

MODELING WITH DATA IN THE TIDYVERSE

Explaining teaching score with age

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Refresher: Exploratory data visualization

Regression line

```
# Code to create scatterplot
ggplot(evals, aes(x = age, y = score)) +
    geom_point() +
    labs(x = "age", y = "score", title = "Teaching score over age")

# Add a "best-fitting" line
ggplot(evals, aes(x = age, y = score)) +
    geom_point() +
    labs(x = "age", y = "score", title = "Teaching score over age") +
    geom_smooth(method = "lm", se = FALSE)
```


Regression line

Refresher: Modeling in general

- Truth: Assumed model is $y = f(\vec{x}) + \epsilon$
- **Goal**: Given y and \vec{x} , fit a model $\hat{f}(\vec{x})$ that approximates $f(\vec{x})$, where $\hat{y} = \hat{f}(\vec{x})$ is the *fitted/predicted* value for the *observed* value y

Modeling with basic linear regression

• Truth:

- Assume $f(x) = \beta_0 + \beta_1 \cdot x$
- Observed value $y = f(x) + \epsilon = \beta_0 + \beta_1 \cdot x + \epsilon$

• Fitted:

- Assume $\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$
- Fitted/predicted value $\hat{y} = \hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$

Back to regression line

Equation for fitted blue regression line: $\hat{y} = \hat{f}\left(\vec{x}\right) = \hat{eta}_0 + \hat{eta}_1 \cdot x$

Computing slope and intercept of regression line

Using the formula form y ~ x:

```
# Fit regression model using formula of form: y ~ x
model_score_1 <- lm(score ~ age, data = evals)

# Output contents
model_score_1

Call:
lm(formula = score ~ age, data = evals)

Coefficients:
(Intercept) age
4.461932 -0.005938</pre>
```


Computing slope and intercept of regression line

Using the formula form $\mathbf{y} \sim \mathbf{x}$, which is akin to $\hat{y} = \hat{f}(\vec{x})$

```
# Fit regression model using formula of form: y ~ x
model score 1 <- lm(score ~ age, data = evals)
# Output regression table using wrapper function:
get regression table (model score 1)
# A tibble: 2 x 7
         estimate std_error statistic p_value lower ci upper ci
 term
                                          <db1>
 <chr> <dbl>
                 <dbl>
1 intercept 4.46 0.127 35.2
                                     4.21
                                               4.71
     -0.006
                 0.003 -2.31 0.021 -0.011 -0.001
2 age
```


Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Predicting teaching score using age

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Refresher: Regression line

New instructor prediction

Refresher: Regression table

Predicted value

- Predictive regression models in general: $\hat{y} = \hat{f}(x) = \hat{eta}_0 + \hat{eta}_1 \cdot x$
- Our predictive model: $score = 4.46 0.006 \cdot age$
- Our prediction: $4.46 0.006 \cdot 40 = 4.22$

Prediction error

Prediction error

Residuals as model errors

- Residual = $y \hat{y}$
- Corresponds to ϵ from $y = f(\vec{x}) + \epsilon$
- For our example instructor: $y \hat{y} = 3.5 4.22 = -0.72$
- In linear regression, they are on average 0.

Computing all predicted values

```
# Fit regression model using formula of form: y ~ x
model score 1 <- lm(score ~ age, data = evals)</pre>
# Get information on each point
get regression points(model score 1)
# A tibble: 463 x 5
               age score hat residual
     ID score
  <int> <dbl> <dbl>
                       <dbl>
                               <dbl>
          4.7
                     4.25
                36
                             0.452
        4.1
               36
                    4.25
                             -0.148
      3 3.9
              36
                    4.25
                             -0.348
      4 4.8
              36
                    4.25
                             0.552
      564.64.3
              59
                    4.11
                             0.488
                    4.11
              59
                             0.188
      7 2.8
                59
                      4.11
                             -1.31
      8 4.1
                       4.16
                             -0.059
        3.4
                51
                       4.16
                             -0.759
10
     10
          4.5
                40
                        4.22
                               0.276
     with 453 more rows
```


"Best fitting" regression line

Let's practice!

Explaining teaching score with gender

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Exploratory data visualization

```
library(ggplot2)
library(dplyr)
library(moderndive)

ggplot(evals, aes(x = gender, y = score)) +
    geom_boxplot() +
    labs(x = "score", y = "count")
```


Boxplot of score over gender

Facetted histogram

```
library(ggplot2)
library(dplyr)
library(moderndive)

ggplot(evals, aes(x = score)) +
   geom_histogram(binwidth = 0.25) +
   facet_wrap(~gender) +
   labs(x = "score", y = "count")
```


Facetted histogram

Fitting a regression model

```
# Fit regression model
model score 3 <- lm(score ~ gender, data = evals)</pre>
# Get regression table
get regression table (model score 3)
# A tibble: 2 x 7
 term estimate std error statistic p value lower ci upper ci
 <dbl>
1 intercept 4.09 0.039 106. 0 4.02 4.17
2 gendermale 0.142 0.051 2.78 0.006 0.042 0.241
# Compute group means based on gender
evals %>%
 group by (gender) %>%
 summarize(avg score = mean(score))
# A tibble: 2 x 2
 gender avg_score
 <fct> <dbl>
1 female 4.09
2 male 4.23
```


A different categorical explanatory variable: rank

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Predicting teaching score using gender

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Group means as predictions

Computing all predicted values and residuals

```
# Fit regression model:
model score 3 <- lm(score ~ gender, data = evals)</pre>
# Get information on each point
get regression points (model score 3)
# A tibble: 463 x 5
    ID score gender score hat residual
  <dbl>
                 4.09
                         0.607
       4.7 female
     2 4.1 female 4.09 0.007
    3 3.9 female 4.09 -0.193
                  4.09 0.707
    4 4.8 female
     5 4.6 male 4.23 0.366
     6 4.3 male 4.23 0.066
     7 2.8 male 4.23 -1.43
     8 4.1 male 4.23 -0.134
     9 3.4 male 4.23
                           -0.834
10
       4.5 female
                     4.09
                           0.407
    with 453 more rows
```


Histogram of residuals

```
# Fit regression model
model_score_3 <- lm(score ~ gender, data = evals)

# Get regression points
model_score_3_points <- get_regression_points(model_score_3)
model_score_3_points

# Plot residuals
ggplot(model_score_3_points, aes(x = residual)) +
    geom_histogram() +
    labs(x = "residuals", title = "Residuals from score ~ gender model")</pre>
```


Histogram of residuals

Let's practice!