ECE 6473

Lecture 9

Date: 11/16/2015

Shaloo Rakheja
Assistant Professor
ECE, NYU

Topics

- Interconnects
- Physical design
- Clocking

Reading Materials

- Chapters 9 & 10: Digital Integrated Circuits,
 Rabaey
- Chapters 5 & 15: Introduction to VLSI Circuits and Systems, Uyemura
- Lecture + hand-written notes posted on course website

Interconnect Resistance

• Resistance:

$$\mathbf{R}_{line} = \rho(l/A) = (\rho/t) \times (l/w) = (1/\sigma t) \times (l/w) = \mathbf{R}_s \times (l/w)$$

- R_s = sheet resistance = Resistance of a wire of (l = w)
- R_s represents the resistance of a square region with top dimensions of w by w
- $R_{line} = (R_s/w) \times l = r \times l$, r = resistance per unit length

Interconnect Resistance – contd.

(a) Top-view geometry

(b) Sheet resistance contributions

•
$$R_{line} = R_s x (n) = R_s x (l/w)$$

'n' = number of squares from X to Y

Capacitance Interconnect line

Self-capacitance:

Only parallel plate component:

Interconnect Cap.: Fringing Field

Circuit Model for Interconnects: Simplest Approach

wire delay
$$\propto \tau = R_{line}C_{line}$$

Physical model of an interconnect line.

Physical model of an interconnect line.

$$\tau = C[mR] + C[(m-1)R] + C[(m-2)R] + \dots + CR$$

$$= RC[1 + \dots + m] = RC\left[\frac{m(m+1)}{2}\right]$$

$$= \frac{R_{line}}{m} \frac{C_{line}}{m} \left[\frac{m(m+1)}{2}\right] = \left[\frac{(m+1)}{2m}\right] R_{line} C_{line}$$

as
$$m \to \infty$$
, we get: $\tau = \frac{1}{2} R_{line} C_{line} = \frac{1}{2} rc(l^2)$

Simple RC interconnect model.

Wire Delay

- Lumped model provides a pessimistic view of wire delay
- Wire delay increases quadratically with the wire length
- Rule of thumb:
 - Wire delay need to be consider when it is larger than the delay of the gate

$$t_{RC} = \frac{1}{2}(0.69)rc(L_{crit}^2) = t_{gate} \implies L_{crit} = \sqrt{t_{gate}/0.38rc}$$

RC vs Lumped C wire delay

Lumped C:

$$t_C = R_s C_w$$

• RC Model:

$$t_p = R_s C_w + 0.5 R_{wire} C_w = R_s C_w + 0.5 r_w c_w l^2$$

RC should be considered when:

$$0.5r_{w}c_{w}l^{2} > R_{s}C_{w} = > l > 2R_{s}/r_{w}$$

Ex: $R_s = 1K\Omega$, $r = 0.075\Omega/\mu m => 1 > 2.67cm$

Reducing RC-delay: Repeater Insertion

Buffer (Repeater) Insertion

$$t_{stage} = t_{buf} + t_{RC} = t_{buf} + 0.5(0.69) \frac{R}{m} \frac{C}{m} = t_{buf} + (0.38)rc \frac{L^2}{m^2}$$

$$t = m \left(0.38rc \frac{L^2}{m^2} \right) + (m)t_{buf}$$

optimal $m = m_{opt}$:

$$\frac{\partial t}{\partial m} = -0.38rc\frac{L^2}{m^2} + t_{buf} = 0 \Longrightarrow m_{opt} = L\sqrt{\frac{0.38rc}{t_{buf}}}$$

optimal delay:

$$t_{opt} = L\sqrt{\frac{0.38rc}{t_{buf}}} \left[t_{buf}\right] + L\sqrt{\frac{0.38rc}{t_{buf}}} t_{buf} = 2L\sqrt{0.38rct_{buf}} = 2\sqrt{t_{wire}t_{buf}}$$

Capacitance coupling between two lines.

Voltage transition at line '1' will get coupled to line '2'
Coupling capacitance
Cross-talk => An important noise source in VLSI circuits

Geometry used for coupling capacitance calculation.

$$c_C = \varepsilon_{ox} \left[0.03 \left(\frac{w}{T_{ox}} \right) + 0.83 \left(\frac{t}{T_{ox}} \right) - 0.07 \left(\frac{t}{T_{ox}} \right)^{0.222} \right] \left(\frac{T_{ox}}{S} \right)^{4/3}$$

Lumped-element coupling circuit model.

(a) Physical structure

(b) RC model

Multiple-line coupling.

Effects of Coupling Capacitances

- Capacitive loading on signal line increases
 - Higher delay
- Cross-Talk: It is a noise source
 - Aggressor : The line which is switching
 - Victim: The line which is experiencing a voltage change due to the switching in the aggressor

Effective capacitance: C_c

Effective capacitance: 2C_c

Capacitive Cross Talk

$$\Delta V_Y = \frac{C_{XY}}{C_Y + C_{XY}} \Delta V_X$$

Capacitive Cross Talk Dynamic Node

 $C_Y = 6fF$ and $C_{XY} = 0.5fF : 0.19 V disturbance$

Cross Talk and Performance

- When neighboring lines switch in opposite direction of victim line, delay increases

DELAY DEPENDENT UPON ACTIVITY IN NEIGHBORING WIRES

- Both terminals of capacitor are switched in opposite directions $(0 \to V_{\rm dd}, V_{\rm dd} \to 0)$
- Effective capacitance is doubled

Dealing with Capacitive Cross Talk

- Avoid floating nodes
- Protect sensitive nodes
- Do not run wires together for a long distance
- Use shielding wires
- Use shielding layers

Shielding

Clocking

Register Parameters

Delays can be different for rising and falling data transitions

Synchronous Timing

Ideally $t_{CLK1} = t_{CLK2}$

Minimum CLK Period: T > $t_{c-q} + t_{logic_max} + t_{setup}$

To avoid race condition: $t_{hold} < t_{c-q} + t_{logic_min}$

Clock Uncertainties

Sources of clock uncertainty

Clock Nonidealities

Clock skew

- Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

Clock jitter

- Temporal variations in consecutive edges of the clock signal; modulation + random noise
- Cycle-to-cycle (short-term) t_{JS}
- Long term t_{JL}

Clock Skew and Jitter

 Both skew and jitter affect the effective cycle time

Clock Skew

Positive Skew

Receiving clock edge arrives late

Positive Skew

Launching edge arrives before the receiving edge

Timing Constraints: Positive Skew

Minimum cycle time:

$$T + \delta > t_{c-q} + t_{setup} + t_{logic_max} => T > t_{c-q} + t_{setup} + t_{logic_max} - \delta$$

Apparently you can operate faster if there is a positive skew

Positive Skew: Race Condition

Launching edge arrives before the receiving edge

If the data at the input of R2 changes within the hold time after the arrival of edge (4), the sampled data may be wrong -> race condition

$$t_{hold} + \delta < t_{(c-q)} + t_{(logic_min)}$$

Positive Skew: Race Condition

Hold time constraint:

$$t_{(c\text{-}q, cd)} + t_{(logic, cd)} > t_{hold} + \delta$$

Worst case is when receiving edge arrives late Race between data and clock

Negative Skew

Receiving edge arrives before the launching edge

Negative Skew

Receiving edge arrives before the launching edge The time available for computation reduces

Minimum cycle time:

$$T - \delta > t_{c-q} + t_{setup} + t_{logic_max} => T > t_{c-q} + t_{setup} + t_{logic_max} + \delta$$

Slower operation

Negative Skew: No race

The data at R_2 is sample even before the data is sample at R_1 . No race condition is possible

Clock Skew

- If clock propagates in the same direction as data => positive skew
 - Can improve performance
 - Degrades reliability of the circuit
- If clock propagates in the opposite direction to data
 - Functionality is guaranteed
 - Lower operating frequency

Feedback System

Data and Clock Routing

Both positive and negative skew

Impact of Jitter

- •Jitter is the temporal variation of the clock edge at a given spatial point.
- •Abosulte jitter (t_{iitter})
 - Worst case shift of the clock edge at a given spatial point
- •Cycle-to-cycle jitter (T_{iitter}):
 - •Time-varying deviation of the single clock period relative to the ideal reference clock

Impact of Jitter

Worst case: (2) arrives late (at (3)) and (5) arrives early (at (4))

$$T_{\text{CLK}} - 2t_{\text{jitter}} > t_{\text{c-q}} + t_{\text{logic_max}} + t_{\text{setup}}$$

$$=> T_{\text{CLK}} > t_{\text{c-q}} + t_{\text{logic_max}} + t_{\text{setup}} + 2t_{\text{jitter}}$$

Longest Logic Path in Edge-Triggered Systems

Worst case for delay:

Launching edge arrives late: after titter

Receiving edge arrives early: $t_{iitter} + \delta$ before the actual time

(assume negative skew)

Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

$$t_{c-q} + t_{logic_max} + t_{setup} < T - t_{jitter,1} - t_{jitter,2} - \delta$$

Minimum cycle time is determined by the maximum delays through the logic

$$T > t_{c-q} + t_{logic_max} + t_{setup} + 2t_{jitter} + \delta$$

Typo

Negative skew results in worst case timing

Shortest Path Considerations

Worst case for race:

Launching edge arrives early: @t_{jitter} before the actual time Receiving edge arrives late: $@t_{iitter} + \delta$ after the actual time

Clock Constraints in Edge-Triggered Systems

If launching edge is early and receiving edge is late:

$$t_h + t_{jitter,2} + \delta < t_{c-q} + t_{logic_min} - t_{jitter,1}$$

Minimum logic delay

$$t_{c-q} + t_{logic_min} < t_h + 2t_{jitter} + \delta$$

Clock Distribution

- Key Point
 - The absolute delay of the clock arrival from the generation point to the different flip-flops is not a concern as long as it arrives at all the flip-flops at the same time

Clock Uncertainties

Sources of clock uncertainty

Clock Uncertainties

- Clock generation: Source of Jitter
- Device variations in clock tree: source of skew
- Interconnect variations: source of skew
- Power supply noise major source of jitter
- Temperature: source of skew (primarily)
- Capacitive load: Skew and jitter
 - Gate capacitance of different flip-flops
 - Capacitive coupling with neigbouring signal wires

Clock distribution to on-chip modules.

Macro-level H-type distribution tree.

Clock Driver Network

(a) Driver tree

(b) Application to H-tree

More realistic H-tree

[Restle98]

Driver tree is normally routed in multiple metal layers

Single driver tree with multiple outputs.

Example: DEC Alpha 21164

Clock Frequency: 300 MHz - 9.3 Million Transistors

Total Clock Load: 3.75 nF

Power in Clock Distribution network: 20 W (out of 50)

Uses Two Level Clock Distribution:

- Single 6-stage driver at center of chip
- Secondary buffers drive left and right side clock grid in Metal3 and Metal4

Total driver size: 58 cm!

driver on die

Clock Skew in Alpha Processor

