Lecture 14

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

STAT 8020 Statistical Methods II September 20, 2019

> Whitney Huang Clemson University

Notes Notes Notes Notes Notes

Agenda

- Regression with Both Quantitative and Qualitative Predictors
- **2** Polynomial Regression

Notes			

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$

 $X_1, X_2, \cdots, X_{p-1}$ are the predictors.

Question: What if some of the predictors are qualitative (categorical) variables?

 \Rightarrow We will need to create \mbox{dummy} (indicator) variables for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

Notes			

Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

> head(Salaries)

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
1	Prof	В	19	18	Male	139750
2	Prof	В	20	16	Male	173200
3	AsstProf	В	4	3	Male	79750
4	Prof	В	45	39	Male	115000
5	Prof	В	40	41	Male	141500
6	${\sf AssocProf}$	В	6	6	Male	97000

Predictors

> summary(Salaries)

rank discipline yrs.since.phd yrs.service AsstProf : 67 A:181 Min. : 1.00 Min. : 0.00 AssocProf: 64 1st Qu.:12.00 1st Qu.: 7.00 Prof :266 Median :21.00 Median :16.00 Mean :22.31 Mean :17.61 3rd Qu.:32.00 3rd Qu.:27.00 :56.00 :60.00 Max. Max. sex salary Female: 39 Min. : 57800

Female: 39 Min. : 57800 Male :358 1st Qu.: 91000 Median :107300 Mean :113706 3rd Qu.:134185 Max. :231545

We are three categorical variables, namely, rank, discipline, and sex.

ession

14.5

Notes

Notes

Dummy Variable

For binary categorical variables:

$$X_{\text{sex}} = egin{cases} 0 & \text{if sex = male}, \\ 1 & \text{if sex = female}. \end{cases}$$

$$X_{ ext{discip}} = egin{cases} 0 & ext{if discip} = \mathsf{A}, \ 1 & ext{if discip} = \mathsf{B}. \end{cases}$$

For categorical variable with more than two categories:

$$X_{\texttt{rankl}} = \begin{cases} 0 & \text{if } \texttt{rank} = \texttt{Assistant Prof}, \\ 1 & \text{if } \texttt{rank} = \texttt{Associated Prof}. \end{cases}$$

$$X_{\mathrm{rank2}} = \begin{cases} 0 & \text{if } \mathrm{rank} = \mathrm{Associated\ Prof}, \\ 1 & \text{if } \mathrm{rank} = \mathrm{Full\ Prof}. \end{cases}$$

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Regression with Both Quantitative and Qualitative

Polynomial

Design Matrix

> head(X)

	- Hedd(A)				
	(Intercept)	rankAssocProf	rankProf	disciplineB	yrs.since.phd
	1 1	0	1	1	19
	2 1	0	1	1	20
	3 1	0	0	1	4
	1 1	0	1	1	45
	5 1	0	1	1	40
(5 1	1	0	1	6
	yrs.service	sexMale			
	1 18	1			
	2 16	1			
	3	1			
	4 39	1			
- !	5 41	1			
(5 6	1			

With the design matrix X, we can now use method of least squares to fit the model $Y=X\beta+\varepsilon$

Regression with Quantitative and Qualitative Predictors & Polynomial Regression
CLEMS N
Regression with Both Quantitative and Qualitative Predictors

Notes			

Model Fit

Coefficients:

Estimate Std. Error t value Pr(>|t|) 3403.0 20.787 < 2e-16 ***
4145.3 3.114 0.00198 ** (Intercept) 70738.7 rankAssocProf 12907.6 rankProf 45066.0 4237.5 10.635 < 2e-16 *** 2342.9 6.154 1.88e-09 *** 241.0 2.220 0.02698 * disciplineB 14417.6 yrs.since.phd 535.1 yrs.service -489.5 211.9 -2.310 0.02143 * sexFemale -4783.5 3858.7 -1.240 0.21584 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22540 on 390 degrees of freedom Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463 F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16

Question: Interpretation of these dummy variables (e.g. $\hat{\beta}_{\texttt{rankAssocProf}}$)?

14.0

Notes

${\tt lm}({\tt salary} \sim {\tt sex} * {\tt yrs.since.phd})$

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Regression with Both Quantitative and Qualitative

Polynomial

Notes

Polynomial Regression

Suppose we would like to model the relationship between response Y and a predictor X as a $p_{\rm th}$ degree polynomial in X:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_p X_i^p + \varepsilon$$

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$X = \begin{pmatrix} 1 & X_1 & X_1^2 & \cdots & X_1^p \\ 1 & X_2 & X_2^2 & \cdots & X_2^p \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_n & X_n^2 & \cdots & X_n^p \end{pmatrix}$$

Regression with Quantitative and Qualitative Predictors & Polynomial Regression
CLEMS
Regression with Both Quantitative and Qualitative Predictors Polynomial Regression
14 10

Notes				

Housing Values in Suburbs of Boston Data Set

1	Notes			
-				
_				
-				
-				
-				

Polynomial Regression Fits

Regression with Quantitative and Qualitative Predictors & Polynomial Regression
CLEMS N
Regression with Both Quantitative and Qualitative Predictors Polynomial Regression

Notes			

Potential Topics for Next Lecture

- Nonlinear Regression
- Non-Parametric Regression
- Ridge Regression
- Regression Tree
- Least Absolute Shrinkage and Selection Operator (LASSO)

Regression with Quantitative and Qualitative Predictors & Polynomial Regression
CLEMS N
Polynomial Regression
14 12

Notes			
Notes			
Notes			
Notes			