Járműszerkezeti anyagok és technológiák I. KOJJA160 – KOJJA174

Acélok és öntöttvasak (előadásvázlat)

Összeállította: Dr. Bán Krisztián, Dr. Vehovszky Balázs

Vas-alapú ötvözetek a járműiparban

Vasalapú anyagok előnyei:

- -könnyű és gazdaságos gyárthatóság,
- -széles sáv a tulajdonságok változtathatóságában,
- -olcsóbb újrahasznosítás (kb. 1/3-a az Al-nak).

Hátrányai:

- -nagy tömeg,
- -rossz korróziós tulajdonságok.

Vas-alapú ötvözetek a járműiparban

Vasalapú anyagok előnyei:

- -könnyű és gazdaságos gyárthatóság,
- -széles sáv a tulajdonságok változtathatóságában,
- -olcsóbb újrahasznosítás (kb. 1/3-a az Al-nak).

Hátrányai:

- -nagy tömeg,
- -rossz korróziós tulajdonságok.

Vas-alapú ötvözetek a járműiparban

https://data.bloomberglp.com/professional/sites/10/imported/professional/sites/4/weight-reduction-efforts.png

Vasalapú anyagok előnyei:

- -könnyű és gazdaságos gyárthatóság,
- -széles sáv a tulajdonságok változtathatóságában,
- -olcsóbb újrahasznosítás (kb. 1/3-a az Al-nak).

Hátrányai:

- -nagy tömeg,
- -rossz korróziós tulajdonságok.

Az acél és az öntöttvas

Acélok tömbi fizikai tulajdonságainak változtatása:

1. ötvözéssel (ötvözők bevitele és szennyezők eltávolítása),

2. hőkezeléssel:

- újrakristályosítás,
- átkristályosítás,
- normalizálás,
- lágyítás,
- nemesítés,
- stb.

3. szerkezetmódosítással:

pl. képlékeny alakváltozás.

Alapvető mechanikai jellemzők:

Kemény, kopásálló R_m , R_{eH} HV nagy

Rideg, törékeny KV, A, Z kicsi

Képlékeny, alakítható (szívós) KV, A, Z nagy

Lágy, kisebb szilárdság R_m, R_{eH} HV kicsi

Acélok alkotói, ötvözői:

Ötvöző: igényeknek megfelelően változtatja a tulajdonságokat.

Szennyező: rontja az elvárt tulajdonságokat. (pl. a P legtöbbször szennyező, de egyes acéloknál ötvöző).

Alapalkotók: C, Mn, Si, P, S, gázok: O, N, H (szennyezők)

Fontosabb ötvözők: Cr, Mo, Ti, Al, Ni, V, W, Nb, stb.

Az acélok szennyezői:

Gázok: O, N, H (az acél olvadék állapotban oldja a H-t)

Oxigén

Intersztíciósan oldódik nagyobb hőmérsékleteken.

Szobahőmérsékleten szinte nem oldódik, nem fémes oxidzárványokként jelenik meg. Nem tökéletes dezoxidáció esetében gázbuborékok a tuskó dermedése során.

$$O + C \rightarrow CO$$

A csillapítatlan acélban: FeO, MnO szilárd zárvány, FeO-Fe eutektikum,

A csillapított acélban: SiO₂, Al₂O₃, FeO, MnO,.

A FeO-Fe eutektikum a kristályhatárokon dermed meg → Ridegíti az acélt.

Dezoxidálás:

Csillapítatlan acél:

-dezoxidálás csak Mn-nal, és Si-mal,

-Si < 0.07%.

Félig csillapított acél: Mn-nal, Si-mal és Al-mal dezoxidált, de nincs a fémes mátrixban oldott Al.

Csillapított acél:

- -dezoxidálás Mn-nal, Si-mal, Al-mal és egyéb (pl. Ti-nal),
- -Si > 1,2%, marad oldott Al a fémes mátrixban (~0,01%).

Nitrogén

Intersztíciósan oldódik a ferritben. Diffúziós úton a diszlokációk expandált zónájában gyűlnek össze, akadályozzák a képlékeny alakváltozást. Öregedést okoz: R_m, R_{eH} nő; KV, A, Z csökken.

Ez kb. 2-3 hónappal a gyártást követően következik be, a csillapítatlan acéloknál. Ötvözéssel csökkenthető a hatása (pl. a Ti megköti a N-t).

Hidorgén

Intersztíciósan oldódik a ferrit rácsában, csak elnyelt gáz formájában van jelen. Nagyobb hőmérsékleten elveszíti az elektronjait, a mérete a protoné. A protonok a diszlokációk expandált zónájában gyűlnek össze. Ha csökken a hőmérséklet, akkor ismét felveszi elektronjait, H_2 gáz \rightarrow akár 1000 bar nyomás is keletkezhet. Repedéseket okoz. \rightarrow Pelyhesedés, fényes kör vagy ovális alakú üregek. Az acélba nedvességgel (pl. tűzálló falazatból) vagy pácolással kerülhet bele. Eltávolítása: hőkezeléssel, 200°C-on (szobahőmérsékleten ~ 3 nap alatt távozik). 0°C alatt az öregedéshez hasonló jelenséget okoz.

Szilárd szennyezők:

Kén

Vöröstörékenységet okoz.

E: γ-Fe + FeS

Megszüntetése: Mn-nal ötvözve → MnS, olv. pont: 1620°C

Réz

A réz a dermedés során a kristáyhatárokon válik ki.

olv. pont: 1083°C

A melegalakítás hőmérsékletén a kristályok között megolvad, hasonlóan a FeS-

hoz. → Repedés.

Vöröstörékenység, ha Cu > 0,2%

Foszfor

Az oldott P hatására:

R_m, R_{eH} nő

Z, A, KV csökken

Ha P=0,1%, rideg törékeny az acél.

Ötvözőként: a forgácsolhatóságot javítja.

Nemfémes zárványok

- nitridek
- oxidok
- foszfidok
- szulfidok
- szilikátok

Nagy részük a dermedés előtt kiválik → salakba kerül.

Ötvözők hatása az acélok tulajdonságaira

A karbon hatása:

C-tartalom hatása:

- -szilárdságot növeli,
- -ridegít: az alakváltozó képesség, és az ütőmunka is csökken,
- -nemesíthetővé teszi az acélt.

Forrás: BME ATT

Az ötvözők hatása:

Ti, Si, W növeli leginkább

Mn, Si 3% fölött jelentősen csökkenti

Cr 3%-ig, Ni 6%-ig növeli Mo, W csökkenti, Mn 0,5% fölött, Si 1,5% fölött csökkenti

Az ötvözők hatása:

A fontosabb ötvözők átedzhető átmérőt növelő szorzó tényezője a súlyszázalék függvényében:

$$D_{id50} = 8 \cdot 1,08^{(8-n)} \cdot \sqrt{\text{C\%}} \cdot \prod^{i} (1 + f_{\text{Me}}^{i} \cdot \text{Me}^{i} \%)$$

n: szemcsefinomsági tény. (ötvözetlen acél: 9 ötvözött acél: 8)

f: ötvöző szorzótényezője

$$egin{aligned} D_{re} &= D_{id} \cdot \eta_{k\ddot{o}zeg} \ \eta_{v\acute{l}z} &= 0,75 \ \eta_{olaj} &= 0,5 \ \eta_{leveg\H{o}} &= 0,25 \end{aligned}$$

Ötvözők szövetszerkezeti hatása:

Ferritet stabilizáló:

-Cr, Si, Mo, W

Ausztenitet stabilizáló:

-Ni, Mn

Karbidképző:

-Cr, V, W, Ti, Mn, Mo

Karbidot nem képez:

-Ni, Cu

Átedzhető szelvényátmérőt növelik

→ nem egyensúlyi szövetelemek stabilitását növelik

3.082. ábra. A vas-nikkel ötvözetek egyensúlyi diagramja. A jobb

Forrás: ASM International és Verő, Káldor: Fémtan

Az acél fontosabb ötvözői:

SZÉN (C)

- növeli a szakítószilárdságot, a folyáshatárt
- csökkenti a kontrakciót és a nyúlást
- 0,25% feletti széntartalomnál az acél edzhető, nemesíthető, de hegeszthetősége romlik

MANGÁN (Mn)

- növeli a szilárdságot, az <u>átedzhetőséget</u>
- csökkenti a ridegtörés hőmérsékletét
- oxigén és kénelvonó hatású, karbidképző elem

KRÓM (Cr)

- karbid és ferritképző ötvöző
- növeli az acél szilárdságát, melegszilárdságát, az átedzhetőséget és a korrózióállóságot
- a szerszámacélok, gyorsacélok fő ötvözője

NIKKEL (Ni)

- javítja az acél szilárdsági tulajdonságait, folyáshatárát, szívósságát
- csökkenti a ridegtörés hőmérsékletét
- nagyobb mértékű nikkelötvözéssel ausztenites, saválló acél állítható elő
- -a nemesíthető, korrózióálló acélok fontos ötvözője

ALUMÍNIUM (AI)

- ferritképző ötvöző
- növeli az acél hőállóságát
- dezoxidáló és szemcsefinomító hatású ötvöző, megköti a nitrogént
- csökkenti az öregedési hajlamot és a ridegtörés hőmérsékletét
- a nitridálható acélok fontos ötvözője.

RÉZ (Cu)

- növeli a folyáshatárt és az edzhetőséget, csökkenti a nyúlást
- a foszforral együtt elősegíti a korrózióállóságot, savállóságot
- a szerkezeti acélokban csak kis mennyiségben megengedett, mivel növeli a vöröstörékenységet

Az acél fontosabb ötvözői:

VOLFRÁM (W)

- karbidképző ötvöző
- növeli az acél szilárdságát, a melegszilárdságát, reveállóságát
- elősegíti az edzhetőségét
- a szerszámacélok, gyorsacélok fontos ötvözője

Vanádium (V)

- ferrit és karbidképző elem
- erős dezoxidáló, szemcsefinomító járulékos ötvöző
- az acél melegszilárdságát javítja, növeli az acél rugalmasságát
- a rugóacélok és a szerszámacélok fontos ötvözője

Molibdén (Mo)

- karbidképző és ferritképző ötvöző
- a króm-nikkel acélok és a gyorsacélok járulékos ötvözőeleme,
- a kénsavval és klórmésszel szembeni ellenállás fokozására használják
- szemcsefinomító hatású, elősegíti az edzhetőséget

Titán (Ti)

- karbidképző ötvöző
- javítja az acél öregedésállóságát, finomítja a szemcséit, növeli a szívósságát
- dezoxidáló hatású és megköti a nitrogént
- -az erősen ötvözött acélok fontos ötvözője

SZILÍCIUM (Si)

- erős dezoxidáló ötvöző
- növeli az acél szilárdságát, csökkenti a nyúlását és hidegalakíthatóságát
- növeli a rugalmassági határt, javítja a kopásállóságot, reveállóságot
- rugóacélok, hőálló acélok fontos ötvözője

Az acélok csoportosítása

Acélok csoportosítása:

Összetétel szerint:

- ötvözetlen vagy szénacélok:Mn < 0,8%, Si < 0,5%, P, S

	∑ ötvöző
-gyengén ötvözött	< 5 %
-ötvözött	5 % 20%
-erősen ötvözött	20 % <

Szövetszerkezet szerint:

- -Ferrites, ferrit-perlites, perlit-cementites (BCC)
- -Ausztenites (FCC)
- -Martenzites

Acélok csoportosítása – fő minőségi osztályok:

		Vegyi összetétel szerint			
		Ötvözetlen	Ötvözött		
		Otvozetlen	Egyéb	Korrózióálló	
	Alapacélok	Alapacélok			
Fő minőségi osztályok szerint	Minőségi acélok	Ötvözetlen minőségi acélok	Ötvözött minőségi acélok	Korrózióálló Hőálló	
320111IL	Nemesacélok	Ötvözetlen nemesacélok	Ötvözött nemesacélok	Kúszásálló	

Felhasználás szerint:

- -szerkezeti acélok: 0 % < C % < 0,6 %,
- -szerszámacélok: 0,4 % < C % < 2,1 %,
- -különleges acélok (∑ötvözők < 55%)
 - -pl. hő- és korrózióálló acélok.

Acélok csoportosítása:

Szerkezeti acélok:

- -Általános rendeltetésű acélok: pl. S235, S355,
- -Kis C-tartalmú acélok:
 - -betétben edzhető ~, pl. C10, C15,
 - -hegeszthető ~,
 - -hidegen alakítható ~,
 - -melegszilárd ~,
 - -hidegszívós ~,
- -Automata acélok (könnyű forgácsolhatóság, forgács kezelhetősége)
- -Nemesíthető acélok:
 - -nemesíthető szerkezeti acélok: pl. C45, C60, 42CrMo4
 - -nitridálható acélok,
 - -rugóacélok: pl. 51CrV4,
 - -gördülőcsapágy acélok.

Különleges szerkezeti acélok :

- -Hőálló acélok:
 - -ferrites,
 - -ausztenites,
 - -félausztenites.
- -Korrózióálló acélok:
 - -ferrites,
 - -ausztenites: pl. X8CrNi 18-10
 - -martenzites,
 - -különleges korrózióálló acélok.
- -Speciális felhasználású acélok:
 - -elektrotechnikai acélok: pl. trafólemez,
 - -szelepacélok,
 - -stb.

Acélok csoportosítása:

Szerszámacélok:

- -ötvözetlen szerszámacélok,
- -hidegalakító szerszámacélok,
- -melegalakító szerszámacélok,
- -forgácsoló szerszámacélok:
 - -gyorsacélok:

Mindegyik gyorsacélban ~4% Cr van

Gyorsacél hőkezelése:

Hevítés 3 lépésben

Edzés: fúvott levegőn vagy sófürdőben 540°C-ra. Megeresztés: 550°C-on, kiválásos keményedés.

Gyorsacél hőkezelése:

Hevítés 3 lépésben:

- 1. 20°C → 550°C: lassú hevítés kamrás kemencében,
- 2. → 850°C: lassú hevítés sófürdőben vagy légkavarásos kemencében,
- 3. → 1200°C: gyors hevítés 2,5-3 perc alatt sófürdőben.

Edzés: - fúvott levegőn vagy

- termáledzés: sófürdőben 540°C-ra, megvárva a hőkiegyenlítődést, majd hűtés levegőn:

Megeresztés: 550°C-on, kiválásos keményedés (karbidok kiválása):

Forrás: Dr. Szabadíts Ö.: Acélok, öntöttvasak

Az acélok jelölése

J2: előírt ütőmunka → KV= 27J, TTKV= -20°C

J, K, L: ütőmunka 27, 40 ill. 60 J értékre

W: légkörikorrózió-álló

Acélcsoport	Főjel		Fő mechanikai tulajdonság (kiv. elektrotechnikai acéloknál)	
Szerkezeti acélok	S	nnn	legkisebb vastagságtartományra előírt legkisebb folyáshatár (MPa)	
Nyomástartó berendezések acéljai	Р	nnn	mint előző	
Gépacélok	E	nnn	mint előző	
Sínacélok és sínek	R	nnn	az előírt legkisebb Brinell-keménység (HBW)	
Lapos termékek nagy szilárdságú acélból hidegalakításra	н	Cnnn Dnnn Xnnn CTnnn(n) DTnnn(n) XTnnn(n)	C: hidegen hengerelt D: melegen hengerelt X: hengerlési állapot nincs előírva nnn: előírt folyáshatár (MPa) Tnnn: előírt szakítószilárdság (MPa)	
Lapos termékek hidegalakításra	D	Cnn Dnn Xnn	hidegen hengereltmelegen hengerelthengerlési állapot nincs előírva	
Elektrotechnikai acélok	M	A, D, E, N, S, P	az előírt mágneses tulajdonságoktól, a szemcsézet irányítottságától és a hőkezelési állapottól függően	

ahol n számokat jelent

Acélok vegyi összetétel szerinti jelölése:

Ötvözetlen acélok:

Ha Mn < 1% középértékben (kivéve automataacélok):

Ha Mn ≥ 1% és minden ötvöző együtt < 5% (kivéve gyorsacélok) és automataacélok:

$$C\% \cdot 100 \rightarrow 0,37\%$$
 C Ötvözőtartalom (%) · X az 1. ötvözőtől kezdve: Ötvöző elemek 1% Cr (0,9-1,2%) csökkenő sorrendben X szorzók: (0,22% Mo)

Cr, Co, Mn, Ni, Si, W	Al, Be, Cu, Mo, Nb, Pb, Ta, Ti, V, Zr	Ce, N, P, S	В
4	10	100	1000

Acélok jelölése:

Kémiai összetétel szerinti jelölés:

Ötvözött acélok:

Ha egy ötvöző > 5%:

Gyorsacélok:

az anyagcsoport száma:

1: acél

2...9: egyéb anyagok

- Alapacél: 00 és 90

Minőségi acél: 01-07 és 91-97

- Nemes acél: 10-19

Ötvözött acélok

Minőségi acél: 08 és 09; 98 és 99

- Szerszámacél: 20-29

Korrózió- és saválló acélok: 40-49

Szerkezeti és gépacélok: 50-89

Öntöttvasak

Az öntöttvasak:

Kötött állapotban

ledeburit, perlit alkotójaként: Fe₃C

neve: fehér nyersvas

Tulajdonságai: kemény, kopásálló, rideg (rossz

dinamikus tulajdonságok)

C-tartalom zöme grafit formájában

neve: **szürkevas**

Tulajdonság alakítása:

- C-tartalommal
- Dermedés, hűtési sebesség változtatásával, ötvözőkkel

Szürkevasak - a grafit megjelenési formái:

A grafit eloszlása és alakja a szürke öntvényben (Lemezgrafitos öntöttvas)

A gömbgrafit és átmeneti alakjai (Gömbgrafitos öntöttvas)

Forrás: Kiss, Pálfi, Tóth: Szerkezeti anyagok technológiája II.

Lemezgrafitos szürkevas:

- A lemezes grafit miatt jó a rezgéscsillapító hatása
- Nyomó igénybevétellel jól terhelhető, gépágyak, géptestek készítésére alkalmazható
- Kis szakítószilárdságú (R_m= 100-250 MPa), rideg, a dinamikus igénybevételeket nem bírja
- Jól forgácsolható
- Jó siklási tulajdonsága miatt csapágyanyagként alkalmazható

Modifikált (módosított) szürkevas: apróbb, finomabb grafitlemezeket tartalmazó, nagyobb szilárdságú szürkevas (R_m= 300-400 MPa)

Alkalmazható például: szerszámgépek, gőzturbinák, szelepek, csapágyak készítésére, ötvözött állapotban a műanyagiparban, élelmiszeriparban, vegyiparban

Gömbgrafitos szürkevas:

- A grafitot gömb alakban tartalmazza (magnézium vagy cérium ötvözés)
- Nagyobb szilárdságú (R_m= 380-900 MPa) a lemezgrafitos öntöttvasnál
- Nyúlása a szilárdság növekedésével csökken
- Edzhető, nemesíthető

Alkalmazása: nagyobb szilárdságú és hőállóságú alkatrészek, öntvények (motorok, hajtóművek, fogaskerekek, dugattyúk: hajtórúd, fékbetét)

Hőkezelt fehérvas – temperöntvények:

TEMPERÖNTVÉNYEK: a fehéröntvényből hőkezeléssel előállított, megfelelő szilárdságú, szívósságú kovácsolható, forgácsolható öntöttvasak. Hőkezeléskor megközelítőleg 1000°C-on történő hosszantartó izzítással a fehérvas ridegségét a benne lévő cementit (Fe₃C) elbontásával csökkentik.

A temperöntvények fajtái:

- -fehér temperöntvény: hőkezelés oxidáló közegben → ferrit-perlites,
- -fekete temperöntvény: hőkezelés semleges közegben
 - → ferrites fekete temperöntvény, ferrit + grafit,
 - → perlites fekete temperöntvény.

A temperöntvények gyártása:

- 1. Öntés formába → nyers öntvény
 - alapanyag: fehér töretűre dermedjen: csak perlit és lédeburit, primer grafitkiválás nem lehet,
 - ehhez: C= 2,4 3,1 %, Si= 0,5 - 1,2 % $\Sigma(C+Si) \le 3,9 \%$
- 2. Temperálás (hőkezelés)

Az öntöttvasak jelölése:

GJMW-300-6

GJ: öntöttvas

L: lemezgrafitos

S: gömbgrafitos

M: temperöntvény

N: fehértöretű öntvény

A: ausztenites

B: fekete, ferrites

P: perlites

W: fehér temperöntvény

Legkisebb szakadási nyúlás:

pl.: ennél a temperöntvénynél

A = 6 %

Legkisebb szakítószilárdság:

pl.: ennél a temperöntvénynél R_m= 300 MPa

30 mm-es próbatestátmérőhöz

Vagy: keménység (HB...)

Köszönöm a figyelmet!