SC1015

ML Disney+ Movie Recommendation System

KAVIPOOJA

ESVARAN

PRIYADHARSHINY

C126_Team_4

Table of Contents

01 **Problem** Statement

02 Data

03 EDA & **Preparation** Visualisation

Machine Learning Techniques

05 Insights & Recommendations

Problem Statement

How do we build a content-based recommendation system for Disney+ TV shows and movies that accounts for similarities in genre and description?

DATA PREPARATION AND DATA CLEANING

First, let's clean the data set by removing all the unnecessary columns. This increases the accuracy and quality of the data and reduces the issue of redundancy and memory usage. The characteristics we removed aren't significant to the recommendation system.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1535 entries, 0 to 1534
Data columns (total 15 columns):

memory usage: 180.0+ KB

Duca	columns (cocal 15 col	amirs).	
#	Column	Non-Null Count	Dtype
0	id	1535 non-null	object
1	title	1535 non-null	object
2	type	1535 non-null	object
3	description	1529 non-null	object
4	release_year	1535 non-null	int64
5	age_certification	1210 non-null	object
6	runtime	1535 non-null	int64
7	genres	1535 non-null	object
8	production_countries	1535 non-null	object
9	seasons	415 non-null	float64
10	imdb_id	1133 non-null	object
11	imdb_score	1108 non-null	float64
12	<pre>imdb_votes</pre>	1105 non-null	float64
13	tmdb_popularity	1524 non-null	float64
14	tmdb_score	1426 non-null	float64
dtype	es: float64(5), int64(2), object(8)	

After dropping the columns: 'release_year', 'seasons', 'production_countries', and 'imdb_id'

Dropping of some duplicates under some variables and also extraction of required variables for data analysis. <class 'pandas.core.frame.DataFrame'> Int64Index: 1118 entries, 0 to 1534 Data columns (total 11 columns): Column Non-Null Count Dtvpe 1118 non-null object object title 1118 non-null object type 1118 non-null description 1118 non-null object object age certification 862 non-null runtime int64 1118 non-null genres object 1118 non-null imdb score 747 non-null float64 imdb votes 744 non-null float64 tmdb popularity 1115 non-null float64 tmdb score 1075 non-null float64 dtypes: float64(4), int64(1), object(6) memory usage: 104.8+ KB

EXPLORATORY DATA ANALYSIS AND VISUALIZATION

TOP 5 imdb_score

•	IMDB Score float64
ASSEMBLED: The Making of Hawkeye	8.8
The Empire Strikes Back	8.7
Star Wars	8.6
The Lion King	8.5
Avengers: Endgame	8.4

From analysis of the table,

- The top movie is ASSEMBLED: The Making of Hawkeye with the highest IMDB score of 8.8.
- The top 5 movies range from an IMDB score of 8.4 to 8.8.

Table

Exploring imdb_score

Violin Plot

Violin Plot - illustrate the density of data at different values

From the violin plot,

- The ratings that have the highest frequency lie between 6 and 8.
- The ratings that have the lowest frequency lie between 4 and
 6.

Analysis of central tendency across variables

imdb votes - Histogram Analysis

Histogram Plot - provides a visual representation of distribution of data

From the **histplot**, showing the central tendency of the data we are able to identify the:

- distribution of data
- the mean, median & mode
- Variables: imdb_score, imdb_votes, tmdb_popularity and tmdb_score.

Histogram

Analysis of central tendency across variables

tmdb_popularity - Histogram Analysis

Histogram Plot - provides a visual representation of distribution of data

From the **histplot**, showing the central tendency of the data we are able to identify the:

- distribution of data
- the mean, median & mode
- Variables: imdb_score, imdb_votes, tmdb_popularity and tmdb_score.

Histogram

Exploring genre

Analysis of Genre

Bar Chart Plot

From the **Barchart plot** (ordered from most to least popular genre, in descending order)

- The most popular genre is "family" with a count of 484.
- "comedy", "animation", "fantasy" fall as the next three genres after "family".
- The least popular genre is "crime" with a count of 3.

Exploring runtime

Histogram Plot

Histogram Plot - provides a visual representation of distribution of data

From the **histogram plot**, (The runtime of the movies are given in terms of minutes.)

- More than 175 movies have a runtime that is above 87 and below 100.
- Next to that, close to 175 movies have a runtime that is between 0 and 12.
- Movies whose runtime is between 150 and 175 are the ones which are lower in frequency.

Exploring age_certification

Count Plot

Count Plot - frequency of categorical values can be identified. From the **count plot**,

- Almost 100 movies are categorized under PG-13.
- Almost 350 movies are categorized under PG.
- Almost 400 movies are categorized under G.

Exploring the relationship between imdb_score and age_certification

Bivariate Hist Plot with Heatmap

Hist Plot with Heatmap - 2-D space that provides an illustration of the relationship between two variables and shows the most concentrated observations.

- It is evident that movies with an age certification of G have a greater imdb_score compared to the others.
- This trend is observable as there is a larger concentration of color at that section.
- Next to that, a higher imdb_score has been observed for PG that is between 6 and 7 and slightly above 7.

Exploring the relationship between runtime and imdb_score

Line Plot

Line Plot - show how a variable changes periodically and how one variable is influenced by another.

From the **Line Plot**,

- There is an evident relationship between imdb score and runtime.
- It's clear that movies with a runtime between 150 and 175 minutes have a higher imdb_score.
- Similarly, movies with a runtime between 0 and 25 minutes and between 50 and 75 minutes have a higher imdb_score.

MACHINE LEARNING TECHNIQUES

Vectorization Techniques

Textual Analysis

Document Similarity is one of the key metrics involved in textual analysis, and it represents the foundation for our recommendation system.

Understanding Cosine Similarity

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

TF-IDF Vectorizer

Increases the importance of a particular word w if it's **unique** to a movie's description, thereby decreasing the significance of common words, such as 'a', 'the', 'and', etc.

```
      [1.
      0.04257928
      0.02734134
      ...
      0.0185537
      0.03768828
      0.02471722]

      [0.04257928
      1.
      0.0187942
      ...
      0.16016232
      0.04856555
      0.03695879]

      [0.02734134
      0.0187942
      1.
      0.0280489
      0.01541093
      0.01625423]

      ...
      [0.0185537
      0.16016232
      0.0280489
      ...
      1.
      0.04682715
      0.03997809]

      [0.03768828
      0.04856555
      0.01541093
      ...
      0.04682715
      1.
      0.03124309]

      [0.02471722
      0.03695879
      0.01625423
      ...
      0.03997809
      0.03124309
      1.
```

Count Vectorizer

Denotes the frequency of each word within the description, providing **equal importance** to all words, including common occurrences.

```
      [[1.
      0.38334909
      0.18731716
      ...
      0.25
      0.38385797
      0.28401878]

      [0.38334909
      1.
      0.16571045
      ...
      0.42389562
      0.41702883
      0.28552012]

      [0.18731716
      0.16571045
      1.
      0.14048787
      0.15137513
      0.14509525]

      ...
      [0.25
      0.42389562
      0.14048787
      ...
      1.
      0.32829958
      0.16137431]

      [0.38385797
      0.41702883
      0.15137513
      ...
      0.32829958
      1.
      0.31298432]

      [0.28401878
      0.28552012
      0.14509525
      ...
      0.16137431
      0.31298432
      1.
      1.
```

Comparison Between Vectorizers

The purpose of constructing different matrices is to illustrate how recommendation systems can **vary vastly** depending on the mechanism we utilize to assign **importance** to words within the string.

Only TF-IDF

Only Count

TF-IDF + Count

Recommendations Based on The Little Mermaid

	title		title		title
332	The Little Mermaid II: Return to the Sea	290	The Brave Little Toaster to the Rescue	425	The Chronicles of Narnia: Prince Caspian
205	Splash	35	The Grasshopper and the Ants	332	The Little Mermaid II: Return to the Sea
425	The Chronicles of Narnia: Prince Caspian	425	The Chronicles of Narnia: Prince Caspian	290	The Brave Little Toaster to the Rescue
507	The Little Mermaid: Ariel's Beginning	215	The Ewok Adventure	205	Splash
290	The Brave Little Toaster to the Rescue	5	The Adventures of Ichabod and Mr. Toad	5	The Adventures of Ichabod and Mr. Toad
512	George of the Jungle 2	447	Confessions of a Teenage Drama Queen	35	The Grasshopper and the Ants
5	The Adventures of Ichabod and Mr. Toad	1087	Russia's Wild Tiger	701	The Day the Series Stopped
126	The Story of Robin Hood and His Merrie Men	794	Of Miracles and Men	762	Avengers: Age of Ultron
701	The Day the Series Stopped	607	Sacred Planet	126	The Story of Robin Hood and His Merrie Men
775	Ice Age: Collision Course	799	Drain The Ocean: WWII	775	Ice Age: Collision Course

Recommendation System

Using the TF-IDF vectorizer, we're going to develop our final recommendation system that'll account for certain characteristics we didn't previously acknowledge.

In addition to analyzing the description, we'll account for the **movie title** (for recommending sequels) and the **genre**. This will permit the system to make **higher-quality** recommendations that consider the user's interests as well.

```
qualities = ['title', 'description', 'genres']

def accumulate_string(frame):
    combine = "";
    for feature in qualities:
        combine += frame[feature] + ' \ ';

    return combine;

disTitles['description'] = disTitles.apply(accumulate_string, axis = 1)
disTitles['description'].head()
```

INSIGHTS AND RECOMMENDATIONS

Top 10 Movie Recommendations (Decreasing Order of Similarity) 0.298366 The Little Mermaid II: Return to the Sea 0.243837 Splash 0.238421 The Little Mermaid Live! The Little Mermaid: Ariel's Beginning 0.225802 The Chronicles of Narnia: Prince Caspian 0.171876 0.159171 The Brave Little Toaster to the Rescue 0.152226 The Princess and the Frog 0.138022 The Adventures of Ichabod and Mr. Toad 0.137577 Ice Age: Collision Course 0.13384 The Princess Diaries 0.05 0.10 0.20 0.25 0.15 0.00 0.30 Similarity Score

Similarities of Our Final Recommendations

Content-based filtering (our approach) accounts for the characteristics of the film, including its description, genre, and actors; however, it fails to represent the user's preferences. In order to address these restraints, we introduce a higher-level approach called collaborative filtering, which accounts for similarities between users as well.

Accounting for User's Preferences

Genres User Likes

Favorite Actors

Trending Films

We can filter out films that aren't within the scope of the search space, eliminating choices that the user won't appreciate anyways.

Conclusion

- The movie recommendation system is a convenient and personalized way to discover new films.
- Gives suggestions based on their preferences, prior search histories,
 the movies they have watched, and various other factors.
- Saves users' time and effort in searching for movies.
- Saves costs for users to watch movies that might interest them.

Thank You!