Homework 9

Problem 1. Let (A, M) a Noetherian local ring of dimension n. Show that $\dim_{A/M}(M/M^2) \geq n$. (Here $\dim_{A/M}(M/M^2)$ denotes the dimension of the A/M-vector space M/M^2).

Proof. Let x_1, \ldots, x_m be a basis of M/M^2 over A/M. Since A is Noetherian, M is a finitely generated A-module. Since A is local, M is contained in the Jacobson radical of A. So we may apply Nakayama's Lemma to conclude that m preimages of the x_i generate M. But since A is local, at $M = \dim(A) = n$ and by the principal ideal theorem, $n = \operatorname{ht} M \leq m$.

A Noetherian local ring (A, M) of dimension n is called a regular local ring if $\dim_{A/M}(M/M^2) = n$.

Problem 2. Show that a Noetherian local ring (A, M) is regular if and only if M is generated by $n = \dim(A)$ elements.

Proof. If M is generated by x_1, \ldots, x_n , then M/M^2 is generated by $x_1 + M^2, \ldots, x_n + M^2$ by simply taking an element $y + M^2$ and writing y as a linear combination of the x_i . On the other hand, if $x_1 + M^2, \ldots, x_n + M^2$ is a basis for M/M^2 over A/M, then take $N = (x_1, \ldots, x_n) \subseteq M$. Then $M \subseteq N + M^2$, so $M/N \subseteq M(M/N)$. Now apply Nakayama's Lemma to get M/N = 0 and M = N.

Problem 3. Let (A, M) be a regular local ring of dimension $n \ge 1$. Show that there exists an $x \in M$, $x \notin M^2$ and x not in any minimal prime ideal P with $\dim(A/P) = n$. Further show that for any such choice of x, $A/Ax = \overline{A}$ is a regular local ring of dimension n - 1.

Proof. Since $\dim(A) = \operatorname{ht} M \geq 1$, we know $M \neq 0$. Thus $M \neq M^2$ by Nakayama's Lemma. Suppose M is contained in the union of M^2 and the minimal primes of A. Since A is Noetherian, this is a finite union only (possibly) one ideal of which is not prime. By the prime avoidance lemma, M is contained in one of these ideals. But $M \nsubseteq M^2$, and M cannot be minimal since $\operatorname{ht} M = 1$. Thus we can find $x \in M$ which is not in M^2 and not in any minimal prime of A. Now note that $\overline{M} = M/Ax$ is a maximal ideal in \overline{A} which must contain any other ideal, since M contains all ideals in A. Thus \overline{A} is a local ring.

Since $x \notin M^2$, we can pick it to be in a basis for the space M/M^2 over A/M. Then M/M^2 has basis $(\overline{x}, \overline{x_2}, \dots, \overline{x_n})$. Using Nakayama's Lemma, the preimages (x, x_1, \dots, x_n) generate M in A. But then $(x_2 + Ax, \dots, x_n + Ax)$ generate \overline{M} . Therefore ht $\overline{M} = \dim(\overline{A}) \le n - 1$ by the principal ideal theorem.

This shows that \overline{A} is a regular ring since \overline{M} is generated by $n-1=\dim(\overline{A})$ elements. Problem 2 now shows that \overline{A} is regular. Now note that since x is not in any minimal prime, we can pick a minimal prime P and consider A/P. This is a local integral domain with $\overline{x}=x+P$ not in the maximal ideal. By a previous problem, and since P is minimal, we know $\dim(A/Ax)=\dim((A/P)/(A/P)\overline{x})=\dim(A/P)-1=n-1$. \square

Problem 4. Show that regular local ring (A, M) is an integral domain.

Proof. Induct on n. If n=0 then ht M=0 so M is minimal and A is a field, thus an integral domain. Suppose $n \geq n$. Using Problem 3, we can find $x \in M$ with $\dim(A/Ax) = n-1$, so by the inductive hypothesis, this is an integral domain. Therefore Ax is a prime ideal. Since x is not in any minimal prime of A, Ax cannot be a minimal prime. Therefore Ax strictly contains some minimal prime $P \in \operatorname{Spec}(A)$. Pick $y \in P$, and since $P \subsetneq Ax$, y = ax for some $a \in A$. Since $x \notin P$, we have $a \in P$, so P = Px. By Nakayama's Lemma, P = 0. Since 0 is a prime ideal in A, A must be an integral domain.

Problem 5. (a) Let A be a UFD. Show that A is an integrally closed integral domain. (b) Let A be a UFD with $2 \in A^*$. Let $d \in A$, $d = p_1 \cdots p_r$, r > 0, p_i prime elements of A such that $Ap_i \neq Ap_j$ if $i \neq j$. Let B be a ring containing A. Suppose $B = A[\alpha]$, $\alpha^2 = d$. Let K, L be the fields of fractions of A and B respectively. Show that L/K is an algebraic extension of degree 2. Further, show that B is an integrally closed domain. (We recall that an integral domain A with field of fractions K is an integrally closed domain if $x \in K$, integral over A implies $x \in A$). Proof. (a) Let K be the field of fractions of A and let $a_n(r/s)^n + \cdots + a_0 = 0$ be a polynomial with coefficients in A where we take $a_n = 1$. Assume that the factorizations of $r, s \in A$ into irreducibles are distinct. Then multiply by s^n to get $r^n + \cdots + a_0 s^n = 0$ and subtract to get $r^n = -s(-a_{n-1}r^{n-1} + \cdots + a_0s^{n-1})$. Since s and r share no irreducible factors, we must have $s \in A^*$, which means $r/s = rs^{-1} \in A$. Thus A is integrally closed.

(b) Note that x^2-d is an irreducible polynomial since $d=p_1\cdots p_r$ is square free (since $Ap_i\neq Ap_j$ if $i\neq j$). Then $K[x]/(x^2-d)$ is a field, and since $B=A[\alpha]$ and A is an integral domain, we have $L=K[x]/(x^2-d)$ using the map $x\mapsto \alpha$. Then L is an algebraic extension of $\deg(x^2-d)=2$.

To show that B is integrally closed, we can take any element $a + b\alpha \in L$ with $a, b \in K$ as an arbitrary element of L which is integral over B. Let $(a + b\alpha)^n + c_{n-1}(a + b\alpha)^{n-1} + \cdots + c_0 = 0$ be a monic polynomial that $a + b\alpha$ satisfies with $c_i \in B$. We can write $c_i = a_i + b_i\alpha$ with $a_i, b_i \in A$. Separate this polynomial into it's α and non α parts so we have

$$(a+b\alpha)^n + a_{n-1}(a+b\alpha)^{n-1} + \dots + a_0 = b_{n-1}\alpha(a+b\alpha)^{n-1} + \dots + b_0\alpha.$$

Now square both sides and note that since the left side is purely α , it becomes purely in A since $\alpha^2 \in A$. Moving the terms back to the right gives a polynomial in A[x] which $a+b\alpha$ satisfies. Thus $a+b\alpha$ is integral over A.

Note that α is a degree 2 algebraic element over K, so there exists some order 2 element $\sigma \in \operatorname{Gal}(K(\alpha)/K)$ with $\sigma : \alpha \to -\alpha$. But then if $a + b\alpha$ is integral over A, then apply σ to any monic polynomial that $a + b\alpha$ satisfies, and $a - b\alpha$ will satisfy the same polynomial. So $a - b\alpha$ is integral over A as well.

Note that A is integrally closed since A is a UFD. Then note that $a+b\alpha+a-b\alpha=2a$ is in A, since the sum of two integral elements is integral. Since $2 \in A^*$, we have $a \in A$. Similarly, $(a+b\alpha)(a-b\alpha)=a^2-(b\alpha)^2=a^2-b^2d$ is in A since it's the product of two integral elements. Since $a \in A$, $b^2d \in A$. Since $b \in K$, we can write $b^2=b_1^2/b_2^2$ for $b_1,b_2 \in A$ with b_1 and b_2 are relatively prime. But then since $b^2d \in A$, we must have $b_2^2 \mid d$, but d is squarefree, as noted earlier. Thus b_2^2 is a unit, and $b^2=ub_1^2$ for some $u \in A^*$. Because A is a UFD, $b=b_1$ is in A. Therefore $a,b \in A$, so $a+b\alpha \in B$ and B is integrally closed.

Let B be a ring and $A \subseteq B$ a subring. Recall that $A' = \{b \in B \mid b \text{ is integral over A}\}$ is a subring of B called the *integral closure* of A in B.

Problem 6. With A, B and A' as above, let $S \subseteq A$ be a multiplicatively closed subset. Show that $S^{-1}A'$ is the integral closure of $S^{-1}A$ in $S^{-1}B$.

Proof. Since localization preserves integrality, and A' is integral over A, we know $S^{-1}A'$ is integral over $S^{-1}A$. On the other hand, if $b/s \in S^{-1}B$ is integral over $S^{-1}A$ then there exists a polynomial $(b/s)^n + (a_{n-1}/s_{n-1})(b/s)^{n-1} + \cdots + a_0/s_0 = 0$ with coefficients in $S^{-1}A$. Let $t = s_0 \cdots s_{n-1}$ and multiply by $(st)^n$. We now have an polynomial of which bt is a root. Therefore $bt \in A'$ and b/s = bt/st is in $S^{-1}A'$. This gives the reverse inclusion.

Problem 7. Let B be integral over its subring A.

- (a) Let $P \in \text{Spec}(A)$. Show that $PB \cap A = P$.
- (b) Let $I \subseteq A$ be an ideal. Show that $IB \cap A \subseteq \sqrt{I}$. Thus deduce that if $I = \sqrt{I}$, then $IB \cap A = I$.
- (c) $I \subsetneq A$ an ideal implies $IB \neq B$.
- (d) $B^* \cap A = A^*$.

Proof. (a) This follows immediately from part (b) since for a prime ideal $\sqrt{P} = P$.

(b) Take $x \in IB \cap A$. Since $x \in IB$, x = ab for $a \in I$ and $b \in B$. Since B is integral over A, b satisfies $b^n + a_{n-1}b^{n-1} + \cdots + a_0 = 0$ with $a_i \in A$. Now multiply both sides by a^n to get $(ab)^n + aa_{n-1}(ab)^{n-1} + \cdots + a^na_0 = 0$. Note that $a^ia_{n-i} \in I$ since $a \in I$. In particular, $a^na_0 \in I$, so we must also have $(ab)^n + aa_{n-1}(ab)^{n-1} + \cdots + a^{n-1}a_1(ab) \in I$ (since this is $-a^na_0 \in I$). Now note that since $ab \in IB \cap A$, $ab \in A$ so $a^{n-1}a_1(ab) \in I$ as well. Thus the sum of the first n-1 terms is in I. Inductively, we see that $(ab)^n \in I$, so $ab \in \sqrt{I}$. Thus $IB \cap A \subseteq \sqrt{I}$. If $\sqrt{I} = I$, then $IB \cap A \subseteq I$. But note that $I \subseteq A$ and $I \subseteq IB$, so $I \subseteq IB \cap A$ and $IB \cap A = I$.

- (c) Suppose that IB = B. Then by part (b) we have $A = B \cap A = IB \cap A \subseteq \sqrt{I}$. But clearly $\sqrt{I} \subseteq A$, so then A = I.
- (d) We definitely have $A^* \subseteq B^*$ so $A^* \subseteq B^* \cap A$. Conversely, let $u \in B^* \cap A$. Then $u^{-1} \in B$ so we have $(u^{-1})^n + a_{n-1}(u^{-1})^{n-1} + \cdots + a_0 = 0$. Multiply both sides by u^{n-1} to get $u^{-1} = -(a_{n-1} + \cdots + a_0 u^{n-1})$. Since $u \in A$ and $a_i \in A$, we have $u^{-1} \in A$. Then we also have $u^{-1} \in A^*$.

Problem 8. Let K be a field and B = K[X,Y]/(Y)(Y+1,X) = K[x,y], x, y images of X, Y in B. Let $A = K[x] \subseteq B$. Show that B is integral over A. Let Q = Bx + B(y+1). Compute A and A show that A is integral over A.

Proof. Note that $A = K[x] \subseteq K[x, y] = B$ so B = A[y]. Note also that $y = \overline{Y} = Y + (Y)(Y + 1, X)$. Then $y^2 + y = \overline{Y}^2 + \overline{Y} = (Y^2 + Y) + (Y)(Y + 1, X) = 0$ since $Y^2 + Y \in (Y)(Y + 1, X)$. Therefore y is integral over A since B is generated by A and y and all of these elements are integral over A, we must have B is integral over A.

Suppose that $P \subsetneq Q$ is a prime contained in Q. Then $0 \in P$, and 0 = xy = y(y+1), so either $x \in P$ or $y \in P$. But $y \notin Q$ since $y+1 \in Q$ and then 1 would be in Q. So $x \in P$ and likewise $y+1 \in P$. Therefore $P \supseteq Q$ and P = Q. So Q is minimal. Note that Q is prime since $B/Q \cong K$. We can see this by noting that any term with x goes to zero in the quotient and any term with y goes to some constant in K. Therefore Q is a minimal prime and ht Q = 0. Note now that $Q \cap A = Bx \cap A = Ax$. But in A, 0 is prime so $0 \subseteq Ax$ is a chain of length one, and by the principal ideal theorem we know ht $Q \cap A \le 1$. Thus ht $Q = 0 < 1 = \operatorname{ht} Q \cap A$.

Problem 9. Let B be integral over its subring A. Let $P \in \text{Spec}(A)$. Show that $B_P = S^{-1}B$, $(S = A \setminus P)$ is a local ring if and only if there exists exactly one prime ideal $Q \subseteq B$ such that $Q \cap A = P$. Is this true if B is not integral over A. Justify your answer.

Proof. Suppose there exists exactly one prime $Q \subseteq B$ with $Q \cap A = P$. Note that $\operatorname{Spec}(B_P) = \{S^{-1}R \mid R \in \operatorname{Spec}(B), R \cap S = \emptyset\}$. But note for a prime $R \in \operatorname{Spec}(B), R \cap S = R \cap (A \setminus P)$ so if $R \cap S = \emptyset$ then $R \cap A \subseteq P$. We have $Q \cap A = P$, so Q is maximal with respect to these primes. This follows because if we consider any $S^{-1}R$, we must have $S^{-1}R \subseteq S^{-1}Q$. Then since Q is unique in this respect, B_P must be a local ring.

Conversely, suppose B_P is a local ring. Then there exists $Q \in \operatorname{Spec}(B)$ such that $Q \cap S = \emptyset$ and Q is maximal with respect to $R \in \operatorname{Spec}(B)$ with $R \cap A \subseteq P$. Using the going up theorem, we know there exists a prime $R \in \operatorname{Spec}(B)$ with $R \cap A = P$. Then we must have R = Q so that $Q \cap A = P$, as desired.

The statement is not true if B is not integral over A. Take $B = \mathbb{R}$ and $A = \mathbb{Z}$. Take $P = 2\mathbb{Z}$. Then $B_P = B$ since B already contains the field of fractions for A. So B_P is a field and thus a local ring. But since the only prime of B is 0, there are no primes $Q \subseteq B$ with $Q \cap A = P$.

Problem 10. Let R be a Noetherian ring with $R \neq 0$. Let $A = R[x_{ij}]$, $1 \leq i \leq m$, $1 \leq j \leq n$ be a polynomial ring in mn variables x_{ij} over R. Let $\alpha = (x_{ij})$ be the $m \times n$ matrix with entries x_{ij} . Let $P \in \operatorname{Spec}(A)$ be a minimal prime ideal of $V(I_r(\alpha))$, where $r \leq \min(m,n)$ and $I_r(\alpha)$ is the ideal of A generated by all $r \times r$ minors of α . Show that ht P = (m-r+1)(n-r+1). Thus ht $I_r(\alpha) = (m-r+1)(n-r+1)$.

Proof. We use induction on r. In the case r=1 we have $I_1(\alpha)=(x_{11},\ldots,x_{mn})$. By the principal ideal theorem, we know ht $I\leq mn$, and thus ht $P\leq mn$. To construct a chain of mn primes in P, we use induction on mn. In the base case, we have R[x] and a prime $P\subseteq R[x]$. There are two possibilities for P. Either $P\cap R=Q[x],\ Q\in \operatorname{Spec}(R)$, or $P\cap R\neq Q[x],\ Q\in \operatorname{Spec}(R)$. The first case is impossible since $x\in P$. In the second case we know that ht P= ht $Q+1\geq 1$. The general case follows by letting $R=R[x_{ij}],\ 1\leq i\leq n,\ 1\leq j\leq m-1$ and $x=x_{mn}$. Thus ht P=mn and ht $I_1(\alpha)=mn$ as well. So assume r>1 and that the statement is true for r-1.

We know already that ht $P \leq (m-r+1)(n-r+1)$, so it just remains to show ht $P \geq (m-r+1)(n-r+1)$. Since r > 1, m-r+1 < m and n-r+1 < n so ht $P \leq (m-r+1)(n-r+1) < mn$. Thus at least one $x_{ij} \notin P$, otherwise the ideal $(x_{11}, \ldots, x_{mn}) \subseteq P$, in which case ht P = mn by the base case. Note that interchanging rows and columns of α will only affect the minors by multiplication by a unit, so we may assume $x_{ij} = x_{11}$, with $x_{11} \notin P$.

Now define $A' = A[x_{11}^{-1}]$ and $P' = PA' = S^{-1}P$ with $S = \{x_{11}^n \mid n \geq 0\}$ and $A' = S^{-1}A$. Let $I'_r(\alpha)$ be the ideal generated by $I_r(\alpha)$ in A', that is, $I'_r(\alpha) = S^{-1}I_r(\alpha)$. Now perform a single row reduction as follows. Subtract $x_{11}^{-1}x_{ij}$ times the first column of α from the j^{th} column for $j \geq 2$. Multiply the first row by x_{11}^{-1} to get $(1,0,\ldots,0)$ in the first row. Subtract x_{i1} times the first row from each each i^{th} row for $i \geq 2$. This now transforms α into

$$\left(\begin{array}{ccc} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \alpha' & \\ 0 & & & \end{array}\right)$$

where $\alpha' = (x'_{ij}) = (x_{ij} - x_{11}^{-1} x_{ij} x_{11})$, $2 \le i \le m$ and $2 \le j \le n$. Since addition of a scaled row to another doesn't change the determinant, we now have $I'_r(\alpha)I'_{r-1}(\alpha')$, the ideal generated by all $(r-1) \times (r-1)$ minors of α' . Define $R' = R[x_{11}, x'_{11}, x_{12}, \dots, x_{1n}, x_{21}, x_{31}, \dots, x_{n1}]$. Then we see that $A' = A[x_{11}^{-1}] = R'[x_{ij}]$, $2 \le i \le m$, $2 \le j \le n$. This is the same (through an invertible transformation of variables) as $R'[x'_{ij}]$, $2 \le i \le m$, $2 \le j \le n$. This ring is a polynomial ring in (m-1)(n-1) variables over R'. We can now use the induction hypothesis to note that

ht
$$I'_r(\alpha) = \text{ht } I'_{r-1}(\alpha') = ((m-1) - (r-1) + 1)((n-1) - (r-1) + 1) = (m-r+1)(n-r+1).$$

Since $x_{11} \notin P$, $x_{11} \notin I_r(\alpha)$, so P' contains $I'_r(\alpha)$ and is minimal over $I'_r(\alpha)$. Therefore ht P' = (m - r + 1)(n - r + 1) = ht P since $P \cap S = \emptyset$. Thus ht $I_r(\alpha) = (m - r + 1)(n - r + 1)$ and so we're done by induction.

Problem 11. Let K be a field and $A = K[x_1, ..., x_n]$. Let $I \subsetneq A$ be an ideal. Show that ht I = 1 if and only if I = Jf for some $f \in A$, $f \notin K$ and J some ideal of A.

Proof. Suppose I=Jf for $f\in A\backslash K$ and J an ideal of A. Then $I\subseteq Af$ which has height less than or equal to 1 by the principal ideal theorem. The I has height at most one, and since $f\neq 0$, ht I=1. Conversely, suppose ht I=1. Then I is contained in some height one prime P. Since A is a UFD, we know P is a principal ideal, so P=Af for some prime f. Therefore $x\in I$ means x=af for some $a\in A$. So define $J=\{a\in A\mid af\in I\}$. Then I=Jf, so if we can show J is an ideal, then we're done. Take $a,b\in J$ so $af,bf\in I$. Then af+bf=(a+b)f is in I, so $a+b\in J$. Similarly, afbf=(abf)f is in I, so $abf\in J$. Note that $abf\in I$ since $bf\in I$, so $ab\in J$. Finally, take $c\in A$, then caf=c(af) is in I since $af\in I$. Thus $ca\in J$ and J is an ideal.

Problem 12. Let A = K[x, y, z, t]. Let $I \subseteq A$ be the ideal generated by xt - yz, $y^2 - xz$, $z^2 - yt$. Compute the height of I.

Proof. Consider the matrix

$$\alpha = \left(\begin{array}{ccc} t & z & y \\ z & y & x \end{array} \right).$$

The minors of this matrix are $ty-z^2$, $xz-y^2$ and xt-yz. Note that up to multiplication by a unit, these are precisely the generators of I, so $I=I_2(\alpha)$. Then we know ht $I \leq (2-2+1)(3-2+1)=2$. Now note that there is no $f \in A$ with f dividing each generator of I. Then by Problem 11, we know ht $I \neq 1$, so ht I=2 (since $I\neq 0$).

Problem 13. Let A be a finitely generated algebra over a field K. Suppose A is a finite dimensional K-vector space of dimension n. Show that $|\text{Max}(A)| \leq n$.

Proof. We induct on n. In the case n=1 we have A=K, $\operatorname{Max}(A)=0$ and so $|\operatorname{Max}(A)|\leq 1$. Suppose the inequality holds for $1\leq j\leq n-1$. Every ideal of A is a K-submodule and therefore a vector space over K with finite dimension. Let I be the proper nonzero ideal of A with the least dimension (assuming $\operatorname{Max}(A)\neq\emptyset$, such an ideal exists). Then I must be minimal over 0. Let $\operatorname{dim}(I)=k< n$.

Now note that I is maximal in K+I, so K+I/I is a field and A/I is a finitely dimensional vector space over K+I/I with dimension $n-k \geq 1$. By the inductive hypothesis there exist at most $j \leq n-k$ maximal ideals M_1,\ldots,M_j of A/I, so there are at most j ideals in A containing I. Pick $M,N \in \operatorname{Max}(A) \setminus \{M_1,\ldots,M_j\}$. Then $I \nsubseteq M$ so $I \cap M \subsetneq I$. But I is minimal so $I \cap M = 0$. Similarly $I \cap N = 0$. Thus $I + M \supsetneq M$ so I + M = A. Now we have N = AN = (M+I)N = MN + IN = MN since $IN \subseteq I \cap N = 0$. Thus $N = MN \subseteq M \cap N \subseteq M$. If we interchange M and N we get $M \subseteq N$ so M = N. Thus there are at most $j+1 \leq n-k+1 \leq n$ maximal ideals of A (since 0 < k < n).