Computational Fluid Dynamics

Francisco Castillo Homework 10

April 17, 2018

1 Introduction

In this assignment we will study the solution to the following system

$$\frac{\partial u}{\partial t} + \frac{\partial u^2}{\partial x} + \frac{\partial uv}{\partial y} = \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
$$\frac{\partial v}{\partial t} + \frac{\partial uv}{\partial x} + \frac{\partial v^2}{\partial y} = \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$
$$\frac{\partial Y}{\partial t} + u \frac{\partial Y}{\partial x} + v \frac{\partial Y}{\partial y} = \frac{1}{ReSc} \left(\frac{\partial^2 Y}{\partial x^2} + \frac{\partial^2 Y}{\partial y^2} \right)$$

and periodic boundary conditions. We will use an Adams-Bashforth Crank-Nicolson method for u and v on a staggered mesh and a WENO-5 TVD-RK-3 method with Crank-Nicolson for Y on a cell centered mesh.

2 Results

In the figures below we can see the surface plots of the horizontal velocity u, vertical velocity v and mass fraction Y, for different values of t. They are all obtained using M=256, N=128 and CFL=0.8. Below the contour plots, and using the same parameters, we have the curve plots of the probe measurements together with the performance parameter R vs time. To finish, we have the GCI-analysis of the quantities required by the problem. At the very end, the same GCI-analysis will be performed to the steady state solution.

Figure 1: Profiles of horizontal velocity u for M=256, N=128 and CFL=0.8.

Figure 2: Profiles of the vertical velocity v for $M=256,\,N=128$ and CFL=0.8.

Figure 3: Profiles of the mass fraction Y for M=256, N=128 and CFL=0.8.

Figure 4: Probe curves and performance parameter with time for $M=256,\,N=128$ and CFL=0.8.

GCI analysis for u at t=5

The GCI analysis details are shown in the tables below. Note that

$$\beta = \frac{GCI_{12}}{GCI_{23}}r^p,$$

and $u_{h=0}$ is obtained by Richardson extrapolation. We can see that $\beta \in [0.95, 1.05]$ which implies that we are in the asymptotic range of convergence, and for the last mesh we have a GCI_{12} value less than 0.02%, the requested accuracy.

	Μ	N	u(1, 0.5)
Ì	16	8	1.543690071443089
	32	16	1.335416609160283
	64	32	1.322019032777453
	128	64	1.319745850662477
	256	128	1.319205904441201
	512	256	1.319067860936907

Table 1: GCI analysis data.

М	N	p	u_h0	GCI12	GCI23	beta
16	8	NaN	NaN	NaN	NaN	NaN
32	16	NaN	NaN	NaN	NaN	NaN
64	32	3.9584350799233	1.32109795907916	0.0870896783116511	1.34027931647915	1.01013417814015
128	64	2.5591868664554	1.31928134384948	0.0439958584412932	0.258854908675024	1.00172243929686
256	128	2.07382564275753	1.31903769772281	0.0159382547694397	0.0670728514988665	1.00040929639546
512	256	1.96769271899691	1.31902044645506	0.00449318068173795	0.0175728809198171	1.0001046523139

Figure 5: GCI analysis results for the probe 1 measurement.

GCI analysis for v at t=5

We can see that $\beta \in [0.95, 1.05]$ which implies that we are in the asymptotic range of convergence, and for the last mesh we have a GCI_{12} value less than 0.02%, the requested accuracy.

M	N	v(1, 1.5)
16	8	-0.757061737618705
32	16	-0.625718980721275
64	32	-0.622907528189143
128	64	-0.622804506934971
256	128	-0.622781023934629
512	256	-0.622773391772338

Table 2: GCI analysis data.

M	N	p	v_h0	GCI12	GCI23	beta
16	8	NaN	NaN	NaN	NaN	NaN
32	16	NaN	NaN	NaN	NaN	NaN
64	32	5.54587714377773	-0.622846031378078	0.0123406782470828	0.573929637687545	1.00451343482764
128	64	4.77030177533616	-0.622800588290663	0.000786491640724292	0.0214598262263602	1.00016541507425
256	128	2.13325335506559	-0.622774090776325	0.00139157224559648	0.00610467616774274	1.000037706673
512	256	1.62145299393937	-0.62276971689401	0.000737603431890711	0.00226946554749653	1.00001225512323

Figure 6: GCI analysis results for the probe 2 measurement.

GCI analysis for Y at t=5

We can see that $\beta \in [0.95, 1.05]$ which implies that we are in the asymptotic range of convergence, and for the last mesh we have a GCI_{12} value less than 0.4%, the requested accuracy.

M	N	Y(2, 0.5)
16	8	0.582656635075406
32	16	0.588540399303644
64	32	0.591682314985302
128	64	0.594958713346013
256	128	0.596429634107325
512	256	0.597084423776656

Table 3: GCI analysis data.

M	N	p	Y_h0	GCI12	GCI23	beta
16	8	NaN	NaN	NaN	NaN	NaN
32	16	NaN	NaN	NaN	NaN	NaN
64	32	0.90509497255469	0.595282672183354	0.76061872791951	1.431990243934	0.994689860416509
128	64	-0.0604663135207332	0.515135896804494	-16.7706629785703	-16.1713507912412	0.994493066010762
256	128	1.1553912471178	0.597627991753401	0.251152352588463	0.56081168901127	0.997533789944036
512	256	1.16761606493148	0.597609767701518	0.109981081389411	0.247332947322324	0.998903354964158

Figure 7: GCI analysis results for the probe 3 measurement.

GCI analysis for R at t=5

We can see that $\beta \in [0.95, 1.05]$ which implies that we are in the asymptotic range of convergence, and for the last mesh we have a GCI_{12} value less than 0.5%, the requested accuracy.

M	N	v(1, 1.5)
16	8	0.168352427538196
32	16	0.162648932748133
64	32	0.161109373859052
128	64	0.160690350976423
256	128	0.160521007689289
512	256	0.160443010433551

Table 4: GCI analysis data.

М	N	p	R_h0	GCI12	GCI23	beta
16	8	NaN	NaN	NaN	NaN	NaN
32	16	NaN	NaN	NaN	NaN	NaN
64	32	1.88932914252264	0.160540142816762	0.441649536472937	1.62066075053525	1.00955598580148
128	64	1.87741611637481	0.160533657951695	0.12189050538481	0.4466809515543	1.00260764184087
256	128	1.30707823223154	0.160406151892441	0.0894398484824594	0.221076656325998	1.00105496027943
512	256	1.11845552861879	0.16037641124134	0.0518869535290025	0.112599318019901	1.00048613682521

Figure 8: GCI analysis results for the parameter R.

Steady state results

I ran the simulation using M=256 and N=128 up to a t=30 to reach the steady state solution of the problem. In the following tables are the results obtained, with the GCI analysis.

М	N	p	u_h0	GCI12	GCI23	beta
16	8	NaN	NaN	NaN	NaN	NaN
32	16	NaN	NaN	NaN	NaN	NaN
64	32	2.42025580560709	1.32325394491015	0.931314723997211	4.82842657100011	1.03242956496118
128	64	3.03635881705907	1.32718554467362	0.0688575707540411	0.562686755373776	1.00396849764547
256	128	2.18484741417542	1.32643123629202	0.0307875868946674	0.13986241874637	1.00087357609845

Figure 9: GCI analysis results for the probe 1 measurement.

М	N	p	v_h0	GCI12	GCI23	beta
16	8	NaN	NaN	NaN	NaN	NaN
32	16	NaN	NaN	NaN	NaN	NaN
64	32	10.0848745651173	-0.6357220573214	1.61430363000829e-05	0.0175345987016561	0.999859872011669
128	64	-2.99897524107977	-0.635620156381226	-0.159869715629154	-0.0200203163251724	0.998881025587533
256	128	2.03872828578847	-0.636663203035808	0.0109470301413326	0.0449917553978741	0.999727740193495

Figure 10: GCI analysis results for the probe 2 measurement.

М	N	p	Y_ho	GCI12	GCI23	beta
						
16	8	NaN	NaN	NaN	NaN	NaN
32	16	NaN	NaN	NaN	NaN	NaN
64	32	3.09041984891174	0.645196690168092	0.0851668530235064	0.72170703862935	1.0051218935378
128	64	7.97747394230764	0.645649757906483	1.01190659983891e-05	0.00255039941721193	0.999979678170884
256	128	-5.06035733276536	0.645636179483926	-0.0873197317099373	-0.00261871016576605	0.999322377632678

Figure 11: GCI analysis results for the probe 3 measurement.

M	N	p	R_h0	GCI12	GCI23	beta
16	8	NaN	NaN	NaN	NaN	NaN
32	16	NaN	NaN	NaN	NaN	NaN
64	32	1.0603013686232	0.175980285661211	1.13828471535011	2.35050986276912	1.00988365419262
128	64	1.42644495586338	0.176557559780812	0.27333458615699	0.731976915731664	1.00369075099285
256	128	1.25704037320375	0.176474670900958	0.139078136022136	0.331890297942506	1.00154660371752

Figure 12: GCI analysis results for the parameter R.

HOMEWORK 10 - FRANCISCO CASTILLO

Contents

- Defined functions
- Calculate Time Step
- Solve Hyperbolic part of Y equation
- Solve Y equation
- Solve Burger's viscous equation
- Next time step
- Store probe values and performance parameter
- Outputs
- Save progress
- GCI analysis

Defined functions

```
function [u,v,Y]=initialization(M,N,hx,hy)
x=linspace(-hx/2,4+hx/2,M+2);
y=linspace(-hy/2,2+hy/2,N+2);
%% Initialize u
u = zeros(M+1,N+2);
% Boundary Conditions
u=applyBCs(u,M,N,hx,hy,'u');
%% Initialize v
v = zeros(M+2,N+1);
% Boundary Conditions
v=applyBCs(v,M,N,hx,hy,'v');
%% Initialize Y
x=linspace(-5*hx/2,4+5*hx/2,M+6);
y=linspace(-5*hy/2,2+5*hy/2,N+6);
Y = zeros(M+6,N+6);
% Boundary Conditions
Y=applyBCs(Y,M,N,hx,hy,'Y');
end
function phi = applyBCs(phi,M,N,hx,hy,opt)
switch opt
   case 'u'
       y=linspace(-hy/2,2+hy/2,N+2);
       %-----%
       % Left and right
       for j=1:N+2
           if (y(j) \ge 0.5 \& y(j) \le 1) % Inlet 1
               phi(1,j)=-48*y(j)^2+72*y(j)-24;
           elseif (y(j)>=1 \&\& y(j)<=1.5) % Inlet 2
               phi(M+1,j)=24*y(j)^2-60*y(j)+36;
           end
       end
       % Top and bottom
       phi(:,1)=-phi(:,2);
       phi(:,N+2)=-phi(:,N+1);
       case 'v'
       x=linspace(-hx/2,4+hx/2,M+2);
       %------ Boundary Conditions -----%
       % Top and bottom
       for i=1:M+2
           if (x(i)>=0.5 \&\& x(i)<=1) % Inlet 3
               phi(i,N+1)=24*x(i)^2-36*x(i)+12;
           elseif (x(i)>=1.5 \&\& x(i)<=2.5) % Outlet
               phi(i,1)=(4*phi(i,2)-phi(i,3))/3;
           end
       % Left and right
       phi(1,:)=-phi(2,:);
       phi(M+2,:)=-phi(M+1,:);
       x=linspace(-5*hx/2,4+5*hx/2,M+6);
       y=linspace(-5*hy/2,2+5*hy/2,N+6);
       %----- Boundary Conditions --
       phi(3,4:N+3)=phi(4,4:N+3);
       phi(2,4:N+3)=phi(5,4:N+3);
       phi(1,4:N+3)=phi(6,4:N+3);
       %Riaht
```

```
phi(M+4,4:N+3)=phi(M+3,4:N+3);
        phi(M+5,4:N+3)=phi(M+2,4:N+3);
        phi(M+6,4:N+3)=phi(M+1,4:N+3);
        %Rottom
        phi(4:M+3,3)=phi(4:M+3,4);
        phi(4:M+3,2)=phi(4:M+3,5);
        phi(4:M+3,1)=phi(4:M+3,6);
        %Top
        phi(4:M+3,N+4)=phi(4:M+3,N+3);
        phi(4:M+3,N+5)=phi(4:M+3,N+2);
        phi(4:M+3,N+6)=phi(4:M+3,N+1);
        % Dirichlet for the Inlets
        %Inlets 1 and 2
        for j=3:N+3
            if (y(j) \ge 0.5 \& y(j) \le 1) % Inlet 1
                phi(3,j)=2-phi(4,j);
                phi(2,j)=2-phi(5,j);
                phi(1,j)=2-phi(6,j);
            elseif (y(j)>=1 \&\& y(j)<=1.5) % Inlet 2
                phi(M+4,j)=2*0.25-phi(M+3,j);
                phi(M+5,j)=2*0.25-phi(M+2,j);
                phi(M+6,j)=2*0.25-phi(M+1,j);
            end
        end
        %Inlet 3
        for i=3:M+3
            if (x(i)>=0.5 \&\& x(i)<=1) % Inlet 3
                phi(i,N+4)=-phi(i,N+3);
                phi(i,N+5)=-phi(i,N+2);
                phi(i,N+6)=-phi(i,N+1);
            end
end
end
function dt=calcTimeStep(u,v,hx,hy,CFL)
eps=1e-12:
dtu=CFL*min(hx,hy)/(eps+max(max(abs(2*u)))+max(max(abs(v))));
dtv=CFL*min(hx,hy)/(eps+max(max(abs(u)))+max(max(abs(2*v))));
dt=min(dtu,dtv);
end
function u=ADI_u(u,M,N,dt,hx,hy,Re,Q)
if nargin<8</pre>
    disp('Source term zero')
    Q=zeros(size(u));
end
%%%%%%%% STEP 1 %%%%%%%%
[a,b,c,d]=uvectors(u,M,N,dt,hx,hy,1/Re,1,Q); %Obtain tridiagonal vectors
d=GaussTriSol(a,b,c,d); %Gaussian elimination
% Correspondance with u, obtain u(n+1/2)
for j=2:N+1
    for i=2:M
        u(i,j)=d((j-2)*(M-1)+i-1);
    end
end
% Update top and bottom boundaries (ghost cells), they depend on the
% interior, I don't call the BCs function because the for loops in it are
% unnecessary.
u(:,N+2)=-u(:,N+1);
u(:,1)=-u(:,2);
%%%%%%% STEP 2 %%%%%%%%
[a,b,c,d]=uvectors(u,M,N,dt,hx,hy,1/Re,2,Q); %Obtain tridiagonal vectors
d=GaussTriSol(a,b,c,d);
for i=2:M
    for j=2:N+1
        u(i,j)=d((i-2)*N+j-1);
    end
% Update top and bottom boundaries (ghost cells), they depend on the
% interior, I don't call the BCs function because the for loops in it are
% unnecessary.
u(:,N+2)=-u(:,N+1); % Top
u(:,1)=-u(:,2); % Bottom
end
function [a,b,c,d] = uvectors(u,M,N,dt,hx,hy,alpha,step,Q)
if nargin<9</pre>
    disp('nargin')
    Q=zeros(size(Y));
```

```
dy=alpha*dt/hy^2;
d1=dx/2;
d2=dv/2:
if step==1
    a = -d1*ones((M-1)*N,1);
    b = (1+2*d1)*ones((M-1)*N,1);
    c = -d1*ones((M-1)*N,1);
    d = zeros((M-1)*N,1);
    for j=2:N+1
        for i=2:M
            if i==2 % Left boundary BCs
                a((i-2)*(M-1)+1)=0;
                d((j-2)*(M-1)+1)=d2*u(2,j-1)+(1-2*d2)*u(2,j)+d2*u(2,j+1)...
                                    +(dt/2)*Q(i,j)+d1*u(1,j); %u(1,j)  fixed at initialization
            elseif i==M % Right boundary BCs
                c((j-2)*(M-1)+M-1)=0;
                d((\bar{j}-2)*(M-1)+M-1)=d2*u(i,j-1)+(1-2*d2)*u(i,j)+d2*u(i,j+1)\dots
                                    +(dt/2)*Q(i,j)+d1*u(M+1,j); %u(M+1,j)  fixed at initialization
            else % The top and bottom boundaries are imposed by updating the ghost
                    % cells accordingly with them.
                d((j-2)*(M-1)+i-1)=d2*u(i,j-1)+(1-2*d2)*u(i,j)+d2*u(i,j+1)+(dt/2)*Q(i,j);
            end
        end
    end
elseif step==2
    a = -d2*ones((M-1)*N,1);
    b = (1+2*d2)*ones((M-1)*N,1);
    c = -d2*ones((M-1)*N,1);
    d = zeros((M-1)*N,1);
    for i=2:M
        for j=2:N+1
            if j==2 % Bottom boundary BCs
                a((i-2)*N+1)=0;
                b((i-2)*N+1)=1+3*d2:
                d((i-2)*N+1)=d1*u(i-1,2)+(1-2*d1)*u(i,2)+d1*u(i+1,2)+(dt/2)*Q(i,j);
            elseif j==N+1 % Top boundary BCs
                b((i-1)*N)=1+3*d2;
                c((i-1)*N)=0;
                d((i-1)*N) = d1*u(i-1,N+1) + (1-2*d1)*u(i,N+1) + d1*u(i+1,N+1) + (dt/2)*Q(i,j);
            else % The left and right boundaries are imposed by initialization,
                    % they do not change
                d((i-2)*N+j-1)=d1*u(i-1,j)+(1-2*d1)*u(i,j)+d1*u(i+1,j)+(dt/2)*Q(i,j);
            end
        end
    end
end
end
function v=ADI_v(v,M,N,dt,hx,hy,Re,Q)
if nargin<8</pre>
    disp('Source term zero')
    Q=zeros(size(u));
end
%%%%%%%% STEP 1 %%%%%%%%%
[a,b,c,d]=vvectors(v,M,N,dt,hx,hy,1/Re,1,Q); %Obtain tridiagonal vectors
d=GaussTriSol(a,b,c,d); %Gaussian elimination
% Correspondance with v, obtain v(n+1/2)
for j=2:N
    for i=2:M+1
        v(i,j)=d((j-2)*M+i-1);
    end
% Update left and right boundaries (ghost cells), as well as the outlet
% Neumann BC, they depend on the interior.
v=applyBCs(v,M,N,hx,hy,'v');
%%%%%%%% STEP 2 %%%%%%%%%%
[a,b,c,d]=vvectors(v,M,N,dt,hx,hy,1/Re,2,Q); %Obtain tridiagonal vectors
d=GaussTriSol(a,b,c,d); %Gaussian elimination
% Correspondance with v, obtain v(n+1/2)
for i=2:M+1
    for i=2:N
        v(i,j)=d((i-2)*(N-1)+j-1);
   end
end
% Update left and right boundaries (ghost cells), as well as the outlet
% Neumann BC, they depend on the interior.
v=applyBCs(v,M,N,hx,hy,'v');
end
function [a,b,c,d] = vvectors(v,M,N,dt,hx,hy,alpha,step,Q)
```

dx=alpha*dt/hx^2;

xi=linspace(-hx/2,4+hx/2,M+2);

```
dx=alpha*dt/hx^2;
dy=alpha*dt/hy^2;
d1=dx/2;
d2=dy/2;
if step==1
    a = -d1*ones(M*(N-1),1);
    b = (1+2*d1)*ones(M*(N-1),1);
    c = -d1*ones(M*(N-1),1);
    d = zeros(M*(N-1),1);
    for i=2:N
        for i=2:M+1
            if i==2
                a((j-2)*M+1)=0;
                b((j-2)*M+1)=1+3*d1;
                d((j-2)*M+1) = d2*v(2,j-1) + (1-2*d2)*v(2,j) + d2*v(2,j+1) + (dt/2)*Q(i,j);
            elseif i==M+1
                b((j-1)*M)=1+3*d1;
                c((j-1)*M)=0;
                d((j-1)*M)=d2*v(M+1,j-1)+(1-2*d2)*v(M+1,j)+d2*v(M+1,j+1)+(dt/2)*Q(i,j);
            elseif (j==2 && xi(i)>=1.5 && xi(i)<=2.5)
                d(i-1)=d2*(4*v(i,2)/3-v(i,3)/3)+(1-2*d2)*v(i,2)+d2*v(i,3)+(dt/2)*Q(i,j);
            else
                d((j-2)*M+i-1)=d2*v(i,j-1)+(1-2*d2)*v(i,j)+d2*v(i,j+1)+(dt/2)*Q(i,j);
            end
        end
    end
elseif step==2
    a = -d2*ones(M*(N-1),1);
    b = (1+2*d2)*ones(M*(N-1),1);
    c = -d2*ones(M*(N-1),1);
    d = zeros(M*(N-1),1);
    for i=2:M+1
        for j=2:N
            if j==2
                a((i-2)*(N-1)+1)=0;
                if (xi(i) >= 1.5 \&\& xi(i) <= 2.5)
                    b((i-2)*(N-1)+1)=1+(2-4/3)*d2;
                    c((i-2)*(N-1)+1)=-(2/3)*d2;
                end
                d((i-2)*(N-1)+1)=d1*v(i-1,2)+(1-2*d1)*v(i,2)+d1*v(i+1,2)+(dt/2)*Q(i,j);
            elseif i==N
                c((i-1)*(N-1))=0;
                d((i-1)*(N-1))=d1*v(i-1,N)+(1-2*d1)*v(i,N)+d1*v(i+1,N)...
                                +(dt/2)*Q(i,j)+d2*v(i,N+1);
                d((i-2)*(N-1)+j-1)=d1*v(i-1,j)+(1-2*d1)*v(i,j)+d1*v(i+1,j)+(dt/2)*Q(i,j);
            end
        end
    end
end
end
function Y=ADI_Y(Y,M,N,dt,hx,hy,Re,Sc,Q)
if nargin<9
    disp('Source term zero')
    Q=zeros(size(Y));
end
%%%%%%%% STEP 1 %%%%%%%%%
[a,b,c,d]=Yvectors(Y,M,N,dt,hx,hy,1/(Re*Sc),1,Q); %Obtain tridiagonal vectors
d=GaussTriSol(a,b,c,d); %Gaussian elimination
% Correspondance with Y, obtain Y(n+1/2)
for j=4:N+3
    for i=4:M+3
        Y(i,j)=d((j-4)*M+i-3);
    end
end
% Boundary Conditions
Y=applyBCs(Y,M,N,hx,hy,'Y');
%%%%%%% STEP 2 %%%%%%%%
[a,b,c,d]=Yvectors(Y,M,N,dt,hx,hy,1/(Re*Sc),2,Q); %Obtain tridiagonal vectors
d = GaussTriSol(a,b,c,d); \ \% Gaussian \ elimination
% Correspondance with Y, obtain Y(n+1)
for i=4:M+3
    for j=4:N+3
        Y(i,j)=d((i-4)*N+j-3);
    end
end
% Boundary Conditions
Y=applyBCs(Y,M,N,hx,hy,'Y');
end
```

% keyboard

```
function [a,b,c,d] = Yvectors(Y,M,N,dt,hx,hy,alpha,step,Q)
Yinlet1=1;
Yinlet2=0.25;
if nargin<9
    disp('nargin')
    Q=zeros(size(Y));
end
dx=alpha*dt/hx^2;
dy=alpha*dt/hy^2;
d1=dx/2;
d2=dv/2:
x=linspace(-5*hx/2,4+5*hx/2,M+6);
y=linspace(-5*hy/2,2+5*hy/2,N+6);
if step==1
    a = -d1*ones(M*N,1);
    b = (1+2*d1)*ones(M*N,1);
    c = -d1*ones(M*N,1);
    d = zeros(M*N,1);
    for j=4:N+3
        for i=4:M+3
            if i==4 % Left boundary BCs
                 a((j-4)*M+1)=0;
                 if (y(j) \ge 0.5 \& y(j) \le 1)
                     b((j-4)*M+1)=1+3*d1;
                     d((j-4)*M+1)=d2*Y(4,j-1)+(1-2*d2)*Y(4,j)+d2*Y(4,j+1)...
                                      +d1*2*Yinlet1+(dt/2)*Q(i,j);
                 else
                     b((j-4)*M+1)=1+d1;
                     d((j-4)*M+1)=d2*Y(4,j-1)+(1-2*d2)*Y(4,j)+d2*Y(4,j+1)...
                         +(dt/2)*Q(i,j);
                 end
            elseif i==M+3% Right boundary BCs
                 c((j-4)*M+M)=0;
                 if (y(j) \ge 1 \& y(j) \le 1.5)
                     b((i-4)*M+M)=1+3*d1;
                     d((j-4)*M+M)=d2*Y(i,j-1)+(1-2*d2)*Y(i,j)+d2*Y(i,j+1)...
                                      +d1*2*Yinlet2+(dt/2)*Q(i,j);
                 else
                     b((j-4)*M+M)=1+d1;
                     \texttt{d((j-4)*M+M)} = \texttt{d2*Y(i,j-1)} + (1-2*\texttt{d2})*Y(i,j) + \texttt{d2*Y(i,j+1)} \dots
                                      +(dt/2)*Q(i,j);
                end
            else % The top and bottom boundaries are imposed by updating the ghost
                     % cells accordingly with them.
                 d((j-4)*M+i-3)=d2*Y(i,j-1)+(1-2*d2)*Y(i,j)+d2*Y(i,j+1)+(dt/2)*Q(i,j);
            end
        end
    end
elseif step==2
    a = -d2*ones(M*N,1);
    b = (1+2*d2)*ones(M*N,1);
    c = -d2*ones(M*N,1);
    d = zeros(M*N,1);
    for i=4:M+3
        for j=4:N+3
            if j==4 % Bottom boundary BCs
                 a((i-4)*N+1)=0:
                 b((i-4)*N+1)=1+d2;
                 d((i-4)*N+1)=d1*Y(i-1,4)+(1-2*d1)*Y(i,4)+d1*Y(i+1,4)...
                                  +(dt/2)*Q(i,j);
            elseif j==N+3 % Top boundary BCs
                 c((i-4)*N+N)=0;
                 if (x(i) \ge 0.5 \& x(i) \le 1)
                     b((i-4)*N+N)=1+3*d2;
                 else
                     b((i-4)*N+N)=1+d2;
                 end
                 d((i-4)*N+N)=d1*Y(i-1,N+3)+(1-2*d1)*Y(i,N+3)+d1*Y(i+1,N+3)...
                                 +(dt/2)*Q(i,j);
            else % The left and right boundaries are imposed by initialization,
                     % they do not change
                 d((i-4)*N+j-3)=d1*Y(i-1,j)+(1-2*d1)*Y(i,j)+d1*Y(i+1,j)...
                                 +(dt/2)*Q(i,j);
            end
        end
    end
end
end
function HY=HyperbolicY(Y,M,N,hx,hy,dt,u,v)
Yconv = TVDRK3_2D(Y,M,N,hx,hy,dt,u,v);
HY=zeros(M+6,N+6);
HY(4:M+3,4:N+3)=(Yconv(4:M+3,4:N+3)-Y(4:M+3,4:N+3))/dt;
```

```
function phi3 = TVDRK3_2D(phi0,M,N,hx,hy,dt,u,v)
% Constants and prealocation
a10=1;
a20=-3/4; a21=1/4;
a30=-1/12; a31=-1/12; a32=2/3;
phil=zeros(M+6,N+6);
phi2=zeros(M+6,N+6);
phi3=zeros(M+6,N+6);
%% STEP 1 %%
for i=4:M+3
    for j=4:N+3
        uij=(u(i-3,j-2)+u(i-2,j-2))/2; % Values of u,v at cell centers
        vij=(v(i-2,j-3)+v(i-2,j-2))/2;
        [DphiDx0,DphiDy0]=WENO5_2D(phi0,uij,vij,i,j,hx,hy);
        phi1(i,j)=phi0(i,j)-a10*dt*(uij*DphiDx0+vij*DphiDy0);
    end
end
% Update ghost cells
phil=applyBCs(phi1,M,N,hx,hy,'Y');
%% STEP 2 %%
for i=4:M+3
    for j=4:N+3
        \label{eq:uij=(u(i-3,j-2)+u(i-2,j-2))/2; % Values of u,v at cell centers} \\
        vij=(v(i-2,j-3)+v(i-2,j-2))/2;
        [DphiDx0,DphiDy0]=WEN05_2D(phi0,uij,vij,i,j,hx,hy);
        [DphiDx1,DphiDy1]=WEN05_2D(phi1,uij,vij,i,j,hx,hy);
        phi2(i,j)=phi1(i,j)-a20*dt*(uij*DphiDx0+vij*DphiDy0)...
             -a21*dt*(uij*DphiDx1+vij*DphiDy1);
    end
end
% Update ghost cells
phi2=applyBCs(phi2,M,N,hx,hy,'Y');
%% STEP 3 %%
for i=4:M+3
    for i=4:N+3
        uij=(u(i-3,j-2)+u(i-2,j-2))/2; % Values of u,v at cell centers
        vij=(v(i-2,j-3)+v(i-2,j-2))/2;
        [DphiDx0,DphiDy0]=WEN05_2D(phi0,uij,vij,i,j,hx,hy);
        [DphiDx1,DphiDy1]=WENO5_2D(phi1,uij,vij,i,j,hx,hy);
        [DphiDx2,DphiDy2]=WEN05_2D(phi2,uij,vij,i,j,hx,hy);
        phi3(i,j)=phi2(i,j)-a30*dt*(uij*DphiDx0+vij*DphiDy0)...
             -a31*dt*(uij*DphiDx1+vij*DphiDy1)..
             -a32*dt*(uij*DphiDx2+vij*DphiDy2);
    end
% Update ghost cells
phi3=applyBCs(phi3,M,N,hx,hy,'Y');
function [DphiDx,DphiDy] = WENO5 2D(phi,uij,vij,i,j,hx,hy)
if uij>=0
    DphiDx = (1/(12*hx))*(phi(i-2,j)-8*phi(i-1,j)+8*phi(i+1,j)-phi(i+2,j))...
        -psiWENO((phi(i-1,j)-2*phi(i-2,j)+phi(i-3,j))/hx,...
        (phi(i,j)-2*phi(i-1,j)+phi(i-2,j))/hx,...
        (phi(i+1,j)-2*phi(i,j)+phi(i-1,j))/hx,...
        (phi(i+2,j)-2*phi(i+1,j)+phi(i,j))/hx);
elseif uij<0</pre>
    DphiDx = (1/(12*hx))*(phi(i-2,j)-8*phi(i-1,j)+8*phi(i+1,j)-phi(i+2,j))...
        +psiWENO((phi(i+3,j)-2*phi(i+2,j)+phi(i+1,j))/hx,...
        (phi(i+2,j)-2*phi(i+1,j)+phi(i,j))/hx,...
        (phi(i+1,j)-2*phi(i,j)+phi(i-1,j))/hx,...
        (phi(i,j)-2*phi(i-1,j)+phi(i-2,j))/hx);
end
if vij>=0
    DphiDy = (1/(12*hy))*(phi(i,j-2)-8*phi(i,j-1)+8*phi(i,j+1)-phi(i,j+2))...
        -psiWENO((phi(i,j-1)-2*phi(i,j-2)+phi(i,j-3))/hy,...
        (phi(i,j)-2*phi(i,j-1)+phi(i,j-2))/hy,...
        (phi(i,j+1)-2*phi(i,j)+phi(i,j-1))/hy,...
        (phi(i,j+2)-2*phi(i,j+1)+phi(i,j))/hy);
elseif vij<0
    DphiDy = (1/(12*hy))*(phi(i,j-2)-8*phi(i,j-1)+8*phi(i,j+1)-phi(i,j+2))...
        +psiWENO((phi(i,j+3)-2*phi(i,j+2)+phi(i,j+1))/hy,...
        (phi(i,j+2)-2*phi(i,j+1)+phi(i,j))/hy,...
        (\texttt{phi}(\texttt{i},\texttt{j+1}) \cdot 2 * \texttt{phi}(\texttt{i},\texttt{j}) + \texttt{phi}(\texttt{i},\texttt{j}\cdot 1)) / \texttt{hy}, \dots
        (phi(i,j)-2*phi(i,j-1)+phi(i,j-2))/hy);
end
```

end

```
function psi = psiWENO(a,b,c,d)
eps=1e-6;
IS0=13*(a-b)^2+3*(a-3*b)^2;
IS1=13*(b-c)^2+3*(b+c)^2
IS2=13*(c-d)^2+3*(3*c-d)^2;
a0=(eps+IS0)^{(-2)};
a1=6*(eps+IS1)^(-2);
a2=3*(eps+IS2)^(-2);
w0=a0/(a0+a1+a2);
w2=a2/(a0+a1+a2);
psi = (a-2*b+c)*w0/3+(w2-0.5)*(b-2*c+d)/6;
end
function [Hu,Hv]=HyperbolicBurgers2D(u,v,M,N,hx,hy)
Hu=zeros(size(u));
Hv=zeros(size(v));
for i=2:M
    for j=2:N+1
        Hu(i,j) = -(u(i+1,j)^2 + 2*u(i,j)*(u(i+1,j)-u(i-1,j)) - u(i-1,j)^2)/(4*hx) \dots
             -((u(i,j)+u(i,j+1))*(v(i,j)+v(i+1,j))-(u(i,j-1)+u(i,j))*(v(i,j-1)+v(i+1,j-1)))/(4*hy);
    end
end
for i=2:M+1
    for j=2:N
        Hv(i,j) = -(v(i,j+1)^2 + 2*v(i,j)*(v(i,j+1)-v(i,j-1))-v(i,j-1)^2)/(4*hx)...
            -((u(i,j)+u(i,j+1))*(v(i,j)+v(i+1,j))-(u(i-1,j+1)+u(i-1,j))*(v(i,j)+v(i-1,j)))/(4*hy);
    end
end
end
\label{function} \begin{subarray}{ll} function & $[u,v,Hu,Hv]=solveBurgers2D(u,v,Hu,Hv,M,N,hx,hy,dt,Re,time) \end{subarray}
Huold=Hu;
Hvold=Hv:
[Hu,Hv]=HyperbolicBurgers2D(u,v,M,N,hx,hy);
if time==0 %FCTS for the first time step
    Huold=Hu:
    Hvold=Hv;
end
% % % % % for i=1:M+1
8 8 8 8 8
              for i=1:N+2
8 8 8 8 8
                  HuoldVector((j-1)*(M+1)+i,1)=Huold(i,j);
8 8 8 8 8
              end
% % % % end
% % % % for i=1:M+2
8 8 8 8 8
              for j=1:N+1
% % % % %
                  HvoldVector((j-1)*(M+2)+i,1)=Hvold(i,j);
8 8 8 8 8
% % % % % end
u=ADI_u(u,M,N,dt,hx,hy,Re,1.5*Hu-0.5*Huold);
v = ADI_v(v, M, N, dt, hx, hy, Re, 1.5*Hv-0.5*Hvold);
% % % % % for i=1:M+1
                  for j=1:N+2
% % % % %
                       uVector((j-1)*(M+1)+i,1)=u(i,j);
% % % % %
                   end
8 8 8 8 8
% % % % % end
% % % % for i=1:M+2
8 8 8 8 8
                  for j=1:N+1
                       vVector((j-1)*(M+2)+i,1)=v(i,j);
8 8 8 8 8
                  end
% % % % % end
% % % % keyboard
function R=performance(Y,M,N,hx,hy,L,H)
R=sum(sum(Y(4:M+3,4:N+3).*(1-Y(4:M+3,4:N+3))))*hx*hy/(H*L);
end
function d=GaussTriSol(a,b,c,d)
    N=length(a);
    for i=2:N
        b(i)=b(i)-c(i-1)*a(i)/b(i-1);
        d(i)=d(i)-d(i-1)*a(i)/b(i-1);
    d(N)=d(N)/b(N);
    for i=N-1:-1:1
        d(i)=(d(i)-c(i)*d(i+1))/b(i);
```

```
function ContourPlots(u,v,Y,M,N,hx,hy,n)
axisSize=14;
markersize=16:
linewidth=3.5;
% Define the points of the different meshes
xu=linspace(0,4,M+1);
yu=linspace(-hy/2,2+hy/2,N+2);
xv=linspace(-hx/2,4+hx/2,M+2);
yv=linspace(0,2,N+1);
xY=linspace(-5*hx/2,4+5*hx/2,M+6);
yY=linspace(-5*hx/2,2+5*hx/2,N+6);
% Plot u
figure(10+n)
contourf(xu,yu,u')
hold on
plot(1,0.5,'r.','markersize',markersize,'linewidth',linewidth)
axis([0 4 0 2])
caxis([-1.5 3])
colorbar
xlabel('$x$','Interpreter','latex')
ylabel('$y$','Interpreter','latex')
% yticks([0 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0]);
% xticks([0 0.50 1.0 1.50 2.0 2.50 3.0 3.50 4.0]);
set(get(gca,'ylabel'),'rotation',0)
set(gca,'fontsize',axisSize)
pbaspect([2 1 1])
grid on
txt=['Latex/FIGURES/u_' num2str(10+n)];
saveas(gcf,txt,'epsc')
% Plot v
figure(20+n)
contourf(xv,yv,v')
hold on
plot(1,1.5,'r.','markersize',markersize,'linewidth',linewidth)
axis([0 4 0 2])
caxis([-1.5 0])
colorbar
xlabel('$x$','Interpreter','latex')
ylabel('$y$','Interpreter','latex')
% yticks([0 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0]);
% xticks([0 0.50 1.0 1.50 2.0 2.50 3.0 3.50 4.0]);
set(get(gca,'ylabel'),'rotation',0)
set(gca,'fontsize',axisSize)
pbaspect([2 1 1])
grid on
txt=['Latex/FIGURES/v_' num2str(20+n)];
saveas(gcf,txt,'epsc')
% Plot Y
figure(30+n)
contourf(xu,yu,u')
hold on
plot(2,0.5,'r.','markersize',markersize,'linewidth',linewidth)
axis([0 4 0 2])
caxis([-0.1 1.1])
colorbar
xlabel('$x$','Interpreter','latex')
ylabel('$y$','Interpreter','latex')
% yticks([0 0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0]);
% xticks([0 0.50 1.0 1.50 2.0 2.50 3.0 3.50 4.0]);
set(get(gca, 'ylabel'), 'rotation',0)
set(gca,'fontsize',axisSize)
pbaspect([2 1 1])
grid on
txt=['Latex/FIGURES/Y_' num2str(30+n)];
saveas(gcf,txt,'epsc')
end
function [pu,pv,pY]=probeValues(u,v,Y,M,N,hx,hy)
% Define the points of the different meshes
xu=linspace(0,4,M+1);
yu=linspace(-hy/2,2+hy/2,N+2);
xv=linspace(-hx/2,4+hx/2,M+2);
yv=linspace(0,2,N+1);
xY=linspace(-5*hx/2,4+5*hx/2,M+6);
yY=linspace(-5*hx/2,2+5*hx/2,N+6);
% Probe for u
```

```
pu = (u(xu==1,find(yu<=0.5,1,'last')) + u(xu==1,find(yu>=0.5,1)))/2;
% Probe for v
pv = (v(find(xv <= 1, 1, 'last'), yv == 1.5) + v(find(xv >= 1, 1), yv == 1.5))/2;
% Probe for Y
pY = (Y(find(xY \le 2, 1, 'last'), find(yY \le 0.5, 1, 'last'))...
    +Y(find(xY<=2,1,'last'),find(yY>0.5,1))...
    +Y(find(xY>2,1),find(yY<=0.5,1,'last'))...
    +Y(find(xY>2,1),find(yY>0.5,1)))/4;
end
function CurvePlots(pu,pv,pY,R,t)
axisSize=14;
markersize=16.
linewidth=3.5;
% Cut out what hasn't been filled
index=find(t==0,2);
index=index(2);
t(index:end)=[];
pu(index:end)=[];
pv(index:end)=[];
pY(index:end)=[];
R(index:end)=[];
% Probe for u
figure(1)
plot(t,pu,'linewidth',2)
xlim([0 t(end)])
xlabel('$t$','Interpreter','latex')
ylabel('$u(1,0.5,t)$','Interpreter','latex')
set(gca,'fontsize',axisSize)
grid on
txt='Latex/FIGURES/probeu';
saveas(gcf,txt,'epsc')
% Probe for v
figure(2)
plot(t,pv,'linewidth',2)
xlim([0 t(end)])
xlabel('$t$','Interpreter','latex')
ylabel('$v(1,1.5,t)$','Interpreter','latex')
set(gca,'fontsize',axisSize)
grid on
txt='Latex/FIGURES/probev';
saveas(gcf,txt,'epsc')
% Probe for Y
figure(3)
plot(t,pY,'linewidth',2)
xlim([0 t(end)])
xlabel('$t$','Interpreter','latex')
ylabel('$Y(2,0.5,t)$','Interpreter','latex')
set(gca,'fontsize',axisSize)
grid on
txt='Latex/FIGURES/probeY';
saveas(gcf,txt,'epsc')
% Performance parameter R
figure(4)
plot(t,R,'linewidth',2)
xlim([0 t(end)])
xlabel('$t$','Interpreter','latex')
ylabel('$R(t)$','Interpreter','latex')
set(gca,'fontsize',axisSize)
grid on
txt='Latex/FIGURES/Rplot';
saveas(gcf,txt,'epsc')
end
```

```
clear all; close all; format long; clc

Lx=4;
Ly=2;
M=64;
N=32;
CFL = 0.8;
Re = 20;
Sc=0.5;

put5=zeros(6,1);
pvt5=zeros(6,1);
pYt5=zeros(6,1);
```

```
Rt5=zeros(6,1);
put10=zeros(6,1);
pvt10=zeros(6,1);
pYt10=zeros(6,1);
Rt10=zeros(6,1);
Tu5=nan(5,7);
Tv5=nan(5,7);
TY5=nan(5,7);
Tu10=nan(5,7);
Tv10=nan(5,7);
TY10=nan(5,7);
i=0;
checku5=10;
checkv5=10;
checkY5=10;
outputTime=[1 2 3 5 7 10];
endtime=outputTime(end);
while ( checku5>0.02 || checkv5>0.02 || checkY5>0.4 )
```

```
% while ( checku>1 && checkv>1.2 && checkY>6 )
   i=i+1;
   M=2*M
    N=2*N;
   hx = Lx/M;
    hy = Ly/N;
    if hx~=hy
       error('Cells not square')
    time=0
    n=1;
   tstep=1;
    % Define initial values
    [u,v,Y]=initialization(M,N,hx,hy);
    dt=calcTimeStep(u,v,hx,hy,CFL);
   Hu=zeros(size(u));
   Hv=zeros(size(v));
    pu=zeros(5e2,1);
    pv=zeros(5e2,1);
    pY=zeros(5e2,1);
    R=zeros(5e2,1);
    t=zeros(5e2,1);
        [pu(tstep,1),pv(tstep,1),pY(tstep,1)] = probeValues(u,v,Y,M,N,hx,hy);
    R(tstep,1)=performance(Y,M,N,hx,hy,Lx,Ly);
    while time < endtime</pre>
```

Calculate Time Step

```
if (time < outputTime(n) && time+dt >= outputTime(n))
    dt=outputTime(n)-time;
    n=n+1;
else
    dt=calcTimeStep(u,v,hx,hy,CFL);
end
```

Solve Hyperbolic part of Y equation

```
HY=HyperbolicY(Y,M,N,hx,hy,dt,u,v);
```

Solve Y equation

```
Y=ADI_Y(Y,M,N,dt,hx,hy,Re,Sc,HY);
```

Solve Burger's viscous equation

```
[u,v,Hu,Hv]=solveBurgers2D(u,v,Hu,Hv,M,N,hx,hy,dt,Re,time);
```

Next time step

```
time=time+dt;
tstep=tstep+1;
```

Store probe values and performance parameter

```
if mod(tstep, 5e2) == 0
    pu=[pu;zeros(5e2,1)];
    pv=[pv;zeros(5e2,1)];
    pY=[pY;zeros(5e2,1)];
    R=[R;zeros(5e2,1)];
    t=[t;zeros(5e2,1)];
[pu(tstep,1),pv(tstep,1)]=probeValues(u,v,Y,M,N,hx,hy);
R(tstep,1)=performance(Y,M,N,hx,hy,Lx,Ly);
t(tstep)=time; % time vector used to plot
if time==5
    put5(i)=pu(tstep);
    pvt5(i)=pv(tstep);
    pYt5(i)=pY(tstep);
    Rt5(i)=R(tstep);
end
if time==10
    put10(i)=pu(tstep);
    pvt10(i)=pv(tstep);
    pYt10(i)=pY(tstep);
    Rt10(i)=R(tstep);
```

Outputs

```
if ( M==256 && N==128 )
    if ismember(time,outputTime)
        ContourPlots(u,v,Y,M,N,hx,hy,n-1)
    end
    if time==endtime
        CurvePlots(pu,pv,pY,R,t)
    end
end
```

Save progress

```
if ismember(time,outputTime)
    time
    txt=['DataSaved/Save_M',num2str(M),'_time',num2str(time)];
    save(txt)
end
```

end

GCI analysis

Values at t=5

```
Tu5(i,1)=M; Tu5(i,2)=N;
Tv5(i,1)=M; Tv5(i,2)=N;
TY5(i,1)=M; TY5(i,2)=N;
    [Tu5,Tv5,TY5]=GCIanalysis(put5,pvt5,pYt5,i,Tu5,Tv5,TY5);
    checku5=abs(Tu5(i,5));
    checkv5=abs(Tv5(i,5));
    checkY5=abs(TY5(i,5));
% Values at t=10
Tu10(i,1)=M; Tu10(i,2)=N; Tv10(i,1)=M; Tv10(i,2)=N;
TY10(i,1)=M; TY10(i,2)=N;
if i>=3
    [Tu10,Tv10,TY10]=GCIanalysis(put10,pvt10,pYt10,i,Tu10,Tv10,TY10);
    checku10=abs(Tu10(i,5));
    checkv10=abs(Tv10(i,5));
    checkY10=abs(TY10(i,5));
end
```

```
Tu5=array2table(Tu5,'VariableNames',{'M','N','p','phi0','GCI12','GCI23','beta'})
Tv5=array2table(Tv5,'VariableNames',{'M','N','p','phi0','GCI12','GCI23','beta'})
TY5=array2table(TY5,'VariableNames',{'M','N','p','phi0','GCI12','GCI23','beta'})

Tu10=array2table(Tu10,'VariableNames',{'M','N','p','phi0','GCI12','GCI23','beta'})
Tv10=array2table(Tv10,'VariableNames',{'M','N','p','phi0','GCI12','GCI23','beta'})
TY10=array2table(TY10,'VariableNames',{'M','N','p','phi0','GCI12','GCI23','beta'})
```

Published with MATLAB® R2017a

part for the veguation: Hy perbolic $\frac{\sqrt{3+1/2}-\sqrt{1+1/2}}{\sqrt{3+1/2}}=\frac{3}{2}\left[-\frac{2uv}{2x}\Big|_{1/1+1/2}^{1}-\frac{2vv}{2y}\Big|_{1/1+1/2}^{1}\right]$ - 2 [- 200 | n-1 + 2 [2 2] i 1 + 2 5 | i 1 + (-1/1)+/h (-1/1)+/h
(-1/1)+/h
(-1/1)+/h
(-1/1)+/h
(-1/1)+/h

$$\frac{\partial vv}{\partial y}\Big|_{i_{1}j+1/2} = \frac{(v_{i_{1}j+1})^{2} - (v_{i_{1}j})^{2}}{\Delta y}$$

$$\frac{\partial uv}{\partial x}\Big|_{i_{1}j+1/2} = \frac{(uv)_{u+1/2}+1/2}{\Delta x}$$

$$\frac{\partial vv}{\partial y}\Big|_{i_{1}j+1/2} = \frac{(uv)_{u+1/2}+1/2}{\Delta x}$$

Note that:

$$U_{ij} = \frac{1}{2} \left(U_{ij} + 1/2 + U_{ij} - 1/2 \right)$$
 $U_{i+1/2} + 1/2 = \frac{1}{2} \left(U_{i+1/2} + 1/2 + U_{ij} + 1/2 \right)$
 $U_{i+1/2} + 1/2 = \frac{1}{2} \left(U_{i+1/2} + 1/2 + U_{i+1/2} \right)$
 $U_{i+1/2} + 1/2 = \frac{1}{2} \left(U_{i+1/2} + 1/2 + U_{i+1/2} \right)$

Thou: 300 | i,1+1/2 = (vi,1)2 - (vi,1)2 = - Vis 1+3/2 + Vist+3/2 Vist+3/2 Vist+1/2 - V $-\frac{5c_{11}+3/2+25c_{11}+42(5c_{11}+32-5c_{11}-42)-5c_{11}-42}{4\Delta 4}$ $\frac{\partial u \nabla}{\partial x} \Big|_{ijj+1/2} = \frac{(u \nabla)_{i+1/2,j+1/2} - (u \nabla)_{i-1/2,j+1/2}}{\Delta x} =$ - (U1+1/2))+1 + U1+1/2)) (V1+1/)+1/2 + V2, 1+1/2) - (U1-1/2)+1 + U1-1/2) (V4)+1/2 + V1-1/1+1/2) ; Str = min(1x, 14) max(11)+max(1201) Stu = min (Ax, Ay)
max (2ul) + max (v) St= CFL. min (Stu, Sto) This satisifier is stable for the Y equation as well