Estructuras de Datos

Tabla de Dispersión – HASH

Teórico Programación 3

Temario

- Motivación
- Definiciones
- Función de Dispersión
- Resolución de Colisiones
- Reestructuración de las tablas de dispersión

Motivación (1/3)

Especificación TAD Diccionario

```
PROCEDURE Vacio (): Dicc;
(* retorna el diccionario vacío *)

PROCEDURE Insertar (i: T; D: Dicc): Dicc;
(* retorna un nuevo diccionario que consiste de todos los elementos de Dicc más el elemento i, si es que i no era ya un elemento de D*)

PROCEDURE EsVacio (D: Dicc): BOOLEAN
(* retorna TRUE si D es vacío *)

PROCEDURE Pertenece (i: T; D: Dicc): BOOLEAN;
(* retorna TRUE si i es un elemento de D*)

PROCEDURE Borrar (i: T; D: Dicc): Dicc;
(* Borra el elemento i del diccionario D. Si i no pertenece a D, el diccionario retornado es D*)

UdelaR – Fing – Inco – Programación 3
```


Motivación (2/3)

- Implementaciones posibles del TAD Diccionario
 - Listas
 - Arreglos
 - ABB

Implementación	Caso P	romedio	Peor Caso		
TAD Diccionario	Inserción	Búsqueda	Inserción	Búsqueda	
Lista no ordenada con inserción al ppcio	O(1)	O(n)	O(1)	O(n)	
Arreglo con tope	O(1)	O(n)	O(1)	O(n)	
ABB	O(log _n)	O(log _n)	O(n)	O(n)	
Tabla de dispersión - Hash	O(1)	O(1)		O(n)	

Depende de la estructura de datos con la que se implemente

4

Definiciones (1/2)

Tabla de dispersión

- Arreglo que contiene el producto cartesiano (clave, información) de los elementos del diccionario.
- TAMAÑO_T: tamaño de la tabla.

Función de dispersión o función de hash

- h: Claves -> 0..(TAMAÑO_T 1)
- Propiedades deseables
 - Simple de calcular.
 - Distribuya de manera uniforme las claves de los elementos entre las celdas del arreglo.

Definiciones (2/2)

 Factor de Carga (λ) de una tabla de dispersión: es la razón entre la cantidad de elementos de la tabla (N) y el tamaño de la misma (TAMAÑO_T).

$$\lambda = \frac{N}{TAMA\tilde{N}O_T}$$

Función de Dispersión

- Las claves de los elementos por lo general son
 - valores enteros
 - Caso claves aleatorias =>ejemplo función dispersión: clave % TAMAÑO_T
 - Caso claves con alguna particularidad
 - cadenas de caracteres

```
int h (const char * clave, int largo){
    int disp = 0;
    for(int i=0; i < largo; i++)
        disp += clave[i];

    return disp % TAMAÑO_T;
}</pre>
```

Ejemplo

$$a = 97, b=98, c=99, ...$$

 $h("a",1) = 97$
 $h("ab",2) = 195$
 $h("abc",3) = 294$
A estos valores falta realizar el % según

TAMAÑO T

- Colisión: cuando dos elementos caen en una misma celda del arreglo al aplicar la función de dispersión.
- Estrategias de Resolución de Colisiones
 - Dispersión Abierta
 - Dispersión Cerrada
 - Re-dispersión Lineal
 - Re-dispersión Cuadrática
 - Re-dispersión Doble

Dispersión Abierta

 Dispersión Abierta: se resuelven las colisiones utilizando listas en las que se mantienen todos los elementos que tienen la misma dispersión.

Ejemplo

- □ Función de dispersión: h(x) = x%10
- Elementos a insertar: 0, 1, 81, 31

Dispersión Abierta

Elementos a insertar: 0, 1, 81, 31

h(0) = 0 % 10 = 0

Dispersión Abierta

Elementos a insertar: 0, 1, 81, 31

$$h(1) = 1 \% 10 = 1$$

9

Resolución de Colisiones

Dispersión Abierta

Elementos a insertar: 0, 1, 81, 31

Dispersión Abierta

Elementos a insertar: 0, 1, 81, 31

Dispersión Abierta

- Búsqueda de un elemento x en la tabla de dispersión
 - Evaluar la función de dispersión con la clave del elemento (x), de manera de identificar cual lista se debe recorrer.
 - 2. Recorrer la lista hasta encontrar el elemento o llegar al final de la misma.

¿Cómo se implementaría la eliminación?

Dispersión Abierta

Factor de Carga (λ)

$$\lambda = \frac{N}{TAMA\tilde{N}O_T}$$

- Si la distribución de elementos es homogénea, entonces la longitud media de cada lista es λ.
- Por lo que una búsqueda lleva
 - El tiempo constante (k) requerido para evaluar la función de dispersión.
 - El tiempo necesario para recorrer la lista (λ).

$$\rightarrow O(k + \lambda) = O(1)$$

Dispersión Abierta

- Reglas generales en el caso de dispersión abierta
 - definir el tamaño de la tabla casi tan grande como el número de elementos esperados, de manera que $\lambda \cong 1$
 - definir el tamaño de la tabla tal que sea un número primo, de manera de obtener una buena distribución.

- Estrategias de Resolución de Colisiones
 - Dispersión Abierta
 - Dispersión Cerrada
 - Re-dispersión Lineal
 - Re-dispersión Cuadrática
 - Re-dispersión Doble

Dispersión Cerrada

- Dispersión Cerrada: cuando ocurren colisiones se resuelven tratando de buscar una celda libre alternativa en el arreglo.
- Inserción: al insertar un elemento x se intenta colocarlo en una sucesión de celdas $h_0(x)$, $h_1(x)$, $h_2(x)$, ...

donde
$$h_i(x) = (h(x) + f(i)) \% TAMAÑO_T con $0 \le i \le TAMAÑO_T$
con $f(0) = 0$$$

 La función f(i) es la estrategia de re-dispersión o estrategia de resolución de colisiones.

Dispersión Cerrada

- Estrategias de Resolución de Colisiones
 - Re-dispersión Lineal
 - Re-dispersión Cuadrática
 - Re-dispersión Doble

Dispersión Cerrada – Re-dispersión Lineal

- La función de re-dispersión es f(i) = i
- Inserción: al insertar un elemento x se intenta colocarlo en una sucesión de celdas $h_0(x)$, $h_1(x)$, $h_2(x)$, ...

donde
$$h_i(x) = (h(x) + f(i)) \% TAMAÑO_T con $0 \le i \le TAMAÑO_T$
con $f(0) = 0$$$

Dispersión Cerrada – Re-dispersión Lineal

Ejemplo

• Función de dispersión: h(x) = x%10

Elementos a insertar: 89, 18, 49, 58, 69

Primera versión:

0	1	2	3	4	5	6	7	8	9

$$h(89) = 89 \% 10 = 9$$

Dispersión Cerrada – Re-dispersión Lineal

Elementos a insertar: 89, 18, 49, 58, 69

$$h(18) = 18 \% 10 = 8$$

Dispersión Cerrada – Re-dispersión Lineal

Elementos a insertar: 89, 18, 49, 58, 69

0	1	2	3	4	5	6	7	8	9
								18	89

$$h(49) = 49 \% 10 = 9$$

En este caso hay colisión

Aplico la función de re-dispersión lineal f(i) = i

$$h_i(x) = (h(x) + f(i))\%10 = (h(x) + i)\%10$$

con i =
$$0 \rightarrow h_0(49) = (h(49) + 0)\%10 = 9$$
 celda ocupada

con i = 1 ->
$$h_1(49) = (h(49) + 1)\%10 = 0$$
 celda libre

Dispersión Cerrada – Re-dispersión Lineal

Elementos a insertar: 89, 18, 49, 58, 69

	1	2	3	4	5	6	7	8	9
49								18	89

h(58) = 58 % 10 = 8En este caso hay colisión

Aplico la función de re-dispersión lineal $h_i(x) = h(x) + i)\%10$

con i = 0 ->
$$h_0(58)$$
 = $(h(58) + 0)\%10$ = 8 celda ocupada con i = 1 -> $h_1(58)$ = $(h(58) + 1)\%10$ = 9 celda oucpada con i = 2 -> $h_2(58)$ = $(h(58) + 2)\%10$ = 0 celda ocupada con i = 3 -> $h_3(58)$ = $(h(58) + 3)\%10$ = 1 celda libre

0	1	2	3	4	5	6	7	8	9
49	58							18	89

Dispersión Cerrada – Re-dispersión Lineal

Elementos a insertar: 89, 18, 49, 58, 69

	 J	4	5	6	/	8_	9
49 58						18	89

h(69) = 69 % 10 = 9En este caso hay colisión

Aplico la función de re-dispersión lineal $h_i(x) = h(x) + i)\%10$

con i =
$$0 \rightarrow h_0(69) = (h(69) + 0)\%10 = 9$$
 celda ocupada

con i = 1 ->
$$h_1(69) = (h(69) + 1)\%10 = 0$$
 celda oucpada

con i = 2 ->
$$h_2(69) = (h(69) + 2)\%10 = 1$$
 celda ocupada

con i =
$$3 -> h_3(69) = (h(69) + 3)\%10 = 2$$
 celda libre

Dispersión Cerrada – Re-dispersión Lineal

- Búsqueda de un elemento x en la tabla de dispersión
 - Caso NO se permiten las eliminaciones
 - La búsqueda de un elemento x requiere examinar la celda h(x) y las celdas sucesivas hasta encontrar x ó una celda vacía.

_ 0	1	2	3	4	5	6	7	8	9
49	58	69						18	89

- Caso SI se permiten las eliminaciones
 - nunca puede existir la certeza al encontrar una celda vacía, sin haber encontrado el elemento x, que x no se encuentre en otra celda y la celda hubiese estado ocupada al momento de su inserción.

49 8 69 18 89	0 \	1	_ 2	3	4	5	6	7	8	9
	49	38	69						18	89

Dispersión Cerrada – Re-dispersión Lineal

- Solución al problema anterior: en la estructura de datos asociada a cada celda de la tabla se almacena
 - el elemento a guardar
 - un valor de tipo enumerado para indicar las siguientes situaciones
 - Vacío: la celda nunca ha sido usada.
 - Suprimido: la celda en algún momento guardó un elemento que ha sido borrado.
 - Ocupado: la celda contiene un elemento.

Dispersión Cerrada – Re-dispersión Lineal

Ejemplo

□ Función de dispersión: h(x) = x%10

Elementos a insertar: 3, 40, 84, 33

Segunda versión:

0	1	2	3	4	5	6	7
V	V	٧	V	V	V	V	V

$$h(3) = 3 \% 10 = 3$$

El tamaño de la tabla es 8, pero se

más sencillas al momento de

calcular la función h(x).

utilizó % 10 para que las cuentas sean

Dispersión Cerrada – Re-dispersión Lineal

Elementos a insertar: 3, 40, 84, 33

0 1 2 3 4 5 6 7

V	V	V	0	٧	٧	V	V
			3				

$$h(40) = 40 \% 10 = 0$$

Dispersión Cerrada – Re-dispersión Lineal

Elementos a insertar: 3, 40, 84, 33

0 1 2 3 4 5 6 7

0	٧	٧	0	٧	٧	٧	٧
40			3				

$$h(84) = 84 \% 10 = 4$$

Dispersión Cerrada – Re-dispersión Lineal

Elementos a insertar: 3, 40, 84, 33

_0	1	2	3	4	5	6	7
0	V	V	0	0	<	٧	<
40			3	84			

$$h(33) = 33 \% 10 = 3$$

En este caso hay colisión

Aplico la función de re-dispersión lineal
$$h_i(x) = h(x) + i)\%10$$

con i =
$$0 \rightarrow h_0(33) = (h(33) + 0)\%10 = 3$$
 celda ocupada

con i = 1 ->
$$h_1(33) = (h(33) + 1)\%10 = 4$$
 celda oucpada

con i = 2 ->
$$h_2(33) = (h(33) + 2)\%10 = 5$$
 celda libre

Dispersión Cerrada – Re-dispersión Lineal

Elemento a buscar: 44

0	1	2	3	4	5	6	_ 7
0	V	V	0	0	0	V	V
40			3	84	33		

$$h(44) = 44 \% 10 = 4$$

Busco en la celda 4 que se encuentra ocupada y no se encuentra el elemento 44. Busco en la celda 5 que se encuentra ocupada y no se encuentra el elemento 44. Busco en la celda 6 y se encuentra vacía, por lo tanto, el elemento 44 no se encuentra la tabla de dispersión.

Dispersión Cerrada – Re-dispersión Lineal

Se elimina el elemento: 84

Elemento a buscar: 33

O V V O S D V V 40 3 3 3 4 4	 0	1	2	3	4		5	f	5	7
40 3 33	O	>	V	0	S		o		\	٧
	40			3		1	3			

$$h(33) = 33 \% 10 = 3$$

Busco en la celda 3 que se encuentra ocupada y no se encuentra el elemento 33. Busco en la celda 4, se saltea porque se suprimió un elemento anteriormente. Busco en la celda 5 que se encuentra ocupada y se encuentra el elemento 33.

Notar que de no tener estas marcas se hubiera parado la búsqueda en la celda 4.

Dispersión Cerrada – Re-dispersión Lineal

```
/* Retorna el índice donde se detiene la búsqueda, esto puede ser por: recorrer todo el arreglo, encontrar el elemento ó encontrar celda vacía. */
int buscar(Hash tabla, Tipo_Clave clave){
    int ini = h(clave);
    int i
            = 0;
    int pos = ini;
    while ((i < TAMAÑO_T) && (darMarca(tabla[pos]) <> VACIO)) {
          if ((darMarca(tabla[pos]) == SUPRIMIDO) ||
                                          !cmpClaves(darClave(tabla[pos]), clave)){
                    i++;
                     pos = (ini+i)%TAMAÑO_T; // re-dispersión lineal
    return pos;
```


Dispersión Cerrada – Re-dispersión Lineal

```
bool pertenece (Hash tabla, Tipo_Clave clave){
  int pos = buscar(tabla, clave);
  if ((darMarca(tabla[pos]) <> VACIO) && (darMarca(tabla[pos]) <> SUPRIMIDO))
    return cmpClaves(darClave(tabla[pos]),clave);
  else return false;
}
```


Dispersión Cerrada – Re-dispersión Lineal

```
// Pre-condición: la tabla no está llena
void insertar (Hash tabla, Tipo_Clave clave, Tipo_Elemento e){
   int pos = buscar(tabla, clave);
   if((darMarca(tabla[pos]) == OCUPADO) &&
                                   cmpClaves(darClave(tabla[pos]), clave))
        printf("iYa existe el elemento en la tabla!");
   else {
         pos = buscar2(tabla, clave); //se detiene también con SUPRIMIDO.
        agregarElem(tabla[pos], e);
        marcar(tabla[pos], OCUPADO);
```


Dispersión Cerrada – Re-dispersión Lineal

- Consideraciones a tener en cuenta
 - la eficiencia no solo depende de la función de dispersión y como ésta distribuye los elementos en las celdas, sino también de cómo la estrategia de re-dispersión evita colisiones adicionales.
 - agrupamiento primario

- Estrategias de Resolución de Colisiones
 - Dispersión Abierta
 - Dispersión Cerrada
 - Re-dispersión Lineal
 - Re-dispersión Cuadrática
 - Re-dispersión Doble

Dispersión Cerrada – Re-dispersión Cuadrática

- Método de resolución de colisiones que elimina el problema de agrupamiento primario.
- La función de re-dispersión es f(i) = P

Dispersión Cerrada – Re-dispersión Cuadrática

- Ejemplo
 - □ Función de dispersión: h(x) = x%10
 - Elementos a insertar: 1, 33, 43, 99, 34, 79, 89

$$h(1) = 1 \% 10 = 1$$

Dispersión Cerrada – Re-dispersión Cuadrática

Elementos a insertar: 1, 33, 43, 99, 34, 79, 89

0	1	2	3	4	5	6	7	8	9
V	0	٧	V	V	V	V	V	V	V
	1								

$$h(33) = 33 \% 10 = 3$$

Dispersión Cerrada – Re-dispersión Cuadrática

Elementos a insertar: 1, 33, 43, 99, 34, 79, 89

$$h(43) = 43 \% 10 = 3$$

En este caso hay colisión

Aplico la función de re-dispersión cuadrática f(i) = P

$$h_i(x) = (h(x) + f(i))\%10 = (h(x) + i^2)\%10$$

con i =
$$0 \rightarrow h_0(43) = (h(43) + 0)\%10 = 3$$
 celda ocupada

con i = 1 ->
$$h_1(43) = (h(43) + 1)\%10 = 4$$
 celda libre

Dispersión Cerrada – Re-dispersión Cuadrática

Elementos a insertar: 1, 33, 43, 99, 34, 79, 89

0 1 2 3 4 5 6 7 8 9

V	O	V	0	0	V	V	V	V	٧
	1		33	43					

$$h(99) = 99 \% 10 = 9$$

Dispersión Cerrada – Re-dispersión Cuadrática

Elementos a insertar: 1, 33, 43, 99, 34, 79, 89

0	1	2	3	4	5	6	7	8	9
V	0	V	0	О	V	V	٧	٧	0
	1		33	43					99

$$h(34) = 34 \% 10 = 4$$

En este caso hay colisión

Aplico la función de re-dispersión cuadrática $h_i(x) = (h(x) + i^2)\%10$

con i =
$$0 \rightarrow h_0(34) = (h(34) + 0)\%10 = 4$$
 celda ocupada

con i = 1 ->
$$h_1(34) = (h(34) + 1)\%10 = 5$$
 celda libre

Dispersión Cerrada – Re-dispersión Cuadrática

Elementos a insertar: 1, 33, 43, 99, 34, 79, 89

F	0	1	2	3	4	5	6	7	8	9
	V	0	V	0	0	0	V	V	V	0
		1		33	43	34				99

En este caso hay colisión

Aplico la función de re-dispersión cuadrática
$$h_i(x) = (h(x) + i^2)\%10$$

con i =
$$0 \rightarrow h_0(79) = (h(79) + 0)\%10 = 9$$
 celda ocupada

con i = 1 ->
$$h_1(79) = (h(79) + 1)\%10 = 0$$
 celda libre

Dispersión Cerrada – Re-dispersión Cuadrática

Elementos a insertar: 1, 33, 43, 99, 34, 79, 89

$$h(89) = 89 \% 10 = 9$$

En este caso hay colisión

Aplico la función de re-dispersión cuadrática
$$h_i(x) = (h(x) + i^2)\%10$$

con i =
$$0 \rightarrow h_0(89) = (h(89) + 0)\%10 = 9$$
 celda ocupada

con i = 1 ->
$$h_1(89) = (h(89) + 1)\%10 = 0$$
 celda ocupada

con i = 2 ->
$$h_2(89) = (h(89) + 4)\%10 = 3$$
 celda ocupada

con i =
$$3 \rightarrow h_3(89) = (h(89) + 9)\%10 = 8$$
 celda libre

0	0	V	0	0	0	V	V	0	0
79	1		33	43	34			89	99

Dispersión Cerrada – Re-dispersión Cuadrática

- Consideraciones a tener en cuenta
 - No hay garantía de encontrar una celda vacía si la tabla se llena a más de la mitad, o aún antes si el tamaño de la tabla no es primo.

0	1	2	3
ocup.	ocup.	vacio	vacio
4	1		

Función de dispersión h(x) = x%4Se quiere insertar el 8:

$$h(8)=0$$
, ocupado

$$h_1(8)=(0 + 1)\%4 = 1$$
, ocupado

$$h_2(8)=(0 + 4)\%4 = 0$$
, ocupado

$$h_3(8)=(0 + 9)\%4 = 1$$
, ocupado

$$h_4(8)=(0 + 16)\%4 = 0$$
, ocupado

Agrupamiento Secundario.

Dispersión Cerrada – Re-dispersión Cuadrática

- Solución al problema descrito anteriormente
 - Si se utiliza re-dispersión cuadrática y el tamaño de la tabla de dispersión es **primo**, entonces siempre se puede insertar un elemento nuevo si la tabla de dispersión está, **al menos**, **medio vacía**.

- Estrategias de Resolución de Colisiones
 - Dispersión Abierta
 - Dispersión Cerrada
 - Re-dispersión Lineal
 - Re-dispersión Cuadrática
 - Re-dispersión Doble

Dispersión Cerrada – Re-dispersión Doble

- Si al intentar insertar el elemento x existe colisión, entonces se aplica una segunda función de dispersión $h_2(x)$
 - Generalmente se toma $f(i) = i.h_2(x)$ $h_i(x) = (h(x) + f(i)) \% TAMAÑO_T con 0 <= i < TAMAÑO_T$ $h_i(x) = (h(x) + i.h_2(x)) \% TAMAÑO_T con 0 <= i < TAMAÑO_T$
- Propiedades deseables de la segunda función de dispersión $h_2(x)$
 - Nunca debe evaluarse a cero.
 - Se debe asegurar que se puede probar con todas las celdas.
- Generalmente se toma $h_2(x) = R (x \% R)$ con R primo y menor que TAMAÑO_T

Dispersión Cerrada – Re-dispersión Doble

Ejemplo

□ Función de dispersión: h(x) = x % 10

■ Función de re-dispersión: $h_2(x) = 7 - (x \% 7)$

Elementos a insertar: 89, 18, 49, 58, 69, 60

0	1	2	3	4	5	6	7	8	9
V	V	V	V	V	V	V	V	V	V

$$h(89) = 89 \% 10 = 9$$

Dispersión Cerrada – Re-dispersión Doble

Elementos a insertar: 89, 18, 49, 58, 69, 60

0	1	2	3	4	5	6	7	8	9
V	V	V	V	٧	٧	V	V	V	0
									89

$$h(18) = 18 \% 10 = 8$$

Dispersión Cerrada – Re-dispersión Doble

Elementos a insertar: 89, 18, 49, 58, 69, 60

0	1	2	3	4	5	6	7	8	9
V	V	V	V	V	٧	V	٧	0	0
								18	89

$$h(49) = 49 \% 10 = 9$$

En este caso hay colisión

Aplico la función de re-dispersión doble:

$$h_i(x) = (h(x) + i.h_2(x)) \% 10 \text{ con } h_2(x) = 7 - (x \% 7) \rightarrow h_i(x) = (h(x) + i.(7 - (x \% 7))) \% 10$$

con i = 0 -> h₀(49) = (h(49) + 0.(7 - (49 % 7))) % 10 = 9 celda ocupada con i = 1 -> h₁(49) = (h(49) + 1.(7 - (49 % 7))) % 10 = 6 celda libre 0 1 2 3 4 5 6 7 8 9

V V V V V V O O O

18

89

49

Dispersión Cerrada – Re-dispersión Doble

Elementos a insertar: 89, 18, 49, 58, 69, 60

V V V V V O V O Include the control of the	9	}	7	6	5	4	3	2	1	0
40 18	0	0	٧	0	>	٧	V	٧	٧	V
	89	18		49						

$$h(58) = 58 \% 10 = 8$$

En este caso hay colisión

Aplico la función de re-dispersión doble: $h_i(x) = (h(x) + i.(7 - (x \% 7))) \% 10$

con i = 0 ->
$$h_0(58) = (h(58) + 0.(7 - (58 \% 7))) \% 10 = 8$$
 celda ocupada

con i = 1 ->
$$h_1(58) = (h(58) + 1.(7 - (58 \% 7))) \% 10 = 3$$
 celda libre

Dispersión Cerrada – Re-dispersión Doble

Elementos a insertar: 89, 18, 49, 58, 69, 60

V V V O V V O V O O 58 49 18 89	0	, 1	2	3	4	5	6	7	8	9
58 49 18 89	V	٧	V	0	V	V	0	V	0	0
				58			49		18	89

$$h(69) = 69 \% 10 = 9$$

En este caso hay colisión

Aplico la función de re-dispersión doble: $h_i(x) = (h(x) + i.(7 - (x \% 7))) \% 10$

con i = 0 ->
$$h_0(69) = (h(69) + 0.(7 - (69 \% 7))) \% 10 = 9$$
 celda ocupada

con i = 1 ->
$$h_1(69) = (h(69) + 1.(7 - (69 \% 7))) \% 10 = 1$$
 celda libre

Dispersión Cerrada – Re-dispersión Doble

Elementos a insertar: 89, 18, 49, 58, 69, 60

0	1	2	. 3	4	5	6	7	8	9
0	٧	V	0	٧	٧	0	٧	0	0
69			58			49		18	89

$$h(60) = 60 \% 10 = 0$$

En este caso hay colisión

Aplico la función de re-dispersión doble:
$$h_i(x) = (h(x) + i.(7 - (x \% 7))) \% 10$$
 con i = 0 -> $h_0(60) = (h(60) + 0.(7 - (60 \% 7))) \% 10 = 0$ celda ocupada con i = 1 -> $h_1(60) = (h(60) + 1.(7 - (60 \% 7))) \% 10 = 3$ celda ocupada con i = 2 -> $h_2(60) = (h(60) + 2.(7 - (60 \% 7))) \% 10 = 6$ celda ocupada con i = 3 -> $h_3(60) = (h(60) + 3.(7 - (60 \% 7))) \% 10 = 9$ celda ocupada con i = 4 -> $h_4(60) = (h(60) + 4.(7 - (60 \% 7))) \% 10 = 2$ celda libre

	0	1	2	3	4	5	6	7	8	9
	0	٧	0	0	V	V	0	V	0	0
(59		60	58			49		18	89

Temario

- Motivación
- Definiciones
- Función de Dispersión
- Resolución de Colisiones
- Reestructuración de las tablas de dispersión

Reestructuración Tabla Dispersión

Reestructuración de la tabla de dispersión: si N crece demasiado se crea una nueva tabla de dispersión cuyo tamaño es el número primo más cercano al doble del tamaño de la tabla anterior.

Próxima Clase

 Árboles Binarios Balanceados de Búsqueda Adel'son-Vel'skii y Landis - AVL