Ingeniørhøjskolen Århus

DISCRETE MATHMATICS

Hand in 3

Written by:

Nicolai GLUD Studienummer: 11102 Johnny Kristensen Studienummer: 10734

Problems

1 Which of the following sets are well-ordered? (Why/why not?)

a. $S = x \in \mathbb{Q} : x \ge -10$

b. S = -2, -1, 0, 1, 2

c. $S = x \in \mathbb{Q} : -1 \le x \le 1$

d. S = p: pisprime = 2, 3, 5, 7, 9, 11, 13, ...

First we look at the definition:

A set is well-ordered if every nonempty subset has a least element.

Then we look at the sets:

- a. S is not well-ordered set because we can make a subset that doesn't contain a least element. e.g. x > -10.
- b. S is a well-ordered set because we can always produce a least element from the subsets of S.
- c. S is not a well-ordered set because we can make a subset that doesn't contain a least element. e.g. $0 < x \le 1$.
- d. S is a well-ordered set because we can always produce a least element from the subsets of S.
- 2 Use mathematical induction to prove that $1+5+9+...+(4n-3)=2n^2-n$ for every positive integer n.

We have $n \in \mathbb{Z}^+$.

We start by establishing the base case:

$$(4n-3) = 2n^2 - n \Rightarrow (4*1-3) = 2*1^2 - 1 \tag{1}$$

3 Prove that $2^n > n^3$ for every integer $n \ge 10$

Note: you will need to really work with inequalities.

- 4 Use the method for minimum counterexample to prove that $3|(2^{2n}-1)$ for every positive integer n.
- 5 Use the Strong Principle of Mathmatical Induction to prove the following:

Let $S = i \in \mathbb{Z}$: $i \ge 2$ and let P be a subset of S with the properties that $2, 3 \in P$ and if $n \in S$, then either $n \in P$ or n = ab, where $a, b \in S$. Then every element of S either belongs to P or it can be expressed as a product of elements of P.

Note: read Theorem 11.17, though the proof of 11.17 is not the proof of this question.

6 Use the Strong Principle of Mathematical Induction to prove that for each integer $n \ge 12$, there are non-negative integers a and b such that n = 3a + 7b.

Note: this uses generalized strong induction and minimum counterexamples.