

Attribute Driven Active Community Search

Badhan Chandra Das, Md Shoaib Ahmed and Md Musfique Anwar Jahangirnagar University

Email:badhan0951@gmail.com, shoaibmehrab011@gmail.com, manwar@juniv.edu

Background

Community

A group of users who are closely connected to each other.

Interact with each other more than with those outside the group.

Attributed Graph

Rich attributed nodes with properties.

Classified

- i. Community Detection.
- ii. Community Search.

Our Observations

- Find attribute-oriented user **active** community.
- Quantify users' activeness with regards to attributes.

Motivation and Problem Formulation

Motivation

Previous approaches

- i. paid less attention to the user interests and activities on different attributes.
- ii. Failed to search active communities.

Our approaches

- i. Different degree of activeness for different attributes.
- ii. Find an active community according user interests.

Problem Formulation

Query	Community (\mathcal{C}_q)	
$Q = \{D, a_0\}, k = 2, \gamma = 1$	$\{A, B, C, D, E\}$	
$Q = \{D, a_0\}, k = 3, \gamma = 1$	$\{A, B, C, D\}$	
$Q = \{D, a_1\}, k = 2, \gamma = 1$	$\{A, D, E, F, G, H, I\}$	
$Q = \{D, a_1\}, k = 3, \gamma = 1$	{ }	
$Q = \{D, a_0, a_1\}, k = 2, \gamma = 1$	$\{A, B, C, D, E, F, G, H, I\}$	
$Q = \{D, a_0, a_1\}, k = 3, \gamma = 1$	$\{A, B, C, D\}$	
$Q = \{D, a_0\}, k = 2, \gamma = 3$	$\{A, C, D, E\}$	
$Q = \{D, a_1\}, k = 2, \gamma = 3$	{D, I, F}	
$Q = \{D, a_0\}, k = 3, \gamma = 3$	{ }	
$Q = \{D, a_0, a_1\}, k = 2, \gamma = 5$	$\{A, D, E, F, I\}$	
$Q = \{D, a_0, a_1\}, k = 3, \gamma = 5$	{}	

Proposed Methodology

Experimentation and Finding

Activeness Score

The first factor f_1 is the likelihood that a user u_i performs an activity in Q.

$$f_1(u_i, \psi_{u_i}) = \frac{|ACTS(u_i, \psi_{u_i})|}{|ACTS(u_i, *)|} \tag{1}$$

The second factor f_2 is the participation of user u_i related to Q in comparison to the most active participant user related to Q in the network.

$$f_2(u_i, \psi_{u_i}) = \frac{|ACTS(u_i, \psi_{u_i})|}{\max_{u_z \in U^Q} |ACTS(u_z, \psi_{u_z})|}$$
(2)

Then, the activeness (denoted as σ) of u related to Q is,

$$\lambda_{(u_i, \psi_{u_i})} = f_1(u_i, \psi_{u_i}) \times f_2(u_i, \psi_{u_i}) = \frac{|ACTS(u_i, \psi_{u_i})|^2}{|ACTS(u_i, *)| \times \max_{u_z \in UQ} |ACTS(u_z, \psi_{u_z})|}$$
(3)

$$\sigma_{(u_i,\psi_{u_i})} = \frac{\lambda_{(u_i,\psi_{u_i})}}{\max_{u_z \in \mathcal{A}_Q} \{\lambda_{(u_z,\psi_{u_z})}\}} \tag{4}$$

Date Sets

Dataset	# of Nodes	# of Nodes	# of activities
SNAP	400,000	5,357,560	573,832
Co-Author	327	1,180	807

Results

Community evolution(SNAP Dataset)

Conclusion and Future Work

This Work

-Measures an **activeness score** function for the candidate community members according to their common interests by the given query.

-Conducts experiment on two **real data sets** demonstrated the effectiveness of our proposed method.

Future Work

-To get more **recent activeness** score of the users' **time frame or dynamic network** can be included.

References

- . Huang, X., Lakshmanan, L. VS.: Attribute-driven community search. In: VLDB,pp. 949–960 (2017)
- 2. Zhou, Y., Cheng, H., Yu, J. X.: Graph clustering based on structural/attribute similarities. In: VLDB, pp. 718–729(2009).
 - Anwar, M. M., Liu, C., Li, J..: Discovering and tracking query oriented active online social groups in dynamic information network. In: WWWJ, pp. 1–36 (2018)
- 4. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective Community Search for Large Attributed Graphs. In: VLDB, pp. 1233–1244 (2016