

第二部分 代数系统

第五章 代数系统基础

离散数学

主要内容

- 二元运算及其性质
- 一元和二元运算定义及其实例
- 二元运算的性质
- 代数系统
- 代数系统定义及其实例
- 子代数代数系统的同态与同构常用代数系统分类

5.1 二元运算及其性质

- 定义5.1 设S为集合,n元函数 $f: S^n \rightarrow S$ 称为S上的n元运算 若n=2,则函数 $f: S \times S \rightarrow S$ 称为S上的二元运算,简称为二元运算,对二元运算:
- S中任何两个元素都可以进行运算,且运算的结果惟一.
- \bullet S中任何两个元素的运算结果都属于S,即S对该运算封闭.
- 例1 (1) 自然数集合N上的加法和乘法是N上的二元运算,但减法和除法不是.
- (2) 整数集合Z上的加法、减法和乘法都是Z上的二元运算, 而除法不是.
- (3) 非零实数集R*上的乘法和除法都是R*上的二元运算,而加法和减法不是.

实例

(4) 设 $M_n(\mathbf{R})$ 表示所有n 阶($n \ge 2$)实矩阵的集合,即

$$M_{n}(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, i, j = 1, 2, ..., n \right\}$$

则矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

(5) S为任意集合,则 \cup 、 \cap 、 \cup 、 \cup 为P(S)上二元运算.

离散数学

一元运算的定义与实例

定义5.2 设S为集合,函数 $f:S \rightarrow S$ 称为S上的一元运算,简称一元运算.

- 例2 (1) 求相反数是整数集合Z,有理数集合Q和实数集合R上的一元运算
- (2) 求倒数是非零有理数集合Q*,非零实数集合R*上一元运算
- (3) 求共轭复数是复数集合C上的一元运算
- (4) 在幂集P(S)上规定全集为S,则求绝对补运算~是P(S)上的一元运算.
- (5) 设S为集合,令A为S上所有双射函数的集合,求一个双射函数的反函数为A上的一元运算。
- (6) 在 $n(n \ge 2)$ 阶实矩阵的集合 $M_n(\mathbf{R})$ 上,求转置矩阵是 $M_n(\mathbf{R})$ 上的一元运算.

离散数学

二元与一元运算的表示

1. 算符

可以用 \circ ,*,·, Θ , \otimes , Δ 等符号表示二元或一元运算,称为<mark>算符</mark>. 对二元运算 \circ ,如果 x 与 y 运算得到 z,记做 $x \circ y = z$ 对一元运算 Δ , x的运算结果记作 Δx .

2. 表示二元或一元运算的方法:解析公式和运算表公式表示

例 设R为实数集合,如下定义R上的二元运算*: $\forall x, y \in \mathbb{R}, x * y = x$.

那么 3*4=3, 0.5*(-3)=0.5

运算表

运算表:表示有穷集上的一元和二元运算

O	a_1 a_2	a_n
a_1	$\begin{vmatrix} a_1 \circ a_1 & a_1 \circ a_2 & \dots \\ a_2 \circ a_1 & a_2 \circ a_2 & \dots \end{vmatrix}$	$a_1 \circ a_n$
a_2	$a_2 \circ a_1 \ a_2 \circ a_2 \ \dots$	a_2 o a_n
•	•••	
•	•••	
•	•••	
a_n	$a_n \circ a_1 \ a_n \circ a_2 \dots$	$a_n \circ a_n$

	$\circ a_i$
a_1	o <i>a</i> ₁
$\begin{vmatrix} a_1 \\ a_2 \end{vmatrix}$	o a_2
•	•
•	•
•	•
a_n	$\circ a_n$

二元运算的运算表

一元运算的运算表

运算表的实例

例3 设 $S=P(\{a,b\})$, S上的 \oplus 和 ~运算的运算表如下

\oplus	Ø	<i>{a}</i>	{ b }	$\{a,b\}$
Ø	Ø	{ <i>a</i> }	{ <i>b</i> }	$\{a,b\}$
{a}	{a}	Ø	$\{a.b\}$	{ b }
{ b }	{ b }	$\{a,b\}$	Ø	{ <i>a</i> }
{a,b}	$ \{a,b\}$	{a} Ø {a,b} } {b}	<i>{a}</i>	Ø

x	~x
Ø	$\{a,b\}$
{ <i>a</i> }	{ b }
{ b }	{ <i>a</i> }
$\{a,b\}$	Ø

二元运算的性质

离散数学

定义5.3 设。为S上的二元运算,

- (1) 若对任意 $x,y \in S$ 有 $x \circ y = y \circ x$, 则称运算在S上满足交换律.
- (2) 若对任意 $x,y,z \in S$ 有 $(x \circ y) \circ z = x \circ (y \circ z)$,则称运算在S上满足结合律.
- (3) 若对任意 $x \in S$ 有 $x \circ x = x$, 则称运算在S上满足幂等律. x为运 算 \circ 的幂等元.

定义5.4 设 \circ 和*为S上两个不同的二元运算,

- (1) 若对任意 $x,y,z \in S$ 有 $z \circ (x*y) = (z \circ x) * (z \circ y)$, $(x*y) \circ z = (x \circ z) * (y \circ z)$,则称 \circ 运算对 * 运算满足(第一/第二)分配律.
- (2) 若°和*都可交换,且对任意 $x,y \in S$ 有 $x^\circ(x*y)=x$, $x*(x^\circ y)=x$, 则称°和*运算满足吸收律.

实例

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为n阶实 矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为从A到A的函数集, $|A| \ge 2$

集合	运算	交换律	结合律	幂等律
Z,Q,R	普通加法+	有	有	无
	普通乘法×	有	有	无
$M_n(R)$	矩阵加法+	有	有	无
	矩阵乘法×	无	有	无
P(B)	并し	有	有	有
	交∩	有	有	有
	相对补-	无	无	无
	对称差⊕	有	有	无
A^A	函数复合°	无	有	无

实例

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为n阶实 矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为从A到A的函数集, $|A| \ge 2$

集合	运算	分配律	吸收律
Z,Q,R	普通加法+与乘法×	×对+可分配 +对×不分配	无
$M_n(R)$	矩阵加法+与乘法×	×对+可分配 +对×不分配	无
P(B)	并∪与交∩	∪对∩可分配 ∩对∪可分配	有
	交∩与对称差⊕	○对⊕可分配	无

特异元素:单位元、零元

定义5.5 设。为S上的二元运算,

(1) 如果存在 $e_l(\vec{u}e_r) \in S$,使得对任意 $x \in S$ 都有

$$e_l^{\circ} x = x \quad (\vec{\mathfrak{P}} x^{\circ} e_r = x),$$

则称 $e_l(或e_r)$ 是S中关于。运算的左(或右)单位元.

若 $e \in S$ 关于。运算既是左单位元又是右单位元,则称 $e \to S$ 上关于。运算的单位元,单位元也叫做幺元。

(2) 如果存在 θ_I (或 θ_r) $\in S$,使得对任意 $x \in S$ 都有

$$\theta_l \circ x = \theta_l \ (\vec{\mathbf{x}} \ x \circ \ \theta_r = \theta_r),$$

则称 $\theta_l(\bar{\mathbf{u}}\theta_r)$ 是S 中关于。运算的左(或右)零元.

若 θ ∈ S 关于。运算既是左零元又是右零元,则称 θ 为S上关于运算。的零元.

可逆元素和逆元

(3) 设 \circ 为S上的二元运算, \diamond e为S中关于运算 \circ 的单位元. 对于 $x \in S$,如果 $\exists y_l$ (或 $\exists y_r$) $\in S$ 使得

$$y_l \circ x = e \quad (\overrightarrow{\mathfrak{g}} x \circ y_r = e)$$

则称 y_t (或 y_r)是x的左逆元(或右逆元).

关于。运算,若 $y \in S$ 既是 x 的左逆元又是 x 的右逆元,则称 y为x的逆元. 如果 x 的逆元存在,就称 x 是可逆的.

实例

集合	运算	单位元	零元	逆元
Z,Q,R	普通加法+ 普通乘法×	0 1	无 0	<i>x</i> 逆元- <i>x</i> <i>x</i> 逆元 <i>x</i> ⁻¹ (<i>x</i> ⁻¹ ∈给定集合)
$M_n(R)$	矩阵加法+ 矩阵乘法×	n阶全0矩阵 n阶单位矩阵	无 n阶全0 矩阵	X逆元-X X的逆元X ⁻¹ (X可逆)
P(B)	并∪ 交∩ 对称差⊕	Ø B Ø	<i>B</i> Ø 无	Ø的逆元为Ø <i>B</i> 的逆元为 <i>B</i> <i>X</i> 的逆元为 <i>X</i>

惟一性定理

定理5.1 设。为S上的二元运算, e_l 和 e_r 分别为S中关于运算的 左和右单位元,则 $e_l = e_r = e$ 为S上关于。运算的惟一的单位元.

证: 先证相等 $e_l = e_l^{\circ} e_r$ (e_r) 为右单位元) $e_l^{\circ} e_r = e_r$ (e_l) 为左单位元)

所以 $e_l = e_r$,将这个单位元记作e.

再证唯一: 假设e'也是 S 中的单位元,则有 $e'=e\circ e'=e$. 惟一性得证.

类似地可以证明关于零元的惟一性定理.

惟一性定理

定理5.2 设 $^{\circ}$ 为S上的二元运算, e和 θ 为该运算的单位元和零元, 如果S至少有两个元素,则 $e \neq \theta$.

证:用反证法.

假若 $e = \theta$, 则 $\forall x \in S$ 有

$$x = x \circ e = x \circ \theta = \theta$$

与S至少有两个元素矛盾.

- •注意:
- •当 $|S| \ge 2$,单位元与零元是不同的;
- •当 |S| = 1时,这个元素既是单位元也是零元.

离散数学

惟一性定理

定理5.3 设。为S上可结合的二元运算,e为该运算的单位元,对于 $x \in S$ 如果存在左逆元 y_l 和右逆元 y_r ,则有 $y_l = y_r = y$,且 $y_r \in S$ 的惟一的逆元.

证: 由 $y_l \circ x = e$ 和 $x \circ y_r = e$ 得

$$y_l = y_l \circ e = y_l \circ (x \circ y_r) = (y_l \circ x) \circ y_r = e \circ y_r = y_r$$

 $\phi y_1 = y_r = y$, 则 y 是 x 的逆元.

假若 $y' \in S$ 也是 x 的逆元,则

$$y'=y'\circ e=y'\circ (x\circ y)=(y'\circ x)\circ y=e\circ y=y$$

所以y是x惟一的逆元.

• 说明:对于可结合的二元运算,可逆元素 x 只有惟一的逆元,记作 x^{-1}

消去律

定义5.6 设。为S上的二元运算,若对任意 $x,y,z \in S$ 有

- (1) 若 $x\circ y=x\circ z$, 且 $x\neq \theta$, 则y=z;
- (2) 若 $y\circ x=z\circ x$, 且 $x\neq\theta$, 则y=z.

那么称此运算满足消去律,其中(1)称为左消去律,(2)称为右消去律.

- 注意:被消去的x不能是运算的零元 θ
- 整数集合上的加法和乘法都满足消去律
- 幂集上的并和交运算一般不满足消去律

5.2 代数系统

定义5.6 非空集合S和S上k个一元或二元运算 $f_1,f_2,...,f_k$ 组成的系统称为代数系统,简称代数,记做<S, $f_1,f_2,...,f_k>$.

实例:

- (1) <N,+>,<Z,+,·>,<R,+,·>是代数系统,+和·分别表示普通加法和乘法.
- (2) <*M_n*(*R*),+,·>是代数系统,+和·分别表示 *n* 阶(*n*≥2)实矩 阵的加法和乘法.
- (3) $\langle Z_n, \oplus, \otimes \rangle$ 是代数系统, $Z_n = \{0,1,...,n-1\}$, \oplus 和 \otimes 分别表示 模n 的加法和乘法,对于 $x,y \in Z_n$, $x \oplus y = (x+y) \bmod n$, $x \otimes y = (xy) \bmod n$
- (4) < P(S), \cup , \cap ,~>是代数系统, \cup 和 \cap 为并和交,~为绝对补

代数系统的成分与表示

构成代数系统的成分:

- 集合(也叫载体,规定了参与运算的元素)
- 运算(这里只讨论有限个二元和一元运算)
- 代数常数(通常是与运算相关的特异元素: 如单位元等)

研究代数系统时,如果把运算含有的特异元素也作为系统的性质之一,那么这些特异元素可以作为系统的成分,叫做代数常数.

例如:代数系统 $\langle Z,+,0\rangle$:集合Z,运算+,代数常数0 代数系统 $\langle P(S),\cup,\cap\rangle$:集合P(S),运算 \cup 和 \cap ,无代数常数

代数系统的表示

- (1) 列出所有的成分:集合、运算、代数常数(如果存在)如<**Z**,+,**0**>,<*P*(*S*), \cup , \cap , \varnothing ,*S*>
- (2) 仅列出集合和运算: 在规定系统性质时不涉及具有单位元、零元等的性质(无代数常数)如<**Z**,+>,<*P*(*S*), \cup , \cap >
- (3) 用集合名称简单标记代数系统 在前面已经对代数系统作了说明的前提下使用 如代数系统Z, P(B)

同类型代数系统

定义5.7

如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们具有相同的构成成分,也称它们是同类型的代数系统.

例如 V_1 =<R, +, ·, 0, 1>, V_2 =< $M_n(R)$, +, ·, 0, E>, 0为 n 阶全0矩阵,E为 n 阶单位矩阵, V_3 =<P(B), \cup , \cap , \emptyset , B>

 V_1, V_2, V_3 是同类型的代数系统,它们都含有2个二元运算,2个代数常数.

子代数系统

定义5.8 设V=<S, \circ >是代数系统,B是S的非空子集,<B, * > 也是代数系统。若 $a \in B$, $b \in B$,则 $a*b=a\circ b$,则称<B, * >是V的子代数系统,简称子代数. 有时将子代数系统简记为B.

例: N是<Z,+>的子代数

5.3 同构与同态

存在很多代数系统,通过仔细分析后发现,有些代数系统表面不同,其实质"相同"

例: $V=<\{0,1\}, \circ>$ 和 $W=<\{a,b\}, *>$ 均为代数系统,其运算表为:

0	0	1
0	0	1
1	1	1

"
b

V的运算表

W的运算表

Note: 两个代数系统仅仅是元素与运算符的表示形式不同,实质一样,这种现象称为V与W同构

同构的定义

两个代数系统同构必须满足以下条件:

- (1) 它们是同类型的代数系统;
- (2) 它们的集合基数相等(等势);
- (3) 运算定义法则相同。即,一个代数系统中的两个元素经过 运算后所得结果与另一个代数系统对应的两个元素经运算 后所得结果互相对应(运算表相应元素互换后相同)

定义5.9 设 V_1 =<A,o>和 V_2 =<B,*>是同类型的代数系统,若存在 双射函数f: $A \rightarrow B$,且 $\forall x, y \in A$ 有 $f(x \circ y) = f(x)*f(y)$,则称 f 是 V_1 到 V_2 的同构映射(函数). 或称 V_1 和 V_2 同构,记为 $V_1 \simeq V_2$

同构的涵义

同构的例子

例4 代数系统< R^+ , ·>和<R, +>是同构的,其中 R^+ 为正实数集证明:构造函数 $f: R^+ \rightarrow R$,

$$f(x)=\ln x$$

容易证明,此函数是双射函数。

因为: $f(a \cdot b) = \ln(a \cdot b) = \ln a + \ln b = f(a) + f(b)$

得证.

Note:

- (1) 同构不仅使两个代数系统的集合具有相同的基数(或等势),而且对运算保持相同的性质
- (2) 代数系统中二元运算的性质在同构时均能保持

同构的二元运算性质

定理5.4 设 V_1 =<A,o>和 V_2 =<B,*>是同构的代数系统,若 V_1 满足结合律(交换律),则 V_2 也满足结合律(交换律) 证明 略.

定理5.5 设 V_1 =<A,o>和 V_2 =<B,*>是同构的代数系统,f 是 V_1 到 V_2 的同构映射,若 V_1 存在单位元 e_1 ,则 V_2 亦存在单位元 e_2 ,且有 $f(e_1)=e_2$.

证明 $\forall y \in B, \exists x \in A,$ 使得f(x) = y, 由同构定义有:

$$y = f(x) = f(x \circ e_1) = f(x) * f(e_1) = y * f(e_1),$$

同理有: $y = f(x) = f(e_1 \circ x) = f(e_1) * y$,

 $\mathbb{P}: \qquad y * f(e_1) = f(e_1) * y = y$

故 $f(e_1)$ 是 V_2 的单位元,即 $f(e_1) = e_2$.

逆元存在性

定理5.6 设 V_1 =<A,o>和 V_2 =<B,*>是同构的代数系统,f 是 V_1 到 V_2 的同构映射,若 V_1 对每个x \in A均存在逆元x-1,则 V_2 对每个 y \in B亦存在逆元y-1,且若f(x) = y,有f(x-1) = y-1

证明 $\forall y \in B$, $\exists x \in A$, 使得 f(x) = y, 由同构定义和定理5.5有:

$$e_2 = f(e_1) = f(x \circ x^{-1}) = f(x) * f(x^{-1}) = y * f(x^{-1}),$$

同理有: $e_2 = f(e_1) = f(x^{-1} \circ x) = f(x^{-1}) * y$,

即: $y * f(x^{-1}) = f(x^{-1}) * y = e_2$

故 $f(x^{-1})$ 是y的逆元,即 $f(x^{-1}) = y^{-1}$

零元存在性

定理5.7 设 V_1 =<A,o>和 V_2 =<B,*>是同构的代数系统,f 是 V_1 到 V_2 的同构映射,若 V_1 存在零元 θ_1 ,则 V_2 亦存在零元 θ_2 ,且有 $f(\theta_1)$ = θ_2 .

证明 $\forall y \in B$, $\exists x \in A$, 使得 f(x) = y, 由同构定义有: $f(\theta_1) = f(x \circ \theta_1) = f(x) * f(\theta_1) = y * f(\theta_1)$,

同理有: $f(\theta_1)=f(\theta_1)*y$,

故 $f(\theta_1)$ 是 V_2 的零元 θ_2 ,即 $f(\theta_1)$ = θ_2 .

分配律

定义5.10 设 V_1 =<A,•,* >和 V_2 =<B, ⊙, ⊗>是代数系统,若它们之间存在一个双射函数f: $A \rightarrow B$,使得 $\forall x_1, x_2 \in A$ 有

$$f(x_1 \circ x_2) = f(x_1) \odot f(x_2)$$

$$f(x_1 * x_2) = f(x_1) \otimes f(x_2) ,$$

则称 V_1 和 V_2 同构.

分配律证明

定理5.8 设 $V_1 = \langle A, \circ, * \rangle = \langle B, \odot, \otimes \rangle$ 是同构的代数系统, $f \neq V_1 \supseteq V_2$ 的同构映射,若 V_1 满足分配律,则 V_2 亦满足分配律.

证明 设 $y_1, y_2, y_3 \in B$,则存在 $x_1, x_2, x_3 \in A$,使得 $f(x_1) = y_1$, $f(x_2) = y_2$, $f(x_3) = y_3$,由同构定义有:

$$f(x_1 \circ (x_2 * x_3)) = f(x_1) \odot (f(x_2) \otimes f(x_3)) = y_1 \odot (y_2 \otimes y_3)$$

$$f((x_1 \circ x_2) * (x_1 \circ x_3)) = (y_1 \odot y_2) \otimes (y_1 \odot y_3)$$

由于 V_1 满足分配律,即: $x_1 \circ (x_2 * x_3) = (x_1 \circ x_2) * (x_1 \circ x_3)$,

所以有: $f(x_1 \circ (x_2 * x_3)) = f((x_1 \circ x_2) * (x_1 \circ x_3))$

即:
$$y_1 \odot (y_2 \otimes y_3) = (y_1 \odot y_2) \otimes (y_1 \odot y_3)$$

同理有: $y_1 \otimes (y_2 \odot y_3) = (y_1 \otimes y_2) \odot (y_1 \otimes y_3)$

所以第一分配律成立,同理可证第二分配律.

代数系统的等价

若两个代数系统同构,则一个代数系统的所有性质,对另一个代数系统亦成立,由此只要对一个代数系统研究透彻后, 所有与之同构的代数系统的问题亦可得到解决。

定理5.9 代数系统间的同构关系是等价关系. 分析: 等价关系同时满足自反性、对称性和传递性 设<A, \circ >、<B,*>、<C, \otimes >为任意三个代数系统 自反性 自身同构: <A, \circ > \simeq <A, \circ > 对称性 若<A, \circ > \simeq <B,*>,则存在双射函数f: $A \to B$,使得 $\forall x_1, x_2 \in A$ 有 $f(x_1 \circ x_2) = f(x_1) * f(x_2)$

则 f 必然存在反函数 $f^{-1}:B\to A$,要证 $\forall y_1,y_2\in B$ 有

 $f^{-1}(y_1 * y_2) = f^{-1}(y_1) \circ f^{-1}(y_2)$

等价性证明

传递性 如果 $<A,\circ> \simeq <B, *>$ 且 $<B, *> \simeq <C, \otimes>$,要证明 $<A,\circ> \simeq <C, \otimes>$

证明: 自反性 显然成立(恒等函数)。

存在双射函数 $f:A \rightarrow A, f(x)=x$.

 $\forall x_1, x_2 \in A \not= f(x_1 \circ x_2) = x_1 \circ x_2 = f(x_1) \circ f(x_2),$

故 $\langle A, \circ \rangle \simeq \langle A, \circ \rangle$.

等价性证明

对称性 若 $<A,\circ>\simeq <B,*>$,则存在双射函数 $f:A\to B$,使得 $\forall x_1,x_2\in A$ 有 $f(x_1\circ x_2)=f(x_1)*f(x_2)$ 则 f 必然存在反函数 $f^{-1}:B\to A$,要证 $\forall y_1,y_2\in B$ 有 $f^{-1}(y_1*y_2)=f^{-1}(y_1)\circ f^{-1}(y_2)$

证明: 自反性 显然成立.

对称性 对 $\forall y_1, y_2 \in B$ 必存在 $x_1, x_2 \in A$,使得 $f(x_1) = y_1; f(x_2) = y_2$ 即 $f^{-1}(y_1) = x_1; f^{-1}(y_2) = x_2$ 从而有

$$x_1 \circ x_2 = f^{-1}(y_1) \circ f^{-1}(y_2)$$

$$x_1 \circ x_2 = f^{-1}(f(x_1 \circ x_2)) = f^{-1}(f(x_1) * f(x_2)) = f^{-1}(y_1 * y_2)$$
所以有
$$f^{-1}(y_1 * y_2) = f^{-1}(y_1) \circ f^{-1}(y_2).$$

等价性证明

传递性 即存在双射函数 $f:A \rightarrow B$ 和 $g:B \rightarrow C$,使得对 $\forall x_1, x_2 \in A$, $\forall y_1, y_2 \in B$ 都有

$$f(x_1 \circ x_2) = f(x_1) * f(x_2)$$
$$g(y_1 * y_2) = g(y_1) \otimes g(y_2)$$

要找一个双射函数 $h:A \rightarrow C$,使得 $\forall x_1, x_2 \in A$ 都有

$$h(x_1 \circ x_2) = h(x_1) \otimes h(x_2)$$

$$h(x_1 \circ x_2) = f \circ g(x_1 \circ x_2) = g(f(x_1 \circ x_2)) = g(f(x_1) * f(x_2))$$

$$= g(f(x_1)) \otimes g(f(x_2)) = f \circ g(x_1) \otimes f \circ g(x_2)$$

$$= h(x_1) \otimes h(x_2)$$

定理得证.

同态

定义5.11 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统,若存在函数 $f: A \to B$,使得 $\forall x_1, x_2 \in A$ 都有 $f(x_1 \circ x_2) = f(x_1) * f(x_2)$,则称 $f \in V_1$ 到 V_2 的同态映射(函数). 或称 V_1 和 V_2 同态.

与同构的差异:

- (1)同态映射不限制 必须双射映射
- (2)同态映射的像允许 $f(A) \subset B$ 以及f(A) = B

同态

如果f(A) = B,即f是一个从A到 B的满射,则有定义5.12 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统,若存在满(单)射函数 $f:A \rightarrow B$,使得 $\forall x_1, x_2 \in A$ 都有 $f(x_1 \circ x_2) = f(x_1) * f(x_2)$,则称 f 是 V_1 到 V_2 的满(单)同态映射(函数). 或称 V_1 和 V_2 满(单)同态.

同构、满(单)同态、同态条件依次减弱

离散数学

实例

(1) 设 V_1 =< Z^+ ,+>, V_2 =< Z_n , \oplus >. 其中 Z^+ 为非负整数集,+为普通加法; Z_n ={0,1,...,n-1}, Θ 为模n加. 令

 $f: \mathbb{Z}^+ \to \mathbb{Z}_n$, $f(x) = (x) \mod n$

那么f是 V_1 到 V_2 的满同态.

(2) 设 V_1 =<R,+>, V_2 =<R*,・>, 其中R和R*分别为实数集与非零实数集,+和・分别表示普通加法与乘法.令

 $f: \mathbf{R} \rightarrow \mathbf{R}^*$, $f(x) = \mathbf{e}^x$

则f是 V_1 到 V_2 的单同态.

(3) 设 $V=\langle Z,+\rangle$,其中Z为整数集,+为普通加法. $\forall a \in Z$,令 $f_a: Z \to Z$, $f_a(x)=ax$,

那么 f_a 是V的自同态. 当a=0时称 f_0 为零同态; 当 $a=\pm 1$ 时,称 f_a 为自同构; 除此之外其他的 f_a 都是单自同态.

总结

- (1) 满同态仍能保持结合律、交换率、分配率,存在单位元、 零元和逆元,但对保持性质是单向的
- (2) 同构对保持性质是双向的

原因: 同构映射是对称的; 满同态映射规则不一定满足对称性

(3) 对同态而言,性质能够单向地对一个子系统保持,即若 $<A, \circ>$ 和<B, *>同态,则 $<A, \circ>$ 所具有的性质单向地对<B, *>的 一个子系统<B', *>(B'=f(A)) 保持

原因: A到B的映射不一定满射,而是从A到B'的同态映射是满同态映射,可单向保持性质

自然同态

考虑例子

 $\langle Z, + \rangle$ 上的关系 $R = \{(x,y)|x,y \in Z, x - y$ 能被3整除 $\}$,是一个等价关系,它将Z划分成三个等价类:

$$[0] = \{..., -6, -3, 0, 3, 6, ...\}$$

$$[1] = \{..., -5, -2, 1, 4, 7, ...\}$$

$$[2] = \{..., -4, -1, 2, 5, 8, ...\}$$

关系R使[0],[1],[2]中任意两个类的元素+运算后所得的结果均在同一个类内,如[1]和[2]中元素相加后结果在[0]中。R为同余关系。

定义5.13 设代数系统<A, \circ >上有等价关系E, 若对 $\forall x_1, x_2 \in A$ 有 $x_1 E x_1'$, $x_2 E x_2'$ 必有: $(x_1 \circ x_2) E(x_1' \circ x_2')$ 则称E是<A, \circ >上的同余关系.

商代数

Note: 一个等价关系若为 $< A, \circ >$ 上的同余关系,则 $< A, \circ >$ 的运算

"o"按等价类保持

设有代数系统<A,<>>及其上的同余关系E,可以按E对A分类,而形成一个商集A/E. 再定义一个A/E上的运算"*",对任意[x_1],[x_2] $\in A/E$, x_1 , $x_2 \in A$ 有

$$[x_1]*[x_2]=[x_1\circ x_2]$$

这样<A/E,*>构成了一个代数系统,称为<A,o>的商代数

离散数学

商代数

定理5.10 代数系统 $<A,\circ>$ 与其上的商代数<A/E,*>同态.

证明: 建立一个函数 $f_E:A \rightarrow A/E$,

$$f_E(x) = [x]$$

其中 $x \in A$,且有

$$f_E(x_1 \circ x_2) = [x_1 \circ x_2] = [x_1] * [x_2] = f_E(x_1) * f_E(x_2)$$

得证.

Note:

- (1) 把这种同态称为对于同余关系E的自然同态.
- (2) 任何一个代数系统总可以找到一个与其同态的代数系统,这个同态的代数系统就是它的商代数.
- (3) 自然同态中的映射是一个满同态映射,故<A, $\circ>$ 与其上的商代数<A/E,*>不仅同态,而且满同态,自然同态是一个满同态

同余关系

定理5.11 代数系统<A, \circ >与<B,*>同态,f: $A \to B$ 是它们之间的一个同态映射,在<A, \circ >上建立一个关系 E_f : 对 $\forall x_1, x_2 \in A$, $f(x_1) = f(x_2)$,记为 $x_1 E_f x_2$.则 E_f 是同余关系.

证明: 显然, E_f 是等价关系.

即要证如果 $x_1E_fx_1', x_2E_fx_2'$ 必有: $(x_1 \circ x_2)E_f(x_1' \circ x_2')$ 即, $f(x_1 \circ x_2) = f(x_1' \circ x_2')$

由f是同态映射,可知

$$f(x_1 \circ x_2) = f(x_1) * f(x_2)$$
$$f(x_1' \circ x_2') = f(x_1') * f(x_2')$$
由于 $f(x_1) = f(x_1'), f(x_2) = f(x_2'), 则有:$
$$f(x_1 \circ x_2) = f(x_1' \circ x_2')$$

得证.

与商代数的同构

定理5.12 设f是从<A, $\circ>$ 到<B, $\otimes>$ 的满同态映射,则< A/E_f ,*>与<B, $\otimes>$ 同构.

证明:略

Note:

- (1) 对一个代数系统<A, $\diamond>$, 任一与它满同态的代数系统<B, $\otimes>$, 总可以找到<A, $\diamond>$ 的商代数 $<A/E_f$,*>与之同构.
- (2) 若有从<A, $\circ>$ 到<B, $\otimes>$ 的满同态,则必有从<A, $\circ>$ 到<A/ E_f ,*>的满同态,以及<A/ E_f ,*>与<B, $\otimes>$ 同构.

5.4 常用代数系统分类

思路:

- (1) 对性质相同的代数系统进行集中, 统一的研究, 将某种(些)性质看成此代数系统的固有属性
- (2) 按照某些共同性质分类,构成了各种特定的代数系统
- (3) 常用的代数系统划分成3大类15小类

THE END