Bioluminescence from a (quantum) chemistry perspective

Keiran Rowell - USYD Theory Group Meeting - Nov 5th, 2020

Inspiration — Waitomo caves, NZ

Acknowledgement

Accessible intro to bioluminescence:

- Survey across biology
- Several independent enzymes
- Found in diverse taxa
- Some species cultivate glowing bacteria (angler fish lure)

Thérèse Wilson (1925-2014)

John "Woody" Hastings (1927–2014)

 Luciferase(s) evolved 2.5 billion years ago as antioxidant. <u>Producing</u> <u>light was incidental!</u>

Making light — Bond energy → hv

Cyclic peroxide
$$\rightarrow$$
 CO₂ + R_2 C=O₃. E release

Triplet R₂C=O generated

Quantum yields (QY) are low, and slow emission due to phosphorescence.

Charge transfer from negatively charged aromatic group generates excited singlets.

High QY and rapid luminescence.

Enzyme and substrate — Luciferase + luciferin

Crustaceans

Jellyfish

Algae

Firefly luciferin

DFT & CAS calculations

10

1.55

1.65

NCCN: 180

ΔE(SA-CASSCF) (0.0)

∆[CASPT2]

DO

1.75

Electron-exchange luminescence proposal - B3LYP gives (π, σ^*) ground state

1.85

O-O Bond Distance (Angstrom)

1.95

MECI

(6.8)

2.05

3.03

Conical Intersection $-(\pi,\sigma^*)$ avoided crossing creates TS

QM/MM Calculations — Luciferin + Luciferase

- •O₂ enters protein barrierlessly.
- Substrate deprotonates to nearby histidine.
- •Substrate e⁻-transfer for O₂⁻
- Formation of cyclic peroxide concurrent with AMP-loss Singlet/triplet favour different C-O bonds forming first
 - Luciferin/luciferase system dictates triplet formation is uphill

Thank you!