Supplementary Materials for Modeling the competing effects of the immune system and EMT on tumor development

Daniel R. Bergman 1, Matthew K. Karikomi 1, Qing Nie 1,2,* and Adam L. MacLean 3,*

 $^{1}\mathrm{Department}$ of Mathematics, University of California, Irvine, Irvine, CA 92697, USA

²Department of Cell and Developmental Biology, University of California, Irvine, Irvine, CA 92697, USA

³Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA

*Correspondence: qnie@uci.edu (Q.N.); macleana@usc.edu (A.L.M.)

Contents

1	Definition of parameters specifying the model	2
2	Parameter values used for simulation	3

1 Definition of parameters specifying the model

Name	Description			
p	proliferation rate of tissue cells			
d_C	death rate of tissue cells			
$\Delta_{ m MIE}$	mesenchymal immune evasion			
$\Delta_{ m MGA}$	mesenchymal growth arrest			
Δ_A	mutant cells decreased apoptosis			
$\Delta_{ m IE}$	mutant cells increased immune evasion			
Δ_P	mutant cells increased proliferation			
K_0 EC50 term for negative feedback of tissue cells on own pro-				
K_1	EC50 term for probability of NK cell finding mutant cell			
K_2	EC50 term for Treg inhibition of cytotoxic functions			
K_3	EC50 term for how much TGF- β each cell has			
$E_{ m NK}$	rate of NKs clearing mutants			
$E_{\rm CTL}$	rate of CTLs clearing mutants			
$\sigma_{ m NK}$	NK source rate			
$\sigma_{ m CTL}$	CTL source rate per cleared mutant cell			
σ_{Treg} Treg source rate per cleared mutant cell				
$k_{\rm EMT}$	EMT/MET rate			
σ	standard deviation of noise in TGF- β each cell receives			
$ au_{ m max}$	max amount of TGF- β any cell can receive			
$ au_{ ext{MUT}}$ rate of TGF- eta production by mutant cells				
$ au_{\mathrm{Treg}}$	rate of TGF- β production by Treg			

Table 1: The model parameter names and descriptions. Note that many of these values are affected by the inflammation state of the system.

2 Parameter values used for simulation

Name	Description	INFL Low Value	INFL High Value
p	proliferation rate of tissue cells	0.28	
d_C	death rate of tissue cells	0.14	
$\Delta_{ ext{MIE}}$	MIE	0.6	
$\Delta_{ ext{MGA}}$	MGA	0.2	
Δ_A	mutant cells decreased apoptosis	0.3	
$\Delta_{ m IE}$	mutant cells increased immune evasion	0.48	
Δ_P	mutant cells increased proliferation	0.36	
K_0	EC50 term for negative feedback of tissue cells on own proliferation	80	
K_1	EC50 term for probability of NK cell finding mutant cell	8	
K_2	EC50 term for Treg inhibition of cytotoxic functions	5	0.025
K_3	EC50 term for how much TGF- β each cell has	200	
$E_{ m NK}$	rate of NKs clearing mutants	10	30
$E_{\rm CTL}$	rate of CTLs clearing mutants	200	600
$\sigma_{ m NK}$	NK source rate	1.3	
$\sigma_{ m CTL}$	CTL source rate per cleared mutant cell	100	
$\sigma_{ m Treg}$	Treg source rate per cleared mutant cell	200	
$k_{\rm EMT}$	EMT/MET rate	0.01	
σ	standard deviation of noise in TGF- β each cell receives	6	
$ au_{ m max}$	max amount of TGF- β any cell can receive	500	
$ au_{ ext{MUT}}$	rate of TGF- β production by mutant cells	0.05	
$ au_{ m Treg}$	rate of TGF- β production by Treg	0.5	
	RP Cancer Line	0.5	
	INFL High Duration	30	
	INFL Low Duration	30	
	Mes Threshold	0.7	
	maximum initial mutation damage after warmup	0.01	
	increase in probability to mutate for non- mutating proliferating cells	0.0001	

Table 2: The model parameter names, descriptions, and values during both low and high inflammation. Parameters with only one value do not change with the inflammatory state.