Ch-11 Areas Related to Circles

- 1. **Circle** The set of points which are at a constant distance of 'r' units from a fixed point 'O' is called a circle. Fixed point is called the centre and radius = r units.
- 2. Circumference and Area of a Circle for a circle of radius 'r', we have
 - a. Circumference = $2\pi r$.
 - b. Area = πr^2 .
 - c. Circumference of semi-circle = $(\pi r + 2r)$.
 - d. Area of semi-circle = $\frac{\pi r^2}{2}$.
- 3. Length of an Arc, Area of a Sector let an arc AB make an angle $\theta < 180^{\circ}$ at the centre of a circle of radius 'r'. Then, we have
 - a. Length of the Arc, AB = θ x $\frac{2\pi r}{360}$ = 1.
 - b. Area of the sector $= \theta \times \frac{\pi r^2}{360}$ $= \frac{1}{2} \times \left(\theta \times \frac{2\pi r}{360}\right) \times r$ $= \frac{1}{2} \times 1 \times r.$
- 4. Area of a Ring let R and r be the Outer and Inner radii of a ring. Then, area of the ring = π (R² r²).
- 5. Area of a Segment
 - a. Area of the Minor Segment = (Area of the Sector) (Area of the Triangle) $= \left[\left(\theta \times \frac{\pi r^2}{360} \right) \frac{1}{2} r^2 \sin \theta \right].$
 - b. Area of the Major Segment = (Area of the Circle) (Area of the Minor Segment).
- 6. Rotating Wheels
 - a. Distance moved by a wheel in 1 rotation = Circumference of the wheel.
 - b. Number of rotations in 1 min. = $\frac{\text{Distance covered in 1 min.}}{\text{Circumference}}$
- 7. Rotating of the Hands of a Clock
 - a. Angle described by the minute hand of a clock in $60 \text{ min.} = 360^{\circ}$.
 - b. Angle described by the hour hand of a clock in $12 \text{ hrs.} = 360^{\circ}$.