

Electricity Load & Price Forecasting for the Australian Market

David Willingham @mathworks.com.au

The Need for Accurate Load & Price Forecasts

- Utilities
- System Operators
- Generators
- Power Marketers

Case Study: Short-term Load Forecaster

Goal:

 Implement a tool for easy and accurate computation of dayahead system load forecast

Requirements:

- Accurate predictive model
- Automated Report

Challenges in Implementing a Load & Price Forecasting System

Traditional Approaches

Off-the-shelf software

Third-party consulting

In-house development with traditional languages

Case Study: Short-term Load Forecaster

Goal:

 Implement a tool for easy and accurate computation of dayahead system load forecast

Requirements:

- Accurate predictive model
- Automated Report

Model Architecture

Step 1: Access Historical Data

Step 2: Select & Calibrate Model

Step 3: Run Model Live

Model Development Workflow

Automate

Step 1: Access Historical Data

Step 2: Select & Calibrate Model

Step 1: Access Historical Data

- Temperature data from BOM (Bureau of Meteorology)
- Load and Price (RRP) data from AEMO

Step 2: Select & Calibrate Model

Step 1: Access Historical Data

- Temperature data from BOM (Bureau of Meteorology)
- Load and Price (RRP) data from AEMO

Step 2: Select & Calibrate Model

Step 1: Access Historical Data

- Temperature data from BOM (Bureau of Meteorology)
- Load and Price (RRP) data from AEMO

Step 2: Select & Calibrate Model

- Leverage numerous built-in functions
- Focus on modeling not programming
- Capture as-you-go and automate the process

Step 1: Access Historical Data

- Temperature data from BOM (Bureau of Meteorology)
- Load and Price (RRP) data from AEMO

Step 2: Select & Calibrate Model

- Leverage numerous built-in functions
- Focus on modeling not programming
- Capture as-you-go and automate the process

Step 1: Access Historical Data

- Temperature data from BOM (Bureau of Meteorology)
- Load and Price (RRP) data from AEMO

Step 2: Select & Calibrate Model

- Leverage numerous built-in functions
- Focus on modeling not programming
- Capture as-you-go and automate the process

Step 3: Published Report

Point-and-click publishing

Forecasting Electricity Loads

Forecasting Electricity Prices

Other considerations:

Pre Processing Data

Batch importing Cleaning

Deployment

Stand Alone Application Excel Add In Java, .NET

MATLAB Solutions

Traditional Approaches	Challenges
Off-the-shelf software	Inability to customize
Third-party consulting	Lack of transparency
In-house development with traditional languages	Long development time

MATLAB Solutions

Challenges	Solutions
Inability to customize	 Flexible modeling Complete development environment Libraries of customizable functions
Lack of transparency	 White-box modeling Viewable-source functions Interactive debugging
Long development time	 Quick prototyping Focus on modeling not programming Point-and-click deployment

Additional Resources

Recorded webinars:

- Energy Load & Price Forecasting (US Version)
- Energy Trading & Risk Management
- and other recorded webinars, at <u>mathworks.com.au/events</u>

User stories:

- Horizon Wind Energy Develops Revenue Forecasting and Risk Analysis
 Tools for Wind Farms
- GAS NATURAL FENOSA Predicts Energy Supply and Demand Using MathWorks Tools
- and others, at http://mathworks.com/energy-production

Questions?

My Email: david.willingham@mathworks.com.au