Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 6

- Graph: terminology review
- Traversal
 - BFS
 - DFS
- Connected component

Credit: some based on slides by A. Smith & K. Wayne

Graph glossary

Graph G = (V, E)

- Vertex/node, edge
- Undirected graph e = (u, v)
- Directed graph $e: u \rightarrow v$
- *u* adjacent to *v*, neighbors
- Degree d(u)
- Path, cycle
- *u*, *v* connected
- G connected: iff. u, v connected for any pair u and v

Warmup puzzles

- Suppose an undirected graph G is connected
 - True/False? G has at least n-1 edges
- Suppose undirected G has exactly n-1 edges (no self loops)
 - True/False? G is connected
 - What if in addition G has NO cycles?

Trees

- Definition. An undirected graph is a tree if it is connected and does not contain a cycle.
- Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
 - *G* is connected.
 - G does not contain a cycle.
 - G has n-1 edges.

Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

Exploring a graph

Connectivity problem:

Given vertices $s, t \in V$, is there a path from s to t?

- Breadth-first search (BFS)
 - Explore children in order of distance to start node
- Depth-first search (DFS)
 - Recursively explore vertex's children before exploring siblings

Breath-first search

Intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

- $L_0 = \{s\}$
- $L_1 = \{\text{neighbors of } L_0\}$
- $L_2 = \{ \text{neighbors of } L_1 \text{ not in } L_0 \& L_1 \}$
- •

Wave front of a ripple

Observations of BFS

- Running time: linear O(|V| + |E|) (more to come)
- For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff. t appears in some layer.
- Let T be a BFS tree of G = (V, E), and let (u, v) be an edge of G. Then, the levels of u and v differ by at most 1.

Depth-first search

Intuition. Children prior to siblings

```
DFS(s):
  // R will consist of nodes to which s has a path
  Mark u as "Explored" and add u to R
  for each edge (u, v) incident to u
    if v is not marked "Explored" then
        Recursively invoke DFS(v)
```


DFS
An "impatient"
maze runner

BFS
A "patient"
maze runner

DFS in action

Constructing DFS tree (on board)

Contrast with BFS tree

- Running time: linear O(|V| + |E|) (more to come)
- Let T be a DFS tree of G, and let $u \otimes v$ be nodes in T. Let (u, v) be an edge of G that is not an edge of T. Then one of U or V is an ancestor of the other.

A lookahead

- Representation of graphs
 - Adjacency list vs. adjacency matrix
- BFS/DFS: some implementation details
- Connectivity in directed graphs
 - Topological sorting