

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 15 DEC 2004 HIGHEST RN 798532-74-8
 DICTIONARY FILE UPDATES: 15 DEC 2004 HIGHEST RN 798532-74-8

TSCA INFORMATION NOW CURRENT THROUGH MAY 21, 2004

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. For more information enter HELP PROP at an arrow prompt in the file or refer to the file summary sheet on the web at:
<http://www.cas.org/ONLINE/DBSS/registryss.html>

=>
 Uploading C:\Program Files\Stnexp\Queries\10695048aaa.str

chain nodes :

9 10 20 21 22 25 26 27

ring nodes :

1 2 3 4 5 6 7 8 16 17 18 19

chain bonds :

1-10 4-9 16-20 17-25 20-21 20-22 25-26 25-27

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 5-7 6-8 7-8 16-17 16-19 17-18 18-19

exact/norm bonds :

1-2 1-6 1-10 2-3 3-4 4-5 4-9 5-6 5-7 6-8 7-8 16-17 16-19 17-18 17-25
 18-19 20-21 20-22 25-26

exact bonds :

16-20 25-27

isolated ring systems :

containing 1 : 16 :

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:CLASS 10:CLASS
 16:Atom 17:Atom 18:Atom 19:Atom 20:CLASS 21:CLASS 22:CLASS 25:CLASS

26:CLASS 27:CLASS

fragments assigned product role:

containing 1

fragments assigned reactant/reagent role:

containing 16

L1 STRUCTURE UPLOADED

=> d 11
L1 HAS NO ANSWERS
L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> file casreact
COST IN U.S. DOLLARS

	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	0.42	0.63

FILE 'CASREACT' ENTERED AT 14:45:41 ON 17 DEC 2004
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT: 1840 - 12 Dec 2004 VOL 141 ISS 24

```
*****  
*  
*      CASREACT now has more than  8 million reactions  
*  
*****
```

Some CASREACT records are derived from the ZIC/VINITI database (1974-1991) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

```
=> s 11
SAMPLE SEARCH INITIATED 14:45:48 FILE 'CASREACT'
SCREENING COMPLETE -      38 REACTIONS TO VERIFY FROM      1 DOCUMENTS

100.0% DONE      38 VERIFIED      0 HIT RXNS      0 DOCS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS:  ONLINE  **COMPLETE**
                        BATCH   **COMPLETE**

PROJECTED VERIFICATIONS:    391 TO     1129
PROJECTED ANSWERS:          0 TO      0

L2      0 SEA SSS SAM L1 (      0 REACTIONS)

=> s 11 sss full
FULL SEARCH INITIATED 14:45:55 FILE 'CASREACT'
SCREENING COMPLETE -    1293 REACTIONS TO VERIFY FROM      44 DOCUMENTS

100.0% DONE    1293 VERIFIED      46 HIT RXNS      15 DOCS
SEARCH TIME: 00.00.01

L3      15 SEA SSS FUL L1 (      46 REACTIONS)

=> d fhit ibib abs tot
```

L3 ANSWER 1 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(8) OF 129 ...2 AN ==> O + AN...

RX(8) RCT AM 259173-97-2

STAGE(1)
CAT 7440-18-8 Ru
SOL 67-56-1 MeOHSTAGE(2)
RGT I 1333-74-0 H2STAGE(3)
RGT AK 104-15-4 TsOH
SOL 108-88-3 PhMe
PRO O 695876-05-5, AN 714237-96-4
NTE stereoselectiveACCESSION NUMBER: 141:88980 CASREACT
TITLE: Stereoselective Synthesis of a Potent Thrombin Inhibitor by a Novel P2-P3 Lactone Ring Opening
AUTHOR(S): Nelson, Todd D.; LeBlond, Carl R.; Frantz, Doug E.; Matty, Louis; Mitten, Jeffrey V.; Weaver, Damian G.

L3 ANSWER 1 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

Moore, Jeffrey C.; Kim, Jaehon M.; Boyd, Russell; Pei-Yi; Gbewonyo, Kodzo; Brower, Mark; Sturr,

Michael; McLaughlin, Kathleen; McMasters, Daniel R.; Kress, Michael H.; McNamara, James M.; Dolling, Ulf H.

CORPORATE SOURCE: Department of Process Research, Merck Research Laboratories, Merck & Co., Wayne, PA, 19087, USA

SOURCE: 3620-3627 JOURNAL OF ORGANIC CHEMISTRY (2004), 69(11),

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal

LANGUAGE: English

GI

CODEN: JOCEAH; ISSN: 0022-3263

Journal

English

GI

AB The concise synthesis of a potent thrombin inhibitor I·HBr was accomplished by a mild lactone aminolysis between an orthogonally protected bis-benzyl amine II and a diastereomerically pure lactone III. The lactone was synthesized by the condensation of L-proline Me ester with an enantiomerically pure 2-hydroxy-3,3-dimethylbutanoic acid, which in turn was synthesized by a highly stereoselective (>500:1 er) and productive (100000:1, S/C) enzymatic reduction of corresponding α -ketester followed by hydrolysis. In addition, a second route to the enantiomerically pure lactone III was accomplished via diastereoselective reduction of ketoamide IV.

REFERENCE COUNT: 77 THERE ARE 77 CITED REFERENCES AVAILABLE FOR THIS

L3 ANSWER 2 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

L3 ANSWER 2 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

RECORD. ALL CITATIONS AVAILABLE IN THE RE

FORMAT

RX(3) RCT C 259173-97-2

STAGE(1)
RGT G 1333-74-0 H2
CAT 7440-18-8D Ru
SOL 67-56-1 MeOHSTAGE(2)
CAT 104-15-4 TsOH
SOL 108-88-3 PhMe
PRO J 695876-05-5
NTE second stage stereoselective, other product detected
ACCESSION NUMBER: 140:391288 CASREACT
TITLE: Process of making N-heterocyclic bicyclic lactone compounds from ketoamides
INVENTOR(S): Nelson, Todd D.; Leblond, Carl; Mitten, Jeffrey V.
PATENT ASSIGNEE(S): USA
SOURCE: U.S. Pat. Appl. Publ., 9 pp.
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2004087790	A1	20040506	US 2003-695048	20031028
PRIORITY APPLN. INFO.:			US 2002-422701P	20021031
OTHER SOURCE(S): GI			MARPAT 140:391288	

Own work

AB Disclosed is a process of preparing a fused morpholine-2,5-dione [I; wherein R is (a) C 1-6 alkyl unsubstituted or substituted with one, two, or three groups independently selected from C 6-10 aryl, C 1-6 alkoxy, halogen, and amino; or (b) a 6-10 membered monocyclic or bicyclic aryl ring system, unsubstituted or substituted with one, two or three groups independently selected from C1-6 alkyl, C1-6 alkoxy, halogen, and amino group; and m is 1, 2, 3, 4, or 5] which comprises coupling a keto acid of formula RCOCOOH (R = same as above) with 1-azacycloalakane-2-carboxylic acid ester [II;

R1 = (a) C1-6 alkyl unsubstituted or substituted with 1 to 3 groups independently selected from C6-10 aryl, HO, Cl1-6 alkoxy, halogen, and amino, (b) benzyl unsubstituted or substituted with one, two or three groups independently selected from C1-6 alkyl, hydroxy, Cl1-6 alkoxy, halogen, and amino, or (c) hydrogen, reducing the resulting ketobamides (III; R, R1, m = same as above), and cyclization of the resulting hydroxy ketobamides (IV; R, R1, m = same as above). Thus, 3,3-dimethyl-2-oxobutananoic acid was coupled with L-proline Me ester hydrochloride using HOBt/EDC as coupling reagents to give N-(3,3-dimethyl-2-oxobutanoyl)-L-proline Me ester (V) which was hydrogenated over 5% Ru/C in methanol at 50° and 40 psig H pressure for 71 h to give a crude mixture of $\text{N}-(\text{R})-$ and (S) -3,3-dimethyl-2-hydroxybutanoyl-L-proline Me ester (VI). VI was dissolved in toluene and stirred in the presence of p-MeCO₂H at room temperature for 3 h under reduced pressure with removing methanol formed to give, after silica gel chromatog., lactone (VII) in 67% yield from V.

AB The present invention relates to a synthetic process for the preparation of a novel class of androgen receptor targeting agents (ARTA) [I; wherein X = O, NH, Se, or NR; T = OH, OR, NHCOMe, NHCOR; Z = NO₂, CO₂H, COR, NHCOR, CONHR; Y = CF₃, F, I, Br, Cl, cyano, CR₃, SnR₃; Q = alkyl, halogen, CF₃, cyano, CR₃, SnR₃, NR₂, NHCOMe, NHCOCF₃, NHCOR, NHCONHR, NHCO₂R, OCONHR, CONHR, NHCSMe, NHCSCE₃, NHCSR, NHSO₂Me, NHSO₂R, OR, COR, OCOR, OSO₂R, SO₂R, SR; or Q together with the benzene ring to which it is attached is a fused ring system represented by structure Q1, Q2 or Q3; R

= alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH₂F, CHF₂, CF₃, CF₂CF₃, aryl, Ph, halogen, alkenyl, OH; R1 = Me, CH₂F, CHF₂, CF₃, CH₂CH₃, CF₂CF₃] comprising the step of coupling an amide of formula (II) (Z, Y, R1, T = same as above; L = a leaving group) with a compound of formula (III) (Q;

X = same as above). These agents demonstrate androgenic and anabolic activity

of a nonsteroidal ligand for the androgen receptor (no data). The agents define a new subclass of compds. which are selective androgen receptor modulators (SARM) which are useful for (a) male contraception, (b) treatment of a variety of hormone-related conditions, for example conditions associated with androgen decline in aging male (ADAM), such as fatigue, depression, decreased libido, sexual dysfunction, erectile dysfunction, hypogonadism, osteoporosis, hair loss, anemia, obesity, sarcopenia, osteopenia, osteoporosis, benign prostate hyperplasia, alterations in mood and cognition and prostate cancer, (c) treatment of conditions associated with androgen decline in female (ADIF), such as sexual dysfunction, decreased sexual libido, hypogonadism, sarcopenia, osteopenia, osteoporosis, alterations in cognition and mood, depression, anemia, hair loss, obesity, endometriosis, breast cancer, uterine cancer and ovarian cancer, (d) treatment and/or prevention of chronic muscular wasting, (e) decreasing the incidence of, halting or causing a regression of prostate cancer, and (f) oral androgen replacement and/or other clin.

therapeutic and/or diagnostic areas. The process of the present invention is suitable for large-scale preparation, since all of the steps give

RX(2) RCT C 106089-24-1
RGT H 128-08-5 Bromosuccinimide

PRO G 10613B-80-1

SOL 68-12-2 DMF

NTE bromination and cyclization

ACCESSION NUMBER: 140:111132 CASREACT

TITLE: Method for preparation of N-[4-nitro-3-(trifluoromethyl)phenyl]-[2S]-3-[4-(acetylaminophenoxy]-2-hydroxy-2-methylpropanamide and related compounds as selective androgen receptor modulators

INVENTOR(S): Dalton, James T.; Miller, Duane D.; He, Yali; Yin, Donghua

PATENT ASSIGNEE(S): USA
SOURCE: U.S. Pat. Appl. Publ., 29 pp., Cont.-in-part of U.S. Ser. No. 935,044.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 12

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2004014975	A1	20040122	US 2002-277108	20021022
US 2002090936	A1	20020725	US 2001-935044	20010823
US 6492554	B2	20021210		
US 2002090906	A1	20020725	US 2001-935045	20010823
US 6569896	B2	20030527		

PRIORITY APPLN. INFO.: US 2000-367355P 20000824
US 2000-644970 20000824

US 2001-300083P 20010625
US 2001-935044 20010823
US 2001-935045 20010823

OTHER SOURCE(S): MARPAT 140:111132
GI

L3 ANSWER 3 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)
highly pure compds., thus avoiding complicated purifn. procedures which ultimately lower the yield. Thus, the present invention provides methods for the synthesis of non-steroidal agonist compds., that can be used for industrial large-scale synthesis, and that provide highly pure products in high yield.

L3 ANSWER 5 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB An asym. synthesis of (S)-4-(2,2,4-trimethyl-1,3-dioxolan-4-yl)-1-butanol (I), a key intermediate for (1S,5R)-(-)-frontalin, via asym. bromolactonization employing (S)-(-)-proline as a chiral auxiliary is described.

REFERENCE COUNT: 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

L3 ANSWER 6 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(7) OF 66 ...M ==> AK...

RX(7) RCT M 326476-73-7
RGT AL 128-08-5 Bromosuccinimide, X 109-72-8 BuLi
PRO AK 326476-79-9
SOL 68-12-2 DMF
NTE stereoselective
ACCESSION NUMBER: 134:178422 CASREACT
TITLE: Enantioselective synthesis of
(S)-N,N-diethyl-2-formyl-
2-(methoxymethoxy)butyramide, a key intermediate for
20(S)-camptothecin analogues, via asymmetric
bromolactonization
AUTHOR(S): Park, H.-g.
CORPORATE SOURCE: College of Pharmacy, Seoul National University,
Seoul, 151-742, S. Korea
SOURCE: Tetrahedron: Asymmetry (2000), 11(19), 3985-3994
CODEN: TASYE3; ISSN: 0957-4166
PUBLISHER: Elsevier Science Ltd.
DOCUMENT TYPE: Journal
LANGUAGE: English
AB A new enantioselective synthetic method for enantiomerically pure
(S)-N,N-diethyl-2-formyl-2-(methoxymethoxy)butyramide, a versatile key
intermediate, has been developed employing asym. bromolactonization using
(S)-proline as the chiral auxiliary.
REFERENCE COUNT: 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR
THIS RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

L3 ANSWER 7 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(6) OF 45 ...R ==> T...

L3 ANSWER 7 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB An asym. synthesis of etomoxir I, involving bromolactonization by using (S)-(-)-proline as a chiral auxiliary, is reported.
REFERENCE COUNT: 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

T

RX(6) R 191412-51-8
RGT U 128-08-5 Bromosuccinimide
PRO T 191412-52-9
SOL 68-12-2 DMF

ACCESSION NUMBER: 127:65647 CASREACT
TITLE: Asymmetric synthesis of (R)-(+)-etomoxir
AUTHOR(S): Jew, Sang-Sup; Kim, Hyung-Ook; Jeong, Byeong-Seon;
Park, Hyeyung-Geun
CORPORATE SOURCE: College of Pharmacy, Seoul National University,
Seoul, 151-742, S. Korea
SOURCE: Tetrahedron: Asymmetry (1997), 8(8), 1187-1192
CODEN: TASYE3; ISSN: 0957-4166
PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English
GI

RX(2) OF 5 2 F ==> G + H

RX(2) RCT F 105988-50-9
 RGT D 84-58-2 DDQ
 PRO G 105950-41-6, H 106033-27-6
 SOL 67-66-3 CHCl₃
 NTE stereoselective
 ACCESSION NUMBER: 115:71509 CASREACT
 TITLE: Asymmetric synthesis of heterocycles using charge transfer complex intermediates,
 AUTHOR(S): Lemaire, Marc; Guy, Alain; Imbert, Dominique; Guette, Jean Paul
 CORPORATE SOURCE: Lab. Catal. Synth. Org., CNRS, Villeurbanne, 69622, Fr.
 SOURCE: New Journal of Chemistry (1991), 15(5), 379-84
 DOCUMENT TYPE: CODEN: NJCHE5; ISSN: 0398-9836
 LANGUAGE: Journal English
 GI

AB Use of dichlorodicyanobenzenequinone (DDQ) as an oxidative reagent which performs donor-acceptor interactions with electron rich substrates, permits the diastereocontrol of heterocycle formation and thus the stereoselective synthesis of substituted morpholininediones. Thus, amides I and II, when treated with DDQ, gave 80% (65% d.e.) of morpholine III and 50% (40% d.e.) of morpholine IV, resp.

RX(4) OF 13 I ==> J...

I
 ● K
 (4) → J

RX(4) RCT I 123294-79-1
 RGT K 128-08-5 Bromosuccinimide
 PRO J 123294-77-9
 ACCESSION NUMBER: 111:195169 CASREACT
 TITLE: Novel synthesis of (S)-(-)-chroman-2-carboxylic acid, a vitamin E precursor
 AUTHOR(S): Yoda, Hideki; Takabe, Kunihiko
 CORPORATE SOURCE: Fac. Eng., Shizuoka Univ., Hamamatsu, 432, Japan
 SOURCE: Chemistry Letters (1989), (3), 465-6
 DOCUMENT TYPE: CODEN: CMLTAG; ISSN: 0366-7022
 LANGUAGE: Journal English
 GI

AB A new strategy for the synthesis of (S)-(-)-chroman-2-carboxylic acid I, the pivotal intermediate possessing the absolute configuration required for the construction of α -tocopherol, was disclosed by utilizing asym. halolactonization of acylproline II. Debromination followed by acidic hydrolysis directly afforded the title compound in 98% enantiomeric excess.

L3 ANSWER 10 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(1) OF 15 A ==> B...

RX(1) RCT A 51161-88-7
RGT C 128-08-5 Bromosuccinimide
PRO B 106089-19-4
SOL 68-12-2 DMF

ACCESSION NUMBER: 108:150026 CASREACT

TITLE: Resolution of the non-steroidal antiandrogen

4'-cyano-3-(4-fluorophenylsulfonyl)-2-hydroxy-2-methyl-
3'-(trifluoromethyl)propionanilide and the
determination of the absolute configuration of the
active enantiomer

AUTHOR(S): Tucker, Howard; Chesterton, Glynne J.
CORPORATE SOURCE: Pharm. Div., Imp. Chem. Ind. PLC,
Mereside/Macclesfield/Cheshire, SK10 4TG, UK
SOURCE: Journal of Medicinal Chemistry (1988), 31(4), 885-7
DOCUMENT TYPE: CODEN: JMCMAR; ISSN: 0022-2623
LANGUAGE: English
GI

AB The nonsteroidal antiandrogen 4'-cyano-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methyl-3'-(trifluoromethyl)propionanilide (I) has been resolved by chromatog. separation of the diastereomeric (R)-camphanyl esters of the precursor thioether followed by hydrolysis and oxidation of the isolated enantiomers. In addition, an asym. synthesis of (S)-3-bromo-2-hydroxy-2-

L3 ANSWER 11 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(4) OF 42 ...G ==> L...

RX(4) RCT G 106089-16-1
RGT M 128-08-5 Bromosuccinimide
PRO L 106089-17-2
SOL 68-12-2 DMF

ACCESSION NUMBER: 107:236062 CASREACT

TITLE: Asymmetric bromolactonization reaction: synthesis of optically active 2-hydroxy-2-methylalkanoic acids

from 2-methylenealkanoic acids
AUTHOR(S): Corey, Paul F.
CORPORATE SOURCE: Cent. Res. Serv. Div., Miles Lab., Inc., Elkhart, IN, 46515, USA
SOURCE: Tetrahedron Letters (1987), 28(25), 2801-4
DOCUMENT TYPE: CODEN: TELEAY; ISSN: 0040-4039
LANGUAGE: English
GI

AB Acylation of L-proline with ClCOCH(R)-CHR1 (R = H, R1 = Bu, Me; R = Bu, R1 = H), followed by bromolactonization with NBS gave bromolactones I. Debromination of I (R = H, R1 = Bu; R = Bu, R1 = H) with Bu3SnH, followed by hydrolysis, gave (R)- and (S)-HO2CCMeBuOH, resp. Hydrolysis of I (R = Me, R1 = H) gave optically active HO2CCMe(OH)CH2Br (II) in 88% yield. Reduction of II with BH3, protection with Me2C(OMe)2, alkylation with Pr2CuLi and hydrolysis gave (R)-HOCH2CMeBuOH.

Habte

L3 ANSWER 10 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)
methylpropanoic acid and subsequent conversion into the (S)-sulfone has established that the more potent enantiomer of I has the R abs. configuration.

L3 ANSWER 12 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(1) OF 1 A ==> B

RX(1) RCT A 106089-16-1
PRO B 106089-17-2

ACCESSION NUMBER: 106:32692 CASREACT
TITLE: (+)-S-2-Hydroxy-2-methylhexanoic acid
INVENTOR(S): Corey, Paul Frederick
PATENT ASSIGNEE(S): Miles Laboratories, Inc., USA
SOURCE: Eur. Pat. Appl., 22 pp.
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 198348	A2	19861022	EP 1986-104503	19860404
EP 198348	A3	19880608		
EP 198348	B1	19900103		
R: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE CA 1249842	A1	19890207	CA 1986-504794	19860324
AT 49193	E	19900115	AT 1986-104583	19860404
JP 61238757	A2	19861024	JP 1986-84436	19860414
US 4668822	A	19870526	US 1986-894390	19860811
PRIORITY APPLN. INFO.:			US 1985-723201	19850415
			EP 1986-104583	19860404

AB The title compound (+)-S-Me(CH2)3C(OH)MeCO2H (I), useful as an intermediate for 16-methyl-1,11a,16RS-trihydroxyprost-13E-en-9-one, was prepared via an asym. halolactonization reaction using L-proline as the chiral agent. Thus, 3S-methyl-3-butyl-1,4-dioxo-3,4,6,7,8,8aS-hexahydro-1H-pyrrrol[2,1-c]-1,4-oxazine, prepared in 3 steps from Me(CH2)3C(:CH2)COCl, was hydrolyzed with aqueous HBr to give I.

12/17/2004

L3 ANSWER 13 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(3) OF 3 I ==> J + K

I (3) →

J K

RX(3) RCT I 105988-50-9
RGD D 84-58-2 DDQ
PRO J 105958-41-6, K 106033-27-6
SOL 67-66-3 CHCl₃

NTE diastereoselective

ACCESSION NUMBER: 106:32128 CASREACT
TITLE: Asymmetric control of oxidation of aromatic substrates

substrates using a donor-acceptor interaction
AUTHOR(S): Lemaire, Marc; Guy, Alain; Imbert, Dominique; Guette, Jean Paul
CORPORATE SOURCE: Lab. Chim. Org., Conserv. Natl. Arts Metiers, Paris, 75141, Fr.
SOURCE: Journal of the Chemical Society, Chemical Communications (1986), (10), 741-2
CODEN: JCCTAT; ISSN: 0022-4936
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Asym. oxidation at the benzylic position of chiral aromatic substrates was

L3 ANSWER 14 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(2) OF 54 2 G + 2 B ==> H + I...

RX(2) RCT G 84653-73-6, B 762-72-1
PRO H 103383-73-9, I 94726-51-9
CAT 7550-45-0 TiCl₄
SOL 75-09-2 CH₂Cl₂

ACCESSION NUMBER: 105:134309 CASREACT
TITLE: Asymmetric synthesis of functionalized tertiary homoallyl alcohols by diastereoselective allylation of chiral alpha-keto amides derived from (S)-proline esters: control of stereochemistry based on saturated coordination of Lewis acid
AUTHOR(S): Soai, Kenzo; Ishizaki, Miyuki
CORPORATE SOURCE: Fac. Sci., Sci. Univ. Tokyo, Tokyo, 162, Japan
SOURCE: Journal of Organic Chemistry (1986), 51(17), 3290-5
DOCUMENT TYPE: Journal
LANGUAGE: English
GI

L3 ANSWER 13 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)
controlled using a donor-acceptor interaction and DDQ as acceptor and oxidant. E.g., oxida. of p-Me₂CHOC₆H₄CH₂CO₂R [R = (-)-menthyl] with DDQ in AcOH at room temp. for 17 h gave a 6:4 diastereoisomeric mixt. of p-Me₂CHOC₆H₄CH(OAc)CO₂R in 90% yield.

L3 ANSWER 14 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB Diastereoselective addns. of allylsilanes and -stannanes to chiral alpha-keto amides I (R = Ph, R₁ = Me, R = R₁ = Me) derived from esters of (S)-proline in the presence of Lewis acids afforded optically active tertiary homoallyl alcs. of high diastereomeric excesses (up to 92%)

de). The order of the effectiveness of Lewis acids on diastereoselectivity was SnBr₄ > SnCl₄ > TiCl₄ > BF₃-OEt₂ > AlCl₃. At least 3 mol equiv of SnCl₄ were required to achieve the high diastereoselection. The coordination of Lewis acids with the oxygen atom(s) of I may be one of the reasons for the high diastereoselectivity. When SnCl₄ was used, CH₂Cl₂ was the best solvent. In the case of TiCl₄,

a heterogeneous reaction mixture in n-hexane and CH₂Cl₂ led to higher diastereoselectivity than a homogeneous solution in CH₂Cl₂ alone. Both allylsilane and -stannane led to homoallyl alcs. of predominant R configuration. The reaction was faster with allylstannane than with allylsilane. Allylation with allylmagnesium bromide showed the opposite diastereoselectivity. From a study of the effect of temperature, the enthalpy factor was found to be more important than the entropy factor. Some of the diastereomers (II; R₂ = H, Me) cyclize spontaneously and stereoselectively to afford the corresponding lactones. The lactones were separated from the diastereomeric homoallyl alcs. by preparative TLC. Removal of the chiral auxiliaries by Meli afforded essentially enantiomerically pure acyloins of both enantiomers.

L3 ANSWER 15 OF 15 CASREACT COPYRIGHT 2004 ACS on STN

RX(2) OF 11 E + B ==> F...

(2) →

F

RX(2) RCT E 133694-86-7, B 128-08-5
PRO F 65942-05-4

ACCESSION NUMBER: 88:136919 CASREACT
 TITLE: Novel aspects of the asymmetric bromolactonization reaction
 AUTHOR(S): Terashima, Shiro; Jiw, Sang-Sup; Koga, Kenji
 CORPORATE SOURCE: Fac. Pharm. Sci., Univ. Tokyo, Tokyo, Japan
 SOURCE: Chemistry Letters (1977), (9), 1109-12
 CODEN: CMLTAG; ISSN: 0366-7022
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

L3 ANSWER 15 OF 15 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB The asym. bromolactonization of proline derivs. I (R, R1, R2 = H, Me) proceeded highly stereo- and regiospecifically through transition states, e.g. II.

CAS REACT

10/695,048 Page 2

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 15 DEC 2004 HIGHEST RN 798532-74-8
DICTIONARY FILE UPDATES: 15 DEC 2004 HIGHEST RN 798532-74-8

TSCA INFORMATION NOW CURRENT THROUGH MAY 21, 2004

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. For more information enter HELP PROP at an arrow prompt in the file or refer to the file summary sheet on the web at:
<http://www.cas.org/ONLINE/DBSS/registryss.html>

=>
Uploading C:\Program Files\Stnexp\Queries\10695048.str

chain nodes :

9 10

ring nodes :

1 2 3 4 5 6 7 8

chain bonds :

1-10 4-9

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 5-7 6-8 7-8

exact/norm bonds :

1-2 1-6 1-10 2-3 3-4 4-5 4-9 5-6 5-7 6-8 7-8

isolated ring systems :

containing 1 :

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:CLASS 10:CLASS

fragments assigned product role:

containing 1

L1 STRUCTURE UPLOADED

=> d l1
L1 HAS NO ANSWERS
L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> file casreact	SINCE FILE	TOTAL
COST IN U.S. DOLLARS	ENTRY	SESSION
FULL ESTIMATED COST	0.42	0.63

FILE 'CASREACT' ENTERED AT 14:25:29 ON 17 DEC 2004
 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
 COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT:1840 - 12 Dec 2004 VOL 141 ISS 24

 *
 * CASREACT now has more than 8 million reactions *
 *

Some CASREACT records are derived from the ZIC/VINITI database (1974-1991) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

```
=> s 11
SAMPLE SEARCH INITIATED 14:25:34 FILE 'CASREACT'
SCREENING COMPLETE - 1 REACTIONS TO VERIFY FROM 1 DOCUMENTS

100.0% DONE 1 VERIFIED 0 HIT RXNS 0 DOCS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED VERIFICATIONS: 1 TO 79
PROJECTED ANSWERS: 0 TO 0
```

L2 0 SEA SSS SAM L1 (0 REACTIONS)

=> s l1 sss full
FULL SEARCH INITIATED 14:25:44 FILE 'CASREACT'
SCREENING COMPLETE - 427 REACTIONS TO VERIFY FROM 65 DOCUMENTS

100.0% DONE 427 VERIFIED 113 HIT RXNS 19 DOCS
SEARCH TIME: 00.00.01

L3 19 SEA SSS FUL L1 (113 REACTIONS)

=> d fhit ibib abs tot

L3 ANSWER 1 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(7) OF 129 ...AG + AB ==> O...

RX(7) RCT AG 2133-40-6

STAGE(1)
SOL 75-05-8 MeCNSTAGE(2)
RGT AH 7087-68-5 EtN(Pr-i)2STAGE(3)
RGT AB 22146-57-2
RGT AI 2592-95-2 1-Benzotriazolol, AJ 25952-53-8 EDAPSTAGE(4)
RGT U 7647-01-0 HCl
SOL 7732-18-5 WaterSTAGE(5)
RGT AK 104-15-4 TsOH
SOL 108-88-3 PhMe
PRO J 685876-05-5
NTE stereoselective

ACCESSION NUMBER: 141:88980 CASREACT
 TITLE: Stereoselective Synthesis of a Potent Thrombin Inhibitor by a Novel P2-P3 Lactone Ring Opening
 AUTHOR(S): Nelson, Todd D.; LeBlond, Carl R.; Frantz, Doug E.; Matty, Louis; Mitten, Jeffrey V.; Weaver, Damian G.; Moore, Jeffrey C.; Kim, Jaehon M.; Boyd, Russell; Kim, Pei-Yi; Gbewonyo, Kodzo; Brower, Mark; Sturr, Michael; McLaughlin, Kathleen; McMasters, Daniel R.; Kress, Michael H.; McNamara, James M.; Dolling, Ulf H.
 CORPORATE SOURCE: Department of Process Research, Merck Research Laboratories, Merck & Co., Wayne, PA, 19087, USA
 SOURCE: Journal of Organic Chemistry (2004), 69(11), 3620-3627

L3 ANSWER 2 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(3) OF 5 ...C ==> J

RX(3) RCT C 259173-97-2

STAGE(1)
RGT G 1333-74-0 H2
CAT 7440-18-8D Ru
SOL 67-56-1 MeOHSTAGE(2)
CAT 104-15-4 TsOH
SOL 108-88-3 PhMe
PRO J 685876-05-5

NTE second stage stereoselective, other product detected
 ACCESSION NUMBER: 140:391288 CASREACT
 TITLE: Process of making N-heterocyclic bicyclic lactone compounds from ketoamides.

INVENTOR(S): Nelson, Todd D.; LeBlond, Carl; Mitten, Jeffrey V.
 PATENT ASSIGNEE(S): U.S. Pat. Appl. Publ., 9 pp.
 SOURCE: U.S. Pat. Appl. Publ., 9 pp.

DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2004087790	A1	20040506	US 2003-695048	20031028
PRIORITY APPLN. INFO.:			US 2002-422701P	20021031
OTHER SOURCE(S):	MARPAT	140:391288		

GI

L3 ANSWER 1 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

AB The concise synthesis of a potent thrombin inhibitor I-HBr was accomplished by a mild lactone aminolysis between an orthogonally protected bis-benzylic amine II and a diastereomerically pure lactone III. The lactone was synthesized by the condensation of L-proline Me ester with an enantiomerically pure 2-hydroxy-3,3-dimethylbutanoic acid, which in turn was synthesized by a highly stereoselective (>500:1 er) and productive (100000:1, S/C) enzymatic reduction of corresponding α -ketoester followed by hydrolysis. In addition, a second route to the enantiomerically pure lactone III was accomplished via diastereoselective reduction of ketoamide IV.

REFERENCE COUNT: 77 THERE ARE 77 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

FORMAT

L3 ANSWER 2 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB Disclosed is a process of preparing a fused morpholine-2,5-dione (I); wherein R is (a) C 1-6 alkyl unsubstituted or substituted with one, two, or three groups independently selected from C 6-10 aryl, C 1-6 alkoxy, halogen, and amino; or (b) a 6-10 membered monocyclic or bicyclic aryl ring system, unsubstituted or substituted with one, two or three groups independently selected from Cl-6 alkyl, Cl-6 alkoxy, halogen, and amino group; and m is 1, 2, 3, 4, or 5 which comprises coupling a keto acid of formula $RCCO_2H$ (R = same as above) with 1-azacycloalkane-2-carboxylic acid ester (II);

R1 = (a) Cl-6 alkyl unsubstituted or substituted with 1 to 3 groups independently selected from C6-10 aryl, HO, Cl-6 alkoxy, halogen, and amino, (b) benzyl unsubstituted or substituted with one, two or three groups independently selected from Cl-6 alkyl, hydroxy, Cl-6 alkoxy, halogen, and amino, or (c) hydrogen, reducing the resulting ketoamides (III; R, R1, m = same as above), and cyclization of the resulting hydroxy ketoamides (IV; R, R1, m = same as above). Thus, 3,3-dimethyl-2-oxobutanoic acid was coupled with L-proline Me ester hydrochloride using HOBt/EDC as coupling reagents to give N-(3,3-dimethyl-2-oxobutanoyl)-L-proline Me ester (V) which was hydrogenated over 5% Ru/C in methanol at 50° and 40 psig H pressure for 71 h to give a crude mixture of N-((R)- and (S)-3,3-dimethyl-2-hydroxybutanoyl)-L-proline Me ester (VI). VI was dissolved in toluene and stirred in the presence of p-MeC₆H₄SO₃H

at room temperature for 3 h under reduced pressure with removing methanol formed to give, after silica gel chromatog., lactone (VII) in 67% yield from V.

RX(2) OF 15 ...C ==> G...

RCT C 106089-24-1
RGT H 128-08-5 Bromosuccinimide
PRO G 106138-80-1
SOL 68-12-2 DMF

NTE bromination and cyclization
ACCESSION NUMBER: 140:111132 CASREACT

TITLE: Method for preparation of N-[4-nitro-3-(trifluoromethyl)phenyl]-[2S]-3-[4-(acetylaminophenoxy)-2-hydroxy-2-methylpropanamide and related compounds as selective androgen receptor modulators

INVENTOR(S): Dalton, James T.; Miller, Duane D.; He, Yali; Yin, Donghua

PATENT ASSIGNEE(S): USA
U.S. Pat. Appl. Publ., 29 pp., Cont.-in-part of U.S. Ser. No. 935,044.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 12

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2004014975	A1	20040122	US 2002-277108	20021022
US 2002090936	A1	20020725	US 2001-935044	20010823
US 6492554	B2	20021210		
US 2002090906	A1	20020725	US 2001-935045	20010823
US 6569896	B2	20030527		

PRIORITY APPLN. INFO.:

OTHER SOURCE(S): MARPAT 140:111132
GI

L3 ANSWER 3 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)
of prostate cancer, and (f) oral androgen replacement and/or other clin. therapeutic and/or diagnostic areas. The process of the present invention

is suitable for large-scale prep., since all of the steps give rise to highly pure compds., thus avoiding complicated purifn. procedures which ultimately lower the yield. Thus, the present invention provides methods for the synthesis of non-steroidal agonist compds., that can be used for industrial large-scale synthesis, and that provide highly pure products in high yield.

AB The present invention relates to a synthetic process for the preparation of a novel class of androgen receptor targeting agents (ARTA) (I; wherein X = O, NH, Se, PR, or NR; T = OH, OR, NHCOMe, NHCOR; Z = NO2, cyano, CO2H, COR, NHCOR, CONHR; Y = CF3, F, I, Br, Cl, cyano, CR3, SnR3; Q = alkyl, halogen, CF3, cyano, CR3, SnR3, NR2, NHCOMe, NHCOCF3, NHCOR, NHCO2R, OCONHR, CONHR, NHCSMe, NHCSRF3, NHCSR, NHSO2Me, NHSO2R, OR, COR, OCOR, OSO2R, SO2R, SR; or Q together with the benzene ring to which it is attached is a fused ring system represented by structure Q1, Q2 or Q3; R = alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH2F, CHF2, CF3, CF2CF3, aryl, Ph, halogen, OH; R1 = Me, CH2F, CHF2, CF3, CH2CH3, CF2CF3] comprising the step of coupling an amide of formula (II) (Z, Y, R1, T = same as above; L = a leaving group) with a compound of formula (III) (Q, X = same as above). These agents demonstrate androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor (no data). The agents define a new subclass of compds. which are selective androgen receptor modulators (SARM) which are useful for (a) male contraception, (b) treatment of a variety of hormone-related conditions, for example conditions associated with androgen decline in aging male (ADAM), such as fatigue, depression, decreased libido, sexual dysfunction, erectile dysfunction, hypogonadism, osteoporosis, hair loss, anemia, obesity, sarcopenia, osteopenia, osteoporosis, benign prostate hyperplasia, alterations in mood and cognition and prostate cancer, (c) treatment of conditions associated with androgen decline in female (ADIF), such as sexual dysfunction, decreased sexual libido, hypogonadism, sarcopenia, osteopenia, osteoporosis, alterations in cognition and mood, depression, anemia, hair loss, obesity, endometriosis, breast cancer, uterine cancer and ovarian cancer, (d) treatment and/or prevention of chronic muscular wasting, (e) decreasing the incidence of, halting or causing a regression

RX(5) OF 28 ...S ==> W...

RX(5) RCT S 468095-77-4

STAGE(1)
RGT X 865-47-4 t-BuOK
SOL 68-12-2 DMF

STAGE(2)
RGT Y 128-08-5 Bromosuccinimide
SOL 68-12-2 DMF
PRO W 467235-26-3

ACCESSION NUMBER: 137:294963 CASREACT
TITLE: Methods for producing oxirane carboxylic acids and derivatives thereof for use in treating

hyperlipidemia

INVENTOR(S): Cernerud, Magnus; Berntsson, Kristina

PATENT ASSIGNEE(S): Medigene Aktiengesellschaft, Germany

SOURCE: PCT Int. Appl., 66 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

12/17/2004

L3 ANSWER 8 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(7) OF 66 ...M ==> AK...

RX(7) RCT M 326476-73-7
RGT AL 128-08-5 Bromosuccinimide, X 109-72-8 BuLi
PRO AK 326476-75-9
SOL 68-12-2 DMF
NTE stereoselective

ACCESSION NUMBER: 134:178422 CASREACT
TITLE: Enantioselective synthesis of
(S)-N,N-diethyl-2-formyl-
2-(methoxymethoxy)butyramide, a key intermediate for
20(S)-camptothecin analogues, via asymmetric
bromolactonization
AUTHOR(S): Jew, S.-a.; Roh, E.-y.; Kim, H.-j.; Goo Kim, M.;
Park,
CORPORATE SOURCE: H.-g.
College of Pharmacy, Seoul National University,
Seoul,
151-742, S. Korea
SOURCE: Tetrahedron: Asymmetry (2000), 11(19), 3985-3994
CODEN: TASYE3; ISSN: 0957-4166
PUBLISHER: Elsevier Science Ltd.
DOCUMENT TYPE: Journal
LANGUAGE: English
AB A new enantioselective synthetic method for enantiomerically pure
(S)-N,N-diethyl-2-formyl-2-(methoxymethoxy)butyramide, a versatile key
intermediate, has been developed employing asym. bromolactonization using
(S)-proline as the chiral auxiliary.
REFERENCE COUNT: 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR
THIS
FORMAT

L3 ANSWER 9 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(6) OF 45 ...R ==> T...

T
YIELD 87%

RX(6) RCT R 191412-51-8
RGT U 128-08-5 Bromosuccinimide
PRO T 191412-52-9
SOL 68-12-2 DMF
ACCESSION NUMBER: 127:65647 CASREACT
TITLE: Asymmetric synthesis of (R)-(+)-etomoxir
AUTHOR(S): Lee, Sang-Sup; Kim, Hyung-Ook; Jeong, Byeong-Seon;
Park, Hyeung-Geun
CORPORATE SOURCE: College of Pharmacy, Seoul National University,
Seoul,
151-742, S. Korea
SOURCE: Tetrahedron: Asymmetry (1997), 8(8), 1187-1192
CODEN: TASYE3; ISSN: 0957-4166
PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English
GI

L3 ANSWER 9 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB An asym. synthesis of etomoxir I, involving bromolactonization by using
(S)-(-)-proline as a chiral auxiliary, is reported.
REFERENCE COUNT: 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR
THIS
FORMAT

L3 ANSWER 10 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(4) OF 4 K + L ==> M

M
YIELD 58%

RX(4) RCT K 150582-59-5, L 41324-66-7
PRO M 150582-49-3
SOL 60-29-7 Et2O
ACCESSION NUMBER: 119:226381 CASREACT
TITLE: Hexafluoroacetone as protecting group and activating
reagent in amino acid and peptide chemistry. XI. A
new
simple preparative access to 2,5-dioxopiperazines and
2,5-dioxomorpholines
AUTHOR(S): Burger, K.; Rudolph, M.; Windeisen, E.; Worku, A.;
Fehn, S.
CORPORATE SOURCE: Org.-Chem. Inst., Tech. Univ. Muenchen, Garching,
W-8046, Germany
SOURCE: Monatshefte fuer Chemie (1993), 124(4), 453-63
CODEN: MOCMB7; ISSN: 0026-9247
DOCUMENT TYPE: Journal
LANGUAGE: German
GI

L3 ANSWER 10 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB 2,5-Dioxopiperazines **I** ($R = R2 = Me, CH2C6H4OH-4, CH2OH, CHMeOH, R1 = R3 = H; R = R2 = H, R1 = R3 = Me; RR1 = RR3 = (CH2)3$) were obtained by dimerizing the oxazolidines **II** in MeOH at room temperature. **I** ($R, R2 =$ different amino acid residues, $R1, R3 = H$) were obtained from **II** and $R3NHCHR2CO2Me$. The dioxolanes **III** ($R4 = Me, F, Cl$) similarly gave the morpholines **IV**.

L3 ANSWER 11 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(2) OF 5 2 F ==> G + H

RX(2) RCT F 105998-50-9
RGT D 84-58-2 DDQ
PRO G 105958-41-6, H 106033-27-6
SOL 67-66-3 CHCl3
NTE stereoselective
ACCESSION NUMBER: 115:71509 CASREACT
TITLE: Asymmetric synthesis of heterocycles using charge transfer complex intermediates
AUTHOR(S): Lemaire, Marc; Guy, Alain; Imbert, Dominique; Guette, Jean Paul
CORPORATE SOURCE: Lab. Catal. Synth. Org., CNRS, Villeurbanne, 69622, Fr.
SOURCE: New Journal of Chemistry (1991), 15(5), 379-84
DOCUMENT TYPE: CODEN: NJCHE5; ISSN: 0398-9836
LANGUAGE: Journal
English
GI

L3 ANSWER 11 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB Use of dichlorodicyanobenzoquinone (DDQ) as an oxidative reagent which performs donor-acceptor interactions with electron rich substrates, permits the diastereorecontrol of heterocycle formation and thus the stereoselective synthesis of substituted morpholinediones. Thus, amides **I** and **II**, when treated with DDQ, gave 80% [65% diastereomeric excess (d.e.)] morpholine **III** and 50% (40% d.e.) of morpholine **IV**, resp.

L3 ANSWER 12 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(6) OF 14 A + K + 2 R ==> S

RX(6) RCT A 104987-11-3

STAGE(1)
RGT T 1310-73-2 NaOH
SOL 7732-18-5 Water, 123-91-1 DioxaneSTAGE(2)
RCT K 334-88-3STAGE(3)
RCT R 108-24-7
SOL 110-86-1 Pyridine

L3 ANSWER 12 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

STAGE (4)
RGU 10028-15-6 Ozone
PRO S 123719-20-0
ACCESSION NUMBER: 111:232396 CASREACT
TITLE: Chemistry of FK-506: benzilic acid rearrangement of the tricarbonyl system
AUTHOR(S): Askin, D.; Reamer, R. A.; Jones, T. K.; Volante, R. P.; Shinkai, I.
CORPORATE SOURCE: Dep. Process Res., Merck Sharp and Dohme Res. Lab., Rahway, NJ, 07065, USA
SOURCE: Tetrahedron Letters (1989), 30(6), 671-4
CODEN: TELEAY; ISSN: 0040-4039
DOCUMENT TYPE: Journal
LANGUAGE: English
GI

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB Treatment of FK-506 (I) with aqueous hydroxide results in a benzilic acid rearrangement of the C(8)-C(10) tricarbonyl portion of the mol. A corrected structure II for a previously reported degradation product as well as oxidative decarboxylation of rearranged FK-506 is presented.

L3 ANSWER 13 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(4) OF 13 I ==> J...

J

RX(4) RCT I 123294-79-1
RGU K 128-08-5 Bromosuccinimide
PRO J 123294-77-9

ACCESSION NUMBER: 111:195169 CASREACT
TITLE: Novel synthesis of (S)-(-)-chroman-2-carboxylic acid, a vitamin E precursor
AUTHOR(S): Yoda, Hidemi; Takabe, Kunihiko
CORPORATE SOURCE: Fac. Eng., Shizuoka Univ., Hamamatsu, 432, Japan
SOURCE: Chemistry Letters (1989), (3), 465-6
DOCUMENT TYPE: Journal
LANGUAGE: English

L3 ANSWER 13 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

GI

AB A new strategy for the synthesis of (S)-(-)-chroman-2-carboxylic acid I, a pivotal intermediate possessing the absolute configuration required for the construction of α -tocopherol, was disclosed by utilizing asym. halolactonization of acylproline II. Debromination followed by acidic hydrolysis directly afforded the title compound in 98% enantiomeric excess.

L3 ANSWER 14 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(1) OF 15 A ==> B...

RX(1) RCT A 51161-88-7
RGU C 128-08-5 Bromosuccinimide
PRO B 106089-19-4
SOL 68-12-2 DMF

ACCESSION NUMBER: 108:150026 CASREACT
TITLE: Resolution of the non-steroidal antiandrogen 4'-cyano-3-(4-fluorophenylsulfonyl)-2-hydroxy-2-methyl-3'-(trifluoromethyl)propionanilide and the determination of the absolute configuration of the active enantiomer
AUTHOR(S): Tucker, Howard; Chesterton, Glynne J.
CORPORATE SOURCE: Pharm. Div., Imp. Chem. Ind. PLC, Mereside/Macclesfield/Cheshire, SK10 4TG, UK
SOURCE: Journal of Medicinal Chemistry (1998), 31(4), 805-7
DOCUMENT TYPE: Journal
LANGUAGE: English
GI

AB The nonsteroidal antiandrogen 4'-cyano-3-[4-fluorophenylsulfonyl]-2-hydroxy-2-methyl-3'-(trifluoromethyl)propionanilide (I) has been resolved by chromatog. separation of the diastereomeric (R)-camphanyl esters of the precursor thioether followed by hydrolysis and oxidation of the isolated enantiomers. In addition, an asym. synthesis of (S)-3-bromo-2-hydroxy-2-methylpropanoic acid and subsequent conversion into the (S)-sulfonyl ester has established that the more potent enantiomer of I has the R absolute configuration.

RX(4) OF 42 ...G ==> L...

RX(4) RCT G 106089-16-1
RGT M 128-08-5 Bromosuccinimide
PRO L 106089-17-2
SOL 68-12-2 DMF
ACCESSION NUMBER: 107:236062 CASREACT
TITLE: Asymmetric bromolactonization reaction: synthesis of optically active 2-hydroxy-2-methylalkanoic acids
from 2-methylenealkanoic acids
AUTHOR(S): Corey, Paul F.
CORPORATE SOURCE: Cent. Res. Serv. Div., Miles Lab., Inc., Elkhart, IN, 46515, USA
SOURCE: Tetrahedron Letters (1987), 28(25), 2801-4
DOCUMENT TYPE: CODEN: TELEAY; ISSN: 0040-4039
LANGUAGE: Journal English
GI

AB Acylation of L-proline with ClCOOR:CH₂ (R = H, R₁ = Bu, Me; R = Bu, R₁ = H), followed by bromolactonization with NBS gave bromolactones I. Debromination of I (R = H, R₁ = Bu; R = Bu, R₁ = H) with Bu₃NH, followed by hydrolysis, gave (R)- and (S)-HO₂CMeBuOH, resp. Hydrolysis of I (R = Me, R₁ = H) gave optically active HO₂CMe(OH)CH₂Br (II) in 88% yield. Reduction of II with BH₃, protection with Me₂C(Me)₂, alkylation with Pr₂CuLi

RX(1) OF 1 A ==> B

RX(1) RCT A 106089-16-1
PRO B 106089-17-2
ACCESSION NUMBER: 106:32692 CASREACT
TITLE: (+)-S-2-Hydroxy-2-methylhexanoic acid
INVENTOR(S): Corey, Paul Frederick
PATENT ASSIGNEE(S): Miles Laboratories, Inc., USA
SOURCE: Eur. Pat. Appl., 22 pp.
DOCUMENT TYPE: CODEN: EPXXDW
FAMILY ACC. NUM. COUNT: 1
LANGUAGE: Patent English
PRIORITY INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 198348	A2	19861022	EP 1986-104583	19860404
EP 198348	A3	19880608		
EP 198348	B1	19900103		
R: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE CA 1249842	A1	19890207	CA 1986-504794	19860324
AT 49193	E	19900115	AT 1986-104583	19860404
JP 61238757	A2	19861024	JP 1986-84436	19860414
US 4668822	A	19870526	US 1986-894390	19860811
PRIORITY APPLN. INFO.:			US 1985-723201	19850415
			EP 1986-104583	19860404

AB The title compound (+)-S-Me(CH₂)₃C(OH)MeC₂H₅ (I), useful as an intermediate for 16-methyl-1,11a,16RS-trihydroxyprost-13 β -en-9-one, was prepared via an asym. halolactonization reaction using L-proline as the chiral agent. Thus, 3S-methyl-3-butyl-1,4-dioxa-3,4,6,7,8,8aS-hexahydro-1H-pyrrolo[2,1-c]-1,4-oxazine, prepared in 3 steps from Me(CH₂)₃C(OH)MeC₂H₅, was hydrolyzed with aqueous HBr to give I.

L3 ANSWER 17 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(3) OF 3 I ==> J + K

RX(3) RCT I 105988-50-9
RGT D 64-58-2 DDQ
PRO J 105988-41-6, K 106033-27-6
SOL 67-66-3 CHCl₃
NTE diastereoselective
ACCESSION NUMBER: 106:32128 CASREACT
TITLE: Asymmetric control of oxidation of aromatic
substrates
AUTHOR(S): Lemaire, Marc; Guy, Alain; Imbert, Dominique; Guette,
Jean Paul
CORPORATE SOURCE: Lab. Chim. Org., Conserv. Natl. Arts Metiers, Paris,
75141, Fr.
SOURCE: Journal of the Chemical Society, Chemical
Communications (1986), (10), 741-2
CODEN: JCCCAT; ISSN: 0022-4936
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Asym. oxidation at the benzylic position of chiral aromatic substrates
was

L3 ANSWER 18 OF 19 CASREACT COPYRIGHT 2004 ACS on STN

RX(2) OF 54 2 G + 2 B ==> H + I...

RX(2) RCT G 84653-73-6, B 762-72-1
PRO H 103383-73-9, I 94726-51-9
CAT 7550-45-0 TiCl₄
SOL 75-09-2 CH₂Cl₂
ACCESSION NUMBER: 105:134309 CASREACT
TITLE: Asymmetric synthesis of functionalized tertiary
homallyl alcohols by diastereoselective allylation
of
chiral α -keto amides derived from (S)-proline
esters: control of stereochemistry based on
saturated
coordinating of Lewis acid
AUTHOR(S): Soai, Kenzo; Ishizaki, Miyuki
CORPORATE SOURCE: Fac. Sci., Sci. Univ. Tokyo, Tokyo, 162, Japan
SOURCE: Journal of Organic Chemistry (1986), 51(17), 3290-5
DOCUMENT TYPE: Journal
LANGUAGE: English
GI

L3 ANSWER 18 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)
controlled using a donor-acceptor interaction and DDQ as acceptor and
oxidant. E.g., oxida. of p-Me₂CHOC₆H₄CH₂CO₂R (R = (-)-menthyl) with DDQ
in AcOH at room temp. for 17 h gave a 6:4 diastereoisomeric mixt. of
p-Me₂CHOC₆H₄CH(OAc)CO₂R in 90% yield.

L3 ANSWER 18 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB Diastereoselective addns. of allylsilanes and -stannanes to chiral
 α -keto amides I (R = Ph, R₁ = Me, Me₂CH; R = R₁ = Me) derived from
esters of (S)-proline in the presence of Lewis acids afforded optically
active tertiary homoallyl alcs. of high diastereomeric excesses (up to
92%)

de). The order of the effectiveness of Lewis acids on
diastereoselectivity was SnBr₄ > SnCl₄ > TiCl₄ > BF₃-OEt₂ >
AlCl₃. At least 3 mol equiv of SnCl₄ were required to achieve the high
diastereoselection. The coordination of Lewis acids with the oxygen
atom(s) of I may be one of the reasons for the high diastereoselectivity.
When SnCl₄ was used, CH₂Cl₂ was the best solvent. In the case of TiCl₄,

a heterogeneous reaction mixture in n-hexane and CH₂Cl₂ led to higher
diastereoselectivity than a homogeneous solution in CH₂Cl₂ alone. Both
allylsilane and -stannane led to homoallyl alcs. of predominant R
configuration. The reaction was faster with allylstannane than with
allylsilane. Allylation with allylmagnesium bromide showed the opposite
diastereoselectivity. From a study of the effect of temperature, the
enthalpy

factor was found to be more important than the entropy factor. Some of
the diastereomers (II; R₂ = H, Me) cyclize spontaneously and
stereoselectively to afford the corresponding lactones. The lactones
were

removed
of the chiral auxiliaries by MeLi afforded essentially enantiomerically
pure acyloins of both enantiomers.

L3 ANSWER 19 OF 19 CASREACT COPYRIGHT 2004 ACS on STN L3 ANSWER 19 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

RX(2) OF 11 E + B ==> F...

F

RX(2) RCT E 133694-86-7, B 128-08-5
PRO F 65942-05-4

ACCESSION NUMBER: 88:136919 CASREACT
TITLE: Novel aspects of the

TITLE: Novel aspects of the asymmetric bromolactonization reaction

AUTHOR(S): Terashima, Shiro; Jew, Sang-Sup; Koga, Kenji
CORPORATE SOURCE: Fac. Pharm. Sci., Univ. Tokyo, Tokyo, Japan
PUBLICATION: *Jpn. J. Pharmacol.* 1971, 21, 152-156

SOURCE: Chemistry Letters (1977), (9), 1109-12
SCOPUS, SCIENTIFIC ISSUE: 0366-7022

DOCUMENT TYPE: CODEN: CMLTAG; ISSN: 0366-7022
Journal

DOCUMENT TYPE:
LANGUAGE:

LANGUAGE: English
GI

G1

L3 ANSWER 19 OF 19 CASREACT COPYRIGHT 2004 ACS on STN (Continued)

AB The asym. bromolactonization of proline derivs. I (R, R₁, R₂ = H, Me) proceeded highly stereo- and regiospecifically through transition states, e.g. II.

Habte

12/17/2004