Now we will explain a method to divide polynomials of one variable. We will use an example to illustrate the procedure:

 $p(x) = x^5 - 3x^3 + 2x - 1$

$$q(x) = x^2 - 1 - 2x$$

Calculate this quotient $\frac{p(x)}{q(x)}$

1) Complete and put in order both polyr

 $p(x) = x^5 + 0x^4 - 3x^3 + 0x^2 + 2x - 0$

 $q(x) = x^2 - 2x - 1$

2) Write both polynomials as if v into the left, the divisor into the right). Let's consider that every monomial is a number.

Here we will use the following table 3 0 2x -1

3) Divide the first monomial of the dividend by the first monomial of the divisor.

₂₀ 5	
In our oace: 2 - 23	

4) Multiply the result by every monomial of the dividing polynomial and subtract the result from the

polynomial dividend

The result of the product is $x^3 \cdot q(x) = x^3(x^2 - 2x - 1) = x^5 - 2x^4 - x^3$ And we subract it by the dividend. Then, we schematize it:

 $x^2 - 2x - 1$ x^5 0 $-3x^{3}$ 0 2x -10 $-x^5$ $+2x^{4}$ $+x^3$ 0 0

0 $+2x^4$ $-2x^3$ 0 2x -1

The res	sult of the subtraction appears in the third line. We take note of the result of the division of	
monon	mials placed just under the divisor: this will be our quotient.	
Let's fo	ocus on the box of the degree of the polynomial that we have divided. In this case, we find a	0. This
must h	happen in each one of the steps that we make.	

5) Repeat steps 3 and 4 until the degree of the polynomial by which we need to divide is lower than the degree of the dividing polynomial.

Let's see how we continue: $\frac{2x^4}{x^2}=2x^2$ $2x^2(x^2 - 2x - 1) = 2x^4 - 4x^3 - 2x^2$

 x^5 $x^2 - 2x - 1$ 0 $-3x^{3}$ 0 2x-10

0

0 0

2x

0

-1

0

0

 $x^3 + 2x^2$

 $x^3 + 2x^2 + 2x$

 $+x^{3}$ $+2x^{4}$ $-x^5$ $+2x^{4}$ 0

v, we hav	e a 0 in the deg	ree 4 monomia	al. Let's conti	nue:	
$\frac{3}{1} = 2x$					
		$-4x^{2}-2x$			

 $+x^3$ $+2x^{4}$ $-x^5$ 0 0 $+2x^{4}$ $-2x^3$ 0 2x

 $4x^3$ $-2x^4$

	0	$2x^3$	$2x^2$	2x	-1	
		$-2x^{3}$	$+4x^{2}$	+2x	0	
		0	$6x^2$	4x	-1	
	8	we find a 0 in t				
$\frac{x^2}{x^2} = 6$						
		2 10 0				
$x^{2} - 2$	(x-1) = 6	$x^2 - 12x - 6$,			
x^5	0	$-3x^{3}$	0	2x	-1	$x^2 - 2x - 1$
$-x^{5}$						
-x	$+2x^{4}$	$+x^3$	0	0	0	$x^3 + 2x^2 + 2x + 6$

 $2x^2$

 $+x^3$ 0 $-2x^3$ $+2x^{4}$ 0 0 2x-1 -2x2

 $+4x^3$

$$-2x^3$$

	$-2x^{3}$	$+4x^{2}$	+2x	0	
	0	$6x^2$	4x	-1	
		$-6x^{2}$	+12x	+6	
		0	16x	+5	
egree 1, which is					mial that we want to divide has point, the division is finished.
egree 1, which is					
egree 1, which is hen:	less than the deg	ree of the di	visor (degree	2). At this	
egree 1, which is hen: 1. The quotient of the second seco	less than the deg	ree of the div	visor (degree	e 2). At this	point, the division is finished.

VERIFICATION To verify that we have done the di $quotient \times divisor + remainder$

- So, in our example:
 - $(x^3 + 2x^2 + 2x + 6) \cdot (x^2 2x 1) + (16x + 5)$

We calcule the multiplicat $x^3 \cdot (x^2 - 2x - 1) = x^5 - 2x^4 - x^3$ $2x^2 \cdot (x^2 - 2x - 1) = 2x^4 - 4x^3 - 2x^2$

The result, if we have done the operation correctly, should be the dividend

 $2x \cdot \left(x^2 - 2x - 1\right) = 2x^3 - 4x^2 - 2x$

 $6\cdot(x^2-2x-1)=6x^2-12x-6$

$$(x^5 - 2x^4 - x^3) + (2x^4 - 4x^3 - 2x^2) + (2x^3 - 4x^2 - 2x) +$$

 $+(6x^2 - 12x - 6) = x^5 - 3x^3 - 14x - 6$

$$a_{0} = x^{0} - 3x^{0} - 14x - 6$$
mainder:

Then, we add the remainder:

degree(quotient)=degree(dividend)-degree(divisor)

Calculate the quotient 3 where x^3+2x^2+2x+6 and x^5-3x^3+2x-1

 $\left(x^5 - 3x^3 - 14x - 6\right) + \left(16x + 5\right) = x^5 - 3x^3 + 2x - 1$

1. We complete and put in order $x^2 - 2x - 1$

5 - 2 = 32. We define the initial table

16x + 5

1 < 2 $x^2 - 2x - 1$ Continuing with the operation: $q(x) = x + 2 \, p(x) = -x^3 + 0 x^2 + 0 x + 1$

 $q(x) = x + 2 \qquad -x^3$

$x+2 \qquad \frac{-x^3}{x} = -x^2$	$-x^2(x+2) = -x^3 - 2x^2$
------------------------------------	---------------------------

And then	the next step: $+2x^2\ 0$			
0	$-x^2$	0	$+2x^{2}$	0

 $p(x) = 1 - x^3$

 $-x^3$ 0

 $+x^3$

1	$\frac{2x^2}{x} = 2x$	$2x(x+2) = 2x^2 + 4x$	$-x^3$
0	1	x+2	$+x^{3}$
	$+2x^{2}$	0	0
	$-x^{2} + 2x$	0	$+2x^{2}$

$-2x^2$	-4x	0	0	-4x
1	$\frac{-4x}{x} = -4$	-4(x+2) = -4x - 8	$-x^3$	0
0	1	x + 2	$+x^{3}$	
	$+2x^2$	0	0	
	$-x^2 + 2x - 4$	0	$+2x^{2}$	
		0	1	
		$-2x^2$	-4x	