SYMPLECTIC TORIC MANIFOLDS

SIMON GRÜNING

(DARBOUX THEOREM)

Throughout these seminar notes we follow closely the exposition of Yannis Bähni¹ [Bae19] gathered through material from Lee's [Lee13] [Lee18] and Salamon's books [McD17]. We take inspiration from Ana Cannas da Silva [Sil08] and try to follow her conventions, note thus that all manifolds are smooth unless explicitly stated otherwise.

1. Prerequisites

REMARK 1.1. A chart (U, φ) is called centered on x when $\varphi(x) = 0$.

PROPOSITION 1.1 (Cartan's Magic Formula). [Bae19] Fix a manifold M, a vector field $X \in \mathfrak{X}(M)$, and an $\omega \in \Omega^k(M)$ for some $k \in \mathbb{N}$. Then

$$\mathcal{L}_X \omega = i_X (d\omega) + d(i_X \omega).$$

THEOREM 1.1 (Canonical Form Theorem for Symplectic Vector Space). [Bae19] Fix (V, ω) a symplectic vector space. Then dimV = 2n and there exists a basis $(a_1, ..., a_n, b_1, ..., b_n)$ of V such that:

$$\omega = \sum_{i=1}^{n} a^{i} \wedge b^{i}$$

where $(a^1, ..., a^n, b^1, ..., b^n)$ denotes the dual basis of $(a_1, ..., a_n, b_1, ..., b_n)$.

DEFINITION 1.1. [Lee13] Fix a manifold $M, J \subseteq \mathbb{R}$ an interval. A time-dependent vector field on M is a smooth map $X: J \times M \to TM$ such that $\forall (t, x) \in J \times M : X(t, x) \in T_xM$.

DEFINITION 1.2. [Lee13] An integral curve of a time-dependent vector field X is a curve $\gamma \in C^{\infty}(J_0, M)$ such that $\gamma'(t) = X(t, \gamma(t))$ for all $t \in J_0$, where $J_0 \subseteq J$ is an interval by notation as in definition 1.1.

DEFINITION 1.3. [Lee13] Fix a manifold M, $J \subseteq \mathbb{R}$ an open interval, and $X : J \times M \to TM$ a time-dependent vector field. We call a time dependent flow of X an open subset $\mathcal{D} \subseteq J \times J \times M$ paired with a map $\psi \in \mathcal{C}^{\infty}(\mathcal{D}, M)$ such that the following holds for $\mathcal{D}^{(t_0,x)} := \{t \in J : (t,t_0,x) \in \mathcal{D}\}, \ \psi^{(t_0,x)}(t) := \psi(t,t_0,x), \ M_{t_1,t_0} := \{x \in M : (t_1,t_0,x) \in \mathcal{D}\}, \ \psi_{t_1,t_0}(x) := \psi(t_1,t_0,x):$

- (1) For any $t_0 \in J, x \in M$, $\mathcal{D}^{(t_0,x)}$ is an open interval such that $t_0 \in \mathcal{D}^{(t_0,x)}$ and $\psi^{(t_0,x)}(t)$ is the unique maximal integral curve of X with $\psi^{(t_0,x)}(t_0) = x$.
- (2) $t_1 \in \mathcal{D}^{(t_0,x)} \land y = \psi^{(t_0,x)}(t_1) \implies \mathcal{D}^{(t_1,y)} = \mathcal{D}^{(t_0,x)} \land \psi^{(t_1,y)} = \psi^{(t_0,x)}$
- (3) For any $(t_1, t_0) \in J \times J$ we have that M_{t_1, t_0} is open in M and $\psi_{t_1, t_0} : M_{t_1, t_0} \to M$ is a diffeomorphism from M_{t_1, t_0} onto M_{t_0, t_1} with inverse ψ_{t_0, t_1}
- $(4) \ x \in M_{t_1,t_0} \land \psi_{t_1,t_0}(x) \in M_{t_2,t_1} \implies$

$$x \in M_{t_2,t_0} \land \psi_{t_2,t_1} \circ \psi_{t_1,t_0}(x) = \psi_{t_2,t_0}(x)$$

THEOREM 1.2 (Fundamental Theorem of Time-Dependent Flows). [Lee13] For any time-dependent vector field X, there exists a time-dependent flow of X.

¹ who was of great help in preparing these notes, thank you

PROPOSITION 1.2 (Fisherman's Formula). [Lee13] Fix a manifold M. If $X: J \times M \to TM$ is a time-dependent vector field with time-dependent flow $\psi: \mathcal{D} \to M$ then for any $\omega \in \Omega^k(M)$, $(t_1, t_0, x) \in \mathcal{D}$ we have that

$$\left. \frac{d}{dt} \right|_{t=t_1} \psi_{t,t_0}^* \omega = \psi_{t_1,t_0}^* \left(\mathcal{L}_{X_{t_1}} \omega \right)$$

with $X_{t_1} := X(t_1, \cdot) \in \mathfrak{X}(M)$.

PROPOSITION 1.3 (Fisherman's Formula Adapted). [Lee13] Fix a manifold M. If $X: J \times M \to TM$ is a time-dependent vector field with time-dependent flow $\psi: \mathcal{D} \to M$, and further, $\omega: J \times M \to \Lambda^k T^*M$ is a time-dependent differential k-form, then for any $\omega \in \Omega^k(M)$, $(t_1, t_0, x) \in \mathcal{D}$ we have that

$$\left. \frac{d}{dt} \right|_{t=t_1} \psi_{t,t_0}^* \omega_t = \psi_{t_1,t_0}^* \left(\mathcal{L}_{X_{t_1}} \omega_{t_1} + \frac{d}{dt} \right|_{t=t_1} \omega_t \right)$$

with $X_{t_1} := X(t_1, \cdot) \in \mathfrak{X}(M)$.

Proof. For any sufficiently small $\varepsilon > 0$ (i.e. such that we remain within J) let

$$F: (t_1 - \varepsilon, t_1 + \varepsilon) \times (t_1 - \varepsilon, t_1 + \varepsilon) \to \Lambda^k T^* M$$

be defined by

$$F(u,v) := \psi_{u,t_0}^* \omega_v.$$

We compute

$$\frac{d}{dt}\Big|_{t=t_1} \psi_{t,t_0}^* \omega_t = \frac{d}{dt}\Big|_{t=t_1} F(t,t)$$

$$= \frac{\partial F}{\partial u}(t_1,t_1) + \frac{\partial F}{\partial v}(t_1,t_1)$$

$$= \frac{d}{du}\Big|_{u=t_1} \psi_{u,t_0}^* \omega_{t_1} + \frac{d}{dv}\Big|_{v=t_1} \psi_{t_1,t_0}^* \omega_{v}$$

$$= \psi_{t_1,t_0}^* (\mathcal{L}_{X_{t_1}} \omega_{t_1}) + \psi_{t_1,t_0}^* \left(\frac{d}{dv}\Big|_{v=t_1} \omega_{v}\right)$$
fisherman
$$= \psi_{t_1,t_0}^* \left(\mathcal{L}_{X_{t_1}} \omega_{t_1}\right) + \frac{d}{dv}\Big|_{v=t_1} \omega_{v}\right)$$

to show the required statement.

LEMMA 1.1. [Bae19] Let M be a manifold, $x \in M$ with basis (e_i) for T_xM . Then there exists a chart $(U, x^1, ..., x^n)$ centered on x such that for any i = 1, ..., n:

$$\left. \frac{\partial}{\partial x^i} \right|_x = e_i$$

PROPOSITION 1.4. [Lee13] Every smooth manifold admits a Riemannian metric.

DEFINITION 1.4 (Tubular Neighbourhood). [Lee18] Let (M,g) be a Riemannian manifold, $S \subseteq M$ an embedded submanifold. Denote by $\pi: NS \to S$ the normal bundle of S in M. Restrict the exponential map of M as $\exp_S: \mathcal{E} \cap NS \to M$ with $\mathcal{E} \subseteq TM$. A neighbourhood U of S in M is called a tubular neighbourhood of S if there exists a positive continuous function $\delta: S \to \mathbb{R}$ such that U is the diffeomorphic image under \exp_S of a subset $V \subseteq \mathcal{E} \cap NS$ of the form

$$V = \{(x, v) \in NS : |v|_q < \delta(x)\}.$$

We call U a uniform tubular neighbourhood of S if δ is constant.

Theorem 1.3 (Existence of Tubular N). [Lee18] For every embedded submanifold of a Riemannian manifold (M, g), there exists a tubular neighbourhood in M. If the submanifold is compact, there exists a uniform tubular neighbourhood.

PROPOSITION 1.5 (Homotopy Formula). [Sil08] Fix U, a tubular neighburhood of a submanifold S embedded in M. If $\omega \in \Omega^k(U)$ is closed and $\iota^*\omega = 0$ for some $\iota: S \hookrightarrow U$, then there exists an $\eta \in \Omega^{k-1}(U)$ with $\omega = d\eta$. It is possible to ensure that $\forall x \in S: \eta_x = 0$.

Proof. By definition of tubular neighbourhood, we have a positive continous function $\delta: S \to \mathbb{R}$ with

$$U = exp_S(\{(x, v) \in NS : |v|_g < \delta(x)\})$$

Fix a $t \in I = [0,1]$. Let $\psi_t : U \to U$ be defined by

$$\psi_t(exp_S(x,v)) := exp_S(x,tv).$$

Since exp_S is injective and we have an smooth inverse $exp_S(x,tv) \mapsto exp_S(x,v)$, ψ_t is a diffeomorphism for t > 0. The proof is complete if we find a map $H : \Omega^k(U) \to \Omega^{k-1}(U)$ with

$$H \circ d + d \circ H = \psi_1^* - \psi_0^* = id - \iota^*$$

since it then follows by the assumptions on ω that

$$Hd(\omega) + dH(\omega) = id(\omega) - \iota^*(\omega)$$

 $d(H\omega) = \omega.$

Claim: We can define such a map as:

$$(H(\omega))_x(v) := \int_0^1 (\psi_t^*(i_{X_t}\omega))_x(v)dt$$
$$= \int_0^1 \omega_{\psi_t(x)} \left(\frac{d}{dt}\psi_t(x), D(\psi_t)_x(v)\right)dt$$

for $x \in U, v \in T_xU$, and $X_t \in \mathfrak{X}(U)$ given for t > 0 by

$$X_t := \left(\frac{d}{dt}\psi_t\right) \circ \psi_t^{-1}.$$

Proof of Claim: We compute

$$\begin{split} H(d\omega) + d(H\omega) &= \int_0^1 \psi_t^*(i_{X_t}(d\omega)) + d(\psi_t^*(i_{X_t}\omega))dt \\ &= \int_0^1 \psi_t^*(i_{X_t}(d\omega) + di_{X_t}\omega)dt \\ &= \int_0^1 \psi_t^*(\mathcal{L}_{X_t}\omega)dt & \text{cartan} \\ &= \int_0^1 \frac{d}{dt}\psi_t^*\omega dt & \text{fisherman} \\ &= \psi_1^*\omega - \psi_0^*\omega \end{split}$$

Since we have $\psi_t|_S = id_S$ for $t \in I$, with S seen as a subset of NS via the zero section, it follows that X_t vanishes on S and so will η .

PROPOSITION 1.6 (Existence of Vector Field). [Bae19] Fix (M, ω) a symplectic manifold and $\eta \in \Omega^1(M)$. Then there exists a unique vector field $X \in \mathfrak{X}(M)$ such that $i_X \omega = \eta$.

2. Moser Trick

REMARK 2.1. See https://en.wikipedia.org/wiki/J%C3%BCrgen_Moser for history.

THEOREM 2.1 (Moser Trick). [McD17] Fix M a compact manifold. Suppose for some open interval $0 \in J \subseteq \mathbb{R}$ we have a smooth family of symplectic forms $(\omega_t)_{t \in J} \in \Omega^2(M)$ such that there exists another smooth family $(\eta_t)_{t \text{ in}K} \in \Omega^1(M)$ with

$$\frac{d}{dt}\omega_t = d\eta_t.$$

Then there exists a family of diffeomorphisms $(\psi_t)_{t\in J} \in Diff(M)$ with

$$\psi_t^* \omega_t = \omega_0.$$

Proof. The Moser trick is to see the ψ_t as time-dependent flows induced by some X_t time-dependent vector fields. Note that here we use the convention $\psi_t := \psi_{t,0}$ where t_0 is fixed as 0.

To begin with the end in mind, suppose that

$$\frac{d}{dt}\psi_t = X_t \circ \psi_t$$

If we would have the X_t and were to induce the flow ψ_t with the Fundamental Flow theorem we would also receive that

$$\psi_0 = \psi_0 \circ \psi_0 = id_M$$

To satisfy $\psi_t^* \omega_t$ being constant as desired we set:

$$0 = \frac{d}{dt}\psi_t^*\omega_t = \psi_t^* \left(\mathcal{L}_{X_t}\omega_t + \frac{d}{dt}\omega_t \right)$$
 fisherman

$$= \psi_t^* \left(i_{X_t} (d\omega_t) + d(i_{X_t} \omega_t) + \frac{d}{dt} \omega_t \right)$$
 cartan
$$= \psi_t^* \left(d(i_{X_t} \omega_t) + \frac{d}{dt} \omega_t \right)$$
 $d\omega_t = 0$ since closed
$$= \psi_t^* \left(d(i_{X_t} \omega_t) + d\eta_t \right)$$
 assumption

Since ψ_t^* is an isomorphism and d is a sheaf morphism we can peel away the layers:

$$0 = \psi_t^* \left(d(i_{X_t} \omega_t) + d\eta_t \right)$$

$$\Leftrightarrow 0 = d(i_{X_t} \omega_t) + d\eta_t = d(i_{X_t} \omega_t + \eta_t)$$

$$\Leftrightarrow 0 = i_{X_t} \omega_t + \eta_t$$

We can solve $i_{X_t}\omega_t = -\eta_t$ for X_t explicitly with $X_t = -\Omega_t^{-1}(\eta_t)$ where Ω_t is the tangent-cotangent bundle isomorphism. With the Fundamental theorem of time-dependent Flow we can now integrate the X_t resulting in the flows ψ_t such that $\psi_t^*\omega_t$ is constant, and since $\psi_0^* = id$ we have $\psi_t^*\omega_t = \omega_0$.

THEOREM 2.2 (Moser Isotopy). [McD17] Fix as M a 2n-dimensional manifold and as $S \subseteq M$ a compact submanifold. If $\omega_0, \omega_1 \in \Omega^2(M)$ are close and

- (1) $\forall x \in S : \omega_0 | x = \omega_1 | x$
- (2) $\forall x \in S : \omega_0 | x, \omega_1 | x$ are nondegenerate.

then there exist neighbourhoods U_0, U_1 of S in M and a diffeomorphism $F: U_0 \to U_1$ with

$$F|_S = id_S$$
$$F^*(\omega_1|_{U_1}) = \omega_0|_{U_0}.$$

Proof. Let U be a uniform tubular neighbourhood of S in M by the Theorem on the Existence of Tubular Neighbourhoods. By construction \overline{U} is compact, hence the uniform nature. By the Homotopy Formula 1.5 there exists $\eta \in \Omega^1(U)$ such that

$$\omega_1 - \omega_0 = d\eta$$
.

Further we can ensure in the application of the Homotopy Formula that η vanishes on S. Define for $t \in \mathbb{R}$

$$\omega_t := \omega_0 + t(\omega_1 - \omega_0)$$

By construction ω_t is closed. To assure that ω_t is non-degenerate, we shrink U to U_0 , a new neighbourhood of S in M. In doing this, note that $\omega_t = \omega_0$ on S per assumption and that we may take the union of open neighbourhoods of the non-degenerate points of S to exceed S as it is closed, and by smoothness retain the non-degenerate property.

We then have that:

$$\frac{d}{dt}\omega_t = \omega_1 - \omega_0 = d\eta.$$

Since $\overline{U_0} \subseteq \overline{U}$ is compact due to being a closed subset of a compact space, we can apply now Moser's Trick 2.1 to get a family of diffeomorphisms $(\psi_t)_{t\in J}$ with

$$\psi_t^* \omega_t = \omega_0.$$

Let now $F := \psi_1, U_1 := F(U_0)$. The final property follows from η vanishing on S.

3. Darboux Theorem

THEOREM 3.1 (Darboux's Theorem). [Lee13] Fix (M, ω) a 2n-dimensional symplectic manifold, $x \in M$. Then there exists a chart $(U, x^1, ..., x^n, y^1,, y^n)$ centered on x such that:

$$\omega|_U = \sum_{i=1}^n dx^i \wedge dy^i$$

.

Proof. The canonical form theorem for symplectic tensors 1.1 provides us a basis $(a_1, ..., a_n, b_1, ..., b_n)$ for T_xM such that for its dual basis $(a^1, ..., a^n, b^1, ..., b^n)$ we have

$$\omega_x = \sum_{i=1}^n da^i \wedge db^i.$$

By proposition 1.1 we further have a chart $(U, \tilde{\varphi})$ centered on x with associated coordinates $(\tilde{x}^1, ..., \tilde{x}^n, \tilde{y}^1, ..., \tilde{y}^n)$ such that for i = 1, ..., n

$$\frac{\partial}{\partial \tilde{x}^i} \bigg|_x = a_i$$

$$\frac{\partial}{\partial \tilde{x}^i} \bigg|_x = a_i$$

$$\left. \frac{\partial}{\partial \tilde{y}^i} \right|_x = b_i$$

Combining the previous two results and traversing again into the dual basis we have

$$\omega_x = \sum_{i=1}^n d\tilde{x}^i|_x \wedge d\tilde{y}^i|_x.$$

Define:

$$\omega_0 := \omega|_U$$

$$\omega_1 := \sum_{i=1}^n d\tilde{x}^i \wedge d\tilde{y}^i.$$

Then ω_0, ω_1 are symplectic forms on U.

Application of the Moser isotopy 2.2 to the compact submanifold $\{x\} \subseteq U$ given ω_0, ω_1 provides the existence of neighbourhoods U_0, U_1 of $\{x\}$ in U and a diffeomorphism $F: U_0 \to U_1$ with

$$F(x) = x$$

$$F^*\omega_1=\omega_0.$$

Define now another chart (U_0, φ) with $\varphi := \tilde{\varphi}|_{U_1} \circ F$. By construction the associated coordinates are

$$x^{i} = \tilde{x}^{i} \circ F$$
$$y^{i} = \tilde{y}^{i} \circ F.$$

If then follows that $\varphi(x) = \tilde{\varphi}(x) = 0$, or in other words, the chart remains centered. The remaining property of our chart (U_0, φ) follows by:

$$\omega|_{U_0} = \omega_0|_{U_0}$$

$$= F^*(\omega_1|U_1)$$

$$= F^*\left(\sum_{i=1}^n d\tilde{x}^i \wedge d\tilde{y}^i\right)$$

$$= \sum_{i=1}^n F^*(d\tilde{x}^i \wedge d\tilde{y}^i)$$

$$= \sum_{i=1}^n F^*(d\tilde{x}^i) \wedge F^*(d\tilde{y}^i)$$

$$= \sum_{i=1}^n dF^*(\tilde{x}^i) \wedge dF^*(\tilde{y}^i)$$

$$= \sum_{i=1}^n d(\tilde{x}^i \circ F) \wedge d(\tilde{y}^i \circ F)$$

$$= \sum_{i=1}^n dx^i \wedge dy^i.$$

Remark 3.1. This theorem allows us to examine the local nature of symplectic manifolds and discover that they are always similar in nature in this regard.

APPENDIX A. AUXILIARY

Lemma A.1. [Bae19] For a smooth function F from manifolds M to N and $\omega, \eta \in \Omega(N)$ we have

$$F^*(\omega \wedge \eta) = F^*\omega \wedge F^*\eta$$

Lemma A.2. [Bae19] For a smooth function F from manifolds M to N and $\omega \in \Omega(M)$ we have

$$F^*(d\omega) = d(F^*\omega).$$

References

- [Bae19] Yannis Baehni. "Mathematical Aspects of Classical Mechanics". Semester Thesis. 2019. URL: https://github.com/TheGeekGreek/mathematical_aspects_of_classical_mechanics.
- [Lee13] J.M. Lee. Introduction to Smooth Manifolds. second edition edn. Springer, 2013.
- [Lee18] J.M. Lee. Introduction to Riemannian Manifolds. second edition edn. Springer, 2018.
- [McD17] Salamon D. McDuff D. Introduction to Symplectic Topology. third edition edn. Oxford University Press, 2017.
- [Sil08] A.C. da Silva. Lectures on Symplectic Geometry. corrected 2nd printing edn. 2008.