<u>Using LLMs as Chainsaws –</u> <u>Fostering a Tool-Critical Approach for Information Extraction</u>

Introduction

Who are we?

Who are we?

8 professors4 postdocs

18 PhDs

www.lt3.ugent.be

Ghent Center for Digital Humanities

- Flemish contribution to DARIAH and CLARIN
- unlocking Al tools for research in the Arts and Humanities

Eu-funded CLS infra

<u>Goal</u>: build a shared resource of high-quality data, tools and knowledge to aid new approaches to studying literature in the digital age

- digital age offers challenges and opportunities for completing research on Europe's multilingual and interconnected literary heritage.
- many resources are currently available in digital libraries, but a lack of standardisation hinders their access and reuse.
- => bridging resource gap

The workshop

Workshop

- → general introduction to Information Extraction for DH with NLP
 - ◆ Information Extraction == What do we want to do?
 - ◆ NLP, machine learning == How do we do it?
 - ◆ Large Language Models == How do the tools work? ~~ understanding methodology
- → tutorial through notebooks
 - ♦ how do we use it? ~~applying methodology
 - three approaches:
 - zero-shot
 - few-shot
 - finetuning / training

Information extraction for DH

broader research question as example:

⇒ What are people talking about in travel literature and what do they say about it?

broader research question:

⇒ What are people talking about in travel literature and what do they say about it?

Language
English
French
Dutch
German
Total

18thC	19thC	20thC	Total
41	782	668	1,491
5	145	50	200
25	92	242	359
972	218	80	1,270
1,043	1,163	897	3,320

1. from a corpus of travelogues

broader research question:

⇒ What are people talking about in travel literature

and what do they say about it?

- 1. from a corpus of travelogues
- 2. what are people talking about?
 - a. named entities

location

broader research question:

⇒ What are people talking about in travel literature

and what do they say about it?

- 1. from a corpus of travelogues
- 2. what are people talking about?
 - a. named entities
- 3. what do they say about it?
 - a. sentiment analysis

18thC	19thC	20thC	Total
41	782	668	1,491
5	145	50	200
25	92	242	359
972	218	80	1,270
1,043	1,163	897	3,320

Extremely

negative

13

Extremely

positive

- Task 1: What are people talking about?
 - named entity recognition
- Task 2: What are they saying about it?
 - aspect-based sentiment analysis
- ⇒ are they positive or negative about these entities?

- Task 1: What are people talking about?
 - Named entity recognition
- Task 2: What are they saying about it?
 - aspect-based sentiment analysis
- ⇒ are they positive or negative about these

entities?

Widely applicable approach for DH:

⇒ many under-researched books and corpora

Task 1: Named Entity Recognition (NER)

Which entities are in the text?

Task 1: Named Entity Recognition (NER)

- Which entities are in the text?
 - Rome
 - Trevi fountain

Task 1: Named Entity Recognition (NER)

- Which entities are in the text?
 - o Rome
 - o Trevi fountain
- What types are the named entities?
 - o Rome ⇒

Trevi fountain ⇒

Task 2: Aspect-Based Sentiment Analysis

- What sentiment is expressed about these entities?
 - Rome: positive @
 - Trevi fountain: negative (a)

NLP

NLP and Machine Learning

- NLP: Natural Language Processing
 - subfield of linguistics + computer science
 - large-scale processing of language to answer linguistic questions

NLP and Machine Learning

- NLP: Natural Language Processing
 - subfield of linguistics + computer science
 - large-scale processing of language to answer linguistic questions
- traditionally: rule based or machine learning

NLP and Machine Learning

- NLP: Natural Language Processing
 - subfield of linguistics + computer science
 - large-scale processing of language to answer linguistic questions
- traditionally: rule based or machine learning
- currently ⇒ strong focus on machine learning in

Machine Learning in

- machine learning = "giving computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959).
- not based on linguistic rules, but learning from examples
 - data-driven

Machine learning

technology

Machine learning

Pieter B

Super interessant en vooral leuk aug. 2020 • Gezinnen

26

LLMs

machine learning needs to optimize for a task

- machine learning needs to optimize for a task
- GPT: Generative Pre-trained Transformer

- machine learning needs to optimize for a task
- GPT: Generative Pre-trained Transformer
- how can a computer generate text?
 - one word at a time!

- machine learning needs to optimize for a task
- GPT: Generative Pre-trained Transformer
- how can a computer generate text?
 - one word at a time!

The task:

Predict the next word, from left-to-right

- machine learning needs to optimize for a task
- GPT: Generative Pre-trained Transformer
- how can a computer generate text?
 - one word at a time!

The task:

Predict the next word, from left-to-right

- next-word prediction:
 - deasy to set up, no supervision needed

There's no place like <**MASK**>

This morning I ate a sandwich with peanut butter and <**MASK>**

This morning I ate a sandwich with peanut butter and <**MASK>**

- next-word prediction:
 - deasy to set up, no supervision needed
 - mask the next word (can be done randomly)

There's no place like <**MASK**>

This morning I ate a sandwich with peanut butter and <**MASK>**

This morning I ate a sandwich with peanut butter and <**MASK>**

- next-word prediction:
 - deasy to set up, no supervision needed
 - mask the next word (can be done randomly)
 - predict which word in the vocabulary is most likely to follow

There's no place like <**MASK**>

This morning I ate a sandwich with peanut butter and <**MASK>**

This morning I ate a sandwich with peanut butter and < MASK >

mewest LLMs: two types of training

continuous text (pre-training)

There's no place like <MASK>

This morning I ate a sandwich with peanut butter and <MASK>

This morning I ate a sandwich with peanut butter and <MASK>

mewest LLMs: two types of training

There's no place like <MASK>

This morning I ate a sandwich with peanut butter and <MASK>

continuous text (pre-training)

This morning I ate a sandwich with peanut butter and <MASK>

- 2. Instruction tuning for chat models
 - a. also used for fine-tuning

Hey, do you know how to write a script for named entity recognition?

Sure, the first step is to <MASK>

how can a computer model language?

Distributional hypothesis: "You shall know a word by the company it keeps" (Firth, 1957)

- how can a computer model language?
- Distributional hypothesis: "You shall know a word by the company it keeps" (Firth, 1957)
 - >> words that occur in similar contexts tend to have related meanings
 - >> we can infer the meaning of words from context (surrounding words).

- how can a computer model language?
- Distributional hypothesis: "You shall know a word by the company it keeps" (Firth, 1957)
 - >> words that occur in similar contexts tend to have related meanings
 - >> we can infer the meaning of words from context (surrounding words).

The national <u>bank</u> of Belgium also gave financial support to the project.

Heavy banks of snow surrounded the train.

Special animals and plants can be found along the banks of the river Meuse.

Modeling word meaning with embeddings

- Computers cannot work with text > we represent words as numeric vectors computers can work with
- Those numbers contain information about the meaning of words, deduced from the contexts in which these words occur (in massive text collections)
- Words that are semantically related (have similar or related meanings) will have similar vectors (and be closer in the vector space)

How does a model know which values to use?

start from random numbers

How does a model know which values to use?

- start from random numbers
- - Xif the system makes a mistake, change the numbers
 - rinse and repeat
 - ✓ gradually improves

How does a model know which values to use?

- start from random numbers
- ⊚trial and error ¾
 - Xif the system makes a mistake, change the numbers
 - rinse and repeat
 - gradually improves

almost like magic, this works!

How can this work?

How does a model know which values to use?

Large amount of example data (human-written text)

Training

= trial and error if the system makes a mistake, change the numbers repeat

How big is this model really?

How big is this model really?

training data estimate: 25 million books +

GPT(3+) model parameters: 1 trillion

models have read more than a human could in a lifetime

popen text
popen text
popen text

- give instructions like you would for a human intuitive, describe what you want most probable + human-like response
- GHENT UNIVERSITY

extensive training

- many languages, language types
- many existing datasets
- *****tasks

idea of foundation models:

\$\forall \text{transfer to contexts that are similar to those they are trained for.}

tasks leverage generalization from broad selection of languages and tasks

without needing a lot of data 🦠 💳

m not available for low-resource DH scenarios

How can we use language models?

two types of access:

proprietary

- examples
 - Claude
 - GPT 3+
 - Gemini

- examples
 - Claude
 - GPT 3+
 - Gemini

how to access ⇒ API

- examples
 - Claude
 - GPT 3+
 - Gemini

how to access ⇒ API

- you send prompt (your question, instructions) to the company
- the company processes the prompt on their GPU
- they send you the response

Advantages:

- ✓ availability of huge models
- no need for GPUs or technical infrastructure
- works on basic laptop 💻 and internet

Advantages:

- vavailability of huge models
- no need for GPUs or technical infrastructure
- works on basic laptop <a> and internet

Disadvantages:

Xlimited control over the model

what pre-training data was used?

which tasks was the model trained on?

Advantages:

- vavailability of huge models
- no need for GPUs or technical infrastructure
- works on basic laptop **and** internet

Disadvantages:

- Xcost! pay for each generated token 💰
- Xlimited control over the model
 - options for fine-tuning
- Xtransparency 🙈
 - what pre-training data was used?
 - which tasks was the model trained on?

- egoptimising models for benchmark data
- mismatch with real-world performance
- "cheating" to present as the best model

- examples:
 - Llama
 - Mistral

- examples:
 - Llama
 - Mistral
- how to access:

 - run/train them yourself

Advantages:

- transparent about how the model was created
 - which data is used
 - now the data was processed
 - model architecture
- can finetune the model yourself
 - control over the training process
 - share the model

Advantages:

- - which data is used
 - now the data was processed
 - model architecture
- can finetune the model yourself
 - control over the training process
 - share the model

Disadvantages:

- Xrequire your own GPUs 💎
 - generally limited to smaller models
- Xtechnically more complex

Advantages:

- Itransparent c about how the model was created
 - which data is used
 - now the data was processed
 - model architecture
- can finetune the model yourself
 - control over the training process
 - share the model

Disadvantages:

- Xrequire your own GPUs 💎
 - generally limited to smaller models
- Xtechnically more complex 🤓 📐
 - BUT we can help with this!

Limitations and dangers

Historical m language remains difficult 1

- less resourced
- spelling differences 🔬
- out-of-vocabulary
- stylistic differences:
 - more creative, metaphorical, poetic, lyrical 🎨

→ data drift:

Projecting modern-day cultural assumptions

regional bias:
focus on Western world

ethnic groups / slurs as fauna

ethnic groups / slurs as fauna

[...] he with much difficulty prevailed on part of the <u>Indians</u> to begin some new plantation, that they might supply themselves with <u>grain</u>.

[part of the Indians]

Het , in het oor eens <u>Kaffers</u> allezins aangenaam luidend , gebulk van eene <u>koe</u> kan hem dermate verrukken [...]

[koe, kaffers]

[...] hetzij door dieren of ook wel door den mensch — de <u>n*gers</u> gebruiken de wol daarvan als tonder — sterft de plant niet noodzakelijk [...]

[dieren, n*gers*, plant]

Bias 🖈 🚨

- ethnic groups / slurs as fauna
- translation (anglophone bias)
- more West-European

Text

CHIEN ET LOUP

Entities

[dog, wolf]

zo is in Rusland de algemeene gewoonte van <u>Salmen</u>en andere soorten van <u>Visschen</u>

[salmon, Visschen]

Ready to work?

What will we do?

