QoS per varie applicazioni

Application	Reliability	Delay	Jitter	Bandwidth
E-mail	High	Low	Low	Low
File transfer	High	Low	Low	Medium
Web access	High	Medium	Low	Medium
Remote login	High	Medium	Medium	Low
Audio on demand	Low	Low	High	Medium
Video on demand	Low	Low	High	High
Telephony	Low	High	High	Low
Videoconferencing	Low	High	High	High

Soluzioni per il QoS

Riguardo alla reliability, abbiamo già visto soluzioni come error control ed error correction

QUALITY CONTROL

Soluzioni per il QoS

Le altre misure (bandwidth, delay, jitter), derivano da alcune cause, che devono essere risolte se si vuole mantenere una buona QoS

Causa: la congestione

stazione si satura

- Una delle cause principali di problemi nel QoS è la congestione, cioè quando la capacità della linea o di qualche
- E' importante dunque fare attenzione al congestion control per evitare i problemi di QoS

Congestione

Packets sent

Problema molto complesso...

- Ad esempio il «Paradosso di Braess»:
- Aggiungere capacità ad una rete...
- ... può portare ad una diminuzione della performance (!!!)

Boston, Londra, New York etc...

La tecnica dei choke packet

Come nel flow control, alle volte il ricevente può segnalare che le cose non vanno bene, anche qui l'idea è che se un router si accorge che c'è congestione, può inviare un pacchetto speciale (choke packet) a chi sta inviando dati, dicendogli di rallentare

I choke packets

Tipicamente dunque, un host ad esempio dimezza il suo data rate non appena riceve un choke packet

Anche qui occorre fare attenzione alla gestione del choke:

Gestione del choke

- Ad esempio, si usa il fading come modo per uscire dal choke:
- Se non riceviamo choke packets dopo un certo periodo di tempo, torniamo ad incrementare la nostra velocità di trasmissione

Gestione del choke

C'è anche un altro problema più sottile: non l'uscita dal choke, ma l'entrata nel choke

Esempio

- C'e' congestione sulla linea tra A ed E
- ♦ → B, C e D inviano dei choke ad A
- ◆A riceve il primo choke da B: -50% (0.5)
- ◆Riceve il secondo da C: -50% (0.25)
- ◆Riceve il terzo da D: -50% (0.125)

Soluzione:

Si fa fading alla rovescia, nel senso che non appena si riceve un choke, per un certo periodo di tempo si *ignorano* le altre richieste di choke che vengono dalla stessa destinazione

Leaky Bucket

(a)

(b)

Oltre il leaky bucket

Il leaky bucket ha il vantaggio/svantaggio che il max data rate è sempre costante

Alle volte, ad esempio in presenza di traffico più sostenuto, converrebbe magari aumentare un po' il data rate

Il Token Bucket

- Il token bucket genera ogni certo intervallo di tempo un token
- I pacchetti in arrivo possono uscire solo se "bruciano" un token disponibile
- Quindi, se il traffico per un certo periodo è lento, ma poi c'e' un burst, si riesce a gestirlo meglio consumando i token che si erano accumulati

Token Bucket

"TCP/IP" o "TCP" / "IP"?

- ◆1969: ARPANET
- Usava il Network Control Protocol (NCP)
- ♦ → inadatto
- 1974: Transmission Control Protocol (TCP)
- ◆1978: Divisione TCP e IP

Ed ora...

www.bandicam.com

Lo strato di rete di Internet

- Dopo aver visto varie tecniche per il routing ed il QoS, è arrivato il momento di vedere quale protocollo usa Internet per trasmettere dati a livello di rete
- ◆IP = Internet Protocol
- Che avrete sentito senz'altro di solito dentro a "TCP/IP"...

Version	IHL	Type of service		Total length
	Ident	ification	D M F F	Fragment offset
Time to live Protocol		Header checksum		
		Source	e address	

La prima parte è la versione di IP usata (permette quindi il versioning)

32 Bits

		Destina	tion address	
		Source	e address	
Time to	live	Protocol	Header checksum	
	Ident	ification	D M F F	Fragment offset
Version	IHL	Type of service		Total length

◆La seconda	è la lunghezza	dell'header
(IP Header	Lenght)	
	32 Bits	

Version	(IHL)	Type of service		Total length
	Ident	ification	D M F F	Fragment offset
Time t	o live	Protocol		Header checksum
		Source	e address	
		Destina	tion address	

La terza è il tipo di servizio (campo adatto per la selezione della QoS), anche se spesso ignorato

Version	IHL	Type of service	Total length
	Ident	ification	D M F F F Fragment offset
Time to	live	Protocol	Header checksum
		Source	e address
		Destina	ion address

◆C'è	poi	la	lung	ghez	za	totale	del
data	agra	am	ma	ΙP			
				:	32 Bits	s ———	

		Source	e address	
Time to	live	Protocol		Header checksum
	Ident	ification	D M F F	Fragment offset
Version	IHL	Type of service		. Total length

L'identification serve a identificare se c'è stata frammentazione dei dati in più datagrammi

32 Bits

Version	IHL	Type of service	Total length
\$ t.	Ident	ification	D M F F F Fragment offset
Time to	o live	Protocol Header checksum	
		Source	e address
		Destina	ion address

◆Il Campo DF invece (Don't Fragment) impone la non-frammentazione dei dati

◆Il campo MF (More Fragment) segnala l'ultimo frammento

32 Bits

Version	IHL	Type of service	. Total length	
SIP.	Identification		D M F F	Fragment offset
Time to	live	Protocol		Header checksum
		Source	e address	
		Destina	tion address	

"Evil Bit"

Standardizzato in IETF RFC3514

◆Il Time to Live (TTL) è l'età massima del pacchetto

32 Bits

/ersion	IHL	Type of service	Total length		
17 ²	Identification		D M F F F Fragment offset		
Time to	live	Protocol	Header checksum		
		Source	e address		
		Destina	tion address		

32 Bits

Poi, gli indirizzi IP di chi invia e di chi deve ricevere il datagramma

Version	IHL	Type of service		Total length
5.16	Ident	tification	D M F F	Fragment offset
Time to	live	Protocol		Header checksum
*		Source	e address	
		Destina	tion address	

E infine, la parte variabile per eventuali opzioni

32 Bits

Version	IHL	Type of service		Total length	
Identification			D M F F	Fragment offset	
Time to live		Protocol	Header checksum		
		Source	e address		
		Destina	tion address		

Analisi critica

◆IP.... Lo strato fondamentale di Internet...

◆Tutto qui?

DoD

Indietro alla storia...

- ◆ 1969: ARPANET
- Usava il Network Control Protocol (NCP)
- Reliable, flow-controlled (!)
- ◆1974: Transmission Control Protocol (TCP) → <u>ancora troppo per il DoD</u>
- 1978: Divisione TCP e IP
- ◆(1983: DoD impone il TCP/IP ◎)

DoD e l'uso militare

◆ARPANET → Internet e... MILNET (!)

Design: no overload

- La rete non deve essere sottoposta al pericolo di sovraccarichi
- niente traccia in IP degli errori intermedi durante una comunicazione

Design: no overload (2)

- ◆Ed inoltre, dunque, niente connessione persistente (→ IP "connection-less")
- E dunque, necessita' di ritrasmissione nel caso di failure

Modelli Open e Closed World

- Nonostante gli sforzi per rendere TCP/IP "robusto ad attacchi", il sistema e' stato pensato per il modello closed-world (tipo MILNET) → attacchi esterni
- Quando l'attacco e' interno (open-world model), ci sono molte vulnerabilita' (ad esempio, IP gestisce male la congestione del traffico)

I limiti di estendibilità

Uno dei più grossi problemi dell'informatica è l'estendibilità di un

servizio

Esempi

"640k <u>ought</u> to be enough for everybody"

Limiti di IP...?

- ◆TTL (Time to Live): 255 hops massimi
- Può essere un problema se la rete è mal disegnata e non gerarchica
- Comunque, il router può intervenire e riaumentare il TTL (o, non diminuirlo), quindi non è un grosso problema

Limiti di IP (cont.)

Gli indirizzi (source e destination):
32 bits

Questo si è rivelato invece essere un grandioso problema, perché lo spazio degli indirizzi globale è fisso e non

estendibile

Indirizzi IP

- Ovviamente, ci deve essere una autorità centralizzata che assegna gli indirizzi IP alle entità in Internet
- Potremmo assegnare gli indirizzi uno a uno, ma in questo modo, i router dovrebbero mantenere delle tabelle mostruosamente grandi (!!!!)

Le classi principali di indirizzi IP

- ◆Classe A: (7+24) 128 reti possibili, con indirizzi di 24 bits (circa 16.7 milioni)
- Classe B: (14+16) 16384 reti possibili, con indirizzi di 16 bits (65536)
- Classe C: (21+8) circa 2 milioni di reti, con indirizzi di 8 bits (256)

Notare...

- Le taglie possibili delle reti:
- ◆1 byte 2 bytes 3 bytes

256 - 65536 - 16.7 milioni

