In the Claims.

Please amend the claims as follows:

1. (Original) A VPO catalyst of the general formula:

$$[V_1P_aX_b(Y)_cO_d]_e[Z]_f$$
, in which

a = 0.1-2.5

b = 0-3.0, in particular 0.001-3.0

c = 0.1-10

d = depends on the valency of the other elements

e = 5-100 (% by weight)

f = 95-0 (% by weight), in particular 95-5 with the provision that b and f are not simultaneously 0

X = Cr, Mo, W, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Zn or Nb

Y = cyclic nitrogen compound,

 $Z = SiO_2$, $A1_2O_3$, ZrO_2 or TiO_2 or their mixtures,

manufactured in accordance with a method in which one carries out the following steps:

- a) converting V_2O_5 and concentrated phosphoric acid in an organic medium under reflux conditions,
 - b) separating off catalyst precursor that forms and optionally
 - c) drying at 80 to 140°C,
- d) impregnating the optionally dried catalyst precursor with an aqueous or alcoholic solution of the metal X, with X having the significance quoted above,
 - e) separating off excess solution,
 - f) drying and calcining the impregnated material, and
 - g) optionally forming the catalyst obtained.
- 2. (Original) The VPO catalyst in accordance with claim 1, characterized in that the catalyst contains SiO₂, A1₂O₃, ZrO₂ or TiO₂ or their mixtures as a support.

- 3. (Original) The VPO catalyst in accordance with claim 1, characterized in that the catalyst contains 0.01 to 5 % by weight of an organic cyclic nitrogen compound.
- 4. (Original) The VPO catalyst in accordance with claim 3, characterized in that the catalyst contains as the nitrogen compound a compound selected from the group pyridine, quinoline, pyridazine, pyrimidine, and pyrazine.
- 5. (Original) The VPO catalyst in accordance with claim 3, characterized in that the catalyst contains 3-methylpyridine as the nitrogen compound.
- 6. (Presently amended) A method of use manufacture of 3-cyanopyridine, the method comprising the steps of:

providing the a VPO catalyst of the general formula:

$[V_1P_aX_b(Y)_cO_d]_e[Z]_f$, in which

<u>a</u>	=	0.1-2.5
<u>b</u>	=	0-3.0, in particular 0.001-3.0
c	_=	0.1-10
d	=	depends on the valency of the other elements
<u>e</u>	=	5-100 (% by weight)
f		95-0 (% by weight), in particular 95-5 with the provision that b and f
are not simultaneously 0		
<u>X</u>	=	Cr, Mo, W, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Zn or Nb
<u>Y</u>	=	cyclic nitrogen compound,
	b	b = c = d = e = f =

<u>providing catalyst in accordance with claims 1 to 5</u> for the manufacture of 3evanopyridine by conversion of 3-methylpyridine;

SiO₂, A1₂O₃, ZrO₂ or TiO₂ or their mixtures,;

providing with ammonia;
providing and oxygen;

Commissioner for Patents February 2, 2006 Page 5

and combining the VPO catalyst, 3-methylpyridine, ammonia, and oxygen at temperatures up to 440°C.