Dr. Andrey Soldatenkov Jan Hesmert

Algebraic Number Theory

Exercise sheet 10

Solutions should be submitted online before 29.06.20 via the Moodle page of the course: https://moodle.hu-berlin.de/course/view.php?id=95156

Exercise 10.1. (2 points) Let $K \subset L$ be a Galois extension of number fields. Assume that the order of $\operatorname{Gal}(L/K)$ is prime. Prove that any prime ideal $\mathfrak{p} \subset \mathfrak{o}_K$ that is ramified in L is totally ramified in L.

Exercise 10.2. (4 points) Let $K \subset L$ be a Galois extension of number fields, $\mathfrak{p} \subset \mathfrak{o}_L$ a prime ideal. Let G be the Galois group of L over K, $G_{\mathfrak{p}}$ the decomposition group of \mathfrak{p} and $I_{\mathfrak{p}}$ the inertia group of \mathfrak{p} . The decomposition field $L_{\mathfrak{p}}$ is the subfield of L fixed by $G_{\mathfrak{p}}$. Consider the inertial field $F_{\mathfrak{p}}$, i.e. the subfield of L fixed by $I_{\mathfrak{p}}$. Prove that $\mathfrak{p} \cap \mathfrak{o}_{L_{\mathfrak{p}}}$ is unramified in the extension $L_{\mathfrak{p}} \subset F_{\mathfrak{p}}$, and $\mathfrak{p} \cap \mathfrak{o}_{F_{\mathfrak{p}}}$ is totally ramified in the extension $F_{\mathfrak{p}} \subset L$.

Exercise 10.3. (2 points) Determine which primes divide the discriminant of the quadratic field $\mathbb{Q}(\sqrt{d})$ and hence ramify in it. Compare this to the results you obtained in Exercise 8.3 from the exercise sheet 8.

Exercise 10.4. (2+2 points) Let $K = \mathbb{Q}(\zeta)$, where ζ is a primitive p-th root of unity for some prime number p.

- 1. Prove that $|N_{K/\mathbb{O}}(\zeta-1)|=p$
- 2. Compute $Tr_{K/\mathbb{Q}}(\zeta^i)$ and $Tr_{K/\mathbb{Q}}(\zeta^i-1)$ for all i.