The Function Spaces \mathcal{L}^p

Morten Tryti Berg and Isak Cecil Onsager Rukan.

March 6, 2024

Assume V is a vector space over $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$.

Definition 13.14. A seminorn on V is a map $p: V \to [0, +\infty)$ s.t.

- (1) $p(cx) = |c|p(x) \ \forall x \in V, \forall c \in \mathbb{K}.$
- (2) $p(x+y) \le p(x) + p(y) \ \forall x, y \in V$. triangle inequality.

A seminorm is called a norm if we also have

$$p(x) = 0 \iff x = 0.$$

A norm is commonly denoted ||x||, and a vectorspace equipped with a norm is called a **normed space**.

Definition 13.15. Assume (X,d) is a measure space. Fix $1 \leq p \leq \infty$. For every measurable function $f: X \to \mathbb{C}$ we define the following

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p} \in [0, +\infty].$$
 (1)

We can see that $||cf||_p = |c|||f||_p \ \forall c \in \mathbb{C}$.

Lemma 13.16.

$$||f+g||_p \le ||f||_p + ||g||_p.$$
 (2)

Definition 13.17. We define

$$\mathcal{L}^p(X, d\mu) = \{ f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_p < \infty \}.$$
 (3)

This is a vector space with seminorm $f \mapsto ||f||_p$. And in general this is not a normed space, since $||f||_p = 0 \iff f = 0$ a.e.

Generally, if p is a seminorm on a vectorspace V, then

$$V_0 = \{ x \in V \mid p(x) = 0 \} \tag{4}$$

which is a subspace of V. Then we consider the quotient/factor space V/V_0 .

Definition 13.18. For $x, y \in V$, define

$$x \sim y \iff x - y \in V_0.$$
 (5)

This is an equivalence relation on V. The representation class of V is defined by [x] or $x + V_0$.

Then V/V_0 is equals the set of equivalence classes. We can show that it is a normed space.

$$[x] + [y] = [x + y]$$
, $c[x] = [cx]$, $||[x]|| = p(x)$.

Applying this to $\mathcal{L}^p(X, d\mu)$ we get the normed space

$$L^{p}(X, d\mu) = \mathcal{L}^{p}(X, d\mu)/\mathcal{N}. \tag{6}$$

Where \mathcal{N} is the space of measurable functions f s.t. f = 0 a.e. We will further continue to denote the norm by $||\cdot||_p$, and we will normally **not** distinguish between $f \in \mathcal{L}^p(X, d\mu)$ and the vector in $L^p(X, d\mu)$ that f defines.

Definition 13.19. A normed space $(X, ||\cdot||)$ is called a Banach space if V is complete w.r.t the metric d(x, y) = ||x - y||.

Theorem 13.20. If (X, \mathcal{B}, μ) is a measure space, $1 \le p \le \infty$, then $L^p(X, d\mu)$ is a Banach space.

Definition 13.21. A measurable function $f: X \to \mathbb{C}$ is called **essentially bounded** if there is $c \ge 0$ s.t.

$$\mu(\{x : |f(x)| > c\}) = 0. \tag{7}$$

That is $|f| \leq c$ a.e. The smallest such c is called the essential supremum of f and is denoted by $||f||_{\infty}$.

Definition 13.22.

$$\mathcal{L}^{\infty}(X, d\mu) = \{ f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_{\infty} < \infty \}.$$

$$L^{\infty}(X, d\mu) = \mathcal{L}^{\infty}(X, d\mu)/\mathcal{N}.$$

Where by the previous definiton these spaces become the spaces of all essentially bounded functions.

Theorem 13.23. If (X, \mathcal{B}, μ) is a σ -finite measure space, then $L^{\infty}(X, d\mu)$ is a Banach space.