CSCC43 Assignment Summer 2022

Stephen Guo guostep2 1006313231

Exercise 1.

Everything is many to many

Exercise 2.

I assume that people can only belong to one Department.

I assume that Researchers are separate from Contractors, and that only Researchers get Employee ID since Current Employees only require a SIN.

I assume people can write many reports/publications and reports/publications can be written by multiple people.

Lastly, people can only be a Current Contractor, Previous Employee, or a Researcher. They cannot be in any parent entity set.

	Department and Researchers									
Department People Researcher										
<u>ID</u>	Name	Name	Birthday	Area of Research	Employee ID					
4819753	Psychology	Mashiro Tsukino	August 19 1996	Dreams	10035283874					
1935517	Computer Science	Mei Hiuchidani	April 10 2000	Computational Complexity	10048173772					

	Department and Current Contractor									
Depart	Current Contractor									
<u>ID</u>	Name	Name	Birthday	Contract Date	SIN					
8457199 Math Misaki Tobisawa April 16 2003		April 16 2003	May 2022 - December 2022	9271628316						
1935517	Law	Limbo Scott Fitzgerald	April 10 1991	December 2021 - September 2022	9346336378					

	Department and Previous Employee									
Department People Contractor Previous Emplo										
<u>ID</u>	Name	Name	Birthday	Contract Date Old Employee ID						
8457199	Sailor	Odette Malencon	November 3 1979	January 2015 - December 2017	10090218575					
1935517	Police	January 2022 - May 2022	10052155526							

	Researcher and Publication									
People Researcher Publication										
Name	Birthday	Area of Research	Employee ID	Title	Code					
Kyou Tsukishima	August 20 2003	Basketball	10052155526	What's the best shooting form?	9892					
Maya Tokizaki	April 26 2003	Acting	10038172316	Effects of exercise on acting	9887					

Current Contractors and Reports								
People Contractor Current Employee Report								
Name	Birthday	Contract Date	SIN	Title	Code			
Rikka Narusawa	June 29 2003	May 2022 - Dec 2022	9474987529	Correlation between hand size and piano skills	9799			

Previous Employees and Reports								
People Contractor Previous Employee Report								
Name	Birthday	Contract Date	Old Employee ID	Title	Code			
Marika Shinozaki	Mar 3 2003	Dec 2021 - May 2022	10071291083	Effects of sexual intercourse during pregnency	9801			

Publication and Topic						
Publication						
Title <u>Code</u>						
Effects of sexual intercourse during pregnency	9801	Sex				
Correlation between hand size and piano skills	9799	Music				

Reports and Topic						
Reports	Topic					
Title	Code	Topic				
What's the best shooting form?	9892	Physics				
Effects of exercise on acting	9887	Gym				

Exercise 3.

I assume multiple instructors can teach a course I assume the exact time and place of an offering is unique

Student Takes										
Courses Students M								Mark		
Title	Pre-requisites	Course Number	rse Number Credits Syllabus Name <u>Student ID</u> Program 1					Mark		
Compilers	CSCB58	CSCD70	0.5	PDF Link	Shiki Natsume	1004811742	CS	86		
Imagination	PSYC16	STAB22	0.5	PDF Link	Kengo Miyazawa	1004848631	Psychology	61		

Course Offerings										
Courses Offerings										
Course #	Title	Pre-requisites	Credits	Syllabus	<u>Semester</u>	Year	Timings	Classroom	Section #	Instructor
MATD01	Rings	MATC01	0.5	Link	Fall	2022	9:00 - 11:00	HL B101	001	Alice Bedford
MDSB09	Kids	MDSA01	0.5	Link	Summer	2021	18:00 - 21:00	IC 130	002	Taichi Hoshina

	Instructor Teaches										
Offerings Instructors											
Semester	Semester Year Timings Classroom Section Number Course Number ID Name Title Depart						Department				
Summer 2016 11:00 - 13:00 SW 319 004 PHYC54				PHYC54	9993713655	Rino Ibaraki	Dr	Physics			
Summer							Ryuunosuke Arihara	Dr	Studio Art		

Exercise 4.

(1)
$$A \to C \qquad \qquad [\text{By given}]$$

$$\iff AB \to BC \qquad \qquad [\text{By Augmentation}] \qquad (\bigstar)$$

$$A \to B$$
 [By given]
 $\iff AA \to AB$ [By Augmentation]
 $\iff A \to AB$ [Simplifying]
 $\iff A \to BC$ [By Transivity from (\bigstar)]

(2)
$$B \subseteq BC \qquad [Trivial] \\ \iff BC \to B \qquad [By Reflexivity] \qquad (\P)$$

$$C \subseteq BC \qquad \qquad \text{[Trivial]}$$

$$\iff BC \to C \qquad \qquad \text{[By Reflexivity]} \qquad \qquad (\clubsuit)$$

$$A \to BC \qquad \qquad [\text{By given}] \\ \iff A \to C \qquad \qquad [\text{By Transivity from } (\P)] \\ \text{and} \quad A \to B \qquad \qquad [\text{By Transivity from } (\P)]$$

(3)
$$A \to B \qquad \text{[By given]}$$

$$\iff AC \to BC \qquad \text{[Augmentation]}$$

$$\iff AC \to D \qquad \text{[By Transivity from given } BC \to D\text{]}$$

CSCC43 A1 Stephen Guo 1006313231

(4)
$$C \to F \qquad \qquad [\text{By given}]$$

$$\iff CG \to FG \qquad \qquad [\text{Augmentation with } G] \qquad (\clubsuit)$$

$$AB \to CD$$
 [By given]
$$\iff ABE \to CDE \qquad \qquad [\text{Augmentation with } E]$$

$$\iff ABE \to CDG \qquad \qquad [E \to G \Longrightarrow CDE \to CDG]$$

$$\iff ABE \to CG \qquad \qquad [CG \subseteq CGD \Longrightarrow CGD \to CG] \qquad (\varnothing)$$

$$A \to B$$
 [By given]
$$\iff A \to DE$$
 $[B \to DE]$
$$\iff A \to E$$
 $[E \subseteq DE \Longrightarrow DE \to E]$

$$A \to BE \qquad [\text{Union of } A \to B \text{ and } A \to E]$$

$$\iff AA \to ABE \quad [\text{Augmentation with } A]$$

$$\iff A \to ABE \quad [\text{Simplification}]$$

$$\iff A \to CG \quad [\text{Transivity with } (\mathcal{D})]$$

$$\iff A \to FG \quad [\text{Transivity with } (\clubsuit)]$$

Exercise 5.

(1)

- 1. $A \to C$, $A \to D$
- 2. The only key is A since $A \to \text{every}$ other attribute. By the union property, $A \to ABCD$
- 3. All possible sets with A in it. So:

$$AB \rightarrow ABCD$$
 $AC \rightarrow ABCD$
 $AD \rightarrow ABCD$
 $ABC \rightarrow ABCD$
 $ABD \rightarrow ABCD$
 $ACD \rightarrow ABCD$

 $ABCD \rightarrow ABCD$

(2)

1.

$$BC \to D$$
 [given]
 $\iff ABC \to AD$ [Augmentation with A]
 $\iff ABC \to D$ [by decomposition rule]

$$AB \to C$$
 [given]
 $\iff AABB \to ABC$ [Augmentation with A and B]
 $\iff AB \to ABC$ [Simplifying]
 $\iff AB \to D$ [Augmentation with (\divideontimes)]

 (\mathbf{J})

 (\updownarrow)

$$CD \to A$$
 [given]

$$\iff BCD \to BA \quad [\text{augmentation with } B]$$

$$\iff BCD \to A$$
 [by decomposition rule] (\clubsuit)

$$BC \to D$$
 [given]

$$\iff BBCC \to BCD$$
 [augmentation with B and C]

$$\iff$$
 $BC \to BCD$ [Simplifying]

$$\iff$$
 $BC \to A$ [augmentation with (\clubsuit)]

$$DA \to B$$
 [given]

$$\iff CDA \to CB$$
 [augmentation with C]

$$\iff CDA \to B$$
 [by decomposition rule]

$$CD \to A$$
 [given]

$$\iff CCDD \to CDA \quad [\text{augmentation with } C \text{ and } D]$$

$$\iff \qquad CD \to CDA \quad \text{[Simplifying]}$$

$$\iff$$
 $CD \to B$ [augmentation with (\slashed{J})]

$$AB \to C$$
 [given]

$$\iff DAB \to DC$$
 [augmentation with D]

$$\iff DAB \to C$$
 [by decomposition rule]

$$DA \to B$$
 [given]

 $\iff DDAA \to DAB$ [augmentation with D and A]

 \iff $DA \to DAB$ [Simplifying]

 \iff $DA \to C$ [augmentation with (?)]

So there is:

$$AB \rightarrow D$$

$$BC \to A$$

$$CD \to B$$

$$DA \to C$$

2. By union property of the given and above, we have:

$$AB \rightarrow ABCD$$

$$BC \to ABCD$$

$$CD \rightarrow ABCD$$

$$DA \rightarrow ABCD$$

3. All possible sets with AB, BC, CD, and DA in it. So:

$$ABC \rightarrow ABCD$$

$$BCD \rightarrow ABCD$$

$$CDA \rightarrow ABCD$$

$$DAB \rightarrow ABCD$$

$$ABD \to ABCD$$

$$BCA \rightarrow ABCD$$

$$CDB \rightarrow ABCD$$

$$DAC \rightarrow ABCD$$

$$ABCD \to ABCD$$

Exercise 6.

(1)
$$A^{+} = (ABC)^{+} \quad [\text{given } A \to BC]$$

$$= (ABCD)^{+} \quad [\text{given } B \to D]$$

$$= ABCDE \quad [\text{given } CD \to E]$$

$$E^{+} = (EA)^{+} \quad [\text{given } E \to A]$$

$$= ABCDE \quad [\text{since } A^{+} = ABCDE]$$

$$B^{+} = BD \quad [\text{given } B \to D]$$

$$C^{+} = C \quad [\text{nothing}]$$

$$D^{+} = D \quad [\text{nothing}]$$

$$(BD)^{+} = BD \quad [\text{nothing}]$$

$$(CD)^{+} = (CDE)^{+} \quad [\text{given } CD \to E]$$

$$= ABCDE \quad [\text{since } E^{+} = ABCDE]$$

$$(BC)^{+} = (BCD)^{+} \quad [\text{given } B \to D]$$

$$= ABCDE \quad [\text{since } (CD)^{+} = ABCDE]$$

So A, E, CD, and BC are candidate keys. since they functionally determines all other attributes. There exists no non-empty subset of A and E. And both subsets of BC (B and C) and CD (C and D) are not superkeys.

There cannot be a candidate key with 3 attributes because it must be a superset of one of $\{A, E, CD, BC\}$. All attributes exist in that set. Since those are candidate keys, then supersets of those attributes are by definition not candidate keys.

(2)

No. B is not a superkey of R since B is not a superset of $\{A, E, CD, BC\}$. Since $B \to D$ is a non-trivial Functional Dependency of R, R is not in BCNF.

(3)

Yes. The D in $B \to D$ is a member of CD which is a superkey. So $\{A, E, CD\}$ are superkeys, and D from the last Functional Dependency $B \to D$ is a member of the superkey CD

(4)

Initial Tableau:

Decomposed Relations	Attributes					
	A	В	С	D	Ε	
$R_1(A,B,C)$	a	b	c	d_1	e_1	
$R_2(A, D, E)$	a	b_2	c_2	d	e	

Given $A \to BC$

Decomposed Relations	Attributes				
	A	В	С	D	Е
$R_1(A,B,C)$	a	b	c	d_1	e_1
$R_2(A, D, E)$	a	\boldsymbol{b}	c	d	e

Since we have a row without any subscripts, this means we have a lossless decomposition.

Checking dependency preserving: Let $F = \{A \to BC, CD \to E, B \to D, E \to A\}$ Check if $(F_{R_1} \cup F_{R_2})^+ = F^+$

$$R_1 = (A, B, C), R_2 = (A, D, E)$$

Given the Closures of everything in (1), we have:

$$F_{R_1} = \{A \to BC, BC \to A\}$$

$$F_{R_2} = \{A \to DE, E \to AD\}$$

$$F_{R_1} \cup F_{R_2} = \{A \to BCDE, BC \to A, E \to A\}$$

Calculating closure of $F_{R_1} \cup F_{R_2}$

 $A^+ = ABCDE$

 $B^+ = B \leftarrow \text{This is not equal to } F^+$

 $C^+ = C$

 $D^+ = D$

 $E^+ = ABCDE$

 $BC^+ = ABCDE$

 $CD^+ = CD \leftarrow$ This is not equal to F^+

 $BD^+ = BD$

 $\therefore \{CD \to E, B \to D\}$ are not preserved

Initial Tableau:

Decomposed Relations	Attributes				
	A	В	С	D	Е
$R_1(A, B, C, D)$	a	b	c	d	e_1
$R_2(C,D,E)$	a_2	b_2	c	d	e

Given $CD \to E$

Decomposed Relations	Attributes				
	A	В	С	D	E
$R_1(A, B, C, D)$	a	b	c	d	e
$R_2(C,D,E)$	a_2	b_2	c	d	e

Since we have a row without any subscripts, this means we have a lossless decomposition.

Checking dependency preserving: Let $F = \{A \to BC, CD \to E, B \to D, E \to A\}$ Check if $(F_{R_1} \cup F_{R_2})^+ = F^+$

$$R_1 = (A, B, C, D), R_2 = (C, D, E)$$

Given the Closures of everything in (1), we have:

$$F_{R_1} = \{A \to BCD, B \to D, BC \to A, CD \to A\}$$

$$F_{R_2} = \{E \to CD,\ CD \to E\}$$

$$F_{R_1} \cup F_{R_2} = \{A \rightarrow BCD, B \rightarrow D, BC \rightarrow A, CD \rightarrow A, E \rightarrow A\}$$

Calculating closure of $F_{R_1} \cup F_{R_2}$

$$A^+ = ABCDE$$

$$B^+ = BD$$

$$C^+ = C$$

$$D^+ = D$$

$$E^+ = ABCDE$$

$$BC^+ = ABCDE$$

$$CD^+ = ABCDE$$

$$BD^+ = BD$$

$$(F_{R_1} \cup F_{R_2})^+ = F^+$$

.: FD's are preserved

(5)

 R_1 's Functional Dependencies: $A \to BC$ which is a superkey

 $\therefore R_1$ is in BCNF

$$\Longrightarrow R_1$$
 is in 3NF

 R_2 's Functional Dependencies: $E \to A$ which is neither a superkey or prime

 $\therefore R_2$ is none

 R_3 's Functional Dependencies: $\{A \to BC, B \to D\}$

A is a superkey, so the first Functional Dependency is valid

The second Functional Dependency is neither a superkey or prime

 $\therefore R_2$ is none

 R_3 's Functional Dependencies: $CD \to E$, which is a superkey

- $\therefore R_4$ is in BCNF
- $\therefore R_4$ is in 3NF

(6)

$$A^+ = ABCDE$$

$$(CD)^+ = ABCDE$$

 $B^+ = BD$ [Violation of BCNF]

 $E^+ = ABCDE$

 $R_1 = BD$

 $R_2 = ABCE$

Projecting FD's onto R_1

 $B^+ = BD \Longrightarrow B \to D$ which is a superkey

 $D^+ = D$

 $\therefore R_1$ sastifies BCNF

Projecting FD's onto R_2

 $A^+ = ABCE \Longrightarrow A \to BCE$ which is a superkey

 $B^+ = B$

 $C^+ = C$

 $E^+ = ABCE \Longrightarrow E \to ABC$ which is a superkey

 $BC^+ = BC$

 $\therefore R_2$ sastifies BCNF

So the relations $R_1 = BD$ and $R_2 = ABCE$ is in BCNF.

Checking dependency preserving: Let $F = \{A \to BC, CD \to E, B \to D, E \to A\}$ Check if $(F_{R_1} \cup F_{R_2})^+ = F^+$

$$R_1 = (B, D), R_2 = (A, B, C, E)$$

Given the Closures of everything in (1), we have:

$$F_{R_1} = \{B \to D\}$$

$$F_{R_2} = \{A \to BCE, E \to A, BC \to A\}$$

$$F_{R_1} \cup F_{R_2} = \{A \to BCDE, B \to D, E \to A, CD \to A, BC \to A\}$$

Calculating closure of $F_{R_1} \cup F_{R_2}$

$$A^+ = ABCDE$$

$$B^+ = BD$$

$$C^+ = C$$

$$D^+ = D$$

$$E^+ = ABCDE$$

$$BC^+ = ABCDE$$

$$CD^+ = ABCDE$$

$$BD^+ = BD$$

$$:: (F_{R_1} \cup F_{R_2})^+ = F^+$$

∴ FD's are preserved

Exercise 7.

Candidate keys:

$B^+ = (BO)^+$
$O^+ = O^+$
$I^+ = BOI$
$S^+ = SD$
$Q^+ = Q$
$D^+ = D$
$BO^+ = BO$
$BI^+ = BOI$
$BS^+ = BOSD$
$BQ^+ = BOQ$
$BD^+ = BOD$
$OI^+ = BOI$
$OS^+ = OSD$
$OQ^+ = OQ$
$OD^+ = OD$
$IS^+ = BOISQD$
$IQ^+ = BOIQ$
$ID^+ = BOID$
$SQ^+ = SQD$
$SD^+ = SD$
$QD^+ = QD$
$BOI^+ = BOI$
BOS = BOSD
BOQ = BOQ

BOD = BODBIQ = BOIQBID = BOIDBSQ = BOSQDBSD = BOSDBQD = BOQDOIQ = BOIQOID = BOIDOSQ = OSQDOSD = OSDOQD = OQDIQD = BOIQDSQD = SQDBOIQ = BOIQBOID = BOIDBOSQ = BOSQDBOSD = BOSDBOQD = BOQDBIQD = BOIDBSQD = BOSQDOIQD = BOIQDOSQD = OSQDBOIQD = BOIQDBOSQD = BOSQD

So the only candidate key is IS.

BCNF:

$$I^+ = BOI$$

 $I \to BO$ violates BCNF

Let $R_1 = \{B, O, I\}$

Projecting FD's onto R_1

$$B^+ = BO$$

 $B \to O$ Violates BCNF

Let $R_3 = \{B, O\}$

Let $R_4 = \{B, I\}$

Projecting FD's onto R_3

 $B^+ = BO$ satisfies BCNF

 $O^+ = O$

Projecting FD's onto R_4

 $B^+ = B$

 $I^+ = IB$ satisfies BCNF

 $\therefore R_3 = \{B, O\},$ $R_4 = \{B, I\},$

 $R_5 = \{S, D\},\$

 $R_6 = \{I, S, Q\}$ is in BCNF.

 \Downarrow

Let $R_2 = \{I, S, Q, D\}$

Projecting FD's onto R_2

 $I^+ = I$

 $S^+ = SD$

 $S \to D$ Violates BCNF

Let $R_5 = \{S, D\}$

Let $R_6 = \{I, S, Q\}$

Projecting FD's onto R_5

 $S^+ = SD$ satisfies BCNF

 $D^+ = D$

Projecting FD's onto R_6

 $I^+ = I$

 $S^+ = S$

 $Q^+ = Q$

 $(IS)^+ = ISQ$ satisfies BCNF

 $(IQ)^+ = IQ$

 $(SQ)^+ = SQ$

3NF:

$$I^+ = BOI$$

 $I \to BO$ violates 3NF

Let $R_1 = \{B, O, I\}$

Projecting FD's onto R_1

$$B^+ = BO$$

 $B \to O$ Violates 3NF

Let $R_3 = \{B, O\}$

Let $R_4 = \{B, I\}$

Projecting FD's onto R_3

 $B^+ = BO$ satisfies 3NF

 $O^+ = O$

Projecting FD's onto R_4

 $B^+ = B$

 $I^+ = IB$ satisfies 3NF

 $R_3 = \{B, O\},\$ $R_4 = \{B, I\},\$

 $R_5 = \{S, D\},\$

 $R_6 = \{I, S, Q\}$ is in 3NF and BCNF.

 \Downarrow

Let $R_2 = \{I, S, Q, D\}$

Projecting FD's onto R_2

 $I^+ = I$

 $S^+ = SD$

 $S \to D$ Violates 3NF

Let $R_5 = \{S, D\}$

Let $R_6 = \{I, S, Q\}$

Projecting FD's onto R_5

 $S^+ = SD$ satisfies 3NF

 $D^+ = D$

Projecting FD's onto R_6

 $I^+ = I$

 $S^+ = S$

 $Q^+ = Q$

 $(IS)^+ = ISQ$ satisfies 3NF

 $(IQ)^+ = IQ$

 $(SQ)^+ = SQ$

Exercise 8.

- 1. $\pi_{\text{name}}(\sigma_{\text{sno}=5}(\text{students}))$
- 2. $\pi_{\text{universities.addr}} \left(\sigma_{\text{study.uname=universities.uname, name=jones}} \left((\text{students} \bowtie \text{study}) \times \text{universities}) \right)$
- 3. Students in Experiemnts = (students \bowtie participate) \bowtie experiment $\pi_{\text{uname, universities.addr}} \left(\sigma_{\text{study.uname=universities.uname}} \left((\text{Students in Experiemnts} \bowtie \text{study}) \times \text{universities} \right) \right)$
- 4. Students in Experiemnts = (students \bowtie participate) \bowtie experiment

 Universities with students participating in Experiemnts = $\pi_{\text{uname, universities.addr}} \left(\sigma_{\text{study.uname=universities.uname}} \left((\text{Students in Experiemnts} \bowtie \text{study}) \times \text{universities} \right) \right)$ Universities Universities with students participating in Experiemnts
- 5. Students at Universities = $\sigma_{\text{study.uname}=\text{universities.uname}}$ ((students \bowtie study) × universities) $\pi_{\text{eno, num-of-p, date}}$ ((Students at Universities \bowtie took-place) \bowtie experiment)

Exercise 9.

- 1. All floor department sales = (dept \bowtie sales) \bowtie item $2^{\text{nd}} \text{ floor department sales} = \left(\left(\sigma_{\text{floor}=2}(\text{dept})\right) \bowtie \text{sales}\right) \bowtie \text{ item}$ $\pi_{\text{iname, type, color}}(\text{All floor department sales} 2^{\text{nd}} \text{ floor department sales})$
- 2. Assuming there is one manager per department.

Managers = $\sigma_{\text{eno=mgr}}(\text{employee})$ Non-managers = employee - Managers Max employee salary of each Department = $\gamma_{\text{dept, MAX(salary)}}(\text{Non-managers})$ $\sigma_{\text{salary>MAX(salary)}}(\text{Managers} \bowtie \text{Max employee salary of each Department})$

- 3. $2^{\rm nd}$ floor department sales = $\left(\left(\sigma_{\rm floor=2}({\rm dept})\right) \bowtie {\rm sales}\right) \bowtie {\rm item}$ Items with number of departments = $\gamma_{\rm iname,\ COUNT(departments)}(2^{\rm nd}{\rm floor\ department\ sales})$ Items with more than two departments = $\sigma_{\rm COUNT(departments)>2}({\rm Items\ with\ number\ of\ departments})$ $\pi_{\rm iname,\ type,\ color}({\rm Items\ with\ more\ than\ two\ departments}\bowtie 2^{\rm nd}{\rm floor\ department\ sales})$
- 4. Supply equal to sales = ((dept \bowtie sales) \bowtie item) \bowtie supply $\pi_{\text{iname, type, color}}(\text{Supply equal to sales})$