

Docket No. 1021.43050X00
Serial No. 10/643,975
Office Action dated September 15, 2006

AMENDMENTS TO THE CLAIMS

The following listing of claims replaces all prior listings, and all prior versions, of claims in the application.

LISTING OF CLAIMS:

1. (Currently Amended) An information reproducing method that employs a PRML method for comparing a target signal with each reproduced signal for a continuous N time to select the most likelihood one of state changes therein, thereby transforming said reproduced signal to a binary value;

wherein, when said PRML method is represented as $PR(a_1, a_2, \dots, a_N)$, the leftmost M_1 coefficient and the rightmost M_2 coefficient in a coefficient array are all zero while integer values M_1 and M_2 satisfy a relationship of " $M_1 \geq 0, M_2 \geq 0, M_1 + M_2 \geq 1, M_1 + M_2 < N$ "; and

wherein, when integer $MM = M_1 + M_2$ and integer $NN = N - MM$ are satisfied, said method includes:

a step of using a target value obtained by adding 2^N or less compensated values V_2 , stored in a pattern compensation table, corresponding to a value of an N -bit digital bit array to an initial target level V_1 obtained by a convolution operation of each of NN non-zero coefficient values and an NN -bit digital bit array, said pattern compensation table being located in a decode unit; and

a step of binarizing said reproduced signal to the most likelihood bit array while comparing said reproduced signal with said target value ($V_1 + V_2$); and
a step of outputting said binarized reproduced signal to an information reproducing device.

Docket No. 1021.43050X00
Serial No. 10/643,975
Office Action dated September 15, 2006

2. (Currently Amended) An information reproducing method that employs a PRML method for selecting the most likelihood one of state changes in a reproduced signal while comparing a target signal with each reproduced signal obtained for a continuous N time, thereby binarizing said reproduced signal to a binary value;

wherein, when said PRML method is represented as $PR(a_1, a_2, \dots, a_N)ML$, the logic of said state change excludes a state change logic of a reproduced signal whose minimum run length is R_1 and under in accordance with the minimum run length R_1 ($R_1 \geq 1$);

wherein said method includes:

a step of using a target value obtained by adding 2^N or less compensation values V_2 corresponding to a value of an N-bit digital bit array to an initial target level V_1 obtained by a convolution operation of each of N coefficient values (a_1, a_2, \dots, a_N) and an N-bit digital bit array;

a step of binarizing said reproduced signal to the most likelihood bit array while comparing said reproduced signal with said target value (V_1+V_2); and

a step of setting a value larger than an amplitude of said reproduced signal as said compensation value V_2 corresponding to said N-bit digital bit array if the run length of said N-bit digital bit array is R_2 and under when less than the minimum run length R_2 ($R_2 > R_1$) signal is to be reproduced; and

outputting the results of the step of binarizing and the step of setting to an information reproducing device.

Docket No. 1021.43050X00
Serial No. 10/643,975
Office Action dated September 15, 2006

3. (Original) The method according to claim 1,
wherein said method further includes a step of obtaining a compensated
reproduced signal by calculating a compensation value V2 for each group of N bits in
said binarized bit array, then subtracting the result from said reproduced signal.

4. (Original) The method according to claim 3,
wherein a clock used to reproduce information is extracted from said
compensated reproduced signal.

5. (Original) The method according to claim 1,
wherein a clock used to reproduce information is generated without using
phase information obtained from a minimum run length mark.

6. (Original) The method according to claim 2,
wherein a clock used to reproduce information is generated without using
phase information obtained from a minimum run length mark.

7. (Currently Amended) An information reproducing drive for outputting a
binary value obtained from a reproduced signal with use of a PRML method, said
drive comprising:

a PR target output unit for outputting a PR class target value corresponding to
an N-bit bit array;
| a decode unit including a pattern compensation table for storing a
| compensation value corresponding to each M-bit (M>N) bit array;
| a waveform equalizer for equalizing a reproduced signal; and

Docket No. 1021.43050X00
Serial No. 10/643,975
Office Action dated September 15, 2006

a branch metric calculation unit for calculating a branch metric value for each bit array by employing a target value obtained by adding up a PR target value output from said PR target value output unit and a compensation value stored in said pattern compensation table with respect to an output from said waveform equalizer.

8. (Original) The drive according to claim 7,
wherein said drive further includes a compensation table study unit for correcting said pattern compensation table so as to minimize an error between an output from said waveform equalizer and said target value calculated in accordance with an obtained binary bit array.

9. (Currently Amended) The drive according to claim 7,
wherein said drive further includes:
a compensation calculation unit for storing binary class bits and obtaining a compensation value corresponding to said bit-N-bit array, then subtracting the result from said waveform equalizer; and
a D/A converter for converting an output of said compensation calculation unit to an analog signal.

10. (Original) The drive according to claim 9,
wherein said drive further includes a PLL circuit for inputting an output of said D/A converter; and
wherein said PLL circuit generates a clock.