Particle spectrograph

Lagrangian density
$-\frac{1}{3}t_1 \omega_{l}^{\alpha l} \omega_{\kappa \alpha}^{\kappa} - t_1 \omega_{l}^{\kappa \lambda} \omega_{\kappa \lambda}^{l} - 2r_3 \partial_{l} \omega_{\kappa}^{\kappa \lambda} \partial^{l} \omega_{\lambda}^{\alpha} - r_5 \partial_{l} \omega_{\kappa}^{\kappa \lambda} \partial^{l} \omega_{\lambda}^{\alpha} + 2r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega^{\theta \kappa} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega^{\theta \kappa} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega^{\theta \kappa} \partial_{\kappa} \omega^{\theta$
$2r_3\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda} + r_5\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda} - 2r_3\partial_\alpha\omega_{\lambda\theta}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - r_5\partial_\alpha\omega_{\lambda\theta}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + 4r_3\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + 2r_5\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 2r_5\partial_\alpha\omega_{\lambda\theta}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + 2r_5\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 2r_5\partial_\omega\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 2r_5\partial_\omega\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 2r_5\partial_\omega\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 2r_5\partial_\omega\omega_{\lambda\alpha}^{\alpha}\partial_\omega\omega^{\kappa\lambda\theta} - 2r_5\partial_\omega\omega^{\alpha}\partial_\omega\omega^{\kappa\lambda\theta} - 2r_5\partial_\omega\omega^{\alpha}\partial_\omega\omega^{\phantom$
$\frac{1}{2} t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda} + \frac{1}{3} t_1 \omega_{\kappa \alpha}^{\ \alpha} \partial^{\kappa} f_{\beta}^{\prime} + \frac{1}{3} t_1 \omega_{\kappa \lambda}^{\lambda} \partial^{\kappa} f_{\beta}^{\prime} + \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa \alpha}^{\lambda} \partial^{\kappa} f_{\beta}^{\prime} - \frac{1}{3} t_1 \omega_{\kappa \lambda}^{\lambda} \partial^{\kappa} f_{\beta}^{\prime} + \frac{1}{3} t_1 \omega_{\kappa}^{\lambda} \partial^{\kappa} f_{\beta}^{\prime} + \frac{1}$
$\frac{1}{3}t_1\partial_\kappa f^\lambda_{\lambda}\partial^\kappa f^\prime_{\prime} + 2t_1\omega_{_{I}\kappa\theta}\partial^\kappa f^{\prime\theta} - \frac{1}{3}t_1\omega_{_{I}\alpha}^{\alpha}\partial^\kappa f^\prime_{\kappa} - \frac{1}{3}t_1\omega_{_{I}\lambda}^{\lambda}\partial^\kappa f^\prime_{\kappa} + \frac{1}{2}t_1\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\alpha} + \frac{1}{2}t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f^\lambda_{\theta} + \frac{1}{2}t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f^\lambda_{\theta} - \frac{1}{2}t_1\partial_\kappa f^\lambda_{\phantom$
$\frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda \kappa} - 4 r_3 \partial^{\beta} \omega_{i}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ i} - 2 r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} + 2 r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}$
Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

Wave operator

	$\omega_{0^{+}}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$										
$\omega_{0}^{\#1}$ †	$6k^2r_3$	0	0	0										
$f_{0}^{#1}$ †	0	0	0	0										
$f_{0}^{#2}$ †	0	0	0	0										
$\omega_{0^{-}}^{\#1}$ †	0	0	0	-t ₁	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\alpha}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$	_		
				$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0			
				$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0			
				$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0			
				$\omega_1^{\sharp 1}$ † lpha	0	0	0	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i k t 1</u> 3			
$\omega_1^{\#2} \uparrow^{\alpha}$			0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}i\sqrt{2}kt_1$					
				$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0			
$f_{1}^{#2} \dagger^{\alpha}$				0	0	0	$-\frac{1}{3} \bar{l} k t_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\sharp 1}{}_{\alpha\beta\chi}$	
				·							$\omega_{2}^{\#1}\dagger^{lphaeta}$		$-\frac{ikt_1}{\sqrt{2}}$	0
											$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
											$\omega_{2}^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

Saturated propagator

	$\sigma_{0^+}^{\sharp 1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$										
$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0										
$\tau_{0}^{\#1}$ †	0	0	0	0										
$ au_{0}^{\#2}$ †	0	0	0	0										
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$	$\sigma_{1^{+}\alpha\beta}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$ au_1^{\#1}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1}^{\#1}\alpha$	$ au_{1^{-}\alpha}^{\#2}$			
				$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0			
				$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	rI TY rI	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^{2}}$	0	0	0	0			
				$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0			
				$\sigma_1^{\sharp_1} \dagger^{\alpha}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$			
				$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$			
				$ au_1^{\#1} \dagger^{lpha}$	0	0	0	0	0	0	0			
				$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$	$\sigma^{\#1}_{2^+lphaeta}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\sharp 1}$
				·							$\sigma_{2}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
											$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
											$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

Source constraints

Source constraints							
SO(3) irreps	#						
$\tau_{0+}^{\#2} == 0$	1						
$\tau_{0+}^{\#1} == 0$	1						
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3						
$\tau_{1}^{\#1\alpha} == 0$	3						
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3						
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5						
Total #:	16						

Massive spectrum

(No massive particles)

Massless spectrum

	Quadratic pole	:
PDFTools`Private`PDFReader[558]	Pole residue:	$\left -\frac{1}{(2r_3 + r_5)t_1^2} > 0 \right $
	Polarisations:	2

Unitarity conditions

Unitarity conditions									
$r_5 < -2 r_3 \&\& t_1 < 0 t_1 >$	(