Отчёт о выполнении задания по созданию OpenMP программы

Поворознюк Александра, группа 603 Вариант 1

1 Математическая постановка задачи

В области $D \subset \mathbb{R}^2$, ограниченной кусочно-гладким контуром γ , рассматривается дифференциальное уравнение Пуассона:

$$-\Delta u = f(x, y),\tag{1}$$

где оператор Лапласа имеет вид:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$

Функция f(x,y) считается известной. Для выделения единственного решения уравнение дополняется граничным условием Дирихле:

$$u(x,y) = 0, \quad (x,y) \in \gamma. \tag{2}$$

Область D — прямоугольный треугольник с вершинами в точках C(0,0), A(3,0), B(0,4). Требуется найти приближённое решение при f(x,y)=1.

2 Численные методы решения задачи

2.1 Метод фиктивных областей

Область D ограничим прямоугольником $\Pi = \{(x,y): 0 < x < 3, 0 < y < 4\}$. В нём рассматривается задача Дирихле:

$$-\frac{\partial}{\partial x}\left(k(x,y)\frac{\partial v}{\partial x}\right) - \frac{\partial}{\partial y}\left(k(x,y)\frac{\partial v}{\partial y}\right) = F(x,y), \quad (x,y) \in \Pi \setminus \gamma,$$

$$v(x,y) = 0, \quad (x,y) \in \Gamma,$$
(3)

где коэффициент

$$k(x,y) = \begin{cases} 1, & (x,y) \in D, \\ 1/\varepsilon, & (x,y) \in \hat{D}, \end{cases}$$

а правая часть

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D, \\ 0, & (x,y) \in \hat{D}. \end{cases}$$

Малая константа ε определяется как $\varepsilon = [\max(h_1, h_2)]^2$.

2.2 Метод конечных разностей

В прямоугольнике П задаётся равномерная сетка:

$$\omega_1 = \{x_i = ih_1, i = 0, M\}, \quad \omega_2 = \{y_j = jh_2, j = 0, N\},\$$

где $h_1 = 3/M$, $h_2 = 4/N$.

Разностная аппроксимация имеет вид:

$$-\frac{1}{h_1} \left(a_{i+1,j} \frac{\omega_{i+1,j} - \omega_{i,j}}{h_1} - a_{i,j} \frac{\omega_{i,j} - \omega_{i-1,j}}{h_1} \right) - \frac{1}{h_2} \left(b_{i,j+1} \frac{\omega_{i,j+1} - \omega_{i,j}}{h_2} - b_{i,j} \frac{\omega_{i,j} - \omega_{i,j-1}}{h_2} \right) = F_{ij}. \quad (4)$$

Граничное условие:

$$\omega_{ij} = 0, \quad (x_i, y_j) \in \Gamma.$$

2.3 Итерационный метод сопряжённых градиентов

Для решения системы используется метод сопряжённых градиентов с диагональным предобуславливанием:

$$(D\omega)_{ij} = \left[\frac{a_{i+1,j} + a_{i,j}}{h_1^2} + \frac{b_{i,j+1} + b_{i,j}}{h_2^2}\right]\omega_{ij}.$$

Начальное приближение $\omega^{(0)} = 0$, итерации проводятся по формулам:

$$r^{(0)} = B - A\omega^{(0)} = B, \quad Dz^{(0)} = r^{(0)}, \quad p^{(1)} = z^{(0)},$$

$$\alpha_1 = \frac{(z^{(0)}, r^{(0)})}{(Ap^{(1)}, p^{(1)})}, \quad \omega^{(1)} = \omega^{(0)} + \alpha_1 p^{(1)}.$$

Процесс продолжается до выполнения условия

$$\|\omega^{(k+1)} - \omega^{(k)}\|_{E} < \delta, \quad \delta = 10^{-11}.$$

3 Создание OpenMP программы

Для распараллеливания использовались директивы:

```
#pragma omp parallel for collapse(2)
#pragma omp parallel for collapse(2) reduction(+:s)
```

4 Результаты

С увеличением числа нитей время выполнения сначала уменьшается, а потом увеличивается, что говорит нам о необходимости уметь найти оптимальное число нитей.

OpenMP-нитей	Размер сетки	Итераций	Время (с)	Ускорение
1	400×600	1665	6.71	1
2	400×600	1665	4.19	1.6
4	400×600	1665	3.03	2.21
8	400×600	1665	2.52	2.66
16	400×600	1665	2.41	2.78
1	800×1200	3186	64.53	1
2	800×1200	3186	37.19	1.74
4	800×1200	3186	24.86	2.6
8	800×1200	3186	20.96	3.08
16	800×1200	3186	19.01	3.39
32	800×1200	3186	22.81	2.83

Таблица 1: Результаты вычислений

Рис. 1: Тепловая карта решения