Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	${f R}^2$

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set symbols

Meaning	Symbol	
is a member	€	
subset	\subset	
intersection		

Meaning	Symbol
union	U
complement	superscript ^C
set minus	\

Logic symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\implies

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	∃

Truth Tables

P	Q	$P \wedge Q$	$P \lor Q$	$P \Longrightarrow Q$	$P \equiv Q$
T	T	T	T	T	T
T	F	F	T	T	F
F	T	F	T	$\mid T \mid$	F
F	F	F	F	T	T

Tautologies

 $\neg \neg P \equiv P$

 $(P \lor P) \equiv P$

$$(P \land P) \equiv P$$

$$(P \equiv Q) \equiv (Q \equiv P)$$

$$(P \implies Q) \equiv (P \lor \neg Q)$$

$$(P \iff Q) \equiv (\neg P)$$

$$landQ$$

$$\neg (P \land Q) \equiv (\neg P \lor \neg Q)$$

$$(P \implies Q) \equiv (\neg Q \implies \neg P)$$

$$(P \implies Q) \equiv (P \land \neg Q)$$

$$(P \iff Q) \equiv ((P \implies Q) \land (Q \implies P))$$

$$\neg (\forall x \in A)(P(x)) \equiv (\exists x \in A)(\neg P(x))$$

$$\neg (\exists x \in A)(P(x)) \equiv (\forall x \in A)(\neg P(x))$$

Arithmetic properties

$$\begin{split} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) & \text{commutivity} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distrutity} \end{split}$$

Function notation

dom(F)	domain of function F
range(F)	range of function F
C_A	set of continuous functions on set A
$\begin{bmatrix} \mathrm{C}_A \\ \mathrm{C}_A^1 \end{bmatrix}$	set of differentiable functions on set A
$A \rightarrow B$	set of functions from A to B

Set operators

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Generalized set operators

Each member of a set C is a set:

$$\bigcup_{A \in \mathcal{C}} A = \{ z \mid (\exists \, B \in \mathcal{C})(z \in B) \}$$
$$\bigcap_{A \in \mathcal{C}} A = \{ z \mid (\forall \, B \in \mathcal{C})(z \in B) \}$$

Theorem:
$$\bigcup_{A \in \mathcal{C}} A^{\mathcal{C}} = \left(\bigcap_{A \in \mathcal{C}} A\right)^{\mathcal{C}}$$

Functions applied to sets

Let $A \subset \text{dom}(F)$ and $B \subset \text{range}(F)$: $F(A) = \{F(x) \mid x \in A\}$ $F^{-1}(B) = \{x \in \text{dom}(F) \mid F(x) \in B\}$

Triangle inequalities

For all $x, y \in \mathbf{R}$, we have

$$|x+y| \le |x| + |y|$$
$$||x| - |y|| \le |x-y|$$

Floor and ceiling

Definitions:

Properties:

$$(\forall x \in \mathbf{R}, n \in \mathbf{Z})(x < n \iff \lfloor x \rfloor < n)$$
$$(\forall x \in \mathbf{R}, n \in \mathbf{Z})(n < x \iff n < \lceil x \rceil)$$

Elementary function properties

Increasing $(\forall x, y \in A)(x < y \implies F(x) \le F(y))$. For strictly increasing, replace $F(x) \le F(y)$ with F(x) < F(y).

Decreasing $(\forall x, y \in A)(x < y \Longrightarrow F(x) \ge F(y))$ For strictly decreasing, replace $F(x) \ge F(y)$ with F(x) > F(y).

One-to-one

$$(\forall x, y \in \text{dom}(F))(F(x) = F(y) \implies x = y)$$

Equivalence relations

Let $R \in A \times A \to \{\text{true}, \text{false}\}$. We say

reflective $(\forall x \in S)(x R x)$

symmetric $(\forall x, y \in S) x R y \implies y R x$

transitive $(\forall x, y, z \in S) x R y \land y R z \implies x R z$

Equivalence class $[x] = \{s \in S \mid s R x\}$

Axioms

Well-ordering Every nonempty set of positive integers contains a least element.

Induction $(\forall n \in \mathbf{Z}_{\geq 0})(P(n))$ if and only if $P(0) \wedge (\forall n \in \mathbf{Z}_{\geq 0})(P(n) \implies P(n+1)).$

Revised November 22, 2022. Barton Willis is the author of this work. This work is licensed under Attribution 4.0 International (CC BY 4.0) For the current version of this document, visit