— 5 —

Compléments sur la dérivation

I. Rappels sur la dérivation

1. Fonction dérivée

Définition 1

Soit f une fonction définie sur un intervalle $I, a \in I$ et h un réel non nul tel que $a + h \in I$.

• On dit que f est dérivable en a si le taux de variation $\frac{f(a+h)-f(a)}{h}$ admet une limite finie lorsque h tend vers 0. Cette limite est appelée nombre dérivé de f en a et est notée f'(a).

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

• On dit que f est dérivable sur I si f est dérivable en tout $a \in I$. On appelle alors fonction dérivée de f sur I la fonction

$$f': \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f'(x). \end{array} \right.$$

Exemple :

On considère la fonction $f: x \mapsto x^2$, définie sur \mathbb{R} . Soit x un réel et h un réel non nul.

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = 2x + h$$

Lorsque h se rapproche de 0, cette quantité tend vers 2x.

Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x, f'(x) = 2x.

2. Dérivées usuelles

$f: x \mapsto$	Définie sur	Dérivable sur	$f': x \mapsto$
$k \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	0
$x^n \text{ pour } n \in \mathbb{N}^*$	\mathbb{R}	\mathbb{R}	nx^{n-1}
$\frac{1}{x}$	$]-\infty;0[\text{ et }]0;+\infty[$	$]-\infty;0[\text{ et }]0;+\infty[$	$-\frac{1}{x^2}$
$\frac{1}{x^n}$ pour $n \in \mathbb{N}^*$	$]-\infty;0[\text{ et }]0;+\infty[$	$]-\infty;0[\text{ et }]0;+\infty[$	$-\frac{n}{x^{n+1}}$
\sqrt{x}	$[0;+\infty[$	$]0;+\infty[$	$\frac{1}{2\sqrt{x}}$
$\exp(x)$	\mathbb{R}	\mathbb{R}	$\exp(x)$

3. Opérations sur les dérivées

Théorème 1

Soit I un intervalle, u et v deux fonctions dérivables sur I, k un réel. Alors les fonctions k u, u + v et uv sont dérivables sur I. Si de plus, v ne s'annule pas sur I, alors la fonction $\frac{u}{v}$ est également dérivable sur I. On a alors

$$(k u)' = k u'$$

$$(u + v)' = u' + v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

4. Tangente à la courbe

Définition 2 : Tangente à la courbe

Soit f une fonction dérivable en a. On note C_f la courbe de f dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

La tangente à C_f au point d'abscisse a est la droite de coefficient directeur f'(a) et passant par le point de coordonnée (a; f(a)).

Propriété 1

Soit f une fonction dérivable en a. La tangente à \mathcal{C}_f au point d'abscisse a a pour équation

$$y = f'(a) \times (x - a) + f(a).$$

Année 2024/2025 Page 2/4

Exemple :

Pour tout réel x, posons $f(x) = \frac{x^2}{2} - 2x - 1$. f est dérivable sur \mathbb{R} et pour tout réel x, on a

$$f'(x) = x - 2$$

Déterminons l'équation de la tangente à C_f au point d'abscisse 4

•
$$f(4) = \frac{4^2}{2} - 2 \times 4 - 1 = -1$$

Cette tangente a pour équation $y = f'(4) \times (x - 4) + f(4)$ soit y = 2(x - 4) - 1 et donc y = 2x - 9.

5. Variations d'une fonction

Propriété 2

Soit f une fonction dérivable sur un intervalle I.

- Si, pour tout $x \in I$, $f'(x) \ge 0$, alors f est croissante sur I.
- Si, pour tout $x \in I$, $f'(x) \leq 0$, alors f est décroissante sur I.
- Si, pour tout $x \in I$, f'(x) = 0, alors f est constante sur I.

II. Composition de fonctions

Définition 3 : Fonction composée

Soit I et J deux parties de \mathbb{R} .

Soit f une fonction définie sur J et g une fonction définie sur I telle que pour tout réel $x, g(x) \in J$.

On définit la fonction composée de f et g notée $f \circ g$ par

Pour tout
$$x \in I$$
, $f \circ g(x) = f(g(x))$.

L'idée derrière la composition de fonctions est simplement d'appliquer successivement plusieurs fonctions.

$$f \circ g : x \xrightarrow{g} g(x) \xrightarrow{f} f[g(x)]$$

// Exemple :

Pour tout réel x, on note $f(x) = x^2$ et g(x) = x + 3. Alors, pour tout réel x,

Année 2024/2025

- $f \circ g(x) = f(g(x)) = (g(x))^2 = (x+3)^2$.
- $g \circ f(x) = g(f(x)) = f(x) + 3 = x^2 + 3$.

Attention! En général, on n'a pas $f \circ g = g \circ f!$ Ces deux fonctions ne sont d'ailleurs pas forcément définies sur le même ensemble.

Propriété 3

Soit I et J deux intervalles, f une fonction définie et dérivable sur J et g une fonction définie et dérivable sur I telle que pour tout $x \in I$, $g(x) \in J$. Alors $f \circ g$ est dérivable et pour tout réel x dans I,

$$(f \circ g)'(x) = g'(x) \times (f' \circ g)(x).$$

Exemple :

On considère la fonction f définie pour tout réel x par $f(x) = e^{x^2 + 3x - 2}$. Pour tout réel x, on pose alors $u(x) = e^x$ et $v(x) = x^2 + 3x - 2$. Pour tout réel x, on a alors $f(x) = u(v(x)) = u \circ v(x)$.

- v est dérivable sur \mathbb{R} et pour tout réel x, v'(x) = 2x + 3
- u est dérivable sur \mathbb{R} et pour tout réel x, $u'(x) = e^x$

Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = v'(x) \times u'(v(x)) = (2x+3)e^{x^2+3x-2}.$$

Propriété 4 : Cas particuliers

Soit u une fonction définie et dérivable sur un intervalle I

- Pour tout entier naturel n, u^n est dérivable sur I et $(u^n)' = nu'u^{n-1}$.
- e^u est dérivable sur I et $(e^u)' = u' \times e^u$.
- Si pour tout réel $x \in I$, u(x) > 0, alors \sqrt{u} est dérivable sur I et $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$.
- Si pour tout réel x, $u(x) \neq 0$, $\frac{1}{u}$ est dérivable sur I et $\left(\frac{1}{u}\right) = -\frac{u'}{u^2}$.

Exemple :

On considère la fonction f définie pour tout réel $x \in [-2; 2]$ par $f(x) = \sqrt{4 - x^2}$.

Bien que la fonction f soit définie sur l'intervalle fermé [-2;2], elle n'est en revanche dérivable que sur l'intervalle ouvert]-2;2[. Pour tout réel $x \in]-2;2[$, on a

$$f'(x) = \frac{-2x}{2\sqrt{4 - x^2}} = -\frac{x}{\sqrt{4 - x^2}}.$$

Année 2024/2025 Page 4/4