Алгоритмы пеленгования с помощью кольцевой фазированной антенной решетки

Г. С. Грибов

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) ggribov@yandex.ru

Аннотация. В наши дни кольцевые фазированные антенные решетки (КФАР) широко используются в радиопеленгации. Основные преимущества КФАР заключаются в полном перекрытии всех азимутальных углов и возможности работы в широкой полосе частот, в частности, в коротковолновом и ультракоротковолновом диапазонах, представляющих наибольший интерес для радиосвязи. В данной статье будут рассмотрены основные методы пеленгования для КФАР: метод сканирования, метод Кейпона, метод МUSIC.

Ключевые слова: кольцевая фазированная антенная решетка; корреляционная матрица; пеленгование; метод сканирования; метод Кейпона; метод MUSIC

I. Теория

В наши дни кольцевые фазированные антенные решетки (КФАР) широко используются в радиопеленгации. Основные преимущества КФАР заключаются в полном перекрытии всех азимутальных углов и возможности работы в широкой полосе частот, в частности, в коротковолновом и ультракоротковолновом диапазонах, представляющих наибольший интерес для радиосвязи.

В данной статье будут рассмотрены основные методы пеленгования для К Φ AP. Для исследования была взята 9-ти элементная К Φ AP (рис. 1).

Рис. 1. 9-ти элементная кольцевая антенная система

С помощью КФАР, с использованием 9-ти канального приемника был получен матричный сигнал X, снятый параллельно с 9-ти элементов антенны. Модель принятого сигнала можно записать в виде:

$$X = AS + N$$
,

где $A = [a(\theta_1, \varphi_1), a(\theta_2, \varphi_2), ... a(\theta_d, \varphi_d)]$ — матрица сканирующих векторов антенной решетки (d — количество источников электромагнитных (ЭМ) волн, θ_i — угол направление прихода i-ой ЭМ волны), S — матрица принимаемых сигналов без шума, а N — матрица аддитивных шумов.

Для начала производится оценка корреляционной матрицы R_{xx} принятого сигнала X :

$$R_{xx} = XX^H = AR_{ss}A^H + R_{nn},$$

где R_{ss} – корреляционная матрица принимаемых сигналов, R_{nn} – корреляционная матрица аддитивных шумом.

С помощью оцененной корреляционной матрицы реализуются методы пеленгования. В работе рассмотрены: метод сканирования; метод Кейпона; и метод MUSIC.

Метод сканирования заключается в создании эталонных векторов $a(\theta, \varphi)$ для каждого азимутального и угломестного углов прихода сигнала, а затем производится расчет разрешающей функции (РФ) по формуле:

$$P(\theta,\varphi) = a(\theta,\varphi)R_{xx}a(\theta,\varphi)^{H},$$

где $a(\theta_i, \varphi_k) = \exp(-\frac{j2\pi r}{\lambda}\cos(\frac{360(M-1)}{K}-\theta_i)\cos(\varphi_k))$ — эталонные вектора, r — радиус КФАР, λ — длина волны, K — количество элементов КФАР, M = 1,2,3...K, θ_i — расчетный азимут, φ_k — угол места.

Метод Кейпона относится К алгоритмам сверхразрешения. На первом этапе, также как и в методе сканирования, создаются эталонные вектора $a(\theta, \varphi)$ для каждого азимутального и угломестного углов прихода, находится матрица, обратная оцененной корреляционной матрице принятого сигнапа Разрешающая функция рассчитывается по формуле, указанной ниже:

$$P(\theta, \varphi) = \frac{1}{a(\theta, \varphi) R_{\text{sy}}^{-1} a(\theta, \varphi)^{H}}$$

Еще одним методом, который относится к алгоритмам сверхразрешения, является MUSIC. Данный метод также требует создания эталонных векторов, но при этом, если в предыдущих методах работа ввелась с оцененной корреляционной матрицей, то в методе MUSIC ищут собственные вектора и собственные числа этой корреляционной матрицы, а затем выделяют сигнальные и шумовые подпространства:

$$R_{xx} = ASA^{H} + \sigma_{n}^{2}I = V_{s}\Lambda_{s}V_{s}^{H} + V_{n}\Lambda_{n}V_{n}^{H},$$

где Λ_s , Λ_n — диагональные матрицы, содержащие собственные числа. Собственные векторы, соответствующие наибольшим собственным числам, образуют сигнальное подпространство, а собственные векторы наименьших собственных чисел — шумовое подпространство, ортогональное сигнальному. V_s , V_n — собственные векторы сигнального и шумового подпространства. Разрешающая функция рассчитывается по формуле:

$$P(\theta, \varphi) = \frac{1}{a(\theta, \varphi) \sum_{k=1}^{N-d} V_n V_n^H a(\theta, \varphi)^H}$$

II. Результаты молелирования

Моделирование алгоритмов пеленгования для 9-ти элементной КФАР, диаметром 1.08 метров, было произведено в среде программирования МАТLAВ в диапазоне частот 300–900 МГц при отношении сигнал/шум 3 дБ. Истинный пеленг сигнала составлял 50°. Результаты моделирования представлены на рис. 2–10.

Рис. 2. Метод сканирования на частоте 300 МГц

Рис. 3. Метод Кейпона на частоте $300~\mathrm{MF}$ ц

Рис. 4. Метод MUSIC на частоте $300\,\mathrm{MF}_\mathrm{H}$

Рис. 5. Метод сканирования на частоте 600 МГц

Рис. 6. Метод Кейпона на частоте $600\,\mathrm{MFu}$

Рис. 7. Метод MUSIC на частоте $600\,\mathrm{M}\Gamma\mathrm{_{H}}$

Метод Кейпона

0.8

0.6

0.4

0.2

0 100 200 300

Азимут

Рис. 8. Метод сканирования н частоте 900 М Γ ц

Рис. 9. Метод Кейпона на частоте $900 \ \mathrm{MFu}$

Рис. 10. Метод MUSIC на частоте 900 МГн

В табл. 1 указаны ширина главного лепестка (ГЛ) и уровень боковых лепестков (УБЛ), получившихся РФ.

ТАБЛИЦА І Ширина ГЛ и УБЛ для приведнных алгоритмов

Частота, МГц	Метод	Ширина ГЛ	УБЛ
300	Сканирования	30°	23%
600		14°	23,5%
900		10°	24%
300	Кейпона	6°	10%
600		5°	11%
900		4°	12.7%
300	MUSIC	3°	<1%
600		2°	<1%
900		1°	<1%

Из таблицы 1, можно сделать вывод, что при увеличении частоты, ширина главного лепестка РФ уменьшается, при этом уровень и количество боковых лепестков возрастает. Наилучшие показатели наблюдаются у метода MUSIC.

Для того чтобы оценить влияние частоты на точность рассматриваемых алгоритмов, было проведено 100 испытаний в диапазоне частот от 300 до 900 МГц с шагом 100 МГц. Для большего влияния внутреннего шума в антеннах, отношение сигнал/шум было взято равным –6 дБ. В табл. 2 были внесены данные моделирования.

На рис. 11 представлен график зависимости СКО пеленга от рабочей частоты для рассмотренных методов пеленгования.

ТАБЛИЦА II СКО ПЕЛЕНГА ДЛЯ РАССМОТРЕННЫХ АЛГОРИТМОВ

Частота,	СКО пеленга			
МГц	Метод сканирования	Метод Кейпона	Memod MUSIC	
300	0.8957°	0.9010°	0.9007°	
400	0.5284°	0.5278°	0.5380°	
500	0.4662°	0.4698°	0.4775°	
600	0.3800°	0.3572°	0.3940°	
700	0.3089°	0.3055°	0.3164°	
800	0.2909°	0.2961°	0.2935°	
900	0.2348°	0.2430°	0.2371°	

Рис. 11. Зависимость СКО пеленга от рабочей частоты.

Как видно из рис. 11, при увеличении рабочей частоты, СКО пеленга уменьшается, что говорит о большей точности пеленгования. Это связано с тем, что главный лепесток разрешающей функции сужается.

На практике часто встречаются ситуации, когда помимо полезного сигнала и внутренних шумов антенны в плоской волне может присутствовать интерференционная помеха или помехи, поэтому разрешающая способность играет важную роль при выборе метода пеленгования.

В табл. 3 указаны минимальные разносы угла для каждого из приведенных методов пеленгования.

На рис. 12 представлен график зависимости минимального разноса между углами прихода полезного сигнала и интерференционной помехи от частоты.

ТАБЛИЦА III РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ АЛГОРИТМОВ

Частота, МГц	Минимальный разнос по углу			
	Сканирование	Кейпон	MUSIC	
300	42°	33°	19°	
400	30°	26°	17°	
500	25°	21°	12°	
600	21°	17°	9°	
700	18°	15°	8°	
800	16°	13°	7°	
900	14°	12°	7°	

Рис. 12. Зависимость минимального разноса между углами от частоты

Из рис. 12 следует, что с увеличением частоты разрешающая способность методов увеличивается. Метод MUSIC обеспечивает лучшую разрешающую способность.

III. Заключение

В данной работе были рассмотрены алгоритмы пеленгования с помощью кольцевой фазированной антенной решетке, было произведено сравнение данных методов и подведены некоторые выводы, представленные ниже:

- При росте частоты ширина главного лепестка сужается, но при этом количество и уровень боковых лепестков растет.
- При увеличении частоты, СКО пеленга уменьшается, улучшается точность пеленгования
- Также при увеличении частоты, улучшается разрешающая способность алгоритмов пеленгования
- Метод MUSIC обладает наименьшими шириной главного лепестка и уровнем боковых лепестков, и лучшей разрешающей способностью среди рассмотренных методов, что полезно при наличии интерференционных помех.

Список литературы

- [1] Шевченко М.Е. Алгоритмы совместного обнаружения и пеленгования на основе методов сигнальных подпространств, СПб.: СПбГЭТУ "ЛЭТИ", 2013, 159 с.
- [2] Ермолаев В.Т., Флаксман А.Г. Методы оценивания параметров источников сигналов и помех, принимаемых антенной решеткой: Учебное пособие. Нижний Новгород, 2007, 98c
- [3] Кукес И.С., Старик М.Е. Основы радиопеленгации. М.: Сов. радио, 1964. 640 с
- [4] Баланис К.А., Иоанидес П.И., Введение в смарт-антенны: М: Техносфера, 2012. 200 с.