

التدريب المكثف 2021- هندسة 1

يم المنتقيم CA=CB في المثلث الحاد الزوايا ΔABC لدينا ΔABC النقطة M منتصف الضلع ΔC رسم المستقيم C أو جد طول بالرأس C وعموديا على ΔC الدائرة المحيطة للمثلث ΔCMB تقطع المستقيم ΔC في ΔC أو جد طول نصف قطر الدائرة المحيطة للمثلث ΔC بدلالة ΔC

JBMP Short list 2004-G2

غند BC في المثلث الحاد الزوايا ΔABC والمرسوم داخل الدائرة k. المماس المرسوم النقطة k يلاقي المستقيم ΔABC نقطة ولتكن R النقطة R منتصف المستقيم AP مستقيم R فقطع نفس الدائرة في $R \neq R$. أثبت أن R أثبت أن R

JBMP Short list 2005–G2

رسم AB وترا الدائرة AB يتقاطعان في نقطة K ويقسمان الدائرة إلى أربعة أقواس، القوس AB هو أصغرها. رسم الوترين المتوازيين AD,BC حيث B,C نقطتين مختلفتين عن AD,BC. النقطة AD,BC حيث AD,BC نقطة تقاطع المستقيمين AD,MC أثبت أن AD,MC ، النقطة AB هي نقطة تقاطع المستقيمين AB. أثبت أن AB AB النقطة AB هي نقطة تقاطع المستقيمين AB AB المستقيمين AB النقطة AB هي نقطة تقاطع المستقيمين AB المستقيمين AB

رأسا المثلث المتطابق الأضلاع A,B يقعان على الدائرة k والتي نصف قطرها يساوي 1. الرأس C تقع داخل C الدائرة C النقطة D (غير النقطة D) تقع على C بيث D الدائرة C إذا كان المستقيم D يقطع C يقطع C في نقطة ثانية D في نقطة ثانية D في نقطة ثانية D في نقطة ثانية D المستقيمة D المستقيم D المستقيم D المستقيمة D المستقيمة D المستقيمة D المستقيم

JBMP Short list 2008 G3

لدينا الخماسي المحدب ABCDE فيه ABCDE+DE فيه ABCDE+DE. الدائرة k مركزها هو منتصف الضلع (5) P,Q,R,S في النقاط AB,BC,CD,DE وهي نقاط تختلف عن رؤوس الخماسي) AE على الترتيب. أثبت أن AE AE . AE

JBMP 2009 -P1

JBMP 2010 P3

لدينا D,F,E ارتفاعات المثلث ΔABC حيث النقاط D,BF,CE ارتفاعات المثلث D الأضلاع D على الترتيب. النقطة D هي نقطة تقاطع هذه الارتفاعات. المستقيم المار بالنقطة D والموازي D للضلع D يقطع المستقيم D في D أو جد D أو حد D

JBMP Short list 2011 G2

قي المثلث المتطابق الأضلاع ΔABC لدينا النقطة P تقع على دائرته المحيطة (لاحظ أن النقطة P تختلف على ΔABC عن كل من ΔABC . رسمت ثلاث مستقيمات تمر بالنقطة P وتوازي أضلاع المثلث ΔABC عن كل من ΔABC . رسمت ثلاث مستقيمات تمر ΔABC في ΔABC على الترتيب. أثبت أن النقاط ΔABC تقع على الترتيب. أثبت أن النقاط ΔABC تقع على استقامة واحدة.

JBMP Short list 2012-G1

- الدائرتان k_1,k_2 يتقاطعان في A,B . رسم المماس المشترك للدائرتين فمس الدائرة k_1,k_2 ومس الدائرة . ΔMN . يق $\Delta MN=2\cdot\Delta M$. إذا كان $\Delta MN=2\cdot\Delta M$. إذا كان $\Delta MN=2\cdot\Delta M$ فأوجد قياس $\Delta MN=2$ JBMP 2012–P2
- لتكن S هي مساحة المثلث الحاد الزوايا ΔABC لدينا ΔABC حيث D تقع على الضلع ΔABC النقطتين ΔBC مين ΔBC على ΔBC النقطتين ΔC مين ΔC على ΔC مين ΔC النقطتين ΔC مين على ΔC على ΔC النقطتين ΔC ميا نقطتي تقاطع ارتفاعات المثلثين ΔMNC , ΔMND أو حد مساحة الشكل الرباعي ΔMNC . ΔMNC

JBMP 2014-P2

- وي المثلث الحاد الزوايا $\triangle ABC$ لدينا النقطتان X,Y تقعان على الضلع BC. رسمت نصف دائرة قطرها ABC في المثلث ABC في النقطتين F,E على الترتيب. أثبت أن نقطة تقاطع TAB,AC تقع XY على ارتفاع المثلث ABC الخارج من الرأس A.
- الدائرة ω تقوان على الدائرة و داخل المثلث ABC . النقطتين P,Q تقوان على الدائرة و داخل المثلث B,C في المثلث BC على الترتيب. إذا كان: BC على الترتيب. إذا كان: $BD^2 + CD^2 = 2 \cdot DP \cdot DA, BE^2 + CE^2 = 2 \cdot EQ \cdot EA$ أثبت أن BP = CQ .

