Proofs and derivations for Calculus I

Stefan Ehin

October 22, 2022

Contents

1	Diff	ferential equations	3
	1.1	Separable	4
		1.1.1 Function of x as a multiplier	4
	1.2	Integration by parts	5
	1.3	Linear	6
		1.3.1 First order	6

1 Differential equations

1.1 Separable

1.1.1 Function of x as a multiplier

$$p_0(x)y' + p_1(x)y = 0 \qquad \qquad \left| \frac{1}{p_0(x)} \right|$$

$$y' + p(x)y = 0 \qquad \qquad \left| p(x) = \frac{p_1(x)}{p_0(x)} \right|$$

$$\frac{dy}{dx} + p(x)y = 0 \qquad \qquad \left| \frac{dx}{y} \right|$$

$$\frac{dy}{y} + p(x)dx = 0$$

$$\ln |y| = C_0 - \int p(x)dx$$

$$|y| = e^{C_0 - \int p(x)dx}$$

$$|y| = e^{C_0} e^{-\int p(x)dx}$$

$$y = C e^{-\int p(x)dx}$$

$$C = \pm e^{C_0}$$

1.2 Integration by parts

$$(uv)' = u'v + uv'$$

$$\int (uv)' = \int u'v + \int uv'$$

$$uv = \int u'v + \int uv'$$

$$\int u'v = uv - \int uv'$$

1.3 Linear

1.3.1 First order

1.3.1.1 Particular solution

$$y' + p(x)y = f(x)$$
 (recall)

$$(e^{-\int p(x)dx})' = -p(x)e^{-\int p(x)dx}$$
 (notice)

$$y_* = C(x)e^{-\int p(x)dx}$$
 (consider)

$$y' + p(x)y = f(x)$$

$$(C(x)e^{-\int p(x)dx})' + p(x)C(x)e^{-\int p(x)dx} = f(x)$$

$$C'(x)e^{-\int p(x)dx} + C(x)(-p(x))e^{-\int p(x)dx} + p(x)C(x)e^{-\int p(x)dx} = f(x)$$

$$C'(x)e^{-\int p(x)dx} = f(x)$$

$$C(x) = \int f(x)e^{\int p(x)dx}$$

$$y_* = C(x)e^{-\int p(x)dx}$$

$$y_* = e^{-\int p(x)dx} \int f(x)e^{\int p(x)dx}$$