Série 3

David Wiedemann

8 octobre 2020

1

On construit une bijection de \mathbb{Z} vers \mathbb{N} .

$$\phi\colon\mathbb{Z}\to\mathbb{N}$$

$$m\to\begin{cases}2m\text{ si }m\geq0\\-2m+1\text{ si }m<0\end{cases}$$

On considère que le nombre 0 est pair.

Pour vérifier que cette application définit une injection, on montre la surjectivité et l'injectivité.

Surjectivité

Soit $n \in \mathbb{N}$, si n pair, $\exists k \in \mathbb{N}$ tel que n = 2k. Alors k est l'antécédent de k par ϕ .

Si n impair, $\exists j \in \mathbb{N}$ tel que 2j+1=n, on pose k=-j, alors -2k+1=n et k est l'antécédent de n.

Injectivité

Supposons $\exists k, j \in \mathbb{Z}$ tel que $\phi(k) = \phi(j)$. Si k et j sont de signe différent, alors soit $\phi(k)$ ou $\phi(j)$ est impair et donc l'égalité ne peut pas tenir.

Supposons donc k, j > 0, alors $\phi(k) = 2k$ et $\phi(j) = 2j$ donc 2k = 2j et j = k.

Si
$$k, j < 0$$
, alors $\phi(k) = -2k + 1$ et $\phi(j) = -2j + 1$ donc $-2k + 1 = -2j + 1 \Rightarrow k = j$.

On en déduit que l'application ϕ est bijective et que $|\mathbb{Z}| = |\mathbb{N}|$.

 $\mathbf{2}$

Par Cantor-Schroeder-Bernstein, il suffit de trouver une injection de $\mathbb{N}^n \to \mathbb{N}$ et de $\mathbb{N} \to \mathbb{N}^n$.

Injection de $\mathbb{N} \to \mathbb{N}^n$

Soit

$$\phi: \mathbb{N} \to \mathbb{N}^n$$

$$k \to (k, \underbrace{0, \dots, 0}_{n-1 \text{ fois}})$$

Cette application est clairement injective car (m, 0, ..., 0) = (j, 0, ..., 0) implique m = j.

Injection de $\mathbb{N}^n \to \mathbb{N}$

Soit

$$\psi: \mathbb{N}^n \to \mathbb{N}$$

$$(a_1, \dots, a_n) \to \prod_{i=1}^n p_i^{a_i}$$

où p_1, \ldots, p_n sont les *n* premiers nombres premiers.

L'injectivité de cette application suit directement de l'unicité de la décomposition en nombres premiers.

En effet, si $(a_1,\ldots,a_n)\neq (b_1,\ldots,b_n)\in\mathbb{N}^n$, alors l'unicité implique que

$$\prod_{i=1}^n p_i^{a_i} \neq \prod_{i=1}^n p_i^{b_i}$$

et donc l'application ϕ est injective.

On en déduit que $|\mathbb{N}^n| = |\mathbb{N}|$

3

On utilise à nouveau Cantor-Schroeder-Bernstein.

Injection de $\mathbb{N} \to \mathbb{Q}$

L'application

$$K: \mathbb{N} \to \mathbb{Q}$$
$$n \to n$$

est une injection.

Injection de $\mathbb{Q} \to \mathbb{N}$

On montre un résultat préliminaire.

Théorème 1. Si A_1, \ldots, A_n des ensembles infini dénombrables, alors

$$K = A_1 \times \ldots \times A_n$$
 est infini dénombrable.

Démonstration. Soit $(a_1, \ldots, a_n) \in K$.

Par hypothèse, $\exists \phi_1, \dots, \phi_n$ des bijections $\phi_i : A_i \to \mathbb{N}, 0 < i \leq n$. L'application

$$\Phi: K \to \mathbb{N}^n$$

$$(a_1, \dots, a_n) \to (\phi_1(a_1), \dots, \phi_n(a_n))$$

est une bijection.

En effet, soit $(b_1, \ldots, b_n) \in \mathbb{N}^n$, alors $(\phi^{-1}(b_1), \ldots, \phi^{-1}(b_n)) \in K$ est un antécédent, unique, de (b_1, \ldots, b_n) et il existe $\forall b_i \in \mathbb{N}, 0 < i \leq n$.

Par la partie 2, on sait qu'il existe une bijection de $\Psi: \mathbb{N}^n \to \mathbb{N}$ et donc

$$\Psi \circ \Phi$$

est une bijection de $K \to \mathbb{N}$.

On est pret à montrer l'injection de $\mathbb{Q} \to \mathbb{N}$.

On construit d'abord une bijection de $\mathbb{Z} \times \mathbb{N} \setminus \{0\} \to \mathbb{N}$.

Soit $\phi: \mathbb{Z} \to \mathbb{N}$ la bijection définie précédemment et soit $t_1: \mathbb{N} \setminus \{0\} \to \mathbb{N}$ la bijection ¹:

$$t_1: n \to n-1$$

On peut donc, par le théorème 1, construire une bijection de $G: \mathbb{Z} \times \mathbb{N} \setminus \{0\} \to \mathbb{N}$.

^{1.} L'injectivité et la surjectivité de t_1 sont évidentes.

On définit la surjection ²

$$Q: \mathbb{Z} \times \mathbb{N} \setminus \{0\} \to \mathbb{Q}$$
$$(a,b) \to \frac{a}{b}$$

Par l'exercice 5, de la série 2, on peut construire une injection F

$$F: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N} \setminus \{0\}$$

Et donc, on obtient que

$$|\mathbb{Q}| \le |\mathbb{Z} \times \mathbb{N} \setminus \{0\}| = |\mathbb{N}|$$
$$\Rightarrow |\mathbb{Q}| \le |\mathbb{N}|$$

On conclut avec Cantor-Schroeder-Bernstein.

4

Théorème 2. On montre que l'union infinie dénombrable d'ensembles infinis dénombrables est, au plus, infini dénombrable.

Démonstration. Soit

$$K = \bigcup_{i \in \mathbb{N}} E_i$$

et soit $|E_i| \leq |\mathbb{N}|$.

Supposons de plus que $i \neq j \Rightarrow E_i \cap E_j = \emptyset$, et $E_k \neq \emptyset$

On dénote par s_{ik} le *i*-ème élément de E_k .

Soit S l'application définie par

$$S: \begin{array}{c} K \mapsto \mathbb{N}^2 \\ s_{ik} \mapsto (i,k) \end{array}$$

Clairement, S est injective.

On a donc que

$$|K| \le |\mathbb{N}^2| = |\mathbb{N}|$$

et donc que

$$|K| \leq |\mathbb{N}|$$

Supposons maintenant que l'intersection n'est pas nécessairement vide, alors, par l'algorithme suivant, on peut se ramener au cas ci-dessus

^{2.} La surjectivité suit du fait qu'à chaque fraction, on puisse assimiler un 2-uplet.

Pour i dans \mathbb{N}

Pour k entre 1 et $|E_k|$

Si s_{ik} apparait pour la deuxième fois

Supprimer la valeur s_{ik} de tous les $E_n, n \in \mathbb{N}$

Ajouter s_{ik} à l'ensemble U

Si $E_k = \emptyset$, alors supprimer E_i et réindexer.

Alors, on a

$$U \cup \bigcup_{i \in \mathbb{N}} E_i = K$$

Qui est une réunion infinie dénombrable d'ensembles finis.

Donc on a que

$$|\bigcup_{i\in\mathbb{N}} E_i| \le |\mathbb{N}|$$

 $\in \mathbb{N}$

Montrons d'abord que l'ensemble des polynômes de degré n est de la même cardinalité que \mathbb{Q}^n On dénote par $\mathbb{Q}_n[t]$ l'ensemble des polynômes dans $\mathbb{Q}[t]$ de degré n.

Soit $q(t) \in \mathbb{Q}_n[t]$.

$$q(t) = \sum_{i=1}^{n} q_i t^{i-1}$$
, avec $q_i \in \mathbb{Q}$

Soit

$$Q: \mathbb{Q}_n[t] \to \mathbb{Q}^n$$
$$q(t) \to (q_1, \dots, q_n)$$

Cette application est une bijection.

Surjectivité

Soit $(a_1, \ldots, a_n) \in \mathbb{Q}^n$, alors le polynôme

$$a(t) = \sum_{i=1}^{n} a_i t^{i-1}$$

est un antécédent de (a_1, \ldots, a_n) .

Injectivité

Soit $a(t),b(t)\in\mathbb{Q}[t],a(t)\neq b(t),$ alors $\exists 0< i\leq n$ tq $a_i\neq b_i$ (on dénote avec i le i-ème coefficient du polynôme) , donc

$$Q(a(t)) = (a_1, \dots, a_n) \neq Q(b(t)) = (a_1, \dots, a_n)$$

Par la partie 3, on sait que \mathbb{Q} est infini dénombrable, et donc, par le théorème 1, \mathbb{Q}^n l'est aussi. On a donc :

$$|\mathbb{Q}_n[t]| = |\mathbb{Q}^n| = |\mathbb{Q}| = |\mathbb{N}|$$

est donc une bijection, et donc $\mathbb{Q}_n[t]$ est infini dénombrable. Grâce au théorème 2, on sait donc que

$$|\bigcup_{i\in\mathbb{N}}\mathbb{Q}_i[t]|=|\mathbb{N}|.$$

Et donc l'ensemble des polynômes à coefficients dans $\mathbb Q$ est infini dénombrable.

Attention : le théorème montre que qu il y a une injection de l'union des polynômes dans \mathbb{N} , A CORRIGER

On pose

$$A = \{z \in \mathbb{C} | z \text{ algébrique } \}$$

Soit $a(t) \in \mathbb{Q}[t]$, on dénote par $S_{a(t)}$, l'ensemble des solutions de l'équation a(t) = 0.

On veut montrer que

$$A = \bigcup_{a(t) \in \mathbb{Q}[t]} S_{a(t)}$$

On montre la double inclusion.

Soit $z \in A$, alors $\exists Z(t) \in \mathbb{Q}[t]$ tel que Z(a) = 0, donc $z \in S_{Z(t)}$, donc

$$z \in \bigcup_{a(t) \in \mathbb{Q}[t]} S_{a(t)}.$$

Soit

$$z \in \bigcup_{a(t) \in \mathbb{Q}[t]} S_{a(t)}$$

donc $\exists b(t) \in \mathbb{Q}[t]$ tel que b(a) = 0, donc a algébrique, donc $a \in A$.

Or $S_{a(t)}$ est fini $\forall a(t) \in \mathbb{Q}[t]$ et donc, par le théorème 2, on a que

$$|\bigcup_{a(t)\in\mathbb{Q}[t]} S_{a(t)}| = |\mathbb{N}|$$

Donc l'ensemble des nombres algébriques est dénombrable.