

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»	(ИУ)
-----------	------------------------------------	-----	---

КАФЕДРА «Системы обработки информации и управления» (ИУ5)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

«Обработка набора данных для системы Service Desk»

Студент группы ИУ5-33М	Д.Н. Богомолов
Руководитель	Ю.Е. Гапанюк

Введение

Службы поддержки предоставляют пользователям четкую возможность сообщать о проблемах, запросах и запросах и добиться их признания, классификации, владения и принятия мер. Как эта управляется и поставляется эта практика, может варьироваться от физической команды людей на сменной работе до распределенное групп людей, подключенных виртуально, или автоматизированных технологий и ботов. Функция и значение остаются неизменными независимо от модели.

С увеличением автоматизации и постепенным устранением технического долга основное внимание службы поддержки призвано оказывать поддержку «людям и бизнесу», а не просто устранять технические неисправности. Службы обслуживания все чаще используются для решения различных вопросов организованно и скоординировано, а не просто для исправления поломок. Служба поддержки стала жизненно важной частью любой службы.

Для решения задачи автоматизации системы требуются данные для обучения и проверки модели машинного обучения. Так как наборы данных, в основном, состоят из информации, принадлежащей разным типам данных, а модели работают только с числовым типом, то появляется необходимость предобработки набора данных.

1. Методология ITIL3

Методология ITIL версии 3 включает в себя следующие этапы оценки жизненного цикла услуги: стратегия, проектирование, преобразование, эксплуатация, непрерывное улучшение. Стратегия является ключевым элементом жизненного цикла ITIL. Она задает планку, которой должна соответствовать IT-услуга, поставляемая организацией. Стратегия услуг, как и другие этапы жизненного цикла ITIL, состоит из различных процессов, комплексов мероприятий, предназначенных для выполнения конкретной задачи. Каждый процесс имеет входные, выходные данные и результаты для формирования изменений.

Схема жизненного цикла услуги ITIL 3 представлена на рис.1.

Рисунок 1. – Схема жизненного цикла услуги ITIL 3

Стратегическая фаза состоит из трех главных процессов: управление финансами, управление спросом и управление портфелем услуг (SPM).

Фаза проектирования услуг учитывает четыре фактора:

- люди (навыки и компетенции, участвующие в предоставлении услуг);
- продукты (технологии и управление);
- процессы (роли и виды деятельности);
- партнеров (производители, разработчики).

На выходе этот этап предполагает формирование подробной спецификации проекта Service Design Package (SDP).

Фаза преобразования услуг включает управление изменениями, управление сервисными активами и конфигурациями (SACM) и управление знаниями по услугам.

Основное внимание в эксплуатационной фазе уделяется проведению и управлению текущей ІТ-деятельностью. Главными процессами в этой фазе являются управление событиями, управление инцидентами, управление проблемами, управление доступом и запросами на обслуживание.

Последний этап жизненного цикла услуги — непрерывное улучшение услуг.

2. ITIL 4. Система ценностей услуг, практики.

Достоинство ITIL 4 по сравнению с другими версиями — новая станет более обобщенной и всесторонней. В новой версии библиотеки к имеющимся процессам добавили фактические ресурсы, необходимые для достижения целей (например, поставщиков или конкретные должности). Новое расширенное понятие стало носить название «практика».

В основе ITIL 4 лежат основные принципы по управлению (guiding principles), которые впервые излагались в ITIL Practitioner. Сейчас они включены в ITIL 4 Foundation.

ITIL 4 состоит из двух ключевых компонентов:

• Модель четырех измерений.

Четырёхмерная модель ITIL 4 определяет четыре аспекта, которые следует учитывать для обеспечения целостного подхода к управлению услугами:

• Система ценностей услуг (SVS).

Система ценностей услуг (SVS) представляет, как все компоненты организации взаимодействуют, чтобы способствовать созданию ценности.

1. ITIL 4 практики управления

ITIL 4 включает 34 практики управления как «наборы организационных ресурсов, предназначенных для выполнения работы или достижения цели». Для каждой практики ITIL

4 предоставляет различные типы руководства, такие как ключевые термины и концепции, факторы успеха, ключевые действия, информационные объекты и т. д. Схема, на которой отражены практики ITIL 4 представлены на рис.2.

Рисунок 2. – Практики ITIL 4

В то время как ITIL 3 определил набор процессов, организованных вокруг жизненного цикла сервиса, ITIL 4 описывает принципы, концепции и практики. Это включает в себя ключевые виды деятельности и основные входные и выходные данные для каждой практики, но не подробные спецификации процесса. Этот отход от предыдущего процессно-ориентированного подхода является фундаментальным изменением в ITIL 4, которое позволяет поставщикам услуг применять более гибкие операционные модели.

Таким образом, ITIL 4 не предписывает процессы. Но организациям по-прежнему необходимо определить свои процессы в качестве ключевого элемента своих операционных моделей

3. Cuctema Service desk

Службы поддержки предоставляют пользователям четкую возможность сообщать о проблемах, запросах и запросах и добиться их признания, классификации, владения и принятия мер. Как эта управляется и поставляется эта практика, может варьироваться от физической команды людей на сменной работе до распределенное групп людей,

подключенных виртуально, или автоматизированных технологий и ботов. Функция и значение остаются неизменными независимо от модели.

С увеличением автоматизации и постепенным устранением технического долга основное внимание службы поддержки призвано оказывать поддержку «людям и бизнесу», а не просто устранять технические неисправности. Службы обслуживания все чаще используются для решения различных вопросов организованно и скоординировано, а не просто для исправления поломок. Служба поддержки стала жизненно важной частью любой службы.

Ключевой момент, заключается в том, что независимо от того, насколько эффективна служба поддержки и её люди, всегда будут проблемы, которые требуют эскалации и поддержки со стороны других команд. Команды поддержки и разработки должны работать в тесном сотрудничестве со службой поддержки для представления и реализации «совместного» подхода к пользователям и клиентам.

Служба поддержки может не быть высокотехнологичной, хотя некоторые из них таковыми являются. Однако, даже если служба поддержки довольно проста, она все равно играет жизненно важную роль в доставке сервисов, и должна активно поддерживаться. Также важно понимать, что служба поддержки оказывает большое влияние на пользовательский опыт и воспринимается пользователями как поставщик услуг.

Службы поддержки не добавляют ценности просто посредством транзакционных действий, например, регистрации инцидентов, но также за счёт понимания бизнес-контекста этого действия и принятия соответствующих мер.

Благодаря повышенной автоматизации, искусственному интеллекту, автоматизации процессов (RPA) и чат-ботам, службы поддержки переходят на предоставление большего количества самостоятельных журналов и решений инцидентов напрямую через онлайн-порталы и мобильные приложения. Снижается влияние на службы поддержки телефонной связи. Производится меньше низкоуровневой работы и появляется больше возможностей сосредоточиться на отличном уровне предоставления сервисов.

Службы обслуживания предоставляют множество каналов доступа. Они включают:

- телефонные звонки, которые могут включать специализированные технологии, такие как интерактивный голосовой ответ (IVR), конференц-связь, распознавание голоса и др.;
- сервисные порталы и мобильные приложения, поддерживаемые сервисом и запросом каталоги и базы знаний;
- чат, через чат и чат-ботов;

- электронная почта для регистрации и обновления, а также для последующих опросов и подтверждений. На основе технологий искусственного интеллекта и машинного обучения оказывается помощь в обработке неструктурированных электронных писем;
- службы поддержки становятся все более распространенными в некоторых секторах, например, образование, где есть высокие пики активности, требующие физического присутствия;
- текстовые сообщения и сообщения в социальных сетях, которые полезны для уведомлений в случае крупных инцидентов и для связи с конкретными группами заинтересованных сторон, но также может использоваться, чтобы позволить пользователям запрашивать поддержку;
- общественные и корпоративные социальные сети и дискуссионные форумы для связи с поставщиками услуг и для одноранговой поддержки.

Некоторые службы поддержки имеют ограниченное окно поддержки, где доступна услуга покрытия (например, с понедельника по пятницу с 08.00 до 20.00).

В некоторых случаях служба поддержки представляет собой осязаемую команду, работающую в одном месте. Централизованная служба поддержки требует поддерживающих технологий, таких как:

- системы интеллектуальной телефонии, включающие интеграцию компьютерной телефонии, IVR и автоматическое распределение звонков;
- системы документооборота для маршрутизации и эскалации;
- системы управления персоналом и планирования ресурсов;
- база знаний;
- запись разговоров и контроль качества;
- инструменты удаленного доступа;
- панель инструментов и инструменты мониторинга;
- системы управления конфигурацией.

В других случаях виртуальная служба поддержки позволяет агентам работать из нескольких мест, которые географически рассредоточены. Виртуальная служба поддержки требует более сложных поддерживающих технологий, включающих более сложную маршрутизацию и эскалацию; эти решения часто основаны на облаке.

Рисунок 3. — Тепловая карта вклада службы поддержки в деятельность цепочки создания стоимости

Персоналу службы поддержки требуется обучение и компетентность в целом ряде областей таких, как технические и деловые области. В частности, им нужно продемонстрировать отличные навыки обслуживания клиентов, такие как сочувствие, анализ инцидентов и расстановка приоритетов, эффективное общение и эмоциональный интеллект. Ключевой навык — уметь полностью понимать и диагностировать конкретный инцидент с точки зрения приоритета бизнеса, предпринять соответствующие действия для решения этой проблемы, используя имеющиеся навыки, знания, людей и процессы.

На рис. 3 показан вклад службы поддержки в цепочку создания стоимости услуг. при этом практика участвует во всех мероприятиях цепочки добавленной стоимости, кроме плана:

- Улучшение. Деятельность службы поддержки постоянно отслеживается и оценивается. Поддерживается постоянное совершенствование, согласование и создание ценности. Отзывы от пользователей собираются службой поддержки для поддержки постоянного улучшения.
- **Взаимодействие.** Служба поддержки является основным каналом тактических и оперативных действий. взаимодействие с пользователями.
- Дизайн и передача. Служба поддержки предоставляет канал для общения с пользователями о новых и измененных услугах. Сотрудники службы поддержки участвуют в планировании выпуска, тестирования и ранней поддержки.

- **Получение** / **создание.** Сотрудники службы поддержки могут участвовать в приобретении компонентов для выполнения запросов на обслуживание и устранения инцидентов.
- Доставка и поддержка. Служба поддержки является координационным центром для управления инцидентами и запросов на обслуживание.

4. Описание и загрузка набора данных

В качестве набора данных (датасета) был выбран журнал событий процесса управления инцидентами, извлеченный из данных, собранных из системы аудита экземпляра платформы ServiceNowTM, используемой ИТ-компанией.

Инцидент в системе Service desk – событие, способное вызвать прерывание работы или снижение качества поставляемого сервиса.

Журнал событий обогащается данными, загруженными из реляционной базы данных, лежащей в основе соответствующей информационной системы технической поддержки Service desk.

Датасет состоит из 36 колонок:

- 1. **number**: идентификатор инцидента;
- 2. **incident state** восемь уровней управления процессом управления инцидентами переходят от открытия до закрытия дела;
- 3. **active**: логический атрибут, который показывает, активна ли запись или закрыта/отменена;
- 4. **reassignment_count**: количество раз, когда в результате инцидента группа или аналитики поддержки менялись;
- 5. **reopen_count**: количество раз разрешение инцидента было отклонено вызывающим абонентом.;
- 6. **sys_mod_count**: количество обновлений инцидентов до этого момента;
- 7. **made_sla**: логический атрибут, который показывает, является ли данный инцидент превысило целевой показатель OAC;
- 8. **caller id**: идентификатор затронутого пользователя;
- 9. **opened_by**: идентификатор пользователя, сообщившего об инциденте;
- 10. **opened_at**: дата и время открытия пользователя инцидента;
- 11. sys_created_by: идентификатор пользователя, зарегистрировавшего инцидент;
- 12. **sys_created_at**: дата и время создания системы инцидентов;

- 13. **sys_updated_by**: идентификатор пользователя, который обновил инцидент и сгенерировал текущую запись журнала;
- 14. **sys_updated_at**: дата и время обновления системы инцидентов;
- 15. **contact_type**: категориальный атрибут, который показывает, какими средствами было сообщено об инциденте;
- 16. **location**: идентификатор местоположения затронутого места;
- 17. category: описание первого уровня затронутой службы;
- 18. **subcategory**: описание затронутой услуги второго уровня (относящееся к описанию первого уровня, т. е. к категории);
- 19. **u_symptom**: описание восприятия пользователем доступности сервиса;
- 20. **cmdb_ci**: (элемент подтверждения) идентификатор, используемый для сообщения о затронутом элементе (не обязательно);
- 21. **impact**: описание воздействия, вызванного инцидентом (значения: 1-Высокий; 2средний; 3-низкий);
- 22. **urgency**: описание срочности, сообщенной Пользователем для разрешения инцидента (значения: 1-Высокий; 2-средний; 3-низкий);
- 23. priority: рассчитывается системой на основе "воздействия" и "срочности".;
- 24. assignment_group: идентификатор группы поддержки, ответственной за инцидент;
- 25. assigned_to: идентификатор пользователя, ответственного за инцидент;
- 26. **knowledge**: логический атрибут, показывающий, использовался ли документ базы знаний для разрешения инцидента.;
- 27. **u_priority_confirmation**: логический атрибут, показывающий, было ли поле приоритета дважды проверено;
- 28. **notify**: категориальный атрибут, показывающий, были ли сгенерированы уведомления для инцидента;
- 29. **problem_id**: идентификатор проблемы, связанной с инцидентом;
- 30. **rfc**: (запрос на изменение) идентификатор запроса на изменение связано с инцидентом;
- 31. **vendor**: идентификатор поставщика, ответственного за инцидент;
- 32. **caused_by**: идентификатор RFC, ответственного за инцидент;
- 33. **close code**: идентификатор разрешения инцидента;
- 34. **resolved_by**: идентификатор пользователя, разрешившего инцидент;
- 35. **resolved_at**: дата и время разрешения инцидента пользователем (зависимая переменная);
- 36. closed_at: дата и время закрытия инцидента пользователем (зависимая переменная).

Загрузка набора данных:

```
nRowsRead = 1000
df1 = pd.read_csv('/content/drive/MyDrive/NIR_Gap/incident_event_log.csv', d
elimiter=',', nrows = nRowsRead)
df1.dataframeName = 'incident_event_log.csv'
nRow, nCol = df1.shape
print(f'There are {nRow} rows and {nCol} columns')
```

Набор содержит 1000 строк и 36 столбцов. Ниже приведены типы данных для каждой из колонок.

df1.dtypes

```
object
number
incident_state
                                object
                                  bool
active
reassignment_count
reopen_count
sys_mod_count
made_sla
                                 int64
                                 int64
int64
made_sla bool
caller_id object
opened_by object
opened_at object
sys_created_by object
sys_created_at object
sys_updated_by object
sys_updated_at object
contact type object
contact_type
                               object
location category
                                object
                                object
subcategory
                                object
u\_symptom
                                object
cmdb ci
                                 object
impact
                                 object
urgency
                                 object
                                object
priority
                              object
assignment_group
assigned_to knowledge
                               object
                                 bool
bool
u_priority_confirmation
                                object
notify
problem id
                                 object
rfc
                                 object
vendor
                                 object
caused by
                                object
closed code
                                object
resolved by
                               object
resolved at
                                 object
closed at
                                 object
dtype: object
```

5. Обработка пропусков, смена типов данных.

Все столбцы не имеют пустых значений, но в некоторых из них пустые значения представлены символом «?». Такого рода пропуски данных присутствуют в следующих столбцах:

```
sys_created_by
u_symptom
problem_id
assigned_to
```

Было принято решение заменить символ «?» на значение NaN при помощи метода replace.

```
df2['sys_created_by']= df2['sys_created_by'].replace("?",np.nan)
df2['u_symptom']= df2['u_symptom'].replace("?",np.nan)
df2['problem_id']= df2['problem_id'].replace("?",np.nan)
df2['assigned_to']= df2['assigned_to'].replace("?",np.nan)
df2['problem_id']= df2['problem_id'].replace("?",np.nan)
df2['assigned_to']= df2['assigned_to'].replace("?",np.nan)
```

После замены символа на пустое значение распределение значений в столбцах выглядит следующим образом (рис. 4-5):

```
y = df2["problem_id"].value_counts()

data = [go.Bar(x=y.index, y=y.values)]
layout = go.Layout(
    title='problem_id',
    autosize=False,
    width=400,
    height=400,
)
fig = go.Figure(data=data, layout=layout)
iplot(fig, filename='basic-bar15')
```

problem_id

Рисунок 4. — Распределение значений столбца problem_id assigned_to

Рисунок 5. – Распределение значений столбца assigned_to

C помощью метода dropna() строки, содержащие нулевые значения были удалены. df2= df2.dropna()

Некоторые столбцы датасета содержат строковые значения, пример которых представлен на рис. 6.

category	subcategory	u_symptom	•
Category	Subcategory	Symptom	
55	170	72	
Category	Subcategory	Symptom	
55	170	72	
Category	Subcategory	Symptom	
55	170	72	
Category	Subcategory	Symptom	
55	170	72	
Category	Subcategory	Symptom	
40	215	471	

Рисунок 6. – Избыточное представление данных в виде строк

С помощью методов apply() и split() были удалены подстроки, не содержащие полезной информации и тип данных изменён на числовой.

```
df2['caller id'] = df2['caller id'].apply(lambda x: int(x.split()[-1]))
df2['opened by'] = df2['opened by'].apply(lambda x: int(x.split()[-1]))
df2['sys created by'] = df2['sys created by'].apply(lambda x: int(x.split()[
-11))
df2['sys updated by'] = df2['sys updated by'].apply(lambda x: int(x.split()[
df2['location'] = df2['location'].apply(lambda x: int(x.split()[-1]))
df2['category'] = df2['category'].apply(lambda x: int(x.split()[-1]))
df2['subcategory'] = df2['subcategory'].apply(lambda x: int(x.split()[-1]))
df2['u symptom'] = df2['u_symptom'].apply(lambda x: int(x.split()[-1]))
df2['assignment group'] = df2['assignment group'].apply(lambda x: int(x.spli
t()[-1])
df2['closed code'] = df2['closed code'].apply(lambda x: int(x.split()[-1]))
df2['resolved by'] = df2['resolved by'].apply(lambda x: int(x.split()[-1]))
df2['impact'] = df2['impact'].apply(lambda x: int(x.split()[0]))
df2['urgency'] = df2['urgency'].apply(lambda x: int(x.split()[0]))
df2['priority'] = df2['priority'].apply(lambda x: int(x.split()[0]))
```

Вид ячеек после обработки представлен на рис. 7.

cacegory	Subcacegoi y	u_symptom
55	170	72
55	170	72
55	170	72
55	170	72

category subcategory u symptom

Рисунок 7. – Результат обработки

40

6. Уменьшение количества столбцов

215

Значения столбца уникального идентификатора number являются служебными, поэтому этот столбец можно удалить.

В столбце contact_type содержится только одно значение "Phone". Это можно увидеть при помощи команды value_counts().

```
df2.contact_type.value_counts()
Phone 1000
    Name: contact type, dtype: int64
```

Схожая ситуация в столбцах notify, cmdb_ci, vendor, caused_by в которых содержится только по одному значению.

```
df2.drop(['number', 'contact_type', 'notify', 'cmdb_ci', 'vendor', 'caused_b
y'], axis='columns', inplace=True)
```

В столбце rfc 635 ячеек являются пустыми и лишь 8 имеют реальные значения. Так как данных для заполнения пустых значений недостаточно, то было принято решение удалить этот столбец из рассмотрения.

```
df2.rfc.value_counts()
? 635
CHG0000127 8
    Name: rfc, dtype: int64
df2.drop(['rfc'], axis='columns', inplace=True)
```

7. Работа с категориальными признаками

В датасете в столбце incident_state присутствуют категориальными признаками. Это можно увидеть на рис.8.

```
y = df2["incident_state"].value_counts()

data = [go.Bar(x=y.index, y=y.values)]
layout = go.Layout(
    title='incident_state',
    autosize=False,
    width=400,
    height=400,
)
fig = go.Figure(data=data, layout=layout)
iplot(fig, filename='basic-bar15')
    incident state
```


Рисунок 8. – Результат кодирования категориального признака

Для каждой категории был создан отдельный столбец со значениями 0 или 1 при помощи метода get_dummies(). Затем исходный столбец был удалён. Результат можно наблюдать на рис. 9.

```
df2 = pd.concat([df2,pd.get_dummies(df2['incident_state'], prefix='incident'
)],axis=1)
df2.drop(['incident_state'],axis=1, inplace=True)
```

inc	ident_Active	incident_Awaiting Problem	incident_Awaiting User Info	incident_Closed	incident_New	incident_Resolved
	0	0	0	0	1	0
	0	0	0	0	0	1
	0	0	0	0	0	1
	0	0	0	1	0	0
	0	0	0	0	1	0

Рисунок 9. – Результат кодирования категориального признака

Результатом проделанной работы является обработанный набор данных, готовый к применению методов машинного обучения.

8. Корреляционный анализ

После предобработки данных остались столбцы типа object, в которых содержатся значения в формате дата/время.

Для корреляционного анализа была создана копия набора данных без этих столбцов и построена матрица корреляций.

	1 - 1 - 6 4
active	int64
reassignment_count	int64
reopen_count	int64
sys_mod_count	int64
made_sla	int64
caller_id	int64
opened_by	int64
opened_at	object
sys created by	int64
sys created at	object
sys_updated_by	int64
sys updated at	object
location	int64
category	int64
subcategory	int64
u symptom	int64
impact	int64
urgency	int64
priority	int64
assignment group	int64
knowledge	int64
u_priority_confirmation	int64
closed code	int64
resolved by	int64
resolved at	object
closed at	object
incident Active	uint8
incident Awaiting Problem	uint8
incident_Awaiting User Info	uint8
incident_Closed	uint8
incident New	uint8
incident Resolved	uint8
	alico

dtype: object

```
df3.drop(['opened_at', 'sys_created_at', 'sys_updated_at', 'resolved_at', 'c
losed at'], axis = 1, inplace = True)
     df3.dtypes
active
                            int64
                           int64
reassignment_carreopen_count
reassignment_count
                           int64
                           int64
made sla
caller id
                           int64
opened by
                           int64
                           int64
sys_created_by
sys_updated_by
                           int64
                           int64
location
                           int64
category
                           int64
subcategory
u symptom
                           int64
                           int64
impact
urgency
                           int64
                           int64
priority
assignment_group knowledge
                           int64
u_priority_confirmation int64 closed_code int64
incident_Active
resolved by
                           int64
incident_Closed
                            uint8
incident_New
                            uint8
incident Resolved
                            uint8
```

Следовательно, набор данных содержит только числовые поля и готов корреляционному анализу.

Матрица корреляций представлена на рис. 10.

Рисунок 10. – Результат кодирования категориального признака

Заключение

Service Desk — это мощный инструмент, позволяющий быстрее решать поступающие запросы в соответствии с утвержденным SLA (соглашением об уровнях сервиса), наладить удобное взаимодействие внутри команды техподдержки, а также совместную работу ИТ и разработчиков. Гибкость системы, короткие сроки внедрения и простота встраивания в существующие процессы компании позволят быстро наладить эффективную работу с сервисными запросами. На том или ином этапе жизненного цикла заявки могут пригодиться методы машинного обучения. В основном, это ускорит обработку некорректных заявок и также ускорит процесс классификации заявки и её распределения по отделам технической поддержки. Набор данных, обработанный в рамках исследовательской работы может быть использован для обучения моделей машинного обучения для систем Sercive Desk.

Список использованных источников

- 1) Python для анализа данных: обработка данных с помощью Pandas, NumPy и Python. Уэс МакКинни. 2-е издание от 24.10.2017 г.
- 2) Наука о данных. Базовый курс, Джон Келлехер, Брендан Тирни, 2020 г. 220с.
- 3) Репозиторий курса "Методы машинного обучения", магистратура, 2 семестр. URL: https://github.com/ugapanyuk/ml_course_2020/wiki/COURSE_MMO (Дата обращения: 20.11.2020)
- 4) AXELOS: ITIL® Foundation, ITIL 4 Edition. The Stationery Office; Norwich, UK, February 2019.