# Basic Algorithms for Digital Image Analysis

#### Dmitrij Csetverikov

Eötvös Loránd University, Budapest, Hungary csetverikov@inf.elte.hu

#### Faculty of Informatics





#### Corner detection

- Image corners
- Principles of corner detection
- Manade-Lucas-Tomasi corner detector
- 4 Harris corner detector
  - Summary of corner detection

# Corners in curves and images

- Corner is sharp turn of contour
- Corners are used in shape analysis and motion analysis
- They are dominant in human perception of 2D shapes
- Two types of corner detection:
  - in digital curves
    - ⇒ assumes extracted contours
  - in digital images
    - ⇒ does not assume extracted contours
- We only consider corner detection in greyscale images



# Corners in motion analysis: the aperture problem



- Motion vectors are ambiguous at edge
  - locally, normal component can only be determined
  - tangential component cannot be determined
- This problem is aperture problem
  - the problem arises from local character of observation
- Motion vectors are unambiguous at corner



# Importance of corners in shape perception



The Attneave's Cat (Attneave, 1955)

- Original smooth shape restored based on small number of high curvature points
- Cat is easy to recognise despite big loss of data

# Image corners and edges



- Corners are locations where variations of intensity function f(x, y) in both X and Y are high
  - $\Rightarrow$  both partial derivatives  $f_x$  and  $f_y$  are large
- **Edges** are locations where variation of f(x, y) in certain direction is high, while variation in the orthogonal direction is low
  - $\Rightarrow$  when edge is oriented along Y,  $f_x$  is large,  $f_y$  small



#### Two selected corner detectors

- Many corner detectors exist, but we will only consider two of them
  - Kanade-Lucas-Tomasi (KLT) operator (1994)
  - Harris operator (1988)
- Reasons
  - most frequently used
  - select corners and other interest points
  - many application areas
    - ⇒ motion tracking, stereo matching, image database retrieval
  - relatively simple but still efficient and reliable
- KLT and Harris are closely related
  - both based on the local structure matrix (tensor)



### Local structure matrix $C_{str}$

In every position in image f(x, y), calculate

$$C_{str} \doteq W_G(r; \sigma) * \begin{bmatrix} (f_x)^2 & f_x f_y \\ f_x f_y & (f_y)^2 \end{bmatrix} = \begin{bmatrix} \widehat{(f_x)^2} & \widehat{f_x f_y} \\ \widehat{f_x f_y} & \widehat{(f_y)^2} \end{bmatrix}$$

- Derivatives of f(x, y) are first calculated using gradient masks
  - if necessary, image is smoothed before doing this
- Then, entries of  $C_{str}$  are obtained:  $(f_x)^2$ ,  $(f_y)^2$ ,  $f_x f_y$  $\Rightarrow$  **Not**  $f_{xx}$ ,  $f_{yy}$ ,  $f_{xy}$ !
- Finally, each entry is smoothed (integrated) by Gaussian filter w<sub>G</sub>(r; σ)
  - ullet parameter  $\sigma$  controls fineness of edges
  - often, box filter is used instead of Gaussian
  - smoothing is denoted by hat:



# Eigenvalues of local structure matrix $C_{str}$ 1/2

- Matrix C<sub>str</sub> is symmetric
- $\Rightarrow$  Matrix R,  $R^TR = RR^T = I$ , exists that diagonalises  $C_{str}$ 
  - I is 2 × 2 unit matrix
  - R is rotation of local coordinate system
  - Diagonal entries  $\lambda_1$ ,  $\lambda_2$  are **eigenvalues** of  $C_{str}$ :

$$C_{str} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Eigenvalues are solutions of characteristic equation

$$\det(C_{str} - \lambda \mathbf{I}) = 0$$



# Eigenvalues of local structure matrix $C_{str}$ 2/2

To obtain eigenvalues, we can use properties

$$D \doteq \det C_{str} = \prod_{i} \lambda_{i} = \lambda_{1} \lambda_{2}$$
 $T \doteq \operatorname{trace} C_{str} = \sum_{i} \lambda_{i} = \lambda_{1} + \lambda_{2}$ 

Eigenvalues are given by the derivatives as

$$\lambda_{1,2} = \frac{1}{2} \left( T \pm \sqrt{T^2 - 4D} \right)$$

$$= \frac{1}{2} \left( \widehat{f_x^2} + \widehat{f_y^2} \pm \sqrt{\left( \widehat{f_x^2} - \widehat{f_y^2} \right)^2 + 4 \left( \widehat{f_x f_y} \right)^2} \right)$$

$$\Rightarrow \lambda_1 > \lambda_2 > 0$$



# Geometric interpretation of eigenvalues



- For perfectly uniform image:
  - $C_{str} = 0$  and  $\lambda_1 = \lambda_2 = 0$
- For perfectly black-and-white step edge:
  - $\lambda_1 > 0, \lambda_2 = 0$
  - first eigenvector is orthogonal to edge
- For corner of black square against white background:
  - $\lambda_1 \geq \lambda_2 > 0$
  - higher contrast → larger eigenvalue



# Meaning of structure matrix diagonalisatio





rotated edge

rotated corner

- Eigenvectors encode edge directions
  - eigenvalues encode edge magnitudes
- Corner is identified by two strong edges
  - $\Rightarrow$  smaller eigenvalue,  $\lambda_2$ , is large enough
- Diagonalisation of C<sub>str</sub> means aligning local coordinate axes with the two edge directions
  - this ensures orientation-invariance
  - simply setting threshold on  $min(f_x, f_y)$  would not work!

## Kanade-Lucas-Tomasi (KLT) corner detector

Similarly to edge detectors, corner detectors have two steps:

- Corner filtering
- Post-processing, i.e., corner localisation

#### KLT corner detector has two **parameters**:

- Neighbourhood size D that has two roles:
  - in corner filtering, it defines the size of mean filter in definition of C<sub>str</sub>
  - in post-processing, it defines the smallest distance between two corners to be detected separately
- Threshold  $\lambda_{thr}$  on the smaller eigenvalue  $\lambda_2$ 
  - corner can only be in locations where  $\lambda_2 > \lambda_{thr}$



# KLT corner detection algorithm

#### Algoritmus: KLT corner detector

- Compute  $f_x$  and  $f_y$  over entire image f(x, y)
- For each image point p:
  - (a) form matrix  $C_{str}$  over  $D \times D$  neighbourhood of p
  - (b) compute  $\lambda_2$ , the smaller eigenvalue of  $C_{str}$
  - (c) if  $\lambda_2 > \lambda_{thr}$ , save point *p* into list *L*
- **3** Sort L in decreasing order of  $\lambda_2$ , obtain sorted list  $L_S$
- Scan L<sub>S</sub> from top to bottom; for each current point, p<sub>i</sub>
  - consider all points  $p_k$ , k > i
  - delete  $p_k$  from  $L_S$  if  $p_k \in D \times D$  neighbourhood of  $p_i$



# Output and parameters of KLT corner detector

- Output is list of feature points with following properties:
  - in these points,  $\lambda_2 > \lambda_{thr}$
  - D-neighbourhoods of these points do not overlap
- λ<sub>thr</sub> controls detector sensitivity depending on contrast:
  - larger contrast  $\Rightarrow$  stronger corners  $\Rightarrow$  larger  $\lambda_{thr}$
- D controls detector fineness is two ways:
  - larger D ⇒ larger mean filter ⇒ corner tends to move away from actual position
  - larger D ⇒ larger min distance between detected corners
     ⇒ corner close to another one may be lost
  - for smal D, spurious (noisy) responses are possible
  - typical values:  $D_w = 5-19$



# Example of corner detection by KLT operator



- Most of corners are detected.
  - there are lost ones, as well
- False detections can be observed.
  - other well-textured regions also detected

# Harris measure of corner strength

- Harris corner detector appeared before KLT
  - KLT is different interpretation of same idea
- Harris measure of corner strength:

$$H(x, y) = \det C_{str} - \alpha (\operatorname{trace} C_{str})^2$$

- $\bullet$   $\alpha$  is a parameter
- $H \ge 0$  if  $0 \le \alpha \le 0.25$
- **Detect corner** when strength is large:  $H(x, y) > H_{thr}$ 
  - H<sub>thr</sub> is another parameter
  - ⇒ threshold on corner strength
- As in KLT, use D-neighbourhoods for post-processing
  - remove weak corners in neighbourhood of strong corner
  - ⇒ only local maxima of H considered



## Parameter of Harris operator

Introduce  $\lambda_1 = \lambda$ ,  $\lambda_2 = \kappa \lambda$ ,  $0 \le \kappa \le 1$ .

Using relations between eigenvalues, determinant and trace

$$\det A = \prod_{i} \lambda_{i} \quad \text{trace } A = \sum_{i} \lambda_{i},$$

we obtain

$$H = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 = \lambda^2 \left[ \kappa - \alpha (1 + \kappa)^2 \right]$$

Assuming that  $H \ge 0$ , we have

$$0 \le \alpha \le \frac{\kappa}{(1+\kappa)^2} \le 0.25$$

and, for small  $\kappa$ ,

$$H \approx \lambda^2 (\kappa - \alpha)$$
,  $\alpha \lesssim \kappa$ 

## Relation between Harris and KLT operators

- $\alpha$  of Harris is similar to  $\lambda_{thr}$  of KLT
  - larger  $\alpha \Rightarrow$  smaller  $H \Rightarrow$  less sensitive detector
  - less corners detected
    - smaller  $\alpha \Rightarrow$  larger  $H \Rightarrow$  more sensitive detector
  - more corners detected
- Usually, H<sub>thr</sub> is set close, or equal, to 0 and fixed
  - α is variable parameter







$$\alpha = 0.05$$





$$\alpha = 0.10$$



$$\alpha = 0.20$$



$$\alpha = 0.22$$



$$\alpha = 0.24$$

## Example of corner detection by Harris operator



original corner strength



thresholded strength



original corners



after post-processing

#### Outline

- Image corners
- Principles of corner detection
- Kanade-Lucas-Tomasi corner detector
- 4 Harris corner detector
  - Summary of corner detection

# Comparison of the two operators



KLT, 40 corners



Harris,  $\alpha = 0.03$ 

# Summary of corner detection

- KLT and Harris corner detectors are conceptually related
  - based on local structure matrix C<sub>str</sub>
  - search for points where variations in two orthogonal directions are large
- Difference between the two detectors
  - KLT sets explicit threshold on diagonalised C<sub>str</sub>
  - Harris sets **implicit** threshold via corner magnitude H(x, y)
- KLT detector
  - result usually closer to human perception of corners
  - used for motion tracking in popular KLT Tracker
- Harris detector
  - good **repeatability** under varying rotation and illumination
  - used in stereo matching and image database retrieval
- Both may detect interest points other than corners
  - small well-textured regions