Project 1 ML

February 27, 2023

```
[1]: import pandas as pd
     import numpy as np
     from sklearn.decomposition import PCA
[2]: df_train = pd.read_csv('train.csv')
[3]: print('Size of training set: {} rows and {} columns'
            .format(*df_train.shape))
    Size of training set: 4209 rows and 378 columns
[4]: df_train.head()
[4]:
                            X2 X3 X4 X5 X6 X8
                                                    X375
                                                          X376
                                                                 X377
                                                                       X378
                                                                             X379
                    XO X1
     0
         0
            130.81
                      k
                            at
                                    d
                                                       0
                                                              0
                                                                    1
                                                                           0
                                                                                 0
     1
             88.53
                                                              0
                                                                    0
                                                                           0
         6
                      k
                         t
                            av
                                    d
                                       у
                                          1
                                                       1
                                                                                 0
     2
             76.26
                                                              0
                                    d
                                          j
                                                       0
                                                                           0
                                                                                 0
                     az
                             n
                                 С
     3
         9
             80.62
                     az
                         t
                             n
                                f
                                    d
                                       X
                                          1
                                                              0
                                                                           0
                                                                                 0
        13
             78.02
                                 f
                                                              0
                                                                                 0
                     az
                             n
                                    d
                                       h
                                          d n
                                                       0
        X380
              X382
                     X383
                           X384
                                  X385
     0
                  0
                        0
                              0
           0
                                     0
     1
           0
                  0
                        0
                              0
                                     0
     2
           0
                  1
                        0
                              0
                                     0
     3
           0
                  0
                        0
                               0
                                     0
                                     0
     [5 rows x 378 columns]
[5]: | y_train = df_train['y'].values
[6]: cols = [c for c in df_train.columns if 'X' in c]
     print('Number of features: {}'.format(len(cols)))
    Number of features: 376
[7]: df_train[cols].dtypes.value_counts()
```

```
[7]: int64
                368
      object
                  8
      dtype: int64
 [8]: counts = [[], [], []]
      for c in cols:
          typ = df train[c].dtype
          uniq = len(np.unique(df_train[c]))
          if uniq == 1:
              counts[0].append(c)
          elif uniq == 2 and typ == np.int64:
              counts[1].append(c)
          else:
              counts[2].append(c)
      print('Constant features: {} Binary features: {} Categorical features: {}\n'
            .format(*[len(c) for c in counts]))
      print('Constant features:', counts[0])
      print('Categorical features:', counts[2])
     Constant features: 12 Binary features: 356 Categorical features: 8
     Constant features: ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289',
     'X290', 'X293', 'X297', 'X330', 'X347']
     Categorical features: ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
 [9]: df_test = pd.read_csv('test.csv')
[10]: usable_columns = list(set(df_train.columns) - set(['ID', 'y']))
      y_train = df_train['y'].values
      id_test = df_test['ID'].values
[11]: x_train = df_train[usable_columns]
      x test = df test[usable columns]
[14]: def check_missing_values(df):
          if df.isnull().any().any():
              print("There are missing values in the dataframe")
          else:
              print("There are no missing values in the dataframe")
      check_missing_values(x_train)
      check_missing_values(x_test)
```

There are no missing values in the dataframe There are no missing values in the dataframe

```
[15]: for column in usable_columns:
          cardinality = len(np.unique(x_train[column]))
          if cardinality == 1:
              x_train.drop(column, axis=1) # Column with only one
              # value is useless so we drop it
              x_test.drop(column, axis=1)
          if cardinality > 2: # Column is categorical
              mapper = lambda x: sum([ord(digit) for digit in x])
              x_train[column] = x_train[column].apply(mapper)
              x_test[column] = x_test[column].apply(mapper)
      x train.head()
     /usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:9:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       if __name__ == '__main__':
     /usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:10:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       # Remove the CWD from sys.path while we load stuff.
[15]:
         X385 X212 X297
                           X96 X362 X288
                                             X349
                                                   X322
                                                        X226 X346
                                                                        X159
      0
            0
                             0
                                    0
                                          0
                                                0
                                                      0
                                                            0
                                                                            0
                  0
                                    0
      1
            0
                        0
                             1
                                          0
                                                0
                                                      0
                                                            0
                                                                            0
                                                                                  0
      2
            0
                  0
                        0
                             1
                                   0
                                          0
                                                0
                                                      0
                                                            0
                                                                  0 ...
                                                                                  0
                  0
                        0
                                                            0
                                                                  0
      3
            0
                             1
                                    0
                                          0
                                                0
                                                      0
                                                                            0
                                                                                  0
                                                                  0 ...
            0
                  0
                        0
                             1
                                    0
                                          0
                                                            0
                                                                                  0
         X47
              X59
                  X211 X29 X200 X222
                                            X2
                                                X148
                0
                      0
                           0
                                 0
                                           213
      0
      1
           0
                0
                      0
                           0
                                 0
                                        0 215
                                                   0
      2
           0
                0
                      0
                           1
                                 0
                                        0 110
                                                   1
      3
           0
                0
                      0
                           1
                                        0 110
                                                   1
                                 0
           0
                0
                      0
                           1
                                 0
                                        0 110
                                                   1
      [5 rows x 376 columns]
[16]: print('Feature types:')
      x_train[cols].dtypes.value_counts()
```

```
Feature types:
[16]: int64
               376
     dtype: int64
[17]: n_{comp} = 12
      pca = PCA(n_components=n_comp, random_state=420)
      pca2_results_train = pca.fit_transform(x_train)
      pca2_results_test = pca.transform(x_test)
[19]: import xgboost as xgb
      from sklearn.metrics import r2_score
      from sklearn.model_selection import train_test_split
      x_train, x_valid, y_train, y_valid = train_test_split(
              pca2_results_train,
              y_train, test_size=0.2,
              random state=4242)
[20]: d_train = xgb.DMatrix(x_train, label=y_train)
      d_valid = xgb.DMatrix(x_valid, label=y_valid)
      \#d\ test = xqb.DMatrix(x\ test)
      d_test = xgb.DMatrix(pca2_results_test)
[21]: params = {}
      params['objective'] = 'reg:linear'
      params['eta'] = 0.02
      params['max_depth'] = 4
[22]: def xgb_r2_score(preds, dtrain):
          labels = dtrain.get_label()
          return 'r2', r2_score(labels, preds)
[23]: watchlist = [(d_train, 'train'), (d_valid, 'valid')]
      clf = xgb.train(params, d_train,
                      1000, watchlist, early_stopping_rounds=50,
                      feval=xgb_r2_score, maximize=True, verbose_eval=10)
     [03:07:34] WARNING: /workspace/src/objective/regression_obj.cu:167: reg:linear
     is now deprecated in favor of reg:squarederror.
             train-rmse:99.14835
                                     valid-rmse:98.26297
     [0]
                                                            train-r2:-58.35295
     valid-r2:-67.63754
     Multiple eval metrics have been passed: 'valid-r2' will be used for early
     stopping.
     Will train until valid-r2 hasn't improved in 50 rounds.
     [10]
             train-rmse:81.27653
                                     valid-rmse:80.36433 train-r2:-38.88428
```

7:1 0 44 04044				
valid-r2:-44.91014	3.1 65 77004	0 05 07400		
[20] train-rmse:66.71610	valid-rmse:65.77334	train-r2:-25.87403		
valid-r2:-29.75260	7.1			
[30] train-rmse:54.86914	valid-rmse:53.89102	train-r2:-17.17724		
valid-r2:-19.64500	7.1			
[40] train-rmse:45.24563	valid-rmse:44.22213	train-r2:-11.36018		
valid-r2:-12.90149				
[50] train-rmse:37.44741	valid-rmse:36.37738	train-r2:-7.46671		
valid-r2:-8.40687				
[60] train-rmse:31.15105	valid-rmse:30.01744	train-r2:-4.85891		
valid-r2:-5.40515				
[70] train-rmse:26.08768	valid-rmse:24.90811	train-r2:-3.10906		
valid-r2:-3.41026				
[80] train-rmse:22.04897	valid-rmse:20.82466	train-r2:-1.93527		
valid-r2:-2.08275				
[90] train-rmse:18.84762	valid-rmse:17.59923	train-r2:-1.14479		
valid-r2:-1.20176				
[100] train-rmse:16.33632	valid-rmse:15.08798	train-r2:-0.61131		
valid-r2:-0.61824				
[110] train-rmse:14.40530	valid-rmse:13.15865	train-r2:-0.25290		
valid-r2:-0.23085				
[120] train-rmse:12.93736	valid-rmse:11.70636	train-r2:-0.01056		
valid-r2:0.02585				
[130] train-rmse:11.82038	valid-rmse:10.63217	train-r2:0.15640		
valid-r2:0.19643				
[140] train-rmse:10.98619	valid-rmse:9.86382	train-r2:0.27127		
valid-r2:0.30837				
[150] train-rmse:10.37995	valid-rmse:9.33719	train-r2:0.34948		
valid-r2:0.38025				
[160] train-rmse:9.92892	valid-rmse:8.97131	train-r2:0.40478		
valid-r2:0.42787				
[170] train-rmse:9.60261	valid-rmse:8.72923	train-r2:0.44326		
valid-r2:0.45833				
[180] train-rmse:9.35843	valid-rmse:8.57137	train-r2:0.47122		
valid-r2:0.47774				
[190] train-rmse:9.17119	valid-rmse:8.46826	train-r2:0.49217		
valid-r2:0.49023				
[200] train-rmse:9.02690	valid-rmse:8.40121	train-r2:0.50802		
valid-r2:0.49828				
[210] train-rmse:8.92291	valid-rmse:8.36370	train-r2:0.51929		
valid-r2:0.50274	Valla 1m20.0.00010	514III 12.0.01020		
[220] train-rmse:8.83920	valid-rmse:8.33808	train-r2:0.52827		
valid-r2:0.50579	valia imbelo.cocco	01d111 12.0.02027		
[230] train-rmse:8.77610	valid-rmse:8.32875	train-r2:0.53498		
valid-r2:0.50689	Valla 1mb6.0.02010	JIGIH 12.0.00 1 30		
[240] train-rmse:8.72743	valid-rmse:8.32010	train-r2:0.54012		
valid-r2:0.50792				
	valid-rmse:8.31107	train-r2:0.54468		
[250] train-rmse:8.68406	vallu-rmse:0.3110/	LIAIII-12.U.54408		

	Valld-r2:0.50898		
	[260] train-rmse:8.64603	valid-rmse:8.30592	train-r2:0.54866
	valid-r2:0.50959 [270] train-rmse:8.60566	valid-rmse:8.30602	train-r2:0.55286
	valid-r2:0.50958		
	[280] train-rmse:8.57266	valid-rmse:8.30284	train-r2:0.55629
	valid-r2:0.50996		
	[290] train-rmse:8.54801	valid-rmse:8.30553	train-r2:0.55883
	valid-r2:0.50964		
	[300] train-rmse:8.52263	valid-rmse:8.30467	train-r2:0.56145
	valid-r2:0.50974		
	[310] train-rmse:8.49918	valid-rmse:8.30303	train-r2:0.56386
	valid-r2:0.50993	7.1.1	
	[320] train-rmse:8.47071	valid-rmse:8.30450	train-r2:0.56678
	valid-r2:0.50976 [330] train-rmse:8.44156	valid-rmse:8.29897	train-r2:0.56975
	valid-r2:0.51041	Valid-Imse.o.29091	train-12.0.50975
	[340] train-rmse:8.41497	valid-rmse:8.29856	train-r2:0.57246
	valid-r2:0.51046	74114 1m20.0.2000	014111 12:0:0:210
	[350] train-rmse:8.39309	valid-rmse:8.29449	train-r2:0.57468
	valid-r2:0.51094		
	[360] train-rmse:8.36732	valid-rmse:8.29281	train-r2:0.57729
	valid-r2:0.51114		
	[370] train-rmse:8.34113	valid-rmse:8.29552	train-r2:0.57993
	valid-r2:0.51082		
	[380] train-rmse:8.31828	valid-rmse:8.29337	train-r2:0.58223
	valid-r2:0.51107	7.1	
	[390] train-rmse:8.29450 valid-r2:0.51140	valid-rmse:8.29060	train-r2:0.58461
	[400] train-rmse:8.27138	valid-rmse:8.29096	train-r2:0.58693
	valid-r2:0.51136	valid linse.0.29090	train 12.0.50095
	[410] train-rmse:8.23775	valid-rmse:8.29364	train-r2:0.59028
	valid-r2:0.51104		
	[420] train-rmse:8.21518	valid-rmse:8.29204	train-r2:0.59252
	valid-r2:0.51123		
	[430] train-rmse:8.19153	valid-rmse:8.29294	train-r2:0.59486
	valid-r2:0.51112		
	[440] train-rmse:8.17095	valid-rmse:8.29089	train-r2:0.59690
	valid-r2:0.51136		
	Stopping. Best iteration:	1.1	
	[393] train-rmse:8.28942 valid-r2:0.51149	valid-rmse:8.28982	train-r2:0.58512
	Valid-12:0.51149		
. =			
[24]:	<pre>p_test = clf.predict(d_test)</pre>		
	<pre>sub = pd.DataFrame()</pre>		

valid-r2:0.50898

```
sub['ID'] = id_test
sub['y'] = p_test
sub.to_csv('xgb.csv', index=False)
sub.head()
```

[24]: ID y 0 1 82.533493 1 2 97.487167 2 3 83.476692 3 4 77.462120 4 5 112.954796

[]: