フロンティア法入門講座

基盤S RA 鈴木 浩史

もくじ

- ZDD
- グラフ
- フロンティア法
- 諸々のライブラリ
- ・まとめ

ZDD [minato 1993]

基盤S離散構造処理系プロジェクトの代名詞!

- 集合族を効率良く表現するデータ構造
 - 場合分け二分木の圧縮形
 - アイテムの出現順序を固定 → 一意な表現

※集合族:集合を要素とする集合

ZDDができることの一部

• 圧縮したまま集合族の演算ができる!

∘∈ {U,∩, *etc*}

• 高速に最適解探索ができる!

maximize
$$f(s) = \sum_{i \in s} c_i$$
 $(s \in S)$

一様サンプリングができる!

全て等確率で取り出せる

多くの操作が、アイテム数やZDDのノード数に 依存した計算時間で実行可能

(無向) グラフ

- $\not O \supset C = (V, E)$
 - V: 頂点集合, $E \subseteq [V]^2$: 辺集合

 $X[X]^k: X$ の部分集合でk要素からなるもの

※図と数式でフォント揃ってないのはお許しを...

部分グラフ

- グラフG = (V, E)の部分グラフH = (V', E')
 - $V' \subseteq V$, $E' \subseteq E$, $\bigcup_{e \in E'} e = V'$
 - いわゆる孤立点はないと仮定します

$$V' = \{s, t, u, v, x, z\}$$

$$E' = \{\{s, u, \}, \{t, z\}, \{u, x\}, \{v, x\}, \{v, z\}\}$$

グラフ列挙問題

• グラフG = (V, E)と性質Pを入力として,Pを満たす部分グラフを全て見つける

P = sからtへの経路を成す

グラフ列挙問題を どのように応用したい?

- さらに他の性質で絞り込みたい!
 - カップルA-dとB-cが必ずマッチングする
 - 一部の道路が通行止め
- 最適な計画を立てたい!
 - 切符1枚で電車の長旅
 - 最小電力ロスの配電網
- 統計的な検査をしたい!
 - ネットワークの対故障性
 - SNSユーザーの中心性を推定

ZDDがあれば...

すべての解を保持するZDDの構築

- 既存の列挙アルゴリズムの出力をZDDに変換
 - 最も単純と思われる手法
 - 性質Pによってアルゴリズムが大幅に変化する
 - 分割法, 逆探索, ...
 - 解の数に依存した計算時間
 - ZDDの部分以外は省メモリ
- フロンティア法
 - グラフ列挙問題におけるZDD構築といえばこれ
 - 性質Pによらず枠組みが統一されている
 - グラフのパラメータに依存した計算時間
 - 消費メモリもグラフのパラメータ依存
- メモリと要相談だけど、フロンティア法は桁違いの数の解を持つZDDを高速に構築できる可能性を持っている

フロンティア法によるZDDの構築

- 「辺を使う/使わない」で場合分け探索を行う
- 枝刈り、探索空間の共有による効率化
- •場合分け構造が(既約化途中の)ZDDを成す
 - 部分グラフ集合 = 辺をアイテムとする集合族
- 既約化して完成

等価な探索空間

事例:P =連結

場合分け構造が同じ

等価な探索空間の共有

事例:P =連結

場合分け構造が同じ

共有して良い

無駄な計算が減る!

フロンティアー定義ー

• 処理済み辺と未処理辺の境界にある頂点集合

フロンティア {v,w}

- i番目の辺 e_i を処理するときのフロンティアを F_i とすると
 - $F_i = \left(\bigcup_{j=1}^{i-1} e_j\right) \cap \left(\bigcup_{j=i}^{|E|} e_j\right)$

フロンティアと等価性

• 処理済み辺と未処理辺の境界にある頂点集合

フロンティア {v,w}

• フロンティアに着目したときの等価性

mate配列

事例:P =連結

• $\forall v \in F_i$ のグループ分けを表す

$$mate[v] = 1$$

 $mate[w] = 1$

$$mate[v] = 0$$

 $mate[x] = 1$
 $mate[y] = 2$

mate[v] = 0mate[w] = 1

∀v ∉ F_iの情報は不要

- フロンティアを出た⇒グループの仲間がわかっているので,後は仲間にまかせる
- フロンティアに入ったことがない⇒どのグループにも属さない

mate配列を用いた共有

事例:P =連結

mate配列の中身が一致すれば共有可能

mate配列の更新

事例:P =連結

- ・辺を使わないとグループは変化しないので、使う場合だけ更新が起こる
- $e_i = \{u, v\}$ を使うとき
 - $\forall p \in e_i$ について
 - mate[p] = 0ならば $mate[p] \leftarrow mate$ にないグループ番号
 - $a \leftarrow mate[u], b \leftarrow mate[v]$
 - $\forall p \in F_i$ について
 - mate[p] = aならば $mate[p] \leftarrow b$ (グループaをグループbにマージ)
 - ※グループ分けが同じならば、使われているグループ番号も同じになるように、カノニカルな割り当てをし直すと共有がききやすい 「若い頂点のいるグループに若い番号を付ける」など

枝刈り

事例:P =連結

複数のグループが存在している中で、孤立する ことが確定したグループが現れたら枝刈り

完成条件

事例:P =連結

• 1つのグループが確定して,他のグループが存 在しない

コラム:P =連結、は便利

- 追加制約で他の構造を容易に表現
 - A (次数1の頂点が2つ,他は次数2か0)
 - 任意のパスを表現
 - A (すべての頂点の次数が2か0)
 - 任意のサイクルを表現
 - Λ(サイクルを禁止)
 - 任意の木を表現
- 追加制約の反映についての詳細は省きます

フロンティア法のライブラリ

- Graphillion(https://github.com/takemaru/graphillion/wiki)
 - Pythonライブラリ
 - グラフを与えて制約を指定するだけ
 - とにかく記述が楽
 - 演算, 最適化, サンプリングも簡単

- TdZdd(https://github.com/kunisura/TdZdd)
 - ZDDの「トップダウン構築」を提供, Graphillionの裏方
 - 探索の状態管理を自由に設計できるので上級者向け
 - グラフに限らず組合せ列挙の汎用ライブラリ
 - ZDD演算は実装されていない

まとめ

ZDD

- 集合族を扱うデータ構造
- 集合族への様々な解析・処理
- グラフ列挙問題とその応用との相性が良い
- フロンティア法
 - グラフ列挙問題のすべての解を保持するZDDを構築
 - 効率的な場合分け探索
 - フロンティア, mate配列
 - 枝刈り, 探索空間の共有
 - ライブラリもある程度充実

おわり

ポスター発表では有向グラフを扱います。 ぜひ、議論をしにきてください!