Metoda Hooke'a - Jeevesa

Metody optymalizacji

Schemat działania na przykładzie $f(x_1, x_2)$

W metodzie wyróżnić można dwa zasadnicze etapy: próbny oraz roboczy. Podczas etapu próbnego następuje badanie zachowania funkcji wokół punktu roboczego we wszystkich kierunkach bazy ortogonalnej. Etap roboczy następuje, gdy przynajmniej jeden z kroków etapu próbnego zakończył się sukcesem (tzn. osiągnęliśmy wartość funkcji lepszą niż w punkcie bazowym).

Jeżeli żaden z kroków etapu próbnego nie przyniósł oczekiwanego rezultatu, jest on powtarzany przy zmniejszonym kroku *e*. Jako kryterium stopu stosuje się długość kroku *e*, kończymy obliczenia w momencie gdy aktualna długość jest mniejsza od zadanej dokładności ε.

Dane

- $x^{(0)}$ -punkt startowy, $x^{(B0)}$, $x^{(B)}$ punkty bazowe
- $\xi_1, \xi_2, \dots, \xi_n$ baza wektorów ortogonalnych:

$$\xi_1 = (1; 0; ...; 0), \xi_2 = (0; 1; ...; 0), ..., \xi_n = (0; 0; ...; 1),$$

- e początkowa długość kroku,
- β współczynnik zmniejszenia kroku ($0 < \beta < 1$),
- ε dokładność obliczeń,
- n liczba zmiennych niezależnych,
- $f(x) = f(x_1; x_2; ...; x_n)$ optymalizowana funkcja

Etap próbny (poszukiwanie minimum)

- 1. Podstaw j = 1, oblicz wartości funkcji $f^{(0)} = f(\mathbf{x}^{(0)})$, $f^{(B)} = f(\mathbf{x}^{(B)})$
- 2. Wykonaj krok próbny w kierunku ξ_i : $x^{(j)} = x^{(j-1)} + e \cdot \xi_i$ oraz oblicz $f = f(x^{(j)})$
- 3. Jeżeli $f < f^{(0)}$ to podstaw $f^{(0)} = f$ i przejdź do punktu 5, w p. p. wykonaj krok próbny w przeciwnym kierunku: $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} 2e \cdot \boldsymbol{\xi}_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$
- 4. Jeżeli $f < f^{(0)}$ to podstaw $f^{(0)} = f$, w p. p. $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} + e \cdot \boldsymbol{\xi}_j$
- 5. Jeżeli $j \neq n$ to j = j + 1 i wróć do kroku 2, w p. p. zbadaj, czy wystąpiły kroki pomyślne ($f^{(B)} > f^{(0)}$)
- 6. Jeżeli tak, to wykonaj etap roboczy dla $x^{(j)}$, w p. p.:
- 7. Jeżeli $e > \varepsilon$, to przy pierwszej iteracji zmień punkt startowy, a przy następnych zmniejsz długość kroku $e = \beta e$, podstaw $\mathbf{x}^{(0)} = \mathbf{x}^{(B)}$ i wróć do kroku 1

Etap próbny (poszukiwanie maksimum)

- 1. Podstaw j = 1, oblicz wartości funkcji $f^{(0)} = f(\mathbf{x}^{(0)})$, $f^{(B)} = f(\mathbf{x}^{(B)})$
- 2. Wykonaj krok próbny w kierunku ξ_i : $x^{(j)} = x^{(j-1)} + e \cdot \xi_i$ oraz oblicz $f = f(x^{(j)})$
- 3. Jeżeli $f > f^{(0)}$ to podstaw $f^{(0)} = f$ i przejdź do punktu 5, w p. p. wykonaj krok próbny w przeciwnym kierunku: $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} 2e \cdot \boldsymbol{\xi}_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$
- 4. Jeżeli $f > f^{(0)}$ to podstaw $f^{(0)} = f$, w p. p. $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} + e \cdot \boldsymbol{\xi}_j$
- 5. Jeżeli $j \neq n$ to j = j + 1 i wróć do kroku 2, w p. p. zbadaj, czy wystąpiły kroki pomyślne ($f^{(B)} < f^{(0)}$)
- 6. Jeżeli tak, to wykonaj etap roboczy dla $x^{(j)}$, w p. p.:
- 7. Jeżeli $e > \varepsilon$, to przy pierwszej iteracji zmień punkt startowy, a przy następnych zmniejsz długość kroku $e = \beta e$, podstaw $\mathbf{x}^{(0)} = \mathbf{x}^{(B)}$ i wróć do kroku 1

Etap roboczy

- 1. Podstaw $x^{(B0)} = x^{(B)}$ oraz $x^{(B)} = x^{(j)}$
- 2. Wykonaj krok roboczy:

$$x^{(0)} = x^{(B)} + (x^{(B)} - x^{(B0)}) = 2x^{(B)} - x^{(B0)}$$

Przykład (Dane)

•
$$f(x) = f(x_1, x_2) = 2.5(x_1^2 - x_2)^2 + (1 - x_1)^2$$

•
$$x^{(B)} = x^{(B0)} = x^{(0)} = (-0.5;1)$$
,

•
$$\xi_1 = (1; 0), \quad \xi_2 = (0; 1),$$

•
$$e = 0.5$$
,

•
$$\beta = 0.5$$
,

•
$$\varepsilon = 0.01$$
,

•
$$n = 2$$
,

• poszukiwane minimum (1; 1)

Przykład (I etap próbny)

- 1. Podstaw j = 1, oblicz wartości funkcji $f^{(0)} = f(\mathbf{x}^{(0)}) = 3,65625$ $f^{(B)} = f(\mathbf{x}^{(B)}) = 3,65625$,
- 2. Wykonaj krok próbny w kierunku ξ_j : $\mathbf{x}^{(j)} = \mathbf{x}^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$,

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + e \cdot \boldsymbol{\xi}_1 = (-0.5; 1) + 0.5 \cdot (1; 0) = (0; 1) \quad f = f(0; 1) = 3.5$$

- 3. Jeżeli $f < f^{(0)}$ (3,5 < 3,65625) to podstaw $f^{(0)} = f = 3,5$ i przejdź do punktu 5,
- 5. Jeżeli $j \neq n$ ($1 \neq 2$) to j = j + 1 = 2 i wróć do kroku 2.

Przykład (I etap próbny)

- 2. Wykonaj krok próbny w kierunku ξ_j : $x^{(j)} = x^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(x^{(j)})$ $x^{(2)} = x^{(1)} + e \cdot \xi_2 = (0; 1) + 0, 5 \cdot (0; 1) = (0; 1, 5) \qquad f = f(0; 1, 5) = 6,625$
- 3. Jeżeli $f < f^{(0)}$ (6,625 < 3,5 NIE!), w p. p. wykonaj krok próbny w przeciwnym kierunku: $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} 2e \cdot \boldsymbol{\xi}_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$ $\mathbf{x}^{(2)} = \mathbf{x}^{(2)} 2e \cdot \boldsymbol{\xi}_2 = (0; 1,5) 2 \cdot 0, 5 \cdot (0; 1) = (0; 0,5)$ f = f(0; 0,5) = 1,625
- 4. Jeżeli $f < f^{(0)}$ (1,625 < 3,5) to podstaw $f^{(0)} = f = 1,625$,
- 5. Jeżeli $j \neq n$ (2 = 2), w p. p. zbadaj, czy wystąpiły kroki pomyślne $f^{(B)} > f^{(0)}$ (3,65625 > 1,625)
- 6. Jeżeli tak, to wykonaj etap roboczy

Przykład (I etap roboczy)

1. Podstaw:

$$\mathbf{x}^{(B0)} = \mathbf{x}^{(B)} = (-0,5; 1)$$
 $\mathbf{x}^{(B)} = \mathbf{x}^{(j)} = (0; 0,5)$

2. Wykonaj krok roboczy:

$$\mathbf{x}^{(0)} = \mathbf{x}^{(B)} + (\mathbf{x}^{(B)} - \mathbf{x}^{(B0)}) = 2\mathbf{x}^{(B)} - \mathbf{x}^{(B0)}$$

 $\mathbf{x}^{(0)} = 2 \cdot (0; 0, 5) - (-0, 5; 1) = (0, 5; 0)$

Przykład (II etap próbny)

- 1. Podstaw j = 1, oblicz wartości funkcji $f^{(0)} = f(\mathbf{x}^{(0)}) = 0,40625$, $f^{(B)} = f(\mathbf{x}^{(B)}) = 1,625$
- 2. Wykonaj krok próbny w kierunku ξ_j : $x^{(j)} = x^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(x^{(j)})$ $x^{(1)} = x^{(0)} + e \cdot \xi_1 = (0,5; 0) + 0,5 \cdot (1; 0) = (1; 0)$ f = f(1; 0) = 2,5
- 3. Jeżeli $f < f^{(0)}$ (2.5 > 0.40625), w p. p. wykonaj krok próbny w przeciwnym kierunku: $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} 2e \cdot \boldsymbol{\xi}_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$ $\mathbf{x}^{(1)} = \mathbf{x}^{(1)} 2e \cdot \boldsymbol{\xi}_j = (1; 0) 2 \cdot 0.5 \cdot (1; 0) = (0; 0) \quad f = f(0; 0) = 1$
- 4. Jeżeli $f < f^{(0)}$ (1 > 0.40625), w p. p. $x^{(j)} = x^{(j)} + e \cdot \xi_j$ $x^{(1)} = x^{(1)} + e \cdot \xi_1 = (0; 0) + 0.5 \cdot (1; 0) = (0.5; 0)$ f = f(0.5; 0) = 0.40625
- 5. Jeżeli $j \neq n$ $(1 \neq 2)$ to j = j + 1 = 2 i wróć do kroku 2,

Przykład (II etap próbny)

- 2. Wykonaj krok próbny w kierunku ξ_j : $\mathbf{x}^{(j)} = \mathbf{x}^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$ $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + e \cdot \xi_2 = (0,5; 0) + 0,5 \cdot (0; 1) = (0,5; 0,5)$ f = f(0,5; 0,5) = 0,40625
- 3. Jeżeli $f < f^{(0)}$ (0.40625 = 0.40625), w p. p. wykonaj krok próbny w kierunku przeciwnym: $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} 2\mathbf{e} \cdot \boldsymbol{\xi}_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$ $\mathbf{x}^{(2)} = \mathbf{x}^{(2)} 2\mathbf{e} \cdot \boldsymbol{\xi}_2 = (0.5; 0.5) 2 \cdot 0.5 \cdot (0; 1) = (0.5; -0.5) \qquad f = f(0.5; -0.5) = 1.65625$
- 4. Jeżeli $f < f^{(0)}$ (1,65625 > 0,40625), w p. p. $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} + e \cdot \boldsymbol{\xi}_j$ $\mathbf{x}^{(2)} = \mathbf{x}^{(2)} + e \cdot \boldsymbol{\xi}_2 = (0,5; -0,5) + 0,5 \cdot (0; 1) = (0,5; 0)$ f = f(0,5; 0) = 0,40625
- 5. Jeżeli $j \neq n$ (2 = 2), w p. p. zbadaj, czy wystąpiły kroki pomyślne $f^{(B)} > f^{(0)} \qquad \qquad (1,625 > 0,40625)$
- 6. Jeżeli tak, to wykonaj etap roboczy

Przykład (II etap roboczy)

1. Podstaw:

$$\mathbf{x}^{(BO)} = \mathbf{x}^{(B)} = (0; 0, 5)$$
 $\mathbf{x}^{(B)} = \mathbf{x}^{(j)} = (0, 5; 0)$

2. Wykonaj krok roboczy:

$$\mathbf{x}^{(0)} = \mathbf{x}^{(B)} + (\mathbf{x}^{(B)} - \mathbf{x}^{(B0)}) = 2\mathbf{x}^{(B)} - \mathbf{x}^{(B0)}$$

 $\mathbf{x}^{(0)} = 2 \cdot (0,5; 0) - (0;0,5) = (1; -0,5)$

Przykład (III etap próbny)

- 1. Podstaw j = 1, oblicz wartości funkcji $f^{(0)} = f(\mathbf{x}^{(0)}) = 5,625$, $f^{(B)} = f(\mathbf{x}^{(B)}) = 0,40625$
- 2. Wykonaj krok próbny w kierunku ξ_j : $\mathbf{x}^{(j)} = \mathbf{x}^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$ $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + e \cdot \xi_1 = (1; -0.5) + 0.5 \cdot (1; 0) = (1.5; -0.5) \quad f = f(1.5; -0.5) = 19.15625$
- 3. Jeżeli $f < f^{(0)}$ (19,15625 > 5,625), w p. p. wykonaj krok próbny w przeciwnym kierunku: $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} 2e \cdot \boldsymbol{\xi}_i$ oraz oblicz $f = f(\mathbf{x}^{(j)})$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(1)} - 2e \cdot \boldsymbol{\xi}_1 = (1.5; -0.5) - 2 \cdot 0.5 \cdot (1; 0) = (0.5; -0.5) \quad f = f(0.5; -0.5) = 1.515625$$

- 4. Jeżeli $f < f^{(0)}$ (1,515625 < 5,625) to podstaw $f^{(0)} = f = 1,515625$,
- 5. Jeżeli $j \neq n$ $(1 \neq 2)$ to j = j + 1 = 2 i wróć do kroku 2,

Przykład (III etap próbny)

- 2. Wykonaj krok próbny w kierunku ξ_j : $x^{(j)} = x^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(x^{(j)})$ $x^{(2)} = x^{(1)} + e \cdot \xi_2 = (0,5; -0,5) + 0,5 \cdot (0; 1) = (0,5; 0)$ f = f(0,5; 0) = 0,40625
- 3. Jeżeli $f < f^{(0)}$ (0,40625 < 1,515625), to podstaw $f^{(0)} = f = 0,40625$ i przejdź do punktu 5
- 5. Jeżeli $j \neq n$ (2 = 2), w p. p. zbadaj, czy wystąpiły kroki pomyślne $f^{(B)} > f^{(0)} \qquad (0.40625 = 0.40625)$
- 6. w p.p.
- 7. Jeżeli $e > \varepsilon$ (0.5 > 0.01), zmniejsz długość kroku $e = 0.5 \cdot 0.5 = 0.25$, podstaw $\mathbf{x}^{(0)} = \mathbf{x}^{(B)} = (0.5; 0)$ i wróć do kroku 1

Przykład (IV etap próbny)

- 1. Podstaw j = 1, oblicz wartości funkcji $f^{(0)} = f(\mathbf{x}^{(0)}) = 0,40625$, $f^{(B)} = f(\mathbf{x}^{(B)}) = 0,40625$
- 2. Wykonaj krok próbny w kierunku ξ_j : $\mathbf{x}^{(j)} = \mathbf{x}^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$, $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + e \cdot \xi_1 = (0,5; 0) + 0,25 \cdot (1; 0) = (0,75; 0)$ f = f(0,75; 0) = 0,8535
- 3. Jeżeli $f < f^{(0)}$ (0.8535 > 0.40625) w p. p. wykonaj krok próbny w przeciwnym kierunku: $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} 2\mathbf{e} \cdot \boldsymbol{\xi}_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$ $\mathbf{x}^{(1)} = \mathbf{x}^{(1)} 2\mathbf{e} \cdot \boldsymbol{\xi}_j = (0.75; 0) 2 \cdot 0.25 \cdot (1; 0) = (0.25; 0) \quad f = f(0.25; 0) = 0.5723$
- 4. Jeżeli $f < f^{(0)}$ (0,5723 < 0,40625), w p. p. $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} + e \cdot \boldsymbol{\xi}_j$ $\mathbf{x}^{(2)} = \mathbf{x}^{(2)} + e \cdot \boldsymbol{\xi}_2 = (0,25;0) + 0,25 \cdot (1;0) = (0,5;0)$ f = f(0,5;0) = 0,40625
- 5. Jeżeli $j \neq n$ $(1 \neq 2)$ to j = j + 1 = 2 i wróć do kroku 2,

Przykład (IV etap próbny)

2. Wykonaj krok próbny w kierunku ξ_j : $x^{(j)} = x^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(x^{(j)})$

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + e \cdot \boldsymbol{\xi}_2 = (0,5;0) + 0,25 \cdot (0;1) = (0,5;0,25)$$
 $f = f(0,5;0,25) = 0,25$

- 3. Jeżeli $f < f^{(0)}$ (0.25 < 0.40625), to podstaw $f^{(0)} = f = 0.25$ i przejdź do punktu 5
- 5. Jeżeli $j \neq n$ (2 = 2), w p. p. zbadaj, czy wystąpiły kroki pomyślne $f^{(B)} > f^{(0)} \qquad (0.40625 > 0.25)$
- 6. Jeżeli tak, to wykonaj etap roboczy

Przykład (III etap roboczy)

1. Podstaw:

$$\mathbf{x}^{(B0)} = \mathbf{x}^{(B)} = (0,5; 0)$$
 $\mathbf{x}^{(B)} = \mathbf{x}^{(j)} = (0,5; 0,25)$

2. Wykonaj krok roboczy:

$$\mathbf{x}^{(0)} = \mathbf{x}^{(B)} + (\mathbf{x}^{(B)} - \mathbf{x}^{(B0)}) = 2\mathbf{x}^{(B)} - \mathbf{x}^{(B0)}$$

 $\mathbf{x}^{(0)} = 2 \cdot (0,5; 0,25) - (0,5; 0) = (0,5; 0,5)$

Przykład (V etap próbny)

- 1. Podstaw j = 1, oblicz wartości funkcji $f^{(0)} = f(\mathbf{x}^{(0)}) = 0,40625$, $f^{(B)} = f(\mathbf{x}^{(B)}) = 0,25$
- 2. Wykonaj krok próbny w kierunku ξ_j : $\mathbf{x}^{(j)} = \mathbf{x}^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$,

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + e \cdot \boldsymbol{\xi}_1 = (0,5; 0,5) + 0.25 \cdot (1; 0) = (0,75; 0,5)$$
 $f = f(0,75; 0,5) = 0.0723$

- 3. Jeżeli $f < f^{(0)}$ (0.0723 < 0.40625) to podstaw $f^{(0)} = f = 0.0723$ i przejdź do punktu 5,
- 5. Jeżeli $j \neq n$ ($1 \neq 2$) to j = j + 1 = 2 i wróć do kroku 2.

Przykład (V etap próbny)

- 2. Wykonaj krok próbny w kierunku ξ_j : $\mathbf{x}^{(j)} = \mathbf{x}^{(j-1)} + e \cdot \xi_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$ $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + e \cdot \xi_2 = (0,75;0,5) + 0,25 \cdot (0;1) = (0,75;0,75)$ f = f(0,75;0,75) = 0,1504
- 3. Jeżeli $f < f^{(0)}$ (0.1504 > 0.0723), w p. p. wykonaj krok próbny w kierunku przeciwnym: $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} 2e \cdot \boldsymbol{\xi}_j$ oraz oblicz $f = f(\mathbf{x}^{(j)})$ $\mathbf{x}^{(2)} = \mathbf{x}^{(2)} 2e \cdot \boldsymbol{\xi}_2 = (0.75; 0.75) 2 \cdot 0.25 \cdot (0; 1) = (0.75; 0.25) \qquad f = f(0.75; 0.25) = 0.3065$
- 4. Jeżeli $f < f^{(0)}$ (0,3065 > 0,0723), w p. p. $\mathbf{x}^{(j)} = \mathbf{x}^{(j)} + e \cdot \boldsymbol{\xi}_j$ $\mathbf{x}^{(2)} = \mathbf{x}^{(2)} + e \cdot \boldsymbol{\xi}_2 = (0,75; 0.25) + 0,25 \cdot (0; 1) = (0,75; 0.5)$ f = f(0,5; 0) = 0,0723
- 5. Jeżeli $j \neq n$ (2 = 2), w p. p. zbadaj, czy wystąpiły kroki pomyślne $f^{(B)} > f^{(0)} \qquad (0.25 > 0.0723)$
- б. Jeżeli tak, to wykonaj etap roboczy itd...