1. Непрерывности функции и классификация разрывов

Определение непрерывной функции в точке (через ε-δ и неравенства, ε-δокрестности, окрестности) и на множестве. Лемма о связи непрерывности и предела. Лемма о характеристике непрерывности в терминах односторонних пределов. Определение точек разрыва и их классификация.

Определение 43 (Понятие непрерывности функции).

Функция $f: E \to \mathbb{R}$ называется непрерывной в точке $x_0 \in E$, если

$$\forall V(f(x_0)) \exists U(x_0) : \forall x \in U(x_0) \cap E \ f(x) \in V(f(x_0))$$

или, что то же самое,

$$\forall V(f(x_0)) \exists U(x_0) : f(U(x_0) \cap E) \subset V(f(x_0))$$

Замечание 82.

Естественно, приведенное определение может быть переписано и на языке $\varepsilon-\delta$, и на языке соответствующих окрестностей.

Предполагая, что $E \subset \mathbb{R}$, факт непрерывности функции $f: E \to \mathbb{R}$ в точке x_0 записывается так:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x - x_0| < \delta \ |f(x) - f(x_0)| < \varepsilon.$$

Или так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : \forall x \in U_{\delta}(x_0) \cap E \ f(x) \in V_{\varepsilon}(f(x_0))$$

Или, наконец, так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : f(U_{\delta}(x_0) \cap E) \subset V_{\varepsilon}(f(x_0))$$

Эквивалентность этих определений проверяется так же, как эквивалентность различных определений предела, и остается в качестве упражнения.

Определение 44 (Понятие функции, непрерывной на множестве).

Функция $f: E \to \mathbb{R}$ называется непрерывной на множестве $D \subset E$, если она непрерывна в каждой точке множества D.

Обозначается это так: $f \in C(D)$.

Лемма 33 (Связь непрерывности и предела).

Пусть $f : E \to \mathbb{R}, x_0 \in E$.

1. Для того чтобы функция $f:E\to\mathbb{R}$ была непрерывной в точке x_0 , предельной для E, необходимо и достаточно, чтобы выполнялось

$$\lim_{x \to x_0} f(x) = f(x_0).$$

2. Если точка x_0 не является предельной для E, то f непрерывна в x_0 .

Лемма 34 (Характеристика непрерывности в терминах односторонних пределов). Пусть $f: E \to \mathbb{R}$ и x_0 — предельная для E. Если существуют (в смысле определения) односторонние пределы $f(x_0+0)$ и $f(x_0-0)$, то непрерывность функции f в точке равносильна равенству

$$f(x_0 + 0) = f(x_0 - 0) = f(x_0).$$

Если существует (в смысле определения) лишь один из односторонних пределов $f(x_0\pm 0)$, то непрерывность функции f в точке равносильна равенству

$$f(x_0 \pm 0) = f(x_0)$$

Определение 45 (Понятие точки разрыва).

Пусть $f: E \to \mathbb{R}$. Если $x_0 \in \mathbb{R}$ – предельная для E и f не непрерывна в точке x_0 , то точка x_0 называется точкой разрыва для функции f.

Определение 46 (Понятие устранимого разрыва).

Пусть $f: E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$. Если существует $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, но значение функции в точке x_0 либо не определено, либо отличается от A, то x_0 называется точкой устранимого разрыва функции f.

Определение 47 (Понятие разрыва 1-ого рода (скачка)).

Пусть $f: E \to \mathbb{R}$. Если существуют односторонние пределы $f(x_0 \pm 0) \in \mathbb{R}$, но

$$f(x_0+0) \neq f(x_0-0),$$

то точка x_0 называется точкой разрыва первого рода или скачком.

Определение 48 (Понятие разрыва 2-ого рода).

Пусть $f: E \to \mathbb{R}, x_0$ – предельная для E. Если не существует хотя бы одного из односторонних пределов $f(x_0 \pm 0)$ в \mathbb{R} , то точка x_0 называется точкой разрыва второго рода.

2. Локальные свойства непрерывных функций

Определение непрерывной функции в точке (через є-δ и неравенства, є-δ-окрестности, окрестности). Определение точек разрыва и их классификация. Теорема о пяти локальных свойствах непрерывной функции (локальные свойства, непрерывность суммы, произведения и отношения функций). Теорема о непрерывности композиции функций.

Определение 43 (Понятие непрерывности функции).

Функция $f: E \to \mathbb{R}$ называется непрерывной в точке $x_0 \in E$, если

$$\forall V(f(x_0)) \exists U(x_0) : \forall x \in U(x_0) \cap E \ f(x) \in V(f(x_0))$$

или, что то же самое,

$$\forall V(f(x_0)) \exists U(x_0) : f(U(x_0) \cap E) \subset V(f(x_0))$$

Замечание 82.

Естественно, приведенное определение может быть переписано и на языке $\varepsilon-\delta$, и на языке соответствующих окрестностей.

Предполагая, что $E\subset\mathbb{R},$ факт непрерывности функции $f:E\to\mathbb{R}$ в точке x_0 записывается так:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x - x_0| < \delta \ |f(x) - f(x_0)| < \varepsilon.$$

Или так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : \forall x \in U_{\delta}(x_0) \cap E \quad f(x) \in V_{\varepsilon}(f(x_0))$$

Или, наконец, так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : f(U_{\delta}(x_0) \cap E) \subset V_{\varepsilon}(f(x_0))$$

Эквивалентность этих определений проверяется так же, как эквивалентность различных определений предела, и остается в качестве упражнения.

```
Определение 44 (Понятие функции, непрерывной на множестве). 
Функция f:E \to \mathbb{R} называется непрерывной на множестве D \subset E, если она непрерывна в каждой точке множества D. 
Обозначается это так: f \in C(D).
```

Определение 45 (Понятие точки разрыва).

Пусть $f: E \to \mathbb{R}$. Если $x_0 \in \mathbb{R}$ – предельная для E и f не непрерывна в точке x_0 , то точка x_0 называется точкой разрыва для функции f.

Определение 46 (Понятие устранимого разрыва).

Пусть $f: E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$. Если существует $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, но значение функции в точке x_0 либо не определено, либо отличается от A, то x_0 называется точкой устранимого разрыва функции f.

Определение 48 (Понятие разрыва 2-ого рода).

Пусть $f: E \to \mathbb{R}$, x_0 – предельная для E. Если не существует хотя бы одного из односторонних пределов $f(x_0 \pm 0)$ в \mathbb{R} , то точка x_0 называется точкой разрыва второго рода.

Теорема 26 (Локальные свойства непрерывных функций).

Пусть функция $f:E \to \mathbb{R}$ непрерывна в точке x_0 . Тогда:

- 1. Функция f(x) ограничена в некоторой окрестности x_0 .
- 2. Если $f(x_0) \neq 0$, то существует окрестность $U(x_0)$ такая, что в $U(x_0) \cap E$ знаки f(x) и $f(x_0)$ совпадают.

Пусть, кроме того, $g: E \to \mathbb{R}$ непрерывна в точке x_0 . Тогда:

- (в) Функция f(x) + g(x) непрерывна в x_0 .
- (г) Функция f(x)g(x) непрерывна в x_0 .
- (д) Функция $\frac{f(x)}{g(x)}$ непрерывна в x_0 , если $g(x_0) \neq 0$.

Теорема 27 (О непрерывности композиции).

Пусть $f:E_1\to E_2,\ g:E_2\to\mathbb{R},\$ функция f(x) непрерывна в точке $x_0\in E_1,\$ а функция g(y) непрерывна в точке $y_0=f(x_0)\in E_2.$ Тогда функция g(f(x)) непрерывна в точке $x_0.$

3. Теорема Вейерштрасса

Определение непрерывной функции в точке (через ε-δ и неравенства, ε-δ-окрестности, окрестности). Определение точек разрыва и их классификация. Лемма о замкнутости отрезка. Теорема Вейерштрасса.

```
Определение 43 (Понятие непрерывности функции). 
Функция f: E \to \mathbb{R} называется непрерывной в точке x_0 \in E, если \forall V(f(x_0)) \; \exists U(x_0): \forall x \in U(x_0) \cap E \;\; f(x) \in V(f(x_0)) или, что то же самое, \forall V(f(x_0)) \; \exists U(x_0): f\left(U(x_0) \cap E\right) \subset V(f(x_0))
```

Замечание 82.

Естественно, приведенное определение может быть переписано и на языке $\varepsilon - \delta$, и на языке соответствующих окрестностей.

Предполагая, что $E\subset\mathbb{R},$ факт непрерывности функции $f:E\to\mathbb{R}$ в точке x_0 записывается так:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x - x_0| < \delta \ |f(x) - f(x_0)| < \varepsilon.$$

Или так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : \forall x \in U_{\delta}(x_0) \cap E \ f(x) \in V_{\varepsilon}(f(x_0))$$

Или, наконец, так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : f(U_{\delta}(x_0) \cap E) \subset V_{\varepsilon}(f(x_0))$$

Эквивалентность этих определений проверяется так же, как эквивалентность различных определений предела, и остается в качестве упражнения.

Определение 44 (Понятие функции, непрерывной на множестве).

Функция $f : E \to \mathbb{R}$ называется непрерывной на множестве $D \subset E$, если она непрерывна в каждой точке множества D.

Обозначается это так: $f \in C(D)$.

Определение 45 (Понятие точки разрыва).

Пусть $f: E \to \mathbb{R}$. Если $x_0 \in \mathbb{R}$ – предельная для E и f не непрерывна в точке x_0 , то точка x_0 называется точкой разрыва для функции f.

Определение 46 (Понятие устранимого разрыва).

Пусть $f: E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$. Если существует $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, но значение функции в точке x_0 либо не определено, либо отличается от A, то x_0 называется точкой устранимого разрыва функции f.

Определение 48 (Понятие разрыва 2-ого рода).

Пусть $f: E \to \mathbb{R}$, x_0 — предельная для E. Если не существует хотя бы одного из односторонних пределов $f(x_0 \pm 0)$ в \mathbb{R} , то точка x_0 называется точкой разрыва второго рода.

Лемма 35 (О замкнутости отрезка).

Пусть $x_n \in [a, b]$ — сходящаяся последовательность. Тогда

$$\lim x_n \in [a, b].$$

Теорема 28 (Вейерштрасса).

Пусть $f \in C[a, b]$. Тогда:

- 1. f ограничена на [a, b].
- f достигает на [a, b] наибольшего и наименьшего значений.

4.Теоремы Больцано-Коши

Определение непрерывной функции в точке (через ε-δ и неравенства, ε-δ-окрестности, окрестности). Определение точек разрыва и их классификация. Первая и вторая теоремы Больцано-Коши.

Определение 43 (Понятие непрерывности функции).

Функция $f: E \to \mathbb{R}$ называется непрерывной в точке $x_0 \in E$, если

$$\forall V(f(x_0)) \exists U(x_0) : \forall x \in U(x_0) \cap E \ f(x) \in V(f(x_0))$$

или, что то же самое,

$$\forall V(f(x_0)) \exists U(x_0) : f(U(x_0) \cap E) \subset V(f(x_0))$$

Замечание 82.

Естественно, приведенное определение может быть переписано и на языке $\varepsilon - \delta$, и на языке соответствующих окрестностей.

Предполагая, что $E\subset\mathbb{R},$ факт непрерывности функции $f:E\to\mathbb{R}$ в точке x_0 записывается так:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x - x_0| < \delta \ |f(x) - f(x_0)| < \varepsilon.$$

Или так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : \forall x \in U_{\delta}(x_0) \cap E \ f(x) \in V_{\varepsilon}(f(x_0))$$

Или, наконец, так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : f(U_{\delta}(x_0) \cap E) \subset V_{\varepsilon}(f(x_0))$$

Эквивалентность этих определений проверяется так же, как эквивалентность различных определений предела, и остается в качестве упражнения.

Определение 44 (Понятие функции, непрерывной на множестве).

Функция $f: E \to \mathbb{R}$ называется непрерывной на множестве $D \subset E$, если она непрерывна в каждой точке множества D.

Обозначается это так: $f \in C(D)$.

Определение 45 (Понятие точки разрыва).

Пусть $f: E \to \mathbb{R}$. Если $x_0 \in \mathbb{R}$ – предельная для E и f не непрерывна в точке x_0 , то точка x_0 называется точкой разрыва для функции f.

Определение 46 (Понятие устранимого разрыва).

Пусть $f: E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$. Если существует $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, но значение функции в точке x_0 либо не определено, либо отличается от A, то x_0 называется точкой устранимого разрыва функции f.

Определение 48 (Понятие разрыва 2-ого рода).

Пусть $f: E \to \mathbb{R}$, x_0 — предельная для E. Если не существует хотя бы одного из односторонних пределов $f(x_0 \pm 0)$ в \mathbb{R} , то точка x_0 называется точкой разрыва второго рода.

Теорема 29 (Первая теорема Больцано-Коши).

Пусть $f \in C[a, b]$ и $f(a) \cdot f(b) < 0$. Тогда

$$\exists c \in (a,b) : f(c) = 0.$$

Теорема 30 (Вторая теорема Больцано-Коши).

Пусть $f \in C[a, b]$, f(a) = A, f(b) = B, A < B. Тогда

 $\forall C \in (A, B) \exists c \in (a, b) : f(c) = C.$

5. Непрерывность и монотонность функции

Определение возрастания и убывания функции, монотонной функции. Определение непрерывной функции в точке (через ε-δ и неравенства, ε-δ-окрестности, окрестности). Критерий непрерывности монотонной функции. Теорема об обратной функции.

Определение 37 (Понятия возрастания и убывания функции).

Пусть $f: E \to \mathbb{R}$. Говорят, что функция f возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) \le f(x_2).$$

Говорят, что функция f строго возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) < f(x_2).$$

Говорят, что что функция f убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) \ge f(x_2).$$

Говорят, что функция f строго убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) > f(x_2).$$

Определение 38.

Про возрастающую (строго возрастающую, убывающую, строго убывающую) функцию также говорят, что она монотонна.

Определение 43 (Понятие непрерывности функции).

Функция $f: E \to \mathbb{R}$ называется непрерывной в точке $x_0 \in E$, если

$$\forall V(f(x_0)) \exists U(x_0) : \forall x \in U(x_0) \cap E \ f(x) \in V(f(x_0))$$

или, что то же самое,

$$\forall V(f(x_0)) \exists U(x_0) : f(U(x_0) \cap E) \subset V(f(x_0))$$

Замечание 82.

Естественно, приведенное определение может быть переписано и на языке $\varepsilon - \delta$, и на языке соответствующих окрестностей.

Предполагая, что $E\subset \mathbb{R},$ факт непрерывности функции $f:E\to \mathbb{R}$ в точке x_0 записывается так:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x - x_0| < \delta \ |f(x) - f(x_0)| < \varepsilon.$$

Или так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : \forall x \in U_{\delta}(x_0) \cap E \ f(x) \in V_{\varepsilon}(f(x_0))$$

Или, наконец, так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : f(U_{\delta}(x_0) \cap E) \subset V_{\varepsilon}(f(x_0))$$

Эквивалентность этих определений проверяется так же, как эквивалентность различных определений предела, и остается в качестве упражнения.

Определение 44 (Понятие функции, непрерывной на множестве).

Функция $f:E\to\mathbb{R}$ называется непрерывной на множестве $D\subset E$, если она непрерывна в каждой точке множества D.

Обозначается это так: $f \in C(D)$.

Определение 45 (Понятие точки разрыва).

Пусть $f: E \to \mathbb{R}$. Если $x_0 \in \mathbb{R}$ – предельная для E и f не непрерывна в точке x_0 , то точка x_0 называется точкой разрыва для функции f.

Определение 46 (Понятие устранимого разрыва).

Пусть $f: E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$. Если существует $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, но значение функции в точке x_0 либо не определено, либо отличается от A, то x_0 называется точкой устранимого разрыва функции f.

Определение 48 (Понятие разрыва 2-ого рода).

Пусть $f: E \to \mathbb{R}$, x_0 — предельная для E. Если не существует хотя бы одного из односторонних пределов $f(x_0 \pm 0)$ в \mathbb{R} , то точка x_0 называется точкой разрыва второго рода.

Теорема 32 (Критерий непрерывности монотонной функции).

Пусть f — монотонная на (a, b) функция. Тогда:

- f не может иметь разрывов второго рода.
- Непрерывность f равносильна тому, что множество ее значений промежуток.

Теорема 33 (Об обратной функции).

Пусть $f \in C(\langle a, b \rangle)$ и строго монотонна,

$$m=\inf_{\langle a,b\rangle}f,\quad M=\sup_{\langle a,b\rangle}f.$$

Справедливы следующие утверждения:

- f: ⟨a, b⟩ → ⟨m, M⟩ биекция.
- 2. f^{-1} строго монотонна и имеет тот же характер монотонности, что и f.
- 3. $f^{-1} \in C(\langle m, M \rangle)$.

6. Равномерная непрерывность

Определение непрерывной функции на множестве (через ε-δ и неравенства, ε-δ-окрестности, окрестности). Определение равномерно непрерывной функции на множестве. Лемма о связи равномерной непрерывности и непрерывности функции. Теорема Кантора.

Определение 43 (Понятие непрерывности функции).

Функция $f:E \to \mathbb{R}$ называется непрерывной в точке $x_0 \in E$, если

$$\forall V(f(x_0)) \exists U(x_0) : \forall x \in U(x_0) \cap E \quad f(x) \in V(f(x_0))$$

или, что то же самое,

$$\forall V(f(x_0)) \exists U(x_0) : f(U(x_0) \cap E) \subset V(f(x_0))$$

Замечание 82.

Естественно, приведенное определение может быть переписано и на языке $\varepsilon - \delta$, и на языке соответствующих окрестностей.

Предполагая, что $E\subset \mathbb{R}$, факт непрерывности функции $f:E\to \mathbb{R}$ в точке x_0 записывается так:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x - x_0| < \delta \ |f(x) - f(x_0)| < \varepsilon.$$

Или так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : \forall x \in U_{\delta}(x_0) \cap E \quad f(x) \in V_{\varepsilon}(f(x_0))$$

Или, наконец, так:

$$\forall V_{\varepsilon}(f(x_0)) \exists U_{\delta}(x_0) : f(U_{\delta}(x_0) \cap E) \subset V_{\varepsilon}(f(x_0))$$

Эквивалентность этих определений проверяется так же, как эквивалентность различных определений предела, и остается в качестве упражнения.

Определение 62 (Понятие равномерной непрерывности).

Пусть $f:E \to \mathbb{R}$. Функция f называется равномерно непрерывной на множестве $D \subset E$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x, x' \in D : \ |x - x'| < \delta \ |f(x) - f(x')| < \varepsilon.$$

Если f равномерно непрерывна на D, то f непрерывна на D.

Теорема 47 (Кантора).

Непрерывная на отрезке функция равномерно непрерывна на этом отрезке.

7. Производная и дифференциал

Определение производной функции, дифференцируемости функции, дифференциала. Теорема о связи производной и дифференцируемости. Лемма о непрерывности дифференцируемой функции. Определение касательной к графику функции. Лемма об уравнении касательной.==Геометрический смысл производной и дифференциала.== Определение вертикальной касательной.

Определение 63 (Понятие производной функции).

Пусть $f : \langle a, b \rangle \rightarrow \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Предел

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 64 (Понятие дифференцируемости функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Функция f называется дифференцируемой в точке x_0 , если существует такое число A, что

$$f(x_0 + h) - f(x_0) = Ah + o(h), h \rightarrow 0.$$

Определение 65 (Понятие дифференциала).

Линейная по h функция Ah в определении дифференцируемости называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$. В итоге,

$$df(x_0)(h) = Ah.$$

Теорема 48 (О связи производной и дифференцируемости).

Функция $f : \langle a, b \rangle \to \mathbb{R}$ дифференцируема в точке $x_0 \in \langle a, b \rangle$ тогда и только тогда, когда она имеет в этой точке конечную производную. В этом случае $A(x_0) = f'(x_0)$.

Лемма 60 (О непрерывности дифференцируемой функции).

Если функция $f: \langle a, b \rangle \to \mathbb{R}$ дифференцируема в точке $x_0 \in \langle a, b \rangle$, то она непрерывна в точке x_0 .

Определение 68.

Пусть $f:\langle a,b\rangle\to\mathbb{R},\ f$ дифференцируема в точке $x_0\in\langle a,b\rangle$. Предельное положение AC секущей AB графика функции y=f(x) в точке x_0 называется касательной к графику функции y=f(x) в точке x_0 .

Лемма 61 (Об уравнении касательной).

Пусть $f:\langle a,b\rangle\to\mathbb{R},\ f$ дифференцируема в точке $x_0\in\langle a,b\rangle.$ Уравнение касательной к графику функции y=f(x) в точке x_0 имеет вид

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Определение 69.

Пусть $f:\langle a,b\rangle\to\mathbb{R}$, f непрерывна в точке $x_0\in\langle a,b\rangle$ и $f'(x_0)=\pm\infty$. Прямая $x=x_0$ называется (вертикальной) касательной к графику функции y=f(x) в точке x_0 .

8.Основные правила дифференцирования (производная суммы, произведения и частного)

Определения производной и дифференциала функции. Теорема о производной и дифференциале суммы, произведения, частного функций.

Определение 63 (Понятие производной функции).

Пусть $f:\langle a,b\rangle \to \mathbb{R},\, x_0,\, x_0+h\in\langle a,b\rangle.$ Предел

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 65 (Понятие дифференциала).

Линейная по h функция Ah в определении дифференцируемости называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$. В итоге,

$$df(x_0)(h) = Ah.$$

Теорема 49 (О производной суммы, произведения и частного).

Пусть $f,g:\langle a,b\rangle \to \mathbb{R}$, дифференцируемы в точке x_0 . Тогда:

1. Их сумма дифференцируема в точке x0 и

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

Их произведение дифференцируемо в точке x₀ и

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

3. Их частное дифференцируемо в точке x_0 при условии, что $g(x_0) \neq 0$, и

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Следствие 16 (О дифференциале суммы, произведения и частного).

В условиях предыдущей теоремы справедливы следующие соотношения:

- 1. $d(f + g)(x_0) = df(x_0) + dg(x_0)$.
- 2. $d(fg)(x_0) = g(x_0)df(x_0) + f(x_0)dg(x_0)$.
- 3. $d\left(\frac{f}{g}\right)(x_0)=\frac{g(x_0)df(x_0)-f(x_0)dg(x_0)}{g^2(x_0)}$, при $g(x_0)\neq 0$.

9.Основные правила дифференцирования (производная композиции функций и обратной функции)

Определения производной и дифференциала функции. Теорема о производной и дифференциале композиции функций. Теорема о производной и дифференциале обратной функции.

Определение 63 (Понятие производной функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Предел

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 65 (Понятие дифференциала).

Линейная по h функция Ah в определении дифференцируемости называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$. В итоге,

$$df(x_0)(h) = Ah.$$

Теорема 50 (О производной композиции).

Пусть $f:\langle a,b\rangle \to \langle c,d\rangle, g:\langle c,d\rangle \to \mathbb{R}, f$ дифференцируема в точке $x_0\in\langle a,b\rangle, g$ дифференцируема в точке $y_0=f(x_0).$ Тогда функция g(f) дифференцируема в точке x_0 и

$$(g(f))'(x_0) = g'(y_0)f'(x_0).$$

Следствие 17 (О дифференциале композиции).

В условиях предыдущей теоремы,

$$d(g(f))(x_0) = dg(y_0)(df(x_0)).$$

Теорема 51 (О производной обратной функции).

Пусть функции $f:\langle a,b\rangle \to \langle c,d\rangle$ и $f^{-1}:\langle c,d\rangle \to \langle a,b\rangle$ — взаимно обратные, причем f непрерывна в точке $x_0\in\langle a,b\rangle$, а f^{-1} непрерывна в точке $y_0=f(x_0)$. Если f дифференцируема в точке x_0 и $f'(x_0)\neq 0$, то f^{-1} дифференцируема в точке y_0 , причем

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$
.

Следствие 18 (О дифференциале обратного отображения).

В условиях предыдущей теоремы,

$$df^{-1}(y_0) = (df(x_0))^{-1}$$
.

10. Французские теоремы (Ферма, Ролля)

Определение возрастания и убывания функции, монотонной функции,

точек локального максимума, минимума и экстремума. Теорема Ферма, геометрический смысл. Теорема Ролля, геометрический смысл.

Определение 37 (Понятия возрастания и убывания функции).

Пусть $f:E \to \mathbb{R}$. Говорят, что функция f возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) \le f(x_2).$$

Говорят, что функция f строго возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) < f(x_2).$$

Говорят, что что функция f убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) \ge f(x_2).$$

Говорят, что функция f строго убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) > f(x_2).$$

Определение 38.

Про возрастающую (строго возрастающую, убывающую, строго убывающую) функцию также говорят, что она монотонна.

Определение 70 (Понятия локального максимума и минимума).

Пусть $f : E \rightarrow \mathbb{R}$.

Точка $x_0 \in E$ называется точкой локального максимума (строгого локального максимума) функции f, если

$$\exists U(x_0) : \forall x \in U(x_0) \cap E \Rightarrow f(x) \leq f(x_0) \quad (f(x) < f(x_0)).$$

Точка $x_0 \in E$ называется точкой локального минимума (строгого локального минимума) функции f, если

$$\exists U(x_0) : \forall x \in U(x_0) \cap E \Rightarrow f(x) \geq f(x_0) \quad (f(x) > f(x_0)).$$

Определение 71 (Понятие точек экстремума).

Точки локального максимума (строго локального максимума) и точки локально-

-156 -

§6. ФРАНЦУЗСКИЕ ТЕОРЕМЫ

го минимума (строгого локального минимума) называются точками экстремума (строгого экстремума).

Теорема 54 (Ферма).

Пусть $f:(a,b)\to \mathbb{R}$ дифференцируема в точке $x_0\in(a,b)$. Если x_0 — точка экстремума, то $f'(x_0)=0$.

Теорема 55 (Ролля).

Пусть $f \in C[a,b]$ и дифференцируема на (a,b), причем f(a) = f(b). Тогда

$$\exists \xi \in (a, b) : f'(\xi) = 0.$$

11. Французские теоремы (Лагранжа)

Определения производной и дифференциала функции. Теорема Лагранжа,

геометрический смысл. Определение возрастания и убывания функции, монотонной функции. Критерий монотонности функции. Критерий постоянства функции.

Определение 63 (Понятие производной функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Предел

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в \mathbb{R} , называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 65 (Понятие дифференциала).

Линейная по h функция Ah в определении дифференцируемости называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$. В итоге,

$$df(x_0)(h) = Ah.$$

Теорема 56 (Лагранжа).

Пусть $f \in C[a,b]$ и дифференцируема на (a,b). Тогда

$$\exists \xi \in (a, b) : f(b) - f(a) = f'(\xi)(b - a).$$

Замечание 135.

Геометрически теорема Лагранжа означает, что на интервале (a,b) существует касательная к графику функции y = f(x), параллельная секущей, проходящей через точки (a, f(a)) и (b, f(b)), см. рисунок 7.

Рис. 7. Теорема Лагранжа

Определение 37 (Понятия возрастания и убывания функции).

Пусть $f: E \to \mathbb{R}$. Говорят, что функция f возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) \le f(x_2).$$

Говорят, что функция f строго возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) < f(x_2).$$

Говорят, что что функция f убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) \ge f(x_2).$$

Говорят, что функция f строго убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) > f(x_2).$$

Определение 38.

Про возрастающую (строго возрастающую, убывающую, строго убывающую) функцию также говорят, что она монотонна.

Теорема 57 (Критерий монотонности функции).

Пусть $f \in C[a, b]$ и дифференцируема на (a, b). Тогда:

- 1. Для того чтобы функция f возрастала (убывала) на [a,b] необходимо и достаточно, чтобы $f'(x) \ge 0$ ($f'(x) \le 0$) на (a,b).
- 2. Для строгого возрастания (строгого убывания) функции на [a, b] достаточно, чтобы f'(x) > 0 (f'(x) < 0) на (a, b).

Теорема 58 (Критерий постоянства функции).

Пусть $f \in C[a,b]$ и дифференцируема на (a,b). Для того чтобы f была постоянной на [a,b] необходимо и достаточно, чтобы f'(x) = 0 на (a,b).

12. Французские теоремы (Коши)

Определения производной и дифференциала функции. Теорема о пределе производной. Теорема Коши, геометрический смысл.

Определение 63 (Понятие производной функции).

Пусть $f : \langle a, b \rangle \rightarrow \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Предел

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 65 (Понятие дифференциала).

Линейная по h функция Ah в определении дифференцируемости называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$. В итоге,

$$df(x_0)(h) = Ah.$$

Теорема 59 (О пределе производной).

Пусть $f \in C[a, b]$ и дифференцируема на (a, b). Если

$$A=\lim_{x\to a+0}f'(x)\in\overline{\mathbb{R}},$$

то
$$f'_{+}(a) = A$$
.

Теорема 60 (Коши).

Пусть $f,g\in C[a,b]$ и дифференцируемы на (a,b). Тогда $\exists \xi\in (a,b)$, что выполняется

$$(f(b) - f(a)) g'(\xi) = (g(b) - g(a)) f'(\xi).$$

Если, кроме того, $g'(x) \neq 0$ на (a, b), то

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$
.

Замечание 139.

Геометрическая интерпретация к теореме Коппи та же, что и к теореме Лагранжа. Пусть $g'(t) \neq 0$ на (a,b). Тогда, и это можно доказать, либо g'(t) > 0 на (a,b), либо g'(t) < 0 на (a,b), а значит система

$$\begin{cases} x = g(t) \\ y = f(t) \end{cases}, t \in [a, b]$$

задает функцию $y = f(g^{-1}(x))$ параметрически. Тогда в выражении

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

слева стоит коэффициент наклона хорды, соединяющей концы графика функции $y = f(g^{-1}(x))$, а справа – коэффициент наклона касательной к графику этой функции в некоторой промежуточной точке ξ (см. теорему 53).

备注 139 柯西定理的几何解释与拉格朗日定理的几何解释相同。 假设(g'(t)\neq 0)在区间((a, b))上成立。那么,可以证明要么(g'(t) > 0)在((a, b))上成立,要么(g'(t) < 0)在((a, b))上成立。因此,系统

[\begin{cases} $x = g(t) \setminus y = f(t) \cdot (ases), \quad (a, b]$]

参数化地定义了函数 ($y = f(g^{-1}(x))$)。在表达式

 $[\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}]$

中,左边是连接函数 ($y = f(g^{-1}(x))$) 图形两端的弦的斜率,而右边是该函数图形在某个中间点 ξ 处的切线的斜率(参见定理 53)。

13. Французские теоремы (Лопиталя)

Определения производной и дифференциала функции. Теорема Лопиталя.

Определение 63 (Понятие производной функции).

Пусть $f : \langle a, b \rangle \rightarrow \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Предел

$$\lim_{h\to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 65 (Понятие дифференциала).

Линейная по h функция Ah в определении дифференцируемости называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$. В итоге,

$$df(x_0)(h) = Ah.$$

Теорема 61 (Правило Лопиталя).

Пусть f, g дифференцируемы на $(a, b), g'(x) \neq 0$ на (a, b) и

$$\lim_{x\to a+0} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}.$$

Тогда в любом из двух случаев:

- 1. $\lim_{x\to a+0} f(x) = \lim_{x\to a+0} g(x) = 0.$
- 2. $\lim_{x\to a+0} |g(x)| = +\infty$.

— 162 —

§ 6. ФРАНЦУЗСКИЕ ТЕОРЕМЫ

выполняется

$$\lim_{x\to a+0} \frac{f(x)}{g(x)} = A.$$

14. Формула Тейлора

Определения производной и дифференциала функции. Определения производной и дифференциала высшего порядка. Определение многочлена Тейлора. Теорема о формуле Тейлора с остатком в форме Пеано. Теорема о единственности многочлена Тейлора. Теорема о характеристике остаточного члена в формуле Тейлора (без доказательства). Следствия об остаточных членах в формах Лагранжа и Коши.

Определение 63 (Понятие производной функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Предел

$$\lim_{h\to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 65 (Понятие дифференциала).

Линейная по h функция Ah в определении дифференцируемости называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$. В итоге,

$$df(x_0)(h) = Ah.$$

Определение 72 (Производная высшего порядка).

Пусть $(n-1)\in\mathbb{N}$ и определена функция $f^{(n-1)}:E_{n-1}\to\mathbb{R}$ — производная (n-1)-ого порядка функции f. Обозначим через E_n множество точек $x\in E_{n-1}$, для которых

$$E_{n-1} \cap (x - \delta, x + \delta)$$

— невырожденный промежуток при некотором $\delta > 0$, и в которых функция $f^{(n-1)}$ дифференцируема. Положим

$$f^{(n)}(x) = (f^{(n-1)})'(x), x \in E_n.$$

Введенная функция называется производной порядка n, или, короче, n-ой производной функции f. При этом функция f называется n раз дифференцируемой на множестве E_n .

Определение 74 (Дифференциал высшего порядка).

Пусть $n\in\mathbb{N},\ n>1,\ f:E\to\mathbb{R}-n$ раз дифференцируемая в точке $x_0\in E$ функция, $h\in\mathbb{R}.$ Величина

$$d^{n}f(x_{0})(h) = d(d^{n-1}f(x)(h))(h),$$

называется n-ым дифференциалом функции f в точке x_0 , соответспвующим прирашению h.

Определение 75 (Понятие многочлена Тейлора).

Пусть функция f имеет в точке x_0 все производные до порядка n включительно. Многочлен

$$P_n(x, x_0) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + ... + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

называется многочленом Тейлора порядка n функции f в точке x_0 . В случае $x_0 = 0$ многочлен Тейлора часто называют многочленом Маклорена.

Теорема 63 (Формула Тейлора с остатком в форме Пеано).

Пусть функция f в точке x_0 имеет производные до порядка n включительно. Тогда справедлива формула Тейлора с остатком в форме Пеано:

$$f(x) = P_n(x, x_0) + o((x - x_0)^n), x \rightarrow x_0.$$

Теорема 64 (О единственности многочлена Тейлора).

Если существует многочлен

$$Q_n(x, x_0) = a_0 + a_1(x - x_0) + ... + a_n(x - x_0)^n$$
,

удовлетворяющий условию

$$f(x) = Q_n(x, x_0) + o((x - x_0)^n), x \rightarrow x_0,$$

то он единственен.

Теорема 65 (О характеристике остаточного члена).

Пусть f непрерывна вместе со своими первыми n производными на отрезке с концами x_0 и x, а во внутренних точках этого отрезка имеет производную порядка (n+1). Тогда для любой функции φ , непрерывной на данном отрезке и имеющей отличную от нуля производную во внутренних точках данного отрезка, найдется точка ξ , лежащая между x_0 и x, такая, что

$$r_n(x, x_0) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(\xi)n!} f^{(n+1)}(\xi)(x - \xi)^n.$$

定理 65 (关于余项特征的定理)。

假设函数 (f) 及其前 (n) 阶导数在端点 (x_0) 和 (x) 之间的区间上连续,并且在该区间的内点具有 ((n+1)) 阶导数。那么,对于任何在该区间上连续且在内点具有非零导数的函数 $((x_0)$ 存在一个介于 (x_0) 和 (x) 之间的点 $((x_0)$,使得

[$r_n(x, x_0) = \frac{(x_0)}{\langle x_i \rangle_n} f^{(n+1)}(\langle x_i \rangle_n)$

这个定理描述了泰勒公式中余项的特征。它表明,余项 (r_n(x, x_0)) 可以通过函数 (\varphi) 和 (f) 的导数在某个中间点 (\xi) 的值来表示。这个结果在分析泰勒展开的误差和近似精度时非常有用。

Следствие 20 (Остаточный член в форме Лагранжа).

Справедливо следующее соотношение для остаточного члена – остаточного члена в форме Лагранжа:

$$r_n(x, x_0) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1},$$

где ξ лежит между x и x_0 .

Следствие 21 (Остаточный член в форме Коши).

Справедливо следующее соотношение для остаточного члена – остаточного члена в форме Коши:

$$r_n(x, x_0) = \frac{f^{(n+1)}(\xi)}{n!}(x - \xi)^n(x - x_0),$$

где ξ лежит между x и x_0 .

15.Исследование функции с помощью производных (монотонность и экстремумы)

Определение возрастания и убывания функции, монотонной функции, точек локального максимума, минимума и экстремума. Теорема о необходимом условии экстремума. Теорема о первом достаточном условии экстремума. Теорема о втором достаточном условии экстремума. Классификация точек экстремума.

Определение 37 (Понятия возрастания и убывания функции).

Пусть $f:E \to \mathbb{R}$. Говорят, что функция f возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) \le f(x_2).$$

Говорят, что функция f строго возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) < f(x_2).$$

Говорят, что что функция f убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) \ge f(x_2).$$

Говорят, что функция f строго убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) > f(x_2).$$

Определение 38.

Про возрастающую (строго возрастающую, убывающую, строго убывающую) функцию также говорят, что она монотонна.

Определение 70 (Понятия локального максимума и минимума).

Пусть $f : E \to \mathbb{R}$.

Точка $x_0 \in E$ называется точкой локального максимума (строгого локального максимума) функции f, если

$$\exists \overset{o}{U}(x_0): \ \forall x \in \overset{o}{U}(x_0) \cap E \ \Rightarrow \ f(x) \leq f(x_0) \quad (f(x) < f(x_0)).$$

Точка $x_0 \in E$ называется точкой локального минимума (строгого локального минимума) функции f, если

$$\exists \overset{\circ}{U}(x_0): \ \forall x \in \overset{\circ}{U}(x_0) \cap E \ \Rightarrow \ f(x) \geq f(x_0) \quad (f(x) > f(x_0)).$$

§ 6. ФРАНЦУЗСКИЕ ТЕОРЕМЫ

го минимума (строгого локального минимума) называются точками экстремума (строгого экстремума).

Теорема 69 (Необходимое условие экстремума).

Пусть $f:(a,b)\to\mathbb{R}$. Если $x_0\in(a,b)$ – точка экстремума, то либо $f'(x_0)=0$, либо f не дифференцируема в x_0 .

Теорема 70 (Первое достаточное условие экстремума).

Пусть $f:U(x_0)\to \mathbb{R}$, непрерывна в точке x_0 и дифференцируема на множествах $U_-(x_0)=\{x\in U(x_0):x< x_0\}$ и $U_+(x_0)=\{x\in U(x_0):x> x_0\}$. Тогда:

1. Если f'(x) > 0 при $x \in U_-(x_0)$ и f'(x) < 0 при $x \in U_+(x_0)$, то x_0 является точкой строгого локального максимума функции f.

-179 -

). ИССЛЕДОВАНИЕ ФУНКЦИИ С ПОМОЩЬЮ ПРОИЗВОДНЫХ

- 2. Если f'(x) < 0 при $x \in U_-(x_0)$ и f'(x) > 0 при $x \in U_+(x_0)$, то x_0 является точкой строгого локального минимума функции f.
- 3. Если f'(x) > 0 при $x \in U_-(x_0)$ и f'(x) > 0 при $x \in U_+(x_0)$, то x_0 не является точкой экстремума функции f.
- 4. Если f'(x) < 0 при $x \in U_-(x_0)$ и f'(x) < 0 при $x \in U_+(x_0)$, то x_0 не является точкой экстремума функции f.

Теорема 71 (Второе достаточное условие экстремума).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$, $x_0 \in (a, b)$ и f имеет в точке x_0 производные до порядка $n \in \mathbb{N}$ включительно, причем $f'(x_0) = \ldots = f^{(n-1)}(x_0) = 0$, а $f^{(n)}(x_0) \neq 0$. Тогда:

- Если п нечетно, то точка x₀ не точка экстремума.
- 2. Если n четно, то точка x_0 точка строгого локального минимума, если $f^{(n)}(x_0) > 0$, и точка строгого локального максимума, если $f^{(n)}(x_0) < 0$.

Определение 77 (Классификация точек экстремума).

Пусть $f : (a, b) \to \mathbb{R}$ и $x_0 \in (a, b)$ – точка экстремума f.

- 1. Если f дифференцируема в x_0 , то экстремум называется гладким.
- 2. Если $f'(x_0-0)=+\infty$, $f'(x_0+0)=-\infty$, или $f'(x_0-0)=-\infty$, $f'(x_0+0)=+\infty$, то экстремум называется острым.
- 3. Если существуют (в $\overline{\mathbb{R}}$) $f'(x_0 \pm 0)$ и хотя бы одна из односторонних производных конечна, но $f'(x_0 - 0) \neq f'(x_0 + 0)$, то экстремум называется угловым.

16.Исследование функции с помощью производных (выпуклость и точки перегиба – 1)

Определение выпуклой функции. Критерий выпуклости в терминах наклона

хорд. Определения производной и дифференциала функции. Критерий выпуклости дифференцируемой функции. Определение точки перегиба.

Определение 78 (Понятие выпуклой функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$. Если $\forall x_1, x_2 \in \langle a, b \rangle, \lambda \in (0, 1)$, выполняется

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2),$$

то f называется выпуклой вниз (вверх) на (a, b).

Если $\forall x_1, x_2 \in (a, b), x_1 \neq x_2, \lambda \in (0, 1),$ выполняется

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

то f называется строго выпуклой вниз (верх).

关于弦斜率的凸性准则

Теорема 72 (Критерий выпуклости в терминах наклона хорд).

Функция $f:\langle a,b\rangle \to \mathbb{R}$ выпукла вниз (вверх) на $\langle a,b\rangle$ тогда и только тогда, когда для любых $x,x_1,x_2\in \langle a,b\rangle$, что $x_1< x< x_2$, выполняется

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}.$$

При этом f строго выпукла вниз (вверх) тогда и только тогда, когда

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$$
.

Определение 63 (Понятие производной функции).

Пусть $f : \langle a, b \rangle \rightarrow \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Предел

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 65 (Понятие дифференциала).

Линейная по h функция Ah в определении дифференцируемости называется дифференциалом функции f в точке x_0 и обозначается $df(x_0)$. В итоге,

$$df(x_0)(h) = Ah.$$

Теорема 73 (Критерий выпуклости дифференцируемой функции).

Пусть $f:\langle a,b\rangle \to \mathbb{R},\, f\in C(\langle a,b\rangle)$ и дифференцируема на (a,b). Тогда:

- 1. f выпукла вниз (вверх) на (a,b) тогда и только тогда, когда f' возрастает (убывает) на (a,b).
- 2. f строго выпукла вниз (вверх) на (a, b) тогда и только тогда, когда f' строго возрастает (убывает) на (a, b).

拐点的概念

Определение 79 (Понятие точки перегиба).

Пусть $f: \langle a, b \rangle \rightarrow \mathbb{R}, x_0 \in (a, b)$, причем

- 1. Существует $\delta > 0$, что на промежутках $(x_0 \delta, x_0]$, $[x_0, x_0 + \delta)$ функция f имеет разный характер выпуклости.
- f'(x₀) ∈ ℝ.

Тогда x_0 называется точкой перегиба f.

17.Исследование функции с помощью производных (выпуклость и точки перегиба – 2)

Определение выпуклой функции. Критерий выпуклости дважды дифференцируемой функции. Теорема о характеристике выпуклости в терминах касательных. Определение точки перегиба.

Определение 78 (Понятие выпуклой функции). Пусть $f:\langle a,b\rangle \to \mathbb{R}$. Если $\forall x_1,x_2 \in \langle a,b\rangle,\ \lambda \in (0,1),$ выполняется $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2),$ то f называется выпуклой вниз (вверх) на $\langle a,b\rangle$. Если $\forall x_1,x_2 \in \langle a,b\rangle,\ x_1 \neq x_2,\ \lambda \in (0,1),$ выполняется $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$ то f называется строго выпуклой вниз (верх).

二阶可微函数的凸性准则

Теорема 74 (Критерий выпуклости дважды дифференцируемой функции).

Пусть $f:\langle a,b\rangle \to \mathbb{R},\, f\in C(\langle a,b\rangle)$ и дважды дифференцируема на (a,b). Тогда:

- 1. f выпукла вниз (вверх) на (a,b) тогда и только тогда, когда $f''(x) \ge 0$ на (a,b) $(f''(x) \le 0$ на (a,b)).
- 2. Если f''(x) > 0 на (a,b) (f''(x) < 0 на (a,b)), то f строго выпукла вниз (вверх).

Теорема 75 (Характеристика выпуклости в терминах касательных).

Пусть f дифференцируема на $\langle a, b \rangle$. Тогда:

1. f выпукла вниз (вверх) на $\langle a,b \rangle$ тогда и только тогда, когда все точки графика функции f лежат не ниже (не выше) касательной, проведенной в произвольной точке промежутка $\langle a,b \rangle$, то есть

$$f(x) \underset{<}{\geq} f(x_0) + f'(x_0)(x-x_0) \quad \forall x, x_0 \in \langle a,b \rangle.$$

2. f строго выпукла вниз (вверх) на $\langle a,b \rangle$ тогда и только тогда, когда все точки графика функции f, за исключением точки касания, лежат выше (ниже) касательной, проведенной в произвольной точке промежутка $\langle a,b \rangle$, то есть

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0), \quad x, x_0 \in \langle a, b \rangle, \quad x \ne x_0.$$

拐点的概念

Определение 79 (Понятие точки перегиба).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0 \in (a, b)$, причем

- 1. Существует $\delta > 0$, что на промежутках $(x_0 \delta, x_0]$, $[x_0, x_0 + \delta)$ функция f имеет разный характер выпуклости.
- f'(x₀) ∈ \(\overline{\mathbb{R}} \).

Тогда x_0 называется точкой перегиба f.

18. Исследование функции с помощью производных (асимптоты)

Определение асимптоты, виды асимптот. Теорема о формулах для

коэффициентов наклонной асимптоты. Лемма о связи выпуклости и асимптоты.

Определение 80 (Понятие асимптоты).

Прямая l называется асимптотой графика функции f, если расстояние от точки (x, f(x)), лежащей на графике, до прямой l стремится к нулю при удалении точки (x, f(x)) на бесконечность от начала координат.

Определение 81 (Понятие вертикальной асимптоты).

Прямая $x=x_0$ называется вертикальной асимптотой графика функции f, если выполнено хотя бы одно из (четырех) условий:

$$\lim_{x\to x_0\pm 0} f(x) = +\infty, \quad \lim_{x\to x_0\pm 0} f(x) = -\infty$$

Определение 82 (Понятие наклонной асимптоты).

Прямая g(x)=kx+b называется наклонной асимптотой графика функции f при $x\to\pm\infty$, если

$$\lim_{x \to +\infty} (f(x) - (kx + b)) = 0.$$

В случае, если k=0, прямая g(x)=b часто называется горизонтальной асимптотой.

Теорема 76 (Формулы для коэффициентов наклонной асимптоты).

Для того чтобы прямая $g(x)=k_{\pm\infty}x+b_{\pm\infty}$ была асимптотой графика функции f при $x\to\pm\infty$, необходимо и достаточно, чтобы существовали два конечных предела

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = k_{\pm \infty},$$

- 190 -

§ 10. ИССЛЕДОВАНИЕ ФУНКЦИИ С ПОМОЩЬЮ ПРОИЗВОДНЫ

$$\lim_{x \to +\infty} (f(x) - kx) = b_{\pm \infty}.$$

Лемма 65 (Выпуклость и асимптота).

Пусть $f:(x_0,+\infty)\to\mathbb{R}$ имеет асимптоту g(x)=kx+b при $x\to+\infty$ и выпукла вниз (строго выпукла вниз) на $(x_0,+\infty)$. Тогда $f(x)\geq g(x)$ при $x>x_0$ (f(x)>g(x) при $x>x_0$).