Дискретная математика

Модуль 1.

Математическая логика

Лекция 2.

Авдошин С.М. (email: <u>savdoshin@hse.ru</u>)

Логика высказываний

- Пропозициональные переменные
- Формулы логики высказываний
- Равносильность формул
- Тавтология
- Противоречие
- Выполнимость
- Опровержимость

Пропозициональные переменные

В логике переменным параметрам, входящим в утверждения, естественно приписывать значение \top или \bot , получая при этом высказывания. Назовем такие переменные параметры, следуя традиции, пропозициональными переменными. Как правило, для краткости пропозициональные переменные именуют просто переменными. Будем обозначать их как $X_1, X_2, ..., X_n, ...$

Индуктивное определение формулы

- 1) пропозициональная переменная есть (атомарная) формула;
- 2) если A и B формулы, то (A&B), $(A\lorB)$, $(A\Rightarrow B)$ формулы;
- если А формула, то ¬А формула.

Как видим, при построении формул используются скобки (и). Однако, как часто делается, лишние скобки опускают. К примеру, формулу $((A \lor B)\&C)$ пишут как $(A \lor B)\&C$, а (A&B) как A&B.

Формулу A, содержащую пропозициональные переменные $X_1, X_2, ..., X_n$, будем обозначать как $A(X_1, X_2, ..., X_n)$.

Алгебра высказываний

Теория, которая изучает формулы, определенные выше, называется *алгеброй высказываний*. В алгебре высказываний каждая пропозициональная переменная, каждая формула принимает одно из двух *значений* − ⊤ (истина) или ⊥ (ложь).

Функция $f(X_1, ..., X_n)$ такая, что ее переменные и она сама могут принимать только два значения — \top или \bot — называется булевой функцией. Иначе говоря, булева функция — это отображение

$$f: \underbrace{\{\bot, \top\} \times ... \times \{\bot, \top\}}_{n-\text{pas}} \to \{\bot, \top\}.$$

Равносильные формулы

 $A(X_1, X_2, ..., X_n)$ и $B(X_1, X_2, ..., X_n)$ называются равносильными, если они совпадают при любых значениях, входящих в них переменных

Примеры равносильных формул

$$A&(B&C) = (A&B)&C$$

 $A&B = B&A$
 $A&A = A$

Равносильность проверяется с помощью таблиц истинности

$$\overline{A \& \overline{B}} = \overline{A} + B \qquad \overline{A} + B = A \Rightarrow B$$

A	В	$A\&\overline{B}$	$\overline{A \& \overline{B}}$
0	0	0	1
0	1	0	1
1	0	1	0
1	1	0	1

Отношение

Пусть $A_1, A_2, ..., A_n$ есть произвольные множества, вообще говоря, разнородные.

Определение. n-арное отношение p^n на множествах $A_1, A_2, ..., A_n$ есть подмножество p^n декартова произведения $A_1 \times A_2 \times ... \times A_n$.

Замечание. n-арное отношение p^n на множестве A есть подмножество p^n натуральной степени множества A^n , n > 0. Индекс n арности (местности) отношения p иногда опускается.

Возможна множественная (суффиксная) $(x_1, ..., x_n) \in \rho$ и предикатная (префиксная) $\rho(x_1, ..., x_n)$ формы записи отношений. В последнем случае отношение ρ называют также предикатом. Для бинарного отношения используется инфиксная запись x ρ y. Унарное отношение $\rho \subseteq E$ есть подмножество множества E. Предикат $\rho(x)$, соответствующий унарному отношению, называется свойством.

Набор $a = (a_1, a_2, ..., a_n) \in \rho$ (допустима запись $\rho(a_1, a_2, ..., a_n)$) называется элементом отношения.

Определение. Отношение *конечно*, если оно состоит из конечного числа элементов.

Отношение эквивалентности

Пусть A есть произвольное множество.

Определение. Бинарное отношение $\sigma \subseteq A \times A$ есть *отношение эквивалент*ности (обозначение $a \sim b$), если оно удовлетворяет следующим аксиомам:

- 1) $a \sim a$, рефлексивность;
- 2) $a \sim b \rightarrow b \sim a$, симметричность;
- 3) $a \sim b \& b \sim c \rightarrow a \sim c$, транзитивность.

Обозначение. $a \sim b$, $\sigma(a, b)$, $(a, b) \in \sigma$, $a \sigma b$.

Определение. Разбиение I множества A есть семейство попарно непересекающихся непустых подмножеств множества A, таких, что: $A = \bigcup_{i \in I} A_i$, $\forall i \neq j$

 $(A_i \bigcap A_j = \varnothing)$. Подмножества A_i называются *смежными классами* разбиения I.

Теорема. 1. Каждому отношению эквивалентности, определенному на множестве A, соответствует некоторое разбиение множества A.

2. Каждому разбиению множества A соответствует некоторое отношение эквивалентности, определенное на множестве A.

Коротко: между классом всех определенных на множестве A эквивалентностей и классом всех разбиений множества A существует взаимно-однозначное соответствие.

Классы эквивалентных функций

- $\Delta\{[A]\}$ класс всех формул А по отношению равносильности
- ¬, &, ∨, [A] класс равносильных формул

$$-[A] \& [B] = [A \& B]$$

$$- [A] \vee [B] = [A \vee B]$$

$$-\neg[A] = [\neg A]$$

Интерпретация

Интерпретацией I высказывания $A(x_1, x_2, ..., x_n)$ называют приписывание значений истинности $(c_1, c_2, ..., c_n) \in \{0,1\}^n$ пропозициональным переменным $(x_1, x_2, ..., x_n)$.

Для формулы $A(x_1, x_2, ..., x_n)$ существует 2^n интерпретаций $I=(c_1, c_2, ..., c_n)$.

Кванторы

Введены в логику Чарльзом Сандресом Пирсом.

Пусть A(x) формула, содержащая переменную x.

В формуле $\forall x A(x)$ знак \forall называют *квантором всеобщности*. Символ $\forall x$ интерпретируется как фраза "для всех x".

В формуле $\exists x A(x)$ знак \exists называют *квантором существования*. Символ $\exists x$ интерпретируется как фраза "существует x".

Свободные и связанные переменные

Переменная x, входящая в формулу A, называется csnsanhoй, если она находится под действием квантора $\forall x$ или $\exists x$. В противном случае переменная x в формуле A называется csofodhoй. Пример. В формулах $\exists x \ (x = y)$ и $\forall x \ B(x,y)$ переменная x связанная, а переменная y свободная.

Формула без свободных переменных является – высказвыванием.

Выполнимость

Формула $A(x_1, x_2, ..., x_n)$ называется выполнимой, если $\exists I = (c_1, c_2, ..., c_n) \in \{0,1\}^n$, для которой $A(c_1, c_2, ..., c_n) = 1$.

Запись $I \models A$ означает, что формула A выполнима (истина) в интерпретации I.

Общезначимость

Формула $A(x_1, x_2, ..., x_n)$ называется общезначимой (тавтологией, тождественно истиной), если

$$\forall I = (c_1, c_2, ..., c_n) \in \{0,1\}^n \ A(c_1, c_2, ..., c_n) = 1.$$

Запись $\models A$ означает, что формула A общезначима.

Опровержимость

Формула $A(x_1, x_2, ..., x_n)$ называется опровержимой, если $\exists I = (c_1, c_2, ..., c_n) \in \{0,1\}^n$, для которой $A(c_1, c_2, ..., c_n) = 0$.

Запись $I \not\models A$ означает, что формула A опровержима (ложна) в интерпретации I.

Противоречивость

Формула $A(x_1, x_2, ..., x_n)$ называется противоречивой (тождественно ложной), если

$$\forall I = (c_1, c_2, ..., c_n) \in \{0,1\}^n A(c_1, c_2, ..., c_n) = 0.$$

Запись $\not\models A$ означает, что формула A противоречива.

общезначимость = опровержимость ($\models A = I \not\models A$) $(\forall I \in \{0,1\}^n)A(I) = 1 = (\exists I \in \{0,1\}^n)A(I) = 0$ $\overline{\text{опровержимость}} = \text{общезначимость} \quad (I \not\models A = \models A)$ $(\exists I \in \{0,1\}^n)A(I) = 0 = (\forall I \in \{0,1\}^n)A(I) = 1$ противоречие = выполнимость $(\not\models A = I \models A)$ $(\forall I \in \{0,1\}^n)A(I) = 0 = (\exists I \in \{0,1\}^n)A(I) = 1$ выполнимость = противоречие $(I \vDash A = \not\vDash A)$ $(\exists I \in \{0,1\}^n)A(I) = 1 = (\forall I \in \{0,1\}^n)A(I) = 0$

Проблема разрешимости

Пусть дана произвольная формула $\mathcal{A}(X_1,...,X_n)$. Можно ли как-то проверить, что она является общезначимой? Если существует такой способ (алгоритм), позволяющий в конечное число шагов убедиться в этом, то говорят, что проблема проверки общезначимости формул алгебры высказываний разрешима.

Рассматривая набор переменных $(X_1, ..., X_n)$ на множестве $\{\bot, \top\}$, имеем 2^n возможных комбинаций. Для каждой комбинации легко вычислить истинностное значение формулы \mathcal{A} . Это можно сделать, написав программу для компьютера. Найдя все значения формулы, мы узнаем всегда ли она истинна. Если «да», то формула \mathcal{A} общезначима.

Логическое следствие

Пусть даны формулы $A_1, ..., A_m, \mathcal{B}$. Формула \mathcal{B} является логическим следствием формул $A_1,...,A_m$, если, придавая значения переменным $X_1, ..., X_n$, от которых зависят все рассматриваемые формулы, всякий раз, когда истинны одновременно все формулы $A_1, ..., A_m$, истинна и формула B.

Для логического следствия используется запись

$$A_1, ..., A_m \models B$$
.

Для проверки наличия логического следования достаточно построить истинностную таблицу.

Пример. Проверить, что $X,Y,(Z\&X\Rightarrow \neg Y)\models \neg Z.$

$$X,Y,(Z\&X\Rightarrow \neg Y)\models \neg Z.$$

Имеем истинную таблицу

X	Y	Z	$Z\&X\Rightarrow \neg Y$	$\neg Z$
T	T	T	Т	T
T	Т	Т	Т	T

Из второй строки видно, что $X,Y,(Z\&X\Rightarrow \neg Y)\models \neg Z$ есть логическое следствие.

Теорема о дедукции (Жак Эрбран (1930))

Если
$$\mathcal{A} \models \mathcal{B}, mo \models (\mathcal{A} \Rightarrow \mathcal{B})$$

Доказательство.

Используем таблицу истинности для связки \Rightarrow . Из условия $\mathcal{A} \models \mathcal{B}$ вытекает, что если $\mathcal{A} = \top$, то $\mathcal{B} = \top$. Но тогда $\models (\mathcal{A} \Rightarrow \mathcal{B})$, ибо случай, когда $\mathcal{A} = \top$, $\mathcal{B} = \bot$, исключен.

Следствие.

$$\mathcal{A}_1,...,\mathcal{A}_m \models \mathcal{B}$$
 тогда и только тогда, когда $\models (\mathcal{A}_1\&...\&\mathcal{A}_m \Rightarrow \mathcal{B})$

Классический принцип двойственности

В булевых алгебрах существуют двойственные утверждения, они одновременно являются либо общезначимыми, либо выполнимыми, либо опровержимыми, либо противоречивыми.

Именно, если в формуле булевой алгебры, поменять все операции на двойственные, то

- 1. если исходная формула была общезначимой, то и двойственная будет общезначимой
- 2. если исходная формула была выполнимой, то и двойственная будет выполнимой
- 3. если исходная формула была опровержимой, то и двойственная будет опровержимой
- 4. если исходная формула была противоречием, то и двойственная будет противоречием

07.09.2019 Департамент программной инженерии

Булевы алгебры

Алгебра высказываний

Носитель алгебры $M = \{0,1\}$.

Бинарные операции -, + . Унарная операция . Константы (нульарные операции) 0, 1 .

Алгебра Кантора

Носитель алгебры – булеан универсального множества $2^U = \{X \mid X \subseteq U\}$.

Бинарные операции \cap , \cup . Унарная операция $\overline{}$. Константы (нульарные операции) \varnothing , U .

Алгебра Линденбаума-Тарского (алгебра классов равносильных формул)

Носитель алгебры
$$\{[F] = \{G \mid fimc(G) = fimc(F) = P_n\} \mid P_n : M^n \to M\}$$
 –

множество классов эквивалентности по отношению равносильности.

Бинарные операции
$$[A] \cdot [B] = [A \cdot B], [A] + [B] = [A + B]$$
. Унарная операция $\overline{[A]} = \overline{[A]}$.

Константы (нульарные операции) [0], [1].

Департамент программной инженерии

Ассоциативности

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$A+(B+C)=(A+B)+C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$[A] \cdot (B) \cdot [C] = (A \cdot [B]) \cdot [C]$$

$$[A]+([B]+[C])=([A]+[B])+[C]$$

Коммутативности

$$A \cdot B = B \cdot A$$

$$A+B=B+A$$

$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

$$[A] \cdot [B] = [B] \cdot [A]$$

$$[A] + [B] = [B] + [A]$$

Идемпотентности

$$A \cdot A = A$$

$$A+A=A$$

$$A \cap A = A$$

$$A \cup A = A$$

$$A \cdot A = A$$

$$[A]+[A]=[A]$$

Дистрибутивности

слева

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$[A] \cdot (B] + [C] = (A \cdot [B]) + (A \cdot [C])$$

$$(A + B) \cdot C = (A \cdot C) + (B \cdot C)$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Двойного отрицания

$$A = A$$

$$A = A$$

$$A = A$$

$$A = A$$

Поглощения

$$A \cdot (A+B) = A$$

$$A+(A\cdot B)=A$$

$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

$$[A] \cdot ([A] + [B]) = [A]$$

$$[A] + ([A] \cdot [B]) = [A]$$

Порецкого

$$A \cdot (\overline{A} + B) = A \cdot B$$

$$A+(A\cdot B)=A+B$$

$$A \cap (A \cup B) = A \cap B$$

$$A \cup (\overline{A} \cap B) = A \cup B$$

$$[A] \cdot (\overline{[A]} + [B]) = [A] \cdot [B]$$

$$[A]+(\overline{[A]}\cdot [B])=[A]+[B]$$

де Моргана

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

$$A \cup B = A \cap B$$

$$\overline{[A] \cdot [B]} = \overline{[A]} + \overline{[B]}$$

$$\overline{[A]+[B]}=\overline{[A]}\cdot\overline{[B]}$$

Склеивания

$$(A+B) \cdot (A+\overline{B}) = A \qquad (A \cdot B) + (A \cdot \overline{B}) = A$$

$$(A \cup B) \cap (A \cup \overline{B}) = A \qquad (A \cap B) \cup (A \cap \overline{B}) = A$$

$$([A]+[B]) \cdot ([A]+[\overline{B}]) = A \qquad ([A]\cdot [B]) + ([A]\cdot [\overline{B}]) = [A]$$

Аристотеля

противоречия исключения третьего
$$A\cdot\overline{A}=0 \qquad A+\overline{A}=1$$

$$A\cap\overline{A}=\varnothing \qquad A\cup\overline{A}=U$$

$$[A]\cdot\overline{[A]}=[0] \qquad [A]+\overline{[A]}=[1]$$

Действия с константами

нейтральный элемент

$$A \cdot 1 = A$$

$$A+0=A$$

$$A \cap U = A$$

$$A \cup \emptyset = A$$

$$[A] \cdot [1] = [A]$$

$$[A] + [0] = [A]$$

поглощающий

$$A \cdot 0 = 0$$

$$A+1=1$$

$$A \cap \emptyset = \emptyset$$

$$A \bigcup U = U$$

$$A \cdot [0] = [0]$$

$$[A]+[1]=[1]$$