

Lab 2 - Biometrics

Face Recognition

Francesco L. De Faveri May, 17th 2023

Outline

1 Introduction

2 Lab experience overview

3 Conclusion

Introduction

Gait Analysis is used for:

- Security.
- Digital forensics analysis.
- Rehabilitation and medical purposes.
-

Phases of a Gait-cycle I

Stance phase:

- Initial Contact.
- Loading response.
- Mid-stance.
- Terminal-stance.
- Pre-swing.

Swing phase:

- Initial-swing.
- Mid-swing.
- Terminal-swing.

Phases of a Gait-cycle II

Figure: Phases of Gait-cycle.

Tasks I

Preprocessing

 Define a preprocessing function. This function will help you to interpolate, filter and remove symmetric padding introduced by the filtering operation.

TIP: Use functions defined in the notebook.

Tasks II

Template Extraction

- Define a function for computing the correlation between two vectors u and v, e.g. x and y.
- Define the Filtering with a very low cutoff frequency (3 Hz) to retain only the clearest periodic signals.
- Define template update function with momentum, follow the instructions.

Tasks III

Normalization

 Normalize the reference system for the accelerometer and gyroscope signals.

Tasks IV

Neural Network

 Follow the instructions for defining the model and then see accuracy and loss plots.

Conclusion

Figure: Model Accuracy.

Figure: Model Loss.

Lab 2 - Biometrics

Face Recognition

Francesco L. De Faveri May, 17th 2023