Credit Card Fraud Detection Model

By DAJAH VINCENT

In [2]: #Importing data manipulation and visualization libraries
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sb
%matplotlib inline

In [4]: #viewing the structure of the creditCard datset

Out[4]:

creditCard

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.1
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.1
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.9
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.1
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.1
	•••		***	***	•••	***	***	***		***	 	***	
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111864	1.0
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924384	0.0
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578229	-0.0
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800049	-0.1
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643078	0.3
284807	284807 rows × 31 columns												

Exploratory Data Analysis

Out[5]:

•	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V23	
(0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110474	0.0
	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101288	-0.3
:	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909412	-0.6
;	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190321	-1.1
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137458	0.1

5 rows × 31 columns

```
In [6]: #viewing the last 5 rows from the creditcard dataset
           creditCard.tail()
Out[6]:
                                       V1
                                                                          V4
                                                                                                V6
                                                                                                            V7
                                                                                                                                  V9 ...
                         Time
                                                   V2
                                                              V3
                                                                                     V5
                                                                                                                       V8
                                                                                                                                               V21
                                                                                                                                                          V22
            284802 172786.0 -11.881118 10.071785 -9.834783 -2.066656 -5.364473 -2.606837 -4.918215 7.305334 1.914428 ... 0.213454 0.111864
            284803 172787.0 -0.732789 -0.055080 2.035030 -0.738589 0.868229 1.058415 0.024330
                                                                                                                 0.294869 \quad 0.584800 \quad ... \quad 0.214205 \quad 0.924384 \quad 0.012
            284804 172788.0 1.919565 -0.301254 -3.249640 -0.557828 2.630515 3.031260 -0.296827
                                                                                                                 0.708417 \quad 0.432454 \quad ... \quad 0.232045 \quad 0.578229 \quad \text{-}0.037
            284805 172788.0 -0.240440 0.530483 0.702510 0.689799 -0.377961 0.623708 -0.686180 0.679145 0.392087 ... 0.265245 0.800049 -0.165
            284806 172792.0 -0.533413 -0.189733 0.703337 -0.506271 -0.012546 -0.649617 1.577006 -0.414650 0.486180 ... 0.261057 0.643078 0.376
           5 rows × 31 columns
In [7]: creditCard.columns
Out[7]: Index(['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount',
                     'Class'],
                   dtype='object')
```

In [8]: # I wanted to see the description of the dataset while rounding up the floated fraction to 2 decimals. #I also transpose the result to be able to see the entire columns

round(creditCard.describe(), 2).T

#creditCard.round(2)

Out[8]:

	count	mean	std	min	25%	50%	75%	max
Time	284807.0	94813.86	47488.15	0.00	54201.50	84692.00	139320.50	172792.00
V1	284807.0	0.00	1.96	-56.41	-0.92	0.02	1.32	2.45
V2	284807.0	0.00	1.65	-72.72	-0.60	0.07	0.80	22.06
V3	284807.0	-0.00	1.52	-48.33	-0.89	0.18	1.03	9.38
V4	284807.0	0.00	1.42	-5.68	-0.85	-0.02	0.74	16.88
V5	284807.0	0.00	1.38	-113.74	-0.69	-0.05	0.61	34.80
V6	284807.0	0.00	1.33	-26.16	-0.77	-0.27	0.40	73.30
V7	284807.0	-0.00	1.24	-43.56	-0.55	0.04	0.57	120.59
V8	284807.0	0.00	1.19	-73.22	-0.21	0.02	0.33	20.01
V9	284807.0	-0.00	1.10	-13.43	-0.64	-0.05	0.60	15.59
V10	284807.0	0.00	1.09	-24.59	-0.54	-0.09	0.45	23.75
V11	284807.0	0.00	1.02	-4.80	-0.76	-0.03	0.74	12.02
V12	284807.0	-0.00	1.00	-18.68	-0.41	0.14	0.62	7.85
V13	284807.0	0.00	1.00	-5.79	-0.65	-0.01	0.66	7.13
V14	284807.0	0.00	0.96	-19.21	-0.43	0.05	0.49	10.53
V15	284807.0	0.00	0.92	-4.50	-0.58	0.05	0.65	8.88
V16	284807.0	0.00	0.88	-14.13	-0.47	0.07	0.52	17.32
V17	284807.0	-0.00	0.85	-25.16	-0.48	-0.07	0.40	9.25
V18	284807.0	0.00	0.84	-9.50	-0.50	-0.00	0.50	5.04
V19	284807.0	0.00	0.81	-7.21	-0.46	0.00	0.46	5.59
V20	284807.0	0.00	0.77	-54.50	-0.21	-0.06	0.13	39.42
V21	284807.0	0.00	0.73	-34.83	-0.23	-0.03	0.19	27.20
V22	284807.0	-0.00	0.73	-10.93	-0.54	0.01	0.53	10.50
V23	284807.0	0.00	0.62	-44.81	-0.16	-0.01	0.15	22.53
V24	284807.0	0.00	0.61	-2.84	-0.35	0.04	0.44	4.58
V25	284807.0	0.00	0.52	-10.30	-0.32	0.02	0.35	7.52
V26	284807.0	0.00	0.48	-2.60	-0.33	-0.05	0.24	3.52
V27	284807.0	-0.00	0.40	-22.57	-0.07	0.00	0.09	31.61
V28	284807.0	-0.00	0.33	-15.43	-0.05	0.01	0.08	33.85
Amount	284807.0	88.35	250.12	0.00	5.60	22.00	77.16	25691.16
Class	284807.0	0.00	0.04	0.00	0.00	0.00	0.00	1.00

```
In [9]: #checking for any NaN or null values in the columns of the dataset
           creditCard.isna().sum()
 Out[9]: Time
                       0
           ٧1
           V2
                       a
           ٧3
           ۷4
                       0
           ۷5
           V6
                       0
           ٧7
           V٨
                       a
           V9
           V10
                       0
           V11
           V12
           V13
                       0
           V14
                       0
           V15
                       0
           V16
           V17
                       0
           V18
           V19
                       0
           V20
           V21
                       0
           V22
           V23
                       0
           V24
           V25
                       a
           V26
           V27
                       a
           V28
           Amount
                       0
           Class
           dtype: int64
In [10]: #checking the number of duplicated values in the datsets
           creditCard.duplicated().sum()
Out[10]: 1081
In [11]: #dropping or deleting the duplicated data values
           creditCard.drop_duplicates()
Out[11]:
                       Time
                                    V1
                                              V2
                                                        ٧3
                                                                  ۷4
                                                                             V5
                                                                                       V6
                                                                                                 ۷7
                                                                                                           V8
                                                                                                                     V9 ...
                                                                                                                                 V21
                                                                                                                                            V22
                                                                                           0.239599
                 0
                         0.0 -1.359807
                                        -0.072781
                                                   2.536347
                                                             1.378155 -0.338321
                                                                                 0.462388
                                                                                                     0.098698
                                                                                                                0.363787 ... -0.018307
                                                                                                                                       0.277838
                                                                                                                                                 -0.1
                 1
                         0.0
                              1.191857
                                         0.266151
                                                   0.166480
                                                             0.448154
                                                                       0.060018
                                                                                 -0.082361
                                                                                           -0.078803
                                                                                                      0.085102 \ \ \text{-}0.255425 \ \ \dots \ \ \text{-}0.225775
                                                                                                                                       -0.638672
                 2
                         1.0
                              -1.358354
                                        -1.340163
                                                   1.773209
                                                             0.379780 -0.503198
                                                                                 1.800499
                                                                                           0.791461
                                                                                                      0.247676 -1.514654 ... 0.247998
                                                                                                                                       0.771679
                                                                                                                                                 0.9
                 3
                         1.0
                              -0.966272
                                        -0.185226
                                                   1.792993
                                                            -0.863291 -0.010309
                                                                                 1.247203
                                                                                           0.237609
                                                                                                      0.377436
                                                                                                              -1.387024 ... -0.108300
                                                                                                                                       0.005274 -0.1
                              -1.158233
                                         0.877737
                                                   1.548718
                                                             0.403034 -0.407193
                                                                                 0.095921
                                                                                           0.592941
                                                                                                     -0.270533
                                                                                                                0.817739 ... -0.009431
                                                                                                                                       0.798278 -0.1
                         2.0
            284802 172786.0 -11.881118 10.071785 -9.834783
                                                            -2.066656 -5.364473 -2.606837 -4.918215
                                                                                                     7.305334
                                                                                                                1.914428
                                                                                                                             0.213454
                                                                                                                                        0.111864
            284803 172787.0
                             -0.732789
                                        -0.055080
                                                   2.035030
                                                            -0.738589
                                                                       0.868229
                                                                                 1.058415
                                                                                           0.024330
                                                                                                      0.294869
                                                                                                                0.584800 ...
                                                                                                                             0.214205
                                                                                                                                       0.924384
                                                                                                                                                 0.0
```

283726 rows × 31 columns

1.919565

-0.240440

-0.533413

-0.301254

0.530483

-0.189733

-3.249640

0.702510

-0.557828

2.630515

0.689799 -0.377961

0.703337 -0.506271 -0.012546 -0.649617

3.031260

0.623708

-0.296827

-0.686180

1.577006

0.708417

0.679145

-0.414650

0.432454 ...

0.392087 ...

0.486180 ...

0.232045

0.265245

0.261057

0.578229

0.800049

0.643078

-0.0

284804 172788.0

284805 172788.0

284806 172792.0

Creating Visualization

```
In [13]: ax = sb.countplot(data = creditCard, x = "Class", width = 0.3)
    ax.set_title("Distribution of Transaction")
    plt.xlabel("Type of Transaction")
    plt.ylabel("Number of Transaction")

for i in ax.containers:
    ax.bar_label(i)

plt.show()
```



```
In [14]:
                        plt.figure(figsize = (20, 12))
                        ax = sb.heatmap(creditCard.corr(), annot = True, fmt = '.2f')
                        for i in range(creditCard.shape[1] + 1):
                                  ax.axvline(i, color='white', lw = 2)
                                  ax.axhline(i, color='white', lw = 2)
                        #plt.tight_layout()
                        plt.show()
                                                                                                                                                                                                                                                                                                                       - 1.0
                                 VI - <mark>0.12 1.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0</mark>
                                                                                                                                                                                       0.00 0.00 0.00 -0.00 -0.00
                                 0.00 0.00 0.00 0.00 0.00
                                                                                                                                                                                       0.00 0.00 -0.00 0.00 -0.00
                                                                                                                                                                                                                                -0.00 0.00 -0.00 -0.00 0.00
                                                                                                                                                                                                                                                                                                                         0.8
                                        0.00 0.00 0.00 -0.00 0.00 -0.00 0.10
                                          0.00 0.00 -0.00 0.00 0.00
                                                                                                                                                                                                                                                                                                                         0.6
                                        -0.00 -0.00 0.00 -0.00 -0.00
                                                                0.00 0.00 0.00 0.00 0.00
                                                                                                                                                0.00 0.00 -0.00 -0.00 0.00
                                                                                                        0.00 1.00
                                                                                                                        -0.00 0.00 -0.00
                                          0.03 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | <mark>1.00 |</mark>-0.00 | 0.00
                                                                                                                                                -0.00 0.00 0.00 0.00
                                                                                                                                                                                          0.00 0.00
                                                                                                                         0.4
                                                                                                                               0.00 1.00 -0.00 0.00
                                V12
                                                                                 0.00 0.00 0.00
                                        V14 -
                                0.2
                                                                                                        -0.00 -0.00 0.00 0.00 0.00
                                                                                                                                                V16
                                V17
                                                                0.00 -0.00
                                                                                0.00 0.00 0.00
                                                                                                        V18
                                V19
                                                                                                        0.00 -0.00
                                                                                                                        -0.00 -0.00 0.00
                                                                                                                                                0.00 -0.00 0.00 0.00 -0.00
                                                                                                                                                                                       -0.00 0.00 1.00 -0.00 0.00
                                                                                                                                                                                       -0.00 0.00 -0.00 1.00 0.00
                                                                0.00 -0.00
                                                                                                        0.00 0.00 0.00 -0.00 0.00
                                                                                                                                                0.00 -0.00 0.00 -0.00 -0.00
                                V21
                                                                                 -0.00 0.00 -0.00
                                                                                                                                                                                                                                0.00 0.00 -0.00
                                V22
                                                                                                                                                                                                               0.00 1.00
                                                                -0.00 0.00
                                                                                                         0.00 -0.00
                                                                                                                         0.00 -0.00 0.00
                                                                                                                                                -0.00 0.00 -0.00 0.00 0.00
                                                                                                                                                                                        -0.00 0.00 0.00 0.00 -0.00 1.00 0.00 -0.00
                                V24
                                                                                                                         0.00 0.00 0.00
                                                                                                                                                -0.00 0.00 -0.00 -0.00 -0.00
                                                                                                                                                                                        -0.00 0.00 0.00 0.00 0.00
                                                                                                                                                                                                                                  0.00 1.00 0.00 0.00 -0.00
                                V25 -
                                        -0.04 -0.00 0.00 -0.00 -0.00
                                                                                0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0
                                0.01 0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00
                                                                                                        -0.00 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 -0.00
                                                                                                                                                                                       0.00 -0.00 -0.00 0.00 -0.00
                                V28 -
                                         V22
V23
                                                                                                                                                                                                                                      V24
V25
                                                                                                                                                                                                                                                               V27
                                                                                                                                                                                                                                                                                         Class
```

Normalizing the legitimate and fraudeulent data

```
In [15]: #create a function that seperates the class of transaction between fraud and legit transactions

def split_data_by_class(creditCard):
    legit = creditCard[creditCard["Class"] == 0]
    fraud = creditCard[creditCard["Class"] == 1]
    return legit, fraud

# Example usage:
legit_df, fraud_df = split_data_by_class(creditCard)
```

In [16]: legit_df.info()

<class 'pandas.core.frame.DataFrame'> Index: 284315 entries, 0 to 284806 Data columns (total 31 columns): # Column Non-Null Count Dtype -----0 Time 284315 non-null float64 1 V1 284315 non-null float64 2 V2 284315 non-null float64 3 V3 284315 non-null float64 4 284315 non-null float64 5 V5 284315 non-null float64 6 V6 284315 non-null float64 284315 non-null float64 7 V7 V8 284315 non-null float64 8 9 V9 284315 non-null float64 10 V10 284315 non-null float64 284315 non-null float64 11 V11 12 V12 284315 non-null float64 13 V13 284315 non-null float64 284315 non-null float64 14 V14 15 V15 284315 non-null float64 16 V16 284315 non-null float64 17 V17 284315 non-null float64 18 V18 284315 non-null float64 19 V19 284315 non-null float64 20 V20 284315 non-null float64 21 V21 284315 non-null float64 22 V22 284315 non-null float64 23 V23 284315 non-null float64 284315 non-null float64 24 V24 25 V25 284315 non-null float64 26 V26 284315 non-null float64 27 V27 284315 non-null float64 284315 non-null float64 28 V28 29 Amount 284315 non-null float64 30 Class 284315 non-null int64

dtypes: float64(30), int64(1)
memory usage: 69.4 MB

<class 'pandas.core.frame.DataFrame'> Index: 492 entries, 541 to 281674 Data columns (total 31 columns): # Column Non-Null Count Dtype -----492 non-null 0 Time float64 1 V1 492 non-null float64 2 V2 492 non-null float64 3 V3 492 non-null float64 4 492 non-null float64 5 V5 492 non-null float64 6 V6 492 non-null float64 7 V7 492 non-null float64 8 ٧8 492 non-null float64 492 non-null 9 V9 float64 10 V10 492 non-null float64 11 V11 492 non-null float64 12 V12 492 non-null float64 13 V13 492 non-null float64 492 non-null 14 V14 float64 15 V15 492 non-null float64 16 V16 492 non-null float64 492 non-null 17 V17 float64 18 V18 492 non-null float64 19 V19 492 non-null float64 20 V20 492 non-null float64 21 V21 492 non-null float64 22 V22 492 non-null float64 23 V23 492 non-null float64 24 V24 492 non-null float64 25 V25 492 non-null float64 26 V26 492 non-null float64 27 V27 492 non-null float64 28 V28 492 non-null float64 29 Amount 492 non-null float64 30 Class 492 non-null int64

dtypes: float64(30), int64(1)
memory usage: 123.0 KB

In [18]: legit_df.describe().T

Out[18]:

	count	mean	std	min	25%	50%	75%	max
Time	284315.0	94838.202258	47484.015786	0.000000	54230.000000	84711.000000	139333.000000	172792.000000
V1	284315.0	0.008258	1.929814	-56.407510	-0.917544	0.020023	1.316218	2.454930
V2	284315.0	-0.006271	1.636146	-72.715728	-0.599473	0.064070	0.800446	18.902453
V3	284315.0	0.012171	1.459429	-48.325589	-0.884541	0.182158	1.028372	9.382558
V4	284315.0	-0.007860	1.399333	-5.683171	-0.850077	-0.022405	0.737624	16.875344
V5	284315.0	0.005453	1.356952	-113.743307	-0.689398	-0.053457	0.612181	34.801666
V6	284315.0	0.002419	1.329913	-26.160506	-0.766847	-0.273123	0.399619	73.301626
V7	284315.0	0.009637	1.178812	-31.764946	-0.551442	0.041138	0.571019	120.589494
V8	284315.0	-0.000987	1.161283	-73.216718	-0.208633	0.022041	0.326200	18.709255
V9	284315.0	0.004467	1.089372	-6.290730	-0.640412	-0.049964	0.598230	15.594995
V10	284315.0	0.009824	1.044204	-14.741096	-0.532880	-0.091872	0.455135	23.745136
V11	284315.0	-0.006576	1.003112	-4.797473	-0.763447	-0.034923	0.736362	10.002190
V12	284315.0	0.010832	0.945939	-15.144988	-0.402102	0.141679	0.619207	7.848392
V13	284315.0	0.000189	0.995067	-5.791881	-0.648067	-0.013547	0.662492	7.126883
V14	284315.0	0.012064	0.897007	-18.392091	-0.422453	0.051947	0.494104	10.526766
V15	284315.0	0.000161	0.915060	-4.391307	-0.582812	0.048294	0.648842	8.877742
V16	284315.0	0.007164	0.844772	-10.115560	-0.465543	0.067377	0.523738	17.315112
V17	284315.0	0.011535	0.749457	-17.098444	-0.482644	-0.064833	0.399922	9.253526
V18	284315.0	0.003887	0.824919	-5.366660	-0.497414	-0.002787	0.501103	5.041069
V19	284315.0	-0.001178	0.811733	-7.213527	-0.456366	0.003117	0.457499	5.591971
V20	284315.0	-0.000644	0.769404	-54.497720	-0.211764	-0.062646	0.132401	39.420904
V21	284315.0	-0.001235	0.716743	-34.830382	-0.228509	-0.029821	0.185626	22.614889
V22	284315.0	-0.000024	0.723668	-10.933144	-0.542403	0.006736	0.528407	10.503090
V23	284315.0	0.000070	0.621541	-44.807735	-0.161702	-0.011147	0.147522	22.528412
V24	284315.0	0.000182	0.605776	-2.836627	-0.354425	0.041082	0.439869	4.584549
V25	284315.0	-0.000072	0.520673	-10.295397	-0.317145	0.016417	0.350594	7.519589
V26	284315.0	-0.000089	0.482241	-2.604551	-0.327074	-0.052227	0.240671	3.517346
V27	284315.0	-0.000295	0.399847	-22.565679	-0.070852	0.001230	0.090573	31.612198
V28	284315.0	-0.000131	0.329570	-15.430084	-0.052950	0.011199	0.077962	33.847808
Amount	284315.0	88.291022	250.105092	0.000000	5.650000	22.000000	77.050000	25691.160000
Class	284315.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

In [19]: fraud_df.describe().T

Out[19]:

	count	mean	std	min	25%	50%	75%	max
Time	492.0	80746.806911	47835.365138	406.000000	41241.500000	75568.500000	128483.000000	170348.000000
V1	492.0	-4.771948	6.783687	-30.552380	-6.036063	-2.342497	-0.419200	2.132386
V2	492.0	3.623778	4.291216	-8.402154	1.188226	2.717869	4.971257	22.057729
V3	492.0	-7.033281	7.110937	-31.103685	-8.643489	-5.075257	-2.276185	2.250210
V4	492.0	4.542029	2.873318	-1.313275	2.373050	4.177147	6.348729	12.114672
V5	492.0	-3.151225	5.372468	-22.105532	-4.792835	-1.522962	0.214562	11.095089
V6	492.0	-1.397737	1.858124	-6.406267	-2.501511	-1.424616	-0.413216	6.474115
V7	492.0	-5.568731	7.206773	-43.557242	-7.965295	-3.034402	-0.945954	5.802537
V8	492.0	0.570636	6.797831	-41.044261	-0.195336	0.621508	1.764879	20.007208
V9	492.0	-2.581123	2.500896	-13.434066	-3.872383	-2.208768	-0.787850	3.353525
V10	492.0	-5.676883	4.897341	-24.588262	-7.756698	-4.578825	-2.614184	4.031435
V11	492.0	3.800173	2.678605	-1.702228	1.973397	3.586218	5.307078	12.018913
V12	492.0	-6.259393	4.654458	-18.683715	-8.688177	-5.502530	-2.974088	1.375941
V13	492.0	-0.109334	1.104518	-3.127795	-0.979117	-0.065566	0.672964	2.815440
V14	492.0	-6.971723	4.278940	-19.214325	-9.692723	-6.729720	-4.282821	3.442422
V15	492.0	-0.092929	1.049915	-4.498945	-0.643539	-0.057227	0.609189	2.471358
V16	492.0	-4.139946	3.865035	-14.129855	-6.562915	-3.549795	-1.226043	3.139656
V17	492.0	-6.665836	6.970618	-25.162799	-11.945057	-5.302949	-1.341940	6.739384
V18	492.0	-2.246308	2.899366	-9.498746	-4.664576	-1.664346	0.091772	3.790316
V19	492.0	0.680659	1.539853	-3.681904	-0.299423	0.646807	1.649318	5.228342
V20	492.0	0.372319	1.346635	-4.128186	-0.171760	0.284693	0.822445	11.059004
V21	492.0	0.713588	3.869304	-22.797604	0.041787	0.592146	1.244611	27.202839
V22	492.0	0.014049	1.494602	-8.887017	-0.533764	0.048434	0.617474	8.361985
V23	492.0	-0.040308	1.579642	-19.254328	-0.342175	-0.073135	0.308378	5.466230
V24	492.0	-0.105130	0.515577	-2.028024	-0.436809	-0.060795	0.285328	1.091435
V25	492.0	0.041449	0.797205	-4.781606	-0.314348	0.088371	0.456515	2.208209
V26	492.0	0.051648	0.471679	-1.152671	-0.259416	0.004321	0.396733	2.745261
V27	492.0	0.170575	1.376766	-7.263482	-0.020025	0.394926	0.826029	3.052358
V28	492.0	0.075667	0.547291	-1.869290	-0.108868	0.146344	0.381152	1.779364
Amount	492.0	122.211321	256.683288	0.000000	1.000000	9.250000	105.890000	2125.870000
Class	492.0	1.000000	0.000000	1.000000	1.000000	1.000000	1.000000	1.000000

In [20]: #sampling the legit transaction to a match a 492 rows

new_legit_df = legit_df.sample(n = 492)

```
In [21]: print(new_legit_df)
                                  ٧1
                                            V2
                                                       V3
                      Time
                                                                 V4
                                                                           V5
                                                                                      V6 \
         278637 168331.0 1.924745 0.476715 -0.972502 3.488065 0.895899 0.768858
                 129409.0 -0.775259 0.435444 0.797722 -2.198371 -0.492238 -0.918507
         191786
                  125289.0 -1.169186 -1.106668 -0.302463 -3.042068 2.134270 0.978630
                 138458.0 -0.636187 -0.617568 0.771143 0.043623 -0.922183 -0.018679
         211541
                 131031.0 1.882015 0.456126 0.091758 3.660667 0.211950 0.702324
                                           . . .
                                                      . . .
                 165377.0 -3.617360 1.760947 -3.127011 -0.728001 -0.220947
         273013
                                                                               1.096116
         186375 127077.0 2.068718 -1.300177 -1.540357 -2.212075 -0.487425 -0.080340
                   25114.0 1.090593 -0.054415 1.214231 1.844288 -0.427767 0.866735
         14116
                   60158.0 -3.327739 0.519052 0.163019 2.461758 0.225975 1.093835
         84091
         243234 151850.0 -2.783175 2.675236 -0.129446 -1.579990 0.163257 -0.491482
                                  ٧8
                                            V9
                                                           V21
                                                                     V22
                                                                               V23 \
                                                . . .
         278637 0.041019 0.085593 -1.147285
                                               ... 0.305405 0.936258 -0.056952
         191786 -0.010259 0.308602 -1.103166
                                                ... 0.293286 0.808270 -0.176873
         182166 0.639190 -0.251930 2.129698
                                                ... 0.015857 1.219414 -0.846781
         211541 1.907556 -0.426148 -1.404138 ... -0.529620 -1.596487 1.071424
         195395 -0.360926 0.137440 -0.650546 ... -0.193657 -0.516363 0.450914
                                           . . .
                                                . . .
                                                           . . .
         273013 -1.395944 2.864199 -0.551824
                                                 ...
                                                      0.080145 -0.316666
                                                                          0.071379
                                                ... 0.022144 0.893774 0.096415
         186375 -0.719131 0.086375 0.953445
                                                ... -0.579125 -0.941481 0.038564
         14116 -0.592573 0.200233 2.494517
         84091 -0.355378 -1.021039 -1.010152 ... 1.288496 -0.962541 -0.640448
         243234 0.770386 -0.525309 3.019697
                                                ... -0.596512 -0.839976 -0.086257
                       V24
                                 V25
                                           V26
                                                      V27
                                                                V28 Amount
         278637 0.219160 0.290690 0.221421 -0.040837 -0.059026
                                                                      10.59
                                                                                  a
         191786 0.025685
                            0.010856 -0.270198 0.241484 0.126104
                                                                      15.00
                                                                                  0
         99.00
                                                                                  a
         211541 -0.236820 -0.780467 -1.207436 -0.060758 0.008146
                                                                     373.90
                                                                                  0
         195395 0.543983 -0.503771 -0.408203 0.016273 -0.016981
                                                                       4.54
                                                                                 0
                                 . . .
                                           . . .
                                                                                . . .
         273013 -1.038712 0.208458 -0.035302 -0.986384 -0.613738
                                                                      21.86
                                                                                  0
         186375 -0.948739 -0.018133 0.192306 0.057336 -0.072699
                                                                      15.17
                                                                                  a
         14116 -0.327459 0.461936 -0.528445 0.065178 0.021236
                                                                      19.89
                                                                                  0
         84091 -0.774945 -0.009809 -0.043424 -0.502826 -0.434711
                                                                      75.08
                                                                                  0
         243234 -0.834365 0.170598 -0.378974 -0.618995 -0.374460
                                                                       3.78
                                                                                  0
         [492 rows x 31 columns]
In [22]: #Combine the fraud and the fraud datasets
         combine_df = pd.concat([new_legit_df, fraud_df], axis = 0)
In [23]: #view the combined fraud and legit datasets
         combine df
Out[23]:
                                                                                                      V9 ...
                    Time
                               V1
                                        V2
                                                V3
                                                         V4
                                                                  V5
                                                                           V6
                                                                                    V7
                                                                                             V8
                                                                                                                V21
                                                                                                                         V22
          278637 168331.0
                          1.924745
                                   0.476715 -0.972502
                                                    3.488065
                                                             0.895899
                                                                      0.768858
                                                                               0.041019
                                                                                        0.085593
                                                                                                -1.147285 ...
                                                                                                             0.305405
                                                                                                                      0.936258
                                                                                                                              -0.05
          191786 129409.0 -0.775259
                                   0.435444 0.797722 -2.198371
                                                             -0.492238 -0.918507
                                                                              -0.010259
                                                                                        0.308602 -1.103166 ...
                                                                                                             0.293286
                                                                                                                     0.808270 -0.17
          182166 125289.0 -1.169186 -1.106668
                                           -0.302463
                                                    -3.042068
                                                             2.134270
                                                                      0.978630
                                                                               0.639190
                                                                                       -0.251930
                                                                                                 2.129698 ...
                                                                                                             0.015857
                                                                                                                      1.219414 -0.84
          211541
                138458.0 -0.636187 -0.617568
                                            0.771143
                                                    0.043623
                                                             -0.922183 -0.018679
                                                                               1.907556
                                                                                       -0.426148
                                                                                                -1.404138 ...
                                                                                                            -0.529620
                                                                                                                     -1.596487
                                                                                                                              1.07
                                                                                                -0.650546 ...
          195395
                131031.0
                          1.882015
                                   0.456126
                                            0.091758
                                                    3.660667
                                                             0.211950
                                                                      0.702324 -0.360926
                                                                                        0.137440
                                                                                                            -0.193657
                                                                                                                     -0.516363
                                                                                                                              0.45
                                                                            ...
                                   1.125653 -4.518331
                                                    1.749293 -1.566487 -2.010494 -0.882850
                                                                                        0.697211 -2.064945 ...
          279863 169142.0 -1.927883
                                                                                                            0.778584
                                                                                                                    -0.319189
                                                                                                                              0.63
          280143 169347.0 1.378559
                                   1.289381 -5.004247
                                                     1.411850
                                                             0.442581 -1.326536 -1.413170
                                                                                        0.248525 -1.127396 ...
                                                                                                             0.370612
                                                                                                                     0.028234 -0.14
          280149 169351.0 -0.676143
                                   1.126366 -2.213700
                                                    0.468308 -1.120541 -0.003346 -2.234739
                                                                                        1.210158 -0.652250 ...
                                                                                                            0.751826
                                                                                                                     0.834108
                                                                                                                              0.19
          281144 169966.0 -3.113832
                                   0.585864 -5.399730
                                                    1.817092 -0.840618 -2.943548 -2.208002 1.058733 -1.632333 ... 0.583276 -0.269209 -0.45
```

281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695 0.223050 -0.068384 0.577829 ... -0.164350 -0.295135 -0.07

984 rows × 31 columns

4


```
In [27]: x = combine_df.drop(columns = "Class", axis = 1)
y = combine_df['Class']
```

In [28]: x

Out[28]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V20	V21	
278637	168331.0	1.924745	0.476715	-0.972502	3.488065	0.895899	0.768858	0.041019	0.085593	-1.147285	 -0.198856	0.305405	0.93
191786	129409.0	-0.775259	0.435444	0.797722	-2.198371	-0.492238	-0.918507	-0.010259	0.308602	-1.103166	 0.090186	0.293286	0.80
182166	125289.0	-1.169186	-1.106668	-0.302463	-3.042068	2.134270	0.978630	0.639190	-0.251930	2.129698	 -0.552342	0.015857	1.21
211541	138458.0	-0.636187	-0.617568	0.771143	0.043623	-0.922183	-0.018679	1.907556	-0.426148	-1.404138	 0.324785	-0.529620	-1.59
195395	131031.0	1.882015	0.456126	0.091758	3.660667	0.211950	0.702324	-0.360926	0.137440	-0.650546	 -0.173118	-0.193657	-0.51
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945	 1.252967	0.778584	-0.31
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396	 0.226138	0.370612	0.02
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250	 0.247968	0.751826	0.83
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333	 0.306271	0.583276	-0.26
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829	 -0.017652	-0.164350	-0.29

984 rows × 30 columns

◀

```
In [29]: y
Out[29]: 278637
         191786
                   0
         182166
                   0
         211541
         195395
                   0
         279863
                   1
         280143
                   1
         280149
                   1
         281144
                   1
         281674
                   1
         Name: Class, Length: 984, dtype: int64
In [30]: # importing the model building libraries
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy_score
         Splitting and training the datasets
In [31]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 5)
In [32]: print(x train)
                     Time
                                 ٧1
                                           V2
                                                     ٧3
                                                                ٧4
         186381 127079.0 1.587861 -0.491081 -2.445199 1.104056 0.893652 -0.360610
         146352 87623.0 1.671087 -1.590974 -0.238973 -1.425989 -1.555426 -0.270383
                  51150.0 0.660132 -0.653132 0.271021 1.132269 0.153691 1.776040
         64449
         42007
                  40918.0 -3.140260 3.367342 -2.778931 3.859701 -1.159518 -0.721552
         230476 146344.0 -0.099724 2.795414 -6.423856 3.247513 -1.632290 -2.766665
                                                    . . .
         163922 116323.0 1.996808 0.202794 -1.777271 1.035389 0.713585 -0.622029
         263759 161101.0 1.982028 0.140222 -1.794302 1.073558 0.608813 -0.823077
         88897
                  62341.0 -5.267760 2.506719 -5.290925 4.886134 -3.343188 -1.100085
                  65470.0 -0.505965 0.922689 1.633677 -0.146791 0.019813 -0.232812
         95795
         191544 129308.0 0.054682 1.856500 -4.075451 4.100098 -0.800931 -0.292502
                                 V8
                                           V9 ...
                                                          V20
                                                                    V21
         186381 \quad 0.994574 \quad -0.330142 \quad -0.425863 \quad \dots \quad 0.290174 \quad 0.285707 \quad 0.296347
         146352 -1.087410 0.180555 2.550509 ... 0.129945 0.366590 0.897864
         64449 \quad \textbf{-0.261408} \quad \textbf{0.653031} \quad \textbf{0.310543} \quad \dots \quad \textbf{-0.026782} \quad \textbf{0.052919} \quad \textbf{0.036766}
         42007 \quad -4.195342 \quad -0.598346 \quad -2.870145 \quad \dots \quad 0.077781 \quad 2.452339 \quad -0.292963
         230476 -2.312223 0.961014 -1.896001 ... 0.340898 0.647714 0.126576
                                         ... ...
         163922 \quad 0.503880 \quad -0.184656 \quad -0.239743 \quad \dots \quad -0.275135 \quad 0.089792 \quad 0.232353
         263759 \quad 0.565404 \quad -0.253044 \quad -0.182285 \quad \dots \quad -0.269483 \quad 0.078842 \quad 0.199763
         88897 \quad \text{-5.810509} \quad 1.726343 \quad \text{-0.749277} \quad \dots \quad \text{-0.286043} \quad 0.764266 \quad 0.473262
         191544 -2.317431 1.189747 -0.786238 ... 0.509559 0.618248 0.800932
                      V23
                                V24
                                          V25
                                                    V26
                                                               V27
                                                                         V28 Amount
         186381 -0.279451 0.207181 0.442862 -0.532037 -0.088852 -0.027822 257.11
         64449 -0.036683 -1.049271 0.169593 -0.358261 0.062488 0.024506
         42007 -0.189330 -0.166482 0.038040 -0.015477 0.776691 0.397557
                                                                               0.76
         230476 0.203953 0.008495 -0.174501 0.575295 0.152876 -0.098173
                               . . .
                                          . . .
                                                   . . . .
         163922 0.099326 0.665664 0.271583 -0.642894 -0.035242 -0.061398
                                                                               13.90
         30.00
                0.548482 -0.156850 -0.710187 -0.366423 -1.486766 0.677664
                                                                                1.10
         95795
                 0.021609 0.188897 -0.345413 0.072876 0.275264 0.107922
                                                                                0.89
         191544 0.130016 0.288946 -0.366658 0.030307 0.431182 0.110698
                                                                               80.90
         [738 rows x 30 columns]
In [33]: print(x_train.shape, x_test.shape)
```

(738, 30) (246, 30)

```
In [34]: model = LogisticRegression()
In [35]: model.fit(x_train, y_train)
         C:\Users\DajahV01\AppData\Local\anaconda3\Lib\site-packages\sklearn\linear model\ logistic.py:460: ConvergenceWarni
         ng: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessi
         ng.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (https://scikit-learn.org/stable/
         modules/linear_model.html#logistic-regression)
           n_iter_i = _check_optimize_result(
Out[35]:
         ▼ LogisticRegression
          LogisticRegression()
         Model evaluation
In [36]: #Testing the accuracy of the training data
         x_train_predict = model.predict(x_train)
         training_data_accuracy = accuracy_score(x_train_predict, y_train)
         print(f"The model's training data accuracy is: {round(training_data_accuracy * 100, 2)}%")
         The model's training data accuracy is: 93.5%
In [37]: #Testing the accuracy of the testing data
         x_test_predict = model.predict(x_test)
         test_data_accuracy = accuracy_score(x_test_predict, y_test)
         print(f"The model's testing data accuracy is: {round(test_data_accuracy * 100, 2)}%")
         The model's testing data accuracy is: 95.12%
In [38]: | from sklearn.metrics import accuracy_score,recall_score,precision_score,classification_report, ConfusionMatrixDispla
         ax = ConfusionMatrixDisplay.from_predictions(y_test, x_test_predict)
         plt.show()
                                                                       120
                                                                       100
                          109
             0
                                                                       80
```

