Геометрия

Hun Fauser

8 сентября 2014 г.

1 Площадь круга

Рис. 1: Зная диаметр или радиус круга, можно найти его площадь.

1.1 Обозначения

r = радиус круга

R = диаметр

 $\pi \approx 3.14$

1.2 Площадь круга

$$S = \pi r^2 = \frac{\pi}{4}D^2$$

1.3 Периметр круга

$$p = 2\pi r = \pi D$$

2 Площадь прямоугольника

2.1 Обозначения

b, d = длина прямоугольника

 $a,\,c=$ ширина прямоугольника

2.2 Площадь прямоугольника

S = ab

3 Площадь эллипса

3.1 Обозначения

R = большая полуось

 $\mathbf{r}=$ малая полуось

3.2 Площадь прямоугольника

$$S = \pi R r$$

4 Формула площади равнобедренной трапеции через стороны и угол

4.1 Обозначения

а - нижнее основание

b - верхнее основание

с - равные боковые стороны

 α - угол при нижнем основании

4.2 Формула площади равнобедренной трапеции через стороны

$$S = \frac{a+b}{2} \sqrt{c^2 - \frac{(a-b)^2}{4}}$$

4.3 Формула площади равнобедренной трапеции через стороны и угол

$$S = \frac{a^2 - b^2}{4} \operatorname{tg} \alpha$$

$$S = c \times \sin \alpha (a - \cos \alpha)$$

$$S = c \times \sin \alpha (b + \cos \alpha)$$

5 Формула площади равнобедренной трапеции через стороны и угол

5.1 Обозначения

R - радиус вписанной окружности

D - диаметр вписанной окружности

О - центр вписанной окружности

Н - высота трапеции

 α, β - углы трапеции

5.2 Формула площади равнобедренной трапеции через радиус вписанной окружности

$$S = \frac{R^2}{4} \sin \alpha = \frac{R^2}{4} \sin \beta$$

5.3 СПРАВЕДЛИВО, для вписанной окружности в равнобедренную трапецию

$$H = D = 2R$$

6 Формула площади равнобедренной трапеции через диагонали и угол между ними

6.1 Обозначения

d - диагональ трапеции α, β - углы между диагоналями

6.2 Формула площади равнобедренной трапеции через диагонали и угол между ними

$$S = \frac{d^2}{2}\sin\alpha = \frac{d^2}{2}\sin\beta$$

7 Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

7.1 Обозначения

с - боковая сторона m - средняя линия трапеции α, β - углы между диагоналями

7.2 Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

$$S = mc\sin\alpha = mc\sin\beta$$

8 Формула площади равнобедренной трапеции через основания и высоту

8.1 Обозначения

а - нижнее основание

b - верхнее основание

h - высота трапеции

8.2 Формула площади равнобедренной трапеции через основания и высоту

$$S = \frac{a+b}{a}h$$

9 Площадь треугольника по стороне и двум углам

9.1 Обозначения

а, b, c- стороны треугольника α, β, γ - противолежащие углы

9.2 Площадь треугольника через сторону и два угла

$$S = \frac{a^2}{2} \times \frac{\sin(\beta)\sin(\gamma)}{\sin(\beta + \gamma)} = \frac{a^2}{2} \times \frac{\sin(\beta)\sin(\gamma)}{\sin(\alpha)}$$
$$S = \frac{b^2}{2} \times \frac{\sin(\alpha)\sin(\gamma)}{\sin(\alpha + \gamma)} = \frac{b^2}{2} \times \frac{\sin(\alpha)\sin(\gamma)}{\sin(\beta)}$$
$$S = \frac{c^2}{2} \times \frac{\sin(\alpha)\sin(\beta)}{\sin(\alpha + \beta)} = \frac{c^2}{2} \times \frac{\sin(\alpha)\sin(\beta)}{\sin(\gamma)}$$

10 Формула площади правильного многоугольника

10.1 Обозначения

а - сторона многоугольника

n - количество сторон

10.2 Площадь правильного многоугольника

$$S = \frac{na^2}{4\operatorname{tg}\left(\frac{180\,^{\circ}}{n}\right)}$$

11 Площадь треугольника, формула Герона

11.1 Обозначения

а, b, c,- стороны треугольника

р - полупериметр

$$p = \frac{(a+b+c)}{2}$$

11.2 Площадь правильного многоугольника

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

12 Формула расчета площади треугольника

12.1 Обозначения

h - высота треугольника

а - основание

12.2 Площадь правильного многоугольника

$$S=\frac{1}{2}ah$$

13 Площадь сектора кольца

13.1 Обозначения

R - радиус внешней окружности

r - радиус внутренней окружности

 α - угол сектора AOB, в градусах

13.2 Формула площади сектора кольца

$$S = \frac{\pi\alpha}{360^{\circ}} (R^2 - r^2)$$

14 Площадь кольца

14.1 Обозначения

R - радиус внешней окружности r - радиус внутренней окружности

14.2 Формула площади кольца

$$S = \pi (R^2 - r^2)$$

15 Площадь сегмента круга

15.1 Обозначения

R - радиус круга

 α - угол сегмента в градусах

15.2 Формула площади сегмента круга, отсекаемая хордой ${ m AC}$

$$S = \frac{1}{2}R^2 \left(\frac{\pi\alpha}{180\,^{\circ}} - \sin\alpha\right)$$

16 Площадь сектора круга

16.1 Обозначения

r - радиус круга

L - длина дуги AB

 α - угол сектора круга AOB в градусах

16.2 Формула площади сектора круга, через длину дуги (L)

$$S = \frac{1}{2}Lr$$

16.3 Формула площади сектора круга, через угол (α):

$$S = \frac{\pi r^2 \alpha}{360^{\circ}}$$

17 Площадь ромба

17.1 Обозначения

а - сторона ромба

D - большая диагональ

d - меньшая диагональ

 α - острый угол

 β - тупой угол

17.2 Формулы площади ромба

$$S = \frac{D \times d}{2}$$

$$S = a^2 \sin \alpha = a^2 \sin \beta$$

$$S = \frac{1}{2}D^2 \operatorname{tg}\left(\frac{\alpha}{2}\right) = \frac{1}{2}d^2 \operatorname{tg}\left(\frac{\beta}{2}\right)$$

18 Формула площади трапеции через четыре стороны

18.1 Обозначения

d - нижнее основание

b - верхнее основание

a, d - боковые стороны

18.2 Формулы площади трапеции

$$S = \frac{a+b}{2}\sqrt{c^2 - \left(\frac{(a-b)^2 + c^2 - d^2}{2(a-b)}\right)^2}$$

19 Формула площади параллелограмма через стороны и углы

19.1 Обозначения

а, b - стороны параллелограмма

 α, β - углы параллелограмма

19.2 Формула площади через стороны и углы параллелограмма

$$S = ab \times \sin \alpha = ab \times \sin \beta$$

20 Формула площади параллелограмма через сторону и высоту

20.1 Обозначения

а, b - стороны параллелограмма

 H_b - высота на сторону b

 H_a - высота на сторону а

20.2 Формула площади через стороны и высоты параллелограмма

$$S = b \times H_b = a \times H_a$$

21 Формула площади параллелограмма через диагонали и угол между ними

21.1 Обозначения

D - большая диагональ

d - меньшая диагональ

 α, β - углы между диагоналями

21.2 Формула площади через диагонали параллелограмма и угол между ними

$$S = \frac{1}{2} Dd \times \sin \alpha = \frac{1}{2} Dd \times \sin \beta$$

22 Площадь треугольника, угол и две стороны

Рис. 2: Зная у треугольника, две стороны и синус угла между ними, находим по формуле, его площадь.

22.1 Обозначения

а, b, c - стороны треугольника α, β, γ - углы

22.2 Формулы площади треугольника, через две стороны и угол между ними

$$S = \frac{1}{2}bc\sin(\alpha)$$

$$S = \frac{1}{2}ac\sin(\beta)$$

$$S = \frac{1}{2}ab\sin(\gamma)$$

23 Площадь равностороннего треугольника

23.1 Обозначения

а - сторона треугольника

h - высота

23.2 Площадь треугольника через сторону а и высоту h

$$S = \frac{1}{2}ah$$

23.3 Площадь треугольника только через сторону а

$$S = \frac{\sqrt{3}}{4}a^2$$

23.4 Площадь треугольника только через высоту h

$$S = \frac{h^2}{\sqrt{3}}$$

24 площадь равнобедренного треугольника

24.1 Обозначения

b - основание треугольника

а - равные стороны

h - высота

24.2 Формула площади треугольника через высоту h и основание b

$$S = \frac{1}{2}bh$$

24.3 Формула площади треугольника через, стороны a, b

$$S = \frac{b}{4}sqrt4a^2 - b^2$$

25 Формула площади трапеции через основания и высоту

25.1 Обозначения

а - нижнее основание

b - верхнее основание

m - средняя линия

h - высота трапеции

25.2 Формула площади трапеции

$$S = \frac{(a+b)}{2} \times h = m \times h$$

26 Формула площади трапеции через диагонали и угол между ними

26.1 Обозначения

 d_1,d_2 - диагонали трапеции lpha,eta - углы между диагоналями

26.2 Формула площади трапеции

$$S = \frac{d_1 d_2}{2} \sin \alpha = \frac{d_1 d_2}{2} \sin \beta$$

27 Площадь прямоугольного треугольника по катетам

Рис. 3: Зная катеты прямоугольного треугольника, можно по формуле, найти его площадь.

27.1 Обозначения

а, b - катеты треугольника

27.2 Формула площади прямоугольного треугольника

$$S = \frac{1}{2}ab$$

28 Площадь квадрата через диагональ или сторону

28.1 Обозначения

а - сторона квадрата

с - диагональ

28.2 Формула площади квадрата через сторону а

$$S = a^2$$

28.3 Формула площади квадрата через диагональ с

$$S = \frac{1}{2}c^2$$