FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE (20192) – HOMEWORK 2

GROUP 9

Federico Brunelli – 3043110

Federico Buizza – 3050918

Filippo Cambiaghi – 3036161

Marc Gehring – 3130862

Luca Amedeo Giacardi - 3043914

GENERAL INDEX

TASK 1	3
TASK 2	
TASK 3	
TASK 4	
TASK 5	
TASK 6	12
TASK 7	13
TASK 8	17

Task 1

Graph of WGS2YR and WGS3MO:

Summary statistics of WGS2YR and WGS3MO:

Date: 04/21/21 Time: 18:54 Sample: 7/24/1992 4/09/2021					
	WGS3MO	WGS2YR			
Mean	2.377612	2.898499			
Median	1.820000	2.520000			
Maximum	6.400000	7.690000			
Minimum	0.000000	0.110000			
Std. Dev.	2.099627	2.152588			
Skewness	0.332412	0.296417			
Kurtosis	1.574632	1.674789			
 Jarque-Bera Probability	154.5010 0.000000	131.6394 0.000000			
Sum	3564.040	4344.850			
Sum Sq. Dev.	6603.831	6941.183			
Observations	1499	1499			
Correlation	MCCOMO	WCCOVD			
MCCOMO	WGS3MO	WGS2YR			
WGS3MO	1.000000	0.976613			
WGS2YR	0.976613	1.000000			

As can be observed from the summary statistics table, both series show absence of normality. This derives from the fact that both series present a slightly positive skewness (longer tails to the right) and a kurtosis different from three (platykurtic) and therefore their tails are thicker than a normal distribution. This is confirmed by the p-value of virtually 0 for the Jarque-Bera test, allowing us to reject the null hypothesis of normality.

From both the graph and the table, it can be alleged that the series are not stationary. Moreover, it can be seen from the correlation matrix, that the series have an almost perfect positive correlation. This two information could lead to the conclusion that both series contain a similar trend, thing that in case of regressing one variable over the other could lead to invalid inference (spurious regression). In this case of non-stationarity of the series, the first moment will lose its importance.

WGS2YR 0.976613 1.000000 Finally, both series have an extremely high standard deviation, and this could partially explain their significant constant fluctuation.

Task 2

ADF unit roots test:

Null Hypothesis: Unit root (individual unit root process)

Series: WGS3MO, WGS2YR Date: 04/21/21 Time: 20:09 Sample: 7/24/1992 4/09/2021

Exogenous variables: Individual effects, individual linear trends

Automatic selection of maximum lags

Automatic lag length selection based on SIC: 1 to 8

Total number of observations: 2987

Cross-sections included: 2

Cross-sections included: 2				
Method ADF - Fisher Chi-square ADF - Choi Z-stat			Statistic 2.23394 0.27051	Prob.** 0.6928 0.6066
** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality. Intermediate ADF test results.				
Series WGS3MO WGS2YR	Prob. 0.5169 0.6331	Lag 8 1	Max Lag 23 23	Obs 1490 1497

The ADF unit roots test has been performed using the SBIC as it is suitable for large samples and does not impose a too large penalization for added lags. From the p-value of the ADF test, the null hypothesis cannot be rejected at any conventionally adopted confidence level. This result was backtested using all other information criteria: the only difference lies in the number of lags selected by different ICs. Based on these results, at the 95% confidence level, the two series are I(1) processes and show one unit root. Also, the KPSS test confirms the non-stationarity of the series.

Task 3

Engle and Granger's univariate regression test:

Date: 04/22/21 Time: 20:58 Series: WGS3M0 WGS2YR Sample: 7/24/1992 4/09/2021 Included observations: 1499

Null hypothesis: Series are not cointegrated

Cointegrating equation deterministics: C @TREND @TREND^2
Automatic lags specification based on Schwarz criterion (maxlag=23)

Dependent	tau-stati Prob.* z-statistic	Prob.*
WGS3MO	-4.948981 0.0043 -51.61782	0.0017
WGS2YR	-5.235426 0.0015 -54.76786	0.0009
*MacKinnon (1996) p-values.		
Intermediate Results:	WGS3MO WGS2YR	
Rho - 1	-0.030716 -0.032385	
Rho S.E.	0.006206 0.006186	
Residual variance	0.008758 0.007136	
Long-run residual variance	0.011080 0.009108	
Number of lags	4 1	
Number of observations	1494 1497	
Number of stochastic trends**	2 2	

Engle-and Granger's test, which is an ADF test applied on the residuals to assess whether they are stationary, is based on a univariate regression test and a null hypothesis of no cointegration between the two series. From the p-values of the test (extremely close to 0) the null hypothesis can be rejected at any conventional confidence level, concluding that the variables are cointegrated. The number of lags selected by the Schwarz criterion suggests that WGS3MO is a VAR(4) while WGS2YR is a VAR(1).

Johansen multivariate VECM based test:

Date: 04/22/21 Time: 21:08 Sample: 7/24/1992 4/09/2021 Included observations: 1494 Series: WGS3MO WGS2YR Lags interval: 1 to 4

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend:	None	None	Linear	Linear	Quadratic
Test Type	No Intercept	Intercept	Intercept	Intercept	Intercept
	No Trend	No Trend	No Trend	Trend	Trend
Trace	1	1	1	1	2
Max-Eig	1	1	1	1	2

*Critical values based on MacKinnon-Haug-Michelis (1999)

Information Criteria by Rank and Model

Data Trend:	None	None	Linear	Linear	Quadratic
Rank or	No Intercept	Intercept	Intercept	Intercept	Intercept
No. of CEs	No Trend	No Trend	No Trend	Trend	Trend
	Log Likelihood by	Rank (rows)	and Model	(columns)	
0	3305.471	. ,	3305.753	3305.753	3305.958
1	3316.263	3323.986	3324.197	3333.620	3333.755
2	3317.133	3325.051	3325.051	3336.716	3336.716
	Akaike Information	n Criteria by	Rank (rows	and Model (columns)
0	-4.403576	-4.403576	-4.401275	-4.401275	-4.398873
1	-4.412668	-4.421668	-4.420612	-4.431887*	-4.430729
2	-4.408478	-4.416401	-4.416401	-4.429338	-4.429338
	Schwarz Criteria b	v Rank (rows	s) and Mode	el (columns)	
0	-4.346717		•	-4.337309	-4.327800
1	-4.341594	-4.347040	-4.342431	-4.350153*	-4.345441
2	-4.323189	-4.324005	-4.324005	-4.329835	-4.329835

The Johansen test is instead a multivariate regression VECM test. Its objective is to test the number of cointegrating relations between the series, which coincides with the number of eigenvalues different from zero in the long run coefficient matrix (its rank). In this test the variables are not assumed to have a specific distribution, therefore its critical values are estimated from reiterated simulations. The data suggest that the model best explaining the variables' correlation is a linear one with an intercept and a trend.

The selection of the best model is confirmed both from the ICs and the first part of the table, which agree on the presence of one cointegrating relation, therefore presenting only one eigenvalue.

From *both tests' conclusions* it can be inferred that the two series are cointegrated. While from the Engle and Granger's test the only conclusion is the existence of cointegration between the two-time series, the Johansen test reveals the order of cointegration of the two variables. In this case, therefore, the two series of data are cointegrated of order 1.

Task 4

a) Since in the model there is evidence of a cointegration relation, the next step is the estimation of a VEC model. From task 3, it can be assumed that the cointegration equation should include an intercept plus a linear trend. Accordingly, the cointegration equation is estimated several times using different lag specification (*see below*) in order to understand which is the model that delivers the lowest Schwarz criterion. Since the Schwarz IC is known as the most parsimonious among the different ICs, it can be expected it to select a model with a limited number of lags. Indeed, the model with lag specification (1,2) shows the lowest value for this criterion and, hence, it is the best one among all VEC models. This is consistent both analyzing equation-by-equation and for the whole model. Interestingly, the Akaike IC suggest the use of a model with more lags, since it decreases as we increase the lags. This is consistent with what is theoretically expected, as this criterion has the lowest penalty factor for added lags.

VECM for lag specification (1,2):

squared	0.111157	0.064085
kdj. R-squared	0.108175	0.060945
um sq. resids	9.621201	11.66945
S.E. equation	0.080357	0.088498
F-statistic	37.26739	20.40504
Log likelihood	1652.111	1507.743
Akaike AIC	-2.200683	-2.007677
Schwarz SC	-2.179384	-1.986378
Mean dependent	-0.002146	-0.002761
S.D. dependent	0.085091	0.091324
Determinant resid cov	ariance (dof adj.)	4.05E-05
Determinant resid cov	ariance	4.01E-05
Log likelihood		3326.617
Akaike information cri	terion	-4.427295
Schwarz criterion		-4.374047
Number of coefficient	5	15

VECM for lag specification (1,3):

R-squared	0.115888	0.067169
Adj. R-squared	0.111726	0.062777
Sum sq. resids	9.567963	11.61589
S.E. equation	0.080215	0.088383
F-statistic	27.84490	15.29595
Log likelihood	1654.654	1509.674
Akaike AIC	-2.202882	-2.008928
Schwarz SC	-2.174468	-1.980514
Mean dependent	-0.002114	-0.002676
S.D. dependent	0.085110	0.091296
Determinant resid cov	ariance (dof adj.)	4.03E-05
Determinant resid cov	ariance	3.98E-05
Log likelihood		3330.219
Akaike information criterion		-4.429724
Schwarz criterion		-4.362241
Number of coefficients	5	19

VECM for lag specification (1,4):

In the cointegration graph below, we can see the amount of deviation from the long run cointegrating relationship based on the estimates.

Cointegrating relation between WGS2YR and WGS3MO:

extracted from the cointegrating equation is (1; -0.872668)' with an intercept equal to -1.451149 and a statistically significant linear trend coefficient of 0.000850. The speed of adjustment coefficients estimated on this data are respectively 0.006876 for WGS2YR and 0.045878 for WGS3MO. Both are statistically significant. When there are deviations from the long-term equilibrium, in order to return to an equilibrium situation, most of the adjustments will occur in the WGS3MO series, since its coefficient is higher in absolute value (as visible in the cointegration vector). This happens even though the two series are cointegrated. A trader could use this information to find latent arbitrage opportunities and a policy maker would be able to state which series is more reactive to shocks and adjust market policies accordingly.

VECM specification for WGS2YR and WGS3MO with 2 lags:

Vector Error Correction Estimate	25
----------------------------------	----

Date: 04/25/21 Time: 22:43

Sample (adjusted): 8/14/1992 4/09/2021 Included observations: 1496 after adjustments

Standard errors in () & t-statistics in []

Standard errors in () & t-	statistics in []		_
Cointegrating Eq:	CointEq1		
WGS2YR(-1)	1.000000		_
WGS3MO(-1)	-0.872668		
	(0.02965)		
	[-29.4319]		
@TREND(7/24/92)	0.000850		
	(0.00014)		
	[5.90485]		
С	-1.461149		
Error Correction:	D(WGS2YR)	D(WGS3MO)	_
CointEq1	0.006876	0.045878	_
	(0.00661)	(0.00600)	
	[1.04038]	[7.64513]	
D(WGS2YR(-1))	0.233229	0.134078	
	(0.02920)	(0.02651)	
	[7.98783]	[5.05724]	
D(WGS2YR(-2))	0.019425	0.049819	
	(0.02964)	(0.02692)	
	[0.65531]	[1.85094]	
D(WGS3MO(-1))	-0.030839	0.097775	
	(0.03111)	(0.02824)	
	[-0.99142]	[3.46174]	
D(WGS3MO(-2))	0.072731	-0.053639	
	(0.03074)	(0.02791)	
	[2.36626]	[-1.92192]	
С	-0.001970	-0.001540	
	(0.00229)	(0.00208)	

Task 5

WGS2YR Residuals:

Instances of volatility clustering can be observed whenever large changes tend to trigger subsequent periods of high volatility (of either sign), and small changes tend to be followed by periods of low volatility. We can see that starting in the global financial crisis, when volatility was exceptionally pronounced, such patterns became evident. Thereafter, starting in about 2010, volatility remained remarkably low and even and only recently started to pick up again in the context of the COVID-19 shock.

The kernel density represents a local smoother of the histogram. As can be seen by comparing the kernel regression line to the normal distribution line, the residuals are indeed leptokurtic (the image must be magnified to actually appreciate that the kernel regression lies above the normal distribution in both tails). The same conclusion can be drawn by observing the kurtosis value of 7.0673, which is far over 3, thus confirming the previous observation of the presence of volatility clustering.

Summary statistics for the WGS2YR residuals:

Mean	2.61E-18
Median	0.002621
Maximum	0.470772
Minimum	-0.570609
Std. Dev.	0.088350
Skewness	-0.245186
Kurtosis	7.067298
Jarque-Bera	1046.164
Probability	0.000000
Sum	2.21E-15
Sum Sq. Dev.	11.66945
Observations	1496

Distribution of the WGS2YR residuals:

TASK 6

T-Student EGARCH (1,1):

Coefficient	Std. Error	z-Statisti c	Prob.
0.003691	0.001282	2.878206	0.0040
Variance l	Equation		
-0.217488	0.036553	-5.949920	0.0000
0.231794	0.031200	7.429164	0.0000
0.001934	0.017761	0.108880	0.9133
0.991880	0.004775	207.7206	0.0000
5.467678	0.787346	6.944440	0.0000
-0.001747	Mean depend	ent var	2.61E-18
-0.001747	•		0.088350
0.088427	Akaike info criterion		-2.430633
11.68983	Schwarz criterion		-2.409334
1824.113	Hannan-Quin	n criter.	-2.422697
2.004070			
	0.003691 Variance -0.217488 0.231794 0.001934 0.991880 5.467678 -0.001747 -0.001747 0.088427 11.68983 1824.113	0.003691 0.001282 Variance Equation -0.217488 0.036553 0.231794 0.031200 0.001934 0.017761 0.991880 0.004775 5.467678 0.787346 -0.001747 Mean depend -0.001747 S.D. depender 0.088427 Akaike info cr 11.68983 Schwarz crite 1824.113 Haman-Quim	0.003691 0.001282 2.878206 Variance Equation -0.217488 0.036553 -5.949920 0.231794 0.031200 7.429164 0.001934 0.017761 0.108880 0.991880 0.004775 207.7206 5.467678 0.787346 6.944440 -0.001747 Mean dependent var -0.001747 S.D. dependent var 0.088427 Akaike info criterion 11.68983 Schwarz criterion 1824.113 Hannan-Quinn criter.

Conditional standard deviation of T-Student EGARCH (1,1):

TASK 7

LM test for heteroskedasticity:

Heteroskedasticity Test	: ARCH		
F-statistic		Prob. F(10,1475)	0.1503
Obs*R-squared		Prob. Chi-Square(10)	0.1504

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 04/26/21 Time: 16:39

Sample (adjusted): 10/23/1992 4/09/2021 Included observations: 1486 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.931992	0.099184	9.396575	0.0000
WGT_RESID^2(-1)	0.040235	0.026010	1.546885	0.1221
WGT_RESID^2(-2)	-0.014874	0.025982	-0.572480	0.5671
WGT_RESID^2(-3)	0.004072	0.025978	0.156756	0.8755
WGT_RESID^2(-4)	-0.004307	0.025977	-0.165804	0.8683
WGT_RESID^2(-5)	-0.021374	0.025971	-0.823011	0.4106
WGT_RESID^2(-6)	-0.018845	0.025972	-0.725603	0.4682
WGT_RESID^2(-7)	-0.004013	0.025975	-0.154506	0.8772
WGT_RESID^2(-8)	-0.024432	0.025974	-0.940644	0.3470
WGT_RESID^2(-9)	0.062125	0.025979	2.391362	0.0169
WGT_RESID^2(-10)	0.046701	0.026009	1.795582	0.0728
R-squared	0.009775	Mean depend	ont you	0.997400
Adjusted R-squared	0.003773	S.D. depender		2.178102
	2.174766	Akaike info cr		4.399094
S.E. of regression		Schwarz crite		
Sum squared resid	6976.168			4.438355
Log likelihood	-3257.527	Hannan-Quin		4.413727
F-statistic	1.455984	Durbin-Watso	on stat	1.996476
Prob(F-statistic)	0.150254			

EGARCH(1;1) residuals correlogram:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro b*	
ı lı		1	0.033	0.033	1.6244	0.202	
1		2	-0.015	-0.016	1.9442	0.378	
i)	•	3	0.020	0.021	2.5167	0.472	
·	1	4	0.047	0.045	5.8328	0.212	
1	į į	5	-0.009	-0.012	5.9630	0.310	
ļ i	•	6	0.015	0.017	6.3030	0.390	
		7	0.030	0.027	7.6678	0.363	
) i)	j)	8	0.024	0.020	8.5022	0.386	
ılı ılı		9	0.009	0.009	8.6379	0.471	
1)	•	10	0.028	0.026	9.8430	0.454	
•	(-	11	-0.027	-0.032	10.960	0.447	
- - -		12	-0.013	-0.012	11.205	0.511	
	•	13	0.100	0.098	26.324	0.015	
•	l •	14	-0.012	-0.022	26.550	0.022	
1)	•	15	0.017	0.023	26.969	0.029	
 	•	16	0.033	0.027	28.596	0.027	
)		17	0.021	0.010	29.268	0.032	
(ļ (h	18	-0.041	-0.038	31.876	0.023	
•	(•	19	-0.033	-0.034	33.479	0.021	
ļ ļ	ļ	20	0.001	-0.005	33.482	0.030	
ı ı		21	0.003	0.001	33.500	0.041	
• • • • • • • • • • • • • • • • • • •		22	0.027	0.030	34.570	0.043	
•	•	23	-0.014	-0.023	34.888	0.053	
•		24	-0.020	-0.014	35.504	0.061	
•	l •	25	-0.021	-0.019	36.179	0.069	
1)	•	26	0.029	0.021	37.487	0.068	
•		27	0.004	0.011	37.508	0.086	
ļ ļ	ļ	28	0.002	0.003	37.514	0.108	
•	ļ "	29	0.020	0.014	38.096	0.120	
1	1	30	0.052	0.043	42.163	0.069	
ļ	ļ •	31	0.007	0.012	42.231	0.086	
•	•	32	-0.033	-0.030	43.851	0.079	
· I	10	33	0.058	0.061	49.037	0.036	
•	•				49.562	0.041	
•	ļ •				50.803	0.041	
ı	•	36	0.014	0.016	51.111	0.049	
*Probabilities may no	ot be valid for this equ	*Pro babilities may not be valid for this equation specification.					

EGARCH(1;1) squared residuals correlogram:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro b*
ı)ı		1	0.042	0.042	2.6381	0.104
1		2	-0.014	-0.016	2.9309	0.231
ıþ	ļ -	3	0.002	0.003	2.9351	0.402
ı		4	-0.007	-0.007	3.0060	0.557
•	(5	-0.024	-0.023	3.8797	0.567
•	l (i	6	-0.021	-0.019	4.5177	0.607
ılı		7	-0.007	-0.006	4.5857	0.710
•	(-	8	-0.023	-0.023	5.3492	0.720
ı l ı	10	9	0.062	0.064	11.214	0.261
ıjı	1	10	0.053	0.047	15.475	0.116
•	(+	11	-0.033	-0.037	17.166	0.103
ıþ		12	-0.002	0.001	17.171	0.143
•	(1	13	-0.031	-0.033	18.623	0.135
ıþ		14	0.010	0.015	18.766	0.174
Ų.	(-	15	-0.047	-0.045	22.135	0.104
•		16	-0.016	-0.011	22.514	0.127
ıþ		17	0.004	0.005	22.535	0.165
Ų.	(-	18	-0.042	-0.047	25.245	0.118
ı	ψ	19	0.000	-0.005	25.245	0.153
ıþ		20	0.015	0.014	25.609	0.179
•	(21	-0.027	-0.028	26.692	0.181
•	ψ	22	-0.009	-0.005	26.829	0.218
ıþ		23	-0.006	-0.009	26.893	0.261
ıþ		24	-0.000	0.000	26.893	0.309
	ψ.	25	-0.013	-0.006	27.133	0.349
ıþ		26	0.016	0.010	27.525	0.382
•	•	27	-0.032	-0.031	29.117	0.355
•	ļ (28	-0.023	-0.018	29.891	0.368
•	ļ "	29	0.020	0.015	30.489	0.390
1		30	0.002	0.000	30.498	0.440
•	•	31	-0.021	-0.021	31.175	0.457
•	•	32	-0.028	-0.027	32.407	0.447
• • • • • • • • • • • • • • • • • • •	•)•	33	0.023	0.021	33.234	0.456
•	•	34	-0.021	-0.027	33.923	0.471
•	•	35	-0.023	-0.021	34.769	0.479
ı j ı	1	36	0.051	0.049	38.828	0.343
Probabilities may not be valid for this equation specification.						

EGARCH(1;1) residuals graph:

EGARCH(1;1) residual, Actual, Fitted graph:

From the high F statistic (of 15.03%) of the Lagrange Multiplier test, it can be concluded that there is no structure left in the residuals (in particular, the null hypothesis of homoskedasticity is not rejected at a 10% confidence level). The same conclusion can be drawn by observing the both the simple and squared standardized residuals correlogram since the p-value of the Ljung-Box test does not allow us to reject the null hypothesis (no autocorrelation) at any confidence level, thus concluding that both residuals and squared residuals behave like a white noise. It is worth mentioning the fact that in the latest part of the series some lags appear to be statistically significant but this fact it is not relevant for the scope of the analysis. This result shows the absence of a structure (existence of autocorrelation), and therefore the model seems to be well specified. Moreover, looking at the Residuals graph it can be noticed that there is evidence of volatility clustering, in particular, during crisis periods such as the dotcom in 2001, the Lehman crash of 2008, and the COVID-19 pandemic. During these periods frequent spikes can be observed. Finally, from the Actual, Fitted, Residual graph it can be observed that the series is not capturing that much in terms of forecast of the mean since, especially during crises, the residuals present big spikes, therefore they are not a White Noise Process. From the AFR graph the actual expected values are completely explained by the residuals, while fitted values seems to be not relevant, thus reinforcing the hypothesis that the model does not capture mean forecast.

TASK 8

GARCH(2;2) model estimation:

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.004206	0.001369	3.071873	0.0021
	Variance	Equation		
С	1.63E-05	3.68E-05	0.443429	0.6575
RESID(-1)^2	0.110300	0.018227	6.051318	0.0000
RESID(-2)^2	0.041361	0.330656	0.125087	0.9005
GARCH(-1)	0.452397	3.071600	0.147284	0.8829
GARCH(-2)	0.407753	2.772450	0.147073	0.8831
R-squared	-0.002267	Mean depend	ent var	2.61E-18
Adjusted R-squared	-0.002267	S.D. depender	it var	0.088350
S.E. of regression	0.088450	Akaike info cr	iterion	-2.352127
Sum squared resid	11.69591	Schwarz crite	rion	-2.330828
Log likelihood	1765.391	Hannan-Quin	n criter.	-2.344191
Durbin-Watson stat	2.003029			

EGARCH(1;1) variance forecast regression:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.001860	0.000724	2.570088	0.0103
FORECAST_EGARCH11	0.699927	0.063977	10.94024	0.0000
R-squared	0.074171	Mean dependent var		0.007800
Adjusted R-squared	0.073551	S.D. dependen	t var	0.019220
S.E. of regression	0.018500	Akaike info cri	terion	-5.140753
Sum squared resid	0.511323	Schwarz criter	ion	-5.133653
Log likelihood	3847.283	Hannan-Quinn	criter.	-5.138108
F-statistic	119.6889	Durbin-Watson	n stat	2.039471
Prob(F-statistic)	0.000000			

GARCH(2;2) variance forecast regression:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FORECAST_GARCH22	0.002211 0.639853	0.000700 0.058438	3.159855 10.94927	0.0016 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.074284 0.073665 0.018499 0.511261 3847.375 119.8865 0.000000	Mean depender S.D. dependen Akaike info crit Schwarz criter Hannan-Quinn Durbin-Watson	t var terion ion criter.	0.007800 0.019220 -5.140875 -5.133776 -5.138230 2.051882

Wald's Test for EGARCH (1;1):

		Wald Test: Equation: REGRESSION_EGARCH11_						
Test Statistic	Value	df	Probability					
F-statistic Chi-square	12.03123 24.06247	(2, 1494)	0.0000					
Null Hypothesis: C Null Hypothesis Su								
Normalized Restri	ction (= 0)	Value	Std. Err.					
C(1) 0.001860 0.00072 -1 + C(2) -0.300073 0.06397								

Wald's Test GARCH (2;2):

Wald Test: Equation: REGRESSION_GARCH22_							
Test Statistic	Value	df	Probability				
F-statistic Chi-square	20.90479 41.80958	(2, 1494) 2	0.0000				
Null Hypothesis: C(1)=0, C(2)=1 Null Hypothesis Summary:							
Normalized Restri	ction (= 0)	Value	Std. Err.				
C(1) 0.002211 0.000700 -1 + C(2) -0.360147 0.058438							

In order to check whether the two estimated models (EGARCH (1;1) and GARCH (2;2)) accurately predict future variance, the requirement is that on average the realized squared residuals should be as close as possible to the variance forecast that the model offers. It implies that in the regression:

$$\varepsilon_{t+1}^2 = a + b\sigma_{t+1|t}^2 + e_{t+1|t}$$

a=0 and b=1 jointly. This is true whenever the variance from the model offers an unbiased predictor of squared residuals used as a proxy for the realized variance.

In the tables of both EGARCH (1;1) and GARCH(2;2) regressions it can be seen that the constant is practically zero but the p-value tells us that the coefficient is statistically different from zero. Instead, the other test performed is aimed at assessing whether the slope of the regression is equal to or different from 1. In this, limiting the analysis only to the p-value would not be correct since the aim is not testing the null hypothesis of absence of a slope, but rather perform a test to assess whether it is equal to one. For this reason, a Wald test must be performed. The result is unsatisfactory, however, since observing the very low p-value of the F-statistic shows that the two coefficients are not respectively equal to 0 and 1 simultaneously for both the models. The R-squared values of the models are quite low (7.4171% for EGARCH(1;1) and 7.4284% for GARCH(1,1)), as well. However, this test of predictive performance may be fallacious because the process of the squared residuals provides a pure proxy for the process of the true timevarying variance. When standardized residuals show a large kurtosis, the variance of the squared residuals will be large, therefore creating a lot of noise and a low R-squared value in case their squared residuals are used as a proxy for instantaneous variance.

Variance forecast from EGARCH(1;1) and GARCH(2;2):

EGARCH(1,1) and GARCH(2,2) forecast difference:

EGARCH(1,1) and GARCH(2,2) forecast scatter plot:

Looking at the scatterplot it can be noticed that the slope of the regression line between the two forecasts is different from 45°. This is quite evident especially in the upper-right corner, meaning that the difference between the two forecasts appears mainly in the correspondence of big spikes of volatility. Observing the graph of variance forecasts from the two models, it is possible to distinguish the two of them, meaning that the two forecasts are quite different (even if not in a striking way). Another remarkable fact is that, while there seems to be on average a slight prevalence of the forecast values of EGARCH(1;1), in correspondence of high volatility periods GARCH(2;2) values are actually overshooting on top of the EGARCH's spikes. Since EGARCH models take into account the leverage effect, bigger spikes of variances during periods of crisis are expected more in this kind of model, rather than in a GARCH one. In fact, in the EGARCH(2;2) model, negative returns generate a larger variance than positive ones. The graph shows that the GARCH(2;2) model always forecasts elevated variance during negative periods. A possible explanation for this could be the fact that in the GARCH(2;2) model the past variance forecasts have large but not significant coefficients and, therefore, they cause higher variance forecasts whilst not being statistically different from zero.