运筹学

6. 线性规划的其它相关问题

李 力 清华大学

Email: li-li@tsinghua.edu.cn

2023.3.

灵敏度分析

对于标准线性规划问题

$$\max C^T X$$
s.t. $AX = \vec{b}$

$$X \ge 0$$

假定已求得最优可行基 B,并获得 B^{-1} 等有关数据

若某些参数发生变化,如 $C \rightarrow C + \Delta C, \vec{b} \rightarrow \vec{b} + \Delta \vec{b}$

如何利用已知数据确定新的最优解?

例1

max
$$z = 2x_1 + x_2$$

s.t. $5x_2 + x_3 = 15$
 $6x_1 + 2x_2 + x_4 = 24$
 $x_1 + x_2 + x_5 = 5$
 $x_i \ge 0, \ \forall 1 \le i \le 5$

BV	x_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	RHS
x_2	0	1	0	-0.25	1.5	1.5
\mathcal{X}_3	0	0	1	1.25	-7.5	7.5
x_1	1	0	0	-0.25 1.25 0.25	-0.5	3.5
				-0.25		

如果	目标	函数	数改	变:	z=2z	$x_1 + x_2$	2 =	$\Rightarrow z$	$=1.5x_1$	+ 2x ₂	
						\mathcal{X}_1	x_2	\mathcal{X}_3	\mathcal{X}_4	X_5	RHS
				$\overline{x_2}$	0	1	0	-0.25	1.5	1.5	
最终	单纯	型表	Ę	\Rightarrow	\mathcal{X}_3	0	0	1	1.25	-7.5	7.5
				\mathcal{X}_1	1	0	0	0.25	-0.5	3.5	
					1.5	2	0	0	0	Z	
	BV	X_1	<i>X</i> ₂	X_{2}	\mathcal{X}_4	X_5		RH	\overline{S}		
					•				<u> </u>		
	\mathcal{X}_2	0	1	0	-0.25	1.5		1.5			
\Rightarrow	\mathcal{X}_3	0	0	1	1.25	- 7.	5	7.5	\Rightarrow	继续	迭代
	x_1	1	0	0	0.25	- 0.	5	3.5	;)		
5		0	0	0	0.125	-2.2	25	z-8.	<u>25</u>		

如果<u>常数向量改变</u>: $\vec{b} = (15, 24, 5)^T \Rightarrow \vec{b}' = (15, 32, 5)^T$

 $BV \mid x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad RHS$

		1	Z	3	4	3	
	\mathcal{X}_2	0	1	0	-0.25	1.5	\hat{x}_2
最终单纯型表 ⇒	\mathcal{X}_3				1.25		
	\mathcal{X}_1	1	0	0	0.25	-0.5	$\hat{\mathcal{X}}_1$
		0	0	0	-0.25	-0.5	
							-

其中新的常数向量为 $B^{-1}\vec{b}'$, 如果 $B^{-1}\vec{b}' \geq 0$,已经得到最优解,否则可用对偶单纯型法继续迭代

如果增加一个变量,即将 $\sum_{i=1}^{n} c_i x_i$ 和 $\sum_{i=1}^{n} P_i x_i = \vec{b}$ 分别

变成
$$\sum_{i=1}^{n+1} c_i x_i$$
 和 $\sum_{i=1}^{n+1} P_i x_i = \vec{b}$

此时首先要确定 B^{-1} ,然后可算出

$$\hat{P}_{n+1} = B^{-1}P_{n+1}, \quad \sigma_{n+1} = c_{n+1} - C_B^T \hat{P}_{n+1}$$

如果 $\sigma_{n+1} \leq 0$,原最优解不变,令 $\hat{x}_{n+1} = 0$

否则将 \hat{P}_{n+1} 和 σ_{n+1} 加入最终单纯型表继续迭代

等式约束的系数矩阵发生变化,例如由

$$\sum_{i=1}^{n} P_i x_i = \vec{b}$$
 变成
$$\sum_{i=1}^{n} P_i x_i + P'_r x_r = \vec{b}$$

如果 P_r 不在基中,计算 $\hat{P}'_r = B^{-1}P'_r$, $\sigma_r = c_r - C_B^T \hat{P}'_r$ 然后类似增加一个变量的方法处理

否则要重新计算 B^{-1} ,根据基是否是原问题的可行基、是否是对偶问题的可行基、是否两者都不是进行适当处理,在第三种情况下要引入人工变量重新寻找可行基

如果增加约束条件,例如由

$$AX \leq \vec{b}$$
 变成 $AX \leq \vec{b}$, $\vec{a}_{m+1}^T X \leq b_{m+1}$

或者由

$$AX \ge \vec{b}$$
 变成 $AX \ge \vec{b}$, $\vec{a}_{m+1}^T X \ge b_{m+1}$

如果当前最优解满足新增加的约束,那么仍然是新问题的最优解

否则要引入辅助变量或人工变量重新寻找可行解

小结:

无论怎么改变,首先看当前的最优可行基是否是新问题的可行解,甚至是最优可行基?

如果是,证明依然是最优解或者单纯形法操作

如果不是,或可用对偶单纯形法操作

参数线性规划

分析下述线性规划问题最优值随参数 λ 变化情况

$$\max (C + \lambda C')^{T} X \qquad \max C^{T} X$$
s.t. $AX = \vec{b}$ s.t. $AX = \vec{b} + \lambda \vec{b}'$

$$X \ge 0$$
 $X \ge 0$

处理方法

- 1) 固定 λ 的数值解线性规划问题
- 2) 确定保持当前最优基不变的 λ 的区间
- 3) 确定 λ 在上述区间附近的最优基,回2)

max
$$z = (2 + \lambda)x_1 + (1 + 2\lambda)x_2$$

s.t. $5x_2 + x_3 = 15$
 $6x_1 + 2x_2 + x_4 = 24$
 $x_1 + x_2 + x_5 = 5$
 $x_i \ge 0, i = 1, 2, \dots, 5$

取 λ=0 得到下述最优基

_	BV	\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_5	RHS
-	x_3	0	0	1	1.25	-7.5	7.5
	\mathcal{X}_1	1	0	0	0.25	-0.5	3.5
	X_2	0	1	0	1.25 0.25 -0.25	1.5	1.5
•		0	0	0	-0.25	-0.5	z - 8.5

带入参数

BV	x_1	X_2	X_3	\mathcal{X}_4	X_5	RHS
X_3	0	0				
\mathcal{X}_1	1	0	0	0.25	-0.5	3.5
X_2	0	1	0	-0.25	1.5	1.5
	$2 + \lambda$	$1+2\lambda$				\overline{z}

行变换

BV	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	\mathcal{X}_{5}	RHS
X_3	0	0	1	1.25	-7.5	7.5
x_1	1	0	0	0.25	-0.5	3.5
\mathcal{X}_2	0	1	0	-0.25	1.5	1.5
	0	0	0	$0.25(\lambda-1)$	$-0.5 - 2.5\lambda$	$z - 8.5 - 6.5\lambda$

对于 $\lambda > 1$,从下面的单纯型表可以看出, x_4 的检验数大于0,因此应该让其进基

BV	x_1	\mathcal{X}_2	X_3	\mathcal{X}_4	\mathcal{X}_{5}	RHS
X_3	0	0	1	1.25	-7.5	7.5
x_1	1	0	0	0.25	-0.5	3.5
\mathcal{X}_2	0	1	0	-0.25	1.5	1.5
	0	0	0	$0.25(\lambda-1)$	$-0.5 - 2.5\lambda$	$z - 8.5 - 6.5\lambda$

比较各行RHS和 x_4 的系数的比值,可以确定出基变量为 x_3

用单纯型迭代实现 x_4 进基、 x_3 出基,得到下面新的单纯型表

 BV	X_1	x_2	X_3	\mathcal{X}_4	X_5	RHS
\mathcal{X}_4	0	0	0.8	1	-6	6
x_1	1	0	-0.2	0	1	2
\mathcal{X}_2	0	1	0.8 -0.2 0.2	0	0	3
	0		$0.2(1-\lambda)$			

由上表知最优目标值 $z(\lambda) = 7 + 8\lambda, \forall \lambda > 1$

对于 $\lambda < -0.2$,从以下单纯型表可以看出, x_5 的检验数大于0,因此应该让其进基

BV	X_1	\mathcal{X}_2	X_3	\mathcal{X}_4	\mathcal{X}_{5}	RHS
X_3	0	0	1	1.25	-7.5	7.5
x_1	1	0	0	0.25	-0.5	3.5
\mathcal{X}_2	0	1	0	-0.25	1.5	1.5
	0	0	0	$0.25(\lambda-1)$	$-0.5 - 2.5\lambda$	$z - 8.5 - 6.5\lambda$

比较各行RHS和 x_5 的系数的比值,可以确定出基变量为 x_5

用单纯型迭代实现 x_5 进基、 x_2 出基,得到下面新的单纯型表

 BV	\mathcal{X}_1	x_2	x_3	\mathcal{X}_4	\mathcal{X}_{5}	RHS
\mathcal{X}_3	0	5	1	0	0	15
\mathcal{X}_1	1	1/3 2/3	0	1/6	0	4
X_5		2/3	0	-1/6	1	1
	0	$(1+5\lambda)/3$	0	$-(2+\lambda)/6$	0	$z-8-4\lambda$

由上表知最优目标值 $z(\lambda) = 8 + 4\lambda$, $\forall -2 \le \lambda < -0.2$

对于 $\lambda < -2$,从以下单纯型表可以看出, x_4 的检验数大于0,因此应该让其进基

 BV	X_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	RHS
x_3	0	5	1	0	0	15
\mathcal{X}_1	1	1/3 2/3	0	1/6	0	4
X_5	0	2/3	0	-1/6	1	1
	0	$(1+5\lambda)/3$	0	$-(2+\lambda)/6$	0	$z-8-4\lambda$

比较各行RHS和 x_4 的系数的比值,可以确定出基变量为 x_1

用单纯型迭代实现 x_4 进基、 x_1 出基,得到下面新的单纯型表

BV	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	X_5	RHS
X_3	0			0		15
\mathcal{X}_4	6	2	0	1	0	24
X_5	1	1	0	0	1	5
	$2 + \lambda$	$1+2\lambda$	0	0	0	\overline{z}

由上表知最优目标值 $z(\lambda) = 0, \forall \lambda < -2$

总结前面分析,最优目标函数值和 2 的关系如下

$$z(\lambda) = \begin{cases} 0, & \forall \lambda < -2 \\ 8 + 4\lambda, & \forall -2 \le \lambda < -.2 \\ 8.5 + 6.5\lambda, & \forall -0.2 \le \lambda \le 1 \\ 7 + 8\lambda, & \forall \lambda > 1 \end{cases}$$

由于 $z = (2 + \lambda)x_1 + (1 + 2\lambda)x_2$, 由下图容易理解 $z(\lambda)$

对于右边常数向量带参数的情况

$$\max C^{T} X$$
s.t.
$$AX = \vec{b} + \lambda \vec{b}'$$

$$X \ge 0$$

其对偶问题为

$$\min \left(\vec{b} + \lambda \vec{b}' \right)^T Y$$
s.t. $A^T Y \ge C$

由于对偶问题的可行集不变,因此可用对偶单纯型法确定最优目标函数值和参数 λ 的关系

说明单纯型算法计算复杂性的例子

 $\max x_n$ s.t. $\varepsilon \le x_1 \le 1$

$$\varepsilon x_{j-1} \le x_j \le 1 - \varepsilon x_{j-1}, \ \forall \ 2 \le j \le n$$

其中
$$0 < \varepsilon < 0.5$$
 (Klee-Minty,1971)

$$n=2$$
 的可行集
$$(\varepsilon, 1-\varepsilon^2) \qquad \varepsilon x_1 + x_2 \le 1$$

$$x_1 \le \varepsilon \qquad x_1 \le 1$$

$$(\varepsilon, \varepsilon^2) \qquad x_2 \ge \varepsilon x_1 \qquad (1, \varepsilon)$$

对原问题进行可逆的线性变换,令

$$y_1 = x_1 - \varepsilon$$
, $y_2 = (x_2 - \varepsilon x_1)/\alpha_2 \varepsilon$

则

$$x_1 = y_1 + \varepsilon$$
, $x_2 = \varepsilon y_1 + \alpha_2 \varepsilon y_2 + \varepsilon^2$

原问题

变换后的等价问题

max x_2 s.t. $\varepsilon \leq x_1 \leq 1$ $\varepsilon x_1 \le x_2 \le 1 - \varepsilon x_1$

 $\max y_1 + \alpha_2 y_2$ s.t. $y_1 \le 1 - \varepsilon$ $2y_1 + \alpha_2 y_2 \le \varepsilon^{-1} - 2\varepsilon$ $y_1 \ge 0, y_2 \ge 0$

变换后问题的标准形式

max
$$y_1 + \alpha_2 y_2$$

s.t. $y_1 + s_1 = 1 - \varepsilon$
 $2y_1 + \alpha_2 y_2 + s_2 = \varepsilon^{-1} - 2\varepsilon$
 $y_1 \ge 0, y_2 \ge 0, s_1 \ge 0, s_2 \ge 0$

变换后的可行集

从(0,0)出发用单纯型法求解上述问题

如果选最大检验数进基,取 $\alpha_2 < 1$, y_1 进基 如果选最小正检验数进基,取 $\alpha_2 > 1$, 还是 y_1 进基

26寸任何给定算法,可选择参数经过所有 2²-1 个顶点!

$$n=3$$
 的可行集
$$(\varepsilon, 1-\varepsilon^2, 1-\varepsilon(1-\varepsilon^2))$$
 $\varepsilon \le x_1 \le 1$

$$\varepsilon x_1 \le x_2 \le 1-\varepsilon x_1$$

$$\varepsilon x_2 \le x_3 \le 1-\varepsilon x_2$$

$$(\varepsilon, 1-\varepsilon^2, \varepsilon(1-\varepsilon^2))$$

$$(\varepsilon, \varepsilon^2, 1-\varepsilon^3)$$

$$(1, 1-\varepsilon, \varepsilon(1-\varepsilon))$$

$$(1, 1-\varepsilon, \varepsilon(1-\varepsilon))$$

$$(1, 1-\varepsilon, \varepsilon(1-\varepsilon))$$

对原问题进行可逆的线性变换,令

$$y_1 = x_1 - \varepsilon$$
, $y_2 = (x_2 - \varepsilon x_1)/\alpha_2 \varepsilon$, $y_3 = (x_3 - \varepsilon x_2)/\alpha_3 \varepsilon^2$

则

$$x_1 = y_1 + \varepsilon$$
, $x_2 = \varepsilon (y_1 + \alpha_2 y_2 + \varepsilon)$, $x_3 = \varepsilon^2 (y_1 + \alpha_2 y_2 + \alpha_3 y_3 + \varepsilon)$

原问题

变换后的等价问题

max x_3

s.t.
$$\varepsilon \le x_1 \le 1$$

$$\varepsilon x_1 \le x_2 \le 1 - \varepsilon x_1$$

$$\varepsilon x_1 \le x_2 \le 1 - \varepsilon x_1$$

 $\varepsilon x_2 \le x_3 \le 1 - \varepsilon x_2$

$$\max y_{1} + \alpha_{2}y_{2} + \alpha_{3}y_{3}$$
s.t. $y_{1} \le 1 - \varepsilon$

$$2y_{1} + \alpha_{2}y_{2} \le \varepsilon^{-1} - 2\varepsilon$$

$$2y_{1} + 2\alpha_{2}y_{2} + \alpha_{3}y_{3} \le \varepsilon^{-2} - 2\varepsilon$$

$$y_{1} \ge 0, y_{2} \ge 0, y_{3} \ge 0$$

$$\max y_{1} + \alpha_{2}y_{2} + \alpha_{3}y_{3} \qquad (\varepsilon, 1 - \varepsilon^{2}, 1 - \varepsilon(1 - \varepsilon^{2}))$$
s.t. $y_{1} \leq 1 - \varepsilon$

$$2y_{1} + \alpha_{2}y_{2} \leq \varepsilon^{-1} - 2\varepsilon$$

$$2y_{1} + 2\alpha_{2}y_{2} + \alpha_{3}y_{3} \leq \varepsilon^{-2} - 2\varepsilon$$

$$y_{1} \geq 0, y_{2} \geq 0, y_{3} \geq 0$$

$$(\varepsilon, 1 - \varepsilon^{2}, \varepsilon(1 - \varepsilon^{2}))$$

$$(\varepsilon, 1 - \varepsilon^{2}, \varepsilon(1 - \varepsilon^{2}))$$

$$(\varepsilon, \varepsilon^{2}, 1 - \varepsilon^{3})$$

$$(1, 1 - \varepsilon, \varepsilon(1 - \varepsilon))$$

Proof.

We prove this theorem by constructing the following LP problem

max
$$-x_n$$

s.t. $x_1 \ge 0$
 $x_1 \le 1$
 $x_i \ge \epsilon x_{i-1}, i = 2, 3, \dots, n$
 $x_i \le 1 - \epsilon x_{i-1}, i = 2, 3, \dots, n$

where $\epsilon \in (0, 1/2)$. The feasible polytope is a perturbed n-dimensional cube. An example of the perturbed 3-dimensional

It is easy to show that this LP problem has 2^n vertexes. We will show that there exists a most unfortunate sequence of choice at each selection step, so that the simplex algorithm uses 2^n pivots before coming to the optimal solution.

First, let us represent each vertex of the n-dimension perturb cube with an encoding in $\{0,1\}^n$, For example, in the perturbed 3-dimension cube shown in above, the vertices and their corresponding encoding are:

Vertex	Encoding	
(0,0,0)	(0, 0, 0)	
$(0,\epsilon,\epsilon^2)$	(1, 0, 0)	
$(0, 1 - \epsilon, \epsilon - \epsilon^2)$	(1, 1, 0)	
$(0,1,\epsilon)$	(0, 1, 0)	
$(0,1,1-\epsilon)$	(0, 1, 1)	
$(0, 1 - \epsilon, 1 - \epsilon + \epsilon^2)$	(1,1,1)	

 $(0, \epsilon, 1 - \epsilon^2)$ (1, 0, 1)

(0,0,1)

(0,0,1)

Second, let us define a Hamiltonian path in $\{0,1\}^n$ and show that corresponding vertices in the perturbed cube have increasing objective values. Indeed, the Hamiltonian path in the cube can be taken as a special type of gray code defined recursively as follows.

taken as a special type of gray code defined recursively as follows.
$$\Omega_{n-1} = 0\cdots 00 \\ 0\cdots 00 \\ 1\cdots 00 \\ \cdots \cdots \\ 1\cdots 10$$

$$\Omega_n = 0\cdots 11$$

reverse

 Ω_{n-1} 1···01

 $0 \cdots 01$

For example, the Hamiltonian path defined on the perturbed 3-dimension cube is:

32

 $\Omega_3 = 000
ightarrow 100
ightarrow 110
ightarrow 010
ightarrow 011
ightarrow 111
ightarrow 101
ightarrow 001$

Third, we will show that the objective function of the linear program defined in (24) is decreasing, if we move from a basic feasible solution to another basic feasible solution by following the Hamiltonian path defined on binary reflected gray code. In the follows, we will prove by induction. If n=2, the Hamiltonian path is $\Omega_3=00 \to 10 \to 11 \to 01$. The

If n=2, the Hamiltonian path is $\Omega_3=00 \to 10 \to 11 \to 01$. The corresponding LP problem is

 $min - x_2$

s.t. $x_1 \ge 0$

$$x_2 \geq \epsilon x_1$$

$$x_2 \leq 1 - \epsilon x_1$$
 Let $x^0 = (0,0)$ be the intital basic feasible solution. It is trivial to solution the objective function is decreasing on the Hamiltonian path.

 $x_1 \leq 1$

If n = 3, the LP problem is

$$x_1 \leq 1$$

$$x_2 \geq \epsilon x_1$$

$$x_2 \leq 1 - \epsilon x_1$$

$$x_3 \geq \epsilon x_2$$

$$x_3 \leq 1 - \epsilon x_2$$
 Let us consider the first half of

 $min - x_3$

s.t. $x_1 > 0$

take the equality

 $\Omega_3 = 000 \to 100 \to 110 \to 010 \to 011 \to 111 \to 101 \to 001$. On

this path, the last coordinate is always 0, which means we always

Let us focus on the first two bits. This path is the same as Ω_2 . Further we notice x_3 doesn't appear in the first 4 inequalities in linear program (31) and these 4 inequalities are the same as those in linear program (30). We have shown that the objective function $\min -x_2$ is decreasing by following Ω_2 (In other words, x_2 increases). Similarly, we know that x_3 increases based on Equation (32) and the objective function $\min -x_2$ in the LP problem (31) decreases.

When we move from 010 to 011, x_3 changes from ϵx_2 to $1 - \epsilon x_2$. Since $\epsilon \in (0, 1/2)$, we have $\epsilon x_2 < 1 - \epsilon x_2$. So, this is an improving step.

Next, let us check the second half of

 $\Omega_3:011 \to 111 \to 101 \to 001$. On this path, the last coordinate is always 1, which means now we always take the equality

Let us check the first two bits on the path $011 \rightarrow 111 \rightarrow 101 \rightarrow 001$. This path is the reverse of Ω_2 . So by following this path, x_2 decreases, then x_3 increases based on Equation (33).

Thus the objective function of linear program (31) continues to decrease.

Induction step

We assume the claim holds for n-1-cube and try to prove it for n-cube. The proof is similar as what we did to show the claim holds for the case of n=3 based on the result of n=2. We start by moving from vertex $(0 \cdots 0 \ 0)$ to $(0 \cdots 1 \ 0)$ by following the first part of Ω_{n-1} . By induction, this is an decreasing path for n-1-cube. Since the last coordinate of the vertices on this part of path is always 0, we know we should always choose

Thus, x_n is increasing and the objective function of linear program (24) is decreasing.

When we move from $(0 \cdots 1 0)$ to $(0 \cdots 1 1)$, x_n changes from ϵx_{n-1} to $1-\epsilon x_{n-1}$. Since $\epsilon \in (0,1/2)$, we have $\epsilon x_{n-1} < 1-\epsilon x_{n-1}$.

So, this is a decreasing step.

Then we follow the last part of Ω_n to move from $(0 \cdots 1 1)$ to $(0 \cdots 0 1)$. The first n-1 bits on this part of path is the reverse of Ω_{n-1} . So x_{n-1} is decreasing on the path. The last coordinate is always 1 here and so

$$x_n = 1 - \epsilon x_{n-1}$$

leads to continuous decreasing of the objective function. Based on mathematical induction, we can conclude that the simplex algorithm takes exponential time by starting from a special v³⁷ex and choosing certain pivot rules.

for the corresponding vertices. So, x_n continues to increase, which

格雷码,也称反射二进制码,是二进制数字系统的一种排序方式,使得两个连续值仅相差一位 (二进制数字)。在数字电路中,格雷码每次的 变换只会有一个二进制位的跳变,极大地减少了 亚稳态的产生,保证了电路的稳定性。

十进制	格雷码	十进制	格雷码
0	0000	8	1100
1	0001	9	1101
2	0011	10	1111
3	0010	11	1110
4	0110	12	1010
5	0111	13	1011
6	0101	14	1001
7	0100	15	1000

对已经提出的进出基规则,均能设计出要经历的顶点个数是变量维数的指数函数的例子

但是,也不能证明无论采用什么进出基规则,均 能设计出要经历的顶点个数是变量维数的指数函 数的例子 天坑,不要跳

只要n 比较大,搜索 $2^n - 1$ 个顶点的计算量就不好完成! 能否找到非指数时间的其他算法?

椭球算法(Khachian,哈奇杨,1979) 内点法(Karmarkar,1984,...) 线性规划问题求解顺序

图解法

原问题决策变量较多, 而约束条件较少

解对偶问题

原问题有明显的初始可行基

单纯型法

原问题没有明显的初始可行基, 但有明显的对偶可行基

对偶单纯型法

原问题没有明显的初始可行基, 同时也没有明显的对偶可行基

两阶段法

Farkas Lemma

Farkas Lemma

Basically states the feasibility of two different problems, two related problems.

Theorem 1. Let $A \in \mathbb{R}^{m \times n}$ and let $\mathbf{b} \in \mathbb{R}^m$. Then exactly one of the two alternatives holds

- 1. there exists $\mathbf{x} \geq \mathbf{0}$ such that $A\mathbf{x} = \mathbf{b}$.
- 2. there exists $\boldsymbol{\mu}$ such that $\boldsymbol{\mu}^T A \geq 0$ and $\boldsymbol{\mu}^T \mathbf{b} < 0$.

Theorem (Farkas' Lemma)

Given $A \in \mathbb{R}^{m \times n}$ is an $m \times n$ matrix, $\mathbf{b} \in \mathbb{R}^m$ is an m-dimensional column vector. Exactly one of the following linear system is feasible:

- I. There exists an $\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.
- II. There exists a $\mathbf{y} = [y_1, \dots, y_m]^T \in \mathbb{R}^m$ such that $A^T \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^T \mathbf{y} < 0$.

Proof.

First, we use contradiction method to show that both systems cannot simultaneously have feasible solutions.

If both system are simultaneously feasible, $\mathbf{b}^T \mathbf{y} < 0$ implies $\mathbf{y} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{0}$.

Meanwhile, if $b \neq 0$, Ax = b implies $x \neq 0$. If both systems holds, then we have

$$\boldsymbol{b}^{T}\boldsymbol{y} = (A\boldsymbol{x})^{T}\boldsymbol{y} = \boldsymbol{x}^{T} (A^{T}\boldsymbol{y}) \geq 0$$
 (16)

which contradicts $\boldsymbol{b}^T \boldsymbol{y} < 0$.

Second, we show that at least one of them has a feasible solution. If System (I) is feasible, we can finish right here. Otherwise, System (I) is infeasible, we have $\Omega = \{A\mathbf{x}, \ \mathbf{x} \geq \mathbf{0}\}$ is a closed convex set. Moreover, $\mathbf{b} \notin \Omega$.

According to Separating Hyperplane Theorem, there exists a hyperplane $\mathbf{y}^T\mathbf{x} = z$ that separates \mathbf{b} from Ω , where $\mathbf{y} = [y_1, \dots, y_m]^T \in \mathbb{R}^m$ is an m-dimensional column vector. That is, $\mathbf{y}^T\mathbf{b} < z$ and $\forall \mathbf{s} \in \Omega$, $\mathbf{y}^T\mathbf{s} \geq z$.

Since $\mathbf{0} \in \Omega$, we have $z \leq 0$. As a result, $\mathbf{y}^T \mathbf{b} < 0$.

On the other hand, since $\mathbf{y}^T A \mathbf{x} > 0$ for all $\mathbf{x} \in \Omega$, we can see that $\mathbf{y}^T A > \mathbf{0}$, since each element of \mathbf{x} can be arbitrarily large.

Therefore, we prove the whole statement.

Theorem (Strong Duality Theorem)

For LPP $\{\min \mathbf{c}^T \mathbf{x}; s.t. A\mathbf{x} \geq \mathbf{b}\}$, a feasible solution \mathbf{x}^* to the primal problem is optimal if and only if there exists a feasible solution \mathbf{u}^* to the dual LPP $\{\max \mathbf{b}^T \mathbf{u}; s.t. A^T \mathbf{u} = \mathbf{c}, \mathbf{u} \geq \mathbf{0}\}$ such that $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{u}^* \tag{17}$

Meanwhile, **u*** is an optimal solution to the dual.

Proof.

First, We prove the sufficiency.

Based on weak duality theorem, for any feasible solution x of the primal problem, we have

$$m{c}^Tm{x} \geq m{b}^Tm{u}^* = m{c}^Tm{x}^*$$
 which shows that $m{x}^*$ is also the optimal solution of the primal

(18)

which shows that \mathbf{x}^* is also the optimal solution of the primal problem.

Similarly, for any feasible solution \boldsymbol{u} of the dual problem, we have

$$\boldsymbol{b}^{T}\boldsymbol{u} \leq \boldsymbol{c}^{T}\boldsymbol{x}^{*} = \boldsymbol{b}^{T}\boldsymbol{u}^{*} \tag{19}$$

which shows that u^* is also the optimal solution of the dual problem.

Next, we prove the necessariness based on Farkas' Lemma, since we do not introduce the simplex algorithm here.

Suppose \mathbf{x}^* is an optimal solution. We will show that there exists a dual feasible solution \mathbf{u} with $\mathbf{b}^T \mathbf{u} = \mathbf{c}^T \mathbf{x}^*$.

Let us define I as the set of constraint index that active at \mathbf{x}^* . That is,

$$a_i^T \mathbf{x}^* = b_i, \quad i \in I$$
 (20)
 $a_i^T \mathbf{x}^* > b_i, \quad i \notin I$ (21)

 ${\pmb x}^*$ implies that, for any ${\pmb d} \in \mathbb{R}^n$, the following set

$$a_i^T \boldsymbol{d} \ge 0, \ \boldsymbol{c}^T \boldsymbol{d} < 0, \ i \in I$$
 (22)

is infeasible. Otherwise, we would have a small enough $\epsilon>0$ such that

$$a_i^T(\mathbf{x}^* + \epsilon \mathbf{d}) \ge b_i, \ \mathbf{c}^T(\mathbf{x}^* + \epsilon \mathbf{d}) < \mathbf{c}^T\mathbf{x}^*, \ i = 1, \dots, m$$
 (23)

According to Farkas' Lemma, we know that the above inequality is infeasible if and only if there exists $\lambda_i, i \in I$ that

$$\lambda_i \ge 0, \quad \sum_i \lambda_i a_i = c$$
 (24)

This yields a dual feasible solution \boldsymbol{u} satisfying

$$u_i = \lambda_i, \quad i \in I$$

$$u_i = 0, \quad i \notin I$$
(25)

Finally, we show that \boldsymbol{u} is the optimal solution for the dual problem. Indeed, we have

$$\mathbf{b}^{T}\mathbf{u} = \sum_{i} b_{i}u_{i} = \sum_{i} (a_{i}^{T}x_{i}^{*})u_{i} = \mathbf{u}^{*}A\mathbf{x}^{*} = \mathbf{c}^{T}\mathbf{x}^{*}$$
 (27)

Based on Weak Duality Theorem, we see \boldsymbol{u} is the optimal solution for the dual problem. Thus comes our statement according to strong duality.

Matlab Codes for LP

https://zhuanlan.zhihu.com/p/61466360 https://zhuanlan.zhihu.com/p/61582750

```
function [x,z,ST,res_case] = SimplexMax(c,A,b,ind_B)
% 单纯形法求解标准形线性规划问题: max cx s.t. Ax=b x>=0
% 輸入参数: c为目标函数系数, A为约束方程组系数矩阵, b为约束
% 輸出参数: x最优解, z最优目标函数值, ST存储单纯形表数据, i
                          %m约束条件个数,n决策变量数
[m,n] = size(A);
ind_N = setdiff(1:n, ind_B); %非基变量的索引
ST = [];
format rat
% 循环求解
while true
   x0 = zeros(n,1);
   x0(ind_B) = b;
                            %初始基可行解
   cB = c(ind B);
                            %计算cB
   Sigma = zeros(1,n);
   Sigma(ind_N) = c(ind_N) - cB*A(:,ind_N); %计算检验
   [\sim, k] = max(Sigma);
                       %选出最大检验数,确定进建
   Theta = b \cdot / A(:,k);
                             %计算3
   Theta(Theta<=0) = 10000;
   [\sim, q] = min(Theta);
                             %选出最小9
   el = ind_B(q);
                            %确定出基变量索引el, 主方
   vals = [cB',ind B',b,A,Theta];
   vals = [vals; NaN, NaN, NaN, Sigma, NaN];
   ST = [ST; vals];
   if ~any(Sigma > 0)
                     %此基可行解为最优解,any
       x = x0;
       Z = C * X;
       res_case = 0;
       return
   end
   if all(A(:,k) <= 0)
                            %有无界解
       X = [];
       res case = 1;
       break
   end
   % 换基
   ind_B(ind_B == el) = k;
                            %新的基变量索引
   ind_N = setdiff(1:n, ind_B); %非基变量素引
   % 更新A和b
   A(:,ind_N) = A(:,ind_B) \setminus A(:,ind_N);
   b = A(:,ind_B) \setminus b;
   A(:,ind B) = eye(m,m);
end
```

```
function [x,z,ST,res_case] = DualSimplexMax(c,A,b,ind_B)
% 对偶单纯形法求解标准形线性规划问题: max cx s.t. Ax <= b
% 輸入参数: c为目标函数系数, A为约束方程组系数矩阵, b为约束
% 輸出参数: x最优解, z最优目标函数值, ST存储单纯形表数据, i
[m,n] = size(A);
                    %m约束条件个数,n决策变量数
ind_N = setdiff(1:n, ind_B); %非基变量的索引
ST = [];
format rat
% 循环求解
while true
   x\theta = zeros(n,1);
                             %初始基可行解
   x0(ind_B) = b;
   cB = c(ind_B);
                             %计算cB
   Sigma = zeros(1,n);
   Sigma(ind N) = c(ind N) - cB*A(:,ind N); %计算检验
                            %选出最小的b
   [\sim,q] = min(b);
                            %確定出基变量素引r
   r = ind B(q);
   Theta = Sigma \cdot/ A(q,:);
                            %计算3
   Theta(Theta<=0) = 10000;
   [\sim,s] = min(Theta);
                          %确定进基变量索引s,主z
   vals = [cB',ind_B',b,A];
   vals = [vals; NaN, NaN, NaN, Sigma];
   ST = [ST; vals];
   if ~any(b < 0)
                            %此基可行解为最优解, any
      x = x0;
       Z = C * X;
       res case = 0;
       return
   end
   % 换基
   ind B(ind B == r) = s; %新的基变量索引
   ind N = setdiff(1:n, ind_B); %非基变量素引
   % 更新A和b
   A(:,ind_N) = A(:,ind_B) \setminus A(:,ind_N);
   b = A(:,ind B) \setminus b;
   A(:,ind B) = eye(m,m);
```

end

一些典型的线性规划问题

设有同一种货物从 m 个发地 1, 2, ..., m 运往 n 个收地 1, 2, ..., n。第 i 个发地的供应量(Supply)为 \mathbf{a}_i ($\mathbf{a}_i \ge 0$),第 j 个收地的需求量(Demand)为 \mathbf{b}_j ($\mathbf{b}_j \ge 0$)。每单位货物从发地 i 运到收地 j 的运价为 \mathbf{c}_{ij} 。求一个使总运费最小的运输方案。我们假定从任一发地到任一收地都有道路通行。如果总供应量等于总需求量,这样的运输问题称为供求平衡的运输问题。我们先只考虑这一类问题。

设有同一种货物从 m 个发地 1, 2, ..., m 运往 n 个收地 1, 2, ..., n。第 i 个发地的供应量(Supply)为 \mathbf{a}_i ($\mathbf{a}_i \ge 0$),第 j 个收地的需求量(Demand)为 \mathbf{b}_j ($\mathbf{b}_j \ge 0$)。每单位货物从发地 i 运到收地 j 的运价为 \mathbf{c}_{ij} 。求一个使总运费最小的运输方案。我们假定从任一发地到任一收地都有道路通行。如果总供应量等于总需求量,这样的运输问题称为供求平衡的运输问题。我们先只考虑这一类问题。

请写出原问题和对偶问题, 并解释对偶变量的物理意义

当产销平衡时, 其模型如下:

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases} \sum_{ij} x_{ij} = a_i \\ \sum_{ij} x_{ij} = b_j \end{cases} \left(\sum_{ij} a_i = \sum_{ij} b_i \right) \\ x_{ij} \ge 0 \end{cases}$$

当产大于销时,其模型如下:

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases} \sum_{ij} x_{ij} \leq a_i \\ \sum_{ij} x_{ij} = b_j & (\sum_{ij} a_i > \sum_{ij} b_j) \\ x_{ij} \geq 0 \end{cases}$$

当产小于销时, 其模型如下:

$$\min Z = \sum \sum c_{ij} x_{ij}$$

$$\begin{cases} \sum x_{ij} = a_i \\ \sum x_{ij} \le b_j \quad (\sum a_i < \sum b_j) \\ x_{ij} \ge 0 \end{cases}$$

并假设: $a_i \ge 0, b_j \ge 0, c_{ij} \ge 0$

由题给出的条件,数学模型可写为:

$$egin{aligned} \min z &= \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \ & \left\{ \sum_{j=1}^n x_{ij} \leq a_i \quad (i=1,L,m) \ \sum_{i=1}^m x_{ij} \geq b_j \quad (j=1,L,n) \ x_{ij} \geq 0 \end{aligned}$$

对偶问题可写为 :
$$\max z' = \sum_{j=1}^m b_j v_j - \sum_{i=1}^m a_i u_i$$

$$st.\begin{cases} v_j - u_i \le c_{ij} & (i = 1, L, m; j = 1, L, n) \\ u_j, v_i \ge 0 \end{cases}$$

对偶变量 u_i 的经济意义为在i产地单位物资的价格, v_j 的经济意义为在第j销地单位物资的价格。

对偶问题的经济意义为:如该公司欲自己将该种物资运至各地销售,其差价不能超过两地之间的运价(否则买主将在i地购买自己运至j地),在此条件下,希望获利为最大。

给一个带收发点的网络(一般收点用 v_t表示, 发点用 v_s表示, 其余为中间点), 其每条弧的权值称之为容量, 在不超过每条弧的容量的前提下, 要求确定每条弧的流量, 使得从发点到收点的流量最大。

"流",是指铁路线(弧)上的实际运输量。

每条弧旁的数字即为该弧的容量 c_{ij} ,弧的方向就是允许流的方向。把标有弧容量的网络称为容量网络,记为 D=(V,A,C). $c_{ij} \geq 0$ 。实际通过各弧的流量,记为 f_{ij} 。所有弧上流量的集 $F=\{f_{ij}\}$ 称为该网络D的一个流。

给一个带收发点的网络(一般收点用 v_t表示, 发点用 v_s表示, 其余为中间点), 其每条弧的权值称之为容量, 在不超过每条弧的容量的前提下, 要求确定每条弧的流量, 使得从发点到收点的流量最大。

请写出原问题和对偶问题,并解释对偶变量的物理意义

*:发点和收点不唯一的情况用虚拟发/收点解决。示意图如下:

给一个带收发点的网络(一般收点用 v_t表示, 发点用 v_s表示, 其余为中间点), 其每条弧的权值称之为容量, 在不超过每条弧的容量的前提下, 要求确定每条弧的流量, 使得从发点到收点的流量最大。

$$\max v(f)$$

$$s.t. \quad 0 \le f_{ij} \le c_{ij} \quad (v_i, v_j) \in A$$

$$\sum_{(v_i, v_j) \in A} f_{ij} - \sum_{(v_i, v_j) \in A} f_{ji} = \begin{cases} v(f) & i = s \\ 0 & i \neq s, t \\ -v(f) & i = t \end{cases}$$

maximize
$$\sum_{v:(s,v)\in E} f(s,v)$$
 subject to
$$\sum_{u:(u,v)\in E} f(u,v) = \sum_{w:(v,w)\in E} f(v,w) \quad \forall v\in V-\{s,t\}$$

$$f(u,v)\leq c(u,v) \qquad \forall (u,v)\in E$$

$$f(u,v)\geq 0 \qquad \forall (u,v)\in E$$

maximize
$$\sum_{p \in P} x_p$$
 subject to
$$\sum_{p \in P: (u,v) \in p} x_p \le c(u,v) \quad \forall (u,v) \in E$$

$$x_p \ge 0 \qquad \forall p \in P$$