In [4]: ## Kernel Popping Times pop_times = np.sort(df["pop_time_seconds"].values) plt.scatter(pop_times, [1]*len(pop_times), s = 10, alpha= 0.5) plt.xlabel("Time (s)") plt.yticks([]) plt.title("Kernel Popping Times") plt.xlim((0,100)) plt.tight_layout() plt.show Out[4]: <function matplotlib.pyplot.show(close=None, block=None)> **Kernel Popping Times** 80 20 40 60 100 0 Time (s) In [5]: inter_pop = np.diff(pop_times) # interpopping waiting times np.max(pop_times) time = np.arange(0,100.1,0.1)pops = []count = 0# Cumulative Distribution Function (CDF) of Popped Kernels for t in time: s = sum(pops)if np.any(np.isclose(pop_times,t, atol = 0.05)): count += 1 pops.append(count) else: pops.append(count) In [6]: ## Discrete Cumulutive Disitrubtion Function (CDF) of Popped Kernels plt.scatter(time,pops, s = 20) plt.xlabel("Time (s)") plt.ylabel("Total Kernels Popped") plt.show() 100 80 Total Kernels Popped 60 20 20 40 60 80 100 Time (s) The curve above clearly resembles the CDF of a Normal r.v. with some error due to intermediate popping clusters. To analyze the phases/regions of popping separately, we'll use the method of segmented regression with change of slope coefficients. In this method, under a suitable choice of N regions, we fit the model: $Y_t = eta_0 + eta_1 t + eta_2 (t-s_1)_+ + eta_3 (t-s_2)_+ + \ldots + eta_N (t-s_{N-1})_+ + \epsilon_t$ with $\epsilon_t \overset{\text{i.i.d.}}{\sim} N(0, \sigma^2)$. The unknown parameters in this model are $\beta_0, \beta_1, \ldots, \beta_N, s_1, s_2, \ldots, s_{N-1}, \sigma$. Let $\{X^N(t)\}_{t\geq 0}$ denote a sequence of right-continuous, or càdlàg, piecewise time-homogeneous Poisson processes defined on all $t\in [0,T]$, where each process $X^N(t)$ is constructed with N segments such that on the interval $[t_i, t_{i+1})$, the rate is constant and given by λ_i . Thus, the associated Poisson counting process is defined by: $X^N(t+\Delta t_i) - X^N(t) \sim \textit{Poisson}(\lambda_i \cdot \Delta t_i)$ Assume that for a given deterministic, continuous function $\lambda:[0,T] o \mathbb{R}_{\geq 0}$, the piecewise constant rates satisfy: $\sup_{t \in [t_i, t_{i+1})} |\lambda_i - \lambda(t)| o 0 \quad ext{as } N o \infty$ Then the processes $\{X^N(t)\}_{t\geq 0}$ converge in distribution to a single time-inhomogeneous Poisson process X(t) with time-varying intensity $\lambda(t)$ on all $t\in [0,T]$ s.t. $X^N(\cdot)\stackrel{d}{ o} X(\cdot).$ The limiting process X(t) when $N o\infty$ satisfies: $\mathbb{P}(X(t+h)-X(t)=k)=rac{[\Lambda(t+h)-\Lambda(t)]^k}{k!}\mathrm{exp}(-[\Lambda(t+h)-\Lambda(t)]),\quad k\in\mathbb{N}$ where $\Lambda(t)=\int_0^t \lambda(s)\,ds$ is the cumulative intensity function. Therefore, we can finally conclude: $\mathbb{P}(X(t+\Delta t)-X(t)=k)=rac{[\lambda(t)\Delta t]^k}{k!}e^{-\lambda(t)\Delta t}$ Note that we cannot say that X(t) is simply distributed as Poisson with rate $\lambda(t)$ but require the nuance of the cumulative intensity function, $\Lambda(t)$. In [7]: ## Discrete Cumulutive Disitrubtion Function (CDF) of Popped Kernels with Shading shaded_regions = [(0, 35), (35.3, 53), (53.4, 80), (80.3, 100)]colors = ['#4a90e2', '#357ABD', '#2a5d9f', '#1e3f7d'] for (start, end), color in zip(shaded_regions, colors): plt.axvspan(start, end, color=color, alpha=0.3) plt.scatter(time,pops, s = 20, color = "black") plt.xlabel("Time (s)") plt.ylabel("Total Kernels Popped with Phases") plt.tight_layout() plt.show() 100 80 Total Kernels Popped with Phases 60 20 0 20 40 60 80 100 Time (s) We can first use a simple nonparametric regression on the CDF of kernels popped using a smoothing spline determined by Generalized Cross-Validation (GSV). First, we will fit $\hat{\Lambda}(t) \sim spline(t)$. Then, we differentiate the time-continuous estimation to estimate $\lambda(t)$. In [8]: import statsmodels.api as sm from scipy.stats import t import scipy.stats as stats from itertools import combinations In [9]: # non-parametric regression on cumulative counts using a smoothing spline from scipy.interpolate import UnivariateSpline # Automatic s selection using Generalized Cross-Validation (GCV) spline = UnivariateSpline(time, pops) # s=None by default plt.plot(time, spline(time), label='GCV-selected spline') plt.scatter(time, pops, s=5, color='k', alpha=0.5) plt.title("Spline Fit with Automatic Smoothing (GCV)") plt.legend() plt.grid(True) plt.show() Spline Fit with Automatic Smoothing (GCV) GCV-selected spline 100 80 40 20 0 -20 40 100 60 80 0 In [10]: x = np.insert(time, 0, 0.0)y = np.insert(pops, 0, 0.0) $w = np.ones_like(x)$ w[0] = 1000 # ensures (0,0) intercept of spline # Fit spline spline = UnivariateSpline(x, y, w=w) # Evaluate spline $t_dense = np.linspace(0, x[-1], 500)$ plt.plot(x, y, 'o', label='Data') plt.plot(t_dense, spline(t_dense), label='Smoothed Spline') plt.legend() plt.grid(True) plt.show() Data 100 -Smoothed Spline 80 60 40 20 0 -20 40 60 80 100 In [11]: # estimation of lambda(t) via non-parametric regression Lambda_hat = spline(time) lambda_hat = spline.derivative()(time) # differentiate Lambda(t) to get lambda(t) plt.plot(time, lambda_hat, label=r'\$\hat{\lambda}(t)\$') plt.xlabel("Time (s)") plt.ylabel("Estimated Instantaneous Rate") plt.title("Estimated $\lambda(t)$ from Spline Differentiation") plt.grid() plt.legend() plt.show() Estimated λ(t) from Spline Differentiation $\hat{\lambda}(t)$ 4 Estimated Instantaneous Rate 40 60 20 80 100 0 Time (s) Alternatively, we can use Bayesian inference on small intervals of data modeled by: $Y_i \sim Poisson(\lambda_i \cdot \Delta t)$ Now that we have determined an approximate time-varying $\lambda(t)$, we can use the conjugate prior of Poisson, the Gamma distribution to smooth our estimated function of $\lambda(t)$. Essentially, at each time t, $\lambda(t) \sim Gamma(\alpha(t), \beta(t))$. In [16]: import pymc as pm # Discretize time into bins of size dt = 5dt = 5bins = np.arange(0, max(time) + dt, dt)counts, _ = np.histogram(pop_times, bins=bins) with pm.Model() as model: lambda_ = pm.Gamma("lambda", alpha=2, beta=1, shape=len(counts)) y = pm.Poisson("y", mu=lambda_ * dt, observed=counts) trace = pm.sample(1000, tune=1000, target_accept=0.9) # Posterior mean estimate of lambda(t) lambda_mean = trace.posterior["lambda"].mean(dim=["chain", "draw"]) midpoints = (bins[:-1] + bins[1:]) / 2plt.plot(midpoints, lambda_mean, label=r'\$\mathbb{E}[\lambda(t)]\$') plt.xlabel("Time (s)") plt.ylabel("Estimated Rate") plt.title("Bayesian Estimate of Time-Varying Rate") plt.grid() plt.legend() plt.show() Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [lambda] /Users/siddhant/Library/Python/3.12/lib/python/site-packages/rich/live.py:231: UserWarning: install "ipywidgets" for Jupyter support warnings.warn('install "ipywidgets" for Jupyter support') Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds. Bayesian Estimate of Time-Varying Rate 4.5 $\mathbb{E}[\lambda(t)]$ 4.0 3.5 3.0 **Estimated Rate** 2.5 2.0 1.5 1.0 0.5 20 40 60 80 100 Time (s) In [21]: plt.plot(time, lambda_hat, label=r'spline') plt.xlabel("Time (s)") plt.ylabel("Estimated Instantaneous Rate") plt.plot(midpoints, lambda_mean, label=r'Bayesian') plt.title("Estimated Kernel Popping Intensity") plt.grid() plt.legend() plt.show() **Estimated Kernel Popping Intensity** spline Bayesian 4 Estimated Instantaneous Rate 0 60 40 20 80 0 100 Time (s) In []:

In [2]: **import** pandas **as** pd

1

2

3

In [3]: import numpy as np

0

1

3

most kernels pop between 60-75 seconds

62.3

58.7

74.1

67**.**9 35**.**6

some pop earlier ~30-60 seconds
some pop late ~75-120 seconds
print(df.head()) # prints first 5 rows

kernel pop_time_seconds

import matplotlib.pyplot as plt

df = pd.read_csv('./Data/data.csv') # data is computer-generated by ChatGPT under the following assumptions: