Conjuntos y Números, UAM

Examen Parcial 1

15 de octubre de 2021

Apellidos y Nombre:			Grupo:			

Se pide razonar y justificar todas las respuestas

Tiempo disponible: 1 hora y 50 minutos

- 1. Sean A, B, C, D cuatro conjuntos no vacios arbitrarios.
 - (a) (1,25 puntos) Decidir razonadamente si es verdadera o falsa la siguiente afirmación:

$$(A \cup C) \times (B \cup D) \subset (A \times B) \cup (C \times D)$$

Si es verdadera se pide dar la demostración y si es falsa se pide dar un contraejemplo sencillo.

(b) (1,25 puntos) Supongamos que $A \subset B$ y que $\mathcal{P}(A)$ (el conjunto de partes de A) tiene n elementos y $\mathcal{P}(B)$ (el conjunto de partes de B) tiene m elementos y se cumple

$$m - n = 112 = 2^4 \cdot 7$$

Determinar el número de elementos del conjunto B.

2. (2,5 puntos) Demostrar por inducción que

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n - 1)^{2} = \frac{n(4n^{2} - 1)}{3}$$

para todo natural $n \in \mathbb{N} = \{1, 2, 3, \ldots\}.$

- 3. (a) (1,25 puntos) Sea $f: X \longrightarrow Y$ una función sobreyectiva y sea $B \subset Y$. Demostrar $B = f(f^{-1}(B))$
 - (b) (1,25 puntos) Demostrar que si elegimos 5 números arbitrarios del conjunto $\{1,2,3,4,5,6,7,8\}$ siempre habrá un par de números tales que uno sea múltiplo del otro.
- 4. Sean A, B dos conjuntos, tales que $A = \{a_1, a_2, a_3\}$ y $B = \{b_1, b_2, b_3, b_4, b_5\}$.
 - (a) (0,5 puntos) Determinar el número de funciones inyectivas $f:A\longrightarrow B$.
 - (b) (2 puntos) Hallar el número de funciones inyectivas $f: A \longrightarrow B$ tales que $f(a_i) \neq b_i$ para i = 1, 2, 3.