Durée: 4 heures

∽ Baccalauréat C juin 1975 Paris ∾

EXERCICE 1

1. Soit F la fonction numérique définie sur \mathbb{R} par

$$F(x) = \int_{1}^{1+x^2} \log t \, \mathrm{d}t.$$

(le symbole Log désignant le logarithme népérien).

Calculer la dérivée F'(x) de F au point x, en considérant F comme la fonction composée de la fonction $g: x \mapsto 1 + x^2$ et de la fonction $h: X \mapsto \int_1^X \log t \, dt \quad (X > 0)$.

2. Calculer, en intégrant par parties, l'intégrale $\int_1^X \log t \, dt$. Exprimer alors F(x) sans utiliser le signe d'intégration, et retrouver l'expression de F'(x).

EXERCICE 2

Dans le plan affine P rapporté à un repère $(O; \vec{i}, \vec{j})$, on donne les points A et B définis par $\overrightarrow{OA} = \vec{i}$, $\overrightarrow{OB} = \vec{j}$.

Tout point M du plan P a deux coordonnées, notées x et y, dans le repère $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$.

- Comment choisir le point *M* pour que les points A, B, *M*, affectés respectivement des coefficients *x*, *y*, *xy*, admettent un barycentre?
 Dessiner l'ensemble *H* des points *M* qui ne conviennent pas.
- **2.** Trouver et dessiner l'ensemble *K* des points *M* pour lesquels le point O est le barycentre des points A, B, *M* affectés respectivement des coefficients *x*, *y*, *xy*.

PROBLÈME

Partie A

On donne un entier naturel a, supérieur ou égal à 1.

1. Trouver l'ensemble ${\mathscr J}$ des solutions du système suivant d'inéquations, où l'inconnue est le nombre réel x :

$$\begin{cases} x > 0 \\ \frac{-x^{3a} + 2x^a - 1}{1 - x^{3a}} < 0 \end{cases}$$

(on pourra d'abord poser $x^a = X$).

2. Calcul numérique (on pourra utiliser une table de logarithmes) : Trouver la plus petite valeur de l'entier a pour laquelle le nombre $\frac{49}{51}$ appartient à \mathcal{J} .

Le baccalauréat de 1975 A. P. M. E. P.

On considère l'ensemble \mathscr{S} , de toutes les suites réelles u, applications de \mathbb{N} dans \mathbb{R} , $n \mapsto u_n$.

La somme u + u' de deux suites u et u' de \mathscr{S} est la suite $n \mapsto u_n + u'_n$.

Le produit γu d'une suite u par un réel γ est la suite $n \mapsto \gamma u_n$.

La suite 0 est la suite $n \mapsto 0$ (réel nul).

L'ensemble \mathscr{S} , muni de cette addition et de cette multiplication par un réel, est un espace vectoriel sur \mathbb{R} .

1. Soit *p* un nombre réel donné, appartenant à l'intervalle]0; 1[.

On désigne par E l'ensemble des suites u de $\mathscr S$ qui satisfont à la relation de récurrence :

(1)
$$\forall n \in \mathbb{N}, \quad pu_{n+2} - u_{n+1} + (1-p)u_n = 0.$$

- **a.** Montrer qu'une telle suite est définie par la donnée de ses deux premiers termes u_0 et u_1 et par la relation (1).
- **b.** Montrer que E est un sous-espace vectoriel de \mathcal{S} .
- **c.** Soit v et w les deux suites de E définies par $v_0 = 1$, $v_1 = 0$ et par $w_0 = 0$, $w_1 = 1$.
 - Montrer que $\{v, w\}$ est un système libre.
 - Montrer que, si u est une suite quelconque de E, u est égale à la suite $u_0v + u_1w$.
 - Que peut-on dire alors de $\{v, w\}$? Quelle est la dimension de E?
- **2. a.** Vérifier que si $p = \frac{1}{2}$ les suites de E sont des suites arithmétiques.

On suppose $p \neq \frac{1}{2}$. Montrer que la suite $n \mapsto t^n$ (t réel non nul) appartient à E si et seulement si t est tel que $pt^2 - t + 1 - p = 0$.

Vérifier que l'on obtient ainsi deux suites formant une base de E. Écrire alors une expression générale du terme u_n d'une suite u quelconque de E, en désignant par λ et μ les coordonnées de u dans cette base.

- **b.** Soit α un entier donné, supérieur ou égal à 1. On désigne maintenant par u une suite de E telle que $u_0 = 1$ et $u_\alpha = 0$.
 - On prend $p = \frac{1}{2}$, exprimer alors u_n en fonction de α et de n.
 - On suppose $p \neq \frac{1}{2}$ et on pose $x = \frac{1-p}{p}$; exprimer u_n en fonction de x, α et n.

Partie C

Un jeu oppose deux joueurs A et A', auxquels on attribue respectivement, au début du jeu, un « avoir » de a jetons et un « avoir » de 2a jetons (a entier donné, supérieur ou égal à 1).

La rencontre comporte des parties successives et indépendantes, numérotées 1, 2, 3, ...

La probabilité pour que le joueur A gagne une partie est supposée indépendante du rang de cette partie, et égale à p (0). Après chaque partie le joueur perdant donne un jeton au gagnant. Le jeu s'arrête lorsqu'un joueur est « ruiné », c'est-à-dire ne dispose plus de jetons, et le joueur « ruiné » perd le match.

1. a. k désignant un entier naturel, on considère la variable aléatoire X_k égale à l'avoir du joueur A après la partie de rang k (si $k \neq 0$) et avant la partie de rang k+1 (si celle-ci a lieu). On a ainsi $X_0 = a$ et $0 \leq X_k \leq 3a$.

Quelles sont les valeurs « possibles » de X_1 ? de X_2 ? de X_{2k} ? de X_{2k+1} ?

b. Si $X_k = 0$ le joueur A est ruiné; si $X_k = 3$ a le joueur A' est ruiné; dans chacun de ces cas le match ne se poursuit pas au delà de la k-ième partie.

Le baccalauréat de 1975 A. P. M. E. P.

Si X_k est différent de 0 et de 3a l'on admet 1 que la probabilité de ruine ultérieure du joueur A ne dépend pas de k mais seulement de la valeur n de X_k ?

On désigne par r_n la probabilité de ruine de A, connaissant n. On a ainsi $r_0 = 1$ et $r_{3a} = 0$.

En considérant les deux valeurs que peut prendre X_{k+1} sachant que $X_k = n$, montrer 2 que $r_n = (1-p)r_{n-1} + pr_{n+1}$ et constater que la suite $n \mapsto r^n$ vérifie la relation de récurrence (1) du B.

Exprimer alors, à l'aide de B. 2. b., le terme r_n en fonction de n et de a (lorsque $p = \frac{1}{2}$) ou en fonction de n, a et de $x = \frac{1-p}{p}$ (lorsque $p \neq \frac{1}{2}$).

- **c.** On désigne par r'_m la probabilité de ruine du joueur A', connaissant son avoir m. Montrer qu'on obtient r'_m en remplaçant, dans l'expression de r_n , n par m et p par 1-p (c'est-à-dire x par $\frac{1}{x}$). Écrire cette expression x de r'_m (pour $p=\frac{1}{2}$ et pour $p\neq\frac{1}{2}$). Vérifier la relation $r_a+r'_{2a}=1$ (2).
- **2.** En notant que r_a et r'_{2a} sont les probabilités de ruine de A et de A' au début du match, on voit que le jeu est favorable au joueur A si $r_a < r'_{2a}$, c'est-à-dire, d'après la relation (2) précédente, si $2r_a < 1$.

Que vaut r_a lorsque $p = \frac{1}{2}$?

On prend $p \neq \frac{1}{2}$. Exprimer la différence $D_a = 2r_a - 1$ en fonction de x et de a.

Pour quelles valeurs de x a-t-on $D_a < 0$? (cf. le A 1.).

p étant fixé, supérieur à $\frac{1}{2}$, comment choisir a pour que le jeu soit favorable au joueur A?

Application numérique : p = 0.51; utiliser le A 2. pour donner la plus petite valeur convenable de l'entier a.

Paris

^{1.} Le candidat ne cherchera pas à définir l'espace de probabilité relatif à ce jeu, et se bornera à faire le raisonnement qui lui est suggéré.

^{2.} Le candidat pourra admettre ce résultat