Your name: Rohan Chandra

1. Consider the "monotropic" program

minimize
$$||x||_{\infty}$$
 (1) subject to $Ax = b$.

(a) Write this as an unconstrained (or implicitly constrained) problem using the characteristic function of the zero vector $\chi_0(z)$. This function is zero if it's argument is zero, and infinite otherwise.

Solution:

$$\min_{x} ||x||_{\infty} + \chi_o(Ax - b)$$

(b) What is the conjugate of $f(z) = ||z||_{\infty}$?

Solution: The conjugate function of $f(z) = ||z||_{\infty}$ is:

$$f^*(y) = ||z||_{\infty}^* = \begin{cases} 0 & ||y||_1 \le 1\\ \infty & otherwise \end{cases}$$

(c) What is the conjugate of $g(z) = \chi_0(z)$?

Solution: If $g(z) = \chi_0(z)$, then its conjugate is,

$$g^*(y) = \max_z y^T z - \chi_0(z) = \max_{z \in 0} y^T z$$

(d) Using the conjugate functions, write down the dual of (1).

Solution:

$$g(\lambda) = \min_{x} ||x||_{\infty} + \lambda^{T} (Ax - b)$$

$$\implies g(\lambda) = -b^{T} \lambda + \min_{x} (||x||_{\infty} + (A^{T} \lambda)^{T} x)$$

Using the conjugate norm of $||x||_{\infty}$, we get:

$$g(\lambda) = -b^T \lambda - ||(-A^T \lambda)||^*_{\infty}$$
$$= \begin{cases} -b^T \lambda & ||-A^T \lambda||_1 \le 1\\ -\infty & otherwise \end{cases}$$

2. Consider the linear program

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$.

(a) Write the optimality conditions for this problem (i.e., the KKT system).

Solution: Let x^*, λ^*, μ^* be the optimal primal dual variables. Hence the KKT conditions are:

$$c - \lambda^* + A^T \mu^* = 0$$
$$-x^* \le 0$$
$$Ax^* - b = 0$$
$$\lambda^* \ge 0$$
$$-\lambda^* x^* = 0$$

(b) Write the Lagrangian for this problem.

Solution:

$$L(x,\lambda,\mu) = c^T x - \lambda^T x + \mu^T (Ax - b)$$

$$\implies L(x,\lambda,\mu) = b^T \mu + (c + A^T \mu - \lambda)x$$

(c) Minimize out the primal variables in the Lagrangian, and write the dual formulation of this linear program.

Solution:

$$g(\lambda, \mu) = \min_{x} L(x, \lambda, \mu) = b^{T} \mu + \min_{x} (c + A^{T} \mu - \lambda) x$$

This is easily analyzed as a linear function is only bounded below when it is linear. Hence,

$$g(\lambda, \mu) = \begin{cases} -b^T \mu & c + A^T \mu - \lambda = 0 \\ -\infty & otherwise \end{cases}$$

3. Consider the problem

minimize
$$f(x)$$

subject to $g(x) \le 0$.

Let x_0 be a solution to this problem, and λ_0 be the corresponding optimal Lagrange multiplier. Now, define a perturbed problem

minimize
$$f(x)$$

subject to $g(x) \le \epsilon$

where ϵ is a vector. Let x_{ϵ} be a solution to the perturbed problem. Note, if we put large negative values in ϵ , then the constraint set gets smaller, and we expect the corresponding value of $f(x_{\epsilon})$ to increase.

Prove the "sensitivity bound"

$$f(x_0) - \lambda_0^T \epsilon \le f(x_\epsilon).$$

This bound shows that the Lagrange multipliers determine how much the objective increases as the vector ϵ becomes more negative.

Solution:

From the definition of the dual function, say for our example, $h(\lambda)$

$$h(\lambda) = \min_{x} f(x) + \lambda^{T} g(x)$$

We are given that x_{ϵ} is the solution to the above equation and hence, plugging $x = x_{\epsilon}$ in the above equation, our RHS becomes,

$$R.H.S = f(x_{\epsilon}) + \lambda^{T} g(x_{\epsilon})$$

From the definition of the dual function,

$$h(\lambda) \le f(x_{\epsilon}) + \lambda^T g(x_{\epsilon})$$

Maximizing out the dual gives us,

$$h(\lambda_o) \le f(x_{\epsilon}) + \lambda_o^T g(x_{\epsilon})$$

Since x_{ϵ} is a feasible point, $g(x_e) < \epsilon$. Hence,

$$h(\lambda_o) \le f(x_e) + {\lambda_o}^T \epsilon$$

But, from strong duality, solution of primal = solution of dual. And solution of the primal is nothing but $f(x_o)$, thus

$$f(x_o) = h(\lambda_o)$$

$$f(x_o) \le f(x_e) + \lambda_o^T \epsilon$$

$$f(x_o) - \lambda_o^T \epsilon \le f(x_e)$$

4. (a) Let $\operatorname{prox}_f(x,t) = \operatorname{argmin}_z f(z) + \frac{1}{2t} \|z - x\|^2$. Prove the "Moreau decomposition" identity $x = \operatorname{prox}_f(x,t) + t \operatorname{prox}_{f^*}(x/t,1/t).$

Solution: Let $\operatorname{prox}_f(x,t) = u$. This implies

$$\partial f(u) + \frac{u - x}{t} = 0$$

$$\implies \frac{x-u}{t} \in \partial f(u)$$

Using property of sub-gradients and conjugates namely,

$$y \in \partial f(x) \iff x \in \partial f^*(y)$$

We apply this property in our proof to get

$$u \in \partial f^*(\frac{x-u}{t})$$

Now,

$$\Rightarrow \partial f^*(\frac{x-u}{t}) - u = 0$$

$$\Rightarrow \partial f^*(\frac{x-u}{t}) - (x - (x-u)) = 0$$

$$\Rightarrow \partial f^*(\frac{x-u}{t}) + t((\frac{x-u}{t}) - \frac{x}{t}) = 0$$

Reconstructing the definition of proximal operator,

$$\operatorname{prox}_{f^*}(x/t, 1/t) = \arg\min_{z} f^*(z) + \frac{t}{2} ||z - \frac{x}{t}||^2 = \frac{x - u}{t}$$

and

$$\operatorname{prox}_{f}(x,t) = u$$

Simple addition of these two proximal operators gives

$$\operatorname{prox}_{f}(x,t) + t \operatorname{prox}_{f^{*}}(x/t, 1/t) \implies u + t(\frac{x-u}{t}) = x$$

Hence proved

(b) Using your result from part (a), prove that

$$\text{prox}_{|x|}(x,t) = x - \max\{\min\{x,t\}, -t\}$$

where |x| denotes the 1-norm of x, and "min" and "max" are applied element-wise. You may use the identity $[af]^*(x) = af^*(x/a)$ where f^* denotes the conjugate of f, and a is a scalar.

Solution: By Moreau's decomposition we have,

$$\operatorname{prox}_{||x||_1}(x,t) + \operatorname{prox}_{||x||_{\infty}}(x/t,1/t) = x$$

Using the given identity, $[af]^*(x) = af^*(x/a)$, we have

$$\operatorname{prox}_{||x||_1}(x,t) + \operatorname{prox}_{||tx||_{\infty}}(x,t) = x$$

$$\implies \operatorname{prox}_{||x||_1}(x,t) = x - \operatorname{prox}_{||tx||_{\infty}}(x,t)$$

But projecting onto the infinity ball, we know

$$\operatorname{prox}_{||tx||_{\infty}}(x,t) = \begin{cases} t & x > t \\ x & |x| \le t \\ -t & x < -t \end{cases}$$

$$\implies \mathrm{prox}_{||tx||_{\infty}}(x,t) = \max\{\min\{x,t\}, -t\}$$

Hence,

$$\operatorname{prox}_{|x|}(x,t) = x - \max\{\min\{x,t\}, -t\}$$