

## What is Learning?



"Gain knowledge or understanding of or skill in by study, instruction or experience"- Webster

## What is Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

#### Researcher in

- ✓ Artificial Intelligence
- ✓ Cognitive psychology
- ✓ Computer science
- ✓ Economics
- ✓ Political science

#### **Professor** @

- ✓ Carnegie Mellon University
- ✓ University of California, Berkeley
- ✓ Illinois Institute of Technology

#### **Awards:**

- ✓ Turing Award, 1975
- ✓ Nobel Prize in Economics1978
- ✓ National Medal of Science 1986
- √ von Neumann Theory Prize1988



1916 - 2001

## What is Machine Learning?

Machine Learning is study of algorithms that

- > improve their performance P
- > at some task T
- > with experience E



Tom Mitchell (1990)

Well-defined learning task: <P,T,E>

## **Example – Machine Learning**

#### **Handwritten Digit Recognition**



T: Recognizing hand-written digits

E: Database of human-labeled images of handwritten digits

P: Percentage of digits correctly classified

## **Example – Machine Learning**

#### **Self-driving Vehicles**



Little Ben, 60 miles of autonomous, safe, efficient driving

T: Driving on four-lane highways using vision sensors

P: Average distance traveled before a human-judged error

E: A sequence of images and steering commands recorded while observing a human driver.

## **Example – Machine Learning**

- Learning to recognize spoken words (Lee, 1989; Waibel, 1989).
- Learning to classify new astronomical structures (Fayyad et al., 1995).
- Learning to play world-class backgammon (Tesauro 1992, 1995).
- > Categorize email messages as spam or legitimate.

## Machine Learning, a Magic?

#### No, more like gardening

- > Seeds = Algorithms
- ➤ Nutrients = Data
- ➤ Gardener = You
- ➤ Plants = Programs



## They said it!!

- ✓ "A breakthrough in machine learning would be worth ten Microsofts"
  - Bill Gates, Chairman, Microsoft
- ✓ Machine learning is the hot new thing" John Hennessy, President, Stanford
- ✓ "Web rankings today are mostly a matter of machine learning"
  - Prabhakar Raghavan, Dir. Research, Yahoo
- ✓ "Machine learning is going to result in a real revolution" Greg Papadopoulos, CTO, Sun
- ✓ "Machine learning is today's discontinuity" Jerry Yang, CEO, Yahoo
- ✓ "Machine learning is the next Internet" Tony Tether, Director, DARPA

## Future Prospects...

- Survey of Al researchers
  - Al will outperform humans in:
    - Translating languages 2024
    - Writing high-school essays 2026
    - Driving a truck 2027
    - Working in retail 2031
    - Writing a best-selling book 2049
    - Working as a surgeon 2053
    - Outperform humans in all tasks: 50% chance in 45 years
    - Automating all human jobs 120 years
  - Survey population: 2015 NIPS/ICML authors
    - Questions on AI capabilities (e.g. folding laundry, language translation), superiority at specific occupations (e.g. truck driver, surgeon), superiority over humans at all tasks.

## 12 IT skills that employers can't say no to

#### **COMPUTER WORLD**

#### 1) Machine learning

- 2) Mobilizing applications
- 3) Wireless networking
- 4) Human-computer interface
- 5) Project management
- 6) General networking skills
- 7) Network convergence technicians
- 8) Open-source programming
- 9) Business intelligence systems
- 10) Embedded security
- 11) Digital home technology integration
- 12) .Net, C #, C ++, Java -- with an edge



# Thank You!



#### **Machine Learning – Examples (Employability Prediction)**

#### **Features / Attributes / Predictors**

- ✓ CGPA
- ✓ Communication Skills
- ✓ Aptitude
- ✓ Programming Skills

| S.No. | CGPA | Communication Skills | Aptitude | Programming Skills | Job Offered? |
|-------|------|----------------------|----------|--------------------|--------------|
| 1     | 9.1  | Average              | Good     | Excellent          | Yes          |
|       |      |                      |          |                    |              |
|       |      |                      |          |                    |              |
|       |      |                      |          |                    |              |
|       |      |                      |          |                    |              |

#### **Machine Learning – Examples (Employability Prediction)**

#### **Features / Attributes / Predictors**

- ✓ CGPA
- ✓ Communication Skills
- ✓ Aptitude
- ✓ Programming Skills

| S.No. | CGPA | Communication Skills | Aptitude  | Programming Skills | Job Offered? |
|-------|------|----------------------|-----------|--------------------|--------------|
| 1     | 9.1  | Average              | Good      | Excellent          | Yes          |
| 2     | 8.4  | Good                 | Good      | Good               | Yes          |
| 3     | 8.3  | Poor                 | Average   | Average            | No           |
| 4     | 7.1  | Average              | Good      | Average            | No           |
| 5     | 8.2  | Good                 | Excellent | Excellent          | No           |

#### Machine Learning – Examples (Predicting price of a used car)

#### **Features / Attributes / Predictors**

- ✓ Brand
- ✓ Year (Mfg)
- ✓ Engine Capacity
- ✓ Mileage
- ✓ Distance travelled
- ✓ Cab?

| S.No. | Brand            | Year<br>(Mfg) | Engine<br>Capacity | Mileage | Distance travelled | Cab? | Price (in Rs.) |
|-------|------------------|---------------|--------------------|---------|--------------------|------|----------------|
| 1.    | Honda<br>City ZX | 2008          | 1100               | 10.5    | 45000              | N    | 3,50,000       |
| 2     |                  |               |                    |         |                    |      |                |
| 3     |                  |               |                    |         |                    |      |                |
| 4     |                  |               |                    |         |                    |      |                |
| 5     |                  |               |                    |         |                    |      |                |

#### **Machine Learning – Examples (Market Segmentation Study)**

#### **Features / Attributes / Predictors**

- √ Family income
- ✓ # of visits in a month
- ✓ Average money spent in a month
- ✓ Zip code

Customers for a retailer may fall into

- ✓ two groups say big spenders and low spenders
- ✓ three groups say big spenders, medium spenders and low spenders
- ✓ Four groups, ....

| S.No. | Zip Code | Family<br>Income | # of visits in a month | Average Money Spent in a month |
|-------|----------|------------------|------------------------|--------------------------------|
| 1     | 500078   | 11,50,000        | 4                      | 8,000                          |
|       |          |                  |                        |                                |
|       |          |                  |                        |                                |
|       |          |                  |                        |                                |
|       |          |                  |                        |                                |

## **Supervised Learning**

Feature tuple: (CGPA, Communication Skills, Aptitude, Programming Skills)

Response / Target: Job Offered

**Supervised Learning:** Fit a model that relates response to the feature tuples, with the aim of accurately predicting the response for future observation or better understanding the relationship between response and features.

| S.No. | CGPA | Communication Skills | Aptitude  | Programming Skills | Job Offered? |
|-------|------|----------------------|-----------|--------------------|--------------|
| 1     | 9.1  | Average              | Good      | Excellent          | Yes          |
| 2     | 8.4  | Good                 | Good      | Good               | Yes          |
| 3     | 8.3  | Poor                 | Average   | Average            | No           |
| 4     | 7.1  | Average              | Good      | Average            | No           |
| 5     | 8.2  | Good                 | Excellent | Excellent          | No           |

## **Unsupervised Learning**

Feature tuple: (Zip Code, Family Income, # of visits in a month, Average

Money spent in a month)

Response / Target: None

Unsupervised Learning: To discover groups of similar examples within the data set

| S.No. | Zip Code | Family<br>Income | # of visits in a month | Average Money Spent in a month |
|-------|----------|------------------|------------------------|--------------------------------|
| 1     | 500078   | 11,50,000        | 4                      | 8,000                          |
|       |          |                  |                        |                                |
|       |          |                  |                        |                                |
|       |          |                  |                        |                                |
|       |          |                  |                        |                                |



# Thank You!



## **Supervised Learning (Employability Prediction)**

#### **Features / Attributes / Predictors**

- ✓ CGPA
- ✓ Communication Skills
- ✓ Aptitude
- ✓ Programming Skills

#### **Response / Target**

✓ Job Offered?

| S.No. | CGPA | Communication Skills | Aptitude  | Programming Skills | Job Offered? |
|-------|------|----------------------|-----------|--------------------|--------------|
| 1     | 9.1  | Average              | Good      | Excellent          | Yes          |
| 2     | 8.4  | Good                 | Good      | Good               | Yes          |
| 3     | 8.3  | Poor                 | Average   | Average            | No           |
| 4     | 7.1  | Average              | Good      | Average            | No           |
| 5     | 8.2  | Good                 | Excellent | Excellent          | No           |

### Supervised Learning (Predicting price of a used car)

#### **Features / Attributes / Predictors**

- ✓ Brand
- ✓ Year (Mfg)
- ✓ Engine Capacity
- ✓ Mileage
- ✓ Distance travelled
- ✓ Cab?

#### **Response / Target**

✓ Price (in Rs.)

| S.No. | Brand            | Year<br>(Mfg) | Engine<br>Capacity | Mileage | Distance travelled | Cab? | Price (in Rs.) |
|-------|------------------|---------------|--------------------|---------|--------------------|------|----------------|
| 1.    | Honda<br>City ZX | 2008          | 1100               | 10.5    | 45000              | N    | 3,50,000       |
| 2     |                  |               |                    |         |                    |      |                |
| 3     |                  |               |                    |         |                    |      |                |
| 4     |                  |               |                    |         |                    |      |                |

## **Supervised Learning**

# **Employability Prediction**

#### **Features**

- ✓ CGPA
- ✓ Communication Skills
- ✓ Aptitude
- ✓ Programming Skills

### **Response / Target**

✓ Job Offered?

# Predicting price of a used car

#### **Features**

- ✓ Brand
- ✓ Year (Mfg)
- Engine Capacity
- ✓ Mileage
- Distance travelled
- ✓ Cab?

#### **Response / Target**

✓ Price (in Rs.)

## **Classification and Regression**

*Classification* problems are supervised Learning problems where target/response variables take only discrete (finite/countable) values.

**Example: Employability prediction** 

**Regression** problems are supervised learning problems where target / response is a continuous variable (or equivalently can take any real number).

Example: Predicting price of a used car

## Classification and Regression - Examples

#### Classification

- ✓ Predicting whether a patient has a particular disease or not.
- ✓ Hand written digit recognition
- ✓ Email spam detection

#### Regression

- ✓ Predicting house/property price
- ✓ Predicting stock market price
- ✓ Predicting sales of a product



# Thank You!



## Post Graduate Certificate Programme in AI & ML

| S.No. | Course                                          | Duration |
|-------|-------------------------------------------------|----------|
| 1     | Regression                                      | 5 Weeks  |
| 2     | Feature Engineering                             | 4 Weeks  |
| 3     | Classification                                  | 9 Weeks  |
| 4     | Unsupervised Learning & Association Rule Mining | 7 Weeks  |
| 5     | Text Mining                                     | 5 Weeks  |
| 6     | Deep Learning & Artificial Neural Networks      | 6 Weeks  |
| 7     | Capstone Project                                | 8 Weeks  |

**Duration: 44 weeks** 

- ✓ Refresher course in Python
- ✓ No refresher course on mathematical, statistical and probability foundations. Relevant topics will be covered as and when they are required in the course

## **Course 1: Regression**

- Building simple and multiple regression models using
  - ✓ Gradient / Stochastic Gradient / Mini-Batch Gradient Descent Algorithm
  - ✓ Solving normal equations
- > Evaluation Measures (R<sup>2</sup>, MSE)
- Model Selection
- Overfitting
- Ridge & Lasso Regression
- > Forward & Backward stepwise feature selection

**Duration: 5 weeks** 

## **Course 2: Feature Engineering**

- > Types of data and its sources, data quality (Missing values, Noisy data)
- Data Preprocessing Aggregation and Sampling, Feature Creation, Discretization and Banalization, Data Transformation
- Feature Subset Selection
- Dimensionality Reduction Principal Component Analysis
- Measures of Similarity and Dissimilarity
- Visualization Box / scatter plots, Contour plots, Heat maps, Parallel Coordinates, TSNE

**Duration: 4 weeks** 

#### **Course 3: Classification**

- ➤ Types of classification algorithms Discriminative models, Probabilistic Generative models and , Tree based models
- Nearest-neighbor Methods
- Naïve Bayes Classifier
- Logistic Regression
- Decision Tree
- Support Vector Machines

Ensemble Methods

**Duration: 9 weeks** 

# Course 4: Unsupervised Learning & Association Rule Mining

- K-Means & EM Algorithm
- Hierarchical Clustering
- Density Based Clustering
- Assessing Quality of Clustering
- Association Rule Mining
- > Time series Prediction and Markov Process

**Duration: 7 weeks** 

## **Course 5: Text Mining**

- Document vectorization, Information Retrieval Pipeline, Stemming, Lemmatization, Wild card query using K-Gram index
- Parts of Speech Tagging
- > Topic modelling using LDA
- Sentiment Analysis
- Recommender Systems Collaborative filtering, metrics

**Duration: 5 weeks** 

#### **Course 6: Deep Learning and Artificial Neural Networks**

- > Artificial Neural Networks, Back propagation algorithm
- Sequence Modeling in Neural Network RNN, LSTM
- Deep learning CNN, RCNN, Faster RCNN
- Auto encoders with Deep Learning
- Generative deep learning models Boltzmann Machine, Restricted Boltzmann Machine, Deep Belief Machines, GAN

**Duration: 6 weeks** 

## **Course 7: Capstone Project**

- > Real life problems encompassing a typical data science pipeline
- Jointly mentored by the industry experts and faculty.
- Comparative study of the relevant techniques covered in the course.
- > Fortnight review of progress of the project.

**Duration: 8 weeks** 

#### **Evaluation**

- ✓ Every course will have assignments, quizzes, minor projects and comprehensive examination
- ✓ The distribution of marks for each of these components will be detailed in the handout of each course
- ✓ For example the evaluation scheme for Regression module is as follows:

| <b>Evaluation Component</b>      | Marks | Туре   |
|----------------------------------|-------|--------|
| Quizzes (2)                      | 24%   | Open   |
| Assignments/Exercises            | 12%   | Open   |
| Minor Projects (Evaluated twice) | 24%   | Open   |
| Comprehensive Examination        | 40%   | Closed |

#### **Evaluation**

- ✓ Quizzes are online examinations and are announced at the start of the course
- ✓ Comprehensive examinations for Course 1, Course 2 and Course 3 will be conducted at the end of the Course 3
- ✓ Comprehensive examinations for Course 4, Course 5 and Course 6 will be conducted at the end of the Course 6
- ✓ Successful completion of the certificate program would require completion of all the courses with a minimum C- grade in each course

#### **Course Administration**

- ✓ The video content for a week will be uploaded on the first day (Monday) of the week
- ✓ Contact session with the instructor on the following Sunday for any clarifications
- ✓ Queries should be sent to the instructor by Friday 10PM for any clarifications to be dealt on the Sunday
- ✓ Students are encouraged to make use of discussion forum to reap benefits of collaborative learning
- ✓ Teaching Assistants will be active on discussion forums



# Thank You!



**Regression** problems are supervised learning problems where target / response is a continuous variable (or equivalently can take any real number).

#### **Predicting sales of an item**



| Advertising  | Sales        |
|--------------|--------------|
| (in lakhs of | (in lakhs of |
| rupees)      | rupees)      |
| 20           | 625          |
| 25           | 730          |
| 30           | 850          |
| 35           | 1075         |
|              |              |
|              |              |
|              |              |
|              |              |





# Thank You!



#### **Predicting sales of an item**



| Advertising (in lakhs of rupees) | Sales<br>(in lakhs of<br>rupees) |
|----------------------------------|----------------------------------|
| 10                               | 520                              |
| 20                               | 625                              |
| 35                               | 700                              |
| 50                               | 780                              |
|                                  |                                  |
|                                  |                                  |
|                                  |                                  |
|                                  |                                  |

#### **Predicting sales of an item**



| Advertising (in lakhs of rupees) | Sales<br>(in lakhs of<br>rupees) |
|----------------------------------|----------------------------------|
| 10                               | 520                              |
| 20                               | 625                              |
| 35                               | 700                              |
| 50                               | 780                              |
|                                  |                                  |
|                                  |                                  |
|                                  |                                  |
|                                  |                                  |













# Thank You!





#### **Predicting sales of an item**



| Advertising (in lakhs of rupees) | Sales<br>(in lakhs of<br>rupees) |
|----------------------------------|----------------------------------|
| 10                               | 520                              |
| 20                               | 625                              |
| 35                               | 700                              |
| 50                               | 780                              |
|                                  |                                  |
|                                  |                                  |
|                                  |                                  |
|                                  |                                  |













# Thank You!















# Thank You!



#### **Predicting sales of an item**



| Advertising (in lakhs of rupees) | Sales<br>(in lakhs of<br>rupees) |
|----------------------------------|----------------------------------|
| 10                               | 520                              |
| 20                               | 625                              |
| 35                               | 700                              |
| 50                               | 780                              |
|                                  |                                  |
|                                  |                                  |
|                                  |                                  |
|                                  |                                  |











#### Regression





# Thank You!





#### Regression





# Thank You!











#### **Stochastic Gradient Descent Algorithm**



#### **Mini-batch Gradient Descent Algorithm**



#### **Mini-batch Gradient Descent Algorithm**



#### **Mini-batch Gradient Descent Algorithm**





# Thank You!



## **Discrete & Continuous Distributions**



## **Discrete & Continuous Distributions**



### Random Variable

A **random variable**, usually written X, is a **variable** whose possible values are numerical outcomes of a **random** phenomenon or experiment.

#### **Examples**

- $\checkmark$  X = number of heads when the experiment is flipping a coin 20 times.
- ✓ C = the daily change in a stock price.
- ✓ R = the number of kilometers per litter you get on your car during a family vacation.

### Random Variable

#### **Discrete Random Variable**

- > one that takes on a *countable* number of values
- ➤ usually count data [Number of]
- > this means you can sit down and list all possible outcomes without missing any

#### **Example:**

- ✓ X = sum of values on the roll of two dice: X has to be either 2, 3, 4, ..., or 12.
- ✓ Y = number of accidents in Hyderabad during a week: Y has to be 0, 1, 2, 3,
- 4, 5, 6, 7, 8, ....."real big number"

#### Random Variable

#### **Continuous Random Variable**

- > one that takes on an uncountable number of values
- >usually measurement data [time, weight, distance, etc]
- > this means you can never list all possible outcomes even if you had an infinite amount of time

#### **Example:**

Exercise: try to list all possible numbers between 0 and 1

### **Discrete Probability Disribution**

A *probability distribution (density function)* is a table, formula, or graph that describes the values of a random variable and the probability associated with these values.

#### **Discrete Probability Distribution**

X = outcome of rolling one die

| X    | 1   | 2   | 3   | 4   | 5   | 6   |
|------|-----|-----|-----|-----|-----|-----|
| P(X) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |

#### **Discrete Probability Notation...**

- ✓ An upper-case letter will represent the name of the random variable, usually X.
- ✓ Its lower-case counterpart, x, will represent the **value** of the random variable.
- The probability that the random variable X will equal x is: P(X = x) or more simply P(x)
- ✓ X = number of heads in 10 flips of coin P(X = 5) = P(5) = probability of 5 heads (x) in 10 flips

### Mean, Variance & Standard Deviation

- ✓ The mean of a discrete random variable is the weighted average of all of its values. The weights are the probabilities.
- ✓ This parameter is also called the expected value of X and is represented by E(X).

$$E(X) = \mu = \sum_{all \ x} x P(x)$$

✓ The variance is

$$V(X) = \sigma^2 = \sum_{\alpha \mid I \mid x} (x - \mu)^2 P(x)$$

✓ The standard deviation is

$$\sigma = \sqrt{\sigma^2}$$

# Computing Mean, Variance, and Std. Dev. for Discrete Random Variable

**Example** A mutual fund sales person knows that there is 20% chance of closing a sale on each call she makes. What is the **probability distribution** and mean of the number of sales if she plans to call three customers?

#### Solution:

Random Variable = X = # Sales Made in 3 Attempts

Let S denote the event of closing a sale P(S)=.20

Thus  $S^{C}$  is the event of not closing a sale, and  $P(S^{C})=.80$ 

Seems reasonable to assume that sales are **independent**.

### Developing Discrete Probability Distributions

#### Sample Space: List of all possible outcomes

SSS : 
$$P(X = 3) = (.2)^{*}(.2)^{*}(.2) = 0.008$$
 $P(3) = .008$ 

SSSC :  $P(X = 2) = (.2)^{*}(.2)^{*}(.8) = 0.032$ 

SCSS :  $P(X = 2) = (.2)^{*}(.8)^{*}(.2) = 0.032$ 
 $P(2) = .032 + .032 + .032$ 

(Additive Law)

SCSC :  $P(X = 1) = (.2)^{*}(.8)^{*}(.8) = 0.128$ 

SCSC :  $P(X = 1) = (.8)^{*}(.2)^{*}(.8) = 0.128$ 

SCSC :  $P(X = 1) = (.8)^{*}(.2)^{*}(.8) = 0.128$ 
 $P(1) = .128 + .128 + .128$ 

(Additive Law)

SCSCS :  $P(X = 0) = (.8)^{*}(.8)^{*}(.8) = 0.512$ 
 $P(0) = .512$ 

X

 $P(0) = .512$ 

X

 $P(0) = .512$ 

### **Computing Mean for Discrete Random Variable**

| X    | 0     | 1     | 2     | 3     |
|------|-------|-------|-------|-------|
| P(x) | 0.512 | 0.384 | 0.096 | 0.008 |

✓ Mean = 
$$0*(.512) + 1*(.384) + 2*(.096) + 3*(.008)$$
  
=  $0 + 0.384 + 0.192 + 0.024$   
=  $0.6$ 



# Thank You!



## **Continuous Probability Distributions**

A random variable is continuous if it can assume any value in some interval of real numbers.

Def: Let X be a continuous random variable. A function f such that

- 1.  $f(x) \ge 0$  for real x
- 2.
- 3.

is called probability density function.

A random variable X with probability density function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

is said to have normal distribution with parameters µ and sigma.

$$f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

#### **Note constants:**

 $\pi$ =3.14159

e=2.71828

This is a bell shaped curve with different centers and spreads depending on  $\mu$  and  $\sigma$ 



Normal distribution is defined by its mean and standard deviation!!

$$\mathbf{E(X)} = \mu = \int_{-\infty}^{+\infty} x \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$$

$$Var(X)=\sigma^2 = \left[ \int_{-\infty}^{+\infty} x^2 \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx \right] - \mu^2$$

Standard Deviation(X)=σ



### \*\*The beauty of the normal curve:

No matter what  $\mu$  and  $\sigma$  are, the area between  $\mu$ - $\sigma$  and  $\mu$ + $\sigma$  is about 68%; the area between  $\mu$ - $2\sigma$  and  $\mu$ + $2\sigma$  is about 95%; and the area between  $\mu$ - $3\sigma$  and  $\mu$ + $3\sigma$  is about 99.7%. Almost all values fall within 3 standard deviations.

#### 68-95-99.7 Rule



#### 68-95-99.7 Rule in Math terms...

$$\int_{\mu-\sigma}^{\mu+\sigma} \frac{1}{\sigma\sqrt{2\pi}} \bullet e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = .68$$

$$\int_{\mu-2\sigma}^{\mu+2\sigma} \frac{1}{\sigma\sqrt{2\pi}} \bullet e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = .95$$

$$\int_{\mu-3\sigma}^{\mu+3\sigma} \frac{1}{\sigma\sqrt{2\pi}} \bullet e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = .997$$



A random variable T with probability density function

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-rac{
u+1}{2}},$$

is said to have a t distribution with v degrees of freedom and  $\Gamma$  (gamma) is the Gamma function defined by

$$\Gamma(x) \equiv \int_0^\infty u^{x-1} e^{-u} \, \mathrm{d}u.$$



#### **Upper Tail Area**

df .25 .10

.05

1 1.000 3.078 6.314

**2** 0.817 1.886 **2.920** 

0.765 1.638 2.353

The body of the table contains t values, not probabilities

Let: n = 3  
df = 
$$n$$
 - 1 = 2  
 $\alpha$  = .10  
 $\alpha/2$  = .05







# **Continuous Probability Distributions**





# Thank You!

















# Thank You!



















# Thank You!











|           | Coefficient | Std. error | t-statistic | p value |
|-----------|-------------|------------|-------------|---------|
| Intercept | 7.15        | 0.56       | 12.76       | <0.01   |
| Advt.     | 1.95        | 0.12       | 16.25       | <0.01   |







# Thank You!



### **Predicting sales of an item**



| Advertising (in lakhs of rupees) | Sales<br>(in lakhs of<br>rupees) |
|----------------------------------|----------------------------------|
| 10                               | 520                              |
| 20                               | 625                              |
| 35                               | 700                              |
| 50                               | 780                              |
| 20                               | 605                              |
|                                  |                                  |

### **Predicting sales of an item**



| Advertising (in lakhs of rupees) | Sales<br>(in lakhs of<br>rupees) |
|----------------------------------|----------------------------------|
| 10                               | 520                              |
| 20                               | 625                              |
| 35                               | 700                              |
| 50                               | 780                              |
| 20                               | 605                              |
|                                  |                                  |

### **Predicting sales of an item**



| Advertising (in lakhs of rupees) | Sales<br>(in lakhs of<br>rupees) |
|----------------------------------|----------------------------------|
| 10                               | 520                              |
| 20                               | 625                              |
| 35                               | 700                              |
| 50                               | 780                              |
| 20                               | 605                              |
|                                  |                                  |



# Thank You!

































# Thank You!







# Thank You!







# Thank You!



#### **Best Subset Selection**



#### **Best Subset Selection**

Training Dataset  $-2/3^{rd}$  of Data Set, Testing Dataset  $-1/3^{rd}$  of Data Set

- 1. Let  $M_0$  denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For k = 1, 2, ...D:
- (a) Fit all  $\binom{D}{k}$  models that contain exactly k predictors on training dataset.
- (b) Pick the best among these  $\binom{D}{k}$  models, and call it  $M_k$ . Here *best* is defined as having the smallest RSS on training dataset (or equivalently largest  $R^2$ ).
- 3. Select a single best model from among  $M_0, \ldots, M_D$  having the smallest RSS on testing error (or equivalently largest  $R^2$ ).

#### **Best Subset Selection**





# Thank You!



## **Subset Selection**



#### Forward stepwise Selection

Training Dataset  $-2/3^{rd}$  of Data Set, Testing Dataset  $-1/3^{rd}$  of Data Set

- 1. Let  $M_0$  denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For k = 0, 1, 2, ...D-1:
- (a) Consider all D k models that augment the predictors in  $M_k$  with one additional predictor.
- (b) Choose the *best* among these D k models, and call it  $M_{k+1}$ . Here *best* is defined as having smallest RSS on training dataset (or highest  $R^2$ ).
- 3. Select a single best model from among  $M_0$ ,  $M_1$ , . . . ,  $M_D$  having the smallest RSS on testing error (or equivalently largest  $R^2$ ).

# Forward stepwise Selection



#### **Backward stepwise Selection**

Training Dataset  $-2/3^{rd}$  of Data Set, Testing Dataset  $-1/3^{rd}$  of Data Set

- 1. Let  $M_D$  denote the *full* model, which contains all p predictors.
- 2. For  $k = D, D 1, \ldots, 1$ :
- (a) Consider all k models that contain all but one of the predictors in  $M_k$ , for a total of k-1 predictors.
- (b) Choose the *best* among these k models, and call it  $M_{k-1}$ . Here

best is defined as having smallest RSS on training dataset (or highest  $R^2$ ).

3. Select a single best model from among  $M_0$ ,  $M_1$ ...,  $M_D$  having smallest RSS on testing error (or equivalently largest  $R^2$ ).

# **Backward stepwise Selection**















# Thank You!





# Model Selection - 0th Order Polynomial



# Model Selection - 1<sup>st</sup> Order Polynomial



## **Model Selection - 3rd Order Polynomial**



## **Model Selection - 9th Order Polynomial**





Root-Mean-Square (RMS) Error:  $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^\star)/N}$ 



Root-Mean-Square (RMS) Error:  $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^{\star})/N}$ 





# Thank You!







#### **Polynomial Coefficients**

|                          | M=0  | M = 1 | M = 3                | M=9         |
|--------------------------|------|-------|----------------------|-------------|
| $\overline{w_0^{\star}}$ | 0.19 | 0.82  | 0.31                 | 0.35        |
| $w_1^{\star}$            |      | -1.27 | 7.99                 | 232.37      |
| $w_2^\star$              |      |       | <b>-25.4</b> 3       | -5321.83    |
| $w_3^\star$              |      |       | 1 <mark>7.</mark> 37 | 48568.31    |
| $w_4^\star$              |      |       |                      | -231639.30  |
| $w_5^\star$              |      |       |                      | 640042.26   |
| $w_6^{\star}$            |      |       |                      | -1061800.52 |
| $w_7^\star$              |      |       |                      | 1042400.18  |
| $w_8^\star$              |      |       |                      | -557682.99  |
| $w_9^{\star}$            |      |       |                      | 125201.43   |

#### 9<sup>th</sup> Order Polynomial







# Model Selection - 0th Order Polynomial



# Model Selection - 1<sup>st</sup> Order Polynomial



### **Model Selection - 3rd Order Polynomial**



### **Model Selection - 9th Order Polynomial**





# Thank You!



### **Model Selection - 9th Order Polynomial**

**Data Set Size: N = 10** 



**Data Set Size: N = 15** 

9<sup>th</sup> Order Polynomial



#### **Data Set Size: N = 100**

9<sup>th</sup> Order Polynomial



#### **Polynomial Coefficients**

|                          | M=0  | M = 1 | M = 3                | M=9             |
|--------------------------|------|-------|----------------------|-----------------|
| $\overline{w_0^{\star}}$ | 0.19 | 0.82  | 0.31                 | 0.35            |
| $w_1^\star$              |      | -1.27 | 7.99                 | 232.37          |
| $w_2^\star$              |      |       | <b>-25.4</b> 3       | <b>-5321.83</b> |
| $w_3^\star$              |      |       | 1 <mark>7.</mark> 37 | 48568.31        |
| $w_4^\star$              |      |       |                      | -231639.30      |
| $w_5^\star$              |      |       |                      | 640042.26       |
| $w_6^{\star}$            |      |       |                      | -1061800.52     |
| $w_7^\star$              |      |       |                      | 1042400.18      |
| $w_8^\star$              |      |       |                      | -557682.99      |
| $w_9^{\star}$            |      |       |                      | 125201.43       |



## **Regularization:** $E_{RMS}$ vs. $\ln \lambda$







### 9<sup>th</sup> Order Polynomial







### Model Selection - 0th Order Polynomial



### Model Selection - 1<sup>st</sup> Order Polynomial



### **Model Selection - 3rd Order Polynomial**



### **Model Selection - 9th Order Polynomial**





# Thank You!











#### **Polynomial Coefficients**

|                          | M=0  | M = 1 | M = 3                | M=9             |
|--------------------------|------|-------|----------------------|-----------------|
| $\overline{w_0^{\star}}$ | 0.19 | 0.82  | 0.31                 | 0.35            |
| $w_1^\star$              |      | -1.27 | 7.99                 | 232.37          |
| $w_2^\star$              |      |       | <b>-25.4</b> 3       | <b>-5321.83</b> |
| $w_3^\star$              |      |       | 1 <mark>7.</mark> 37 | 48568.31        |
| $w_4^\star$              |      |       |                      | -231639.30      |
| $w_5^\star$              |      |       |                      | 640042.26       |
| $w_6^{\star}$            |      |       |                      | -1061800.52     |
| $w_7^\star$              |      |       |                      | 1042400.18      |
| $w_8^\star$              |      |       |                      | -557682.99      |
| $w_9^{\star}$            |      |       |                      | 125201.43       |











# Lasso Regression









# Thank You!



### **Bias-Variance**



### **Bias-Variance**





















# Thank You!































# Thank You!