Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 10B Ray Intersections Planar Intersections

Collision Detection with Rays

- Can approximate collision detection with rays in certain conditions
- Example: car driving on a road
 - Put a ray at each wheel and intersect it with road geometry
 - 4 wheels are the only points that the car touches the ground
 - Set origin of each ray at the point where wheel touches ground
 - Test intersection of rays with ground:
 - d = 0, wheel is touching the ground
 - d > 0, wheel is above the ground
 - d < 0, wheel penetrates the environment
 - Use these distances for collision response
 - Move wheel to stay in touch with ground
- Requires distance further back along the ray
 - Can have a negative distance
 - Usually move the ray origin in a negative direction rather than testing for intersections in both directions

Triangle/Triangle Intersection

- Triangles are the predominant drawing primitive
 - Collision detection at lowest level requires an efficient method to determine if 2 triangles intersect
- Various Methods
 - Brute force
 - Interval Overlap
 - Devillers-Guigue Method
 - Best performance, but complicated
 - ERIT's method
 - Simpler than Interval Overlap with near-equal performance

Triangle/Triangle Intersection (cont.)

- Problem description
 - 2 triangles defined by their vertices and plane equations
 - $T_1 = \Delta p_0 p_1 p_2$, In plane: π_1
 - $T_2 = \Delta q_0 q_1 q_2$, In plane: π_2
- Common trivial rejection case using a separating plane
 - Plane of one of the triangles
 - Triangle T₁ lies on plane π₁
 - No intersection if T₂ is entirely above/below π₁
 - Triangle T_2 lies on plane $\pi 2$
 - No intersection if T_1 is entirely above/below π_2

Co-planar Triangle Intersection

- If all signed distances = 0 then the triangles are coplanar
 - Project onto 2D plane maximizing area of triangle
 - e.g. if(abs(normal.x) >= abs(normal.y) && abs(normal.x) >= abs(normal.z)) // use the y-z plane
 - 2D triangle-triangle overlap test
 - Test all edges of T₁ for intersection with T₂
 - If any edges intersect then the triangles intersect
 - Test if T₁ is totally enclosed in T₂ and vice versa
 - Point in triangle tests
 - Point-in-triangle test
 - Compute barycentric coordinate of q for Triangle (p₀, p₁, p₂)
 - $u^*p_0 + v^*p_1 + (1-u-v)^*p_2 = q <=> u^*(p_2-p_0) + v^*(p_2-p_1) = q$
 - Point inside if u >= 0 and v >= 0 and (u+v) <= 1

$$\begin{bmatrix} (p_0 - p_2)_{x} & (p_1 - p_2)_{x} \\ (p_0 - p_2)_{y} & (p_1 - p_2)_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} q_x \\ q_y \end{bmatrix}$$

Line-Segment/Plane Intersection

- Solve plane equation for each end of the line segment
 - $\bullet \qquad d_1 = \mathbf{n} \cdot p_1 \mathbf{d} \qquad \qquad d_2 = \mathbf{n} \cdot p_2 \mathbf{d}$
 - No intersection if signs are equal
- Intersection Point

•
$$p_i = p_0 + \frac{d_1}{d_1 - d_2} \left(p_1 - p_0 \right)$$

Brute Force

- Method
 - Given two triangles T₁ (p₀, p₁, p₂) and T₂ (q₀, q₁, q₂)
 - Test if p_i-p_{i+1} intersects T₂
 - Test if q_i-q_{i+1} intersects T₁
 - 6 tests
 - Uses the line-segment/plane intersection
 - Test if intersection point is inside the triangle
- Optimization
 - Trivially reject if T₂ above/below π₁
 - or if T₁ above/below π₂
 - Performs relatively well

Interval Overlap Method

- Method
 - Compute the plane equation of T₂
 - Trivial rejection: all points of T₁ on same side of T₂
 - Compute plane equation of T₁
 - Trivial rejection: all points of T₂ on same side of T₁
 - Compute intersection line and project onto largest axis
 - Compute intervals for each triangle
 - Intersect the intervals

Computing Intersect Intervals

- Intersection of Plane1 and Plane2 is a line, I = o + td
- Intersections form intervals on I
 - If these intervals overlap, the triangles overlap as well
 - Figure 22.19 (16.15 in 3rd Edition) illustration of intersection intervals
 - Due to prior tests, both triangles are guaranteed to intersect I

Computing Intersect Intervals

- Assume p_0 lies on one side of π_2 , and p_1 and p_2 lie on the other side
 - Compute intersection of p_0-p_1 and p_0-p_2 with π_2
 - Use line-segment/plane intersection from previous slide
 - Intersection points u₁, u₂
 - Repeat for T₂ against π₁
 - Results in intersection points v₁, v₂
- Treat line as a vector and project the intersection points onto it $d_i = n \cdot u_i$
 - Distance of each point along the line from the origin
 - Triangles intersect if distances for u_i overlap distances for v_i
- See Figure 22.20 (16.16 in 3rd Edition) for geometric representation

Devillers-Guigue Method

- https://inria.hal.science/inria-00072100/document
- Simplified Interval Overlap
 - Compute π_1 for T_1 , π_2 for T_2
 - Rearrange T_1 (p_0 above π_2 , p_1 and p_2 below π_2)
 - Rearrange T₂ (q₀ above π₁, q₁ and q₂ below π₁)
 - Compute overlap using the "screw" test
 - determinant of 4x4 matrix where columns (or rows) define two line segments
 - uses homogeneous coordinates
 - The entire test becomes
 - T1 intersects T2 if determinant₁ >= 0 and determinant₂ >= 0

$$\det_{1} = \begin{vmatrix} p_{0} & p_{1} & q_{0} & q_{1} \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

$$\det_{2} = \begin{vmatrix} p_{0} & p_{2} & q_{2} & q_{0} \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

ERIT's Method

- Method from ERIT by Martin Held
 - A collection of Efficient and Reliable Intersection Tests
- Method
 - 1. Compute plane for $T_1(\pi_1)$
 - Trivial reject: all points of T₂ are on same side of plane
 - Store the signed distances
 - 2. If triangles are coplanar: use coplanar intersect test
 - 3. Compute intersection between π₁ and T₂
 - Results in a line segment that is coplanar with π₁
 - Test if this line segment intersects or is totally contained in T₁
 - If so then the triangles intersect, otherwise they do not

