Fix $n, k \in \mathbb{N}$. A multindex of length k means a k-tuple $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ with each α_i an integer between 1 and n. We denote the length of multindex α by $|\alpha|$.

For a vector $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$ and a multindex $\alpha = (\alpha_1, \dots, \alpha_k)$, we define \mathbf{v}_{α} to be the product

$$v_{\alpha_1}v_{\alpha_2}\cdots v_{\alpha_k}$$
.

Notice that, for $t \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^n$, and $|\alpha| = k$, $(t\mathbf{v})_{\alpha} = t^k \mathbf{v}_{\alpha}$.

For a function f defined on a subset of \mathbb{R}^n and a multindex $\alpha = (\alpha_1, \dots, \alpha_k)$, we define $D_{\alpha}f(\mathbf{a})$ to be partial derivative

$$\frac{\partial^k f}{\partial x_{\alpha_1} \partial x_{\alpha_2} \cdots \partial x_{\alpha_k}}(\mathbf{a}).$$

Let $S \subset \mathbb{R}^n$, $\mathbf{a} \in S$, and $f: S \to \mathbb{R}^m$. The kth order differential of f at \mathbf{a} is a map $d^{(k)}f_{\mathbf{a}}$ from $\mathbb{R}^n \to \mathbb{R}^m$ given by

$$d^{(k)} f_{\mathbf{a}}(\mathbf{v}) = \sum_{|\alpha|=k} D_{\alpha} f(\mathbf{a}) \mathbf{v}_{\alpha}.$$

From the equation after the defintion of \mathbf{v}_{α} , it follows that $d^{(k)}f_{\mathbf{a}}$ is a k-ary form, i.e., for $t \in \mathbb{R}$,

$$d^{(k)}f_{\mathbf{a}}(t\mathbf{v}) = t^k d^{(k)}f_{\mathbf{a}}(\mathbf{v}).$$

By the equality of mixed partials, $D_{\alpha}f(\mathbf{a})$ does not depend on the order of the entries in α . We can use this to obtain an expression for $d^{(k)}f_{\mathbf{a}}$ with significantly fewer terms.

Call a multindex $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ ordered if $\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_k$. Define (α) , the binomial coefficient associated to a multindex α , by first letting j_i be the number of entries of α which are equal to i, for $i = 1, \dots, n$ and defining

$$(\alpha) = \frac{k!}{j_1! j_2! \cdots j_n!}.$$

Thus, if all entries of α are the same, then $(\alpha) = 1$ while if all entries are distinct, then $(\alpha) = k!$. With these definitions, it is routine to show that

$$d^{(k)} f_{\mathbf{a}}(\mathbf{v}) = \sum_{\substack{|\alpha|=k\\ \alpha \text{ ordered}}} (\alpha) D_{\alpha} f(\mathbf{a}) v_{\alpha}.$$

Finally, we define $D_{\mathbf{v}}^{(k)}f(\mathbf{a})$ to the kth directional derivative of f in the direction v, that is,

$$D_{\mathbf{v}}^{(k)} f(\mathbf{a}) = \underbrace{D_{\mathbf{v}} D_{\mathbf{v}} \cdots D_{\mathbf{v}}}_{k \text{ times}} f(\mathbf{a}).$$

The 'kth differentials and kth directional derivatives' Theorem states that, for a function $f: S \to \mathbb{R}^m$ which is C^k on an open set $S \subset \mathbb{R}^n$, then

$$d^{(k)}f_{\mathbf{a}}(\mathbf{v}) = D_{\mathbf{v}}^{(k)}f(\mathbf{a}),$$

for all $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{a} \in S$.