CS6301 MACHINE LEARNING MINI PROJECT

Comparing Collaborative Filtering and Hybrid based Approaches for Movie Recommendation

TEAM MEMBERS

ASHWIN MENON - 2019103510

SESHATHILAK G - 2019103579

VIGNESH KUMAR K - 2019103594

CONTENTS

INTRODUCTION	2
COLLABORATIVE FILTERING	3
BLOCK DIAGRAM FOR COLLABORATIVE FILTERING	4
LIST OF MODULES FOR COLLABORATIVE FILTERING	4
MODULE 1 : IMPORTING DATA	4
MODULE 2 : DATA PRE-PROCESSING	6
MODULE 3 : NOISE REMOVAL FROM DATA	7
MODULE 4 : SPARSITY REMOVAL	10
MODULE 5 : DESIGNING THE MODEL	11
MODULE 6 : RECOMMEND SIMILAR MOVIES	12
HYBRID BASED APPROACH	14
BLOCK DIAGRAM FOR HYBRID BASED APPROACH	14
LIST OF MODULES FOR HYBRID BASED APPROACH	15
MODULE 1 : IMPORTING DATA	15
MODULE 2: INCLUDE GENRE INFORMATION	17
MODULE 3 : MOVIE DATA TF-IDF WEIGHTING	19
MODULE 4: INCLUDE RATING INFORMATION	21
MODULE 5 : DESIGNING MOVIE RECOMMENDATION SYSTEM MODEL	23
MODULE 6 : RECOMMEND SIMILAR MOVIES	24
PERFORMANCE METRICS	26
COMPARISON	27
REFERENCES	28

INTRODUCTION

The main aim of the mini project is to create a movie recommender system using collaborative filtering and hybrid based approaches. Movies are something which we all see to relax and entertain ourselves and finding a similar movie to the one you like will be very much useful and helpful. The objective of automating the movie recommender is to make the selection of which movie to see next quick and less cumbersome for the user. We are using 2 different methods to do the same, they are

Collaborative Filtering - Where we take the user's ratings for each movie and try to find the similarity between them using the cosine metric.

Hybrid Based Approach - Where we first find the weightage of each genre within a movie and then take the user's ratings and combine both the information to find the similarity between movies

COLLABORATIVE FILTERING

BLOCK DIAGRAM FOR COLLABORATIVE FILTERING

LIST OF MODULES FOR COLLABORATIVE FILTERING

MODULE 1: IMPORTING DATA

First, we import libraries which we'll be using in our movie recommendation system and then import the 2 datasets we require in our system. The 2 datasets are rating dataset and movies dataset from the Movielens small dataset (Source:

https://www.kaggle.com/shubhammehta21/movie-lens-s mall-latest-dataset)

Movie dataset has the following fields:

1)movieId – once the recommendation is done, we get a list of all similar movieId and get the title for each movie from this dataset.

2)genres – which is not required for this filtering approach.

While Ratings dataset has the following fields:

- 1) userId unique for each user
- 2) movieId using this feature, we take the title of the movie from the movies dataset.
- 3) rating Ratings given by each user to all the movies using this we are going to predict the top 10 similar movies.

CODE IMPLEMENTATION

```
import pandas as pd
import numpy as np
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
import seaborn as sns

# Dataset Source : https://www.kaggle.com/shubhammehta21/movie-lens-small-latest-dataset
movies = pd.read_csv("movies.csv")
ratings = pd.read_csv("ratings.csv")
```

movies.head()

genre	title	movield	
Adventure Animation Children Comedy Fantas	Toy Story (1995)	1	0
Adventure Children Fantas	Jumanji (1995)	2	1
Comedy Romanc	Grumpier Old Men (1995)	3	2
Comedy Drama Romanc	Waiting to Exhale (1995)	4	3
Comed	Father of the Bride Part II (1995)	5	4

ratings.head()

	userld	movield	rating	timestamp
0	1	1	4.0	964982703
1	1	3	4.0	964981247
2	1	6	4.0	964982224
3	1	47	5.0	964983815
4	1	50	5.0	964982931

MODULE 2 : DATA PRE-PROCESSING

To make things easier to understand and work with, we are going to make a new dataframe where each column would represent each unique userId and each row represents each unique movieId. We can see that some users have not rated movies hence the Nan value present in the dataset. We can replace this Nan value with 0 to make the computing more easier.

CODE IMPLEMENTATION

userld	1	2	3	4	5	6	7	8	9	10	 601	602	603	604	605	606	607	608	609	610
movield																				
1	4.0	NaN	NaN	NaN	4.0	NaN	4.5	NaN	NaN	NaN	 4.0	NaN	4.0	3.0	4.0	2.5	4.0	2.5	3.0	5.0
2	NaN	NaN	NaN	NaN	NaN	4.0	NaN	4.0	NaN	NaN	 NaN	4.0	NaN	5.0	3.5	NaN	NaN	2.0	NaN	NaN
3	4.0	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	2.0	NaN	NaN
4	NaN	NaN	NaN	NaN	NaN	3.0	NaN	NaN	NaN	NaN	 NaN	NaN								
5	NaN	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	3.0	NaN	NaN	NaN	NaN	NaN	NaN

final_dataset.fillna(0,inplace=True)
final_dataset.head()

userld	1	2	3	4	5	6	7	8	9	10	 601	602	603	604	605	606	607	608	609	610
movield																				
1	4.0	0.0	0.0	0.0	4.0	0.0	4.5	0.0	0.0	0.0	 4.0	0.0	4.0	3.0	4.0	2.5	4.0	2.5	3.0	5.0
2	0.0	0.0	0.0	0.0	0.0	4.0	0.0	4.0	0.0	0.0	 0.0	4.0	0.0	5.0	3.5	0.0	0.0	2.0	0.0	0.0
3	4.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0

MODULE 3: NOISE REMOVAL FROM DATA

We wouldn't want movies that were rated by a small number of users because it's not credible enough. Similarly, users who have rated only a handful of movies should also not be taken into account. So with all that taken into account and some trial and error experimentations, we will reduce the noise by adding some filters for the final dataset. To qualify a movie, a minimum of 10 users should have voted a movie. To qualify a user, a minimum of 50 movies should have voted by the user. To do so we aggregate the number of users who voted and the number of movies that were voted and apply the above filters. We can visualize this number of users voted and also the movies which got rated.

CODE IMPLEMENTATION

```
no_user_voted = ratings.groupby('movieId')['rating'].agg('count')
no_movies_voted = ratings.groupby('userId')['rating'].agg('count')
```

```
f,ax = plt.subplots(1,1,figsize=(16,4))
plt.scatter(no_user_voted.index,no_user_voted,color='blue')
plt.axhline(y=10,color='r')
plt.xlabel('MovieId')
plt.ylabel('No. of users voted')
plt.show()
    300
    250
 of users voted
   200
   150
 € 100
     50
      0
                             25000
                                              50000
                                                               75000
                                                                                100000
                                                                                                 125000
                                                                                                                  150000
                                                                                                                                   175000
                                                                                                                                                    200000
```

Movield

final_dataset = final_dataset.loc[no_user_voted[no_user_voted > 10].index,:]

```
f,ax = plt.subplots(1,1,figsize=(16,4))
plt.scatter(no_movies_voted.index,no_movies_voted,color='blue')
plt.axhline(y=50,color='r')
plt.ylabel('UserId')
plt.ylabel('No. of votes by user')
plt.show()

2500

500

500

600

UserId
```

final_dataset=final_dataset.loc[:,no_movies_voted[no_movies_voted > 50].index]

MODULE 4: SPARSITY REMOVAL

Our system may run out of computational resources when the large dataset is feed to the model. To reduce the sparsity we use the csr_matrix function from the scipy library.

CODE IMPLEMENTATION

csr_data = csr_matrix(final_dataset.values)
final_dataset.reset_index(inplace=True)

MODULE 5: DESIGNING THE MODEL

We will be using the KNN algorithm to compute similarity with cosine distance metric which is very fast and more preferable than pearson coefficient. We first check if the movie name input is in the database and if it is we use our recommendation system to find similar movies and sort them based on their similarity distance and output only the top 10 movies with their distances from the input movie.

CODE IMPLEMENTATION

```
knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=20, n_jobs=-1)
knn.fit(csr_data)
```

NearestNeighbors(algorithm='brute', metric='cosine', n_jobs=-1, n_neighbors=20)

```
def get movie recommendation(movie name):
    n movies to reccomend = 10
    movie list = movies[movies['title'].str.contains(movie name)]
    if len(movie list):
        movie_idx= movie_list.iloc[0]['movieId']
       movie_idx = final_dataset[final_dataset['movieId'] == movie_idx].index[0]
        knn.kneighbors(csr data[movie idx],n neighbors=n movies to reccomend+1)
        rec movie indices = sorted(list(zip(indices.squeeze().tolist(),distances.squeeze().tolist())),key=lambda x: x[1])[:0:-1]
       recommend frame = []
       for val in rec movie indices:
            movie_idx = final_dataset.iloc[val[0]]['movieId']
            idx = movies[movies['movieId'] == movie_idx].index
           recommend_frame.append({'Title':movies.iloc[idx]['title'].values[0],'Distance':val[1]})
       df = pd.DataFrame(recommend_frame,index=range(1,n_movies_to_reccomend+1))
    else:
       return "No movies found. Please check your input"
```

MODULE 6: RECOMMEND SIMILAR MOVIES

Once the user enters the movie name the 10 most similar movies present in the dataset are displayed.

CODE IMPLEMENTATION

get_movie_recommendation('Memento')

	Title	Distance
1	American Beauty (1999)	0.389346
2	American History X (1998)	0.388615
3	Pulp Fiction (1994)	0.386235
4	Lord of the Rings: The Return of the King, The	0.371622
5	Kill Bill: Vol. 1 (2003)	0.350167
6	Lord of the Rings: The Two Towers, The (2002)	0.348358
7	Eternal Sunshine of the Spotless Mind (2004)	0.346196
8	Matrix, The (1999)	0.326215
9	Lord of the Rings: The Fellowship of the Ring,	0.316777
10	Fight Club (1999)	0.272380

get_movie_recommendation('Titanic')

	Title	Distance
1	Good Will Hunting (1997)	0.460759
2	Truman Show, The (1998)	0.460628
3	Catch Me If You Can (2002)	0.460281
4	Sixth Sense, The (1999)	0.452878
5	Saving Private Ryan (1998)	0.437196
6	Shrek (2001)	0.433120
7	Finding Nemo (2003)	0.432400
8	Star Wars: Episode I - The Phantom Menace (1999)	0.427623
9	Forrest Gump (1994)	0.427187
10	Men in Black (a.k.a. MIB) (1997)	0.420254

get_movie_recommendation('Avatar')

	Title	Distance
1	Zombieland (2009)	0.398180
2	Inception (2010)	0.393521
3	I Am Legend (2007)	0.389856
4	Hangover, The (2009)	0.364190
5	Dark Knight, The (2008)	0.358937
6	Kung Fu Panda (2008)	0.358604
7	Iron Man (2008)	0.310893
8	District 9 (2009)	0.309947
9	WALL·E (2008)	0.306969
10	Up (2009)	0.289607

HYBRID BASED APPROACH

BLOCK DIAGRAM FOR HYBRID BASED APPROACH

<u>LIST OF MODULES FOR HYBRID BASED</u> <u>APPROACH</u>

MODULE 1: IMPORTING DATA

First, we import libraries which we'll be using in our movie recommendation system and then import the 2 datasets we require in our system. The 2 datasets are rating dataset and movies dataset from the Movielens small dataset (Source:

https://www.kaggle.com/shubhammehta21/movie-lens-s mall-latest-dataset)

Movie dataset has the following fields:

1)movieId – once the recommendation is done, we get a list of all similar movieId and get the title for each movie from this dataset.

2)genres – which is not required for this filtering approach.

While Ratings dataset has the following fields:

- 1)userId unique for each user
- 2)movieId using this feature, we take the title of the movie from the movies dataset.
- 3)rating Ratings given by each user to all the movies using this we are going to predict the top 10 similar movies.

CODE IMPLEMENTATION

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Dataset Source : https://www.kaggle.com/shubhammehta21/movie-lens-small-latest-dataset
movies = pd.read_csv("movies.csv")
ratings = pd.read_csv("ratings.csv")
movies = movies.replace({np.nan: None})
movie_initial = movies
```

movies.head()

	movield	title	genres
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
1	2	Jumanji (1995)	Adventure Children Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama Romance
4	5	Father of the Bride Part II (1995)	Comedy

ratings.head()

	userld	movield	rating	timestamp
0	1	1	4.0	964982703
1	1	3	4.0	964981247
2	1	6	4.0	964982224
3	1	47	5.0	964983815
4	1	50	5.0	964982931

MODULE 2: INCLUDE GENRE INFORMATION

All the genres are present in the genres field inside movies dataset so we first find all the genres present in the dataset and visualize the count for each genre. Now we update the movies dataframe by adding all the genres as column headings and then iterate over all the movies and find the genres for each movie and mark only that field in the dataframe as 1. We now remove the title and genres column as they are no longer needed and then set the movieId as index and sort the data frame based on movieId.

CODE IMPLEMENTATION

```
all_genres = [s.split("|") for s in movies[movies.genres.notnull()].genres]
genres = [item for l in all_genres for item in l ]
unique_genres = set(genres)
print (f"total of {len(unique_genres)} unique genres from {len(genres)} occurances.")

pd.Series(genres).value_counts().plot(kind='bar', figsize=(10, 3))
plt.title("# of movies per genre")
plt.ylabel("# of movies")
plt.xlabel("genre")
plt.show()
```

total of 20 unique genres from 22084 occurances.


```
genres = [item.strip() for l in all_genres for item in l ]
unique_genres = set(genres)
for genre in unique_genres:
    movies[genre] = 0

for i in range(len(movies)):
    if type(movies['genres'].iloc[i]) != None.__class__:
        Genres = movies.iloc[i].genres.split('|')
        for g in Genres:
            movies[g].iloc[i] = 1
```

```
movies = movies.drop(columns=['title', 'genres']).set_index('movieId')
movies.sort_index(axis=0, inplace=True)
movies.head()
```

movies.head()

	Western	Children	Action	Animation	(no genres listed)	Thriller	Horror	Documentary	IMAX	Crime	Musical	Mystery	Romance	War	Sci- Fi	Fantasy	Film- Noir
movield																	
1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0
2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MODULE 3: MOVIE DATA TF-IDF WEIGHTING

We first calculate the document frequency (df) the number of terms(in this case genres) within all movies and then calculate Inverse document frequency (IDF) which measures the importance of each term (in this case genre) within all movies and then print the calculated values. We now calculate the tf-idf value using the previous calculated values and print that.

CODE IMPLEMENTATION

```
df = movies.sum()
idf = (len(movies)/df).apply(np.log)
print("\nDocument Frequency : \n",df,"\n\nInverse Document Frequency : \n",idf,"\n")
```

Document Frequency	:	
Western		167
Children		664
Action		1828
Animation		611
(no genres listed)		34
Thriller		1894
Horror		978
Documentary		440
IMAX		158
Crime		1199
Musical		334
Mystery		573
Romance		1596
War		382
Sci-Fi		980
Fantasy		779
Film-Noir		87
Comedy		3756
Adventure		1263
Drama		4361
dtype: int64		

Inverse Document Frequency: Western 4.066208 Children 2.685920 Action 1.673224 Animation 2.769105 (no genres listed) 5.657841 Thriller 1.637755 Horror 2.298692 Documentary 3.097427 **IMAX** 4.121607 Crime 2.094959 Musical 3.373061 Mystery 2.833316 Romance 1.808946 War 3.238781 Sci-Fi 2.296649 Fantasy 2.526191 Film-Noir 4.718294 Comedy 0.953092 Adventure 2.042957 Drama 0.803745 dtype: float64

TFIDF = movies.mul(idf.values)
TFIDF

	Western	Children	Action	Animation	(no genres listed)	Thriller	Horror	Documentary	IMAX	Crime	Musical	Mystery	Romance	War	Sci- Fi	Fantasy	Film- Noir
movield																	
1	0.0	2.68592	0.000000	2.769105	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	2.526191	0.0
2	0.0	2.68592	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	2.526191	0.0
3	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.808946	0.0	0.0	0.000000	0.0
4	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.808946	0.0	0.0	0.000000	0.0
5	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.000000	0.0
193581	0.0	0.00000	1.673224	2.769105	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	2.526191	0.0
193583	0.0	0.00000	0.000000	2.769105	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	2.526191	0.0
193585	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.000000	0.0
193587	0.0	0.00000	1.673224	2.769105	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.000000	0.0
193609	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.000000	0.0

9742 rows × 20 columns

MODULE 4: INCLUDE RATING INFORMATION

We are now going to make a new dataframe where each column would represent each unique userId and each row represents each unique movieId so that it is easier to visualize. We make all the missing values as 0. We are now going to calculate the user's preference of each genre in any movie using the user ratings for each movie from the ratings dataset.

CODE IMPLEMENTATION

```
user_x_movie = pd.pivot_table(ratings, values='rating', index=['movieId'], columns = ['userId'])
user_x_movie.sort_index(axis=0, inplace=True)

user_x_movie.fillna(0,inplace=True)
user_x_movie

userld 1 2 3 4 5 6 7 8 9 10 ... 601 602 603 604 605 606 607 608 609 610
```

movield																				
1	4.0	0.0	0.0	0.0	4.0	0.0	4.5	0.0	0.0	0.0	 4.0	0.0	4.0	3.0	4.0	2.5	4.0	2.5	3.0	5.0
2	0.0	0.0	0.0	0.0	0.0	4.0	0.0	4.0	0.0	0.0	 0.0	4.0	0.0	5.0	3.5	0.0	0.0	2.0	0.0	0.0
3	4.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
193581	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
193583	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
193585	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
193587	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
193609	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

9724 rows × 610 columns

user_profile

	Western	Children	Action	Animation	(no genres listed)	Thriller	Horror	Documentary	IMAX	Crime	Musical	Mystery	Romance	War	Sci-Fi
1	0.003085	0.019642	0.040004	0.013986	0.0	0.023447	0.006067	0.000000	0.000000	0.020156	0.010592	0.007713	0.011518	0.010181	0.017380
2	0.000360	0.000000	0.004473	0.000000	0.0	0.003805	0.000309	0.001337	0.001543	0.003908	0.000000	0.000823	0.000463	0.000463	0.001594
3	0.000000	0.000257	0.005142	0.000206	0.0	0.002982	0.003856	0.000000	0.000000	0.000103	0.000051	0.000514	0.000257	0.000257	0.006479
4	0.003908	0.003908	0.008536	0.002468	0.0	0.013883	0.001748	0.000823	0.000309	0.010592	0.006582	0.008227	0.020156	0.002571	0.003497
5	0.000617	0.003805	0.002879	0.002674	0.0	0.003291	0.000309	0.000000	0.001131	0.004731	0.002262	0.000411	0.003497	0.001028	0.000514
606	0.005965	0.017380	0.049362	0.016043	0.0	0.072141	0.017894	0.001954	0.005039	0.049979	0.016865	0.035479	0.136569	0.025350	0.028898
607	0.000823	0.006684	0.027561	0.002057	0.0	0.025812	0.014809	0.000000	0.000514	0.010592	0.001851	0.008124	0.010490	0.002571	0.012032
608	0.002982	0.022265	0.094868	0.017637	0.0	0.094200	0.033114	0.001851	0.004936	0.054247	0.009358	0.025195	0.031469	0.006993	0.056613
609	0.000411	0.000617	0.003497	0.000309	0.0	0.004731	0.000720	0.000617	0.000309	0.002160	0.000000	0.000000	0.001645	0.001440	0.001543
610	0.012701	0.021030	0.191434	0.026481	0.0	0.187423	0.109266	0.002160	0.030594	0.106695	0.005656	0.046483	0.045660	0.018254	0.094457

MODULE 5 : DESIGNING MOVIE RECOMMENDATION SYSTEM MODEL

We now calculate the sum product of the importance weights and users' preferences towards different genres. Based on the previous sum of products we suggest the users the top 10 candidates as recommendations. We first get the predicted rating of all films for the user, then we combine film rating and film detail. We then recommend the films only which has not been seen by the user.

CODE IMPLEMENTATION

MODULE 6: RECOMMEND SIMILAR MOVIES

Once the user enters the userID the 10 most similar movies present in the dataset are displayed.

CODE IMPLEMENTATION

recommender(600)

	movield	title
6626	56152	Enchanted (2007)
1390	1907	Mulan (1998)
7530	84637	Gnomeo & Juliet (2011)
3194	4306	Shrek (2001)
7805	92348	Puss in Boots (Nagagutsu o haita neko) (1969)
7170	71999	Aelita: The Queen of Mars (Aelita) (1924)
4631	6902	Interstate 60 (2002)
9169	148775	Wizards of Waverly Place: The Movie (2009)
2250	2987	Who Framed Roger Rabbit? (1988)
5819	32031	Robots (2005)

recommender(400)

	movield	title
7372	79132	Inception (2010)
7441	81132	Rubber (2010)
5556	26701	Patlabor: The Movie (Kidô keisatsu patorebâ: T
167	198	Strange Days (1995)
1978	2625	Black Mask (Hak hap) (1996)
7170	71999	Aelita: The Queen of Mars (Aelita) (1924)
2248	2985	RoboCop (1987)
454	519	RoboCop 3 (1993)
400	459	Getaway, The (1994)
6358	49530	Blood Diamond (2006)

recommender(267)

	movield	title
7170	71999	Aelita: The Queen of Mars (Aelita) (1924)
5980	36509	Cave, The (2005)
9394	164226	Maximum Ride (2016)
6145	43932	Pulse (2006)
5161	8361	Day After Tomorrow, The (2004)
9707	187031	Jurassic World: Fallen Kingdom (2018)
7767	91500	The Hunger Games (2012)
6330	48774	Children of Men (2006)
8590	117529	Jurassic World (2015)
5665	27618	Sound of Thunder, A (2005)

PERFORMANCE METRICS

- a) Accuracy
- b) F1 Score
- c) Recall
- d) Precision

$$Accuracy = \frac{Number\ of\ Correct\ predictions}{Total\ number\ of\ predictions\ made}$$

$$F1 = 2 * \frac{1}{\frac{1}{precision} + \frac{1}{recall}}$$
 F1 Score

$$Precision = \frac{TruePositives}{TruePositives + FalseNegatives}$$
 Recall

$$Precision = \frac{TruePositives}{TruePositives + FalsePositives}$$

$$Precision$$

COMPARISON

When you are using collaborative filtering the system may recommend movies which other users have rated or watched similarly while you may not have any interest. For Example, a user would be suggested some genre which they may not like, because other audience who watched the same movies which the user had, watched that particular genre. So that is why we combine content based filtering and collaborative filtering so that even the user's interests are acknowledged leading to a much better recommendation for a user

REFERENCES

N. Ifada, T. F. Rahman and M. K. Sophan, "Comparing Collaborative Filtering and Hybrid based Approaches for Movie Recommendation," 2020 6th Information Technology International Seminar (ITIS), 2020, pp. 219-223, doi: 10.1109/ITIS50118.2020.9321014.

(https://ieeexplore.ieee.org/document/9321014)