如何优雅地写出大规模线性规划的对偶

原创 刘兴禄 数据魔术师 今天

对偶理论 Duality Theory 在运筹学数学规划部分占据着举足轻重的地位,也属于比较高阶的理论。 Duality Theory 在 精确算法设计 中也经常用到,在 Robust Optimization 等涉及到多层规划 Multilevel 的问题中,也有非常广泛的应用,很多时候可以化腐朽为神奇。尤其在 Robust Optimization中,有些问题可以巧妙的将内层 inner level 的模型转化成 LP,从而可以通过对偶,将双层 bi-level 的模型,转化成单阶段 single level 的模型,从而用单层的相关算法来求解 Robust Optimization问题。

今天我们就来看看,在实际的科研当中,遇到的一些稍微复杂一点的 LP,我们如何写出其对偶问题。

实际上在一些项刊中,例如transportation Science等,比较近期的文章,也时不时会看到这样的操作。这个操作其实并不是抬手就能搞定的,很多时候需要反复修改,才能将对偶问题正确的写出来。据我所知,我似乎是第一个写这样博文的博主。(如果有比我更早的,请告知我掐了这段)

基本原则如图:

原问题(对偶问题)	对偶问题(原问题)
目标函数max	目标函数min
$\int n \uparrow$	$n\uparrow$
变量 ≥0	≥ 约束条件
≤0	≤ (5) / / / / /
(无约束	= J
目标函数中变量的系数	约束条件右端项
$\lceil m \uparrow \rceil$	<i>m</i> 个]
约束条件 ≥	≥0 变量
≥ ≥	≤0
(=	无约束
约束条件右端项	目标函数中变量的系数温度

但是假如是最短路问题:

最短路问题

$$egin{array}{ll} \max & \sum_{e \in A} d_e x_e \ & \sum_{e \in \mathrm{out}(i)} x_e - \sum_{e \in \mathrm{in}(i)} x_e = egin{cases} rac{1}{-1}, & ext{if } i = s \ -1, & ext{if } i = t \ 0, & ext{else} \end{cases} \ & \underline{0 \leqslant x_e \leqslant 1}, & orall e \in A \end{cases}$$

这里大括号里有几个条件判断,就不是那么容易了。也许这个还比较容易,那再看看这个。多商品流问题 Multicommodity Network Flow Problem

多商品流问题Multicommodity Network Flow Problem

- K origin-destination pairs of nodes, $(s_1, t_1, d_1), (s_2, t_2, d_2), \cdots, (s_k, t_k, d_k)$.
- d_k : demand, amount of flow that must be sent from s_k to t_k .
- u_{ij} : capacity on (i,j) shared by all commodities
- c_{ij}^k : cost of sending 1 unit of commodity k in (i,j)
- x_{ij}^k : flow of commodity k in (i, j)

模型如下

$$egin{aligned} \min & \sum_{(i,j)\in A} \sum_{k} c_{ij}^k x_{ij}^k \ & \sum_{j} x_{ij}^k - \sum_{j} x_{ji}^k = egin{cases} d_k, & ext{if} & i = s_k \ -d_k, & ext{if} & i = t_k \ 0, & ext{otherwise} \end{cases} \ & \sum_{k} x_{ij}^k \leqslant u_{ij}, & orall (i,j) \in A \ & x_{ij}^k \geqslant 0, & orall (i,j) \in A, k \in K \end{aligned}$$

现在呢?还能很容易的写出来吗?若果还能,大神请受小弟一拜!哈哈哈

能轻松写出来的非人类大神可以前走左拐去刷剧了,咱这些普通人就接着往下看把。

注意,上面的Multicommodity Flow Problem和Shortest Path Problem都是Linear Programming,可以对偶的。但是对于Integer Programming和Mixed Integer Programming来讲,是不能对偶的。这一点一定要搞清楚。

对于这种稍微复杂一些的 LP ,我们怎么能写出对偶还保证正确,可debug找错的呢?我的方法就是借助 Excel + 具体小算例 。

借助Excel和具体小算例写出大规模LP的对偶

为了大家理解方便,我们不要直接去硬钢 Multicommodity Network Flow (理论上搞定了 Multicommo dity Network Flow, 其实就具备搞定大多数可以对偶的LP的潜力了).我们先以 SPP 来开个胃。

Dual Problem: Shortest Path Problem(最短路问题)。

小算例

我们先来引入一个小算例。该 算例 来自参考文献[^2],我做了点修改。为了显示我比较认真,我还专门无 聊用 LaTeX + Tikz 重新画了一个小花图: (咋样,看着还舒服吧)

Figure 1.2.1: Shortest Path Problem: network 据魔术师

我们再来看一下 SPP 的模型:

按照这个模型,我们手动把这个模型具体的写出来。为了之后的操作,我们直接写到 Excel 里。

Excel+小算例写出SPP的对偶问题

DACELT (7. 并 7.1一) [LDI I [1.1/1] [[4] [4] [25]

٥

SPP 模型如下:

	А	В	С	D	E	F	G	Н	I	J	K	L	M	Ν
1	distance	15	25	45	30	2	2	50	2	25	1			
2	min	x_1_2	x_1_4	x_1_3	x_2_5	x_2_4	x_5_7	x_4_7	x_4_3	x_3_6	x_6_7		RHS	Dual Var
3	org, 1	1	1	1								=	1	pi_1
4	inter, 2	-1			1	1 1						=	0	pi_2
5	inter, 3			-1					-1	1		=	0	pi_3
6	inter, 4		-1			-1		1	1			=	0	pi_4
7	inter, 5				-1		1					(=2	数据魔	<u></u>
8	inter, 6									-1	1	EC	7次6月月	pi_6
9	des, 7						-1	-1			-1	=	http://blog.csc	n.nev pi_7 akutu

我们把这个表叫 Primal tabular 其中,每一列代表一个变量 $x_{ij}, \forall (i,j) \in A$

- 1. 第一行代表该条(i,j)的距离
- 2. 第二行代表变量 x_{ij} , $\forall (i,j) \in A$
- 3. 第一行和第二行就组成了目标函数 $\sum_{e\in A} d_e x_e$
- 4. 第3-9行代表每个结点 $\forall i \in V$ 的约束
- 5. 最后一列代表每个约束的 Dual variable

OK,我们按照对偶的方法,将 Primal tabular 的 RHS 和 Dual variabe 拷贝,转置成2行,放在一个新表格(我们叫做 Dual tabular)的头两行,然后将 Primal tabular 的整个约束系数矩阵拷贝,转置到 Dual tabular 头两行下面。再把原问题 Primal tabular 的 distance 行和 min 行拷贝,转置,放在 Dual tabular 的右面。再把 Dual tabular 中改成 max 。为了明确 Dual Problem 中 各个变量的符号(正负性) 以及 每个约束的符号(relation),我们在 Dual tabular 中加入一行(就是第三行),表示变量的符号。同时在 Dual tabular 约束矩阵后加入一列,表示约束的符号。

操作完就是这样的

	А	В	С	D	Е	F	G	Н	- 1	J
1	RHS	1	0	0	0	0	0	-1		
2	Dual Var	pi_1	pi_2	pi_3	pi_4	pi_5	pi_6	pi_7		
3	max	=	=	=	=	=	=	=		
4	x_1_2	1	-1						<=	15
5	x_1_4	1			-1				<=	25
6	x_1_3	1		-1					<=	45
7	x_2_5		1			-1			<=	30
8	x_2_4		1		-1				<=	2
9	x_5_7					1		-1	<=	2
10	x_4_7				1			-1	<=	50
11	x_4_3			-1	1				<=	2
12	x_3_6			1			-1	(こ数据 に	競术师
13	x_6_7						1	-1	tps://aKचु.csdn.	net/HsinglukLiu

按照上面那个关系图中的信息,我们可以确定,对偶变量 π_i 都是无约束的,我们用 = 表示, Dual Problem 中的约束都是 \leq 的。这样,对偶就完成了。

但是,这还是一个具体的算例的 Dual ,我们需要将这个具体的算例,通过提取信息整理,化成一个 general的公式形式。

将Excel中的Dual tabular转化成公式形式

我们观察上图,每一行都对应一条弧 $(i,j) \in A$,例如第一行是(1,2),第二行是(1,4)等。可以看到,对应出发点的变量系数全是1,对应终点的系数全是-1,无一例外,因此,我们可以断定,这个约束可以这么写:

$$\pi_i - \pi_j \leqslant d_{ij}, \qquad orall (i,j) \in A$$

结合目标函数,以及变量的符号,我们可以写出 SPP 的对偶问题:

 \max $\dfrac{\pi_s - \pi_t}{\pi_i - \pi_j \leqslant d_{ij}},$ $\forall (i,j) \in A$

大功告成,怎么样, 有没有点内味了

接下来,我们啃一个稍微难啃一些的骨头 Multicommodity Network Flow Problem.

Dual Problem :Multicommodity Network Flow Problem(最短路问题)

Dual Problem : Multicommodity Network Flow

这个问题相比 SPP 难度还是大挺多的。我们首先上数学模型。

看看吧,又有什么if $i=s_k$ 之类的,变量还是 x_{ij}^k 你尝试自己先写一下,是不是觉得 \mathbf{m} 瓜子嗡嗡的 ,哈哈哈。

具体算例

都不是事儿,咱一起来刚一下。同样的把文献[^2]中的算例原模原样搬过来看看(当然图还是我自己画的)

我们考虑有两个commodity:

```
commodity = [[1, 7, 25], # s_i, d_i, demand
[2, 6, 2]
]
```

本来想把代码也放上的,感觉太多了,有需要的话,大家私信我,我在修改把代码放上来。

然后我们按照模型和算例网络结构, 把模型具体的写出来, 如下图所示

org, 1_0	1		1		1																=	25	pi_1
inter, 2_0	-1						1		1												=	0	pi_2
inter, 3_0					-1										-1		1				=	0	pi_3
inter, 4_0			-1						-1				1		1						=	0	pi_4
inter, 5_0							-1				1										=	0	pi_5
inter, 6_0																	-1		1		=	0	pi_6
des, 7_0											-1		-1						-1		=	-25	pi_7_
inter, i_i		1		1		1															=	0	pi_1_
org, 2_1		-1						1		1											=	2	pi_2
inter, 3_1						-1										-1		1			=	0	pi_3
inter, 4_1				-1						-1				1		1					=	0	pi_4_
inter, 5_1								-1				1									=	0	pi_5
des, 6_1																		-1		1	=	-2	pi_6
inter, 7_1												-1		-1						-1	=	0	pi_7
capacity, 1,2	1	1																			<=	15	mu_1_
capacity, 1,4			1	1																	<=	25	mu_1_
capacity, 1,3					1	1															<=	45	mu_1
capacity, 2,5							1	1													<=	60	mu_2
capacity, 2,4									1	1											<=	2	mu_2
capacity, 5,7											1	1							00	3121	L-E		au_5_
capacity, 4,7													1	1					0.	147V		EL 202	nu_4
capacity, 4,3															1	1				1 2/2	1,5=1	2	mu_4_
capacity, 3,6																	1	1			<=	50	mu_3
capacity, 6,7																			1	1	<=	DETERMINE THE	mu ó

第二行的变量 \mathbf{x}_{-1} _2_0就代表 \mathbf{x}_{ii}^k ,其中 $\mathbf{0}$ 代表 \mathbf{k} 。

这个看上去不太有规律,我们按照commodity k把上面的表格整一下,变成:

现在看上去就比较清楚了。我们仍然把这个表格叫做 Primal Tabular .接下来我们按照同样的方法,根据 Primal Tabular 生成 Dual Tabular ,如下图

将Excel中的Dual tabular转化成公式形式

为了区分u和 μ ,表格中的mu我就用 λ 代替了,因为表格中写mu省地儿。 所以大家注意 λ_{ij} 就是上面表格中的mu

$$egin{aligned} \max \sum_{k \in K} d_k ig(\pi_{i=s_k}^k - \pi_{i=t_k}^kig) + \sum_{(i,j) \in A} u_{ij} \lambda_{ij} \ \pi_i^k - \pi_j^k + \underline{\lambda_{ij}} \leqslant c_{ij}^k, & orall k \in K, orall (i,j) \in A \ \pi_i^k & ext{free}, & orall k \in K, orall i \in V \ \lambda_{ij} \leqslant 0, & orall (i,j) \in A \end{aligned}$$

当然了,按照国际惯例(搞OR大佬的惯例),我们还是跟之前我写的讲 SPP 对偶的博文 https://blog.csdn.net/HsinglukLiu/article/details/107834197中的操作一样:

- 1. 将所有对偶变量 π_i^k 取相反数
- 2. 把原约束中 $\pi_i^k \pi_j^k$ 改成 $\pi_j^k \pi_i^k$
- 3. 将 $\pi_{i=s_k}^k$ 设置成0,也就是 $\pi_{i=s_k}^k=0$

这三个隐含小动作,大佬是不会在论文里面写的,要是没仔细钻研,你一般会一头雾水。

OK,按照国际惯例操作完后,最终 Multicommodity Network Flow Problem 模型的 Dual Problem 就变成了下面的样子

$$egin{aligned} \max \sum_{k \in K} d_k \pi_{i=t_k}^k + \sum_{(i,j) \in A} u_{ij} \lambda_{ij} \ \pi_j^k - \pi_i^k + \underline{\lambda_{ij}} \leqslant c_{ij}^k, & orall k \in K, orall (i,j) \in A \ \pi_i^k & ext{free}, \pi_{s_k}^k = 0, & orall k \in K, orall i \in V \ \lambda_{ij} \leqslant 0, & orall (i,j) \in A \end{aligned}$$

OK,所有的动作都完成了。一块硬骨头啃完了。

Python调用Gurobi求解Multicommodity Network Flow Problem (仅原问题)

Problem (汉居印题)

最后再附上求解这个问题的Python代码(对偶问题的不想写了)

.

```
,'5,7': [2, 2]
        ,'4,7': [50, 100]
        ,'4,3': [2, 2]
        ,'3,6': [25, 50]
        ,'6,7': [1, 1]
Arcs
Nodes = [1, 2, 3, 4, 5, 6, 7]
commodity = [[1, 7, 25], # s_i, d_i, demand
            [2, 6, 2]
1
model = Model('MultiCommodity')
# add variables
X = \{\}
for key in Arcs.keys():
   for k in range(len(commodity)):
       key_x = key + ', ' + str(k)
        X[key_x] = model.addVar(lb=0
                                ,ub=Arcs[key][1]
                                ,vtype=GRB.CONTINUOUS
                                ,name= 'x_' + key_x
# add objective function
obj = LinExpr(0)
for key in Arcs.keys():
    for k in range(len(commodity)):
        key x = key + ', ' + str(k)
        obj.addTerms(Arcs[key][0], X[key_x])
model.setObjective(obj, GRB.MINIMIZE)
# constraints 1
for k in range(len(commodity)):
    for i in Nodes:
        lhs = LinExpr(0)
        for key_x in X.keys():
             nodes = key x.split(',')
            if(i == (int)(key_x.split(',')[0]) and k == (int)(key_x.split(',')[2])):
                lhs.addTerms(1, X[key_x])
```

```
if(i == (int)(key_x.split(',')[1]) and k == (int)(key_x.split(',')[2])):
                lhs.addTerms(-1, X[key_x])
        if(i == commodity[k][0]):
            model.addConstr(lhs == commodity[k][2], name='org_, ' + str(i) + '_' + str(k))
        elif(i == commodity[k][1]):
            model.addConstr(lhs == -commodity[k][2], name='des_, ' + str(i) + '_' + str(k))
        else:
            model.addConstr(lhs == 0, name='inter_, ' + str(i) + '_' + str(k))
# constraints 2
for key in Arcs.keys():
    lhs = LinExpr(0)
    for k in range(len(commodity)):
        key_x = key + ', ' + str(k)
        lhs.addTerms(1, X[key_x])
    model.addConstr(lhs <= Arcs[key][1], name = 'capacity_, ' + key)</pre>
model.write('Multicommodity_model.lp')
model.optimize()
for var in model.getVars():
    if(var.x > 0):
        print(var.varName, '\t', var.x)
dual = model.getAttr("Pi", model.getConstrs())
```

原问题求解结果如下:

```
Solved in 0 iterations and 0.01 seconds
Optimal objective 1.873000000e+03
x_1, 2, 0
        2.0
x 1,4,0
        22.0
x 1,3,0
        1.0
x_2,5,0
        2.0
x_2, 4, 1
        2.0
x_{5,7,0}
        2.0
x_4,7,0 22.0
x_4,3,1
        2.0
x_3,6,0
        1.0
x_3,6,1
        2.0
x 6,7,0
```

对偶问题求解

○ 后记 •

硕士的时候搞这个搞了几天,还请教了我师兄挺多。师兄的研究 Robust Service Network Design 的文章里也用到了类似这样问题的对偶,发了 Transportation Science ,我把文章也贴在这里,欢迎大家去读一读,做的非常好[^3]。可以看到,这样的技巧在科研中还是有用武之地的。

[1]:Garg, N., & Koenemann, J. (2007). Faster and simpler algorithms for multicommodity flow and other fractional packing problems. SIAM Journal on Computing, 37(2), 630-652https://doi.org/10.1137/S0097539704446232

[2]:Cappanera, P., & Scaparra, M. P. (2011). Optimal allocation of protective resources in shortest-path networks. Transportation Science, 45(1), 64-80.http://dx.doi.org/10.1287/trsc.1100.0340

[3]:Wang, Z., & Qi, M. (2020). Robust service network design under demand uncertainty. Transportation Science, 54(3), 676-689.https://doi.org/10.1287/trsc.2019.0935

- END -

文案&编辑: 刘兴禄 (清华大学清华伯克利深圳学院2018级博士生)

审稿人: 周航 (华中科技大学管理学院本科一年级)

如对文中内容有疑问,欢迎交流。PS:部分资料来自网络。

如有需求,可以联系:

秦虎老师(华中科技大学管理学院: professor.qin@qq.com)

刘兴禄 (清华大学清华伯克利深圳学院2018级博士生: hsingluk.L@gmail.com, xlliu2015@163.com)

周航 (华中科技大学管理学院本科一年级: zh20010728@126.com)

欢迎大家加入数据魔术师粉丝群,我们的活动将会通过粉丝群优先发布, 学习资料将通过粉丝群分享。

欲入群, 请转发此文, 然后扫描下方二维码联系数据魔术师小助手

