CME341 - Midterm #1 Material up to end of Assignment 5

Date: Wednesday, October 13, 2020, 5:30PM

Time = 1.00 hours

Instructions

Exam-Dependent Seed Setup

Before starting the exam modify the second "initial" procedure in the testbench so that exam_dependent_seed is assigned to the last two digits in your student number, treated as a DECIMAL (base-10) number. For example, if your student number is 11263654, you should set the exam_dependent_seed to 8'd54. You will use this same seed for all of the questions on the exam.

Academic Honesty

In answering the following questions, you may refer to any of the materials on the course website (notes, slides, lectures, etc.). You MAY NOT communicate, discuss, or otherwise share any information or data with anyone during the exam or access any websites aside from the CME 341 canvas page. Use of personal laptops, tablets, cell phones, etc. is strictly prohibited. By submitting your exam, you certify that you have not discussed the questions with anyone or used any other resources (aside from those on the course website) to assist with your solution.

The consequences of violating this policy can be severe. The instructors and the college may use various methods including in-person observation and electronic monitoring of network activity during the exam to detect academic dishonesty. Any detected cases of academic dishonesty will be taken very seriously and referred to the appropriate college or university disciplinary committees.

Exam Submission

There are a total of five questions, all having equal value. Please indicate your answer to each question on the provided answer slip. To be clear, the answer to be provided is the 16-bit hexadecimal value of accumulator_output at the moment when counter_full_bar is low for your exam-dependent seed.

After you have completed the exam and handed in the answer sheet, you must archive and upload to Canvas the verilog source files used to answer each question. This must be completed, but it is not part of the timed exam. The instructors may refer to to this code in the event of a marking discrepancy or dispute.

Good luck!

ignored for this question.

- (2)
- 1. Re-design the student circuit to implement an 8-bit synchronous counter which is connected to cct_output. The operational specifications of the counter are as follows:
 - When the clear input is high, the counter should be asynchronously reset to 8'd0.
 - When cct_input is equal to 8'd31, the counter should be synchronously loaded with 8'd100 on the positive edge of the clock.
 - Otherwise, the counter should synchronously increment on each positive edge of the clock.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'H4669.

Once accumulator_output is correct for seed = 8'HAA report it for the seed specified in the instructions.

2. Re-design prototype student_circuit to describe a combinational logic circuit that detects whether the value of the input (cct_input) is a two-digit number when viewed in decimal (ie. whether it is between 10 and 99, inclusive). When the input is a two-digit number, the output (cct_output) should be equal to the input. When the input is not a two-digit number, the output should be equal to the input value XNOR'ed with the constant 8'HC6. The clear input should be

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'H9696.

Once accumulator_output is correct for seed = 8'HAA report it for the seed specified in the instructions.

- (2) 3. Re-design prototype student_circuit to describe a combinational logic circuit with the following behavior:
 - If the most significant bit (bit [7]) of cct_input is high, cct_output should be four copies of bits [1:0] of the input. For example, if the input was 8'b1000_0010, the output should be 8'b1010_1010.
 - If the most significant bit (bit [7] of cct_input is low, cct_output should be the one's complement (all bits inverted) of the input.
 - cct_output should be 0 when the clear input is high. This should take priority over the two conditions listed above.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'H4567.

Once accumulator_output is correct for seed = 8'HAA report it for the seed specified in the instructions.

- (2) 4. Re-design prototype student_circuit to implement a synchronous circuit according to the following specifications:
 - On each positive edge of the clock input, the circuit loads the value of cct_input into an 8-bit register called delay.
 - On each negative edge of the clock input, cct_output is set to the result of a bitwise NAND operation between delay and cct_input.
 - The clear input is used in an active-high asynchronous fashion to reset both delay and cct_output to 0.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'HEB46.

Once accumulator_output is correct for seed = 8'HAA report it for the seed specified in the instructions.

Figure 1: Circuit for Question 5

(2) 5. Re-design student_circuit to implement the circuit shown in Figure 1. Any bits of the circuit output vector (cct_output) that are not shown in the diagram should be tied low (connected to 0).

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'HF37B.

Once accumulator_output is correct for seed = 8'HAA report it for the seed specified in the instructions.