Christian Cardenas

Table of Contents

Información	3
1. Clase 2025-08-25	ļ
1.1. Principio del buen orden PBO	ļ
1.2. Algoritmo de la division	1
1.3. Principio de inducción matemática (débil) PIM(D)	ļ
1.4. Ejercicios	ļ
2. Clase 2025-08-28	5
2.1. PBO ⇔ PIM(D)	5
2.2. Principio de inducción matemática (general) PIM(G) 5	5
2.3. Principio de inducción matemática (fuerte) PIM(F) 5	5
2.4. Ejercicios 5	5
3. Clase 2025-09-01	5
3.1. Sumatorias y Productorios	5
3.2. Suma Telescópica 6	5
3.3. Ejercicios 6	5
4. Clase 2025-09-04	7
4.1. Monotonía de una sucesión	7
4.2. Acotamiento de una sucesión	7
4.3. Ejercicios	7
5. Clase 2025-09-08	3
6. Clase 2025-09-11	9

Información

Profesor: Carlos Andres Giraldo Hernandez

Notas:

Corte 1		
Taller	10%	?
Quiz	5%	11 Sep
Parcial	20%	25 Sep
Corte 2		
Taller	10%	?
Quiz	5%	16 Oct
Parcial	20%	30 Oct
Corte 3		
Parcial	30%	1 Dec

Tutorías: Jueves 10-12, Viernes 8-10 (Biblioteca)

Contenidos:

- Números Naturales
- Números Entero
- Numero Primos
- Divisibilidad
- Teorema Fundamental de la Aritmética
- Congruencias
- Teorema Chino del residuo
- Funciones de la Teoría de Números
- Ecuaciones Diofánticas

Bibliografía:?

- Niven. I, Zuckerman. N, and Montgomery. H.L, An Introduction to the Theory of Numbers.
- T. Koshy, Elementary Number Theory with applications.

1. Clase 2025-08-25

1.1. Principio del buen orden | PBO

Definición 1.1

Principio del buen orden

4

Todo subconjunto no vació de los números naturales tiene mínimo

1.2. Algoritmo de la division

Sean $a, b \in \mathbb{Z}$ con b > 0. Entonces existen $q, r \in \mathbb{Z}$ únicos tal que:

a = bq + r, $0 \le r < b$

• Si *a* < 0:

Algoritmo 1.2

• -3,7: -3 = 7(-1) + 4, $0 \le 4 < 7$ • 0,6: 0 = 6(0) + 0, $0 \le 0 < 6$

Demostración de Algoritmo 1.2:

Sea $S = \{a - bx : x \in \mathbb{Z} \land a - bq \ge 0\} \subseteq \mathbb{N}$

Comprobamos que $S \neq \emptyset$

Sea x = -1, entonces a - b(-1) = a + b, ahora $a + b \ge 0$, tal que $a - b(-1) \in S$

• Si $a \ge 0$:

$$a-ba=a(1-b)\quad \begin{cases} b=0\Longrightarrow a(1-b)=0\\ b>1\Longrightarrow 1-b<0 \end{cases}$$

$$1-b<0\land a<0\Longrightarrow a(1-b)\geq 0$$
 Como $a-ba\geq 0\Longrightarrow a-ba\in S$

Como S es un subconjunto no vació de $\mathbb N$ por el <u>PBO</u>, S tiene mínimo. Sea $r = \min(S)$. Luego, existe $q \in \mathbb{Z}$ tal que $a - bq = r \Longrightarrow a = bq + r$

Comprobamos unicidad de q, r• Como el mínimo es único, r es único.

• Supongamos que existe $q' \in \mathbb{Z}$, tal que a - bq' = r

 $\begin{vmatrix} a - bq = r \\ a - bq' = r \end{vmatrix} \quad a - bq = a - bq'$

$$a - bq = a - bq'$$
 $-bq = -bq'$
 $0 = bq - bq'$
 $0 = b(q - q')$

$$\begin{cases} b = 0 \text{ Falso} \\ q - q' = 0 \Longrightarrow \boxed{q = q'} \end{cases}$$

Sea $S \subseteq \mathbb{N}$ que satisface

1.3. Principio de inducción matemática (débil) | PIM(D)

Paso base

Definición 1.3

PIM(D)

1. $0 \in S$ $2. \ \ \underbrace{n \in S}_{\text{HI}} \Longrightarrow n+1 \in S$

Entonces
$$S = \mathbb{N}$$
Ejemplo

Definición 1.3

Demostración: Prueba por inducción matemática
$$S = \left\{ n \in \mathbb{N}: 1+r+r^2+...+r^n = \frac{1-r^{n+1}}{1-r} \right\}$$

 $1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}, \quad r \in \mathbb{R} \setminus \{1\}$

1. Paso Base

Supongamos que $n \in S$, es decir $1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$ (HI)

Ahora verificamos comprobamos para n + 1 $\underbrace{1 + r + r^2 + \dots + r^n}_{\text{HI}} + r^{n+1} = \underbrace{\frac{1 - r^{(n+1)+1}}{1 - r}}_{\text{1}}$

$$\frac{1 - r^{n+1} + (1 - r)r^{n+1}}{1 - r} = \frac{1 - r^{n+2}}{1 - r}$$

$$\frac{1 - r^{n+1} + r^{n+1} - r^{n-2}}{1 - r} = \frac{1 - r^{n+2}}{1 - r}$$

$$\frac{1 - r^{n-2}}{1 - r} = \frac{1 - r^{n+2}}{1 - r}$$
Entonces $n + 1 \in S$
Por lo tanto $S = \mathbb{N}$

Ejemplo
$$3|n^3 - n$$

 $\frac{1-r^{n+1}}{1-r}+r^{n+1}=\frac{1-r^{n+2}}{1-r}$

2. Paso Inductivo Supongamos que $n \in S \Longrightarrow 3|n^3 - n$

1. Paso Base

 $Sea S = \left\{ n \in \mathbb{Z} : 3|n^3 - n \right\}$

 $0^3 - 0 = 0 \land 3 | 0 \Longrightarrow 0 \in S$

Verificamos para n + 1

Definición 1.3

 $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + \mathcal{X} - n - \mathcal{X}$

a = bq + r, $0 \le r < b$

 $= \overline{n^3 - n + 3n^2 + 3n}$

$$= (n^{3} - n) + 3(n^{2} + n)$$

$$\boxed{3|n^{3} - n \land 3|3(n^{2} - n) \Longrightarrow 3|(n^{3} - n) + 3(n^{2} - n)}$$

Por lo tanto $S = \mathbb{N}$ 1.4. Ejercicios

Ejercicio 1.4 Demuestre que dadas $a, b \in \mathbb{Z}$ con $b \neq 0$, existen $q, r \in \mathbb{Z}$ unicos tal que

Luego $n + 1 \in S$

Demostración:

• Si $a \ge 0 \land$

Ejercicio 1.5

Porque no es posible dividir por 0 en \mathbb{Z} ?

Ejercicio 1.6 Demuestre que no hay enteros entre 0 y 1

Ejercicio 1.7

Se definen los números \overline{F}_n de Fermat por $\overline{F}_n = 2^{2^n} + 1$, $n = \{0, 1, 2, ...\}$ Demuestre que para todo $n \ge 1$

 $F_0F_1F_2...F_{n-1} + 2 = F_n$

Demuestre que $54|2^{2n+1} - 9n^2 + 3n - 2$

Ejercicio 1.8

2. Clase 2025-08-28

2.1. PBO ⇔ PIM(D)

Teorema 2.1

El <u>Principio del buen orden</u> es equivalente al <u>Principio de inducción matemática</u>

Demostración de <u>Teorema 2.1</u>: PBO ⇔ PIM(D)

- 1. PBO \Longrightarrow PIM(D): Sea $S \subseteq \mathbb{N}$, tal que
 - 1. $0 \in S$
 - 2. Si $n \in S$, entonces $n + 1 \in S$.

Supongamos que $S \subsetneq \mathbb{N}$. Como S es no vació y $S \subsetneq \mathbb{N}$, S^c no es vació, luego por PBO, S_c tiene mínimo, Sea $m = \min(S)$. Veamos que $m-1 \in S$. Si $m-1 \notin S \Longrightarrow m-1 \in S^c$. Como m-1 < m, entonces m no seria el minimo de S_c . Luego $m-1 \in S$.

Por 2. Se tiene que $(m-1)+1=m\in S$ lo cual es una contradiccion $\rightarrow \leftarrow$

2. $PIM(D) \Longrightarrow PBO$: Sea $S \subseteq \mathbb{N}$ no vacio.

Caso 1 $(0 \in S)$: Entonces min(S) = 0

Caso 2 ($0 \notin S$): Sea $T = \{x \in \mathbb{N} : \forall s \in S, x < s\} \subseteq S^c$. Como 0 es cota inferior de S y $0 \notin S$, entonces $0 \in T$, ademas $T \neq \mathbb{N}$, para T se satisfase 1. ($0 \in T$), si 2. es satisfecho por T, entoncecs por el PIM(D) se concluye que $T = \mathbb{N}$ lo cual es una contradiccion $\rightarrow \leftarrow$

Por lo tanto PBO \iff PIM(D)

2.2. Principio de inducción matemática (general) | PIM(G)

Definición 2.2 PIM(G)

Sea $S \subseteq \{x \in \mathbb{N} : x \ge k\} = \mathbb{N} \ge k$ que satisface

1. $k \in S$

2. Si $n \in S$, entonces $n + 1 \in S$

Entonces $S = \mathbb{N}_k = \{k, k + 1, k + 2, ...\}$

Ejemplo PIM(G)

Demuestre que $\left(\frac{4}{3}\right)^n > n$

n	$\left(\frac{4}{3}\right)^n > 0$
0	1 > 0
1	1.33 > 1
2	1.71 ≯ 2
3	2.37 ≯ 3
4	3.16 ≯ 4
5	4.21 ≯ 5
6	5.62 ≯ 6
7	7.49 > 7
8	9.99 > 8

Demostración:

Caso Base: n = 7, $\left(\frac{4}{3}\right)^7 \approx 7.49 > 7$

Paso Inductivo: Supongamos que $\left(\frac{4}{3}\right)^k > k$ para $k \ge 7$ (HI)

$$\left(\frac{4}{3}\right)^k > k$$

$$\left(\frac{4}{3}\right)\left(\frac{4}{3}\right)^k > \frac{4}{3}k$$

$$\left(\frac{4}{3}\right)^{k+1} > \left(1 + \frac{1}{3}\right)k$$

$$\left(\frac{4}{3}\right)^{k+1} > k + \frac{k}{3}$$

Como $k \ge 7$, entonces $\frac{k}{3} \ge \frac{7}{3} > 1$, ahora $k + \frac{k}{3} > k + 1$ por lo tanto

$$\left(\frac{4}{3}\right)^{k+1} > k+1$$

2.3. Principio de inducción matemática (fuerte) | PIM(F)

Definición 2.3 PIM(F)

Sea $S \subseteq \mathbb{N}_{\geq k} = \{k, k+1, k+2, ...\}$ tal que

1. K∈ S

2. Cada vez que $m \in S$, entonces $m + 1 \in S$ para $m \ge k$

Entonces $S = \mathbb{N}$

2.4. Ejercicios

Desarrollar Ejercicios Libro Rubiano sección 1.3

3. Clase 2025-09-01

3.1. Sumatorias y Productorios

Tanto en las sumatorias como productorios podemos utilizar elementos de un conjuntos y tambien definir condiciones Algunos tipos de sumatorias y productorios

Ejemplo

Sea $I = \{2, 3, 5, 7, 11, 13\}$

$$\sum_{\substack{x \in I \\ r \mid 12}} x = 2 + 3 = 5$$

Ejemplo

Sea $K = \{7, 9, 11\}$

$$\prod_{\substack{i,j \in K \\ i < j}} i^j = 7^9 \cdot 7^{11} \cdot 9^{11}$$

$$i^j = 7^7 \cdot 7^9 \cdot 7^{11} \cdot 9^9 \cdot 9^{11} \cdot 11$$

$$\prod_{\substack{i,j \in K \\ i < i}} i^j = 7^7 \cdot 7^9 \cdot 7^{11} \cdot 9^9 \cdot 9^{11} \cdot 11^{11}$$

3.2. Suma Telescópica

Definición 3.1

Suma Telescópica

Una suma de la forma $\sum_{i=m+1}^{n} (a_i - a_{i-1}) = a_n - a_m \operatorname{con} n > m+1$. Se llama suma telescópica

Demostración de la Suma Telescópica por inducción:

• CB: n = m + 1

$$\sum_{i=m+1}^{m+2} (a_i - a_{i-1}) = \underline{a_{m+1}} - a_m + a_{m+2} - \underline{a_{m+1}} = a_{m+2} - a_m$$

• PI: Supongamos que $\sum_{i=m+1}^{n} (a_i - a_{i-1}) = a_n - a_m$

$$\sum_{i=m+1}^{n+1} (a_i - a_{i-1})$$

$$= \sum_{i=m+1}^{n} (a_i - a_{i-1}) + (a_{n+1} - a_n)$$

$$= (a_n - a_m) + (a_{n+1} - a_n)$$

$$= a_{n+1} - a_m$$

3.3. Ejercicios

Desarrollar Ejercicios Libro Kochi 1.2

7

4. Clase 2025-09-04

4.1. Monotonía de una sucesión

Definición 4.1

Una sucesión $\{a_n\} = \{a_1, a_2, ..., a_n, a_{n+1}, ...\}$ es:

- 1. Monótona creciente si: $a_1 \le a_2 \le ... \le a_n \le a_{n+1} \le ...$
- 2. Monótona decreciente si: $a_1 \ge a_2 \ge ... \ge a_n \ge a_{n+1} \ge ...$

4.2. Acotamiento de una sucesión

Una sucesión es acotada si $|a_n| \leq M, M \in \mathbb{R}^+$

Definición 4.2

Nota

Una sucesión es acotada inferiormente si $a_n \geq k, k \in \mathbb{R}$

Una sucesión es acotada superiormente si $a_n \leq k, k \in \mathbb{R}$

Nota

Ejercicio 4.3

4.3. Ejercicios

 $x_1 = 3$, $x_{n+1} = 2 - \frac{1}{x_n}$, $n \ge 1$

Demostrar que la siguiente sucesión es monótona y acotada

Demostración de monotonía:
• Caso base:
$$x_1 = 3, x_2 = 2 - \frac{1}{3} = 1.\overline{6} \Longrightarrow x_1 \ge x_2$$

• Paso inductivo: Supongamos que $x_n \ge x_{n+1}$, Por hipótesis de inducción

- $x_n \ge x_{n+1}$

$$\frac{1}{x_{n+1}} \geq \frac{1}{x_n}$$

$$-\frac{1}{x_{n+1}} \leq -\frac{1}{x_n}$$

$$2 - \frac{1}{x_{n+1}} \leq 2 - \frac{1}{x_n}$$

$$x_{n+2} \leq x_{n+1}$$
 Por lo tanto $\{x_n\}$ es monótona decreciente.
 Demostración de acotamiento:

Acotamiento inferior: Acotamiento superior:

• PI: Supongamos que $x_n \ge 1$, por

hipótesis de inducción

• *CB*: $x_1 = 3$, $x_1 \ge 1$

 $x_n \ge 1$

 $1 \ge \frac{1}{x_n}$

$$-1 \le -\frac{1}{x_n} \qquad \qquad -\frac{1}{3} \ge -\frac{1}{3}$$

$$2 - 1 \le 2 - \frac{1}{x_n} \qquad \qquad 2 - \frac{1}{3} \ge 2$$

$$1 \le x_{n+1} \qquad \qquad 3 \ge 1.\overline{6} \ge 3$$
 Por lo tanto $\{x_n\}$ es acotada.
Ejercicio 4.4 Demostrar que la siguiente sucesión es monótona y acotada:

 $x_1 = 4$, $x_{n+1} = 1 + \sqrt{x_n - 1}$, $n \ge 1$

$$x_n \le 3$$

hipótesis de inducción

• *CB*: $x_1 = 3$, $x_1 \le 3$

 $\frac{1}{3} \le \frac{1}{x_n}$

• PI: Supongamos que $x_n \leq 3$, por

$$-\frac{1}{3} \ge -\frac{1}{x_n}$$
$$2 - \frac{1}{3} \ge 2 - \frac{1}{x_n}$$
$$3 \ge 1.\overline{6} \ge x_{n+1}$$

Demostración de monotonía:

• *CB*: $x_1 = 4$, $x_2 = 1 + \sqrt{3} \approx 2.73$ • *PI:* Supongamos que $x_n \ge x_{n+1}$, por HI

$$x_n \ge x_{x+1}$$

$$x_n - 1 \ge x_{x+1} - 1$$

$$\sqrt{x_n - 1} \ge \sqrt{x_{x+1} - 1}$$

 $1 \le x_n \le 5$ $0 \le x_n - 1 \le 4$

 $0 \le \sqrt{x_n - 1} \le 2$

 $1 \le 1 + \sqrt{x_n - 1} \le 3$

 $1 + \sqrt{x_n - 1} \ge 1 + \sqrt{x_{x+1} - 1}$

 $x_{n+1} \ge x_{n+2}$

 $1 \le x_{n+1} \le 3$ $1 \le x_{n+1} \le 5$

Por lo tanto la sucesión
$$\{x_n\}$$
 es acotada.
Ejercicio 4.5

Demostrar que la siguiente sucesión es monótona y acotada:
$$x_1=1, \quad x_{n+1}=\sqrt{2+x_n}, \quad n\geq 1$$

$\sqrt{3.98} \approx 1.99$ Demostración de monotonía:

 $2 | \sqrt{3} \approx 1.73$

 $3 \sqrt{3.73} \approx 1.93$

 $\sqrt{3.93} \approx 1.98$

 $n \mid x_n$ 1 | 1

 $x_n \le x_{n+1} \Longrightarrow 2 + x_n \le 2 + x_{n+1} \Longrightarrow \sqrt{2 + x_n} \le \sqrt{2 + x_{n+1}} \Longrightarrow x_{n+1} \le x_{n+2}$ Por lo tanto la sucesión $\{x_n\}$ es monótona creciente

• *CB*: $x_1 = 1$, $x_2 = \sqrt{3} \approx 1.73 \Longrightarrow x_1 \le x_2$

• PI: Supongamos que $x_n \le x_{n+1}$, por hipótesis de inducción

 $1 \le x_n \le 2 \Longrightarrow 3 \le 2 + x_n \le 4 \Longrightarrow \sqrt{3} \le \sqrt{2 + x_n} \le \sqrt{4} \Longrightarrow 1.73 \le x_{n+1} \le \sqrt{4}$

Por lo tanto la sucesión $\{x_n\}$ es acotada

Ejercicio 4.6

Demostrar que la siguiente sucesión es monótona y acotada:

Demostración de acotamiento: • *CB*: $x_1 = 1$, $1 \le x_1 \le 2$ • PI: Supongamos que $1 \le x_n \le 2$, Por hipótesis de inducción

 $n \mid x_n$ 1 | 2.236

5 | 2.077

 $x_{n+1} \ge x_{n+2}$

 $x_1 = \sqrt{5}, \quad x_{n+1} = \sqrt{\sqrt{5} + x_n}, \quad n \ge 1$

Demostración de monotonía:

2 | 2.114 3 | 2.085 4 | 2.078

•
$$CB: x_1 = \sqrt{5} \approx 2.23, \quad x_2 = \sqrt{\sqrt{5} + x_1} \approx 2.11 \Longrightarrow x_1 \geq x_2$$

• $PI:$ Supongamos que $x_n \geq x_{n+1}$, por hipótesis de inducción $x_n \geq x_{n+1} \Longrightarrow \sqrt{5} + x_n \geq \sqrt{5} + x_{n+1} \Longrightarrow \sqrt{\sqrt{5} + x_n} \geq \sqrt{\sqrt{5} + x_{n+1}} \Longrightarrow$

• *CB*: $x_1 = \sqrt{5} \implies 2 \le x_1 \le 3$

Por lo tanto la sucesión $\{x_n\}$ es monótona decreciente

• PI: Supongamos que $2 \le x_n \le 3$, por hipótesis de inducción

Demostración de acotamiento:

 $2 \le x_n \le 3$

$$\sqrt{5} + 2 \le \sqrt{5} + x_n \le \sqrt{5} + 3$$

$$\sqrt{\sqrt{5} + 2} \le \sqrt{\sqrt{5} + x_n} \le \sqrt{\sqrt{5} + 3}$$

$$2.05 \le x_{n+1} \le 2.28$$

$$2 \le 2.05 \le x_{n+1} \le 2.28 \le 3$$

Por lo tanto la sucesión $\{x_n\}$ es acotada

5. Clase 2025-09-08

Se desarrollaron Ejercicios 4.3 y 4.4

6. Clase 2025-09-11