

Examen diagnóstico Análisis y diseño de algoritmos

Carlos Andres Delgado S, Msc carlos.andres.delgado@correounivalle.edu.co

Agosto de 2023

1. Inducción matemática

1. Demuestre por inducción matemática que:

$$\sum_{i=-3}^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} + 14$$

2. Demuestre por inducción matemática que:

$$\sum_{i=0}^{n} (8i^2 + \frac{3}{6}) = \frac{(n+1)(8n(2n+1)+3)}{6}$$

- 3. Demostrar por inducción matemática que 1 $+ 2^n < 3^n$ para $n \in \mathbb{Z}^+$.
- 4. Demuestre por inducción matemática, que si un conjunto A tiene n elementos, entonces P(A) tiene 2ⁿ elementos.

2. Sumatorias

1. Resuelva la siguiente sumatoria:

$$\sum_{i=100}^{45000} (2i+8)$$

2. Resuelva la siguiente sumatoria:

$$\sum_{i=-40}^{2n} \sum_{j=40}^{n^2} (2ij + 8j)$$

3. Indique una sumatoria que represente la suma de la siguiente sucesión y resuelvala $4+6+8+10+12+14+16+\ldots$ } el indice i arranca desde 1 hasta n. Pista la suma en i=20 da 460 y i=50 da 2650.

4. Indique una sumatoria que represente la suma de la siguiente sucesión y resuelvala $(-4) + (-1) + 4 + 11 + 20 + 31 + 44 + \dots$ } el indice i arranca desde 1 hasta n. Pista la suma en i = 20 da 2770 y i = 50 da 42675.

3. Recurrencias

- 1. ¿Que valores toma T(n) en n=2,4,6,8,10 para R.R $T(n)=2T(\frac{n}{2})+n,T(1)=8$
- 2. ¿Que valores toma T(n) en n=3,9,27,81,343 para R.R. $T(n)=5T(\frac{n}{3})+2n,T(1)=9$

4. Conteo en algoritmos

- 1. El problema subset-sum consiste en encontrar n números de un conjunto C cuya suma sea M ¿Cuantas posibilidades deben analizarse para encontrar todas las soluciones en términos de n?
- 2. ¿Cuantas posibles ordenaciones existen para un arreglo de tamaño n?
- 3. ¿Cuantas comparaciones tiene que hacer para encontrar el valor máximo de un arreglo de enteros A?
- 4. ¿Cuantas comparaciones tiene que hacer para hallar la máxima diferencia en un arreglo de enteros positivos A?. Se define la máxima diferencia como dos elementos $a_i \in A$ y $a_j \in A$ con $i \neq j$ donde $|A_i A_j|$ es máxima.

Ayudas

Sumatorias

$$\sum_{k=1}^{n} c = cn$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{k=0}^{n} ar^{k} = \frac{ar^{(n+1)} - a}{r-1}$$
 Si $r \neq 1$

$$\sum_{k=0}^{n} ar^{k} = (n+1)a$$
 Si $r = 1$

Potencias y logaritmos

- $a^{log_b(n)} = n^{log_b(a)}$
- $= \frac{1}{a} = a^{-1}$
- $log_a(b) = \frac{log_c(a)}{log_c(b)}$

P960 194P 1. Demuestre por inducción matemática que: 09 50 inductivo P(n) -> P(n+1) $\sum^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} + 14$ $n ductivo P(n) \longrightarrow P(n+1)$ 1 = (-3)2 $\frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1}$ × 20 + 9 + -3 + 19 - 9 + 9 - 1 + W $\frac{1}{2} \left(-3 \right)^{2} + \left(-2 \right)^{2} + \left(-4 \right)^{2} + \left(-4 \right)^{2} + \left(-4 \right)^{2}$ 548592 3 4 2 + 0 + 14 + (1+1)2 $\frac{0^3}{3} + \frac{0^2}{2} + \frac{0}{6} + \frac{0^2}{2} + 20 + \frac{1}{2} + \frac{14}{2}$ $\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} + n^2 + 2n + \frac{1}{4} + \frac{5}{4} + \frac{1}{4}$ $\frac{n^3}{3} + \frac{n^2}{7} + n^2 + 2n + \frac{5}{6} + \frac{n+1}{6} + 14$ $(n+1)^2 = \frac{n^2}{2} + \frac{2n+1}{2}$ $\frac{03}{3} + \frac{2}{2} + 0^{2} + 20 + 0 + 1 + \frac{2}{6} + \frac{0}{6} + 14$ B + n² + n + 2 + n ² + 2n + 1 + n + 1 + 1 + 1 + 1 $0^{3} + 0^{2} + 0 + 2 + (0+1)^{2} + 0 + 1 + 14$ $\frac{0^{3}}{3} + \frac{30^{2}}{3} + \frac{30}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}$ 03+302+30+10+1)2+14 $(n+1)^{3} + (n+1)^{2} + (n+1) + 14$

3. Demostrar por inducción matemática que i $+2^n < 3^n$ para $n \in \mathbb{Z}^+$. $n \geq 2$

4. Demuestre por inducción matemática, que si un conjunto A tiene n elementos, entonces P(A) tiene 2^n elementos.

$$A = \{1, 1\}$$

$$A = \{4, 1, 2\}\}$$

$$A = \{4, 1, 3\}\}$$

$$A = \{4, 1, 3\}\}$$

$$A = \{4, 1, 3\}$$

$$A = \{4, 1, 3\}\}$$

$$A = \{4, 1, 3\}$$

$$A = \{4, 1, 3\}$$

$$A = \{1, 1, 3\}$$

$$A = \{1, 1, 2, 3\}$$

$$A = \{1, 1, 2, 3\}$$

$$A = \{1, 1, 1, 1, 1\}$$

$$A = \{1, 1, 1\}$$

$$A = \{$$

