

MJ10012 NPN Silicon Power Darlington Transistor TO3 Type Package

Description:

The MJ10012 is high-voltage, high-current Darlington transistor in a TO3 type package designed for automotive ignition, switching regulation and motor control applications.

Features:

● Collector-Emitter Sustaining Voltage: V_{CEO(sus)} = 400Vdc (Min)

Note 1. Pulse Test: Pulse Width = 5ms, Duty Cycle ≤ 10%.

• 175 Watts Capability at 50 Volts

Absolute Maximum Ratings:
Collector–Emitter Voltage, V _{CEO}
Collector–Emitter Voltage (R _{BE} = 27≤), V _{CER}
Collector-Base Voltage, V _{CBO}
Emitter-Base Voltage, V _{EBO} 8V
Collector Current, I _C
Continuous
Peak (Note 1)
Base Current, I _B
Total Power Dissipation, P _D
T _C = +25°C
$T_{C} = +100^{\circ}C$
Derate Above 25 C 1.0w/ C
Operating Junction Temperature Range, T _J –65° to +200°C
Storage Temperature Range, T _{stq} –65° to +200°C
Thermal Resistance, Junction-to-Case, R _{thJC}
Lead Temperature (During Soldering, 1/8" from case, 5 sec), T _L +275°C

Electrical Characteristics: (T_C = +25°C unless otherwise specified) Parameter Symbol Test Conditions

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF Characteristics (Note 2)						
Collector-Emitter Sustaining Voltage	V _{CEO(sus)}	I _C = 200mA, I _B = 0, V _{clamp} = 400V	400	_	-	V
	V _{CER(sus)}	I _C = 200mA, R _{BE} = 27≤, V _{clamp} = 400V	425	_	-	V
Collector Cutoff Current	I _{CER}	V _{CER} = 550V, R _{BE} = 27≤	-	_	1.0	mA
	I _{CBO}	$V_{CBO} = 600V, I_E = 0$	_	-	1.0	mA
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 6V, I_{C} = 0$	-	_	40	mA
ON Characteristics (Note 3)						
DC Current Gain	h _{FE}	V _{CE} = 6V, I _C = 3A	300	550	_	
		$V_{CE} = 6V, I_{C} = 6A$	100	350	2000	
		V _{CE} = 6V, I _C = 10A	20	150	-	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 3A, I _B = 600mA	_	_	1.5	V
		I _C = 6A, I _B = 600mA	_	_	2.0	V
		I _C = 10A, I _B = 2A	_	_	2.5	V
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C = 6A, I _B = 600mA	_	_	2.5	V
		I _C = 10A, I _B = 2A	_	-	3.0	V
Base-Emitter ON Voltage	V _{BE(on)}	I _C = 10A, V _{CE} = 6V	_	_	2.8	V
Diode Forward Voltage	V _F	I _F = 10A	_	2.0	3.5	V
Dynamic Characteristics						
Output Capacitance	C _{ob}	$V_{CB} = 10V, I_{E} = 0, f_{test} = 100kHz$	165	_	350	pF
Switching Characteristics						
Storage Time	t _s	$V_{CC} = 12V$, $I_C = 6A$, $I_{B1} = I_{B2} = 300$ mA	-	7.5	15	°s
Fall Time	t _f		_	5.2	15	°s
Functional Tests						
Pulsed Energy Test	I _C 2 _L /2			_	180	mJ

Note 2. Pulse Test: Pulse Width = 300° s, Duty Cycle = 2%.

