

Report No.: TS13060161-EME

Page 1 of 69

EMC TEST REPORT

Report No.: TS13060161-EME

Model No.: BLACK 10, BLACK12,

BLACK 15

Issued Date: Jul. 19, 2013

Applicant: inMusic Brands, Inc

200 Scenic View Drive, Suite 201, Cumberland, RI 02864,

U.S.A

Test Method/ Standard: FCC Part 15 Subpart C Section §15.205 \ §15.207 \ §15.209 \

§15.247, DA 00-705 and ANSI C63.4/2003.

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:

Candy Liu / Assistant

These measurements were taken by:

William Shia/ Senior Engineer

The test report was reviewed by:

Name Jimmy Yang Title Engineer

Table of Contents

Summary of Tests	4
1. General information 1.1 Identification of the EUT 1.2 Additional information about the EUT 1.3 Antenna description 1.4 Peripherals equipment	6 6
2. Test specifications 2.1 Test standard 2.2 Operation mode 2.3 Test equipment	7 7
3. 20dB Bandwidth test 3.1 Operating environment. 3.2 Test setup & procedure. 3.3 Measured data of modulated bandwidth test results	9
4. Carrier Frequency Separation test 4.1 Operating environment. 4.2 Test setup & procedure. 4.3 Measured data of Carrier Frequency Separation test result.	15
5. Number of hopping frequencies test 5.1 Operating environment. 5.2 Test setup & procedure. 5.3 Measured data of number of hopping frequencies test result.	19 19
6. Time of Occupancy (dwell time) & Duty Cycle Correction Factor test	23
7. Maximum Output Power test 7.1 Operating environment 7.2 Test setup & procedure 7.3 Measured data of Maximum Output Power test results	41 41
8. RF Antenna Conducted Spurious test 8.1 Operating environment 8.2 Test setup & procedure 8.3 Measured data of the highest RF Antenna Conducted Spurious test result	42 42
9. Radiated Emission test 9.1 Operating environment. 9.2 Test setup & procedure. 9.3 Emission limits. 9.4 Radiated spurious emission test data. 9.4.1 Measurement results: frequencies equal to or less than 1 GHz. 9.4.2 Measurement results: frequency above 1GHz	48 51 52

10. Emission on the band edge §FCC 15.247(d)	58
10.1 Test setup & procedure	58
10.2 Test Result	
10.2.1 Band edge	60
11. Power Line Conducted Emission test §FCC 15.207	66
11.1 Operating environment	66
11.2 Test setup & procedure	
11.3 Emission limit	67
11.4 Uncertainty of Conducted Emission	67
11.5 Power Line Conducted Emission test data	68

Summary of Tests

Test	Reference	Results
20dB Bandwidth test	15.247(a)(1)	Pass
Carrier Frequency Separation test	15.247(a)(1)	Pass
Number of hopping frequencies test	15.247(a)(1)	Pass
Time of Occupancy (dwell time) test	15.247(a)(1)	Pass
Maximum Output Power test	15.247(b)	Pass
RF Antenna Conducted Spurious test	15.247(d)	Pass
Radiated Spurious Emission test	15.205, 15.209	Pass
Emission on the Band Edge test	15.247(d)	Pass
AC Power Line Conducted Emission test	15.207	Pass

Report No.: TS13060161-EME

Page 5 of 69

1. General information

1.1 Identification of the EUT

Product: SPEAKER SYSTEM WITH WIRELESS CONTROL

Model No.: BLACK 15 FCC ID.: Y40-BLACK

Frequency Range: 2402 MHz ~ 2480 MHz

Channel Number: 79 channels

Frequency of Each Channel: 2402 + k MHz; $k = 0 \sim 78$ Type of Modulation: GFSK, $\pi/4$ DPSK, 8DPSK

Rated Power: 100-240 Vac, 50/60 Hz, 1200 W

Power Cord: N/A

Sample Received: Jun. 20, 2013

Test Date(s): Jul. 10, 2013 ~ Jul. 16, 2013

Note 1: This report is for the exclusive use of Intertek's Client and is

provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek

certification program.

Note 2: When determining the test conclusion, the Measurement

Uncertainty of test has been considered.

1.2 Additional information about the EUT

The EUT is a SPEAKER SYSTEM WITH WIRELESS CONTROL, and was defined as information technology equipment.

The customer confirmed BLACK 10, BLACK 12 are series models to BLACK 15 (EUT), and the different is in size

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

1.3 Antenna description

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain : 2 dBi max

Antenna Type : Dipole antenna Connector Type : I-PEX connector

1.4 Peripherals equipment

Peripherals	Brand	Model No.	Serial No.	Description of Data Cable
Notebook PC	DELL	Latitude D610	2YWZK1S	LPT to5 Pins Cable 0.8 meter × 1

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section §15.205 \ §15.207 \ §15.209 \ §15.247, DA 00-705 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

The EUT was supplied with 120 Vac, 60 Hz and the transmission mode was running in control "Blue Test 3 software" program.

Report No.: TS13060161-EME Page 8 of 69

2.3 Test equipment

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	Rohde&schwarz	ESCS30	833364/011	2013/06/11	2014/06/11
EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2012/11/30	2013/11/29
Spectrum Analyzer	Rohde&schwarz	FSP30	100137	2013/06/21	2014/06/21
Spectrum Analyzer	Rohde&schwarz	FSEK30	100186	2013/01/23	2014/01/23
Horn Antenna (1-18G)	Schwarzbeck	BBHA 9120 D	9120D-456	2012/09/03	2014/09/03
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2012/09/05	2014/09/05
Broadband Antenna	SCHWARZBECK	VULB 9168	9168-172	2011/07/26	2013/07/25
Loop Antenna	RolfHeine	LA-285	02/10033	2012/03/20	2014/03/20
Pre-Amplifier	MITEQ	AFS44-00102650 42-10P-44	1495287	2011/10/27	2013/10/26
Pre-Amplifier	MITEQ	JS4-260040002 7-8A	828825	2012/09/18	2014/09/18
Two-Line -V-Network	Rohde&schwarz	ESH3-Z5	825562/003	2012/10/29	2013/10/29
Power Meter	Anritsu	ML2495A	0844001	2012/10/09	2013/10/09
Power Senor	Anritsu	MA2411B	0738452	2012/10/09	2013/10/09

Note: The above equipments are within the valid calibration period.

Report No.: TS13060161-EME Page 9 of 69

3. 20dB Bandwidth test

3.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

3.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The 20dB bandwidth per FCC $\S15.247(a)(1)$ was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100 kHz, the video bandwidth \ge RBW, and the SPAN may equal to approximately 2 to 3 times the 20dB bandwidth. The test was performed at 3 channels (lowest, middle and highest channel). The maximum 20dB modulation bandwidth is in the following Table.

3.3 Measured data of modulated bandwidth test results

Mode	Channel	Frequency (MHz)	20dB Bandwidth (kHz)
	0	2402	895
GFSK	39	2441	885
	78	2480	830
π/4DPSK	0	2402	1240
	39	2441	1315
	78	2480	1220
	0	2402	1220
8DPSK	39	2441	1305
	78	2480	1290

Please see the plot below.

20 dB Bandwidth @ GFSK mode channel 0

20 dB Bandwidth @ GFSK mode channel 39

20 dB Bandwidth @ GFSK mode channel 78

20 dB Bandwidth @ $\pi/4$ DPSK mode channel 0

20 dB Bandwidth @ $\pi/4$ DPSK mode channel 39

20 dB Bandwidth @ $\pi/4$ DPSK mode channel 78

20 dB Bandwidth @ 8DPSK mode channel 0

20 dB Bandwidth @ 8DPSK mode channel 39

20 dB Bandwidth @ 8DPSK mode channel 78

4. Carrier Frequency Separation test

4.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

4.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The carrier frequency separation per FCC 15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at $\ge 1\%$ of the span, the video bandwidth RBW, and the SPAN was wide enough to capture the peaks of two adjacent channels. The carrier frequency separation result is in the following Table.

4.3 Measured data of Carrier Frequency Separation test result

Mode	Channel	Frequency (MHz)	Adjacent channel separation (MHz)	20dB down Bandwidth (MHz)	Minimum limit 20dB BW*2/3 (kHz)	pass/fail
	0	2402	1.000	0.895	0.60	pass
GFSK	39	2441	1.01	0.885	0.59	pass
	78	2480	1.003	0.830	0.55	pass
	0	2402	1.015	1.220	0.81	pass
8DPSK	39	2441	1.005	1.305	0.87	pass
	78	2480	1.003	1.290	0.86	pass

Please see the plot below.

Carrier Frequency Separation @ GFSK mode channel 0

Carrier Frequency Separation @ GFSK mode channel 39

20 dB Bandwidth @ GFSK mode channel 78

Carrier Frequency Separation @ 8DPSK mode channel 0

Carrier Frequency Separation @ 8DPSK mode channel 39

20 dB Bandwidth @ 8DPSK mode channel 78

5. Number of hopping frequencies test

5.1 Operating environment

Temperature: 25 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

5.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The number of hopping frequencies per FCC $\S15.247(a)(1)$ was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at $\ge 1\%$ of the span, the video bandwidth \ge RBW, and the SPAN was the frequency band of operation. The carrier frequency separation result is in the following Table.

5.3 Measured data of number of hopping frequencies test result

Frequency Range (MHz)	Total hopping channels
2400 ~ 2483.5	79

Please see the plot below.

Number of hopping frequencies @ GFSK mode ch 0~ch 39

Number of hopping frequencies @ GFSK mode ch 40~ch 78

Number of hopping frequencies @π/4DPSK mode ch 0~ch 39

Number of hopping frequencies @\pi/4DPSK mode ch 40~ch 78

Number of hopping frequencies @ 8DPSK mode ch 0~ch 39

Number of hopping frequencies @ 8DPSK mode ch 40~ch 78

6. Time of Occupancy (dwell time) & Duty Cycle Correction Factor test

6.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

6.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The time of occupancy (dwell time) per FCC §15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 1MHz, the video bandwidth ≥ RBW, and the zero span function of spectrum analyzer was enable. The EUT has its hopping function enable.

The total sweep time is $0.4s \times 79$ ch = 31.6s, we determined to reduce the sweep time to 3.16s, to count the number of hops and multiplied by 10. The total number of hops will be multiplied by the measured time of one pulse.

GFSK:

```
DH1Ch0: Number of Hope in 3.16s = 32(10)=320, Single Pluse Width = 0.397 ms

Dwell time = (Pulse Width × Total Number of Hops) 0.397ms × 320 = 127.04ms < 400ms
```

```
DH3Ch0: Number of Hope in 3.16s = 16(10)=160, Single Pluse Width = 1.67 ms

Dwell time = (Pulse Width \times Total Number of Hops) 1.67ms \times 160 = 267.2ms < 400ms
```

DH5Ch0: Number of Hope in 3.16s = 11(10)=110, Single Pluse Width = 2.93 ms

Dwell time = (Pulse Width \times Total Number of Hops) 2.93ms \times 110 = 322.3ms < 400ms

π /4-DPSK:

```
DH1Ch0: Number of Hope in 3.16s = 32(10)=320, Single Pluse Width = 0.419 ms
Dwell time = (Pulse Width \times Total Number of Hops) 0.419ms \times 320 = 134.1ms < 400ms
```

```
DH3Ch0: Number of Hope in 3.16s = 16(10)=160, Single Pluse Width = 1.68 ms

Dwell time = (Pulse Width \times Total Number of Hops) 1.68ms \times 160 = 268.8ms < 400ms
```

```
DH5Ch0: Number of Hope in 3.16s = 11(10)=110, Single Pluse Width = 2.94 \text{ ms}
Dwell time = (Pulse Width \times Total Number of Hops) 2.94\text{ms} \times 110 = 323.4\text{ms} < 110 = 323.4
```


Report No.: TS13060161-EME Page 24 of 69

8-DPSK:

DH1Ch0: Number of Hope in 3.16s = 32(10)=320, Single Pluse Width = 0.407 msDwell time = (Pulse Width \times Total Number of Hops) $0.407 \text{ms} \times 320 = 130.2 \text{ms} < 400 \text{ms}$

DH3Ch0: Number of Hope in 3.16s = 16(10)=160, Single Pluse Width = 1.69 ms

Dwell time = (Pulse Width \times Total Number of Hops) 1.69ms \times 160 = 270.4ms < 400ms

DH5Ch0: Number of Hope in 3.16s = 11(10)=110, Single Pluse Width = 2.93 ms

Dwell time = (Pulse Width \times Total Number of Hops) 2.93ms \times 110 = 322.3ms < 400ms

Mode	Mode	Pulse Width (ms)	Time of Occupancy (ms)	Limit (sec)
	DH1	0.397	127.04	
GFSK	DH3	1.67	267.2	0.4
	DH5	2.93	322.3	
	DH1	0.419	134.1	
π/4DPSK	DH3	1.68	268.8	0.4
	DH5	2.94	323.4	
	DH1	0.407	130.2	
8DPSK	DH3	1.69	270.4	0.4
	DH5	2.93	322.3	

Duty Cycle Correction Factor

Mode	Packet	Pulse time	Number of pulse	Time period	Duty cycle	Duty cycle correction
Mode	type	(ms)	during time period	(ms)	%	factor
	DH1	0.397	1	1.25	31.76%	-9.962390125
GFSK	DH3	1.673	1	2.51	66.65%	-3.52355561
	DH5	2.93	1	3.77	77.72%	-2.189474597
	DH1	0.419	1	1.259	33.28%	-9.556234143
π/4-DPSK	DH3	1.68	1	2.52	66.67%	-3.521825181
	DH5	2.94	1	3.79	77.57%	-2.205837591
	DH1	0.407	1	1.255	32.43%	-9.780986332
8-DPSK	DH3	1.69	1	2.51	67.33%	-3.435740337
	DH5	2.93	1	3.77	77.72%	-2.189474597

Remark:

- 1. Duty Cycle = $(time \ of \ occupancy)/(31.6*1000)*100\%$
- 2. Duty Cycle Correction Factor = 20 log (duty cycle/100%)
- 3. The worst case of GFSK mode is -2.189474597 The worse case of $\pi/4$ DPSK mode is -2.205837591

Report No.: TS13060161-EME Page 26 of 69

The worse case of 8DPSK mode is -2.189474597

Please see the plot below.

Dwell time (Number of Pulses) @ GFSK mode DH 1

Center 2.402 GHz

320 ms/

Dwell time (Number of Pulses) @ GFSK mode DH 5

Dwell time (Single pulse) @ $\pi/4$ -DPSK mode DH 1

..

Dwell time (Number of pulse during time period) @ $\pi/4$ -DPSK mode DH 1

Dwell time (Number of Pulses) @ $\pi/4$ -DPSK mode DH 3

Dwell time (Number of pulse during time period) @ $\pi/4$ -DPSK mode DH 3

Dwell time (Single pulse) @ $\pi/4$ -DPSK mode DH 5

Dwell time (Number of pulse during time period) @ $\pi/4$ -DPSK mode DH 5

Dwell time (Number of pulse during time period) @ 8-DPSK mode DH 1

Dwell time (Number of pulse during time period) @ 8-DPSK mode DH 3

Dwell time (Number of Pulses) @ 8-DPSK mode DH 5

Dwell time (Number of pulse during time period) @ 8-DPSK mode DH 5

7. Maximum Output Power test

7.1 Operating environment

Temperature: 23 °C Relative Humidity: 50 % Atmospheric Pressure: 1008 hPa

7.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (2 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

7.3 Measured data of Maximum Output Power test results

Mode	Channel	Frequency (MHz)	Output Power (PK) (dBm)	Total Power (PK) (mw)	Limit (dBm)	Margin (dB)
	0	2402	2.89	1.95	21	-18.11
GFSK	39	2441	3.06	2.02	21	-17.94
	78	2480	2.8	1.91	21	-18.20
	0	2402	2.93	1.96	21	-18.07
8-DPSK	39	2441	2.81	1.91	21	-18.19
	78	2480	2.84	1.92	21	-18.16

Report No.: TS13060161-EME

Page 42 of 69

8. RF Antenna Conducted Spurious test

8.1 Operating environment

Temperature: 25 °C Relative Humidity: 58 %

8.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The measurements were performed from lowest oscillator frequency to 10th fundamental frequency RF antenna conducted per FCC 15.247 (c) was measured from the EUT antenna port using a 50ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz.

Harmonics and spurious noise must be at least 20dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The table below is the results from the highest emission for each channel within the authorized band. This table was used to determine the spurious limits for each channel.

8.3 Measured data of the highest RF Antenna Conducted Spurious test result

The test results please see the plot below.

Conducted spurious @ GFSK DH 5 channel 0

Conducted spurious @ GFSK DH 5 channel 39

Conducted spurious @ GFSK DH 5 channel 78

Conducted spurious @ π /4 DPSK DH 5 channel 0

Conducted spurious @ $\pi/4$ DPSK DH 5 channel 39

Conducted spurious @ π /4 DPSK DH 5 channel 78

Conducted spurious @ 8DPSK DH5 channel 0

Conducted spurious @ 8DPSK DH5 channel 39

Conducted spurious @ 8DPSK DH5 channel 78

Report No.: TS13060161-EME Page 48 of 69

9. Radiated Emission test

9.1 Operating environment

Temperature: 23 °C Relative Humidity: 53 % Atmospheric Pressure: 1008 hPa

9.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705 and ANSI C63.4/2003.

The Diagram below shows the test setup, which is utilized to make these measurements.

Radiated emission from 9kHz to 30MHz uses Loop Antenna:

Radiated emission from 30MHz to 1GHz uses Bilog Antenna:

Report No.: TS13060161-EME Page 50 of 69

Radiated emission above 1GHz uses Horn Antenna:

The signal is maximized through rotation and placement in the three orthogonal axes. According to §15.33(a), the spectrum shall be investigated from the lowest radio frequency signal generated in the device, to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Spectrum Analyzer Resolution Bandwidth is 100kHz or greater for frequencies 30MHz to 1GHz, 1MHz – for frequencies above 1GHz.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meter reading using inverse scaling with distance.

9.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency	Field Strength
(MHz)	(microvolts/meter)
0.009~0.490	2400/F(kHz)
0.490~1.705	2400/F(kHz)
1.705~30	30
30-88	100
88-216	150
216-960	200
Above 960	500

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Measurement Uncertainty:

Measurement uncertainty was calculated in accordance with TR 100 028-1.

Parameter	Uncertainty						
	Below 1 GHz	Vertical	3.90 dB				
Radiated Emission	Delow I GHZ	Horizontal	3.86 dB				
Radiated Emission	Above 1 GHz	Vertical	5.74 dB				
	Above I GHZ	Horizontal	5.55 dB				
Conducted Emission		2.08 dI	3				

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

9.4 Radiated spurious emission test data

9.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under GFSK, $\pi/4DPSK$ and 8DPSK continuously transmitting mode. The worst case occurred at GFSK Tx channel 0.

EUT : BLACK 15

Worst Case : GFSK Channel 0

Antenna Polarization	Freq. (MHz)	Receiver Detector	Corr. Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
Vertical	109.54	QP	7.64	32.01	39.65	43.50	-3.85
Vertical	245.34	QP	12.22	27.79	40.00	46.00	-6.00
Vertical	270.56	QP	13.24	20.80	34.03	46.00	-11.97
Vertical	282.20	QP	13.70	21.36	35.05	46.00	-10.95
Vertical	406.36	QP	16.47	19.51	35.98	46.00	-10.02
Vertical	613.94	QP	20.75	22.01	42.76	46.00	-3.24
Horizontal	146.40	QP	13.24	25.69	38.92	43.50	-4.58
Horizontal	161.92	QP	13.84	24.40	38.23	43.50	-5.27
Horizontal	245.34	QP	12.36	31.84	44.20	46.00	-1.80
Horizontal	328.76	QP	14.40	21.52	35.91	46.00	-10.09
Horizontal	613.94	QP	20.88	18.80	39.67	46.00	-6.33
Horizontal	980.60	QP	25.83	18.11	43.93	54.00	-10.07

Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Report No.: TS13060161-EME

Page 53 of 69

9.4.2 Measurement results: frequency above 1GHz

EUT : BLACK 15

Test Condition : GFSK at channel 0

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4920.00	PK	V	35.1	38.54	39.72	43.16	54	-10.84
7140.00	PK	V	33.0	44.60	33.70	45.30	54	-8.70
9608.00	PK	V	32.7	49.30	33.14	49.74	54	-4.26
12010.00	PK	V	31.6	50.87	32.27	51.54	54	-2.46
4920.00	PK	Н	35.1	38.54	39.06	42.50	54	-11.50
7206.00	PK	Н	33.0	44.60	33.03	44.63	54	-9.37
9608.00	PK	Н	32.7	49.30	33.72	50.32	54	-3.68
12010.00	PK	Н	31.6	50.87	29.77	49.04	54	-4.96

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor

3. The frequency measured ranges from 1GHz to 25GHz.

EUT : BLACK 15

Test Condition : GFSK at channel 39

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4882.00	PK	V	35.1	38.54	38.43	41.87	54	-12.13
7380.00	PK	V	33.0	44.60	33.87	45.47	54	-8.53
9764.00	PK	V	32.7	49.30	32.59	49.19	54	-4.81
12240.00	PK	V	31.6	50.87	30.45	49.72	54	-4.28
4882.00	PK	Н	35.1	38.54	38.38	41.82	54	-12.18
7320.00	PK	Н	33.0	44.60	33.89	45.49	54	-8.51
9764.00	PK	Н	32.7	49.30	31.01	47.61	54	-6.39
11910.00	PK	Н	30.3	51.84	30.12	51.66	54	-2.34

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

EUT : BLACK 15

Test Condition : GFSK at channel 78

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
7440.00	PK	V	33.0	44.60	33.23	44.83	54	-9.17
9920.00	PK	V	32.7	49.30	31.82	48.42	54	-5.58
12400.00	PK	V	31.6	50.87	30.23	49.50	54	-4.50
4960.00	PK	Н	35.1	38.54	38.02	41.46	54	-12.54
7440.00	PK	Н	33.0	44.60	33.99	45.59	54	-8.41
9920.00	PK	Н	32.7	49.30	31.81	48.41	54	-5.59
12400.00	PK	Н	31.6	50.87	29.26	48.53	54	-5.47

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor

3. The frequency measured ranges from 1GHz to 25GHz.

EUT : BLACK 15

Test Condition : π /4-DPSK at channel 0

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
7206.00	PK	V	33.0	44.60	33.01	44.61	54	-9.39
9608.00	PK	V	32.7	49.30	32.46	49.06	54	-4.94
12010.00	PK	V	31.6	50.87	30.16	49.43	54	-4.57
4920.00	PK	Н	35.1	38.54	37.67	41.11	54	-12.89
7206.00	PK	Н	33.0	44.60	32.42	44.02	54	-9.98
9608.00	PK	Н	32.7	49.30	32.66	49.26	54	-4.74
12010.00	PK	Н	31.6	50.87	30.52	49.79	54	-4.21

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

Report No.: TS13060161-EME Page 55 of 69

EUT : BLACK 15

Test Condition : π /4-DPSK at channel 39

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
7323.00	PK	V	33.0	44.60	34.60	46.20	54	-7.80
9764.00	PK	V	32.7	49.30	32.70	49.30	54	-4.70
12205.00	PK	V	31.6	50.87	29.30	48.57	54	-5.43
7323.00	PK	Н	33.0	44.60	33.05	44.65	54	-9.35
9764.00	PK	Н	32.7	49.30	31.93	48.53	54	-5.47
12300.00	PK	Н	31.6	50.87	29.78	49.05	54	-4.95

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor

3. The frequency measured ranges from 1GHz to 25GHz.

EUT : BLACK 15

Test Condition : π /4-DPSK at channel 78

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
12400.00	PK	V	31.6	50.87	30.60	49.87	54	-4.13
9930.00	PK	Н	32.7	49.30	32.42	49.02	54	-4.98
12400.00	PK	Н	31.6	50.87	29.07	48.34	54	-5.66

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

EUT : BLACK 15

Test Condition : 8DPSK at channel 0

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4804.00	PK	V	35.1	38.54	38.45	41.89	54	-12.11
7206.00	PK	V	33.0	44.60	32.63	44.23	54	-9.77
9608.00	PK	V	32.7	49.30	32.44	49.04	54	-4.96
4890.00	PK	Н	35.1	38.54	37.78	41.22	54	-12.78
7320.00	PK	Н	33.0	44.60	33.42	45.02	54	-8.98
12090.00	PK	Н	31.6	50.87	29.48	48.75	54	-5.25

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor

3. The frequency measured ranges from 1GHz to 25GHz.

EUT : BLACK 15

Test Condition : 8DPSK at channel 39

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
7323.00	PK	V	33.0	44.60	33.40	45.00	54	-9.00
9764.00	PK	V	32.7	49.30	31.48	48.08	54	-5.92
11970.00	PK	V	30.3	51.84	28.74	50.28	54	-3.72
4882.00	PK	Н	35.1	38.54	37.73	41.17	54	-12.83
7323.00	PK	Н	33.0	44.60	33.95	45.55	54	-8.45
9764.00	PK	Н	32.7	49.30	31.88	48.48	54	-5.52
12210.00	PK	Н	31.6	50.87	29.01	48.28	54	-5.72

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.
- 4. Duty Cycle Correction Factor: Please refer Time of Occupancy (dwell time) test in clause 6 of this report.

Report No.: TS13060161-EME

Page 57 of 69

EUT : BLACK 15

Test Condition : 8DPSK at channel 78

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
(MHz)	Analyzer Detector	Pol. (H/V)	Gain (dB)	Factor (dB/m)	(dBuV)	Reading (dBuV/m)	@ 3 m (dBuV/m)	(dB)
4960.00	PK	V	35.1	38.54	36.10	39.54	54	-14.46
7440.00	PK	V	33.0	44.60	34.08	45.68	54	-8.32
9920.00	PK	V	32.7	49.30	32.36	48.96	54	-5.04
4960.00	PK	Н	35.1	38.54	37.60	41.04	54	-12.96
7440.00	PK	Н	33.0	44.60	33.04	44.64	54	-9.36
9920.00	PK	Н	32.7	49.30	32.14	48.74	54	-5.26
12400.00	PK	Н	31.6	50.87	30.15	49.42	54	-4.58

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.
- 4. Duty Cycle Correction Factor: Please refer Time of Occupancy (dwell time) test in clause 6 of this report.

Report No.: TS13060161-EME Page 58 of 69

10. Emission on the band edge §FCC 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.1 Test setup & procedure

Please refer to the clause 9.2 of this report.

Please see the plot below.

10.2 Test Result

Test Mode: GFSK mode DH 5

Channel	Measurement Freq. Band (MHz) Detector Detector The Max. Field Strength in Restrict Band (dBuV/m)		Limit @ 3 m (dBuV/m)	Margin (dB)	
0 (lowest)	2310-2390	PK	57.88	74	-16.12
	2310-2390	AV	45.15	54	-8.850
78 (highest)	2483.5-2500	PK	58.30	74	-15.70
	2405.3-2300	AV	48.44	54	-5.56

Test Mode: π /4 DPSK mode DH 5

Channel	Measurement Freq. Band (MHz)	Freq. Band Detector Strength in Restrict		Limit @ 3 m (dBuV/m)	Margin (dB)
0 (lowest)	2310-2390	PK	58.36	74	-15.64
	2310-2390	AV	44.96	54	-9.04
78 (highest)	2483.5-2500	PK	58.36	74	-15.64
/o (mgnest)	2403.3-2300	AV	46.20	54	-7.80

Test Mode: 8DPSK mode DH 5

Channel	Measurement Freq. Band (MHz)	Detector	The Max. Field Strength in Restrict Band (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
0 (lowest)	2310-2390	PK	57.30	74	-16.70
		AV	44.94	54	-9.06
78 (highest)	2483.5-2500	PK	57.80	74	-16.20
		AV	46.27	54	-7.73

10.2.1 Band edge

Band edge @ GFSK mode DH 5 channel 0 PK

Band edge @ GFSK mode DH 5 channel 0 AV

Band edge @ GFSK mode DH 5 channel 78 PK

Band edge @ GFSK mode DH 5 channel 78 AV

Band edge @π/4DPSK mode DH 5 channel 0 PK

Band edge @ $\pi/4DPSK$ DH 5 channel 0 AV

Band edge @π/4DPSK mode DH 5 channel 78 PK

Band edge @π/4DPSK DH 5 channel 78 AV

Band edge @ 8DPSK mode DH 5 channel 0 PK

Band edge @ 8DPSK mode DH 5 channel 0 AV

Band edge @ 8DPSK mode DH 5 channel 78 PK

Band edge @ 8DPSK mode DH 5 channel 78 AV

Report No.: TS13060161-EME Page 66 of 69

11. Power Line Conducted Emission test §FCC 15.207

11.1 Operating environment

Temperature: 25 °C Relative Humidity: 60 % Atmospheric Pressure 1008 hPa

11.2 Test setup & procedure

The test procedure was according to ANSI C63.4/2003.

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm/50uH coupling impedance with 50 ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement.

The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9 kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".

Report No.: TS13060161-EME Page 67 of 69

11.3 Emission limit

Freq.	Conducted Limit (dBuV)				
(MHz)	Q.P.	Ave.			
0.15~0.50	66 – 56*	56 – 46*			
0.50~5.00	56	46			
5.00~30.0	60	50			

^{*}Decreases with the logarithm of the frequency.

11.4 Uncertainty of Conducted Emission

Expanded uncertainty (k=2) of conducted emission measurement is 2.08 dB.

11.5 Power Line Conducted Emission test data

Phase: Live Line Model No.: BLACK 15

Operating mode: Normal operating mode

Frequency (MHz)	Corr. Factor (dB)	Level Qp (dBuV)	Limit Qp (dBuV)	Level Av (dBuV)	Limit Av (dBuV)		rgin dB) Av
0.150	0.13	31.70	66.00	23.54	56.00	-34.30	-32.46
0.264	0.15	28.90	61.29	23.84	51.29	-32.39	-27.45
0.389	0.16	42.30	58.08	41.62	48.08	-15.78	-6.46
1.172	0.22	31.44	56.00	28.51	46.00	-24.56	-17.49
5.085	0.41	33.84	60.00	25.10	50.00	-26.16	-24.90
8.729	0.56	31.09	60.00	35.35	50.00	-28.91	-14.65

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Phase: Neutral Line Model No.: BLACK 15

Operating mode: Normal operating mode

Frequency (MHz)	Corr. Factor (dB)	Level Qp (dBuV)	Limit Qp (dBuV)	Level Av (dBuV)	Limit Av (dBuV)		rgin HB) Av
(******)	(,	((,	(,	(,	*F	
0.392	0.12	42.07	58.02	42.32	48.02	-15.95	-5.70
0.848	0.15	22.12	56.00	10.92	46.00	-33.88	-35.08
1.174	0.18	35.17	56.00	35.25	46.00	-20.83	-10.75
1.955	0.23	31.83	56.00	31.87	46.00	-24.17	-14.13
6.031	0.38	31.44	60.00	21.63	50.00	-28.56	-28.37
8.424	0.45	35.73	60.00	20.20	50.00	-24.27	-29.80

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

