1 About

This will be my first proof done in Latex!

2 The proof to be done

Proof that $(\mathbb{Q}, +, \cdot)$ is a Field

3 Axioms

The set of integers \mathbb{Z} forms a group under addition, denoted as $(\mathbb{Z}, +)$. It is also closed under multiplication.

4 The proof itself:

To prove that $(\mathbb{Q}, +, \cdot)$ is a field, we will verify that the set of rational numbers \mathbb{Q} satisfies the field axioms under the operations of addition + and multiplication \cdot , and has an identity e.

1. Closure

Let $a,b\in\mathbb{Q}$. Then $a=\frac{m}{n}$ and $b=\frac{p}{q}$, for some numbers $p,q,m,n\in\mathbb{Z}$:

Addition:

$$a+b=\frac{m}{n}+\frac{p}{q}=\frac{mq+np}{nq}\in\mathbb{Q}$$

Seeing as $(\cdot, +)$ are closed under \mathbb{Z} . And $n, q \neq 0$

Multiplication:

Trivially the same.

5 trivial stuff, gonna skip

6 Distributivity

6.1 Addition

+ Distirbutes over
$$\cdot$$
:
$$\frac{a}{b} \left(\frac{x_1}{y_1} + \frac{x_2}{y_2} \right) = \frac{a}{b} \frac{x_1 y_2 + x_2 y_1}{y_1 y_2} = \frac{a(x_1 y_2 + x_2 y_1)}{b y_1 y_2}$$

Multiplication

$$\tfrac{a}{b}\tfrac{x_1}{y_1} + \tfrac{a}{b}\tfrac{x_2}{y_2} = \tfrac{ax_1}{by_1} + \tfrac{ax_2}{by_2} = \tfrac{ax_1by_2 + by_1ax_2}{b^2y_1y_2} = \tfrac{ax_1y_2 + ay_1x_2}{by_1y_2}$$

maybe not so trivial

All nonzero fractions have inverses under multiplication since if $\frac{a}{b}$ is not 0, then

it has an inverse $\frac{b}{a}$. Which exists since $a \neq 0$.

Overall this was really awful to write. Writing latex feels slow as shit and I never want to do it again. Looks pretty though. $\frac{a}{b}$

$$\mathbb{Z} = \{a \mid a \in \mathbb{N}\} \cup \{a^-1 \mid a \in \mathbb{N}\} \cup \{0\}$$