In the Claims

1(Currently Amended)

A compound of the structural formula I:

$$R_{4}$$
 R_{4}
 R_{6}
 R_{2}
 R_{2}
 R_{3}

Formula I

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof: wherein,

R represents hydrogen, or C₁₋₆ alkyl;

R₁ represents hydrogen or C₁₋₆ alkyl, CF₃, C₁₋₆ alkoxy, COR^c, CO₂R₈, CONHCH₂CO₂R, N(R)₂, said alkyl and alkoxy optionally substituted with 1-3 groups selected from R^b;

X represents - $(CHR7)_p$ -;

Y is not present, -CO(CH₂)_n-, or -CH(OR)-;

Q represents N, CRy, or O, wherein R₂ is absent and R₃ is not C₁₋₄ alkyl when Q is O;

Ry represents H, or C_{1-6} alkyl;

 $R_w \text{ represents H, C$_{1-6}$ alkyl, -C(O)C$_{1-6}$ alkyl, -C(O)OC$_{1-6}$ alkyl, -SO$_2N(R)$_2, -SO$_2C$_{1-6}$ alkyl, -SO$_2C$_{6-10}$ aryl, NO$_2, CN or -C(O)N(R)$_2;}$

R2 represents hydrogen, C_{1-10} alkyl, C_{1-6} alkylSR, -(CH2)_nO(CH2)_mOR, -(CH2)_nC1-6 alkoxy, -(CH2)_nC3-8 cycloalkyl, -(CH2)_nC3-10 heterocyclyl, -(CH2)_nC5-10 heterocyclyl, -N(R)2, -COOR, or -(CH2)_nC6-10 aryl, said alkyl, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a ;

R3 represents hydrogen, C_{1-10} alkyl, $-(CH_2)_nC_{3-8}$ cycloalkyl, $-(CH_2)_nC_{3-10}$ heterocyclyl, $-(CH_2)_nC_{5-10}$ heteroaryl, $-(CH_2)_nCOOR$, $-(CH_2)_nC_{6-10}$ aryl, $-(CH_2)_nNHR_8$, $-(CH_2)_nN(R)_2$, $-(CH_2)_nNHCOOR$, $-(CH_2)_nN(R_8)CO_2R$, $-(CH_2)_nN(R_8)COR$, $-(CH_2)_nNHCOR$, $-(CH_2)_nCONH(R_8)$, aryl, $-(CH_2)_nC_{1-6}$ alkoxy, CF_3 , $-(CH_2)_nSO_2R$, $-(CH_2)_nSO_2N(R)_2$, $-(CH_2)_nCON(R)_2$, $-(CH_2)_nCONHC(R)_3$, $-(CH_2)_nCOR_8$, nitro, cyano or halogen, said alkyl, alkoxy, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups of R^a ;

or, when Q is N, R₂ and R₃ taken together with the intervening N atom form a 4-10 membered heterocyclic carbon ring optionally interrupted by 1-2 atoms of O, S, C(O) or NR, and optionally having 1-4 double bonds, and optionally substituted by 1-3 groups selected from R^a;

R4 and R5 independently represent hydrogen, C_{1-6} alkoxy, OH, C_{1-6} alkyl, COOR, SO₃H, O(CH₂)_nN(R)₂, O(CH₂)_nCO₂R, C_{1-6} alkylcarbonyl, S(O)qRy, OPO(OH)₂, CF₃, N(R)₂, nitro, cyano or halogen;

R6 represents hydrogen, C_{1-10} alkyl, $-(CH_2)_nC_{6-10}$ aryl, $-(CH_2)_nC_{5-10}$ heteroaryl, $(C_{6-10} \text{ aryl})O_{7}$, $-(CH_2)_nC_{3-10}$ heterocyclyl, $-(CH_2)_nC_{3-8}$ cycloalkyl, -COOR, $-C(O)CO_2R$, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1-3 groups selected from R^a , with the proviso that when Y is absent, X is absent, when p=0, R_1 is hydrogen, and Q is CRy then R_6 is not hydrogen; and Q is CRy then R_6 is not hydrogen;

R7 represents hydrogen, C_{1-6} alkyl, $-(CH_2)_nCOOR$ or $-(CH_2)_nN(R)_2$,

R8 represents - $(CH_2)_nC_{3-8}$ cycloalkyl, - $(CH_2)_n$ 3-10 heterocyclyl, C_{1-6} alkoxy or - $(CH_2)_nC_{5-10}$ heteroaryl, said heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from Ra;

Ra represents F, Cl, Br, I, CF₃, N(R)₂, NO₂, CN, -COR₈, -CONHR₈, -CON(R₈)₂, -O(CH₂)_nCOOR, -NH(CH₂)_nOR, -COOR, -OCF₃, -NHCOR, -SO₂R, -SO₂NR₂, -SR, (C₁-C₆ alkyl)O-, -(CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁₋₆ alkoxy, (aryl)O-, -OH, (C₁-C₆ alkyl)S(O)_m-, H₂N-C(NH)-, (C₁-C₆ alkyl)C(O)-, (C₁-C₆ alkyl)OC(O)NH-, -(C₁-C₆

alkyl)NR $_{\rm w}$ (CH2) $_{\rm n}$ C3-10 heterocyclyl-R $_{\rm w}$, -(C $_1$ -C $_6$ alkyl)O(CH2) $_{\rm n}$ C3-10 heterocyclyl-R $_{\rm w}$, -(C $_1$ -C $_6$ alkyl)S(CH2) $_{\rm n}$ C3-10 heterocyclyl-R $_{\rm w}$, -(C $_1$ -C $_6$ alkyl)C3-10 heterocyclyl-R $_{\rm w}$, -(CH2) $_{\rm n}$ -Z¹-C(=Z²)N(R)2, -(C2-6 alkenyl)NR $_{\rm w}$ (CH2) $_{\rm n}$ C3-10 heterocyclyl-R $_{\rm w}$, -(C2-6 alkenyl)S(CH2) $_{\rm n}$ C3-10 heterocyclyl-R $_{\rm w}$, -(C2-6 alkenyl)S(CH2) $_{\rm n}$ C3-10 heterocyclyl-R $_{\rm w}$, -(C2-6 alkenyl)-Z¹-C(=Z²)N(R)2, -(CH2) $_{\rm n}$ SO2R, -(CH2) $_{\rm n}$ SO3H, -(CH2) $_{\rm n}$ PO(OR)2, cyclohexyl, morpholinyl, piperidyl, pyrrolidinyl, thiophenyl, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, isothiazolyl, C2-6 alkenyl, and C $_1$ -C $_10$ alkyl, said alkyl, alkenyl, alkoxy, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, and isothiazolyl optionally substituted with 1-3 groups selected from C $_1$ -C $_6$ alkyl, CN, (CH2) $_{\rm n}$ tetrazolyl, COOR, SO3H, OH, F, Cl, Br, I, -

Z1 and Z2 independently represents NR_w, O, CH₂, or S;

 R^b represents C_{1-6} alkyl, -COOR, -SO₃R, -OPO(OH)₂, -(CH₂)_nC₆₋₁₀ aryl, or -(CH₂)_nC₅₋₁₀ heteroaryl;

 R^{c} represents hydrogen, C_{1-6} alkyl, or - $(CH_2)_nC_{6-10}$ aryl;

m is 0-3;

n is 0-3;

q is 0-2; and

p is 0-1.

2(Once Amended). A compound according to claim 1 of structural formula I wherein X represents CHR7.

3(Original). A compound according to claim 1 wherein Y is -

 $CO(CH_2)_n$.

4(Original). A compound according to claim 1 wherein Y is CH(OR).

5(Original). A compound according to claim 1 wherein Q is N.

6(Once amended). A compound according to claim 1 wherein Q is CRy, and Ry is hydrogen.

7(Original). A compound according to claim 2 wherein R₆ is $(CH_2)_nC_{6-10}$ aryl, $(CH_2)_nC_{5-10}$ heteroaryl, $(CH_2)_nC_{3-10}$ heterocyclyl, or $(CH_2)_nC_{3-8}$ cycloalkyl, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R^a.

8(Original). A compound according to claim 6 wherein R7 is hydrogen or C₁₋₆ alkyl.

9(Original). A compound according to claim 6 wherein Q is N and n is 0.

10(Original). A compound according to claim 1 wherein Y is - $CO(CH_2)_n$, Q is N, n is 0, R_2 is C_{1-10} alkyl or C_{1-6} alkylOH and R_3 is $(CH_2)_nC_{3-10}$ heterocyclyl, said heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R^a . 11(Original). A compound selected from Tables 1 through 14 which is:

Table 1

Wherein R represents:

Wherein R represents:

and R[^] represents hydrogen or methyl

Wherein R represents:

R* represents:

and R[^] represents hydrogen or methyl;

R represents methyl or methoxy and R* represents methyl, H or COOH;

R' represents methyl or methoxy; R^ represents hydrogen or COOEt; R'" represents COOH or COOtBu; and R" represents: COOMe, H, COOH, or

COOR"

R* represents hydrogen or methyl;

Ry represents methyl or CF3;
$$3/0$$
, $3/0$, 0 OH R represents methyl, (CH2)₂SCH3, $1/0$, or $1/0$

R[^] represents:

Wherein n represents 1-2;

R^ represents hydrogen or methyl

R represents:

Y=OCH₃, Cl, Br, CH₂CH₃, or CN

R is:

Y=CH₃ or CH₂CH₃

R is:

 $Y=OCH_3$, CN, or CI; X=H, or F; Z=Ph, $CH(CH_3)_2$, $CH_2CH(CH_3)_2$

R is:

Table 11

$$R_2$$

Wherein R represents:

R₁ represents:

R2 represents: hydrogen or methyl

$$R_2$$

Wherein R represents:

R₁ represents:

$$CN$$
 CO_2Et
 CO_2Et
 CO_2Et
 CO_2Et
 CO_2Et
 CO_2Et
 CO_2Et
 CO_2Et
 CO_2Et

R2 represents: hydrogen or methyl

Table 14

Case 21101YP

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

- 12. Cancel.
- 13. Cancel.
- 14. Cancel.
- 15. Cancel..
- 16. Cancel.
- 17. Cancel.
- 18. Cancel.
- 19. Cancel.
- 20. Cancel.
- 21. Cancel.