ПЕРСПЕКТИВЫ МОБИЛЬНОЙ РОБОТОТЕХНИКИ

Константин Юрьевич Колыванов

Северо-Казахстанский государственный университет им. М. Козыбаева, 150000, Республика Казахстан, г. Петропавловск, ул. Пушкина, 86, магистрант кафедры информационных систем, тел. (777)896-93-57, e-mail: deanvin@mail.ru

В данной статье рассмотрены перспективы и преимущества развития мобильной автономной робототехники и робототехнических систем, а также рассмотрены некоторые сферы их применения.

Ключевые слова: робототехника, ARDUINO, искусственный интеллект, мобильная робототехника, автономная робототехника, энергия, образование, c.Eleganc, программное обеспечение.

PROSPECTS OF MOBILE ROBOTICS

Konstantin Yu. Kolyvanov

North Kazakhstan State University named after M. Kozybaev, 150000, Republic of Kazakhstan, Petropavlovsk, 86 Pushkin St., undergraduate of the Department of Information Systems, tel. (777)896-93-57, e-mail: deanvin@mail.ru

In this article, the prospects and advantages of the development of mobile autonomous robotics and robotic systems are examined, and some areas of their application are examined.

Key words: robotics, ARDUINO, artificial intelligence, mobile robotics, autonomous robotics, energy, education, c.Eleganc, software.

В настоящее время в мире наблюдается широкое распространение роботизированных систем и робототехники в целом. Во многих странах, в том числе и в Казахстане, робототехника является уже отдельной дисциплиной изучаемой в учебных заведениях, и не только в профильных вузах, но и в школах, и, соответственно, в педагогических вузах.

Востребованность специалистов, обладающих знаниями в этой области, ежегодно растет. Это обусловлено многими объективными факторами, решающим из которых, конечно же, является бурное развитие робототехники.

Сферы применения роботов и робототехники различны: образование, медицина, строительство, геодезия, метеорология и т.д. [1].

Стоит отметить тенденцию интеграции робототехники сдругими науками. В качестве примера приведем уже реализованную робототехническую эмуляцию червя c.Eleganc (рис. 1).

Особое значение, так же занимает развитие так называемой, автономной и мобильной робототехники. В силу того, что робототехника зачастую применяется для выполнения работ в недоступных человеку местах, то именно мобильная робототехника часто является приоритетом. Однако, не только в перечисленных выше случаях требуется мобильная робототехника, определен-

ной ветвью ее развития является автономная робототехника, подразумевающая практически полное исключение вмешательства человеческой деятельности для выполнения каких-либо задач. Иными словами, такая робототехника является наиболее перспективной и интересной в плане разработки. Для осуществления автономности, в мобильной робототехнике, все чаще применяется искусственный интеллект, а точнее его элементы. С развитием облачных технологий, стоит обратить внимание, на интеграцию и объединение различных по мощности вычислительных мощностей и сервисов искусственного интеллекта, для полномасштабной реализации полной мобилизации и автономности робототехники.

Рис. 1. Компьютерная визуализация коннектома c. Eleganc

Под автономностью так же следует рассматривать помимо автономного ПО, способного принимать рациональные и взвешенные решения без участия человека, развитие такой отрасли как энергетика. Довольно очевидным минусом практически всех существующих мобильных систем, является недостаточная вместимость элементов питания, что приводит к недостаточному времени автономной работы таких систем.

Существует как минимум два направления способных стать перспективой развития в этой области мобильной робототехники, а именно:

- 1. создания усовершенствованных элементов питания, намного более вместительных и в тоже время компактных;
- 2. создание средства постоянного получения энергии с возможностью ее накопления.

Если в первом случае все звучит довольно прозрачно, то второй случай по мнению автора является наиболее рациональным и перспективным. Аналоги уже существуют. Например, солнечные батареи, на момент написания статьи исследования в области увеличения коэффициента полезного действия показывают неплохой результат и предрекают скорый его рост.

Развитие мобильной робототехники, имеет перспективный вектор ориентации на содействие с другими науками, такими как например нейргобиология. За ориентир для мобильного автономного робота, можно взять множество примеров простых организмов, таких как например червь с. Eleganc. В контексте рассмотренных выше требований к мобильности и автономности, у данного

червя можно позаимствовать простейшую нейромодель принятия решений, а также способ получения энергии из окружающей среды.

Ученые — нейробиологи в союзе с программистами и специалистами по нейросетям сумели составить полную математическую модель коннектома этого червя. Следующее, что они сделали, это описали математическую модель с помощью языка программирования С++, использовав для компиляции и исполнения написанного кода две аппаратные платформы — ARDUINOMind-stormsи Arduino. В результате были получены два эмулированных червя, с поведением, соответствующим поведению живой особи на 99,8 % [2].

Конечно, стоит отметить что получившийся результат тоже, не является на все сто процентов мобильным и автономным, однако был сделан большой шаг вперед.

Очень удобной и перспективной экспериментальной платформой для, отработки навыков создания мобильной робототехники, является микроконтроллерная платформа ARDUINO.

Применение возможностей мобильных робототехнических комплексов на основе ARDUINO в школе в рамках дисциплин математики, информатики и технологии является пропедевтикой отработки профессиональных навыков сразу по нескольким смежным дисциплинам: механика, теория управления, программирование, теория информации. А использование датчиков поможет выстроить межпредметные связи с физикой, биологией и химией.

Востребованность комплексных знаний способствует развитию коммуникативных навыков между творческими командами учащихся. Кроме того, ученики уже в процессе профильной подготовки сталкиваются с необходимостью решать реальные практические задачи [3].

Удобство ARDUINO (рис. 2) в качестве стартовой модели для создания простой мобильной робототехники, обуславливается большим количеством доступной для это информации и просто огромного числа доступных комплектов расширений (датчиков, двигателей, модулей беспроводной связи и т.д.).

Не составляет никакого труда реализовать на данной платформе простейшего мобильного робота, управляемого с помощью смартфона или же пульта управления. Однако в зависимости от типа проекта, будет подниматься вопрос о времени автономной работы.

Именно тут можно увидеть все преимущества платформы ARDUINO, которая имеет огромное число комплектов расширений, комбинируя которые возможно создать новое, нестандартное решение по обеспечению всей мобильной системы энергией в нужном количестве на нужное время.

В рамках исследований, проводимых на кафедре «Информационные системы» СКГУ им. М. Козыбаева, разрабатываются методики и технологии преподавания робототехники (преимущественно мобильной) в школах и педагогических вузах Казахстана. Обучающимися и преподавателями, как совместно, так и по отдельности реализуется большое число проектов и идей мобильных роботов.

Рис. 2. Робототехническая плата Arduino

Подводя итог, стоит отметить что перспективы развития мобильной робототехники можно представить по двум направлениям:

- 1. Программное направление: Интеграция облачных сервисов и использование искусственного интеллекта на базе самообучающихся нейросетей;
 - 2. Аппаратное направление:
 - 2.1 Создание более емких и компактных элементов питания;
- 2.2 Создание средств постоянной оперативной подзарядки в реальном времени с последующим накоплением и хранением энергии.

Прогресс в обоих направлениях, после продолжительного застоя, в 2016 снова продолжился, предзнаменуя новую эпоху в развитии робототехники, и несомненно, будущее робототехники за полностью мобильными и автономными робототехническими системами.

Исходя из вышесказанного, по мнению авторов, ввиду новизны самой предметной области мобильной и автономной робототехники, необходимы дальнейшие исследования в области технологий и методик развития перспективных направлений робототехники.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Ивановский А.В. Начала робототехники: материал технической информации для подготовки методических пособий . Минск: Вышэйш. шк., 1988. 219 с.
- 2. Интеллектуальные роботы: учеб. пособие по направлению "Мехатроника и робототехника" И.А. Каляев [и др.]; под общ. ред.Е.И. Юревича. М.: Машиностроение, 2007. 360 с.
- 3. Соловьёв, А.В. Когнитивная психология и искусственный интеллект: науч. аналит. обзор А.В. Соловьев; Рос. акад. наук, Ин-т науч. информ. по обществ. наукам. М.: [б. и.], 1992. 77 с.
- 4. Конюх, В.Л. Основы робототехники: учеб. пособие для вузов по направлениям подготовки 220300 "Автоматизация технол. процессов и пр-в" и 220400 "Мехатроника и робототехника" н/Д: Феникс, 2008. 282 с.

© К. Ю. Колыванов, 2017