

planetmath.org

Math for the people, by the people.

regular open set

Canonical name RegularOpenSet
Date of creation 2013-03-22 15:04:03
Last modified on 2013-03-22 15:04:03

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771)
Entry type Definition
Classification msc 06E99
Synonym regularly open
Synonym regularly closed
Synonym regularly closed set

Defines regular open
Defines regular closed

Let X be a topological space. A subset A of X is called a *regular open* set if A is equal to the interior of the closure of itself:

$$A = \operatorname{int}(\overline{A}).$$

Clearly, every regular open set is open, and every clopen set is regular open. **Examples**. Let \mathbb{R} be the real line with the usual topology (generated by open intervals).

- (a, b) is regular open whenever $-\infty < a \le b < \infty$.
- $(a,b) \cup (b,c)$ is not regular open for $-\infty < a \le b \le c < \infty$ and $a \ne c$. The interior of the closure of $(a,b) \cup (b,c)$ is (a,c).

If we examine the structure of $\operatorname{int}(\overline{A})$ a little more closely, we see that if we define

$$A^{\perp} := X - \overline{A},$$

then

$$A^{\perp\perp} = \operatorname{int}(\overline{A}).$$

So an alternative definition of a regular open set is an open set A such that $A^{\perp\perp}=A$.

Remarks.

- For any $A \subseteq X$, A^{\perp} is always open.
- $\varnothing^{\perp} = X$ and $X^{\perp} = \varnothing$.
- $A \cap A^{\perp} = \emptyset$ and $A \cup A^{\perp}$ is dense in X.
- $A^{\perp} \cup B^{\perp} \subseteq (A \cap B)^{\perp}$ and $A^{\perp} \cap B^{\perp} = (A \cup B)^{\perp}$.
- It can be shown that if A is open, then A^{\perp} is regular open. As a result, following from the first property, $\operatorname{int}(\overline{A})$, being $A^{\perp\perp}$, is regular open for any subset A of X.
- In addition, if both A and B are regular open, then $A \cap B$ is regular open.
- It is not true, however, that the union of two regular open sets is regular open, as illustrated by the second example above.

- It can also be shown that the set of all regular open sets of a topological space X forms a Boolean algebra under the following set of operations:
 - 1. 1 = X and $0 = \emptyset$,
 - $2. \ a \wedge b = a \cap b,$
 - 3. $a \vee b = (a \cup b)^{\perp \perp}$, and
 - 4. $a' = a^{\perp}$.

This is an example of a Boolean algebra coming from a collection of subsets of a set that is not formed by the standard set operations union \cup , intersection \cap , and complementation '.

The definition of a regular open set can be dualized. A closed set A in a topological space is called a regular closed set if $A = \overline{\text{int}(A)}$.

References

- [1] P. Halmos (1970). Lectures on Boolean Algebras, Springer.
- [2] S. Willard (1970). General Topology, Addison-Wesley Publishing Company.