Partial Derivatives & Directional Derivatives

Vector Calculus (MATH-243)
Instructor: Dr. Naila Amir

Partial Derivatives

Book: Thomas' Calculus Early Transcendentals (14th Edition) By George B. Thomas, Jr., Joel Hass, Christopher Heil, Maurice D. Weir.

Chapter: 14, Section: 14.3, 14.5

Book: Calculus Early Transcendentals (6th Edition) By James Stewart.

Chapter: 14, Section: 14.3, 14.6

Derivatives of a Function of Single Variable:

The derivative is the formula which gives the slope of the tangent line at any point x_0 for f(x)

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

provided the limit exist. There is no hole, no jump and no sharp corner. The following are all interpretations for the limit of the difference quotient:

- The slope of the graph of y = f(x) at $x = x_0$.
- The slope of the tangent line to the curve y = f(x) at $x = x_0$.
- The rate of change of f(x) with respect to x at $x = x_0$.
- The derivative $f'(x_0)$ at $x = x_0$.

Partial Derivatives of a Function of Two Variables:

Suppose we have a multi-variable function of two variables z=f(x,y), defined in domain D of xy —plane. Therefore, our function f depends on x and y, both. Now if we want to take derivative of f, then we have two options: either to take the derivative with respect to x or with respect to y. If f is a function of two variables, its

partial derivatives are the functions $\frac{\partial f}{\partial x} = f_x$ and $\frac{\partial f}{\partial y} = f_y$ defined by:

$$\frac{\partial f}{\partial x} = f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h},$$

$$\frac{\partial f}{\partial y} = f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h},$$

provided the limit exists.

Notations for Partial Derivatives

There are many alternative notations for partial derivatives. If z = f(x, y), we write:

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

Partial Derivatives of a Function at a point:

If f is a function of two variables, its partial derivative with respect to x at a point (x_0, y_0) is given as:

$$\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} = f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

provided the limit exists.

If f is a function of two variables, its partial derivative with respect to y at a point (x_0, y_0) is:

$$\left. \frac{\partial f}{\partial y} \right|_{(x_0, y_0)} = f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h},$$

provided the limit exists.

The partial derivative of f(x, y) with respect to x at the point (x_0, y_0)

The slope of the curve $z = f(x, y_0)$ at the point $P(x_0, y_0, f(x_0, y_0))$ in the plane $y = y_0$ is the value of the partial derivative of f with respect to x at (x_0, y_0) . The tangent line to the curve at P is the line in the plane $y = y_0$ that passes through P with this slope. The partial derivative $f_x = \frac{\partial f}{\partial x}$ at (x_0, y_0) gives the rate of change of fwith respect to x when y is held fixed at the value y_0 .

The partial derivative of f(x, y) with respect to y at the point (x_0, y_0)

The slope of the curve $z = f(x_0, y)$ at the point $P(x_0, y_0, f(x_0, y_0))$ in the vertical plane $x = x_0$ is the value of the partial derivative of f with respect to y at (x_0, y_0) . The tangent line to the curve at P is the line in the plane $x=x_0$ that passes through P with this slope. The partial derivative $f_y = \frac{\partial f}{\partial v}$ at (x_0, y_0) gives the rate of change of f with respect to y when x is held fixed at the value x_0 .

The tangent lines at the point $(x_0, y_0, f(x_0, y_0))$ determine a plane that, in this picture at least, appears to be tangent to the surface.

If $z = f(x,y) = 4 - x^2 - 2y^2$, determine $f_x(1,1)$, $f_y(1,1)$ and interpret these numbers as slopes.

Solution: For the present case:

$$f_{\chi}(x,y) = -2x \Longrightarrow f_{\chi}(1,1) = -2,$$

$$f_{\chi}(x,y) = -4y \Longrightarrow f_{\chi}(1,1) = -4.$$

The graph of $z = f(x, y) = 4 - x^2 - 2y^2$ is the paraboloid and the vertical plane y = 1 intersects it in the parabola:

$$z = 2 - x^2$$
, $y = 1$.

We label it C_1 . The slope of the tangent line to this parabola at the point (1,1,1) is given by:

$$f_{x}(1,1) = -2.$$

Solution:

Similarly, the curve C_2 in which the plane x=1 intersects the paraboloid is the parabola:

$$z = 3 - 2y^2$$
, $x = 1$.

The slope of the tangent line to this parabola at the point (1,1,1) is given by:

$$f_y(1,1) = -4.$$

Our objective is to introduce a type of derivative, called a *directional derivative*, that enables us to find the rate of change of a function of two or more variables in any direction. Recall that if z = f(x, y), then the partial derivatives f_x and f_y are defined as:

$$f_{x}(x_{0}, y_{0}) = \lim_{h \to 0} \frac{f(x_{0} + h, y_{0}) - f(x_{0}, y_{0})}{h},$$

$$f_{y}(x_{0}, y_{0}) = \lim_{h \to 0} \frac{f(x_{0}, y_{0} + h, y_{0}) - f(x_{0}, y_{0})}{h},$$
(I)

and represent the rates of change of z in the x- and y-directions, that is, in the

directions of the unit vectors \mathbf{i} and \mathbf{j} . Suppose that we now wish to find the rate of change of z at (x_0, y_0) in the direction of an arbitrary unit vector $\mathbf{u} = \langle a, b \rangle$

A unit vector $\mathbf{u} = \langle a, b \rangle = \langle \cos \theta, \sin \theta \rangle$.

X

To do this we consider the surface S with the equation z = f(x,y) (the graph of f) and we let $z_0 = f(x_0, y_0)$. Then the point $P(x_0, y_0, z_0)$ lies on S. The vertical plane that passes through P in the direction of \mathbf{u} intersects S in a curve C. The slope of the tangent line T to C at the point P is the rate of change of z in the direction of \mathbf{u} .

If Q(x, y, z) is another point on C and P', Q' are the projections of P, Q onto the xy —plane, then the vector $\overrightarrow{P'Q'}$ is parallel to \mathbf{u} and so:

$$\overrightarrow{P'Q'} = h\mathbf{u} = \langle ha, hb \rangle,$$

for some scalar h. Therefore $x-x_0=ha$ and $y-y_0=hb$. Thus,

$$\frac{\Delta z}{h} = \frac{z - z_0}{h} = \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}.$$

If we take the limit as $h \to 0$, we obtain the rate of change of z (with respect to distance) in the direction of \mathbf{u} , which is called the directional derivative of f in the direction of \mathbf{u} . Thus, the **directional derivative** of f at (x_0, y_0) in the direction of a unit vector \mathbf{u} is given as:

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}, \tag{II}$$

provided the limit exists. Equation (II) represents the derivative of f at the point (x_0, y_0) in the direction of \mathbf{u} . By comparing (II) with (I), we see that if $\mathbf{u} = \mathbf{i} = \langle 1, 0 \rangle$, then $D_{\mathbf{i}}f = f_x$ and if $\mathbf{u} = \mathbf{j} = \langle 0, 1 \rangle$, then $D_{\mathbf{j}}f = f_x$. In other words, the partial derivatives of f with respect to x and y are just special cases of the directional derivative.

We now develop an efficient formula to calculate the directional derivative for a differentiable function f. We begin with the line $x = x_0 + ha$, $y = y_0 + hb$, through $P(x_0, y_0)$ parametrized with the arc length parameter h increasing in the direction of the unit vector $\mathbf{u} = \langle a, b \rangle$. Then

$$D_{\mathbf{u}}f(x,y) = f_{x}(x,y)a + f_{y}(x,y)b.$$

If the unit vector \mathbf{u} makes an angle θ with the positive x —axis, then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_{\mathcal{X}}(x,y)\cos\theta + f_{\mathcal{Y}}(x,y)\sin\theta.$$

A unit vector $\mathbf{u} = \langle a, b \rangle = \langle \cos \theta, \sin \theta \rangle$.

Find the directional derivative $D_{\mathbf{u}}f(x,y)$ if

$$z = f(x, y) = x^3 - 3xy + 4y^2$$

and **u** is the unit vector given by angle $\theta = \pi/6$. Moreover, determine $D_{\mathbf{u}}f(1,2)$.

Solution:

For the present case:

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)\cos\frac{\pi}{6} + f_y(x,y)\sin\frac{\pi}{6}$$
$$= (3x^2 - 3y)\frac{\sqrt{3}}{2} + (-3x + 8y)\frac{1}{2}$$
$$= \frac{1}{2} [3\sqrt{3} x^2 - 3x + (8 - 3\sqrt{3})y]$$

Therefore,

$$D_{\mathbf{u}}f(1,2) = \frac{1}{2} \left[3\sqrt{3} (1)^2 - 3(1) + \left(8 - 3\sqrt{3} \right)(2) \right] = \frac{13 - 3\sqrt{3}}{2}.$$

Solution:

The directional derivative $D_{\bf u}f(1,2)$ represents the rate of change of z in the direction of ${\bf u}$. This is the slope of the tangent line to the curve of intersection of the surface $z=f(x,y)=x^3-3xy+4y^2$ and the vertical plane through (1,2,0) in the direction of ${\bf u}$.

The Gradient Vector

Note that the directional derivative of a differentiable function can be written as the dot product of two vectors:

$$D_{\mathbf{u}}f(x,y) = f_{x}(x,y)a + f_{y}(x,y)b$$

$$= \langle f_{x}(x,y), f_{y}(x,y) \rangle \cdot \langle a,b \rangle$$

$$= \langle f_{x}(x,y), f_{y}(x,y) \rangle \cdot \mathbf{u}$$

The first vector in this dot product occurs not only in computing directional derivatives but in many other contexts as well. So, we give it a special name: **the** *gradient* **of** f and a special notation: **grad** f or ∇f , which is read "del f".

The Gradient Vector

If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by:

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}.$$

With the notation for the gradient vector, we can rewrite the directional derivative of a differentiable function f as:

$$D_{\mathbf{u}}f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle \cdot \mathbf{u} = \nabla f(x,y) \cdot \mathbf{u}.$$

This expresses the directional derivative in the direction of a unit vector \mathbf{u} as the scalar projection of the gradient vector onto \mathbf{u} . Using properties of dot product, we have:

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u} = |\nabla f||\mathbf{u}|\cos\theta = |\nabla f|\cos\theta$$
,

where θ is the angle between the vectors **u** and ∇f .

The Gradient of a Function of Two Variables

The gradient of f is a vector in the xy —plane.

Properties of the Directional derivative $D_{\bf u}f = \nabla f \cdot {\bf u} = |\nabla f| \cos \theta$

1. The function f increases most rapidly when $\cos \theta = 1$, which means that $\theta = 0$ and \mathbf{u} is the direction of ∇f . That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is:

$$D_{\mathbf{u}}f = |\nabla f|\cos(0) = |\nabla f|.$$

2. Similarly, f decreases most rapidly in the direction of $-\nabla f$. The derivative in this direction is:

$$D_{\mathbf{u}}f = |\nabla f|\cos(\pi) = -|\nabla f|.$$

3. Any direction ${\bf u}$ orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f because θ then equals $\pi/2$ and

$$D_{\mathbf{u}}f = |\nabla f| \cos\left(\frac{\pi}{2}\right) = 0.$$

Find the directions in which $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$

- (a) increases most rapidly at the point (1, 1), and
- (b) decreases most rapidly at (1, 1).
- (c) What are the directions of zero change in f at (1,1)?

Solution:

(a) The function increases most rapidly in the direction of f at (1,1). The gradient there is:

$$\nabla f\Big|_{(1,1)} = \langle x, y \rangle \Big|_{(1,1)} = \langle 1, 1 \rangle.$$

Its direction is:

$$\mathbf{u} = \frac{1}{\sqrt{2}} \langle 1, 1 \rangle.$$

Solution:

(b) The function decreases most rapidly in the direction of $-\nabla f$ at (1,1), which is:

$$-\mathbf{u} = \frac{-1}{\sqrt{2}} \langle 1, 1 \rangle.$$

(c) The directions of zero change at (1,1) are the directions orthogonal to ∇f :

$$\mathbf{n} = \frac{1}{\sqrt{2}} \langle -1, 1 \rangle \quad \text{and} \quad -\mathbf{n} = \frac{1}{\sqrt{2}} \langle 1, -1 \rangle. \qquad z = f(x, y)$$

$$= \frac{x^2}{2} + \frac{y^2}{2}$$

$$\langle -1, 1 \rangle \cdot \langle 1, 1 \rangle = 0$$

$$\langle 2, 1, -1 \rangle \cdot \langle 1, 1 \rangle = 0$$

The direction in which f(x,y) increases most rapidly at (1,1) is the direction of $\nabla f|_{(1,1)} = \langle 1,1 \rangle$. It corresponds to the direction of steepest ascent on the surface at (1,1,1).

Determine the gradient of the function:

$$f(x,y) = \sin x + e^{xy}.$$

Moreover, compute the gradient vector at (0,1).

Solution:

If $f(x, y) = \sin x + e^{xy}$, then

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \langle \cos x + y e^{xy}, x e^{xy} \rangle,$$

and

$$\nabla f(0,1) = \langle 2,0 \rangle$$
.

Determine the gradient of the function:

$$f(x,y) = \sin(xy) + x^3 e^{y^2}.$$

Moreover, compute the gradient vector at (0,1).

Solution:

$$f_{\chi} = y\cos(ny) + 3\pi^2 e^{y^2}$$
.
 $f_{y} = \chi\cos(ny) + (2y)e^3 e^{y^2}$.

$$\nabla f(x,y) = \langle f_x, f_y \rangle = \langle y \cos(y) + 3x^2 e^{y^2}, \cos(y) + 2x^3 y e^{y^2} \rangle$$

Thus,

$$\nabla f(0,1) = \langle (1) \cos(0) + 3(0)e^{t^{2}} + 3(0)e^{t^{2}} \rangle$$

$$= \langle (1) \cos(0) + 3(0)e^{t^{2}} \rangle$$

Algebraic Rules for Gradient:

Let f and g be any functions of several variables and k is any constant then following rules are valid:

- 1. Constant multiple rule: $\nabla(kf) = k\nabla f$.
- 2. Sum rule: $\nabla(f+g) = \nabla f + \nabla g$.
- 3. Difference rule: $\nabla(f g) = \nabla f \nabla g$.
- 4. Product rule: $\nabla(fg) = f\nabla g + g\nabla f$.
- 5. Quotient rule: $V\left(\frac{f}{g}\right) = \frac{g\nabla f f\nabla g}{g^2}$

EXAMPLE Illustrating the Gradient Rules

We illustrate the rules with
$$f(x, y) = x - y$$
 $g(x, y) = 3y$ $\nabla f = \mathbf{i} - \mathbf{j}$ $\nabla g = 3\mathbf{j}$.
We have $\nabla f = \langle 1 \rangle - 1 \rangle$ $\nabla g = \langle 2 \rangle - 3 \rangle$

1.
$$\nabla(2f) = \nabla(2x - 2y) = 2\mathbf{i} - 2\mathbf{j} = 2\nabla f$$

2.
$$\nabla(f+g) = \nabla(x+2y) = \mathbf{i} + 2\mathbf{j} = \nabla f + \nabla g$$

3.
$$\nabla (f-g) = \nabla (x-4y) = \mathbf{i} - 4\mathbf{j} = \nabla f - \nabla g$$

4.
$$\nabla (fg) = \nabla (3xy - 3y^2) = 3y\mathbf{i} + (3x - 6y)\mathbf{j}$$

= $3y(\mathbf{i} - \mathbf{j}) + 3y\mathbf{j} + (3x - 6y)\mathbf{j}$
= $3y(\mathbf{i} - \mathbf{j}) + (x - y)3\mathbf{j} = g\nabla f + f\nabla g$

5.
$$\nabla \left(\frac{f}{g}\right) = \nabla \left(\frac{x - y}{3y}\right) = \nabla \left(\frac{x}{3y} - \frac{1}{3}\right)$$
$$= \frac{1}{3y}\mathbf{i} - \frac{x}{3y^2}\mathbf{j} = \frac{3y\mathbf{i} - 3x\mathbf{j}}{9y^2}$$
$$= \frac{3y(\mathbf{i} - \mathbf{j}) - (x - y)3\mathbf{j}}{9y^2} = \frac{g\nabla f - f\nabla g}{g^2}.$$

Find the directional derivative of the function $f(x,y) = x^2y^3 - 4y$ at the point (2,-1) in the direction of the vector $\mathbf{v} = \langle 2,5 \rangle$.

Solution:

We first compute the gradient vector at (2, -1) that is given as:

$$\nabla f(x,y) = \langle 2xy^3, 3x^2y^2 - 4 \rangle \Longrightarrow \nabla f(2,-1) = \langle -4,8 \rangle.$$

Note that \mathbf{v} is not a unit vector, but since $|\mathbf{v}| = \sqrt{29}$, the unit vector in the direction of \mathbf{v} is given as:

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{\sqrt{29}} \langle 2,5 \rangle.$$

Therefore,

$$D_{\mathbf{u}}f(2,-1) = \nabla f(2,-1) \cdot \mathbf{u} = \langle -4,8 \rangle \cdot \frac{1}{\sqrt{29}} \langle 2,5 \rangle = \frac{32}{\sqrt{29}}.$$

Functions of Three Variables

For functions of three variables, we can define directional derivatives in a similar manner. Again, $D_{\bf u} f(x,y,z)$ can be interpreted as the rate of change of the function in the direction of a unit vector ${\bf u}=\langle a,b,c\rangle$ and is given as:

$$D_{\mathbf{u}}f(x,y,z) = f_{x}(x,y,z)a + f_{y}(x,y,z)b + f_{z}(x,y,z)c$$
$$= \langle f_{x}(x,y,z), f_{y}(x,y,z), f_{z}(x,y,z) \rangle \cdot \mathbf{u}.$$

For a function f of three variables, the **gradient vector**, denoted by ∇f or **grad** f, is:

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

Then, just as with functions of two variables, the formula for the directional derivative can be rewritten as:

$$D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}.$$

If $f(x, y, z) = x \sin(yz)$, find the gradient of f and the directional derivative of f at (1, 3, 0) in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

Solution:

The gradient of f is:

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle,$$
$$= \langle \sin(yz), xz \cos(yz), xy \cos(yz) \rangle.$$

At (1,3,0) we have $\nabla f(1,3,0) = \langle 0,0,3 \rangle = 3\mathbf{k}$. The unit vector in the direction of the vector: $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is given as:

$$\mathbf{u} = \frac{1}{\sqrt{6}} \langle 1, 2, -1 \rangle = \frac{1}{\sqrt{6}} \mathbf{i} + \frac{2}{\sqrt{6}} \mathbf{j} - \frac{1}{\sqrt{6}} \mathbf{k}.$$

Therefore,

$$D_{\mathbf{u}}f(1,3,0) = \nabla f(1,3,0) \cdot \mathbf{u} = 3\mathbf{k} \cdot \left(\frac{1}{\sqrt{6}}\mathbf{i} + \frac{2}{\sqrt{6}}\mathbf{j} - \frac{1}{\sqrt{6}}\mathbf{k}\right) = -\frac{3}{\sqrt{6}} = -\sqrt{\frac{3}{2}}.$$