Analiza sezonowości

wahania sezonowe – o cyklu rocznym

Dekompozycja szeregu czasowego

Dekompozycja szeregu czasowego

Wahania okresowe

Punktem wyjścia w analizie sezonowości jest wyodrębnienie trendu

Do obliczania wskaźnika wahań okresowych (tzw. wskaźnik okresowości bądź wskaźnik sezonowości) wykorzystuje się wartości empiryczne szeregu czasowego oraz wartości szeregu wygładzonego metodą mechaniczną bądź analityczną.

UWAGA:

Jeżeli analizowane zjawisko charakteryzuje się stałymi bezwzględnymi wahaniami (model addytywny), wówczas uwalnianie szeregu czasowego od trendu następuje przez **odejmowanie wyrazów szeregu wygładzonego od wyrazów szeregu empirycznego.**

Jeżeli analizowane zjawisko charakteryzuje się stałymi względnymi wahaniami (model multiplikatywny), wówczas uwalnianie szeregu czasowego od trendu następuje przez dzielenie wyrazów szeregu empirycznego przez wyrazy szeregu wygładzonego.

Wyrównywanie szeregów czasowych

•Wyodrębnianie tendencji rozwojowej zjawiska przez eliminację wahań przypadkowych i okresowych nazywamy wyrównywaniem bądź wygładzaniem szeregu czasowego

•Metody:

- mechaniczne

Metoda średniej arytmetycznej ruchomej

- analityczne

Klasyczna Metoda Najmniejszych Kwadratów

Załóżmy, że szereg czasowy wykazuje wahania okresowe i że w każdym cyklu jest d faz wahań. Ogólny algorytm konstrukcji wskaźnika sezonowości jest następujący:

- 1. Wygładzamy szereg czasowy
- 2. Uwalniamy szereg czasowy od trendu
- 3. Eliminujemy wahania przypadkowe
- 4. Obliczamy czyste wskaźniki wahań okresowych

- **1.** Wygładzamy szereg czasowy metodą mechaniczną (z d okresów) bądź analityczną;
- **2.Uwalniamy szereg czasowy od trendu** w tym celu dzielimy wyrazy szeregu empirycznego przez odpowiadające im wyrazy szeregu wygładzonego:

$$s_{ij} = \frac{y_{ij}}{\hat{y}_{ij}}$$

przy czym otrzymane w ten sposób wartości s_{ij} zawierają wahania okresowe i przypadkowe;

- 3. Eliminujemy wahania przypadkowe z wielkości $s_{ij} = \frac{y_{ij}}{\hat{y}_{ij}}$ dla jednoimiennych okresów, tj. pochodzących z tej samej fazy wahań, obliczamy średnie arytmetyczne z wyrazów s_{ij}
 - otrzymane w ten sposób wartości nazywamy surowymi wskaźnikami wahań sezonowych (bądź okresowych).

Informują one o ile procent poziom zjawiska w danej fazie cyklu jest wyższy (niższy) od poziomu, jaki byłby osiągnięty, gdyby nie było wahań, a rozwój następował zgodnie z trendem;

4. Obliczamy czyste wskaźniki wahań okresowych (zwane oczyszczonymi wskaźnikami sezonowości) S_{iO}

- surowe wskaźniki sezonowości S_{is} mnożymy przez wskaźnik korygujący W_k będący ilorazem liczby faz d przez sumę wskaźników surowych, suma tak otrzymanych wskaźników jest równa liczbie faz wahań.

1. Brak trendu

Metoda średnich jednoimiennych podokresów (metoda Kemera)

$$\overline{y} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{d} y_{ij}}{n} \qquad \overline{y}_{i} = \frac{\sum_{j=1}^{k} y_{ij}}{k}$$

$$n = k \cdot d$$

względne wskaźniki sezonowości wyznacza się jako:

$$_{w}S_{i} = \frac{y_{i}}{\overline{y}}$$

bezwzględne wskaźniki sezonowości

$$_{b}S_{i}=_{w}S_{i}\cdot \overline{y}-\overline{y}$$

2. Model addytywny

$$y_t = f(t) + g(t) + z(t)$$

$$\hat{y}_t = f(t)$$
eliminacja trendu $y_t - \hat{y}_t$

$$s_{ij} = y_{ij} - \hat{y}_{ij}$$

wskaźniki sezonowości (bezwzględne, mianowane) liczymy jako średnie z jednoimiennych podokresów $\it k$

$${}_{b}S_{i} = \frac{\sum_{j=1}^{K} S_{ij}}{k}$$

gdzie: j=1, ...,k - liczba analizowanych lat

i=1, ...,d - liczba podokresów sezonowości

Suma bezwzględnych wskaźników sezonowości powinna się równać zero: $\sum_{i=1}^{b} {}^{b}{}^{s}{}^{is} = 0$ Gdy równość ta nie zachodzi, składniki należy skorygować następująco $_{b}S_{io} = {}_{b}S_{is} = \overline{S}$

gdzie:
$$\bar{S} = \frac{1}{k} \sum_{i} {}_{b} S_{is}$$

2. Model addytywny

względne - surowe - wskaźniki sezonowości

$$_{w}S_{is} = \frac{_{b}S_{i} + \overline{y}}{\overline{y}}$$

wskaźnik korygujący: $w_k = \frac{d}{d}$

$$w_k = \frac{d}{\sum_{i=1}^{d} {}_{w} S_{is}}$$

względne - oczyszczone- wskaźniki sezonowości

bezwzględne - oczyszczone - wskaźniki sezonowości

$$_{w}S_{io} = _{w}S_{is} \cdot w_{k}$$

$$_{w}S_{io} =_{w}S_{is} \cdot w_{k}$$
$$_{b}S_{io} =_{w}S_{io} \cdot \overline{y} - \overline{y}$$

3. Model multiplikatywny

$$y_t = f(t) \cdot g(t) \cdot z(t)$$

$$\hat{y}_t = f(t)$$
eliminacja trendu y_t / \hat{y}_t

$$s_{ij} = y_{ij} / \hat{y}_{ij}$$

W przypadku modelu multiplikatywnego powinniśmy posługiwać się logarytmami zmiennej Y.

Często jednak przyjmuje się upraszczające założenie, że średnia arytmetyczna nieistotnie różni się od geometrycznej i po wyznaczeniu scentrowanej średniej ruchomej, wskaźniki sezonowości wyznacza się jako ilorazy.

wskaźniki sezonowości (względne, niemianowane) liczymy jako średnie dla jednoimiennych podokresów - są to względne surowe wskaźniki sezonowości

$$_{w}S_{is} = \frac{\sum_{j=1}^{k} S_{ij}}{k}$$

gdzie:

j=1, ..., k - liczba analizowanych lat

i=1, ... ,d - liczba podokresów sezonowości

3. Model multiplikatywny

Suma względnych wskaźników sezonowości powinna się równać liczbie okresów sezonowości d

Gdy równość ta nie zachodzi, składniki należy skorygować następująco:

 $S_{io} = S_{is} \cdot W_k$

wskaźnik korygujący:
$$W_k = \frac{d}{\sum_{i=1}^{d} {}_{w} S_{is}}$$

 $_{b}S_{io} = _{w}S_{io} \cdot \overline{y} - \overline{y}$ bezwzględne - oczyszczone - wskaźniki sezonowości

Zastosowanie średnich ruchomych do wyznaczenia trendu skraca szereg oraz utrudnia wnioskowanie w przyszłość za pomocą ekstrapolacji

Praktyczne rozróżnienie modelu addytywnego i multiplikatywnego nie jest proste.

Graficzna prezentacja szeregu pozwala w przybliżeniu określić, czy wahania periodyczne mają:

- stałą amplitudę (model addytywny)
- czy ich wielkość jest proporcjonalna do poziomu trendu (model multiplikatywny)

W sytuacji, gdy nie jest znana długość okresu wahań periodycznych, stosuje się analizę **harmoniczną** oraz analizę **periodogramów**.

Jeszcze bardziej złożony przypadek występuje gdy długość okresu wahań periodycznych nie jest stała.

Produkcja piwa w jednym z małych browarów o zasięgu lokalnym kształtowała się następująco:

Produkcja piwa w latach 2003-2005 (w tys.hl)

	0 I		,	,
Lata	kwartały			
	I	\mathbf{II}	III	IV
2003	3	4	8	5
2003 2004	4	6	10	6
2005	5	8	12	7

Produkcja piwa w latach 2003 - 2005

Szereg czasowy produkcji piwa po eliminacji trendu: model addytywny i multiplikatywny

Produkcja piwa 2003 - 2005, różnice absolutne i względne

B) Uwalnianie wyrazów szeregu od trendu

C) Obliczamy surowe wskaźniki sezonowości Względne wskaźniki sezonowości (surowe)

C		y_{ij}
S _{ij}	_	\hat{y}_{ij}

Kwartał	Suma	Średnia
	jednoimi	iennych okresów

1	2,079	0,693
2	2,836	0,945
3	4,516	1,505
4	2,549	0,850

3,993

D) Obliczamy czyste wskaźniki sezonowości

Współczynnik koryguj.=1,002

$$w_k = \frac{d}{\sum_{i=1}^{d} w^{S_{iS}}}$$

Kwartał Względne wskaźniki sezonowości (czyste)

1	0,694
2	0,947
3	1,508
4	0,851

4,000

Ekstrapolacja trendu z uwzględnieniem wahań sezonowych Prognozy punktowe wyznaczamy na podstawie równania trendu

kwartały	na podstawie trendu	po uwzględnieniu sezonowości	po skorygowaniu
I'06	9,369	6,503	6,4663 wsk.korygujący
II'06	9,81	9,289	9,2365
III'06	10,251	15,459	$\begin{vmatrix} 15,372 \\ k = \frac{40.122}{} \end{vmatrix}$
IV'06	10,692	9,099	9,0475 $\begin{bmatrix} \kappa - 40.350 \end{bmatrix}$
suma	40,122	40,350	40,122

Łączna produkcja piwa zgodnie z prognozą punktową wynosi 40,122 tys. hl, natomiast po uwzględnieniu wahań sezonowych, produkcja ta wynosiłaby 40,350 tys. hl. Wobec tego otrzymane wartości należy ponownie skorygować.

Oczyszczone, względne wskaźniki sezonowosci w latach 2003 - 2005

