THIS PAGE IS INSERTED BY OIPE SCANNING AND IS NOT PART OF THE OFFICIAL RECORD

Best Available Images

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

BLACK BORDERS

TEXT CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT

BLURRY OR ILLEGIBLE TEXT

SKEWED/SLANTED IMAGES

COLORED PHOTOS HAVE BEEN RENDERED INTO BLACK AND WHITE

VERY DARK BLACK AND WHITE PHOTOS

UNDECIPHERABLE GRAY SCALE DOCUMENTS

IMAGES ARE THE BEST AVAILABLE COPY. AS RESCANNING WILL NOT CORRECT IMAGES, PLEASE DO NOT REPORT THE IMAGES TO THE PROBLEM IMAGE BOX.

DEUTSCHLAND

(9) BUNDESREPUBLIK (2) Patentschrift ₁₀ DE 3005378 C2

B 65 D 85/72

PATENTAMT

(21) Aktenzeichen:

P 30 05 378.2-27

(2) Anmeldetag:

13. 2.80 14. 8.80

(3) Offenlegungstag: (45) Veröffentlichungstag

der Patenterteilung:

7. 12. 89

(5) Int. Ci. 4: B 65 D 8/04

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

- 30 Unionspriorität: 32 33 31

13.02.79 JP P54-15892 08.10.79 JP P54-130205 09.10.79 JP P54-130535 18.09.79 JP P54-120428 09.10.79 JP P54-139959 05.11.79 JP P54-143641

73 Patentinhaber:

The Nippon Aluminium Mfg. Co. Ltd., Osaka, JP

(74) Vertreter:

Deufel, P., Dipl.-Wirtsch.-Ing.Dr.rer.nat.; Schon, A., Dipl.-Chem. Dr.rer.nat.; Hertel, W., Dipl.-Phys., Pat.-Anwälte, 8000 München

(72) Erfinder:

Maeda, Kenichi, Neyagawa, Osaka, JP; Ueno, Akira, Nagareyama, Chiba, JP; Ono, Yoshimasa. Kawachinagano, Osaka, JP

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> BE-OS 15 86 891 US 23 84 810 US 19 13 652

(54) Druckbehälter aus Metall u. Verfahren zu seiner Herstellung

Nummer:

30 05 378

Int. Cl.4:

B 65 D 8/04

F/G. 1

Die Erfindung betrifft einen Druckbehälter aus Metall gemäß Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Herstellung eines derartigen Druckbehälters.

Durch die US-PS 19 13 652 ist ein Deckel für ein Behälter bekannt, der in Abhängigkeit vom Innendruck verformbar ist. Dieser Deckel weist bei völlig gefülltem Behälter die Form einer Schale auf und kann die Form einer Scheibe annehmen, wenn der Inhalt nicht den gesamten Raum des Behälters einnimmt. Der bekannte Behälter ist nicht in der Lage hohe Innendrücke auszuhalten.

Der Erfindung liegt die Aufgabe zugrunde, einen Druckbehälter aus Metall zu schaffen, der bei sehr dun- 15 ner Wandung sehr hohe Innendrücke aufnehmen kann und ein Verfahren zur Herstellung dieses Druckbehalters anzugeben.

Diese Aufgabe wird erfindungsgemäß gelöst durch die kennzeichnenden Merkmale des Anspruchs 1 und 8. 20 Vorteilhaste Weiterbildungen der Erfindung sind in

den Unteransprüchen gekennzeichnet.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung. In der Zeich- 25 nung zeigt

Fig. 1 eine teilweise im Axialschnitt gezeigte Seitenansicht einer Ausführungsform eines kleinen Bierfasses; Fig. 2 eine Draufsicht auf den Boden dieser Ausfüh-

Fig. 3 einen scher tischen axialen Querschnitt eines Deckelteils, das einteilig mit einem Mundstück ausgebildet ist, mit einer vergrößerten Querschnittsansicht eines Randes des Mundstücks;

Fig. 4 einen vergrößerten senkrechten Querschnitt 35 der Stelle, wo der Deckelteil mit dem Hauptteil verbun-

Fig. 5 bis 11 Ansichten zur Erläuterung der Formung. des Deckelteils mit dem Mundstück, wobei

Fig. 5 einen Teilquerschnitt des Deckelteils nach Fer- 40 tigstellung eines in Schritten erfolgenden Tiefziehverfahrens.

Fig. 6 einen axialen Querschnitt des Deckelteils nach Beendigung des Ausstanzens.

Fig. 7 einen axialen Querschnitt des Mundstücks nach 45 Beendigung des Aufrichtschrittes,

Fig. 8 einen axialen Querschnitt des Mundstücks nach Beendigung des Umbördelns,

Fig. 9 eine Perspektivansicht eines desormierten

Fig. 10a und 10b senkrechte Querschnitte des Mundstücks nach dem in Fig. 9 gezeigten Zustand und

Fig. 11 einen axialen Querschnitt des Mundstücks nach Beendigung des Richtens zeigen;

Fig. 12 einen axialen Querschnitt einer Form unmit- 55 telbar vor dem Wölben des Behälters;

Fig. 13 eine Seitenansicht eines Fasses bzw. unteren Hauptteils, wie es nach dem Wölben aussieht;

Fig. 14 eine vergrößerte Querschnittsansicht längs Linie XIV-XIV in Fig. 12:

Fig. 15 eine Vergrößerung entsprechend Fig. 4, die diejenige Stelle zeigt, wo das Oberteil mit dem Unterteil vereinigt ist; und

Fig. 16 eine Ansicht zur Erläuterung der Herstellung der Doppelfalzverbindung an der in Fig. 15 gezeigten 65 Vereinigungsstelle.

In Fig. 1, die als Ausführungsbeispiel ein Bierfaß zeigt. bezeichnet das Bezugszeichen 1 ein Oberteil (Deckel-

teil), das aus einem Teil 1a von der Form einer umgekehrten Schale, dessen Durchmesser von unten nach oben stetig abnimmt, und einem Mundstück 4 zylindrischer Form besteht, das einteilig mit dem Teil von der Form einer umgekehrten Schale ausgebildet ist und sich von dessen mittlerem Teil ausgehend erstreckt. Das Oberteil (Deckelteil) ist aus einer dünnen Platte aus Aluminium oder einer Aluminiumlegierung geformt, mit einem Überzug aus Expoxyharz mit 0,3-1 mm, vorz.:gsweise 0,3-0,5 mm Dicke, und enthält einen gekrümmten Teil 1b mit einem bestimmten Krümmungsradius R. sowie einen ringförmigen gewellten Teil 1c, der den gekrümmten Teil 1b (in Fig. 1 nach oben) fortsetzt und aus einer Mehrzahl konzentrischer wellenförmiger Teile gehildet ist, nämlich aus einer Reihe von durchgehenden, konzentrischen, konvexen und konkaven ringförmigen Wülsten bzw. Rillen, bei Betrachtung im axialen Querschnitt. Das mit dem Oberteil 1 verbundene Unterteil 2 ist aus einer dünnen, mit Epoxyharz überzogenen Metallplatte (bei der beschriebenen Ausführungsform ein Blech aus Aluminiumlegierung) durch ein Tiefziehverfahren zu einer zylindrischen Form ausgebildet, mit einem Boden und einer nach außen gewölbten Form, die im Querschnitt des Fasses bogenförmig ist.

Das Oberteil 1 und Unterteil 2 sind mit ihren Öffnungen einander zugewandt und an ihrem Umfangsteil gasdicht miteinander verbunden, um den Druckbehälter zu

Der Bodenteil 5 des Hauptkörpers 2 (FaB) des Druckbehälters ist ferner mit einem vorbestimmten Krümmungsradius R nach außen gewölbt, um eine flache Schale zu bilden. Fünf Mulden 6 (leichte Vorsprünge) sind auf einer Kreislinie um die Mitte des Bodenteils 5 herum angeordnet, um ein sicheres Aufstellen auf einem Tisch oder Ständer zu erreichen. Diese Mulden 6 haben die Aufgabe, den mit Bier oder einer anderen Flüssigkeit angefüllten Behälter zu sichern und sein Umkippen zu verhindern, so daß wenigstens drei von ihnen vorgesehen sein müssen. Zwischen jeweils zwei benachbarten Mulden 6 ist ein radialer Wulst 7 (konkave Ausneh-

mung) in Form einer Rille vorgesehen.

Wie aus Fig. 2 klar ersichtlich ist, die den Boden 5 des Behälters zeigt, weist jede Mulde 6 insgesamt die Form eines Tropfens auf, der gebildet ist durch die Verbindung eines Bogenteils 9, dessen Radius R1 und Mittelpunkt Pi in der Nähe des Mittelpunktes Oi des Bodens 5 ist, mit einem weiteren Bogen 10, dessen Radius R2 $(R_2 > R_1)$ ist, mit dem Mittelpunkt P_2 , der weiter von dem Mittelpunkt O_1 entfernt ist als der Punkt P_1 ; die Berührungsoberfläche 11 mit dem Tisch, auf den das Faß gestellt werden soll, ist oval (ellipsenförmig) und verbindet den Punkt P_1 mit dem Punkt P_2 in radialer Richtung. Die ovale Berührungsoberfläche 11 steht insgesamt leicht vom Boden nach unten vor, um eine flache Standsläche zu bilden. Der Wulst 7 zur Verstärkung des Bodens 5 erstreckt sich radial von einem Punkt in der Nähe des Mittelpunktes O 1 bis beinahe zu einem einhüllenden Kreis A, der die Außenränder jeder Mulde 6 miteinander verbindet. Die Hülsen 7 sind ferner dadurch gebildet, daß der Boden 5 teilweise nach oben ausgenommen ist, so daß eine flache Rille rechtwinkeliger Gestalt gebildet wird. Außerhalb des einhüllenden Kreises A ist der Boden 5 mit einem plötzlich verringerten Krümmungsradius R3 (Fig. 1) gekrümmt, um dort eine relativ hohe Festigkeit aufzuweisen. Innerhalb des einhüllenden Kreises A ist der Krümmungsradius R (Fig. 1) des Bodens 5 sehr groß, so daß dieser Teil allgemein leichter deformierbar ist.

Da der Behälter beim Aufstellen auf einen Tisch oder einen Ständer auf seinen fünf muldenförmigen Füßen 6 steht, die an einem Teil des Bodens 5 gebildet sind, der durch radial zwischen jeweils zwei benachbarten Mulden 6 angeordneten Wülste 7 verstärkt ist; bewirken das Leergewicht des Behälters und seine Füllung, die nach unten auf die Mulden bzw. Füße 6 drücken, Reaktionskräfte auf den Bereich um jede Mulde 6 herum (der Teil des Bodens 5, der nicht von den Mulden 6 eingenommen wird). Dieser Umgebungsbereich hat also die Neigung, 10 zur Innenseite hin deformiert bzw. eingebeult zu werden, und zwar konzentrisch zu den Punkten P1, P2, wie in Fig. 2 gestrichelt angedeutet ist. Diese Neigung, in dem gestrichelten Bereich nach innen gewölbt zu werden, wird jedoch durch die Wirkung des ringförmigen Bereichs 5a neutralisiert, der den kleinen Krümmungsradius R3 aufweist und sich außerhalb des einhüllenden Kreises A befindet, ebenso wie durch die Wülste 7. Allein die Anordnung einer Wulst 7 zwischen zwei benachbarten Mulden 6 verhindert bereits zu einem gro- 20 Ben Teil die Deformierung des Behälters, die in einem kreisförmigen Bereich um die Mulden 6 herum auftreten könnte. Die Wülste 7 können nach außen (unten) an einem Teil des Bodens 5 vorstehen und dabei die gleiche Wirkung ausüben.

Ein solcher Druckbehälter aus Metall wird vorzugsweise als kleines Bierfaß für 3 bis 5 I Bier verwendet. Bei einem Bierfaß mit 3 I Fassungsvermögen beträgt z. B. die Höhe etwa 200 mm, und der größte Faßdurchmesser ist etwa 165 mm.

An dem Oberteil 1, das für den erfindungsgemäßen Behälter besonders chrakteristisch ist, erhöht die Vielzahl von kreisförmigen konvexen und konkaven Wellenmustersn (im Querschnitt betrachtet) die Druckwiderstandsfestigkeit erheblich, und zwar trotz der Verwendung von Metall als Werkstoff und trotz der gerin-

Das Tiefziehverfahren als solches, das als MehrfachschrittTiefziehverfahren zur Bildung des Wellenmusters wiederhol wird ermöglicht die einfache Ausbildung des 40 Mundstückes 4 im mittleren Bereich. Es wird nun das Herstellungsverfahren des Oberteils 1 im einzelnen beschrieben. Die Erläuterung dieses Verfahrens wird wegen der symmetrischen Form des Behälters auf die Seite beschränkt, die sich auf der rechten Seite einer Mittelli- 45 nie O1 befindet, wobei auf Fig. 3 Bezug genommen wird, die einen senkrechten axialen Querschnitt des Oberteils 1 mit dem Mundstück 4 zeigt. Als Rohling 12 wird ein Blech aus einer Aluminiumlegierung (5052S) mit einem Epoxyharzüberzug (nicht gezeigt) auf beiden Seiten der 50 Dicke 3-4 µ mit einem Durchmesser D1 und einer Dikke von 0,5 mm verwendet. Dieser Rohling wird zunächst durch eine Formpresse in die Form abc gebracht. Dann erfolgt ein erster Tiefziehvorgang mit einem Stempel des Durchmessers D1 (Form del) zur Bildung eines nach 55 außen gewölbten Ringes e mit hügeligem Querschnitt, dessen Außenumfang mit einer ringförmigen Einbuchtung b verbunden ist, die im Querschnitt die Gestalt eines umgekehrten Hügels aufweist. Dann wird eine ringförmige konvexe Wölbung h in einem zweiten Tief- 60 ziehschritt mittels eines Stempels der Form ghi mit einem Durchmesser D2 gebildet. Bei diesem Schritt wird die zuvor gebildete konvexe Wölbung e nicht verändert, so daß auf natürliche Weise eine ringförmige konkave Wölbung j zwischen den konvexen Wölbungen e und h 65 gebildet wird. In gleicher Weise werden ringförmige konvexe Wölbungen k, l. m mit Stempeln der Durchmesser D3, D4, ... gebildet. Durch solche Verfahrens-

schritte wird an dem schalenförmigen Oberteil 1 jede der ringförmigen konvexen Wölbungen e, h, k, l, m gebildet, wobei der Außenumfang des Stempels vei jedem Schritt wirksam wird, so daß durch Kombination der einzelnen Schritte eine durchgehende Wellenform entsteht. Bei diesem aus mehreren Schritten bestehenden Tiefziehverfahren sind die Oberflächen jedes nacheinander bearbeiteten Abschnittes einander gleich.

Das Mundstück 4 kann dadurch erhalten werden, daß der Mittelteil des schalenförmigen Teils des Oberteils 1 in die Form m n o p q r o gebracht wird. Ein umgerolltes Ende des Mundstücks 4 wird, nachdem das Werkstück in eine zylindrische Form p q q' gebracht ist, durch Abschneiden des Spitzenteils und Umrollen des Teils q q' nach außen bearbeitet, um schließlich den Teil qrozu bilden. Der Außenumfang des schalenförmigen Teils des Oberteils 1 ist zur Verbindung mit dem Unterteil 2 mit einem zylindrischen Flansch 14, einem sich nach außen erstreckenden seitlichen Flansch 15 und einem umgebogenen Flansch 16 versehen, die einstückig damit ausgebildet sind. Ein sich seitlich erstrect ender Flansch 17, der am Oberende des zylindrischen Teile des Unterteils 2 gebildet ist, wird in Berührung mit dem seitlichen Flansch 15 des Oberteils 1 gebracht, dann erfolgt ein 25 doppelter Falzvorgang, um beide Flansche 15, 17 gemeinsam mit dem umgebogenen Flansch 16 in den in Fig. 4 vergrößert gezeigten Zustand zu bringen. Das Mundstück 4 und die Flansche 14 – 16 können im voraus gebildet werden, bevor die Tiefziehschritte an dem Teil mit der Form einer umgekehrten Schale erfolgen.

Der Teil des Oberteils 1 mit der Form einer umgekehrten Schale und das Mundstück 4 haben eine durchgehende, leicht kreisförmig gewellte Form aus konvexen und konkaven konzentrischen Bereichen, und alle hügelähnlichen ringförmigen konvexen Wölbungen e, h, k, l, m, die durch die Umfangsränder von Stempeln verschiedener Durchmesser gebildet sind, bleiben an der Oberfläche des Oberteils 1 unbcrührt, um die Steifigkeit und Festigkeit desselben zu verbessern. Diese ringförmigen Wellenmuster mit konvexen und konkaven Bereichen verstärken also das Oberteil 1. Eine Endbearbeitung durch Dehnung des Materials, d. h. Beseitigung der beim Formen aufgetretenen Unregelmäßigkeiten, entfällt bei dem erfindungsgemäßen Behälter. Die einmal durch die Umfangsränder der Stempel verschiedener Durchmesser gebildeten konvexen Wölbungen e, h, k, l, m unterliegen niemals einer Biegung in Rückwärtsrichtung (mit Ausgleich der Höhe der Wellung), so daß die konvexen Stellen e, h, . . ., die nur einmal einer Dehnbelastung ausgesetzt sind, welche die Stoffstruktur verändert, keinen umgekehrten Druckkräften ausgesetzt werden, so daß auch die mit dem Überzug versehene Oberfläche nicht beschädigt wird und sich insbesondere der Überzug nicht abschält. Das gleiche gilt für die Innenobersläche des Werkstücks. Dies bedeutet, daß durch stoßartige Beiastungen hervorgerufene Beschädigungen auf beiden Seiten des Werkstücks vollständig verhindert werden können, und auf der Außenoberfläche des Deckels untfällt eine Beeinträchtigung des Aussehens durch solche Beschädigungen, während auf der Innenseite des Deckels verhindert wird, daß abgelöste Teile des Überzugs sich mit dem Behälterinhalt vermischen und dessen Qualität verschlechtern. Durch die Erfindung wird also die Schaffung eines Deckelteils möglich, dessen Mundstück aus mit Harz überzogenem Blech gebildet ist, während dieses gleichzeitig eine hohe Festigkeit behält.

Das im mittleren Teil des Deckels gebildete Mund-

stück des Behälters bzw. das Oberteil 1 von der Form einer umgekehrten Schale kann bevorzugt auch in der im folgenden beschriebenen Weise hergestellt werden. Wenn zunächst das Oberteil 1 durch das mehrere Schritte enthaltende Tiesziehversahren als Deckel ausgebildet ist, wird einteilig damit ein zylindrischer Teil 23 gebildet, der eine Deckelplatte im mittleren Bereich aufweist. Im mittleren Teil des zylindrischen Teils 23 wird gleichzeitig ein kreisförmiger abgestufter Teil 24 gebilder. Bezugszeichen 25 bezeichnet in Fig. 5 einen Außen- 10 flansch, der als Verbindungselement dient, wenn das Oberteil 1 mit dem Unterteil 2 durch den doppelten Falzvorgang verbunden wird.

Die Deckelplatte 22 wird mittels einer Stanze (nicht gezeigt) fortgeschnitten, um ein konzentrisches Loch 26 15 mit einem Durchmesser D' in ihrem mittleren Teil zu bilden, wie in Fig. 6 ersichtlich ist. Der linke Umfangsrand der Deckelplatte 22 um das Loch 26 herum ist zu einer ähnlichen Zylindergestalt wie der Zylinderteil 22 ausgebildet (dieser Teil wird im folgenden als Richtvor- 20 gang bezeichnet). Zu diesem Zweck werden ein oberes und ein unteres Formwerkzeug 27, 28 verwendet, und Fig. 7 zeigt, wie der zylindrische Teil gebildet wird, indem der linke Außenumfangsteil der Oberplatte 22 angehoben wird, um mit dem bereits vorhandenen zylin- 25 drischen Teil 23 ein integriertes Teil zu bilden. Die so erhaltenen einteiligen Abschnitte 22, 23 können z. B. mittels eines oberen Formwerkzeugs 29 zum Umbiegen und eines unteren Formwerkzeugs 30 zum Zusammenwirken damit umgebogen werden, um ein Mundstück zu 30 schaffen, dessen Querschnitt praktisch kreisförmig ist und das mit einer Kappe verschlossen werden kann. Durch Verschließen mit einer Verschlußkappe 32, die z. B. aus einem dünnen Aluminiumblech gebildet werden kann, und Versiegeln unter Druck (Stemmnaht) in 35 Richtung des Pfeiles A am Außenrand wird ein perfekt gasdichter Verschluß erreicht. Während der verschiedenen Formpreßschritte wird vor Fertigstellung des Endes 31 des Mundstücks der Flansch 25 (Fig. 5) weiterbearbeitet, um der in Fig. 8 gezeigte Flansch 15 zu werden, 40 und bei einem späteren Verfahrensschritt wird dieser weiter bearbeitet, um gemeinsam mit dem Flansch 17 des Unterteils 2 eine gasdichte Doppelfalz- bzw. Stemmverbindung zu bilden.

Bei den vorstehend beschriebenen Verfahrensschrit- 45 ten tritt eine technologische Schwierigkeit auf, die nachstehend erläutert wird. Wenn der stehengebliebene Umfangsrand der Deckelplatte 22 um das Loch 26 herum aufgerichtet wird, um zu einem zylindrischen Teil 22' zu werden, das einstückig mit dem zylindrischen Teil 23 50 ausgebildet ist (siehe Fig. 7), und wenn die Schulter R' zwischen dem zylindrischen Teil 23 und dem stehengebliebenen Teil der Deckelplatte 22 völlig begradigt wird, so treten wellige Unregelmäßigkeiten 37 am oberen Rand des zylindrischen Teils 22' auf, wie in Fig. 9 gezeigt 55 ist, und zwar aufgrund der gerichteten Spannungen in dem Werkstoff, wodurch Wellungen mit vorstehenden Teilen 37a und zurückspringenden Teilen 37b entstehen. Wenn das Umbördeln ohne Korrektur dieser Unregelmäßigkeiten unter Zwang: einwirkung ausgeführt wird. 60 Höhen H3 des zylindrischen Teils 23 und des zylindriso entsteht aufgrund der Vertiefung 37b ein Spalt L_1 , der in Fig. 10a gezeigt ist, zwischen dem Blechrand und dem zylindrischen Teil 23, während der vorstehende Teil 37a hingegen wie in Fig. 10b gezeigt ist, gegen den zylindrischen Teil 23 angedrückt wird, so daß das Ende 31 des 65 Mundstücks, im Querschnitt betrachtet, an verschiedenen Stellen seines Umfangs unregelmäßig wird. Dies bedeutet daß das Ende 31 des Mundstücks keine ein-

wandfreie Form aufweist und nicht vollständig kreisförmig ist, wodurch eine einwandlreie Versiegelung beim Verschließen des Behälters mit einer Kapsel verhindert wird. Die Gründe für diesen Mangel liegen in der Tatsache, daß die Schulter R'nur an einem Teil völlig aufgerichtet werden kann, an anderen Stellen jedoch nicht. Wenn versucht wird, das Aufrichten unter Zwangseinwirkung durchzuführen, um einen einwandfreien Zylinder zu bilden, so entstehen in unvermeidbarer Weise Unregelmäßigkeiten am Blechrand, mit dem Ergebnis, daß im Querschnitt betrachtet, die Gestalt des Endes 31 des Mundstücks unregelmäßig wird.

Aus diesem Grunde wird das im folgenden beschriebene Versahren vorgeschlagen. Dieses Versahren ermöglicht die präzise Ausbildung von Form und Lage der Schulter R' bei der Bildung des zylindrischen Teils 23 mit der Deckelplatte 22 und die Vermeidung von Unrundheiten sowie mangelnder Konzentrizität des Lochs 26 beim konzentrischen Ausschneiden aus der Deckelplatte 22; die Schulter R' muß derart gestaltet werden, daß beim Aufrichten derselben eine ringförmige Stufe verbleibt, die nicht vollständig begradigt wird; folglich weist der Blechrand beim Aufrichten des stehengebliebenen Umsangsrandes der Deckelplatte 22 zu zylindrischer Form keine Unregelmäßigkeiten 37 auf.

Dies wird nun anhand der Fig. 6 und 11 erläutert. Das Ausstanzen des konzentrischen Lochs 26 mit dem Durchmesser Di im mittleren Teil der Deckelplatte erfolgt genau so wie bei dem zuvor beschriebenen Verfahren. Ein wichtiger Unterschied besteht in der Art des Aufrichtens des stehengebliebenen Umfangsteils der Deckelplatte 22, und ein wesentliches Merkmal besteht darin, daß zunächst der Durchmesser D'i des unteren Formwerkzeugs 28 etwas reduziert wird bzw. der Innendurchmesser D'2 des oberen Formwerkzeugs 27 etwas vergrößert wird, um den stehengebliebenen Umfangsteil der Deckelplatte 22 aufzurichten, so daß der aufgerichtete zylindrische Teil 22" bezüglich seines Au-Bendurchmessers etwas verschieden von dem zylindrischen Teil 23 ist. Wenn der Außendurchmesser D'1 des unteren Formwerkzeugs 28 gegenüber der bisherigen Form etwas reduziert wird, so wird der Innendurchmesser des zylindrischen Teils 22" kleiner als der des zylindrischen Teils 23, und die Schulter R' verbleibt als Ab stufung R", da sie nicht völlig aufgerichtet wird. Ein Teil des gekrümmen Teils der Schulter R'verbleibt also zwischen dem zylindrischen Teil 22" und dem zylindrischen Teil 23. Dies bedeutet, daß ein teilweise abgestufter zylindrischer Teil auf der Vorderseite des zylindrischen Teils 23 gebildet wird. Wenn der Innendurchmesser D'2 des oberen Formwerkzeugs 27 etwas gegenüber Ler bisherigen Form vergrößert wird, so wird der Innendurchmesser des zylindrischen Teils 22" gleich demjenigen des zylindrischen Teils 23, wobei in der Mitte eine Abstulung R" mit etwas größerem Durchmesser gebildet wird.

Durch Aufrichten des stehengebliebenen Umfangsteils der Deckelplatte 22, wobei eine Schulter R' als ringförmige Abstufung stehenbleibt, ist die Summe der schen Teils 22" etwas kleiner als die entsprechende Hōhe H2 (Fig. 7) bei dem zuvor beschriebenen Verfahren, jedoch ist der obere Rand 38 glatt, also völlig ohne Wellung. Dies kann damit erklärt werden, daß die Schulter R'nur wenig gedehnt wird, während der zylindrische Teil 22" gebildet wird, und die Höhe des abgestuften Teils R", die gegenüber derjenigen der Schulter R'verandert wurde, um den neu gebildeten zylindrischen Teil herum praktisch gleichmäßig ist (zwischen dem zylindrischen Teil 23 und dem zylindrischen Teil 22). Dies bewirkt, daß die endgültige Höhe des zylindrischen Teils 22" gleichmäßig ist, wodurch mit Sicherheit wellenförmige Unregelmäßigkeiten des Oberrandes 38 verhindert werden. Wenn ein so gleichmäßig gestalteter zylindrischer Teil (der die Teile 23 und 22" enthält) umgebördelt wird, so entsteht ein gleichmäßig umgebördeltes Mundstück mit einem nahezu völlig kreisförmigen Querschnitt. Das Umbördeln kann dann zu der in Fig. 10a oder 10b im Querschnitt gezeigten Form führen. In allen Fällen wird ein gleichmäßiges Umbördeln am gesamten Umfang des Mundstückes erreicht, weil der Oberrand 38 ganz in einer Ebene liegt und frei von Unregelmäßigkeiten der Höhe ist, bevor das Umbör- 15 deln stattfindet.

Wie vorstehend im einzelnen erläutert wurde, muß das Aufrichten des stehengebliebenen Teils der Deckelplatte nach dem Ausstanzen des konzentrischen Loches 26 in der Deckelplatte 22 so durchgeführt werden, daß 20 die Schulter R'als ungedehnte Abstufung verbleibt, mit gleichmäßiger Höhe um den ganzen Umfang herum. Dadurch wird erreicht, daß der Blechrand 38 glatt ist und in einer Ebene liegt, wodurch mittels des anschlie-Benden Umbördelns ein gleichmäßig geformtes Ende 31 25 des Mundstücks geschaffen werden kann, dessen Querschnitt am gesamten Umfang gleichmäßig ist; dadurch wird die Dichtigkeit des Behälters beim Verschlicßen

wesentlich erleichtert.

Das Unterteil 2 des Behälters ist in gleicher Weise wie 30 das Oberteil 1 aus einem Metallblech einer Dicke von 0,3-1,0 mm, vorzugsweise 0,3-0,5 mm, durch ein Tiefziehversahren hergestellt. Es wird nachstehend ein bevorzugtes Tiefziehverfahren beschrieben, das drei grundlegende Schritte enthält, nämlich Tiefziehen eines 35 ausgestanzten Blechs aus Aluminiumlegierung mit 0,3 - 1,0 mm Dicke und einem Epoxyharzüberzug in die Form des Hauptteils, Wärmebehandeln des so geformten Hauptteils bei einer Temperatur von 250-350° C während 1 - 5 min und Fertigformung bzw. Endbearbei- 40

tung des wärmebehandelten Hauptteils.

Es folgt nun eine detaillierte Beschreibung des Verfahrens. Zunächst wird ein von einer Rolle abgenommenes Blech aus Aluminiumlegierung (A 3004 oder A 5052) einer Dicke von z. B. 0,4 mm und mit einem Überzug aus Urea-Epoxyharz (Dicke 4 µ) für den ersten Verfahrensschritt in Stellung gebracht. Die Dicke des Blechs kann zwischen 0,3 und 1,0 mm betragen, und als Harzüberzug wird vorzugsweise Urea-Epoxyharz verwendet. Die Dicke des Überzugs kann frei je nach Anwendungsfall 50 gewählt werden, und der Überzug kann nur auf der Innenseite des Behälters aufgebracht werden. Der zweite Verfahrensschritt besteht im Ausstanzen mittels einer Stanzmaschine zur Bildung einer kreisförmigen Platte vorbestimmter Größe.

Die ausgestanzte Platte wird einer Presse mit Überführungseinrichtungen zugeführt, welche den dritten, vierten und fünften Verfahrensschritt ausführen, um nach und nach durch eine Reihe von Tiefziehschritten die Form eines mit Boden versehenen zylindrischen 60

Hauptkörpers zu schaffen.

Der sechste Schritt beinhaltet das Formen und der siebente das Zuschneiden. Je nach den Umständen kann

der sechste Schritt entfallen.

Der achte Verfahrensschritt ist eine Warmebehand- 55 lung in einem kontinuierlichen Wärmebehandlungsofen. dessen Betriebsdaten 290° C bei 1,5 min Verweilzeit sind. Wie später weiter erläutert wird, kann die Tempe-

ratur im Bereich von 250 - 350° C liegen, und die Verweilzeit kann 1 bis 3 min betragen, je nach Plattendicke und Zusammensetzung des Überzugsmaterials.

THE PARTY OF THE P

TANK TO THE PARTY.

MERCHANDON CONTROL CONTROL

grandi irangang at arangangangan pagan kangangangangan kangan at kangangangan an isangan an arangan

Der neunte Versahrensschritt ist das Wölben mittels einer Presse, in der der bereits wärmebehandelte Hauptkörper gewölbt wird, indem von innen mittels eines Formwerkzeugs aus Gummi der Hauptkörper gegen ein Außenwerkzeug gepreßt wird, das den Hauptkörper umgibt, um die angestrebte Faßform zu erreichen. Die bei diesem Wölben ersolgende Dehnung beträgt z. B. 6,5%. Diese Dehnung kann erreicht werden, ohne daß die sogenannte Dehnspannungsmarke (SS-Marke) erreicht wird, und zwar aufgrund der Wärmebehandlung in dem achten Verfahrensschritt. Wenn die Wärmebehandlung im achten Verfahrensschritt entfällt, so erscheinen zahlreiche Dehnspannungsmarken an der Außenoberfläche des Hauptteils.

Bei der zuvor beschriebenen Ausführungsform liegt die gewählte Dicke im Bereich von 0,3-1,0 mm. die Wärmebehandlingstemperatur beträgt 250-300° C, wenn als Überzug ein Epoxyharz verwendet wird, und die Verweilzeit beträgt 1-3 min. Bei Einhaltung dieser Bedingungen kann der Hauptteil nach dem größtmöglichen Tiefziehverhältnis (z. B. 2,25) bei einer Aluminiumlegierung in den Versahrensschritten 3, 4 und 5 eine Dehnung von 6,5% im neunten Verfahrensschritt aushalten, wobei eine Beeinträchtigung durch Anbrennen oder Ansengen aufgrund der Oxidation des Harzüber-

zugs mit Sicherheit verhindert wird. Wenn die Wärmebehandlungstemnperatur 350° C überschreitet, so wird sowohl bei einem Überzug aus Phenolepoxyharz als auch einem solchen aus Urea-Epoxyharz die Überzugsschicht angebrannt oder angesengt und verfärbt. Außerdem erhält das verpackte Getränk einen unangenehmen Geschmack. Bei einer Wärmebehandlung unter 250° C wird die erforderliche Verweilzeit verlängert, wodurch die Entfärbung des Überzugs beschleunigt wird, und die Verweilzeit 5 min überschreitet, so wird der Überzug angebrannt oder zerstört, und zwar unabhängig von der Temperatur, bei der die Wärmebehandlung durchgeführt wird. Eine Wärmebehandlung von über 5 min ergibt oft eine spürbare Verkohlung des Überzugsfilms. Wenn jedoch die Wärmebehandlungszeit weniger als I Minute beträgt, so ist ihre Wirkung unzureichend. Die bevorzugten Wärmebehandlungsbedingungen für eine Dicke von 0,4 mm einer Platte 21 aus Aluminiumlegierung (z. B. A 3004 oder A 5052) mit Epoxyharzüberzug einer Dicke von 4 μ ergeben bis zum fünften Verfahrensschritt ein Tiefziehverhältnis von 2,25 und im neunten Verfahrensschritt eine Dehnung von 6,5%; diese Bedingungen sind 290° ±:0° C und eine Verweilzeit von 1,5 min. Bei diesen Bedingungen wird keinerlei Zerstörung des Harzüberzuges beobachtet, und die verpackte Ware nimmt keinerlei unerwünschten Geschmack an.

Das vorstehend beschriebene Verfahren zur Herstellung eines Behälters aus Aluminium oder einer Aluminiumlegierung mit Epoxyharzüberzug eignet sich gut für eine Herstellung durch Tiefziehen und zum Verhindern der Zerstörung des Überzugsfilms. Selbst wenn die im Verlaufe der Herstellung durchgeführte Wārmebehandlung zur teilweisen Neutralisierung der Materialdehnung berücksichtigt wird, ist dieses Verfahren geeignet zum Verhindern der Zerstörung des Überzugs von Behältern für Nahrungsmittel. Durch die Erfindung werden also Behälter geschaffen, die eine hervorragende Korrosionsbeständigkeit, Verschleißfestigkeit sowie ein

gutes Aussehen aufweisen. .

Der Ofen zur kontinuierlichen Wärmebehandlung, der mit Umwälzung einer erhitzten Atmosphäre arbeitet und in dem achten Verfahrensschritt zum Einsatz gelangt, kann auch durch Infrarotbestrahlung oder eine Induktionserhitzung mit Hochfrequenz ersetzt werden, um nur die Außenseite des Behälters zu erhitzen, was vorteilhaft ist, um die Zerstörung des Harzüberzugs auf der Innenseite wällrend der Wärmebehandlung bestmöglich zu verhindern. Dies ist sehr günstig für Lebensmittelbehälter, bei denen es sehr wichtig ist zu verhindern, daß die verpackte Ware einen Beigeschmack er-

Ein weiterer Vorzug des Verfahrens zur Herstellung des Oberteils 1 und Unterteils 2 aus einer mit Harz überzogenen Platte aus Aluminiumlegierung ist das 15 vollständige Entsallen von Schmieröl bei dem Tiefziehverfahren, was bei den üblichen Tiefziehverfahren nicht möglich ist; dies ist darauf zurückzuführen, daß der Harzüberzug selbst während des Tiefziehvorganges als Schmiermittel wirksam ist. Durch das Entfallen beson- 20 derer Schmiermittel können die bei Lebensmittelbehältern üblicherweise erforderlichen Reinigungs- und Trockenvorgänge entfallen.

Es solgen nun einige Erläuterungen hinsichtlich der Wölbung des Behälters, die vorzugsweise das Unterteil 25 2 erhält, um den Faßteil im Querschnitt bogenförmig

nach außen auszuwölben.

Der größte Durchmesser dieses gewölbten Teils des Unterteils 2 in dessen Mitte muß in den Grenzen des 1.1fachen des kleinsten Durchmessers des Unterteils 2 30 liegen, wobei sich diese Stelle an der Vereinigung mit dem Oberteil 1 befindet. Eine Wölbung über diese Grenze hinaus kann zu einem Bruch des Werkstoffes führen.

Wölbung muß sorgfältig vermieden werden, daß Streifen oder Riefen am Unterteil 2 aufgrund der Verwendung eines zweiteiligen Formwerkzeugs auftreten. Diese Vorsichtsmaßnahme, die den kommerziellen Wert der hergestellten Gegenstände erhöht, wird nachste- 40

hend beschrieben.

Dieses Problem wird im wesentlichen dadurch gelöst, daß zur Wölbung des Unterteils 2 ein mehrteiliges Formwerkzeug verwendet wird, das eine Rille an der Stoß- bzw. Vereinigungsstelle der zwei Teile enthält. 45 Die Tiefe und Breite der Rille muß sorgfältig bestimmt werden, unter Berücksichtigung der Materialqualität und der verarbeiteten Dicke sowie der Qualität des Urethangummis, das als Innenformwerkzeug verwendet wird, z. B. dessen Elastizität und dgl., so daß der 50 verarbeitete Werkstoff beim Herausdrücken in die Rille durch die Druckkrast des Innenwerkzeugs nicht den Boden der Rille berühren kann. Durch Vermeidung der Berührung mit dem Rillenboden kann eine glatte und ästhetische Riffelung mit bogenförmigem Querschnitt 55 anstelle der üblichen unansehnlichen Streifen gebildet werden. Diese an der Verbindungsstelle gebildete Riffelung ergibt gemeinsam mit anderen Riffelungen, die durch an anderen Stellen angeordnete Rillen gebildet werden, ein Streifenmuster aus geraden Streifen. Diese 60 Ausführungsform wird im folgenden näher beschrieben.

In Fig. 12 ist mit 41 eine Unterlage bezeichnet, an der eine Form 42 mit einer Mehrzahl von Schrauben befestigt ist, und zwei trennbare Formhälften 42a, 42b sind in den mit Pfeilen bezeichneten Richtungen (rechts und 65 links) von der mit 42 bezeichneten Grenzlinie ausgehend bewegbar angeordnet. Mit 44 ist ein auf- und abbewegbarer Stempel bezeichnet. Eine an dem Stempel

44 befestigte Halterung 45 ist mit einem Innenformwerkzeug 46 aus Ure hangummi versehen. Ein becherförmiges Werkstück 47 aus einer dünnen Aluminiumplatte, das zu dem Unterteil 2 ausgebildet werden soll, ist an seinem oberen Ende mit einem einstückig damit ausgebildeten Flansch 48 zur Auflage versehen. Bei der in Fig. 12 gezeigten Anordnung wird der Stempel 44 abgesenkt, um das Innenformwerkzeug 46 aus Urethangummi auszudehnen, so daß dieses wiederum das be-10 cherförmige Werkstück 47 ausbeult, indem es entlang der Innenoberfläche 49 der Form 42 und gegen diese gepreßt wird. Durch Anheben des Stempels 44 und gleichzeitiges Öffnen der zwei Formhälften 42a, 42b der Form 42 verbleibt das geformte Unterteil (in Fig. 13 mit 40 bezeichnet).

Fig. 14 zeigt eine Vergrößerung der Querschnittsansicht nach Fig. 12 längs Linie XIV-XIV, wobei die Wölbung fertiggestellt ist und das Urethangummi 46 maximal ausgedehnt ist; ein Teil des becherförmigen Werkstücks 47 ist durch die Druckkraft des Innenformwerkzeugs 46 in eine Rille 51 mit bogenförmigem Querschnitt hineingedrückt, die durch ein Ätzversahren o. dgl. an der Verbindungsstelle 50 der Form 42 gebildet ist. Eine durch das Wölben des becherförmigen Werkstücks 47 in die Rille 51 hinein gebildete Erhebung 52 erreicht nicht den Rillenboden 50, d. h. die Verbindungsstelle der zwei Formhälften 42, so daß diese Erhebung 52 eine glatte und gleichmäßige Bogenform im Querschnitt aufweist, entsprechend der natürlichen Ausdehnung des Innenwerkzeugs 46 aus Urethangummi. Dadurch wird vollständig verhindert, daß die Außenoberfläche der Erhebung 52 durch senkrechte Streifen verunziert wird, selbst wenn die Verbindungsstelle 50 etwas versetzt und nicht sehr genau ist. Auf beiden Seiten der Bei dem Herstellungsschritt zur Schaffung dieser 35 Rille 51 befinden sich mehrere recht flache Rillen 53 in gleichem Abstand voneinander, und das ausgewölbte Werkstück 47 erreicht den Boden der Rillen 53, wenn es von dem Innenwerkzeug 46 gewölbt wird, so daß Riffelungen 54 gebildet werden. Diese Riffelungen 52, 54 bilden das in Fig. 13 gezeigte Linienmuster. Sie sind nur an dem gewölbten Teil L'1 des Faßkörpers 40 (Fig. 13) vorgesehen und werden nach und nach flacher, um am oberen und unteren Ende des gewölbten Teils L'i auszu-

> Durch Verwendung einer geteilten Form 42, die an ihrer Verbindungsstelle 50 mit einer im voraus gebildeten Rille 51 versehen ist, wird die Riffelung 52 in beabsichtigter Weise gebildet, während das Werkstück 47 gewölbt wird. Dadurch wird das Auftreten von unschönen Streisen an der Verbindungsstelle der Form 42 verhindert, was zuvor unvermeidbar war, und folglich wird das Aussehen des Faßkörpers 40 wesentlich verbessert. Die Bildung des geraden Rippenmusters aus den Riffelungen 52 und den anderen parallelen Riffelungen 54 erhöht wesentlich den Handelswert eines solchen Fasses 40. In den Innenoberflächen der geteilten Form 42 können verschiedene Rillenmuster vorgesehen sein, um die gewünschten Riffelungen oder Muster auf dem Faß 40 mittels des Innenwerkzeugs 46 aus Urethangummi zu schaffen, wobei die an dem Werkstück 47 gebildete Riffelung 52 die Verbindungsstelle 50 der Form 42 nicht berühren darf; der Boden der Rille 51 verhindert also nicht nur vollständig das Auftreten von unerwünschten Streifen, sondern es entfallen auch Schwierigkeiten hinsichtlich einer Verschlechterung der Festigkeit und Sicherneitswartung. Ferner werden die Kosten zur Herstellung der Form reduziert, weil es nicht erforderlich ist, daß diese mit sehr hoher Prāzision ausgeführt wird.

Im Rahmen der Erfindung kann auch mit einer hydraulischen Presse gearbeitet werden, um die Wölbung

Die Vereinigung des oberen Teils 1 mit dem Unterteil 2 erfolgt vorzugsweise durch eine Doppelfalzverbindung. Es sind jedoch auch andere Verbindungen möglich, z. B. eine Verklebung. Es folgt nun eine ausführliche Beschreibung der Doppelfalzverbindung gemäß einer Ausführungsform der Erfindung. Zur Vereinigung des te ausgeführt: 1. Eine zylindrische Außenwandung einer Ausnehmung (vertiefter Teil), die um die untere Offnung des Unterteils 1 herum gebildet ist, hat einen zum Bodenteil der Ausnehmung hin stetig abnehmenden Durchmesser, wird also nach innen verjüngt; 2. der Biegeradius der Bodenwandung wird ungefähr gleich der Dicke der Materialstärke gewählt; 3. der Winkel zwischen der Außenwandung und der Innenwandung der Ausnehmung wird möglichst klein gemacht, so daß er das Einsetzen eines Futters gestattet; 4. die Doppelfalz- 20 verbindung wird hergestellt, nachdem im wesentlichen die Außenwandung der Ausnehmung nahe an der Innenobersläche der Össnung des Unterteils 2 in Berührung mit einem eingesetzten ringförmigen Futter gebracht wird, wobei an der Verbindungsstelle von außen 25 her und unter Druck eine Doppelfalzwalze angreift.

Dieses Verfahren wird nun unter Bezugnahme auf die Fig. 15 und 16 im einzelnen beschrieben. Ein gestrichelter Teil 63' in Fig. 15 zeigt die Ausnehmung vor dem Einsetzen des Futters 71 (Fig. 1C). Die mit durchgezoge- 30 nem Strich gezeigte Ausnehmung 63 entspricht der Form nach fertiggestellter Doppelfalzverbindung.

Untersuchungen haben gezeigt, daß der Biegeradius r der Bodenwandung 69 der Ausnehmung 63 möglichst stigkeit (gegen das Aufrollen) aufweist, und daß der Biegeradius r praktisch nicht kleiner als die Dicke t des Materials gemacht werden kann. Der Radius r wird also so bestimmt, daß er ungefähr gleich der Dicke t (0,5 mm) des Werkstoffes ist. Mit dem Buchstaben Mist der Win- 40 kel zwischen einer Linie P und einer Linie Q (Fig. 15) bezeichnet, die in einer Ebene liegen, welche eine Axiallinie des Behälters enthält, wobei Peine gerade Linie in der Innenoberfläche 78 der Außenwandung 68 der Ausnehmung 63 und Q eine gerade Linie ist, die von links 45 kommend einen Kreis S berührt, der auf der Oberseite der Bodenwandung 69 eingeschrieben ist, und berührt ferner von rechts ausgehend (in Fig. 15) einen Bogen, der durch die Außenoberfläche 77 (rechte Seite in Fig. 15) der Innenwandung 67 der Ausnehmung 63 gebildet 50 ist, mit einem Radius $(R_4 + t)$, und zwar an einer Stelle, wo der Bogen mit dem Kreis S in Berührung ist. Q bezeichnet also eine gerade Linie, die senkrecht auf einer Linie n ist, welche die Mitte O des Kreises S mit der Mitte n des Bogens verbindet, der entlang der Außen- 55 oberfläche 77 der Innenwandung 67 verläuft:

Es wurde weiter gefunden, daß der Winkel M so klein wie möglich sein sollte, um die Festigkeit der Ausnehmung 63 zu steigern, und daß er möglichst kleiner als 10° gemacht werden soll, wenn der Behälter als Bierfaß 60 verwendet werden soll, weil der Innendruck dann etwa 42 N/cm² beträgt. Wenn aber der Winkel M kleiner gemacht wird als 0°, so ist das Einsetzen des Futters 71 in die Ausnehmung 63. zur Durchführung der Doppel-. falzverbindung äußerst schwierig. Bei dieser Ausfüh- 65 rungsform, wo der Durchmesser des Faßteils (Innendurchmesser des Unterteils 2) L = 15.5 cm beträgt, wird der Winkel M im Bereich zwischen 0 und 10° gewählt.

Der Radius R4 (Krümmung der Schulter) der Außenoberfläche 77 wird im Bereich von 1/4 bis 1/10 des Faßdurchmessers L gewählt, was in hohem Maße dazu beiträgt, die Druckwiderstandsfähigkeit des Behälters zu steigern. Der Radius R4 hat bei der beschriebenen Ausführungsform den Wert $R_4 = (0.17 \text{ bis } 0.18) I$ Die Jurch den Innendruck der Einheitslänge der Ausnehmung 63 und die Verbindungsstelle 70 (in Umfangsrichtung) wirkende Krast ist proportional dem Faßdurchmesser L Oberteils 1 mit dem Unterteil 2 werden folgende Schrit- 10 und folglich fördert eine Zunahme von L eine entsprechende Abnahme des Winkels M.

Wenn der Winkel M und der Radius r im Rahmen der obigen Forderungen minimal gemacht werden, so wird der Abstand & zwischen dem untersten Ende e der Bodenwandung 69 und der Innenobersläche 73 der Ossnung 61 des Unterteils 2 äußerst klein (etwa 1 mm, so daß die Einführung der Ausnehmung 63 in dem n.it durchgezogenem Strich gezeichneten Zustand in die Öffnung 61 des Unterteils 2 äußerst schwierig wird. Eine Gegenmaßnahme für diese Schwierigkeit besteht darin, daß die Außenwandung 68' der Ausnehmung 63' etwas nach innen verjüngt ist, während sie sich an die Bodenwandung 69' annähert, daß sie also etwas nach innen geneigt ist, so daß das unterste Ende 68'a der Außenwandung 68' von der Innenoberfläche 73 der Öffnung 61 durch einen Abstand ℓ_2 von etwa 0,5 mm getrennt ist. Dadurch, daß der Abstand li zwischen dem untersten Ende e'der Bodenwandung 69' und der Innenobersläche 73 der Öffnung 61 auf etwa 1,5 mm vergrößert wird, indem die Ausnehmung 63' von der Öffnung 61 in der erwähnten Weise entfernt wird, wird das Einsetzen der Ausnehmung 63' in die Öffnung 61 erleichtert.

Nachdem die Ausnehmung 63' in die Öffnung 61 eingesetzt ist wird das ringförmige Futter 71 in die Ausnehklein sein soll, damit die Ausnehmung 63 eine hohe Fe- 35 mung 63' von oben eingesetzt, um mit der Außenwandung 68 möglichst nahe an der Öffnung 61 in Berührung zu gelangen, und dann greift die Doppelfalzrolle 72 von außen an (in Fig. 16 von rechts), und zwar an den Flanschen 65 und 66 und unter Druck, um die Doppelfalzver-

bindung auszuführen.

Wenn das Futter 71 bei Beendigung der Doppelfalzverbindung angehoben wird, so wird die Außenwandung 68 etwas von der Öffnung 61 entfernt, und zwar aufgrund des Zurückfederns. Dadurch wird Edoch in keiner Weise die gasdichte Verbindung des doppelt gefalzten Teils 70 beeinträchtigt.

Bei dem vorstehend beschriebenen Doppelfalz-Verbindungsverfahren sind der Winkel M zwischen der Innenwandung 67 und der Außenwandung 68 der Ausnehmung 63 sowie der Biegeradius r der Bodenwandung 69 sehr klein. Dadurch wird die Festigkeit der Ausnehmung 63 in bezug auf ein Aufrollen und Lösen der dichten Verbindung bedeutend gesteigert, ebenso wie folglich auch die Druckbeständigkeit. Darüber hinaus wird durch die Verjüngung der Außenwandung 68' zur Bodenwandung 69' hin das Einsetzen der Ausnehmung 63' in die Öffnung 61 sehr erleichtert, unabhängig von der Verminderung des Winkels Mund des Radius r.

Patentansprüche

1. Druckbehälter aus Metall, mit einem Hauptteil in Form eines mit einem Boden versehenen Zylinders, der durch Tiefziehen aus einem Metallblech geformt ist, wobei der Seitenabschnitt nach außen bogenförmig ausgebaucht ist, mit einem Deckelteil bestehend aus einem einzigen Metallblech, das gasdicht an der oberen Öffnung des Hauptteils besestigt ist und diese damit verschließt, wobei das Dekkelteil in Form einer umgekehrten Schale ausgebildet ist, deren Durchmesser von dem Befestigungsabschnitt an dem Hauptteil nach oben hin allmählich abnimmt, webei das Deckelteil eine Vielzahl von ringförmigen, konzentrischen, konvex-konkav ausgebildeten Auswölbungen aufweist, die im Ouerschnitt eine durchgehende leichte Wellung bilden, und mit einem Mundstück, das integral mit dem schalenartigen Deckelteil sich von deren mitt- 10 leren Bereich nach außen erstreckend ausgebildet ist, wobei der Rand des schalenartigen Teils des Deckelteils an der Stelle der gasdichten Verbindung mit dem Hauptteil eine Auskehlung aufweist, die im wesentlichen im Querschnitt U-formig aus- 15 gebildet ist, und der außere Schenkel der Auskehlung sich nach oben bis unmittelbar zu der Verbindungsstelle hin erstreckt, dadurch gekennzeichnet, das jedes Teil aus dem Blechmaterial des Hauplteils (2) und des Deckelteils (1) aus einem 20 Aluminiumblech oder aus einem Blech einer Aluminiumlegierung mit einer Dicke zwischen 0,3 und 1,0 mm besteht, daß der innere Schenkel (67, 77) der Auskehlung sich in einer Krümmung erstreckt, welche von der Außenseite des Behälters gesehen 25 konvex und im wesentlichen im Querschnitt kreisförmig ist, daß die Krümmung sich bis zu einem l'unkt im wesentlichen oberhalb der Verbindungsstelle an dem obersten Bereich des Hauptteils (2) erstreckt, wodurch ein im wesentlichen runder 30 Schulterbereich (1b) gebildet wird, daß von diesem Punkt die Vielzahl der ringförmigen konvex-konkaven Auswölbungen (1c) ausgehen, die sich bis zu einer Stelle in Nähe des Mundstückes (4) erstrek-

2. Druckbehälter nach Anspruch 1, dadurch gekennzeichnet, daß der Krümmungsradius (R4) des Schulterbereichs (1b) im axialen Querschnitt 1/4 bis 1/10 des Durchmessers des Hauptteils (2) an der oberen Öffnung beträgt.

3. Druckbehälter nach Anspruch 1, dadurch gekennzeichnet, daß der Krümmungsradius des Bodens der U-förmigen Auskehlung (63) im wesentlichen gleich der Dicke des Deckelteils (1) ist.

4. Druckbehälter nach Anspruch 3, dadurch gekennzeichnet, daß die Linie (Q) welche senkrecht zu einer Linie (n) verläuft, die durch die Mittelpunkte des Krümmungsradius des Schulterbereichs (1b) und des Krümmungsradius des Bodens der Auskehlung (63), einen Winkel von 0° – 10° mit dem äußeren Schenkel (68) der U-förmigen Auskehlung (63) einschließt.

5. Druckbehälter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Boden (5) des Hauptteils (2) die Form einer nach au- 55 Ben gekrümmten flachen Schale aufweist und mit wenigstens drei im wesentlichen ovalen Vorsprüngen (6) versehen ist, die eine stabile Auflage des Behälters auf einer ebenen Fläche bzw. Tisch bewirken und nach außen vorstehend entlang einer 60 Kreislinie angeordnet sind, deren Mittelpunkt sich in der Mitte des Bodens befindet, daß ein Verstärkungswulst (7) von radialer gestreckter Gestalt jeweils radial zwischen zwei benachbarten Vorsprüngen (6) angeordnet ist, und daß jeder Verstärkungs- 65 wulst (7) sich von einem Punkt in Nähe des Mittelpunktes des Bodens nach außen zu einem Kreis (A) erstreckt, der die Vorsprünge (6) einschließt.

6. Druckbehälter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jeder Wulst (7) durch eine nach innen ausgesparte Rille gebildet ist, die an der Außensläche des Bodens (5) des Hauptteils (2) ausgebildet ist.

CHARLES IN THE TANK THE PARTY

7. Druckbehälter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der größte Durchmesser des mittleren Teils des bogenförmig gewölbten Teils des Hauptteils (2) nicht größer ist als das 1,1fache des kleinsten Durchmessers am einen Ende des bogenförmig gewölbten Teils.

8. Verfahren zur Herstellung eines Druckbehälters nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Mundstück (4) derart ausgebildet ist, daß vor oder nach der Bildung des Teils (1a) mit der Form einer umgekehrten Schale mittels eines Mehrfachschritt-Tiefziehverfahrens in dem Metallblech ein zylindrischer Teil mit einer Deckelplatte im mittleren Teil eines kreisförmigen Metallbleches durch eine vertikale Formpresse gebildet wird, und daß dann der mittlere Teil der Deckelplatte konzentrisch ausgestanzt wird und der verbleibende Umfangsrand der gelochten Deckelplatte nach oben zu zylindrischer Form aufgerichtet wird, so daß ein Schulterstück als ringförmige Stufe verbleibt, wobei schließlich der zylindrische Teil mit dem ringförmigen Absatz nach außen umgebördelt wird.

Hierzu 6 Blatt Zeichnungen

Nummer:

30 05 378 B 65 D 8/04

Int. Cl.4:

FIG. 2

Nummer:

30 05 378

Int. Cl.4:

B 65 D 8/04

Nummer:

Int. Cl.4:

30 05 378

B 65 D 8/04

Nummer:

30 05 378 B 65 D 8/04 Int. Cl.4:

Nummer:

Int. Cl.4:

