FMI, Info, Master I Logică avansată pentru informatică

Examen

1 Logică de ordinul întâi

- **(P1)** [3 puncte]
 - (i) Să se arate că pentru orice limbaj $\mathcal L$ de ordinul I și orice formule $\varphi,\,\psi$ ale lui $\mathcal L,$ avem:
 - (a) $\exists x \varphi \lor \exists x \psi \vDash \exists x (\varphi \lor \psi)$, pentru orice variabilă x.
 - (b) $\forall x(\psi \to \varphi) \vDash \exists x\psi \to \varphi$, pentru orice variabilă $x \not\in FV(\varphi)$.
 - (ii) Să se dea exemplu de limbaj \mathcal{L} de ordinul I şi de formule φ, ψ ale lui \mathcal{L} astfel încât:

$$\exists x \varphi \to \exists x \psi \not\vDash \forall x (\varphi \to \psi).$$

(P2) [1 punct] Fie \mathcal{L} un limbaj de ordinul I ce conține cel puțin un simbol de relație unară P și un simbol de constantă c. Să se arate:

$$\models P(c) \rightarrow (\exists v_0 P(v_0)).$$

- (P3) [3 puncte] Fie \mathcal{L} un limbaj de ordinul întâi care conține
 - $\bullet\,$ două simboluri de relații unare R,S și două simboluri de relații binare P,Q;
 - un simbol de operație unară f;
 - un simbol de constantă c.
 - (i) Să se găsească forme normale prenex pentru următoarele formule ale lui \mathcal{L} :

$$\varphi_1 = \exists x P(x, y) \to (\neg \exists z (f(z) = c) \land \forall v R(v))$$

$$\varphi_2 = \exists x (\forall y S(y) \land \neg \exists y Q(x, y)) \to \neg (\forall x \exists y Q(x, y) \land \neg \exists x R(x)).$$

(ii) Să se găsească o formă normală Skolem pentru enunțul

$$\psi = \exists v_1 \forall v_2 \exists v_3 \exists v_4 \forall v_5 ((Q(v_1, v_3) \to P(v_2, v_4)) \lor S(v_5) \land \neg (R(v_3) \to R(v_5))).$$

(P4) [1 punct] Fie φ un enunț în formă normală prenex și $(\neg \varphi)^{Sk}$ o formă normală Skolem a lui $\neg \varphi$. Definim $\theta := \neg (\neg \varphi)^{Sk}$. Demonstrați că

 $\vDash \theta$ dacă și numai dacă $\vDash \varphi$.

2 Logică modală

- (P5) [2 puncte] Demonstrați că următoarele formule nu sunt valide în clasa tuturor cadrelor:
 - (i) $\Box \bot$;
 - (ii) $p \to \Box \Diamond p$.
- (P6) [2 puncte] Arătați că următoarea formulă este K-demonstrabilă:

$$\Diamond(p\vee q)\leftrightarrow(\Diamond p\vee\Diamond q).$$

(P7) [2 puncte] Demonstrați că o mulțime de formule este Λ -inconsistentă dacă și numai dacă are o submulțime finită Λ -inconsistentă.