二次式の平方完成

乗法公式 $(x+k)^2=x^2+2kx+k^2$ を利用した次の形を、二次式の平 方完成という

$$(x+k)^2 - k^2 = x^2 - 2kx$$

斉次二次式と行列

2 つの文字 x, y の斉次二次式は、一般に次のように表される

$$ax^2 + 2bxy + cy^2$$
 $(a, b, c \neq 0)$

この式は、次のように行列の積として表すことができる

$$ax^{2} + 2bxy + cy^{2} = ax^{2} + byx + bxy + cy^{2}$$

$$= (ax + by)x + (bx + cy)y$$

$$= (ax + by bx + cy) {x \choose y}$$

$$= (x y) {a b \choose b c} {x \choose y}$$

すなわち、

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
 , $\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$

とおくと、

$$ax^2 + 2bxy + cy^2 = {}^t\mathbf{x}A\mathbf{x}$$

ここで、A は実対称行列になっている

ref: 図で整理!例題で納得!線形空間入門 p254~256、ref: 長岡亮介線形代数入門講義 p297

このような斉次二次式を一般化したものが、n 個の文字 x_1, \ldots, x_n についての二次形式である

二次形式

n 個の変数 x_1, \ldots, x_n の斉次二次式を二次形式という

各項の係数を a_{ij} とすると、一般の二次形式(n 変数斉次二次式)は次のように書くことができる

$$Q(oldsymbol{x}) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{i < j} a_{ij} x_i x_j$$

ここで、各変数は可変、すなわち $x_ix_j=x_jx_i$ であるので、 $i\neq j$ の場合は、i< j を満たす項だけの和として書き、それを 2 倍している

あえて展開して書くと、次のようになる

$$Q(\boldsymbol{x}) = \sum_{i=1}^{n} a_{ii} x_{ii} x_{ii} + \sum_{i < j} a_{ij} x_{i} x_{j} + \sum_{i < j} a_{ji} x_{j} x_{i}$$

i < j においては $x_i x_j = x_j x_i$ であり、その係数についても $a_{ij} = a_{ji}$ が成り立つので、行列 $A = (a_{ij})$ は対称行列である

$$a_{ij} = egin{cases} a_{ii} & (i=j) \ a_{ij} = a_{ji} & (i < j) \end{cases}$$

このように a_{ij} を定めた上で、 \sum を 1 つにまとめることができる

$$Q(\boldsymbol{x}) = \sum_{i,j=1}^n a_{ij} x_i x_j$$

 $rac{1}{c}$ 二次形式の係数行列 二次形式は対称行列 $rac{1}{c}$ $rac{1}{c}$ $rac{1}{c}$ $rac{1}{c}$

ref: 行列と行列式の基礎 p209~210、ref: 長岡亮介 線形代数入門講義 p297~298、ref: 図で整理!例題で納得!線形空間入門 p256~257

よって、次のように表される

$$Q(oldsymbol{x}) = \sum_{i,j=1}^n a_{ij} x_i x_j$$

このとき、A を二次形式 Q(x) の係数行列という

i が A の行番号、j が列番号であるので、 x_i は横ベクトル、 x_j は縦ベクトルの成分である

$$egin{aligned} \mathcal{Q}(oldsymbol{x}) &= \sum_{i,j=1}^n x_i a_{ij} x_j \ &= \left(x_1 \quad \cdots \quad x_n
ight) A egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} \end{aligned}$$

そこで、 $m{x}$ を縦ベクトルとみるとき、二次形式 $Q(m{x})$ とその係数行列は次のような関係にある

$$Q(\boldsymbol{x}) = {}^{t}\boldsymbol{x} A \boldsymbol{x}$$

この関係を用いて、任意の対称行列 A から二次形式を作ることができる

 $Q(\boldsymbol{x})$ から A を作り、A から $Q(\boldsymbol{x})$ を作ることができるので、n 変数の二次形式 $Q(\boldsymbol{x})$ と n 次の対称行列 A は対応し、さらにこの対応は一対一である