importing Randomforest from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import RandomForestRegressor

latices pritares 4

m1 = RandomForestRegressor()

S separating class labe, and other attributes train1 = train.drop([air_quality_index], axis=1) target = train[bir_quality_index]

Fitting the model

m1.fit(train1, target)

*RandomForestRegressor(bootstrap=True, cop_slpha=0.0, criterion='mse',
max_depth=None, max_features='suto', max_leaf_nodes=None,
max_samples=None, min_impurity_preprense=0.5,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=100, n_jobs=None, oob_score=Fsise,
fendom_state=None, verbose=0, warm_start=False)*

A coloridating the score and the score is: 97.96360799890065% m1.score(train1, target) $^{\circ}$ 100

Adaboost model

importing module

5 defining model
m2 = AdaBonstReguesar()

Fitting the model m2.ft(train1, target)

"AdaRocatRegressor(heas_estimator=None, learning_rate=1.0, loss="timest", e_estimaturs=50, randore_state=None)"

calculating the score and the score is 96.16377360010211% arz.score(train1, target)*100

predicting the model with other values (reating the data)
an AQI is 94 42105263

rr 2.predict[[]123, 45, 67, 34, 6, 0, 23]])