Raul Henrique Santana

Estudo de Microinversores Baseados no Conversor Ćuk Para Painéis Fotovoltaicos Conectados à Rede Elétrica

Raul Henrique Santana

Estudo de Microinversores Baseados no Conversor Ćuk Para Painéis Fotovoltaicos Conectados à Rede Elétrica

Monografia apresentada durante o Seminário dos Trabalhos de Conclusão do Curso de Graduação em Engenharia Elétrica da UFMG, como parte dos requisitos necessários à obtenção do título de Engenheiro Eletricista.

Universidade Federal de Minas Gerais – UFMG Escola de Engenharia Curso de Graduação em Engenharia Elétrica

Orientador: Prof. Pedro Francisco Donoso-Garcia

Belo Horizonte 2019

Lista de ilustrações

Figura 1 –	Circuito Equivalente de uma Célula Fotovoltaica (de Oliveira et al., 2016)	Ιċ
Figura 2 -	Curvas IxV de painel fotovoltaico para diferentes (a) irradiâncias e (b)	
	temperaturas	14
Figura 3 -	Conversor Ćuk convencional (Czarkowski, 2001)	14
Figura 4 -	Sinais de entrada, saída e tensões no transistor e no diodo do conversor	
	cuk convencional	15
Figura 5 -	Tensão de ripple de saída do conversor cuk convencional	15
Figura 6 -	Conversor Ćuk entrelaçado de duas fases (Joseph; Daniel; Unnikrish-	
	nan, 2015)	17
Figura 7 -	Sinais de entrada, saída e tensões no transistor e no diodo do conversor	
	cuk entrelaçado de duas fases	17
Figura 8 -	Tensão de ripple de saída do conversor cuk entrelaçado de duas fases $$.	18
Figura 9 –	Inversor VSI monofásico em ponte completa (Espinoza, 2001)	19
Figura 10 -	Formas de onda do inversor VSI com PWM bipolar	20
Figura 11 –	Conteúdo harmônico da tensão de saída do inversor VSI Bipolar	21
Figura 12 –	Formas de onda do inversor VSI com PWM unipolar	22
Figura 13 –	Conteúdo harmônico da tensão de saída do inversor VSI Unipolar	22
Figura 14 –	Inversor Ćuk Integrado (Luigi et al., 2010)	23
Figura 15 –	Sinais de entrada e saída do inversor cuk integrado em regime permanente	23
Figura 16 –	Fluxograma do Método P&O, baseado no diagrama de Beriber e Talha	
	$(2013) \ldots \ldots$	25
Figura 17 –	Fluxograma do método de indutância incremental (Beriber; Talha, 2013)	26
Figura 18 –	Potências de entrada e saída de um conversor cuk com MPPT P&O	26
Figura 19 –	Topologia do filtro LCL monofásico (Mahamat et al., 2017)	27
Figura 20 –	Curvas IxV do painel selecionado (Canadian Solar, 2018)	30
Figura 21 –	Parâmetros do módulo fotovoltaico no PSIM	31
Figura 22 –	Características do módulo fotovoltaico no PSIM	31
Figura 23 –	Circuito do módulo fotovoltaico no PSIM	32
Figura 24 –	Circuito do conversor cuk convencional com comando em malha aberta	34
Figura 25 –	Corrente de ripple no indutor $L1$ do conversor cuk convencional \dots	34
Figura 26 –	Corrente de ripple no indutor $L2$ do conversor cuk convencional	35
Figura 27 –	Tensão de ripple no capacitor $C1$ do conversor cuk convencional	35
Figura 28 –	Tensão de saída do conversor cuk convencional	35
Figura 29 –	Potência na entrada e saída do conversor cuk convencional	35
Figura 30 -	Circuito do conversor cuk entrelaçado de duas fases	37

Figura 31 – Corrente de ripple no indutores L_{11} e L_{21} do conversor cuk entrelaçado	
de duas fases	38
Figura 32 – Corrente de ripple na entrada do conversor cuk entrelaçado de duas fases	38
Figura 33 – Corrente de ripple nos indutores L_{12} e L_{22} do conversor cuk entrelaçado	
de duas fases	38
Figura 34 – Tensão de ripple nos capacitores C_{11} e C_{21} do conversor cuk entrelaçado	
de duas fases	38
Figura 35 — Tensão de ripple de saída do conversor cuk entrelaçado de duas fases $$.	39
Figura 36 – Potência na entrada e saída do conversor cuk entrelaçado de duas fases	39
Figura 37 — Oscilação da potência saída do conversor cuk entrelaçado de duas fases	39
Figura 38 – Inversor VSI Bipolar em malha aberta $\ \ldots \ \ldots \ \ldots \ \ldots$	40
Figura 39 – Sinal de saída do inversor VSI bipolar $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	40
Figura 40 – Inversor VSI Unipolar	41
Figura 41 – Sinal de saída do inversor VSI unipolar	41
Figura 42 – Circuito do inversor cuk integrado	42
Figura 43 – Sinal de saída do inversor cuk integrado	42
Figura 44 – Corrente no indutor $L1$ do inversor cuk integrado	43
Figura 45 – Detalhe da oscilação na corrente no indutor $L1$ do inversor cuk integrado	43
Figura 46 – Tensão no capacitor $C1$ do inversor cuk integrado	43
Figura 47 – Detalhe da oscilação na tensão no capacitor $C1$ do inversor cuk integrado	43
Figura 48 – Circuito de MPPT implementado	44
Figura 49 – Circuito do conversor cuk convencional alimentado pelo painel fotovol-	
taico com MPPT	44
Figura 50 – Comportamento do ciclo de trabalho e da potência de saída para alte-	
rações de irradiância para o conversor cuk convencional	45
Figura 51 – Circuito do conversor cuk entrelaçado alimentado pelo painel fotovol-	
taico com MPPT	45
Figura 52 – Comportamento do ciclo de trabalho e da potência de saída para alte-	
rações de irradiância para o conversor cuk entrelaçado	45
Figura 53 – Filtro LCL implementado	46
Figura 54 – Circuito implementado para o inversor cuk convencional bipolar	47
Figura 55 – Sinais de saída obtidos para o inversor cuk convencional bipolar	48
Figura 56 – Espectro de frequências da tensão de saída do inversor cuk convencional	
bipolar	48
Figura 57 – Sinais de entrada e saída para o inversor cuk convencional bipolar com	
variação de irradiância	48
Figura 58 – Circuito implementado para o inversor cuk convencional unipolar	49
Figura 59 – Sinais de saída obtidos para o inversor cuk convencional unipolar	49

unipolar	
variação de irradiância	oolar com
Figura 62 – Circuito implementado para o conversor cuk entrelaçado de d com inversor bipolar	luas fases
Figura 63 – Sinais de saída obtidos para o inversor cuk entrelaçado bipola	
Figura 64 – Espectro de frequências da tensão de saída do inversor cuk en bipolar	trelaçado
Figura 65 – Sinais de entrada e saída para o inversor cuk entrelaçado bip variação de irradiância	
Figura 66 – Circuito implementado para o conversor cuk entrelaçado de do com inversor unipolar	
Figura 67 – Sinais de saída obtidos para o inversor cuk entrelaçado unipo	olar
Figura 68 – Espectro de frequências da tensão de saída do inversor cuk en unipolar	
Figura 69 – Sinais de entrada e saída para o inversor cuk entrelaçado unip	
Figura 70 – Circuito implementado para o inversor cuk integrado bipolar	
Figura 71 – Sinais de saída obtidos para o inversor cuk integrado bipolar	
Figura 72 – Espectro de frequências da tensão de saída do inversor cuk i bipolar	
Figura 73 – Sinais de entrada e saída para o inversor cuk integrado bip variação de irradiância	
Figura 74 – Circuito implementado para o inversor cuk integrado unipola	r
Figura 75 – Sinais de saída obtidos para o inversor cuk integrado unipola	
Figura 76 – Espectro de frequências da tensão de saída do inversor cuk i unipolar	
Figura 77 – Sinais de entrada e saída para o inversor cuk integrado unip	
Figura 78 – Circuito do inversor cuk convencional bipolar implementado	
Figura 79 – Circuito do inversor cuk entrelaçado bipolar implementado .	
Figura 80 – Circuito do inversor cuk integrado bipolar implementado	
Figura 81 – Circuito do inversor cuk convencional unipolar implementado	
Figura 82 – Circuito do inversor cuk entrelaçado unipolar implementado	

Lista de tabelas

Tabela I –	Possíveis estados de operação de um VSI em Ponte Completa	19
Tabela 2 –	Características elétricas em ${\rm STC}^1$ do painel selecionado (Canadian So-	
	lar, 2018)	29
Tabela 3 –	Características de temperatura do painel selecionado (Canadian Solar,	
	2018)	30
Tabela 4 -	Valores medidos para o conversor cuk convencional	34
Tabela 5 -	Valores medidos para o conversor cuk entrelaçado de duas fases	37
Tabela 6 -	Valores obtidos para o inversor cuk convencional bipolar	48
Tabela 7 –	Valores obtidos para o inversor cuk convencional unipolar	49
Tabela 8 -	Valores obtidos para o inversor cuk entrelaçado bipolar	51
Tabela 9 –	Valores obtidos para o inversor cuk entrelaçado unipolar	52
Tabela 10 –	Valores obtidos para o inversor cuk integrado bipolar	54
Tabela 11 –	Valores obtidos para o inversor cuk integrado unipolar	55
Tabela 12 –	Resultados de rendimento e qualidade do sinal obtidos para os conjun-	
	tos finais	58

Sumário

1	INTRODUÇÃO	9
1.1	Motivação	9
1.2	Objetivo	11
1.3	Estrutura Geral do Trabalho	12
2	ESTADO DA ARTE	13
2.1	Modelo do PV	
2.2	Conversores Estáticos CC/CC	14
2.2.1	Conversor Ćuk Convencional	14
2.2.2	Conversor Ćuk Entrelaçado	16
2.3	Conversores CC/CA - Inversores tipo fonte de tensão (VSI)	18
2.3.1	Inversor com Modulação por Largura de Pulso Bipolar	19
2.3.2	Inversor com Modulação por Largura de Pulso Unipolar	21
2.4	Inversor Integrado (CC/CA)	22
2.4.1	Inversor Ćuk Integrado	22
2.5	Rastreador de ponto de máxima potência (MPPT)	23
2.5.1	Método Perturba e Observa (P&O)	24
2.5.2	Método de Condutância Incremental (IC)	25
2.6	Filtro	27
3	DESENVOLVIMENTO DO PROJETO	29
3.1	Painel Fotovoltaico	29
3.2	Projeto dos Conversores CC/CC	32
3.2.1	Dimensionamento do Conversor Ćuk Convencional	32
3.2.1.1	Ciclo de Trabalho	33
3.2.1.2	Indutores	33
3.2.1.3	Capacitores	33
3.2.1.4	Circuito resultante e resultados de simulação	33
3.2.2	Dimensionamento do Conversor Ćuk Entrelaçado	36
3.2.2.1	Ciclo de Trabalho	36
3.2.2.2	Indutores	36
3.2.2.3	Capacitores	36
3.2.2.4	Circuito resultante e resultados de simulação	37
3.3	Projeto dos Conversores CC/CA	40
3.3.1	Inversor tipo fonte de tensão (VSI) Bipolar	40
	Inversor tipo fonte de tensão (<i>VSI</i>) Unipolar	41

8 SUMÁRIO

3.3.3	Inversor Ćuk Integrado	42
3.3.3.1	Circuito Resultante e resultados de simulação	42
3.4	Rastreador de ponto de máxima potência (MPPT)	44
3.5	Filtro	45
3.3	ritto	43
4	IMPLEMENTAÇÃO DOS CONVERSORES FINAIS	47
4.0.1	Conjuntos baseados no conversor cuk convencional	47
4.0.1.1	Inversor cuk convencional bipolar	47
4.0.1.2	Inversor cuk convencional unipolar	49
4.0.2	Conjuntos baseados no conversor cuk entrelaçado de duas fases	50
4.0.2.1	Inversor cuk entrelaçado bipolar	50
4.0.2.2	Inversor cuk entrelaçado unipolar	52
4.0.3	Conjuntos baseados no inversor cuk integrado	53
4.0.3.1	Inversor cuk integrado bipolar	53
4.0.3.2	Inversor cuk integrado unipolar	55
5	ANÁLISE DOS RESULTADOS OBTIDOS	57
6	CONCLUSÃO	60
	REFERÊNCIAS	61
	ANEXOS	63
	ANEXO A – CÓDIGO DA IMPLEMENTAÇÃO DE MPPT UTILIZADO	64
	ANEXO B – CIRCUITOS DOS INVERSORES IMPLEMENTADOS NO PSIM	65

1 Introdução

1.1 Motivação

A geração de energia elétrica no Brasil é fortemente caracterizada por um modelo geração centralizada e faz uso do conceito de economias de escala (Machado; de Sousa; Hewings, 2016). Nesse modelo, plantas de grande porte geram toda a energia, que é transmitida e distribuída aos consumidores, ou seja, a energia é gerada de forma centralizada e posteriormente entregue ao destino final. Contudo, além dos riscos e danos ambientais ocasionados por tais centrais geradoras, com foco no cenário brasileiro para a área alagada pelas usinas hidrelétricas, principal fonte de energia do país, está associada à esta estrutura a necessidade de altos investimentos relacionados à distribuição da energia gerada, tanto no condicionamento com a construção e manutenção de subestações quanto na transmissão.

Nesse cenário, a geração distribuída de energia elétrica (GD) tem se mostrado cada vez mais uma alternativa viável. Uma rede de geração distribuída pode ser definida como um conjunto de fontes de energia conectadas diretamente à rede de distribuição ou ao cliente (Ackermann; Söder, 2001).

Segundo a **ANEEL** (Agência Nacional de Energia Elétrica), desde 2012, com a vigência da solução normativa Resolução Normativa ANEEL nº 482/2012, é permitido ao consumidor brasileiro gerar sua própria energia elétrica, se esta for proveniente de fontes renováveis ou cogeração qualificada. Uma maior adesão da população à GD tem como impactos esperados, além da diversificação da matriz energética nacional, a redução do carregamento e das perdas nas redes, o adiamento de investimentos em expansão e distribuição e a redução do impacto ambiental (ANEEL, 2018).

A principal vantagem na adesão ao sistema distribuído para o consumidor final é a capacidade de fornecer seu excedente de produção à rede local, de modo a obter uma redução ainda maior do valor pago à concessionária de energia no fim de cada mês.

No conjunto de fontes renováveis, destaca-se a energia fotovoltaica, que converte a energia de raios solares em eletricidade através de painéis fotovoltaicos (PV). Além de utilizar recurso abundante e não poluir durante a geração, sistemas geradores fotovoltaicos necessitam de pouca manutenção e utilizam pouco espaço, podendo ser instalados nos tetos dos imóveis. Apesar disso, o custo de instalação destes geradores ainda é elevado, portanto, é necessário maximizar a eficiência do sistema.

Um painel fotovoltaico apresenta uma resposta não linear à incidência solar sobre sua área e, para que seja extraído deste a máxima potência possível, deve-se utilizar

algoritmos de rastreamento de ponto de máxima potência (MPPT). Aliados a estes algoritmos também se fazem necessários inversores de alto rendimento, responsáveis por condicionar a tensão contínua fornecida pelos painéis em tensão alternada que pode ser injetada diretamente na rede elétrica.

Por serem o elo de ligação entre o painel fotovoltaico e o sistema elétrico residencial e da concessionária, em sistemas on-grid além de representarem uma parcela considerável do custo total da implantação do gerador os inversores apresentam grande impacto na eficiência final do sistema de geração e, portanto, faz-se pertinente uma análise comparativa de custo e eficiência destes.

A tensão disponibilizada por painéis fotovoltaicos é geralmente de baixa amplitude, sendo necessário o aumento da tensão através da associação de painéis série-paralelo. Além disso, pode ser utilizado um conversor CC-CC elevador de tensão anterior à conversão do sinal contínuo em alternado. A utilização de um conversor subidor de tensão pode ser evitado em casos nos quais vários painéis são conectados em série de modo que a tensão de saída do conjunto seja maior que a tensão de pico da rede. Esta configuração é, entretanto, pouco usual em sistemas de baixa potência devido à necessidade de se garantir uma tensão mínima fornecida pelos painéis. Sendo assim, as topologias mais comuns de inversores para sistemas fotovoltaicos utilizam um estágio elevador de tensão e um estágio inversor conectados em série (Junior et al., 2011).

Com o intuito de reduzir o custo e o espaço ocupado por inversores responsáveis por lidar com a energia gerada por uma série de painéis fotovoltaicos, vem sido estudada a utilização de microinversores (Bouzguenda et al., 2011), inversores de menor potência, montados atrás de cada painel, pelo qual são responsáveis pela otimização da geração e pelo condicionamento da energia gerada. A principal vantagem na utilização de microinversores está no fato de estes isolarem os efeitos de sombreamento entre painéis (Nezamuddin; Crespo; dos Santos, 2016).

Os microinversores também são compostos, em geral, por dois estágios. O primeiro responsável por elevar a tensão fornecida pelo painel, além de sua operação no ponto de máxima potência e o segundo responsável por gerar a corrente alternada de modo a assegurar a correta conexão com a rede elétrica (Nezamuddin; Crespo; dos Santos, 2016). Podem ser utilizadas, também, topologias integradas que buscam a simplificação e redução de componentes do circuito através da conexão direta entre os estágios (Luigi et al., 2010) (Junior et al., 2011).

É proposto nesse trabalho uma análise de diferentes implementações de microinversores para sistemas fotovoltaicos baseadas na estrutura CC-CC Ćuk. Serão estudados inversores com conversores Ćuk, Ćuk entrelaçado e o inversor Ćuk integrado-, esse último proposto por (Luigi et al., 2010).

1.2. Objetivo

A utilização de conversores Ćuk se faz interessante devido ao fato de estes apresentam comportamento de fonte de corrente (Junior et al., 2011), o que torna mais simples sua a conexão de sua saída à rede elétrica, que apresenta o comportamento de uma fonte de tensão, já que devem ser mantidos os níveis de tensão independente da corrente drenada. Isso elimina a necessidade de impedâncias em série entre o inversor e a rede elétrica, utilizadas para limitar a corrente de saída do inversor, as quais são necessárias quando este apresenta características de fonte de tensão. Além disso, o conversor Ćuk apresenta baixo ripple de corrente, o que resulta em baixas perdas e melhor eficiência na conversão (Shawky; Ahmed; Orabi, 2016).

A fonte de energia utilizada será um painel fotovoltaico com potência de aproximadamente 300W, será escolhido e implementado um algoritmo de MPPT e feita, também, uma análise da distorção harmônica injetada para cada implementação.

Devido à limitação de tempo para o desenvolvimento do estudo a atenção está voltada ao inversor, tanto em relação à sua eficiência quanto à qualidade do sinal obtido em sua saída. Dessa forma, sistemas auxiliares importantes para o funcionamento de um inversor comercial não serão implementados.

1.2 Objetivo

O objetivo principal deste TCC é o estudo, projeto, simulação e análise de um sistema de geração de energia elétrica composto por painel fotovoltaico e conversores CC-CC e CC-CA.

As implementações que serão analisadas estão listadas a seguir e serão combinadas com inversores em ponte completa bipolar e unipolar.

- Conversor Ćuk convencional
- Conversor Ćuk Entrelaçado de duas fases
- Inversor Ćuk integrado

Deseja-se avaliar o funcionamento, rendimento e qualidade de sinal da saída desses sistemas para verificar, inicialmente, a viabilidade da implementação de microinversores comerciais baseados no conversor cuk. Dessa forma, nesse primeiro estudo, não são implementados controles contra perturbação no sistema, considerando as simulações como sendo ambientes controlados.

1.3 Estrutura Geral do Trabalho

O capítulo 1 introduz o tema e o objeto de estudo, com uma breve explicação e contextualização do problema. No capítulo 2 é apresentado o estado da arte e o embasamento teórico necessário para o desenvolvimento do trabalho.

No capítulo 3 é descrito o desenvolvimento das etapas do projeto, desde a escolha do painel fotovoltaico utilizado até o dimensionamento do filtro de saída. O capítulo 4 é destinado à exposição dos conjuntos finais, compostos pela interconexão dos componentes projetados no capitulo anterior. No quinto capítulo são discutidos os resultados apresentados no capítulo anterior, enquanto no sexto e último capítulo são apresentadas as conclusões obtidas pelo estudo.

2 Estado da Arte

2.1 Modelo do PV

O circuito equivalente de células fotovoltaicas pode ser representado por uma fonte de corrente, como pode ser visto na figura 1. Este modelo é amplamente aceito e utilizado em trabalhos relacionados a energia fotovoltaica e seu comportamento é descrito pelas equações 2.1 a 2.6, nas quais i_{pv} é a corrente e V a tensão de saída da célula solar, respectivamente. I_{ph} é a fotocorrente e I_r a corrente reversa de saturação da célula, R_s e R_p são as resistências série e shunt, q é a carga do elétron e η é o fator de idealidade da junção p-n. k é a constante de Boltzmann, T representa a temperatura ambiente, em Kelvins e G representa a densidade de potência da irradiação solar. T_r é a temperatura nominal, em Kelvins (298K), I_{sc} é a corrente de curto circuito em condições padrão de teste(STC) ($T_r = 25^oC$ e $G = 1kW/m^2$), α é o coeficiente de temperatura, I_rr é a corrente de saturação reversa em STC e E_g é o gap de energia entre as bandas (1.1eV). V_{oc} é a tensão de circuito aberto das células, N_s é o número de células por painel e M_s é o número de painéis conectados em série (de Oliveira et al., 2016).

$$i_{pv} = I_{ph} - I_r \left[e^{q((V + i_{pv}R_s)/\eta kT)} - 1 \right] - \frac{V + i_{pv}R_s}{R_p}$$
 (2.1)

$$I_{ph} = [I_{SC} + \alpha (T - T_r)] \frac{G}{1000}$$
 (2.2)

$$I_r = I_{rr} \left(\frac{T}{T_r}\right)^3 e^{[(qE_g/\eta k)((1/T_r) - (1/T))]}$$
(2.3)

$$I_{rr} = \frac{I_{SC} - (V_{oc}/R_p)}{e^{(qV_{oc}/\eta kT_r)} - 1}$$
(2.4)

$$V_{nv} = V N_s M_s \tag{2.5}$$

$$V_{ochv} = V_{oc} N_s M_s \tag{2.6}$$

Figura 1 – Circuito Equivalente de uma Célula Fotovoltaica (de Oliveira et al., 2016)

A partir das equações 2.1, 2.2, 2.3 e 2.4 é possível inferir a existência das relações entre a corrente de saída do painel fotovoltaico, sua temperatura e a irradiação solar.

De fato, quanto maior a temperatura da célula, menor sua tensão de circuito aberto e, portanto, mais rápida sua variação de corrente. Já em relação à irradiação solar, quanto menor a magnitude desta, menor a corrente máxima da célula, relação clara ao analisar a equação 2.2.

Na figura 2 são apresentadas curvas I-V para diferentes valores de irradiação solar e temperatura de painel, para servirem de demonstração da influência dessas variáveis no comportamento do painel.

Figura 2 – Curvas IxV de painel fotovoltaico para diferentes (a) irradiâncias e (b) temperaturas

2.2 Conversores Estáticos CC/CC

2.2.1 Conversor Ćuk Convencional

Um conversor Ćuk é um conversor CC-CC baseado na transferência de energia capacitiva que é capaz de fornecer tensão maior ou menor que sua tensão de entrada, com polaridade invertida. Seu circuito pode ser visto na figura 3.

Figura 3 – Conversor Ćuk convencional (Czarkowski, 2001)

Quando a chave S está fechada (ON), os indutores L1 e L2 são carregados pela tensão de entrada e capacitor C1, respectivamente. O capacitor C1 polariza inversamente o diodo D e descarrega fornecendo energia para a carga R, o capacitor de filtro C e o indutor de filtro L2. Com o transistor representado pela chave S em estado aberto (OFF),

o indutor de entrada L1 carrega o capacitor de transferência de energia C1. O diodo D conduz as correntes de ambos L1 e L2 e, portanto, o indutor L2 descarrega fornecendo energia à carga (Czarkowski, 2001) (Joseph; Daniel; Unnikrishnan, 2015).

Figura 4 – Sinais de entrada, saída e tensões no transistor e no diodo do conversor cuk convencional

Figura 5 – Tensão de ripple de saída do conversor cuk convencional

A função de transferência CC desse conversor é dada pela equação 2.7, na qual d é o ciclo de trabalho ($duty\ cycle$), V_s a tensão de entrada e V_o a tensão de saída (Czarkowski, 2001) (Joseph; Daniel; Unnikrishnan, 2018).

$$M_v = \frac{V_o}{V_s} = -\frac{d}{1 - d}$$
 (2.7)

O conversor Ćuk opera em modo de condução contínua para $L1 > L_{b1}$ e $L2 > L_{b2}$ pelas equações 2.8 e 2.9.

O capacitor de filtro C mínimo para uma certa tensão de ripple V_r pode ser encontrado utilizando a equação 2.10. Já a tensão de ripple no capacitor C1 pode ser estimada

pela equação 2.11.

$$L_{b1} = \frac{(1-d)R}{2df} (2.8)$$

$$L_{b2} = \frac{(1-d)R}{2f} \tag{2.9}$$

$$C_{min} = \frac{(1-d)V_o}{8V_r L_2 f^2} \tag{2.10}$$

$$V_{r_{C1}} = \frac{dV_o}{C_1 R f} (2.11)$$

Nas equações 2.8 a 2.10 f é a frequência de chaveamento do transistor S. A figura 4 demonstra os sinais de tensão e corrente de entrada e saída do conversor, em estado estacionário, além da tensão no transistor e no diodo do circuito. Já a figura 5 demonstra a tensão de ripple na saída do conversor.

2.2.2 Conversor Ćuk Entrelaçado

Um conversor cuk entrelaçado consiste de dois conversores cuk convencionais que operam com pulsos defasados nos transistores. A conexão é feita através indutores de saída, que são conectados junto ao capacitor de saída, comum entre todas as fases. A figura 6 apresenta o circuito de um conversor cuk entrelaçado de duas fases. O objetivo principal dessa implementação reduzir o ripple de tensão na saída.

Segundo Joseph, Daniel e Unnikrishnan (2015), essa topologia tem o intuito de reduzir o ripple de corrente na entrada e reduzir o stress de chaveamento, sem sacrificar sua eficiência. Para tal, os transistores são ligados um por vez, por um período de $T_{on}/2$, e somente após passado um período $T_{off}/2$ do desligamento do transistor anterior. Isso é feito utilizando-se a técnica de modulação por largura de pulso com deslocamento de fase, PSPWM, do inglês $Phase-Shifted\ Pulse\ Width\ Modulation$.

O funcionamento do conversor cuk entrelaçado de duas fases pode ser descrito em 3 modos (Joseph; Daniel; Unnikrishnan, 2015):

- Modo 1 $(t_0$ - $t_1)$: S_1 ligado e S_2 desligado;
- Modo 2 $(t_1$ - t_2 e t_3 - t_4): S_1 e S_2 desligados;
- Modo 3 $(t_2$ - $t_3)$: S_1 desligado e S_2 ligado.

No modo 1, ocorre a carga do indutor L_{1a} e a descarga do indutor L_{1b} , que fornece energia ao capacitor C_2 . Enquanto isso, o capacitor C_1 para a carga.

Assumindo uma variação linear na corrente dos indutores, a corrente de ripple para os indutores nesse modo pode ser calculada com as equações 2.12 a 2.14, nas quais

 t_1 é o tempo em que o transistor S_1 está ligado, V_d a tensão de entrada e V_{C_1} e V_{C_2} a tensão nos capacitores C_1 e C_2 , respectivamente.

$$\Delta I_{L_{1a}} = \frac{t_1 V_d}{L_{1a}} \tag{2.12}$$

$$\Delta I_{L_{1a}} = \frac{t_1 V_d}{L_{1a}}$$

$$\Delta I_{L_{1b}} = \frac{t_1 (V_{C_2} - V_d)}{L_{1b}}$$

$$\Delta I_{L_2} = \frac{t_1 (V_{C_1} + V_o)}{L_2}$$
(2.12)
$$(2.13)$$

$$\Delta I_{L_2} = \frac{t_1 \left(V_{C_1} + V_o \right)}{L_2} \tag{2.14}$$

Figura 6 – Conversor Ćuk entrelaçado de duas fases (Joseph; Daniel; Unnikrishnan, 2015)

Figura 7 – Sinais de entrada, saída e tensões no transistor e no diodo do conversor cuk entrelaçado de duas fases

Figura 8 – Tensão de ripple de saída do conversor cuk entrelaçado de duas fases

Quando ambos os transistores estão desligados, ou seja, no modo 2, os indutores de entrada L_{1a} e L_{1b} são descarregados, fornecendo energia aos capacitores C_1 e C_2 , respectivamente, de forma que, entre t_1 e t_2 , C_1 carrega a energia que foi fornecida à carga no modo anterior, enquanto que entre t_3 e t_4 , C_2 o faz. Além disso, os indutores L_2 e L_3 fornecem energia à carga e, portanto são descarregados.

Os ripples de corrente para os indutores nesse modo são encontrados utilizando as equações 2.15 a 2.17

$$\Delta I_{L_{1a}} = \frac{t_2 (V_{C_1} - V_d)}{L_{1a}}$$

$$\Delta I_{L_{1b}} = \frac{t_2 (V_{C_2} - V_d)}{L_{1b}}$$

$$\Delta I_{L_2} = -\frac{t_2 V_o}{L_2}$$
(2.15)
$$(2.16)$$

$$\Delta I_{L_{1b}} = \frac{t_2 \left(V_{C_2} - V_d \right)}{L_{1b}} \tag{2.16}$$

$$\Delta I_{L_2} = -\frac{t_2 V_o}{L_2} \tag{2.17}$$

No terceiro modo, com S_2 ligado, enquanto o indutor L_{1b} continua sendo carregado, o indutor L_{1a} é descarregado, fornecendo energia ao capacitor C_1 . Por sua vez, o capacitor C_2 fornece energia à carga e aos componentes L_3 , C_o .

Através das equações 2.12, 2.15,2.14 e 2.17, tem-se a equação da tensão de saída (2.18), onde $d = T_{on}/T$.

$$V_o = -\frac{d \cdot V_d}{1 - d} \tag{2.18}$$

Na figura 7 são apresentadas as formas de onda dos sinais de entrada e saída do conversor cuk entrelaçado, além das tensões sobre os transistores e diodos de cada uma das fases, através dos quais é possível perceber o defasamento no comando das chaves. Já a figura 8 demonstra a tensão de ripple obtida pela simulação dessa implementação, que equivale a 41% do valor obtido para a simulação do conversor cuk convencional (figura 5).

2.3 Conversores CC/CA - Inversores tipo fonte de tensão (VSI)

O inversor de tensão é responsável por converter uma tensão contínua em outra alternada, com frequência e amplitude bem definidas. A topologia de um inversor tipo fonte de tensão, *VSI*, do inglês *Voltage Source Inverter* monofásico em ponte completa pode ser vista na figura 9.

É facilmente perceptível que, caso ambos um transistores de uma das pernas do circuito estejam em condução simultaneamente haverá um curto-circuito na tensão de entrada v_i , que corresponde á tensão de barramento CC que alimenta o circuito. Dessa forma deve-se sempre garantir que apenas um dos transistores em cada perna conduza em um certo período de tempo.

No total o circuito apresenta cinco possíveis estados de operação, sendo quatro com tensão de saída definida(estados 1 a 4) e um com tensão indefinida(estado 5). O estados e sua tensão de saída correspondente são (Espinoza, 2001):

Estado	S_{1+}	S_{1-}	S_{2+}	S_{2-}	Tensão de Saída
1	Ligado	Desligado	Desligado	Ligado	v_i
2	Desligado	Ligado	Ligado	Desligado	$-v_i$
3	Ligado	Desligado	Ligado	Desligado	0
4	Desligado	Ligado	Desligado	Ligado	0
5	Desligado	Desligado	Desligado	Desligado	v_i ou $-v_i$

Tabela 1 – Possíveis estados de operação de um VSI em Ponte Completa

Figura 9 – Inversor VSI monofásico em ponte completa (Espinoza, 2001)

Como um inversor deve ser capaz de fornecer tensão com amplitude bem definida, o estado 5 deve ser evitado. Para isso, a modulação utilizada deve garantir que a todo momento um, e apenas um, dos transistores de cada perna esteja conduzindo corrente. Várias técnicas de modulação podem ser aplicadas a inversores VSI de ponte completa, entre elas as de PWM bipolar e unipolar(Espinoza, 2001).

2.3.1 Inversor com Modulação por Largura de Pulso Bipolar

No inversor com PWM bipolar apenas os estados 1 e 2 da tabela 1 são utilizados para gerar o sinal de saída, de modo que este apresenta apenas dois valores, v_i e $-v_i$.

Deseja-se que a tensão alternada na saída siga uma forma de onda que, para este trabalho é senoidal. A técnica de PWM baseada em sinal de portadora atende a essa questão ao definir os estados dos transistores a partir da comparação entre um sinal que corresponde à saída desejada v_m , chamado de modulante, e uma forma de onda triangular v_p , chamada de portadora.

Define-se que, enquanto o sinal modulante é maior que a portadora, o estado 1 é acionado, ou seja, os transistores S_{1_+} e S_{2_-} entram em condução, enquanto so transistores S_{1_-} e S_{2_+} são desligados. O estado 2 é acionado quando o sinal de portadora apresenta maior tensão que o sinal modulante.

O sinal obtido na saída de um inversor que segue esta técnica é, basicamente, uma forma de onda senoidal que apresenta amplitude fundamental \hat{v}_o a qual satisfaz a expressão 2.19, onde m_a é o índice de modulação, ou razão de modulação de amplitude, representada pela equação 2.20 (Espinoza, 2001).

$$\hat{v}_o = v_{ab} = v_i m_a \tag{2.19}$$

$$m_a = \frac{\hat{v}_m}{\hat{v}_p} \tag{2.20}$$

Figura 10 – Formas de onda do inversor VSI com PWM bipolar

A figura 11 demonstra o conteúdo harmônico da tensão de saída desse inversor para uma frequência de chaveamento de 1kHz. É possível perceber a presença dos harmônicos pares e ímpares dessa frequência, de forma que a distorção harmônica total da tensão de saída é de 186%, considerando o valor esperado como uma onda senoidal de 60Hz.

Figura 11 – Conteúdo harmônico da tensão de saída do inversor VSI Bipolar

2.3.2 Inversor com Modulação por Largura de Pulso Unipolar

Já em um inversor com PWM unipolar apenas os estados 1, 2, 3 e 4 da tabela 1 são utilizados para gerar o sinal de saída. Dessa forma a tensão alternada obtida apresenta três possíveis valores: 0, v_i e $-v_i$.

Neste tipo de modulação são utilizados dois sinais modulantes v_m e $-v_m$. Cada modulante é responsável pela tensão em um dos braços do inversor, em relação ao ponto neutro (N), de modo que v_m controla a tensão v_{aN} e $-v_m$ é responsável por v_{bN} . A amplitude da tensão de saída para este método é expressa pela equação 2.23, encontrada pela combinação das equações 2.21 e 2.21.

$$v_{bN} = -v_{aN} \tag{2.21}$$

$$v_o = v_{aN} - v_{bN} \tag{2.22}$$

$$\hat{v}_o = 2 \cdot \hat{v}_{aN} = v_i m_a \tag{2.23}$$

Segundo Espinoza (2001), devido ás tensões de fase $(V_{aN} e v_{bN})$ serem idênticas e defasadas de 180°, a tensão de saída não apresenta harmônicos pares, presentes em inversores que utilizam o método de modulação bipolar.

Essa característica permite que inversores que utilizam a modulação unipolar utilizem filtros menores para obter tensão e corrente de alta qualidade, utilizando a mesma frequência de chaveamento que inversores com modulação bipolar(Espinoza, 2001).

A figura 13 demonstra o conteúdo harmônico da tensão de saída desse inversor para uma frequência de chaveamento de 1kHz. É possível perceber a presença apenas dos harmônicos pares dessa frequência, de forma que a distorção harmônica total da tensão de saída é de 95%, considerando o valor esperado como uma onda senoidal de 60Hz.

Figura 12 – Formas de onda do inversor VSI com PWM unipolar

Quando comparada ao valor encontrado para o inversor VSI bipolar, apresentado na figura 11, a distorção harmônica apresentada para o inversor com controle unipolar equivale a, aproximadamente, metade da distorção harmônica obtida pelo inversor anterior.

Figura 13 – Conteúdo harmônico da tensão de saída do inversor VSI Unipolar

2.4 Inversor Integrado (CC/CA)

2.4.1 Inversor Ćuk Integrado

A integração de estágios consiste na união dos estágios subidor de tensão(CC-CA) e inversor (CC-CA) em um único estágio CC-CA, com o circuito mais simples e com menor número componentes.

Segundo proposto por Luigi et al. (2010), a primeira simplificação do conversor cuk integrado ao inversor de tensão em ponte completa é a retirada do capacitor e do indutor de filtro na saída no estágio elevador de tensão, ou seja, no barramento CC. Dessa forma, tensão e corrente do primeiro estágio são entregues diretamente ao inversor. A segunda, e última simplificação possível nessa integração é a retirada do diodo do conversor cuk, uma vez que os diodos anti-paralelos do inversor são capazes de efetuar sua função.

Na figura 14 é possível ver o circuito final resultante das simplificações descritas, no qual os componentes L_b , S_b e C_b advém de um conversor cuk convencional.

Figura 14 – Inversor Ćuk Integrado (Luigi et al., 2010)

A figura 15 apresenta os sinais e entrada e saída para um inversor cuk integrado com controle PWM unipolar, com filtro de saída indutivo. É possível perceber que a tensão de entrada é constante enquanto a corrente varia com frequência de aproximadamente duas vezes a frequência da saída.

Figura 15 – Sinais de entrada e saída do inversor cuk integrado em regime permanente

2.5 Rastreador de ponto de máxima potência (MPPT)

O ponto de máxima potência de sistema de geração solar dependem da irradiação solar e da temperatura das células geradoras e, portanto, o rastreamento deste ponto

de operação deve ser feito de forma constante. Para esse controle é geralmente utilizado um rastreador de ponto de máxima potência, *MPPT*, do inglês *Maximum Power Point Tracker* (Beriber; Talha, 2013).

Este dispositivo monitora tensão e corrente fornecidas pelo painel fotovoltaico para determinar o ponto de operação no qual este fornecerá a máxima potência disponível, de modo a aumentar, desta forma, a eficiência do painel. Existem vários algoritmos de controle do ponto de máxima potência, e a seguir serão tratados dois, o método P&O (perturba e observa) e o método da condutância incremental (IC). Estes métodos são amplamente utilizados devido, principalmente, a facilidade de implementação (Jayakumaran et al., 2018)(Beriber; Talha, 2013).

A figura 18 demonstra a irradiância (S), a potência fornecida pelo painel e a potência de saída de um conversor cuk convencional com a utilização de um MPPT utilizando o método de perturba e observa. O possível perceber a acomodação do sistema para obter sempre a máxima potência disponível no painel.

2.5.1 Método Perturba e Observa (P&O)

Neste método, é inserida na tensão de operação do painel fotovoltaico uma pequena perturbação, que pode ser positiva ou negativa, de acordo com a necessidade. Caso após a perturbação a potência fornecida aumenta, então é aplicada outra perturbação no mesmo sentido da anterior. Quando a potência reduz após a alteração da tensão a perturbação é invertida. Esse processo é repetido periodicamente até encontrar o ponto de operação desejado(Beriber; Talha, 2013).

A constante perturbação da tensão faz com que a potência fornecida pelo painel varie. Desta forma o ponto de máxima potência nunca é completamente atingido, já que o sistema fica oscilando em torno deste. Para reduzir a influência dessa oscilação, a amplitude da perturbação é mantida sempre baixa (Jayakumaran et al., 2018).

Como já dito, uma das vantagens deste método de MPPT está na simplicidade de sua implementação mas, além disso, apresenta alta eficiência para irradiância solar alta e constante. Já entre as desvantagens estão a possibilidade de falha para variações abruptas de irradiância e o fato de o ponto de máxima potência não ser devidamente atingido, principalmente(Jayakumaran et al., 2018).

Um fluxograma que representa o funcionamento do algoritmo P&O pode ser visto na figura 16.

Figura 16 – Fluxograma do Método P&O, baseado no diagrama de Beriber e Talha (2013)

2.5.2 Método de Condutância Incremental (IC)

Este método se baseia no princípio de que a inclinação da potência, em relação à tensão é zero no ponto de máxima potência, positiva à esquerda e negativa à direita deste. Além disso, a perturbação no ciclo de trabalho pode ser parada quando o ponto de máxima potência é encontrado. Enquanto esta condição não é satisfeita a direção da perturbação é definida pela relação entre $\frac{\Delta I}{\Delta V}$ e $\frac{I}{V}$ (Beriber; Talha, 2013)(Jayakumaran et al., 2018).

Dessa forma, quando a equação 2.25 é satisfeita, a perturbação seguinte é positiva e, para a equação 2.26, negativa.

$$\frac{\Delta I}{\Delta V} + \frac{I}{V} = 0 \qquad \text{No ponto de máxima potência}$$
 (2.24)

$$\frac{\Delta I}{\Delta V} + \frac{I}{V} > 0$$
 Esquerda do ponto de máxima potência (2.25)

$$\frac{\Delta I}{\Delta V} + \frac{I}{V} < 0 \qquad \text{Direita do ponto de máxima potência}$$
 (2.26)

Devido a ruído e erros de medição, a situação da equação 2.24 é raramente satisfeita e, portanto, utiliza-se de uma tolerância ϵ tal qual, se o módulo da soma descrita na equação 2.24 for menor que o valor de ϵ , é definido que o ponto de máxima potência foi encontrado e as perturbações são interrompidas(Beriber; Talha, 2013).

A principal vantagem desse método em relação ao P&O está na maior tolerância a variações rápidas irradiação solar, além do fato de ser capaz de interromper as perturbações após o ponto de operação ter sido definido. Entretanto, o custo e a complexidade do sistema são suas principais desvantagens(Jayakumaran et al., 2018).

Um fluxograma que representa o funcionamento do algoritmo de condutância incremental pode ser visto na figura 17.

Figura 17 – Fluxograma do método de indutância incremental (Beriber; Talha, 2013)

Figura 18 – Potências de entrada e saída de um conversor cuk com MPPT P&O

2.6. 27 Filtro

2.6 **Filtro**

Para conectar o sistema a rede elétrica é necessário filtrar a tensão gerada a fim para reduzir os harmônicos presentes e fazer com que o sinal se assemelhe à uma senoide, e não a um trem de pulsos. Esse processo é feito com a inclusão de um filtro passivo entre o inversor e a rede da concessionária de energia.

Podem ser empregados três diferentes tipos de filtros L, LC e LCL. Destes, o último é mais utilizado atualmente devido a sua maior eficiência e ao fato de minimizar a distorção da corrente injetada na rede elétrica (Mahamat et al., 2017) (Reznik et al., 2014).

A topologia do filtro LCL pode ser vista na figura 19.

Figura 19 – Topologia do filtro LCL monofásico (Mahamat et al., 2017)

Para o projeto do filtro LCL, inicialmente é necessário encontrar os valores de impedância e capacitância base, Z_b e C_b , de acordo com as equações 2.27 e 2.28 nas quais P_n é a potência nominal do sistema, V_g a tensão nominal da rede, e f a frequência da rede elétrica.

$$Z_b = \frac{V_g^2}{P_n} \tag{2.27}$$

$$Z_b = \frac{V_g^2}{P_n}$$

$$C_b = \frac{1}{2\pi f Z_b}$$

$$(2.27)$$

Os indutores L_1 e L_2 podem ser encontrados a partir das equações 2.29 e 2.30, respectivamente. Nessas equações V_{CC} é a tensão do barramento CC ao qual o inversor está conectado, f_{sw} é a frequência de chaveamento do inversor e $\Delta I_{L1_{max}}$ a variação máxima de corrente desejada no indutor, k_a é a atenuação desejada e C o valor do capacitor, definido pela equação 2.31.

$$L_1 = \frac{V_{CC}}{6f_{sw}\Delta I_{L1_{max}}} \tag{2.29}$$

$$L_{1} = \frac{V_{CC}}{6f_{sw}\Delta I_{L1_{max}}}$$

$$L_{2} = \frac{\sqrt{\frac{1}{k_{a}^{2}} + 1}}{(2\pi f_{sw})^{2} C}$$
(2.29)
$$(2.30)$$

$$C = kC_b \tag{2.31}$$

A frequência de ressonância do filtro implica diretamente no valor do resistor de ressonância, R_f e pode ser calculada a partir dos valores de L_1 , L_2 e C, como demonstra a equação 2.32. Além disso, caso essa frequência não satisfaça a equação 2.33, o filtro deve ser recalculado para outro valor de atenuação.

$$f_{res} = \frac{1}{2\pi} \sqrt{\frac{L_1 + L_2}{L_1 L_2 C}} \tag{2.32}$$

$$10f_g < f_{res} < 0, 5f_{sw} (2.33)$$

O resistor R_f é responsável por atenuar parte da oscilação de tensão proveniente do chaveamento, a fim de evitar a ressonância e deve ter o valor equivalente a um terço da impedância do capacitor C na frequência de ressonância(Reznik et al., 2014), assim como demonstra a equação 2.34.

$$R_f = \frac{1}{6\pi f_{res}C} \tag{2.34}$$

3 Desenvolvimento do Projeto

Para o desenvolvimento do projeto, primeiramente é necessário definir a potência a ser utilizada no sistema. Após isso, é escolhido um painel fotovoltaico comercial para que seus parâmetros sejam utilizados no modelo utilizado nas simulações. Com as características do painel é possível projetar os conversores CC/CC e, com estes, os inversores responsáveis pela conversão CC/CA.

Com os inversores funcionais, são projetados os sistemas de rastreamento de máxima potência, responsável por otimizar a potência obtida do painel fotovoltaico e o filtro LCL, que condiciona o sinal de onda quadradas obtido pelos inversores a uma senoide que pode ser conectada à rede elétrica.

Como no projeto estão em estudos microinversores os quais são conectados a um único painel fotovoltaico, foi escolhido um painel de potência média no mercado, de 300W. Os conversores serão baseados no conversor cuk, sendo estes o conversor cuk convencional e o conversor cuk entrelaçado de duas fases, além do inversor cuk integrado, composto por uma simplificação do conversor cuk convencional conectado a um inversor.

3.1 Painel Fotovoltaico

Para o painel fotovoltaico será utilizado o modelo DYMOND CS6K-300, da fabricante Canadian Solar, constituído de 60 células solares de silício monocristalino. Suas características elétricas, sob condições padronizadas de teste, STC^{-1} , do inglês Standard Test Conditions e de temperatura estão dispostas nas tabelas 2 e 3, respectivamente.

O comportamento da curva IxV do modelo para diferentes temperaturas e irradiância está presente na figura 20.

	CS6K 300
Potência máx. nominal (Pmax)	300W
Tensão de operação ótima (Vmp)	32,5V
Corrente de operação ótima (Imp)	9,24A
Tensão de circuito aberto (Voc)	39,7V
Corrente de curto circuito (Isc)	9,83V
Eficiência do módulo	18,33%
Temperatura de operação	$-40^{\circ}C \sim +85^{\circ}C$
Tensão máx. do sistema	1500 (IEC) ou 1000 V (IEC/UL)
Max. Series Fuse Rating 15 A	15A
Classificação de operação	Classe A
Tolerância de potência	$0 \sim +5W$

Tabela 2 – Características elétricas em STC¹ do painel selecionado (Canadian Solar, 2018)

 $^{^{1}}$ Irradiância de $1000W/m^{2}$, temperatura do módulo de $25^{o}C$ e massa de ar de 1, 5

Coeficiente de Temperatura (Pmax)	$-0.39 \%/^{o}C$
Coeficiente de Temperatura (Voc)	$-0.29 \%/^{o}C$
Coeficiente de Temperatura (Isc)	$0,05 \%/^{o}C$
Temperatura de Operação Nominal do Módulo (NMOT)	$42 \pm 3 \ ^{o}C$

Tabela 3 – Características de temperatura do painel selecionado (Canadian Solar, 2018)

Figura 20 – Curvas IxV do painel selecionado (Canadian Solar, 2018)

Para modelar o comportamento do painel no PSIM, foi seguido o procedimento indicado no tutorial (POWERSIM, 20-?). Utiliza-se, portanto, informações das presentes nas tabelas 2 e 3, já da figura 20 é extraída a inclinação $\frac{dV}{dI}$ na tensão de circuito aberto V_{OC} , que é de -0, 4V/A.

Nas figuras 21 e 22 são mostrados os parâmetros e as características, respectivamente, do módulo fotovoltaico utilizado no PSIM.

3.1. Painel Fotovoltaico 31

Figura 21 – Parâmetros do módulo fotovoltaico no PSIM

Figura 22 – Características do módulo fotovoltaico no PSIM

O circuito que representa o painel fotovoltaico pode ser visto na figura 23, na qual Irrad é a irradiância, Temp a temperatura e V_{out} a tensão de saída.

Figura 23 – Circuito do módulo fotovoltaico no PSIM

3.2 Projeto dos Conversores CC/CC

Apesar de mais complexos e caros que conversores CC/CC básicos, conversores cuk apresentam melhores características de corrente, tanto de entrada quanto de saída que estas topologias (K.D; Daniel; Unnikrishnan, 2017) e, por isso foram escolhidos para como objeto de análise deste trabalho.

3.2.1 Dimensionamento do Conversor Ćuk Convencional

As seções 3.2.1.1 a 3.2.1.3 a seguir representam os passos no projeto de um conversor cuk convencional. Primeiramente é definido o comportamento desejado do circuito que, para este projeto é:

- Frequência de chaveamento de 15kHz;
- Potência de 300W;
- Tensão de entrada de 32, 5V, equivalente à tensão máxima do painel fotovoltaico;
- Tensão de saída de 180V, equivalente à tensão de pico da rede elétrica monofásica;
- Tensão de ripple de saída de 0,5V;
- Corrente de ripple de 0, 1A no indutor L2;
- Tensão de ripple de 1V no capacitor de transferência C1;
- Corrente de ripple de 1A no indutor L1.

Além disso, dados a potência e tensão de saída pode-se encontrar a carga equivalente R:

$$R = \frac{P}{V^2} = 108\Omega \tag{3.1}$$

3.2.1.1 Ciclo de Trabalho

O ciclo de trabalho do conversor cuk é encontrado a partir de seus valores de tensão de entrada e saída desejados. Utilizando a função de transferência deste circuito, definida na equação 2.7 e com as tensões de entrada e saída, encontra-se o duty cycle encontrado na equação 3.2.

$$d = \frac{V_o}{V_o + V_s} = 0,847 \tag{3.2}$$

3.2.1.2 Indutores

Para definir os indutores inicialmente é necessário encontrar o valor mínimo desses componentes para que o circuito opere em modo de condução contínua, através das equações 2.8 e 2.9. Sendo assim tem-se:

$$L_{b1} = \frac{(1-d)R}{2df} = 648\mu H \tag{3.3}$$

$$L_{b2} = \frac{(1-d)R}{2f} = 549\mu H \tag{3.4}$$

Calcula-se, também, os valores necessários para obter o comportamento desejado do circuito e utiliza-se o menor valor que satisfaça as duas condições. Os cálculos para os parâmetros do circuito estão representados pelas equações 3.5 e 3.6.

$$L1 = \frac{V_s \cdot d}{f \cdot 1,00A} = 1,99mH \tag{3.5}$$

$$L2 = \frac{V_s \cdot d}{f \cdot 0, 10A} = 18,3mH \tag{3.6}$$

3.2.1.3 Capacitores

Os capacitores C2 e C1 são calculados a partir das equações 2.10 e 2.11, respectivamente. Substituindo os valores já encontrados nessas equações têm-se:

$$C2 = \frac{0,153 \cdot 180V}{8 \cdot 0,5V \cdot 18,3mH \cdot (15kHz)^2} = 1,67uF$$

$$C1 = \frac{0,153 \cdot 180V}{108\Omega \cdot 15kHz \cdot 1V} = 94,3uF$$
(3.8)

$$C1 = \frac{0,153 \cdot 180V}{108\Omega \cdot 15kHz \cdot 1V} = 94,3uF \tag{3.8}$$

3.2.1.4 Circuito resultante e resultados de simulação

Com os valores de componentes calculados nas equações 3.2 a 3.8, ajustados para valores comerciais, foi montado o circuito de um conversor cuk convencional que pode ser visto na figura 24.

Figura 24 – Circuito do conversor cuk convencional com comando em malha aberta

A partir da simulação do circuito da figura 24 no PSIM, obteve-se os valores de média e ripple presentes na tabela 4. Além disso, as formas de onda verificadas são apresentadas na figuras 25 a 29.

Corrente média em L1	9,22A
Corrente de ripple em $L1$	0,91A
Corrente de ripple em L2	0,10A
Tensão de ripple em $C1$	0,94V
Tensão de saída média do conversor	-179,91V
Tensão de ripple de saída do conversor	0,53V
Potência de saída média	299,71W
Oscilação da potência de saída	1,77W

Tabela 4 – Valores medidos para o conversor cuk convencional

Figura 25 – Corrente de ripple no indutor L1 do conversor cuk convencional

Figura 26 – Corrente de ripple no indutor L2 do conversor cuk convencional

Figura 27 – Tensão de ripple no capacitor C1 do conversor cuk convencional

Figura 28 – Tensão de saída do conversor cuk convencional

Figura 29 – Potência na entrada e saída do conversor cuk convencional

Percebe-se, a partir dos dados expostos na tabela 4 que os ripples desejados foram atingidos. Além disso, o conversor projetado para 300W apresenta um ótimo rendimento, de 99,9%, com uma oscilação de potência de apenas 0,6%.

3.2.2 Dimensionamento do Conversor Ćuk Entrelaçado

O conversor cuk entrelaçado apresenta como principal vantagem ao conversor cuk convencional, menores ripples de corrente, já que a corrente de entrada é dividida entre as fases do mesmo (Joseph; Daniel; Unnikrishnan, 2015)(K.D; Daniel; Unnikrishnan, 2017). Essa característica também reduz o estresse de chaveamento dos transistores, implicando numa melhor qualidade da potência obtida e entregue pelo conversor (K.D; Daniel; Unnikrishnan, 2017).

Para a definição dos valores de componentes do conversor cuk entrelaçado serão utilizados os mesmos parâmetros de projeto do conversor cuk convencional. Além disso, os cálculos serão efetuados para uma das fases e os componentes encontrados serão replicados para todas as fases do circuito.

Dessa forma, a partir da equação 3.1, sabe-se que a carga equivalente vista pelo circuito R é de 108Ω .

3.2.2.1 Ciclo de Trabalho

O ciclo de trabalho do conversor cuk entrelaçado é encontrado a partir da equação 2.18 que equivale á equação 2.7. Dessa forma, para os mesmos parâmetros de tensão de entrada e saída, o ciclo de trabalho deste conversor é igual ao do conversor cuk convencional, definido na equação 3.2 como 0,847.

3.2.2.2 Indutores

Como o ciclo de trabalho, a carga e a frequência de chaveamento do conversor cuk entrelaçado são iguais aos do conversor cuk convencional, os valores dos indutores a serem utilizados, por fase, serão iguais os encontrados para o conversor anterior. Dessa forma, teremos L_{X1} e L_{X2} , onde X indica a fase, definidos nas equações 3.9 e 3.10, respectivamente.

$$L_{X1} = 1,99mH (3.9)$$

$$L_{X2} = 18,3mH (3.10)$$

3.2.2.3 Capacitores

Assim como no conversor cuk convencional, os capacitores são encontrados a partir das equações 2.10 e 2.11. Sendo assim, teremos os capacitores C_{X1} e C2, onde X representa

a fase, com os valores presentes nas equações 3.11 e 3.12, respectivamente.

$$C_{X1} = 1,67uF (3.11)$$

$$C2 = 94, 3uF (3.12)$$

3.2.2.4 Circuito resultante e resultados de simulação

Assim como no conversor cuk convencional, os valores encontrados para cada componente foram aproximados a fim de se utilizar apenas valores comerciais. O circuito do conversor cuk entrelaçado de duas fases montado no PSIM pode ser visto na figura 30.

Percebe-se que o pwm de cada braço, apesar de apresentar o mesmo ciclo de trabalho é defasado de 180^{o} , que equivale ao atraso de $360^{o}/N$, onde N representa o número de fases (Joseph; Daniel; Unnikrishnan, 2015).

Figura 30 – Circuito do conversor cuk entrelaçado de duas fases

A partir da simulação do circuito da figura 30 no PSIM, obteve-se os valores de média e ripple presentes na tabela 5. Além disso, as formas de onda verificadas são apresentadas na figuras 31 a 37.

	Fase 1	Fase 2	-
Corrente média em L_{X1}	4,62A	4,60A	-
Corrente de ripple em L_{X1}	0,91A	0,90A	-
Corrente de ripple em L_{X2}	0,10A	0,10A	-
Tensão de ripple em C_{X1}	0,83V	0,83A	-
Corrente média na entrada	-	-	9,22A
Corrente de ripple na entrada	-	-	0,74A
Tensão média de saída do conversor	-	-	-179,91V
Tensão de ripple de saída do conversor	-	-	0,22V
Potência de saída média	-	-	299,71W
Oscilação da potência de saída	-	-	0,72W

Tabela 5 – Valores medidos para o conversor cuk entrelaçado de duas fases

Figura 31 – Corrente de ripple no indutores L_{11} e L_{21} do conversor cuk entrelaçado de duas fases

Figura 32 – Corrente de ripple na entrada do conversor cuk entrelaçado de duas fases

Figura 33 – Corrente de ripple nos indutores L_{12} e L_{22} do conversor cuk entrelaçado de duas fases

Figura 34 – Tensão de ripple nos capacitores C_{11} e C_{21} do conversor cuk entrelaçado de duas fases

Figura 35 – Tensão de ripple de saída do conversor cuk entrelaçado de duas fases

Figura 36 – Potência na entrada e saída do conversor cuk entrelaçado de duas fases

Figura 37 – Oscilação da potência saída do conversor cuk entrelaçado de duas fases

De acordo com os resultados presentes na tabela 5, foram obtidos os valores desejados cada uma das fases do conversor. Se comparados aos valores referentes aos resultados do conversor cuk convencional, tabela 4, é possível perceber que, enquanto cada uma das fases do conversor cuk entrelaçado apresenta ripple de corrente igual ao encontrado na entrada do conversor cuk convencional, a variação da corrente na entrada do conversor cuk entrelaçado é equivalente a 78% da encontrada na outra implementação.

Além da melhoria de qualidade da corrente de entrada no circuito, o conversor cuk entrelaçado também apresentou tensão de ripple equivalente a 58% menor e oscilação de potência equivalente a 41% dos valores apresentados pela implementação convencional, apesar de apresentar mesmo rendimento que este, considerando-se valores médios de potência.

3.3 Projeto dos Conversores CC/CA

3.3.1 Inversor tipo fonte de tensão (VSI) Bipolar

A figura 38 apresenta o circuito montado no PSIM para simular um inversor VSI com PWM bipolar. Foi utilizada uma fonte de tensão de 180V para emular a alimentação do circuito.

Para o sinal de portadora foi utilizada uma fonte de sinal triangular de $1 \mathrm{kHz}$ e 3V de amplitude pico a pico. Já como modulante, uma fonte de sinal senoidal de 1V e $60 \mathrm{Hz}$, uma vez que a modulante deve corresponder à forma de onda e frequência da saída desejada.

Figura 38 – Inversor VSI Bipolar em malha aberta

Para analisar as características deste inversor foi simulado o circuito da figura 38, do qual obteve-se o sinal de saída que pode ser visto na figura 39, juntamente com o sinal senoidal desejado, para facilitar a comparação. Ainda na figura 39 é possível verificar que este circuito apresenta distorção harmônica total, *THD*, do inglês *Total Harmonic Distortion* de 1,84%.

Figura 39 – Sinal de saída do inversor VSI bipolar

3.3.2 Inversor tipo fonte de tensão (VSI) Unipolar

A figura 40 apresenta o circuito montado no PSIM para simular um inversor VSI com PWM unipolar. Assim como no inversor bipolar, utilizou-se uma fonte de tensão contínua de 180V para emular a alimentação do circuito.

Para o sinal de portadora foi utilizada uma fonte de sinal triangular de 1kHz e 3V de amplitude pico a pico. Já para as modulantes, foram utilizadas duas fontes senoidais de 60Hz e 1V de amplitude, defasadas entre si de 180° .

Figura 40 – Inversor VSI Unipolar

Para analisar as características deste inversor foi simulado o circuito da figura 40, do qual assim como para o inversor bipolar, obteve-se o sinal de saída, presente na figura 41. Ainda a partir desta figura verifica-se que este circuito apresenta distorção harmônica total consideravelmente inferior ao inversor bipolar, de 0,96%.

Figura 41 – Sinal de saída do inversor VSI unipolar

3.3.3 Inversor Ćuk Integrado

O inversor cuk integrado é uma versão simplificada do conversor convencional, descrito na seção 3.2.1. Nesta implementação, os componentes responsáveis pela filtragem do sinal de saída (L2 e C2) e é incorporado ao capacitor C1 um inversor. Os diodos paralelos aos transistores do inversor executam a função do diodo.

Dessa forma, tanto o ciclo de trabalho quanto os valores dos componentes restantes, L1 e C1 podem ser encontrados através das equações do conversor cuk convencional, sendo estas as equações 3.2, 3.5 e 3.8, respectivamente.

3.3.3.1 Circuito Resultante e resultados de simulação

Sendo assim está presente na figura 42 o circuito utilizado na simulação do inversor cuk integrado.

Figura 42 – Circuito do inversor cuk integrado

Figura 43 – Sinal de saída do inversor cuk integrado

Figura 44 – Corrente no indutor L1 do inversor cuk integrado

Figura 45 – Detalhe da oscilação na corrente no indutor L1 do inversor cuk integrado

Figura 46 – Tensão no capacitor C1 do inversor cuk integrado

Figura 47 – Detalhe da oscilação na tensão no capacitor C1 do inversor cuk integrado

Nas figuras 44 a 47 é possível perceber a influência do chaveamento dos transistores do inversor utilizado nos sinais da corrente de entrada e da tensão no capacitor C1, que apresentam um ruído triangular de alta frequência de aproximadamente $0,91\mathrm{A}$ e $0,57\mathrm{V}$, respectivamente além de características senoidais.

3.4 Rastreador de ponto de máxima potência (MPPT)

O algoritmo de rastreamento de ponto de máxima potência do painel fotovoltaico escolhido foi o P & O. Foi desenvolvida uma rotina em C, que segue o fluxograma da figura 16 utilizando o C Block, um segurador de ordem zero com frequência de amostragem de 500Hz e um comparador de tensão ao qual é conectado uma fonte de sinal triangular de 15kHz e 1V de amplitude, a portadora.

O segurador se faz necessário para determinar a frequência da execução da rotina, uma vez que o C Block executa o código a cada passo da simulação.

Para facilitar a inserção da MPPT nos circuitos, foi montado um sub-circuito, que compreende os dois blocos e o comparador da implementação (48). O código implementado pode ser visto no anexo A.

Figura 48 – Circuito de MPPT implementado

Nas figuras 50 e 52 são expostos os comportamentos dos conversores cuk convencional e entrelaçado de duas fases quando alimentados pelo painel fotovoltaico juntamento com o MPPT implementado. Os circuitos utilizados podem ser vistos nas figuras 49 e 51.

Figura 49 – Circuito do conversor cuk convencional alimentado pelo painel fotovoltaico com MPPT

3.5. Filtro 45

Figura 50 – Comportamento do ciclo de trabalho e da potência de saída para alterações de irradiância para o conversor cuk convencional

Figura 51 – Circuito do conversor cuk entrelaçado alimentado pelo painel fotovoltaico com MPPT

Figura 52 – Comportamento do ciclo de trabalho e da potência de saída para alterações de irradiância para o conversor cuk entrelaçado

3.5 Filtro

Os componentes do filtro são encontrados a partir das equações 2.27 a 2.34.

O filtro é projetado para um inversor de 300W, conectado a rede monofásica, com tensão de barramento CC de 210V e frequência de chaveamento de 15kHz. Utilizando esses parâmetros, são encontrados os componentes representados pelas equações 3.13 a 3.15.

$$L_1 = 9,88mH (3.13)$$

$$L_2 = 68, 4\mu H \tag{3.14}$$

$$C = 9,87uF \tag{3.15}$$

Verifica-se, a partir da equação 2.32 e dos componentes encontrados que a frequência de ressonância do circuito é de 6144Hz. Como a frequência de ressonância é superior a 600Hz e inferior a 7500Hz a equação 2.33 é satisfeita e pode-se calcular o resistor de ressonância, a partir da equação 2.34. O valor encontrado para o resistor está presente na equação 3.16.

$$R_f = 0,87\Omega \tag{3.16}$$

O filtro resultante pode ser visto na figura 53, com o capacitor C aproximado para o valor comercial mais próximo, de $10\mu F$.

Figura 53 – Filtro LCL implementado

4 Implementação dos conversores finais

Neste capítulo são apresentados os conversores formados a partir da conexão dos circuitos dimensionados no capítulo 3 e os resultados das simulações executadas com os mesmos.

São, ao todo, seis conjuntos distintos uma vez que cada implementação proposta é conectada a um inversor bipolar e a um inversor unipolar, a fim de avaliar a influência desse estágio. Todos as combinações apresentam, entretanto, o painel fotovoltaico, o rastreador de ponto máximo de potência e o filtro LCL em comum.

Todas as figuras de circuitos desse capítulo são apresentadas também no anexo B em modo paisagem e, portanto, com maior qualidade.

4.0.1 Conjuntos baseados no conversor cuk convencional

4.0.1.1 Inversor cuk convencional bipolar

O circuito implementado no PSIM para o conjunto que utiliza o conversor cuk convencional conectado ao inversor bipolar, com rastreamento de ponto máximo de potência é apresentado na figura 54. Além disso, a tabela 6 apresenta os principais resultados encontrados através da simulação deste circuito.

Na figura 55 são apresentados tensão e corrente de saída, ampliada em dez vezes. O espectro de frequências da tensão de saída obtida pode ser analisada na figura 56, com informação da distorção harmônica total da tensão, considerando frequência base de 60Hz.

Já a figura 57 mostra os sinais de entrada e saída do conjunto para alterações na irradiância que alimenta o painel fotovoltaico.

Figura 54 – Circuito implementado para o inversor cuk convencional bipolar

Corrente de saída eficaz	Corrente de ripple	Tensão de saída eficaz	Tensão de Ripple	Potência de saída	Rendimento	THD
2,26A	20,21mA	126,55V	1,13V	286,00W	95, 33%	1,20%

Tabela 6 – Valores obtidos para o inversor cuk convencional bipolar

Figura 55 – Sinais de saída obtidos para o inversor cuk convencional bipolar

Figura 56 – Espectro de frequências da tensão de saída do inversor cuk convencional bipolar

Figura 57 – Sinais de entrada e saída para o inversor cuk convencional bipolar com variação de irradiância

4.0.1.2 Inversor cuk convencional unipolar

O circuito implementado no PSIM para o conjunto que utiliza o conversor cuk convencional conectado ao inversor unipolar, com rastreamento de ponto máximo de potência é apresentado na figura 58. Além disso, a tabela 7 apresenta os principais resultados encontrados através da simulação deste circuito.

Na figura 59 são apresentados tensão e corrente de saída, ampliada em dez vezes. O espectro de frequências da tensão de saída obtida pode ser analisada na figura 60, com informação da distorção harmônica total da tensão, considerando frequência base de 60Hz.

Já a figura 61 mostra os sinais de entrada e saída do conjunto para alterações na irradiância que alimenta o painel fotovoltaico.

Figura 58 – Circuito implementado para o inversor cuk convencional unipolar

Corrente de saída eficaz	Corrente de ripple	Tensão de saída eficaz	Tensão de Ripple	Potência de saída	Rendimento	THD
2,26A	2,99mA	126,42V	0,17V	285,43W	95,13%	1, 18%

Tabela 7 – Valores obtidos para o inversor cuk convencional unipolar

Figura 59 – Sinais de saída obtidos para o inversor cuk convencional unipolar

Figura 60 – Espectro de frequências da tensão de saída do inversor cuk convencional unipolar

Figura 61 – Sinais de entrada e saída para o inversor cuk convencional unipolar com variação de irradiância

4.0.2 Conjuntos baseados no conversor cuk entrelaçado de duas fases

4.0.2.1 Inversor cuk entrelaçado bipolar

A figura 62 apresenta o circuito resultante da conexão do conversor cuk entrelaçado de duas fases ao inversor bipolar implementado no PSIM. Além disso, a tabela 8 apresenta os principais resultados encontrados através da simulação deste circuito. Na figura 63 são apresentados tensão e corrente de saída, ampliada em dez vezes. O espectro de frequências da tensão de saída obtida pode ser analisada na figura 64, com informação da distorção harmônica total da tensão, considerando frequência base de 60Hz.

Já a figura 65 mostra os sinais de entrada e saída do conjunto para alterações na irradiância que alimenta o painel fotovoltaico.

Figura 62 – Circuito implementado para o conversor cuk entrelaçado de duas fases com inversor bipolar

Corrente de saída eficaz	Corrente de ripple	Tensão de saída eficaz	Tensão de Ripple	Potência de saída	Rendimento	THD	Ĺ
2,27A	9,47mA	127, 13V	0,53V	288,63W	96, 21%	1,02%	ĺ

Tabela 8 – Valores obtidos para o inversor cuk entrelaçado bipolar

Figura 63 – Sinais de saída obtidos para o inversor cuk entrelaçado bipolar

Figura 64 — Espectro de frequências da tensão de saída do inversor cuk entrelaçado bipolar

Figura 65 – Sinais de entrada e saída para o inversor cuk entrelaçado bipolar com variação de irradiância

4.0.2.2 Inversor cuk entrelaçado unipolar

A figura 66 apresenta o circuito resultante da conexão do conversor cuk entrelaçado de duas fases ao inversor unipolar implementado no PSIM. Além disso, a tabela 9 apresenta os principais resultados encontrados através da simulação deste circuito. Na figura 67 são apresentados tensão e corrente de saída, ampliada em dez vezes. O espectro de frequências da tensão de saída obtida pode ser analisada na figura 68, com informação da distorção harmônica total da tensão, considerando frequência base de 60Hz.

Já a figura 69 mostra os sinais de entrada e saída do conjunto para alterações na irradiância que alimenta o painel fotovoltaico.

Figura 66 – Circuito implementado para o conversor cuk entrelaçado de duas fases com inversor unipolar

Corrente de saída eficaz	Corrente de ripple	Tensão de saída eficaz	Tensão de Ripple	Potência de saída	Rendimento	THD
2,27A	2,98mA	127, 12V	0,16V	288,58W	96, 19%	1,01%

Tabela 9 – Valores obtidos para o inversor cuk entrelaçado unipolar

Figura 67 – Sinais de saída obtidos para o inversor cuk entrelaçado unipolar

Figura 68 – Espectro de frequências da tensão de saída do inversor cuk entrelaçado unipolar

Figura 69 – Sinais de entrada e saída para o inversor cuk entrelaçado unipolar com variação de irradiância

4.0.3 Conjuntos baseados no inversor cuk integrado

4.0.3.1 Inversor cuk integrado bipolar

O circuito implementado no PSIM para o inversor cuk integrado bipolar é apresentado na figura 70, já a figura 71 mostra os sinais de tensão e corrente de saída, ampliada

em dez vezes. O espectro de frequências da tensão de saída obtida pode ser analisada na figura 72, com informação da distorção harmônica total da tensão, considerando frequência base de 60Hz.

Além disso, a tabela 10 apresenta os principais resultados encontrados através da simulação deste circuito e a figura 73 mostra os sinais de entrada e saída do conjunto para alterações na irradiância que alimenta o painel fotovoltaico.

Figura 70 – Circuito implementado para o inversor cuk integrado bipolar

Corrente de saída eficaz	Corrente de ripple	Tensão de saída eficaz	Tensão de Ripple	Potência de saída	Rendimento	THD
2,24A	7,57mA	125,63V	0,42V	281,85W	93, 95%	25,32%

Tabela 10 – Valores obtidos para o inversor cuk integrado bipolar

Figura 71 – Sinais de saída obtidos para o inversor cuk integrado bipolar

Figura 72 – Espectro de frequências da tensão de saída do inversor cuk integrado bipolar

Figura 73 – Sinais de entrada e saída para o inversor cuk integrado bipolar com variação de irradiância

4.0.3.2 Inversor cuk integrado unipolar

O circuito implementado no PSIM para o inversor cuk integrado unipolar é apresentado na figura 74, já a figura 75 mostra os sinais de tensão e corrente de saída, ampliada em dez vezes. O espectro de frequências da tensão de saída obtida pode ser analisada na figura 76, com informação da distorção harmônica total da tensão, considerando frequência base de 60Hz.

Além disso, a tabela 11 apresenta os principais resultados encontrados através da simulação deste circuito e a figura 77 mostra os sinais de entrada e saída do conjunto para alterações na irradiância que alimenta o painel fotovoltaico.

Figura 74 – Circuito implementado para o inversor cuk integrado unipolar

Corrente de saída eficaz	Corrente de ripple	Tensão de saída eficaz	Tensão de Ripple	Potência de saída	Rendimento	THD
2,27A	2,86mA	127,37V	0,16V	289,71W	96,11%	3,07%

Tabela 11 – Valores obtidos para o inversor cuk integrado unipolar

Figura 75 – Sinais de saída obtidos para o inversor cuk integrado unipolar

Figura 76 – Espectro de frequências da tensão de saída do inversor cuk integrado unipolar

Figura 77 – Sinais de entrada e saída para o inversor cuk integrado unipolar com variação de irradiância

5 Análise dos Resultados Obtidos

Ao analisar as figuras 57, 61, 65, 69, 73 e 77 percebe-se que o sistema de rastreamento de ponto de máxima potência apresenta o mesmo comportamento para todos os conjuntos simulados para alterações da irradiância solar, confirmando o comportamento esperado.

Como pode ser visto na figura 20, o ponto de máxima potência do painel fotovoltaico para variações da irradiância apresenta, aproximadamente, a mesma tensão para uma vasta gama de valores enquanto a corrente máxima gerada é reduzida.

É possível perceber também, uma variação na tensão de saída do painel e, consequentemente, também na corrente fornecida durante todo o período amostrado. Essa oscilação é esperada devido ao algoritmo de rastreamento utilizado, que oscila continuamente em torno do ponto de máxima potência. Esse comportamento propicia também uma adequação mais rápida a variações de irradiância, uma vez que a varredura ocorre durante todo o funcionamento do sistema, inclusive após o ponto ótimo ter sido encontrado.

Em relação à tensão de saída, enquanto a maior parte das implementações conseguiu fornecer tensão compatível com a conexão à rede elétrica, o inversor integrado bipolar não se comportou como esperado, como pode ser percebido ao se comparar a figura 71 com as demais figuras que representam o sinal de saída dos conjuntos: 55, 59, 63, 67 e 75.

Apesar desse inversor apresentar tensão eficaz igual ao valor esperado, de 127V, a tensão fornecida por este apresenta uma componente contínua de aproximadamente 30V. A ausência de nível 0 no estágio inversor faz com que, a tensão fornecida pelo painel não seja filtrada no conversor e apareça na saída do conjunto. O inversor cuk integrado unipolar não apresenta o mesmo problema devido ao nível adicional apresentado pelo seu estágio inversor.

A tabela 12 apresenta os resultados de rendimento, distorção harmônica total, tensão e corrente de ripple para os seis conversores finais simulados.

Em relação às variações de corrente e tensão, percebe-se que, enquanto os inversores bipolares apresentam valores consideravelmente distintos entre si, os unipolares apresentam valores sempre bem próximos. Esse comportamento indica que o PWM senoidal unipolar utilizado para controlar o estágio inversor dessas implementações é capaz de reduzir a influência do estágio subidor de tensão de tal forma que este possa ser ignorado para essas variáveis. Já entre os inversores bipolares, o inversor integrado apresentou variações menores que os demais o que não era esperado. Entretanto, por apresentar

componente contínua na tensão será desconsiderado.

Ao analisar as variações de tensão e corrente de saída dos inversores cuk convencional bipolar e cuk entrelaçado bipolar pode-se perceber que os valores apresentados pela implementação entrelaçada são aproximadamente metade dos apresentados pela convencional. Esse comportamento está de acordo com o esperado, com as oscilações reduzindo de acordo com o aumento do número de fases do inversor.

		Rendimento	Variação da tensão de saída	Variação da corrente de saída	THD
Inversor cuk convencional	bipolar	95,33%	1,13V	20,21mA	1,20%
inversor cuk convencionar	unipolar	95,13%	0,17V	2,99mA	1,18%
Inversor cuk entrelaçado	bipolar	96,21%	0,53V	9,47mA	1,02%
inversor cuk entreiaçado	unipolar	96, 19%	0,16V	2,98mA	1,01%
Inversor cuk integrado	bipolar	93,95%	0,42V	7,57mA	25,32%
inversor cuk integrado	unipolar	96, 11%	0,16V	2,86mA	3,07%

Tabela 12 – Resultados de rendimento e qualidade do sinal obtidos para os conjuntos finais

Em relação ao rendimento percebe-se que, em geral, inversores unipolares apresentam rendimento um pouco inferior às mesmas implementações bipolares, ou seja, pra se obter sinais de saída menos poluídos o inversor unipolar sacrifica uma pequena parcela da potência gerada, devido a seu terceiro nível, 0, no qual não é transmitida potência para a saída.

A exceção a essa regra é o inversor cuk integrado. Enquanto sua implementação bipolar apresenta o pior rendimento entre os inversores utilizados a implementação unipolar, que resolve o problema de tensão contínua na saída do conjunto apresenta o terceiro maior rendimento, de 96, 11%, inferior apenas ao apresentado pelas implementações do inversor cuk entrelaçado, 95, 21% para o inversor bipolar e 95, 19% para o unipolar. Enquanto o resultado do inversor integrado pode ser atribuído ao número reduzido de componentes capazes de dissipar energia dessa implementação, o dos inversores entrelaçados está relacionado, principalmente ao menor estresse de chaveamento nos transistores do estágio elevador de tensão, devido ao aumento do número de fases responsáveis por lidar com a mesma potência inserida.

Segundo a recomendação IEEE-519, para sistemas com tensão de barramento inferiores a 1kV a distorção harmônica total deve ser inferior a 8% (IEEE..., 2014). Dos inversores implementados, apenas o inversor integrado bipolar não respeita esse limite. Esta implementação apresenta, além da componente contínua já comentada, valores mais significativos que as demais nas componentes harmônicas da frequência fundamental de segunda e terceira ordem, principalmente, como pode ser percebido através da comparação das figuras 56, 60, 64, 68, 72 e 76.

Percebe-se, entre as implementações restantes, que os inversores que utilizam o controle unipolar apresentam distorção harmônica total um pouco inferior aos que utilizam

o controle bipolar devido, principalmente, à ausência dos componentes harmônicas pares da frequência base na tensão de saída, como pode ser visto nas figuras 60, 68 e 76.

Por fim, apesar de apresentar variações de tensão e corrente de saída próximas aos valores das demais implementações unipolares, o inversor cuk integrado unipolar apresenta distorção harmônica total praticamente três vezes maior que os demais. Esse valor ocorre, principalmente por uma maior presença do harmônico de terceira ordem (180Hz), como pode ser visto na figura 76, devido à menor atenuação dos harmônicos nesse circuito que, por sua vez, é devida à simplicidade do circuito, o qual não apresenta um filtro entre os estágios elevador de tensão e inversor. O harmônico de segunda ordem (120Hz) não está presente nesse inversor, assim como em sua implementação bipolar, como já citado.

6 Conclusão

O desenvolvimento de um sistema para fontes fotovoltaicas conectadas a rede elétrica com microinversores baseados no conversor cuk foi, em geral, bem sucedido. O sistema de rastreamento de ponto máximo de potência implementado agiu da forma esperada em conjunto com os inversores, de modo a manter a tensão estável e o painel fotovoltaico fornecendo a máxima potência para valores variáveis da irradiância solar.

Com exceção do inversor cuk integrado bipolar, as demais implementações foram capazes de fornecer tensão senoidal com amplitude e frequência compatíveis com a rede elétrica e com distorção harmônica máxima dentro do limite recomendado pela IEEE-519.

Assim como esperado, os inversores unipolares apresentaram melhores resultados em relação à qualidade dos sinais de saída, em detrimento da potência disponibilizada. Além disso, os inversores entrelaçados, mais complexos que os convencionais apresentaram melhores resultados tanto em relação ao rendimento quanto em relação à qualidade do sinal entregue.

Apesar de mais simples, o inversor integrado apresentou rendimento superior à implementação convencional, sendo um forte candidato para a implementação de microinversores comerciais, já que sua implementação apresenta um custo inferior. Entretanto, esse inversor deve necessariamente apresentar estágio inversor unipolar.

Para um sistema em que o foco seja, além do rendimento, a menor distorção harmônica possível, podem ser utilizadas as implementações entrelaçadas, que apresentam os melhores rendimentos entre os inversores analisados. Esses inversores são, porém, mais complexos e caros devido ao maior número de componentes necessários.

Um sistema composto por inversores integrados unipolares, apesar de ainda apresentarem um controle mais complexo na etapa inversora, representam uma implementação mais barata com rendimento proximo ao obtido pelos inversores entrelaçados, além de se adequar à recomendação técnica de qualidade relativa à distorção harmônica.

Dessa forma, a implementação de um sistema para conexão de fontes fotovoltaicas conectadas à rede baseado em microinversores de baixa potência é uma alternativa possível e viável ao atual modelo de inversores de alta potência.

Um próximo passo, como produto de outro estudo é a implementação dos sistemas auxiliares necessários para o funcionamento e aprovação de um sistema fotovoltaico conectado à rede elétrica, como o sistema de anti ilhamento, importante para a segurança da rede, e sistemas de controle para o tratamento de perturbações inseridas no sistema.

Referências

Ackermann, G. A. T.; Söder, L. Distributed generation: a definition. *Electric Power Systems Research*, v. 57, n. 3, p. 195 – 204, 2001. ISSN 0378-7796. Citado na página 9.

ANEEL. Geração Distribuída. 2018. Disponível em: http://www.aneel.gov.br/geracao-distribuida. Citado na página 9.

Beriber, D.; Talha, A. Mppt techniques for pv systems. In: 4th International Conference on Power Engineering, Energy and Electrical Drives. [S.l.: s.n.], 2013. p. 1437–1442. ISSN 2155-5532. Citado 4 vezes nas páginas 3, 24, 25 e 26.

Bouzguenda, M. et al. Solar photovoltaic inverter requirements for smart grid applications. In: 2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East. [S.l.: s.n.], 2011. p. 1–5. Citado na página 10.

Canadian Solar. *PV Module Product Datasheet V5.571 EN.* 2018. Disponível em: https://www.canadiansolar.com/upload/37080f6dcf409df2/6eb95e52d0590f66.pdf. Citado 4 vezes nas páginas 3, 6, 29 e 30.

Czarkowski, D. Cuk converter. In: _____. Power Electronics Handbook. [S.l.]: Academic Press, 2001. cap. 13, p. 218. Citado 3 vezes nas páginas 3, 14 e 15.

de Oliveira, F. M. et al. Grid-tied photovoltaic system based on pso mppt technique with active power line conditioning. *IET Power Electronics*, v. 9, n. 6, p. 1180–1191, 2016. ISSN 1755-4535. Citado 2 vezes nas páginas 3 e 13.

Espinoza, J. R. Full-bridge vsi. In: _____. Power Electronics Handbook. [S.l.]: Academic Press, 2001. cap. 14, p. 231–232. Citado 4 vezes nas páginas 3, 19, 20 e 21.

IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. *IEEE Std 519-2014 (Revision of IEEE Std 519-1992)*, p. 1–29, June 2014. Citado na página 58.

Jayakumaran, T. et al. A comprehensive review on maximum power point tracking algorithms for photovoltaic cells. In: 2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC). [S.l.: s.n.], 2018. p. 343–349. ISSN 2576-9065. Citado 3 vezes nas páginas 24, 25 e 26.

Joseph, K. D.; Daniel, A. E.; Unnikrishnan, A. Reduced ripple interleaved cuk converter with phase shifted pwm. In: 2015 10th Asian Control Conference (ASCC). [S.l.: s.n.], 2015. p. 1–6. Citado 6 vezes nas páginas 3, 15, 16, 17, 36 e 37.

Joseph, K. D.; Daniel, A. E.; Unnikrishnan, A. Interleaved cuk converter with reduced switch current. In: 2018 International Conference on Power, Instrumentation, Control and Computing (PICC). [S.l.: s.n.], 2018. p. 1–6. Citado na página 15.

Junior, L. G. et al. Evaluation of integrated inverter topologies for low power pv systems. In: 2011 International Conference on Clean Electrical Power (ICCEP). [S.l.: s.n.], 2011. p. 35–39. Citado 2 vezes nas páginas 10 e 11.

62 Referências

K.D, J.; Daniel, A. E.; Unnikrishnan, A. Interleaved cuk converter with improved transient performance and reduced current ripple. *The Journal of Engineering*, v. 2017, n. 7, p. 362–369, 2017. ISSN 2051-3305. Citado 2 vezes nas páginas 32 e 36.

Luigi, G. et al. Integrated inverter topologies for low power photovoltaic systems. In: 2010 9th IEEE/IAS International Conference on Industry Applications - INDUSCON 2010. [S.l.: s.n.], 2010. p. 1–5. Citado 3 vezes nas páginas 3, 10 e 23.

Machado, M. M.; de Sousa, M. C. S.; Hewings, G. Economies of scale and technological progress in electric power production: The case of Brazilian utilities. *Energy Economics*, v. 59, n. C, p. 290–299, 2016. Citado na página 9.

Mahamat, C. et al. Optimized design of an lcl filter for grid connected photovoltaic system and analysis of the impact of neighbors' consumption on the system. *Journal of Electrical Systems*, v. 13, p. 618–632, 12 2017. Citado 2 vezes nas páginas 3 e 27.

Nezamuddin, O.; Crespo, J.; dos Santos, E. C. Design of a highly efficient microinverter. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). [S.l.: s.n.], 2016. p. 3463–3468. Citado na página 10.

POWERSIM. PSIM Tutorial - How to Use Solar Module Physical Model. 20–? Disponível em: https://powersimtech.com/drive/uploads/2016/04/ Tutorial-Solar-Module-physical-model.pdf>. Citado na página 30.

Reznik, A. et al. LCL filter design and performance analysis for grid-interconnected systems. *IEEE Transactions on Industry Applications*, v. 50, p. 1225–1232, 03 2014. Citado 2 vezes nas páginas 27 e 28.

Shawky, A.; Ahmed, M. E.; Orabi, M. Performance analysis of isolated dc-dc converters utilized in three-phase differential inverter. In: 2016 Eighteenth International Middle East Power Systems Conference (MEPCON). [S.l.: s.n.], 2016. p. 821–826. Citado na página 11.

ANEXO A – Código da implementação de MPPT utilizado

```
double temp = 1;
double old_v, old_p, old_out;
double v = in[0];
double i = in[1];
double p = v*i;
double delta_p = p-old_p;
double delta_v = v-old_v;
if(delta_p > 0){
               if(delta v > 0){
               temp -= 0.01;
               } else if (delta_v < 0){</pre>
               temp += 0.01;
} else if (delta_p < 0){</pre>
               if(delta_v > 0){
               temp += 0.01;
               } else if (delta_v < 0){</pre>
               temp -= 0.01;
               }
} else {
       temp = temp;
}
if(temp > 0.95) temp = 0.95;
if(temp < 0.05) temp = 0.05;
out[0] = temp;
old_v = v;
old_p = p;
```

ANEXO B – Circuitos dos Inversores Implementados no PSIM

Figura 78 – Circuito do inversor cuk convencional bipolar implementado

Figura 79 – Circuito do inversor cuk entrelaçado bipolar implementado

Figura 80 – Circuito do inversor cuk integrado bipolar implementado

Figura 82 – Circuito do inversor cuk entrelaçado unipolar implementado

Figura $83-{\rm Circuito}$ do inversor cuk integrado unipolar implementado