Exercise 1: Let $n \ge 1$. We want to show that if A_1, \ldots, A_n are countable then $A_1 \times \cdots \times A_n$ is countable. We will prove this by induction on n.

Base Case: n = 1. By the given, A_1 is countable.

n=2. We want to show that $A_1 \times A_2$ is countable.

Since A_1 and A_2 are countable there exists bijective functions $f_1: A_1 \to \mathbb{N}$ and $f_2: A_2 \to \mathbb{N}$. We know that $g(n,m) = \frac{(n+m-1)(n+m-2)}{2} + n$ is a bijective function from homework 7.

We also know that the composition of bijective functions are bijective.

Hence, we can a bijective $h_1: A_1 \times A_2 \to \mathbb{N}$ where $h_2(a_1, a_2) = g(f_1(a_1), f_2(a_2))$.

Induction Step: Assume that $A_1 \times \cdots \times A_n$ is countable. We want to show that $A_1 \times \cdots \times A_n \times A_{n+1}$ is countable.

Since $A_1 \times \cdots \times A_n$ is countable, there exists a bijective function $h_n : A_1 \times \cdots \times A_n \to \mathbb{N}$.

Since A_{n+1} is countable, there exists a bijective function $f_{n+1}: A_{n+1} \to \mathbb{N}$.

So, we can define $h_{n+1} = g(h_n, f_{n+1})$ where g is the bijective function from the base case. Since the composition of bijective functions are bijective, h_{n+1} is bijective.

Thus, there exists a bijective function $h_{n+1}: A_1 \times \cdots \times A_n \times A_{n+1} \to \mathbb{N}$. So, $A_1 \times \cdots \times A_n \times A_{n+1}$ is countable.

Exercise 2: Assume $A \sim B$. We want to show $\mathcal{P}(A) \sim \mathcal{P}(B)$.

We know there exists $f: A \to B$ that is bijective. Define $g: \mathcal{P}(A) \to \mathcal{P}(B)$ where $g(S) = \{f(s) \mid s \in S\}$ for all $S \in \mathcal{P}(A)$.

Take $X, Y \in \mathcal{P}(A)$. We want to show that $g(X) = g(Y) \implies X = Y$.

Assume otherwise, g(X) = g(Y) and $X \neq Y$. Then there exists $x \in X$ such that $x \notin Y$ or $y \in Y$ such that $y \notin X$. Without loss of generality, assume that there exists $x \in X$ such that $x \notin Y$. Then $f(x) \in g(X)$ by definition of g. We also know that $f(x) \in g(Y)$ since g(X) = g(Y). So, f(x) = x' for some $x' \in Y$. However, f is bijective so $f^{-1}(x') = x$. Thus, $x \in Y$, which is a contradiction.

Thus, X = Y. So, g is injective.

Now we want to show that g is surjective. Take $Y \in \mathcal{P}(B)$. We know that for all $y \in Y$, there exists a $x \in X$ such that f(x) = y since f is bijective.

So, $X = \{x \in A \mid f(x) \in Y\}$. Then $g(X) = \{f(x) \mid x \in X\} = \{y \in B \mid y \in Y\} = Y$.

Thus, g is surjective and bijective.

Exercise 3: Let $S \subseteq \mathbb{N}$. We define $f : \mathcal{P}(\mathbb{N}) \to 2^{\mathbb{N}}$ by $f(S) = f_S(x) = \{1 \text{ if } x \in S, 0 \text{ if } x \notin S\}$. We want to show that f is bijective.

Take $S, T \in \mathcal{P}(\mathbb{N})$. We want to show that $f(S) = f(T) \implies S = T$.

Assume otherwise, f(S) = f(T) and $S \neq T$. Then there exists $x \in S$ such that $x \notin T$ or $y \in T$ such that $y \notin S$. Without loss of generality, assume that there exists $x \in S$ such that $x \notin T$. Then $f_S(x) = 1$ and $f_T(x) = 0$. This contradicts the fact that f(S) = f(T). Hence, S = T, and f is injective.

Now we want to show that f is surjective. Take $g \in 2^{\mathbb{N}}$. We want to show that there exists $S \in \mathcal{P}(\mathbb{N})$ such that f(S) = g. Let $S = \{x \in \mathbb{N} \mid g(x) = 1\}$. Then, f(S) = g by definition of f.

Hence, f is bijective.

Exercise 4: Notice that $2^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}}$. So the identity function from $2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is injective. Now we want to show that there exists a function $f: \mathbb{N}^{\mathbb{N}} \to 2^{\mathbb{N}}$ that is injective.

Let $\{a_n\} \in \mathbb{N}^{\mathbb{N}}$. We can define f as the encoding of $\{a_n\}$ by the following: For each $a_i \in \{a_n\}$, we map it to a string of 0's of length a_i , followed by a 1. We then concatenate all of these strings together.

This is an injective function.

Hence, since we can define two injective functions from $2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ and $\mathbb{N}^{\mathbb{N}} \to 2^{\mathbb{N}}$, we have that $2^{\mathbb{N}} \sim \mathbb{N}^{\mathbb{N}}$.

Exercise 5: We want to show that the set of all real roots of all polynomials in \mathcal{P} is countable. Let $n \geq 1$. We know that a polynomial of degree n has at most n real roots.

Thus, for all $p \in \mathcal{P}$, there is a finite number of real roots of p.

Note that we can map \mathcal{P} to \mathbb{N}^n using the coefficients of the polynomial. This means that \mathcal{P} is countable. Hence \mathcal{A} can be defined as the countable union of finite sets. By some theorem proven in class, this is a countable set. Hence, \mathcal{A} is countable.

Exercise 6: Fix a $n \ge 1$. We want to show that the set of all subsets of \mathbb{N} with n distinct elements is countable. Let's call this set \mathcal{M} .

We can use exercise 1 to show that S is countable, since we know that $\mathbb{N} \times \cdots \times \mathbb{N}$ is countable.

We can define an injective function $f: \mathcal{M} \to \mathbb{N} \times \cdots \times \mathbb{N}$. Let $S \in \mathcal{M}$. Define f by sorting the elements of S in ascending order. Then, make a tuple of the elements of S. This is obviously an element of $\mathbb{N} \times \cdots \times \mathbb{N}$.

Let $S, T \in \mathcal{M}$ such that f(S) = f(T). Then, S and T are the same n-tuple, so they contain all the same elements. Hence S = T.

We want to define a surjective function $g: \mathbb{N} \times \cdots \times \mathbb{N} \to \mathcal{M}$.

Exercise 7: We want to show that $\mathbb{R} \sim (0,1)$. Note that strictly increasing function are injective. $\tanh(x)$ is strictly increasing on \mathbb{R} . If we define $f(x) = \frac{1}{2}\tanh(x) + \frac{1}{2}$ for all $x \in \mathbb{R}$, then f is injective and is restricted to (0,1).

Since $(0,1) \subseteq \mathbb{R}$, the identity map suffices as an injective function.

Exercise 8: Denote the set of irrational numbers as $\mathcal{I} = \mathbb{R} \setminus \mathbb{Q}$. We want to show that $\mathbb{R} \sim \mathcal{I}$.

The identity map $f: \mathcal{I} \to \mathbb{R}$ is injective because $\mathcal{I} \subseteq \mathbb{R}$.

We can define an injective function $g: \mathbb{R} \to \mathcal{I}$ by the following: $g(x) = x + \pi$ for all $x \in \mathbb{R}$.

Let $x, y \in \mathbb{R}$ such that g(x) = g(y). Then $x + \pi = y + \pi$, so x = y. Hence g is injective. Thus, $\mathbb{R} \sim \mathcal{I}$.