

PRISM WORLD

Std.: 10 (English) Maths - II Marks: 20

Time: 1 hrs Date:

Chapter: 1 to 3

Q.1 A) Choose the correct alternative.

(2)

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and \angle

ADC = 140° , then \angle BAC is equal to

- a. 80⁰
- b. 50^0 c. 40^0
- $d.30^{0}$

2)

If in $\triangle DEF$ and $\triangle PQR$, $\angle D \cong \angle Q$, $\angle R \cong \angle E$ then which of the following statements is false?

a.
$$\frac{\text{EF}}{\text{PR}} = \frac{\text{DF}}{\text{PQ}}$$

b.
$$\frac{\mathrm{DE}}{\mathrm{PQ}} = \frac{\mathrm{EF}}{\mathrm{RP}}$$

C.
$$\frac{\mathrm{DE}}{\mathrm{OR}} = \frac{\mathrm{DF}}{\mathrm{PO}}$$

a.
$$\frac{\mathrm{EF}}{\mathrm{PR}} = \frac{\mathrm{DF}}{\mathrm{PQ}}$$
 b. $\frac{\mathrm{DE}}{\mathrm{PQ}} = \frac{\mathrm{EF}}{\mathrm{RP}}$ c. $\frac{\mathrm{DE}}{\mathrm{QR}} = \frac{\mathrm{DF}}{\mathrm{PQ}}$ d. $\frac{\mathrm{EF}}{\mathrm{RP}} = \frac{\mathrm{DE}}{\mathrm{QR}}$

B) Solve the following questions. (Any one)

(2)

1)

In the given figure, CB \perp AB, DA \perp AB. If BC = 4, AD = 8 then $\frac{A \; (\triangle ABC)}{A \; (\triangle ADB)}$ find.

Identify, with reason, if the following is Pythagorean triplet. 4, 9, 12

Q.2 A) Complete the following Activities. (Any two)

1) A side of an isosceles right angled triangle is x. Find its hypotenuse.

In \triangle PQR, \angle PQR = 90°

and PQ = QR = x

 $\therefore PR^2 = \underline{\hspace{1cm}}$

... [Pythagoras theorem]

 $PR^2 =$

PR = ___units ... [Taking square root]

The length of hypotenuse is ____ units.

2)

In the following figure,O is the centre of the circle. ∠ABC is inscribed in arc ABC and ∠ABC

Colours of your Dreams = 65° . Complete the following activity to find the measure of \angle AOC.

Activity:

$$\angle ABC = \frac{1}{2}(___)$$

... [Inscribed angle theorem]

∴ ____×2 = m (arc AXC)

.∴ m (arc AXC) = ____

 \angle AOC = m (arc AXC) ... [Definition of measure of minor arc)

3) In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

In ΔXDE, PQ∥DE ··· ____

... (I) (Basic proportionality theorem)

In∆XEF, QR∥EF ... Given

 $\therefore \frac{XQ}{QE} = \frac{XQ}{QE} = \frac{XQ}{E}$... (II) (Basic proportionality theorem)

 \therefore = $\frac{XR}{RF}$ Co... from (I) and (II) Our Dreams

∴ seg PR∥seg DF ... (Converse of basic proportionality theorem)

B) Solve the following questions. (Any one)

1) Prove that, any rectangle is a cyclic quadrilateral.

2) Prove that: In a triangle if the square of one side is equal to the sum of the squares of the remaining two sides, then the triangle is a right angled triangle.

Q.3 Solve the following questions. (Any one)

- 1) Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq.cm.
- 2) Draw a circle with centre P and radius 2.1 cm. Take point Q at a distance 5.2 cm from the centre. Draw tangents to the circle from point Q.
 Measure and write the length of a tangent segment.
- 3) Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle?

Q.4 Solve the following questions. (Any one)

(4)

(2)

(3)

- 1) If two consecutive angles of a cyclic quadrilateral are congruent, then prove that one pair of opposite sides is parallel and other pair is congruent.
- 2) In the given figure an altitude is drawn to the hypotenuse. The lengths of different segments are marked in the figure.

Determine the value of x, y, z

Q.5 Solve the following questions. (Any one)

(3)

- 1) Sum of the squares of adjacent sides of a parallelogram is 130 sq.cm and length of one of its diagonals is 14 cm. Find the length of the other diagonal.
- In \triangle ABC, ray BD bisects \angle ABC and ray CE bisects \angle ACB. If seg AB \cong seg AC then prove that ED || BC.

