Question Number	Scheme	Marks
Q1	3t+5	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 3t + 5$	
	$v = \int (3t + 5) \mathrm{d}t$	M1*
	$v = \frac{3}{2}t^2 + 5t \ (+c)$	A1
	$t = 0$ $v = 2 \implies c = 2$	B1
	$v = \frac{3}{2}t^{2} + 5t + 2$ $t = T \qquad 6 = \frac{3}{2}T^{2} + 5T + 2$ $12 = 3T^{2} + 10T + 4$	DM1*
	$3T^{2} + 10T - 8 = 0$ $(3T - 2)(T + 4) = 0$	M1
	$T = \frac{2}{3} (T = -4)$	A1
	$\therefore T = \frac{2}{3} \text{(or 0.67)}$	[6]

Question Number	Scheme	Marks	
Q2	$0 \mathrm{ms^{-1}}$		
	4 m s ⁻¹		
	R F 12 m		
	0.6g		
(a)	K.E gained = $\frac{1}{2} \times 0.6 \times 4^2$		
	P.E. lost = $0.6 \times g \times (12 \sin 30)$		
	Change in energy = P.E. lost - K.E. gained $\frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{1000} $		
	$= 0.6 \times g \times 12\sin 30 - \frac{1}{2} \times 0.6 \times 4^{2}$	M1 A1 A1	
	= 30.48 Work done against friction = 30 or 30.5 J	A1	(4)
(b)	$R(\uparrow) R = 0.6g\cos 30$	B1	
	$F = \frac{30.48}{12}$	B1ft	
	$F = \mu R$ $\mu = \frac{30.48}{12 \times 0.6g \cos 30}$	M1	
	$\mu = 0.4987$ $\mu = 0.499$ or 0.50	A1	(4) [8]

Question Number	Scheme			Mar	ks		
Q3	10 B) cm	A 10 c	em C			
(a)		AB	AC	BC	frame		
	mass ratio dist. from BC	10	10	12	$\frac{32}{\overline{x}}$	B1 B1	
	Moments about			$0 = 32\overline{x}$ $\overline{x} = \frac{80}{32}$ $\overline{x} = 2\frac{1}{2} (2$.5)	M1 A1	(5)
(b)		C	D Mg M	dg	A		
	Moments about		$12\sin\theta = \tan\theta = $	$\bar{x}\cos\theta$	$\cos \theta - 6 \sin \theta$	M1 A1 A	(4)
	Alternative me C of M of loade		t distance	$\frac{\frac{1}{2}\overline{x}}{\theta} \text{ from } D$ $\theta = \frac{\frac{1}{2}\overline{x}}{6}$		B1 M1 A1 A1	[9]

Question Number	Scheme	Marks	
Q4	$a \text{ m s}^{-2}$ $R \qquad \theta$ 750g		
(a)	$T = \frac{15000}{20} = 750$ R(parallel to road) $T = R + 750g \sin \theta$ $R = 750 - 750 \times 9.8 \times \frac{1}{15}$ $R = 260 *$	M1 M1 A1 A1	(4)
(b)	20 m s^{-1} $260N$ θ $750g$		
	$T' = \frac{18000}{20} = 900$ $T' - 260 - 750g \times \sin \theta = 750a$ $a = \frac{900 - 260 - 750 \times 9.8 \times \frac{1}{15}}{750}$ $a = 0.2$		(4) [8]

Question Number	Scheme	Marks
Q5 (a)	$\mathbf{I} = m\mathbf{v} - m\mathbf{u}$ $= 0.5 \times 20\mathbf{i} - 0.5 (10\mathbf{i} + 24\mathbf{j})$ $= 5\mathbf{i} - 12\mathbf{j}$ $ 5\mathbf{i} - 12\mathbf{j} = 13 \text{ Ns}$	M1 A1 M1 A1 (4)
(b)	5 0 12	
	$\tan \theta = \frac{12}{5}$ $\theta = 67.38$ $\theta = 67.4^{\circ}$	M1 A1 (2)
(c)	K.E.lost = $\frac{1}{2} \times 0.5 (10^2 + 24^2) - \frac{1}{2} \times 0.5 \times 20^2$ = 69 J	M1 A1 A1 (3) [9]

Question Number	Scheme	Mark	S
Q6 (a)	$D \qquad \theta \qquad D \qquad $	M1 A1 A1 B1	
	$\frac{6}{\sqrt{13}}T = 6mg$ $T = mg\sqrt{13} *$	A1	(5)
(b)	$3a \times T \times \cos \theta = 2amg + 4aMg$	M1	
	$T = \frac{(2mg + 4Mg)}{6}\sqrt{13} \le 2mg\sqrt{13}$	A1	
	$mg + 2Mg \le 6mg$		
	$M \le \frac{5}{2}m * $ cso	A1	(3)
			[8]

Question Number	Scheme	Marks	
Q7 (a)	Vertical motion: $v^{2} = u^{2} + 2as$ $(40\sin\theta)^{2} = 2 \times g \times 12$ $(\sin\theta)^{2} = \frac{2 \times g \times 12}{40^{2}}$ $\theta = 22.54 = 22.5^{\circ} \text{ (accept 23)}$	M1 A1	(3)
(b)	Vert motion $P \to R$: $s = ut + \frac{1}{2}at^2$ $-36 = 40 \sin \theta t - \frac{g}{2}t^2$ $\frac{g}{2}t^2 - 40 \sin \theta t - 36 = 0$ $t = \frac{40 \sin 22.54 \pm \sqrt{(40 \sin 22.54)^2 + 4 \times 4.9 \times 36}}{9.8}$ t = 4.694 Horizontal P to R: $s = 40 \cos \theta t$ = 173 m (or 170 m)	M1 A1 A1 A1 A1 A1	(6)
(c)	Using Energy: $ \frac{1}{2}mv^{2} - \frac{1}{2}m \times 40^{2} = m \times g \times 36 $ $ v^{2} = 2(9.8 \times 36 + \frac{1}{2} \times 40^{2}) $ $ v = 48.0 $ $ v = 48 \text{ m s}^{-1} \text{ (accept } 48.0) $	M1 A1	(3) [12]

Question Number			
Q8	— → u u ←		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
(a) (i)	Con. of Mom: $3mu - mu = 3mv + mw$ 2u = 3v + w (1)	M1# A1	
	N.L.R: $\frac{1}{2}(u+u) = w-v$	M1# A1	
		DM1# A1	
(ii)	In (2) $u = w - \frac{1}{4}u$ $w = \frac{5}{4}u$	A1	(7)
(b)	B to wall: N.L.R: $\frac{5}{4}u \times \frac{2}{5} = V$	M1	
	$V = \frac{1}{2}u$	A1ft	(2)
(c)			
	$ \begin{array}{c c} & \xrightarrow{1}{4}u & & \frac{1}{2}u & \\ & A & & B \end{array} $		
	B to wall: $time = 4a \div \frac{5}{4}u = \frac{16a}{5u}$	B1ft	
	Dist. Travelled by $A = \frac{1}{4}u \times \frac{16a}{5u} = \frac{4}{5}a$	B1ft	
	In t secs, A travels $\frac{1}{4}ut$, B travels $\frac{1}{2}ut$		
	Collide when speed of approach $=\frac{1}{2}ut + \frac{1}{4}ut$, distance to cover $=$ $4a - \frac{4}{5}a$	M1\$	
	$\therefore t = \frac{4a - \frac{4}{5}a}{\frac{3}{4}u} = \frac{16a}{5} \times \frac{4}{3u} = \frac{64a}{15u}$	DM1\$ A1	
	Total time $=\frac{16a}{5u} + \frac{64a}{15u} = \frac{112a}{15u} *$	A1	(6)
			15