	Name
	Roll Number
	Rate this quiz. Easy/Moderate/Difficult
	Quiz 1
	MTH302: Set Theory and Mathematical Logic
	(Odd Semester 2024/25, IIT Kanpur)
Que	stion 1. $[3 \times 1 \text{ Points}]$
F	or each of the following statements, determine whether it is true or false . No justification required.
(i)	For every uncountable linear ordering (L, \prec) , there exists an infinite $X \subseteq L$ such that (X, \prec) is a well-ordering.
	Answer False. Consider $(\omega_1, >)$.
(ii)	The set of all irrationals numbers has the same cardinality as the set of all real numbers. Answer True. Since $ \mathbb{R} = \mathbb{Q} \cup \mathbb{R} \setminus \mathbb{Q} = \max(\mathbb{Q} , \mathbb{R} \setminus \mathbb{Q}) = \max(\omega, \mathbb{R} \setminus \mathbb{Q})$. Since \mathbb{R} is uncountable, it follows that $ \mathbb{R} = \mathbb{R} \setminus \mathbb{Q} $.
(iii)	There exists a sequence of sets $\langle X_n : n < \omega \rangle$ such that $ X_{n+1} < X_n $ for every $n < \omega$.
	Answer False. Otherwise $\{ X_n : n < \omega\}$ does not have smallest ordinal.
Que	stion 2. [7 Points]
(a)	[1 Point] State Schröder-Bernstein theorem.
	Answer If there are injective functions from A to B and from B to A , then there is a bijection from A to B .
(b)	[2 Points] State Zorn's lemma.
	Answer Let (P, \preceq) be a partial ordering such that every chain in P has an upper bound in P . Then (P, \preceq) has a maximal element.
(c)	[2 Points] Let $f: \mathbb{R} \to \mathbb{R}$ be an additive function with $f(1) = 7$. Assume f is continuous at 0. Show that $f(x) = 7x$ for all $x \in \mathbb{R}$.
	Answer It suffices to show that f is everywhere continuous. Let $x \in \mathbb{R}$. Then
	$\lim_{h \to 0} f(x+h) = \lim_{h \to 0} (f(x) + f(h)) = \lim_{h \to 0} f(x) + \lim_{h \to 0} f(h) = f(x) + f(0) = f(x) + 0 = f(x)$
	where in the third equality we used the fact that f is continuous at 0.

 $d:\omega\to\omega$ as follows.

It is clear that d is a bijection from ω to ω distinct from each f_k (as $d(2k) \neq f_k(2k)$). This contradicts our assumption that $\langle f_k : k < \omega \rangle$ lists all bijections from ω to ω .

Answer Suppose not and towards a contradiction let $\langle f_k : k < \omega \rangle$ list all bijections from ω to ω . Define

(d) [2 Points] Show that the set of all bijections from ω to ω is uncountable.

If $f_k(2k) = 2k + 1$, then d(2k) = 2k and d(2k + 1) = 2k + 1. If $f_k(2k) \neq 2k + 1$, then d(2k) = 2k + 1 and d(2k + 1) = 2k.