FOAMtastic: Polystyrene Repurposing to Reduce Landfill Waste

Group 14: Thomas Lee, Heidi Jiang, Vivian Su, Calvin Huang

Supervisor: Xianshe Feng

University of Waterloo Chemical Engineering Capstone 2025

References:

- [1] J. Davis, "Styrofoam Facts Why You May Want To Bring Your Own Cup," *SEJ*, Apr. 10, 2019. https://www.sej.org/publications/backgrounders/styrofoam-facts-why-you-may-want-bring-your-own-cup
- [2] Baleen Group, "CIF 291 Town of Markham Polystyrene Densifier," May 2012.
- [3] NIST, "ThermoData Engine (TDE)," *trc.nist.gov*, 2009. https://trc.nist.gov/tde.html (accessed Feb. 28, 2025).
- [4] aspentech, "Aspen Plus | Leading Process Simulation Software | AspenTech," www.aspentech.com. https://www.aspentech.com/en/products/engineering/aspen-plus

FOAMtastic

Polystyrene Repurposing to Reduce Landfill Waste

Group 14: Calvin Huang, Heidi Jiang, Thomas Lee, Vivian Wan Ping Su Department of Chemical Engineering

Introduction

Problem Statement

Polystyrene (PS) is a durable and versatile plastic that can take over 500 years to degrade, which presents environmental risks due to its limited recyclability and potential to release harmful toxins [1]. With less than 10% being recycled, the majority accumulates in landfills. This project addresses these challenges by developing a pyrolysis process to convert PS waste into feedstock.

Context

PS is classified as #6 on the plastic resin identification scale, making it one of the most difficult plastics to recycle despite its common use in takeout containers and packaging.

Using pyrolysis, a method that thermally degrades plastic anaerobically, this recycling process will:

Divert PS landfill waste from municipalities

Table 1: 2013 Town of Markham PS Densifier project [2]

Polystyrene Collected	Revenue (\$)	Profit/Loss (\$)
2100 tonnes/year	3,029.61	(53,036)

2. Develop a novel solution that can operationally repurpose waste into valuable products

Constraints

Process capacity of 2100 tonnes/yr

Yield 98% purity of all products

Improve circularity

Sustainable Development Goals

SDG 12: Responsible Consumption and Production

- Reducing virgin material use
- Addresses single use nature and low recyclability
- Improve waste management

SDG 13: Climate Action

- Diversion of waste from landfills and incineration
- Reduce greenhouse gas emissions
- Minimize energy use and emissions

Process Development & Tools

Process Development

Literature review on PS/plastic pyrolysis

Develop process diagram

Preliminary Analysis

Simulate in Aspen

Validate model with literature

Engineering Tools

- Aspen Plus v14 for process simulation of shortcut and waspentech rigorous design of the process
- Microsoft Excel for cost analysis and general calculation
- Python for model validation using Matplotlib, NumPy, SciPy, and pandas

Process Flow Diagram & Analysis

Reactor

100 kg/hr N2

257 kg/hr PS

N2 and PS are the feed of the reactor for the pyrolysis process. B1 (heat exchanger) ensures the input of the distillation columns are at the set temperature.

Product

Production Location

Mass (tonne/year)

Product Purity

Uses

2 Pumps

Distillation Columns

Fixed conversion reactor

of the process. Separations in each column: 1. Toluene

Table 2: Key Analysis Results based on shortcut method design

Toluene

COL 1

158

99.71%

Paint solvent,

rubber

- - 2. Alpha methyl styrene 3. Ethylbenzene
 - 4. Cumene and Styrene

Sieve tray columns used to separate the products

Alpha Methyl Styrene

COL 2

281

99.97%

Paint, resins, coatings,

synthetic rubbers

Feed contamination is negligible

4 Shortcut Method

Modelling of the process using "simple" distillation columns. There are fewer parameters that can be changed:

- Specifications
- Calculation Options Convergence

Ethylbenzene

COL 3

387

99.61%

5 Rigorous Method

NRTL thermodynamic model

Steady-state

The shortcut method provides inputs for the rigorous distillation. More parameters can be changed:

- Configuration
- Streams
- Pressure
- Condenser
- Styrene Cumene COL 4 COL 4 1343 98.02% 99.97%

New PS, Phenol, Inks, dyes, rubbers perfume, new PS acetone

Thermodynamic Model Verification

NRTL (Non-Random Two-Liquid)

Thermodynamic model chosen for modelling vapor-liquid equilibrium:

- Effective at modelling non-ideal interactions between hydrocarbons (i.e., styrene/toluene)
- VLE data obtained from NIST ThermoData Engine [3] and NRTL Aspen Plus Simulation [4]
- Simulated temperatures closely reflect literature

Styrene-Ethylbenzene Binary System (NRTL), P=0.1 bar Figure 2: NRTL Thermodynamic Model Dataset

Fitted coefficients o VLE data used in temperature simulation

0.13%

Max. error

across

vapor/liquid

composition

for both

datasets

 $R^2 > = .995$

Cost Analysis

Cost Analysis (\$/year) Total Equipment Cost (\$) 8,533,000 7,390,000 Revenue **Total Operational Cost** 2,113,000 6,420,000 **Profit** Payback Period: 4.1 years

Sustainability Linearity Analysis

A linearity analysis was performed to evaluate a product's lifecycle from raw material to end of life. The developed pyrolysis process, improved all aspects of the recovery chain

Conclusion

- The process effectively processes 100% of annual polystyrene waste collected by the Town of Markham.
- The process yields 98% purity of all products.
- The process improves the material circularity by improving its recyclability.

Future Direction

Addition of Catalyst

 Using a decision matrix to compare the capital/operational costs, efficiency, and product quality found in literature, the recommended catalyst was found to be calcium oxide (CaO).

Acknowledgments & References

We want to thank our supervisor, Dr. Xianshe Feng, for technical guidance and the Continuous Improvement Fund for providing PS recycling data on the City of Markham.

