Revision notes - MA2213

Ma Hongqiang

October 3, 2017

Contents

1	Computer Arithmetic and Computational Errors	2
2	Numerical Solution of Linear Systems of Equations	9
3	Error of Approximation	18
4	Numerical Integration	27

1 Computer Arithmetic and Computational Errors

1.1 Number Systems

Definition 1.1 (Decimal System).

The number system we are used to is the **decimal system** and the number "10" which plays an important role is called the **base** of the decimal system.

In general, we can take other positive integer N > 1 as a base. In particular, N = 2, 8, 16 are used in most digital computers and the systems with N = 2, 8, 16 are known as **binary**, **octal**, **hexadecimal** number systems respectively.

1.1.1 Decimal to Binary

The conversion of decimal number to binary is performed in two steps. Take $(53.7)_{10}$ as an example.

1. **Integer Part**. Convert decimal integers to binary by deviding by 2 successively and recording the remainders.

The remainders, 0 or 1, are recorded by starting at the decimal point and moving away to the left. For $(53)_{10}$, we have

$$53/2 = 26 \mathbf{R} 1$$

 $26/2 = 13 \mathbf{R} 0$
 $13/2 = 6 \mathbf{R} 1$
 $6/2 = 3 \mathbf{R} 0$
 $3/2 = 1 \mathbf{R} 1$
 $1/2 = 0 \mathbf{R} 1$

Therefore, the base 10 number 53 can be written as binary

$$(110101)_2 = 2^5 + 2^4 + 2^2 + 2^0 = 53$$

2. Fractional Part. Convert $(0.7)_{10}$ to binary as follows:

Multiply by 2 successfully and record the integer parts, moving away from the decimal point to the right:

$$.7 \times 2 = .4 + 1$$

$$.4 \times 2 = .8 + 0$$

$$.8 \times 2 = .6 + 1$$

$$.6 \times 2 = .2 + 1$$

$$.2 \times 2 = .4 + 0$$

$$.4 \times 2 = .8 + 0$$
.....

Notice that the process repeats after four steps and will repeat infinitely exactly the same way. Therefore,

$$(0.7)_{10} = (.1\overline{0110})_2$$

3. Hence,

$$(53.7)_{10} = (110101.1\overline{0110})_2$$

1.1.2 Binary to Decimal

The conversion of binary number to decimal needs to tackle nonterminating binary numbers. Take $x = (.10\overline{101})_2$ as an example.

Multiplying by 2^2 shifts x to

$$y := 2^2 x = (10.\overline{101})_2 = (10)_2 + (.\overline{101})_2 = (2)_{10} + (.\overline{101})_2$$

The fractional part of y, i.e.,

$$z := (.\overline{101})_2$$

is calculated as follows:

$$2^3z = (101.\overline{101})_2$$

So,

$$(2^3 - 1)z = (101)_2 = (5)_{10}$$

i.e.

$$z = \left(\frac{5}{7}\right)_{10}$$

Thus,

$$y = (2)_{10} + \left(\frac{5}{7}\right)_{10} = \left(\frac{19}{7}\right)_{10}$$

and hence,

$$x = \frac{y}{2^2} = \left(\frac{19}{28}\right)_{10}$$

Theorem 1.1 (Representation of Numbers).

In general, any **natural numbers** $N \geq 2$ can be used as base.

Every positive real number a has a unique representation of the form

$$a = a_m N^m + a_{m-1} N^{m-1} + \dots + a_1 N^1 + a_0 N^0 + a_{-1} N^{-1} + a_{-2} N^{-2} + \dots$$

where

$$0 \le a_i \le N - 1, \quad a_m \ne 0$$

Equivalently,

$$a = \sum_{i=0}^{\infty} a_{m-i} N^{m-i}$$

where

$$0 < a_m < N; 0 \le a_{m-i} \le N - 1 \quad \forall i \ge 1$$

The above non-terminating representation of number a is not feasible in practical computation. We onl deal with, in practice, numbers which have terminating representation, i.e. of the following form

$$\alpha = \sum_{i=0}^{n-1} \alpha_{m-i} N^{m-i}$$

where $0 < \alpha_m < N$ and $0 \le \alpha_{m-i} < N$ for i = 1, 2, ..., n - 1.

Definition 1.2 (Significant decimal digits).

If N = 10, then the numbers α_{m-i} , $0 \le i \le n-1$ are called **significant decimal digits** and the number α is said to have n significant decimal digits.

1.2 Chopping and Rounding

If the number a has more significant digits than what we wish to have, then we need to replace a by an approximate number a^* which contains a smaller number of digits, say n. There are two ways of terminating the number a to a given significant number of digits, namely **chopping** or **rounding**.

Definition 1.3 (Chopping).

In **chopping**, we retain only the first n significant digits in the number a.

Definition 1.4 (Rounding).

In **rounding**, the following rules are usually practiced:

- Retain the first n significant digits, and
- if the (n+1)th significant digit is less than 5, leave the nth significant digit unchanged;
- otherwise, if the (n + 1)th significant digit is greater or equal to 5, add unity to the nth significant digit.

1.3 Floating Point Representation

Definition 1.5 (Floating Point Numbers).

Number of the form

$$\pm (0.a_1a_2a_3...a_m) \times N^e$$
, with $a_1 \neq 0$

are called **floating point numbers**. The factor $0.a_1a_2a_3...a_n$ is called the **mantissa**, e is called the **exponent** and N is the **base**.

The folating-point mode is for storing real numbers.

1.4 Basic Concepts in Error Estimation

Definition 1.6 (Sources of Error).

Numerical results are affected by many types of error.

• Error in Given Input Data

The input data can be result of measurements which are inexact, or produced by some arithmetic process using round-off process.

• Round-off Errors During Computation

This is due to working with finite machine precision.

• Truncation Error

Consider the Taylor series xpansion for sin(x) about x = 0

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

which is an infinite series.

Truncation error occurs when the *infinite series* is broken off after a finite number of terms.

In general, truncation errors are error committed when a limiting process is truncated before one has come to the limiting value.

- Simplifications in the Mathematical Model
- Human Error

1.5 Absolute and Relative Error

Definition 1.7 (Absolute Error).

Let x^* be an approximation to x, then the **absolute error** in approximating x is given by $|x-x^*|$.

From the above definition, the floating point representation of x, fl(x) has absolute error

$$|x - \mathrm{fl}(x)|$$

Definition 1.8 (Absolute Error Bound).

Any non-negative number $\delta(x^*)$ satisfying the inequality

$$|x - x^*| < \delta(x^*)$$

is called an absolute error bound.

Definition 1.9 (Decimal Places).

The two numbers x is said to agree to k decimal places if k is the largest non-negative integer such that

$$|x - x^*| \le 0.5 \times 10^{-k}$$

Definition 1.10 (Relative Error).

If x^* is an approximation to x, then the **relative error** is defined by

$$\frac{|x - x^*|}{|x|} \quad \text{provided that } x \neq 0$$

For a t-digit machine,

$$\frac{|x - \text{fl}(x)|}{|x|} \le \frac{1}{2} \times 10^{1-t}$$

in rounding mode and

$$\frac{|x - \mathrm{fl}(x)|}{|x|} \le 10^{1-t}$$

in chopping mode.

1.6 Computation in Floating Point Arithmetic

Take the example of addition/subtraction of two floating point number $0.a_1a_2a_3...a_m \times 10^{N_1} \pm 0.b_1b_2b_3...b_m \times 10^{N_2}$.

$$0.a_1 a_2 a_3 \dots a_m \times 10^{N_1} \pm 0.b_1 b_2 b_3 \dots b_m \times 10^{N_2}$$

$$= \begin{cases} (0.a_1 a_2 a_3 \dots a_m \pm 0.b_1 b_2 b_3 \dots b_m) \times 10^{N_1} & \text{if } N_1 = N_2 \\ (0.a_1 a_2 a_3 \dots a_m 0 \dots 0 \pm 0.0 \dots 0 b_1 b_2 b_3 \dots b_m) \times 10^{N_1} & \text{if } N_1 > N_2 \end{cases}$$

1.7 Propagation of Errors in Function Evaluation

1.7.1 Function of one variable

In finding the value of f(x) by approximating $f(x^*)$, where x^* is the known approximating value of x,

let $\delta(x^*)$ be an absolute error bound for $|x - x^*|$, i.e.,

$$|x - x^*| \le \delta(x^*)$$

If the function f(x) is differentiable, then by the mean-value theorem, we have

$$f(x) - f(x^*) = f'(p)(x - x^*)$$

where p is some number between x and x^* .

Therefore,

$$\delta(f(x^*)) \le \max_{t \in \mathbf{I}} |f^*(t)| \delta(x^*)$$

where **I** is the interval (x, x^*) if $x < x^*$ or (x^*, x) .

Sometimes, upper bound of f' is unavailable. Yet, with the following assumption:

- $\delta(x^*)$ is small
- $f'(x^*) \neq 0$, and
- f'(t) is nearly constant near x^* (i.e., f'(t) does not very greatly for t between x and x^*)

We have $D \approx |f'(x^*)|$, and consequently

$$\delta(f(x^*)) \approx |f'(x^*)|\delta(x^*)$$

1.7.2 Function of Several Variables

Theorem 1.2 (Error bounds of function of several variables).

Generalisation suggests, if x_i^* is an estimate of x_i , $1 \le i \le n$, then with $x^* = (x_1^*, x_2^*, \dots, x_n^*)$, we have

$$\delta(f(x^* = (x_1^*, x_2^*, \dots, x_n^*)) \approx \left| \frac{\partial f(x^*)}{\partial x_1} \right| \delta(x_1^*) + \left| \frac{\partial f(x^*)}{\partial x_2} \right| \delta(x_2^*) + \dots + \left| \frac{\partial f(x^*)}{\partial x_n} \right| \delta(x_n^*)$$

1.8 Catastrophic Cancellation

Calculations involving the **subtraction** of two *nearly equal* numbers can result in considerable loss of accuracy due to cancellation.

Let x_1 and x_2 be two nearly equal numbers and denote the error in x_1 and x_2 by $\delta(x_1)$ and $\delta(x_2)$, respectively, we have

$$y = x_1 - x_2$$

$$\Rightarrow |\delta(y)| \le |\delta(x_1)| + |\delta(x_2)|$$

$$\Rightarrow \left|\frac{\delta(y)}{y}\right| \le \frac{|\delta(x_1)| + |\delta(x_2)|}{|x_1 - x_2|}$$

Specifically, suppose two nearly equal numbers x_1 and x_2 , having the same exponent n and being in the k digi representations, are represented in floating point form:

$$x_1 = 0.a_1 a_2 \cdots a_p \alpha_{p+1} \cdots \alpha_k \times 10^n$$

$$x_2 = 0.a_1 a_2 \cdots a_p \beta_{p+1} \cdots \beta_k \times 10^n$$

Then their difference $x_1 - x_2$ in floating point representation will have some digits in the mantissa to be 0, i.e.,

$$x_1 - x_2 = \text{fl}(\text{fl}(x_1) - \text{fl}(x_2)) = 0.\gamma_{p+1} \cdots \gamma_k \underbrace{0 \cdots 0}_{p \text{ 0's}} \times 10^{n-p}$$

So, in floating point calculation, $x_1 - x_2$ has at most k - p significant digits; p significant digits have been lost or canceled due to the subtraction.

1.8.1 Ways to Avoid Subtraction

Theorem 1.3 $(\sqrt{x+\varepsilon}-\sqrt{x})$.

If $|\varepsilon| \ll x$, then

$$\sqrt{x+\varepsilon} - \sqrt{x} = \frac{\varepsilon}{\sqrt{x+\varepsilon} + \sqrt{x}}$$

presents a better way of calculation that reduces loss of accuracy.

Theorem 1.4 (Roots of $ax^2 + bx + c = 0$).

Consider the quadratic equation

$$ax^2 + bx + c = 0 \quad a \neq 0$$

The roots of equations are

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

To reduce loss of accuracy, some alternative pathway include:

- $x_1 = \frac{-2c}{b + \sqrt{b^2 4ac}}$ and $x_2 = \frac{2c}{-b + \sqrt{b^2 4ac}}$
- $x_1 + x_2 = -b$
- $\bullet \ x_1 x_2 = c$

Theorem 1.5 (Evaluation of polynomial f(x)).

First note that $ax^n = \text{fl}\left(\text{fl}\left(a\right) \times \text{fl}\left(x^n\right)\right)$ where $\text{fl}\left(x^n\right) = \text{fl}\left(\text{fl}\left(x^{n-1}\right) \times \text{fl}\left(x\right)\right)$ recursively. Instead of calculating $f(x) = \text{fl}\left(\sum_{i=0}^n a_i x^i\right)$, nesting may provide better result:

$$f(x) = f((\cdots (a_n x + a_{n-1})x + \cdots)x + a_0)$$

1.9 Numerical Instability

Definition 1.11 (Numerical Stability).

An algorithm is said to be **stable** if the effect of its errors on the final result is **negligible**.

2 Numerical Solution of Linear Systems of Equations

Definitions and method of computation of matrix can be found in MA2101.pdf, and are therefore omitted here.

2.1 System of Linear Equations

In this chapter, only linear systems with *unique* solution is concerned. Consider the linear system

$$Ax = b$$

where $A \in \mathbb{M}_n(\mathbb{R})$ and $b \in \mathbb{R}_c^n$. If A is invertible, a unique solution x exists and given by

$$x = A^{-1}b$$

There are two classes of method of solving Ax = b numerically:

- **Direct** methods
- Iterative methods

In this chapter, only direct methods are studied.

Two basic direct method include

- Cramer's rule
- Gaussian Elimination

2.1.1 Direct Method: Cramer's Rule

Definition 2.1 (Cramer's Rule).

By Cramer's rule, the $n \times n$ linear system

$$Ax = b$$

has solution

$$x_i = \frac{d_i}{d} \quad i = 1, \dots, n$$

where $d := \det(A) \neq 0, d_i = \det(A_i), A_i$ the matrix obtained by replacing the *i*-th column of A by b.

The determinant d is given by **Laplace Theorem**:

$$d = (-1)^{i+1}a_{i1}D_{i1} + (-1)^{i+2}a_{i2}D_{i2} + \dots + (-1)^{i+n}a_{in}D_{in}$$

where D_{ij} is the determinant of the submatrix obtained from A by deleting its ith row and jth column.

Theorem 2.1 (Computational Complexity of Cramer's Rule).

Suppose it needs m_n operations of multiplication to compute the determinant of a $n \times n$ matrix. Then, we have

$$m_n = n + n m_{n-1}$$
 $m_1 = 1$

Here, the first term n is results from multiplication of a_{ij} and D_{ij} . Thus,

$$m_n = n + n m_{n-1} = n + n[(n-1) + (n-1)m_{n-2}]$$

= $n + n(n-1) + n(n-1)(n-2) + \dots + n(n-1) \dots 3 \cdot 2$
> $n!$

Hence, in order to solve an $n \times n$ linear system by Cramer's rule and Laplace Theorem, we have do at least

$$(n+1)n! = (n+1)!$$

multiplication.

Clearly, Cramer's rule is too computationally expensive.

Also, solving nonlinear linear system by **matrix inversion** is *computationally expensive* and often leads to more *inaccuracies*.

2.2 Gaussian elimination

Definition 2.2 (Elementary Row Operations).

Let E_i be the *i*th equation in a linear system Ax = b. The three **elementary row operations** permitted to solve this linear system are:

• $E_i \leftarrow \lambda E_i$, where λ is a nonzero constant.

$$\begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & \lambda & & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ \lambda a_{i1} & \cdots & \lambda a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

• $E_i \leftarrow E_i - lE_j$, where l is a nonzero constant.

$$\begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & -l & 1 & & \\ & & & \ddots & \\ & & & 1 \end{bmatrix}^{1} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} - la_{j1} & \cdots & a_{in} - la_{jn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

 $^{^{1}-}l$ is at ith row and jth column of the leftmost matrix.

$$\begin{bmatrix}
1 & & & \\
& \ddots & & 1 \\
& & 1 & \\
& & 1 & \\
& & 1 & \\
& & & 1
\end{bmatrix}
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
a_{i1} & \cdots & a_{in} \\
\vdots & \cdots & \vdots \\
a_{j1} & \cdots & a_{jn} \\
\vdots & \cdots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{bmatrix} =
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
a_{j1} & \cdots & a_{jn} \\
\vdots & \cdots & \vdots \\
a_{i1} & \cdots & a_{in} \\
\vdots & \cdots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{bmatrix}$$

By a sequence of the above operations, a linear system can be transformed to a more easily solved linear system with the **same** set of solutions.

The Gaussian elimination for solving Ax = b involves 2 stages/

- A forward course where a sequence of elementary row operations are applied to A to reduce it to an upper triangular form **U**.
- Backward substitution process

Theorem 2.2 (General method of Gaussian Elimination on Ax = B). Let the original system be denoted by

$$\mathbf{A}^{(0)}\mathbf{x} = \mathbf{b}^{(0)}$$
 where $\mathbf{A}^{(0)} = \mathbf{A} = (a_{ij}^{(0)}), \ \mathbf{b}^{(0)} = \mathbf{b} = \begin{bmatrix} b_1^{(0)} \\ \vdots \\ b_i^{(0)} \\ \vdots \\ b_n^{(0)} \end{bmatrix}$

Step 1: If $a_{11}^{(0)} \neq 0$, let

$$l_{i,1} = \frac{a_{i,1}^{(0)}}{a_{1,1}^{(0)}} \qquad i = 2, 3, \dots, n$$

$$a_{i,j}^{(1)} = a_{i,j}^{(0)} - l_{i,1} \times a_{1,j}^{(0)3} \qquad i, j = 2, 3, \dots, n$$

$$b_i^{(1)} = b_i^{(0)} - l_{i,1} \times b_1^{(0)} \qquad i = 2, \dots, n$$

Then we obtain the equivalent system

$$\mathbf{A}^{(1)}\mathbf{x} = \mathbf{b}^{(1)}$$

where

$$\mathbf{A}^{(1)} = \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & \cdots & a_{1n}^{(0)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ 0 & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} \end{bmatrix}, \quad \mathbf{b}^{(1)} = \begin{bmatrix} b_1^{(0)} \\ b_2^{(1)} \\ \vdots \\ b_n^{(1)} \end{bmatrix}$$

 $^{^{3}}$ In general, $l_{p,q}$ is used in the operations on qth column, and denotes the ratio between the entry on the pth row(p > q), $a_{p,q}^{(q-1)}$, to the qth diagonal entry, $a_{q,q}^{(q-1)}$.

3In general, $a_{i,j}^{(k)}$, (i < j) is obtained by operations on the kth column, and is the result of zeroing the $a_{i,k}^{(k)}$.

entry(i > k), so it equals the previous entry $a_{i,j}^{(k-1)}$ minus $l_{i,k}$ times the entry on the kth row $a_{k,j}^{(k-1)}$.

Step 2: If $a_{22}^{(1)} \neq 0$, repeat Step 1 to eliminate \mathbf{x}_2 from row 3 to n. After k steps, we obtain the equivalent system

$$\mathbf{A}^{(k)}\mathbf{x} = \mathbf{b}^{(k)}$$

where $\mathbf{A}^{(k)}$ takes the form

$$\mathbf{A}^{(k)} = \begin{bmatrix} a_{11}^{(0)} & \cdots & \cdots & \cdots & a_{1n}^{(0)} \\ & a_{22}^{(1)} & \cdots & \cdots & a_{2n}^{(1)} \\ & & \ddots & \vdots & \cdots & \ddots \\ & & a_{k+1,k+1}^{(k)} & \cdots & a_{k+1,n}^{(k)} \\ & & \vdots & \ddots & \vdots \\ & & a_{n,k+1}^{(k)} & \cdots & a_{n,n}^{(k)} \end{bmatrix}$$

If $a_{k+1,k+1}^{(k)} \neq 0$, then let

$$l_{i,k+1} = \frac{a_{i,k+1}^{(k)}}{a_{k+1,k+1}^{(k)}}$$

$$a_{i,j}^{(k+1)} = a_{i,j}^{(k)} - l_{i,k+1} \times a_{k+1,j}^{(k)}$$

$$b_i^{(k+1)} = b_i^{(k)} - l_{i,k+1} b_{k+1}^{(k)}$$

Finally, after at most n-1 steps, the system becomes

$$\mathbf{A}^{(n-1)}\mathbf{x} = \mathbf{b}^{(n-1)}$$

which is an upper triangular system, where

$$\mathbf{U} = \mathbf{A}^{(n-1)} = \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & \cdots & a_{1n}^{(0)} \\ & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ & & \ddots & \vdots \\ & & & a_{nn}^{(n-1)} \end{bmatrix}$$

and

$$\mathbf{b}^{(n-1)} = \begin{bmatrix} b_1^{(0)} \\ b_2^{(1)} \\ \vdots \\ b_n^{(n)} \end{bmatrix}$$

Step 3: The solution vector \mathbf{x} is solved by back substitution:

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

and for $k = n - 1, n - 2, \dots, 1$,

$$x_k = \frac{1}{a_{kk}^{(k-1)}} \left(b_k^{(k-1)} - \sum_{j=k+1}^n a_{kj}^{(k-1)} x_j \right)$$

The above algorithm is known as **Gaussian elimination**.

2.3 Triangular Factorisation: A = LU

We note, in the (k+1)th step of above Gaussian elimination, all rows below the (k+1)th row are minused by a multiple of the (k+1)th row. This operation can be viewed by a collection of elementary row operation 2 and represented by

$$\mathbf{A}^{(k+1)} = \mathbf{L}^{(k)} \mathbf{A}^{(k)}$$

where

$$\mathbf{L}^{(k)} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -l_{k+2,k+1} & \ddots & \\ & & \vdots & & \ddots & \\ & & -l_{n,k+1} & & & 1 \end{bmatrix}$$

This relation gives

$$\mathbf{U} = \mathbf{A}^{(n-1)} = \mathbf{L}^{(n-2)} \mathbf{L}^{(n-3)} \cdots \mathbf{L}^{(0)} \mathbf{A}^{(0)}$$

Also, note the inverse of $\mathbf{L}^{(k)}$ is

$$(\mathbf{L}^{(k)})^{-1} = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & l_{k+2,k+1} & \ddots & \\ & & \vdots & & \ddots & \\ & & l_{n,k+1} & & & 1 \end{bmatrix}$$

a flip of signs of all $l_{i,k+1}$ from $\mathbf{L}^{(k)}$.

Therefore,

$$(\mathbf{L}^{(0)})^{-1}(\mathbf{L}^{(1)})^{-1}\cdots(\mathbf{L}^{(n-2)})^{-1}\mathbf{U}=\mathbf{A}$$

Note that $(\mathbf{L}^{(0)})^{-1}(\mathbf{L}^{(1)})^{-1}\cdots(\mathbf{L}^{(n-2)})^{-1}$ is upper triangular and is defined as \mathbf{L} :

$$(\mathbf{L}^{(0)})^{-1}(\mathbf{L}^{(1)})^{-1} \cdots (\mathbf{L}^{(n-2)})^{-1} = \begin{bmatrix} 1 & & & & \\ l_{21} & \ddots & & & \\ \vdots & & 1 & & & \\ l_{k+2,1} & \cdots & l_{k+2,k+1} & \ddots & & \\ \vdots & & \vdots & & \ddots & \\ l_{n,1} & \cdots & l_{n,k+1} & \cdots & l_{n,n-1} & 1 \end{bmatrix} := \mathbf{L}$$

Hence, $\mathbf{A} = \mathbf{L}\mathbf{U}$, where $\mathbf{U} = \mathbf{A}^{(n-1)}$ and \mathbf{L} is a lower triangular matrix.

Theorem 2.3. If **U** and **L** are the upper and lower triangular matrices defined above, then A = LU.

2.4 Compact Forms of Gaussian Elimination

If **A** admits an **LU** decomposition, we can solve the system of equations $\mathbf{LUx} = \mathbf{b}$ in two stages.

- Set z := Ux. Solve Lz = b for z.
- Solve $\mathbf{U}\mathbf{x} = \mathbf{z}$ for \mathbf{x}

Theorem 2.4 (Existence and Uniqueness of LU decomposition).

Let **A** be an $n \times n$ matrix and $\mathbf{A}^{(k)}$ be the $k \times k$ matrix formed from the first k rows and columns of **A**. If $\det(\mathbf{A}^{(k)}) \neq 0 \forall k = 1, 2, ..., n-1$, then there exists a unique lower triangular matrix $\mathbf{L} = (l_{ij})$ with $l_{ii} = 1 \forall i = 1, 2, ..., n$ and a unique upper triangular matrix $\mathbf{U} = (u_{ij})$ such that $\mathbf{A} = \mathbf{L}\mathbf{U}$.

2.5 Compact Forms of Gaussian Elimination

The **LU** decomposition can be calculated directly by Gaussian Elimination. Given that mathbfA admits a **LU** decomposition $\mathbf{A} = \mathbf{LU}$, we have, entry-wise

$$a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj}$$
 $i, j = 1, 2, \dots, n$

Note that the above system has n^2 equations and $n^2 + n$ unknowns l_{ik} , $i \ge k$ and u_{kj} , $k \le j$. Thus n unknown may be set arbitrarily.

Theorem 2.5 (Doolittle Method).

For Doolittle Method, set diagonal entries of \mathbf{L} , $l_{kk} := 1, k = 1, 2, \dots n$ and assume that $u_{kk} \neq 0, \forall k \in [1, n] \cap \mathbb{Z}$.

The sequence of calculation is as follows:

- 1. First row of **U**: u_{1k} , $1 \le k \le n$
- 2. First column of **L**: $l_{k1}, 2 \le k \le n^4$
- 3. Second row of **U**: u_{2k} , $2 \le k \le n$.

:

Obviously, when calculating kth row of U, row 1 to k-1 of U and column 1 to k-1 of L will be known.

Also, when calculating kth row of **L**, row 1 to k of **U** and column 1 to k-1 of **L** will be known.

Suppose u_{kj} , $(j \ge k)$ is of concern, we have

$$a_{kj} = \sum_{r=1}^{k} l_{kr} u_{rj}$$

⁴if $k = 1, l_{k1} = l_{11} = 1$ by definition

Substitute in $l_{kk} = 1$ and rearranging,

$$u_{kj} = a_{kj} - \sum_{r=1}^{k-1} l_{kr} u_{rj}$$

Afterwards, suppose l_{ik} , (i > k) is of concern, we have

$$a_{ik} = \sum_{r=1}^{k} l_{ir} u_{rk}$$

Rearranging,

$$a_{ik} = \sum_{r=1}^{k-1} l_{ir} u_{rk} + l_{ik} u_{kk}$$

Therefore,

$$l_{ik} = \frac{a_{ik} - \sum_{r=1}^{k-1} l_{ir} u_{rk}}{u_{kk}}$$

The above two equation can be interleaved to obtain L and U.

Theorem 2.6 (Crout Method).

For Crout Method, set diagonal entries of \mathbf{U} , $u_{ii}=1,k=1,2,\ldots,n$ and assume that $l_{kk} \neq 0 \forall k \in [1,n] \cap \mathbb{Z}$.

The sequence of calculation is as follows:

1. First column of L: l_{k1} , $1 \le k \le n$

2. First row of **U**: u_{1k} , $2 \le k \le n$

3. Second column of L: $l_{k2}, 2 \le k \le n$

:

Obviously, when calculating kth column of L, column 1 to k-1 of L and row 1 to k-1 of U will be known.

Also, when calculating kth row of U, column 1 to k of L and row 1 to k-1 of U will be known.

Suppose l_{ik} , $(i \ge k)$ is of concern, we have

$$a_{ik} = \sum_{r=1}^{k} l_{ir} u_{rk}$$

Substitute in $u_{kk} = 1$ and rearranging,

$$l_{ik} = a_{ik} - \sum_{r=1}^{k-1} l_{ir} u_{rk}$$

Afterwards, suppose u_{kj} , $(j \ge k + 1)$ is of concern, we have

$$a_{kj} = \sum_{r=1}^{k} l_{kr} u_{rj}$$

Rearranging,

$$u_{kj} = \frac{a_{kj} - \sum_{r=1}^{k-1} l_{kr} u_{rj}}{l_{kk}}$$

The above two equation can be interleaved to obtain L and U.

2.6 LU Decomposition for Tridiagonal Matrices

Theorem 2.7.

Let A be a tridiagonal matrices

$$\mathbf{A} = \begin{bmatrix} a_1 & c_1 \\ b_2 & a_2 & c_2 \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & b_{n-1} & a_{n-1} & c_{n-1} \\ & & & b_n & a_n \end{bmatrix}$$

If an LU decomposition exists for A, then

$$\mathbf{A} = \mathbf{L}\mathbf{U}$$

where

By applying Doolittle's method, it can be shown that

$$\alpha_1 = a_1$$

and for k = 2, 3, ..., n,

$$\beta_k = \frac{b_k}{\alpha_{k-1}}$$

$$\alpha_k = a_k - \beta_k c_{k-1}$$

Theorem 2.8 (Thomas's Algorithm).

If $\mathbf{A}\mathbf{x} = \mathbf{g}$ and define $\mathbf{U}\mathbf{x} = h$ where $\mathbf{x} := (x_1, x_2, \dots, x_n)^T$, $\mathbf{g} = (g_1, g_2, \dots, g_n)^T$ and $\mathbf{h} = (h_1, h_2, \dots, h_n)^T$.

$$h_1 = g_1$$

 $h_i = g_i - \beta_i h_{i-1}, \quad i = 2, 3, \dots, n$

and

$$x_n = \frac{h_n}{\alpha_n}$$
$$x_i = \frac{h_i - c_i x_{x+1}}{\alpha_i}$$

This method is known as **Thomas algorithm**.

2.7 Pivoting Strategies

2.7.1 Partial Pivoting

Definition 2.3 (Partial Pivoting).

At the (k+1)th step of the Gaussian Elimination process, $k=0,1,\ldots,n-2$, choose the element having maximum absolute value in the (k+1)th column of $\mathbf{A}^{(k)}$ that lies on or below the diagonal so that

 $|a_{s,k+1}^{(k)}| = \max_{i} |a_{i,k+1}^{(k)}| \quad k+1 \le i \le n$

and interchange row k+1 with row s.

2.7.2 Scaled Partial Pivoting

Definition 2.4 (Scaled Partial Pivoting).

In the beginning, calculate s_i for all row i, where

$$s_i = \max_{1 \le j \le n} \{|a_{ij}|\}, i = 1, \dots, n$$

At the (k+1)th step of the Gaussian Elimination process, $k=0,1,\ldots,n-2$, choose rth row of $\mathbf{A}^{(k)}$ that lies on or below the diagonal where r is determined by

$$\frac{|a_{r,k+1}^{(k)}|}{s_r} = \max_i \frac{|a_{i,k+1}^{(k)}|}{s_i} \quad k+1 \le i \le n$$

and exchange row k+1 with row r and s_{k+1} with s_r .

3 Error of Approximation

Definition 3.1 (Error).

Given n+1 data values $(x_0, f_0), (x_1, f_1), \ldots, (x_n, f_n)$, we may define the error of approximation, E, by

$$E = \sum_{i=0}^{n} |p(x_i) - f_i|$$

If we take p(x) to be a polynomial of degree n then by choosing

$$p(x_i) = f_i, i = 0, 1, \dots, n$$

we can make E = 0. The function p(x) is the **Lagrange interpolating polynomial**. Alternatively, when n is large, we may fit a polynomial of degree k where $k \ll n$. We use

$$E = \sum_{i=0}^{n} [p(x_i) - f_i]^2$$

By minimising E we achieve a **least square fit**.

If the function f(x) is continuous specified on the interval [a, b], we may define the error E in approximating f(x) by p(x) as

$$E = \max_{a \le x \le b} |p(x) - f(x)|$$

It is common in practice to take p(x) as a polynomial and minimise E with respect to variations in the coefficients. This generate the **minimax** polynomial approximation.

The following theorem justifies the choice of polynomial for approximation

Theorem 3.1 (Weierstrass Approximation Theorem).

Suppose f is defined and continuous on [a, b]. For each $\varepsilon > 0$ there exists a polynomial P(x), defined on [a, b], with property that

$$|f(x) - P(x)| < \varepsilon \quad \forall x \in [a, b]$$

3.1 Least Square Approximation

3.1.1 Discrete Data

Given a set of m+1 discrete data points $(x_0, f(x_0)), (x_1, f(x_0)), \dots (x_m, f(x_m))$, each carrying weight w_0, w_1, \dots, w_m respectively.

The task is to find an approximating polynomial function⁵

$$p_n(x; a_0, a_1, \dots, a_n) := a_0 + a_1 x + \dots + a_n x^n$$

⁵The subscript n denotes the power of the polynomial; thus the polynomial p_n has n+1 unknowns

(m > n) such that

$$E(a_0, a_1, \dots, a_n) = \sum_{i=0}^{m} w_i [f(x_i) - p_n(x_i; a_0, a_1, \dots, a_n)]^2$$

is minimised with respect to the parameters a_0, a_1, \dots, a_n . We require

$$\frac{\partial E}{\partial a_i} = 9 \forall j = 0, 1, \dots, n$$

Therefore, by differentiating with a_i ,

$$\sum_{i=0}^{m} w_i [f(x_i) - p_n(x_i; a_0, a_1, \dots, a_n)] \frac{\partial}{\partial a_j} (-p_n(x_i; a_0, a_1, \dots, a_n)) \quad \forall j = 0, 1, \dots, n$$

Rearranging, we have

$$\sum_{i=0}^{m} w_{i} \underbrace{(a_{0} + a_{1}x_{i} + \dots + a_{n}x_{i}^{n})}_{p_{n}(x_{i}; a_{0}, a_{1}, \dots, a_{n})} x_{i}^{j} = \sum_{i=0}^{m} w_{i} f(x_{i}) x_{i}^{j} \quad \forall j = 0, 1, \dots, n$$

There is n+1 unknowns, and n+1 equations, so the linear system is⁷

$$\begin{bmatrix} \sum_{i=0}^{m} w_{i} x_{i}^{0} & \sum_{i=0}^{m} w_{i} x_{i}^{1} & \cdots \sum_{i=0}^{m} w_{i} x_{i}^{n} \\ \sum_{i=0}^{m} w_{i} x_{i}^{1} & \sum_{i=0}^{m} w_{i} x_{i}^{2} & \cdots \sum_{i=0}^{m} w_{i} x_{i}^{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=0}^{m} w_{i} x_{i}^{n} & \sum_{i=0}^{m} w_{i} x_{i}^{n+1} & \cdots \sum_{i=0}^{m} w_{i} x_{i}^{2n} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{m} w_{i} f(x_{i}) x_{i}^{0} \\ \sum_{i=0}^{m} w_{i} f(x_{i}) x_{i}^{1} \\ \vdots \\ \sum_{i=0}^{m} w_{i} f(x_{i}) x_{i}^{n} \end{bmatrix}$$

3.1.2 Continuous Function

Given a continuous function f(x) defined on an interval [a, b] with each value $x \in [a, b]$ associated with a weight w(x).

The task is to find an approximating polynomial function $p_n(x; a_0, a_1, \dots, a_n)$ such that

$$E(a_0, a_1, \dots, a_n) = \int_a^b w(x) [f(x) - p_n(x; a_0, a_1, \dots, a_n)]^2 dx$$

is minimised with respect to the parameters a_0, a_1, \ldots, a_n .

The necessary condition sfor $E(a_0, a_1, \ldots, a_n)$ to be minimum are

$$\frac{\partial E}{\partial a_j} = 0 \forall j = 0, 1, \dots, n$$

Differentiating with respect to a_j ,

$$\frac{dE}{da_j} = -2 \int_a^b w(x) [f(x) - p(x; a_0, a_1, \dots, a_n)] \frac{\partial}{\partial a_j} (p_n(x; a_0, a_1, \dots, a_n)) dx = 0$$

 $^{^6}E$ can be understood as a weighted sum of squares of residue for each data.

⁷the jth column corresponding to the equation of specific j

Rearranging,⁸

$$\int_{a}^{b} w(x)(a_0 + a_1 x + \dots + a_n x^n) x^j dx = \int_{a}^{b} w(x) f(x) x^j dx \quad \forall j = 0, 1, \dots, n$$

$$\sum_{k=0}^{n} \int_{a}^{b} w(x) x^{k+j} dx = \int_{a}^{b} w(x) f(x) x^j dx \quad \forall j = 0, 1, \dots, n$$

Similarly, a matrix equation can be formed from this linear system of n + 1 variables and n + 1 equations. However, this matrix is **ill-conditioned**.

3.2 Lagrange Interpolation

Definition 3.2.

Given a set of n+1 data points $(x_0, f_0), (x_1, f_1), \ldots, (x_n, f_n)$, we seek to find a polynomial $p_n(x)$ of degree n which passes through each of the given points, i.e.

$$p_n(x_i) = f_i \quad i = 0, 1, 2, \dots, n$$

If we write $p_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, we have

$$\begin{bmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}$$

The determinant of the $(n+1) \times (n+1)$ Vandermonde matrix is $\prod_{0 \le i < j \le n} (x_j - x_i)$, so the system has a unique solution as long as $x_i, i = 1, 2, \ldots, n$ are all distinct. The solved polynomial is the unique Lagrange interpolating polynomial.

Theorem 3.2 (Computation of Lagrange Interpolating Polynomial). Write

$$p_n(x) = \alpha_0(x - x_1)(x - x_2) \cdots (x - x_n) + \alpha_1(x - x_0)(x - x_2) \cdots (x - x_n) + \cdots + \alpha_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Then, we have

$$\alpha_i = \frac{f_i}{\prod_{\substack{j=0\\j\neq i}}^n (x_i - x_j)}$$

 $[\]frac{\partial}{\partial a_i}(p_n(x; a_0, a_1, \dots, a_n)) = x^j$ is obvious.

So,

$$p_n(x) = \sum_{i=0}^n l_i(x) f_i$$

where

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Note that $l_i(x)$ admits the property that

$$l_i(x_i) = 1$$

 $l_i(x_j) \neq 1 \text{ for } j \neq i$

Theorem 3.3 ($\psi(x)$ and alternative expression of Lagrange Interpolating Polynomial). Let $\psi(x)$ denote the polynomial

$$\psi(x) = (x - x_0)(x - x_1) \cdots (x - x_n) = \prod_{i=0}^{n} (x - x_i)$$

then, by differentiating on each product term once at a time, we have

$$\psi'(x) = \sum_{i=0}^{n} \prod_{\substack{j=0\\j\neq i}}^{n} (x - x_j)$$

and hence

$$\psi'(x_i) = (x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)$$

as all other terms containing $(x - x_i)$ will vanish. Thus,⁹

$$l_i(x) = \frac{\psi(x)}{(x - x_i)\psi'(x_i)}$$

So $p_n(x)$ may be written as

$$p_n(x) = \sum_{i=0}^{n} \frac{\psi(x)}{(x - x_i)\psi'(x_i)} f_i$$

3.3 Truncation Error of Interpolating Polynomial

Theorem 3.4 (Extended Mean Value Theorem). Suppose that

$$a \le x_0 < x_1 < \dots < x_k \le b$$

$$f(x_0) = f(x_1) = \dots = f(x_k) = 0$$

and $f(x), f'(x), \ldots, f^{(k)}(x)$ are all continuous on [a, b]. There is a $\xi \in (x_0, x_n) \subset (a, b)$ such that

$$f^k(\xi) = 0$$

⁹Do NOT forget multiply $(x - x_i)$ while using this formula!

Theorem 3.5 (Lagrange Interpolating Polynomial Error Formula).

Let $f(x) \in C^{(n+1)}[a,b]$. Further, let $p_n(x)$ interpolates f(x) at (n+1) distinct points $x+0, x_1, \ldots, x_n \in [a,b]$. Then, for $x \in [a,b], x \neq x_i, i=0,1,\ldots,n$,

$$f(x) - p_n(x) = \psi(x) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

for some $xi \in \text{Spr}\{x, x_0, x_1, \dots, x_n\}$.

Here, $\operatorname{Spr}\{x, x_0, x_1, \dots, x_n\}$ denotes the smallest interval containing x, x_0, x_1, \dots, x_n .

It follows that an upper bound for the error is

$$\delta(f(x)) := |f(x) - p_n(x)| \le \frac{M}{(n+1)!} |\psi(x)|$$

where

$$M = \max_{a \le \xi \le b} |f^{(n+1)}(\xi)|$$

3.4 Divided Differences

Definition 3.3 (Divided Differences).

Let $(x_0, f(x_0)), \ldots, (x_n, f(x_n))$ be n+1 given data points. The **first divided difference** of f(x) between x_0 and x_1 , denoted by $f[x_0, x_1]$ is defined by

$$f[x_0, x_1] := \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Analogously, the **second divided difference** for the triplet (x_0, x_1, x_2) is defined by

$$f[x_0, x_1, x_2] := \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

And, the *n*th divided difference of f(x) at (n+1)-tuple (x_0, \ldots, x_n) is defined recursively in terms of the (n-1)th divided difference as follows:

$$f[x_0, x_1, \dots, x_n] := \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

Theorem 3.6 (Divided difference of self).

We define $f[x_i, x_i]$ by

$$f[x_i, x_i] = \lim_{x_{i+1} \to x_i} f[x_i, x_{i+1}] = f'(x_i)$$

provided $f'(x_i)$ exists.

Similarly, we define rth divided difference of self is

$$f[\underbrace{x_i,\ldots,x_i}_{rx_i's}] = \frac{1}{r!}f^{(r)}(x_i)$$

3.5 Newton Interpolation Formula

It is easy to see, by definition of first order divided difference, that

$$f(x) = f(x_0) + (x - x_0)f[x, x_0]$$

Therefore, we can obtain

$$f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + \dots + (x - x_0) + \dots + (x - x_{n-1})f[x_0, \dots, x_n] + R_n(x)$$

$$= f(x_0) + \sum_{i=0}^{n-1} f[x_0, \dots, x_{i+1}] \prod_{i=0}^{i} (x - x_i) + R_n(x)$$

where

$$R_n(x) = \psi(x) f[x, x_0, x_1, \dots, x_n]$$

The Newton interpolating formula of these n+1 data points is

$$p_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + \dots + (x - x_0) \cdot \dots \cdot (x - x_{n-1})f[x_0, \dots, x_n]$$

To see this, we note that at x_0, \ldots, x_n , $R_n = 0$, so $f(x) = p_n(x)$; also $p_n(x)$ is at most of degree n.

When expanding the formula p_n to p_{n+1} , we note that $f = p_{n+1} = p_n + (x - x_0) \cdots (x - x_n) f[x_0, \dots, x_{n+1}]$, so the divided difference can be easily acquired.

Remark: $f[x_0, \ldots, x_n] = f[x_{i_0}, \ldots, x_{i_n}]$, where $\{i_k\}_{k=1}^n$ is a permutation of $\{k\}_{k=1}^n$.

3.6 Cubic Spline Interpolation

Cubic Spline interpolation is a piecewise approximation used to replace high order polynomial interpolation, latter of which has the problem of wild oscillation.

Definition 3.4 (Cubic Spline Approximation).

Given a function f defined on [a,b] and a set of data points x_i with $a=x_0 < x_1 < \cdots < x_{n-1} < x_n = b$, a **cubic spline interpolant** to f is a *piecewise* function S satisfying the following conditions:

- 1. S is a cubic polynomial, denoted S_j on the subinterval $[x_j, x_{j+1}]$ for $j = 0, 1, \ldots, n-1$.
- 2. Interpolation condition: $S(x_j) = f(x_j)$.
- 3. $S \in C^1(a,b): S'_j(x_{j+1}) = S'_{j+1}(x_{j+1}) \quad j = 0, 1, \dots, n-2.$
- 4. $S \in C^2(a,b): S_j''(x_{j+1}) = S_{j+1}''(x_{j+1})$ $j = 0, 1, \dots, n-2$.
- 5. One of the following sets of boundary condition is satisfied
 - $S_0''(x_0) = S_{n-1}''(x_n) = 0$ (Natural boundary condition)
 - Or, $S'_0(x_0) = f'(x_0)$ and $S'_{n-1}(x_n) = f'(x_n)$ (Clamped boundary condition)

Theorem 3.7 (Solving cubic spline interpolation efficiently).

The following method will produce the cubic spline interpolation of n+1 data points by solving a linear system of maximum size $(n+1) \times (n+1)$.

Let $s_i(x)$ be a cubic polynomial on $[x_i, x_{i+1}]$. Then $s_i''(x)$ is the linear polynomial on $[x_i, x_{i+1}]$. Let $M_i = s_i''(x_i)$. M_i will be calculated later using (3) and (5).

Using lagrange interpolation polynomial, we have

$$s_i''(x) = \frac{x_{i+1} - x}{h_i} M_i + \frac{x - x_i}{h_i} M_{i+1}$$

where $h_i = x_{i+1} - x_i$ the step size. Integrating twice, we have

$$s_i(x) = \frac{(x_{i+1} - x)^3}{6h_i} M_i + \frac{(x - x_i)^3}{6h_i} M_{i+1} + Ax + B$$

for some constant A and B. Using (2), i.e.,

$$s_i(x_i) = f_i$$
 $s_i(x_{i+1}) = f_{i+1}$

we have, nicely¹⁰

$$\frac{h_i^2}{6}M_i + Ax_i + B = f_i$$

$$\frac{h_i^2}{6}M_{i+1} + Ax_{i+1} + B = f_{i+1}$$

Solving which we have

$$\begin{cases} A &= \frac{f_{i+1} - f_i}{h_i} + \frac{h_i}{6} (M_i - M_{i+1}) \\ B &= \frac{x_{i+1} f_i - x_i f_{i+1}}{h_i} + \frac{h_i}{6} (x_i M_{i+1} - x_{i+1} M_i) \end{cases}$$

Therefore,

$$s_i(x) = \frac{6}{h_i} [(x_{i+1} - x)^3 M_i + (x - x_i)^3 M_{i+1}]$$
$$- \frac{h_i}{6} [(x_{i+1} - x) M + (x - x_i) M_{i+1}]$$
$$+ \frac{1}{h_i} [(x_{i+1} - x) f_i + (x - x_i) f_{i+1}]$$

From here, differentiate $s_i(x)$, we have expression for $s'_i(x)$:

$$s_i'(x) = \frac{1}{2h_i} \left[-(x_{i+1} - x)^2 M_i + (x - x_i)^2 M_{i+1} \right] - \frac{h_i}{6} \left(-M_i + M_{i+1} \right) + \frac{1}{h_i} \left(-f_i + f_{i+1} \right)$$

 $^{^{10}}$ At each substitution, one cubic power vanishes and the other degenerates to h_i , which simplifies the calculation.

Replacing the subscript i by i-1, we have

$$s'_{i-1}(x) = \frac{1}{2h_{i-1}} \left[-(x_i - x)^2 M_{i-1} + (x - x_{i-1})^2 M_i \right] - \frac{h_{i-1}}{6} \left(-M_{i-1} + M_i \right) + \frac{1}{h_{i-1}} \left(-f_{i-1} + f_i \right)$$

Imposing (3), i.e. $s'_{i-1}(x_i) = s'_i(x_i)$, we will have

$$h_{i-1}M_{i-1} + 2(h_{i-1} + h_i)M_i + h_iM_{i+1} = 6\frac{f_{i+1} - f_i}{h_i} - 6\frac{f_i - f_{i-1}}{h_{i-1}}$$

for i = 1, ..., n-1. This equation represents a system of n-1 linear equations with n+1 unkwowns; the other 2 equation is obtained from the boundary condition.

Natural boundary condition:

Under natural boundary condition, $M_0 = M_n = 0$ by definition. Then we have

$$Am = b$$

where

$$\mathbf{A} = \begin{pmatrix} 2(h_0 + h_1) & h_1 \\ h_1 & 2(h_1 + h_2) & h_2 \\ & \ddots & \ddots & \ddots \\ & & h_{n-3} & 2(h_{n-3} + h_{n-2}) & h_{n-2} \\ & & & h_{n-2} & 2(h_{n-2} + h_{n-1}) \end{pmatrix}$$

$$\mathbf{m} = \begin{pmatrix} M_1 & M_2 & \cdots & M_{n-1} \end{pmatrix}^t$$

and

$$\mathbf{b} = 6 \times \begin{pmatrix} \frac{f_0}{h_0} - \frac{f_1}{h_0} - \frac{f_1}{h_1} + \frac{f_2}{h_1} \\ \vdots \\ \frac{f_{i-1}}{h_{i-1}} - \frac{f_i}{h_{i-1}} - \frac{f_i}{h_i} + \frac{f_{i+1}}{h_i} \\ \vdots \\ \frac{f_{n-2}}{h_{n-2}} - \frac{f_{n-1}}{h_{n-2}} - \frac{f_{n-1}}{h_{n-1}} + \frac{f_n}{h_{n-1}} \end{pmatrix}$$

Clamped boundary condition:

Under clamped boundary condition, $s'_0(x_0) = f'(x_0)$ and $s'_{n-1}(x_n) = f'(x_n)$, which we will have, from $s'_i(x)$ equation,

$$2h_0 M_0 + h_0 M_1 = 6\left(-\frac{f_0}{h_0} + \frac{f_1}{h_0} - f_0'\right)$$
$$h_{n-1} M_{n-1} + 2h_{n-1} M_n = 6\left(\frac{f_{n-1}}{h_{n-1}} - \frac{f_n}{h_{n-1}} + f_n'\right)$$

Therefore, we can form $\mathbf{Am} = \mathbf{b}$ accordingly, where

$$\mathbf{A} = \begin{pmatrix} 2h_0 & h_0 \\ h_0 & 2(h_0 + h_1) & h_1 \\ & \ddots & \ddots & \ddots \\ & & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ & & & h_{n-1} & 2h_{n-1} \end{pmatrix}$$

$$\mathbf{m} = \begin{pmatrix} M_0 & M_1 & \cdots & M_n \end{pmatrix}^t$$

and

$$\mathbf{b} = 6 \times \begin{pmatrix} -\frac{f_0}{h_0} + \frac{f_1}{h_0} - f'_0 \\ \frac{f_0}{h_0} - \frac{f_1}{h_0} - \frac{f_1}{h_1} + \frac{f_2}{h_1} \\ \vdots \\ \frac{f_{i-1}}{h_{i-1}} - \frac{f_i}{h_{i-1}} - \frac{f_i}{h_i} + \frac{f_{i+1}}{h_i} \\ \vdots \\ \frac{f_{n-2}}{h_{n-2}} - \frac{f_{n-1}}{h_{n-2}} - \frac{f_{n-1}}{h_{n-1}} + \frac{f_n}{h_{n-1}} \\ \frac{f_{n-1}}{h_{n-1}} - \frac{f_n}{h_{n-1}} + f'_n \end{pmatrix}$$

4 Numerical Integration

4.0.1 Prerequisite – Useful Theorems

Theorem 4.1 (Intermediate Value Theorem).

If f(x) is continuous on [a,b], let $m=\min_{a\leq x\leq b}f(x)$ and $M=\max_{a\leq x\leq b}f(x)$, then for any K satisfying $m\leq K\leq M$, there exists $xi\in (a,b)$ such that $f(\xi)=K$.

From this theorem we have the following theorem.

Theorem 4.2 (Mean Value Theorem for Integrals).

Let g(x) be a **non-negative** or **non-positive** integrable function on [a, b]. If f(x) is continuous on [a, b], then there is at least one point ξ in [a, b] such that

$$\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx$$

4.1 Quadrature based on Interpolation Polynomials

We first select a set of (n+1) distinct nodes $\{x_0, \ldots, x_n\}$ from the interval [a, b]. The Lagrange interpolating polynomial is

$$p_n(x) = \sum_{i=0}^n l_i(x) f(x_i)$$

with truncation error term

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \psi(x)$$

which admits $f(x) = p_n(x) + E_n(x)$.

We approximate $\int_a^b f(x)$ by considering the integral of $p_n(x)$, denoted by $I_n(f)$

$$I_n(f) := \int_a^b p_n(x) \, \mathrm{d} \, x = \int_a^b \sum_{i=0}^n l_i(x) f(x_i) \, \mathrm{d} \, x = \sum_{i=0}^n a_i f(x_i)$$

where $a_i = \int_a^b l_i(x)$. Therefore, the truncation error will generate the error term of $I_n(f)$, denoted by $E_n(f)$

$$E_n(f) := \int_a^b \frac{f^{(n+1)}(\xi(x))\psi(x)}{(n+1)!} dx = \frac{1}{(n+1)!} \int_a^b f^{(n+1)}(\xi(x))\psi(x) dx$$

where $\xi(x)$ is in [a, b] for each x.

Therefore we can write the integral of f(x) as

$$I(f) := \int_a^b f(x) dx = I_n(f) + E_n(f)$$

where $I(f) \approx I_n(f)$.

4.2 Trapezoidal Rule

Trapezoidal rule is produced by let n = 1, $x_0 = a$ and $x_1 = b$. Under these condition, interpolating polynomial is

$$p_1(x) = \frac{x-b}{a-b}f(a) + \frac{x-a}{b-a}f(b)$$

a line passes through (a, f(a)) and (b, f(b)). Then,

$$I(f) = \int_{a}^{b} f(x) dx = \int_{a}^{b} p_{1}(x) dx + E_{1}(f)$$

$$\approx \frac{b-a}{2} [f(a) + f(b)] \quad \text{(Trapezoidal Rule)}$$

by ignoring error term $E_1(f)$.

The error term is

$$E_{1}(f) = \int_{a}^{b} \frac{1}{2} f''(\xi(x))(x - a)(x - b) dx$$

$$= \frac{1}{2} f''(\xi) \int_{a}^{b} (x - a)(x - b) dx \quad \text{(by MVT for integrals)}$$

$$= \frac{1}{2} f''(\xi) \left(-\frac{(b - a)^{3}}{6} \right)$$

$$= -\frac{1}{12} f''(\xi)$$

Definition 4.1 (Degree of Precision).

A quadrature formula $I_n(f)$ that approximates I(f) has degree of precision m if it is exact for all polynomial f of degree $\leq m$, and $I_n(f) \neq I(f)$ for some polynomial f of degree m+1.

Theorem 4.3 (Equivalent Definition of degree of precision). The following are equivalent.

- 1. $I_n(f)$ has degree of precision m.
- 2. $\int_a^b f(x) dx I_n(f) = 0 \quad \forall f(x) = p_m(x) \text{ and } \int_a^b f(x) dx I_n(f) \neq 0 \text{ for some } f(x) = p_{m+1}(x)$
- 3. $\int_a^b x^i dx I_n(x^i) = 0 \quad \forall i = 0, 1, \dots, m \text{ and } \int_a^b x^{m+1} dx I_n(x^{m+1}) \neq 0$

4.3 Simpson's Rule

Using the similar technique, by setting n=2, a three equidistant point $x_0=a, x_1=\frac{1}{2}(a+b)$ and $x_2=b$, we have

$$p_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} f(x_2)$$

$$= \frac{1}{2h^2} [(x-x_1)(x-x_2)f(x_0) - 2(x-x_0)(x-x_2)f(x_1) + (x-x_0)(x-x_1)f(x_2)]$$

where $h = \frac{1}{2}(b - a) = x_{i+1} - x_i, i = 0, 1$ is the step size, and

$$E_2(f) = \frac{f'''(\xi)}{3!}\psi(x) = (x - x_0)(x - x_1)(x - x_2)f[x, x_0, x_1, x_2]$$

It can be shown that $I_2(f)$ is

$$I_2(f) = \frac{h}{3}[f(x_0) + 4f(x_1) + f(x_2)]$$

and

$$E_2(f) = -\frac{h^5}{90} f^{(4)}(\xi)$$

for some $\xi \in [x_0, x_2]$.

It is then clear the degree of precision of Simpson's rule is m=3.

4.3.1 Proof of Simpson's error formula

let F be an anti-derivative of f, i.e. F'=f. WLOG, a+b=0, set $x=\frac{b-a}{2}$ then we are interested in the error expression

$$E_4(f) = F(x) - F(-x) - \frac{x}{3}(f(x) + 4f(0) + f(-x))$$

This has derivatives

$$g'(x) = \frac{2}{3}(f(x) - 2f(0) + f(-x)) - \frac{x}{3}(f'(x) - f'(-x))$$
(1)

$$g''(x) = \frac{1}{3}(f'(x) - f'(-x)) - \frac{x}{3}(f''(x) + f''(-x))$$
 (2)

$$g'''(x) = -\frac{x}{3}(f'''(x) - f'''(-x)) \quad (\#). \tag{3}$$

Consequently, as g(0) = g'(0) = g''(0) = g'''(0) = 0, we have, by extended mean value theorem¹¹

$$\frac{g(x)}{x^5} = \frac{g'(x_1)}{5x_1^4} = \dots = \frac{g'''(x_3)}{(5 \cdot 4 \cdot 3x_3^2)}$$

By substituting (#), we have

$$\frac{g(x)}{x^5} = \frac{-\frac{x_3}{3}(f'''(x_3) - f'''(-x_3))}{60x_3^2} = -\frac{1}{90} \cdot \frac{f'''(x_3) - f'''(-x_3)}{2x_3}$$
$$= \frac{1}{90} \cdot f^{(4)}(x_4) \text{ By MVT}$$

Other error bounds are

• $|E_2(f)| \leq \frac{h^5}{12} |f^{(4)}(\xi)|$. This is derived by $E_2(f) = \int_{x_0}^{x_1} E_2(x) \, \mathrm{d} \, x + \int_{x_1}^{x_2} E_2(x) \, \mathrm{d} \, x$ and apply integral MVT on each integral.¹²

¹¹Extended mean value theorem:

¹²Integral of $\int_{x_0}^{x_n} (x - x_0) \cdot (x - x_n) dx$ can be more easily evaluated by substitution: $x = x_0 + th$, where $h = x_{i+1} - x_i$ is the step size.

• $|E_2(f)| = -\frac{h^5}{12} [\frac{1}{3} f^{(4)}(\eta_1) - \frac{1}{5} f^{(4)}(\eta_2)]$. This is proved by (1) Taylor expansion of f(x) around x_1 with remainder containing 4th power derivative. Odd power derivative are eliminated due to symmetry. (2) Next, consider Taylor expansion with remainder containing 4th power derivative around x_0 and x_2 , both evaluated at x_1 , to obtain an expression for f'', as odd power derivatives are again eliminated. The fourth power derivative is bounded by IVT. Together the result is proved.