Chương 6. Học máy

Lê Thanh Hương Bộ môn HTTT, Khoa CNTT Đai học Bách khoa Hà Nôi

1

6.1. Học

"Học đề cập đến các thay đổi của hệ thống theo hướng thích nghi: chúng cho phép hệ thống thực hiện các công việc trong cùng một môi trường hiệu quả hơn từ lần thực hiện thứ 2"

2

Các phương pháp học

- Học có giám sát: biết trước câu trả lời đúng
- Học không giám sát: không biết trước câu trả lời đúng
- Học tăng cường: đôi khi có thưởng/phạt cho các hành động

3

Những gì cần học?

- · Meo trong tìm kiếm
- · Hàm đánh giá trò chơi
- Tri thức khai báo (các mệnh đề logic)
- · Các bộ phân loại
 - Cấu trúc phân loại
 - Ngữ pháp

Học có giám sát: qui nạp

- Trường hợp tổng quát:
 - Cho tập các cặp (x, f(x)), tìm hàm f.
- · Phân loai:
 - Cho tập các cặp (x, y) với y là 1 nhãn, tìm hàm cho phép gán x với giá trị đúng của nó.
- Phân loại đơn giản:
 - Cho tập các cặp (x, y) với x là 1 đối tượng và y =
 + nếu x thuộc đúng lớp và nếu ngược lại. Tìm hàm cho phép gán nhãn chính xác.

5

Coi học như việc tìm kiếm

- Đoán hàm phù hợp với các đầu vào = xác định 1 giả thiết.
- Không gian giả thiết = tập tất cả các giả thiết có thể.
- Học là việc tìm kiếm 1 giả thiết phù hợp trong không gian giả thiết

6

Các phương pháp phân loại

- Học qui nạp
- Láng giềng gần
- Xác suất
- · Cây quyết định
- Mang noron
- Giải thuật di truyền
- ...

7

6.2. Học cây quyết định

Bài toán: quyết định có đợi 1 bàn ở quán ăn không, dựa trên các thông tin sau:

- 1. Lựa chọn khác: có quán ăn nào khác gần đó không?
- 2. Quán rượu: có khu vực phục vụ đồ uống gần đó không?
- 3. Fri/Sat: hôm nay là thứ sáu hay thứ bảy?
- 4. Đói: chúng ta đã đói chưa?
- Khách hàng: số khách trong quán (không có, vài người, đầy)
- 6. Giá cả: khoảng giá (\$,\$\$,\$\$\$)
- 7. Mưa: ngoài trời có mưa không?
- 8. Đặt chỗ: chúng ta đã đặt trước chưa?
- 9. Loại: loại quán ăn (Pháp, Ý, Thái, quán ăn nhanh)
- 10. Thời gian đơi: 0-10, 10-30, 30-60, >60

Phép biểu diễn dựa trên thuộc tính

- Các mẫu được miêu tả dưới dạng các giá trị thuộc tính (logic, rời rạc, liên tục)
- Ví dụ, tình huống khi đợi 1 bàn ăn

Example	Attributes							Target			
- and a second	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	T	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	T	F	Т	Some	\$\$	T	Т	Italian	0-10	Т
X7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	Т Т	T	Thai	0-10	Т
X_9	F	T	Т	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	Т	T	Т	T	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

• Các loại (lớp) của mẫu là khẳng định (T) hoặc phủ định (F)

Attributes Target										
471									Target	
Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
T	F	F	T	Some	\$\$\$	F	Т	French	0–10	Т
Т	F	F	T	Full	\$	F	F	Thai	30–60	F
F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
Т	F	Τ	T	Full	\$	F	F	Thai	10-30	Т
Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
F	Т	F	F	None	\$	Т	F	Burger	0-10	F
F	F	F	T	Some	\$\$	Т	Т	Thai	0-10	Т
F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
Т	Т	Т	Т	Full	\$\$\$	F	Т	ltalian	10-30	F
F	F	F	F	None	\$	F	F	Thai	0-10	F
Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Patrons, WaitEstimates, Alternative, Hungry, Rain

10

Cây quyết định

... là cách biểu diễn các giả thiết.

Không gian giả thiết

Khi có n thuộc tính Boolean, số lượng các cây quyết định là?

- = số các hàm Boolean
- = số các giá trị khác nhau trong bảng ví dụ mẫu với 2^n hàng = 2^{2^n}

Ví dụ, với 6 thuộc tính Boolean, có 18,446,744,073,709,551,616 cây

Thuật toán ID3

Mục đích: tìm cây thoả mãn tập mẫu

Ý tưởng: (lặp) chọn thuộc tính quan trọng nhất làm gốc của cây/cây con

ID3(Examples, Target_attribute, Attributes)

/* Examples: các mẫu luyện

Target_attribute: thuộc tính cần đoán giá trị
Attributes: các thuộc tính có thể được kiểm tra qua phép học cây quyết định. */

- Tạo 1 nút gốc *Root* cho cây
- If ∀ Examples +, trả về cây chỉ có 1 nút Root, với nhãn +
- If ∀ Examples -, trả về cây chỉ có 1 nút Root, với nhãn –
- If Attributes rong, trả về cây chỉ có 1 nút Root, với nhãn = giá trị thường xuất hiện nhất của Target attribute trong Examples

13

Thuật toán ID3

- · Otherwise Begin:
 - A ← thuộc tính trong Attributes cho phép phân loại tốt nhất Examples
 - Thuộc tính quyết định của nút gốc ← A
 - Với các giá trị v_i có thể có của A,
 - Thêm 1 nhánh mới dưới gốc, ứng với phép kiểm tra A = v_i
 - Đặt Examples_{vi} = tập con của Examples với giá trị thuộc tính A = v_i
 - If Examples_{vi} rõng
 - Then, dưới nhánh mới này, thêm 1 lá với nhãn = giá trị thường xuất hiện nhất của Target_attribute trong Examples
 - Else, dưới nhánh mới này thêm cây con
 ID3(Examples_{vi}, Target attribute, Attributes {A}))
- End
- Return Root

14

Thuộc tính nào tốt nhất?

Sử dụng lượng thông tin đạt được Information Gain ⇒ xác định thông qua độ đo Entropy

15

Entropy của một tập mẫu

- •S là một tập mẫu của tập luyện
- •p₊ là tỷ lệ các mẫu dương trong S
- •p_ là tỷ lệ các mẫu âm trong S

•Entropy đo độ nhiễu của $S=s \acute{o}$ các bit cần thiết để mã hoá lớp + hoặc - của các thành viên ngẫu nhiên của S

•Entropy(S) = $-p_+*log_2p_+ - p_-*log_2p_-$

Entropy

Entropy H(X) của biến ngẫu nhiên X:

$$H(X) = -\sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$$

Ví dụ, với S gồm 9 mẫu dương và 5 mẫu âm, kí hiệu S([9+,5-]).

Entropy([9+,5-])

- $= -(9/14)\log_2(9/14) (5/14)\log_2(5/14)$
- = 0.940

17

Information Gain

Gain(S, A) = độ giảm entropy do việc phân loại trong A

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values \quad (A)} \frac{|Sv|}{|S|} Entropy \quad (Sv)$$

18

Ví dụ: tập luyện

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	S:
D3	Overcast	Hot	High	Weak	Yes	Hu
D4	Rain	Mild	High	Weak	Yes	={
D5	Rain	Cool	Normal	Weak	Yes	Sh
D6	Rain	Cool	Normal	Strong	No	Sn
D7	Overcast	Cool	Normal	Strong	Yes	Wi
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	Sw
D10	Rain	Mild	Normal	Weak	Yes	Sst
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

S = [9+,5-]Humidity ={High,Normal}: $S_{high}=[3+,4-];$ $S_{normal}=[6+,1-]$ Wind ={Weak,Strong}: $S_{weak}=[6+,2-];$ $S_{strong}=[3+,3-]$

19

Thuộc tính nào phân loại tốt nhất?

Cây quyết định sử dụng khi nào?

Các bài toán với các đặc tính sau thích hợp với học cây quyết định:

- Các mẫu mô tả được bởi các cặp thuộc tính-giá trị
- · Hàm đích có giá trị rời rạc
- · Cần có các giả thiết rời rạc
- · Các dữ liệu luyện có thể có nhiễu
- Dữ liệu luyện có thể thiếu giá trị thuộc tính

Ví du:

- · Chẩn đoán y tế
- Phân tích các nguy cơ về tín dụng
- Mô hình hoá việc lập lịch

22

Đo độ chính xác

- Làm sao để biết h≈f?
- Sử dụng lý thuyết tính toán
 - Thử giả thiết h trên 1 tập các ví dụ mới (tập thử) (sử dụng cùng 1 mức độ phân bố các mẫu như tập luyện)

Learning curve = % chính xác trên tập thử, sử dụng hàm xây dựng trên tập luyện

23

6.3. Học dựa trên mẫu

Ý tưởng: lưu tất cả các mẫu luyện $\langle x_i, f(x_i) \rangle$ Láng giềng gần nhất:

• Cho mẫu hỏi x_q , trước tiên định vị mẫu luyện gần nhất x_n , sau đó đánh giá $\hat{f}(x_q) \leftarrow f(x_n)$

K láng giềng gần nhất:

- Cho x_q, quyết định dựa trên k láng giềng gần nhất (nếu hàm đích có giá tri rời rac)
- Lấy trung bình giá trị f của k láng giềng gần nhất (nếu là giá trị thực)

$$\hat{\mathbf{f}}(\mathbf{x}_{q}) \leftarrow \frac{\sum_{i=1}^{k} \mathbf{f}(\mathbf{x}_{i})}{k}$$

Phương pháp láng giềng gần

- Tổ chức dữ liệu dưới dạng bảng.
- Xây dựng ma trận cho phép tính khoảng cách giữa các cặp đối tượng.
- Khi có 1 đối tượng mới chưa có kết luận, lấy kết luận của láng giềng gần nhất gán cho nó.

25

	a1	a2	Т
S1	-2	0	В
S2	-1.5	2	В
S 3	0.4	1.8	R
S4	1.5	-1	R
S5	3	-0.2	В
S6	3.2	1.5	R
S7	4.5	2	В
S 8	4.7	-0.2	В
Sx	2	0.5	X

27

kNN

kNN

- Để định nghĩa độ tương tự giữa 2 TH, ta dùng ma trân.
- Giả sử các mẫu là các điểm trong không gian n chiều Rⁿ và dùng khoảng cách Euclidean
- Cho X_i và X_j là 2 ví dụ. Khoảng cách của chúng là

$$d^{2}(X_{i}, X_{j}) = \sum_{k} [x_{ik} - x_{jk}]^{2}$$

trong đó x_{ik} là giá trị của thuộc tính k trên ví dụ $X_{i\cdot}$

Thuật toán kNN cho các giá trị rời rạc

Thuật toán (tham số k)

- Với mỗi mẫu luyện (X, f(X)), bổ sung mẫu vào tập luyện
- Khi có mẫu mới Xq, gán lớp:
 f(Xq) = lớp của đa số các thành viên trong k láng giềng gần nhất của Xq

$$\hat{f}(Xq) = \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k \delta(v, f(Xi))$$
 với $\delta(a,b) = 1$ nếu $a = b$ và 0 nếu ngược lại

29

kNN cho các hàm giá trị thực

Thuật toán (tham số k)

- Với mỗi mẫu luyện (X, f(X)), bổ sung mẫu vào tập luyện
- 2. Khi có mẫu mới Xq, gán lớp:

f(Xq) = giá trị trung bình của k láng giềng gần nhất của Xq

$$\hat{f}(X_q) = \sum \frac{f(X_i)}{k}$$

30

Đánh trọng số khoảng cách kNN

Có thể muốn các láng giềng gần nhất có trọng số cao

$$\hat{\mathbf{f}}(\mathbf{X}_{\mathbf{q}}) = \underset{\mathbf{v} \in \mathbf{V}}{\operatorname{argmax}} \sum_{i=1}^{k} \boldsymbol{\varpi}_{i} \delta(\mathbf{v}, \mathbf{f}(\mathbf{X}_{i})) \qquad \hat{\mathbf{f}}(\mathbf{x}_{q}) \leftarrow \frac{\sum_{i=1}^{k} \boldsymbol{\omega}_{i} f(\mathbf{x}_{i})}{\sum_{i=1}^{k} \boldsymbol{\omega}_{i}}$$

trong đó

$$\varpi_i = \frac{1}{d(x_q, x_i)^2}$$

và $d(x_a, x_i)$ là khoảng cách giữa x_a và x_i

Chú ý: từ đây có thể thấy lý do dùng tất cả các mẫu luyện thay vì chỉ có k

→ phương pháp Shepard

31

Khi nào nên dùng láng giềng gần

- Các mẫu tương ứng với các điểm trong Rⁿ
- Mỗi mẫu có dưới 20 thuộc tính
- Nhiều mẫu luyện

Ưu điểm:

- Luyện rất nhanh
- Học các hàm đích phức tạp
- · Không mất thông tin

Nhược điểm:

- Chậm khi truy vấn
- Dễ bị ảnh hưởng bởi các thuộc tính không liên quan

Ảnh hưởng của số chiều

Giả thiết các mẫu được mô tả bởi 20 thuộc tính, nhưng chỉ có 2 thuộc tính liên quan đến hàm đích

Ảnh hưởng của số chiều: phương pháp kNN thường bị mất phương hướng khi X nhiều chiều

Một số giải pháp:

- Giãn chiều thứ j bởi trọng số z_j, trong đó z₁,...,z_n được chọn để tối thiểu hoá lỗi dự tính
- Sử dụng cross-validation để tự động chọn các trọng số z₁,...,z_n

33

6.4. Mạng nơron nhân tạo

nghiên cứu và mô phỏng các tiến trình xử lý song song và phân tán khổng lồ diễn ra trong bộ não con người

Các vấn đề:

- Tốc độ bộ não nhận dạng hình ảnh
- Rất nhiều nơron trong một bộ não
- Tốc đô một nơ ron truyền dữ liệu

34

Ví dụ Lái xe Luyện bộ phận điền khiển xe lái xe chính xác trên nhiều địa hình khác nhau máy tính (thuật toán học) lớp 1 sang trái lớp 2 đi thẳng

Định nghĩa

- Là một hệ thống gồm rất nhiều phần tử xử lý đơn giản hoạt động song song.
- Tính năng: phụ thuộc vào
 - cấu trúc hệ thống
 - mức độ liên kết giữa các phần tử
 - quá trình xử lý bên trong các phần tử
- Có thể học từ số liệu và tổng quát hoá từ các số liệu đó.

37

Khi nào sử dụng mạng nơron?

Mạng nơron thích hợp với những bài toán có đặc điểm sau:

- Các mẫu luyện được thể hiện bởi nhiều cặp giá trị-thuộc tính (ví du, điểm ảnh)
- · Các mẫu luyện có thể có lỗi
- · Chấp nhận thời gian huấn luyện dài
- Cần đánh giá nhanh hàm mục tiêu được học
- Không cần hiểu giả thiết cuối cùng vì NN được coi là hộp đen

Khả năng của Perceptron

- có thể học các hàm ¬, ∧, ∨, NAND, NOR
- không biểu diễn được các hàm không phân tách được bằng đường tuyến tính, vd XOR

$$\begin{array}{ccc}
1 & 0 \\
 & (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \\
0 & 1
\end{array}$$

Mọi hàm logic đều có thể biểu diễn bằng 1 mạng perceptron có ít nhất 2 tầng

41

Mạng nơron biểu diễn hàm XOR

4

Học các trọng số mạng

- · Luật perceptron:
 - dùng khi tập luyện
 - phân tách được bằng 1 đường tuyến tính
 - đủ nhỏ
- · Luât delta:

dùng khi tập luyện không phân thể tách tuyến tính

43

Luật huấn luyện Perceptron

- Khởi tạo một vector có các trọng số ngẫu nhiên
- Lặp lại hàm perceptron cho mỗi mẫu luyện đến khi hàm perceptron phân loại đúng tất cả các mẫu luyện:
 - Các trọng số được sửa đổi tại mỗi bước dựa vào luật huấn luyện perceptron:

$$w_i \leftarrow w_i + \Delta w_i$$

trong đó

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

với

- $-t = c(\vec{x})$ là hàm đích
- o là đầu ra perceptron
- $-\eta$ = tốc độ học, là hằng số nhỏ

Úng dụng của mạng nơron - Nhận dạng mặt

- Có nhiều hàm đích có thể học trong việc nhận dạng ảnh:
 - xác định người
 - hướng quay (trái, phải, thẳng, ...)
 - giới tính
 - có đeo kính hay không

49

Các lựa chọn

- 1. Mã hoá đầu vào: hình ảnh hay các đặc tính
- Mã hoá đầu ra: số lượng đầu ra, các hàm đích cho đầu ra
- 3. Cấu trúc mạng: số lượng nút mạng và liên kết giữa chúng
- 4. Các tham số thuật toán học
 - Tốc độ học
 - giá trị momentum

Ứng dụng của mạng nơron -Nhận dạng mặt

- Nhiệm vụ học: phân loại các hình ảnh camera về mặt người với nhiều góc đô khác nhau
- CSDL hình ảnh
- Các hình ảnh với 624 grayscale: 20 người, mỗi người khoảng 32 ảnh
- Nhiều cách biểu cảm (vui, buồn, giận, bình thường)
- Các hướng khác nhau (trái, phải, thẳng, hướng lên)
- Độ phân giải 120x128
- · Học hướng quay của mặt người:
 - không cần các lựa chọn tối ưu, phương pháp này cho kết quả tốt
 - sau khi luyện trên 260 hình ảnh, việc phân loại đạt độ chính xác trên tâp thử là 90%

50

Mã hoá đầu vào

- Thiết kế các lưa chon
- Tiền xử lý hình ảnh để rút ra các hướng, các vùng có mật độ giống nhau, hoặc các đặc tính hình ảnh cục bộ khác
- Khó khăn: số cạnh có thể thay đổi, trong khi NN có số lương cố đinh các đầu vào
- Các hình đã mã hoá là 1 tập cố định các giá trị mật độ 30x32 điểm ảnh (tóm tắt về độ phân giải của ảnh ban đầu), từ 0 đến 255

Mã hoá đầu ra

- Mỗi đầu ra: 4 giá trị xác định hướng mà người nhìn (trái, phải, thẳng, hướng lên)
- Mỗi đơn vị: phân loại sử dụng 1 đầu ra, gán 0.2, 0.4, 0.6 và 0.8 cho 4 giá trị
- Chọn 1 trong n đầu ra mã hoá:
 - cung cấp nhiều mức độ tự do để biểu diễn hàm đích (n lần số trọng số ở tầng ra)
 - độ khác nhau giữa giá trị cao nhất và nhì dùng để đo độ tin cậy

