September 13

We continue with examples of smooth

Graphs of smooth fris. Let

F: U — R^m & snooth.

The graph $(F) = \left\{ \left(x, F(x) \right) \middle| x \in U \right\}$

c Ux R

has the str. of a smooth mfld.

Pt: bx b: graph(F) -> U

\$ 5 d5 being the restriction of the projection. Its a homomorphism of invorce $\phi^{-1}(\pi) = (\pi, F(\pi)).$ => graph (F) is a top mfld. To get or smooth structur we simply declare (graph (+), +) is smooth. • Sphures. For i=1,..., n+1 let $U_{i}^{\pm} = \left\{ \left(x_{1}^{1}, \dots, x_{n+1}^{n+1} \right) \middle| x_{i}^{2} \right\}.$ Define $f: B^n \longrightarrow R$ by $\{u \mid |u| < 1\}$ $f(u) = \sqrt{1 - |u|^2}$

The $x^i = \pm f(x^i, ..., \hat{x}^i, ..., \hat{x}^{i'})$

Thus each $U_i^{\pm} \wedge S^{\gamma}$ is locally Fulidear. Thus are $\phi_{i}^{t}: u_{i}^{t} \wedge s^{n} \longrightarrow \mathbb{B}^{n}$ $x_{1}^{1} \cdots x_{n+1}^{1} \left(x_{n+1}^{1} x_{n+1}^{1} \right) \left(x_{n+1}^{1} x_{n+1}^{1} \right)$ Transition maps: for i < j $\phi^{t}_{i} \circ (\phi^{t}_{i})^{-1} (\alpha^{t}_{i}, \alpha^{t}_{i})$ For i = j

 $\phi_i^+ \circ (\phi_i^-)^- = \phi_i^- \circ (\phi_i^+)^- = 1_{\mathcal{B}^N}$

ns {(li, pi)} defins a sulvoth otlos.

Smooth structures are too rigid to dossify smooth manifold. We will see nation of equivalent shortly...)

Any vector space is a smooth meld.

Pf. choose a basis {e; } of v. Defin $\phi: \mathbb{R}^n \longrightarrow v$ (i) $\mapsto e_i$

Thu (V, ϕ^{-1}) is a doort. Sps $\{\tilde{e}_i, \tilde{f}_i\}$ so another basis) doort $(V, \tilde{\phi}^{-1})$.

The transition of all such charts defins a smooth structur.

2

- Sps H is smooth manifold out UCM is open, then U has an induced emosth structure Obtained by restricting the smooth atlas on M.
- · Prop: The space of invortible nxn matrices has the natural structure of a smooth manifold.

Pf. GLn C Hnxn = Ri [A | det A ≠ 0] [det-1 (Rx).

Since det: $M_{n \times n}$ —) IR is obt

it follows that $GL_n \subset M_{n \times n}$ is an open subject.

To construct more elaborate examples of
smooth manifolds we will vic the following
reconstruction, theorem.
It is similar in sprit to constructing a
topology from a basis
Thus: Let He a set and sps
$\frac{\{(u_{\star}e_{H}), \phi_{\star}: u_{\star} \rightarrow \mathbb{R}^{n}\}}{\{(u_{\star}e_{H}), \phi_{\star}: u_{\star} \rightarrow \mathbb{R}^{n}\}}$
is a wllexion satisfying:
1) \$\delta : U_{\pi} \righta + (U_{\pi}) \frac{1}{15} \frac{1}{15} \frac{1}{15} \frac{1}{15} \qu
$=2)$ $\phi_{\lambda}(u_{\lambda},u_{\beta}), \phi_{\beta}(u_{\lambda},u_{\beta}) \subset \mathbb{R}^{n}$
are open 4 a, b.
3) \(\delta \left(\mathread \right) \\ \delta \delta \right) \\ \delta \delta \delta \right) \\ \delta \d
5 amoth 4 a, B.

bosi	5 8%.	Obser
		$\beta \circ \phi_{\alpha})$ (V) $C \phi_{\alpha} (U_{\alpha} \cap U_{\beta}) \circ R$
	OP NA	since (3) says \$ \$ obj is smooth
īs	a p v	by (2). Thu
	φ (V) n \$\frac{1}{p}(v') = \$\frac{1}{2}(v n (\frac{1}{p} \gamma \frac{1}{q})^{-1}(v')
		By (1), (4), (5) we see that
<u>H</u>	76	s topl manifold.
1h	(3)	=> {(U, \$2)} is a smooth atta
10	get	shooth shucter just take the other who was.
W	ana l	attes containing this one.

Next we will use the rewnstruction leur to construct a non-trival example. We will not discuss the in class. · Let V be a veeter space, defir Gr (u) = \W C V lim outpare? colled the Grossmannian manifold of k-planes V. We will construct a smooth str. P, Q C V be complimentary V = P Q Q 1m a = n - k SCV

ond define
$T: Hom(P,Q) \longrightarrow U_Q$
T(L) = \v+Lv vEP
Leur: Tis an isomorphism.
Pf: Sps SeVis L-din and
$S \wedge Q = \phi$.
P W
P
By assumption Tp : S - 1 P is an iso.
Define
$\mathcal{L} = \pi_{\alpha} \circ (\pi_{P})_{S} : P \longrightarrow Q.$
The Linew wood 5.t.
S = T(L).

So, $\phi_{\alpha} = L^{-1}$: $U_{\alpha} \rightarrow Hom(P, \alpha)$
112
R (n-k)
15 or chart for the spen set Uq.
Item (1) of the reconstruction lemma auto-
matrally holds.
Now sps P', Q' is another par a f
complimentsy subspaces of V. Hove
Da (uanua) C Hom (P,a)
$\begin{cases} 2: 9 \rightarrow Q & \Gamma(L) \land Q' = \emptyset \end{cases}.$
Lemma: This subsid is open, have (2)
of reconstruction holds.
Lave this on exercise.

Next ue show transfron mys one smooth. ϕ_{0} ϕ_{0} : $\phi_{0}(u_{0}, u_{0}) \rightarrow \phi_{0}(u_{0}, u_{0})$. La I, P= S= T(L) be I, (v) = v + Lv $L' = \pi_{o}(\pi_{v})$ $= \pi_{\alpha'} \circ \tau_{\beta'} \circ (\pi_{\beta'})$ $= \left(\pi_{\Delta}, \circ T_{L}\right) \circ \left(\pi_{P}, \circ T_{L}\right)$ We will to see that L' depends smoothly on L. Tit suffices to see that in a besis, the matrix entries of L' depend smoothly on those of L.

Let

$$A = \pi_{p'}|_{p}$$
, $B = \pi_{p'}|_{p}$, $C = \pi_{p'}|_{Q}$, $D = \pi_{p'}|_{Q}$.

Thu

 $\pi_{p'} \circ I_{L} = A + C \circ L$
 $\pi_{Q'} \circ I_{L} = B + D \circ L$.

 $A + C \circ L$

By Grams formula, the matrix entries of $(A + C \circ L)^{-1}$ depend smoothly in these of L . This proves (3) of necessfulton.

I'll leave the rest of the wificultions of our provides (or cosult Lee).

I'll leave the rest of the verifications os on prorise (or cosult Lee).

Now we continue with the lecture.

Heat we made on to shooth give.

Sps H is a tope manifold, and let

f: H - IRM

be a function defined on all of M.

We say f is smooth if for all peM

there exists a chart (U, d) new peM

s.t.

$$f \circ \phi^{-1}$$
 : $\phi(u) \xrightarrow{\psi} u \xrightarrow{f} \mathbb{R}^m$

$$\mathbb{R}^n$$

is smooth.

Lenen: Spo J: H - Rm is smooth and (V,4) is any dust for H. Thu fort Pf: Let $p \in \mathcal{V}(v)$, and let (U, Φ) be a chart near $\mathcal{V}'(p)$ st.

 $f \circ \dot{\phi} : \phi(u) \rightarrow \mathbb{R}^m$

is smooth. The

 $(u \cdot v) \phi (u \cdot v)$ 子のからかっ十二 子の十一

h: 5'—1 R be the "height" Ex: Lx We show h is smooth. Using polar wordhales we have short near NeS' (304) defind υ = { ο < Θ < π } c S! $\phi = \Theta.$ $h \circ \phi^{-1} : (o, \pi) \longrightarrow \mathbb{R}$ t m sint

This is certainly smooth.

Now we generalise to the cose of ups f: H" - 1 n wher M, N are top? uflès. We say f is moth if y per the one $M: (\alpha, \phi)$ rea pe M m 3(p) e 2 1 · (v, 4) or/ f(u) < v 40 fo \$-1

is smooth.

Prop: If f: M — N is smooth the it is continuous.

Pf: Know $4 \circ f \circ \phi' : \phi(u) \rightarrow R^{n}$ is smooth hence ds. Now

is composition of cts fin's home it is cts. Since this is the far some up it outsing easy pt pe M, it follows that f is cts. (this is on easy exercise in topology.)

Smoothness is a "local property" in the following scurse.

Prop: F: H-IN is smoth (=) for all per J UFP open st. F \ u:U-IN is smooth.

Ex: - Constor fis me suwoth.

· If M I N I p are two smoth works the gof is smooth. (Use chain rule.)

f: H I N, x-" x N, is smooth ()

for; H I N, x-x N, T;

for; H I N, x-x N, I N;