PMATH333: Introduction to Real Analysis

Instructor Benjamin Passer LATEXer Iris Jiang

Fall 2019

Contents

1	Rea	l Num	ber																2
	1.1	Lectur	e 2, Sept. 6th	ı				 											. 2
		1.1.1	Dedekind Cı	ıt				 											. 2
	1.2	Lectur	e 3, Sept. 9th	ı				 							 				. 4
		1.2.1	Real Number	r				 											. 4
		1.2.2	Density of Q	$\lim_{n \to \infty} \mathbb{R}$. 4
		1.2.3	Bound					 											. 5
	1.3	Lectur	e 4, Sept. 11t	h				 											. 6
		1.3.1	The complet	eness	of	\mathbb{R}		 											. 6

Chapter 1

Real Number

1.1 Lecture 2, Sept. 6th

1.1.1 Dedekind Cut

Definition 1.1 (Dedekind cut). A **Dedekind cut** is a subset $A \subseteq \mathbb{Q}$, such that

- 1. $\emptyset \neq A \neq \mathbb{Q}$
- 2. If $x \in A$ and $q \in \mathbb{Q}$ with $q \leq x$, then $q \in A$
- 3. A has no largest element. That is, if $x \in A$, then there exists $y \in A$ with x < y

Example 1.1. If $q \in \mathbb{Q}$ is given, the $A_q := \{x \in \mathbb{Q} : x < q\}$ is a Dedekind cut

Proof. Let $q \in \mathbb{Q}$ and consider $A_q \subseteq \mathbb{Q}$

- 1. Since q-1 is rational and q-1 < q, we have $q-1 \in A_q$ and $\varnothing \neq A_q$. Similarly, q+1 is rational and $q+1 \not < q$, So $q+1 \notin A_q$, $A_q \neq \mathbb{Q}$. Hence $\varnothing \neq A_q \neq \mathbb{Q}$
- 2. Suppose $x \in A_q$ and $r \in \mathbb{Q}$ with $r \leq x$. By definition, x < q, so r < q and $r \in A_q$.
- 3. Suppose $x \in A_q$, so by definition, x < q. Then $a < \frac{x+q}{2} < q$ and $\frac{x+}{2}$ is rational, so $\frac{x+q}{2} \in A_q$. That is, x is not a largest element of A_q

Definition 1.2 (Rational Cut). A Dedekind cut is called a **rational cut** if $X = A_q$ for some $q \in \mathbb{Q}$. Otherwise we sat the Dedekind cut X is an **irrational cut**

Rational Operations

For $q, r \in \mathbb{Q}$

$$q < r \iff r - q = \frac{a}{b} \text{ for some } a, b \in \mathbb{Z}^+$$

 $q \le r \iff q < r \text{ or } q = r$

For all $q, r, s \in \mathbb{Q}$

• Either q < r or $r \le q$. (any two of rational numbers are comparable)

- $q \le r$ and $r \le q \iff r = q$
- If $q \le r$ and $r \le s$, then $q \le s$

For all $q, r, s, t \in \mathbb{Q}$

- $q \le r$ and $s \le t \implies q + s \le r + t$
- If $0 \le q$ and $0 \le r$, then $\le qr$
- If $q \le r$, then $-r \le -q$

Lemma. Let q be a rational number with 0 < q and $q^2 < 2$. Then there exists some $r \in \mathbb{Q}$ with q < r and $r^2 < 2$

Proof. If $q \le 1$, choose r = 1.3Consider $r = q + \frac{1}{n}, n \in \mathbb{Z}^+$

$$(q + \frac{1}{n})^2 = q^2 + 2q\frac{1}{n} + \frac{1}{n^2}, \quad \leftarrow \text{ want it } < 2$$

$$< q^2 + 4\frac{1}{n} + \frac{1}{n}, \quad \text{ since } q < q^2, \text{ qi} 2$$

$$< q^2 + \frac{5}{n}$$

By definition, since $q^2 < 2$, we can write $2 - q^2 = \frac{a}{b}$ for $a, b \in \mathbb{Z}^+$. Choose n = 5b, then $r_n^2 < q^2 + \frac{1}{b} \le q^2 + \frac{a}{b} = 2$

We have found a rational number r_n with q < r and $r_n^2 < 2$

Goal

We want to show that the collection of Dedekind cuts may be reasonably thought of as a set of numbers. We must be able to define an ordering and algebraic operations on cuts.

We also need the rational cuts A_q to behave just like the rational numbers under these new operations.

The ordering we will use on Dedekind cuts is \subseteq

Theorem 1.1. If X and Y are Dedekind cuts, then either $X \subseteq Y$ or $Y \subseteq X$

Proof Skeleton. Suppose $X \nsubseteq Y$. Then there exists some $x \in X$ such that $x \notin Y$. Let $y \in Y$

- I. If $x \leq y$, then because Y is a Dedekind cut, $x \in Y$, contradiction
- II. y < x. Since $x \in X$ and X is a Dedekind cut, we conclude $y \in X$. We have proved $y \in Y \implies y \in X$, hence $Y \subseteq X$

1.2 Lecture 3, Sept. 9th

1.2.1 Real Number

Definition 1.3 (Real Number). A real number is a Dedekind cut.

We denote the set of real numbers by \mathbb{R} , and we use the following notation:

- If $q \in \mathbb{Q}$, we use "q" to mean A_q
- $\alpha \leq \beta$ means $\alpha \subseteq \beta$

The collection of rational cuts gives us a copy of \mathbb{Q} in \mathbb{R} , we write $\mathbb{Q} \subseteq \mathbb{R}$

Theorem 1.2 ((\mathbb{R}, \leq) is a **totally ordered** space). If $\alpha, \beta, \gamma \in \mathbb{R}$, then

- 1. Either $\alpha \leq \beta$ or $\beta \leq \alpha$
- 2. If $\alpha \leq \beta$ and $\beta \leq \alpha$, then $\alpha = \beta$
- 3. If $\alpha \leq \beta$ and $\beta \leq \gamma$, then $\alpha \leq \gamma$

Proof. Translation into Dedekind Cuts, If W, X, Y are Dedekind cuts, then

- 1. Either $W \subseteq X$ or $X \subseteq W$
- 2. If $W \subseteq X$ and $X \subseteq W$, then X = W
- 3. If $W \subseteq X$ and $X \subseteq Y$, then $W \subseteq Y$

We also set

$$\alpha < \beta \iff \alpha \le \beta \text{ and } \alpha \ne \beta$$

In the language of Dedekind cuts, this is \subseteq ("proper subset").

Goal

The goal of \mathbb{R} is to fill the gaps in \mathbb{Q}

- 1. \mathbb{R} has no gap
- 2. Real number is not too large

We will prove that between any two real numbers, there are rational numbers

1.2.2 Density of \mathbb{Q} in \mathbb{R}

Theorem 1.3 (Density of \mathbb{Q} in \mathbb{R}). If $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$, then there exists $q \in \mathbb{Q}$ with $\alpha < q < \beta$

Proof. We need to show that if X and Y are Dedekind cuts with $X \subsetneq Y$, then there exists a rational cut A_q with $X \subsetneq A_q \subsetneq Y$. By assumption, $X \subsetneq Y$ implies that there is some $r \in Y \subseteq \mathbb{Q}$ with $r \notin X$. Since $r \in Y$ and Dedekind cuts have no largest element, there exists some $q \in Y$ with r < q. We will prove $X \subsetneq A_q \subsetneq Y$

Let x be an arbitrary element of X. Suppose $q \leq x$, so r < x. Since X is a Dedekind cut, r < x implies $r \in X$, a contradiction. We conclude $q \nleq x$ and hence x < q. By definition, we have $x \in A_q$. Since $x \in X \implies x \in A_q$. We have $X \subsetneq A_q$. Further, $r \notin X$, but r < q, so $r \in A_q$, we therefore have $X \subsetneq A_q$. Suppose $s \in A_q$, so by definition $s \in \mathbb{Q}$ with s < q. Since $q \in Y$, and Y is a Dedekind cut, this implies $s \in Y$. Since $s \in A_q \implies s \in Y$, we have $A_q \in Y$. Since $s \in Y$ but $s \in X$, we have $s \in X$, we have $s \in X$. Since $s \in X$ but $s \in X$, we have $s \in X$.

We just showed: for any open interval $(\alpha, \beta) = \{x \in \mathbb{R} : \alpha < x < \beta\}$ with $\alpha < \beta$ has $\mathbb{Q} \cap (\alpha, \beta) \neq \emptyset$. (This will later tell us that every real number is a limit of rational numbers)

1.2.3 Bound

Definition 1.4 (Bound). If $S \subseteq \mathbb{R}$, we say $\beta \in \mathbb{R}$ is an **upper bound** of S if every $x \in S$ has $x \leq \beta$. If an upper bound for S exists, we say S is **bounded above**

Definition 1.5 (Supremum). Let $S \subseteq \mathbb{R}$ and $\beta \in \mathbb{R}$. Then β is a supremum, or least upper bound of S if

- 1. β is an upper bound of S
- 2. If γ is an upper bound for \mathcal{S} , then $\beta \leq \gamma$

Theorem 1.4. Let $S \subseteq \mathbb{R}$. If a supremum of S exists, it is unique.

Proof. If β_1 and β_2 are supremum of \mathcal{S} , then $\beta_1 \leq \beta_2$ because is a supremum and β_2 is an upper bound. Similarly, $\beta_2 \leq \beta_1$. Hence $\beta_1 = \beta_2$

1.3 Lecture 4, Sept. 11th

1.3.1 The completeness of \mathbb{R}

Theorem 1.5. Let $S \subseteq \mathbb{R}$. If S is <u>nonempty</u> and <u>bounded above</u> (\exists at least one upper bound), then the supremum of S exists.

Proof. We seek a number $\beta \in \mathbb{R}$ which is an upper bound of s and has $\beta \leq \gamma$ for every upper bound γ .

Translation in to Dedekind cuts: If $\mathcal S$ is a collection of Dedekind cuts which has

- 1) There exists at least one Dedekind cut $X \in \mathcal{S}$
- 2) There is some Dedekind cut \mathcal{D} with $X \in \mathcal{S}$