Ejercicios Tema 1

Curvas y superficies

Blanca Cano Camarero

2 de abril de 2021

Índice

Ejercicio 7
a) Regularidad
b) Cálculo de su curvatura y ver que es impar
c) Simetría de $Img(\alpha)$ respecto del punto $\alpha(0)$
d) Simetría de la imagen por paridad de la función curvatura

Ejercicio 7

Sea la curva $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (t, t^3)$, para todo $t \in \mathbb{R}$. (a) Comprueba que es regular.

- a) Comprueba que es regular.
- (b) Prueba que $k(t) = \frac{6t}{(1+9t^4)^{\frac{3}{2}}}$ y que, en particular k(t) = -k(-t) para todo $t \in \mathbb{R}$.
- (c) Observa que la $Img(\alpha)$ es simétrica respecto del punto $\alpha(0)$ (es decir, que el giro de centro $\alpha(0)$ y el ángulo π deja a $Img(\alpha)$ invariante).
- (d) Motivado por lo anterior, si $\alpha: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$ con $\epsilon > 0$ o $\epsilon > \infty$, es una curva regula cuya curvatura cumple que k(t) = -k(-t) para todo $t \in (-\epsilon, \epsilon)$, ¿podemos afirmar que $Img(\alpha)$ es simétrica respecto del punto $\alpha(0)$.

a) Regularidad

Se tiene que $\alpha(t)' = (1, 3t^2)$ que no se anula sea cual sea $t \in \mathbb{R}$ gracias a su primera componente, luego es regular.

b) Cálculo de su curvatura y ver que es impar.

Para este aparatado veremos que $\alpha(t)$ es la parametrización natural de la gráfica de la función cúbica $f(x) = x^3$.

Esto es $\alpha(t) = (t, f(t))$

Además para este tipo de curvas conocemos la siguiente expresión para calcular su curvatura

$$k(t) = \frac{f''(t)}{(1 + f'(t)^2)^{\frac{3}{2}}}$$

luego como $f^{\prime}(t)=3t^2$ y $f^{\prime\prime}(t)=6t,$ podemos concluir que

$$k(t) = \frac{6t}{(1+9t^4)^{\frac{3}{2}}}$$

como se quería probar.

Finalmente veamos que independientemente del valor de $t \in \mathbb{R}$

$$-k(-t) = -\frac{6(-t)}{(1+9(-t)^4)^{\frac{3}{2}}} = \frac{6t}{(1+9t^4)^{\frac{3}{2}}} = k(t).$$

c) Simetría de $Img(\alpha)$ respecto del punto $\alpha(0)$

Sea G(x,y)=(-x,-y) para todo $t\in\mathbb{R}^2$ el giro de π radianes respecto del origen (o quivalentemente la simetría respecto a la recta y=-x).

Observemos que $G\alpha(t)=G(t,t^3)=(-t,-t^3)=\alpha(-t),$ es decir, que el giro lo deja invariante como queríamos ver.

d) Simetría de la imagen por paridad de la función curvatura

Como hipótesis tenemos una curva $\alpha:(-\epsilon,\epsilon)\longrightarrow \mathbb{R}^2$ regular, que aemá su curvatura cumple k(t)=-k(-t).

Consideremos el movimiento rígido M de \mathbb{R}^2 que cumple que $M(\alpha(0))=(0,0)$, que $\overrightarrow{M}_{e_1(0)}=(1,0)$ y que $\overrightarrow{M}_{e_2(0)}=(0,1)$.

Si probamos que

$$S(M \circ \alpha(t))$$
 para todo t , (1)

siendo G la aplicación giro definida en el apartado anterior, tendríamos que $Im(\alpha(M \circ \alpha)$ es simétrica respecto al origen.