Model used - pytorch convolution

A problem was the input data was a single channel data and could not work with already proven resnet models such as resnet34 or resnet50 since those models are designed for 3 channel input images.

Dataset:

- a. Downloaded MNIST dataset provided by fastai URLs
 - 1. https://s3.amazonaws.com/fast-ai-imageclas/mnist_png
 - 2. Tried to use the mnist kaggle dataset which is train.csv and test.csv files and image pixel values are stored in csv file itself.
 - 3. Got into many hurdles trying to use this csv kaggle data.
 - a. I could load this data in pytorch data structure using the panda library.
 - b. But could not find a function in fastai which could take this array directly to be an image data and thus create an image databunch out of it.
 - 4. The images are single channel images. Total of 60000 training and 10000 test data (used for validation).
 - 5. This data is well arranged into labelled directories each inside training and test directories. Thus enabled to use ImageList.from_folder.
 - a. Then split the data in 'training' and 'testing' using another function split by folder
 - b. Then got labels by lable_from_folder.
 - c. The label List thus obtained is used to create a databunch
 - d. Normalize data
- b. Categories/classes 0,1,2,3,4,5,6,7,8,9
- c. multi-class classification problem, i.e. logistic regression for multiple output classes.
- d. Cost $-\sum Yi \log(Pi) + (1 Yi)\log(1 Pi)$ loss_func = nn.CrossEntropyLoss()
- e. Adam optimizer with momentum and all used internally by fastai library (hopefully).

Reference - https://github.com/fastai/course-v3/blob/master/nbs/dl1/lesson7-resnet-mnist.ipynb

Training steps-

- a. This is custom created model.
 - This model initially had convolution layers nn.Conv2d() (bias=true) , nn.BatchNorm2d and nn.ReLU()
 - ii. Not freezing the layers for now as there is no pre-trained models
 - iii. Did 3 epochs with learning rate of 0.1 as observed with learn.lr find()
 - iv. Seeing the accuracy is just 98.53 %.
- b. Now used the fastai provide conv_layer() which has conv2d(bias !=true), ReLU and BatchNorm2d().
 - i. Again not freezing any layers.
 - ii. Did 10 epochs and max Ir of 0.1
 - iii. Got 99.11% accuracy.
- c. Improved the model further by inserting fastai res_block() which introduces additional layers of conv2d but no shape change.
 - i. Ran 12 epochs with max Ir = 0.1
 - ii. Accuracy = 99.35%
 - iii. Ran 12 epochs with max_lr = 0.05
 - iv. Accuracy = 99.54%
 - v. This is the best accuracy reported in the referred lesson7 of fasti ai course-v3

Observation

a. Most difficult task is to get the data in the right format for computation.

- i. Had great difficulty and unable to convert the csv obtained arrays of image pixels into data and thus databunch.
- ii. Validation loss and training loss are not decreasing linearly for a complex and high parameter model.
- iii. With more epochs, the learned seems to achieve minima.

Concepts explored -

- a. Pytorch nn module
 - i. nn.Sequential
 - ii. nn.BatchNorm2d
 - iii. nn.Conv2d
- b. Fastai convolution library
 - i. Conv layer convolution2d with bias=false
 - ii. Res block for n x n, 2-level convolution
- c. Convolution has below parameters in general
 - i. Kernel_size
 - ii. Stride
 - iii. Padding
 - iv. Grouping
 - 1. For group = 1, the convolution layer parameter for ni = 8 and nf = 16 = 8 * 16 * (3 x 3 (kernel size)) + 16 (bias==true)
 - v. Dilation
 - vi. Bias
- d. Deep residual learning where extra same input-output dim layer is added with a direct connection from input to output with a adder
 - i. Output = input + (conv2(conv1(input))
 - ii. This is called ResBlock

Library used - fastai.vision, pytorch- torch.nn

Conclusion:

a. Explored the Hello-World problem of deep learning on MNIST dataset with hand crafted sequential convolution models which resemble resent.

Future work:

- a. Use resnet34 or resnet50 by making the data 3 channel.
- b. How to use fastai to load arrays in imageList.

