### Tutorial: Active Inference Controller for Dynamic Systems

Ajith Anil Meera

Post doctoral researcher, Radboud University, The Netherlands







## Active inference for robots

# Methodology





# Modelling the dynamic system

Step 1: Derive the equations of motion of the dynamic system





Free body diagram

$$F - b\dot{x} - kx = 0$$

static system

$$F - b\dot{x} - kx = m\ddot{x}$$

dynamic system

# Equations of motion to differential equations

Step 2: convert the dynamic model to a differential equation



$$F - b\dot{x} - kx = m\ddot{x}$$

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F$$

$$\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = \frac{F}{m}$$

Governing equation of motion ——— Differential equations of motion

# Linear time invariant (LTI) state space systems

Step 3a: convert the differential equation to an LTI system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
$$y(t) = Cx(t) + Du(t)$$

A, B, C, D are independent of time

$$\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = \frac{F}{m}$$

$$\dot{X} = AX + Bu$$

$$x_1 = x x_2 = \dot{x}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\dot{X} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ \ddot{x} \end{bmatrix}$$
$$\ddot{x} = -\frac{b}{m}\dot{x} - \frac{k}{m}x + \frac{F}{m}$$

$$\dot{X} = \begin{bmatrix} x_2 \\ -\frac{b}{m}\dot{x} - \frac{k}{m}x + \frac{F}{m} \end{bmatrix}$$

# Linear time invariant state space systems

$$x_{1} = x x_{2} = \dot{x}$$

$$X = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$\dot{X} = \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} x_{2} \\ \ddot{x} \end{bmatrix}$$

$$\ddot{x} = -\frac{b}{x}\dot{x} - \frac{k}{x}x + \frac{F}{x}$$

$$\dot{X} = \left[ -\frac{b}{m} \dot{x} - \frac{k}{m} x + \frac{F}{m} \right]$$

$$\dot{X} = \begin{bmatrix} x_2 \\ -\frac{b}{m}\dot{x} - \frac{k}{m}x + \frac{F}{m} \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{b}{m}x_2 - \frac{k}{m}x_1 + \frac{F}{m} \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} F$$

$$\dot{X} = AX + Bu$$

$$\dot{X} = \begin{bmatrix} x_2 \\ -\frac{b}{m}\dot{x} - \frac{k}{m}x + \frac{F}{m} \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ 1/m \end{bmatrix}, \qquad u = F, \qquad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

# Linear time invariant state space systems

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

$$\dot{X} = AX + Bu$$

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ 1/m \end{bmatrix}, \qquad u = F, \qquad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$y = CX$$
  $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix}$ 

Observation model

Differential equations

LTI system

# LTI systems through linearization

Step 3b: linearize the differential equation to form an LTI system

$$\dot{X} = \begin{bmatrix} x_2 \\ -\frac{b}{m}x_2 - \frac{k}{m}x_1 + \frac{F}{m} \end{bmatrix} = \begin{bmatrix} f_1(X, u) \\ f_2(X, u) \end{bmatrix} \qquad y = x_1 = g(X, u)$$



$$\dot{X} = f(X, u)$$
  $\ddot{X} = f(X, u) = AX + Bu$   
 $y = g(X, u)$   $y = g(X, u) = CX + Du$ 

$$A = \frac{\partial f}{\partial X_{\{X = X^e, u = u^e\}}}, \qquad B = \frac{\partial f}{\partial u_{\{X = X^e, u = u^e\}}}, \qquad C = \frac{\partial g}{\partial X_{\{X = X^e, u = u^e\}}}, \qquad D = \frac{\partial g}{\partial u_{\{X = X^e, u = u^e\}}}$$

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \qquad B = \begin{bmatrix} \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial x} \end{bmatrix} = \begin{bmatrix} 0 \\ 1/m \end{bmatrix}, \qquad C = \begin{bmatrix} \frac{\partial g}{\partial x_1} & \frac{\partial g}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \qquad D = \frac{\partial g}{\partial u} = 0$$

### Discretization

Step 4: discretize the continuous time model to discrete time model

Why? Because the robot world is discrete!!





#### Discretization

$$\dot{X} = A_c X + B_c u$$

$$x[t+1] = A_d x[t] + B_d u[t]$$
$$y[t] = C_d x[t] + D_d u[t]$$

$$A_d = e^{A_c \Delta t}$$

$$B_d = A_c^{-1} (A_d - I) B_c$$

$$C_d = C_c, \quad D_d = D_c$$

 $e^{A_c\Delta t}$  is a matrix exponential expm(.) and not exp(.)

$$e^X = \sum_{k=0}^\infty rac{1}{k!} X^k$$

# Stability of an LTI system

Step 5: check the stability of the system

The system is stable if the output is finite for all possible finite inputs

$$\dot{X} = A_c X + B_c u$$

The system is asymptotically stable if and only if all the eigen values of  $A_c$  are in the left-hand plane

$$\dot{X} = A_d X + B_d u$$

The system is asymptotically stable if and only if all the eigen values of  $A_d$  are inside the unit circle

# Stability of an SMD system

$$A_c = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}$$

$$m = 0.1kg,$$
  $k = 0.1\frac{N}{m},$   $b = 0.1\frac{Ns}{m},$ 

$$eig(A_c) = \{-0.5 + 0.866i, -0.5 - 0.866i\}$$





$$m = 0.1kg,$$
  $k = 0.1\frac{N}{m},$   $b = -0.1\frac{Ns}{m},$ 

$$eig(A_c) = \{0.5 + 0.866i, 0.5 - 0.866i\}$$



#### Active Inference controller

Step 6: derive the control law

Take control actions that follow the gradient of free energy

$$\frac{du}{dt} = -\gamma \frac{\partial F}{\partial u}$$

F – free energy  $\gamma$  – learning rate u – control action

$$F = \frac{1}{2}(\tau - \tau^g)^T P^{\tau^g}(\tau - \tau^g) + \frac{1}{2}(u - \eta^u)^T P^u(u - \eta^u) \qquad P^{\tau^g} - \text{goal precision (inverse covariance matrix) of } \tau^g$$

au – task variable  $au^g$  - goal for task variable  $au^{\sigma^g}$  - goal precision (inverse covariance matrix) of  $au^g$   $\eta^u$  - prior on control action  $P^u$  - prior control precision

#### Active Inference controller

$$\frac{du}{dt} = -\gamma \frac{\partial F}{\partial u}$$

$$F = \frac{1}{2} (\tau - \tau^g)^T P^{\tau^g} (\tau - \tau^g) + \frac{1}{2} (u - \eta^u)^T P^u (u - \eta^u)$$

 $\eta^u = 0$  with high  $P^u$  forces the controller to minimize the control action  $\eta^u = 0$  with low  $P^u$  allows the controller to explore

$$\frac{du}{dt} = -\gamma \frac{\partial F}{\partial \tau} \frac{\partial \tau}{\partial u} + \frac{\partial F}{\partial u} \qquad \qquad \frac{\partial F}{\partial \tau} = (\tau - \tau^g)^T P^{\tau^g} \qquad \qquad \frac{\partial F}{\partial u} = (u - \eta^u)^T P^u$$

$$\frac{\partial F}{\partial \tau} = (\tau - \tau^g)^T P^{\tau^g}$$

$$\frac{\partial F}{\partial u} = (u - \eta^u)^T P^u$$

System dynamics

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

# Active inference control for position control

$$\frac{du}{dt} = -\gamma \frac{\partial F}{\partial \tau} \frac{\partial \tau}{\partial u} \qquad \tau = x \qquad \frac{du}{dt} = -\gamma \frac{\partial F}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial F}{\partial u}$$
$$F = \frac{1}{2} (x - x^g)^T P^{x^g} (x - x^g) + \frac{1}{2} (u - \eta^u)^T P^u (u - \eta^u)$$

$$\dot{x} = Ax + Bu$$

$$\frac{\partial \dot{x}}{\partial u} = A \frac{\partial x}{\partial u} + B, \qquad \frac{\partial \dot{x}}{\partial u} = 0 \Rightarrow \frac{\partial x}{\partial u} = -A^{-1}B$$

$$\frac{du}{dt} = -\gamma \left( \frac{\partial F}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial F}{\partial u} \right) = -\gamma \left( (x - x^g)^T P^{x^g} A^{-1} B + u^T P^u \right)$$

# Active inference control for velocity control

$$\frac{du}{dt} = -\gamma \frac{\partial F}{\partial \tau} \frac{\partial \tau}{\partial u} \qquad \tau = \dot{x} \qquad \frac{du}{dt} = -\gamma \frac{\partial F}{\partial x} \frac{\partial \dot{x}}{\partial u} + \frac{\partial F}{\partial u}$$
$$F = \frac{1}{2} (\dot{x} - \dot{x}^g)^T P^{\dot{x}^g} (\dot{x} - \dot{x}^g) + \frac{1}{2} (u - \eta^u)^T P^u (u - \eta^u)$$

$$\dot{x} = Ax + Bu$$

$$\frac{\partial \dot{x}}{\partial u} = A \frac{\partial x}{\partial u} + B, \qquad \frac{\partial x}{\partial u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \frac{\partial \dot{x}}{\partial u} = A \begin{bmatrix} 1 \\ 1 \end{bmatrix} + B$$

$$\frac{du}{dt} = -\gamma \left( \frac{\partial F}{\partial x} \frac{\partial \dot{x}}{\partial u} + \frac{\partial F}{\partial u} \right) = -\gamma \left( (\dot{x} - \dot{x}^g)^T P^{\dot{x}^g} \left( A \begin{bmatrix} 1 \\ 1 \end{bmatrix} + B \right) + u^T P^u \right)$$

#### Discretization of the controller

 $u(t + \Delta t) = u(t) - \gamma \frac{\partial F}{\partial u} \Delta t$ 

Step 7: discretize the control law for discrete time update rule

**Euler method** 

$$u(t + \Delta t) = u(t) + \left(e^{\left(-k\frac{\partial^2 F}{\partial u^2}\Delta t\right)} - I\right)\left(\frac{\partial^2 F}{\partial u^2}\right)^{-1} \frac{\partial F}{\partial u}$$

Unknowns:  $\frac{\partial F}{\partial u}$ ,  $\frac{\partial^2 F}{\partial u^2}$ 

#### Position control:

$$F = \frac{1}{2}(x - x^g)^T P^{x^g}(x - x^g) + \frac{1}{2}(u - \eta^u)^T P^u(u - \eta^u)$$

$$\frac{\partial F}{\partial u} = (x - x^g)^T P^{xg} A^{-1} B + u^T P^u$$
$$\frac{\partial^2 F}{\partial u^2} = (A^{-1} B)^T P^{xg} A^{-1} B + P^u$$

#### **Velocity control:**

$$F = \frac{1}{2}(\dot{x} - \dot{x}^g)^T P^{\dot{x}^g}(\dot{x} - \dot{x}^g) + \frac{1}{2}(u - \eta^u)^T P^u(u - \eta^u)$$

$$\frac{\partial F}{\partial u} = (\dot{x} - \dot{x}^g)^T P^{\dot{x}^g} \left( A \begin{bmatrix} 1 \\ 1 \end{bmatrix} + B \right) + u^T P^u$$
$$\frac{\partial^2 F}{\partial u^2} = \left( A \begin{bmatrix} 1 \\ 1 \end{bmatrix} + B \right)^T P^{\dot{x}^g} \left( A \begin{bmatrix} 1 \\ 1 \end{bmatrix} + B \right) + P^u$$

### Pitfalls of discretization



## Active inference controller for dynamic systems

- Step 1: model the motion of the system
- Step 2: convert the dynamic model to a differential equation
- Step 3a: convert the differential equation to an LTI system
- Step 3b: linearize the differential equation to form an LTI system
- Step 4: discretize the continuous time model to discrete time model
- Step 5: check the stability of the system
- Step 6: derive the control law
- Step 7: discretize the control law for discrete time update rule

# MATLAB implementation

```
% Define the model
model.A = [0 1; -k/m -b/m];
                                 model.B = [0; 1/m]; model.C = [1 0];
% define all the required variables
Pa = .00001*eye(nu); Pi g = diag([.01 .01]); goal x = [.5; 0]; k h = 1; dt = .01; nt = 2000;
% discretize the system
sys d = c2d(ss(model.A, model.B, model.C, []), dt, 'zoh');
for i = 1:nt
        dFda = (brain.x - goal x).'*Pi g*(-pinv(model.A)*model.B) + Pa*a(:,i-1);
        dFdaa = (-pinv(model.A) *model.B).'*Pi g*(-pinv(model.A) *model.B) + Pa;
        a(:,i) = a(:,i-1) + (expm(-k*dFdaa*dt)-eye(ny))*pinv(dFdaa)*dFda;
        % Generative process - take action in the world
        model.x(:,i+1) = sys d.A*model.x(:,i) + sys d.B*a(:,i);
end
```

Running code: https://github.com/ajitham123/mTAIC\_IWAI2023

Ajith Anil Meera and Pablo Lanillos, "Towards metacognitive robot decision making for tool selection" IWAI 2023.

### Active inference to control an SMD



Ajith Anil Meera and Pablo Lanillos, "Towards metacognitive robot decision making for tool selection" IWAI 2023.

## Active inference for robots

# Modelling: Quadrotors as LTI system



$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{v} + \mathbf{w}$$
$$\mathbf{y} = C\mathbf{x} + \mathbf{z}.$$

$$\begin{bmatrix} \dot{\phi} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \phi \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ \frac{c_{B\phi}}{I_{xx}} & -\frac{c_{B\phi}}{I_{xx}} & -\frac{c_{B\phi}}{I_{xx}} & \frac{c_{B\phi}}{I_{xx}} \end{bmatrix} \begin{bmatrix} pwm_1 \\ pwm_2 \\ pwm_3 \\ pwm_4 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \phi \\ \dot{\phi} \end{bmatrix}$$

 $\phi$  and  $\dot{\phi}$  are roll angle and roll velocity Pwm are the input signals to the rotors

# Active inference for robot navigation

$$F^{g} = \frac{1}{2}(x - x^{g})^{T} P^{x^{g}}(x - x^{g}) + \frac{1}{2}(y - y^{g})^{T} P^{y^{g}}(y - y^{g})$$

$$F = F^g + F^{os} + F^{od}$$

$$\frac{\partial u^{x}}{\partial t} = -\gamma \frac{\partial F}{\partial x} \frac{\partial x}{\partial u^{x}} = -\gamma \frac{\partial F}{\partial x}$$







Static obstacles

Free energy

Dynamic obstacles

<sup>&</sup>quot;Free Energy Principle Based Precision Modulation for Robot Attention: towards brain inspired robot intelligence", PhD thesis, Department of Cognitive Robotics, TU Delft, 2023

# Multi robot navigation in formation

- Expects to reach the goal
- Expects to avoid obstacles
- Expects to keep the formation

$$F = F^g + F^{os} + F^{od} + F^f$$

$$F^{f} = \frac{1}{2} \Pi^{f} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left( ||p^{j} - p^{i}|| - ||pf^{j} - pf^{i}|| \right)^{2}$$



 $p^i$  and  $p^j$  are position vector of drone i and j  $p^{fi}$  and  $p^{fj}$  are the initial position vector of drone i and j

<sup>&</sup>quot;Free Energy Principle Based Precision Modulation for Robot Attention: towards brain inspired robot intelligence", PhD thesis, Department of Cognitive Robotics, TU Delft, 2023

# Escape manoeuvre for tight spaces





#### Active Inference on a 2DOF robot arm



# Thank you



Martijn Wisse, TU Delft



Pablo Lanillos, Radboud University