Projeto 1 2019.2

Robótica e Automação

Raphael Barros Parreira

1 Controle Cinemático de Manipuladores

1.1 Controle

De acordo com a tabela de Denavit Hartenberg Standard, o manipulador Antropomórfico 6R possui um punho equivalente a um punho esférico, cujo tamanho dos elos é 0. Isto significa que as 3 últimas juntas não influenciam na posição do efetuador. O objetivo deste exercício é controlar a posição do efetuador dados 3 trajetórias, e nada é pedido em relação à orientação do manipulador. Portanto iremos trabalhar com um sistema reduzido em que apenas as 3 primeiras juntas serão controladas (as outras três juntas permanecerão na posição ready).

No controle cinemático assume-se que a velocidade do manipulador é a variável manipulada.

$$J = \begin{bmatrix} J_p \\ J_o \end{bmatrix} \qquad \begin{bmatrix} \vec{v} \\ \vec{\omega} \end{bmatrix} = J\dot{\theta} = Ju = \begin{bmatrix} J_p u \\ J_o u \end{bmatrix}$$
$$u = \begin{bmatrix} u_{13} \\ u_{46} \end{bmatrix} \qquad J_p = \begin{bmatrix} J_{p13} & J_{p46} \end{bmatrix}$$
$$\vec{v} = J_{p13}u_{13} + J_{46}u_{46}$$

Como as dimensões dos últimos 3 elos são 0, o J_{p46} será sempre $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$, portanto trabalharemos com um sistema reduzido com J_{p46} . Também é preciso escolher uma base para expressar os vetores. Como a trajetória desejada é descrita no sistema inercial, o sistema também será descrito no sistema inercial.

$$\vec{v} = \dot{\vec{x}} = J_{p13} u_{13}$$

Escolhendo trabalhar no sistema inercial teremos:

$$(\vec{v})_0 = v = \dot{x} = (J_{n13})_0 u_{13}$$

Pelo enunciado é preciso realizar o controle com duas formulações para u_{13} , uma que use o inverso de J_{p13} e outro com a transposta de J_{p13} .

$$u_1 = (J_{p13})_0^{-1} \bar{u} = (J_{p13})_0^{-1} (\dot{x}_d + K(x_d - x))$$

$$u_2 = (J_{p13})_0^T \bar{u} = (J_{p13})_0^T (\alpha \dot{x}_d + K(x_d - x))$$

Projeto 1 2019.2

Justificativa para u_2 com $\alpha \neq 0$? Não consegui encontrar uma função de Lyapunov que garanta $\dot{V} \leq 0$. Podemos provar que u_2 torna o sistema assintoticamente estável para o caso em que a trajetória desejada é uma constante ($\alpha=0$), mas como as trajetórias desejadas do enunciado são variantes no tempo não podemos garantir $\dot{V} \leq 0$, ou seja, u_2 com $\alpha=0$ não consegue zerar o erro para as trajetórias desejadas. No caso da trajetória constante temos:

$$2V = e^{T} e$$

$$\dot{V} = e^{T} \dot{e} = e^{T} (\dot{x}_{d} - \dot{x}) = e^{T} (\dot{x}_{d} - (J_{p13})_{0} u) =$$

$$= e^{T} (\dot{x}_{d} - (J_{p13})_{0} (J_{p13})_{0}^{T} (\alpha \dot{x}_{d} + Ke))$$

$$\dot{x}_{d} = 0 \implies \dot{V} = -e^{T} (J_{p13})_{0} (J_{p13})_{0}^{T} Ke = -K(e^{T} (J_{p13})_{0})(e^{T} (J_{p13})_{0})^{T}$$

$$\dot{V} \leq 0$$

Para verificar os resultados obtidos pelas multiplicações da questão 6. Foi usada a função *SerialLink.jacob0*. Os resultados estão na figura 7.

As duas figuras mostram que os resultados obtidos não estão corretos.

Projeto 1 2019.2

Figure 1: Jacobianos gerados pela função *SerialLink.jacob0* para as Configurações A, B e C (tabela 2).

JAdh =						
0.0000 -0.0246 0 0 0 0	-0.0000 0.9025 0 -1.0000 -0.0000 0.0000	0.0000 -0.0128 0 0 0 0	-0.0000 0.4817 0 -1.0000 -0.0000 0.0000	0 0 0 0 0 0	-0.0000 0.1674 0 -1.0000 -0.0000 0.0000	0 0 0 0 0 1.0000
>> JBdh						
JBdh =						
0.7351 -0.1920 0.0000 0.0000 0 1.0000	0.0000 0.0000 0.7351 -1.0000 -0.0000	-0.0000 -0.0000 -0.1802 0.0000 -1.0000 0.0000	0.0000 0.0000 0.3143 -1.0000 -0.0000	-0.0000 -0.0000 -0.1674 0.0000 -1.0000 0.0000	-0.0000 0.1674 -0.0000 -0.0000 -0.0000 -1.0000	0 0 0 -1.0000 -0.0000 0.0000
JCdh =						
0.4208 -0.0246 -0.0000 0 -0.0000	-0.0000 0.4817 0.4208 -1.0000 -0.0000 0.0000	-0.4817 -0.0000 -0.0128 0 -1.0000 0.0000	-0.0000 0.4817 0.0000 -1.0000 -0.0000	0 0 0 0 -0.0000 1.0000	-0.0000 0.1674 0.0000 -1.0000 -0.0000	0 0 0 0 -0.0000 1.0000