Práctica Dirigida 5 Matemática para Economistas IV

Marcelo Gallardo B.

PUCP

Octubre 2022

Hoja de ruta

- PC3: comentarios.
- Solow.
- Sistemas lineales.
- Sistemas no lineales.
- Figuras: Matlab, Wolfram Mathematica.

Modelo de Solow

Solow

$$k'(t) = sf(k(t)) - (n+\delta)k(t)$$

- lacktriangle Concavidad, creciente, derivada en 0 y en ∞ .
- ② Note que para $f(k) = \sqrt{k}$ se puede resolver vía Bernouilli mientras que para $f(k) = \ln(k)$, no de forma directa.
- \circ ¿Si $f(k) = k^{\gamma}$?
- $0 < \gamma < 1$ (¿porqué?)
- \circ $\gamma = 1/2$.

Solow

Figura s = 1 y s < 1.

Sistemas bidimensionales Análisis Cualitativo

Considere el siguiente sistema lineal

$$x' = \begin{bmatrix} -1 & 3 \\ 5 & -3 \end{bmatrix} x + \begin{bmatrix} 1 \\ -4 \end{bmatrix}.$$

Encuentre el subespacio estable e inestable.

- Primero, calculamos el polinomio característico p(t).
- ② Luego, obtenemos los valores propios, $p(\lambda) = 0$.
- **3** Enseguida, obtenemos los vectores propios, i.e., aquellos vectores que resuelven $Av = \lambda v$, $v = (a, b)^T$.
- Computamos el equilibrio x^* .
- \odot Finalmente, obtener E^s y E^u de acuerdo a las siguientes definiciones.

Veamos primero el caso homogéneo.

Para el caso homogéneo y dos raíces.

Definición

El sub-espacio estable corresponde al conjunto

$$E^s = \{ w \in \mathbb{R}^2 : w = \alpha v \}$$

con $\alpha \in \mathbb{R}$ y v el vector propio cuyo valor propio asociado es negativo (en el caso de dos raíces reales diferentes).

Definición

El sub-espacio inestable corresponde al conjunto

$$E^u = \{ w \in \mathbb{R}^2 : w = \alpha v \}$$

con $\alpha \in \mathbb{R}$ y v el vector propio cuyo valor propio asociado es positivo (en el caso de dos raíces reales diferentes).

$$p(t) = \begin{vmatrix} t+1 & -3 \\ -5 & t+3 \end{vmatrix} = (t+3)(t+1) - 15 = (t-2)(t+6).$$

Así,
$$\lambda_1 = -6$$
 y $\lambda_2 = 2$.

Luego, resolviendo

$$\begin{bmatrix} -1 & 3 \\ 5 & -3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = -6 \begin{bmatrix} a \\ b \end{bmatrix}$$

se obtiene

$$v_1 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$
.

Análogamente, se llega a

$$v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

De este modo,

$$E^{s} = \operatorname{gen}\left\{ \begin{bmatrix} -3\\5 \end{bmatrix} \right\} = \left\{ w \in \mathbb{R}^{2}: \ w = \alpha \begin{bmatrix} -3\\5 \end{bmatrix}, \ \alpha \in \mathbb{R} \right\}$$

у

$$E^u = \operatorname{gen}\left\{ egin{bmatrix} 1 \\ 1 \end{bmatrix}
ight\} = \left\{ w \in \mathbb{R}^2: \ w = lpha egin{bmatrix} 1 \\ 1 \end{bmatrix}, \ lpha \in \mathbb{R}
ight\}.$$

Diagrama de fases

Figura Diagrama de fases.

Sin embargo, el modelo es no homogéneo x' = Ax + b. El equilibrio es

$$x^* = -A^{-1}b = \begin{pmatrix} 3/4 \\ -1/12 \end{pmatrix}.$$

En este caso, E^s y E^u son una transformación afín. O sea, se desplaza.

$$E^{s} = \operatorname{gen}\left\{ \begin{bmatrix} -3\\5 \end{bmatrix} \right\} + x^{*} = \left\{ w \in \mathbb{R}^{2} : w = \alpha \begin{bmatrix} -3\\5 \end{bmatrix} + x^{*}, \alpha \in \mathbb{R} \right\}$$

У

$$E^u = \operatorname{gen}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} + x^* = \left\{ w \in \mathbb{R}^2 : w = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x^*, \alpha \in \mathbb{R} \right\}.$$

Diagrama de fases

Figura Diagrama de fases.

Consideremos el siguiente sistema no lineal bi-dimensional

$$\begin{cases} x' = x - 1 \\ y' xe^x - y. \end{cases}$$

- Encontrar los equilibrios.
- Oeterminar el Sistema Lineal Asociado.
- Caracterizar los equilibrios.
- Efectuar el diagrama de fases basado en los resultados anteriores.

El equilibrio es (1, e). Luego, computamos

$$J = \begin{bmatrix} 1 & 0 \\ (x+1)e^x & -1 \end{bmatrix}.$$

Evaluando en P^* ,

$$J = \begin{bmatrix} 1 & 0 \\ 2e & -1 \end{bmatrix}.$$

Como $p(\lambda) = (\lambda + 1)(\lambda - 1)$, $\lambda_1 = -1$ y $\lambda_2 = 1$. Esto implica que el equilibrio es hiperbólico (parte real no nula) y, se comporta localmente como una silla (por H.G.). Finalmente, los vectores propios del SLA son $v_1 = (0,1)^T$ (asociado a $\lambda_1 = -1$ y $v_2 = (1/e, 1)^T$ (asociado a $\lambda_2 = 1$). De este modo,

$$E^s = \operatorname{gen}\left\{\begin{bmatrix}0\\1\end{bmatrix}\right\} = \left\{w \in \mathbb{R}^2: \ w = \alpha \begin{bmatrix}0\\1\end{bmatrix}, \ \alpha \in \mathbb{R}\right\}$$

У

$$E^u=\operatorname{gen}\left\{\begin{bmatrix}1/e\\1\end{bmatrix}\right\}=\left\{w\in\mathbb{R}^2:\ w=\alpha\begin{bmatrix}1/e\\1\end{bmatrix},\ \alpha\in\mathbb{R}\right\}.$$

Diagrama de fases

Figura Diagrama de fases.

In regard with the system

$$x'_1 = ax_1 \left(1 - \frac{x_2}{K}\right) - bx_1x_2$$

 $x'_2 = cx_1x_2 - dx_2$.

First, we compute the equilibriums. Certainly, $P_1^*=(0,0)$ is an equilibrium of the system. Then,

$$0 = ax_1 \left(1 - \frac{x_2}{K} \right) - bx_1 x_2$$
$$0 = cx_1 x_2 - dx_2$$

yields for $x_1, x_2 \neq 0^1$,

$$a\left(1-\frac{x_2}{K}\right)=bx_2.$$

¹Since $x_1 = 0$ implies $x_2 = 0$

Hence, $x_2^* = \frac{aK}{bK+a}$ and $x_1^* = \frac{d}{c}$. Then, we compute the jacobian matrix

$$J = \begin{bmatrix} a - bx_2 - \frac{a}{K}x_2 & -\frac{a}{K}x_1 - bx_1 \\ cx_2 & cx_1 - d \end{bmatrix}$$

Evaluating at (0,0)

$$J = \begin{bmatrix} a & 0 \\ 0 & -d \end{bmatrix}.$$

The eigenvalues are $\lambda_1 = a$ and $\lambda_2 = -d$. Since both parameters are positive, the origin is a saddle equilibrium. Now, with respect to the second equilibrium.

$$J = \begin{bmatrix} a - b \frac{aK}{bK+a} - \frac{a}{K} \frac{aK}{bK+a} & -\frac{a}{K} \frac{d}{c} - b \frac{d}{c} \\ c \frac{aK}{bK+a} & 0 \end{bmatrix}.$$

$$J = \begin{bmatrix} 0 & -\frac{a}{K} \frac{d}{c} - b \frac{d}{c} \\ c \frac{aK}{bK+a} & 0 \end{bmatrix}.$$

Since the characteristic polynomial would be

$$p(\lambda) = \lambda^2 - \left(-\frac{ad}{K} - bd\right) \frac{aK}{bK + a} = \lambda^2 + \left(\frac{ad}{K} + bd\right) \frac{aK}{bK + a}$$

and each parameter is positive, we would have two complex values for the eigenvalues, with zero real part². Therefore, it is not possible to apply H-G Theorem, but we know that it will behave as a center.

$$^2x^2 + a = 0$$
 implies $x = \pm i\sqrt{|a|}$ for $a > 0$

Diagrama de fases

Figura Diagrama de fases.

Diagrama de fases - zoom

Figura Diagrama de fases.

Aplicación: capital-polución

El siguiente es un modelo de crecimiento y polución. Considere K el stock de capital y P la polución (nivel de polución). Tenemos (en analogía con el modelo de Solow), la siguiente dinámica para el capital.

$$K' = sK^{\alpha} - \delta K$$
.

Por otro lado, la polución será creciente con el stock de capital (mayor producción implica mayor polución) y decae naturalmente a un ratio γ . O sea,

$$P' = K^{\beta} - \gamma P.$$

En este modelo, $0 < \alpha < 1$, $\beta > 1$ y $\gamma > 0$. Considere $P(0), K(0) \ge 0$.

(□) (□) (□) (□) (□) (□)

Aplicación: caso no lineal

- 10.1) Demuestre que $K^* = \left(\frac{\delta}{s}\right)^{\frac{1}{\alpha-1}}$, o $K^* = 0$.
- 10.2) Encuentre P^* .
- 10.3) Efectué el diagrama de fases analizando los equilibrios. Note que

$$J = egin{bmatrix} lpha \mathbf{s} \mathcal{K}^{lpha-1} - \delta & \mathbf{0} \ eta \mathcal{K}^{eta-1} & -\gamma \end{bmatrix}.$$

Aplicación: caso no lineal

- lacktriangle Igualar K' a cero.
- ② $P^* = \pm \frac{K^{\beta}}{\gamma} = \pm \left(\frac{\delta}{s}\right)^{\frac{\beta}{\alpha-1}}$ o, $P^* = 0$.
- **3** Localmente, (0,0) se comporta como una silla, y los otros dos, como atractores.
- Note que desde un punto de vista económica, solo 2 de los equilibrios importan ¿cuáles?

Diagrama de fases

Figura Diagrama de fases.

Análisis sobre los parámetros

$$\begin{cases} K' = 0.5K^{0.5} - 0.5K \\ P' = K^2 - P. \end{cases}$$

Figura Diagrama de fases.

Análisis sobre los parámetros

$$\begin{cases} K' = 0.8K^{0.5} - 0.5K \\ P' = K^2 - P. \end{cases}$$

Figura Diagrama de fases.

Análisis sobre los parámetros

$$\begin{cases} K' = 0.8K^{0.5} - 0.5K \\ P' = K^{3/2} - P. \end{cases}$$

Figura Diagrama de fases.

Material adicional

Curva Logística

Figura Curva logística.

Modelo Logístico

$$x' = x(a - bx), \ a, b > 0.$$
 (1)

Separación de variables:

$$\int \frac{dx}{ax - bx^2} = \int dt$$

$$\ln|x| - \ln|(a - bx)| = \ln\left|\frac{x}{a - bx}\right| = at + C.$$

Modelo Logístico

De ahí,

$$egin{aligned} x(t) &= aAe^{at} - bAe^{at}x(t) \ x(t)(1+bAe^{at}) &= aAe^{at} \ x(t) &= rac{aAe^{at}}{1+bAe^{at}}, \ A>0. \end{aligned}$$

Diferentes parámetros

Figura x(t) para diferentes a.

Condición inicial y equilibrios

¿Cuáles son los equilibrios?

$$A=\frac{x_0}{a-x_0\,b}.$$

O sea,

$$x(t) = \frac{a\left(\frac{x_0}{a - x_0 b}\right) e^{at}}{1 + b\left(\frac{x_0}{a - x_0 b}\right) e^{at}}$$
$$= \frac{a/b}{1 + \left(\frac{a}{b x_0} - 1\right) e^{-at}}.$$

$$\max \ \Pi = p(y)y - c \cdot y.$$

CPO:

$$p'(y)y + p(y) - c = 0.$$

Derivando respecto a c tendríamos por la regla de la cadena,

$$\frac{d}{dc}[p'(y)y + p(y) - c] = 0$$

$$p''(y)\frac{dy}{dc}y + p'(y)\frac{dy}{dc} + p'(y)\frac{dy}{dc} - 1 = 0$$

$$p''(y)y\frac{dy}{dc} + 2p'(y)\frac{dy}{dc} = 1$$

$$\frac{dy}{dc}[p''(y)y + 2p'(y)] = 1.$$

Teniendo en cuenta que $\frac{dp}{dc} = \frac{dp}{dy} \frac{dy}{dc}$, se obtiene lo solicitado

$$\frac{dp}{dc} = \frac{p'(y)}{p''(y)y + 2p'(y)} = \frac{1}{\frac{p''(y)y}{p'(y)} + 2}.$$
 (2)

De la Ecuación (2), igualando a 1, se obtiene

$$\frac{1}{\frac{p''(y)y}{p'(y)} + 2} = 1$$
$$p'(y) = p''(y) + 2p'(y).$$

Haciendo el cambio de variable x(t) = p'(y), se obtiene la EDO lineal de orden 1: $x'(t) = -\frac{1}{t}x(t)$. Por separación de variables,

$$p(y) = \int \frac{A}{y} dy = A \ln y + B.$$

$$\frac{L'}{L} = \theta - \beta \left(\frac{L}{Y}\right), \ \theta, \beta > 0$$

 $Y = K^{\alpha}L^{1-\alpha}$ con $\alpha \in (0,1)$. Reemplazando,

$$L' = \theta L - \beta \left(\frac{L^2}{Y}\right)$$
$$= \theta L - \beta \left(\frac{L^2}{K^{\alpha}L^{1-\alpha}}\right)$$
$$= \theta L - \beta \left(\frac{L^{1+\alpha}}{K^{\alpha}}\right).$$

Finalmente, haciendo L'=0,

$$L^* = \left(\frac{\theta}{\beta}\right)^{1/\alpha} K.$$

Curva de Gompertz (usado para modelar la mortalidad humana).

$$x'=2x\ln\frac{K}{x}.$$

Los equilibrios son $x^* = 0$ y $x^* = K$. Luego,

$$\frac{dF}{dx} = 2\left(\ln\frac{K}{x} - 1\right).$$

Evaluando, se tiene F'(K) = -2 < 0 mientras que $x \to 0$, $F' \to \infty$ (no se puede reemplazar directamente pues se estaría dividiendo por cero).

Gompertz

Figura Curva de Gompertz.

Gracias