Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Sid Maibach

Hausaufgabenblatt 11.

Abgabe bis Mi, 17.01.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Gegeben eine Matrix $A \in \mathbb{R}^{n \times n}$, sei $f_A : \mathbb{R}^n \to \mathbb{R}$ die Funktion

$$e^{-\frac{1}{2}x\cdot Ax}$$
.

Sei A zunächst eine Diagonalmatrix mit $\lambda_1, \ldots, \lambda_n > 0$ auf der Diagonalen.

- (i) Zeigen Sie, dass f_A auf \mathbb{R}^n absolut integrierbar ist.
- (ii) Berechnen Sie die n-dimensionale Fourier-Transformation

$$\mathcal{F}f_A(k) = \int_{\mathbb{R}^n} f_A(x)e^{-ik\cdot x}dx.$$

Hinweis: Benutzen Sie den Staz von Fubini, um das Integral in n eindimensionale Integrale zu zerlegen.

- (iii) Sei nun A eine symmetrische positiv definite Matrix. Was ist dann $\mathcal{F}f_A$ (ohne Beweis)?
- (iv) Was ist, wenn A nur positiv semidefinit ist?

Bemerkung: f_A beschreibt bis auf einen Vorfaktor eine Gaussverteilung in mehreren Variablen mit Erwartungswert 0 und Kovarianzmatrix A.

Aufgabe 2. (10 Punkte)

Überprüfen sie, ob die folgenden Abbildungen $T: C_0^{\infty}(\mathbb{R}) \to \mathbb{R}$ Distributionen sind.

- (i) $T(\varphi) := (\varphi(0))^2$,
- (ii) $T(\varphi) := \int_{\mathbb{R}} |\varphi(x)| dx$,
- (iii) $T(\varphi) := \int_{[0,1]} \frac{d^j}{dx^j} \varphi(x) \ dx, j \in \mathbb{N},$
- (iv) $T(\varphi) = \varphi(1) \varphi(0)$,
- (v) $T(\varphi) = \int_{\mathbb{R}} \varphi(x)e^{-x^2} dx$.

Aufgabe 3. (10 Punkte)

Sei $u_0 \in L^1(\mathbb{R})$. Löse die Wärmegleichung mit Konvektion, also finde $u : [0, \infty) \times \mathbb{R} \to \mathbb{R}$, das das Anfangswertproblem löst

$$\begin{cases} \partial_t u(t,x) - \partial_x^2 u(t,x) + \partial_x u(t,x) = 0\\ u(0,x) = u_0(x) \end{cases}$$

mithilfe der Fourier-Transformation in x. Hinweis: Schreibe $u(t,x) = \mathcal{F}_k^{-1}(\mathcal{F}_x u)(t,x)$ und finde eine entsprechende gewöhnliche Differentialgleichung für $\mathcal{F}_x u(t,k)$.