# Fundamental Methods of Data Science

Class 7

#### Tree Classification



## Tree Classification



#### Tree Classification



- ▶ We can continue classification
  - ▶ What is the problem with that?

## Classification



► Can we do better?

## **Linear Classifiers**



#### **Linear Classifiers**



- ▶ Line is denoted by the linear equation
  - $Age = (-1.5) \times Balance + 60$

#### **Linear Classifiers**



- ▶ Line is denoted by the linear equation
  - $Age = (-1.5) \times Balance + 60$
- ▶ How can we use it for classification?



#### Linear discriminant

$$class(x) = \begin{cases} + \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 > 0 \\ \bullet \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 \leq 0 \end{cases}$$

$$class(x) = \begin{cases} + \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 > 0 \\ \bullet \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 \leq 0 \end{cases}$$

▶ How can we obtain such a model?

$$class(x) = \begin{cases} +\text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 > 0 \\ \bullet \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 \leq 0 \end{cases}$$

- ► How can we obtain such a model?
- ightharpoonup A imes Age + B imes Balance + C
  - Use data to learn the values of A, B and C

$$class(x) = \begin{cases} + \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 > 0 \\ \bullet \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 \leq 0 \end{cases}$$

- How can we obtain such a model?
- ightharpoonup A imes Age + B imes Balance + C
  - Use data to learn the values of A, B and C
- ► Can you see another advantage over Classification Trees?

$$class(x) = \begin{cases} + \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 > 0 \\ \bullet \text{ if } 1.0 \times Age \ -1.5 \times Balance + 60 \leq 0 \end{cases}$$

- ▶ How can we obtain such a model?
- ightharpoonup A imes Age + B imes Balance + C
  - Use data to learn the values of A, B and C
- ► Can you see another advantage over Classification Trees?
  - ▶ We get an actual value for free!
  - f(x) = x['Age'] 1.5 \* x['Balance'] + 60

#### Linear Discriminant Functions vs Classification Trees

- Classification Trees
  - Classification models
  - Use IG to choose features
  - ► Induct a model
- Discriminant Functions
  - Mathematical formulae
  - Build a model (still need to know which features to use)
  - ▶ Tune it according to data

### Linear Discriminant Functions and Classification

- Given such a function
  - f(x) = x['Age'] 1.5 \* x['Balance'] + 60
- Use the line for classification
  - ► Positive (Above the line)
  - Negative (Below the line)
- Can be extended to more than two features

## Possible Models



## Possible Models



▶ Which one to choose?

## **Objective Functions**

- ▶ "Best" line depends on the objective function
  - Objective function should represent our goal

## **Objective Functions**

- "Best" line depends on the objective function
  - ▶ Objective function should represent our goal
- ▶ What about instances misclassified by the model?

## **Objective Functions**

- "Best" line depends on the objective function
  - Objective function should represent our goal
- ▶ What about instances misclassified by the model?
  - We can penalize those

# Perceptron - A Simple Linear Discriminant Function Learner

We will see an algorithm for computing such a function in case the data is linearly separable



## Perceptron

- We want to learn a function
  - $w_1 \cdot x + w_2 \cdot y + w_0 \cdot 1 = 0$
- By using an instance vector
  - $[(x_1, y_1), \dots, (x_n, y_n)]$

## Perceptron

- ▶ We want to learn a function
  - $w_1 \cdot x + w_2 \cdot y + w_0 \cdot 1 = 0$
- By using an instance vector
  - $[(x_1, y_1), \ldots, (x_n, y_n)]$
- ▶ We start by arbitrary weights  $w_0, w_1, w_2$
- ▶ We adjust them each time they fail to properly classify a point

## Perceptron Learning Algorithm

Desired output 
$$d(n) = \begin{cases} +1 & \text{if } x(n) \in \text{set } A \\ -1 & \text{if } x(n) \in \text{set } B \end{cases}$$

- 1. Select a random instance n
- 2. If d(n) is correct, do nothing
- 3. Else, modify the weights
  - $\mathbf{v}_i = \mathbf{w}_i + \mu \mathbf{d}(\mathbf{n}) \mathbf{x}_i(\mathbf{n})$
  - $\blacktriangleright$   $\mu$  is the learning rate which must be small in order to avoid misplacing the classifier
- 4. Repeat until all instances are classified correctly



















