Nội dung

- Hàm cửa sập
- Hệ mật mã RSA

Hàm cửa sập (Trapdoor functions - TDF)

ĐN: hàm cửa sập X→Y là bộ ba thuật toán hiệu quả (G, F, F-¹)

- G(): thuật toán ngẫu nhiên output cặp khóa (pk, sk)
- F(pk,·): thuật toán đơn định định nghĩa một hàm X \rightarrow Y
- $F^{-1}(sk,\cdot)$: hàm từ $Y \longrightarrow X$ tính nghịch đảo $F(pk,\cdot)$

Cụ thể: ∀(pk, sk) sinh bởi hàm G

 $\forall x \in X$: $F^{-1}(sk, F(pk, x)) = x$

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG —

Mật mã khóa công khai

Bob: sinh cặp khóa (pk, sk) và đưa pk cho Alice

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Xây dựng hệ mật khóa công khai từ TDFs

- (G, F, F-1): TDF an toàn $X \rightarrow Y$
- (E_s, D_s): hệ mật mã khóa đổi xứng an toàn trên (K,M,C)
- H: X → K: hàm băm

Ta xây dựng hệ mật khóa công khai (G, E, D):

Sinh khóa G: giống như G cho TDF

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Hàm cửa sập an toàn

có thể tính xuôi, nhưng không thể tính nghịch đảo mà không có sk (G, F, F-1) là an toàn nếu F(pk, ·) là hàm "một chiều":

pk, $y \leftarrow F(pk, x)$

ĐN: (G, F, F-1) là TDF an toàn nếu với mọi thuật toán hiệu quả A: $Adv_{OW}[A,F] = Pr[x=x'] < "cực nhỏ"$

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG :

Sử dụng không đúng hàm Cửa sập (TDF)

Không mã hóa bằng cách áp dụng F để mã hóa bản rõ:

<u>E(pk, m)</u> :

output $c \leftarrow F(pk, m)$

<u>D(sk, c)</u>: output $F^{-1}(sk, c)$

- Đây là hệ mã đơn định: không an toàn!
- Tôn tại nhiều cách tấn công

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Hệ mật mã khóa công khai từ TDFs

- (G, F, F⁻¹): TDF an toàn $X \longrightarrow Y$
- $(E_s,\,D_s)$: hệ mã hóa đối xứng an toàn trên (K,M,C)
- H: X → K: hàm băm

output (y, c)

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

D(sk, (y,c)):

output m $k \leftarrow H(x), m \leftarrow D_s(k, c)$ $x \leftarrow F^{-1}(sk, y),$

Nhắc lại: Số học modun hợp số

Xét N = p·q với p,q là các số nguyên tố

$$Z_N = \{0,1,2,\dots,N-1\} \quad ; \quad (Z_N)^* = \{\text{các phần tử khả nghịch trong } Z_N\}$$

$$\underline{B\mathring{o}}\ \underline{d\mathring{e}}\colon\quad x\in Z_N\ \ la\ khả\ nghịch\quad \iff\quad$$

$$gcd(x,N) = 1$$

• Số các phần tử của
$$(Z_N)^*$$
 là $\phi(N) = (p-1)(q-1) = N-p-q+1$

$$\forall \ x \in (Z_N)^* \ : \ x^{\phi(N)} = 1$$

SOCT VIỆN CÓNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

Nội dung

- Hàm cửa sập
- Hệ mật mã RSA

Hoán vị cửa sập RSA

 $\mathbf{G}()$: chọn hai số nguyên tố p,q \approx 1024 bits. chọn các số nguyên e, d thoả mãn $e \cdot d = 1 \pmod{\phi(N)}$ output pk = (N, e), sk = (N, d)Đặt **N=pq**.

F(pk, x):
$$\mathbb{Z}_N^* o \mathbb{Z}_N^*$$

$$RSA(x) = x^e$$

$$\mathbf{x}^{\mathbf{e}}$$
 (in Z_{N})

$$F^{-1}(sk, y) = y^d$$
; $y^d = RSA(x)^d = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^k \cdot x = x$

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

Hoán vị cửa sập RSA Ronald Rivest, Adi Shamir, và Leonard Adleman

Công bố: Scientific American, 8/1977

Được sử dụng rộng rãi trong:

- SSL/TLS: chứng thư số và trao đổi khóa
- e-mail và hệ thống file an toàn

Hệ mật mã RSA

(chuần ISO)

 $(\mathsf{E}_s, \mathsf{D}_s)$: hệ mật mã đối xứng an toàn

 $H: Z_N \to K$ với K là không gian khóa của (E_s, D_s)

• G(): sinh tham số RSA: pk = (N,e), sk = (N,d)

• **E**(pk, m): (1) chọn số ngẫu nhiên x thuộc Z_N

(2) $y \leftarrow RSA(x) = x^e$, $k \leftarrow H(x)$

(3) output $(y, E_s(k,m))$

• **D**(sk, (y, c)): output D_s(H(RSA⁻¹(y)), c)

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

Giả sử RSA

Giả sử RSA: RSA là hoán vị "một chiều"

Với mọi kẻ tấn công *hiệu quả* A:

$$Pr[A(N,e,y) = y^{1/e}] < "cực nhỏ"$$

ở đó p,q ← số nguyên tố n-bit, N←pq, y≮[®]Z_N*

SOICT VIỆN CÔNG NGHỆ HÔNG TIN VÀ TRUYỀN THÔNG

Một tần công đơn giản textbook RSA

Giả sử k là 64 bit: $k \in \{0,...,2^{64}\}$. Eve nhìn thấy: $c = k^e$ thuộc Z_N If $\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$ với $\mathbf{k_1}$, $\mathbf{k_2} < 2^{34}$ (prob. $\approx 20\%$) thì $\mathbf{c/k_1}^e = \mathbf{k_2}^e$ in Z_N

Bước 1: xây dựng bảng: c/1e, c/2e, c/3e, ..., c/2^{34e}. time: 2³⁴

Bước 2: với $k_2 = 0,..., 2^{34}$ kiểm tra nếu k_2^e nằm trong bảng. thời gian: 2^{34}

Output cặp (k_1, k_2) . Tổng thời gian tấn công: $\approx 2^{40} << 2^{64}$

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

Textbook RSA là không an toàn

Textbook RSA

khóa công khai: (N,e)

Mã hóa: c ← m^e (in Z_N)

khóa bí mật: (N,d)

Hệ mật mã này không an toàn!

Giải mã: c^d → m

toàn! ⇒ Mã hõa trực tiếp với hoán vị cửa sập RSA không phải là sơ đô an

Độ dài khóa

Tính an toàn của hệ mật mã khóa công khai nên được so sánh với tính an toàn của hệ mật mã khóa đối xứng:

•	Ţ
	SA
	-

80 bits	<u>(hóa đối xứng</u>
1024 bits	Kích thước Modulus N

区

256 bits (AES)	128 bits
<u>15360</u> bits	30/2 bits

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

RSA với số mũ công khai nhỏ

(mod N) Để tăng tốc việc mã hóa RSA, sử dụng số mũ e nhỏ: $c = m^e$

- Giá trị nhỏ nhất: e=3 ($gcd(e, \phi(N)) = 1$)
- Giá trị nên dùng: e=65537=2¹⁶+1

Mã hóa: 17 phép nhân

<u>Tính bât đôi xứng của RSA:</u> mã hóa nhanh / giải mã chậm

• Hệ ElGamal (bài tiếp theo): thời gian gần như nhau trong cả hai trường

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Bài tập (Tần công RSA với modun nhỏ)

- Khoá công khai RSA của Bob có mođun N=12191 và số mũ e=37.
- Alice gửi cho Bob bản mã c=587
- Không may, Bob đã chọn mođun kích thước quá nhỏ
- Bạn hãy giúp Oscar giải mã bằng cách phân tích thừa số nguyên tổ của N và giải mã thông điệp của Alice.
- (Gợi ý. N có một thừa số nguyên tố nhỏ hơn 100.)

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Bài tập (Mã hoá với Textbook RSA)

Alice đưa cho Bob khoá công khai RSA của cô ấy:

$$\operatorname{modun} N = 2038667 \quad \text{và} \quad \operatorname{số} \operatorname{mũ} e = 103.$$

- a) Bob muốn gửi cho Alice thông điệp m=892383. Bản mã mà Bob gửi cho Alice là gì?
- b) Alice biết rằng mođun N của cô ấy là tích của hai số nguyên tố, một trong hai số là p=1301. Hãy tìm số mũ giải mã d cho
- c) Alice nhận được bản mã c=317730 từ Bob. Hãy giải mã

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG