The inclusive $B \to \eta' X_s$ decay and $b \to sg^*$ form factors

Guey-Lin Lin[†]

Institute of Physics, National Chiao-Tung University, Hsin-chu 300, Taiwan E-mail: glin@cc.nctu.edu.tw

Abstract

We compute the branching ratio of inclusive $B \to \eta' X_s$ decay based upon the QCD anomaly mechanism: $b \to s + g^* \to s + g + \eta'$. To obtain a reliable $B \to \eta' X_s$ branching ratio, we calculate the $b \to s + g^*$ form factors up to the next-to-leading-logarithmic(NLL) approximation. We point out that the Standard Model prediction for $B \to \eta' X_s$ is consistent with the CLEO data, in contrast to the claims of some previous works.

1. Introduction

The observations of exclusive $B \rightarrow \eta' K[1]$ and inclusive $B \to \eta' X_s[2]$ decays with high momentum η' mesons have stimulated many theoretical activities [3,4,5,6,7,8,9,10]. The experimental fitting[2] shows that the dominant mechanism for the inclusive mode should be $b \rightarrow sg^* \rightarrow$ $sg\eta'[3,4]$ where the η' meson is produced via the anomalous $\eta' - g - g$ coupling. According to a previous analysis[4], this mechanism within the Standard Model(SM) can only account for 1/3 of the measured branching ratio: $\mathcal{B}(B \to \eta' X_s) =$ $[6.2 \pm 1.6 ({
m stat}) \pm 1.3 ({
m syst})^{+0.0}_{-1.5} ({
m bkg})] \times 10^{-4} [2]$ with $2.0 < p_{\eta'} < 2.7$ GeV. Furthermore, the subleading mechanism for $B \to \eta' X_s$, based upon four-quark operators of the effective weak Hamiltonian[5,6], is not sufficient to make up the above deficiency. Due to results of these analyses, the possibility of an enhanced $b \rightarrow sq$ or other mechanisms arising from physics beyond the Standard Model are raised to account for the above discrepancy in branching ratios[4, 6, 7]. In order to see if new physics should play any role in $B \to \eta' X_s$, one has to have a better understanding on the SM prediction. In this talk, we present a careful analysis on $B \rightarrow$ $\eta' X_s[11]$ using the next-to-leading order effective Hamiltonian. In section 2, we illustrate how to compute the off-shell $b \to sg^*$ form factors in such a framework. In particular, the QCD equation of motion is applied to transform the charge-radius form factor of $b \to sg^*$ into the structures of certain four-quark operators. Therefore the effective weak Hamiltonian is shown applicable for computing such

a form factor. In section 3, we calculate the branching ratio and the recoil spectrum of $B \to \eta' X_s$ decay. The results are found to be consistent with the CLEO measurement[2]. Section 4 is the conclusion.

2. QCD equation of motion and $b \rightarrow s + g^*$ form factors

The effective Hamiltonian[12] relevant to the $B \to \eta' X_s$ decay is given by:

$$H_{eff} = -\frac{G_F}{\sqrt{2}} V_{ts}^* V_{tb} (\sum_{i=1}^6 C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu)),$$
(1)

with

$$O_{1} = (\bar{s}_{i}c_{j})_{V-A}(\bar{c}_{j}b_{i})_{V-A},$$

$$O_{2} = (\bar{s}_{i}c_{i})_{V-A}(\bar{c}_{j}b_{j})_{V-A},$$

$$O_{3,5} = (\bar{s}_{i}b_{i})_{V-A} \sum_{q} (\bar{q}_{j}q_{j})_{V\mp A},$$

$$O_{4,6} = (\bar{s}_{i}b_{j})_{V-A} \sum_{q} (\bar{q}_{j}q_{i})_{V\mp A},$$

$$O_{8} = -\frac{g_{s}m_{b}}{4\pi^{2}} \bar{s}_{i}\sigma^{\mu\nu} P_{R} T_{ij}^{a} b_{j} G_{\mu\nu}^{a},$$
(2)

where $V \pm A \equiv 1 \pm \gamma_5$. Precisely speaking, this effective Hamiltonian can be used to calculate the off-shell $b \to sg^*$ form factors which are expressed as

$$\Gamma_{\mu}^{bsg} = -\frac{G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{g_s}{4\pi^2} (F_1 \bar{s} (q^2 \gamma_{\mu} - \not q q_{\mu}) L T^a b - i F_2 m_b \bar{s} \sigma_{\mu\nu} q^{\nu} R T^a b). \tag{3}$$

It is easily seen that $F_2 = -2C_8(\mu)$. However, the connection between F_1 and the effective Hamiltonian H_{eff} is less obvious. One may acquire some hints by rearranging the QCD penguin operators:

$$\sum_{i=3}^{6} C_i O_i = 2(C_4 + C_6) O_V - 2(C_4 - C_6) O_A + (C_3 + \frac{C_4}{N_c}) O_3 + (C_5 + \frac{C_6}{N_c}) O_5, (4)$$

where

$$O_A = \bar{s}\gamma_{\mu}(1-\gamma_5)T^ab\sum_q \bar{q}\gamma^{\mu}\gamma_5T^aq,$$

$$O_V = \bar{s}\gamma_{\mu}(1-\gamma_5)T^ab\sum_q \bar{q}\gamma^{\mu}T^aq.$$
 (5)

Since the light-quark bilinear in O_V carries the quantum number of a gluon, one expects[3] O_V give contributions to the $b \to sg^*$ form factors. In fact, by applying the QCD equation of motion, $D_\nu G_a^{\mu\nu} = g_s \sum \bar{q} \gamma^\mu T^a q$, we have $O_V = (1/g_s) \bar{s} \gamma_\mu (1-\gamma_5) T^a b D_\nu G_a^{\mu\nu}$. In this form, O_V clearly contributes to the charge-radius form factor F_1 . Let us denote this part of contribution as F_1^a . We have $F_1^a = 4\pi/\alpha_s \cdot (C_4(\mu) + C_6(\mu))$. We remark that, at the NLL level, F_1 should also receive contributions from one-loop matrix elements. The dominant contribution, denoted as F_1^b , arises from the operator O_2 where its charm-quark-pair meets to form a gluon. In the NDR scheme, we find $F_1^b = 4\pi/\alpha_s \cdot (\bar{C}_4(q^2, \mu) + \bar{C}_6(q^2, \mu))$ where q^2 is the invariant mass of the gluon and

$$\bar{C}_4(q^2, \mu) = \bar{C}_6(q^2, \mu)
= \frac{\alpha_s(\mu)}{8\pi} C_2(\mu) \left(\frac{2}{3} + G(m_c^2, q^2, \mu)\right), \quad (6)$$

with[13]

$$G(m_c^2, q^2, \mu) = 4 \int_0^1 x(1-x)dx \times \log\left(\frac{m_c^2 - x(1-x)q^2}{\mu^2}\right). (7)$$

We point out that F_1^b , the O_2 contribution, is not negligible. For $\mu=5$ GeV, one has $F_1^a=-4.03$ and $\mathrm{Re}(F_1^b)$ (the real part of F_1^b) ranging between -1.5 and -3 for $0.2 < q^2/m_b^2 < 0.7$. The peak value $\mathrm{Re}(F_1^b) \equiv -3$ occurs at the charmpair threshold $q^2=4m_c^2$. For $q^2>4m_c^2$, F_1^b develops an imaginary part whose value is roughly 2i. Concerning previous results on F_1 , we note that Ref. [3] intends to compue F_1 with effective weak

Hamiltonian. However, only the contribution by F_1^a is considered. Ref. [4] took $F_1 = -5$ which is a result of an one-loop calculation[15]. Clearly the q^2 dependencies of F_1 are also absent. As we shall see in the next section, the contribution by F_1^b , which is not included in previous works, can significantly enhance the $B \to \eta' X_s$ branching ratio such that SM prediction is consistent with the CLEO measurement.

3. The inclusive $B \to \eta' X_s$ decay

In this decay, the η' final state arises from the offshell gluon splitting, $g^* \to g\eta'$, where g^* is produced through $b \to sg^*$. The branching-ratio distribution of $b(p) \to s(p') + g(k) + \eta'(k')$ is [4]:

$$\frac{d^2 \mathcal{B}(b \to sg\eta')}{dxdy} \cong 0.2 \cos^2 \theta \left(\frac{g_s(\mu)}{4\pi^2}\right)^2 \frac{a_g^2(\mu) m_b^2}{4} \times \left(\left|\Delta F_1\right|^2 c_0 + \operatorname{Re}(\Delta F_1 F_2^*) \frac{c_1}{y} + \left|\Delta F_2\right|^2 \frac{c_2}{y^2}\right), \tag{8}$$

where $a_g(\mu) \equiv \sqrt{N_F}\alpha_s(\mu)/\pi f_{\eta'}$ is the strength of $\eta' - g - g$ vertex: $a_g \cos \theta \epsilon_{\mu\nu\alpha\beta} q^{\alpha} k^{\beta}$ with q and k the momenta of two gluons; $x \equiv (p' + k)^2/m_b^2$ and $y \equiv (k + k')^2/m_b^2$; c_0 , c_1 and c_2 are functions of x and y given by:

$$c_0 = \left[-x^2 y + (1-y)(y-x')(x+\frac{y}{2}-\frac{x'}{2}) \right],$$

$$c_2 = \left[x^2 y^2 - (1-y)(y-x')(xy-\frac{y}{2}+\frac{x'}{2}) \right],$$

$$c_1 = (1-y)(y-x')^2,$$
(9)

with $x' \equiv m_{\eta'}^2/m_b^2$; and the $\eta' - \eta$ mixing angle θ is taken to be $-15.4^o[16]$. Following the approach in Ref. [4], we evaluate the $\alpha_s(\mu)$ in a_g at the running scale $\mu^2 = q^2$. Taking $\mu = 5$ GeV for evaluating other scale-dependent quantities, we find $\mathcal{B}(b \to sg\eta') = 6.4 \times 10^{-4}$ with the cut $m_X \equiv \sqrt{(k+p')^2} \leq 2.35$ GeV imposed in the CLEO measurement[2]. This branching ratio is consistent with CLEO's measurement on $\mathcal{B}(B \to \eta' X_s)$ branching ratio[2]. Without the kinematic cut, we obtain $\mathcal{B}(b \to sg\eta') = 1.2 \times 10^{-3}$, which is much larger than 4.3×10^{-4} calculated previously[4]. Clearly this enhancement is due to the contribution of F_1^b , which increases the magnitude of F_1 and thus enhances the the branching ratio of $b \to sg\eta'$ according to Eq. (8). Since Ref.[3] also neglects the contribution by F_1^b , its prediction on $\mathcal{B}(b \to sg\eta')$

would be much smaller than ours if the $\eta' - g - g$ coupling there is also evaluated at the running scale $\mu^2 = q^2$. However, the prediction by Ref. [3] is comparable to ours, since, in that work, the $\alpha_s(\mu)$ in a_g is evaluated at the lowest possible scale $\mu^2 = m_{\eta'}^2$, and the interference between the contributions by F_1 and F_2 is constructive rather than destructive reported here and in Ref.[4].

To ascertain our calculation, we also check the μ dependence of the $b \to sg\eta'$ branching ratio. Using NDR scheme with $\mu = 2.5$ GeV and imposing the kinematic cut $m_X \leq 2.35$ GeV, we find $\mathcal{B}(b \to sg\eta') = 7.1 \times 10^{-4}$, which is only 10% larger than the branching ratio obtained at $\mu = 5$ GeV. This insensitivity to the scale-choice is reassuring. We also obtain the spectrum $d\mathcal{B}(b \to sg\eta')/dm_X$ which has been shown in Ref.[11] and will not be displayed here. The peak of the spectrum corresponds to $m_X \approx 2.4$ GeV. As pointed out in Ref. [2], this type of spectrum gives the best fit to the CLEO data.

4. Concluding remarks

We have calculated the branching ratio of $b \to sg\eta'$ by including the NLL correction to the $b \rightarrow sg^*$ form factors. By evaluating the $\eta' - g - g$ coupling at the running scale $\mu = q^2$ and cutting the recoilmass m_X at 2.35 GeV, we obtained $\mathcal{B}(\bar{b} \to sg\eta') =$ $(6.4-7.1)\times 10^{-4}$ depending on the choice of the renormalization scale for evaluating the $b \rightarrow sg^*$ form factors. We have not addressed the possible form-factor suppression of the $\eta' - g - g$ vertex, which occurs as the gluons attached to the vertex go farther off-shell[3, 4, 6]. So far it remains unclear how much the form-factor suppression might be. However, comparing our prediction with the CLEO measurement on $\mathcal{B}(B \to \eta' X_s)$, which still has a large error bar, it remains possible that the anomaly-induced process $b \to sg\eta'$ could account for the CLEO data within the framework of the Standard Model.

5. Acknowledgments

This work is supported by National Science Council of R.O.C. under the grant number NSC 87-2112-M-009-038, and National Center for Theoretical Sciences of R.O.C. under the topical program: PQCD, B and CP.

References

[1] CLEO collaboration, B.H. Behrens et al. 1998 Phys. Rev. Lett. 80 3710.

- [2] CLEO Collaboration T. E. Browder et al. 1998 Phys. Rev. Lett. 81 1786.
- [3] D. Atwood and A. Soni 1997 Phys. Lett. B 405 150.
- [4] W.S. Hou and B. Tseng 1998 Phys. Rev. Lett. 80 434.
- [5] A. Datta, X.-G. He, and S. Pakvasa 1998 Phys. Lett. B 419 369.
- [6] A. L. Kagan and A. Petrov, Preprint hep-ph/9707354; Preprint hep-ph/9806266.
- H. Fritzsch 1997 Phys. Lett. B 415 83; X.-G.
 He, W.-S. Hou and C.S. Huang 1998 Phys. Lett. B 429 99.
- [8] H.-Y. Cheng, and B. Tseng 1998 Phys. Rev.
 D 58 094005; A. Ali, J. Chay, C. Greub and P. Ko 1998 Phys. Lett. B424 161; N. Deshpande, B. Dutta and S. Oh 1998 Phys. Rev. D 57 5723.
- [9] A. Ali, G. Kramer and C.-D. Lu 1998 Phys. Rev. D 58 094009.
- [10] I. Halperin and A. Zhitnitsky 1998 Phys. Rev. Lett. 80 438; F. Araki, M. Musakonov and H. Toki 1999 Phys. Rev. D 59 037501; D.S. Du, Y.-D. Yang and G.-H. Zhu 1999 Phys. Rev. Lett. D 59 014007; M. Ahmady, E. Kou and A. Sugamoto 1998 Phys. Rev. D 58 014015; D.S. Du, C.S. Kim and Y.-D. Yang 1998 Phys. Lett. B 426 133; F. Yuan and K.-T. Chao 1997 Phys. Rev. D 56 2495; A. Dighe, M. Gronau and J. Rosner 1997 Phys. Rev. Lett. 79 4333.
- [11] X.-G. He and G.-L. Lin 1999 Phys. Lett. B 454 123.
- [12] For an extensive review on the subject of effective Hamiltonian, see G. Buchalla, A. J. Buras and M. E. Lautenbacher 1996 Review of Modern Physics 68 1125, which contains a detailed list of original literatures.
- [13] In the original article[11], we use the scheme-independent Wilson coefficient[14]. Hence the contribution of one-loop matrix element is also distinct. In particular, the constant added to $G(m_c^2, q^2, \mu)$ in Eq. (6) is $\frac{10}{9}$ rather than $\frac{2}{3}$. For detail, we refer the readers to Eqs. (4) and (5) of Ref.[11]. Note that the r.h.s. of Eq. (4) in Ref.[11] should be $P_s(q^2, \mu)$. The extra minus sign is a typing error.
- [14] A. Buras, M. Jamin, M. Lautenbacher and P.Weisz 1992 Nucl. Phys. B 370 69; N. G. Deshpande and X.-G. He 1994 Phys. Lett. B 336 471.
- [15] W. S. Hou, A. Soni and H. Steger 1987 Phys. Rev. Lett. 59 1521.
- [16] T. Feldmann, P. Kroll and B. Stech 1998 Phys. Rev. D 58 114006.