$\underset{(9:45~\mathrm{AM}\,-\,11:00~\mathrm{AM}\,:\,75~\mathrm{Minutes}\,)}{\mathbf{Midterm}}$

Date: Oct 7, 2021

- This exam will account for 30% of your overall grade.
- There are six (6) questions, worth 75 points in total. Please answer all of them.
- This is a closed book, closed notes exam. No cheat sheets are allowed.
- You are allowed to use scratch papers for your calculations.
- You are not allowed to use your own calculator. A scientific calculator will be available inside the Respondus Lockdown Browser.

Good Luck!

Question	Parts	Points
1. DFA Construction	(i), (ii)	10 + 10 = 20
2. DFA Composition	_	10
3. Regular Expressions	(i), (ii)	5 + 5 = 10
4. NFA to DFA	_	15
5. Non-regularity	_	15
6. Context-free Grammar	_	5
Total		75

Question 1. [20 Points] DFA Construction. Write down a DFA in the 5-tuple form to accept each of the following two regular languages.

Assume that $\Sigma = \{a, b\}.$

Your answers do not need to include DFA diagrams (though you may draw them on your scratch papers if you like).

1. [10 Points] $L = \{w| \ ab \ appears \ exactly \ once \ in \ w\}$

Solution:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{Q_0, Q_1, Q_2, Q_3, Q_4\}$$

Set of symbols is $\Sigma = \{a, b\}$
Start state is $q_0 = Q_0$

Set of accept states is $F = \{Q_2, Q_3\}$

Transition function is

$$\delta : \begin{array}{c|cccc} & a & b \\ \hline Q_0 & Q_1 & Q_0 \\ Q_1 & Q_1 & Q_2 \\ Q_2 & Q_3 & Q_2 \\ Q_3 & Q_3 & Q_4 \\ Q_4 & Q_4 & Q_4 \end{array}$$

2. [10 Points] $L = \{w | w \text{ does not end with } ba\}$

Solution:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is $Q = \{Q_0, Q_1, Q_2\}$

Set of symbols is $\Sigma = \{a, b\}$

Start state is $q_0 = Q_0$

Set of accept states is $F = \{Q_0, Q_1\}$

Transition function is

$$\delta \colon \begin{array}{c|ccc} & a & b \\ \hline Q_0 & Q_0 & Q_1 \\ Q_1 & Q_2 & Q_1 \\ Q_2 & Q_0 & Q_1 \end{array}$$

Question 2. [10 Points] DFA Composition. Consider the following two DFAs.

Write down a DFA in the 5-tuple form that accepts the language $L_1 \cap L_2$.

Your answer does not need to include the DFA diagram (though you may draw it on your scratch papers if you like).

Solution:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{p_0q_0, p_0q_1, p_0q_2, p_0q_3, p_1q_0, p_1q_1, p_1q_2, p_1q_3\}$$
 Set of symbols is
$$\Sigma = \{a, b\}$$
 Start state is
$$q_0 = p_0q_0$$
 Set of accept states is
$$F = \{p_1q_3\}$$
 Transition function is

		a	b
	p_0q_0	p_0q_1	p_1q_2
	p_0q_1	p_0q_2	p_1q_3
	p_0q_2	p_0q_2	p_1q_2
δ :	p_0q_3	p_0q_3	p_1q_3
	p_1q_0	p_0q_1	p_1q_2
	p_1q_1	p_0q_2	p_1q_3
	p_1q_2	p_0q_2	p_1q_2
	p_1q_3	p_0q_3	p_1q_3

Question 3. [10 Points] Regular Expressions. Answer the following questions.

1. [5 Points] Write down a regular expression for the following language.

$$L = \{w | \text{ every } a \text{ in } w \text{ is followed by an even number of } b\text{'s}\}, \quad \Sigma = \{a, b, c\}$$

Solution:

$$(b \cup (a(bb)^+)^*c)^*(a(bb)^+)^* \qquad \text{assuming 0 is not an even number}$$

$$(b \cup (a(bb)^*)^*c)^*(a(bb)^*)^* \qquad \text{assuming 0 is an even number}$$

Some other possible answers (assuming 0 is an even number):

$$b^*((c^+b^*)^*(a(bb)^*)^*)^*$$

$$b^*(a(bb)^* \cup c^+b^*)^*$$

$$(b \cup c)^*(a(bb)^*(c^+b^*)^*)^*$$

$$(b \cup c)^*(a(bb)^* \cup cb^*)^*$$

2. [5 Points] For each of the following pairs of regular expressions write down 'True' if the pair represent the same language and 'false' otherwise. Proofs are not needed.

(a)	$(a \cup b)^*$ and $(a^*b^*)^*$	${\bf Solution:}$	True
(b)	$(a \cup b)^+$ and $(a^+b^+)^+$	Solution:	False
(c)	$a^*(ab^*)^*$ and $a^*(b^*ab^*)^*$	${\bf Solution:}$	False
(d)	$b^*(ab^*)^*$ and $b^*(b^*ab^*)^*$	Solution:	True
(e)	$b^*(ab^+)^*$ and $(b \cup ab)^+$	Solution:	False

Question 4. [15 Points] NFA to DFA. Consider the following NFA.

Convert this NFA into a DFA and write it down in the 5-tuple form.

Your answer does not need to include the DFA diagram (though you may draw it on your scratch papers if you like).

Solution:

5-Tuple: $M = (Q, \Sigma, \delta, q_0, F)$, where,

Set of states is
$$Q = \{\{q_0\}, \{q_1\}, \phi\}$$

Set of symbols is
$$Q = \{q_0\}$$
.
Set of symbols is $\Sigma = \{a, b\}$
Start state is $q_0 = \{q_0\}$

Start state is
$$q_0 = \{q_0\}$$

Set of accept states is
$$F = \{\{q_0\}, \{q_1\}\}\$$

Transition function is

$$\delta: \begin{array}{c|c|c} & a & b \\ \hline \{q_0\} & \{q_0\} & \{q_1\} \\ \{q_1\} & \phi & \{q_1\} \\ \phi & \phi & \phi \end{array}$$

Question 5. [15 Points | Non-regularity. Use the pumping lemma to prove that the following language is not regular.

$$L = \{w | w = a^m b^{2^n}, m, n \ge 0\}, \Sigma = \{a, b\}$$

Solution:

- $_{-}$ Assume L is regular. Then it must satisfy the pumping property.
- $_{-}$ Let s = number of states
- _ Let $w = a^0 b^{2^s}$.
- Let w = xyz, $x = b^p$, $y = b^q$, $z = b^r b^{2^s s}$, where p + q + r = s, $p + q \le s$, and $q \ge 1$ so, $|xy| \le s$ and $|y| \ge 1$
- _ Then xy^iz should belong to L for all integer $i \geq 0$. _ However, $xz = b^pb^rb^{2^s-s} = a^0b^{2^s-q}$, which is not in L because:

$$\begin{split} s < 2^{s-1} & where: \ s > 2 \\ \Longrightarrow \frac{s}{2^{s-1}} < 1 \\ \Longrightarrow 0 < 1 - \frac{s}{2^{s-1}} \\ \Longrightarrow 1 < 2 - \frac{s}{2^{s-1}} \\ \Longrightarrow 2^{s-1} < 2^s - s \\ \Longrightarrow 2^{s-1} < 2^s - q \\ \Longrightarrow 2^{s-1} < 2^s - q < 2^s \end{split}$$

Therefore, $2^s - q$ is between two consecutive powers of 2. This means that $(2^s - q)$ is not a power of 2. Hence $xz = a^0b^{2^s-q}$ is not in L.

This is a contradiction to our assumption that L is regular! Hence, L is not regular.

Question 6. [5 Points] Context-free Grammar. Write down a context-free grammar to accept the following language:

$$L = \{w | \ w = a^m b^{m+n+1} c^n, \ m, n \ge 0\}, \quad \Sigma = \{a, b, c\}$$

Solution:

$$G = (V, \Sigma, R, S)$$
 where:

The set of variables is $V = \{S, A, C\}$

The set of terminals is $\Sigma = \{a, b, c\}$

The set of rules is R =

$$S \to AbC$$

$$A \to aAb \mid \epsilon$$

$$C \to bCc \mid \epsilon$$

The start variable is S