Unidad 4: Actividades prácticas

Ejercicios propuestos referidos a construcción de AFND

Ejercicio 1

Reconocer las condiciones de error del AFND del Ejemplo 4.1 e incorporarlas en la definición formal del autómata y su grafo.

Ejercicio 2

Reconocer las condiciones de error del AFND del Ejemplo 4.2 e incorporarlas en la definición formal del autómata y su grafo.

Ejercicios propuestos de conversión de AFND a AFD

Ejercicio 3

Proponer un AFND que reconozca cadenas de la forma general $\alpha = (a+b)^*ba(a+b)a$ y luego, convertirlo a un AFD equivalente. Para ambos autómatas presentar las definiciones formales y grafos.

Ejercicio 4

Dado el siguiente AFND, se pide:

- a) Construir un árbol de descripciones instantáneas para cada una de las siguientes cadenas: **1000**, **1001**, **1101**.
- b) Realizar la conversión del AFND a AFD.

AFND=
$$(\{0,1\}, \{p, q, r\}, p, \{r\}, f)$$

f:	0	1
→ p	{p}	{p, q}
q	{p, r}	{q, r}
*r	{r}	{q}

Tabla 4.18: Función del autómata del Ejercicio 4.

Ejercicio 5

Dado el siguiente AFND, se pide:

- a) Construir un árbol de descripciones instantáneas para cada una de las siguientes cadenas: **aacbb**, **baca**, **ccba**.
- b) Realizar la conversión del AFND a AFD.

$$AFND = ({a, b, c}, {p, q, r, s}, p, {s}, f)$$

f:	а	b	С
→p	{q}	{p}	{p, s}
q	{q}	{p, s}	{p, r}
r	{r}	{p, s}	{r}
*s	{S}	{q, s}	{r}

Tabla 4.19: Función del autómata del Ejercicio 5.

Ejercicios propuestos de conversión de AFND-λ a AFD

Ejercicio 6

Dado el siguiente AFND, se pide:

a) Construir un árbol de descripciones instantáneas para cada una de las siguientes cadenas: babb, bbbb, bbbaa.

b) Realizar la conversión del AFND a AFD.

AFND-
$$\lambda = (\{a, b\}, \{p, q, r, s\}, p, \{r\}, f)$$

f:	а	b	λ
→p		{q, r}	{q}
q	{q}		{s}
*r	{p}	{p, r}	
S			

Tabla 4.20: Función del autómata del Ejercicio 6.

Ejercicio 7

Dado el siguiente AFND, se pide:

- a) Construir un árbol de descripciones instantáneas para cada una de las siguientes cadenas: **001**, **1100**, **101**.
- b) Realizar la conversión del AFND a AFD.

$$AFND-\lambda = (\{0, 1\}, \{A, B, C, D\}, A, \{C\}, f)$$

f:	0	1	λ
→A	{B, C}	{A}	{B, D}
В		{B, D}	{D}
*C	{C}	{B, C, D}	
D		{A, C}	{B}

Tabla 4.21: Función del autómata del Ejercicio 7.

Ejercicio 8

Dado el siguiente AFND, se pide:

- a) Construir un árbol de descripciones instantáneas para cada una de las siguientes cadenas: **1000, 111, 1001**.
- b) Realizar la conversión del AFND a AFD.

AFND-
$$\lambda = (\{0,1\}, \{p, q, r, s\}, p, \{q\}, f)$$

f:	0	1	λ
→p		{q, r}	{r}
*q	{p}	{p, q}	
r	{r}		{s}
S		{s}	

Tabla 4.22: Función del autómata del Ejercicio 8.

Ejercicios propuestos de definición del AF a partir de la gramática

Definir el autómata finito correspondiente, que reconozca el mismo lenguaje que genera cada una de las siguientes gramáticas regulares:

Eiercicio 9

$$G_1 = (\{0, 1\}, \{D, E\}, D, P_1)$$

 $P_1 = \{D:= 0E \mid 1, E:= 0 \mid 1E \mid 1\}$

Ejercicio 10

$$G_2 = (\{x, y\}, \{S, X, Y\}, S, P_2)$$

$$P_2 = \{S := xX, X := yY, Y := xX \mid y\}$$

Ejercicio 11

$$G_3 = (\{x, y, z\}, \{S, N, M\}, S, P_3)$$

$$P_3 = \{S := xN \mid x, N := yM \mid y, M := zN \mid z\}$$

Ejercicios propuestos de definición de gramática a partir AF

Definir la gramática regular correspondiente a los AF siguientes:

Ejercicio 12

$$AFD = (\{0,1\}, \{A, B, C, F\}, A, \{F\}, f)$$

Figura 4.32: Grafo del autómata del Ejercicio 12.

Ejercicio 13

$$AFD = (\{0, 1\}, \{A, B, C, D, F\}, A, \{F\}, f)$$

Figura 4.33: Grafo del autómata del Ejercicio 13.

Ejercicios propuestos de definición de AF a partir de la ER empleando el algoritmo de Thompson

Ejercicio 14

Usando las expresiones regulares del Ejercicio 9 del Capítulo 3, para cada una de ellas se pide:

- a) Construya el AFND que reconoce el lenguaje que determina la expresión usando el método de Thompson (grafo y definición formal).
- b) Determine cuál es el AFD equivalente al obtenido en el punto anterior (grafo y definición formal).
- c) Minimice el AFD obtenido en el punto anterior (grafo y definición formal).

Ejercicios propuestos de conversión de AFND a AFD

Ejercicio 15

Dado el siguiente AFND, se pide:

- a) Construir un árbol de descripciones instantáneas para cada una de las siguientes cadenas: **010, 1100.**
- b) Realizar la conversión del AFND a AFD.

$$AFND = (\{0, 1\}, \{A, B, C, D, E\}, A, \{C, E\}, f)$$

f:	0	1
→A	{B, E}	{B}
В	{C}	{C, D}
*C	{C}	{B}
D	{D}	{D}
*E	{C}	{D}

Tabla 4.23: Función del autómata del Ejercicio 15.

Solución

a) Los árboles resultantes son los que siguen:

Figura 4.34: Árbol correspondiente a la cadena 010 del Ejercicio 15.

Figura 4.35: Árbol correspondiente a la cadena 1110 del Ejercicio 15.

A continuación, se construye la función de transición del AFD equivalente, se aplica el caso 1 del Teorema 2:

$$\begin{split} &C_0 = \{A\} \\ &f(C_0 \ ,0) = \{B,E\} = \ C_1 \\ &f(C_0 \ ,1) = \{B\} = C_2 \\ &f(C_1 \ ,0) = \{C\} = C_3 \\ &f(C_1 \ ,1) = \{C,\ D\} = C_4 \\ &f(C_2 \ ,0) = \{C\} = C_3 \\ &f(C_2 \ ,1) = \{C,\ D\} = C_4 \\ &f(C_3 \ ,0) = \{C\} = C_3 \\ &f(C_3 \ ,1) = \{B\} = C_2 \\ &f(C_4 \ ,0) = \{C,\ D\} = C_4 \\ &f(C_4 \ ,1) = \{B,\ D\} = C_5 \\ &f(C_5 \ ,0) = \{C,\ D\} = C_4 \\ &f(C_5 \ ,1) = \{C,\ D\} = C_4 \\ \end{split}$$

El AFD equivalente es:

AFD =
$$(\{0, 1\}, \{C_0, C_1, C_2, C_3, C_4, C_5\}, C_0, \{C_1, C_3, C_4\}, f')$$

f:	0	1
→ C ₀	C ₁	C ₂
*C1	Сз	C ₄
C ₂	Сз	C ₄
*C ₃	Сз	C ₂
*C4	C ₄	C 5
C 5	C ₄	C ₄

Tabla 4.24: Función de transición del AFD del Ejercicio 15.

Ejercicio 16

Dado el siguiente AFND, se pide:

- a) Construir un árbol de descripciones instantáneas para cada una de las siguientes cadenas: **aab**, **cba**, **abaa**.
- b) Realizar la conversión del AFND a AFD.

$$AFND = ({a, b, c}, {A, B, C, D}, A, {D}, f)$$

f:	а	b	С
→A	{B}	{D}	{D}
В	{A, C}	{B, C}	{D}
С	{C}	{C}	{C, D}
*D	{D}	{D}	{D}

Tabla 4.25: Función de transición del AFND del Ejercicio 16.

Solución

a) Los árboles de configuraciones correspondientes a la primera y tercera de las cadenas indicadas son los siguientes:

Figura 4.36: Árbol correspondiente a la cadena aab del Ejercicio 16.

Figura 4.37: Árbol correspondiente a la cadena abaa del Ejercicio 16.

A continuación, se construye la función de transición del AFD equivalente, se aplica el caso 1 del Teorema 2:

$$\begin{array}{lll} C_0 = \{A\} \\ f(C_0 \ , a) = \{B\} = \ C_1 & f(C_0 \ , b) = \{D\} = C_2 \\ f(C_0, c) = \{D\} = C_2 & f(C_1 \ , a) = \{A, \ C\} = C_3 \\ f(C_1, b) = \{B, \ C\} = C_4 & f(C_1, c) = \{D\} = C_2 \\ f(C_2, a) = \{D\} = C_2 & f(C_2, b) = \{D\} = C_2 \\ f(C_3, a) = \{D\} = C_2 & f(C_3, a) = \{B, \ C\} = C_4 \\ f(C_3, b) = \{C, \ D\} = C_5 & f(C_3, c) = \{C, \ D\} = C_5 \\ f(C_4, a) = \{A, \ C\} = C_3 & f(C_4, b) = \{B, \ C\} = C_4 \\ f(C_4, c) = \{C, \ D\} = C_5 & f(C_5, a) = \{C, \ D\} = C_5 \\ f(C_5, b) = \{C, \ D\} = C_5 & f(C_5, c) = \{C, \ D\} = C_5 \\ \end{array}$$

El AFD equivalente es:

AFD =
$$(\{0,1\}, \{C_0, C_1, C_2, C_3, C_4, C_5\}, C_0, \{C_2, C_5\}, f')$$

f:	а	b	С
→ C ₀	C ₁	C_2	C_2
C ₁	Сз	C ₄	C_2
*C ₂	C_2	C_2	C_2
C ₃	C ₄	C 5	C 5
C ₄	Сз	C ₄	C 5
*C ₅	C 5	C 5	C 5

Tabla 4.26: Función de transición del AFD del Ejercicio 16.

Ejercicios resueltos de conversión de AFND-λ a AFD

Ejercicio 17

Dado el siguiente AFND- λ , se pide:

- a) Construir el árbol de descripciones instantáneas para las cadenas: 11221, 122.
- b) Realizar la conversión del AFND- λ a AFD.

AFND-
$$\lambda = (\{1, 2\}, \{a, b, c, d\}, a, \{d\}, f)$$

f:	1	2	λ
→a	{a, b}		{b}
b		{c}	{c}
С		{c, d}	
*d	{b}		

Tabla 4.27: Función de transición del AFND-λ del Ejercicio 17.

Solución

a) En los siguientes árboles, no se incluyen por simplicidad (aunque estrictamente correspondería) las transiciones λ .

Figura 4.38: Árbol correspondiente a la cadena 11221 del Ejercicio 17.

Figura 4.39: Árbol correspondiente a la cadena 122 del Ejercicio 17.

b)
$$T = \{(a, a), (a, b), (b, b), (b, c), (c, c), (d, d)\}$$
$$T^* = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c), (d, d)\}$$

f:	1	2	λ
→a	{a, b}		{a, b, c}
b		{c}	{b, c}
С		{c, d}	{c}
*d	{b}		{d}

Tabla 4.28: Transiciones λ completas.

A continuación, se construye la función de transición del AFD equivalente:

$$\begin{array}{ll} f\left(a,\,\lambda\right) = \{a,b,c\} = C_{0} \\ f\left(C_{0}\,,1\right) \colon & f(a,\,1) = \{a,b\} \\ & f(b,\,1) = \varnothing \\ & f(c,\,1) = \varnothing \end{array} \right\} = \{a,b\} \quad \begin{array}{ll} \text{con transiciones λ:} \\ \{a,b,c\} \cup \{b,c\} = \{a,b,c\} = C_{0} \end{array}$$

$$\begin{array}{ll} f(C_0\;,2) \colon & f(a,\,2) = \varnothing \\ & f(b,\,2) = \{c\} \\ & f(c,\,2) = \{c,d\} \end{array} \right\} = \{c,d\} \quad \begin{array}{ll} \text{con transiciones λ:} \\ \{c\} \cup \{d\} = \{c,\,d\} = C_1 \end{array}$$

$$\begin{array}{ccc} f'(C_1\;,1); & f(c,\;1) &= \varnothing \\ & f(d,\;1) = \{b\} \end{array} \right\} \; = \{b\} \qquad \begin{array}{c} \text{con transiciones λ:} \\ \{b,c\} = C_2 \end{array}$$

$$\begin{array}{c} f'(C_1\;,2) \hbox{:} \qquad f(c,\,2) = \{c,d\} \\ \qquad \qquad f(d,\,2) = \varnothing \end{array} \right\} \ = \{c,\,d\} \quad \begin{array}{c} \text{con transiciones λ :} \\ \qquad \qquad \{c\} \, \cup \, \{d\} = \, \{c,\,d\} = \, C_1 \end{array}$$

$$\begin{array}{ccc} f'(C_2\;,1); & f(b,\;1)=\varnothing \\ & & \\ f(c,\;1)=\varnothing \end{array} \right\} \; =\varnothing = C_3$$

$$\begin{array}{ll} f'(C_2\;,2); & f(b,\,2) = \{c\} \\ & f(c,\,2) = \{c,d\} \end{array} \right\} = \{c,\,d\} \begin{array}{ll} & \text{con transiciones λ:} \\ & \{c\} \cup \{d\} = \{c,\,d\} = C_1 \end{array}$$

El AFD equivalente es:

AFD =
$$(\{1, 2\}, \{C_0, C_1, C_2, C_3\}, C_0, \{C_1\}, f')$$

f:	1	2
→ C ₀	Co	C ₁
*C1	C_2	C ₁
C ₂	Сз	C ₁
Сз	Сз	Сз

Tabla 4.29: Función de transición del AFD del Ejercicio 17.

Ejercicio 18

Dado el siguiente AFND-λ, se pide:

- a) Construir el árbol de descripciones instantáneas para las cadenas: 0101, 0111.
- b) Realizar la conversión del AFND- λ a AFD.

AFND-
$$\lambda = (\{0, 1\}, \{A, B, C, D, E\}, A, \{E\}, f)$$

f:	0	1	λ
→A	{B}		{B}
В		{C, D}	{C}
С			{B}
D	{E, A}		
*E		{E}	{B}

Tabla 4.30: Función de transición del AFND $-\lambda$ del Ejercicio 18.

Solución

a) Para las cadenas indicadas se construyen los siguientes árboles de configuraciones, en los cuales no se incluyen por simplicidad (aunque estrictamente correspondería) las transiciones λ :

Figura 4.40: Árbol correspondiente a la cadena 01111 del Ejercicio 18.

Figura 4.41: Árbol correspondiente a la cadena 0101 del Ejercicio 18.

b) Se debe construir la relación de transiciones λ y su cerradura:

$$T = \{(A,A), (A,B), (B,B), (B,C), (C,C), (C,B), (D,D), (E,E), (E,B)\}$$

$$T^* = \{(A,A),(A,B),(A,C),(B,B),(B,C),(C,C),(C,B),(D,D),(E,E),(E,B),(E,C)\}$$

con lo que se puede construir la tabla de la función de transición del autómata completada con todas las transiciones lambda.

f:	0	1	λ
→A	{B}		{A, B, C}
В		{C, D}	{B, C}
С			{C, B}
D	{E, A}		{D}
*E		{E}	{E, B, C}

Tabla 4.31: Función con las transiciones λ completas.

Se construye la función de transición f' del AFD equivalente al dado:

$$f\left(\mathsf{A},\,\lambda\right)=\left\{\mathsf{A},\mathsf{B},\mathsf{C}\right\}=\mathsf{C}_{0}$$

$$\begin{array}{cccc} f'(C_0,\,0) \colon & & f(A,\,0) = \{B\} \\ & & f(B,\,0) = \varnothing \\ & & f(C,\,0) = \varnothing \end{array} \right\} & = \{B\} & \text{con transiciones λ} : \\ & & \{B,C\} = C_1 \\ \end{array}$$

$$f(C_1, 0)$$
: $f(B, 0) = \emptyset$ con transiciones λ : $g(C_1, 0) = \emptyset$ $g(C_2, 0) = \emptyset$ $g(C_3, 0) = \emptyset$

$$\begin{array}{ccc} f'(C_1,\,1) \colon & f(B,\,1) = \{C,D\} \\ & f(C,\,1) = \varnothing \end{array} \right\} & = \{C,D\} & \text{con transiciones λ} \colon \\ \end{array}$$

$$\begin{array}{cccc} f'(C_2,\,O) \colon & & f(B,\,O) = \varnothing \\ & & f(C,\,O) = \varnothing \\ & & f(D,\,O) = \{E,A\} \end{array} \end{array} \right\} \quad = \{E,A\} \quad \begin{array}{c} \text{con transiciones } \lambda : \\ \{A,B,C,E\} = C_4 \end{array}$$

$$f'(C_4, 0): \qquad f(A, 0) = \{B\}$$

$$f(B, 0) = \emptyset$$

$$f(C, 0) = \emptyset$$

$$f(E, 0) = \emptyset$$

$$\{B, C\} = C_1$$

$$f(C_5, O): \quad f(B, O) = \varnothing$$

$$f(C, O) = \varnothing$$

$$f(D, O) = \{E,A\}$$

$$f(E, O) = \varnothing$$

$$= \{E,A\}$$

$$\{A,B,C,E\} = C_4$$

Luego, el AFD equivalente es:

AFD =
$$(\{0, 1\}, \{C_0, C_1, C_2, C_3, C_4, C_5\}, C_0, \{C_4, C_5\}, f')$$

f'	0	1
→ C ₀	C ₁	C_2
C ₁	Сз	C_2
C ₂	C ₄	C ₂
Сз	Сз	Сз
*C4	C ₁	C 5
*C ₅	C ₄	C 5

Tabla 4.32: Función de transición del AFD del Ejercicio 18.

Ejercicios resueltos de definición del AF a partir de la gramática

Definir el AF que corresponde a cada una de las gramáticas regulares:

Ejercicio 19

$$G_1 = (\{x, y\}, \{S, X, Y\}, S, P_1)$$

$$P_1 = \{ S := \lambda \mid xX \mid yY, Y := yY \mid x, X := xX \mid y \}$$

Solución

AFND-
$$\lambda = (\{x, y\}, \{S, X, Y, F\}, S, \{F\}, f)$$

Figura 4.42: Grafo del AFND - λ del ejercicio 19.

Ejercicio 20

$$G_2 = (\{0, 1\}, \{A, B, C, D\}, A, P_2)$$

$$P_2 = \{ A := 0A \mid 1B, B := 0C \mid 0D, C := 0 \mid 1B \mid 1D, D := 1 \}$$

Solución

$$AFND = (\{0, 1\}, \{A, B, C, D, F\}, A, \{F\}, f)$$

Figura 4.43: Grafo del AFND del Ejercicio 20.

Ejercicio 21

$$G_3 = (\{0, 1\}, \{A, B, C, D, E\}, A, P_3)$$

 $P_3 = \{A:=0B|1A, B:=0B|1C, C:=0B|1D|1, D:=0E|0, E:=0D|0|1C\}$

Solución

$$AFND = (\{0, 1\}, \{A, B, C, D, E, F\}, A, \{F\}, f)$$

Figura 4.44: Grafo del AFND del Ejercicio 21.

Ejercicios resueltos de definición de gramática regular a partir de un AFD

Definir la gramática regular correspondiente a los siguientes AF:

Ejercicio 22

$$AFD = (\{0, 1\}, \{A, B, C, F\}, A, \{F\}, f)$$

Figura 4.45: Grafo del AFD del Ejercicio 22.

Solución

$$\begin{split} G_1 &= (\{0,\,1\},\,\{A,\,B,\,C,\,F\},\,A,\,P_1) \\ P_1 &= \{A := 0B \mid 1A,\,B := 0C \mid 1B,\,C := 0F \mid 1C \mid 0,\,F := 0A \mid 1F \mid 1\} \end{split}$$

Ejercicio 23

$$AFND = ({a, b}, {A, B, C, F}, A, {F}, f)$$

Figura 4.46: Grafo del AFND del Ejercicio 23.

Solución

$$G_2 = (\{a, b\}, \{A, B, C, F\}, A, P_2)$$

 $P_2 = \{A := aB \mid bF \mid b, B := aB \mid bC, C := aF \mid bF \mid bC \mid a \mid b, F := bA \mid aC\}$

Ejercicio 24

$$AFND = (\{0, 1\}, \{A, B, C\}, A, \{B\}, f)$$

Figura 4.47: Grafo del AFND del Ejercicio 24.

Solución

$$G_3 = (\{0, 1\}, \{A, B, C\}, A, P_3)$$

 $P_3 = \{A:= 0A \mid 0B \mid 1B \mid 0 \mid 1, B:= 0B \mid 1C \mid 0, C:= 0A \mid 1B \mid 1\}$

Ejercicios resueltos de definición de AF a partir de la ER empleando el algoritmo de Thompson

Ejercicio 25

Usando las expresiones regulares del Ejercicio 28 del Capítulo 2, para cada una de ellas se pide:

- a) Construya el AFND que reconoce el lenguaje que determina la expresión usando el método de Thompson (grafo y definición formal).
- b) Determine cuál es el AFD equivalente al obtenido en el punto anterior (grafo y definición formal).
- c) Minimice el AFD obtenido en el punto anterior (grafo y definición formal).

Solución

Para la expresión regular L ((11+0)*)

a) Construcción de Thompson

Figura 4.48

Figura 4.49

Figura 4.50

$$\mathsf{AFND} = (\{0,1\}, \{q_0, \, q_1, \, q_2, \, q_3, \, q_4, \, q_5, \, q_6, \, q_7, \, q_8, \, q_9, \, q_{10}, \, q_{11}\}, \, q_0, \, \{q_3\}, \, \textit{f})$$

Nótese que, en las Figuras 4.48 y 4.49, las flechas en líneas de puntos representan un AF en sí mismas. En el primer caso, se trata de un AF capaz de reconocer expresiones de la forma 11+0 y en el segundo expresiones de la forma 11.

b) Determinación del AFD equivalente al anterior

Construimos la Tabla 4.33 de la función de transición con las transiciones λ explícitas, las reflexivas y las transitivas (usando T y T^{*}).

f	0	1	λ
→q ₀			{qo, q1, q3, q4, q6, q8}
q ₁			{q1, q4, q6, q8}
Q ₂			{ q ₁ , q ₂ , q ₃ , q ₄ , q ₆ , q ₈ }
*qз			{q3}
Q4			{q4, q8}
Q 5			{ q1, q2, q3, q4, q5, q6, q8}
Q 6	{q ₇ }		{ q ₆ }
Q 7			{ q ₁ , q ₂ , q ₃ , q ₄ , q ₆ , q ₇ , q ₈ }
Q 8		{q ₉ }	{q ₈ }
Q 9			{ q 9, q 10}
Q 10		{q ₁₁ }	{q ₁₀ }
Q 11			{q ₁ , q ₂ , q ₃ , q ₄ , q ₅ , q ₆ , q ₈ , q ₁₁ }

Tabla 4.33

$$f(q_0, \lambda) = \{q_0, q_1, q_3, q_4, q_6, q_8\} = C_0$$

$$\begin{array}{ll} f(C_0,\,0)\colon & f(q_0,\,0)=\varnothing\\ & f(q_1,\,0)=\varnothing\\ & f(q_3,\,0)=\varnothing\\ & f(q_4,\,0)=\varnothing\\ & f(q_6,\,0)=\{q_7\}\\ & f(q_8,\,0)=\varnothing \end{array} \right\} = \begin{cases} con \, \text{transiciones } \lambda:\\ \{q_1,\,q_2,\,q_3,\,q_4,\,q_6,\,q_7,\,q_8\}=C_1 \end{cases}$$

$$\begin{array}{ll} \textit{f}(C_0,\,1) \colon & \textit{f}(q_0,\,1) = \varnothing \\ & \textit{f}(q_1,\,1) = \varnothing \\ & \textit{f}(q_3,\,1) = \varnothing \\ & \textit{f}(q_4,\,1) = \varnothing \\ & \textit{f}(q_6,\,1) = \varnothing \\ & \textit{f}(q_8,\,1) = \{q_9\} \end{array} \right\} = \{q_9\} \quad \text{con transiciones } \lambda \colon$$

$$f(C_{1},0): \quad f(q_{1},0) = \varnothing \\ f(q_{2},0) = \varnothing \\ f(q_{3},0) = \varnothing \\ f(q_{4},0) = \varnothing \\ f(q_{6},0) = \{q_{7}\} \\ f(q_{7},0) = \varnothing \\ f(q_{8},0) = \varnothing \\ \end{cases}$$

$$f(C_{1},1): \quad f(q_{1},1) = \varnothing \\ f(q_{2},1) = \varnothing \\ f(q_{3},1) = \varnothing \\ f(q_{4},1) = \varnothing \\ f(q_{4},1) = \varnothing \\ f(q_{1},1) = \varnothing \\ \end{cases}$$

$$f(C_{2},0): \quad f(q_{1},0) = \varnothing \\ f(q_{10},1) = \{q_{11}\} \\ \end{cases}$$

$$f(C_{3},0): \quad f(q_{1},0) = \varnothing \\ f(q_{1},0): \quad f(q_{1},0) = \varnothing \\ f(q_{1},0): \quad \varnothing \\ f(q_{2},0) = \varnothing \\ f(q_{3},0) = \varnothing \\ f(q_{4},0) = \varnothing \\ f(q_{5},0) = \varnothing \\ f(q_{6},0) = \{q_{7}\} \\ f(q_{8},0) = \varnothing \\ f(q_{11},0) = \varnothing \\ \end{cases}$$

$$f(C_{4},1): \quad f(q_{1},1) = \varnothing \\ f(q_{11},0) = \varnothing \\ \end{cases}$$

$$f(C_{4},1): \quad f(q_{1},1) = \varnothing \\ f(q_{11},1) = \varnothing \\ \end{cases}$$

$$f(q_{2}, 1) = \emptyset$$

 $f(q_{3}, 1) = \emptyset$
 $f(q_{4}, 1) = \emptyset$
 $f(q_{5}, 1) = \emptyset$
 $f(q_{6}, 1) = \emptyset$
 $f(q_{8}, 1) = \{q_{9}\}$
 $f(q_{11}, 1) = \emptyset$
 $f(q_{11}, 1) = \emptyset$

Luego, la Tabla 4.34 corresponde a la función de transición del AFD equivalente y su grafo se representa en la Figura 4.51.

f'	0	1
→*C ₀	C ₁	C_2
*C ₁	C ₁	C_2
C_2	С3	C ₄
C ₃	Сз	Сз
*C ₄	C ₁	C ₂

Tabla 4.34

Figura 4.51: Grafo del AFD equivalente.

AFD' =
$$(\{0,1\}, \{C_0, C_1, C_2, C_3, C_4\}, C_0, \{C_0, C_1, C_4\}, f')$$

c) Minimización del AFD

El AFD' es conexo, por lo que no hay estados que deban eliminarse.

El conjunto cociente inicial es:

$$Q/E_0 = \{\{C_2, C_3\}, \{C_0, C_1, C_4\}\} = \{P_1^0, P_2^0\},$$

donde: $P_1^0 = Q - \{C_0, C_1, C_4\} \text{ y } P_2^0 = \{C_0, C_1, C_4\},$

es decir: $P_1^0 = \{C_2, C_3\} \text{ y } P_2^0 = \{C_0, C_1, C_4\}$

A partir de la función de transición f', puede comprobarse que:

$$f'(C_2, 0) = C_3 \in P_1^0$$
 $f'(C_3, 0) = C_3 \in P_1^0$

$$f'(C_2, 1) = C_4 \in P_2^0$$
 $f'(C_3, 1) = C_3 \in P_1^0$

$$f'(C_0, 0) = C_1 \in P_2^0$$
 $f'(C_1, 0) = C_1 \in P_2^0$

$$f'(C_4, 0) = C_1 \in P_2^0$$
 $f'(C_0, 1) = C_2 \in P_1^0$

$$f'(C_1, 1) = C_2 \in P_1^0$$
 $f'(C_4, 1) = C_2 \in P_1^0$

Los elementos de P_1^0 tienen diferente comportamiento ante las entradas 0 y 1, por lo que se reconoce que no pertenecen a una misma clase. Por otra parte, los tres elementos de P_2^0 presentan igual comportamiento.

Luego, los estados C_2 y C_3 no son equivalentes entre sí y los estados C_0 , C_1 y C_4 sí lo son, es decir que:

$$Q/E_1 = \{\{C_2\}, \{C_3\}, \{C_0, C_1, C_4\}\} = \{P_1^1, P_2^1, P_3^1\},$$

donde:
$$P_1^1 = \{C_2\}, P_2^1 = \{C_3\} \ y P_3^1 = \{C_0, C_1, C_4\}$$

Nuevamente, a partir de la función de transición f' puede comprobarse que:

$$f'(C_0, 0) = C_1 \in P_3^1$$
 $f'(C_1, 0) = C_1 \in P_3^1$ $f'(C_4, 0) = C_1 \in P_3^1$

$$f'(C_0, 1) = C_2 \in P11$$
 $f'(C_1, 1) = C_2 \in P_1^1$ $f'(C_4, 1) = C_2 \in P_1^1$

Los elementos de P_3^1 tienen igual comportamiento ante las entradas $\bf 0$ y $\bf 1$, por lo que se reconoce que pertenecen a una misma clase.

Los estados C_0 , C_1 y C_4 son equivalentes, luego $Q/E_1 = Q/E_2$.

La Tabla 4.35 corresponde a la función de transición del AFD" mínimo y su grafo se representa en la Figura 4.52.

Tabla 4.35

Figura 4.52: Grafo del AFD mínimo.

AFD" =
$$(\{0,1\}, \{P_1, P_2, P_3\}, P_3, \{P_3\}, f")$$

Para la expresión regular L((a+bb)*+ab)

a) Construcción de Thompson

Figura 4.53

Figura 4.54

Figura 4.55

Figura 4.56

$$\label{eq:afnd} \begin{array}{l} \text{AFND} = \big(\ \{a, \ b\}, \ \{q_0, \ q_1, \ q_2, \ q_3, \ q_4, \ q_5, \ q_6, \ q_7, \ q_8, \ q_9, \ q_{10}, \ q_{11}, \\ \\ q_{12}, \ q_{13}, \ q_{14}, \ q_{15}, \ q_{16}, \ q_{17}, \ q_{18}, \ q_{19}\}, \ q_0, \ \{q_1\}, \ f \big) \end{array}$$

Nótese que, en las Figuras 4.53, 4.54 y 4.55, las flechas en líneas de puntos representan un AF en sí mismas. En el primer caso, se trata de un AF capaz de reconocer expresiones de la forma **(a+bb)*** y **ab**, en el segundo, expresiones de la forma **a+bb** y, en el último caso, expresiones de la forma **bb**.

b) Determinación del AFD equivalente al anterior

Construimos la Tabla 4.36 de la función de transición con las transiciones λ explícitas, las reflexivas y las transitivas (usando T y T $\dot{}$).

f	а	b	λ
→q ₀			{q0, q1, q2, q3, q4, q6, q10, q12, q14, q16}
*q1			{q1}
Q2			{ q1, q2, q3, q10, q12, q14, q16}
qз			{q ₁ , q ₃ }
Q4			{q ₄ , q ₆ }
Q 5			{ q ₁ , q ₅ }
Q 6	{q ₇ }		{qe}
Q7			{q ₇ , q ₈ }
q ₈		{q ₉ }	{gp}
q 9			{q ₁ , q ₅ , q ₉ }
Q 10			{q ₁₀ , q ₁₂ , q ₁₄ , q ₁₆ }
Q 11			{q1, q3, q10, q11, q12, q14, q16}
Q 12	{q ₁₃ }		{q ₁₂ }
Q 13			{q1, q3, q10, q11, q12, q13, q14, q16}
Q 14			{q14, q16}
Q 15			{q1, q3, q10, q11, q12, q14, q15, q16}
Q 16		{q ₁₇ }	{q ₁₆ }
Q 17			{q ₁₇ , q ₁₈ }
Q 18		{q ₁₉ }	{q ₁₈ }
Q 19			{q ₁ , q ₃ , q ₁₀ , q ₁₁ , q ₁₂ , q ₁₄ , q ₁₅ , q ₁₆ , q ₁₉ }

Tabla 4.36

$$\begin{array}{l} \textit{f}(q_0,\,\lambda) = \{q_0,\,q_1,\,q_2,\,q_3,\,q_4,\,q_6,\,q_{10},\,q_{12},\,q_{14},\,q_{16}\} = C_0 \\ \textit{f}(C_0,\,a) \colon & \textit{f}(q_0,\,a) = \varnothing \\ & \textit{f}(q_1,\,a) = \varnothing \\ & \textit{f}(q_2,\,a) = \varnothing \\ & \textit{f}(q_4,\,a) = \varnothing \\ & \textit{f}(q_6,\,a) = \{q_7\} \\ & \textit{f}(q_{10},\,a) = \varnothing \\ & \textit{f}(q_{12},\,a) = \{q_{13}\} \\ & \textit{f}(q_{14},\,a) = \varnothing \end{array} \right. \\ \begin{cases} q_7,\,q_{13}\} & \{q_1,\,q_3,\,q_7,\,q_8,\,q_{10},\,q_{11},\,q_{12},\,q_{13},\,q_{14},\,q_{16}\} = C_1 \\ & q_{12},\,q_{13},\,q_{14},\,q_{16}\} = C_1 \end{cases}$$

 $f(q_{16}, a) = \emptyset$

$$f(C_0,b): \quad f(q_0,b) = \varnothing \\ \quad f(q_1,b) = \varnothing \\ \quad f(q_2,b) = \varnothing \\ \quad f(q_3,b) = \varnothing \\ \quad f(q_4,b) = \varnothing \\ \quad f(q_6,b) = \varnothing \\ \quad f(q_{10},b) = \varnothing \\ \quad f(q_{10},b) = \varnothing \\ \quad f(q_{11},b) = \varnothing \\ \quad f(q_{11},b) = \varnothing \\ \quad f(q_{11},a) = \varnothing \\ \quad f(q_{11},a) = \varnothing \\ \quad f(q_{12},a) = \varnothing \\ \quad f(q_{11},a) = \varnothing \\ \quad f(q_{11},b) = \varnothing \\ \quad f(q_{12},b) = \varnothing \\ \quad f(q_{12},b) = \varnothing \\ \quad f(q_{12},b) = \varnothing \\ \quad f(q_{13},b) = \varnothing \\ \quad f(q_{14},b) = \varnothing \\ \quad f(q_{15},b) = (q_{15}) \\ \end{cases}$$

 $q_{16}, q_{19} = C_6$

$$f(C_3, a): f(q_1, a) = \varnothing \\ f(q_3, a) = \varnothing \\ f(q_1, a) = \varnothing \\ f(q_{12}, a) = \varnothing \\ f(q_{12}, a) = \varnothing \\ f(q_{13}, a) = \varnothing \\ f(q_{14}, a) = \varnothing \\ f(q_{14}, a) = \varnothing \\ f(q_{14}, a) = \varnothing \\ f(q_{16}, a) = \varnothing \\ f(q_{16}, a) = \varnothing \\ f(q_{16}, b) = \varnothing \\ f(q_{11}, b) = \varnothing \\ f(q_{11}, b) = \varnothing \\ f(q_{13}, b) = \varnothing \\ f(q_{14}, b) = \varnothing \\ f(q_{15}, a) = \varnothing \\ f(q_{15}, a) = \varnothing \\ f(q_{17}, a) = \varnothing \\ f(q_{17}, a) = \varnothing \\ f(q_{17}, a) = \varnothing \\ f(q_{11}, b) = \varnothing \\ f(q_{11}, b) = \varnothing \\ f(q_{11}, a) = \varnothing \\ f(q_{12}, a) = \varnothing \\ f(q_{11}, a) = \varnothing \\ f(q_{12}, a) = \varnothing \\ f(q_{11}, a) = \varnothing \\ f(q_{12}, a) = \varnothing \\ f(q_{13}, a) = \varnothing \\ f(q_{14}, a) = \varnothing \\ f(q_{14}, a) = \varnothing \\ f(q_{15}, a) = \varnothing \\ f(q_{16}, a) = \varnothing \\ f(q_{16}, a) = \varnothing \\ f(q_{11}, a) = \varnothing \\ f(q_{11}, a) = \varnothing \\ f(q_{11}, a) = \varnothing \\ f(q_{12}, a) = \varnothing \\ f(q_{11}, a) = \varnothing \\ f(q_{12}, a) = \varnothing \\ f(q_{13}, a) = \varnothing \\ f(q_{14}, a) = \varnothing \\ f(q_{15}, a) = \varnothing \\ f(q_{16}, a) = \varnothing \\ f(q_{17}, a) = \varnothing \\ f(q_{17}$$

Luego, la Tabla 4.37 corresponde a la función de transición del AFD equivalente y su grafo se representa en la Figura 4.57.

 $f(q_{19}, b) = \emptyset$

f'	а	b
→ *C ₀	C ₁	C_2
*C ₁	C ₃	C ₄
C_2	C ₅	C_6
*C ₃	Сз	C ₂
*C ₄	C ₅	C ₆
C ₅	C ₅	C ₅
*C ₆	Сз	C ₂

Tabla 4.37

$$AFD' = (\{a, b\}, \{C_0, C_1, C_2, C_3, C_4, C_5, C_6\}, C_0, \{C_0, C_1, C_3, C_4, C_6\}, f')$$

c) Minimización del AFD

El AFD' es conexo, por lo que no hay estados que deban eliminarse.

El conjunto cociente inicial es Q/E $_0$ = {{C $_2$, C $_5$ }, {C $_0$, C $_1$, C $_3$, C $_4$, C $_6$ }} = {P $_1$ ⁰, P $_2$ ⁰}, donde P $_1$ ⁰ = Q - {C $_0$, C $_1$, C $_3$, C $_4$, C $_6$ } y P $_2$ ⁰ = {C $_0$, C $_1$, C $_3$, C $_4$, C $_6$ }, es decir:

$$P_1{}^0 = \{C_2, \, C_5\} \ y \ P_2{}^0 = \{C_0, \, C_1, \, C_3, \, C_4, \, C_6\}$$

A partir de la función de transición f' puede comprobarse:

$$f'(C_2, a) = C_5 \in P_1^0$$

$$f'(C_5, a) = C_5 \in P_1^0$$

Figura 4.57: Grafo del AFD equivalente.

$$\begin{split} f'(C_2,\,b) &= C_6 \in P_2{}^0 & f'(C_5,\,b) = C_5 \in P_1{}^0 \\ f'(C_0,\,a) &= C_1 \in P_2{}^0 & f'(C_1,\,a) = C_3 \in P_2{}^0 \\ f'(C_3,\,a) &= C_3 \in P_2{}^0 & f'(C_0,\,b) = C_2 \in P_1{}^0 \\ f'(C_1,\,b) &= C_4 \in P_2{}^0 & f'(C_3,\,b) = C_2 \in P_1{}^0 \\ f'(C_4,\,a) &= C_5 \in P_1{}^0 & f'(C_6,\,a) = C_3 \in P_2{}^0 \\ f'(C_4,\,b) &= C_6 \in P_2{}^0 & f'(C_6,\,b) = C_2 \in P_1{}^0 \end{split}$$

Los elementos de P_1^0 tienen diferente comportamiento ante las entradas a y b, por lo que se reconoce que no pertenecen a una misma clase. Por otra parte, de los cinco elementos de P_2^0 solo C_0 , C_3 y C_6 , presentan igual comportamiento.

Luego, los estados C_2 y C_5 no son equivalentes entre sí, los estados C_0 , C_3 y C_6 sí lo son, pero no son equivalentes a C_1 y C_4 . Es decir que:

$$\begin{aligned} Q/E_1 &= \{\{C_1\}, \, \{C_2\}, \, \{C_4\}, \, \{C_5\}, \, \{C_0, \, C_3, \, C_6\}\} \\ &= \{P_1{}^1 \, , \, P_2{}^1 \, , \, P_3{}^1 \, , \, P_4{}^1 \, , \, P_5{}^1\}, \end{aligned}$$

donde:
$$P_1^1 = \{C_1\}, P_2^1 = \{C_2\}, P_3^1 = \{C_4\}, P_4^1 = \{C_5\} y P_5^1 = \{C_0, C_3, C_6\}$$

Nuevamente, a partir de la función de transición f' puede comprobarse que:

$$f'(C_0, a) = C_1 \in P_1^1 \qquad f'(C_3, a) = C_3 \in P_5^1$$

$$f'(C_6, a) = C_3 \in P_5^1 \qquad f'(C_0, b) = C_2 \in P_2^1$$

$$f'(C_3, b) = C_2 \in P_2^1 \qquad f'(C_6, b) = C_2 \in P_2^1$$

El elemento C_0 de P_5^1 tiene diferente comportamiento ante las entradas a y b, por lo que se reconoce que no pertenece a la misma clase que C_3 y C_6 . Luego, el estado C_0 no es equivalente con los estados C_3 y C_6 . Es decir que:

$$Q/E_2 = \{\{C_0\}, \{C_1\}, \{C_2\}, \{C_4\}, \{C_5\}, \{C_3, C_6\}\}$$
$$= \{P_1^2, P_2^2, P_3^2, P_4^2, P_5^2, P_6^2\},$$

donde:

Según la función de transición f':

$$f'(C_3, a) = C_3 \in P_6^0$$
 $f'(C_6, a) = C_3 \in P_6^0$ $f'(C_6, b) = C_2 \in P_3^0$

Los elementos de P_6^2 tienen igual comportamiento ante las entradas **a** y **b**, por lo que se reconoce que pertenecen a una misma clase.

Los estados C_3 y C_6 son equivalentes, luego Q/E₂ = Q/E₃.

La Tabla 4.38 corresponde a la función de transición del AFD" mínimo y su grafo se representa en la Figura 4.58.

Su definición formal:

AFD" =
$$(\{0,1\}, \{P_1, P_2, P_3, P_4, P_5, P_6\}, P_1, \{P_1, P_2, P_4, P_6\}, f'')$$

f''	а	b
→ *P₁	P_2	P_3
*P ₂	P_6	P_4
P_3	P_5	P_6
*P ₄	P ₅	P ₆
P ₅	P ₅	P ₅
*P ₆	P ₆	P ₃

Tabla 4.38

Figura 4.58: Grafo del AFD mínimo.