(30) Priority data:

200

*

F. ...

に関係の記念

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

			mon meat (ret)
(51) International Patent Classification 5: G01N 33/543, C12Q 1/68 G01N 27/07, 21/75	A2	(11) International Publication Number	: WO 93/22678
		(43) International Publication Date:	11 November 1993 (11.11.93)

(21) International Application Number:	PCT/US93/03829
--	----------------

(22) International Filing Date: 23 April 1993 (23.04.93)

07/872,582 23 April 1992 (23.04.92) US

(71) Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, MA 02139 (US). BAYLOR COLLEGE OF
MEDECINE [US/US]; 1 Baylor Plaza, Houston, TX
77030 (US). HOUSTON ADVANCED RESEARCH
CENTER [US/US]; 4800 Research Forest Drive, The
Woodlands, TX 77381 (US).

(72) Inventors: HOLLIS, Mark, A.; 45 Staffordshire Lane, Concord, MA 01742 (US). EHRLICH, Daniel, J.; 11 Grant Place, Lexington, MA 02173 (US). MURPHY, R., Allen; 411 Hill Road, Boxboro, MA 01719 (US). KO-SICKI, Bernard, B.; 39 Fort Pont Road, Acton, MA 01720 (US). RATHMAN, Dennis, D.; 42 East Bluff Road, Ashland, MA 01721 (US). CHEN, Chang-Lee; 19 Pratts Mill Road, Sudbury, MA 01776 (US). MA-THEWS, Richard, H.; 30 Wildes Road, Chelmsford, MA 01824 (US). BURKE, BArry, E.; 17 Sherburne Road, Lexington, MA 02173 (US). EGGERS, Mitch, D.; 10 Plum Cove Court, The Woodlands, TX 77381 (US). HOGAN, Michael, E.; 103 Golden Shadow Circle, The Woodlands, TX 77381 (US). VARMA, Rajender, Singh; 8 Spurwood Court, The Woodlands, TX 77381-2526 (US).

(74) Agents: REYNOLDS, Leo, R. et al.; Hamilton, Brook, Smith & Reynolds, Two Militia Drive, Lexington, MA 02173 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: OPTICAL AND ELECTRICAL METHODS AND APPARATUS FOR MOLECULE DETECTION

(57) Abstract

4

A method and apparatus are disclosed for identifying molecular structures within a sample substance using a monolithic array of test sites formed on a substrate upon which the sample substance is applied. Each test site includes probes formed therein to bond with a predetermined target molecular structure or structures. A signal is applied to the test sites and certain electrical, mechanical and/or optical properties of the test sites are detected to determine which probes have bonded to an associated target molecular structure.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				_	
AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA "	Gabon	MW	Malawi
88	Burbados	GB	United Kingdom	· NL	Netherlands
BE	Belgium	' GN	Guinea	ND.	Norway
BF	Burkina Faso	· GR	Grocce :	NZ	New Zealand
BC	Bulgaria	HU	Hungary	PL.	Poland
BJ	Beain	JE	Ircland	PT	Portugal
BR.	Brozil	rr	lady	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
Cl	Côte d'Ivoire .	KZ.	Kazakhstan	SN	Senegal
CM	Cameroon .	u	Liechtenstein	SU	Soviet Union
CS	Czechoslovakia •	LK	Sri Lanka	TD	Chad .
CZ	Czech Republic	LU	gruodmuzu.I	TG	Торо
DE	Germany	MC	Monaco.	UA	Ukraine
DK	Denmark ·	MG	Madagascar	US	United States of America
ES	Spain	MI.	Mali	VN	Vict Nam
FI	Finland	MN	Moneolia		•

•

. 1.

一路原图

海

must be implemented when using radioactive markers or labels to reduce the exposure to radioactivity.

Typically, workers must wear a device to continually monitor radioactive exposure. In addition, pregnant females should take additional precautions to prevent the occurrence of genetic mutations in the unborn.

The conventional radioactive detection scheme has sensitivity limitations in both the temporal and spatial domains. The use of radioactive labelling currently has a spatial resolution of one millimeter. Additional hardware and software are required to reduce the spatial resolution below one millimeter.

The sensitivity of detection utilizing autoradiographic film is directly related to the amount of time during which the radioactive labelled fragments are exposed to the film. Thus, the exposure time of the film may range from hours to days, depending upon the level of radioactivity within each detection test site. A β scanner may drastically reduce the time required for film exposure during radiography. However, the use of the β scanner significantly increases the expense associated with this type of detection, and has intrinsically poor spatial resolution.

Optical detection of fluorescent labelled receptors

has also been utilized to detect molecular binding.

Briefly, for DNA sequence analysis applications, a basespecific fluorescent dye is attached covalently to the
oligonucleotide primers or to the chain terminating
dideoxynucleotides used in conjunction with DNA

polymerase. The appropriate absorption wavelength for
each dye is chosen and used to excite the dye. If the

WO 93/22678 PCT/US93/03829

OPTICAL AND ELECTRICAL METHODS AND APPARATUS FOR MOLECULE DETECTION Description

Background of the Invention

5

鬱

In many applications, it is desirable to detect the presence of one or more molecular structures in a sample. The molecular structures typically comprise ligands, such as, cells, antibodies and anti-antibodies. Ligands are molecules which are recognized by a particular receptor.

Ligands may include, without limitation, agonists and antagonists for cell membrane receptors, toxins, venoms, oligo-saccharides, proteins, bacteria, and monoclonal antibodies. For example, a DNA or RNA sequence analysis is very useful in genetic and disease diagnosis,

toxicology testing, genetic research, agriculture and pharmaceutical development. Likewise, cell and antibody detection is important in disease diagnosis.

A number of techniques have been developed for molecular structure detection. In DNA and RNA sequence detection, two procedures are generally used, autoradiography and optical detection. Autoradiography is performed using 32P or 35S. For DNA sequence analysis applications, nucleic acid fragments are end labeled with 32P. These end labeled fragments are separated by size, then exposed to x-ray film for a specified amount of time. The amount of film exposure is directly related to the

The use of any radioactive label is associated with several disadvantages. First, prolonged exposure to radioactive elements increases the risk of acquiring genetic diseases, such as cancer. As such, precautions

amount of radioactivity adjacent to a region of film.

absorption spectra of the dyes are close to each other, a specific wavelength can be chosen to excite the entire set of dyes.

A particular optical detection technique involves

the use of a dye, for example, ethidium bromide, which
stains duplexed nucleic acids. The fluorescence of
these dyes exhibits an approximate 20-fold increase when
it is bound to duplexed DNA or RNA, when compared to the
fluorescence exhibited by unbound dye, or dye bound to
single-stranded DNA. This type of dye is used to detect
the presence of hybridized DNA (or RNA) during a
hybridization experiment. Although the use of
conventional optical detection methods increases the
throughput of the sequencing experiments, the
disadvantages are serious.

Therefore, a need has arisen in the industry for a safe, low-cost, fast and accurate method and apparatus for detecting molecular structures at reduced complexity.

20 SUMMARY OF THE INVENTION

...V

٠- -

- 1 1

In accordance with the present invention, a method and apparatus for detecting the presence of molecular structures in predetermined test sites is provided which substantially eliminates or prevents the disadvantages and problems associated with prior devices.

In an electrical embodiment of the present invention, a substance having a molecular structure is applied to a plurality of test sites, each test site having a probe formed therein capable of binding to a 30' known molecular structure. Electrical signals are

10

7

At i

Ž,

applied to the test sites, and electrical properties of the test sites are detected to determine whether the probe has bonded (hybridized) to, or with, an associated molecular structure.

The test sites are monolithic structures formed on, or in, semiconductor chips or wafers using very large scale integrated (VSLI) circuit methods. This results in a low-cost, small-size, testing device which may be inexpensive enough to be disposable after use.

Hybridized molecules can be detected, in accordance with one embodiment of the invention, by sensing the change in dissipation of a capacitor formed at the test site, or by sensing the change in AC conductance of a test site when hybridized molecules are present.

15 Alternatively, by forming a transmission line between two electrodes at each test site, the presence of hybridized molecules can be detected by measuring the RF loss associated with the formation of hybridized molecules at the test site.

In another embodiment, micro-machined resonators are formed in each test site and the change in resonant frequency, or the change in the Quality Factor (Q) of the resonator, caused by formation of hybridized molecules may be measured to determine which sites contain hybridized molecules.

In an alternate optical embodiment of the invention, a charge-coupled-device (CCD) array is provided, with each electrode of the CCD array aligned with a respective adjacent test site. Light attenuation, caused by greater absorption of illuminating light in test sites with hybridized molecules is used to determine the sites with the

, 4

70

44

147

BUSINGID- -WO GROSETOKO I -

hybridized molecules. The CCD array can be integrated with a corresponding test site array. Alternatively the test site array may be a separate disposable plate.

The probes within each test site are all identical,

but differ from test site to test site. The probes for

DNA or RNA sequence testing are generally formed of

oligonucleotide strands. In accordance with another

embodiment of the invention, an optical direct

patterning system is used to perform localized

sensitization of the microarray or localized synthesis

of oligonucleotide strands at each test site to

customize or differentiate each of the probe strands.

A further understanding of the nature and advantages of the invention herein may be realized with respect to the detailed description which follows and the drawings described below.

Brief Description of the Drawings ____

Fig. 1 is a schematic partial perspective of a microelectronic sensor array in accordance with a preferred embodiment of the invention.

Fig. 2 is an enlarged view of a portion of Fig. 1.

Fig. 3 is an enlarged view of the electrode portion of Fig. 2.

Fig. 4 is a section taken along lines IV-IV of Fig.

. 2 i

Figs. 5A-5D are schematic cross-sectional process diagrams showing important steps in forming test sites.

Figs. 6A-6H are schematic cross-sectional process diagrams showing important steps in forming alternate embodiments of the test sites.

÷13

4-7

-

2

invention may also be used for cell detection and antibody detection or detection of any hybridized molecule.

The sequencer 10 comprises an X-Y array of test

5 sites 12 electronically addressable by conductive leads

X1, X2, X3---XN on the X-axis and conductive leads Y1,

Y2, Y3---YN on the Y-axis. X-logic circuitry 36 for

sequentially addressing each X-line is coupled to

detection and recognition circuitry 40. Similar

10 circuits 56 are coupled to the Y-lines Y1---YN. The

array 10 and X and Y logic circuitry 36 and 56 and

circuitry 40 may all be implemented on a single

semiconductor chip depending upon cost trade-offs.

The test sites 12, described in greater detail 15 hereinbelow, are formed in a semiconductor wafer using semiconductor photolithographic processing techniques. Each test site contains a plurality of probes 22 (See Fig. 4) which are capable of binding to known molecular structures (hereinafter "target(s)"). The targets could 20 comprise, for example, biopolymers such as polynucleotides, DNA, RNA, cells, antibodies or antiantibodies. For the case of a RNA or DNA sequencer, the synthetic probes may comprise, for example, oligonucleotides. All the probes 22 in a given test 25 site are identical. But, the probes in respective test sites 12 differ in a known sequence for simultaneous detection of a plurality of different targets (or subsequences within a target molecule) within a single array 10.

When a sample substance containing the targets in an electrolyte solution 18 is poured onto the array 10, the targets bind with associated probes 22 within a

N.

) यह

>>

13

plurality of wells 42 formed in each test site 12. After sufficient time for binding, the surface of the array 10 is rinsed to remove excess targets or other unbound molecular structures. The remaining target 5 structures will be, for the most part, bound to the probes attached to the microfabricated array 10 at specific test sites 12. Each test site 12 is then interrogated electronically by the logic circuitry 36 and 56 to determine whether targets have bound in that 10 test site. Test sites having bound targets, i.e., hybridized molecules, will have changed electrical parameters, which may be detected by detection circuitry 40 coupled to the test sites over the X and Y leads. Thus, by electronic addressing, the detection of 15 specific target/probe bindings is achieved at each test site 12 within the microfabricated array 10, thereby determining the composition of the targets that remain present after washing.

For the example of DNA sequencing, recognition circuit 40 performs a sequence analysis described in connection with Fig. 21 based upon the composition of the targets (nucleic acids) detected by the circuitry

Note: Circuit 40 is preferably coupled to the test
25 sites by transistor switches (not shown) using row and
column addressing techniques employed, for example, in
addressing dynamic random access memory (DRAM) or active
matrix liquid crystal display (AMLCD) devices.

SENCED.

.

 ∂z

₹.

W.

rinse, a number of the wells in the array will contain a significant amount of this bonded or hybridized DNA, and the rest will contain only the original oligonucleotide strands in an aqueous solution. The wells are then interrogated electrically in sequence using the electrodes 16 and 20 in each site. The sites that contain hybridized DNA are recorded. For example, sites without hybridized DNA will have different electrical properties than those with hybridized DNA and will not 10 be recorded. At the resonant frequency of a DNA molecule in aqueous solution, the imaginary part ϵ'' of the complex relative permittivity $\epsilon = \epsilon' - j\epsilon''$ of the solution can be approximately a factor of 10 to 100 times larger than its value for an aqueous solution 15 without the DNA. Methods B, C, D, and E below are designed to measure or detect this difference in ϵ'' at each site 12. From this data base, a computer "overlapping" or "neural network" algorithm in circuit 40 reconstructs the entire coding sequence of the unknown DNA.

B. <u>Dissipation Factor Test</u>

Fig. 7 is a plot of dissipation factor versus the log of frequency for bonded (hybridized) DNA (curve B) and unbonded DNA (curve A) showing how the dispersion factor $D = \epsilon'' / \epsilon''$ differs, depending upon whether the DNA is bonded or not. Note: Depending upon the particular samples measured, the curves of Fig. 7 may be reversed, i.e. curve B could represent unbonded DNA. This difference in dispersion factor is used to determine the

13

11.0

1

影響

ंतुं

presence or absence of hybridized DNA at a test site formed as in Figs. 1-6. The dissipation factor at each test site is measured by well-known instrumentation such as an LCR meter in circuit 40. The meter is successively coupled to each site 12 via logic circuits 36 and 56.

C. AC Conductance Test

Similarly, the presence or absence of hybridized DNA can be detected by measuring the AC conductance GAC 10 = ϵ "A/d at each test site; wherein A is the effective area of one electrode and d is the effective distance between electrodes. At the relaxation frequency of a given DNA molecule, the AC conductance should be as much as 100 times or more larger than the conductance when no DNA is present. Fig. 9 is a schematic representation of how this test may be conducted. A pulsed or frequencyscanned waveform is applied across electrodes 21B and 20B of each test site 12B. Probes 22 are formed on each electrode and an aqueous solution of target molecules is formed in the wells 42B of the test sites 12B. presence of hybridized DNA is detected at a resonant frequency of DNA as shown in Fig. 10. An LCR meter may be used to measure G or R = 1/G at a discrete frequency. Alternatively, as discussed in 25 connection with Figs. 9 and 10, G can be measured as a function of frequency.

.

1

D. <u>Transmission-Loss Detection Test</u>

Signal loss on a transmission line is also sensitive to ϵ'' . By incorporating a transmission line 11 between the X and Y lines at each test site (as shown in Fig. 8) electrical detection of hybridized molecules, such as DNA, can be accomplished by scalar measurement of the RF loss of an electromagnetic wave passing along the line 11 at each test site 12A. Line 11 may comprise a micro-miniature version of stripline, microstrip, waveguide, coplanar waveguide, slotline, or coaxial line. To achieve maximum sensitivity with this method, the test site well 42A is made relatively wider and/or longer than the wells in Fig. 4, and the length of the transmission line in the well is maximized by forming it in a meandering pattern.

E. Pulse and Chirp Method of Detection

As shown in Fig. 11, a frequency scanned or chirped voltage waveform V_i may be applied across the electrodes at each site and the resultant response

20 waveform V_o (Fig. 12 or Fig. 13, depending upon whether frequency is increasing or decreasing) is analyzed to determine the presence of hybridized DNA as indicated by a maxima at a hybridized DNA frequency. The measurement of the relaxation frequency of the hybridized DNA using

25 a frequency-scanned waveform gives additional information about the properties of the hybridized DNA, e.g., crosslinked versus non-crosslinked.

4

45

家業

In this embodiment, a plurality of mechanical resonator structures are formed in test sites formed in silicon wafer 34C, as shown in Fig. 14. The resonator structure comprises a lower metal sensor electrode 20C extending in the X-direction and an upper membrane resonator film 21 preferably of silicon nitride or metal such as tantalum extending along a Y-direction in the plane of the wafer. Typically the membrane size is about 100 microns in diameter or width/length. A dielectric gap 60, preferably of air, is formed between the upper and lower members 21C and 20C.

A test site well 42C is formed over membrane 16C and probes 22C formed in the well surfaces. Target DNA solution 18C is dispensed into the test well 42C. The mechanical cavity 60 between the upper and lower electrodes 16C and 20C forms a resonator. This resonator has a resonant frequency in the kilohertz to multimegahertz range with a narrow resonant linewidth.

An RF signal propagated across each resonator will produce a characteristic high Q response with a narrow linewidth. A shift in either Q or resonant frequency indicates the presence of hybridized molecules on the resonator surface electrode membrane 21C.

Membrane electrode 21C may be formed of a thin film of silicon nitride using chemical vapor deposition at a well controlled silicon to nitrogen ratio and controlled elevated temperature to adjust the film tension when it is cooled to room temperature. Membranes can be formed on unpatterned silicon wafers then released as free standing structures by etching out a silicon window from the back side. Examples of mechanical resonators and

. j

£

<u>.</u>

1

Ŋ

The advantages for using 1,2-dioxetanes are numerous. In addition to no radioactivity exposure, this method is relatively simple to perform (reagents and equipment are inexpensive). Finally, this method has a low background noise level and wide dynamic range.

In an alternative two-piece implementation as shown in Fig. 16 the probe site array 200' is formed on a separate thin transparent substrate such as a 10-milthick pyrex plate 270. This separate plate is marked 10 with precision alignment features such as etched or printed gratings (not shown) to permit a precise automated overlay of the separated probe plate onto a separated CCD array 260. Each array location in the probe plate is sensitized with unique probes. array is then fabricated with or without the blocking filter 250 of Fig. 15. In one embodiment, an analysis is made by bringing the probe plate into registered close proximity over the CCD array without using a lens to image the plate onto the CCD. Irradiation of the 20 plate is as in either of the embodiments discussed above in connection with Fig. 15. A further alternative is to image the separated probe plate 200' onto the CCD array 260 using a lens. This would allow a greater separation between the plate and the CCD array, for the case in which secondary fluorescence is used, and also allows separation of the excitation and fluorescence by obliquely exciting the probe plate. Imaging with magnification or demagnification is possible so that the probe plate dimensions can be optimized separately from the CCD.

WO 93/22678 PCT/US93/03829

**

1213

À:

布

U

-23-

The CCD device used to monitor the probe array for any of these geometries can be of the conventional variety and sensitive to the ultraviolet and visible spectrum. An alternative approach is to use an 5 infrared, heat-sensitive array detector such as a platinum silicide or iridium silicide infrared imager. This latter choice would permit the direct monitoring of heat evolved from the probe array during a biochemical reaction such as hybridization or antibody action. DNA hybridization and other heat-generating reactions may be directly detectable through their thermal signature during reaction. The infrared transmission and reflection properties of the product (e.g., hybridized DNA) will be distinctly different than the reactants due to the formation of new molecular bonds with new absorptions from infrared-active vibrational and rotational modes in the product molecule. In the configuration of Figs. 15 and 16, thermal properties can be monitored also by monitoring thermally generated 20 noise in a conventional visible wavelength or IR detector array. In this case heat generated by the biochemical reaction is transmitted by thermal conduction through the thin device layers; and detected as a noise burst on the electrode 220. The array may 25 also be flood-irradiated with infrared, visible, or ultraviolet light in the configuration of Fig. 15. In this case, light is chosen specifically in a productstate (e.g., hybridized DNA) absorption band. In the unreacted state the flood illumination is transmitted 30 through the well and reflected by filter 250. Wells in which the desired reaction has occurred become absorbing

 \mathcal{T}

.

100

(d)

266

at the flood illumination wavelength. After absorption the flood illumination automatically converts to heat and is detected after conduction into the device below the active well site.

5 V. PROBE FORMATION

A. <u>General</u>

One method of forming the array 10 uses probes attached to the test sites 12 in the array. Different probes can be attached to the test sites 12 according to the type of target desired. Oligonucleotides, single or double stranded DNA or RNA, antibodies or antigenantibody complexes, tumor cells and other test probes known to those of skill in the art may be used. The probes are attached to the test sites by fixation to a solid support substrate on the surface of the wells 42, or alternatively, attached directly to the electrodes 16 or 20, as in Fig. 4. The solid support substrates which can be used to form the surface of the wells 42 include organic or inorganic substrates, such as glass, polystyrenes, polyimides, silicon dioxide, and silicon nitride.

The solid support substrates or the electrodes must be functionalized to create a surface chemistry conducive to the formation of covalent linkages with the selected probes. As an example, a glass support can be functionalized with an epoxide group by reaction with an epoxy silane. The epoxide group on the support reacts with a 5'-amino-derivatized oligonucleotide probe to form a secondary amine linkage, as described in Parkam and Loudon, BBRC 1:1-6 (1978), which is incorporated by

O 93/22678 PCT/US93/03829

-25-

reference herein. Formation of this covalent linkage attaches the probes 26 to the support surface in the desired array. Examples of functionalized polystyrene surfaces include 5' aldehyde or carboxylic acid derivatives coupled to hydrazide-activated polystyrene, as described in Kremsky, et al. (1987) Nucl. Acids Res. 15:2891-2909, and 5' amino derivatives coupled to polystyrene which has been activated by diazotization and 5' phosphate derivatives coupled to amino-functionalized polystyrene, as described in Lund, et al. (1988) Nucl. Acids Res. 16:10861-10880, both articles being incorporated by reference herein.

12.

130

150

DNICOTON -MICH GOODETONS I S

For direct attachment of probes to the electrodes, the electrode surface must be fabricated with materials 15 capable of forming conjugates with the probes. Materials which can be incorporated into the surface of the electrodes to provide for direct attachment of probes include electrometal materials, such as gold, niobium oxide, iridium oxide, platinum, titanium, 20 tantalum, tungsten and other metals. These electrometals are capable of forming stable conjugates directly on the plate surface by linkages with organic thiol groups incorporated into the probe, as described in Whitesides et al. (1990) Langmiur 6:87-96 and Hickman 25 et al. (1991) J. Am. Chem. Soc. 113:1128-1132, both of which are incorporated by reference herein. As an example, a synthetic DNA probe labeled with a thiol group at either the 5' or 3' end will form a stable conjugate with a metal, such as gold, in the plate surface to create an array of directly attached probes.

Professor 2006 % Trefs

έχ.

Laser initiation of the reaction occurs either by localized heating or by photochemistry. A preferred embodiment uses a visible-wavelength or UV argon ion laser in combination with a galvanometer scanning system to initiate photochemical synthesis. Alternatively, since synthesis reactions are known to be highly temperature sensitive, an argon or infrared laser may be used to initiate synthesis by local heating of an array site.

The method can also be applied to the synthesis of peptides or other polymeric probes on solid supports, based upon the principle of thermally addressable deprotection. For example, in the case of peptide synthesis, site selective peptide synthesis is achieved by thermal removal of the f-moc protecting groups, typically in dilute base, followed by capping and the other ordinary steps of peptide synthesis.

Alternatively, a "glue" layer can be locally applied activated Fig. 26A-D (or deactivated) or locally applied Fig. 25A-D to a test site by means of scanned laser irradiation. In this embodiment the ultraviolet, visible or infrared laser is used to photochemically or thermally alter the adhesion properties of the desired array sites. The probe solution, for example of type A, is then washed over the array resulting in localized adhesion of the type A probe at the desired sites. The type A probe solution is then rapidly rinsed from the system, a second laser irradiation at new array sites is applied, and type B probe solution is introduced to adhere type B probes. The process is repeated to sensitize the full array.

Array sensitization may be accomplished using, for example, a CW argon-ion or CW Nd:YAG laser using scanning optics such as galvanometers or rotating mirrors, or using a fixed laser beam with a computer-5 controlled X-Y stage. An activation or deactivation process in a "glue" layer can be preferably accomplished using a short-pulsed laser such as a pulsed Nd:YAG laser or excimer laser. An excellent approach is to simply cover the "glue" layer 902 to "deprotect" and thereby 10 reveal the "glue" by ablating a passivating material 904 applied over the "glue" (See Figs. 26A-D). Examples of glue" layers are epoxides, thiols or hydrophilic, e.g., hydrated surfaces. Passivating materials can be hydrophobic materials such as fluorine-terminated 15 fluorocarbons or the derivatives or hexamethyldisilizane.

Figs. 25A-D and 26A-D illustrate two alternate methods of probe formation using the "glue" approach. Furthermore each show two alternate ways to activate a 20 test site. One way is to use a programmable element such as a heater element 906 embedded beneath a test site to induce a thermal reaction in the test site and thereby create or deposit a glue layer 920 to which the probes adhere. Fully synthesized probes 912 are washed over the cite and adhere to the exposed glue layer site 920, Fig. 25D. Next another site is formed or exposed and a different probe attached. Alternatively external radiation as in Fig. 25B is used to form the glue layer 920; or as in Fig. 26B and C to ablate a passivating layer 904 and expose a glue layer 902.

RNSDOCID- WO 033387843 I

The same

البابع

the washing (removal) of unhybridized and mismatched target molecules. This technique is not only applicable to the electronic genosensors of Figs. 1 through 9, which have electrodes present within each test site, but can be employed in both the micromechanical-resonator and CCD-based approaches by either using the electrodes present within or under each test site or fabricating one or more additional electrodes at each test site for this purpose.

Alternatively, the potential applied to individual wells can be used to draw a current surge through the well structure sufficient to evaporate a "glue" layer or glue passivating layer similar to that described above in the last method. Sensitization of the array is similar to the electronic programming of an array of electrical fuses.

Referring now to Figs. 18 and 19, a microfluidic system for synthesizing unique genosensor probes in situ in a test site will now be described. In this

20 embodiment, reagent sources 352 are individually fluidly coupled via channels L1, L2 --- LN to respective microchannel valves V1,V2 --VN formed in a suitable substrate 341. Valves V1-VN enable flow of solution into manifold line L4. Microfluidic peristaltic pump P1 forces the solution onto array 10', which is enclosed by laser-radiation-permeable films 344 and 343, such as silicon nitride or silicon dioxide.

Radiation from laser 416' is selectively projected onto individual test sites 12' formed in substrate 341, in accordance with previously described scanning or imaging methods. Laser scanning of test sites induces

localized activation of individual sites as the input solution fluids are rapidly switched using valves V1-VN.

The entire fluidic system as well as the array may be formed on a single chip of semiconductor or 5 dielectric material, such as Si, glass, Al2O3, etc. Channels 342 are etched into the substrate 341 using conventional photolithography and etchants or by micromachining techniques. An array 10' of test sites 12' is formed in the substrate, as described in connection with 10 Figs. 1-6.

The microfluidic flow system depicted in Figure 19 can be formed as follows. A photoresist material is spin-coated on a substrate 341, formed, for example of pyrex glass. The microchannel structure is then 15 patterned into the photoresist using standard photolithography and the pattern, including channel structures 343 and 342, are transferred into the substrate by etching using buffered HF. A membrane actuator layer 344, comprised of preferably a 20 piezoelectric, such as lead zirconium titanate or PVDF polymer and metal electrodes, is then bonded to the microchannel structure. During sensitization the array 10' is sealed against the microfluidic system preferably using an elastomer 0-ring 345. Alternate membrane actuator layers, known to specialists in the art, make use of shaped memory alloys rather than piezoelectrics, or are based on passive materials deformed electrostatically, for example, aluminum films which are deflected by DC voltages applied to electrodes (not

The second of th

7

71

H

Terror in the

A STATE OF THE STA

215

e c

The concept of using a larger set of DNA probes to decipher the base sequence of a DNA sample target is illustrated below. Example I shows a small portion of the base sequence of a DNA sample, which has been 5 converted to single-stranded form by heating prior to analysis. By exposing the sample DNA to a set of synthetic DNA probes representing all possible sequences for a given probe length (for example, all 65,536 8-base probes), and then detecting which probes have 10 specifically bound to the target DNA, a complete list of oligonucleotide sequences contained in the DNA sample can be generated. In the case shown in Example 2 (below) only those 8mer probes listed would hybridize to the sample DNA sequence. In turn, an overlapping 15 algorithm is used to generate the complete sequence of the target DNA from the oligonucleotide content.

Example I

Unknown Single Strand DNA (Target) ATCGCTTACGGTAATC

20 Example II

Hybridized Synthetic Genetic Probes

TAGCGAAT

AGCGAATG ' '

GCGAATGC

CGAATGCC

GAATGCCA

AATGCCAT

ATGCCATT

TGCCATTA

30

GCCATTAC

1.2

: .;;

.VIII. APPLICATIONS

Commercial applications of the present invention with regard to DNA and RNA detection include genetic research, genetic and infectious disease diagnosis,

5 toxicology testing, individual identification, agriculture identification and breed optimization, quality assurance through contaminant detection, and occupational hazard screening via mutation detection.

There are currently estimated to be 4,000 to 5,000 genetic diseases in humans, in which a mutational change in a gene destroys or hinders the function of a gene product, leading to a serious medical condition. The affected genes and proteins (gene products) have thus far been identified for a small fraction of human

- steadily. A few examples of human genetic diseases for which mutations associated with the disease have been identified include cystic fibrosis, phenylketonuria, Alzheimers' disease, cancer, Duchenne muscular
- dystrophy, and familial hypercholesterolemia. Although, in some cases, the disease is associated with one or very few specific mutations, it is becoming evident that many, if not most, genetic diseases can be caused by any of numerous mutations, scattered along the affected
- gene. In the former case, the presence of a defective gene can be detected through the use of simple DNA hybridization detection tests in which a synthetic DNA probe is used to discriminate between a wild type and mutant DNA sequence. In the latter case, a substantial
- 30 DNA sequencing effort is required to search through an entire gene for mutations that may be associated with a disease.

27

2 miy

(RFLP) analysis, which is time consuming and laborious.

DNA typing can play an important role in forensics and paternity testing. In addition, there is interest in DNA typing all personnel in the armed services.

by genetic engineering, there will be a need for DNA typing to verify the source and ownership of agricultural products. The sequence information that will come from genome sequencing in humans, plants and animals will lead to increased application of genetic engineering techniques to develop pharmaceutical agents and create improved crops and livestock. Examples include strains that are more resistant to disease and harsh climates, as well as crops that have a greater yield or higher nutritive value.

The present invention can be used in connection with detection of targets which are molecular structures other than DNA or RNA, such as cells and antibodies.

Table III sets forth feasible probe types for other

molecular structures serving as targets. The stated probe types are not meant to be exclusive.

TABLE III Probe Types

Target

25 DNA, RNA Antibody

Cell
Hormone receptor

Normone receptor

Number

Immunoglobulin

Enzyme

Lectins

Probe

Oligonucleotide
Antigen (peptide), antiantibody
Antibody, protein
Hormone
Biotin
Protein A
Enzyme Factor
Specific Carbohydrate

, Ç

when the detector employs peptides or other antigens as probes, it can be used to detect antibodies in biological fluids, as shown in Fig. 22.

In this embodiment, a peptide antigen (the probe 22) is affixed to the SiO₂ 50 at the bottom of the test well 12A (similar to that illustrated in Fig. 6H), employing a bifunctional crosslinker such as one with a silane at one end and an epoxide or other peptide specific-group at the other.

The treated surface is then incubated with a fluid
18 containing antibody (the target T). Because
antibodies are large macromolecules (150,000 to 950,000
MW, depending on class), the resulting target/probe
bonding produces a large change in the permittivity of
the test well 12A. The magnitude of the effect can be
additionally amplified by treating the target/probe
complex with a second antibody which is specific for the
target antibody, thereby creating a very large complex.

The affinity and selectivity of antibody/antigen and antibody-antibody interaction are well known and are the basis for an existing class of biotechnology (ELISA assays, immunohistochemistry, and others). The technology described here employs those well understood binding interactions in a new microelectronic detection scheme.

The commercial application of the methodology is for use to detect the presence of any of hundreds of thousands of different antibodies or other proteins, simultaneously, in a blood sample or other biological fluid. This is particularly useful in blood typing, the

÷

134

٠.٠.

*

257

detection of viral infection such as AIDS, or the diagnosis of cancer. It would also be very useful as a research tool. It would replace or augment the use of ELISA assays and other biochemical methods to detect antibody/antigen interaction.

when the detector employs as a probe, peptides, antibodies or other molecules which bind to cells, it can be used to detect specific cell types in biological fluids.

In this embodiment, the probe 22 comprises an antibody, protein or other molecule which is known to bind to the cell surface. The target T in this case is an intact cell having receptors T for bonding with the probes 22.

A fluid solution containing cells is added to the detector. Subsequent to the target/probe binding interaction, binding gives rise to detector wells which are coupled to a cell. Since cells do not conduct current and display low frequency dielectric relaxation, binding of a cell can be detected by either a change in absolute conduction in a well (a modification of the Coulter principle) or by the induction of a low frequency dielectric relaxation effect.

The commercial application of the methodology is

25 for use to detect the presence of cells with altered
cell surface properties, especially cells in the blood
or other bodily fluids. Cells from solid tissues could
be analyzed subsequent to standard tissue dispersement
methods. Such a detector would be useful in the

30 diagnosis of viral infection and for cancer diagnosis,
as well as a scientific research tool. It would serve

WO 93/22678 PCT/US93/03829

-43-

as a replacement for the use of fluorescence microscopy (immunohistochemistry) and fluorescence activated cell sorting.

IX. ADVANTAGES

*

current microfabrication techniques enable inexpensive construction of multimegabit memories that exhibit uniform densities and properties. Hence arrays containing potentially millions of individual biological test wells or sites can be miniaturized comparable to standard electronic devices at a similar cost. For example, a 1cm by 1cm array could easily be fabricated containing one million biological test sites. Moreover, the uniform electrical properties of the devices fabricated in such manner enhance the detection sensitivity beyond many other approaches.

One important advantage of the microfabricated electronic detector and the optical-absorption CCD detector described previously is that the detection method provides direct detection of target/probe

20 molecular binding. Hence no toxic fluorescent, radioactive, or chemical marker need be attached to the targets or probes. Rather, only an appropriate electrical signal or frequency shift must be experienced for detection. Such signals or shifts naturally occur for many target/probe combinations, such as DNA and RNA to an oligonucleotide. However, if the signal or shift in the electronic detector is weak or nonexistent after bonding, a charged molecular marker can be attached to the target. In addition, detection in the electronic detector is observed by a change in frequency

36

- 3

characteristics, as opposed to a change in magnitude characteristics which can be obscured in time as the microfabricated array is exposed to the corrosive biological solutions. Thus, the device may be cleaned and reused a number of times without affecting its accuracy. Although the method of detection will withstand some corrosion of the electrodes, a passivation layer can be employed to coat the plates for even longer use.

Another advantage of the present invention is that the electronic circuitry used to interrogate the test sites to perform the detection measurements can be fabricated directly on the wafer containing the biological array. Switch matrices, signal processing 15 circuitry, and energy sources could all be incorporated on the same chip to facilitate rapid detection across the array. Consequently, the incorporation of active circuitry on the wafer would also greatly reduce the cost of experimentation.

The density of the probes 22 attached at the test site 12 directly determines the sensitivity. The microelectronic method has been shown to provide a factor of ten discrimination between short (nonhybridized) and long (hybridized) single-stranded DNA fragments, whereas the intercalating-dye optical approach provides a factor of three.

The elimination in most embodiments of radiographic film reduces the testing time since film exposure is not required. Sample preparation time is reduced greatly 30 since the nucleic acid fragments need not be labeled. The detection method is quick; the measurements can be

WO 93/22678 PCT/US93/03829

-45-

performed as soon as sufficient molecular binding is completed. Furthermore, the measurement process can be automated via on-chip microprocessor control to provide a very fast method of accessing each test site in the array.

The microelectronic technology incorporated into these types of detection devices will drastically reduce the price for such experimentation. Essentially, the efficient mass production techniques employed in making megabit memory chips and megapixel CCD imaging chips can be employed.

. . .

M

Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

For example, the active circuitry of the genosensor array, such as circuits 36, 56, 38, 58 and 40 of Fig. 1, 20 can be integrated monolithically with the array of wells or the same substrate. Switch matrices, analog testing circuits, and analog or digital (microprocessor) controllers could all be fabricated on the same wafer to perform or simplify the electrical tests. As shown in Fig. 24, transistors, such as, TRX 1, could be integrated into each substrate adjacent to a respective test site 12, for example, to disconnect each site electrically, except when it is being sampled. This would necessitate an additional address line A3 for each column but would reduce parasitic capacitance and spurious signals from lines not in use. A greater

reduction of these undesired effects could be achieved by a second address line and set of transistors coupled to the Y-side of the site 12.

ccD circuitry (including CCD implementations of neural networks) has been demonstrated that can perform a wide variety of signal processing and pattern recognition functions. Integration of a CCD data-processing circuit with a genosensor array could simplify the DNA detection and decoding, and would be compatible with the integrated CCD imager, as described in connection with Figs. 15 and 16.

While the invention has been illustrated in connection with a wet type of testing in which solutions are used; it is entirely feasible to use a "dry" or "gel" approach in which the probes and hybridized probe/target combinations are formed in a dry medium or in a gel.

10

CLAIMS

- 1. A method for identifying molecular structures comprising the steps of:
- a) forming an array of test sites, each site
 having probes formed therein capable of
 bonding with a unique molecular structure and
 wherein the probes in each test site differ
 from the probes in other test sites;
 - b) applying a sample substance to the test sites;
- 10 .c) applying a test signal to the test sites; and
 - d) detecting properties of the test sites
 resulting from the applied signal to determine
 which probes have bonded to a molecular
 structure in the sample substance such that a
 plurality of molecular structures can be
 identified.
 - The method of Claim 1 wherein the test signal is an electro-magnetic signal and forming said array comprises the steps of:
- 20 a) forming a first layer on a substrate;
 - b) forming a second layer on the first layer;
 - forming openings in the second layer into the first layer exposing a portion of the first layer; and
- d) forming a pair of electrodes in the openings and wherein said test signal is applied to the electrodes.

- 3. The method of Claim 2 wherein forming said pair of electrodes comprises the steps of depositing metallization on the second layer after the openings are formed; which metallization forms an upper electrode on the surface of the second layer between openings and a lower electrode on the exposed portions of the first layer.
- 4. The method of Claim 3 wherein the substrate is formed of silicon, and the first layer and second layer are formed of a silicon based dielectric.
- 5. The method of Claim 4 wherein the first and second layers are SiO₂ and Si₃N₄, respectively, and the metallization comprises Al, Ti, Pt, W, Ta and their silicides or Au.

3.3

15 6. The method of Claim 1 wherein said step of detecting comprises detecting the dielectric properties of the test site.

- 7. The method of Claim 1 wherein said step of applying an electronic signal comprises applying a pulsed or varying frequency signal.
 - 8. The method of Claim 1 wherein each test site is formed with a resonant structure which is resonant in a frequency range of electrical signals.

1.

J. Y.

77

- omprises detecting changes in the Q or the resonant frequency of the resonant structure.
 - 10. The method of Claim 1 wherein said sample substance is in a solution or a gel.
 - 11. Apparatus for identifying molecular structures within a sample substance, comprising:
- the sample substance, each test site having row and column electrodes formed therein and the structure having row and column leads extending to a respective electrode at each site;
 - b) probes formed in said test sites for binding to molecular structures;
 - c) circuitry for applying an electronic signal to the electrodes of the test sites; and
 - d) circuitry for detecting electrical properties of the test sites to determine which probes have bonded to a molecular structure in the sample substance.

- 12. The apparatus of Claim 11 including an array of resistors formed beneath the test sites:
- 13. The apparatus of Claim 11 wherein said electrodes comprise a plurality of conductive fingers extending from a base.

WO 93/22678

V.

.

**

る。

17.

15

25

- The apparatus of Claim 13 wherein the spacing 14. between said fingers is less than about 30 microns.
- The apparatus of Claim 14 wherein a first of said 15. plurality of electrode fingers is disposed in a lower portion of a plurality of wells formed in said substrate and a second of said plurality of electrode fingers is disposed on said substrate above the fingers on the lower portion.
- 16. The apparatus of Claim 11 wherein said probes comprise molecular probes from the group comprising 10 cell probes, antibody probes, or peptide probes.

- 17. Apparatus for determining the presence of molecular structures within a sample substance comprising:
 - a test site array formed on a substrate for a) receiving the sample substance;
- b) probes formed in the test sites for binding to molecular structures; and
 - c) a detector array having a plurality of detectors, each respective detector disposed 20 adjacent to a respective test site and wherein radiation is propagated through said test sites and is absorbed to a different degree by sites containing bonded probes than non-bonded probe test sites and such difference is sensed by the detectors and used to generate a signal to identify the presence of the molecular structures within the sample substance.

WO 93/22678 PCT/US93/03829

-51-

18. The apparatus of Claim 17 wherein said test site array is formed of a disposable plate which is separable from the detector array.

The apparatus of Claim 17 wherein the test site array is formed integral with the detector array to form an integrated structure.

And the second of the second o

in the second of the second of

THE REPORT OF THE PROPERTY OF

20. The apparatus of Claim 18 wherein the disposable plate is formed of quartz, glass, plastic, Al₂O₃ or polyimide.

22. A circuit for determining the presence of molecular structures within a sample substance, comprising:

a) a substrate; a second of the second of th

2

- b) a plurality of test sites formed in said substrate;
- c) electrodes formed in each of the test sites;
- d) leads extending to each of the electrodes;

probes formed in respective test sites, said probes of each respective test site being identical in structure, and probes of different test sites being of various structures in order to bond with respective

predetermined molecular structures.

WO 93/22678 PCT/US93/03829

-52-

23. The apparatus of Claim 11 further including an address lead coupled to one of said electrodes via a transistor switch.

24. The apparatus of Claim 17 wherein the radiation is generated by radioactive, luminescent, or chemiluminescent labels within the test sites.

3

A.

- 25. The apparatus of Claim 17 wherein the radiation is generated by secondary emission stimulated by photon irradiation of the test sites.
- 10 26. The apparatus of Claim 17 wherein the radiation is infrared radiation and the detectors sense thermal energy.
 - 27. Apparatus for synthesizing molecular probes in situ comprising:
- a) an array of test sites each site containing molecules to be synthesized;
 - b) a light source for irradiating selected sights with light to induce synthesis of molecules in said selected site.
- 20 28. The apparatus of Claim 27 wherein the light is in the visible wavelength range and photochemical synthesis occurs.
- 29. The apparatus of Claim 27 wherein the light source is a laser which is scanned from site to site to induce localized synthesis.

- 30. The apparatus of Claim 27 wherein the light induces local heating of a selected test site to induce a thermal synthesis of molecules.
- 31. The apparatus of Claim 27 wherein the molecules comprise oligonucleotide strands.

. . .

N. N.

دئن

- 32. Apparatus for synthesizing molecular probes in situ comprising:
 - a) an array of test sites each site containing precursor molecules to be reacted;
- an array of resistors disposed adjacent to the test site array with a respective resistor located in proximity to a respective test site; and
- c) coupling means for coupling a respective resistor to an electrical source for heating a respective resistor to induce a thermal reaction for synthesis of molecules in a respective test site.
- 33. The apparatus of Claim 1 wherein the test site array and resistor array are formed as an integrated structure.
 - 34. Apparatus for synthesizing molecular structures in situ comprising:

a) an array of test sites each site containing precursor molecules to be reacted; and

the state of the s

4

-

- b) each test site containing electrodes coupled to a voltage source for inducing a reaction to synthesize molecules in a respective test site.
- 5 35. The apparatus of Claim 1 wherein the array and electrodes are formed in integrated structures.
 - 36. Apparatus for determining the presence of molecular structures within a substance comprising:
 - a) a source of said substance;
- b) a plurality of sources of solutions containing known molecules which bind uniquely with different molecules; and
 - c) mixing means for selectively mixing each of said solutions with said substance; and
 - d) a detector for detecting the occurrence in the mixed solutions of binding between the known molecules and molecular structures in the substance.
- 37. The apparatus of Claim 36 wherein the detector detects binding by observing change in optical properties.
 - 38. The apparatus of Claim 36 wherein the detector detects binding by observing change in electrical properties.

4

ŽŽ.

**

- 39. The apparatus of Claim 35 wherein the plurality of sources are contained in respective capillaries, each capillary having a valve for connecting a respective source to a stream of said substance.
- 5 40. The apparatus of Claim 39 wherein the capillaries and valves are formed in silicon and have diameters in the range of 1 to 10 microns.
 - 41. Apparatus for synthesizing molecular structures comprising:
- a) an array of test sites;
 - b) a source of chemical reactants disposed near the test sites;
 - c) electrodes associated with respective test sites; and
- d) means for applying a potential to a respective electrode to attract said chemicals to a respective test site.
 - 42. Apparatus for enhancing hybridization between a synthesized probe and a target molecule comprising:
- a) an array of test sites each site containing a plurality of said probes;
 - b) an electrode associated with each site;
 - c) a source of target molecules applied to said sites; and
- a voltage source for applying a potential to a respective electrode for attracting said target molecules to said probes.

- 43. The apparatus of Claim 11 wherein the test sites comprise wells formed in the substrate.
- 44. The apparatus of Claim 43 wherein the wells are formed with a textured surface.
- 5 45. The apparatus of Claim 44 wherein the textured surface consists of corrugations.
 - 46. The apparatus of Claim 45 wherein the surface of the electrodes are also corrugated.
- 47. The apparatus of Claim 15 wherein the spacing

 between the electrode fingers in the lower portion

 and the electrode fingers in the upper portion is

 in the order of the diameter in solution of a

 target DNA molecule.
- 48. The method of Claim 6 wherein the dielectric property is permittivity.
 - 49. The method of Claim 37 wherein the electrical property is permittivity.
 - 50. The method of Claim 1 wherein the sample substance is in a solid state.

். பெரிய கொள்ளி

20 51. The method of Claim 8 wherein the resonant structure is a transmission line and changes in phase or amplitude of a signal propagated on the line are detected.

A STATE OF THE PARTY OF THE PAR

1

126

- 52. A method for determining the presence of molecular structures within a sample substance comprising:
 - forming an array of test sites having probes formed therein for binding to molecular structures, each site having probes which bind to a unique molecular structure;
- b) dispensing a sample substance into a test site;
 - c) generating radiation through the test sites; and
 - d) detecting the difference in the radiation which is absorbed by the respective test sites to determine the presence of the molecular structures which are bound to a probe.
- 15 53. The method of Claim 52 wherein the difference is detected by an array of detectors formed of charge-coupled devices.
- 54. The method of Claim 53 wherein the array of detectors is formed integral with the array of test sites.
 - 55. The method of Claim 53 wherein the array of detectors is formed separate from the array of test sites.

56. The method of Claim 55 wherein the array of detectors is aligned with the array of test sites and radiation is projected through the test sites onto the detector array.

WO 93/22678 PCT/US93/03829

-58-

- 57. The method of Claim 56 wherein the radiation is in the form of photons, or radioactive particles.
- 58. The method of Claim 52 wherein the radiation is generated within the test sites by a radioactive, chemical, thermal, chemiluminescent, or luminescent reaction.
- 59. The method of Claim 52 wherein the detectors detect thermal energy occurring when a bonding reaction takes place.
- 10 60. The apparatus of Claim 18 wherein the test sites include electrodes formed within wells formed in the plate.

3,3

3

- 61. The apparatus of Claim 60 wherein a surface of the well is textured.
- 15 62. The apparatus of Claim 61 wherein the texture is in the form of corrugations.
 - 63. The apparatus of Claim 60 wherein a surface of an electrode is textured.
- 64. The apparatus of Claim 63 wherein the texture consists of corrugations.
 - 65. A method for attaching probes to test sites formed in a substrate comprising the steps of:
 - a) forming test sites in a substrate;

11

13.4

1

- b) forming adhesion material in said test sites to which said probes adhere; and
- c) contacting said probes with said material.
- 66. The method of Claim 65 wherein a passivating layer covers the adhesion material and portions of the passivating layer are selectively removed to enable contact between the probe and the adhesive material at selected sites.
- 67. The method of Claim 66 wherein the portions are removed by laser ablation.
 - 68. A method for attaching probes to a test site formed in a substrate comprising the steps of:
 - a) forming test sites in a substrate;
 - b) forming an adhesive material in the test site which material enables probes to attach to the test sites;
 - c) forming a protective coating over the adhesive material;
- d) contacting the coating with a deprotecting
 material while selectively initiating a
 reaction at a selected site which removes the
 protective coating at the selected site; and

The state of the s

e) contacting the deprotected site with probes which adhere to the adhesive material.

7

المترا

- of the method of Claim 68 wherein the probes are presynthesized and the test sites consist of wells, the adhesive material is an epoxide, the protective coating is formed by hydrolyzing the epoxide, the deprotecting material is an acetate alcohol solution and the reaction is initiated at a selected cite by heating the site.
- 70. The method of Claim 68 wherein the reaction is initiated by selectively energizing resistors formed adjacent the test sites to heat the selected test sites.
 - 71. The method of Claim 70 wherein non-selected test sites are maintained at a temperature above the desired reaction temperature.
- 15 72. The method of Claim 68 wherein the reaction is initiated by irradiating selected sites with light.
 - 73. The method of Claim 72 wherein the light is in the visible or ultraviolet wavelength range and a photochemical reaction occurs.
- 20 74. The method of Claim 72 wherein the light originates from a laser which is scanned from site to site to initiate the reaction.
 - 75. The method of Claim 72 wherein the light induces local heating of the site to initiate a reaction.
- 25 76. The method of Claim 72 wherein the light is generated by a light valve which projects light onto selected sites.

77. The apparatus of Claim 27 wherein the light source is a light valve for projecting light onto selected sites

and the second of the second o

The state of the s

A CONTRACTOR OF THE PROPERTY O

The state of the s

18 M

AND THE PROPERTY OF THE PARTY O

一 野 子子

が変数に

**

Fig. 4

raj.

A

類

. 7.7

ų.

STATE OF

79

:Al

がは

14

Fig. 14

NAME OF THE PERSON OF THE PERS

T. N. S.

15

N. C.

-42

AND ST

ו באפלהככבם חשים יחוריתיםואם

y tra

源

"我们"

¥.;

18.80

THE STATE OF THE S

A.

A STATE OF THE STA

(3)

という。

"是这些"

ò

TARGET DNA SEQUENCE

SYNTHETIC DNA PROBE

Fig. 21

THE REAL PROPERTY.

~

AND THE

ALCADERCE OWS - I CANDRIAD I -

Fig. 24

N.

(30) Priority data:

77381-2526 (US).

ď

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:	-	(11) International Publication Number:	WO 93/22678
G01N 33/543, C12Q 1/68 G01N 27/07, 21/75	A3	(43) International Publication Date:	11 November 1993 (11.11.93)

(21) International Application Number: PCT/US93/03829

(22) International Filing Date: 23 April 1993 (23.04.93)

07/872,582 23 April 1992 (23.04.92) US

(71) Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, MA 02139 (US). BAYLOR COLLEGE OF

MEDECINE [US/US]; I Baylor Plaza, Houston, TX 77030 (US). HOUSTON ADVANCED RESEARCH CENTER [US/US]; 4800 Research Forest Drive, The Woodlands, TX 77381 (US).

(72) Inventors: HOLLIS, Mark, A.; 45 Staffordshire Lane, Concord, MA 01742 (US). EHRLICH, Daniel, J.; 11 Grant Place, Lexington, MA 02173 (US). MURPHY, R., Allen; 411 Hill Road, Boxboro, MA 01719 (US). KO-SICKI, Bernard, B.; 39 Fort Pont Road, Acton, MA 01720 (US). RATHMAN, Dennis, D.; 42 East Bluff Road, Ashland, MA 01721 (US). CHEN, Chang-Lee; 19 Pratts Mill Road, Sudbury, MA 01776 (US). MA-THEWS, Richard, H.; 30 Wildes Road, Chelmsford, MA 01824 (US). BURKE, BArry, E.; 17 Sherburne Road, Lexington, MA 02173 (US). EGGERS, Mitch, D.; 10 Plum Cove Court, The Woodlands, TX 77381 (US). HOGAN, Michael, E.; 103 Golden Shaddw Circle, The Woodlands, TX 77381 (US). VARMA, Rajender, Singh; 8 Spurwood Court, The Woodlands, TX

(74) Agents: REYNOLDS, Leo, R. et al.; Hamilton, Brook, Smith & Reynolds, Two Militia Drive, Lexington, MA 02173 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:
3 February 1994 (03.02.94)

(54) Title: OPTICAL AND ELECTRICAL METHODS AND APPARATUS FOR MOLECULE DETECTION

(57) Abstract

(5)

A method and apparatus are disclosed for identifying molecular structures within a sample substance using a monolithic array of test sites formed on a substrate upon which the sample substance is applied. Each test site includes probes formed therein to bond with a predetermined target molecular structure or structures. A signal is applied to the test sites and certain electrical, mechanical and/or optical properties of the test sites are detected to determine which probes have bonded to an associated target molecular structure.

FOR THE PURPOSES OF INFORMATION ONLY

şij

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	. ئىدۇ".	MR	- Mauritania
. AU	Australia	GA	Gabon		MW	Malawi ,
BB	Barbados	GB	United Kingdom		NE	Niger
BE	Belgium	GN	Guinea	•	NL.	Netherlands
BF	Burkina Faso	GR .	Greece		NO :	Norway
BC	Bulgaria	BŲ	Hungary		NZ	New Zealand
B J	Benin	1E		4 .	PL	Poland
BR	Brazil	, IT		23.50		Portugal
BY	Belarus	``` JP	Japan	; : - "	RO	Romania
CA	Canada ·	KP	Democratic People's Republic		RU	Russian Federation
CF	Central African Republic	•	of Korea		SD	Sudan
CG	Congo	. KR	Republic of Korea		SE	- Sweden
CH	Switzerland	KZ.	Kazakhstan	٠,	SI	Slovenia
ā	Côte d'Ivoire	u	Liechteastein		SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	• 10	SN	Senegal
CN	China	LU	Luxembourg		TD	Chad .
CS	Czechoslovakia	LV	Latvia		TG	Togo
CZ:	Czech Republic	MC	Monaco		UA	Ukraine
DE	Germany	MG	Madagascar		US	United States of America
DK	Denmari	ML	Mali		·UZ	Uzbekistan
ES	Spain	MN	Mongolia		VN.	Vict.Nam ,
M	Finland					

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 93/03829

1. CLASSIFICATION OF SUB	JECT MATTER (if several classification	symbols apply, indicate all)6	
According to International Pate Int.C1.5 G 01 N 21/75	ent Classification (IPC) or to both National G 01 N 33/543 C		G 01 N 27	/07
II. FIELDS SEARCHED				
	Minimum Docu	mentation Searched ⁷		
Classification System		Classification Symbols	- 	
Int.C1.5	B 01 L	G 01 N	C 12 Q	
	Documentation Searched othe to the Extent that such Document			
III. DOCUMENTS CONSIDER	RED TO BE RELEVANT 9			
Category • Citation of I	Document, 11 with indication, where approp	riate, of the relevant passag	हर ¹²	Relevant to Claim No.13
NV) 1 see p 28, 1	9015070 (AFFYMAX TECHN 3 December 1990 cited i age 20, line 6 - page 2 ine 14 - line 36 see pa ine 28; claim 22	in the applicat 22, line 24 see	page	1,10,50
X EP.A.	0402917 (BIOCIRCUITS C	ORP) 19		1,10,22
	ber 1990	JOIN 7 13		1,10,22
columi - colu	olumn 3, line 57 - colu n 7, line 7 - line 57 s umn 11, line 16 see col n 21, line 25; figures	see column 9, 1 umn 16, line 5	ine 58	
***	ay gan an washing be a record of the	e es intropret a g	······································	• •••
	$V(S_{n,n}, S_n) = \mathcal{I}(S_n)$			
	E 7 i I.	en de la companya de		
considered to be of partic	eneral state of the art which is not cular relevance	cited to understand invention	not in conflict with the the principle or theory	e application but : underlying the
filing date "L" document which may the	ow doubts on priority claim(s) or	cannot be considered involve an inventive	ular relevance; the clair ed novel or cannot be co step	ned invention pasidered to
"O" document referring to an other means	òral disclosure, use, exhibition or	document is combinents, such combinents	niar relevance; the claim ed to involve an inventi- ned with one or more of nation being obvious to	ve step when the her such docu-
P document published prior later than the priority da	r fo the international filing date but te claimed	in the art. "&" document member	of the same patent fam	Ily
IV. CERTIFICATION				·
Date of the Actual Completion of	the International Search	Date of Mailing of	this International Search	h Report
14-09-	1993	2 9. 12.	93	
International Searching Authority	,	Signature of Author	ized Officer	· · · · · · · · · · · · · · · · · · ·
··· EUROPE	EAN PATENT OFFICE	BINI	DON CAT	

......

TO SECOND

1

**

International Application No Page 2 PCT/US 93/03829

		
ategory o	Citation of Document, with indication, where appropriate, of the relevant passages	· Relevant to Claim No
-	And the second of the second o	
Y	WO,A,9002327 (AUSTRAL'IAN MEMBRANE AND BIOTECHNOLOGY RESEARCH INSTITUTE) 8 March	2
4	1990 WO,A,9002327 see page 25, line 13 - page 27, line 35; figures	3-5
(8-10 WO,A,9005300 (MIDWEST RESEARCH	1,10,22
	TECHNOLOGIES) 17 May 1990 see page 12, line 1 - page 18, line 8; figures 6-8	**
	EP,A,0347579 (MESSERSCHMITT-B\LKOW-BLOHM GMBH) 27 December 1989	1,10,22
	see column 2, line 41 - column 4, line 26 see column 7, line 2 - column 9, line 44	
	US,A,4963245 (WEETALL) 16 October 1990 see column 2 line 12 - column 3 line 13	1-3,10, 22
	see column 2, line 12 - column 3, line 13; figures	
A	US,A,5187096 (GIAEVER ET AL.) 16	1,2
	February 1993 see column 2, line 33 - column 5, line 63; figures 1,2	
	see column 2, line 33 - column 5, line 63;	
	see column 2, line 33 - column 5, line 63; figures 1,2	
	see column 2, line 33 - column 5, line 63; figures 1,2	
	see column 2, line 33 - column 5, line 63; figures 1,2	
	see column 2, line 33 - column 5, line 63; figures 1,2	
	see column 2, line 33 - column 5, line 63; figures 1,2	

W. Company

:•

44 11.

4

Ferm PCT/ISA/210 (cottre short) (January 1985)

Inte. .4tional application No.

INTERNATIONAL SEARCH REPORT

PCT/US 93/03829

Box-1	Observations where certain claims were found	unscarchable (Conti	nuation of item 1 o	f first sheet)	
This int	ternational search report has not been established in re	spect of certain claim	s under Article 17(2)	(a) for the following	reasons:
,	Claims Nos.:	٠,		2	1
••• ——	because they relate to subject matter not required to	be scarched by this A	uthority, namely:	\	
:	Çeff ,				
:				r r	
	· · · · ·	_		2.15	:
	•		, ,		
	Claims Nos:			t ·	
	because they relate to parts of the international appli an extent that no meaningful international search can	be carried out, specif	ically:	eer tedmiemener en	suci
•			,		·.
,			••		3
		·		• 1	· :
•		·. : 4			. ,
	Claims Nos.:	t alaka		, , , , , , , , , , , , , , , , , , ,	
•	because they are dependent claims and are not drafted	rui secorentes miru-r	is second siid mird i	enterices of Rule 0.4	(*)
				, .	·
x II	Observations where unity of invention is lacking	(Continuation of ite	m 2 of first sheet)	:	
					·
is Inte	ernational Searching Authority found multiple invention	ns in this internations	l application, as follo) was:	;
For	r further information please see	form PCT/ISA	/206 mailed a	27.09.93.	
1101					ç.i
i .	*	. ئى ئى ئى		As a recognition	
•		•			;
	j		*		
	•				•
	As all required additional search fees were timely paid	by the applicant, this	international search	report covers all	
	searchable claims.				
	•				į
	As all searchable claims could be searches without effe	ort justifying an additi	onal fee, this Author	ity did not invite pay	rnent
	of any additional fee.				
			·		
	As only some of the required additional search fees w	ere timely paid by the	applicant, this intern	ational search report	L
	covers only those claims for which fees were paid, spe	cifically claims Nos.:			,
	:				
	•			•	
X	No required additional search fees were timely paid by	the applicant. Consc	quently, this internati	ional search report is	
النتا	restricted to the invention first mentioned in the claim	s; it is covered by clai	ms Nos.:	•	
•	1				
	1-5, 10, 22, 50				
	• •				
	t 1				
	:				
mark o	on Protest : Ti	ne additional search fo	es were accompanied	by the applicant's p	rotest
			1 46	talamat annual from	
:	Ŭ N	o protest accompanie	une payment of add	monal search ices.	
	•••		96.7	and a second of the second of	

*

US 9303829

74062

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 16/12/93

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
WO-A- 9015070	13-12 -9 0	AU-A- CA-A- EP-A- GB-A,B JP-T-	5143854 5837190 2054706 0476014 2248840 4505763 9022056	01-09-92 07-01-91 08-12-90 25-03-92 22-04-92 08-10-92 02-03-92	
EP-A- 0402917	19-12-90	CA-A-	5156810 2019039 3128449	20-10-92 15-12-90 31-05-91	
WO-A- 9002327	08-03-90	EP-A-	4078789 0432188 5234566	23-03-90 19-06-91 10-08-93	
WO-A- 9005300	17-05-90	• • • • • • • • • • • • • • • • • • • •	4647589 2002660	28-05-90 10-05-90	
EP-A- 0347579	27-12-89	DE-A-	3818614 3825907 5252294 3817007	07-12-89 01-02-90 12-10-93 02-10-91	
US-A- 4963245	16-10-90	US-A-	5066372	19-11-91	
US-A- 5187096	16-02-93	None			

A.

1

Ŗ