Chapter 3: Vector Spaces

Outline

Fields

Vector Space

• Example

Subspace

- Example 1
- Example 2

Fields

- So far, all numbers have been real numbers
- We can use any complex numbers also
- Field, denoted by \mathbb{F} , is a set
 - on which addition, subtraction, multiplication, division are well-defined

- ullet Examples of ${\mathbb F}$
 - \mathbb{R} (real numbers)
 - ℂ (complex numbers)
- Set of n-dimensional vectors in $\mathbb F$ is denoted by $\mathbb F^n$

Vector space

• Any set $\mathbb V$ where linear combinations on $\mathbb F$ are well-defined

- To verify if $\mathbb V$ is a vector space, check
 - 1) \mathbb{V} contains $\mathbf{0}$
 - 2) \mathbb{V} is closed under addition,

i.e., if
$$\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{V}$$
 then $\mathbf{v}_1 + \mathbf{v}_2 \in \mathbb{V}$

3) \mathbb{V} is closed under scalar multiplication

i.e., if
$$\mathbf{v} \in \mathbb{V}$$
 and $\alpha \in \mathbb{F}$, then $\alpha \mathbf{v} \in \mathbb{V}$

Closure under linear combinations

• Combining the properties, it follows that

for
$$\alpha_1, \alpha_2, \dots, \alpha_m \in \mathbb{F}$$
 and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{V}$

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_m \mathbf{v}_m \in \mathbb{V}$$

Example of Vector Spaces

- Canonical examples
 - \mathbb{R}^n (set of n dimensional vectors of real numbers) on $\mathbb{F} = \mathbb{R}$
 - $\mathbb{R}^{m \times n}$ (set of $m \times n$ matrices) on $\mathbb{F} = \mathbb{R}$
 - \mathbb{C}^n (set of n dimensional vectors of complex numbers) on $\mathbb{F} = \mathbb{C}$

• Counter example: $\mathbb N$ not a vector space over $\mathbb R$

Subspace

- The set $\mathbb{U} \subseteq \mathbb{V}$ is a subspace of \mathbb{V} if \mathbb{U} is also a vector space
- That is, $\mathbb U$ satisfies the three properties
 - 1) \mathbb{U} contains $\mathbf{0}$
 - 2) \mathbb{U} is closed under addition,

i.e., if
$$\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{U}$$
 then $\mathbf{u}_1 + \mathbf{u}_2 \in \mathbb{U}$

3) \mathbb{U} is closed under scalar multiplication

i.e., if
$$\mathbf{u}_1 \in \mathbb{U}$$
 and $\alpha \in \mathbb{F}$, then $\alpha \mathbf{u}_1 \in \mathbb{U}$

Or equivalently

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_m \mathbf{u}_m \in \mathbb{U}$$

Example 1

• Is
$$\mathbb{V}=\left\{\begin{bmatrix} z_1\\z_2\end{bmatrix}\in\mathbb{C}^2|\ z_1+iz_2=0\right\}$$
 a subspace of \mathbb{C}^2

- Contains zero vector?
 - Since 0 + i(0) = 0, therefore $\mathbf{0} \in \mathbb{V}$

 $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

- Closed under addition?
- Let $\mathbf{v} \in \mathbb{V} \Rightarrow v_1 + i(v_2) = 0$ Let $\mathbf{w} \in \mathbb{V} \Rightarrow w_1 + i(w_2) = 0$ $\Rightarrow v_1 + w_1 + i(v_2 + w_2) = 0$
- - Therefore,

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix} \in \mathbb{V}$$

Example 1 (continued)

• Is
$$\mathbb{V}=\left\{\begin{bmatrix} z_1\\z_2\end{bmatrix}\in\mathbb{C}^2|\ z_1+iz_2=0\right\}$$
 a subspace of \mathbb{C}^2

- Closed under scalar multiplication?
 - Let $\mathbf{v} \in \mathbb{V} \Rightarrow v_1 + i(v_2) = 0 \Rightarrow c(v_1 + i(v_2)) = cv_1 + i(cv_2) = 0$
 - Hence, $c\mathbf{v} \in \mathbb{V}$
- Hence, $\mathbb V$ is a subspace of $\mathbb C^2$

Example 2

- Is $\mathcal{A} = \{\mathbf{x} \in \mathbb{R}^3 \mid x_1 + x_2 = b\}$ subspace of \mathbb{R}^3 ?
- Contains zero? No, unless b = 0
- Closed under addition?
 - Let $\mathbf{v} \in \mathcal{A} \Rightarrow v_1 + v_2 = b$ • Let $\mathbf{w} \in \mathcal{A} \Rightarrow w_1 + w_2 = b$ $\Rightarrow v_1 + v_2 + w_1 + w_2 = 2b$

So,
$$\mathbf{v} + \mathbf{w} \notin \mathcal{A}$$
 unless $b = 0$

Example 2 (continued)

• Is $\mathcal{A} = \{\mathbf{x} \in \mathbb{R}^3 \mid x_1 + x_2 = b\}$ subspace of \mathbb{R}^3 ?

- Closed under scalar multiplication?
 - Let $\mathbf{v} \in \mathcal{A} \Rightarrow v_1 + v_2 = b \Rightarrow c(v_1 + v_2) = cv_1 + cv_2 = cb$
 - Hence, $c\mathbf{v} \notin \mathbb{V}$ unless b=0

- ullet So, ${\mathcal A}$ is not a subspace of ${\mathbb R}^3$ in general
 - But \mathcal{A} is a subspace of \mathbb{R}^3 if b=0

Thank You

Next: Matrices