Online Algorithm

Presented by Ting-An Chen

Advisor: De-Nian Yang, Ming-Syan Chen

Jul 2, 2020

Outline

- Introduction online algorithm
- Online v.s. Offline algorithm
- Online algorithm performance competitiveness analysis
- Case study
 - Case 1. Ski Rental Problem
 - Case 2. Deterministic Paging Problem

Online algorithm

- Sequence of data
- Limited memory
- A sketch of data
 Summary
- Return output at each time stamp
- Never know the nature of the coming data, but expected!
- OPT is unknown
- → v.s. Offline OPT (known) How to compare?

Online algorithm (A) v.s. Offline OPT (OPT)

- Competitiveness analysis
 - $\frac{\text{Cost}(A)}{\text{Cost}(OPT)} \le \text{bound, then A is } competitive.$
 - [Def.] α competitive online algorithm.
 - σ : an input sequence
 - c: a cost function
 - ->
 - A is said to be α competitive if $c_A(\sigma) \leq \alpha \cdot c_{OPT}(\sigma)$.
 - α : competitive ratio.

Case 1. Ski-rental problem

- Ski everyday
- Rent or buy the skiing equipment (daily decision)
 - Rent one day, \$1.
 - Buy, **\$C**.
- Assumption: might get hurt each day then cannot ski.
- Let d be the total number of days skiing.
- Algorithm: "Rent for C days, then buy on (C+1)-th day."
 - [pf.] 2 competitive online algorithm, i.e., $c_A(\sigma) \leq 2 \cdot c_{OPT}(\sigma)$.

case	$c_A(\sigma)$	$c_{OPT}(\sigma)$
If $d \le C$	d	d
If d > C	2C	С

Online algorithm (A) v.s. Offline OPT (OPT)

- Competitiveness analysis
 - $\frac{\text{Cost}(A)}{\text{Cost}(OPT)} \le \text{bound, then A is } competitive.$

Approximation ratio?

- [Def.] α competitive online algorithm.
- σ : an input sequence
- c: a cost function
- ->
- A is said to be α competitive if $c_A(\sigma) \leq \alpha \cdot c_{OPT}(\sigma)$.
- α : competitive ratio.

Online v.s. Offline (traditional) algorithm

	Online	Offline	
Compare to Offline OPT	Competitive ratio	Approximation ratio	
Cost(A) related to 1. Inputs	 a. Unknown but expected b. Random w/o known patterns → Online alg. Cost(A): → fluctuate 	 a. Known b. Not random –OR- Random w/. Distribution → Offline alg. Cost(A): → stable 	
Cost(A) related to 2. Algorithm	At different states Same strategy - Deterministic Different strategies – Random	Single strategy	
Inputs to the Alg.	Hard –OR- easy → average case	Hard → worst case	

<u>events</u>

strategy

Studying worst case in Online algorithm?

Adversary!!

To consider the case: the inputs make the algorithm worst

Online algorithm – random v.s. adversarial inputs

	Online (random inputs)	Online (adversarial inputs)	Offline
Compare to Offline OPT	Competitive ratio	Competitive ratio	Approximation ratio
Cost(A) related to 1. Inputs	 a. Unknown but expected b. Random w/o known patterns → Online alg. Cost(A): → fluctuate 	 a. Known (simulated) b. Not random → Online alg. Cost(A)': → Stable → Online alg. Cost(A) ≤ Cost(A)' 	 a. Known b. Not random –OR-Random w/. Distribution → Offline alg. Cost(A): → stable
Inputs to the Alg.	Hard –OR- easy → average case	Hard → worst case	Hard → worst case

Case 2. Paging problem

- Hard disk large memory, slow access
- Cache small memory, fast access
- A sequence of page requests (from cache)
- Page fault if requested info. is not in cache
- access from hard disk
- → large access costs
- Problem:
 - what data is to be stored in cache s.t. fewest page faults
 - more precisely, which data in cache is to be evicted when a new data is requested

最不近(最久之前) request 的, 先 evict 拔除

Paging problem – Least Recently Used (LRU)

Example

request	cache elements	page fault	evicted item
а	-,-,-	True	-
b	a,-,-	True	-
С	a,b,-	True	-
d	a,b,c	True	а
а	d,b,c	True	b
е	d,a,c	True	С
b	d,a,e	True	d
а	b,a,e	False	
С	b,a,e	True	е
е	b,a,c	True	b

Deterministic
Online
Algorithm:
With specific strategy

Paging problem

• Claim: If A is a deterministic online algorithm that is $\alpha - competitive$, then $\alpha \ge k$, where k is the cache size. (at most k pages in cache), and total (k+1) distinct pages.

Summary

- Introduction online algorithm
- Online v.s. Offline algorithm
- Online algorithm performance competitiveness analysis
- Case study
 - Case 1. Ski Rental Problem
 - Case 2. Deterministic Paging Problem
- Adversary worst case of online algorithm

Randomized Online Algorithm