So far...

Building Blocks

Insert	MoveMin	Merge
1	1	↓
Insertion Sort	Selection Sort	Merge Sort
O(n²)	O(n²)	O(n log n)

Why do we need sorting?

- Searching in sorted array vs unsorted array
- Finding a closest pair in *n* numbers
- Finding duplicates in the data
- Determining frequency distribution
- What is the k—th largest element in the data?

Characteristics of a Nice Sorting Algorithm

A decent sorting algorithms should be:

- Accurate
- Efficient
- Stable (take care of the satellite data)
- In-place

Permutations

- How many possible permutations are there for a sequence of n numbers?
- In sorting, we are interested in a specific permutation such that:

$$a_1 < a_2 < a_3 < ... < a_n$$

• Crude way to search for the desired permutation out of all possible permutations will take --- time?

Divide / Partition

Given an input array A[1..16] as given below: 503,87,512,61,908,170,897,275,653,426,154,509,612,677,765,703

The output should look like: 87,61,170,275,426,154,503,512,908,897,653,509,612,677,765,703 87,61,170,275,426,154,503,512,908,897,653,509,612,677,765,703

- Pivot / key
- Please write an efficient building block to do partitioning
- How can we use this building block to do sorting?
- Complexity?

Quick Sort

- Worst case complexity of quick sort?
- Best case complexity of quick sort?
- Please figure out exact scenarios for both of the above cases
- Stable?
- In-place?

Problems

Confusion

Does the complexity of a sorting algorithm change if we shift from ascending sort to descending sort?

Adding to Confusion

Given an unsorted array A of n numbers, what would be cost of answering following question:

- Find the pair $x, y \in A$ (arbitrary) that maximizes |x y|.
- **②** Find the pair $x, y \in A$ (arbitrary) that minimizes |x y|.
- **3** Find the pair $x, y \in A$ (sorted) that maximizes |x y|.
- Find the pair $x, y \in A$ (sorted) that minimizes |x y|.

More Problems

- What is average (mean) of n numbers? How to compute it? Complexity?
- What is **mode** of *n* numbers? How to compute it? Complexity?
- What is **median** of *n* numbers? How to compute it? Complexity?