Template for Thesis Proposal

Feng Gu

July 31, 2025

Contents

1		liminary exploration	2			
	1.1	Collect comparable data	2			
	1.2	Pre-process taxa data	3			
	1.3	Assess sediment contamination	4			
	1.4	Identify reference and degraded sites	5			
	1.5	Cluster reference sites by community composition	5			
	1.6	Build a discriminant model for habitat classification	7			
	1.7	Construct endpoints and compute ZCI via ordination	8			
	1.8	Evaluate the ZCI vs SumRel relationship by quantile regression	10			
2 Appendix						
	2.1	Tables	13			

1 Preliminary exploration

In this section, I implemented a simplified framework of Jian's analysis of the ZCI-stress score relationship using the quantile regression.

1. Collect comparable data.

I currently have three datasets: zoobenthic community data (311×16) , chemical data (104×30) , and environmental data (289×7) . These datasets were merged by station ID, resulting in a combined dataset with 104 rows and 53 columns, containing all three types of data. Column indices were structured by data type to improve readability and consistency for future processing.

2. Pre-process taxa data.

The zoobenthic dataset has issues such as small sample size and potential outliers. I used the IQR method to detect outliers and then applied octave transformation, as suggested in Jian's analysis, to reduce their impact. The transformed data showed fewer outliers and a more even distribution.

3. Assess sediment contamination.

Instead of standardization, I applied log-transformation to the chemical data to reduce dominance by high-value variables. Then I conducted PCA and selected principal components based on variance explained, pollutant specificity, and balanced loadings. These selected components were normalized and summed (with attention to loading directions) to produce a composite "SumReal" score reflecting sediment contamination. This score was added to the dataset as an indicator of stress level.

4. Identify reference and degraded sites.

Sites were classified by their stress scores. The bottom 20% were considered minimally disturbed (reference sites), and the top 20

5. Cluster reference sites by community composition.

Since taxa composition varies even among reference sites, clustering was applied to identify dominant community patterns under undisturbed conditions. These clusters represent "normal" taxa structures, each likely shaped by distinct environmental conditions.

6. Build a discriminant model for habitat classification.

A discriminant model was trained to predict cluster membership using environmental variables from reference sites. This model was applied to all sites, assigning each to one of the community clusters. This setup allows comparisons between reference and degraded sites within the same habitat type to define "best" and "worst" endpoints.

7. Construct endpoints and compute ZCI via ordination.

Within each cluster, endpoints were constructed using mean taxa abundances from the most reference-like and most degraded sites. These endpoints were used in Bray-Curtis ordination to assign scores to each site, scaled between 0 (worst) and 1 (best) to compute the Zoobenthic Condition Index (ZCI). I do not yet fully understand the ordination method used, and I plan to explore whether a vector-based ZCI might provide a more accurate assessment.

8. Evaluate the ZCI vs SumRel relationship by quantile regression.

I plotted ZCI against SumRel and applied quantile regression to examine their relationship.

1.1 Collect comparable data

Currently, there are three available datasets(matrices): zoobenthic community data(311 by 16), chemical data(104 by 30) and environmental data(289 by 7). These metrices can be merged by the station ID, which gives a comparable dataset with 104 rows and 53 columns.

After merging the three data set on station IDs that are common to all three set, there is completed matrix with **104 rows and 53 columns** from the three variable types. ¹

¹The three types(chemical, environmental, taxa) were denoted and stored as a higher column index in the pandas dataframe, which makes the table more readable. Later, the results from upcoming data operations that apply on across all rows will also be stored in this way.

Figure 1: Distribution of the observations with completed three types of data.

1.2 Pre-process taxa data

Small sample size and poor data quality are two common and unignorable issues in the zoobenthic dataset, outliers in the data needs to be transformed or removed to improve the data quality, which helps to eliminate the dominance of outliers in later analysis.

In this stage, I first explored the distribution of the taxa data and detected the outliers by using IQR method. After confirming the existence of outliers, octave transformation was applied on the taxa data, as suggested in Jian's analysis, to reduce the impact of outliers and balance the influence of all taxons.

The octave transformation is applied by the following formula, where the proportion of a taxa of a site it the proportion of the taxa in the total density of all taxa in the site.

$$x_{\text{octave transformed}} = \log_2(100 \times (\text{proportion of taxa} + 0.01))$$

After the transformation, I checked the distribution and outliers again, and there were less outliers and flatter distribution of the taxa data.

—Mathematical coverage of the operation at this stage—

Let $\mathbf{Y} \in \mathbb{R}^{n \times t}$ denote the raw taxa abundance matrix, where n is the number of sites and t is the number of taxa.

Outlier detection: For each taxon j, compute the interquartile range (IQR) of the abundances $\{Y_{ij}\}_{i=1}^n$ and identify outliers as values outside $[Q_1 - 1.5 \cdot \text{IQR}, Q_3 + 1.5 \cdot \text{IQR}]$, where Q_1 and Q_3 are the first and third quartiles.

Octave transformation: For each site i and taxon j, compute the proportion $p_{ij} = \frac{Y_{ij}}{\sum_{k=1}^{t} Y_{ik}}$. The octave-transformed value is:

$$X_{ij} = \log_2 (100 \cdot (p_{ij} + 0.01))$$

where X_{ij} is the transformed abundance for site i, taxon j.

After transformation, the distribution of taxa abundances is more balanced and outliers are reduced.

Figure 2: Boxplots of the octave-transformed taxa data, showing reduced outliers and more balanced distribution.

1.3 Assess sediment contamination

The sediment contamination is assessed by applying PCA on the chemical data. In this work, instead of standardizing the chemical data, log-transformation was applied on the chemical data to reduce the dominance of some chemical variables that have large values. Then, PCA was applied on the transformed chemical data and the distribution of loadings across the chemical variables was visualized by histogram for each principal component for later selecting step.

Not all PCs are used to compute the stress score, there are three criteria to select the suitable PCs:

- Selected PCs should have a relatively high proportion of variance explained(high eigenvalue).
- Selected PCs should have a high loading on the chemical variables that are pollutants and rarely sourced from nature.
- Selected PCs should avoid the counteracting effect due to uniform distributed positive and negative loadings across the chemical variables.

After applying the above criteria, 'PC1', 'PC2', 'PC3', 'PC5', 'PC6', 'PC7', 'PC9' are selected as the suitable PCs.

Based on the selected PCs, I normalized these PCs to the range [0, 1] to eliminate the effect of differing scales (due to their eigenvalues), reflecting the real-world situation that the toxicity of chemical elements is not directly comparable and not always proportional to their concentrations. Subsequently, I summed the normalized PCs, considering the directionality of positive and negative loadings, to obtain the "SumReal" score² for each sample, which serves as a measure of sediment contamination.

After this step, each observation in the dataset has a "stress score" (which is the "SumReal" score as Jian defined in her thesis), the higher the score, the more contaminated the sediment is.

 $^{^2\}mathrm{As}$ done by Jian in her sediment contamination assessment.

—Mathematical coverage of the operation at this stage—

Mathematically, let $\mathbf{X} \in \mathbb{R}^{n \times p}$ denote the log-transformed chemical data matrix, where n is the number of samples and p is the number of chemical variables. Principal component analysis (PCA) is applied to \mathbf{X} to obtain principal components:

$$Z = XW$$

where $\mathbf{W} \in \mathbb{R}^{p \times k}$ contains the loadings of the selected k principal components via the above criteria. Let \mathbf{z}_j denote the j-th selected principal component (column of \mathbf{Z}). Each \mathbf{z}_j is normalized to [0, 1]:

$$\tilde{\mathbf{z}}_j = \frac{\mathbf{z}_j - \min(\mathbf{z}_j)}{\max(\mathbf{z}_j) - \min(\mathbf{z}_j)}$$

The overall sediment contamination score ("SumReal") for sample i is then computed as:

$$SumReal_i/(stress\ score)_i = \sum_{j=1}^k \alpha_j \tilde{z}_{ij}$$

where α_j reflects the directionality (sign) and importance of each PC, to each component z_j it should be set to 1 for PCs mainly with positive loadings on pollutants, and -1 for PCs mainly with negative loadings on pollutants.

Thus, each sample receives a "stress score" $SumReal_i$ that quantifies sediment contamination based on the selected and normalized principal components.

1.4 Identify reference and degraded sites

Based on the "SumReal" score, reference and degraded sites were identified by selecting the lowest 20% and highest 20% of the "stress score", respectively. There selected reference sites will be viewed as minimally disturbed sites, and their taxa compositions will be though as determined completely by the environmental factors.

Therefore, these references will support build a purely tidy model that predicts what a pristine taxa composition should be given a specific set of environmental conditions (if the distribution of the environmental factors is uniform across all possible values or fit to the real world distribution).

—Mathematical coverage of the operation at this stage—

Mathematically, let S_i denote the "SumReal" stress score for site i (i = 1, ..., n). Define the q-th quantile of the stress scores as $Q_q(S)$. The sets of reference sites (\mathcal{R}) and degraded sites (\mathcal{D}) are then defined as:

$$\mathcal{R} = \{i : S_i \le Q_{0,2}(S)\}, \qquad \mathcal{D} = \{i : S_i \ge Q_{0,8}(S)\}$$

where $Q_{0.2}(S)$ and $Q_{0.8}(S)$ are the 20th and 80th percentiles of the stress scores, respectively. Sites in \mathcal{R} are considered minimally disturbed (reference), while sites in \mathcal{D} are considered highly degraded.

1.5 Cluster reference sites by community composition

Given the fact that taxa composition still varies across the reference sites due to the various environmental conditions, applying clustering on the reference sites can help us to identify the major patterns of the taxa composition under the minimal disturbance level.

This clustering results will tell us the major groups of taxa compositions, which should correspond to major types of environmental conditions that help shape the taxa compositions into these groups. A taxa composition falling into one of these groups with the same or similar environmental conditions should be viewed as an approximately "normal" taxa composition, which means it may be minimally disturbed by human activities.

Figure 3: PCA loadings of the chemical data, showing the distribution of loadings across chemical variables.

—Mathematical coverage of the operation at this stage—

Let \mathcal{R} denote the set of reference sites identified previously. For each site $i \in \mathcal{R}$, let $\mathbf{y}_i \in \mathbb{R}^t$ represent its taxa composition vector, where t is the number of taxa.

To identify major patterns among reference sites, we apply a clustering algorithm (e.g., k-means or hierarchical clustering) to the set $\{\mathbf{y}_i : i \in \mathcal{R}\}$. The goal is to partition the reference sites into K clusters $\mathcal{C}_1, \ldots, \mathcal{C}_K$ such that:

$$\mathcal{R} = \bigcup_{k=1}^{K} \mathcal{C}_k, \qquad \mathcal{C}_k \cap \mathcal{C}_l = \emptyset \text{ for } k \neq l$$

and sites within each cluster \mathcal{C}_k have similar taxa compositions.

The resulting clusters C_1, \ldots, C_K represent the major types of minimally disturbed taxa compositions, which can be further analyzed in relation to environmental variables.

Figure 4: Taxa distribution by site label, showing the potential taxa composition differences across different level of sediment contamination.

Figure 5: Clustering results of reference sites by taxa composition, showing the major groups of minimally disturbed taxa compositions.

1.6 Build a discriminant model for habitat classification.

At this stage, a purely tidy model that predicts the taxa composition with given environmental conditions is built. Discriminant function(classification function) was fitted on these reference sites to predict cluster memberships(labels) given their environmental conditions.

Because the response variable is categorical, applying the fitted discriminant function on all sites given their environmental conditions will group the sites into the selected taxa clusters. There are reference and degraded sites within each cluster, they can be used to construct the theoretical best and worst individual in aspects of taxa compositions and stress scores, which will be used for ordination method to get ZCI scores later.

Figure 6: Taxa abundance by cluster, showing the distribution of taxa across different clusters of reference sites.

—Mathematical coverage of the operation at this stage—

Let C_1, \ldots, C_K denote the clusters of reference sites identified by taxa composition. For each site i, let $\mathbf{e}_i \in \mathbb{R}^d$ be its vector of environmental variables, and let $c_i \in \{1, \ldots, K\}$ be its cluster label. A discriminant function $f: \mathbb{R}^d \to \{1, \ldots, K\}$ is trained on the reference sites $\{(\mathbf{e}_i, c_i) : i \in \mathcal{R}\}$ to predict cluster membership from environmental variables:

$$\hat{c}_i = f(\mathbf{e}_i)$$

Applying f to all sites assigns each site to a predicted cluster:

$$\forall i \in \{1, \dots, n\}, \quad \hat{c}_i = f(\mathbf{e}_i)$$

Within each predicted cluster, sites can be further analyzed to compare reference and degraded sites, enabling the construction of theoretical "best" (reference) and "worst" (degraded) taxa compositions and associated stress scores for each habitat type.

1.7 Construct endpoints and compute ZCI via ordination.

After all sites have been assigned to clusters, endpoints need to be constructed within each cluster to construct the "standard" taxa compositions under the lowest(best individual) and highest(worst individual) stress levels.

The **mean abundance** of taxa in a small subset, like 3 to 5, of the reference sites with the lowest "stress score" can be used as the *best* endpoint, and vice versa, the **mean abundance** of a small subset of the degraded sites with the highest "stress score" can be used as the *worst* endpoint.

The *best* and *worst* endpoints are used to perform Bray-Curtis ordination, which is a method to scale the taxa compositions under the lowest and highest stress levels. The ordination results provide scores

Table 1: Discriminant Coefficients

	$Class_1$	$Class_2$	$Class_3$
Intercept	-121.154	-28.769	18.883
Total Organic Carbon (LOI %)	0.394	-0.429	0.156
Water Depth (m)	-0.114	0.110	-0.039
Water Temperature	4.411	0.927	-0.712
Dissolved Oxygen Concentration (mg/L)	1.807	0.722	-0.439
Median Particle Size (Phi)	2.276	1.229	-0.689

Table 2: Classification Report

	precision	recall	f1-score	support
1	0.00	0.00	0.00	1
2	0.00	0.00	0.00	1
3	0.60	1.00	0.75	3
accuracy	na	na	0.60	5
macro avg	0.20	0.33	0.25	5
weighted avg	0.36	0.60	0.45	5

for each site in each cluster, and these scores are converted into range [0, 1] to be used as Zoobenthic Condition Index, where the degraed endpoint as 0 and the reference endpoint as 1.

—Mathematical coverage of the operation at this stage—

Mathematically, for each cluster k, let \mathcal{R}_k and \mathcal{D}_k denote the sets of reference and degraded sites in cluster k, respectively. Define the *best* endpoint $\mathbf{y}_{\text{best}}^{(k)}$ as the mean taxa composition of the m reference sites in \mathcal{R}_k with the lowest stress scores, and the *worst* endpoint $\mathbf{y}_{\text{worst}}^{(k)}$ as the mean of the m degraded sites in \mathcal{D}_k with the highest stress scores:

$$\mathbf{y}_{\text{best}}^{(k)} = \frac{1}{m} \sum_{i \in \mathcal{B}_k} \mathbf{y}_i, \qquad \mathbf{y}_{\text{worst}}^{(k)} = \frac{1}{m} \sum_{i \in \mathcal{W}_k} \mathbf{y}_i$$

where $\mathcal{B}_k \subset \mathcal{R}_k$ and $\mathcal{W}_k \subset \mathcal{D}_k$ are the selected subsets.

For each site i in cluster k, compute the Bray-Curtis dissimilarity to both endpoints:

$$d_{\text{best}}(i) = \text{BC}(\mathbf{y}_i, \mathbf{y}_{\text{best}}^{(k)}), \qquad d_{\text{worst}}(i) = \text{BC}(\mathbf{y}_i, \mathbf{y}_{\text{worst}}^{(k)})$$

where $\mathrm{BC}(\cdot,\cdot)$ denotes the Bray-Curtis dissimilarity.

The Zoobenthic Condition Index (ZCI) for site i is then scaled to [0, 1]:

$$ZCI_{i} = \frac{d_{worst}(i)}{d_{best}(i) + d_{worst}(i)}$$

so that $ZCI_i = 1$ at the best endpoint and $ZCI_i = 0$ at the worst endpoint.

Honestly, I did not what is the ordination method here and why it can compress the 16 taxa variables into a single value to reflect the distance to the endpoints, I will check this method later. Now, I just asked GPT to provide me code to implement this method and receive the zoobenthic composition scores for each site and convert them into valued-based ZCI scores.

But intuitively, I think there might be vector-based ZCI scores that can be computed for each site and compared with a set of reference sites, which should provide a more accurate assessment of the zoobenthic condition than a value-based ZCI.

Table 3: Best and Worst Taxa Compositions by Pattern

Endpoint		Best			Worst	
taxa pattern	1	2	3	1	2	3
Oligochaeta	3.645	4.376	4.448	5.513	4.884	5.169
Nematoda	1.807	2.664	4.224	4.659	4.418	4.524
Chironomidae	3.385	4.382	4.244	4.871	4.286	4.827
Ceratopogonidae	0.000	1.723	0.000	0.000	0.000	0.000
Hexagenia	0.000	3.411	0.850	0.000	0.000	0.000
Caenis	0.000	3.423	0.000	0.000	1.472	0.000
Hydropsychidae	4.013	1.217	0.000	0.000	0.000	0.000
Other Trichoptera	2.691	0.802	0.965	0.000	0.668	0.000
Amphipoda	3.666	0.676	2.363	0.000	0.000	0.000
Dreissena	3.976	0.000	3.034	0.000	0.473	0.000
Acari	1.697	2.716	1.000	0.000	0.000	0.000
Hydrozoa	3.808	0.000	0.000	0.000	0.000	0.000
Hirudinea	0.000	0.676	0.943	0.000	1.269	0.000
Turbellaria	0.779	1.691	1.132	0.000	0.000	0.862
Gastropoda	2.188	2.500	1.956	0.000	1.386	1.307
Sphaeriidae	0.845	0.802	2.533	0.000	0.000	2.833
stress level	4.255	3.746	3.658	2.745	2.698	2.902
ZCI	1.000	1.000	1.000	0.000	0.000	0.000
taxa pattern	1.000	2.000	3.000	1.000	2.000	3.000

Figure 7: ZCI vs Stress Scores and the Distribution of Taxa Abundance across Taxa Patterns

1.8 Evaluate the ZCI vs SumRel relationship by quantile regression

To this step, within each cluster, I have had the ZCI scores and stress scores for each site, and they are value-based scores so that simple linear or quantile regression can be applied to them.

A piecewise quantile regression was applied to the ZCI scores and stress scores within each cluster to

Figure 8: ZCI Distribution across Clusters, showing the variation of ZCI scores within each cluster.

evaluate the relationship between them, a bias-corrected bootstrapping method was applied to estimate the confidence intervals of the piecewise quantile regression coefficients.

—Mathematical coverage of the operation at this stage—

Let ZCI_i denote the Zoobenthic Condition Index for site i, and let SumRel_i denote the corresponding stress score. For each cluster k, we fit a quantile regression model to the data $\{(\operatorname{SumRel}_i,\operatorname{ZCI}_i): i \in \mathcal{C}_k\}$:

$$Q_{\tau}(\text{ZCI}|\text{SumRel}) = f_{\tau}(\text{SumRel})$$

where $Q_{\tau}(\cdot|\cdot)$ denotes the τ -th quantile of ZCI given SumRel, and f_{τ} is a piecewise linear function estimated via quantile regression.

The coefficients of f_{τ} are estimated using a bias-corrected bootstrap method to obtain confidence intervals for the quantile regression estimates.

Figure 9: Quantile regression results of ZCI vs Stress Scores for cluster 1

Figure 10: Quantile regression results of ZCI vs Stress Scores for cluster 2

Figure 11: Quantile regression results of ZCI vs Stress Scores for cluster 3

2 Appendix

2.1 Tables

Table 4: Environmental Variables and Their Explanations

Variable Name	Explanation
Site_ID	Unique identifier for each sampling site
Lake_or_River	Indicates whether the site is in a lake or river
Latitude	Geographic latitude coordinate
Longitude	Geographic longitude coordinate
Total_Organic_Carbon_LOI_percent	Total organic carbon content (loss on ignition, as $\%$)
Water_Depth_m	Water depth at the sampling location (meters)
Water_Temperature_C	Water temperature in degrees Celsius
Dissolved_Oxygen_Concentration_mgL	Dissolved oxygen concentration in milligrams per liter
Median_Particle_Size_Phi	Median particle size of sediment (Phi scale)

Table 5: Taxonomic Variables and Their Explanations

Taxonomic Group	Explanation
Oligochaeta	Aquatic segmented worms
Nematoda	Roundworms
Chironomidae	Non-biting midges (larvae)
Ceratopogonidae	Biting midges
Hexagenia	Mayfly genus (larvae)
Caenis	Mayfly genus (larvae)
Hydropsychidae	Net-spinning caddisflies
Other Trichoptera	Other caddisfly families
Amphipoda	Small crustaceans (e.g., scuds)
Dreissena	Zebra/quagga mussels
Acari	Aquatic mites
Hydrozoa	Small predatory animals (hydroids)
Hirudinea	Leeches
Turbellaria	Flatworms
Gastropoda	Snails and slugs
Sphaeriidae	Fingernail clams

Table 6: Stressors and Their Explanations

Chemical/Contaminant	Explanation			
Al	Aluminum (trace metal)			
As	Arsenic (toxic element)			
Bi	Bismuth (trace element)			
Ca	Calcium (major element, hardness)			
Cd	Cadmium (toxic metal)			
Со	Cobalt (trace element)			
Cr	Chromium (trace metal)			
Cu	Copper (trace metal, micronutrient)			
Fe	Iron (major element, micronutrient)			
Hg	Mercury (highly toxic metal)			
K	Potassium (major element)			
Mg	Magnesium (major element, hardness)			
Mn	Manganese (trace element)			
Na	Sodium (major element)			
Ni	Nickel (trace metal)			
Pb	Lead (toxic metal)			
Sb	Antimony (trace element)			
V	Vanadium (trace element)			
Zn	Zinc (trace metal, micronutrient)			
%OC	Percent organic carbon			
1245-TCB	1,2,4,5-Tetrachlorobenzene (organic pollutant)			
1234-TCB	1,2,3,4-Tetrachlorobenzene (organic pollutant)			
QCB	Quintachlorobenzene (organic pollutant)			
НСВ	Hexachlorobenzene (organic pollutant)			
OCS	Octachlorostyrene (organic pollutant)			
p,p'-DDE	DDT breakdown product			
p,p'-DDD	DDT breakdown product			
mirex	Organochlorine insecticide			
Heptachlor Epoxide	Organochlorine pesticide breakdown product			
total PCB	Total polychlorinated biphenyls			

Table 7: Explanation, Habitat, and Survival Rate in Fast/Slow Water for Each Taxon

Taxa	Explanation	Habitat Type	Survival Rate (Fast/Slow Water)
Oligochaeta	Aquatic segmented worms	Both (lentic/lotic)	Moderate/High
Nematoda	Roundworms	Both (lentic/lotic)	Moderate/High
Chironomidae	Non-biting midge larvae	Both (lentic/lotic)	Moderate/High
Ceratopogonidae	Biting midge larvae	Both (lentic/lotic)	Moderate/Moderate
Hexagenia	Burrowing mayflies	Lentic (lakes/ponds)	Low/High
Caenis	Small mayflies	Both (lentic/lotic)	Low/Moderate
Hydropsychidae	Net-spinning caddisflies	Lotic (streams/rivers)	$\mathrm{High}/\mathrm{Low}$
Other Trichoptera	Other caddisflies	Both (lentic/lotic)	Moderate/Moderate
Amphipoda	Small crustaceans	Both (lentic/lotic)	Moderate/High
Dreissena	Zebra/quagga mussels	Lentic, large rivers	Low/High
Acari	Aquatic mites	Both (lentic/lotic)	Moderate/High
Hydrozoa	Predatory invertebrates	Lentic (lakes/ponds)	Low/High
Hirudinea	Leeches	Both (lentic/lotic)	Low/High
Turbellaria	Flatworms	Both (lentic/lotic)	Low/High
Gastropoda	Aquatic snails	Both (lentic/lotic)	Low/High
Sphaeriidae	Fingernail clams	Both (lentic/lotic)	Low/High

Table 8: Chemical Descriptive Statistics by Site Label

	SumReal	degraded	intermediate	reference
Al	mean	4276.423	6380.140	4319.381
	std	2888.769	5523.949	1767.861
As	mean	2.186	1.777	2.232
	std	1.602	1.290	1.041
Bi	mean	17.085	17.505	17.622
	std	10.352	10.273	9.722
Ca	mean	28180.500	33518.930	28480.714
	std	14031.433	11400.266	11870.107
Cd	mean	0.535	0.351	0.271
	std	0.649	0.202	0.233
Со	mean	4.049	4.497	3.984
	std	1.733	2.209	1.118
Cr	mean	13.254	12.830	9.007
	std	16.373	11.835	2.937
Cu	mean	16.958	18.082	12.946
	std	22.388	29.120	9.003
Fe	mean	9495.000	11246.789	9650.905
10	std	5392.824	6804.654	3856.739
Hg	mean	0.474	0.324	0.196
118	std	1.230	0.420	0.150 0.365
K	mean	818.927	1285.558	845.657
17	std	638.053	1285.558 1092.550	411.332
Mg	mean	12849.500	15204.175	12269.143
wig	std	6104.202	5764.037	5281.794
Mn		161.228	188.900	161.905
1V111	mean			
M-	std	76.973	86.663	57.883
Na	mean	118.998	134.042	123.611
NT.	std	49.081	43.693	41.021
Ni	mean	11.225	12.399	9.136
DI.	std	8.851	8.424	3.542
Pb	mean	12.515	8.774	8.573
C)	std	32.312	22.204	18.750
Sb	mean	17.262	16.765	18.001
	std	11.879	13.115	13.743
V	mean	15.274	18.353	15.183
	std	7.012	9.560	4.408
Zn	mean	52.732	46.181	35.677
	std	48.896	44.586	17.938
%OC	mean	2.110	2.405	1.779
	std	1.599	1.458	0.682
1245-TCB	mean	0.906	1.201	0.555
	std	2.321	2.143	1.035
1234-TCB	mean	0.252	0.234	0.253
	std	0.257	0.240	0.332
QCB	mean	0.729	1.255	0.636
	std	1.015	3.055	0.871
HCB	mean	2.759	17.713	2.904
	std	4.291	83.487	6.011
OCS	mean	1.213	1.502	0.721
	std	3.395	3.606	1.874
$\mathrm{p,p'} ext{-}\mathrm{DDE}$	mean	0.679	0.485	0.324
	std	1.255	0.930	0.328
p,p'-DDD	mean	3.879	0.772	0.862
	std	14.634	1.039	0.923
mirex	mean	0.253	0.212	0.134
	std	0.682	0.332	0.242
Heptachlor Epoxid		0.098	0.051	0.071
r	std	0.235	0.250	0.211
1.000		15.137	10.705	7.715
total PCB	mean	10.104	10.700	(.(1))