Àlgebra Lineal M1 - FIB

Continguts:

- 5. Matrius, sistemes i determinants
- 6. Espais vectorials
- 7. Aplicacions lineals
- 8. Diagonalització

Anna de Mier Montserrat Maureso

Dept. Matemàtiques Setembre 2022

5. Matrius, sistemes i determinants

5.1 Matrius: operacions bàsiques i matrius escalonades

Repàs de l'àlgebra de matrius

Els escalars

Per un \cos d'escalars \mathbb{K} entendrem un conjunt de nombres amb dues operacions (suma i producte) tals que

- es satisfan les propietats habituals (commutativa, associativa, distributiva, elements neutres)
- són invertibles (podem *restar* i *dividir*)

Exemples: $\mathbb{R}, \mathbb{Q}, \mathbb{Z}_p, \mathbb{C}$

Matrius

Siguin $m, n \ge 1$ enters. Una matriu de tipus $m \times n$ amb elements al cos \mathbb{K} consisteix en mn elements de \mathbb{K} arranjats en una taula de m files i n columnes

Denotarem per a_{ij} l'element que es troba a la fila i, columna j Una matriu genèrica la representem així:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Farem servir també la notació $A = (a_{ij})_{m \times n}$ El conjunt de totes les matrius $m \times n$ el denotarem per $\mathcal{M}_{m \times n}(\mathbb{K})$

Tipus de matrius

- ightharpoonup Una matriu de tipus 1 imes n s'anomena matriu fila
- ightharpoonup Una matriu de tipus m imes 1 s'anomena matriu columna
- La matriu nul·la $O_{m,n}$ (o simplement O) és la matriu tipus $m \times n$ on tots els elements són iguals a 0
- ▶ Una matriu de tipus $n \times n$ s'anomena quadrada. El conjunt de totes les matrius quadrades $n \times n$ amb elements a \mathbb{K} es denota per $\mathcal{M}_n(\mathbb{K})$. Una matriu quadrada $(a_{ij})_{n \times n}$ és
 - triangular superior si $a_{ij} = 0$ per tot i > j
 - triangular inferior si $a_{ij} = 0$ per tot i < j
 - diagonal si és triangular superior i inferior simultàniament
- La matriu $\operatorname{Diag}(\lambda_1, \dots, \lambda_n)$ és la matriu diagonal $(d_{ij})_{n \times n}$ amb $d_{ii} = \lambda_i$ per tot i
- La matriu identitat I_n és la matriu diagonal $\mathrm{Diag}(1,1,\ldots,1)$

Suma de matrius

Siguin
$$A,B\in\mathcal{M}_{m imes n}(\mathbb{K})$$
 amb $A=(a_{ij})$ i $B=(b_{ij})$

La seva **suma** és la matriu $A+B=(c_{ij})\in\mathcal{M}_{m\times n}(\mathbb{K})$ definida per

$$c_{ij} = a_{ij} + b_{ij}$$

Propietats

Si $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$, es compleix:

- (Associativa) (A + B) + C = A + (B + C)
- (Commutativa) A + B = B + A
- (Element neutre) A + O = O + A = A
- ► (Element oposat) Existeix una matriu B tal que

$$A + B = B + A = O$$

(a aquesta B l'anomenem -A)

Producte per escalars

Siguin $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ amb $A = (a_{ij})$ i $\lambda \in \mathbb{K}$ un escalar

El producte d'A per l'escalar λ és la matriu $\lambda A = (b_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{K})$ definida per

$$b_{ij} = \lambda a_{ij}$$

Propietats

Si $\lambda, \mu \in \mathbb{K}$ i $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$, es compleix:

- (Pseudoassociativa) $\lambda(\mu A) = (\lambda \mu)A$
- (Distributiva 1) $\lambda(A + B) = \lambda A + \lambda B$
- (Distributiva 2) $(\lambda + \mu)A = \lambda A + \mu A$
- (Identitat) 1A = A

Fixem-nos que (-1)A = -A

Transposició

Sigui
$$A=(a_{ij})_{m\times n}\in\mathcal{M}_{m\times n}(\mathbb{K})$$

La seva **transposada** és la matriu $A^t = (b_{ij})_{n \times m} \in \mathcal{M}(\mathbb{K})_{n \times m}$ definida per $b_{ij} = a_{ji}$

Clarament $(A^t)^t = A$

Una matriu quadrada A és

simètrica si $A^t = A$ antisimètrica si $A^t = -A$

Producte de matrius

Siguin
$$A=(a_{ij})_{m imes n}\in\mathcal{M}_{m imes n}(\mathbb{K})$$
 i $B=(b_{ij})_{n imes p}\in\mathcal{M}_{n imes p}(\mathbb{K})$

El seu **producte** és la matriu $AB=(c_{ij})_{m\times p}\in\mathcal{M}_{m\times p}(\mathbb{K})$ amb

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

Observacions

- ► El producte de dues matrius qualssevol no té per què estar definit
- ► *AB* pot estar definit però *BA* no
- ▶ Encara que AB i BA estiguin definits, en general $AB \neq BA$
- ▶ El producte és una operació interna dins de $\mathcal{M}_n(\mathbb{K})$

Propietats del producte de matrius

Si A, B, C són matrius i les operacions següents estan definides, es compleix:

- (Associativa)(AB)C = A(BC)
- ► (Distributives) A(B+C) = AB + AC i (A+B)C = AC + BC
- (Element unitat) IA = A = AI, on I és la matriu identitat del tipus que convingui
- ightharpoonup (Relació amb la transposada) $(AB)^t = B^t A^t$

Si $A \in \mathcal{M}_n(\mathbb{K})$, denotarem per A^k el producte $AA \cdots A$ (és a dir, $A^2 = AA$, $A^3 = AAA$, etc.)

Matriu inversa

Siguin $A, B \in \mathcal{M}_n(\mathbb{K})$. Diem que B és la matriu inversa d'A si

$$AB = BA = I_n$$

Si això es compleix diem que A és **invertible** i denotem per A^{-1} la matriu inversa

Observacions

- Si existeix la inversa, és única
- No tota matriu té inversa
- Les matrius invertibles no tenen files ni columnes nul·les

Propietats de la matriu inversa

Si A i B són matrius invertibles del mateix tipus i λ és un escalar no nul, es compleix:

- ▶ la matriu A^{-1} és invertible i $(A^{-1})^{-1} = A$
- ▶ la matriu A^k és invertible i $(A^k)^{-1} = (A^{-1})^k$
- ▶ la matriu λA és invertible i $(\lambda A)^{-1} = (\lambda)^{-1}A^{-1}$
- ▶ la matriu A^t és invertible i $(A^t)^{-1} = (A^{-1})^t$
- el producte AB és invertible i $(AB)^{-1} = B^{-1}A^{-1}$

Transformacions elementals i matrius escalonades

Transformacions elementals

Sigui $A \in \mathcal{M}_{m \times n}(\mathbb{K})$

Una transformació elemental per files d'A consisteix en una de les tres operacions següents:

- (I) intercanviar dues files d'A
- (II) multiplicar una fila d'A per un escalar no nul
- (III) sumar a una fila d'A el resultat de multiplicar una altra fila per un escalar no nul

Una matriu és **elemental (per files)** si es pot obtenir a partir d'una matriu identitat mitjançant una única transformació elemental per files

Matrius equivalents

Teorema

Sigui T una transformació elemental i sigui $M \in \mathcal{M}_{m \times n}(\mathbb{K})$. El resultat d'aplicar la transformació T a la matriu M és EM, on E és la matriu elemental resultant d'aplicar T a la identitat I_m

Una matriu B és **equivalent** (per files) a una matriu A si B es pot obtenir a partir d'A fent una seqüència finita de transformacions elementals

Per tant, si B és equivalent a A podem escriure

$$B = E_r E_{r-1} \cdots E_2 E_1 A$$
,

on les E_i són matrius elementals

Matrius escalonades

Una matriu és escalonada (per files) si

- si una fila és nul·la (composta enterament per zeros), totes les que estan per sota d'ella també son nul·les
- en cada fila no nul·la, el primer element no nul és un 1 (anomenat l'*1 dominant* o el *pivot* de la fila)
- el pivot d'una fila sempre es troba més a la dreta que el pivot de la fila anterior

Teorema

Tota matriu és equivalent a una matriu escalonada per files

El rang d'una matriu A és el nombre de files no nul·les de qualsevol matriu escalonada equivalent a A

Aplicació al càlcul de la inversa (I)

Lema

Si E és una matriu elemental, aleshores E és invertible i la seva inversa E^{-1} també és una matriu elemental

Comprovació:

- (I) Si B és una matriu elemental corresponent a una transformació de tipus (I) (intercanvi files i i j), tenim BB = I
- (II) Si C_{λ} és la matriu elemental corresponent a una transformació de tipus (II) (multiplicar una fila per $\lambda \neq 0$), tenim $C_{\lambda}C_{\lambda^{-1}} = I = C_{\lambda^{-1}}C_{\lambda}$
- (II) Si D_k és la matriu elemental corresponent a una transformació de tipus (III) (sumar a la fila i la fila j multiplicada per k), tenim $D_k D_{-k} = I = D_{-k} D_k$

Aplicació al càlcul de la inversa (II)

Teorema

Siguin $A \in \mathcal{M}_n(\mathbb{K})$ i M una matriu escalonada equivalent a A. Aleshores A és invertible si i només si tots els elements de la diagonal de M són iguals a 1

Corol·lari

Siguin $A \in \mathcal{M}_n(\mathbb{K})$, aleshores A és invertible si i només si el rang d'A és n

Mètode de Gauss-Jordan per al càlcul de la inversa

Sigui
$$A \in \mathcal{M}_n(\mathbb{K})$$

La demostració del teorema anterior implica que

si
$$I_n = E_r \cdots E_2 E_1 A$$
, aleshores $A^{-1} = E_r \cdots E_2 E_1$

Donada A, podem seguir els passos següents per trobar A^{-1} , si existeix:

- ightharpoonup Comencem amb la matriu $(A|I_n)$
- Apliquem transformacions elementals a $(A|I_n)$, amb l'objectiu d'arribar a $(I_n|B)$
- ▶ Si ho aconseguim, $A^{-1} = B$
- ► Altrament, A no és invertible

5. Matrius, sistemes i determinants5.2 Sistemes d'equacions lineals

Sistemes d'equacions lineals

Una **equació lineal** en les variables x_1, \ldots, x_n és una expressió del tipus

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b,$$

on a_1, \ldots, a_n, b pertanyen al cos d'escalars \mathbb{K}

Una **solució** és $(s_1, \ldots, s_n) \in \mathbb{K}^n$ tal que

$$a_1s_1 + a_2s_2 + \cdots + a_ns_n = b$$

(Obs. Una equació lineal pot tenir entre zero i infinites solucions)

Sistemes d'equacions lineals

Un **sistema d'equacions lineals** és un conjunt d'equacions lineals (totes amb les mateixes variables x_1, \ldots, x_n)

La forma genèrica d'un sistema d'equacions lineals seria doncs:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots &\vdots &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

Una **solució del sistema** és una n-upla $(s_1, \ldots, s_n) \in \mathbb{K}^n$ que és solució de totes les equacions del sistema

Solucions d'un sistema

Direm que un sistema és

- incompatible si no té cap solució
- compatible determinat si té una única solució
- compatible indeterminat si té més d'una solució

La **solució general** d'un sistema és el conjunt de totes les seves solucions

Dos sistemes són equivalents si tenen la mateixa solució general

Sistemes equivalents

Dos sistemes amb les mateixes equacions però ordenades de manera diferent són equivalents

I si en un sistema

- multipliquem una equació per un escalar (no nul), o bé
- a una equació li sumem un múltiple d'una altra

el sistema resultant és equivalent al primer

Matriu associada a un sistema

Donat el sistema

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

la seva matriu associada i les matrius de variables i de termes independents són

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Podem escriure el sistema com un producte de matrius:

$$Ax = b$$

Matriu ampliada

La matriu ampliada és la matriu (A|b), és a dir,

$$(A|b) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Obs. Si es realitzen transformacions elementals a la matriu ampliada d'un sistema, el sistema resultant és equivalent al primer

Per tant, tot sistema d'equacions lineals és equivalent a un en què la matriu ampliada és escalonada

Sistemes escalonats compatibles

Un sistema escalonat genèric compatible seria

$$\begin{cases} x_1 + c_{12}x_2 + c_{13}x_3 + \dots + c_{1r}x_r + \dots + c_{1n}x_n &= d_1 \\ x_2 + c_{23}x_3 + \dots + c_{2r}x_r + \dots + c_{2n}x_n &= d_2 \\ & \vdots & \vdots \\ x_r + \dots + c_{rn}x_n &= d_r \end{cases}$$
(si cal reordenem les variables)

Les variables x_1, \ldots, x_r les anomenarem principals i la resta les anomenarem lliures

Podem resoldre el sistema aïllant "cap amunt"

La variable principal x_r la podem aïllar en termes de les variables lliures:

$$x_r = d_r - c_{r,r+1}x_{r+1} - \cdots - c_{rn}x_n$$

Ara podem aïllar x_{r-1} en termes de x_r i de les variables lliures, etc

Solució general d'un sistema escalonat

En un sistema escalonat podem expressar totes les variables principals en termes de les lliures (i de constants escalars):

$$x_1 = f_1 + e_{1,r+1}x_{r+1} + \cdots + e_{1,n}x_n$$

 $x_2 = f_2 + e_{2,r+1}x_{r+1} + \cdots + e_{2,n}x_n$
 \vdots \vdots
 $x_r = f_r + e_{r,r+1}x_{r+1} + \cdots + e_{r,n}x_n$

Aquesta és la solució general del sistema

Obs. Per a cada assignació de valors que donem a les variables lliures x_{r+1}, \ldots, x_n obtindrem una solució particular del sistema

Diem que el sistema té n-r graus de llibertat

Forma paramètrica de la solució general

Si la solució general d'un sistema és

$$x_1 = f_1 + e_{1,r+1}x_{r+1} + \cdots + e_{1,n}x_n$$

 $x_2 = f_2 + e_{2,r+1}x_{r+1} + \cdots + e_{2,n}x_n$
 \vdots \vdots
 $x_r = f_r + e_{r,r+1}x_{r+1} + \cdots + e_{r,n}x_n$

anomenarem forma paramètrica de la solució a l'expressió

$$\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{r} \\ x_{r+1} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{r} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + x_{r+1} \begin{pmatrix} e_{1,r+1} \\ e_{2,r+1} \\ \vdots \\ e_{r,r+1} \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + x_{n} \begin{pmatrix} e_{1,n} \\ e_{2,n} \\ \vdots \\ e_{r,n} \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Discussió de sistemes: el teorema de Rouché-Frobenius

Teorema

Considerem un sistema d'equacions lineals que té matriu associada $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ i matriu ampliada (A|b)

Sigui r el rang d'A i sigui r' el rang de (A|b)

Aleshores,

- ightharpoonup si r < r', el sistema és incompatible (SI)
- ightharpoonup si r=r'=n, el sistema és compatible determinat (SCD)
- ▶ si r = r' < n, el sistema és compatible indeterminat (SCI) amb n r graus de llibertat

Anomenarem rang d'un sistema lineal compatible al rang de la matriu associada

Sistemes homogenis

Un sistema d'equacions lineals és **homogeni** si tots els termes independents són iguals a 0

Obs. Un sistema homogeni sempre és compatible (ja que tenim la solució trivial $x_1 = \cdots = x_n = 0$)

Corol·lari

Sigui A la matriu associada a un sistema homogeni en n variables; sigui r el rang d'A. Aleshores

- ightharpoonup si r=n, el sistema és compatible determinat i l'única solució és la trivial
- ightharpoonup si r < n, el sistema és compatible indeterminat i té alguna solució diferent de la trivial

Resolució de sistemes: eliminació gaussiana

Per trobar la solució general d'un sistema d'equacions lineals qualsevol fem el següent:

- 1. Cerquem la matriu ampliada (A|b)
- 2. Cerquem la matriu escalonada M equivalent a (A|b)
- 3. Apliquem el teorema de Rouché-Frobenius per determinar si el sistema és compatible
- 4. Cas que el sistema sigui compatible, trobem la solució general a partir del sistema equivalent amb matriu ampliada M

5. Matrius, sistemes i determinants5.3 Determinants

Definició de determinant

Sigui $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. Un **menor d'**A és qualsevol matriu formada a partir d'A eliminant un cert nombre de files i el mateix nombre de columnes

El menor associat a l'element a_{ij} és la matriu A_{ij} obtinguda en eliminar la fila i i la columna j de la matriu A.

El menor A_{ij} és una matriu quadrada de tipus (n-1) imes (n-1)

El determinant d'A es defineix recursivament com

- si n=1, aleshores $det(A)=a_{11}$
- si $n \ge 2$, aleshores

$$\det(A) = a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + \dots + (-1)^{1+j} a_{1j} \det(A_{1j}) + \dots + (-1)^{n+1} a_{1n} \det(A_{1n})$$

L'adjunt de l'element a_{ij} és $(-1)^{i+j} \det(A_{ij})$

Càlcul de determinants

(Enlloc de det(A), a vegades escriurem |A|)

▶ Matrius 2×2 i 3×3 :

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \det((d)) - b \det((c)) = ad - bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$

$$= aei + cdh + bfg - ceg - afh - bdi$$

Es demostren per inducció:

Si A té una fila o una columna nul·la llavors $\det(A) = 0$ Si $A = Diag(a_1, a_2, ..., a_n)$, llavors $\det(A) = a_1 a_2 ... a_n$

Teorema

Siguin $A \in \mathcal{M}_n(\mathbb{K})$ i $i, j \in [n]$. Aleshores

$$\det(A) = \sum_{k=1}^{n} a_{ik} (-1)^{i+k} \det(A_{ik})$$

(Càlcul del determinant desenvolupant per la fila i)

$$\det(A) = \sum_{k=1}^{n} a_{kj} (-1)^{k+j} \det(A_{kj})$$

(Càlcul del determinant desenvolupant per la columna j)

Determinants i transformacions elementals

Siguin $A, B \in \mathcal{M}_n(\mathbb{K})$. Si B és la matriu que s'obté d'A

- ▶ intercanviant dues files, aleshores det(B) = det(A) (transformació tipus (I))
- multiplicant la fila *i*-èsima d'A per λ , aleshores $det(B) = \lambda det(A)$ (transformació tipus (II))
- riangleright sumant-li a una fila un múltiple d'una altra, aleshores det(B) = det(A) (transformació tipus (III))

Corol·lari

Si M s'obté a partir d'A fent transformacions elementals,

$$\det(M) = K \det(A), \quad \text{on } K \neq 0$$

Per tant, si A i M són matrius equivalents aleshores,

$$\det(A) \neq 0 \Leftrightarrow \det(M) \neq 0$$

Caracterització de matrius invertibles

Teorema

Una matriu $A \in \mathcal{M}_n(\mathbb{K})$ és invertible si i només si $\det(A) \neq 0$

Corol·lari

Una matriu $A \in \mathcal{M}_n(\mathbb{K})$ té rang n si i només si $\det(A) \neq 0$

Teorema

Sigui $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. El rang d'A és r si i només si el més gran menor d'A amb determinant no nul és $r \times r$

Determinants i operacions amb matrius

Si $A, B \in \mathcal{M}_n(\mathbb{K})$, aleshores

- det(AB) = det(A) det(B)
- $ightharpoonup \det(A^t) = \det(A)$
- ▶ si A és invertible, $det(A^{-1}) = det(A)^{-1}$

Però en general, $det(A + B) \neq det(A) + det(B)$

6. Espais vectorials

\mathbb{R}^n i les seves operacions

$$\mathbb{R}^{n} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} : x_{i} \in \mathbb{R}, \ 1 \leq i \leq n \right\}$$

Siguin
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 i $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$ elements de \mathbb{R}^n i $\lambda \in \mathbb{R}$

Suma a \mathbb{R}^n :

Producte per escalars a \mathbb{R}^n :

$$x + y = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \qquad \lambda x = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}$$

(És a dir, les dues operacions són "component a component")

Propietats

La suma a \mathbb{R}^n satisfà les propietats següents:

- s1) (associativa) x + (y + z) = (x + y) + z
- s2) (commutativa) x + y = y + x
- s3) (element neutre) x + 0 = x on 0 = (0, 0, ..., 0)
- s4) (element oposats) per tot x existeix x' tal que x + x' = 0

El producte per escalars a \mathbb{R}^n satisfà:

p1)
$$\lambda(\mu x) = (\lambda \mu)x$$

p2)
$$\lambda(x+y) = \lambda x + \lambda y$$

p3)
$$(\lambda + \mu)x = \lambda x + \mu x$$

p4)
$$1x = x$$

(Totes les propietats són certes perquè ho són a \mathbb{R} i les operacions són component a component)

6.2 Espais vectorials

Un **espai vectorial sobre un cos** K consisteix en

- 1. un conjunt no buit *E*
- 2. una operació interna $E \times E \rightarrow E$ (suma +) i
- 3. una aplicació $\mathbb{K} \times E \rightarrow E$ (producte per escalars ·)

de manera que per a tot $u, v, w \in E$ i tot $\lambda, \mu \in \mathbb{K}$ es satisfà:

- e1) (associativa) u + (v + w) = (u + v) + w
- e2) (commutativa) u + v = v + u
- e3) (element neutre) existeix un únic element $\mathbf{0}_E \in E$ tal que $u + \mathbf{0}_F = u$
- e4) (element oposat) per cada $u \in E$ existeix un únic $u' \in E$ tal que $u + u' = \mathbf{0}_E$
- e5) $\lambda(\mu u) = (\lambda \mu)u$
- e6) $\lambda(u+v) = \lambda u + \lambda v$
- e7) $(\lambda + \mu)u = \lambda u + \mu u$
- e8) 1u = u, on 1 és el neutre del producte de \mathbb{K}

Alguns exemples d'espais vectorials

- $ightharpoonup \mathbb{R}^n$
- \mathbb{Z}_2^n : cadenes de *n* bits La suma és bit a bit: p. ex.,

$$(0,1,1,0)+(1,1,1,0)=(1,0,0,0)$$

Producte per escalars: $0u = \mathbf{0}_{\mathbb{Z}_2^n}$ i 1u = u

- $ightharpoonup \mathcal{M}_{m \times n}(\mathbb{K})$ (les matrius $m \times n$ amb entrades en el cos \mathbb{K})
- Les matrius de $\mathcal{M}_n(\mathbb{R})$ que són triangulars superiors
- $ightharpoonup \mathcal{P}(\mathbb{R})$: el conjunt dels polinomis amb coeficients a \mathbb{R}
- $ightharpoonup \mathcal{P}_d(\mathbb{R})$: els polinomis de grau com a molt d i coeficients a \mathbb{R}
- ightharpoonup L'espai vectorial trivial format per un únic element: $\{{f 0}_E\}$
- Les solucions d'un sistema d'equacions lineals homogeni

Propietats

Si ν pertany a l'espai vectorial E i λ és un escalar, es satisfà:

- $0v = 0_E$
- $\lambda \mathbf{0}_F = \mathbf{0}_F$
- ▶ Si $\lambda v = \mathbf{0}_E$, aleshores $\lambda = 0$ o $v = \mathbf{0}_E$
- L'element oposat de v és (-1)v; normalment escriurem -v

6.3 Subespais vectorials i combinacions lineals

Un subconjunt $S \subseteq E$ és un subespai vectorial (SEV) si compleix

- (s1) $S \neq \emptyset$
- (s2) per tot $u, v \in S$, $u + v \in S$
- (s3) per tot $u \in S$ i tot $\lambda \in \mathbb{K}$, $\lambda u \in S$

El vector $\mathbf{0}_E$ pertany a tots els subespais vectorials

Alguns exemples de subespais espais vectorials

- $ightharpoonup \mathcal{P}_d(\mathbb{R})$ és un subespai vectorial de l'espai de polinomis $\mathcal{P}(\mathbb{R})$
- Les matrius triangulars superiors de $\mathcal{M}_n(\mathbb{R})$ formen un SEV de $\mathcal{M}_n(\mathbb{R})$
- Les solucions d'un sistema d'equacions lineals homogeni amb n variables i coeficients a $\mathbb R$ és un SEV de $\mathbb R^n$

Intersecció de subespais

Lema Si S i S' són subespais vectorials d'E, aleshores $S \cap S'$ també ho és

La unió de subespais vectorials no és normalment un subespai vectorial, com és el cas per exemple de $S = \{(x, x) : x \in \mathbb{R}\}$ i $S' = \{(x, -x) : x \in \mathbb{R}\}$ $((1, 1) + (2, -2) \notin S \cup S')$

Combinació lineal

Donats u_1, \ldots, u_k vectors d'E, una **combinació lineal de** u_1, \ldots, u_k és una expressió del tipus

$$\lambda_1 u_1 + \cdots + \lambda_k u_k$$

on $\lambda_1, \ldots, \lambda_k$ són escalars

El vector v és combinació lineal de u_1, \ldots, u_k si existeixen escalars $\alpha_1, \ldots, \alpha_k$ tals que

$$\mathbf{v} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k$$

Subespai generat

Siguin u_1, \ldots, u_k vectors d'E. El **subespai generat** per u_1, \ldots, u_k és el conjunt

$$\langle u_1,\ldots,u_k\rangle=\{\lambda_1u_1+\lambda_2u_2+\cdots+\lambda_ku_k:\lambda_1,\ldots,\lambda_k\in\mathbb{K}\},$$

és a dir, el conjunt de totes les combinacions lineals de u_1, \ldots, u_k

Proposició

El subespai generat $\langle u_1, \ldots, u_k \rangle$ és, com el seu nom indica, un subespai vectorial. A més, és el subespai més petit que conté u_1, \ldots, u_k

Si un espai S el podem escriure com $S = \langle u_1, \ldots, u_\ell \rangle$, direm que $\{u_1, \ldots, u_\ell\}$ és un **conjunt de generadors** de S. El conjunt de generadors d'un espai no és únic

Observem que v és combinació lineal de u_1, \ldots, u_k si i només si $v \in \langle u_1, \ldots, u_k \rangle$

Exemples de subespais generats

- $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}$ $= \langle (1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 1) \rangle$
- L'espai de les matrius $\mathcal{M}_{m \times n}(\mathbb{K})$ està generat per les matrius M_{ij} que tenen totes les entrades iguals a 0, excepte la de la posició i, j, que és igual a 1, $1 \le i \le n$ i $1 \le j \le m$ Per exemple, $\mathcal{M}_2(\mathbb{R}) = \langle M_{11}, M_{12}, M_{21}, M_{22} \rangle$, on

$$M_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, M_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, M_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, M_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- Si volguéssim generar les matrius triangulars superiors, agafaríem de les matrius M_{ij} anteriors només les que tenen $i \leq j$
- Subespai donant els vectors en funció de paràmetres

$$\{a + (b - a)x + (c - b)x^2 + (a - c)x^3 : a, b, c \in \mathbb{R}\}$$

$$= \{a(1 - x + x^3) + b(x - x^2) + c(x^2 - x^3) : a, b, c \in \mathbb{R}\}$$

$$= \langle 1 - x + x^3, x - x^2, x^2 - x^3 \rangle$$

6.4 Independència lineal

Siguin $u_1, \ldots, u_k \in E$. L'equació

$$\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_k u_k = \mathbf{0}_E$$

sempre té la solució $\lambda_1 = \cdots = \lambda_k = 0$.

Si aquesta és l'única solució direm que els vectors u_1, \ldots, u_k són **linealment independents** (LI)

Si hi ha alguna solució amb un $\lambda_i \neq 0$, direm que els vectors són **linealment dependents** (LD)

(També direm que el conjunt $\{u_1, \ldots, u_k\}$ és LI o LD, resp.)

Exemples:

- ightharpoonup El vector $\mathbf{0}_E$ és linealment dependent
- ▶ Donat un vector $u \neq \mathbf{0}_E$, el vector u és linealment independent
- ▶ Si u és un vector qualsevol i λ és un escalar, $\{u, \lambda u\}$ és LD

Per determinar si un conjunt de vectors u_1, u_2, \ldots, u_k de \mathbb{R}^n són linealment independents seguim els passos següents:

- (1) formem una matriu A amb els vectors donats, posant-los per columnes
- (2) calculem el rang r d'A
- (3) \blacktriangleright si r = k, aleshores els k vectors són LI
 - ▶ si r < k, aleshores són LD; si hem calculat el rang escalonant la matriu A, aleshores els vectors que corresponen a les columnes on hi ha els uns dominants són un subconjunt LI el més gran possible; si hem calculat el rang per menors, els vectors que corresponent a les columnes del menor d'A més gran amb determinant no nul són un subconjunt LI el més gran possible

En general, per determinar si un conjunt de vectors u_1, u_2, \ldots, u_k d'un \mathbb{K} -espai vectorial E són linealment independents seguim els passos següents:

(1) a partir de l'equació vectorial

$$\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_k u_k = \mathbf{0}_E$$

obtenim un sistema homogeni amb incògnites $\lambda_1, \lambda_2, \ldots, \lambda_k$

- (2) discutim el sistema, si és
 - ightharpoonup compatible determinat els vectors u_1, u_2, \ldots, u_k són LI
 - ightharpoonup compatible indeterminat els vectors u_1, u_2, \ldots, u_k són LD

Propietats

Sigui $S = \{u_1, \dots, u_k\}$ un conjunt de vectors d'un \mathbb{K} -espai vectorial E

- ▶ Si $\mathbf{0}_E$ és a S, llavors u_1, \ldots, u_k són LD
- ▶ Si u_1, \ldots, u_k són LI, llavors $\mathbf{0}_E$ no és a S
- ightharpoonup Si u_1, \ldots, u_k són LI, tot subconjunt de S és LI
- ightharpoonup Si u_1, \ldots, u_k són LD, tot conjunt que conté S és LD

Teorema

Si u_1, \ldots, u_k són LD i u_1 és combinació lineal dels altres vectors de S, aleshores

$$\langle u_1, u_2, \ldots, u_k \rangle = \langle u_2, \ldots, u_k \rangle$$

Caracteritzacions

Teorema

Un conjunt de vectors S és LD si, i només si, hi ha un vector v a S que és combinació lineal de la resta de vectors de S

Corol·lari

```
Sigui v \in E. Si u_1, \ldots, u_k són LI, aleshores v, u_1, \ldots, u_k són LI si, i només si, v \notin \langle u_1, \ldots, u_k \rangle
```

6.5 Bases i dimensió

Sigui E un \mathbb{K} -espai vectorial. Un conjunt de vectors

$$B = \{b_1, b_2, \dots, b_n\}$$
 és una **base d'**E si

- (b1) B és linealment independent
- (b2) $E = \langle b_1, b_2, \dots, b_n \rangle$, és a dir, b_1, b_2, \dots, b_n generen E

La base canònica

- de \mathbb{K}^n és $\{(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)\}$
- ▶ de $\mathcal{M}_{m \times n}(\mathbb{K})$ és la formada per les mn matrius M_{ij} que tenen totes les entrades nul·les excepte la i, j, que és igual a 1
- ▶ de $\mathbb{K}_d[x]$ és $\{1, x, x^2, \dots, x^d\}$ (també a $\{x^d, x^{d-1}, \dots, 1\}$ li direm base canònica, caldrà especificar quina usem)

Sigui $B = \{b_1, \ldots, b_n\}$ una base d'E

Proposició

Tot vector d'E s'escriu de manera única com a combinació lineal dels vectors de B

Sigui $v \in E$. Si $v = \alpha_1 b_1 + \cdots + \alpha_n b_n$, diem que

$$\mathbf{v_B} = (\alpha_1, \dots, \alpha_n)$$

és el **vector de coordenades** de v en la base B

Proposició

Sigui $\{u_1, \ldots, u_k\}$ un conjunt de vectors d'E que són LI. Aleshores k < n

Corol·lari

Tota base d'E té n elements

Dimensió

Al cardinal de les bases d'un espai vectorial E (o d'un SEV) l'anomenem la dimensió de l'espai, denotada dim(E)

- Les dimensions dels espais amb els que treballem habitualment són: $\dim(\mathbb{K}^n) = n$, $\dim(\mathcal{M}_{m \times n}(\mathbb{K})) = nm$, i $\dim(\mathcal{P}_d(\mathbb{K})) = d+1$
- ▶ La dimensió del subespai $\{\mathbf{0}_E\}$ és 0
- La dimensió del subespai $\langle u_1, \ldots, u_k \rangle$ donat per generadors és el nombre màxim de vectors LI entre $\{u_1, \ldots, u_k\}$ (que és igual al rang de la matriu que té per columnes les coordenades de u_1, \ldots, u_k)
- La dimensió d'un subespai donat com a solució d'un sistema d'equacions homogeni és el nombre de graus de llibertat del sistema

Suposem que la dimensió d'E és n i sigui $W = \{w_1, \ldots, w_n\}$ un subconjunt d'E

- ▶ si W és un conjunt LI, aleshores W és una base d'E
- ightharpoonup si W genera E, aleshores W és una base d'E

Si S és un subespai d'E aleshores

- $ightharpoonup dim(S) \leq dim(E)$
- ightharpoonup si dim(S) = dim(E), S = E

Canvi de base

Siguin $B = \{b_1, \dots, b_n\}$ i $B' = \{b'_1, \dots, b'_n\}$ dues bases d'un \mathbb{K} -espai vectorial E. Sigui u un vector d'E Veiem com es relacionen els vectors de coordenades u_B i $u_{B'}$

Anomenem matriu del canvi de la base B a la base B' a la matriu que té per columnes els vectors de coordenades $(b_1)_{B'}, \ldots, (b_n)_{B'}$. La denotem per $\mathbf{P}_{B'}^{\mathbf{B}}$

$$P_{B'}^{B} = \begin{pmatrix} \vdots & \vdots & & \vdots \\ (b_{1})_{B'} & (b_{2})_{B'} & \dots & (b_{n})_{B'} \\ \vdots & \vdots & & \vdots \end{pmatrix}$$

Aleshores

- $u_{B'} = P_{B'}^B u_B$, expressant els vectors de coordenades en columna
- $P_B^{B'} = (P_{B'}^B)^{-1}$

7. Aplicacions Lineals

7.1 Definicions, exemples i propietats

Siguin E i F dos \mathbb{K} -espais vectorials. Una aplicació $f: E \to F$ és **lineal** si satisfà:

- (a1) per tot $u, v \in E$, f(u + v) = f(u) + f(v)
- (a2) per tot $u \in E$ i tot $\lambda \in \mathbb{K}$, $f(\lambda u) = \lambda f(u)$

Si E = F, direm que f és un **endomorfisme**

Exemples

- ▶ Aplicació trivial. $f: E \to F$ on $f(u) = 0_F$, $u \in E$, és lineal
- ▶ Aplicació identitat. $I_E : E \to E$ on $I_E(u) = u$, $u \in E$, és lineal
- L'aplicació següent no és lineal

$$f: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}_2[x], \quad f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = x^2 - (a+d)x + (2c-b)$$

L'aplicació $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^2y^2, x+y)$ no és lineal

Propietats

Sigui $f: E \rightarrow F$ una aplicació lineal. Aleshores

- $ightharpoonup f(0_E) = 0_F$
- ightharpoonup f(-u) = -f(u), per a tot $u \in E$
- ightharpoonup si S és un subespai d'E, f(S) és un subespai d'F
- ightharpoonup si S' és un subespai d'F, $f^{-1}(S')$ és un subespai d'E

Proposició

Sigui $B = \{b_1, \dots, b_n\}$ una base d'E. Aleshores f està unívocament determinada per $f(b_1), \dots, f(b_n)$

És a dir, a partir de la imatge d'una base podem obtenir la imatge de qualsevol vector d' \boldsymbol{E} :

si
$$u = \alpha_1 b_1 + \cdots + \alpha_n b_n$$
, aleshores $f(u) = \alpha_1 f(b_1) + \cdots + \alpha_n f(b_n)$

Corol·lari

Si $S = \langle v_1, \dots, v_k \rangle$ és un subespai d'E, aleshores

$$f(S) = \langle f(v_1), \dots, f(v_k) \rangle$$

Siguin $B = \{b_1, \dots, b_n\}$ una base d'E, W una base de F i m la dimensió de F

La matriu associada a f en les bases B i W és la matriu que té per columnes les imatges dels vectors de la base B expressades en coordenades en la base W. La denotem per $M_W^B(f)$

$$M_W^B(f) = egin{pmatrix} \vdots & \vdots & \vdots & \vdots \ f(b_1)_W & f(b_2)_W & \dots & f(b_n)_W \ \vdots & \vdots & \vdots \end{pmatrix} \in \mathcal{M}_{m \times n}(\mathbb{K})$$

Per trobar el vector de coordenades de la imatge d'un vector $u \in E$ n'hi ha prou en fer el següent producte matricial:

$$f(u)_W = M_W^B(f)u_B,$$

posant els vectors de coordenades en columna

7.2 Nucli i imatge

Sigui $f: E \rightarrow F$ una aplicació lineal

El **nucli** d'f és

$$Ker(f) = \{ u \in E : f(u) = 0_F \}$$

La **imatge** d'f és

$$Im(f) = \{ v \in F : v = f(u) \text{ per algun } u \in E \} = \{ f(u) : u \in E \}$$

Proposició

Ker(f) i Im(f) són subespais vectorials d'E i F, respectivament

Càlcul efectiu del nucli i de la imatge

Siguin $B = \{b_1, \ldots, b_n\}$ i $W = \{w_1, \ldots, w_m\}$ bases d'E i F, resp., i sigui $M = M_W^B(f)$ la matriu associada a f en aquestes bases

Nucli: treballant amb coordenades, els vectors del nucli són les solucions del sistema homogeni de *m* equacions i *n* incògnites

$$M\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

La dimensió del nucli és n - rang(M)

Imatge: $Im(f) = \langle f(b_1), \dots, f(b_n) \rangle$ La dimensió de la imatge és el rang de MConsiderant una matriu escalonada equivalent a M, les columnes on hi ha els pivots corresponen a les columnes de Mque són vectors LI, i per tant formen una base de la imatge Sigui $f: E \rightarrow F$ una aplicació lineal i M una matriu associada a f

Teorema

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f))$$

Les aplicacions lineals bijectives s'anomenen isomorfismes

Caracterització del tipus d'aplicació

- ▶ f és injectiva \Leftrightarrow Ker $(f) = \{0_E\} \Leftrightarrow \text{rang}(M) = \text{dim}(E)$
- ▶ f és exhaustiva $\Leftrightarrow \dim(\operatorname{Im}(f)) = \dim(F) \Leftrightarrow \operatorname{rang}(M) = \dim(F)$
- ▶ f és un isomorfisme \Leftrightarrow rang(M) = dim(E) = dim(F)
- Si E i F tenen la mateixa dimensió, llavors f és un isomorfisme $\Leftrightarrow f$ és injectiva $\Leftrightarrow f$ és exhaustiva

7.3 Composició d'aplicacions lineals

Proposició

Si $f: E \to F$ i $g: F \to G$ són aplicacions lineals, l'aplicació composició $g \circ f: E \to G$ també és lineal

Proposició

Si $f: E \to F$ és un isomorfisme, $f^{-1}: F \to E$ també ho és

Si les bases d'E, F i G són B, W i V respectivament, tenim:

$$M_V^B(g \circ f) = M_V^W(g)M_W^B(f)$$

$$M_B^W(f^{-1}) = (M_W^B(f))^{-1}$$

7.4 Canvi de base

Veiem com es relacionen dues matrius associades a una mateixa aplicació lineal fixant bases diferents a l'espai de sortida i/o a l'espai d'arribada.

Siguin $f: E \to F$ una aplicació lineal, B i B' bases d'E, i W i W' bases d'F

$$E_{B} \xrightarrow{f} F_{W}$$

$$I_{E} \uparrow P_{B}^{B'} \qquad P_{W'}^{W} \downarrow I_{F}$$

$$E_{B'} \xrightarrow{f} F_{W'}$$

$$F_{W'}(f)$$

$$f = I_{F} \circ f \circ I_{E}$$

$$M_{W'}^{B'}(f) = P_{W'}^{W} M_{W}^{B}(f) P_{B}^{B'}$$

8. Diagonalització

El problema de la diagonalització

Sigui $f: E \to E$ un endomorfisme. Hi ha alguna base B d'E en què la matriu $M_B(f)$ sigui senzilla? Més concretament, diagonal?

Def

Un endomorfisme $f: E \to E$ és **diagonalitzable** si existeix alguna base B d'E tal que $M_B(f)$ sigui diagonal.

Obs. Suposem que la matriu $M_B(f)$ no és diagonal, però sabem que l'endomorfisme f diagonalitza en una altra base B'. Aleshores la matriu

$$(P_B^{B'})^{-1}M_B(f)P_B^{B'}$$

és diagonal.

Per tant, ser diagonalitzable és equivalent a que existeixi una matriu P invertible tal que $P^{-1}M_B(f)P$ sigui diagonal.

Valors i vectors propis

Def

L'escalar λ és un **valor propi** de l'endomorfisme f si existeix algun vector $v \neq \mathbf{0}_E$ tal que $f(v) = \lambda v$.

Tots els vectors $v \neq \mathbf{0}_E$ que compleixen $f(v) = \lambda v$ s'anomenen vectors propis de valor propi λ .

Teorema

L'endomorfisme $f: E \to E$ diagonalitza si i només si hi ha alguna base d'E formada per vectors propis.

Càlcul dels valors propis

Sigui M la matriu associada a $f: E \rightarrow E$ en una base B

Def

El **polinomi característic** de l'endomorfisme f és

$$p_f(x) = \det(M - xI_n)$$

Teorema

Els valors propis d'f són les arrels del polinomi característic

La multiplicitat algebraica d'un valor propi λ és la multiplicitat de λ com a arrel de $p_f(x)$ i es denota m_{λ}

L'equació $p_f(x) = 0$ s'anomena equació característica

Teorema

El polinomi característic no depèn de la base en la que calculem la matriu associada M

Espais de vectors propis

Sigui ara λ un valor propi de l'endomorfisme $f: E \to E$ L'**espai propi** del valor propi λ és el conjunt

$$E_{\lambda} = \{ u \in E : f(u) - \lambda u = 0_E \}$$

Propietats

- $ightharpoonup E_{\lambda}$ és un subespai vectorial d'E
- ▶ $1 \leq \dim(E_{\lambda}) \leq m_{\lambda}$

La dimensió d' E_{λ} s'anomena **multiplicitat geomètrica** de λ

Caracterització dels endomorfismes diagonalitzables

Sigui $f: E \rightarrow E$ un endomorfisme d'un espai vectorial E de dimensió n.

Teorema

L'endomorfisme f és diagonalitzable si i només si té n valors propis (comptant multiplicitats) i per a cada valor propi les multiplicitats algebraica i geomètrica coincideixen.

Corol·lari

Si f té n valors propis diferents, aleshores és diagonalitzable.

Algorisme de diagonalització

Per a decidir si l'endomorfisme $f: E \to E$ és diagonalitzable, podem seguir els passos següents:

- (1) Trobem la matriu associada a f en una base qualsevol i calculem el polinomi característic $p_f(x)$.
- (2) Trobem els valors propis i les seves multiplicitats resolent $p_f(x) = 0$.
- (3) Si les multiplicitats dels valors propis sumen menys de dim(E), l'endomorfisme no diagonalitza. Altrament anem a (4).
- (4) Per a cada valor propi λ , trobem l'espai propi E_{λ} i la seva dimensió dim (E_{λ}) .
- (5) Si per a tot λ es compleix $m_{\lambda} = \dim(E_{\lambda})$, l'endomorfisme diagonalitza. Altrament no diagonalitza.

Si l'endomorfisme diagonalitza, per trobar una base en què diagonalitzi només cal prendre la unió de les bases dels espais E_{λ} .