CSc 466/566

Computer Security

17: Number Theory — Exponentiation and Totient

Version: 2019/10/29 14:22:05

Department of Computer Science University of Arizona

collberg@gmail.com Copyright © 2019 Christian Collberg

Outline

- Modular Exponentiation
- Repeated Squaring
- Euler's Totient Function
- Summary

Modular Exponentiation

 Modular exponentiation is an important operation in cryptography:

$$x^y \mod n = \overbrace{x \cdot x \cdot \cdots \cdot x}^y \mod n$$

• Compute: $2^2 \mod 3 =$

- Compute: $2^2 \mod 3 = 1$
- Compute: $2^4 \mod 5 =$

- Compute: $2^2 \mod 3 = 1$
- Compute: $2^4 \mod 5 = 1$
- Compute: $3^4 \mod 5 =$

- Compute: $2^2 \mod 3 = 1$
- Compute: $2^4 \mod 5 = 1$
- Compute: $3^4 \mod 5 = 1$

Modular Exponentiation Tables

- The next two slides have modular exponentiation tables for
 - Z_{10} , $x^y \mod 10$.
 - Z_{13} , $x^y \mod 13$.
- Elements in Z_n that have some power equal to 1 have been highlighted.

Z_{10} , $x^y \mod 10$

	у								
	1	2	3	4	5	6	7	8	9
1 ^y	1	1	1	1	1	1	1	1	1
2 ^y	2	4	8	6	2	4	8	6	2
3 ^y	3	9	7	1	3	9	7	1	3
4 ^y	4	6	4	6	4	6	4	6	4
5 ^y	5	5	5	5	5	5	5	5	5
6 ^y	6	6	6	6	6	6	6	6	6
7 ^y	7	9	3	1	7	9	3	1	7
8 ^y	8	4	2	6	8	4	2	6	8
9 ^y	9	1	9	1	9	1	9	1	9

Z_{13} , $x^y \mod 13$

		y										
	1	2	3	4	5	6	7	8	9	10	11	12
1 ^y	1	1	1	1	1	1	1	1	1	1	1	1
2 ^y	2	4	8	3	6	12	11	9	5	10	7	1
3 ^y	3	9	1	3	9	1	3	9	1	3	9	1
4 ^y	4	3	12	9	10	1	4	3	12	9	10	1
5 ^y	5	12	8	1	5	12	8	1	5	12	8	1
6 ^y	6	10	8	9	2	12	7	3	5	4	11	1
7 ^y	7	10	5	9	11	12	6	3	8	4	2	1
8 ^y	8	12	5	1	8	12	5	1	8	12	5	1
9 ^y	9	3	1	9	3	1	9	3	1	9	3	1
10 ^y	10	9	12	3	4	1	10	9	12	3	4	1
11 ^y	11	4	5	3	7	12	2	9	8	10	6	1
12 ^y	12	1	12	1	12	1	12	1	12	1	12	1

• Create the modular exponentiation table for Z_5 , $x^y \mod 5$. Highlight the ones.

	у							
	1	2	3	4				
1 ^y								
2 ^y								
3 ^y								
4 ^y								

Outline

- Modular Exponentiation
- Repeated Squaring
- Euler's Totient Function
- Summary

 Modular exponentiation is an important operation in cryptography.

$$g^n \mod p = \overbrace{g \cdot g \cdot \cdots \cdot g}^n \mod p$$

Modular exponentiation is an important operation in cryptography.

$$g^n \mod p = \overbrace{g \cdot g \cdot \cdots \cdot g}^n \mod p$$

• Simply iteratively multiplying the g:s together is too slow.

 Modular exponentiation is an important operation in cryptography.

$$g^n \mod p = \overbrace{g \cdot g \cdot \cdots \cdot g}^n \mod p$$

- Simply iteratively multiplying the g:s together is too slow.
- In practice, the numbers are very large!!!

 Modular exponentiation is an important operation in cryptography.

$$g^n \mod p = \overbrace{g \cdot g \cdot \cdots \cdot g}^n \mod p$$

- Simply iteratively multiplying the g:s together is too slow.
- In practice, the numbers are very large!!!
- Instead, we use Repeated Squaring.

◆ロト ◆個ト ◆注ト ◆注ト 注 りなべ

• Instead, we compute

g

• Instead, we compute

g

• Instead, we compute

$$g$$
 $g^2 = g \cdot g$

Instead, we compute

$$g^{2} = g \cdot g$$

$$g^{4} = g^{2} \cdot g^{2}$$

Instead, we compute

$$g$$

$$g^{2} = g \cdot g$$

$$g^{4} = g^{2} \cdot g^{2}$$

$$g^{8} = g^{4} \cdot g^{4}$$

• We can then use these powers to compute g^n :

$$g^{25} = g^{16+8+1} = g^{16} \cdot g^8 \cdot g^1$$

Repeated Squaring

Instead, we compute

$$g$$

$$g^{2} = g \cdot g$$

$$g^{4} = g^{2} \cdot g^{2}$$

$$g^{8} = g^{4} \cdot g^{4}$$

• We can then use these powers to compute g^n :

$$g^{25} = g^{16+8+1} = g^{16} \cdot g^8 \cdot g^1$$

Repeated Squaring

Instead, we compute

$$g$$

$$g^{2} = g \cdot g$$

$$g^{4} = g^{2} \cdot g^{2}$$

$$g^{8} = g^{4} \cdot g^{4}$$

• We can then use these powers to compute g^n :

$$g^{25} = g^{16+8+1} = g^{16} \cdot g^8 \cdot g^1$$

 $g^{46} = g^{32+8+4+2} = g^{32} \cdot g^8 \cdot g^4 \cdot g^2$

◆□ > ◆□ > ◆■ > ◆■ > ● ● 9

• Compute $g^n \mod p$:

```
function modexp(int g, intn, int p)
     int q \leftarrow 1
     int m \leftarrow n
     int square \leftarrow g
     while m > 1 do
          if odd(m) then
               g \leftarrow q \cdot \text{square mod } p
          square \leftarrow square \cdot square \mod p
          m \leftarrow |m/2|
```

Repeated Squaring

Assume that you have already computed

$$3^{1} = 3$$
 $3^{2} = 3 \cdot 3$
 $3^{4} = 3^{2} \cdot 3^{2}$
 $3^{8} = 3^{4} \cdot 3^{4}$

compute these exponentiations:

• Compute 3⁵:

Assume that you have already computed

$$3^{1} = 3$$
 $3^{2} = 3 \cdot 3$
 $3^{4} = 3^{2} \cdot 3^{2}$
 $3^{8} = 3^{4} \cdot 3^{4}$

compute these exponentiations:

- Compute 3^5 : $3^5 = 3^{4+0+1} = 3^4 \cdot 3^1$
- Compute 3⁷:

Assume that you have already computed

$$3^{1} = 3$$
 $3^{2} = 3 \cdot 3$
 $3^{4} = 3^{2} \cdot 3^{2}$
 $3^{8} = 3^{4} \cdot 3^{4}$

compute these exponentiations:

- Compute 3^5 : $3^5 = 3^{4+0+1} = 3^4 \cdot 3^1$
- Compute 3^7 : $3^7 = 3^{4+2+1} = 3^4 \cdot 3^2 \cdot 3^1$
- Compute 3^{12} :

Assume that you have already computed

$$3^{1} = 3$$
 $3^{2} = 3 \cdot 3$
 $3^{4} = 3^{2} \cdot 3^{2}$
 $3^{8} = 3^{4} \cdot 3^{4}$

compute these exponentiations:

- Compute 3^5 : $3^5 = 3^{4+0+1} = 3^4 \cdot 3^1$
- Compute 3^7 : $3^7 = 3^{4+2+1} = 3^4 \cdot 3^2 \cdot 3^1$
- Compute 3^{12} : $3^{12} = 3^{8+4+0+0} = 3^8 \cdot 3^4$
- Compute 3⁴⁶:

◆□▶◆圖▶◆臺▶◆臺▶ 臺 めQで

13/24

Assume that you have already computed

$$3^{1} = 3$$
 $3^{2} = 3 \cdot 3$
 $3^{4} = 3^{2} \cdot 3^{2}$
 $3^{8} = 3^{4} \cdot 3^{4}$

compute these exponentiations:

- Compute 3^5 : $3^5 = 3^{4+0+1} = 3^4 \cdot 3^1$
 - Compute 3^7 : $3^7 = 3^{4+2+1} = 3^4 \cdot 3^2 \cdot 3^1$
 - Compute 3^{12} : $3^{12} = 3^{8+4+0+0} = 3^8 \cdot 3^4$
 - Compute 3⁴⁶:

 $3^{46} \stackrel{\cdot}{=} 3^{32+0+8+4+2+0} = 3^{32} \cdot 3^8 \cdot 3^4 \cdot 3^2 \cdot 3^2$

Outline

- Modular Exponentiation
- Repeated Squaring
- Section States State
- Summary

$$Z_n^* = \{x \in Z_n \text{ such that } GCD(x, n) = 1\}$$

- Examples:

$$Z_n^* = \{x \in Z_n \text{ such that } GCD(x, n) = 1\}$$

- Examples:

$$Z_n^* = \{x \in Z_n \text{ such that } GCD(x, n) = 1\}$$

- Examples:

$$Z_n^* = \{x \in Z_n \text{ such that } GCD(x, n) = 1\}$$

- Examples:

 - $Z_{13}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- In general, $Z_n^* = \{1, 2, \dots, n-1\}$ if n is prime

Compute Z_n^* :

• $Z_3^* =$

Compute Z_n^* :

- $Z_3^* = \{1,2\}$
- $Z_4^* =$

- $Z_3^* = \{1,2\}$
- $Z_4^* = \{1,3\}$
- $Z_5^* =$

- $Z_3^* = \{1,2\}$
- $Z_4^* = \{1,3\}$
- $Z_5^* = \{1,2,3,4\}$
- $Z_6^* =$

- $Z_3^* = \{1,2\}$
- $Z_4^* = \{1,3\}$
- $Z_5^* = \{1,2,3,4\}$
- $Z_6^* = \{1,5\}$
- $Z_7^* =$

- $Z_3^* = \{1,2\}$
- $Z_4^* = \{1,3\}$
- $Z_5^* = \{1,2,3,4\}$
- $Z_6^* = \{1,5\}$
- $Z_7^* = \{1,2,3,4,5,6\}$
- $Z_8^* =$

- $Z_3^* = \{1,2\}$
- $Z_4^* = \{1,3\}$
- $Z_5^* = \{1,2,3,4\}$
- $Z_6^* = \{1,5\}$
- $Z_7^* = \{1,2,3,4,5,6\}$
- $Z_8^* = \{1,3,5,7\}$
- $Z_9^* =$

- $Z_3^* = \{1,2\}$
- $Z_4^* = \{1,3\}$
- $Z_5^* = \{1,2,3,4\}$
- $Z_6^* = \{1,5\}$
- $Z_7^* = \{1,2,3,4,5,6\}$
- $Z_8^* = \{1,3,5,7\}$
- $Z_9^* = \{1,2,4,5,7,8\}$

• $\phi(n)$ is the totient of n, the number of elements of Z_n^* :

$$\phi(n) = |Z_n^*|$$

• Examples:

Euler's Totient Function

• $\phi(n)$ is the totient of n, the number of elements of Z_n^* :

$$\phi(n) = |Z_n^*|$$

- Examples:
 - $Z_{10}^* = \{1, 3, 7, 9\} \Rightarrow \phi(10) = 4$
 - $2_{13}^{10} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \Rightarrow \phi(13) = 12$

• $\phi(n)$ is the totient of n, the number of elements of Z_n^* :

$$\phi(n) = |Z_n^*|$$

- Examples:
 - $Z_{10}^* = \{1, 3, 7, 9\} \Rightarrow \phi(10) = 4$
 - $2_{13}^{10} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \Rightarrow \phi(13) = 12$

• $\phi(n)$ is the totient of n, the number of elements of Z_n^* :

$$\phi(n) = |Z_n^*|$$

- Examples:
 - $Z_{10}^* = \{1, 3, 7, 9\} \Rightarrow \phi(10) = 4$
 - $2_{13}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \Rightarrow \phi(13) = 12$
- In general, if n is prime, $Z_n^* = \{1, 2, \dots, n-1\} \Rightarrow \phi(n) = n-1.$

•
$$|Z_3^*| =$$

- $|Z_3^*| = 2$
- $|Z_4^*| =$

- $|Z_3^*| = 2$
- $|Z_4^*| = 2$
- $|Z_5^*| =$

- $|Z_3^*| = 2$
- $|Z_4^*| = 2$
- $|Z_5^*| = 4$
- $|Z_6^*| =$

- $|Z_3^*| = 2$
- $|Z_4^*| = 2$
- $|Z_5^*| = 4$
- $|Z_6^*| = 2$
- $|Z_7^*| =$

- $|Z_3^*| = 2$
- $|Z_4^*| = 2$
- $|Z_5^*| = 4$
- $|Z_6^*| = 2$
- $|Z_7^*| = 5$
- $|Z_8^*| =$

- $|Z_3^*| = 2$
- $|Z_4^*| = 2$
- $|Z_5^*| = 4$
- $|Z_6^*| = 2$
- $|Z_7^*| = 5$
- $|Z_8^*| = 4$
- $|Z_0^*| =$

- $|Z_3^*| = 2$
- $|Z_4^*| = 2$
- $|Z_5^*| = 4$
- $|Z_6^*| = 2$
- $|Z_7^*| = 5$
- $|Z_8^*| = 4$
- $|Z_0^*| = 6$

Euler's Totient Function Values

n	$\phi(n)$	List of Divisors
1	1	1
2	1	1, 2
3	2	1, 3
4	2	1, 2, 4
5	4	1, 5
6	2	1, 2, 3, 6
7	6	1, 7
8	4	1, 2, 4, 8
9	6	1, 3, 9
10	4	1, 2, 5, 10
11	10	1, 11
12	4	1, 2, 3, 4, 6, 12
13	12	1, 13
14	6	1, 2, 7, 14
15	8	1, 3, 5, 15
16	8	1, 2, 4, 8, 16
17	16	1, 17
18	6	1, 2, 3, 6, 9, 18

n	$\phi(n)$	List of Divisors
19	18	1, 19
20	8	1, 2, 4, 5, 10, 20
21	12	1, 3, 7, 21
22	10	1, 2, 11, 22
23	22	1, 23
24	8	1, 2, 3, 4, 6, 8, 12, 24
25	20	1, 5, 25
26	12	1, 2, 13, 26
27	18	1, 3, 9, 27
28	12	1, 2, 4, 7, 14, 28
29	28	1, 29
30	8	1, 2, 3, 5, 6, 10, 15, 30
31	30	1, 31
32	16	1, 2, 4, 8, 16, 32
33	20	1, 3, 11, 33
34	16	1, 2, 17, 34
35	24	1, 5, 7, 35
36	12	1, 2, 3, 4, 6, 9, 12, 18, 36

• You can calculate $\phi(n)$ as

$$\phi(n) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_m})$$

where p_1, \ldots, p_m are the prime factors of n.

• Example:

Euler's Totient Function

•
$$\phi(37) =$$

- $\phi(37) = \phi(37) = 36$ since 37 is prime.
- $\phi(38) =$

- $\phi(37) = \phi(37) = 36$ since 37 is prime.
- $\phi(38) = 38 = 19 \times 2 \Rightarrow \phi(38) = 38(1 \frac{1}{19})(1 \frac{1}{2}) = 38 \cdot \frac{18}{19} \cdot \frac{1}{2} = 18$

Outline

- Modular Exponentiation
- Repeated Squaring
- Euler's Totient Function
- Summary

Readings and References

• Chapter 8.1.7, 8.2.1, 8.5.2 in *Introduction to Computer Security*, by Goodrich and Tamassia.

Acknowledgments

Additional material and exercises have also been collected from these sources:

- Igor Crk and Scott Baker, 620—Fall 2003—Basic Cryptography.
- William Stallings, Cryptography and Network Security.
- **Solution** Bruce Schneier, *Applied Cryptography*.
- Neal R. Wagner, The Laws of Cryptography with Java Code, http://amadousarr.free.fr/java/javacryptobook.pdf.
- Euler's Totient Function Values For n = 1 to 500, with Divisor Lists, http://primefan.tripod.com/Phi500.html
- O Diffie-Hellman calculator: