SIMPLE CASE OF STUDY

Introducción a la Ciencia de Datos

DATA

- Engine car data from 2015. Based on an old Sharp Sight tutorial
- Data available in car_example.xls
- We are going to use tidyverse, dplyr and ggplot2 graphics
- Libraries than we are going to need

```
library(tidyverse)
library(dplyr)
# for working of %>%
library(magrittr)
library(ggplot2)
library(VIM)
```

Data inspection

- How many variables do you have?
- Which type are they?
- Did R imported all variables with the class that you consider the right one?
- If not change it
- Do you have missing values?

Missing values

Compare Horsepower vs. Top Speed

Hypothesis: greater Horsepower higher speed

Compare Horsepower vs. Top Speed

Hypothesis: greater Horsepower higher speed

Histogram of Top Speed

Histogram of Top Speed

Speed between 149 and 159

- Subset the dataset with speed between 149 and 150 using dplyr
- Make a barchart of the results
- What do you see?

Speed between 149 and 159

When did the speed limit appear?

- Use faceting to look at different decades
- Use the variable top_speed_mph

Histogram of Top Speed by decade

Do all companies have the same policy about speed limit control?

Search which car companies are limiting car speeds.

Use dplyr verbs chained together and piping %>%

- 1. Filter the data selecting cars with a top speed of 155 and made after 1990
- group the data by car manufacturer. This information is in variable make nm
- count the number of cars.

Do all companies have the same policy about speed limit control?

```
df.car_spec_data %>%
    filter(top_speed_mph == 155 & year>=1990) %>%
    group_by(make_nm) %>%
    summarize(count_speed_controlled = n()) %>%
    arrange(desc(count_speed_controlled))
```

```
make nm count speed controlled
   <fct>
                                   <int>
 1 BMW
                                      53
 2 Audi
                                      51
3 Mercedes
                                      41
4 Jaguar
                                      14
 5 Nissan
 6 Subaru
 7 Volkswagen(VW)
8 Volvo
 9 Ford
10 Mitsubishi
# ... with 27 more rows
```

Faceting for searching for relationships

Horsepower vs Top Speed by decade

Increase of Speed with the years

Show this trend more clearly

- Show the fastest car of each type by year
- Tips:
 - group by year
 - Take into account the missing values
 - top_speed_mph is the variable containing the speed data
 - Make a geom_point() graph

Maximun speed by Year

```
df.car_spec_data %>%
    group_by(year) %>%
    summarize(max_speed = max(top_speed_mph, na.rm=TRUE))%>%
    ggplot(aes(x=year,y=max_speed,group=1)) +
        geom_point(size=5, alpha=.8, color="#880011") +
        stat_smooth(method="auto",size=1.5) +
        scale_x_discrete(breaks =
    c("1950","1960","1970","1980","1990","2000","2010")) +
        ggtitle("Speed of Year's Fastest Car by Year") +
        labs(x="Year",y="Top Speed\n(fastest car)")
```


More hyphotesis

- Is there a relationship between the acceleration (0-to-60) and the power (horsepower_bhp)
- Is only dependent on the power or could the weight of the car be involved (tonne)

Calculate which are the fastest cars

- Make a subset of the autos and their speed
- Make a ranking of descending order and select the fastest
 10
- Make a bar graph

Fastest cars

