Dipendenza dal punto base

$$\mu:I o X$$
 continua con $\mu(0)=x_0,\ \mu(1)=x_1 o$

$$\mu_*:\pi_1(X,x_1)\to\pi_1(X,x_0)$$

$$\mu_*([\alpha])\stackrel{\mathrm{def}}{=} [\mu*\alpha*\bar{\mu}]$$

Teor. Valgono le proprietà seguenti:

- 1) μ_* ben definita.
- 2) $\forall \mu_0 \simeq_{\{0,1\}} \mu_1 \Rightarrow \mu_{0*} = \mu_{1*}$.
- 3) $\gamma_{x_0*} = \mathrm{id}_{\pi_1(X,x_0)}$.
- 4) $(\mu * \nu)_* = \mu_* \circ \nu_*$ (se la concatenazione è definita).
- 5) $(\mu_*)^{-1} = \bar{\mu}_*$.
- 6) μ_* isomorfismo di gruppi.

Dim. (1)-(3) immediate. (4)
$$\overline{\mu * \nu} = \overline{\nu} * \overline{\mu}$$
. (5) $\mu * \overline{\mu} \sim \gamma_{x_0}$ e (2)-(4). (6) $\mu_*([\alpha][\beta]) = [\mu * \alpha * \beta * \overline{\mu}] = [\mu * \alpha * \overline{\mu} * \mu * \beta * \overline{\mu}] = \mu_*([\alpha]) \mu_*([\beta])$.

Cor. X connesso per archi, $\forall x_0, x_1 \in X \Rightarrow \pi_1(X, x_0) \cong \pi_1(X, x_1)$. $\pi_1(X) := \pi_1(X, x_0)$ ben definito a meno di isomorfismi.

N.B. In generale l'isomorfismo μ_* : $\pi_1(X, x_1) \xrightarrow{\cong} \pi_1(X, x_0)$ dipende da μ . $\pi_1(X)$ abeliano $\Rightarrow \mu_*$ indipendente da μ (isomorfismo canonico).

Prop. $X \not\subseteq A$, $a \in A \Rightarrow i_* : \pi_1(A, a) \xrightarrow{\cong} \pi_1(X, a)$, con $i : A \hookrightarrow X$ inclusione.

Dim. $H: X \times I \to X$ deformazione $X \wr A \leadsto r := h_1 | : X \to A$ retrazione $\Rightarrow i \circ r = h_1 \simeq_A \operatorname{id}_X e r \circ i = \operatorname{id}_A \Rightarrow i_* \circ r_* = (i \circ r)_* = (\operatorname{id}_X)_* = \operatorname{id}_{\pi_1(X,a)}$ e $r_* \circ i_* = (r \circ i)_* = \operatorname{id}_{\pi_1(A,a)} \Rightarrow i_*$ isomorfismo e $i_*^{-1} = r_*$.

Cor. $U \subset \mathbb{R}^n$ convesso, $x_0 \in U \Rightarrow \pi_1(U, x_0) = 0$.

Dim.
$$U \setminus \{x_0\}$$
.

Oss. $\pi_1(B^n) = \pi_1(\mathbb{R}^n) = 0, \forall n \geqslant 0.$

Enunciamo il seguente teorema senza dimostrarlo.

Teor. $f:(X,x_0) \xrightarrow{\simeq} (Y,y_0)$ equivalenza omotopica \Rightarrow $f_*: \pi_1(X,x_0) \to \pi_1(Y,y_0)$ isomorfismo.

Cor. X contraibile $\Rightarrow \pi_1(X) = 0$.

Def. X è semplicemente connesso se $\forall x_0, x_1 \in X$, $\exists \alpha : I \to X$ continua t.c. $\alpha(0) = x_0$, $\alpha(1) = x_1$ e α unica a meno di $\simeq_{\{0,1\}}$.

Oss. X semplicemente connesso \Leftrightarrow X cpa e $\forall \alpha_0, \alpha_1 : I \to X$ continue t.c. $\alpha_0(0) = \alpha_1(0) = x_0$ e $\alpha_0(1) = \alpha_1(1) = x_1 \Rightarrow \alpha_0 \simeq_{\{0,1\}} \alpha_1$.

Teor. X semplicemente connesso \Leftrightarrow X connesso per archi e $\pi_1(X) = 0$.

 $Dim. \implies \forall [\alpha] \in \pi_1(X, x_0) \Rightarrow \alpha \sim \gamma_{x_0} \Rightarrow [\alpha] = 1.$

 $\stackrel{\longleftarrow}{\longleftarrow} \alpha_0 * \bar{\alpha}_1 \in \Omega(X, x_0) \Rightarrow [\alpha_0 * \bar{\alpha}_1] = [\gamma_{x_0}] \Rightarrow \alpha_0 * \bar{\alpha}_1 * \alpha_1 \simeq_{\{0,1\}} \gamma_{x_0} * \alpha_1 \Rightarrow \alpha_0 \simeq_{\{0,1\}} \alpha_1.$

Cor. $U \subset \mathbb{R}^n$ convesso $\Rightarrow U$ semplicemente connesso.

Oss. B^n e \mathbb{R}^n semplicemente connessi, $\forall n \ge 0$.

Cor. X contraibile \Rightarrow X semplicemente connesso.

Def. Un rivestimento $p: X \to Y$ è detto rivestimento universale di Y se X è semplicemente connesso.

Funzione di sollevamento. $p: X \to Y$ rivestimento $x_0 \in X$, $y_0 = p(x_0)$, $J = p^{-1}(y_0)$

$$\Phi_p : \pi_1(Y, y_0) \to J$$
$$\Phi_p([\alpha]) \stackrel{\text{def}}{=} \tilde{\alpha}_{x_0}(1)$$

con $ilde{lpha}_{x_0}\colon I o X$ sollevamento di lpha t.c. $ilde{lpha}_{x_0}(0)=x_0$

Teor. $p: X \to Y$ rivestimento universale $\Rightarrow \Phi_p$ biiettiva.

Def. Φ_{v} è detta funzione di sollevamento.

Dim. Ben definita $\alpha \sim \beta \Rightarrow \tilde{\alpha}_{x_0} \sim \tilde{\beta}_{x_0}$ (sollevamento dell'omotopia).

Suriettiva
$$\forall x_1 \in J \rightsquigarrow \gamma : I \to X \text{ t.c. } \gamma(0) = x_0, \ \gamma(1) = x_1 \rightsquigarrow \alpha := p \circ \gamma \in \Omega(Y, y_0) \text{ e } \tilde{\alpha}_{x_0} = \gamma \Rightarrow \Phi_p([\alpha]) = x_1.$$

$$\begin{array}{|c|c|c|c|c|}\hline \textit{Iniettiva} & \forall \ [\alpha], \ [\beta] \in \pi_1(Y, y_0), \ \Phi([\alpha]) = \Phi([\beta]) \Rightarrow \tilde{\alpha}_{x_0}(1) = \tilde{\beta}_{x_0}(1) \Rightarrow \\ \tilde{\alpha}_{x_0} \simeq_{\{0,1\}} \tilde{\beta}_{x_0} \Rightarrow \alpha = p \circ \tilde{\alpha}_{x_0} \simeq_{\{0,1\}} p \circ \tilde{\beta}_{x_0} = \beta \Rightarrow [\alpha] = [\beta]. \end{array}$$

Oss. $p: X \to Y$ rivestimento univers. $[\alpha] = 1 \Leftrightarrow \Phi_p([\alpha]) = \Phi_p(1) = x_0$.

Calcolo di $\pi_1(S^1)$

Teor. $\pi_1(S^1) \cong \mathbb{Z}$.

Dim. $p: \mathbb{R} \to S^1$, $p(x) = (\cos(2\pi x), \sin(2\pi x))$ rivestimento universale $y_0 = (1,0) \in S^1$. $[\omega] \in \pi_1(S^1, y_0) \leadsto \tilde{\omega}_n : I \to \mathbb{R}$ unico sollevamento t.c. $\tilde{\omega}_n(0) = n \in \mathbb{Z} \Rightarrow \tilde{\omega}_n = \tilde{\omega}_0 + n$ perché p ha periodo 1.

 $\Phi_p: \pi_1(S^1, y_0) \xrightarrow{\cong} \mathbb{Z}, \ \Phi_p([\omega]) = \tilde{\omega}_0(1) \ \text{bijettiva}.$

$$\Phi_p([\gamma][\omega]) = (\widetilde{\gamma} * \widetilde{\omega})_0(1) = (\widetilde{\gamma}_0 * \widetilde{\omega}_{\widetilde{\gamma}_0(1)})(1) = \widetilde{\omega}_{\widetilde{\gamma}_0(1)}(1) = \widetilde{\gamma}_0(1) + \widetilde{\omega}_0(1) = \Phi_p([\gamma]) + \Phi_p([\omega]) \Rightarrow \Phi_p \text{ omomorfismo.}$$

Cor. S^1 non è semplicemente connesso, in particolare non è contraibile.