EECE5666 (DSP): Homework-2

Due on February 8, 2022 by 11:59 pm via submission portal.

NAME: Enter your Lastname, Firstname here

Table of Contents

Default Plot Parameters	1
Problem 2.1	1
Text Problem 3.45, parts (b) and (d) only (Page 130)	1
Problem 2.2	5
Problem 2.3	8
Text Problem 3.47, parts (b) and (e), (Page 131)	8
Problem 2.4	9
Problem 2.5	11
Text Problem 3.57 (Page 132)	11
Problem 2.6	12
Text Problem 3.63 (Page 133)	12
Problem 2.7	14
Text Problem 4.38, parts (a) and (d) only, (Page 197)	14
Problem 2.8	15
Text Problem 4.45, parts (c) and (d) only, (Page 198)	15
Problem 2.9	16
Text Problem 4.49, partsa (c) and (d) only, (Page 198)	16
Problem 2.10	17
Text Problem 4.53 (Page 199)	17

Default Plot Parameters

```
set(0,'defaultfigurepaperunits','points','defaultfigureunits','points');
set(0,'defaultaxesfontsize',10); set(0,'defaultaxeslinewidth',1.5);
set(0,'defaultaxestitlefontsize',1.4,'defaultaxeslabelfontsize',1.2);
```

Problem 2.1

Text Problem 3.45, parts (b) and (d) only (Page 130)

Determine the *z*-transform and sketch the pole-zero plot with the ROC for each of the following sequences.

(b)
$$x[n] = (1/2)^n u[n+1] + 3^n u[-n-1]$$
:

Solution: The given sequence can be written as

$$x[n] = 2(1/2)^{n+1}u[n+1] + 3^nu[-n-1].$$

Now using the shift property and the known z-transform pairs, we obtain

$$X(z) = \frac{2z}{1 - \frac{1}{2}z^{-1}} + \frac{-1}{1 - 3z^{-1}}; \quad \{|z| > 1/2\} \cap \{|z| < 3\}.$$

The overall rational function and zero-pole form can be obtained using the following script:

```
clc; close all; clear;
b1 = 2; a1 = conv([0,1],[1,-1/2]);
b2 = -1; a2 = [1,-3];
B11 = conv(b1,a2); B12 = conv(b2,a1);
b = [B11,0]+B12; Num = ['X(z)_num = [',num2str(round(b,2)),']']; disp(Num);
```

```
X(z)_{num} = [2 	 -7 	 0.5]
```

Hence we have

$$X(z) = \frac{2 - 7z^{-1} + 0.5z^{-2}}{0 + z^{-1} - 3.5z^{-2} + 1.5z^{-3}} = \frac{2 - 7z^{-1} + 0.5z^{-2}}{z^{-1}(1 - 3.5z^{-1} + 1.5z^{-2})}; \quad \{|z| > 1/2\} \cap \{|z| < 3\}.$$

Since the first term is zero in the denominator of the first rational term, the '**roots**' or '**zplane**' functions will not work correctly. Hence we removed the second term, z^{-1} , as a common term in the denominator to obtain the second rational term, along with an addition of a zero at the origin. Now 'zplane' can be used to obtain the correct result.

```
Poles = ['Poles = [',num2str(round(p.',3)),']']; disp(Poles);
Poles = [3      0.5]
```

Hence zero-pole representation is

$$X(z) = \frac{\left(1 - 3.4271z^{-1}\right)\left(1 - 0.0729z^{-1}\right)}{z^{-1}\left(1 - 3z^{-1}\right)\left(1 - 0.5z^{-1}\right)}; \quad \text{ROC: } \{0.5 < |z| < 3\}.$$

The zero-pole plot is obtained using

```
r1 = min(abs(p)); r2 = max(abs(p));
theta = linspace(0,2*pi,1000);
x1 = r1*cos(theta); y1 = r1*sin(theta);
x2 = r2*cos(theta); y2 = r2*sin(theta);
figure('position',[0,0,4,4]*72);
fill(x2,y2,[0.9,0.9,1],'linewidth',0.1,'edgecolor',[0.9,0.9,1]); hold on;
fill(x1,y1,[1 1 1],'linewidth',0.1,'edgecolor',[0.9,0.9,1]);
[Hz,Hp,Hl] = zplane(z,p); axis([-4,4,-4,4]);
```

```
set(Hz,'color',[0.466,0.674,0.1880],'markersize',5,'linewidth',1.5);
set(Hp,'color',[0.635,0.078,0.1840],'markersize',5,'linewidth',1.5);
set(Hl,'linewidth',0.5,'linestyle','-');
title('Zero-Pole Plot and Shaded-ROC');
```


(d)
$$x[n] = |n|(1/2)^{|n|}$$

Solution: This can be written as $x[n] = -n(1/2)^{-n}u[-n-1] + n(1/2)^n[n]$. Hence using the multiplication-by-a-ramp property, we have

$$X(z) = \frac{2z^{-1}}{(1 - 2z^{-1})^2} + \frac{\frac{1}{2}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)^2}; \quad \{|z| < 2\} \cap \{|z| > 1/2\}$$

$$= \frac{\frac{5}{2}z^{-1} - 4z^{-2} + \frac{5}{2}z^{-3}}{(1 - 2z^{-1})^2 \left(1 - \frac{1}{2}z^{-1}\right)^2}; \quad \{|z| < 2\} \cap \{|z| > 1/2\}$$

$$= \frac{z^{-1} \left(1 - (0.8 + \text{j}0.6)z^{-1}\right) \left(1 - (0.8 - \text{j}0.6)z^{-1}\right)}{\left(1 - 2z^{-1}\right)^2 \left(1 - 0.5z^{-1}\right)^2}; \quad \text{ROC: } 0.5 < |z| < 2.$$

The rational function in the second equality was obtained using the following script:

8.25

1]

The zeros and poles in the third equality above were obtained using

Finally, the zero-pole plot is obtained using

X(z) denom = [1

```
r1 = min(abs(p)); r2 = max(abs(p));
theta = linspace(0,2*pi,1000);
x1 = r1*cos(theta); y1 = r1*sin(theta);
x2 = r2*cos(theta); y2 = r2*sin(theta);
figure('position',[0,0,4,4]*72);
fill(x2,y2,[0.9 0.9 1],'linewidth',0.1,'edgecolor',[0.9,0.9,1]); hold on;
fill(x1,y1,[1 1 1],'linewidth',0.1,'edgecolor',[0.9,0.9,1]);
[Hz,Hp,Hl] = zplane(z,p); axis([-2.5,2.5,-2.5,2.5]);
set(Hz,'color',[0.466,0.674,0.1880],'markersize',5,'linewidth',1.5);
set(Hp,'color',[0.635,0.078,0.1840],'markersize',5,'linewidth',1.5);
set(Hl,'linewidth',0.5,'linestyle','-');
title('Zero-Pole Plot and Shaded-ROC');
```


Consider the z-transform expression:

$$X(z) = \frac{(z - 0.91)(z^2 + 0.3z + 0.4)}{(z + 1.5)(z^2 - 0.6z + 0.6)}.$$

(a) Provide a zero-pole plot of X(z).

MATLAB script:

```
clc; close all; clear;
b = conv([1,-0.9],[1,0.3,0.4]);
a = conv([1,-0.6,0.6],[1,1.5]);
figure('position',[0,0,4,4]*72);
[Hz,Hp,Hl] = zplane(b,a); axis([-2,2,-2,2]);
set(Hz,'markersize',5,'color',[0.466,0.674,0.1880],'linewidth',1.5);
set(Hp,'markersize',5,'color',[0.635,0.078,0.1840],'linewidth',1.5);
```

set(H1, 'linestyle', '-', 'linewidth', 0.5); title('Pole-Zero Plot');

(b) List all possible regions of convergence (ROCs) for this z-transform.

Solution: Using the following script

```
Pl = roots(a);
MagPl = ['Pole Magnitudes = [',num2str(round(abs(Pl).',3)),']']; disp(MagPl);
Pole Magnitudes = [1.5     0.775     0.775]
```

and the pole-zero plot in (a), we observe that there are three possible ROCs, given by

ROC-1:
$$|z| < 0.7746$$
, ROC-2: 0.7746 < $|z| < 1.5$, ROC-3: $|z| > 1.5$.

(c) Determine the inverse z-transform so that the resulting sequence is absolutely summable. This sequence x[n] should be a real-valued sequence. Provide a **stem** plot of x[n].

Solution From part (b) above, the absolutely summable sequence is given by the ROC-2 which contains the unit circle. The residues at the pole locations as well as their magnitudes and angles are computed by the following script:

```
[R,PL,C] = residuez(b,a);
magR = abs(R.'); phaR = angle(R.'); magPL = abs(PL.'); phaPL = angle(PL.');
disp(['Constant = ',num2str(round(C,1))]);
Constant = -0.4
disp(['Residue magnitudes: [',num2str(round(magR,4)),']']);
Residue magnitudes: [0.9387
                              0.2815
                                         0.2815]
disp(['Residue angles (deg): [',num2str(round(phaR*180/pi,2)),']']);
Residue angles (deg): [0
                             34.97
                                         -34.97]
disp(['Pole magnitudes: [',num2str(round(magPL,4)),']']);
Pole magnitudes: [1.5
                         0.7746
                                    0.77461
disp(['Pole angles (pi units): [',num2str(round(phaPL/pi,2)),']']);
Pole angles (pi units): [1
                               0.37
                                          -0.37]
```

Therefore, the absolutely summable sequence containing no complex-numbers is given by [see equation (3.40) in the textbook for the third term below]

```
x(n) = -0.4\delta(n) - (0.9387)(-1.5)^n u [-n-1] + 2(0.2815)(0.7746)^n \cos(0.3734\pi n + 34.96^\circ) u [n]
```

Note that the sequence contains both causal and anticausal parts. Simplifying,

```
x(n) = -0.4\delta(n) - 0.9387(-1.5)^{n}u[-n-1] + 0.5630(0.7746)^{n}\cos(0.3734\pi n + 34.96^{\circ})u[n].
```

Plot of the sequence is computed using the following script.

```
n = -20:20; uac = (n<=-1); uc = (n>=0);
x1 = C*delta(n(1),0,n(end)).';
x2 = -1*magR(1)*(magPL(1).^n).*cos(phaPL(1)*pi*n+phaR(1)).*uac;
x3 = 2*magR(3)*(magPL(3).^n).*cos(phaPL(3)*pi*n+phaR(3)).*uc; x = x1+x2+x3;
figure('position',[0,0,7,3]*72); subplot('position',[0.15,0.2,0.83,0.65]);
stem(n,x,'filled','markersize',4,'linewidth',1); axis([-21,21,-0.4,0.7])
xlabel('Sample Index n'); ylabel('Amplitude');
title('Absolutely Summable Sequence x[n]'); grid;
```


Text Problem 3.47, parts (b) and (e), (Page 131)

Given the z-transform pair $x[n] \leftrightarrow X(z) = z^{-1}/(1 + 0.8z^{-1})$ with ROC: |z| > 0.8, use the z-transform properties to determine the z-transform of the following sequences:

(b)
$$y[n] = x[3-n] = x[-(n-3)]$$
:

Solution: Using folding and time shifting properties

$$Y(z) = z^{-3}X(1/z) = z^{-3}\frac{(1/z)^{-1}}{1 + 0.8(1/z)^{-1}}, \quad \left|\frac{1}{z}\right| > 0.8$$

$$= \frac{z^{-3}z}{1 + 0.8z}, \qquad \text{ROC: } |z| < 1.25$$

$$= \frac{1.25z^{-3}}{1 + 1.25z^{-1}}, \qquad \text{ROC: } |z| < 1.25.$$

(e)
$$y[n] = x[n] * x[2 - n]$$
:

Solution: Using convolution, time shifting, and folding properties:

$$Y(z) = X(z) \cdot z^{-2}X(1/z) = \frac{z^{-2}}{(1+0.8z)(1+0.8z^{-1})}, \text{ ROC: } 0.8 < |z| < 1.25$$

$$= \frac{1.25z^{-3}}{(1+1.25z^{-1})(1+0.8z^{-1})}, \text{ ROC: } 0.8 < |z| < 1.25$$

$$= \frac{1.25z^{-3}}{1+2.05z^{-1}+z^{-2}}, \text{ ROC: } 0.8 < |z| < 1.25.$$

An LTI system described by the following impulse response

$$h[n] = n\left(\frac{1}{3}\right)^n u[n] + \left(-\frac{1}{4}\right)^n u[n].$$

(a) Determine the system function representation.

Solution: Taking the *z*-transform of h(n)

$$\begin{split} H(z) &= \mathcal{Z}[h[n]] = \mathcal{Z}\left[n(1/3)^n u[n] + (-1/4)^n u[n]\right] \\ &= \frac{(1/3)z^{-1}}{\left[1 - (1/3)z^{-1}\right]^2} + \frac{1}{1 + (1/4)z^{-1}}, \qquad |z| > (1/3) \\ &= \frac{1 - \frac{1}{3}z^{-1} + \frac{7}{36}z^{-2}}{1 - \frac{5}{12}z^{-1} - \frac{1}{18}z^{-2} + \frac{1}{36}z^{-3}}, \qquad |z| > (1/3) \end{split}$$

The above rational simplification is done using MATLAB:

MATLAB script:

```
clc; close all; clear;
num1 = [0,1/3]; den1 = conv([1,-1/3],[1,-1/3]);
num2 = 1; den2 = [1,1/4];
NumH = conv(num1,den2) + den1; DenH = conv(den1,den2);
format rat; NumeratorH = NumH
```

NumeratorH = 1 -1/3 7/36

DenominatorH = DenH

DenominatorH = 1 - 5/12 - 1/18 1/36

(b) Determine the difference equation representation.

Solution: From H(z) above, the difference equation is

$$y[n] = x[n] - \frac{1}{3}x[n-1] + \frac{7}{36}x[n-2] + \frac{5}{12}y[n-1] + \frac{1}{18}y[n-2] - \frac{1}{36}y[n-3].$$

(c) Determine the pole-zero plot.

Solution: The pole-zero plot is computed using the following script:

```
b = [1 -1/3 7/36]; a = [1 -5/12 -1/18 1/36];
Hf_1 = figure('position',[0,0,3,3]*72);
[Hz,Hp,Hl] = zplane(b,a);
set(Hz,'markersize',5,'color',[0.466,0.674,0.1880],'linewidth',1.5);
set(Hp,'markersize',5,'color',[0.635,0.078,0.1840],'linewidth',1.5);
set(Hl,'linestyle','-','linewidth',0.5); title('Pole-Zero plot');
```


(d) Determine the output sequence y[n] when the input is $x[n] = \left(\frac{1}{4}\right)^n u[n]$.

Solution: Using the z-transform table, we have $X(z)=\mathcal{Z}[(1/4)^nu[n]]=\frac{1}{1-\frac{1}{4}z^{-1}}, |z|>\frac{1}{4}$

Now the z-transform of y[n] is

$$Y(z) = H(z)X(z) = \left(\frac{1 - \frac{1}{3}z^{-1} + \frac{7}{36}z^{-2}}{1 - \frac{5}{12}z^{-1} - \frac{1}{18}z^{-2} + \frac{1}{36}z^{-3}}\right) \left(\frac{1}{1 - 0.25z^{-1}}\right), \quad |z| > \frac{1}{3}$$

$$= \frac{-16}{1 - \frac{1}{3}z^{-1}} + \frac{4}{\left(1 - \frac{1}{3}z^{-1}\right)^{2}} + \frac{\frac{1}{2}}{1 + \frac{1}{4}z^{-1}} + \frac{\frac{25}{2}}{1 - \frac{1}{4}z^{-1}}, \qquad |z| > \frac{1}{3}$$

$$= \frac{-16}{1 - \frac{1}{3}z^{-1}} + 12z \frac{\frac{1}{3}z^{-1}}{\left(1 - \frac{1}{3}z^{-1}\right)^{2}} + \frac{\frac{1}{2}}{1 + \frac{1}{4}z^{-1}} + \frac{\frac{25}{2}}{1 - \frac{1}{4}z^{-1}}, \qquad |z| > \frac{1}{3}$$

The residue calculations above are done using MATLAB.

```
NumX = 1; DenX = [1,-0.25]; format rational;
NumY = NumH; DenY = conv(DenH,DenX); [R,p,k] = residuez(NumY,DenY);
ResidueY = R.'
```

ResidueY = -16 4 1/2 25/2

PolesY = p.'

PolesY = 1/3 1/3 -1/4 1/4

Hence the output y[n] is

$$y(n) = -16\left(\frac{1}{3}\right)^n u[n] + 12(n+1)\left(\frac{1}{3}\right)^{n+1} u[n+1] + \frac{1}{2}\left(-\frac{1}{4}\right)^n u[n] + \frac{25}{2}\left(\frac{1}{4}\right)^n u[n].$$

Problem 2.5

Text Problem 3.57 (Page 132)

Determine the impulse response of the system described by

$$y[n] + \frac{11}{6}y[n-1] + \frac{1}{2}y[n-2] = 2x[n].$$

for all possible regions of convergence.

Solution: The system function H(z) = Y(z)/X(z) of the system is obtained by taking the z-transform of the difference equation above and solving for Y(z)/X(z):

Residues = 18/7 -4/7

Poles = p.'

Hence

$$H(z) = \frac{Y(z)}{X(z)} = \frac{2}{1 + \frac{11}{6}z^{-1} + \frac{1}{2}z^{-2}} = \frac{18/7}{1 + \frac{3}{2}z^{-1}} + \frac{-4/7}{1 + \frac{1}{3}z^{-1}}.$$

Since there are two poles of H(z), namely, $p_1=-3/2$ and $p_2=-1/3$, there are three ROCs.

1. If ROC: $|z| > \frac{3}{2}$, then the impulse response is right-sided:

$$h[n] = \left(\frac{18}{7}\right) \left(-\frac{3}{2}\right)^n u[n] + \left(-\frac{4}{7}\right) \left(-\frac{1}{3}\right)^n u[n].$$

2. If ROC: $|z| < \frac{1}{3}$, then the impulse response is left-sided:

$$h[n] = \left(-\frac{18}{7}\right)\left(-\frac{3}{2}\right)^n u[-n-1] + \left(\frac{4}{7}\right)\left(-\frac{1}{3}\right)^n u[-n-1].$$

3. If ROC: $\frac{1}{3} < |z| < \frac{3}{2}$, then the impulse response is two-sided:

$$h[n] = \left(-\frac{18}{7}\right) \left(-\frac{3}{2}\right)^n u[-n-1] + \left(-\frac{4}{7}\right) \left(-\frac{1}{3}\right)^n u[n].$$

Problem 2.6

Text Problem 3.63 (Page 133)

Consider the following LCCDE

$$y[n] = 2\cos(\omega_0)y[n-1] - y[n-2]$$

with no input but with initial conditions y[-1] = 0 and $y[-2] = -A\sin(\omega_0)$.

(a) Show that the solution of the above LCCDE is given by $y[n] = A \sin[(n+1)\omega_0]u[n]$. This system is known as a digital oscillator.

Solution: Applying one-sided z-transform to the difference equation, we obtain

$$Y^{+}(z) = 2\cos(\omega_{0}) (y[-1] + z^{-1}Y^{+}(z)) - (y[-2] + y[-1]z^{-1} + z^{-2}Y^{+}(z))$$

$$= 2\cos(\omega_{0}) (z^{-1}Y^{+}(z)) - (-A\sin(\omega_{0}) + z^{-2}Y^{+}(z))$$

$$= (2\cos(\omega_{0}))z^{-1}Y^{+}(z) - z^{-2}Y^{+}(z) + A\sin(\omega_{0})$$

or

$$Y^{+}(z) = \frac{A\sin(\omega_0)}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}} = z\frac{A\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}.$$

The inverse z-transform from the z-transform Table 3.1 is

$$y[n] = A\sin[(n+1)\omega_0]u[n+1] = A\sin[(n+1)\omega_0]u[n]$$

since at n = -1, $\sin(0) = 0$.

(b) For A=2 and $\omega_0=0.1\pi$, verify the operation of the above digital oscillator using MATLAB.

MATLAB script: Verification is done using the following script:

```
clc; close all; clear;
n=0:100; A = 2; w0 = 0.1*pi;
yn1 = A*sin((n+1)*w0); % Analytical solution
b = [0 A*sin(w0)]; a = [1 -2*cos(w0) 1]; % System coefficients
yi = [0, -A*sin(w0)]; % Initial Conditions
xIC = filtic(b,a,yi); % Equivalent initial condition input
yn2 = filter(b,a,zeros(1,length(n)),xIC); % Numerical solution
figure('position',[0,0,7,4]*72);
subplot(211); stem(n,yn1,'filled','markersize',3,'linewidth',1);
ylim([min(yn2)-0.1 max(yn2)+0.1]); ylabel('Amplitude');
title('System Response y[n] by Analytical Expression');
subplot(212); stem(n,yn2,'filled','markersize',3,'linewidth',1);
ylim([min(yn2)-0.1 max(yn2)+0.1]); ylabel('Amplitude');
title('System Response y[n] using Unilateral Z-Transform');
```


Text Problem 4.38, parts (a) and (d) only, (Page 197)

Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.

(a)
$$x_1(t) = |\sin(7\pi t)|\cos(11\pi t)$$

Solution: Note that since the first term is an absolute value of a sinusoidal function, its fundamental period is one-half of the fundamental period of the sinusoid. Hence $|\sin(7\pi t)|$ is periodic with fundamental period

$$T_1 = \frac{1}{2} (2\pi)/(7\pi) = \frac{1}{7}$$
 sec. The second component $\cos(11\pi t)$ is periodic with fundamental period

 $T_2=(2\pi)/(11\pi)=\frac{2}{11}$ sec. The smallest integer divisible by $T_1=\frac{1}{7}=\frac{2}{14}$ and $T_2=\frac{2}{11}$ is T=2. Thus we will have

14 cycles of the first term and 11 cycles of the second term in $x_1(t)$ which is then periodic with fundamental period T=2 sec.

(d)
$$x_4[n] = e^{j\pi n/7} + e^{j\pi n/11}$$
:

Solution: From the fundamental periods of each components,

$$N_1 = \frac{2\pi}{\pi/7} = 14$$
, $N_2 = \frac{2\pi}{\pi/11} = 22$

the least common multiple N is given by

$$N = 2 \times 7 \times 11 = 154$$
.

Thus $x_4[n]$ is periodic with fundamental period N = 154.

Text Problem 4.45, parts (c) and (d) only, (Page 198)

Given that x[n] is a periodic sequence with fundamental period N and Fourier coefficients a_k , determine the Fourier coefficients of the following sequences in terms of a_k .

Note that

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}.$$
 (2.8.1)

(c)
$$x_3[n] = 3\cos(2\pi 5n/N)x[-n], N > 5$$
:

Solution: The given sequence $x_3[n]$ can be expressed as

$$x_3[n] = 3\left(\frac{e^{j2\pi 5n/N} + e^{-j2\pi 5n/N}}{2}\right)x[-n] = 1.5e^{j2\pi 5n/N}x[-n] + 1.5e^{j2\pi(-5)n/N}x[-n]$$
 (2.8.2)

Consider the first term in (2.8.2) above. Since N > 5, its DTFS coefficients are given by

DTFS[(1.5e)<sup>2
$$\pi$$
5 n/N</sup> $x[-n]$)] = $\frac{1}{N} \sum_{n=0}^{N-1} (1.5e)^{2\pi 5n/N} x[-n]) e^{-j2\pi kn/N}$
= $1.5 \left(\frac{1}{N} \sum_{n=0}^{N-1} x[-n] e^{-j2\pi (k-5)n/N} \right)$
= $1.5 \left(\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi (5-k)n/N} \right)$, $(n \to -n)$
= $1.5a_{5-k} = 1.5a_{-(k-5)}$.

Similarly, the DTFS coefficients of the second term in (2.8.2) are given by

DTFS[
$$(1.5e^{j2\pi(-5)n/N}x[-n])$$
] = $1.5a_{-(k+5)}$.

Combining the two results, the DTFS coefficients of $x_3[n]$ (denote by b_k) are given by

$$b_k = 1.5(a_{-(k-5)} + a_{-(k+5)}).$$

(d)
$$x_4[n] = x[n] + x^*[-n]$$
:

Solution: Consider the DTFS coefficients of $x^*[-n]$

DTFS
$$[x^*[-n]] = \frac{1}{N} \sum_{n=0}^{N-1} x^*[-n] e^{-j2\pi kn/N} = \left(\frac{1}{N} \sum_{n=0}^{N-1} x[-n] e^{j2\pi kn/N}\right)^*$$

= $\left(\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}\right)^* = a_k^*.$

Thus the DTFS coefficients of $x_4[n]$ (denote by b_k) are given by

$$b_k = a_k + a_k^* = 2\operatorname{Re}(a_k).$$

Problem 2.9

Text Problem 4.49, partsa (c) and (d) only, (Page 198)

Determine sequences corresponding to each of the following Fourier transforms.

(c)
$$X_3(e^{j\omega}) = je^{-j4\omega} [2 + 3\cos(\omega) + \cos(2\omega)]$$
:

Solution: Express the given DTFT as

$$X_3(e^{j\omega}) = je^{-j4\omega} [2 + 1.5e^{j\omega} + 1.5e^{-j\omega} + 0.5e^{j2\omega} + 0.5e^{-j2\omega}]$$

= $(j0.5)e^{-j2\omega} + (j1.5)e^{-j3\omega} + (j2)e^{-j4\omega} + (j1.5)e^{-j5\omega} + (j0.5)e^{-j6\omega}.$

Hence

$$x_3[n] = (\mathsf{j}0.5)\delta[n-2] + (\mathsf{j}1.5)\delta[n-3] + (\mathsf{j}2)\delta[n-4] + (\mathsf{j}1.5)\delta[n-5] + (\mathsf{j}0.5)\delta[n-6]$$

or

$$x_3[n] = \{0, 0, \text{j}0.5, \text{j}1.5, \text{j}2, \text{j}1.5, \text{j}0.5\}.$$

(d)
$$X_4(e^{j\omega}) = \begin{cases} 2, & 0 \le |\omega| \le \pi/8 \\ 1, & \pi/8 \le |\omega| \le 3\pi/4 \\ 0, & 3\pi/4 \le |\omega| \le \pi \end{cases}$$

Solution: The given frequency response can be expressed as

$$X_3(\mathrm{e}^{\mathrm{j}\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \pi/8 \\ 0, & \pi/8 \le |\omega| \le \pi \end{cases} + \begin{cases} 1, & 0 \le |\omega| \le 3\pi/4 \\ 0, & 3\pi/4 \le |\omega| \le \pi \end{cases}$$

Using the DTFT pair $(2f_{\rm c}){\rm sinc}(2f_{\rm c}n) \stackrel{\rm DTFT}{\longleftrightarrow} {\rm rect}\bigg(\frac{\omega}{2\omega_{\rm c}}\bigg)$ where $\omega_{\rm c}=2\pi f_{\rm c}$, we obtain

$$x_4[n] = \frac{1}{8}\operatorname{sinc}\left(\frac{n}{8}\right) + \frac{3}{4}\operatorname{sinc}\left(\frac{3n}{4}\right).$$

Text Problem 4.53 (Page 199)

Note: There are two corrections in the errata sheet. Please follow them.

Let a sinusoidal pulse be given by $x(n) = (\cos \omega_0 n) (u[n] - u[n - M])$.

(a) Using the frequency-shifting property of the DTFT, show that the real-part of DTFT of x(n) is given by

$$\begin{split} X_{\mathrm{R}}(\mathrm{e}^{\mathrm{j}\omega}) &= \frac{1}{2} \mathrm{cos} \left[\frac{(\omega - \omega_0)(M-1)}{2} \right] \left[\frac{\mathrm{sin} \left(\frac{(\omega - \omega_0)M}{2} \right)}{\mathrm{sin} \left(\frac{\omega - \omega_0}{2} \right)} \right] \\ &+ \frac{1}{2} \mathrm{cos} \left[\frac{(\omega + \omega_0)(M-1)}{2} \right] \left[\frac{\mathrm{sin} \left(\frac{(\omega + \omega_0)M}{2} \right)}{\mathrm{sin} \left(\frac{\omega + \omega_0}{2} \right)} \right] \end{split} \tag{2.10.1}$$

Solution: First note that if the sequence x[n] is a real-valued sequence, then the real part of its DTFT $X_R(e^{j\omega})$ is given by

$$X_{\mathrm{R}}(\mathrm{e}^{\mathrm{j}\omega}) = \sum_{n=-\infty}^{\infty} x[n]\cos(n\omega)$$

Hence for the given sinusoidal pulse, we have

$$X_{R}(e^{j\omega}) = \sum_{0}^{M-1} \cos(\omega_{0}n) \cos(n\omega)$$

$$= \frac{1}{2} \sum_{0}^{M-1} \cos[(\omega - \omega_{0})n] + \frac{1}{2} \sum_{0}^{M-1} \cos[(\omega + \omega_{0})n] \qquad (2.10.2)$$

Consider the first sum in (2.10.2),

$$\sum_{0}^{M-1} \cos[(\omega - \omega_{0})n] = \frac{1}{2} \sum_{0}^{M-1} \left\{ e^{J(\omega - \omega_{0})n} + e^{-J(\omega - \omega_{0})n} \right\} = \frac{1}{2} \left\{ \frac{1 - e^{J(\omega - \omega_{0})M}}{1 - e^{J(\omega - \omega_{0})M}} + \frac{1 - e^{-J(\omega - \omega_{0})M}}{1 - e^{-J(\omega - \omega_{0})M}} \right\}$$

$$= \frac{1}{2} \left(\frac{1 - \cos(\omega - \omega_{0}) - \cos[(\omega - \omega_{0})M] + \cos[(\omega - \omega_{0})(M - 1)]}{1 - \cos(\omega - \omega_{0})} \right)$$

$$= \frac{1}{2} \left(\frac{2 \sin^{2}[(\omega - \omega_{0})/2] + 2 \sin[(\omega - \omega_{0})/2] \sin[(\omega - \omega_{0})(M - 1/2)]}{2 \sin^{2}[(\omega - \omega_{0})/2]} \right)$$

$$= \frac{1}{2} \left(\frac{\sin[(\omega - \omega_{0})/2] + \sin[(\omega - \omega_{0})(M - 1/2)]}{\sin[(\omega - \omega_{0})/2]} \right)$$

$$= \frac{\cos[(\omega - \omega_{0})(M - 1)/2] \sin[(\omega - \omega_{0})M/2]}{\sin[(\omega - \omega_{0})/2]}$$
(2.10.3)

Similarly,

$$\sum_{0}^{M-1} \cos[(\omega + \omega_0)n] = \frac{\cos[(\omega + \omega_0)(M-1)/2]\sin[(\omega + \omega_0)M/2]}{\sin[(\omega + \omega_0)/2]}$$
(2.10.4)

Substituting (2.10.3) and (2.10.4) in (2.10.2), we obtain the desired result in (2.10.1).

(b) Compute and plot $X_{\rm R}({\rm e}^{{\rm j}\omega})$ for $\omega_0=\pi/2$ and $M=5,\,15,\,25,\,100$. Use the plotting interval of $[-\pi,\pi]$. Comment on your results.

Solution: Using the Dirichlet (or periodic sinc) function [see eq. (4.80) in the textbook]

$$D_M(\omega) = \frac{\sin(M\omega/2)}{M\sin(\omega/2)}$$
 (2.10.5)

we can express (2.10.1) as

$$X_{\mathrm{R}}(\mathrm{e}^{\mathrm{j}\omega}) = \frac{M}{2} \left[\cos \left(\frac{(\omega - \omega_0)(M-1)}{2} \right) D_M(\omega - \omega_0) + \cos \left(\frac{(\omega + \omega_0)(M-1)}{2} \right) D_M(\omega + \omega_0) \right]$$

The following script computes and plots $X_R(e^{j\omega})$ for various M values using the **diric** function. The plots are given as normalized plots, that is, $X_R(e^{j\omega})/\max(X_R)$ as a function of ω/π . This way all plots have the same extent in both axes, only their shape changes as a function of M.

```
figure('position',[0,0,7,8]*72);
subplot(4,1,1); plot(om/pi,XR(1,:)/XRmax(1), 'linewidth',1); ax = gca;
ax.XAxisLocation = 'origin'; ax.YAxisLocation = 'origin'; box off;
axis([-1.03,1.02,-0.25,1.1]);
ax.XAxis.LineWidth = 0.5; ax.YAxis.LineWidth = 0.5;
xlabel('\omega','verticalalignment','middle',...
    'horizontalalignment','left','position',[1.03,0]);
% ylabel('X_R/M','verticalalignment','top',...
      'horizontalalignment', 'center', 'position', [0,0.75]);
set(gca, 'xtick', [-1, -0.5, 0, 0.5, 1], 'ytick', [1]);
set(gca,'xticklabel',{'-\pi','-\pi/2','','\pi/2','\pi'});
set(gca,'yticklabel',{num2str(XRmax(1))},'ygrid','on');
title('X_R(e^{j\omega}) for M = 5');
subplot(4,1,2); plot(om/pi,XR(2,:)/XRmax(2),'linewidth',1); ax = gca;
ax.XAxisLocation = 'origin'; ax.YAxisLocation = 'origin'; box off;
axis([-1.03,1.02,-0.25,1.1]);
ax.XAxis.LineWidth = 0.5; ax.YAxis.LineWidth = 0.5;
xlabel('\omega','verticalalignment','middle',...
    'horizontalalignment', 'left', 'position', [1.03,0]);
% ylabel('X_R/M','verticalalignment','top',...
      'horizontalalignment', 'center', 'position', [0,0.75]);
set(gca, 'xtick', [-1, -0.5, 0, 0.5, 1], 'ytick', [1]);
set(gca,'xticklabel',{'-\pi','-\pi/2',' ','\pi/2','\pi'});
set(gca,'yticklabel',{num2str(XRmax(2))},'ygrid','on');
title('X R(e^{j\omega}) for M = 15');
subplot(4,1,3); plot(om/pi,XR(3,:)/XRmax(3),'linewidth',1); ax = gca;
ax.XAxisLocation = 'origin'; ax.YAxisLocation = 'origin'; box off;
axis([-1.03,1.02,-0.25,1.1]);
ax.XAxis.LineWidth = 0.5; ax.YAxis.LineWidth = 0.5;
xlabel('\omega','verticalalignment','middle',...
    'horizontalalignment', 'left', 'position', [1.03,0]);
% ylabel('X_R/M','verticalalignment','top',...
      'horizontalalignment', 'center', 'position', [0,0.75]);
set(gca, 'xtick', [-1, -0.5, 0, 0.5, 1], 'ytick', [1]);
set(gca,'xticklabel',{'-\pi','-\pi/2','',\pi/2','\pi'});
set(gca,'yticklabel',{num2str(XRmax(3))},'ygrid','on');
title('X R(e^{j\omega}) for M = 25');
subplot(4,1,4); plot(om/pi,XR(4,:)/XRmax(4),'linewidth',1); ax = gca;
ax.XAxisLocation = 'origin'; ax.YAxisLocation = 'origin'; box off;
axis([-1.03,1.02,-0.25,1.1]);
ax.XAxis.LineWidth = 0.5; ax.YAxis.LineWidth = 0.5;
xlabel('\omega','verticalalignment','middle',...
    'horizontalalignment', 'left', 'position', [1.03,0]);
% ylabel('X_R/M','verticalalignment','top',...
      'horizontalalignment', 'center', 'position', [0,0.75]);
```

```
set(gca,'xtick',[-1,-0.5,0,0.5,1],'ytick',[1]);
set(gca,'xticklabel',{'-\pi','-\pi/2','','\pi/2','\pi'});
set(gca,'yticklabel',{num2str(XRmax(4))},'ygrid','on');
title('X_R(e^{j\omega}) for M = 100');
```


