

Projekt: MSS54 Modul: LA

Seite 1 von 11

Projekt: MSS54

Modul: Lambdaregelung

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Projekt: MSS54 Modul: LA

Seite 2 von 11

x.2 Lambdaregelbereitschaft

x.2.1 Lambdasondenbereitschaft

Es werden beide Lambdasonden getrennt auf ihre Regelbereitschaft hin überprüft.

Es gibt vier Sondenzustände:

- Sonde aus (kalt oder defekt)

- Sondeneinschaltüberwachung

- Sonde ein (betriebsbereit)

- Sondenausschaltüberwachung

In den Zustand **Sonde aus** kommt man nach dem Reset und von dem Zustand Sondenausschaltüberwachung, wenn man für die Zeit K_LA_T_AUS in dem Zustand Sondenausschaltüberwachnung war.

In den Zustand **Sondeneinschaltüberwachung** kommt man, wenn die Sondenspannug größer als K_LA_USF oder kleiner als K_LA_USM ist.

In den Zustand **Sonde ein** kommt man, wenn man für die Zeit K_LA_T_EIN in dem Zustand Sondeneinschaltüberwachung war.

In den Zustand **Sondenausschaltüberwachung** kommt man, wenn die Sondenspannung innerhalb der Grenzen K LA USM und K LA USF ist.

x.2.2 Einschaltbedingungen

x.2.2.1 <u>Motortemperaturbedingung</u>

Die Motortemperaturbedingung ist erfüllt wenn gilt:

Im Leerlauf: tmot > K_LA_TMOT_LL

Kein Leerlauf: tmot > K_LA_TMOT

mit Hysterese K_LA_TMOT_HYS

x.2.2.2 Sondenbereitschaft

Die Sondenbereitschaft ist erfüllt, wenn die Sonde in dem Zustand Sonde ein oder Sondenausschaltüberwachung ist.

x.2.2.3 Applikationsfreigabe und DS2-Abschaltung

Durch die Konstante K_LA_FREIGABE (Bit1 für Regler 1 und Bit2 für Regler 2) wird der Regler freigegeben.

Über die DS2-Schnittstelle kann der Lambdaregler abgeschaltet werden (siehe Diagnose).

x.2.3 Ausschaltbedingungen

x.2.3.1 Ausblendung

Der Lambdaregler wird abgeschaltet, wenn ein oder mehrere Zylinder abgeschalten sind. Dabei wird zwischen den beiden Abgassträngen differenziert, d. h. es wird nur der Regelkreis abgeschaltet bei dem Zylinder ausbeblendet wurden. Eine Ausblendung kann erfolgen bei: Drehzahlbegrenzung, harter Geschwindigkeitsbegrenzung, ASC-Eingriff, ASG-Eingriff, Schubabschaltung, defektem Zündkanal u.s.w.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Seite 3 von 11

Projekt: MSS54 Modul: LA

x.2.3.2 Lastschwelle

Der Lambdaregler wird abgeschaltet, wenn die Last länger als K_LA_T_TL über einer Schwelle ist.

Diese Lastschwelle wird aus der Kennlinie KL LA N über Drehzahl entnommen.

x.2.3.3 Betriebszustand !MOTOR LÄUFT oder B_VMAX_WEICH

Wenn man nicht in dem Betriebszustand MOTOR LÄUFT ist oder wenn die weicher VMAX-Begrenzung wirkt, wird der Lambdaregler abgeschaltet.

x.2.3.4 Bei Klopfschutzanfettung

Der Lambdaregler wird abgeschaltet, wenn der Klopfschutzfaktor ti_f_klops größer als 1,0 ist.

x.2.3.5 Vollast und Drehzahlschwelle oder bei zu kleiner Einspritzzeit

Der Lambdaregler wird abgeschaltet, wenn die Drehzahl größer als K_LA_N_VL ist und der Betriebszustand VOLLAST herscht.

Im Schubbetrieb aber noch nicht bei B_SA kann die Einspritzzeit so klein werden, daß die Einspritzventile nicht mehr richtig öffnen. Der Regler würde dann versuchen anzufetten und in die Begrenzung laufen. Um das zu verhindern wird der Regler abgeschaltet, wenn ein tix < K_LA_TI_MIN ist

x.2.3.6 Sekundärluftpumpe

Wenn die Sekundärluftpumpe aktiv ist oder die SLP über die DS-Schnittstelle angesteuert ist, wird der Lambdaregler abgeschaltet.

x.2.3.7 Leerlaufsteller defekt

Bei defektem Leerlaufsteller wird im Betriebszustand "Leerlauf" der Lambdaregler ebenfalls abgeschaltet.

x.2.3.8 Bei BA oder Momenteneingriff

Bei Beschleinigungsanreicherung oder bei einem Momenteneingriff wird der Lambdaregler abgeschaltet, wenn

- der Faktor ba_f_ti > K_LA_BA_OFF_POS
- der Faktor ba_f_ti < K_LA_BA_OFF_NEG
- der Faktor ti_f_smg_x > 1,0
- der Faktor ti f asc x > 1.0

x.2.3.9 Sondenfehler

Der Lambdaregler 1 bzw. 2 wird ausgeschaltet, wenn ein Sondenfehler der jeweiligen Bank vorliegt.

x.2.3.10 Aktive Diagnose des Sekundärluftsystems

Der Lambdaregler 1 bzw. 2 wird ausgeschaltet, wenn das Sekundärluftsystem aktiv diagnostiziert wird.

x.2.3.11 Frischluftzufuhr im Abgasstrang

Wenn der Abgasstrang Frischluft bekommt wird der Lambdaregler abgeschaltet. Dies kann passieren, wenn

- die SLP-Endstufe einen Fehler hat
- das SLP-System einen Fehler aufweist
- die SLP-Ventil-Endstufe einen Fehler hat
- das TE-System einen Fehler aufweist
- die TE-Endstufe einen Fehler hat

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Projekt: MSS54 Modul: LA

Seite 4 von 11

x.2.3.12 Nachkathsonde Kurzschluß nach UB

Wenn die Nachkathsonde einen Kurzschluß nach UB hat, wird der Lambdaregler abgeschaltet.

x.2.3.13 EVT, ZAS und Bremsen

Beim Betriebsart ZAS wird der Regelkreis abgeschaltet für den Fall daß sämtliche Zylinder des Regelkreises ausgeblendet sind, sonst nicht. Beim Betriebsart Bremsen werden beide Regelkreise abgeschaltet.

x.3 Lambdasondenspannungsaufbereitung

Die Lambdasondenspannung wird dem Sensoramplifier LMxxxx um den Faktor 4,5 verstärkt und von dem A/D Wandler gewandelt Die Sondenspannung berechnet sich damit wie folgt:

Die Formel im Prozessor lautet:

K_LA_US_M Steigung in mv/1024digit K_LA_US_NP Nullpunktoffsetverschiebung in mV Beide Werte sind applizierbar.

x.4 Lambdasondenheizung

Das Lambdasondenheizrelais wird immer ausgeschaltet, wenn man nicht in dem Betriebszustand MOTOR LÄUFT ist.

In dem Betriebszustand MOTOR LÄUFT wird das Lambdasondenheizrelais verzögert nach Startende eingeschalten. Die Verzögerungszeit wird aus der Kennlinie KL_LAH_T_EIN über Motortemperatur beim verlassen des Betriebszustandes START errechnet.

In dem Betriebszustand MOTOR LÄUFT wird das Lambdasondenheizrelais ausgeschaltet, wenn die Last größer als eine Schwelle ist. Diese Schwelle wird aus der Kennlinie KL_LAH_N_AUS über die Drehzahl ermittelt. Wenn die Last wieder unter diese Schwelle mit der Hysterese K_LAH_HYS_AUS fällt, wird die Heizung wieder eingeschaltet.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Projekt: MSS54 Modul: LA

Seite 5 von 11

x.5 Lambdaregler

Es gibt je eine Lambdasonde für 3 Zylinder und damit auch je einen Lambdaregler für 3 Zylinder.

Zylinder 1,2 und 3 werden von Lambdaregler1 geregelt. Zylinder 4,5 und 6 werden von dem Lambdaregler 2 geregelt.

Bei dem Lambdaregler handelt es sich um einen Zweipunktregler des Typs PITV, dies ist ein PI-Regler mit einer einseitigen Verzögerungszeit. Eine "positive" Verzögerungszeit bewirkt eine Fettverschiebung und eine "negative" Verzögerungszeit bewirkt eine Magerverschiebung. Alle drei Reglerparameter(KP,KI,TV) sind in Kennfeldern über Last und Drehzahl abgelegt.

Das Zweipunktverhalten kommt von der Lambdasonde, die eine Sprungsonde ist und deshalb nur das Vorzeichen der Regeldifferenz ausgewertet werden kann.

Deshalb entsteht auch eine Schwingung der Stellgröße f_la_regler mit einer Amplitude die von dem Proportionalanteil la_kp, der Integratorsteigung la_ki und der Regelstrekkentotzeit bestimmt werden.

Da die Totzeit last- und drehzahlabhängig ist (Einspritzen, Ansaugen, Verbrennen, Ausstoßen, Gaslaufzeit zur Sonde, Ansprechzeit der Sonde) müßen auch die Reglerparameter gas- und drehzahlabhängig sein.

Damit bei verschiedenen Betriebspunkten eine einseitige Lambdaverschiebung realisiert werden kann, wird die Umschaltung des Reglers um die Zeit tv verzögert. Der Vorteil dieser Methode gegenüber einem unsymetrischen P-Sprung ist, daß man größer Lambdaverschiebung bei gleicher Regleramplitude ereichen kann.

Die Reglerformel lautet:

$$f_{ax} = 1,0 + f_{akp} + f_{aki}$$

mit: f_la_kp = sgn * la_kp

 $f_{a_ki} = f_{a_ki} + (sgn * la_ki)$

la_kp ist der Ausgangswert des Kennfeldes KF_LA_KP la_ki ist der Ausgangswert des Kennfeldes KF_LA_KI

sgn = -1, wenn die Sondenspannung us $>= K_LA_UREF$ d. h. die Abgase sind fett

sgn = +1, wenn die Sondenspannung us < K_LA_UREF d. h. die Abgase sind mager.

Bei Fettverschiebung:

Wenn ein Sprung der Sondenspannung von mager nach fett auftritt, wird der Integrator für die Zeit tv gestoppt. Sollte die Sondenspannung wieder nach mager springen und die Zeit tv ist noch nicht abgelaufen, so wird der Integrator wieder gestartet und weiter aufintegriert, bis die Sondenspannung wieder nach fett springt. Nun läuft die Zeit tv weiter.

Nach Ablauf dieser Zeit erfolgt ein Sprung der Stellgröße f_lax um den Wert

f_la_kp = (-1) * la_kp und der Integrator integriert ab f_la_ki = f_la_ki + (-1) * la_ki .

Wenn nun die Sondenspannung von mager nach fett springt, erfolgt wieder ein Sprung der Stellgröße um den Wert $f_{a_k} = (+1) * la_k$ und der Integrator integriert auf $f_{a_k} = f_{a_k} + (+1) * la_k$.

Die Magerverschiebung läuft analog wie die Fettverschiebung ab.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Projekt: MSS54 Modul: LA

Seite 6 von 11

x.6 Lambdaadaption

x.6.1 Prinzip

Die Einspritzmenge wird durch die Adaption multiplikativ und additiv so beeinflußt, daß die Lambdareglerkorrekturen minimal werden. Dadurch stellt sich auch bei abgeschaltetem Lambdaregler das gewünschte Lambda ein.

Durch die Adaption werden Alterungserscheinungen und Exemplarsteuerung kompensiert.

Der multiplikative Faktor wirkt bei hohem Luftdurchsatz und bei hoher Last.

Der additiver Wert wirkt bei kleinem Luftdurchsatz und kleiner Drehzahl. Er kompensiert die Leckluft.

Da es sich um ein zweigeteiltes Abgassystem mit zwei Lambdasonden handelt, wird auch die Lambdaadaption für die beiden Abgasstränge getrennt berechnet.

Die Adaption wird in der 100msec Task gerechnet.

x.6.2 Adaptionsfreigabe

Die Adaption wird freigegeben, wenn

- die Lambdaregelung aktiv ist und
- die Motortemperatur die Schwelle K_LAA_TMOT überschritten hat und
- die Ansauglufttemperatur kleiner als K_LAA_TAN ist und
- die Last kleiner als eine Schwelle aus der Kennlinie KL_LAA_N ist
- keine Adaptionssperre durch die Diagnose vorliegt und
- die Zeit seit dem letzten Sondensprung kleiner als K_LAA_T_US ist und
- das Tankentlüftungsventil geschlossen ist..

x.6.3 Adaptionsfaktor: f_ti_a1 und f_ti_a2

Der Adaptionsfaktor wird adaptiert, wenn

- die Luftmasse größer als K_LAA_ML_SU2 und
- die Last größer als K_LAA_TL_SU2 ist.

Der Adaptionsfaktor berechnet sich nach folgender Formel:

$$f_{aax} = ((f_{ax} -1) / K_{AA}TAU2) + f_{aax}(alt)$$

Der Adaptionsfaktor f_laax wird auf K_LAA_FAK_MAX und K_LAA_FAK_MIN begrenzt.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Projekt: MSS54 Modul: LA

Seite 7 von 11

Adaptionsoffset: ti_a1 und ti_a2 x.6.4

Der Adaptionsoffset wird adaptiert, wenn

- die Luftmasse kleiner K LAA ML SO1 und
- die Drehzahl kleiner K_LAA_N_SO1 ist.

Der Adaptionsoffset berechnet sich wie folgt:

laa_regx = tiefpaß gefilterter Lambdareglefaktor (f_lax) mit der Zeitkonstante K_LAA_TAU.

Zuerst wird die mittler Regelfaktorabweichnung von 1,0 in eine Einspritzzeit umgerechnet. help = (laa_regx - 1) * tl * 2

Dann wird die daraus ermittelte Einspritzzeit aufintegriert (adaptiert).

Der Integratorausgang wird minimal und maximal begrenzt. laa_offx wird auf K_LAA_OFFSET_MAX und K_LAA_OFFSET_MIN begrenzt.

Der adaptierte Wert laa_offsetx wird dann noch über die Drehzahl gewichtet (normiert). Wobei hier die Drehzahl n40 minaimal auf K_LAA_N_NORM_MIN begrenzt wird, da bei einer zu geringen Drehzahl der Wert ti_offset_adaptx zu groß werden könnte, z. B. bei einem "durchtauchen der Drehzahl " beim anfahren.

Der Offset, der in den Einspritzpfad eingerechnet wird lautet:

x.7 Diagnose

Die Lambdareglerdiagnose findet nur statt, wenn

- der Lambdaregler aktiv ist (kein gemischbeeinflußender Fehler vorliegt)
- keine Einspritzventil über DS2 angesteuert ist
- kein Sondenfehler vorliegt

Es wird der obere und untere Regleranschlag überprüft. Die beiden Lambdaregler für die beiden Bänke werden getrennt überprüft.

Wenn der Lambdaregler aufgrund eines vermuteten Kurzschluß nach Masse der Sonde einen erweiterten Reglerfaktor erhält, wirkt die Lambdareglerdiagnose nicht.

Ein Fehler (Kurzschluß nach Plus) wird abgelegt, wenn der Lambdaregelfaktor länger als K_LA_T_FMAX auf den Anschlag K_LA_FMAX begrenzt wird. In ed_lax wird Bit 2 gesetzt.

Ein Fehler (Kurzschluß nach Masse) wird abgelegt, wenn der Lambdaregelfaktor länger als K_LA_T_FMIN auf den Anschlag K_LA_FMIN begrenzt wird. In ed_lax wird Bit 1 gesetzt.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Projekt: MSS54 Modul: LA

Seite 8 von 11

x.8 Konstanten, Kennlinien, Kennfelder, Variablen

x.8.1 Konstanten

K LA FREIGABE Freigabekonstante zum ein- und ausschalten der

Lambdaregler und Lambdaadaption

Bit 0: frei

Bit 1: Regler 1 freigegeben Bit 2: Regler 2 freigegeben

Bit 3: frei Bit 4: frei

Bit 5: Adaptionsfaktor freigegeben Bit 6: Adaptionsoffset freigegeben

Bit 7: frei

K_LA_TMOT Motortemperaturschwelle fuer Lambdaeinschaltung K_LA_TMOT_LL Motortemperaturschwelle fuer Lambdaeinschaltung im

Leerlauf

K_LA_TMOT_HYS Motortemperaturschwellenhysterese

K_LA_T_TL Verzögerungszeit fuer Lambdaabschaltung bei Last

überschreitung

K_LA_N_VL Drehzahlschwelle fuer Lambdaabschaltung bei Vollast K_LA_UF Sondenspannung für Fettschwelle bei Bereitschaftser

kennung

K_LA_UM Sondenspannung für Magerschwelle bei Bereitschaftser-

kennung

K_LA_T_EIN Einschaltüberwachungszeit für die Sondenbereitschafts-

erkennung

K_LA_T_AUS Ausschaltüberwachungszeit für die Sondenbereitschafts

erkennung

K_LA_US_MAX maximale Sondenspannung K_LA_US_MIN minimale Sondenspannung

K_LA_US_TAU Filterzeitkonstante für Sondenspannung
K_LA_US_NP Offset für Sondenspannungaufbereitung
K_LA_US_M Steigung der Sondenspannungsaufbereitung

K_LA_FMAX maximaler Lambdakorrekturfaktor

K_LA_FMIN minimaler Lambdafaktor

K_LA_T_FMIN Zeitschwelle für unteren Regleranschlag K_LA_T_FMAX Zeitschwelle für oberen Regleranschlag K_LA_US_REF Sondenspannung bei Lambda 1,0

K_LAH_HYS_AUS
K_LAA_TAN
Lasthysterese für Lambdaheizungabschaltung
Einschaltschwelle der Ansauglufttemperatur
K_LAA_TMOT
Einschaltschwelle der Motortemperatur

K_LAA_TAU Zeitkonstante fuer den Tiefpass zur Glättung des

Lambdafaktors

K_LAA_FAK_MAX Maximalwert des Adaptionsfaktors K_LAA_FAK_MIN Minimalwert des Adaptionsfaktors

K_LAA_ML_SO1 obere Luftmassenschwelle fuer den Adaptionsoffset
K_LAA_ML_SU2 untere Luftmassenschwelle fuer den Adaptionsfaktor
K_LAA_N_SO1 obere Drehzahlschwelle fuer den Adaptionsoffset
K_LAA_TL_SU2 untere Lastschwelle fuer den Adaptionsfaktor

K_LAA_TAU1 Zeitkonstante fuer den Adaptionsoffset
K_LAA_TAU2 Zeitkonstante fuer den Adaptionsfaktor
K_LAA_T_US Zeitschwelle seit dem letzten Sondensprung

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Projekt: MSS54 Modul: LA

Seite 9 von 11

K_LAA_OFFSET MAX obere Begrenzung des Adaptionsoffsets

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Seite 10 von 11

Lambdaregelung

Projekt: MSS54 Modul: LA

K_LAA_OFFSET_MIN untere Begrenzung des Adaptionsoffsets

K_LAA_N_NORM normierte Drehzahl fuer Gewichtung des Adaptions-

offsets

K_LAA_N_NORM_MIN minimale Drehzahl fuer Gewichtung des Adaptions-

offsets

x.8.2 Kennlinien

KL__LA_N KL für Lastschwelle zur Lambdaabschaltung über Dreh-

zahl

KL_LAA_N KL für Lastschwelle zur Lambdaadaption über Drehzahl

x.8.3 Kennfelder

KF_LA_KP KF für proportional Anteil des Lambdareglers
KF_LA_KI KF für integral Anteil des Lambdareglers
KF_LA_TV KF für Verzögerungszeit des Lambdareglers

x.8.4 Variablen

st_la globales Statusbyte für Lambda

Bit 4: Sonde 1 ist defekt Bit 5: Sonde 2 ist defekt

st_la_e1 Statusbyte für Einschaltbedingungen des Lambda-

regelers 1

Bit 0: Lambdaregler 1 aktiv
Bit 1: Einbedingung für Sonde 1
Bit 2: Motortemperaturbedingung

Bit 3: Reglerfreigabe durch K_LA_FREIGABE Bit 1

Bit 4: Lambdasonde 1 aus

Bit 5: Lambdasondeneinschaltüberwachung1
Bit 6: Lambdasonde1 ein(betriebsbereit)
Bit 7: Lambdasondenausschaltüberwachung 1
Stotugbyte für Einschaltbedingungen des Lambdasondeneinschaltschaften des Lambdasondenes des Lambda

st_la_e2 Statusbyte für Einschaltbedingungen des Lambda-

regelers 2

Bit 0: Lambdaregler 2 aktiv Bit 1: Einbedingung für Sonde 2 Bit 2: Motortemperaturbedingung

Bit 3: Reglerfreigabe durch K_LA_FREIGABE Bit2

Bit 4: Lambdasonde 2 aus

Bit 5: Lambdasondeneinschaltüberwachung2 Bit 6: Lambdasonde2 ein(betriebsbereit) Bit 7: Lambdasondenausschaltüberwachung 2

st_la_aus Statusbyte für Ausschaltbedingungen beider Lambda

regler

Bit 0: Zylinder 1,2 und/oder 3 sind ausgeblendet Bit 1: Zylinder 4,5 und/oder 6 sind ausgeblendet

Bit 2: Lastschwelle überschritten

Bit 3: START oder weich VMAX-Begrenzung

(B_VMAX_WEICH

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01

Projekt: MSS54 Modul: LA

Bit 4: Klopfschutzfaktor oder Wiedereinsetzfaktor wirken

Bit 5: Vollast und n > K_LA_N_VL Bit 6: Bei Sekundärlufteinblasung

Bit 7: frei

st laa Statusbyte der Lambdaadaption

Bit 1: Lambdadaption für Regler 1 freigegeben Bit 2: Lambdadaption für Regler 2 freigegeben

Bit 5: Adaptionfaktor freigegeben Bit 6: Adaptionsoffset freigegeben

Bit 7: Adaption gesperrt wegen Dioagnosefehler

la_time1 Zeitpunkt zu dem die Lastschwelle für die Lambdaab

schaltung

überschritten wurde

la_time2 Eintittszeitpunkt in die Lambdasondenzustände

EIN- bzw. AUSSCHALTÜBERWACHUNG für die

Sonde 1

la_time3 Eintittszeitpunkt in die Lambdasondenzustände

EIN- bzw. AUSSCHALTÜBERWACHUNG für die

Sonde 2

us1 Lambdasondenspannung 1 us2 Lambdasondenspannung 2

la_kp Proportionalanteil aus dem Kennfeld la_ki Integralanteil aus dem Kennfeld la_tv Verzögerungszeit aus dem Kennfeld

tv1 bzw. tv2 momtene Zählerstände der laufenden Verzögerungs

zeiten für Lambdaregler 1 bzw. 2

st_la_reg1 bzw. 2 Statuswort der Lambdaregler 1 bzw. 2

f_la1 bzw. 2 Lambdareglerfaktor(Stellgröße) des Lambdaregler 1

bzw. 2

f_la_kp1 bzw. 2 Proportionalanteil des Lambdareglerfaktors für Lambda

regler 1 bzw. 2

f_la_ki1 bzw. 2 Integralanteil des Lambdareglerfaktors für Lambdaregler

1 bzw. 2

usx_wechsel_time Zeitpunkt des letzten Sondensprunges

f_ti_adapt1 bzw. 2 Gesamtadaptionsfaktor fuer den Einspritzpfad

f_laa1 bzw. 2 Adaptionfaktor 1 bzw. 2

laa_off1 bzw. 2 Adaptionsoffset 1 bzw. 2 ohne Drehzahlgewichtung mit

32 bit Aufloesung

ti_a1 bzw.2 Adaptionsoffset 1 bzw. 2 mit Drehzahlgewichtung fuer

den Einspritzpfad

ed_lax Statusvariable für Lambdaregler:

Bit 1: untere Regleranschlag Bit 2: oberer Regleranschlag Bit 5: Fehler in Fehlerfilterung

Bit 6: Fehler im Fehlerspeicher eingetragen

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20134	B.Riksén	5.01