

Красимир Манев MNKnowledge, 13.04.2020

Джордж Бул (1815 – 1864)

Английски философ и математик.

началото на Логика и поставя момента философска неформалната до която формализира математическа теория с

Математическата логика

Съждително смятане

да оценим с една от двете оценки "вярно" (true) Деф. а) *Съждение* е всяко твърдение, което можем или "невярно"(talse).

- 6) Нека р и q са съждения.
- в) Іогава съждения са и:
- р или q вярно, ако поне едно от двете е вярно;
- *þ u q* вярно, ако и двете са верни;
- *не е вярно þ* вярно, ако *þ* не е вярно.

обичайната човешка логика и на начина по който провеждаме доста математически разсъждения. Такъв формален модел напълно съответства на

Булева алгебра (БА)

логическото "невярно" (false). Да разгледаме простото множество $\mathscr{B} = \{0,1\}$ където 1съответства на логическото "вярно" (true) а 0 на

Нека $\mathbf{x},\mathbf{y} \in \mathcal{B}$. Дефинираме двуаргументните операции

- $extit{dus}$ (съответстваща на $extit{unu}$) със знак \vee
- **конюнкция** (съответстваща на $oldsymbol{u}$) със знак \wedge
- **отрицание** (съответстваща на *не е вярно че*) със знак ¬

0 0 1 0 1 1 1 1	—	1	0	0	×
1 1 0 <	<u> </u>	0	<u> </u>	0	y
	<u> </u>	1	_	0	<

_	<u> </u>	0	0	x
_	0	<u> </u>	0	y
1	0	0	0	>

—	0	×
0	<u> </u>	J

Такава алгебрична структура наирчаме **булева алгебра** –

$$(\mathcal{B};\vee,\wedge,\neg)$$
.

Булева алгебра - свойства

- \square Комутативни: $x \lor y = y \lor x$; $x \land y = y \land x$
- \square Асоциативни: $(x \lor y) \lor z = x \lor (y \lor z) = x \lor y \lor z;$

$$(x \wedge y) \wedge z = x \wedge (y \wedge z) = x \wedge y \wedge z$$

 \square Дистрибутивни: $x \lor (y \land z) = (x \lor y) \land (x \lor z);$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

 \square Идемпотентни: $x \lor x = x$; $x \land x = x$

$$x \lor 1 = 1$$
; $x \lor 0 = x$; $x \land 1 = x$; $x \land 0 = 0$;

□ Константи:

- \Box Отрицание: $x \lor \neg x = 1; x \land \neg x = 0; \neg (\neg x) = x$
- □ Закони на Де Морган:

$$\neg(x \lor y) = \neg x \land \neg y$$

$$\neg(x \land y) = \neg x \lor \neg y$$

Булева алгебра - свойства

докаже, като се построят *таблиците на истинност* на първия закон на Де Морган $\neg(x \lor y) = \neg x \land \neg y$ изразите от двете страни на равенството. Да докажем така Всяко от гореизброените свойства може лесно да се

—	0	0	×
0	<u> </u>	0	y
	→	0	$x \vee y$
0	0		
П	П	П	
0	0	_	¬x ^ ¬y
0	—	<u> </u>	<u>پر</u> ا
	0	\vdash	
	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Указание. Тъй като в него участват три променливи, Задача. Докажете едно от дистрибутивните свойства. таблиците на истинност ще имат по 8 реда!!!

Булева алгебра - свойства

получаваме твърдение au със същата вярност като заменим конюнкция с дизюнкция и обратно, **Теорема** (дуалност на БА) . Ако в твърдение τ в БА Интересно свойство във всяка БА ни дава следната Tash hat.

първия закон на Де Морган Например, ако направим описаната замяна в

$$\neg(x \lor y) = \neg x \land \neg y \Rightarrow \neg(x \land y) = \neg x \lor \neg y$$

получаваме втория закан на Де Морган.

асоциативността на конюнкцията и т.н. на дизюнкцията - комутативността и Аналогично, от комутативността и асоциативността

Булева алгебра на множествата

операции: $\dot{\Phi}$ амилията от неговите подмножества $2^{\,arphi}$, с обичайните БА на верността на съждения не е единствен пример за БА. Да разгледаме някакво универсално множество ${\mathcal O}$ и

- obeduhehue (съответстваща на ∨) със знак ∪
- *конюнкция* (съответстваща на \wedge) със знак \cap
- **допълнение до** ${\mathcal O}$ (съответстваща на \lnot) със знак \lnot

$y \in B$ $x \in A \cup B$ 0 0 1 1 0 1 1 1	ш	<u> </u>	0	0	$x \in A$
$x \in A \cup B$ 0 1 1	<u> </u>	0		0	<i>y</i> ∈ <i>B</i>
	<u></u>	<u> </u>	<u> </u>	0	$x \in A \cup B$

_	<u> </u>	0	0	$x \in A$
<u> </u>	0	<u> </u>	0	y∈B
_	0	0	0	$x \in A \cap B$

1	0	$x \in A$
0	1	$x \in \neg A$

Очевидно (2 v ; \smile , \cap , \dashv) е също булева алгебра със същите свойства. Свойствата са същите във всяка БА!!!

п-мерните двоични вектори. Нека $\mathcal{B}=\{0,1\}$, а $\mathcal{B}^n=\{(a_1,a_2,...a_n)\mid a_i\in\mathcal{B}\}$ е множеството от

булеви или **двоични функции (БФ).** Тъй като $\mid \mathcal{B}^n \mid = 2^n$, Деф. Функциите от $F_n = \{f: \mathcal{B}^n \to \mathcal{B} \mid n = 1, 2, ...\}$ наричаме

броят на функциите $\mid F_n \mid = 2^{2^n}$. Функциите на 1 променлива са 4, а на 2 променливи

-16. Добре е да различаваме булевата стой- $\begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix}$

ност () (скалар) от булевата функция () (вектор)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DDDDDDD	DDDDDD	DDDDDD	DDDDDDD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vdash	\vdash	0	0	x
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	0	<u> </u>	0	y
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	0	0	0	>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	—	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	_	0	0	x
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	<u> </u>	0	
0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0	<u> </u>	0		0	y
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	–		0	\oplus
1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	<u> </u>	<u> </u>		0	<
0 1 0	0	0	0	<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	<u> </u>	0	<u> </u>	J.y
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	<u> </u>	0	<u> </u>	
1 1 1 1 1 1 1 0 1	0	0	_	<u> </u>	x_
1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	0	<u> </u>	\mapsto	
	0	<u> </u>	<u> </u>	_	
	\vdash	\vdash	—	⊢	Ľ

Както се вижда от двете таблици:

- Всяка Б Φ на n-1променливи се среща и като функция на n променливи, но с двойно по-дълъг стълб от стойности
- Функциите, чиито стойности повтарят стойността на нов идентитет и отрицание на новата променлива *идентитети*. Всяко добавяне на променлива, добавя някоя от променливите $f(x_1, x_2, ..., x_i, ..., x_n) = x_i$ наричаме
- Една от функциите на две променливи, която я няма наричаме *събиране* (*по модул 2*). при тези на една променлива е $f(x,y) = x \oplus y$, която
- Всяка функция на k < n променливи можем да разширим до функция на n променливи с добавяне на нови (т.н. **фиктивни**) променливи

Да разгледаме множеството F_n на БФ на n променливи. Дефинираме следните *побитови операции*:

$$f(x_1,...,x_n)$$
 I $g(x_1,...,x_n)=h(x_1,...,x_n)$ Takaba, че $h(a_1,...,a_n)=f(a_1,...,a_n)\vee g(a_1,...,a_n), \ \forall (a_1,...,a_n)\in \mathcal{B}^n$

- (nobumosa) дизюнкция наfи g

$$f(x_1,...,x_n)$$
 & $g(x_1,...,x_n)=h(x_1,...,x_n)$ Takaba, че $h(a_1,...,a_n)=f(a_1,...,a_n) \wedge g(a_1,...,a_n), \forall (a_1,...,a_n) \in \mathcal{B}^n$

- (nobumosa) конюнкция наfи g

 $f(x_1,...,x_n) = h(x_1,...,x_n)$ Taka, ye $h(a_1,...,a_n) = \neg f(a_1,...,a_n)$ $\forall (a_1,...,a_n) \in \mathcal{B}^n$ - (побитово) отрицание на f

 $f(x_1,...,x_n)$ ^ $g(x_1,...,x_n)=h(x_1,...,x_n)$ такава, че $h(a_1,...,a_n) = f(a_1,...,a_n) \oplus g(a_1,...,a_n), \forall (a_1,...,a_n) \in \mathcal{B}^n$

 $(\mathcal{F}_n;\mathsf{L},\&,")$ също е булева алгебра - (побитово) събиране по модул 2 наfи g

вместо I ще използваме \vee а вместо & - нищо Деф. Множеството от БФ $\it C$ наричаме $\it nълно$, ако всяка БФ може да се представи с формула над $\it C$. По традиция,

Лема. $x_1^{\sigma_1} x_2^{\sigma_2} ... x_n^{\sigma_n} = 1$ тстк $x_i = \sigma_i$, i = 1, 2, ..., n $x_1^{\sigma_1}x_2^{\sigma_2}...x_n^{\sigma_n}$ наричаме **елементарна конюнкция.** Нека да означим с $x^1=x$, а с $x^0=!x$. Функция от вида

Теорема. Множеството БФ $\{ I, \&, ! \}$ е пълно.

Доказателство: Нека $f(x_1,...,x_n)$ е БФ

a) ako
$$f(x_1,...,x_n)=0$$
, Toraba $f(x_1,...,x_n)=x_1$ & (!x₁);

6) $\text{Heka } f(x_1,...,x_n) \neq \mathbf{0}.$

Сега
$$f(x_1,...,x_n) = V$$
 $\chi_1^{\sigma_1} \chi_2^{\sigma_2} ... \chi_n^{\sigma_n}$ $\forall f(\sigma_1,...,\sigma_n) = 1$

$$f(x_1,...,x_n) = \bigvee_{\substack{V \\ \forall f(\sigma_1,...,\sigma_n)=1}} x_1^{\sigma_1} x_2^{\sigma_2} ... x_n^{\sigma_n}$$

съвършена дизюнктивна нормална форма (СДНФ) съответните стойности във вектора за койтоfе единица стойност на функцията, а степените на променливите са **конюнкции**, всяка от които съответства на единична т.е. побитова дизюнкция на т.н. *елементарни*

Ако
$$f(a_1,...,a_n)=1$$
 тогава $\forall f(\sigma_1,...,\sigma_n)=1$ $\forall x_1^{\sigma_1}x_2^{\sigma_2}...x_n^{\sigma_n}=1$ $=a_1^{a_1}a_2^{a_2}...a_n^{a_n}=1$ също, а ако

$$f(a_1,...,a_n)=0$$
 тогава $\forall f(\sigma_1,...,\sigma_n)=1$ $\forall x_1^{\sigma_1}x_2^{\sigma_2}...x_n^{\sigma_n}=0$ защото $(a_1,...,a_n)$ не съвпада с никой $(\sigma_1,...,\sigma_n)$

Тъй като векторите върху които тя е единица са (0,1), (1,0)Пример. Нека напишем СДНФ на побитовата дизюнкция.

 $\mathrm{H}\left(1,1\right)$ получаваме

$$x \lor y = x^0 y^1 \lor x^1 y^0 \lor x^1 y^1$$

отрицанието като черта над буквата или според традициите да се поставя

$$x \vee y = \bar{x}y \vee x\bar{y} \vee xy$$

Задача. Напишете СДНФ на функцията

от таблицата вдясно.

да има повече от една ДНФ но точно една *минимална ДНФ* на фунцията. Както се вижда, всяка функция, без $\mathbf{0}$, може СДНФ. Това поражда задачата за търсене на

	<u> </u>	_	—	0	0	0	0	×
⊢	<u> </u>	0	0	—	<u> </u>	0	0	y
<u> </u>	0	<u> </u>	0	<u> </u>	0	<u> </u>	0	N
—	1	0	0	1	0	_	1	f

Ролята на БФ – схеми от ФЕ

 $z_1(x_1,x_0,y_1,y_0)$ и $z_0(x_1,x_0,y_1,y_0)$ пресмята булевите функции $z_2(x_1,x_0,y_1,y_0)$, суматор) не се различава съществено. То разряден суматор. Общият случай (n-разряден На Фиг. вляво е показано просто устройство – 2-

Ролята на БФ – схеми от ФЕ

събирането по модул 2 $x \oplus y = \bar{x}y \lor x\bar{y}$ строим *елементи* (ФЕ) - пълно множество. По СДНФ на схема от ФЕ, показана на Фиг. вдясно На Фиг. вляво са показани т.н. *функционални*

форми на БА: а) булевата логика В езиците за програмиране използваме две

- Операциите за сравнение $\{<, >, ==, <=,$ (1) n false (0)>=, !=} пораждат булевите стойности **true**
- Цялото () е еквивалентно на **false**
- Всяко цяло ≠ 0 е еквивалентно на **true**
- Знакът за дизюнкция е ||, знакът за конюнкция е &&, а знакът за отрицание е !
- Логически изрази (условия)

архитектури има две групи целочислени типове операции. В обичайните компютърни 6) Другата форма на използване на БА в ЕП — знакови и беззнакови (**unsigned**) (примерите са за С) е БА на побитовите

знак	
.2r-2	
•	
$.2^{2}$	
.21	
.20	
	знак $.2^{r-2}$ $.2^2$ $.2^1$ $.2^0$

числа от 0 до 2^r -1двоична бройна система, целите неотрицателни В r-разрядния беззнаков тип се представят, в

числа от -2^{r-1} до 2^{r-1} -1. В r-разрядния знаков тип се представят целите

система, като знаковият бит е 0 от 0 до 2^{r-1} -1 се представят, в двоична бройна В r-разрядния знаков тип неотрицателните числа

	0
90	1
	0
	0
	1
)	1
•	0
)	0 1

Съответното отрицателно се представя в

donълнителен код invert 1

 $2^7 .2^6$

 $.2^2$ $.2^1$

	<u>+</u>
2	
7	
.26	0
•	1
•	1
	0
$.2^{2}$	0
$.2^{1}$	1
$.2^{0}$	1

операции (unsigned i,k;): В езика С са допустими няколко побитови

- Побитово изместване наляво беззнаково

Съдържанието на і се измества к бита наляво

(unsigned i,k) - Побитово изместване надясно беззнаково

≻ ≻

Съдържанието на і се измества к бита надясно

Знаковото изместване има специфика:

- Побитово изместване наляво знаково

число е ту положително, ту отрицателно (int i; unsigned k) от дясно битове влизат като знакови и полученото При знаково изместване наляво "настъпващите"

i; unsigned k;) *- Побитово изместване надясно знаково* (int

6ит!!! на освобождаваните позиции става със знаковия При знаковото изместване надясно, попълването

- Както се вижда, побитовите операции **беззнаковите** препоръчвам да се използват само при целочислени типаве и затова имат особености при знаковите
- По принцип С компилаторите не отказват се използват отрицателни измествания е трудно презвидим дори за опитен отрицателен знак (і<<-1) но резултатът да компилират измиствания с програмист. Затова препоръчваме да не

- Побитова дизюнкция (unsigned i,j;)

μ. — 山.

аргументите е дизюнкция на съответните битове на При побитовата дизюнкция всеки бит в резултата

- Побитова конюнкция (unsigned i,j;)

٦. چ

аргументите е конюнкция на съответните битове на При побитовата конюнкция всеки бит в резултата

- Побитово събиране по модул 2 (unsigned

резултата е събиране по модул 2 на съответните При побитовото събиране по модул 2 всеки бит в

битове на аргументите

0	<u> </u>
<u> </u>	
1	
	_
0	1
0	U
0	
0	1

•	┛•
r	
	ightharpoonup
	0
	1
	0
	1
	0
	0
ľ	

- Побитово отрицание (unsigned i,j;)

4

битове на аргументите При побитовото събиране по модул 2 всеки бит в резултата е събиране по модул 2 на съответните

```
Лема. Очевидно i^i =
Нека имаме unsigned i, j;
```

Операция

```
± > ± j
; (=>±
             ┤^=i;
            ب
(۲
ان
```

използване на друга променлива Значи кодът **i^=j**; **j^=i**; **i^=j**; Размества съдържанието на і и ј без

ако $i \in A$. Например, $\{0,1,3,4,7\} \subseteq \{0,1,...,7\}$ подмножество A можем да представим в представяме с която i-тият по ред бит 0, ако $i \notin A$ и е 1, <type> a [M] ; като редица от N бита, в Нека $A = \{0,1,2,...,N-1\}$, а M =|N/(8*sizeof(type))|. Тогава всяко

- При това представяне използваме □При това представяне можем да елементите, операциите с множества при класическо представяне със списък на реализираме много по-бързо, отколкото
- ни позволява да представяме 8*sizeof(type) пъти по-малко памет, което множества подмножествата на много по-големи

Ако type a[M], b[M]; са две подмножества обединение

сечение

симетрична разлика

Допълнение до универсалното for (int i=0;i<M;i++) a[i]=~a[i];</pre>

За да можем да работим с такова представяне основни операции: на множества са ни нужни още няколко

- Добавяне на елемент К (void set(K))
- *Премахване на елемент* К (void unset(K))
- Проверка дали елемент К принадлежи на множеството (int check(K))

За целта K/(8*sizeof(type)) определя елемента на масива в който се съдържа елементът K, a K% (8*sizeof(type)) позицията му (отляво надясно в елемента)

```
void set (unsigned K)
                                                              int a[],M;
                                                                                            Нека type за по-поросто е int
int i = K/32, j = K%32;
```

a[i]| = p;

unsigned p = 1 << (31-j);

```
void unset (unsigned K)
                                                                                                        int a[],M;
                                                    int i = K/32, j = K%32;
a[i]&=p;
                           unsigned p = ~(1 << (31-j));
```

```
int check (unsigned K)
                                                                                                                                  int a[],M;
                                                                           int i = K/32, j = K%32;
return b;
                                                 unsigned p = 1 << (31-j);
                        unsigned b=a[i]&p;
```

Задача. Напишете програми, които по числа по малки от 10⁶ с М и N елемента зададени две множества от цели положителни

proga) намира и извежда сечението им; не привнадлежат на второто; множеството от елементите на първото, които progb) намира и извежда разликата им – т.е.

множества елементите на сечението им. progc) изтрива от двете изтрива от двете

Задача. Една често срещана в комбинаторните елементите на зададено множество. изследвания задача е да се намери броят на

направим с кода: При представянето по-горе това можем да

```
for (i=0;i<N;i++)
                                                             int count = 0, i, a[],N;
if(check(i)) count++;
```

O(N).Съществува обаче и по-бърз алгоритъм който също използва побитова операция В този случай сложността на алгоритъма е

```
дясната единица в 🗴 с нула. Например
100000&01111
                                                                                                                                                                                                                                                                              int size()
                           100100&100011 = 100000
                                                                          Обяснение. Операцията ж & (ж-1) заменя най-
                                                                                                                                                                                                                                                                                                       int count = 0,N;unsigned a[];
                                                                                                                                                                                                                                               {int M = ceiling(N);
                                                                                                                                     return count;
                                                                                                                                                                                                                       for (i=0;i<M;i++)
                                                                                                                                                                                          { while(a[i]!=0)
                                                                                                                                                               {a[i]&=a[i-1];
  11
                                                                                                                                                                count++;}
```

- В състезателното програмиране е много полезна не (или оптимиране). алгоритмичната схема **Динамично програмира**-
- 🗆 Същността на ДП е да се свежда решението на на същата задача при по-малки размери на входа задача с даден размер на входа към решенията
- Решението в стил ДП използва таблица, в която дачи и тези решения се използват наготово. се съхраняват решенията на различните подза-
- 🗆 Възможностите на ДП да реши задача с голям може да се разположи в паметта. размер зависи от това **колко голяма таблица**