## SVT\_GP MODELS (NSVTGP, PSVTGP)

#### 1. CONDITIONS OF EXTRACTION

- Maturity: Preliminary
- Model parameters extraction based on lot : -
- Geometrical extraction domain:
  - Drawn gate length : 0.18  $\geq$  L  $\geq$  0.06  $\mu$ m
  - Drawn transistor width : 10  $\geq$  W  $\geq$  0.12  $\mu m$
- Temperature extraction domain: -40 °C to 150 °C
- Bias extraction domain:
  - Gate bias: 0 ≤ |VGS| ≤ 1.1 V (VDD + 10%)
  - Drain bias: 0 ≤ |VDS| ≤ 1.1 V (VDD + 10%)
  - Bulk bias:  $0 \le |VBS| \le 1.1 \text{ V (VDD + } 10\%)$

#### 2. CONDITIONS OF SIMULATION

- Temperature: 25 °C
- Currents:

$$IDLIN = Ids$$
 at  $Vgs = 1.0 V$ ,  $Vds = 50 mV$  and  $Vbs = 0 V$ 

$$ION = Ids$$
 at  $Vgs = 1.0 V$ ,  $Vds = 1.0 V$  and  $Vbs = 0 V$ 

$$IOFF = Ids$$
 at  $Vgs = 0$  V,  $Vds = 1.0$  V and  $Vbs = 0$  V

$$IG_ON = Igs \text{ at } Vgs = 1.0 \text{ V} \text{ and } Vd = Vs = Vb = 0 \text{ V}$$

• Threshold voltage in linear and saturation regime

VTLIN is Vgs value at Vds = 50 mV, Vbs = 0 V and Ids= 40\*W/L nA.

VTSAT is Vgs value at Vds = 
$$1.0 \text{ V}$$
, Vbs =  $0 \text{ V}$  and Ids= $40 \text{*W/L nA}$ .

• Current derivatives:

$$Gm = \frac{\partial}{\partial V_{qs}} Ids$$
 at Vgs = VTLIN + 0.2 V, Vds = 0.5 V and Vbs = 0 V

$$Gd = \frac{\partial}{\partial V_{ds}} Ids$$
 at Vgs = VTLIN + 0.2 V, Vds = 0.5 V and Vbs = 0 V

Analog gain = Gm/Gd

#### Gate Capacitances:

CGGINV = CGG at Vgs = 1.0 V, Vds = 0 V and Vbs = 0 V 
$$CGD_0V = CGD$$
 at Vgs = 0 V, Vds = 0 V and Vbs = 0 V

$$CGGMEAN = \frac{1}{VDD} \cdot \int_{0}^{VDD} CGG \times dVgs \text{ with VDD} = 1.0 \text{ V and Vbs} = 0 \text{ V}$$

TAU = CGGMEAN\*VDD/ION

• Diode Capacitances:

**Note**: the area and perimiters of source/drain junction diodes used for simulation are defined with the minimum poly-to-active distance specified in the DRM.

Transition frequency:

FT = frequency for which the small signal current gain H<sub>21</sub> is 0 dB (i.e.  $\left| \frac{I_d}{I_g} \right| = 0$  dB).

### 3. MAIN ELECTRICAL CHARACTERISTICS OF NMOS SVT\_GP TRANSISTORS

| PARAMETERS                      | SVTGP_TT          | SVTGP_SS     | SVTGP_FF | units |
|---------------------------------|-------------------|--------------|----------|-------|
| N-                              | channel transisto | ors (nsvtgp) |          | '     |
| VTLIN W=1/L=0.18                | 274               | 300          | 249      | mV    |
| IDLIN W=1/L=0.18                | 4.56e-05          | 4.12e-05     | 5.04e-05 | А     |
| VTSAT W=1/L=0.18                | 244               | 269          | 218      | mV    |
| ION W=1/L=0.18                  | 2.53e-04          | 2.20e-04     | 2.89e-04 | А     |
| VTLIN W=1/L=0.06                | 245               | 296          | 187      | mV    |
| IDLIN W=1/L=0.06                | 1.27e-04          | 1.11e-04     | 1.46e-04 | А     |
| VTSAT W=1/L=0.06                | 115               | 178          | 44       | mV    |
| ION W=1/L=0.06                  | 8.10e-04          | 6.76e-04     | 9.70e-04 | А     |
| IOFF W=1/L=0.06                 | 5.09e-08          | 1.12e-08     | 2.58e-07 | А     |
| IG_ON W=1/L=0.06                | 6.77e-09          | 3.38e-09     | 1.37e-08 | А     |
| IG_OFF W=1/L=0.06               | 1.10e-09          | 5.57e-10     | 2.20e-09 | А     |
| FT W=1/L=0.06                   | 2.97e+11          | 2.65e+11     | 3.35e+11 | Hz    |
| CGGinv W=1/L=0.06               | 8.04e-16          | 8.51e-16     | 7.52e-16 | F     |
| CGGmean W=1/L=0.06              | 7.72e-16          | 7.97e-16     | 7.39e-16 | F     |
| CGD 0V W=1/L=0.06               | 3.44e-16          | 3.40e-16     | 3.48e-16 | F     |
| CBD OFF <sup>a</sup> W=1/L=0.06 | 4.85e-16          | 5.50e-16     | 4.17e-16 | F     |
| Tau W=1/L=0.06                  | 1.0               | 1.2          | 0.8      | ps    |
| Gm W=1/L=0.06                   | 5.20e-04          | 4.75e-04     | 5.69e-04 | S     |
| Gd W=1/L=0.06                   | 8.02e-05          | 6.74e-05     | 9.56e-05 | S     |
| Gain W=1/L=0.06                 | 6.49e+00          | 7.05e+00     | 5.94e+00 |       |
| VTLIN W=0.12/L=0.06             | 208               | 259          | 152      | mV    |
| IDLIN W=0.12/L=0.06             | 1.75e-05          | 1.50e-05     | 2.03e-05 | А     |
| VTSAT W=0.12/L=0.06             | 107               | 165          | 41       | mV    |
| ION W=0.12/L=0.06               | 1.08e-04          | 8.74e-05     | 1.32e-04 | А     |
| IOFF W=0.12/L=0.06              | 7.43e-09          | 1.80e-09     | 3.33e-08 | А     |
| FT W=0.12/L=0.06                | 2.28e+11          | 1.97e+11     | 2.67e+11 | Hz    |

Table 1: Main electrical characteristics for NMOS

a. Value coresponding to the minimum poly-to-acvtive distance specified in the DRM

### 4. MAIN ELECTRICAL CHARACTERISTICS OF PMOS SVT\_GP TRANSISTORS

| PARAMETERS                      | SVTGP_TT          | SVTGP_SS      | SVTGP_FF | units |
|---------------------------------|-------------------|---------------|----------|-------|
|                                 | P-channel transis | tors (psvtgp) |          |       |
| VTLIN W=1/L=0.18                | 191               | 218           | 165      | mV    |
| IDLIN W=1/L=0.18                | 2.09e-05          | 1.88e-05      | 2.33e-05 | Α     |
| VTSAT W=1/L=0.18                | 155               | 182           | 127      | mV    |
| ION W=1/L=0.18                  | 1.70e-04          | 1.47e-04      | 1.96e-04 | Α     |
| VTLIN W=1/L=0.06                | 249               | 300           | 186      | mV    |
| IDLIN W=1/L=0.06                | 4.55e-05          | 3.89e-05      | 5.35e-05 | А     |
| VTSAT W=1/L=0.06                | 140               | 202           | 60       | mV    |
| ION W=1/L=0.06                  | 3.82e-04          | 3.07e-04      | 4.84e-04 | Α     |
| IOFF W=1/L=0.06                 | 2.46e-08          | 4.84e-09      | 1.75e-07 | Α     |
| IG_ON W=1/L=0.06                | 5.06e-09          | 2.31e-09      | 1.19e-08 | Α     |
| IG_OFF W=1/L=0.06               | 1.02e-09          | 5.09e-10      | 2.06e-09 | Α     |
| FT W=1/L=0.06                   | 1.32e+11          | 1.11e+11      | 1.58e+11 | Hz    |
| CGGinv W=1/L=0.06               | 8.66e-16          | 9.32e-16      | 8.03e-16 | F     |
| CGGmean W=1/L=0.06              | 8.11e-16          | 8.47e-16      | 7.74e-16 | F     |
| CGD 0V W=1/L=0.06               | 3.33e-16          | 3.20e-16      | 3.43e-16 | F     |
| CBD OFF <sup>a</sup> W=1/L=0.06 | 5.00e-16          | 5.66e-16      | 4.30e-16 | F     |
| Tau W=1/L=0.06                  | 2.1               | 2.8           | 1.6      | ps    |
| Gm W=1/L=0.06                   | 2.89e-04          | 2.54e-04      | 3.35e-04 | S     |
| Gd W=1/L=0.06                   | 4.13e-05          | 3.12e-05      | 5.81e-05 | S     |
| Gain W=1/L=0.06                 | 6.99e+00          | 8.15e+00      | 5.76e+00 |       |
| VTLIN W=0.12/L=0.06             | 166               | 223           | 91       | mV    |
| IDLIN W=0.12/L=0.06             | 6.90e-06          | 5.92e-06      | 8.02e-06 | Α     |
| VTSAT W=0.12/L=0.06             | 69                | 136           | -16      | mV    |
| ION W=0.12/L=0.06               | 6.05e-05          | 4.83e-05      | 7.66e-05 | Α     |
| IOFF W=0.12/L=0.06              | 1.31e-08          | 2.24e-09      | 1.18e-07 | Α     |
| FT W=0.12/L=0.06                | 9.22e+10          | 7.80e+10      | 1.06e+11 | Hz    |

Table 2: Main electrical characteristics for PMOS

a. Value coresponding to the minimum poly-to-acvtive distance specified in the DRM

# 5. ION, IOFF, VT BEHAVIOR VERSUS GATE LENGTH AND CHANNEL WIDTH FOR NMOS SVT\_GP TRANSISTORS



Figure 1 : ION/ $\Box$ =ION\*L/W versus drawn gate length for NMOS SVT\_GP transistors (W = 1  $\mu$ m)



Figure 2 : IOFF versus drawn gate length for NMOS SVT\_GP transistors (W = 1  $\mu$ m)





Figure 3 : Threshold voltage VTLIN versus drawn gate length for NMOS SVT\_GP transistors (W = 1  $\mu$ m)



Figure 4 : DIBL= VTLIN-VTSAT versus drawn gate length for NMOS SVT\_GP transistors (W = 1  $\mu$ m)



Figure 5 : ION versus drawn channel width for NMOS SVT\_GP transistors (L = 0.06  $\mu$ m)



Figure 6 : IOFF versus drawn channel width for NMOS SVT\_GP transistors (L = 0.06  $\mu$ m)



Figure 7 : Threshold voltage VTLIN versus drawn channel width for NMOS SVT\_GP transistors (L = 0.06  $\mu$ m)

## 6. ION, IOFF, VT BEHAVIOR VERSUS GATE LENGTH AND CHANNEL WIDTH FOR PMOS SVT\_GP TRANSISTORS



Figure 8 : ION versus drawn gate length for PMOS SVT\_GP transistors (W = 1  $\mu$ m)



Figure 9 : IOFF versus drawn gate length for PMOS SVT\_GP transistors (W = 1  $\mu$ m)





Figure 10 : Threshold voltage VTLIN versus drawn gate length for PMOS SVT\_GP transistors (W = 1  $\mu$ m)



Figure 11 : DIBL= VTLIN-VTSAT versus drawn gate length for PMOS SVT\_GP transistors (W = 1  $\mu$ m)



Figure 12 : ION versus drawn channel width for PMOS SVT\_GP transistors (L = 0.06  $\mu$ m)



Figure 13 : IOFF versus drawn channel width for PMOS SVT\_GP transistors (L = 0.06  $\mu$ m)



Fig)ure 14: Threshold voltage VTLIN versus drawn channel width for PMOS SVT\_GP transistors (L = 0.06