

SUBJECT: DIGITAL COMPUTER PRINCIPLES

FACULTY NAME: JYOTHSNA S MOHAN

BINARY MULTIPLICATION

Rules for Binary multiplication

Case	A	X	В	Multiplication
1	0	Х	0	0
2	0	X	1	0
3	1	X	0	0
4	1	X	1	1

Example:

0011010 x 001100 = 100111000

0011010 = 2610 x0001100 = 1210 0000000 0000000 0011010 0100111000 = 31210

Q. Multiply 1011.101, 101.01

			1	0	1 0	1 1	1 0	0	1 *		EARNEST — ACADEMY —
				1	0	1	1	1	0	1	
			0	0	0	0	0	0	0		
		1	0	1	1	1	0	1			
	0	0	0	0	0	0	0				
1	0	1	1	1	0	1					
1	1	1	1	0	1.	0	0	0	0	1	

Q. When two 4-bit binary number $A = a_3 a_2 a_1 a_0$, $B = b_3 b_2 b_1 b_0$ are multiplied, the digit c_1 of the product C is given by

 $a_0 b_1$

.....

$$c_6$$
 c_5 c_4 c_3 c_2 c_1 c_0

Ans: $c_1 = a_1 b_0 + a_0 b_1$

BINARY DIVISION

Rules for binary division

DIVIDEND	DIVISOR	RESULT
0	О	Not allowed
0	1	О
1	О	Not allowed
1	1	1

101010 / 000110 = 000111

$$\begin{array}{r}
111 & = 7_{10} \\
000110 \overline{\smash)-1^{1}0} \ 1010 & = 42_{10} \\
-110 & = 6_{10} \\
\hline
4001 \\
-110 \\
\hline
110 \\
-110 \\
\hline
0
\end{array}$$

Q. If $(11001101)_2$ is divided by $(110)_2$ the remainder is:

- a) 101 b) 11 c) 0

d) 1

Ans: d)

Q. If $(11001101)_2$ is divided by $(110)_2$ the Quotient is .

a) 11011 b) 1111 c) 100010

d) 100001

Ans:c)

REPRESENTATION OF SIGNED NUMBERS

- 2 ways of representing signed numbers
 - a) Sign magnitude form
 - b) Complement form
 - i) 1's complement form
 - ii) 2's complement form

SIGNED MAGNITUDE FORM

- In the signed magnitude method number is divided into two parts:
 - 1) Sign bit

MSB =1 for negative number

MSB = 0 for positive number

2) Magnitude

Represented with the binary form of the number.

• Only difference between +ve & -ve number is the sign bit

• To negate sign-magnitude numbers, simply toggle the sign bit.

• Two representations for the number zero.

10000000

00000000

Q) The decimal values of the given 8-bit sign-magnitude number 10000011 is Ans:

Q) -15 in 8-bit sign-magnitude form is.....

Ans:

Q) The decimal values of the given 8-bit sign-magnitude number 10000011 is Ans: -3

Q) -15 in 8-bit sign-magnitude form is.....

Ans: 10001111

FINDING 1'S COMPLEMENT OF A BINARY

• Invert the given number.

$$1 \rightarrow 0$$

$$0 \rightarrow 1$$

Q. Find the 1's complement of 10010001

Binary →	1	0	0	1	0	0	0	1
1's complement →	0	1	1	0	1	1	1	0

FINDING 2'S COMPLEMENT

Method1:

Add 1 to the LSB of 1's complement

Q: Find 2's complement of the binary 10110010

Binary→	1	O	1	1	0	0	1	0
1's →	0	1	0	0	1	1	0	1+

 $2's \rightarrow 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0$

Method 2:

1. Start at the least significant bit(LSB) copy all the zeros, until the first 1 is reached

- 2. Copy that 1
- 3. Flip all the remaining bits

Q: Find 2's complement of the binary 10110010

Binary \rightarrow 1 0 1 1 0 0 1 0

2's Complement \rightarrow 0 1 0 0 1 1 0

Q. The 2's complement of a binary number is 101001 is

a) 010101 b) 01110 c) 100101 d) 010111

Ans: d

Q. Which of the following 4 bit number equals its 2's complement

a. 0101

b. 1000

c. 1010

d. No number exists

Ans: b

• To convert from a 1's or 2's complement back to binary form, use the same procedure

2's Complement \rightarrow 0 1 0 0 1 1 0 0 Binary \rightarrow 1 0 1 1 0 0

1'S COMPLEMENT FORM

- +ve numbers in 1's complemented form : Same as +ve numbers in sign magnitude form
- -ve numbers in 1's complemented form :1's complement of the corresponding +ve numbers

$$-ve = 1$$
's($+ve$)

$$+25 = 00011001$$

$$-25 = 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0$$

2'S COMPLEMENT FORM

- +ve numbers in 2's complemented form : Same as +ve numbers in sign magnitude form & 1's complemented form
- -ve numbers in 2's complemented form : 2's complement of the corresponding +ve numbers

$$-ve = 2's(+ve)$$

$$+25 = 00011001$$

$$-25 = 1110011$$

• Represent +51, -51 in

Sign magnitude

1's complemented form

1's complemented form

Binary: 1 1 0 0 1 1

	+51
Sign magnitu de	00110011
l's	
2's	

				-5					
Binary	0	0	1	1	0	0	1	l	
Sign magnitude	1	0	1	1	0	0	1	1	
l's	1	1	0	0	1	1	0	0	
2's	1	1	0	0	1	1	0	1	

- Q. The 2's complement representation of the decimal value is -15 is
- a) 1111 b) 11111 c) 111111 d) 10001

Ans: d

DECIMAL VALUE OF SIGNED NUMBERS

- Decimal value of +ve & -ve numbers in sign magnitude form = Sum of the weights of all 1's in the magnitude bit positions
- Sign determined by the sign bit given.

Sign magnitude	0	0	1	1	0	0	1	1
form								
Weights			32	16			2	1
Decimal					+51			

Sign magnitude	1	0	1	1	0	0	1	1
form Weights			32	16			2	1
Decimal					<u>-51</u>			5.0

DECIMAL VALUE OF 1'S COMPLEMENTED NUMBERS

• +ve numbers = Sum of the weights of all 1's in the magnitude bit positions

-ve numbers = -ve value to the weight of sign bit + sum of the weights of all 1's in the magnitude bit positions +1

- Q. Determine the decimal value of the signed number expressed in 1's complement
 - a). 00010111
 - b). 11101000

a)

1's	0	0	0	1	0	1	1	1
weights				16		4	2	1

Ans: 23

b)

1's	1	1	1	0	1	0	0	0	
weights	-128	64	32		8				+1

Ans: -23

DECIMAL VALUE OF 2'S COMPLEMENTED NUMBERS

• +ve numbers & -ve numbers = Sum of the weights of all 1's in the magnitude bit positions with weight of sign bit of -ve number -ve.

- Q. Determine the decimal values of the signed number in 2's complement form
 - a) 01010110
 - b) 10101010

a) 01010110

2's	0	1	0	1	0	1	1	0
weights		64		16		4	2	

Ans: +86

b) 10101010

2's	1	0	1	0	1	0	1	0
Weights	-128		32		8		2	

Ans: - 86

Q. A 4 bit 2's complement representation of a decimal number is 1000. The number is

a) 8

b) 0

c) -7

d) -8

Ans: d

• 2's Complement form is priffered.

One representation for 0

Simply requires summation of weights for both +ve & -ve

Q. Zero has 2 representations in

a) sign magnitude b) 1's complement c) 2's complement d) None of these

Ans: a & b

2's complemented -2^{n-1} to $(2^{n-1}-1)$

Sign magnitude & 1's complemented -2ⁿ⁻¹+1 to (2ⁿ⁻¹-1)

Q: The range of integers that can be represented by an n bit 2's complement number system is

a) -
$$2^{n-1}$$
 to $(2^{n-1} - 1)$

b) -
$$(2^{n-1} - 1)$$
 to $(2^{n-1} - 1)$

c) -
$$2^{n-1}$$
 to 2^{n-1}

d) -
$$(2^{n-1} + 1)$$
 to $(2^{n-1} + 1)$

Ans: a)

Q. The smallest integer that can be represented by an 8 bit number in 2's complement form is

a) -256

- b) -128 c) -127

d) 0

Ans: b) -128