

Arquitetura e Organização de Computadores

> Conjunto de Instruções da Arquitetura – CompSim







## Agenda

- Tipos de Instruções
- Operações Básicas de Entrada e Saída



### Tipos de Instruções

- Pseudo-Instruções do Montador (Assembler)
  - Segmento
    - .code, .data, .bss, .stack
  - Rótulo ou Nome
    - :
  - Delimitador de comentário
    - ;
  - Definição/Declaração de variáveis
    - DD, DB, RESD, RESB

- Conjunto de Instruções da Arquitetura (ISA)
  - Aritméticas
    - ADD, SUB
  - Lógicas
    - NAND, SHIFT
  - Transferência de dados
    - MOV, LDA, STA, LDI, STI, SOP
  - Transferência de controle
    - JMP, JN, JZ, CALL, RET, INT
  - Entrada/Saída
    - INT



#### Interface de E/S

 Em operações de E/S o Registrador Acumulador (AC) passa a incluir dois campos:

| AC High |        |     | AC Low |   |  |
|---------|--------|-----|--------|---|--|
|         | 8 bits |     | 8 bits |   |  |
| 15      |        | 8 7 |        | 0 |  |

- Onde:
  - **AC High** Endereço de 8-bits do periférico  $(2^8 = 256 \text{ periféricos!})$
  - AC Low Dado de 8-bits que será lido/escrito



#### Interface de E/S

- Vimos que a instrução INT é utilizada na operação de HALT de execução do processador.
- Contudo, no CompSim, a instrução INT também é utilizada em operações de E/S.
- Sintaxe:
  - Operação de E/S: [<rotulo>] INT <endereco-memoria>
    - Onde:
      - O AC é implícito e seus campos (AC High e AC Low) devem ser utilizados para endereço e dados, respetivamente.
      - O operando em memória indica o tipo de operação:
        - 0 Entrada Leitura de dado de 8-bits de um periférico
        - 1 Saída Escrita de dado de 8-bits em um periférico



#### Periféricos do CompSim

- Plataforma Mandacaru
  - Barramento de periféricos
    - Vídeo
    - Teclado
    - Arduino
      - UNO
      - MEGA

#### **Plataforma Mandacaru**





#### Periféricos do CompSim

| Periférico                        | Modo de Operação       | Endereço<br>(AC High) |     | Dado<br>(AC Low) | Retorno<br>(AC)      |
|-----------------------------------|------------------------|-----------------------|-----|------------------|----------------------|
|                                   |                        | Bin                   | Dec |                  |                      |
| Vídeo                             | Output (Digital)       | 00000000              | 0   | Byte             | -                    |
| Teclado                           | Input (Digital)        | 00000001              | 1   | -                | Byte                 |
| Arduino – Porta B (Pinos 8 a 13)  | Input/Output (Digital) | 00000010              | 2   | Byte*            | Byte                 |
| Arduino – Porta D (Pinos 0 a 7)   | Input/Output (Digital) | 00000011              | 3   | Byte**           | Byte                 |
| Arduino – Porta C (Pinos A0 a A5) | Input (Analógico)      | 00000100              | 4   | Byte***          | Inteiro <sup>+</sup> |
| Arduino – Porta PWM (Pino 3)      | Output (Analógico)     | 00000101              | 5   | Byte             | -                    |
| Arduino – Porta PWM (Pino 5)      | Output (Analógico)     | 00000110              | 6   | Byte             | -                    |
| Arduino – Porta PWM (Pino 6)      | Output (Analógico)     | 00000111              | 7   | Byte             | -                    |
| Arduino – Porta PWM (Pino 7)      | Output (Analógico)     | 00001000              | 8   | Byte             | -                    |
| Arduino – Porta PWM (Pino 10)     | Output (Analógico)     | 00001001              | 9   | Byte             | -                    |
| Arduino – Porta PWM (Pino 11)     | Output (Analógico)     | 00001010              | 10  | Byte             | -                    |

<sup>\*</sup> Os 2 bits mais significativos são descartados (Mask 00111111).

<sup>\*\*</sup> Os 2 bits menos significativos são descartados (Mask 11111100).

<sup>\*\*\*</sup> Utiliza apenas 3 bits para representar o intervalo de 0 a 5. Os 5 bits mais significativos são descartados (Mask 00000111).

<sup>&</sup>lt;sup>†</sup> Utiliza AC High e AC Low para retornar um inteiro entre 0 e 1024.



- Exemplos práticos: Acessando registradores.
- Procedimento:
  - Baixar e extrair o pacote:
    - 9.input\_output\_operations..zip
  - Menu "File" → "Open"
    - Ou Teclas "Ctrl+o"
  - Arquivos:
    - · Vários exemplos práticos.

```
.code
          ;set keyboard address
          LDA keyboard address
          ; read char from keyboard
          INT input
          ;grava char em 'a'
          STA a
10
11
12
          ;encerra a aplicacao
13
          INT exit
14
15
       .data
16
           ;AO pin
          pin: DD 0
17
18
19
          arduino portC: DD 1024
20
21
          ;input interruption
22
          input: DD 20
23
24
          ; syscall exit
25
          exit: DD 25
26
27
28
          a: RESD 1
29
```



### Atividade Prática

- Criar um programa onde:
  - O usuário deve entrar com um número inteiro no intervalo de 0 a 4;
  - O programa multiplicará a entrada por 2; e imprimirá o resultado.