Exploration of Asymmetry

Shuaixiang Zhang Sep 12, 2021

Corrections of Step 4

From P4 of Acp.pdf:

Numerator input

Measured real data "signal"

We can find:

$$\begin{cases} n_{v_obs} = 21 + 7 = 28 & \begin{cases} n_{v_bkg} = 2.5 + 2.5 = 5 \\ n_{\overline{v}_obs} = 8 + 5 = 13 \end{cases}, \begin{cases} n_{v_bkg} = 1.25 + 1.25 = 2.5 \end{cases}, \begin{cases} n_{v_pred} = 470 \\ n_{\overline{v}_bkg} = 1.25 + 1.25 = 2.5 \end{cases}, \begin{cases} n_{v_pred} = 180 \\ n_{v_pred} = 180 \end{cases}$$

$$\Rightarrow n_{v} + n_{v_bkg} + n_{\overline{v}} + n_{v_bkg} = n_{v_obs} + n_{v_obs} = n_{total} = 41$$

$$\Rightarrow n_{v} + n_{\overline{v}} = 41 - 7.5 = 33.5$$

Formulas:

$$Asy = \frac{\frac{1}{n_{v_pred}} - \frac{1}{n_{v_pred}}}{\frac{1}{n_{v_pred}} + \frac{1}{n_{v_pred}}}{\frac{1}{n_{v_pred}}}$$

$$\begin{cases} N_{v} \sim \frac{\left(n_{v} + n_{v_bkg}\right)^{N_{v}}}{N_{v}!} e^{-\left(n_{v} + n_{v_bkg}\right)} \\ N_{v}^{-} \sim \frac{\left(n_{v} + n_{v_bkg}\right)^{N_{v}}}{N_{v}!} e^{-\left(n_{v} + n_{v_bkg}\right)} \\ \frac{N_{v}^{-} \sim \frac{\left(n_{v} + n_{v_bkg}\right)^{N_{v}}}{N_{v}!} e^{-\left(n_{v} + n_{v_bkg}\right)} \\ \frac{N_{v}^{-} \sim n_{v_bkg}}{N_{v_pred}} - \frac{N_{v}^{-} \sim n_{v_bkg}}{n_{v_pred}} \\ \frac{N_{v}^{-} \sim n_{v_bkg}}{n_{v_pred}} + \frac{N_{v}^{-} \sim n_{v_bkg}}{n_{v_pred}} \\ \frac{N_{v}^{-} \sim n_{v_bkg}}{n_{v_pred}} + \frac{N_{v}^{-} \sim n_{v_bkg}}{n_{v_pred}} \end{cases}$$

Asy = -0.8

- > Width of the bin: 0.01
- > Range of x: [-1.505, 1.505]
- > Center of bin: integer/100-1.51

About dashed lines:

- Blue (From Left to Right): 5%, 16%, 84%, 95%.
- > Purple:

$$\frac{\frac{23}{470} - \frac{10.5}{180}}{\frac{23}{470} + \frac{10.5}{180}} = -0.08760330579 \quad \boxed{\Box}$$

Comparisons (1)

Comparisons (2)

Comparisons (3) – In detail

Based on notations in Page 1:

	Step 4 (Error)	Step 4 (Correct)
$n_{ m v}$	25.88	22.82
$n_{\overline{ u}}$	12.12	10.68
$n_{v}+n_{\overline{v}}$	38	33.5
$n_{ u_bkg}$	4	5
$n_{\overline{ u}_{-}bkg}$	2	2.5
$Asy_{initial}$	-0.1	-0.1
Asy _{simu}	-0.08	-0.05244

Comparisons (4)

Comparisons (5)

Comparisons (6)

Near 1 σ Range of Data:

Data: -0.081, $\pm 1 \sigma$: [-0.282, +0.152]

For Asy=-0.282:

$$n_{\nu} = 19.89, n_{\overline{\nu}} = 13.61$$

For Asy=+0.152:

$$n_{\nu} = 26.13, n_{\overline{\nu}} = 7.37$$

Statistical Results (1)

Theore	tical (True	Value)			Statistical Result of Asy					
Asy	$n_{ u}$	$n_{\overline{ u}}$	mean	median	Std Dev	5%	16%	32%	84%	95%
-0.8	7.54	25.96	-0.793	-0.80	0.09852	-0.94	-0.89	-0.84	<mark>-0.70</mark>	-0.62
-0.7	10.57	22.93	-0.688	-0.70	0.1185	-0.87	-0.80	-0.75	<mark>-0.57</mark>	-0.48
-0.6	13.23	20.27	-0.583	-0.59	0.1379	-0.79	-0.72	-0.65	<mark>-0.45</mark>	-0.34
-0.5	15.59	17.91	-0.478	-0.49	0.1568	-0.71	-0.63	-0.56	<mark>-0.32</mark>	-0.20
-0.4	17.69	15.81	-0.372	-0.39	0.1751	-0.63	-0.54	-0.47	<mark>-0.20</mark>	-0.06
-0.3	19.58	13.92	-0.266	-0.28	0.1923	-0.55	-0.45	-0.37	-0.08	0.07
-0.2	21.28	12.22	-0.160	-0.18	0.2088	-0.47	-0.36	-0.27	0.04	0.21
-0.1	22.82	10.68	-0.0524	-0.07	0.2246	-0.39	-0.27	-0.17	<mark>0.16</mark>	0.34

Statistical Results (2)

Theore	etical (True	Value)	Statistical Result of Asy							
Asy	$n_{ u}$	$n_{\overline{ u}}$	mean	median	Std Dev	5%	16%	32%	84%	95%
0	24.22	9.28	0.0538	0.03	0.2392	-0.30	-0.18	-0.07	0.28	0.47
0.1	25.50	8	0.160	0.14	0.2514	-0.21	-0.09	0.03	0.41	0.61
0.15	26.10	7.4	0.213	0.19	0.2567	-0.18	<mark>-0.04</mark>	0.08	0.46	0.67
0.2	26.68	6.82	0.266	0.25	0.2615	-0.13	<mark>0.01</mark>	0.13	0.52	0.73
0.3	27.76	5.74	0.371	0.35	0.2679	-0.04	<mark>0.11</mark>	0.23	0.64	0.84
0.4	28.77	4.73	0.475	0.46	0.2702	0.05	<mark>0.21</mark>	0.34	0.75	1.00
0.5	29.70	3.8	0.577	0.57	0.2669	0.15	<mark>0.30</mark>	0.44	0.85	1.00
0.6	30.56	2.94	0.674	0.68	0.2578	0.25	<mark>0.41</mark>	0.54	1.00	1.00
0.7	31.36	2.14	0.765	0.79	0.2439	0.34	<mark>0.51</mark>	0.65	1.00	1.14
0.8	32.12	1.38	0.853	0.87	0.2245	0.46	<mark>0.62</mark>	0.75	1.00	1.19

Statistical Results (5)

Statistical Results (5)

Fluctuation is important in the region we care (~ -0.1)!

Distribution of Standard Deviation:

Difference between mean and Asy_inital:

Conclusions

-- Initial comparisons with result from Liudmila

Data: Mean value: -0.081; 1 sigma region: [-0.282, +0.152]

	Liudmila	This simulation
1 sigma region (Frequentist approach)	[-0.4, 0.2]	[-0.3, 0.1] or [-0.3, 0.15]
Consistence between Median and Asy_initial	Bad	Bad

Backup 1:

Calculation of n_v:

Backup