

ACTIVIDADES PRACTICAS SEMANA 1

- 1. Representación de grafos
 - a) La tabla indica la existencia o no de conexiones de buses desde entre 4 pueblos ¿qué tipo de grafo es el más apropiado para representar la información?

	Pueblo 1	Pueblo 2	Pueblo 3	Pueblo 4
Pueblo 1	NO	SÍ	SÍ	SÍ
Pueblo 2	SÍ	NO	NO	NO
Pueblo 3	SÍ	SÍ	NO	SÍ
Pueblo 4	NO	NO	SÍ	NO

b) La tabla muestra las distancias aéreas entre las ciudades ¿qué tipo de grafo es el más apropiado para representar la información?

	Málag	Madri	Barcelon	Valenci	Sevill	Alicant	Asturias
	а	d	a	а	а	е	
Málaga	0	529	996	618	206	472	974
Madrid	529	0	626	360	530	424	446
Barcelon	996	626	0	349	994	527	889
а							
Valencia	618	360	349	0	656	170	804
Sevilla	206	530	994	656	0	595	779
Alicante	472	424	527	170	595	0	871
Asturias	974	446	889	804	779	871	0

2. Para los grafos que se adjuntan: clasificarlos, indicar matriz de adyacencia y matriz de incidencia:

TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN A DISTANCIA

b)

3. Realizar los grafos correspondientes a partir de las matrices de adyacencia que aquí se presentan:

		A	В	С				В		
$\mathbf{M}_1 = \begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{M}_1 = \begin{array}{cc} \mathbf{A} & \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \end{array}$		A (0	0	1)	$\mathbf{M}_3 =$	A	(0	0	1	0
	$\mathbf{M}_2 = \mathbf{B} \mid 1$			М -	В	1	0	1	0	
	0)	$C \left(1 \right)$	1	0	$\left.\right)$	С	0	1	0	0
						D	$\lfloor 1 \rfloor$	0	0	1

4. Realizar los grafos correspondientes a partir de las matrices de incidencias que aquí se presentan:

TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN A DISTANCIA

5. Se cuenta con la siguiente información:

"Existe un sistema de rutas aéreas en el que cada día hay cuatro vuelos de Boston a Newark, dos vuelos de Newark a Boston, tres vuelos de Newark a Miami, dos vuelos de Miami a Newark, un vuelo de Newark a Detroit, dos vuelos de Detroit a Newark, tres vuelos de Newark a Washington, dos vuelos de Washington a Newark y un vuelo de Washington a Miami."

Diseñe un grafo, suponiendo estas distintas alternativas:

- a) Se representa una arista conectando cada par de vértices que representan ciudades para las que hay algún vuelo de la una a la otra (en cualquiera de los dos sentidos).
- b) Hay una arista que sale de cada vértice asociado a una ciudad de la que despega algún vuelo y que llega al vértice correspondiente a la ciudad en que aterriza el vuelo.
- c) Hay una arista que sale de cada vértice asociado a una ciudad de la que despega algún vuelo y que llega al vértice correspondiente a la ciudad en que aterriza el vuelo. Más una excursión turística que despega y aterriza en Miami y otra que despega y aterriza en Washington
- d) Hay una arista por cada vuelo que sale del vértice que representa a la ciudad en que se inicia el vuelo y llega al vértice que representa a la ciudad en que aterriza.