Introduction à l'électroacoustique

A. Arciniegas

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Plan du cours

- Avant propos
- Premier exemple : l'oreille
- Rappels : outils mathématiques
- Caractéristiques de la chaîne électroacoustique

Pré-requis

- Utiliser les concepts du traitement du signal pour l'étude des grandeurs électriques ;
- Utiliser les concepts fondamentaux de physique (mécanique et électricité).

Pré-requis

- Utiliser les concepts du traitement du signal pour l'étude des grandeurs électriques ;
- Utiliser les concepts fondamentaux de physique (mécanique et électricité).

Contenu et objectifs

- Connaître les grandeurs associées aux systèmes électroacoustiques ;
- Étudier la transduction mécano-électrique dans le cas d'un microphone;
- Étudier la transduction électro-mécanique dans le cas d'un haut-parleur.

Pré-requis

- Utiliser les concepts du traitement du signal pour l'étude des grandeurs électriques ;
- Utiliser les concepts fondamentaux de physique (mécanique et électricité).

Contenu et objectifs

- Connaître les grandeurs associées aux systèmes électroacoustiques ;
- Étudier la transduction mécano-électrique dans le cas d'un microphone;
- Étudier la transduction électro-mécanique dans le cas d'un haut-parleur.

Déroulement

- 3 séances de TD en lien avec la SAÉ ESE du S3.
- Évaluation en fin du semestre (comprise dans l'examen de physique spécialisée).

Transducteur

Système qui transforme l'énergie reçue sous une forme donnée (par exemple : mécanique, thermique, lumineuse) en énergie utilisable sous une forme différente (par exemple : acoustique, électrique).

Transducteur électroacoustique

Système qui transforme une énergie acoustique (onde sonore) en énergie électrique (signal).

Transducteur linéaire

Système qui pour une fréquence donnée, la grandeur de sortie est proportionnelle à celle d'entrée.

Transducteur linéaire

Système qui pour une fréquence donnée, la grandeur de sortie est proportionnelle à celle d'entrée.

Exemples:

p: pression acoustique en (Pa)

u: tension électrique en (V)

Transducteur linéaire

Système qui pour une fréquence donnée, la grandeur de sortie est proportionnelle à celle d'entrée.

Exemples:

p: pression acoustique en (Pa)

u: tension électrique en (V)

Transducteur réversible

Système que, si alimenté par une source électrique, il est capable de fournir une énergie acoustique.

Transducteur réciproque

Système que si, lors de son fonctionnement réversible, il constitue une source de débit D (m³.s-¹) proportionnelle au courant d'excitation i (A) tel que :

Transducteur réciproque

Système que si, lors de son fonctionnement réversible, il constitue une source de débit D (m³.s-¹) proportionnelle au courant d'excitation i (A) tel que :

$$\frac{D}{i} = \frac{u}{p}$$

Premier exemple de capteur électroacoustique : l'oreille

Schéma général de l'oreille (Crédit : Cochlea.eu).

 L'oreille est le siège d'une captation de la pression acoustique (stimulus), transformée en influx nerveux au cerveau (perception).

Schéma général de l'oreille (Crédit : Cochlea.eu).

- L'oreille est le siège d'une captation de la pression acoustique (stimulus), transformée en influx nerveux au cerveau (perception).

Schéma général de l'oreille (Crédit : Cochlea.eu).

- L'oreille est le siège d'une captation de la pression acoustique (stimulus), transformée en influx nerveux au cerveau (perception).
- Le stimulus résulte de la transmission d'une perturbation acoustique vers le tympan, → transduction acousto-mécanique.
- L'information est transmise via les osselets de l'oreille moyenne à l'oreille interne.

Schéma général de l'oreille (Crédit : Cochlea.eu).

- L'oreille est le siège d'une captation de la pression acoustique (stimulus), transformée en influx nerveux au cerveau (perception).
- \bullet Le stimulus résulte de la transmission d'une perturbation acoustique vers le tympan, \to transduction acousto-mécanique.
- L'information est transmise via les osselets de l'oreille moyenne à l'oreille interne.

Schéma général de l'oreille (Crédit : Cochlea.eu).

Fonctionnement général

 Oreille externe: captation de l'éxterieur (pavillon, conque, conduit) et canalisation vers l'oreille moyenne.

Schéma général de l'oreille (Crédit : Cochlea.eu).

Fonctionnement général

- Oreille externe: captation de l'éxterieur (pavillon, conque, conduit) et canalisation vers l'oreille moyenne.
- Oreille moyenne: utilisation en tant que membrane (tympan) et système d'adaptation (osselets).

Schéma général de l'oreille (Crédit : Cochlea.eu).

Fonctionnement général

- Oreille externe: captation de l'éxterieur (pavillon, conque, conduit) et canalisation vers l'oreille moyenne.
- Oreille moyenne: utilisation en tant que membrane (tympan) et système d'adaptation (osselets).
- Oreille interne: transformation en information électrique (cochlée).

Schéma général de l'oreille (Crédit : Cochlea.eu).

Conclusion: audition humaine = phénomène acoustique → mécanique → électrique

Schéma général de l'oreille (Crédit: Cochlea.eu).

Conclusion: audition humaine = phénomène acoustique -> mécanique -> électrique

Attention: la sensibilité de l'audition dépend de la fréquence...(de l'âge)

Outils mathématiques

Définition

L'expression analytique d'un signal sinusoïdal est donnée par :

$$s(t) = Acos(\omega t + \varphi)$$

Définition

L'expression analytique d'un signal sinusoïdal est donnée par :

$$s(t) = Acos(\omega t + \varphi)$$

avec:

A : amplitude maximale ou valeur crête ;

Définition

L'expression analytique d'un signal sinusoïdal est donnée par :

$$s(t) = A\cos(\omega t + \varphi)$$

avec:

- A: amplitude maximale ou valeur crête;
- ω : pulsation (rad.s⁻¹), $\omega = 2\pi f$;

Définition

L'expression analytique d'un signal sinusoïdal est donnée par :

$$s(t) = A\cos(\omega t + \varphi)$$

avec:

- A: amplitude maximale ou valeur crête;
- ω : pulsation (rad.s⁻¹), $\omega = 2\pi f$;
- f: fréquence (Hz);

Définition

L'expression analytique d'un signal sinusoïdal est donnée par :

$$s(t) = A\cos(\omega t + \varphi)$$

avec:

A: amplitude maximale ou valeur crête;

• ω : pulsation (rad.s⁻¹), $\omega = 2\pi f$;

• f: fréquence (Hz);

• φ : phase (rad) par rapport à l'origine des temps.

Signaux réels

Définition

Signaux contenant un grand nombre de fréquences, pouvant être décomposés en une somme pondérée de signaux sinusoïdaux (*analyse de Fourier*).

Signaux réels

Définition

Signaux contenant un grand nombre de fréquences, pouvant être décomposés en une somme pondérée de signaux sinusoïdaux (*analyse de Fourier*).

signal complexe = superposition de signaux sinusoïdaux

Définitions

• Un nombre complexe écrit dans sa forme cartésienne a pour expression :

$$z = a + jb \tag{1}$$

Avec a la partie réelle et b la partie imaginaire, et j le nombre complexe vérifiant $j^2 = 1$;

Définitions

• Un nombre complexe écrit dans sa forme cartésienne a pour expression :

$$z = \alpha + jb \tag{1}$$

Avec a la partie réelle et b la partie imaginaire, et j le nombre complexe vérifiant $j^2 = 1$;

• Le module de z noté |z| a pour expression : $|z| = \sqrt{a^2 + b^2}$;

Définitions

• Un nombre complexe écrit dans sa forme cartésienne a pour expression :

$$z = a + jb \tag{1}$$

Avec a la partie réelle et b la partie imaginaire, et j le nombre complexe vérifiant $j^2 = 1$;

- Le module de z noté |z| a pour expression : $|z| = \sqrt{a^2 + b^2}$;
- Son argument θ est défini par : $\cos\!\theta = \frac{\sigma}{|z|}$ et $\sin\!\theta = \frac{b}{|z|}$;

Définitions

Un nombre complexe écrit dans sa forme cartésienne a pour expression :

$$z = a + jb \tag{1}$$

Avec a la partie réelle et b la partie imaginaire, et j le nombre complexe vérifiant $j^2 = 1$;

- Le module de z noté |z| a pour expression : $|z| = \sqrt{a^2 + b^2}$;
- Son argument θ est défini par : $\cos \theta = \frac{\sigma}{|z|}$ et $\sin \theta = \frac{b}{|z|}$;
- Un nombre complexe écrit sous sa forme polaire a pour expression : $z = r(\cos\theta + j\sin\theta) = re^{j\theta}$, avec $r = |z| = \sqrt{a^2 + b^2}$ son module et θ son argument.

Définitions

A chaque signal sinusoïdal, on associe une écriture complexe qui précise son amplitude et sa phase.

$$\underline{\underline{s}}(t) = Ae^{j(\omega t + \varphi)} = Ae^{j\omega t}e^{j\varphi} \tag{1}$$

Définitions

A chaque signal sinusoïdal, on associe une écriture complexe qui précise son amplitude et sa phase.

$$\underline{s}(t) = Ae^{j(\omega t + \varphi)} = Ae^{j\omega t}e^{j\varphi} \tag{1}$$

On pourra également définir une amplitude complexe :

$$\underline{A} = Ae^{j\varphi} \operatorname{donc} \underline{s}(t) = \underline{A}e^{j\omega t}$$
 (2)

Définitions

A chaque signal sinusoïdal, on associe une écriture complexe qui précise son amplitude et sa phase.

$$s(t) = Ae^{j(\omega t + \varphi)} = Ae^{j\omega t}e^{j\varphi}$$
 (1)

On pourra également définir une amplitude complexe :

$$\underline{A} = Ae^{j\varphi} \operatorname{donc} \underline{s}(t) = \underline{A}e^{j\omega t}$$
 (2)

On travaillera donc en notation complexe mais il sera facile de revenir au signal réel :

Définitions

A chaque signal sinusoïdal, on associe une écriture complexe qui précise son amplitude et sa phase.

$$s(t) = Ae^{j(\omega t + \varphi)} = Ae^{j\omega t}e^{j\varphi}$$
 (1)

On pourra également définir une amplitude complexe :

$$\underline{A} = Ae^{j\varphi} \operatorname{donc} \underline{s}(t) = \underline{A}e^{j\omega t}$$
 (2)

On travaillera donc en notation complexe mais il sera facile de revenir au signal réel :

• Retour au signal réel complet grâce à la partie réelle du complexe :

$$s(t) = \operatorname{Re}\left\{\underline{s}(t)\right\} \tag{3}$$

Définitions

A chaque signal sinusoïdal, on associe une écriture complexe qui précise son amplitude et sa phase.

$$s(t) = Ae^{j(\omega t + \varphi)} = Ae^{j\omega t}e^{j\varphi}$$
 (1)

On pourra également définir une amplitude complexe :

$$\underline{A} = Ae^{j\varphi} \operatorname{donc} \underline{s}(t) = \underline{A}e^{j\omega t}$$
 (2)

On travaillera donc en notation complexe mais il sera facile de revenir au signal réel :

Retour au signal réel complet grâce à la partie réelle du complexe :

$$s(t) = Re\left\{\underline{s}(t)\right\} \tag{3}$$

 Retour à l'amplitude du signal réel grâce au module de l'amplitude complexe ou du signal complexe :

$$A = |\underline{A}| = |\underline{s}(t)| \tag{4}$$

Définitions

A chaque signal sinusoïdal, on associe une écriture complexe qui précise son amplitude et sa phase.

$$\underline{s}(t) = Ae^{j(\omega t + \varphi)} = Ae^{j\omega t}e^{j\varphi} \tag{1}$$

On pourra également définir une amplitude complexe :

$$\underline{A} = Ae^{j\varphi} \operatorname{donc} \underline{s}(t) = \underline{A}e^{j\omega t}$$
 (2)

On travaillera donc en notation complexe mais il sera facile de revenir au signal réel :

Retour au signal réel complet grâce à la partie réelle du complexe :

$$s(t) = Re\left\{\underline{s}(t)\right\} \tag{3}$$

 Retour à l'amplitude du signal réel grâce au module de l'amplitude complexe ou du signal complexe :

$$A = |\underline{A}| = |\underline{s}(t)| \tag{4}$$

• Retour à la phase initiale grâce à l'argument de l'amplitude complexe :

$$\varphi = \arg(|\underline{A}|) \tag{5}$$

Définitions

A chaque signal sinusoïdal, on associe une écriture complexe qui précise son amplitude et sa phase.

$$s(t) = Ae^{j(\omega t + \varphi)} = Ae^{j\omega t}e^{j\varphi}$$
 (1)

On pourra également définir une amplitude complexe :

$$\underline{A} = Ae^{j\varphi} \operatorname{donc} \underline{s}(t) = \underline{A}e^{j\omega t}$$
 (2)

On travaillera donc en notation complexe mais il sera facile de revenir au signal réel :

Retour au signal réel complet grâce à la partie réelle du complexe :

$$s(t) = Re\left\{\underline{s}(t)\right\} \tag{3}$$

 Retour à l'amplitude du signal réel grâce au module de l'amplitude complexe ou du signal complexe :

$$A = |\underline{A}| = |\underline{s}(t)| \tag{4}$$

Retour à la phase initiale grâce à l'argument de l'amplitude complexe :

$$\varphi = \arg(|\underline{A}|) \tag{5}$$

Ainsi, toutes les informations dont nous avons besoin pour reconstituer le signal réel sont contenues dans l'amplitude complexe.

Avantage de cette notation

La présence d'une exponentielle en notation complexe facilite la dérivation du signal :

Avantage de cette notation

La présence d'une exponentielle en notation complexe facilite la dérivation du signal :

$$\frac{d\underline{s}(t)}{dt} = \frac{d}{dt} \left(A e^{i(\omega t + \varphi)} \right) = j\omega A e^{i(\omega t + \varphi)} = j\omega \underline{s}(t) \tag{1}$$

Avantage de cette notation

La présence d'une exponentielle en notation complexe facilite la dérivation du signal :

$$\frac{d\underline{s}(t)}{dt} = \frac{d}{dt} \left(A e^{j(\omega t + \varphi)} \right) = j\omega A e^{j(\omega t + \varphi)} = j\omega \underline{s}(t) \tag{1}$$

$$\frac{d\underline{s}(t)}{dt} = j\omega\underline{s}(t) \tag{2}$$

Avantage de cette notation

La présence d'une exponentielle en notation complexe facilite la dérivation du signal :

$$\frac{d\underline{s}(t)}{dt} = \frac{d}{dt} \left(A e^{j(\omega t + \varphi)} \right) = j\omega A e^{j(\omega t + \varphi)} = j\omega \underline{s}(t) \tag{1}$$

$$\frac{d\underline{s}(t)}{dt} = j\omega\underline{s}(t) \tag{2}$$

Sur le même principe, la primitive d'un signal complexe est obtenue en multipliant celui-ci par $\frac{1}{l\omega}$:

$$\int \underline{\underline{s}}(t)dt = \frac{\underline{s}(t)}{i\omega} \tag{3}$$

Valeur maximale

La valeur maximale ou amplitude du signal est donnée par :

$$A = \max(|s(t)|)$$

Valeur maximale

La valeur maximale ou amplitude du signal est donnée par :

$$A = \max(|s(t)|)$$

Valeur moyenne

La **valeur moyenne** ou *composante continue* du signal de période T est donnée par:

$$ar{s} = \langle s(t)
angle = rac{1}{T} \int_T s(t) \ dt$$

Valeur maximale

La valeur maximale ou amplitude du signal est donnée par :

$$A = \max(|s(t)|)$$

Valeur moyenne

La **valeur moyenne** ou *composante continue* du signal de période T est donnée par:

$$ar{s} = \langle s(t)
angle = rac{1}{T} \int_T s(t) \ dt$$

Valeur efficace

En électricité, la **valeur efficace** d'un courant alternatif correspond à la valeur d'un courant continu produisant la même puissance thermique dans une résistance identique.

Valeur maximale

La valeur maximale ou amplitude du signal est donnée par :

$$A = \max(|s(t)|)$$

Valeur moyenne

La **valeur moyenne** ou *composante continue* du signal de période T est donnée par:

$$ar{s} = \langle s(t)
angle = rac{1}{T} \int_T s(t) \ dt$$

Valeur efficace

En électricité, la **valeur efficace** d'un courant alternatif correspond à la valeur d'un courant continu produisant la même puissance thermique dans une résistance identique.

$$I_{\mathrm{eff}} = \sqrt{\langle i^2(t) \rangle} = \sqrt{rac{1}{T} \int_T i^2(t) \ dt}$$

« La racine carrée de la valeur moyenne du carré du signal »

Grandeurs physiques

Grandeurs électriques

- tension électrique u (V)
- courant électrique i (A)
- puissance instantanée P (W) ; $p(t) = u(t) \cdot i(t)$

Grandeurs physiques

Grandeurs électriques

- tension électrique u (V)
- courant électrique i (A)
- puissance instantanée P(W); $p(t) = u(t) \cdot i(t)$

Grandeurs mécaniques

- déplacement u (m)
- vitesse instantanée v (m.s⁻¹) ; $v(t) = \frac{du}{dt} = \dot{u}$
- accélération instantanée a (m.s⁻²) ; $a(t) = \frac{dv}{dt} = \dot{v} = \ddot{u}$
- force F(N)
- puissance instantanée P (W); $P(t) = F(t) \cdot v(t)$

Grandeurs physiques

Grandeurs électriques

- tension électrique u (V)
- o courant électrique i (A)
- puissance instantanée P(W); $p(t) = u(t) \cdot i(t)$

Grandeurs mécaniques

- déplacement u (m)
- vitesse instantanée v (m.s⁻¹); $v(t) = \frac{du}{dt} = \dot{u}$
- accélération instantanée a (m.s⁻²) ; $a(t) = \frac{dv}{dt} = \dot{v} = \ddot{u}$
- force F(N)
- puissance instantanée P (W); $P(t) = F(t) \cdot v(t)$

Grandeurs mécaniques

- pression acoustique p (Pa)
- vitesse v (m.s⁻¹)
- débit *D* (m³.s⁻¹)

Puissance

La **puissance** caractérise le débit d'énergie fourni à chaque instant.

$$P(t) = \frac{dE}{dt}$$

Puissance

La **puissance** caractérise le débit d'énergie fourni à chaque instant.

$$P(t) = \frac{dE}{dt}$$

On définit également la **puissance moyenne sur une durée** T comme la valeur moyenne pendant la durée T de la puissance instantanée :

$$\bar{P} = \langle P(t) \rangle = \frac{1}{T} \int_{t_0}^{t_0 + T} P(t) dt \tag{4}$$

Définition

Il définit le gain en puissance :

$$G_{dB} = 10log_{10} \left(\frac{P_s}{P_e} \right)$$

avec:

- P_e: puissance d'entrée (W)
- Ps: puissance d sortie (W)

Définition

Il définit le gain en puissance :

$$G_{dB} = 10log_{10} \left(\frac{P_s}{P_e} \right)$$

avec:

- P_e: puissance d'entrée (W)
- P_s: puissance d sortie (W)

Le gain en tension en dB, à l'aide d'une résistance virtuelle de mesure :

$$G_{dB} = 10log_{10} \left(\frac{u_s^2}{\frac{R}{R}} \right) = 10log_{10} \left(\frac{u_s^2}{u_e^2} \right) = 20log_{10} \left(\frac{u_s}{u_e} \right)$$

Définition

Il définit le gain en puissance :

$$G_{dB} = 10log_{10} \left(\frac{P_s}{P_e} \right)$$

avec:

- P_e: puissance d'entrée (W)
- Ps: puissance d sortie (W)

Le gain en tension en dB, à l'aide d'une résistance virtuelle de mesure :

$$G_{dB} = 10log_{10} \left(\frac{\frac{u_s^2}{R}}{\frac{u_e^2}{R}} \right) = 10log_{10} \left(\frac{u_s^2}{u_e^2} \right) = 20log_{10} \left(\frac{u_s}{u_e} \right)$$

Autres utilisations

Électronique :

- dBW, unité de puissance en dB, référencée à 1 W
- dBm, unité de puissance en dB, référencée à 1 mW

Définition

Il définit le gain en puissance :

$$G_{dB} = 10log_{10} \left(\frac{P_s}{P_e} \right)$$

avec:

- P_e: puissance d'entrée (W)
- Ps: puissance d sortie (W)

Le gain en tension en dB, à l'aide d'une résistance virtuelle de mesure :

$$G_{dB} = 10log_{10} \left(\frac{u_s^2}{\frac{R}{R}} \right) = 10log_{10} \left(\frac{u_s^2}{u_e^2} \right) = 20log_{10} \left(\frac{u_s}{u_e} \right)$$

Autres utilisations

Électronique:

- dBW, unité de puissance en dB, référencée à 1 W
- dBm, unité de puissance en dB, référencée à 1 mW

Acoustique:

• dBA, unité de puissance en dB, référencée à la sensibilité de l'oreille (pondération physiologique)

Définition

Il définit le gain en puissance :

$$G_{dB} = 10log_{10} \left(\frac{P_s}{P_e} \right)$$

avec:

- P_e: puissance d'entrée (W)
- Ps: puissance d sortie (W)

Le gain en tension en dB, à l'aide d'une résistance virtuelle de mesure :

$$G_{dB} = 10log_{10} \left(\frac{u_s^2}{\frac{R}{R}} \right) = 10log_{10} \left(\frac{u_s^2}{u_{\Theta}^2} \right) = 20log_{10} \left(\frac{u_s}{u_{\Theta}} \right)$$

Niveau de pression acoustique

$$L_p = 10log_{10} \left(\frac{p_{\text{eff}}^2}{p_{\text{ref}}^2} \right) = 20log_{10} \left(\frac{p_{\text{eff}}}{p_{\text{ref}}} \right)$$

Définition

Il définit le gain en puissance :

$$G_{dB} = 10log_{10} \left(\frac{P_s}{P_e} \right)$$

avec:

- P_e: puissance d'entrée (W)
- Ps: puissance d sortie (W)

Le gain en tension en dB, à l'aide d'une résistance virtuelle de mesure :

$$G_{dB} = 10log_{10} \left(\frac{u_s^2}{\frac{R}{R}} \right) = 10log_{10} \left(\frac{u_s^2}{u_e^2} \right) = 20log_{10} \left(\frac{u_s}{u_e} \right)$$

Niveau de pression acoustique

$$L_p = 10log_{10} \left(\frac{p_{\text{eff}}^2}{p_{\text{ref}}^2} \right) = 20log_{10} \left(\frac{p_{\text{eff}}}{p_{\text{ref}}} \right)$$

Pression (Pa) \rightarrow Niveau de pression (dB SPL) ; avec $p_{ref}=20~\mu$ Pa (seuil d'audibilité moyen à 1000 Hz)

Caractéristiques de la chaîne électroacoustique

Transducteurs

Capteurs: microphone (acoustique → électrique), accéléromètre (mécanique → électrique)

Transducteurs

- Capteurs: microphone (acoustique → électrique), accéléromètre (mécanique → électrique)
- Sources: haut-parleurs, écouteurs, pot-vibrants...

• Sensibilité : s = Sm (physique des capteurs)

- Sensibilité: s = Sm (physique des capteurs)
- Sensibilité d'un microphone : u = Mp ; M (V.P a^{-1})

- Sensibilité: s = Sm (physique des capteurs)
- Sensibilité d'un microphone : u = Mp ; M (V.P a^{-1})
- Sensibilité relative : $L_M = 20 log_{10} \left(\frac{M}{M_{ref}} \right)$ (dB)

- Sensibilité: s = Sm (physique des capteurs)
- Sensibilité d'un microphone : u = Mp ; M (V.P α^{-1})
- Sensibilité relative : $L_M = 20 log_{10} \left(\frac{M}{M_{ref}} \right)$ (dB)
- Efficacité d'une source : p = Eu ; E (Pa.V⁻¹) ;
 → pour un HP, mesure de L_p dans l'axe à 1 m, alimenté par un bruit rose (1 W)

Réponse en fréquence

Définition

Informations d'amplitude et de phase relative au signal d'entrée.

Fonction de Transfert

Définition

$$H(j\omega) = \frac{\underline{s_s}}{\underline{s_{\Theta}}}$$

Diagramme de Bode

Fonction de transfert = fonction complexe

En électronique, on considère le module et l'argument de la fonction de transfert, mis sous la forme :

Diagramme de Bode

Fonction de transfert = fonction complexe

En électronique, on considère le module et l'argument de la fonction de transfert, mis sous la forme :

• Gain: exprimé en décibels (dB), c'est le module en échelle logarithmique,

$$G_{\rm dB} = 20 log_{10}(|H(j\omega)|)$$

Diagramme de Bode

Fonction de transfert = fonction complexe

En électronique, on considère le module et l'argument de la fonction de transfert, mis sous la forme :

• Gain: exprimé en décibels (dB), c'est le module en échelle logarithmique,

$$G_{\rm dB} = 20 log_{10}(|H(j\omega)|)$$

Phase : en degrés ou radians,

$$\varphi = arg(H(j\omega))$$

Définition

$$BP = f_h - f_b$$

avec f_b et f_h les fréquences de coupure à -3 dB par rapport à un niveau de référence correspondant au fonctionnement normal du système.

Définition

$$BP = f_b - f_b$$

avec f_b et f_h les fréquences de coupure à -3 dB par rapport à un niveau de référence correspondant au fonctionnement normal du système.

Exemples:

• Oreille: 20 Hz à 20 kHz

Définition

$$BP = f_h - f_b$$

avec f_b et f_h les fréquences de coupure à -3 dB par rapport à un niveau de référence correspondant au fonctionnement normal du système.

Exemples:

• Oreille: 20 Hz à 20 kHz

• Voix: 400 Hz à 4 kHz

Définition

$$BP = f_h - f_b$$

avec f_b et f_h les fréquences de coupure à -3 dB par rapport à un niveau de référence correspondant au fonctionnement normal du système.

Exemples:

• Oreille: 20 Hz à 20 kHz

• Voix: 400 Hz à 4 kHz

• Téléphonie standard : 300 Hz à 3,4 kHz

Définition

$$BP = f_h - f_b$$

avec f_b et f_h les fréquences de coupure à -3 dB par rapport à un niveau de référence correspondant au fonctionnement normal du système.

Exemples:

• Oreille: 20 Hz à 20 kHz

• Voix: 400 Hz à 4 kHz

• Téléphonie standard : 300 Hz à 3,4 kHz

• Téléphonie Haute Définition : 50 Hz à 7 kHz

Plage de fonctionnement linéaire

- Plage de fonctionnement linéaire
- Bruit de fond = signaux parasites (intrinsèques et extrinsèques)

- Plage de fonctionnement linéaire
- Bruit de fond = signaux parasites (intrinsèques et extrinsèques)
- Niveau max = limite de fonctionnement linéaire

- Plage de fonctionnement linéaire
- Bruit de fond = signaux parasites (intrinsèques et extrinsèques)
- Niveau max = limite de fonctionnement linéaire
- Distorsion harmonique = apparition d'harmoniques dans s_s pour un s_e de f donnée

- Plage de fonctionnement linéaire
- Bruit de fond = signaux parasites (intrinsèques et extrinsèques)
- Niveau max = limite de fonctionnement linéaire
- Distorsion harmonique = apparition d'harmoniques dans s_s pour un s_e de f donnée
- Oynamique utile = Dynamique Marge = Niveau max Bruit de fond Marge

Définition

Représente la variation de la réponse d'un transducteur en fonction de la direction spatiale (angle θ). Elle peut être :

Définition

Représente la variation de la réponse d'un transducteur en fonction de la direction spatiale (angle θ). Elle peut être :

• Omnidirectionnelle : réponse identique $\forall \theta$; $M(\theta) = A = cte$

Définition

Représente la variation de la réponse d'un transducteur en fonction de la direction spatiale (angle θ). Elle peut être :

- Omnidirectionnelle : réponse identique $\forall \theta$; $M(\theta) = A = cte$
- **Bidirectionnelle**: θ et θ +180° privilégiés; $M(\theta) = Bcos(\theta)$

Définition

Représente la variation de la réponse d'un transducteur en fonction de la direction spatiale (angle θ). Elle peut être :

- **Omnidirectionnelle**: réponse identique $\forall \theta$; $M(\theta) = A = cte$
- Bidirectionnelle : θ et θ +180° privilégiés ; $M(\theta) = B\cos(\theta)$
- Unidirectionnelle: θ privilégié; $M(\theta) = A + B\cos(\theta)$; cardioïde avec $\frac{B}{A} = 1$

Ordres de grandeur.

Rendement

 $\eta = \frac{\text{puissance acoustique rayonn\'ee}}{\text{puissance \'electrique fournie}}$

Ordres de grandeur.

Rendement

Formule pratique:

 $\eta = \frac{\text{puissance acoustique rayonn\'ee}}{\text{puissance \'electrique fournie}}$

$$\eta = 10 \left(\frac{L_D - 109 - ID}{10} \right)$$

avec:

- ID : indice de directivité ; ID = 10log₁₀(Q)
- lacktriangle Q: facteur de directivité ; varie de Q=1 (omnidirectionnel) à Q=4 (unidirectionnel, $\frac{B}{A}=3$)

Ordres de grandeur.

Rendement

Formule pratique:

 $\eta = \frac{\text{puissance acoustique rayonn\'ee}}{\text{puissance \'electrique fournie}}$

$$\eta = 10 \left(\frac{L_{\mathcal{D}} - 109 - ID}{10} \right)$$

avec:

- ID : indice de directivité ; ID = 10log₁₀(Q)
- Q: facteur de directivité; varie de Q=1 (omnidirectionnel) à Q=4 (unidirectionnel, $\frac{B}{A}=3$)

Cas d'une source unidirectionnelle :

• $Q = 2 \text{ et } L_p = 94 \text{ dB}$

Ordres de grandeur.

Rendement

Formule pratique:

 $\eta = \frac{\text{puissance acoustique rayonn\'ee}}{\text{puissance \'electrique fournie}}$

$$\eta = 10 \left(\frac{L_D - 109 - ID}{10} \right)$$

avec :

- ID : indice de directivité ; ID = 10log₁₀(Q)
- \odot Q : facteur de directivité ; varie de Q = 1 (omnidirectionnel) à Q = 4 (unidirectionnel, $\frac{B}{A}$ = 3)

Cas d'une source unidirectionnelle :

- $Q = 2 \text{ et } L_D = 94 \text{ dB}$
- ID ≈ 3

Ordres de grandeur.

Rendement

 $\eta = \frac{\text{puissance acoustique rayonn\'ee}}{\text{puissance \'electrique fournie}}$

Formule pratique :

$$n = 10 \left(\frac{L_{p} - 109 - ID}{10} \right)$$

avec:

- ID : indice de directivité ; ID = 10log₁₀(Q)
- Q: facteur de directivité; varie de Q=1 (omnidirectionnel) à Q=4 (unidirectionnel, $\frac{B}{A}=3$)

Cas d'une source unidirectionnelle :

- $Q = 2 \text{ et } L_D = 94 \text{ dB}$
- ID ≈ 3
- \bullet $\eta \approx$ 0,0158 ou 1,6 % \rightarrow puissance acoustique rayonnée \approx 16 mW avec puissance électrique fournie = 1 W