

Essential NumPy Concepts for IQ Data and SDR

1. Array creation & data types

- Creating arrays (np.array , np.zeros , np.ones , np.arange np.linspace)
- Understanding data types (dtype), especially complex types
 (np.complex64 , np.complex128)

2. Indexing & slicing

- Basic and advanced indexing (integer, boolean, fancy)
- · Negative indexing and step slicing
- · Multi-dimensional slicing

3. Broadcasting

- Rules and examples (including np.newaxis)
- · Practical use cases in signal scaling, mixing, filtering

4. Memory views and copies

- · Difference between views and copies
- · How slicing returns views
- Impact on memory and performance

5. Array reshaping and dimension manipulation

reshape() , ravel() , flatten()transpose() , swapaxes()expand_dims() , squeeze()

6. Vectorized operations

- Arithmetic on arrays without loops
- Applying mathematical functions element-wise (np.sin , np.abs , etc.)

7. Complex number operations

- · Handling IQ data as complex arrays
- Extracting real, imaginary, magnitude, phase (np.real , np.imag np.abs , np.angle)

8. Statistical and aggregation functions

- mean() , std() , sum() , max() , min()
- Along axes for multi-dimensional data

9. File I/O with NumPy

• Saving and loading arrays (np.save , np.load , np.fromfile)

· Working with raw IQ data files

10. Linear algebra basics

- Dot products, matrix multiplication (np.dot , @ operator)
- Useful for MIMO SDR processing or beamforming

11. Fast Fourier Transform (FFT) basics

- np.fft.fft , np.fft.ifft , frequency bins understanding
- Windowing and zero-padding (prepare for spectral analysis)

12. Masking and filtering

- · Boolean masks to select data
- · Applying filters or thresholding