#### 1 The Photon

#### 1.1 constants

|                                                                               |                     | $c = 2.998 \cdot 10^8 \left\lfloor \frac{\mathrm{m}}{\mathrm{s}} \right\rfloor$              |
|-------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------|
| $c \left[\frac{\mathrm{m}}{\mathrm{s}}\right]$                                | speed of light      | $h = 6.626 \cdot 10^{-34} \left[ \frac{\text{m}^2 \text{ kg}}{\text{s}} \right]$             |
| $h\left[\frac{\mathrm{m}^2\mathrm{kg}}{\mathrm{s}}\right]$                    | planc's constant    | $\hbar = rac{h}{2\pi}$                                                                      |
| e [C]                                                                         | electorn charge     | 211                                                                                          |
| $m_e$ [kg]                                                                    | electron mass       | $e = 1.602 \cdot 10^{-19} \text{ [C]}$                                                       |
| $k_B \left[ \frac{\mathrm{m}^2 \mathrm{kg}}{\mathrm{s}^2 \mathrm{K}} \right]$ | bolzmann constant   | $m_e = 9.109 \cdot 10^{-31} \text{ [kg]}$                                                    |
| $\epsilon_0 \left[ \frac{\mathrm{F}}{\mathrm{m}} \right]$                     | vacuum permittivity | $k_B = 1.381 \cdot 10^{-23} \left[ \frac{\text{m}^2 \text{kg}}{\text{s}^2 \text{K}} \right]$ |
| $\lambda$ [m]                                                                 | Wavelength          | [ 2 11 ]                                                                                     |
| $\nu \left[\frac{1}{s}\right]$                                                | Frequency           | $\epsilon_0 = 8.854 \cdot 10^{-12} \left[ \frac{F}{m} \right]$                               |
| $\omega \left[ \frac{\text{rad}}{\text{s}} \right]$                           | Radial frequency    | $1 [eV] = 1.602 \cdot 10^{-19} [J]$                                                          |
| E [J]                                                                         | Energy              | $\lambda = \frac{c}{\nu}$ $\nu = \frac{c}{\lambda}$ $\omega = 2\pi\nu$                       |
|                                                                               |                     | $E = h \cdot \nu$                                                                            |
|                                                                               |                     |                                                                                              |

#### 1.2 Photoelectric effect

| V [V]                                         | Voltage                     |                                              |
|-----------------------------------------------|-----------------------------|----------------------------------------------|
| $\phi_0$ [eV]                                 | Work function               | $h\nu - \phi_0 = \frac{1}{2}mv^2 = eV$       |
| I [A]                                         | Photo-current               | 2                                            |
| $n \left[ \text{m}^{-3} \right]$              | Volume density of electrons | $V(\nu) = \frac{h}{e}\nu - \frac{\phi_0}{e}$ |
| $A \left[ m^2 \right]$                        | Area                        | I = nAve                                     |
| $v\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$ | velocity of electrons       |                                              |

#### 1.3 Blackbody Radiation

$$L$$
 [m] length of blackbody cube  $k_i$  wave constants  $E_x$  Electric field in x-direction  $< E>$  Average Energy  $N$  Number of states  $D$  Density of states  $U$  Blackbody radiation  $U$  Power radiated

$$E_x(x,y,z) = E_{0x}\cos(k_x x)\sin(k_y y)\sin(k_z z)$$

$$k_x = n\frac{\pi}{L} \quad k_y = m\frac{\pi}{L} \quad k_z = l\frac{\pi}{L} \quad k = \sqrt{k_x^2 + k_y^2 + k_z^2}$$

$$N(k) = \frac{1}{3\pi^2}k^3L^3 \quad D(k) = \frac{k^2}{\pi^2}$$

$$u(\omega) = \frac{\omega^2}{\pi^2c^3} \cdot \frac{\hbar\omega}{\exp\left(\frac{-\hbar\omega}{kT}\right) - 1}d\omega \quad u(\nu) = \frac{8\pi\hbar\nu^3}{c^3\left(\exp\left(\frac{\hbar\nu}{kT}\right) - 1\right)}d\nu$$

$$I(\omega) = c \cdot u(\omega)$$

**Equipartition-Theorem**: Each degree of Freedom has an energy of kT

#### 1.4 Johnson-Noise

This is the noise created in a one-dimensional circuit (like a coax-cable).



 $\langle V^2 \rangle$  Noise Voltage  $\Delta \nu$  Bandwidth

 $E = E_0 \cdot \sin(k_x \cdot x)$ 

 $\langle V^2 \rangle = 4R \cdot k_B T \cdot \Delta \nu$ 

#### 1.5 Momentum of a photon



#### 1.6 Absorption, spontaneous and stimulated emission



absorbtion spontaneous emission stimulated emission

 $n_1$  Number of electrons in the lower energy state

 $n_2$  Number of electrons in the higher energy state

$$\frac{dn_2}{dt} = \underbrace{n_1 \cdot u(\nu) \cdot B_{12}}_{\text{absorbtion}} - \underbrace{n_2 \cdot u(\nu) \cdot B_{21}}_{\text{stimulated emission}} - \underbrace{n_2 \cdot A_{21}}_{\text{spontaneous emission}}$$

$$\frac{n_2}{n_1} = e^{-\frac{h\nu}{k_B T}} = \frac{u(\nu)B_{12}}{u(\nu)B_{21} + A_{21}}$$

$$B_{21} = B_{12} = B \qquad A_{21} = \frac{8\pi h\nu^3}{c^3}$$

#### 1.7 Laser-optical amplification



Electrons are excited from the ground state "0" to the level "3" by pumping through incoherent radiation. The electrons then fall onto a long-lived state  $n_2$  (State "2") from level "3". The pumping can be done either optically by shining a strong incoherent light or by passing a current. It is also assumed that the lower state is quickly emptied by a fast process with lifetime  $\tau_1$ . As a result, the population in state "2" is:

$$n_2 = \frac{R}{A_{21}}$$
 whereas  $n_1 \approx 0$  because  $A_{21} < \frac{1}{\tau_1}$ 

We have rherefore a population inversion between the two states. The likelihood of a stimulated emission process is larger than the one of absorbtion. If we enclose the system in an optical cavity, we can achieve self-sustained oscillation at the frequency  $\nu$ .

## 2 Wave mechanics

|          | frequency | wavelength                        | momentum                    | energy                |
|----------|-----------|-----------------------------------|-----------------------------|-----------------------|
| Particle |           | $\lambda_b = \frac{h}{p}$         | p = mv                      | $E = \frac{1}{2}mv^2$ |
| Wave     | $\omega$  | $\lambda = \frac{2\pi c}{\omega}$ | $p = \frac{\hbar\omega}{c}$ | $E=\hbar\omega$       |

#### Compton Scattering



$$p_1 = \frac{h\nu_1}{c} \qquad p' = \frac{h\nu_2}{c}$$

$$\nu_2 = \nu_1 - \frac{P_e^2}{2m_e h}$$

## 2.2 Bragg diffraction



$$\sin \theta = \frac{n\lambda}{a}$$

#### Single slit



$$I(\theta) = I_0 \frac{\sin^2 \theta}{\theta^2}$$
$$\sin \theta = \frac{\lambda}{a}$$

#### **Bohr-Sommerfeld equalization**

Every single particle must satisfy the following equation. The quantized energy levels below relate to the hydrogen atom

$$\int_{length} p \cdot ds = n \cdot h \qquad n \in \mathbb{N}$$

$$p \qquad \text{Momentum of particle} \qquad E_n = \frac{-1}{n^2} \frac{m_e e^2}{8\epsilon_0^2 h^2} = \frac{-1}{n^2} E_{ry} = \frac{-1}{n^2}$$

$$E_{ry} \qquad \text{Constant (energy)} \qquad r_n = n^2 \cdot \frac{2\epsilon_0 h}{m_e e^2} = n^2 \cdot a_0$$

$$E_{ry} = 13.6 \text{ [eV]}$$

$$a_0 = 5.292 \cdot 10^{-11} \text{ [m]}$$

# **Quantum Mechanics**

#### Wave function

$$\psi(\vec{r},t) : \mathbb{R}^4 \to \mathbb{C} \qquad \iiint |\psi(\vec{r},t)|^2 d^3r = 1$$
  
 $\psi(\vec{r},t) = a\psi_1(\vec{r},t) + b\psi_2(\vec{r},t), \qquad |a|^2 + |b|^2 = 1$ 

## The Schrödinger equation

$$V(x,t)$$
 potential  $m$  mass  $\psi(x,t)$  1-dimensional wave function

$$i\hbar \cdot \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \cdot \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x,t)\psi(x,t)$$