WK2132 多总线接口 二通道通用异步收发器 无铅封装

1. 产品概述

WK2132是首款具备256级FIF0的低功耗并支持 UART/SPI™/IIC接口的2通道UART器件。可以通过模式选择使得该芯片工作于以上任何一种主接口模式,将选定的主接口扩展为2个增强功能的UART。扩展的子通道的UART具备如下功能特点:

- 每个子通道UART的波特率、字长、校验格式可以独立设置,最高可以提供2Mbps的通信速率。
- 每个子通道可以独立设置工作在IrDA红外通信。
- 每个子通道具备收/发独立的256 级FIF0,FIF0的中断可按用户需求进行编程触发点且具备 超时中断功能。

WK2132采用SS0P16绿色环保的无铅封装,可以工作在2.5~5.0V的宽工作电压范围,具备可配置自动休眠/唤醒功能。

[注]: SPI[™] 为MOTOLORA公司的注册商标。

2. 基本特性

2.1 总体特性

- 支持多种主机接口:可以选择 UART, SPI, IIC
- 超大硬件收发缓存,支持256级FIF0
- 低功耗设计,可以配置自动休眠,自动唤醒模式(uS级唤醒)
- 宽工作电压设计,工作电压为2.5V~5.0V
- 精简的配置寄存器和控制字,操作简单可靠
- 提供工业级产品
- 高速CMOS工艺, 子串口速率最高可达2Mbps@5V、1.5Mbps@3.3V、1Mbps@2.5V
- 采用符合绿色环保政策的SSOP16无铅封装

2.2 扩展子通道UART特性

● 子通道串口独立配置,高速、灵活: 每个子串口为全双工,每个子串口可以通过软件开启/关闭 波特率可以独立设置,子串口最高可以达到2M bps 每个子串口字符格式包括数据长度、停止位数、奇偶校验模式可以独立设置 完善的子串口状态查询功能 可以实现对单个子串口软件复位

● FIFO功能:

每个子串口具备独立的256级发送FIF0,发送FIF0触发点可编程每个子串口具备独立的256级接收FIF0,接收FIF0触发点可编程软件FIF0使能和清空FIF0状态和计数器输出

● 错误检测:

支持奇偶校验错误、数据帧错误、溢出错误及Line-Break错误检测 支持起始位错误检测

● 内置符合SIR标准的IrDA红外收发编解码器,传输速度可达115.2K bit/s

● 中断特点: 具备子串口接收FIF0超时中断 支持Line-Break错误中断

2.3 UART主接口特性

- 主接口为标准的三线UART串口(RX, TX, GND), 无需其它地址信号、控制信号线
- 波特率自适应技术,最高速度可以达到2M bit/s
- 可选择的奇校验,偶校验和无校验模式
- 无需地址线控制的串口扩展方式,通过芯片内置的协议处理器实现多串口扩展
- UART主接口可以通过引脚设置为红外模式
- 支持最长16字节连续收发

2.4 SPI主接口特性

- 最高速度10M bit/s
- 仅支持SPI 从模式
- SPI模式0
- 支持最长256字节连续收发

2.5 IIC主接口特性

- 支持IIC总线接口
- 最高速度1M bit/s
- 仅支持IIC从模式
- 支持最长256字节连续收发

3. 应用领域

- 多串口服务器/多串口卡
- 工业/自动化现场RS-485控制
- 通过2G/3G/4G的无线数据传输
- 车载信息平台/车载GPS定位系统
- 远传自动抄表(AMR)系统
- POS/税控POS/金融机具
- DSP/嵌入式系统

4. 订购信息

表4.1 WK2132 订购信息

产品型号	封装	说明
WK2132-ISSG	SS0P16 无铅封装	普通工业级; 工作温度 -45℃~+85℃

5. 原理框图

图5.1 WK2132 原理框图

6. 封装引脚

6.1封装图

6.2 引脚描述

表6.2 WK2132 引脚描述

名称	管脚	类型	描述
VCC	1	-	电源 2.5V~5V工作电压
OSCI	2	I	晶振输入。注意: 需要和晶振并联1M的电阻。
0SC0	3	0	晶振输出。
MP3	4	1/0	当主接口为SPI时,为SSEL(SPI片选)功能引脚: 低电平有效;
			当主接口为IIC时,为IA1(IIC器件地址高)功能引脚;
			当主接口为UART时,为IR(主口红外通信模式)功能引脚;
			IR=0 红外通信模式;
			IR=1 普通UART通信模式; IR默认为高电平。
MP2	5	1/0	当主接口为SPI时,为SCLK(SPI 时钟输入)功能引脚;
			当主接口为IIC时,为SCL(IIC时钟输入)功能引脚;
			当主接口为UART时,为MRX(主口UART接收)功能引脚。
MP1	6	1/0	当主接口为SPI时,为MOSI功能引脚;
			当主接口为IIC时,为IAO(IIC器件地址低)功能引脚;
			当主接口为UART时,为MTX(主口UART发送)功能引脚。
MP0	7	1/0	当主接口为SPI时,为MISO功能引脚;
			当主接口为IIC时,为SDA功能引脚;
		_	当主接口为UART时,为NC(空)。
RSTN	8	1	硬件复位引脚,低电平复位有效
I RQ	9	0	中断输出信号,低电平有效。建议外接上拉电阻,典型取值5.1K
GND	12	-	电源地
MDO	13	I	主接口模式选择信号:
MD1	14		MD1 MD0=00 SPI接口;
			MD1 MD0=10 IIC接口; MD1 MD0=11 UART接口;
			M1 MO芯片内建上拉电路,悬空时M1 MO=11;
RX1	16		MI MO○万内建工业电路,总工时MI MO=II; 子通道串口串行数据输入。
RX2	11		RX 将所连数据UART的串行数据输入WK2132的相应管脚。
IVVZ	'	~	·KA 何///足数:指UNICI [1]中们 数指相/CWK2 [32[]7][]应自师。
TX1	15	0	子通道串口串行数据输出。
TX2	10		TX 将串行数据输出到与其连接的器件引脚。
71	1		

7. 寄存器描述

7.1 寄存器列表

WK2132的寄存器地址按6位地址编号,地址000000~111111,分为全局寄存器和子串口寄存器。 全局寄存器5个,全局寄存器的地址具体排列见表7.1:

表7.1 全局寄存器列表

寄存器地址[5:0]	寄存器名称	类型	寄存器功能描述
60 (12.4年を記している)	的红地切你	大土	MATERIAL MATERIAL PROPERTY.

-			
000000	GENA	R/W	全局控制寄存器
000001	GRST	R/W	全局子串口复位寄存器
000010	GMUT	R/W	全局主串口控制寄存器
010000	GIER	R/W	全局中断寄存器
010001	GIFR	R	全局中断标志寄存器

子串口寄存器16个,其排列为C1C0 REG[3:0],高两位为子串口通道号,低4位为寄存器地址,按 低4位的寄存器地址具体排列见表7.2:

表7.2 子串口控制寄存器

表7.2 子串口	控制寄存器			
寄存器地址[3:0]	寄存器名称	类型	寄存器功能描述	
(C1,C0) 0011	SPAGE	R/W	子串口页控制寄存器	
(C1,C0) 0100	SCR	R/W	子串口控制寄存器	SPAGE0
(C1,C0) 0101	LCR	R/W	子串口配置寄存器	SPAGE0
(C1,C0) 0110	FCR	R/W	子串口 FIFO 控制寄存器	SPAGE0
(C1,C0) 0111	SIER	R/W	子串口中断使能寄存器	SPAGE0
(C1,C0) 1000	SIFR	R/W	子串口中断标志寄存器	SPAGE0
(C1,C0) 1001	TFCNT	R	子串口发送 FIFO 计数寄存器	SPAGE0
(C1,C0) 1010	RFCNT	R	子串口接收 FIFO 计数寄存器	SPAGE0
(C1,C0) 1011	FSR	R	子串口 FIFO 状态寄存器	SPAGE0
(C1,C0) 1100	LSR	R	子串口接收状态寄存器	SPAGE0
(C1,C0) 1101	FDAT	R/W	子串口 FIFO 数据寄存器	SPAGE0
(C1,C0) 0100	BAUD1	R/W	子串口波特率配置寄存器高字节	SPAGE1
(C1,C0) 0101	BAUD0	R/W	子串口波特率配置寄存器低字节	SPAGE1
(C1,C0) 0110	PRES	R/W	子串口波特率配置寄存器小数部分	SPAGE1
(C1,C0) 0111	RFTL	R/W	子串口接收 FIFO 中断触发点配置寄	SPAGE1
			存器	
(C1,C0) 1000	TFTL	R/W	子串口发送 FIFO 中断触发点配置寄	SPAGE1
			存器	

C1,C0: 子通道号,00对应子串口1,01对应子串口2

7.2 寄存器描述

7.2.1 GENA 全局控制寄存器: (000000)

位	复位值	功能描述	类型
Bit7	1	M1 M1 引脚电平状态(M1 默认是高电平)	R
Bit6	1	M0 M0 引脚电平状态(M0 默认是高电平)	R
Bit5	1	RSV(保留位)	R
Bit4	1	RSV(保留位)	R
Bit3	0	RSV(保留位)	W/R

Bit2	0	RSV (保留位)	W/R
Bit1	0	UT2EN 子串口2时钟使能位(关断子串口时钟,可实现更低功耗)	W/R
		0: 未使能	
		1: 使能	
Bit0	0	UT1EN 子串口1时钟使能位(关断子串口时钟,可实现更低功耗)	W/R
		0: 未使能	
		1: 使能	

7.2.2 GRST 全局子串口复位寄存器: (000001)

位	复位值	功能描述	类型
Bit7	0	RSV(保留位)	R
Bit6	0	RSV (保留位)	R
Bit5	0	UT2SLEEP 子串口 2 休眠状态位(降低功耗,可自动唤醒)	R
		0: 未休眠	
		1: 休眠	
Bit4	0	UT1SLEEP 子串口 1 休眠状态位(降低功耗,可自动唤醒)	R
		0: 未休眠	
		1: 休眠	
Bit3	0	RSV(保留位)	W1/R0
Bit2	0	RSV(保留位)	W1/R0
Bit1	0	UT2RST 子串口 2 软复位控制位	W1/R0
		0: 未复位子串口 2	
		1: 复位子串口 2	
Bit0	0	UT1RST 子串口 1 软复位控制位	W1/R0
		0: 未复位子串口 1	
		1: 复位子串口 1	

7.2.3 GMUT 全局主串口控制寄存器: (000010)

位	复位值	功能描述	类型
Bit7	0	RSV (保留位)	W1/R0
Bit6 4	0	RSV (保留位)	R0
Bit3	0	PAEN 主串口校验使能控制位	W/R
-/2		0: 无校验	
		1: 使能校验(根据 PAM1, PAM0 的配置确定校验模式)	
Bit2 1	0	PAM1—0 主串口校验模式使能控制位	W/R
		当 PAEN=1 主串口校验使能时:	
		00: 强制 0 校验 ; 01: 奇校验 ;	
		10: 偶校验; 11: 强制 1 校验;	
Bit0	0	GSTPL 主串口停止位长度设置位	W/R
		0: 1bit	
		1: 2bits	

7.2.4 GIER 全局中断寄存器: (010000)

位	复位值	功能描述	类型
---	-----	------	----

Bit7 5	000	RSV (保留位)	R
Bit4	0	RSV (保留位)	W/R
Bit3	0	RSV (保留位)	W/R
Bit2	0	RSV (保留位)	W/R
Bit1	0	UT2IE 子串口 2 中断使能控制位	W/R
		0: 未使能	
		1: 使能	
Bit0	0	UT1IE 子串口 1 中断使能控制位	W/R
		0: 未使能	
		1: 使能	

7.2.5 GIFR 全局中断标志寄存器: (010001)

位	复位值	功能描述	类型
Bit7 4	000	RSV (保留位)	R
Bit3	0	RSV (保留位)	R
Bit2	0	RSV (保留位)	R
Bit1	0	UT2INT 子串口2中断标志位	R
		0: 无中断	
		1: 有中断	
Bit0	0	UT1INT 子串口1中断标志位	R
		0: 无中断	
		1: 有中断	

7.2.6 SPAGE 子串口页控制寄存器: (0011)

位	复位值	功能描述	类型
Bit7 1	000000	RSV (保留位)	R
Bit0	0	PAGE 子串口页控制位(子串口寄存器分布在 PAGE0 和 PAGE1	W/R
		上,不同页之间的切换,通过该寄存器来控制)	
		0: PAGE0	
		1: PAGE1	

7.2.7 SCR 子串口控制寄存器: (PAGE0:0100)

位	复位值	功能描述	类型
Bit7 3	000	RSV (保留位)	W/R
Bit2	0	SLEEPEN 子串口休眠使能位	W/R
		0: 不使能	
		1: 使能	
Bit1	0	TXEN 子串口发送使能位	W/R
		0: 不使能	
		1: 使能	
Bit0	0	RXEN 子串口接收使能位	W/R
		0: 不使能	
		1: 使能	

7.2.8 LCR 子串口配置寄存器: (PAGE0:0101)

位	复位值	功能描述	类型
Bit7 6	00	RSV (保留位)	W/R
Bit5	0	BREAK 子串口 Line-Break 输出控制位	W/R
		0: 正常输出	
		1: Line-Break 输出(TX 强制输出 0)	
Bit4	0	IREN 子串口红外使能位	W/R
		0: 普通模式	
		1: 红外模式	
Bit3	0	PAEN 子串口校验使能位	W/R
		0: 无校验位 (8位数据)	
		1: 有校验位(9位数据)	
Bit2 1	0	PAM1—0 子串口校验模式选择位	W/R
		当 PAEN=1 子串口校验使能时:	
		00:0 校验;01:奇校验;	
		10: 偶校验 ; 11: 1 校验	
Bit0	0	STPL 子串口停止位长度控制位	W/R
		0: 1bit	
		1: 2bits	

7.2.9 FCR 子串口 FIFO 控制寄存器: (PAGE0:0110)

位	复位值	功能描述	类型
Bit7 6	00	TFTRIG[1:0] 子串口发送 FIFO 触点设置位	W/R
		当 TFTL[7:0]等于 0 时:	
		00: 8Byte 01:16 Byte	
		10: 24 Byte 11:30 Byte	
Bit5 4	00	RFTRIG[1:0] 子串口接收 FIFO 触点设置位	W/R
		当 RFTL[7:0]等于 0 时:	
		00: 8Byte 01:16 Byte	
		10: 24 Byte 11:28 Byte	
Bit3	0	TFEN 子串口发送 FIFO 使能位	W/R
		0: 不使能	
715		1: 使能	
Bit2	0	RFEN 子串口接收 FIFO 使能位	W/R
		0: 不使能	
		1: 使能	
Bit1	0	TFRST 子串口发送 FIFO 复位位(该位写1复位,完成后自动置	W1/R0
		0)	
		0: 未使能复位	
		1:复位 FIFO	
Bit0	0	RFRST 子串口接收 FIFO 复位位(该位写 1 复位,完成后自动	W1/R0
		置 0)	

0: 未使能复位	
1:复位 FIFO	

7.2.10 SIER 子串口中断使能寄存器: (PAGE0:0111)

位	复位值	功能描述	类型
Bit7	0	FERR_IEN 接收 FIFO 数据错误中断使能位	W/R
		0:禁止接收 FIFO 数据错误中断	
		1: 使能接收 FIFO 数据错误中断	
Bit6	0	RSV (保留位)	W/R
Bit5	0	RSV (保留位)	W/R
Bit4	0	RSV (保留位)	W/R
Bit3	0	TFEMPTY_IEN 发送 FIFO 空中断使能位	W/R
		0:禁止发送 FIFO 空中断	
		1: 使能发送 FIFO 空中断	
Bit2	0	TFTRIG_IEN 发送 FIFO 触点中断使能位	W/R
		0: 禁止发送 FIFO 触点中断	
		1: 使能发送 FIFO 触点中断	
Bit1	0	RXOVT_IEN 接收 FIFO 超时中断使能位	W/R
		0: 禁止接收 FIFO 超时中断	
		1: 使能接收 FIFO 超时中断	
Bit0	0	RFTRIG_IEN 接收 FIFO 触点中断使能位	W/R
		0: 禁止接收 FIFO 触点中断	
		1: 使能接收 FIFO 触点中断	

7.2.11 SIFR 子串口中断标志寄存器: (PAGE0:1000)

位	复	位值	功能描述	类型
Bit7	0		FERR_INT 接收 FIFO 数据错误中断标志位	W/R
		A 1	0: 无接收 FIFO 数据错误中断	
			1: 有接收 FIFO 数据错误中断	
Bit6	0		RSV (保留位)	W/R
Bit5	0	X	RSV (保留位)	W/R
Bit4	0		RSV (保留位)	W/R
Bit3	0		TFEMPTY_INT 发送 FIFO 空中断标志位	W/R
			0: 无发送 FIFO 空中断	
			1: 有发送 FIFO 空中断	
Bit2			TFTRIG_ INT 发送 FIFO 触点中断标志位	W/R
			0: 无发送 FIFO 触点中断	
			1: 有发送 FIFO 触点中断	
Bit1			RXOVT_INT 接收 FIFO 超时中断标志位	W/R
			0: 无接收 FIFO 超时中断	
			1: 有接收 FIFO 超时中断	
Bit0	0		RFTRIG_ INT 接收 FIFO 触点中断标志位	W/R
			0: 无接收 FIFO 触点中断	

1: 有接收 FIFO 触点中断	

7.2.12 TFCNT 子串口发送 FIF0 计数寄存器: (PAGE0:1001)

位	复位值	功能描述	类型
Bit7 0	00000000	子串口发送 FIFO 中的数据个数	R

7.2.13 RFCNT 子串口接收 FIF0 计数寄存器: (PAGE0:1010)

位	复位值	功能描述	类型
Bit7 0	00000000	子串口接收 FIFO 中的数据个数	R

7.2.14 FSR 子串口 FIFO 状态寄存器: (PAGE0:1011)

位		复位值	功能描述	类型
Bit7		0	RFOE 子串口接收 FIFO 中数据溢出出错标志位	R
			0: 无 OE 错误	
			1: 有 OE 错误	
Bit6		0	RFBI 子串口接收 FIFO 中数据有 Line-Break 错误	W/R
			0: 无 Line-Break 错误	
			1: 有 Line-Break 错误(Rx 信号一直为 0 的状态,包括校验位	
			和停止位在内)	
Bit5		0	RFFE 子串口接收 FIFO 中数据帧错误标志位	W/R
			0: 无 FE 错误	
			1: 有 FE 错误	
Bit4		0	RFPE 子串口接收 FIFO 中数据校验错误标志位	W/R
			0: 无 PE 错误	
			1: 有 PE 错误	
Bit3		0	RDAT 子串口接收 FIFO 空标志位	W/R
			0: 子串口接收 FIFO 空	
		J	1: 子串口接收 FIFO 未空	
Bit2		0	TDAT 子串口发送 FIFO 空标志位	W/R
			0: 子串口发送 FIFO 空	
			1: 子串口发送 FIFO 未空	
Bit1	10	0	TFULL 子串口发送 FIFO 满标志位	W/R
			0: 子串口发送 FIFO 未满	
			1: 子串口发送 FIFO 满	
Bit0		0	TBUSY 子串口发送 TX 忙标志位	W/R
			0: 子串口发送 TX 空	
			1: 子串口发送 TX 忙	

7.2.15 LSR 子串口接收状态寄存器: (PAGE0:1100)

位	复位值	功能描述	类型
Bit7 – 4	0	RSV (保留位)	
Bit3	0	OE 子串口接收 FIFO 中当前被读取的字节溢出出错标志位	R
		0: 无 OE 错误	

		51 /6/10/10/10 第三十七世 2世紀 250数1 II O的同处	O/ 11 1 1
		1: 有 OE 错误	
Bit2	0	BI 子串口接收 FIFO 中当前被读取字节 Line-Break 错误标志位	R
		0: 无 Line-Break 错误	
		1: 有 Line-Break 错误(Rx 信号一直为 0 的状态,包括校验位	
		和停止位在内)	
Bit1	0	FE 子串口接收 FIFO 中当前被读取字节帧错误标志位	R
		0: 无 FE 错误	
		1: 有 FE 错误	
Bit0	0	PE 子串口接收 FIFO 中当前被读取字节校验错误标志位	R
		0: 无 PE 错误	
		1: 有 PE 错误	
	1		

7.2.16 FDAT 子串口 FIFO 数据寄存器: (PAGE0:1101)

位	复位值	功能描述	类型
Bit7 0	00000000	写操作时:写入子串口发送 FIFO 的数据	W/R
		读操作时:读出子串口接收 FIFO 的数据	

7.2.17 BAUD1 子串口波特率配置寄存器高字节: (PAGE1:0100)

位	复位值	功能描述	类型
Bit7 0	00000000	BAUD[15:8] 子串口波特率配置寄存器高字节	W/R

7.2.18 BAUD0 子串口波特率配置寄存器低字节: (PAGE1:0101)

位	复位值	功能描述	类型
Bit7 0	00000000	BAUD[7:0] 子串口波特率配置寄存器低字节	W/R

7.2.19 PRES 子串口波特率配置寄存器小数部分: (PAGE1:0110)

位	复位值	功能描述	类型
Bit7 4	0000	RSV	R
Bit3 0	0000	PRES[3:0]	W/R

7.2.20 RFTL 子串口接收 FIFO 触发中断寄存器: (PAGE1:0111)

位	复位值	功能描述	类型
Bit7 0	00000000	接收 FIFO 触点控制	W/R

7.2.21 TFTL 子串口发送 FIFO 触发中断寄存器: (PAGE1:1000)

位	复位值	功能描述	类型
Bit7 0	00000000	发送 FIFO 触点控制	W/R

8. 全局功能描述

8.1 复位

WK2132为低电平复位。

各寄存器的复位值见7.2寄存器表中所列。

复位期间及复位后,各子串口处于禁止收发状态。当子串口处于联网模式下时,该特性使得该子串口所在的子节点在上电、复位期间不会对联网的其它节点产生干扰。

每个子串口可独立实现软件复位。

8.2 时钟选择

WK2132可以选择使用晶振时钟作为芯片的时钟源。注意:需要和晶振并联1M的启动电阻。见图8.2

图 8.2 WK2132 时钟电路

8.3 中断控制

WK2132有两级中断:子串口中断及全局中断。当IRQ引脚指示有中断时,可以通过读取全局中断寄存器GIFR以判断当前中断的类型,然后去读取相应的中断状态寄存器,以确定当前的中断源。

WK2132的中断结构如下图所示:

图 8.3 WK2132 中断结构图

WK2132的每个子串口都有独立的中断系统,包括:FIF0数据错误中断,发送FIF0空中断,发送FIF0触发点中断,接收FIF0超时中断,接收FIF0触发点中断。

当任意一个中断使能后,满足中断条件就会产生相应的中断。

8.3.1 FIFO数据错误中断

FIF0数据错误中断表明当前接收FIF0中有一个或以上的数据错误,产生错误的条件包括0E(数据溢出错误),FE(数据帧错误),和PE(奇偶校验错),BE(Line-Break错误)。

一旦接收FIF0中有出错数据,当读取FSR寄存器后,该中断消失;也可通过清除错误数据来清除该中断。

8.3.2 发送FIFO空中断

当发送FIF0中没有数据,产生该中断。当发送FIF0中的数据个数大于设定的发送FIF0触发点时,该中断被清除。

8.3.3 发送FIFO触发点中断

当发送FIF0中的数据个数小于设定的发送FIF0触发点时,产生该中断。当发送FIF0中的数据个数大于设定的发送FIF0触发点时,该中断被清除。

8.3.4接收FIFO超时中断

当接收FIF0中数据个数小于设定的接收FIF0触发点并且RX引脚4个字节之内没有数据,产生该中断。当接收FIF0中的数据被读走或者RX继续接收数据时,该中断消失。

8.3.5 接收FIFO触发点中断

当接收FIF0中的数据个数大于设定的发送FIF0触发点时,产生该中断。当接收FIF0中的数据个数小于设定的发送FIF0触发点时,该中断被清除。

8.4 红外模式操作

WK2132的主串口和子串口都可以设置成为红外通信模式。当WK2132的UART设置为IrDA模式时,可以与符合SIR红外通信协议标准的设备通信,或者直接应用于光隔离通信中。

在IrDA模式下,一位数据的周期缩短到普通UART一位数据的3/16, <u>小于1/16波特周期的</u>脉冲将被作为干扰而忽略。

8.4.1 红外接收操作

在红外数据接收的时序和普通UART数据接收的对应图 如图8.4.1所示: IRX为接收到的红外数据信号,RX为通过红外数据解码后的数据。解码后的数据与IRX上的数据有1个BIT(16xCLOCK)的延迟。接收模式下,与普通UART不同的是,RX在脉冲的中间进行一次采样(区别与普通UART的3次采样),IrDA解码器将IRX上的3/16波特周期的脉冲解码为数据0,持续低电平解码为数据1。

图 8.4.1 红外接收时序

8.4.2 红外发送操作

红外数据发送和普通UART数据发送的对应图如图8.4.2所示,TX为普通UART数据发送时序,IRTX为红外发送时序。当发送数据0时,红外编码器将产生一个3/16位宽的脉冲通过TX发送。当发送数据0时,保持低电平不变。

8.5 可编程波特率发生器

WK2132 的主串口和子串口采用相同的独立可编程波特率发生器。该波特率发生器产生 16X 系统时钟的分频系数,分频率可以通过软件设置。

8.5.1 常见波特率和晶振对照表

下表给出了在不同系统时钟频率下的串口波特率设置表:

表 8.5.1

10.5.1							
BAUD	PRES	波特率	波特率	波特率	波特率	波特率	
BAUD[15-0]		Fosc=	Fosc=	Fosc=	Fosc=	Fosc=	
		1.8432MHz	3. 6864MHz	7. 3728MHz	11.0592MHz	14.7456MHz	
0X0002	0X00	38400	76800	153600	230400	307200	
0X0005	0X00	19200	38400	76800	115200	153600	
0X000b	0X00	9600	19200	38400	57600	76800	
0X0017	0X00	4800	9600	19200	28800	38400	
0X002f	0X00	2400	4800	9600	14400	19200	
0X005f	0X00	1200	2400	4800	7200	9600	
0X00bf	0X00	600	1200	2400	3600	4800	
0X017f	0X00	300	600	1200	1800	2400	
0X0000	0X00	115200	230400	460800	691200	921600	
0X0001	0X00	57600	115200	230400	345600	460800	
0X0003	0X00	28800	57600	115200	172800	230400	
0X0007	0X00	14400	28800	57600	86400	115200	
0X000f	0X00	7200	14400	28800	43200	57600	
0X001f	0X00	3600	7200	14400	21600	28800	
0X003f	0X00	1800	3600	7200	10800	14400	
0X007f	0X00	900	1800	3600	5400	7200	

8.5.2 任意晶振下波特率计算

计算公式:
$$f_s/baud*16$$
) = Reg

注: f_s 为系统时钟,baud 为需要设置的波特率,Reg为计算结果(通常需要精确到小数点后两位)

Reg整数部分减一并换算成16进制写入{BAUD1,BAUA0};如果还有小数部分,则取小数部分第一位写入PRES。如果没有小数部分,只需把整数部分写入{BAUD1,BAUA0},PRES写入0即可。

例1: f_s =11.0592MHz, baud=115200.根据公式可得Reg=6。那么填入寄存器的数据为:

BAUD1=0X00;BAUD0=0X05;PRES=0X00.

例2: f_s =12MHz,baud=115200.根据公式可得Reg=6.51(精确到小数点后两位)。那么填入寄存器的数据为BAUD1=0X00:BAUD0=0X05: PRES=0X05.

例3: 高波特率计算

BAUD	PRES	波特率	波特率	波特率
BAUD[15-0]		Fosc=	Fosc=	Fosc=
		8MHz	16MHz	24MHz
0X0000	0X00	500K	1M	1.5M
0X0001	0X00	250K	500K	750K
0X0003	0X00	125K	250K	375K

8.6 数据格式设置

8.6.1 校验模式

WK2132的UART能提供强制校验,计算校验和无校验的数据格式,通过LCR(子串口配置寄存器)进行设置:

强制校验模式

WK2132支持强1校验,强0校验和用户指定校验模式。在这种模式下,校验设置仅影响数据发送,数据接收将忽略奇偶校验。

在RS-485模式下,推荐使用强制校验模式,在该模式下,可以很方便的区分数据和地址。 计算校验模式

WK2132支持1校验、0校验, 奇校验、偶校验模式。在该模式下, 接收和发送的数据都进行 奇偶校验计算。

8.6.2 数据长度

WK2132支持1或2位停止位模式,主串口通过GMUT.GSTPL设置,子串口通过LCR.STPL设置。

8.7 休眠和自动唤醒

WK2132支持休眠和自动唤醒模式,并且每个子串口可以单独进行休眠设置。

休眠条件: 1、SCR.SLEEPEN=1

2、接收FIFO和发送FIFO要为空

- 3、RX上没有数据接收和TX上没有数据发送
- 4、子串口没有任何中断

当同时满足上诉条件,并保持以上状态4个Bytes的时间后,子串口自动进入休眠状态,子串口的时钟自动关闭,以降低功耗。此时通过读取GRST来判断子串口是否进入sleep状态。

当子串口进入休眠状态后,满足下面条件之一,休眠中的子串口可自动唤醒,此时通过读取GRST来判断子串口是否被唤醒。

唤醒条件: 1、RX上开始接收数据

2、向子串口发送FIFO写数据

3、CTS引脚电平变化

8.8 FIF0触点设置

WK2132支持每个子串口设置不同的触发点,接收FIFO和发送FIFO可以独立设置不同触发点。设置触点的方法有两种: 1、配置固定触点: 通过FCR寄存器中的TFTRIG[1:0]和RFTRIG[1:0]位固定编程来配置触发点位置。2、配置任意触点: 通过设置TFTL和RFTL两个寄存器来设置任意触发点位置。具体配置见表8.8.1:

表 8.8.1

TFTL	TFTRIG		TX	RFTL	RFTRIG		RX
[7:0]	[1:0]		Trigger	[7:0]	[1:0]	[1:0]	
			Level				Level
==0	0	0	8	==0	0	0	8
==0	0	1	16	==0	0	1	16
==0	1	0	24	==0	1	0	24
==0	1	1	30	==0	1	1	28
! =0	X	X	TFTL	! =0	X	X	RFTL

9. SPI接口模式操作

9.1 SPI 与主机的连接:

如图 9.1 所示 SPI 接口包括如下四个信号:

MISO: SPI 从器件数据输出。 MOSI: SPI 从器件数据输入。

SCLK: SPI 串行时钟。

SSEL: SPI 片选 (从属选择)。

WK2132与主机的连接如图 9.1 所示。

图 9.1 SPI 与主机连接图

9.2 SPI 接口的操作时序

WK2132 工作在 SPI 同步串行通信的从机模式下,支持 SPI 模式 0 标准。为实现主机和 WK2132 的通信,在主机端需要设置CPOL=0(SPI时钟极性选择位),CPHA=0(SPI时钟相位选择位)。

WK2132 SPI 接口的操作时序如下所示:

写寄存器操作时序如图 9.2 所示: 先写入一个命令字节(Command Byte),随后写入相应的数 据字节,数据字节的寄存器地址自动增加。

图 9.2 SPI 写寄存器时序图

读寄存器操作时序如图 9.3 所示: 先写入一个命令字节(Command Byte),随后芯片 MISO 线 上会返回相应的数据字节。返回数据字节的寄存器地址自动增加。

图 9.3 SPI 读寄存器时序图

写 FIFO 操作时序如图 9.4 所示: 先写入一个命令字节(Command Byte),随后再写入相应的数据字节。FIFO 地址自动增加。

图 9.4 SPI 写 FIFO 时序图

读 FIFO 操作时序如图 9.5 所示: 先写入一个命令字节(Command Byte),随后芯片 MISO 线上会返回相应的数据字节。FIFO 地址自动增加。

图 9.5 SPI 读 FIFO 时序图

9.3 SPI 总线通信协议描述:

9.3.1.SPI 写寄存器

SPI	控制字节 CMD							器地	数据			N 个	·数据号	字节,	寄存	
BIT	7 6 5 4 3 2 1 0						7	6	5	4	3	2	1	0		
MOSI	0	0	C1	CO	А3	A2	A1	A0	D7t	D6t	D5t	D4t	D3t	D2t	D1t	D0t
MISO	HZ HZ HZ HZ HZ HZ HZ HZ								HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ

9.3.2.SPI 读寄存器

SPI	控制字节 CMD								数据字节 DB(读 N 个数据字节, 寄存						寄存	
									器地	址自云	力增加)				
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
MOSI	0 1 C1 C0 A3 A2 A1 A0								Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

CDI/IIADT/IIC按口	金工厂由口	の場で表	256级FIFO的高速UART
SPI/UAR I/IIC接口	第二十年中月末	ノ I用 I目	/SD級FIFUHI高速UAKI

MISO HZ HZ HZ HZ HZ HZ HZ D7t D6t D5t D4t

9.3.3.SPI 写 FIFO

SPI			控	制字节	CMD					数抽	居字节	ל DB(写 N	个数	据字	节到
									{C1C	0}的1	IFO,	FIF0	地址自	司动增	加)	
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
MOSI	1	0	C1	CO	Χ	Χ	Χ	Χ	D7t	D6t	D5t	D4t	D3t	D2t	D1t	D0t
MISO	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ

9.3.4.SPI 读 FIFO

SPI			控	制字节	CMD					数排	書字节	DB(人	₹C1C	0}的 F	IF0 读	N个
									数据	字节,	FIF0	地址	自动增	加)		
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
MOSI	1	1	C1	CO	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ
MI SO	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	D7t	D6t	D5t	D4t	D3t	D2t	D1t	DOt

说明:

C1 C0: 子串口通道号 00~11 分别对应子串口 1 到子串口 4

A3-A0: 子串口寄存器地址 D7t…D0t: 8 位数据字节

10. UART接口模式操作

10.1 UART接口与主机的连接

当WK2132的主接口为UART时,仅需要RX,TX连接主机。采用标准的UART协议进行通信。主接口UART可以实现波特率自适应。上电复位后,先向WK2132写入0x55,WK2132可以根据写入的数据自动测得此时MCU的波特率并把主接口UART的波特率锁定,以后就以此波特率进行通信;如果主接口需要再次更换波特率,需要对芯片硬件复位,然后再次进行波特率测试和锁定。

WK2132与主机的接口如图10.1所示:

图 10.1 UART 接口与主机连接图

10.2 主UART接口的操作时序

写操作时,先向WK2132的MRX写入一个命令字节(Command Byte), 随后写入相应的数据字节, 其

操作时序(无校验模式)如图10.2.1所示:

图 10.2.1 UART 主接口写操作时序

读操作时,先向WK2132的RX写入命令字节,相应的数据字节从MTX读取,其操作时序(无校验模式)如图10.2.2所示

图 10.2.2 UART 主接口读操作时序

10.3 主UART通信传输协议描述:

10.3.1. 写寄存器:

-																
分类				控制等	字节 (CMD		·		1 个	数据字	Z节 Di	B(下行	-)		
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
TX	0	0	C1	CO	A3	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	DO
RX																

10.3.2. 写FIFO: (多字节写入)

分类				控制等	字节 0	CMD				[N3	N2 N1	NO]	卜数据	字节	DB(下	(五)
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
TX	1	0	C1	CO	N3	N2	N1	NO	D7	D6	D5	D4	D3	D2	D1	DO
RX																

10.3.3.读寄存器:

分类				控制	字节 C	CMD				1个	数据字	Z节 DI	B(上行	-)		
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
TX	0	1	C1	CO	А3	A2	A1	NO								
RX									D7	D6	D5	D4	D3	D2	D1	DO

10.3.4.读FIFO: (多字节读取)

分类				控制	字节 (CMD				[N3	N2 N1	NO]	个数据	字节:	DB(上	(正)
BIT	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
TX	1	1	C1	CO	N3	N2	N1	NO								
RX									D7	D6	D5	D4	D3	D2	D1	DO

说明:

- C1, C0: 子串口通道号, 00~11分别对应子串口1到子串口4。
- A3, A2, A1, A0: 子串口寄存器地址;
- N3, N2, N1, N0: 写入/读取FIF0的数据字节个数; 当其为0000时, 表明后接1个数据字节; 当其为1111时, 表明后接16个数据字节;

向子串口读/写数据有两种方法:

- a. 读/写寄存器方式,对子串口FIFO寄存器FDAT(1111)进行读/写操作,一次只能读/写一个字节;
- b. 读/写FIF0方式,对接收/发送FIF0直接进行读/写操作,一次最多可以读写16个连续数据

10.4 主UART接口红外操作模式

当主串口IR引脚接高电平时,WK2132主UART工作在红外模式下,主UART与主机的通信遵从红外通信协议,其操作时序参见8.8红外模式操作。

当主串口IR引脚接低电平时,WK2132工作在普通模式下。

11. IIC接口总线模式操作

两线 IIC 总线包含一根串行数据线 SDA 和一根串行时钟线 SCL。当总线处于空闲状态时,两根线都通过上拉电阻拉到正电源电压。每一个设备都有一个独立的地址。如图 11,

图 11 IIC 主接口示意图

11.1 数据传输

每一位数据都是通过一个始终脉冲进行传输的。在 SCL 为高的周期 SDA 线上的数据必须保持稳定。在此时改变 SDA 线上的数据会被认为是控制信号。当 SCL 为高的时候 SDA 线数据由高到低的跳变表示一个起始位,一个由低到高的跳变表示一个停止位。总线在起始位以后被认为处于忙的状态;在停止位后被认为处于空闲状态。

图 11.1.1 数据传输

图 11.1.2 起始位和停止位

在起始位和停止位之间的由主机到从机的数据必须是8bi t(比特)长,高位在前并且必须有一个应答位。与应答位相匹配的时钟是由主机产生的。当主机释放总线时,应答的设备必须在应答周期内拉低SDA线。

11.2 主IIC接口的操作时序

11.2.1.IIC写寄存器:

写寄存器操作时序如图11.2.1所示,先写入一个命令字节(Command Byte),随后写入寄存器地址字节,最后写入相应的数据字节,数据字节的寄存器地址会自动增加。

图 11.2.1 IIC 写寄存器操作时序

11.2.2.IIC读寄存器::

读寄存器操作时序如图11.2.2所示: IIC读寄存器操作分两次完成。第一次先写入一个命令字节(Command Byte),随后写入寄存器地址字节,完成本次写入操作。紧接着开始第二次操作,先写入一个命令字节(Command Byte),随后读入相应的数据字节,寄存器地址自动增加。

T A

SPI/UART/IIC接口 宽工作电压 2通道 256级FIFO的高速UART

图 11.2.2 IIC 读寄存器操作时序

11.2.3.IIC写FIFO:

写FIFO操作时序如图11.2.3所示,先写入一个命令字节(Command Byte),随后写入N个字节数据,FIFO地址自动增加。

图 11.2.3 IIC 写 FIFO 操作时序

11. 2. 4. IIC读FIFO:

读FIFO操作时序如图11.2.4所示,先写入一个命令字节(Command Byte),随后读取N个数据字节,FIFO地址自动增加。

图 11.2.4 IIC 读 FIFO 操作时序

11.3 地址:

每一个挂在总线上的设备都必须有自己独特的地址。数据在总线上传输以前,主机在总线上发送从机的地址以开始一次传输。所有从机都会比较地址,如果网络里有地址相同当然会应答主机的

地址请求。地址在起始位以后传输的第一个字节的高 2 位传输。每个器件的地址由 A1A0 引脚控制,那么编程中只需要 P1P0 的值和 IA1、IA0 的值对应即可。

11.4 传输协议:

11.4.1. 写寄存器:

S			控制	刊字"	节 CM	ИD			A				客	子存器	地址			A	N 个数据字节	A	P
5	P1	P0	1	0	C1	C0	0	0		X	X	X	X	A3	A2	A1	A0		Data0-DataN		

11.4.2. 读寄存器:

11.4.3.写FIFO:

11.4.4.读FIF0:

S	控制	字节	CM	ID					A	N-1 个数据字节	A	第 N 个数据字节	N A	D
S	P1	P0	1	0	C1	C0	1	1	71	Data0-Data (N-1)	71	DataN	71	1

说明:

注意: 当MCU不需要继续接收WK2132的数据时,那么在接收完当前字节后,不需要发出应答,只需给出应答时钟即可。

C1, CO: 子串口通道号,00~11分别对应子串口1到子串口4

A3, A2, A1, A0: 子串口寄存器地址

P1. P0: 为器件地址,这个由芯片引脚IA1、IA0控制

S: 起始位 P: 停止位 A: 应答位 NA: 无应答信号

12. 子串口操作描述

12.1 子串口使能/禁止

WK2132允许独立使能或禁止每个子串口通道。

在使用中可以禁止不使用的子串口通道。

子串口通道只有处在使能状态才能接收和发送数据。

12.2 收发 FIF0 控制

WK2132提供了独立的256级FIF0接收和发送FIF0。(子串口FIF0控制寄存器)进行设置。

12.2.1 发送FIFO 触发点操作

WK2132为每个通道提供独立的可编程发送FIF0触发点设置,以产生相应的发送FIF0触发点中断。 当发送FIF0触发点中断使能时,发送FIF0中的数据数目小于设定的触发点时产生相应中断。

12.2.2 接收FIFO触发点操作

WK2132为每个通道提供独立的可编程接收FIF0触发点设置,以产生相应的接收FIF0触发点中断。 当接收FIF0触发点中断使能时,接收FIF0中的数据数目大于或者等于设定的触发点时产生相应中断。

12.2.3 发送FIFO的使能/禁止

复位后,发送FIF0处于禁止状态。如果希望将数据写入发送FIF0,需要首先使能发送FIF0。 发送FIF0中的数据是否发送,取决于相应的子通道UART是否使能。一旦相应子通道UART处于 使能状态,则发送FIF0中的数据将会立即发送,否则,发送FIF0中的数据将不会被发送直到相应 的子通道被使能。

12.2.4 接收FIFO的使能/禁止

复位后,接收FIF0处于禁止状态。如果希望接收子串口数据,需要首先使能相应的子串口通道及其接收FIF0。只有相应的UART和接收FIF0使能后,接收到的数据才能写入接收FIF0存储。

如果子串口通道使能而接收FIF0禁止,子串口能接收数据,但数据不会写入接收FIF0而被忽略。

12.2.5 发送FIFO 清空

当FCR中发送FIF0清空位(TFRST)被置1时,该子通道发送FIF0中的数据将被清空,发送FIF0 计数器和指针都将清零。

TFRST位被置1后,将会在一个时钟后被硬件自动清0。

12.2.6 接收FIFO 清空

当FCR中接收FIF0清空位(RFRST)被置1时,该子通道接收FIF0中的数据将被清空,接收FIF0 计数器和指针都将清零。

RFRST位被置1后,将会在一个时钟后被硬件自动清0。

12.2.7 发送FIFO 计数器

WK2132用一个8位寄存器来反映当前发送FIF0中的数据数目: 当一个字节的数据写入发送FIF0后,发送FIF0计数器自动加1; 当一个发送FIF0中的数据被发送后,发送FIF0计数器自动减1。

注意: 当发送FIF0计数器为255(11111111)时,如果再写入一个数据则计数器变为0(00000000)。当发送FIF0计数器为1(00000001)时,发送一个数据之后则计数器也变为0(00000000)。因此,当发送FIF0计数器为0时,表明发送FIF0满或者空,在这种情况下,需要结合子串口状态寄存器(FSR)中的相关状态位进行判断。

12.2.8 接收FIF0计数器

WK2132用一个8位寄存器来反映当前接收FIF0中的数据数目: 当一个字节的数据写入接收FIF0后,接收FIF0计数器自动加1; 当一个接收FIF0中的数据被读取后,接收FIF0计数器自动减1。

注意: 当接收FIF0计数器为255(11111111)时,如果再接收一个数据则计数器变为0(00000000)。当接收FIF0计数器为1(00000001)时,读取一个数据之后则计数器也变为0(00000000)。因此,当接收FIF0计数器为0时,表明接收FIF0满或者空,在这种情况下,需要结合子串口状态寄存器(FSR)中的相关状态位进行判断。

13. 参数指标

13.1 WK2132的静态参数

除非特别说明,满足: VCC=(2.5V±0.2V)或(3.3±0.3V)或(5V); -40℃到+85℃;

符号	说明	条件	VCC:	=2.5V		=3.0V	f	=5.0V	单
			最小	最大	最小	最大	最小	最大	位
电源									
VCC	电源电压		2.3	2.7	3.0	3.6	4.5	5.0	V
ICC	工作电流	3.6864MHz 晶振	0.8	2	1	2	2	3	mA
ICCsl	休眠电流	无负载	150	-	200	-	460	-	uA
输入逻辑	信号								
Vih	输入高电平		1.8	5.0	2.0	5.0	3.6	5.0	V
Vil	输入低电平		-	0.6	-	0.9	-	1.1	V
IIL	输入漏电流	V _I =5.0 or 0V	-	±10	-	±10	-	±10	uA
Cı	输入电容		i	5	1	5	-	5	pF
输出逻辑	信号						10		
Vон	输出高电平	Іон=3тА	1.9	_	2.4	-)	4.5	-	V
Vol	输出低电平	IoL=-3mA	-	0.4	-	0.4	0	0.4	V
Iol	输出漏电流		-	±10	-	±10) -	±10	uA
Co	输出电容		-	5	- 5	5	-	5	pF

13.2 WK2132的动态参数

符号	说明	条件	VCC=	=2.5V	VCC:	=3.0V	VCC	=5.0V	单
			最小	最大	最小	最大	最小	最大	位
Fosi	晶振频率		4-	16	-	24	-	32	MHz

13.3 WK2132的极限参数

符号	说明	条件	最小	最大	单位
VCC	电源电压	X	-0.5	6	V
VI	输入电压	75	-0.5	+5.5	V
Vo	输出电压		-0.5	+5.5	V
PTOL	总功耗		-	300	mW
То	工作温度		-40	+85	$^{\circ}\mathbb{C}$
Tstg	存储温度		-65	+150	${\mathbb C}$

14. 封装信息

WK2132采SSOP16无铅绿色封装 图14.1 SSOP16封装信息

尺寸	最小 (mm)	最大(mm)	尺寸	最小 (mm)	最大(mm)
标注			标注		
A	6.15	6.25	C3	0.1	52
A1	0.30	TYP	C4	0.172	
A2	0.65TYP		Н	0.05	0.15
A3	0.675TYP		θ	12° TYP4	
В	5.25	5.35	θ2	12° TYP4	
B1	7.65	7.95	θ2	10°	TYP
B2	0.60	0.80	θ3	0° ~ 8°	
С	1.70	1.80	R	0.20	ТҮР
C1	1.75	1.95	R1	0.15	ГҮР
C2	0.7	799			

Ver1.0

15. 焊接工艺

WK2132 采用使用绿色环保材料,引脚采用纯锡电镀。推荐使用峰值温度小于 260℃,符合无铅标准的回流焊工艺进行焊接。

所有 SMD 器件焊接工艺都对湿度敏感(湿度等级及条件见外包装盒),建议在焊接前进行干燥处理。 采用手工焊接时,应首先焊接两个对角线的引脚进行固定后再焊接其它引脚。焊接温度为 300℃, 烙铁与引脚的接触时间控制在 10 秒以内。

16. 特别申明

本产品并非为生命保障系统、航空航天系统设计,将本产品应用于该领域而引发的一切后果,为 开微电子将不承担任何责任。 为开微电子保留对产品进行性能、功能、参数修改的权利。对于正 式量产的产品,为开微电子做出的修改将以公告方式通告用户。

17. 版本历史

V1.0 以前版本均为未正式公开的内部版本。

版本	发表日期	修改内容
V1.0	2017.09	创建文件
		8
	•	
	RP	

18. 联系信息

. 请访问为开微电子的网站获取我们的最新联系方式: www.wkmic.com