Sommersemester 2015 Lösungsblatt 7 15. Juni 2015

# Theoretische Informatik

## Hausaufgabe 1 (5 Punkte)

Für alle  $k \in \mathbb{N}$  definieren wir die Sprache  $L_k = \{(ab^k)^m ; m \in \mathbb{N}\}.$  (Beispiel:  $L_2 = \{(abb)^m ; m \in \mathbb{N}\}$ )

- 1. Zeigen Sie für alle  $k \in \mathbb{N}$  durch Angabe einer rechtslinearen Grammatik für  $L_k$ , dass  $L_k$  regulär ist.
- 2. Zeigen Sie, dass die Sprache  $L = \bigcup_{k \in \mathbb{N}} L_k$  nicht kontextfrei ist. Hinweis: Sei n eine Pumping-Lemma-Zahl für L. Man betrachte  $(ab^n)^3$ .

## Lösung

1.

$$S \rightarrow aB_0,$$

$$B_0 \rightarrow bB_1, \dots, B_{k-1} \rightarrow bB_k,$$

$$B_k \rightarrow aB_0 \mid \epsilon.$$
(2P)

2. Sei *n* eine Pumping-Lemma-Zahl für *L*. Wir betrachten  $z = (ab^n)^3$ .

Es gilt  $z \in L$  und  $|z| \ge n$ .

Seien z = uvwxy mit |vx| > 0 und  $|vwx| \le n$ , so dass für alle  $i \in \mathbb{N}_0$  gilt  $uv^iwx^iy \in L$ . Wir definieren  $z_i := uv^iwx^iy$ .

Zunächst gilt  $z = t_1t_2t_3$  mit  $t_i = ab^n$ . Da  $|vwx| \le n$  gilt, ist vwx entweder Teilwort von  $t_1t_2$  oder Teilwort von  $t_2t_3$ . Daraus folgt, dass entweder u das Teilwort  $ab^n$  am Anfang oder y das Teilwort  $ab^n$  am Ende enthält.

Daraus folgt, dass  $z_i = uv^iwx^iy \in L$  für jedes i die Gestalt  $(ab^n)^m$  haben muss, d.h. es gibt für jedes i ein m, so dass  $uv^iwx^iy = (ab^n)^m$  gilt. A.a. befinden sich zwischen zwei benachbarten a's genau n b's.

|vwx| enthält höchstens ein a.

Falls vx ein a enthält, dann gilt für  $z_0$ , dass  $\#_a(z_0) = 2$ . Dann aber müsste gelten  $z_0 = (ab^n)^2$  mit  $\#_b(z_0) = 2n$ .

Wegen  $\#_b(vx) \le n-1$  folgt  $\#_b(z) \le 2n+(n-1) < 3n$  im Widerspruch zu  $z = (ab^n)^3$ .

Falls vx nur b's enthält, und zwar mindestens ein b, dann führt Aufpumpen zum Widerspruch, weil sich zwischen zwei benachbarten a's genau n b's befinden.

## Hausaufgabe 2 (5 Punkte)

Sei  $\Sigma = \{0, 1\}$ . Die zwei Operationen Spiegelung  $(w^R)$  und Negation  $(\overline{w})$  seien für  $w \in \Sigma^*$  wie folgt definiert:

$$\begin{split} w^R &= \begin{cases} \epsilon, & \text{falls } w = \epsilon \\ u^R a, & \text{falls } w = au \text{ für } a \in \Sigma \text{ und } u \in \Sigma^* \end{cases} \\ \overline{w} &= \begin{cases} \epsilon, & \text{falls } w = \epsilon \\ \hat{a}\overline{u}, & \text{falls } w = au \text{ für } a \in \Sigma \text{ und } u \in \Sigma^* \end{cases} \end{split}$$

Dabei setzen wir  $\hat{0}=1$  und  $\hat{1}=0$ . Wie man leicht (etwa per Induktion) zeigen kann, gelten für diese Operationen auch die Gleichungen  $(ua)^R=au^R$  und  $\overline{ua}=\overline{u}\hat{a}$  für alle  $a\in\Sigma,\,u\in\Sigma^*$ . Im Folgenden nehmen wir diese Identitäten als bewiesen an. Wir betrachten nun die Sprache  $L=\{w\in\Sigma^*\,;\,w^R=\overline{w}\}$  und die Grammatik

$$G = (\{S\}, \Sigma, \{S \to 0S1 \mid 1S0 \mid \epsilon\}, S).$$

Zeigen Sie: L ist genau die von der Grammatik G beschriebene Sprache.

#### Lösung

Wie in der ZÜ gezeigt, gehört zu der Grammatik G auch eine induktive Definition von L(G) als kleinste Menge, die die folgenden Eigenschaften aufweist:

$$\epsilon \in L(G)$$
  $w \in L(G) \Rightarrow 0w1 \in L(G)$   $w \in L(G) \Rightarrow 1w0 \in L(G)$ 

Daraus ergibt sich auch das folgende Induktionsprinzip über die Ableitung eines Wortes w in G: Sei Q eine Eigenschaft von Wörtern aus  $\Sigma^*$ . Gelten  $Q(\epsilon)$  und für alle Wörter  $w \in \Sigma^*$  sowohl  $Q(w) \Rightarrow Q(0w1)$  als auch  $Q(w) \Rightarrow Q(1w0)$ , dann gilt Q(w) für alle  $w \in L(G)$ .

Wir müssen L=L(G) zeigen. Dazu zeigen wir die Aussagen  $w\in L(G)\Rightarrow w\in L$  und  $w\in L\Rightarrow w\in L(G)$  für alle  $w\in \Sigma^*$ .

- 1.  $w \in L(G) \Rightarrow w \in L$ . Wir beweisen diesen Fall per Induktion über die Ableitung von w in G. Dabei ist Q(w) die Eigenschaft " $w \in L$ ".
  - $\underline{w = \epsilon}$ : Es gilt  $\epsilon^R = \epsilon = \overline{\epsilon}$  und damit  $\epsilon \in L$ .
  - $w \in L \Rightarrow 0w1 \in L$ : Es gilt

$$(0w1)^R = (w1)^R 0 = 1w^R 0 \stackrel{w \in L}{=} 1\overline{w}0 = \hat{0}\overline{w}\hat{1} = \overline{0w}\hat{1} = \overline{0w1}$$

und damit  $0w1 \in L$ .

- $\underline{w \in L \Rightarrow 1w0 \in L}$ : Dieser Fall wird vollkommen analog zum vorherigen Fall bewiesen, wobei 0 und 1 vertauscht werden.
- 2.  $w \in L \Rightarrow w \in L(G)$ . Beweis per Induktion über die Länge von w.
  - |w| = 0: Dann ist  $w = \epsilon$  und damit  $w \in L(G)$ .
  - |w| = 1: Dann ist  $w = w^R$ , aber  $w \neq \overline{w}$  (denn  $\hat{0} \neq 0$  und  $\hat{1} \neq 1$ ). Also ist  $w \notin L$ , und damit gilt auch  $w \in L \Rightarrow w \in L(G)$ .

•  $|w| \ge 2$ : Dann hat w die Form w = aub für gewisse  $a, b \in \Sigma$  und  $u \in \Sigma^*$ , und es gilt

$$bu^R a = (ub)^R a = (aub)^R \stackrel{w \in L}{=} \overline{aub} = \hat{a}\overline{ub} = \hat{a}\overline{ub} = \hat{a}\overline{ub}$$

und damit  $b = \hat{a}$  und  $u^R = \overline{u}$ . Da |u| < |w| folgt  $u \in L(G)$  nach Induktionshypothese. Weiterhin ist  $w = aub = au\hat{a}$ , also entweder w = 0u1 oder w = 1u0, und mit  $u \in L(G)$  gilt dann  $w \in L(G)$ .

(5P)

# Hausaufgabe 3 (5 Punkte)

Wir betrachten die Grammatik  $G = (V, \{a, b, c, d\}, P, S)$  mit den Produktionen

$$\begin{array}{lll} S \rightarrow AZ\,, & X \rightarrow b \mid XB\,, & B \rightarrow b\,, \\ Z \rightarrow SD \mid TD\,, & Y \rightarrow c \mid YC\,, & C \rightarrow c\,, \\ T \rightarrow XY\,, & A \rightarrow a\,, & D \rightarrow d\,. \end{array}$$

- 1. Zeigen Sie durch Anwendung des CYK-Verfahrens, dass  $a^2bc^2d$  nicht in der von G erzeugten Sprache enthalten ist, d. h.  $a^2bc^2d \notin L(G)$ .
- 2. Geben Sie eine Ableitung des Wortes  $a^2bcd^2$  mit Produktionen der Grammatik G an.
- 3. Zeigen Sie, dass die Sprache  $L=\{a^kb^mc^kd^m\,;\,k,m\in\mathbb{N}\setminus\{0\}\}\subseteq\{a,b,c,d\}^*$  nicht kontextfrei ist.
- 4. Zeigen Sie, dass die Sprache  $L = \{a^m b^m c^k d^k ; k, m \in \mathbb{N} \setminus \{0\}\} \subseteq \{a, b, c, d\}^*$  kontextfrei ist. Ist L linear, d.h., kann sie von einer Grammatik mit linearen Produktionen erzeugt werden?

### Lösung

1.

2.  $S \rightarrow_G AZ \rightarrow_G ASD \rightarrow_G AAZD \rightarrow_G AATDD \rightarrow_G AAXYDD \rightarrow_G^* aabcdd$ . (1P)

3. Widerspruchsbeweis mit Pumping-Lemma:

Sei n eine Pumping-Lemmazahl und  $z = a^n b^n c^n d^n$ .

Es gilt  $z \in L$ . Damit gilt z = uvwxy mit  $|vwx| \le n$  und  $|vx| \ge 1$ .

Damit enthält vx entweder nicht c, d oder nicht a, d oder nicht a, b. vx enthält aber mindestens einen Buchstaben.

Sei o.B.d.A. a in vx enthalten, und c, d seien nicht in vx enthalten.

Nach Pumping-Lemma gilt  $z' = uv^0wx^0y \in L$ . In z' ist aber die Anzahl der c gleich n, wohingegen die Anzahl der a nun kleiner als n ist. Widerspruch, denn damit gilt  $z' \notin L$ . (1P)

4. Die Sprache  $\{a^mb^mc^nd^n ; m,n\in\mathbb{N}\}$  ist kontextfrei, denn sie wird von der kontextfreien Grammatik  $(\{S,A,B\},\{a,b,c,d\},P,S)$  mit den Produktionen  $S\to AA\mid BB$  und  $A\to aAb\mid \epsilon,\ B\to cBd\mid \epsilon$  erzeugt. (1P)

Aber diese Sprache ist nicht linear: Intuitiv liegt das daran, dass bei einer Ableitung einer linearen Grammatik in jedem Schritt genau ein Nichtterminal produziert wird. Wenn ein Fragment  $a^kb^l$  mit k=l erzeugt werden soll, liegt das Nichtterminal zwangsläufig zwischen a und b. Daher ist es nicht möglich, die Bedingung k=l für zwei nebeneinanderstehende Paare von as und bs zu erzwingen.

Formal lässt sich das mit einem speziellen Pumping-Lemma für lineare Sprachen beweisen.

## Hausaufgabe 4 (5 Punkte)

Seien  $\Sigma \neq \emptyset$  und  $V = \{A_1, A_2, \dots, A_n\}$  Zeichenmengen mit  $n \geq 2$  und m eine Markierungsabbildung der Form  $m(x) = \hat{x}$  bzw.  $m(A) = \widehat{A}$  für alle  $x \in \Sigma$  bzw.  $A \in V$ . Wir definieren  $\widehat{\Sigma} = \{\hat{x} : x \in \Sigma\}$  und  $\widehat{V} = \{\widehat{A}_1, \widehat{A}_2, \dots, \widehat{A}_n\}$ . Wir setzen Mengendisjunktheit voraus, so dass  $|\Sigma \cup \widehat{\Sigma} \cup V \cup \widehat{V}| = 2(n+|\Sigma|)$  gilt, und definieren  $\Sigma' = \Sigma \cup \widehat{\Sigma}$  und  $V' = V \cup \widehat{V}$ .

Wir sagen, dass eine kontextfreie Grammatik  $G' = (V', \Sigma', P', S')$  eine Wortendemarkierung generiert, falls S' eines der markierten Zeichen  $\widehat{A}_i$ , i = 1, ..., n ist und jede Produktion aus P' eine der folgenden Formen besitzt (mit  $x \in \Sigma$ ):

$$A_i \rightarrow A_j A_k , \qquad A_i \rightarrow x ,$$
  
 $\widehat{A}_i \rightarrow A_j \widehat{A}_k , \qquad \widehat{A}_i \rightarrow \widehat{x} .$ 

1. Sei G' eine kontextfreie Grammatik, die eine Wortendemarkierung generiert. Man zeige mit struktureller Induktion für alle Wörter w der Sprache L(G') die folgende Eigenschaft

$$\widehat{P}(w)$$
: Es gibt ein  $v \in \Sigma^*$  und ein  $\widehat{x} \in \widehat{\Sigma}$ , so dass  $w = v\widehat{x}$  gilt.

Betrachten Sie dazu geeignete Eigenschaften P(w) bzw.  $\widehat{P}(w)$  der aus Variablen  $A \in V$  einerseits bzw.  $\widehat{A} \in \widehat{V}$  andererseits ableitbaren Wörter  $w \in \Sigma'^*$ . Verwenden Sie die Bezeichnung  $L(X) = \{w \in \Sigma'^* \; ; \; X \underset{G}{\rightarrow} {}^*w \}$  für  $X \in V'$ .

2. Seien L eine kontextfreie Sprache, so dass  $\epsilon \notin L$ , und  $E = \{x \in \Sigma^* ; |x| = 1\}$ . Zeigen Sie, dass der Rechtsquotient L/E kontextfrei ist. Zum Nachweis genügt eine informelle Konstruktionsbeschreibung einer kontextfreien Grammatik für L/E.

## Lösung

1. Sei P(w) die Eigenschaft: Es gilt  $w \in \Sigma^*$ .

Induktionsanfang:

Regel  $A_i \to x$ : Für w = x gilt P(w). (Klar!) Regel  $\widehat{A}_i \to \widehat{x}$ : Für  $w = \widehat{x}$  gilt  $\widehat{P}(w)$ . (Klar!)

Induktionsschluss:

 $\overline{\text{Regel } A_i \to A_j A_k}$ : Aus  $w_j \in L(A_j) \land P(w_j)$  und  $w_k \in L(A_k) \land P(w_k)$  folgt

 $w_i = w_j w_k \in L(A_i) \wedge P(w_i)$ 

Beweis:  $w_j, w_k \in \Sigma^*$  impliziert  $w_i = w_j w_k \in \Sigma^*$ . Es folgt  $P(w_i)$ .

Regel  $\widehat{A}_i \to A_j \widehat{A}_k$ : Aus  $w_j \in L(A_j) \land P(w_j)$  und  $w_k \in L(\widehat{A}_k) \land \widehat{P}(w_k)$  folgt

 $w_i = w_j w_k \in L(\widehat{A}_i) \wedge \widehat{P}(w_i)$ 

Beweis:  $w_j \in \Sigma^*$  und  $w_k = v\hat{x}$  impliziert  $w_i = w_j w_k = w_j v\hat{x}$ 

 $\overline{\text{mit } w_i v} \in \Sigma^* \text{ und } \hat{x} \in \widehat{\Sigma}. \text{ Es folgt } \widehat{P}(w_i).$ 

Da sich jedes Wort  $w \in L(G')$  aus  $S' \in \widehat{V}$  ableiten lässt, folgt  $\widehat{P}(w)$ . (3P)

2. Wenn in allen Wörtern  $w \in L$  der letzte Buchstabe gestrichen wird, dann erhält man L/E. Wir konstruieren eine kontextfreie Grammatik, die L/E erzeugt, wie folgt:

Sei G eine kontextfreie Grammatik mit L=L(G) in Chomsky-Normalform. Wir ergänzen G zu einer Grammatik G', die eine Wortendemarkierung generiert, d.h., dass alle letzten Buchstaben von Wörtern w in L markiert werden.

Dies geschieht durch

Hinzufügen von  $\widehat{\Sigma}$ ,  $\widehat{V}$ ,

Ersetzung von S durch  $\widehat{S}$ ,

Hinzufügen von Produktionen  $\widehat{A}_i \to A_j \widehat{A}_k$  zu jeder Produktion  $A_i \to A_j A_k$  und Hinzufügen von Produktionen  $\widehat{A}_i \to \widehat{x}$  zu jeder Produktion  $A_i \to x$ .

Um die Grammatik für L/E zu gewinnen, werden alle Produktionen der Form  $\widehat{A}_i \to \widehat{x}$  von G' ersetzt durch  $\widehat{A}_i \to \epsilon$ . Dadurch entfällt  $\widehat{\Sigma}$ .

Die erhaltene Grammatik G'' erzeugt L/E, wobei sich G'' nach Satz der Vorlesung durch Elimination der  $\epsilon$ -Produktionen in eine kontextfreie Grammatik umwandeln lässt.

(2P)

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

## Vorbereitung 1

Überführen Sie die folgende Grammatik in Greibach-Normalform:

$$G = (\{S, X\}, \{a, b\}, \{S \to XX, S \to a, X \to SS, X \to b\}, X).$$

### Lösung

Wir stellen zunächst fest, dass G eine kontextfreie Grammatik in Chomsky-Normalform ist. X ist das Axiom von G und  $\epsilon \notin L(G)$ . Offenbar enthält G keine nutzlosen Variablen. Wir wenden das im Beweis von Satz 84 der Vorlesung gegebene Verfahren zur Konstruktion der Greibach-Normalform an.

Vorab nummerieren wir die Variablen, indem wir sie (willkürlich) als  $A_1, A_2$  umbezeichnen. Die Variable S soll jetzt dem  $A_1$  und X dem  $A_2$  entsprechen. Eventuell notwendig werdende zusätzliche Variablen werden dann mit  $A_3, \ldots$  bezeichnet. Die Anzahl der Variablen ist also zunächst  $m=m_0=2$ . Der Wert von m wird dann nach Bedarf erhöht.

Im ersten Schritt der Konstruktion wird eine Schleife von  $k=1,2,\ldots,m$  durchlaufen, die sicherstellt, dass für alle Produktionen der Form  $A_i\to A_j\alpha$  mit  $1\le i,j\le m$  stets i< j gilt. Damit gilt dann bereits, dass jede  $A_m$ -Produktion mit einem Terminalzeichen beginnt. Im zweiten Schritt der Konstruktion wenden wir Lemma 82 beginnend mit  $A_{m_0-1}$  genügend oft an, um zu erreichen, dass jede Produktion mit einem Terminalzeichen beginnt.

#### 1. Schritt:

Wir starten mit den Produktionen

 $A_1$ -Produktionen:  $A_1 \rightarrow A_2A_2 \mid a$  $A_2$ -Produktionen:  $A_2 \rightarrow A_1A_1 \mid b$ 

Die  $A_1$ -Produktionen sind alle in der gewünschten Form, d. h. für k=1 ist nichts zu tun und wir gehen sofort zu k=2 über.

Die  $A_2$ -Produktionen sind nicht alle in der gewünschten Form. Die erste der beiden Produktionen muss nach Lemma 82 ersetzt werden durch alle Produktionen, die man durch Anwendung der  $A_1$ -Produktionen auf die erste  $A_1$  Variable in  $A_2 \to A_1A_1$  erhält. Dies ergibt die neue Produktionenmenge

 $\begin{array}{lll} A_1\text{-Produktionen:} & A_1 & \to & A_2A_2 \mid a \\ A_2\text{-Produktionen:} & A_2 & \to & A_2A_2A_1 \mid aA_1 \mid b \end{array}$ 

Nun ist die linksrekursive  $A_2$ -Produktion mit Lemma 82 zu eliminieren. Um zu verdeutlichen, wie dies geschieht, führen wir die entsprechenden Bezeichnungen ein, also  $\alpha_1 = A_2 A_1$  und  $\beta_1 = a A_1, \beta_2 = b$ . Die laut Lemma 82 neu einzuführende Variable B bezeichnen wir mit  $A_3$ , wobei wir m inkrementieren, also m=3 setzen. Die Linksrekursion ist nun zu ersetzen durch

$$\begin{array}{ccc} A_2 & \rightarrow & \beta_1 A_3 \mid \beta_2 A_3 \\ A_3 & \rightarrow & \alpha_1 \mid \alpha_1 A_3 \end{array}$$

Als Ergebnis für k=2 erhalten wir

 $A_1$ -Produktionen:  $A_1 \rightarrow A_2A_2 \mid a$ 

 $A_2$ -Produktionen:  $A_2 \rightarrow aA_1A_3 \mid bA_3 \mid aA_1 \mid b$ 

 $A_3 \rightarrow A_2A_1 \mid A_2A_1A_3$ 

Nun setzen wir k=3. Die  $A_3$ -Produktionen sind nicht in der gewünschten Form. Die zwei Produktionen müssen nach Lemma 82 ersetzt werden durch die Menge der Produktionen, die man durch Anwendung der  $A_2$ -Produktionen auf die erste Variable in den  $A_3$ -Produktionen erhält. Dies ergibt für k=3 die neue Produktionenmenge

 $A_1$ -Produktionen:  $A_1 \rightarrow A_2A_2 \mid a$ 

 $A_2$ -Produktionen:  $A_2 \rightarrow aA_1A_3 \mid bA_3 \mid aA_1 \mid b$ 

 $A_3$ -Produktionen:  $A_3 \rightarrow aA_1A_3A_1 \mid bA_3A_1 \mid aA_1A_1 \mid bA_1 \mid$ 

 $aA_1A_3A_1A_3 \mid bA_3A_1A_3 \mid aA_1A_1A_3 \mid bA_1A_3$ 

Man beachte, dass für die neuen Variablen, wie z. B.  $A_3$ , keine linksrekursiven Produktionen vorhanden sein können. Deshalb sind wir bereits mit dem ersten Schritt fertig.

#### 2. Schritt:

Man beachte, dass alle  $A_k$ -Produktionen mit  $k \geq m_0$  notwendigerweise bereits mit einem Terminalzeichen beginnen. Es bleibt in unserem Fall also lediglich die Anwendung von Lemma 82 auf die  $A_1$  Produktionen, hier also auf  $A_1 \rightarrow A_2A_2$ , wobei alle  $A_2$ -Produktionen auf das erste  $A_2$ -Vorkommen angewendet werden müssen. Wir erhalten als Menge der  $A_1$ -Produktionen

 $A_1$ -Produktionen:  $A_1 \rightarrow aA_1A_3A_2 \mid bA_3A_2 \mid aA_1A_2 \mid bA_2 \mid aA_1A_2 \mid aA$ 

Diese bilden zusammen mit den  $A_2$ - und  $A_3$ -Produktionen aus dem 1. Schritt das Endergebnis.

# Vorbereitung 2

Sei  $K = (Q, \Sigma, \Delta, q_0, Z_0, F, \delta)$  ein Kellerautomat mit Startzustand  $q_0 \in Q$ , Startkellerzeichen  $Z_0 \in \Delta$ , Menge  $F \subseteq Q$  von akzeptierenden Zuständen und der Übergangsfunktion  $\delta$ . Eine Folge  $(p_0, w_0, \gamma_0), (p_1, w_1, \gamma_1), \ldots, (p_k, w_k, \gamma_k)$  mit nicht leerem  $\gamma_0$  heiße Berechnung der Konfiguration  $(p_0, w_0, \gamma_0)$  mit  $k \in \mathbb{N}_0$  Schritten, falls gilt

$$(p_0, w_0, \gamma_0) \rightarrow (p_1, w_1, \gamma_1) \rightarrow \ldots \rightarrow (p_k, w_k, \gamma_k).$$

Falls für  $c=(p,w,\gamma)$  keine Berechnung mit k>0 Schritten existiert, dann nennen wir c eine Endkonfiguration

Wir nehmen nun an, dass K ein <u>deterministischer Kellerautomat in Normalform</u> ist. Man zeige:

- 1. Für alle  $w \in \Sigma^*$  gibt es genau eine Berechnung  $(q_0, w, Z_0), (p_1, w_1, \gamma_1), \ldots, (p_k, \epsilon, \gamma_k)$ , so dass  $(p_k, \epsilon, \gamma_k)$  eine Endkonfiguration ist. Für diese Berechnung gilt  $\gamma_i \neq \lambda$  mit leerem Wort  $\lambda \in \Delta^*$ .
- 2. Es gibt eindeutige Funktionen  $\sigma: \Sigma^* \to \mathbb{N}_0, \ \eta: \Sigma^* \to Q \ \text{und} \ \kappa: \Sigma^* \to \Delta^+, \text{ so dass für alle } w \in \Sigma^* \text{ gilt}$

 $(\eta(w), \epsilon, \kappa(w))$  ist Endkonfiguration einer Berechnung von  $(q_0, w, Z_0)$  mit  $\sigma(w)$  Schritten.

### Lösung

Erinnerung: Für die Relation der direkten Berechnung  $\rightarrow$  in einem Schritt über der Menge der Konfigurationen gilt  $(p, u, \gamma) \rightarrow (q, u', \gamma')$  genau dann, wenn u = au' mit  $a \in \Sigma \cup \{\epsilon\}$ ,  $\gamma = Z\alpha$  mit  $Z \in \Delta$ ,  $\gamma' = \beta\alpha$  und  $(q, \beta) \in \delta(p, a, Z)$  gilt. Dabei ist  $u \in \Sigma^*$  und  $\alpha, \beta, \gamma' \in \Delta^*$ . Die transitive Hülle von  $\rightarrow$  wird mit  $\rightarrow^*$  notiert.

1. Sei  $(q_0, w, Z_0)$  eine Endkonfiguration. Dann muss  $w = \epsilon$  und  $\delta(q_0, \epsilon, Z_0) = \emptyset$  gelten. Wenn w = aw' mit  $a \in \Sigma$  gelten würde, dann würde K das Zeichen a oder  $\epsilon$  lesen, weil K in Normalform ist. Wenn  $\delta(q_0, \epsilon, Z_0) \neq \emptyset$  wäre, dann gäbe es einen weiteren Berechnungsschritt.

Entsprechend sei  $(q_0, w, Z_0), (p_1, w_1, \gamma_1), \ldots, (p_i, w_i, \gamma_i)$  eine eindeutige Berechnung von  $(q_0, w, Z_0)$  mit i Schritten. Falls  $(p_i, w_i, \gamma_i)$  keine Endkonfiguration ist, dann gibt es in K eine eindeutige Fortsetzung der Berechnung mit i+1 Schritten. Falls  $(p_i, w_i, \gamma_i)$  eine Endkonfiguration ist, dann gilt  $w_i = \epsilon$  und  $\delta(p_i, \epsilon, \gamma_i) = \emptyset$  (Halt durch Ende der Eingabe) mit analogem Beweis wie im Fall  $(q_0, w, Z_0)$ . In diesem Fall folgt nun  $\gamma \neq \lambda$ , da sonst die Konfiguration  $(q_0, wa, Z_0)$  mit  $a \in \Sigma$  nicht berechenbar wäre im Widerspruch zur Normalform von K.

2. Da bei Normalform keine unendliche Berechnung existiert, gibt es für alle Startkonfigurationen  $(q_0, w, Z_0)$  genau eine Zahl  $k \in \mathbb{N}_0$ , so dass die Berechnung im k-ten Schritt mit Endkonfigiration  $(p_k, w_k, \gamma_k)$ . Wie oben bewiesen folgt  $w_k = \epsilon$  und  $\gamma_k \neq \lambda$  endet.

Wir setzen  $\sigma(w) = k$ ,  $\eta(w) = p_k$  und  $\kappa(w) = \gamma_k$ .

# Vorbereitung 3

Man beweise die folgende Aussage:

Für alle deterministischen kontextfreien Sprachen L gilt, dass es genau dann einen deterministischen Kellerautomaten gibt, der L mit leerem Keller akzeptiert, wenn L die Präfixbedingung erfüllt.

#### Lösung

 $\Rightarrow$ :

Sei K ein deterministischer Kellerautomat, der L mit leerem Keller akzeptiert. Wir zeigen die Präfixbedingung durch Widerspruch.

Seien  $u, uv \in L$  mit  $v \neq \epsilon$ . Nach Eingabe von uv durchläuft der Automat zunächst alle Konfigurationen, die durch Eingabe von u veranlasst werden. Da K deterministisch ist und u durch leeren Keller akzeptiert wird, ist nun der Keller leer. Eine weitere Eingabe von  $v \neq \epsilon$  wir nicht mehr verarbeitet, weil die Übergangsfunktion nicht definiert ist, wenn der Keller leer ist.

**⇐**:

Wir modifizieren den Beweis des Satzes 88 der Vorlesung.

Sei  $K = (Q, \Sigma, \Delta, q_0, Z_0, \delta, F)$  ein deterministischer Kellerautomat, der L mit Endzustand akzeptiert. L erfülle die Präfixbedingung. Wir konstruieren einen DPDA  $K' = (Q', \Sigma, \Delta', q'_0, Z'_0, \delta')$ , der L mit leerem Keller akzeptiert, so dass K' den Keller K simuliert und bei Erreichen eines Endzustands den Keller leert, wie folgt.

```
Seien Q' = Q \cup \{\bar{q}, q'_0\}, \ \Delta' = \Delta \cup \{Z'_0\}. Wir definieren \delta'(q'_0, \epsilon, Z'_0) = (q_0, Z_0 Z'_0), \delta'(q, \epsilon, Z) = (\bar{q}, \epsilon) für alle q \in F, Z \in \Delta', \delta'(\bar{q}, \epsilon, Z) = (\bar{q}, \epsilon) für alle Z \in \Delta' und \delta'(q, a, Z) = \delta(q, a, Z) für alle Q \in Q \setminus F, a \in \Sigma, Z \in \Delta.
```

Offenbar ist K' deterministisch. Die Präfixbedingung für L bewirkt, dass K und K' die gleiche Sprache akzeptieren.

# Tutoraufgabe 1

Kellerautomaten in ihrer einfachsten Form haben nur einen einzigen Zustand und akzeptieren mit leerem Keller. Man kann in diesem Fall auf Zustände sogar ganz verzichten. Sie haben auch keine sogenannten  $\epsilon$ -Übergänge. Wir bezeichnen solche Kellerautomaten als einfache Kellerautomaten  $E = (\Sigma, \Delta, Z_0, \delta)$ , abgekürzt EKA. Entsprechend ist die Funktionalität von  $\delta$  nun  $\delta : \Sigma \times \Delta \to \mathcal{P}_f(\Delta^*)$ , wobei  $\mathcal{P}_f(\Delta^*)$  die Menge aller endlichen Teilmengen von  $\Delta^*$  bedeutet.

- 1. Zeigen Sie durch Anwendung bzw. Modifikation von Sätzen der Vorlesung, dass es für jede kontextfreie Sprache L mit  $\epsilon \notin L$  einen einfachen Kellerautomaten  $E = (\Sigma, \Delta, Z_0, \delta)$  gibt, der die Sprache L akzeptiert, d.h. L = L(E).
- 2. Ein EKA E ist deterministisch, falls  $|\delta(a,Z)| \leq 1$  für alle  $a \in \Sigma, Z \in \Delta$  gilt. Zeigen Sie, dass  $L = \{a^nb^n \, ; \, n \in \mathbb{N}\}$  von einem deterministischen EKA erzeugt werden kann.

#### Lösung

1. Sei L von einer Greibach-Normalform-Grammatik  $(V, \Sigma, P, S)$  erzeugt (Satz 83 der Vorlesung). Wir konstruieren  $E = (\Sigma, \Delta, Z_0, \delta)$  analog wie in Satz 90.

Seien  $\Delta = V$ ,  $Z_0 = S$  und  $\delta$  wie folgt für alle  $a \in \Sigma$  und  $A \in \Delta$  definiert:

$$\delta(a, A) \ni \alpha \quad \text{für} \quad (A \to a\alpha) \in P.$$

2. Die graphische Darstellung der Übergangsfunktion  $\delta$  von  $E=(\Sigma,\Delta,Z_0,\delta)$  benötigt keine Bezeichnung von Zuständen und kann übersichtlich wie folgt dargestellt werden.



Entsprechend gelten  $\delta(a, Z_0) = S$ ,  $\delta(a, S) = SA$ ,  $\delta(b, S) = \epsilon$  und  $\delta(b, A) = \epsilon$ .

## Tutoraufgabe 2

Sei  $A = (Q, \Sigma, \Delta, q_0, Z_0, \delta, F)$  ein deterministischer Kellerautomat. Dann nennen wir einen Zustand  $q \in Q$  spontan bzw. stabil, wenn  $|\delta(q, a, X)| = 0$  für alle  $a \in \Sigma, X \in \Delta$  gilt bzw.  $|\delta(q, \epsilon, X)| = 0$  für alle  $X \in \Delta$  gilt. Die Mengen der spontanen bzw. stabilen Zustände bezeichnen wir mit  $Q_{sp}$  bzw.  $Q_{st}$ . A nennen wir  $\epsilon$ -separiert, falls  $Q = Q_{sp} \cup Q_{st}$  gilt.

Nach Konstruktion in der Vorlesung gibt es zu A einen äquivalenten  $\epsilon$ -separierten Kellerautomaten  $K=(Q,\Sigma,\Delta,q_0,Z_0,\delta,F)$  in Normalform. Man beweise nun unter Berücksichtigung der Definitionen in VA 2 die folgenden Aussagen über Kellerautomaten K in Normalform.

- 1. Sei  $\beta = (q_0, w, Z_0), (q_1, w_1, \gamma_1) \dots (q_{n-1}, w_{n-1}, \gamma_{n-1}), (\eta(w), \epsilon, \kappa(w))$  eine Berechnung von  $(q_0, w, Z_0)$  und j die kleinste Zahl, so dass die Teilsequenz  $\beta_j = (q_j, w_j, \gamma_j) \dots (q_{n-1}, w_{n-1}, \gamma_{n-1}), (\eta(w), \epsilon, \kappa(w))$  von  $\beta$  nur spontane Zustände enthält mit Ausnahme von  $\eta(w)$ . Dann gilt:
  - w wird von K akzeptiert genau dann, wenn mindestens einer der in  $\beta$  enthaltenen Zustände  $q_i$  ein akzeptierender Zustand aus F ist.
- 2. Zu jedem  $\epsilon$ -separierter Kellerautomaten in Normalform K gibt es einen äquivalenten Kellerautomaten  $K' = (Q', \Sigma, \Delta', q'_0, Z'_0, \delta', F')$ , der keine spontanen akzeptierenden Zustände besitzt, d.h., dass alle akzeptierenden Zustände stabil sind.
- 3. K' ist in dem folgenden Sinn komplementierbar: Der komplementierte Kellerautomat  $\overline{K} = (Q', \Sigma, \Delta', q'_0, Z'_0, \delta', Q'_{st} \backslash F')$  akzeptiert das Komplement von L(K'):

$$L(\overline{K}) = \overline{L(K')} = \Sigma^* \setminus L(K')$$
.

### Lösung

1. Da von spontanen Zuständen aus keine Eingabezeichen gelesen werden, gilt  $w_i = \ldots = w_{n-1} = \epsilon$ . Falls also ein Zustand  $q_i$  mit  $j \leq i \leq n-1$  ein akzeptierender Zustand ist, dann wird w nach Definition akzeptiert. Insbesondere wird w akzeptiert, falls  $\eta(w)$  akzeptierend ist.

Umgekehrt muss eine Berechnung von  $q_0, w, Z_0$  mit der Endkonfiguration  $(\eta(w), \epsilon, \kappa(w))$  enden. Falls w akzeptiert wird, muss dann einer der Zustände  $q_i$  mit  $j \leq i \leq n-1$  oder  $\eta(w)$  selbst akzeptierend sein.

2. Die Konstruktion ist analog dem Beweis Teil 2. Gedächtniserweiterung von Satz 94 der Vorlesung.

Wir definieren  $Q' = Q \times \{0,1\}$  und schreiben  $q^{(0)}$  bzw.  $q^{(1)}$  für (q,0) bzw. (q,1). Seien  $q'_0 = q_0^{(0)}, Z'_0 = Z_0, \Delta' = \Delta$ . Die Übergangsfunktion  $\delta'$  ist wie folgt definiert: Seien  $\delta(q, a, Z) = (p, \gamma)$  mit  $q \in Q, a \in \Sigma \cup \{\epsilon\}$ . Es gilt

$$\begin{array}{lcl} \delta'(q^{(0)},a,Z) & = & \left\{ \begin{array}{l} (p^{(1)},\gamma): q \text{ spontan}, \ q \in F \\ (p^{(0)},\gamma): \text{sonst} \end{array} \right. \\ \delta'(q^{(1)},a,Z) & = & \left\{ \begin{array}{l} (p^{(1)},\gamma): q \text{ spontan} \\ (p^{(0)},\gamma): q \text{ stabil} \end{array} \right. \end{array} .$$

Falls  $\delta(q, a, Z) = \emptyset$ , dann wird  $\delta'(q^{(0)}, a, Z) = \delta'(q^{(1)}, a, Z) = \emptyset$  gesetzt.

Nun wird die Menge der akzeptierenden Zustände wie folgt definiert:

$$F' = \{q^{(1)}; q \in Q_{st}\} \cup \{q^{(0)}; q \in Q_{st} \cap F\}$$

Die Äquivalenz von K und K' kann nun gezeigt werden.

3. Ähnlich wie in Satz 95 der Vorlesung

# Tutoraufgabe 3

Wir betrachten die Grammatik  $G = (V, \Sigma, P, S)$  mit den Produktionen

$$\begin{array}{ccc} S & \rightarrow & E \; , \\ E & \rightarrow & E + T \mid T \; . \\ T & \rightarrow & a \mid (E) \; . \end{array}$$

Ist G eine LR(1) Grammatik? Begründen Sie Ihre Antwort.

### Lösung

Die Grammatik erzeugt alle korrekt geklammerter arithmetischen (assoziativen) Mehrfachsummen von Konstanten a.

G ist eine LR(1) Grammatik.

Man kann die folgende Lookahead-Tabelle für die Anwendung der Produktionen erstellen.

| Produktionen | Lookaheads der Länge 0 oder 1    |
|--------------|----------------------------------|
| $S \to E$    | $\epsilon$ d.h., E steht am Ende |
| sonstige     | beliebig                         |

Man beachte, dass beim Parsen von links nach rechts stets die am weitesten links ansetzbare Reduktion angewandt werden muss.

Dies bedeutet z.B., dass T+a nicht zu T+T reduziert werden darf, sondern es muss zu E+a reduziert werden gefolgt von E+T. E+T wiederum darf nicht zu E+E reduziert werden, weil die Reduktion zu E weiter links ansetzbar ist.

Man kann zeigen, dass die Wörter von L(G) mit obiger Lookahead-Tabelle eindeutig von links nach rechts analysiert werden können. Daraus folgt, dass G eine LR(1) Grammatik ist.

Es gibt auch andere Lookahead-Tabellen, wie z.B.

| Produktionen  | Lookaheads der Länge 0 oder 1                                                                                  |
|---------------|----------------------------------------------------------------------------------------------------------------|
| $S \to E$     | $\epsilon$ d.h., E steht am Ende                                                                               |
| $E \to E + T$ | $\left( \begin{array}{l} +,), \epsilon \\ +,), \epsilon \\ +,), \epsilon \\ +,), \epsilon \end{array} \right.$ |
| $E \to T$     | $(+,),\epsilon$                                                                                                |
| $T \to (E)$   | $(+,),\epsilon$                                                                                                |
| $T \to (E)$   | $+,),\epsilon$                                                                                                 |