Anomaly Detection

Exercise 5

Anomaly DetectionDefinition of Outliers

Exercise 5: Anomaly Detection

28.03.2022

Univariate Anomaly Detection Interquartile Range

Definitions:

- Q1: $x \ge Q1$ holds for 75% of all x = median of the lower half
- Q3: $x \ge Q3$ holds for 25% of all x = median of the upper half
- IQR = Q3-Q1

Outlier detection:

All values outside [median-1.5*IQR; median+1.5*IQR]

TASK
$$Q1 = Q3 = median$$

$$median Q2 median$$

Find outliers in [3, 5, 6, 6, 8, 11, 21] with IQR

IQR: 11 - 5 = 6

Allowed interval: [6 - 1.5*6; 6 + 1.5*6] = [-3; 15]

Univariate Anomaly Detection Interquartile Range

TASK

Find outliers in [-5, 3, 7, 11] with IQR

Find outliers in [1, 4, 9] with IQR

Find outliers in [-14, -12, 7, 10, 11, 12, 14, 16.5, 17, 38] with IQR

Univariate Anomaly Detection Interquartile Range

TASK

• Find outliers in [-5, 3, 7, 11] with IQR

$$Q1 = -1$$
, $Q2 = 5$, $Q3 = 9$, $IQR = 10$, $Interval = [-10; 20]$

Find outliers in [1, 4, 9] with IQR

$$Q1 = 1$$
, $Q2 = 4$, $Q3 = 9$, $IQR = 8$, $Interval = [-8; 16]$

■ Find outliers in [-***, -***, 7, 10, 11, 12, 14, 16.5, 17, ***] with IQR

$$MAD := median_i(X_i - median_j(X_j))$$

- all values that are k*MAD away from the median are considered to be outliers
- e.g., k=3

TASK

Find outliers in [3, 5, 6, 6, 8, 11, 21] with MAD median = 6

deviations = [3, 1, 0, 0, 2, 5, 15]

MAD = 2

interval = [6-3*2; 6+3*2] = [0; 12]

Univariate Anomaly Detection Median Absolute Deviation (MAD)

TASK

k = 3

• Find outliers in [-5, 3, 7, 11] with MAD

Find outliers in [1, 4, 9] with MAD

Find outliers in [-14, -12, 7, 10, 11, 12, 14, 16.5, 17, 38] with MAD

TASK

k = 3

Find outliers in [-5, 3, 7, 11] with MAD

median = 5, deviations = [10, 2, 2, 6]

MAD = 4, interval = [-7; 17]

Find outliers in [1, 4, 9] with MAD

median = 4, deviations = [3, 0, 5]

MAD = 3, interval = [-5; 13]

Find outliers in [-**, -**, 7, 10, 11, 12, 14, 16.5, 17, **] with MAD

median = 11.5, deviations = [25.5, 23.5, 4.5, 1.5, 0.5, 0.5, 2.5, 5, 5.5, 26.5]

MAD = 4.75, interval = [-2.75; 25.75]

Multivariate Anomaly Detection k-NN and Local Outlier Factor

TASK

- 1) Look up workings of k-NN and LOF* 10
- Identify the top two outliers using k-NN approach with k=3. Use either the maximum or average distance
- 3) Compute the LOF outlier score for the two outliers identified in step 2 (with k=3). Which one is greater?

Hint: For convenience, use Manhattan distance as distance metric!

You can use "Simplified LOF" where the density of a point is 1/k-distance.

Multivariate Anomaly Detection k-NN and Local Outlier Factor

k-NN	NN1	NN2	NN3	MAX	AVG
Α	2	3	3	3	2.7
В	2	3	3	3	2.7
С	2	3	3	3	2.7
D	2	3	3	3	2.7
E	3	3	3	3	3.0
F	2	3	4	4	3.0
G	2	3	4	4	3.0
Н	3	4	5	5	4.0
I	3	4	4	4	3.7
J	1	3	3	3	2.3
K	1	3	4	4	2.7
L	3	4	5	5	4.0

Multivariate Anomaly Detection k-NN and Local Outlier Factor

LOF

Point H:

density = 1/5avg. density of neighbors = avg. density(C,G,J) = avg(1/3, 1/4, 1/3) = 11/36LOF = (11/36) / (1/5) = 1.53

Point L:

density = 1/5avg. density of neighbors = avg. density(I,J,K) = avg(1/4, 1/3, 1/4) = 5/18LOF = (5/18) / (1/5) = 1.39

=> H has a higher LOF than L.

Exercise 5: Anomaly Detection

Isolation Forests

Task

Using Isolation Forests, you want to find outliers in the dataset on the right.

TASK

Compute the outlier score (i.e., the probability of the data point ending in a leaf of height 1) for every point in the dataset.

Isolation ForestsSolution

B, **C**, and **E** do not have any min/max values => they can not be isolated in a leaf with one node.

F)
$$P(Att2, V<1) = 0.25 * 0.1 = 0.025$$