

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1ère année

TD3 sur la Théorie des Graphes

Exercice 13:

La compagnie Europ'Air dessert différentes villes européennes. Le tableau ci-dessous donne les durées de vol entre ces différentes villes.

Arriv. Départ	Α	В	С	D	E
Α		1h30	2h		2h15
В	1h40				3h
С	2h20			2h55	
D			3h20		1h05
E	2h25	3h10	1h10		

- 10.1. Représenter ce tableau sous forme de graphe. Le graphe obtenu est-il orienté ? Symétrique ? Transitif ?
- 10.2. On veut déterminer le trajet le plus rapide partant de D pour arriver en B. A quel type de problème a-t-on affaire ? Donner le trajet le plus rapide et sa durée en détaillant les calculs.
 - 10.3. Sans refaire de calcul, comment peut-on obtenir le trajet le plus rapide de D vers C?

Exercice 14:

Analyser le graphe orienté suivant en utilisant la méthode de Malgrange :

Exercice 15:

Analyser les graphes orientés 1et 2 de la feuille suivante en utilisant la méthode de Malgrange.

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1^{ère} année

TD3 sur la Théorie des Graphes

Grap	he 1:													
i/j	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	0	0	1	0	0	0	1	0	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0	0	0	0	0	0
3	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5	1	0	0	0	0	1	0	0	1	0	1	0	0	0
6	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	1	0	0	0	0	0	0	0	1	0
8	0	1	0	0	0	0	0	0	0	0	0	0	0	1
9	0	0	0	0	0	0	0	1	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	1	0	0
11	0	0	0	1	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	1	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	1	0	0	0	0	0
14	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Graphe 2:

		i	1	1					1		1	1	
i/j	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0	0	1
3	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0
7	1	0	0	0	0	1	0	0	0	0	0	1	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	1	0	0	0	0	1	0	0	0	1	0	0
11	0	0	0	0	0	0	0	1	0	0	0	0	0
12	0	0	1	1	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	1	0	0	0	0