

Figure 1: Angular dependence of optical retardance under the SAT model's theta_4 field. The periodic sin^2 modulation represents twist-induced optical phase effects, with dashed lines indicating tau_1 and tau_2 sector boundaries.

Figure 2: Predicted optical transmission through a SAT-structured theta_4 domain wall. Note the non-sinusoidal spectral profile arising from cumulative birefringent stacking.

Figure 3: Screenshot showing code used to generate the SAT domain wall optical simulation. This was one of EmeritusGPT's earliest live coding sessions in the SAT development process.

Theta_4 Kink and Induced Refractive Index Total Phase Shift $\Delta\phi\approx0.1629$ radians

Figure 4: Theta_4 kink profile inducing a smooth refractive index modulation. Below, the derived delta_n(x) profile shows localized birefringent shifts critical for predicting SAT optical properties.

