PRACTICE PRELIM 2

VERSION:	DELTA-2
----------	---------

NAME:

- 1. Prelim 2 has two problems and is worth a total of XX points.
- 2. You may use your course notes (on the computer, iPad, etc., or paper) or other course materials, e.g., discussion problems, to formulate your solutions.
- 3. Do not consult with any other person regarding the prelim (except the TAs or JV), or use *any form of electronic communication* to discuss the prelim questions. Violation of this policy will result in a ZERO for the prelim.
- 4. Do not consult the interwebs to search for the prelim questions/solutions. Violation of this policy will result in a ZERO for the prelim.
- 5. Show your work and state all assumptions or simplifications.
- 6. Good luck!

Figure 1: Pressure (bar) versus composition (x_1 and y_1) for a binary mixture of CHF $_3(1)$ /C $_2$ F $_6(2)$ computed assuming ideal liquid and vapor phases.

1. (XX points) Cornell Inc. was hired to design a flash separation process for a binary $(\mathcal{M}=2)$ mixture of CHF₃(1)/C₂F₆(2). The engineering team performed initial design calculations using Raoult's law for $z_1 = 0.42$ (Fig. 1). Let the saturation pressure of component i be described by the Antoine equation:

$$\log_{10} \left(P_i^{sat} \left[\text{bar} \right] \right) = A - \frac{B}{C + T[K]} \tag{1}$$

where the Antoine parameters are given by:

Table 1: Antoine parameters for the Flash problem.

Species	А	В	С
CHF ₃	4.45	718.1	-22.01
C_2F_6	3.980	677.1	-24.51

Assumptions: (i) the Flash drum operates at steady-state; (ii) vapor-liquid equilibrium occurs everywhere inside the drum at some (T,P); (iii) treat both the vapor and liquid phases as ideal; (iv) the Flash drum is well-mixed; (v) a single liquid feed (stream 1) enters, and a vapor (stream 2) and liquid (stream 3) exit the drum; (vi) R = 8.314×10^{-2} L bar K⁻¹ mol⁻¹.

- a) (XX points) What temperature T (K) is the Flash drum operating at? (place your estimated T in Table 2).
- b) (XX points) *Graphically* estimate the mising values in Table 2 assuming the Flash drum operates at P = 10.5 bar with a input feed rate of \dot{F} = 10 mol/t and z_1 = 0.42.
- c) (XX points) *Analytically* check the graphical estimates of \dot{L} and \dot{V} using the pressure summation expression:

$$\sum_{i \in \mathcal{M}} z_i \left[\frac{P_i^{sat}}{P} \left(\frac{\dot{V}}{\dot{F}} \right) + \frac{\dot{L}}{\dot{F}} \right]^{-1} = 1$$
 (2)

If this expression is *significantly* different than 1 (greater than \pm 10% difference), please re-estimate your values (show your work).

Table 2: State table for the Flash problem.

Stream	State	T (K)	$\dot{n}_{s,T}$ (mol/t)	$x_1 \text{ or } y_1$	$x_2 \text{ or } y_2$	P (bar)
1	L	N/A	10	0.42	0.58	N/A
2	V					
3	L					

Figure 2: Temperature (${}^{\circ}C$) versus composition (x_1 or y_1) for a binary mixture of Acetone(1)/Water(2) computed assuming ideal liquid and vapor phases.

2. (XX points) Cornell Inc. was hired to design a flash separation process for a binary $(\mathcal{M}=2)$ mixture of Acetone(1)/Water(2). The engineering team performed initial design calculations assuming an ideal liquid and vapor phase for $z_1=0.50$ (Fig. 2). Let the saturation pressure of component i be described by the Antoine equation:

$$\ln\left(P_i^{sat}\right) = A - \frac{B}{C+T} \tag{3}$$

where P_i^{sat} has units of kPa and the temperature T has units of ${}^{\circ}C$. The Antoine parameters are given by:

Table 3: Antoine parameters for the Acetone/Water flash problem.

Species	Α	В	С
Acetone	14.31	2756.22	228.06
Water	16.39	3885.7	230.17

Assumptions: (i) the Flash drum operates at steady-state; (ii) vapor-liquid equilibrium occurs everywhere inside the drum at some (T,P); (iii) treat both the vapor and liquid phases as ideal; (iv) the Flash drum is well-mixed; (v) a single liquid feed (stream 1) enters, and a vapor (stream 2) and liquid (stream 3) exit the drum; (vi) $R = 8.314 L kPa K^{-1} mol^{-1}$.

- a) (XX points) What pressure is the Flash drum operating at? (place your estimated pressure value in Table 4).
- b) (XX points) Estimate the missing values in Table 4 assuming the Flash drum operates at at T = 80°C with a input feed rate of \dot{F} = 10 mol/t and z_1 = 0.50.

Table 4: State table for the Acetone/Water flash problem.

Stream	State	P (kPa)	$\dot{n}_{s,T}$ (mol/t)	$x_1 \text{ or } y_1$	$x_2 \text{ or } y_2$	T (°C)
1	L	N/A	10	0.50		N/A
2	V					
3	L					