TU Dortmund

NHV1 - Die Solarzelle

Korrektur

Markus Stabrin markus.stabrin@tu-dortmund.de

Kevin Heinicke kevin.heinicke@tu-dortmund.de

Versuchsdatum: 20. November 2012

Abgabedatum: 11. Dezember 2012

1 Einleitung

In diesem Versuch soll der Wirkungsgrad einer Solarzelle bestimmt werden. Durch Messung von Strom und Spannung und mit Kenntniss der Intensität des einfallenden Lichtes lässt sich dieser bestimmen.

2 Theorie und Hintergrund

2.1 Aufbau und Funktion einer Solarzelle

Eine Solarzelle ist grundsätzlich aufgebaut wie eine Diode. Eine p- und n-dotierte Halbleiterschicht werden zusammengebracht, wodurch am Grenzbereich ein starkes elektrisches Feld entsteht.

Im Folgenden soll dies etwas erläutert werden.

2.1.1 Halbleiter

Festkörper können anhand ihrer elektrischen Leitfähigkeit in drei Kategorien eingeteilt werden. Neben Leitern, in denen sich Elektronen nahezu frei bewegen können, gibt es Isolatoren, in denen Elektronen sehr viel Energie benötigen, um sich vom Atomkern zu lösen. In Halbleiter dagegen können Elektronen unter bestimmten Umständen gebunden sein oder leicht von ihrem Kern getrennt werden.

Dieses Phänomen kann man mit dem Bändermodell beschreiben. Die Elektronen in einem Festkörper besitzen verschiedene Energieniveaus. Während ein Elektron eines einzelnen Atoms nur diskrete Energien besitzen kann, erweitern sich diese Niveaus in einem Festkörper zu Energiebändern mit kontinuierlichen Dimensionen. In dieser Betrachtung besitzt jeder Festkörper zwei charakteristische Bänder.

Zum einen das Valenzband, welches den Bereich beschreibt, in dem sich die Elektronen mit der größten Energie befinden, die jedoch noch an den Atomkern gebunden sind. Energetisch höher liegt das Leitungsband. Elektronen die so viel Energie besitzen, dass sie sich in diesem Bereich aufhalten, können sich frei durch den Körper bewegen.

In Leitern überschneiden sich Beide Bereiche. Selbst unangeregte Elektronen befinden sich im Leitungsband. Das Material kann elektrisches Strom somit ohne weiteres Leiten. Isolatoren zeichnen sich dadurch aus, dass der Abstand zwischen beiden Bändern so groß ist, dass die Elektronen praktisch nicht in der Lage sind ihn zu überwinden. Sie sind somit stets an den Kern gebunden und das Material leitet keinen elektrischen Strom. In Halbleitern ist der Bänderabstand dagegen so klein, dass er mit geringer Anregung der Elektronen überwunden werden kann und das Material dann Leitend wird. Das angeregte Elektron hinterlässt im Valenzband eine Lücke, die durch nachrückende Elektronen gefüllt wird. Das so entstandene Loch wandert durch das Material und trägt damit zum Strom bei. Es kann als positive Ladung betrachtet werden.

Abbildung 1: Das Bändermodell schematisch dargestellt [3]

2.1.2 Dotierung von Halbleitern und Übergänge

Es können Fremdatome in ein Halbleitermaterial gebracht werden, die mehr oder weniger Elektronen im Valenzband haben, als der Halbleiter selbst. Dadurch verschiebt man die Bänder zueinander. Wird das Valenzband angehoben, spricht man von n-dotierten Halbleitern. Im Gegensatz dazu heißen Halbleiter mit verringertem Leitungsband p-dotiert. Bringt man nun n- und p-dotierte Halbleiter in Kontakt, fließen die überschüssigen Elektronen aus dem n-Halbleiter zum p-Halbleiter und rekombinieren mit den dortigen Löchern. Weil nun die verschieden dotierten Festkörper unterschiedliche Elektronendichten aufweisen, ensteht im Grenzbereich zwischen ihnen ein elektrisches Feld. Diesen Bereich nennt man Raumladungszone.

2.1.3 Ladungstrennung und Strom

Photonen mit genügend Energie sind in der Lage, Elektronen anzuregen und aus ihrer Atomhülle zu entfernen. Trifft Sonnenlicht auf die oben beschrieben Raumladungszone einer Solarzelle, besteht die Möglichkeit, dass in genau diesem Bereich ein Elektron von seinem Atom getrennt wird. Das elektrische Feld übt nun eine genügend große Kraft auf das Elektron aus, damit es sich von seinem Kern entfernt und in den Halbleiter abgeführt

wird. Gleichzeitig ensteht ein Loch, welches in entgegengesetzer Richtung abgelenkt wird. Werden beide Halbleiter außenseitig miteinander Verbunden, kann das Elektron-Loch Paar über einen Verbraucher abfließen und rekombinieren. Der so entstehende Strom kann Arbeit verrichten.

Abbildung 2: Schematischer Aufbau einer Solarzelle

2.2 Technische Umsetzung

Als Rohstoff für die meisten Solarzellen dient Silizium. Es kann günstig verarbeitet werden und der Umgang mit diesem Stoff ist gut erforscht. Nachdem in den letzten Jahrenzehnten zunächst monokristallines und später multikristallines Silizium (c-Si) verwendet wurde, versucht man heute, die Effizienz von amorphen Silizium (a-Si) zu erhöhnen, um dieses marktfähig zu machen.

Bei c-Si geht während der Herstellung der Wafer nämlich viel Material verloren, was die Kosten steigen lässt. Wafer aus a-Si können dagegen nahezu verlustfrei hergestellt werden. Der Wirkungsgrad η von a-Si ist jedoch noch zu gering um es wirtschaftlich nutzen zu können.

2.3 Berechnung des Wirkungsgrades η

Für den Wirkungsgrad η der Zelle ist das Verhältnis aus entnommener Leistung P_{\max} und einfallender Leistung P_{\min} entscheidend. Es gilt

$$\eta = \frac{P_{\text{max}}}{P_{\text{ein}}} = \frac{U_{\text{o}}I_{\text{k}}F}{P_{\text{ein}}}.$$
(1)

Hier bezeichnet U_o die Spannung bei offenem Stromkreis und I_k den Kurzschlussstrom. Der Füllfaktor F bezeichnet das Verhältnis der maximalen Fläche unter der I-U-Kennlinie zur Fläche $I_k \cdot U_o$.

3 Aufbau und Durchführung

Die Solarzelle wird gemäß Abb. (3) angeschlossen. Die vier Solarzellen werden per Brückenstecker auf einer Rastersteckplatte mit einem Amperemeter und einer Widerstandsdekade in Reihe geschaltet, parallel dazu ein Voltmeter.

Abbildung 3: Schaltskizze zur Messung der I-U Kennlinie [2]

Über der Solarzelle wird eine 120 W Lampe an einer höhenverstellbaren Vorrichtung angebracht. Bei überbrückter Widerstandsdekade wird die Höhe so eingestellt, dass der Kurzschlussstrom I_K 30 mA, 50 mA, 75 mA und 100 mA beträgt. Mit dem größten Abstand wird die Messung begonnen. Nach Unterbrechung des Stromkreises wird für jede Messreihe die Leerlaufspannung U_0 gemessen.

Um die Strom-Spannungs-Kennlinie bei den einzelnen Höhen zu bestimmen, wird nun die Brücke entfernt und die Widerstandsdekade von $1\,\Omega$ bis $250\,\Omega$ variiert. Dabei wird nach jeder Messung die Leistung mit Hilfe von $P=U\cdot I$ errechnet, um möglichst zeitnah die Messpunkte um das Leistungsmaximum durchzuführen. Dabei ist darauf zu achten die Messreihen möglichst zügig aufzunehmen, da die Solarzelle sich aufheitzt.

Aus den erhaltenen Daten wird nun der Wirkungsgrad bestimmt.

4 Auswertung

Für die Leerlaufspannung U_0 und den Kurzsschlussstrom I_K ergaben sich die in Tabelle (1) gemessenen Werte in Abhängigkeit vom Lampenabstand. Es ist zu erkennen, dass der Kurzschlussstrom I_K bei geringerem Abstand zunimmt, während die Leerlaufspannung nahezu konstant bleibt.

Abstand[cm]	$I_K[\mathrm{mA}]$	$U_0[mV]$	Intensität $[mW/cm^2]$
71.8	31.4	1.942	8.76
52.6	50.4	2	14.6
36.7	75	2.06	22.76
29	100.5	2.02	25.96

Tabelle 1: Kurzschlussstrom und Leerlaufspannung in Abhängigkeit vom Lampenabstand

Beim Auftragen von I_K und U_0 gegen die Intensität J ergaben sich die Graphen (4) und (5). Durch lineare Regression der Messwerte des I-J-Graphen (5) aus Tabelle (1) ergab sich:

$$m = 3,77 \pm 0,51$$
$$b = 0$$
$$\Rightarrow \lambda = 3,77 \pm 0,51$$

Damdabei den Proportionalitätsfaktor λ angibt.

Für die U-I-Kennlinen (6) bis (9) wurden die gemessenen Werte aus den Tabellen (2) bis (5) verwendet. Es ergab sich eine Diodenkennlinie mit umgekehrtem Vorzeichen. Die gelbe Fläche gibt dabei die maximale Leistung P_{max} an.

Die Graphen (10) bis (13) geben die abgegebene Leistung P für unterschiedliche Lastwiderstände R an. Für die Leistung werden die gemessenen Werte aus den Tabellen (2) bis (5) genutzt. Es ergibt sich für die Leistung P und den Widerstand R:

$$P = U \cdot I$$
$$R = \frac{U}{I}$$

Es kann nicht der eingestellte Widerstand benutzt werden, da sich in der Solarzelle noch ein weiterer leistungsabhängiger Widerstand befindet. Die Leistung ist Widerstandsabhängig. Sie steigt bis zu einem Maximalwert an und fällt anschließend kontinuierlich. Dies ist dadurch zu erklären, dass sich die Spannung U langsam U_0 annähert, während I_K kontinuierlich abfällt.

Abbildung 4: Leerlaufspannung gegen die Intensität aufgetragen

Abbildung 5: Kurzschlusstrom gegen die Intensität aufgetragen mit linearer Regression

Abbildung 6: Kennlinie bei einem Lampenabstand von $29\,\mathrm{cm}$

Abbildung 7: Kennlinie bei einem Lampenabstand von $36,7\,\mathrm{cm}$

Abbildung 8: Kennlinie bei einem Lampenabstand von $52,\!6\,\mathrm{cm}$

Abbildung 9: Kennlinie bei einem Lampenabstand von $71,\!8\,\mathrm{cm}$

Abbildung 10: Leistung in Abhängigkeit des Widerstandes bei einem Abstand von $29\,\mathrm{cm}$

Abbildung 11: Leistung in Abhängigkeit des Widerstandes bei einem Abstand von $36{,}7\,\mathrm{cm}$

Abbildung 12: Leistung in Abhängigkeit des Widerstandes bei einem Abstand von $52,\!6\,\mathrm{cm}$

Abbildung 13: Leistung in Abhängigkeit des Widerstandes bei einem Abstand von $71,\!8\,\mathrm{cm}$

Für den Wirkungsgrad η ergibt sich:

$$P_{ein} = A \cdot J$$

$$A = 45,6 \text{ cm}^2$$

$$P_{aus} = P_{max}$$

$$\Rightarrow \eta = \frac{P_{max}}{P_{ein}}$$

Der Wirkungsgrad ist daher abhängig von der Intensität des Lichts und der maximal erbrachten Leistung. Die Werte für P_{ein} und P_{max} finden sich in tabelle (6) Eine lineare Regression der Messwerte aus dem Graphen (14) ergibt mit der Formel $y = m \cdot x + b$ für m und b:

$$m = 0.131 \pm 0.009$$

 $b = 0$
 $\Rightarrow \eta = (13.1 \pm 0.9) \%$

Die Steigung m entspricht dem Wirkungsgrad der Solarzelle, welche dementsprechend bei ca. $(13,1\pm0,9)$ % liegt. Damit weicht der Wirkungsgrad von dem Literaturwert von 16%[1] um ca. 20% ab.

Abbildung 14: P_{aus} gegen P_{ein}

5 Diskussion

Alles in allem hat der Versuch die Schwierigkeiten bei der Solarzellennutzung hervorgehoben. Es wurde nicht nur durch die Messergebnisse deutlich, dass der Wirkungsgrad von der Strahlungsintensität und dem angelegten Widerstand abhgängt, sondern auch stark von der Temperatur der Solarzelle. So ergab sich bei dem Abstand von 29 cm anfänglich bei $5\,\Omega$ für $I_K=98,2\,\mathrm{mA}$ und $U_0=715\,\mathrm{mV}$. Nach einer erneuten Messung bei dem selben Widerstand ergab sich zu einem späteren Zeitpunkt für $I_K=99,8\,\mathrm{mA}$ und $U_0=813\,\mathrm{mV}$.

Dies sind nicht vernachlässigbare Differenzen, welche die Messergebnisse sehr leicht verfälschen können. Dies ist aufgefallen, da sich bei der ersten Messung die Werte um das gedachte Maximum bei einer weiteren Feinmessung verändert hatten. Je kleiner der Abstand, um so größer war der Effekt.

Es ist daher sinnvoll bereits während der Messung die Leistung zu berechnen und dann um das gefundene Maximum ein Feinmessung durchzuführen, da die Temperatur zu diesem Zeitpunkt noch relativ gleich ist.

Beim Auftragen von U_0 gegen J konnte keine Aussage getroffen werden, da vier Messwerte dafür nicht ausreichend waren.

Da die Lampe an einer nicht idealen Aufhängung befestigt war, konnte nicht die optimale Intensität genutzt werden. Besonders beim Verstellen der Höhe ergaben sich Probleme beim Ausrichten der Lampe, sodass ein gleichbleibender Strahlenwinkel nicht gewährleis-

tet werden konnte. Schon kleine Drehungen bewirkten besonders bei kleinen Abständen große Schwankungen in I_K .

Trotzalledem stimmt der Literaturwert einer Silizium-Solarzelle mit dem gemessenen Wert von ca. 16% nahezu überein. Dies zeigt, dass sich trotz der möglichen Fehlerquellen ein gutes Ergebnis erzielen lässt.

Literatur

- [1] HAHN, Giso. Solarzellen aus Folien-Silizium. Physik unserer Zeit 35, 2004/1: 20-27
- [2] Anleitung zum Versuch NHV1 Solarzellen
- [3] Wikipedia. Halbleiter. http://de.wikipedia.org/wiki/Halbleiter. Stand 9. Dezember 2012

$R[\Omega]$	I[mA]	U[mV]
5	98.2	715
10	97.3	1199
11	98.7	1380
12	98.5	1480
13	98.4	1605
14	98.0	1710
15	96.5	1795
16	94.6	1860
17	91.7	1910
18	88.6	1949
19	85.3	1974
20	82.4	1990
21	79.1	2020
22	76.3	2040
23	73.5	2050
24	71.0	2060
25	68.8	2070
26	66.6	2090
27	64.5	2090
28	62.6	2100
29	60.7	2110
30	59.0	2120
40	45.8	2150
50	37.2	2170
60	31.3	2190
70	27.1	2190
80	23.8	2200
90	21.3	2210
100	19.2	2210

Tabelle 2: Strom und Spannung in Abhängigkeit vom Widerstand bei einem Abstand von $29\mathrm{cm}$

$R[\Omega]$	I[mA]	U[mV]
5	76.4	539
10	76.1	600
15	76.4	700
18	76.5	773
19	77.0	848
20	75.0	1660
21	74.1	1710
22	72.7	1748
23	70.9	1774
24	69.1	1798
25	67.2	1815
26	65.3	1830
27	63.3	1840
28	61.7	1850
29	60.0	1860
30	58.4	1869
35	51.3	1897
40	45.8	1919
50	37.5	1944
60	31.6	1958
70	27.4	1968
80	24.1	1975
90	21.5	1980
100	19.5	1983
200	9.9	2000

Tabelle 3: Strom und Spannung in Abhängigkeit vom Widerstand bei einem Abstand von $36.7\mathrm{cm}$

$R[\Omega]$	I[mA]	U[mV]
5	50.4	439
10	50.4	640
15	50.4	884
20	50.4	1135
25	50.2	1378
26	48.0	1574
27	49.7	1445
28	49.5	1483
29	48.8	1508
30	34.7	1802
31	34.2	1809
32	33.6	1814
33	33.1	1817
34	32.5	1821
35	44.0	1685
40	41.0	1739
45	37.6	1784
50	34.9	1814
55	32.3	1838
60	30.0	1857
70	26.1	1873
80	23.1	1893
90	20.8	1908
100	18.9	1916
200	9.7	1958

Tabelle 4: Strom und Spannung in Abhängigkeit vom Widerstand bei einem Abstand von $52.6\mathrm{cm}$

$R[\Omega]$	I[mA]	U[mV]
5	31.4	219
10	31.6	377
15	31.3	534
20	31.3	686
25	31.4	841
30	31.3	1000
35	31.3	1155
40	31.0	1298
45	30.2	1409
46	29.8	1420
47	29.6	1445
48	29.3	1455
49	29.0	1470
50	28.7	1486
51	28.4	1500
52	28.1	1510
53	27.9	1527
54	27.6	1540
55	27.5	1558
60	26.0	1604
65	24.5	1638
70	23.2	1665
75	22.0	1690
80	20.9	1709
85	19.9	1726
90	19.0	1742
95	18.1	1754
100	17.4	1765
110	16.0	1783
120	14.8	1796
130	13.7	1807
140	12.8	1815
150	12.0	1825
160	11.3	1832
170	10.7	1839
180	10.2	1845
190	09.1	1848
200	09.2	1853
250	07.4	1870
300	06.2	1880

Tabelle 5: Strom und Spannung in Abhängigkeit vom Widerstand bei einem Abstand von 71.8cm

Abstand[cm]	$P_{max}[mW]$	P_{ein}
71.8	42.65	395.39
52.6	74.14	665.76
36.7	127.08	1037.86
29	175.96	1183.776

Tabelle 6: Leistung in Abhängigkeit zum Abstand