Teoremas, Proposiciones y Corolarios

Bander

Julio 2025

Este es un resumen de los teoremas en mis palabras y con sobreexplicación seguramente para así yo lo entiendo. No pretendo reemplazar la documentación oficial, si no que es para tener una explicación para mi yo del futuro.

Proposición 1: Sea $f: \{0,1\}^* \to \{0,1\}^*$, sea T una función construible en tiempo y sea Γ un alfabeto. Si f es computable en tiempo T(n) por una máquina $M = (\Gamma, Q, \delta)$, entonces f es computable en tiempo $O(\log|\Gamma| \cdot T(n))$ por una máquina $M' = (\Sigma, Q', \delta')$ donde $\Sigma = \{0, 1, \triangleright, \square\}$ es el alfabeto estándar.

Demostración:

 $|\Gamma|$ es la cantidad de estados que hay originalmente, para codificar cada estado de Q en Q' se usa el alfabeto Σ (binario), por lo cual conlleva $log_2|\Gamma|$ bits por estado (por convencion usamos que $log_2|\Gamma| = log|\Gamma|$ bits).¹ Eso se traslada a δ' también, por lo cual, lo que antes llevaba un símbolo perteneciente a Γ ahora lleva $log_2|\Gamma|$ símbolos de Σ (pej.: A = 1010).

Proposición 2: Sea $f: \{0,1\}^* \to \{0,1\}^*$ y sea T una función construible en tiempo. Si f es computable en tiempo T(n) por una máquina estándar de $k \geq 3$ cintas (entrada, salida y k-2 cintas de trabajo), entonces f es computable en tiempo $O(T(n)^2)$ por una máquina de cinta única.

Demostración:

Puedo alternar los símbolos de las k cintas en la cinta única y usar símbolos característicos para indicar dónde está la cabeza de cada cinta.

En la posición i está el caracter $\lceil \frac{i}{k} \rceil$ de la cinta $i \mod k$.

Queda en $O(T(n)^2)$ debido a que por cada paso de δ debo primero ubicar cada cabeza para ver que accionar y después modificar cada cabeza como lo indique δ . O sea, por cada paso recorro toda la cinta 2 veces.

Proposición 3: Sea $f: \{0,1\}^* \to \{0,1\}^*$ y sea T una función construible en tiempo. Si f es computable en tiempo T(n) por una máquina estándar, entonces hay una máquina oblivious que computa f en tiempo $O(T(n)^2)$.

Demostración:

La máquina obliviousse mueve un patrón fijo en cada paso (barre toda la cinta) y cambia la cinta según los cambios que se piden. Es muy similar a la proposición 2.

Proposición 4:

Sea $f: \{0,1\}^* \to \{0,1\}^*$ y T una función construible en tiempo. Si f es computable por una máquina con cintas bi-infnitas en tiempo T(n), entonces f es computable por una máquina estándar en tiempo O(T(n))

Demostración:

Se puede doblar la cinta bi-infinita de manera que rebota en el símbolo ⊳ para ver ambos infinitos.

¹La base no importa en la notación big O para los logarítmos ya que difieren entre si por una constante multiplicativa debido a cómo se puede cambiar la base de un logarítmo $(log_b n = \frac{log_k n}{log_{cb}})$

Teorema 1: [Turing 1936] halt no es computable.

Recordatorio:

$$halt(x) = \begin{cases} 1 & \text{si la máquina con entrada } x \text{ termina } (M_x(x)) \\ 0 & \text{si no} \end{cases}$$

Demostración:

Sale por diagonalización. Tengo que:

Defino entonces M tal que M(x) termina sii halt(x) = 0. $M(\langle M \rangle)$ termina $\iff halt(\langle M \rangle) = 0 \iff M(\langle M \rangle)$ no termina. Absurdo!

Teorema 2: Existe una máquina U que computa la función $u(\langle i, x \rangle) = M_i(x)$. Más aún, si M_i con entrada x termina en t pasos, entonces U con entrada $\langle i, x \rangle$ termina en $c \cdot t \cdot log(t)$ pasos, donde c depende solo de i.

Demostración:

Pone en cada cinta de trabajo la simulación de la máquina estándar de M. O sea, en

- #1: La entrada x.
- #2: Cinta de trbajo de M.
- #3: Estado de M.

Si $\#3 = [q_f]$ termina la ejecución M.

Por cada paso de M busco δ en la entrada de la máquina U.

Figura 12: Izquierda: la simulación que hace U (con 3 cintas de trabajo) de M (con una única cinta de trabajo) y entrada x. Derecha: la simulación que hace \tilde{U} (con 4 cintas de trabajo) de M (con una única cinta de trabajo), entrada x hasta el tiempo t.

 $\textbf{Teorema 3:} \ \textit{Existe una máquina} \ \widetilde{U} \ \textit{que computa la función} \ \widetilde{u}(\langle i,t,x\rangle) \ \textit{en tiempo} \ c \cdot t \cdot log(t), \ \textit{donde} \ c \ \textit{depende solo de i}.$

Demostración:

Es muy similar al teorema 2 pero con una cinta más de trabajo para llevar registro de i (cantidad de pasos en la simulación).

Teorema 4: $P \subseteq NP$

Demostración:

Sea $\mathcal{L} \in P$. $\mathcal{L}(M)$, con M una máq. det. que corre en tiempo polinomial.

Tomás el polinomio p de la definición como p(|x|) = 0. Defino M' det. y que corre en tiempo poly. y el certificado $c = \varepsilon$ (donde ε es la cadena vacía), entonces tengo que M' con entrada $\langle x, c \rangle$ copia el comportamiento de M con entrada x.

$$\begin{array}{c} x\in\mathcal{L}\iff M(x)=1\\ \iff M'(\langle x,c\rangle)=1\\ \iff \exists c.c\in\{0,1\}^0 \text{ tal que }M'(\langle x,c\rangle) \text{ (Definición de NP)} \end{array}$$

Teorema 5: $NP = \bigcup_{c \in \mathbb{N}} NDTime(n^c)$

Demostración:

$\bigcup_{c\in\mathbb{N}}\mathsf{NDTime}(n^c)\subseteq\mathsf{NP}$:

Sea $\mathcal{L} \in \bigcup_{c \in \mathbb{N}} \mathsf{NDTime}(n^c)$ quiero ver que $\mathcal{L} \in \mathsf{NP}$. Sea N una máq. no-det. y p un polinomio tal que N corre en tiempo p(n) y $\mathcal{L}(N)$.

Existe una máq. det. M tal que M con entrada $\langle x, u \rangle$ verifica que u sea la codificación del cómputo aceptador de N a partir de x. M simula N con entrada x paso a paso, y en cada iteración i usa la primera o la segunda componente de δ según el valor de u(i) para saber qué hacer.

Luego, $x \in \mathcal{L} \iff \exists u \ . \ u \in \{0,1\}^{p(|x|)}$ tal que $M(\langle x,u \rangle) = 1$. Como M corre en tiempo polinomial (ya que es solo recorrer las decisiones en N con u), concluímos que $\mathcal{L} \in \mathsf{NP}$.

$\mathsf{NP} \subseteq \bigcup_{c \in \mathbb{N}} \mathsf{NDTime}(n^c)$:

Sea $\mathcal{L} \in \mathsf{NP}$ quiero ver que $\mathcal{L} \in \bigcup_{c \in \mathbb{N}} \mathsf{NDTime}(n^c)$. Para esto uso la máq. M det. que corre en tiempo poly de la definición y la simulo con una no-det. que hace lo mismo pero inventando el certificado u por lo que te queda que corre en tiempo poly al ser que M corría en tiempo poly.

Teorema 6: Existe una máquina no-determinística NU tal que NU acepta $(\langle i, x \rangle)$ sii N_i acepta x y si N_i corre en tiempo T(n) entonces $NU(\langle i, x \rangle)$ decide si N_i acepta o rechaza x en $c \cdot T(|x|)$ pasos, donde c depende solo de i.

Demostración:

Similar al teorema 2. No tiene el logarítmo porque puede adivinar no deterministamente la secuencia de elecciones que seguiría N_i para aceptar x.

Teorema 7: La relación \leq_p es transitiva.

Demostración:

Sea $\mathcal{L} \leq_p \mathcal{L}'$ vía g quiero ver que $\mathcal{L} \leq_p \mathcal{L}''$.

$$x \in \mathcal{L} \iff f(x) \in \mathcal{L}' \iff g(f(x)) \in \mathcal{L}''$$

Ahora quiero ver que $g \circ f$ es computable en tiempo polinomial respecto |x|.

Sea M_f , M_g tal que M_f computa f en tiempo poly y M_g computa g en tiempo poly.

$$\begin{array}{ll} M_{g\circ f}:\langle x\rangle \\ y:=M_f(x) & O(n^c) \text{ A lo sumo su salida es polinomial respecto } n\ (n=|x|) \\ \text{return } M_g(y) & O((n^c)^d)=O(n^{cd}) \text{ A lo sumo es poly respecto a } |y| \end{array}$$

Teorema 8: Si NP-hard $\cap P \neq \emptyset$, entonces P = NP.

Demostración:

Si $\mathcal{L} \in \mathsf{NP}$ -hard $\cap \mathsf{P}$, entonces puedo tomar cualquier $\mathcal{L}' \in \mathsf{NP}$ y reducirlo a \mathcal{L} , por lo cuál tengo una f computable poly tal que:

$$x \in \mathcal{L}' \iff f(x) \in \mathcal{L}$$

Entonces a la $\mathcal{L}'(M_{\mathcal{L}'})$ la declaro como:

$$\begin{aligned} M_{\mathcal{L}'} : \langle x \rangle \\ y &:= M_f(x) \quad O(n^c) \\ M_{\mathcal{L}}(y) \quad O(n^{cd}) \end{aligned}$$

 $M_{\mathcal{L}'}$ es entonces una máq. det. que corre en tiempo poly por lo que $\mathcal{L}' \in \mathsf{P}$. O sea $\mathsf{P} = \mathsf{NP}$, al ser que \mathcal{L}' es genérico.

Teorema 9: Si $\mathcal{L} \in \mathsf{NP}\text{-completo}$, entonces $\mathcal{L} \in \mathsf{P} \iff \mathsf{P} = \mathsf{NP}$.

Demostración:

 $\mathcal{L} \in \mathsf{P} \Rightarrow \mathsf{P} = \mathsf{NP}$:

Si \mathcal{L} es NP-completo y a su vez $\mathcal{L} \in P$, lo único que agrega que $\mathcal{L} \in NP$ -completo es que $\mathcal{L} \in NP$ -hard.² Luego, por el teorema 8 obtengo que P = NP.

 $\mathsf{P} = \mathsf{NP} \Rightarrow \mathcal{L} \in \mathsf{P} \text{:}$

Si $\mathsf{P} = \mathsf{NP},$ entonces todos los problemas de NP se pueden resolver en tiempo poly, en particular también todos los $\mathsf{NP}\text{-}\mathrm{completos}.$

Proposición 6: TMSAT \in NP-completo.

 $^{^2\}mathcal{L}$ ya era NP, porque P \subseteq NP