CDI-II

Derivadas parciais - Planos tangentes

Exercícios

1. Calcule as derivadas parciais das funções:

(a)
$$f(x,y) = x^2 + xy + y^2$$

(b)
$$f(x,y) = x^3y^2 - 4x^2y$$

(c)
$$f(x,y) = \sqrt{x^2 + e^{xy}}$$

(d)
$$f(x,y) = y^2 \sin(x^2 + y)$$

(e)
$$f(x, y, z) = \tan(x^2) + \sec(yx) + \csc(xyz)$$

(f)
$$f(x,y,z) = x^3y^2z^2 + 8xy - 4xz^3$$

(g)
$$f(x,y,z) = \frac{1}{x^2 + y^2 + z^2}$$

2. Determine a equação do ponto tangente à função no ponto P, dados como:

(a)
$$f(x,y) = 4x + x^2y$$
 $P(1,0)$

(b)
$$f(x,y) = x^3 + 2x^2y^2 - 4xy^2$$
 $P(1,1)$

(c)
$$f(x,y) = \sqrt{x^2 + y^2}$$
 $P(3,4)$

- 3. Encontre, se possível, um ponto da função $f(x,y)=x^2y-3xy+2y+2x$ no qual seu plano tangente neste é paralelo ao plano $x\circ y$.
- 4. Mostre que o planto tangente da função $f(x,y)=x^2+y^2$, em qualquer ponto de não nulo do \mathbb{R}^2 , passa pela origem.
- 5. Cite um exemplo, se possível, de uma função f(x,y) cujo plano tangente no ponto (-1,1) é 4x+2y-z+3=0. A função citada é única? Por que?