Akdeniz Üniversitesi Fen Fakültesi - Fizik Bölümü FİZ319 Kuantum Fiziği Ders Notları

Doç. Dr. Mesut Karakoç October 26, 2021

$\dot{I} \dot{\varsigma} indekiler$

3	Sch	rödinger Denkleminin Ayrıştırılması, Özdeğerleri ve Özfonksiyonları	3
	3.1	Zamandan Bağımsız Schrödinger Denklemi	3
		3.1.1 Özdeğer Denklemleri	4
	3.2		5
	3.3	Açılım Varsayımı ve Fiziksel Yorumu	G
		3.3.1 Açılım Katsayılarının Fiziksel Yorumu	10
	3.4	Serbest Parçacık ve Momentum Özfonksiyonu	11
		3.4.1 Serbest Parçacık Dalga Fonksiyonunun Normalizasyonu	12
		3.4.2 Yozlaşmış (Dejenere) Durumlar	15
		3.4.3 Parite	16
т •	1	. C T.:	
Ll	\mathbf{St}	of Figures	
	1	Sonsuz kuyu	6
	2	Sonsuz kuyudaki parçacığın özfonksiyonları. Dikkat edilirse genlikler sabit ve	
		artan n değerinden bağımsızdır	8
	3	Sonsuz kuyudaki parçacığın özfonksiyonlarının türevlerinin kareleri. Dikkat edilirse	
		artan n ile genlikler de büyümektedir	8
	4	Dirac dağılımı.	14
	5	$\alpha \to 0$ için Dirac dağılımına yaklaşan bir gausyen fonksiyon	14
	6	Parçacıkların akısı ve hızları arasındaki bağıntının temsili resmi. Akı: birim	
		zamanda ilgili parçacıkların hızına dik olan birim alandan geçen parçacık sayısıdır.	
	7	Yansıma (ayna) simetrisi içermeyen bir potansiyel örneği.	18

List of Tables

If all this damned quantum jumps were really to stay, I should be sorry I ever got involved with quantum theory.

—Erwin Schrödinger [1]

3 Schrödinger Denkleminin Ayrıştırılması, Özdeğerleri ve Özfonksiyonları

Bu bölümde bir parçacığın veya sistemin etkisinde olduğu potansiyelin V(x) zamandan bağımsız olması halinde, Schrödinger denkleminin sadece konum ve sadece zaman değişkenlerini içeren iki çiftlenmiş denklem seti halinde yazılabileceğini göreceğiz. Sadece konum değişkenine bağlı olarak yazılan yeni denklemi zamandan bağımsız Schrödinger denklemi olarak adlandırıyoruz. Devamında zamandan bağımsız denklem için özdeğer, özfonksiyon kavramlarını tartışacağız ve bazı potansiyeller için bu denklemin çözümlerini inceleyeceğiz.

3.1 Zamandan Bağımsız Schrödinger Denklemi

Bir önceki bölümde elde ettiğimiz zamana bağlı Schrödinger denklemini *Hamilton* işlemcisini kullanarak,

$$\hat{H}\psi(x,t) = i\hbar \frac{\partial \psi(x,t)}{\partial t} \tag{1}$$

şeklinde yazabileceğimizi ve dalga fonksiyonlarıyla açık halini de,

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x)\psi(x,t) = i\hbar\frac{\partial \psi(x,t)}{\partial t}$$
 (2)

şeklinde yazabileceğimizi görmüştük. Yukarıda tekrar yazdığımız zamana bağlı Schrödinger denklemi bir kısmi diferansiyel denklemdir. Kısmi diferansiyel denklemlerin birden çok bağımsız değişkenleri olur. Bu nedenle genellikle kısmi diferansiyel denklemleri çözmek kolay olmayabilir. Fakat bizim inceleyeceğimiz durumda V(x) potansiyeli zamandan bağımsız olduğundan denklemi sadece zamanı ve sadece konuma bağlı iki adi diferansiyel denkleme dönüştürebiliriz.

$$\psi(x,t) = T(t)u(x) \tag{3}$$

Bu dönüşümü gerçekleştirebilmek için $\psi(x,t)$ 'nin yukarıdaki gibi iki fonksiyonun çarpımı şeklinde yazılabileceğini kabul edeceğiz. Dalga fonksiyonunun bu halin zamana bağlı Schrödinger denkleminde kullanırsak,

$$i\hbar u(x)\frac{dT(t)}{dt} = \left\{-\frac{\hbar^2}{2m}\frac{d^2u(x)}{dx^2} + V(x)u(x)\right\}T(t)$$

denklemine ulaşırız. Bu denklemin her iki tarafını T(t)u(x) ifadesine bölersek,

$$i\hbar \frac{1}{T(t)} \frac{dT(t)}{dt} = \frac{1}{u(x)} \left\{ -\frac{\hbar^2}{2m} \frac{d^2 u(x)}{dx^2} + V(x)u(x) \right\}$$
 (4)

her iki tarafı sadece bir bağımsız değişkene bağlı bir eşitlik elde ederiz. Eşitliğin sağlanabilmesi için her iki tarafında tek bir sabite eşit olması gerekir. Denklemin sol tarafındaki $i\hbar\frac{1}{T(t)}$ ifadesi enerji boyutunda olduğundan eşitliği sağlayacak olan sabitte enerji boyutunda olmalıdır. Böyle bir sabit kapalı sistemlerde E sembolü ile gösterilen ve ilgili sistemin veya parçacığın hareket sabiti olan toplam enerji olabilir. Böylece ayrıştırılmış denklemin sol tarafı,

$$i\hbar \frac{dT(t)}{dt} = ET(t) \tag{5}$$

halini alır. Bu denklemin çözümü,

$$T(t) = T(0)e^{-iEt/\hbar} \tag{6}$$

olur, burada T(0) sistemin t=0 anındaki başlangıç durumunu temsil eder. Denk. 4'in sağ tarafı ise,

$$-\frac{\hbar^2}{2m}\frac{d^2u(x)}{dx^2} + V(x)u(x) = Eu(x) \tag{7}$$

halini alır ve zamandan bağımsız Schrödinger denklemi olarak adlandırılır. Zamana bağlı Schrödinger denklemi parçacığın zamanla davranışını betimlerken, yeni elde ettiğimiz zamandan bağımsız denklem ilgili parçacığın veya sistemin karakteristik özellikleri olan özdeğerlerini (eigenvalue) ve özfonksiyonlarını (eigenfunction) belirler.

Zamandan bağımsız V(x) potansiyel sayesinde ikiye ayırabildiğimiz zamana bağlı Schrödinger denkleminin çözümü, her iki denklemin çözümlerinin birleştirilmesiyle aşağıdaki gibi yazılabilir,

$$\psi(x,t) = u(x)e^{-iEt/\hbar}. (8)$$

3.1.1 Özdeğer Denklemleri

Ozdeğer denklemlerini daha iyi anlayabilmek için işlemci (operatör) kavramını anlamak gerekir. Basitçe bir operatör üzerine etki ettiği bir fonksiyonu bir başka fonksiyona dönüştürür veya bezer.

1.
$$\hat{O}f(x) = f(x) + x^3$$

2.
$$\hat{O}f(x) = [f(x)]^4$$

3.
$$\hat{O}f(x) = f(5x^2 + 4)$$

4.
$$\hat{O}f(x) = [d^2f(x)/dx^2]^2$$

5.
$$\hat{O}f(x) = df(x)/dx - 4f(x)$$

$$6. \hat{O}f(x) = \lambda f(x)$$

Yukarıda verilen örneklerin hepsinde f(x) gibi bir fonksiyon \hat{O} operatörleri tarafından belirlenen bir kural çerçevesinde eşitliğin sağındaki hallerini alırlar. Bizim çalışacağımız operatörler genellikle \hat{O} gibi genel bir operatör değil \hat{L} ile göstereceğimiz lineer operatörlerdir. Bu operatörlerin, c karmaşık bir sayı olmak üzere, aşağıdaki iki kurala uymaları beklenir.

$$\hat{L}\left[f_1(x) + f_2(x)\right] = \hat{L}f_1(x) + \hat{L}f_2(x) \tag{9}$$

$$\hat{L}cf(x) = c\hat{L}f(x) \tag{10}$$

Bu kurallara göre yukarıdaki örneklerden üçüncüsü, beşincisi ve altıncısı lineer operatörlerdir. Yukarıdaki örneklerden beşincinin,

$$\hat{L} \equiv \frac{d}{dx} - 4$$

bu kurallara uyan lineer \hat{L} bir işlemci olduğunu göstermek kolaydır:

$$\begin{split} \hat{L}(f(x) + g(x)) &= \left(\frac{d}{dx} - 4\right)(f(x) + g(x)) \\ \hat{L}(f(x) + g(x)) &= \frac{df(x) + g(x)}{dx} - 4(f(x) + g(x)) \\ &= \frac{df(x)}{dx} - 4f(x) + \frac{dg(x)}{dx} - 4g(x) \\ &= \hat{L}(f(x)) + \hat{L}(g(x)) \end{split}$$

ve

$$\hat{L}(cf(x)) = \left(\frac{d}{dx} - 4\right)(cf(x))$$

$$\hat{L}(cf(x)) = \frac{d(cf(x))}{dx} - 4(cf(x))$$

$$= c\frac{df(x)}{dx} - c4f(x)$$

$$= c(\frac{df(x)}{dx} - 4f(x))$$

$$= c\hat{L}(f(x))$$

ifadeleri ile gösterildiği üzere, her iki şartı da sağlamaktadır. Benzeri şekilde altıncı örneğinde lineer olduğu gösterilebilir. Bu örnekte verilen ifade aynı zamanda bir özdeğer denklemidir. Bu örneğe benzer şekilde Denk. 7'de

$$Hu_E(x) = Eu_E(x) \tag{11}$$

şeklinde bir özdeğer denklemi olarak yazılabilir. Burada H Hamiltonyen operatörü dalga fonksiyonlarına etki ettiğinde sabit bir sayı ve dalga fonksiyonunun kendisini tekrar üretirse; bu işlem sonucu üretilen bu tür sayılara $\ddot{o}zde\breve{g}erler$ ve dalga fonksiyonlarına da $\ddot{o}zfonksiyonlar$ denir. Denklemdeki dalga fonksiyonları özel olarak E özdeğerleriyle ilişkili özfonksiyonlar oldukları için E alt indisi ile etiketlenmişlerdir. Bir kuantum sisteminde özdeğerler kesikli veya sürekli olabilirler. Bizim ilgilendiğimiz zamandan bağımsız Schrödinger denkleminde H operatörü,

$$H \equiv \frac{\hat{p}^2}{2m} + V(x) \tag{12}$$

şeklinde olduğundan. Denklemin çözümü sonucu ortaya çıkan özdeğerler *enerji özdeğerleri* ve özfonksiyonlar da *enerji özfonksiyonları* olarak adlandırılırlar.

Denk. 2'deki zamana bağlı Schrödinger denkleminin çözümü $u_E(x)e^{-iEt/\hbar}$ şeklindedir, fakat Schrödinger denklemi lineer bir denklem olduğu için bütün izinli E enerji özdeğerlerine ait çözümlerin toplamı da bu denklemin çözümüdür. Eğer E ve u_E bu sistemin sürekli çözümleriyse ve aynı sistemin kesikli çözümleri de mevcutsa ve bu çözümler E_n ve u_n (n=1,2,3, ...) ile temsil edilirlerse; bu sistemin en genel çözümü,

$$\psi(x,t) = \sum_{n} C_n u_n(x) e^{-iE_n t/\hbar} + \int dE C(E) u_E(x) e^{-iEt/\hbar}$$
(13)

olarak yazılabilir. Burada C_n ve C(E) karesi integrallenebilir ifadelerdir ve her bir özfonksiyonun toplam dalga fonksiyonuna katkı miktarını belirlemektedirler.

3.2 Sonsuz Kuyudaki Parçacık için Enerji Özdeğer Problemi

Sonsuz bir kuyu (Şekil 1) içinde hapsolmuş bir parçacığın davranışı Denk. 7'de verilen zamandan bağımsız Schrödinger denklemiyle tanımlanabilir. Tek boyutlu böyle bir kuyu Schrödinger denklemine,

$$V(x) = \begin{cases} \infty & \Leftarrow x \leq 0, x \geq a \\ 0 & \Leftarrow 0 < x < a \end{cases}$$
 (14)

potansiyelinin konmasıyla tanımlanabilir. Parçacık 0 < x < a aralığında hapsolduğundan parçacığın dalga fonksiyonu kuyu sınırlarında ve dışında sıfır olmalıdır,

$$u(x) = 0 \quad x \le 0$$

$$u(x) = 0 \quad x \ge a.$$

Figure 1: Sonsuz kuyu

Problemin doğasından ortaya çıkan bu şartlar sınır şartları olarak adlandırılır. Kutu dışındaki her yerde dalga fonksiyonu sıfır olduğundan kutunun dışı için Schrödinger denklemi yazılamaz. Kutunun içindeyse V(x)=0 olduğundan, birazcık matematiksel düzenlemeyle, Schrödinger denklemi,

$$\frac{d^2u(x)}{dx^2} + \frac{2mE}{\hbar^2}u(x) = 0 {15}$$

olarak yazılılır. Eğer parçacığın enerjisi (E<0) negatif ise, $\kappa^2=2m|E|/\hbar^2$ olmak üzere,

$$\frac{d^2u(x)}{dx^2} - \kappa^2 u(x) = 0 \tag{16}$$

denklemine ulaşılır. Bu denklemin en genel çözümü $e^{-\kappa x}$ ve $e^{\kappa x}$ ifadelerinin lineer bir kombinasyonu olur. Elde edilen çözüm x=0'da sınır şartlarını sağlasa da x=a'da sınır şartlarını sağlamaz. Böylece E<0 seçeneği anlamsızlaşır.

Eğer parçacığın enerjisi (E > 0) pozitif ise,

$$k^2 = \frac{2mE}{\hbar^2} \tag{17}$$

olmak üzere,

$$\frac{d^2u(x)}{dx^2} + k^2u(x) = 0 (18)$$

denklemi elde edilir. Bu denklemin en genel çözümlerinden birisi aşağıdaki gibidir.

$$u(x) = A\sin kx + B\cos kx \tag{19}$$

u(0) = 0 sınır şartı gereğince,

$$u(0) = A \cdot 0 + B = 0$$

olduğundan B=0 olur ve birinci sınır şartını sağlayan genel çözüm,

$$u(x) = A\sin kx \tag{20}$$

olarak bulunur. Diğer sınır şartına göre u(a) = 0 olmalıdır, bu şartın sağlanması ancak,

$$ka = n\pi \quad n = 1, 2, 3, \dots$$
 (21)

olması ile mümkündür. Böylece, $E=p^2/2m=(\hbar k)^2/2m$ olduğu da hatırlanırsa parçacığın sahip olabileceği izinli enerji değerlerinin veya yeni adıyla enerji özdeğerlerinin,

$$E_n = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 \pi^2 n^2}{2ma^2} \quad n = 1, 2, 3, \dots$$
 (22)

olacağı açıktır. Özfonksiyonlar ise normalize edildiklerinde $A=\sqrt{\frac{2}{a}}$ olacağından,

$$u_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a} \tag{23}$$

halinde elde edilirler. Çözümlerin ilginç bir sonucu vardır; farklı enerji özdeğerlerine ortaya çıkaran farklı özfonksiyonlar bibrbirlerine *diktir*. Ayrıca birbirine dik olan bu özfonksiyonlar normalize edilmişler ise *ortonormal* özfonksiyonlar olarak adlandırılırlar. Çalıştığımız problemdeki özfonksiyonlar ortonormaldir, aşağıdaki matematiksel işlem süreciyle bu gösterilmiştir.

$$\int_{0}^{a} dx \, u_{n}^{*}(x) u_{m}(x) = \int_{0}^{a} dx \frac{2}{a} \sin \frac{n\pi x}{a} \sin \frac{m\pi x}{a}
= \frac{1}{a} \int_{0}^{a} dx \left\{ \cos \frac{(n-m)\pi x}{a} - \cos \frac{(n+m)\pi x}{a} \right\}
= \begin{cases} \frac{\sin(n-m)\pi}{(n-m)\pi} - \frac{\sin(n+m)\pi}{(n+m)\pi} = 0 & \Leftarrow n \neq m \\ \frac{1}{a} \left[x - \frac{a}{2n\pi} \sin(\frac{2n\pi x}{a}) \right]_{0}^{a} = 1 & \Leftarrow n = m \end{cases}$$
(24)

İntegrallerin herhangi bir n ve m için cevabı yukarıdaki gibidir, n ve m tam sayılar olduklarından integral sonucu aşağıdaki gibi özetlenebilir.

$$\int_0^a dx \, u_n^*(x) u_m(x) = \begin{cases} 0 & \Leftarrow n \neq m \\ 1 & \Leftarrow n = m \end{cases}$$
 (25)

En son olarak aşağıdaki gibi daha güzel bir şekilde Kronecker-Delta fonksiyonu kullanılarak yazılabilir.

$$\int_0^a dx \, u_n^*(x) u_m(x) = \delta_{mn} \tag{26}$$

Bu son eşitlik *ortonormalite şartı* olarak tanımlanır. Çalıştığımız problemlerde özfonksiyonlar reel olsa da başka problemler için böyle olmak zorunda değildir, bu nedenle yapılan tanımda özfonksiyonun eşleniği ve kendisi bulunmaktadır.

Enerji özdeğer ve özfonksiyon çözümlerinden bazı fiziksel yorumlar çıkarabiliriz.

1. En düşük enerji seviyesi durumu $u_1(x)$ özfonksiyonu ile tanımlanır ve parçacığın sahip olduğu enerji $taban\ durum\ enerjisi$ olarak adlandırılır,

$$E_1 = \frac{\pi^2 \hbar^2}{2ma^2}. (27)$$

Klasik durumda en düşük enerji seviyesi kinetik ve potansiyel enerjinin sıfır, yani toplam enerjinin sıfır olduğu durumdur. Kuantum fiziğinde ise minimumda olsa bir enerjinin varlığı söz konusudur.

2. $\langle p \rangle$ beklenen değerini bu sistem için hesaplarken öncelikle özfonksiyonların reel olduğu hatırlanırsa $u_n^* = u_n$ olur. Böylece,

$$\langle p \rangle = \int_0^a dx u_n(x) \left(-i\hbar \frac{du_n(x)}{dx} \right) = -i\hbar \int_0^a dx \frac{d}{dx} \frac{(u_n(x))^2}{2}$$
$$= -\frac{i\hbar}{2} \left[u_n^2(a) - u_n^2(0) \right] = 0$$
 (28)

Figure 2: Sonsuz kuyudaki parçacığın özfonksiyonları. Dikkat edilirse genlikler sabit ve artan n değerinden bağımsızdır.

Figure 3: Sonsuz kuyudaki parçacığın özfonksiyonlarının türevlerinin kareleri. Dikkat edilirse artan n ile genlikler de büyümektedir.

sonucuna ulaşılır. $\langle p \rangle = 0$ olması parçacığın -x ve +x yönlerinde eşit miktarda hareket etmiş olması olarak yorumlanabilir.

3. Diğer taraftan $\langle p^2 \rangle$ sıfır olmaz ve herhangi bir $u_n(x)$ özfonksiyonu için,

$$\langle p^2 \rangle = 2mE_n = \frac{\hbar^2 \pi^2 n^2}{a^2} \tag{29}$$

olarak bulunur.

4. Düğüm sayısı $(N_D \equiv n-1)$ olarak tanımlanabilir, çünkü genellikle sınırlardaki sıfırlar sayılmaz. Bu tanıma göre n=1 için $N_D=0$ düğüm varken, n=2'de sadece $N_D=1$ düğüm vardır ve bu düğüm tam özfonksiyonun x=a/2'de sıfır olduğu yerdir. Düğüm noktası sayısı (N_D) arttıkça veya daha üst seviyelere (n) çıkıldıkça kinetik enerji artmaktadır. Bunun sebebi aşağıda hesaplanan $\langle K \rangle$ kinetik enerji beklenen değerinden açıkca görülmektedir. Çünkü $\langle K \rangle = E_n$ 'dir. Ayrıca Şekil 3'ten görüleceği üzere integralin iç kısmının genliği n veya N_D arttıkça artmaktadır.

$$\langle K \rangle = \frac{\langle p^2 \rangle}{2m} = -\frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx u^*(x) \frac{d^2 u(x)}{dx^2}$$

$$= -\frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \left\{ \frac{d}{dx} \left(u^*(x) \frac{du(x)}{dx} \right) - \frac{du^*(x)}{dx} \frac{du(x)}{dx} \right\}$$

$$= \frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \left| \frac{du(x)}{dx} \right|^2$$

$$= \frac{\hbar^2 \pi^2 n^2}{2ma^2}$$
(30)

5. Şekil 2'deki özfonksiyonlar arasında ilginç bir davranış gözlenmektedir. Eğer tam orta noktaya (x=a/2) bir ayna yerleştirdiğimizi düşünürsek; tek değerli n=1,3,5... özfonksiyonlar simetriktirler, çift değerli n=2,4,6... olanlar ise anti-simetriktirler (yani işaret değiştirmektedirler). Bu simetrinin bir benzerini,

$$x \to x - \frac{a}{2}$$

olacak şekilde kuyuyu kaydırarak ve sonra aynayı x=0'a taşıyarak da gözleyebiliriz. Böylece, ortaya çıkardığımız bu simetri kullanılarak, sınırları x=-a/2 ve x=a/2 olan sonsuz kuyu için de çözümler elde edilebilir. Yukarıda yaptığımız değişken dönüşümünü özfonksiyonda da işletirsek,

$$\sin\frac{n\pi x}{a} \to \sin\left(\frac{n\pi x}{a} - \frac{n\pi}{2}\right) = \sin\frac{n\pi x}{a}\cos\frac{n\pi}{2} - \cos\frac{n\pi x}{a}\sin\frac{n\pi}{2} \tag{31}$$

sonucunu elde ederiz. Bu ifadeden anlaşılacağı üzere $x = \pm a/2$ sınırlarına sahip sonsuz kuyu için çift ve tek değerli durumların özfonksiyonları aşağıdaki gibi olacaktır;

$$u_n(x) = \sqrt{\frac{2}{a}} \cos \frac{n\pi x}{a}$$
 için $n = 1, 3, 5, \dots$ (32)

$$u_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$
 için $n = 2, 4, 6, \dots$ (33)

Ayrıca, $n=1,3,5,\ldots$ tek sayı şeklindenki kuantum sayılarına karşılık gelen özfonksiyonlar kosinüs fonksiyonları olduklarından x'e göre cift fonksiyondurlar. Benzeri şekilde $n=2,4,6,\ldots$ çift sayılarına karşılık gelen özfonksiyonlar ise sinüs fonksiyonları olduklarından x'e göre cift fonksiyondurlar. Böylece, sonsuz kuyunun ortasında hayal edilen aynaya göre özfonksiyonların neden simetrik ve anti-simetrik davranışlar gösterdikleri daha iyi anlaşılabilir.

3.3 Açılım Varsayımı ve Fiziksel Yorumu

Fourier teoremine göre $\psi(0) = 0$ ve $\psi(a) = 0$ şartlarını sağlayan herhangi bir sürekli $\psi(x)$ fonksiyonu,

$$\psi(x) = \sum_{n=1}^{\infty} C_n \sin \frac{n\pi x}{a}$$
 (34)

formunda yazılabilir. Sonsuz kuyu problemindeki $u_n(x)$ özfonksiyonları sadece bir katsayı farkıyla sin $n\pi x/a$ ifadesi ile aynıdır. Böylece sonsuz kuyudaki parçacığın toplam dalga fonksiyonunu $u_n(x)$ 'ler cinsinden,

$$\psi(x) = \sum_{n=1}^{\infty} A_n u_n(x) \tag{35}$$

olarak elde edeceğimizi iddia edebiliriz. A_n katsayıları ortonormallik şartından aşağıdaki gibi hesaplanabilir:

$$\int_{0}^{a} dx u_{m}^{*}(x) \psi(x) = \int_{0}^{a} dx u_{m}^{*}(x) \sum_{n=1}^{\infty} A_{n} u_{n}(x)$$

$$= \sum_{n=1}^{\infty} A_{n} \int_{0}^{a} dx u_{m}^{*}(x) u_{n}(x) = \sum_{n=1}^{\infty} A_{n} \delta_{mn} = A_{m}$$
(36)

olduğundan,

$$A_m = \int_0^a dx u_m^*(x)\psi(x) \tag{37}$$

yazılabilir.

Daha önce serbest parçacığın dalga paketi için yaptığımız tartışmadaki gibi açılım yöntemiyle parçacığın dalga fonksiyonu $\psi(x,t)$ 'nin zamana bağlı davranışını,

$$\psi(x,t) = \psi(x)T(t) = \sum A_n u_n(x)e^{-iE_nt/\hbar}$$
(38)

olarak yazabiliriz. Hatırlanmalıdır ki, Schrödinger denklemininin kısmi değişkenlere (x ve t) ayrıştırılmış halini eşitleyen sabit E_n 'dir, bu sayede yukarıdaki $e^{-iE_nt/\hbar}$ ifadesinin varlığı anlaşılabilir. Bu kısım sadece zaman davranışını izah eden kısmın çözümüdür.

Burada gerçekleştirdiğimiz açılımın vektör analizinde de bir benzeri vardır. n boyutlu bir uzay düşünelim: bu uzayda \hat{i}_k dik birim vektörlerinin kümesi, özfonksiyonların tam kümesiyle benzer davranışı gösterir. Burada tamlık ile ifade edilmek istenen n boyutlu uzaydaki herhangi bir \vec{a} vektörü \hat{i}_k birim vektörlerine açılarak,

$$\vec{a} = \sum_{m=1}^{n} a_k \hat{i}_k \tag{39}$$

şeklinde yazılabilir. Bu birim vektörler dik bir baz oluşturduklarından herhangi iki birim vektör arasında,

$$\hat{i}_m \cdot \hat{i}_k = \delta_{mk} \tag{40}$$

bağıntısı vardır. Açılımdaki a_k katsayıları birim vektörler ve \vec{a} vektörünün iç çarpımı ile,

$$a_k = \hat{i}_k \cdot \vec{a} \tag{41}$$

bulunabilirler. Böylece anlıyoruz ki; vektörlerdeki iç çarpımın karşılığı özfonksiyonlar durumunda dx üzerinden bir integraldir, ayrıca $\psi(x)$ ile \vec{a} ve $u_n(x)$ ile \hat{i}_k benzer davranışları üstlenmişlerdir.

3.3.1 Açılım Katsayılarının Fiziksel Yorumu

 A_n katsayılarını yorumlayabilmek için enerjinin beklenen değerini keyfi bir $\psi(x)$ durumunda hesaplayalım. Çalıştığımız örnekte, kuyu içinde $H=p^2/2m$, kuyu dışında $\psi(x)=0$ ve

$$Hu_n(x) = E_n u_n(x) \tag{42}$$

olduğuna göre,

$$\langle H \rangle = \int_0^a dx \psi^*(x) H \psi(x) = \int_0^a dx \psi^*(x) H \sum_n A_n u_n(x)$$

$$= \sum_n A_n \int_0^a dx \psi^*(x) E_n u_n(x)$$

$$= \sum_n E_n |A_n|^2$$
(43)

sonucuna ulaşırız. Ayrıca,

$$\int_0^a dx \psi^*(x)\psi(x) = 1 \tag{44}$$

olduğundan,

$$\int_0^a dx \psi^*(x) \sum_n A_n u_n(x) = \sum_n A_n A_n^* = \sum_n |A_n|^2 = 1$$
(45)

olur. $|A_n|^2$ 'yi anlamak için her bir enerji ölçümünün sadece bir enerji özdeğeri ortaya çıkaracağını kabul etmeliyiz. Bu önerme Bohr'un atom modelinde durağan durumlar için, üstü kapalı da olsa, yapılmıştır. Önermeyi kuantum mekaniğine taşırsak; ölçülen bir enerji enerji operatörünün özdeğerlerinden birine karşılık gelir. Bu durumda ortalama enerji ölçümü,

$$E_{ort} = \langle \hat{H} \rangle = \sum_{n} E_n P_n \tag{46}$$

olur. Burada P_n elde edilen her bir ölçümde E_n enerji özdeğerini ölçme olasılığıdır. Olasılıkların toplamı,

$$\sum_{n} P_n = 1 \tag{47}$$

olacaktır. Bu sonuçlardan,

$$P_n = |A_n|^2 \tag{48}$$

olduğu ve " $|A_n|^2$ yapılan bir enerji ölçümünde $\psi(x)$ durumunun E_n enerji özdeğeri üretme olasılığıdır" yorumlarını yapabiliriz. Daha önce de gösterdiğimiz üzere A_n katsayıları,

$$A_n = \int_0^a dx u_n^*(x)\psi(x) \tag{49}$$

ile elde edilirler.

3.4 Serbest Parçacık ve Momentum Özfonksiyonu

Enerji operatörü \hat{H} dışında da özfonksiyon ve özdeğerleri olan operatörler vardır. Bunlardan birisi \hat{p} momenum operatörüdür: bu operatör dalga fonksiyonuna işletildiğinde,

$$\hat{p}u_p(x) = pu_p(x), \quad \hat{p} \equiv \frac{\hbar}{i} \frac{d}{dx}$$
 (50)

özfonskiyon ve özdeğerleri ortaya çıkar. Operatörün açık hali yazılır ve dalga fonksiyonuna uvgulanırsa,

$$\frac{du_p(x)}{dx} = \frac{ip}{\hbar}u_p(x) \tag{51}$$

birinci dereceden adi bir diferansiyel denklem ortaya çıkar. Bu denklemin genel çözümü,

$$u_p(x) = Ce^{ipx/\hbar} (52)$$

şeklindedir. Burada C belirsiz bir sabittir ve normalizasyon ile hesaplanabilir. p özdeğeri reel değerlidir böylece $u_p(x)$ özfonksionu $x \to \pm \infty$ durumunda patlamaz ve sonlu kalır. Serbest bir parçacık için \hat{p} operatörünün davranışını incelediğimizden, p özdeğeri kesikli değerler değil sürekli değerler alır. Diğer bir ifadeyle \hat{p} 'nin sürekli bir spektrumu vardır, denebilir. Enerji özfonksiyonları gibi momentum özfonksiyonları da,

$$\int_{-\infty}^{\infty} dx u_{p'}^*(x) u_p(x) = \delta (p - p') = \begin{cases} 0 & \Leftarrow p \neq p' \\ \infty & \Leftarrow p = p' \end{cases}$$
 (53)

yukarıda verilen ortonormalite (dik ve birim olma) şartına uyuyorlarsa,

$$\int_{-\infty}^{\infty} dx u_{p'}^*(x) u_p(x) = |C|^2 \int_{-\infty}^{\infty} dx e^{i(p-p')x/\hbar}$$
$$= 2\pi |C|^2 \hbar \delta \left(p - p'\right)$$

$$(54)$$

olacaktır. İntegralin sonucu p=p'için 1 olacağında
nC'nin değeri de bulunmuş olur. Böylece momentum öz
fonksiyonu,

$$u_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \tag{55}$$

olarak bulunur. Enerji özfonksiyonolarının tam bir setiyle seriye açtığımız $\psi(x)$ 'i momentum özfonksiyonlarının tam bir setiyle de seriye açabiliriz. Tek fark enerji özdeğerleri kesikli iken, momentum özdeğerleri süreklidir. Eğer momentum özdeğerleri kesikli olsaydı, $\psi(x)$

$$\psi(x) = \sum_{n=1}^{\infty} A_{p_n} u_{p_n}(x) \tag{56}$$

ifadesine benzer şekilde kesikli özfonksiyonların açılımı şeklinde yazılabilirdi. Fakat \hat{p} sürekli bir spektruma sahip olduğundan,

$$\psi(x) = \int_{-\infty}^{\infty} dp \phi(p) u_p(x) = \int_{-\infty}^{\infty} dp \phi(p) \frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}}$$
 (57)

 $\psi(x) u_p(x)$ özfonksiyonlarının tam bir setiyle yukarıdaki gibi yazılmalıdır. Burada,

$$\phi(p) \leftrightarrow A_n$$
$$u_p(x) \leftrightarrow u_n(x)$$

benzerliklerinin varlığına dikkat edilmelidir. A_n 'lerin bulunmasına benzer şekide $\phi(p)$ 'lerde

$$\phi(p) = \int_{-\infty}^{\infty} dx u_p^*(x) \psi(x) = \int_{-\infty}^{\infty} dx \left(\frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}} \right)^* \psi(x)$$
 (58)

integraliyle (iç çarpımıyla) hesaplanabilirler. Aslında Denk. 57 ve 58 karşılaştırmalı olarak incelenirse; Denk. 57'te $\psi(x)$ 'in momentum özfonksiyonlarının ve $\phi(p)$ katsayılarının bir açılımı olarak, Denk. 58'da ise $\phi(p)$ 'nin momentum özfonksiyonlarının ve $\psi(x)$ katsayılarının bir açılımı olarak yazıldığı düşünülebilir. Böylece daha önce de bahsettiğimiz gibi $\psi(x)$ konum uzayındaki dalga fonksiyonu iken, $\phi(p)$ momentum uzayındaki dalga fonksiyonudur önermesi daha kuvvetli bir dayanak kazanmış olur.

3.4.1 Serbest Parçacık Dalga Fonksiyonunun Normalizasyonu

Serbest parçacık durumunu incelemeye devam edelim. Serbest parçacık için potansiyel V(x) heryerde sıfır olacaktır, bu nedenle Hamiltonyen işlemcisi sadece kinetik enerji kısmını içerecek şekilde,

$$\frac{d^2u(x)}{dx^2} + \frac{2mE}{\hbar^2}u(x) = \frac{d^2u(x)}{dx^2} + k^2u(x) = 0$$
 (59)

olarak yazılır. Bu diferansiyel denklemin çözümleri e^{ikx} , e^{-ikx} veya $\sin kx$, $\cos kx$ fonksiyonlarının lineer kombinasyonları olacaktır. Örneğin, +x yönünde ilerleyen bir parçacık için

$$\psi(x,t) = u(x)T(t) = Ae^{(ikx - \omega t)}$$
(60)

şeklinde bir serbest dalga fonksiyonu önerilebilir. Zamandan bağımsız Schrödinger denkleminin çözümü ise,

$$u(x) = Ae^{ikx} (61)$$

olacaktır. Fakat bu çözümün problemi karesi integrallenebilir olmamasıdır.

$$\int_{-\infty}^{\infty} dx |u(x)|^2 = \int_{-\infty}^{\infty} dx |Ae^{ikx}|^2$$

$$= \int_{-\infty}^{\infty} dx A^2 |e^{ikx}|^2 = \int_{-\infty}^{\infty} dx A^2$$

$$= A^2 x \Big|_{-\infty}^{\infty}$$
(62)

Çünkü yukarıdaki işlemlerin sonucundan anlaşılacağı üzere integral ıraksar (patlar).

Bu sonuç, bir örnekle şöyle yorumlanabilir: Bir elektron tabancasından çıkan elektron demetinin momentumu çok iyi bilindiğinden $(\Delta p \to 0)$, Heisenberg'in belirsizlik ilkesine göre, konumu hakkındaki bilgi tamamen kaybolmuştur $(\Delta x \to \infty)$. Diğer bir ifadeyle $|u(x)|^2 dx = A^2 dx$ parçacığın dx ve x + dx aralığında bulunma olasılığı bütün uzayda aynı değere sahiptir. Böyle bir durumu fiziksel olarak kabul etmek pek mümkün değildir. Çünkü elektron tabancasından çıkan elektron demetinin (veya bir başka parçacık hızlandırıcıdan çıkan parçacık demetinin) boyu bilinmektedir. Hızlandırılan parçacık ilk defa tabancadan çıktığında bu demet için de bir yerde olmalıdır. Bu nedenle parçacığın serbest olma özelliğini kaybetmeden parçacığın konumunu yerelleştirebilecek normalizasyon yöntemlerine ihtiyaç duyulur. Dolayısıyla bu tür sistemlerin dalga fonksiyonlarını normalize etmenin farklı yolları önerilmiştir.

1. İlk yöntem sonsuz kuyu sınırları $x = \pm a/2$ 'yi çok genişletmek ve çok daha geniş bir kuyu elde etmek. Fakat ne kadar genişletilse de $e^{\pm i\mathbf{k}\mathbf{x}}$ şeklindeki dalga fonksiyonları sınırlarda yok (sıfır) olmayacaktır. Bu nedenle $\psi(x = \pm a/2) = 0$ sınır şartı değiştirilerek,

$$\psi(x - a/2) = \psi(x + a/2) \tag{63}$$

şeklinde yeniden tanımlanır. Yeni tanımlanan bu şart parçacık serbest olduğu ve her yerde aynı olasılıkla bulunabileceği için, x = -a/2 ve x = +a/2'de dalga fonksiyonunun sürekli olmasının gerekliliğinden ortaya çıkar. Böylece,

$$e^{ik(x-a/2)} = e^{ik(x+a/2)}$$
$$e^{ikx}e^{-ika/2} = e^{ikx}e^{ika/2}$$
$$e^{ika} = 1$$

sonucu ortaya çıkar. Genişletilmiş kuyudaki bu yeni sınır şartına uyan dalga için $k=2n\pi/a$ veya $p=2\hbar n\pi/a$ olur. Burada a kuyu genişliği ve $n=1,2,3,\ldots$ bir tam sayıdır. Serbest parçacık için momentum herhangi bir değerde olabilir. Bu nedenle a ne kadar genişletilirse parçacığın momentumunu verecek olan n değeri de buna göre büyütülmelidir. Genişletilmiş bu kuyuda artık,

$$A^{2} \int_{-a/2}^{a/2} dx \left| e^{ikx} \right|^{2} = A^{2} a = 1 \tag{64}$$

normalizasyonu yapılabilir. Böylece serbest parçacığı temsil eden düzlem dalgalar,

$$u(x) = \frac{1}{\sqrt{a}}e^{\pm ikx} \tag{65}$$

şeklinde normalize edilmiş olarak yazılabilirler.

2. Elektron tabancasından çıkan elektron örneğiyle devam edersek, momentumu çok iyi bilindiğinden momentum uzayında,

$$\phi(p) = \sqrt{2\pi\hbar}\delta(p - p') \tag{66}$$

şeklinde bir dalga paketi fonksiyonu önerebiliriz. Bu dalga fonksiyonu sadece p = p' iken sıfırdan farklı diğer durumlarda sıfırdır, böylece momentumun değeri kesin olarak bilinmiş olmaktadır. Önerdiğimiz bu dalga paketi ile,

$$u_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \tag{67}$$

olarak tanımlı serbest parçacık momentum özfonksiyonunu beraber kullanarak, serbest parçacığın $\psi(x)$ dalga fonksiyonunu aşağıdaki gibi dalga paketi olarak yazabiliriz,

$$\psi(x) = \int_{-\infty}^{\infty} dp \phi(p) u_p(x) = \int_{-\infty}^{\infty} dp \{ \sqrt{2\pi\hbar} \delta(p - p') \} \frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}}$$
 (68)

$$=e^{ipx/\hbar}=e^{ikx}. (69)$$

Fakat, momentum çok iyi bilindiğinden ortaya bir dalga paketi değil düzlem dalga çıkmıştır. Bu normalizasyon yöntemi Dirac normalizasyonu olarak adlandırlır. Bir önceki normalizasyondaki gibi bir sonuç elde etmek için Dirac delta gibi çok keskin bir dalga paketi yerine yine keskin ama her noktada tanımlı bir dalga paketi tercih edilebilir. Böylece gerçek fiziksel demet daha iyi temsil edilmiş olur. Buradaki momentum dalga paketi fonksiyonu çok keskin olduğundan $\Delta p = 0$ 'dir, fakat Heisenberg'in belirsizlik ilkesi gereği, $\Delta x \to \infty$ olur. $\psi(x)$ 'i daha gerçekçi ve normalize edilebilir hale getirmek için dirac delta

Figure 5: $\alpha \to 0$ için Dirac dağılımına yaklaşan bir gausyen fonksiyon.

fonksiyonu yerine Şekil 5'teki gibi bir gausyen fonksiyon seçilebilir. Böylece q = p - p' olmak üzere $\psi(x)$ için,

$$\psi(x) = e^{ip'x/\hbar} \int_{-\infty}^{\infty} dq \delta(q) e^{iqx/\hbar}$$
 (70)

dalga paketi yazılabilir. Bu dalga paketi çok yavaş değişen ve ilgilenilen bölgede (örneğin demet uzunluğu) neredeyse sabit olan bir dağılım olacaktır. Böylece ıraksamayan, normalize edilebilen daha gerçekçi bir serbest dalga yazılmış olur.

3. Serbest parçacık dalga fonksiyonunun normalizasyonun ıraksamasına sebep olan parçacığın, sonsuz kuyuda olduğu gibi, uzayda herhangi bir yere hapsedilmemiş olmasından kaynaklanmaktadır. Eğer parçacığın sınırlı bir bölgede nerede olduğu sorusunun cevabını

aramayı bırakırsak böyle bir sorun da ortaya çıkmamış olur. Bunun yerine olasılık akımı veya akısı ile ilgilenirsek,

$$j(x) = \frac{\hbar}{2im} \left[\psi^*(x) \frac{d\psi(x)}{dx} - \frac{d\psi^*(x)}{dx} \psi(x) \right]$$
 (71)

normalizasyon problemini daha rahat aşabiliriz. Yukarıdaki tanımına göre $Ce^{\pm ipx/\hbar}$ gibi bir serbest dalga fonksiyonu için akı $\pm |C|^2p/m$ olur. Olasılık yoğunluğu ve dalga fonksiyonu arasındaki bağıntı hatırlanırsa,

$$P(x)dx = |\psi(x)|^2 dx = |C|^2 dx \implies [|C|^2] \equiv 1/m$$
 (72)

serbest parçacığın düzlem dalgası için $|C|^2$ 'nin bir boyutta 1 parçacık/m kadarlık bir parçacık olasılık yoğunluğunu tanımladığı ortaya çıkar. Böylece $[\pm |C|^2 p/m] \equiv 1/s$ olacağı açıktır. Sonuçta bir boyutlu olasılık akısı ile birim uzunluktan ve birim zamanda geçebilecek parçacık olasılığı hesaplanmış olur. Bu sonuca göre, normalize etmeye çalıştığımız serbest parçacık dalga fonksiyonu (Denk. 67) $|C|^2 = 1/2\pi\hbar$ (1/metre) yoğunluklu bir parçacık demetini temsil etmektedir.

Üç boyutlu durumdaysa serbest parçacık dalga fonksiyonu,

$$u_p(\vec{r}) = Ce^{i\vec{p}\cdot\vec{r}/\hbar} \tag{73}$$

halini alır ve akı yine $|C|^2p/m$ olur. Fakat birimi $\frac{1/s}{m^2}$ olur, çünkü \vec{p} momentum vektörüne dik bir birim alandan geçen ve birim hacim başına $|C|^2$ kadar yoğunluğa sahip parçacık demetini temsil eder.

Figure 6: Parçacıkların akısı ve hızları arasındaki bağıntının temsili resmi. **Akı:** birim zamanda ilgili parçacıkların hızına dik olan birim alandan geçen parçacık sayısıdır.

3.4.2 Yozlaşmış (Dejenere) Durumlar

Enerji özdeğeri denkleminin (Denk. 59), $u_1(x) = e^{ikx}$ ve $u_2(x) = e^{-ikx}$ olmak üzere birbirinden bağımsız iki çözümü vardır. Benzer şekilde bu denklemin reel çözümleri $u_1(x) = \cos(kx)$ ve $u_2(x) = \sin(kx)$ 'te bağımsız çözümlerdir. Bu çözümlerden hangi $u_1(x)$, $u_2(x)$ ikilisi seçilirse seçilsin, sonsuz kuyudaki parçacık probleminden farklı olarak, her ikiside aynı enerji özdeğerine sahip olacaktır. Serbest parçacık için Hamiltonyen işlemcisi her iki çözüme uygulandığında aşağıdaki sonuca ulaşılacağı rahatça gösterilebilir.

$$-\frac{\hbar^2}{2m}\frac{d^2u_1(x)}{dx^2} = Eu_1(x), \qquad -\frac{\hbar^2}{2m}\frac{d^2u_2(x)}{dx^2} = Eu_2(x)$$
 (74)

Birden çok bağımsız özfonksiyonun bir hermityen işlemcinin aynı özdeğerine karşılık geldikleri durumlarla karşılaşılabilir, bu tür durumlara yozlaşmış (dejenere) durumlar denir.

Her iki dejenere özfonksiyon ikilisi de birbirlerine diktir (ortogonaldir). Aşağıdaki integraller $k \neq 0$ ve $a \to \infty$ (serbest parçacık olması için a sonsuza gitmelidir) olmak üzere dejenere özfonksiyonların birbirlerine dik olduklarının kanıtlarıdır.

$$\int_{-a}^{a} dx \left(\frac{1}{\sqrt{a}}e^{-ikx}\right)^* \left(\frac{1}{\sqrt{a}}e^{ikx}\right) = 0 \quad \text{ve} \quad \int_{-a}^{a} dx \sin kx \cos kx = 0$$
 (75)

Aynı enerjiye $E = \hbar^2 k^2/2m$ karşılık gelen kaç tane dejenere durum (özfonksiyon) olursa olsun, bu özfonksiyonlar farklı enerjilere ait özfonksiyonlara daima diktirler.

Enerji özdeğerine göre dejenere olan özfonksiyonlar başka bir operatörün de özfonksiyonları olabilirler ve bu diğer operatöre göre dejenere olmayabilirler. Örneğin momentum işlemcisi (\hat{p}) için $e^{\pm ikx}$ özfonksiyonları dejenere değildirler.

$$\hat{p}e^{ikx} = \frac{\hbar}{i}\frac{d}{dx}e^{ikx} = \hbar ke^{ikx}$$

$$\hat{p}e^{-ikx} = \frac{\hbar}{i}\frac{d}{dx}e^{-ikx} = -\hbar ke^{-ikx}$$
(76)

 $p=\hbar k$ olmak üzere $\pm p$ her iki özfonksiyon için iki farklı özdeğer mevcuttur.

Eğer $\cos(kx)$ ve $\sin(kx)$ çiftini inceleyecek olsaydık, bu iki özfonksiyonu birbirinden ayırt edecek olan momentum işlemcisi olmazdı. Çünkü bu özfonksiyonlar momentum işlemcisinin özfonksiyonları değildirler. Bu özfonksiyonları ayırt etmemizi sağlayacak başka bir kavram vardır: x'e göre $\cos(kx)$ çift ve $\sin(kx)$ tek fonksiyondur. Çift veya tek olma özdeğerleri olarak adlandırabileceğimiz bu durumları \hat{P} parite işlemcisi olarak adlandırcağımız işlemci vermektedir.

$$\hat{P}\cos(kx) = \cos(-kx) = +1\cos(kx)$$

$$\hat{P}\sin(kx) = \sin(-kx) = -1\sin(kx)$$
(77)

Yukarıdaki işlemlerin sonucuna göre her iki özfonksiyon için \hat{P} 'nin ± 1 şeklinde farklı iki özdeğeri mevcuttur. Buna göre $\cos(kx)$ çift parite ve $\sin(kx)$ tek parite özdeğerlidir.

3.4.3 Parite

Bir serbest parçacığın veya (-a/2 ve + a/2 sınırlı ve x = 0 etrafında simetrik olan) bir sonsuz kuyu içindeki parçacığın $\sin(kx)$ ve $\cos(kx)$ özfonksiyonlarıyla tanımlanabildiğini gördük. Bu özfonksiyonlar $x \to -x$ dönüşümü altında tek veya cift fonksiyonlardır. Sonsuz kuyu içeresindeki örneği düşünecek olursak; bu sistemin (taban seviyesindeki) ilk durumu $\psi(x)$ x'e göre cifttir. Bunun anlamı $n = 1, 3, 5, \ldots$ olmak üzere cift veya,

$$\psi(x) = \sum_{n} A_n \sqrt{\frac{2}{a}} \cos \frac{n\pi x}{a} \tag{78}$$

şeklinde olmalıdır. Zamana göre değişimi ise,

$$\psi(x,t) = \sum_{n} A_n \sqrt{\frac{2}{a}} \cos \frac{n\pi x}{a} e^{-iE_n t/\hbar}$$
(79)

olacaktır. Zamana bağlı dalga fonksiyonunun da x'e göre hala çift kalacağı açıktır. Aynı durum başlangıçta tek fonksiyon olan dalga fonksiyonları için de geçerlidir. Böylece x=0 civarında simetrik olan bu sistem için çiftlik veya teklik zamandan bağımsız bir özelliktir. Bu durumda çift ve tek olma durumlarına bu hareketin sabitleridir, denebilir.

Fizikte herhangi bir harekete ait sabitler daima önemlidir, çünkü sabitin temsil ettiği ilgili niceliğin zamanla (veya ilgili olduğu boyutla; zaman, konum, momentum vb.) korunduğunu gösterir. Bu tür sabitleri formülleştirmek faydalıdır; cift veya tek olma durumunu parite işlemcisi \hat{P} ile formülleştirebiliriz. İşlemcinin görevi basitçe $x \to -x$ yansımasını gerçekleştirmektir. Parite işlemcisi herhangi bir dalga fonksiyonuna uygulandığına,

$$\hat{P}\psi(x) = \psi(-x) \tag{80}$$

işlemini gerçekleştirir. Çift ve tek fonksiyonlar için bu işlemin sonucu,

$$\hat{P}\psi^{(+)}(x) = \psi^{(+)}(x) \quad \text{ve} \quad \hat{P}\psi^{(-)}(x) = -\psi^{(-)}(x)$$
 (81)

olarak bulunur. Bu iki denklem özdeğer denklemleridir; \hat{P} 'nin +1 özdeğeri veren durumu için özfonksiyonlar çift fonksiyonlardır ve -1 özdeğeri için ise tek fonksiyonlardır. Sonsuz kuyu durumundaki özfonksiyonlar sadece \hat{H} 'nin özfonksiyonu değillerdir, aynı zamanda \hat{P} 'nin de özfonksiyonlarıdırlar. Parite işlemcisinin sadece ± 1 özdeğerlerini alması mümkündür. Farz edelim ki;

$$\hat{P}u(x) = \lambda u(x) \tag{82}$$

olsun. \hat{P} 'yi bir kere daha uygularsak,

$$\hat{P}^2 u(x) = \hat{P} \lambda u(x) = \lambda^2 u(x)$$
 ve böylece $\hat{P}^2 u(x) = u(x)$ (83)

olur. Çünkü iki defa yansıma altında u(x) aynı kalır. Böylece $\lambda^2=1$ olacağından $\lambda=\pm 1$ olacağı açıktır. Herhangi bir $\psi(x)$ fonksiyonu aşağıdaki gibi tek ve çift fonksiyonların toplamı olarak yazılabilir,

$$\psi(x) = \frac{\psi(x) + \psi(-x)}{2} + \frac{\psi(x) - \psi(-x)}{2}.$$
 (84)

İspat: $\psi(x)$ çift g ve tek h fonksiyonlarının toplamı olsun. Böylece $\psi(x) = g(x) + h(x)$ yazılabilir. Bu durumda $\psi(-x) = g(x) - h(x)$ olur. Sonrasında ise $g(x) = \frac{\psi(x) + \psi(-x)}{2}$ ve $h(x) = \frac{\psi(x) - \psi(-x)}{2}$ olarak bulunur. h(x) ve g(x) yerlerine konursa Denk. 84'e ulaşılır.

Böylece \hat{H} işlemcisinin buraya kadar bahsedilen özfonksiyonları için olduğu gibi herhangi bir dalga fonksiyonu da bu yeni işlemcinin özfonksiyonlarının açılımı olarak yazılabilir.

Çift ve tek olma durumlarının çok açık bir şekilde görünür olmasının nedeni sonsuz kuyunun merkezini x=0'da seçmiş olmamızdandır. Eğer 0 ve a sınırlarına sahip sonsuz kuyu durumunu çalışsaydık bile, pek değişen bir şey olmazdı. İlkine göre bu durumda simetrinin gözlenmesi daha açık olmasa da simetri ekseninin x=a/2'de olacağı kestirilebilirdi. Buradan çıkarılabilecek önemli bir ders: kuantum mekaniği problemlerinde Hamiltonyen işlemcisinin mümkün olan simetrilerinin ortaya çıkarılmasının önemli olduğudur. Simetrileri daha açık hale getirecek koordinatların seçiminin de ayrıca önemli olduğu ortadadır.

Eğer Şekil 7'deki gibi bir potansiyel içeren bir kuantum sistemi çalışılıyor olsaydı, koordinat sistemi tercihiyle simetrik bir durum yaratmak mümkün olmazdı. Anlaşılıyor ki; simetri

Figure 7: Yansıma (ayna) simetrisi içermeyen bir potansiyel örneği.

Hamiltonyenin içinde olmalıdır. Bu durum hangi şartlar altında çift (veya tek) özfonksiyonlar zamanla değişmeden kalır sorusunun cevaplanmasıyla ortaya çıkarılabilir.

Şekil 7'deki gibi bir sistemin bir çift özfonksiyonu başlangıçta (t = 0'da),

$$\psi(x,0) = \psi(-x,0) \equiv \psi^{(+)}(x) \tag{85}$$

olarak tanımlanabilir. Bu sistemin zamanla gelişimi,

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \hat{H}\psi(x,t) \tag{86}$$

ile tanımlanır. Bu denkleme \hat{P} işlemcisi uygulanırsa,

$$i\hbar \frac{\partial}{\partial t} \hat{P}\psi(x,t) = \hat{P}\hat{H}\psi(x,t) \tag{87}$$

elde edilir. Eğer $\hat{H}, x \to -x$ yansıması altında, çift kalıyorsa (V(x) ve $\frac{d^2}{dx^2}$ çift ise bu mümkündür);

$$i\hbar \frac{\partial}{\partial t} [\hat{P}\psi(x,t)] = \hat{H}[\hat{P}\psi(x,t)] \tag{88}$$

sonucuna ulaşılır. Böylece

$$\psi^{(+)}(x,t) = \frac{1}{2}(1+\hat{P})\psi(x,t) \quad \text{ve} \quad \psi^{(-)}(x,t) = \frac{1}{2}(1-\hat{P})\psi(x,t)$$
 (89)

Schrödinger denklemini birbirinden bağımsız olarak sağlayan bu iki çözüm önerilebilir. Çözümlerin zamanla bir birine karışmayacağı ve sistemin ilk durumu ne olursa olsun ilk durumun zamanla değişmeden korunacağı iki çözüm elde edilmiş olur. Paritenin zamanla değişmezliğini bütün mümkün durumlar için aşağıdaki eşitliğin sağlanması garanti altına alır.

$$(\hat{P}\hat{H} - \hat{H}\hat{P})\psi(x,t) = 0 \tag{90}$$

Bu eşitlik kısaca,

$$[\hat{P}, \hat{H}] = 0 \tag{91}$$

olarak yazılabilir ve \hat{P} ve \hat{H} işlemcilerinin komütasyon özelliğini sağlaması şartı olarak adlandırılır.

Akdeniz Üniversitesi

Bu önemli şart oldukça genel bir ifadeyle "zamana bağlılığı açık olmayan ve \hat{H} Hamiltonyen ile komüte eden herhangi bir işlemci ilgili hareketin sabitidir" olarak tanımlanır. Örneğin potansiyel V(x,t) şeklinde zamana bağlı ise enerji artık bir hareket sabiti olmaktan çıkar. Dahası, bu durumda Schrödinger denklemi zamana bağlı ve zamandan bağımsız kısım olarak ikiye ayrılamayacağından bir enerji özdeğeri denklemi de elde edilemez.

Özet olarak, dejenere özfonksiyonların birbirinden farklı olduklarınının gözlenmesini sağlayan aynı özfonksiyonların başka bir hermityen işlemcinin de özfonksiyonları olmalarıdır. Yukarıda bahsi geçen \hat{p} ve \hat{P} işlemcilerinin her ikisi de \hat{H} Hamiltonyen işlemcisiyle komüt edebilirler. Her iki işlemci de \hat{H} ile komütasyon şartını sağladıklarından \hat{H} 'nin özfonsiyonları bu iki işlemcinin de eşzamanlı özfonksiyonlarıdır. Fakat bu durumun aksine \hat{p} ve \hat{P} komüt etmezler bu nedenle özfonksiyonları aynı değildir.

Kaynaklar

[1] Zbigniew Ficek. Quantum Physics for Beginners.