# Statistical modelling and validation using 500 drivers

Miao Cai\* 2019-02-01

### 1 Logistic regression

#### 1.1 Logistic regression predicted by cumulative driving time

$$Y \sim Bernoulli(p)$$
 
$$\label{eq:logit} \text{Logit} \frac{p}{1-p} = \beta_{1,d(i)} + \beta_{2,d(i)} * CT$$

• 498 drivers

• in total: 283,321 trips

• Train data: 10% in each driver = 28,335 trips

• test data: the rest  $90\% = 254{,}733$  trips

## # A tibble: 3 x 3 ## estimate std.error term ## <chr> <dbl> <dbl> ## 1 (Intercept) -4.550.117 ## 2 cumDrive -0.0171 0.0180 ## 3 travelTime 0.319 0.0191

## Density plots of predicted probabilities stratified by event



 $<sup>*</sup>Department \ of \ Epidemiology \ and \ Biostatistics, \ Saint \ Louis \ University. \ Email \ address \ miao.cai@slu.edu$ 





## [1] 0.003802281

## [1] 0.00004051207

## 1.2 Comparing drivers 1-100 and 100-199







#### 1.3 Adding a quadratic predictor of cumulative driving time square

```
##
    Family: bernoulli
     Links: mu = logit
##
## Formula: outlogit ~ cumDrive + travelTime + CTsquare + (1 + cumDrive + CTsquare | driverID)
      Data: t50square (Number of observations: 32807)
## Samples: 4 chains, each with iter = 5000; warmup = 2000; thin = 1;
##
            total post-warmup samples = 12000
##
## Group-Level Effects:
  ~driverID (Number of levels: 50)
##
                            Estimate Est.Error 1-95% CI u-95% CI Eff.Sample
                                                                         3147
## sd(Intercept)
                                0.90
                                          0.12
                                                   0.68
                                                             1.16
## sd(cumDrive)
                                0.02
                                          0.01
                                                   0.00
                                                             0.05
                                                                         1878
                                          0.00
## sd(CTsquare)
                                0.01
                                                    0.00
                                                             0.01
                                                                         1981
## cor(Intercept,cumDrive)
                                0.04
                                          0.45
                                                   -0.80
                                                             0.86
                                                                         9806
## cor(Intercept,CTsquare)
                               -0.02
                                          0.37
                                                   -0.73
                                                             0.74
                                                                         8324
## cor(cumDrive,CTsquare)
                                0.04
                                          0.49
                                                   -0.86
                                                             0.88
                                                                         2496
##
                            Rhat
## sd(Intercept)
                            1.00
## sd(cumDrive)
                            1.00
## sd(CTsquare)
                            1.00
## cor(Intercept, cumDrive) 1.00
## cor(Intercept,CTsquare) 1.00
## cor(cumDrive,CTsquare) 1.00
##
```

## Population-Level Effects:

| ## |                    | Estimate | Est.Error | 1-95% CI | u-95% CI | Eff.Sample | Rhat |
|----|--------------------|----------|-----------|----------|----------|------------|------|
| ## | Intercept          | -4.89    | 0.17      | -5.23    | -4.55    | 2472       | 1.00 |
| ## | cumDrive           | -0.02    | 0.01      | -0.05    | 0.00     | 9603       | 1.00 |
| ## | ${\tt travelTime}$ | 0.70     | 0.05      | 0.60     | 0.80     | 5905       | 1.00 |
| ## | CTsquare           | -0.05    | 0.01      | -0.06    | -0.03    | 4790       | 1.00 |

##

## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).



