Complexidade Assintótica

Eduardo Furlan Miranda 2024-02-01

Adaptado dos materiais dos Profs. N.T. Roman e F.L.S. Nunes

Análise de algoritmos

- Permite escolher o algoritmo mais eficiente
- Geralmente o tempo de duração de um algoritmo cresce com o tamanho da entrada
 - O tempo de execução de um programa pode ser descrito como uma função do tamanho de sua entrada
- Tamanho de entrada (n)
 - Geralmente é o nº de itens de entrada
- Tempo de execução
 - Quantidade de operações
 - Considerar que cada linha i tem um tempo constante c_i

```
A = [9, 8, 7, 6, 5, 4, 3, 2, 1]
for j in range(1, len(A)):
    chave = A[j]
    i = j - 1
    while i >= 0 and A[i] > chave:
        A[i + 1] = A[i]
        i -= 1
    A[i + 1] = chave
    print(A)
```

```
[8, 9, 7, 6, 5, 4, 3, 2, 1]
[7, 8, 9, 6, 5, 4, 3, 2, 1]
[6, 7, 8, 9, 5, 4, 3, 2, 1]
[5, 6, 7, 8, 9, 4, 3, 2, 1]
[4, 5, 6, 7, 8, 9, 3, 2, 1]
[3, 4, 5, 6, 7, 8, 9, 2, 1]
[2, 3, 4, 5, 6, 7, 8, 9, 1]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

Ordenação por inserção (insertionsort)

```
A = [9, 8, 7, 6, 5, 4, 3, 2, 1]
for j in range(1, len(A)):
    print(f"\n(j={j + 1}) ", end="")
    chave = A[j]
    i = j - 1
    while i >= 0 and A[i] > chave:
        print(i + 1, end=", ")
        A[i + 1] = A[i]
        i -= 1
    A[i + 1] = chave
```

Laço interno

- A parte interna do laço executa até 8 vezes
- A linha do while executa até 9 vezes
- t_i: n^o de vezes que o laço executa, para aquele valor de j

```
(j=2) 1,

(j=3) 2, 1,

(j=4) 3, 2, 1,

(j=5) 4, 3, 2, 1,

(j=6) 5, 4, 3, 2, 1,

(j=7) 6, 5, 4, 3, 2, 1,

(j=8) 7, 6, 5, 4, 3, 2, 1,

(j=9) 8, 7, 6, 5, 4, 3, 2, 1,
```

Função de custo de um algoritmo

	ordenação por inserção		vezes
1	<pre>for j in range(1, len(A)):</pre>	C ₁	n
2	chave = A[j]	C ₂	n-1
3	# ordenando elementos à esquerda	0	n-1
4	i = j - 1	C ₄	n-1
5	while i >= 0 and A[i] > chave:	C 5	$\sum_{j=2}^{n} t_{j}$
6	A[i + 1] = A[i]	C 6	$\sum_{j=2}^{n} \left(t_{j} - 1 \right)$
7	i -= 1	C ₇	$\sum_{j=2}^{n} \left(t_{j} - 1 \right)$
9	A[i + 1] = chave	C ₈	n-1

Tempo de execução do algoritmo - melhor caso

Entrada de *n* valores

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

• Melhor caso: vetor já ordenado

vai ser executado uma vez

• Na linha 5: $A[i] \le chave$, o que implica $t_j = 1$ para j = 2, 3, ..., n

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

Podemos expressar como uma função linear:

Tempo de execução do algoritmo - pior caso

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- Pior caso: se o arranjo estiver ordenado em ordem inversa
 - Compara cada A[j] com A[1 .. j-1] \rightarrow $t_j = j$ para j = 2, 3, ..., n

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$
 Propriedades matemáticas

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

Usa-se apenas o termo mais importante

$$T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n - \left(c_2 + c_4 + c_5 + c_8\right)$$

- Tempo de execução de um algoritmo
 - Fixo para uma determinada entrada
 - Geralmente
- Normalmente analisamos apenas o pior caso
 - Limite superior do tempo, para qualquer entrada
 - O pior caso ocorre com frequência em alguns algoritmos
 - Ex.: procurar um registro inexistente em um banco de dados
 - Muitas vezes o caso médio é quase tão ruim quanto o pior

Taxa ou ordem de crescimento

- Considera apenas o termo inicial (ex.: an²)
 - Termos de mais baixa ordem são relativamente insignificantes
- Ignora o coeficiente constante do termo inicial
 - Menos significativo para grandes entradas
- Notação: $\Theta(n^2)$ ("téta de n ao quadrado") função de custo (de tempo)
- Geralmente um algoritmo é mais eficiente se o tempo de execução no pior caso possui menor ordem de crescimento

Complexidade assintótica

- Método para descrever o comportamento de limites
 - Ex.: desempenho de algoritmos quando aplicados a um volume muito grande de dados de entrada
- A escolha do algoritmo pode se tornar um problema crítico quando n é grande
 - Analisa-se o comportamento assintótico das funções de custo
 - Comportamento das funções para valores grandes de n
 - O comportamento assintótico de f (n) representa o limite do comportamento do custo (complexidade) quando n cresce
 - Representa o limite do comportamento da função de custo

Eficiência assintótica dos algoritmos

- Maneira como o tempo de execução de um algoritmo aumenta com o tamanho da entrada no limite
 - À medida que o tamanho da entrada aumenta indefinidamente
- Um algoritmo que é assintoticamente mais eficiente será a melhor escolha para todas as entradas, exceto as pequenas

Eficiência assintótica dos algoritmos

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10^{6}	10 ⁹
$n \log n$	200	3000	$4 \cdot 10^4$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	10 ⁴	10 ⁶	108	10 ¹²	10^{18}
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$\approx 10^{10}$	$\approx 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

1 milhão de operações por segundo

Função de custo 10 20 30 40 50 60 0,00001s0,00002s 0,00003s 0,00004s 0,00005s 0,00006s n n^2 0,0001s0,0009s 0,0016s 0,0025s 0.0004s0,0036s n^3 0.001s0.008s0.027s0.064s0.125s0,216s n^5 0,1s 3,2s 24,3s 1,7min 5,2min 12,96min 2^n 0,001s1,04s 17,9min 12,7dias 35,7 anos 366 séc. 10⁸ séc. 10¹³séc. 3^n 0.059s58min 3855séc. 6,5anos

n

Influência do tamanho do problema

- Ex.: em um mesmo tempo, aumentar 1000x a velocidade de um computador, resolve:
 - Um problema 10x maior de complexidade Θ(n³)
 - Um problema 1000x maior se a complexidade for Θ(n)

Função de custo	Computador Atual (C)	Computador 100C	Computador 1000C
n	x	100 <i>x</i>	1000 <i>x</i>
n ²	x	10 <i>x</i>	31.6 <i>x</i>
n ³	x	4, 6 <i>x</i>	10 <i>x</i>
2 ⁿ	x	x + 6, 6	x + 10

Resumindo

- Se f(n) é a função de complexidade de um algoritmo A
 - O comportamento assintótico de f(n) representa o limite do comportamento do custo (complexidade) de A quando n cresce
- A análise de um algoritmo (função de complexidade)
 - Geralmente considera apenas algumas operações elementares
 - Usa apenas os termos mais importantes
- A complexidade assintótica relata crescimento assintótico (no limite) das operações elementares

Dominar assintoticamente

• Definição: uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c |g(n)|$

Exemplo 1 – quem domina quem?

- g(n) = n e $f(n) = -n^2$
- Quem domina quem?
- $|n| \le |-n^2|$ para todo $n \in N$
- Para c = 1 e $m = 0 \Rightarrow |g(n)| \leq |f(n)|$
- Portanto f(n) domina assintoticamente g(n)

Exemplo 2

- $g(n) = (n + 1)^2$ e $f(n) = n^2$
- $|n^2| \le |(n+1)^2|$ para $n \ge 0$
- g(n) domina f(n)

Exemplo 3

- $g(n) = (n+1)^2 e f(n) = n^2$
- Suponha que queremos $g(n) \le cf(n)$
- Então $|(n+1)^2| \le |cn^2|$
- Para isso, basta que $|(n+1)^2| \le |(\sqrt{cn})^2|_{g}$
- Se √c = 2, ou seja, c=4, isso é verdade
- $|(n+1)^2| \le |4n^2|, \forall n \ge 1$

• f(n) e g(n) dominam assintoticamente uma a outra

Notação O (lê-se "O grande")

- Definição: $O(g(n)) = \{f(n): existem constantes positivas c e <math>n_0$ tais que $0 \le f(n) \le cg(n), \ \forall \ n \ge n_0\}$
- Informalmente dizemos que se f(n) ∈ O(g(n)), então f(n) cresce no máximo tão rapidamente quanto g(n)

Notação O

- Expressa que g(n) domina assintoticamente f(n)
 - Escreve-se f(n)=O(g(n)) e lê-se "f(n) é da ordem no máximo g(n)"
- Usamos para dar um limite superior sobre uma função
- Muitas vezes calcular a função de complexidade g(n) de um algoritmo A é complicado
 - É mais fácil determinar que f(n) é O(g(n))
 - Assintoticamente f(n) cresce no máximo como g(n)
- Podemos descrever o tempo de execução de um algoritmo apenas inspecionando a sua estrutura global

Exemplo

	ordenação por inserção	custo	vezes
1	<pre>for j in range(1, len(A)):</pre>	C ₁	n
2	chave = A[j]	C ₂	n-1
3	# ordenando elementos à esquerda	0	n-1
4	i = j - 1	C ₄	n-1
5	while i >= 0 and A[i] > chave:	C 5	[n(n + 1)]/2 - 1
6	A[i + 1] = A[i]	C ₆	[n(n - 1)]/2
7	i -= 1	C ₇	[n(n - 1)]/2
9	A[i + 1] = chave	C 8	n-1

(continua)

Exemplos

- Algoritmo insertion-sort visto anteriormente, an2 + bn c
 - Estrutura de laço duplamente aninhado
 - Limite superior $O(n^2)$ no pior caso
 - Custo de cada iteração é limitado acima por *O(1)* (constante)
 - Os índices i e j são no máximo n
 - O laço interno é executado uma vez para cada um dos n^2 pares de valores $i \in j \leftarrow [\mathbf{n(n+1)}]/2 1$
- $3/2 n^2 2 n \in O(n^2)$ $f(n) \le cg(n)$
 - Fazendo c=3/2 teremos 3/2 $n^2 2n \le 3/2 n^2 \ \forall \ n_0 \ge 2$
 - Outras constantes podem existir, mas o que importa é que existe alguma escolha para as constantes

Notação O – o pior caso

- Como a notação O dá um limite superior, quando empregado ao pior caso...
 - Indica que esse limite vale para qualquer instância daquele algoritmo
- Assim, o limite $O(n^2)$ do pior caso do *insertion sort* também se aplica a qualquer entrada
- Veremos que o mesmo não é verdadeiro para a notação Θ

Operações com a notação O

$$f(n) = O(f(n))$$

$$C \times f(n) = O(f(n)), c \text{ } e \text{ } uma \text{ } constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n))) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Operações com a notação O

- A regra O(f(n)) + O(g(n)) = O(max(f(n), g(n))) pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
- Suponha 3 trechos: O(n), $O(n^2)$ e $O(n \log n)$
 - Qual o tempo de execução do algoritmo como um todo?
 - Lembre-se que o tempo de execução é a soma dos tempos de cada trecho
- $O(n) + O(n^2) + O(n\log n) = max(O(n), O(n^2), O(n\log n)) = O(n^2)$

Notação Ω

"big omega de g de n"

- Definição: $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n), \forall n \ge n_0 \}$
- Informalmente dizemos que se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n)
- Note que se $f(n) \in O(g(n))$ define um limite superior para f(n), $\Omega(g(n))$ define um limite inferior

Exemplo

$$f(n) g(n)$$
• $3/2 n^2 - 2 n \in \Omega(n^2)$

- Fazendo c=1/2 teremos $3/2 n^2 2 n \ge 1/2 n^2$, $\forall n_0 \ge 2$
 - Outras constantes podem existir, mas o que importa é que existe alguma escolha para as constantes

Notação O e Ω

Notação Θ

• Definição: $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e}$ $n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \}$

• Informalmente dizemos que se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n)

Exemplo

$$\begin{array}{ccc}
f(n) & g(n) \\
\bullet & 3/2 & n^2 - 2 & n & \in \Theta(n^2)
\end{array}$$

- Fazendo $c_1=1/2$ e $c_2=3/2$ teremos $|1/2n^2| \le |3/2n^2-2n| \le |3/2n^2|$, $\forall n_0 \ge 2$
 - Outras constantes podem existir, mas o que importa é que existe alguma escolha para as constantes

$3/2 n^2 - 2 n \in O(n^2)$	\rightarrow	$3/2 n^2 - 2n \le 3/2 n^2$
$3/2 n^2 - 2 n \in \Omega(n^2)$	\rightarrow	$3/2 n^2 - 2 n \ge 1/2 n^2$
$3/2 n^2 - 2 n \in \Theta(n^2)$	\rightarrow	$ 1/2n^2 \le 3/2n^2 - 2n \le 3/2n^2 $

Se $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$, então $f(n) \in \Theta(g(n))$

Notação Θ – pior/melhor caso

- O tempo limite de $\Theta(n^2)$ para o pior caso do *insertion sort*
 - Não implica um tempo Θ(n²) para qualquer entrada
- Por exemplo, se pegarmos o melhor caso, vemos que ele tem Θ(n)

Notação o

("o pequeno de g de n")

- $o(g(n)) = \{f(n): \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le f(n) < cg(n), \forall n \ge n_0 \} \text{to}$
- Informalmente dizemos que se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n)
- Intuitivamente na notação o a função f(n) tem crescimento muito menor que g(n) quando n tende para o infinito

Exemplo

- $1000 \text{ n}^2 \in o(n^3)$?
- Para todo valor de c, um n_0 que satisfaz a definição é:

$$n_0 = |1000/c| + 1$$

Diferença entre O e o

- O: existem constantes positivas c e n₀ tais que 0 ≤ f(n) ≤ cg(n), ∀ n ≥ n₀
 - A expressão $0 \le f(n) \le cg(n)$ é válida para alguma constante c>0
- o: para toda constante positiva c, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, $\forall n \ge n_0$
 - A expressão $0 \le f(n) < cg(n)$ é válida para toda constante c>0

Notação ω

- Definição: $\omega(g(n)) = \{f(n): \text{ para toda constante positiva } c,$ existe uma constante $n_0 > 0$ tal que $0 \le cg(n) < f(n)$, para todo $n \ge n_0$ }
- Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n)
- Intuitivamente, na notação ω , a função f(n) tem crescimento muito maior que g(n) quando n tende para o infinito
- ω está para Ω , da mesma forma que σ está para O
 - O e Ω são chamados de assintoticamente firmes

Exemplo

- $|1/1000 \text{ n}^2| \in \omega(n)$?
- Para todo valor de c, um n_0 que satisfaz a definição é:

•
$$n_0 = |1000c| + 1$$

Propriedades das classes

Reflexividade

- $f(n) \in O(f(n))$
- $f(n) \in \Omega(f(n))$
- $f(n) \in \Theta(f(n))$

Simetria

• $f(n) \in O(g(n))$ se, e somente se, $g(n) \in O(f(n))$

Simetria Transposta

- $f(n) \in O(g(n))$ se, e somente se, $g(n) \in \Omega(f(n))$
- $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$

Propriedades das classes

Transitividade

```
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n))
Se f(n) \in \Omega(g(n)) e g(n) \in \Omega(h(n)), então f(n) \in \Omega(h(n))
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n))
Se f(n) \in o(g(n)) e g(n) \in o(h(n)), então f(n) \in o(h(n))
Se f(n) \in \omega(g(n)) e g(n) \in \omega(h(n)), então f(n) \in \omega(h(n))
```

Hierarquia de funções

Input (number)

Principais Classes de Problemas

Ordem de Complexidade	Nome	
O (1)	Constante	
O(log n)	Logarítmica	
O(n)	Linear	
$O(n \log n)$	Linearitmica	
$O(n^2)$	Quadrática	
$O(n^3)$	Cúbica	
$O(2^n)$	Exponencial	
O(n!)	Exponencial	

Referências

CORMEN, T. H. Algoritmos - Teoria e Prática. [S. I.]: GEN LTC, 2012.

ROMAN, N. T.; NUNES, F. L. S. Complexidade Assintótica. [S. I.]: USP, 2017. Disponível em: https://edisciplinas.usp.br/mod/resource/view.php? id=2197531&forceview=1.

FORTES, R. Análise de Algoritmos. [S. I.]: Universidade Federal de Ouro Preto, UFOP, 2014. Disponível em:

http://www.decom.ufop.br/reinaldo/site_media/uploads/2014-01-bcc202/aulas/aula_04_- analise_de_algoritmos_(parte_1)_(v1).pdf.