K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

Semester: August-November 2021 **In-Semester Examination**

Class: TY B. Tech

Branch: COMPUTER ENGINEERING Semester: V

Course Code: 2UCC502 Full name of the course:

Duration: 1hr.15 min (attempting questions) +15 min (uploading) Max. Marks: 30

Q. No	Questions	Marks
Q. 1	Objective questions	
	1. In CDMA, as per the Walsh matrix the 3 rd chip sequence for a network	
	with 8 stations would be: (2M)	
	a. {+1+1+1+1+1+1+1+1}	
	b. {+1+1-1-1+1+1-1-1}	
	c. {+1 -1 +1 -1 +1 -1 +1 -1}	
	d. {+1 -1 -1 +1 +1 -1 -1 +1}	
	2. Min hamming distance in the two codes C1: 10110111 and	
	C2:01101101 is: (1M)	
	a. 4	
	b. 3	
	c. 1 d. 5	
	u. 3	
	3. Cellular network a connection oriented and reliable network. State True or False. (1M)	
	4. For 5 devices in a network what is the number of cable links required for a mesh, ring, bus and star topology. (2M) a. 10,5,1,5	10M
	b. 20,5,1,5	
	c. 10,4,1,4	
	d. None of the above	
	d. Profile of the above	
	5. Which of the layer/s in the OSI model are responsible for flow control?	
	(1M)	
	a. Data link Layer	
	b. Transport Layer	
	c. Physical layer	
	d. Both a and b	
	6. In CSMA/CA can be used to prioritize one station over others.	
	(1M)	
	a. Contention window	
	b. Inter frame space	
	c. Persistence method	

	d. None of the above	
	7. Which of the following is a specific address? (1M) a. IP address	
	b. Port address	
	c. MAC address	
	d. Email address	
	8. Which one the following is not true for Piggybacking? (1M) a. Improves channel bandwidth usage	
	b. Delays acknowledgements	
	c. Blocks the services temporarily	
	d. Is used for access control	
	Solve Any <u>Two</u>	
	A. Explain briefly functionalities of following layers in ISO OSI reference model:	
	a. Application layer	
	b. Presentation Layerc. Transport layer	
0.2	d. Network layer	10 M
Q. 2	e. Data link layer	10 1/1
	B. Draw and explain a hybrid topology with a star backbone connecting	
	four ring networks.	
	C. State key difference between bit-stuffing and byte-stuffing. Assuming	
	byte oriented framing protocol, byte stuff the following data.	
	ESC FLAG ESC ESC FLAG	
	Solve Any <u>Two</u>	
	A. In CRC, given the dataword 1010011110 and the divisor 10111,	
	a. Compute the 13 bit codeword at the sender site.	
	b. Represent the information (dataword and divisor) using	
	polynomials	
	A. Consider a scenario wherein two stations are communicating using	
	sliding window protocol with a window size of 4.	
Q. 3	Assuming the physical destination address of third frame is corrupted	
Q. 3	during the transmission. What happens to the frame? What will be the next course of action taken by the sender if it uses:	
	a. Go-back-N ARQ	10M
	b. Selective repeat ARQ? Illustrate the scenario with window positions	
	at sender's and receiver's side.	
	B. A slotted ALOHA network transmits 100-bit frames on a shared	
	channel of 100 kbps. What is the throughput if the system (all stations	
	together) produces	
	a. 1000 frames per second	
	b. 500 frames per second c. 250 frames per second.	