GPT-3
Adaptation:
V a natural language description of the tesk
V a sex of training instances (input-output pairs)
Tw. Ways
Supervised Training:
V Probing: create a non model that uses the LM as features
Fine-turning: Starting with the language
model and updanting it based
on the training instances

Prompting (in-context learning):
V
Construct a propert ()
Construct a prompt (a string based on
II - description and their a inches
the description and training instances) or
a set of prompts, feed those into a
language model to obtain completions

Laguage Modeling:

probability distribution over sequences of tokens

$$P(X_{1:L}) = \frac{L}{\sqrt{P(X_{i}|X_{1:i-1})}}$$

Perplaxity 国态度

geometric average

Perplaxity (XIII) = = = = = [P(Xi|Xiii)]

code length

Tale of two errors. There are two types of errors a language model can make, and perplexity treats them asymmetrically:

 Recall error: The language model fails to place probability mass on some token. Perplexity has no mercy:

$$p(\text{ate} \mid \text{the}, \text{mouse}) \rightarrow 0 \implies \text{perplexity}_p(\text{the}, \text{mouse}, \text{ate}, \text{the}, \text{cheese}) \rightarrow \infty.$$

• **Precision error**: The language model places extra probability mass on some bad sequences. Perplexity provides a slap on the wrist. Given a language model p, suppose we mix in some garbage distribution r with probability ϵ :

$$q(x_i \mid x_{1:i-1}) = (1 - \epsilon)p(x_i \mid x_{1:i-1}) + \epsilon r(x_i \mid x_{1:i-1}).$$

Then we can compute the perplexity of $x_{1:L}$ under q:

$$\operatorname{perplexity}_{q}(x_{1:L}) \leq \frac{1}{1 - \epsilon} \operatorname{perplexity}_{p}(x_{1:L}) \approx (1 + \epsilon) \operatorname{perplexity}_{p}(x_{1:L}),$$

where the last approximate equality holds for small values of €. If we mix in 5% junk, then perplexity only by 5%. Note that the resulting language is horrible for generation, since every 20 tokens on average it's just going to generate a gibberish token.

Now let's get on with evaluating perplexity on an actual dataset.

	Parplexity:
	Penn Tree Bank
_	The Penn Tree Bank is a classic dataset in NLP, originally annotated for syntactic parsing. Beginning with Emami and Jelinek (2004) and Mikolov and Zweig (2012), a version of the dataset that only
_	contained Wall Street Journal articles was used as a language modeling evaluation. Note that the PTB language modeling benchmark involved some significant preprocessing of the original dataset (h/t to John Hewitt for pointing this out).
_	

Adaptation. Feed the entire text as a prompt into GPT-3 and evaluate the perplexity (demo):

Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.

Results. GPT-3 vastly outperforms the existing state-of-the-art:

Model	Perplexity
GPT-3	20.5
BERT-Large-CAs1	31.3

See the leaderboard for the latest results.

Train/test leakage. The authors did not evaluate on some datasets such as WikiText-103 because GPT-3 was trained on Wikipedia. PTB had the advance of predating the Internet, and is only available through a paid license. This is another complication with large datasets: it is difficult to check that your test data did not appear in your training data and was memorized.

MBADA (Paperno et al. 2016)						
Task: predict the last word of a sente	ence.					
 Motivation: Solving the task requires modeling long-range dependencies. 						
ptation.						
 LAMBADA is natively already a language modeling task, so we could just ask a language model to complete the final word of the sentence. 						
Problem: language model doesn't kn	ow it should be producing the final word of the sentence.					
Solution: frame it more explicitly as a additional examples (demo):	input-output mapping and use in-context learning with					
Fill in blank:						
Alice was friends with Bob. Alice w	vent to visit her friend> Bob					
She held the torch in front of her. She caught her breath. "Chris? There's a step."						
faster. "In fact," she said, raising th	refeet ahead." She moved faster. They both moved the torch higher, "there's more than a> step is task than the previous state-of-the-art (based on GPT-2):					
odel	Perplexity					
PT-3 (few-shot)	1.92					
DTA	8.63					
the <u>leaderboard</u> for the latest results	s.					

Hella Swag (2019)

- Motivation: evaluate a model's ability to perform commonsense reasoning
- Task: choose the most appropriate completion for a sentence from a list of choices

Adaptation. This is a **multiple-choice task**, so the most natural thing to do is to **score** each candidate answer with the language model and predict the "best" one (demo):

Making a cake: Several cake pops are shown on a display. A woman and girl are shown making the cake pops in a kitchen. They \${answer}

where \${answer} is one of:

- 1 bake them, then frost and decorate.
- 2 taste them as they place them on plates.
- 3 put the frosting on the cake as they pan it.
- 4 come out and begin decorating the cake as well.

How do you score a candidate answer y given a question x? There's no principled answer, but here are some **heuristics**:

- Unnormalized probability: score(x, y) = p(x, y). The problem with the unnormalized probability is that it has a bias towards short answers (demo).
- Length-normalized probability: $score(x, y) = \frac{p(x, y)}{num-tokens(y)}$. This fixes the length bias. However, given two answers of the same length, the model still might prefer the more popular entity.
- Frequency-normalized probability: $score(x,y) = \frac{p(y|x)}{p(y|x_0)}$, where x_0 is a neutral string like Answer:. This lowers the score for answers that happen to just be common (e.g., $n\{John\}$). Compare demoversus demo.

Results. GPT-3 got close but did not exceed the state-of-the-art:

Model	Accuracy
SOTA	85.6
GPT-3	79.3

However, the SOTA used fine-tuning on the HellaSwag training set, so it is pretty impressive that GPT-3 can get close without any task-specific training data!

Question answering

Now we consider (closed-book) question answering, where the input is a question and the output is an answer. The **language model has to somehow "know" the answer** without looking up information in a database or a set of documents (we'll consider reading comprehension later, where the information is provided).

Input: What school did burne hogarth establish?

Output: School of Visual Arts

TriviaQA (Joshi et al. 2017)

Task: given a trivia question, generate the answer

 The original dataset was collected from trivial enthusiasts and was presented as a challenge used for (open book) reading comprehension, but we use it for (closed-book) question answering.

Adaptation. We define a prompt based on the training instances (if any) and the question, and take the completion as the predicted answer (demo):

Q: 'Nude Descending A Staircase' is perhaps the most famous painting by which 20th century artist?

A: Marcel Duchamp

Results.

Model	Accuracy
RAG	68.0
GPT-3 (zero-shot)	64.3
GPT-3 (few-shot)	71.2

unsupervised pretraining)

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize the desired task. We use the term "in-context learning" to describe the inner loop of this process, which occurs within the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded within a single sequence.

-							
Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning performance on a simple task requiring the model to remove random symbols from a word, both with and without a natural language task description (see Sec. 3.9.2). The steeper "in-context learning curves" for large models demonstrate improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range of tasks.

"In-context information"

(contextual)

Emergence / Monogenization