第六回課題解説

教科書の問 5.2

- $\arcsin x$ とは $\sin \theta = x$ となる角 θ で区間 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ に属するもの,
- $\arccos x$ とは $\cos \theta = x$ となる角 θ で区間 $[0,\pi]$ に属するもの,
- $\arctan x$ とは $\tan \theta = x$ で区間 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ に属するもののことである. したがって:
- (1) $\arcsin \frac{1}{2} = \frac{\pi}{6}$. (2) $\arccos(-\frac{1}{\sqrt{2}}) = \frac{3\pi}{4}$.
- (3) $\arctan \sqrt{3} = \frac{\pi}{3}$,
- (4) $\lim_{x\to\infty} \arctan x = \frac{\pi}{2}$.

教科書の問 5.3 (1) $lpha=rctanrac{1}{2},$ $eta=rctanrac{1}{3}$ とおくと $0<lpha<rac{\pi}{4},$ $0<eta<rac{\pi}{4}$ である.よって

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2}\frac{1}{3}} = 1$$

から

$$\alpha+\beta=\frac{\pi}{4}$$

がしたがう.

(2) $\alpha = \arctan \frac{1}{5}$, $\beta = \arctan \frac{1}{239}$ とおく. $\tan \alpha = \frac{1}{5}$ だから $\tan \alpha$ の加法定理より

$$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha} = \frac{2/5}{1-1/25} = \frac{10}{24} = \frac{5}{12}$$
$$\tan 4\alpha = \frac{2\tan 2\alpha}{1-\tan^2 2\alpha} = \frac{5/6}{1-25/144} = \frac{120}{119}.$$

よって 4α は $\pi/4$ より僅かに大きい. したがって \tan の加法定理より

$$\tan\!\left(4\alpha - \frac{\pi}{4}\right) = \frac{\tan 4\alpha - 1}{1 + \tan 4\alpha \tan \frac{\pi}{4}} = \frac{1/119}{1 + 120/119} = \frac{1}{239} \ .$$

この等式は小さい正の角 $(<\frac{\pi}{2})$ の \tan の値に対するものだから、両辺の \arctan を取ることができて、

$$4\alpha - \frac{\pi}{4} = \arctan \frac{1}{239}$$

を得る. ここで $\alpha = \arctan \frac{1}{5}$ だから、結局

$$\frac{\pi}{4} = 4 \arctan \frac{1}{5} - \arctan \frac{1}{239}$$

である.

- 教科書の問 6.2 (1) $(\sqrt{1+x^2})' = \frac{1}{2} \frac{2x}{\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}}$. (2) (1) の結果を使って $\{\log(x+\sqrt{1+x^2})\}' = \frac{1+\frac{x}{\sqrt{1+x^2}}}{x+\sqrt{1+x^2}} = \frac{1}{\sqrt{1+x^2}}$. (3) (1)(2) の結果を使って $\{\frac{1}{2}\{x\sqrt{1+x^2}+\log(x+\sqrt{1+x^2})\}\}' = \frac{1}{2}\sqrt{1+x^2}+\frac{1}{2}\frac{x^2}{\sqrt{1+x^2}}+\frac{1}{2}\frac{1}{\sqrt{1+x^2}} = \sqrt{1+x^2}$.
- (4) $\tan\frac{x}{2} > 0$ なら $(\log|\tan\frac{x}{2}|)' = \frac{(\tan\frac{x}{2})'}{\tan\frac{x}{2}} = \frac{1/2\cos^2\frac{x}{2}}{\tan\frac{x}{2}} = \frac{1}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \frac{1}{\sin x}$ である. $\tan\frac{x}{2} < 0$ のときも 結果は同じである.
- (5) x>0 なら指数関数の底の変換公式から $x^x=e^{x\log x}$ だから $(x^x)'=(e^{x\log x})'=e^{x\log x}(\log x+x\cdot \frac{1}{x})=$ $x^x(1+\log x)$.

教科書の問 6.3 (1) $(\arcsin\sqrt{1-x^2})' = \frac{1}{\sqrt{1-(\sqrt{1-x^2})^2}} \frac{-2x}{2\sqrt{1-x^2}} = -\frac{\operatorname{sgn}(x)}{\sqrt{1-x^2}}$ である.ここで $\sqrt{x^2} = |x|, \frac{x}{|x|} = \operatorname{sgn}(x)$ を用いた.ただし, $\operatorname{sgn}(x)$ は x > 0 なら 1, x < 0 なら -1 をとる符号関数である.

- $\frac{1}{1+(\frac{2x}{1-x^2})^2}\times(\frac{2}{1-x^2}+2x\cdot\frac{2x}{(1-x^2)^2})=\frac{2(1-x^2)+4x^2}{(1-x^2)^2+4x^2}=\frac{2(1+x^2)}{(1+x^2)^2}=\frac{2}{1+x^2}.$ もちろんこれで正しい計算だが、次のようにも考えられる: $x=\tan\theta$ とおくと $\tan2\theta=\frac{2x}{1-x^2}$ である.よって $\arctan\frac{2x}{1-x^2}=2\theta=2\arctan x$ である.よって $(\arctan\frac{2x}{1-x^2})'=\frac{2}{1+x^2}$ である.