Ensemble Pipeline V2

A comprehensive machine learning pipeline for ensemble modeling with ONNX export capabilities and optimization features.

Overview

This pipeline provides a robust framework for training, evaluating, and deploying ensemble machine learning models. It includes features for:

- Model training and evaluation with cost-sensitive optimization
- Hyperparameter tuning using Bayesian optimization
- ONNX model export for deployment
- Interactive configuration through Streamlit UI
- Comprehensive model evaluation and visualization

Installation

1. Clone the repository:

```
git clone <repository-url>
cd ensemble_pipelineV2
```

- 2. Set up Python environment:
 - Python Version: Python 3.12 is recommended for best compatibility
 - Windows Users: If using Python < 3.12, you must enable long path support:

```
# Run PowerShell as Administrator
Set-ItemProperty -Path
"HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem" -Name
"LongPathsEnabled" -Value 1
```

Create and activate virtual environment:

```
# Windows
python -m venv venv
.\venv\Scripts\activate

# Linux/Mac
python -m venv venv
source venv/bin/activate
```

3. Install dependencies:

```
pip install -r requirements.txt
```

- 4. Optional ONNX dependencies (for model export):
 - For most systems (Python 3.8-3.12):

```
pip install onnx skl2onnx
```

For Python 3.13 or if you encounter issues:

```
# Try installing specific versions
pip install onnx==1.17.0 skl2onnx

# Or use conda if available
conda install -c conda-forge onnx skl2onnx
```

- If installation fails:
 - The application will automatically fall back to pickle export
 - You'll see a warning message: "ONNX dependencies not available. ONNX export will be disabled."
 - All functionality will work normally, just without ONNX export capability

Project Structure

Configuration

The pipeline is highly configurable through config.py and the Streamlit UI. Key settings include:

Model Settings

• Cost Weights: Configure false positive (C_FP) and false negative (C_FN) costs

- Cross-Validation: Enable/disable k-fold cross-validation (N_SPLITS=5 by default)
- Feature Filtering: Optional variance and correlation-based feature selection
 - o Variance Threshold: 0.01 (default)
 - o Correlation Threshold: 0.95 (default)

Optimization Settings

- Hyperparameter Optimization: Bayesian optimization using Optuna
 - Number of iterations: 50 (default)
 - Supported models: XGBoost, RandomForest
- Final Model Optimization: Optional optimization of production models
- **SMOTE**: Class imbalance handling (ratio=0.5)

Model Export

- ONNX Export: Convert models to ONNX format
 - Opset Version: 12 (default)
 - Automatic fallback to pickle if ONNX unavailable
 - Supported Models:
 - LogisticRegression
 - RandomForestClassifier
 - MLPClassifier
 - KNeighborsClassifier
 - XGBoost models (with additional setup)
 - File Extensions:
 - ONNX enabled: Models saved as .onnx files
 - ONNX disabled: Models saved as .pkl files
 - Downloads tab shows appropriate file types based on configuration

Usage

Running the Pipeline

1. Start the Streamlit interface:

streamlit run app/main.py

- 2. Configure settings through the UI:
 - Adjust cost weights
 - Enable/disable k-fold cross-validation
 - Configure feature filtering
 - Set optimization parameters
 - Choose export format
- 3. Run the pipeline:

python run.py

Model Training and Evaluation

The pipeline supports two training modes:

1. Single Split (default):

- o 80/20 train-test split
- Optional hyperparameter optimization
- o Cost-sensitive threshold optimization

2. K-Fold Cross-Validation:

- 5-fold stratified cross-validation
- Nested cross-validation for hyperparameter tuning
- Averaged performance metrics

Model Export and Deployment

ONNX Export

The pipeline automatically handles model conversion to ONNX format:

1. Export Process:

- Models are converted using skl2onnx
- Feature names are preserved for input mapping
- o Opset version 12 is used by default
- Automatic fallback to pickle if ONNX unavailable

2. ONNX to Halcon:

- ONNX models can be imported into Halcon
- o Input/output tensor names are preserved
- Model metadata includes feature names and thresholds

Export Settings

- Enable ONNX export in the UI or config.py
- Adjust opset version if needed (9-15 supported)
- Models are saved in output/models/

Optimization Details

Hyperparameter Optimization

The pipeline uses Optuna for Bayesian optimization:

1. XGBoost Parameters:

max_depth: [3,4,5,6]

learning_rate: [0.01,0.05,0.1]

o subsample: [0.6,0.8,1.0]

colsample_bytree: [0.6,0.8,1.0]n_estimators: [100,200,400]

o gamma: [0,0.1,0.2]

2. RandomForest Parameters:

n_estimators: [100,200,300]

max_depth: [None,5,10]

min_samples_split: [2,5,10]

min_samples_leaf: [1,2,5]

Cost-Sensitive Optimization

• False Positive Cost (C_FP): 1

• False Negative Cost (C_FN): 30

- Thresholds optimized for both cost and accuracy
- Results visualized in threshold sweep plots

Model Evaluation

The pipeline provides comprehensive evaluation metrics:

1. Performance Metrics:

- Precision, Recall, Accuracy
- Cost-weighted performance
- Confusion matrix
- ROC and PR curves

2. Visualization:

- Threshold sweep plots
- Model comparison plots
- Class balance visualization
- Feature importance plots

Troubleshooting

Common Issues

1. ONNX Export:

- Ensure correct Python version (3.8-3.12 recommended)
- Windows Users:
 - Either use Python 3.12 (recommended)
 - Or enable long path support in Windows Registry
 - Or use conda instead of pip

- Check ONNX and skl2onnx installation
- Verify feature names are provided
- Windows Path Length Error:
 - Enable long path support in Windows Registry (see Installation section)
 - Or use Python 3.12
 - Or use conda instead of pip
- Python 3.13 Compatibility:
 - ONNX may not have pre-built wheels for the latest Python versions
 - Consider using Python 3.11 or 3.12 for better compatibility
- Import Errors:
 - The application will automatically detect missing dependencies
 - Check the console output for warning messages
 - Ensure you're using the virtual environment

2. Model Training:

- Check class imbalance (SMOTE enabled by default)
- Verify feature filtering thresholds
- Monitor optimization progress

3. Performance:

- o Adjust cost weights if needed
- Try different hyperparameter ranges
- Consider feature selection

Contributing

- 1. Fork the repository
- 2. Create a feature branch
- 3. Commit your changes
- 4. Push to the branch
- 5. Create a Pull Request

License

[Your License Here]