一个现实的问题就是,假如给你 100 万个 Documents,而只有少量几个标签(例如上述 Location、Topic 的标签),那么你能否自动地生成成百上干的标签,并将文本正确地放入到这些标签构建的多维Text Cube 中呢?

首先去做的当然是 Embedding,但是已知的标签太少了。所以韩家炜他们建了一个 L-T-D (Label-Term-Document) 图,其中的 Term 是从文本中抽取出来的。

我们查看每个 Term 在每个已知 Label 中的分布情况。

例如「stock market」,它在每个 Location 维度中分布的概率基本一致,这说明「stock market」这个term 不属于 Location 这个维度;而另一方面,它在 Topic 维度的分布则有很强的差别性。根据一个称为 Dimension-Focal Score 的标准可以判别出它是属于 economy 标签下的。

依据上面的方法以及该 term 在这个标签下的普遍程度(如果大于某个值),则可以判断出这个 Term(例如「stock market」)属于相应标签维度下的一个标签。藉此,我们可以自动地生成大量的标签,并同时将文本放入到这些标签构建的多维度 Text Cube 当中。

Dimension	Label	1st Expansion	2nd Expansion	3rd Expansion
Topic	Movies	films	director	hollywood
	Baseball	inning	hits	pitch
	Tennis	wimbledon	french open	grand slam
	Business	company	chief executive	industry
	Law Enforcement	litigation	law	county courthouse
Location	Brazil	brazilian	sao paulo	confederations cup
	Australia	sydney	australian	melbourne
	Spain	madrid	barcelona	la liga
	China	chinese	shanghai	beijing

构建出这样的 Text Cube 之后,再去进行数据挖掘就会方便很多。