Giảng viên ra đề: $(Ngày \ ra \ d\hat{e})$	Người phê duyệt: (Ngày duyệt đề)
(Chữ ký và Họ tên)	(Chữ ký và họ tên)

VIA:
TRƯỜNG ĐH BÁCH KHOA - ĐHQG-HCM
KHOA KH & KT MÁY TÍNH

ÔN GIỮA KỲ		A TZĪZ	Học kỳ / Năm học	1	2023-2024	
	ON GIUA KY		Ngày thi	06-03-2024		
	Môn học	Cấu trúc	rời rạc cho KHMT			
	Mã môn học	CO1007				
	Thời lượng	60 phút	Mã đề		2010	

Ghi chú: - Sinh viên được phép đem theo một tờ A4 viết tay và được dùng máy tính cầm tay.

- Sinh viên nộp lại đề sau khi thi.
- 1. (L.O.1.1) Có 4 chàng trai khiệm tốn An, Bình, Cường, Dũng. Họ tuyên bố như sau:

An: "Bình là người khiệm tốn nhất."

Bình: "Cường là người khiệm tốn nhất."

Cường: "Tôi không là người khiệm tốn nhất."

Dũng: "Tôi không là người khiêm tốn nhất."

Hóa ra, chỉ có một tuyên bố của 4 chàng trai khiêm tốn trên là đúng. Vậy ai là người khiêm tốn nhất.

- A. An.
- B. Bình.
- C. Cường.
- D. Dũng.
 - 2. (L.O.1.1) Let p, q, r be three propositions. Which of the following is tautology:
- A. $(p \to \neg q) \leftrightarrow (p \leftrightarrow q)$
- B. $(p \oplus q) \lor (p \oplus \neg q)$
- C. $[(p \rightarrow q) \rightarrow (q \rightarrow r)] \rightarrow (p \rightarrow r)$
- D. $[\neg p \land (p \lor q)] \rightarrow \neg q$
- 3. (L.O.1.1) Cho phát biểu: "Nếu bạn đủ tư cách làm tổng thống Mỹ thì bạn ít nhất 35 tuổi, sinh ra ở Mỹ hoặc tại thời điểm sinh bạn cả ba và mẹ bạn đều là công dân Mỹ và bạn sống ít nhất 14 năm ở Mỹ".

Hãy diễn đạt pháp biểu trên theo các biểu diễn sau:

- e: Bạn đủ tư cách làm tổng thống Mỹ
- a: Bạn ít nhất 35 tuổi.
- b: Ban sinh ra ở Mỹ.
- p: tại thời điểm sinh bạn cả ba và mẹ bạn đều là công dân Mỹ.
- r: bạn sống ít nhất 14 năm ở Mỹ.
- A. $(a \land (b \lor p) \land r) \rightarrow e$
- B. $e \to (a \land (b \lor p) \land r)$
- C. $e \to (a \land b \land p \land r)$
- D. $e \to (a \land b) \lor (p \land r)$

Mã đề: 2010 MSSV: Họ và tên SV: Trang: 1

4. (L.O.1.1) Chỉ ra lỗi sai trong tranh luận: Nếu $\forall x(P(x) \vee Q(x))$ đúng thì $\forall xP(x) \vee \forall xQ(x)$ đúng. (1). $\forall x (P(x) \lor Q(x))$ giả thiết (2). $P(c) \vee Q(c)$ Cụ thể hóa phổ quát từ (1). (3). P(c) rút gọn từ (2) (4). $\forall x P(x)$ tổng quát hóa phổ quát từ (3) (5). Q(c) rút gọn từ (2) (6). $\forall x Q(x)$ tổng quát hóa phổ quát từ (5) (7). $\forall x P(x) \lor \forall x Q(x)$ kết họp (4) và (6) A. Bước (2) và bước (6) B. Bước (3) và bước (5) C. tất cả các bước đều đúng D. Bước 5 5. (L.O.1.1) Biểu diễn nào sau đây KHÔNG tương đương logic với $\neg \exists x (\forall y(\alpha) \land \forall z(\beta))$ A. $\forall x(\exists z(\neg \beta) \lor \exists y(\neg \alpha))$ B. $\forall x(\forall z(\beta) \to \exists y(\neg \alpha))$ C. $\forall x(\forall y(\alpha) \rightarrow \exists z(\neg \beta))$ D. $\forall x(\exists y(\neg \alpha) \to \exists z(\neg \beta))$ 6. (L.O.1.1) Cho S(x):x là một sinh viên; C(x):x là một máy tính; O(x,y):x có y. Hãy phát biểu vị từ sau: $\exists x (S(x) \land \exists y \exists z (y \neq z \land ((C(y) \land O(x,y)) \land (C(z) \land O(x,z)))))$ A. Có một vài sinh viên có chính xác 2 máy tính. B. Có một vài sinh viên có nhiều hơn một máy tính. C. Có một vài sinh viên chỉ có duy nhất một máy tính. D. Tất cả sinh viên không có máy tính. 7. **(L.O.1.1)** Mệnh đề $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$ đúng khi nào? A. Ít nhất một trong số p, q, r đúng. B. Ít nhất một trong số p, q, r đúng và có ít nhất một trong số p, q, r sai. C. Ít nhất một trong số p, q, r sai. D. p, q, r sai. 8. (L.O.2.2) Xét quá trình chứng minh cho mệnh đề: Nếu n là số nguyên không âm và 7n + 9 là số chẵn thì n là số lẻ. $Gi\mathring{a} s\mathring{u} 7n + 9 ch \tilde{a}n v a n ch \tilde{a}n.$ $Vi \ n \ ch\tilde{a}n \ n\hat{e}n \ n = 2k, (k \in \mathbb{Z})$ $Ta \ co, 7n + 9 = 7(2k) + 9 = 14k + 9 = 2(7k + 4) + 1$ do đó 7n + 9 lẻ, điều này trái với giả thiết 7n + 9 chẵn. Vây nếu n là số nguyên không âm và 7n + 9 là số chẵn thì n là số lẻ. A. Chứng minh trực tiếp. B. Chứng minh phản chứng. C. Chứng minh phản đảo. D. Chứng minh quy nap. 9. (L.O.2.2) Cho phát biểu: Nếu n là số nguyên khổng lẻ thì tổng của n với một số nguyên không lẻ là số nguyên không lẻ. Với P(n): n là số nguyên không lẻ. Q(n): tổng của n với một số nguyên không lẻ là số nguyên không lẻ. Khi đó, theo phương pháp chứng minh phản đảo ta cần chứng minh: A. $\forall n(P(n) \rightarrow Q(n)).$ B. $\exists n(\neg Q(n) \rightarrow \neg P(n)).$ C. $\forall n \neg (P(n) \rightarrow Q(n))$. D. $\forall n(\neg Q(n) \rightarrow \neg P(n))$

MSSV: Họ và tên SV: Trang: 2

Mã đề: 2010

```
10. (L.O.1.2) Cho các tập hợp A, B, C, D \subset S. Phát biểu nào sau đây SAI?
 A. P(A) \subseteq P(B) \iff A \subseteq B
 B. A \times B \neq B \times A if A, B \neq \emptyset
 C. A \times B \times C \neq (A \times B) \times C
 D. Nếu A \subseteq C và B \subseteq D thì A \times B \subseteq C \times D
 11. (L.O.1.2) Cho các tập hợp A = \{a, b\}; B = \{a, b, c\}. Tìm chân trị của các mệnh đề sau:
      A \times B \neq B \times A
      \emptyset \times A = A
      \{a\} \in A
      A \subseteq B
 A. Đúng, sai, sai, sai.
 B. Đúng, đúng, sai, đúng.
 C. Sai, sai, sai, sai.
 D. Đúng, sai, sai, đúng.
 12. (L.O.1.2) Với P(S) là tập lũy thừa (power set) của S. Số lương phần tử (cardinality) của P(\emptyset) là:
 B. 0.
 C. 2.
 D. 3.
 13. (L.O.1.2) Cho A, B, và C là các tập hợp. Khẳng định nào sau đây đúng?
 A. A \oplus B = (A \cup B) - (A \cap B).
 B. A \cap B) \cup (A \cap \overline{B}) = A.
 C. (B - A) \cup (C - A) = (B \cup C) - A.
 D. Tất cả phương án đều đúng.
 14. (L.O.3.1) Let m, n \in N, the recursive function A(m,n) is defined as follows:
                                         A(0,n) = n+1, n >= 0:
                                         A(m,0) = A(m-1,1), m > 0;
                                         A(m,n) = A(m-1, A(m, n-1)), m, n > 0
      FInd A(2,3)?
                              B. 9
                                                           C. 10
                                                                                       D. 11
 15. (L.O.3.1) There are 5 types of batteries including AAA, AA, C, D, and E. How many ways can 20 batteries
      be selected so that at least 4 are of type E?
 A. 4056
                              B. 4845
                                                           C. 10626
                                                                                       D. All other answers are wrong
 16. (L.O.2.2) The number of partitions of X = \{a, b, c, d\} with a and b in the same block is?
 A. 4.
                                                           B. 5.
 C. 6.
 17. (L.O.2.2) Cho f(x) = \frac{1}{x^2 + 2x - 3} từ \in \mathbb{R} \setminus [-3, 1] vào \mathbb{R}. Điều nào sau đây đúng?
 A. f chỉ là toàn ánh.
                                                           B. f chỉ là đơn ánh.
 C. f là song ánh.
                                                           D. f không là đơn ánh và không là toàn ánh.
 18. (11001) Chọn kết luận hợp lệ (valid) từ các tiền đề sau:
      Nếu bạn không làm việc quá sức thì bạn không đi ngủ sớm; Nếu bạn làm việc quá sức thì bạn thấy khỏe
      mạnh.
 A. Nếu bạn không đi ngủ sớm thì ban không làm việc quá sức.
 B. Nếu bạn không thấy khỏe mạnh thì bạn không đi ngủ sớm.
 C. Nếu ban thấy khỏe manh thì ban đi ngủ sớm.
 D. Không có câu nào trong 3 câu này.
 19. (11002) Mệnh đề nào là hằng đúng
                                                          B. [(p \lor q) \land (p \to r) \land (q \to r)] \to r
D. [(q \to p) \land (q \to r)] \to (p \to r)
 A. (\neg p \rightarrow q) \rightarrow \neg q
 C. \neg (p \land \neg q) \lor \neg r
                MSSV: ...... Họ và tên SV: ..... Trang: 3
Mã đề: 2010
```

20.	(11003) Cho các mệnh đ $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x + y = x$ $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 \ge \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 \ge \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, ((x^2 > y))$	-y 0 0	n c	ho chân trị của chúng.		
	Đúng, đúng, đúng, sai Sai, đúng, sai, đúng			Sai, sai, đúng, đúng Sai, sai, sai, đúng		
A. 'B. 'C. '	(11004) Kết luận nào dư Nếu trời không mưa hoặc ra; Nếu buổi tiệc được tổ Trời mưa Trời không mưa Trời không có sương mù và Trời không có sương mù và	nếu trời không có sươ chức thì phần thưởng a trời mưa	ing	mù thì buổi trình diễn		c tổ chức và buổi tiệc sẽ diễn g được trao.
22.	(12005) Chọn một tập b		A)			
A.	A - B B.	B - A	C.	$A\cap B$	D.	$A \cup B$
23.	23. (22006) Chọn cách chứng minh trực tiếp đúng cho: "Nếu n là số chẵn thì n bình phương là chẵn "với n là số nguyên.					bình phương là chẵn"với n là
B. C.	 A. Ta có n = 2 là số chẵn, n × n = 2 × 2 = 4 là số chẵn. Vậy n × n là số chẵn. B. Với n chẵn, suy ra n = 2k (k là số nguyên). Do đó n × n = (2 × k) × (2 × k) = 2 × (2 × k × k). Vậy n × n là số chẵn. C. Do n là nguyên nên ta có n là số chẵn thì n × n là số chẵn. Dặt n × n = 2k × 2k, suy ra n = 2k (k là số nguyên) là số chẵn. 					
24.	24. (22007) Hãy cho biết domain và range của hàm sau: "Hàm gán cho mỗi số nguyên không âm chữ số cuối cùng của nó"					
B C	A. Domain: Z, Range: {0,1,2,3,,8,9} B. Domain: Z, Range: {1,2,3,,8,9} C. Domain: {1,2,3,}, Range: {1,2,3,,8,9} D. Domain: {0,1,2,3,}, Range: {0,1,2,3,,8,9}					
25. (22008) Xét quá trình chứng minh mệnh đề: "Nếu nhốt 25 con thỏ vào 6 cái chuồng thì sẽ tồn tại 1 chuồng chứa nhiều hơn 4 con thỏ" như sau: Xét P là "Nhốt 25 con thỏ vào 6 chuồng". Xét Q là "Tồn tại 1 chuồng chứa nhiều hơn 4 con thỏ". Giả sử Q sai. Khi đó số thỏ sẽ có tối đa là 4*6=24 con (mâu thuẫn với giả thiết là số thỏ có 25 con). Vậy nếu nhốt 25 con thỏ vào 6 cái chuồng thì sẽ tồn tại 1 chuồng chứa nhiều hơn 4 con thỏ. Hãy cho biết tên phương pháp chứng minh này.						
	Chứng minh trực tiếp Chứng minh phản chứng			Chứng minh phản đảo Chứng minh quy nạp)	
26.	(12009) Cho một chuỗi {	$\{2, 4, 16, 256, 65536, \ldots\}$. C	Cách biểu diễn chính tắc	(kh	ông quy nạp) của chuỗi là gì?
A.	$2^{2^n}, n = 0, 1, 2, \dots$ B.	$2^{2^n}, n = 1, 2, 3, \dots$	C.	$2^{2^{(n-1)}}, n = 0, 1, 2, \dots$	D.	$2^{2^{(n-1)}}, n = 2, 3, 4$
27.	(12010) Xác định câu nà $\{a\} \subseteq \{a,b,c\}$ $\{a\} \subseteq \{\{a,b\},c\}$ $\emptyset \in \{a,b,c\}$	o sau đây là đúng câu	ı nê	ào là sai:		
A.	Đúng, sai, đúng B.	Sai, sai, đúng	C.	Sai, đúng, sai	D.	Đúng, sai, sai

MSSV: Họ và tên SV: Trang: 4

Mã đề: 2010

- 33. (12016) Giả sử $A = \{2, 4, 5, 6, 7, 10, 18, 20, 24, 25\}$ và R là quan hệ thứ tự từng phần $(a, b) \in R$ nếu và chỉ nếu a|b. Số thành phần cực tiểu và số thành phần cận trên của $\{6\}$ là:
- A. 3, 3
- B. 2, 2
- C. 4, 2
- D. 0, 0
- 34. (12017) Đặt $R = \{(a,c), (b,b), (b,c), (c,a)\}$ và $S = \{(a,a), (a,b), (b,c), (c,a)\}$ là các quan hệ trên $A = \{a,b,c\}$ Quan hệ hợp thành $S \circ R$ là
- A. $\{(a,a), (b,a), (b,b), (b,c), (c,c)\}$
- B. $\{(c,a), (b,b), (c,b), (a,c)\}$
- C. $\{(a,a), (b,a), (b,c), (c,a), (c,b)\}$
- D. $\{(a,b), (a,c), (b,a), (b,c)\}$
- 35. (12018) Định nghĩa quan hệ tương đương R trên các số nguyên dương $A = \{2, 3, 4, ..., 20\}$ bởi mRn nếu ước số nguyên tố lớn nhất của m giống với ước số nguyên tố lớn nhất của n. Số lượng các lớp tương đương của R là:
- A. 8

B. 9

C. 10

- D. 11
- 36. (31019) Với P(C) là tập lũy thừa của C. Cho $X = \{1, 2\}, Y = \{2, 3\}$. Lượng số (cardinality) $P(X \times Y)$ là:
- A. 8

B. 9

C. 20

D. 16

37.	(12020) Đặt $f:X o Y$ và $g:Y o Z$ nếu hà	m f,	g lần lượt là h	nàm gì thì $(g \circ f)(x) : X \to Z$ là đơn ánh?
A. D.	đơn ánh, đơn ánh B. đơn ánh, toàn ánh toàn ánh	C.	Các đáp án k	thác đều sai
	(21021) Với tập vũ trụ là tất cả cuốn sách. M(x): "x là một cuốn sách toán học" U(x): "x được phát hành 2021" B(x, y): "Mục tham khảo của x có y" Dùng biểu thức lượng từ thể hiện mệnh đề "C cuốn sách toán học được xuất bản năm 2021".			
	$\forall x M(x) \to \exists y (U(y) \land B(x,y))$ $\forall x M(x) \land \exists y B(x,y)$		$\exists y \forall x (M(x) \land \forall x (M(x) \to \exists$	U(x) o B(x,y)) yB(x,y))
39.	(31022) Cho $A = \{0, 1, 2, 3, 4\}, B = \{0, 1, 2, 3, 4\}$	2, 3, 4	$,5,6,7,8,9\},f$	$f:A \to B$ đồ thị của hàm f là $G_f=$
	$\{(0,0),(1,2),(2,4),(3,6),(4,8)\}, \text{ và } g:B \rightarrow \{(0,0),(1,2),(2,4),(3,6),(4,8)\}, \text{ và } g:B \rightarrow \{(0,0),(1,2),(2,4),(2,4),(3,6),(4,8)\}, \text{ và } g:B \rightarrow \{(0,0),(1,2),(2,4),(2,4),(2,4),(3,6),(4,4)\}, \text{ và } g:B \rightarrow \{(0,0),(1,2),(2,4),$	$\rightarrow A$ l	$\operatorname{pi\acute{e}t} g(x) = \Big $	$\frac{x}{2}$. Cho $(g \circ f)(x)^{-1}$ như một tập hợp
A. C.	các cặp có thứ tự. Chọn đáp án đúng: $(g\circ f)(x)^{-1}=\{(0,0),(1,1),(2,2),(3,3),(4,4)\}$ $(g\circ f)(x)^{-1}=\{(0,0),(1,1),(3,3),(4,4)\}$			· -
A. B. C.	(21023) Cho "Mọi sinh viên trong lớp CTRR CTRR. Câu nào thể hiện phủ định của mệnh Mọi sinh viên trong lớp CTRR đã không học n Có sinh viên trong lớp CTRR đã học môn đại trồn tại vài sinh viên trong lớp CTRR đã không Không có đáp án	đề: nôn đ số 1 r	ại số 1 và đại : nhưng đã khôn	số 2 ng học đại số 2
41.	(31024) Chỉ ra bước lỗi trong tranh luận sau	:		
	1. $\exists x P(x) \land \exists x Q(x)$			
	$2. \ \exists x P(x)$			
	3. P(c)			
	4. $\exists x Q(x)$			
	5. $Q(c)$			
	6. $P(c) \wedge Q(c)$			
	7. $\exists x (P(x) \land Q(x))$			
A	3, 5 B. 2, 4, 7	C.	5, 7	D. 3, 5, 6
42.	(31025) Với các tiền đề $\forall x (P(x) \lor Q(x)), \forall x (-1)$ à:	$\neg Q(x)$	$) \vee S(x)), \forall x(R)$	$R(x) \rightarrow \neg S(x)), \exists x \neg P(x)$ ta rút ra kết luận
A.	$\exists x \neg R(x)$ B. $\forall x \neg R(x)$	C.	$\exists x R(x)$	D. $\forall x R(x)$
43.	(L.O.1.1) How can you convert a proposition tifiers?	with	quantifiers int	o an equivalent proposition without quan-
	By using domain enumeration By using logical equivalences		By using trut By using De	th tables Morgan's laws
A. B. C.	(L.O.1.2) Which of the following statements $\lceil xy \rceil = \lceil x \rceil \lceil y \rceil$ for all real numbers x and y . $\lfloor 2x \rfloor = 2 \lfloor x \rfloor$ whenever x is a real number. $\lceil x \rceil + \lceil y \rceil - \lceil x + y \rceil = 0$ or 1 whenever x and y $\lceil \frac{x}{2} \rceil = \lfloor \frac{x+1}{2} \rfloor$ for all real numbers x .			

Mã đề: 2010 MSSV: Họ và tên SV: Trang: 6