Note: I've used questionable typesetting here, but I finished the assignment too late to fix it.

Problem 1:

Part a:

Let $r \in R^*$.

Then there is an $r^{-1} \in R$ such that $r^{-1}r = 1$. If $r \in M$ for any maximal ideal, M, then $r^{-1}r \in M$, so $1 \in M$, so M = R. This means that M is not a maximal ideal. That is, $r \notin \bigcup M$, so $r \in R \setminus \bigcup M$.

a maximal ideal. That is,
$$r \notin \bigcup_{M \in m-Spec(R)} M$$
, so $r \in R \setminus \bigcup_{M \in m-Spec(R)} M$.

Now, let $r \notin \bigcup_{M \in m-Spec(R)} M$. That is, $r \in R \setminus \bigcup_{M \in m-Spec(R)} M$ isn't in any maximal ideal.

Then r is not in any ideal other than R; all ideals other than R are contained in some maximal ideal.

So (r) = R. This means that $1 \in (r)$. So there's an element, $r^{-1} \in R$, such that $r^{-1}r = 1$. So $r \in R^*$.

So
$$R^* \subset R \setminus \bigcup_{M \in m-Spec(R)} M$$
 and $R^* \supset R \setminus \bigcup_{M \in m-Spec(R)} M$.
So $R^* = R \setminus \bigcup_{M \in m-Spec(R)} M$.

Part b:

We freely use the fact that $R \setminus R^* = \bigcup_{M \in m-Spec(R)} M$. This follows from the above, and is clear with proper notation:

$$R^* = \left(\bigcup_{M \in m - Spec(R)} M\right)^c$$
$$(R^*)^c = \bigcup_{M \in m - Spec(R)} M$$

If $R \setminus R^* = \bigcup_{M \in m-Spec(R)} M$ is an ideal, then $\bigcup_{M \in m-Spec(R)} M$ is a maximal ideal or R; it contains every maximal ideal, so it contains every ideal other than R. But this ideal is not R, otherwise R^* is empty (and we know that R^* contains 1.) So $\bigcup_{M \in m-Spec(R)} M$ is a maximal ideal that contains every maximal ideal. That is, it is the unique maximal ideal. So R is local.

If R is local, then say that M' is R's unique maximal ideal. Then we have that $R \setminus R^* = \bigcup_{M \in m-Spec(R)} M = M'$ is an ideal.

Problem 2:

Note: This is more or less taken from Hungerford.

Let $P \in Spec(R)$.

Let M be a maximal ideal of R_P . Then M is prime. So $M = QR_P$ for some prime ideal Q of R, with $Q \subset P$. But $Q \subset P$ implies that $QR_P \subset PR_P$. So $QR_P = PR_P$ So PR_P is the unique maximal ideal in R_P . In particular, R_P is local.

Problem 3:

Define $rad(R) = \sqrt{0} = \{a \in R : a^n = 0 \text{ for some } n \ge 0\}.$ Then if $r \in rad(R)$, then $r \in \bigcap_{P \in Spec(R)} P$:

We know that $r^n = 0$ for some $n \in \mathbb{N}$. For any prime ideal, $P, 0 \in P$. So this means that either r or r^{n-1} is in P. If $r \in P$, we're done.

If $r^{n-1} \in P$, this means that r or r^{n-2} is in P. If $r \in P$, we're done.

We can iterate down to r; the process above ends, so we can get that $r \in P$ for all prime ideals, P. That is, $r \in \bigcap P$.

Next, if
$$r \in \bigcap_{P \in Spec(R)} P$$
, then $r \in rad(R)$:

Consider $R_r = S^{-1}R$, where $S = \{r^n : n \geq 0\}$. If $S^{-1}R = R_x \neq (0)$, then there's a nonzero $y \in R_x$. So R_x contains a maximal ideal, MR_x . We know that MR_x is prime. Thus, MR_x corresponds to a prime ideal, M, in R. We also know that $x \in M$. But this is bad, because this would imply that $x/x \in MR_x$, so $1 \in MR_x$, so MR_x cannot be maximal.

That is, R_x can't contain maximal ideals. So $R_x = (0)$. So $0 \in S$. So x is nilpotent.

So
$$rad(R) = \bigcap_{P \in Spec(R)} P$$
.

Problem 4:

Let $u \in R^*$ and $a \in rad(0)$.

Then $a^{2^n}=0$ for some $n\in\mathbb{N}$: since $a\in rad(0),\ a^k=0$ for some $k\in\mathbb{N}$. So for all $j\geq k,\ a^j=0$. There's an $n\in\mathbb{N}$ such that $2^n\geq k$, so we have what we want.

Now, consider the product

$$(u+a)(u-a)(u^2+a^2)\dots(u^{2^{n-1}}+a^{2^{n-1}})=u^{2^n}-a^{2^n}$$

= u^{2^n}

Now, there is a $u^{-1} \in R$ such that $u^{-1}u = 1$. It is clear also that $(u^{-1})^{2^n}u^{2^n} = 1$. So we have

$$u^{-2^{n}}(u+a)(u-a)(u^{2}+a^{2})\dots(u^{2^{n-1}}+a^{2^{n-1}}) = u^{-2^{n}}(u^{2^{n}}-a^{2^{n}})$$
$$= u^{-2^{n}}u^{2^{n}}$$
$$= 1$$

So
$$(u+a)u^{-2^n}(u-a)(u^2+a^2)\dots(u^{2^{n-1}}+a^{2^{n-1}})=1$$
. So $u+a\in R^*$.

Problem 5:

Let R be a PID, and P be a nonzero prime ideal of R.

Then P=(p) for some nonzero $p \in P$. We know that prime elements are irreducible. Ideals generated by a single irreducible element are maximal among proper principal ideals. All ideals are pricipal. So P is a maximal ideal.

Problem 6:

Let R be a domain, and $a, b \in R$.

Let $(a) \cap (b)$ be a principal ideal. Then $(a) \cap (b) = (c)$ for some $c \in R$. It is clear that c is a multiple of both a and b. Further, (c) is the set of all multiples of c (this is clear from the definitions), so this means that every element of $(a) \cap (b)$ is a multiple of c. So $a \mid x$ and $b \mid x$ implies that $c \mid x$. That is, c is the lcm of a and b; lcm(a,b) exists.

Let lcm(a,b) exist. Then $(lcm(a,b)) = (a) \cap (b)$: first, as lcm(a,b) is a multiple of a, it is in (a), so $lcm(a,b) \subset (a)$. Similarly, $lcm(a,b) \subset (b)$. So $(lcm(a,b)) \subset (a) \cap (b)$. Next, if $x \in (a) \cap (b)$, then x is a multiple of both a and b. So x is a multiple of lcm(a,b). This means that $x \in (lcm(a,b))$. So $(lcm(a,b)) \supset (a) \cap (b)$, so $(lcm(a,b)) = (a) \cap (b)$. In particular, this means that $(a) \cap (b)$ is a principal ideal.

So lcm(a, b) exists if and only if $(a) \cap (b)$ is a principal ideal, and in this case $(a) \cap (b) = (lcm(a, b))$.