Statistics Study Sheet

:: Key Terms ::

- statistic numerical descriptive of sample
- parameter numerical descriptive of population
- expected value what we expect the mean to be
- confidence interval the # in $\mu \pm$ # that a certain percentage of data is certain to fall within this range
- margin of error general formula (invNorm * $(0.5 + \{CONFIDENCE\ INTERVAL/2\}) \times (\mu/\sqrt{n})$

:: Symbols ::

- n number of trials
- p probability of success
- q probability of failure (used in binomial probabilities)
- r # of successes (used in binomial probabilities)
- \bar{x} mean (statistic)
- μ mean (parameter)
- s^2 variance (statistic)
- σ^2 variance (parameter)
- s standard deviation (statistic)
- σ standard deviation (parameter)
- \hat{p} proportion (statistic)
- p proportion (parameter)

:: Methods ::

- A. one list of data use List \rightarrow 1-var stats. You can get the mean, median, mode, quarters, and std-dev
- B. two lists of related data (x,y) use 1-var stats, but pass L_1 , L_2 as the argument
- C. Binomial Distribution use binomcdf(n,p,r)

$$\sqrt{(npq)} = \sigma$$
 and $\mu = np$

D. Normal distribution $\mu=0$, and $\sigma=1$

use z-values to manipulate data

invNorm(z-score, μ , σ)= x-value

E. Distribution of means. If not normal or unknown, n > 30 must be true

new $\sigma = (\text{regular } \sigma)/(\sqrt{n})$

- F. Matrix (a chart) use X² test (chi-squared test)
- G. Two lists use ANOVA test

:: Problem Solving Checklist ::

- 1. Which formula should you use? (Consult study sheets)
- 2. are you finding t-value or z-score?
- 3. Is the test one tailed or two tailed?

:: Syntax Help ::

normalpdf(#)-gives the probability of that EXACT number occurring normalcdf(lower limit, upper limit, mean, std-dev) invNorm(are on the left, mean, sigma) binompdf(n,p,r) – probability of r occurring binomcdf(n,p,r) – sum of probabilities from 0 to r tcdf(lower, upper, degrees of freedom) invT(area, degrees of freedom)

*NOTE – Don't blindly trust the calculator, always check to make sure the answer makes sense!

:: Extra ::

Chebyshev formula gives us % of data within k std-devs IFF k>1 % data = $1 - (1/k^2)$

Note – a number greater than 2.5std-devs away from the mean is a rare event, an outlier

Normal distribution 68% within 1σ 95% within 2σ 99.7 within 3σ

Confidence Interval Formulas

All confidence intervals are of the form

Point Estimate $\pm E$ where E = Maximal Margin of Error

Parameter	Point Estimate	E	Assumptions
μ	$\frac{-}{x}$	$Z_c \sigma_{\overline{r}}$	σ known
		- x	\bar{x} 's normal
μ	$\frac{\overline{x}}{x}$, S	σ unknown
		$t_c \cdot \frac{s}{\sqrt{n}}$	\bar{x} 's normal
		$df = n - 1$ $z_c \sqrt{\frac{\hat{p}\hat{q}}{n}}$	
p	$\hat{p} - \frac{r}{r}$	$\hat{p}\hat{q}$	$n\hat{p} > 5$
	p-n	* 75	$\hat{nq} > 5$
$\mu_1 - \mu_2$	$\hat{p} = \frac{r}{n}$ $\overline{x_1 - x_2}$	$z_c \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	σ_1, σ_2 known
		$\int_{c}^{z_{c}} \sqrt{\frac{n_{1}}{n_{1}} + \frac{n_{2}}{n_{2}}}$	$\overline{x_1} - \overline{x_2}$'s normal
		, , ,	IRS
$\mu_1 - \mu_2$	$\overline{x_1} - \overline{x_2}$	$t_c \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	σ_1, σ_2 unknown
		$\int_{c}^{c} \sqrt{\frac{1}{n_1} + \frac{2}{n_2}}$	and assumed
		$df = MIN(n_1 - 1, n_2 - 1)$	unequal
		$(n_1 - 1, n_2 - 1)$	$\overline{x_1} - \overline{x_2}$'s normal
			IRS
$\mu_1 - \mu_2$	$\overline{x}_1 - \overline{x}_2$	$\int t_c S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	σ_1, σ_2 unknown
		$\sqrt{\frac{n_c}{n_1}} \sqrt{\frac{n_1}{n_2}}$	and assumed equal
		$(n_1-1)s^2+(n_2-1)s^2$	$\overline{x_1} - \overline{x_2}$'s normal
		$S = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$	IRS
		$df = n_1 + n_2 - 2$	
μ_d	\overline{d}	S_d	d's normal
		$t_c \cdot \frac{s_d}{\sqrt{n}}$	DRS
		$df = n - 1$ $z_{c} \sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}} + \frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}}$	
$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\frac{\hat{p}_1\hat{q}_1 + \hat{p}_2\hat{q}_2}{\hat{p}_1\hat{q}_1 + \hat{q}_2\hat{q}_2}$	$n_1 \hat{p}_1 > 5$
		$\int_{0}^{\infty} \sqrt{n_1} n_2$	$n_1 \hat{q}_1 > 5$
			$n_2 \hat{p}_2 > 5$
			$n_2 \hat{q}_2 > 5$

Hypothesis Tests

All test statistics are of the form

Point Estimate - Parameter Standard Error

Parameter	Point Estimate	Test Statistic	Assumptions
μ	$\frac{1}{x}$	$\begin{bmatrix} -x - \mu \end{bmatrix}$	σ known
		$z = \frac{x - \mu}{\sigma_{\overline{x}}}$	\bar{x} 's normal
μ	$\frac{-}{x}$	$\frac{-}{x-u}$	σ unknown
		$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$	$\frac{1}{x}$'s normal
		s / \sqrt{n} $df = n - 1$ $z = \frac{\widehat{p} - p}{\sqrt{\frac{pq}{n}}}$ $z = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	
p	$\hat{p} = \frac{r}{r}$	$\tau = \frac{\hat{p} - p}{1}$	np > 5
	$\hat{p} = \frac{r}{n}$	\sqrt{pq}	nq > 5
		\sqrt{n}	
$\mu_1 - \mu_2$	$-\frac{1}{x_1-x_2}$	$(x_1 - x_2) - (\mu_1 - \mu_2)$	σ_1, σ_2 known
		$z = \frac{1}{\sqrt{\sigma^2 + \sigma^2}}$	$-\frac{1}{x_1-x_2}$'s normal
		$\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}$	IRS
$\mu_1 - \mu_2$	$\frac{-}{x_1-x_2}$	$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	σ_1, σ_2 unknown
		$t = \frac{\left(\frac{1}{2} - \frac{1}{2}\right)^2}{\left(\frac{1}{2} - \frac{1}{2}\right)^2}$	and assumed
		$\int_{A} \frac{S_{1}^{2}}{1} + \frac{S_{2}^{2}}{1}$	unequal
		V 1 2	$x_1 - x_2$'s normal
		$df = MIN(n_1 - 1, n_2 - 1)$	IRS
$\mu_1 - \mu_2$	$\overline{x_1} - \overline{x_2}$	$t = \frac{\left(\bar{x}_1 - \bar{x}_2\right) - \left(\mu_1 - \mu_2\right)}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	σ_1, σ_2 unknown
		$t = \frac{\sqrt{1 - 1}}{\sqrt{1 - 1}}$	and assumed equal
		$S\sqrt{\frac{1}{n}+\frac{1}{n}}$	$x_1 - x_2$'s normal
			IRS
		$s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$	
		1 2	
		$df = n_1 + n_2 - 2$	
μ_d	\overline{d}	$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$	d's normal
		$\int_{0}^{\infty} S_{d} / \sqrt{n}$	DRS
		df = n - 1	
$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$z = \frac{(\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\overline{p}\overline{q}}{n_1} + \frac{\overline{p}\overline{q}}{n_2}}}$	$n_1 \overline{p} > 5$
		$\sqrt{\overline{p}\overline{q}} + \overline{p}\overline{q}$	$n_1 \overline{q} > 5$
			$n_2 \frac{-}{p} > 5$
		$\overline{p} = \frac{r_1 + r_2}{n_1 + n_2}$	$n_{1}\overline{q} > 5$ $n_{2}\overline{p} > 5$ $n_{2}\overline{q} > 5$
		$n_1 + n_2$	