Sens'it Discovery

Payload Structure

Table of Contents

1. About this document	3
2. Messages Protocol	3
3. Data Payload	
3.1. Structure	4
3.2. Battery Level	
3.3. Button Alert Flag	6
3.4. Temperature	
3.5. Humidity	6
3.6. Brightness	6
3.7 Door Status	6
3.8. Vibration Status	7
3.9. Magnet Status	7
3.10. Event Count	
4. Config payload	8
4.1. Structure	8
4.2. Mode Flags	
4.3. Message Period	9
4.4. Temperature Thresholds	9
4.5. Humidity Thresholds	10
4.6. Brightness Threshold	10
4.7. Vibration Acceleration Threshold & Debounce Count	
4.8. Vibration Blank Time	
4.9. Door Thresholds	11
4.10. Limitation Flag	11
4.11 Docot Dit	11

1. About this document

This document describes how messages of the Sens'it 3 are formatted.

Only devices with the Sens'it Discovery firmware version 3.1.0 and upper are concerned by this document.

2. Messages Protocol

- An **uplink** message uses the **data payload** structure.
- An **uplink with downlink** request message uses the **data payload** structure followed by the **config payload** structure (actual configuration of the device). The device sends a downlink request every 24 hours.
- A **downlink** message uses the **config payload** structure (new configuration to set in the device).

3. Data Payload

3.1. Structure

The size of the data payload is 4 bytes.

Some bit fields of the structure depend on the active mode of the device. The active mode is encoded on the bits 7 to 3 of the byte 1.

Byte 0: (same for all the modes)

b7	b6	b5	b4	b3	b2	b1	ьо
		Battery Level			Re	eserved (0b11	10)

Byte 1:

Byte 1.	b7	b6	b5	b4	b3	b2	b1	ьо
		0 =	Standby Mo		Spare	(0b00)		
E		1 = Te	emperature		Tempera	ture MSB		
***		2	= Light Mod		Spare	(0Ь00)		
→{•		3	= Door Mod	le		Button Alert Flag	Door:	Status
		4 = 1	Vibration M		Vibratio	n Status		
6		5 =	Magnet Mo		Magne	t Status		

Byte 2:

	b7	b6	b5	b4	b3	b2	b1	Ь0			
	Firmware Version Firmware Version Major Increment Minor Increment MSB										
•		Temperature LSB									
**	Brightness MSB										
₹.											
	Event Count MSB										
6											

Byte 3:

	b7	b6	b5	b4	b3	b2	b1	ьо		
		e Version ement LSB		Firmware Version Patch Increment						
				Hun	nidity					
***		Brightness LSB								
*										
		Event Count LSB								
6										

3.2. Battery Level

Battery Level is sent independently of the active mode.

In order to convert the payload value into Volts, use the following formula:

Battery Voltage
$$(V) = (Battery Level \times 0.05) + 2.7$$

3.3. Button Alert Flag

Button Alert Flag is sent independently of the active mode.

It is set to 1 when the user has double-pressed the button, otherwise it is set to 0.

3.4. Temperature

Temperature is only sent when the active mode value is 1.

In order to convert the payload value into °C, use the following formula:

$$Temperature(^{\circ}C) = \frac{Temperature - 200}{8}$$

3.5. Humidity

Humidity is only sent when the active mode value is 1.

In order to convert the payload value into %, use the following formula:

Relative Humidity
$$(\circ/o) = \frac{Humidity}{2}$$

3.6. Brightness

Brightness is only sent when the active mode value is 2.

In order to convert the payload value into lux, use the following formula:

$$Brightness(lux) = \frac{Brightness}{96}$$

3.7 Door Status

Door Status is only sent when the active mode value is 3.

Door status	Meaning
0	The calibration of the Door mode has not been done.
1	Unused value
2	Door is closed.
3	Door is open.

3.8. Vibration Status

Vibration Status is only sent when the active mode value is 4.

Vibration status	Meaning
0	No vibration detected.
1	A vibration is detected.
2	Unused value
3	Unused value

3.9. Magnet Status

Magnet Status is only sent when the active mode value is 5.

Magnet status	Meaning
0	No magnet detected.
1	A magnet is detected.
2	Unused value
3	Unused value

3.10. Event Count

Event Count is only sent when the active mode value is 3, 4 or 5.

Event Count is incremented every time an event is triggered by the device. This value is reset to 0 after a message is sent or the mode is changed.

For event description, see paragraph 4.2.

4. Config payload

4.1. Structure

The size of the config payload is 8 bytes.

Byte 0:

b7	b6	b5	b4	b3	b2	b1	ьо
Messag	e Period	Magnet Mode Flag	Vibration Mode Flag	Door Mode Flag	Light Mode Flag	Temp. Mode Flag	Standby Mode Flag

Byte 1:

 <i>y</i>							
b7	b6	b5	b4	b3	b2	b1	Ь0
Spare	(0b00)		7	Temperature l	ow Thresholo	1	

Byte 2:

<u> </u>							
b7	b6	b5	b4	b3	b2	b 1	ьо
Spare	(0b00)		Т	emperature l	High Threshol	d	

Byte 3:

b7	b6	b5	b4	b3	b2	b1	b0
	Humidity Lo	w Threshold			Humidity Hig	gh Threshold	

Byte 4:

<u> </u>							
b7	b6	b5	b4	b3	b2	b1	Ь0
Limitation Flag			Вгід	htness Thres	hold		

Byte 5:

b7	b6	b5	b4	b3	b2	b1	ьо
	Vibration Acceleration Threshold						

Byte 6:

b7	b 6	b5	b4	b3	b2	b1	ь0
Spare	(0b00)	Vibration E	Blank Time		Vibration Del	bounce Count	•

Byte 7:

b7	b6	b5	b4	b3	b2	b1	ьо
Reset bit	Door Open Threshold			Doo	r Close Thres	hold	

4.2. Mode Flags

Each mode has its own **Mode Flag** that allows configuration of the way messages are sent for this mode.

If this flag is set to **1**, the device will send a message every *Message Period*.

If this flag is set to **0**, the device will send a message when an **event** is triggered.

Event definition:

- In **Standby** mode, no event can be triggered so any message will be sent.
- In **Temperature** mode, an event is triggered when a *Temperature or Humidity Threshold* is crossed.
- In **Light** mode, an event is triggered when the *Brightness Threshold* is crossed.
- In **Door** mode, an event is triggered on a transition: "open \rightarrow closed" or "closed \rightarrow open".
- In **Vibration** mode, an event is triggered on a transition: "not detected \rightarrow detected" and, if the end of vibration detection is enabled (see paragraph 4.8), on transition: "detected \rightarrow not detected".
- In **Magnet** mode, an event is triggered on a transition: "not detected \rightarrow detected" or "detected \rightarrow not detected".

If the **Standby** mode is configured with its flag to **1**, a message with an empty payload will be sent every *Message Period*. This message makes it possible to get the device position given by the Sigfox Atlas geolocation service.

4.3. Message Period

The message period is the duration between two messages when the mode is configured in periodic data emission.

Message Period	Meaning
0	A message is sent every 10 minutes.
1	A message is sent every 1 hour.
2	A message is sent every 6 hours.
3	A message is sent every 24 hours.

4.4. Temperature Thresholds

The Temperature *High & Lower Thresholds* make it possible to trigger an event when the temperature enters or exits the configured range.

They are encoded with a step of 1°C and an offset -9°C that allow a range from -9°C to +54°C.

4.5. Humidity Thresholds

The *Humidity High & Lower Thresholds* make it possible to trigger an event when the temperature enters or exits the configured range.

They are encoded with a step of **4%** and an offset **+30%** that allow a configurable range from **30%** to **90%**.

4.6. Brightness Threshold

The *Brightness Threshold* make it possible to trigger an event when the brightness cross the configured threshold.

It is encoded with a step of **5 lux** and an offset **+1 lux** that allow a configurable range **from 1 lux to 636 lux**.

4.7. Vibration Acceleration Threshold & Debounce Count

Vibration Acceleration Threshold configures the level of acceleration required to detect a movement.

Vibration Debounce Count is the number of upper-threshold samples required to trigger a vibration event. The sample rate is **1.5625 Hz**.

Example of Vibration Sensitivity configuration:

Sensitivity	Acceleration Threshold	Debounce Count	
Very little sensitivity	0x10	0x03	
Not very sensitive	0x08	0x02	
Standard	0x04	0x02	
Sensitive	0x03	0x01	
Very sensitive	0x01	0x01	

4.8. Vibration Blank Time

The Vibration Blank Time is used to set the minimal duration between two vibration event detections.

If this parameter is set to 0, the device triggers a vibration event at the start and at the end of a movement.

Vibration Blank Time	1eaning	
0	End of vibration detection mode	
1	10 seconds	
2	30 seconds	
3	60 seconds	

4.9. Door Thresholds

The *Door Open Threshold* parameter configures the minimal opening angle of the door to trigger a *door open* event.

The *Door Close Threshold* parameter configures the maximal opening angle of the door to trigger a *door closed* event.

Example of Door Sensitivity configuration:

Sensitivity	Open Threshold	Close Threshold
Not very sensitive	12	4
Standard	7	4
Sensitive	2	4

4.10. Limitation Flag

Setting the *Limitation Flag* to 0 will disable the RF duty cycle on message sending. This must only be done for test purpose.

RF duty cycle depends on local regulation.

4.11. Reset Bit

If the *Reset Bit* is set to 1, the device will overwrite is actual configuration by the default configuration after a device reset.