Lecture 11

Multicast Routing

Terminologies

- What is "unicast"?
 - Cast: to send, to throw
 - Broadcast: to send everywhere (recall broadcast in local area Ethernet, ARP, DHCP)
 - Unicast: to send to a single receiver
 - Point-to-point communication
 - Nearly all wide-area Internet traffic is unicast
 - Web traffic, SSH traffic, FTP traffic
 - Two unicast streams, one in each direction
- What is "multicast"?
 - In between unicast and broadcast
 - Each packet is sent to multiple specific receivers
 - Point-to-Multipoint communication
 - What is multicast useful for???

Example Uses

- Internet TV radio
- Stock price update
- Video conference

How to Send to Multiple Receivers?

- What are the simplest ways?
- Ex1: Send a copy of the packet to one receiver at a time until all receivers have it
 - i.e. use unicast to implement multicast
- Ex2: Flood a packet throughout the network and have non-receivers discard the packet
 - i.e. use broadcast to implement multicast
- Advantages? Disadvantages?
- In general: We want a distribution tree
 - Many ways to do it
 - Big research topic for a decade

Example: Internet Radio

- www.digitallyimported.com
 - Sends out 128Kb/s MP3 music streams
 - Peak usage ~9000 simultaneous streams
 - Consumes ~1.1Gb/s
 - bandwidth costs are large fraction of their expenditures
 - A fat and shallow tree
 - Does not scale!

This approach does not scale...

Copy data at routers
At most one copy of a data packet per link

Copy data at routers At most one copy of a data packet per link

Copy data at routers

At most one copy of a data packet per link

Multicast Routing Approaches

- Kinds of Trees
 - Source Specific Trees
 - Most suitable for single sender
 - E.g. internet radio
 - Shared Tree
 - Multiple senders in a group
 - E.g. Teleconference
- Tree Computation Methods
 - Link state
 - Distance vector

Source Specific Trees

Source Specific Trees

Shared Tree

Easier to construct/maintain but hard to pick "good" trees for everyone!

IPv4 Multicast

28

1110 Multicast Group Address

First octet: 224 - 239

- Class D addresses
 - These are group identifiers
 - Not specific to an end host
 - Flat address space
 - In practice, pick a group address at random, hope no collision
 - No security in the network layer
- Will use "G" to designate an IP multicast group address

IP Multicast Service Model

- Receivers join a multicast group which is identified by a multicast address (e.g. G)
- Sender(s) send data to address G
- Network routes data to each of the receivers

IP Multicast Service Model

- Receivers join a multicast group which is identified by a multicast address (e.g. G)
- Sender(s) send data to address G
- Network routes data to each of the receivers

Multicast Implementation Issues

- How is join implemented?
- How is send implemented?
- How much information about trees is kept and who keeps it?

IP Multicast Routing

- Intra-domain
 - Distance-vector multicast
 - Link-state multicast
- Inter-domain
 - Protocol Independent Multicast, Sparse Mode
 - Key idea: Core-Based Tree

<u>Distance Vector Multicast Routing Protocol</u> (DVMRP)

- An elegant extension to DV routing
- Use shortest path DV routes to determine if link is on the source-rooted spanning tree
- Three steps in developing DVMRP
 - Reverse Path Flooding
 - Reverse Path Broadcasting
 - Truncated Reverse Path Broadcasting

- Extension to DV unicast routing
- Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
 - Packets always take shortest path
 - assuming delay is symmetric
- Issues
 - Some links (LANs) may receive multiple copies
 - Every link receives each multicast packet, even if no interested hosts

- Extension to DV unicast routing
- Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
 - Packets always take shortest path
 - assuming delay is symmetric
- Issues
 - Some links (LANs) may receive multiple copies
 - Every link receives each multicast packet, even if no interested hosts

- Extension to DV unicast routing
- Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
 - Packets always take shortest path
 - assuming delay is symmetric
- Issues
 - Some links (LANs) may receive multiple copies
 - Every link receives each multicast packet, even if no interested hosts

- Extension to DV unicast routing
- Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
 - Packets always take shortest path
 - assuming delay is symmetric
- Issues
 - Some links (LANs) may receive multiple copies
 - Every link receives each multicast packet, even if no interested hosts

- Extension to DV unicast routing
- Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
 - Packets always take shortest path
 - assuming delay is symmetric
- Issues
 - Some links (LANs) may receive multiple copies
 - Every link receives each multicast packet, even if no interested hosts

Example

 Flooding can cause a given packet to be sent multiple times over the same link

Solution: Called "Reverse Path Broadcasting"

Reverse Path Broadcasting (RPB)

- Chose parent of each link along reverse shortest path to source
- Only parent forward to a link (child link)
- Use DV routing update to identify parent

Don't Really Want to Flood!

- This is still a broadcast algorithm the traffic goes everywhere
- Need to "Prune" the tree when there are subtrees with no group members
- Solution: Truncated Reverse Path Broadcasting

Truncated Reverse Path Broadcasting (TRPB)

- Extend RPB to eliminate unneeded forwarding
- Explicit group joining
 - Members periodically send "join" requests
 - If another LAN member has joined (overheard join message), other members do not send join message
- Router with no member downstream is removed from tree
 - Router sends "prune" message to upstream router when no member

<u>Truncated Reverse Path Broadcasting</u> (TRPB)

- Extend RPB to eliminate unneeded forwarding
- Explicit group joining
 - Members periodically send "join" requests
 - If another LAN member has joined (overheard join message), other members do not send join message
- Router with no member downstream is removed from tree
 - Router sends "prune" message to upstream router when no member

<u>Truncated Reverse Path Broadcasting</u> (TRPB)

- Extend RPB to eliminate unneeded forwarding
- Explicit group joining
 - Members periodically send "join" requests
 - If another LAN member has joined (overheard join message), other members do not send join message
- Router with no member downstream is removed from tree
 - Router sends "prune" message to upstream router when no member

<u>Truncated Reverse Path Broadcasting</u> (TRPB)

- Extend RPB to eliminate unneeded forwarding
- Explicit group joining
 - Members periodically send "join" requests
 - If another LAN member has joined (overheard join message), other members do not send join message
- Router with no member downstream is removed from tree
 - Router sends "prune" message to upstream router when no member

Distance Vector Multicast Scaling

- State requirements:
 - O(Sources × Groups) active state

Core Based Trees (CBT)

- The key idea in Inter-domain PIM-SM protocol
- Pick a "rendezvous point" for the group called the core
 - Build a tree towards the core
 - Union of the unicast paths from members to the core
 - Shared tree
- To send, unicast packet to core and bounce it back to multicast group
- Reduce routing table state from O(S x G) to O(G)

Example

- Group members: M1, M2, M3
- M1 sends data

control (join) messagesdata

<u>Disadvantages</u>

- Sub-optimal delay
- Single point of failure
 - Core goes out and everything lost until error recovery elects a new core
- Small, local groups with non-local core
 - Need good core selection
 - Optimal choice (computing topological center) is NP hard