PYTORIAL TUTORIAL

NTHU Computer Vision Lab

Alex Lin

Deep Learning Frameworks

Caffe

DEEPLEARNING 4J

Why Using Deep Learning Frameworks?

- 1. Easily build big computational graphs
- 2. Easily compute gradients in computational graphs
- 3. Run on GPU to accelerate computation

Computational Graph Weight Weight Y = XW + b

Introduction

- PyTorch is an open source machine learning library for Python, based on Torch.
- It's developed by Facebook's artificial-intelligence research group

Using Colab with Free "GPU"

Notebook settings

Tutorial Documents

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

PyTorch Tensors vs Numpy arrays

 Tensors are similar to NumPy's ndarrays, with the addition being that Tensors can also be used on a GPU to accelerate computing.

Converting a Torch Tensor to a NumPy Array

Converting a Torch Tensor to a NumPy Array

```
a = torch.ones(5)
print(a)
```

Out:

```
tensor([1., 1., 1., 1., 1.])
```

```
b = a.numpy()
print(b)
```

Out:

```
[1. 1. 1. 1. 1.]
```

See how the numpy array changed in value.

```
a.add_(1)
print(a)
print(b)
```

Out:

```
tensor([2., 2., 2., 2., 2.])
[2. 2. 2. 2. 2.]
```

The Torch Tensor and NumPy array will share their underlying memory locations (if the Torch Tensor is on *CPU*), and changing one will change the other.

Converting NumPy Array to Torch Tensor

See how changing the np array changed the Torch Tensor automatically

```
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
```

Out:

```
[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
```

How Gradient Descent actually works?

Goal

- In the following examples, you will learn
 - How numpy array is helpful in doing forward/backward pass
 - Why Python is modular, high level....etc.,
 - How gradient flow is related to back-propagation
 - How Neural Nets actually work
 - How Relu works and when it is dead
 - How back-propagation is actually done with and without mini-batch.
 - Autograd provided by PyTorch is so convenient

1st example: two layers with 1 input and 1 output

- There is a relu in y₁
- $y_1=w_1x$ and $y_2=w_2y_1$
- In the learning process, both w_1 and w_2 are adjusted in hope that y_2 approaches its ground-truth \overline{y}_2 .
- Here, we adopt 2^{nd} norm for the loss function.
- Loss= $(\bar{y_2} y_2)^2$.
- By chain rule, $\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial y_2} \frac{\partial y_2}{\partial w_2} = 2(\overline{y_2} y_2) y_1, \frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y_2} \frac{\partial y_2}{\partial y_1} \frac{\partial y_1}{\partial w_1} = 2(\overline{y_2} y_2) w_2 x_1$
- $w_2 = w_2 \alpha \frac{\partial L}{\partial w_2}$, $w_1 = w_1 \alpha \frac{\partial L}{\partial w_1}$ where $\alpha =$ learning rate

Python code

for t in range(iterations):

1st layer inference

```
y1 = x.dot(w1)
                                                                                          2.5
# doing relu for the output of 1st layer
                                                                                       alues
2.0
y1 \text{ relu} = \text{np.maximum}(y1, 0)
                                                                                         1.5
# 2nd layer inference
                                                                                         1.0
y2_pred = y1_relu.dot(w2)
                                                                                         0.5
# Compute the loss
                                                                                         0.0
loss = np.square(y2\_pred - y2\_GT).sum()
                                                                                                       100
# Backprop to compute gradients of w1 and w2 with respect to loss
grad_y2_pred = 2.0 * (y2_pred - y2_GT) # d_loss/d_y2
grad_w2 = y1_relu.dot(grad_y2_pred) # d_loss/d_w2 = (d_loss/d_y2)*(d_y2/d_w2)
grad_y1_relu = grad_y2_pred.dot(w2) # d_loss/d_y1 = (d_loss/d_y2)*(d_y2/d_y1)
grad_y1 = grad_y1_relu.copy()
grad y1[y1 < 0] = 0 # only weightings through relu would be conducted back pass
grad w1 = x.dot(grad y1) # d loss/d w1=(d loss/d y2)*(d y2/d y1)*(d y1/d w1)=(d loss/d y1)*(d y1/d w1)
# Update weights
w1 -= learning_rate * grad_w1
w2 -= learning rate * grad w2
```

initial input=0.500000 goal of learning=2.000000

Discussion

• In what situation would this neural net fail?

2nd example: Two layers with multiple-dimensional input and output

- Every neuron in $\mathbf{n} \mathbf{y}_1$ and \mathbf{y}_2 accompanies a relu
- x (1-by-k), y_1 (1-by-n) and y_2 (1-by-m) are vectors; w_1 (k-by-n) w_2 (n-by-m) are matrices.
- $y_{1=} x w_1$ and $y_2 = y_1 w_2$
- In the learning process, both w_1 and w_2 are adjusted in hope that y_2 approaches its ground-truth \overline{y}_2 .
- Here, we adopt 2nd norm for the loss function.
- Loss= $(\overline{y_2} y_2)^2$.
- By chain rule, $\frac{\partial L}{\partial w_2} = \frac{\partial y_2}{\partial w_2} \frac{\partial L}{\partial y_2} = 2y_1^t (\overline{y_2} y_2), \frac{\partial L}{\partial w_1} = \frac{\partial y_1}{\partial w_1} \frac{\partial L}{\partial y_2} \frac{\partial y_2}{\partial y_1} = 2x^t (\overline{y_2} y_2) w_2^t$
- $\mathbf{w}_2 = \mathbf{w}_2 \alpha \frac{\partial L}{\partial \mathbf{w}_2}$, $\mathbf{w}_1 = \mathbf{w}_1 \alpha \frac{\partial L}{\partial \mathbf{w}_1}$ where $\alpha =$ learning rate

Python code

```
for t in range(iterations):
                                                                                    60000
 # 1st layer inference
                                                                                055
 y1 = x.dot(w1)
                                                                                    40000
    # doing relu for the output of 1st layer
 v1 relu = np.maximum(v1, 0) # result is a row vector
 # store the output of the 1st layer
                                                                                    20000
 v1_history[t]= np.mean(v1_relu)
 # performing 2nd layer computation
 v_{2} pred = v_{1} relu.dot(v_{2}) # result is a row vector
 # Compute and print loss
 loss = np.square(y2\_pred - y).sum()
 # Backprop to compute gradients of w1 and w2 with respect to loss
 grad_y2_pred = 2.0 * (y2_pred - y) # d_loss/d_y2
 grad_w2 = y1_relu.T.dot(grad_y2_pred) \# (d_y2/d_w2) * (d_loss/d_y2) = d_loss/d_w2
  grad_y1_relu = grad_y2_pred.dot(w2.T) # (d_loss/d_y2)*(d_y2/d_y1)=d_loss/d_y1
  grad_y1 = grad_y1_relu.copy()
 grad_y1[y1 < 0] = 0 # only numbers through relu would be conducted backward pass
  # Update weights
  w1 -= learning_rate * grad_w1
  w2 -= learning_rate * grad_w2
```


Discussion

• What are the outputs if dead Relu happens?

3rd example: Two layers with multiple-dimensional inputs and outputs (mini-batch)

- Every neuron in n_{y_1} and y_2 accompanies a relu
- x (N-by-k), y_1 (N-by-n) and y_2 (N-by-m) are vectors; w_1 (k-by-n) w_2 (n-by-m) are matrices.
- $y_{1=} x w_1$ and $y_2 = y_1 w_2$
- In the learning process, both w_1 and w_2 are adjusted in hope that y_2 approaches its ground-truth \overline{y}_2 .
- Here, we adopt 2nd norm for the loss function.
- Loss= $(\bar{y_2} y_2)^2$.
- By chain rule, $\frac{\partial L}{\partial w_2} = \frac{\partial y_2}{\partial w_2} \frac{\partial L}{\partial y_2} = 2y_1^t (\overline{y_2} y_2), \frac{\partial L}{\partial w_1} = \frac{\partial y_1}{\partial w_1} \frac{\partial L}{\partial y_2} \frac{\partial y_2}{\partial y_1} = 2x^t (\overline{y_2} y_2) w_2^t$
- $\mathbf{w}_2 = \mathbf{w}_2 \alpha \frac{\partial L}{\partial \mathbf{w}_2}$, $\mathbf{w}_1 = \mathbf{w}_1 \alpha \frac{\partial L}{\partial \mathbf{w}_1}$ where $\alpha =$ learning rate

Python code

```
for t in range(iterations):
 # 1st layer inference
 y1 = x.dot(w1)
    # doing relu for the output of 1st layer
 y1_relu = np.maximum(y1, 0) # result is a matrix
 # store the output of the 1st layer
 y1_history[t]= np.mean(y1_relu)
 # performing 2nd layer computation
 v_{2} pred = v_{1} relu.dot(v_{2}) # result is a row vector
 # Compute and print loss
 loss = np.square(y2\_pred - y2\_GT).sum()
 # Backprop to compute gradients of w1 and w2 with respect to loss
 grad_y2_pred = 2.0 * (y2_pred - y2_GT) # d_loss/d_y2
 grad_w2 = y1_relu.T.dot(grad_y2_pred) \# (d_y2/d_w2) * (d_loss/d_y2) = d_loss/d_w2
  grad_y1_relu = grad_y2_pred.dot(w2.T) # (d_loss/d_y2)*(d_y2/d_y1)=d_loss/d_y1
  grad_y1 = grad_y1_relu.copy()
 grad_y1[y1 < 0] = 0 # only numbers through relu would be conducted backward pass
  # Update weights
  w1 -= learning_rate * grad_w1
  w2 -= learning_rate * grad_w2
```

Autograd is powerful

- Derivation of back-propagation is prone to fail
- PyTorch provides Autograd for Tensors!

4th example: using Autograd in the 3rd example

```
dtype = torch.float
device = torch.device("cuda") # device = torch.device("cpu")
x = torch.ones(10,10, device=device, dtype=dtype)
y2_GT = torch.randn(10, 10, device=device, dtype=dtype)
for t in range(iterations):
  # 1st layer inference
  v1 = x.mm(w1)
  # doing relu for the output of 1st layer
  y1_relu = y1.clamp(min=0) # result is a matrix
  # performing 2nd layer computation
  v2 \text{ pred} = v1 \text{ relu.mm}(w2)
  # Compute and print loss
  loss = (y2\_pred - y2\_GT).pow(2).sum()
  loss.backward()
  with torch.no grad():
    w1 -= learning rate * w1.grad
    w2 -= learning_rate * w2.grad
    # Manually zero the gradients after updating weights
    w1.grad.zero_()
    w2.grad.zero_()
```


Discussion

- Is lower learning rate always better?
- How can you manually produce dead Relu or gradient explosion in terms of hyperparameters?
- Could initial weightings be 0?
- How could we determine "appropriate" initial weightings?

Thank you!