מבוא לקריפטוגרפיה ואבטחת תוכנה תרגיל 2

רן שחם ⁻ 203781000

2017 באפריל 2017

שאלה 1

 $\operatorname{Mac}\left(\cdot\right)$ את האורקל את היריב של היריב את קב' את קב' את עבור כל ניסוי, נסמן ב

סעיף 1

2 סעיף

 \mathcal{A} . tב הביטים n הוא t' הוא t'=t $[0\dots n-1]$ נגדיר בהינתן קלט t'=t $[0\dots n-1]$ הוא הביטים $t=\mathrm{Mac}\left(0^{n/2}\|1^{n/2}\right)$ אחר אורקל, $t=\mathrm{Mac}\left(0^{n/2}\|1^{n/2}\right)$ הוא תיוג תקף עבור t'=t ולכן t=t $[0\dots n-1]$ וכן שרt'=t $[0\dots n-1]$ וכן שרt'=t $[0\dots n-1]$ וכן שרt'=t $[0\dots n-1]$ וכן שרt'=t $[0\dots n-1]$ והמערכת אינה בטוחה.

3 סעיף

$$t_3 = t_1 \oplus t_2 = (F_k(r) \oplus F_k(0^n)) \oplus (F_k(s) \oplus F_k(0^n)) = F_k(r) \oplus F_k(s)$$

ומכאן ש־ $1 = Vrfy(r, (s, t_3))$ בסיכוי 1 לכן המערכת אינה בטוחה.

שאלה 4

נגדיר: נגדיר אורך. מכפיל אורך. נגדיר: יהי אינה בטוחה. יהי

$$G(s_1||s_2) = H(s_1) ||H(s_2)|$$

. מכפיל ש־G וכן ברור ש־G מכפיל אורך. מהתרגיל הקודם, $s_1 \in \{|s_2|, |s_2|+1\}$ כאשר

יהי $\operatorname{Mac}_k\left(0^n\right)$. נבנה יריב \mathcal{A} הפועל כך: בהינתן קלט $t=\operatorname{Mac}_k\left(0^n\right)$, יחשב את $\operatorname{Mac}_k\left(\cdot\right)$ ל וגישת אורקל ל־ $t=\operatorname{Mac}_k\left(0^n\right)$. נבנה יריב t=t בנה יריב t=t בהיטים הראשונים של t=t בסוף t=t בסוף t=t ביטים t=t ביטים הראשונים של t=t בשים לב:

 $t = \operatorname{Mac}_{k}(0^{n}) = G(k||0^{n}) = H(k) ||H(0^{n})$ t' = t[0...2n - 1] = H(k) $t'||H(1^{n}) = H(k) ||H(1^{n}) = G(k||1^{n}) = \operatorname{Mac}_{k}(1^{n})$

$$t' \| H(1^n) = H(k) \| H(1^n) = G(k \| 1^n) = \operatorname{Mac}_k(1^n)$$

 $1^n \notin \mathcal{Q} = \{0^n\}$

ולכן ${\cal A}$ מצליח בסיכוי 1, כלומר המערכת אינה בטוחה.

שאלה 5

נגדיר את האלגוריתמים הבאים:

- i=1,2ל־ל $k_i\leftarrow\operatorname{Gen}_i\left(1^n\right)$ עבור $k=k_1\|k_2$ לכות ומחזיר Gen •
- $t_i = \operatorname{Mac}_{k_i}\left(m
 ight)$ כאשר $t = t_1 \| t_2$ ומחזיר ומפתח $k_1 \| k_2$ ומפתח m מקבל הודעה m
- $\operatorname{Vrfy}_1\left(k_1,(m,t_1)\right) = \operatorname{Vrfy}_2\left(k_2,(m,t_2)\right) = 1$ מקבל ($m,t_1\|t_2$) מקבל ($m,t_1\|t_2$) מקבל ($m,t_1\|t_2$) מקבל (m,t_1)

נראה שהמערכת Π המוגדרת על ידי האלג' הנ"ל היא בטוחה. נניח בשלילה שלא, כלומר שקיים יריב p ופולינום p כך ש:

$$\Pr\left[\operatorname{MacForge}_{\mathcal{A},\Pi}\left(n\right)=1\right]>\frac{1}{p\left(n\right)}$$

לאינסוף ערכי \mathcal{A}_1 מובטח שלפחות אחת מ $_1,\Pi_2$ היא בטוחה ונניח בה"כ ש־ Π_1 היא בטוחה. נגדיר יריב \mathcal{A}_1 שפועל כך: בהינתן קלט Π_1,Π_2 היא בטוחה ונניח בה"כ ש־ Π_1,Π_2 את Π_1,Π_2 עם Π_2,Π_2 עם Π_1,Π_2 שלא ידוע ל־ Π_2 (שלא ידוע ל־ Π_2), ידגום Π_1 ויריץ את Π_2 עם Π_2 עם Π_3 עם Π_4 והנישוב יעיל לפי הנחה). לבסוף Π_4 עבור הצפנה של Π_4 יפלוט Π_4 ו" Π_4 יפלוט Π_4 ו" Π_4 יפלוט Π_4 יפלוט Π_4 ו" Π_4 יפלוט Π_4 יפרון Π_4 יפלוט Π_4 יפרון Π_4 יפלוט Π_4 יפרון Π_4

 $\operatorname{MacForge}_{\mathcal{A},\Pi}(n)=1$ נשים לב ש־ \mathcal{A} מסמלץ בדיוק את הניסוי $\operatorname{MacForge}_{\mathcal{A},\Pi}(n)$ עבור \mathcal{A} , לכל \mathcal{A} . נניח ש־ \mathcal{A} מסמלץ בדיוק את הניסוי $\operatorname{MacForge}_{\mathcal{A},\Pi}(n)=1$ בפרט, לפי הגדרת $\operatorname{Vrfy}(k_1\|k_2,(m^*,t_1\|t_2))=1$. בפרט, לפי הגדרת $\operatorname{Vrfy}(k_1\|k_2,(m^*,t_1\|t_2))=1$

$$Vrfy_1(k_1, (m^*, t_1)) = 1$$

 1 :מכאן: מכאן .MacForge $_{\mathcal{A}_{1},\Pi_{1}}\left(n
ight)=1$

$$\Pr\left[\operatorname{MacForge}_{\mathcal{A}_{1},\Pi_{1}}\left(n\right)=1\right]\geq\Pr\left[\operatorname{MacForge}_{\mathcal{A},\Pi}\left(n\right)=1\right]>\frac{1}{p\left(n\right)}$$

לאינסוף n, בסתירה לכך ש־ Π_1 בטוחה.

שאלה 6

יניח בשלילה ש־ Π אינה בטוחה, כלומר שקיימים יריב A ופולינום p כך ש

$$\Pr\left[\operatorname{MacForge}_{\mathcal{A},\Pi}(n)=1\right] > \frac{1}{n(n)}$$

לאינסוף \mathbb{N} . מובטח שאחת מהמערכות Π_1,Π_2 היא בטוחה. נניח בה"כ ש־ Π_1 היא מערכת בטוחה, ונראה יריב Π_1,Π_2 ש"שובר" אותה מיכוי לא זניח.

עם \mathcal{A} את ריצת $k_2 \leftarrow \operatorname{Gen}_2(1^n)$ ידגום $k_1 \leftarrow \operatorname{Gen}_1(1^n)$ את ריצת $k_2 \leftarrow \operatorname{Gen}_2(1^n)$ יפעל כך: בהינתן קלט $k_2 \leftarrow \operatorname{Gen}_2(1^n)$ וגישת אורקל ל־ $\operatorname{Mac}_1(k_1, \cdot)$ עבור $k_1 \leftarrow \operatorname{Gen}_2(k_2, m)$ את ריצת $k_2 \leftarrow \operatorname{Mac}_1(k_1, m) \oplus \operatorname{Mac}_2(k_2, m)$ את יחאיר לו $k_2 \leftarrow \operatorname{Mac}_1(k_1, m) \oplus \operatorname{Mac}_2(k_2, m)$ יחשב את $k_1 \leftarrow \operatorname{Mac}_2(k_2, m^*)$ אורשב את $k_2 \leftarrow \operatorname{Mac}_2(k_2, m^*)$ יופלוט $k_2 \leftarrow \operatorname{Mac}_2(k_2, m^*)$

נניח ש־ $t^* = \operatorname{Mac}\left(k_1 \| k_2, m^*\right)$, כלומר ש־כתו, כלומר ש־ $t^* = \operatorname{Mac}\left(k_1 \| k_2, m^*\right)$

$$t^* = \text{Mac}_1(k_1, m^*) \oplus \text{Mac}_2(k_2, m^*)$$

ולכן מתקיים:

$$t' = t^* \oplus \operatorname{Mac}_2(k_2, m^*) = \operatorname{Mac}_1(k_1, m^*)$$

ולכן בכל $\mathrm{Vrfy}\left(k_1\|k_2,m^*,t'
ight)=1$ הוא אותו ערך. לכן כל הרצה שלו על הרצה שלו על כל הרצה אותו ערך. לכן כל הרצה שלו אלגוריתם דטרמיניסטי, לכן כל הרצה שלו על (k_2,m^*) תיתן את אותו ערך. לכן בכל בכל בכל בכל בכל הרצה שלו על בניסוי, כך גם \mathcal{A}_1 אם כך:

$$\Pr\left[\text{MacForge}_{\mathcal{A}_{1},\Pi_{1}}\left(n\right)=1\right] > \frac{1}{p\left(n\right)}$$

לאינסוף n, בסתירה לכך ש־ Π_1 בטוחה.

יים. $\mathrm{Vrfy}_2\left(k_2,(m^*,t_2)\right)=0$ שי בגלל שי המקיים. למשל אם א למשל המהקיפ $_{\mathcal{A}_1,\Pi_1}\left(n\right)=0$ המתקים. לכן אי שווין מתקיים. $\mathrm{MacForge}_{\mathcal{A}_1,\Pi_1}\left(n\right)=0$

שאלה 7

 $.H^{(i)}:\{0,1\}^* o\{0,1\}^{\ell_i(n)}$ יהיו עך פך $\ell_1,\ell_2:\mathbb{N} o\mathbb{N}$ כך ער פנה מערכת בטוחה באופן הבא:

- $s_2=\operatorname{Gen}^{(2)}\left(1^n
 ight)$ ו ה $s_1=\operatorname{Gen}^{(1)}\left(1^n
 ight)$ כאשר מקבלת $s=s_1\|s_2$ ומחזירה $s_1=s_2$
 - $H_{s_{1}}^{\left(1\right)}\left(x
 ight)\|H_{s_{2}}^{\left(2\right)}\left(x
 ight)$ פולטת $s=s_{1}\|s_{2}$ פלט קלט שבהינתן שבהינתן היא פונקצייה שבהינתן קלט פ

נניח בשלילה שהמערכת אינה בטוחה, כלומר שקיים יריב $\mathcal A$ ופולינום כך שמתקיים:

$$\Pr\left[\operatorname{HashColl}_{\mathcal{A},\Pi}\left(n\right)=1\right] > \frac{1}{p\left(n\right)}$$

 $s_1\|s_2$ עם \mathcal{A} את אם $s_2\leftarrow \mathrm{Gen}^{(2)}\left(1^n
ight)$ דוגם s_1 , דוגם קלט $s_2\leftarrow \mathrm{Gen}^{(2)}\left(1^n
ight)$ היא בטוחה. נבנה יריב \mathcal{A}_1 הפועל כך: בהינתן קלט $s_2\leftarrow \mathrm{Gen}^{(2)}\left(1^n
ight)$ ומריץ את \mathcal{A}_1 עם ב $s_2\leftarrow \mathrm{Gen}^{(2)}\left(1^n
ight)$ לבסוף $s_2\leftarrow \mathrm{Gen}^{(2)}\left(1^n
ight)$ ומריץ את $s_2\leftarrow \mathrm{Gen}^{(2)}\left(1^n
ight)$ לבסוף $s_2\leftarrow \mathrm{Gen}^{(2)}\left(1^n
ight)$ ומריץ את $s_2\leftarrow \mathrm{Gen}^{(2)}\left(1^n
ight)$

:עם כך $s=s_1\|s_2$ כאשר אם כא $H_s\left(x
ight)=H_s\left(x'
ight)$ ו־גניח ש־ $H_s\left(x
ight)=H_s\left(x'
ight)$ ו־גניח ש-

$$H_{s_1}(x) \| H_{s_2}(x) = H_{s_1}(x') \| H_{s_2}(x')$$

ובפרט, $H_{s_{1}}\left(x
ight)=H_{s_{1}}\left(x'
ight)$, לכן

$$\Pr\left[\mathrm{HashColl}_{\mathcal{A}_{1},\Pi_{1}}\left(n\right)=1\right]\geq\Pr\left[\mathrm{HashColl}_{\mathcal{A},\Pi}\left(n\right)=1\right]>\frac{1}{p\left(n\right)}$$

. לאינסוף n, בסתירה לכך ש־ Π_1 עמידה בפני התנגשויות