ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

Омский государственный университет им. Ф.М. Достоевского

Институт математики и информационных технологий Кафедра алгебры

Курсовая работа

Алгоритм вычисления формальных характеров неприводимых инъективных супермодулей над супералгеброй Шура $S(2\,|\,1)$

Выполнил:
студент группы МПС-703-О
специальности «Прикладная
математика и информатика»
Уляшев П.А.

(подпись студента)

Научный руководитель:
д.ф.-м.н., профессор
Зубков А.Н.

(подпись руководителя)

Введение

В последнее время теория супералгебр Шура активно развивается, получены достаточно серьёзные теоретические результаты. Но в то же время большинство результатов получены для характеристики 0, а те же результаты для характеристики p либо оказываются гораздо сложнее, либо вообще не получены. И если теоретические результаты все же достаточно богаты, то практические примеры практически не исследовались. Так, должным образом на практике исследована только супералгебра Шура S(1|1,r) – в самом простом её случае. В статье [1] исследуется супералгебра Шура S(2|1,r), но были допущены ошибки и получены неверные результаты.

Целью настоящей работы является исправление статьи и получение некоторых других практических результатов.

Содержание

1.	Предварительные сведения	3
	1.1. Супераналоги алгебраических систем	3
	1.2. Общая линейная супергруппа	3
	1.3. Мультииндексы и веса	4
	1.4. Подалгебры Бореля супералгебры Шура	5
2.	Неприводимые подмодули в $S(2 1)$	6
	2.1. Основные понятия и обозначения	6
	2.2. Теорема Стейнберга	6
	2.3. Вычисление формальных характеров	7
3.	Композиционные ряды костандартных модулей в $S(2 1)$	12
4.	Алгоритм вычисления формальных характеров $I(\lambda)$	14
	4.1. Постановка задачи	14
	4.2. Вычисление формального характера $A(r)\xi_{\lambda}$	14
	4.3. Вычисление размерностей $d_{\mu,\lambda}$	15
	4.4. Вычисление формальных характеров $I(\lambda)$	16

1. Предварительные сведения

1.1. Супераналоги алгебраических систем

Приведем определения супераналогов некоторых алгебраических систем, которые можно найти, например, в [2], [7], [5]. В общем случае суперизация достигается засчет введения \mathbb{Z}_2 -градуировки, относительно которой все структурные функции однородны.

Определение 1. Суперпространством над полем K называется векторное пространство V с разложением $V=V_0\oplus V_1$. V_0 называется чётной частью V, V_1 – нечётной. Говорят, что элемент $v\in V$ является чётным, если $v\in V_0$, и нечетным, если $v\in V_1$.

Определение 2. Подсуперпространством V называется подпространство U такое, $umo\ U = (U \cap V_0) \oplus (U \cap V_1)$.

Если U – суперподпространство в V, то U и V/U являются суперпространствами.

Определение 3. Супералгеброй называется ассоциативная алгебра A со структурой суперпространства $A = A_0 \oplus A_1$, при этом $\forall a, b \in A \quad |ab| = |a| + |b| \pmod{2}$. Супералгебра называется коммутативной, если $\forall a, b \in A \quad ab = (-1)^{|a||b|}ba$.

Здесь прямыми скобками обозначена четность соответствующего элемента. Суперподалгебра – подалгебра, одновременно являющаяся суперподпространством.

Определение 4. Пусть A – супералгебра. Супермодулем называется A-модуль V, которые также является суперпространством, причем $\forall \ a \in A \ \forall v \in V \ |av| = |a| + |v| \pmod{2}$.

Определение 5. Если V – суперпространство, то через V^c обозначим сопряжённое суперпространство с $V_0^c = V_1$, $V_1^c = V_0$. Полагаем по определению, что функтор смены чётности $V \to V^c$ сохраняет модульную или комодульную структуру на V.

1.2. Общая линейная супергруппа

Обозначим через $E(m \mid n)$ суперпространство с базисом $e_1, \ldots, e_m, e_{m+1}, \ldots, e_{m+n}$ с чётной частью e_1, \ldots, e_m и нечётной частью e_{m+1}, \ldots, e_{m+n} . Можно считать, что натуральным числам от 1 до m+n приписана чётность по тому же правилу, то есть от 0 до m — чётные и от m+1 до m+n — нечётные. Определим супералгебру $A(m \mid n)$ при помощи порождающих x_{ij} и определяющих соотношений $x_{ij}x_{kl} - (-1)^{|x_{ij}x_{kl}|}x_{kl}x_{ij} = 0$, где $|x_{ij} \equiv |i| + |j| \pmod{2}$, $1 \leqslant i,j,k,l \leqslant m+n$. Алгебра A наделяется структурой супербиалгебры относительно коумножения, определенного на порождающих по правилу $\delta_A(x_{ij}) = \sum_{1 \leqslant k \leqslant m+n} x_{ik} \otimes x_{kj}$. Коединица задается как $\epsilon_A(x_{ij}) = \delta_{ij}$, $1 \leqslant i,j \leqslant m+n$.

Произвольная однородная компонента $A(r) = A(m \mid n, r)$ является конечномерной суперкоалгеброй, а дуальное пространство $A(r)^*$ – супералгеброй, которая называется супералгеброй Шура и обозначается $S(m \mid n, r)$.

Матрицу из порождающих x_{ij} обозначим C. Её блоки размера $m \times m, m \times n, n \times m, n \times m$ обозначим соответственно $C_{11}, C_{12}, C_{21}, C_{22}$. Таким образом,

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Локализуя $A(m \mid n)$ по чётному элементу $d = d_1 d_2$, $d_1 = det(X_{11})$, $d_2 = det(X_{22})$, получим супералгебру Хопфа, которая по определению является координатной алгеброй общей линейной супергруппы $GL(m \mid n)$, т.е. $A(m \mid n)_d = K[GL(m \mid n)]$.

 $Gl(m \mid n)$ не является группой в обычном смысле, а является функтором, сопоставляющим произвольной коммутативной супералгебре A группу $GL(m \mid n)(A)$, состоящую из всех обратимых $(m+n) \times (m+n)$ матриц вида

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix},$$

где $A_{11} \in GL(m)(A_0)$, $A_{22} \in GL(n)(A_0)$, а коэффициенты блоков A_{12} , A_{21} нечётны. Полная подкатегория однородных полиномиальных $GL(m \mid n)$ -супермодулей степени r тождественна категории $S(m \mid n)$ -супермодулей.

Суперпространство $E(m \mid n)$ превращается в $GL(m \mid n)$ -супермодуль по правилу

$$\tau_{E(m \mid n)}(e_i) = \sum_{1 \le k \le m+n} e_k \otimes x_{ki}, \quad 1 \le i \le m+n.$$

1.3. Мультииндексы и веса

Определение 6. Кортеж длины r $I = (i_1, \ldots, i_r)$, где $i_k \in \{1, 2, \ldots, m+n\}$, называется мультичндексом длины r. Множество всех мультичндексов обозначим $I(m \mid n, r)$. Весом мультичндекса I называется кортеж неотрицательных целых чисел $\lambda(I) = (\lambda_1, \ldots, \lambda_{m+n})$, где $\lambda_j = |\{k \mid i_k = j\}|$. Очевидно, что $\sum \lambda_i = r$.

Множество всех весов обозначим $\Lambda(r) = \Lambda(m \mid n, r)$. Ясно, что $\lambda(I) = \lambda(J) \iff I = J\pi$ для подходящей перестановки $\pi \in S_{m+n}$.

Для любых мультииндексов $I, J \in I(m \mid n, r)$ определим линейный функционал ξ_{IJ} в $S(r) = A(r)^*$, дуальный моному c_{IJ} . Поскольку $\xi_{II} = \xi_{I_{\pi}I_{\pi}}$, где $\pi \in S_{m+n}$, этот элемент однозначно определяется весом $\lambda = \lambda(I)$ и обозначается ξ_{λ} . На множестве весов $\Lambda(r)$ определим доминантный порядок по правилу $\mu \leq \lambda$, если $\sum_{1 \leqslant k \leqslant l} \mu_k \leq \sum_{1 \leqslant k \leqslant l} \lambda_k$, $1 \leqslant l \leqslant m+n$.

Теорема 1. Если V – простой S(r)-модуль, то найдется вес $\lambda \in \Lambda(r)$ такой, что V_{λ} – простой цоколь $B(r)^+$ -модуля V. Для произвольного другого веса $\mu \neq \lambda$ из V_{μ} следует, что $\mu < \lambda$ относительно доминантного порядка.

Вес, фигурирующий в теореме, и любой ненулевой вектор из V_{λ} называются cmap- mum весом и вектором простого модуля V. Вес называется donycmumum, если существует простой S(r)-модуль со старшим весом λ . Простые S(r)-модули определяются своими старшими весами однозначно. Поэтому простой модуль со старшим весом λ обозначим $L(\lambda)$. Подножество в $\Lambda(r)$, состоящее из всех допустимых весов, обозначим $\Lambda(r)^+ = \Lambda(m \mid n, r)^+$.

1.4. Подалгебры Бореля супералгебры Шура

Обозначим через $B(r)^+ = B(m \mid n, r)^+ \quad (B(r)^- = B(m \mid n, r)^-)$ верхнетреугольную (соответственно, нижнетреугольную) подалгебру Бореля в S(r), порожденную (как векторное пространство) элементами ξ_{IJ} , где $I \leq J$ (соответственно $J \leq I$).

Теорема 2. Супералгебра S(r) совпадает с произведением своих подалгебр Бореля $B(r)^-B(r)^+$.

Обозначим подпространство алгебры $B(r)^+$, порожденное элементами ξ_{IJ} , $I \leq J$, такими, что $i_k < j_k$ хотя бы длч одного номера k, через $N(m \mid n, r)^+ = N(r)^+$. Аналогично, только наоборот, для $N(m \mid n, r)^- = N(r)^-$.

Теорема 3. Вес λ допустим тогда и только тогда, когда найдется $v \in I^{\lambda}(E)_{\lambda}$ 0 такой, что $N(r)^{+}v = 0$.

2. Неприводимые подмодули в S(2 | 1)

2.1. Основные понятия и обозначения

Пусть $\lambda = (\lambda_1, \lambda_2 | \lambda_3)$ – полиномиальный вес и L_{λ} - неприводимый подмодуль костандартного модуля $V = \nabla(\lambda)$ со старшим весом λ . Согласно [3], если вес λ является старшим весом L_{λ} , то либо $\lambda_2 > 0$, либо $\lambda_2 = 0$ и $p | \lambda_3$.

Определение 7. *Назовем вес* $\lambda = (\lambda_1, \lambda_2 \mid \lambda_3)$

- регулярным, если $(\lambda_1 + \lambda_3 + 1)(\lambda_2 + \lambda_3) \not\equiv 0 \pmod{p}$;
- критическим, если $\lambda_1 + \lambda_3 + 1 \equiv 0$, но $\lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$;
- сильно критическим, если $\lambda_2 + \lambda_3 \equiv 0 \pmod{p}$.

Замечание 1. Если λ – критический, то $t \neq p-1$, т.к. в противном случае $\lambda_2 + \lambda_3 \equiv 0 \pmod{p}$.

Обозначим $d = c_{11}c_{22} - c_{12}c_{21}, y_1 = \frac{c_{22}c_{13} - c_{12}c_{23}}{d}, y_2 = \frac{-c_{21}c_{13} + c_{11}c_{23}}{d}$

Определим следующие элементы:

$$v_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} (c_{31} y_1 + c_{32} y_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 2} c_{31} y_1 c_{32} y_2)$$

веса $(\lambda_1 - i, \lambda_2 + i \mid \lambda_3)$,

$$w_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_2) y_1$$

веса $(\lambda_1 - i - 1, \lambda_2 + i \mid \lambda_3 + 1)$,

$$u_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{31} y_1) y_2$$

веса $(\lambda_1 - i, \lambda_2 + i - 1 \mid \lambda_3 + 1),$

$$r_i = d^{\lambda_2} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i c_{33}^{\lambda_3} y_1 y_2$$

веса $(\lambda_1 - i - 1, \lambda_2 + i - 1 \mid \lambda_3 + 2)$. Они порождают $H^0(\lambda)$ как суперпространство для любого (не обязательно полиномиального) старшего веса λ . Обоснование можно найти в [7].

Суперпроизводные $_{ij}D$ определяются следующим действием на элементах $A(2 \mid 1)$: $(c_{kl})_{ij}D = \delta_{li}c_{kl}$, где δ_{li} – символ Кронекера.

Обозначим через $\chi(\lambda)$ формальный характер простого модуля L_{λ} и через $p_j(x_1, x_2) = \sum_{0 \le i \le j} x_1^i x_2^{j-i}$ полную симметрическую функцию от x_1, x_2 степени j.

2.2. Теорема Стейнберга

Определение 8. Вес λ называется p-ограниченным, если он является доминантным $u \ \lambda_i - \lambda_{i+1} для <math>i = 1, \ldots, m-1 \$ $u \ i = m+1, \ldots, m+n-1.$

В нашем случае для веса $\mu=(\mu_1,\mu_2\,|\,\mu_3)$ и p-ограниченность означает, что $\mu_1-\mu_2=t< p$. Запишем разность $\lambda_1-\lambda_2=t+pk$, где $0\leq t< p$, и выделим из веса λ p-ограниченную часть.

а) Если $\lambda_2 > 0$, то $\lambda_3 = p\lambda_3' + \lambda_3''$, где $\lambda_3'' < p$, и

$$(\lambda_1, \lambda_2 | \lambda_3) = (t + \lambda_2, \lambda_2 | \lambda_3'') + p(k, 0 | \lambda_3').$$

b) Если $\lambda_2=0$, то $\lambda_3=p\lambda_3'$ и

$$(\lambda_1, \lambda_2 | \lambda_3) = (t, 0 | 0) + p(k, 0 | \lambda_3).$$

Заметим, что для если вес λ является регулярным (критическим, сильно критическим), то p-ограниченная часть также будет регулярной (критической, сильно критической).

Обозначим через $M^{[p]}$ скручивание Фробениуса модуля M. Подробное описание можно найти в [2], [4]. Для нас важным является то, что скуручивание Фробениуса действует на элементы модуля M возведением в p-ю степень. Таким образом, если $\chi(M) = \sum \dim V_{\lambda} t^{\lambda}$, то $\chi(M^{[p]}) = \sum \dim V_{\lambda} t^{p\lambda}$.

Теорема 4. (Стейнберг).

Для p-ограниченного веса λ и доминантного веса μ

$$L(\lambda + p\mu) \cong L(\lambda) \otimes L_{ev}(\mu)^{[p]},$$

где $L_{ev}(\mu)$ – неприводимый $GL(m) \times GL(n)$ -супермодуль старшего веса μ .

$$L_{ev}(\mu)=L_{ev}(\mu_+)\otimes L_{ev}(\mu_-)$$
, т.е. в нашем случае $L_{ev}(\mu)=L_{ev}(k,0)\otimes L_{ev}(\lambda_3')$

Следствие 1. В условиях теоремы Стейнберга

$$\chi(\lambda + p\mu) = \chi(\lambda) \chi(L_{ev}(\mu_+)^{[p]}) \chi(L_{ev}(\mu_-)^{[p]}).$$

2.3. Вычисление формальных характеров

Сначала вычислим общую часть формального характера для случаев $\lambda_2 > 0$ и $\lambda_2 = 0$, т.е. $\chi(L_{ev}(k,0\,|\,\lambda_3)^{[p]})$.

Лемма 1. Если k < p, то $L_{ev}(k,0) = p_k(x_1, x_2)$.

Доказательство. Для вычисления формального характера $L_{ev}(k,0)$ нужно найти его базис.

Обозначим $v_i = c_{11}^{k-i}c_{12}^i$. Очевидно, $L_{ev}(k,0)$ порождается старшим вектором $v_0 = c_{11}^k$ веса (k,0) Поскольку $v_i^{12D} = (k-i)v_{i+1}$, а $v_i^{11D} = iv_{i-1}$, то базис $L_{ev}(k,0)$ составляют векторы v_0, \ldots, v_k . Следовательно, $\chi(L_{ev}(k,0)) = \sum_{i=0}^k x_1^{k-i}x_2^i = p_k(x_1,x_2)$.

Лемма 2.
$$\chi(L_{ev}(k,0\,|\,\lambda_3)^{[p]}) = x^{p\lambda_3} \prod_{i=0}^s p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}}), \ \epsilon \partial \epsilon \ k = \sum_{i=0}^s k_i p^i.$$

Доказательство. $L_{ev}(\lambda_3)$ – одномерный модуль, порожденный элементом c_{33} , поэтому $\chi(L_{ev}(\lambda_3)) = x^{\lambda_3}$. Следовательно $\chi(L_{ev}(\lambda_3)^{[p]}) = x^{p\lambda_3}$.

Пусть $k = \sum_{i=0}^{s} k_i p^i$. Тогда $L_{ev}(k,0) \cong \bigotimes_{i=0}^{s} L_{ev}(k_i,0)^{p_i}$, следовательно, $\chi(L_{ev}(k,0)) = \prod_{i=0}^{s} \chi(L_{ev}(k_i,0)^{p_i})$. Тогда по предыдущей лемме $\chi(L_{ev}(k,0)) = \prod_{i=0}^{s} p_{k_i} (x_1^{p^i}, x_2^{p^i})$,

$$\chi(L_{ev}(k,0)^{[p]}) = \prod_{i=0}^{s} p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}}).$$

Осталось только перемножить $\chi(L_{ev}(k,0)^{[p]})$ и $\chi(L_{ev}(\lambda_3)^{[p]})$.

Утверждение 1. Пусть $k = \sum_{i=0}^{s} k_i p^i$. Обозначим $t_k = (k_0 + 1) \dots (k_s + 1)$.

(a) Eсли λ - pегулярный вес, mо

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_t(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2] \prod_{i=0}^s p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}})$$

$$u \dim(L_{\lambda}) = 4(t+1)t_k.$$

(b) $E c \lambda - \kappa p u m u u e c \kappa u \ddot{u} e e c, mo$

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} [p_t(x_1, x_2) x_1 x_2 + p_{t+1}(x_1, x_2) x_3] \prod_{i=0}^s p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}})$$

$$u \dim(L_{\lambda}) = (2t+3)t_k.$$

(c) $E c \lambda - \kappa p u m u u e c \kappa u \ddot{u} e e c$, m o

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2} x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2) x_3] \prod_{i=0}^{s} p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}})$$

 $u \dim (L_{\lambda}) = (2t+1)t_k.$

Для доказательства достаточно доказать утверждение для p-ограниченной части.

Лемма 3. Пусть $\lambda = (t + \lambda_2, \lambda_2 | \lambda_3), \quad 0 \le t < p.$

(a) Eсли λ - pегулярный вес, mо

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_t(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2]$$

$$u \dim(L_{\lambda}) = 4(t+1)t_k.$$

(b) $E c \lambda - \kappa p u m u u e c \kappa u \ddot{u} e e c$, m o

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} [p_t(x_1, x_2) x_1 x_2 + p_{t+1}(x_1, x_2) x_3]$$

$$u \dim(L_{\lambda}) = (2t + 3)t_k.$$

(c) Eсли λ - κ ритический вес, то

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2} x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2) x_3]$$

$$u \dim (L_{\lambda}) = (2t+1)t_k.$$

Доказательство. $\lambda_2 > 0$. Тогда векторы v_i, w_i, u_i и r_i полиномиальны для $i = 0, ..., \lambda_1 - \lambda_2$ и образуют базис модуля $\nabla(\lambda)$. Базис L_{λ} составляют векторы, порожденные из старшего вектора суперпроизводными ${}_{12}D,{}_{13}D,{}_{23}D$.

Вычислим v_i^{13D} . Запишем вспомогательные равенства, которые понадобятся далее: $dy_1y_2 = \frac{(c_{22}c_{13}-c_{12}c_{23})(c_{11}c_{23}-c_{21}c_{13})}{d} = \frac{c_{22}c_{13}c_{11}c_{23}+c_{12}c_{23}c_{21}c_{13}}{d} = c_{13}c_{23},$

 $dc_{31}y_1c_{32}y_2 = -c_{31}c_{32}dy_1y_2 = -c_{31}c_{32}c_{13}c_{23} = c_{31}c_{13}c_{32}c_{23},$

 $c_{13}(c_{31}y_1 + c_{32}y_2) = \frac{c_{13}c_{31}(c_{22}c_{13} - c_{12}c_{23}) + c_{13}c_{32}(c_{11}c_{23} - c_{21}c_{13})}{d} = \frac{-c_{13}c_{23}(c_{32}c_{11} - c_{31}c_{12})}{d} = c_{11}c_{32}y_2y_1 + c_{12}c_{31}y_1y_2,$

$$c_{11}y_1 + c_{12}y_2 = \frac{c_{11}(c_{22}c_{13} - c_{12}c_{23}) + c_{12}(c_{11}c_{23} - c_{21}c_{13})}{d} = \frac{c_{11}c_{22}c_{13} - c_{12}c_{21}c_{13}}{d} = c_{13}.$$

Учитывая их, перепишем вектор v_i в виде

$$v_i = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3 - 1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 2} c_{31} c_{13} c_{32} c_{23}).$$

 $\begin{aligned} v_i^{13D} &= d^{\lambda_2-1} c_{11}^{\lambda_1-\lambda_2-i} c_{12}^i (c_{33}^{\lambda_3} y_1 d - \lambda_3 c_{33}^{\lambda_3-1} (-c_{33} dy_1 - 2c_{32} c_{13} c_{23}) - \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3-2} c_{33} c_{13} c_{32} c_{23}) + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2-1} c_{11}^{\lambda_1-\lambda_2-i-1} c_{13} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3-1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3-2} c_{31} c_{13} c_{32} c_{23}) + \\ &(\lambda_2 - 1) d^{\lambda_2-1} y_1 c_{11}^{\lambda_1-\lambda_2-i} c_{12}^i (c_{33}^{\lambda_3} d - \lambda_3 c_{33}^{\lambda_3-1} (c_{31} dy_1 + c_{32} dy_2) + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3-2} c_{31} c_{13} c_{32} c_{23}) = \\ &t_1 + t_2 + t_3 = (*) \end{aligned}$

$$t_1 = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (c_{33}^{\lambda_3} y_1 d + \lambda_3 c_{33}^{\lambda_3} dy_1 + 2\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} c_{13} c_{23} + \lambda_3 (\lambda_3 - 1) c_{33}^{\lambda_3 - 1} c_{32} c_{13} c_{23}) = d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i ((\lambda_3 + 1) c_{33}^{\lambda_3} y_1 d - (\lambda_3 + 1) \lambda_3 c_{33}^{\lambda_3 - 1} c_{32} c_{23} c_{13}) = (\lambda_3 + 1) w_i$$

$$t_3 = (\lambda_2 - 1)d^{\lambda_2 - 1}y_1c_{11}^{\lambda_1 - \lambda_2 - i}c_{12}^i(c_{33}^{\lambda_3}d - \lambda_3c_{33}^{\lambda_3 - 1}c_{32}dy_2) = (\lambda_2 - 1)w_i$$

$$\begin{split} t_2 &= (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i (c_{33}^{\lambda_3} c_{13} - \lambda_3 c_{33}^{\lambda_3 - 1} c_{13} (c_{31} y_1 + c_{32} y_2)) = \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} c_{13} + (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i (-\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_2 y_1) + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^{i + 1} (-\lambda_3 c_{33}^{\lambda_3 - 1} c_{32} y_1 y_2) = (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} c_{13} + \\ &(\lambda_1 - \lambda_2 - i) w_i - (\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i} c_{12}^i c_{33}^{\lambda_3} y_1 + (\lambda_1 - \lambda_2 - i) u_{i + 1} - \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^{i + 1} c_{33}^{\lambda_3} y_2 = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i + 1} + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} (c_{13} - c_{11} y_1 - c_{12} y_2) = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i + 1} + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} (c_{13} - c_{11} y_1 - c_{12} y_2) = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i + 1} + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} (c_{13} - c_{11} y_1 - c_{12} y_2) = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i + 1} + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} (c_{13} - c_{11} y_1 - c_{12} y_2) = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i + 1} + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} (c_{13} - c_{11} y_1 - c_{12} y_2) = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i + 1} + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{11}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{33}^{\lambda_3} (c_{13} - c_{11} y_1 - c_{12} y_2) = (\lambda_1 - \lambda_2 - i) w_i + (\lambda_1 - \lambda_2 - i) u_{i + 1} + \\ &(\lambda_1 - \lambda_2 - i) d^{\lambda_2 - 1} c_{12}^{\lambda_1 - \lambda_2 - i - 1} c_{12}^i c_{12}^{\lambda_3 - 1} (c_{12} - i) d^{\lambda_2 - 1} c_{12}^{\lambda_2 - i} (c_{12} - i) d^{\lambda_2 - 1} c_{12}^{\lambda_2 - i} (c_{12} - i) d^{\lambda_2 - 1} c_{12}^{\lambda_2 - i} (c_{12} - i) d^$$

$$(*) = (\lambda_3 + 1)w_i + (\lambda_2 - 1)w_i + (\lambda_1 - \lambda_2 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1} = (\lambda_1 + \lambda_3 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1}.$$

Аналогично вычисляются остальные производные.

$$v_i^{12D} = (\lambda_1 - \lambda_2 - i)v_{i+1},$$

$$v_i^{13D} = (\lambda_1 + \lambda_3 - i)w_i + (\lambda_1 - \lambda_2 - i)u_{i+1},$$

$$v_i^{23D} = iw_{i-1} + (\lambda_2 + \lambda_3 + i)u_i,$$

$$v_i^{21D} = iv_{i-1}, v_i^{31D} = v_i^{32D} = 0$$

$$w_i^{12D} = (\lambda_1 - \lambda_2 - i)w_{i+1},$$

$$w_i^{13D} = (\lambda_1 - \lambda_2 - i)r_{i+1},$$

$$w_i^{23D} = (\lambda_2 + \lambda_3 + i + 1)r_i,$$

$$w_i^{21D} = -u_i - iw_{i-1}, w_i^{31D} = v_i, w_i^{32D} = 0,$$

$$\begin{aligned} u_i^{12D} &= -w_i + (\lambda_1 - \lambda_2 - i)u_{i+1}, \\ u_i^{13D} &= (i - \lambda_1 - \lambda_3 - 1)r_i, \\ u_i^{23D} &= -ir_{i-1}, \\ u_i^{21D} &= iu_{i-1}, u_i^{31D} &= 0, u_i^{32D} = v_i, \end{aligned}$$

$$r_i^{12D} = (\lambda_1 - \lambda_2 - i)r_{i+1},$$

$$r_i^{13D} = r_i^{23D} = 0,$$

$$r_i^{21D} = ir_{i-1}, r_i^{31D} = -u_i, r_i^{32D} = w_i.$$

Отсюда следует, что $v_0,\ldots,v_t\in L_\lambda$, а поэтому $v_i^{{}_{13}D}$ и $v_{i+1}^{{}_{23}D}$ тоже принадлежат L_λ при $0\leq i< t$. Для $0\leq i< t$ представим $v_i^{{}_{13}D}$ и $v_{i+1}^{{}_{23}D}$ как линейную комбинацию векторов w_i,u_{i+1} подпространства с весом $(\lambda_1-i-1,\lambda_2+i\,|\,\lambda_3)$. Зависимость выражается матрицей

$$\begin{pmatrix} \lambda_1 + \lambda_3 - i & \lambda_1 - \lambda_2 - i \\ i + 1 & \lambda_2 + \lambda_3 + i + 1 \end{pmatrix}.$$

Её определитель $\det \lambda = (\lambda_1 + \lambda_3 + 1)(\lambda_2 + \lambda_3).$

(a) λ регулярный.

Так как $\det \lambda \not\equiv 0 \pmod{p}$, то $w_i, u_{i+1} \in L_\lambda$, а следовательно и $r_i \in L_\lambda$ для $0 \leq i < t$. Получаем, что $v_0, \ldots, v_t, w_0, \ldots, w_t, u_0, \ldots, u_t, r_0, \ldots, r_t$ составляют базис L_λ . Следовательно,

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_t(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2]$$

и dim $(L_{\lambda}) = 4(t+1)$.

(b) λ критический.

Так как $\lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$ и $v_0^{23^D} = (\lambda_2 + \lambda_3)u_0$, то $u_0 \in L_\lambda$. Кроме того, $\lambda_1 + \lambda_3 - t \equiv \lambda_2 + \lambda_3 \not\equiv 0 \pmod{p}$ и $v_t^{13^D} = (\lambda_1 + \lambda_3 - t)w_t$, поэтому $w_t \in L_\lambda$.

 v_i^{13D} и v_{i+1}^{23D} линейно зависимы, поэтому рассмотрим только $q_i=v_i^{13D}=-(i+1)w_i+(t-i)u_{i+1}\in L_\lambda$ при $0\leq i< t-1.$

Выясним, какие векторы порождаются векторами u_0, w_t и q_i : $w_t^{12D} = (\lambda_1 - \lambda_2 - t)w_i = 0, w_t^{13D} = 0, w_t^{23D} = (\lambda_2 + \lambda_3 + t + 1)r_i = (\lambda_1 + \lambda_3 + 1)r_i = 0,$ $u_0^{12D} = -w_0 + (\lambda_1 - \lambda_2)u_1 = q_0, u_0^{13D} = (-\lambda_1 - \lambda_3 - 1)r_i = 0, u_0^{23D} = 0,$ $q_i^{12D} = -(i+1)(t-i)w_{i+1} + (t-i)(-w_{i+1} + (t-(i+1))u_{i+2} = (t-i)q_{i+1},$ $q_i^{13D} = -(i+1)(t-i)r_{i+1} + (t-i)(i+1-\lambda_1 - \lambda_3 - 1)r_{i+1} = (t-i)(-\lambda_1 - \lambda_3 - 1)r_{i+1} = 0,$

 $q_i^{23D} = -(i+1)(\lambda_2 + \lambda_3 + i + 1) - (t-i)(i+1)r_i = -(i+1)(t+\lambda_2 + \lambda_3 + 1)r_i = 0$. Таким образом, новые векторы не появляются, следовательно, векторы $v_0, \ldots, v_t, u_0, w_t, q_0, \ldots, q_{t-1}$ составляют базис L_λ . Учитывая, что вес q_i совпадает с весом w_i , получаем

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} [p_t(x_1, x_2) x_1 x_2 + p_{t+1}(x_1, x_2) x_3]$$

и dim $(L_{\lambda})=2t+3$.

(c) λ сильно критический.

Аналогично предыдущему пункту рассматриваем только $q_i = v_i^{13D} = (\lambda_1 + \lambda_3 - i)w_i + (t-i)u_{i+1} = (t-i)(w_i + u_{i+1}) \in L_\lambda$ при $0 \le i < t$.

 $q_i^{_{12}D}=(t-i)q_{i+1},q_i^{_{13}D}=0,q_i^{_{23}D}=0$ при $0\leq i< t.$ Кроме того, $v_0^{_{23}D}=(\lambda_2+\lambda_3)u_0$ и $v_t^{_{13}D}=(\lambda_1+\lambda_3-t)w_t=0,$ поэтому $u_0,w_t\notin L_\lambda.$ Следовательно,

$$\chi(\lambda) = (x_1 x_2)^{\lambda_2} x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2) x_3]$$

и dim $(L_{\lambda}) = 2t + 1$.

Замечание 2. Если $\lambda_2 = 0$, то $\lambda_3'' = 0$, поэтому вес λ является сильно критическим, следовательно

$$\chi(\lambda) = x_3^{\lambda_3} [p_t(x_1, x_2) + p_{t-1}(x_1, x_2)x_3] \prod_{i=0}^{s} p_{k_i} (x_1^{p^{i+1}}, x_2^{p^{i+1}})$$

3. Композиционные ряды костандартных модулей в $S(2\,|\,1)$

Ввиду сложности общего случая, связанной с p-адическим разложением числа k, здесь исследуется только случай p-ограниченного веса.

Лемма 4. $Ecnu \lambda_2 > 0$, mo

$$\chi(\nabla(\lambda)) = (x_1 x_2)^{\lambda_2 - 1} x_3^{\lambda_3} p_{t+pk}(x_1, x_2) [x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3^2],$$

 $Ec \Lambda u \lambda_2 = 0, mo$

$$\chi(\nabla(\lambda)) = x_3^{\lambda_3} [p_{t+pk}(x_1, x_2) + p_{t+pk-1}(x_1, x_2)x_3].$$

Доказательство. Если $\lambda_2 > 0$, то $v_i, w_i, u_i, r_i, \quad i = 0, \dots \lambda_1 - \lambda_2$ являются полиномами и составляют базис $\nabla(\lambda)$, откуда следует первое утверждение леммы.

Если $\lambda_2 = 0$, то $\lambda = (t,0\,|\,0) + p(0,0\,|\,\lambda_3')$. В этом случае согласно [5] $\nabla(\lambda) = \nabla(t,0\,|\,0) \otimes \nabla(\lambda_3')^p$. Тогда $\chi(\nabla(\lambda_3')^p) = x_3^{p\lambda_3'} = x_3^{\lambda_3}$.

Базис $\nabla(t,0\,|\,0)$ получается из вариантов заполнения строки длины t невозрастающей последовательностью индексов 1,2,3, причем повторяться могут только чётные, т.е. 1 и 2. Каждый вариант заполнения соответсвует базисному моному по правилу

$$(\underbrace{1,\ldots,1}_{i},\underbrace{2,\ldots,2}_{t-1-i},3)\longleftrightarrow c_{11}^{i}c_{12}^{t-1-i}c_{13}.$$

Подробное описание можно найти в [5].

Таким образом базис составляют мономы $c_{11}^i c_{12}^(t-1-i) c_{13}, \quad i=0,\dots,t-1-i$ и мономы $c_{11}^i c_{12}^{t-i}, \quad i=0,\dots,t,$ откуда и получаем формальный характер.

В случае существования фактора $V/L_{\lambda}\cong L_{\mu}$ старший вектор L_{μ} зануляется суперпроизводными $_{21}D,_{31}D,_{32}D$ по модулю L_{λ} . И обратно, если вектор из L_{μ} зануляется суперпроизводными $_{21}D,_{31}D,_{32}D$ по модулю L_{λ} , то он является старшим вектором L_{μ} . При этом $\chi(\mu)=\chi(\nabla(\lambda))-\chi(\lambda)$. Таким образом, фактор L_{μ} можно найти, зная формальные характеры $\nabla(\lambda)$ и L_{λ} .

Утверждение 2. Пусть $\lambda = (\lambda_1, \lambda_2 \,|\, \lambda_3)$ – p-ограниченный вес, $V = \nabla(\lambda)$ – coomsemments отвующий костандартный модуль, L_{λ} – неприводимый модуль со старшим весом λ .

- (a) Если λ регулярный или $\lambda_2 = 0$, то $V = L_{\lambda}$.
- (b) Если λ критический, то $V/L_{\lambda}\simeq L_{\bar{\lambda}}$, где $\bar{\lambda}=(\lambda_1-1,\lambda_2\,|\,\lambda_3+1)$ критический, при этом $\dim L_{\bar{\lambda}}=2t+1$.
- (c) Если λ сильно критический, то $V/L_{\lambda}\simeq L_{\hat{\lambda}}$, где $\hat{\lambda}=(\lambda_1,\lambda_2-1\,|\,\lambda_3+1)$ сильно критический, при этом $\dim L_{\hat{\lambda}}=2t+3$.

Доказательство. Так как λ – p-ограниченный вес, то $p_{t+pk}(x_1,x_2)=p_t(x_1,x_2)$ и $\prod_{i=0}^s p_{k_i} \ (x_1^{p^{i+1}},x_2^{p^{i+1}})=1.$ Поэтому в случае регулярного веса λ или $\lambda_2=0$ формальные характеры V и L_λ совпадают, следовательно совпадают и сами модули.

- (b) λ критический. Напомним, что в этом случае базис L_{λ} составляют векторы $v_0,\ldots,v_t,u_0,w_t,q_0,\ldots,q_{t-1}.$
- $\chi(V) \chi(L_{\lambda}) = (x_1x_2)^{\lambda_2-1}x_3^{\lambda_3}p_t(x_1,x_2)[x_1x_2 + x_1x_3 + x_2x_3 + x_3^2] (x_1x_2)^{\lambda_2-1}x_3^{\lambda_3}[p_t(x_1,x_2)x_1x_2 + p_{t+1}(x_1,x_2)x_3] = (x_1x_2)^{\lambda_2-1}x_3^{\lambda_3}[\sum_{i=0}^{t-1}x_1^{t-j}x_2^{j+1}x_3 + \sum_{i=0}^{t}x_1^{t-j}x_2^{j}x_2^2].$ Отсюда следует, что старший вектор фактора $U_0 \cong V/L_{\lambda}$ имеет вес $\bar{\lambda} = (t + \lambda_2 1, \lambda_2 \mid \lambda_3 + 1) = (\lambda_1 1, \lambda_2 \mid \lambda_3 + 1)$, который является критическим. Вектор w_0 веса $\bar{\lambda}$ зануляется соответствующими производными (см. список значений производных), т.е. w_0 старший вектор U_0 . w_0 под действием производных $_{12}D,_{13}D,_{23}D$ порождает векторы $w_0, \ldots, w_{t-1}, r_0, \ldots, r_t$ (по модулю L_{λ}). Сравнивая размерности U_0 и $L_{\bar{\lambda}}$, получаемш $U_0 = L_{\bar{\lambda}}$.
- (с) λ сильно критический. Базис L_{λ} составляют векторы $v_0,\ldots,v_t,q_0,\ldots,q_{t-1}$. $\chi(V)-\chi(L_{\lambda})=(x_1x_2)^{\lambda_2-1}x_3^{\lambda_3}p_t(x_1,x_2)[\,x_1x_2+x_1x_3+x_2x_3+x_3^2\,]-(x_1x_2)^{\lambda_2}x_3^{\lambda_3}[\,p_t(x_1,x_2)+p_{t-1}(x_1,x_2)x_3\,]=(x_1x_2)^{\lambda_2-1}x_3^{\lambda_3}[\,\sum_{i=0}^t x_1^{t-j}x_2^{j+1}x_3+x_1^{t+1}x_3+\sum_{i=0}^t x_1^{t-j}x_2^{j}x_3^2\,].$ Старший вектор фактора $U_1\cong V/L_{\lambda}$ имеет вес $\hat{\lambda}=(t+\lambda_2,\lambda_2-1\,|\,\lambda_3+1)=(\lambda_1,\lambda_2-1\,|\,\lambda_3+1),$ который является сильно критическим. Вектор u_0 веса $\hat{\lambda}$ зануляется производными, следовательно, u_0 старший вектор U_1 . Аналогично, $U_1=L_{\hat{\lambda}}$.

4. Алгоритм вычисления формальных характеров $I(\lambda)$

4.1. Постановка задачи

Утверждение 3. Для произвольного веса $\lambda \in \Lambda(r)$ справедливо разложение $A(r)\xi_{\lambda} = \bigoplus_{\mu i n \Lambda(r)^{+}} I(\mu)^{d_{\mu,\lambda}}$, где $d_{\mu,\lambda} = \dim L(\mu)_{\lambda}$.

 $A(r)\xi_{\lambda}$ – подпространство в A(r), образованное всеми мономами, имеющими вес слева λ . Подробнее теоретический материал можно найти в [5], [6].

Базисные элементы известны, поэтому можно записать формальный характер $A(r)\xi_{\lambda}$. Мы описали формальные характеры неприводимых модулей $L(\mu)$, поэтому можем вычислить $d_{\mu,\lambda}$ для произвольного веса λ . Таким образом, при определенных условиях можно вычислить формальные характеры инъективных модулей $I(\mu)$.

Пусть r < p. Тогда все веса из $\Lambda(r)^+$ будут p-ограниченными, поэтому все размерности $d_{\mu,\lambda}$ можно легко вычислить.

4.2. Вычисление формального характера $A(r)\xi_{\lambda}$

Пусть $\lambda = (\lambda_1, \lambda_2 | \lambda_3)$. Обозначим через λ_{ij} степень элемента c_{ij} в мономе. Тогда $\lambda_{k1} + \lambda_{k2} + \lambda_{k3} = \lambda_k$, k = 1, 2, 3, при этом нечётные элементы не могут иметь степень больше 1, т.е. $0 \leq \lambda_{13}, \lambda_{23}, \lambda_{31}, \lambda_{32} \leq 1$. Для того чтобы записать формальный характер $A(r)\xi_{\lambda} = \chi(\lambda_1, \lambda_2 | \lambda_3)$, нужно знать веса базисных мономов справа. Запишем матрицу элементов λ_{ij} . Суммы элементов по строкам образуют вес слева, суммы по столбцам – вес справа.

- 1) Предположим, что $\lambda_3=0$. Тогда $\lambda_{31}=\lambda_{32}=\lambda_{33}=0$. $\mu=(i+j,(\lambda_1+\lambda_2-\lambda_{13}-\lambda_{23})-(i+j),\lambda_{13}+\lambda_{23}),\quad i=0,\ldots,\lambda_1-\lambda_{13},\quad j=0,\ldots,\lambda_2-\lambda_{23}.$ Заметим, что $\sum_{i=0}^{\lambda_1}\sum_{j=0}^{\lambda_2}x_1^{i+j}x_2^{\lambda_1+\lambda_2-i-j}=\sum_{i=0}^{\lambda_1}x_1^ix_2^{\lambda_1-i}\sum_{j=0}^{\lambda_2}x_1^jx_2^{\lambda_2-j}=p_{\lambda_1}(x_1,x_2)p_{\lambda_2}(x_1,x_2).$ Получаем, $\chi(\lambda_1,\lambda_2\,|\,0)=p_{\lambda_1}(x_1,x_2)p_{\lambda_2}(x_1,x_2)+p_{\lambda_1-1}(x_1,x_2)p_{\lambda_2}(x_1,x_2)+p_{\lambda_1-1}(x_1,x_2)p_{\lambda_2-1}(x_1,x_2)x_3+p_{\lambda_1-1}(x_1,x_2)p_{\lambda_2-1}(x_1,x_2)+x_3p_{\lambda_1-1}(x_1,x_2)+x_3p_{\lambda_1-1}(x_1,x_2)+x_3p_{\lambda_2-1}(x_1,x_2)).$
- 2) $\lambda_3 = 1$. Ровно одно из чисел $\lambda_{31}, \lambda_{32}, \lambda_{33}$ равно 1, остальные 2 числа равны 0. Вынесем эту единицу из каждого монома и получим $\chi(\lambda_1, \lambda_2 \mid 1) = (x_1 + x_2 + x_3)\chi(\lambda_1, \lambda_2 \mid 0)$.
- 3) $\lambda_3=2$. Либо два из чисел $\lambda_{31},\lambda_{32},\lambda_{33}$ равны 1, оставшееся число равно 0, либо $\lambda_{33}=2,\lambda_{31}=\lambda_{32}=0$. Следовательно, $\chi(\lambda_1,\lambda_2\,|\,2)=(x_1x_2+x_1x_3+x_2x_3+x_3^2)\chi(\lambda_1,\lambda_2\,|\,0)$.
- 4) $\lambda_3 > 2$. Тогда можно из каждого монома вынести x_3 , поэтому $\chi(\lambda_1, \lambda_2 \mid \lambda_3) = x_3 \chi(\lambda_1, \lambda_2 \mid \lambda_3 1)$.

Обозначим $p_t = p_t(x_1, x_2)$.

$$A(r)\xi_{\lambda} = \begin{cases} (p_{\lambda_{1}} + x_{3}p_{\lambda_{1}-1})(p_{\lambda_{2}} + x_{3}p_{\lambda_{2}-1}), & \lambda_{3} = 0\\ (x_{1} + x_{2} + x_{3})(p_{\lambda_{1}} + x_{3}p_{\lambda_{1}-1})(p_{\lambda_{2}} + x_{3}p_{\lambda_{2}-1}), & \lambda_{3} = 1\\ x_{3}^{\lambda_{3}-2}[x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{3}^{2}](p_{\lambda_{1}} + x_{3}p_{\lambda_{1}-1})(p_{\lambda_{2}} + x_{3}p_{\lambda_{2}-1}), & \lambda_{3} \geq 2 \end{cases}$$

4.3. Вычисление размерностей $d_{\mu,\lambda}$

Напомним, что вес $\lambda=(\lambda_1,\lambda_2\,|\,\lambda_3)$ является старшим, если $\lambda_1\geqslant \lambda_2$ и $p\,|\,\lambda_3,$ если $\lambda_2=0.$

Пемма 5. При r < p любой старший вес $\lambda = (\lambda_1, \lambda_2 | \lambda_3)$ степени r является регулярным за исключением (r, 0 | 0).

Доказательство. Если λ – сильно критический, то $\lambda_2 + \lambda_3 = 0$, т.к. $\lambda_2 + \lambda_3 < p$. Тогда $\lambda_2 = \lambda_3 = 0$, т.е. $\lambda = (r, 0 \mid 0)$.

Если λ – критический, то $\lambda_1+\lambda_3+1=p$, т.е. $\lambda_1+\lambda_3=p-1$, но тогда $\lambda_2=0,\,\lambda_3=0$ и вес не является критическим.

Для определения ненулевых размерностей $d_{\mu,\lambda}$ составим иерархию всех весов из $\Lambda(r)^+$.

Определение 9. Назовем вес μ последователем веса λ , если $d_{\lambda,\mu} > 0$ и $\nexists \eta \in \Lambda(r)^+$: $\lambda > \eta > \mu$.

Для веса (r,0|0) последователем является только (r-1,1|0)

Пемма 6. Пусть $\lambda \in \Lambda(r)^+$ – регулярный вес. Тогда его последователями являются несравнимые веса $(\lambda_1 - 1, \lambda_2 + 1 \mid \lambda_3)$ и $(\lambda_1, \lambda_2 - 1 \mid \lambda_3 + 1)$.

Доказательство. L_{λ} имеет базис v_i, w_i, u_i, r_i с весами $(\lambda_1 - i, \lambda_2 + i \mid \lambda_3), (\lambda_1 - i - 1, \lambda_2 + i \mid \lambda_3 + 1), (\lambda_1 - i, \lambda_2 + i - 1 \mid \lambda_3 + 1), (\lambda_1 - i, \lambda_2 + i - 1 \mid \lambda_3 + 2).$ Подразумевая сравнение весов, имеем $v_1 > v_i, u_0 > u_i, w_0 > w_i, r_0 > r_i$, поэтому последователями λ могут быть только веса векторов v_1, w_0, u_0, r_0 . Поскольку $v_1 > w_0, v_1 > r_0, u_0 > w_0, u_0 > r_0$, а v_1 и u_0 не сравнимы, то последователями λ являются веса векторов v_1 и $u_0 - (\lambda_1 - 1, \lambda_2 + 1 \mid \lambda_3)$ и $(\lambda_1, \lambda_2 - 1 \mid \lambda_3 + 1)$.

Замечание 3. Если $\lambda = (\lambda_1, 1 \mid \lambda_3)$, то последователь будет только один – $(\lambda_1 - 1, \lambda_2 + 1 \mid \lambda_3)$. Если $\lambda_1 = \lambda_2$, то последователем будет только $(\lambda_1, \lambda_2 - 1 \mid \lambda_3 + 1)$. Таким образом, иерархия заканчивается, когда оба условия выполнены, т.е. последним весом будет $(1, 1 \mid r - 2)$.

Лемма 7. Пусть $\lambda = (\lambda_1, \lambda_2 | \lambda_3), \mu = (\mu_1, \mu_2 | \mu_3) \in \Lambda(r)^+.$ $a) \ d_{\lambda,\mu} = 1, \ ecnu выполнено одно из условий:
1) <math>\mu_3 = \lambda_3;$

- 2) $\mu_3 = \lambda_3 + 2$;
- 3) $\mu_3 = \lambda_3 + 1, \mu_1 = \lambda_1;$
- 4) $\mu_3 = \lambda_3 + 1, \mu_2 = \lambda_1.$
 - b) $d_{\lambda,\mu} = 1$, $ecnu \ \mu_3 = \lambda_3 + 1$, $\mu_1 \neq \lambda_1$, $\mu_2 \neq \lambda_1$.
 - с) Иначе $d_{\lambda,\mu} = 0$.

Доказательство. В L_{λ} повторяются только веса векторов u_i и w_{i+1} . Для векторов v_i $\mu_3 = \lambda_3$, для векторов r_i $\mu_3 = \lambda_3 + 2$. Также не повторяются веса векторов $w_0, u_t - (\lambda_1, \lambda_2 - 1 \mid \lambda_3 + 1), (\lambda_2 - 1, \lambda_1 \mid \lambda_3 + 1)$, т.е. $\mu_3 = \lambda_3 + 1$ и $\mu_1 = \lambda_1$ или $\mu_2 = \lambda_1$.

Все остальные веса с $\mu_3 = \lambda_3 + 1$ имеют кратность 2.

4.4. Вычисление формальных характеров $I(\lambda)$

Обозначим $\chi(\xi_{\lambda}) = \chi(A(r)\xi_{\lambda}), \quad \chi(I_{\lambda}) = \chi(I(\lambda)).$

Для самого старшего вектора в иерархии $\lambda' = (r, 0 \mid 0)$ только $d_{\lambda',\lambda'} = 1$, поэтому $\chi(\xi_{\lambda'}) = \chi(I_{\lambda'})$. Для его последователя λ'' верно $\chi(\xi_{\lambda''}) = \chi(I_{\lambda''}) + d_{\lambda',\lambda''}\chi(I_{\lambda'})$, откуда имеем $\chi(I_{\lambda''}) = \chi(\xi_{\lambda''}) - d_{\lambda',\lambda''}\chi(I_{\lambda'})$.

Итерируя эту процедуру, можно вычислить $\chi(\xi_{\mu})$ для любого $\mu \in \Lambda(r)^+$. Таким образом, имеем алгоритм вычисления $\chi(\xi_{\mu})$:

1) Строим иерархию весов из $\Lambda(r)^+$. Пример иерархии для r=9, p=11.

Последователи расположены друг за другом по вертикали и вправо-вниз по диагонали. Веса, находящиеся в одном горизонтальном ряду, не сравнимы.

- 2) Для вычисления $\chi(\xi_{\lambda})$ нужно посчитать $\chi(\xi_{\mu})$ для всех предшественников μ , начиная от вершины.
- 3) Выразить $\chi(\xi_{\lambda})$ через $\chi(\xi_{\mu})$ для предшественников μ из двух предшествующих столбцов. При этом если λ и μ находятся в одном столбце или через столбец, то $d_{\mu,\lambda}=1$. Если λ находится вправо-вниз по диагонали от μ , то $d_{\mu,\lambda}=1$. Для всех остальных предшественников μ в соседнем столбце $d_{\mu,\lambda}=2$.

Список литературы

- [1] A.N. Zubkov A.N. Grishkov, F. Marko. Description of costandard modules for schur superalgebra s(2|1) in positive characteristic. *Linear and Multilinear Algebra*, 59:57–64, April 2010.
- [2] S. Donkin. Symmetric and exterior powers, linear source modules andrepresentations of schursuperalgebras. *London Mathematical Society*, 83:647–680, 2001.
- [3] J. Kujawa J. Brundan. A new proof of the mullineux conjecture. *Journal of Algebraic Combinatorics*, 18:13–39, 2003.
- [4] J. Kujawa. The steinberg tensor product theorem for gl(m|n). American Mathematical Society, 413:123–132, 2006.
- [5] A.N. Zubkov R.L. Scala. Costandard modules over schur superalgebras in characteristic p. Journal of Algebra and its Applications, 7(2):147–166, April 2008.
- [6] А.Н. Зубков. Подалгебры Бореля супералгебр Шура. *Алгебра и логика*, 44(3):305—334, 2005.
- [7] А.Н. Зубков. О некоторых свойствах общих линейных супергрупп и супералгебр Шура. Алгебра и логика, 45(3):257–299, 2006.