MATH-300 Andrew Jones

Worksheet 4

Let R be a relation from A to B, let S be a relation from B to C, and let T be a relation from C to D.

Prove the following statements.

1. $I_A \circ R = R$

Proof. Let $a \in A$ and $b \in B$ and observe:

$$a(I_a \circ R)b \iff \exists a' \in A : a = a' \land a'Rb \iff aRb$$

2. $R \circ I_A = R$

Proof. Let $a \in A$ and $b \in B$ and observe:

$$a(R \circ I_a)b \iff \exists b^{'} \in B : b = b^{'} \wedge aRb^{'} \iff aRb$$

3. $(R^{-1})^{-1} = R$

Proof. Fix $a \in A$ and $b \in B$:

$$\begin{array}{ccc} a(R^{-1})^{-1}b & \Longleftrightarrow & bR^{-1}a \\ & \Longleftrightarrow & b(R^{-1})^{-1}a \end{array}$$

4. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Proof. Suppose $(c,a) \in (S \circ R)^{-1}$. Then by implication: $a(S \circ R)^{-1}$. Hence, there exists a $b \in B$ such that bSc and aRb and $cS^{-1}b$ and $bR^{-1}a$. Therefore $(c,a) \in (R^{-1} \circ S^{-1})$ and $(R^1 \circ S^{-1}) \subseteq (S \circ R)^{-1}$. The converse implication is obtained by retracing the steps.

5. $(T \circ S) \circ R = T \circ (S \circ R)$

Proof. Fix $a \in A$, $b \in B$, $c \in C$, and $d \in D$

$$a(T \circ S) \circ Rd \iff \exists a^{'} \in A : a^{'} = a \wedge a^{'}Rb$$

$$\iff \exists b^{'} \in B : b^{'} = b \wedge b^{'}Sc$$

$$\iff \exists c^{'} \in C : c^{'} = c \wedge c^{'}Td$$

$$\iff aT \circ (S \circ R)d$$

6. $Dom R = Rng R^{-1}$

Proof. (\subseteq) Fix $r \in Rng R^{-1}$. By definition of inverse it follows that $r \in Dom R$.

Proof. (\supseteq) Fix $d \in Dom R$. By definition of domain it follows that $d \in Rng R^{-1}$.

7. $Rng R = Dom R^{-1}$

Proof. (\supseteq) Suppose R is invertible and $r \in Rng R$. By the definition of inverse $r \in Dom R^{-1}$.

Proof. (\subseteq) Fix $d \in Dom R^{-1}$. By the defintion of domain it follows that $d \in Rng R$.

For Question 8–10, suppose that A = B = C.

8. If R and S are equivalence relations, then $S \circ R$ is an equivalence relation.

Proof. Suppose R is an equivalence relation from A to B and S is an equivalence relation from B to C and A = B = C.

$$S \circ R \iff \forall a \in A : aSa \wedge aRa$$

 $\iff \forall a, b, c \in A : (aSb \wedge bSc) => aSa \wedge (aRb \wedge bRc) => aRc$
 $\iff \forall a, b \in A : (aSb \wedge bSa) \wedge (aRb \wedge bRa)$

9. If R is a partial order, then $R \circ R$ is a partial order.

Proof. Suppose R is a partial order from A to B and A = B

$$\begin{array}{l} R \iff \forall a \in A : aRa \\ \iff \forall a,b,c \in A : (aRb \land bRc) => aRc \\ \iff \forall a,b \in A : (aRb \land bRa) => a = b \\ \iff R \circ R \end{array}$$

10.	If R and S are partial orders, then it is not generally true that $S\circ R$ is a partial order.
	<i>Proof.</i> Let $R=\leq$ and $S= $. Fix $a=3$ and $b=5$. Observe that $3\leq 5$, however $3 5$ hence $S\circ R$ is not a partial order. \square
Boni that	as Questions Give an example of two relations R and S on a set A such
11.	$R \circ S \neq S \circ R$.
	<i>Proof.</i> Suppose $R=\leq$ and $S= x .$ Fix $a=-9$ and $b=5.$ Observe that $-9(R\circ S)5\neq -9(S\circ R)5.$
12.	$S\circ R$ is an equivalence relation, but neither R nor S is an equivalence relation.
	Proof. \Box