AND GATE

- 1. The AND gate is a logic circuit that has two or more inputs and a single output.
- 2. If any of the inputs are 0s, the output is 0.

FIGURE 33-2

Truth table for a two-input AND gate.

INPUTS		OUTPUT
Α	В	Y
О	О	О
1	О	О
О	1	O
1	1	1

FIGURE 33-1

Logic symbol for an AND gate.

$$Y = A \cdot B \text{ or } Y = AB.$$

OR GATE

1. An OR gate produces a 1 output if any of its inputs are 1s. The output is a 0 if all the inputs are 0s.

$$Y = A + B$$
.

FIGURE 33-3

Truth table for a two-input OR gate.

INPUTS		OUTPUT
Α	В	Υ
О	0	О
1	0	1
О	1	1
1	1	1

FIGURE 33-4

Logic symbol for an OR gate.

NOT GATE

- 1. The simplest logic circuit is the NOT gate.
- 2. It performs the function called inversion, or complementation, and is commonly referred to as an Inverter.

FIGURE 33-5

Truth table for an inverter.

INPUTS	OUTPUT
A	Y
О	1
1	О

• The input to an inverter is labeled A and the output is labeled a 'ead "A NOT" or "NOT A").

• The bar over the letter A indicates the complement of A.

NAND GATE

1. A NAND gate is a combination of an inverter and an AND gate.

• The algebraic formula for NAND-gate output $i_Y = \overline{AB}$,

FIGURE 33-8

Truth table for a two-input NAND gate.

INP	UTS	OUTPUT
Α	В	Y
О	О	1
1	О	1
О	1	1
1	1	О

NOR GATE

- 1. A **NOR gate is a combination of an inverter and an** OR gate. Its name derives from its NOT-OR function.
- 2. Also shown is its equivalency to an OR gate and an inverter.

• The algebraic expression for NOR-gate output is

$$Y = \overline{A + B}$$

Α	В	out
0	O	1
0	1	0
1	O	ŏ
1	1	0

EXCLUSIVE -OR

- The XOR gate is a digital logic gate that implements an exclusive or; that is, a true output (1/HIGH) results if one, and only one, of the inputs to the gate is true.
- The algebraic output is written as

A B A XOR B
O O O
O 1 1 1
1 O 1
1 O

1. The complement of the XOR gate is the XNOR (exclusive NOR) gate.

2. Its symbol is shown in Figure 33–14.

3. The algebraic output is written as $Y = \overline{A \oplus B}$, read as "Y equals A exclusive nor B."

Law/Theorem	Law of Addition	Law of Multiplication
Identity Law	x + 0 = x	$x \cdot 1 = x$
Complement Law	x + x' = 1	$x \cdot x' = 0$
Idempotent Law	x + x = x	$x \cdot x = x$
Dominant Law	x + 1 = 1	$x \cdot 0 = 0$
Involution Law	(x')' = x	
Commutative Law	x + y = y + x	$x \cdot y = y \cdot x$
Associative Law	x+(y+z) = (x+y)+z	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$
Distributive Law	$x \cdot (y+z) = x \cdot y+x \cdot z$	$x+y\cdot z = (x+y)\cdot (x+z)$
Demorgan's Law	$(x+y)' = x' \cdot y'$	$(x \cdot y)' = x' + y'$
Absorption Law	$x + (x \cdot y) = x$	$x \cdot (x + y) = x$

NAND AS A UNIVERSAL GATE

EXOR USING NAND

1
$$\overline{A \cdot B} = \overline{A + B} \stackrel{!}{\leftarrow} \underbrace{Bernourgan' \lambda Low}$$
2 $\overline{A}(\overline{A + B}) = \overline{A \cdot \overline{A} + A \cdot \overline{B}} \Rightarrow \overline{O + A \cdot \overline{B}} \Rightarrow \overline{A + B} \Rightarrow \overline{A + B}$

$$\begin{cases}
A \cdot \overline{A} = 0 \\
O + A \cdot \overline{B} = \overline{AB}
\end{cases}$$

$$\begin{cases}
A \cdot \overline{A} = 0 \\
O + A \cdot \overline{B} = \overline{AB}
\end{cases}$$

$$\begin{cases}
A \cdot \overline{A} = 0 \\
A \cdot \overline{A} = 0
\end{cases}$$

$$\begin{cases}
A \cdot \overline{A} = 0 \\
O + A \cdot \overline{B} = \overline{AB}
\end{cases}$$

$$\begin{cases}
A \cdot \overline{A} = 0 \\
A \cdot \overline{A} = 0
\end{cases}$$

$$\begin{cases}
A \cdot \overline{A} = 0 \\
A \cdot \overline{A} = 0
\end{cases}$$

$$\Rightarrow \overline{A \cdot B} + \overline{A \cdot B}$$

$$\Rightarrow \overline{A \cdot B} + \overline{AB}$$

$$\Rightarrow \overline{A \cdot B} = \overline{A \cdot B} \Rightarrow \overline{A \cdot B}$$

$$\Rightarrow \overline{A \cdot B} = \overline{A \cdot B} \Rightarrow \overline{A \cdot B} \Rightarrow \overline{A \cdot B}$$

$$\Rightarrow \overline{A \cdot B} = \overline{A \cdot B} \Rightarrow \overline{A \cdot B$$

Ex-NOR using NAND

NOR AS A UNIVERSAL GATES

EX-NOR USING NOR

EX-OR USING NOR

• APPEND NOT GATE IN THE PREVIOUS EXAMPLE TO OBTAIN EX-OR GATE

POLL

- 5. The NOR gate output will be high if the two inputs are _____
- a) 00
- b) 01
- c) 10
- d) 11

- 5. The NOR gate output will be high if the two inputs are _____
- a) 00
- b) 01
- c) 10
- d) 11

↑ View Answer

Answer: a

Explanation: In 01, 10 or 11 output is low if any of the I/P is high. So, the correct option will be 00.

Poll

7. A universal logic gate is one which can be used to generate any logic function. Which of the following is a universal logic gate?

- a) OR
- b) AND
- c) XOR
- d) NAND

- 7. A universal logic gate is one which can be used to generate any logic function. Which of the following is a universal logic gate?
- a) OR
- b) AND
- c) XOR
- d) NAND

Answer: d

Explanation: An Universal Logic Gate is one which can generate any logic function and also the three basic gates: AND, OR and NOT. Thus, NOR and NAND can generate any logic function and are thus Universal Logic Gates.

Poll

- 10. Which of the following are known as universal gates?
- a) NAND & NOR
- b) AND & OR
- c) XOR & OR
- d) EX-NOR & XOR

10. Which of the following are known as universal gates?

- a) NAND & NOR
- b) AND & OR
- c) XOR & OR
- d) EX-NOR & XOR

Answer: a

Explanation: The NAND & NOR gates are known as universal gates because any digital circuit can be realized completely by using either of these two gates, and also they can generate the 3 basic gates AND, OR and NOT.

Poll

Q3. The inputs of a NAND gate are connected together. The resulting circuit is

- 1. OR gate
- 2. AND gate
- 3. NOT gate
- 4. None of the above

Solu

Q3. The inputs of a NAND gate are connected together. The resulting circuit is

- 1. OR gate
- 2. AND gate
- 3. NOT gate
- 4. None of the above

Ans. 3

Discussions

$$\begin{array}{l}
\overline{A \cdot (A+c)} \\
= \overline{A \cdot (A+c)} \\
= \overline{A + (A+c)} \\
= \overline{A \cdot (A+c)} \\$$

Questions

$$(A+B)(A+C)=A+BC$$

$$(A + B)(A + C) = AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C) + AB + BC$$

$$= A \cdot 1 + AB + BC$$

$$= A(1 + B) + BC$$

$$= A \cdot 1 + BC$$

$$= A + BC$$

Questions

Apply DeMorgan's theorems to the expressions XYZ and X + Y + Z.

Solve and paste answer in LPULIVE

Apply DeMorgan's theorems to the expressions XYZ and X + Y + Z.

$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$
$$\overline{X + Y + Z} = \overline{XYZ}$$

Questions

Apply DeMorgan's theorems to the expressions \overline{WXYZ} and W+X+Y+Z.

$$\overline{WXYZ} = \overline{W} + \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{W} + X + Y + Z = \overline{WXYZ}$$

Questions

Apply DeMorgan's theorems to each of the following expressions:

(a)
$$\overline{(A + B + C)D}$$
 (b) $\overline{ABC + DEF}$ (c) $\overline{AB} + \overline{CD} + EF$

Solve b part nowshare answer in lpulive students. ok

Solution (a) Let A + B + C = X and D = Y. The expression $\overline{(A + B + C)D}$ is of the form $\overline{XY} = \overline{X} + \overline{Y}$ and can be rewritten as

$$\overline{(A+B+C)D} = \overline{A+B+C} + \overline{D}$$

Next, apply DeMorgan's theorem to the term A + B + C.

$$\overline{A+B+C}+\overline{D}=\overline{ABC}+\overline{D}$$

Solution

(b) Let ABC = X and DEF = Y. The expression $\overline{ABC + DEF}$ is of the form $\overline{X + Y} = \overline{XY}$ and can be rewritten as

$$\overline{ABC} + \overline{DEF} = (\overline{ABC})(\overline{DEF})$$

Next, apply DeMorgan's theorem to each of the terms \overline{ABC} and \overline{DEF} .

$$(\overline{ABC})(\overline{DEF}) = (\overline{A} + \overline{B} + \overline{C})(\overline{D} + \overline{E} + \overline{F})$$

Solution

(c) Let AB = X, $\overline{CD} = Y$, and EF = Z. The expression $\overline{AB} + \overline{CD} + EF$ is of the form $\overline{X} + \overline{Y} + \overline{Z} = \overline{X}\overline{Y}\overline{Z}$ and can be rewritten as

$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} = (\overrightarrow{AB})(\overrightarrow{CD})(\overrightarrow{EF})$$

Next, apply DeMorgan's theorem to each of the terms \overline{AB} , \overline{CD} , and \overline{EF} .

$$(\overline{AB})(\overline{\overline{CD}})(\overline{EF}) = (\overline{A} + B)(C + \overline{D})(\overline{E} + \overline{F})$$