RESULTADO DE APRENDIZAJE

RdA de la asignatura:

• **RdA 3:** Resolver problemas prácticos mediante el uso de modelos de aprendizaje automático, ajustándolos para la mejora de su rendimiento y precisión.

RdA de la actividad:

- Comprender los conceptos de validación cruzada y su importancia en la evaluación de modelos.
- Aplicar técnicas de optimización de hiperparámetros (Grid Search y Random Search) en modelos de aprendizaje automático.
- Implementar el guardado y carga de modelos entrenados para reutilización.
- Diseñar un esquema de trabajo estructurado para proyectos de aprendizaje automático.

INTRODUCCIÓN

Pregunta inicial: ¿Cómo evaluamos correctamente un modelo para asegurarnos de que no está sobreajustado o subajustado?

DESARROLLO

Actividad 1: Validación cruzada

Esta actividad se centra en comprender la validación cruzada y su importancia en la evaluación de modelos. Se explorarán diferentes tipos de validación cruzada y su impacto en las métricas de desempeño del modelo.

¿Cómo lo haremos?

- Clase magistral: Se cubrirán los siguientes conceptos clave:
 - Propósito de la validación cruzada.
 - Tipos de validación cruzada: hold-out, K-Fold y LOOCV.
 - Ventajas y desventajas de cada tipo.
- Implementación en Python: Los estudiantes accederán a un cuaderno de Jupyter preparado con ejemplos sobre validación cruzada.

Enlace al cuaderno: 21-Validación Cruzada.ipynb.

Andrés Merino Clase 18: Validación cruzada y Optimización de Hiperparámetros

Verificación de aprendizaje:

- ¿Qué ventajas tiene el uso de K-Fold sobre el hold-out?
- ¿Cómo afecta el tamaño de k en la validación cruzada?
- ¿Por qué es importante medir la variabilidad en los resultados de validación cruzada?

Actividad 2: Optimización de hiperparámetros

Esta actividad introduce las técnicas de optimización de hiperparámetros, como Grid Search y Random Search. Los estudiantes aprenderán a configurar búsquedas de hiperparámetros y a evaluar sus resultados.

¿Cómo lo haremos?

- Clase magistral: Se cubrirán los siguientes temas:
 - Diferencia entre parámetros aprendidos e hiperparámetros.
 - Importancia de la optimización de hiperparámetros.
 - Grid Search: concepto y configuración.
 - Random Search: concepto, ventajas y configuración.
 - Comparación entre ambos métodos: eficiencia y uso.
- Implementación en Python: Los estudiantes explorarán un cuaderno de Jupyter con ejemplos prácticos de Grid Search y Random Search.

Enlace al cuaderno: 22-Optimización de Hiperparámetros.ipynb.

Verificación de aprendizaje:

- ¿Cuáles son las principales diferencias entre Grid Search y Random Search?
- ¿Cómo afecta la validación cruzada en la búsqueda de hiperparámetros?
- ¿En qué casos sería más eficiente usar Random Search en lugar de Grid Search?

Actividad 3: Guardado y lectura de modelos

Esta actividad aborda la importancia de guardar y cargar modelos entrenados para evitar costos computacionales y asegurar reproducibilidad.

¿Cómo lo haremos?

- Clase magistral: Se discutirán los siguientes temas:
 - Beneficios de guardar modelos: eficiencia y despliegue.
 - Métodos de serialización: pickle y joblib.
 - Buenas prácticas al guardar modelos (compatibilidad y versiones de librerías).

Clase 18: Validación cruzada y Optimización de Hiperparámetros Andrés Merino

- Precauciones al cargar modelos en diferentes entornos.
- Implementación en Python: Los estudiantes practicarán con un cuaderno de Jupyter que incluye ejemplos sobre cómo guardar y cargar modelos entrenados.

Enlace al cuaderno: 21-Guardado y Lectura de Modelos.ipynb.

Verificación de aprendizaje:

- ¿Cuáles son las diferencias entre pickle y joblib?
- ¿Qué problemas pueden surgir al cargar un modelo en otro entorno?
- ¿Cómo podrías manejar cambios de versiones en las librerías usadas para entrenar un modelo?

Actividad 4: Esquema de trabajo para proyectos de Aprendizaje Automático

Esta actividad guía a los estudiantes en el diseño de un flujo de trabajo completo para proyectos de Aprendizaje Automático, destacando las mejores prácticas y cada etapa clave del proceso.

¿Cómo lo haremos?

• Clase magistral: Se cubrirá el flujo de trabajo típico en Aprendizaje Automático, del cuadro 1.

Verificación de aprendizaje:

- ¿Qué pasos son imprescindibles en un flujo de trabajo de Aprendizaje Automático?
- ¿Cómo garantizas la reproducibilidad en cada etapa del proceso?
- ¿Qué herramientas y librerías usarías para automatizar este esquema?

CIERRE

Pregunta de investigación:

1. ¿Qué métodos avanzados de optimización de hiperparámetros existen (como Bayesian Optimization) y en qué casos podrían ser útiles?

Para la próxima clase: Ya no hay próxima clase: C

Andrés Merino Clase 18: Validación cruzada y Optimización de Hiperparámetros

Paso	Detalle	Datos
Limpieza de datos	Manejar valores faltantes, duplicados y atípicos según el contexto del problema.	Completo
Análisis exploratorio	Visualiza distribuciones, correlaciones y patrones en los datos para entender su estructura.	Completo
Selección de atributos (opcional)	Elige atributos relevantes usando técnicas esta- dísticas, de importancia de modelos o reducción de dimensionalidad. Puede ubicarse aquí o en otros puntos.	Completo
Separar train-test	Divide los datos en entrenamiento y prueba.	Completo
Benchmark inicial	Entrena varios modelos usando train y evalúa su desempeño en test.	Train y Test
Seleccionar modelos	Elige los mejores modelos según el benchmark inicial.	
Validación cruzada y ajus- te de hiperparámetros	Realiza búsqueda de hiperparámetros junto con validación cruzada para los modelos seleccionados.	Train
Seleccionar mejor mode- lo	Escoge el modelo más prometedor tras la validación cruzada.	
Evaluar en test	Evalúa el modelo seleccionado en el conjunto de prueba.	Test
Reentrenar con todos	Reentrena el modelo final con todos los datos (train + test combinados).	Completo
Guardar modelo	Serializa el modelo para despliegue en producción.	

Cuadro 1: Esquema de trabajo para proyectos de Aprendizaje Automático.