中国科学技术大学数学科学学院 2021—2022学年第一学期考试试卷 ■A卷 □B卷

	课程名称考试时间	202	22年1月	老	星编号 _	一 闭 学院_	卷	
	姓名		字号				7	
		题号 得分	_	=	Ξ	总分		
一. 填空题	(30分)							
$1. \ln \frac{1+i}{\sqrt{2}}$	=							
o #h44	11 1 左	正# f(~	$=\frac{1}{z}$ 下的 $($	多 头			(写	出表达式
4. 如果函数 arg $f(z)$		(填写"	是"或"否	")为调和	∈ C : Re 和函数.	w > 0	的解析函	数 m,n,l { 数,那么Ē
$\operatorname{arg} f(z)$	$= y^2 - x^2 +$	(填写" 2021y, 利	是"或"否 邓么它的共转	")为调和	∈ C : Re 和函数. 数 υ(x, y)	w > 0}) 为	的解析函	
$\arg f(z)$	$= y^2 - x^2 +$ $\sum_{n=0}^{\infty} a_n z^n$ 的地	(填写" 2021y, 荆 (敛半径	是"或"否 邓么它的共转 为 <i>R</i> , 那么给	")为调和 m 。 m 调和 m 。 m 0	$\in \mathbb{C}: \mathbb{R}$ ϵ 和函数。 数 $v(x,y)$	w > 0} 为 n 的收敛	的解析函	数,那么Ē
arg $f(z)$	$= y^2 - x^2 +$ $\sum_{n=0}^{\infty} a_n z^n $ 的以 $\frac{e^{\frac{3}{2-2}}}{z(1 - e^{-z})}$	(填写" 2021y, 荆 (敛半径	是"或"否 邓么它的共转 为 <i>R</i> , 那么给	")为调和 m 。 m 调和 m 。 m 0	$\in \mathbb{C}: \mathbb{R}$ ϵ 和函数。 数 $v(x,y)$	w > 0} 为 n 的收敛	的解析函	数,那么Ē
$\operatorname{arg} f(z)$	$= y^2 - x^2 +$ $\sum_{n=0}^{\infty} a_n z^n $ 的以 $\frac{e^{\frac{3}{2-2}}}{z(1 - e^{-z})}$	(填写" 2021y, 荆 (敛半径	是"或"否 邓么它的共转 为 <i>R</i> , 那么给	")为调和 m 。 m 调和 m 。 m 0	$\in \mathbb{C}: \mathbb{R}$ ϵ 和函数。 数 $v(x,y)$	w > 0} 为 n 的收敛	的解析函	数,那么Ē
$\arg f(z)$	$= y^{2} - x^{2} +$ $\sum_{n=0}^{\infty} a_{n} z^{n}$ 的地 $\frac{e^{\frac{3}{z-2}}}{z(1 - e^{-z})}$	(填写" 2021y, 那 (敛半径 , 给出 f	是"或"否 邓么它的共转 为 <i>R</i> , 那么给	")为调和 m 。 m 调和 m 。 m 0	$\in \mathbb{C}: \mathbb{R}$ ϵ 和函数。 数 $v(x,y)$	w > 0} 为 n 的收敛	的解析函	数,那么Ē
$\arg f(z)$	$= y^2 - x^2 +$ $\sum_{n=0}^{\infty} a_n z^n \text{ for } y$ $\frac{e^{\frac{3}{z-2}}}{z(1 - e^{-z})}$ \vdots $\cos \frac{1}{z - 2}, 2$	(填写" 2021y, 刑 文敛半径 , 给出 f ————	是"或"否 邓么它的共转 为 R, 那么给 (z) 的全体	")为调和 m 。 m 调和 m 。 m 0	$\in \mathbb{C}: \mathbb{R}$ ϵ 和函数。 数 $v(x,y)$	w > 0} 为 n 的收敛	的解析函	数,那么Ē
$\arg f(z)$	$= y^2 - x^2 +$ $\sum_{n=0}^{\infty} a_n z^n \text{ for } y$ $\frac{e^{\frac{3}{z-2}}}{z(1 - e^{-z})}$ \vdots $\cos \frac{1}{z - 2}, 2$	(填写" 2021y, 刑 文敛半径 , 给出 f ————	是"或"否 邓么它的共转 为 R, 那么给 (z) 的全体	")为调和 m 。 m 调和 m 。 m 0	$\in \mathbb{C}: \mathbb{R}$ ϵ 和函数。 数 $v(x,y)$	w > 0} 为 n 的收敛	的解析函	数,那么Ē

- 二. 计算题(40分) (本题涉及的闭曲线方向都是取曲线正向)
- 1. 求函数 $f(z) = \frac{z^2}{(z+1)^2}$ 在 z = 0 处泰勒 (Taylor) 展开,并且给出所得幂级数的收敛 半径.
- 2. 将函数 $f(z) = \frac{z^2 2z + 5}{(z-2)(z^2+1)}$ 在区域 $\{z \in \mathbb{C} : 1 < |z| < 2\}$ 内展成罗朗 (Laurent) 级数.
- 3. 设 $D=\{z\in\mathbb{C}: {\rm Im}\ z>-\frac{1}{2}\},$ 设 γ 为区域 D 内从 0 到 1 的不经过 i 任意简单曲线, 计算积分 $\int_{\gamma}\frac{dz}{1+z^2}.$
- 4. 计算积分 $\int_C \frac{e^z dz}{z(1-z)^3}$, 其中 C 为不过点 0 和 1 的简单闭曲线.
- 5. 计算积分 $\int_0^\pi \cot(x+1-2i)dx.$
- 6. 利用留数计算积分 $\int_0^{+\infty} \frac{\sin^3 x}{x^3} dx$.
- 三. 综合题 (共 30 分) (本题涉及的闭曲线方向都是取曲线正向)
- 1. 利用拉氏 (Laplace) 变换求解微分方程:

$$\begin{cases} y'(t) - 4y(t) + 4 \int_0^t y(t)dt = \frac{t^3}{3} \\ y(0) = 0 \end{cases}$$

2. 设 $f:D\to\mathbb{C}$ 为区域 D 内的解析函数, γ 为 D 内简单闭曲线,其内部包含于 D. 设 a 为 f(z) 在 γ 内部的 n 阶零点,b 为 f(z) 在 γ 内部的 m 阶极点,f(z) 在 γ 内除了 b 外没有其它奇点,在 γ 上没有零点和奇点. 证明:

$$\int_{\gamma} \frac{f'(z)}{f(z)} \sin z dz = 2\pi i \left(n \sin a - m \sin b \right).$$

- 3. 求一保形变换 w=f(z), 将区域 $D=\{z\in\mathbb{C}:|z-1|>1,|z|<2\}$ 映为单位圆盘 |w|<1,并且满足 f(-1)=0. (请画出必要的示意图)
- 4. 设函数 f(z) 在|z|<2 内解析,且满足 $|f(e^{i\theta})|\leq 2, 0\leq \theta\leq \pi$; $|f(e^{i\theta})|\leq 3, \pi\leq \theta\leq 2\pi$. 证明:

$$|f(0)| \le \sqrt{6}.$$