TUGAS

- Evaluate both sides of Stokes' theorem for the field $\mathbf{G} = 10 \sin \theta \mathbf{a}_{\phi}$ and the surface r = 3, $0 \le \theta \le 90^{\circ}$, $0 \le \phi \le 90^{\circ}$. Let the surface have the \mathbf{a}_r direction.
- Given the field $\mathbf{H} = \frac{1}{2}\cos\frac{\phi}{2}\mathbf{a}_{\rho} \sin\frac{\phi}{2}\mathbf{a}_{\phi}$ A/m, evaluate both sides of Stokes' theorem for the path formed by the intersection of the cylinder $\rho = 3$ and the plane z = 2, and for the surface defined by $\rho = 3$, $0 \le z \le 2$, and z = 0, $0 \le \rho \le 3$.
- Given $\mathbf{H} = (3r^2/\sin\theta)\mathbf{a}_{\theta} + 54r\cos\theta\mathbf{a}_{\phi}$ A/m in free space: (a) find the total current in the \mathbf{A}_{θ} direction through the conical surface $\theta = 20^{\circ}$, $0 \le \phi \le 2\pi$, $0 \le r \le 5$, by whichever side of Stokes' theorem you like the best. (b) Check the result by using the other side of Stokes' theorem.