DYNAMICS OF LIFE EXPECTANCY AND LIFESPAN EQUALITY

José Manuel Aburto, Francisco Villavicencio & James W. Vaupel

October 2018

Life expectancy vs lifespan equality

The change over time in e_0 is given by

$$\frac{\partial e_o}{\partial t} = \int_0^\infty \rho(x) \mu(x) \ell(x) e(x) dx \tag{1}$$

The change over time in e_0 is given by

$$\frac{\partial e_o}{\partial t} = \int_0^\infty \rho(x) \mu(x) \ell(x) e(x) dx \tag{1}$$

where

$$\rho(x) = -\frac{\partial \mu(x)/dt}{\mu(x)}$$

 $\dot{e_o}=$ is a weighted total of rates of mortality improvement ho (Vaupel & Canudas Romo, 2003)

Mortality improvements, Swedish females, 1751-2016

Life expectancy weights, Swedish females, 1751–2016

Three lifespan equality indicators

► Logarithm of the inverse of **Keyfitz' entropy**

$$\eta = - \ln ar{H} = - \ln rac{e^\dagger}{e_o}$$

Three lifespan equality indicators

► Logarithm of the inverse of **Keyfitz' entropy**

$$\eta = - \ln ar{H} = - \ln rac{e^\dagger}{e_o}$$

► Variant of the **Gini coefficient**

$$g=-\ln G$$
, where $G=1-\int_0^\infty c(x)\,\ell(x)\,dx=1-ar\ell$.

Three lifespan equality indicators

► Logarithm of the inverse of **Keyfitz' entropy**

$$\eta = - \ln ar{H} = - \ln rac{e^\dagger}{e_o}$$

► Variant of the **Gini coefficient**

$$g=-\ln G$$
 , where $G=1-\int_0^\infty c(x)\,\ell(x)\,dx=1-ar\ell$.

► Variant of the coefficient of variation

$$C = -\ln \frac{\sigma}{e_0}$$
.

A) Life expectancy (e_o) vs three lifespan equality indicators (η,C,g)

B) Yearly changes in life expectancy (\dot{e}_o) and three lifespan equality indicators ($\dot{\eta}, \dot{C}, \dot{g}$)

The change over time in lifespan equality $\eta = -\ln\left(\frac{e^{\dagger}}{e_o}\right)$ is given by

$$\frac{\partial \eta}{\partial t} = \dot{\eta} = \frac{\dot{e_o}}{e_o} - \frac{\dot{e}^{\dagger}}{e^{\dagger}} \tag{2}$$

$$\dot{e^{\dagger}} = \int_{0}^{\infty} \rho(x) w(x) \left(H(x) + \bar{H}^{+}(x) - 1\right) dx$$

$$\dot{e^{\dagger}} = \int_{0}^{\infty} \rho(x) w(x) \left(H(x) + \bar{H}^{+}(x) - 1\right) dx$$

 $e^{\dagger}=$ weighted total of rates of mortality improvement ho

$$\dot{\eta} = \int_0^\infty \rho(x) w(x) W(x) dx$$

$$\dot{\eta} = \int_0^\infty \rho(x) w(x) W(x) dx$$

Key point: change in η over time is a weighted total of ρ

An application

Let $\tilde{\rho}$ denote the average value of the age-specific rate of mortality improvements $\rho(x)$, weighted by w(x) and defined as

$$\tilde{\rho} = \frac{\int_0^\infty \rho(x) \, w(x) \, dx}{\int_0^\infty w(x) \, dx} \; .$$

An application

Let $\tilde{\rho}$ denote the average value of the age-specific rate of mortality improvements $\rho(x)$, weighted by w(x) and defined as

$$\tilde{\rho} = \frac{\int_0^\infty \rho(x) \, w(x) \, dx}{\int_0^\infty w(x) \, dx} \, .$$

Note that $\tilde{\rho}$ can be interpreted as the loss-weighted average pace of mortality improvement.

The derivative of life expectancy over time can be decomposed as

$$\dot{e}_o = \int_0^\infty \rho(x) w(x) dx = \frac{\int_0^\infty \rho(x) w(x) dx}{\int_0^\infty w(x) dx} \int_0^\infty w(x) dx$$
$$= \tilde{\rho} e^{\dagger}$$

For each of the three measures of lifespan equality η , g and C define the average of the age-specific rate of mortality improvement $\rho(x)$, weighted by the corresponding weights,

$$\bar{\rho}_k = \frac{\int_0^\infty \rho(x) \, w(x) \, W_k(x) \, dx}{\int_0^\infty w(x) \, W_k(x) \, dx} \qquad \text{for } k \in \{\eta, C, g\} \ .$$

For instance, if $k=\eta$ the change over time in η can be decomposed as

$$\dot{\eta} = \bar{\rho}_{\eta} \int_{0}^{\infty} \mathbf{w}(\mathbf{x}) W_{\eta}(\mathbf{x}) d\mathbf{x} ,$$

Life expectancy vs lifespan equality

Slope is given by

$$\frac{\dot{\eta}}{\dot{e}_{o}} = \frac{\bar{\rho}_{\eta}}{\tilde{\rho}} \, \overline{W}_{\eta} = \frac{\bar{\rho}_{\eta}}{\tilde{\rho}} \, \frac{\int_{0}^{\infty} w(x) \, W_{\eta}(x) \, dx}{\int_{0}^{\infty} w(x) \, dx} \, . \tag{3}$$

Slope is given by

$$\frac{\dot{\eta}}{\dot{e}_{o}} = \frac{\bar{\rho}_{\eta}}{\tilde{\rho}} \, \overline{W}_{\eta} = \frac{\bar{\rho}_{\eta}}{\tilde{\rho}} \, \frac{\int_{0}^{\infty} w(x) \, W_{\eta}(x) \, dx}{\int_{0}^{\infty} w(x) \, dx} \, . \tag{3}$$

Key point: slope of the relationship between η and e_o is given by the quotient of the average mortality improvements and the lifespan equality weights \overline{W}_{η} .

Slope analysis of mortality improvements, Swedish females, 1751–2016

Dynamics of life expectancy and lifespan equality

Email: jmaburto@health.sdu.dk

@jmaburto