Name: Harshit Jain Access ID: hmj5262

Recitation: 8

Problem 0 Points:

Acknowledgements

- (a) I did not work in a group.
- (b) I did not consult without anyone my group members.
- (c) I did not consult any non-class materials.

Problem 1

Points:

Solving recurrences

$$T(n) = aT(n/b) + \theta(n^d)$$

- (a) Here, d=1.3 and $\log_b a = \log_5 11 = 1.48$ So, $\log_b a > d$, we will use case-3 of Master's Theorem: $T(n) = \theta(n^{\log_5 11}) = \theta(n^{1.48})$
- (b) Here, d=2.8 and $\log_b a=\log_2 6=2.58$ So, $d>\log_b a$, we will use case-1 of Master's Theorem: $T(n)=\theta(n^{2.8})$
- (c) Here, d=0 and $\log_b a = \log_3 5 = 1.46$ So, $\log_b a > d$, we will use case-3 of Master's Theorem: $T(n) = \theta(n^{\log_3 5}) = \theta(n^{1.46})$
- (d) $T(n) = T(n-2) + \log(n)$ $= [T(n-4) + \log(n-2)] + \log(n)$ $= [T(n-6) + \log(n-4)] + \log(n-2) + \log(n)$ \vdots $= [T(n-k) + \log(n-(k-2))] + \cdots + \log(n-2) + \log(n)$ let k = n, $= T(0) + \log(2) + \cdots + \log(n)$ $= 1 + \log(n!)$ $= \log(n\log(n))$

Sorted Array

Problem 3

Points:

Linear Time Sorting