Project Goals

I. Dataset:

OpenFlights. This dataset provides us with the absolute location (latitude and longitude) and airlines of every airport. We can use the absolute location to calculate the distance between two airports. (https://openflights.org/data.html) The two datasets we will use are airport dataset and route dataset. The format of the dataset will be a .dat file where each line contains detailed information for an airline route.

II. Data structure:

Adjacency List

Vertices: a unique id of the airport, latitude, longitude, and some pointers. According to their latitude and longitude, putting them in the right place in the graph.

Edges: two nodes are connected by an edge if there exist an airline between them Graph drawing: using the number of incident edges connected to each node to decide its color. The color varies according to the degree of the node.

III. Traversals:

BFS. Because of the existence of the Arctic and Antarctica, most routes are along latitude rather than longitude. So we prefer to use BFS as the primary traversal of this graph.

IV. Covered Algorithm:

Shortest path (Dijkstra's Algorithm)

V. Complex or uncovered option:

Clustering Finder: We can use this algorithm to determine what locations in the world are not reachable by the majority of the airlines - they are called minority. Minority, as opposed to majority, are defined as a connected graph component that has less than or equal to 10 airports.

VI. Testcase

Test cases help check the correctness and debug. Each function needs at least one test case. For example, randomly pick two cities a and b to check the output of short-path(a,b).