MATH 318, Assignment 2

Due date: October 5, in class

Suppose $f: X \to Y$ is a function and $A \subseteq X$, $B \subseteq Y$

- 1. (3 points)
 - (1) Show that if f is a surjection, then $f(f^{-1}(B)) = B$.
 - (2) Is is always true that $f^{-1}(f(A)) = A$? Justify your answer.
 - (3) Show that $f(A \cap f^{-1}(B)) = f(A) \cap B$.
- 2. (4 points) How many functions are there:
 - (1) from 2 to 3,
 - (2) from 5 to 1,
 - (3) from 5 to 0,
 - (4) from 0 to 5?
- 3. (3 points) Are the following sets equinumerous? Justify your answers.
 - (1) [0,1) and \mathbb{Q} ,
 - (2) $[0,1]^{\mathbb{N}}$ and $[0,\infty)$, (3) $[0,1]^{\mathbb{N}}$ and $\mathbb{Q}^{\mathbb{N}}$?
- 4. (4 points) Are the following sets countable? Justify your answers.
 - $(A) \mathbb{Z}^{\mathbb{N}},$

(B) $\mathbb{Z}^3 \cup \mathbb{Z}^7$, (D) $\mathbb{R} \times \mathbb{Q}$.

 $(C) \bigcup_{n \in \mathbb{N}} \mathbb{Z}^n,$

A cycle on a finite set X is a bijection $f: X \to X$ such that for some $x_0, \ldots, x_n \in X$ we have $f(x_i) = x_{i+1}$ for i < n and $f(x_n) = x_0$. If f is a cycle as above, then the set $\{x_0,\ldots,x_n\}$ is called the *support* of the cycle f. Two cycles are called disjoint if their supports are disjoint

5. (2 points) Show that any bijection on a finite set is a composition of disjoint cycles.

A bijection $f: X \to X$ is an involution if $ff = id_X$.

6. (4 points) Show that any bijection on any set (possibly infinite) is a composition of two involutions.