

3º Grado en Ingeniería Informática

Transmisión de Datos y Redes de Computadores

TEMA 2. CAPA DE RED

(2021-2022)

TEMA 2. Índice

- **2.1**. Enrutamiento estático y dinámico. (2h)
- ② 2.2. Protocolos de enrutamiento. (2h)
- 2.3. El problema del direccionamiento en IPv4. (4h)

APLICACIÓN PRESENTACIÓN SESIÓN TRANSPORTE RED ENLACE FÍSICO

TDRC

Tema 2.3.

El problema del direccionamiento en IPv4

Antonio M. Mora García

IPv4 usa un esquema de direccionamiento de 32 bits:

- Originalmente configurado en **estructuras rígidas de clases** (*Classful*).

- IPv4 usa un esquema de direccionamiento de 32 bits:
 - Posteriormente flexibilizado con **CIDR** (*Classless Inter-Domain Routing*).
 - Se apoya en redes de **longitud de máscara de subred variable** (*variable-length subnet masking, VLSM*).

- 4.200 millones de hosts son en la actualidad ;;INSUFICIENTES!!

- La IANA (Internet Assigned Numbers Authority) gestiona la asignación de IPs y más:
 - Asignación de IPs (https://www.iana.org/numbers)
 - Zonas de DNS raíz (https://www.iana.org/domains/root/db)
 - Número de SAs (https://www.iana.org/assignments/as-numbers/as-numbers.xhtml)
 - Repositorios de protocolos, nombres y números en relación con Internet.

Internet Assigned Numbers Authority

IANA (Internet Assigned Numbers Authority):

- Las asignaciones IP se realizan de forma jerárquica (bloques contiguos de direcciones IP).
- IANA asigna bloques a los *Regional Internet Registry* (RIR). Ejemplo: RIPE NCC, en Europa.
- A su vez los RIR asignan bajo demanda a los *Local Internet Registry* (LIR). Ejemplo ISPs grandes (Movistar).
- Un particular/institución obtiene la IP de un LIR. Ejemplo: grandes empresas (Indra).

Registry	Area Covered
AFRINIC	Africa Region
APNIC	Asia/Pacific Region
ARIN	North America Region
LACNIC	Latin America and some Caribbean Islands
RIPE NCC	Europe, the Middle East, and Central Asia

Problema real

Los bloques de direcciones IPv4 se han agotado ya (Nov. 2019):

Problema real

Los bloques de direcciones IPv4 se han agotado ya (Nov. 2019):

Centro de Coordinación de Redes IP Europeas

https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-addresses

- Sólo quedan disponibles bloques /24 (256 direcciones) a /32 (1 dirección).
- Se van recopilando direcciones de sitios obsoletos, empresas que hayan desaparecido, proyectos terminados, hosting que ya no está en uso...
- Hay una lista de espera en RIPE NCC (https://www.ripe.net/manage-ips-and-asns/ipv4/ipv4-waiting-list).
- IP Brokers: han comprado miles de direcciones para venderlas en subastas.

Soluciones

- CIDR (Classless Inter-Domain Routing)
- Direccionamiento privado
- DHCP (Dynamic Host Configuration Protocol)
- NAT (Network Address Translation)

IPv6

Direccionamiento con clases (Classful):

- Se divide todo el espacio de direcciones IP en distintas partes disjuntas. Por cada subred habrá:
 - . Clase A \rightarrow Más de 16 millones de direcciones disponibles.
 - . Clase B → Más de 65000 direcciones.
 - . Clase C \rightarrow 256 directiones.

	Primer byte	Segundo byte	Tercer byte	Cuarto byte	
CLASE A	0-126				Unicast
CLASE B	128-191				Unicast
CLASE C	192-223				Unicast
CLASE D	224-239				Multicast
CLASE E	240-255				Reservado

Direccionamiento con clases (Classful):

- Se divide todo el espacio de direcciones IP en distintas partes disjuntas. Por cada subred habrá:

. Clase C → 256 direcciones [direcciones de menos]

127.0.0.1 (localhost)
No se usa el rango de direcciones:

127.0.0.0/8

Unicast

Unicast

Unicast

Multicast [demasiados grupos]

Reservado [IPs no utilizadas]

				_	
	Primer byte	Segundo byte	Tercer byte	Cuarto byte	
CLASE A	0-126] (
CLASE B	128-191				ļ
CLASE C	192-223				ι
CLASE D	224-239				1
CLASE E	240-255] F

Direccionamiento con clases (Classful):

. Clase A → 16M IPs

. Clase B \rightarrow 65K IPs

. Clase C \rightarrow 256 IPs

Ejemplo:

Una empresa con solicita direcciones IP para 10000 equipos.

- Se le asigna una subred de Clase B → Se desaprovecharían 55000 direcciones.
- Se le asignan 40 subredes de Clase C (10240 IPs) → Las **tablas de enrutamiento** a las distintas partes de la red de la empresa **serían muy complejas**.

Máscara de red:

- Número de 32 bits compuesto por secuencias de '1' o '0' contiguos.
- La secuencia de '1' indica qué parte de una dirección IP corresponde con el **netid** (identificación de la red o subred).
- El resto de la máscara, que será una secuencia de '0', indicará los bits de la dirección IP correspondientes al **hostid** (identificación del equipo dentro de la subred).

Sabemos que en realidad cada dirección IP se asocia con una interfaz (o tarjeta de red), ya que un equipo/host puede disponer de varios interfaces

Ejemplo:

192.168.33.21 – máscara 111111111111111111111111111111111 → 192.168.33 netid - 21 hostid

- Existe la notación en binario, en punto decimal o compacta (CIDR)
- Las máscaras por defecto de las clases serían:

	Binario	Punto decimal	CIDR
CLASE A	11111111.00000000.00000000.00000000	255.0.0.0	/8
CLASE B	11111111111111111100000000.00000000	255.255.0.0	/16
CLASE C	11111111.111111111.11111111.00000000	255.255.255.0	/24

- Con las máscaras podremos definir cualquier subred:
 - **Subnetting** → definir subredes dentro de un conjunto de direcciones. Ej: dentro Clase A
 - Supernetting → definir superredes agrupando rangos de direcciones. Ej: varias Clases C

Direccionamiento sin clases (Classless):

- Desaparece el concepto de clases.
- Sólo se tienen direcciones (o prefijos) de red y direcciones de hosts (interfaces).
- La máscara determina qué bits de la dirección IP corresponden a cada parte.
- Permite la **optimización de las tablas de enrutamiento**, reduciendo el número de entradas mediante su agrupación y el uso de una máscara menos restrictiva.

Imagen:Wikipedia

- CIDR especificado en RFC 4632.
- VLSM (Variable Length Subnet Mask) :
 - Se podrá asignar una máscara diferente a cada subred.
 - Los routers almacenarán las máscaras de red para las entradas de su tabla de enrutamiento.
 - Los protocolos de enrutamiento transmitirán también la máscara.

Agrupamiento en Superredes (supernetting) - Ejemplo

Queremos agrupar las redes 192.168.0.160/27 192.168.0.192/27

Buscamos los bits en común (iguales):

192.168.0.160 \Leftrightarrow **11000000.10101000.00000000.1**0100000

192.168.0.192 \(\Display\) **11000000.10101000.00000000.1**1000000

La máscara del agrupamiento indicará el número de bits iguales → /25

La dirección agrupada será la parte común y el resto de bits estarán a 0:

11000000.10101000.00000000.10000000

La red agrupada quedaría como:

192.168.0.128/25

Ejercicio (Supernetting)

Las siguientes redes de clase C pueden agruparse en superredes:

192.168.100.0/24

192.168.101.0/24

192.168.102.0/24

192.168.103.0/24

Hacer un agrupamiento en dos superredes y en una sola.

Ejercicio (Supernetting)

Las siguientes redes de clase C pueden agruparse en superredes:

```
192.168.100.0/24
192.168.101.0/24
192.168.102.0/24
192.168.103.0/24
192.168.103.0/24
```


Agrupamiento en dos superredes y en una sola.

Ejercicio (Subnetting)

En nuestra empresa tenemos una red para la que se nos ha asignado un rango de direcciones **140.16.0.0** (Clase B).

Hacer una división de las direcciones disponibles para direccionar **3 subredes de 10000 equipos** cada una.

Tener en cuenta el posible crecimiento de dichas subredes en el futuro.

Ejercicio (Subnetting)

En nuestra empresa tenemos una red para la que se nos ha asignado un rango de direcciones **140.16.0.0** (Clase B).

Hacer una división de las direcciones disponibles para direccionar **3 subredes de 10000 equipos** cada una.

Tener en cuenta el posible crecimiento de dichas subredes en el futuro.

Para cubrir 10000 IPs (equipos) necesitaremos al menos 14 bits \rightarrow 2¹⁴ = 16384

140.16.00|000000.000000000 \rightarrow máscara /18 (32-14) \Leftrightarrow 14 bits para hosts

Subred 3: $140.16.10|000000.000000000 \Leftrightarrow 140.16.128.0/18$ *Rango:* 140.16.128.0 - 140.16.191.255

Direccionamiento privado

- Se definen rangos de IPs de uso sólo dentro de nuestra red.
- Se usan en oficinas, empresas o redes domésticas (LAN y WAN).
- No son IPs directamente accesibles desde fuera de nuestra red.
- Se pueden utilizar las mismas direcciones en distintas redes privadas.

Clase	Bloque CIDR	Rango de direcciones	Número de direcciones
А	10.0.0.0/8	10.0.0.0 – 10.255.255.255	16.777.216
В	172.16.0.0/12	172.16.0.0 – 172.31.255.255	1.048.576
С	192.168.0.0/16	192.168.0.0 – 192.168.255.255	65.536

- Protocolo de red de tipo Cliente/Servidor.
- El cliente es un host de una red privada.
- El **servidor DHCP asigna dinámicamente** una dirección **IP** (y **otros parámetros** de configuración de red) a cada host que lo solicite.
- Se encarga de realizar el reparto de las direcciones disponibles conforme se le van solicitando.
- Especificado en RFC 2131.

- Asignación estática → cada host tiene asignada una IP por defecto que decide el administrador. El protocolo la comunica al host.
- Asignación automática → se asigna una dirección IP de un pool, pero dicha dirección queda asociada al host permanentemente (hasta que la libere explícitamente dicho host).
- Asignación dinámica → un host debe solicitar una IP para cada una de sus interfaces cuando las activa. El servidor tendrá control sobre qué host/interfaz tiene cada IP y sabrá cuándo la libera, quedando disponible para asignársela a otro host/interfaz que lo solicite.

- Los parámetros de configuración de red proporcionados al host incluyen:
 - Dirección IP
 - Máscara de red
 - Router/Pasarela por defecto
 - Servidor de DNS
- Habrá un servidor DHCP en cada subred.

Funcionamiento:

DHCP DISCOVER

```
Frame 1 (342 bytes on wire, 342 bytes captured)
    Arrival Time: Dec 17, 2002 21:03:25.803367000
    Time delta from previous packet: 0.000000000 seconds
    Time relative to first packet: 0.000000000 seconds
    Frame Number: 1
    Packet Length: 342 bytes
    Capture Length: 342 bytes
thernet II. Src: 00:50:22:00:c8:0b. Dst: ff:ff:ff:ff:ff:ff
    Destination: ff:ff:ff:ff:ff:ff (Broadcast)
   Source: 00:50:22:00:c8:0b (ZONET 00:c8:0b)
    Type: IP (0x0800)
Internet Protocol, Src Addr: 0.0.0.0 (0.0.0.0), Dst Addr: 255.255.255.255
V255 255 255 255)
    Version: 4
    Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
        0000 00.. = Differentiated Services Codepoint: Default (0x00)
        .... ..0. = ECN-Capable Transport (ECT): 0
        .... 0 = ECN-CE: 0
    Total Length: 328
    Identification: 0x0000
    Flags: 0x00
        .O.. = Don't fragment: Not set
        .. 0. = More fragments: Not set
    Fracment offset: 0
    Time to live: 128
    Protocol: UDP (0x11)
    Header checksum: 0x39a6 (correct)
    Source: 0.0.0.0 (0.0.0.0)
    Destination: 255,255,255,255 (255,255,255,255)
User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
    Source port: bootpc (68)
    Destination port: bootps (67)
    Length: 308
    Checksum: 0x44f6 (correct)
Bootstrap Protocol
   Message type: Boot Request (1)
    Hardware type: Ethernet
    Hardware address length: 6
    Hops: 0
    Transaction ID: 0xba719209
    Seconds elapsed: 0
    Bootp flags: 0x0000 (Unicast)
        0... .... : Broadcast flag: Unicast
        .000 0000 0000 0000 = Reserved flags: 0x0000
    Client IP address: 0.0.0.0 (0.0.0.0)
```

```
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 0.0.0.0 (0.0.0.0)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client hardware address: 00:50:22:00:c8:0b
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option 53: DHCP Message Type = DHCP Discover
Unknown Option Code: 251 (1 bytes)
Option 61: Client identifier
    Hardware type: Ethernet
    Client hardware address: 00:50:22:00:c8:0b
Option 12: Host Name = "oemcomputer"
Option 60: Vendor class identifier = "MSFT 5.0"
Option 55: Parameter Request List
    1 = Subnet Mask
    15 = Domain Name
    3 = Router
    6 = Domain Name Server
    44 = NetBIOS over TCP/IP Name Server
    46 = NetBIOS over TCP/IP Node Type
    47 = NetBIOS over TCP/IP Scope
    31 = Perform Router Discover
    33 = Static Route
    43 = Vendor-Specific Information
End Option
Padding
```

DHCP OFFER

```
Frame 2 (342 bytes on wire, 342 bytes captured)
```

```
Arrival Time: Dec 17, 2002 21:03:25.805830000
    Time delta from previous packet: 0.002463000 seconds
    Time relative to first packet: 0.002463000 seconds
    Frame Number: 2
    Packet Length: 342 bytes
Ethernet II. Src: 00:50:bf:44:f5:21. Dst: ff:ff:ff:ff:ff:ff
   Destination: ff:ff:ff:ff:ff:ff (Broadcast)
   Source: 00:50:bf:44:f5:21 (MOTOTECH 44:f5:21)
   Type: IP (0x0800)
Internet Protocol. Src Addr: 192.168.2.251 (192.168.2.251). Dst Addr:
255.255.255.255 (255.255.255.255)
   Version. 4
    Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
       0000 00.. = Differentiated Services Codepoint: Default (0x00)
       .... ..0. = ECN-Capable Transport (ECT): 0
       .... 0 = ECN-CE: 0
    Total Length: 328
    Identification: 0x699b
   Flags: 0x00
       .O.. = Don't fragment: Not set
       ..O. = More fragments: Not set
    Fracment offset: 0
    Time to live: 128
    Protocol: UDP (0x11)
    Header checksum: 0x0c67 (correct)
    Source: 192.168.2.251 (192.168.2.251)
   Destination: 255.255.255.255 (255.255.255.255)
User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
    Source port: bootps (67)
   Destination port: bootpc (68)
   Length: 308
    Checksum: 0xd449 (correct)
Bootstrap Protocol
   Message type: Boot Reply (2)
    Hardware type: Ethernet
    Hardware address length: 6
    Hops: 0
    Transaction ID: 0xba719209
    Seconds elapsed: 0
    Bootp flags: 0x0000 (Unicast)
       0... = Broadcast flag: Unicast
        .000 0000 0000 0000 = Reserved flags: 0x0000
    Client IP address: 0.0.0.0 (0.0.0.0)
    Your (client) IP address: 192.168.2.36 (192.168.2.36)
   Next server IP address: 192.168.2.251 (192.168.2.251)
```

```
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client hardware address: 00:50:22:00:c8:0b
Server host name not given
Boot file name not given
Magric cookie: (OK)
Option 53: DHCP Message Type = DHCP Offer
Option 1: Subnet Mask = 255.255.255.0
Option 58: Renewal Time Value = 150 days
Option 59: Rebinding Time Value = 262 days, 12 hours
Option 51: IP Address Lease Time = 300 days
Option 54: Server Identifier = 192.168.2.251
Option 3: Router = 192.168.2.250
Option 6: Domain Name Server
    IP Address: 192.168.2.251
    IP Address: 195.235.96.90
    IP Address: 195.235.113.3
End Option
Padding
```

DHCP REQUEST

```
Frame 3 (359 bytes on wire, 359 bytes captured)
   Arrival Time: Dec 17, 2002 21:03:25.806301000
   Time delta from previous packet: 0.000471000 seconds
   Time relative to first packet: 0.002934000 seconds
   Frame Number: 3
    Packet Length: 359 bytes
   Capture Length: 050 bytes
Ethernet II. Src: 00:50:22:00:c8:0b. Dst: ff:ff:ff:ff:ff:ff
   Destination: ff:ff:ff:ff:ff:ff (Broadcast)
   Source: 00:50:22:00:c8:0b (ZONET 00:c8:0b)
   Type: IP (0x0800)
Internet Protocol, Src Addr: 0.0.0.0 (0.0.0.0), Dst Addr: 255.255.255.255
(255.255.255.255)
    Version: 4
   Header length: 20 bytes
   Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
       0000 00.. = Differentiated Services Codepoint: Default (0x00)
        .... ..0. = ECN-Capable Transport (ECT): 0
       .... 0 = ECN-CE: 0
    Total Length: 345
    Identification: 0x0001
    Flags: 0x00
       .O.. = Don't fragment: Not set
        .. 0. = More fragments: Not set
    Fragment offset: 0
    Time to live: 128
    Protocol: UDP (0x11)
    Header checksum: 0x3994 (correct)
   Source: 0.0.0.0 (0.0.0.0)
   Destination: 255.255.255.255 (255.255.255.255)
User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
   Source port: bootpc (68)
   Destination port: bootps (67)
   Length: 325
    Checksum: 0xb9b0 (correct)
Bootstrap Protocol
   Message type: Boot Request (1)
    Hardware type: Ethernet
   Hardware address length: 6
    Hops: 0
    Transaction ID: 0xba719209
    Seconds elapsed: 0
    Bootp flags: 0x0000 (Unicast)
        0... = Broadcast flag: Unicast
        .000 0000 0000 0000 = Reserved flags: 0x0000
    Client IP address: 0.0.0.0 (0.0.0.0)
    Your (client) IP address: 0.0.0.0 (0.0.0.0)
    Next server IP address: 0.0.0.0 (0.0.0.0)
```

Relay agent IP address: 0.0.0.0 (0.0.0.0)

```
Client hardware address: 00:50:22:00:c8:0b
Server host name not given
Boot file name not given
Magric cookie: (OK)
Option 53: DHCP Message Type = DHCP Request
Option 61: Client identifier
    Hardware type: Ethernet
    Client hardware address: 00:50:22:00:c8:0b
Option 50: Requested IP Address = 192.168.2.36
Option 54: Server Identifier = 192.168.2.251
Option 12: Host Name = "oemcomputer"
Option 81: Client Fully Qualified Domain Name (15 bytes)
Option 60: Vendor class identifier = "MSFT 5.0"
Option 55: Parameter Request List
    1 = Subnet Mask
    15 = Domain Name
    3 = Router
    6 = Domain Name Server
    44 = NetBIOS over TCP/IP Name Server
    46 = NetBIOS over TCP/IP Node Type
    47 = NetBIOS over TCP/IP Scope
    31 = Perform Router Discover
    33 = Static Route
    43 = Vendor-Specific Information
End Option
```

DHCP ACK

```
Frame 4 (342 bytes on wire, 342 bytes captured)
   Arrival Time: Dec 17, 2002 21:03:25.809481000
    Time delta from previous packet: 0.003180000 seconds
    Time relative to first packet: 0.006114000 seconds
    Frame Number: 4
    Packet Length: 342 bytes
Ethernet II. Src: 00:50:bf:44:f5:21. Dst: ff:ff:ff:ff:ff:ff
    Destination: ff:ff:ff:ff:ff (Broadcast)
    Source: 00:50:bf:44:f5:21 (MOTOTECH 44:f5:21)
    Type: IP (0x0800)
Internet Protocol, Src Addr: 192.168.2.251 (192.168.2.251), Dst Addr:
255 255 255 255 (255 255 255 255)
    Version: 4
   Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
        0000 00.. = Differentiated Services Codepoint: Default (0x00)
        .... ..0. = ECN-Capable Transport (ECT): 0
       .... 0 = ECN-CE: 0
    Total Length: 328
    Identification: 0x699c
    Flags: 0x00
        .O.. = Don't fragment: Not set
        ..0. = More fragments: Not set
    Fracment offset: 0
                         Time to live: 128
    Protocol: UDP (0x11)
    Header checksum: 0x0c66 (correct)
    Source: 192.168.2.251 (192.168.2.251)
    Destination: 255,255,255,255 (255,255,255,255)
User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
    Source port: bootps (67)
    Destination port: bootpc (68)
    Length: 308
    Checksum: 0x36f7 (correct)
Bootstrap Protocol
    Message type: Boot Reply (2)
    Hardware type: Ethernet
    Hardware address length: 6
    O :sgoH
    Transaction ID: 0xba719209
    Seconds elapsed: 0
    Bootp flags: 0x0000 (Unicast)
        0... .... = Broadcast flag: Unicast
        .000 0000 0000 0000 = Reserved flags: 0x0000
    Client IP address: 0.0.0.0 (0.0.0.0)
    Your (client) IP address: 192.168.2.36 (192.168.2.36)
    Next server IP address: 0.0.0.0 (0.0.0.0)
    Relay agent IP address: 0.0.0.0 (0.0.0.0)
    Client hardware address: 00:50:22:00:c8:0b
```

```
Server host name not given
Boot file name not given
Magric cookie: (OK)
Option 53: DHCP Message Type = DHCP ACK
Option 58: Renewal Time Value = 150 days
Option 59: Rebinding Time Value = 262 days, 12 hours
Option 51: IP Address Lease Time = 300 days
Option 54: Server Identifier = 192.168.2.251
Option 1: Subnet Mask = 255.255.255.0
Option 81: Client Fully Qualified Domain Name (3 bytes)
Option 3: Router = 192.168.2.250
Option 6: Domain Name Server
    IP Address: 192.168.2.251
    IP Address: 195.235.96.90
    IP Address: 195.235.113.3
End Option
Padding
```


- Consiste en traducir un conjunto de direcciones IPv4 en otras.
- Especificado en RFC 3022.
- Permite que una red con direccionamiento privado se pueda conectar a Internet (direccionamiento público).
 - Cambia la **dirección IP privada por una dirección pública** al reenviar un paquete hacia el exterior de la red (hacia Internet).
 - Cambia la **dirección IP pública por la correspondiente privada** al reenviar un paquete hacia el interior.
- Se puede usar para mitigar el problema de la falta de direcciones IPv4:
 - Para ello se usa un esquema de direccionamiento privado en una red.
 - En la interfaz de conexión con Internet, el rango privado es traducido mediante NAT a una única IP pública con multiplexación por puertos (*Port Address Translation*, PAT)

- Lo realiza normalmente el router de acceso a Internet (frontera entre la red privada y la pública).
- La traducción puede ser:
 - Estática -> una IP privada siempre se cambia por la misma IP pública.
 - **Dinámica** → existe un pool de IPs públicas y se establece una relación entre ellas y las IPs privadas.

- Definiciones:
- **Inside local**: direcciones de mi red, vistas desde dentro de mi red
- **Inside Global**: direcciones de mi red vistas desde fuera de mi red
- **Outside local**: Direcciones de redes externas vistas desde dentro de mi red
- **Outside global**: Direcciones de redes externas vistas desde fuera de mi red

• Ejemplo:

SA → Source Address
DA → Destination Address

Los números en azul indican la secuencia de envíos.

13/ \1	table
Inside local IP address	Inside global IP address
1.1.1.2 1.1.1.1	2.2.2.3 2.2.2.2

35

PAT (overload)

- Útil cuando sólo dispongo de una única dirección IP inside global.
- En lado OUTSIDE, la conexión se distingue por el puerto.
- En el lado INSIDE: Se distingue por el socket local.

Socket= { IP inside local, protocolo, puerto }

• Ejemplo PAT:

SA → Source Address

SP → Source Port

DA

Destination Address

DP → Destination Port

Los números indican la secuencia de envíos.

	terb ro
Inside local	Inside global
IP address	IP address
1.1.1.2:3333	2.2.2.2:4344
1.1.1.1:5000	2.2.2.2:8585

37

IPv6

Características

- Direcciones de 128 bits.
- Notación hexadecimal.
- 340.282.366.920.938.463.463.374.607.431.768.211.456
 (340 sextillones) direcciones diferentes.
- Compatibles con IPv4.

https://www.google.com/intl/es/ipv6/statistics.html ab=per-country-ipv6-adoption

Disponibilidad de IPv6. Verde oscuro significa una mayor implementación. Sin problemas. 30% en el mundo – 3% en España FUENTE: Google

Bibliografía y enlaces

- P. García-Teodoro, J.E. Díaz-Verdejo, J.M. López-Soler. Transmisión de datos y redes de computadores, 2ª Edición. Editorial Pearson, 2014.
- James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017.
- Behrouz A. Forouzan. Transmisión de datos y redes de comunicaciones, 4º Edición. Editorial Mc Graw Hill 2007.
- Ernesto Ariganello. Redes Cisco: guía de estudio para la certificación CCNA Routing y Switching.
- CIDR (RFC 4632) https://tools.ietf.org/html/rfc4632
- DHCP (RFC 2131) https://tools.ietf.org/html/rfc2131
- NAT (RFC 3022) https://tools.ietf.org/html/rfc3022

Entonces... ¿tenemos ya delegad@?

Para que sea el/la intermediario/a para la comunicación entre la clase y los profesores de la asignatura.

¿Alguna duda?