

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Organização Básica de computadores e linguagem de montagem

Conjunto de instruções e programação do IAS

Prof. Edson Borin

https://www.ic.unicamp.br/~edson

Institute of Computing - UNICAMP

O IAS possui um conjunto com 20 instruções

- Transferência de dados: 6
- Aritméticas: 8
- Salto incondicional: 2
- Salto condicional: 2
- Modificação de endereço: 2

Transferência de dados

Mover dados da memória para registradores

```
LOAD M(X)  # AC <= Mem[X]

LOAD MQ, M(X) # MQ <= Mem[X]

LOAD -M(X) # AC <= - (Mem[X])

LOAD |M(X)| # AC <= |Mem[X]|
```

Transferência de dados

Mover dados de um registrador para outro

Mover dados de registradores para a memória

```
STOR M(X) # Mem[X] <= AC
```

Aritméticas

Realizar operações aritméticas

```
ADD M(X) # AC <= AC + Mem[X]

ADD |M(X)| # AC <= AC + |Mem[X]|

SUB M(X) # AC <= AC - Mem[X]

SUB |M(X)| # AC <= AC - |Mem[X]|
```

Aritméticas

Realizar operações aritméticas

```
LSH # AC(0:38) <= AC(1:39)

# AC(39) <= 0

RSH # AC(1:39) <= AC(0:38)

# AC(0) <= 0
```

Aritméticas

• Realizar operações aritméticas

```
MUL M(X) # AC:MQ <= MQ x Mem[X]

DIV M(X) # MQ <= AC / Mem[X]

# AC <= AC % Mem[X]
```

Exemplo: Implementar um programa para computar a expressão:

$$(234*3) + (899*23)$$

```
00FF 00 00 00 00 00 # Temporario
0100 00 00 00 00 EA # 234
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
00FF 00 00 00 00 00 # Temporario
0100 00 00 00 00 EA # 234
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
LOAD MQ,M(0x100) # Carregar o valor 234 em MQ MUL M(0x101) # e multiplicar por 3
```

```
00FF 00 00 00 00 00 # Temporario
0100 00 00 00 00 EA # 234
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
LOAD MQ,M(0x100) # Carregar o valor 234 em MQ

MUL M(0x101) # e multiplicar por 3

LOAD MQ # Mover o resultado para AC e

STOR M(0x0FF) # salvar no temporario (0x0FF)
```

```
00FF 00 00 00 00 00 # Temporario
0100 00 00 00 00 EA # 234
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
LOAD MQ,M(0x100) # Carregar o valor 234 em MQ

MUL M(0x101) # e multiplicar por 3

LOAD MQ # Mover o resultado para AC e

STOR M(0x0FF) # salvar no temporario (0x0FF)
```

```
00FF 00 00 00 00 00 # Temporario
0100 00 00 00 00 EA # 234
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
LOAD MQ,M(0x100) # Carregar o valor 234 em MQ MUL M(0x101) # e multiplicar por 3 LOAD MQ # Mover o resultado para AC e STOR M(0x0FF) # salvar no temporario (0x0FF) LOAD MQ,M(0x102) # Carregar o valor 899 em MQ MUL M(0x103) # e multiplicar por 23
```

```
00FF 00 00 00 00 00 # Temporario
0100 00 00 00 00 EA # 234
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
LOAD MQ,M(0x100) # Carregar o valor 234 em MQ MUL M(0x101) # e multiplicar por 3 LOAD MQ # Mover o resultado para AC e STOR M(0x0FF) # salvar no temporario (0x0FF) LOAD MQ,M(0x102) # Carregar o valor 899 em MQ MUL M(0x103) # e multiplicar por 23
```

```
00FF 00 00 00 00 00 # Temporario
0100 00 00 00 00 EA # 234
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
LOAD MQ, M(0x100)
                   # Carregar o valor 234 em MQ
MUL M(0x101)
                   # e multiplicar por 3
                   # Mover o resultado para AC e
LOAD MO
                   # salvar no temporario (0x0FF)
STOR M(0x0FF)
                   # Carregar o valor 899 em MQ
LOAD MQ, M(0x102)
MUL M(0x103)
                   # e multiplicar por 23
LOAD MO
                   # Mover o resultado para AC e
ADD M(0x0FF)
                   # somar com o temporario.
00FF 00 00 00 00 00 # Temporario
0100 00 00 00 00 EA # 234
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
Mapa de memória
LOAD MQ, M(0x100)
    M(0x101)
MUL
LOAD MO
STOR M(0x0FF)
LOAD MO, M(0x102)
MUL M(0x103)
LOAD MO
ADD M(0x0FF)
00FF 00 00 00 00 00 # Temporario
       00 00 00 EA # 234
0100 00
0101 00 00 00 00 03 # 3
0102 00 00 00 03 83 # 899
0103 00 00 00 00 17 # 23
```

```
Mapa de memória
LOAD MO, M(0x100)
     M(0x101)
MUL
LOAD MO
STOR M(0x0FF)
LOAD MO, M(0x102)
MUL
    M(0x103)
LOAD MO
    M(0x0FF)
ADD
00FF 00
        00 00 00 00 # Temporario
                                      00FF
                                            00
                                               00
                                                  0.0
                                                     0.0
        0.0
            00 00
                                               00
                                                  00
                                                     00
     0.0
                 EA #
                                            0.0
                                                        EΑ
                                               00
                                                  00
0101 00
        0.0
           00 00
                 0.3
                                      0101
                                            00
                                                     00
                                                         03
        00
            00 03 83
                     # 899
                                      0102
                                               00
                                                  00
                                                     03 83
0102 00
                                            00
0103 00 00 00 00 17 # 23
                                            00 00 00 00 17
                                      0103
```

LOAD	MO	M ((า ∨ 1 (۱۵۱				Map	a d	le n	nen	nór	ia
	M ((50)				0000	09	100) O I	3 1(01
LOAD	MQ												
STOR	M ((0x0	FF)										
LOAD	MQ,M(0x102)												
MUL	M(0x103)												
LOAD	MQ												
ADD	M(0x0FF)												
OOFF	00	00	00	00	00	#	Temporario	OOFF	00	00	00	00	00
0100	00	00	00	00	EΑ	#	234	0100	00	00	00	00	EΑ
0101	00	00	00	00	03	#	3	0101	00	00	00	00	03
0102	00	00	00	03	83	#	899	0102	00	00	00	03	83
0103	00	00	00	00	17	#	23	0103	00	00	00	00	17

LOAD	MO	M (()×1(00)				Map	a d	le n	nen	nór	ia
	M ((-		,				0000	09	100) OE	3 10	01
LOAD	MQ												
STOR	M(0x0FF)							0001	0A	000	21	L OI	FF
LOAD	MQ,	, M (()x1(02)									
MUL	M(0x103)						0002	09	102	2 OE	3 10	03	
LOAD	MQ												
ADD	M(0x0FF)							0003	0A	000	0.5	5 01	FF
OOFF	00	00	00	00	00	#	Temporario	OOFF	00	00	00	00	00
0100	00	00	00	00	EΑ	#	234	0100	00	00	00	00	EA
0101	00	00	00	00	03	#	3	0101	00	00	00	00	03
0102	00	00	00	03	83	#	899	0102	00	00	00	03	83
0103	00	00	00	00	17	#	23	0103	00	00	00	00	17

Não é necessário iniciar	Mapa de memória						
	0000 09 100 0B 101						
a palavra de memória reservada para o	0001 0A 000 21 0FF						
temporário –	0002 09 102 0B 103						
ADD M(OXOFF)	0003 0A 000 05 0FF						
00FF 00 00 00 00 # Temporario	00FF 00 00 00 00 00						
0100 00 00 00 EA # 234	0100 00 00 00 00 EA						
0101 00 00 00 00 03 # 3	0101 00 00 00 00 03						
0102 00 00 00 03 83 # 899	0102 00 00 00 03 83						
0103 00 00 00 00 17 # 23	0103 00 00 00 00 17						

Exemplo: (234*3)+(899*23)

Mapa de memória

```
0000 09 100 0B 101
0001 0A 000 21 0FF
0002 09 102 0B 103
0003 0A 000 05 0FF
0100 00 00 00 00 EA
0101 00 00 00 00 03
0102 00 00 00 00 383
0103 00 00 00 00 17
```

Exemplo: (234*3)+(899*23)

Mapa de memória

O mapa de memória permite comentários com #

```
\# LOAD MQ, M(0x100); MUL M(0x101)
0000 09 100 0B 101
# LOAD MQ; STOR M(0x0FF)
0001 0A 000 21 0FF
\# LOAD MQ, M(0x102); MUL M(0x103)
0002 09 102 0B 103
# LOAD MQ; ADD M(0x0FF)
0003 0A 000 05 0FF
# Valor 234
0100 00 00 00 00 EA
# Valor 234
0101 00 00 00 00 03
# Valor 234
0102 00 00 00 03 83
# Valor 234
0103 00 00 00 00 17
```

Salto Incondicional

Desviar o fluxo de execução

```
JUMP M(X, 0:19) # Salta para a
instrução à esquerda de Mem[X]
```

```
JUMP M(X,20:39) # Salta para a
instrução à direita de Mem[X]
```

Salto Condicional

Desviar o fluxo de execução se AC >= 0

```
JUMP+ M(X,0:19) # Se AC >= 0,
salta para a instrução à esquerda
de Mem[X], senão executa a próxima
instrução
```

JUMP+ M(X,20:39) # instr. à dir.

Exemplo: Computar o fatorial de N:

```
fat = 1;
i = 1;
faça
fat = fat * i
i = i+1;
enquanto i <= N</pre>
```

```
fat = 1;
i = 1;
faça
fat = fat * i
i = i+1;
enquanto i <= N</pre>
```

```
Comeco:
LOAD MQ, M(0x102)
                 # Carrega fat em MQ
MUL M(0x103)
                 # Multiplica MQ por i
                 # Salva resultado em
LOAD MO
STOR M(0x102)
                 # fat.
LOAD M(0x103)
                 # Carrega i em AC
ADD M(0x101)
                 # Incrementa AC
STOR M(0x103)
                 # Salva resultado em i
LOAD M(0x100)
                 # Carrega N em AC
SUB M(0x103)
                 \# AC = AC - i
JUMP+ M(Comeco)
                 # Salta para Comeco se
Fim:
                 \# N-i >= 0
\# N: (N=10)
0100 00 00 00 00 0A
# Constante 1
0101 00 00 00 00 01
# fat
0102 00 00 00 00 01
# i
0103 00 00 00 00 01
```

```
fat = 1;
i = 1;
faça
fat = fat * i
i = i+1;
enquanto i <= N</pre>
```

```
Comeco:
LOAD MQ, M(0x102)
                 # Carrega fat em MQ
MUL M(0x103)
                 # Multiplica MQ por i
                 # Salva resultado em
LOAD MO
STOR M(0x102)
                 # fat.
LOAD M(0x103)
                 # Carrega i em AC
ADD M(0x101)
                 # Incrementa AC
STOR M(0x103)
                 # Salva resultado em i
LOAD M(0x100)
                 # Carrega N em AC
SUB M(0x103)
                 \# AC = AC - i
JUMP+ M(Comeco)
                 # Salta para Comeco se
Fim:
                 \# N-i >= 0
\# N: (N=10)
0100 00 00 00 00 0A
# Constante 1
0101 00 00 00 00 01
# fat
0102 00 00 00 00 01
# i
0103 00 00 00 00 01
```

fat = 1;						
i = 1;						
faça						
fat = fat * i						
i = i+1;						
enquanto i <= N						

Comeco:	M
LOAD MQ,M(0x102)	Mapa de memória
MUL M(0x103)	0000 09 102 0B 103
LOAD MQ	
STOR M(0x102)	0001 0A 000 21 102
LOAD M(0x103)	
ADD M(0x101)	0002 01 103 05 101
STOR M(0x103)	
LOAD M(0x100)	0003 21 103 01 100
SUB M(0x103)	
JUMP+ M(Comeco)	0004 06 103 0F 000
Fim	
	0005 00 000 00 000
# N: (N=10)	
0100 00 00 00 00 0A	0100 00 00 00 00 0A
# Constante 1	
0101 00 00 00 00 01	0101 00 00 00 00 01
# fat	
0102 00 00 00 00 01	0102 00 00 00 00 01
# i	
0103 00 00 00 00 01	0103 00 00 00 00 01

fat = 1;						
i = 1;						
faça						
fat = fat * i						
i = i+1;						
enquanto i <= N						

Comeco:	N4 1 7 1					
LOAD MQ, $M(0x102)$	Mapa de memória					
MUL M(0x103)	0000 09 102 0B 103					
LOAD MQ						
STOR M(0x102)	0001 0A 000 21 102					
LOAD M(0x103)						
ADD M(0x101)	0002 01 103 05 101					
STOR M(0x103)						
LOAD M(0x100)	0003 21 103 01 100					
SUB M(0x103)						
JUMP+ M(Comeco)	0004 06 103 0F 000					
Fim						
	0005 00 000					
# N: (N=10)						
0100	0 0A					
# Co Código da opera	ção " 0F ". Salta					
0101	0 01					
# fa para a instrução	a esquerda da					
palavra no endereço 000						
# i palavia no en						
0103	00 01					

Exemplo: Somar os valores de um vetor com N números. Suponha que o vetor comece no endereço 0x070 e que N > 0.

```
soma=0
i=0
faça
soma = soma + vetor[i]
i = i+1;
enquanto i < N</pre>
```

```
soma = 0
i=0
faça
 soma=soma+vetor[i]
 i = i+1;
enquanto i < N
```

```
Comeco:
# soma = soma + vetor[i]
LOAD M(0x068)
                  \# AC = soma
soma:
ADD M(0x070) # AC = AC + vetor[i]
                  \# soma = AC
STOR M(0x068)
# atualiza i
LOAD M(0x067)
                  \# AC = i
ADD M(0x065)
               \# AC = AC+1
STOR M(0x067) # i = AC
# atualiza o endereço da instrução ADD
LOAD M(0x069)
                  # AC = & base do vetor
ADD M(0x067) # AC = &vetor[i]
STOR M(soma, 28:39) # End <= AC
# enquanto i < N</pre>
LOAD M(0x066) # AC = (N-1)
SUB M(0x067) # AC = (N-1) - i
JUMP+ M(Comeco) # Salta se (N-1)-i >= 0
Fim:
0065 00 00 00 00 01 # Constante 1
0066 00 00 00 00 27 # N-1 (N=40)
0067 00 00 00 00 00 # i
0068 00 00 00 00 00 # Soma
0069 00 00 00 00 70 # Base do vetor
```

Versão I

Modificação de endereços

 Modificar o campo endereço de uma instrução na memória

```
STOR M(X,8:19)
# Mem[X](8:19) <= AC(28:39)

STOR M(X,28:39)
# Mem[X](28:39) <= AC(28:39)</pre>
```

Comeco:

```
soma=0
i=0
faça
soma=soma+vetor[i]
i = i+1;
enquanto i < N</pre>
```

```
LOAD M(0x069) # Carrega a base do vetor,
ADD M(0x067) # soma com i e armazena o
 STOR M(soma, 8:19) # endereço da instrução "soma"
 # Realiza a soma -- Soma = soma + vetor[i]
LOAD M(0x068) # Carrega a variável soma,
soma:
ADD M(0x000) # soma com Vetor[i] e
STOR M(0x068) # armazena em soma.
 # Atualiza i -- i = i+1
LOAD M(0x067) # Carrega i em AC,
ADD M(0x065) # soma com a constante 1, e
 STOR M(0x067) # armazena em i
 # Enquanto i < N
LOAD M(0x066) # Carrega (N-1)
SUB M(0x067) # AC = (N-1) - i
 JUMP+ M(Comeco) # Salta para começo se
                 \# (N-1) - i >= 0
Fim
0065 00 00 00 00 01 # Constante 1
0066 00 00 00 00 27 # N-1 (N=40)
0067 00 00 00 00 00 # i
0068 00 00 00 00 00 # Soma
0069 00 00 00 00 70 # Base do vetor
0070 00 00 00 00 01 # 1ª posição do vetor
```

Versão 2

```
soma = 0
i=0
faça
 soma=soma+vetor[i]
 i = i+1;
enquanto i < N
```

Comeco:	
LOAD M(0x069)	Mapa de memória
ADD M(0x067)	0000 01 069 05 067
STOR M(soma,8:19)	
# Realiza a soma	
LOAD M(0x068)	0001 12 002 01 068
soma:	
ADD M(0x000)	
STOR M(0x068)	0002 05 000 21 068
# Atualiza i	
LOAD M(0x067)	
ADD M(0x065)	0003 01 067 05 065
STOR M(0x067)	
# Enquanto i < N	
LOAD M(0x066)	0004 21 067 01 066
SUB M(0x067)	
JUMP+ M(Comeco)	0005 06 067 0F 000
Fim	0006 00 00 00 00 00
0065 00 00 00 00 01	0065 00 00 00 00 01
0066 00 00 00 00 27	0066 00 00 00 00 28
0067 00 00 00 00 00	0067 00 00 00 00 00
0068 00 00 00 00 00	0068 00 00 00 00 00
0069 00 00 00 00 70	0069 00 00 00 00 70
0070 00 00 00 00 01	0070 00 00 00 00 01

soma=0 i=0 faça soma=soma+ve+

Instrução de soma à esquerda da palavra no endereço 002

Comeco:	
LOAD M(0x069)	Mapa de memória
ADD M(0x067)	0000 01 069 05 067
STOR M(soma, 8:19)	
# Realiza a soma	
LOAD M(0x068)	0001 12 002 01 068
soma:	
ADD M(0x000)	
STOR M(0x068)	0002 0 0 21 068
# Atualiza i	
LOAD M(0x067)	
ADD M(0x065)	0003 065
STOR $M(0x067)$	

Código da operação "12". Move os 12 bits à direita de AC para o campo endereço da instrução à esquerda da palavra no endereço 002

007

Exercício: buscar o primeiro número negativo em um vetor.

```
i = 0;
enquanto(vetor[i] >= 0)
```

Leitura

• Apostila: Programando o Computador IAS