Distribuciones Estadísticas

Mario Calvarro Marines

Índice general

1.	Dist	tribuciones Discretas	1
	1.1.	Degenerada	1
	1.2.	Bernoulli	3
	1.3.	Binomial	4
	1.4.	Poisson	5
2.	Dist	tribuciones Continuas	7
	2.1.	Uniforme	7
	2.2.	Gamma	9
	2.3.	Exponencial	11
	2.4.	Beta	12
	2.5.	Normal	13
3.	Dist	cribuciones Normales	15
	3.1.	Chi Cuadrado	15
	3.2.	T-Student	17
	2 2	F Spadacar	1 2

DISTRIBUCIONES DISCRETAS

DEGENERADA

Distribución que vale 1 en un solo punto h.

Deg(h)

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

BERNOULLI

Distribución que mide la probabilidad de que un experimento acabe en "éxito" ó "fracaso".

Función de masa

La función de masa de la distribución es:

$$p_X(x) = p^x (1-p)^{1-x}, x \in \{0, 1\}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & 1 \ge x \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = p$$

y un momento genérico:

$$E\left[X^k\right] = p$$

Respecto del centro

La **varianza** es:

$$V[X] = p(1-p)$$

Función característica

$$\varphi\left(t\right) = (1 - p) + p \cdot \exp\left\{it\right\}$$

BINOMIAL

Distribución que mide la probabilidad de que x experimentos, con probabilidad p, en n intentos sean "éxitos".

B(n,p)

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x \in \{0, \dots, n\}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \sum_{i=1}^{x} \binom{n}{i} p^i (1-p)^{n-i}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = np$$

Respecto del centro

La ${f varianza}$ es:

$$V[X] = np(1-p)$$

Función característica

$$\varphi(t) = ((1-p) + p \exp\{it\})^n$$

POISSON

Distribución que mide la probabilidad de que ocurran x eventos, que tienen una "velocidad" λ , en un determinado intervalo de tiempo.

 $P(\lambda)$

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \frac{\lambda^x \exp\left\{-\lambda\right\}}{x!}, \ x \in \mathbb{N}_0$$

Función de distribución

La función de distribución es:

$$F_X(x) = \exp\left\{-\lambda\right\} \sum_{j=0}^{\lfloor x \rfloor} \frac{\lambda^j}{j!}$$

Poco importante.

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \lambda$$

Respecto del centro

La varianza es:

$$V[X] = \lambda$$

Función característica

La función característica de la distribución es:

$$\varphi(t) = \exp\left\{\lambda \left(e^{it} - 1\right)\right\}$$

Otras características de interés

■ Si tenemos $X_i \sim P(\lambda_i)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim P\left(\sum_{i=1}^{n} \lambda\right)$$

■ Si tenemos una binomial, con número de "éxitos" esperados se mantiene más o menos constante, y hacemos tender n, número de casos, a infinito, tenemos como resultado una Poisson con $\lambda = np$.

DISTRIBUCIONES CONTINUAS

UNIFORME

Distribución que mide la probabilidad de un suceso que puede estar de forma arbitraria en un intervalo con las mismas posibilidades.

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \frac{1}{b-a} I_{(a,b)}(x)$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E\left[X\right] = \frac{1}{2}b + a$$

Respecto del centro

$$V\left[X\right] = \frac{1}{12} \left(b - a\right)^2$$

Función característica

$$\varphi\left(t\right) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & t \neq 0\\ 1 & t = 0 \end{cases}$$

GAMMA

Distribución que mide la probabilidad de que en un tiempo a ocurran p eventos. (Puede que el tiempo sea $\frac{1}{a}$)

$$\gamma\left(p,a\right)$$

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \frac{a^p}{\Gamma(p)} x^{p-1} e^{-ax}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \frac{1}{\Gamma(p)} \gamma(p, ax)$$

(Poco importante)

Momentos

Respecto del origen

La **esperanza** es:

$$E\left[X\right] = \frac{p}{a}$$

Respecto del centro

La varianza es:

$$V[X] = \frac{p}{a^2}$$

Función característica

La función característica de la distribución es:

$$\varphi\left(t\right) = \left(1 - \frac{it}{a}\right)^{-p}$$

Otras características de interés

■ Si tenemos $X_i \sim \gamma(p_i, a)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim \gamma \left(\sum_{i=1}^{n} p_i, a \right)$$

■ Si
$$X \sim \gamma\left(p,a\right) \Rightarrow$$

$$cX \sim \gamma\left(p,\frac{a}{c}\right), \ c \in \mathbb{R}$$

$$\quad \quad \gamma\left(1,a\right) \equiv \exp\left(a\right)$$

EXPONENCIAL

Distribución que mide la probabilidad que una cantidad x de tiempo haya pasado entre dos eventos de una distribución Poisson λ .

 $\exp\left(a\right)$

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \lambda e^{-\lambda x} \cdot I_{(0,+\infty)}(x)$$

Función de distribución

La función de distribución es:

$$F_X(x) = 1 - e^{-\lambda x} \cdot I_{(0,+\infty)}(x)$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \lambda^{-1}$$

y un momento genérico:

$$E\left[X^k\right] = \frac{k!}{\lambda^k}$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] = \lambda^{-2}$$

Función característica

La función característica de la distribución es:

$$\varphi\left(t\right) = \frac{\lambda}{\lambda - it}$$

Otras características de interés

- Si tenemos $X_i \sim \exp(a)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim \exp\left(a\right)$$

BETA

Distribución que

$$\beta(\alpha,\beta)$$

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

donde $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

Función de distribución

La función de distribución es:

$$F_X(x) = I_x(\alpha, \beta)$$

que es la regularizaci'on incompleta de la funci\'on beta.

Momentos

Respecto del origen

La **esperanza** es:

$$E\left[X\right] = \frac{\alpha}{\alpha + \beta}$$

Respecto del centro

$$V[X] = \frac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$$

NORMAL

Distribución de media μ y desviación típica σ :

$$N\left(\mu,\sigma\right)$$

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \mu$$

Respecto del centro

La **varianza** es:

$$V[X] = \sigma^2$$

Función característica

La función característica de la distribución es:

$$\varphi\left(t\right) = \exp\left\{it\mu - \frac{\sigma^{2}t^{2}}{2}\right\}$$

Otras características de interés

- lacktriangle Es simétrica respecto de $x=\mu$.
- Si tenemos $X \sim N(\mu, \sigma)$ e $Y = aX + b \Rightarrow$

$$Y \sim N (a\mu + b, |a|\sigma)$$

■ Si tenemos $X_i \sim N(\mu_i, \sigma_i)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim N\left(\sum_{i=1}^{n} \mu_i, \sqrt{\sum_{i=1}^{n} \sigma_i}\right)$$

13

DISTRIBUCIONES NORMALES

CHI CUADRADO

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

T-STUDENT

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right)=\exp\left\{ ith\right\}$$

F-SNEDECOR

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right)=\exp\left\{ ith\right\}$$