基础课 58 事件的相互独立性、条件概率与全概率公式

课时评价·提能

基础巩固练

1. 若某射击运动员每次射击命中目标的概率都为0.9,则他连续射击两次都命中

B. 0.56 C. 0.81

2. 某质检部门对某种建筑构件的抗压能力进行检测,对此建筑构件实施两次击打,若没有受损,则认为该构件通过质检.若第一次击打后该构件没有受损的概率为0.85,当第一次没有受损时第二次再实施击打也没有受损的概率为0.80,则

D. 0.99

的概率是().

A. 0.64

该构件通过质	检的概率为().					
A. 0.4	B. 0.16	C. 0.68	D. 0.17			
		45 件合格品,5 件不行 次取到不合格品后,5				
A. $\frac{4}{49}$	B. $\frac{4}{99}$	C. $\frac{2}{49}$	D. $\frac{2}{99}$			
4. 阅读不仅可以开阔视野,还可以提升语言表达和写作能力.某校全体学生中大约有30%的学生的写作能力被评为优秀等级.经调查知,该校大约有20%的学生每天阅读时间超过1小时,这些学生中写作能力被评为优秀等级的占70%.现从每天阅读时间不超过1小时的学生中随机抽取一名,则该生写作能力被评为优秀等级的概率为().						
A. 0.25	B. 0.2	C. 0.15	D. 0.1			
	3的倍数的概率为(中,任取一数,已知取). C. 13	以出的这个数不大于 D. 7	÷ 40,		
6. 市场调查发	t现,大约 <mark>3</mark> 的人喜欢 ³	在网上购买儿童玩具,	其余的人则喜欢在	生实体		
店购买儿童玩具.经某部门抽样调查发现,网上购买的儿童玩具的合格率为 $\frac{4}{5}$,而						
	童玩具的合格率为 <u>9</u> 10 网上购买的可能性是	.现随机抽取到一个不 :().	合格的儿童玩具,原	則这个		

A. $\frac{1}{2}$	B. $\frac{3}{4}$	C. $\frac{4}{5}$	D. $\frac{5}{6}$		
7. 某校开设了"陆地冰壶""陆地冰球""滑冰""模拟滑雪"四类冰雪运动体验课程.甲、乙两名同学各自从中任意挑选两门课程学习,设事件 $A=$ "甲、乙两人所选课程恰有一门相同",事件 $B=$ "甲、乙两人所选课程完全不同",事件 $C=$ "甲、乙两人均未选择陆地冰壶课程",则().					
A. <i>A</i> 与 <i>B</i> 为对立事件		B. <i>A</i> 与 <i>C</i> 互斥			
C. <i>A</i> 与 <i>C</i> 相互独立		D. <i>B</i> 与 <i>C</i> 相互独立			
8. (改编)某射手每	次射击击中目标的机	既率是 3 , 且各次射击	后的结果互不影响.		
假设这名射手射击 4 次,则有 2 次连续击中目标,另外 2 次未击中目标的概率为 ().					
A. $\frac{27}{128}$	B. $\frac{27}{256}$	C. $\frac{8}{81}$	D. $\frac{29}{256}$		
综合提升练					
9. (多选题)已知红箱内有 6 个红球、3 个白球,白箱内有 3 个红球、6 个白球,所有小球的大小、形状完全相同.第一次从红箱内取出一球后再放回,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回,以此类推,第 $(k+1)$ 次从与第 k 次取出的球颜色相同的箱子内取出一球,然后再放回.记第 n 次取出的球是红球的概率为 P_n ,则下列说法正确的是().					
A. $P_2 = \frac{5}{9}$					
B. $3P_{n+1} + P_n = 1$					
C. 第 5 次取出的球是红球的概率为 $\frac{122}{243}$					
D. 前 3 次取球恰有 2 次取到红球的概率是 $\frac{139}{243}$					
10. (多选题)已知	事件 A , B 满足 $A \subseteq B$, \blacksquare	且 $P(B)=0.5$,则一定	有().		
A. $P(\overline{A}B) > 0.5$	$B. P(\overline{B} A) < 0.5$	C. $P(A\overline{B}) < 0.25$	D. $P(A B) > 0.5$		
11. 某社区举办"环位三个家庭同时回答一					
丙两个家庭都回答错	误的概率是 <u>1</u> , 乙、	丙两个家庭都回答正	E确的概率是 1 , 各		

家庭回答是否正确互不影响,则乙、丙两个家庭各自回答正确的概率分别为.

12. 已知播种用的一等品种子中混合了2.0%的二等品种子, 1.5%的三等品种子, 1.0%的四等品种子, 若用一等品、二等品、三等品、四等品种子长出优质产品

的概率分别为0.5,0.15,0.1,0.05,则从这批种子中任选一粒能长出优质产品的概率为.

应用情境练

13. 某一部件由三个电子元件按如图所示的方式连接而成,元件1和元件2同时正常工作,或元件3正常工作,则部件正常工作.设三个电子元件正常工作的概率均为3,且各个元件能否正常工作相互独立,那么该部件正常工作的概率为.

创新拓展练

14. (双空题)田忌赛马的故事出自司马迁的《史记》,话说齐王、田忌分别有上、中、下等马各一匹.赛马规则:一场比赛需要比赛三局,每匹马都要参赛,且只能参赛一局,最后以获胜局数多者为胜.记齐王的马匹分别为 A_1,A_2,A_3 ,田忌的马匹分别为 B_1,B_2,B_3 ,每局比赛之间都是相互独立的,而且不会出现平局.用 $P_{A_iB_j}(i,j \in$

 $\{1,2,3\}$)表示马匹 A_i 与 B_j 比赛时齐王获胜的概率,且 $P_{A_1B_1}=0.8$, $P_{A_1B_2}=0.9$,

$$P_{A_1B_3}=0.95,\;P_{A_2B_1}=0.1,\;P_{A_2B_2}=0.6,\;P_{A_2B_3}=0.9,\;P_{A_3B_1}=0.09,\;P_{A_3B_2}=0.1,\;P_{A_3B_3}=0.9,\;P_{A_3B_3}$$

 $P_{A_3B_3} = 0.6$,则一场比赛共有__种不同的比赛方案.在上述所有的方案中,有一种方案田忌获胜的概率最大,此概率的值 .