Core Functions and Notation

Domain and Image

- Wx: domain of φx (all inputs where function is defined)
- Ex: image/codomain of φx (all outputs function can produce)
- cod(f): alternate notation for codomain
- img(f): alternate notation for image

Basic Functions

1. Monus (Truncated Subtraction)

```
x - y = {
    x - y if x ≥ y
    0 otherwise
}
```

Key point: Always yields non-negative results, defined only for natural numbers

Characteristic Functions

For set $A \subseteq N$:

```
χA(x) = {
    1    if x ∈ A
    0    if x ∉ A
}
```

Function Cases

```
div(x,y) = {
    1 if x divides y
    0 otherwise
}
```

Function Properties

Totality

- Total function: defined for all possible inputs
- Partial function: defined only for some inputs
- Domain: dom(f) ⊆ N

Special Notation

- φx: primitive recursive k-ary function from x-th step of enumeration
- θ: typically denotes a finite subfunction
- ↓: function converges/is defined (e.g., f(x)↓)
- ↑: function diverges/is undefined (e.g., f(x)↑)

Common Functions Used in Examples

Arithmetic Functions

```
sum(x,y) = x + y

product(x,y) = x * y

div(x,y) = "x divides y"
```

Bounded Functions

For a computable $f:N^{k+1} \rightarrow N$:

```
\Sigma z < y \ f(\bar{x},z) // bounded sum 
 \Pi z < y \ f(\bar{x},z) // bounded product
```

Sign Functions

Function Composition Types

Generalized Composition

For $f:N^k \rightarrow N$ and $g_1,...,g_k:N^n \rightarrow N$:

```
h(\bar{x}) = f(g_1(\bar{x}), \dots, g_k(\bar{x}))
```

Defined only if all component functions are defined

Primitive Recursion

For $f:N^k \rightarrow N$ and $g:N^{k+2} \rightarrow N$:

```
h(\bar{x},0) = f(\bar{x})
h(\bar{x},y+1) = g(\bar{x},y,h(\bar{x},y))
```

Bounded Minimalization

```
\mu z < y.f(\bar{x},z) = \{
min\{z < y : f(\bar{x},z)=0\} if exists
y otherwise
\}
```

Vector Notation

- x̄: vector of variables (x₁,...,x_k)
- Nk: k-dimensional natural numbers

Important Properties to Remember

- 1. All arithmetic functions shown are primitive recursive
- 2. Bounded operations always terminate
- 3. Characteristic functions must be total
- 4. When composing functions:
 - All subfunctions must be defined for result to be defined
 - Order of evaluation matters for partial functions