

Common Distributions Cheat Sheet V2020.10.15 (Dr Yan Xu)

Discrete: **Bernoulli** (**p**)

- **→** Mean: *p*
- → Variance: *p* * (1 *p*)

Discrete: **Binomial B(n, p)**

- \rightarrow Variable space: $k = \{1, 2, 3, \dots n\}$
- \rightarrow Pmf: $\binom{n}{k} p^k q^{n-k}$
- → Hyperparameters: *n*, *p*
- **→** Mean: *n*p*
- → Variance: *n* * *p* * (1 *p*)
- L: If n is large enough, => Normal(np, np(1 p)) 2: If n is large enough and p small enough, => **Poisson**
- $(\lambda = np)$, e.g. $n \ge 20$ and $p \le 0.05$ B: **Beta distribution** provides conjugate prior for **p**.

Discrete: **Geometric** (p)

- → the number of Bernoulli trials needed to get one success
- → Variable space: {1, 2, 3, ...} \rightarrow Pmf: $(1-p)^{k-1}p$
- → Hyperparameters: **p**
- \rightarrow Mean: 1.0 / p
- \rightarrow Variance: $(1 p)/p^2$

Discrete: **Poisson** (λ)

- → the number of independent events occurring in a fixed interval
- → Variable space: {0, 1, 2, ...}
- \rightarrow Pmf: $\lambda^k e^{-\lambda}$
- → Hyperparameters: λ
- → Mean: **\lambda**
- → Variance: **\lambda**
- 1: If **λ** is large enough, => *Normal(***λ, λ***)* 2: inter-arrival times => Exponential(1/λ)
- : Gamma distribution provides conjugate prior for $\overline{\lambda}$

Continuous: **Beta** (α , β)

- → Variable space: [0, 1]
- \rightarrow Pdf: $x^{\alpha-1}(1-x)^{\beta-1}$ $\mathrm{B}(lpha,eta)$
- \rightarrow Hyperparameters: α , β
- \rightarrow Mean: $\alpha / (\alpha + \beta)$
- \rightarrow Variance: $\alpha * \beta / \{(\alpha + \beta)^2 * (\alpha + \beta + 1)\}$

The generalization of Beta to multiple variables is alled a Dirichlet distribution.

Continuous: Exponential (λ)

- → Variable space: [0, ∞)
- \rightarrow Pdf: $\lambda e^{-\lambda x}$
- → Hyperparameters: **\lambda**
- \rightarrow Mean: 1.0 / λ
- \rightarrow Variance: **1.0** / λ^2
- \rightarrow Memorylessness: $Pr(T > s + t \mid T > s) = Pr(T > t)$

: Exponential family: Exponential, Gamma, Normal, Chi-square Beta, Dirichlet, Bernoulli, Possion, Geometric, etc.

2: Exponential families have conjugate priors, an important property in Bayesian statistics.

Continuous: **Gamma** (α, β)

- → Variable space: [0, ∞)
- \rightarrow Hyperparameters: α (shape), β (inverse scale)
- \rightarrow Mean: α / β
- \rightarrow Variance: α / β^2

: Exponential distribution (**α=1**), Erlang distribution (**α=INT**), nd Chi-squared distribution (only for hypothesis testing) are special cases of the gamma distribution.

- 2: If k is large enough, => **Normal(α/β, α/β²)**
- 3: gamma distribution is widely used as a conjugate prior in

Continuous: Logistic (µ, s)

- Variable space: (-∞, ∞)
- → Pdf: $s \left(1 + e^{-(x-\mu)/s}\right)^2$
- **→** Cdf: $1+e^{-(x-\mu)/s}$
- → Applications: Logistic regression

- \rightarrow Variable space: $(-\infty, \infty)$
- \rightarrow Pdf: $\frac{1}{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{\frac{1}{2}}}$
- → Mean: µ
- \rightarrow Variance: σ 2
- → Sample variance: n / (n 1) * σ2

1: Central limit theorem: the sum of many random variables wi ave an approximately normal distribution. It is the key reason uhy Normal is widely used in various observations. 2: If X, Y are independent Normal with means u, u, and standard deviation $\sigma_{_1},\sigma_{_2},$ then X + Y will be normally distributed, with mean $(u_1 + u_2)$ and variance $(\sigma_1^2 + \sigma_2^2)$: Bayesian analysis of normally distributed data is complicate

Continuous: **Log-normal** (**μ,σ**²)

- → Variable space: (0, ∞)
- → Pdf:
- → if X has a normal distribution, then the exponential function of exp(X), has a log-normal distribution.

 $(\ln x - \mu)^2$