Bayesiansk statistik, 732g43, 7.5 hp Moment 1

Bertil Wegmann

STIMA, IDA, Linköpings universitet

Översikt moment 1: introduktion till Bayesiansk statistik

- Introduktion till kursen Bayesiansk statistik, 732g43, 7.5 hp
- Introduktion till Bayesiansk statistik
- Frekventister och Bayesianer
- Bayes sats
- Bayesiansk analys av en proportion och skillnad mellan proportioner
- Sammanfattning av en posteriorfördelning
- Bayesiansk analys av normalfördelade data
- Bayesiansk analys av Poissonfördelade data
- Kod (kan laddas ned på Lisam):
 - Manipulate Beta-Bernoulli Posterior. R
 - Kod Moment1.R

Bayesiansk statistik, 732g43, 7.5 hp

- Kursen är uppdelad i 4 moment + reservtid.
- 2 st. föreläsningar i början av första veckan och en datalaboration i slutet av första veckan per moment.
- Individuell inlämningsuppgift för respektive moment som läggs ut efter den 2:a föreläsningen första veckan.
- Examination:
 - datortentamen som utgör 2/3 av betyget. Tid: fredag 17/1.
 - Individuella inlämningsuppgifter som utgör 1/3 av betyget.
 - Kursbetyg:
 - Minst 50 % av poängen per inlämningsuppgift och datortentamen för G.
 - Minst 75 % av totala antalet poäng på inlämningsuppgifter och datortentamen för VG.

Bayesiansk statistik, 732g43, 7.5 hp

- Kurslitteratur:
 - Statistical Rethinking (SR)
 - A Bayesian Course with Examples in R and Stan
 - Författare Richard McElreath
 - Mina slides
 - Tillhörande R-kod till respektive moment.
 - Diverse övrigt material

Installera R-paketet rethinking

- Bokens fokus: implementering av Bayesianska modeller mha kod i R och Stan.
 - Kodexempel i boken kräver R-paketet rethinking och paketet rstan.
 - På mc-stan.org kan en C++ kompilator och R-paketet rstan installeras.

Från R installerar man R-paketet rethinking och dess underkataloger med följande kommando:

```
install.packages(c("coda","mvtnorm","devtools"))
library(devtools)
devtools::install_github("rmcelreath/rethinking")
```

Bayesiansk statistik, 732g43, 7.5 hp

- Moment 1: Introduktion till Bayesiansk statistik, SR: kap. 1-3.
- Moment 2: Bayesiansk analys av multipel linjär regression, SR: kap. 4-5.

Moment 3:

- Överanpassade modeller, regularisering, informationskriterium, modellval, SR: kap. 6.
- Introduktion till Markov chain Monte Carlo (MCMC), SR: kap. 8.

Moment 4:

- Logistisk regression, Poisson regression, SR: kap. 10.
- Multilevelmodeller, SR: kap. 12 och 13.1-13.3.

Hypoteser och Modeller

- Modeller i lilla världen används för att beskriva den stora, riktiga världen. "All models are wrong, but some are useful" (statistikern George Box).
- Hypoteser är inte modeller.
- Hypoteser ger inte unika modeller och modeller ger inte unika hypoteser.
- Vetenskapsteoretikern Karl Popper: uppsättning av hypoteser bygger på att falsificera dom för att kunna dra någon slutsats.

Hypoteser och Modeller

■ Exempel:

 H_0 : alla svanar är vita

 H_1 : alla svanar är inte vita

Mer intressanta hypoteser:

 H_0 : 80 % av alla svanar är vita

 H_0 : svarta svanar är ovanliga

Bayesiansk statistik kan användas för probabilistisk jämförelse utifrån statistiska modeller gällande hur troligt det är med vita och svarta svanar.

Bayesiansk statistik från Bayes sats

Engelsk matematiker, statistiker och (presbyteriansk) präst

- Thomas Bayes formulerade ett specifikt fall av en sats som år 1763 generaliserades och publicerades av matematikern Richard Price. Namnet på satsen blev Bayes sats.
- Bayes sats blev därmed en av de fundamentala satserna inom sannolikhetslära.
- Bayes sats uppdaterar nuvarande apriori kunskap om en okänd kvantitet (t.ex. proportion eller medelvärde) med information från data till kunskap aposteriori om den okända kvantiteten.
- Kunskapen i Bayes sats är enbart hur troligt eller sannolikt det är med olika scenarier för den okända kvantiteten.

Frekventister och Bayesianer

- Frekventister betraktar parametrar, t.ex. μ i normalfördelningen, som fixa konstanter. En frekventist skulle aldrig ange en sannolikhetsfördelning för μ .
- Frekventister tolkar sannolikhet som den **relativa frekvensen** av en given händelse i ett stort antal liknande och (oberoende) försök.
- Bayesianer kan också betrakta parametrar som konstanter, men oavsett anger en Bayesian en sannolikhetsfördelning för parametrarna om denne inte känner till dess (konstanta) värde.
- Sannolikhet är subjektivt för en Bayesian.
- Frekventistisk och Bayesiansk inferens kan ge liknande numeriska resultat i ett givet problem, men tolkningen av resultatet är alltid olika.
- I dag använder många metoder från båda "skolor" av frekventistisk och Bayesiansk inferens.

Bernoulli exempel: θ =andelen flaskor av typ A

- lacksquare På ett stort lager vill man **uppskatta** heta= andelen flaskor av typ A.
- I ett litet urval av totalt 10 flaskor från 10 miljoner flaskor observerade man 8 flaskor av typ A.
- Frekventisten uppskattar θ till 80 %. Beskriver osäkerhet runt punktskattningen med t.ex. konfidensintervall. Testar med hypotestest för olika värden på θ .
- Kjell har jobbat i lagret i 20 år. Han tror sig ha bra koll på den okända kvantiteten θ .
- Kjell förväntar sig att 55 % av flaskorna är av typ A med en standardavvikelse på 0.05.
- Bayesianen använder priorinformationen från Kjell och uppdaterar Kjells prior m.h.a. data från urvalet till Kjells posterioruppfattning om θ.

Bernoulli exempel: likelihoodfunktionen

- Likelihoodfunktionen är en vanlig ingrediens av Bayesiansk och frekventistisk inferens.
- Antag modellen: $X_1, ..., X_n | \theta \stackrel{iid}{\sim} Bern(\theta)$.
- Antag att dom två första oberoende undersökta flaskorna i urvalet gav $X_1 = 1$ and $X_2 = 1$, där $X_i = 1$ innebär att flaska i är av typ A och $X_i = 0$ innebär att flaska i inte är av typ A.

Bernoulli exempel: likelihoodfunktionen

■ Små värden på θ är inte så troligt för de 2 observationerna. Exempel med $\theta = 0.01$:

$$Pr(X_1 = 1 \text{ och } X_2 = 1 | \theta = 0.01) = 0.01 \cdot 0.01 = 0.0001$$

■ Stora värden på θ , t.ex. $\theta = 0.99$, gör de 2 observationerna mycket mer troliga:

$$Pr(X_1 = 1 \text{ och } X_2 = 1 | \theta = 0.99) = 0.99 \cdot 0.99 = 0.9801$$

Stora värden på θ gör det observerade datamaterialet mer troligt. Stora värden på θ stämmer bättre överens med data.

Likelihoodfunktionen - två Bernoulli obs

Likelihoodfunktionen - tio Bernoulli obs

- Tio Bernoulli observationer, n = 10: 1,1,0,1,1,0,1,1,1,1. 8 flaskor av typ A ("8 lyckade försök") och 2 flaskor av annan typ ("2 misslyckade försök").
- Likelihood

$$\Pr(X_1=1,X_2=1,X_3=0,...,X_{10}=1|\theta)=\theta^8(1-\theta)^2$$
 för $0\leq\theta\leq 1$

Likelihoodfunktionen är ingen täthetsfunktion

- Likelihoodfunktionen liknar en täthetsfunktion, men är INTE det.
- $f(X_1 = x_1, ..., X_n = x_n | \theta)$ är en gemensam täthetsfunktion för X:na betingat på θ . Här uttrycker vi det som en funktion av X:na, medan likelihoodfunktionen är en funktion av θ .
- Alltså,

$$\int f(x|\theta)dx=1,$$

men generellt gäller

$$\int f(x|\theta)d\theta \neq 1.$$

■ Alltså, Troligt \neq Sannolikt. Vad betyder egentligen troligt (eng. Likely)?

Bayesiansk statistik för osäkerhet om heta

- Jag är osäker om värden på θ . Osäkerheten beskrivs med min subjektiva **prior** täthetsfunktion för θ , $p(\theta)$.
- **Priorn** beskriver min grad av tilltro om olika värden på θ **innan** jag samlar in mitt data.
- Jag får mitt data: $X_1 = x_1, ..., X_n = x_n$ från $p(X_1, X_2, ..., X_n | \theta)$. Vad har jag lärt mig om θ från data?
- Posteriorfördelningen $p(\theta|X_1 = x_1, ..., X_n = x_n)$. Det här är en täthetsfunktion för $\theta!$

Bayes sats för händelser

■ Bayes sats för händelser

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

- Ersätt händelsen A med fördelningens parametrar θ .
- Ersätt händelsen B med data $x_1, x_2, ..., x_n$ för n stycken antalet observationer.

Bayes sats för variabler

Bayes sats för variabler:

$$p(\theta|x_1,...x_n) = \frac{p(x_1,...,x_n|\theta)p(\theta)}{p(x_1,...,x_n)} \propto p(x_1,...,x_n|\theta)p(\theta)$$

- Sannolikhetsfördelningen aposteriori för θ ges som (α = proportionell emot):
 - **sannolikheten** för data givet θ (likelihoodfunktionen) gånger sannolikhetsfördelningen apriori för θ .

Exempel: uppskattning av θ =andelen flaskor av typ A

- Urval med 8 flaskor av typ A utav totalt 10 flaskor.
- Prior (grön) till Posterior (röd) uppdatering (Likelihood (blå) = funktion av θ givet **data**)

Exempel: uppskattning av θ =andelen flaskor av typ A

- Urval med 65 flaskor av typ A utav totalt 100 flaskor.
- Prior (grön) till Posterior (röd) uppdatering (Likelihood (blå) = funktion av θ givet **data**)

Exempel: uppskattning av θ =andelen flaskor av typ A

- Urval med 600 flaskor av typ A utav totalt 1000 flaskor.
- Prior (grön) till Posterior (röd) uppdatering (Likelihood (blå) = funktion av θ givet **data**)

Priorn - den saknade pusselbiten

- Det är priorn $p(\theta)$ som hjälper till att konvertera likelihood funktionen $f(x_1, ..., x_n | \theta)$ till posteriorfördelningen för θ .
- \blacksquare Att ignorera priorn är lika fel som att ignorera P(A) i Bayes sats

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Frekventist: 'Om priorn är subjektiv, så är statistisk slutledning subjektiv. Det kan inte vara rätt.'
- Bayesian: 'Vi har alla olika apriorikunskap, vilket medför en subjektiv prior'.

Priorn - den saknade pusselbiten

- Bayesian: 'Den objektiva delen av statistisk slutledning är uppdateringen från priorn till posteriorn, som alltid görs med Bayes sats.
- Bayesian: 'En prior kan göras minimalt informativ' ("Objektiv").
- Bayesian: 'Icke-Bayesiansk slutledning är också subjektiv. Val av sannolikhetsmodell, val av estimator, val av statistiska test, etc är alla subjektiva val'.

Priorelicitering

- Prior ska bestämmas (eliciteras) från en expert (t.ex. Kjell på lagret). Typisk situation, expert≠statistiker.
- Elicitera priorn på en kvantitet som experten känner till väl (oddset $\frac{\theta}{1-\theta}$ kan vara mer användbart än sannolikheten θ för lyckat försök i ett Bernoulli experiment). Statistikern kan alltid beräkna fram den implicerade priorn på andra kvantiteter efter prioreliciteringen.
- Elicitera priorn genom att t.ex. ställa sannolikhetsfrågor till experten: $E(\theta) = ?$, $SD(\theta) = ?$ eller $P(\theta < c) = ?$.
- Visa experten några konsekvenser från dennes eliciterade prior. Om denne inte håller med om konsekvenserna så kan man iterera proceduren med priorelicitering tills experten är nöjd.
- Webbverktyg för priorelicitering:
 - $\blacksquare \ \ Webbsida: \ http://optics.eee.nottingham.ac.uk/match/uncertainty.php$
 - Artikel om webbverktyget: http://eprints.nottingham.ac.uk/35002/1/1-s2.0-S1364815213002533-main.pdf

Bayes sats för parametern heta

Bayes sats ger

$$p(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)p(\theta)}{f(\mathbf{x})} = \frac{f(\mathbf{x}|\theta)p(\theta)}{\int f(\mathbf{x}|\theta)p(\theta)d\theta}$$

där $\mathbf{x} = (x_1, ..., x_n)'$ är en vektor med alla observationer från det slumpmässiga urvalet.

■ $f(\mathbf{x})$ är marginella fördelningen för data eller genomsnittliga likelihooden som inte beror på θ . Alltså kan vi skriva Bayes sats som

$$p(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta) \cdot p(\theta)$$

■ Lord:

Posterior ∝ Likelihood · Prior

Bayesiansk analys av Bernoullimodellen

■ Modell

$$X_1, ..., X_n | \theta \stackrel{iid}{\sim} Bern(x | \theta)$$

Likelihood

$$f(x_1, ..., x_n | \theta) = \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^s (1 - \theta)^f,$$

där $s = \sum_{i=1}^{n} x_i$ är antal lyckade försök och f = n - s är antalet misslyckade försök.

Prior

$$heta \sim \mathit{Beta}(lpha, eta) \ p(heta) \propto heta^{lpha-1} (1- heta)^{eta-1}$$

Posterior

$$\begin{split} \rho(\theta|\mathbf{x}) &\propto \rho(\mathbf{x}|\theta) \rho(\theta) \\ &\propto \theta^{s} (1-\theta)^{f} \cdot \theta^{\alpha-1} (1-\theta)^{\beta-1} \\ &= \theta^{\alpha+s-1} (1-\theta)^{\beta+f-1} \end{split}$$

Prior-Posterior uppdatering för Bernoullimodellen

$$\begin{array}{c} \theta \sim \textit{Beta}(\alpha, \beta) \\ \stackrel{x_1, \dots, x_n}{\Longrightarrow} \\ \theta | x_1, \dots, x_n \sim \textit{Beta}(\alpha + s, \beta + f) \end{array}$$

- Större värden på α och β innebär mer informativ (tightare) prior med ett större inflytande på posteriorn.
- Notera att $\alpha = \beta = 1$ är en uniform prior på θ . "Alla θ är lika troliga". Icke-informativ prior.

Känslighetsanalys i priorn

- Hur känslig är posteriorfördelningen för parametern θ av olika mycket information i priorn? ⇒ Gör känslighetsanalys i priorn.
 #Manipulate Beta-Bernoulli Posterior.R
- I Bernoulliexemplet: jämför Kjells informativa prior med en icke-informativ prior på θ .
- Jämför även med andra typer av priors som är vanligt förekommande för det man studerar.
- Beskriv hur resultatet förändras i posteriorfördelningen med avseeende på olika priors.
- Priorn blir mindre viktig vid mer data.

Generera samples från posteriorn

- Posteriorsannolikhet för olika intervall med hjälp av att beräkna posteriorn approximativt på en grid av värden.
- I Bernoulliexemplet kan man t.ex. välja en grid mellan 0 och 1 i steg om 1/1000. #R code 3.2-3.5
- Vad händer om posteriorfördelningen är högdimensionell, t.ex. posteriorfördelningen för 10 parametrar? ⇒Gridapproximation av posteriorn med 1000¹⁰ värden är jobbigt...
- Alternativ:
 - Kvadratisk approximation: fungerar bra om posteriorfördelningen för parametrarna är ungefär multivariat normalfördelad. Approximationen blir bättre med mer data.
 - Markov chain Monte Carlo (MCMC), kap. 8: fungerar i dom allra flesta fall.

Generera samples från posteriorn: kvadratisk approximation

- Approximerar posteriorfördelningen med en Gaussisk fördelning (normalfördelning) med endast medelvärde (typvärdet/mode) och varians.
- Kvadratisk approximation med funktionen map i R-paketet rethinking. #R code 2.6
- Posteriorfördelning med fler än en parameter: funktionen map beräknar fram mode och kovariansmatrisen för den multivariata normalfördelningen.

Bayesiansk analys av en funktion av parametrar

- Exempel: posteriorfördelningen beräknas för respektive andel p_1 och p_2 .
- Posteriorfördelningen för skillnaden $\theta=p_1-p_2$ ges från de samplade posteriorvärdena enligt:

$$\theta_i = p_{1i} - p_{2i},$$

där i är den i:te samplade dragningen från respektive posteriorfördelningen för p_1 och p_2 .

 På samma sätt kan man sampla posteriordragningar för andra funktioner av andelar, t.ex. oddset

$$Odds_i = \frac{p_i}{1 - p_i}$$

Sammanfattning av posteriorn #R code summary, 3.6-3.13

- 95 % kredibilitetsintervall (eng. credible eller percentile interval): 95
 % sannolikhet att parametern ligger mellan posteriorns 95 % mittersta värden.
- 95 % Highest Posterior Density Interval (HPDI): 95 % sannolikhet att parametern ligger på ett intervall med 95 % högst posteriortäthet.
- HPDI är baserat på det intervall med högst posteriortäthet och därför lämpligare för skeva fördelningar.
- HPDI är mer känsligt till antalet posteriordragningar.
- Kredibilitetsintervallet är mycket vanligare och kan lättare jämföras med andra icke-Bayesianska intervall, t.ex. konfidensintervall.

Kredibilitetsintervall vs konfidensintervall

- Student: 'Mitt 95 % kredibilitetsintervall och 95 % konfidensintervall för θ är i princip lika. Varför bry sig om kredibilitetsintervall?'
- '95 % kredibilitetsintervall: sannolikheten att den okända parametern θ ligger i intervallet är 0.95.'
- '95 % konfidensintervall: intervallet är stokastiskt och ger mig inte någon information om sannolikheten för specifika intervall för θ .'
- Finns inget "heligt" med 95 % kredibilitetsintervall. Andra intressanta alternativ kan vara 90.9 % eller 95.2 % kredibilitetsintervall. Varför då?

Bayesianska punktskattningar, #R code 3.14-3.16

- Den Bayesianska dataanalysen ger hela posteriorfördelningen $p(\theta|\mathbf{x})$ för den okända parametern θ . Vi kan därför plotta hela posteriortätheten för θ .
- I bland vill man summera posteriorfördelningens läge med en punktskattning a.
- Vi kan till exempel använda medelvärdet, medianen eller typvärdet. Men, vilken är optimal?
- Beror på din förlustfunktion

$$L(a, \theta)$$
,

där a står för din valda aktion av punktskattning.

■ Bayesiansk lösning, välj a så att den förväntade förlusten

$$E[L(a, \theta)|\mathbf{x}]$$

minimeras.

Bayesianska punktskattningar för vanliga förlustfunktioner

- Kvadratisk förlustfunktion $L(a, \theta) = (\theta a)^2$. Posterior medelvärdet är optimalt:
- Linjär förlustfunktion $L(a, \theta) = |\theta a|$. Posterior medianen är optimalt.
- 0-1 förlustfunktion

$$L(a, \theta) = \begin{cases} 0 & \text{if } a = \theta \\ 1 & \text{if } a \neq \theta \end{cases}$$

Posterior typvärdet (mode) är optimalt.

Icke-informativa priorfördelningar

- Priorfördelningar som adderar väldigt lite eller ingen information.
 "Objektiv Bayes".
- Exempel 1: $X_1, ..., X_n | \theta \stackrel{\textit{iid}}{\sim} \textit{Bern}(\theta)$. $\theta \sim \textit{Beta}(1, 1)$ är en icke-informativ prior.
- Exempel 2: $X_1, ..., X_n | \theta \stackrel{\textit{iid}}{\sim} N(\theta, 1)$. Icke-informativ prior

$$p(\theta) = 1$$

Denna prior är ingen giltig täthetsfunktion!

$$\int p(\theta)d\theta = \infty$$

- Ok, om posteriorn är en giltig täthetsfunktion.
- Denna prior kan ses som en giltig prior med väldigt, väldigt stor varians.
- "Icke-informativ prior existerar inte".

Normalfördelade data med känd varians - uniform prior

■ Modell:

$$X_1, ..., X_n | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2).$$

■ Prior:

$$p(\theta) \propto c$$

Likelihood:

$$p(x_1, ..., x_n | \theta, \sigma^2) = \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2}(x_i - \theta)^2\right]$$

$$\propto \exp\left[-\frac{1}{2(\sigma^2/n)}(\theta - \bar{x})^2\right].$$

Posterior:

$$\theta | x_1, ..., x_n \sim N(\bar{x}, \sigma^2/n)$$

Normalfördelade data med känd varians - normal prior

■ Prior

$$heta \sim N(\mu_0, au_0^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n,\tau_n^2),$$

där

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2},$$

 $\mu_n = w\bar{x} + (1-w)\mu_0,$

och

$$w = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

Normalfördelade data med känd varians - normal prior

$$\theta \sim N(\mu_0, \tau_0^2) \stackrel{x_1, \dots, x_n}{\Longrightarrow} \theta | x \sim N(\mu_n, \tau_n^2).$$

Posterior precision = Data precision + Prior precision

Posterior mean =

$$\frac{\text{Data precision}}{\text{Posterior precision}} (\text{Data mean}) + \frac{\text{Prior precision}}{\text{Posterior precision}} (\text{Prior mean})$$

■ Exempel med vikter för kycklingar. Antag att standardavvikelsen är känd. #R kod Normal

Poisson modell

Likelihood från iid Poisson urval

$$p(y_1, ..., y_n | \theta) = \prod_{i=1}^n p(y_i | \theta) = \prod_{i=1}^n \left(\exp(-\theta) \frac{\theta^{y_i}}{y_i!} \right)$$
$$\propto \theta^{(\sum_{i=1}^n y_i)} \exp(-\theta n)$$

lacksquare Konjugerad prior för Poisson parametern (medelvärdet) heta

$$p(\theta) \propto \theta^{\alpha - 1} \exp(-\theta \beta) \propto Gamma(\alpha, \beta)$$

 Konjugerad prior innebär att priorn och posteriorn tillhör samma fördelningsfamilj.

Poisson modell

 $lacktriang{lacktrianglet}$ Posteriorfördelning för medelvärdet heta i en Poissonfördelning: multiplicering av Poisson likelihood och gammafördelad priorfördelning ger

$$p(\theta|y_1, ..., y_n) \propto \left[\prod_{i=1}^n p(y_i|\theta)\right] p(\theta)$$

$$\propto \theta^{\sum_{i=1}^n y_i} \exp(-\theta n) \theta^{\alpha-1} \exp(-\theta \beta)$$

$$= \theta^{\alpha + \sum_{i=1}^n y_i - 1} \exp[-\theta (\beta + n)],$$

som är proportionell mot $Gamma(\alpha + \sum_{i=1}^{n} y_i, \beta + n)$ fördelningen.

■ Sammanfattningsvis (#R kod Poisson):

$$\begin{array}{c} \mathsf{Modell:} \quad Y_1,...,Y_n|\theta \stackrel{\mathit{iid}}{\sim} \mathit{Pois}(\theta) \\ \\ \mathsf{Prior:} \quad \theta \sim \mathit{Gamma}(\alpha,\beta) \\ \mathsf{Posterior:} \ \theta|y_1,...,y_n \sim \mathit{Gamma}(\alpha + \sum_{i=1}^n y_i,\beta + n). \end{array}$$

Poisson exempel - antalet flygbombsträffar i London

■ Datamaterial (Feller, 1957):

$$n = 576$$
, $\sum_{i=1}^{n} y_i = 229 \cdot 0 + 211 \cdot 1 + 93 \cdot 2 + 35 \cdot 3 + 7 \cdot 4 + 1 \cdot 5 = 537$.

Genomsnittligt antalet bombträffar per region:

 $\bar{y} = 537/576 \approx 0.9323.$

Posteriorfördelning

$$p(\theta|y) \propto \theta^{\alpha+537-1} \exp[-\theta(\beta+576)]$$

Sammanfattning av posteriorn med icke-informativ prior $(små \alpha, \beta)$:

$$E(\theta|y) = \frac{\alpha + \sum_{i=1}^{n} y_i}{\beta + n} \approx \bar{y} \approx 0.9323,$$

och

$$\sigma(\theta|y) = \left(\frac{\alpha + \sum_{i=1}^{n} y_i}{(\beta + n)^2}\right)^{\frac{1}{2}} = \frac{(\alpha + \sum_{i=1}^{n} y_i)^{\frac{1}{2}}}{(\beta + n)} \approx \frac{(537)^{\frac{1}{2}}}{576} \approx 0.0402.$$