde{\chi}^2$, calcolato al variare del numero di punti esclusi limitandosi alla metà superiore della distribuzione (in modo da evitare l'esclusione di troppi punti). Il numero ottimale di punti esclusi è stato quindi individuato in corrispondenza del minimo valore di $\widetilde{\chi}^2$, come mostrato in figura (14).

Dal *fit* esponenziale è stato così possibile stimara la vita media $\tau = 142 \pm 4$ ns, la quale è legata all'emivita $T_{1/2}$ dalla seguente relazione:

$$T_{1/2} = \frac{\tau}{\sqrt{2}} = 100 \text{ ns}$$
 $\sigma_{T_{1/2}} = \frac{\sigma_{\tau}}{\sqrt{2}} = 1 \text{ ns}$ (7)

Il valore così stimato risulta essere compatibile con quello teorico $T_{1/2} = 98$ ns entro 2 σ , anche per via della selezione del numero di punti ottimale da escludere effettuato in precedenza.

3 Fonti

- 1. R.L. Heath, Gamma-ray Spectrum Catalogue Ge and Si Detector Spectra (4th edition), Settembre 1998
- 2. Lawrence Berkeley National Laboratory, X-Ray Data Booklet, Ottobre 2009