Design and Analysis of Algorithms Lecture 2: Asymptotic Notations and Recurrences

Ke Xu and Yongxin Tong (许可 与 童咏昕)

School of CSE, Beihang University

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Big-Oh

Asymptotic upper bound

Definition (big-Oh)

f(n) = O(g(n)): There exists constant c > 0 and n_0 such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

When estimating the growth rate of T(n) using big-Oh:

- ignore the low order terms
- ignore the constant coefficient of the most significant term

Big-Oh: Example

Definition (big-Oh)

f(n) = O(g(n)): There exists constant c > 0 and n_0 such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Example

Let $T(n) = 3n^2 + 4n + 5$. Prove that $T(n) = O(n^2)$.

Big-Oh: Example

Definition (big-Oh)

f(n) = O(g(n)): There exists constant c > 0 and n_0 such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Example

Let $T(n) = 3n^2 + 4n + 5$. Prove that $T(n) = O(n^2)$.

Proof.

$$T(n) = 3n^2 + 4n + 5$$

 $\leq 3n^2 + 4n^2 + 5n^2$
 $= 12n^2$.

Thus, $T(n) \le 12n^2$ for all $n \ge 1$. Setting $n_0 = 1$ and c = 12 in the definition, we have that $T(n) = O(n^2)$.

•
$$\frac{n^2}{2} - 3n =$$

- $\bullet \ \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n =

- $\bullet \ \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n =$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\bullet \ \log_{10} n = \frac{\log_2 n}{\log_2 10} =$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) =$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n =$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 =$

- $\frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} =$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} = O(1)$
- $\sum_{i=1}^{n} i^2$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} = O(1)$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} = O(1)$
- $\sum_{i=1}^{n} i^2 \le n \cdot n^2 = O(n^3)$
- $\sum_{i=1}^{n} i$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} = O(1)$
- $\sum_{i=1}^{n} i^2 \le n \cdot n^2 = O(n^3)$
- $\sum_{i=1}^{n} i \leq n \cdot n =$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} = O(1)$
- $\sum_{i=1}^{n} i^2 \le n \cdot n^2 = O(n^3)$

- $\frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} = O(1)$
- $\sum_{i=1}^{n} i^2 \le n \cdot n^2 = O(n^3)$
- $\log(n!) =$

- $\bullet \quad \frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} = O(1)$
- $\sum_{i=1}^{n} i^2 \le n \cdot n^2 = O(n^3)$
- $\log(n!) = \log(n) + \cdots + \log 1 = O(n \log n)$

- $\frac{n^2}{2} 3n = O(n^2)$
- 1 + 4n = O(n)
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n)$
- $\sin n = O(1), 10 = O(1), 10^{10} = O(1)$
- $\sum_{i=1}^{n} i^2 \le n \cdot n^2 = O(n^3)$
- $\log(n!) = \log(n) + \cdots + \log 1 = O(n \log n)$
- $\sum_{i=1}^{n} \frac{1}{i} = O(\log n)$ (Harmonic Series, 调和级数)

The Asymptotic Upper Bound of Harmonic Series:

$$\sum_{i=1}^{n} \frac{1}{i} = O(\log n)$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \cdots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \cdots + \frac{1}{n/2} + \frac{1}{n}$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \cdots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \cdots + \frac{1}{n/2} + \frac{1}{n}$$

$$= \frac{1}{1} + 2 \cdot \left(\frac{1}{2}\right) + 4 \cdot \left(\frac{1}{4}\right) + 8 \cdot \left(\frac{1}{8}\right) + \cdots + \frac{n}{2}\left(\frac{1}{n/2}\right) + \frac{1}{n}$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{n/2} + \frac{1}{n}$$

$$= \frac{1}{1} + 2 \cdot \left(\frac{1}{2}\right) + 4 \cdot \left(\frac{1}{4}\right) + 8 \cdot \left(\frac{1}{8}\right) + \dots + \frac{n}{2}\left(\frac{1}{n/2}\right) + \frac{1}{n}$$

$$= 1/n + \sum_{j=0}^{\log n - 1} 1$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{n/2} + \frac{1}{n}$$

$$= \frac{1}{1} + 2 \cdot \left(\frac{1}{2}\right) + 4 \cdot \left(\frac{1}{4}\right) + 8 \cdot \left(\frac{1}{8}\right) + \dots + \frac{n}{2}\left(\frac{1}{n/2}\right) + \frac{1}{n}$$

$$= 1/n + \sum_{j=0}^{\log n - 1} 1$$

$$= \log n + \frac{1}{n}$$

$$\begin{split} &\sum_{i=1}^{n} \frac{1}{i} \\ &= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n} \\ &< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{n/2} + \frac{1}{n} \\ &= \frac{1}{1} + 2 \cdot \left(\frac{1}{2}\right) + 4 \cdot \left(\frac{1}{4}\right) + 8 \cdot \left(\frac{1}{8}\right) + \dots + \frac{n}{2}\left(\frac{1}{n/2}\right) + \frac{1}{n} \\ &= 1/n + \sum_{j=0}^{\log n - 1} 1 \\ &= \log n + \frac{1}{n} \end{split}$$

$$&= \log n + \frac{1}{n}$$

algorithm scan(v)

```
1. for i = 1 to n do
```

- 2. if S[i] = v then
- 3. **return** *yes*
- 4. return no

algorithm scan(v)

```
1. for i = 1 to n do
```

- 2. if S[i] = v then
- 3. **return** *yes*
- 4. **return** no

algorithm scan(v)

- 1. for i = 1 to n do
- 2. **if** S[i] = v **then**
- 3. **return** *yes*
- 4. return no

$$\left.\begin{array}{l} O(1) \end{array}\right. \left.\begin{array}{l} n\cdot O(1)=O(n) \end{array}\right.$$

algorithm scan(v)

4. return no

```
1. for i = 1 to n do
2. if S[i] = v then
3. return yes
O(1)
n \cdot O(1) = O(n)
```

Although Lines 2-3 may be executed less than n times, we are considering the worst-case complexity

algorithm CountingInversedPairs(A[1..n])

```
1. ans = 0

2. for i = 1 to n do

3. for j = i + 1 to n do

4. if A[i] > A[j] then

5. ans = ans + 1

6. return ans
```

What's the worst-case complexity of this program?

algorithm CountingInversedPairs(A[1..n])

```
1. ans = 0

2. for i = 1 to n do

3. for j = i + 1 to n do

4. if A[i] > A[j] then

5. ans = ans + 1

6. return ans
```

algorithm CountingInversedPairs(A[1..n])

```
1. ans = 0

2. for i = 1 to n do

3. for j = i + 1 to n do

4. if A[i] > A[j] then

5. ans = ans + 1

6. return ans
```

Big-Oh: Examples of Complexity Analysis

algorithm CountingInversedPairs(A[1..n])

```
1. ans = 0

2. for i = 1 to n do

3. for j = i + 1 to n do

4. if A[i] > A[j] then

5. ans = ans + 1 O(1) (n-i)O(1)

6. return ans
```

Big-Oh: Examples of Complexity Analysis

algorithm CountingInversedPairs(A[1..n])

```
1. ans = 0

2. for i = 1 to n do

3. for j = i + 1 to n do

4. if A[i] > A[j] then

5. ans = ans + 1 O(1) (n-i)O(1) ??
```

Big-Oh: Examples of Complexity Analysis

algorithm CountingInversedPairs(A[1..n])

```
1. ans = 0

2. for i = 1 to n do

3. for j = i + 1 to n do

4. if A[i] > A[j] then

5. ans = ans + 1 O(1) (n-i)O(1) ??
```

??=
$$(n-1)O(1) + (n-2)O(1) + \dots + (n-n)O(1)$$

= $n(n-1)O(1)$
= $O(n^2)$

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Asymptotic lower bound

Definition (big-Omega)

```
f(n) = \Omega(g(n)): There exists constant c > 0 and n_0 such that f(n) \ge c \cdot g(n) for n \ge n_0.
```

Asymptotic lower bound

Definition (big-Omega)

 $f(n) = \Omega(g(n))$: There exists constant c > 0 and n_0 such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$.

It is easy to show that

$$\frac{n^2}{2} - 3n \ge \frac{n^2}{4}$$
 for all $n \ge 12$.
Thus, $n^2/2 - 3n = \Omega(n^2)$.

Asymptotic lower bound

Definition (big-Omega)

 $f(n) = \Omega(g(n))$: There exists constant c > 0 and n_0 such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$.

It is easy to show that

$$\frac{n^2}{2} - 3n \ge \frac{n^2}{4} \quad \text{for all } n \ge 12.$$

Thus, $n^2/2 - 3n = \Omega(n^2)$.

$$\log(n!) = \log(n) + \log(n-1) + \cdots + \log 1$$

Asymptotic lower bound

Definition (big-Omega)

$$f(n) = \Omega(g(n))$$
: There exists constant $c > 0$ and n_0 such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$.

It is easy to show that

$$\frac{n^2}{2} - 3n \ge \frac{n^2}{4}$$
 for all $n \ge 12$.
Thus, $n^2/2 - 3n = \Omega(n^2)$.

$$\log(n!) = \log(n) + \log(n-1) + \cdots + \log 1$$

$$\geq \log(n) + \log(n-1) + \cdots + \log(n/2)$$

Asymptotic lower bound

Definition (big-Omega)

 $f(n) = \Omega(g(n))$: There exists constant c > 0 and n_0 such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$.

It is easy to show that

$$\frac{n^2}{2} - 3n \ge \frac{n^2}{4}$$
 for all $n \ge 12$.

Thus,
$$n^2/2 - 3n = \Omega(n^2)$$
.

$$\log(n!) = \log(n) + \log(n-1) + \cdots + \log 1$$

$$\geq \log(n) + \log(n-1) + \cdots + \log(n/2)$$

$$\geq n/2 \cdot \log(n/2)$$

Asymptotic lower bound

Definition (big-Omega)

 $f(n) = \Omega(g(n))$: There exists constant c > 0 and n_0 such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$.

It is easy to show that

$$\frac{n^2}{2} - 3n \ge \frac{n^2}{4}$$
 for all $n \ge 12$.
Thus, $n^2/2 - 3n = \Omega(n^2)$.

$$\log(n!) = \log(n) + \log(n-1) + \cdots + \log 1$$

$$\geq \log(n) + \log(n-1) + \cdots + \log(n/2)$$

$$\geq n/2 \cdot \log(n/2)$$

$$= n/2 \cdot (\log n - 1) = \Omega(n \log n).$$

The Asymptotic Lower Bound of Harmonic Series:

$$\sum_{i=1}^{n} \frac{1}{i} = \Omega(\log n)$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$> \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{n}$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$> \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{n}$$

$$= \frac{1}{1} + \frac{1}{2} + 2 \cdot (\frac{1}{4}) + 4 \cdot (\frac{1}{8}) + 8 \cdot (\frac{1}{16}) + \dots + \frac{n}{2} (\frac{1}{n})$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$> \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{n}$$

$$= \frac{1}{1} + \frac{1}{2} + 2 \cdot \left(\frac{1}{4}\right) + 4 \cdot \left(\frac{1}{8}\right) + 8 \cdot \left(\frac{1}{16}\right) + \dots + \frac{n}{2}\left(\frac{1}{n}\right)$$

$$= 1 + \sum_{j=1}^{\log n} \frac{1}{2}$$

$$\sum_{i=1}^{n} \frac{1}{i}$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$> \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{n}$$

$$= \frac{1}{1} + \frac{1}{2} + 2 \cdot \left(\frac{1}{4}\right) + 4 \cdot \left(\frac{1}{8}\right) + 8 \cdot \left(\frac{1}{16}\right) + \dots + \frac{n}{2}\left(\frac{1}{n}\right)$$

$$= 1 + \sum_{j=1}^{\log n} \frac{1}{2}$$

$$= 1 + \frac{1}{2} \log n$$

$$\begin{split} &\sum_{i=1}^{n} \frac{1}{i} \\ &= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n} \\ &> \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{n} \\ &= \frac{1}{1} + \frac{1}{2} + 2 \cdot \left(\frac{1}{4}\right) + 4 \cdot \left(\frac{1}{8}\right) + 8 \cdot \left(\frac{1}{16}\right) + \dots + \frac{n}{2}\left(\frac{1}{n}\right) \\ &= 1 + \sum_{j=1}^{\log n} \frac{1}{2} \\ &= 1 + \frac{1}{2}\log n \end{split}$$
Thus, $\sum_{i=1}^{n} \frac{1}{i} = \Omega(\log n)$

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Big-Theta

Asymptotic tight bound

Definition (big-Theta)

$$f(n) = \Theta(g(n))$$
: $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Big-Theta

Asymptotic tight bound

Definition (big-Theta)

$$f(n) = \Theta(g(n))$$
: $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

We have shown that

$$n^2/2 - 3n = O(n^2),$$

and

$$n^2/2 - 3n = \Omega(n^2).$$

Therefore, we have that $n^2/2 - 3n = \Theta(n^2)$.

Big-Theta

Asymptotic tight bound

Definition (big-Theta)

$$f(n) = \Theta(g(n))$$
: $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

We have shown that

$$n^2/2 - 3n = O(n^2),$$

and

$$n^2/2 - 3n = \Omega(n^2).$$

Therefore, we have that $n^2/2 - 3n = \Theta(n^2)$.

Usually (and in this course), it is sufficient to show only upper bounds (big-Oh), though we should try to make these as tight as we can.

Asymptotic Notations

Upper bounds. T(n)=O(f(n)) if there exist constants c>0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \le c \cdot f(n)$.

Equivalent definition: $\lim_{n\to\infty}\frac{T(n)}{f(n)}<\infty$.

Lower bounds. $T(n)=\Omega(f(n))$ if there exist constants c>0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \ge c \cdot f(n)$.

Equivalent definition: $\lim_{n\to\infty} \frac{T(n)}{f(n)} > 0$.

Tight bounds. $T(n) = \Theta(f(n))$ if T(n) = O(f(n)) and $T(n) = \Omega(f(n))$.

Note: Here "=" means "is", not equal. The more mathematically correct way should be $T(n) \in O(f(n))$.

For example, for the harmonic series,

we have: $\sum_{i=1}^{n} \frac{1}{i} = O(\log n) = \Omega(\log n) = \Theta(\log n)$

• $100n^2 = O(n^3)$?

• $100n^2 = \Omega(n^3)$?

- $10n^2 100n = O(n^2)$?
- $10n^2 100n = \Omega(n^2)$?
- $10n^2 100n = \Theta(n^2)$?
- log(2n) = O(log n)?
- $(2n)^{10} = O(n^{10})$?
- $2^{2n} = O(2^n)$?

- $100n^2 = O(n^3)$? **Answer**: Yes. C = 1 and $n_0 = 100$. Then $\forall n \ge n_0$, $100n^2 \le C \cdot n^3$.
- $100n^2 = \Omega(n^3)$?

- $10n^2 100n = O(n^2)$?
- $10n^2 100n = \Omega(n^2)$?
- $10n^2 100n = \Theta(n^2)$?
- log(2n) = O(log n)?
- $(2n)^{10} = O(n^{10})$?
- $2^{2n} = O(2^n)$?

- $100n^2 = O(n^3)$? **Answer**: Yes. C = 1 and $n_0 = 100$. Then $\forall n \ge n_0$, $100n^2 \le C \cdot n^3$.
- $100n^2 = \Omega(n^3)$? **Answer**: No. \forall C > 0, n_0 > 0, there exists $n > n_0$ ($n = n_0 + 100$ /C) such that $100n^2 < C \cdot n^3$.
- $10n^2 100n = O(n^2)$?
- $10n^2 100n = \Omega(n^2)$?
- $10n^2 100n = \Theta(n^2)$?
- log(2n) = O(log n)?
- $(2n)^{10} = O(n^{10})$?
- $2^{2n} = O(2^n)$?

- $100n^2 = O(n^3)$? **Answer**: Yes. C = 1 and $n_0 = 100$. Then $\forall n \ge n_0$, $100n^2 \le C \cdot n^3$.
- $100n^2 = \Omega(n^3)$? **Answer**: No. \forall C > 0, n_0 > 0, there exists $n > n_0$ ($n = n_0 + 100/C$) such that $100n^2 < C \cdot n^3$.
- $10n^2 100n = O(n^2)? \sqrt{ }$
- $10n^2 100n = \Omega(n^2)$? $\sqrt{ }$
- $10n^2 100n = \Theta(n^2)? \sqrt{ }$
- $\log(2n) = O(\log n)? \sqrt{}$
- $(2n)^{10} = O(n^{10})? \sqrt{ }$
- $2^{2n} = O(2^n)$? ×

• $10n^2 - 100n = O(n^2)$?

• $10n^2 - 100n = \Omega(n^2)$?

• $10n^2 - 100n = \Theta(n^2)$?

- $10n^2 100n = O(n^2)$? **Answer**: **Yes**. \forall n > 0, $10n^2 - 100n \le 10n^2$.
- $10n^2 100n = \Omega(n^2)$?

• $10n^2 - 100n = \Theta(n^2)$?

- $10n^2 100n = O(n^2)$? **Answer**: **Yes**. \forall n > 0, $10n^2 - 100n \le 10n^2$.
- $10n^2 100n = \Omega(n^2)$? **Answer**: Yes. \forall n \geq 20, $10n^2 - 100n \geq 5n^2$.
- $10n^2 100n = \Theta(n^2)$?

- $10n^2 100n = O(n^2)$? **Answer**: **Yes**. \forall n > 0, $10n^2 - 100n \le 10n^2$.
- $10n^2 100n = Ω(n^2)$? **Answer**: Yes. \forall n ≥ 20, $10n^2 - 100n ≥ 5n^2$.
- $10n^2 100n = \Theta(n^2)$? **Answer**: **Yes**. Because $10n^2 - 100n = O(n^2)$ and $10n^2 - 100n = \Omega(n^2)$

• log(2n) = O(log n)?

•
$$(2n)^{10} = O(n^{10})$$
?

• $2^{2n} = O(2^n)$?

- log(2n) = O(log n)?
 Answer: Yes. ∀ n ≥ 2, log(2n) = log n + 1 ≤ 2 log n.
- $(2n)^{10} = O(n^{10})$?

• $2^{2n} = O(2^n)$?

- log(2n) = O(log n)?
 Answer: Yes. ∀ n ≥ 2, log(2n) = log n + 1 ≤ 2 log n.
- $(2n)^{10} = O(n^{10})$? **Answer**: **Yes.** \forall n > 0, $(2n)^{10} = (2^{10})(n^{10})$.
- $2^{2n} = O(2^n)$?

- log(2n) = O(log n)?
 Answer: Yes. ∀ n ≥ 2, log(2n) = log n + 1 ≤ 2 log n.
- $(2n)^{10} = O(n^{10})$? **Answer**: **Yes.** \forall n > 0, $(2n)^{10} = (2^{10})(n^{10})$.
- $2^{2n} = O(2^n)$? **Answer**: No. \forall C > 0, n_0 > 0, let $n = n_0 + \log C > n_0$. Then $2^{2n} = 2^n \cdot 2^n > C \cdot 2^n$.

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Some Thoughts on Algorithm Design

- Algorithm Design, as taught in this class, is mainly about designing algorithms that have big-Oh running times.
- As n gets larger and larger, O(nlogn) algorithms will run faster than O(n²) ones and O(n) algorithms will beat O(nlogn) ones.
- Good algorithm design & analysis allows you to identify the hard parts of your problem and deal with them effectively.
- Too often, programmers try to solve problems using brute force techniques and end up with slow complicated code!
- A few hours of abstract thought devoted to algorithm design often results in faster, simpler, and more general solutions.

Algorithm Tuning

- After algorithm design one can continue on to Algorithm tuning
 - concentrate on improving algorithms by cutting down on the constants in the big O() bounds.
 - needs a good understanding of both algorithm design principles and efficient use of data structures.
- In this course we will not go further into algorithm tuning
 - For a good introduction, see chapter 9 in Programming Pearls,
 2nd ed by Jon Bentley

An interesting fact about logarithm

$$\log_{b_1} n = O(\log_{b_2} n)$$

For any constant $b_1 > 1$ and $b_2 > 1$.

For example, let us verify $log_2 n = O(log_3 n)$.

Notice that

$$\log_3 n = \frac{\log_2 n}{\log_2 3} \Longrightarrow \log_2 n = \log_2 3 \cdot \log_3 n$$

Hence, we can set $c_1 = \log_2 3$ and $c_2 = 1$, which makes $\log_2 n \le c_1 \log_3 n$

Hold for all $n \ge c_2$.

An interesting fact about logarithm

$$\log_{b_1} n = O(\log_{b_2} n)$$

For any constant $b_1 > 1$ and $b_2 > 1$.

Because of the above, in computer science, we omit all the constant logarithm bases in big-O. For example, instead of O(log₂ n), we will simply write O(log n)

- Essentially, this says that "you are welcome to put any constant base there, and it will be the same asymptotically".
- Obviously, Ω , Θ also have this property.

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Solving recurrences: Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
 - Each node represents the cost of a single subproblem.

$$T(n) = \begin{cases} 2T(n/2) + n, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) \le n^2 + \frac{3}{16}n^2 + \left(\frac{3}{16}\right)^2 n^2 + \cdots$$

= $O(n^2)$. geometric series

几何级数(又称为等比级数)

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) \le n^2 + \frac{3}{16}n^2 + \left(\frac{3}{16}\right)^2 n^2 + \cdots$$

= $O(n^2)$. geometric series

• Since $T(n) = 3T(n/4) + n^2$, it follows that $T(n) \ge n^2$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) \le n^2 + \frac{3}{16}n^2 + \left(\frac{3}{16}\right)^2 n^2 + \cdots$$

= $O(n^2)$. geometric series

- Since $T(n) = 3T(n/4) + n^2$, it follows that $T(n) \ge n^2$
- So, $T(n) = \Omega(n^2)$.
- Thus, $T(n) = \Theta(n^2)$

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

Prove $T(n) \le cn^2$ by induction, where c is a large constant.

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

Prove $T(n) \le cn^2$ by induction, where c is a large constant.

Proof.

• Base (n=1) : obviously holds for any $c \ge 1$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

Prove $T(n) \le cn^2$ by induction, where c is a large constant.

Proof.

- Base (n=1) : obviously holds for any $c \ge 1$
- Induction:

$$T(n) = 3T(n/4) + n^2$$

 $\leq 3c(n/4)^2 + n^2$
 $= cn^2 - (13c/16 - 1)n^2$
 $\leq cn^2$,

whenever $13c/16 - 1 \ge 0$, or $c \ge 16/13$.

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n)$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

Prove $T(n) \le cn \log n$ by induction, where c is a large constant.

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

Prove $T(n) \le cn \log n$ by induction, where c is a large constant.

Proof.

• Base (n=2) : obviously holds for any $c \ge 1/2$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

Prove $T(n) \le cn \log n$ by induction, where c is a large constant.

Proof.

- Base (n=2) : obviously holds for any $c \ge 1/2$
- Induction:

$$T(n) = T(n/3) + T(2n/3) + n$$

$$\leq c(n/3) \log(n/3) + c(2n/3) \log(2n/3) + n$$

$$= cn \log n - c((n/3) \log 3 + (2n/3) \log(3/2)) + n$$

$$= cn \log n - cn(\log 3 - 2/3) + n$$

$$\leq cn \log n,$$

as long as $c \ge 1/(\log 3 - 2/3)$.

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Master Theorem

If $T(n) = aT(\left\lceil \frac{n}{b} \right\rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

If $T(n) = aT\left(\left[\frac{n}{b}\right]\right) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

For the sake of convenience, we assume that n is a power of b. This will not influence the final bound in any important way—n is at most a multiplicative factor of b away from some power of b—and it will allow us to ignore the rounding effect in $\lceil \frac{n}{b} \rceil$.

$$a^k \times O\left(\frac{n}{b^k}\right)^d = O(n^d) \times \left(\frac{a}{b^d}\right)^k$$

If $T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

- The size of the subproblems decreases by a factor of b with each level of recursion, and therefore reaches the base case after log_bn levels. This is the height of the recursion tree.
- The k-th level of the tree is made up of a^k subproblems, each of size n/b^k
- The total work done at this level is

$$a^k \times O\left(\frac{n}{b^k}\right)^d = O(n^d) \times \left(\frac{a}{b^d}\right)^k$$

It comes down to the following three cases.

• The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 (a/b^d>1). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^d \left(\frac{a}{b^d}\right)^{\log_b n} =$$

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 ($a/b^d > 1$). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^d \left(\frac{a}{b^d}\right)^{\log_b n} = n^d \left(\frac{a^{\log_b n}}{(b^{\log_b n})^d}\right) =$$

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 ($a/b^d > 1$). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^d \left(\frac{a}{b^d}\right)^{\log_b n} = n^d \left(\frac{a^{\log_b n}}{(b^{\log_b n})^d}\right) = a^{\log_b n} = a^{(\log_a n)(\log_b a)}$$

_

Proof of the Master theorem

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 (a/b^d>1). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^{d} \left(\frac{a}{b^{d}}\right)^{\log_{b} n} = n^{d} \left(\frac{a^{\log_{b} n}}{(b^{\log_{b} n})^{d}}\right) = a^{\log_{b} n} = a^{(\log_{a} n)(\log_{b} a)}$$
$$= n^{\log_{b} a}$$

Proof of the Master theorem

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 (a/b^d>1). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^{d} \left(\frac{a}{b^{d}}\right)^{\log_{b} n} = n^{d} \left(\frac{a^{\log_{b} n}}{(b^{\log_{b} n})^{d}}\right) = a^{\log_{b} n} = a^{(\log_{a} n)(\log_{b} a)}$$
$$= n^{\log_{b} a}$$

The ratio a/b^d is exactly 1 (a/b^d = 1).
 In this case all O(log n) terms of the series are equal to O(n^d).

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 1:
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 1:
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

• a = 3, b = 2, d = 1, $d < log_b a$

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 1:
$$T(n) = 3T(\frac{n}{2}) + n$$

- a = 3, b = 2, d = 1, $d < log_b a$
- $T(n) = O(n^{\log_b a}) = O(n^{\log 3})$

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 2:
$$T(n) = 3T(\frac{n}{4}) + n^5$$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 2:
$$T(n) = 3T(\frac{n}{4}) + n^5$$

• a = 3, b = 4, d = 5, $d > log_b a$

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 2:
$$T(n) = 3T(\frac{n}{4}) + n^5$$

- a = 3, b = 4, d = 5, $d > log_b a$
- $T(n) = O(n^d) = O(n^5)$

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 3:
$$T(n) = 4T(\frac{n}{2}) + n^2$$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 3:
$$T(n) = 4T(\frac{n}{2}) + n^2$$

• a = 4, b = 2, d = 2, $d = log_b a$

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 3:
$$T(n) = 4T(\frac{n}{2}) + n^2$$

- a = 4, b = 2, d = 2, $d = log_b a$
- $T(n) = O(n^d \log n) = O(n^2 \log n)$

