Optimization

Màster de Fonaments de Ciència de Dades

Lecture 0. Background

Mathematical notation and background

- Scalar and cross product
- Lines and planes
- Continuity
- Derivatives
- Gradients
- Approximation of functions

Scalar and cross product

Let
$$\mathbf{x} = (x_1, \dots, x_n)^T$$
, $\mathbf{y} = (y_1, \dots, y_n)^T \in \mathbb{R}^n$, we define:

- ► Scalar (dot) product: $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n \in \mathbb{R}$.
- Euclidean norm: $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\mathbf{x}^T \mathbf{x}} = \sqrt{x_1^2 + \dots + x_n^2}$
- ► Euclidean distance: $d(x, y) = ||y x|| = \sqrt{(y_1 x_1)^2 + \dots + (y_n x_n)^2}$.
- ► Cosinus of the angle: $cos(\widehat{x,y}) = \frac{x \cdot y}{\|x\| \|y\|}$.
- ▶ Perpendicularity (orthogonality): $x \perp y$ \Leftrightarrow $x \cdot y = 0$.

Let
$$\mathbf{x} = (x_1, x_2, x_3), \mathbf{y} = (y_1, y_2, y_3) \in \mathbb{R}^3$$
, we define:

Cross product:

$$\mathbf{x} \times \mathbf{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}.$$

Note that

$$x \times y \perp x$$
 and $x \times y \perp y$.

Lines and planes

▶ In \mathbb{R}^2 : The line determined by the point $\mathbf{a} = (a_1, a_2)^T$ and the vector $\mathbf{v} = (v_1, v_2)^T$ is

$$\mathbf{x} = \mathbf{a} + t\mathbf{v}, \ t \in \mathbb{R} \quad \Leftrightarrow \quad \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) + t \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right), \ t \in \mathbb{R},$$

that can also be written as

$$\frac{x-a_1}{v_1}=\frac{y-a_2}{v_2}\quad\Leftrightarrow\quad Ax+By+C=0,$$

with $A = v_2$, $B = -v_1$, $C = -a_1v_2 + a_2v_1$.

▶ In \mathbb{R}^3 : The line determined by the point $\mathbf{a} = (a_1, a_2, a_3)^T$ and the vector $\mathbf{v} = (v_1, v_2, v_3)^T$ is

$$m{x} = m{a} + tm{v}, \ t \in \mathbb{R} \quad \Leftrightarrow \quad \left(egin{array}{c} x \ y \ z \end{array}
ight) = \left(egin{array}{c} a_1 \ a_2 \ a_3 \end{array}
ight) + t \left(egin{array}{c} v_1 \ v_2 \ v_3 \end{array}
ight), \ t \in \mathbb{R},$$

that can also be written as

$$\frac{x-a_1}{v_1}=\frac{y-a_2}{v_2}=\frac{z-a_3}{v_3}.$$

Lines and planes

▶ In \mathbb{R}^3 : The plane determined by the point $\mathbf{a} = (a_1, a_2, a_3)^T$ and the vectors $\mathbf{u} = (u_1, u_2, u_3)^T$ and $\mathbf{v} = (v_1, v_2, v_3)^T$ is

$$\mathbf{x} = \mathbf{a} + t\mathbf{u} + s\mathbf{v} \quad \Leftrightarrow \quad \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) + t \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array} \right) + s \left(\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right),$$

with $t, s \in \mathbb{R}$.

The above equation of the plane can also be written as

$$\begin{vmatrix} x - a_1 & y - a_2 & z - a_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = 0$$

or as

$$Ax + By + Cz + D = 0,$$

with $(A, B, C)^T = \mathbf{u} \times \mathbf{v}$.

Continuity

Consider the function

$$f: \mathcal{C} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$
,

we define:

- ▶ The domain \mathcal{C} of f as the set of points $x \in \mathbb{R}^n$ where f is defined.
- ▶ The graph of f, as the subset of \mathbb{R}^{n+1} defined by:

$$\{(\boldsymbol{x},\boldsymbol{z})\in\mathbb{R}^{n+1}:\,\boldsymbol{x}=(x_1,...,x_n)^T\in\mathcal{C}\subset\mathbb{R}^n,\;\boldsymbol{z}=f(\boldsymbol{x})\in\mathbb{R}\}\subset\mathbb{R}^{n+1}\}.$$

▶ For each $c \in \mathbb{R}$, the level set c of f as:

$$f^{-1}(c) = \{x \in \mathcal{C} : f(x) = c\} \subset \mathbb{R}^n.$$

▶ We say that f is continuous at a point $a \in C$ if and only if

$$\lim_{x\to a}f(x)=f(a).$$

Continuity

Some fundamental properties of continuous functions are:

▶ The elementary functions of one variable e^x , $\log x$, $\sin x$, $\cos x$, ... and the coordinate functions

$$x_i: \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $\mathbf{x} = (x_1, \dots, x_n)^T \longrightarrow x_i$

are continuous in their domain.

- Addition, substraction, product, division (except at the points where the denominator vanishes) and composition of continuous functions are also continuous functions.
- Given a continuous function

$$f: \mathcal{C} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$
,

such that C is compact (closed and bounded), then f is bounded and f attaints its maximum and minimum values on C.

Derivatives

- ▶ The derivative of a function y = f(x) of a variable x is a measure of the rate at which the value y of the function changes with respect to the change of the variable x.
- ▶ If x and y are real numbers, and if the graph of f is plotted against x, the derivative is the slope of this graph at each point.

Derivatives

Let f be a real valued function defined in an open neighborhood of a real number a, then:

- ▶ The derivative of y = f(x) with respect to x at a is, geometrically, the slope of the tangent line to the graph of f at $(a, f(a))^T$.
- ► The slope of the tangent line is very close to the slope of the line through (a, f(a)) and a nearby point on the graph, for example $(a + h, f(a + h))^T$.
- ▶ The slope *m* of the secant line is

$$m = \frac{\Delta f(a)}{\Delta a} = \frac{f(a+h) - f(a)}{(a+h) - (a)} = \frac{f(a+h) - f(a)}{h}.$$

► A value of h close to zero gives, in general, a good approximation to the slope of the tangent line

Derivatives. Rigorous definition

- Geometrically, the limit of the secant lines is the tangent line. Therefore, the limit of the difference quotient as h approaches zero, if it exists, should represent the slope of the tangent line to (a, f(a)).
- ▶ This limit is defined to be the derivative of the function f at a:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

- When the limit exists, f is said to be differentiable at a.
- Equivalently, the derivative satisfies the property that

$$\lim_{h\to 0}\frac{f(a+h)-f(a)-f'(a)\cdot h}{h}=0,$$

which has the intuitive interpretation that the tangent line to f at a gives the best linear approximation

$$f(a+h) \approx f(a) + f'(a)h$$

to f near a.

Derivatives in higher dimensions

A vector-valued function y(t) of a real variable sends real numbers to vectors in some vector space (\mathbb{R}^n) .

$$y: \mathbb{R} \longrightarrow \mathbb{R}^n$$
 $t \longrightarrow y(t).$

A vector-valued function can be split up into its coordinate functions

$$y(t) = (y_1(t), ..., y_n(t))^T$$
.

The derivative of the curve y(t) is defined to be the vector, called the tangent vector, whose coordinates are the derivatives of the coordinate functions

$$\mathbf{y}'(t) = (y_1'(t), \dots, y_n'(t))^T$$
, or equivalently $\mathbf{y}'(t) = \lim_{h \to 0} \frac{\mathbf{y}(t+h) - \mathbf{y}(t)}{h}$,

if the limit exists.

▶ If $e_1, ..., e_n$ is the standard basis for \mathbb{R}^n , then

$$\mathbf{y}(t) = y_1(t)\mathbf{e}_1 + \cdots + y_n(t)\mathbf{e}_n,$$

and since each of the basis vectors is a constant

$$\mathbf{y}'(t) = y_1'(t)\mathbf{e}_1 + \cdots + y_n'(t)\mathbf{e}_n.$$

Continuity and differentiability

▶ Property: If

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$
 $x \longrightarrow f(x)$

is differentiable at a, then f must also be continuous at a.

- Property: If a function is continuous at a point it may not be differentiable there.
- **Example:** The absolute value function f(x) = |x| is continuous at x = 0, but it is not differentiable there, since the tangent slopes do not approach the same value from the left as they do from the right.

Partial derivatives

▶ If f is a real value function that depends on n variables

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $x \longrightarrow f(x) = f(x_1, \dots, x_n),$

the partial derivative of f(x) in the direction x_i at the point $a = (a_1, ..., a_n)^T$ is defined to be:

$$\frac{\partial f}{\partial x_i}(\mathbf{a}) = \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_i, \dots, a_n)}{h}.$$

▶ In the above difference quotient, all the variables except *x_i* are held fixed. That choice of fixed values determines a function of one variable

$$f_{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n}(x_i) = f(a_1,\ldots,a_{i-1},x_i,a_{i+1},\ldots,a_n),$$

and, by definition:

$$\frac{df_{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n}}{dx_i}(a_i) = \frac{\partial f}{\partial x_i}(a).$$

First and second partial derivatives

Let $\mathbf{a} \in \mathcal{C} \subset \mathbb{R}^n$ be a point where the real function

$$f: \mathcal{C} \longrightarrow \mathbb{R}$$
,

is differentiable.

- Property: If a real-valued function f is differentiable at an interior point a ∈ C, then its first partial derivatives exist at a.
- ▶ **Definition:** If the partial derivatives are continuous at **a**, then **f** is said to be continuously differentiable at **a**.
- ▶ Property: If f is twice differentiable at $a \in C$, then the second partial derivatives exist there.
- ▶ Definition: If the second partial derivatives are continuous at a, then f is said to be twice continuously differentiable at a.
- ▶ **Definition:** If f is twice continuously differentiable at a we define the Hessian matrix of f at a as the $n \times n$ symmetric matrix $\nabla^2 f(a)$ given by:

$$abla^2 f(\mathbf{a}) = \left(\frac{\partial^2 f(\mathbf{a})}{\partial x_i \partial x_j}\right), \quad i, j = 1, ..., n.$$

Directional derivatives

- ▶ If f is a real-valued function on \mathbb{R}^n , then the partial derivatives of f measure its variation in the direction of the coordinate axes.
- ▶ If f is a function of x and y $(x, y \in \mathbb{R})$, then its partial derivatives measure the variation in f in the x direction and the y direction. They do not, however, directly measure the variation of f in any other direction, such as along the diagonal line y = x.
- ▶ These are measured using directional derivatives. Choose a vector

$$\mathbf{v} = (v_1, \ldots, v_n)^T$$
.

The directional derivative of f in the direction of v at the point x is defined by

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h} = \left. \frac{d}{dt} \right|_{t=0} f(\mathbf{x} + t\mathbf{v}) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x})}{\partial x_{j}} v_{j},$$

where we have used the chain rule to get the last equality.

The chain rule

Let

$$\alpha: I \subset \mathbb{R} \longrightarrow C$$

$$t \longrightarrow \alpha(t) = (x_1(t), \dots, x_n(t))^T,$$

be a differentiable curve in $C \subset D \subset \mathbb{R}^n$ and

$$f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$
 $x \longrightarrow f(x)$

be a differentiable function. Then

$$f(\alpha(t)) = f(x_1(t), \ldots, x_n(t)),$$

and

$$\frac{d}{dt}f(\alpha(t)) = \frac{\partial f}{\partial x_1}(\alpha(t))x_1'(t) + \cdots + \frac{\partial f}{\partial x_n}(\alpha(t))x_n'(t).$$

Directional derivatives

- We want to compute the directional derivative after changing the length of the vector v.
- Suppose that $\mathbf{v} = \lambda \mathbf{u}$. If in

$$\frac{f(x+hv)-f(x)}{h},$$

we substitute $h = k/\lambda$ and $\mathbf{v} = \lambda \mathbf{u}$, we get

$$\frac{f(\mathbf{x} + (k/\lambda)(\lambda \mathbf{u})) - f(\mathbf{x})}{k/\lambda} = \lambda \cdot \frac{f(\mathbf{x} + k\mathbf{u}) - f(\mathbf{x})}{k}.$$

This is λ times the difference quotient that we had for the directional derivative of f with respect to u.

- ► Taking the limit as h tends to zero is the same as taking the limit as k tends to zero, because h and k are multiples of each other.
- ▶ Therefore, $D_{\mathbf{v}}(f) = \lambda D_{\mathbf{u}}(f)$. Because of this rescaling property, directional derivatives are considered only for unit vectors: $\|\mathbf{v}\| = 1$.

The gradient

Consider the function

$$f: \mathcal{C} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$
.

▶ If f has a partial derivatives $\partial f/\partial x_j$ with respect to each variable x_j , then at any point $a \in C$, these partial derivatives define the vector

$$\nabla f(\mathbf{a}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{a})\right)^T.$$

This vector is called the gradient of f at \mathbf{a} .

- ▶ **Theorem:** If all the partial derivatives of *f* exist and are continuous at *a*, then the function *f* is differentiable at *a* and the gradient of *f* at *a* exists
- ▶ From

$$D_{\mathbf{v}}f(\mathbf{a}) = \sum_{i=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_{i}} v_{i},$$

we get

$$D_{\mathbf{v}}f(\mathbf{a}) = (\nabla f(\mathbf{a})) \cdot \mathbf{v}.$$

Properties of the gradient

▶ Property: If $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ is differentiable, $a \in D$, and $u \in \mathbb{R}^n$ is an unitary vector ($\|\boldsymbol{u}\| = 1$), then

$$D_{\boldsymbol{u}}f(\boldsymbol{a}) = (\nabla f(\boldsymbol{a})) \cdot \boldsymbol{u} = \|\nabla f(\boldsymbol{a})\| \cos \theta,$$

where θ is the angle between \boldsymbol{u} and $\nabla f(\boldsymbol{a})$.

- **Property:** The gradient vector $\nabla f(a)$ gives the maximum direction variation of f at the point a (since $\cos \theta$ is maximum $\Leftrightarrow \theta = 0, \pi$).
- Property: Gradients are orthogonal to the level curves and the level surfaces of a function f.

Proof. Let $\mathbf{r}(t) = (x_1(t), x_2(t), \dots, x_n(t))^T$ be a level curve (or a curve on a level furface) this means that $f(\mathbf{r}(t))$ is constant for any value of t. Then

$$\frac{d}{dt}f(\mathbf{r}(t))=0.$$

Using the chain rule for the computation of the derivative, we get

$$\frac{d}{dt}f(\mathbf{r}(t)) = \frac{d}{dt}f(x_1(t), x_2(t), \dots, x_n(t))$$

$$= \frac{\partial f}{\partial x_1}(\mathbf{r}(t))x'_1(t) + \dots + \frac{\partial f}{\partial x_n}(\mathbf{r}(t))x'_n(t) = \nabla f(\mathbf{r}(t))^T \mathbf{r}'(t),$$

and since r'(t) is the tangent vector to the curve, the property follows.

Properties of the gradient. Examples

- ▶ Property: The equations of the tangent plane and the normal line of the level set of f at a are:
 - Tangent plane

$$(\nabla f(\mathbf{a})) \cdot (\mathbf{x} - \mathbf{a}) = 0 \quad \Leftrightarrow \quad \frac{\partial f}{\partial x_1} (x_1 - \mathbf{a}_1) + \dots + \frac{\partial f}{\partial x_n} (x_n - \mathbf{a}_n) = 0.$$

Normal line

$$\mathbf{x} = \mathbf{a} + \lambda \nabla f(\mathbf{a}), \quad \lambda \in \mathbb{R}.$$

Example: Compute the tangent plane to the surface $3x^2y + z^2 - 4 = 0$ at the point $(1, 1, 1)^T$.

Let
$$f(x) = 3x^2y + z^2 - 4$$
, since

$$\nabla f(\mathbf{x})^{T} = (6xy, 3x^{2}, 2z)^{T},$$

 $\nabla f(1, 1, 1)^{T} = (6, 3, 2)^{T},$

the plane is

$$6(x-1) + 3(y-1) + 2(z-1) = 0 \Leftrightarrow 6x + 3y + 2z = 11.$$

Linear approximation of functions

• We have already seen that if f is a real function in one variable, the linear approximation of the function f(x) at a point x_0 is defined by the linear function

$$L(x) = f(x_0) + f'(x_0)(x - x_0).$$

▶ In two dimensions, the linear approximation of the function f(x, y) at the point $(x_0, y_0)^T$ is defined as the linear function

$$L(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

$$= f(x_0, y_0) + \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right) \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$= f(x_0, y_0) + (\nabla f(x_0, y_0))^T \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}.$$

▶ In dimension *n*

$$L(x) = f(x_0) + (\nabla f(x_0))^T (x - x_0).$$

Linear approximation of functions

Example: Estimate the value of f(0.01, 24.8, 1.02) for $f(x, y, z) = e^x \sqrt{y}z$.

We take $x_0 = (0, 25, 1)^T$ and we use the linear approximation of f to compute an estimation of f(0.01, 24.8, 1.02).

Clearly

$$f(x_0) = 5,$$

$$\nabla f(x)^T = \left(e^x \sqrt{y}z, \frac{e^x z}{2\sqrt{y}}, e^x \sqrt{y}\right)^T,$$

$$\nabla f(x_0)^T = (5, 1/10, 5)^T,$$

$$L(x) = f(x_0) + (\nabla f(x_0))^T (x - x_0)$$

$$= 5 + (5, 1/10, 5) \begin{pmatrix} x - 0 \\ y - 25 \\ z - 1 \end{pmatrix} = 5 + 5x + \frac{y - 25}{10} + 5(z - 1)$$

We approximate f(0.01, 24.8, 1.02) = 5.1306 by L(0.01, 24.8, 1.02) = 5.13

The differential matrix

Let

$$f: \quad \mathcal{C} \subset \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}^m$$
 $\mathbf{x} \quad \longrightarrow \quad f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x})).$

- ▶ We say that f is differentiable if $f_1,...,f_m$ are differentiable.
- ▶ The differential of f at an interior point $a \in C$ is

$$Df(\mathbf{a}) = \begin{pmatrix} \nabla f_1(\mathbf{a}) \\ \vdots \\ \nabla f_m(\mathbf{a}) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1(\mathbf{a})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{a})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{a})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{a})}{\partial x_n} \end{pmatrix}.$$

▶ If $g: \mathcal{D} \subset \mathbb{R}^p \longrightarrow \mathcal{C} \subset \mathbb{R}^n$ and $f: \mathcal{C} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ are both differentiable, then the composition $h = f \circ g$

$$\begin{array}{cccc} h: & \mathcal{D} & \longrightarrow & \mathcal{C} & \longrightarrow & \mathbb{R}^m \\ x & \longrightarrow & g(x) = (g_1(x), \dots, g_n(x))^T & \longrightarrow & h(x) = f(g_1(x), \dots, g_n(x)) \end{array}$$

is also differentiable.

The differential matrix

If $g:\mathcal{D}\subset\mathbb{R}^p\longrightarrow\mathcal{C}\subset\mathbb{R}^n$ and $f:\mathcal{C}\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ are both differentiable, then the differential of the composition $h=f\circ g$ at an interior point $\mathbf{a}\in\mathcal{D}$ is the product of the differentials

$$Dh(\mathbf{a}) = Df(g(\mathbf{a}))Dg(\mathbf{a})$$

$$Dh(\mathbf{a}) = \begin{pmatrix} \frac{\partial f_1(g(\mathbf{a}))}{\partial x_1} & \cdots & \frac{\partial f_1(g(\mathbf{a}))}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(g(\mathbf{a}))}{\partial x_1} & \cdots & \frac{\partial f_m(g(\mathbf{a}))}{\partial x_n} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1(\mathbf{a})}{\partial x_1} & \cdots & \frac{\partial g_1(\mathbf{a})}{\partial x_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n(\mathbf{a})}{\partial x_1} & \cdots & \frac{\partial g_n(\mathbf{a})}{\partial x_p} \end{pmatrix}.$$

The differential matrix. Linear approximations

▶ If $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable, then for $dx \approx 0$

$$f(x + dx) \approx f(x) + f'(x)dx$$

If $f: \mathcal{C} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ is differentiable, $\mathbf{x} = (x_1, ..., x_n)^T$, $d\mathbf{x} = (dx_1, ..., dx_n)^T \approx \mathbf{0}$, then

$$f(x + dx) \approx f(x) + (\nabla f(x)) \cdot dx$$

If $f: \mathcal{C} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable, $\mathbf{x} = (x_1, ..., x_n)^T$, $d\mathbf{x} = (dx_1, ..., dx_n)^T \approx \mathbf{0}$, then

$$f(x + dx) \approx f(x) + DF(x) dx$$

Critical points

▶ **Definition.** Given a differentiable function $f : C \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, **a** is a critical point of f is

$$abla f(\mathbf{a}) = \mathbf{0} \quad \Leftrightarrow \quad \left\{ egin{array}{l} rac{\partial f(\mathbf{a})}{\partial x_1} = 0, \\ \vdots \\ rac{\partial f(\mathbf{a})}{\partial x_n} = 0. \end{array} \right.$$

- ▶ If a is not a critical point of f, then $\nabla f(a)$ gives the direction along which f increases or dicreases faster. In particular, if a is not a critical point of f then it can be not a maximum or minimum of f.
- ▶ The critical points of f are the candidates to be the local extrema (relative extrema) of f.

Quadratic approximation of functions

We have already seen that, in dimension n, the linear approximation of the function f(x) at a point a is defined by the function

$$L(x) = f(a) + \nabla f(a)(x - a).$$

- ▶ Is **a** is a critical point of f, then $\nabla f(\mathbf{a}) = 0$, and the linear approximation of f at \mathbf{a} is constant.
- ▶ The second order approximation is obtained using Taylor's formula

$$f(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \frac{1}{2}\nabla^2 f(\mathbf{a})(\mathbf{x} - \mathbf{a})^2 + \dots$$

where the value of $\nabla^2 f(a)(x-a)^2 \in \mathbb{R}$ is given by

$$(x_1 - a_1, ..., x_n - a_n) \begin{pmatrix} \frac{\partial^2 f(\mathbf{a})}{\partial x_1^2} & \cdots & \frac{\partial^2 f(\mathbf{a})}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{a})}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f(\mathbf{a})}{\partial x_n^2} \end{pmatrix} \begin{pmatrix} x_1 - a_1 \\ \vdots \\ x_n - a_n \end{pmatrix}.$$

▶ Denoting the Hessian $\nabla^2 f(a)$ by H(a), the quadratic approximation of f at the point a is written as

$$Q(x) = f(a) + \nabla f(a)(x-a) + \frac{1}{2}(x-a)^{T}H(a)(x-a).$$

Quadratic functions

▶ For any $n \times n$ matrix Q ($Q \in \mathbb{R}^{n \times n}$) we have

$$Q$$
 is symmetric $\Leftrightarrow Q^T = Q$

$$Q$$
 is skew-symmetric $\Leftrightarrow Q^T = -Q$

$$Q$$
 is positive semidefinite (PSD) \Leftrightarrow $x^T Qx \ge 0$ for all $x \in \mathbb{R}^n$

$$Q$$
 is positive definite (PD) $\Leftrightarrow x^TQx \ge 0$ for all $x \in \mathbb{R}^n$ and $x^TQx = 0$ if and only if $x = 0$

▶ Let *f* be the quadratic function given by

$$f(x) = x^T Q x + c^T x + d$$

where $Q \in \mathbb{R}^{n \times n}$, $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$. Then f is:

▶ linear
$$\Leftrightarrow$$
 $Q = 0$ and $d = 0$ \Rightarrow $f(x) = c^T x$

▶ affine
$$\Leftrightarrow$$
 $Q = 0$ \Rightarrow $f(x) = c^T x + d$

► convex
$$\Leftrightarrow$$
 Q is PSD \Rightarrow $f(x) = x^T Qx + c^T x + d$