# **Bayesian Inference**

November 11, 2020

# **Bayesian approaches**

- Typically contrasted with **frequentist** approaches
- Treat parameters as uncertain, data as fixed

### Bayes' Rule

### Bayes' Rule

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)} = \frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta) d\theta}$$

#### **Terms**

$$p(\theta|x) = \frac{p(x|\theta) \quad p(\theta)}{\frac{\textit{likelihood}}{p(x)}} = \frac{p(x)}{\frac{p(x)}{\textit{evidence}}}$$

#### **Posterior**

The posterior distribution is proportional to the prior times the likelihood:  $p(\theta|x) \propto p(x|\theta)p(\theta)$ 

The posterior distribution is a distribution over  $\theta$ .

#### **Evidence**

The evidence, or marginal likelihood, can be used for model comparison.

# Simple Motivation: Batting Averages

#### Let

- x be observed data (batting average after n at bats)
- $\theta$  be parameters (a player's 'true' batting average)



Observed data (x)

# Bayesian Occam's Razor

Maximum Likelihood (ML) solutions tend to overfit. Bayesian marginalization reduces overfitting.



Models  $y=f(x)+\epsilon$  of various complexity (polynomials of various order,  $\mathit{M}$ ) were fit to 8 data points.

- Plotted are ML polynomials (least squares fits to the data under Gaussian noise) and posterior samples from a Bayesian model (which used a Gaussian prior for the coefficients, and an inverse gamma prior on the noise).
- The ML estimate can look very different from a typical sample from the posterior!



The evidence is plotted as a function of model order. Model orders M=0 to M=3 have considerably higher evidence than other model orders. We see that Bayesian marginalization has reduced overfitting. (The maximum likelihood model, the M=7 model, fits the data perfectly, but overfits wildly, predicting the function will shoot up or down between neighboring data points.)

### Posterior predictive distribution

#### Given

 $p(\theta|x)$  - posterior  $p(\theta)$  - prior  $p(x|\theta)$  - likelihood

### Posterior predictive distribution

Consider the probability of new data x'. Posterior predictive distribution is:

$$p(x'|x) = \int p(x',\theta|x) d\theta = \int p(x'|\theta,x)p(\theta|x) d\theta = \int p(x'|\theta)p(\theta|x) d\theta$$

Incorporates the knowledge and uncertainty about  $\theta$  that we still had after seeing data x.

# Bayesian inference: conjugate example

Sometimes, we can compute the posterior distribution by hand, given prior and likelihood.

### Setup: flipping a coin

Probability that it lands heads is (unknown)  $\theta$ .

Prior probability over  $\theta$  assumed to follow a Beta(3,3) distribution:

$$p(\theta) = \frac{\theta^{3-1}(1-\theta)^{3-1}}{B(3,3)}$$

Note:  $\theta \sim Beta(a,b)$  means  $p(\theta) \propto \theta^{a-1}(1-\theta)^{b-1}$ 

Will collect data by flipping coin once. Likelihood of observing heads (x = 1) or tails (x = 0) is given by a Bernoulli distribution:

$$p(x|\theta) = \theta^x (1-\theta)^{1-x}$$

6

# Bayesian inference: conjugate example

### Setup: flipping a coin

Probability that it lands heads is (unknown)  $\theta$ .

Prior probability over  $\theta$  assumed to follow a Beta(3,3) distribution:

$$p(\theta) = \frac{\theta^{3-1}(1-\theta)^{3-1}}{B(3,3)}$$

Note:  $\theta \sim Beta(a,b)$  means  $p(\theta) \propto \theta^{a-1}(1-\theta)^{b-1}$ 

Will collect data by flipping coin once. Likelihood of observing heads (x = 1) or tails (x = 0) is given by a Bernoulli distribution:

$$p(x|\theta) = \theta^x (1-\theta)^{1-x}$$

.

# Computing the posterior after observing x=1

$$p(\theta|x) \propto p(x|\theta)p(\theta) = \theta^1(1-\theta)^0\theta^2(1-\theta)^2 = \theta^3(1-\theta)^2 \implies \theta|x \sim \textit{Beta}(4,3)_7$$

# Bayesian inference: tractability notes

# **Conjugacy**

We have conjugacy when the prior and the posterior distributions are in the same family (e.g. in the previous example, the prior and posterior are beta distributions).

# **Generally**

Generally, computing the posterior distribution is much harder than in this example!

Consider the denominator in  $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta)} d\theta$  - integrals are hard

In nonconjugate examples, we need approaches to work with the posterior distribution when we cannot calculate it directly. Stay tuned!

8