Topology Course Notes (KSM1C03)

Day 12: 17th September, 2025

sequential compactness -- limit point compactness -- second countable -- Lindelöf

12.1 Sequential Compactness (Cont.)

Definition 12.1: (Countably compact)

A space X is called *countably compact* if every countable open cover admits a finite sub-cover.

Proposition 12.2: (Limit point compact T_1 is countably compact)

A limit point compact T_1 -space is countably compact.

Proof

Let $X=\bigcup U_i$ be a countable cover. If possibly, suppose there is no finite subcover. In particular, $X\setminus\bigcup_{i=1}^n U_i\neq\emptyset$ for each $n\geq 1$. Moreover, $X\setminus\bigcup_{i=1}^n U_i\neq\emptyset$ must be infinite, otherwise we can readily get a finite sub-cover. Inductively choose $x_n\not\in\bigcup_{i=1}^n U_i\cup\{x_1,\ldots,x_{n-1}\}$. Thus, we have an infinite set $A=\{x_i\}$, which admits a limit point, say, x. Since X is T_1 , it follows that for any open nbd $x\in U\subset X$, we must have $A\cap (U\setminus\{x\})$ is infinite (Check!). Now, we have $x\in U_{i_0}$ for some i_0 . But by construction, U_{i_0} contains at most finitely many x_i , a contradiction. Hence, we must have a finite subcover. Thus, X is countably compact.

Proposition 12.3: (Countably compact first countable is sequentially compact)

A first countable, countably compact space is sequentially compact.

Proof

Suppose, $\{x_n\}$ is a sequence. WLOG, assume element is distinct. If possible, suppose $A=\{x_n\}$ has no convergent subsequence.

If possible, $A = \{x_n\}$ has no convergent subsequence. Since X is first countable, for any $x \in X$, we must have some open set $x \in U_x \subset X$ such that $U_x \cap A$ is finite (Check!). Now, for any finite subset, $F \subset A$, consider the open set

$$\mathcal{O}_F := \bigcup \{ U_x \mid U_x \cap A = F \} .$$

Since A is countable, there are countable finite subsets of F. Thus, $\mathcal{O} \coloneqq \{\mathcal{O}_F \mid F \subset A \text{ is finite}\}$ is a countable collection, which is clearly an open cover. By countable compactness, we have a finite subcover $X = \bigcup_{i=1}^k \mathcal{O}_{F_i}$. Consider $F = \bigcup_{i=1}^k F_i$, which is again finite. Pick some $x_{i_0} \in A \setminus F$. Now, $\mathcal{O}_{F_i} \cap A = F_i \Rightarrow x_{i_0} \notin \bigcup_{i=1}^k F_i = \bigcup_{i=1}^k \mathcal{O}_{F_i} \cap A = X \cap A = A$, a contradiction. Hence, $\{x_n\}$

