$$P(f^{+}) Bf, \phi = P(f^{+}) Af, \phi - Vf^{+}, \phi$$

 $P(f^{+}) Af, \phi - Vf^{+}, \phi$
 $P(f^{+}) Af, \phi - Vf^{+}, \phi$
 $P(f^{+}) Af, \phi - Vf^{+}, \phi$

by (3.6). It follows from Prop. 4.5 that $(S(t))_{t\geq 0}$ is positive.

Finally, if it is known that the semigroup $(S(t))_{t \ge 0}$ is positive, domination can be characterized as follows.

<u>Proposition</u> 4.8. Let E be a real Banach lattice, $(T(t))_{t\geq 0}$ a positive semigroup with generator A and $(S(t))_{t\geq 0}$ a positive semigroup with generator B. Consider the following conditions.

- (i) $S(t) \leq T(t)$ $(t \geq 0)$.
- (ii) $\langle Bf, \phi \rangle \leq \langle f, A' \phi \rangle$ for all $f \in D(B)_+, \phi \in D(A')_+$.
- (iii) Bf \leq Af for $0 \leq$ f \in D(A) \cap D(B).

Then (i) and (ii) are equivalent and imply (iii).

Moreover, if $D(A) \subset D(B)$ or $D(B) \subset D(A)$, then (iii) implies (i).

<u>Proof.</u> Assume that (i) holds. Then for $f \in D(B)_+$, $\phi \in D(A')_+$, $\langle Bf, \phi \rangle = \lim_{t \to 0} 1/t \langle S(t)f - f, \phi \rangle \leq \lim_{t \to 0} 1/t \langle T(t)f - f, \phi \rangle$ $= \langle f, A'\phi \rangle.$

So (ii) holds. (iii) is proved similarly.

Now assume (ii). Let λ > max {s(A), s(B)} . Let $g \in E_+$, $\psi \in E_+^{\prime}$.

Then $\langle R(\lambda,B)g - R(\lambda,A)g, \psi \rangle$

- = $\langle R(\lambda, A) q, \lambda R(\lambda, B) ' \psi \psi \rangle \langle \lambda R(\lambda, A) q q, R(\lambda, B) ' \psi \rangle$
- $= \langle f, B' \phi \rangle \langle Af, \phi \rangle \leq 0 ,$

where $f = R(\lambda, A) g \in D(A)_+$ and $\phi = R(\lambda, B)' \psi \in D(B')_+$. Hence $R(\lambda, B) \le R(\lambda, A)$ and (i) follows.

Finally, we prove that (iii) implies (i) if $D(B) \subset D(A)$, say.

Let $\lambda > \max\{s(A), s(B)\}$. Then $(A - B)R(\lambda, B)$ is a positive operator.

Hence $R(\lambda,A) - R(\lambda,B) = R(\lambda,A)(A - B)R(\lambda,B) \ge 0$. This implies (i).

The preceding results can be applied to the perturbation by multiplication operators. Let (X,μ) be a σ -finite measure space and $E = L^p(X,\mu)$ (1 \leq p $< \infty$). Consider a positive semigroup $(T(t))_{t \geq 0}$ with generator A. Let $m: X \to \mathbb{R}$ be a measurable function such that $m(x) \leq 0$ for all $x \in X$. Let $D(m) = \{f \in E : f \cdot m \in E\}$. Define the operator B with domain $D(B) = D(A) \cap D(m)$ by Bf = Af + $m \cdot f$ ($f \in D(B)$).