Joshua Dunne 1

1 Part 2

We're composing two sets of vectors for a person traveling between $A \to C$ and $C \to C$. We've already done some work here getting a feel for what the vectors actually mean, so, let's try to describe the sets S_{AC} and S_{CC} .

1.1 For S_{AC}

So. We can break this down. Really. Once we're at C things are the same, so, we can borrow from the work we actually did first... Avoiding drawing a... fine, I'll do it. 1

We take as the number of moves past each camera C_n the corresponding entry in the column vector

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix}$$

Part A Going to do the work for B here and restate the answer later, as having shown it here gives us an easy way by which to generate 4 members of the set.

$$S_{AC} = \begin{bmatrix} 1\\1\\0\\0\\0\\0 \end{bmatrix} + c_1 \begin{bmatrix} 1\\1\\0\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\1\\1\\0\\1 \end{bmatrix}$$

It doesn't seem worth the effort to illustrate this. We're composing all the possible set of vectors that

1. Go from $A \to B \to C$ to begin with

MATH620 Homework 5 Unit 4

 $^{^{1}} Borrowing\ from\ https://tex.stackexchange.com/questions/57152/how-to-draw-graphs-in-latex$

Joshua Dunne 2

- 2. Travel from C to C via $C \to D \to A \to B \to C$
- 3. Travel from C to C via $C \to A \to B \to C$

This composes the set nicely. We can plug in a couple of coefficients for each, giving

- 1. Letting $c_1 = c_2 = 0$ gives $(1, 1, 0, 0, 0) \in S_{AC}$
- 2. Letting $c_1 = 1$ and $c_2 = 0$ gives $\langle 2, 2, 1, 0, 1 \rangle \in S_{AC}$
- 3. Letting $c_1 = 0$ and $c_2 = 1$ gives $\langle 2, 2, 0, 1, 0 \rangle \in S_{AC}$
- 4. Letting $c_1 = 1$ and $c_2 = 1$ gives $\langle 3, 3, 1, 1, 1 \rangle \in S_{AC}$

We can understand $\langle 3,3,1,1,1\rangle$ as taking each of the separate paths we've defined

Part B Restating as above

$$S_{AC} = \begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix} + c_1 \begin{bmatrix} 1\\1\\0\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\1\\1\\0\\1 \end{bmatrix} \text{ where } c_1, c_2 \in \mathbb{Z}^*$$

we simply need to add a restriction here, as, negative and partial movements are not defined.

1.2 For S_{CC}

We've already done all the work here, and I think the above explanations are sufficient, so, I'll be brief.

Part A

$$S_{CC} = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
 where $c_1, c_2 \in \mathbb{Z}^*$

- 1. Letting $c_1 = c_2 = 0$ gives $(0, 0, 0, 0, 0, 0) \in S_{CC}$, the trivial solution
- 2. Letting $c_1 = 1$ and $c_2 = 0$ gives $\langle 1, 1, 0, 1, 0 \rangle \in S_{CC}$
- 3. Letting $c_1 = 0$ and $c_2 = 1$ gives $\langle 1, 1, 1, 0, 1 \rangle \in S_{CC}$
- 4. Letting $c_1 = 1$ and $c_2 = 1$ gives $\langle 2, 2, 1, 1, 1 \rangle \in S_{CC}$

Joshua Dunne 3

 ${\bf Part}~{\bf B}~~{\rm Restating~as~above}$

$$S_{CC} = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
 where $c_1, c_2 \in \mathbb{Z}^*$