NE336 Assignment 3 Due Nov 8th

Instructions

You know what to do at this point...

Systems of ODEs

Question 1

This is a classic problem called Gear's Chemistry Problem. The kinetics of a batch reaction are described by the following system of ODE IVPs:

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = -0.013x_1 - 1000x_1x_3$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t} = -2500x_2x_3$$

$$\frac{\mathrm{d}x_3}{\mathrm{d}t} = -0.013x_1 - 1000x_1x_3 - 2500x_2x_3$$

Subject to initial conditions: $x_1(t=0) = 1$, $x_2(t=0) = 1$ and $x_3(t=0) = 0$.

Integrate (solve) this system of equations over t = [0, 50]. Try using different solvers (you could do this by changings methods in solve_ivp) and print the time it takes for each to see how the solution time varies.

Please explain the reason behind this variance.

Submit in a file called system_ODEs_question1.py.

Note:

Gear was a mathematician and not an engineer, so these equations are not of practical interest but have become a classic problem for testing ode solvers; note they do contain a typo making the results physically meaningless.

Question 2

Consider a narrow cylindrical pore of length L = 1.0 cm. At the entrance to the pore, the concentration of species A is $C_{A,0} = 1.0 \times 10^{-3} \text{ mol/cm}^3$. Species A diffuses into the pore and reacts according to the following reaction:

$$A \to B$$
 with $r = kC_A^2$ where $k = 10 \text{ cm}^3/\text{mol s}$

Neglecting radial terms gives the following differential equation:

$$D_A \frac{d^2 C_A}{dx^2} = kC_A^2$$

With $D_A = 1.0 \times 10^{-3} \text{cm}^2/s$. Assuming that the end of the pore (x = L) is closed off, the BCs are:

$$C_A(x=0) = C_{A,0}$$

$$\frac{\mathrm{d}C_A}{\mathrm{d}x}\Big|_{x=L} = 0$$

Find $C_A(x)$ by using the shooting method with (a) solve_ivp and (b) solve_bvp.

Include both approaches in one file and plot the results $(C_A(x) \text{ vs } x)$ for both methods on one figure with labels to distinguish between them.

Submit in a file called system_ODEs_question2.py.

Question 3 (BONUS)

Solve the previous problem using a FD approach.

- i) (On paper) Set up finite difference equations. Maintain second order accuracy. Explain how the boundary conditions can be implemented.
- ii) Solve the system in python. How do you know your answer has converged?
- iii) Plot $C_A(x)$ vs x and compare to the results from Question 2 (comment in code).

Submit in a file called system_ODEs_question3.py.

Elliptic PDEs

Given the following PDE:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \sigma(T_a - T^4) = 0$$

with the following boundary conditions:

$$T(x,0) = 20 \quad 0 \le x \le 0.3$$

$$T(0,y) = 50 \quad 0 \le y \le 0.3$$

$$\frac{\partial T}{\partial y}(x,0.3) = 0 \quad 0 \le x \le 0.3$$

$$\frac{\partial T}{\partial x}(0.3,y) = 0 \quad 0 \le y \le 0.3$$

Determine the temperature distribution T(x,y) using centered finite differences under the following conditions:

- a) $\sigma = 1e 4$ (BONUS)
- b) $\sigma = 0$

Assume $T_a = 25$ and $\Delta x = \Delta y = 0.1$ for both conditions. Please include the setup steps on paper and submit along your code.

Submit in a file called elliptic_PDE.py.