- 1. Что такая дискретная система?
- А) Под дискретной системой будем понимать функции с дискретным аргументом.
- В) Под дискретной системой будем понимать техническое устройство или программу, которая осуществляет преобразование дискретных определенных интегралов, зависящих от натурального n в другой дискретный определенный интеграл, тоже зависящий от натурального n с заданным алгоритмом.
- С) Под дискретной системой будем понимать техническое устройство или программу, которая осуществляет преобразование дискретной последовательности x(n) в другую дискретную последовательность y(n) в соответствии с заданным алгоритмом.
- D) Под дискретной системой будем понимать техническое устройство или программу, которая осуществляет преобразование дискретной производной x'(n) зависящих от натурального n в другой дискретной производной y'(n) тоже зависящий от натурального n в соответствии с заданным алгоритмом.
- 2. Когда дискретная система R называется линейным?
- А) Дискретная система R называется линейным, если для любых $x_1(n)$, $x_2(n)$ и α выполняется равенства:
- 1) $R[x_1(n) + x_2(n)] = R[x_1(n)] + R[x_2(n)];$
- 2) $R[\alpha \cdot x_1(n)] = \alpha \cdot R[x_1(n)];$
- В) Дискретная система R называется линейным, если для любых $x_1(n)$, $x_2(n)$ и α выполняется равенства:
- 1) $R[x_1(n) \cdot x_2(n)] = R[x_1(n)] \cdot R[x_2(n)];$
- 2) $R[\alpha \cdot x_1(n)] = \alpha \cdot R[x_1(n)];$
- С) Дискретная система R называется линейным, если для любых $x_1(n)$, $x_2(n)$ и α выполняется равенства:
- 1) $R[x_1(n)/x_2(n)] = R[x_1(n)]/R[x_2(n)];$
- 2) $R[\alpha \cdot x_1(n)] = \alpha \cdot R[x_1(n)];$
- D) Дискретная система R называется линейным, если для любых $x_1(n)$, $x_2(n)$ и α выполняется равенства:
- 1) $R[x_1(n) \cdot x_2(n)] = R[x_1(n)] \cdot R[x_2(n)];$
- 2) $R[\alpha + x_1(n)] = \alpha + R[x_1(n)];$
- 3. Когда дискретная система R называется стационарным?
- А) Если она вовремя включается и вовремя выключается;
- В) Если выполняется равенство $R[x_1(n) \cdot x_2(n)] = R[x_1(n)] \cdot R[x_2(n)];$
- С) Если выполняется равенство $R[x_1(n) + x_2(n)] = R[x_1(n)] + R[x_2(n)];$
- D) Если ее параметры не изменяются во времени;
- 4. Когда дискретная система R называется физически реализуемой?
- А) Если реакция системы в данный момент времени не зависит от значений воздействия в последующие моменты.
- В) Если реакция системы в данный момент времени не зависит от значений воздействий в предыдущих моментов.
- С) Если реакция системы в данный момент времени зависит от значений воздействия в последующие моменты.
- D) Если реакция системы в данный момент времени зависит от значений воздействия в предыдущих моментов.

- 5. Пусть дискретная система задана соотношением y(n) = y(n-1) 4 + x(n) с начальным условием y(0) = 1. Пусть на вход системы действует последовательность x(n) = 2. Найти y(4).
- A) y(4) = 7;
- B) y(4) = -7;
- C) y(4) = 5;
- D) y(4) = -5;
- 6. Пусть дискретная система задана соотношением y(n) = 2y(n-1) 1 + 3x(n) с начальным условием y(0) = 1. Пусть на вход системы действует последовательность x(n) = 3. Найти y(4).
- A) y(4) = 136;
- B) y(4) = 57;
- C) y(4) = 144;
- D) y(4) = -57;
- 7. Пусть дискретная система задана соотношением y(n) = -y(n-1) + 5 + 7x(n) с начальным условием y(0) = -1. Пусть на вход системы действует последовательность x(n) = 2. Найти y(4).
- A) y(4) = -2;
- B) v(4) = 19;
- C) y(4) = 20;
- D) y(4) = -1:
- 8. Когда множество A называется подмножеством некоторого множества B?
- А) Если множество A имеет элементов, которые не принадлежать множеству B.
- В) Если множество A не имеет элементов, которые принадлежать множеству B.
- С) Если множество A состоит из элементов, принадлежащих и множеству B.
- D) Если множество A состоит из элементов, не принадлежащих множеству B.
- 9. Что означает выражение: $x \in E$
- А) Это выражение означает, что элемент x принадлежит множеству E;
- В) Это выражение означает, что переменная x определяется в множестве E;
- С) Это выражение означает, что множество E принадлежит переменную x;
- D) Это выражение означает, что x обратный элемент множества E;
- 10. Когда два множества E_1 и E_2 называют равными?
- А) Два множества E_1 и E_2 называют равными ($E_1 = E_2$), если у них количество элементов одинаково;
- В) Два множества E_1 и E_2 называют равными ($E_1=E_2$), если они состоят из одних и тех же элементов;
- С) Два множества E_1 и E_2 называют равными ($E_1 = E_2$), если множество E_1 состоит из элементов, которые принадлежат и в множестве E_2 ;
- D) Два множества E_1 и E_2 называют равными ($E_1 = E_2$), если множество E_2 состоит из элементов, которые принадлежат и в множестве E_1 ;

- 11. Что означает запись $A \subset E$?
- А) Запись $A \subseteq E$ означает, что A является элементом множества E;
- В) Запись $A \subseteq E$ означает, что множества A и E равны;
- С) Запись $A \subset E$ означает, что элемент A принадлежит множеству E;
- D) Запись $A \subseteq E$ означает, что A является подмножеством E;
- 12. Пусть $E = \{a, b\}$. Тогда найдите P(E) множество всех подмножеств множества E.
- A) $P(E) = \{\{a\}, \{b\}, \{a, b\}\};$
- B) $P(E) = \{\emptyset, a, b, E\};$
- C) $P(E) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\};$
- D) $P(E) = \{a, b, \{a, b\}\};$
- 13. Пусть $E = \{1, a, 2\}$. Тогда найдите P(E) множество всех подмножеств множества E.
- A) $P(E) = \{\emptyset, 1, a, 2, \{1, a\}, \{1, 2\}, \{a, 2\}, \{1, a, 2\}\};$
- B) $P(E) = \{\emptyset, \{1\}, \{a\}, \{2\}, \{1, a\}, \{1, 2\}, \{a, 2\}, \{1, a, 2\}\};$
- C) $P(E) = \{\{1\}, \{a\}, \{2\}, \{1, a\}, \{1, 2\}, \{a, 2\}, \{1, a, 2\}\};$
- D) $P(E) = \{1, a, 2, \{1, a\}, \{1, 2\}, \{a, 2\}, \{1, a, 2\}\};$
- 14. Если множество E содержит n элементов, то множество его подмножеств P(E) содержит сколько элементов?
- А) Если множество E содержит n элементов, то множество его подмножеств P(E) содержит 2^n элементов;
- В) Если множество E содержит n элементов, то множество его подмножеств P(E) содержит 3^n элементов;
- С) Если множество E содержит n элементов, то множество его подмножеств P(E) содержит 2n элементов;
- D) Если множество E содержит n элементов, то множество его подмножеств P(E) содержит 3n элементов;
- 15. Пусть $A = \{1,2,3,a,b,c,d\}$ и $B = \{3,4,5,6,c,d,e\}$. Тогда найти $A \cup B$ и $A \setminus B$.
- A) $A \cup B = \{1,2,3,4,5,6,a,b,c,d,e\}$ и $A \setminus B = \{1,2,a,b\}$;
- B) $A \cup B = \{1,2,3,3,4,5,6,a,b,c,c,d,d,e\}$ $\forall A \setminus B = \{-1,-2,-2,-6,a,b,-e\}$;
- C) $A \cup B = \{1,2,3,a,b,c,d,3,4,5,6,c,d,e\}$ и $A \setminus B = \{1,2,a,b\}$;
- D) $A \cup B = \{1,2,6,4,5,6,a,b,c,d,e\}$ и $A \setminus B = \{a,b\}$;
- 16. Пусть $A = \{1,2,3,a,b,c,d\}$ и $B = \{3,4,5,6,c,d,e\}$. Тогда найти $A \cap B$ и $B \setminus A$.
- A) $A \cap B = \{1,2,e\}$ и $B \setminus A = \{1,2,a,b\}$;
- B) $A \cap B = \{1,2,3,4,5,6,a,b,c,d,e\}$ и $B \setminus A = \{1,2,a,b\}$;
- С) $A \cap B = \{3, c, d\}$ и $B \setminus A = \{4,5,6,e\}$;
- D) $A \cap B = \{4,5,6,a,b,c,d,e\}$ и $B \setminus A = \{1,2,4,a,b,c\}$;

- 17. Какое множество называется объединением множеств А и В?
- А) Элементы множеств A и B не заданы, поэтому их объединение определить невозможно;
- В) Объединением $C = A \cup B$ называется множество, состоящее из всех элементов, принадлежащих как A, так и B;
- С) Объединением $C = A \cup B$ называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A и B;
- D) Объединением $C = A \cup B$ называется множество, состоящее тех элементов из A, которые не содержаться в B;
- 18. Какое множество называется пересечением множеств А и В?
- А) Пересечением $C = A \cap B$ множеств A и B называется множество, состоящее из всех элементов, принадлежащих как A, так и B;
- В) Пересечением $C = A \cap B$ множеств A и B называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A и B;
- С) Элементы множеств A и B не заданы, поэтому их пересечение определить невозможно;
- D) Пересечением $C = A \cap B$ множеств A и B называется множество, состоящее тех элементов из A, которые не содержаться в B;
- 19. Какое множество называется разностью множеств А и В?
- А) Разностью $C = A \setminus B$ множеств A и B называется множество, состоящее из всех элементов, принадлежащих как A, так и B;
- В) Разностью $C = A \setminus B$ множеств A и B называется множество, состоящее тех элементов из A, которые не содержаться в B.
- С) Разностью $C = A \setminus B$ множеств A и B называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A и B;
- D) Элементы множеств A и B не заданы, поэтому их разность определить невозможно;
- 20. Какое множество называется симметрической разностью множеств А и В?
- А) Симметрическая разность $A \Delta B$ множеств $A \cup B$ определяется как сумма объединения $A \cup B$ и пересечения $A \cap B$, т.е. $A \Delta B = (A \cup B) \cup (A \cap B)$;
- В) Симметрическая разность $A \Delta B$ множеств A и B определяется как пересечения объединения $A \cup B$ и пересечения $A \cap B$, т.е. $A \Delta B = (A \cup B) \cap (A \cap B)$;
- С) Симметрическая разность $A\Delta B$ множеств A и B определяется как сумма разностей $A\backslash B$ и $B\backslash A$, т.е. $A\Delta B=(A\backslash B)\cup(B\backslash A)$;
- D) Симметрическая разность $A\Delta B$ множеств A и B определяется как пересечения разностей $A\backslash B$ и $B\backslash A$, т.е. $A\Delta B=(A\backslash B)\cap (B\backslash A)$;
- 21. Когда говорят, что множества A и B эквивалентными?
- А) Если множества A и B имеют одинаковые элементы, то эти множества называются эквивалентными;
- В) Если между элементами множеств A и B можно установить взаимно однозначное соответствие, то эти множества называются эквивалентными;
- С) Если множества A и B являются подмножествами одного некоторого универсального множества U:
- D) Если пересечение множеств A и B пустое множество, то эти множества называются эквивалентными;

- 22. Какое число называется мощностью конечного множества?
- А) Мощностью конечного множества называется количество его элементов;
- В) Мощностью конечного множества называется количество его подмножеств;
- С) Мощностью конечного множества называется количество его разбиений;
- D) Мощностью конечного множества называется количество его элементов, которые входят и в универсальное множество U;
- 23. Когда множество называется счетным?
- А) Счетным множеством называется всякое множество, элементы которого можно поставить во взаимно однозначное соответствие со всеми числами натурального ряда;
- В) Счетным множеством называется всякое множество, элементы которого можно поставить во взаимно однозначное соответствие с элементами множества действительных чисел;
- С) Счетным множеством называется всякое множество, элементы которого являются одновременно и некоторого универсального множества U;
- D) Счетным множеством называется всякое множество, элементы которого можно поставить во взаимно однозначное соответствие со всеми числами множества иррациональных чисел;
- 24. Когда говорят, что множество имеет мощность континуума.
- А) Говорят, что множество имеет мощность континуума, если оно равномощно множеству натуральных чисел;
- В) Говорят, что множество имеет мощность континуума, если оно равномощно множеству рациональных чисел;
- С) Говорят, что множество имеет мощность континуума, если оно равномощно множеству действительных чисел;
- D) Говорят, что множество имеет мощность континуума, если оно равномощно множеству целых чисел;
- 25. Когда говорят, что неупорядоченная пара $\{a, b\}$ равна неупорядоченной паре $\{c, d\}$?
- А) Неупорядоченная пара $\{a,b\}$ равна неупорядоченной паре $\{c,d\}$, если и только если a+b=c+d:
- В) Неупорядоченная пара $\{a,b\}$ равна неупорядоченной паре $\{c,d\}$, если и только если a=c и b=d или a=d и b=c;
- С) Неупорядоченная пара $\{a,b\}$ равна неупорядоченной паре $\{c,d\}$, если и только если ab=cd;
- D) Неупорядоченная пара $\{a,b\}$ равна неупорядоченной паре $\{c,d\}$, если и только если a/b=c/d;
- 26. Когда говорят, что две упорядоченные пары (a,b) и (a',b') на множествах A и B называют равными?
- А) Две упорядоченные пары (a,b) и (a',b') на множествах A и B называют равными, если ab=a'b';
- В) Две упорядоченные пары (a, b) и (a', b') на множествах A и B называют равными, если a/b = a'/b';
- С) Две упорядоченные пары (a, b) и (a', b') на множествах A и B называют равными, если a + b = a' + b';
- D) Две упорядоченные пары (a,b) и (a',b') на множествах A и B называют равными, если a=a' и b=b';

- 27. Какое множество называется декартовым произведением множеств А и В?
- А) Множество всех упорядоченных пар (a, b) на множествах A и B, называют декартовым произведением множеств A и B;
- В) Множество всех неупорядоченных пар $\{a,b\}$ на множествах A и B, называют декартовым произведением множеств A и B;
- С) Множество всех a + b на множествах A и B, называют декартовым произведением множеств A и B:
- D) Множество всех произведений ab на множествах A и B, называют декартовым произведением множеств A и B;
- 28. Какое множество называется бинарным отношением между элементами множеств А и В?
- А) Подмножество R множества $A \cap B$ называется бинарным отношением между элементами множеств A и B;
- В) Подмножество R множества $A \times B$ называется бинарным отношением между элементами множеств A и B;
- С) Подмножество R множества $A \cup B$ называется бинарным отношением между элементами множеств A и B;
- D) Подмножество R множества $A\Delta B$ называется бинарным отношением между элементами множеств A и B;
- 29. Когда матрица $M = (\delta_{ij})_m^n$ имеющая m строк и n столбцов, называется матрицей отношения R?
- А) Матрица $M = (\delta_{ij})_m^n$ имеющая m строк и n столбцов, называется матрицей отношения R, если ее элементы удовлетворяют следующему условию:

$$\delta_{ij} = egin{cases} 1, \mathrm{если} \ a_i^2 + b_j^2 \in R; \ 0, \mathrm{если} \ (a_i, b_j)
ot \in R; \end{cases}$$

В) Матрица $M = (\delta_{ij})_m^n$ имеющая m строк и n столбцов, называется матрицей отношения R, если ее элементы удовлетворяют следующему условию:

$$\delta_{ij} = egin{cases} 1, \text{если } a_i^3 + b_j^3 \in R; \\ 0, \text{если } ig(a_i, b_jig) \notin R. \end{cases}$$

С) Матрица $M = (\delta_{ij})_m^n$ имеющая m строк и n столбцов, называется матрицей отношения R, если ее элементы удовлетворяют следующему условию:

$$\delta_{ij} = \begin{cases} 1, \text{если } (a_i, b_j) \in R; \\ 0, \text{если } (a_i, b_j) \notin R. \end{cases}$$

D) Матрица $M = (\delta_{ij})_m^n$ имеющая m строк и n столбцов, называется матрицей отношения R, если ее элементы удовлетворяют следующему условию:

$$\delta_{ij} = egin{cases} 1, ext{если } a_i^2 - b_j^2 \in R; \ 0, ext{если } (a_i, b_j)
otin R. \end{cases}$$

30. Пусть $A = \{a, b, c\}, B = \{c, d, e, f\}$ и $R = \{(a, c), (a, f), (b, e), (b, f), (c, d)\}$. Найдите матрицу отношения R.

A)
$$A = \begin{pmatrix} a & b & c & c \\ d & e & f & a \\ b & c & d & e \end{pmatrix};$$

B) $A = \begin{pmatrix} a & a & a & a \\ d & d & f & e \\ b & c & d & e \end{pmatrix};$
C) $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix};$

D)
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
;

31. Пусть $A = \{a, b, c\}$, $B = \{1,2,3\}$ и $R = \{(a,1), (a,3), (b,2), (b,3), (c,1)\}$. Найдите матрицу отношения R.

Chromental A:

A)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
;

B) $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$;

C) $A = \begin{pmatrix} a & b & 1 \\ b & 2 & 2 \\ c & 3 & 3 \end{pmatrix}$;

D) $A = \begin{pmatrix} a & b & 2 \\ b & 1 & 2 \\ c & 2 & 3 \end{pmatrix}$;

32. Пусть $A = \{0,1,2,3\}$, $B = \{a,b,c,d\}$ и $R = \{(0,b),(0,d),(1,a),(2,c),(2,d),(3,a)\}$. Найдите матрицу отношения R.

A)
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix};$$

B) $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix};$

C) $A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix};$

D) $A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix};$

- 33. Когда бинарное отношение R на множестве A называется рефлексивным?
- А) Бинарное отношение R на множестве A называется рефлексивным, если для любых x, y, $z \in A$ если $(x, y) \in R$ и $(y,z) \in R$, то и $(x, z) \in R$;
- В) Бинарное отношение R на множестве A называется рефлексивным, если $(x,x) \in R$ для каждого $x \in A$
- С) Бинарное отношение R на множестве A называется рефлексивным, если $(x, x) \notin R$ для каждого $x \in A$:
- D) Бинарное отношение R на множестве A называется рефлексивным, если для любых $x, y \in A$ из $(x, y) \in R$ следует, что и $(y, x) \in R$;
- 34. Когда бинарное отношение R на множестве A называется симметричным?
- А) Бинарное отношение R на множестве A называется симметричным, если для любых $x, y \in A$ из $(x, y) \in R$ и $x \neq y$ следует, что $(y, x) \notin R$;
- В) Бинарное отношение R на множестве A называется симметричным, если $(x, x) \in R$ для каждого $x \in A$;
- С) Бинарное отношение R на множестве A называется симметричным, если для любых x, y, $z \in A$ если $(x, y) \in R$ и $(y, z) \in R$, то и $(x, z) \in R$;

- D) Бинарное отношение R на множестве A называется симметричным, если для любых $x, y \in A$ из $(x, y) \in R$ следует, что и $(y, x) \in R$;
- 35. Когда бинарное отношение R на множестве A называется транзитивным?
- А) Бинарное отношение R на множестве A называется транзитивным, если для любых x, y, $z \in A$ если $(x, y) \in R$ и $(y, z) \in R$, то и $(x, z) \in R$;
- В) Бинарное отношение R на множестве A называется транзитивным, если для любых $x, y \in A$ из $(x, y) \in R$ следует, что и $(y, x) \in R$;
- С) Бинарное отношение R на множестве A называется транзитивным, если $(x, x) \in R$ для каждого $x \in A$:
- D) Бинарное отношение R на множестве A называется транзитивным, если для любых x, y ∈ A из (x, y) ∈ R и $x \ne y$ следует, что $(y, x) \notin R$;
- 36. Когда бинарное отношение R на множестве A называется диагональю?
- А) Бинарное отношение R на множестве A называется диагональю, если для любых $x, y \in A$ из $(x, y) \in R$ и $x \neq y$ следует, что $(y, x) \notin R$;
- В) Бинарное отношение R на множестве A называется диагональю, если оно состоит из всех пар вида (x, x), где $x \in A$;
- С) Бинарное отношение R на множестве A называется диагональю, если $(x, x) \in R$ для каждого $x \in A$:
- D) Бинарное отношение R на множестве A называется диагональю, если для любых $x, y \in A$ из $(x, y) \in R$ следует, что и $(y, x) \in R$;
- 37. Когда бинарное отношение R на множестве A называется отношением эквивалентности?
- А) Бинарное отношение R на множестве A называется отношением эквивалентности, или эквивалентностью, если оно разрывное, симметрично и транзитивно.
- В) Бинарное отношение R на множестве A называется отношением эквивалентности, или эквивалентностью, если оно непрерывно, интегрируемо и дифференцируемо.
- С) Бинарное отношение R на множестве A называется отношением эквивалентности, или эквивалентностью, если оно рефлексивно, симметрично и транзитивно;
- D) Бинарное отношение R на множестве A называется отношением эквивалентности, или эквивалентностью, если оно рефлексивно, интегрируемо и транзитивно.
- 38. Когда отображение f из множества A в множество B считается заданным?
- А) Отображение f из множества A в множество B считается заданным, если каждому элементу $x \in A$ сопоставлен единственный элемент $y \in B$;
- В) Отображение f из множества A в множество B считается заданным, если каждому элементу $x \in A$ сопоставлен по крайней мере один элемент $y \in B$;
- С) Отображение f из множества A в множество B считается заданным, если некоторым элементам $x \in A$ сопоставлен некоторые элементы $y \in B$;
- D) Отображение f из множества A в множество B считается заданным, если каждому элементу $x \in A$ сопоставлен несколько элемент $y, z \in B$;
- 39. Когда отображение $f: A \to B$ называют инъекцией?
- А) Отображение $f: A \to B$ называют инъекцией, если каждый элемент из области его значений имеет несколько прообразов, т.е. из $f(x_1) = f(x_2)$ следует $x_1 \neq x_2$.
- В) Отображение $f: A \to B$ называют инъекцией, если каждый элемент из области его значений имеет единственный прообраз, т.е. из $f(x_1) = f(x_2)$ следует $x_1 = x_2$.
- С) Отображение $f: A \to B$ называют инъекцией, если некоторые элементы из области его значений имеет некоторых прообразов;

- D) Отображение $f: A \to B$ называют инъекцией, если его область значений совпадает со всем множеством B.
- 40. Когда отображение $f: A \to B$ называют сюръекцией?
- А) Отображение $f: A \to B$ называют сюръекцией, если оно одновременно является биекцией и инъекцией;
- В) Отображение $f: A \to B$ называют сюръекцией, если оно является непрерывной биекцией;
- С) Отображение $f: A \to B$ называют сюръекцией, если его область значений совпадает со всем множеством B.
- D) Отображение $f: A \to B$ называют сюръекцией, если оно является непрерывной инъекцией;
- 41. Когда отображение $f: A \to B$ называют биекцией?
- А) Отображение $f: A \to B$ называют биекцией, если оно является непрерывной инъекцией;
- В) Отображение $f: A \to B$ называют биекцией, если оно является непрерывной сюръекцией;
- С) Отображение $f: A \to B$ называют биекцией, если оно является дифференцируемой сюръекцией;
- D) Отображение $f: A \to B$ называют биекцией, если оно одновременно является инъекцией и сюръекцией;
- 42. Если из конечного множества A элемент x можно выбрать n способами, а из конечного множества B элемент y можно выбрать m способами, то сколькими способами можно выбрать пару элементов (x; y) из $A \times B$?
- A) nm —способами;
- B) n + m —способами;
- С) n^m –способами;
- D) $\frac{n+m}{2}$ —способами;
- 43. Если элемент x можно выбрать n способами, а элемент y отличный от x можно выбрать m способами, то сколькими способами можно выбрать либо элемент x, либо элемент y?
- А) пт -способами;
- B) n + m —способами;
- $C) n^m$ –способами;
- D) $\frac{n+m}{2}$ —способами;
- 44. Как называется совокупность $(a_1, a_2, ..., a_r)$ элементов некоторого n —множества?
- А) Называется инъекцией объема r из n элементов;
- В) Называется сюръекцией объема r из n элементов;
- С) Называется выборкой объема r из n элементов;
- D) Называется биекцией объема r из n элементов;
- 45. Пусть выборка (a, c) из множества $\{a, b, c, d\}$ упорядоченная. Тогда она совпадает ли с выборкой (c, a) из множества $\{a, b, c, d\}$?
- А) Выборка (a, c) совпадает с выборкой (c, a). Потому что она упорядоченная.

- В) Выборка (a, c) совпадает с выборкой (c, a). Потому что оба содержат одни те же элеманты;
- С) Любые выборки не совпадают.
- D) Выборка (a, c) не совпадает с выборкой (c, a). Потому что она упорядоченная.
- 46. Пусть дано множество, состоящее из n различных элементов. Тогда как называется любое упорядоченное подмножество данного множества, содержащее m элементов?
- А) Называется размещением из n элементов по m элементов;
- В) Называется уменьшением n элементов до m элементов;
- С) Называется увеличением n элементов до m элементов;
- D) Называется увеличением m элементов до n элементов;
- 47. Как вычисляется число размещений A_n^m из n элементов по m элементов?
- А) Число размещений A_n^m из n элементов по m элементов вычисляется по формуле:

$$A_n^m = \frac{n!}{m!(n-m)!};$$

В) Число размещений A_n^m из n элементов по m элементов вычисляется по формуле:

$$A_n^m = \frac{n!}{(n-m)!};$$

C) Число размещений A_n^m из n элементов по m элементов вычисляется по формуле:

$$A_n^m = n^m$$
;

D) Число размещений A_n^m из n элементов по m элементов вычисляется по формуле:

$$A_n^m = nm;$$

- 48. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6? При этом цифры у этих чисел могут повторятся.
- A) 240;
- B) 60;
- C) 216;
- D) 180;
- 49. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6? При этом цифры у этих чисел не должны повторятся.
- A) 240;
- B) 60;
- C) 180;
- D) 120;
- 50. Как вычисляется P_n число перестановок n элементов?
- A) $P_n = n!$;
- B) $P_n = n!/m!$;
- C) $P_n = n^m$;
- D) $P_n = n!/(n-m)!$;
- 51. Сколькими способами можно составить список из фамилий: Алиев, Батыров, Турсунов, Хакимов?
- A) 16;
- B) 24;
- C) 14;

- D) 36;
- 52. Какое множество называется сочетанием из n элементов по m?
- A) Сочетанием из n элементов по m называется любое подмножество, которое содержит nэлементов данного множества.
- В) Сочетанием из n элементов по m называется любое подмножество, которое содержит минимум m элементов данного множества.
- С) Сочетанием из n элементов по m называется любое подмножество, которое содержит т элементов данного множества.
- D) Сочетанием из n элементов по m называется любое подмножество, которое содержит максимум m элементов данного множества.
- 53. Как вычисляется число сочетаний C_n^m из n элементов по m?

A)
$$C_n^m = \frac{n!}{(n-m)!}$$
;

B)
$$C_n^m = \frac{m!}{n!(n+m)!}$$
;

C)
$$C_n^m = \frac{n!}{m!(n-m)!}$$

B)
$$C_n^m = \frac{m!}{n!(n+m)!};$$

C) $C_n^m = \frac{n!}{m!(n-m)!};$
D) $C_n^m = \frac{n!}{m!(n-m)!};$

- 54. Сколькими способами можно выбрать 2 карандаша из набора состоящих из 10 карандашей?
- A) 45;
- B) 90;
- C) 24;
- D) 36;
- 55. Из какого множество состоит область значений булевой функции?
- А) Область значений булевой функции состоит из множество $E_2 = \{0, 1\}$.
- В) Область значений булевой функции состоит из множество $E_2 = \{0, 1\} \times \{0, 1\}$.
- С) Область значений булевой функции состоит из множество $E_2 = \{0, 1\}^2$.
- D) Область значений булевой функции состоит из множество $E_2 = \{0, +\infty\}$.
- 56. Из какого множество состоит область определения булевой функции f(x, y, z)?
- А) Область определения булевой функции f(x, y, z) состоит из множество $\{0, 1\}$;
- В) Область определения булевой функции f(x, y, z) состоит из множество
- $\{0,1\} \times \{0,1\} \times \{0,1\};$
- С) Область определения булевой функции f(x, y, z) состоит из множество
- $\{0, +\infty\} \times \{0, +\infty\} \times \{0, +\infty\};$
- D) Область определения булевой функции f(x, y, z) состоит из множество $\{0, 1\} \times \{0, 1\}$;
- 57. Сколько булевых функций имеется зависящих от n переменных?
- А) Число булевых функций имеется зависящих от n переменных равно 2^n ;
- В) Число булевых функций имеется зависящих от n переменных равно 2n;
- С) Число булевых функций имеется зависящих от n переменных равно 2^{2^n} ;
- D) Число булевых функций имеется зависящих от n переменных равно 2^{2n} ;
- 58. Когда переменная x_i функции $f(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$ называется существенной?

```
А) Переменная x_i называется существенной, если выполняется равенство:
f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) = f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n), где \alpha_k \in \{0, 1\};
В) Переменная x_i называется существенной, если выполняется равенство:
f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n) = f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n), где \alpha_k \in \{0, 1\};
С) Переменная x_i называется существенной, если выполняется равенство:
f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) \neq f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n), где \alpha_k \in \{0, 1\};
D) Переменная x_i называется существенной, если выполняется равенство:
f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) \neq f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n), где \alpha_k \in \{0, 1\};
59. Когда переменная x_i функции f(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n) называется фиктивной?
А) Переменная x_i называется существенной, если выполняется равенство:
f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) = f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n), где \alpha_k \in \{0, 1\};
В) Переменная x_i называется существенной, если выполняется равенство:
f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n) = f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n), где \alpha_k \in \{0, 1\};
С) Переменная x_i называется существенной, если выполняется равенство:
f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) \neq f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n), где \alpha_k \in \{0, 1\};
D) Переменная x_i называется существенной, если выполняется равенство:
f(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) \neq f(\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n), где \alpha_k \in \{0, 1\};
60. Укажите таблицу значений функции f(x, y) = x \wedge y – конъюнкция x и y.
            A)
                                        B)
                                                               C)
                                                                                           D)
            y
                                        y
                                              x \wedge y
     \boldsymbol{x}
                   x \wedge y
                                                                          x \wedge y
                                                                                                     x \wedge y
   0
                                      0
                                                                 0
           0
                              0
                                                         0
   0
           1
                   0
                              0
                                      1
                                              0
                                                         0
                                                                 1
                                                                                             1
                                                                                                    0
   1
                              1
                                              0
                                                         1
                                                                 0
                                                                         1
                                                                                            0
                                                                                                    0
           0
                   1
                                      0
                                                                 1
61. Укажите таблицу значений функции f(x, y) = x \lor y —дизьюнкция x и y.
                                                                                           D)
            A)
                                        B)
                                                               C)
            y
                                        y
                                              x \lor y
     x
                   x \vee y
                                                           \boldsymbol{x}
                                                                          x \lor y
                                                                                                     x \vee y
   0
                              0
                                      0
                                                                 0
           0
                   0
                                              0
                                                         0
   0
                              0
                                      1
                                              0
                                                         0
                                                                 1
                                                                                     0
                                                                                             1
                                                                                                    0
                              1
   1
           0
                   1
                                      0
                                              0
                                                         1
                                                                 0
                                                                         1
                                                                                     1
                                                                                            0
                                                                                                    0
                                      1
                                              1
                                                         1
                                                                 1
62. Укажите таблицу значений функции f(x, y) = x \to y –конъюнкция x и y.
            A)
                                                               C)
                                                                                         D)
                                        B)
     x
            y
                                        y
                   x \rightarrow y
                                x
                                              x \rightarrow y
                                                           x
                                                                         x \rightarrow y
                                                                                      x
                                                                                                    x \rightarrow y
   0
           0
                   0
                              0
                                      0
                                              0
                                                         0
                                                                 0
                                                                         1
                                                                                            0
                                                                                     0
                                                                                                    1
   0
                              0
                   0
                                      1
                                              0
                                                         0
                                                                 1
                                                                         1
                                                                                     0
                                                                                             1
                                                                                                    0
   1
           0
                   1
                              1
                                      0
                                              0
                                                         1
                                                                 0
                                                                         0
                                                                                     1
                                                                                            0
                                                                                                    0
   1
           1
                   1
                              1
                                      1
                                              1
                                                         1
                                                                 1
                                                                         1
                                                                                     1
                                                                                            1
                                                                                                    1
```

63. Укажите таблицу значений функции f(x, y) = x + y —сложение x и y по mod 2.

A)				В)			C)		D)			
x	у	x + y	x	у	x + y	x	у	x + y	x	у	x + y	
0	0	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	1	0	0	1	1	0	1	1	
1	0	1	1	0	0	1	0	1	1	0	1	
1	1	1	1	1	1	1	1	1	1	1	0	

64. Укажите таблицу значений функции f(x,y) = x/y — функция Шеффера.

A)				B)			C)		D)				
x	у	x/y	x	у	x/y	x	у	x/y	x	у	x/y		
0	0	1	0	0	0	0	0	0	0	0	1		
0	1	1	0	1	0	0	1	1	0	1	0		
1	0	1	1	0	0	1	0	1	1	0	0		
1	1	0	1	1	1	1	1	1	1	1	0		

- 65. Каково вида формулы называются элементарной конъюнкцией?
- А) Формула вида $\tilde{x}_1 \vee \tilde{x}_2 \vee ... \vee \tilde{x}_m$, где \tilde{x}_i —любой из двух литералов x_i или \bar{x}_i ;
- В) Формула вида $\tilde{x}_1 \to \tilde{x}_2 \to \cdots \to \tilde{x}_m$, где \tilde{x}_i —любой из двух литералов x_i или \bar{x}_i ;
- С) Формула вида $\tilde{x}_1 + \tilde{x}_2 + \cdots + \tilde{x}_m$, где \tilde{x}_i —любой из двух литералов x_i или \bar{x}_i ;
- D) Формула вида $\tilde{x}_1 \wedge \tilde{x}_2 \wedge ... \wedge \tilde{x}_m$, где \tilde{x}_i —любой из двух литералов x_i или \bar{x}_i ;
- 66. Каково вида формулы называются элементарной дизъюнкцией?
- А) Формула вида $\tilde{x}_1 \vee \tilde{x}_2 \vee ... \vee \tilde{x}_m$, где \tilde{x}_i —любой из двух литералов x_i или \bar{x}_i ;
- В) Формула вида $\tilde{x}_1 \to \tilde{x}_2 \to \cdots \to \tilde{x}_m$, где \tilde{x}_i —любой из двух литералов x_i или \bar{x}_i ;
- С) Формула вида $\tilde{x}_1 + \tilde{x}_2 + \cdots + \tilde{x}_m$, где \tilde{x}_i —любой из двух литералов x_i или \bar{x}_i ;
- D) Формула вида $\tilde{x}_1 \wedge \tilde{x}_2 \wedge ... \wedge \tilde{x}_m$, где \tilde{x}_i —любой из двух литералов x_i или \bar{x}_i ;
- 67. Какую формулу называется дизъюнктивной нормальной формой (ДНФ) от переменных x_1, x_2, \dots, x_n ?
- А) Формула вида $K_1 \wedge K_2 \wedge ... \wedge K_m$ называется ДНФ, где K_i , $i = \overline{1,m}$ —элементарная конъюнкция;
- В) Формула вида $K_1 \vee K_2 \vee ... \vee K_m$ называется ДНФ, где K_i , $i = \overline{1,m}$ —элементарная конъюнкция;
- C) Формула вида $K_1 \to K_2 \to \cdots \to K_m$ называется ДНФ, где K_i , $i=\overline{1,m}$ —элементарная конъюнкция;
- D) Формула вида $K_1 + K_2 + \cdots + K_m$ называется ДНФ, где K_i , $i = \overline{1,m}$ —элементарная конъюнкция;
- 68. Какую формулу называется конъюнктивной нормальной формой (КНФ) от переменных $x_1, x_2, ..., x_n$?
- А) Формула вида $D_1 \to D_2 \to \cdots \to D_m$ называется КНФ, где $D_i, i = \overline{1,m}$ —элементарная дизьюнкция;

- В) Формула вида $D_1 \vee D_2 \vee ... \vee D_m$ называется КНФ, где D_i , $i = \overline{1,m}$ —элементарная дизьюнкция;
- C) Формула вида $D_1 \wedge D_2 \wedge ... \wedge D_m$ называется КНФ, где D_i , $i=\overline{1,m}$ —элементарная дизъюнкция;
- D) Формула вида $D_1+D+\cdots+D_m$ называется КНФ, где D_i , $i=\overline{1,m}$ —элементарная дизьюнкция;
- 69. Когда дизъюнктивная нормальная форма (ДНФ) называется совершенной дизъюнктивной нормальной формой (СДНФ)?
- А) ДНФ $K_1 \lor K_2 \lor ... \lor K_m$ называется СДНФ, если в каждую K_i для каждого номера $j = \overline{1,n}$ входит оба литералов x_i и \bar{x}_i ;
- В) ДНФ $K_1 \vee K_2 \vee ... \vee K_m$ называется СДНФ, если в каждую K_i для каждого номера j=1,n входит оба из литералов x_j и \bar{x}_j по крайней мере два раза;
- С) ДНФ $K_1 \vee K_2 \vee ... \vee K_m$ называется СДНФ, если в каждую K_i для каждого номера $j=\overline{1,n}$ входит литералы \tilde{x}_i по крайней мере два раза;
- D) ДНФ $K_1 \vee K_2 \vee ... \vee K_m$ называется СДНФ, если в каждую K_i для каждого номера $j = \overline{1,n}$ входит в точности один из литералов \tilde{x}_i ;
- 70. Когда конъюнктивная нормальная форма (КНФ) называется совершенной конъюнктивной нормальной формой (СКНФ)?
- А) КНФ $D_1 \vee D_2 \vee ... \vee D_m$ называется СКНФ, если в каждую D_i для каждого номера $j = \overline{1,n}$ входит оба литералов x_j и \overline{x}_j ;
- В) КНФ $D_1 \vee D_2 \vee ... \vee D_m$ называется СКНФ, если в каждую D_i для каждого номера $j=\overline{1,n}$ входит оба из литералов x_j и $\bar{x_j}$ по крайней мере два раза;
- С) КНФ $D_1 \vee D_2 \vee ... \vee D_m$ называется СКНФ, если в каждую D_i для каждого номера j=1,n входит литералы \tilde{x}_j по крайней мере два раза;
- D) КНФ $D_1 \vee D_2 \vee ... \vee D_m$ называется СКНФ, если в каждую D_i для каждого номера $j=\overline{1,n}$ входит в точности один из литералов \tilde{x}_j ;
- 71. Какой граф называется мультиграфом?
- А) Если вершины графа могут соединяться не более чем одним ребром, то граф называется мультиграфом;
- В) Если все вершины графа соединяются минимум двумя ребрами, то граф называется мультиграфом;
- С) Если вершины графа могут соединяться более чем одним ребром, то граф называется мультиграфом;
- D) Если граф имеет петель, т.е. ребер, соединяющих сами с собой, то граф называется мультиграфом;
- 72. Какой граф называется псевдографом?
- А) Если вершины графа могут соединяться не более чем одним ребром, то граф называется псевдографом;
- В) Если все вершины графа соединяются минимум двумя ребрами, то граф называется псевдографом;
- С) Если вершины графа могут соединяться более чем одним ребром, то граф называется псевдографом;

- D) Если граф имеет петель, т.е. ребер, соединяющих сами с собой и кратные ребра, то граф называется псевдографом;
- 73. Когда два графа G и H называются изоморфны?
- А) Два графа G и H называются изоморфны, если между их множествами вершин существует взаимно однозначное соответствие, сохраняющее смежность;
- В) Два графа G и H называются изоморфны, если между их множествами ребер существует взаимно однозначное соответствие, сохраняющее кратность;
- С) Два графа G и H называются изоморфны, если между их инвариантами существует взаимно однозначное соответствие;
- D) Два графа G и H называются изоморфны, если между их полными наборами инвариантов существует взаимно однозначное соответствие;
- 74. Когда подграф называется остовным?
- А) Остовный подграф это подграф графа G, содержащий все его кратные вершины;
- В) Остовный подграф это подграф графа G, содержащий все его вершины;
- С) Остовный подграф это подграф графа G, содержащий все его кратные ребра;
- D) Остовный подграф это подграф графа G, содержащий все его инварианты;
- 75. Когда маршрут называется цепью?
- А) Маршрут называется цепью, если все его ребра смежный;
- В) Маршрут называется цепью, если все его вершины смежный;
- С) Маршрут называется цепью, если все его ребра различны;
- D) Маршрут называется цепью, если все его ребра имеют ориентации;
- 76. Когда маршрут называется простой цепью?
- А) Маршрут называется простой цепью, если все вершины смежный;
- В) Маршрут называется простой цепью, если все ребра смежный;
- С) Маршрут называется простой цепью, если все ребра ориентированы;
- D) Маршрут называется простой цепью, если все вершины различны;
- 77. Что такая цепь в графах?
- А) Замкнутая цепь называется циклом;
- В) Открытая цепь называется циклом;
- С) Компонентный подграф называется циклом;
- D) Максимальный связный подграф называется циклом;
- 78. Когда граф называется связным?
- А) Граф G называется связным, если самые отдаленные его вершины соединена простой цепью;
- В) Граф G называется связным, если любая пара его вершин соединена простой цепью;
- С) Граф G называется связным, если самые отдаленные его вершины соединена простым шиклом;
- D) Граф G называется связным, если любая пара его вершин соединена простым циклом;
- 79. Какой подграф называется компонентой графа?
- А) Максимальный цепной подграф графа G называется компонентой графа G;
- В) Максимальный маршрутный подграф графа G называется компонентой графа G;

- С) Максимальный связный подграф графа G называется компонентой графа G;
- D) Максимальный циклический подграф графа G называется компонентой графа G;
- 80. Что такой охват графа?
- А) Охват графа G это длина кратчайшей простой цепи графа G;
- В) Охват графа G это максимальная длина всех маршрутов графа G;
- С) Охват графа G это минимальная длина всех маршрутов графа G;
- D) Охват графа G это длина кратчайшего простого цикла графа G;
- 81. Дискретная система описывается разностным уравнением $y(n) = 0.6 \cdot y(n-1) + 0.5 \cdot x(n)$, здесь на вход системы действует последовательность x(n) = 2n + 1. Вычислить y(4), при начальном условии y(0) = 1.
- A) y(4) = 7,9536;
- B) y(4) = 0.7291;
- C) y(4) = 5,9713;
- D) y(4) = 5,4911;
- 82. Дискретная система описывается разностным уравнением $y(n) = 0.7 \cdot y(n-1) 0.1 \cdot x(n)$, здесь на вход системы действует последовательность x(n) = -n + 1. Вычислить y(4), при начальном условии y(0) = 1.
- A) y(4) = 7,9536;
- B) y(4) = 0.7291;
- C) v(4) = 5.9713;
- D) v(4) = 5.4911;
- 83. Дискретная система описывается разностным уравнением $y(n) = -0.7 \cdot y(n-1) + 0.8 \cdot x(n)$, здесь на вход системы действует последовательность x(n) = 3n 1. Вычислить y(4), при начальном условии y(0) = 1.
- A) y(4) = 7,9536;
- B) y(4) = 0.7291;
- C) y(4) = 5,9713;
- D) y(4) = 5,4911;
- 84. Дискретная система описывается разностным уравнением $y(n) = -0.7 \cdot y(n-1) + 0.8 \cdot x(n)$, здесь на вход системы действует последовательность x(n) = 3n 1. Вычислить y(4), при начальном условии y(0) = -1.
- A) y(4) = 7,9536;
- B) v(4) = 0.7291;
- C) y(4) = 5,9713;
- D) y(4) = 5,4911;
- 85. Дискретная система описывается разностным уравнением $y(n) = 0.9 \cdot y(n-1) 0.8 \cdot x(n)$, здесь на вход системы действует последовательность x(n) = 3n + 5. Вычислить y(4), при начальном условии y(0) = 3.
- A) y(4) = -33,5053;
- B) y(4) = -12,777;
- C) y(4) = -4,7774;
- D) y(4) = 2.8271;

```
86. Дискретная система описывается разностным уравнением y(n) = 0.1 \cdot y(n-1) - 0.9 \cdot 10^{-3}
x(n), здесь на вход системы действует последовательность x(n) = 2n + 5. Вычислить
y(4), при начальном условии y(0) = 3.
A) y(4) = -33,5053;
B) y(4) = -12,777;
C) y(4) = -4,7774;
D) v(4) = 2.8271;
87. Дискретная система описывается разностным уравнением y(n) = 0.1 \cdot y(n-1) - 0.9 \cdot 10^{-3}
x(n), здесь на вход системы действует последовательность x(n) = 2n - 3. Вычислить
y(4), при начальном условии y(0) = 7.
A) y(4) = -33,5053;
B) y(4) = -12,777;
C) y(4) = -4,7774;
D) y(4) = 2.8271;
88. Дискретная система описывается разностным уравнением y(n) = -0.1 \cdot y(n-1) + 0.000
0.6 \cdot x(n), здесь на вход системы действует последовательность x(n) = 2n - 3. Вычислить
y(4), при начальном условии y(0) = 5.
A) y(4) = -33,5053;
B) y(4) = -12,777;
C) y(4) = -4,7774;
D) v(4) = 2.8271;
89. Дискретная система описывается разностным уравнением y(n) = -0.2 \cdot y(n-1) + 0.00
0.7 \cdot x(n), здесь на вход системы действует последовательность x(n) = 5n - 3. Вычислить
y(4), при начальном условии y(0) = 5.
A) y(4) = 10,4128;
B) y(4) = 8,664;
C) y(4) = 6,7115;
D) y(4) = 7.9335;
90. Дискретная система описывается разностным уравнением y(n) = -0.2 \cdot y(n-1) + 0.00
0.7 \cdot x(n), здесь на вход системы действует последовательность x(n) = 5n - 6. Вычислить
y(4), при начальном условии y(0) = 4.
A) y(4) = 10.4128;
B) y(4) = 8,664;
C) y(4) = 6,7115;
D) y(4) = 7,9335;
91. Дискретная система описывается разностным уравнением y(n) = 0.7 \cdot y(n-1) + 0.4 \cdot 10^{-3}
x(n), здесь на вход системы действует последовательность x(n) = 2n + 1. Вычислить y(4),
при начальном условии y(0) = -1.
A) y(4) = 10,4128;
B) y(4) = 8,664;
C) v(4) = 6.7115:
D) y(4) = 7,9335;
```

92. Дискретная система описывается разностным уравнением $y(n) = 0.3 \cdot y(n-1) - 0.9 \cdot x(n)$, здесь на вход системы действует последовательность x(n) = -2n + 1. Вычислить y(4), при начальном условии y(0) = 2.

A)
$$y(4) = 10,4128$$
;

B)
$$y(4) = 8,664$$
;

C)
$$y(4) = 6,7115$$
;

D)
$$y(4) = 7,9335$$
;

93. Составить матрицу смежности для графа:

94. Составить матрицу смежности для графа:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

95. Составить матрицу смежности для графа:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

96. Составить матрицу смежности для графа:

97. Составить матрицу смежности для графа:

98. Составить таблицу истинности для булевой функции: $(x \wedge \overline{y}) \to \overline{x}$

	A)			В)			C)				D)		
x	у	$(x \wedge \bar{y}) \to \bar{x}$	x	у	$(x \wedge \bar{y}) \to \bar{x}$	x	у	$(x \wedge \bar{y}) \to \bar{x}$	x	у	$(x \wedge \bar{y}) \to \bar{x}$		
0	0	1	0	0	1	0	0	0	0	0	1		
0	1	0	0	1	1	0	1	1	0	1	1		
1	0	1	1	0	0	1	0	1	1	0	0		
1	1	1	1	1	1	1	1	1	1	1	0		

99. Составить таблицу истинности для булевой функции: $(\bar{x} \wedge y) \to x$

A`

B)

 \mathbf{C}

D)

x	у	$(\bar{x} \land y) \to x$	x	у	$(\bar{x} \land y) \to x$	x	у	$(\bar{x} \land y) \to x$	x	у	$(\bar{x} \land y) \to x$
0	0	0	0	0	1	0	0	0	0	0	1
0	1	0	0	1	0	0	1	1	0	1	1
1	0	1	1	0	1	1	0	1	1	0	0
1	1	1	1	1	1	1	1	1	1	1	0

100. Составить таблицу истинности для булевой функции: $(\bar{x} \lor y) \to x$

A)

B)

 \mathbf{C}

D)

x	у	$(\bar{x} \lor y) \to x$	x	y	$(\bar{x} \lor y) \to x$	x	у	$(\bar{x} \lor y) \to x$	x	у	$(\bar{x} \lor y) \to x$
0	0	0	0	0	1	0	0	0	0	0	1
0	1	1	0	1	0	0	1	0	0	1	1
1	0	0	1	0	1	1	0	1	1	0	0
1	1	1	1	1	1	1	1	1	1	1	0

101. Составить таблицу истинности для булевой функции: $(\bar{x} \to y) \lor \bar{y}$

A)

B)

C)

D)

x	у	$(\bar{x} \to y) \vee \bar{y}$	x	у	$(\bar{x} \to y) \vee \bar{y}$	x	у	$(\bar{x} \to y) \vee \bar{y}$	x	у	$(\bar{x} \to y) \vee \bar{y}$
0	0	0	0	0	1	0	0	0	0	0	1
0	1	1	0	1	0	0	1	1	0	1	1
1	0	0	1	0	1	1	0	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	1