Bipartite Entanglement Entropy

Aditya Chincholi June 28, 2021 Quasiperiodic Kicked Rotor

What I did earlier

 $\boldsymbol{\cdot}$ Constructing the full floquet operator in a single basis.

What I did earlier

- Constructing the full floquet operator in a single basis.
- $\boldsymbol{\cdot}$ Using a density matrix the whole time for calculations.

What I did earlier

- Constructing the full floquet operator in a single basis.
- Using a density matrix the whole time for calculations.
- This has the drawback of increasing computational complexity of each individual step and the memory used at any given time is large.

• Separate the floquet operator into momentum space and position space parts.

- · Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.

- · Separate the floquet operator into momentum space and position space parts.
- · Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.

- · Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.
- This is better as the memory used is less but computation increases. Since fourier transforms are computationally cheap anyway, so it's fine.

- · Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.
- This is better as the memory used is less but computation increases. Since fourier transforms are computationally cheap anyway, so it's fine.
- Peak memory required scales the same way but we have reduced it by a constant factor and it is not used in all calculations.

We use
$$\hbar=2.85, \omega_2=2\pi\sqrt{5}, \omega_3=2\pi\sqrt{13}$$
 , the momentum ranges from -10 to 10

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + K\cos(\theta_1)(1 + \alpha\cos(\theta_2)\cos(\theta_3)) \sum_{n} \delta(t - n)$$

Δ

Figure 1: Precritical (Insulator): $K=4, \alpha=0.2$

Figure 2: Critical: $K=6.36, \alpha=0.4375$

Figure 3: Post-critical (Metal): $K=8, \alpha=0.8$

• I don't see much of a trend here. The entanglement grows faster and higher with higher K values i.e. more diffusive the regime higher the entanglement for the same number of time steps but other than that, I don't see anything here.

· What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.

- · What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- · What I realized: $|\psi\rangle \to \rho_1 = Tr_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.

- · What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- · What I realized: $|\psi\rangle \to \rho_1 = Tr_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- · I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, \hbar = 2.85.

- · What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- · What I realized: $|\psi\rangle \to \rho_1 = Tr_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- · I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, \hbar = 2.85.
- We plot the following quantities:

- · What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- · What I realized: $|\psi\rangle \to \rho_1 = Tr_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- · I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, \hbar = 2.85.
- We plot the following quantities:

$$\cdot \ P(p_1=m\hbar)$$

9

- · What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- · What I realized: $|\psi\rangle \to \rho_1 = Tr_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- · I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, \hbar = 2.85.
- · We plot the following quantities:
 - $P(p_1 = m\hbar)$
 - $\cdot \ E = p_1^2/2 + p_2\omega_2 + p_3\omega_3$

9

- · What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- · What I realized: $|\psi\rangle \to \rho_1 = Tr_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- · I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, \hbar = 2.85.
- We plot the following quantities:
 - $\cdot P(p_1 = m\hbar)$
 - $\cdot \ E = p_1^2/2 + p_2\omega_2 + p_3\omega_3$
 - $\cdot \ S = -\rho_1 ln(\rho_1)$

9

${\bf Momentum}\ (p_1)\ {\bf distributions}$

Figure 4: K = 3, α = 0.1

${\bf Momentum}\ (p_1)\ {\bf distributions}$

Figure 5: K = 6.36, α = 0.4375

${\bf Momentum}\ (p_1)\ {\bf distributions}$

Figure 6: K = 7, α = 0.8

Energy

Figure 7: K = 3, α = 0.1

Figure 8: K = 6.36, α = 0.4375

Energy

Figure 9: K = 7, α = 0.8

Entropy

Figure 10: K = 3, α = 0.1

Entropy

Figure 11: K = 6.36, α = 0.4375

Entropy

Figure 12: K = 7, α = 0.8

Multiple K Values

- We look at the following plots for the following at different K, α values from the insulator to the metallic regime:
 - 1. Energy Expectation Value
 - 2. Entanglement Entropy
 - 3. Momentum Distribution
- To study the changes in the energy and entropy values with K, we have plotted the following quantities:
 - 1. Entropy Difference: $S(K_{n+1},\alpha_{n+1}) S(K_n,\alpha_n)$ vs t
 - 2. Energy Difference: $E(K_{n+1},\alpha_{n+1})-E(K_n,\alpha_n)$ vs t

Multiple K Values

- First we take a big picture look with 11 values with $K \in [3.00, 9.72]$ and $\alpha \in [0.200, 0.6750]$. Both ranges are centred around the critical point¹. Momentum range is -100 to 100 with 80 timesteps.
- Then we look very close to the critical point with 11 values with $K \in [6.30, 6.42]$ and $\alpha \in [0.4000, 0.4750]$. Both ranges are centred around the critical point. Momentum range is -100 to 100 with 80 timesteps.

 $^{^{1}}$ The (G. Lemarié, Grémaud, and Delande 2009) paper gives the value of K at critical point, but not of lpha.

The Big Picture

The Microscopic Picture

· We use $\hbar=1$, $\omega_2=2\pi\sqrt{5}$ and $\omega_3=2\pi\sqrt{13}$. The critical point of the metal insulator transition is known to occur at $K_c=6.36\pm0.02$.

- · We use $\hbar=1$, $\omega_2=2\pi\sqrt{5}$ and $\omega_3=2\pi\sqrt{13}$. The critical point of the metal insulator transition is known to occur at $K_c=6.36\pm0.02$.
- The value of α_c , however is not determined accurately, nor written in any literature as it doesn't form a part of the scaling function in a nice way, though it most certainly does matter as it generates the anisotropy. We determine the value of α_c roughly by using the fact that the authors of the cited papers traversed the $K-\alpha$ space along a straight line perpendicular to the transition parabola. (G. Lemarié, Grémaud, and Delande 2009) (Gabriel Lemarié et al. 2009)

- · We use $\hbar=1$, $\omega_2=2\pi\sqrt{5}$ and $\omega_3=2\pi\sqrt{13}$. The critical point of the metal insulator transition is known to occur at $K_c=6.36\pm0.02$.
- The value of α_c , however is not determined accurately, nor written in any literature as it doesn't form a part of the scaling function in a nice way, though it most certainly does matter as it generates the anisotropy. We determine the value of α_c roughly by using the fact that the authors of the cited papers traversed the $K-\alpha$ space along a straight line perpendicular to the transition parabola. (G. Lemarié, Grémaud, and Delande 2009) (Gabriel Lemarié et al. 2009)
- $\cdot\,$ TL;DR we used $K_c=6.36$ and $\alpha_c=0.4303.$

- · We use $\hbar=1$, $\omega_2=2\pi\sqrt{5}$ and $\omega_3=2\pi\sqrt{13}$. The critical point of the metal insulator transition is known to occur at $K_c=6.36\pm0.02$.
- The value of α_c , however is not determined accurately, nor written in any literature as it doesn't form a part of the scaling function in a nice way, though it most certainly does matter as it generates the anisotropy. We determine the value of α_c roughly by using the fact that the authors of the cited papers traversed the $K-\alpha$ space along a straight line perpendicular to the transition parabola. (G. Lemarié, Grémaud, and Delande 2009) (Gabriel Lemarié et al. 2009)
- \cdot TL;DR we used $K_c=6.36$ and $\alpha_c=0.4303.$
- We used a basis size of 201 (-100 to 100) for each of the 3 coordinates and the simulations were done for 80 timesteps.

 $\operatorname{Varying} K$

Varying lpha

Varying K and lpha

References

- Lemarié, Gabriel, Julien Chabé, Pascal Szriftgiser, Jean Claude Garreau, Benoît Grémaud, and Dominique Delande. 2009. "Observation of the Anderson Metal-Insulator Transition with Atomic Matter Waves: Theory and Experiment." *Phys. Rev. A* 80 (4): 043626. https://doi.org/10.1103/PhysRevA.80.043626.
- Lemarié, G., B. Grémaud, and D. Delande. 2009. "Universality of the Anderson Transition with the Quasiperiodic Kicked Rotor." *Europhys. Lett.* 87 (3): 37007. https://doi.org/10.1209/0295-5075/87/37007.