Probabilidade e estatística - Aula 22

Regressão linear simples: Aula 2 - Testes de hipóteses e intervalos de confiança em regressão linear simples

Dr. Giannini Italino Alves Vieira

Universidade Federal do Ceará - Campus de Crateús

2024

2 IC para o intercepto e a inclinação

<ロ > → □ > → □ > → □ > → □ < つ へ ○

2 / 22

Dr. Giannini Italino Probabilidade e estatística 2024

- Recorde que na aula passada vimos o modelo de regressão linear simples.

$$Y = \beta_0 + \beta_1 x + \epsilon$$

- Vimos que a estimação de β_0 e β_1 pode ser feita por meio do método de mínimos

- Recorde que na aula passada vimos o modelo de regressão linear simples.
- Ou seja, vimos que o modelo considera que cada observação Y possa ser descrita pelo modelo

$$Y = \beta_0 + \beta_1 x + \epsilon$$

- Vimos que a estimação de β_0 e β_1 pode ser feita por meio do método de mínimos

- Recorde que na aula passada vimos o modelo de regressão linear simples.
- Ou seja, vimos que o modelo considera que cada observação Y possa ser descrita pelo modelo

$$Y = \beta_0 + \beta_1 x + \epsilon$$

- Vimos que a estimação de β_0 e β_1 pode ser feita por meio do método de mínimos

- Recorde que na aula passada vimos o modelo de regressão linear simples.
- Ou seja, vimos que o modelo considera que cada observação Y possa ser descrita pelo modelo

$$Y = \beta_0 + \beta_1 x + \epsilon$$

em que β_0 é chamado de o intercepto, β_1 é chamado de inclinação e ϵ é um erro aleatório com média zero e variância σ^2 (desconhecida).

• Vimos que a estimação de β_0 e β_1 pode ser feita por meio do método de mínimos

- Recorde que na aula passada vimos o modelo de regressão linear simples.
- Ou seja, vimos que o modelo considera que cada observação Y possa ser descrita pelo modelo

$$Y = \beta_0 + \beta_1 x + \epsilon$$

em que β_0 é chamado de o intercepto, β_1 é chamado de inclinação e ϵ é um erro aleatório com média zero e variância σ^2 (desconhecida).

• Vimos que a estimação de β_0 e β_1 pode ser feita por meio do método de mínimos quadrados, ou seja, minimizando a soma dos quadrados dos desvios.

Estimadores de β_0 e β_1 - Método dos mínimos Quadrados

 Vimos que as estimativas de mínimos quadrados do intercepto e da inclinação no modelo de regressão linear simples são

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

е

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

em que $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ e $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Estimadores de β_0 e β_1 - Método dos mínimos Quadrados

• Vimos que as estimativas de mínimos quadrados do intercepto e da inclinação no modelo de regressão linear simples são

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

е

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

em que $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ e $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Estimadores de β_0 e β_1 - Método dos mínimos Quadrados

 Vimos que as estimativas de mínimos quadrados do intercepto e da inclinação no modelo de regressão linear simples são

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

е

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

em que $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ e $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Estimadores de β_0 e β_1 - Método dos mínimos Quadrados

 Vimos que as estimativas de mínimos quadrados do intercepto e da inclinação no modelo de regressão linear simples são

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

е

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

em que $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ e $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Estimadores de β_0 e β_1 - Método dos mínimos Quadrados

 Vimos que as estimativas de mínimos quadrados do intercepto e da inclinação no modelo de regressão linear simples são

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

е

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

em que
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 e $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Estimadores de β_0 e β_1 - Método dos mínimos Quadrados

 Vimos que as estimativas de mínimos quadrados do intercepto e da inclinação no modelo de regressão linear simples são

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

е

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

em que $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ e $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Um outro parâmetro

- Note que em regressão linear simples há ainda um outro parâmetro desconhecido, que é a variância do termo de erro ϵ , ou seja, σ^2 .
- Para obter uma estimativa para σ^2 usamos os resíduos $e_i = y_i \hat{y}_i$ (note que o resíduo descreve o erro no ajuste do modelo para a i-ésima observação y_i).
- Temos que a soma dos quadrados dos resíduos é

$$SQ_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Pode-se mostrar que $E(SQ_E)=(n-2)\sigma^2$. Logo, um estimador não viesado para σ^2 é

$$\hat{\sigma}^2 = \frac{SQ_E}{n - 2}$$

◆ロト ◆団ト ◆豆ト ◆豆 ・ シュ ぐ の へ で 。

Um outro parâmetro

- Note que em regressão linear simples há ainda um outro parâmetro desconhecido, que é a variância do termo de erro ϵ , ou seja, σ^2 .
- Para obter uma estimativa para σ^2 usamos os resíduos $e_i = y_i \hat{y}_i$ (note que o resíduo descreve o erro no ajuste do modelo para a i-ésima observação y_i).
- Temos que a soma dos quadrados dos resíduos é

$$SQ_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Pode-se mostrar que $E(SQ_E)=(n-2)\sigma^2$. Logo, um estimador não viesado para σ^2 é

$$\hat{\sigma}^2 = \frac{SQ_E}{n - 2}$$

Um outro parâmetro

- Note que em regressão linear simples há ainda um outro parâmetro desconhecido, que é a variância do termo de erro ϵ , ou seja, σ^2 .
- Para obter uma estimativa para σ^2 usamos os resíduos $e_i = y_i \hat{y}_i$ (note que o resíduo descreve o erro no ajuste do modelo para a i-ésima observação y_i).
- Temos que a soma dos quadrados dos resíduos é

$$SQ_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Pode-se mostrar que $E(SQ_E)=(n-2)\sigma^2$. Logo, um estimador não viesado para σ^2 é

$$\hat{\sigma}^2 = \frac{SQ_E}{n - 2}$$

◆ロ → ← 荷 → ← 三 → ← 三 → り へ ○

Um outro parâmetro

- Note que em regressão linear simples há ainda um outro parâmetro desconhecido, que é a variância do termo de erro ϵ , ou seja, σ^2 .
- Para obter uma estimativa para σ^2 usamos os resíduos $e_i = y_i \hat{y}_i$ (note que o resíduo descreve o erro no ajuste do modelo para a i-ésima observação y_i).
- Temos que a soma dos quadrados dos resíduos é

$$SQ_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Pode-se mostrar que $E(SQ_E)=(n-2)\sigma^2$. Logo, um estimador não viesado para σ^2 é

$$\hat{\sigma}^2 = \frac{SQ_E}{n - 2}$$

Um outro parâmetro

- Note que em regressão linear simples há ainda um outro parâmetro desconhecido, que é a variância do termo de erro ϵ , ou seja, σ^2 .
- Para obter uma estimativa para σ^2 usamos os resíduos $e_i = y_i \hat{y}_i$ (note que o resíduo descreve o erro no ajuste do modelo para a i-ésima observação y_i).
- Temos que a soma dos quadrados dos resíduos é

$$SQ_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Pode-se mostrar que $E(SQ_E)=(n-2)\sigma^2$. Logo, um estimador não viesado para σ^2 é

$$\hat{\sigma}^2 = \frac{SQ_E}{n-2}$$

◄□▶ ◀圖▶ ◀臺▶ ◀臺▶ 臺 ∽Q҈

Um outro parâmetro

- Note que em regressão linear simples há ainda um outro parâmetro desconhecido, que é a variância do termo de erro ϵ , ou seja, σ^2 .
- Para obter uma estimativa para σ^2 usamos os resíduos $e_i = y_i \hat{y}_i$ (note que o resíduo descreve o erro no ajuste do modelo para a i-ésima observação y_i).
- Temos que a soma dos quadrados dos resíduos é

$$SQ_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Pode-se mostrar que $E(SQ_E)=(n-2)\sigma^2$. Logo, um estimador não viesado para σ^2 é

$$\hat{\sigma}^2 = \frac{SQ_E}{n-2}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ り<0</p>

Um outro parâmetro

- Só que calcular $SQ_E = \sum_{i=1}^n (y_i \hat{y}_i)^2$ pode ser bastante trabalhoso.
- ullet Logo, pode-se mostrar que uma maneira alternativa, mais conveniente, de se obter $SO_{\mathbb{F}}$ é

$$SQ_E = SQ_T - \hat{\beta}_1 S_{xy}$$

em que

$$SQ_T = \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 (Soma total dos quadrados da variável y)

е

$$\widehat{b}_{xy} = \sum_{i=1}^n y_i x_i - n \overline{x} \overline{y}$$
 (Numerador de \widehat{eta}_1)

◆ロ > ◆母 > ◆き > ◆き > き の Q (*)

Um outro parâmetro

- Só que calcular $SQ_E = \sum_{i=1}^n (y_i \hat{y}_i)^2$ pode ser bastante trabalhoso.
- ullet Logo, pode-se mostrar que uma maneira alternativa, mais conveniente, de se obter SQ_{E} é

$$SQ_E = SQ_T - \hat{\beta_1}S_{xy}$$

em que

$$SQ_T = \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 (Soma total dos quadrados da variável y)

е

$$\widehat{b}_{xy} = \sum_{i=1}^n y_i x_i - n ar{x} ar{y}$$
 (Numerador de \hat{eta}_1)

4□ > 4□ > 4□ > 4□ > 4□ > 9

Um outro parâmetro

- Só que calcular $SQ_E = \sum_{i=1}^n (y_i \hat{y}_i)^2$ pode ser bastante trabalhoso.
- ullet Logo, pode-se mostrar que uma maneira alternativa, mais conveniente, de se obter SQ_{E} é

$$SQ_E = SQ_T - \hat{\beta}_1 S_{xy}$$

em que

$$SQ_T = \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 (Soma total dos quadrados da variável y)

е

$$\widehat{b}_{xy} = \sum_{i=1}^n y_i x_i - n ar{x} ar{y}$$
 (Numerador de \hat{eta}_1)

Dr. Giannini Italino

Um outro parâmetro

- Só que calcular $SQ_E = \sum_{i=1}^n (y_i \hat{y}_i)^2$ pode ser bastante trabalhoso.
- ullet Logo, pode-se mostrar que uma maneira alternativa, mais conveniente, de se obter SQ_{E} é

$$SQ_E = SQ_T - \hat{\beta}_1 S_{xy}$$

em que

$$SQ_T = \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 (Soma total dos quadrados da variável y)

е

$$S_{xy} = \sum_{i=1}^{n} y_i x_i - n \bar{x} \bar{y}$$
 (Numerador de $\hat{\beta}_1$)

◆ロ ト ← 回 ト ← 直 ト ← 直 ・ 夕 へ ○ ...

Um outro parâmetro

- Só que calcular $SQ_E = \sum_{i=1}^n (y_i \hat{y}_i)^2$ pode ser bastante trabalhoso.
- ullet Logo, pode-se mostrar que uma maneira alternativa, mais conveniente, de se obter SQ_{F} é

$$SQ_E = SQ_T - \hat{\beta_1}S_{xy}$$

em que

$$SQ_T = \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 (Soma total dos quadrados da variável y)

е

$$S_{xy} = \sum_{i=1}^{n} y_i x_i - n \bar{x} \bar{y}$$
 (Numerador de $\hat{\beta}_1$)

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥○○○○

Um outro parâmetro

- Só que calcular $SQ_E = \sum_{i=1}^n (y_i \hat{y}_i)^2$ pode ser bastante trabalhoso.
- ullet Logo, pode-se mostrar que uma maneira alternativa, mais conveniente, de se obter $SQ_{ extsf{F}}$ é

$$SQ_E = SQ_T - \hat{\beta_1}S_{xy}$$

em que

$$SQ_T = \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 (Soma total dos quadrados da variável y)

е

$$S_{xy} = \sum_{i=1}^n y_i x_i - n \bar{x} \bar{y}$$
 (Numerador de $\hat{\beta}_1$)

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ 釣り○・

- Pode-se mostrar que os estimadores de mínimos quadrados de β_0 e β_1 , ou seja, $\hat{\beta}_0$ e $\hat{\beta}_1$ possuem as seguintes propriedades:
- Com relação a $\hat{\beta}_1$:
 - $E(\hat{eta}_1) = eta_1$ (ou seja, \hat{eta}_1 é não viesado para eta_1)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
, em que $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$

- Com relação a $\hat{\beta}_0$:
 - $E(\hat{eta}_0)=eta_0$ (ou seja, \hat{eta}_0 é não viesado para eta_0)
 - $Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right].$
- Note que nas variâncias de $\hat{\beta}_0$ e $\hat{\beta}_1$ aparece a variância dos erros (σ^2) . Logo, podemos usar $\hat{\sigma}^2$ para fornecer estimativas das variâncias desses estimadores.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ◆○ ◆

- Pode-se mostrar que os estimadores de mínimos quadrados de β_0 e β_1 , ou seja, $\hat{\beta}_0$ e $\hat{\beta}_1$ possuem as seguintes propriedades:
- Com relação a $\hat{\beta}_1$:
 - $E(\hat{eta}_1) = eta_1$ (ou seja, \hat{eta}_1 é não viesado para eta_1)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
, em que $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$

- Com relação a $\hat{\beta}_0$:
 - $E(\hat{eta}_0)=eta_0$ (ou seja, \hat{eta}_0 é não viesado para eta_0)
 - $Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right].$
- Note que nas variâncias de $\hat{\beta}_0$ e $\hat{\beta}_1$ aparece a variância dos erros (σ^2). Logo, podemos usar $\hat{\sigma}^2$ para fornecer estimativas das variâncias desses estimadores.

4 D > 4 A P > 4 B > B 900

- Pode-se mostrar que os estimadores de mínimos quadrados de β_0 e β_1 , ou seja, $\hat{\beta}_0$ e $\hat{\beta}_1$ possuem as seguintes propriedades:
- Com relação a $\hat{\beta}_1$:
 - $m{ ilde{E}(\hat{eta}_1)=eta_1}$ (ou seja, \hat{eta}_1 é não viesado para eta_1)

$$Var(\hat{eta}_1)=rac{\sigma^2}{S_{xx}}$$
, em que $S_{xx}=\sum_{i=1}^n(x_i-ar{x})^2=\sum_{i=1}^nx_i^2-nar{x}^2$

- Com relação a $\hat{\beta}_0$:
 - $E(\hat{eta}_0)=eta_0$ (ou seja, \hat{eta}_0 é não viesado para eta_0)
 - $Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right].$
- Note que nas variâncias de $\hat{\beta}_0$ e $\hat{\beta}_1$ aparece a variância dos erros (σ^2). Logo, podemos usar $\hat{\sigma}^2$ para fornecer estimativas das variâncias desses estimadores.

4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

- Pode-se mostrar que os estimadores de mínimos quadrados de β_0 e β_1 , ou seja, $\hat{\beta}_0$ e $\hat{\beta}_1$ possuem as seguintes propriedades:
- Com relação a $\hat{\beta}_1$:
 - $m{ ilde{E}(\hat{eta}_1)=eta_1}$ (ou seja, \hat{eta}_1 é não viesado para eta_1)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
, em que $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$

- Com relação a $\hat{\beta}_0$:
 - $E(\hat{eta}_0)=eta_0$ (ou seja, \hat{eta}_0 é não viesado para eta_0)
 - $Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right].$
- Note que nas variâncias de $\hat{\beta}_0$ e $\hat{\beta}_1$ aparece a variância dos erros (σ^2). Logo, podemos usar $\hat{\sigma}^2$ para fornecer estimativas das variâncias desses estimadores.

4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

- Pode-se mostrar que os estimadores de mínimos quadrados de β_0 e β_1 , ou seja, $\hat{\beta}_0$ e $\hat{\beta}_1$ possuem as seguintes propriedades:
- Com relação a $\hat{\beta}_1$:
 - $m{E}(\hat{eta}_1) = eta_1$ (ou seja, \hat{eta}_1 é não viesado para eta_1)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
, em que $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$

- Com relação a $\hat{\beta}_0$:
 - $E(\hat{eta}_0)=eta_0$ (ou seja, \hat{eta}_0 é não viesado para eta_0)
 - $Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right].$
- Note que nas variâncias de $\hat{\beta}_0$ e $\hat{\beta}_1$ aparece a variância dos erros (σ^2). Logo, podemos usar $\hat{\sigma}^2$ para fornecer estimativas das variâncias desses estimadores.

4 D > 4 A > 4 B > 4 B > B 9 9 0

- Pode-se mostrar que os estimadores de mínimos quadrados de β_0 e β_1 , ou seja, $\hat{\beta}_0$ e $\hat{\beta}_1$ possuem as seguintes propriedades:
- Com relação a $\hat{\beta}_1$:
 - $E(\hat{eta}_1) = eta_1$ (ou seja, \hat{eta}_1 é não viesado para eta_1)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
, em que $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$

- Com relação a $\hat{\beta}_0$:
 - $imes E(\hat{eta}_0) = eta_0$ (ou seja, \hat{eta}_0 é não viesado para eta_0)
 - $Var(\hat{\beta}_0) = \sigma^2 \left| \frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right|.$
- Note que nas variâncias de $\hat{\beta}_0$ e $\hat{\beta}_1$ aparece a variância dos erros (σ^2) . Logo, podemos usar $\hat{\sigma}^2$ para fornecer estimativas das variâncias desses estimadores.

4 D > 4 A > 4 B > 4 B > B 9 9 0

- Pode-se mostrar que os estimadores de mínimos quadrados de β_0 e β_1 , ou seja, $\hat{\beta}_0$ e $\hat{\beta}_1$ possuem as seguintes propriedades:
- Com relação a $\hat{\beta}_1$:
 - $E(\hat{eta}_1) = eta_1$ (ou seja, \hat{eta}_1 é não viesado para eta_1)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
, em que $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$

- Com relação a $\hat{\beta}_0$:
 - ullet $E(\hat{eta}_0)=eta_0$ (ou seja, \hat{eta}_0 é não viesado para eta_0)
 - $Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right].$
- Note que nas variâncias de $\hat{\beta}_0$ e $\hat{\beta}_1$ aparece a variância dos erros (σ^2). Logo, podemos usar $\hat{\sigma}^2$ para fornecer estimativas das variâncias desses estimadores.

4 D > 4 P > 4 B > 4 B > B = 900

- Pode-se mostrar que os estimadores de mínimos quadrados de β_0 e β_1 , ou seja, $\hat{\beta}_0$ e $\hat{\beta}_1$ possuem as seguintes propriedades:
- Com relação a $\hat{\beta}_1$:
 - $E(\hat{eta}_1) = eta_1$ (ou seja, \hat{eta}_1 é não viesado para eta_1)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
, em que $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$

- Com relação a $\hat{\beta}_0$:
 - ullet $E(\hat{eta}_0)=eta_0$ (ou seja, \hat{eta}_0 é não viesado para eta_0)
 - $Var(\hat{eta}_0) = \sigma^2 \left[rac{1}{n} + rac{ar{x}^2}{S_{xx}}
 ight].$
- Note que nas variâncias de $\hat{\beta}_0$ e $\hat{\beta}_1$ aparece a variância dos erros (σ^2) . Logo, podemos usar $\hat{\sigma}^2$ para fornecer estimativas das variâncias desses estimadores.

4 D > 4 P > 4 B > 4 B > B = 900

- Uma importante parte na verificação da adequação do modelo de regressão linear simples consiste na realização de testes de hipóteses em relação aos parâmetros do modelo.
- Para testar hipóteses sobre o intercepto e a inclinação do modelo temos de fazer a
- Ou seja, supomos que os erros são normal e independentemente distribuídos com

- Uma importante parte na verificação da adequação do modelo de regressão linear simples consiste na realização de testes de hipóteses em relação aos parâmetros do modelo.
- Para testar hipóteses sobre o intercepto e a inclinação do modelo temos de fazer a suposição adicional de que a componente do erro do modelo, ϵ , seja distribuída normalmente.
- Ou seja, supomos que os erros são normal e independentemente distribuídos com

- Uma importante parte na verificação da adequação do modelo de regressão linear simples consiste na realização de testes de hipóteses em relação aos parâmetros do modelo.
- Para testar hipóteses sobre o intercepto e a inclinação do modelo temos de fazer a suposição adicional de que a componente do erro do modelo, ϵ , seja distribuída normalmente.
- Ou seja, supomos que os erros são normal e independentemente distribuídos com média zero e variância σ^2

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{\text{tot}}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2}, n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2}, n-2}\}$$

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{\text{tot}}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2}, n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2}, n-2}\}$$

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como β_1 é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_W})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2}, n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2}, n-2}\}$$

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{\infty}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{rac{lpha}{2},n-2} \;\; ext{ou} \;\; t_0 < -t_{rac{lpha}{2},n-2} \}$$

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{\infty}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2},n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2},n-2}\}$$

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{\infty}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2}, n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2}, n-2}\}$$

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{\infty}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2}, n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2}, n-2}\}$$

em que t_0 é o valor observado da estatística de teste \mathcal{T}_0

9 / 22

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{xx}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2}, n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2}, n-2}\}$$

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0, \sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{xx}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

 Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2},n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2},n-2}\}$$

• Suponha que queremos testar a hipótese de que a inclinação seja igual a uma constante, digamos $\beta_{1,0}$. Ou seja, queremos testar, ao nível de significância α as hipóteses:

$$H_0: \beta_1 = \beta_{1,0}$$
 contra $H_1: \beta_1 \neq \beta_{1,0}$

- Note que uma vez que estamos supondo que $\epsilon_i \sim N(0,\sigma^2)$, então as observações Y_i também são $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Como $\hat{\beta}_1$ é uma combinação linear das variáveis normais, então $\hat{\beta}_1$ é também $N(\beta_1, \frac{\sigma^2}{S_{\rm loc}})$.
- Logo, para realizar um teste da forma acima, usamos a seguinte estatística de teste

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}}$$

que tem distribuição t com n-2 graus de liberdade, sujeito a H_0 .

• Logo, com um argumento análogo ao que usamos em testes de hipóteses, temos que a região de rejeição desse teste é

Probabilidade e estatística

$$A_1 = \{t_0 > t_{\frac{\alpha}{2}, n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2}, n-2}\}$$

em que t_0 é o valor observado da estatística de teste T_0 .

• Um procedimento similar pode ser usado para testar hipóteses sobre o intercepto, ou seja, se queremos testar as hipóteses

$$H_0: \beta_0 = \beta_{0,0}$$
 contra $H_1: \beta_0 \neq \beta_{0,0}$

Então usamos a estatística de teste

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

E a região de rejeição desse teste é

$$A_1=\{t_0>t_{rac{lpha}{2},n-2} ext{ ou } t_0<-t_{rac{lpha}{2},n-2}\}$$

em que t_0 é o valor observado da estatística de teste T_0 .

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

• Um procedimento similar pode ser usado para testar hipóteses sobre o intercepto, ou seja, se queremos testar as hipóteses

$$H_0: \beta_0 = \beta_{0,0}$$
 contra $H_1: \beta_0 \neq \beta_{0,0}$

Então usamos a estatística de teste

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

E a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2},n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2},n-2}\}$$

em que t_0 é o valor observado da estatística de teste T_0 .

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

• Um procedimento similar pode ser usado para testar hipóteses sobre o intercepto, ou seja, se queremos testar as hipóteses

$$H_0: \beta_0 = \beta_{0,0}$$
 contra $H_1: \beta_0 \neq \beta_{0,0}$

Então usamos a estatística de teste

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

E a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{rac{lpha}{2},n-2} \ ext{ou} \ t_0 < -t_{rac{lpha}{2},n-2} \}$$

em que t_0 é o valor observado da estatística de teste T_0 .

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

• Um procedimento similar pode ser usado para testar hipóteses sobre o intercepto, ou seja, se queremos testar as hipóteses

$$H_0: \beta_0 = \beta_{0,0}$$
 contra $H_1: \beta_0 \neq \beta_{0,0}$

• Então usamos a estatística de teste

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\bar{S}_{xx}}\right]}}$$

E a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{rac{lpha}{2},n-2} \;\; ext{ou} \;\; t_0 < -t_{rac{lpha}{2},n-2} \}$$

em que t_0 é o valor observado da estatística de teste T_0

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

• Um procedimento similar pode ser usado para testar hipóteses sobre o intercepto, ou seja, se queremos testar as hipóteses

$$H_0: \beta_0 = \beta_{0,0}$$
 contra $H_1: \beta_0 \neq \beta_{0,0}$

Então usamos a estatística de teste

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\bar{S}_{xx}}\right]}}$$

• E a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{rac{lpha}{2},n-2} \;\; ext{ou} \;\; t_0 < -t_{rac{lpha}{2},n-2} \}$$

 Um procedimento similar pode ser usado para testar hipóteses sobre o intercepto, ou seja, se queremos testar as hipóteses

$$H_0: \beta_0 = \beta_{0,0}$$
 contra $H_1: \beta_0 \neq \beta_{0,0}$

Então usamos a estatística de teste

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\bar{S}_{xx}}\right]}}$$

• E a região de rejeição desse teste é

$$A_1=\{t_0>t_{rac{lpha}{2},n-2} \ ext{ou} \ t_0<-t_{rac{lpha}{2},n-2}\}$$

em que t_0 é o valor observado da estatística de teste T_0

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

• Um procedimento similar pode ser usado para testar hipóteses sobre o intercepto, ou seja, se queremos testar as hipóteses

$$H_0: \beta_0 = \beta_{0,0}$$
 contra $H_1: \beta_0 \neq \beta_{0,0}$

Então usamos a estatística de teste

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\bar{S}_{xx}}\right]}}$$

E a região de rejeição desse teste é

$$A_1 = \{t_0 > t_{\frac{\alpha}{2},n-2} \text{ ou } t_0 < -t_{\frac{\alpha}{2},n-2}\}$$

em que t_0 é o valor observado da estatística de teste T_0 .

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 夕久○

ullet Um caso especial e importante das hipóteses sobre $eta_{f 1}$ é testar as hipóteses

$$H_0: \beta_1 = 0$$
 contra $H_1: \beta_1 \neq 0$

- Essas hipóteses se relacionam com à significância da regressão.
- Aceitar $H_0: \beta_1=0$ é equivalente a concluir que não há relação linear entre x e Y.
 - Isso pode implicar que x seja de pouco valor para explicar a variação em Y.
- Rejeitar $H_0: \beta_1 = 0$ implica que x é importante para explicar a variabilidade de Y.

ullet Um caso especial e importante das hipóteses sobre $eta_{f 1}$ é testar as hipóteses

$$H_0: \beta_1 = 0$$
 contra $H_1: \beta_1 \neq 0$

- Essas hipóteses se relacionam com à significância da regressão.
- Aceitar $H_0: \beta_1=0$ é equivalente a concluir que não há relação linear entre x e Y.
 - Isso pode implicar que x seja de pouco valor para explicar a variação em Y.
- Rejeitar $H_0: \beta_1 = 0$ implica que x é importante para explicar a variabilidade de Y.

11 / 22

ullet Um caso especial e importante das hipóteses sobre $eta_{f 1}$ é testar as hipóteses

$$H_0: \beta_1 = 0$$
 contra $H_1: \beta_1 \neq 0$

- Essas hipóteses se relacionam com à significância da regressão.
- Aceitar $H_0: eta_1 = 0$ é equivalente a concluir que não há relação linear entre x e Y.
 - Isso pode implicar que x seja de pouco valor para explicar a variação em Y.
- Rejeitar $H_0: \beta_1 = 0$ implica que x é importante para explicar a variabilidade de Y.

ullet Um caso especial e importante das hipóteses sobre $eta_{f 1}$ é testar as hipóteses

$$H_0: \beta_1 = 0$$
 contra $H_1: \beta_1 \neq 0$

- Essas hipóteses se relacionam com à significância da regressão.
- Aceitar $H_0: \beta_1=0$ é equivalente a concluir que não há relação linear entre x e Y.
 - Isso pode implicar que x seja de pouco valor para explicar a variação em Y.
- Rejeitar $H_0: \beta_1 = 0$ implica que x é importante para explicar a variabilidade de Y.

• Um caso especial e importante das hipóteses sobre β_1 é testar as hipóteses

$$H_0: \beta_1 = 0$$
 contra $H_1: \beta_1 \neq 0$

- Essas hipóteses se relacionam com à significância da regressão.
- Aceitar $H_0: \beta_1 = 0$ é equivalente a concluir que não há relação linear entre x e Y.
 - Isso pode implicar que x seja de pouco valor para explicar a variação em Y.
- Rejeitar $H_0: \beta_1 = 0$ implica que x é importante para explicar a variabilidade de Y.

• Um caso especial e importante das hipóteses sobre β_1 é testar as hipóteses

$$H_0: \beta_1 = 0$$
 contra $H_1: \beta_1 \neq 0$

- Essas hipóteses se relacionam com à significância da regressão.
- Aceitar $H_0: \beta_1 = 0$ é equivalente a concluir que não há relação linear entre x e Y.
 - Isso pode implicar que x seja de pouco valor para explicar a variação em Y.
- Rejeitar $H_0: \beta_1 = 0$ implica que x é importante para explicar a variabilidade de Y.

Exemplo: Um artigo na revista IEEE transactions on instrumentation and measurement ["Direct, fast, and accurate measurement of V_T and K of an MOS transistor using a V_T -sift circuit" (Vol. 40, 1991, pp. 951-955)] descreveu o uso de um modelo de regressão linear simples para expressar a corrente y (em miliamperes), como função da diferença de voltagem x (em volts). Os dados são fornecidos a seguir:

X	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	
	0.734		1.04	1.19	1.35	1.5	1.66	1.81	1.97	2.12

- (a) Desenhe um diagrama de dispersão desses dados. Um modelo de regressão linear simples parece plausível?
- (b) Ajuste um modelo de regressão linear simples a esses dados.
- (c) Teste a hipótese de que $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$, ao nível de significância $\alpha=5\%$.

Exemplo: Um artigo na revista IEEE transactions on instrumentation and measurement ["Direct, fast, and accurate measurement of V_T and K of an MOS transistor using a V_T -sift circuit" (Vol. 40, 1991, pp. 951-955)] descreveu o uso de um modelo de regressão linear simples para expressar a corrente y (em miliamperes), como função da diferença de voltagem x (em volts). Os dados são fornecidos a seguir:

Х	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
У	0.734	0.886	1.04	1.19	1.35	1.5	1.66	1.81	1.97	2.12

- (a) Desenhe um diagrama de dispersão desses dados. Um modelo de regressão linear simples parece plausível?
- (b) Ajuste um modelo de regressão linear simples a esses dados.
- (c) Teste a hipótese de que $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$, ao nível de significância $\alpha=5\%$.

Exemplo: Um artigo na revista IEEE transactions on instrumentation and measurement ["Direct, fast, and accurate measurement of V_T and K of an MOS transistor using a V_T -sift circuit" (Vol. 40, 1991, pp. 951-955)] descreveu o uso de um modelo de regressão linear simples para expressar a corrente y (em miliamperes), como função da diferença de voltagem x (em volts). Os dados são fornecidos a seguir:

×	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
У	0.734	0.886	1.04	1.19	1.35	1.5	1.66	1.81	1.97	2.12

- (a) Desenhe um diagrama de dispersão desses dados. Um modelo de regressão linear simples parece plausível?
- (b) Ajuste um modelo de regressão linear simples a esses dados.
- (c) Teste a hipótese de que $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$, ao nível de significância $\alpha=5\%$.

Exemplo: Um artigo na revista IEEE transactions on instrumentation and measurement ["Direct, fast, and accurate measurement of V_T and K of an MOS transistor using a V_T -sift circuit" (Vol. 40, 1991, pp. 951-955)] descreveu o uso de um modelo de regressão linear simples para expressar a corrente y (em miliamperes), como função da diferença de voltagem x (em volts). Os dados são fornecidos a seguir:

X	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
У	0.734	0.886	1.04	1.19	1.35	1.5	1.66	1.81	1.97	2.12

- (a) Desenhe um diagrama de dispersão desses dados. Um modelo de regressão linear simples parece plausível?
- (b) Ajuste um modelo de regressão linear simples a esses dados.

Exemplo: Um artigo na revista IEEE transactions on instrumentation and measurement ["Direct, fast, and accurate measurement of V_T and K of an MOS transistor using a V_T -sift circuit" (Vol. 40, 1991, pp. 951-955)] descreveu o uso de um modelo de regressão linear simples para expressar a corrente y (em miliamperes), como função da diferença de voltagem x (em volts). Os dados são fornecidos a seguir:

X	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
У	0.734	0.886	1.04	1.19	1.35	1.5	1.66	1.81	1.97	2.12

- (a) Desenhe um diagrama de dispersão desses dados. Um modelo de regressão linear simples parece plausível?
- (b) Ajuste um modelo de regressão linear simples a esses dados.
- (c) Teste a hipótese de que $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$, ao nível de significância $\alpha=5\%$.

◆ロト ◆御ト ◆恵ト ◆恵ト 恵 めへで

Sol. (a)

Figure 1: Dados do problema. X: Diferença de voltagem, Y: Corrente

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ めへで

Recorde que para ajustar o modelo precisamos obter \hat{eta}_0 e \hat{eta}_1 .

- Temos que $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ e $\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 n \bar{x}^2}$.
- Temos ainda que

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 + 1.8 + 1.9 + 2}{10} = 1.55;$$

- $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{0.734 + 0.886 + 1.04 + 1.19 + 1.35 + 1.5 + 1.66 + 1.81 + 1.97 + 2.12}{10} = 1.426$
- $\sum_{i=1}^{n} y_i x_i = (1.1)(0.734) + (1.2)(0.886) + (1.3)(1.04) + (1.4)(1.19) + (1.5)(1.35) + (1.6)(1.5) + (1.7)(1.66) + (1.8)(1.81) + (1.9)(1.97) + (2)(2.12) = 23.3766;$
- $\sum_{i=1}^{n} x_i^2 = 1.1^2 + 1.2^2 + 1.3^2 + 1.4^2 + 1.5^2 + 1.6^2 + 1.7^2 + 1.8^2 + 1.9^2 + 2^2 = 24.85$
- Logo, temos que

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{23.3766 - 10(1.55)(1.426)}{24.85 - 10(1.55)^2} \approx 1.54376$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Recorde que para ajustar o modelo precisamos obter \hat{eta}_0 e \hat{eta}_1 .

- Temos que $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ e $\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 n \bar{x}^2}$.
- Temos ainda que

$$\sum_{i=1}^{n} y_i x_i = (1.1)(0.734) + (1.2)(0.886) + (1.3)(1.04) + (1.4)(1.19) + (1.5)(1.35) + (1.6)(1.5) + (1.7)(1.66) + (1.8)(1.81) + (1.9)(1.97) + (2)(2.12) = 23.3766;$$

$$\sum_{i=1}^{n} x_i^2 = 1.1^2 + 1.2^2 + 1.3^2 + 1.4^2 + 1.5^2 + 1.6^2 + 1.7^2 + 1.8^2 + 1.9^2 + 2^2 = 24.85$$

Logo, temos que

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{23.3766 - 10(1.55)(1.426)}{24.85 - 10(1.55)^2} \approx 1.54376$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りゅう

Recorde que para ajustar o modelo precisamos obter \hat{eta}_0 e \hat{eta}_1 .

- Temos que $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ e $\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 n \bar{x}^2}$.
- Temos ainda que

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 + 1.8 + 1.9 + 2}{10} = 1.55;$$

- $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{0.734 + 0.886 + 1.04 + 1.19 + 1.35 + 1.5 + 1.66 + 1.81 + 1.97 + 2.12}{10} = 1.426;$
- $\sum_{i=1}^{n} y_i x_i = (1.1)(0.734) + (1.2)(0.886) + (1.3)(1.04) + (1.4)(1.19) + (1.5)(1.35) + (1.6)(1.5) + (1.7)(1.66) + (1.8)(1.81) + (1.9)(1.97) + (2)(2.12) = 23.3766;$
- $\sum_{i=1}^{n} x_i^2 = 1.1^2 + 1.2^2 + 1.3^2 + 1.4^2 + 1.5^2 + 1.6^2 + 1.7^2 + 1.8^2 + 1.9^2 + 2^2 = 24.85$
- Logo, temos que

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{23.3766 - 10(1.55)(1.426)}{24.85 - 10(1.55)^2} \approx 1.54376$$

Recorde que para ajustar o modelo precisamos obter \hat{eta}_0 e \hat{eta}_1 .

- Temos que $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ e $\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 n \bar{x}^2}$.
- Temos ainda que

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 + 1.8 + 1.9 + 2}{10} = 1.55;$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{0.734 + 0.886 + 1.04 + 1.19 + 1.35 + 1.5 + 1.66 + 1.81 + 1.97 + 2.12}{10} = 1.426$$
:

$$\sum_{i=1}^{n} y_i x_i = (1.1)(0.734) + (1.2)(0.886) + (1.3)(1.04) + (1.4)(1.19) + (1.5)(1.35) + (1.6)(1.5) + (1.7)(1.66) + (1.8)(1.81) + (1.9)(1.97) + (2)(2.12) = 23.3766;$$

$$\sum_{i=1}^{n} x_i^2 = 1.1^2 + 1.2^2 + 1.3^2 + 1.4^2 + 1.5^2 + 1.6^2 + 1.7^2 + 1.8^2 + 1.9^2 + 2^2 = 24.85$$

Logo, temos que

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{23.3766 - 10(1.55)(1.426)}{24.85 - 10(1.55)^2} \approx 1.54376$$

1014911111111111111

Recorde que para ajustar o modelo precisamos obter \hat{eta}_0 e \hat{eta}_1 .

- Temos que $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ e $\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 n \bar{x}^2}$.
- Temos ainda que

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 + 1.8 + 1.9 + 2}{10} = 1.55;$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{0.734 + 0.886 + 1.04 + 1.19 + 1.35 + 1.5 + 1.66 + 1.81 + 1.97 + 2.12}{10} = 1.426:$$

$$\sum_{i=1}^{n} y_i x_i = (1.1)(0.734) + (1.2)(0.886) + (1.3)(1.04) + (1.4)(1.19) + (1.5)(1.35) + (1.6)(1.5) + (1.7)(1.66) + (1.8)(1.81) + (1.9)(1.97) + (2)(2.12) = 23.3766;$$

$$\sum_{i=1}^{n} x_i^2 = 1.1^2 + 1.2^2 + 1.3^2 + 1.4^2 + 1.5^2 + 1.6^2 + 1.7^2 + 1.8^2 + 1.9^2 + 2^2 = 24.85$$

Logo, temos que

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{23.3766 - 10(1.55)(1.426)}{24.85 - 10(1.55)^2} \approx 1.54376$$

4□ > 4□ > 4□ > 4□ > 3 9 9 9

Recorde que para ajustar o modelo precisamos obter \hat{eta}_0 e \hat{eta}_1 .

- Temos que $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ e $\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 n \bar{x}^2}$.
- Temos ainda que

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 + 1.8 + 1.9 + 2}{10} = 1.55;$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{0.734 + 0.886 + 1.04 + 1.19 + 1.35 + 1.5 + 1.66 + 1.81 + 1.97 + 2.12}{10} = 1.426:$$

$$\sum_{i=1}^{n} y_i x_i = (1.1)(0.734) + (1.2)(0.886) + (1.3)(1.04) + (1.4)(1.19) + (1.5)(1.35) + (1.6)(1.5) + (1.7)(1.66) + (1.8)(1.81) + (1.9)(1.97) + (2)(2.12) = 23.3766;$$

$$\sum_{i=1}^{n} x_i^2 = 1.1^2 + 1.2^2 + 1.3^2 + 1.4^2 + 1.5^2 + 1.6^2 + 1.7^2 + 1.8^2 + 1.9^2 + 2^2 = 24.85.$$

Logo, temos que

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{23.3766 - 10(1.55)(1.426)}{24.85 - 10(1.55)^2} \approx 1.54376$$

4 D > 4 A > 4 B > 4 B > B = 90

Recorde que para ajustar o modelo precisamos obter \hat{eta}_0 e \hat{eta}_1 .

- Temos que $\hat{eta}_0=ar{y}-\hat{eta}_1ar{x}$ e $\hat{eta}_1=rac{\sum_{i=1}^ny_ix_i-nar{x}ar{y}}{\sum_{i=1}^nx_i^2-nar{x}^2}.$
- Temos ainda que

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 + 1.8 + 1.9 + 2}{10} = 1.55;$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{0.734 + 0.886 + 1.04 + 1.19 + 1.35 + 1.5 + 1.66 + 1.81 + 1.97 + 2.12}{10} = 1.426:$$

$$\sum_{i=1}^{n} y_i x_i = (1.1)(0.734) + (1.2)(0.886) + (1.3)(1.04) + (1.4)(1.19) + (1.5)(1.35) + (1.6)(1.5) + (1.7)(1.66) + (1.8)(1.81) + (1.9)(1.97) + (2)(2.12) = 23.3766;$$

$$\sum_{i=1}^{n} x_i^2 = 1.1^2 + 1.2^2 + 1.3^2 + 1.4^2 + 1.5^2 + 1.6^2 + 1.7^2 + 1.8^2 + 1.9^2 + 2^2 = 24.85$$

Logo, temos que

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{23.3766 - 10(1.55)(1.426)}{24.85 - 10(1.55)^2} \approx 1.54376$$

4 D > 4 A > 4 B > 4 B > B = 90

Cont. Sol. (b)

E ainda

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = (1.426) - (1.54376)(1.55) \approx -0.966824.$$

• Portanto, o modelo ajustado é $\hat{y}_i = -0.966824 + 1.54376x_i$

Cont. Sol. (b)

E ainda

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = (1.426) - (1.54376)(1.55) \approx -0.966824.$$

• Portanto, o modelo ajustado é $\hat{y}_i = -0.966824 + 1.54376x_i$

Cont. Sol. (b)

E ainda

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = (1.426) - (1.54376)(1.55) \approx -0.966824.$$

• Portanto, o modelo ajustado é $\hat{y}_i = -0.966824 + 1.54376x_i$

Modelo ajustado

Figure 2: Modelo ajustado

- No item (c) queremos testar hipóteses com respeito ao intercepto do modelo, ou seja, queremos testar, ao nível de significância $\alpha=5\%$, as hipóteses $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$.
- ullet Vimos que um teste de nível lpha para eta_0 tem região de rejeição

$$A_1=\{t_0>t_{rac{lpha}{2},n-2}$$
 ou $t_0<-t_{rac{lpha}{2},n-2}\}$

em que t_0 é o valor observado da estatística de teste T_0 , dada por

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

• Dessa forma, precisamos obter a estimativa $\hat{\sigma}^2$.

◆ロト ◆回ト ◆豆ト ◆豆ト □ りへで

- No item (c) queremos testar hipóteses com respeito ao intercepto do modelo, ou seja, queremos testar, ao nível de significância $\alpha=5\%$, as hipóteses $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$.
- ullet Vimos que um teste de nível lpha para eta_{ullet} tem região de rejeição

$$A_1=\{t_0>t_{rac{lpha}{2},n-2} \ \ ext{ou} \ \ t_0<-t_{rac{lpha}{2},n-2}\}$$

em que t_0 é o valor observado da estatística de teste T_0 , dada por

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

• Dessa forma, precisamos obter a estimativa $\hat{\sigma}^2$.

◆ロト ◆個ト ◆恵ト ◆恵ト 恵 めらぐ

- No item (c) queremos testar hipóteses com respeito ao intercepto do modelo, ou seja, queremos testar, ao nível de significância $\alpha=5\%$, as hipóteses $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$.
- ullet Vimos que um teste de nível lpha para eta_{ullet} tem região de rejeição

$$A_1=\{t_0>t_{rac{lpha}{2},n-2} \ \ ext{ou} \ \ t_0<-t_{rac{lpha}{2},n-2}\}$$

em que t_0 é o valor observado da estatística de teste \mathcal{T}_0 , dada por

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

• Dessa forma, precisamos obter a estimativa $\hat{\sigma}^2$.

◆ロ > ◆母 > ◆豆 > ◆豆 > ̄豆 の Q (*)

- No item (c) queremos testar hipóteses com respeito ao intercepto do modelo, ou seja, queremos testar, ao nível de significância $\alpha=5\%$, as hipóteses $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$.
- ullet Vimos que um teste de nível lpha para eta_{ullet} tem região de rejeição

$$A_1=\{t_0>t_{rac{lpha}{2},n-2} ext{ ou } t_0<-t_{rac{lpha}{2},n-2}\}$$

em que t_0 é o valor observado da estatística de teste \mathcal{T}_0 , dada por

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

• Dessa forma, precisamos obter a estimativa $\hat{\sigma}^2$.

◆ロト ◆個ト ◆恵ト ◆恵ト 恵 めらぐ

- No item (c) queremos testar hipóteses com respeito ao intercepto do modelo, ou seja, queremos testar, ao nível de significância $\alpha=5\%$, as hipóteses $H_0: \beta_0=0$ contra $H_1: \beta_0\neq 0$.
- ullet Vimos que um teste de nível lpha para eta_{ullet} tem região de rejeição

$$A_1=\{t_0>t_{rac{lpha}{2},n-2} ext{ ou } t_0<-t_{rac{lpha}{2},n-2}\}$$

em que t_0 é o valor observado da estatística de teste \mathcal{T}_0 , dada por

$$T_0 = rac{\hat{eta}_0 - eta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[rac{1}{n} + rac{ar{x}^2}{S_{\scriptscriptstyle ext{XX}}}
ight]}}$$

• Dessa forma, precisamos obter a estimativa $\hat{\sigma}^2$.

◆ロト ◆個ト ◆恵ト ◆恵ト 恵 めらぐ

- ullet Vimos que $\hat{\sigma}^2=rac{SQ_E}{n-2}$, em que $SQ_E=SQ_T-\hat{eta}_1S_{\!\scriptscriptstyle X\!\scriptscriptstyle Y\!\scriptscriptstyle Y}$
- Sendo

$$SQ_T = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2$$
 e $S_{xy} = \sum_{i=1}^{n} y_i x_i - n\bar{x}$

• Como temos que $\sum_{i=1}^{n} y_i^2 = (0.734)^2 + (0.886)^2 + (1.04)^2 + (1.19)^2 + (1.35)^2 + (1.5)^2 + (1.66)^2 + (1.81)^2 + (1.97)^2 + (2.12)^2 \approx 22.301$, e ja vimos que $\bar{y} = 1.426$ temos que

$$SQ_T = 22.301 - 10(1.426)^2 = 1.96624$$

- Já calculamos S_{xy} , ou seja, obtivemos que $S_{xy} = 23.3766 10(1.55)(1.426) = 1.2736$.
- Logo, substituindo em $\hat{\sigma}^2 = \frac{SQ_E}{n-2}$ temos que

$$\hat{\sigma}^2 = \frac{1.96624 - 1.54376(1.2736)}{10 - 2} \approx 0.000013$$

- ullet Vimos que $\hat{\sigma}^2=rac{SQ_E}{n-2}$, em que $SQ_E=SQ_T-\hat{eta}_1S_{\!\scriptscriptstyle X\!\scriptscriptstyle Y\!\scriptscriptstyle Y}$
- Sendo

$$SQ_T = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 e $S_{xy} = \sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}$

• Como temos que $\sum_{i=1}^{n} y_i^2 = (0.734)^2 + (0.886)^2 + (1.04)^2 + (1.19)^2 + (1.35)^2 + (1.5)^2 + (1.66)^2 + (1.81)^2 + (1.97)^2 + (2.12)^2 \approx 22.301$, e ja vimos que $\bar{y} = 1.426$, temos que

$$SQ_T = 22.301 - 10(1.426)^2 = 1.96624$$

- Já calculamos S_{xy} , ou seja, obtivemos que $S_{xy} = 23.3766 10(1.55)(1.426) = 1.2736$.
- Logo, substituindo em $\hat{\sigma}^2 = \frac{SQ_E}{n-2}$ temos que

$$\hat{\sigma}^2 = \frac{1.96624 - 1.54376(1.2736)}{10 - 2} \approx 0.000013$$

- ullet Vimos que $\hat{\sigma}^2=rac{SQ_E}{n-2}$, em que $SQ_E=SQ_T-\hat{eta}_1S_{\!\scriptscriptstyle X\!\scriptscriptstyle Y\!\scriptscriptstyle Y}$
- Sendo

$$SQ_T = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 e $S_{xy} = \sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}$

• Como temos que $\sum_{i=1}^{n} y_i^2 = (0.734)^2 + (0.886)^2 + (1.04)^2 + (1.19)^2 + (1.35)^2 + (1.5)^2 + (1.66)^2 + (1.81)^2 + (1.97)^2 + (2.12)^2 \approx 22.301$, e ja vimos que $\bar{y} = 1.426$, temos que

$$SQ_T = 22.301 - 10(1.426)^2 = 1.96624$$

- Já calculamos S_{xy} , ou seja, obtivemos que $S_{xy} = 23.3766 10(1.55)(1.426) = 1.2736$.
- Logo, substituindo em $\hat{\sigma}^2 = \frac{SQ_E}{n-2}$ temos que

$$\hat{\sigma}^2 = \frac{1.96624 - 1.54376(1.2736)}{10 - 2} \approx 0.000013$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへ

- ullet Vimos que $\hat{\sigma}^2=rac{SQ_E}{n-2}$, em que $SQ_E=SQ_T-\hat{eta}_1S_{\!\scriptscriptstyle X\!\scriptscriptstyle Y\!\scriptscriptstyle Y}$
- Sendo

$$SQ_T = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 e $S_{xy} = \sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}$

• Como temos que $\sum_{i=1}^{n} y_i^2 = (0.734)^2 + (0.886)^2 + (1.04)^2 + (1.19)^2 + (1.35)^2 + (1.5)^2 + (1.66)^2 + (1.81)^2 + (1.97)^2 + (2.12)^2 \approx 22.301$, e ja vimos que $\bar{y} = 1.426$, temos que

$$SQ_T = 22.301 - 10(1.426)^2 = 1.96624$$

- Já calculamos S_{xy} , ou seja, obtivemos que $S_{xy} = 23.3766 10(1.55)(1.426) = 1.2736$.
- Logo, substituindo em $\hat{\sigma}^2 = \frac{SQ_E}{n-2}$ temos que

$$\hat{\sigma}^2 = \frac{1.96624 - 1.54376(1.2736)}{10 - 2} \approx 0.000013$$

- ullet Vimos que $\hat{\sigma}^2=rac{SQ_E}{n-2}$, em que $SQ_E=SQ_T-\hat{eta}_1S_{\!\scriptscriptstyle X\!\scriptscriptstyle Y\!\scriptscriptstyle Y}$
- Sendo

$$SQ_T = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 e $S_{xy} = \sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}$

• Como temos que $\sum_{i=1}^{n} y_i^2 = (0.734)^2 + (0.886)^2 + (1.04)^2 + (1.19)^2 + (1.35)^2 + (1.5)^2 + (1.66)^2 + (1.81)^2 + (1.97)^2 + (2.12)^2 \approx 22.301$, e ja vimos que $\bar{y} = 1.426$, temos que

$$SQ_T = 22.301 - 10(1.426)^2 = 1.96624$$

- Já calculamos S_{xy} , ou seja, obtivemos que $S_{xy} = 23.3766 10(1.55)(1.426) = 1.2736$.
- Logo, substituindo em $\hat{\sigma}^2 = \frac{SQ_E}{n-2}$ temos que

$$\hat{\sigma}^2 = \frac{1.96624 - 1.54376(1.2736)}{10 - 2} \approx 0.000013$$

4 D > 4 A > 4 B > 4 B > B = 90

- ullet Vimos que $\hat{\sigma}^2=rac{SQ_E}{n-2}$, em que $SQ_E=SQ_T-\hat{eta}_1S_{\!\scriptscriptstyle X\!\scriptscriptstyle Y\!\scriptscriptstyle Y}$
- Sendo

$$SQ_T = \sum_{i=1}^n y_i^2 - n\bar{y}^2$$
 e $S_{xy} = \sum_{i=1}^n y_i x_i - n\bar{x}\bar{y}$

• Como temos que $\sum_{i=1}^{n} y_i^2 = (0.734)^2 + (0.886)^2 + (1.04)^2 + (1.19)^2 + (1.35)^2 + (1.5)^2 + (1.66)^2 + (1.81)^2 + (1.97)^2 + (2.12)^2 \approx 22.301$, e ja vimos que $\bar{y} = 1.426$, temos que

$$SQ_T = 22.301 - 10(1.426)^2 = 1.96624$$

- Já calculamos S_{xy} , ou seja, obtivemos que $S_{xy} = 23.3766 10(1.55)(1.426) = 1.2736$.
- Logo, substituindo em $\hat{\sigma}^2 = \frac{SQ_E}{n-2}$ temos que

$$\hat{\sigma}^2 = \frac{1.96624 - 1.54376(1.2736)}{10 - 2} \approx 0.000013$$

4D > 4A > 4B > 4B > B 990

Logo, como a estatística de teste é

$$\mathcal{T}_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\vec{x}^2}{\vec{S}_{xx}}\right]}}$$

Então o valor observado da estatística de teste é

$$t_0 = \frac{-0.966824}{\sqrt{(0.000013)\left[\frac{1}{10} + \frac{(1.55)^2}{0.825}\right]}} \approx -154.504$$

- Note que nós já calculamos S_{xx} no denominador de $\hat{\beta}_1$.
- Logo, como $\alpha = 5\%$, temos que $t_{\frac{\alpha}{2}, n-2} = t_{0.025, 8} = 2.306$.
- Dessa forma, temos que $t_0 < -t_{\frac{\alpha}{2},n-2}$, uma vez que -154.504 < -2.306. Portanto, rejeitamos H_0 .

4 D > 4 D > 4 E > 4 E > E 9 Q C

Logo, como a estatística de teste é

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\vec{x}^2}{\vec{S}_{xx}}\right]}}$$

Então o valor observado da estatística de teste é

$$t_0 = \frac{-0.966824}{\sqrt{(0.000013)\left[\frac{1}{10} + \frac{(1.55)^2}{0.825}\right]}} \approx -154.504$$

- Note que nós já calculamos S_{xx} no denominador de \hat{eta}_1 .
- Logo, como $\alpha = 5\%$, temos que $t_{\frac{\alpha}{2}, n-2} = t_{0.025, 8} = 2.306$.
- Dessa forma, temos que $t_0<-t_{\frac{\alpha}{2},n-2}$, uma vez que -154.504<-2.306. Portanto, rejeitamos H_0 .

40149147177 7 000

Logo, como a estatística de teste é

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\vec{x}^2}{S_{xx}}\right]}}$$

Então o valor observado da estatística de teste é

$$t_0 = \frac{-0.966824}{\sqrt{(0.000013)\left[\frac{1}{10} + \frac{(1.55)^2}{0.825}\right]}} \approx -154.504$$

- Note que nós já calculamos S_{xx} no denominador de \hat{eta}_1 .
- Logo, como lpha = 5%, temos que $t_{\frac{lpha}{2},n-2} = t_{0.025,8} = 2.306$.
- Dessa forma, temos que $t_0<-t_{\frac{\alpha}{2},n-2}$, uma vez que -154.504<-2.306. Portanto, rejeitamos H_0 .

40149147177 7 000

Logo, como a estatística de teste é

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\vec{x}^2}{S_{xx}}\right]}}$$

Então o valor observado da estatística de teste é

$$t_0 = \frac{-0.966824}{\sqrt{(0.000013)\left[\frac{1}{10} + \frac{(1.55)^2}{0.825}\right]}} \approx -154.504$$

- Note que nós já calculamos S_{xx} no denominador de $\hat{\beta}_1$.
- Logo, como $\alpha = 5\%$, temos que $t_{\frac{\alpha}{2}, n-2} = t_{0.025, 8} = 2.306$.
- Dessa forma, temos que $t_0 < -t_{\frac{\alpha}{2},n-2}$, uma vez que -154.504 < -2.306. Portanto, rejeitamos H_0 .

40.40.45.45. 5 000

• Logo, como a estatística de teste é

$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\vec{x}^2}{S_{xx}}\right]}}$$

Então o valor observado da estatística de teste é

$$t_0 = \frac{-0.966824}{\sqrt{(0.000013)\left[\frac{1}{10} + \frac{(1.55)^2}{0.825}\right]}} \approx -154.504$$

- Note que nós já calculamos S_{xx} no denominador de \hat{eta}_1 .
- Logo, como $\alpha = 5\%$, temos que $t_{\frac{\alpha}{2},n-2} = t_{0.025,8} = 2.306$.
- Dessa forma, temos que $t_0 < -t_{\frac{\alpha}{2},n-2}$, uma vez que -154.504 < -2.306. Portanto, rejeitamos H_0 .

1014714717 700

19 / 22

Dr. Giannini Italino Probabilidade e estatística 2024

- Podemos ainda obter estimativas de intervalo de confiança para os parâmetros β_0 e β_1 do modelo de regressão linear simples.
- Assumindo mais uma vez que os erros no modelo de regressão são normal e independentemente distribuídos, então as variáveis aleatórias

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\hat{\sigma}^2 \over \mathsf{S}_{xx}}} \qquad \mathsf{e} \qquad \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{\mathsf{x}}^2}{\mathsf{S}_{xx}}\right]}}$$

são ambas distribuídas como uma t com n-2 graus de liberdade.

• Logo, podemos usar esses fatos para obter IC para β_0 e β_1 , procedendo de forma análoga ao que estudamos em IC.

- Podemos ainda obter estimativas de intervalo de confiança para os parâmetros β_0 e β_1 do modelo de regressão linear simples.
- Assumindo mais uma vez que os erros no modelo de regressão são normal e independentemente distribuídos, então as variáveis aleatórias

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\hat{\sigma}^2 \frac{\hat{\sigma}^2}{S_{xx}}}} \qquad \text{e} \qquad \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

são ambas distribuídas como uma t com n-2 graus de liberdade.

• Logo, podemos usar esses fatos para obter IC para β_0 e β_1 , procedendo de forma análoga ao que estudamos em IC.

- Podemos ainda obter estimativas de intervalo de confiança para os parâmetros β_0 e β_1 do modelo de regressão linear simples.
- Assumindo mais uma vez que os erros no modelo de regressão são normal e independentemente distribuídos, então as variáveis aleatórias

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\hat{\sigma}^2 \frac{\hat{\sigma}^2}{S_{xx}}}} \qquad \text{e} \qquad \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

são ambas distribuídas como uma t com n-2 graus de liberdade.

• Logo, podemos usar esses fatos para obter IC para β_0 e β_1 , procedendo de forma análoga ao que estudamos em IC.

<ロ > < 回 > < 回 > < 巨 > くき > くき > こま の < ○

- Podemos ainda obter estimativas de intervalo de confiança para os parâmetros β_0 e β_1 do modelo de regressão linear simples.
- Assumindo mais uma vez que os erros no modelo de regressão são normal e independentemente distribuídos, então as variáveis aleatórias

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\hat{\sigma}^2 \frac{\hat{\sigma}^2}{S_{xx}}}} \qquad \text{e} \qquad \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}}$$

são ambas distribuídas como uma t com n-2 graus de liberdade.

• Logo, podemos usar esses fatos para obter IC para β_0 e β_1 , procedendo de forma análoga ao que estudamos em IC.

ullet Logo, temos que um IC com 100(1-lpha)% para eta_1 é

$$\hat{\beta}_1 - t_{\alpha/2,n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2,n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

ullet De maneira similar, temos que um IC com 100(1-lpha)% para eta_0 é

$$\hat{\beta}_0 - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{X}^2}{S_{xx}} \right]} \leq \beta_0 \leq \hat{\beta}_0 + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{X}^2}{S_{xx}} \right]}$$

ullet Logo, temos que um IC com 100(1-lpha)% para eta_1 é

$$\hat{\beta}_1 - t_{\alpha/2,n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2,n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

ullet De maneira similar, temos que um IC com 100(1-lpha)% para eta_0 é

$$\hat{\beta}_0 - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]} \leq \beta_0 \leq \hat{\beta}_0 + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]}$$

Dr. Giannini Italino Probabilidade e estatística 2024 21/22

• Por exemplo, se no exemplo anterior quisermos obter um IC com 95% de confiança para a inclinação (β_1) .

Então sabemos que o intervalo é da forma

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

$$1.54376 - 2.306\sqrt{\frac{0.000013}{0.825}} \le \beta_1 \le 1.54376 + 2.306\sqrt{\frac{0.000013}{0.825}}$$

ou seja

[1.53461, 1.55291].

• Por exemplo, se no exemplo anterior quisermos obter um IC com 95% de confiança para a inclinação (β_1) .

Então sabemos que o intervalo é da forma

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

 \bullet Usando as quantidades já calculadas no exercício, temos que um IC com 95% de confiança para β_1 é

$$1.54376 - 2.306\sqrt{\frac{0.000013}{0.825}} \le \beta_1 \le 1.54376 + 2.306\sqrt{\frac{0.000013}{0.825}}$$

ou seja

[1.53461, 1.55291].

• Por exemplo, se no exemplo anterior quisermos obter um IC com 95% de confiança para a inclinação (β_1) .

Então sabemos que o intervalo é da forma

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{\mathsf{S}_{\mathsf{xx}}}} \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{\mathsf{S}_{\mathsf{xx}}}}$$

 \bullet Usando as quantidades já calculadas no exercício, temos que um IC com 95% de confiança para β_1 é

$$1.54376 - 2.306\sqrt{\frac{0.000013}{0.825}} \le \beta_1 \le 1.54376 + 2.306\sqrt{\frac{0.000013}{0.825}}$$

ou seja

[1.53461, 1.55291].

Dr. Giannini Italino

Probabilidade e estatística

• Por exemplo, se no exemplo anterior quisermos obter um IC com 95% de confiança para a inclinação (β_1) .

Então sabemos que o intervalo é da forma

$$\hat{eta}_1 - t_{lpha/2,n-2} \sqrt{rac{\hat{\sigma}^2}{\mathcal{S}_{xx}}} \leq eta_1 \leq \hat{eta}_1 + t_{lpha/2,n-2} \sqrt{rac{\hat{\sigma}^2}{\mathcal{S}_{xx}}}$$

ullet Usando as quantidades já calculadas no exercício, temos que um IC com 95% de confiança para eta_1 é

$$1.54376 - 2.306\sqrt{\frac{0.000013}{0.825}} \le \beta_1 \le 1.54376 + 2.306\sqrt{\frac{0.000013}{0.825}}$$

ou seja

[1.53461, 1.55291].

• Por exemplo, se no exemplo anterior quisermos obter um IC com 95% de confiança para a inclinação (β_1) .

Então sabemos que o intervalo é da forma

$$\hat{eta}_1 - t_{lpha/2,n-2} \sqrt{rac{\hat{\sigma}^2}{\mathsf{S}_{\mathsf{xx}}}} \leq eta_1 \leq \hat{eta}_1 + t_{lpha/2,n-2} \sqrt{rac{\hat{\sigma}^2}{\mathsf{S}_{\mathsf{xx}}}}$$

ullet Usando as quantidades já calculadas no exercício, temos que um IC com 95% de confiança para eta_1 é

$$1.54376 - 2.306\sqrt{\frac{0.000013}{0.825}} \le \beta_1 \le 1.54376 + 2.306\sqrt{\frac{0.000013}{0.825}}$$

ou seja

[1.53461, 1.55291].

4 D > 4 D > 4 E > 4 E > E = 99 P

• Por exemplo, se no exemplo anterior quisermos obter um IC com 95% de confiança para a inclinação (β_1) .

Então sabemos que o intervalo é da forma

$$\hat{eta}_1 - t_{lpha/2,n-2} \sqrt{rac{\hat{\sigma}^2}{S_{xx}}} \le eta_1 \le \hat{eta}_1 + t_{lpha/2,n-2} \sqrt{rac{\hat{\sigma}^2}{S_{xx}}}$$

ullet Usando as quantidades já calculadas no exercício, temos que um IC com 95% de confiança para eta_1 é

$$1.54376 - 2.306\sqrt{\frac{0.000013}{0.825}} \le \beta_1 \le 1.54376 + 2.306\sqrt{\frac{0.000013}{0.825}}$$

ou seja

[1.53461, 1.55291].

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)