Performing Clustering Using Multiple Techniques

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Hierarchical clustering techniques

Agglomerative and BIRCH clustering

DBSCAN clustering

Mean-shift clustering

Affinity clustering

Spectral clustering

Mini-batch K-means clustering

Categories of Clustering Algorithms

Centroid-based Hierarchical

Distribution-based Density-based

Cluster represented by a central reference vector which may not be a part of the original data e.g. k-means clustering

Connectivity-based clustering based on the core idea that points are connected to points close by rather than further away

A cluster can be defined largely by the maximum distance needed to connect different parts of the cluster

Algorithms do not partition the dataset but instead construct a tree of points which are typically merged together

Centroid-based Hierarchical

Distribution-based Density-based

Agglomerative and BIRCH clustering

Built on statistical distribution models - objects of a cluster are the ones which belong most likely to the same distribution

Tend to be complex clustering models which might be prone to overfitting on data points

Distribution-based

Gaussian mixture models

Create clusters from areas which have a higher density of data points

Objects in sparse areas, which separate clusters, are considered noise and border points

DBSCAN and mean-shift clustering

Demo

Setting up helper functions

Implementing k-means clustering using helper functions

BIRCH, Agglomerative Clustering

Hierarchical clustering algorithms

Build a tree representation of the data

Which may then be merged together into different numbers of clusters

BIRCH, Agglomerative Clustering

Large datasets, large number of clusters

Birch detects and removes outliers

Also incrementally processes incoming data and updates clusters

Agglomerative clustering works even in absence of Euclidean distance

Size of Dataset

Number of Clusters

Mean-shift, Affinity Propagation

Small datasets, large number of clusters

Both work well with uneven cluster sizes and manifold shapes

Mean-shift uses pairwise distances between points

Affinity Propagation does not need number of clusters to be specified

K-means, DBSCAN

Large datasets, moderate number of clusters

K-means for even cluster sizes and flat surfaces

Mini-batch K-means tweaks algorithm to be much faster, almost as good

DBSCAN for uneven cluster sizes and manifolds

Spectral Clustering

Small datasets, small number of clusters

Simple to implement

Intuitive results for data exploration

Even cluster sizes

Fine for manifolds

Relies on distances between points

Size of Dataset

Many	Mean-shift Affinity Propagation		Birch Agglomerative
Moderate			K-means DBSCAN
Few		Spectral	
	Small	Medium	Large

Number of Clusters

Given t data points

Start with t clusters, each with 1 point

t clusters, each of 1 point

Merge the two clusters that are closest to each other

Merge the two clusters that are closest to each other

Rinseandrepeat

Rinseandrepeat

Rinseandrepeat

Rinseandrepeat

The number of clusters keeps reducing

The number of clusters keeps reducing

1 cluster, with all t points

Until just 1 cluster remains

1 cluster, with all t points

A tree diagram used to illustrate the arrangement of the clusters produced by hierarchical clustering

10 clusters, each of 1

Now, easy to vary number of clusters

Agglomerative - start with many 1-point clusters, end with 1 big cluster

Divisive - start with 1 big cluster, end with many 1-point clusters

Contrasting Clustering Algorithms

K-Means

Need distance measure as well as way to aggregate points in a cluster

Must represent data as vectors in N-dimensional hyperspace

Data representation can be difficult for complex data types

Variants (e.g. BFR) can efficiently deal with very large datasets on disk

Hierarchical

Only need distance measure; do not need way to combine points in cluster

No need to express data as vectors in N-dimensional hyperspace

Relatively simple to represent even complex data e.g. graphs, documents

Even with careful construction too computationally expensive for large datasets on disk

Demo

Implementing agglomerative clustering

Agglomerative Clustering: Bottom-up hierarchical clustering

Choosing Clusters to Merge

Each step of agglomerative clustering merges the two clusters nearest to each other

What is the metric for nearness?

How is nearness measured?

Several different approaches possible

Choosing Clusters to Merge

Each step of agglomerative clustering merges the two clusters nearest to each other

What is the metric for nearness?

How is nearness measured?

Several different approaches possible

Nearness Metric or Distance Measure

Euclidean L1

Cosine Precomputed

Choosing Clusters to Merge

Each step of agglomerative clustering merges the two clusters nearest to each other

What is the metric for nearness?

How is nearness measured?

Several different approaches possible

Linkage criterion determines the distance to be minimized when merging clusters

Minimum of the distances between all points in the two clusters

Maximum of the distances between all points in the two clusters

Average distance between points in clusters

Minimizes the variances of the data points in the two clusters

Demo

Implementing DBSCAN clustering

Choosing Clustering Algorithms

Size of Dataset

Large Datasets,
Moderate
Cluster Count

Consider K-means and DBSCAN

K-means for even cluster sizes and flat surfaces

DBSCAN for uneven cluster sizes and manifolds

DBSCAN

Density-based Spatial Clustering of Applications with Noise

Density-based clustering groups together closely packed points

Points with few near neighbors are marked as outliers

Not as good as BIRCH at dealing with noise and outliers

Two Parameters for DBSCAN

eps

Minimum distance, points closer than this are neighbors

min_samples

Minimum number of points to form a dense region

eps

Minimum distance, points closer than this are neighbors

If too small most of the data will not be clustered

Unclustered points will be considered to be outliers

If too large clustering will be too coarse

Most of the points will be in the same cluster

min_samples

Minimum number of points to form a dense region

Generally this should be greater than number of dimensions in the data

Large values better for noisy data points, will form significant clusters

Mean-shift Clustering

Mean Shift Clustering

Start with a set of points in space

Define a neighborhood for each point

Define a neighborhood for each point

For each point, calculate a function based on all points in the neighborhood

That function is called the kernel

Flat Kernel

Flat kernel: sum of all points in neighborhood

Each point gets the same weight

Gaussian (RBF) Kernel

Probability-weighted sum of points

What probability distribution?

Gaussian (RBF) Kernel

Gaussian probability distribution Defined by

- mean μ
- standard deviation σ

Gaussian Distribution

Gaussian (RBF) Kernel

Mean = Center point

Mean μ = center point

Standard deviation σ ~ bandwidth

(Bandwidth is a hyperparameter)

Kernel is applied to each point

Kernel is applied to each point

Kernel is applied to each point

Assume points are color-coded by magnitude of RBF

Now, all points start to "shift" towards the nearest peak

Now, all points start to "shift" towards the nearest peak

Now, all points start to "shift" towards the nearest peak

This is the "mean shift"

This is the "mean shift"

Algorithm converges when points stop moving

Role of Bandwidth

Standard deviation σ ~ bandwidth Bandwidth is the only hyperparameter Small bandwidth ~ tall skinny kernel Large bandwidth ~ flat kernel

Role of Bandwidth

Tall skinny kernel
Ignore points far from the mean

Flatter kernel
Considers points far from the mean

Similar, yet Different

K-Means Clustering

Need to specify number of clusters as hyperparameter

Can't handle some complex non-linear data

Less hyperparameter tuning needed

Mean Shift Clustering

No need to specify number of clusters upfront as hyperparameter

Uses density function to handle even complex non-linear data (e.g. pixels)

Hyperparameter tuning very important

Similar, yet Different

K-Means Clustering

Computationally less intensive

O(N) in number of data points

Struggles with outliers

Mean Shift Clustering

Computationally very intensive

O(N²) in number of data points

Copes better with outliers

Demo

Implementing mean-shift clustering

Demo

Implementing BIRCH clustering

Choosing Clustering Algorithms

Size of Dataset

Large Datasets, Many Clusters Consider BIRCH or Agglomerative clustering

BIRCH detects and removes outliers

Also incrementally processes incoming data and updates clusters

BIRCH Algorithm

Balanced Iterative Reducing and Clustering using Hierarchies

Hierarchical clustering algorithm

Very effective at handling noise and outliers

Very memory and time efficient

Entire dataset need not be loaded into memory

BIRCH Algorithm

Incrementally clusters incoming data points

Updates clusters as new data arrives

Online-learning algorithm

Demo

Implementing affinity propagation clustering

Choosing Clustering Algorithms

Size of Dataset

Number of Clusters

Small Datasets, Many Clusters Consider Mean-shift or Affinity Propagation clustering

Both work well with uneven cluster sizes and manifold shapes

Affinity Propagation does not need number of clusters to be specified

Affinity Propagation

Makes no assumptions about internal data of points

Accepts graph distances (nearest neighbor graphs)

Attempts to find exemplars

Exemplars are points in training data that are representative of clusters

Affinity Propagation

Data points are network nodes which send messages to one another

Messages express the willingness of points to be exemplars

Demo

Implementing mini-batch K-means clustering

Choosing Clustering Algorithms

Size of Dataset

Large Datasets,
Moderate
Cluster Count

Consider K-means and DBSCAN
K-means for even cluster sizes and
flat surfaces

Mini-batch K-means

Perform K-means on a randomly sampled subsets

Iteratively performed on batches called mini-batches

Far faster than full K-means

Performance usually only slightly worse

Demo

Implementing spectral clustering with a precomputed similarity matrix

Choosing Clustering Algorithms

Size of Dataset

Small Datasets, Few Clusters **Consider Spectral Clustering**

Simple to implement, intuitive results

Even cluster size

Fine for manifolds

Relies on distances between points

Spectral Clustering

Creates an affinity matrix of input data points

Input can be a precomputed similarity matrix

Eigenvalue (spectrum) decomposition applied

Dimensionality reduction is followed by pairwise similarity measurement

Spectral Clustering

DBSCAN is a special case of spectral clustering

K-means kernel clustering is a spectral clustering too

First applies kernel trick, then implements K-means

Summary

Hierarchical clustering techniques

Agglomerative and BIRCH clustering

DBSCAN clustering

Mean-shift clustering

Affinity clustering

Spectral clustering

Mini-batch K-means clustering