Secuerous 7-8Teomerpure child chows ypabhemus $F(x,y)=0 \text{ Ham.} \quad F(x,y,z)=0 \text{ B np-be}$

Опр. Ангебрангеской кривод на плоскост поверхностью нау миножество почек пегоскост, простанства, координать когорых ожесет нек. аффинной системы координас 0 व हो है Deie, ygobeletopenor ypabreenero $F(x,y)=0, \qquad | F(x,y,z)=0,$ rge F-MENORORELEN 05 Tpēx gbyx repenereorx. Tropagnocu asresp.

кривод на ил. поверхности ноу степень иногогмена

Гришеры ангебраических кривых на пл. поверхностей

1-10 nopegra

Ax+By+C=0 In premove Ax+By+Cz+D=O To mockocy

2) 2-20 hopegica

 $Ax^{2}+By^{2}+2Cxy+2Dx+2Ey+F=0$

 $\mathcal{H}anp.$, $\chi^2 + y^2 - R^2 = 0$ $\mathcal{H}o$ Oupyxhoch. $Ax^{2}+By^{2}+Cz^{2}+$ +2Dxy+2Eyz+2Fxz+ +26x+2Hy+2Iz+J=0 Haap., $x^{2}+y^{2}+z^{2}-R^{2}=0$ $2\pi Cpepa$

Гюдберем систему координая (преморонения) так, чого уравнения поверхносту имем домен просод вид. Пакие имемо доме просод вид. Пакие истемы къ нау. каноническием, а уравнения, запис. в этих системах координая, нау. каноническиеми уравнениями.

Типов канония уравнений кривых 2 порезка повер на плоскост: в про

1)
$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = 1$$
 Figure

$$2)\frac{\chi^2}{Q^2} + \frac{\gamma^2}{B^2} = -1 \quad \text{annumou}$$

$$3)\frac{\chi^2}{\alpha^2} - \frac{\zeta r^2}{B^2} = 1 \quad \text{rune} \rho \delta 0 1 \alpha$$

$$\left(\frac{\chi^2}{\alpha^2} - \frac{y^2}{\beta^2} = -1\right)$$
 conpexental

4)
$$\frac{\chi^2}{\alpha^2} - \frac{y^2}{B^2} = 0$$
 napa neplecer. npelellorx

5)
$$\frac{\chi^2}{\alpha^2} + \frac{y^2}{\beta^2} = 0$$
 hapa nepecer.

поверхностей 2 пор. в пространстве.

1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 coug

2)
$$\frac{\chi^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{C^2} = -1$$
 Finduncoup

3)
$$\frac{\chi^2}{\alpha^2} + \frac{y^2}{\beta^2} - \frac{z^2}{C^2} = 1$$
 DGKOKQ-
1 LUNEPODICUS

4)
$$\frac{\chi^{2}}{Q^{2}} + \frac{y^{2}}{B^{2}} - \frac{z^{2}}{C^{2}} = -1$$
 ROCTHOTOS
 winepoon

5)
$$\frac{\chi^2}{\alpha^2} + \frac{y^2}{\beta^2} - \frac{z^2}{C^2} = 0$$
 Konyc

6)
$$\frac{\chi^2}{\Omega^2} + \frac{y^2}{8^2} + \frac{z^2}{C^2} = 0$$
 ROLLIGE

Сканировано с CamScanner

$$\frac{7}{\alpha^2} + \frac{y^2}{\beta^2} = 22 + \frac{3}{12} = 22$$

8)
$$\frac{\chi^2}{\alpha^2} - \frac{y^2}{\beta^2} = 22$$
 reckilly napadosoug

$$7) x^{2}-\alpha^{2}=0 \quad \text{mapa} \atop \text{napanenoux} \atop \text{npenoux} \atop \text{npenoux} \atop \text{napanenoux} \atop \text{napanenoux} \atop \text{napanenoux} \atop \text{npenoux} \atop \text$$

Дамее идут 9 поверхностей, канон. уравнения когорых Такие же как канон. уравнения кривых 2 пор.; Т.К. коорушнага 2 в ур-ях не угасть, то 2-мобое число:

Какиени свойстваение облазаю: Укравые и поверхност 2-го порезка?

leryue 8. Элешпс, шпербола, порадола.

Эразличные определения эллипса, шперболы и параболы.

Опр. (аналипическое)

June poolor Japaronor FINUNCOM нсу мен-во тогек тоскость, координать когорых отн. некогорой премоугольной системы координат удовл. уравнению $\frac{x^2}{\alpha^2} + \frac{y^2}{8^2} = 1$ $\frac{x^2}{\alpha^2} - \frac{y^2}{8^2} = 1$ y = 2pxMucela a, b, p ucy. napamersache. (a>0,6>0). Obortio creitaios a>Bup>0.

Гюсточен (напр., как объединение прафиков 2× функций:

$$y = \pm 6\sqrt{1 - \frac{\chi^2}{\alpha^2}}$$

$$y = \pm 6\sqrt{\frac{\chi^2}{\alpha^2} - 1}$$

$$d_1 \quad \text{if } d_2 \quad \text{if } d_3 \quad \text{if } d_4 \quad \text{if }$$

Haligeen rucha c=Va2+B2 c = Va2-B2 E= = > 1 E = C <1

THORKLL A1, A2, B1, B2 A1, A2 наз. вершинасии Thorne F1, F2 F_1, F_2 наз, фокусаеми Rplellore d d1, d2 d1, 0/2 наз. директрисами rucero E HCY SKCYEHPUCUTEDOU У парабольт Thorna O Hay yengon нет уенра OTPLZKU (NPRMOTE) A, A, B, B2 Hay. Ochmu Директориальное св-во Thorka M npunagrexuet napadore runepoore FIRENCY (gue a>B) гозда и полоко позда когза отошение paccolnul of T. M'go poryca Fi R PACCIOLHUM OF T. Mgo gupekipucordi постоянно и равно эксцентриситету Ете $\frac{\text{IMFil}}{\text{MMil}} = \mathcal{E}$, re $\mathcal{E} < 1$ gue $\mathcal{E} = 1$ gue run, $\mathcal{E} = 1$ gue na pa \mathcal{E} .

FORGIBROE CHOCK

Illorka M, npuhagnexus Essuncy runepoore roza i rosoico roza, koza acconormal beauruna pajnocru ogelma

Slapatora He WILLET фокального cboccta.

расстаений от т. М до фокусов F1 4 F2 постенна и равна 2а, т.е. |MF1|+MF2|=2a | |MF1|-MF2|=2a

Опр. (reошетрическое) Эллипсом Гипердолой Парадолой HOY. MIN-BO TOTER MOCKOCTH, GILL KOTOPOTX сумма абс.велична разност расспоений до двух данных Porek nocheena. (на основе фон. св-ва)

отношение pacchosency до дакной TURKU 4 90 paluo 1. (Ha exhibe gupers,

Ucxogs y Fux onpegeneruico suoxuo borbecri kanonur yp-p Bacu. эминса, чен-гот и параболья (HE TYGEM).

Director cloures fBee ayru, borxogeupue uy φοκητα F_1 F_1 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_8

Деля гипербольт с параметраму $\alpha = b$ (равновочной гип-лот) также рас. уравнение в асимптотах. Рас. его дамыше.

Уравнения гиперболья

 $xy = \pm \frac{\alpha^2}{2},$

The nonyour run-run $\alpha = B$ pabnon. Pac 3 hax Θ . f_1 f_2 f_1 f_2 f_3 f_4 f_4 f_5 f_4 f_5 f_7 f_8 f_8

 $c = \sqrt{\alpha^2 + \beta^2} = \sqrt{2\alpha^2} = \alpha\sqrt{2}$

 $\varepsilon = \frac{c}{a} = \sqrt{2}$

центр: T.O

Benumer: A1 (-02,02), A2 (02,02)

φοκηςος: F₁(-\frac{1}{12}, \frac{1}{12}), F₂(\frac{1}{12}, -\frac{1}{12})=(α,-α)

guperpuch: y=x±=12=x±a

acuun70707: x=0 4 y=0

Гериведение уравнения кривад 2 порядка к каноническому виду (частные случан): см. с. 323-329 в угебнике Жанатников, Крищенко "Янал. чеон."

Tipumepor npubegenus yp-uis Kpuborx 2 nop. k канонит. виду и иссыедование кривох: Сен. С. 329-335 там же.

Туро ур-е имероболь в асимплотах и пример: см. с, 318-312 там же