Digital Image Processing Lecture I

Chapter 1: Introduction

Fall 2012

What is Image Processing?

- Processing of images which are digital in nature by computer.
- Image processing is a subclass of signal processing concerned specifically with pictures.
- Improve image quality for human perception and/or computer interpretation.
- Processing of image data for storage, transmission and representation for autonomous machine perception.

Computer graphics: the creation of images

Computer vision: analysis of image content

Several fields deals with images

Input/Output	Image	Description
Image	Image Processing	Computer Vision
Description	Computer Graphics	AI

Typical Computer Vision System

- Preprocessing: Filtering, Enhancement
- Segmentation: images in, boundaries and regions out
- Feature extraction: images in; patterns out
- Classification: Calssify into one of predetermined classes

Digital Image Processing Concerned fields:

- □ Digital Signal Processing
- □ Digital Comunication
- □ Data Compression
- □ Speech Processing and Recognition
- □ Computer Graphics
- □ Computer Vision

History of Image Processing

1920's - Digitized newspaper picture transmitted through submarine cable (London New York)

History of Image Processing 1960's - Images from space probe

History of Image Processing

- 1970's Computerized Tomography (CT)
- 1980's and later

Computer image processing in industry, biomedical area, military recognition, satellite imagery for weather and environment.

History of Image Processing

- 2000s: Augmented Reality, Virtual Reality
- Combination of real and synthetic images

Areas of Application

- Image transmission and storage
- Biomedical applications
- Robotics
- Remote Sensing
- Radar/sonar
- Computer graphics
- Document Analysis
- Law enforcement
- Human computer interaction

Examples: Image Correction

- Needed when image data is erroneous:
 - □ Bad transmission
 - □ Some bits are missing: *Salt & Pepper Noise*

Image Deblurring: Motion Blur

Can be used when camera moved during exposure!

Deblurring

Can be used when the camera was not focused properly!!

Image manipulation

■ Image improvement, e.g. too dark image

Medical Image Processing

- Image Processing becomes widely used
- E.g. Analysis of microscopic images

Medical Image Processing

- MR/CT Imaging of a human body
- Use for Brain Surgery

Biomedical imaging

Remote Sensing: weather observation and prediction

Multispectral image of Hurricane Andrew from satellite images in visible and infrared bands

Remote Sensing: Nighttime lights of the world (provides a global inventory of human settlements)

	3	3
	Ь	e
cuit board: missing parts	U	f

- (a). A circ
- (b). Pill container: missing pills
- (c). Bottles: not filled up to an acceptable level
- (d). Bubbles in product : detect unacceptable air pockets
- (e). Cereal: inspection for color and anomalies like burned flake.
- (f). Lens for human eye: inspection of damaged implants

Law Enforcement: Visual Spectrum

- (a). Thumb print: automated search for a potential matches
- (b). Paper currency: automated counting / reading of the serial number for tracking and identifying bills
- (c) and (d) Automated license plate reading

SAR imaging

SAR imaging

SAR imaging

Conveyer belt applications

- Checking and sorting
 - ☐ For example: checking bottles in the supermarket
- Quality control
 - □ Does the object have the correct dimensions, color, shape, etc.?
 - □ Is the object broken?
- Robot control
 - ☐ Find precise location of the object to be picked

Analysis of Sport Motions

- 3D Tracking of body parts
- Motion interpretation
- Action recognition, Identification (Surveillance)

Basic Classes of Problems

- Image Representation and Modelling
- Image Enhancement
- Image Restoration
- Image Segmentation and Analysis
- Image Reconstruction
- Image Compression

3 types of computerized process:

Low-level:

 input-output are images
 Primitive operations such as image processing to reduce noise, contrast enhancement, and image sharpening

 Mid-level:

 inputs may be images, outputs are attributes extracted from the images
 Segmentation
 Description of objects
 Classification of objects

 High-level:

 Image analaysis (target recognization, motion characterization, 3-D feature analaysis)

Simple Processing:

Flip Vertical

Cropping

Image Enhancement:

To bring out detail is obscured, or simply to highlight certain features of interest in an image.

Image Restoration:

Improving the appearance of an image Tend to be based on mathematical or probabilistic models of image degradation

Distorted image

Restrored image

Image Warping

Morphological Processing:

Tools for extracting image components that are useful in the

- (a) Image of squares of size 1,3,5,7,9 and 15 pixels on the sides
- (b) (b) Erosion of (a) with a square structuring element of 1's 13 pixels on the sides
- (c) Dilation of (b)

Image Segmentation:

- Separate objects from the image background
- It is one of the most difficult tasks in DIP.
- Output of the segmentation stage is raw pixel data, constituting either the boundary of a region or all the points in the region itself.

Image Segmentation:

Quadtree segmentation based on variance criterion.

Image Segmentation:

Polygon segmentation based on variance criterion.

Image segmentation

Image segmentation

Image segmentation

Representation & Description:

Recognition; the process that assigns a label to an object based on the information provided by its descriptors.

Interpretation; assigning meaning to an ensemble of recognized objects.

Representation & Description; Transform row data a form suitable for the recignition processing

Image Compression & JPEG:

original

compression=16

Recognition – Shading:

Lighting affects appearance

Recognition – Shading:

Recognition – Shading:

Face detection

Face & eye recognition

Face, eye, & nose recognition

Tracking:

Tracking:

Object tracking

Model based tracking

Image type	Typical bpp	No. of	Common	
		colors	file formats	
Binary image	1	2	JBIG, PCX, GIF, TIFF	
Gray-scale	8	256	JPEG, GIF, PNG, TIFF	
Color image	24	$16.6 \cdot 10^6$	JPEG, PNG, TIFF	
Color palette image	8	256	GIF, PNG	
Video image	24	$16.6\cdot10^6$	MPEG	

Sample Image with different gray levels

6 bits (64 gray levels)

(16 gray levels)

(2 bits (4 gray levels)

Color Images:

Red

Green

Blue

Digitization of a continuous image. The pixel at coordinates [m=10, n=3] has the integer brightness value 110.

Digital Image Representation:

Pixel values in highlighted region

99	71	61	51	49	40	35	53	86	99
93	74	53	56	48	46	48	72	85	102
101	69	57	53	54	52	64	82	88	101
107	82	64	53	59	60	81	90	83	100
114	93	76	69	72	85	94	99	95	99
117	108	94	92	97	101	100	108	105	99
116	114	109	106	105	108	108	102	107	110
115	113	109	114	111	111	113	108	111	115
110	113	111	109	106	108	110	115	120	122
103	107	106	108	109	114	120	124	124	132

CAMERA

DIGITIZER

A set of number in 2D grid

From Acquisition to Interpretation:

Image Categorization by source

- Principal energy source in use today is electromagnetic energy spectrum
- Synthetic images are generated by computer.
- Other sources : acoustic, ultrasonic, electronic (electron microscopy)

Electromagnetic spectrum

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

Catogorize by image sources:

■ Radiation from electromagnetic spectrum

Gamma-Ray imaging X-Ray imaging

Maging in ultraviolet band Imaging in visible & infrared band

Imaging in microwave band Imaging in radio band

- Acoustic
- Ultrasonic
- **■** Electronic (electronic beams used in electron microscopy)
- Computer (synthetic images used for modeling and visualization)