LinkedIn GreyKite Forecast - Brooklyn Rolling Data

Here I will do the following:

- 1. Import necessary modules
- 2. Import the data
- 3. Prepare data to work with greykite
- 4. Forecast 30 days ahead with greykite
- 5. Note observation of what prices the model predicts

```
In [1]: import sys
         sys.path.append('../greykite')
In [2]:
        import pandas as pd
         import greykite
         from greykite.framework.templates.autogen.forecast_config import ForecastConfig
         from greykite.framework.templates.autogen.forecast_config import MetadataParam
         from greykite.framework.templates.forecaster import Forecaster
         from greykite.framework.templates.model_templates import ModelTemplateEnum
         import datetime
         import plotly
         #Supress default INFO logging
         %matplotlib inline
         import warnings
         warnings.filterwarnings('ignore')
         import logging
         logger = logging.getLogger()
         logger.setLevel(logging.CRITICAL)
         import logging, sys
         warnings.simplefilter(action='ignore', category=FutureWarning)
In [3]: df = pd.read_csv('datasets/rollingsales_brooklyn.xls_prepped_bare.csv', usecols=
In [4]: | df['SALE DATE'] = pd.to_datetime(df['SALE DATE'])
In [5]: | df.dropna(inplace=True)
         df.reset_index(drop=True)
Out[5]:
                SALE PRICE SALE DATE
             0
                   1300000
                            2020-04-28
                            2020-11-30
             1
                     75000
             2
                    830000
                            2020-06-26
             3
                   1188000
                            2020-07-20
             4
                    990000
                            2021-02-22
         11619
                    470000
                            2020-12-01
         11620
                     15000
                            2021-02-18
                    600000
                            2021-02-12
          11621
         11622
                    900000
                            2020-11-19
         11623
                    960000
                            2020-12-21
         11624 rows × 2 columns
```

```
In [6]: | df = df.rename(columns={'SALE DATE':'ts', 'SALE PRICE': 'y'})
          df.columns = df.columns.astype(str)
          df = df.set_index(['ts'], drop=True)
          df.index= pd.to_datetime(df.index)
 In [7]: df
 Out[7]:
                           У
           2020-04-28 1300000
           2020-11-30
                       75000
           2020-06-26
                      830000
           2020-07-20
                     1188000
           2021-02-22
                       990000
                      470000
           2020-12-01
           2021-02-18
                       15000
           2021-02-12
                       600000
           2020-11-19
                       900000
           2020-12-21
                       960000
          11624 rows × 1 columns
 In [8]: | df = df.resample('D').mean()
 In [9]:
         df = df.reset_index()
In [10]:
          df.fillna(0)
Out[10]:
                                     у
             0 2020-04-01 3.977437e+06
             1 2020-04-02 8.185471e+05
             2 2020-04-03 1.815030e+06
             3 2020-04-04 2.333627e+05
                2020-04-05  0.000000e+00
                       ...
           360 2021-03-27 0.000000e+00
           361
               2021-03-28 0.000000e+00
           362 2021-03-29 1.002984e+06
               2021-03-30 1.058857e+06
           363
               2021-03-31 1.126519e+06
          365 rows × 2 columns
In [11]: df['ts']= pd.to_datetime(df['ts'])
```

```
In [12]:
         # df = ... # your input timeseries!
         df=df
         metadata = MetadataParam(
             time_col= 'ts',
                                 # time column in `df`
             value_col='y'
                                 # value in `df`
         forecaster = Forecaster() # creates forecasts and stores the result
         result = forecaster.run_forecast_config(
              df=df,
               config=ForecastConfig(
                   # uses the SILVERKITE model template parameters
                   model_template=ModelTemplateEnum.SILVERKITE.name,
                   forecast_horizon=30, # forecasts 30 steps ahead
                                          # 95% prediction intervals
                   coverage=0.95,
                   metadata_param=metadata
          )
         # Access the result
         forecaster.forecast_result
         Fitting 3 folds for each of 1 candidates, totalling 3 fits
         [Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent worker
         [Parallel(n_jobs=1)]: Done
                                       3 out of 3 | elapsed:
                                                                 13.9s finished
Out[12]: ForecastResult(timeseries=<greykite.framework.input.univariate_time_series.Univ</pre>
         ariateTimeSeries object at 0x000001DE5FFCB8E0>, grid_search=RandomizedSearchCV
         (cv=RollingTimeSeriesSplit(expanding_window=True, forecast_horizon=30,
                      max_splits=3, min_train_periods=60, periods_between_splits=30,
                      periods_between_train_test=0, use_most_recent_splits=False),
                             estimator=Pipeline(steps=[('input',
                                                        PandasFeatureUnion(transformer li
         st=[('date',
         Pipeline(steps=[('select_date',
         ColumnSelector(column names=['ts'...
                                      'OutsideTolerance3p': make_scorer(score_func_finit
         e),
                                      'OutsideTolerance4p': make_scorer(score_func_finit
         e),
                                      'OutsideTolerance5p': make_scorer(score_func_finit
         e),
                                      'Q80': make_scorer(score_func_finite),
                                      'Q95': make_scorer(score_func_finite),
                                      'Q99': make_scorer(score_func_finite),
                                      'R2': make_scorer(score_func_finite),
                                      'RMSE': make_scorer(score_func_finite)
                                      'sMAPE': make_scorer(score_func_finite)},
                             verbose=1), model=Pipeline(steps=[('input',
                           PandasFeatureUnion(transformer_list=[('date',
                                                                  Pipeline(steps=[('select
         _date',
                                                                                   ColumnS
         elector(column_names=['ts']))])),
                                                                 ('response',
                                                                  Pipeline(steps=[('select
         _val',
                                                                                   ColumnS
         elector(column_names=['y'])),
                                                                                  ('outlie
         r',
                                                                                   Zscore0
         utlierTransformer()),
                                                                                  ('null',
                                                                                   NullTra
         nsformer(impute_algorithm='interpolate',
         impute_params={'axis': 0,
          'limit direct...
```

```
'simple_freq': <Sim</pre>
\verb|pleTimeFrequencyEnum.DAY: Frequency(default\_horizon=30, seconds\_per\_observation|)|
=86400, valid_seas={'QUARTERLY_SEASONALITY', 'WEEKLY_SEASONALITY', 'YEARLY_SEAS
ONALITY', 'MONTHLY_SEASONALITY'})>,
                                                                'start_year': 202
0},
                                             uncertainty_dict={'params': {'condit
ional_cols': ['dow_hr'],
                                                                            'quanti
le_estimation_method': 'normal_fit',
                                                                            'quanti
les': [0.0250000000000000022,
0.975],
                                                                            'sample
_size_thresh': 5,
                                                                            'small
sample_size_method': 'std_quantiles',
                                                                            'small_
sample_size_quantile': 0.98},
                                                                 'uncertainty_metho
d': 'simple_conditional_residuals'}))]), backtest=<greykite.framework.output.un</pre>
ivariate_forecast.UnivariateForecast object at 0x000001DE66647340>, forecast=<g</pre>
reykite.framework.output.univariate_forecast.UnivariateForecast object at 0x000
001DE600B0F70>)
```

```
In [13]: ts = result.timeseries
         fig = ts.plot()
         plotly.io.show(fig)
```

```
In [14]: ts = result.timeseries
         fig = ts.plot()
         plotly.io.show(fig)
```

```
In [15]: from plotly.offline import init_notebook_mode, iplot
    init_notebook_mode(connected=True) # for generating offline graphs within Jupy:
    backtest = result.backtest
    fig = backtest.plot()
    iplot(fig)
```

```
In [16]: from plotly.offline import init_notebook_mode, iplot
         init_notebook_mode(connected=True)
         fig = backtest.plot_components()
         iplot(fig) # fig.show() if you are using "PROPHET" template
```

```
In [17]: forecast = result.forecast
fig = forecast.plot()
              iplot(fig)
```

```
In [18]: | from plotly.offline import init_notebook_mode, iplot
          from greykite.common.evaluation import EvaluationMetricEnum
          init_notebook_mode(connected=True) # for generating offline graphs within Jupy
          # MAPE by day of week
          fig = backtest.plot_grouping_evaluation(
              score_func=EvaluationMetricEnum.MeanAbsolutePercentError.get_metric_func(),
              score_func_name=EvaluationMetricEnum.MeanAbsolutePercentError.get_metric_nam
              which="train", # "train" or "test" set
groupby_time_feature="dow", # day of week
              groupby_sliding_window_size=None,
              groupby_custom_column=None)
          iplot(fig)
          # RMSE over time
          fig = backtest.plot_grouping_evaluation(
              score_func=EvaluationMetricEnum.RootMeanSquaredError.get_metric_func(),
              score_func_name=EvaluationMetricEnum.RootMeanSquaredError.get_metric_name(),
              which="test", # "train" or "test" set
              groupby_time_feature=None,
              groupby_sliding_window_size=7, # weekly aggregation of daily data
              groupby_custom_column=None)
          iplot(fig)
```

In [19]: summary = result.model[-1].summary() # -1 retrieves the estimator from the pipe print(summary)

Number of observations: 365, Number of features: 92

Method: Ridge regression Number of nonzero features: 92 Regularization parameter: 475.1

Residuals:

Min	1 Q	Median	3Q	Max
-1.185e+06	-3.785e+05	-1.946e+05	6.041e+04	1.128e+07

	-1.185e+06	-3.785e+0	5 -1.946	e+05 6.	041e+04	1.128e+07	
	F	Pred col	Estimate	Std. Err	r Pr(>)_boot	sig. code	
	95%CI			J C W T	(, ,,,	. 2-8	
		ntercept	1.301e+06	5.848e+04	<2e-16	***	(1.197e+0
	6, 1.415e+06)		404 2	F44 1			
	events_CN (0., 1760.0)	New Year	481.2	511.3	0.504	ŀ	
	events_Cv	w Year-1	-730.3	738.9	0.150)	
	(-2469.0, 0.)		, 50.5	, 50.	0.130	•	
	events_Cv	v Year-2	-486.1	607.3	0.144	ļ.	
	(-2211.0, 0.)						
	events_Cv	v Year+1	-212.7	267.6	0.560)	
	(-853.6, 0.) events_Cv	u Voan±2	-1604.0	1648.6	0.498)	
	(-6137.0, 0.)	v rear+z	-1004.0	1040.6	0.430	•	
	events_Christ	tmas Day	226.8	441.8	0.690)	(-39
	5.1, 1251.0)						
	events_Ca	as Day-1	202.3	492.6	0.438	3	(-71
	4.3, 1390.0)	as Day 3	1762 0	1652 (0 174	•	
	events_Ca (0., 5509.0)	as Day-2	1762.0	1653.6	0.174	•	
	events_Ca	as Dav+1	645.9	627.5	0.154	ļ	
	(0., 1963.0)	,					
	events_Ca	as Day+2	413.2	497.2	0.540)	
	(0., 1760.0)						
	events_E]	[reland]	-933.1	888.7	0.142	<u></u>	
	(-3081.0, 0.) events_Ee	elandl-1	-632.4	653.7	0.164	Ĺ	
	(-2331.0, 0.)	cianaj i	032.4	055.7	0.10-	•	
	events_Ee	eland]-2	-200.3	295.2	0.244	ļ	(-9
	08.3, 105.1)						
	events_Ee	_	3799.0	3457.6	0.164	Ļ	
	(0., 1.135e+04 events_E	•	-804.5	867.9	0.534		
	(-2858.0, 0.)		-004.5	807.3	0.554	•	
	events_Good		-380.7	446.7	0.154	ļ.	
	(-1472.0, 0.)	-					
	events_Good F	-riday-1	-214.2	425.9	0.378	3	(-11
	63.0, 411.0)	Today 3	1125 0	022 (0 110	-	
	events_Good F (-3123.0, 0.)	-r.tuay-2	-1125.0	923.8	0.116)	
	events_Good F	-ridav+1	-200.3	295.2	0.244	ļ	(-9
	08.3, 105.1)	,					`
	events_Good F	-riday+2	-632.4	653.7	0.164	ļ	
	(-2331.0, 0.)	Б.	2204.0	2275 (0.400		
	events_Ie (-8575.0, 0.)	ence Day	-3204.0	2275.6	0.188	3	
	events_I	ce Dav-1	1734.0	3620.6	0.596		(-4488.
	0, 1.006e+04)		_,,,,,,	302011			(1.551
	events_I	ce Day-2	-1464.0	1201.6	0.118	3	
	(-4538.0, 0.)						
	events_I	ce Day+1	-2215.0	1507.6	0.090		
	(-5352.0, 0.) events_I	re Dav+2	-1121.0	954.7	0.146	<u> </u>	(-30
	20.0, 23.91)	cc Day 12	1121.0	774.7	0.140	,	(30
	events_La	abor Day	-477.2	477.1	0.232	2	(-16
	25.0, 162.3)	-					
	events_Labo	or Day-1	-1416.0	1340.6	0.176)	(-46
	82.0, 57.48) events_Labo	nn Day-2	-2834.0	1987.6	0.090	.	
٥k	_	-					klyn Forecast.ip 11/
υľ	(O, /00D1401ED00N0/	CO LIINCUIII GIC	, into i diddasis :	, in porougina/ /	COLUMNIC DIN OIN		

[Eiii	WEDIN ONE THITE	j brooklynn orcoa.	st - dupyter Notebook		
(-6850.0, 0.) events_Labor Day+1	-2524.0	1878.0	0.216		
(-7159.0, 0.) events_Labor Day+2	-1593.0	1107.0	0.094	•	
(-3962.0, 0.) events_Memorial Day	-895.4	882.1	0.144		
(-2912.0, 0.) events_Mal Day-1	-1348.0	1360.0	0.498		
(-4473.0, 0.) events_Mal Day-2 (-5319.0, 0.)	-1685.0	1621.0	0.166		
events_Mal Day+1 (-2671.0, 0.)	-791.0	794.4	0.182		
events_Mal Day+2 (0., 8943.0)	2875.0	2723.0	0.168		
events_New Years Day 53.5, 434.8)	-1.965	214.1	0.996		(-4
events_Nrs Day-1 0.3, 1031.0)	34.26	433.4	0.962		(-85
events_Nrs Day-2 (0., 2157.0)	481.9	602.8	0.546		
events_Nrs Day+1 (0., 1343.0)	354.3	407.5	0.526		
events_Nrs Day+2 75.6, 482.9)	34.37	206.1	0.540		(-3
events_Other 4, 3.949e+04)	53.55	1.896e+04	1.000		(-2.733e+0
events_Other-1 04, -1778.0)	-1.581e+04	6684.0	0.014	*	(-2.844e+
events_Other-2 04, -2707.0)	-1.406e+04	6508.0	0.032	*	(-2.749e+
events_Other+1 +04, -22.63)	-1.257e+04	6456.0	0.048	*	(-2.494e
events_Other+2 4, 1.238e+04)	-1904.0	7418.0	0.794		(-1.619e+0
events_Thanksgiving (-2110.0, 0.)	-547.4	624.1	0.532		
events_Tgiving-1 48.1, 641.8)	18.92	244.9	0.950		(-4
events_Tgiving-2 (0., 963.4)	259.0	297.0	0.530		
events_Tgiving+1 (-2903.0, 0.)	-859.1	877.1	0.496		
events_Tgiving+2 (-818.7, 0.)	-191.9	260.8	0.566		
events_Veterans Day (-6723.0, 0.)	-2001.0	1946.0	0.148		
events_Vns Day-1 86.8, 83.93)	-108.5	177.9	0.306		(-5
events_Vns Day-2 (-2210.0, 0.)	-691.9	687.9	0.166		
events_Vns Day+1 11.0, 103.3)	-269.5	426.4	0.632		(-15
events_Vns Day+2 (0., 8655.0)	2699.0	2671.0	0.452		
str_dow_2-Tue 4, 1.013e+04)	-2465.0	6292.0	0.680		(-1.350e+0
•	2.071e+04	1.039e+04	0.034	*	(2736.
str_dow_4-Thu 0, 6.661e+04)	3.246e+04	1.614e+04	0.048	*	(3483.
str_dow_5-Fri 3, 2.199e+04)	1.111e+04	5491.0	0.050	•	(48.1
str_dow_6-Sat -1.637e+04)	-2.887e+04	6358.0	<2e-16	***	(-4.102e+04,
str_dow_7-Sun 04, -8301.0)	-1.954e+04	5456.0	<2e-16	***	(-2.954e+
ct1 +04, 6373.0)	-1.435e+04	1.148e+04	0.208		(-3.814e
is_weekend:ct1 04, -8619.0)	-1.727e+04	4730.0	<2e-16	***	(-2.686e+
str_dow_2-Tue:ct1 +04, 5288.0)	-3233.0	3731.0	0.358		(-1.026e
str_dow_3-Wed:ct1	7751.0	5228.0	0.142		(-1928.

[LI	NKEDIN GREYKITE] Brooklyn Forecas	st - Jupyter Notebo	ok	
0, 1.844e+04)					
str_dow_4-Thu:ct1 5.0, 6144.0)	-148.5	3941.0	0.976		(-931
str_dow_5-Fri:ct1 8.0, 8209.0)	2736.0	2680.0	0.282		(-215
str_dow_6-Sat:ct1	-1.008e+04	3226.0	0.002	**	(-1.654e+
04, -3860.0) str_dow_7-Sun:ct1	-7195.0	2861.0	0.012	*	(-1.356e+
04, -1747.0)	1.923e+04	7298.0	0.008	**	(6590.
<pre>ct1:sin1_tow_weekly 0, 3.410e+04)</pre>	1.9236+04	7290.0	0.008		(6590.
ct1:cos1_tow_weekly +04, -958.7)	-1.249e+04	5908.0	0.036	*	(-2.437e
ct1:sin2_tow_weekly +04, 9876.0)	-1618.0	5741.0	0.776		(-1.203e
ct1:cos2_tow_weekly 4, 1.461e+04)	1855.0	7362.0	0.806		(-1.330e+0
sin1_tow_weekly	7.095e+04	1.650e+04	<2e-16	***	(4.138e+0
4, 1.025e+05) cos1_tow_weekly	-6.458e+04	2.058e+04	0.002	**	(-1.083e+05,
-2.461e+04) sin2_tow_weekly	-2.156e+04	1.787e+04	0.224		(-5.712e+0
4, 1.332e+04)					·
<pre>cos2_tow_weekly 0, 6.150e+04)</pre>	2.5990+04	1.886e+04	0.190		(-9987.
<pre>sin3_tow_weekly 4, 2.798e+04)</pre>	-1.053e+04	1.964e+04	0.576		(-4.855e+0
cos3_tow_weekly	-8372.0	1.089e+04	0.436		(-2.861e+0
4, 1.369e+04) sin4_tow_weekly	1.053e+04	1.964e+04	0.576		(-2.798e+0
4, 4.855e+04) cos4_tow_weekly	-8372 A	1.089e+04	0.436		(-2.861e+0
4, 1.369e+04)					·
<pre>sin1_toq_quarterly 4, 5.629e+04)</pre>	1.671e+04	2.054e+04	0.450		(-2.393e+0
<pre>cos1_toq_quarterly 4, 1.010e+05)</pre>	5.776e+04	2.205e+04	0.012	*	(1.874e+0
sin2_toq_quarterly	-3.225e+04	2.255e+04	0.158		(-7.378e
+04, 8607.0) cos2_toq_quarterly	-4085.0	2.009e+04	0.850		(-4.320e+0
4, 3.426e+04)					·
<pre>sin3_toq_quarterly 4, 2.627e+04)</pre>					(-6.165e+0
<pre>cos3_toq_quarterly 4, 3.706e+04)</pre>	2180.0	2.022e+04	0.902		(-4.074e+0
<pre>sin4_toq_quarterly 4, 3.621e+04)</pre>	-1.294e+04	2.630e+04	0.598		(-6.752e+0
cos4_toq_quarterly +04, 5805.0)	-2.195e+04	1.533e+04	0.154		(-5.086e
sin5_toq_quarterly	-3.552e+04	2.329e+04	0.128		(-8.010e+0
4, 1.111e+04) cos5_toq_quarterly	-1.933e+04	1.904e+04	0.302		(-5.659e+0
4, 1.874e+04) Signif. Code: 0 '***'	0.001 '**' 0	.01 '*' 0.0	5 '.' 0.1 '	' 1	

Multiple R-squared: 0.06071, Adjusted R-squared: 0.04643 F-statistic: 0.86709 on 5 and 358 DF, p-value: 0.5108 Model AIC: 12303.0, model BIC: 12328.0

WARNING: the F-ratio and its p-value on regularized methods might be misleadin g, they are provided only for reference purposes.

Observation:

Per the model in Linkedin Greykite, properties prices will fluctuate around a range in the low \$1.1 -1.3 million dollar mark for Brooklyn