## Quiz-2: Analog Electronic Circuits (S25.EC2.103)

NOTE: No query allowed during the exam. Write your assumptions (if any) for each question.

 ${f Q1}.$  Determine the region of operation of MOSFET (M1) in each of the circuits shown in Fig. below.



Q2. Referring to Fig. Q2 below and assume  $V_D > 0$ ,

[5 Marks]



- (a) Sketch the electron density in the channel as a function of x.
- (b) Sketch the local resistance of the channel (per unit length) as function of x.

Q3 (a). What is the effect of temperature on MOSFET. Discuss through the basic MOS equation, e.g. how your ID get effected with rise in temperature when the MOSFET is in Saturation? [2 Marks]

(b). Pick the right option [(I)-(IV)]

[4 Marks]

- (I). The capacitances in MOSFET occurs due to \_
  - i. Interconnects
  - Difference in Doping concentration ii.
  - Difference in dopant materials iii.
  - All of the mentioned iv.
- (II). The parasitic capacitances found in MOSFET are
  - Oxide related capacitances i.
  - ii. Inter electrode capacitance

- iii. Electrolytic capacitance
- iv. All of the mentioned

(III). In Cut-off region (assume MOS is in accumulation), the capacitance Cgs will be equal to

- i. 2C<sub>GD0</sub>
- ii. Coso.W
- iii. CGB
- iv. All of the mentioned

(IV). In saturation mode operation, gate to drain capacitance (channel) is considered zero due to\_\_\_\_\_

- i. Gate and drain are interconnected
- ii. Channel length is reduced
- iii. Inversion layer doesn't exist
- iv. Drain is connected to ground

**Q4.** In the Fig.Q4, what is the minimum allowable value of  $V_{DD}$  if M1 must not enter the triode region?

Assume  $\lambda=0$ ,  $V_{TH}=0.4V$ ,  $\mu_n C_{ox}=200 \mu A/V^2$ 

[5 Marks]

$$R_{D} \ge 500 \Omega$$

$$1 \lor \frac{1}{1} = \frac{10}{0.18}$$

Fig. Q4

**Q5.** Sketch  $I_X$  as a function of  $V_X$  for the circuits shown in Fig. Q5. Assume  $V_X$  goes from 0 to VDD=1.8V. Determine at what value of  $V_X$  the device changes its region of operation. Consider  $\lambda$ =0,  $V_{TH}$ = 0.4V. [6 Marks]



Fig. Q5