

WHAT IS CLAIMED IS:

1. A liquid crystal display device comprising:
a substrate comprising a pixel electrode and a common electrode both being made of a conductive material, the common electrode being a black matrix; and
a liquid crystal held on the substrate, and driven by an electric field formed between the pixel electrode and the common electrode, the electric field having a component parallel with the substrate.
2. A device according to claim 1, wherein the pixel electrode has a width in a range of 0.1 to 2.0 μm .
3. A device according to claim 1, further comprising a thin-film transistor connected with the pixel electrode and having, as an active layer, a semiconductor layer that is separated into a base region and a floating island region.
4. A liquid crystal display device comprising:
a substrate comprising:
a first interlayer insulating film made of an organic resin material or an inorganic material;
a pixel line and a pixel electrode extending from the pixel line which are formed on the first interlayer insulating film; and
a second interlayer insulating film and a common electrode, the common electrode being a black matrix;
a liquid crystal layer held on the substrate, and driven by an electric field formed between the pixel electrode and the common electrode, the electric field having a component parallel with the substrate; and

a storage capacitor formed by at least parts of the pixel line and the black matrix which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

5. A device according to claim 4, wherein the pixel electrode has a width in a range of 0.1 to 2.0 μm .

6. A device according to claim 4, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material, and has a relative dielectric constant larger than that of the first interlayer insulating film.

7. A device according to claim 4, wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN , AlN_xO_y , Si_3N_4 , and SiO_xN_y .

8. A device according to claim 4, wherein the first interlayer insulating film has a thickness in a range of 0.1 to 5.0 μm , and wherein the second interlayer insulating film has a thickness in a range of 0.01 to 1.0 μm .

9. A device according to claim 4, further comprising a thin-film transistor connected with the pixel electrode and having, as an active layer, a semiconductor layer that is separated into a base region and a floating island region.

10. A device according to claim 4, wherein the first

P

interlayer insulating film serves as a planarization film.

11. A liquid crystal display device comprising:

a substrate comprising:

a first interlayer insulating film made of an organic resin material or an inorganic material;

a pixel line and a pixel electrode extending from the pixel line which are formed on the first interlayer insulating film; and

a second interlayer insulating film, a common electrode, and a capacitance-forming electrode, the common electrode being a black matrix;

a liquid crystal layer held on the substrate, and driven by an electric field formed between the pixel electrode and the common electrode, the electric field having a component parallel with the substrate; and

a storage capacitor formed by at least parts of the pixel line and the capacitor-forming electrode which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

12. A device according to claim 11, wherein the pixel electrode has a width in a range of 0.1 to 2.0 μm .

13. A device according to claim 11, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material, and has a relative dielectric constant larger than that of the first interlayer insulating film.

14. A device according to claim 11, wherein the second

DEPARTMENT OF COMMERCE

interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y, Si₃N₄, and SiO_xN_y.

15. A device according to claim 11, wherein the first interlayer insulating film has a thickness in a range of 0.1 to 5.0 μm , and wherein the second interlayer insulating film has a thickness in a range of 0.01 to 1.0 μm .

16. A device according to claim 11, further comprising a thin-film transistor connected with the pixel electrode and having, as an active layer, a semiconductor layer that is separated into a base region and a floating island region.

17. A device according to claim 11, wherein the first interlayer insulating film serves as a planarization film.

18. A liquid crystal display device comprising:

a first substrate comprising a pixel electrode and a common electrode both being made of a conductive material, the common electrode being a black matrix;

a second substrate opposed to the first substrate; and

a liquid crystal held between the first and second substrates, and driven by an electric field formed between the pixel electrode and the common electrode, the electric field having a component parallel with the substrates.

19. A device according to claim 18, wherein the pixel

electrode has a width in a range of 0.1 to 2.0 μm .

20. A device according to claim 18, further comprising a thin-film transistor connected with the pixel electrode and having, as an active layer, a semiconductor layer that is separated into a base region and a floating island region.

21. A liquid crystal display device comprising:

a first substrate comprising:

a first interlayer insulating film made of an organic resin material or an inorganic material;

a pixel line and a pixel electrode extending from the pixel line which are formed on the first interlayer insulating film; and

a second interlayer insulating film and a common electrode, the common electrode being a black matrix;

a second substrate opposed to the first substrate;

a liquid crystal layer held between the first and second substrates, and driven by an electric field formed between the pixel electrode and the common electrode, the electric field having a component parallel with the substrates; and

a storage capacitor formed by at least parts of the pixel line and the black matrix which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

22. A device according to claim 21, wherein the pixel electrode has a width in a range of 0.1 to 2.0 μm .

23. A device according to claim 21, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material, and has a relative dielectric constant larger than that of the first interlayer insulating film.

24. A device according to claim 21, wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

25. A device according to claim 21, wherein the first interlayer insulating film has a thickness in a range of 0.1 to 5.0 μm , and wherein the second interlayer insulating film has a thickness in a range of 0.01 to 1.0 μm .

26. A device according to claim 21, further comprising a thin-film transistor connected with the pixel electrode and having, as an active layer, a semiconductor layer that is separated into a base region and a floating island region.

27. A device according to claim 21, wherein the first interlayer insulating film serves as a planarization film.

28. A liquid crystal display device comprising:
a first substrate comprising:
a first interlayer insulating film made of an organic resin material or an inorganic material;
a pixel line and a pixel electrode extending from the pixel line which are formed on the first interlayer

insulating film; and

a second interlayer insulating film, a common electrode, and a capacitance-forming electrode, the common electrode being a black matrix;

a second substrate opposed to the first substrate;

a liquid crystal layer held between the first and second substrates, and driven by an electric field formed between the pixel electrode and the common electrode, the electric field having a component parallel with the substrates; and

a storage capacitor formed by at least parts of the pixel line and the capacitor-forming electrode which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

29. A device according to claim 28, wherein the pixel electrode has a width in a range of 0.1 to 2.0 μm .

30. A device according to claim 28, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material, and has a relative dielectric constant larger than that of the first interlayer insulating film.

31. A device according to claim 28, wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

32. A device according to claim 28, wherein the first interlayer insulating film has a thickness in a range of 0.1 to 5.0 μm , and wherein the second interlayer insulating film has a thickness in a range of 0.01 to 1.0 μm .

33. A device according to claim 28, further comprising a thin-film transistor connected with the pixel electrode and having, as an active layer, a semiconductor layer that is separated into a base region and a floating island region.

34. A device according to claim 28, wherein the first interlayer insulating film serves as a planarization film.

35. A liquid crystal display device comprising:
an active matrix substrate comprising:
gate lines and data lines arranged in matrix form on the same active matrix substrate;
thin-film transistors formed at respective intersections of the gate lines and the data lines;
pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and
a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix; and
a liquid crystal layer held on the active matrix substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate.

36. A device according to claim 35, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

37. A device according to claim 35, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

38. A device according to claim 35, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

39. A liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines;

a first interlayer insulating film and a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix;

a liquid crystal layer held on the active matrix substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate; and

DETAILED DESCRIPTION

storage capacitors each formed by at least parts of the pixel line and the black matrix which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

40. A device according to claim 39, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

41. A device according to claim 39, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

42. A device according to claim 39, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

43. A device according to claim 39, wherein the first interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the second interlayer insulating film has a relative dielectric constant larger than that of the first interlayer insulating film.

44. A device according to claim 39 wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

45. A device according to claim 39, wherein the first interlayer insulating film serves as a planarization film.

46. A liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines;

a first interlayer insulating film and a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines;

a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix; and

capacitor-forming electrodes formed in a layer different than the pixel lines and the pixel electrodes;

a liquid crystal layer held on the active matrix substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate; and

storage capacitors each formed by at least parts of the pixel line and the capacitor-forming electrode which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

47. A device according to claim 46, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

48. A device according to claim 46, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

49. A device according to claim 46, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

50. A device according to claim 46, wherein the first interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the second interlayer insulating film has a relative dielectric constant larger than that of the first interlayer insulating film.

51. A device according to claim 46 wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

52. A device according to claim 46, wherein the first interlayer insulating film serves as a planarization film.

53. A liquid crystal display device comprising:

DE200200330

an active matrix substrate comprising:
gate lines and data lines arranged in matrix
form on the same active matrix substrate;

thin-film transistors formed at respective
intersections of the gate lines and the data lines, and each
having, as an active layer, a crystalline silicon film;

pixel lines connected to the respective thin-
film transistors and pixel electrodes extending from the
respective pixel lines; and

a common electrode at least partially opposed to
each of the pixel electrodes, the common electrode being a
black matrix; and

a liquid crystal layer held on the active matrix
substrate, and driven by an electric field formed between each
of the pixel electrodes and the common electrode, the electric
field having a component parallel with the active matrix
substrate.

54. A device according to claim 53, wherein the pixel
electrodes have a width in a range of 0.1 to 2.0 μm .

55. A device according to claim 53, wherein the black matrix
serves as a grounding plane with respect to the gate lines,
the data lines, and other wiring lines.

56. A device according to claim 53, wherein a semiconductor
layer as an active layer of each of the thin-film transistors
is separated into a base region and a floating island region.

57. A device according to claim 53, wherein the thin-film
transistors each having the crystalline silicon film as the

active layer have a field-effect mobility that is not less than 20 cm²/V.s in the case of an n-channel type and not less than 10 cm²/V.s in the case of a p-channel type.

58. A liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

a first interlayer insulating film and a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix;

a liquid crystal layer held on the active matrix substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate; and

storage capacitors each formed by at least parts of the pixel line and the black matrix which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

59. A device according to claim 58, wherein the pixel

electrodes have a width in a range of 0.1 to 2.0 μm .

60. A device according to claim 58, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

61. A device according to claim 58, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

62. A device according to claim 58, wherein the thin-film transistors each having the crystalline silicon film as the active layer have a field-effect mobility that is not less than $20 \text{ cm}^2/\text{V.s}$ in the case of an n-channel type and not less than $10 \text{ cm}^2/\text{V.s}$ in the case of a p-channel type.

63. A device according to claim 58, wherein the first interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to $5.0 \mu\text{m}$, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to $1.0 \mu\text{m}$, and wherein the second interlayer insulating film has a relative dielectric constant larger than that of the first interlayer insulating film.

64. A device according to claim 58 wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

65. A device according to claim 58, wherein the first interlayer insulating film serves as a planarization film.

66. A liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

a first interlayer insulating film and a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines;

a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix; and

capacitor-forming electrodes formed in a layer different than the pixel lines and the pixel electrodes;

a liquid crystal layer held on the active matrix substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate; and

storage capacitors each formed by at least parts of the pixel line and the capacitor-forming electrode which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

67. A device according to claim 66, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

68. A device according to claim 66, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

69. A device according to claim 66, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

70. A device according to claim 66, wherein the thin-film transistors each having the crystalline silicon film as the active layer have a field-effect mobility that is not less than $20 \text{ cm}^2/\text{V.s}$ in the case of an n-channel type and not less than $10 \text{ cm}^2/\text{V.s}$ in the case of a p-channel type.

71. A device according to claim 66, wherein the first interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the second interlayer insulating film has a relative dielectric constant larger than that of the first interlayer insulating film.

72. A device according to claim 66 wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y ,

Si₃N₄, and SiO_xN_y.

73. A device according to claim 66, wherein the first interlayer insulating film serves as a planarization film.

74. A liquid crystal display device comprising:

- an active matrix substrate comprising:
 - gate lines and data lines arranged in matrix form on the same active matrix substrate;
 - thin-film transistors formed at respective intersections of the gate lines and the data lines;
 - pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and
 - a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix;
- an opposed substrate that is opposed to the active matrix substrate; and
- a liquid crystal layer held between the active matrix substrate and the opposed substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the substrates.

75. A device according to claim 74, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

76. A device according to claim 74, wherein the black matrix serves as a grounding plane with respect to the gate lines,

the data lines, and other wiring lines.

77. A device according to claim 74, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

78. A liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines;

a first interlayer insulating film and a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix;

an opposed substrate that is opposed to the active matrix substrate;

a liquid crystal layer held between the active matrix substrate and the opposed substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the substrates; and

storage capacitors each formed by at least parts of the pixel line and the black matrix which parts coextend on the first interlayer insulating film with the second

interlayer insulating film interposed in between.

79. A device according to claim 78, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

80. A device according to claim 78, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

81. A device according to claim 78, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

82. A device according to claim 78, wherein the first interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the second interlayer insulating film has a relative dielectric constant larger than that of the first interlayer insulating film.

83. A device according to claim 78 wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN , AlN_xO_y , Si_3N_4 , and SiO_xN_y .

84. A device according to claim 78, wherein the first interlayer insulating film serves as a planarization film.

1000
999
998
997
996
995
994
993
992
991
990
989
988
987
986
985
984
983
982
981
980
979
978
977
976
975
974
973
972
971
970
969
968
967
966
965
964
963
962
961
960
959
958
957
956
955
954
953
952
951
950
949
948
947
946
945
944
943
942
941
940
939
938
937
936
935
934
933
932
931
930
929
928
927
926
925
924
923
922
921
920
919
918
917
916
915
914
913
912
911
910
909
908
907
906
905
904
903
902
901
900
899
898
897
896
895
894
893
892
891
890
889
888
887
886
885
884
883
882
881
880
879
878
877
876
875
874
873
872
871
870
869
868
867
866
865
864
863
862
861
860
859
858
857
856
855
854
853
852
851
850
849
848
847
846
845
844
843
842
841
840
839
838
837
836
835
834
833
832
831
830
829
828
827
826
825
824
823
822
821
820
819
818
817
816
815
814
813
812
811
810
809
808
807
806
805
804
803
802
801
800
799
798
797
796
795
794
793
792
791
790
789
788
787
786
785
784
783
782
781
780
779
778
777
776
775
774
773
772
771
770
769
768
767
766
765
764
763
762
761
760
759
758
757
756
755
754
753
752
751
750
749
748
747
746
745
744
743
742
741
740
739
738
737
736
735
734
733
732
731
730
729
728
727
726
725
724
723
722
721
720
719
718
717
716
715
714
713
712
711
710
709
708
707
706
705
704
703
702
701
700
699
698
697
696
695
694
693
692
691
690
689
688
687
686
685
684
683
682
681
680
679
678
677
676
675
674
673
672
671
670
669
668
667
666
665
664
663
662
661
660
659
658
657
656
655
654
653
652
651
650
649
648
647
646
645
644
643
642
641
640
639
638
637
636
635
634
633
632
631
630
629
628
627
626
625
624
623
622
621
620
619
618
617
616
615
614
613
612
611
610
609
608
607
606
605
604
603
602
601
600
599
598
597
596
595
594
593
592
591
590
589
588
587
586
585
584
583
582
581
580
579
578
577
576
575
574
573
572
571
570
569
568
567
566
565
564
563
562
561
560
559
558
557
556
555
554
553
552
551
550
549
548
547
546
545
544
543
542
541
540
539
538
537
536
535
534
533
532
531
530
529
528
527
526
525
524
523
522
521
520
519
518
517
516
515
514
513
512
511
510
509
508
507
506
505
504
503
502
501
500
499
498
497
496
495
494
493
492
491
490
489
488
487
486
485
484
483
482
481
480
479
478
477
476
475
474
473
472
471
470
469
468
467
466
465
464
463
462
461
460
459
458
457
456
455
454
453
452
451
450
449
448
447
446
445
444
443
442
441
440
439
438
437
436
435
434
433
432
431
430
429
428
427
426
425
424
423
422
421
420
419
418
417
416
415
414
413
412
411
410
409
408
407
406
405
404
403
402
401
400
399
398
397
396
395
394
393
392
391
390
389
388
387
386
385
384
383
382
381
380
379
378
377
376
375
374
373
372
371
370
369
368
367
366
365
364
363
362
361
360
359
358
357
356
355
354
353
352
351
350
349
348
347
346
345
344
343
342
341
340
339
338
337
336
335
334
333
332
331
330
329
328
327
326
325
324
323
322
321
320
319
318
317
316
315
314
313
312
311
310
309
308
307
306
305
304
303
302
301
300
299
298
297
296
295
294
293
292
291
290
289
288
287
286
285
284
283
282
281
280
279
278
277
276
275
274
273
272
271
270
269
268
267
266
265
264
263
262
261
260
259
258
257
256
255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
240
239
238
237
236
235
234
233
232
231
230
229
228
227
226
225
224
223
222
221
220
219
218
217
216
215
214
213
212
211
210
209
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

86. A device according to claim 85, wherein the pixel

electrodes have a width in a range of 0.1 to 2.0 μm .

87. A device according to claim 85, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

88. A device according to claim 85, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

89. A device according to claim 85, wherein the first interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the second interlayer insulating film has a relative dielectric constant larger than that of the first interlayer insulating film.

90. A device according to claim 85 wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN , AlN_xO_y , Si_3N_4 , and SiO_xN_y .

91. A device according to claim 85, wherein the first interlayer insulating film serves as a planarization film.

92. A liquid crystal display device comprising:
an active matrix substrate comprising:

DETAILED DESCRIPTION

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix;

an opposed substrate that is opposed to the active matrix substrate; and

a liquid crystal layer held between the active matrix substrate and the opposed substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the substrates.

93. A device according to claim 92, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

94. A device according to claim 92, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

95. A device according to claim 92, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

96. A device according to claim 92, wherein the thin-film

transistors each having the crystalline silicon film as the active layer have a field-effect mobility that is not less than 20 cm²/V.s in the case of an n-channel type and not less than 10 cm²/V.s in the case of a p-channel type.

97. A liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

a first interlayer insulating film and a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix;

an opposed substrate that is opposed to the active matrix substrate;

a liquid crystal layer held between the active matrix substrate and the opposed substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the substrates; and

storage capacitors each formed by at least parts of the pixel line and the black matrix which parts coextend on the first interlayer insulating film with the second

interlayer insulating film interposed in between.

98. A device according to claim 97, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

99. A device according to claim 97, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

100. A device according to claim 97, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

101. A device according to claim 97, wherein the thin-film transistors each having the crystalline silicon film as the active layer have a field-effect mobility that is not less than $20 \text{ cm}^2/\text{V.s}$ in the case of an n-channel type and not less than $10 \text{ cm}^2/\text{V.s}$ in the case of a p-channel type.

102. A device according to claim 97, wherein the first interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the second interlayer insulating film has a relative dielectric constant larger than that of the first interlayer insulating film.

103. A device according to claim 97 wherein the second interlayer insulating film is made of one or a plurality of

materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

104. A device according to claim 97, wherein the first interlayer insulating film serves as a planarization film.

105. A liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

a first interlayer insulating film and a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines;

a common electrode at least partially opposed to each of the pixel electrodes, the common electrode being a black matrix; and

capacitor-forming electrodes formed in a layer different than the pixel lines and the pixel electrodes;

an opposed substrate that is opposed to the active matrix substrate;

a liquid crystal layer held between the active matrix substrate and the opposed substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component

parallel with the substrates; and

storage capacitors each formed by at least parts of the pixel line and the capacitor-forming electrode which parts coextend on the first interlayer insulating film with the second interlayer insulating film interposed in between.

106. A device according to claim 105, wherein the pixel electrodes have a width in a range of 0.1 to 2.0 μm .

107. A device according to claim 105, wherein the black matrix serves as a grounding plane with respect to the gate lines, the data lines, and other wiring lines.

108. A device according to claim 105, wherein a semiconductor layer as an active layer of each of the thin-film transistors is separated into a base region and a floating island region.

109.. A device according to claim 105, wherein the thin-film transistors each having the crystalline silicon film as the active layer have a field-effect mobility that is not less than $20 \text{ cm}^2/\text{V.s}$ in the case of an n-channel type and not less than $10 \text{ cm}^2/\text{V.s}$ in the case of a p-channel type.

110. A device according to claim 105, wherein the first interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the second interlayer insulating film has a relative dielectric constant larger than that of the first

interlayer insulating film.

111. A device according to claim 105 wherein the second interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

112. A device according to claim 105, wherein the first interlayer insulating film serves as a planarization film.

113. A manufacturing method of a liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes; and

a liquid crystal layer held on the active matrix substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate, said manufacturing method comprising the steps of:

DETAILED DESCRIPTION

forming a first interlayer insulating film that covers the gate lines and a second interlayer insulating film made of an organic resin material and/or an inorganic material so as to cover the data lines;

forming a black matrix on the second interlayer insulating film;

forming a third interlayer insulating film so as to cover the black matrix;

forming contact holes through the second and third interlayer insulating films; and

forming, on the third interlayer insulating film, pixel lines and pixel electrodes extending from the respective pixel lines,

wherein each of storage capacitors is formed by at least parts of the pixel line and the black matrix which parts coextend on the second interlayer insulating film with the third interlayer insulating film interposed in between.

114. A method according to claim 113, wherein the contact holes forming step comprises the substeps of:

forming openings by portions of the third interlayer insulating film by etching; and

forming openings by removing portions of the second interlayer insulating film which are exposed as bottoms of the openings of the third interlayer insulating film by etching with the third interlayer insulating film used as a mask.

115. A method according to claim 113, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the third interlayer

insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the third interlayer insulating film has a relative dielectric constant larger than that of the second interlayer insulating film.

116. A method according to claim 113, wherein the third interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

117. A method according to claim 113, wherein the second interlayer insulating film serves as a planarization film.

118. A method according to claim 113, wherein the crystalline silicon film as the active layer of each of the thin-film transistors is separated into a base region and a floating island region.

119. A manufacturing method of a liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-

film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes; and

a liquid crystal layer held on the active matrix substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate, said manufacturing method comprising the steps of:

forming a first interlayer insulating film that covers the gate lines and a second interlayer insulating film made of an organic resin material and/or an inorganic material so as to cover the data lines;

forming contact holes through the second interlayer insulating film;

forming, on the second interlayer insulating film, pixel lines and pixel electrodes extending from the respective pixel lines;

forming a third interlayer insulating film so as to cover the pixel lines and the pixel electrodes; and

forming a black matrix on the third interlayer insulating film,

wherein each of storage capacitors is formed by at least parts of the pixel line and the black matrix which parts coextend on the second interlayer insulating film with the third interlayer insulating film interposed in between.

120. A method according to claim 119, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the third interlayer

insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the third interlayer insulating film has a relative dielectric constant larger than that of the second interlayer insulating film.

121. A method according to claim 119, wherein the third interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

122. A method according to claim 119, wherein the second interlayer insulating film serves as a planarization film.

123. A method according to claim 119, wherein the crystalline silicon film as the active layer of each of the thin-film transistors is separated into a base region and a floating island region.

124. A manufacturing method of a liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-

film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes;

an opposed substrate that is opposed to the active matrix substrate; and

a liquid crystal layer held between the active matrix substrate and the opposed substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate, said manufacturing method comprising the steps of:

forming a first interlayer insulating film that covers the gate lines and a second interlayer insulating film made of an organic resin material and/or an inorganic material so as to cover the data lines;

forming a black matrix on the second interlayer insulating film;

forming a third interlayer insulating film so as to cover the black matrix;

forming contact holes through the second and third interlayer insulating films; and

forming, on the third interlayer insulating film, pixel lines and pixel electrodes extending from the respective pixel lines,

wherein each of storage capacitors is formed by at least parts of the pixel line and the black matrix which parts coextend on the second interlayer insulating film with the third interlayer insulating film interposed in between.

125. A method according to claim 124, wherein the contact

holes forming step comprises the substeps of:

forming openings by portions of the third interlayer insulating film by etching; and

forming openings by removing portions of the second interlayer insulating film which are exposed as bottoms of the openings of the third interlayer insulating film by etching with the third interlayer insulating film used as a mask.

126. A method according to claim 124, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the third interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the third interlayer insulating film has a relative dielectric constant larger than that of the second interlayer insulating film.

127. A method according to claim 124, wherein the third interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN, AlN_xO_y , Si_3N_4 , and SiO_xN_y .

128. A method according to claim 124, wherein the second interlayer insulating film serves as a planarization film.

129. A method according to claim 124, wherein the crystalline silicon film as the active layer of each of the thin-film transistors is separated into a base region and a floating island region.

130. A manufacturing method of a liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines, and each having, as an active layer, a crystalline silicon film;

a second interlayer insulating film formed above the thin-film transistors;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines; and

a common electrode at least partially opposed to each of the pixel electrodes;

an opposed substrate that is opposed to the active matrix substrate; and

a liquid crystal layer held between the active matrix substrate and the opposed substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate, said manufacturing method comprising the steps of:

forming a first interlayer insulating film that covers the gate lines and a second interlayer insulating film made of an organic resin material and/or an inorganic material so as to cover the data lines;

forming contact holes through the second interlayer insulating film;

forming, on the second interlayer insulating

film, pixel lines and pixel electrodes extending from the respective pixel lines;

forming a third interlayer insulating film so as to cover the pixel lines and the pixel electrodes; and

forming a black matrix on the third interlayer insulating film,

wherein each of storage capacitors is formed by at least parts of the pixel line and the black matrix which parts coextend on the second interlayer insulating film with the third interlayer insulating film interposed in between.

131. A method according to claim 130, wherein the second interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.1 to 5.0 μm , wherein the third interlayer insulating film is made of an organic resin material and/or an inorganic material and has a thickness in a range of 0.01 to 1.0 μm , and wherein the third interlayer insulating film has a relative dielectric constant larger than that of the second interlayer insulating film.

132. A method according to claim 130, wherein the third interlayer insulating film is made of one or a plurality of materials selected from the group consisting of AlN , AlN_xO_y , Si_3N_4 , and SiO_xN_y .

133. A method according to claim 130, wherein the second interlayer insulating film serves as a planarization film.

134. A method according to claim 130, wherein the crystalline

[Redacted]

silicon film as the active layer of each of the thin-film transistors is separated into a base region and a floating island region.

135. A liquid crystal display device comprising:

 a substrate comprising:

 pixel lines and pixel electrodes extending from the respective pixel lines; and

 a common electrode formed in a layer different than the pixel lines and the pixel electrodes with an interlayer insulating film interposed in between, the common electrode being a black matrix; and

 a liquid crystal layer held on the substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the substrate; and

 storage capacitors each formed by at least parts of the pixel line and the black matrix which parts coextend with the interlayer insulating film interposed in between.

136. A liquid crystal display device comprising:

 a substrate comprising:

 pixel lines and pixel electrodes extending from the respective pixel lines;

 capacitor-forming electrodes formed in a layer different than the pixel lines and the pixel electrodes with an interlayer insulating film interposed in between; and

 a common electrode, the common electrode being a black matrix;

 a liquid crystal layer held on the substrate, and driven by an electric field formed between each of the

pixel electrodes and the common electrode, the electric field having a component parallel with the substrate; and

storage capacitors each formed by at least parts of the pixel line and the capacitor-forming electrode which parts coextend with the interlayer insulating film interposed in between.

137. A liquid crystal display device comprising:

an active matrix substrate comprising:

gate lines and data lines arranged in matrix form on the same active matrix substrate;

thin-film transistors formed at respective intersections of the gate lines and the data lines;

pixel lines connected to the respective thin-film transistors and pixel electrodes extending from the respective pixel lines;

a common electrode, the common electrode being a black matrix; and

capacitor-forming electrodes;

a liquid crystal layer held on the active matrix substrate, and driven by an electric field formed between each of the pixel electrodes and the common electrode, the electric field having a component parallel with the active matrix substrate; and

storage capacitors each formed by at least parts of the capacitor-forming electrode and another conductive film which parts coextend with an insulating film interposed in between.

A handwritten mark consisting of a stylized 'A' and 'B' intertwined, with a curved line extending from the bottom of the 'B'.