Model-assisted design of experiments in the presence of network correlated outcomes (G.W. Basse & E.M. Airoldi, 2018+)

Nima Hejazi

2018-10-21

Introduction

Interference: When people have friends

- Observational units are connected so far, we've been dealing with causal analyses in a vacuum.
- Sometimes, it's reasonable to assume that units do not affect one another; often, it's not.
- A central assumption in causal models, necessary for identification results, is the Stable Unit Treatment Value Assumption (Rubin 1978) & (Rubin 1980).
- Interference is often defined through the loosening of this assumption (Hudgens and Halloran 2008).

Networks: Are you (still) on facebook too?

- In a population of causally connected units, several types of network structures may arise, each posing unique challenges for statistics.
- Broadly, the central statistical challenge is "how to account for the presence of connections, or network data, observed pre-intervention, possibly with uncertainty, and often missing" Basse and Airoldi (2018).

Networks: Two perspectives

- Two main problem settings have been discussed in the causal inference literature
 - 1. *Network interference*: When the potential outcomes of a given unit are a function of its assigned treatment and that of others.
 - 2. *Network-correlated outcomes*: When the potential outcomes of units in a network are related through their baseline covariates.
- The first problem has been the subject of much attention in the literature, so Basse and Airoldi (2018) focus on resolving issues in the second setting.

Network-correlated outcomes: We're not that different

- Most often studied in the context of observational studies.
- Basse and Airoldi (2018) focus on
- · ..

G.W. Basse and E.M. Airoldi, 2018+, *Biometrika*

Goals and Motivation

- The problem: "how to assign treatment in a randomized experiment, when the correlation among the outcomes is informed by a network available at the design stage."
- Identify and estimate the causal effect of interference in the presence of confounding induced by correlated outcomes.
- How can information about a network be used to inform randomization strategies for estimating causal effects?

Approach

- Use model-assisted restricted randomization strategies, leveraging a static network known pre-intervention.
- Restricted randomization has a long history in experimental design – Basse and Airoldi (2018) build off of this, using strategies that balance covariates properly.

Approach

- Posit a working model for the potential outcomes, conditional on the network known pre-intervention.
- Restrict the set of allowed randomization strategies such that the estimator of interest achieves low MSE.
- In turn, focus on MSE suggests new notions of balance in network-based randomization (related to network degree statistics).

Findings

- Proposed approach maintains design unbiasedness of the difference-in-means estimator, even when the working model is misspecified (i.e., robustness).
- When the working model is correct, inference is improved through higher precision of the estimator of interest.

Notation

- *N* observational units, indexed i = 1, ..., n.
- Binary treatment Z, where $Z_i = 1$ denotes assignment to treatment arm.
- Real-valued outcome Y_i , with potential outcomes $Y_i(Z_i)$:
 - $Y_i(1)$ for $Z_i = 1$ and
 - $Y_i(0)$ for $Z_i = 0$.

Assumptions

- Stable Unit Treatment Value Assumption (Rubin 1974) & (Rubin 1978).
 - i.e., $Y_i(Z) = Y_i(Z_i)$
 - explicitly disallows network interference
- Finite population setting: recall that potential outcomes Y(Z) are unknown but constant quantities, given Z.
- Randomized experiment: only source of variation is the allocation of treatment to units (controlled by experimenter).
- Treatment allocated based on distribution on the space of all binary vectors of length N, i.e., randomization distribution (Imbens and Rubin 2015).

Parameter of interest: ATE

- For illustration, focus on ATE as the inferential target.
- With the notation previously given, the ATE is defined as

$$\tau^* = \frac{1}{N} \sum_{i=1}^{N} \{ Y_i(1) - Y_i(0) \}$$

Focus also on the difference-in-means estimator for the ATE:

$$\hat{\tau}(Y \mid Z) = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i} - \frac{\sum_{i=1}^{N} (1 - Z_i) Y_i}{\sum_{i=1}^{N} (1 - Z_i)}$$

An undirected network

- The proposed methodology requires that a network be known at the design stage (pre-specified).
- Let the network be an undirected graph ${\cal G}$ over ${\it N}$ units, where
 - \mathcal{G} is simply an $N \times N$ binary adjacency matrix A, where all diagonal entries are unary (i.e., $A_{ii} = 1$), and
 - the neighborhood of unit i be the index set $\mathcal{N}_i = \{j : A_{ij} = 1\}.$

A simplified model

• For illustrative purposes, assume the *normal-sum model*:

$$X_{j} \sim_{iid} N(\mu, \sigma^{2})$$
 $Y_{i}(0) \mid X \sim_{ind} N(\sum_{j \in \mathcal{N}_{i}} X_{j}, \gamma^{2})$
 $Y_{i}(1) = Y_{i}(0) + \tau$

- Observations in the same group are taken to have originated from a Normal distribution with the same mean.
- "The network induces correlation among the outcomes that are assigned to control because the mean of each $Y_i(0)$ is given by the sum of the covariate values X_j of units j in a neighborhood of i".

A simplified model

- Constant treatment effect model: τ is the difference between the potential outcomes $\{Y_i(0), Y_i(1)\}$.
- Intuition: in the absence of network connections and treatment Z_i = 0:
 - Y_i(0) is a measure of an intrinsic property of the observational unit (e.g., time spent on social media), as determined by covariates X.
 - Network connections alter the natural value $Y_i(0)$ that would occur, through the induced network structure.
 - The intervention $do(Z_i = 1)$ induces a causal effect τ such that $Y_i(1) = Y_i(0) + \tau$.
- The normal-sum model is just a starting point...

Optimal treatment allocation

- To ascertain an optimal treatment allocation strategy, need a notion of error to define optimality.
- Basse and Airoldi (2018) propose the conditional MSE:
 - 1. fix a treatment allocation vector Z, then
 - 2. for the normal-sum model, $MSE(\hat{\tau} \mid Z) \equiv \mathbb{E}\{(\hat{\tau} \tau^*)^2 \mid Z\}$
- Now, an optimal treatment allocation $Z^* \in \mathcal{Z}$ is one that minimizes the conditional MSE.

Where are the networks?

A decomposition of the conditional MSE is informative of network statistics:

$$\mathsf{MSE}(\hat{\tau} \mid Z) = \mu^2 \{ \delta_N(Z) \}^2 + \gamma^2 \omega(Z)^T \omega(Z) + \sigma^2 \omega(Z)^T A^T A \omega(Z) \}$$

- Each of the terms in the MSE decomposition is informative
 - Bias²: $\mu^2 \{ \delta_N(Z) \}^2$
 - Network-agnostic variance component: $\gamma^2 \omega(Z)^T \omega(Z)$
 - Network-aware variance component: $\sigma^2 \omega(Z)^T A^T A \omega(Z)$
- Model-assisted restriction randomization strategies seek to minimize the conditional MSE, but tradeoffs occur in these components.

Bias

- ..
- ..

Network-agnostic variance term

- · ..
- ..

Network-aware variance term

- ...
- ...

Classical randomization

- ..
- .

Restricted randomization

- · ...
- ...

Model-assisted restricted randomization

- ...
- .

Model-assisted restricted randomization

- ..
- **.**

Model-based optimal treatment allocation

- ..
- · ...

Restricted randomization and rerandomization

- ...
- ...

Fisher intervals and inference

- ..
- .

Key properties of the approach

- · ..
- ...

Towards generalized models

- · ..
- · ...

I've talked enough

Discussion

- · ...
- ...
- · ..

References

Basse, Guillaume W, and Edoardo M Airoldi. 2018. "Model-Assisted Design of Experiments in the Presence of Network Correlated Outcomes." arXiv Preprint arXiv:1507.00803.

Hudgens, Michael G, and M Elizabeth Halloran. 2008. "Toward Causal Inference with Interference." *Journal of the American Statistical Association* 103 (482). Taylor & Francis: 832–42.

Imbens, Guido W, and Donald B Rubin. 2015. *Causal Inference in Statistics, Social, and Biomedical Sciences*. Cambridge University Press.

Rubin, Donald B. 1974. "Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies." *Journal of Educational Psychology* 66 (5). American Psychological Association: 688.

——. 1978. "Bayesian Inference for Causal Effects: The Role of