Deep Learning for NLP - Focus on Medical Applications

Recurrent Neural Networks

Working with sequential data?

HR = 86 -> What will be the HR in 20 min?

Working with sequential data?

- Hehe Fan et al. - Cubic LSTMs for Video Prediction

- Yiwen Xu et al. - Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging

 Tingyan Wang et al. - Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks

The architecture of the proposed RNN model for AD stage prediction.

- Heart Failure
 - G. Maragatham et al. LSTM Model for Prediction of Heart Failure in Big Data
- Mortality (ICU)
 - Yao Zhu et al Predicting ICU Mortality by Supervised Bidirectional LSTM Networks
- Other
 - Discharge Time
 - Adverse Drug Reaction
 - Kidney Failure
 - Seizure detection
- Spell checking (Language Modeling)
 - Pravallika Etoori et al. Automatic Spelling Correction for Resource-Scarce Languages using
 Deep Learning

Recurrent Networks | Examples | Language Modeling

I was running yesterday.

I - was - running - yesterday.

Recurrent Networks | Examples | Language Modeling

I was running yesterday.

yesterday.

I - was - running -

?

Recurrent Networks | When to use them?

- Anything that in anyway changes over time
 - Sound
 - Text
 - Images (Video)
 - Pretty much anything related to a patient
 - Diseases
 - Symptoms
 - Measurements

Feedforward vs CNN vs Recurrent Networks

Standard Feedforward fully connected Neural Network

VGG16 - Convolutional Network

Recurrent Neural Network - Abstract

Feedforward Networks

yesterday.

I - was - running -

?

- No weight sharing
 - Each portion of the network has to learn all words
- The length of the sentence is not variable
 - We need to <PAD> the sentences
 - (Theoretically this will not be needed for RNNs but it will still be done)
- No notion of before/after

Recurrent Neural Networks

$$\begin{aligned} &h_{t} = f_{w} (h_{t-1}, x_{t}) \\ &h_{t} = sigmoid(W_{h,h} h_{t-1} + W_{x,h} x_{t}) \\ &\hat{y}_{t} = W_{h,y} h_{t} \end{aligned}$$

 f_{w} - Nonlinearity (activation function) h_{t} - Hidden state of the Recurrent Cell x_{t} - input vector \hat{y}_{t} - Output Vector

Recurrent Neural Networks

- When unrolled the weights are shared

Recurrent Neural Networks

Recurrent Neural Networks | Backpropagation

- Do a forward pass then go back and calculate gradients based on loss

Recurrent Neural Networks | Backpropagation

- Do a forward pass then go back and calculate gradients based on loss

- Forward pass calculate outputs across time
- We can not backpropagate based on one single instance of the network

- Forward pass calculate outputs across time
- We can not backpropagate based on one single instance of the network

- Forward pass calculate outputs across time
- We can not backpropagate based on one single instance of the network

- Calculating weight updates
- Derivation of the loss with respect to W⁰_{h,h}
- Use chain rule

$$z_{t} = W_{h,h}h_{t-1} + W_{x,h}X_{t}$$

$$h_{t} = sigmoid(z_{t})$$

$$\hat{y}_{t} = W_{h,y}h_{t}$$

- Calculating weight updates
- Derivation of the loss with respect to W⁰_{h.h}
- Use chain rule

$$\frac{\partial L_2}{\partial W_{h,h}^0} = \frac{\partial L_2}{\partial \hat{y}^2} \frac{\partial \hat{y}^2}{\partial h_t^2} \frac{\partial h_t^2}{\partial z_t^2} \frac{\partial z_t^2}{\partial h_t^1} \frac{\partial h_t^1}{\partial z_t^1} \frac{\partial z_t^1}{\partial h_t^0} \frac{\partial h_t^0}{\partial z_t^0} \frac{\partial z_t^0}{\partial W_{h,h}^0}$$

$$z_{t} = W_{h,h}h_{t-1} + W_{x,h}x_{t}$$

$$h_{t} = sigmoid(z_{t})$$

$$\hat{y}_{t} = W_{h,y}h_{t}$$

- Exploding Gradient
 - Many values > 1
 - Gradient clipping
- Vanishing Gradient
 - Many Values < 1
 - Not so easy to solve

$$\frac{\partial L_2}{\partial W_{h,h}^0} = \frac{\partial L_2}{\partial \hat{y}^2} \frac{\partial \hat{y}^2}{\partial h_t^2} \frac{\partial h_t^2}{\partial z_t^2} \frac{\partial z_t^2}{\partial h_t^1} \frac{\partial h_t^1}{\partial z_t^1} \frac{\partial z_t^1}{\partial h_t^0} \frac{\partial h_t^0}{\partial z_t^0} \frac{\partial z_t^0}{\partial W_{h,h}^0}$$

Recurrent Neural Networks | Text Classification (Colab)

- The last output contains the information from the whole input sequence
- Sentence/Text Classification
 - Ignore all outputs apart from the last one
 - Put a FC network on top of the last output
 - Do classification

Recurrent Neural Networks | Vanishing Gradient

- If a lot of the weights are < 1
 - After only a couple of steps back the gradient is 0
 - Biases the network to detect short term dependencies
 - Long dependencies are completely ignored
- Tricks
 - Use a ReLU activation function instead of Sigmoid
 - Initialize with identity matrix
 - Use gated cells

Recurrent Neural Networks | Vanishing Gradient

Long Short Term Memory (LSTM)

Standard RNN

- Long Short Term Memory (LSTM)
 - Use gates to not forget
 - A bit more messy

LSTM h_{t-1} x_{t-1} x_{t} x_{t+1}

- Cell state

- The memory of the cell
- What it knows until now
- The gates allow information to go into the cell state

- Forget gate
 - What information should be forgotten and what kept
 - Receives
 - Old output
 - New input

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Update gate
 - What new information to add
 - Receives
 - Old output
 - New input
- Creates a vector of new candidate values

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Updating the cell state
 - Multiply old state by the forget gate
 - Multiply the new candidates by the update gate
 - Sum everything

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Calculating the output
 - Cell state
 - Output gate
- Doesn't output the whole cell state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Recurrent Neural Networks | GRU

- Gated Recurrent Unit
 - Combines update and forget gate
 - Simpler model

What we have done

- Differences between FC, CNN, RNN
- How to train an RNN
 - Exploding gradients
 - Vanishing gradients
- What can RNNs be used for
 - Any sequential data
- Different cell types
 - LSTM
 - GRU

Next Time

- Language Modeling
 - New dataset
 - Playing with different text generators
- Multilayer RNNs
 - Stacking RNNs
- Advanced dropout
 - Temporal dropout
 - Inter-layer dropout
- Transfer learning
 - From LM to text classification