Fiche d'exercices: suites arithmétiques

Exercice 1:

Soit (u_n) la suite arithmétique de raison a = 5 telle que $u_8 = 12$.

- 1) Calculer u_{15} .
- **2)** Calculer u_0 .

Exercice 2:

Soit (v_n) la suite arithmétique de raison a = -2 telle que $v_{10} = 20$.

- 1) Calculer v_{30} .
- **2)** Calculer v_0 .

Exercice 3:

Soit (u_n) la suite arithmétique de premier terme $u_0 = 7$ et de raison a = 3.

- 1) Exprimer u_{n+1} en fonction de u_n .
- **2)** Exprimer u_n en fonction de n.
- 3) Calculer u_{15} .
- **a)** Déterminer, à l'aide de la calculatrice, le rang n à partir duquel u_n dépasse la valeur 101.
 - b) Retrouver ce résultat par calculs.

Exercice 4:

Soit (u_n) la suite arithmétique de premier terme $u_0 = 120$ et de raison a = -4.

- 1) Exprimer u_{n+1} en fonction de u_n .
- **2)** Exprimer u_n en fonction de n.
- 3) Calculer u_{15} .
- 4) a) Déterminer, à l'aide de la calculatrice, le rang n à partir duquel u_n devient inférieur à 10.
 - **b**) Retrouver ce résultat par calculs.

Exercice 5:

Soit (u_n) la suite arithmétique de premier terme $u_1 = 3$ et de raison a = 1, 5.

- 1) Exprimer u_{n+1} en fonction de u_n .
- **2)** Exprimer u_n en fonction de n.
- 3) Calculer u_{18} .
- 4) a) Déterminer, à l'aide de la calculatrice, le rang n à partir duquel u_n devient supérieur à 50.
 - **b)** Retrouver ce résultat par calculs.

Exercice 6:

 (u_n) est une suite arithmétique telle que $u_4 = 8$ et $u_{22} = 53$.

- 1) Déterminer la valeur de la raison a de la suite (u_n) .
- **2)** Calculer u_0 .
- 3) Calculer u_{12} .

Exercice 7:

 (u_n) est une suite arithmétique telle que $u_7 = 3$ et $u_{20} = -36$.

- 1) Déterminer la valeur de la raison a de la suite (u_n) .
- **2)** Calculer u_0 .

3) Calculer u_{14} .

Exercice 8:

Un étudiant rembourse un prêt de la façon suivante :

Le premier mois il rembourse 1 000 €, le deuxième mois il rembourse 1 100 €, le troisième mois il rembourse 1 200 € et ainsi de suite.

On note u_n le remboursement effectué le n-ième mois.

- 1) Exprimer u_{n+1} en fonction de u_n .
- **2)** Déterminer la nature de la suite (u_n) .
- **3)** Exprimer u_n en fonction de n.
- 4) Calculer u_4 . Interpréter le résultat.
- 5) Déterminer la somme totale remboursée au bout d'un an.

Exercice 9:

Un élève possède 150 € d'économies.

Pour l'encourager a bien travailler en maths, ses parents décident de lui donner 20 € à chaque fois qu'il obtient une note supérieure à 15.

On note u_n l'argent que possède l'élève au bout de n notes supérieures à 15.

- 1) Exprimer u_{n+1} en fonction de u_n .
- **2)** Déterminer la nature de la suite (u_n) .
- **3)** Exprimer u_n en fonction de n.
- 4) Calculer u_{10} . Interpréter le résultat.
- 5) L'élève souhaite s'acheter un ordinateur d'une valeur de 700 €. Combien de notes supérieures à 15 devra-t-il obtenir afin d'y parvenir?

Correction

Exercice 1:

1)
$$u_{15} = u_8 + 7 \times a = 12 + 7 \times 5 = 47$$
.

2)
$$u_0 = u_8 - 8 \times a = 12 - 8 \times 5 = -28.$$

Exercice 2:

1)
$$v_{30} = v_{10} + 20 \times a = 20 + 20 \times (-2) = -20$$
.

2)
$$v_0 = v_{10} - 10 \times a = 20 - 10 \times (-2) = 40.$$

Exercice 3:

1)
$$u_{n+1} = u_n + 3$$
.

2)
$$u_n = u_0 + n \times a = 7 + n \times 3$$
.

3)
$$u_{15} = u_0 + 15 \times a = 7 + 15 \times 3 = 52$$
.

4) a) À partir de
$$n = 32$$
 car $u_{31} = 100$ et $u_{32} = 103$.

b) Il faut résoudre
$$7 + n \times 3 > 101$$
, ce qui donne $n \times 3 > 101 - 7$ donc $n \times 3 > 94$ donc $n > \frac{94}{3}$ donc $n > 31,33$ donc à partir de $n = 32$.

Exercice 4:

1)
$$u_{n+1} = u_n - 4$$
.

2)
$$u_n = u_0 + n \times a = 120 + n \times (-4)$$
.

3)
$$u_{15} = u_0 + 15 \times a = 120 + 15 \times (-4) = 60$$
.

4) a) À partir de
$$n = 28$$
 car $u_{27} = 12$ et $u_{28} = 8$.

b) Il faut résoudre
$$120 + n \times (-4) < 10$$
, ce qui donne $n \times (-4) < 10 - 120$ donc $n \times (-4) < -110$ donc $n > \frac{-110}{-4}$ donc $n > 27,5$ donc à partir de $n = 28$.

Exercice 5:

1)
$$u_{n+1} = u_n + 1,5$$
.

2)
$$u_n = u_1 + (n-1) \times a = 3 + (n-1) \times 1, 5.$$

3)
$$u_{18} = u_1 + 17 \times a = 3 + 17 \times 1, 5 = 28, 5.$$

4) a) À partir de
$$n = 33$$
 car $u_{32} = 49,5$ et $u_{33} = 50$.

b) Il faut résoudre
$$3 + (n-1) \times 1, 5 > 50$$
, ce qui donne $(n-1) \times 1, 5 > 50 - 3$ donc $(n-1) \times 1, 5 > 47$ donc $n-1 > \frac{47}{1,5}$ donc $n-1 > 31, 33$ donc $n > 31, 33 + 1$ donc $n > 32, 33$ donc à partir de $n = 33$.

Exercice 6:

1)
$$u_{22} = u_4 + 18 \times a \text{ donc } u_{22} = 8 + 18 \times a = 53 \text{ donc } 18 \times a = 53 - 8 = 45 \text{ donc } a = \frac{45}{18} = 2,5.$$

2)
$$u_0 = u_4 - 4 \times a = 8 - 4 \times 2, 5 = -2.$$

3)
$$u_{12} = u_4 + 8 \times a = 8 + 8 \times 2, 5 = 28.$$

Exercice 7:

1)
$$u_{20} = u_7 + 13 \times a \text{ donc } u_{20} = 3 + 13 \times a = -36 \text{ donc } 13 \times a = -36 - 3 = -39 \text{ donc } a = \frac{-39}{13} = -3.$$

2)
$$u_0 = u_7 - 7 \times a = 3 - 7 \times (-3) = 24.$$

3)
$$u_{14} = u_7 + 7 \times a = 3 + 7 \times (-3) = -18$$
.

Exercice 8:

- 1) $u_{n+1} = u_n + 100$.
- 2) (u_n) est une suite arithmétique car, pour passer d'un terme au suivant, on ajoute toujours le même nombre : 100 (raison de la suite).
- **3)** $u_n = u_1 + (n-1) \times a = 1000 + (n-1) \times 100.$
- **4)** $u_4 = u_1 + 3 \times a = 1\,000 + 3 \times 100 = 1\,300$. Le quatrième mois, il remboursera 1 300 €.
- **5)** Il faut calculer $u_1 + u_2 + ... + u_{12} = 1\,000 + 1\,100 + ... + 2\,100 = 18\,600 \in$.

Exercice 9:

- 1) $u_{n+1} = u_n + 20$.
- **2)** (u_n) est une suite arithmétique car, pour passer d'un terme au suivant, on ajoute toujours le même nombre : 20 (raison de la suite).
- **3)** $u_n = u_0 + n \times a = 150 + n \times 20$.
- 4) $u_{10} = u_0 = 10 \times a = 150 + 10 \times 20 = 350$. Au bout de 10 notes supérieures à 15, il possèdera 350 €.
- 5) Il faut résoudre $150 + n \times 20 > 700$ donc $n \times 20 > 700 150$ donc $n \times 20 > 550$ donc $n > \frac{550}{20}$ donc n > 27,5 donc il lui faudra 28 notes supérieures à 15 pour atteindre son objectif.