# Documentação de aplicação web

## **Campus Party - Hackathon Banco BRB - Open Finance - CPBSB5**

### NFTax - Bank as a service



#### **Autores:**

Alberto da Rocha Miranda Emanuele Lacerda Morais Martins Elisa de Oliveira Flemer Henrique Marlon Conceição Santos

Nome da solução:

NFTax

Data de criação:

07 de abril de 2023

# Sumário

| Documentação de aplicação web                              | ı  |
|------------------------------------------------------------|----|
| Campus Party - Hackathon Banco BRB - Open Finance - CPBSB5 | 1  |
| NFTax - Bank as a service                                  | 1  |
| Sumário                                                    | 2  |
| 1. Visão Geral do Projeto                                  | 3  |
| 1.1 Descritivo da Solução                                  | 3  |
| 1.2 Partes Interessadas                                    | 4  |
| 1.3 Implementações futuras                                 | 4  |
| 2. Análise de Negócio                                      | 5  |
| 2.1 Proposta de Valor                                      | 5  |
| 3. Requisitos do sistema                                   | 7  |
| 3.1 User Stories                                           | 7  |
| 4. Elaboração do Sistema                                   | 8  |
| 4.1 Arquitetura do Sistema                                 | 8  |
| 4.4 Contratos Inteligentes (Smart Contracts)               | 9  |
| 4.4 Tecnologias Utilizadas                                 | 9  |
| 4.4 Protótipo da solução                                   | 9  |
| 4.5 Código Fonte                                           | 10 |
| 5. Apêndice                                                | 10 |
| 5.1 Objetivo                                               | 10 |

# 1. Visão Geral do Projeto

## 1.1 Descritivo da Solução

O NFTax é uma solução revolucionária que tem como objetivo tornar mais fácil e acessível o cálculo de imposto de renda para a grande massa de investidores no mercado de Open Finance. Essa solução inovadora, baseada em blockchain, oferece um serviço "bank as a service" para bancos e outras instituições financeiras, o que garante a rastreabilidade das informações e o cálculo automático dos valores de impostos sobre as transações.

Para garantir a segurança e a privacidade das transações, o NFTax utiliza uma blockchain privada permissionada construída com o Hyperledger Besu, além de oferecer contratos digitais para investimentos mais comuns. Através da API do NFTax, os usuários têm acesso a todas as transações de uma determinada carteira de investimentos, e o cálculo de imposto de renda é feito automaticamente na própria API, sem que o investidor precise se preocupar com detalhes técnicos.

A solução NFTax funciona de forma simples e prática, o usuário concede acesso à sua carteira Metamask e o backend do NFTax se comunica com os contratos inteligentes por meio da ferramenta Truffle. Com essa comunicação estabelecida, o NFTax consegue acessar todas as transações realizadas pelo usuário em sua carteira Metamask, e automaticamente calcula o imposto devido com base nas regras tributárias aplicáveis. Essas informações são então enviadas de volta ao usuário, que consegue visualizar os valores de imposto devido e pagá-los com segurança e tranquilidade.

Em resumo, a solução NFTax utiliza tecnologia blockchain e contratos inteligentes para simplificar o cálculo e o pagamento de impostos sobre transações com CBDCs (Central Bank Digital Currencies). Com isso, o usuário tem mais controle sobre suas finanças e pode se concentrar no que realmente importa: fazer investimentos rentáveis e seguros.

#### 1.2 Partes Interessadas

- Investidores em CBDCs: Esses são os principais beneficiários da solução NFTax, uma vez que a plataforma simplifica o cálculo e o pagamento de impostos sobre transações com CBDCs, permitindo que eles se concentrem em seus investimentos.
- 2. Bancos e instituições financeiras: Essas organizações podem utilizar o serviço "bank as a service" oferecido pela NFTax para garantir a rastreabilidade das informações e o cálculo automático dos valores de impostos sobre as transações.

## 1.3 Implementações futuras

- Notificações de obrigações fiscais para usuários;
- Otimização da arquitetura para escalabilidade;
- Deploys de segurança;
- Integração com outros serviços;

# 2. Análise de Negócio

## 2.1 Proposta de Valor

O Canvas de Proposta de Valor é uma forma de ajudar criadores de solução a focar naquilo que é importante para o consumidor da solução, priorizando aquilo que gera valor ao produto final. Sendo assim, para a criação desta solução foi utilizado este framework para entender as ideias de negócio de maneira clara e concisa.



Fonte: Autoria Própria

#### **Perfil do Cliente**

#### • Atribuições do cliente

- Conceder acesso à carteira Metamask, permitindo que o NFTax acesse as informações necessárias para o cálculo dos impostos;
- Pagar os impostos devidos sobre as transações realizadas em sua carteira de investimentos.

#### Ganhos

- o Automatização do cálculo de seus impostos.
- Segurança e privacidade das transações garantidas pela tecnologia de blockchain;
- o Redução de erros e inconsistências nos cálculos de impostos;
- o Melhoria na eficiência das operações financeiras;

#### Dores

- Dificuldade em entender e cumprir as obrigações tributárias relacionadas a investimentos;
- o Falta de clareza e transparência nos cálculos de impostos;
- o Perda de tempo e dinheiro com erros nos cálculos de impostos;
- o Risco de multas e sanções por não cumprir as obrigações tributárias.

#### Proposta de Valor

#### Aliviadores de dor

- o Cálculo de impostos sobre transações com CBDC;
- o Transparência nos cálculos de impostos;
- o Redução de erros e inconsistências nos cálculos de impostos;

#### • Criadores de ganhos

- o Melhoria na eficiência das operações financeiras;
- o Redução de custos com erros nos cálculos de impostos;
- Melhoria na reputação da instituição financeira com a oferta de um serviço inovador e diferenciado aos clientes;

#### • Produtos e Serviços

 API de cálculo automático de impostos sobre transações com criptomoedas, baseado em tecnologia de blockchain e contratos inteligentes;

# 3. Requisitos do sistema

### 3.1 User Stories

Histórias de usuário é uma especificação de uma ou mais sentenças de ações que o usuário final para qual o sistema está sendo desenvolvido executa ou tem necessidade de realizar ao utilizar o sistema. Abaixo é encontrado as histórias de usuário escritas para desenvolver a solução.

#### ■ User Stories - NFTax

| Épico                                                                                                                                                                 | User Story                                                                                                                                                       | Status    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|                                                                                                                                                                       | Eu, como instituição financeira,<br>quero poder utilizar de uma API<br>de cálculos de impostos e<br>implementar essa lógica em meu<br>sistema.                   | Concluído |  |
| Eu, como Instituição financeira,<br>quero fornecer aos meus<br>clientes o conforto da realização<br>cálculo automático dos valores<br>de impostos sobre as transações | Eu, como instituição financeira,<br>quero uma solução que utilize<br>uma<br>blockchain privada para garantir a<br>segurança dos dados dos meus<br>clientes.      | Concluído |  |
|                                                                                                                                                                       | Eu, como instituição financeira,<br>quero tornar acessível o cálculo de<br>imposto de renda para a grande<br>massa de investidores no mercado<br>de Open Finance | Concluído |  |
| Eu, como cliente de instituições<br>financeiras, quero pagar os<br>impostos devidos sobre as<br>transações realizadas                                                 | Eu, como cliente de instituições<br>financeiras, quero pagar os<br>impostos devidos sobre as<br>transações realizadas em minha<br>carteira de investimento       | Concluído |  |
|                                                                                                                                                                       | Eu, como cliente de instituições<br>financeiras, quero reduzir erros e<br>inconsistências nos cálculos de<br>impostos                                            | Concluído |  |
|                                                                                                                                                                       | Eu, como cliente de instituições<br>financeiras, quero ter acesso a<br>uma plataforma que calcule meus<br>impostos para mim                                      | Concluído |  |

# 4. Elaboração do Sistema

## 4.1 Arquitetura do Sistema

A arquitetura de um sistema consiste na estrutura, comportamento e relações entre entidades a ele pertencentes e demais softwares. Nela é feita a sistematização das interações que são concebidas no sistema. Na imagem abaixo é demonstrado a arquitetura da elaboração da NFTax e na tabela a descriminação dos passos indicados na figura.



## 4.4 Contratos Inteligentes (Smart Contracts)

São seis smart contracts baseados no padrão ERC-1155 que representam a tokenização do mercado financeiro. Cada contrato representa uma coleção de tokens não fungíveis (NFTs) lastreados em ativos tradicionais, permitindo que investidores comprem e possuam frações desses ativos de maneira descentralizada.

Cada smart contract contém informações relevantes de mercado para cada token, incluindo a cotação atual do token, o nome do ativo subjacente representado pelo token e a quantidade que o investidor possui em custódia daquele ativo. Essas informações permitem aos investidores acompanhar a

performance de seus investimentos e tomar decisões informadas sobre quando comprar ou vender seus tokens.

Os seis ativos subjacentes representados pelos smart contracts são: CDB BRB, Alpargatas, FII BRB, Google, Klabin e LCA BRB. Esses ativos foram escolhidos por sua relevância no mercado financeiro e por representarem diferentes tipos de investimentos, desde títulos de renda fixa até ações de grandes empresas de tecnologia.

# 4.4 Tecnologias Utilizadas

Esse projeto foi desenvolvido usando as seguintes tecnologias:

- React JS
- Tailwind
- Css
- JavaScript
- Ethers Js
- Node Js

- SQLite
- Metamask
- Truffle
- Solidity

## 4.4 Protótipo da solução

Para acessar o protótipo da solução, clique <u>aqui</u>. Recomendamos que visualize o sistema em telas mobile, já que foi projetado com a filosofia mobile first.

## 4.5 Código Fonte

O código fonte da solução pode ser encontrado no GitHub, ao clicar na palavra <u>aqui</u> é possível ter acesso ao repositório e consequentemente ao código fonte do sistema. A separação de pastas foi dividida em ""Backend" que conta com as rotas e parte da integração com os smart contracts, "Frontend" que possui a parte gráfica da solução, "Blockchain" que possui a implementação da HyperLedger Besu e o sistema pelo qual é possível testar e deployar os contratos inteligente e por fim "README.md" que é um arquivo com mais especificações sobre o sistema. Na imagem abaixo é possível ver como é esta separação de arquivos descrita no GitHub.

#### • Estrutura de pastas



# 5. Apêndice

## 5.1 Objetivo

Esta solução foi desenvolvida durante o Hackathon da CPBSB5 em parceria com a BRB, tendo como tema Open Finance. O objetivo do evento foi aprimorar o conceito de comunidade por meio da tecnologia, criando soluções inovadoras e disruptivas dentro do tema escolhido.