Topologia FME Resum de teoria i llista de problemes

Curs 2019/2020

9 de març de 2020

Índex

4	Con	npacitat	1
	4.1	Espais compactes	-
	4.2	Aplicacions contínues	4
	4.3	Subespais	4
	4.4	Producte d'espais	٠
	4.5	Espais euclidians	٠
	4.6	Espais mètrics	2
	4.7	Compactificació d'Alexandrov	2

4 Compacitat

En càlcul diferencial es demostra que tota funció contínua $f:[a,b] \to \mathbb{R}$ està fitada i pren un valor màxim i un valor mínim. També es veu aquesta propietat per a funcions $f:D\to\mathbb{R}$ sobre un subconjunt $D\subset\mathbb{R}^n$ de l'espai euclidià que sigui tancat i fitat.

La propietat de l'interval [a, b] o del conjunt D que permet arribar a la conclusió és la compacitat. Per a espais topològics arbitraris aquesta propietat es defineix en termes de recobriments.

4.1 Espais compactes

Un recobriment d'un conjunt X és una família de conjunts $(A_i)_{i\in I}$ tal que X està contingut en la seva reunió: $X\subseteq \bigcup_{i\in I}A_i$. Un subrecobriment és una subfamília que sigui també un recobriment. O sigui, una família $(A_j)_{j\in J}$ amb conjunt d'índexs $J\subseteq I$ tal que $X\subseteq \bigcup_{j\in J}A_j$. En topologia un recobriment obert és un recobriment per conjunts \mathcal{U}_i oberts.

Definició 4.1 (Espai compacte) Un espai topològic (X, \mathcal{T}) es diu compacte si tot recobriment obert té un subrecobriment finit.

Un subconjunt d'un espai es diu compacte si ho és com a subespai.

O sigui, (X, \mathcal{T}) és compacte quan per a tot recobriment $X = \bigcup_{i \in I} \mathcal{U}_i$ amb $\mathcal{U}_i \in \mathcal{T}$ existeixen $i_1, i_2, \ldots, i_n \in I$ tals que $X = \bigcup_{k=1}^n \mathcal{U}_{i_k}$.

Observi's que un subespai $Y \subseteq X$ és compacte si, i només si, satisfà la propietat del subrecobriment finit per a recobriments amb oberts de X. És a dir, són equivalents:

- tot recobriment $Y = \bigcup \mathcal{V}_i$ per oberts \mathcal{V}_i de Y té un subrecobriment finit, i
- tot recobriment $Y \subseteq \cup \mathcal{U}_i$ per oberts \mathcal{U}_i de X té un subrecobriment finit.

L'equivalència s'obté relacionant tots dos tipus de recobriment a través de $\mathcal{V}_i = \mathcal{U}_i \cap Y$. És clar que la propietat de ser compacte es conserva per homeomorfisme.

Exemples 4.2 Els espais següents són compactes:

- 1. tot espai amb la topologia grollera;
- 2. tot espai amb la topologia dels complementaris finits;
- 3. el subespai $\{0\} \cup \{\frac{1}{n} : n \geqslant 1\} \subset \mathbb{R};$
- 4. un interval tancat $[a, b] \subset \mathbb{R}$.

Els espais següents no són compactes:

- 5. un espai discret infinit;
- 6. \mathbb{R} ; \mathbb{R}^n ;
- 7. un interval obert $(a,b) \subset \mathbb{R}$; una bola oberta $B_r(\boldsymbol{x}) \subset \mathbb{R}^n$.

4.2 Aplicacions contínues

Teorema 4.3 La imatge d'un compacte per una aplicació contínua és un compacte.

Corol·lari 4.4 Tot espai quocient d'un espai compacte és compacte.

4.3 Subespais

A continuació es veuen algunes propietats relacionades amb la compacitat de subespais. Com a aplicació s'obté el lema compacte-Hausdorff, de gran utilitat per demostrar que una aplicació bijectiva contínua també té inversa contínua.

Teorema 4.5 Tot subconjunt tancat d'un espai compacte és compacte.

Teorema 4.6 Tot subconjunt compacte d'un espai de Hausdorff és tancat.

Corol·lari 4.7 (Lema compacte-Hausdorff) Tota aplicació contínua d'un espai compacte en un espai de Hausdorff és tancada. Es dedueix que, si l'aplicació és injectiva, aleshores és una immersió, i si és bijectiva és un homeomorfisme.

4.4 Producte d'espais

A continuació es demostrarà que el producte d'espais topològics es comporta bé respecte la compacitat: el producte és compacte si, i només si, ho són cadascun dels factors. Per fer-ho es necessiten dos resultats tècnics: el primer, el lema del tub, es farà servir per demostrar la compacitat dels productes finits; el segon, el teorema de la base d'Alexander, serà necessari per als productes infinits.

Lema 4.8 (Lema del tub) Sigui $X \times Y$ un producte d'espais amb Y compacte. Tot obert de $X \times Y$ que contingui la fibra $\{x\} \times Y = \pi_X^{-1}(x)$ sobre el punt $x \in X$ conté algun tub $\mathcal{U} \times Y$ per a algun entorn obert \mathcal{U} de x a l'espai X.

Teorema 4.9 (Teorema de la subbase d'Alexander) Sigui $\mathcal S$ una subbase d'un espai topològic. L'espai és compacte si, i només si, tot recobriment obert per oberts de $\mathcal S$ té un subrecobriment finit.

Teorema 4.10 (Compacitat i producte) El producte d'espais topològics és compacte si, i només si, cadascun dels espais ho és.

L'enunciat "el producte infinit d'espais compactes és compacte" es coneix amb el nom de teorema de Tychonoff.

4.5 Espais euclidians

A continuació es veuen dos resultats importants sobre compacitat en espais euclidians, que se solen veure en els cursos de càlcul diferencial. D'una banda el teorema de Heine-Borel, que dona una caracterització dels compactes com els subconjunts tancats i fitats en un espai euclidià. De fet, aquesta caracterització dels compactes s'agafa sovint com a definició en cursos de càlcul. D'una altra el teorema del valor màxim (i mínim), o teorema de Bolzano, que assegura que tota funció contínua en un compacte amb valors en \mathbb{R} (està fitada i) pren un valor màxim i un valor mínim.

Corol·lari 4.11 (Teorema de Heine-Borel) Un subconjunt de \mathbb{R}^n és compacte si, i només si, és tancat i fitat.

Corol·lari 4.12 (Teorema del valor màxim) Tota funció contínua $f: X \to \mathbb{R}$ d'un espai compacte X en \mathbb{R} pren un valor màxim i un valor mínim: existeixen punts $a, b \in X$ tals que per a tot $x \in X$ es té $f(a) \leq f(x) \leq f(b)$.

4.6 Espais mètrics

A continuació es discuteixen propietats relacionades amb la compacitat en el cas particular dels espais topològics que són espais mètrics.

Proposició 4.13 Un subconjunt compacte d'un espai mètric és tancat i fitat, però el recíproc no sempre és cert.

Lema 4.14 (Lema del nombre de Lebesgue) Sigui X un espai mètric seqüèncialment compacte (tota successió té una parcial convergent). Per a cada recobriment obert de X existeix un $\delta > 0$ tal que tot subconjunt de X de diàmetre menor que δ està contingut en un dels oberts del recobriment.

Aquest nombre δ s'anomena nombre de Lebesgue del recobriment.

Teorema 4.15 (Caracteritzacions equivalents de la compacitat) En un espai mètric les tres propietats següents són equivalents:

- 1. tot recobriment obert té un subrecobriment finit (compacitat per recobriments);
- 2. tot subconjunt infinit té algun punt d'acumulació (propietat de Bolzano-Weierstrass);
- 3. tota successió té alguna parcial convergent (compacitat següencial).

4.7 Compactificació d'Alexandrov

Afegint un punt de l'infinit a l'espai euclidià \mathbb{R}^n , i estenent la topologia de la manera adequada, s'obté un espai homeomorf a l'esfera \mathbb{S}^n , que és un espai compacte. Aquest tipus de construcció es pot fer més en general de la manera següent:

Definició 4.16 (Compactificació d'Alexandrov) Donat un espai de Hausdorff X en el conjunt $X^{\infty} := X \sqcup \{\infty\}$ obtingut afegint un punt es defineix la topologia:

$$\mathscr{T}^{\infty} := \mathscr{T} \cup \big\{ \mathcal{K}^c \cup \{\infty\} : \mathcal{K} \subseteq X \ compacte \big\}.$$

Proposició 4.17 Propietats de X^{∞} :

- 1. està ben definit: \mathscr{T}^{∞} és, efectivament, una topologia;
- 2. X és un subespai de X^{∞} ;
- 3. l'espai X^{∞} és compacte;
- 4. X^{∞} és de Hausdorff si, i només si, tot punt de X té un entorn compacte.

Problemes

- **4.1.** Siguin \mathcal{T}_1 i \mathcal{T}_2 dues topologies en X amb $\mathcal{T}_2 \subseteq \mathcal{T}_1$. Si X és compacte amb una d'elles, ho és amb l'altra?
- **4.2.** Digueu si són o no compactes els espais següents:
 - 1. $[0,1] \subset \mathbb{R}_{\ell}$ amb la topologia del límit inferior;
 - 2. $\{(x,y) \in \mathbb{R}^2 : xy = 1\} \subset \mathbb{R}^2$ amb la topologia euclidiana.
- **4.3.** Caracterització de la compacitat per tancats. Es diu que un espai topològic X té la propietat de la intersecció finita si tota família de tancats $(C_i)_{i \in I}$ tal que qualsevol subfamília finita té intersecció no buida, té intersecció no buida.
 - 1. Demostreu que X és compacte si, i només si, té la propietat de la intersecció finita.
 - 2. Deduïu el teorema de Cantor: si X és compacte i $C_1 \supseteq C_2 \supseteq C_3 \supseteq \ldots$ és una cadena descendent tancats no buits aleshores $\bigcap_{n=1}^{\infty} C_n \neq \emptyset$.
 - 3. Doneu un exemple que justifiqui la necessitat de la compacitat a l'apartat anterior.
- **4.4.** Doneu un exemple d'espai topològic X amb un subconjunt compacte K tal que l'adherència \overline{K} no sigui compacta.
- 4.5. La reunió finita o arbitraria de compactes, és un compacte? i la intersecció?
- **4.6.** Sigui $f: X \to Y$ una aplicació contínua i tancada. Demostreu que si totes les fibres $f^{-1}(y)$ són compactes i Y és compacte aleshores X és compacte. INDICACIÓ: donat un recobriment obert de X recobriu cada fibra amb un subrecobriment finit i vegeu que els recobriments d'un nombre finit de fibres ja recobreixen tot l'espai.
- **4.7.** Demostreu que en un espai de Hausdorff la intersecció de compactes és un compacte. Vegeu que la condició de Hausdorff és necessària.
- **4.8.** Sigui $f: X \to X$ contínua amb $X \neq \emptyset$ un espai de Hausdorff compacte. Demostreu que existeix un compacte no buit en X invariant per f: un compacte $K \neq \emptyset$ amb f(K) = K.
- **4.9.** Demostreu que l'espai $\mathbb{D}^n/\partial\mathbb{D}^n$ obtingut col·lapsant la frontera $\partial\mathbb{D}^n=\mathbb{S}^{n-1}$ del disc unitat n-dimensional a un punt és homeomorf a l'esfera n-dimensional \mathbb{S}^n .
- **4.10.** Demostreu que si l'espai Y és compacte aleshores la projecció en la primera component $\pi_X \colon X \times Y \twoheadrightarrow X$ és una aplicació tancada. INDICACIÓ: Useu el lema del tub.

4.11. Teorema de la gràfica tancada. Sigui $f: X \to Y$ una aplicació entre espais topològics amb Y de Hausdorff compacte. Demostreu que f és contínua si, i només si, la gràfica

$$\Gamma_f = \{(x, y) \in X \times Y : y = f(x)\} \subseteq X \times Y$$

és un tancat en el producte cartesià veient que es compleixen els enunciats una mica més generals:

- 1. si Y és de Hausdorff i f és contínua aleshores Γ_f és tancada;
- 2. si Y és compacte i Γ_f és tancada aleshores f és contínua.
- **4.12.** Siguin A i B subconjunts no buits d'un espai mètric (X, d). La seva distància es defineix com

$$d(A,B) = \inf \{ d(x,y) : x \in A, y \in B \}.$$

Es diu que la distància entre A i B s'assoleix si existeixen punts $a \in A$ i $b \in B$ amb d(a,b) = d(A,B).

- 1. És cert que $d(A, B) = 0 \Rightarrow A \cap B \neq \emptyset$?
- 2. Doneu un exemple en què la distància no s'assoleix.
- 3. Demostreu que la distància entre dos conjunts compactes s'assoleix.
- 4. Doneu un exemple en què la distància no s'assoleix amb conjunts tancats.
- 5. Comproveu que

$$d(A, B) = \inf \{ d(\{x\}, B) : x \in A \} = \inf \{ d(A, \{y\}) : y \in B \}.$$

- 6. Demostreu que si X és l'espai euclidià \mathbb{R}^n la distància entre un compacte i un tancat sempre s'assoleix.
- **4.13.** Demostreu que el lema del nombre de Lebesgue no és cert a \mathbb{R} : doneu un recobriment obert $\mathbb{R} = \bigcup_{i \in I} \mathcal{U}_i$ tal que per a tot $\delta > 0$ existeixen subconjunts $A \subseteq \mathbb{R}$ amb diàmetre $\delta(A) = \sup \{d(x,y) : x,y \in A\} < \delta$ no continguts en cap dels \mathcal{U}_i .
- **4.14.** Demostreu que en un espai mètric compacte tota contracció té un únic punt fix, i tota isometria és un homeomorfisme.

Una aplicació $f: E \to E$ és una contracció si $d(f(x), f(y)) \leq c d(x, y)$ per a alguna constant c < 1 i una isometria si conserva les distàncies: d(f(x), f(y)) = d(x, y).

- **4.15.** Demostreu que tot espai mètric compacte és complet: tota successió de Cauchy és convergent.
- 4.16. Demostreu que en un espai mètric compacte tota successió té una parcial convergent.
- **4.17.** Sigui $\mathscr{C}^0([0,1])$ l'espai mètric de les funcions contínues $[0,1] \to \mathbb{R}$ amb la distància del suprem (convergència uniforme). Comproveu que la bola unitat tancada

$$\overline{B}_1(0) = \{ f \in \mathcal{C}^0([0,1]) : d(0,f) \leq 1 \}$$

és un subconjunt tancat i fitat però no és compacte.

INDICACIÓ: considereu les funcions x^n per a $n \ge 0$.

- **4.18.** Digueu quines són les compactificacions d'Alexandroff dels espais següents: \mathbb{R} , \mathbb{R}^n , \mathbb{N} , $\mathbb{R} \setminus \{p_1, \dots, p_n\}$, $\mathbb{R}^2 \setminus \{p\}$, \mathbb{R}^2 menys una recta, \mathbb{R}^2 menys una circumferència.
- **4.19.** Siguin X i Y espais de Hausdorff. Demostreu que si $X\cong Y$ aleshores $X^\infty\cong Y^\infty$ i que el recíproc és fals en general.

Problemes complementaris i/o d'ampliació

- **4.20.** Lema de Baire. Sigui X un espai compacte de Hausdorff.
 - 1. Demostreu que tot entorn d'un punt conté un entorn tancat.
 - 2. Demostreu que (si $X \neq \emptyset$) la intersecció numerable d'oberts densos és no buida.
 - 3. Demostreu que (si $X \neq \emptyset$) la reunió numerable de tancats amb interior buit és un subconjunt propi.
 - 4. Apliqueu l'anterior per demostrar que [0, 1] és no numerable.
- **4.21.** Compacitat local. Un espai topològic es diu localment compacte si tot punt de l'espai té algun entorn compacte. Demostreu que \mathbb{R} és localment compacte però el subespai \mathbb{Q} no ho és.
- **4.22.** La propietat de ser localment compacte, es conserva per imatges d'aplicacions contínues? i d'aplicacions obertes?
- **4.23.** Un espai mètric localment compacte, és necessàriament complet?
- **4.24.** Demostreu que la compactificació d'Alexandroff de la cinta de Möbius és homeomorfa al pla projectiu. Deduïu que la cinta de Möbius no és homeomorfa al cilindre $\mathbb{S}^1 \times (0,1)$.
- **4.25.** Sigui X un espai de Hausdorff compacte. Demostreu que
 - 1. per a tot punt $p \in X$ la compactificació de $X \setminus \{p\}$ és un espai homeomorf a X;
 - 2. Per a tot subespai obert propi $\mathcal{U} \subset X$ el compactificat \mathcal{U}^{∞} és un espai homeomorf al quocient X/\mathcal{U}^c obtingut col.lapsant el subespai tancat \mathcal{U}^c a un punt,

i vegeu que la condició de ser compacte és indispensable per poder afirmar el que diu l'enunciat.