SYMMETRIC CYCLES

Andrey O. Matveev

The arrangement (1.1) realizes a rank 2 oriented matroid \mathcal{N} in the following manner (see, e.g., Example 7.1.7 in Ref. [1]): For a vector $\mathbf{v} \in \mathbb{R}^2$, the ordered tuple of signs $X := (\text{sign}(\langle \mathbf{a}_e, \mathbf{v} \rangle) : e \in$ E_t) $\in \{1, 0, -1\}^t := \{'+', '0', '-'\}^t$ is called a *covector* of \mathcal{N} .

The covectors $T \in \mathcal{T} \subset \{1, -1\}^t$ of the oriented matroid \mathcal{N} are called its *topes* (maximal covectors), and the set of topes \mathcal{T} is in a one-to-one correspondence with the set of regions of the arrangement (1.1). The *cocircuits* $C^* \in \{1, 0, -1\}^t$ of the oriented matroid $\mathcal{N} := (E_t, \mathcal{T})$, on the ground set E_t , and with its set of topes \mathcal{T} , are the covectors that correspond to the rays emanating from the origin; one sign component of each cocircuit is 0.

- Given a vector $\mathbf{z} := (z_1, \dots, z_t) \in \mathbb{R}^t$, we denote its *support* $\{e \in$ E_t : $z_e \neq 0$ } by supp(\mathbf{z}).
- Now consider the rank t oriented matroid $\mathcal{H} := (E_t, \{1, -1\}^t)$ on the *ground set* E_t , and with its set of *topes* (maximal covectors) $\mathcal{T} :=$ $\{1, -1\}^t$, realizable (see, e.g., Example 2.1.4 in Ref. [1]) as the arrangement of coordinate hyperplanes

$$\{\{\mathbf{x}:=(\mathbf{x}_1,\ldots,\mathbf{x}_t)\in\mathbb{R}^t\colon |\operatorname{supp}(\mathbf{x})|\\ =t-1,\mathbf{x}_e=0\}\cup\{\mathbf{0}\}: e\in E_t\}$$
 (1.2)

The hyperplanes of the arrangement are *oriented*: a vector $\mathbf{v} :=$ $(v_1, \ldots, v_t) \in \mathbb{R}^t - \{\mathbf{0}\}$ lies on the *positive side* of a hyperplane $H_e := \{ \mathbf{x} \in \mathbb{R}^t : |\sup(\mathbf{x})| = t - 1, \mathbf{x}_e = 0 \} \cup \{\mathbf{0}\}, \text{ if } v_e > 0. \text{ Similarly, }$ a region T of the arrangement (1.2), that is, a connected component of the complement $\mathbb{R}^t - \bigcup_{e \in E_t} \mathbf{H}_e$, lies on the positive side of the hyperplane H_e if $v_e > 0$, for an arbitrary vector $\mathbf{v} \in \mathbf{T}$. For a vector $\mathbf{v} \in \mathbb{R}^t$, the sign tuple $X := (\text{sign}(v_e): e \in E_t) \in \{1, 0, -1\}^t :=$ $\{'+', '0', '-'\}^t$ is a *covector* of the oriented matroid \mathcal{H} . The *cocircuits* $C^* \in \{1, 0, -1\}^t$ of \mathcal{H} are the covectors that have *one* sign component different from 0.

- If \mathcal{M} is one of the above oriented matroids $\mathcal{N} := (E_t, \mathcal{T})$ and $\mathcal{H} :=$ $(E_t, \mathcal{T} := \{1, -1\}^t)$, then a sign tuple $S := (S(1), ..., S(t)) \in$ $\{1, 0, -1\}^t$, with exactly one zero component S(i) = 0, is called a *subtope* of \mathcal{M} if there are two topes, $T' := (T'(1), \ldots, T'(t)) \in \mathcal{T}$, and $T'' \in \mathcal{T}$, such that the *Hamming distance* between the tuples T'and T'' is 1, that is, $|\{e \in E_t : T'(e) \neq T''(e)\}| = 1$, and $T'(i) \neq T''(i)$.