

Learning from Human Microbiome

Jing Ma

Statistics, Texas A&M

7 February 2020

Human Microbiome

Credit: Antoine Doré

Microbiome Data

- $X = (x_{ij})_{n \times p}$ matrix of microbiome data for *n* samples and *p* taxa
- ▶ Due to sample differences, often work with relative abundances

Scientific Questions

Exploratory analysis

- Dimension reduction (Ordination)
- Microbial interactions
- Controlling batch effects
- **>** ...

Supervised learning

- Is the microbiota associated with an outcome?
- ▶ Which taxa are associated with an outcome?
- **.**..

Scientific Questions

Exploratory analysis

- ► Dimension reduction (Ordination)
- Microbial interactions
- Controlling batch effects
- **...**

Supervised learning

- Is the microbiota associated with an outcome?
- ▶ Which taxa are associated with an outcome?

Dimension Reduction

Figure: PCoA of unweighted unifrac distances for the fecal microbiota of adults¹

¹Yatsunenko et al. Nature, 2012

Dimension Reduction

Existing methods:

► PCoA (aka MDS), DPCoA

Limitations:

- unable to visualize both samples and variables.
- unable to account for two-way structures.

Two-way Structures

- ► Similarities among samples better captured by phylogenetic tree
- ► Many methods for capturing phylogenetic distances, e.g. UniFrac dist.

Two-way Structures

► The phylogenetic tree also captures similarities among taxa.

Alternatively, can consider information from metabolic pathways.

First recall PCA biplot

First recall PCA biplot

$$X \approx u_1 v_1^{\mathsf{T}} + u_2 v_2^{\mathsf{T}}$$

▶ SVD gives $X = USV^{T}$ by solving

$$\operatorname*{arg\,min}_{\boldsymbol{U},\boldsymbol{S},\boldsymbol{V}}\|\boldsymbol{X}-\boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{\intercal}\|_{F}$$

where $||A||_F = \operatorname{trace}(A^{\mathsf{T}}A)$.

²Allen et al. JASA, 2014

▶ SVD gives $X = USV^{T}$ by solving

$$\underset{oldsymbol{U}}{\operatorname{arg\,min}} \| oldsymbol{X} - oldsymbol{U} oldsymbol{S} oldsymbol{V}^\intercal \|_F$$

where $||A||_F = \operatorname{trace}(A^{\mathsf{T}}A)$.

Consider instead a general norm to incorporate H and Q:

$$\|\boldsymbol{X} - \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{\mathsf{T}}\|_{\boldsymbol{H},\boldsymbol{Q}}$$

where $||A||_{H,Q} = \operatorname{trace}(A^{\mathsf{T}} H A Q)$.

▶ SVD gives $X = USV^{T}$ by solving

$$\underset{oldsymbol{U}}{\operatorname{arg\,min}} \| oldsymbol{X} - oldsymbol{U} oldsymbol{S} oldsymbol{V}^\intercal \|_F$$

where $||A||_F = \operatorname{trace}(A^{\mathsf{T}}A)$.

Consider instead a general norm to incorporate H and Q:

$$\|X - USV^{\mathsf{T}}\|_{H,Q}$$

where $||A||_{H,Q} = \operatorname{trace}(A^{\mathsf{T}} H A Q)$.

► The <u>GMD</u> (Gen'zd Matrix Decomp²) gives $\mathbf{X} = \mathcal{U} \mathcal{S} \mathcal{V}^{\mathsf{T}}$ such that $\mathcal{U}^{\mathsf{T}} \mathbf{H} \mathcal{U} = \mathcal{V}^{\mathsf{T}} \mathbf{Q} \mathcal{V} = I_{K}$, and \mathcal{S} is the diagonal matrix of GMD values.

The GMD-biplot 3 displays samples and variables using columns of ${\cal U}$ and ${\cal V}$

³Yue et al. mSystems, 2019

Supervised Learning with GMD

- ► GMD generalizes SVD for doubly structured data
- ▶ Can thus use GMD for supervised learning, similar to PCR

GMD Regression and Inference

- ▶ Linear model $y = X\beta + \varepsilon$
- ▶ Incorporating H and Q

$$y = \mathcal{U}\mathcal{S}\mathcal{V}^{\mathsf{T}}\beta + \varepsilon$$

Coefficient

$$\hat{\beta}_{GMD} = \mathbf{Q} \mathcal{V} \mathcal{W} \mathcal{S}^{-1} \mathcal{U}^{\mathsf{T}} \mathbf{H} \mathbf{y},$$

where \mathcal{W} is a diagonal matrix of weights:

$$\blacktriangleright \ \mathcal{W}_j = \mathbf{1}_{j \in \mathcal{J}} \to \hat{\beta}_{\mathit{GMDR}}(\mathcal{J}), \mathcal{J} \subset \{1, \dots, p\}$$

⁵Yue et al. Submitted, 2020

GMD Regression and Inference

- ▶ Linear model $y = X\beta + \varepsilon$
- Incorporating H and Q

$$y = \mathcal{U}\mathcal{S}\mathcal{V}^{\mathsf{T}}\beta + \varepsilon$$

Coefficient

$$\hat{\beta}_{GMD} = \mathbf{Q} \mathcal{V} \mathcal{W} \mathcal{S}^{-1} \mathcal{U}^{\mathsf{T}} \mathbf{H} \mathbf{y},$$

where \mathcal{W} is a diagonal matrix of weights:

- $\blacktriangleright \ \mathcal{W}_j = \mathbf{1}_{j \in \mathcal{J}} \to \hat{\beta}_{GMDR}(\mathcal{J}), \mathcal{J} \subset \{1, \dots, p\}$
- $\mathcal{W} = \mathcal{S}^2 (\mathcal{S}^2 + \lambda I_n)^{-1} \to \hat{\beta}_{KPR} = \arg\min_{\beta} \{ \|y \mathbf{X}\beta\|_{\mathbf{H}}^2 + \lambda \|\beta\|_{\mathbf{Q}^{-1}}^2 \}^4$
- ▶ GMD inference (GMDI⁵) $H_{0,j}: \beta_j^* = 0.$

⁴Randolph et al. AOAS, 2018

⁵Yue et al. Submitted, 2020

Application to Yatsunenko Data

- ▶ Which bacteria are associated with age?
- ► Significant associations from multivariate methods⁶ (FDR=0.1)

⁶Ridge test by Bühlmann (2013) returns 0 sig association.

Open Questions: Missing Data

- ▶ Microbiome data are zero-inflated.
- Zeros are not missing at random.

Open Questions: Microbial Network Analysis

We previously worked on constructing microbial co-occurrence network from presence/absence data⁷.

⁷Cai et al. Biometrika, 2019

Open Questions: Microbial Network Analysis

We previously worked on constructing microbial co-occurrence network from presence/absence data⁷.

- ▶ How to define dependence between two taxa?
- ► Marginal vs. conditional?
- How to jointly analyze microbiome and metabolomic data?

Open Questions: Interaction Testing

Microbiome by environment interaction

$$y_i = \alpha_0 + \alpha' E_i + \beta' G_i + \gamma E_i G_i + \epsilon_i,$$

- ► E_i: low-dim covariates.
- ▶ *G_i*: high-dim genetic markers.
- ▶ Interest in testing whether the interaction $\gamma = 0$.
- \triangleright Existing variance components test fails to control type I error if G_i is high-dimensional.

The Dog Aging Project

- ► Co-led by University of Washington and Texas A&M University.
- ▶ To understand how genes, lifestyle, and environment influence aging.
- ▶ Multiple data types: survey data, electronic medical records, omics data, etc.

References

- Differential Markov random field analysis with an application to detecting differential microbial community networks. *Biometrika*. 2019
- ▶ The GMD-biplot and its application to microbiome data. *mSystems*. 2019
- Generalized matrix decomposition: estimation and inference for two-way structured data. 2020+

Thank You!

GitHub: drjingma / Website: drjingma.com