Линейная классификация и метрики качества классификации

Повторение

Среднеквадратичная ошибка

• MSE для линейной регрессии:

$$\frac{1}{l} ||Xw - y||^2 \rightarrow \min_{w}$$

$$Q(w_1, ..., w_d) = \frac{1}{l} \sum_{i=1}^{l} (w_1 x_1 + ... + w_d x_d - y_i)^2$$

Можно посчитать градиент MSE:

Приравниваем нулю и решаем систему линейных уравнений:

•
$$w = (X^T X)^{-1} X^T y$$

Аналитическое решение

$$w = (X^T X)^{-1} X^T y$$

- Если матрица (X^TX) вырожденная, то будут проблемы
- Даже если она почти вырожденная, все равно будут проблемы
- Если признаков много, то придется долго ждать
- Обращение матрицы сложная операция $(O(N^3))$ от числа признаков
- Если заменить среднеквадратичный функционал на другой, то скорее всего не найдем аналитическое решение

Метод градиентного спуска

- Наша задача при обучении модели найти такие веса *w*, на которых достигается минимум функции ошибки.
- Грубо говоря, график MSE парабола
- Идея метода градиентного спуска.
- На каждом шаге движемся в сторону антиградиента функции потерь!
- Вектор градиента функции потерь обозначают $grad\ Q$ или ∇Q

Метод градиентного спуска

Производная

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Градиент

• Градиент – вектор частных производных

$$\nabla f(x) = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d})$$

- У градиента есть важное свойство!
- Зафиксируем точку x_0
- В какую сторону функция быстрее всего растет?

Градиентный спуск

Метод градиентного спуска

На каждом шаге (на каждой итерации метода) движемся в сторону антиградиента Функции потерь!

- Инициализируем веса $w_0^{(0)}, w_1^{(1)}, w_2^{(0)}, ..., w_n^{(0)}$
- На каждом следующем шаге обновляем веса, сдвигаясь в направлении антиградиента функции потерь Q:

$$w_0^{(k)} = w_0^{(k-1)} - \nabla Q \left(w_0^{(k-1)} \right),$$

$$w_1^{(k)} = w_1^{(k-1)} - \nabla Q \left(w_1^{(k-1)} \right),$$

$$w_n^{(k)} = w_n^{(k-1)} - \nabla Q(w_n^{(k-1)}),$$

Градиентный спуск

Останавливаем процесс, если

$$||w^t - w^{t-1}|| < \varepsilon$$

Другой вариант;

$$||Q(w^t) - Q(w^{t-1})|| < \varepsilon$$

Другой вариант:

$$||\nabla Q(w^t)|| < \varepsilon$$

Переменная длина шага

$$w^t = w^{t-1} - \eta_t \nabla Q(w^{t-1})$$

- Длину шага можно менять в зависимости от шага
- Например: $\eta_t = \frac{1}{t}$
- Шаг наискорейшего спуска: $\eta_t = argmin_n Q(w^t) = argmin_\eta Q(w^{t-1} \eta \nabla Q(w^{t-1}))$

Оценка градиента

$$Q(w) = \frac{1}{l} \sum_{i=1}^{l} L(y_i, a(x_i))$$

• Градиент:

$$\nabla Q(w) = \frac{1}{l} \sum_{i=1}^{l} \nabla L(y_i, a(x_i))$$

• Может, оценить градиент одним слагаемым?

$$\nabla Q(w) \approx \frac{1}{l} \sum_{i=1}^{l} \nabla L(y_i, a(x_i))$$

Стохастический градиентный спуск

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая случайный объект $i_t: w^t = w^{t-1} \eta_t \nabla L(y_{i_t}, a(x_{i_t}))$
- 3. Останавливаемся, если

$$\left| |w^t - w^{t-1}| \right| < \varepsilon$$

Стохастический градиентный спуск

Стохастический градиентный спуск

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая m случайный обьект i_1 , . . , i_m : $w^t = w^{t-1} \eta_t \frac{1}{m} \sum_{j=1}^m \nabla L(y_{i_j}, a\left(x_{i_j}\right))$
- 3. Останавливаемся, если

$$\left| |w^t - w^{t-1}| \right| < \varepsilon$$

Модель линейной классификации

Классификация

- $Y = \{-1, +1\}$
- -1 отрицательный класс
- +1 положительный класс
- Алгоритм a(x) должен возвращать одно из двух чисел

Линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^d w_j x_j$$
 - выдает вещественное число

Линейный классификатор

Линейный классификатор

$$a(x) = signig(\sum_{j=1}^d w_j x_jig) = sign < w, x >$$
 добавим единичный признак

Скалярное произведение:

$$\langle a, b \rangle = |a||b|\cos(\theta)$$

Уравнение гиперплоскости:

$$< w, x > = 0$$

- Линейный классификатор проводит гиперплоскость
- < w, x > < 0 объект слева от нее
- < w, x >> 0 объект справа от нее

• Расстояние от точки до гиперплоскости < w, x > = 0:

$$\frac{|< w, x > |}{||w||} = \frac{|< w, x > |}{\sqrt{< w, w > }}$$

• Чем больше < w, x > , тем дальеш обьект от разделяющий гиперплоскости

Отступ

- $M_i = y_i < w, x_i >$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности

Порог

$$a(x) = sign(\langle w, x \rangle - t)$$

t - порог классификатора

Можно подбирать для оптимизации функции потерь, отличной От использованной при обучении

Линейный классификатор

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

Обучение линейных классификаторов

Функция потерь в классификации

- Частый выбор бинарная функция потерь $L(y,a) = [a \neq y]$
- Функционал ошибки доля ошибок (error rate) $Q(y,a) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i]$
- Нередко измеряют долю верных ответов (accuracy): $Q(y,a) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) = y_i]$

Доля ошибок для линейного классификатора

• Функционал ошибки:

$$Q(w, X) = \frac{1}{l} \sum_{i=1}^{l} [sign(< w, x_i >) \neq y_i]$$

• Индикатор – недифференцируемая функция

Отступы для линейного классификатора

• Функционал ошибки:

$$Q(w, X) = \frac{1}{l} \sum_{i=1}^{l} [sign(< w, x_i >) \neq y_i]$$

• Альтернативная запись:

$$Q(w, X) = \frac{1}{l} \sum_{i=1}^{l} [y_i < w, x_i > < 0]$$

$$y_i < w$$
, $x_i > = M_i$ - отступ

Отступы (MARGIN)

Ранжирование объектов по возрастанию отступа:

Верхняя оценка

$$L(M) = [M < 0] \le L^{\sim}(M)$$

Оценим сверху дифференцируемой функцией

Верхняя оценка

$$0 \le \frac{1}{l} \sum_{i=1}^{l} [y_i < w, x_i > < 0] \le \frac{1}{l} \sum_{i=1}^{l} L^{\sim}(y_i < w, x_i >) \to \min_{w}$$

Минимизируем верхнуюю оценку

Надеемся, что она прижмет долю ошибок к нулю

Примеры верхних оценок

- $L^{\sim}(M) = \log(1 + e^{-M}) -$ логистическая
- $L^{\sim}(M) = \max(0, 1 M)$ кусочно линейная
- $L^{\sim}(M) = e^{-M}$ экспоненциальная
- $L^{\sim}(M) = \frac{2}{1+e^M}$ сигмоидная

Пример обучения

Выбираем логистическую функцию потерь:

$$Q^{\sim}(w, X) = \frac{1}{l} \sum_{i=1}^{l} \log(1 + \exp(-y_i < w, x_i >)) \to \min_{w}$$

Вычисляем градиент:

$$\nabla_{w} \mathbf{Q}^{\sim}(w, X) = -\frac{1}{1} \sum_{i=1}^{l} \frac{y_{i} x_{i}}{1 + \exp(y_{i} < w, x_{i} >)}$$

Пример обучения

Делаем градиентный спуск

$$w^{(t)} = w^{(t-1)} + \eta \frac{1}{1} \sum_{i=1}^{l} \frac{y_i x_i}{1 + \exp(y_i < w, x_i >)}$$

Пример регуляризации

$$\frac{1}{l} \sum_{i=1}^{l} \log(1 + \exp(-y_i < w, x_i >)) + \lambda ||w||^2 \to \min_{w}$$

Полностью аналогично линейной регрессии

Важно не накладывать регуляризацию на свободный коэффицент

https://medium.com/@shrutijadon10104776/why-we-dont-use-bias-in-regularization-5a86905dfcd6

Метрики качества классификации

Качество классификации

• Доля неправильных ответов:

$$\frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i]$$

• Доля правильных ответов:

$$\frac{1}{l} \sum_{i=1}^{l} [a(x_i) = y_i]$$

- Несбалансированная выборка объектов одного класса существенного больше
- Пример: предсказание кликов по рекламе
- Пример: медицинская диагностика
- Пример: предсказание оттока клиентов
- Пример: специализированный поиск

- Пример:
 - Класс -1: 950 объектов
 - Класс +1 : 50 объектов
 - a(x) = -1
 - Доля правильных ответов : 0.95
 - Почему результат нас не устраивает?
 - Модель не несет экономической ценности
 - Цены ошибок неравнозначны

- q_0 доля объектов самого крупного класса
- Для разных алгоритмов :

$$accuracy \in [q_0, 1]$$

• Если получили большой ассuracy — посмотрите на баланс классов

Улучшение метрики

- Два алгоритма
- Доли правильных ответов : r_1 и r_2
- Абсолютное улучшение: $r_2 r_1$
- Относительное отношение: $\frac{r_2-r_1}{r_1}$

Улучшение метрики

•
$$r_1 = 0.8$$

•
$$r_2 = 0.9$$

•
$$r_1 = 0.8$$
,
• $r_2 = 0.9$,
• $\frac{r_2 - r_1}{r_1} = 12.5\%$
• $\frac{r_2 - r_1}{r_1} = 50\%$

•
$$r_1 = 0.5$$
,

•
$$r_2 = 0.75$$

•
$$\frac{r_2 - r_1}{r_1} = 50\%$$

•
$$r_1 = 0.001$$
,

•
$$r_2 = 0.01$$
,

•
$$\frac{r_2 - r_1}{r_1} = 900\%$$

Цены ошибок

Пример: кредитный скоринг

- Что хуже?
 - Выдать кредит «плохому» клиенту
 - Не выдать кредит «хорошему» клиенту
- Доля верных ответов не учитывает цены ошибок

Матрица ошибок

	Y = 1	Y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN0

Матрица ошибок

Модель $a_1(x)$:

	Y = 1	Y = -1
a(x) = 1	80	20
a(x) = -1	20	80

Модель $a_2(x)$:

	Y = 1	Y = -1
a(x)=1	48	2
a(x) = -1	52	98

Точность (precision)

Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Точность (precision)

Модель $a_1(x)$:

	Y = 1	Y = -1
a(x) = 1	80	20
a(x) = -1	20	80

 $Precision(a_1, X) = 0.8$

Модель $a_2(x)$:

	Y = 1	Y = -1
a(x) = 1	48	2
a(x) = -1	52	98

 $Precision(a_2, X) = 0.96$

Полнота (recall)

Как много положительных объектов находит классификатор?

$$recall(a, X) = \frac{TP}{TP + FN}$$

Полнота (recall)

Модель $a_1(x)$:

	Y = 1	Y = -1
a(x)=1	80	20
a(x) = -1	20	80

 $recall(a_1, X) = 0.8$

Модель $a_2(x)$:

	Y = 1	Y = -1
a(x) = 1	48	2
a(x) = -1	52	98

$$recall(a_2, X) = 0.48$$

Точность и полнота

Регулируем точность и полнота

Пусть p(x) – уверенность классификатора в том, что объект x относится к классу +1, $p(x) \in [0;1]$

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе - к отрицательному.

Можно изменять этот порог, то есть вместо 0.5 брать другое число из отрезка [0;1].

Регулируем точность и полнота

Пусть p(x) – уверенность классификатора в том, что объект x относится к классу +1, $p(x) \in [0;1]$

Обычно если p(x) > 0.5, то мы относим объект к положительному классу, а иначе - к отрицательному.

Можно изменять этот порог, то есть вместо 0.5 брать другое число из отрезка [0;1].

Путем изменения порога t можно регулировать точность и полноту:

- \blacktriangleright Например, если t=0, то мы все объекты относим к положительному классу, то есть полнота = 1, а точность м
- ightharpoonup При увеличении t полнота уменьшается (могут появиться объекты положительного класса, которые мы не нашли), а точность возрастет (появляются объекты положительного класса).

Антифрод

- Классификация транзакций на нормальные и мошеннические
- Высокая точность, низкая полнота:
 - Редко блокируем нормальные транзакции
 - Пропускаем много мошеннических
- Низкая точность, высокая полнота:
 - Часто блокируем нормальные транзакции
 - Редко пропускаем мошеннические

Кредитный скоринг

- Неудачных кредитов должно быть не больше 5%
- Ограничение: $precision(a, X) \ge 0.95$
- Максимизируем полноту

Медицинская диагностика

- Надо найти не менее 80% больных
- Ограничение: $recall(a, X) \ge 0.8$
- Максимизируем точность

- recall(a, X) = 0.1
- precision(a, X) = 0.33
- accuracy(a, X) = 0.99

Совмещение точности и полноты

Точность и полнота

- Точность можно ли доверять классификатору при a(x) = 1?
- Полнота как много положительных объектов находит a(x)?
- Оптимизировать две метрики одновременно очень неудобно
- Как объединить?

Арифметическое среднее

$$A = \frac{1}{2}(precision + recall)$$

Арифметическое среднее

$$A = \frac{1}{2}(precision + recall)$$

- precision = 0.1
- recall = 1
- A = 0.55
- Плохой алгоритм

Арифметическое среднее

$$A = \frac{1}{2}(precision + recall)$$

- precision = 0.55
- recall = 0.55
- A = 0.55
- Нормальный алгоритм
- Но качество такое же,
- как у плохого

M = min(precision + recall)

M = min(precision + recall)

- precision = 0.05
- recall = 1
- A = 0.05

M = min(precision + recall)

- precision = 0.55
- recall = 0.55
- M = 0.55

M = min(precision + recall)

- precision = 0.4, recall = 0.5
- M = 0.4
- precision = 0.4, recall = 0.9
- M = 0.4

Но второй алгоритм лучше!

F-мера

$$F = \frac{2 * precision * recall}{precision + recall}$$

F-мера

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.4, recall = 0.5
- F = 0.44
- precision = 0.4, recall = 0.9
- F = 0.55

Работает!

F-мера

$$F = (1 + \beta^2 \frac{*precision * recall}{\beta^2 * precision + recall})$$

$$eta = 0.5$$
 Важнее точностьс

F-мера

$$F = (1 + \beta^2 \frac{*precision * recall}{\beta^2 * precision + recall})$$

$$\beta = 2$$

Важнее полнота

Метрики качества ранжирования

Классификатор

Линейный классификатор:

$$a(x) = sign(\langle w, x \rangle - t) = 2[\langle w, x \rangle > t] - 1$$

< w, x > - оценка принадлежности классу +1

Hередко t=0

Оценка принадлежности

Как оценить качество b(x) ?

Порог зависит от ограничений на точность и полноту

Оценка принадлежности

Высокий порог:

- Мало объектов относим к +1
- Точность выше
- Полнота ниже
- Низкий порог:
 - Много объектов относим к +1
 - Точность ниже
 - Полнота выше

Оценка принадлежности

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1	
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9	

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9
						l			

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

PR-кривая

- Кривая точности-полноты
- Ось X полнота
- Ось У точность
- Точки значения точности и
- полноты при последовательных порогах

PR-кривая

$$b(x) \begin{vmatrix} 0.14 & 0.23 & 0.39 & 0.52 & 0.73 & 0.90 \\ y & 0 & 1 & 0 & 0 & 1 & 1 \end{vmatrix}$$

PR-кривая в реальности

PR-кривая

Левая точка: (0, 0) или (0, 1)

Правая точка: (1, г), г – доля

положительных объектов

Для идеального классификатора проходит Через (1, 1)

AUC-PRC – площадь под PR-кривой

PR-кривая

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

• Ось Y - True Positive Rate

$$TPR = \frac{TP}{TP + FN}$$

Для каждого значения порога t вычислим:

- False Positive Rate долю неверно принятых объектов
- True Positive Pate -долю верно принятых объектов

Кривая, состоящая из точек с координатами (PRIPR) для всех возможных порогов - это и есть ROC-кривая.

AUC (Area Under Curve) - площадь под ROC-кривой.

 $AUC \in 0; 1$.

• AUC = 1 -

идеальная классификация

• AUC = 0.5 -

случайная классификация

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

 $TPR = \frac{TP}{TP + FN}$

• Упорядочим объекты по убыванию предсказаний:

1 шаг:
$$t = 0.7$$
, то есть

$$a(x) = [b(x) > 0.7]$$
 $FPR = \frac{FP}{FP + TN}$ $TPR = \frac{0}{0+3} = 0, FPR = \frac{0}{0+2} = 0.$

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний:

1 шаг: t = 0.7, то есть

$$a(x) = [b(x) > 0.7]$$

$$TPR = \frac{0}{0+3} = 0,$$

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

2 шаг: t = 0.4, то есть

$$a(x) = [b(x) > 0.4]$$

$$TPR = \frac{1}{1+2} = \frac{1}{3} \,,$$

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

3 шаг: t=0.2, то есть

$$a(x) = [b(x) > 0.2]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3} \,,$$

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

4 шаг: t=0.1, то есть

$$a(x) = [b(x) > 0.1]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{1}{1+1} = \frac{1}{2}$$
.

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0.05, то есть

$$a(x) = [b(x) > 0.05]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3} \,,$$

$$FPR = \frac{2}{2+0} = 1.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0, то есть

$$a(x) = [b(x) > 0]$$

$$TPR = \frac{3}{3+0} = 1,$$

$$FPR = \frac{2}{2+0} = 1.$$

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

FP + TN — число отрицательных объектов

• Ось Y - True Positive Rate

$$TPR = \frac{TP}{TP + FN}$$

 $\mathsf{T}P + FN$ — число положительных объектов

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

ROC-кривая в реальности

- Левая точка: (0, 0)
- Правая точка:
- Для идеального классификатора проходит через (0, 1)
- AUC-ROC площадь под ROC-кривой

AUC-ROC

$$FPR = \frac{FP}{FP + TN}$$
 $TPR = \frac{TP}{TP + FN}$

FP и TP нормируются на размеры классов

- AUC-ROC не поменяется при изменении баланса классов
- Учитывает True Negatives
- Идеальный алгоритм: AUC ROC = 1
- Худший алгоритм: $AUC ROC \approx 0.5$

AUC-PRC

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

- Точность поменяется при изменении баланса классов
- AUC-PRC идеального алгоритма зависит от баланса классов
- He учитывает True Negatives
- Проще интерпретировать, если выборка несбалансированная
- Лучше, если задачу надо решать в терминах точности и полноты

Пример

$$AUC - ROC = 0.95$$

$$AUC - PRC = 0.001$$

50000 объектов

y = -1

100 объектов y = +1

> 950000 объектов

> > y = -1

Пример

- Выберем конкретный классификатор
- a(x) = 1— 50095 объектов
- Из них FP = 50000, TP = 95
- TPR = 0.95, FPR = 0.05
- precision = 0.0019, recall = 0.95

Спасибо за внимание!

Ildar Safilo

@Ildar_Saf irsafilo@gmail.com https://www.linkedin.com/in/isafilo/