$$Ex.$$
 мультиномиальной теоремы: 
$$(x+y+z)^4 = 1(x^4+y^4+z^4) + 4(xy^3+xz^3+x^3y+yz^3+y^3z+yz^3) + 6(x^2y^2+y^2z^2+x^2z^2) + 12(xyz^2+xy^2z+x^2yz)$$

Доказательство:

$$(x_1+\cdots+x_r)^n=\sum_{\substack{i_j\in [r]\\j\in [n]}}x_{i_1}^1\cdot\cdots\cdot x_{i_n}^1=\sum_{\substack{i_j\in [r]\\j\in [n]}}x_1^{k_1}\cdot\cdots\cdot x_r^{k_r},$$
 где  $k_t$  - количество  $x$  с индексом  $t$  в одночлене  $(k_t=|\{j\in [n]|i_j=t\}|)$ 

Получается мультиномиальный коэффицциент  $\binom{n}{k_1,\ldots,k_r}$  будет равен количество способов поставить  $k_1$  единиц в индексы в  $x_{i_1}^1 \cdot \dots \cdot x_{i_n}^1$ ,  $k_2$  двоек в индексы и так далее

У нас есть  $\binom{n}{k_1}$  способов поставить единицу в индексы в одночлен,  $\binom{n-k_1}{k_2}$  способов

ПОСТАВИТЬ ДВОЙКУ И Т. Д., ПОЛУЧАЕМ: 
$$\binom{n}{k_1,\ldots,k_r} = \binom{n}{k_1} \binom{n-k_1}{k_2} \ldots \binom{n-k_1-\cdots-k_{r-1}}{k_r} = [n-k_1-\cdots-k_r=0] = \frac{n!}{k_1!(n-k_1)!} \frac{(n-k_1)!}{k_2!(n-k_1-k_2)!} \ldots \frac{(n-k_1-\cdots-k_{r-1})!}{k_r!0!} = \frac{n!}{k_1!\ldots k_r!}$$

• Перестановка мультимножества  $\Sigma^*$  (Permutations of a multiset  $\Sigma^*$ )  $\Sigma^* = \{ \Delta^1, \Delta^2, \Box, \star \} = (\Sigma, r) \quad r : \Sigma \to \mathbb{N}_0 \quad n = |\Sigma^*| = 4 \quad s = |\Sigma| = 3$ 

$$Nota.$$
  $\begin{cases} \Delta^1, \Delta^2, \square, \bigstar \\ \Delta^2, \Delta^1, \square, \bigstar \end{cases}$  считаются равными перестановками

 $|P^*(\Sigma^*,n)|=rac{n!}{r_1!\dots r_s!}=igg(n\atop r_1,\dots,r_sigg)$  - количество перестановок мультимножества, где  $r_i$  количество i-ого элемента в мультимножестве

• k-комбинация бесконечного мультимножества (k-combinations of infinite multiset) такое субмультимножество размера k, содержащее элементы из исходного мультимножества. При этом соблюдается, что количество какого-либо элемента  $r_i$  в исходном мультимножестве не больше размера комбинации k

$$\Sigma^* = \{ \infty \cdot \triangle, \infty \cdot \square, \infty \cdot \star, \infty \cdot \not A \}^* \quad n = |\Sigma^*| = \infty$$

$$\Sigma = \{ \triangle, \square, \star, \not A \} \quad s = |\Sigma| = 4$$

Ex. 5-комбинация:  $\{ \triangle, \bigstar, \square, \bigstar, \square \}$ 

Разделяем на группы по Σ палочками:

Заменяем элементы на точечки - нам уже не так важен тип элемента, потому что мы знаем из разделения:

(другой 
$$Ex. \bullet \bullet \bullet \bullet | | | \bullet = \{4 \cdot \triangle, 1 \cdot \cancel{A}\})$$

Получается всего  $\ddot{k}$  точечек и s-1 палочек, всего k+s-1 объектов. Получаем мультимножество  $\{k \cdot \bullet, (s-1) \cdot | \}$  (Star and Bars method)

Получаем количество перестановок этого мультимножества:  $\frac{(k+s-1)!}{k!(s-1)!} = \binom{k+s-1}{k,s-1} =$ 

$$\binom{k+s-1}{k} = \binom{k+s-1}{s-1}$$

что и является количеством возможных k-комбинаций бесконечного мультимножества

• Слабая композиция (Weak composition) неотрицательного целого числа n в k частей это решение  $(b_1, \ldots, b_k)$  уравнение  $b_1 + \cdots + b_k = n$ , где  $b_i \ge 0$ 

$$|\{$$
слабая композиция  $n$  в  $k$  частей $\}|=egin{pmatrix} n+k-1 \\ n,k-1 \end{pmatrix}$ 

Для решения воспользуемся аналогичным из доказательства мультиномиальной теоремы приемом:

$$n = 1 + 1 + 1 + \cdots + 1$$

Поставим палочки: 
$$n = 1 + 1 | 1 | \cdots + 1$$

Получаем задачу поиска количеств k-комбинаций в мультимножестве:  $\{n \cdot 1, (k-1) \cdot | \}$ ;

получаем 
$$\binom{n+k-1}{n,k-1}$$

• Композиция (Composition) - решение для  $b_1+\cdots+b_k=n$ , где  $b_i>0$   $|\{$ композиция n в k частей $\}|=\binom{n-k+k-1}{n-k,k-1}$ 

Мы знаем, что одну единичку получит каждая  $b_i$ , поэтому мы решаем это как слабую композицию для n-k в k частей

• Число композиций *п* в некоторой число частей (Number of all compositions into some number of positive parts)

$$\sum_{k=1}^{n} \binom{n-1}{k-1} = 2^{n-1}$$

Пусть 
$$t = k - 1$$
, тогда  $\sum_{t=0}^{n-1} \binom{n-1}{t} = 2^{n-1}$ 

• Разбиения множества (Set partitions) - множество размера k непересекающихся непустых подмножеств

$$Ex. \ \{1,2,3,4\}, n=4, k=2 \to [\text{разбиение в 2 части}] \to \ \{\{1\},\{2,3,4\}\}, \\ \{\{1,2\},\{3,4\}\}, \\ \{\{1,2,3\},\{4\}\}, \\ \{\{1,4\},\{2,3\}\}, \\ \{\{2\},\{1,3,4\}\}, \\ \{\{3\},\{1,2,4\}\}$$

 $|\{$ разбиение n элементов в k частей $\}|={n\brace k}=S_k^{II}(n)=S(n,k)$  - число Стирлинга второго рода

Для примера выше число Стирлинга  $S(4,2) = {4 \brace 2} = 7$ 

Согласно Википедии для формулы Стирлинга есть формула:  $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k+j} \binom{k}{j} j^n$ 

• Формула Паскаля (Pascal's formula) (n) (n-1) (n-1)

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

• Рекуррентное отношение для чисел Стирлинга (Recurrence relation for Stirling<sup>(2)</sup> number):

Возьмем какое-либо разбиение для n-1 элементов на k частей, тогда возможны два случая:

- 1) В k-ое множество нет ни одного элемента, тогда мы обязаны в него положить наш n-ый элемент по определению, количество перестановок будет равно  ${n-1 \brace k-1} \cdot 1$
- 2) В k-ом множестве уже есть элементы, тогда все множества будут заполнены и у нас будет выбор из k множеств, куда положить k-ый элемент, то есть  $k \cdot {n-1 \brace k}$

Эти два случая независимы, поэтому получаем  $\binom{n-1}{k-1} + k \cdot \binom{n-1}{k}$ 

 $\bullet$  Число Белла (Bell number) - количество всех неупорядоченных разбиений множества размера n

Число Белла вычисляется по формуле:  $B_n = \sum_{m=0}^n S(n,m)$ 

• Целочисленное разбиение (Integer partition) - решение для  $a_1+\cdots+a_k=n$ , где  $a_1\geq a_2\geq \cdots \geq a_k\geq 1$ 

p(n,k) - число целочисленных разбиений n в k частей

$$p(n) = \sum_{k=1}^{n} p(n,k)$$
 - число всех разбиений для  $n$ 

$$Ex. 5 = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1$$