智能型气体检测模组 硫化氢传感器

JXM-H2S

威海精讯畅通电子科技有限公司

Weihai JXCT Electronics Co., Ltd.

产品概述

JXM 系列是智能型气体检测模组,模组内置高精度电化学传感器,通过专利电路将气体浓度信号输出为客户需要的数字信号。

传感器内部带有高精度放大、去噪声处理、温度补偿处理,同时出厂前每个传感器都经过标准气体标定处理,保证客户拿到手的传感器模组直接输出可用和准确的气体浓度信息。

产品特点

- 专利可变增益放大电路,高灵敏度、高分辨率
- 出厂已标定,无需二次标定,直接使用
- 体积小,易安装,本安设计
- 支持包括数字量和模拟量在内的多种接口

技术指标

JXM-H2S
硫化氢(H2S)
0-100ppm (默认)
0-1000ppm (可选)
0.1ppm
电化学
$T_{90} \leq 15s$
≤读数的±3%(25℃)
5V ± 2%
TTL、模拟电压
1年
-20~50°C 15%~90%RH Atm±10%
高: 24.5mm (±0.25mm) 材质:
铝合金 重量: 10g
CO、CO2、SO2、NO2、CH4 等
≤0.2W

应用环境

广泛应用于各类型便携式、固定式气体探测器,以及各种气体检测的场合和设备。

引脚定义

V 1 /4 1 /	•	
序号	定义	描述
1	VO	模拟电压输出(默认为
		0.4-2V, 0-3.3V 可调)
2	VCC	供电引脚, +5V
3	GND	地引脚

图 1: 模组结构图(顶视和侧视图)

精讯畅通®

4	RXD	串口 RX (3.3V 电平)
5	TXD	串口 TX (3.3V 电平)

通信参数

参数	内容
波特率	9600
数据位	8 位
奇偶校验位	无
停止位	1 位

模组有两种工作方式,分别为主动上报式和被动应答式,默认工作模式为**主动上报模式**,在主动上报模式下设备会以间隔 1S 发送一次当前的浓度值。设备可以通过指令修改为问答式,问答式状态下只有向设备发指令询问,设备才会恢复当前浓度值。

通讯命令

主动上报模式-07

	接受 (RX)									
起始位	地址 命令字 分辨率位 传感器浓度								校验和	
0xFF	0x01	0X07	0x01	高 字	低字节	0	0	0	0x3A	
				节						

其中分辨率代表小数点位数: 如下表所示

分辨率位	分辨率系数
0x00	1
0x01	0.1
0x02	0.01
0x03	0.001

其中气体浓度值=(气体浓度高位*256+气体浓度低位)*分辨率系数。

例如读出的通讯字节为 FF 07 01 01 35 00 00 00 3D

其中气体浓度值读出来为 0x01 0x35, 转换为 10 进制为 1 和 53; 分辨率位位 0x01, 查表分辨率系数位 0.1,则计算:

气体浓度=(1*256+53)*0.1=30.9 PPM

修改传感器通讯模式-03

发送 (TX)								
起始位	地址	命令字	通讯模式					校验和
0xFF	0x01	0x03	0x01	0	0	0	0	0x04

实例发送: FF 01 03 01 00 00 00 04 可以切换为主动上报模式

发送: FF 01 03 02 00 00 00 00 05 可以切换为问询模式

其中通讯模式 0x01 代表主动上报, 0x02 代表问询式。

接受 (RX)									
起始位 地址 命令字 状态 校验									校验和
0xFF	0x01	0x03	成功: 1	0	0	0	0	0	0x03
			失败: 0						0x02

返回 FF 01 03 01 00 00 00 00 00 03 代表设置成功。

主动读取传感器数值-07

发送 (TX)									
起始位	地址	命令字						校验和	
0xFF	0x01	0x07	0	0	0	0	0	0x07	

实例发送: FF 01 07 00 00 00 00 00 07 获取一次数值

	接受 (RX)									
起始位	地址 命令字 分辨率位 传感器浓度								校验和	
0xFF	0x01	0x07	0x01	高 字	低字节	0	0	0	0x3A	
				节						

例如读出的通讯字节为 FF 01 07 01 01 35 00 00 00 3D

代表气体浓度=(1*256+53)*0.1=30.9 PPM

(具体含义见前文)

使用注意事项

- 1、禁止插拔模组上的传感器,错误的使用方式会造成不可逆损坏。
- 2、禁止直接焊接模组的插针,可对插针的管座进行焊接。
- 3、模组避免接触有机溶剂(包括硅胶及其它胶粘剂)、涂料、药剂、油类。
- 4、切勿通过超量程高浓度气体,会造成不可以损坏。
- 4、模组不可经受过度的撞击或震动。
- 5、模组初次上电使用需预热 5 分钟以上。
- 6、请勿将该模组应用于涉及人身安全的系统中。
- 7、请勿将模组安装在强空气对流环境下使用。