Chapter 6: EMBEDDED HARDWARE FUNDAMENTALS (2/3)

Manuel Jiménez

EMBEDDED SYSTEMS:

Theory and Applications Using the MSP430

UPRM - Spring 2010

Part 2: The Basic Interface

- MCU and System Power Sources
 - Selecting a Power source
- Clock Oscillators
 - Choosing a Clock Source
- Power-on Reset
 - Reset Hardware
 - Initialization Software
- Memory Map: Programs & Data
 - Partitioning Programs and Data
 - Reserved Locations
- Interfacing Considerations
 - Bus Loading Considerations
 - Electrical Compatibility Issues
 - Noise and Signal Integrity Issues

Supplying Power to MCUs

- Provides Power to CPU and on-chip electronics
- Basic Criteria
 - Voltage Level
 - Supply Current
 - Regulation
 - Signal Compatibility
 - Power Ports:
 - Analog Vs. Digital Power

- Identify Voltage Level & Supply Ports
 - Most modern micros require a single supply voltage
 - Identify ports, polarity, and levels
 - Estimate supply current (CPU + Peripherals) to assign power supply

MSP430x13x, MSP430x14x

TERMINA	\L		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
AVcc	64		Analog supply voltage, positive terminal. Supplies the analog portion of the analog-to-digital converter.
AVss	62		Analog supply voltage, negative terminal. Supplies the analog portion of the analog-to-digital converter.
DVCC	1		Digital supply voltage, positive terminal. Supplies all digital parts.
DVss	63		Digital supply voltage, negative terminal. Supplies all digital parts.

recommended operating conditions

PARAMETER	MIN	NOM MAX	UNITS	
Supply voltage during program execution, V _{CC} (AV _{CC} = DV _{CC} = V _{CC})	MSP430F13x, MSP430F14x(1)	1.8	3.6	٧
Supply voltage during flash memory programming, V _{CC} (AV _{CC} = DV _{CC} = V _{CC})	MSP430F13x, MSP430F14x(1)	2.7	3.6	٧
Supply voltage, VSS (AVSS = DVSS = VSS)		0.0	0.0	٧

supply current into AV_{CC} + DV_{CC} excluding external current

	PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
	Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 1 MHz,	T 4000 t- 9500	V _{CC} = 2.2 V		280	350	
I(AM)	f(ACLK) = 32,768 Hz XTS=0, SELM=(0,1)	T _A = -40°C to 85°C	V _{CC} = 3 V		420	560	μΑ
	Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 4 096 Hz,	T 4000 t- 0500	V _{CC} = 2.2 V		2.5	7	
I(AM)	f(ACLK) = 4,096 Hz' XTS=0, SELM=(0,1) XTS=0, SELM=3	T _A = -40°C to 85°C	V _{CC} = 3 V		9	20	μА

A Word About Regulation

- Most MCUs feature internal regulators
 - Accept a range of values for Vdd
 - Flexible power supply options
 - Main concerns
 - Signal Compatibility: V_{OH} depends on V_{DD}
 - Maximum Speed: f_{CLKmax} depends on V_{DD}
- MPUs might include on-chip DC-to-DC converters
 - Typically, only one fixed input V_{DD} value
 - Though, some MCUs might need more than one V_{DD} level
 - Voltage source requires stable supply
 - Common requirement calls for 5% regulation
 - Ensure current headroom in I_{DD} supply (at least 15%)

Table 3.1. Global DC Electrical Characteristics

-40 to +85 °C, 25 MHz System Clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Voltage ¹		VRST	3.3	3.6	V

Figure 1.1. C8051F340/1/4/5 Block Diagram

PIC18LFXX2 (Industrial)

PIC18LFXX2 (Industrial)				Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial					
PIC18FXX2 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial -40°C ≤ TA ≤ +125°C for extended					
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions			Conditions			
	VDD	Supply Voltage							
D001		PIC18LFXX2	2.0	_	5.5	٧	HS, XT, RC and LP Osc mode		
D001		PIC18FXX2	4.2	_	5.5	٧			

Stellaris® LM3S1968 Microcontroller

Table 22-2. Recommended DC Operating Conditions

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{DD}	I/O supply voltage	3.0	3.3	3.6	V
V _{DD25}	Core supply voltage	2.25	2.5	2.75	V
V_{DDA}	Analog supply voltage	3.0	3.3	3.6	V
V _{BAT}	Battery supply voltage	2.3	3.0	3.6	V

MOTOROLA

MCF5206e USER'S MANUAL Table 17-5. DC ELECTRICAL SPECIFICATIONS

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
Operation voltage range	V_{DD}	3.0	3.6	V
Input high voltage	V _{IH}	2	5.5	V
Input low voltage	V _{IL}	GND	0.8	V

Providing Regulated Supply Voltages

- Use separate voltage regulators for each supply level
- Use the main, unregulated input for each source
- Route separately the analog and digital supplies
 - Join them at a single point next to the power supply ground
- Provide bypassing caps at the power ports
- Include decoupling capacitors
 - One per digital IC
- Compute I_{DD} requirements for each regulator

Signal Compatibility & V_{DD}

- Choose ICs that can operate at the same V_{DD} level
 - Maximizes the chances of good signal compatibility
- MCU and off-chip peripherals could operate at different voltage levels
 - Make sure logic levels are compatible
- Logic Interfacing Rule

- Otherwise an interface needed!
 - Pull-up resistors increase V_{OH}
 - Pull down resistors reduce V_{OL}.
 - Some cases might need logic translation

Clock Sources

- Provide synchronization to CPU operation
- Define the system clock base
 - Time base for bus cycles, timers, baud rates
- Requirements
 - Source Type
 - Internal Vs. External
 - Minimum and maximum frequency values
 - Function of supply voltage V_{DD}
 - Clock stability
 - Maximum drift & jitter

- Typically based on RC oscillators
 - Preferred in MCUs
- Pros:
 - Reduce external component count
 - Less expensive
 - Induce lower power consumption
- Cons:
 - Least stability
 - Least flexibility
 - Slowest frequency values

- Allow using diverse oscillator types
 - Crystal type
 - RC-based
 - External digital clocks
- Pros
 - Wider choice of frequency values
 - More design flexibility
- Cons
 - Increment the external component count
 - Higher clock speeds induce higher power consumption

Crystal Oscillators

- Based on mechanical resonance of a vibrating piezoelectric crystal
 - Shape and size determine frequency
- Create an electrical signal with a very precise frequency
 - Require squaring circuit to get f_{CLK}
- Commercial crystal oscillator ICs provide squared signal output

PIN	CONNECTION
1	Not connected
7	Ground
8	Output
14	Supply

Equivalent Circuit

- Pierce Crystal Osc.
 - Series resonant
 - Insensitive to discrete component variations

- Colpittz Crystal Osc.
 - Parallel resonant

RC Oscillators

- Based on RC phase shift circuit
 - Commonly a Wien Bridge
 - Frequency determined by τ=RC
- Frequency stability affected by tolerance of R & C components
 - R values affected by temperature
 - C values can vary with V_{DD}
- Limited to low frequency values
- Preferred internal source for MCUs
 - Some allow external C to set f_{CLK}

Wien Bridge Oscillator

USEPWMDIV a

- Obtained with frequency multiplication techniques
 - Common in MPUs
 - Chipset-based or embedded

Parameter Name		Units			
Frequency	8	6	4	3.5	MHz
Frequency tolerance	±50	±50	±50	±50	ppm
Aging	±5	±5	±5	±5	ppm/yr
Oscillation mode	Parallel	Parallel	Parallel	Parallel	-
Temperature stability (-40°C to 85°C)	±25	±25	±25	±25	ppm

LM3S1968

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
System Control & Clocks	CMOD0	65	1/0	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
	CMOD1	76	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
	osco	48	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	49	0	Analog	Main oscillator crystal output.
	RST	64	I	TTL	System reset input.

- A systematic change in frequency over time caused by internal changes in the oscillator
 - Internal contamination, excessive drive level, crystal surface change, thermal effects, wire fatigue, and frictional wear
- Aging deviation measured in parts-per-million (ppm)
 - 1ppm in a 12MHz crystal = 12Hz

Drift and Jitter

- Drift: The linear (first-order) component of a systematic change in frequency of an oscillator over time
 - Caused by aging, environment changes, and other factors external to the oscillator
- Jitter: The time variation of a periodic signal in relation to a reference clock source
 - A deviation from the ideal timing of an event

Freq. (MHz)	Typical Applications
0.032768	Real-time clocks, quartz watches and clocks; allows binary division to 1 Hz signal (215×1 Hz)
1.843200	UART clock; allows integer division to baud rates. (213×32×52; 16×115,200 baud or 96×16×1,200 baud)
2.457600	UART clock; allows integer division to baud rates up to 38,400. (215×31×52; 64×38,400 baud or 2048×1,200 baud)
3.276800	Allows binary division to 100 Hz (32,768×100 Hz, or 215×100 Hz)
3.575611	PAL M color subcarrier
3.579545	NTSC M color subcarrier and DTMF generators
3.582056	PAL N color subcarrier
3.686400	UART clock (2×1.8432 MHz); allows integer division to common baud rates
4.096000	Allows binary division to 1 kHz (212×1 kHz)
4.194304	Real-time clocks, divides to 1 Hz signal (222×1 Hz)
4.433619	PAL B/D/G/H/I and NTSC M4.43 color subcarrier
6.144000	UART baud rates up to 38,400.
6.553600	Allows binary division to 100 Hz (65,536×100 Hz, or 216×100 Hz); used also in red boxes
7.372800	UART clock (4×1.8432 MHz); allows integer division to common baud rates
9.216000	Allows integer division to 1024 kHz and binary division to lower frequencies that are whole multiples of 1 Hz.
11.059200	UART clock (6×1.8432 MHz); allows integer division to common baud rates
12.000000	USB systems reference clock for full-speed PHY rate of 12 Mbit/s, or PLL multiplied up for speed PHYs at 480 Mbit/s

Ex. 1: TI MSP430F149

- The basic clock module includes two or three clock sources:
 - LFXT1CLK: Low-/high-frequency oscillator
 - Low-frequency 32,768-Hz watch standard crystals
 - External clock sources in the 450-kHz to 8-MHz range
 - XT2CLK: Optional high-frequency oscillator
 - Standard crystals, resonators
 - External clock sources in the 450-kHz to 8-MHz range
 - DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type characteristics
 - SW adjustable frequency

Ex. 2: MC68HC08BD24

Figure 8-1. Oscillator External Connections

OSC1: Input to the crystal amplifier oscillator (3.3V)

- Can also be driven by an externally generated clock, leaving the OSC2 pin float.
- OSC2: Crystal oscillator inverting amplifier output (3.3V)

19.8 Oscillator Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Crystal Frequency ⁽¹⁾	foscxclk	_	24	_	MHz
External Clock Reference Frequency ^{(1), (2)}	f _{oscxclk}	dc	_	24	MHz
Crystal Load Capacitance ⁽³⁾	CL	_	15	_	pF
Crystal Fixed Capacitance ⁽³⁾	C ₁	_	$2 \times C_L$	_	
Crystal Tuning Capacitance ⁽³⁾	C ₂	_	$2 \times C_L$	_	
Feedback Bias Resistor	R _B	_	10	_	MΩ
Series Resistor ^{(3), (4)}	R _s	_	_	_	

NOTES:

- The sync processor module is designed to function at f_{OSCXCLK} = 24MHz. The values given here are oscillator specifications.
- No more than 10% duty cycle deviation from 50%
- 3. Consult crystal vendor data sheet
- 4. Not Required for high frequency crystals

Ex. 3: Freescale MCF5206e

Figure 1-1. MCF5206e Block Diagram

Table 17-6. Clock Input Timing Specifications

NAME	CHARACTERISTIC	40 MHz		54 MHz		UNIT
	CHARACTERISTIC	MIN	MAX	MIN	MAX	Oluli
	Frequency of Operation ¹	0	40.00	0	54.00	MHz
C1	CLK cycle time	25	_	18.5	_	ns
C2 ²	CLK fall time(from $V_h = 24V \text{to } V_l = 0.5V$)	_	2	_	2	ns
C3 ²	CLK rise time (from $V_1 = 0.5V$ to $V_h = 2.4V$)	_	2	_	2	ns
C4	CLK duty cycle (measured at 1.5 V)	45	55	45	55	%
C4a ³	CLK pulse width high (measured at 1.5 V)	11.25	13.75	8.33	10.19	ns
C4b ³	CLK pulse width low (measured at 1.5 V)	11.25	13.75	8.33	10.19	ns

¹ CLK may be stopped to conserve power.

Figure 17-1. Clock Input Timing

² Specification values are not tested.

³ Specification values listed are for maximum frequency of operation.

- The clock system accepts three input sources:
 - 32-kHz digital CMOS clock
 - Crystal oscillator or CMOS digital clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz)
 - Alternate clock (48 or 54 MHz, or other up to 59 MHz)
- Internal PLL frequency multipliers produce f_{CLK} up to 700MHz

Figure 4-2. Crystal Implementation(1)(2)(3)(4)

Table 4-1. Clock Source Requirements

PAD	CLOCK FREQUENCY		STABILITY	DUTY CYCLE	JITTER	TRANSITION	
sys_xtalout sys_xtalin	12, 13, 16.8, or 19.2 MHz	Crystal	± 25 ppm	na	na	na	
	12, 13, 16.8, 19.2, 26, or 38.4 MHz	Square	± 50 ppm	45% to 55%	< 1%	< 3.6 ns	
sys_altclk	48,54 or up to 59 MHz		± 50 ppm	40% to 60%	< 1%	< 5 ns	

OMAP3530 Clock Specs (Cont)

Clock Squarer Source

Table 4-5. 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz Input Clock Squarer Timing Requirements

NAME	DESCRIPTION		MIN	TYP	MAX	UNIT
OCS0	1 / t _{c(xtalin)}	Frequency, sys_xtalin	12, 13, 16.8, 19.2, 26, or 38.4			MHz
OCS1	$t_{w(xtalin)}$	Pulse duration, sys_xtalin low or high	0.45 * t _{c(xtalin)}		0.55 * t _{c(xtalin)}	ns
OCS2	t _{J(xtalin)}	Peak-to-peak jitter ⁽¹⁾ , sys_xtalin	-1%		1%	
OCS3	t _{R(xtalin)}	Rise time, sys_xtalin			3.6	ns
OCS4	t _{F(xtalin)}	Fall time, sys_xtalin			3.6	ns
OCS5	t _{J(xtalin)}	Frequency stability, sys_xtalin			±25	ppm

⁽¹⁾ Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300 period samples. The sinusoidal noise is added on top of the vdds supply voltage.

Table 4-7. 32-kHz Input Clock Source Timing Requirements (1)

NAME	DESCRIPTION		MIN	TYP	MAX	UNIT
CK0	1 / t _{c(32k)}	Frequency, sys_32k		32.768		kHz
CK3	t _{R(32k)}	Rise time, sys_32k			20	ns
CK4	t _{F(32k)}	Fall time, sys_32k			20	ns
CK5	t _{J(32k)}	Frequency stability, sys_32k			±200	ppm

(1) See Table 3-4, Electrical Characteristics, Standard LVCMOS IOs part for sys 32k V_{IH}/V_{II} parameters.

030-012

Power-on Reset (POR)

- Provides the start-up signal for the CPU
 - Fed through RESET pin
 - Brings the CPU FSM to its initial state
 - PC = Reset address
 - SR = Clear
 - IF = Disabled
- Makes CPU execute boot sequence

POR Signal Requirements

- Assertion level
 - High or Low: depends on specific CPU
- Synchronization
 - Minimum pulse width after V_{DD} stabilization
 - Usually measured in No. of f_{CLK} cycles
 - Requires a Power-on Reset (POR) circuit

One-shot with Manual Override

$$t_{reset} = RC \ln \left(\frac{Vcc}{V_{CC} - V_T^+} \right)$$

MSP430 POR Structure

A POR is a device reset. It is generated by one of the following events:

- Powering up the device
- A low signal on the RST/NMI pin when configured in the reset mode
- An SVS low condition when PORON = 1. A PUC is always generated by a POR. A PUC does not generate a POR. The following events trigger a PUC:
- A POR signal
- Watchdog timer expiration when in watchdog mode only
- Watchdog timer security key violation
- A Flash memory security key violation
- A CPU instruction fetch from the peripheral address range 0h – 01FFh

MSP430 POR and PUC Schematic

Figure 10. Power-On Reset (POR) vs Supply Voltage

- Service routine executed upon RESET
 - Address programmed in the RESET entry
- Must initialize the system:
 - Configure I/O ports
 - Program peripherals (Timers, UARTs, ADCs, DMAs, Display devices, etc.)
 - Set-up stack
 - Enable Interrupts (local & global)
 - Initialize variables and status

- Activate operating mode
 - Low-power modes
 - Supervisory modes, etc
- Reachable only upon reset

```
ORG RESET

JMP Init

----

----

Init: Set port mode

Set time base

----
```

Summary

- Handling Precautions for Electronic Circuits
 - Electrostatic Discharge
- Understanding Data Sheets
 - Hardware and software components
 - Scope and consideration for diverse target applications
- Basic Interface for uP-based Systems
 - Power requirements
 - Clock sources
 - Hardware reset
 - Software initialization
 - Interfacing Considerations