We Claim:

2

3

1	1.	A clear ibuprofen composition comprising:
2		a. from about 15% to about 40% w/w of ibuprofen,
3		b. from about 15% to about 25% w/w of polyethylene glycol,
4		c. from about 20% to about 50% w/w of a surfactant,
5		d. from about 1% to about 5% w/w of an alkalizing agent, and
6		e. from about 5% to about 10% w/w of water.
1	2.	The composition according to claim 1 wherein the ibuprofen comprises from about
2		15% to about 30% w/w of the composition.
1	3.	The composition according to claim 1 wherein the polyethylene glycol has an
2		average molecular weight of about 300 to about 1000.
1	4.	The composition according to claim 1 wherein the polyethylene glycol has a
2		molecular weight of about 400.
1	5.	The composition according to claim 1 wherein the surfactant is a non-ionic
2		hydrophilic surfactant.
1	6.	The composition according to claim 5 wherein the non-ionic hydrophilic surfactant
2		comprises one or more of polyoxyethylene alkylethers, polyethylene glycol fatty
3		acids esters, polyethylene glycol glycerol fatty acid esters, polyoxyethylene
4		sorbitan fatty acid esters, polyoxyethylene-polyoxypropylene block copolymers,
5		polyglyceryl fatty acid esters, polyoxyethylene glycerides, polyoxyethylene
6		vegetable oils, and polyoxyethylene hydrogenated vegetable oils.
1	7.	The composition according to claim 6 wherein the surfactant comprises
2		polyoxyethylene sorbitan fatty acid ester.
1	8.	The composition according to claim 1 wherein the alkalizing agent comprises one
2		or more of amino acids, amino acid esters, diisopropylethylamine, ethanolamine,
3		ethylenediamine, triethanolamine, meglumine, trimethylamine, triethylamine,
4		triisopropanolamine and salts of pharmaceutically acceptable acids.
1	9.	The composition according to claim 8 wherein the salts of pharmaceutically

acceptable acids comprises one or more of ammonium hydroxide, potassium

hydroxide, sodium hydroxide, sodium hydroxide, aluminum hydroxide,

- calcium carbonate, potassium carbonate, magnesium hydroxide, magnesium 4 5 aluminum silicate, synthetic aluminum silicate, magnesium aluminum hydroxide 6 and calcium silicate. The composition according to claim 9 wherein the salt comprises potassium 1 10. 2 carbonate. 1 The composition according to claim 1 further comprising one or more active 11. 2 ingredients, wherein the active ingredients comprise one or more of glucosamine, 3 pseudoephedrine, codeine, paracetamol, econazole, hydrocodone, COX-2 4 inhibitors, alprazolam, dextromethorphan and chlorpheniramine. 1 12. The composition according to claim 1 wherein the composition is filled into soft 2 gelatin capsules. 1 A process of preparing a clear ibuprofen composition, the process comprising the 13. 2 steps of: 3 dissolving one or more alkalizing agents in water to form a solution, a. 4 b. dispersing ibuprofen in polyethylene glycol to form a dispersion, 5 blending the solution of step (a) with the dispersion of step (b) with c. 6 continuous stirring to form a dispersion, 7 optionally heating the dispersion of step (c), and d. adding one or more surfactants to the dispersion of step (d) and mixing to 8 e. 9 obtain a clear solution. 1 14. The process according to claim 13 wherein the ibuprofen comprises from about 2 15% to about 30% w/w of the composition. 1 15. The process according to claim 13 wherein the polyethylene glycol has an average 2 molecular weight ranging from about 300 to about 1000. 1 16. The process according to claim 13 wherein the polyethylene glycol has a molecular 2 weight of about 400. The process according to claim 13 wherein the surfactant comprises a non-ionic 1 17. 2 hydrophilic surfactant.
- 1 18. The process according to claim 17 wherein the non-ionic hydrophilic surfactant
 2 comprises one or more of polyoxyethylene alkylethers, polyethylene glycol fatty
 3 acids esters, polyethylene glycol glycerol fatty acid esters, polyoxyethylene

4		sorbitan fatty acid esters, polyoxyethylene-polyoxypropylene block copolymers,
5		polyglyceryl fatty acid esters, polyoxyethylene glycerides, polyoxyethylene
6		vegetable oils, and polyoxyethylene hydrogenated vegetable oils.
1	19.	The process according to claim 18 wherein the surfactant comprises
2		polyoxyethylene sorbitan fatty acid ester.
1	20.	The process according to claim 13 wherein the alkalizing agent comprises one or
2		more of amino acids, amino acid esters, diisopropylethylamine, ethanolamine,
3		ethylenediamine, triethanolamine, meglumine, trimethylamine, triethylamine,
4		triisopropanolamine and salts of pharmaceutically acceptable acids.
1	21.	The process according to claim 20 wherein the salts of pharmaceutically acceptable
2		acids are selected from one or more of ammonium hydroxide, potassium
3		hydroxide, sodium hydroxide, sodium hydrogen carbonate, aluminum hydroxide,
4		calcium carbonate, potassium carbonate, magnesium hydroxide, magnesium
5		aluminum silicate, synthetic aluminum silicate, magnesium aluminum hydroxide
6		and calcium silicate.
1	22.	The process according to claim 13 further comprising one or more active
2		ingredients, wherein the active ingredients comprise one or more of glucosamine,
3		pseudoephedrine, codeine, paracetamol, econazole, hydrocodone, COX-2
4		inhibitors, alprazolam, dextromethorphan and chlorpheniramine.
1	23.	The process according to claim 13 further filling the solution into a soft gelatin
2		capsule.
1	24.	A method of relieving one or more of pain, tenderness, inflammation and stiffness
2		caused by one or more of arthritis and gout and pains from one or more of the
3		common cold, backache, and pain after surgery or dental work, the method
4		comprising administering a clear ibuprofen composition comprising:
5		a. from about 15% to about 40% w/w of ibuprofen,
6		b. from about 15% to about 25% w/w of polyethylene glycol,
7		c. from about 20% to about 50% w/w of surfactant,
8		d. from about 1% to about 5% w/w of alkalizing agent, and
9		e. from about 5% to about 10% w/w of water.

WO 2005/046727 PCT/IB2004/003717

14

1	25.	The method according to claim 24, wherein the composition further comprises one
2		or more of glucosamine, pseudoephedrine, codeine, paracetamol, econazole,
3		hydrocodone, COX-2 inhibitors, alprazolam, dextromethorphan and
4		chlornheniramine