

## **Description**

The DMC3021LSD-13 uses advanced trench technology to provide excellent  $R_{DS(ON)}$ , low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.



#### **General Features**

 $V_{DS} = 30V I_{D} = 6A$ 

 $R_{DS(ON)}$  < 22m $\Omega$  @  $V_{GS}$ =10V

 $V_{DS} = -30V I_{D} = -5.5A$ 

 $R_{DS(ON)} < 45 \text{ m}\Omega$  @  $V_{GS}$ =-10V



N-Channel and P-Channel

# **Application**

Wireless charging

Boost driver

Brushless motor

# **Package Marking and Ordering Information**

| Product ID Pack |               | Brand      | Qty(PCS) |  |
|-----------------|---------------|------------|----------|--|
| DMC3021LSD-13   | SOP-8(SOIC-8) | HXY MOSFET | 3000     |  |

# Absolute Maximum Ratings (T<sub>c</sub>=25°C unless otherwise noted)

| Oh all                               | Demonstra                                                    | Rati                                    | 11-14-                 |                        |  |
|--------------------------------------|--------------------------------------------------------------|-----------------------------------------|------------------------|------------------------|--|
| Symbol                               | Parameter                                                    | N-Channel                               | P-Channel              | Units                  |  |
| VDS                                  | Drain-Source Voltage                                         | 30                                      | -30                    | V                      |  |
| VGS                                  | Gate-Source Voltage                                          | ±20                                     | ±20                    | V                      |  |
| I <sub>D</sub> @T <sub>A</sub> =25℃  | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 6                                       | -5.5                   | Α                      |  |
| I <sub>D</sub> @T <sub>A</sub> =70°C | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 5                                       | -4.3                   | Α                      |  |
| IDM                                  | Pulsed Drain Current <sup>2</sup>                            | 30                                      | -30                    | Α                      |  |
| EAS                                  | Single Pulse Avalanche Energy <sup>3</sup>                   | 5                                       | 26                     | mJ                     |  |
| P <sub>D</sub> @T <sub>A</sub> =25°C | Total Power Dissipation <sup>4</sup>                         | otal Power Dissipation <sup>4</sup> 2 2 |                        | W                      |  |
| TSTG                                 | Storage Temperature Range -55 to 150 -55 to 150              |                                         | -55 to 150             | $^{\circ}\!\mathbb{C}$ |  |
| TJ                                   | Operating Junction Temperature Range -55 to 150 -55 to 150   |                                         | $^{\circ}\!\mathbb{C}$ |                        |  |
| R₀JA                                 | Thermal Resistance Junction-Ambient <sup>1</sup>             | 62.5                                    |                        | °C/W                   |  |
| R <sub>θ</sub> JC                    | Thermal Resistance Junction-Case <sup>1</sup>                | 40                                      |                        | °C/W                   |  |



## N-Channel Electrical Characteristics (T<sub>J</sub> =25°C, unless otherwise noted)

| Symbol                | Parameter                             | Conditions                                                     | Min | Тур  | Max  | Units |  |
|-----------------------|---------------------------------------|----------------------------------------------------------------|-----|------|------|-------|--|
| Static Parameters     |                                       |                                                                |     |      |      |       |  |
| BV <sub>DSS</sub>     | Drain-Source Breakdown Voltage        | $I_D=250\mu A, V_{GS}=0V$                                      | 30  |      |      | V     |  |
| I <sub>DSS</sub>      | Zero Gate Voltage Drain Current       | V <sub>DS</sub> =30V, V <sub>GS</sub> =0V                      |     |      | 1    | Δ     |  |
| ·DSS                  | Zero Gate Voltage Brain Garrent       | T <sub>J</sub> =55℃                                            |     |      | 5    | μΑ    |  |
| $I_{GSS}$             | Gate-Body leakage current             | $V_{DS}$ =0V, $V_{GS}$ =±20V                                   |     |      | ±100 | nA    |  |
| $V_{GS(th)}$          | Gate Threshold Voltage                | $V_{DS}=V_{GS} I_{D}=250\mu A$                                 | 1.2 | 1.8  | 2.4  | V     |  |
| $I_{D(ON)}$           | On state drain current                | $V_{GS}=10V, V_{DS}=5V$                                        | 30  |      |      | Α     |  |
|                       |                                       | V <sub>GS</sub> =10V, I <sub>D</sub> =6A                       |     | 16   | 22   | mΩ    |  |
| R <sub>DS(ON)</sub>   | Static Drain-Source On-Resistance     | T <sub>J</sub> =125℃                                           |     | 32   | 40   | 11152 |  |
|                       |                                       | $V_{GS}$ =4.5V, $I_D$ =5A                                      |     | 22   | 30   | mΩ    |  |
| g <sub>FS</sub>       | Forward Transconductance              | $V_{DS}$ =5 $V$ , $I_{D}$ =6 $A$                               |     | 15   |      | S     |  |
| $V_{SD}$              | Diode Forward Voltage                 | I <sub>S</sub> =1A,V <sub>GS</sub> =0V                         |     | 0.76 | 1    | V     |  |
| Is                    | Maximum Body-Diode Continuous Current |                                                                |     |      | 2.5  | Α     |  |
| Dynamic               | Parameters                            |                                                                |     |      |      |       |  |
| C <sub>iss</sub>      | Input Capacitance                     |                                                                | 200 | 255  | 310  | pF    |  |
| Coss                  | Output Capacitance                    | $V_{GS}$ =0V, $V_{DS}$ =15V, f=1MHz                            | 30  | 45   | 60   | pF    |  |
| $C_{rss}$             | Reverse Transfer Capacitance          |                                                                | 20  | 35   | 50   | pF    |  |
| $R_g$                 | Gate resistance                       | $V_{GS}$ =0V, $V_{DS}$ =0V, f=1MHz                             | 1.6 | 3.25 | 4.9  | Ω     |  |
| Switchin              | g Parameters                          |                                                                |     |      |      |       |  |
| Q <sub>g</sub> (10V)  | Total Gate Charge                     |                                                                | 4   | 5.2  | 6    | nC    |  |
| Q <sub>g</sub> (4.5V) | Total Gate Charge                     | V <sub>GS</sub> =10V, V <sub>DS</sub> =15V, I <sub>D</sub> =6A | 2   | 2.55 | 3    | nC    |  |
| $Q_{gs}$              | Gate Source Charge                    | VGS-10V, VDS-13V, ID-0A                                        |     | 0.85 |      | nC    |  |
| $Q_{gd}$              | Gate Drain Charge                     |                                                                |     | 1.3  |      | nC    |  |
| t <sub>D(on)</sub>    | Turn-On DelayTime                     |                                                                |     | 4.5  |      | ns    |  |
| t <sub>r</sub>        | Turn-On Rise Time                     | $V_{GS}$ =10V, $V_{DS}$ =15V, $R_L$ =2.5 $\Omega$ ,            |     | 2.5  |      | ns    |  |
| t <sub>D(off)</sub>   | Turn-Off DelayTime                    | $R_{GEN}=3\Omega$                                              |     | 14.5 |      | ns    |  |
| t <sub>f</sub>        | Turn-Off Fall Time                    | ]                                                              |     | 3.5  |      | ns    |  |
| t <sub>rr</sub>       | Body Diode Reverse Recovery Time      | I <sub>F</sub> =6A, dI/dt=100A/μs                              |     | 8.5  | 12   | ns    |  |
| Q <sub>rr</sub>       | Body Diode Reverse Recovery Charge    | I <sub>F</sub> =6A, dI/dt=100A/μs                              | _   | 2.2  | 3    | nC    |  |

A. The value of R<sub>BJA</sub> is measured with the device mounted on 1in<sup>2</sup> FR-4 board with 2oz. Copper, in a still air environment with T<sub>A</sub> =25° C. The value in any given application depends on the user's specific board design. B. The power dissipation  $P_D$  is based on  $T_{J(MAX)}$ =150° C, using  $\leq$  10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T<sub>J(MAX)</sub>=150° C. Ratings are based on low frequency and duty cycles to keep initialT<sub>J</sub>=25° C.

D. The  $R_{\theta JA}$  is the sum of the thermal impedence from junction to lead  $R_{\theta JL}$  and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in<sup>2</sup> FR-4 board with 2oz. Copper, assuming a maximum junction temperature of  $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.



## **Typical Characteristics**





V<sub>GS</sub>(Volts)
Figure 2: Transfer Characteristics (Note E)



Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)



Figure 4: On-Resistance vs. Junction Temperature (Note E)



Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)











Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note F)



Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)



## Gate Charge Test Circuit & Waveform





Resistive Switching Test Circuit & Waveforms





## Unclamped Inductive Switching (UIS) Test Circuit & Waveforms





#### Diode Recovery Test Circuit & Waveforms





### Dual N+P-Channel Enhancement Mode MOSFET

## P-Channel Electrical Characteristics (T<sub>J</sub> =25°C, unless otherwise noted)

| Symbol                | Parameter                          | Conditions                                                         | Min  | Тур   | Max  | Units |  |
|-----------------------|------------------------------------|--------------------------------------------------------------------|------|-------|------|-------|--|
| Static Parameters     |                                    |                                                                    |      |       |      |       |  |
| BV <sub>DSS</sub>     | Drain-Source Breakdown Voltage     | $I_D = -250 \mu A, V_{GS} = 0 V$                                   | -30  |       |      | V     |  |
|                       | Zero Gate Voltage Drain Current    | $V_{DS}$ =-30V, $V_{GS}$ =0V                                       |      |       | -1   | ^     |  |
| I <sub>DSS</sub>      | Zero Gate Voltage Drain Current    | T <sub>J</sub> =55℃                                                |      |       | -5   | μΑ    |  |
| $I_{GSS}$             | Gate-Body leakage current          | $V_{DS}$ =0V, $V_{GS}$ =±20V                                       |      |       | ±100 | nA    |  |
| $V_{GS(th)}$          | Gate Threshold Voltage             | $V_{DS}=V_{GS} I_{D}=-250\mu A$                                    | -1.3 | -1.85 | -2.4 | V     |  |
| $I_{D(ON)}$           | On state drain current             | $V_{GS}$ =-10V, $V_{DS}$ =-5V                                      | -30  |       |      | Α     |  |
|                       |                                    | $V_{GS}$ =-10V, $I_{D}$ =-6.5A                                     |      | 36    | 45   | mΩ    |  |
| $R_{DS(ON)}$          | Static Drain-Source On-Resistance  | T <sub>J</sub> =125℃                                               |      | 32    | 40   | 11122 |  |
|                       |                                    | $V_{GS}$ =-4.5V, $I_D$ =-5A                                        |      | 68    | 77   | mΩ    |  |
| g <sub>FS</sub>       | Forward Transconductance           | $V_{DS}$ =-5V, $I_{D}$ =-6.5A                                      |      | 18    |      | S     |  |
| $V_{SD}$              | Diode Forward Voltage              | I <sub>S</sub> =-1A,V <sub>GS</sub> =0V                            |      | -0.8  | -1   | V     |  |
| Is                    | Maximum Body-Diode Continuous Curr | ent                                                                |      |       | -2.5 | Α     |  |
| Dynamic               | Parameters                         |                                                                    |      |       |      |       |  |
| C <sub>iss</sub>      | Input Capacitance                  |                                                                    |      | 760   |      | pF    |  |
| C <sub>oss</sub>      | Output Capacitance                 | $V_{GS}$ =0V, $V_{DS}$ =-15V, f=1MHz                               |      | 140   |      | pF    |  |
| C <sub>rss</sub>      | Reverse Transfer Capacitance       |                                                                    |      | 95    |      | pF    |  |
| $R_g$                 | Gate resistance                    | V <sub>GS</sub> =0V, V <sub>DS</sub> =0V, f=1MHz                   | 1.5  | 3.2   | 5    | Ω     |  |
| Switching             | g Parameters                       |                                                                    |      |       |      |       |  |
| Q <sub>g</sub> (10V)  | Total Gate Charge                  |                                                                    |      | 13.6  | 16   | nC    |  |
| Q <sub>g</sub> (4.5V) | Total Gate Charge                  | V <sub>GS</sub> =10V, V <sub>DS</sub> =-15V, I <sub>D</sub> =-6.5A |      | 6.7   | 8    | nC    |  |
| $Q_{gs}$              | Gate Source Charge                 | V <sub>GS</sub> =10V, V <sub>DS</sub> =-13V, I <sub>D</sub> =-0.3A |      | 2.5   |      | nC    |  |
| $Q_{gd}$              | Gate Drain Charge                  |                                                                    |      | 3.2   |      | nC    |  |
| t <sub>D(on)</sub>    | Turn-On DelayTime                  |                                                                    |      | 8     |      | ns    |  |
| t <sub>r</sub>        | Turn-On Rise Time                  | $V_{GS}$ =10V, $V_{DS}$ =-15V, $R_{L}$ =2.3 $\Omega$ ,             |      | 6     |      | ns    |  |
| t <sub>D(off)</sub>   | Turn-Off DelayTime                 | $R_{GEN}=3\Omega$                                                  |      | 17    |      | ns    |  |
| t <sub>f</sub>        | Turn-Off Fall Time                 |                                                                    |      | 5     |      | ns    |  |
| t <sub>rr</sub>       | Body Diode Reverse Recovery Time   | I <sub>F</sub> =-6.5A, dl/dt=100A/μs                               |      | 15    |      | ns    |  |
| $Q_{rr}$              | Body Diode Reverse Recovery Charge | I <sub>F</sub> =-6.5A, dI/dt=100A/μs                               |      | 9.7   |      | nC    |  |

A. The value of  $R_{BJA}$  is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with  $T_A$  =25° C. The value in any given application depends on the user's specific board design.

B. The power dissipation  $P_D$  is based on  $T_{J(MAX)}$ =150° C, using  $\leq$  10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T<sub>J(MAX)</sub>=150° C. Ratings are based on low frequency and duty cycles to keep initial  $T_J = 25^{\circ}$  C.

D. The  $R_{\theta JA}$  is the sum of the thermal impedence from junction to lead  $R_{\theta JL}$  and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in<sup>2</sup> FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T<sub>J(MAX)</sub>=150° C. The SOA curve provides a single pulse rating.



## **Typical Characteristics**



Fig 1: On-Region Characteristics (Note E)



-V<sub>GS</sub>(Volts) Figure 2: Transfer Characteristics (Note E)



Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)



Figure 4: On-Resistance vs. Junction Temperature (Note E)



Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)



Figure 6: Body-Diode Characteristics (Note E)







Figure 9: Maximum Forward Biased Safe Operating Area (Note F)



Pulse Width (s)
Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note F)



Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)



### Gate Charge Test Circuit & Waveform





Resistive Switching Test Circuit & Waveforms





Unclamped Inductive Switching (UIS) Test Circuit & Waveforms





Diode Recovery Test Circuit & Waveforms







# SOP-8(SOIC-8) Package Outline Dimensions







| Symbol | Dimensions In Millimeters |       | Dimensions In Inches |        |  |
|--------|---------------------------|-------|----------------------|--------|--|
| Symbol | Min                       | Max   | Min                  | Max    |  |
| A      | 1. 350                    | 1.750 | 0.053                | 0.069  |  |
| A1     | 0.100                     | 0.250 | 0.004                | 0.010  |  |
| A2     | 1.350                     | 1.550 | 0.053                | 0.061  |  |
| b      | 0.330                     | 0.510 | 0.013                | 0.020  |  |
| c      | 0.170                     | 0.250 | 0.007                | 0.010  |  |
| D      | 4.800                     | 5.000 | 0.189                | 0. 197 |  |
| e      | 1. 270 (BSC)              |       | 0.050                | (BSC)  |  |
| E      | 5.800                     | 6.200 | 0.228                | 0.244  |  |
| E1     | 3.800                     | 4.000 | 0.150                | 0.157  |  |
| L      | 0.400                     | 1.270 | 0.016                | 0.050  |  |
| θ      | 0°                        | 8°    | 0°                   | 8°     |  |



- Note: 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
  3.The pad layout is for reference purposes only.

#### **Attention**

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

  HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.