Manifolds III

March 31, 2025

Review

If X, Y are topological spaces and $f, g: X \to Y$ continuous maps, we say f and g are homotopic (written $f \simeq g$) if there is a homotopy $H: X \times I \to Y$ (where I = [0,1]) such that H(x,0) = f(x) and H(x,1) = g(x) for all $x \in X$. We say that f is null-homotopic if it is homotopic to a constant map.

Proposition

Homotopy is an equivalence relation on the collection of continuous maps.

- 1. $f \simeq f$ by H(x, t) := f(x).
- 2. $f \stackrel{\tilde{H}}{\simeq} g \Longrightarrow g \simeq f$ by defining $\tilde{H}(x,t) := H(x,1-t)$.
- 3. $(f \stackrel{F}{\simeq} g \wedge g \stackrel{G}{\simeq} h) \Longrightarrow f \simeq h$ by

$$H(x,t) := \begin{cases} F(x,2t) & 0 \le t \le 1/2 \\ G(x,2t-1) & 1/2 \le t \le 1 \end{cases}.$$

Proposition

For $f_0, f_1: X \to Y$ and $g_0, g_1: Y \to Z$, if $f_0 \stackrel{F}{\simeq} f_1$ and $g_0 \stackrel{G}{\simeq} g_1$, then $g_0 \circ f_0 \simeq g_1 \circ f_1$.

Proof

Define H(x,t) := G(F(x,t),t) such that $H(x,0) = G(F(x,0),0) = G(f_0(x),0) = g_0 \circ f_0(x)$. Similarly, $H(x,1) = g_1 \circ f_1(x)$.

Definition: Homotopic Spaces

We say that two spaces X and Y are homotopic to each other $(X \simeq Y)$ if there are continuous maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g \simeq \operatorname{id}_Y$ and $g \circ f \simeq \operatorname{id}_X$.

Example

 \mathbb{R}^n is homotopic to $\{0\}$ (or any single point) by $\iota:0\to\mathbb{R}^n$ and $r:\mathbb{R}^n\to 0$. Then $r\circ\iota:0\to 0$ is id_0 and $\iota\circ r:\mathbb{R}^n\ni x\mapsto 0\in\mathbb{R}^n$ is homotopic to $\mathrm{id}_{\mathbb{R}^n}$. In fact, consider $H:\mathbb{R}^n\times I\to\mathbb{R}^n$ where H(x,t)=tx, $H(x,1)=x=\mathrm{id}_{\mathbb{R}^n}(x)$ and H(x,0)=0.

Definition: Path

A path in X from p to q is a continuous map $f: I \to X$ such that f(0) = p and f(1) = q.

Definition: Path Homotopic

Let $f,g:I \to X$ be two paths in X from p to q.

We say that f and g are path homotopic (write $f \sim g$) if there is a homotopy $H: I \times I \to X$ such that H(s,0) = f(s), G(s,1) = g(s), H(0,t) = p and H(1,t) = q.

1

Proposition

Path homotopy is an equivalence relation on the collection of paths from p to q. Write [f], the equivalence class of f in the quotient.

Definition: Loop

In the special case that p = q, we say that $f: I \to X$ is a loop

Definition: Fundamental Group

Given (X, p), $\pi_1(X, p)$ (the fundamental group of X at the point p) is the set of all loops at p modulo the path homotopy.

{loops at
$$p$$
}/ ~

Equivalently, $(S^1,1)$, {loops at p} = {continuous maps $f:(S^1,1) \to (X,p)$ } with f(1) = p. We say this is the homotopy "relative to $1 \in S^1$ ". We have $H:S^1 \times I \to X$ such that H(s,0) = f(s), H(s,1) = g(s) and H(1,t) = p.

Definition: Free Homotopy

For two loops $f, g: S^1 \to X$, we say that f and g are free homotopic if $f \simeq g$.

Lemma

When $f: I \to X$ is a path from p to q, if $f \circ \varphi$ is a reparameterization of f then $(f \circ \varphi) \sim f$ where $\varphi: I \to I$ satisfies $\varphi(0) = 0$ and $\varphi(1) = 1$.

Proof

Note that φ is homotopic to the identity map id_I through $H(s,t)=ts+(1-t)\varphi(s)$ since $H(s,0)=\varphi(s)$ and $H(s,1)=s=\mathrm{id}_I(s)$.

Then consider $f \circ H : I \times I \to X$ which is a path homotopy between f and $f \circ \varphi$.

Fundamental Group

Let $f, g: I \to X$ be two paths with f(1) = g(0).

Then we can "compose" (concatenate) f and g together $(f \cdot g) : I \to X$ by

$$(f \cdot g)(s) := \begin{cases} f(2s) & 0 \le s \le 1/2 \\ g(2s-1) & 1/2 \le s \le 1 \end{cases}.$$

Lemma

If
$$f_0 \stackrel{F}{\sim} f_1$$
, $g_0 \stackrel{G}{\sim} g_1$ and $f_0(1) = f_1(1) = g_0(0) = g_1(0)$, then $f_0 \cdot g_0 \sim f_1 \cdot g_1$.

Proof

Define

$$H(s,t) := \begin{cases} F(2s,t) & 0 \le s \le 1/2 \\ G(2s-1,t) & 1/2 \le s \le 1 \end{cases}.$$

Then

$$H(s,0) = \begin{cases} F(2s,0) = f_0(2s) & 0 \le s \le 1/2 \\ G(2s-1,0 = g_0(2s-1)) & 1/2 \le s \le 1 \end{cases}.$$

Similarly $H(s,1) = (f_1 \cdot g_1)(s)$, hence $f_0 \cdot g_0 \sim f_1 \cdot g_1$. With this, we have a well-defined $[f] \cdot [g] := [f \cdot g]$.

Simple Properties

For f from p to q where c_p is the constant map at p,

- 1. $[c_p] \cdot [f] = [f] \cdot [c_q]$ since $c_p \cdot f$ is a reparameterization of f.
- 2. Let \overline{f} be the inverse path of f (i.e. $\overline{f}(s) = f(1-s)$). Then $[f] \cdot [\overline{f}] = [c_p]$ and $[\overline{f}] \cdot [f] = [c_q]$.

$$H(s,t) := \begin{cases} f(2s) & 0 \le s \le t/2 \\ f(t) & t/2 \le s \le 1 - t/2 \\ f(2-2s) & 1 - t/2 \le s \le 2 \end{cases}$$

1. $([f] \cdot [g]) \cdot [h] = [f] \cdot ([g] \cdot [h])$, since these are reparameterizations of the same path.

Group Structure

 $\pi_1(X, p) = \{\text{loops at } p\} / \sim.$

Define $[f] \cdot [g] := [f \cdot g]$.

It has an identity element $[c_p] = e$.

For any $f \in \pi_1(X, p)$, it has an inverse $[\overline{f}]$ such that $[f] \cdot [\overline{f}] = [\overline{f}] \cdot [f] = [c_p]$. Finally, it is associative by (3) above.

Proposition

Suppose $p, q \in X$ with X path-connected.

Then $\pi_1(X, p)$ is isomorphic to $\pi_1(X, q)$.

Remark: this isomorphism is not canonical.

Proof

We define a path γ from q to p and $\Phi_{\gamma}: \pi_1(X,p) \to \pi_1(X,q)$ by $[f] \mapsto [\gamma \cdot f \cdot \overline{\gamma}]$. Φ_{γ} is a group homomorphism.

$$\begin{split} \Phi_{\gamma}[f] \cdot \Phi_{\gamma}[g] &= [\gamma \cdot f \cdot \overline{\gamma}] \cdot [\gamma \cdot g \cdot \overline{\gamma}] \\ &= [\gamma \cdot f \cdot \overline{\gamma} \cdot \gamma \cdot g \cdot \overline{\gamma}] \\ &= [\gamma \cdot f] \cdot \overline{[\overline{\gamma} \cdot \gamma]} \cdot [g \cdot \overline{\gamma}] \\ &= [\gamma \cdot (f \cdot g) \cdot \overline{\gamma}] \\ &= \Phi_{\gamma}[f \cdot g]. \end{split}$$

 Φ_{γ} has an inverse, $\Phi_{\overline{\gamma}} : \pi_1(X,q) \to \pi_1(X,p)$.

$$\Phi_{\overline{\gamma}} \circ \Phi_{\gamma}[f] = \Phi_{\overline{\gamma}}[\gamma \cdot f \cdot \overline{\gamma}] = [\overline{\gamma} \cdot \gamma \cdot f \cdot \overline{\gamma} \cdot \gamma] = [f].$$

Induced Homomorphism

 $\varphi:(X,p)\to (Y,q)$ induces

$$\varphi_* : \pi_1(X, p) \to \pi_1(Y, q)$$
$$[f] \mapsto [\varphi \circ f].$$

 φ_* is a homomorphism.

$$(\varphi_*[f]) \cdot (\varphi_*[g]) = [\varphi \circ f] \cdot [\varphi \circ g] = [(\varphi \circ f) \cdot (\varphi \circ g)] = [\varphi \circ (f \cdot g)] = \varphi_*[f \cdot g].$$

Proposition

If $\varphi, \psi : (X, p) \to (Y, q)$ are homotopic, then $\varphi_* = \psi_* : \pi_1(X, p) \to \pi_1(Y, q)$.

Proof

Let $[f] \in \pi_1(X, p)$, $\varphi_*[f] = [\varphi \circ f]$ and $\psi_*[f] = [\psi \circ f]$ and $H: X \times I \to Y$ a homotopy between φ and ψ . Then define $\tilde{H} := I \times I \to Y$ by $\tilde{H}(s, t) = H(f(s), t)$ such that

$$\tilde{H}(s,0) = H(f(s),0) = \varphi \circ f(s)$$

$$\tilde{H}(s,1) = H(f(s),1) = \psi \circ f(s).$$

Corollary

If $X \simeq Y$, then $\pi_1(X) \simeq \pi_1(Y)$.

Examples (*)

 $\pi_1(S^1) \cong \mathbb{Z}$ and $\pi_1(S^n) = 0$ for $n \ge 2$.

For $n \ge 2$, write $S^n = A_+ \cup A_-$ where A_+ and A_- are large balls centered at the north and south pole respectively. Then A_+ and A_- are both homeomorphic to \mathbb{R}^n and $A_+ \cap A_-$ (their intersection about the equator) is homeomorphic to $S^{n-1} \times \mathbb{R}$.

We fix a base point $p \in A_+ \cap A_-$ and let $f : I \to S^n$ be a loop based at p.

There exists a partition of I, $0 = s_0 < s_1 < \cdots < s_k = 1$, such that $f|_{[s_i, s_{i+1}]}$ is contained in A_- or A_+ .

Draw a path γ_i from p to $f(s_i)$ such that $\gamma_i \subseteq A_+ \cap A_-$. Let $f_i = f|_{[s_i, s_{i+1}]}$ such that $f = f_0 \cdot f_1 \cdots f_k$. Then this is path homotopic to

$$(f_0\cdot\overline{\gamma}_1)\cdot(\gamma_1\cdot f\cdot\overline{\gamma}_2)\cdots(\gamma_{k-1}\cdot f_{k-1}\cdot\overline{\gamma}_k)\cdot(\gamma_k\cdot f_k).$$

Each $\gamma_i \cdot f_i \cdot \overline{\gamma}_i$ is contained in A_- or A_+ , hence $\gamma_i \cdot f_i \overline{\gamma}_{i+1} \sim c_p$, $f \simeq c_p$ and [f] = e.

April 2, 2025

Correction

For $\varphi, \psi : (X, x_0) \to (Y, y_0)$ where $\varphi \simeq \psi$, we say a homotopy H between φ and ψ is base point preserving if $H(x_0, t) = y_0$ for all $t \in [0, 1]$.

Proposition

If $\varphi \simeq \psi$ through a base point preserving homotopy, then $\varphi_* = \psi_*$, $\pi_1(X, x_0) \to \pi_1(Y, y_0)$.

For $X \simeq Y$, $\varphi : X \to Y$ and $\psi : Y \to X$ where $\psi \circ \varphi = \mathrm{id}_X$ and $\varphi \circ \psi = \mathrm{id}_Y$, in general $\psi \circ \varphi(x_0) \neq x_0$ and $\varphi \circ \psi(y_0) \neq y_0$. Set up: $\varphi_0, \varphi_1 : X \to Y$ with $\varphi_0 \simeq \varphi_1$ through a homotopy H.

Write $\varphi_t = H(\cdot, t) : X \to Y$ and fix a base point $x_0 \in X$ and set $\gamma(t) = \varphi_t(x_0)$ for $t \in [0, 1]$.

Proposition 1

$$(\varphi_0)_* = \Phi_{\gamma} \circ (\varphi_1)_* : \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0)).$$

Proof

Let f be a loop at x_0 .

IMAGE 1

Let γ_t be $\gamma|_{[0,t]}$ and then, by rescaling the domain [0,t] to [0,1] i.e.

$$\gamma_t : [0,1] \to Y$$

$$s \mapsto \gamma(ts).$$

from $\varphi_0(x_0)$ to $\gamma(t) = \varphi_t(x_0)$. Then $\gamma_t \cdot (\phi_t \circ f) \cdot \overline{\gamma}_t$ is a homotopy between $(\varphi_0 \circ f)$ and $\gamma \cdot (\varphi_1 \circ f) \cdot \overline{\gamma}$. Hence

$$(\varphi_0)_*[f] = [\varphi_0 \circ f] = [\gamma] \cdot [\varphi_1 \circ f] \cdot [\overline{\gamma}] = \Phi_{\gamma} \circ (\varphi_1)_*[f].$$

Proposition 2

If $X \simeq Y$, then $\pi_1(X) \cong \pi_1(Y)$.

Proof

Since $(\psi \circ \varphi) \simeq \mathrm{id}_X$, by Proposition 1

$$\psi_* \circ \varphi_* = (\psi \circ \varphi)_* = \Phi_{\gamma} \circ (\mathrm{id}_{\chi})_* = \Phi_{\gamma}.$$

Hence $\psi_* \circ \varphi_*$ is an isomorphism (as is $\varphi_* \circ \psi_*$). Therefre φ_* and ψ_* are isomorphisms.

Recall: Covering Map

For X, \tilde{X} connected, $\pi: \tilde{X} \to X$ is a covering map if for each $p \in X$ there exists a neighborhood $U \subset X$ such that $\pi^{-1}(U)$ is a disjoint union

$$\pi^{-1}(U) = \bigcup_{\alpha \in A} U_{\alpha}$$

such that $\pi|_{U_{\alpha}}:U_{\alpha}\to U$ is a homeomorphism.

Lifting Properties

A lift is a map \tilde{f} such that $f = \pi \circ \tilde{f}$.

- 1. Path Lifting: Let $f: I \to X$ be a path from x_0 . Then, for any $\tilde{x}_0 \in \pi^{-1}(x_0)$, there is a unique lift \tilde{f} of f with $\tilde{f}(0) = \tilde{x}_0$.
- 2. Homotopy Lifting: Let $f_0, f_1: I \to X$ be paths in X with $f_0(0) = f_1(0) = x_0$ and $f_0(1) = f_1(1)$. Suppose H is a path homotopy between f_0 and f_1 . Then for any $\tilde{x}_0 \in \pi^{-1}(x_0)$, there is a unique lift $\tilde{H}: I \times I \to \tilde{X}$ of H. In particular, \tilde{H} is a path homotopy between \tilde{f}_0 and \tilde{f}_1 . That is if $H(0,t) = x_0$ then $\tilde{H}(0,t) \in \pi^{-1}(x_0)$ for all t. Hence $\tilde{H}(0,t) = \tilde{x}_0$, $\forall t \in [0,1]$. Similarly, $\tilde{H}(1,t)$ is identically constant. In particular, $\tilde{f}_0(1) = \tilde{H}(1,0) = \tilde{H}(1,1) = \tilde{f}_1(1)$.

Fundamental Group of the Circle

```
\pi_1(S^1) = \mathbb{Z}.
```

Example

```
\pi: \mathbb{R} \to S^1 by s \mapsto e^{2\pi i \cdot s}.
```

Proof

Take as a base point $1=x_0\in S^1\subseteq \mathbb{C}$. For each $n\in \mathbb{Z}$, we define a loop $\omega_n:[0,1]\to S^1$ by $s\mapsto e^{2\pi i\cdot ns}$. Let f be a loop at $x_0\in S^1$. We can lift f to $\tilde{f}:I\to\mathbb{R}$ at $0\in\mathbb{R}$. Then $\tilde{f}(1)\in\pi^{-1}(x_0)=\mathbb{Z}\subseteq\mathbb{R}$. This defines a map φ that sends a loop f to $\tilde{f}(1)\in\mathbb{Z}$. This φ induces $\varphi:\pi_1(S^1,x_0)\to\mathbb{Z}$ well-defined. If $f_0,f_1:I\to S^1$ at x_0 are path homotopic via H, then we may lift H to $\tilde{H}:I\times I\to\mathbb{R}$ which implies $\tilde{f}_0(1)=\tilde{f}_1(1)$.

 φ is surjective, since for any $n \in \mathbb{Z}$ we may consider the loop ω_n where $\tilde{\omega}_n(1) = n$.

 φ is a group homorphism since $\varphi[f \cdot g] = \widetilde{f \cdot g}(1) = \widetilde{g} + \widetilde{f}(1) = \varphi[f] + \varphi[g]$.

 φ is injective, since if $\varphi[f] = 0$ (i.e. $\tilde{f}(0) = 0$) then \tilde{f} is a loop in $\mathbb R$ and \tilde{f} is null-homotopic to c_0 by H. Therefore $\pi \circ \tilde{H}$ is a path-homotopy between f and c_{x_0} (i.e. [f] = e).

Path-Lifting

For $f:I \to X$, we have a special case where $\operatorname{im} f \subseteq U$ evenly covered. Write $\pi^{-1}(U) = \bigcup \tilde{U}_{\alpha}$ and pick the \tilde{U}_{α} which contains \tilde{x}_0 . Since $\pi|_{\tilde{U}_{\alpha}}:\tilde{U}_{\alpha}\to U$ is a homemorphism, $\tilde{f}:=(\pi|_{\tilde{U}_{\alpha}})^{-1}\circ f$ is the unique lift of f at \tilde{x}_0 . In general, pick a partition of $I=[0,1],\ 0=t_0< t_1<\cdots< t_m=1$, such that $\operatorname{im} f|_{[t_i,t_{i+1}]}\subseteq U_i$ evenly covered. We can lift $f|_{[0,t_1]}$ at \tilde{x}_0 , giving $\tilde{f}:[0,t]\to \tilde{X}$. Next, we lift $f|_{t_1,t_2}$ at $\tilde{f}(t_1)\in \tilde{X}$. Since the partition is finite, we may repeat the process until f is entirely lifted. This lift is unique.

Homotopy Lifting

For each fixed $(y_0,t_0) \in I \times I$, by continuity, there is a neighborhood $N(y_0) \times (t_0 - \varepsilon, t_0 + \varepsilon)$ such that H sends $N(y_0) \times (t_0 - \varepsilon, t_0 + \varepsilon)$ inside an evenly covered neighborhood. By compactness of $\{y_0\} \times [0,1]$, there is a finite collection of $N_{t_i}(y_0) \times (t_i - \varepsilon_i, t_i + \varepsilon_i)$ such that they cover $\{y_0\} \times I$ and the image of each under H is contained in an evenly covered neighborhood. Set $N = \bigcap_i N_{t_i}(y_0)$, a neighborhood of y_0 , and construct a partition $0 = t_0 < t_1 < \dots < t_m = 1$ such that $H(N \times [t_i, t_{i+1}] \subseteq U_i$ evenly covered. Then we can start with $H|_{N \times [0,t_1]}$ and lift it at \tilde{x}_0 by some $(\pi|_{\tilde{U}_a})^{-1}$. Then lift each $H|_{N \times [t_i,t_{i+1}]}$ one by one. Eventually, we have $\tilde{H}: N \times [0,1] \to \tilde{X}$ that lifts $H: N \times [0,1] \to \tilde{X}$ at \tilde{x}_0 . This lift holds for any $y_0 \in I$ and, if two strips overlap, then the lift must agree there by the uniqueness of path lifting. This assures that $\tilde{H}: I^2 \to \tilde{X}$ is continuous.

Remark

Given a continuous map $F: Y \times I \to X$ and a covering $\pi: \tilde{X} \to X$, suppose that we have a map $\tilde{F}: Y \times \{0\} \to \tilde{X}$ that lifts $F|_{Y \times \{0\}}: Y \times \{0\} \to X$. Then there is a unique lift $\tilde{F}: Y \times I \to \tilde{X}$ of F which extends $\tilde{F}: Y \times \{0\} \to \tilde{X}$.

Theorem: Fundamental Theorem of Algebra

A polynomial $p(z) = z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n$ (with $a_i \in \mathbb{C}$) has a root in \mathbb{C} .

Proof

Suppose otherwise. Then $p(z) \neq 0$, $\forall z \in \mathbb{C}$. Consider $f_r : [0,1] \to S^1$ $(r \geq 0)$ by

$$f_r(s) = \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|}.$$

Then $f_0(s) \equiv 1$ is a constant loop at $1 \in \mathbb{C}$, and $f_r \simeq f_0$ for each $r \geq 0$. Consider $R \geq 1$ large such that $R \gg \sum_{i=1}^n |a_i|$. On $\{z: |z| = R\}$, we have

$$|z^{n}| > \left(\sum_{i=1}^{n} |a_{i}|\right) \cdot |z^{n-1}| \ge \sum_{i=1}^{n} |a_{i}| \cdot |z^{n-i}| = \left|\sum_{i=1}^{n} |a_{i}z^{n-i}|\right|.$$

This implies that p does not have any roots on $\{|z|=R\}$. Moreover, for $p_t(z)=z^n+t(a_1z^{n-1}+\cdots a_{n-1}z+a_n)$ with $0 \le t \le 1$, p_t does not have any roots on $\{|z|=R\}$. Consider

$$f_{R,t}(s) = \frac{p_t(Re^{2\pi i s})/p_t(R)}{|p_t(Re^{2\pi i s})/p_t(R)|}.$$

Then

$$f_{R,0}(s) = \frac{(Re^{2\pi is})^n/R^n}{|(Re^{2\pi is})^n/R^n|} = (e^{2\pi is})^n = \omega_n(s).$$

Therefore $f_{R,1}(s) \simeq f_R(s)$ and $f_R \simeq \omega_n$. But since $\omega_n \neq$ constant so this is a contradiction.

April 7, 2025

Definition: Retraction

Let X be a space and $A \subseteq X$ be a subset. We say that a continuous map $r: X \to A$ is a retraction if $r|_A = \mathrm{id}_A$. In particular, becasue $r \circ \iota_A = \mathrm{id}_A$, for $x_0 \in A$

$$r_*\circ (\iota_A)_*:\pi_1(A,x_0)\to \pi_1(A,x_0)$$

is an isomorphism. Hence $r_*: \pi(X, x_0) \to \pi(A, x_0)$ is surjective.

Corollary

There is no retraction $r: D^2 \to S^1 (= \partial D^2)$.

Proof

Suppose there is such a map r, then

$$r_*: \overbrace{\pi_1(D^2, x_0)}^{=0} \to \overbrace{\pi_1(S^1, x_0)}^{=\mathbb{Z}}$$

is surjective which is a contradiction.

Corollary

Every continuous map $h: D^2 \to D^2$ has a fixed point.

Proof

Suppose $\exists h : D^2 \to D^2$ without fixed points.

IMAGE 1

Define $r: D^2 \to D^2$ as the ray pictured from h(x) through x to the boundary. If $x \in \partial D^2$, then by construction r(x) = x. Hence $r: D^2 \to S^1$ is a retraction which is a contradiction.

Corollary (Borsuk-Ulam)

Let $f: S^2 \to \mathbb{R}^2$. Then there exists a pair of antipodal points x and -x on S^2 such that f(x) = f(-x). This carries analogously to higher dimensions.

Proof

Suppose that $f(x) \neq f(-x)$ for all $x \in S^2$. We define $g: S^2 \to S^1$ by $g(x) = \frac{f(x) - f(-x)}{||f(x) - f(-x)||}$. On $S^2 \subseteq \mathbb{R}^3$, we consider a loop γ at the equator by $\gamma(s) = (\cos(2\pi s), \sin(2\pi s), 0)$ for $s \in [0, 1]$. Because S^2 is simply connected, $g \circ \gamma : [0, 1] \to S^1$ is path-homotopic to a constant loop in S^1 . On the other hand, we lift $h := g \circ \gamma$ to $\tilde{h} : [0, 1] \to \mathbb{R}$ with $\tilde{h}(0) = 0 \in \mathbb{R}$. Note

$$h(s+1/2) = g \circ \gamma(s+1/2) = g(\cos(2\pi s + \pi), \sin(2\pi s + \pi), 0) = g(-\gamma(s)) = -g(\gamma(s)) = -h(s).$$

Hence $\tilde{h}(s+1/2) \in \pi^{-1}(-h(s))$ where $\pi : \mathbb{R} \to S^1$ is the covering map. Since $\pi^{-1}(-h(s)) = \frac{1}{2} + \tilde{h}(s) + \mathbb{Z}$, for each $s \in [0,1/2]$ there is an integer q_s such that $\tilde{h}(s+1/2) = \frac{1}{2} + \tilde{h}(s) + q_s$ and

$$\tilde{h}(s+1/2) - \tilde{h}(s) = \frac{1}{2} + q_s.$$

The left hand side depends continuously on s and, by continuity, q_s is a constant (call it q). This gives

$$\tilde{h}(1) = \tilde{h}(1/2) + \frac{1}{2} + q = \tilde{h}(0) + 1 + 2q = 1 + 2q \neq 0$$

which contradicts the assertion that h is homotopic to a constant loop.

Corollary (Large Fiber Lemma)

If $f:[0,1]^{n+1}\to\mathbb{R}^n$ is a continuous map, then there exist $a,b\in[0,1]^{n+1}$ such that f(a)=f(b) and $|a-b|\geq 1$. Remark: if z=f(a)=f(b), then the lemma says that diam $f^{-1}(z)\geq 1$.

8

Proof

Take the sphere of radius 1/2 in $[0,1]^{n+1}$, then by Borsuk-Ulam there exist a pair of antipodal points $a,b \in S^1$ such that f(a) = f(b) and $|a-b| \ge 1$.

Proposition

$$\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$$

Proof

Write $F: \pi_1(X \times Y) \to \pi_1(X) \times \pi_1(Y)$ by $[f] \mapsto ([g], [h])$. Then $f: [0,1] \to X \times Y$ is a loop at (x_0, y_0) , f(s) = (g(s), h(s)), and $g: [0,1] \to X$ and $h: [0,1] \to Y$ are loops at x_0 and y_0 respectively.

Definition: Wedge Sum

Let X and Y be path-connected topological spaces. Then $X \vee Y = (X \coprod Y)/x_0 \sim y_0$ Let $\{X_\alpha\}$ be a family of such spaces. Then $\bigvee_\alpha X_\alpha = \coprod_\alpha X_\alpha/\sim$.

Sketch

$$\pi_1(S^1_-, x_0) \to \pi_1(X, x_0)$$
 gen $\mapsto \alpha$
 $\pi_1(S^1_+, x_0) \to \pi_1(X, x_0)$ gen $\mapsto \beta$

with $\alpha \neq \beta$, $\alpha\beta \neq \beta\alpha$. Then $\pi_1(X, x_0)$ should be $\langle \alpha, \beta \rangle$.

Definition: Free Product

Let $\{G_{\alpha}\}_{\alpha}$ be a family of groups. $*_{\alpha}G_{\alpha} = \{g_1g_2\cdots g_k : \text{ each } g_i \text{ is a word in some } A_{\alpha}\}.$

Proposition

If for each α , there is a group homomorphism $\phi_{\alpha}: G_{\alpha} \to H$ then $\{\phi_{\alpha}\}$ induces a group homomorphism $\Phi: *_{\alpha}G_{\alpha} \to H$ by $g_1 \cdots g_k \mapsto \phi_{\alpha_1}(g_1) \cdots \phi_{\alpha_k}(g_k)$.

Van-Kapen Theorem

Setup

Let $X = \bigcup_{\alpha} A_{\alpha}$, each A_{α} open and connected where $\{A_{\alpha}\}$ have a common point x_0 . Assume also that each $A_{\alpha} \cap A_{\beta}$ is path connected. Then $j_{\alpha}: A_{\alpha} \hookrightarrow X$ induces $j_{\alpha}: \pi_1(A_{\alpha}, x_0) \to \pi_1(X, x_0)$. $\{j_{\alpha}\}_{\alpha}$ induces $\Phi: *_{\alpha}\pi_1(A_{\alpha}, x_0) \to \pi_1(X, x_0)$ which is surjective by a similar argument as was used above for Example (*) $(S^2 = A_- \cup A_+)$ applied to $X = \bigcup_{\alpha} A_{\alpha}$. Now, what is the kernel of Φ ?

Then $i_{\beta\alpha}(w)i_{\alpha\beta}(w)^{-1}$ is NOT id in $*_{\alpha}\pi_1(A_{\alpha})$.

But through Φ , it hould be $\mathrm{id} \in \pi_1(X, x_0)$. Hence every element in $*_{\alpha}\pi_1(A_{\alpha})$ of the form $i_{\beta\alpha}(w)i_{\alpha\beta}(w)^{-1}$ where $w \in \pi_1(A_{\alpha} \cap A_{\beta})$ is in the kernel of Φ .

Theorem (Van-Kampen)

If every $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is path connected, $\ker \Phi$ is the normal subgroup N generated by $\{i_{\beta\alpha}(w)i_{\alpha\beta}(w)^{-1}: \alpha, \beta \in A, w \in \pi_1(A_{\alpha} \cap A_{\beta})\}$. Hence $\pi_1(X, x_0) \cong (*_{\alpha}\pi_1(A_{\alpha}, x_0))/N$.

Remarks

- 1. In the case that $X = A_0 \cup A_1$ with $A_0 \cap A_1$ path connected, then the intersection condition holds.
- 2. If $X = A_0 \cup A_1$ and $A_0 \cap A_1$ is simply connected, then $N = \{id\}$ and $\pi_1(X) = \pi_1(A_0) * \pi_1(A_1)$.
- 3. If $X = A_0 \cup A_1$ and A_1 is simply connected, then $\pi_1(X) = \pi_1(A_0)/N$ and N is the normal subgroup generated by

$$i_{01}(w)\overbrace{i_{10}(w)}^{\in \pi_1(A_1,x_0)} = i_{01}(w)$$

i.e. *N* is the normal closure of $i_{01}(\pi_1(A_0 \cap A_1))$.

Example

IMAGE 2

For each $\alpha \in \{1, ..., 5\}$, let A_{α} be a small neighborhood of $T \cup e_1$. Every double/triple intersection is a neighborhood of T. Hence it is path continuous and we have that $\pi_1(A_{\alpha}) = \mathbb{Z}$. Thus $\pi_1(A_{\alpha} \cap A_{\beta}) = \mathrm{id}$, and $\pi_1(X) = *_{\alpha} \pi_1(A_{\alpha})/N = *_1^5 \mathbb{Z}$.

Example

IMAGE 3

By Van-Kampen, $\pi_1(X) = \pi_1(A_0)$ modulo the normal closure of $i(\pi_1(A_0 \cap A_1))$. That is

$$\langle a, b \mid aba^{-1}b^1 \rangle = \mathbb{Z}^2.$$

Remark

In general, orientable M_g is the connected sum of g many toruses.

April 9, 2025

Recall: Van-Kampen Theorem

Write $\pi_1(X) = (\pi_1(A) * \pi_1(B))/N$ where N is the normal closure of $i_{\alpha\beta}(w)i_{\beta\alpha}(w)^{-1}$ for $w \in \pi_1(A \cap B)$, $i_{\alpha\beta} : \pi_1(A \cap B) \to \pi_1(A)$ and $i_{\beta\alpha} : \pi_1(A \cap B) \to \pi_1(B)$.

Example

 M_g is the connected sum of g many tori, and $\pi_1(M_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1b_1] \cdots [a_gb_g] \rangle$.

Example

 N_g is the connected sum of g many \mathbb{RP}^2 (e.g. N_2 is the Klein bottle). N_g has a polygon-representation by the 2g-gon with boundary identified through $a_1a_1a_2a_2\cdots a_ga_g$. Therefore $\pi_1(N_g) = \left\langle a_1\cdots a_g \mid a_1^2\cdots a_g^2\right\rangle$.

Abelianiztion

- 1. Ab $(\pi_1(M_g))$ is the free abelian group generated by $\{a_1,b_1,\ldots,a_g,b_g\}=\mathbb{Z}^{2g}$.
- 2. $\operatorname{Ab}(\pi_1(N_g)) = \operatorname{Ab}(\langle a_1 \cdots a_{g-1} a_1 a_2 \cdots a_g \mid a_1^2 \cdots a_g^2 \rangle = \mathbb{Z}^{g-1} \oplus \mathbb{Z}_2.$

Corollary

None of the surfaces in $\{S^2, M_1, \dots, M_g, \dots, N_1, \dots, N_g, \dots\}$ are homotopic to each other.

Definition: Cell Complex

0-cells are points; 1-cells, e^1 , are intervals; 2-cells, e^2 , are disks; n-cells, e^n , are \overline{B}^n . A cell complex for space X is a decomposition (assuming finite dimensions) $X = X^0 \cup X^1 \cup \cdots \cup X^n$ where X^0 is the discrete set of points (i.e. 0-cells), X^1 is the space obtained by gluing 1-cells to X^0 ($\varphi_\alpha:\partial e^1_\alpha \to X^0$), X^2 is the space obtained by gluing 2-cells to X^1 ($\varphi_\alpha:\partial e^2_\alpha \to X^1$), and in general X^n is obtained by gluing x^n -cells x^n -cells

Examples

Cell complexes need not be unique. $S^2 = X^1 \cup_{\alpha} e_+^2 \cup_{\alpha} e_-^2$ and $S^2 = \{e^0\} \cup_{\alpha} \{e^2\}$. $\mathbb{RP}^2 = \{e^1\} \cup_{\alpha} \{e^2\}$ where φ_α is given by $z \mapsto z^2$. \mathbb{T}^2 is gluing e^2 to $S^1 \vee S^1$.

Theorem (Computing Fundamental Group)

Set up

Let X be a path-connected space, $Y = X \cup_{\alpha} e_{\alpha}^2$ (i.e. X is created by gluing 2-cells $\{e_{\alpha}^2\}_{\alpha}$ to X via $\phi_{\alpha}: \partial e_{\alpha}^2 \to X$). The inclusion $\iota: X \to Y$ induces $\iota_*: \pi_1(X) \to \pi_1(Y)$. Fix a base point $s_0 \in S^1$. For each α we draw a path γ_{α} from x_0 to $\varphi_{\alpha}(s_0)$. Then $\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma}_{\alpha}$ is a loop based at x_0 . Thus $\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma}_{\alpha}$ is null-homotopic in Y (because φ_{α} is null-homotopic in e_{α}^2). That is $\iota_*[\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma}_{\alpha}] = \mathrm{id}$ in $\pi_1(Y)$ and is therefore in the kernel.

Theorem

Let N be the normal subgroup in $\pi_1(X)$ generated by elements of the form $[\gamma_\alpha \cdot \varphi_\alpha \cdot \overline{\gamma}_\alpha]$. Then $\pi_1(Y) \cong \pi_1(X)/N$.

IMAGE 1

Example

 \mathbb{RP}^2 is X^1 with e^2 glued to it by the map $\varphi: z \mapsto z^2$. Then $\pi_1(\mathbb{RP}^2) = \pi_1(S^1)/N = \langle \gamma \mid \gamma^2 \rangle$ where N is generated by φ . Similarly, the theorem applies to any M_g or N_g .

Definition: Deformation Retraction

For $X \subseteq Z$, $r: Z \to X$ is a retraction if $r|_X = \mathrm{id}_X$ implies $r \circ \iota = \mathrm{id}_X$. If $\iota \circ r: Z \to Z$ is homotopic to id_X , then $r_*: \pi_1(Z) \to \pi_1(X)$ is an isomorphism.

Proof

For each α , we glue a strip S_{α} along γ_{α} . We set the base at z_0 above x_0 , $Z = Y \cup_{\alpha} S_{\alpha}$. Y is a deformation retraction of $Z(\pi_1(Y) = \pi_1(Z))$.

IMAGE 2

Set $A = Z - \bigcup_{\alpha} \{y_{\alpha}\}$, where y_{α} is a point in e_{α}^2 not intersecting S_{α} . B = Z - X. A deformation retracts to $X \pi_1(A) = \pi_1(X)$. B is the union of some S_{α} (removing r_{α}) and some e_{α}^2 (removing ∂e_{α}^2). B is contractible, $\pi_1(B) = \operatorname{id}$ and $A \cap B$ is the union of strips S_{α} and open disks punctured at y_{α} . Therefore

$$\pi_1(Y) = \pi_1(Z) = (\pi_1(A) * \pi_1(B))/N = \pi_1(A)/\iota_*(\pi_1(A \cap B)) \cong \pi_1(X)/\iota_*(\pi_1(A \cap B)).$$

Consider the loop $\delta_{\alpha} \cdot \gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma}_{\alpha} \cdot \overline{\delta}_{\alpha}$ where δ_{α} runs from z_0 to x_0 , call this λ_{α} . It suffices to show that these generate $\pi_1(A \cap B, z_0)$. Cover $A \cap B$ by $A_{\alpha} = (A \cap B) - \bigcup_{\beta \neq \alpha} e_{\beta}^2$. Then A_{α} is a union of strips (with trivia fundamental group) and a single punctured, open disk $e_{\alpha}^2 - \{y_{\alpha}\}$ and $\pi_1(A_{\alpha}) = \mathbb{Z} = \langle \lambda_{\alpha} \rangle$. So $A_{\alpha} \cap A_{\beta}$ is the union of strips, equal to $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ and simply connected. By Van-Kampen,

$$\pi_1(A \cap B) = (*_{\alpha}\pi_1(A_{\alpha}))/N = *_{\alpha}\pi_1(A_{\alpha})$$

is the free group generated by $\{\lambda_{\alpha}\}_{\alpha}$. This completes the proof.

Generalization (Theorem: Part 2)

If $Y = X \cup_{\alpha} e_{\alpha}^{n}$ for $n \geq 3$, then $\pi_{1}(Y) \cong \pi_{1}(X)$.

This follows from the same argument where instead A_{α} is the union of strips and a single punctured ball $B^n - \{y_{\alpha}\} \simeq S^{n-1}$. So $\pi_1(A_{\alpha}) = \mathrm{id}$, $\pi_1(A \cap B) = \mathrm{id}$, and $\pi_1(X) \cong \pi_1(Y)$.

Theorem: Part 3

Suppose X has a cell complex $X = X^0 \cup X^1 \cup \cdots \cup X^n$. Then $\pi_1(X) \cong \pi_1(X^2)$. The proof follows directly from part 2.

Corollary

Given any group represented by generators and relations $G = \langle g_{\alpha} \mid r_{\beta} \rangle$, there is a cell complex X_G , of dimension 2, such that $\pi_1(X_G) \cong G$.

Proof

For each g_{α} , we draw a circle S_{α}^{1} . Then $X^{1} = \bigvee_{\alpha} S_{\alpha}^{1}$ has fundamental group $*_{\alpha} \pi_{1}(S_{\alpha}) = \langle g_{\alpha} \rangle_{\alpha}$. To construct X_{G} , for each r_{β} glue a 2-cell e_{α}^{2} along r_{β} (think of r_{β} as a loop in X^{1}). Then in $X_{G} := X^{1} \cup_{\beta} e_{\beta}^{2}$ we have $\pi_{1}(X_{G}) = \langle g_{\alpha} | r_{\beta} \rangle$.

April 14, 2025

Recall: Covering Spaces

Let $p: \tilde{X} \to X$, both X and \tilde{X} path-connected.

- 1. Path-lifting: let $f: I \to X$ starting at $f(0) = x_0$. There is a unique lifting \tilde{f} of f at $\tilde{x}_0 \in p^{-1}(x_0)$.
- 2. Homotopy-lifting: let $f_0, f_1 : I \to X$ be two paths with $f_0(0) = f_1(0) = x_0$ and $f_0(1) = f_1(1)$. Suppose f_t is a path-homotopy between f_0 and f_1 . Then there exists a unique lift \tilde{f}_t between \tilde{f}_0 and \tilde{f}_1 at $\tilde{x} \in p^{-1}(x)$.

These come from the following: let $f_t: Y \to X$ be a homotopy between f_0 and f_1 . Given $\tilde{f}_0: Y \to \tilde{X}$ that lifts f_0 , there exists a unique lifting \tilde{f}_t . For path-lifting, we take Y a point; for homotopy-lifting, Y = [0, 1].

Proposition 1.31 (in Hatcher)

The covering map $p: \tilde{X} \to X$ induces $p_*: \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x)$.

- 1. p_* is injective.
- 2. $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ are exactly loops at x_0 that lift to loops at \tilde{x}_0 .

Proof of 1

Suppose $p_*[f] = \mathrm{id} \in \pi_1(X, x_0)$ where $[f] \in \pi_1(\tilde{X}, \tilde{x}_0)$. Then $[p \circ f] = \mathrm{id}$, and $[p \circ f]$ is path-homotopic to the constant loop c_{x_0} . Hence the lifting $p \circ f = f$ is path-homotopic to a constant loop $c_{\tilde{x}_0}$.

Proof of 2

Let $[f] \in \pi_1(\tilde{X}, \tilde{x}_0)$. $p_*[f] = [p \circ f]$, $p \circ f$ lifts to f at \tilde{x}_0 which is a loop at \tilde{x}_0 . Let f be a loop at x_0 . Suppose f lifts to a loop \tilde{f} at \tilde{x}_0 (i.e. $p \circ \tilde{f} = f$). Hence $[f] = [p \circ \tilde{f}] = p_*[\tilde{f}] \in p_*(\pi_1(\tilde{X}, \tilde{x}_0))$.

Example

If
$$p: S^1 \to S^1$$
 by $z \to z^2$, then $p_*(\pi_1(S^1, 1)) = 2\mathbb{Z} \le \mathbb{Z} = \pi_1(S^1, 1)$.

Remark

If $p: \tilde{X} \to X$ connected, then $p^{-1}(x)$ has the same cardinality for all $x \in X$.

Proof

Fix $x_0 \in X$. Consider $\mathcal{A} = \{x \in X : p^{-1}(x) \text{ and } p^{-1}(x_0) \text{ have the same cardinality}\} \neq \emptyset$. Then \mathcal{A} is open since for each $x \in \mathcal{A}$, there is a neighborhood U of x such that U is evenly covered by p (i.e. $p^{-1}(U) = \bigcup_{\alpha \in I} V_{\alpha}$ where $V_{\alpha} \stackrel{p}{\cong} U$). Then $p^{-1}(x')$ has cardinality |I| for all $x' \in U$. It follows, since \mathcal{A}^c is open, that \mathcal{A} is also closed.

Proposition

The number of sheets is given by $[\pi_1(X, x_0) : p_*(\pi_1(\tilde{X}, \tilde{x}_0))]$.

Proof

Write $H = p_*(\pi_1(\tilde{X}, \tilde{x}_0))$. Define $\Phi : \{H\text{-cosets in } \pi_1(X, x_0)\} \to p^{-1}(x_0)$ by $H[g] \mapsto \tilde{g}(1)$ where \tilde{g} is a lift of g at \tilde{x}_0 . This map is well defined, since for $[h \cdot g]$ with $h \in H$, $h \cdot g(1) = \tilde{g}(1)$ (because $\tilde{h}(1) = \tilde{x}_0$). Φ is surjective. Let $\tilde{x}_1 \in p^{-1}(x_0)$

IMAGE 1

and let \tilde{g} be a path from \tilde{x}_0 to \tilde{x}_1 . Define $g = p \circ \tilde{g}$, a loop at x_0 . Then $\Phi(H[g]) = \tilde{g}(1) = \tilde{x}_1$. Φ is injective. Suppose $\Phi(H[g_1]) = \Phi(H[g_2])$ (i.e. $\tilde{g}_1(1) = \tilde{g}_2(1)$.

IMAGE 2

Consider the loop $g_1\overline{g}_2$ in X at x_0 . It lifts to $\tilde{g}_1\overline{\tilde{g}}_2$, which is a loop at \tilde{x}_0 . This shows that $[g_1\overline{g}_2] \in H$ (i.e. $H[g_1] = H[g_2]$).

Recall (Manifolds 2)

If a smooth manifold M is non-orientable, then there is a double cover (2 sheets) $p: \hat{M} \to M$ (\hat{M} connected). Consequently, $\pi_1(M)$ has a subgroup of index 2.

Definition: Locally Path-Connected

A topological space is called locally path-connected if for each $x \in X$ and every neighborhood $U \ni X$, there is a neighborhood $V \ni X$ such that $V \subseteq U$ and V is path-connected (i.e. $\forall x \in X$, there exists a local basis $\{U_{\alpha}\}$ at X such that each U_{α} is path-connected). For example, the Topologist's sine curve with endpoints identified is path-connected but not locally path-connected.

Proposition: Lifting Criterion

Let Y be path-connected and locally path-connected. Given a covering map $p:(\tilde{X},\tilde{x}_0)\to (X,x_0)$ and a map $f:(Y,y_0)\to (X,x_0)$, f has a lift \tilde{f} at \tilde{x}_0 ($\tilde{f}(y_0)=\tilde{x}_0$) if and only if $f_*(\pi_1(Y,y_0))\subseteq p_*(\pi_1(\tilde{X},\tilde{x}_0))$.

Proof

$$(\Longrightarrow)$$

 (\longleftarrow) Let $y \in Y$, and draw a path γ from y_0 to y.

IMAGE 3

We lift $f \circ \gamma$ to a path in \tilde{X} starting at \tilde{x}_0 and define $\tilde{f}(y)$ as the endpoint (i.e. $\tilde{f}(y) = \widetilde{f \circ \gamma}(a)$). This is well-defined, since $(f \circ \gamma) \cdot (f \circ \overline{\gamma}')$ is a loop at x_0 and $[(f \circ \gamma) \cdot (f \circ \overline{\gamma}'] = f_*[\gamma \cdot \overline{\gamma}'] \in f_*\pi_1(Y, y_0) \leq p_*\pi_1(\tilde{X}, \tilde{x}_0)$. Hence $(f \circ \gamma) \cdot (f \circ \overline{\gamma}')$ lifts to a loop at \tilde{x}_0 .

IMAGE 4

Therefore $\widetilde{f \circ \gamma}(1) = \widetilde{f \circ \gamma'}(1)$.

 \tilde{f} is continuous. Fix $f(y) \in X$ and let U be a neighborhood of f(y) that is evenly covered by p. Choose a path-connected neighborhood V of y such that $f(V) \subseteq U$. We check $\tilde{f}|_{V}$.

IMAGE 5

Because V is path-connected, we may draw a path η in V from y to y'. Then $\tilde{f}(y') = f \circ \gamma \circ \eta(1)$, and $\widetilde{\gamma \cdot \eta}$ is first lifting $f \circ \gamma$ at \tilde{x}_0 followed by lifting $f \circ \eta$ at $\tilde{\gamma}(1)$. Let $\tilde{U} \subseteq \tilde{X}$ such that $p|_{\tilde{U}} : \tilde{U} \to U$ is a homeomorphism and $\widetilde{f} \circ \gamma(1) \in \tilde{U}$. Then $\widetilde{f} \circ \eta(1) = (p^{-1})|_{U} \circ f(y')$. Hence $\tilde{f}(y') = f \circ (\gamma \circ \eta)(1) = \widetilde{f} \circ \eta(1) = (p^{-1})|_{U} \circ f(y')$ (i.e. $\tilde{f} = (p^{-1})|_{U} = f$ on V). Hence \tilde{f} is continuous at y. \tilde{f} is a lift of f. In fact, $(p \circ \tilde{f})(y) = p \circ (\widetilde{f}\gamma(1)) = f(y)$.

Corollary

 $Y \stackrel{f}{\longrightarrow} X$ If Y is simply connected, then $f_*\pi_1(Y) \leq p_*\pi_1(\tilde{X})$ always holds (i.e. we can always lift f to $\tilde{f}: Y \to \tilde{X}$ in this case).

Proposition: Unique Lifting

Given $p: \tilde{X} \to X$ and $f: Y \to X$, if two lifts \tilde{f}_1 and \tilde{f}_2 of f agree at one point, then the agree everywhere on Y.

Proof

Take $\mathcal{A}=\{y\in Y: \tilde{f}_1(y)=\tilde{f}_2(y)\}\neq\varnothing$. Locally for each $y\in Y$ there exists a neighborhood V of y such that $\tilde{f}=(p^{-1})|_{U}\circ f$. If $y\in\mathcal{A}$, then $\tilde{f}_1(y)=\tilde{f}_2(y)$. Take a neighborhood U of f(y) that is evenly covered and \tilde{U} of $\tilde{f}_1(y)=\tilde{f}_2(y)$ such that $p|_{\tilde{U}}:\tilde{U}\to U$ is a homeomorphism. Then on V, a path-connected neighborhood such that $f(V)\subseteq U, \ \tilde{f}_i=(p^{-1})|_{U}\circ f$ (i.e. $\tilde{f}_1=\tilde{f}_2$ on V). If $y\in\mathcal{A}^c, \ \tilde{f}_1(y)\neq\tilde{f}_2(y)$. Then $\tilde{U}_i\ni\tilde{f}_i(y)$ with $\tilde{U}_1\cap\tilde{U}_2=\varnothing$. Then on V, $\tilde{f}_i=(p^{-1})|_{\tilde{U}_i}\circ f$ (ie \tilde{f}_1 and \tilde{f}_2 never agree on V). Hence $\mathcal{A}=Y$.

Remark

If $p: \tilde{X} \to X$ is a covering map, recall that a covering transformation is a map $f: \tilde{X} \to \tilde{X}$ such that

commutes. This $f: \tilde{X} \to \tilde{X}$ is a lift of $p: \tilde{X} \to X$. If we fix $\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x_0)$, the lifting criterion says that $p_*\pi_1(\tilde{X}, \tilde{x}_1) \leq p_*\pi_1(\tilde{X}, \tilde{x}_2)$. In particular, if $\pi_1(\tilde{X})$ is, then this holds. Hence there is a unique lift of p (i.e. covering transformation) f such that $f(\tilde{x}_1) = \tilde{x}_2$.

April 16, 2025

Question

Given X path-connected and locally path-connected, when does X admit a simply connected covering space $p: \tilde{X} \to X$?

Definition: Semi-locally Simply Connected

We say that X is semi-locally simply connected if for any $x \in X$ there exists a neighborhood U such that every loop in U is null-homotopic in X. That is $\text{Im}(\pi_1(U) \to \pi_1(X))$ is trivial.

Non-example

The Hawaiian earing in \mathbb{R}^2 .

Example

The cones over the Hawaiian earing.

IMAGE 1

In fact, this is simply connected.

Example

The double Hawaiian earing with cones.

IMAGE 2

Theorem

X has a simply connected covering space (i.e. a universal covering) if and only if *X* is semi-locally simply connected.

Proof

 (\Longrightarrow) Let $x \in X$ and pick a neighborhood U of x that is evenly covered by p. Let f be a loop at x in U. f lifts to \tilde{f} at \tilde{x}_0 , which is a loop. Retract \tilde{f} to $c_{\tilde{x}_0}$ by a path-homotopy H. Then $p \circ H$ shows that f is null-homotopic in X.

(\iff) We construct \tilde{X} as follows: fix $x_0 \in X$ and set $\tilde{X} = \{[\gamma] \text{ path homotopies } : \gamma \text{ is a path starting at } x_0\}$. Let $\mathcal{U} = \{U : \operatorname{Im}(\pi_1(U) \to \pi_1(X)) \text{ is trivial}\}$. By assumption \mathcal{U} is a basis for X. For each $u \in \mathcal{U}$ and each γ from x_0 to a point in U, we define $U_{\lceil \gamma \rceil} = \{\gamma \cdot \eta\} : \eta$ starting at $\gamma(1)$ stays in U. Then $p : \tilde{X} \to X$ by $[\gamma] \to \gamma(1)$.

We need to check that $\{U_{\lceil \gamma \rceil}: U \in \mathcal{U}, \gamma \text{ a path from } x_0 \text{ to a point in } U\}$ generates a topology on \tilde{X} .

We need also to check that $p: U_{[\gamma]} \to U$ is bijective. It is clearly surjective, and if $p[\gamma \cdot \eta] = p[\gamma \cdot \delta]$ with η, δ paths starting at $\gamma(1)$ and staying in U. Then $\eta(1) = \delta(1)$ and, since η, δ share the same endpoints and they stay in $U_{[\gamma]}$, then $[\eta] = [\delta]$. Hence $[\gamma \cdot \eta] = [\gamma \cdot \delta]$ and p is injective.

Further, we need to check that $p:U_{[\gamma]}\to U$ is a homemorphism and that $p^{-1}(U)=\dot\bigcup_{[\gamma]}U_{[\gamma]}$. Hence p is a covering map.

Finally, we need to check that \tilde{X} is simply connected. Recall that $p: \tilde{X} \to X$ induces an injective homomorphism $p_*: \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x_0)$. It suffices to show that $p_*\pi_1(\tilde{X}, \tilde{x}_0) = \mathrm{id}$. We se $\mathrm{t}\tilde{x}_0 = [C_{x_0}] \in \tilde{X}$. Recall also that elements in $p_*\pi_1(\tilde{X}, \tilde{x}_0)$ are exactly the loops in X at x_0 such that they lift to loops at \tilde{x}_0 . Suppose $[\gamma] \in p_*\pi_1(\tilde{X}, \tilde{x}_0)$. Then γ lifts to a loop $\tilde{\gamma}$ at $\tilde{x}_0 = [C_{x_0}]$. For $t \in [0,1]$, consider the path γ_t which follows γ on [0,t] then stays stationary at $\gamma(t)$ for the remaining time. Then $t \mapsto [\gamma_t]$ is a path on \tilde{X} , $p([\gamma_t]) = \gamma_t(1) = \gamma(t)$, and $t \mapsto [\gamma_t]$ is a lift of γ at $\tilde{x}_0 = [C_{x_0}]$. Then $t \mapsto [\gamma_t]$ is a loop (i.e. $[\gamma] = [\gamma_1] = \tilde{x}_0 = [C_{x_0}]$) and γ is null-homotopic. This shows that $p_*\pi_1(\tilde{X}, \tilde{x}_0) = \mathrm{id}$ (i.e. \tilde{X} is simply connected).

Group Actions on Fibers (Monodromy Action)

Given $p:(\tilde{X},\tilde{x}_0)\to (X,x_0)$ a covering map, $\pi_1(X,x_0)$ acts on p^{-1} as follows: $p^{-1}(x_0)\times \pi_1(X,x_0)\to p^{-1}(x_0)$ by $(e,[f])\mapsto \tilde{f}_e(1)$ where \tilde{f}_e is the (unique) lift of f at $e\in p^{-1}(x_0)$. This is a right $\pi_1(X,x)$ action.

We want to check that $(e \cdot [f]) \cdot [g] = e \cdot [f \cdot g]$. We have that $e \cdot [f \cdot g] = (f \cdot g)_e(1)$, but $(f \cdot g)_e$ is the lift of f at e followed by the lift of g at the endpoint of \tilde{f}_e , call it $\tilde{f}_e(1) = z$. Then $(f \cdot g)_e(1) = \tilde{g}_z(1) = z \cdot [g] = (e \cdot [f]) \cdot [g]$.

This action is transitive. Given e and e', draw a path connecting them \tilde{g} . Under the map p, we have that $p \circ \tilde{g} = g$ which is a loop at x_0 . Then $e \cdot [g] = \tilde{g}(1) = e'$.

Recall: Given a right *G*-set *S*, $G_S = \{g \in G : s \cdot g = s\}$ is the isotropy subgroup at $s \in S$.

Given $e \in p^{-1}(x_0)$, the isotropy subgroup at e is all the loops such that their lfts at e are loops (i.e. the isotropy subgroup at e is precisely $p_*\pi_1(\tilde{X},e)$).

Recall: $G \cdot S = G/G_s$. Here, this tells us that $p^{-1}(x_0) = \pi_1(X, x_0)/p_*\pi_1(\tilde{X}, e)$. This recovers the fact that the number of sheets is equal to the index of $\operatorname{im}(p_*)$.

In particular, if \tilde{X} is simply connected, then

- $\pi_1(X, x_0)$ acts freely on $p^{-1}(x_0)$ and
- the number of sheets equals the cardinality of $\pi_1(X, x_0)$.

Definition: Universal Cover

A covering space $p: \tilde{X} \to X$ is called universal if it has the universal property (i.e. for any covering space $q: Y \to X$, there is a covering map $\tilde{p}: \tilde{X} \to Y$ such that the associated diagram commutes).

$$\tilde{X} \xrightarrow{\tilde{p}} Y$$

$$\downarrow p \downarrow \qquad q$$

$$\downarrow q$$

Definition: Covering Homomorphism

Let $p_1: X_1 \to X$ and $p_2: X_2 \to X$ be two covering spaces. A covering homomorphism is a map $\varphi: X_1 \to X_2$ such that the associated diagram commutes

By definition, φ is a lift of p_1 .

Proposition

- 1. A covering homomorphism φ is uniquely determined by its value at one point.
- 2. For each $x \in X$, $\varphi|_{p_1^{-1}(x)} : p_1^{-1}(x) \to p_2^{-1}(x)$ is $\pi_1(X, x_0)$ -equivariant.
- 3. A covering homomorphism $\varphi: X_1 \to X_2$ is a covering map. Assuming this, the universal cover is unique.

Recall: if S_1, S_2 are right G-sets, a G-equivariant map $\varphi: S_1 \to S_2$ is a map such that the associated diagram commutes

$$S_{1} \xrightarrow{\varphi} S_{2}$$

$$\downarrow \cdot g \qquad \qquad \downarrow \cdot g$$

$$S_{1} \xrightarrow{\varphi} S_{2}$$

Proof of 2

Let $e \in p_1^{-1}(x)$. We need to show taht $\varphi(e) \cdot g = \varphi(e \cdot g)$. We have that $g \in \pi_1(X, x_0)$ is represented by a loop f at x_0 . So $e \cdot g = e \cdot [f] = \tilde{f}_e(1) \in X_1$, and $\varphi(e \cdot g) = \varphi(\tilde{f}_e(1))$. On the left hand side, we have that $\varphi(e) \cdot g = f_{\varphi(e)}(1) \in X_2$. We need to verify that $\varphi(\tilde{f}_e) = \tilde{f}_{\varphi(e)}$ which are both lifts of f at $\varphi(e)$. But since the diagram commutes, $p_2(\varphi \circ \tilde{f}_e) = p_1 \circ \tilde{f}_e = f$.

Uniqueness in 3

Suppose we have

$$X_1 \xleftarrow{\psi} X_2$$

$$X_1 \xrightarrow{p_1} Q$$

$$X_2 \xrightarrow{p_2} X$$

with $\varphi(e_1) = e_2$ and $\psi(e_2) = e_1$. Then $\psi \circ \varphi(e_1) = e_1$. Hence $\psi \circ \varphi = \operatorname{id}$ and, similarly, $\psi \circ \varphi = \operatorname{id}$. Hence φ is a bijection and a homemorphism.

Proof of 3

 φ is surjective. Given any $e' \in X_2$, set $x_0 = p_2(e)$ and let $e \in p_1^{-1}(x_0)$ so $\varphi(e) \in p_2^{-1}(x_0)$. Since $\pi_1(X, x_0)$ acts transitively on $p_2^{-1}(x_0)$, there exists $g \in \pi_1(X, x_0)$ such that $e' = \varphi(e) \cdot g = \varphi(e \cdot g)$ φ is a covering map. Let V be a neighborhood of $x_0 \in X$ such that V is evenly covered by both p_1 and p_2 . Let U be a component in $p_2^{-1}(V)$ that contains e_2 . Then $p_1^{-1}(X) = \bigcup U_\alpha$. U as a component in $p_2^{-1}(V)$ is both open and closed.

Hence $\varphi^{-1}(U)$ is open and closed in $p_1^{-1}(V) = \dot{\bigcup} U_\alpha$. It follows that $\varphi^{-1}(U)$ is the disjoint union of several components of $\{U_\alpha\}_\alpha$, and each component is homemorphic to V and consequently homeomorphic to U. This shows that φ is a covering map.

April 21, 2025

Recall: Lifting Criterion

There exists a lift \tilde{f} of f at \tilde{x}_0 if and only if $f_*\pi_1(Y, y_0) \subseteq p_*\pi_1(\tilde{X}, \tilde{x}_0)$.

If $(\tilde{X}, \tilde{x}_0) \stackrel{p}{\to} (Y, y_0)$, $\pi_1(X, x_0)$ acts transitively on $p^{-1}(x_0)$ by path lifting (a right action where $e \in p^{-1}(x_0)$ by $e \cdot [\gamma] = \tilde{\gamma}_e(1)$). The isotropy subgroup at e is $p_*\pi_1(\tilde{X}, e)$.

Covering Transformations

Write $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$ for the covering group $\{\varphi : \tilde{X} \to \tilde{X} \text{ covering transformations}\}$.

- 1. $\varphi: \tilde{X} \to \tilde{X}$ is uniquely determined by its value at one point.
- 2. Given $e_1, e_2 \in p^{-1}(x)$, there is $\varphi \in \operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$ if and only if $p_*\pi_1(\tilde{X}, e_1) = p_*\pi_1(\tilde{X}, e_2)$. In fact, for $\varphi \in \operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$ with $p_*\pi_1(\tilde{X}, e_1) \subseteq p_*\pi_1(\tilde{X}, e_2)$.
- 3. $\varphi|_{p^{-1}(x)}: p^{-1}(x) \to p^{-1}(x)$ is $\pi_1(X, x)$ -equivariant (i.e. $\varphi(e) \cdot \gamma = \varphi(e \cdot \gamma)$.

Example

Given $p: \mathbb{R} \to S^1$, what is $\operatorname{Aut}(\mathbb{R} \stackrel{p}{\to} S^1)$?

 $1 \in S^1$, $p^{-1}(1) = \mathbb{Z} \subseteq \mathbb{R}$, $\forall \varphi \in \operatorname{Aut}(\mathbb{R} \xrightarrow{p} S^1)$, $\varphi(0) = k \in \mathbb{Z}$. Then $\varphi(x) = x + k$. In fact, the map $x \mapsto x + k$ is a covering transofmratio that agrees with φ at $0 \in \mathbb{R}$. Hence they agree everywhere (i.e. $\varphi(x) = x + k$ for all x).

Example

Given $p: S^2 \to \mathbb{RP}^2$, then $\operatorname{Aut}(S^2 \xrightarrow{p} \mathbb{RP}^2) = \{\operatorname{id}, A\}$ with A the antipodal map.

Proposition: Normal Covering

Let $\tilde{X} \stackrel{p}{\to} X$ be a covering map. The following are equivalent

- 1. There exists $x \in X$ such that $p_*\pi_1(\tilde{X}, e)$ is normal for one (thus for all) $e \in p^{-1}(x)$.
- 2. For every $x \in X$ and each $e \in p^{-1}(x)$, $p_*\pi_1(\tilde{X}, e)$ is normal.

3. Aut $(\tilde{X} \xrightarrow{p} X)$ acts transitively on some (thus all) fiber $p^{-1}(x)$.

If any of these hold, we say that $p: \tilde{X} \to X$ is a normal covering.

Proof

Suppose $e, e' \in p^{-1}(x)$ with $p_*\pi_1(\tilde{X}, e)$ and $p_*\pi_1(\tilde{X}, e')$. These are the isotropy subgroups at e and e' respectively. We know also $\pi_1(X,x)$ acts transitively on $p^{-1}(x)$.

Fact: If S is a right G-set, then $G_s = \{h \in G : s \cdot h = s\}$ and $G_{sg} = \{h \in G : s \cdot g \cdot h = s \cdot g\} = \{h \in S : s \cdot g \cdot h \cdot g^{-1} = s\}$. So $g \cdot G_{sg} \cdot g^{-1} \in G_s$ which implies that $G_{sg} = g^{-1} \cdot G_s \cdot g$. So if G_s is normal then so is G_{sg} .

IMAGE 1

$$\begin{array}{ccc} \pi_1(\tilde{X}, e_0) & \stackrel{\Phi_{\tilde{h}}}{\longrightarrow} & \pi_1(\tilde{X}, e) \\ & & \downarrow^{p_*} & & \downarrow^{p_*} \\ \pi_1(X, x_0) & \stackrel{\Phi_h}{\longrightarrow} & \pi_1(X, x) \end{array}$$

commutes. Hence Φ_h maps $p_*\pi_1(\tilde{X},e_0)$ to $p_*\pi_1(\tilde{X},e)$, and $\Phi_h:\pi_1(X,x_0) \xrightarrow{\sim} \pi_1(X,x)$

preserves normal subgroups.

(3) implies (1)

Finally, for every $e_1, e_2 \in p^{-1}(x)$, there exists $\varphi \in \operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$ such that $\varphi(e_1) = e_2$. This holds if and only if $p_*\pi_1(\tilde{X},e_1)=p_*\pi_1(\tilde{X},e_2)$ for every $e_1,e_2\in p^{-1}(x)$. That is, $e_2=e_1\cdot \gamma$ for some $\gamma\in\pi_1(X,x)$ and $H=\gamma^{-1}H\gamma$ for every $\gamma \in \pi_1(X, x)$. So *H* is normal.

Remark

The (simply connected) universal cover is always normal because $\{id\}$ is normal in $\pi_1(X,x)$.

Theorem

Let $p: \tilde{X} \to X$ be a covering map with $x \in X$ and $e \in p^{-1}(x)$. Then $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \cong \frac{N_G(H)}{H}$ where $G = \pi_1(X, x)$, $H = p_* \pi_1(\tilde{X}, e)$, and $N_G(H) = \{g \in G : g^{-1}Hg = H\}$.

Special Case 1

If $p: \tilde{X} \to X$ is a normal covering, then H is normal in G. Then also $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \cong G/H$.

Special Case 2

If $p: \tilde{X} \to X$ is the (simply connected) universal covering, then $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \cong \pi_1(X, x)$.

Proof

Let S be a right G-set with transitive action and $\operatorname{Aut}_G(S)\{\varphi:S\to S\text{ G-equivariant bijections}\}$. Fix $s\in S$. Then $\operatorname{Aut}_G(S) \cong \frac{N_G(H)}{H} \text{ where } h = G_s.$ Define $\Phi: N_G(H) \to \operatorname{Aut}_G(S)$ by $\gamma \mapsto \Phi(\gamma) = \varphi_\gamma$ with $\varphi_\gamma: S \to S$ defined by

$$G_{s \cdot \gamma} = \gamma^{-1} H \gamma = H = G_s.$$

Then there exists a unique $\varphi_{\gamma} \in \operatorname{Aut}_G(S)$ such that $\varphi_{\gamma}(s) = s \cdot \gamma$.

Lemma

For each $s' \in S$, $s' = s \cdot \gamma'$ for some $\gamma' \in G$. Then $\varphi_{\gamma}(s') = \varphi_{\gamma}(s \cdot \gamma') = \varphi_{\gamma}(s) \cdot \gamma' = s \cdot \gamma \gamma'$. This is well defined. If $s' = s \cdot \gamma''$, then $s = s(\gamma \cdot \gamma'' \cdot (\gamma')^{-1} \cdot \gamma^{-1})$ which implies that $\gamma \cdot \gamma''(\gamma')^{-1} \cdot \gamma^{-1} \in G_s$ and $\gamma'' \cdot (\gamma')^{-1} \in G_s$.

 Φ is a group homomorphism since

$$\varphi_{\gamma_1} \circ \varphi_{\gamma_2}(s) = \varphi_{\gamma_1}(s \cdot \gamma_2) = \varphi_{\gamma_1}(s) \cdot \gamma_2 = s \cdot \gamma_1 \cdot \gamma_2.$$

 Φ is surjective since letting $\varphi \in \operatorname{Aut}_G(S)$, it maps s to some $\varphi(s) = s' = s \cdot \gamma$ and hence $\varphi = \varphi_{\gamma}$.

If $\varphi_{\gamma}=\mathrm{id}$, then $\varphi_{\gamma}(s)=s$ and $\gamma\in G_s=H$. So Φ induces $\frac{N_G(H)}{H}\cong\mathrm{Aut}_G(S)$.

Take $G = \pi_1(X,x)$ and $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \to \operatorname{Aut}_G(p^{-1}(x)) \cong \frac{N_G(H)}{H}$ by $\varphi \mapsto \varphi|_{p^{-1}(x)}$ where H is the isotropy subgroup of the $\pi_1(X,x)$ action at e $(p_*\pi_1(\tilde{X},e))$. Then $\varphi \mapsto \varphi|_{p^{-1}(x)}$ is injective because it is uniquely determined by its value at one point.

 $\varphi\mapsto \varphi|_{p^{-1}(x)}$ is surjective. Letting $\eta\in \operatorname{Aut}_g(p^{-1}(x))$ and $e_1\in p^{-1}(x)$, we set $e_2=\eta(e_1)$ and see that $p_*\pi_1(\tilde{X},e_1)=G_{e_1}=G_{e_2}=p_*\pi_1(\tilde{X},e_2)$. By the lifting criterion, there exists $\varphi\in \operatorname{Aut}(\tilde{X}\stackrel{p}{\to}X)$ such that $\varphi(e_1)=e_2$. Then $\varphi|_{p^{-1}(x)}=\eta$ since both are in $\operatorname{Aut}_G(p^{-1}(x))$ and they agree at one point (hence everywhere). Thus we conclude that the map is a bijection and

$$\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \cong \operatorname{Aut}_{G}(p^{-1}(x)) \cong \frac{N_{G}(H)}{H}.$$

Definition: Covering Space Action

Let X be connected and locally path connected with a group action Γ acting by homeomorphism. The quotient map $p: X \to X/\Gamma$ will be a covering map if we impose (*) for all $x \in X$, there exists a neighborhood U of x such that $U \cap (g \cdot U) = \emptyset$ for each $g \in \Gamma - \{id\}$. In particular, G acts freely on X. We say that a Γ -action on X is a covering space action if (*) if fulfilled.

Counter-example

Consider an \mathbb{R} action on \mathbb{R}^2 by translation. Then $U \cap (g \cdot U) \neq \emptyset$.

IMAGE 2

Remark

Assuming (*), $\{g \cdot U : g \in \Gamma\}$ is a disjoint family of open sets.

Example

Take a \mathbb{Z} -action by \mathbb{R}^2 given by $\gamma(x, y) = (x + 1, -y)$.

IMAGE 3

Example

 S^2 with \mathbb{Z}_2 -action ({id, A}).

Theorem

If Γ acts on X as a covering space action, then $q: X \to X/\Gamma$ is a normal covering map.

Proof

Let $\overline{x} \in X/\Gamma$ and pick $x \in q^{-1}(\overline{x})$. By (*), we have a neighborhood U such that $\{g \cdot U : g \in \Gamma\}$ is a disjoint collection. Let V = q(U), an open neighborhood of \overline{x} in X/Γ . Then $q^{-1}(V) = \{g \cdot U : g \in \Gamma\}$. Moreover, $g \cdot U \to V$ is a homeomorphism. If there exist $x', g'x' \in g \cdot U$, then $x' = h_1 \cdot u_1$ and $g' \cdot x' = h_2 \cdot u_2$. So $h_1^{-1}x' \in U$ and $h_2^{-1}g' \cdot x' \in U$ but this holds only for the identity map. So the covering map is injective.

Classifications of Covering Spaces

Take X path-connected, locally path-connected and semi-locally simply path connected (guaranteeing a simply connected universal cover). Then there is a 1-1 correspondence between

April 23, 2025

Recall: Theorem

For X path-connected, locally path-connected and semi-locally simply path connected, Γ acts on X as a covering group action (i.e. $\forall x \in X$, there exists a neighborhood U of x such that $U \cap (g \cdot U) = \emptyset$ for all $g \in \Gamma \setminus \{e\}$).

Then $p: X \to X/\Gamma$ is a normal covering map. Moreover $\operatorname{Aut}(X \xrightarrow{p} X/\Gamma) = \Gamma$.

Proof

(⊇) this follows from

commutes with φ a homeomorphism. Now let $x \in p^{-1}(\overline{x})$ where $\overline{x} \in X/\Gamma$, and let $x' = \varphi(x)$. Then $p(x) = \overline{x} = p(x')$, hence $x, x' \in p^{-1}(\overline{x})$. Hence there is $g \in \Gamma$ such that gx = x'. So we have

$$\varphi: X \to X \varphi(x) = x'$$

 $g: X \to X g(x) = x'$

so φ is equivalent to an action by g.

Theorem

Take X path-connected, locally path-connected and semi-locally simply path connected (guaranteeing a simply connected universal cover). Then there is a 1-1 correspondence between

$$\begin{cases} \text{isomorphism classes of} \\ \text{covering maps } p : \hat{X} \rightarrow X \end{cases} \longleftrightarrow \begin{cases} \text{conjugacy classes of} \\ \text{subgroups in } \pi_1(X, x_0) \end{cases}$$

- \rightarrow Assign a subgroup $H = p_*(\hat{X}, \hat{e})$ for $\hat{e} \in p^{-1}(x_0)$.
- \leftarrow Given a conjugacy class of subgroups, pick a subgroup H in the class.

$$H \le \pi_1(X, x_0) \cong \operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$$

Hence H acts naturally on \tilde{X} as covering transformations. Consider $q: \tilde{X} \to \tilde{X}/H =: \hat{X}$, a normal covering map.

Since $\tilde{X}/\pi_1(X,x_0)=x$, we have an induced map $\hat{p}:\hat{X}\to X$. We need to show that $\hat{p}:\hat{X}\to X$ is a covering map with $\hat{p}_*\pi_1(\hat{X},\hat{e})=H$ for some $\hat{e}\in\hat{p}^{-1}(x)$. Let U be a neighborhood of x such that $p^{-1}(U)=\bigcup_{\alpha}\tilde{U}_{\alpha}$. Then $\{\tilde{U}_{\alpha}\}$ is a collect iof disjoint open sets and identical to $\{g\cdot \tilde{U}:g\in\pi_1(X,x)\}$ where \tilde{U} is a component of $p^{-1}(U)$. The H-action permutes the copies in $\{g\cdot \tilde{U}\}=\{\tilde{U}_{\alpha}\}$. Hence $q|_{\tilde{U}_{\alpha}}:\tilde{U}_{\alpha}\to\hat{X}$ is a homeomorphism. Let \hat{U} be a component in $\hat{p}^{-1}(U)$. Then $q^{-1}(\hat{p}^{-1}(U))=p^{-1}(U)=\bigcup_{\alpha}\tilde{U}_{\alpha}$ where $q^{-1}(\hat{U})$ is a union of components in $\bigcup_{\alpha}\tilde{U}_{\alpha}$. Hence \hat{U} is homeomorphic to U, and $\hat{p}^{-1}(U)$ is a union of components that are homemorphic to U.

Lastly, we show that $\hat{p}_*\pi_1(\hat{X},\hat{e}_0)=H$. This is the isotropy subgroup of $\pi_1(X,x_0)$ -actions at \hat{e}_0 . $q|_{p^{-1}(x_0)}:p^{-1}(x_0)\to \hat{p}^{-1}(x_0)$ is $\pi_1(X,x_0)$ -equivariant (i.e. $q(e\cdot\gamma)=q(e)\cdot\gamma$, $q(e)=\hat{e}$ for $e\in\tilde{X}$). Hence γ fixes $q(e)=\hat{e}$ if and only if $q(e\cdot\gamma)=q(e)$, if and only if $e\cdot\gamma$ and e are in the same H-orbit, if and only if $\gamma\in H$.

Example 1

 $X = S^1$ with $\pi_1(S^1) = \mathbb{Z}$. \mathbb{Z} has subgroups \mathbb{Z} , $2\mathbb{Z}$, $3\mathbb{Z}$, ..., $k\mathbb{Z}$, ... where $k\mathbb{Z}$ corresponds to the covering map $p_k : z \mapsto z^k$.

Example 2

X the Mobius strip with $\pi_1(X) = \mathbb{Z}$ with $\pi_1(X) = \langle \gamma \rangle$ and $\gamma(x,y) = (x+1,-y)$. Take $H = 2\mathbb{Z} = \langle 2\gamma \rangle \leq \mathbb{Z}$. Then $2\gamma(x,y) = (x+2,y)$ and \mathbb{R}^2/H is the cylinder while the cylinder modulo \mathbb{Z}_2 is the mobius strip.

Example 3

The Klein bottle, $K = \mathbb{R}^2/\Gamma$ with Γ genereted by g(x,y) = (x+1,-y) and h(x,y) = (x,y+1). So $\pi_1(K) = \langle g,h \rangle$. $g^2(x,y) = (x+2,y)$ commutes with h, so $\mathbb{Z}^2 \cong \langle g^2,h \rangle \leq \pi_1(K)$ and $\mathbb{R}^2/\langle g^2,h \rangle = \mathbb{T}^2$ covers K.

Simplexes

IMAGE 1

The standard n-simplex is

$$\Delta^{n} = \left\{ (t_0, t_1, \dots, t_n) \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} t_i = 1, \ t_i \ge 0, \forall i \right\}$$
$$\Delta^{1} = \left\{ (t_0, t_1) \in \mathbb{R}^2 : t_0 + t_1 = 1, \ t_0, t_1 \ge 0 \right\}$$

IMAGE 2

$$\Delta^2 = \left\{ \left(\, t_0, t_1, t_2 \, \right) \in \mathbb{R}^3 \, : \, t_0 + t_1 + t_2 = 1, \, t_0, t_1, t_2 \geq 0 \right\}$$

IMAGE 3

 $\Delta^n \text{ has } (n+1) \text{-many faces } ((n+1) \text{-simplex}) \text{ where the } i \text{th face is } \Delta^{n-1} \to \Delta^n \text{ by } (t_0, \ldots, t_{n-1}) \mapsto (t_0, \ldots, t_{i-1}, 0, t_i, \ldots, t_{n-1}).$ Let X be a topological space. A Δ -complex structure on X is a family of maps $\sigma_{\alpha}: \Delta^n \to X$ (n may depend on α) such that

- 1. $\sigma_{\alpha}|_{\mathring{\Lambda}^n}: \overset{\circ}{\Delta}^n \to X$ is injective and each point is in the image of at most one of $\sigma_{\alpha}|_{\circ \Delta^n}$.
- 2. $\sigma_{\alpha}|_{\text{a face of }\Delta^{N}}$ is some $\sigma_{\beta}:\Delta^{n-1}\to X$ in the family.
- 3. $A \subseteq X$ is open if and only if $\sigma_{\alpha}^{-1}(A)$ is open in Δ^n for all α .

$$\sigma_{\beta}$$
 is $\Delta^{n-1} \stackrel{i\text{th face}}{\to} \Delta^n \stackrel{\sigma}{\to} X$.

Example

 S^1 is the following iwht 1-simplex

IMAGE 4

Then the "body" of $\Delta^1 \xrightarrow{\sigma} X$ is

IMAGE 5

with $\sigma \circ \delta_0 : \Delta^0 \to X$ and $\sigma \circ \delta_1 : \Delta^0 \to X$. The boundary $\partial \sigma = \sum_{i=0}^n (-1)^i \sigma \circ \delta_i$. They define $\delta : C_n(X) \to C_{n-1}(X)$. For

this example, we have $\partial \sigma = \sigma \circ \delta_0 + (-1)\sigma \circ \delta_1 = 0$. The ith face is $\delta_i : \Delta^{n-1} \to \Delta^n$ by $(t_0, \dots, t_{n-1}) \mapsto (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1})$. In Hatcher's notation, the boundary is $\partial \sigma = \sum_{i=0}^n (-1)^i \sigma|_{[v_0, \dots, \hat{v}_i, \dots, v_n]}$ where we shoild think of $[v_0, \dots, \hat{v}_i, \dots, v_n]$ as the ith face. So $\sigma : \Delta^n = [v_0, \dots, v_n] \to X$. Now we have

$$\cdots \xrightarrow{\partial} C_n(X) \xrightarrow{\partial} C_{n-1}(X) \cdots$$

where $\partial^2 = 0$.

Proof

$$\partial(\partial\sigma) = \partial\left(\sum_{i=0}^{n} (-1)^{i}\sigma|_{[\nu_{0},\dots,\hat{\nu}_{i},\dots,\nu_{n}]}\right)$$

$$= \sum_{i=0}^{n} (-1)^{i}\partial(\sigma|_{[\nu_{0},\dots,\hat{\nu}_{i},\dots,\nu_{n}]})$$

$$= \sum_{ji} (-1)^{i} (-1)^{j-1}\sigma_{[\nu_{0},\dots,\hat{\nu}_{i},\dots,\hat{\nu}_{j},\dots,\nu_{n}]}$$

$$= 0$$

Homoology Associated to the Delta Complex

We have $\ker \partial \supseteq \operatorname{im} \partial$ where $\ker \partial$ are the *n*-cycles and $\operatorname{im} \partial$ are the *n*-bodies, and

$$H_n^{\delta}(X) = \frac{\{n\text{-cycles}\}}{\{n\text{-bodies}\}} = \frac{\ker \partial}{\operatorname{im} \partial}$$

Example

For the circle, $C_1(X) = \mathbb{Z} = \langle \sigma \rangle$ and $C_0(X) = \mathbb{Z} = \langle v \rangle$. Therefore

$$\overbrace{C_2(X)}^{=0} \to \overbrace{C_1(X)}^{=\mathbb{Z}} \xrightarrow{0} \overbrace{C_0(X)}^{=\mathbb{Z}} \to 0$$

Then $H_1^{\Delta}(X) = \frac{\ker \partial}{\operatorname{im} \partial} = \mathbb{Z}/\{0\} = \mathbb{Z}$ and $H_0^{\Delta}(X) = \frac{\ker \partial}{\operatorname{im} \partial} = \mathbb{Z}$.

An Aside

IMAGE 7

$$\partial[v_0, v_1, v_2] = [v_1, v_2] - [v_0, v_2] + [v_0, v_1]$$

Example

For the torus, draw

IMAGE 6

So $C_0(X) = \langle v \rangle = \mathbb{Z}$, $C_1(X) = \langle a,b,c \rangle = \mathbb{Z}^3$ and $C_2(X) = \langle U,L \rangle = \mathbb{Z}^2$. Then also $\partial U = a+b-c$ and $\partial L = a+b-c$, so $\partial (U-L) = 0$ and $\ker \partial_2 = \langle U-L \rangle \cong \mathbb{Z}$. That is $H_2^{\Delta}(X) = \frac{\ker \partial}{\operatorname{im} \partial} \cong \mathbb{Z}$. Now $\partial a = 0 = \partial b = \partial c$, so $\ker \partial_1 = \langle a,b,c \rangle$ and $H_1^{\Delta}(X) = \frac{\ker \partial_1}{\operatorname{im} \partial_2} = \frac{\langle a,b,a+b-c \rangle}{\langle a+b-c \rangle} \cong \mathbb{Z}^2$. Finally we have that $H_0^{\Delta} = \frac{\ker \partial_0}{\operatorname{im} \partial_1} = \frac{\langle v \rangle}{\{0\}} \cong \mathbb{Z}$.

Example

For \mathbb{RP}^2 , draw

IMAGE 8

 $\mathsf{A}C_0(X) = \langle v, w \rangle \cong \mathbb{Z}^2, \ C_1(X) = \langle a, b, c \rangle \cong \mathbb{Z}^3, \ \mathsf{and} \ C_2(X) = \langle U, L \rangle \cong \mathbb{Z}^2. \ \mathsf{Then} \ \partial U = a + b + c \ \mathsf{while} \ \partial L = a + b - c, \ \mathsf{so} \ \ker \partial_2 = \{0\} \ \mathsf{and} \ H_2^\Delta \frac{\ker \partial_2}{\operatorname{im} \partial_3} = \{0\}. \ \partial_1(a) = w - v, \ \partial_1(b) = v - w \ \mathsf{and} \ \partial_1(c) = 0, \ \mathsf{so} \ \ker \partial_1 = \langle c, a - b \rangle \ \mathsf{and}$

$$H_1^{\Delta}(X) = \frac{\ker \partial_1}{\operatorname{im} \partial_2} = \frac{\langle c, a+b \rangle}{\langle a+b+c, a+b-c \rangle} = \langle a+b+c, c \rangle / \langle a+b+c, 2c \rangle \cong \langle c \rangle / \langle 2c \rangle \cong \mathbb{Z}^2.$$

April 28th, 2025

Recall:

For X with a Δ -complex structure, we have $H_n^{\Delta}(X)$.

Definition: Singular Simplex

A singular *n*-simplex is a continuous map $\sigma: \Delta^n \to X$.

The singular chain $C_n(X)$ is the free Abelian group generated by singular n-simplecies. Write

$$C_n(X) = \left\{ \sum n_i \sigma_i : |\sum n_i \sigma_i| < \infty, \ n_i \in \mathbb{Z}, \ \sigma_i : \Delta^n \to X \right\}$$

$$\cdots \xrightarrow{\partial} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial} \cdots$$

$$\partial(\sigma) = \sum_{i=0}^n (-1)^i \sigma|_{[v_0, \dots, \hat{v}_i, \dots, v_n]}$$

While $\partial^2 = 0$ and $H_n(X) = \ker \partial_n / \operatorname{Im} \partial_{n+1}$ is the singular homology.

Proposition

If $X = \coprod_{\alpha} X_{\alpha}$ with X_{α} connected components of X, then $H_n(X) \cong \bigoplus_{\alpha} H_n(X_{\alpha})$.

Proof

 $\sigma:\Delta^n\to x,\ \mathrm{im}\ \sigma\subseteq X_\alpha\ \mathrm{for\ some}\ \alpha.\ \mathrm{So}\ C_n(X)=\oplus_\alpha C_n(X_\alpha)\ \mathrm{and}\ \partial:C_n(X)\to C_{n-1}(X)\ \mathrm{maps}\ C_n(X_\alpha)\ \mathrm{to}\ C_{n-1}(X_\alpha).$ Therefore $\ker\partial_n=\oplus_\alpha\ker(\partial|_{C_n(X_\alpha)})$ and $\dim\partial_{n+1}=\oplus_\alpha\operatorname{im}(\partial|_{C_{n+1}(X_\alpha)}).$ Then $H_n(X)\cong\oplus_\alpha\ker(\partial|_{C_n(X_\alpha)})/\oplus_\alpha\operatorname{im}(\partial|_{C_{n+1}(X_\alpha)})\cong\oplus_\alpha H_n(X_\alpha).$

Proposition

Let *X* be a point. Then

$$H_n(X) = \begin{cases} \mathbb{Z} & n = 0 \\ 0 & n \ge 1 \end{cases}$$

Proof

For each n, $C_n(X)$ is generated by a single element $\sigma_n : \Delta^n \to p$ so $C_n(X) \cong \mathbb{Z}$. Then

$$\partial\sigma_n = \sum_{i=0}^n (-1)^i \sigma_n|_{[\nu_0,\dots,\hat{\nu}_i,\dots,\nu_n]} = \sum_{i=0}^n (-1)^i \sigma_{n-1} = \begin{cases} 0 & n \text{ odd} \\ \sigma_{n-1} & n \text{ even} \end{cases}$$

$$\cdots \longrightarrow C_{n+1}(X) \longrightarrow C_n(X) \longrightarrow C_{n-1}(X) \longrightarrow \cdots$$

$$\cdots \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \cdots$$
We see that

$$\partial_n = \begin{cases} \cong & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$$

Therefore $\ker / \operatorname{im} = 0$ or $\ker / \operatorname{im} = \mathbb{Z} / \mathbb{Z} = 0$. Because

$$C_1(X) \xrightarrow{0} C_0(X) \xrightarrow{0} 0$$
 we have that $H_0(X) = \ker / \operatorname{im} = \mathbb{Z}/\{0\} = \mathbb{Z}$.

Proposition

If X is path connected, then $H_0(X) \cong \mathbb{Z}$.

Proof

Define a map $\epsilon: C_0(X) \to Z$ by $\sum n_i \sigma_i \mapsto \sum n_i$ given that $\sigma_i: \{v\} \to X$. Then ϵ is surjective. Also,

$$H_0(X) = \ker \partial_0 / \operatorname{im} \partial_1 = C_0(X) / \operatorname{im} \partial_1 = C_0(X) / \ker \epsilon \cong \operatorname{im} \epsilon \cong \mathbb{Z}$$

We claim that $\ker \epsilon = \operatorname{im} \delta$.

- (\supseteq) Let $\sigma: \Delta^1 \to X$, $\varepsilon(\delta_1(\sigma)) = \varepsilon(\nu_1 \nu_0) = 1 1 = 0$.
- (\subseteq) Let $\sum n_i \sigma_i \in C_0(X)$ such that $0 = \varepsilon(\sum n_i \sigma_i) = \sum n_i$. We fix a point $x_0 \in X$. Because X is path-connected, we can draw paths τ_i from x_0 to σ_i . Consider $\sum n_i \tau_i \in C_1(X)$, then

$$\partial(\sum n_i\tau_i)=\sum n_i(\partial\tau_i)=n_i(\sigma_i-x_0)=\sum n_i\sigma_i-\sum n_i^{=0} x_0=\sum n_i\sigma_i$$

Reduced Homology

$$\cdots \longrightarrow C_n(X) \longrightarrow \cdots \longrightarrow C_1(X) \longrightarrow C_0(X) \stackrel{\epsilon}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

Usually written as $\tilde{H}_n(X)$, and $\tilde{H}_n(X)$ =

 $H_n(X)$ if $n \ge 1$. We have that $\tilde{H}_0(X) = \ker \epsilon / \operatorname{im} \partial_1$ and $\epsilon |_{\operatorname{im} \partial_1} = 0$ so ϵ induces a map $\tilde{\epsilon} H_0(X) \hookrightarrow \mathbb{Z}$. Then $\ker \tilde{\epsilon} = \tilde{H}_0(X)$. It follows that

$$0 \longrightarrow \tilde{H}_0(X) \longrightarrow H_0(X) \longrightarrow \mathbb{Z} \longrightarrow 0$$
 is a split exact sequence since $H_0(X) \cong \tilde{H}_0(X) \oplus \mathbb{Z}$. In particualr,

$$\tilde{H}(\mathsf{pt}) = \{0\}.$$

Remark

$$\pi_1/[\pi_1,\pi_1]\cong H_1$$

Homotopy Invariance

Suppose we have $f: X \to Y$ continuous. It induces $f_{\sharp}: C_n(X) \to C_n(Y)$ by $\sigma \mapsto f \circ \sigma$. f_{\sharp} is called a chain map and the following diagram commutes

$$\cdots \longrightarrow C_n(X) \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \cdots$$

$$\downarrow^{f_{\sharp}} \qquad \downarrow^{f_{\sharp}}$$

$$\cdots \longrightarrow C_n(X) \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \cdots$$
Let $\sigma \in C_n(X)$ and

$$f_{\sharp}(\partial\sigma) = f_{\sharp}\left(\sum_{i=0}^{n} (-1)^{i} \sigma|_{[\nu_{0},...,\hat{\nu}_{i},...,\nu_{n}]}\right) = \sum_{i=0}^{n} (-1)^{i} (f \circ \sigma)|_{[\nu_{0},...,\hat{\nu}_{i},...,\nu_{n}]} = \partial(f_{\sharp}\sigma)$$

Then f_{\sharp} maps cycles to cycles $(\partial c = 0, \partial (f_{\sharp}c) = f_{\sharp}(\sigma c) = 0)$ and boundaries to boundaries $(f_{\sharp}(\partial c) = \partial (f_{\sharp}c))$. So f_{\sharp} induces $f_*: H_n(X) \to H_n(Y)$.

Theorem

If $f, g: X \to Y$ are homotopic, then $f_* = g_*: H_n(X) \to H_n(Y)$ for all n.

Corollary

If $X \simeq Y$ are homotopic, then $H_n(X) \cong H_n(Y)$. $g \circ f \simeq \mathrm{id}_X$, $f \circ g \simeq \mathrm{id}_Y$,

$$g_* \circ f_* = (g \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}$$

and similarly $g_* \circ f_* = id$. So f_* and g_* are isomorphisms.

Definition

Let $f,g:C.(X)\to C.(Y)$ be two chain maps. We say that f and g are chain homotopic if there is a map $p:C_n(X)\to C_{n+1}(Y)$ such that $\partial P+P\partial=g-f$.

$$\cdots \longrightarrow C_n(X) \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \cdots$$

$$\downarrow^{f,g} \qquad \downarrow^{f,g} \qquad \downarrow^{f,g}$$

$$\cdots \longrightarrow C_n(X) \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \cdots$$

Theorem

If $f \simeq g$ are homotopic, then

- 1. f_{\sharp} and g_{\sharp} are chain homotopic,
- 2. $f_* = g_*$ on homoology
- 3. For any *n*-cycle, $c \in C_n(X)$, $g(c) f(c) = \partial P(c) + P(\partial c)$. Hence $g_*[c] = f_*[c]$.

Proof

Consider $\Delta^n \times I$, and set $\Delta^n \times \{0\} = [v_0, \dots, v_n]$ and $\Delta^n \times \{1\} = [w_0, \dots, w_n]$. Then the following are all n-simplicies

$$\begin{bmatrix}
 v_0, v_1, \dots, v_{n-1}, v_n
 \end{bmatrix}
 \begin{bmatrix}
 v_0, v_1, \dots, v_{n-1}, w_n
 \end{bmatrix}
 \begin{bmatrix}
 v_0, v_1, \dots, w_{n-1}, w_n
 \end{bmatrix}
 \vdots
 \begin{bmatrix}
 v_0, w_1, \dots, w_{n-1}, w_n
 \end{bmatrix}
 \begin{bmatrix}
 w_0, w_1, \dots, w_{n-1}, w_n
 \end{bmatrix}$$

They divide $\Delta^n \times I$ into (n+1)-simplicies, $\{[v_0,\ldots,v_i,w_i,\ldots,w_n]: i=0,\ldots,n\}$. Now let $F:X\times I\to Y$ be a homotopy between f and g. Consider

 $\Delta^n \times I \xrightarrow{\sigma \times \mathrm{id}} X \times I \xrightarrow{F} Y$ and define $P : C_N(X) \to C_{n+1}(Y)$ by $\sigma \mapsto \sum_{i=0}^n (-1)^i F \circ (\sigma \times \mathrm{id})|_{[v_0,\dots,v_i,w_i,\dots,w_n]}$. We need to check that $\partial P + P \partial = g_{\sharp} - f_{\sharp}$.

Short Exact Sequences of Chain Complexes Induce Long Exact Sequences of Homology Groups

Applications

- 1. Rleative homology group.
- 2. Meyer-Vietoris sequence.

Short Exact Sequences Induce Long Exact Sequences

Suppose we have sequences

So H induces a long exact sequence

$$\xrightarrow{\partial} H_n(A) \xrightarrow{i_*} H_n(B) \xrightarrow{j_*} H_n(C)$$

$$\xrightarrow{\partial} H_{n-1}(A) \xrightarrow{i_*} \cdots$$

where $\partial: H_n(C) \to H_{n-1}(A)$ by $[c] \mapsto [a]$, our connecting homo-

morphism, for $c \in C_n$. Then we have that the following commutes

$$\begin{array}{ccc}
 & a & \stackrel{\partial}{\longrightarrow} \\
\downarrow^i & & \downarrow_i \\
b & \longmapsto \partial b & \longmapsto 0 \\
\downarrow^j & & \downarrow^j \\
c & \longmapsto 0
\end{array}$$

So a is a cycle. We need to show that $\partial a = 0$. Note that $i(\partial a) = \partial(ia) = \partial(\partial b) = 0$. Because

i is injective, $\partial a = 0$. ∂ is well defined since

- choice of a: i is injective
- choice of b: suppose $b' \in B_n$ such that i(b') = j(b) = c. Then b b' satisfies j(b b') = 0 and $b b' \in \ker j = \operatorname{im} i$ (i.e. there exists $a' \in A_n$ such that i(a') = b b', so b' = b + i(a'). Then

$$\begin{array}{c}
a' \longmapsto \partial a' \\
\downarrow \\
b - b' \\
\downarrow \\
0
\end{array}$$

So $a + \partial a'$ satisfies

$$i(a + \partial a') = i(a) + i(\partial a') = \partial b + \partial (ia') = \partial b'$$

and

- We need to check choice of c, but we will skip this.
- We need to check that δ is a homomorphism, which follows from the definitions.
- Finally, check that the induced long sequence is exact. We will check only exactness about $H_n(C)$ (i.e. $\operatorname{im} j_* =$ $\ker \delta$).

im $j_* \subseteq \ker \delta$: $\delta(j_*[b]) = 0$ because

 $\ker \delta \subseteq \operatorname{im} j_*$: Suppose $[c] \in H_n(C)$ such that $\partial [c] = 0$, then

$$a' \stackrel{\partial}{\longmapsto} a = \partial a$$

$$\downarrow b \longmapsto \partial b$$

$$\downarrow j$$

Consider b-i(a'), then $j(b-i(a'))=j(b)-j\circ i(a')=j(b)=c$. So $[c]=j_*[b-i(a')]\in \operatorname{im} j_*$. This is a cycle, since $\partial(b)-\partial(i(a'))=\partial b-i(\partial a')=\partial b-\partial b=0$.

April 30, 2025

Recall

1. if $f, g: X \to Y$ are homotopic, then $f_* = g_*: H_n(X) \to H_n(Y)$.

$$\cdots \xrightarrow{\partial} C_{n+1}(X) \xrightarrow{\partial} C_n(X) \xrightarrow{\partial} \cdots$$

$$\downarrow^{f_{\sharp} = g_{\sharp}} \qquad \downarrow^{f_{\sharp} = g_{\sharp}}$$

$$\cdots \xrightarrow{\partial} C_{n+1}(Y) \xrightarrow{\partial} C_n(Y) \xrightarrow{\partial} \cdots$$

$$\partial P + P\partial = f_{\sharp} - g_{\sharp}.$$

Short exact sequence of chain complexes

$$0 \longrightarrow A_* \stackrel{i}{\longrightarrow} B_* \stackrel{j}{\longrightarrow} C_* \longrightarrow 0$$
 induces a long exact sequence of homology groups
$$\cdots \longrightarrow H_n(A) \longrightarrow H_n(B) \longrightarrow H_n(C) \longrightarrow \cdots$$

$$\stackrel{\partial}{\longrightarrow} H_{n-1}(A) \longrightarrow \cdots$$

Relative Homoology Group

Setup: $A \subseteq X$, A closed and non-empty. Then

$$C_n(A) = \{c \in C_n(X) : c = \sum n_i \sigma_i, \text{ im } \sigma_i \subseteq A\}.$$

Define $C_n(X, A) = C_n(X)/C_n(A)$ such that

$$0 \longrightarrow C_n(A) \stackrel{i}{\longrightarrow} C_n(X) \stackrel{j}{\longrightarrow} C_n(X,A) \longrightarrow 0$$
 is a short exact sequence. Then $C_*(X,A)$ is a chain com-

plex

$$\cdots \xrightarrow{\partial} C_n(X,A) \xrightarrow{\partial} C_{n-1}(X,A) \xrightarrow{\partial} \cdots$$
 with $\partial^2 = 0$. Note that $\partial: C_n(X) \to C_{n-1}(X)$ maps $C_n(A)$ to $C_{n-1}(A)$. Hence it induces $\partial: C_n(X)/C_n(A) \to C_{n-1}(X)/C_{n-1}(A)$. It gives homoology groups $H_n(X,A) = \ker \partial_n / \operatorname{im} \partial_{n+1} C_n(A)$.

 $C_{n-1}(A)$. Hence it induces $\partial: C_n(X)/C_n(A) \to C_{n-1}(X)/C_{n-1}(A)$. It gives homoology groups $H_n(X,A) = \ker \partial_n / \operatorname{im} \partial_{n+1} / \operatorname{im} \partial_n /$ and induces a long exact sequence

$$\cdots \longrightarrow H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{j_*} H_n(X,A) \longrightarrow \cdots$$

$$\xrightarrow{\partial} H_{n-1}(A) \longrightarrow \cdots$$

Remarks

- 1. the elements in $H_n(X, A)$ are represented by relative cycles (i.e. $\alpha \in C_n(X)$ such that $\partial \alpha \in C_{n-1}(A)$).
- 2. A relative cycle α is trivial in $H_n(X,A)$ means α is a "relative boundary" (i.e. $\alpha = \partial \beta + \gamma$ for $\beta \in C_{n+1}(X)$ and $\gamma \in C_n(A)$).

$$\partial: H_n(X,A) \to H_{n-1}(A)$$
 is defined by $[\alpha] \mapsto [\partial \alpha]$

$$\begin{array}{c}
\partial \alpha \\
\downarrow i \\
\alpha \in C_n(X) & \longmapsto \partial \alpha \in C_{n-1}(A) \\
\downarrow j \\
\alpha \in C_n(X, A)
\end{array}$$

We can also define the relative version.

Example

$$H_n(X,X) = 0$$
 for all n , because $C_n(X,X) = C_n(X)/C_n(X) = \{0\}$. So $H_n(X,X_0) \cong \tilde{H}_n(X)$

$$\underbrace{\tilde{H}_n(X_0)}^{=0} \longrightarrow \tilde{H}_n(X) \xrightarrow{\cong} H_n(X, X_0)$$

$$\xrightarrow{\partial} \widetilde{\tilde{H}_{n-1}(X_0)} \xrightarrow{=0} \cdots$$

Fact

 $H_n(X,A) \cong \tilde{H}_n(X/A)$ if (X,A) is a "good" pair (i.e. there exists a neighborhood V of A which deformation retracts to A).

Example

 $(X,A) = (D^n, \partial D^n)$ is a good pair, so $H_i(X,A) \cong \tilde{H}_i(D^n/\partial D^n) = \tilde{H}_i(S^n)$. This give a long exact sequence

$$\tilde{H}_i(S^{n-1}) \longrightarrow \widetilde{\tilde{H}_i(D^n)} \longrightarrow H_i(X,A)$$

$$\frac{\overset{\partial}{\longrightarrow} \tilde{H}_{i-1}(S^{n-1}) \longrightarrow \tilde{\tilde{H}}_{i-1}(D^n) \longrightarrow \cdots}{\tilde{H}_{i-1}(S^n) \cong \tilde{H}_{i-1}(S^{n-1}) \cong H_i(D^n, \partial D^n) \cong \tilde{H}_i(S^n). \text{ We conclude}}$$

$$(S^n) \cong \tilde{H}_{i-1}(S^{n-1}).$$

that $\tilde{H}_i(S^n) \cong \tilde{H}_{i-1}(S^{n-1})$.

For n=0, S^0 is two points, $\tilde{H}_0(S^0)=\mathbb{Z}$, and $\tilde{H}_i(S^0)=\tilde{H}_i(\operatorname{pt})\oplus\tilde{H}_i(\operatorname{pt})=0$ for each $i\geq 1$.

For n = 1, $\tilde{H}_1(S^1) \cong \tilde{H}_0(S^0) \cong \mathbb{Z}$ and $\tilde{H}_0(S^1) = 0$. For n = 2, $\tilde{H}_2(S^2) \cong \tilde{H}_1(S^1) \cong \mathbb{Z}$, $\tilde{H}_1(S^2) \cong \tilde{H}_0(S^1) = 0$ and $\tilde{H}_0(S^2) = 0$.

So $\tilde{H}_i(S^n \text{ is } \mathbb{Z} \text{ when } i = n \text{ and } 0 \text{ otherwise.}$

Induced Maps on Pairs

Write $f:(X,A)\to (Y,B)$ for a continuous map $f:X\to Y$ such that $f(A)\subseteq B$. Then $f_{\sharp}:C_n(X)\to C_n(Y)$ ($f_{\sharp}:C_n(A)\to C_n(Y)$) $C_n(B)$) induces $f_{\sharp}:C_n(X,A)\to C_n(Y,B)$ a chain map $\partial f_{\sharp}=f\,\sharp\,\partial$. This induces $f_{\ast}:H_n(X,A)\to H_n(Y,B)$.

Proposition

Given $f,g:(X,A)\to (Y,B)$ which are homotopic through maps between pairs $(X,A)\to (Y,B)$, then $f_*=g_*$: $H_n(X,A) \to H_n(Y,B)$.

$$\cdots \longrightarrow C_{n+1}(X,A) \longrightarrow C_n(X,A) \longrightarrow \cdots$$

$$\cdots \longrightarrow C_{n+1}(Y,B) \longrightarrow C_n(Y,B) \longrightarrow \cdots$$
such that $\partial P + P\partial = g_{\sharp} - f_{\sharp}$ (i.e. $f_* = g_*$). $P: C_n(X) \to C_{n+1}(Y)$
haps $C_n(A)$ to $C_{n+1}(B)$. P defined by $P(\sigma)\sum_{i=1}^{n}(-1)^i F\circ (0\times \mathrm{id})|_{[v_0,\dots,v_i,w_i,\dots,w_i]}$

maps $C_n(A)$ to $C_{n+1}(B)$. P defined by $P(\sigma)\sum_{i=1}^{n}(-1)^iF\circ(0\times\mathrm{id})|_{[v_0,\ldots,v_i,w_i,\ldots,w_j]}$

$$\Delta^n \times I \xrightarrow{0 \times \mathrm{id}} X \xrightarrow{F} Y \qquad \text{If } \sigma : \Delta^n \to A \text{, then } P(\sigma) : \Delta^{n+1} \to B.$$

Excision

Given a good pair (X, A), $H_n(X, A) \cong \tilde{H}_n(X/A)$.

Suppose we have $Z \subseteq A \subseteq X$ such that $\overline{Z} \subseteq A^{\circ}$ (i.e. the closure of Z is in the interior of A). Then $H_n(X,A) \cong H_n(X-Z,A-Z)$. Equivalently, if B=X-Z then $A \cap B=A-Z$ and $\overline{Z} \subseteq A^{\circ} \implies A^{\circ} \cup B^{\circ}=X$. If A and B satisfy $A^{\circ} \cup B^{\circ} = X$, then by excision $H_n(X, A) \cong H_n(B, A \cap B)$.

Remark

If X has a Δ -complex structure such that A, X-Z and A-Z are subcomplexes, then we claim that $C_n^{\Delta}(X,A)=C_n^{\Delta}(X-Z,A-Z)$ (and $H_n^{\Delta}(X,A)=H_n^{\Delta}(X-Z,A-Z)$). In fact, consider $\varphi:C_n^{\Delta}(X-Z)\to C_n^{\Delta}(X)/C_n^{\Delta}(A)$ which factors through

$$C_n^{\Delta}(X-Z) \stackrel{\iota}{\longleftrightarrow} C_n^{\Delta}(X) \longrightarrow C_n^{\Delta}(X,A) = C_n^{\Delta}(X)/C_n^{\Delta}(A)$$
 Then φ is surjective, $\ker \varphi = C_n^{\Delta}(A-Z)$ and

$$C_n^{\Delta}(X,A) = C_n^{\Delta}(X)/C_n^{\Delta}(A) = C_n^{\Delta}(X-Z)/\ker\varphi = C_n^{\Delta}(X-Z,A-Z)$$

Proof

Let $\{U_{\alpha}\}_{\alpha} = \mathcal{U}$ be a collection of subsets such that $\{U_{\alpha}^{\circ}\}_{\alpha}$ is an open cover of X (it will suffices to consider $\mathcal{U} = \{A, B\}$). Write

$$C_n^{\mathcal{U}}(X) = \left\{ \sum n_i \sigma_i \in C_n(X) : \operatorname{im} \sigma_i \subseteq U_j^{\circ} \text{ for some } j \right\}.$$

Then $\partial: C_n(X) \to C_{n-1}(X)$ maps $C_n^{\mathcal{U}}(X)$ to $C_{n-1}^{\mathcal{U}}(X)$. The chain complex $C_*^{\mathcal{U}}(X)$ gives homoology groups $H_*^{\mathcal{U}}(X)$.

Proposition

 $\iota: C_n^{\mathcal{U}} \to C_n(X)$ induces an isomorphism $H_n^{\mathcal{U}}(X) \cong H_n(X)$.

The sketch of this proof is to construct a map $\rho: C_n(X) \to C_n^{\mathcal{U}}(X)$ by subdivision. That is, if the simplex $\sigma: \Delta^n \to X$ does not sit inside any U_{α} we may subdivide into further simplices that do. Then $\rho \circ \iota = \mathrm{id}$ and $\iota \circ \rho$ is chain homotopic to the identity.

$$\cdots \longrightarrow C_n(X) \longrightarrow C_{n-1}(X) \longrightarrow \cdots$$

$$\downarrow_{D} \qquad \downarrow_{l \circ \rho} \qquad \downarrow_{D} \qquad \downarrow_{C_n(X)} \longrightarrow C_{n-1}(X) \longrightarrow \cdots$$

where $D: C_{n-1}(X) \to C_n(X)$ such that $\partial D + D\partial = \operatorname{id} -\iota \circ \rho$ which implies $(\iota \circ \rho)_* : H_n(X) \to H_n(X)$ is the identity map. There also exists a relative version. For simplicity, say $\mathcal{U} = \{A, B\}$

and denote $C_n^{\mathcal{U}}(X) \stackrel{\Delta}{=} C_n(A+B)$ so we have $H_n(A+B,A) \cong H_n(X,A)$.

Proof Continued

We have that $H_n(A+B,A) \cong H_n(X,A)$ (proof in Hatcher). The left hand side comes from the chain complex of

$$C_n(A+B,A) = C_n(A+B)/C_n(A) = C_n(B)/C_n(A \cap B) = C_n(B,A \cap B)$$

so $H_n(A + B, A) = H_n(B, A \cap B)$.

Proposition

Let (X,A) be a good pair. Then the quotient map $q:(X,A)\to (X/A,A/A)$ induces an isomorphism $q_*:H_n(X,A)\to H_n(X/A,pt)\cong \tilde{H}_n(X/A)$.

Proof

Let V be a neighborhood of A which deformation retracts to A.

$$H_n(X,A) \xrightarrow{(1)} H_n(X,V) \xrightarrow{\sim} H_n(X-A,V-A)$$

$$\downarrow^{q_*} \qquad \qquad \downarrow^{\sim}$$

$$H_n(X/A,A/A) \xrightarrow{(2)} H_n(X/A,V/A) \underset{\text{excision}}{\longleftarrow} H_n(X/A-A/A,V/A-A/A)$$

It remains to show that (1) and (2) are isomor-

phisms. For (2), V/A deformation retracts to A/A in X/A. So consider the triple $A \subseteq V \subseteq X$. It induces a short exact sequence

$$0 \longrightarrow \begin{matrix} C_n(V,A) \\ = \\ C_n(V)/C_n(A) \end{matrix} \longrightarrow \begin{matrix} i \\ = \\ C_n(X)/C_n(A) \end{matrix} \longrightarrow \begin{matrix} j \\ = \\ C_n(X)/X_n(V) \end{matrix} \longrightarrow \begin{matrix} 0 \end{matrix}$$

So ker i = im i, and this induces a long exact

sequence

$$\longrightarrow \stackrel{=0}{H_n(V,A)} \longrightarrow H_n(X,A) \stackrel{\sim}{\longrightarrow} H_n(X,V)$$

$$\xrightarrow{\partial} \overbrace{H_{n-1}(V,A)}^{=0} \longrightarrow$$

where the terms zero since V deformation retracts to A.

May 5, 2025

Recall

For $A \subseteq X$, we have

$$0 \longrightarrow C_*(A) \longrightarrow C_*(X) \longrightarrow C_*(X,A) = C_*(X)/C_*(A) \longrightarrow 0$$
 which induces
$$\cdots \longrightarrow H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \longrightarrow \cdots$$

$$\xrightarrow{\partial} H_{n-1}(A) \longrightarrow \cdots$$

Also, we have excision where

1. if $Z \subseteq A \subseteq X$ such that $\overline{Z} \subseteq A^{\circ}$, then $H_n(X - Z, A - Z) = H_n(X, A)$.

2. if (X,A) is a good pair, i.e. A has a neighborhood V such that V deformation retracts to A, then $H_n(X,A)$ = $\tilde{H}_n(X/A)$.

Simplicial and Singular Homology

Goal: given X with Δ -complex structure, $H_n^{\Delta}(X) \cong H_n(X)$.

Example

 $H_n(D^n, \partial D^n) \cong \tilde{H}_n(D^n/\partial D^n) = \tilde{H}_n(S^n) \cong \mathbb{Z}$. We can construct a generator for this \mathbb{Z} . We consider $H_n(\Delta^n, \partial \Delta^n)$ and claim that it is generated by $i_n : \Delta^n \to \Delta^n$ as the identity map. We prove by induction, first observing that n = 0 is good. Then suppose n-1 and let $\Lambda \subseteq \Delta^n$ be the space obtained by removing a face from the boundary $\partial \Delta^n$. Then take

$$H_n(\Delta^n,\partial\Delta^n) \xrightarrow{\partial} H_n(\partial\Delta^n,\Lambda) \xleftarrow{(2)} H_{n-1}(\Delta^{n-1},\partial\Delta^{n-1})$$

Consider the triple $\Lambda \subseteq \partial \Delta^n \subseteq \Delta^n$ and the short exact

sequence on the chain level

$$0 \longrightarrow C_{\bullet}(\partial \Delta^{n}, \Lambda) \xrightarrow{i} C_{\bullet}(\Delta^{n}, \Lambda) \xrightarrow{j} C_{\bullet}(\Delta^{n}, \partial \Delta^{n}) \longrightarrow 0$$
 which induces the long exact sequence

$$\cdots \longrightarrow H_n(\partial \Delta^n, \Lambda) \longrightarrow \overbrace{H_n(\Delta^n, \Lambda)}^{=0} \longrightarrow H_n(\Delta^n, \partial \Delta^n) \longrightarrow \cdots$$

$$\xrightarrow{\partial} H_{n-1}(\partial \Delta^n, \Lambda) \longrightarrow \overbrace{H_{n-1}(\Delta^n, \lambda)}^{=0} \longrightarrow \cdots$$

since Δ^n deformation retracts to Λ , $H_*(\Delta^n, \Lambda)$ =

0. Hence $H_n(\Delta^n, \partial \Delta^n) \cong_{\partial} H_{n-1}(\partial \Delta^n, \Lambda)$.

For (2), let Δ^{n-1} be the face that is not in Λ . Then $\Delta^{n-1} \hookrightarrow \partial \Delta^n$ induces a homeomorphism $\Delta^{n-1}/\partial \Delta^{n-1} \cong \partial \Delta^n/\Lambda$. Hence $(\partial \Delta^n, \Lambda)$ Is a good pair, and

$$H_{n-1}(\partial \Delta^n, \Lambda) \cong \tilde{H}_{n-1}(\partial \Delta^n/\Lambda) \cong \tilde{H}_{n-1}(\Delta^{n-1}/\partial \Delta^{n-1}) \cong H_{n-1}(\Delta^{n-1}, \partial \Delta^{n-1})$$

We have

We have
$$\partial i_n \in C_{n-1}(\partial \Delta^n, \Lambda) \\ \downarrow \\ i_n \in C_n(\Delta^n, \Lambda) \stackrel{\partial}{-\!\!\!-\!\!\!-\!\!\!-} \partial i_n \in C_{n-1}(\Delta^n, \partial \Delta^n) \\ \downarrow \\ i_n \in C_n(\Delta^n, \partial \Delta^n)$$

 $\operatorname{so} \delta^{-1}: [\partial i_n] \mapsto [i_n]. \text{ Through the isomorphism } H_{n-1}(\Delta^{n-1}, \partial \Delta^{n-1}) \cong H_n(\Delta^n, \partial \Delta^n), \\ [i_n] \text{ is identified with } [\partial i_n] \text{ for } i_n: \Delta^n \to \Delta^n. \text{ Hence } [\partial i_n] \text{ is } [\pm i_{n-1}] \text{ in } H_{n-1}(\Delta^{n-1}, \partial \Delta^{n-1}).$

Corollary

Let $\bigvee_{\alpha} X_{\alpha}$ by identifying $x_{\alpha} \in X_{\alpha}$ for each α . Suppose (X_{α}, x_{α}) is a good pair for each α . Then $\bigoplus_{\alpha} \tilde{H}_{n}(X_{\alpha}) \cong$ $\tilde{H}_n(\bigvee_{\alpha} X_{\alpha}).$

Proof

Consider the good pair $(X,A) := (\coprod_{\alpha} X_{\alpha}, \coprod_{\alpha} \{x_{\alpha}\})$ where $X/A = \bigvee_{\alpha} X_{\alpha}$ such that

$$\tilde{H}_n\left(\bigvee_{\alpha}X_{\alpha}\right)\cong H_n(X,A)\cong\bigoplus_{\alpha}H_n(X_{\alpha},x_{\alpha})=\bigoplus_{\alpha}\tilde{H}_n(X_{\alpha}).$$

Theorem

Let $U \subseteq \mathbb{R}^m$ and $V \subseteq \mathbb{R}^n$ be open sets. If U and V are homeomorphic, then m = n.

Proof

Let $x \in U$. By excision,

$$H_i(U, U - \{x\}) \cong H_i(\mathbb{R}^m, \mathbb{R}^m - \{x\})$$

where we note that $(\mathbb{R}^m, \mathbb{R}^m - \{x\})$ is not a good pair. However, it still induces a long exact sequence

$$\longrightarrow \tilde{H}_i(\mathbb{R}^m - \{x\}) \longrightarrow \widetilde{\tilde{H}_i(\mathbb{R}^m)} \longrightarrow H_i(\mathbb{R}^m, \mathbb{R}^m - \{x\})$$

$$\longrightarrow \tilde{H}_{i+1}(\mathbb{R}^m - \{x\}) \longrightarrow \overbrace{\tilde{H}_{i-1}(\mathbb{R}^m)}^{=0} \longrightarrow \cdots$$

Hence

$$H_i(\mathbb{R}^m, \mathbb{R}^m - \{x\}) \cong \tilde{H}_{i-1}(\mathbb{R}^m - \{x\}) \cong \tilde{H}_{i-1}(S^{m-1}) = \begin{cases} \mathbb{Z} & i = m \\ 0 & i \neq m \end{cases}.$$

If *U* and *V* are homemorphisms, then $H_i(U, U - \{x\}) \cong H_i(V, V - \{\varphi(x)\})$ and m = n.

Naturality of Long Exact Sequences of Pairs

$$f: (X,A) \to (Y,B) \text{ with } f(A) \subseteq B,$$

$$0 \longrightarrow C_{\bullet}(A) \longrightarrow C_{\bullet}(X) \longrightarrow C_{\bullet}(X,A) \longrightarrow 0$$

$$\downarrow^{f_{\sharp}} \qquad \downarrow^{f_{\sharp}} \qquad \downarrow^{f_{\sharp}}$$

$$0 \longrightarrow C_{\bullet}(B) \longrightarrow C_{\bullet}(Y) \longrightarrow C_{\bullet}(Y,B) \longrightarrow 0$$
commutes. Then the long exact sequence
$$\cdots \longrightarrow H_{n}(A) \longrightarrow H_{n}(X) \longrightarrow H_{n}(X,A) \xrightarrow{\delta} H_{n-1}(A) \longrightarrow \cdots$$

$$\downarrow^{f_{\ast}} \qquad \downarrow^{f_{\ast}} \qquad \downarrow^{f_{\ast}}$$

$$\cdots \longrightarrow H_{n}(B) \longrightarrow H_{n}(Y) \longrightarrow H_{n}(Y,B) \xrightarrow{\delta} H_{n-1}(B) \longrightarrow \cdots$$

$$\partial \alpha \in C_{n-1}(A)$$

$$\downarrow$$

$$\alpha \in C_n(X) \xrightarrow{\partial} \partial \alpha \in C_{n-1}(X)$$

$$\downarrow$$

$$\alpha \in C_n(X, A)$$

So $\delta : [\alpha] \rightarrow [\partial \alpha]$ and

$$f_*(\delta[\alpha]) = f_*[\partial \alpha] = [f_*(\partial \alpha)] = [\partial f_*(\alpha)] = \delta(f_*[\alpha]).$$

Recall: the Five Lemma

Equivalence Between Simplicial and Singular Homology

Given X with a finite dimensional Δ -complex structure, then $C_n^{\Delta}(X) \hookrightarrow C_n(X)$ induces an isomorphism $H_n^{\Delta}(X) \cong H_n(X)$.

Proof

Suppose it holds for all (X, Δ) with dimension less than k-1. We condier the k-dimensional case. Let X^i be the i-skeleton of X. Note that $X^k = X$, so the pair (X^k, X^{k-1}) induces a long exact sequence

$$H_{n+1}^{\Delta}(X^{k}, X^{k-1}) \longrightarrow H_{n}^{\Delta}(X^{k-1}) \longrightarrow H_{n}^{\Delta}(X^{k}) \longrightarrow H_{n}^{\Delta}(X^{k}, X^{k-1}) \longrightarrow H_{n-1}^{\Delta}(X^{k-1})$$

$$\downarrow^{(1)} \qquad \downarrow^{(2)} \qquad \downarrow^{(3)} \qquad \downarrow^{(4)} \qquad \downarrow^{(5)}$$

$$H_{n+1}(X^{k}, X^{k-1}) \longrightarrow H_{n}(X^{k-1}) \longrightarrow H_{n}(X^{k}) \longrightarrow H_{n}(X^{k}, X^{k-1}) \longrightarrow H_{n-1}(X^{k-1})$$

We have that (2) and

(5) are isomorphisms per our inductive assumption. Note also that $C_n^{\Delta}(X^k) = 0$ for $n \ge k$, so

$$C_n^{\Delta}(X^k, X^{k-1}) = C_n^{\Delta}(X^k) / C_n^{\Delta}(X^{k-1}) = \begin{cases} C_n^{\Delta}(X^k) & k = n \\ 0 & n < k \end{cases}$$

So the chain complex $C^{\Delta}_{\bullet}(X^k, X^{k-1})$ is

$$0 \longrightarrow 0 \longrightarrow C_n^{\Delta}(X^k, X^{k-1}) = C_n^{\Delta}(X^k) \longrightarrow 0 \longrightarrow 0$$
 and $H_n^{\Delta}(X^k, X^{k-1}) \cong \begin{cases} C_k^{\Delta}(X^k) & k = n \\ 0 & k \neq n \end{cases}$. Now consider

 $\Phi: \left(\bigsqcup_{\alpha} \Delta_{\alpha}^{k}, \bigsqcup_{\alpha} \partial \Delta_{\alpha}^{k} \right) \to (X^{k}, X^{k-1}). \text{ It induces a homemorphism } X^{k}/X^{k-1} \cong \left(\bigsqcup_{\alpha} \Delta_{\alpha}^{k} \right) / \left(\bigsqcup_{\alpha} \partial \Delta_{\alpha}^{k} \right). \text{ So } \setminus (X^{k}, X^{k-1}) = \left(\bigcup_{\alpha} \Delta_{\alpha}^{k} \right) / \left(\bigcup_{\alpha} \partial \Delta_{\alpha}^{k} \right) / \left(\bigcup_{\alpha} \partial$

$$H_n(X^k, X^{k-1}) \cong \tilde{H}_n(X^k, X^{k-1}) \cong \tilde{H}_n\left(\left(\bigsqcup_{\alpha} \Delta_{\alpha}^n\right) / \left(\bigsqcup_{\alpha} \partial \Delta_{\alpha}^k\right)\right) \cong H_n\left(\bigsqcup_{\alpha} \Delta_{\alpha}^k, \bigsqcup_{\alpha} \partial \Delta_{\alpha}^k\right) \cong \bigoplus_{\alpha} H_n(\Delta_{\alpha}^k, \partial \Delta_{\alpha}^k)$$

where each $H_n(\Delta_\alpha^k, \partial \Delta_\alpha^k)$ is generated by $i_\alpha^k : \Delta_\alpha^k \to \Delta_\alpha^k$ (the identity map) if n = k or $H_n(\Delta_\alpha^k, \partial \Delta_\alpha^k)$ when $n \neq k$. Finally, we observe that

$$C_k^{\Delta}(X^k) \cong \bigoplus_{\alpha} \langle i_{\alpha}^k \rangle \cong \bigoplus_{\alpha} H_n(\Delta_{\alpha}^k, \partial \Delta_{\alpha}^k).$$

So (1) and (4) are isomorphisms and, by the five lemma, (3) is an isomorphy as well.

Remark

 $H_n^{\Delta}(X,A) \cong H_n(X,A)$ if X has a Δ -complex structure and $A \subseteq X$ is a sub-complex.

$$H_n^{\Delta}(A) \longrightarrow H_n^{\Delta}(X) \longrightarrow H_n^{\Delta}(X,A) \longrightarrow H_{n-1}^{\Delta}(A) \longrightarrow H_{n-1}^{\Delta}(X)$$

$$\downarrow^{(1)} \qquad \downarrow^{(2)} \qquad \downarrow^{(3)} \qquad \downarrow^{(4)} \qquad \downarrow^{(5)}$$

$$H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \longrightarrow H_{n-1}(A) \longrightarrow H_{n-1}(X)$$

where (1), (2), (4), (5) are isomorphisms,

so we have the conclusion by the five lemma.

May 7, 2025

Definition: Degree

Let $f: S^n \to S^n$ which induces $f_*: H_n(S^n) \to H_n(S^n)$ (i.e. $\mathbb{Z} \to \mathbb{Z}$). Hence f_* is multiplication by some integer $d \in \mathbb{Z}$. Define $\deg(f) = d$.

Properties

- 1. deg(id) = 1.
- 2. If $f, g: S^n \to S^n$ are homotopic, then $f_* = g_*$ thus $\deg(f) = \deg(g)$.
- 3. $\deg(f \circ g) = \deg(f) \cdot \deg(g)$, because $(f \circ g)_* = f_* \circ g_*$. In particular, if $f \circ g \simeq \mathrm{id}_{S^n}$ then $\deg(f) \cdot \deg(g) = \deg(f \circ g) = 1$ and $\deg(f) = \pm 1$.
- 4. Suppose $f: S^n \to S^n$ is not surjective, say $x_0 \in S^n \setminus \text{im } f$. Then $f: S^n \to S^n \setminus \{x_0\} \cong \mathbb{R}^n$. So f is $S^n \xrightarrow{f} S^n \setminus \{x_0\} \xrightarrow{\iota} S^n$ and

$$H_n(S^n) \longrightarrow H_n(S^n \setminus \{x_0\}) \longrightarrow H_n(S^n)$$

So $f_*: H_n(S^n) \to H_n(S^n)$ is the zero map (i.e. $\deg(f) = 0$).

- 1. $f:S^n \to S^n$ a reflection has degree -1. In general, if we take two copies of Δ^n glued along corresponding edges by the identity map then we get S^n . Then $H_n^{\Delta}(S^n)$ has a generator U-L, and reflection of f maps U-L to L-U (i.e. $f_*: \mathbb{Z} \to \mathbb{Z}$ is $1 \mapsto -1$).
- 2. $f: S^n \to S^n$ an antipodal map (-id) which sends $(x^1, ..., x^{n+1}) \mapsto (-x^1, ..., -x^{n+1})$ has $deg(-1id) = (-1)^{n+1}$.
- 3. Theorem (Hopf) if $f,g:S^n\to S^n$ have the same degree, then $f\simeq g$.
- 4. If $f: S^n \to S^n$ has no fixed points, then $f \simeq -\mathrm{id}$ and $\deg(f) = (-1)^{n+1}$. Proof: if $x \neq f(x)$, then the segment (1-t)f(x)+t(-x) does not pass through $0 \in \mathbb{R}^{n+1}$. Consider $f_t(x) = \frac{(1-t)f(x)+t(-x)}{||(1-t)f(x)+t(-x)||}$ where $f_0(x) = f(x)$ and $f_1(x) = -x$ show that $f_t(x)$ gives a homotopy between f and $-\mathrm{id}$.
- 5. S^n has a continuous, non-vanishing vector field if and only if n is odd. Proof: (\longleftarrow) say n=2k-1 such that $S^n\subseteq\mathbb{R}^{2k}$. Define $V(x_1,\ldots,x_{2k})=(-x_2,x_1,-x_4,x_3,\ldots)$. Then $V(\vec{x})\perp\vec{x}$. (\Longrightarrow) Think of $V(\vec{x})$ starting at \vec{x}

and without loss of generality that $||V(\vec{x})|| = 1$. Consider $f_t(x) = (\cos t)\vec{x} + (\sin t)V(\vec{x})$ where $f_\pi(x) = -x$ and $f_0(x) = x$ such that $\{f_t\}$ is a homotopy between id and -id. Hence $1 = \deg(id) = \deg(-id) = (-1)^{n+1}$ and n is odd.

6. If n is even, then \mathbb{Z}_2 is the only non-trivial group that can act freely on S^n . For example, S^1 acts on S^3 freely if we consider $(z_1, z_2) \in S^3 \subseteq C^2$ and $\theta(z_1, z_2) = (e^{i\theta}z_1, e^{i\theta}z_2)$. Proof: suppose $G \neq \mathrm{id}$ acts freely on S^n . Consider $\deg : G \to \mathbb{Z}$ where $\mathrm{im}(\deg) \subseteq \{\pm 1\} \subseteq \mathbb{Z}$ and for $g \neq e$ then $\deg(g) = (-1)^{n+1} = -1$. Then $G/\ker \cong \mathrm{im} = \{-1, 1\}$ since $\ker = \{e\}$. Hence $G \cong \mathrm{im} = (\{\pm 1, \cdot\}) = \mathbb{Z}_2$.

Theorem

Below, we assume that S^n has a point y such that $f^{-1}(y) = \{x_1, ..., x_m\}$ is a finite set. If f is smooth, then by Sard's theorem we may pick a regular point y. Then $f^{-1}(y)$ is an embedded submanifold of dimension zero (i.e. $f^{-1}(y)$ is a collection of finitely many points). That is, when f is smooth this assumption holds automatically.

For each i = 1,...,m, we choose a small ball U_i about x_i and a ball V about y such that $f(U_i) \subseteq V$. The pair $(S^n, S^n \setminus \{x\})$ induces

$$\cdots \longrightarrow H_n(S^n \setminus \{x\}) \longrightarrow H_n(S^n) \xrightarrow{j} H_n(S^n, S^n \setminus \{x\}) \longrightarrow H_{n-1}(S^n \setminus \{x\}) \longrightarrow \cdots$$

The pair $(U, U \setminus \{x\})$ gives

$$\cdots \longrightarrow H_n(U \setminus \{x\}) \longrightarrow \overset{=0}{H_n(U)} \longrightarrow H_n(U,U \setminus \{x\}) \overset{\delta}{\longrightarrow} H_{n-1}(U \setminus \{x\}) \longrightarrow \overset{=0}{H_{n-1}(U)} \longrightarrow \cdots$$

and we observe that $H_n(S^n, S^n \setminus \{x\}) \cong H_n(U, U \setminus \{x\})$ by excision.

We have that $f_*: H_n(U_i, U_i \setminus \{x_i\}) \to H_n(V, V \setminus \{y\})$ is $\mathbb{Z} \to \mathbb{Z}$ and hence it gives an integer. We call this the local degree $\deg(f|_{x_i})$.

Theorem: $deg(f) = \sum_{i=1}^{m} deg(f|x_i)$.

Write

$$H_n(S^n, S^n - f^{-1}(y)) \underset{\text{excision}}{\cong} H_n\left(\coprod_i U_i, \coprod_i (U_i \setminus \{x_i\})\right) \cong \bigoplus_i H_n(U_i, U_i \setminus \{x_i\}) \cong \mathbb{Z}^m.$$

then $k_i: H_n(U_i, U_i \setminus \{x_i\}) \to \bigoplus_i H_n(U_i, U_i \setminus \{x_i\})$ by $1 \mapsto (0, \dots, 0, 1, 0, \dots, 0) =: e_i$. Consider the triple $S^n - f^{-1}(y) \subseteq S^n \setminus \{x_i\} \subseteq S^n$ which induces

$$0 \longrightarrow C_{\bullet}(S^{n} \setminus \{x_{i}\}, S^{n} \setminus f^{-1}(y)) \longrightarrow C_{\bullet}(S^{n}, S^{n} \setminus f^{-1}(y)) \longrightarrow C_{\bullet}(S^{n}, S^{n} \setminus \{x_{i}\}) \longrightarrow 0$$

So we have $p_i: H_n(S^n, S^n \setminus f^{-1}(y)) \to H_n(S^n, S^n \setminus \{x_i\})$. Then

$$\mathbb{Z} \overset{\text{id}}{\longleftarrow} \mathbb{Z}^m$$

commutes and $1 = p_i(k_i(1)) = p_i(e_i)$, hence p_i is the projection to the *i*-th component. Similarly

$$\mathbb{Z} \xleftarrow{p_i} \mathbb{Z}^m$$

$$\downarrow id \qquad \downarrow j \qquad \downarrow$$

$$\mathbb{Z}$$

commutes so $1 = p_i(j(1))$ and the *i*-th component of j(1) is 1 (i.e. $j(1) = (1,1,...,1) \in \mathbb{Z}^m$. Then $\deg(f|_{x_i}) = f_*(k_i(1)) = f_*(e_i)$. Finally,

$$\deg f = f_*(1) = f_*(j(1)) = f_*\left(\sum e_i\right) = \sum f_*(e_i) = \sum \deg(f_*|_{x_i})$$

Remark

If f is smooth and y is a regular value, then we can pick U_i and V such that each $f|_{U_i}:U_i\to V$ is a diffeomorphism. Hence $\deg(f|_{X_i})=\pm 1$.

Example

If $f: S^1 \to S^1$ by $z \mapsto z^k$, $f^{-1}(1)$ has k many points (viz. the roots of unity). $f|_{U_i}: U_i \to V$ is diffeomorphic (by rotation and scaling) and $\deg(f|_{x_i}) = 1$. $\deg(f) = \sum \deg(f|_{x_i}) = k$.

IMAGE 1

Definition: Suspension of a Space

Recall that the cone of *X* is $C(X) = X \times I/X \times \{1\}$.

IMAGE 2

The suspension of *X* is $S(X) = C(X)/X \times \{0\}$.

IMAGE 3

Examples

 $S(S^1) = S^2$. In general $S(S^n) = S^{n+1}$.

Definition: Suspension of a Map

 $f: X \to Y$ induces $f: X \times I \to Y \times I$ by $(x, t) \mapsto (f(x), t)$. This induces $Cf: C(X) \to C(Y)$ and $Sf: S(X) \to S(Y)$.

Examples

 $f: S^n \to S^n$ induces a map $Sf: S^{n+1} \to S^{n+1}$. $f: S^1 \to S^1$ by $z \mapsto z^2$ induces $Sf: S^2 \to S^2$

IMAGE 4

Proposition

deg(Sf) = deg(f).

Proof

Consider the pair $(C(S^n), S^n \times \{0\})$ which induces

$$\stackrel{=0}{\tilde{H}_{n+1}(S^N)} \longrightarrow \stackrel{=0}{\tilde{H}_{n+1}(C(S^n))} \longrightarrow H_{n+1}(C(S^n), S^n \times \{0\}) \stackrel{\delta}{\longrightarrow} \stackrel{=\mathbb{Z}}{\tilde{H}_n(S^n)} \longrightarrow \stackrel{=0}{\tilde{H}_n(C(S^n))} \longrightarrow H_{n+1}(C(S^n), S^n \times \{0\}) \stackrel{\delta}{\longrightarrow} H_n(S^n) \longrightarrow \stackrel{=0}{\tilde{H}_n(C(S^n))} \longrightarrow H_n(C(S^n), S^n \times \{0\}) \stackrel{\delta}{\longrightarrow} H_n(S^n).$$

Hence $\mathbb{Z} \cong H_{n+1}(C(S^n), S^n \times \{0\}) \cong \tilde{H}_{n+1}(S^n)$. Therefore

$$\tilde{H}_{n+1}(S^{n+1}) \stackrel{\sim}{\longrightarrow} H_{n+1}(C(S^n), S^n \times \{0\}) \stackrel{\delta}{\longrightarrow} \tilde{H}_n(S^n) \\
\downarrow^{(Sf)_*} \qquad \downarrow^{(Cf)_*} \qquad \downarrow^{f_*} \\
H_{n+1}(S^{n+1}) \stackrel{\sim}{\longrightarrow} H_{n+1}(C(S^n), S^n \times \{0\}) \longrightarrow \tilde{H}_n(S^n)$$
So $\deg(Sf) = \deg(f)$.

Remark

For any $k, n \in \mathbb{Z}_+$, by iterated suspension of the map $z \mapsto z^k$, we can construct $f: S^n \to S^n$ of degree k.

Remark

$$Sf: S^{n+1} \to S^{n+1}$$
, pick $p \in S^{n+1}$ a pole, then $(Sf)^{-1}(p) = \{p\}$.

IMAGE 5

Hence $deg(Sf|_p) = deg(Sf) = k$.

May 12, 2025

Recall

Let X be a CW-Complex of finite dimension $X=X^0\cup X^1\cup\cdots\cup X^{\dim X}$. X^0 is a discrete set of points. X^1 is a gluing of $\{e^1_\alpha\}_{\alpha\in A}$ to X^0 , where $e^1=[-1,1]$, by the attaching map $\varphi_\alpha:\partial e^1_\alpha\to X^0$. X^{k+1} is the gluing of $\{e^{k+1}_\alpha\}_{\alpha\in A}$, where $e^{k+1}\cong D^{k+1}$, by $\varphi_\alpha:\partial e^{k+1}_\alpha\cong S^k\to X^k$.

Lemma

(a)

Let X be a CW-Complex of $\dim X$. Then

$$H_k(\boldsymbol{X}^n, \boldsymbol{X}^{n-1}) = \begin{cases} 0 & k \neq n \\ \text{free abelian with a basis in 1-1 correspondence to} \{n\text{-cells}\} \end{cases}$$

Proof

 (X^n, X^{n-1}) is a good pair. So

$$H_k(X^n, X^{n-1}) \cong \tilde{H}_k(X^n/X^{n-1}) = \tilde{H}_k\left(\bigvee_{\alpha} S_{\alpha}^n\right) = \bigoplus_{\alpha} \tilde{H}_k(S_{\alpha}^n).$$

If $k \neq n$, then $\tilde{H}_k(S_\alpha^n) = 0$. If k = n, then $\tilde{H}_k(S_2^n) = \mathbb{Z}$ and $H_n(X^n, X^{n-1}) \cong \bigoplus_{\alpha} \mathbb{Z}$.

(b)

$$H_k(X^n) = 0$$
 if $k > n$.

Proof

The pair (X^n, X^{n-1}) gives a long exact sequence.

$$\cdots \longrightarrow H_{k+1}(X^n, X^{n-1}) \stackrel{\delta}{\longrightarrow} H_k(X^{n-1}) \longrightarrow H_k(X^n)$$

$$\longrightarrow H_k(X^n,X^{n-1}) \stackrel{\delta}{\longrightarrow} \cdots$$

Supposing both $k \neq n$ and $k+1 \neq n$, the first and last

terms are zero and $H_k(\boldsymbol{X}^{n-1}) \cong H_k(\boldsymbol{X}^n)$. Then

$$H_k(X^n) \cong H_k(X^{n-1}) \cong H_k(X^{n-2}) \cong \cdots \cong H_k(X^0) = 0$$

(c)

 $i: X^n \hookrightarrow X$ induces an isomorphism $i_*: H_k(X^n) \to H_k(X)$ if k < n.

Proof

If k < n, then

$$H_k(X^n) \cong H_k(X^{n+1}) \cong \cdots \cong H_k(X^{\dim X}) = H_k(X)$$

Chain Complexes

This give a cellular chain complex $\{H_n(X^n,X^{n-1}),d_n\}$ with $d_n\circ d_{n+1}=0$ because $\stackrel{j}{\to} \cdot \stackrel{\delta}{\to} =0$. This defines a cellular homology $H_k^{CW}(X)$. We claim that $H_n^{CW}(X)\cong H_n(X)$.

Proof

$$H_n(X) \cong H_n(X^{n+1})$$

$$\cong H_n(X^n)/\ker i$$
because i is surjective
$$= H_n(X^n)/\operatorname{im}\delta_{n+1}$$
because $\stackrel{\delta_{n+1}}{\to} \stackrel{i}{\to}$ is exact
$$\cong j(H_n(X^n))/j(\operatorname{im}\delta_{n+1})$$
because j is injective
$$= \ker(\delta_n)/\operatorname{im}(d_{n+1})$$

$$= \ker(d_n)/\operatorname{im}(d_{n+1})$$

$$= \ker(\delta_n)/\operatorname{im}(d_{n+1})$$

$$= H_n^{CW}(X)$$

Applications

For

$$\cdots \longrightarrow H_n(X^n, X^{n-1}) \xrightarrow{d_n} H_{n-1}(X^{n-1}, X^{n-2}) \xrightarrow{d_{n-1}} \cdots$$
where $H_n(X^n, X^{n-1}) = \bigoplus_{\alpha} \mathbb{Z}$

(1)

If a CW-Complex does not have any *n*-cells, then $H_n(X^n, X^{n-1}) = 0$ and $H_n(X) \cong H_n^{CW}(X) = 0$.

(2)

If a CW-Complex X has k-many n-cells, then $H_n(X^n, X^{n-1}) \cong \mathbb{Z}^k$. Then $H_n(X) \cong H_n^{CW}(X) = \ker d_n / \operatorname{im} d_{n-1}$. $\ker d_n \leq H_n(X^n, X^{n-1}) = \mathbb{Z}^k$. Hence $\ker d_n$ and $H_n(X)$ can be generated by at most k many elements.

(3)

If X and Y are CW-complexes with $\{\varphi_{\alpha}:e_{\alpha}^{n}\to X^{n-1}\}$ and $\{\psi_{\beta}:e_{\beta}^{n}\to Y^{n-1}\}$ respectively, then $X\times Y$ has $\{\varphi_{\alpha}\times\psi_{\beta}:e_{\alpha}^{m}\times e_{\beta}^{n}\to (X\times Y)^{m+n-1}\}$ where $e_{\alpha}^{m}\times e_{\beta}^{n}\cong e^{m+n}$.

Consider $S^n \times S^n$ (for $n \ge 2$) where S^n is constructed by one 0-cell and one n-cell. Then $S^n \times S^n$ has one 0-cell (\mathbb{Z}^1), two n-cells (\mathbb{Z}^2) and one 2n-cell (\mathbb{Z}^1).

$$0 \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots \longrightarrow \mathbb{Z}^2 \longrightarrow 0 \longrightarrow \cdots \longrightarrow \mathbb{Z} \longrightarrow 0$$

SO

$$H_k(S^n \times S^n) = \begin{cases} \mathbb{Z} & k = 0, 2n \\ \mathbb{Z}^2 & k = n \\ 0 & \text{otherwise} \end{cases}$$

(4)

Take \mathbb{CP}^n as \mathbb{C}^{n+1}/\sim or as S^{2n+1}/\sim where $v\sim \lambda v$ and $\lambda v=(e^{i\theta}z_1,\ldots,e^{i\theta}z_{n+1})$. Consider the set of vectors in S^{2n+1} whose last component is real and nonnegative. $D^{2n}_+=\{(w,\sqrt{1-|w|^2})\in C^{n+1}:w\in C^n,\,|w|\leq 1\}$ is the graph of the function $w\mapsto \sqrt{1-|w|^2}$ defined on $\{w:|w|\leq 1\}\subseteq C^n$. So D^{2n}_+ is homeomorphic to a disk $\{|w|\leq 1\}=D^{2n}\subseteq \mathbb{C}^n$. For any vector $v\in S^{2n+1},\,v=(z_1,\ldots,z_{n+1})$ if $z_{n+1}\neq 0$, then v is equivalent to a unique vector in D^{2n}_+ . If $z_{n+1}=0$, $\{(z_1,\ldots,z_n,0)\in S^{2n-1}\times\{0\}\}=S^{2n-1}$. So $q:S^{2n+1}\to\mathbb{CP}^n$ has that $q|_{D^{2n}_+}$ is a homeomorphism. Then S^{2n-1}/\sim is exactly \mathbb{CP}^{n-1} . Therefore, we may view \mathbb{CP}^n as gluing e^{2n} to \mathbb{CP}^{n-1} by the attaching map $\partial e^{2n}=S^{2n-1}\to\mathbb{CP}^{n-1}$. So \mathbb{CP}^n has cells e^0,e^2,\ldots,e^{2n} and the cellular chain complex is

$$\mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

$$H_k(\mathbb{CP}^n) = \begin{cases} \mathbb{Z} & k = 0, 2, \dots, 2n \\ 0 & \text{otherwise} \end{cases}.$$

Recall that \mathbb{RP}^n by \S^n/\sim with $S^n\subseteq\mathbb{R}^{n+1}$ and $v\sim -v$, we may take the upper hemisphere D^n_+ . For every $v\in S^n=(x_1,\ldots,x_n)$, if $x_{n+1}\neq 0$ then v is equivaent to a unique vector in D^n_+ where $q|_{D^n_+}:D^n_+\to\mathbb{RP}^n$ homemorphic to its image. If $x_{n+1}=0$, then $\{(x_1,\ldots,x_n,0)\in S^n\}/\sim$ and \mathbb{RP}^n is gluing e^n to \mathbb{RP}^{n-1} via the attaching map $\varphi:\partial e^n=S^{n-1}\to\mathbb{RP}^{n-1}$ as the quotient map.

Computation

We want $d_n: H_n(X^n, X^{n-1}) \to H_{n-1}(X^{n-1}, X^{n-2})$. For n = 1 we have

where $d_1 = \delta : H_1(X^1, X^0) \to H_0(X^0)$. If X is connected, and $X^0 = \{v\}$, then $H_0(X^0) = \mathbb{Z}$ and $H_0(X) = H_0(X^0)/\operatorname{im} d_1$ implies that $\operatorname{im} d_1 = 0$.

For $n \ge 2$, $H_n(X^n, X^{n-1})$ is $\bigoplus_{\alpha} \mathbb{Z}$ and the generators are in one-to-one correspondence with $\{e^n_\alpha\}_\alpha$. We have a cellular boundary formula

$$d_n(e_\alpha^n) = \sum_\beta d_{\alpha\beta} e_\beta^{n-1}$$

where $d_{\alpha\beta} = \deg(\Delta_{\alpha\beta})$ and $\Delta_{\alpha\beta} : S^{n-1} = \partial e_{\alpha}^{n} \xrightarrow{\varphi_{\alpha}} X^{n-1} \xrightarrow{q_{\beta}} S_{\beta}^{n-1}$. $q_{\beta} : X^{n-1} \to S_{\beta}^{n-1}$ is obtained by collapsing everything in X^{n-1} except $(e_{\beta}^{n-1})^{\circ}$. For every n-cel e_{α}^{n} and every (n-1)-cell e_{β}^{n-1} , we obtain $d_{\alpha\beta} = \deg(\Delta_{\alpha\beta})$.

Example

Suppose we have M_g , an orientable surface of genus g. M_g has one 0-cell, 2g 1-cells $(a_1,b_1,\ldots,a_g,b_g_$ and one 2-cell. Then $d_1=0$, and $d_2(e_2)$ comes from $\Delta_{\alpha\beta}:S^2=\partial e^2\stackrel{\alpha}{\to} X^1=\bigvee S^1\stackrel{q_\beta}{\to} S^1_\beta$ which glues S^1 to S^1 by $a\cdot a^{-1}$. So $\deg(\Delta_{\alpha\beta})=0$ and $d_2(e_2)=0$.

$$0 \longrightarrow \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z}^{2g} \stackrel{0}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$
 so $H_2 = \mathbb{Z}$, $H_1 = \mathbb{Z}^{2g}$ and $H_0 = \mathbb{Z}$.

Example

 N_g is a non-orientable surface of genus g. N_g has one 0-cell, g 1-cells $(a_1^2a_2^2\cdots a_g^2)$, and one 2-cell. We know that $d_1=0$. Consider $\Delta_{\alpha\beta}:S_{\alpha}^1\to X^1\to S_{\beta}^1$ which glues S^1 to S^1 by a^2 (i.e. $z\mapsto z^2$) and $\deg(\Delta_{\alpha\beta})=2$. So $d_2(e_2)=\sum_{\beta}2e_{\beta}^1=(2,2,\ldots,2)\in\mathbb{Z}^g$ and

$$0 \longrightarrow \mathbb{Z} \xrightarrow{d_2} \mathbb{Z}^g \xrightarrow{0} \mathbb{Z} \longrightarrow 0$$
So $H_0 = \mathbb{Z}$, $H_1 = \mathbb{Z}^g / \operatorname{im} d_2 = \mathbb{Z}^{g-1} \oplus \mathbb{Z}_2$ and $H_2 = \ker d_2 / 0 = 0$.

May 14, 2025

Remaining Homology Topics

- 1. More examples of H_*^{CW} .
- 2. Euler characteristic.
- 3. Homology with coefficients.
- 4. Mayer-Vietoris Sequence.
- 5. $\pi_1/[\pi_1,\pi_1] = H_1$.

Recall: Cellular Chain Complex

 $(H_n(X^n,X^{n-1}),d_n)$ where $H_n(X^n,X^{n-1})$ has a basis in one-to-one correspondence with the n-cells in X and $d_n(e_n^\alpha)=\sum_\beta d_{\alpha\beta}e_\beta^{n-1}$ with $d_{\alpha\beta}=\deg(\Delta_{\alpha\beta})$ for $\Delta_{\alpha\beta}:\partial e_n^\alpha=S_\alpha^{n-1}\overset{\varphi_\alpha}{\to}X^{n-1}\overset{\varphi_\beta}{\to}S_\beta^{n-1}$ where q_β collapses everything in X^{n-1} except

 $int(e_{\beta}^{n-1})$ to a point.

Example

 $\mathbb{RP}^n = e^0 \cup e^1 \cup \cdots \cup e^n$ with the attaching map $S^{k-1} = \partial e^k \to \mathbb{RP}^{k-1} = X^{n-1}$ as the quotient map (2-sheet covering).

IMAGE 1

So the cellular chain complex is

$$0 \longrightarrow \mathbb{Z} \longrightarrow \cdots \longrightarrow \mathbb{Z} \longrightarrow 0$$
 with $d_n(e^n) = \deg(\Delta)e^{n-1}$ for $\Delta : S^{n-1} \xrightarrow{\varphi} X^{n-1} = \mathbb{RP}^{n-1} \xrightarrow{q} \mathbb{RP}^{n-1} / \mathbb{RP}^{n-2} = S^{n-1}$. Then Δ restricted to the upper (or lower) hemisphere is a homeomorphism to $S^{n-1} - \{ pt \}$. So antipodal open sets differe only be the antipodal map

IMAGE 2

So
$$deg(\Delta) = 1 + (-1)^n = \begin{cases} 0 & n \text{ odd} \\ 2 & n \text{ even} \end{cases}$$
. If n is even, the chain complex is

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \cdots \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \longrightarrow 0 \quad \text{which means } H_k(\mathbb{RP}^n) = \begin{cases} \mathbb{Z}_2 & k \text{ odd} \\ 0 & k \text{ even} \end{cases}.$$
 Simi-

which means
$$H_k(\mathbb{RP}^n) = \begin{cases} \mathbb{Z}_2 & k \text{ odd} \\ 0 & k \text{ even} \end{cases}$$
. Simi-

larly for odd n.

$$0 \longrightarrow \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z} \stackrel{2}{\longrightarrow} \cdots \longrightarrow \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

so $H_n(\mathbb{RP}^n) = \mathbb{Z}$ and we conclude

$$H_k(\mathbb{RP}^n) = egin{cases} \mathbb{Z} & k = n \text{ odd} \\ \mathbb{Z}_2 & 0 < k < n \text{ odd} \\ 0 & \text{otherwise} \end{cases}$$

Example

Recall for the torus \mathbb{T}^2 , $0 \to \mathbb{Z} \xrightarrow{d_2} \mathbb{Z}^2 \xrightarrow{0} \mathbb{Z} \to 0$, the degree is zero (see above).

IMAGE 3

we have one 0-cell, three 1-cells, three 2-cells and one 3-cell and a chain complex

$$0 \longrightarrow \mathbb{Z} \xrightarrow{d_3} \mathbb{Z}^3 \xrightarrow{0} \mathbb{Z}^3 \xrightarrow{0} \mathbb{Z} \longrightarrow 0$$
 So $d_3(e^3) = \sum_{\beta} \deg(\Delta_{\alpha\beta}) e_{\beta}^2$ and $\Delta_{\alpha\beta} : \partial e^3 = S^2 \xrightarrow{\varphi} X^2 \xrightarrow{q_{\beta}} S_{\beta}^2$.

IMAGE 4

$$H_k(T^3) = \begin{cases} \mathbb{Z}^3 & k = 1, 2\\ \mathbb{Z} & k = 0, 3\\ 0 & \text{otherwise} \end{cases}.$$

Example

Consider $K \times S^1$ where K is the Klein bottle.

IMAGE 5

So $d_2(A) = 2b$, $d_2(B) = 0$ and $d_2(C) = 0$. However, for d_3 the front face changes by reflection in the back

IMAGE 6

So $d_3(e^3) = 2C$ and the degree is $1 + (-1) \cdot (-1) = 2$ and

$$0 \longrightarrow \mathbb{Z} \xrightarrow{d_3} \mathbb{Z}^3 \xrightarrow{d_2} \mathbb{Z}^3 \xrightarrow{0} \mathbb{Z} \longrightarrow 0$$
 We have that $\ker d_3 = 0$, $H_3 = 0$; $\ker d_2 = \langle B, C \rangle$, $\operatorname{im} d_3 = \langle 2C \rangle$, $H_2 = \ker d_2 / \operatorname{im} d_3 = \mathbb{Z} \oplus \mathbb{Z}_2$; $\ker d_1 = \langle a, b, c \rangle$, $\operatorname{im} d_2 = \langle 2b \rangle$, $H_1 = \mathbb{Z}^2 \oplus \mathbb{Z}_2$.

Homology with Coefficients (Moore Space)

Let G be a finitely generated abelian group and $n \in \mathbb{N}$ with $n \ge 1$. We can construct a CW-complex X such that

$$\tilde{H}_k(X) = \begin{cases} G & k = n \\ 0 & \text{otherwise} \end{cases}.$$

First, let us consider G=2m. We start with $X^n=S^n$ (1 0-cell, 1 n-cell). Then construct $X=X^{n+1}$ by gluing in a (n+1)-cell e^{n+1} via the attaching map $\varphi:S^n=\partial e^{n+1}\to X^{n+1}=S^n$. Then $d_{n+1}(e^{n+1})=\deg(\Delta)e^n$ where $\Delta:S^n=\partial e^{n+1}\to X^n=S^n$ is φ . If $\varphi:S^n\to S^n$ has degree m, then d_{n+1} is multiplication by m.

$$0 \longrightarrow \mathbb{Z} \xrightarrow{d_{m+1}} \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

$$\text{So } H_n(X) = \ker / \operatorname{im} = \mathbb{Z} / m \mathbb{Z} = \mathbb{Z}_m = G. \text{ In general, } G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_\ell} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \text{ a k-term sum. Use } X^n = \bigvee_{i=1}^k S^n. \text{ For each } \mathbb{Z}_{m_i} \text{-factor, glue in } e_\alpha^{n+1} \text{ by } \varphi : \partial e_\alpha^{n+1} \to S_i^k.$$

Consider X with ℓ -many (n+1)-cells, k-many n-cells and a single 0-cell for $\ell \leq k$. Then

$$0 \longrightarrow \mathbb{Z}^{\ell} \longrightarrow \mathbb{Z}^{k} \longrightarrow 0$$

$$(1,0,\cdots,0) \longmapsto (m_i,0,\ldots)$$

So im $d_{n+1} = m_1 \mathbb{Z} \oplus \cdots \oplus m_\ell \mathbb{Z} \oplus 0 \subseteq \mathbb{Z}^k$.

Let G be an abelian group $(G = \mathbb{Z} \text{ or } G = \mathbb{Z}_m)$. Then $C_n(X;G) = \{\sum_i n_i \sigma_i : \text{ finite formal sums of } \sigma_i : \Delta^n \to X \text{ with } n_i \in G\}$. We can similarly define $H_n(X,G)$, $\tilde{H}_n(X;G)$, $H_n(X,A;G)$, $H_n^{CW}(X;G)$, etc.

If we use $\mathbb{Z}_m = G$ as the coefficient with $\tilde{H}_k(X) = \begin{cases} \mathbb{Z}_m & k = m \\ 0 & k \neq m \end{cases}$,

$$0\,\longrightarrow\,\mathbb{Z}_m\,\stackrel{\cdot\,m}{\longrightarrow}\,\mathbb{Z}_m\,\longrightarrow\,0$$

Consider the map $f: X \to X/S^n = S^{n+1}$. This induces $f_*: H_k(X) \to H_k(S^{n+1})$

which is $f_* = 0$ on all $H_k(X)$. If we use coefficients \mathbb{Z}_m instead, we still induce $f_* : H_k(X; \mathbb{Z}_m) \to H_k(S^{n+1}; \mathbb{Z}_m)$, $H^{n+1}(X; \mathbb{Z}_m) = \mathbb{Z}_m$ and $H^n(X; \mathbb{Z}_m) = \mathbb{Z}_m$. For k = n+1, $f_* : \mathbb{Z}_m \to \mathbb{Z}_m$ is the identity map which implies that f is not null-homotopic.

Lemma

If $f: S^k \to S^k$ is of degree m, then $f_*: H_k(S^k; G) \to H_k(S^k; G)$ by $g \mapsto mg$. A homomorphism $\varphi: G_1 \to G_2$ induces $\varphi_{\sharp}: C_n(X; G_1) \to C_n(X, G_2)$ by $\sum n_i \sigma_i \mapsto \sum \varphi(n_i) \sigma_i$. Then $\partial \varphi_{\sharp} = \varphi_{\sharp} \partial$ and $\varphi_*: H_n(X; G_1) \to H_n(X; G_2)$. If $f: S^k \to S^k$

is of degree k, fix any $g \in G$ and set $\varphi : \mathbb{Z} \to G$ by $1 \mapsto g$.

$$H_k(S^k; \mathbb{Z}) \xrightarrow{f_*} H_k(S^k; \mathbb{Z})$$

$$\downarrow \varphi_* \qquad \qquad \downarrow \varphi_*$$

$$H_k(S^k; G) \xrightarrow{f_*} H_k(S^k; G)$$

Euler Characteristic

Let X be a finite CW-complex with c_i the number of i-cells. Then $\chi(X) = \sum_{i=0}^n (-1)^i c_i$ with $n = \dim X$. For example, $\chi(S^2) = 1 + 1 = 2$, $\chi(\mathbb{T}^2) = 1 - 2 + 1 = 0$, $\chi(\mathbb{RP}^2) = 1 - 1 + 1 = 1$, and $\chi(\mathbb{CP}^n) = 1 + 1 + \dots + 1 = n$.

Theorem

$$\chi(X) = \sum_{i=0}^{n} (-1)^{i} \operatorname{rank}(H_{i}(X)).$$

Proof

$$0 \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_0 \longrightarrow 0$$
So $Z_i = \ker d_i$, $B_i = \operatorname{im} d_{i+1}$ and $H_i = Z_i/B_i$. Then
$$0 \longrightarrow B_i \longrightarrow Z_i \longrightarrow H_i \longrightarrow 0$$

$$0 \longrightarrow Z_i = \ker d_i \longrightarrow C_i \longrightarrow B_{i-1} = \operatorname{im} d_i \longrightarrow 0$$

So $\operatorname{rank} Z_i = \operatorname{rank} B_i + \operatorname{rank} H_i$ and $\operatorname{rank} C_i = \operatorname{rank} Z_i + \operatorname{rank} B_{i-1} = \operatorname{rank} B_i + \operatorname{rank} H_i + \operatorname{rank} B_{i-1}$. Therefore

$$\sum (-1)^{i} \overline{\operatorname{rank} C_{i}} = \sum (-1)^{i} \operatorname{rank} H_{i}.$$

So $\chi(M_g) = 2 - 2g$ and $\chi(N_g) = 2 - g$.

May 19, 2025

Mayer-Vietoris Sequences

Given a space X and open sets $A, B \subseteq X$ such that $A \cup B = X$ (i.e. $\mathcal{U} = \{A, B\}$ is an open cover of X), we have the chain

$$C_n^{\mathcal{U}}(X) = \left\{ \sum_i n_i \sigma_i : \sigma_i : \Delta^n \to \text{ some } U \in \mathcal{U} \right\}$$

Fact: $H_n^{\mathcal{U}}(X) \cong H_n(X)$.

For convenience, we write $C_n^{\mathcal{U}}(X) = C_n(A+B)$ which induces a short exact sequence

$$0 \longrightarrow C_N(A \cap B) \stackrel{\varphi}{\longrightarrow} C_n(A) \oplus C_n(B) \stackrel{\psi}{\longrightarrow} C_n(A+B) \longrightarrow 0$$

$$\alpha \longmapsto (\alpha, -\alpha)$$

$$(\alpha,\beta) \longmapsto \alpha + \beta$$

Verifying Exactness

 φ is injective, since if $0 = \varphi(\alpha) = (\alpha, -\alpha)$, then $\alpha = 0$. ψ is surjective, since any element in $C_n(A+B)$ and for $\sigma_i : \Delta^n \to A$ or B with $\alpha_i : \Delta^n \to A$ and $\beta_i : \Delta^n \to B$, we have

$$\sum_{i} n_{i} \sigma_{i} = \sum_{i} n_{i} \alpha_{i} + \sum_{i} n_{i} \beta_{i} = \psi \left(\sum_{i} n_{i} \alpha_{i}, \sum_{i} n_{i} \beta_{i} \right)$$

 $\operatorname{im} \varphi \subseteq \ker \psi$ since $\psi(\varphi(\alpha)) = \psi(\alpha, -\alpha) = 0$ $\ker \psi \subseteq \operatorname{im} \varphi$, since if we suppose $(\alpha, \beta) \in C_n(A) \oplus C_n(B)$ such that $\psi(\alpha, \beta) = 0$. Then $\alpha \in C_n(A \cap B)$ and $\varphi(\alpha) = (\alpha, -\alpha) = (\alpha, \beta)$ (i.e. $(\alpha, \beta) \in \operatorname{im} \varphi$).

Long Exact Sequence

The short exact sequence induces

$$\cdots \longrightarrow H_n(A \cap B) \xrightarrow{\varphi_*} H_n(A) \oplus H_n(B) \xrightarrow{\psi_*} H_n(X)$$

$$\xrightarrow{\partial} H_{n-1}(A \cap B) \longrightarrow \cdots$$

Example: Klein Bottle

The Klein bottle is created by gluing two Mobius strips along their boundary

IMAGE 1

Let A, B be two Mobius strips as subsets of the Klein bottle. Let U, V be neighborhoods of A and B respectively that deformation retract to A and B. Then $A \cap B$ is homotopic to the circle. Then

$$\begin{array}{ccc}
&\stackrel{=0}{H_2(A \cap B)} & \longrightarrow & \stackrel{=0}{H_2(A) \oplus H_2(B)} & \longrightarrow & H_2(X) \\
& \longrightarrow & H_1(A \cap B) & \longrightarrow & H_1(A) \oplus H_1(B) & \longrightarrow & H_1(X) \\
& \longrightarrow & \overbrace{\tilde{H}_0(A \cap B)}^{=0} & \longrightarrow & \overbrace{\tilde{H}_0(A \cap B)}^{=0} & \longrightarrow & \stackrel{=0}{H_1(A) \oplus H_1(B)} & \longrightarrow & H_1(X)
\end{array}$$

Which leads to

$$0 \longrightarrow H_2(X) \longrightarrow H_1(A \cap B) \xrightarrow{\varphi_*} H_1(A) \oplus H_1(B) \xrightarrow{\psi_*} H_1(X) \longrightarrow 0$$

$$\alpha \longmapsto (\alpha, -\alpha)$$

$$0 \longrightarrow H_2(X) \longrightarrow \mathbb{Z} \xrightarrow{\varphi_*} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\psi_*} H_1(X) \longrightarrow 0$$

$$1 \longmapsto (2, -2)$$

In particular, ψ_* is injective. Hence $H_2(X) \to \mathbb{Z}$ is the zero map and $H_2(X) = 0$. Then also

$$H_1(X) = (\mathbb{Z} \oplus \mathbb{Z})/\ker \psi_* = (\mathbb{Z} \oplus \mathbb{Z})/\operatorname{im} \varphi_* = \langle a, b \rangle / \langle 2a - 2b \rangle = \langle a, a - b \rangle / \langle 2a - 2b \rangle \cong \mathbb{Z} \oplus \mathbb{Z}_2.$$

Definition: Commutator

Let G be a group. [G,G] is the normal subgroup generated by elements of the form $[g,h] = g^{-1}h^{-1}gh$. Then G/[G,G] is Abelian.

Commutator of the Fundamental Group

 $H_1 = \pi_1/[\pi_1, \pi_1].$

We define a map $h: \pi_1(X, x_0) \to H_1(X)$. Let $f: \Delta^1 = [0,1] \to X$ be a loop at x_0 , such that f is also a singular 1-simplex (i.e. a cycle). So $\partial f = f(1) - f(0) = x_0 - x_0 = 0$. Hence we may assign $[f] \in H_1(X)$ to the loop f (i.e. h(f) = [f]). Write $f \simeq g$ for path homotopy and $f \sim g$ when f - g is a boundary. h is well defined, since

- 1. if f is homotopic to a constant loop, then $f \sim 0$ (i.e. f is a boundary). We treat $H: D^2 \to X$ as a singular 2-simplex, call it σ . Then $\partial \sigma = f$.
- 2. if $f \simeq g$, then $f \sim g$. Let H be a path homotopy between f and g.

IMAGE 2

Then $\partial L = d - g - Cx_0$, $\partial R = d - Cx_0 - f$ and $\partial (L - R) = f - g$. This shows that $h : \pi_1(X, x_0) \to H_1(X)$ is well-defined. h is a group homomorphism. We need to show that $h(f \cdot g) = h(f) + h(g)$ (i.e. $f \cdot g \sim f + g$).

IMAGE 3

So $\sigma:\Delta^2\to X$ defined by the filling in of the 2-simplex has $\partial\sigma=f\cdot g-f-g$. h is surjective. For $\sigma_i:\Delta^i\to X$, let $\sum_i n_i\sigma_i\in C_1(X)$ be a 1-cycle. Then

$$0 = \partial \left(\sum_{i} n_{i} \sigma_{i} \right) = \sum_{i} n_{i} \left(\sigma_{i}(1) - \sigma_{i}(0) \right).$$

Let S be the set of distinct points in the list $\{\sigma_i(0), \sigma_i(1) : | i = 1, ..., k \}$ for $m_p \in \mathbb{Z}$. Then

$$\sum_i n_i(\sigma_i(1) - \sigma_i(0)) = \sum_{p \in S} m_p \cdot p.$$

and $m_p = 0$ for all $p \in S$. For each σ_i , we consider a loop η_i at x_0 by

IMAGE 4

For any $p \in S$, β_p is a path from x_0 to p. Then $h(\eta_i) = \beta_{\sigma_i(0)} + \sigma_i - \beta_{\sigma_i(1)}$. Now consider a loop $\eta_1^{n_1} \cdots \eta_k^{n_k}$ at x_0 .

$$h(\eta_1^{n_1} \cdots \eta_k^{n_k}) = \sum_i n_i h(\eta_i) = \sum_i n_i \sigma_i + \sum_i n_i (\beta_{\sigma_1(0)} - \beta_{\sigma_1(1)}) = \sum_i n_i \sigma_i + 0$$

 $\ker(h) = [\pi_1, \pi_1]$. Since $[\pi_1, \pi_1]$ is generated by $f^{-1}g^{-1}fg$, $h(f^{-1}g^{-1}fg) = -h(f) - h(g) + h(f) + h(g) = 0$. So $[\pi_1, \pi_1] \subseteq \ker h$.

Lemma:

Let G be a group, and let w be a word in G. Suppose that for each $g \in G$ its exponent in w adds up to zero, then $w \in [G, G]$.

Proof

Let $\pi: G \to G/[G,G]$ be the quotient map and $\pi(w) = 0$ (i.e. $w \in \ker \pi = [G,G]$ because if $w = g^{k_1} \cdots g^{k_2} \cdots g^{k_3} \cdots$ then $\pi(w) = \pi(g)^{k_1 + k_2 + k_3 + \cdots} = 0$.

Commutator of the Fundamental Group Continued

Let f be a loop at x_0 such that h(f) = 0 (i.e. as a singular 1-simplex). f is a boundary. Hence there is $\sum_i n_i \sigma_i \in C_2(X)$ such that $(\sigma_i : \Delta^2 \to X)$

$$f = \partial \left(\sum_{i} n_{i} \sigma_{i} \right) = \sum_{i} n_{i} (\alpha_{i} + \beta_{i} + \gamma_{i})$$

Let *S* be the set of disjoint edges in the list $\{\alpha_i, \beta_i, \gamma_i : i = 1, ..., k\}$. Then

$$f = \sum n_i(\alpha_i + \beta_i + \gamma_i) = \sum_{e \in S} m_e \cdot e$$

in $C_1(X)$. Hence $m_e = 1$ when e = f and $m_e = 0$ otherwise. For each σ_i , we draw a loop η_i at x_0 by joining

IMAGE 6

Then each η_i is homotopic to the boundary of σ_i (i.e. null-homotopic). Let us consider a loop $\eta_1^{n_1}\cdots\eta_k^{n_k}f^{-1}\simeq f^{-1}$. Each η_i is a product of 3 loops. Hence $\eta_1^{n_1}\cdots\eta_k^{n_k}f^{-1}$ is a word in π_1 in $S'\cup\{f\}$ where S' is the collection of all the generated loops with basepoint at x_0 . The exponent of such a loop in this word is either m_e when $e\neq f$ or m_e-1 when e=f. So it is always zero by the precedeing. This shows that

$$[f^{-1}] = [\eta_1^{n_1} \cdots \eta_k^{n_k} f^{-1}] \in [\pi_1, \pi_1].$$

Mayer-Vietoris for Reduced Homology

$$\begin{array}{cccc}
0 & 0 & \downarrow & \downarrow \\
C_0(A \cap B) & \xrightarrow{\epsilon} & \mathbb{Z} & \longrightarrow 0 \\
\downarrow^{\varphi_*} & & \downarrow^{\varphi} & \downarrow^{\varphi} \\
C_0(A) \oplus C_0(B) & \xrightarrow{\epsilon \oplus \epsilon} & \mathbb{Z} \oplus \mathbb{Z} & \longrightarrow 0 \\
\downarrow^{\psi_*} & & \downarrow^{\psi} & \downarrow^{\psi} \\
C_0(A+B) & \xrightarrow{\epsilon} & \mathbb{Z} & \longrightarrow 0 \\
\downarrow^{\varphi_*} & \downarrow^{\psi} & \downarrow^{\psi} & \downarrow^{\psi} \\
\downarrow^{\varphi_*} & \downarrow^{\varphi_*$$

Where $\varepsilon: C_0(X) \to \mathbb{Z}$ by $\sum_i n_i \sigma_i \mapsto \sum_i n_i$ is surjective. Then $\alpha \in \sum_i n_i \sigma_i$, and we have $\varphi(\sum_i n_i)$ and $(\varepsilon \oplus \varepsilon)(\sum_i n_i \sigma_i, -\sum_i n_i \sigma_i) = (\sum_i n_i, -\sum_i n_i)$. So assign $\varphi: \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ by $1 \mapsto (1, -1)$ and let $(\sum_i n_i \alpha_i, \sum_i m_i \beta_i) \in C_0(A) \oplus C_0(B)$. Then we have that $\varepsilon(\sum_i n_i \alpha_i, \sum_i m_i \beta_i) = \sum_i n_i + \sum_i m_i$ and $\psi(\sum_i n_i, \sum_i m_i)$ is assigned to $\psi_i: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ by $(m, n) \mapsto m + n$. Then the above diagram commutes.