

Навчання з підкріпленням

Лекція 5: Методи апроксимації функції цінності

Кочура Юрій Петрович iuriy.kochura@gmail.com @y_kochura

Сьогодні

- Вступ
- Інкрементні методи
- Пакетні методи

Вступ

High-dimensional state spaces

Continuous state spaces

Its state space is comprised of four variables:

- The cart position on the track (x-axis) with a range from -2.4 to 2.4
- The cart velocity along the track (x-axis) with a range from –inf to inf
- The pole angle with a range of ~-40 degrees to ~ 40 degrees
- · The pole velocity at the tip with a range of -inf to inf

There are two available actions in every state:

- Action 0 applies a –1 force to the cart (push it left)
- Action 1 applies a +1 force to the cart (push it right)

You reach a terminal state if

- The pole angle is more than 12 degrees away from the vertical position
- The cart center is more than 2.4 units from the center of the track
- The episode count reaches 500 time steps (more on this later)

The reward function is

· +1 for every time step

Апроксимація функцій має переваги

Апроксимація функцій має переваги

A state-value function with and without function approximation

- (1) Imagine this state-value function.
- (a) Without function approximation, each value is independent.
- (3) With function approximation, the underlying relationship of the states can be learned and exploited.

V = [-2.5, -1.1, 0.7, 3.2, 7.6]

(4) The benefit of using function approximation is particularly obvious if you imagine these plots after even a single update.

(7) Of course, this is a simplified example, but it helps illustrate what's happening. What would be different in "real" examples?

First, if we approximate an action-value function, Q, we'd have to add another dimension.

Also, with a non-linear function approximator, such as a neural network, more complex relationships can be discovered.

Апроксимація функцій має переваги

BOIL IT DOWN

Reasons for using function approximation

Our motivation for using function approximation isn't only to solve problems that aren't solvable otherwise, but also to solve problems more efficiently.

_

First decision point: Selecting a value function to approximate

- ullet The state-value function v(s)
- ullet The action-value function q(s,a)
- ullet The action-advantage function a(s,a)

Which Function Approximator?

There are many function approximators, e.g.

- Linear combinations of features
- Neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases

• ...

Джерело: David Silver.

Which Function Approximator?

We consider differentiable function approximators, e.g.

- Linear combinations of features
- Neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases

• ...

Джерело: David Silver.

Second decision point: Selecting a neural network architecture

State-action-in-value-out architecture

Second decision point: Selecting a neural network architecture

State-in-values-out architecture

Third decision point: Selecting what to optimize

(1) An ideal objective in valuebased deep reinforcement learning would be to minimize the loss with respect to the optimal action-value function q*.

an estimate of q*, q, that tracks exactly that optimal function.

(a) we want to have

$$L_i(\theta_i) = \mathbb{E}_{s,a} \left[\left(q_*(s,a) - Q(s,a;\theta_i) \right)^2 \right]$$

(4) Obviously, I'm not talking about having access to q*so that we can use it; otherwise, there's no need for learning. I'm talking about access to sampling the q*some way: regression-style mL.

(3) If we had a solid estimate of q*, we then could use a greedy action with respect to these estimates to get near-optimal behavior—only if we had that q*.

Fourth decision point: Selecting the targets for policy evaluation

MC, TD, *n*-step, and lambda targets

MC

(1) mc: you use all reward found in a trajectory from a start state to the terminal state.

TD

(a) TD: you use the value of the next state as an estimate of all reward to go.

N-step (n=2)

(3) N-step is like TD, but instead of bootstrapping after one step, you use "n" steps. Lambda

(4) Lambda target mixes in an exponentially decaying fashion all n-step targets into one.

(5) We will be using I the TD target.

Fifth decision point: Selecting an exploration strategy

Another thing we need to decide is which policy improvement step to use for our generalized policy iteration needs.

I Speak Python Epsilon-greedy exploration strategy (1) The select_action function of the epsilon-greedy class EGreedyStrategy(): strategy's tarts by pulling out the Q-values for state s. <...> **def** select action(self, model, state): with torch.no grad(): q values = model(state).cpu().detach() q values = q values.data.numpy().squeeze() (a) I make the values "NumPy friendly" and remove an extra dimension. if np.random.rand() > self.epsilon: (3) Then, get a random number and, if greater action = np.argmax(q values) than epsilon, act greedily. else: action = np.random.randint(len(q values)) (4) Otherwise, act randomly in the number of actions. (5) NOTE: I always query the model to calculate stats. But, return action you shouldn't do that if your goal is performance!

Sixth decision point: Selecting a loss function

- L1
- L2, MSE
- ..

Seventh decision point: Selecting an optimization method

- Batch gradient descent
- Mini-batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent vs. momentum

Batch gradient descent

- Let $J(\mathbf{w})$ be a differentiable function of parameter vector w
- Define the *gradient* of $J(\mathbf{w})$ to be

$$abla_{\mathbf{w}} J(\mathbf{w}) = egin{pmatrix} rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \ dots \ rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$

- To find a local minimum of $J(\mathbf{w})$
- Adjust w in direction of -ve gradient

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter

Джерело: David Silver. 22/30

Batch gradient descent

Mini-batch gradient descent

Stochastic gradient descent

Mini-batch gradient descent vs. momentum

Ψ!

It's IN THE DETAILS

The full neural fitted Q-iteration (NFQ) algorithm

Currently, we've made the following selections:

- Approximate the action-value function $Q(s,a;\theta)$.
- Use a state-in-values-out architecture (nodes: 4, 512,128, 2).
- Optimize the action-value function to approximate the optimal action-value function $q^*(s,a)$.
- Use off-policy TD targets $(r + \gamma^* max a'Q(s', a'; \theta))$ to evaluate policies.
- Use an epsilon-greedy strategy (epsilon set to 0.5) to improve policies.
- Use mean squared error (MSE) for our loss function.
- Use RMSprop as our optimizer with a learning rate of 0.0005.

NFQ has three main steps:

- 1. Collect E experiences: (s, a, r, s', d) tuples. We use 1024 samples.
- 2. Calculate the off-policy TD targets: $r + \gamma^* max_a' Q(s', a'; \theta)$.
- 3. Fit the action-value function $Q(s,a;\theta)$ using MSE and RMSprop.

This algorithm repeats steps 2 and 3 *K* number of times before going back to step 1. That's what makes it fitted: the nested loop. We'll use 40 fitting steps *K*.

Демо

Література

- David Silver, Lecture 6: Value Function Approximation. [video], [slides]
- Reinforcement Learning: An Introduction Chapter 9: On-policy Prediction with Approximation
- Reinforcement Learning: An Introduction Chapter 10: On-policy Control with Approximation
- Tutorial: Introduction to Reinforcement Learning with Function Approximation

Кінець