课程编号: 100172003

线

概率近似为

北京理工大学 2018-2019 学年第二学期

2017 级概率与数理统计试题 (A卷)

etr 🖸		班	413	100	学号	-		姓名_		
座号_ (本记 不交出	式卷共8页上页草稿纸	1,八个元	大题,满	分100分 氏上无效	; 最后	-页空白	纸为草稿	5纸,可	斯下,考;	武结束后
题号	-	=	=	四	五	六	七	八	总分	核分
得分		THE RE	DAW.	(2) 17	(- D					
签名						W 4.55				
附表:										
Φ(2.5)=	-0.994, Φ(1.5)=0.93	3, Ф(2.33	(3) = 0.99	Ф(1.96)	=0.975,	Φ(1.64)	=0.95,	$t_{0.05}(8) = 1$.8595,
t _{0.025} (8)	= 2.3060	$t_{0.05}(9)$	=1.8331	, t _{0.025} (9)) = 2.2622	2 , χ_0^2	$_{95}(8) = 2$.733 ,	$\chi^2_{0.95}(9) =$	= 3.325 ,
$\chi^2_{0.975}(8)$	= 2.18 ,	$\chi^2_{0.975}(9)$	= 2.700	$\chi^2_{0.025}$	8) = 17.53	$5 , \chi_{0}^{2}$	025 (9)=19	0.023 ,	$\chi^2_{0.05}(8) =$	15.507 ,
$\chi^2_{0.05}(9)=$	=16.919									
一、填空	空题(10:	分) [1	 导分							
1. 一名	射手连续	向一目标	射击三次	欠,事件/	4,表示射	手第 i ខ	次击中目	标(i=1,2	.,3),则A	$\bigcup A_2 \bigcup A_3$
表示的含	文是				1330					
2. 设随村	几变量 X	的分布函	函数满足	F(x) = a	$-e^{-x}$, x	> 0,则	a =			
3. 如果(X,Y)服从	二维正态	分布,贝	川其边缘	分布		(一定	是或不	一定是)	正态分布
4. 设 <i>X</i> ~	~ N(0,0.5)	$Y \sim N(0)$	0,0.5),	且X与Y	相互独立	立,则1	E X-Y =			
5. 设随材	几变量 X	服从几何]分布,	期望为4	,则 <i>P</i> (X	(=1)=				
	$X_{2},,X_{n}$						and the same of the same of	的期望	$F(X_i) =$	- 11 与方
							. 13 13 14	. HJ /VJ 王	L(M _k)	h 373
$D(X_k) = 0$	$\sigma^2 > 0, k =$	= 1, 2, ,	则 $Y = -$	$-\sum_{k=1}^{\infty}X_k^2$ (A)	概率收益	效到				
设随机	变量 X ~	F(n,n)	且 $P(X >$	A = 0.3	, A>0 ÷	内常数,	则 $P(X$	$>\frac{1}{4}$) = .		
	公司多年							-5.5		随机抽查
	200日									

二、(12分) 得分

- 1. 叙述两个事件互斥和独立的关系.
- 2. 为了防止意外,某矿内同时设有两种报警系统甲和乙,每种系统单独使用时,系统甲有效的概率为0.92,系统乙有效的概率为0.93. 在系统甲失灵的情况下,系统乙有效的概率为0.85. 求:(1)发生意外时,这两个报警系统至少有一个有效的概率;(2)在系统乙失灵的情况下,系统甲有效的概率.

装

1.设随机变量 X 的分布函数如下:

$$F(x) = \begin{cases} 0, & x < -1 \\ 1/4, & -1 \le x < 2 \\ 1/2, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

求 (1) 随机变量 X 的分布律; (2) P(X > 1).

2. 设随机变量 X 服从区间 (-1,1) 上的均匀分布,求

(1) $P(|X| < \frac{1}{4})$; (2) 设 $Y = X^2$, 求Y的概率密度函数 $f_Y(y)$.

四、(16分) 得分

设随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} 12e^{-(3x+4y)}, & x > 0, y > 0 \\ 0, & \text{其它.} \end{cases}$$

- (1) 求 X 和 Y 的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$; (2) 判断 X 和 Y 是否相互独立,并给出理由;
- (3) 求函数 $Z = \min(X, Y)$ 的密度函数 $f_z(z)$;
- (4) 求函数U = 3X + 4Y 的分布函数 $F_U(u)$ 和密度函数 $f_U(u)$.

五、(14分) 得分

- 1. 叙述切比雪夫不等式.
- 2. 设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其它.} \end{cases}$$

 $\Rightarrow Y=X^2$.

- (1) 求 E(X), D(X), E(Y), D(Y); (2) 求X与Y的相关系数;
- (3) 判断X与Y是否相关,判断X与Y是否独立 (说明理由).

六、(8分)

得分

设 X_1, X_2, \dots, X_5 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,令 $Z = \frac{\sqrt{3}(X_1 + X_2)}{\sqrt{2(X_3^2 + X_4^2 + X_5^2)}}$ °

(1) 求 Z 的分布; (2) 求 Z 的分布. (要求写出具体过程)

七、(14分)

得分

1、设总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{2}, & \sqrt{\alpha} < x < \sqrt{\alpha} + 2\\ 0, & \text{其他} \end{cases}$$

其中, $\alpha>0$ 为未知参数。 X_1,X_2,\cdots,X_n 为取自该总体的样本, x_1,x_2,\cdots,x_n 为相应的样本观测值. 求参数 α 的矩估计.

2. 设总体 X 服从以 p 为参数的两点分布,即其分布律为

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

其中 $0 未知, <math>X_1, X_2, \cdots, X_n$ 为取自该总体的样本, x_1, x_2, \cdots, x_n 为相应的样本观测值。求

参数 p 及 $\beta = \frac{1-p}{p}$ 的最大似然估计.

八、(14分)

得分

- 1. 叙述假设检验的理论依据.
- 2. 某卷装卫生纸净含量按标准要求为200克/卷,已知该卷装卫生纸净含量服从正态分布 $N(\mu,\sigma^2)$ 。今抽取9卷,测得其净含量样本均值 $\bar{x}=197$ 克,样本标准差s=4.5克。问在显著性水平 $\alpha=0.05$ 下,该卷装卫生纸净含量是否符合要求?