Oppgave 1

Gitt initialverdiproblemet

$$y' = 1 + 2xy^2$$
, $y(0) = 1$.

Bruk Eulers metode med skrittlengde h=0.1 til å finne tilnærmingsverdier for y(0.1) og y(0.2). Vis utregningene du bruker for å regne ut de to tilnærmingsverdiene.

Oppgave 2

Regn ut det ubestemte integralet

$$\int \frac{3x-1}{x^2+x-6} \, dx,$$

og avgjør om det uegentlige integralet

$$\int_4^\infty \frac{3x-1}{x^2+x-6} \, dx$$

konvergerer eller divergerer. Begrunn svaret.

Oppgave 3

Bruk rekkeutviklingen

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + \dots$$

til å uttrykke integralet

$$I = \int_0^1 \frac{1 - e^{-x}}{x} dx$$

som en uendelig rekke.

Bestem hvor mange ledd du må ta med i denne rekken for at den skal gi en tilnærmingsverdi L til I som er slik at |I - L| < 0.002. Begrunn at den ønskede nøyaktigheten er oppnådd.

Oppgave 4

Funksjonen f er definert ved

$$f(x) = \frac{x}{\sqrt{|x|}}$$
 for $x \neq 0$.

Vis at dersom du definerer f(0) = 0, så vil f være kontinuerlig i x = 0, men ikke deriverbar i x = 0.

Oppgave 5

For hver av rekkene (i), (ii) og (iii), avgjør om den konvergerer eller divergerer.

- (i) $\sum_{n=1}^{\infty} \frac{n}{2^{n/2}}$
- (ii) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3+1}}$
- (iii) $\sum_{n=1}^{\infty} \left(\frac{(n+1)^n}{n^{n+1}}\right)^2$

Begrunn svaret.

Oppgave 6

Anta at $x \in [0, \frac{\pi}{4}]$, og vis at

$$\frac{d}{dx} \left(\ln \left(\frac{1 + \sin x}{\cos x} \right) \right) = \frac{1}{\cos x}.$$

Kurven \mathcal{C} består av grafen til

$$f(x) = \ln(\cos x)$$
 for $x \in \left[0, \frac{\pi}{4}\right]$.

Finn buelengden til \mathcal{C} . Vis utregningen.

Oppgave 7

En holme ligger 2 km fra strandkanten. 3 km fra punktet på stranda som er nærmest holmen ligger en hytte. (Se figur på neste side.) Hvis man ror med en fart på 3 km/time og går med en fart på 5 km/time, hvor langt fra hytta skal båten treffe stranda for å bruke minst tid totalt fra holmen til hytta? Hva er denne minimale tiden?

Oppgave 8

En beholder lages ved å rotere grafen til funksjonen $f(x) = \cosh x$ for $x \in [0, 1]$ om aksen y = -1. Finn arealet av den krumme delen av overflata til beholderen. Vis utregningen.

Tips: Det kan være lurt å gjøre bruk av identiteten $\cosh^2 x = \frac{1}{2}(1 + \cosh 2x)$.

Oppgave 9

La tallfølgen $\{a_n\}$ være definert ved

$$a_1 = 1,$$
 $a_{n+1} = \sqrt{6 + a_n}$ for $n \ge 1$.

Vis ved induksjon at $a_n < 3$ for alle $n \ge 1$. Vis deretter at $a_n < a_{n+1}$ for alle $n \ge 1$. Begrunn at dette medfører at følgen konvergerer.

Finn grenseverdien $a = \lim_{n \to \infty} a_n$.

Oppgave 10

Funksjonen $f(x) = x^4 + 2x^3 - 3x^2 - 4x + 4$ er definert for alle reelle tall. Bestem områdene der f vokser og der f avtar. Har f en største og en minste verdi? Begrunn svaret. Vis at grafen til f er symmetrisk om den rette linja $x = -\frac{1}{2}$.