Федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 2.4.1 «Определение теплоты испарения жидкости»

Овсянников Михаил Александрович студент группы Б01-001 1 курс ФРКТ

г. Долгопрудный 2021 г.

Цель работы: измерение давления насыщенного пара жидкости при разной температуре; вычисление по полученным данным теплоты испарения с помощью уравнения Клайперона-Клазиуса.

В работе используются: термостат, герметический сосуд с исследуемой жидкостью, отсчетный микроскоп.

Теоретические сведения

Испарением называется переход вещества из жидкого в газообразное состояние. При испарении совершается работа против внешнего давления P, поскольку объем жидкости меньше объема пара.

В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

При нашей точности опытов величиной V_1 в (1) можно пренебречь. Обратимся V_2 , которое в дальнейшем будем обозначать просто V. Объем V связан с давлением и температурой уравнением Ван-дер-Ваальса:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT
\tag{2}$$

В уравнении (2) величиной b следует пренебречь, так как она одного порядка с V_1 . Пренебрежение членом $\frac{a}{V^2}$ по сравнению с P вносит ошибку менее 3%. При давлении ниже атмосферного ошибки становятся еще меньше. Таким образом, при давлениях ниже атмосферного уравнение Ван-дер-Ваальса для насыщенного пара мало отличается от уравнения Клапейрона. Положим поэтому

$$V = \frac{RT}{P} \tag{3}$$

Подставляя (3) в (1), пренебрегая V_1 и разрешая уравнение относительно L, найдем

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{4}$$

Эта формула является окончательной. В нашем опыте температура жидкости измеряется термометром, давление пара определяется при помощи манометра, а производные dP/dT или $d(\ln P)/d(1/T)$ находятся

графически как угловой коэффициент касательной к кривой P(T) или соответственно к кривой, у которой по оси абсцисс отложено 1/T, а по оси ординат $\ln P$.

Экспериментальная установка

Схема установки изображена на рисунке 1. Установка включает термостат A, экспериментальный прибор B и отсчетный микроскоп C.

Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, подогреваемой электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряется термометром 5. В термостат погружен запаянный прибор 6 с исследуемой жидкостью. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединенному с исследуемым объемом. Отсчет показаний манометра производится при помощи микроскопа.

Рис. 1. Схема установки для определения теплоты испарения

Ход Работы

- 1. Измерим разность уровней в ртутном U-образном манометре с помощью микроскопа и температуру по термометру или индикаторному табло (табл.1).
- 2. Включим термостат. Подогреваем воду в калориметре, пропуская ток через нагреватель. Следим за тем, чтобы воздух все время перемешивал воду. Через каждый градус измеряем давление и температуру (табл.1). Продолжаем повышать температуру в течение половины имеющегося у нас времени, чтобы успеть произвести измерения при остывании прибора. Нагреваем жидкость до 38 °C.
- 3. Проведем те же измерения при охлаждении жидкости (табл.1). Установим такой поток воды, чтобы охлаждение шло примерно тем же темпом, что и нагревание.

T, K	$h_{\text{лев}}$, мм	$h_{\text{конд}}$, мм	$h_{\text{прав}}$, мм	<i>T</i> , K	$h_{\text{лев}}$, мм	$h_{\text{конд}}$, мм	$h_{\text{прав}}$, мм
Повышение температуры				Повышение температуры			
295	99,8	55,3	57,7	295	135,5	20,6	23,2
296	102,5	53,8	56,7	296	132,6	24,0	27,0
297	103,9	51,3	54,0	297	130,1	25,9	29,5
298	105,4	49,7	52,6	298	126,9	28,9	32,2
299	107,0	48,7	51,3	299	125,0	31,9	34,3
300	109,1	47,2	49,6	300	121,4	34,3	36,9
301	110,7	45,3	47,4	301	119,5	37,0	39,8
302	112,8	43,7	45,5	302	116,3	38,9	41,9
303	114,7	41,1	44,0	303	114,9	40,9	44,2
304	116,5	39,0	41,7	304	112,4	43,5	45,2
305	119,3	36,9	39,7	305	110,3	45,1	47,2
306	121,7	34,5	37,1	306	109,2	46,9	49,3
307	124,9	31,8	34,6	307	107,1	48,5	51,2
308	126,5	29,5	32,2	308	105,3	49,6	52,3
309	130,3	26,2	29,3	309	104,1	51,1	53,9
310	132,2	23,8	26,9	310	102,7	54,0	56,9
311	135,7	20,5	23,1	311	101,3	55,2	57,9

Таблица 1

4. Построим графики в координатах T, P. (график 1)

График 1. Повышение температуры

График 2. Понижение температуры

Теперь построим график в координатах $\frac{1}{T}$ и $\ln P$ (график 3).

$$L = -R \frac{d(\ln P)}{d(1/T)}$$

Используя МНК, находим:

$$k = \frac{d(\ln P)}{d(1/T)} = -5485 \text{ K}$$

$$\sigma_k = 46 \text{ K}$$

$$k = (-5485 \pm 46) \text{ K}$$

График 3. Повышение температуры

Делаем то же самое для понижения температуры.

Используя МНК, получаем:

$$k=\frac{d(\ln P)}{d(1/T)}=-5413~\mathrm{K}$$

$$\sigma_k = 35 \text{ K}$$

$$k = (-5413 \pm 35) \text{ K}$$

График 4. Понижение температуры

5. По формуле (4) вычислим L, пользуясь данными, полученными из первых двух графиков.

Используя метод конечных разностей, для первого графика получаем:

$$L = 46114 \, {\frac{\rm Дж}{\rm моль}}$$
 $\sigma_L = 5239 \, {\frac{\rm Дж}{\rm моль}}$ $L = (46114 \pm 5239) \, {\frac{\rm Дж}{\rm моль}}$

Для второго графика получаем:

$$L = 45416 \, \frac{\text{Дж}}{\text{моль}}$$
 $\sigma_L = 4324 \, \frac{\text{Дж}}{\text{моль}}$ $L = (45416 \pm 4324) \, \frac{\text{Дж}}{\text{моль}}$

Найдем значение L для второй пары графиков.

Из третьего графика находим:

$$L = -R \cdot k = -8.314 \cdot (-5485) \frac{\text{Дж}}{\text{моль}} = 45602 \frac{\text{Дж}}{\text{моль}}$$
 $\sigma_L = R\sigma_k = 8.314 \cdot 46 \frac{\text{Дж}}{\text{моль}} = 382 \frac{\text{Дж}}{\text{моль}}$
 $L = (45602 \pm 382) \frac{\text{Дж}}{\text{моль}}$

Из четвертого графика получаем:

$$L = -R \cdot k = -8.314 \cdot (-5413) \frac{\mathcal{J}_{\text{ж}}}{\text{моль}} = 45004 \frac{\mathcal{J}_{\text{ж}}}{\text{моль}}$$
 $\sigma_L = R\sigma_k = 8.314 \cdot 35 \frac{\mathcal{J}_{\text{ж}}}{\text{моль}} = 291 \frac{\mathcal{J}_{\text{ж}}}{\text{моль}}$
 $L = (45004 \pm 291) \frac{\mathcal{J}_{\text{ж}}}{\text{моль}}.$

$$L_{\text{итог}} = (45534 \pm 6809) \frac{\text{Дж}}{\text{моль}}.$$

Сравним результаты. Как видим, в пределах погрешностей полученные значения из всех графиков находятся в согласии друг с другом. Табличное значение для спирта: $38500-39500~\frac{Дж}{моль}$ для этилового и $45500-46500~\frac{Дж}{моль}$ для пропилового. Следовательно, можно предположить, что в эксперименте был пропиловый спирт с небольшими примесями. Погрешность определения L составляет $\sim 2-7\%$ для различных графиков. Наиболее точный результат дал график 3.

Вывод

В работе было измерено давление насыщенного пара спирта при различных температурах. Также по полученным данным была вычислена молярная теплота испарения спирта с помощью уравнения Клайперона-Клаузиуса $L=(45534\pm6809)\,\frac{{\cal A}_{\rm ж}}{_{\rm моль}},$ что почти совпадает с табличным значением для пропилового спирта. Ошибки вызваны неточностью измерений.