Optimization of Hybrid Power Plants: When Is a Detailed Electrolyzer Model Necessary?

Manuel Tobias Baumhof, Enrica Raheli, Andrea Gloppen Johnsen, and Jalal Kazempour Department of Wind and Energy Systems, Technical University of Denmark, Kgs. Lyngby, Denmark {mtba, enrah, anglopj, jalal}@dtu.dk

ONLINE COMPANION

The following companion is supplementary to the paper *Optimization of Hybrid Power Plants: When Is a Detailed Electrolyzer Model Necessary?* and provides the mathematical formulations of the MILP models with only two states (namely On-Off and On-Standby) in Section A and B, respectively. These are simplified models compared to the one proposed in Section III with three states of the electrolyzer. All nomenclature is defined in the main paper.

A. The Simplified MILP with On-Off States

This Section provides the MILP where the on and off states of the electrolyzer are only modeled.

(1.21)

 $\Omega = \{d_t, h_t, h_t^{d}, p_t, p_t^{c}, \hat{p}_{ts}^{e}, s_t^{in}, s_t^{out}, z_t^{su}, z_{ts}^{h}, z_t^{oo}\}.$

B. The Simplified MILP with On-Standby States

This Section presents the simplified MILP taking into account only the on and standby states of the electrolyzer.

$$\max_{\Gamma} \sum_{t \in T} p_t \lambda_t^{\text{DA}} + d_t \lambda^{\text{h}} - p_t^{\text{in}} \lambda_t^{\text{in}}$$
 (2.1) s.t. $p_t = P_t^{\text{w}} + p_t^{\text{in}} - p_t^{\text{e}} - p_t^{\text{c}}$ $\forall t \in \mathcal{T},$ (2.2) $p_t^{\text{in}} \leq P^{\text{sb}}(1 - z_t^{\text{os}})$ $\forall t \in \mathcal{T},$ (2.3) $p_t^{\text{e}} \leq C^{\text{e}} z_t^{\text{os}} + P^{\text{sb}}(1 - z_t^{\text{os}})$ $\forall t \in \mathcal{T},$ (2.4) $p_t^{\text{e}} \geq P^{\min} z_t^{\text{os}} + P^{\text{sb}}(1 - z_t^{\text{os}})$ $\forall t \in \mathcal{T},$ (2.5) $h_t = \sum_{s \in S} (A_s \hat{p}_{ts}^{\text{e}} + B_s z_{ts}^{\text{h}})$ $\forall t \in \mathcal{T},$ (2.6) $P_s z_{ts}^{\text{hs}} \leq \tilde{p}_{ts}^{\text{e}} \leq P_s z_{ts}^{\text{h}}$ $\forall t \in \mathcal{T},$ (2.8) $p_t^{\text{e}} = \sum_{s \in S} z_{ts}^{\text{h}}$ $\forall t \in \mathcal{T},$ (2.9) $p_t^{\text{e}} = \sum_{s \in S} p_{ts}^{\text{e}} + P^{\text{sb}}(1 - z_t^{\text{os}})$ $\forall t \in \mathcal{T},$ (2.10) $p_t^{\text{e}} = h_t^{\text{d}} + s_t^{\text{in}}$ $\forall t \in \mathcal{T},$ (2.11) $p_t^{\text{cut}} \leq S^{\text{out}}$ $\forall t \in \mathcal{T},$ (2.12) $p_t^{\text{e}} = K^c s_t^{\text{in}}$ $\forall t \in \mathcal{T},$ (2.13) $s_{t=1} = S^{\text{ini}} + s_{t=1}^{\text{in}} - s_{t=1}^{\text{out}}$ $\forall t \in \mathcal{T},$ (2.14) $s_t \leq S^{\text{out}}$ $\forall t \in \mathcal{T},$ (2.15) $s_t \leq C^s$ $\forall t \in \mathcal{T},$ (2.16) $p_t^{\text{e}} \leq K^c s_t^{\text{in}}$ $\forall t \in \mathcal{T},$ (2.17) $p_t^{\text{e}} = K^c s_t^{\text{in}}$ $\forall t \in \mathcal{T},$ (2.18) $p_t^{\text{e}} \leq C^s = S^s$ $p_t^{\text{e}} \leq P^s$ $p_t^$

(2.20)

 $\Gamma = \{d_t, h_t, h_t^{d}, p_t, p_t^{c}, p_t^{in}, \hat{p}_{ts}^{e}, s_t^{in}, s_t, s_t^{out}, z_t^{su}, z_t^{os}\}.$