HÉMATOLOGIE

I) L'hématopoïèse :

- -> Est toujours régulée et continue
- -> Assure la production et renouvellement de toutes les cellules sanguines
- -> Est mesurée et explorée par myélogramme
- -> Commence au niveau du sac vitellin chez l'embryon
- -> Est stimulé par des facteurs de croissance
- -> Nécessite la présence de la vitamine B12 et du fer
- -> Siège au niveau du foie et de la rate pendant la vie embryonnaire
- -> Est exclusivement médullaire à la naissance
- -> Active au niveau de tout le squelette osseux à la naissance uniquement

La moelle osseuse hématopoïétique :

- -> Explorée histologiquement par biopsie médullaire
- -> N'occupe pas la totalité des cavités osseuses chez l'adulte
- -> Organe hématopoïétique primaire
- -> Constitué de cellules hématopoïétiques et tissu conjonctif de soutien
- -> Est le siège exclusif de la production des cellules sanguines chez l'enfant

Les cellules souches totipotentes :

- · Ont une capacité de renouvellement illimité
- · Est non reconnu (méconnaissable) morphologiquement au microscope optique
- Exprime l'Aq CD 34
- Peut être à l'origine de toutes les cellules de la moelle
- Peut être congelée pour usage clinique
- Peut reconstituer de facon illimité une hématopoïèse complète
- Est majoritairement dans un état de quiescence

Les cellules sanguines circulantes :

- · Sont des cellules matures et différenciées
- · Ont une durée de vie limitée
- Existent certaines cellules nucléés et d'autres annucléés

Les cellules précurseurs hématopoïétiques sont :

- Érythroblastes
- Myéloblastes
- Monoblastes
- Mégacaryocytes

Myélogramme:

- Pratiqué au niveau du sternum ou de l'épine iliaque post-sup
- Apprécie la richesse des précurseurs hématopoïétiques
- Peut déceler des cellules pathologiques
- Ne peut pas identifier les cellules souches
- Permet une bonne analyse de la morphologie des globules rouges et blancs

Lieu de l'hématopoïèse

Myélogramme

Mégacaryocyta Métabolisme du GR 1/frottis

II) Le Globule Rouge:

- -> Cellule anucléée, mature et différenciée
- -> Capable de se déformer grâce aux protéines de sa membrane
- -> A une durée de vie de 120 jours
- -> Est produit au niveau de la moelle
- -> Vieilli, est détruit par hémolyse
- -> Voie glycolyse anaérobie : transforme glucose en lactate, 90% de l'énergie, source de 2,3 DPG
- -> Voie accessoire aérobie : 10% de l'énergie, shunt des pentoses
- -> Génère NADH et NADPH
- -> Ne peut pas renouveler son capital enzymatique
- -> Les propriétés nécéssaire pour la survie du globule rouge :
- L'élasticité et la déformabilité
- · La présence de protéines membranaires formant le cytosquelette
- L'apport d'énergie grâce à son capital enzymatique

L'érythropoïèse:

- -> Constitue l'ensemble des mécanismes qui permettent la formation des hématies et dure environ 5j
- -> Processus continue et régulé
- -> Stimulé par l'hypoxie
- -> L'érythroblaste basophile identifiable avant l'érythroblaste acidophile
- -> Se produit dans la rate et le foie pendant la vie embryonnaire
- -> Se localise exclusivement dans la MO chez l'adulte
- -> Se développe dans la rate dans certaines pathologies
- -> Nécessite : Fer, B12, acide folique (B9), érythropoïétine (EPO)
- -> La ligne érythroblastique représente 10% à 30% dans un myélogramme normal
- -> Les précurseurs capables de se diviser :
- Proérythroblaste
- Erythroblaste basophiles
- Erythroblaste polychromatophile
- -> La synthèse des Hb confère le caractère acidophile au cytoplasme de GR

L'érythropoïétine EPO:

- -> Est synthétisée par le rein majoritairement (et par le foie accessoirement)
- -> Régule l'érythropoïèse
- -> Est stimulée par l'hypoxie
- -> Stimule la maturation d'érythroblastes
- -> Stimule la synthèse de l'hémoglobine
- -> Peut être utilisé pour le TTT de certaines anémies

L'hémoglobine Hb:

- -> A une structure tétramérique
- -> Différente chez l'embryon et l'adulte
- -> Le CO2 se fixe sur la 2-3 DPG poche centrale
- -> Principal utilisateur du fer dans l'organisme
- -> Transporte du O2 fixé sur le fer (ions fer ferreux) au niveau de l'hème
- -> Transporte 4 molécule d'O2 par molécule d'Hb
- -> De plusieurs types
- -> 2 chaines beta et 2 chaines alpha de globine définissant l'hémoglobine A1
- -> Constituée par les chaines de globine et de l'hème
- -> Sa synthèse débute au niveau du proérythroblaste
- -> Son taux abaissé définit l'anémie
- -> A un taux qui varie en fonction de l'âge et du sexe

uffisant en fer et vitamines B.

Structure de l'hémoglobine

un groupement prosthétique:

■ 300 M molécules / GR

□ Chez l'emb	ryon: Gower	$(\alpha 2\epsilon 2)$ - Portland $(\zeta 2\gamma 2)$	
		Adulte	Nouveau né
Hb A1	$\alpha_2\beta_2$	90 à 95%	15-30%
Hb A2	$\alpha_2\delta_2$	2-3%	traces
Hb F	$\alpha_2 \gamma_2$	< 1%	70-85%

Le réticulocyte :

- -> Cellule anucléée
- -> Peut être retrouvé dans la MO et le sang
- -> Est un jeune globule rouge
- -> Reflète le taux de production médullaire de l'érythropoèise
- -> Prend naissance dans la moelle osseuse à partir d'un erythroblaste acidophile
- -> Mis en évidence au frottis sanguin par bleu de crésyl
- -> Renseigne sur le caractère central (arégénératif) au périphérique (régénératif) de l'anémie :
- Régénérative > 120k/mm^3
- Arégénérative < 120k/mm^3

Hémolyse:

- -> Résulte de l'épuisement du capital enzymatique
- -> Intra-vasculaire : hémoglobinurie, hémoglobinémie, anémie, hyperbilirubinémie, signes de gravité (pouls filant et HypoTA)
- -> Intra-tissulaire : physiologique principal, destruction par le système monocyto-macrophagique, a lieu dans la MO, le foie et la rate, en excès elle entraine une augmentation de la bilirubine libre
- -> Les hématies vieillis sont piégés par les capillaires de la moelle osseuse
- -> Une anomalie de la membrane peut être à l'origine d'une hyperhemolyse
- -> L'hème est transformé en bilirubine après hémolyse => excès donne augmentation de la bilirubine libre

Frottis sanguin:

- -> Les GR apparaissent sous forme de disque rose avec une zone claire centrale
- -> La forme de GR est homogène à l'état normal
- -> Une anisocytose est une anomalie de la taille de GR
- -> Certaines anomalie morphologiques sont évocatrices de pathologies particulières
- -> Une hypochromie peut traduire une carence martiale

III) L'anémie:

- -> Se définit par la diminution du taux d'hémoglobine
- -> Les éléments intervenant pour définir l'anémie : taux d'hémoglobine, sexe, âge
- -> Constitue un problème de santé public
- -> Nécessite la recherche de son étiologie
- -> Les examens nécessaires à son diagnostic sont : Hémogramme et taux de réticulocytes
- -> Pour confirmer le diagnostic d'une anémie normochrome normocytaire régénérative (hémolytique), on demande le test de Coombs

L'anémie normochrome normocytaire :

- -> Régénérative : périphérique, taux de réticulocyte > 120k, à cause d'hémorragies ou hémolyse excessive => Triade d'hémolyse : Ictère + Splénomégalie + Anémie (+Pâleur)
- -> **Arégénérative :** centrale, taux de réticulocyte < 120k, à cause d'un problème central comme une tumeur de la MO
- -> Nécessite le dosage du taux de réticulocytes

L'anémie microcytaire :

- -> A pour étiologie une carence en fer (la plus fréquente)
- -> L'anémie par carence en fer est confirmée par Ferritinémie

L'anémie hypochrome :

-> Est secondaire à des étiologies diverses et souvent bien tolérée

L'anémie macrocytaire/mégaloblastose :

- -> Se définit par : Taux d'hémoglobine diminué et VGM supérieur à 100 fl
- -> A pour étiologie un manque en vitamine B12 et/ou acide folique (B9)
- -> Maladie de Biermer
- -> Anémie hémolytique
- -> CCMH est normal, Il n'existe jamais d'anémie macrocytaire hypochrome

Lors de l'anémie par carence martiale et afin de confirmer le diagnostic, je vais chercher :

- -> Les troubles de phanères
- -> L'anémie est hypochrome microcytaire
- -> Ferritinémie est diminué
- -> L'anémie est souvent bien tolérée
- -> La réalisation du myélogramme n'est pas obligatoire

Un syndrome d'insuffisance médullaire sera évoqué devant l'existence de :

- -> Signes hémorragiques
- -> Syndrome infectieux

IV) Les Globules blancs :

Le polynucléaire neutrophile :

- -> Est riche en myéloperoxydase
- -> Taille moyenne: 10 à 14 μm
- -> Est la première cellule à migrer au foyer inflammatoire
- -> Présente à sa surface les Ag CD13 et Ag CD15
- -> Capable de la phagocytose (rôle essentiel dans la défense anti-bactérienne)
- -> 60 à 75% des leucocytes chez l'adulte

La granulopoïèse :

- -> Dure 14i
- -> Le compartiment de stockage est rapidement mobilisable en cas de besoin aigu
- -> Est exclusivement médullaire à la naissance
- -> Myéloblaste est le premier précurseur morphologiquement identifiable
- -> Aboutit à la production de polynucléaire sous la stimulation de G-CSF

La granulopoïèse neutrophile: (voir hématopoïèse)

- -> Produit des PNN à partir d'un progéniteur commun avec la lignée monocytaire
- -> Dure 14j
- -> Comporte un compartiment de stockage rapidement mobilisable en cas de besoin aigu
- -> Est stimulée par un facteur de croissance spécifique : le G-CSF
- -> Peut être exploré par le myélogramme

Une hyperleucocytose à polynucléaires neutrophiles peut s'observer au cours :

- -> Infection bactérienne
- -> Abcès profond

La neutropénie :

- -> Définie par des PNN sanguins < 1500mm^3
- -> Les neutropénies auto immunes sont les plus fréquentes chez l'enfant
- -> Les causes centrales :
- · Carence en vit 12
- · Radiations ionisantes
- · Leucémies aiguës
- TTT anti-mitotique

Agranulocytose:

- -> Définie par taux de PNN inférieur à 500/mm³
- -> L'arrêt immédiat du médicament en cause ou présumé est indispensable
- -> Les lésions ulcéro-muqueuses sont évocatrices
- -> Peut être secondaire à la prise d'ATB
- -> Diagnostic biologique : Hémogramme ou l'agranulocytose est associée ou non à pancytopénie
- -> Le risque est celui de survenue de choc septique

La polynucléose neutrophile :

- -> Est défini par un nombre de PNN circulant > 7500/mm^3
- -> Ne peut pas être secondaire à la prise d'ATB
- -> Représente un élément diagnostic d'infection bactérienne
- -> Peut être constaté après :
- · Exercice physique
- TTT corticoïde
- Appendicite aigue
- Tabagisme
- Infection bactérienne

Le polynucléaire éosinophile :

-> Allergie et parasites

Hyperéosinophilie :

- -> Définie par des PNE sanguins supérieurs à 500/mm³
- -> Peut être causée par helminthiases
- -> Peut se rencontrer en cas d'allergie médicamenteuse

Les monocytes:

- -> Sont les plus volumineuses des leucocytes sanguins
- -> Ont une forte activité peroxydase
- -> Circulent dans le sang avant de pénétrer dans les tissus ou ils deviennent des macrophages
- -> Sont capables d'éliminer des bactéries par phagocytose
- -> Cytoplasme gris-bleu

Syndrome mononucléosique (anomalies clinico-biologiques)

- -> Des adénopathies
- -> Une hyperlymphocytose
- -> Des lymphocytes à cytoplasme bleuté

Les lymphocytes:

- -> Représentent 20% à 30% des leucocytes chez l'adulte
- -> Peuvent provenir du : Thymus, la MO, des ganglions lymphoïdes, de la rate...
- -> Dérivent tous d'une cellule souche lymphoïde commune
- -> Sont impliqués dans l'immunité spécifique seulement
- -> Circulent dans le sang et la lymphe
- -> Séjournent dans les organes lymphoïdes secondaires (ganglions lymphoïdes)
- -> Ont un taux qui varie selon l'âge (il ne varie pas selon le sexe)
- -> Ont une durée de vie variable
- -> Regroupent les lymphocytes B, T et NK
- -> Les plasmocytes ne sont pas retrouvés dans le sang à l'état physiologique
- -> Est la cellule la plus fréquente du sang périphérique chez l'enfant
- -> Une hyperlymphocytose chez l'enfant se définie par des lymphocytes sanguins > 7000mm^3 (l'adulte > 4000mm^3)
- -> Au cours d'un syndrome mononucléosique, la principale caractéristique des lymphocytes stimulés est une basophilie cytoplasmique
- -> 1ers examens à demander pour explorer une hyperlymphocytose :
- Etude morphologique des lymphocytes par frottis sanguin
- Immunophénotypage par cytométrie en flux

En cas de Myélémie, on retrouve dans le sang :

- -> Des métamyélocytes
- -> Des myélocytes
- -> Des promyélocytes

V) Hémostase:

La plaquette:

- -> Anucléée
- -> Change de configuration une fois activée
- -> A une forme ovalaire au repos
- -> Peut émettre des prolongements cytoplasmiques
- -> Contient des granules
- -> A un volume moyen de 7 à 12 fl
- -> Durée de vie 7j à 10j
- -> Son taux augmente en cas de splénectomie
- -> Sa régulation positive est assurée par la Thrombopoiétine synthétisée localement
- -> Thrombopoiétine a un intérêt thérapeutique

La membrane plaquettaire :

- -> Comporte une double couche phospholipidique
- -> Contient des antigènes plaquettaires spécifiques
- -> Contient des antigènes du système ABO
- -> Est tapissée en dedans du cytosquelette

Thrombocytose:

- -> Définie par taux de plaquettes supérieur à 400 000/mm³
- -> Anomalie quantitative des plaquettes
- -> Peut être secondaire à la thrombocytémie
- -> Peut être secondaire à l'inflammation
- -> Peut être secondaire à la splénectomie

Le facteur de Von Willebrand :

- -> Glycoprotéines multimériques de haut poids moléculaire
- -> Synthèse : Cellules endothéliale et mégacaryocytes
- -> Circule dans le sang lié au facteur VIII (et non pas VII)
- -> Rôle important dans l'adhésion plaquettaire au sous endothélium par les GP de surface (GPIb)

Les principaux acteurs de l'hémostase primaire :

- -> Les plaquettes ++
- -> L'endothélium vasculaire ++
- -> Facteur de Willebrand ++
- -> La paroi vasculaire :
- · A des propriétés anti thrombotiques à l'état normal
- A des propriétés thrombotiques au cours de l'hémostase primaire
- Permet d'augmenter le temps de contact des plaquettes avec le sous endothélium
- Permet la diminution du débit sanguin
- La média a des propriétés vasoconstrictrices
- · Le sous endothélium est hautement thrombogène

La mise en jeu de l'hémostase primaire comprend :

- -> L'adhésion des plaquettes au sous-endothélium vasculaire grâce au facteur de Willebrand
- -> Se fait en 2 temps : vasculaire et plaquettaire
- -> Se fait en 4 étapes : vasoconstriction, adhésion, activation, agrégation
- -> La liaison du facteur Willebrand aux plaquettes se fait par des glycoprotéines de surface GPlb
- -> L'agrégation des plaquettes fait intervenir le fibrinogène
- -> L'adhésion plaquettaire initie la phase d'activation
- -> Le changement de configuration de la plaquette lors de son activation

Activation plaquettaire:

- -> L'adhésion plaquettaire initie le phénomène d'activation
- -> Est caractérisée par un changement de configuration de la plaquette
- -> Le contenu des granules denses et alpha est déversé à l'extérieur des plaquettes
- -> Thromboxane A2 est un agent vasoconstricteur
- -> En thérapeutique, l'aspirine acquiert sa fonction antiagrégante par l'inhibition de la cycloogenase

Le résultat final de l'hémostase primaire est la formation de :

-> Thrombus blanc

La coagulation:

- -> C'est un ensemble de réactions enzymatiques localisées et non diffuses
- -> Permet de consolider le clou plaquettaire/thrombus blanc pour former : clou fibrinô-plaquettaire
- -> Elle se produit en même temps que l'hémostase primaire
- -> Est contrôlée et régulée
- -> Elle correspond à la transformation de précurseurs inactifs en enzymes actives
- -> La fibrino-formation se fait sous l'action de la thrombine (fait suite à la thrombino-formation)
- -> Aboutit à la transformation du fibrinogène en fibrine
- -> Le facteur VIII activé par la thrombine permet de stabiliser la fibrine

-> Le voie exogène :

- Est la plus rapide/courte, physiologique d'initiation de la coagulation
- Permet la libération du facteur tissulaire qui active le facteur VII
- Exploré par le temps de quick
- Déclenchée par une lésion vasculaire
- Concours à la libération de la thromboplastine tissulaire qui active le facteur VII en présence de Ca++

-> La voie endogène :

- · La plus lente et secondaire in vivo
- Débute par l'activation des facteurs contact
- Explorée par le temps de céphaline avec activateur

Le facteur tissulaire :

- -> Est synthétisé par la cellule endothéliale lésée, les monocytes et les fibroblastes
- -> Est aussi appelé thromboplastine tissulaire
- -> Est le support du facteur VII
- -> Est l'élément déclenchant majeur de la coagulation
- -> Agit en déclenchant la voie exogène de la coagulation

Vitamine K:

- -> Les facteurs II, VII, X, IX nécessitent la vitamine K pour leur synthèse
- -> En l'absence de vit K, sont synthétisés des composants inactifs PIVKA
- -> La vit K permet la Gamma-carboxylation des PIVKA en facteurs actifs
- -> Les anti vit K sont utilisés en thérapeutique à visée anti coaquiante

Les facteurs de la coagulation :

- -> Sont synthétisés par : le rein, le foie, l'endothélium...
- -> Les facteurs II, VII, X, IX nécessitent la vitamine K pour leur synthèse
- -> Les facteurs V et VIII sont des coenzymes
- -> Le calcium est nécéssaire à toutes les étapes de la coagulation
- -> Le facteur contact joue un rôle dans la fibrinolyse et l'inflammation

Les inhibiteurs de la coaquiation :

- -> Permettent de localiser le phénomène hémostatique au niveau de la lésion vasculaire
- -> Inhibent la coagulation
- -> Leur déficit est responsable de thromboses
- -> De la voie endogène : Antithrombine et le système Protéine C Protéine S
- -> De la voie exogène : TFPPI est le principal inhibiteur

Au cours d'un prélèvement d'hémostase, le respect de l'étape pré analytique constitue en :

- -> Utilisation d'un tube avec anticoagulant citraté adapté à l'âge
- -> Utilisation d'un garrot peu serré
- -> Il est préférable d'utiliser le sang provenant d'une veine (pas de cathéter central ni de tubulure)
- -> Le transport doit être rapide au laboratoire
- -> Le respect des proportions : 9 volumes de sang pour un volume de citrate

Trouble de coagulation :

- -> Atteinte préférentielle des vaisseaux de moyens calibre
- -> Symptomatologie hémorragique latente, localisée
- -> Saignements profonds a type d'hématome et d'hémarthrose sans purpura
- -> Apparition des hémorragies est plutôt provoquée

Trouble de l'hémostase primaire :

- -> Atteinte préférentielle des petits vaisseaux
- -> Symptomatologie hémorragique riche, disséminée et visible
- -> Superficiels avec purpura
- -> Apparition des hémorragies : spontanée
- -> Diagnostiqué par hémogramme ensuite bilan d'hémostase (TP, TCA) en première intention

Test globaux qui orientent la symptomatologie hémorragique :

- -> Bilan d'hémostase (TP et TCA) +++
- -> Hémogramme

Trouble de l'hémostase acquis :

- -> Nature de l'accident hémorragique récent
- -> Bilan étiologique retrouve une hémopathie maligne pouvant expliquer le trouble de l'hémostase

Trouble de l'hémostase constitutionnel :

- -> Remonte à l'enfance
- -> ATCD familiaux
- -> Consanguinité

Temps de céphaline avec activateur TCA:

- -> Fait partie des tests globaux qui explorent la coagulation
- -> Explore la voie endogène et donc les facteurs : XII, XI, IX, VIII et II, V, X
- -> C'est le temps de coagulation d'un plasma pauvre en plaquettes, recalcifié en présence de phospholipides (Substitut des plaq) après activation du système contact
- -> Réactif phospholipidique : Céphaline
- -> Activateur du système contact : Kaolin, Célite...
- -> Requière comme tous les autres tests, l'utilisation d'un tube avec anticoagulant Citraté

La plasmine:

- -> Est l'enzyme clef de la fibrinolyse
- -> Est synthétisée par le foie
- -> Sous l'action d'activateurs le plasminogène inactif est transformé en plasmine active
- -> Le plasmine agit en dégradant la fibrine et le fibrinogène
- -> Est neutralisé par les anti plasmine permettant une action purement locale de la plasmine

Pancytopénie:

-> Anémie + Thrombopénie + Leucopénie

VI) La splénomégalie : SMG

-> Peut être responsable de : (pancytopénie)

- Anémie
- Leucopénie (exp : neutropénie...)
- Thrombopénie

-> Diagnostic différentiel:

- · Tumeur de la queue du pancréas
- Tumeur de l'angle colique gauche
- Gros rein gauche
- Tumeur gastrique

-> Causes hématologiques :

- · Anomalie hémolytique extracorpusculaire
- Anomalie hémolytiques corpusculaire (ex: thalassémies / Sphérocytosehéréditaire)
- Hémopathie maligne (ex: leucémies aigues)
- Pathologie myéloïde (myélofibrose primitive)
- · Pathologie lymphoïde
- HTTP

-> Elle peut être retrouvé dans :

- · Maladie de Gaucher
- · Cirrhose hépatique
- Syndrome de Budd-Chiari
- · Anémie hémolytique auto-immune

VII) Don de sang:

Contre-indications (CI) don de sang:

- -> Poids au minimum 50 kg ++
- -> Grande fatigue
- -> Anémie +++
- -> Hypotension artérielle ++
- -> Epilepsie
- -> Insuffisant rénal
- -> Hépatites virales (B,C,...)
- -> Asthme
- -> Femmes enceintes ne doivent pas donner et ce, jusqu'à 6 mois après l'accouchement
- -> L'interruption de grossesse datant de moins de 3 mois
- -> L'allaitement en cours

- -> Traitements en cours
- -> L'intervention chirurgicale datant de moins de 3 mois
- -> L'âge inférieur à 18 ans ou supérieur à 65 ans ++
- -> Plus de 5 dons par an pour les hommes et plus de 3 dons par an pour les femmes ++
- -> NB : HTA, diabète équilibré ne sont pas des contre-indications

Examens biologiques réalisés systématiquement lors du don de sang :

- -> Groupage ABO, phénotype Rhésus, Kell
- -> Sérotypage : VIH, syphilis, Hépatite B et C (+/- transaminases, CMV, prions...)

Produits labiles sanguins PSL:

Concentré	Globule rouge	Plaquettaire	Plasma congelé
Volume	150 - 200 cc	40 cc	200 - 250 cc
Conservation	42j à 4°C sans agitation	5j à 22°C température ambiante, agitation continue	1 an à -30°C
Obtention	Séparation d'un don de sang total	Double centrifugation d'un don de sang	Centrifugation du sang total
Autres	Indiqué en cas d'hypoxie tissulaire	Indiqué en cas de thrombopénies centrales	Contient des protéines plasmatiques

Les étiologies d'une ADP inguinale :

- -> Un mélanome
- -> Un lymphome
- -> Une tumeur du canal anal
- -> Diagnostic diff : hernie inguinale

ADP axillaire: -> Diagnostic différentiel: Lipome, Hydrosiadénite

La technique de Beth-Vincent :

- -> Permet la recherche des antigènes des GR à tester
- -> Utilise des sérums comme test
- -> Est insuffisant pour affirmer le groupe dans le système ABO

La technique de Simonin :

- -> Permet la recherche des anticorps présents dans le sérum à tester
- -> Utilise des GR test
- -> Insuffisant pour affirmer le groupe dans le système ABO (les deux test sont nécessaires)

Les groupes sanguins :

- -> Il existe plus de 20 groupes sanguins déterminés génétiquement dans l'espèce humaine
- -> Se définissent par un ensemble d'antigènes portés par le globule rouge
- -> Les système de groupe à considérer lors d'une transfusion sont ABO, Rhésus et Kell

Les Ac immuns:

- -> Ne sont pas toujours présents
- -> Sont induits par la stimulation par un antigène étranger, suite à une transfusion incompatible
- -> Sont de type IgG
- -> Sont hémolysants

Le système ABO:

- -> Les antigènes sont synthétisés sous contrôle génétique
- -> Les antigènes sont retrouvés chez certaines bactéries
- -> Les antigènes sont présents au niveau de la majorité des tissus (GB, Plaquettes, épithéliums...)
- -> Glycoprotéines présents à la surface des GR
- -> Lorsque les antigènes sont présents, les anticorps sont toujours absents du sérum
- -> Les anticorps sont naturels (= toujours présents), de type IgM, agglutinants, réguliers

Le système Rhésus:

- -> Se caractérise par l'existence de l'Ag D sur le GR (suffit pour qu'il soit considéré Rhésus +)
- -> Les antigènes sont fortement immunogènes
- -> Les antigènes ne sont pas ubiquitaires
- -> Les anticorps rhésus sont irréguliers de type IgG et passent la barrière placentaire
- -> Les anticorps anti-D :
- Traversent la barrière placentaire
- Sont responsables de la maladie hémolytique du nouveau née
- Sont acquis

Hémogramme Valeurs physiologiques & pathologiques

	Normal	Déficit	Excès
Globule rouges	Homme : 5 - 5,5 M Femme : 4 - 4,5 M Enfant : 4 - 5,2 M Nouveau née : 4,5 - 7 M	< 5 (homme) érythropénie	> 5,5 (homme) polyglobulie
Taux d'hématocrite	Homme : 40 - 54 % Femme : 37 - 47 % Enfant : 37 - 45 % Nouveau née : 50 - 60 %	-	> 50% (homme) polyglobulie
Taux d'hémoglobine	Homme : 13 - 18 Femme : 12 - 16 Enfant : 11,5 - 15 Nouveau née : 14 - 20	< 13 (homme) anémie	> 18 (homme) polyglobulie
IDR	11,5% - 14,5%	-	> 15% anisocytose
Réticulocyte	25 000 - 75 000	< 120 000 aragénérative	> 120 000 régénartive
ТСМН	25 - 30 (27 - 32)	< 25 hypochromie	-
ССМН	32 - 36	< 32 hypochromie	-
VGM	Adulte : 85 - 95 (80 - 98) Nouveau née : 90 - 120	< 80 microcytaire	> 100 macrocytose > 120 mégaloblastose
Plaquettes	(150 000) 200 000 - 400 000	< 150 000 thrombopénie	> 400 000 thrombocytose = hyperplaquetose
VMP	8 - 12	-	-
IDP	10 - 15%	-	-
Leucocytes	4000 - 10 000	< 4000 leucopénie	> 10 000 hyperleucocytose
Polynucléaire neutrophile (PNN)	1800 - 7000	< 1500 neutropénie < 200 (500) agranulocytose	> 7000 polynucléose neutrophile
Polynucléaire éosinophile (PNE)	< 400 (500)	-	> 400 (500) eisinophilie
Polynucléaire basophile (PNB)	< 100	-	> 100 basophilie
Monocytes	200 - 800 (1000)	< 200 monocytopénie	> 800 (1000) monocytose
Lymphocytes	Adulte : 1500 - 4000 Enfant : 2500 - 7000	< 1500 (adulte) lymphopénie	> 4000 (adulte) hyperlymphocytose