CAPÍTULO 1. TEORIA ELEMENTAR DOS CONJUNTOS

Sumário

Introdução ao curso	1
1. Conjuntos e operações entre conjuntos	2
1.1. Revisão de algumas noções de lógica	2
2. Funções	5
2.1. Composição de funções	7
2.2. A imagem de um conjunto	8
2.3. A pré-imagem de um conjunto	9
3. Relações	9

Introdução ao curso

O objetivo deste curso é fornecer uma introdução à análise real.

Análise real é a disciplina matemática que estuda números reais, sequências de números reais, funções com domínio e valores reais e suas propriedades.

A maioria dos conceitos considerados nesse curso são familiares (dos cursos de Cálculo). No entanto, o foco será no estudo formal e rigoroso destes conceitos, ao invés da abordagem mais computacional e aplicada das matérias anteriores.

Assim, vamos responder a perguntas do tipo:

- Como comparar a cardinalidade de vários conjuntos?
- O que é um número real?
- O que é e quando existe o limite de uma sequência de números reais? Como somar uma série infinita de números reais?
- O que é uma função contínua? Qual é o comportamento de uma função contínua em intervalos ou em outros tipos de conjuntos?

Por que estudar análise, por que cálculo não é suficiente?

Há muitas razões, uma delas é que uma compreensão mais profunda dos conceitos de cálculo nos impede de cometer erros graves, mesmo quando se trata de problemas práticos.

Exemplo 0.1 (Séries divergentes). Considere a série infinita

$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \sum_{n=0}^{\infty} \frac{1}{2^n}$$

Então

$$2S = 2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots = 2 + S$$

Logo, S=2 (que, por acaso, é a resposta correta).

No entanto, se aplicarmos a mesma lógica à série

$$S = 1 + 2 + 4 + 8 + 16 + \cdots$$

temos que

$$2S = 2 + 4 + 8 + 16 + \dots = S - 1,$$

o que implica o resultado absurdo S=-1.

Um outro exemplo:

$$S = 1 - 1 + 1 - 1 + 1 - 1 + \cdots$$

pode ser escrita como

$$S = 1 - (1 - 1 + 1 - 1 + 1 - \cdots) = 1 - S$$
,

levando a $S=\frac{1}{2},$ mas também como

$$S = 1 + (-1 + 1) + (-1 + 1) + \cdots$$
$$= 1 + 0 + 0 + \cdots = 1,$$

absurdo (S não pode ser igual a $\frac{1}{2}$ e a 1 no mesmo tempo).

Exemplo 0.2 (Sequências divergentes). Seja x um número real qualquer e seja

$$L = \lim_{n \to \infty} x^n$$

Evidentemente $n+1\to\infty$ quando $n\to\infty$, logo

$$\lim_{n \to \infty} x^{n+1} = L$$

Mas $x^{n+1} = x \cdot x^n$, então temos a relação L = xL.

Isso implica x=1 ou L=0. Mas claramente se x=2, a sequência 2^n não pode convergir a 0 quando $n\to\infty$. Em outras palavras, há um error grave no nosso raciocínio.

1. Conjuntos e operações entre conjuntos

Definição 1.1. Um conjunto A é uma coleção (não ordenada) de objetos chamados elementos de A.

A notação $x \in A$ significa "x pertence a A".

A notação $x \notin A$ significa "x não pertence a A".

Exemplo 1.1. Se $A = \{1, 7, 6\}$ então $7 \in A \text{ mas } 9 \notin A$.

Exemplo 1.2. Se A é o conjunto de todos os triângulos retângulos no plano, então um triângulo com lados 3, 4, 5 pertence a A, mas um triângulo com lados 2, 3, 4 não pertence a A.

Observação 1.1. Conjuntos podem ser objetos (elementos) também. Por exemplo, dado um conjunto A, temos

$$A \in \{3, A, x\}.$$

Definição 1.2. Dois conjuntos A e B são iguais (A = B) se todo elemento de A também é um elemento de B e vice-versa, ou seja:

A = B se e somente se $(x \in A \Rightarrow x \in B \ e \ x \in B \Rightarrow x \in A)$.

1.1. **Revisão de algumas noções de lógica.** Usaremos a abreviação *sse* para a frase (extremamente comum neste curso) "se e somente se".

Se P e Q são duas sentenças (ou afirmações ou proposições), então a notação $P \Rightarrow Q$ significa "P implica Q", ou, em outras palavras, "se P vale então Q vale".

A nova proposição $P\Rightarrow Q$ é equivalente à proposição (não P ou Q). Logo, ela é verdadeira sse P é falsa ou Q é verdadeira.

Lembre-se que em matemática, a palavra "ou" é geralmente inclusiva (no sentindo que a afirmação "A vale ou B vale" inclui a possibilidade do que A e B valham).

Ademais, a proposição $P \Rightarrow Q$ é equivalente à proposição "não $Q \Rightarrow$ não P", o que representa a base para argumentos/provas por contradição.

Isto é, às vezes ao fim de provar que $P \Rightarrow Q$, supomos que a afirmação (conclusão, neste cenário) Q seja falsa, e mostramos que a proposição (hipótese, neste cenário) P seja falsa também, uma contradição.

Duas proposições P e Q são equivalentes, e escrevemos $P \iff Q$, se elas têm o mesmo valor lógico, ou seja, são verdadeiras ou falsas no mesmo tempo.

Segue que $P \iff Q$ sse $(P \Rightarrow Q \in Q \Rightarrow P)$.

Em particular, se A e B são dois conjuntos, então

A = B sse $\forall x$ temos que $x \in A \iff x \in B$.

O símbolo \forall significa "para todo". Além disso, o símbolo \exists significa "existe". Eles são chamados de quantificadores lógicos.

Axioma. (um axioma é um fato matemático aceito sem prova, um "dogma")

Existe um conjunto \emptyset , chamado do conjunto vazio, que não contém nenhum elemento, ou seja, $\forall x$ temos $x \notin \emptyset$.

Definição 1.3. Sejam $A \in B$ dois conjuntos. A união de $A \in B$ é o conjunto $A \cup B$ que consiste em todos os elementos que pertencem a A ou a B (ou aos ambos conjuntos), ou seja,

$$A \cup B = \{x \colon x \in A \text{ ou } x \in B\}.$$

Portanto $x \in A \cup B$ sse $(x \in A \text{ ou } x \in B)$.

Exemplo 1.3. $\{1,2\} \cup \{2,3\} = \{1,2,3\}$

Proposição 1.1. Se A, B, C são conjuntos, então

$$A \cup B = B \cup A$$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$A \cup \emptyset = A.$$

Demonstração. Exercício.

Definição 1.4. Dados dois conjuntos A e B, dizemos que A é um subconjunto de B, e escrevemos $A \subset B$ se todo elemento de A também é um elemento de B, ou seja,

 $\forall x, x \in A \Rightarrow x \in B.$

Além disso, A é um subconjunto próprio de B se $A\subset B$ e $A\neq B$. Neste caso escrevemos $A\subsetneq B$.

Proposição 1.2. Sejam A, B, C conjuntos.

- $Se\ A \subset B\ e\ B \subset C\ ent\~ao\ A \subset C$.
- $\blacksquare A = B \text{ sse } A \subset B \text{ e } B \subset A.$

Demonstração. Exercício.

Subconjuntos são muitas vezes definidos por uma propriedade específica, ou seja, dado um conjunto A e uma propriedade P(x) sobre um objeto x, existe um conjunto B dos elementos de A que satisfazem a propriedade P(x), ou seja,

$$B = \{x \in A \colon P(x) \text{ vale } \}.$$

Também usamos a notação

$$B = \{x \in A \mid P(x) \text{ vale } \}.$$

Exemplo 1.4. Sejam $A = \{1, 2, 3, 4, 5\}$ e P(x) a propriedade de x ser par.

Então $B = \{x \in A : P(x) \text{ \'e verdadeira}\} = \{2, 4\}.$

Definição 1.5. Sejam $A \in B$ dois conjuntos. A interseção de $A \in B$ é o conjunto $A \cap B$ de elementos que pertencem a ambos conjuntos, ou seja,

$$A \cap B = \{x \colon x \in A \in x \in B\}.$$

Portanto, $x \in A \cap B$ sse $(x \in A \in x \in B)$.

Definição 1.6. Dois conjuntos A e B são disjuntos se eles não têm nenhum elemento em comum, ou seja, se $A \cap B = \emptyset$.

Definição 1.7. Sejam $A \in B$ dois conjuntos. A diferença de $A \in B$ é o conjunto $A \setminus B$ de elementos em A que não pertencem a B, ou seja,

$$A \setminus B = \{x \colon x \in A \in x \notin B\}.$$

Portanto, $x \in A \setminus B$ sse $(x \in A \in x \notin B)$.

Proposição 1.3. Sejam A, B, C conjuntos. Então

- $\blacksquare A \cap \emptyset = \emptyset, \quad A \cap A = A.$
- $\blacksquare A \cap B = B \cap A.$
- $\bullet (A \cap B) \cap C = A \cap (B \cap C).$
- $\bullet A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- $\blacksquare A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A).$

Demonstração. Vamos provar a propriedade $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (as outras são exercícios). Vale a seguinte série de equivalências:

Seja X um conjunto que será visto como "universo" (por exemplo X é o conjunto de números reais).

Neste contexto, se $A \subset X$, denotamos o complemento de A (relativamente a X) por

$$A^c = X \setminus A$$
.

Logo, $X = A \cup A^c$ e $A \cap A^c = \emptyset$.

Proposição 1.4. (relações de de Morgan) Sejam $A, B \subset X$. Então $(A \cup B)^c = A^c \cap B^c$

$$e (A \cap B)^c = A^c \cup B^c.$$

Demonstração. Para todo x teme-se

mostrando que $(A \cup B)^c = A^c \cap B^c$.

$$x \in (A \cup B)^{c}$$

$$\operatorname{sse} x \notin (A \cup B)$$

$$\operatorname{sse} (x \notin A \text{ e } x \notin B)$$

$$\operatorname{sse} (x \in A^{c} \text{ e } x \in B^{c})$$

$$\operatorname{sse} \left[x \in A^{c} \cap B^{c}\right],$$

Além disso,

$$x \in (A \cap B)^{c}$$

$$\operatorname{sse} x \notin A \cap B$$

$$\operatorname{sse} (x \notin A \text{ ou } x \notin B)$$

$$\operatorname{sse} (x \in A^{c} \text{ ou } x \in B^{c})$$

$$\operatorname{sse} x \in A^{c} \cup B^{c},$$

$$\operatorname{mostrando que} (A \cap B)^{c} = A^{c} \cup B^{c}.$$

Descrevemos outras propriedades do conjunto complementar na seguinte proposição.

Proposição 1.5. Sejam $A, B \subset X$. Então

- $(A^c)^c = A$
- $Se\ A \subset B\ ent\tilde{ao}\ B^c \subset A^c$
- $A \backslash B = A \cap B^c .$

Demonstração. Exercício.

Definição 1.8. Dado um conjunto X, denotamos por

$$\mathcal{P}(X) = 2^X = \{A : A \subset X\}$$

o conjunto de todos os subconjuntos de X.

Definição 1.9. Dados dois conjuntos $A \in B$, seu produto cartesiano $A \times B$ é o conjunto de todos os pares ordenados (a, b) com $a \in A$ e $b \in B$, ou seja,

$$A \times B = \{(a, b) : a \in A \in b \in B\}.$$

Um par ordenado pode ser visto como um conjunto com dois elementos onde existe uma escolha do qual é o primeiro elemento (ou coordenada), neste caso a, e o qual é o segundo elemento (ou coordenada), neste caso b.

Temos que

$$(a, b) = (a', b') \iff a = a' \in b = b'.$$

Em particular, $(2,3) \neq (3,2)$.

Exemplo 1.5. Se $A = \{1, 2\}$ e $B = \{0, 7\}$ então $A \times B = \{(1, 0), (1, 7), (2, 0), (2, 7)\}.$

2. Funções

Intuitivamente, uma função de A para B é uma regra que permite associar a cada elemento $x \in A$, um único elemento $f(x) \in B$, chamado o valor de f em x.

A definição formal é a seguinte.

Definição 2.1. Uma função é uma tripla f = (A, B, G), que consiste em três conjuntos:

- A (domínio da função),
- B (contradomínio da função), e
- $\blacksquare G \subset A \times B$ (o gráfico da função)

onde G satisfaz a seguinte propriedade:

para todo $x \in A$ existe um único elemento $y \in B$, denotado por f(x), tal que $(x, y) \in G$. (Esta propriedade é chamada o teste da reta vertical.)

Em vez de f = (A, B, G) usamos a notação mais sugestiva $f: A \to B$.

Exemplo 2.1. Seja \mathcal{P} o conjunto dos polígonos no plano e seja $f: \mathcal{P} \to \mathbb{R}$ a função (regra) que associa a cada polígono $P \in \mathcal{P}$ a sua área, ou seja, f(P) = área de P.

Formalmente, $f = (\mathcal{P}, \mathbb{R}, G)$, onde $G = \{(P, \text{área de } P) : P \text{ polígono}\}$.

Exemplo 2.2. Gostaríamos de definir a função que associa a cada número racional x, seu inverso multiplicativo, $\frac{1}{x}$. Temos que excluir x=0 do domínio, então $f: \mathbb{Q} \setminus \{0\} \to \mathbb{Q}$, $f(x)=\frac{1}{x}$.

Definição 2.2. Uma função $f: A \to B$ é injetiva se entradas diferentes têm valores diferentes, ou seja, se $x_1, x_2 \in A$, $x_1 \neq x_2$ então $f(x_1) \neq f(x_2)$.

Equivalentemente, $f: A \to B$ é injetiva se dados $x_1, x_2 \in A$,

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

Exemplo 2.3. O exemplo mais simples de uma função injetiva é a inclusão. Se $A \subset B$, definimos $i:A \to B$ por

$$i(x) = x$$
.

Então claramente i é injetiva.

Outros exemplos: qualquer função linear, por exemplo

$$f: \mathbb{R} \to \mathbb{R}$$
,

$$f(x) = 7x + 3.$$

De fato, se $f(x_1) = f(x_2)$ então $7x_1+3=7x_2+3$, logo $7x_1=7x_2$, ou seja, $x_1=x_2$, mostrando a injetividade de f.

Exemplo 2.4. A função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = x^2$$

não é injetiva. De fato, $7 \neq -7$ mas f(7) = f(-7) = 49.

Definição 2.3. Uma função $f: A \to B$ é sobrejetiva se todo elemento do contradomínio é um valor, ou seja, se para todo $y \in B$ existe $x \in A$ tal que f(x) = y.

Exemplo 2.5. O exemplo mais simples de uma função sobrejetiva é uma projeção. De fato, dados dois conjuntos A e B, sejam

$$\pi_1: A \times B \to A, \quad \pi_1(x,y) = x$$

e

$$\pi_2: A \times B \to B, \quad \pi_2(x,y) = y$$

as projeções na primeira e respectivamente na segunda coordenada.

Dado $x \in A$, para qualquer $y \in B$ temos que $(x,y) \in A \times B$ e $\pi(x,y) = x$, logo π_1 é sobrejetiva. Similarmente para π_2 .

Um outro exemplo: $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = 7x + 3.$$

Claramente, se $y \in \mathbb{R}$ existe $x = \frac{y-3}{7}$ tal que f(x) = y, então f é sobrejetiva.

Exemplo 2.6. A função $f: \mathbb{Q} \to \mathbb{Q}$, $f(x) = x^2$ não é sobrejetiva.

De fato, $f(x) = x^2 \ge 0$ para todo $x \in \mathbb{Q}$, então nenhum $y \in \mathbb{Q}$ com y < 0 é um valor de f, ou seja, se $y \in \mathbb{Q}$, y < 0, não existe nenhum $x \in \mathbb{Q}$ tal que f(x) = y.

Definição 2.4. Uma função $f: A \to B$ é bijetiva se ela é tanto injetiva quanto sobrejetiva.

Exemplo 2.7. A função linear $f: \mathbb{Q} \to \mathbb{Q}$,

$$f(x) = 7x + 3$$

é bijetiva, pois já mostramos que ela é injetiva e sobrejetiva.

Definição 2.5. Uma função $f: A \to B$ é bijetiva (ou uma bijeção) quando é injetiva e sobrejetiva.

Exemplo 2.8. A função identidade $id: A \to A$, id(x) = x é claramente bijetiva.

A função $f: \mathbb{Q} \to \mathbb{Q}$, f(x) = 7x + 3 é bijetiva.

Exemplo 2.9. A função $f: \mathbb{Q} \setminus \{0\} \to \mathbb{Q}$, $f(x) = \frac{1}{x}$ não é sobrejetiva, então não é bijetiva.

A função $f:\mathbb{Q}\to\mathbb{Q}_{\geq 0},\, f(x)=x^2$ não é injetiva, então não é bijetiva, onde $\mathbb{Q}_{\geq 0}=\{x\in\mathbb{Q}:x\geq 0\}.$

Ā função $f: \mathbb{Q} \to \mathbb{Q}$, $f(x) = x^2$ não é bijetiva (nem injetiva, nem sobrejetiva).

Definição 2.6. Seja $f: A \to B$ uma função bijetiva. A função $f^{-1}: B \to A$ dada por

$$f^{-1}(y) = x$$
 se $f(x) = y$

é chamada a inversa de f.

Exemplo 2.10. $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$ é bijetiva. Tem-se

$$3x + 7 = y \Rightarrow x = \frac{y - 7}{3}$$

Então a função inversa $f^{-1} \colon \mathbb{R} \to \mathbb{R}$ é dada por $f^{-1}(y) = \frac{y-7}{3}$.

2.1. Composição de funções. Sejam $f: A \to B$ e $g: B \to C$ duas funções tais que o domínio de g é igual ao contradomínio de f.

Definição 2.7. A composição de q com f (ou a função composta) é a função

$$g \circ f \colon A \to C$$

dada por

$$g \circ f(x) = g(f(x))$$
 para todo $x \in A$.

Exemplo 2.11. Sejam $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{1}{x}$ e $g: \mathbb{R} \to \mathbb{R}$, g(x) = 7x + 3. Então $g \circ f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$,

$$g \circ f(x) = g(f(x)) = g\left(\frac{1}{x}\right) = 7\frac{1}{x} + 3.$$

Proposição 2.1. Sejam $f: A \to B$ e $g: B \to C$.

- (i) Se g o f é injetiva então f é injetiva
- (ii) Se $g \circ f$ é sobrejetiva então g é sobrejetiva.

Demonstração. (i) Suponha que $f(x_1) = f(x_2)$.

Então evidentemente $g(f(x_1)) = g(f(x_2))$.

Logo, $g \circ f(x_1) = g \circ f(x_2)$.

Como $g \circ f$ é injetiva, segue que $x_1 = x_2$, mostrando a injetividade de f.

Deixamos (ii) como exercício.

2.2. A imagem de um conjunto. Sejam $f:A\to B$ uma função e $X\subset A$ um subconjunto. Definimos a imagem do conjunto X pela função f como sendo o conjunto de valores de f em pontos de X, ou seja,

$$f(X) = \{f(x) : x \in X\}$$

= $\{y \in B : \text{ existe } x \in X, y = f(x)\}.$

Claramente $f: A \to B$ é sobrejetiva sse f(A) = B.

Proposição 2.2. Sejam $f: A \to B$ e $X_1, X_2 \subset A$. Então

- (i) $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$,
- (ii) $f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2)$,
- (iii) $X_1 \subset X_2 \Rightarrow f(X_1) \subset f(X_2)$,
- (iv) $f(\emptyset) = \emptyset$.

Demonstração. (i) Se $y \in f(X_1 \cup X_2)$ então existe $x \in X_1 \cup X_2$ tal que f(x) = y. Como $x \in X_1 \cup X_2$, tem-se

 $x \in X_1$, e neste caso $y = f(x) \in f(X_1)$,

ou $x \in X_2$, e neste caso $y = f(x) \in f(X_2)$.

Logo, y = f(x) pertence a $f(X_1)$ ou a $f(X_2)$, então $y \in f(X_1) \cup f(X_2)$.

Reciprocamente, seja $y \in f(X_1) \cup f(X_2)$. Então $y \in f(X_1)$ ou $y \in f(X_2)$.

No primeiro caso, existe $x_1 \in X_1$ tal que $y = f(x_1) \in f(X_1)$.

No segundo caso, existe $x_2 \in X_2$ tal que $y = f(x_2) \in f(X_2)$.

De qualquer forma, $y \in f(X_1)$ ou $y \in f(X_2)$, então $y \in f(X_1) \cup f(X_2)$.

Concluímos que $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.

Deixemos as provas das outras afirmações como exercícios.

Observação: A segunda afirmação da proposição anterior afirma apenas que

$$f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2).$$

A inclusão poderia ser estrita, ou seja, em geral,

$$f(X_1 \cap X_2) \neq f(X_1) \cap f(X_2).$$

De fato, se $f: A \to B$ não é injetiva, existem $x_1 \neq x_2, x_1, x_2 \in A$ tais que

$$f(x_1) = f(x_2) = y.$$

Sejam $X_1 = \{x_1\}$ e $X_2 = \{x_2\}$.

Portanto $X_1 \cap X_2 = \emptyset$, $f(\emptyset) = \emptyset$ mas $f(X_1) = \{f(x_1)\} = \{y\}$ e $f(X_2) = \{f(x_2)\} = \{y\}$.

Então $f(X_1) \cap f(X_2) = \{y\} \neq \emptyset$.

Se, por outro lado, f é injetiva, a igualdade vale.

Proposição 2.3. Sejam $f: A \to B$ e $X_1, X_2 \subset A$. Se f é injetiva então

$$f(X_1 \cap X_2) = f(X_1) \cap f(X_2).$$

Demonstração. Se $y \in f(X_1) \cap f(X_2)$ então $y \in f(X_1)$ e $y \in f(X_2)$. Logo, existem $x_1 \in X_1$ e $x_2 \in X_2$ t.q. $y = f(x_1)$ e $y = f(x_2)$. Portanto $f(x_1) = f(x_2)$, mas como f é injetiva, temos $x_1 = x_2$.

Por outro lado, $x_1 \in X_1$ e $x_2 \in X_2$, e como $x_1 = x_2$, concluímos que $x_1 = x_2 \in X_1 \cap X_2$, logo $y = f(x_1) = f(x_2) \in f(X_1 \cap X_2)$, ou seja, $f(X_1) \cap f(X_2) \subset f(X_1 \cap X_2)$.

2.3. A pré-imagem de um conjunto.

Definição 2.8. Sejam $f: A \to B$ e $Y \subset B$. A pré-imagem (ou imagem inversa) de Y pela função f é o conjunto de entradas cujos valores pertencem a Y, ou seja,

$$f^{-1}(Y) = \{ x \in A : f(x) \in Y \}.$$

Proposição 2.4. Sejam $f: A \to B$ e $Y_1, Y_2 \subset B$. Então

(i)
$$f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$$

(ii)
$$f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$$

(iii)
$$f^{-1}(Y_1^c) = (f^{-1}(Y_1))^c$$

$$(iv) Y_1 \subset Y_2 \Rightarrow f^{-1}(Y_1) \subset f^{-1}(Y_2)$$

$$f(v) f^{-1}(B) = A$$

$$(vi) f^{-1}(\emptyset) = \emptyset$$

Demonstração. Temos que

$$x \in f^{-1}(Y_1 \cup Y_2)$$

sse
$$f(x) \in Y_1 \cup Y_2$$

sse
$$f(x) \in Y_1$$
 ou $f(x) \in Y_2$

sse
$$x \in f^{-1}(Y_1)$$
 ou $x \in f^{-1}(Y_2)$

sse
$$x \in f^{-1}(Y_1) \cup f^{-1}(Y_2)$$
,

mostrando que

$$f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2).$$

Deixamos as outras afirmações como exercícios.

3. Relações

Seja A um conjunto. Uma relação \sim entre elementos de A é uma relação de equivalência se ela satisfaz as seguintes propriedades:

- i) reflexividade: $x \sim x$
- ii) simetria: se $x \sim y$ então $y \sim x$
- iii) transitividade: se $x \sim y$ e $y \sim z$ então $x \sim z$.

Exemplo 3.1. Congruência módulo 3 em \mathbb{Z} é uma relação de equivalência.

Lembre-se que $m \equiv n \pmod 3$ se $3 \mid (m-n)$ (ou seja, 3 divide/é um divisor de (m-n)). Por exemplo,

$$7 \equiv 1 \pmod{3}$$

$$5 \equiv 2 \pmod{3}$$

$$3 \not\equiv 2 \pmod{3}$$

Vamos verificar as propriedades da definição.

- Reflexividade. $m \equiv m \pmod{3}$ já que $3 \mid 0 = (m m)$
- Simetria.

$$m \equiv n \pmod{3} \Rightarrow 3 \mid (m-n)$$

 $\Rightarrow 3 \mid (n-m)$
 $\Rightarrow n \equiv m \pmod{3}$.

■ Transitividade.

$$m \equiv n \pmod{3} \Rightarrow 3 \mid (m-n)$$

 $n \equiv p \pmod{3} \Rightarrow 3 \mid (n-p)$
 $\Rightarrow 3 \mid (m-n+n-p)$
 $\Rightarrow 3 \mid (m-p)$
 $\Rightarrow m \equiv p \pmod{3}$.

Definição 3.1. Seja A um conjunto. Uma relação \preccurlyeq entre elementos de A é uma relação de ordem se ela satisfaz as seguintes propriedades:

- i) reflexividade: $x \leq x$
- ii) antissimetria: se $x \leq y$ e $y \leq x$ então x = y
- iii) transitividade: se $x \preccurlyeq y$ e
 $y \preccurlyeq z$ então $x \preccurlyeq z.$

Exemplo 3.2. Seja X um conjunto de referência. A inclusão

 $A \subset B$ é uma relação de ordem em $\mathcal{P}(X)$.

De fato,

- $A \subset A$ para todo $A \in \mathcal{P}(X)$.
- Se $A \subset B$ e $B \subset A$ então A = B.
- Se $A \subset B$ e $B \subset C$ então $A \subset C$.