Resit

Linear Algebra

PSAI.

Question 1:

Stefan : Q1, Q2, Q4, Q5, Q6 Mariehe: Q3

p(-1)=1 = -a+b-c+d=1 p(0)=0 = d=0 p(1)=1 = a+b+c+d=1p(2)=-1 = a+4b+2c+d=-1

We read to solve this SIE.

We know d=0. So, we need to solve $\int_{-a+b-c}^{-a+b-c} = 1$ a+b+c=1 da+4b+2c=-1 Adding the first two equations results in 2b=2 => b=1

Adding the first two equations results in $2b=2 \Rightarrow b=1$. So, we need to solve 1-a-c=0. $\Rightarrow a=-c$ 1-3c+2c=-5 $\Rightarrow -6c=-5 \Rightarrow c=5/6$ and a=-5/6.

So, a = -5/6 b = 1 c = 5/6d = 0

Alternative sol. to solve the SLE (more time consuming): Use row operations

 $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & 1 & -1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & 1 & -1
\end{bmatrix}$ $\begin{bmatrix}
R_{2} : R_{2} + R_{1} & \begin{cases}
0 & 2 & 0 & 2 & 1 \\
0 & -4 & -6 & -7
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & 1 \\
0 & 0 & -6 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & 2 \\
0 & 0 & -6 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & 2 \\
0 & 0 & -6 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & 2 \\
0 & 0 & -6 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & 2 \\
0 & 0 & -6 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & 2 \\
0 & 0 & -6 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & -6 & -7
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 &$

Question 2:

There are three povots if $p-1 \neq 0$ and $p^2-4 \neq 0$. So, the solution is unique for all values of papart from 1,2 and 2.

$$\begin{vmatrix} 5 & 5 & 6 & 6 & 7 \\ 4 & 0 & 4 & 4 & 0 \\ 3 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 5 & 6 & 7 & 1 & 8 \end{vmatrix} = (-1)^{4+4} \cdot 2 \cdot \begin{vmatrix} 5 & 5 & 6 & 7 \\ 4 & 0 & 4 & 0 \\ 3 & 0 & 0 & 0 \\ 5 & 6 & 7 & 0 \end{vmatrix} = 2 \cdot (-1)^{3+1} \cdot 3 \cdot \begin{vmatrix} 5 & 6 & 7 \\ 9 & 0 & 4 & 0 \\ 6 & 7 & 0 \end{vmatrix}$$

$$= 2 \cdot 3 \cdot (-1)^{2+2} \cdot 4 \cdot |5| 7 = 2 \cdot 3 \cdot 4 \cdot (5 \cdot 0 - 7 \cdot 6) = 24 \cdot (40 - 42) = -48.$$

Question 4:

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, as this is always a solution of $Ax = 0$.

$$\begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix}, \text{ as } A \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} = A \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = A \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix} - A \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \underline{b} - \underline{b} = \underline{0}$$

Similary, $\begin{bmatrix} -57 \\ -3 \end{bmatrix}$ is also a solution.

Question 5:

No, because property (ii) doesn't hold since

$$T\left(2\cdot\begin{bmatrix}1\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}2\\2\end{bmatrix}\right) = \begin{bmatrix}2^2\\2^2\end{bmatrix} = \begin{bmatrix}4\\4\end{bmatrix} \neq \begin{bmatrix}2\\2\end{bmatrix} = 2\cdot T\left[1\\1\end{bmatrix}$$

(Note that property (i) also doesn't hold since
$$T\left(\begin{bmatrix}17+72\\2\end{bmatrix}\right) = T\left(\begin{bmatrix}3\\3\end{bmatrix}\right) = \begin{bmatrix}3^2\\3^2\end{bmatrix} = \begin{bmatrix}9\\5\end{bmatrix} = \begin{bmatrix}1^2\\1\end{bmatrix} + \begin{bmatrix}2^2\\2^2\end{bmatrix} = T\left(\begin{bmatrix}7\\1\end{bmatrix}\right) + T\left(\begin{bmatrix}2\\2\end{bmatrix}\right)$$

Question 6:

(a)
$$|A-\lambda I| = |4-\lambda| = (4-\lambda)(4-\lambda) - 1 = \lambda^2 - 6\lambda + 15 = (\lambda - 3)(\lambda - 5)$$

 $|A-\lambda I| = 0 \iff (\lambda - 3)(\lambda - 5) = 0 \implies (\lambda_1 = 3) \text{ and } \lambda_2 = 5.$

A-SI = [-1 1]
$$R_2 : R_2 + R_1$$
 [0 0] R_{1*-1} [0 0] So, bosis for $\lambda = 5$: $V_2 = [1]$.

Normalize $V_2 : ||V_2|| = V_1^2 + i^2 = V_7$

$$||V_2|| = \frac{1}{||V_2||} = \frac{1}{||V$$

Question 7:

- © Col A is a subspace of IR6 Row A is a subspace of IR4. So, they cannot be orthogonal. So, 16
- (b) True, because Nul A _ Row A. Sc, [a]
- C Cd A is a subspace of \mathbb{R}^6 NulA is a subspace of \mathbb{R}^4 . So, they cannot be orthogonal. So, B
- Since A is a 6x4 matrix, A can have o free variables (when there is a pivot in every column). So, the smallest possible dimension of Nul A is o.
- € Since A is a bxu matrix, A has a most 4 pivot columns. So, the largest possible dimension of Cd A is 4.
- Au = $\begin{cases} -27 \neq 0 \end{cases}$, so $u \notin NuA$. Since Ais a $3 \times u$ moutrix, Col A is a subspace of \mathbb{R}^3 . Hence, as $1 \times \mathbb{R}^n$, we know $1 \times \mathbb{R}^n$ we know $1 \times \mathbb{R}^n$.
- $\frac{y \cdot u}{u \cdot u} = \frac{3\cdot 2 + (-1)\cdot 1}{2\cdot 2 + 1\cdot 1} \quad \begin{bmatrix} z \\ z \end{bmatrix} = \frac{5}{5} \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} z \\ 1 \end{bmatrix}$

- (The zero polynomial p(t)=0 does not belong to W. So, W is not a subspace of P_2 .

 As for V:

 * the zero polynomial p(t)=0 belongs to V.

 * if $u \in V$ and $v \in V$, then (u+v)(i)=u(i)+v(i)=0+0=0.

 * if $u \in V$ and $c \in R$, then $(c \cdot u)(i)=c \cdot u(i)=c \cdot 0=0$.

 Hence, V is a subspace of P_2 .
 - 50, <u>[6]</u>
- So, -a-b=0 =) b=-a. ab+6=-iq =) a(-a)+b=-iq =) $-a^2+b=-iq =$) $a^2=25=$) a=5 or a=-5: So, b.