

MICHAEL A. NIELSEN and ISAAC L. CHUANG

CAMBRIDGE

Quantum Computation and Quantum Information

10th Anniversary Edition

Michael A. Nielsen & Isaac L. Chuang

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9781107002173

© M. Nielsen and I. Chuang 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000 Reprinted 2002, 2003, 2004, 2007, 2009 10th Anniversary edition published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-1-107-00217-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Introduction to the Tenth Anniversary Edition	page xvii
Afterword to the Tenth Anniversary Edition	xix
Preface	xxi
Acknowledgements	xxvii
Nomenclature and notation	xxix
Part I Fundamental concepts	1
1 Introduction and overview	1
1.1 Global perspectives	1
1.1.1 History of quantum computation and quantum	
information	2
1.1.2 Future directions	12
1.2 Quantum bits	13
1.2.1 Multiple qubits	16
1.3 Quantum computation	17
1.3.1 Single qubit gates	17
1.3.2 Multiple qubit gates	20
1.3.3 Measurements in bases other than the computation	nal basis 22
1.3.4 Quantum circuits	22
1.3.5 Qubit copying circuit?	24
1.3.6 Example: Bell states	25
1.3.7 Example: quantum teleportation	26
1.4 Quantum algorithms	28
1.4.1 Classical computations on a quantum computer	29
1.4.2 Quantum parallelism	30
1.4.3 Deutsch's algorithm	32
1.4.4 The Deutsch–Jozsa algorithm	34
1.4.5 Quantum algorithms summarized	36
1.5 Experimental quantum information processing	42
1.5.1 The Stern–Gerlach experiment	43
1.5.2 Prospects for practical quantum information proce	•
1.6 Quantum information	50
1.6.1 Quantum information theory: example problems	52
1.6.2 Quantum information in a wider context	58

2 Introduction to quantum mechanics	60
2.1 Linear algebra	61
2.1.1 Bases and linear independence	62
2.1.2 Linear operators and matrices	63
2.1.3 The Pauli matrices	65
2.1.4 Inner products	65
2.1.5 Eigenvectors and eigenvalues	68
2.1.6 Adjoints and Hermitian operators	69
2.1.7 Tensor products	71
2.1.8 Operator functions	75
2.1.9 The commutator and anti-commutator	76
2.1.10 The polar and singular value decompositions	78
2.2 The postulates of quantum mechanics	80
2.2.1 State space	80
2.2.2 Evolution	81
2.2.3 Quantum measurement	84
2.2.4 Distinguishing quantum states	86
2.2.5 Projective measurements	87
2.2.6 POVM measurements	90
2.2.7 Phase	93
2.2.8 Composite systems	93
2.2.9 Quantum mechanics: a global view	96
2.3 Application: superdense coding	97
2.4 The density operator	98
2.4.1 Ensembles of quantum states	99
2.4.2 General properties of the density operator	101
2.4.3 The reduced density operator	105
2.5 The Schmidt decomposition and purifications	109
2.6 EPR and the Bell inequality	111
3 Introduction to computer science	120
3.1 Models for computation	122
3.1.1 Turing machines	122
3.1.2 Circuits	129
3.2 The analysis of computational problems	135
3.2.1 How to quantify computational resources	136
3.2.2 Computational complexity	138
3.2.3 Decision problems and the complexity classes P and NP	141
3.2.4 A plethora of complexity classes	150
3.2.5 Energy and computation	153
3.3 Perspectives on computer science	161
Part II Quantum computation	171
4 Quantum circuits	171
4.1 Quantum algorithms	172
4.2 Single qubit operations	174