Лабораторная работа по квантовой электронике

№ 23 Инжекционные полупроводниковые лазеры

Яромир Водзяновский Б04-855а

1 Введение

1.1 Цель работы

- 1. Измерение спектральных характеристик лазера и светодиодов, их дальнейший анализ
- 2. Получение зависимости мощности излучения светодиодов и лазера от мощности накачки (Ватт-ваттаная характеристика)

1.2 Суть работы

1.2.1 Спектральная характеристика

- 1. Исследуем зависимось спеткра излучения инжекционного полупроводникового лазера/светодиодов от мощности накачки производится, измерив детектируемую длину волны и фиксируя напряжения при постоянной мощности накачки.
- 2. Определим характер изменения формы спектральной характеристики от установленной мощности накачки для лазера.

1.2.2 Ватт-Ваттная характеристика

1. Получим зависимости мощности излучения от мощности накачки для светодиодов и лазера поточечно меняя ток и напряжение накачки.

2 Эксперимент

2.1 Спектральные характеристики

1. Зависимость аплитуды излучения лазера от длины волны при разных токах накачки.

Рис. 1: Характеристика лазера при разных мощностях накачки

При уменьшении накачки аплитуда выходного излучения падает, чем больши накачка - тем шире полосагенерации.

2. Зависимость аплитуды излучения диодов от длины волны при разных токах накачки.

Рис. 2: Характеристика синего диода

Рис. 3: Характеристика зеленого диода

Рис. 4: Характеристика красного диода

Соответсвующи приблизительные максимумы излучения: красный 617, зеленый 522, синий 462 nm.

2.2 Ватт-ваттные характеристики

1. Зависимости амплитуды выходого сигнала от мощности накачки для двух лазеров

Рис. 5: В-В зарактеристика лазеров

На гарфике видим три участка участка: недостаток накачки, линейная зависимость, насыщение. Определим характерные значения накачки.

- Пороговая мощность $P_{\Pi \mathrm{Op}} \approx \mathbf{12} \,\mathrm{MBt}; \, \mathbf{4} \,\mathrm{MBt}$
- Мощность насыщения $P_{\mathrm{Hac}} \approx \mathbf{21} \; \mathrm{мBt}; \; \mathbf{60} \; \mathrm{мBt}$

2. Зависимости амплитуды выходого сигнала от мощности накачки для трёх диодов

Рис. 6: Анимэ на картинке

В-В характеристика диодов имеет линейный вид, $K\Pi Д$ каждого определяется как коэффициент наклона линейного фита, коэффициенты в таблицах (1,2,3)

Таблица 1: Коэффициенты аппроксимации Синего диода

coeffs	coeffs_values	standard error	relative se, $\%$
a_0	5.543E-01	1.715E-03	$3.094\text{E-}01 \\ 1.686\text{E+}01$
a_1	6.049E-01	1.020E-01	

Таблица 2: Коэффициенты аппроксимации красного богатыря

coeffs	coeffs_values	standard error	relative se, %
a_0	4.523E-01	1.139E-04	2.518E-02
a_1	3.580E-01	3.985E-02	1.113E+01

Таблица 3: Коэффициенты аппроксимации зеленого диода

coeffs	coeffs_values	standard error	relative se, $\%$
a_0	3.478E-01	2.382E-04	6.849E-02
a_1	9.271E-01	8.325E-02	8.979E + 00

3 Выводы

- Рост мощность накачки увеличивает ширину спектра излучения лазера, не меняя частоту генерации;
- Рост мощность накачки увеличивает ширину спектра излучения диода, снижая частоту генерации;
- Лазер имеет наименьшую ширину спектра излучения при сравнимых мощностях накачки;
- Диоды имеют линейную ватт-ваттную характеристику;
- Лазер имеет линейную BBX в диапазоне мощностей накачки, от 12 до 21 мВт и от 4 до 60 мВт;
- \bullet КПД диодов: красный 45%, зеленый 35%, синий 55%;