Introduction

A state-of-the-art, real-time object detection system that can detect over 9000 object categories.

Implementing Details

	YOLO								YOLOv2
batch norm?		V	1	√	V	√	V	V	V
hi-res classifier?			√	√	√	1	1	\	✓
convolutional?				√	✓	\	1	1	✓
anchor boxes?				1	1				
new network?					V	1	V	√	✓
dimension priors?						1	1	1	✓
location prediction?						1	1	V	✓
passthrough?							\	\	✓
multi-scale?								\	√
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

Convolutional With Anchor Boxes

Using anchor boxes we get a small decrease in accuracy. YOLO only predicts 98 boxes per image but with anchor boxes our model predicts more than a thousand. Without anchor boxes our intermediate model gets 69.5 mAP with a recall of 81%. With anchor boxes our model gets 69.2 mAP with a recall of 88%. Even though the mAP decreases, the increase in recall means that our model has more room to improve.

Dimension Clusters

Use Cluster Alogrithm to picked up the anchors automatically.

Box Generation	#	Avg IOU
Cluster SSE	5	58.7
Cluster IOU	5	61.0
Anchor Boxes [15]	9	60.9
Cluster IOU	9	67.2

Direct location prediction

$$x = (t_x * w_a) - x_a$$
$$y = (t_y * h_a) - y_a$$

$$\begin{aligned} b_x &= \sigma(t_x) + c_x \\ b_y &= \sigma(t_y) + c_y \\ b_w &= p_w e^{t_w} \\ b_h &= p_h e^{t_h} \\ Pr(\text{object}) * IOU(b, \text{object}) = \sigma(t_o) \end{aligned}$$

Fine-Grained Features

This modified YOLO predicts detections on a 13 \times 13 feature map. While this is suffi-cient for large objects, it may benefit from finer grained features for localizing smaller objects. We take a different approach, simply adding a passthrough layer that brings features from an earlier layer at 26 \times 26 resolution.

Multi-Scale Training

Instead of fixing the input image size we change the network every few iterations. Every 10 batches our network randomly chooses a new image dimension size. Since our model downsamples by a factor of 32, we pull from the following multiples of 32: $\{320, 352, \ldots, 608\}$. Thus the smallest option is 320×320 and the largest is 608×608 . We resize the network to that dimension and continue training.

Darknet-19

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool	818765	$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1 × 1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7 × 7
Convolutional	1024	3×3	7 × 7
Convolutional	512	1 × 1	7 × 7
Convolutional	1024	3×3	7 × 7
Convolutional	512	1×1	7 × 7
Convolutional	1024	3×3	7 × 7
Convolutional	1000	1 × 1	7 × 7
Avgpool Softmax		Global	1000

Hierarchical classification

$$Pr(\text{Norfolk terrier}) = Pr(\text{Norfolk terrier}|\text{terrier})$$
 $*Pr(\text{terrier}|\text{hunting dog})$
 $*\dots*$
 $*Pr(\text{mammal}|Pr(\text{animal})$
 $*Pr(\text{animal}|\text{physical object})$

This is designed to predict more kinds of objects.

New animals are easier to learn because the objectness predictions generalize well from the animals in COCO. Conversely, COCO does not have bounding box label for any type of clothing, only for person, so YOLO9000 struggles to model categories like "sunglasses" or "swimming trunks".

Experiments

		0.5:0.95	0.5	0.75	S	M	L	1	10	100	S	M	L
Fast R-CNN [5]	train	19.7	35.9	-	-	-	-	-	-	-	-	-	-
Fast R-CNN[1]	train	20.5	39.9	19.4	4.1	20.0	35.8	21.3	29.5	30.1	7.3	32.1	52.0
Faster R-CNN[15]	trainval	21.9	42.7	-	-	-	-	-	-	-	-	-	-
ION [1]	train	23.6	43.2	23.6	6.4	24.1	38.3	23.2	32.7	33.5	10.1	37.7	53.6
Faster R-CNN[10]	trainval	24.2	45.3	23.5	7.7	26.4	37.1	23.8	34.0	34.6	12.0	38.5	54.4
SSD300 [11]	trainval35k	23.2	41.2	23.4	5.3	23.2	39.6	22.5	33.2	35.3	9.6	37.6	56.5
SSD512 [11]	trainval35k	26.8	46.5	27.8	9.0	28.9	41.9	24.8	37.5	39.8	14.0	43.5	59.0
YOLOv2 [11]	trainval35k	21.6	44.0	19.2	5.0	22.4	35.5	20.7	31.6	33.3	9.8	36.5	54.4

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
YOLOv2 352×352	2007+2012	73.7	81
YOLOv2 416×416	2007+2012	76.8	67
YOLOv2 480×480	2007+2012	77.8	59
YOLOv2 544×544	2007+2012	78.6	40