IE 26/148	17/05/2011	16/05/2016	HBJ MINERALS PTY LTD	11.2	4

2901	Fmaqv
2973	be

I	IE 15/1197	07/02/2011	06/02/2021	[AVOCA RESOURCES PTY LTD	50000	28	10	
---	------------	------------	------------	--------------------------	-------	----	----	--

nsion Northerly directed hrusting	North-South regional hortening-> S over N low ngle thrusts	North—south regional shortening- > south over north hrusts	NNW-SSE extension North —south regional shorted ver N thrusts
compression -> p N to NNW ding reverse ts and folds	ENE regional shortening -> NNW trending open upright olds reverse thrusts along old limbs	E-W shortening-> upright NNW rending, gently SE plunging folds.	E-W compression -> steep N to NNW rending reverse faults and folds
W compression > dextral tivation of D2 Others thrust	ESE-WNW shortening-> inistral shear Zones along NNW structures low angle hrusts	blique-sinistral rench faulting reverse shear zones	ESE-WNW and NE-SW compressive vents-> reactivation of reverse faults. ther thrust and faults variably dextral nd sinistral movements.
		Dextral -reverse reactivation	Late brittle faulting and reactivation

Cognac West	Wumber of holes	ipl	
Highlight	JSR1228, 4m @ 683 ppb Au from 40m	JSA025, 1m @ 91.3 g/t Au from 41m	
Remy umber of holes		78	
Highlight	ISR1142, 4m @ 4.69 g/t Au from 40m	JSA032, 1m @ 0.87 g/t Au from 48m	
Cognac Central Wumber of holes		21	
Highlight	JSR1247, 3m @ 154 ppb Au from EOH	JSA015, 1m @ 1.04 g/t Au from 45m	
Le Mans North	Wumber of holes	50	
Highlight JSR1073, 4m @ 169 ppb Au from 8m		JSA002, 1m @ 0.80 g/t Au from 76m	
Martell Wumber of holes		50	

		3SA032-037 SR1256-1341	3SA032-037 SR1256-1299, SR1330-1338	cu, Cr, Ni, Pb, Zn			

		SR1259, 1264, 1268, 1270, 1275, 1280, 1290, 1291	SR1259, 1264, 1268, 1270, 1275, 1280, 1290, 1291		u, Ni			
		SA041-055	SA048-055					
		DHD696, 1D2848	DHD696					
		DHD729-734, 738- 740, 772-779, 782- 00	DHD732-734, DHD740, DHD772-779, DHD782-788, DHD800					
	01							
	NON	SRCOQ01-026	SRCOQ11-26	16		_	4	4
	O1 SION	SR1342-1599	SR1392-1599		u, Cu, Pb, Zn, Ni, Co, As, Ag			
	OJ	SR1600- 1667	SR1600-1603, SR1634-1667					
ye)		SD001	SD001		u, As, Cu, Ni, Pb, Zn			

Pano rami			LTRCO17-018	LTRCO17-018	
ves old Mini	NO NO		DHD2000-2081, RHD2000-2125	DHD2000-2081	

E15/1427	/11	EROO1-011	U267361
£15/1427	}12	ERO12-023	U267362
E15/1427		ERO24-028	U269898
TOTAL			

leporting	nan
er:	nan
lumbers:	E 15/01427
perator(s):	Coleman Resources Pty Ltd
Гуре:	Annual
Title:	Junction South Project E15/1427 Annual Report for the Period 2 N
7	nan

eriod:	2 March 2016 to 1 March 2017
pr:	Bruce MCQUITTY
d By:	Bruce MCQUITTY
Date:	1 May 2017
eets:	1:250,000 Map Sheet
EMOOLTHA)	3234(COWAN)
ımodity:	COBALT, COPPER, GOLD, LITHIUM, NICKEL, I
Drilled:	nan
mber:	nan
rvey Reg No:	nan
rs:	Ag, Au, As, B, Ba, Be, Cd, Co, Cu, Cr, Cs, Li, Mn, Nb, Ni, Pb, Pd,
ľn	nan
act	nan
on:	The Juntion South Project, comprising exploration licence E15/1427, is located
eral Field (Coolgardie District 15), Western Australia.	nan
from Widgiemooltha or the private St Ives Spur Road	nan
akeLefroy causeway.	nan
gy:	Junction South is located within the Archaean Kambalda Domain of the Kalgo
n extension of the Kambalda Anticline that is bounded to	nan
y the Bluebush ultramafic sequence. The Archaean	nan
lated to that of the Kambalda nickel mining area	nan
ike orientation and has been interpreted as a major D1	nan
est compression to create the NW-axially orientated	nan
E15/1427 contains a sequence of mafic and ultramafic	nan
ve the Republican Thrust. North of the Republican Thrust	nan
mentary rocks assigned to the Black Flag Beds.	nan
one:	Past exploration reports were reviewed and information for 756 historical dril
historical geological maps, soil geochemistry plans and	nan
al exploration targets for nickel, gold, copper and cobalt.	nan
dum, detailing the exploration potential of the Project.	nan
the tenement and a total of 28 surface samples were	nan
analysed.	nan
ts:	The review of historical work has highlighted several compelling, rela
t, the Croser-Moet nickel-cobalt prospect and the Remy	nan
s or conceptual targets requiring another phase of target	nan

work.	nan
tite float were disappointing, with a maximum value of	nan
Remy prospect area confirmed elevated levels of Au, As,	nan
w sedimentary rocks, consistent with historical drilling	nan
nis region.	nan
sion:	The Junction South project area contains several gold, nickel, cobalt, and coppe
vork.	nan
of 4m @ 4.69g/t Au and 4m @ 4.57g/t Au, is the highest	nan
d target.	Analysis of historical drilling reveals the potential for mineralised stru

E15/1427	Co	leman Resour	ces Pty Ltd	Junction South	20	2/03/2016	1/03/	2021	\$20	,000
IE 15/	1427	02/03/2016	01/03/2021	ICOLEMAN RES	OURC	ES PTY LTD	20000	39.2	14	

province. WA Department of Geology, UWA, unpublished PhD Thesis.	nan
94, Evaluation of the Gold Potential of the Widgiemooltha District. WMC Internal Report K/3623. Unpublished company	nan
report.	nan
and Loftus-Hill, G.D., 1981, The geology of the Kambalda nickel field, Western Australia: Economic Geology, v. 76, p.	nan
1373 - 1416.	nan
Griffin, T.J., 1989, Widgiemooltha 1:250,000 Geological Series Explanatory Notes.	nan
1988, Geology of the Widgiemooltha Area and Exploration Progress to February, 1988. WMC Internal Report K/3099.	nan
Unpublished company report.	nan
4, Nickel mineralisation in Western Australia: Western Australia Geological Survey, Mineral Resources Bulletin 14, 271p.	nan
Bluebush C77/1998 Annual Technical Report for the period 1 January to 31 December 2014. Mincor Resources internal	nan
and WA DMP technical report.	nan
Griffin, T.J, Witt, W.K., Ahmat, A.L., Hunter, W.M., and McGoldrick, P.J., 1990, Geology of the Archaean Kalgoorlie	nan
Terrain. GSWA Record 1990/12.	nan
1977, Tectno-stratigraphy of late Archean greenstone terranes in the southern Eastern Goldfields, Western Australia	nan
Precambrian Research, v. 83, p. 11-42.	nan
holeitic and high MG mafic/ultramafic sills in the Eastern Goldfields Province, Western Australia: Implications for tectonic	nan
setting: Australian Journal of Earth Sciences, v. 42, p. 407 - 422	nan
10.References	Page 14 of 16

E 15/1365 29/07/2013	\$10,000.00	\$6,169.00	28/07/2016
----------------------	-------------	------------	------------

E 15/1366	B0/07/2013	\$10,000.00	\$6,292.00	29/07/2016
E 15/1418	17/12/2015	\$20,000.00	\$6,773.00	16/12/2016
E 15/1456	9/07/2015	\$10,000.00	\$2,719.00	8/07/2016
M 15/130	4/02/1985	\$10,000.00	\$3,827.00	B/02/2017
M 15/49	15/02/1984	\$26,000.00	\$26,658.00	14/02/2017
M 15/63	4/01/1984	\$10,600.00	\$14,222.00	B/01/2017
ML 15/131	1/01/1967	\$12,000.00	\$14,356.00	B1/12/2016
ML 15/140	1/01/1967	\$12,100.00	\$12,418.00	B1/12/2016
ML 15/494	1/01/1976	\$12,000.00	\$8,650.00	B1/12/2016
ML 15/495	1/01/1976	\$12,100.00	\$7,711.00	B1/12/2016
ML 15/498	1/01/1976	\$12,100.00	\$12,563.00	B1/12/2016
ML 15/499	1/01/1976	\$12,100.00	\$13,590.00	B1/12/2016
ML 15/500	1/01/1976	\$12,100.00	\$14,459.00	B1/12/2016
ML 15/501	1/01/1976	\$12,100.00	\$13,496.00	B1/12/2016
ML 15/502	1/01/1976	\$12,100.00	\$16,476.00	B1/12/2016
ML 15/504	1/01/1976	\$12,000.00	\$18,571.00	B1/12/2016
ML 15/506	1/01/1976	\$10,000.00	\$17,790.00	B1/12/2016
ML 15/507	11/01/1976	\$12,100.00	\$12,769.00	B1/12/2016
ML 15/508	1/01/1976	\$12,000.00	\$12,930.00	B1/12/2016
ML 15/509	1/01/1976	\$12,000.00	\$12,262.00	B1/12/2016
ML 15/510	1/01/1976	\$12,100.00	\$12,605.00	B1/12/2016
ML 15/511	1/01/1976	\$12,000.00	\$12,262.00	B1/12/2016
ML 15/512	1/01/1976	\$12,000.00	\$12,263.00	B1/12/2016
ML 15/513	1/01/1976	\$12,100.00	\$13,745.00	B1/12/2016
ML 15/514	1/01/1976	\$12,000.00	\$12,479.00	B1/12/2016
ML 15/515	1/01/1976	\$12,000.00	\$12,273.00	B1/12/2016
ML 15/516	1/01/1976	\$12,000.00	\$12,638.00	B1/12/2016
ML 15/517	1/01/1976	\$12,000.00	\$7,268.00	B1/12/2016
ML 15/518	1/01/1976	\$12,000.00	\$8,266.00	B1/12/2016
ML 15/519	1/01/1976	\$12,000.00	\$7,262.00	B1/12/2016
ML 15/520	1/01/1976	\$12,000.00	\$8,051.00	B1/12/2016
ML 15/521	1/01/1976	\$12,000.00	\$12,241.00	B1/12/2016
ML 15/522	1/01/1977	\$12,000.00	\$12,263.00	B1/12/2016
ML 15/523	1/01/1976	\$11,100.00	\$6,596.00	B1/12/2016
ML 15/524	1/01/1976	\$12,000.00	\$12,264.00	B1/12/2016

ML 15/525	1/01/1976	\$12,000.00	\$12,263.00	B1/12/2016
ML 15/526	1/01/1976	\$11,900.00	\$9,180.00	B1/12/2016
ML 15/527	1/01/1976	\$12,100.00	\$9,328.00	B1/12/2016
ML 15/528	1/01/1976	\$12,000.00	\$8,266.00	B1/12/2016
ML 15/529	1/01/1976	\$11,700.00	\$7,036.00	B1/12/2016
ML 15/530	11/01/1976	\$11,700.00	\$9,027.00	B1/12/2016
ML 15/531	1/01/1976	\$12,000.00	\$8,264.00	B1/12/2016
ML 15/532	1/01/1976	\$11,800.00	\$7,099.00	B1/12/2016
ML 15/533	1/01/1976	\$11,700.00	\$7,019.00	B1/12/2016
ML 15/534	1/01/1976	\$11,900.00	\$7,167.00	B1/12/2016
ML 15/535	1/01/1976	\$11,700.00	\$7,055.00	B1/12/2016
P 15/5767	18/07/2013	\$5,080.00	\$5,490.00	17/07/2016
TOTALS		\$578,280	\$514,371	

IE 15/1365	29/07/2013	28/07/2018	MINCOR RESOURCES NL	10000	2.8	
IE 15/1366	30/07/2013	29/07/2018	MINCOR RESOURCES NL	10000	2.8	
IM 15/49	05/02/1984	14/02/2026	MINCOR RESOURCES NL	26000	2.59	
IM 15/63	13/12/1983	03/01/2026	MINCOR RESOURCES NL	110600	1.05	0
IM 15/130	(06/01/1985	03/02/2027	MINCOR RESOURCES NL	110000	0.29	0
ML 15/131	12/01/1967	31/12/2029	GOLDFIELDS MINE MANAGEMENT PTY LTD	12000	1.2	
ML 15/140	12/01/1967	31/12/2029	GOLDFIELDS MINE MANAGEMENT PTY LTD	12100	1.2	
IML 15/494	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0
ML 15/495	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	0
IML 15/498	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	
ML 15/499	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	
ML 15/500	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	
ML 15/501	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	0
ML 15/502	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	0
IML 15/504	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
IML 15/506	01/01/1976	31/12/2017	MINCOR RESOURCES NL	10000	0.83	
ML 15/507	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	0
IML 15/508	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0
ML 15/509	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0

IML 15/510	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	
ML 15/511	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
ML 15/512	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0
ML 15/513	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	0
ML 15/514	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0
ML 15/515	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
ML 15/516	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
IML 15/517	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0
IML 15/518	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0
IML 15/519	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
ML 15/520	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
ML 15/521	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
ML 15/522	01/01/1977	31/12/2018	MINCOR RESOURCES NL	112000	1.2	0
ML 15/523	01/01/1976	31/12/2017	MINCOR RESOURCES NL	11100	1.11	0
IML 15/524	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
ML 15/525	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12000	1.2	
ML 15/526	01/01/1976	31/12/2017	MINCOR RESOURCES NL	11900	1.19	
IML 15/527	01/01/1976	31/12/2017	MINCOR RESOURCES NL	12100	1.2	0
ML 15/528	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0
IML 15/529	01/01/1976	31/12/2017	MINCOR RESOURCES NL	11700	1.17	
ML 15/530	01/01/1976	31/12/2017	MINCOR RESOURCES NL	11700	1.17	
ML 15/531	01/01/1976	31/12/2017	MINCOR RESOURCES NL	112000	1.2	0
ML 15/532	01/01/1976	31/12/2017	MINCOR RESOURCES NL	11800	1.17	0
ML 15/533	01/01/1976	31/12/2017	MINCOR RESOURCES NL	11700	1.17	0
ML 15/534	01/01/1976	31/12/2017	MINCOR RESOURCES NL	11900	1.18	
ML 15/535	01/01/1976	31/12/2017	MINCOR RESOURCES NL	11700	1.17	
IP 15/5767	18/07/2013	17/07/2017	MINCOR RESOURCES NL	5080	1.27	0
IE 15/1456	(09/07/2015	08/07/2020	MINCOR RESOURCES NL	110000	2.8	
E 15/1418	17/12/2015	16/12/2020	MINCOR RESOURCES NL	20000	47.6	17
			· · · · · · · · · · · · · · · · · · ·			

	36.5	36.5	Transported Regolith	Tertiary Cover	
36.5	44.7	8.2	Residual Regolith	Black Flag Beds	
44.7	454.7	410	Sediments	Black Flag Beds	
454.7	936.3	81.6	Basalt	Condensor Dolerite	
536.3	542.9	6.6	Felsic Porphyry	Porphyry	

942.9	908	15.1	Dolerite	Condensor Dolerite
558	618.4	60.4	Granite	Athena Granite
618.4		471.9	Dolerite	Condensor Dolerite
1090.3	1092.9	2.6	Intermediate Porphyry	Porphyry
1092.9	1149.4	56.5	Dolerite	Condensor Dolerite
1149.4	1156.9	7.5	Felsic Porphyry	Porphyry
1156.9	1158.6	5 er	Dolerite	Condensor Dolerite
1158.6	1163.2	4.6	Felsic Porphyry	Porphyry
1163.2	1213	49.8	Dolerite	Condensor Dolerite
1213	1235.1	22.1	Felsic Porphyry	Porphyry
1235.1	1315.7	80.6	Dolerite	Condensor Dolerite
1315.7	1445.3	129.6	Basalt	Condensor Dolerite
1445.3	1452.9	7.6	Sediments	Oroya Beds
		65.6	Basalt	Paringa Basalt

				12		
0.01		0.20	Na	Yo	Sr	0.20
0.01%	Fe	0.01%	Nb	0.10	Та	0.05
0.20	Ga	0.05		0.20	Te	0.05
10.0	Ge	0.05		10.0		0.01
0.05		0.10		0.50	Ti	0.005%
0.01		0.005		0.10		0.02
01%		01%	Re	0.002		0.10
0.02	La	0.50		0.01%		1.00
0.01	ï	0.20		0.05		0.10
0.10	Mg	0.01%	Sc	0.10		0.10
1.00		5.00	Se	1.00	Zn	2.00
0.05		0.05	Sn	0.20	Zr	0.50
0.05		0.05		0.10		0.01
0.03	Но	0.01	Pr	0.03	Tm	0.01
0.03	Lu	0.01	Sm	0.03		0.03

	73	73.4	0.4	0.43	0.17	Anomalous
	87.7	88.5	0.8	0.1	0.08	Anomalous

	388.1	0.4	0.1	0.04	Anomalous
477	478.0		0.1	0.1	Anomalous
DDD	556.0		0.12	0.12	Anomalous
559	560.0		0.1	0.1	Anomalous
	1239.0		0.1	0.1	Anomalous
1249.7	1251.0	1.3	0.37	0.48	Anomalous
	1452.0		0.22	0.22	Anomalous

2000		1.032
2000		1.04
2001		1.048
2001		1.056
2002		1.065
2002		1.073
2003		1.081
2003		1.089
2004		1.097
2004		1.105
2005		1.16
2005		1.158
2006		1.155
2006		1.152
2007		1.15
2007		1.147
2008		1.145
2008		1.142
2009		1.14
2009		1.137
2010		1.033
2010		1.029
2011		1.025
2011		1.021
2012		1.017
2012		1.014
2013		1.01

2013		1.006
2014		1.002
2014		0.999
2015		0.995
2015		0.991

Project Name:	St. Ives Gold Mine
Reporting Group:	C52/2002
Tenement:	M15/475
Tenement Operator:	St. Ives Gold Mining Co. Pty Ltd
Tenement Holder:	St. Ives Gold Mining Co. Pty Ltd
Report Type:	Final
Report Title:	Goldfields, Final Report, Exploration Incentive Scheme, 2015 Co-
Athena intrusion, DAG2015/00511069	nan
Report Period:	1 January 2015 - 31 December 2015
Author:	David Nixon
Date of Report:	1th June, 2017
1:250 000 Mapsheet: Widgiemooltha SH 51-14	nan
1:100 000 Mapsheet: Lake Lefroy 3235	nan
Target Commodity:	Au
Keywords:	Geology, Exploration, Drilling, EIS, Athena
Prospects Drilled:	Athena Intrusion Strain Shadow
Elements Assayed:	Au, Ag, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf,
, Na, Nb, Ni, P, Al, Pb, Re, Rb, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl,	nan
U, V, W, Y, Zn, Zr	nan

Literature search		
Database compilation		
Computer modelling		
Reprocessing of data		
General Research		
Report Preparation	2015 Athena SIGM Final DAG2015 00511069.pdf	PDF
Aeromagnetics		
Radiometrics		

LElectromagnetics	
Electromagnetics	
Gravity	
Digital terrain modelling	
Aerial photography	
LANDSAT	
MSS	
Radar	
Geological Mapping	
Regional	
Reconnaissance	
Prospect	
Underground	
Costean	
Radiometrics	
Magnetics	
Gravity	
Digital terrain modelling	
Electromagnetics	
SP/AP/EP	
IP	
AMT	
Resistivity	
Complex resistivity	
Seismic reflection	
Seismic refraction	
Well logging	
Geophysical interpretation	
Drill sample	
Stream sediment	
Soil	
Rock chip	
Laterite	
Water	
Biogeochemistry	
1 3-2-11-11-11	

Isotope		
Whole Rock		
Mineral analysis		
Diamond	TD12952_ WASL4 COLL2015.csv TD12952 WADL4 GEO2015.csv TD12952 WADL4 ALT2015.csv TD12952_WADS4_SURV_2015.csv TD12952 WADG4_ASS2015.csv TD12952 WADG4 AU2015.csv TD12952_=structure_Final.csv TD12952_magsus_Final.csv	ТХТ
Reverse Circulation		
Rotary air blast		
Air-core		
Auger		
Groundwater Drilling		
All Drilling		

IE 15/1223	08/09/2011	07/09/2021	[AVOCA RESOURCES PTY LTD	50000	44.8	16
------------	------------	------------	--------------------------	-------	------	----

nsion Northerly directed hrusting	North-South regional hortening-> S over N low ngle thrusts	North-—south regional shortening- > south over north hrusts	NNW-SSE extension North —south regional shorted ver N thrusts
compression -> Pp N to NNW ding reverse ts and folds	ENE regional shortening -> NNW trending open upright olds reverse thrusts along old limbs	E-W shortening-> upright NNW rending, gently SE plunging folds.	E-W compression -> steep N to NNW rending reverse faults and folds
W compression -> dextral tivation of D2 Others thrust	ESE-WNW shortening-> inistral shear zones along NNW structures low angle hrusts	blique-sinistral rench faulting reverse shear zones	ESE-WNW and NE-SW compressive vents-> reactivation of reverse faults. ther thrust and faults variably dextral nd sinistral movements.
		Dextral -reverse reactivation	Late brittle faulting and reactivation

P 15/6009	Hall Creek Dam	6/09/201 6	5/09/202 0	1.17	Newmont Exploration Pty Ltd (100%)
P 26/4158	Hall Creek Dam	4/10/2016	B/10/2020	1.96	Newmont Exploration Pty Ltd (100%)
P 26/4159	Hall Creek Dam	4/10/2016	B/10/2020	1.93	Newmont Exploration Pty Ltd (100%)

P 26/4160	Hall Creek Dam	4/10/2016	B/10/2020	0	1.92	Newmont Exploration Pty Ltd (100%)
P 26/4161	Hall Creek Dam	4/10/2016	B/10/2020		1.93	Newmont Exploration Pty Ltd (100%)
P 26/4162	Hall Creek Dam	4/10/2016	B/10/2020		1.96	Newmont Exploration Pty Ltd (100%)
P 26/4163	Hall Creek Dam	4/10/2016	B/10/2020	0	1.94	Newmont Exploration Pty Ltd (100%)
P 26/4164	Hall Creek Dam	4/10/2016	B/10/2020		4.52	Newmont Exploration Pty Ltd (100%)
P 26/4165	Hall Creek Dam	4/10/2016	B/10/2020		1.65	Newmont Exploration Pty Ltd (100%)
E 15/1508	Hall Creek Dam	19/12/2016	18/12/2021		5.88	Newmont Exploration Pty Ltd (100%)

D1	Extension	ENE- WSW	Rifting leads to NNW-trending linear structures	Syn-volcanic extensional faults including the nickel shoots at Kambalda.
D2	Contraction	ENE- WSW	NNW upright folding and ENE thrust faulting	Terminates greenstone volcanism.
D3	Extension		Development of extensional core complexes and domes.	Formation of granite-cored domes. Prepares the EYC for gold endowment.
D4	Contraction	Stress switch	Sinistral strike-slip faulting Reactivation of D3 structures	Onset of the most endowed period of gold mineralisation
D4a	Contraction	ENE- WSW	NNW upright folding and ENE thrust faulting	All events up to and including D4a involve block movements up and down to NE or SW within a NNW- to NW-oriented architectural framework.
D4b	Contraction	WNW- ESE	NNW sinistral strike- slip shearing and (ESE) thrusting	Significant change in regional stress field: obliquity with pre-existing architecture. New network of stress heterogeneity. Most gold deposited during D4b. Regionally pervasive.
D5	Contraction	NE-SW	N to NNE dextral strike-slip faulting, mostly brittle structures.	Establishment of a regionally consistent NE-SW oriented shortening vector. In Kambalda: NNE-trending brittle faulting inc. Alpha Island Fault.
D6	Minor extension		Low-strain vertical shortening and horizontal extension	j .

G50-22-001E 541761 376210 -339 -15 214 30	3.9
---	-----

G50-22-002E	541761	376210	-339	6	214	342.05
G50-22-003E	541761	376210	-346	20	216	263.7
G50-22-004E	541761	376210	-346	13	216	306.0
G50-22-005E	541761	376210	-339	250	216	218.9

G50-22-005E	135.33	138.99	3.66	13.92
G50-22-003E	162.33	162.62	0.29	10.1
G50-22-004E	193.6	193.87	0.27	1.21

G50-22-002E		249.97	250.97	1.0	4.04
G50-22-002E		312.5	316.3	3.8	3.63
G50-22-002E		319.75	323.27	3.52	4.76
G50-22-003E		140.97	142.0	1.03	7.59
G50-22-003E		226.55	229.0	2.45	2.69
G50-22-003E		262.7	263.7	1.0	3.48
G50-22-004E		92.3	94.2	1.9	2.52
G50-22-004E		99.0	100.0	1.0	8.52
G50-22-004E		250.85	261.47	10.62	2.96
G50-22-004E		288.0	291.8	3.8	2.32
G50-22-005E		3.0	6.0	3.0	2.56
G50-22-005E		41.0	42.0	1.0	4.14
G50-22-005E		76.0	77.0	1.0	4.48
G50-22-005E		194.5	196.0	1.5	10.73
G50-22-005E		216.04	218.9	2.86	2.58

Combined Reporting Number?	nan
Tenement Numbers:	ML 15/327 and M15/1628
Tenement Operator	Karora Resources Pty Ltd
Tenement Holder:	St Ives Gold Mining Company (Gold Fields)
Report Type:	Co-Funded Drilling Final Report
Report Title:	Co-Funded Drilling - Final Report Beta Hunt Southern
Offset Extension, June 2021	nan
Report Period:	nan
Author:	JohnStockfeld

Date of report:	25 June 2021
1:250 000 map sheet:	SH51-14WIDGIEMOOLTHA
1:100 000 map sheet:	3235LAKELEFROY
Geodetic Datum:	KNO- mine grid (GDA94 Regional)
Project Zone:	51
Target Commodity:	Nickel (Ni)
Keywords:	Beta Hunt, nickel
Prospects drilled:	Beta Hunt southern offset, the Gamma zone.
List of Assays:	Au, Ni, FeO, MgO, As, Cu, S, Co

Literature search	
Database compilation	
Computer modelling	
Reprocessing of data	
General research	
Report preparation	pdf
Data review	
Resource Modelling	
Aeromagnetics	
Radiometrics	
Electromagnetics	
Gravity	
Digital terrain modelling	
Other (specify)	
Aerial photography	
LANDSAT	
SPOT	
MSS	
Radar	
Other (specify)	
Regional	
Reconnaissance	
Prospect	
Underground	
Costean	

Radiometrics	
Magnetics	
Gravity	
Digital terrain modelling	
Electromagnetics	
SP/AP/EP	
IP	
AMT	

Complex resistivity	
Seismic reflection	
Well logging	
Geophysical interpretation	
Other (specify)	
Drill sample	
Stream sediment	
Soil	
Rock chip (in pit)	
Laterite	
Water	
Biochemistry	
Isotope	
Whole rock	
Mineral analysis	
Other (specify)	
txt txt txt txt txt Diamond	
Reverse circulation	
Rotary air blast	
Air core	
Auger	
Groundwater drilling	
All drilling	

| xlsx | Geological Drill Log Codes

Description of activities Company Year A Number		
618 Auger samples Hogans Resources		
76 air core holes Cyprus Gold Australia 11995-1997 49989, 49990, 52840, 53250		
28 air core holes Delta Gold Ltd 2000-2001 63922		
1122 RAB holes (Octagonal Resources (WA) Pty Ltd 2012-2014 97604, 98301, 104141		

AC		1705
TOTAL	В3	1705

All E15/1471	AC	15/1471	116	7107
TOTAL			116	7107
Graticules relinquished	AC	15/1471	В3	11705

	Hg (0.005-100)	
	Mineral assemblages and pectral parameters	

St Ives	KD81720	84	0.23	1.84
St Ives	KD81721	84	0.44	1.76
St Ives	KD81734	82	0.38	2.28
St Ives	KD81739		0.22	1.76
St Ives	KD81740	78	0.24	1.44
St Ives	KD81741	82	0.91	8.19
St Ives	KD81748	86	0.34	1.36
St Ives	KD81750	84	1.94	15.28

E 15/1471	13/01/2016	12/01/2026	SIGM	258,167	67	16
TOTALS					67	16

E 15/1471	13/01/2016	12/01/2026	ST IVES GOLD MINING COMPANY PTY LIMITED		44.8	16
-----------	------------	------------	--	--	------	----

D1	Extension	ENE- WSW	Rifting leads to NNW-trending linear structures	Syn-volcanic extensional faults including the nickel shoots at Kambalda.
D2	Contraction	ENE- WSW	NNW upright folding and ENE thrust faulting	Terminates greenstone volcanism.
D3	Extension		Development of extensional core complexes and domes.	Formation of granite-cored domes. Prepares the EYC for gold endowment.
D4	Contraction	Stress switch	Sinistral strike-slip faulting Reactivation of D3 structures	Onset of the most endowed period of gold mineralisation
D4a	Contraction	ENE- WSW	NNW upright folding and ENE thrust faulting	All events up to and including D4a involve block movements up and down to NE or SW within a NNW- to NW-oriented architectural framework.
D4b	Contraction	WNW- ESE	NNW sinistral strike- slip shearing and (ESE) thrusting	Significant change in regional stress field: obliquity with pre-existing architecture. New network of stress heterogeneity. Most gold deposited during D4b. Regionally pervasive.
D5	Contraction	NE-SW	N to NNE dextral strike-slip faulting, mostly brittle structures.	Establishment of a regionally consistent NE-SW oriented shortening vector. In Kambalda: NNE-trending brittle faulting inc. Alpha Island Fault.
D6	Minor extension		Low-strain vertical shortening and horizontal extension	J 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

HEOO1	375031	6544718	293	135	288.0
HEOO2	374914	6544801	293	235	244.0
HEOO3	374831	6544742	293	224	244.0

HEOO2-NE	181.0	185.7	4.7	0.18
HEOO3-NE	130.0	135.8	5.8	0.19
HEOO3-NE	143.3	145.3	2.0	0.15

HEOO1-NE		143.0	144.0	1.0	0.82
HEOO1-NE		96.0	96.9	0.9	0.51

Combined Reporting Number	nan
Tenement Numbers:	ML 15/327, M15/1516 and M15/1531
Tenement Operator	Karora Resources Pty Ltd
Tenement Holder:	St Ives Gold Mining Company (Gold Fields)
Report Type:	Co-Funded Drilling Final Report
Report Title:	Co-Funded Drilling - Final Report Testing the Hunt East
Concept, March 2022	nan
Report Period	nan
Author:	John Stockfeld
Date of report:	31 March 2022
1:250 000 map sheet	SH51-14WIDGIEMOOLTHA
1:100 000 map sheet	3235LAKELEFROY
Geodetic Datum:	KNO-mine grid (GDA94 Regional)
Project Zone:	51
Target Commodity:	Nickel (Ni)
Keywords:	Beta Hunt, nickel
Prospects drilled:	Hunt East
List of Assays	Au, Ni, Fe, Mg, As, Cu, S, Cc

Literature search	
Database compilation	
Computer modelling	
Reprocessing of data	
General research	
Report preparation	pdf
Data review	
Resource Modelling	
Aeromagnetics	
Radiometrics	
Electromagnetics	
Gravity	

Digital terrain modelling	
Other (specify)	
Aerial photography	
LANDSAT	
SPOT	
MSS	
Radar	
Other (specify)	
Regional	
Reconnaissance	
Prospect	
Underground	
Costean	
Radiometrics	
Magnetics	
Gravity	
Digital terrain modelling	
Electromagnetics	
SP/AP/EP	
IP	
AMT	

Complex resistivity	
Seismic reflection	
Well logging	
Geophysical interpretation	
Other (specify)	
Drill sample	
Stream sediment	
Soil	
Rock chip (in pit)	
Laterite	
Water	
Biochemistry	
Isotope	

Whole rock	
Mineral analysis	
Other (specify)	
txt txt txt txt txt Diamond	
Reverse circulation	
Rotary air blast	
Air core	
Auger	
Groundwater drilling	
All drilling	
xlsx Geological Drill Log Codes	

Description of activities Company Year A Number		
9 RAB 10 RC holes Actec Mining Company 1987-1988 027201		
79 RAB holes Aztec Mining Company 11989 029855		
32 RAB holes 5 RC holes Actec Mining Company 1990 033021		
B4 RAB holes Aztec Mining Company 1991 035280		
64 RAB holes Sovereign Resources 1994 43335		
1149 RAB holes Sovereign Resources 11995 46800		
43 RAB holes Australian Gold Resources 11996-1997 51953		
B diamond holes WMC Resources 11997 54172		
51 air core holes Goldfields Australasia 11994-2002 65747		
88 air core holes St Ives Gold Mining Co Pty Ltd 2012 97166		
53 RAB holes		
67 air core holes		

AC	B65	20862
RC	16	2870
DD		B510.3
TOTAL	8390	27242.3

All 15/1447	AC	15/1447	B98	22522
	RC		28	5290
	DD			B510.3
TOTAL			435	31322.3
Graticules relinquished	AC	15/1447	B65	20862
	RC		16	2870
	DD		9	B510.3

	Hg (0.005-100)	
	Mineral assemblages and pectral parameters	

Lefroy West	KD81294	B2		0.44	14.96
Lefroy West	KD81318			0.92	5.54
Lefroy West	KD81533			2.70	10.78
Lefroy West	KD81533			41.95	15.60
Lefroy West	SAL1519	78		2.05	12.30
Lefroy West	SAL1764		10	B.24	B2.40
Lefroy West	SAL1777	78	7	1.45	10.15
Lefroy West	SAL1791	129.7		1.40	7.42

Lefroy West	KD81318			0.92	5.54
Lefroy West	KD81533			2.70	10.78
Lefroy West	KD81533			1.95	115.60
Lefroy West	KD81534		18	0.17	B.13
Lefroy West	KD81785	16		0.41	B.26
Lefroy West	KD81790			0.33	2.97
Lefroy West	SAL1319		2	1.98	B.96
Lefroy West	SAL1486			0.57	2.26
Lefroy West	SAL1519	78		2.05	12.32
Lefroy West	SAL1763	78	42	0.23	2.81
Lefroy West	SAL1764	·	10	B.24	B2.40
Lefroy West	SAL1777	78	7	1.45	10.15

Lefroy West	SAL1777	1106	i	2.25	2.25
Lefroy West	SAL1789	197		2.28	2.28
Lefroy West	SAL1791	129.7	5.3	1.4	7.42

E 15/1447	B0/05/2016	(01/08/2026	Hogans Resources	60,000	139		
TOTALS					139	49	

	IE 15/1447	02/08/2016	01/08/2026	HOGANS RESOURCES PTY LTD	58000	81.2	29	
--	------------	------------	------------	--------------------------	-------	------	----	--

IM 15/1557	14/12/2004	23/12/2025	LUNNON METALS LIMITED	12200	1.21	

JAN21DD_001	B86339.89	6528864.254	833.128	575.1	+60	270	M15/1556
JAN21DD_002	B86204.892	6529258.631	B33.263	606.8	L60	270	M15/1577
JAN21DD_003	B86076.011	6529629.579	332.309	451.0	L60	260	M15/1577

ı	JAN22DD_004	1529.1	298.3	-70.7	B31	MGA94_51	B86540	6528810	10/03/2022	16/05/2022	
---	-------------	--------	-------	-------	-----	----------	--------	---------	------------	------------	--

Geological logging	0	1,529.1 (end of hole)
Structural logging	132	1,529.1
Core photography	0	1,529.1
Magnetic Susceptibility	B1	1,529
ChemStrat & XRD	52.75	1,529
Geochemistry (nickel)	1141	1,529
Geochemistry (gold)	97	1,133
PXRF		1,150
DHEM	285	565

	B14.8	B14.8
B14.8	B50	B5.2
B50	453.5	103.5
453.5	472.3	18.8
472.3	516.9	
516.9	577.8	60.9

577.8	622.7	
622.7	686	63.3
686	696.8	10.8
696.8	759	62.2
759	828.3	69.3
828.3	870.8	42.5
870.8	886.2	415.4
886.2	889.15	2.95
889.15	927.4	B8.25
927.4	984.2	51
984.2	1024.9	46.5
1024.9	1030.3	5.4
1030.3	1063.8	B3.5
1063.8	1069.5	5.7
1069.5	1089	19.5
1089	1094.9	5.9
1094.9	1108.5	13.6
1108.5	1114.41	5.91
1114.41	1132.3	17.89
1132.3	1141.75	9.45
1141.75	1219.8	78.05
1219.8	1222.5	2.7
1222.5	1529.1	297.5

		Low	615.4	615.5	High	982.4	982.5	Very High
	1107	Weak	615.5	622	Mod-High	982.5	984.2	High
107	137	Low	622	646	Weak-Mod	984.2	1016.9	Weak
137	142	Weak	646	650	Moderate	1016.9	1030.3	High
142	218	Low	650	652.4	Mod-High	1030.3	1030.6	Very High
218	224	Weak	652.4	653.25	High	1030.6	1032.1	High
224	238.5	Low	653.25	663	Mod-High	1032.1	1032.3	Very High
238.5	247	Weak-Mod	663	717.5	Weak-Mod	1032.3	1036.7	Mod-High
247	B17	Weak	717.5	717.65	High	1036.7	1038.7	High
B17	B20	Weak-Mod	717.65	719	High	1038.7	1039.1	Very High
B20	401	Weak	719	719.4	Very High	1039.1	1043.9	High

401	419	Weak-Mod	719.4	720.6	High	1043.9	11089	Weak
419	445	Weak	720.6	729	Weak	11089	11093	Moderate
445	456	Moderate	729	747	Weak-Mod	11093	1141.75	Weak-Mod
456	470	Weak	747	766	Weak	1141.75	1142.4	Mod-High
470	481	Weak-Mod	766	768.1	Moderate	1142.4	1163.1	Weak-Mod
481	523	Weak	768.1	768.35	Mod-High	1163.1	1168.2	High
523	524	Weak-Mod	768.35	770.7	Moderate	1168.2	1168.7	Very High
524	531	Weak	770.7	823	Weak	1168.7	1169.6	High
531	540	Weak-Mod	823	928	Low	1169.6	1228.45	Weak
540	555.4	Weak	928	930	Weak-Mod	1228.45	1228.8	High
555.4	557.5	Weak-Mod	930	957.9	Weak	1228.8	1278.85	Weak
557.5	558.1	Moderate	957.9	966	Mod-High	1278.85	1294	Low
558.1	565.65	Weak-Mod	966	974.1	Moderate	1294	11370	Weak
565.65	580	Weak	974.1	978.4	High	1370	1381	Moderate
580	591	Mod-High	978.4	978.85	Weak	1381	1466	Weak
591	604	Weak-Mod	978.85	982.4	High	1466	41520	Low
604	615.4	Mod-High						

2.	Weak					
	eak- od					
	Moderate					
	Mod- High					
	High					
	ery High					

604.0	622.0	Unknown	an East hrust
650.0	663.0	781, 0591	an East hrust
717.5	720.6	Unknown	Unknown
974 1	984.2	60, 0631	an Main Fault
1016.9	1043.9	6M, 0601	an Main Fault

1163.1 1169.6	Unknown	Unknown
---------------	---------	---------

502.0	508.8		164	0.19	631	B.6	149	Kapai Slate			
604.25	618.2	B.0	254	0.27	1436	B.7	159	Kapai Slate Jan East Thrust			
1027.45*	1032.3	Lal	149	0.02		6.3		Interflow sediment in Lunnon Basalt Jan Main Fault			

Ag	0.05-500ppm	Hf	0.05-2000ppm	Sb	0.05ppm-1%
Al	50ppm-15%	ln	0.01-2000ppm	Sc	0.1-5000ppm
As	0.5ppm-1%		20ppm-10%	Se	0.5ppm-1%
	0.1-5000ppm		0.01-5000ppm	Sn	0.1-2000ppm
Ве	0.05-2000ppm	ï	0.1-5000ppm	Sr	0.05ppm-1%
	0.01ppm-1%		20ppm-40%	Ta	0.01-2000ppm
Ca	50ppm-40%		lppm-5%	Те	0.2-2000ppm
Cd	0.02-2000ppm	IMo	0.1ppm-1%	Th	0.01-5000ppm
Се	0.01ppm-1%		20ppm-10%	Ti	Sppm-2%
Со	0.1ppm-2%	INb	0.05-2000ppm	TI	0.02-2000ppm
Cr	Lppm-2%		0.5ppm-2%	U	0.0ippm-1%
Cs	0.05-2000ppm		50ppm-5%		ippm-2%
Cu	0.5ppm-2%	Pb	0.5ppm-1%		0.1-2000ppm
Fe	LOOppm-50%	Rb	0.05-2000ppm		0.05-2000ppm
Ga	0.05-2000ppm	Re	(0.002-2000ppm	Zn	ippm-2%
Ge	0.1-2000ppm	S	500ppm-10%	Zr	0.1-2000ppm

Count Numeric	114	114	114	114	114	114	114
Count Text	0				0		0
Count Null							
Count Negative	0				0		0
Count Zero	0				0		0
Unique Values	114					109	114
	85	0.005			19	76	7524
Maximum	5609	11.16	41.4	191	280	2693	224902
Mean	2809.061	1.738947	26.56667	46.95	161	862.886	75873.63
Median	2719	0.61	29.45	45.75	1166	693	59021.5

Range	5524	11.155	B7.1	190.8	261	2617	217378
Interquartile Range	1872.25	1.895	15.375	B7.4	72.75	913.5	73952.5
Standard Deviation	1.519.236	2.652829	0.30819	B9.3527	66.58191	674.2355	53856.7
1 percentile	86.35	0.005	4.345	0.215	19.15		7733.25
5 percentile	197.75	0.01	6.675	0.575	B0.25	150.5	116636
10 percentile	844.5	0.05	10.25	2.85	56.5	193.5	24310
25 percentile	1647.75	0.1875	18.925	19.775	4125.5	295.5	B5271.25
75 percentile	B520	2.0825	B4.3	57.175	198.25	1209	1109223.8
90 percentile	5252	6.555	B9.3	92.4	258	1952	1160044
95 percentile	5457.25	9.375	40.15	150.4	268	2380.5	206551.3
99 percentile	5608.55	11.04	41.37	189.935	279.1	2692.25	224373.2

0 - 472.3	Paringa Basalt	Lower Paringa Basalt
472.3 — 516.9	Kapai Slate	nterflow sediment toward the base of the Paringa Basalt
516.9 — 577.8	Paringa Basalt	Upper Paringa Basalt / Defiance Dolerite
		ae Slate and associated significant shear
577.8 — 622.7	Kapai Slate	one
ignificant shear zone from approximately 604.0 0 622.0m		
622.7 — /59	Devon Consols Basalt	Devon Consols Basalt + Athena Basalt and Defiance Dolerite
759 — 828.3	Devon Consols Basalt (doleritic member)	Plots as Athena Basalt but likely a high Ti end member of the Devon Consols Basalt trend.
828.3 — 870.8	Devon Consols Basalt	Devon Consols Basalt + Athena Basalt
870.8 — 984.2	Victory Dolerite	Ultramafic (non-magnetic)
ignificant shear zone from approximately 974.1 0 984.2m		
984.2 — 1141.75		
Foliated to sheared intrusive with sheared ontact with ultramafic from 1132.3 to 1142.4m		

Reporting	nan
2021	nan
ber:	nan
Numbers:	M15/01557

perator(s):	LUNGAN A
Type:	Co-Funded Drilling
Title:	Co-Funded Drilling Report, Kenilworth Magnetic Anor
Period:	16March2022to16May2022
or:	Catherine NEWMAN, Callum SCOTT, Aaron WE
ed By:	CatherineNEWMAN
Date:	28September2022
neets:	1:250,000 MapSheet
IEMOOLTHA)	3235(LAKELEFROY)
mmodity:	GOLD,NICKEL
Drilled:	Kennilworth
ımber:	nan
ırvey Reg No:	nan
ys:	Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, G
sc,Se,Sn,Sr,Ta,Te,Ih,Ii,I,U,V,W,Y■	nan
1	nan
ract	nan
ion:	TheKambaldaNickelProjectislocated19kmsouth-southeastofthetownship
uth side of Lake Lefroy, Kambalda, Western Australia.	nan
pgy:	The Kambalda Nickel Project is located within the Kambalda Domain, a subset
dominated by the Kalgoorlie Group volcanic rocks.	nan
Done:	One diamond drillhole was completed as part of the EIS agreement to inve
ent M15/1557 to a total depth of 1529.1m. Geochemical	nan
nalytical techniques for gold targets and 33 multi-element	nan
r Ni, Cu, Cr, Zn, Pb, Ag and 27 other elements. Semi-	nan
were taken from 47m to 1150m. Selected samples were	nan
digest with ICP-MS finish for stratigraphic fingerprinting.	nan
werecollectedat1mintervalsdownthelengthofthedrill	nan
tic (DHTEM) survey was also conducted.	nan
ılts:	No shallow level magnetic differentiated dolerite was intercepted during drilling
n 2o0 m of surface. The nickeliferous ultramafic-basalt	nan
1,150 m below surface, was not reached during drilling	nan
ccurring at depths of more than 1,500 m. Multi-element	nan
c unit show that the potential nickel prospectivity of the	nan
ere found from any sediments, intrusives and areas of	nan
1	

edwithgoldpathfinderelementsseveralzoneswarrant	nan
pm gold. The lithologies encountered broadly follow the	nan
st include Paringa Basalt, Kapai Slate, Devon Consols	nan
sent. Geochemical identification of Lunnon Basalt higher	nan
ps one of the most important results.	nan
ision:	The Kenilworth magnetic anomaly is most likely the result of a shallow leve
drillhole. The nickel fertility data and ultramafic facies	
difficient field field and diffamilianc facics	nan
exist at depths greater than that drilled. In addition, no	nan nan
•	

SMT428	0	252	МВРОО	Pillow Basalt	
SMT428	252	260	FPQFO	Quartz dominant, felsic porphyry	
SMT428	260	263	МВАНО	Basalt - Amphibole dominant	
SMT428	263	267.5	FPQFO	Quartz dominant, felsic porphyry	
SMT428	267.5	B98.5	МВАНО	Basalt - Amphibole dominant	
SMT428	B98.5	428.2	NAVI	Navi run - No core recovery	
SMT428	428.2	494.8	МВАНО	Basalt - Amphibole dominant	

Combined Reporting	nan	nan
C185/2010	nan	nan
Number:	nan	nan
Tenement Numbers:	ML15/00487	nan
Tenement Operator(s):	CHERISHMETALSPTYLTD	nan
Report Type:	Co-Funded Drilling	nan
Report Title:	CO-FUNDED GOVERNMENT INDUSTRY DRILLING PROGRAM 2021-22 (R23)	nan
Report Period:	1 January 2022 to 19 October 2022	nan
Author:	Allan STEPHENS	nan
Submitted By:	Allan STEPHENS	nan
Report Date:	24 October 2022	nan
Map Sheets:	1:250,000MapSheet	1:100,000MapShee
SH51-14(WIDGIEMOOLTHA)	3234 (COWAN)	nan
SH51-14 (WIDGIEMOOLTHA)	3235(LAKELEFROY)	nan
Target Commodity:	COBALT, COPPER, NICKEL	nan

Prospects Drilled:	1	nan
PoWNumber:	nan	nan
Seophysical Survey Reg No: N/A	nan	nan
Assays:	N/A - No Assays completed	nan

495

 IML 15/487
 31/12/2999
 31/12/2038
 CHERISH METALS PTY LTD
 12100
 1.2

 P26/4019
 2
 174
 B grab samples
 Yes

 Yoda
 Grab
 i
 Peak 61 ppb Au

 Tenement Recon
 Grab
 No significant results

Yoda	YORC18006
Yoda	YORC18007

ı	IP 26/4019	28/05/2015	27/05/2023	NORTHERN STAR (HBJ) PTY LTD		1.32		
---	------------	------------	------------	-----------------------------	--	------	--	--

The Neptune-Revenge area has had a long history of gold exploration and production.	nan	
· 1984: Discovery of Revenge - Magnetic anomaly within favourable stratigraphy	nan	
· 1994: Resource definition of supergene ore bodies Mars, Agamemnon, and Minotaur	nan	
· 1999: Discovery of Belleisle	nan	
covery of the Neptune palaeochannel deposit, including A5 and Redback. Mining has been undertaken into fresh rock		
lodes.		
6. Previous Exploration	Page 11 of 17	F

Combined Reporting	nan	nan
Number:	nan	nan
Tenement Numbers:	M 15/1658	nan
Tenement Operator(s):	ST IVES GOLD MINE	nan
Report Type:	Co-Funded Drilling	nan

Report Title:	Round252022-2023C0-fundedDrillingProgram	nan
Report Period:	1 June 2022 to 31 May 2023	nan
Author:	Jonathon FRANKLIN	nan
Submitted By:	Jonathon FRANKLIN	nan
Report Date:	29 May 2023	nan
Map Sheets:	1:250,000 MapSheet	1:100,000MapSh
SH51-14(WIDGIEMOOLTHA)	3235 (LAKE LEFROY)	nan
Target Commodity:	GOLD	nan
Prospects Drilled:	Neptune-Revenge Stratigraphy	nan
PoW Number:	ID93883	nan
Geophysical Survey Reg No:	nan	nan
Assays:	AuAlCaCrFeK MgMnNaSSi Ti PBaCeClBrCsDy Er EuGaGeGdHf HoLaLu Nb	nan
Pr RbSmSnTaTb ThTm U VW Y Yb Zr	nan	nan

M 15/1658	14/12/2004	23/12/2025	ST IVES GOLD MINING COMPANY PTY LIMITED	11100	1.1	
-----------	------------	------------	--	-------	-----	--