4.6. coordenadas de um vector relativamente a uma base

página 1/3

departamento de matemática

universidade de aveiro

- 1. No espaço vectorial real indicado, determine as coordenadas do vector u na base ordenada \mathcal{B} dada.
 - (a) u = (3, -7) e $\mathcal{B}_{\mathbb{R}^3} = ((1, 0), (0, 1))$, em \mathbb{R}^2 ;
 - (b) $u = (1,1) \in \mathcal{B} = ((2,-4),(3,3)), \text{ em } \mathbb{R}^2;$
 - (c) $u = (2, -1, 3) \in \mathcal{B} = ((1, 0, 0), (2, 2, 0), (3, 3, 3)), \text{ em } \mathbb{R}^3;$
 - (d) $u = 2 x + x^2$ e $\mathcal{B} = (1 + x, 1 + x^2, x + x^2)$, em $P_2[x]$;
 - (e) $u = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$ e $\mathcal{B} = \left(\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right)$, em $M_{2\times 2}(\mathbb{R})$.
- 2. Considere os vectores $u=(1,1,-1),\ v=(2,1,0)$ e w=(-1,0,1) do espaço vectorial real \mathbb{R}^3 .
 - (a) Mostre que $\mathcal{B} = (u, v, w)$ é uma base ordenada de \mathbb{R}^3 .
 - (b) Determine as coordenadas do vector a = (2, -1, 2) na base \mathcal{B} .
 - (c) Determine $S = \langle u, v \rangle$ e averigue que o vector $b = (0, 1, -2) \in S$.
- 3. No espaço vectorial real \mathbb{R}^2 , considere as bases ordenadas

$$\mathcal{B} = ((2,0),(1,3)), \quad \mathcal{B}' = ((1,-3),(2,4)) \quad \text{e} \quad \mathcal{B}'' = ((1,-1),(1,1)).$$

Determine as coordenadas dos vectores u = (8,6) e v = (1,-2) relativamente às bases \mathcal{B} , \mathcal{B}' e \mathcal{B}'' .

- 4. No espaço vectorial real \mathbb{R}^3 , considere o subespaço vectorial S gerado pelos vectores u=(1,0,-2) e v=(2,-1,3).
 - (a) Determine $k \in \mathbb{R}$ de modo que o vector w = (1, -2, k) pertença a S.
 - (b) Fazendo k=0, mostre que $\mathcal{B}=(u,v,w)$ é uma base ordenada de \mathbb{R}^3 e determine as coordenadas de b=(0,1,0) em relação a essa base.
- 5. Considere, no espaço vectorial real \mathbb{R}^3 , o subconjunto de \mathbb{R}^3 :

$$\mathcal{B} = \{(1,0,1), (1,1,0), (k,1,-1)\}.$$

- (a) Determine os valores de $k \in \mathbb{R}$ para os quais \mathcal{B} é uma base de \mathbb{R}^3 .
- (b) Considere k=1.
 - i. Indique as coordenadas do vector u = (5, 4, 2) relativamente à base \mathcal{B} .
 - ii. Determine o vector v cujas coordenadas relativamente à base \mathcal{B} são (2, -3, 4), isto é, $v = (2, -3, 4)_{\mathcal{B}}$.

4.6. coordenadas de um vector relativamente a uma base

página 2/3

- 6. Determine uma base \mathcal{B} e indique a dimensão do subespaço vectorial S, no espaço vectorial indicado. Determine ainda as coordenadas de u em relação à base \mathcal{B} .
 - (a) $S = \{(x, y) \in \mathbb{R}^2 : 2x + 3y = 0\}$ e u = (-9, 6), em \mathbb{R}^2
 - (b) $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\} \text{ e } u = (-3, 3, -1), \text{ em } \mathbb{R}^3;$
 - (c) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0 \land 2y z = 0\} \text{ e } u = (1, -1, -2), \text{ em } \mathbb{R}^3;$
 - (d) $S = \langle (1,0,1), (1,1,1), (1,-1,1) \rangle$ e u = (5,2,5), em \mathbb{R}^3 ;
 - (e) $S = \langle (1,0,1), (1,1,2), (0,-1,-1), (3,1,4) \rangle$ e u = (4,1,5), em \mathbb{R}^3 ;
 - (f) $S = \{(a, b, c, d) \in \mathbb{R}^4 : a + b + c = 0\} \text{ e } u = (1, -1, 0, 4), \text{ em } \mathbb{R}^4;$
 - (g) $S = \{(a, b, c, d) \in \mathbb{R}^4 : a 2b = 0 \land c = 3d\} \text{ e } u = (-2, -1, 6, 2), \text{ em } \mathbb{R}^4;$
 - (h) $S = \langle (1,0,1,1), (1,1,0,1), (1,-1,2,1) \rangle$ e u = (3,0,3,3), em \mathbb{R}^4 ;
 - (i) $S = \langle (1, 1, 1, 1, 0), (1, 1, -1, -1, -1), (2, 2, 0, 0, -1), (1, 1, 5, 5, 2) \rangle$ e u = (2, 2, 0, 0, -1), em \mathbb{R}^5 :
 - (j) $S = \{ax^3 + bx^2 + cx + d \in P_3[x] : b = 0 \land d = 2c\}$ e $u = -5x^3 + 3x + 6$, em $P_3[x]$;
 - (k) $S = \left\{ \begin{bmatrix} x+y-2z & 2x-y \\ 0 & 3x+5z \end{bmatrix} : x, y, z \in \mathbb{R} \right\} \in u = \begin{bmatrix} 0 & 1 \\ 0 & 8 \end{bmatrix}$, em $M_{2\times 2}(\mathbb{R})$.

- 1. (a) $u = (3, -7)_{\mathcal{B}}$;
 - (b) $u = (0, \frac{1}{3})_{\mathcal{B}};$
 - (c) $u = (3, -4, 3)_{\mathcal{B}}$;
 - (d) $u = (0, 2, -1)_B$;
 - (e) $u = (-1, 1, -1, 3)_{\mathcal{B}}$.
- 2. (b) $a = (-3, 2, -1)_{\mathcal{B}};$
 - (c) $S = \{(x, y, z) \in \mathbb{R}^3 : z + 2y x = 0\}.$
- 3. $u = (3,2)_{\mathcal{B}}, u = (2,3)_{\mathcal{B}'} e u = (1,7)_{\mathcal{B}''},$ $v = (\frac{5}{6}, -\frac{2}{3})_{\mathcal{B}}, v = (\frac{4}{5}, \frac{1}{10})_{\mathcal{B}'}, v = (\frac{3}{2}, -\frac{1}{2})_{\mathcal{B}''}.$
- 4. (a) k = 12; (b) $b = (\frac{59}{12}, -\frac{13}{6}, -\frac{7}{12})_{R}$.
- 5. (a) $k \in \mathbb{R} \setminus \{0\}$; (b) $u = (1, 5, 1)_{\mathcal{B}}$; (c) v = (3, 1, -2).
- 6. (a) $\mathcal{B} = ((-\frac{3}{2}, 1))$, dim S = 1 e $u = (6)_{\mathcal{B}}$;
 - (b) $\mathcal{B} = ((-2, 1, 0), (-3, 0, 1)), \dim S = 2 \text{ e } u = (3, -1)_{\mathcal{B}};$
 - (c) $\mathcal{B} = ((-1, 1, 2)), \dim S = 1 \text{ e } u = (-1)_{\mathcal{B}};$
 - (d) $\mathcal{B} = ((1,0,1),(1,1,1)), \dim S = 2 \text{ e } u = (3,2)_{\mathcal{B}};$

 - (e) $\mathcal{B} = ((3,1,4),(1,1,2))$, dim S = 2 e $u = (\frac{3}{2},\frac{1}{2})_{\mathcal{B}}$; (f) $\mathcal{B} = ((-1,1,0,0),(-1,0,1,0),(0,0,0,1))$, dim S = 3 e $u = (-1,0,4)_{\mathcal{B}}$;
 - (g) $\mathcal{B} = ((2,1,0,0),(0,0,3,1)), \dim S = 2 \text{ e } u = (-1,2)_{\mathcal{B}};$
 - (h) $\mathcal{B} = ((1,0,1,1),(1,1,0,1)), \dim S = 2 \text{ e } u = (3,0)_{\mathcal{B}};$
 - (i) $\mathcal{B} = ((1, 1, 1, 1, 0), (1, 1, -1, -1, -1)), \dim S = 2 \text{ e } u = (1, 1)_{\mathcal{B}};$
 - (j) $\mathcal{B} = (x^3, x + 2)$, dim S = 2 e $u = (-5, 3)_{\mathcal{B}}$;
 - (k) $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 0 & 5 \end{bmatrix} \end{pmatrix}$, dim S = 3 e $u = (1, 1, 1)_{\mathcal{B}}$.