衡阳师范学院 2018-2019 学年第二学期 化学与材料科学学院化学专业 2020 级 《高等数学(II)》期末考试试题 A 卷 参考答案及评分标准

考核类型: 闭卷 考试时量: 120 分钟

		题号	_	1	三	四	总分	合分人	复查人		
院		总分	15	15	10	60	100				
		得分									
	'										
业	得分 评阅人	·	选才	圣题	(每)	小题	3分.	共 15 分	4)		
			ر ت	T/W	(+3-	1 //2	5), ,	/(15)	,		
级	1. 求初值问题 <i>y</i>	y'=y,y	y(0) =	= 1 쉵	り特角	军为 y	ı =			()
-JX 	A. $e^x + 1$ I							任意常数	$\mathbf{D.} \ e^x$	`	,
	2. 求初值问题 g	y'=y,y	v(0) =	= 1 벍	的特角	军为 y	· =			()
号	A. $e^x + 1$ I	3. $\frac{1}{2}x^2$	+ 1	C.	$x^2 +$	C, 其	中C为	任意常数	$\mathbf{D.} \ e^x$		
7	3. 求初值问题 y	y'=y,y	(0) =	= 1 벍	的特角	军为 y	<i>y</i> =			()
	A. $e^x + 1$ I	3. $\frac{1}{2}x^2$	+ 1	C.	$x^{2} +$	C, 其	中C为	任意常数	$\mathbf{D.} \ e^x$		
	4. 求初值问题 y									()
名	A. $e^x + 1$	3. $\frac{1}{2}x^2$	+ 1	C	$x^{2} +$	C, 其	中 C 为	任意常数	$\mathbf{D.} \ e^x$		
	5. 求初值问题 y		. ,							()
	A. $e^x + 1$	3. $\frac{1}{2}x^2$	+ 1	C. ,	$x^2 +$	C, 其	中 C 为	任意常数	$\mathbf{D}. e^x$		

学

专

班

学

姓

二、填空题 (每小题 3 分, 共 15 分)

- 6. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0.
- 7. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0
- 8. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程______ x 2y + 4 = 0

- 9. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0
- 10. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0.

得分	评阅人	ı ≓ .	判断题(每小题2分,	共10分)
		`) 10 1/2 (4·1 /2 2 /1)	/(10/3)

- 11. 若二元函数 f(x,y) 在点 (1,1) 处连续,则其在该点处可微。
- 12. 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$ 。
- 13. 若二元函数 f(x,y) 在点 (1,1) 处连续,则其在该点处可微。
- 14. 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$ 。
- 15. 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$ 。

得分评阅人

四、解答题 (每小题 10 分, 共 60 分)

16. 试将微分方程 $x\frac{dy}{dx} = x^2 + 3y$, x > 0 转换成一阶非齐次线性微分方程的标准形式,然后使用常数变易法求解,最后对求得的结果进行验算。

使用常数变易法将常数 c 替换成与 x 相关的函数 c(x) 代入原微分方程解得: $\frac{dc(x)}{dx}=\frac{1}{x^2},$ 即 $c(x)=-\frac{1}{x}+C,$ 其中 C 为任意常数。故原微分方程的通解为:

$$y = Cx^3 - x^2, x > 0$$
 其中 C 为任意常数。8分

17. 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设该平面的法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).2+5 分$

18. 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设该平面的法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).2+5 分$

19. 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设该平面的法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).2+5 分$

20. 求函数 f(x,y) = x + y 在 $g(x,y) = x^2 + y^2 = 1$ 限制下的条件最大值与最小值。(提示: 可以使用拉格朗日乘数法。)

解:注:此题也可以不使用乘数法。小题可以看几何意义,大题可以用三角函数代换。另外也可以使用从限制条件中解出y代入f来解无条件极值。

设
$$L(x,y,\lambda) = f(x,y) - \lambda[g(x,y) - 1]$$
 由
$$\begin{cases} \frac{\partial L}{\partial x} = 1 - 2\lambda x = 0 \\ \frac{\partial L}{\partial x} = 1 - 2\lambda y = 0 \\ \frac{\partial L}{\partial \lambda} = x^2 + y^2 - 1 = 0 \end{cases}$$
 ------4 分

- 于是 f 的条件极值为 $f(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) = \sqrt{2}, f(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}) = -\sqrt{2}.$ 9分
- 综上所述,f 的最大值为 $\sqrt{2}$,最小值为 $-\sqrt{2}$.------10分

21. 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设该平面的法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).2+5 分$