Graph Coloring

VERTEX COLORING OF GRAPHS

- A graph is said to be k vertex colorable (or k-colorable) if it is possible to assign one color from a set of k colors to each vertex such that no two adjacent vertices have the same color
- If the graph G is k-colorable but not (k 1)
 colorable, can say that G is a k-chromatic graph and
 that its chromatic number X(G) = k
- the chromatic number is the minimum number k such that G is k-colorable
- Hence, graph G is k-colorable iff X(G)<= k

VERTEX COLORING OF GRAPHS

- A graph is said to be k vertex colorable (or k-colorable) if it is
 possible to assign one color from a set of k colors to each
 vertex such that no two adjacent vertices have the same color
- If the graph G is k-colorable but not (k 1) colorable, can say that G is a k-chromatic graph and that its chromatic number X(G) = k
- the chromatic number is the minimum number k such that G is k-colorable
- Hence, graph G is k-colorable iff X(G)<= k
- → k-chromatic graph → graph needs at least k colors (Lower Bound)
- → k colorable graph → graph that does not need more than k colors (Upper Bound)

Observations

- X(G) = 1 iff and only if G is trivial
- X(G) = 2 iff G is bipartite
- $X(G) = 3 \rightarrow_{e.g.}$ i) any cycle with an odd number of vertices ii) wheel of even order
- X(G) <= max_degree(G) + 1 //in general//
- X(G) = max_degree(G) + 1
- //G is a complete graph or an odd cycle//
- $X(G) = n \rightarrow_{e,g}$ The complete graph K_n
- X(G) = max_degree(G)
- //G is a connected; & is neither a complete graph nor an odd cycle //
- X(G)_{Upper bound} can be achieved by adopting a Greedy method that is also known as a Sequential (incremental) coloring algorithm

EDGE COLORING OF GRAPHS

- A graph G with no loops is said to be k edge colorable if it is possible to assign to each edge one color from a set of k colors such that no two edges with a vertex in common get the same color
- A k edge colorable graph is a k edge chromatic graph if it is not (k 1) edge colorable and if its chromatic index X'(G) = k
- chromatic index of a simple graph G = chromatic number of its line graph L(G)
- → since two edges in G have a vertex in common iff the vertices corresponding to these edges are adjacent in L(G)
- > chromatic number = chromatic index for any cyclic graph

Graph Coloring Algorithm1

- No efficient graph coloring algorithm for a with minimum number of colors; Graph Coloring is a NP complete problem
- However, Greedy algorithm is known for finding the chromatic number of any given graph

Step-01: Color first vertex with the first color

Step-02: for remaining (V-1) vertices one by one and do the following-

- Color the currently picked vertex with the lowest numbered color if it has not been used to color any of its adjacent vertices
- If it has been used, then choose the next least numbered color
- If all the previously used colors have been used, then assign a new color to the currently picked vertex

Drawbacks of Greedy Algorithm:

- The Greedy algorithm does not always use minimum number of colors
- The number of colors used sometimes depend on the order in which the vertices are processed

- For a Graph with maximum degree of x; Greedy algorithm uses maximum (x+1) colors
- a) uses 2 colors only; where Greedy algorithm in b) uses n/2 = 4 colors

Graph Coloring Algorithm2

Naive Algorithm:

- This approach uses the brute force method
- Finds all permutations of color combinations that can color the graph
- If any of the permutations is **valid** for the given graph and colors, output the result otherwise not
- Not efficient in terms of time complexity because it finds all colors combinations rather than a single solution

 Complexity =???

Naive Algorithm: Complexity

- Since each node (No. of nodes = v) can be colored by using any of the m colors, the total number of possible color configurations are m^{V}
- The complexity is exponential which is very huge
- Time Complexity: O(m^V)
- Space Complexity: O(V) which is for storing the output array of nodes

Graph Coloring Algorithm3

Backtracking Algorithm:

Efficient as compared to Naïve algorithm

Task 1: Continue – try a different color for current vertex looking to the adjacent vertex color **Task 2: Backtrack** – try a different color for last colored vertex (i.e. un-color last colored vertex) **Note:** backtrack arrives to the last recursive call to change the color of the last colored vertex. If false is returned by the root \rightarrow no solution for given graph coloring problem

Backtracking Algorithm: Complexity

- Time Complexity: O(m^V)
- Since backtracking is also a kind of brute force approach, there would be total O(m^V) possible color combinations
- It is to be noted that the upper bound time complexity remains the same but the average time taken will be less due to the refined approach
- Space Complexity: O(V) for storing the output array of nodes

Every planar graph is 5-colorable

- Prof by Induction

- Every planar graph is 4-colorable (Vertex Coloring)
- but when a triangle is a graph or sub-graph we need only 3 colors.

This graph can be 3-colored in 12 different ways

Graph Colors_ Theorems

Euler's Formula

Euler's formula for polyhedra (and, hence for connected planar graphs ...):

$$v - e + f = 2$$

(where v is the number of vertices, e is the number of edges, and f is the number of faces)

- A graph is collection of vertices, some of which are connected by edges
- A face is a region surrounded by edges, with no vertices or edges in the interior
- There is one large exterior face surrounding everything and going off to infinity in all directions

Corollary_ Euler formula:

- Note: each face is bounded by at least 3 edges, and each edge is part of the boundary of a face twice (once on each side of the edge), Hence:

$$3f \leq 2e$$

Now, from Euler's formula, we have:

$$f = 2 - v + e$$

$$3(2 - v + e) \le 2e$$
OR

$$2-v+e \le (2/3)*e \dots (A)$$

Continuing Further as:

$$2-v+e \le (2/3)*e$$
 ...(A)
 $\rightarrow (1/3)*e <= v-2$
 $\rightarrow e <= 3v-6$...(B)

- Sum of all the degrees of the vertices is equal to twice the number of edges.
- If all the degrees are greater than or equal to say 6; then $6v \le sum \ of \ degrees = 2e$

OR
$$3v \le e$$
 \rightarrow contradicts with B
OR $3v \le e \le 3v - 6$ \rightarrow contradicts with B

- → Every planar graph has a vertex of degree 5 or fewer
- ≈ there is at least one vertex with degree 5 or fewer

The 6-Color Theorem

Base case: The simplest connected planar graph consists of a single vertex. Pick a color for that vertex.

Induction step: Assume $k \ge 1$, and assume that every planar graph with k or fewer vertices can be 6-colored.

Proof: Consider a planar graph with k + 1 vertices.

However, the graph has a vertex of degree 5 or fewer.

- -Remove that vertex (and all edges connected to it)
- -By the induction hypothesis, we can 6-color the remaining graph.
- -Put the vertex (and edges) back in
- -We have a graph with every vertex colored (without conflicts) except for the "special" one
- -There are at most 5 colors adjacent, so we have at least one color left. Use an available color for that vertex

→ 6-colored the graph

The 5-Color Theorem

Theorem 2. Every planar graph is 5-colorable

Base case: The simplest connected planar graph consists of a single vertex. Pick a color for that vertex.

Induction step: Assume $k \ge 1$, and assume that every planar graph with k or fewer vertices can be 5-colored. Now consider a planar graph with k + 1 vertices.

the graph has a vertex of degree 5 or fewer. Remove that vertex (and all edges connected to it). By the induction hypothesis, we can <u>5-color the remaining graph</u>. Put the vertex (and edges) back in. We have a graph with every vertex colored (without conflicts) except for the one.

19

Case1: deg (v) <=4 (i.e. If the vertex has degree less than 5)

There are at most 4 colors that have been used on the neighbors of v. There is at least one color then available for v.

→ G can be colored with five colors

Case 2: deg(v) = 5

If the vertex has degree 5, and all 5 colors are connected to it. In this case, using numbers 1 through 5 to represent colors, label the vertices adjacent to the "special" (degree 5) vertex 1 through 5 (inorder).

Now make a subgraph out of all the vertices colored 1 or 3 which are connected to the 1 and 3 colored vertices adjacent to the "special" vertex.

If the adjacent vertex colored 1 and the adjacent vertex colored 3 are not connected by a path in this subgraph, simply exchange the colors 1 and 3 throughout the subgraph connected to the vertex colored 1.

This will leave color 1 available to color the "special" vertex.

On the other hand, if the <u>vertices colored 1 and 3 are</u> <u>connected via a path in the subgraph, this will be a disconnected pair of subgraphs, separated by a path connecting the vertices colored 1 and 3. Now we can exchange the colors 2 and 4 in the subgraph connected to the adjacent vertex labeled 2. This will leave color 2 for the "special" vertex.</u>

Thus, we will be able to color the entire planar graph with 5 colors

The 4-Color Theorem

The four color theorem, or the four color map theorem, states **that** given any separation of the plane into contiguous regions, called a "map", the regions can be colored using at most four colors so that no two adjacent regions have the same color.

Every planar graph is 4-colorable (Vertex Coloring) but when a triangle is a graph or sub-graph we need only 3 colors.

This graph can be 3-colored in 12 different ways

- https://www.interviewbit.com/tutorial/graphcoloring-algorithm-using-backtracking/
- https://www.geeksforgeeks.org/m-coloringproblem-backtracking-5/