Logica Difusa Aplicada a Predicciones en el Mercado de Valores

Abel José Sanchez Alba Arturo Cortés Sánchez

Inteligencia Computacional Universidad de Granada

26 de enero de 2021

Contenidos

- Introducción
 - Concepto
 - Métodos clásicos
- Modelo difuso Coreano
 - Identificación de la evolución de un sistema difuso
 - Arquitectura y variables del modelo
 - Variables y rendimiento del modelo
- Modelo difuso indonesio
 - Modelo
 - Prediccion
- Conclusiones

Concepto

Concepto

Las características comunes que tienen todos los mercados de valores son su incertidumbre y complejidad.

La mejor aproximación para resolver el problema de la prediccion del mercado de valores es intentar reducir la incertidumbre y resolver la complejidad del mismo.

Métodos clásicos

- Análisis técnico
- Análisis fundamental
- Series temporales tradicionales
- Método de aprendizaje automático

Trabajos Estudiados

- Korea Composite Stock Price Index (KOSPI)
- Mercado inmobiliario de indonesia

Trabajo Coreano

El objetivo del trabajo coreano es desarrollar modelos difusos que puedan predecir los precios futuros en los mercados de valores tomando muestras de los precios pasados.

Se construyeron diferentes modelos difusos para predecir los precios diarios y semanales de apertura, alta, baja y cierre del (KOSPI).

Trabajo Coreano

Los modelos están compuestos por reglas difusas "si X entonces Y".

La parte del antecedente de las reglas consiste en predicados difusos, mientras que la parte consecuente se expresa como nuevas combinaciones no lineales de las variables del antecedente.

Modelos difusos

$$R^{i}$$
: SI x_{1} es $A_{1}^{i}(x_{1})\&x_{2}$ es $A_{2}^{i}(x_{2})\ldots\&x_{k}$ es $A_{k}^{i}(x_{k})$
ENTONCES $y^{i}=a_{0}^{i}+a_{1}^{i}x_{j}^{b_{1}^{i}}+\cdots+a_{k}^{i}x_{k}^{b_{k}^{i}}$

$$R^{i}$$
: SI x_{1} es $A_{1}^{i}(x_{1}) \& x_{2}$ es $A_{2}^{i}(x_{2}) \dots \& x_{k}$ es $A_{k}^{i}(x_{k})$
ENTONCES $y^{i} = a_{0}^{i} + a_{1}^{i} ln(x_{j}) + \dots + a_{k}^{i} ln(x_{k})$

$$R^{i}: \text{SI } x_{1} \text{ es } A_{1}^{i}(x_{1}) \& x_{2} \text{ es } A_{2}^{i}(x_{2}) \dots \& x_{k} \text{ es } A_{k}^{i}(x_{k})$$

ENTONCES $y^{i} = a_{0}^{i} + a_{1}^{i}x_{1} + b_{1}^{i}x_{1}^{2} \dots + a_{k}^{i}x_{k}^{2} + b_{k}^{i}x_{k}^{2}$

8 / 32

Función de Pertenencia

$$A_{j}^{i}(x_{j}) = \begin{cases} \frac{x_{j} + d_{ij} + d_{ij}^{l} - c_{ij}}{d_{ij}^{l}} & \text{si } x_{j} > c_{ij} - d_{ij} - d_{ij}^{l} \\ 1 & \text{si } (c_{ij} - d_{ij}) \leq x_{j} \leq (c_{ij} + d_{ij}) \\ \frac{x_{j} - d_{ij} + d_{ij}^{r} - c_{ij}}{d_{ij}^{r}} & \text{si } (c_{ij} + d_{ij}) \leq x_{j} \leq (c_{ij} + d_{ij} + d_{ij}^{r}) \\ 0 & \text{En otro caso} \end{cases}$$

Donde se puede ver que $A_j^i(x_j)$ tiene forma trapezoidal. En el caso $d_{ij}=0$ se tiene una forma triangular. El modelo debe identificar los parámetros c_{ij} , d_{ij} , d_{ij}^r , d_{ij}^r a medida que éste avance.

Para identificar las reglas difusas óptimas para una tarea determinada adoptamos la evolución diferencial, que requiere pocas variables de control, es robusta y fácil de usar.

La evolución diferencial utiliza vectores de parámetros de tamaño poblacional (NP) como población, y el tamaño de la población no cambia durante la evolución.

Un vector de parámetros contiene los valores de los parámetros a identificar para las partes antecedente y consecuente de las reglas difusas.

La evolución se presenta mediante la siguiente serie de pasos:

- La población inicial se elige al azar si no se sabe nada del sistema. El número de generación t se fija en 0.
- Se genera un nuevo vector de prueba $V_{i,t+1}$ añadiendo el vector de diferencia ponderada entre dos miembros de la población a un tercer miembro como:

$$V_{i,t+1} = X_{r_1,t} + F * (X_{r_2,t} - X_{r_3,t})$$

 $X_{r_1,t}$, $X_{r_2,t}$ y $X_{r_3,t}$ son tres miembros de la población elegidos aleatoriamente y r_1 , r_2 , r_3 son números enteros distintos entre 1 y NP. $X_{i,t}$ es el i-ésimo miembro en la generación t-ésima ($i=1,2\ldots NP$). F es un factor real y constante que controla la variación de problaciones ($X_{r_2,t}-X_{r_3,t}$).

- Para incluir divesidad en el conjunto de vectores, un vector de población nuevo $U_{i,t+1}$ es generado como cruce entre $V_{i,t+1}$ y $X_{i,t}$. Para cada elemento de $U_{i,t+1}$, si el número generado aleatoriamente es mayor que el valor predeterminado por el cruce, el elemento correspondiente de $V_{i,t+1}$ es transferido a $U_{i,t+1}$. Si no, el valor de $X_{i,t}$ es transferido a $V_{i,t+1}$.
- Si el vector generado $U_{i,t+1}$, posee un valor de función objetivo menor que $X_{i,t}$, $X_{i,t+1}$ es asignado como $U_{i,t+1}$, si no, se mantiene $X_{i,t+1}$.

A no ser que se alcance la condición de fin, se aumenta t en una unidad para indicar la siguiente generación y se vuelve al paso 2. El valor objetivo es conocido como media absoluta del error porcentual (mean absolute percent error) MAPE, definido como:

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|a_i - m_i|}{a_i}$$

Donde a_i es el valor actual y m_i es la salida del modelo difuso y n compone el total de datos utilizados.

Arquitectura del Modelo Difuso Coreano

Figura: Modelo difuso para predecir el precio de cierre

Variables del modelo

	Antecedente			(Consecuente		
input	Param	Rule	Rule	Parameter	Rule i=1	Rule i=2	
variables	raram	i=1	i=2	a_0^i	1375.12	2032.70	
	c_{i1}	1758.7	1587.68				
apertura(t-1)	d_{i1}^l	641.49	726.17	a_1^i	-0.0068	-0.01	
	d_{i1}	565.46	721.14			-0.01	
	d_{i1}^r	739.45	740.37				
	c_{i2}	1420.79	1716.18				
alta(t-1)	d_{i2}^l	635.35	740.39	a_2^i	-0.0085	0.0014	
arta(t-1)	d_{i2}	732.26	626.56	<i>u</i> ₂	-0.0000	0.0014	
	d_{i2}^r	514.89	419.79			l	
	c_{i3}	1555.40	1686.45		-0.0087	-0.0071	
baja(t-1)	d_{i3}^l	473.96	178.04	a_3^i			
baja(t-1)	d_{i3}	644.02	738.72	a_3			
	d_{i3}^r	64.48	740.37				
	c_{i4}	1828.55	1914.53	a_4^i	0.01	-0.0012	
cierre(t-1)	d_{i4}^l	740.39	576.64				
cierre(t-1)	d_{i4}	704.37	722.87				
	d_{i4}^r	439.47	445.17				
	c_{i5}	1745.72	1935.95	a_5^i	-0.01	-0.0069	
apertura(t)	d_{i5}^l	701.42	590.09				
apereura(t)	d_{i5}	678.05	500.06				
	d_{i5}^r	234.07	390.51				
	c_{i6}	1907.04	1794.54	a_6^i	0.0021	0.0053	
alta(t)	d_{i6}^l	740.37	615.24				
arra(t)	d_{i6}	606.96	740.37				
	d_{i6}^r	533.78	740.37				
baja(t)	c_{i7}	1807.14	1695.65	a_{7}^{i}	0.01		
	d_{i7}^l	740.37	613.96			0.01	
	d_{i7}	647.72	499.85			0.01	
	d_{i7}^r	335.46	740.37				
	c_{i8}	1380.16	2082.60				
cierre(t)	d_{i8}^l	594.44	459.66	a_8^i	-0.0069	0.0011	
cierre(t)	d_{i8}	367.30	740.37	a ₈		0.0011	
	d_{i8}^r	484.07	740.37				

Figura: Variables Modelo difuso para predecir el precio de cierre

Rendimientos del modelo

	modelo	apertura	alta	baja	cierre
Modelado	Sugeno	0.851	0.834	1.022	1.140
	FM I	0.751	0.737	0.929	1.039
	FM II	0.776	0.878	0.991	1.078
	FM III	1.206	1.024	2.173	1.699
Evaluación	Sugeno	0.984	0.746	1.028	0.867
	FM I	0.739	0.822	1.067	1.063
	FM II	0.818	0.727	0.894	0.843
	FM III	1.141	0.914	2.255	1.573

Tabla: Medidas de rendimiento diarias en MAPE

Rendimiento del modelo datos semanales

	modelo	apertura	alta	baja	cierre
Modelado	Sugeno	0.870	1.329	1.834	2.119
	FM I	0.823	1.137	1.561	1.931
	FM II	0.775	0.900	1.407	1.868
	FM III	2.574	3.394	2.273	3.238
Evaluación	Sugeno	1.375	1.770	1.336	1.502
	FM I	0.789	1.346	1.867	2.321
	FM II	0.977	1.088	1.702	1.875
	FM III	2.487	4.443	3.669	4.778

Tabla: Medidas de rendimiento semanales en MAPE

2100 c

(a) Comparación del precio de cierre diario (b) Comparación del precio de cierre del modelo con KOSPI

semanal del modelo con KOSPI

Mercado indonesio.

- Indonesia, como país en vías de desarrollo, necesita una cantidad de capital considerable. En este caso, los mercados de valores tienen un papel importante en la economía indonesia. No sólo apoyan la economía, sino que también son un indicador del progreso económico del país.
- Mucha gente está invirtiendo en propiedades e inmuebles porque el precio del suelo tiende a subir cada año. Esto se debe a que la oferta de terrenos es fija y la demanda aumenta por parte del público.

Modelo difuso para el impulso bursátil en Indonesia

- El impulso bursátil puede describirse como el movimiento del precio de las acciones.
- Se calcula como la diferencia entre el precio de cierre y el precio de apertura en un periodo de tiempo concreto.
- Lo podemos dividir en tres categorías: a la baja, neutral y al alza.
- Para esta investigación se han usado 14 datos históricos del valor máximo, mínimo, apertura y cierre de las acciones en 2015. Mediante el uso de la lógica difusa se espera predecir el impulso, para los próximos 5 días.

Para este modelo dividimos el impulso:

- Muy bajista
- Bajista
- Neutral
- Alcista
- Muy alcista

Los límites que se utilizarán para limitar cada categoría son a, b, c, d y e. Cada uno se calcula como un valor porcentual del valor máximo del impulso x_i . Tomaremos los siguientes porcentajes 15 %, 30 %, 45 %, 60 % y 75 %.

Función de pertenencia

Figura: Funciones de pertenencia triangular y trapezoidal

$$\mu_{VBR}(x) = \begin{cases} 1 & \text{si } x \leq a \\ \frac{b-x}{b-a} & \text{si } a \leq x \leq b \\ 0 & \text{si } x \geq b \end{cases}$$

$$\mu_{BR}(x) = \begin{cases} 0 & \text{si } x \leq a \\ \frac{x-a}{b-a} & \text{si } a \leq x \leq b \\ \frac{c-x}{b-c} & \text{si } b \leq x \leq c \\ 1 & \text{si } x \geq c \end{cases}$$

23 / 32

$$\mu_{N}(x) = \begin{cases} 0 & \text{si } x \leq b \\ \frac{x-b}{c-b} & \text{si } b \leq x \leq c \\ \frac{d-x}{d-c} & \text{si } c \leq x \leq d \\ 1 & \text{si } x \geq d \end{cases}$$

$$\mu_{BL}(x) = \begin{cases} 0 & \text{si } x \leq c \\ \frac{x-c}{d-c} & \text{si } c \leq x \leq d \\ \frac{e-x}{e-d} & \text{si } d \leq x \leq e \\ 1 & \text{si } x \geq e \end{cases}$$

$$\mu_{VBL}(x) = \begin{cases} 1 & \text{si } x \geq e \\ \frac{x-d}{e-d} & \text{si } d \leq x \leq e \\ 0 & \text{si } x \leq d \end{cases}$$

Los valores de impulso difusos se definen en base a la siguiente ecuacion:

$$\delta_i = \left\{ \begin{array}{l} \max\{\mu_{VBR}(x_i), \mu_{BR}(x_i), \mu_{N}(x_i), \mu_{BL}(x_i), \mu_{VBL}(x_i)\}, \Delta_i \geq 0 \\ Secondmax\{\mu_{VBR}(x_i), \mu_{BR}(x_i), \mu_{N}(x_i), \mu_{BL}(x_i), \mu_{VBL}(x_i)\}, \Delta_i < 0 \end{array} \right.$$

El valor estimado del impulso difuso φ se evaluará en 14 días de datos históricos.

$$\varphi = \frac{\sum_{i=1}^{14} \delta_i}{14}$$

Interpretación lingüistica

$$\gamma = \left\{ \begin{array}{ll} \textit{baja} & \text{si } 0 \leq \varphi \leq 0,5 \\ \textit{Neutral} & \text{si } 0,5 < \varphi \leq 0,6 \\ \textit{alta} & \text{si } 0,6 < \varphi \leq 1 \end{array} \right.$$

Fecha	apertura (v_i^{op})	$alta(v_i^{hi})$	$baja(v_i^{lo})$	cierre(v_i^{cl})	impulso
1-1-2015	335	335	335	335	0
2-1-2015					1
	336	339	334	337	1
5-1-2015	340	347	335	346	6
6-1-2015	343	362	336	359	16
7-1-2015	365	345	361	419	44
8-1-2015	425	433	407	430	5
9-1-2015	430	445	424	439	9
12-1-2015	440	440	420	421	19
13-1-2015	420	430	418	424	4
14-1-2015	425	428	410	412	13
15-1-2015	423	427	412	423	0
16-1-2015	419	429	417	429	10
19-1-2015	433	437	420	420	13
20-1-2015	421	429	408	414	7

Tabla: Datos Stock Agung Podomoro 01-01-2015 a 20-01-2015

- Si aplicamos el modelo anterior a estos datos vemos que tienen un impulso difuso de 0,84.
- Es decir, tienen un impulso alcista.

Fecha	apertura (v_i^{op})	$alta(v_i^{hi})$	$baja(v_i^{lo})$	$cierre(v_i^{cl})$	impulso
21-1-2015	414	420	410	411	-3
22-1-2015	414	423	411	417	3
23-1-2015	420	437	420	421	1
26-1-2015	421	424	410	413	8
27-1-2015	418	425	416	418	0

Tabla: Datos Stock Agung Podomoro 21-01-2015 a 27-01-2015

Conclusiones

- El modelo Coreano presenta modelos difusos óptimos para predecir los precios diarios y semanales de apertura, alta, baja y cierre del KOSPI.
- Los modelos FM I y FM II demostraron una predictibilidad fiable , especialmente el modelo FM II.
- El método propuesto también puede aplicarse a la predicción del precio de una acción individual

Conclusiones

- La investigación indonesia plantea un modelo que puede predecir el impulso de los próximos 5 días utilizando datos históricos de 14 días.
- No sólo puede aplicarse para predecir el impulso del sector inmobiliario, sino que también puede aplicarse en otros sectores que cotizan en la Bolsa de Indonesia.

FIN

32 / 32