Programas Cálculo

Luis Eduardo Galindo Amaya

22 de enero de 2022

$\mathbf{\acute{I}ndice}$

1.	Conversión Entre Sistemas De Coordenadas	3
	1.1. Rectangulares a Cilíndricas (o Polares)	3
	1.2. Rectangulares a Esféricas	5
	1.3. Cilíndricas a Rectangulares	6
	1.4. Cilíndricas a Esféricas	7
	1.5. Esfericas a Rectangulares	8
	1.6. Esfericas a Cilidnricas	9
2.	Vectores	10
	2.1. Modulo	10
	2.2. Modulo del Vector Fuera Del Origen	11
	2.3. Producto Punto	12
	2.4. Producto Cruz	13
	2.5. Producto Mixto	14
3.	Aplicaciones De Vectores	15
	3.1. Vector Unitario	15
	3.2. Angulo Entre Vectores	16
	3.3. Angulos Directores	17
	3.4. Área De Un Paralelogramo	
	3.5. Área Del Triangulo	19
	3.6. Volumen De Un Paralelepípedo	
	3.7. Volumen De Un Tetraedro	21
4.	Ecuaciones De una O Mas Variables	22
	4.1. Plano Entre Tres Puntos	22
	4.2. Plano Que Pasa Por Un Punto Y Es Perpendicular Otro	23
	4.3. Ángulos Entre Planos	24
	4.4. Distancia De Un Punto A Un Plano	25

5.	Derivadas Multivariables			
	5.1.	Derivadas Parciales	26	
	5.2.	Gradiente	27	
	5.3.	Matriz Jacobiana	28	
	5.4.	Matriz Hessiana	29	
	5.5.	Divergencia	30	
	5.6.	Razón De Cambio Derivada Direccional (Formula 1)	31	
	5.7.	Razón De Cambio Derivada Direccional (Formula 2) $\ \ldots \ \ldots$	32	
6.	Inte	grales De Multiples Variables O Iteradas	33	
		Integrales Dobles	33	

1. Conversión Entre Sistemas De Coordenadas

1.1. Rectangulares a Cilíndricas (o Polares)

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 1
y = 0
z = 0
# Añadir 1*10^-100 para evitar la divicion entre 0
# 'and' regresa 1 = True y 0 = False
x = x + and(x=0)*float(10^{-100})
r = sqrt(x^2+y^2)
theta = arctan(y/x)
# determinar la cantidad de ángulo faltante
# 'and' regresa 1 = True y 0 = False
ajuste(x,y) = (
   and(x>0,y>0) * 0
   and(x <= 0, y > 0) * pi + # II
   and(x<0 ,y<=0) * pi + # III
   and(x>0,y<0) * 2*pi # IV
)
# sumamos los grados faltantes
theta = theta+ajuste(x,y)
"Rectangular (x,y,z):"
float((x,y,z))
"Cilindrica (r,theta,z):"
float((r,theta,z))
```

```
x = -1
y = 0

r = sqrt(x^2+y^2)
theta = arccos(x/r)

"Rectangular"
float((x,y))

"Cilindrica"
float((r,theta))
```

1.2. Rectangulares a Esféricas

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 4
y = -5
z = 2
# Añadir 1*10^-100 para evitar la divicion entre 0
# 'and' regresa 1 = True y 0 = False
x = x + and(x=0)*float(10^{-100})
rho = sqrt(x^2+y^2+z^2)
theta = arctan(y/x)
phi = arccos(z/rho)
# determinar la cantidad de ángulo faltante
# 'and' regresa 1 = True y 0 = False
ajuste(x,y) = (
   and(x>0, y>0) * 0
   and(x <= 0, y > 0) * pi + # II
   and(x<0 ,y<=0) * pi + # III
   and(x>0,y<0) * 2*pi # IV
)
# sumamos los grados faltantes
theta = theta+ajuste(x,y)
"Rectangular (x,y,z):"
float((x,y,z))
"Esféricas (rho,theta,phi):"
float((rho,theta,phi))
```

1.3. Cilíndricas a Rectangulares

```
# Sustituye el valor de 'r', 'theta' y 'z'.
r = 4
theta = 2
z = 4

x = r * cos(theta)
y = r * sin(theta)
z = z

"Cilíndrica (r,theta,z):"
float((r,theta,z))

"Rectangular (x,y,z):"
float((x,y,z))
```

1.4. Cilíndricas a Esféricas

```
# Sustituye el valor de 'r', 'theta' y 'z'
# theta es el angulo de los ejes 'x' y 'y'
r = 1
theta = 1
z = 1

rho = sqrt(r^2+z^2)
theta = theta
phi = arccos(z/rho)

"Cilindrica (r,theta,z):"
float((r,theta,z))

"Esferica (rho,theta,phi):"
float((rho,theta,phi))
```

1.5. Esfericas a Rectangulares

```
# Sustituye el valor de 'rho', 'theta' y 'phi'
# theta es el angulo de los ejes 'x' y 'y'
# phi es el angulo del eje 'z'

rho = 1
theta = 1
phi = 1

x = rho * sin(phi) * cos(theta)
y = rho * sin(phi) * sin(theta)
z = rho * cos(phi)

"Esferica (rho,theta,phi):"
float((rho,theta,phi))

"Rectangular (x,y,z):"
float((x,y,z))
```

1.6. Esfericas a Cilidnricas

```
# Sustituye el valor de 'rho', 'theta' y 'phi'
# theta es el angulo de los ejes 'x' y 'y'
# phi es el angulo del eje 'z'

rho = 1
theta = 1
phi = 1

r = rho * sin(phi)
theta = theta
z = rho * cos(phi)

"Esferica (rho,theta,phi):"
float((rho,theta,phi))

"Cilindrica (r,theta,z):"
float((r,theta,z))
```

2. Vectores

2.1. Modulo

```
# Sustituye los valores por los de tu vector (x,y,z). v = (1,3,5) abs(v)
```

2.2. Modulo del Vector Fuera Del Origen

```
# Sustituye 'v' por los valores por los de tu vector.
# Sustituye 'g' los valores por los de el origen.

v = (1,3,5) # Vector
g = (0,0,0) # Origen

abs(v-g)
```

2.3. Producto Punto

```
# Reemplaza 'A' y 'B' con tus vectores
```

A = (1,2,3)

B = (1,2,3)

dot(A,B)

2.4. Producto Cruz

```
# Reemplaza 'A' y 'B' con tus vectores
```

A = (1,2,3)

B = (1,2,3)

cross(A,B)

2.5. Producto Mixto

```
# Reemplaza 'A', 'B' y 'C' con tus vectores
A = (3,-2,5)
B = (2,2,-1)
C = (-4,3,2)

dot(A,cross(B,C)))
float
```

3. Aplicaciones De Vectores

3.1. Vector Unitario

```
# Sustituye 'v' por los valores por los de tu vector.
v = (1,3,5) # Vector

vu = v/abs(v)

"Vector unitario:"
float(vu)
```

3.2. Angulo Entre Vectores

```
# Reemplaza 'A' y 'B' con tus vectores
A = (1,2,3)
B = (1,2,3)
arccos(dot(A,B)/(abs(A)*abs(B)))
```

3.3. Angulos Directores

```
# Reemplaza 'A' con tu vector
A = (1,2,2)
alpha = float(arccos(A[1]/abs(A)))
beta = float(arccos(A[2]/abs(A)))
gamma = float(arccos(A[3]/abs(A)))
"Angulos Directores (rad):"
alpha
beta
gamma
```

3.4. Área De Un Paralelogramo

```
# Reemplaza 'A' y 'B' con tus vectores
A = (3,1,-1)
B = (2,3,4)

"Area Paralelogramo"
float( abs(cross(A,B)) )
```

3.5. Área Del Triangulo

```
# Reemplaza 'A' y 'B' con tus vectores
A = (3,1,-1)
B = (2,3,4)

"Area Paralelogramo"
float( 1/2 * abs(cross(A,B)) )
```

3.6. Volumen De Un Paralelepípedo

```
# Reemplaza 'A', 'B' y 'C' con tus vectores
A = (3,-2,5)
B = (2,2,-1)
C = (-4,3,2)

"Volumen paralelepípedo"
float(dot(A,cross(B,C)))
```

3.7. Volumen De Un Tetraedro

```
# Reemplaza 'A', 'B' y 'C' con tus vectores
A = (3,-2,5)
B = (2,2,-1)
C = (-4,3,2)

"Volumen paralelepípedo"
float( 1/6 * dot(A,cross(B,C)))
```

4. Ecuaciones De una O Mas Variables

4.1. Plano Entre Tres Puntos

```
a = (3,2,1)
b = (-4,-1,1)
c = (-5,-3,-1)
det(((x,y,z)-a,b-a,c-a))
```

4.2. Plano Que Pasa Por Un Punto Y Es Perpendicular Otro

4.3. Ángulos Entre Planos

```
A = (2,-1,1)
B = (1,0,1)

abs(dot(A,B))/(abs(A) * abs(B))

"radianes: "
float(arccos(last))
```

4.4. Distancia De Un Punto A Un Plano

```
# punto
p = (1,3,-2)

# Ax^2 + By + Cz + D = 0

A = 2
B = 5
C = -4
D = 7

pi = (A,B,C)
abs(dot(p,pi)+D)/abs(pi)
float
```

5. Derivadas Multivariables

5.1. Derivadas Parciales

```
# cambia f por tu funcion
f = 2*x*y

d(f,x)
d(f,y)
```

5.2. Gradiente

```
# cambia f por tu funcion
f = 3x^4-y^3+x^2*y^2+5
```

puedes añadir mas variables d(f,(x,y))

5.3. Matriz Jacobiana

```
# cambia f por tus funciones
f = (
   12x^3 + 2x*y^2,
   2x^2y - 3y^2
)

d(f,(x,y))
```

5.4. Matriz Hessiana

```
# cambia f por tu funcion
f = 12x^3 + 2x*y^2

"gradiente"
d(f,(x,y))

"Hessiano"
d(last,(x,y))
```

5.5. Divergencia

```
F = (
    x^2*z^2,
    -2*y^2*z^2,
    x*y^2*z
)

b = d(F,(x,y,z))
c = b * unit(3)
contract(c)
```

5.6. Razón De Cambio Derivada Direccional (Formula 1)

```
f = x^2*y^3-4*y
v = (2,5)
x0 = (1,2)

dot( d(f,(x,y)), v)
eval(last,x,x0[1],y,x0[2])
float
```

5.7. Razón De Cambio Derivada Direccional (Formula 2)

```
f = x^2*y^3-4*y
v = (2,5)
x0 = (1,2)

a = x0 + t*v
eval(f,x,a[1],y,a[2])
d(last,t)
eval(last,t,0)
float
```

6. Integrales De Multiples Variables O Iteradas

6.1. Integrales Dobles