# Project Luther

Jonathan Toro

# Can we use analytics to identify movies that will be critically acclaimed by the audience?







## The Tools used

- Python
- Pandas
- Numpy
- Sklearn
- Matplotlib
- Beautiful Soup

### Where is the data coming from?

- Boxofficemojo.com
  - 7 variables with approximately 17000 movies
- IMDB database
  - 30 variables with approximately 5000 movies
  - Variables included: Color, director's name, actor's name, duration, social media statistics, gross, budget, genres, country, rating, IMDB score, year of release

#### Distribution of scores

- Top 250 movies are above the score of 8
- Memorable movies are between 7 and 8
- Mediocre movies are below seven





Movies below a rating of 6 won't gross more than 300 million dollars

#### **Exploratory Data Analysis**





#### **Using Linear Regression**

- Used least squares model
- $R^2 = 27.7\%$
- Feature Engineering didn't make a big difference

|                         | coef      | std err  | t      | P> t  | [95.0% Conf. Int.] |
|-------------------------|-----------|----------|--------|-------|--------------------|
| const                   | 5.5829    | 0.162    | 34.412 | 0.000 | 5.265 5.901        |
| director_facebook_likes | 4.064e-05 | 5.04e-06 | 8.060  | 0.000 | 3.08e-05 5.05e-05  |
| actor_1_facebook_likes  | 9.32e-06  | 1.76e-06 | 5.307  | 0.000 | 5.88e-06 1.28e-05  |
| actor_2_facebook_likes  | 9.933e-06 | 4.63e-06 | 2.147  | 0.032 | 8.61e-07 1.9e-05   |
| duration                | 0.0124    | 0.001    | 14.541 | 0.000 | 0.011 0.014        |
| Action                  | -0.1894   | 0.046    | -4.127 | 0.000 | -0.279 -0.099      |
| Adventure               | 0.1774    | 0.049    | 3.635  | 0.000 | 0.082 0.273        |
| Comedy                  | -0.1979   | 0.043    | -4.607 | 0.000 | -0.282 -0.114      |
| Horror                  | -0.3206   | 0.062    | -5.198 | 0.000 | -0.442 -0.200      |
| Drama                   | 0.3233    | 0.041    | 7.840  | 0.000 | 0.242 0.404        |
| Documentary             | 0.4732    | 0.156    | 3.042  | 0.002 | 0.168 0.778        |
| Thriller                | -0.1411   | 0.043    | -3.278 | 0.001 | -0.226 -0.057      |
| R                       | -0.5116   | 0.129    | -3.979 | 0.000 | -0.764 -0.259      |
| PG-13                   | -0.8963   | 0.129    | -6.924 | 0.000 | -1.150 -0.642      |
| PG                      | -0.7573   | 0.134    | -5.660 | 0.000 | -1.020 -0.495      |
| G                       | -0.4417   | 0.168    | -2.631 | 0.009 | -0.771 -0.113      |

# Experimenting with other methods

- RandomForest, CART, ridge models,
  Adaptive Boosting, lasso model,
  extratrees, gradient boosted regression
- Best  $R^2$  value = 37%
- The most important variables are the amount of director facebook likes, duration, budget, and movie facebook likes

## Ensemble Model: example for regression



### Conclusion

- Take social media influence into account
- Genre, MPAA ratings, and actors do not affect IMDB ratings
- It is difficult to accurately predict ratings