Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG – LFA 2021/1 – H. Longo

(1 – 1 de 12

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Transformações (102 - 170 de 1295)

Transformações em GLC's

- ▶ Objetivo das transformações é tornar uma *GLC* mais simples ou prepará-la para alguma aplicação posterior.
- Qualquer que seja a transformação efetuada em uma gramática, a linguagem gerada deve ser sempre a mesma.
- Transformações:
 - Eliminação de recursão na variável inicial.
 Contração.
 Eliminação de derivações vazias.
 Eliminação de símbolos inúteis.
 Eliminação de regras de derivação simples (unitárias).
 - → Eliminação de recursão à esquerda (e à direita).
 - 7. Fatoração.

Eliminação de recursão na variável inicial

Lema 1.44

- ▶ Seja $G = (V, \Sigma, P, S)$ uma gramática livre de contexto. Existe uma gramática $G' = (V', \Sigma, P', S')$, que satisfaz:
 - 1. $\mathcal{L}(G) = \mathcal{L}(G')$,
 - 2. As regras de derivação em P' são da forma $A \to w$, onde $A \in V'$ e $w \in ((V' \{S'\}) \cup \Sigma)^*$.

Demonstração.

- Se a variável S não ocorre no lado direito de nenhuma regra de derivação, então G = G'.
- ▶ Se S é uma variável recursiva, então $G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S\}, S')$.

INF/UFG _ LFA 2021/1 - H. Longo Transformações (103 - 170 de 1295) INF/UFG _ LFA 2021/1 - H. Longo

Eliminação de recursão na variável inicial

Lema 1.44

- ▶ Seja $G = (V, \Sigma, P, S)$ uma gramática livre de contexto. Existe uma gramática $G' = (V', \Sigma, P', S')$, que satisfaz:
 - 1. $\mathcal{L}(G) = \mathcal{L}(G')$,
 - 2. As regras de derivação em P' são da forma $A \to w$, onde $A \in V'$ e $w \in ((V' - \{S'\}) \cup \Sigma)^*$.

Demonstração.

- $\mathcal{L}(G) = \mathcal{L}(G')$
 - $S \stackrel{*}{\Longrightarrow} u \equiv S' \stackrel{*}{\Longrightarrow} S \stackrel{*}{\Longrightarrow} u.$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (105 - 170 de 1295

Eliminação de recursão na variável inicial

Exemplo 1.45

$$G: \quad P = \begin{cases} S \to aS \mid AB \mid AC, \\ A \to aA \mid \varepsilon, \\ B \to bB \mid bS, \\ C \to cC \mid \varepsilon \end{cases}$$

$$G: P = \begin{cases} S \to aS \mid AB \mid AC, \\ A \to aA \mid \varepsilon, \\ B \to bB \mid bS, \\ C \to cC \mid \varepsilon \end{cases}$$

$$G': P' = \begin{cases} S' \to S, \\ S \to aS \mid AB \mid AC, \\ A \to aA \mid \varepsilon, \\ B \to bB \mid bS, \\ C \to cC \mid \varepsilon \end{cases}$$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (106 - 170 de 1295

Contração

Lema 1.46

Seja $G = (V, \Sigma, P, S)$ uma GLC. Se $A \stackrel{*}{\underset{G}{\Longrightarrow}} w$, então a gramática $G' = (V, \Sigma, P \cup \{A \rightarrow w\}, S)$ é equivalente a $G(\mathcal{L}(G) = \mathcal{L}(G'))$.

Demonstração.

- $\Rightarrow \mathcal{L}(G) \subseteq \mathcal{L}(G')$ uma vez que toda regra de derivação de G também pertence à G'.
- $\Leftarrow \mathcal{L}(G') \subseteq \mathcal{L}(G)$, pois a aplicação da regra $A \to w$ em uma derivação em G' pode ser simulada em G pela derivação $A \stackrel{*}{\Longrightarrow} w$.

Eliminação de derivações vazias

Definição 1.47 (ε -regra)

 Regra de derivação cujo lado direito contém somente a cadeia vazia, ou seja, $A \to \varepsilon$.

Definição 1.48 (ε-Variáveis)

Conjunto de variáveis que derivam, direta ou indiretamente, a cadeia vazia: $V_{\varepsilon} = \{ A \in V \mid A \Longrightarrow \varepsilon \}.$

Definição 1.49 ($GLC \varepsilon$ -livre)

▶ GLC que não possui ε -regras ou possui $S \to \varepsilon$ como uma única ε -regra, onde Sé o símbolo inicial da gramática e S não aparece do lado direito de nenhuma regra de derivação.

Exemplo 1.50

- $\mathcal{L}(G) = (a^+b^*)^+$.
- ▶ Derivação à esquerda de aaaa gera quatro B's, os quais são removidos com a regra $B \rightarrow \varepsilon$.
- ▶ Gramática equivalente sem ε -regras:

►
$$G_1 = (\{S, B\}, \{a, b\}, P, S)$$
, onde $P = \begin{cases} S \to SaB \mid Sa \mid aB \mid a, \\ B \to bB \mid b \end{cases}$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (109 - 170 de 1295)

Eliminação de derivações vazias

Algoritmo 1: Busca ε-variáveis

```
Entrada: GLC (V, \Sigma, P, S).

Saída: Conjunto de \varepsilon-variáveis.

1 V_{\varepsilon} \leftarrow \{A \mid (A \rightarrow \varepsilon) \in P\};

2 repita

3 AUX \leftarrow V_{\varepsilon};

4 para cada (A \in V) faça

5 \mathbb{S} \in (\exists A \rightarrow w \ e \ w \in AUX^*) então

6 V_{\varepsilon} \leftarrow V_{\varepsilon} \cup \{A\};

7 até (AUX = V_{\varepsilon});

8 retorna (V_{\varepsilon});
```


INF/UFG - LFA 2021/1 - H. Longo

Transformações (110 - 170 de 1295

Eliminação de derivações vazias

Exemplo 1.51

$$\bullet G = (\{S, A, B, C\}, \{a, b, c\}, P, S), \text{ onde } P = \begin{cases} S \to ACA, \\ A \to aAa \mid B \mid C, \\ B \to bB \mid b, \\ C \to cC \mid \varepsilon \end{cases}$$

Iteração	$V_{arepsilon}$	AUX
0	{ <i>C</i> }	
1	$\{A,C\}$	{ <i>C</i> }
2	$\{S,A,C\}$	{ <i>A</i> , <i>C</i> }
3	$\{S,A,C\}$	$\{S,A,C\}$

Eliminação de derivações vazias

Lema 1.52

▶ Dada uma gramática $G = (V, \Sigma, P, S)$, o Algoritmo 1 gera o conjunto de ε -variáveis de G.

Demonstração.

- 1. Toda variável em V_{ε} deriva a cadeia vazia:
 - Indução no número de iterações do algoritmo.
 - ▶ Hipótese Indutiva: Após n iterações todas as variáveis em V_{ε} são ε -variáveis.
 - Passo Indutivo:
 Provar que qualquer variável adicionada no passo n + 1 também é uma ε-variável.

INF/UFG - LFA 2021/1 - H. Longo Transformações (111 - 170 de 1295) INF/UFG - LFA 2021/1 - H. Longo Transformações (112 - 170 de 1295)

Lema 1.52

▶ Dada uma gramática G = (V, Σ, P, S), o Algoritmo 1 gera o conjunto de ε-variáveis de G.

Demonstração.

Passo Indutivo:

Se A é essa variável, então existe a regra de derivação $A \to A_1A_2 \dots A_k$, em que cada $A_i \in AUX$ na iteração n+1.

Por hipótese de indução, $A_i \stackrel{*}{\Longrightarrow} \varepsilon$ para i = 1, 2, ..., k. Portanto:

$$A \Longrightarrow A_1 A_2 \dots A_k \stackrel{*}{\Longrightarrow} A_2 \dots A_k \stackrel{*}{\Longrightarrow} A_3 \dots A_k \stackrel{*}{\Longrightarrow} E.$$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (113 - 170 de 1295)

Eliminação de derivações vazias

Lema 1.52

▶ Dada uma gramática $G = (V, \Sigma, P, S)$, o Algoritmo 1 gera o conjunto de ε -variáveis de G.

Demonstração.

- 2. Toda ε -variável é inserida no conjunto V_{ε} :
 - Indução no comprimento da derivação mínima de ε a partir de uma variável A.
 - ► Base: Se $A \stackrel{:}{\Longrightarrow} \varepsilon$, então A é inserido em V_s no passo 1.
 - Hipótese Indutiva:
 Toda variável, cuja derivação mínima de ε é de comprimento máximo n, é inserida no conjunto V_ε até a iteração n.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (114 - 170 de 1295

Eliminação de derivações vazias

Lema 1.52

▶ Dada uma gramática G = (V, Σ, P, S), o Algoritmo 1 gera o conjunto de ε-variáveis de G.

Demonstração.

Passo Indutivo:

Seja A uma variável que deriva ε em n+1 passos:

$$A \Longrightarrow A_1 A_2 \dots A_k \stackrel{{}^n}{\Longrightarrow} \varepsilon.$$

Por H.I., cada A_i deriva ε com derivação mínima de comprimento n ou menor e é inserida em V_{ε} antes da iteração n+1.

Eliminação de derivações vazias

Lema 1.52

▶ Dada uma gramática $G = (V, \Sigma, P, S)$, o Algoritmo 1 gera o conjunto de ε -variáveis de G.

Demonstração.

Passo Indutivo:

Se $m \le n$ é a primeira iteração na qual todos os A_i 's já foram inseridos em V_{ε} , então na iteração m+1 a regra $A \to A_1A_2 \dots A_k$ força a variável A a ser inserida em V_{ε} .

Definição 1.53

- ightharpoonup Uma gramática sem ε-variáveis é não contraível, já que nenhuma regra de derivação pode diminuir o tamanho de qualquer forma sentencial.
- ▶ Se $G = (V, \Sigma, P, S)$ é uma GLC e $\varepsilon \in \mathcal{L}(G)$, então não existe uma gramática não contraível equivalente.
- ▶ Se $S \to \varepsilon$ é única ε -regra de G, então todas as derivações em G (com exceção de $S \to \varepsilon$) são não contraíveis.
 - Gramática essencialmente não contraível.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (117 - 170 de 1295)

Eliminação de derivações vazias

Exemplo 1.54

$$\blacktriangleright G_1: \begin{cases} S \to ASa, \\ A \to aA \mid \varepsilon \end{cases} \equiv G_2: \begin{cases} S \to ASa \mid Sa, \\ A \to aA \mid a \end{cases}$$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (118 - 170 de 1295

Eliminação de derivações vazias

Teorema 1.55

- Seja $G = (V, \Sigma, P, S)$ uma GLC. Existe um algoritmo para construir uma gramática $G_L = (V_L, \Sigma, P_L, S_L)$ que satisfaz:
 - 1. $\mathcal{L}(G) = \mathcal{L}(G_L)$,
 - 2. S_L não é variável recursiva, e
 - 3. $(A \to \varepsilon) \in P$ se, e somente se, $\varepsilon \in \mathcal{L}(G)$ e $A = S_L$.

Eliminação de derivações vazias

Demonstração.

- 2. S_L não é variável recursiva.
 - ▶ É suficiente usar a técnica apresentada no Lema 1.44. $V_L = V$ ou $V_L = V \cup \{S_L\}$ (se necessário mudar a variável inicial).
- 3. $(A \to \varepsilon) \in P$ se, e somente se, $\varepsilon \in \mathcal{L}(G)$ e $A = S_L$.
 - ► Regras de derivação de *G*_L:
 - 3.1 Se $\varepsilon \in \mathcal{L}(G)$ então $(S_L \to \varepsilon) \in P_L$.
 - 3.2 Se $(A \to w) \in P$ e $w = w_1A_1w_2A_2\dots w_kA_kw_{k+1}$, onde A_1,A_2,\dots,A_k são ε -variáveis, então $(A \to w_1w_2\dots w_kw_{k+1}) \in P_L$.
 - **3.3** $(A \to \varepsilon) \in P_L$ somente se $\varepsilon \in \mathcal{L}(G)$ e $A = S_L$.

Demonstração.

- 1. $\mathcal{L}(G_L) \subseteq \mathcal{L}(G)$.
 - ightharpoonup As derivações em G_L usam as regras de G e aquelas criadas pela condição 3 do teorema, as quais são deriváveis em G.
- **2**. $\mathcal{L}(G) \subseteq \mathcal{L}(G_L)$.
 - Mostrar que toda cadeia não vazia, derivável em G a partir de uma variável A, também é derivável em G_L a partir de A.
 - ► Se $A \stackrel{\stackrel{n}{\Longrightarrow}}{\underset{G}{\longrightarrow}} w$, com $w \in \Sigma^+$, então $A \stackrel{*}{\underset{G_L}{\Longrightarrow}} w$.
 - ▶ Indução em n.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (121 - 170 de 1295)

Eliminação de derivações vazias

Demonstração.

Se $A \stackrel{n}{\Longrightarrow} w$, com $w \in \Sigma^+$, então $A \stackrel{*}{\Longrightarrow} w$.

Base

Se n = 1, então $(A \to w) \in P$ e, como $w \neq \varepsilon$, $(A \to w) \in P_L$.

Hipótese Indutiva:

Toda cadeia de terminais derivável a partir de A em G, em no máximo n passos, também é derivável em G_I .

INF/UFG - LFA 2021/1 - H. Longo

Transformações (122 - 170 de 1295)

Eliminação de derivações vazias

Demonstração.

Se $A \stackrel{n}{\Longrightarrow} w$, com $w \in \Sigma^+$, então $A \stackrel{*}{\Longrightarrow} w$.

Passo Indutivo:

Seja $A \stackrel{n+1}{\Longrightarrow} w$ uma derivação de uma cadeia de terminais. Então:

$$A \Longrightarrow w_1 A_1 w_2 A_2 \dots w_k A_k w_{k+1} \stackrel{n}{\Longrightarrow} w,$$

onde $A_i \in V$ e $w_i \in \Sigma^*$. Logo, w pode ser reescrito como:

$$w = w_1 p_1 w_2 p_2 \dots w_k p_k w_{k+1},$$

onde A_i deriva p_i em no máximo n passos.

•

Eliminação de derivações vazias

Demonstração.

Se $A \stackrel{n}{\Longrightarrow} w$, com $w \in \Sigma^+$, então $A \stackrel{*}{\Longrightarrow} w$.

Passo Indutivo:

Por H.I. $A_i \overset{*}{\underset{G_L}{\longrightarrow}} p_i$, para cada $p_i \in \Sigma^+$. Se $p_i = \varepsilon$, então algum A_j é uma ε -variável e uma nova regra de derivação é gerada a partir de

$$A \rightarrow w_1 A_1 w_2 A_2 \dots w_k A_k w_{k+1}$$

na qual cada variável que deriva a cadeia vazia é excluída.

Para se derivar w em G_L , primeiro aplica-se essa nova regra e então deriva-se cada p_i usando-se as derivações fornecidas pela H.I.

Exemplo 1.56

$$\blacktriangleright G: \begin{cases} S \to ACA, \\ A \to aAa \mid B \mid C, \\ B \to bB \mid b, \\ C \to cC \mid \varepsilon \end{cases}$$

$$\bullet G: \begin{cases}
S \to ACA, \\
A \to aAa \mid B \mid C, \\
B \to bB \mid b, \\
C \to cC \mid \varepsilon
\end{cases}$$

$$\bullet G_L: \begin{cases}
S \to ACA \mid CA \mid AA \mid AC \mid A \mid C \mid \varepsilon, \\
A \to aAa \mid aa \mid B \mid C, \\
B \to bB \mid b, \\
C \to cC \mid c
\end{cases}$$

- $V_{\varepsilon} = \{S, A, C\}$
- Derivação da cadeia vazia:

$$G:\ S \Rightarrow ACA \Rightarrow CCA \Rightarrow CA \Rightarrow A \Rightarrow C \Rightarrow \varepsilon$$

$$G_L:\ S \Rightarrow \varepsilon$$

Derivação da cadeia aba:

$$G: S \Rightarrow ACA \Rightarrow aAaCA \Rightarrow aBaCA \Rightarrow abaCA \Rightarrow abaC \Rightarrow aba$$

 $G_1: S \Rightarrow A \Rightarrow aAa \Rightarrow aBa \Rightarrow aba$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (125 - 170 de 1295)

Eliminação de derivações vazias

Exemplo 1.57

$$\blacktriangleright G: \begin{cases}
S \to ABC, \\
A \to aA \mid \varepsilon, \\
B \to bB \mid \varepsilon, \\
C \to cC \mid \varepsilon
\end{cases}$$

- $\mathcal{L}(G) = a^*b^*c^*$
- \triangleright $V_{\varepsilon} = \{S, A, B, C\}$

$$\blacktriangleright G_L: \begin{cases}
S \to ABC \mid AB \mid BC \mid AC \mid A \mid B \mid C \mid \varepsilon, \\
A \to aA \mid a, \\
B \to bB \mid b, \\
C \to cC \mid c
\end{cases}$$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (126 - 170 de 1295

Eliminação de derivações simples

Definição 1.58

▶ Regras de derivação simples são da forma $A \rightarrow B$, onde $A, B \in V$.

Observações

- ightharpoonup A aplicação de uma regra $A \to B$ não aumenta a forma sentencial derivada ou acrescenta terminais à mesma.
- A remoção de regras simples requer a adição de novas regras que permitam a geração das mesmas cadeias.
- Uma regra simples apenas renomeia uma variável.

Eliminação de derivações simples

Exemplo 1.59

- ► Considere as regras $\begin{cases} A \to aA \mid a \mid B, \\ B \to bB \mid b \mid C \end{cases}$
- ightharpoonup A regra $A \rightarrow B$ indica que qualquer cadeia derivável a partir de B também é derivável a partir de A.
- ▶ Eliminação de $A \rightarrow B$: acrescentar $A \rightarrow w$ para cada regra $B \rightarrow w$:

$$\begin{cases}
A \to aA \mid a \mid bB \mid b \mid C, \\
B \to bB \mid b \mid C
\end{cases}$$

Eliminação de derivações simples

Definição 1.60

▶ Uma derivação $A \stackrel{*}{\Longrightarrow} C$ constituída apenas de regras de derivação simples é chamada de cadeia de derivação.

Dúvida?

Como determinar as variáveis que podem ser derivadas, com uma cadeia de derivação, a partir de uma dada variável?

INF/UFG - LFA 2021/1 - H. Longo

Transformações (129 - 170 de 1295)

Eliminação de derivações simples

Algoritmo 2: Cadeia de derivação

Entrada: GLC (V, Σ, P, S) essencialmente não contraível e $A \in V$. **Saída:** Conjunto de variáveis de cadeias de derivação de A.

```
: CADEIA(A) \leftarrow \{A\};
2 AUX \leftarrow \emptyset;
3 repita
4 | NOVAS \leftarrow CADEIA(A) - AUX;
5 | AUX \leftarrow CADEIA(A);
6 | para cada (B \in NOVAS) faça
7 | para cada (B \rightarrow C) faça
8 | CADEIA(A) \leftarrow CADEIA(A) \cup \{C\};
```

 $_{9}$ até (AUX = CADEIA(A));

10 retorna (CADEIA(A));

INF/UFG - LFA 2021/1 - H. Longo

Transformações (130 - 170 de 1295

Eliminação de derivações simples

Lema 1.61

Dada uma GLC essencialmente não contraível, o Algoritmo 2 gera o conjunto de variáveis que podem ser derivadas, com cadeias de derivação, a partir de uma dada variável.

Demonstração.

Exercício

Eliminação de derivações simples

Teorema 1.62

- ▶ Dada a $GLC\ G = (V, \Sigma, P, S)$ essencialmente não contraível, existe um algoritmo que constrói a $GLC\ G_C = (V_C, \Sigma, P_C, S)$ tal que:
 - 1. $\mathcal{L}(G_C) = \mathcal{L}(G)$,
 - 2. G_C não contém regras de derivação simples.

Demonstração.

- 2. G_C não contém regras de derivação simples.
 - $(A \rightarrow w) \in P_C$ se existe $B \in V$ e w tais que:
 - 2.1 $B \in CADEIA(A)$,
 - $2.2 (B \rightarrow w) \in P$
 - 2.3 *w* \notin *V*.

Transformações (132 - 170 de 1295)

Eliminação de derivações simples

Teorema 1.62

- ▶ Dada a $GLC\ G = (V, \Sigma, P, S)$ essencialmente não contraível, existe um algoritmo que constrói a $GLC\ G_C = (V_C, \Sigma, P_C, S)$ tal que:
 - 1. $\mathcal{L}(G_C) = \mathcal{L}(G)$,
 - 2. G_C não contém regras de derivação simples.

Demonstração.

- G' não contém regras de derivação simples.
 - ▶ As regras de derivação de A em G_C são construídas a partir dos conjuntos CADEIA(A) e P.
 - ightharpoonup A terceira condição garante que P_C não contém regras de derivação simples.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (133 - 170 de 1295

Eliminação de derivações simples

Teorema 1.62

- ▶ Dada a GLC $G = (V, \Sigma, P, S)$ essencialmente não contraível, existe um algoritmo que constrói a GLC $G_C = (V_C, \Sigma, P_C, S)$ tal que:
 - 1. $\mathcal{L}(G_C) = \mathcal{L}(G)$,
 - 2. G_C não contém regras de derivação simples.

Demonstração.

- 1. $\mathcal{L}(G_C) \subseteq \mathcal{L}(G)$:
 - ightharpoonup O Lema 1.46 garante que toda cadeia derivável em G_C também é derivável em G.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (134 - 170 de 1295

Eliminação de derivações simples

Teorema 1.62

- ▶ Dada a $GLC\ G = (V, \Sigma, P, S)$ essencialmente não contraível, existe um algoritmo que constrói a $GLC\ G_C = (V_C, \Sigma, P_C, S)$ tal que:
 - 1. $\mathcal{L}(G_C) = \mathcal{L}(G)$,
 - 2. G_C não contém regras de derivação simples.

Demonstração.

- 2. $\mathcal{L}(G) \subseteq \mathcal{L}(G_C)$:
 - ▶ Seja derivação $S \stackrel{*}{\underset{G}{\Longrightarrow}} uAv \stackrel{*}{\underset{G}{\Longrightarrow}} uBv \stackrel{*}{\underset{G}{\Longrightarrow}} upv \stackrel{*}{\underset{G}{\Longrightarrow}} w$, onde $w \in \mathcal{L}(G)$ e $A \stackrel{*}{\underset{G}{\Longrightarrow}} B$ é uma seqüência maximal de regras de derivação simples.

Eliminação de derivações simples

Teorema 1.62

- ▶ Dada a $GLC\ G = (V, \Sigma, P, S)$ essencialmente não contraível, existe um algoritmo que constrói a $GLC\ G_C = (V_C, \Sigma, P_C, S)$ tal que:
 - 1. $\mathcal{L}(G_C) = \mathcal{L}(G)$,
 - 2. G_C não contém regras de derivação simples.

Demonstração.

- 1. $\mathcal{L}(G) \subseteq \mathcal{L}(G_C)$:
 - A regra $A \to p$ pode substituir a cadeia $A \stackrel{*}{=} B$.
 - ightharpoonup O uso sucessivo desta técnica produz uma derivação válida de w em G_C .

Transformações (136 - 170 de 1295

Eliminação de derivações simples

Exemplo 1.63

$$\blacktriangleright G: \begin{cases} S \to aSb \mid A, \\ A \to aA \mid B, \\ B \to bBc \mid bc \end{cases}$$

Variável	Cadeia	
S	$\{S,A,B\}$	
Α	$\{A,B\}$	
7.1	(II,D)	
B	$\{B\}$	

$$\blacktriangleright G_C: \begin{cases}
S \to aSb \mid aA \mid bBc \mid bc, \\
A \to aA \mid bBc \mid bc, \\
B \to bBc \mid bc
\end{cases}$$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (137 - 170 de 1295)

Eliminação de derivações simples

Exemplo 1.64

$$\bullet G: \begin{cases}
S \to ACA, \\
A \to aAa \mid B \mid C, \\
B \to bB \mid b, \\
C \to cC \mid \varepsilon
\end{cases}$$

Variável	Cadeia
S	$\{S,A,C,B\}$
A	$\{A, B, C\}$
B	$\{B\}$
C	{ <i>C</i> }

$$\bullet \quad G_C : \begin{cases} S \rightarrow ACA \mid CA \mid AA \mid AC \mid aAa \mid aa \mid bB \mid b \mid cC \mid c \mid \varepsilon, \\ A \rightarrow aAa \mid aa \mid bB \mid b \mid cC \mid c, \\ B \rightarrow bB \mid b \\ C \rightarrow cC \mid c \end{cases}$$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (138 - 170 de 1295

Eliminação de derivações simples

- ▶ A remoção de regras de derivação simples aumenta o número de regras na gramática, mas reduz o comprimento das derivações.
- A eliminação de regras de derivação simples de uma gramática essencialmente não contraível preserva esta propriedade.

Definição 1.65

- ▶ Dada uma $GLC(V, \Sigma, P, S)$ essencialmente não contraível e sem regras de derivação simples, então *P* é formado por regras do tipo:
 - 1. $S \rightarrow \varepsilon$
 - $2. A \rightarrow a$
 - 3. $A \rightarrow w$.

onde $w \in (V \cup \Sigma)^+$ é de comprimento pelo menos 2.

Eliminação de símbolos inúteis

Definição 1.66

▶ Dada uma $GLC(V, \Sigma, P, S)$, um símbolo $x \in (V \cup \Sigma)$ é útil se existe uma derivação

$$S \stackrel{*}{\Longrightarrow} uxv \stackrel{*}{\Longrightarrow} w,$$

onde $u, v \in (V \cup \Sigma)^*$ e $w \in \Sigma^*$.

- ▶ Um símbolo terminal é útil se ocorre em uma cadeia da linguagem de *G*.
- ▶ Uma variável é definida como útil se ocorre em uma derivação que começa na variável inicial e gera uma cadeia de terminais.
 - Variável deve ocorrer em uma forma sentencial da gramática.
 - Variável deve derivar uma cadeia de terminais.

Exemplo 1.67

$$\blacktriangleright G_1: \begin{cases}
S \to aS \mid A, \\
A \to a \mid bB, \\
B \to b \mid dD, \\
C \to cC \mid c, \\
D \to dD
\end{cases}$$

$$\blacktriangleright \mathcal{L}(G) = a^*(a \cup bb)$$

INF/UFG – LFA 2021/1 – H. Longo

Transformações (141 - 170 de 1295)

Eliminação de símbolos inúteis

Definição 1.68 (Símbolo estéril)

Não gera qualquer cadeia de terminais de uma sentença.

Definição 1.69 (Símbolo inalcançável)

Não aparece em nenhuma forma sentencial da gramática.

Definição 1.70 (Simbolos alcançáveis)

Símbolos deriváveis a partir do símbolo inicial da gramática.

Definição 1.71 (Um símbolo inútil)

Símbolo estéril ou inalcançável.

Definição 1.72

 $ightharpoonup V_{\Sigma^+}$: Conjunto de variáveis que derivam cadeias de terminais.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (142 - 170 de 1295)

Eliminação de símbolos inúteis

Algoritmo 3: Busca V_{Σ^+}

```
Entrada: GLC (V, \Sigma, P, S).

Saída: Conjunto V_{\Sigma^+}.

1 V_{\Sigma^+} \leftarrow \{A \mid (A \to w) \in P, \text{ com } w \in \Sigma^*\};
2 repita
3 AUX \leftarrow V_{\Sigma^+};
4 para cada (A \in V) faça
5 \mathbf{se} \ (\exists \ A \to w \ e \ w \in (AUX \cup \Sigma)^*) então
6 V_{\Sigma^+} \leftarrow V_{\Sigma^+} \cup \{A\};
7 até (AUX = V_{\Sigma^+});
8 retorna (V_{\Sigma^+});
```

Eliminação de símbolos inúteis

Teorema 1.73

- ▶ Dada uma GLC $G = (V, \Sigma, P, S)$, existe um algoritmo para construir uma GLC $G_T = (V_T, \Sigma_T, P_T, S)$ que satisfaz:
 - 1. $\mathcal{L}(G_T) = \mathcal{L}(G)$,
 - 2. Toda variável em V_T deriva uma cadeia de terminais em G_T .

Demonstração.

- $ightharpoonup V_T = V_{\Sigma^+}.$
- $P_T = \{A \to w \mid (A \to w) \in P, A \in V_{\Sigma^+} \text{ e } w \in (V_{\Sigma^+} \cup \Sigma)^*\}.$

.

Teorema 1.73

- ▶ Dada uma GLC $G = (V, \Sigma, P, S)$, existe um algoritmo para construir uma GLC $G_T = (V_T, \Sigma_T, P_T, S)$ que satisfaz:
 - 1. $\mathcal{L}(G_T) = \mathcal{L}(G)$,
 - 2. Toda variável em V_T deriva uma cadeia de terminais em G_T .

Demonstração.

 $\blacktriangleright \mathcal{L}(G_T) \subseteq \mathcal{L}(G)$:

Como $P_T \subseteq P$, qualquer derivação em G_T também é derivação em G.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (145 - 170 de 1295)

Eliminação de símbolos inúteis

Teorema 1.73

- ▶ Dada uma GLC $G = (V, \Sigma, P, S)$, existe um algoritmo para construir uma GLC $G_T = (V_T, \Sigma_T, P_T, S)$ que satisfaz:
 - 1. $\mathcal{L}(G_T) = \mathcal{L}(G)$,
 - 2. Toda variável em V_T deriva uma cadeia de terminais em G_T .

Demonstração.

 \blacktriangleright $\mathcal{L}(G) \subseteq \mathcal{L}(G_T)$:

A remoção de regras de derivação que contêm variáveis em $V-V_{\Sigma^*}$ não afeta o conjunto de cadeias de terminais geradas.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (146 - 170 de 1295

Eliminação de símbolos inúteis

Teorema 1.73

- ▶ Dada uma GLC $G = (V, \Sigma, P, S)$, existe um algoritmo para construir uma GLC $G_T = (V_T, \Sigma_T, P_T, S)$ que satisfaz:
 - 1. $\mathcal{L}(G_T) = \mathcal{L}(G)$,
 - 2. Toda variável em V_T deriva uma cadeia de terminais em G_T .

Demonstração.

 $ightharpoonup \mathcal{L}(G) \subseteq \mathcal{L}(G_T)$:

Seja $S \stackrel{*}{\Longrightarrow} w$. Se esta derivação não é válida em G_T , então uma variável de $V - V_{\Sigma^+}$ ocorre numa forma sentencial intermediária, a qual não gera uma cadeia de terminais.

Eliminação de símbolos inúteis

Teorema 1.73

- ▶ Dada uma GLC $G = (V, \Sigma, P, S)$, existe um algoritmo para construir uma GLC $G_T = (V_T, \Sigma_T, P_T, S)$ que satisfaz:
 - 1. $\mathcal{L}(G_T) = \mathcal{L}(G)$,
 - 2. Toda variável em V_T deriva uma cadeia de terminais em G_T .

Demonstração.

 \blacktriangleright $\mathcal{L}(G) \subseteq \mathcal{L}(G_T)$:

Logo, todas as regras de derivação usadas estão em P_T e $w \in \mathcal{L}(G)$.

Exemplo 1.74

$$\bullet G_1: \begin{cases}
S \to AC \mid BS \mid B, \\
A \to aA \mid aF, \\
B \to CF \mid b, \\
C \to cC \mid D, \\
D \to aD \mid BD \mid C, \\
E \to aA \mid BSA, \\
F \to bB \mid b
\end{cases}$$

$$(S \to BS \mid B,)$$

 $ightharpoonup G_T: \left\{ B \to b \right\},$

 $A \rightarrow aA \mid aF$,

 $\begin{bmatrix} E \to aA \mid BSA, \\ F \to bB \mid b \end{bmatrix}$

	Iteração	V_{Σ^+}	AUX
	0	$\{B,F\}$	
•	1	$\{B, F, A, S\}$	$\{B,F\}$
	2	$\{B, F, A, S, E\}$	$\{B, F, A, S\}$
	3	$\{B, F, A, S, E\}$	$\{B, F, A, S, E\}$
		(2,1,11,0,2)	(2,1,11,0,2)

INF/UFG - LFA 2021/1 - H. Longo

Transformações (149 - 170 de 1295)

Eliminação de símbolos inúteis

Algoritmo 4: Busca variáveis alcançáveis

```
Entrada: GLC (V, \Sigma, P, S).

Saída: Conjunto V_S.

1 V_S \leftarrow \{S\};

2 AUX \leftarrow \emptyset;

3 repita

4 NOVAS \leftarrow V_S - AUX;

5 AUX \leftarrow V_S;

6 para cada (A \in NOVAS) faça

para cada (A \rightarrow w_1A_1w_2A_2...w_kA_kw_{k+1}) \in P faça

M_S \leftarrow V_S \cup \{A_1, A_2, ..., A_k\};

9 até (AUX = V_S);

10 retorna (V_S);
```


INF/UFG - LFA 2021/1 - H. Longo

Transformações (150 - 170 de 1295)

Eliminação de símbolos inúteis

Exemplo 1.75

$$S \rightarrow AC \mid BS \mid B,$$

$$A \rightarrow aA \mid aF,$$

$$B \rightarrow CF \mid b,$$

$$C \rightarrow cC \mid D,$$

$$D \rightarrow aD \mid BD \mid C,$$

$$E \rightarrow aA \mid BSA,$$

$$F \rightarrow bB \mid b$$

$$\blacktriangleright \ G_T : \left\{ \begin{aligned} S &\to BS \mid B \,, \\ A &\to aA \mid aF \,, \\ B &\to b \,, \\ E &\to aA \mid BSA \,, \\ F &\to bB \mid b \end{aligned} \right.$$

Iteração	V_S	AUX	NOVAS
0	{S}	Ø	
1	$\{S,B\}$	{S}	{ <i>S</i> }
2	$\{S,B\}$	$\{S,B\}$	$\{B\}$

Eliminação de símbolos inúteis

Lema 1.76

▶ Dada uma gramática $G = (V, \Sigma, P, S)$, o Algoritmo 4 gera o conjunto de variáveis alcançáveis a partir de S.

Demonstração.

- 1. Toda variável em V_S é derivável a partir de S:
 - Indução no número de iterações do algoritmo.
 - ▶ Hipótese Indutiva: Após n iterações todas as variáveis em V_S são alcançáveis a partir de S.
 - Passo Indutivo: Provar que qualquer variável adicionada no passo n+1 também é alcançável a partir de S.

INF/UFG - LFA 2021/1 - H. Longo Transformações (151 - 170 de 1295) INF/UFG - LFA 2021/1 - H. Longo Transformações (152 - 170 de 1295)

Lema 1.76

▶ Dada uma gramática $G = (V, \Sigma, P, S)$, o Algoritmo 4 gera o conjunto de variáveis alcançáveis a partir de S.

Demonstração.

- 1. Toda variável em V_S é derivável a partir de S:
 - Passo Indutivo:

Se B é essa variável, então existe a regra de derivação $A \rightarrow uBv$, onde $A \in V_S$ após n iterações.

Por hipótese de indução, $S \stackrel{*}{\Longrightarrow} xAy$. Portanto, $S \stackrel{*}{\Longrightarrow} xAy \Longrightarrow xuBvy$ e B é alcancável a partir de S.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (153 - 170 de 1295)

Eliminação de símbolos inúteis

Lema 1.76

▶ Dada uma gramática $G = (V, \Sigma, P, S)$, o Algoritmo 4 gera o conjunto de variáveis alcançáveis a partir de S.

Demonstração.

- 2. Toda variável alcançável a partir de S é inserida em V_S :
 - ► Indução no comprimento da derivação a partir S.
 - ► Base:

Para n = 0, S é inserido em V_S no passo 1.

Hipótese Indutiva: Toda variável derivável a partir de S numa derivação de comprimento máximo n é inserida no conjunto V_S .

INF/UFG - LFA 2021/1 - H. Longo

Transformações (154 - 170 de 1295

Eliminação de símbolos inúteis

Lema 1.76

▶ Dada uma gramática $G = (V, \Sigma, P, S)$, o Algoritmo 4 gera o conjunto de variáveis alcançáveis a partir de S.

Demonstração.

- 2. Toda variável alcancável a partir de S é inserida em V_S :
 - Passo Indutivo:

Seja a derivação $S \stackrel{"}{\Longrightarrow} xAy \Longrightarrow xuBvy$, onde no passo n+1 a regra aplicada é $A \rightarrow uBv$.

Por H.I., A foi inserido em V_S na iteração n. Logo, B é inserido na iteração seguinte.

Eliminação de símbolos inúteis

Teorema 1.77

- ▶ Dada uma $GLC\ G = (V, \Sigma, P, S)$, existe um algoritmo para construir uma GLG $G_U = (V_U, \Sigma_U, P_U, S)$ que satisfaz:
 - 1. $\mathcal{L}(G_U) = \mathcal{L}(G)$.
 - 2. A gramática G_U não contém símbolos inúteis.

Demonstração.

- $ightharpoonup V_{II} = V_S$
- $P_U = \{A \rightarrow w \mid (A \rightarrow w) \in P, A \in V_S \text{ e } w \in (V_S \cup \Sigma)^*\}$
- $\triangleright \Sigma_{IJ} = \{a \in \Sigma \mid (A \rightarrow uav) \in P, A \in V_{IJ} \in u, v \in (V_{IJ} \cup \Sigma)^*\}$

Teorema 1.77

- ▶ Dada uma $GLC G = (V, \Sigma, P, S)$, existe um algoritmo para construir uma GLG $G_U = (V_U, \Sigma_U, P_U, S)$ que satisfaz:
 - 1. $\mathcal{L}(G_U) = \mathcal{L}(G)$.
 - A gramática G_U não contém símbolos inúteis.

Demonstração.

 $\blacktriangleright \mathcal{L}(G_U) = \mathcal{L}(G_T)$:

Mostrar que toda cadeia derivável em G_T também é derivável em G_U (Se $w \in \mathcal{L}(G_T)$, toda variável que ocorre na derivação de w é alcançável e toda regra de derivação pertence à P_U).

INF/UFG - LFA 2021/1 - H. Longo

Transformações (157 - 170 de 1295

Eliminação de símbolos inúteis

- A eliminação de símbolos inúteis deve ser feita em duas etapas:
 - 1. Remoção de variáveis que não geram cadeias de terminais, e
 - 2. Remoção de variáveis que não são deriváveis a partir do símbolo inicial.
- A inversão dessas etapas pode não remover todos os símbolos inúteis.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (158 - 170 de 1295

Eliminação de símbolos inúteis

Exemplo 1.78

- ► Seja a $GLC\ G: \begin{cases} S \to a \mid AB, \\ A \to b \end{cases}$
- ► Elimina variáveis que:
 - 1. não geram cadeias de terminais, $G_1: \begin{cases} S \to a, \\ A \to b \end{cases}$
 - 2. não são deriváveis a partir de S, G_2 : $\{S \rightarrow a\}$
- ► Elimina variáveis que:
 - 1. não são deriváveis a partir de S, G_1 : $\begin{cases} S \to a \mid AB, \\ A \to b \end{cases}$ 2. não geram cadeias de terminais, G_2 : $\begin{cases} S \to a, \\ A \to b \end{cases}$

Remoção de recursão direta à esquerda

Definição 1.79

▶ Uma gramática $G = (V, \Sigma, P, S)$ tem recursão à esquerda se existe $A \in V$ tal que $A \stackrel{\tau}{\Longrightarrow} Aw$, com $w \in (V \cup \Sigma)^*$.

Definição 1.80

▶ Uma gramática $G = (V, \Sigma, P, S)$ tem recursão à direita se existe $A \in V$ tal que $A \stackrel{+}{\Longrightarrow} wA$. com $w \in (V \cup \Sigma)^*$.

Definição 1.81

- A recursão é dita direta se a derivação for em um passo:
 - G tem recursão direta à esquerda se $A \rightarrow Av \in P$,
 - ▶ *G* tem recursão direta à direita se $A \rightarrow vA \in P$.

Remoção de recursão direta à esquerda

Lema 1.82

▶ Se $G = (V, \Sigma, P, S)$ é uma GLC e $A \in V$ uma variável com recursão à esquerda, então existe um algoritmo para construir uma gramática equivalente $G' = (V', \Sigma, P', S')$, na qual a variável A não apresenta recursão direta à esquerda.

Demonstração.

- Assuma que:
 - 1. S não é recursivo,
 - 2. A única ε -regra é $S \to \varepsilon$,
 - 3. $(A \rightarrow A) \notin P$.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (161 - 170 de 1295

Remoção de recursão direta à esquerda

Lema 1.82

▶ Se $G = (V, \Sigma, P, S)$ é uma GLC e $A \in V$ uma variável com recursão à esquerda, então existe um algoritmo para construir uma gramática equivalente $G' = (V', \Sigma, P', S')$, na qual a variável A não apresenta recursão direta à esquerda.

Demonstração.

- ▶ Dividir as regras de derivação de *A* em dois grupos:
 - 1. Recursivas: $A \rightarrow Au_1 \mid Au_2 \mid \cdots \mid Au_i$.
 - 2. Não recursivas: $A \rightarrow v_1 \mid v_2 \mid \cdots \mid v_k$.

INF/UFG - LFA 2021/1 - H. Longo

Transformações (162 - 170 de 1295

Remoção de recursão direta à esquerda

Lema 1.82

▶ Se $G = (V, \Sigma, P, S)$ é uma GLC e $A \in V$ uma variável com recursão à esquerda, então existe um algoritmo para construir uma gramática equivalente $G' = (V', \Sigma, P', S')$, na qual a variável A não apresenta recursão direta à esquerda.

Demonstração.

- ▶ Derivação à esquerda é encerrada com uma regra $A \rightarrow v_i$.
- ▶ Toda cadeia derivada a partir de A começa com algum v_i .
- ► Novas regras para derivação a partir de *A*:
 - 1. Colocar um dos v_i 's na extremidade esquerda da cadeia a ser derivada.
 - 2. Usar recursão à direita para gerar os *u*_i's.

Remoção de recursão direta à esquerda

Lema 1.82

▶ Se $G = (V, \Sigma, P, S)$ é uma GLC e $A \in V$ uma variável com recursão à esquerda, então existe um algoritmo para construir uma gramática equivalente $G' = (V', \Sigma, P', S')$, na qual a variável A não apresenta recursão direta à esquerda.

Demonstração.

1. v_i 's na extremidade esquerda:

$$A \rightarrow v_1 \mid \cdots \mid v_k \mid v_1 Z \mid \cdots \mid v_k Z$$
.

2. u_i 's a direita:

$$Z \rightarrow u_1 Z \mid \cdots \mid u_j Z \mid u_1 \mid \cdots \mid u_j$$
.

Remoção de recursão direta à esquerda

Exemplo 1.83

- $ightharpoonup G: \{A \rightarrow Aa \mid Aab \mid bb \mid b\}$
- $\blacktriangleright \mathcal{L}(G) = (b \cup bb)(a \cup ab)^*$
- $\blacktriangleright G': \begin{cases}
 A \to bb \mid b \mid bbZ \mid bZ, \\
 Z \to aZ \mid abZ \mid a \mid ab
 \end{cases}$
- ▶ As regras de derivação de Z geram as cadeias $(a \cup ab)^+$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (165 - 170 de 1295)

Remoção de recursão direta à esquerda

Exemplo 1.84

- 1. $G: \{A \rightarrow Aa \mid b\}$

- 2. $G: \{A \rightarrow Aa \mid Ab \mid b \mid c\}$
- $\triangleright G' : \begin{cases} A \to b \mid bZ, \\ Z \to aZ \mid a \end{cases}
 \triangleright G' : \begin{cases} A \to b \mid c \mid bZ \mid cZ, \\ Z \to aZ \mid bZ \mid a \mid b \end{cases}$
- 3. $G: \left\{ A \to AB \mid BA \mid a, \atop B \to b \mid c \right\}$
- $\mathcal{L}(G) = (b \cup c)^* a (b \cup c)^*$ $\mathcal{G}' : \begin{cases} A \to a \mid BAZ \mid aZ \mid BA, \\ Z \to BZ \mid B, \\ B \to b \mid c \end{cases}$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (166 - 170 de 1295

Fatoração de GLC

- Uma GLC é fatorada se é determinística.
 - Não possui regras de derivação que iniciam com o mesmo símbolo terminal ou que iniciam com variáveis que gerem subcadeias que iniciam com o mesmo símbolo terminal.

Exemplo 1.85

$$\blacktriangleright G_1 : \begin{cases} S \to aA \mid aB, \\ A \to aA \mid a, \\ B \to aB \mid b \end{cases}.$$

$$\blacktriangleright G_2 : \begin{cases} S \to A \mid B, \\ A \to aA \mid a, \\ B \to aB \mid b \end{cases}.$$

$$\blacktriangleright G_2: \begin{cases} S \to A \mid B, \\ A \to aA \mid a, \\ B \to aB \mid b \end{cases}.$$

Fatoração de GLC

Não determinismo direto

Original: $\{S \to \alpha\beta \mid \alpha\delta\}$.

Fatorada: $\{S \rightarrow \alpha A \mid A \rightarrow \beta \mid \delta\}$.

Não determinismo indireto

- 1. Aplicar outras transformações para reduzir ao não determinismo direto.
- 2. Remover o não determinismo direto.

Fatoração de GLC

Exemplo 1.86

$$P = \begin{cases} S, A, B, \{a, b\}, P, S \} \in \\ S \to aA \mid aB, \\ A \to aA \mid a, \\ B \to aB \mid b \end{cases}.$$

$$P' = \begin{cases} S \to aX, \\ X \to A \mid B, \\ A \to aY, \\ Y \to A \mid \varepsilon, \\ B \to aB \mid b \end{cases}.$$

►
$$G_2 = (\{S, A\}, \{a, b\}, P, S) \in$$

$$P = \begin{cases} S \to Ab \mid ab \mid baA, \\ A \to aab \mid b \end{cases}.$$
► $P' = \begin{cases} S \to aabb \mid bb \mid ab \mid baA, \\ A \to aab \mid b \end{cases}$

$$P'' = \begin{cases} S \to aabb \mid bb \mid ab \mid baA, \\ A \to aab \mid b \end{cases}.$$

$$P'' = \begin{cases} S \to aX \mid bY, \\ X \to abb \mid b, \\ Y \to b \mid aA, \\ A \to aab \mid b \end{cases}.$$

INF/UFG - LFA 2021/1 - H. Longo

Transformações (169 - 170 de 1295)

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It - A Structured Approach. Cambridge University Press, 1996.

Introdução à Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

Languages and Machines – An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Introduction to the Theory of Computation.

PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (1295 - 1295 de 1295)

Fatoração de GLC

Aplicação - construção de compiladores

- ▶ Se a gramática for não determinística, o processo de compilação deve verificar cada uma das possibilidades de derivação.
- ▶ Uso de retornos (backtracking) reduz a eficiência do processo de compilação.

INF/UFG - LFA 2021/1 - H. Longo Transformações (170 - 170 de 1295)