China – the empire that did not bark: the economics of a failed attempt at modern economic growth

ASA Sociology of Development conference
University of Utah
October 2013

Stephen C. Bannister
Department of Economics
University of Utah
Salt Lake City, Utah 84112
USA
steve.bannister@econ.utah.edu

 The majority view is that, principally and uniquely, cultural/institutional exceptionalism sparked the English Industrial Revolution (EIR)

- The majority view is that, principally and uniquely, cultural/institutional exceptionalism sparked the English Industrial Revolution (EIR)
- Further, the majority claim is that China failed for the same reasons that England succeeded

- The majority view is that, principally and uniquely, cultural/institutional exceptionalism sparked the English Industrial Revolution (EIR)
- Further, the majority claim is that China failed for the same reasons that England succeeded
- My claim is that both views are wrong, have caused a
 misinterpreted history, and have thus misled development
 economists, especially in the case of China's failed attempt at
 an industrial revolution

- The majority view is that, principally and uniquely, cultural/institutional exceptionalism sparked the English Industrial Revolution (EIR)
- Further, the majority claim is that China failed for the same reasons that England succeeded
- My claim is that both views are wrong, have caused a
 misinterpreted history, and have thus misled development
 economists, especially in the case of China's failed attempt at
 an industrial revolution
- Instead, the data support a Chinese history of one energy revolution that was necessary, but not sufficient, to cause a second bigger, sufficient, one. The English accomplished both

- The majority view is that, principally and uniquely, cultural/institutional exceptionalism sparked the English Industrial Revolution (EIR)
- Further, the majority claim is that China failed for the same reasons that England succeeded
- My claim is that both views are wrong, have caused a
 misinterpreted history, and have thus misled development
 economists, especially in the case of China's failed attempt at
 an industrial revolution
- Instead, the data support a Chinese history of one energy revolution that was necessary, but not sufficient, to cause a second bigger, sufficient, one. The English accomplished both
- In each case the same economic explanations are sufficient

Global Context (Source: Maddison): a Western Bubble?

The English data – two energy revolutions that **were** the EIR

Two energy consumption revolutions driving the machine-age, productivity gains, and rising living standards; no "Solow" residual required. This is arguably the deepest, physical (real), identity in all of economic theory

Comparative energy consumption

Year	England	China	Netherlands	India
1650 ^a			0.63	
1820	0.61			
1840 ^a			0.33	
1870	2.21			
1970 ^a			8.07	0.33
1973		0.48		
1998 ^b	6.56	1.18		
2008 ^b	5.99	2.56	9.86	

Table: Per-Capita Primary Energy Consumption, annual Tonnes of Oil Equivalent. *Source:* Angus Maddison, ^ade Zeeuw, ^bUS DOE EIA

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

First energy revolution: China 900 – 1200 (Northern Sung)

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

First energy revolution: China 900 – 1200 (Northern Sung); England 1590 – 1700

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

First energy revolution: China 900 – 1200 (Northern Sung); England 1590 – 1700

$$\frac{\text{Marginal Product}_{\text{labor Joule}}}{\text{Price}_{\text{labor Joule}}} \ll \frac{\text{Marginal Product}_{\text{steam Joule}}}{\text{Price}_{\text{steam Joule}}}$$
 (2)

Microeconomic theory ⇒ economics is a sufficient IR explanation: toward a theory of energy substitution

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

First energy revolution: China 900 – 1200 (Northern Sung); England 1590 – 1700

$$\frac{\text{Marginal Product}_{\text{labor Joule}}}{\text{Price}_{\text{labor Joule}}} \ll \frac{\text{Marginal Product}_{\text{steam Joule}}}{\text{Price}_{\text{steam Joule}}}$$
 (2)

Second energy revolution: England 1700 – 1873

Microeconomic theory ⇒ economics is a sufficient IR explanation: toward a theory of energy substitution

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

First energy revolution: China 900 – 1200 (Northern Sung); England 1590 – 1700

$$\frac{\text{Marginal Product}_{\text{labor Joule}}}{\text{Price}_{\text{labor Joule}}} \ll \frac{\text{Marginal Product}_{\text{steam Joule}}}{\text{Price}_{\text{steam Joule}}}$$
 (2)

Second energy revolution: England 1700 – 1873, but not in China

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

First energy revolution: China 900 – 1200 (Northern Sung); England 1590 – 1700

$$\frac{\text{Marginal Product}_{\text{labor Joule}}}{\text{Price}_{\text{labor Joule}}} \ll \frac{\text{Marginal Product}_{\text{steam Joule}}}{\text{Price}_{\text{steam Joule}}}$$
 (2)

Second energy revolution: England 1700 – 1873, but not in China

The RHS of (2) was so large, it induced a major positive aggregate supply shock

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

First energy revolution: China 900 – 1200 (Northern Sung); England 1590 – 1700

$$\frac{\text{Marginal Product}_{\text{labor Joule}}}{\text{Price}_{\text{labor Joule}}} \ll \frac{\text{Marginal Product}_{\text{steam Joule}}}{\text{Price}_{\text{steam Joule}}}$$
 (2)

Second energy revolution: England 1700 – 1873, but not in China

The RHS of (2) was so large, it induced a major positive aggregate supply shock and large income effects

Relevant price ratios induce behavioral changes ⇒ induced innovation

Figure: Sources (I to r) Nef, Allen, Allen

What about institutions?

Historical materialism

What about institutions?

Historical materialism ⇒ induced institutions

- Historical materialism ⇒ induced institutions
- Is the juice worth the squeeze?

- Historical materialism ⇒ induced institutions
- Is the juice worth the squeeze?
 - Why property rights if no property?

- Historical materialism ⇒ induced institutions
- Is the juice worth the squeeze?
 - Why property rights if no property?
 - Why a Bank of England if no borrowers?

- Historical materialism ⇒ induced institutions
- Is the juice worth the squeeze?
 - Why property rights if no property?
 - Why a Bank of England if no borrowers?
- Especially, why Industrial Capitalism if no significant machines and capital is not required to chop down trees?

Chinese institutional revisionism ⇒ sufficient institutions

- Huang, Philip C. 1990. The Peasant Family and Rural Development in the Yangzi Delta, 1350-1988
- Wong, R. Bin. 1997. China Transformed: Historical Change and the Limits of European Experience
- Lee, James Z., and Cameron D. Campbell. 1997. Fate and Fortune in Rural China: Social Organization and Population Behavior in Liaoning, 1774-1873
- Li, Bozhong. 1998. Agricultural Development in Jiangnan, 1620-1850
- Pomeranz, Kenneth. 2000. The Great Divergence: Europe, China, and the Making of the Modern World Economy
- Rawski, Thomas G. 1989. Economic Growth in Prewar China. Berkeley: University of California Press.
- Brandt, Loren. 1989. Commercialization and Agricultural Development: Central and Eastern China 1870-1937. Cambridge: Cambridge University Press.
- Myers, Ramon H. 1980. The Chinese Economy Past and Present. Belmont, CA: Wadsworth.
- Xu, Dixin, and Zhengming Wu, eds. Chinese Capitalism, 1522-1840. New York: St. Martin's Press. 2000.

No Chinese Industrial Revolution

 Empirics (even with sparse Chinese data) suggest what happened, and what did not – no "second" energy revolution

- Empirics (even with sparse Chinese data) suggest what happened, and what did not – no "second" energy revolution
- Economic theory (micro and macro) explains why

- Empirics (even with sparse Chinese data) suggest what happened, and what did not – no "second" energy revolution
- Economic theory (micro and macro) explains why
- For China, relatively low wages and high energy costs precluded a second energy revolution – no economic incentive

- Empirics (even with sparse Chinese data) suggest what happened, and what did not – no "second" energy revolution
- Economic theory (micro and macro) explains why
- For China, relatively low wages and high energy costs precluded a second energy revolution – no economic incentive
- Increasingly, scholarship suggests contemporary institutions, and basic technology, were sufficient

- Empirics (even with sparse Chinese data) suggest what happened, and what did not – no "second" energy revolution
- Economic theory (micro and macro) explains why
- For China, relatively low wages and high energy costs precluded a second energy revolution – no economic incentive
- Increasingly, scholarship suggests contemporary institutions, and basic technology, were sufficient; thus economics is a compelling primary explanation

- Empirics (even with sparse Chinese data) suggest what happened, and what did not – no "second" energy revolution
- Economic theory (micro and macro) explains why
- For China, relatively low wages and high energy costs precluded a second energy revolution – no economic incentive
- Increasingly, scholarship suggests contemporary institutions, and basic technology, were sufficient; thus economics is a compelling primary explanation
- Framework applicable across time series, space, and time to inform development scientists
- Doesn't this energy story doom us?

- Empirics (even with sparse Chinese data) suggest what happened, and what did not – no "second" energy revolution
- Economic theory (micro and macro) explains why
- For China, relatively low wages and high energy costs precluded a second energy revolution – no economic incentive
- Increasingly, scholarship suggests contemporary institutions, and basic technology, were sufficient; thus economics is a compelling primary explanation
- Framework applicable across time series, space, and time to inform development scientists
- Doesn't this energy story doom us? Yes sort of, and no. More papers coming

Thank you

Taxonomy of EIR explanations

Label	Examples
English exceptionalists	Landes (1969), McCloskey (2010), Mokyr (1992,2010)
Partial culturalists	Cipolla (1966), Pomeranz (2001), Allen (2009)
Primarily energetic	Cottrell (1955), Wrigley (1988,2010), Malanima (2010)
Thermodynamicists	Georgescu-Roegen (1975), Ayres (2003), Garrett (2009)

Author/time-span series of energy consumption, GDP, and population

Aggregate Supply - Aggregate Demand Four energy/GDP regimes

GDP/Energy regime one – 1300-1500

Black Death recovery – higher wage support, population recovery Medieval Warming Epoch – agricultural expansion, higher population

European Marriage Pattern – reduced nuptiality, higher real wage Demand and supply expansion

GDP/Energy regime two – 1500-1600

Benign climate – agriculture, real wage, population rise Beginning of first energy crisis – deforestation Demand and supply expansion

GDP/Energy regime three – 1600-1750

Little Ice Age – agricultural shrinkage
Famine, Pestilence, Wars
"Global Crisis" (Parker) – 30 percent global population decline
"General crisis" (Hugh Trevor-Roper)
Demand and supply shrinkage

First energy revolution – substitute coal for wood

GDP/Energy regime four – 1750-1873

Second energy revolution – substitute steam power for labor power Demand and supply expansion

Demand becomes the the system constraint

Modern economic growth

Desagulier manuscript

rection P p, and a Quantity of the state of

468

FIRE-ENGINE.

Left XII that Thought must be laid aside. We'll consider therefore what can be done by Horses. As an Horse is equal to five Men, we must work 20. Horses at a time to raise the Water required; and as Horses must be reliev'd even more than Men, about 50 Horses must be kept to carry on this Work constantly, and bring down the End of the Beam b, 16 times in a Minute, and make the number of Strokes required in the Pump, the Weight of whose Rod after every Stroke will bring down the End b 2, by drawing along the Tangent i H. It is plain to any body, that tho' the Horses may be had cheaper than Men, yet that will be a very expensive way. For the next Contrivance, we'll suppose a Philosopher to come, and find a means to bring down the End of the Beam, without Men or Horses, in this manner. To the Chain H L he fixes a

English real gross domestic product, levels and per–capita

English real gross domestic product, log levels and log per-capita

Structural break comparison

Coal and wood energy sources Source: Pearson & Fouquet

Energy consumption vs. standarized GDP

Granger tests of energy/GDP dynamics

Era	Energy ~ GDP Pr(>F)	GDP ~ Energy Pr(>F)	AS/AD regime	
1300 – 1500	0.0106	0.0003	EMP ¹ , Black Death:	
			increasing wages,	
			family income	
1500 – 1600	0.1939	0.6126	Positive demand shock	
1600 – 1750	0.3529	0.5185	Energy supply constraint	
1750 – 1873	0.0024	0.1100	Positive supply shock:	
			"virtuous" macro	
			feedback cycle	
1300 – 1873	0.0002	0.0361	Total study period	

¹European marriage pattern (Hajnal)

English wood energy supply constraint

Figure: Standardized English energy intensity of GDP

Figure: Log of GDP, with structural breaks

Figure: Log of population, with structural breaks

Data Sources

Data series	Year range	Geography	Source
Energy consumption	1300 – 1873	England/Wales	Roger Fouquet (2008)
Gross domestic product	1300 – 1700	England	Graeme Snooks (1994)
	1741 – 1873	England/Wales	Lawrence Officer (2009)
Population	1300 – 1540	England	Graeme Snooks (1994)
	1541 – 1800	England	B. R. Mitchell (1988)
	1801 – 1873	England/Wales	B. R. Mitchell (1988)

Table: growth rates by century

Year	1300	1400	1500	1600	1700	1801	1873	Total
GDP Million								
2005 GBP	3114.7541	815.1288	994.4571	6031.953	8361.5911	18110	102811	
Century-over-century								
rate of growth		-0.738	0.220	5.066	0.386	1.166	4.677	32.008
Compounded annual								
rate of growth		-0.013	0.002	0.018	0.003	0.008	0.024	0.006
Energy consumption	1.7	1	1.3	2.2	3.6	11.6	66.1	
Century-over-century								
rate of growth		-0.412	0.300	0.692	0.636	2.222	4.698	37.882
Compounded annual								
rate of growth		-0.005	0.0026	0.005	0.005	0.012	0.024	0.006
Per-capita GDP								
2005 GBP	542	329	421	1,484	1,663	1,999	4,392	
Century-over-century								
rate of growth		-0.393	0.282	2.521	0.121	0.202	1.198	7.108
Compounded annual								
rate of growth		-0.005	0.002	0.013	0.001	0.002	0.011	0.004

Table: Energy and GDP fit tests

Test	Statistic	p-value
Pearson's correlation	0.998	
Paired t-test	5.592	4.991e-07
Chi-square	2864	0.0004998

Engels – Socialism: Utopian and Scientific (1880)

III [Historical Materialism] The materialist conception of history starts from the proposition that the production of the means to support human life and, next to production, the exchange of things produced, is the basis of all social structure; that in every society that has appeared in history, the manner in which wealth is distributed and society divided into classes or orders is dependent upon what is produced, how it is produced, and how the products are exchanged. From this point of view, the final causes of all social changes and political revolutions are to be sought, not in men's brains, not in men's better insights into eternal truth and justice, but in changes in the modes of production and exchange. They are to be sought, not in the philosophy, but in the economics of each particular epoch. The growing perception that existing social institutions are unreasonable and unjust, that reason has become unreason, and right wrong [1], is only proof that in the modes of production and exchange changes have silently taken place with which the social order, adapted to earlier economic conditions, is no longer in keeping. From this it also follows that the means of getting rid of the incongruities that have been brought to light must also be present, in a more or less developed condition, within the changed modes of production themselves. These means are not to be invented by deduction from fundamental principles, but are to be discovered in the stubborn facts of the existing system of production.