Follow-up Exam 7

Graded

Student

Ivan Wang

Total Points

0 / 0 pts

Question 1

Question Sheet 0 / 0 pts

✓ - 0 pts See handwritten grades and comments on paper.

Name: Ivan Wang

Student #: 50414321

Ivalite. 2047	
T1	I2
I1	12
	l i
I	1
	l 1
	l
113	114
I3	I4
13	
13	
13	
13	
13	
13	
13	
13	
13	I4
13	
13	
13	
13	14
13	
13	
13	14

I5	
	Þ
I6	
-	
	*2
	-
AI1	
	9 9 9

AI2 $\int \frac{x^{3}}{14-x^{2}} dx \qquad \int \frac{(2\sin\theta)^{3}}{2\cos\theta} \cdot 2\cos\theta d\theta$ $\int \frac{2}{14-x^{2}} dx \qquad \int \frac{(2\sin\theta)^{3}}{2\cos\theta} \cdot 2\cos\theta d\theta$ $\int \frac{2}{2\cos\theta} dx \qquad \int \frac{(2\sin\theta)^{3}}{2\cos\theta} d\theta$ $\int \frac{2}{2\cos\theta} dx \qquad \int \frac{(2\sin\theta)^{3}}{2\cos\theta} d\theta$ $\int \frac{2}{2\cos\theta} dx \qquad \int \frac{(2\sin\theta)^{3}}{2\cos\theta} d\theta$ $\int \frac{(2\sin\theta)^{3}}{2\cos\theta} \cdot 2\cos\theta d\theta$ $\int \frac{(2\sin\theta)^{3}}{2\cos\theta} \cdot 3\cos\theta d\theta$ $\int \frac{(2\sin\theta)^{$

AI3

AI4 $\frac{1}{5} |n| 5 \times 121 + \frac{1}{5} \left(\frac{1}{5} (5 \times 12)^{\frac{1}{3}} \right) + \frac{2}{5} |n| x^{2} + \frac{1}{6} + \frac{1}{$

AI5

AI6	S1		
		ş	
	1		
S2			
I			

S3	S4
	* *
	1
	.1
	1
i	
S5	ST1
	4
	4
	.1
	i i

ST2 \(\frac{1}{3n+4} \) \(\frac{1}{3n+4} \) f(x) > (3x14)7/2 P /Continus? Yes radical in denomber positive? Yes Need antideportative
by 6 36+47/2 - 3+4 decreasing? 1 4 x, L x 2 $(3x_1+4)^{7/2}$ $(3x_2+4)^{7/2}$ (3,44) 1/2 (3,44) 1/2 Conversat be the finit exist in the imporpor integral e Since the improper integral is converget and f(x) >f(x2) we can conclude that the series is conversed by the integral test.

ST3

ST4 $\underset{h=1}{\overset{6}{\sim}} \frac{6n^2+3n+1}{5n^3+7n+6}$ $\underset{h=1}{\overset{6}{\sim}} \frac{6n^2}{5n^3}$ $\underset{h=1}{\overset{6}{\sim}} \frac{6n^2}{5n^3}$ $\underset{h=1}{\overset{6}{\sim}} \frac{6n^2}{5n^3+7n+6}$ $\underset{h=1}{\overset{6}{\sim}} \frac{6n^2}{5n^3}$ $\underset{h=1}{\overset{$ 1 in the lime of the series of

 $\frac{8}{1000} \left(-10^{n-1} \frac{n^2 \cdot (4^n)}{n!} \right) \frac{1}{1000} \left[\frac{1}{1000} \frac{1}$ If L > 1 series (envergent)

If L > 1 series divergent

If L > 1 series divergent

If L > 1 series incordaine)

I'm (unti) 4 h

Size im [anti-an] = 0 < 1, h

the series is convergent from $\frac{1}{1}$ $\frac{1}{1$

ST8
$$\leq (-1)^{N} \frac{4n^{2}+3n+1}{n^{4}+6n^{2}+n}$$
 $\leq (-1)^{N} \frac{4n^{2}+3n+1}{n^{4}+6n^{2}+n}$ $\leq (-1)^{N} \frac{4n^{2}+3n+2}{n^{4}+6n^{2}+n}$ $\leq (-1)^{N} \frac{4n^{2}+3n+2}{n^{4}+6n^{2}+n}$ $\leq (-1)^{N} \frac{2^{N}(n^{4}+6n^{2}+n)}{n^{4}}$ $\leq (-1)^{N} \frac{2^{N}($

Check endpoints
$$x = \frac{5}{2} - \frac{5}{2} = \frac{5}{2} - \frac{5}{2} = \frac{5}{2} - \frac{5}{2} = \frac{5}{2} - \frac{5}{2} = \frac{5}$$

$$\chi = \frac{7}{2} - 7 \stackrel{60}{\underset{N=1}{\text{N}}} (-1)^{\frac{1}{2}} \frac{2^{n} (\frac{7}{2} - 3)^{\frac{1}{2}}}{N^{\frac{1}{3}}} = \frac{(-1)^{\frac{n}{2}} 2^{\frac{n}{3}} (\frac{7}{3})^{\frac{n}{3}}}{N^{\frac{1}{3}}}$$

$$\frac{1}{1+x} = \frac{3x^2}{4+(2x)}$$

$$\frac{1}{1-x} = \frac{8}{2} \times n$$

