

Formati Audio Parte 1

Prof. Filippo Milotta milotta@dmi.unict.it

Standard MPEG

MPEG: Motion Picture-Coding Experts Group

- Avviato nel 1988 dalla ISO / IEC
 - Standard di:
 - Compressione, Decompressione, Elaborazione, Codifica
 - Per video, audio e contenuto multimediale

MPEG-1 (1992)

- 300 kbps per audio stereofonico (1-2 canali)
- Tasso di campionamento: 33, 44.1, 48 kHz
- Compressione con bit-rate da 32 a 224 kbps
 - Bit-rate = 192 kbps per una buona qualità

- Tre Livelli di compressione:
 - Layer I: b.r.>128 kbps
 - Layer II: b.r.=128 kbps
 - Layer III: b.r.=64 kbps

MPEG-2 (1994)

- B.r.=6 Mbps
- Audio con canali surround
 - 5: Sinistro, centrale, destro, sx-dx surround
 - 1: Subwoofer per le basse frequenze

MPEG-3

Pensato per la TV-HD, è stato assorbito nel 2

Altre versioni di MPEG

MPEG-4 (1999)

L'audio è composto da diversi oggetti indipendenti

MPEG-7 (2001)

- Standard per la ricerca, il filtraggio e la gestione delle informazioni (e non della codifica, come i precedenti)
- Usa XML
- Insieme a MPEG-4 viene spesso denominato
 MPEG-47 per codifica e descrizione

Altre versioni di MPEG

MPEG-21 (2001)

- Standard per la definizione di un framework per lo sviluppo di applicazioni multimediali
- Definisce la tecnologia per lo scambio, il consumo e il commercio degli elementi digitali

MPEG-D (2007)

- Parte 1: MPEG Surround
- Parte 2: Spatial Audio Object Coding
- Parte 3: Unified Speech and Audio Coding

Proprietà delle codifiche

- Retrocompatibilità
- Libertà nella implementazione:
 - Obbligatori (*Normativa*)
 - Formato dell'audio compresso
 - Algoritmo di decodifica
 - Liberi (*Informativa*)
 - Algoritmo di compressione
 - Chi usa l'algoritmo di compressione sviluppato originariamente per MPEG dall'istituto Fraunhofer deve pagare una royalty

MPEG-1 | Layer I (MP1)

Filtri Polifase

32 Bande

MPEG-1 | Layer I (MP1)

1. Divisione delle frequenze in 32 bande

- Nota: Le bande sono uguali, a differenza delle bande critiche
- Campionamento a 48kHz
- Nyquist: 24kHz
- □ Banda = 24k / 32 = 750Hz

2. 12 campioni per banda (sotto-bande)

- 6 bit: ogni campione è normalizzato rispetto al picco della intera banda (fattore di scala fissato) – Effetto Compansion [Ripasso!]
- 4 bit: 14 classi di ri-quantizzazione uniforme

MPEG-1 | Layer I (MP1)

Header	CRC	Allocazione Bit	Fattori di Scala	Campioni per Sottobanda	Dati Aux
variabile	variabile	32 x 4 bit	32 x 6 bit	32 x 12 (=384)	variabile

- I filtri adiacenti sul banco soffrono di sovrapposizione delle bande in modo significativo
 - Il segnale viene anche analizzato mediante una FFT (con finestra a 512 punti)
- In fase di decoding: si applica il banco di filtri in modalità di sintesi con codifica PCM

MPEG-1 | Layer II (MP2)

- Miglioramenti al Layer I:
 - □ Tassi di campionamento: 32/44.1/48 → 16/22.05/24 kHz
 - □ La risoluzione della FFT: 512 → 1024 punti
 - □ Blocchi più grandi: 384 → 1152 (=3 blocchi MP1)
 - 3 categorie di classi di riquantizzazione:
 - Frequenza bassa: 15 classi (4 bit)
 - Frequenza media: 7 classi (3 bit)
 - Frequenza alta: 3 classi (2 bit)
 - Si può usare più di un fattore di scala per banda (uno per categoria di classe di riquantizzazione)

MPEG-1 | Layer III (MP3)

Miglioramenti al Layer II:

- Trasformata Discreta del Coseno Modificata (MDCT): permette un partizionamento delle frequenze simile a quello delle bande critiche
- Quantizzazione non-uniforme
 - Codifiche μ-Law e A-Law
- Fattori di scala applicabili anche alle sotto-bande
- Codifica di Huffman
 - A causa della codifica a lunghezza variabile, è necessario un pattern di sincronizzazione temporizzato
- B.r. variabile fra i blocchi (encoder complessi)

Prestazioni di MP3

Qualità	Compressione	Bandwidth	Canale	Bit-Rate
Telefonica	96:1	2.5 kHz	mono	8 kbps
> Radio AM	24:1	7.5 kHz	mono	32 kbps
Radio FM	24:1	11 kHz	stereo	64 kbps
Quasi CD	16:1	15 kHz	stereo	96 kbps
CD	12:1	>15 kHz	stereo	128 kbps

Formati Audio Avanzati

AAC: Advanced Audio Coding

- Incluse in MPEG-4
- Supporta fino a 48 canali audio (contro i 2 di MP3)
- Un B.R.=128 kbps in AAC è comparabile a un B.R.=192 kbps in MP3

Dolby AC-3 (Audio Coding)

Compressione di tipo percettivo

Formati Audio Avanzati

WMA: Windows Media Audio

- Formato proprietario di Microsoft (blackbox)
- Prestazioni migliori di MP3
- Buone prestazioni sulla musica ma non sulla voce

FLAC: Free Lossless Audio Codec

- Compressione lossless (~50%)
- Confrontato con ZIP (~10-20%), è ottimizzato per la compressione della voce

FFmpeg

- Uno strumento utilissimo:
 - https://www.ffmpeg.org/

