

Pimpri Chinchwad Education Trust's Pimpri Chinchwad College Of Engineering, Pune

AUTONOMOUS SMART KITCHEN PLANNER

Presented by

Pranamya Rajeevan	122B1F107
Janhavi Raktate	122B1F108
Sanskruti Rane	122BIFI09
Gargi Wattamwar	122BIFI36

Guided by

Dr. Gulbakshi J. Dharmale

- The Autonomous Smart Kitchen Planner is an Al-based system that suggests meals by considering available ingredients, time, and dietary preferences.
- Al and CSP in use: CSP (Constraint Satisfaction Problem) algorithms are applied to handle multiple constraints efficiently, like limited ingredients or time.
- Purpose: To simplify meal planning, reduce food wastage, and promote healthier eating.

MOTIVATION

Why automate meal planning?
It saves time and reduces the stress of deciding what to cook.

Environmental impact:
Meal planning can help
reduce food wastage,
a significant global
issue.

Key challenges:
Managing multiple
constraints like dietary
preferences, available
ingredients, and time
limits.

OBJECTIVES

Automate meal planning

Provide users with recipe suggestions based on available ingredients and preferences.

Promote healthier choices

By meeting dietary goals like calorie limits or nutritional balance.

Minimize food wastage

By suggesting recipes that use perishable ingredients.

User-friendly interface

Easy input of constraints and seamless recipe suggestions.

SYSTEM ARCHITECTURE

User Input Module: Inputs ingredients, preferences, and time constraints.

CSP Solver:
Processes inputs and generates meal suggestions.

Recipe Database: Stores recipes, including nutrition info.

Output Module: Displays suggested meal plans.

LITERATURE SURVEY

Sr. No	Title	Author	Work Presented	Methodology	Result Analysis/ Performance s Measures	Key Features
	Internet of Things based system for Smart Kitchen	Chatterjee, Jyotir Moy, et al.	Proposes an IoT-based system to automate kitchen tasks and enhance efficiency and safety in kitchen environments.	 Develops an IoTenabled system for monitoring and controlling kitchen appliances. Uses sensors for tracking appliance usage and ingredient status. Incorporates wireless communication for remote access and control. 	- Improved energy efficiency and reduced manual oversight in kitchen operations Enhanced safety through real-time monitoring of appliances and cooking processes.	 loT integration for real-time appliance monitoring and control. Remote access to kitchen systems via mobile devices. Sensor-based tracking for ingredient availability and energy usage.

_	•		• • • • •				
	2.	Application of Artificial Intelligence in Smart Kitchen	Yu, Trieu Minh, and Riva Khanna	Investigates the application of Al technologies to improve kitchen automation and enhance the user experience.	Al techniques applied in smart kitchen systems (e.g., machine learning for recipe recommendation, computer vision for ingredient identification). - Develops a smart kitchen prototype integrating Albased sensors and recommendation systems.	 Demonstrates improved efficiency in kitchen task automation, reducing user intervention. Enhanced recipe recommendation accuracy through Al learning models. 	- Al-powered ingredient identification using computer vision. - Recipe recommendation based on user preferences and available ingredients. - Prototype for Alintegrated smart kitchen appliances.
	3.	YORI: Autonomous Cooking System Utilizing a Modular Robotic Kitchen and a Dual-Arm Proprioceptiv e Manipulator	Noh, Donghun, et al.	Introduces YORI, an autonomous cooking system that leverages a modular robotic kitchen and a dual-arm manipulator.	 Utilizes a dual-arm proprioceptive manipulator for performing cooking tasks. Modular robotic kitchen system to integrate with appliances. Employs Al-based control algorithms for cooking automation. 	- Achieves successful completion of diverse cooking tasks with high precision Significant improvements in the efficiency of multi-step cooking processes.	 - Modular robotic kitchen system designed to integrate with typical kitchen appliances. - Dual-arm manipulator with proprioception for precise cooking actions. - Capable of handling complex, multi-step cooking tasks autonomously.

4.	Design and Implementati on of Smart Kitchen Safety Protection System for Empty Nesters	Geng, Haopeng, Baoju Liu, and Honglin Fang	Presents a smart kitchen safety system specifically designed to protect elderly people (empty nesters) from common kitchen hazards.	- Uses IoT sensors to monitor kitchen conditions (e.g., gas leaks, stove use, fire hazards) Incorporates real-time alerts and notifications to family members or caregivers Develops an automated shutoff mechanism for appliances in case of danger.	 Successfully demonstrates enhanced safety by preventing accidents in realtime. Significant reduction in kitchen-related risks for elderly individuals living alone. 	- IoT-based monitoring of critical kitchen safety parameters (e.g., gas, fire) Real-time alerts and emergency shutdown of appliances Designed specifically for the elderly (empty nesters), focusing on simplicity and reliability.
----	--	--	---	---	--	---

METHODOLOGY

CSP Algorithm:

- Variables: Ingredients, meal time, dietary preferences.
- Constraints: Nutritional goals, available ingredients, cooking time.
- Solution Process: Backtracking and constraint propagation used to find optimal meal plans.

Flowchart

User inputs \rightarrow CSP processes constraints \rightarrow Generates meal plan suggestions.

PROPOSED SOLUTION

Optimization:
Improve constraint
handling to reduce
computation time.

IoT Integration:
Connect with smart
kitchen appliances to
track ingredient usage.

Customizable constraints:
Users can adjust time,
ingredients, and portion
size.

CONCLUSION

Summary: The project automates meal planning, reduces food wastage, and promotes healthier eating using CSP.

Impact: Simplifies meal preparation and helps users stick to dietary goals.

Future scope: Integrate with grocery services and health data for more personalized suggestions.

REFERENCES

- [1] Chatterjee, Jyotir Moy, et al. "Internet of Things based system for Smart Kitchen." *International Journal of Engineering and Manufacturing* 8.4 (2018): 29.
- [2] Vu, Trieu Minh, and Riva Khanna. "Application of artificial intelligence in smart kitchen." *International Journal of Innovative Technology and Interdisciplinary Sciences* 1.1 (2018): 1-8.
- [3] Noh, Donghun, et al. "YORI: Autonomous Cooking System Utilizing a Modular Robotic Kitchen and a Dual-Arm Proprioceptive Manipulator." *arXiv preprint arXiv:2405.11094 (2024).*
- [4] Geng, Haopeng, Baoju Liu, and Honglin Fang. "Design and Implementation of Smart Kitchen Safety Protection System for Empty Nesters." 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2023.

THANKYOU