Lecture Notes: Real Analysis — Set Theory Revision and Least Upper Bound Property (Course: MIT 18.100A)

Thobias K. Høivik

March 16, 2025

Cardinalities

Theorem 1 (Cantor's Theorem). If A is a set, then |A| < |P(A)|.

Proof. Let A be a set. Define $f: A \to P(A)$ by $f(x) = \{x\}$. We can see that f is injective:

$$f(x) = y(x)$$
$$\{x\} = \{y\}$$
$$x = y$$

thus f is injective which implies

$$|A| \le |P(A)|$$

Now we shall show that $|A| \neq |P(A)|$. By contradiction suppose |A| = |P(A)|. Then \exists bijective function $g: A \to P(A)$. Define a subset $B \subset A$ by $B = \{x \in A : x \notin g(x)\}$. Then by the definition of the powerset we have $B \in P(A)$. Since g is surjective, $\exists b \in A$ such that g(b) = B.

Case 1:

$$b \in g(b) = B \Rightarrow b \in B$$
$$\Rightarrow b \notin g(b)$$

Case 2:

$$b \notin g(b) \Rightarrow b \in B$$

 $b \in g(b)$

Thus we have arrived at a contradiction $b \in g(b) \Leftrightarrow b \notin g(b)$ by our assumption and so it cannot be true. Thus

$$|A| \neq |P(A)|$$

$$|A| \le |P(A)| \land |A| \ne |P(A)|$$
$$\Rightarrow |A| < |P(A)|$$

The Reals and Order Relations

We will now restate the definition of the real numbers, slightly differently from before, as a theorem rather than a definition.

Theorem 2 (Real Numbers). There exists a unique ordered field containing \mathbb{Q} with the least upper bound property, which we denote by \mathbb{R} .

We shall not go through the process of proving this theorem at this time, but rather explore the properties of \mathbb{R} .

Ordered Sets

Definition 1 (Ordered Set). An ordered set is a set S with a relation < such that

- 1. $\forall x, y \in S : x = y \lor x < y \lor y < x$
- 2. If x < y and y < z then x < z, i.e the relation is transitive.

Examples:

For $m, n \in \mathbb{Z}$, m < n if $m - n \in \mathbb{Z}$.

For $q, r \in \mathbb{Q}$, q < r if $\exists m, n \in \mathbb{N}$ s.t $r - q = \frac{m}{n}$.

Non-Example:

Let S be a subset $S = P(\mathbb{N})$. We define the relation R, where $(A, B) \in R$ if $A \subset B$. Clearly this is transitive, but property one is not satisfied because, for example $\{0\} \neq \{1\}$, and neither $(\{0\}, \{1\}) \notin R$ nor $(\{1\}, \{0\}) \notin R$.

Bounds

Recall the concepts of bounds, supremum and infimum.

Examples:

Let $S = \mathbb{Z}$, $E = \{-1, 0, 2\} \subset S$. Examples of upper- and lower bounds would be $2, 3, 4, \ldots$, and $\ldots, -2, -1$, respectively. The supremum sup(E) would be 2 and the infimum inf(E) would be -1.

Let $S = \mathbb{Q}$ and $E = \{q \in \mathbb{Q} : 0 \le q \le 1\}$. Upper bounds: $1, \frac{3}{2}, \frac{5}{3}, \ldots$, and lower bounds: $0, -1, -\frac{2}{3}, \ldots$ Supremum sup(E) = 1 and infimum inf(E) = 0.

Least Upper Bound Property

Definition 2. An ordered set S has the least upper bound property if every nonempty $E \subset S$ which is bounded above has a supremum in S.

A trivial example of this is $S = \{0\}$ where every nonzero subset is the set itself and so every supremum lies in S.

Example:

 $S = \{-1, -2, -3, \dots\}$ with the regular ordering relation found in the integers. If $E \subset S$, E nonempty then $-E = \{-x : x \in E\} \subset \mathbb{N}$. By the well-ordering property of the natural

numbers, there exists $m \in -E$ such that $\forall x \in E : m \le -x \Rightarrow -m \in E$ and $\forall x \in E : x \le -m \Rightarrow -m$ is the supremum of E.

Proposition 1. \mathbb{Q} does not have the least upper bound property.

Proof. Consider the set

$$E = \{ q \in \mathbb{Q} \mid q > 0 \text{ and } q^2 < 2 \}.$$

The set E is nonempty since, for example, q = 1 belongs to E. Moreover, E is bounded above in \mathbb{Q} by any rational number greater than $\sqrt{2}$, such as r = 2.

We claim that E has no least upper bound in \mathbb{Q} . First, observe that for all $q \in E$, we have $q < \sqrt{2}$, so any least upper bound of E in \mathbb{R} must be $\sup(E) = \sqrt{2}$. However, since $\sqrt{2} \notin \mathbb{Q}$, $\sup(E)$ cannot be a rational number.

Suppose for contradiction that E has a least upper bound $s \in \mathbb{Q}$. Then $s \geq q$ for all $q \in E$, and for any $\mathcal{E} > 0$, there exists some $q \in E$ with $s - \epsilon < q$. If $s = \sup(E)$, then we must have $s^2 = 2$. However, no rational number satisfies this equation, contradicting our assumption that s is rational. Thus, E has no least upper bound in \mathbb{Q} , proving that \mathbb{Q} does not satisfy the least upper bound property.