### Actividad

- -Natalia Taboada A01570464
- -José M. López A00571541
- -Bruno Rojas Torres A01283786

# Entregar

Archivo PDF de la actividad y la liga de la actividad en su repostitorio.

## Nota:

Todas las tareas entregadas fuera de la fecha limite se califican sobre 50 de los 100 puntos posibles.

```
# Si trabajamos en Google Colaboratory corremos las siguientes lineas de código from google.colab import drive drive.mount('/content/drive/')

☐→ Mounted at /content/drive/

# Nos cambiamos a la carpeta donde tengamos el repositorio %cd 'drive/MyDrive/SemanaTec1/Repos/arte-analitica'

/content/drive/MyDrive/SemanaTec1/Repos/arte-analitica
```

## Highway MPG dataset

Este dataset contiene variables medidas por la agencia de protección ambiental de 38 modelos de vehículo diferentes de 1999 a 2008. Las variables que se registraron fueron:

- manufacturer: nombre del fabricante.
- model: nombre del modelo.
- displ: desplacamiento del motor, en litros.
- year: año de fabricación.
- cyl: número de cilindros.
- trans: tipo de transmisión.
- drv: tipo de tracción, f-delantera, r-trasera, 4- 4 llantas
- cty: rendimiento del motor en ciudad, en millas por galón.

- hwy: rendimiento del motor en carretera, en millas por galón.
- fl: tipo de combustible.
- class: tipo de vehículo.

```
# Carga las librerías y datos
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
mpg_df = pd.read_csv('data/auto-mpg.csv')
mpg_df.head()
```

|   | manufacturer | model | displ | year | cyl | trans      | drv | cty | hwy | fl | class   |
|---|--------------|-------|-------|------|-----|------------|-----|-----|-----|----|---------|
| 0 | audi         | a4    | 1.8   | 1999 | 4   | auto(I5)   | f   | 18  | 29  | р  | compact |
| 1 | audi         | a4    | 1.8   | 1999 | 4   | manual(m5) | f   | 21  | 29  | р  | compact |
| 2 | audi         | a4    | 2.0   | 2008 | 4   | manual(m6) | f   | 20  | 31  | р  | compact |
| 3 | audi         | a4    | 2.0   | 2008 | 4   | auto(av)   | f   | 21  | 30  | р  | compact |
| 4 | audi         | a4    | 2.8   | 1999 | 6   | auto(I5)   | f   | 16  | 26  | р  | compact |

```
# ¿Cuántas observaciones hay de cada fabricante? Muéstralo en un gráfico.
fig = plt.figure(figsize=(20, 8))
mpg_df['manufacturer'].value_counts()
sns.countplot(data=mpg_df , x='manufacturer')
plt.title('Fabricante')
```

Text(0.5, 1.0, 'Fabricante')



# Haz un histograma de las variables numéricas cty, hwy y haz una comparación en un gráfico l fig, axs = plt.subplots(1,2, figsize=(12, 5))

```
datos = mpg df
sns.histplot(datos, x='cty', ax=axs[0])
datos = mpg_df
```

sns.histplot(datos, x='hwy', ax=axs[1])

#### <matplotlib.axes.\_subplots.AxesSubplot at 0x7f8a985b4f90>



# ¿Cómo se comparar el rendimiento en carretera (hwy) contra el número de cilindros? # Haz un gráfico que represente esta relación.

# cyl es una variable numérica, pero como tiene pocos valores podemos tomarla como si fuera c # ¿De qué otra forma se puede representar la relación de la pregunta anterior?

sns.boxplot(data=mpg df, v= 'hwy', x='cvl')





# Cuál es la relación entre el desplazamiento del motor y el rendimiento dentro de la ciudad? sns.scatterplot(data=datos, x='displ', y='cty')

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f8a98181dd0>



# ¿Cómo se correlacionan las variables numéricas? Muestra esta correlación en un gráfico. (No # variable numérica)

```
# Sugerencia: usa la paleta de colores 'vlag' o una paleta DIVERGENTE
matriz_corr= mpg_df.drop('year',axis=1).corr()
matriz_corr
```

|       | displ    | cyl      | cty       | hwy       |
|-------|----------|----------|-----------|-----------|
| displ | 1.000000 | 0.930227 | -0.798524 | -0.766020 |

sns.heatmap(data=matriz\_corr, vmin=-1, vmax=1, cmap='vlag')





# ¿Cuales variables tienen una fuerte relación positiva entre sí y cuáles tienen una fuerte r += hwy, displ, cyl

-= hwl, cty, hwy

# ¿Los fabricantes mejoran el rendimiento en ciudad conforme pasa el tiempo? Haz una tabla re # rendimiento promedio y grafica los resultados.

fig = plt.figure(figsize=(15, 8))

sns.scatterplot(data=datos, x='manufacturer', y='cty', hue='year', palette='viridis')

#### <matplotlib.axes.\_subplots.AxesSubplot at 0x7f8a8f4a06d0>

