Homework 5

** Problem 1. Find $f \in Aut(\mathbb{C})$ such that f is not the identity or the conjugate function.

Proof. Consider some element $a \in \mathbb{C}$ such that a is the root of a polynomial in $\mathbb{Q}[x]$. Let the polynomial of least degree with this property be p. Let f be an automorphism with domain \mathbb{Q} . Then there exists an isomorphism extending f to $\mathbb{Q}(a)$ and sending a to b if and only if b is the root of a polynomial obtained by applying f to the coefficients of p. Here, $\mathbb{Q}(a)$ denotes the extension of \mathbb{Q} generated by a and is the intersection of all subfields of \mathbb{C} which contain \mathbb{Q} and a. It is now possible to use Zorn's Lemma to show that any isomorphism, f, with domain \mathbb{Q} can be extended to an isomorphism of A. Let F be the set of isomorphisms extending f to a subfield of A. F is nonempty since f extends itself to \mathbb{Q} . Consider isomorphisms of subfields of $\mathbb C$ as sets of ordered paris. Let C be a chain of sets from F and let D be the union of all the isomorphisms in C. Let $(a,b), (c,d) \in D$. Then $(a,b) \in f_1$ and $(c,d) \in f_2$ for isomorphisms in F. Since C is a chain it follows that (a,b) and (c,d) are in the same isomorphism since $f_1 \subseteq f_2$ or $f_2 \subseteq f_1$. From here it follows that D is an isomorphism in F. Use Zorn's Lemma to choose g as a maximal element of F. Suppose that the domain of g is not A. Then there exists $a \in A$ not in the domain. But we've already shown that we can extend q to include this element. This isomorphism will be in F as well and g is not the maximal element. This is a contradiction and so the domain of g is A. A similar proof using Zorn's Lemma shows that for any isomorphism on a finite extension of \mathbb{Q} we can create an automorphism of \mathbb{C} .

** Problem 2. Show that \mathbb{A} and $\mathbb{A}_{\mathbb{R}}$ are fields.

Proof. We have that \mathbb{A} is the set of numbers which are roots of elements in $\mathbb{Z}[x]$. Note that we can equivalently replace $\mathbb{Z}[x]$ with $\mathbb{Q}[x]$ by taking any element of $\mathbb{Q}[x]$ and multiplying by the least common denominator of each of the coefficients. We first need to show that \mathbb{A} is closed under addition and multiplication. Let $x,y\in\mathbb{A}$ such that $u(x)=\sum_{i=0}^n a_ix^i=0$ and $v(y)=\sum_{i=0}^m b_iy^i=0$. Suppose that u and v are the polynomials of least degree with coefficients in \mathbb{Q} and v and v are roots. Then we can say that the sets

$$A = \{1, x, x^2, \dots, x^{n-1}\}$$

and

$$B = \{1, y, y^2, \dots, y^{m-1}\}\$$

are linearly independent. Note that we can create x^n from a linear combination of elements from A. To see this note that

$$x^n = -\frac{1}{a_n} \sum_{i=0}^{n-1} a_i x^i.$$

Additionally, if we multiply both sides of this equation by x we have

$$x^{n+1} = -\frac{1}{a_n} \sum_{i=0}^{n-1} a_i x^{i+1}$$

where the sum is a linear combination of elements of A. Inductively this shows that $x^k \in \langle A \rangle$ where $k \in \mathbb{N} \cup \{0\}$ and $\langle A \rangle$ denotes the span of A over \mathbb{Q} . Similarly, $y^l \in \langle B \rangle$ where $l \in \mathbb{N} \cup \{0\}$. Also note that the set

$$C = \{1, x, x^2, \dots, x^{n-1}, xy, xy^2, \dots, x^{n-1}y^{m-2}, x^{n-1}y^{m-1}\}$$

is finite and that $x^k y^l \in \langle C \rangle$ for all $k, l \in \mathbb{N} \cup \{0\}$ Thus there exists some finite basis C' for the space spanned by C. Now suppose that there exists no polynomial with coefficients in \mathbb{Q} where

$$w(x+y) = \sum_{i=0}^{p} c_i (x+y)^i = \sum_{i=0}^{p} c_i \sum_{j=0}^{i} {i \choose j} x^i y^{i-j} = 0$$

where we've used the binomial theorem to expand each term. But if this is the case for all $p \in \mathbb{N}$, we will never have a set of products of powers of x and y which is linearly independent. Thus, a basis for all products of powers of x and y must be infinite. But C' is a finite basis. This is a contradiction and so there must exist a polynomial in $\mathbb{Q}[x]$ such that w(x+y)=0. The same proof holds for a polynomial w'(xy)=0. Thus, \mathbb{A} and therefore $\mathbb{A}_{\mathbb{R}}$ are closed under addition and multiplication.

At this point, the axioms for commutativity and associativity of multiplication and distributivity follow from the fact that $\mathbb C$ and $\mathbb R$ are fields. Note that 0 and 1 are algebraic numbers from the polynomials x=0 and x-1=0. Thus the additive and multiplicative identities for $\mathbb C$ and $\mathbb R$ are in $\mathbb A$ and $\mathbb A_{\mathbb R}$. Note also that r(x)=x+1=0 shows that $-1\in\mathbb A$ and since $\mathbb A$ is closed under multiplication, if $x\in\mathbb A$ then $-1\cdot x=-x$ so $-x\in\mathbb A$. The same is true for $\mathbb A_{\mathbb R}$. Thus, additive inverses are in $\mathbb A$ and $\mathbb A_{\mathbb R}$. We are left with multiplicative inverses. Let $x\in\mathbb A_{\mathbb R}$ such that

$$p(x) = \sum_{i=0}^{n} a_i x^i = 0.$$

Then multiply both sides by $1/x^n$ so that we have

$$0 = \sum_{i=0}^{n} a_i x^{i-n} = \sum_{i=0}^{n} a_i \left(\frac{1}{x}\right)^{n-i}.$$

Thus, there exists a polynomial with 1/x as a root and so $1/x \in \mathbb{A}_{\mathbb{R}}$. Finally, let $z \in \mathbb{A}$ such that z = a + bi. Then there exists a polynomial in $\mathbb{Q}[x]$ such that

$$p(z) = \sum_{i=0}^{n} a_i z^i = 0.$$

Then

$$\sum_{i=0}^{n} a_i \overline{z}^i = \sum_{i=0}^{n} a_i \overline{z}^i = \sum_{i=0}^{n} \overline{a_i z^i} = \overline{\sum_{i=0}^{n} a_i z^i} = \overline{0} = 0$$

and so \overline{z} is a root of p as well. Note also that $z + \overline{z} \in \mathbb{A}$ and $z + \overline{z} = 2a$ and $z - \overline{z} \in \mathbb{A}$ and $z - \overline{z} = bi$. Since $i \in \mathbb{A}$ from the equation $x^2 + 1 = 0$, we see that $a, b \in \mathbb{A}$ if $a + bi \in \mathbb{A}$. Thus $|z| \in \mathbb{A}$ and so $1/|z| \in \mathbb{A}$ and finally $\overline{z}/|z| \in \mathbb{A}$ from closure under multiplication. Thus the multiplicative inverse for z is algebraic. Since all the axioms are met for both \mathbb{A} and $\mathbb{A}_{\mathbb{R}}$, they are both fields.

** Problem 3. Find $Aut(\mathbb{A}_{\mathbb{R}})$ and $Aut(\mathbb{A})$.

Proof. Let $a \in \mathbb{A}_{\mathbb{R}}$ such that a > 0. Then $a = b^2$ for some $b \in \mathbb{A}_{\mathbb{R}}$. To see this note that a is a root of some polynomial $p(x) = \sum_{i=0}^n a_n x^n$ such that $p(a) = p(b^2) = 0$. Then consider $p'(x) = \sum_{i=0}^n a_n (x^2)^n$ and p'(b) = 0. Thus $b \in \mathbb{A}_{\mathbb{R}}$. Now let f be an automorphism of $\mathbb{A}_{\mathbb{R}}$. Then

$$f(a) = f(b^2) = f(b \cdot b) = f(b) \cdot f(b) = (f(b))^2 > 0$$

since $\mathbb{A}_{\mathbb{R}}$ is a field. Thus if a > 0 then f(a) > 0 and so automorphisms of $\mathbb{A}_{\mathbb{R}}$ preserve order. Note that $\mathbb{Q} \subseteq \mathbb{A}_{\mathbb{R}}$ because for any rational $q \in \mathbb{Q}$, q is a root of x - q. Then the rationals are fixed under f. Suppose that a < f(a). Then there exists $r \in \mathbb{Q}$ such that a < r < f(a). But then f(a) < f(r) = r. Hence $a \ge f(a)$.

A similar proof shows that $a \leq f(a)$ and thus a = f(a). Thus $Aut(\mathbb{A}_{\mathbb{R}}) = \{I\}$ where I is the identity function.

Certainly the identity and complex conjugation are in Aut(A). From ** Problem 1 we see that there are other elements which arise from finite extensions of \mathbb{Q} which are generated by algebraic numbers.

- ** Problem 4. Complete Project 10.2 for Chapter 3.
- ** Problem 4.1 Determine which of the following converge:
- 1) $a_n = 1$ for all n.
- 2) $a_n = 1/n$.
- 3) $a_n 1/2^n$.
- 4) $a_n = (-1)^{n+1}$.
- 5) $a_n = (-i)^{n+1}/(n^2+1)$. 6) $a_n = e^{in\theta}/n$ for a fixed $0 \le \theta \le 2\pi$.
- 7) $a_n = \sin(n\pi)/n^2.$

Proof. 1) We see that $\sum_{n=1}^{\infty} a_n$ diverges. To show this, suppose it converges to L. Let $\varepsilon = 1/2$. Then for all $N \in \mathbb{N}$, use the Archimedean Property choose n such that n > |L+1|. Then $|S_n - L| \ge 1/2 = \varepsilon$.

2) Group the terms of (a_n) to make a new sequence (b_k) such that

$$b_k = \sum_{i=n_{k-1}+1}^{n_k} \frac{1}{n}$$

where $n_k = 2^{k-1}$ for $k \in \mathbb{N}$ and $n_0 = 0$. Note that for $k \ge 2$, b_k has $2^{k-1} - 2^{k-2} = 2^{k-2}$ terms, the smallest of which is $1/2^{k-1}$. Thus, for all $k \ge 2$, $b_k \ge 2^{k-2}/2^{k-1} = 1/2$. Also $b_1 = \sum_{n=1}^{1} 1/n = 1$. So for all $k \in \mathbb{N}$ we have $b_k \ge 1/2$. But then there are no terms of (b_k) in (-1/2; 1/2) so $\lim_{k \to \infty} b_k \ne 0$. Thus, $\sum_{k=1}^{\infty} b_k$ is not convergent and therefore $\sum_{n=1}^{\infty} 1/n$ is not convergent.

- 3) Let $\varepsilon > 0$ and choose N such that $1/N < \varepsilon$. Then for n > N we have $1/2^n < 1/N$ since $2^n > N$. Thus for all n > N we have $|1 S_N| = |1 1 + 1/2^n| = 1/2^n < 1/N < \varepsilon$. Thus $\sum_{n=1}^{\infty} a_n = 1$.
- 4) This series diverges since the partial sums are either 1 or 0. Thus, for any value $a \in \mathbb{C}$, there exists some ball $B_r(a)$ such that |a| < r and there are infinitely many terms of (S_N) which are not in $B_r(a)$.
- 5) This sequence can be broken up into a real sequence

$$a_n' = \frac{(-i)^{2n}}{n^2 + 1}$$

and an imaginary sequence

$$a_n'' = \frac{(-i)^{2n-1}}{n^2 + 1}.$$

Each of these series converges using the comparison test and the fact that $\sum_{n=1}^{\infty} 1/n^2$ converges. Thus, the original sequence must also converge.

- 6) This series will converge for particular values of θ . For example, if $\theta = \pi$ then $e^{in\pi}/n = (\cos(n\pi) + i\sin(n\pi))/n = (-1)^n/n$. Then we have $\sum_{n=1}^{\infty} (-1)^n/n$ converges by the alternating series test.
- 7) Note that $\sin(n\pi) = 0$ for all $n \in \mathbb{N}$ so that we have $a_n = 0$ for all n. Then $\sum_{n=1}^{\infty} a_n = 0$.

** Problem 4.2 Suppose that a series $\sum_{n=1}^{\infty} a_n$ converges. Show that $\lim_{n\to\infty} a_n = 0$.

Proof. Let $\sum_{n=1}^{\infty} a_n = S$. Then the sequence of partial sums (S_N) converges to S and (S_N) is a Cauchy sequence. Thus for all $\varepsilon > 0$ there exists $N' \in \mathbb{N}$ such that for all n, m > N' we have $|S_n - S_m| < \varepsilon$. But note that $S_{n+1} - S_n = a_n$ so for n > N' + 1 we have $|a_n| < \varepsilon$ which means $\lim_{n \to \infty} a_n = 0$.

- ** Problem 4.3 1) If $N \in \mathbb{N}$ and $z \neq 1$ show that $S_N = \sum_{n=0}^N z^n = \frac{1-z^{N+1}}{1-z}$
- 2) If |z| < 1, show that $\lim_{n \to \infty} z^n = 0$.
- 3) If |z| > 1, show that $\lim_{n \to \infty} z^n$ does not exist.

Proof. 1) Note that

$$\sum_{n=0}^{N} z^n = 1 + z + z^2 + \dots + z^N.$$

Multiply both sides of this equality by 1-z. Then we have

$$(1-z)\sum_{n=0}^{N} z^n = (1-z)(1+z+z^2+\cdots+z^N) = 1-z^{N+1}$$

and since $z \neq 1$ we have $1 - z \neq 0$ so we can multiply by 1/(1-z) to obtain

$$\sum_{n=0}^{N} z^n = \frac{1 - z^{N+1}}{1 - z}.$$

- 2) Let $\varepsilon > 0$ and let $N \in \mathbb{N}$ such that $N \ge 2$ and $1/N < \varepsilon$. Then for all n > N we have $|z^n| < 1/N$ since |z| < 1. Thus, $\lim_{n \to \infty} z^n = 0$.
- 3) Note that since |z| > 1, it follows that z^n is unbounded. Then for any complex number w there exists a ball $B_r(w)$ with infinitely many points of z^n outside of it. Thus, z^n cannot converge to w.
- ** Problem 4.4 What can you say if |z| = 1?

Proof. If $z \in \mathbb{R}$ then $\lim_{n\to\infty} z^n = 1$. If z is purely imaginary, then z^n will not converge as i^n will cycle through four different values.

** **Problem 4.5** Show that by removing an infinite number of terms from the series $\sum_{n=1}^{\infty} 1/n$, the remaining subseries can be made to converge to any real number.

Proof. Let $c \in \mathbb{R}$ and suppose that it is not possible to remove infinitely many terms of $a_n = 1/n$ so that the subseries, $\sum_{n=1}^{\infty} b_n$, converges to c. Consider the partial sums $S_N = \sum_{n=1}^N b_n$. Then there exists some $\varepsilon > 0$ such that for all N there exists an n > N such that $|S_n - c| \ge \varepsilon$. But then we can add or remove terms of (a_n) until the inequality is satisfied.

** Problem 4.6 If $p \in \mathbb{R}$ show that $\sum_{n=1}^{\infty} 1/n^p$ diverges for p < 1 and converges for p > 1.

Proof. 1) Let S_n be the nth partial sum. Then

$$S_{2n} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{(2n)^p} = 1 + \left(\frac{1}{2^p} + \frac{1}{4^p} + \dots + \frac{1}{(2n)^p}\right) + \left(\frac{1}{3^p} + \frac{1}{5^p} + \dots + \frac{1}{(2n-1)^p}\right).$$

If p > 1 then we have

$$S_{2n} > 1 + \frac{1}{2^p} S_n + \left(\frac{1}{4^p} + \frac{1}{6^p} + \dots + \frac{1}{(2n)^p}\right)$$

which means

$$S_{2n} > 1 + \frac{1}{2^p} S_n - \frac{1}{2^p} + \frac{1}{2^p} S_n = 1 - \frac{1}{2^p} + \frac{2}{2^p} S_n$$

and

$$S_{2n} < 1 + \frac{2}{2^p} S_n.$$

Thus

$$\frac{2^p - 1}{2^p} + \frac{2}{2^p} S_n < S_{2n} < 1 + \frac{2}{2^p} S_n.$$

A similar proof shows that for p < 1 we have

$$1 + \frac{2}{2^p} S_n < S_{2n} < \frac{2^p - 1}{2^p} + \frac{2}{2^p} S_n.$$

For p < 0 we see that $1/n^p > 1$ for large enough values of n and so the series will eventually diverge and for p=0 we have the constant sequence 1 which will diverge. Assume that $\lim_{n\to\infty} S_n = S$. Let 0 .Then from the second inequality we have

$$1 < S - \frac{2}{2^p}S < 1 - \frac{1}{2^p}$$

which is a contradiction. Thus, $\sum_{n=1}^{\infty} 1/n^p$ diverges for $p \leq 1$. Now consider p > 1. Then from the first inequality we have

$$S - \frac{2}{2^p}S = \frac{2^p - 2}{2^p}S < 1$$

which means

$$S < \frac{2^p}{2^p - 2}.$$

So S_n is a bounded and increasing sequence. Thus it must converge.

** Problem 4.7 1) Suppose $a_n > 0$ for $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n$ converges. If $b_n \in \mathbb{C}$ satisfies $|b_n| \leq a_n$ for all n, then the series $\sum_{n=1}^{\infty} b_n$ converges absolutely and thus converges.

2) If the series $\sum_{n=1}^{\infty} a_n$ converges to s and c is any constant show that the series $\sum_{n=1}^{\infty} ca_n$ converges to

3) Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are infinite series. Suppose that $a_n > 0$ and $b_n > 0$ for $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n/b_n = c > 0$. Show that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Proof. 1) Note that $a_n > 0$ for all n and so $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} |a_n|$ is an absolutely convergent sequence. Then the sequence of partial sums, (S_n) is convergent and therefore bounded. Thus there exists $C \in \mathbb{R}$ such that $S_n \leq C$ for all $n \in \mathbb{N}$. But then since $|b_n| \leq a_n = |a_n|$ for all n we have

$$\sum_{n=1}^{N} |b_n| \le \sum_{n=1}^{N} a_n \le C.$$

Thus, the sequence of partial sums, (T_n) , for $\sum_{n=1}^{\infty} |b_n|$ is bounded. But also $|b_n| \geq 0$ and so

$$T_{N+1} = \sum_{n=1}^{N} |b_n| + |b_{N+1}| = T_n + |b_{N+1}| \ge T_n.$$

Thus (T_n) is a bounded increasing sequence and therefore it is convergent. Thus $\sum_{n=1}^{\infty} b_n$ is absolutely convergent.

2) Suppose that $\sum_{n=1}^{\infty} a_n = s$. Then note that

$$cS_N = c\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} ca_n.$$

We know that $\lim_{n\to\infty} S_n = s$ so let $\varepsilon > 0$ and consider $\varepsilon/|c|$. There exists N such that for all n > N we have $|S_n - s| < \varepsilon/|c|$. Then $|c||S_n - s| = |cS_n - cs| < \varepsilon$. Thus, $\lim_{n\to\infty} cS_n = cs$ and so $\sum_{n=1}^{\infty} ca_n = cs$.

3) Assume that $\sum_{n=1}^{\infty} a_n = s$. Then note that

$$cs = c\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} ca_n = \lim_{n \to \infty} \frac{a_n}{b_n} s_n.$$

From we see that $\sum_{n=1}^{\infty} b_n$ must converge by the Comparison Test. A similar proof holds for the converse with the fact that c > 0.

** **Problem 4.8** Let $\sum_{n=1}^{\infty} a_n$ be a series of nonzero numbers. Give examples to show that if $\lim_{n\to\infty} |a_{n+1}/a_n| = r = 1$, the series may converge or diverge.

Proof. Consider $a_n = 1/n$ then $\lim_{n \to \infty} |a_{n+1}/a_n| = \lim_{n \to \infty} (n+1)/n = 1$, but $\sum_{n=1}^{\infty} a_n$ diverges. Similarly, if $b_n = 1/n^2$ then $\lim_{n \to \infty} |b_{n+1}/b_n| = \lim_{n \to \infty} (n+1)^2/n^2 = 1$, and $\sum_{n=1}^{\infty} b_n$ converges.

** **Problem 4.9** Let $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence of non-negative real numbers and let $x_0 = \limsup_{n\to\infty} x_n$. For any $\varepsilon > 0$, show that there are only finitely many terms of the sequence greater than $x_0 + \varepsilon$, whereas there are infinitely many terms less than $x_0 + \varepsilon$.

Proof. We know that x_0 is the limit of a sequence (y_n) where

$$y_n = \sup\{a_k \mid k \ge n\}.$$

Thus (y_n) is a decreasing sequence. Let $\varepsilon > 0$ and choose n such that $|x_0 - y_n| < \varepsilon$. Since (y_n) is decreasing we have $x_0 < y_n < \varepsilon$. By definition, y_n is greater than or equal to every term of (x_n) except for those with indices less than n. The fact that $y_n < \varepsilon$ gives us the strict inequality for finitely many terms greater than $x_0 + \varepsilon$ and infinitely many less than $x_0 + \varepsilon$.

** Problem 4.10 Let $\sum_{n=1}^{\infty} a_n$ be a series. Give examples to show that if $\limsup_{n\to\infty} |a_n|^{1/n} = r = 1$ then the series may converge or diverge.

Proof. Consider $a_n = 1^n$ then $\limsup_{n \to \infty} |a_n|^{1/n} = \limsup_{n \to \infty} (1^n)^{1/n} = 1$, but $\sum_{n=1}^{\infty} a_n$ diverges. Similarly, if $b_n = 1/n^2$ then $\lim_{n \to \infty} |b_n|^{1/n} = \lim_{n \to \infty} (1/n^2)^{1/n} = 1$, and $\sum_{n=1}^{\infty} b_n$ converges.

** Problem 4.11 Let $\sum_{n=1}^{\infty} a_n$ is a series such that $r = \lim_{n \to \infty} |a_{n+1}|/|a_n|$ exists. Show that $\limsup_{n \to \infty} |a_n|^{1/n} = r$ as well.

Proof. This follows from the fact that $|a_n|^{1/n} \leq |a_{n+1}|/|a_n|$ for large enough values of n. Then $||a_n|^{1/n} - r| < ||a_{n+1}|/|a_n| - r| < \varepsilon$ if given $\varepsilon > 0$.

** Problem 4.12 Show that if a complex power series around z_0 converges absolutely for a complex number z then it also converges for any complex number w such that $|w-z_0| \leq |z-z_0|$, that is, the series converges on the disk $\{w \in \mathbb{C} \mid |w-z_0| \leq |z-z_0|\}$.

Proof. Let $\sum_{n=1}^{\infty} a_n (z-z_0)^n$ be absolutely convergent. Then note that

$$|w - z_0|^n \le |z - z_0|^n$$

if $|w-z_0| \leq |z-z_0|$. But then

$$|a_n(w-z_0)^n| = |a_n||(w-z_0)^n| = |a_n||w-z_0|^n \le |a_n||z-z_0|^n = |a_n||(z-z_0)^n| = |a_n(z-z_0)^n|.$$

Then by the comparison test, the power series will converge on the disk $\{w \in \mathbb{C} \mid |w - z_0| \le |z - z_0|\}$.

** Problem 4.13 Determine the radius of convergence for the following power series:

1)

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

2)

$$\sum_{n=2}^{\infty} \frac{z^n}{\ln(n)}.$$

3)

$$\sum_{n=1}^{\infty} \frac{n^n}{n!} z^n.$$

Proof. 1) The sequence $a_n = 1/n!$ satisfies the ratio test so that $\lim_{n\to\infty} |a_{n+1}|/|a_n| = \lim_{n\to\infty} 1/(n+1) = 0$. The result of the root test must be the same and so the radius of convergence is infinity.

2) The sequence $a_n = 1/\ln(n)$ satisfies the ratio test so that $\lim_{n\to\infty} |a_{n+1}|/|a_n| = \lim_{n\to\infty} \ln(n+1)/\ln(n) = 1$. The result of the root test must be the same and so the radius of convergence is 1.

3) The sequence $a_n = n^n/n!$ satisfies the root test so that $\limsup_{n\to\infty} |a_n|^{1/n} = \lim_{n\to\infty} n/(n!)^{1/n}$ diverges. The radius of convergence must then be 0.

** Problem 5. For $x, y \in \mathbb{R}^n$ Let

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

and $d_p(x,y) = ||x-y||_p$. Show that d_p is a metric.

Proof. Let $x, y \in \mathbb{R}^n$. We have $|x_i - y_i| \ge 0$ and thus $|x_i - y_i|^p \ge 0$ for each $1 \le i \le n$. Then $\sum_{i=1}^n |x_i - y_i|^p \ge 0$ and raising this to 1/p we have

$$d_p(x,y) = ||x - y||_p = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}} \ge 0.$$

Now suppose that x = y. Then $x_i = y_i$ for all $1 \le i \le n$ and so $|x_i - y_i| = 0$ for all $1 \le i \le n$. It follows that d(x, y) = 0. Conversely, suppose that d(x, y) = 0. Then

$$\left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}} = 0$$

and raising both sides to the pth power we have $\sum_{i=1}^{n}|x_i-y_i|^p=0$. But since p>1 we know that $|x_i-y_i|^p\geq 0$ for all $1\leq i\leq n$. Thus $|x_i-y_i|=0$ and so $x_i=y_i$ for all $1\leq i\leq n$. Therefore x=y.

Note that since |a-b|=|-1||a-b|=|-(a-b)|=|b-a| for all $a,b\in\mathbb{R}$ we have

$$d_p(x,y) = ||x-y||_p = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}} = \left(\sum_{i=1}^n |y_i - x_i|^p\right)^{\frac{1}{p}} = ||y-x||_p = d(y,x).$$

Now let $z \in \mathbb{R}^n$ as well. Note that

$$||x - z||_p^p = \sum_{i=1}^n |x_i - z_i|^p \le \sum_{i=1}^n |x_i - z_i|^{p-1} |x_i| + \sum_{i=1}^n |x_i - z_i|^{p-1} |z_i|.$$

If we now assume that q = p/(p-1), then we can apply Hölder's Inequality to both terms on the right so we have

$$||x-z||_p^p \le \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n |x_i-z_i|^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{i=1}^n |z_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n |x_i-z_i|^{(p-1)q}\right)^{\frac{1}{q}}.$$

Now multiply both sides by

$$\left(\sum_{i=1}^{n} |x_i - z_i|^{(p-1)q}\right)^{-\frac{1}{q}}$$

and note that 1 - 1/q = 1/p so that we have

$$||x-z||_p^p = \left(\sum_{i=1}^n |x_i-z_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^n |z_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^n |x_i-y_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^n |y_i-z_i|^p\right)^{\frac{1}{p}}$$

Thus
$$||x - z||_p \le ||x - y||_p + ||y - z||_p$$
.

** Problem 6. Define $l_n^p(\mathbb{C})$.

Proof. The norm $l_n^p(\mathbb{C}$ is defined as

$$||z||_p = \left(\sum_{j=1}^n |z_i|^p\right)^{\frac{1}{p}}.$$

The proof that this is a metric is the same as the proof that $l_n^p(\mathbb{R})$ is a metric because the properties of absolute value apply in the same way.

- ** Problem 7. Show the following for $r, s \in \mathbb{Q}$ such that $r = a/b = p^k(a'/b')$ and $s = c/d = p^l(c'/d')$:
- 1) $|r|_p \ge 0$ and $|r|_p = 0$ if and only if r = 0.
- 2) $|rs|_p = |r|_p |s|_p$.
- 3) $|r+s|_p \le \max(|r|_p, |s|_p)$ and $|r+s|_p = \max(|r|_p, |s|_p)$ if and only if $|r|_p \ne |s|_p$.

Proof. 1) Note that $|r|_p = p^{-k} \ge 0$. Also, by definition $|0|_p = 0$.

2) Note that

$$rs = \left(p^k \frac{a'}{b'}\right) \left(p^l \frac{c'}{d'}\right) = p^{k+l} \frac{a'}{b'} \frac{c'}{d'}$$

and so $|rs|_p = p^{-(k+l)} = p^{-k}p^{-l} = |r|_p|s|_p$.

3) Note that

$$r + s = p^{k} \frac{a'}{b'} + p^{l} \frac{c'}{d'} = \frac{p^{k} a' d' + p^{l} b' c'}{b' d'} = p^{m} \frac{p^{k-m} a' d' + p^{l-m} b' c'}{b' d'}$$

where $m = \min(k, l)$. Then $|r + s|_p = p^{-m} \le \max(p^{-k}, p^{-l}) = \max(|r|_p, |s|_p)$. Note that if $|r|_p \ne |s|_p$ then $p^{-k} \ne p^{-l}$ and so m must be the $\min(k, l)$ which makes $|r + s|_p = \max(|r|_p, |s|_p)$.

** Problem 8. Let $d_p(r,s) = |r-s|_p$ for $r,s \in \mathbb{Q}$. Show d_p is a metric on \mathbb{Q} .

Proof. Let $r, s, t \in \mathbb{Q}$ such that $r = a/b = p^k(a'/b')$ and $s = c/d = p^l(c'/d')$. ** Problem 7 Part 1) shows that $d_p(x, y) \ge 0$ and that d(x, y) = 0 if and only if x - y = 0 which means x = y. Now consider

$$r - s = p^k \frac{a'}{b'} - p^l \frac{c'}{d'} = \frac{p^k a' d' - p^l b' c'}{b' d'} = p^m \frac{p^{k-m} a' d' - p^{l-m} b' c'}{b' d'}$$

and

$$s - r = p^{l} \frac{c'}{d'} - p^{k} \frac{a'}{b'} = \frac{p^{l} b' c' - p^{k} a' d'}{b' d'} = p^{m} \frac{p^{l-m} b' c' - p^{k-m} a' d'}{b' d'}$$

where $m = \min(k, l)$. Then $|r - s|_p = p^{-m} = |s - r|_p$. Finally, note that

$$|r-t| \le \max(|r|_p, |t|_p) \le \max(|r|_p, |s|_p) + \max(|s|_p, |t|_p) = |r-s|_p + |s-t|_p$$

since $|x|_p \ge 0$ for all $x \in \mathbb{Q}$.