Projekt

Max-Cut (2-przybliżony)

Algorytmy optymalizacji dyskretnej

1. Wspólne parametry dla wszystkich testów

Wszystkie przeprowadzone testy używają tego samego generatora losowe z tym samym ziarnem ustawionym na wartość 149063626. W każdym teście, aby uzyskać lepszą statystykę każdy pomiar jest powtarzany 10 razy a ostateczny wynik pomiaru to średnia z tych dziesięciu pomiarów.

Number of iterations per test = 10

2. Testy algorytmu dokładnego

W testach algorytmu dokładnego wykorzystano 10 wygenerowanych losowo grafów o stosunkowo niedużych rozmiarach od pięciu wierzchołków do 15 wierzchołków. Spowodowane jest to oczywiście bardzo niską wydajnością algorytmu dokładnego.

Graphs to test:

G	i(E,V) : V =
5	
6	
7	
8	
9	
10)
11	1
12	2
13	3
14	1
15	5

Ustawienia te wygenerowały następujące grafy

G(V =5, E =7)
G(V =6, E =7)
G(V =7, E =12)
G(V =8, E =16)
G(V =9, E =16)
G(V =10, E =23)
G(V =11, E =29)
G(V =12, E =33)
G(V =13, E =43)
G(V =14, E =44)
G(V =15, E =52)

Mimo niskiej wydajności algorytmu dokładnego, ze względu na małe rozmiary wygenerowanych grafów na wyniki nie trzeba było zbyt długo czekać:

Graph	Exact max-cut size	Exact max-cut set		
G(V =5, E =7)	6	{0, 1, 3}		
G(V =6, E =7)	6	{1, 2, 3}		
G(V =7, E =12)	9	{1, 2, 3, 5}		
G(V =8, E =16)	12	{2, 3, 4, 6, 7}		
G(V =9, E =16)	13	{1, 2, 6, 7, 8}		
G(V =10, E =23)	17	{0, 2, 4, 5, 8, 9}		
G(V =11, E =29)	21	{1, 4, 5, 6, 9, 10}		
G(V =12, E =33)	25	{1, 3, 5, 7, 8, 11}		
G(V =13, E =43)	30	{1, 7, 8, 9, 10, 11, 12}		
G(V =14, E =44)	31	$\{0, 2, 3, 4, 6, 10, 12, 13\}$		
G(V =15, E =52)	38	{1, 3, 5, 7, 8, 9, 10, 12}		

Wyniki czasowe względem liczby wierzchołków grafu można przedstawić na wykresie:

3. Testy algorytmu przybliżonego

Ze względu na to, że algorytm 2-przybliżony jest znacznie szybszy niż algorytm dokładny można tutaj sobie pozwolić na znacznie większe grafy. Przetestowano losowo wygenerowane grafy o rozmiarach od 50 do 300 wierzchołków, przy czym następny wygenerowany graf był o 50 wierzchołków większy od poprzedniego.

Graphs to test:

G(E,V) : \	/ =
50	
100	
150	
200	
250	
300	

Generator losowy na podstawie tej oraz poprzednich opcji wygenerował następujące grafy:

G(V =50, E =657)			
G(V =100, E =2487)			
G(V =150, E =5688)			
G(V =200, E =10010)			

G(|V|=250, |E|=15647) G(|V|=300, |E|=22456)

Po odczekaniu dosyć długiego czasu (rzędu kilka do kilkanaście minut) udało się uzyskać następujące rozwiązania:

Graph	2-approximation max-cut size	2-approximation max-cut set	
G(V =50, E =657)	389	{0, 2, 3, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 30, 32, 34, 29, 48, 5, 31, 1, 38}	
G(V =100, E =2487)	1399	{1, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 49, 52, 53, 60, 66, 82, 86, 97, 45, 50, 91, 74, 85, 93, 61, 55, 46, 5}	
G(V =150, E =5688)	3160	{18, 22, 24, 27, 30, 31, 32, 34, 35, 41, 43, 45, 46, 47, 49, 50, 54, 56, 57, 58, 59, 60, 62, 66, 68, 69, 70, 72, 73, 78, 79, 82, 88, 91, 95, 104, 111, 112, 117, 125, 144, 113, 119, 87, 129, 149, 102, 4, 133, 141, 0, 17, 115, 98, 121, 122, 96, 145, 138, 127, 12, 84, 23, 105, 83, 134, 74, 108, 11, 77, 101, 5, 36, 142}	
G(V =200, E =10010)	5539	{6, 7, 11, 15, 18, 26, 29, 32, 34, 38, 39, 40, 42, 43, 44, 50, 51, 55, 56, 57, 59, 60, 63, 64, 65, 66, 68, 69, 70, 71, 74, 76, 77, 79, 80, 86, 87, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 108, 109, 113, 119, 123, 126, 151, 179, 166, 173, 129, 3, 160, 172, 144, 127, 186, 146, 159, 174, 164, 168, 106, 148, 167, 8, 22, 157, 169, 37, 118, 188, 196, 4, 28, 2, 33, 1, 138, 189, 47, 9, 36, 134, 191, 93, 176, 153, 175, 97, 35, 177, 194}	
G(V =250, E =15647)	8499	{17, 38, 41, 43, 44, 46, 48, 50, 51, 52, 53, 56, 60, 61, 65, 66, 67, 69, 70, 71, 72, 73, 75, 76, 81, 82, 84, 85, 86, 87, 88, 89, 92, 94, 95, 96, 97, 98, 100, 104, 105, 106, 108, 109, 110, 111, 113, 114, 116, 118, 120, 121, 122, 123, 124, 127, 130, 131, 146, 148, 149, 150, 165, 170, 176, 179, 181, 188, 193, 231, 195, 220, 221, 132, 187, 6, 3, 135, 151, 156, 157, 198, 205, 1, 139, 226, 216, 190, 196, 23, 219, 233, 245, 154, 177, 2, 25, 163, 202, 134, 10, 26, 241, 203, 4, 207, 215, 138, 144, 8, 55, 54, 167, 90, 128, 47, 158, 0, 42, 161, 184, 242, 36, 229, 159, 20}	
G(V =300, E =22456)	12136	{8, 9, 32, 34, 36, 44, 48, 51, 55, 56, 58, 59, 62, 67, 68, 70, 71, 74, 75, 76, 77, 81, 82, 83, 88, 89, 92, 93, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 116, 117, 118, 120, 122, 124, 125, 126, 129, 131, 133, 135, 137, 138, 140, 141, 142, 143, 145, 147, 150, 151, 156, 163, 165, 167, 174, 177, 179, 193, 194, 202, 236, 239, 255, 280, 0, 181, 243, 262, 216, 175, 206, 3, 16, 197, 245, 212, 222, 11, 279, 210, 166, 31, 251, 287, 21, 161, 289, 294, 214, 2, 266, 244, 253, 39, 258, 198, 211, 148, 220, 273, 12, 37, 241, 246, 15, 169, 176, 50, 240, 27, 162, 78, 215, 53, 65, 87, 57, 153, 271, 149, 265, 213, 217, 90, 42, 159, 270, 132, 152, 291, 4, 6, 188, 221, 233}	

W średnim przypadku rozwiązania uzyskano w następujących czasach w zależności od ilości wierzchołków w grafie:

N	Time (ms)
50	8.15443
100	71.86912
150	636.90453
200	2260.70705
250	4873.3684
300	11005.53579

Co przedstawiono również na poniższym wykresie:

Jak widać algorytm przybliżony skaluje się bardzo dobrze dla rosnącego rozmiaru problemu, wynik poniżej 12 sekund dla grafu o 300 wierzchołkach jest imponujący. Poniżej jeszcze wykres wyników czasowych testu dla mniejszych grafów.

4. Testy porównawcze

W testach porównawczych trzeba było pójść na pewien kompromis ze względu na bardzo wolne wykonywanie się algorytmu dokładnego dla grafów większych niż 15. Przetestowano, więc 10 grafów wygenerowanych losowo w rozmiarach od 10 do 20 wierzchołków.

Graphs to test:

G	G(E,V) : V =
10	0
1	1
12	2
13	3
14	4
15	5
16	6
17	7
18	8
19	9
20	0

Wygenerowane zostały według wspomnianych ustawień następujące grafy:

Po długim czasie obliczeń uzyskano następujące rezultaty:

Graph	2-approximation max-cut size	2-approximation max-cut set	Exact max- cut size	Exact max-cut set
G(V =10, E =25)	18	{0, 1, 3, 5, 7}	18	{0, 1, 3, 5, 7, 8}
G(V =11, E =28)	20	{1, 2, 3, 6, 9, 10}	20	{1, 4, 5, 7, 8, 9}
G(V =12, E =32)	23	{0, 1, 2, 4, 6, 8, 10}	23	{0, 1, 2, 4, 5, 6, 8, 10}
G(V =13, E =41)	27	{0, 1, 2, 3, 4, 5, 8}	29	{0, 2, 3, 4, 8, 9, 12}
G(V =14, E =54)	37	{0, 1, 3, 5, 9, 13, 6}	37	{2, 4, 7, 8, 10, 11, 12}
G(V =15, E =47)	35	{0, 1, 3, 4, 8, 9, 10, 12}	36	{1, 2, 6, 7, 8, 11, 13, 14}
G(V =16, E =59)	39	{0, 2, 3, 4, 6, 11, 14, 12}	41	{0, 1, 4, 5, 7, 9, 10, 13, 15}
G(V =17, E =81)	51	16}		{2, 3, 6, 8, 10, 11, 13, 14, 15}
G(V =18, E =89)	54	{0, 2, 3, 4, 5, 6, 8, 11, 13}	,	{3, 5, 7, 9, 10, 11, 13, 14, 15, 16}
G(V =19, E =94)	59	{0, 2, 3, 4, 5, 6, 8, 10, 11}		{3, 5, 6, 7, 9, 13, 14, 15, 16, 17, 18}
G(V =20, E =103)	65	{0, 1, 2, 3, 4, 5, 7, 10, 12, 14}	68	{0, 1, 3, 4, 7, 8, 13, 14, 15, 17, 18}

Jak widać algorytm przybliżony myli się zazwyczaj niewiele lub wcale, czyli bez problemu spełnia wymóg o 2-przybliżeniu.

Wyniki wydajnościowe algorytmów przedstawiono poniżej.

N	Time of 2-approximation algorithm (ms)	Time of exact algorithm (ms)
10	0.16839	11.90736
11	0.02602	22.22316
12	0.03182	50.34129
13	0.02984	140.00697
14	0.05813	295.78242
15	0.05039	585.76954
16	0.07226	1368.59743
17	0.08586	3051.61262
18	0.06596	6771.76768
19	0.08805	15733.36275
20	0.08978	33499.4028

Jak widać dla algorytmu przybliżonego takie rozmiary grafów są banalne, sprawiają za to sporo trudu algorytmowi dokładnemu.

Przedstawiając wyniki na wykresie widać wykładniczy charakter złożoności algorytmu dokładnego (dodając do grafu jeden wierzchołek zwiększamy dwukrotnie czas wykonania algorytmu). Algorytm przybliżony jest za to na tyle szybki, że praktycznie go nie widać na wykresie.

Z ciekawości przetestowano jeszcze algorytmy dla grafów wygenerowanych losowo o ilości wierzchołków od 1 do 18. Poniżej rezultaty.

Graph	2-approximation max- cut size	2-approximation max-cut set	Exact max- cut size	Exact max-cut set
G(V =1, E =0)	0	{}	0	
G(V =2, E =0)	0	{}	0	
G(V =3, E =2)	2	{0, 2}	2	{0, 2}
G(V =4, E =5)	3	{0, 1}	4	{1, 3}
G(V =5, E =3)	3	{2}	3	{0, 1, 3, 4}
G(V =6, E =9)	7	{0, 1, 2}	7	{3, 4, 5}
G(V =7, E =14)	10	{0, 1, 2, 5}	10	{0, 3, 4, 6}
G(V =8, E =12)	10	{1, 2, 6}	10	{0, 3, 4, 5, 7}
G(V =9, E =18)	13	{0, 1, 2, 4}	14	{1, 3, 4, 6, 8}
G(V =10, E =22)	15	{0, 1, 2, 4}	16	{2, 3, 5, 7, 8, 9}
G(V =11, E =31)	21	{0, 1, 3, 5, 6, 10}	22	{1, 2, 6, 7, 8, 9}
G(V =12, E =31)	19	{0, 1, 2, 3, 5, 8}	22	{1, 4, 5, 7, 8, 9, 10}
G(V =13, E =44)	29	{0, 1, 2, 3, 4, 9, 11}	30	{2, 3, 6, 7, 8, 10, 12}
G(V =14, E =46)	32	{2, 3, 4, 5, 6, 7, 12, 13}	32	{2, 3, 4, 5, 6, 7, 12, 13}
G(V =15, E =49)	32	{1, 2, 3, 4, 5, 7, 13}	36	{0, 3, 4, 6, 8, 9, 12, 14}
G(V =16, E =72)	47	{0, 2, 3, 4, 5, 11, 15, 10}	48	{2, 6, 7, 8, 9, 10, 11, 12, 13}
G(V =17, E =80)	52	{0, 1, 2, 3, 5, 8, 9, 16}	53	{0, 2, 4, 6, 10, 11, 12, 14, 16}
G(V =18, E =81)	55	{0, 2, 4, 5, 6, 7, 12, 10, 13}	56	{0, 2, 4, 6, 7, 10, 11, 12, 13, 14}

Po raz kolejny okazuje się, że algorytm przybliżony podaje wynik identyczny lub bardzo bliski algorytmowi dokładnemu. W najgorszym z przetestowanych przypadków myli się 1 i 1/3 razy (podał 3 zamiast 4), więc nadal bardzo dobrze mieści się w definicji algorytmu 2-przybliżonego.