

25.08.2008

HIT: 1 OF 1, Selected: 0 OF 0

© Thomson Scientific Ltd. DWPI

© Thomson Scientific Ltd. DWPI

Accession Number

1989-333432

Title Derwent

Comminuting rolls for brittle material - is centrifugally cast with wear-resistant outer cover followed by ductile back-up casting for core

Abstract Derwent

Unstructured:

Rolling mill for comminuting brittle ground material consists of two rolls with centrifugally cast outer layers (1) having good wear resistance and a ductile back-up layer (2) forming the core.Pref. the wear-resistant layer comprises in wt.% 0.001-1.5C; 0.5-8B; 1-8 Nb; 0.2-6Cr; 0.30NI; 0-10Mn; 0-6V; 0-5Mo; 0-5Si; balance Fe with 25-95 vol.% dispersed hard material or hard metal particles of 0.1-20mm dia.By producing a good bond between the core and outer layer, an extremely hard outer layer can be produced. ()

Assignee Derwent + PACO

KRUPP POLYSIUS AG KRPP-S

Inventor Derwent

ABEL P

Patent Family Information

DE3814433-A 1989-11-09

First Publication Date 1989-11-09

Priority Information

DE003814433 1988-04-28

Derwent Class

M21 M27 P41 P51

Manual Code

M21-A02A

International Patent Classification (IPC)

IPC Symbol	IPC Rev.	Class Level	IPC Scope
B02C-4/00	2006-01-01	I	C
B21B-27/00	2006-01-01	I	С
C22C-38/26	2006-01-01	I	С
C22C-38/32	2006-01-01	I	С
B02C-4/30	2006-01-01	I	Α
B21B-27/00	2006-01-01	I	Α
C22C-38/26	2006-01-01	I	Α
C22C-38/32	2006-01-01	I	Α

- No drawing available -

(9) BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 3814433 A1

DEUTSCHES PATENTAMT

(21) Aktenzeichen: P 38 14 433.6 (22) Anmeldetag: 28. 4. 88

4 Offenlegungstag: 9. 11. 89

(5) Int. Cl. 4; B 02 C 4/02

> B 02 C 4/28 B 02 C 4/30 B 21 B 27/02 C 22 C 38/58

(7) Anmelder:

Krupp Polysius AG, 4720 Beckum, DE

(74) Vertreter:

Tetzner, V., Dipl.-Ing. Dr.-Ing. Dr.jur., Pat.- u. Rechtsanw., 8000 München

② Erfinder:

Abel, Paul, Dipl.-Ing., 4720 Beckum, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE-PS 6 09 718 11 36 558 DE-AS DE 37 25 267 A1 DE 35 43 601 A1 DE 35 15 198 A1 DE-OS 23 17 290 DE-OS 22 03 905 DE-GM 18 79 279 GB 14 50 303 DE-AN D7466, 50c, 13/10;

(54) Walzenmühle sowie Verfahren zur Beschichtung einer Walze

Die Erfindung betrifft eine Walzenmühle, bei der die Mantelfläche eine im Schleudergießverfahren aus einem besonders verschleißfesten Material hergestellte Verschleißschicht aufweist, die mit einem den Kern des Walzenmantels bildenden duktilen Werkstoff hintergossen ist. Ein derartiger Walzenmantel zeichnet sich durch eine besonders hohe Verschleißfestigkeit aus.

Beschreibung

Die Erfindung betrifft eine Walzenmühle (entsprechend dem Oberbegriff des Anspruches 1) sowie ein Verfahren (gemäß dem Gattungsbegriff des Anspruches 4) zur Herstellung des mit einer Verschleißschicht versehenen Walzenmantels einer Walzenmühle.

Die zur Zerkleinerung von sprödem Mahlgut dienenden, mit hohem Druck gegeneinander gepreßten Walzen von Walzenmühlen unterliegen einem hohen Ver- 10 einen erfindungsgemäßen Walzenmantel veranschauschleiß. Bisher werden diese Walzen entweder aus verschleißfestem Guß oder aus Schmiedestahl mit einem aufgeschweißten, verschleißhemmenden Hartauftrag hergestellt. Beide Herstellungsarten haben den Nachteil, daß aus physikalischen Gründen kaum Härten > 63 HRc erreicht werden können, womit dem Verschleißwiderstand eine natürliche Grenze gesetzt ist.

Die Aufbringung von höherwertigen Verschleißschutzschichten, beispielsweise aus Hartmetall, scheitert bisher an einer zuverlässigen (und damit aus Gründen 20 der Betriebssicherheit vertretbaren) mechanischen Verbindung

Der Erfindung liegt daher die Aufgabe zugrunde, eine Walzenmühle entsprechend dem Oberbegriff des Anspruches 1 bzw. ein Verfahren gemäß dem Gattungsbe- 25 griff des Anspruches 4 so auszubilden, daß extrem hohe Härten der Beschichtung erzielbar sind.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale der Ansprüche 1 bzw. 4 gelöst. Zweckmäßige Ausgestaltungen der Erfindung 30 sind Gegenstand der Unteransprüche.

Die Erfindung macht von der Erkenntnis Gebrauch, daß verschleißbeständige Verbundkörper durch Eingießen von Hartmetallschrot in eine Gußform hergestellt werden können (vgl. DE-B- 33 15 125). Mit diesem Ver- 35 fahren lassen sich Schichten mit einer Härte bis zu etwa 1100 HV erzielen.

Die Herstellung des mit einer Verschleißschicht versehenen Walzenmantels erfolgt erfindungsgemäß im Schleudergießverfahren. Hierbei wird zunächst die Ver- 40 schleißschicht aus einem besonders verschleißfesten Material hergestellt und anschließend diese Verschleißschicht mit einem den Kern des Walzenmantels bildenden, duktilen Werkstoff hintergossen.

In der ersten Stufe des Verfahrens wird zur Herstel- 45 lung der Verschleißschicht eine Hartmetall-Flüssigstahl-Kombination in die sich drehende horizontale oder vertikale Gießform eingeschleudert. Die eingebrachte Menge bestimmt die Verschleißschichtstärke.

Dann wird in der zweiten Stufe des Verfahrens der 50 erforderliche Restquerschnitt mit einem in den mechanischen Gütewerten bestimmbaren, duktilen Werkstoff hintergossen.

Die äußere Form des so hergestellen Walzenmantels bzw. Walzenkörpers bedarf keiner mechanischen Nach- 55 arbeit. Der aus dem Hinterguß bestehende Restkörper kann mit herkömmlichen Mitteln einfach bearbeitet werden.

Der zur Herstellung der Verschleißschicht dienende Basiswerkstoff kann aus 0,001 bis 1,5 Gew.-% Kohlen- 60 stoff, 0,5 bis 8 Gew.-% Bor, 1 bis 8 Gew.-% Niob, 0,2 bis 6 Gew.-% Chrom, 0 bis 30 Gew.-% Nikkel, 0 bis 10 Gew.-% Mangan, 0 bis 6 Gew.-% Vanadin, 0 bis 5 Gew.-% Molybdän, 0 bis 5 Gew.-% Silicium sowie Rest Eisen zusammengesetzt sein, wobei die Hartstoff- und 65 Hartmetallteilchen einen Durchmesser von 0.1 bis 20 mm aufweisen. Der Anteil der Hartstoff- und Hartmetallteilchen in der Verschleißbeständigen Zone kann

zwischen 25 und 95 Vol.-% liegen.

Denkbar ist auch, als Basiswerkstoff zur Einbettung der Hartstoff- und Hartmetallteilchen normale Kohlenstoffstähle in der erforderlichen Festigkeit zu verwen-

Als Werkstoff für den Kern des Walzenmantels können Kohlenstoffstähle, legierte Stähle, Kugelgraphitguß oder Grauguß verwendet werden.

In der Zeichnung ist schematisch ein Schnitt durch licht. Er enthält eine äußere Verschleißschicht 1 und einen als Trägermaterial für die Verschleißschicht 1 dienenden Kern 2.

Im Rahmen der Erfindung ist es möglich, nicht nur 15 einen Walzenmantel in der beschriebenen Weise zu fertigen, sondern den Hinterguß mit duktilem Werkstoff bis zu den Wellenzapfen von Vollwalzen auszuführen.

Patentansprüche

- 1. Walzenmühle zur Zerkleinerung von sprödem Mahlgut, enthaltend zwei gegensinnig angetriebene, mit hohem Druck gegeneinander gepreßte Walzen, deren Mantelfläche mit einer Verschleißschicht versehen ist, dadurch gekennzeichnet, daß die Verschleißschicht (1) im Schleudergießverfahren aus einem besonders verschleißfesten Material hergestellt und mit einem den Kern (2) des Walzenmantels bildenden, duktilen Werkstoff hintergossen
- 2. Walzenmühle nach Anspruch 1, wobei die Verschleißschicht aus einem Basiswerkstoff mit darin eingebetteten Hartstoff- und Hartmetallteilchen besteht, dadurch gekennzeichnet, daß der Basiswerkstoff aus 0,001 bis 1,5 Gew.-% Kohlenstoff, 0,5 bis 8 Gew.-% Bor, 1 bis 8 Gew.-% Niob, 0,2 bis 6 Gew.-% Chrom, 0 bis 30 Gew.-% Nickel, 0 bis 10 Gew.-% Mangan, D bis 6 Gew.-% Vanadin, 0 bis 5 Gew.-% Molybdan, 0 bis 5 Gew.-% Silicium sowie Rest Eisen zusammengesetzt ist, daß die Hartstoffund Hartmetallteilchen einen Durchmesser von 0,1 bis 20 mm aufweisen und daß der Anteil der Hartstoff- und Hartmetallteilchen in der verschleißbeständigen Zone zwischen 25 und 95 Vol.-% liegt.
- 3. Walzenmühle nach Anspruch 1, dadurch gekennzeichnet, daß als Werkstoff für den Kern (2) des Walzenmantels Kohlenstoffstähle, legierte Stähle, Kugelgraphitguß oder Grauguß vorgesehen sind. 4. Walzenmühle nach Anspruch 1, dadurch gekennzeichnet, daß der hintergossene duktile Werkstoff
- bis zu den Wellenzapfen von Vollwalzen reicht. 5. Verfahren zur Herstellung des mit einer Verschleißschicht (1) versehenen Walzenmantels einer Walzenmühle, dadurch gekennzeichnet, daß im Schleudergießverfahren zunächst die Verschleißschicht (1) aus einem besonders verschleißfesten Material hergestellt und anschließend diese Verschleißschicht (1) mit einem mindestens den Kern

(2) des Walzenmantels bildenden, duktilen Werkstoff hintergossen wird.

Nummer: Int. Cl.⁴: Anmeldetag: Offenlegungstag: 38 14 433 B 02 C 4/02 28. April 1988 9. November 1989

6 *

