

Goi Eskola Politeknikoa

ELEMENTOS DE MÁQUINAS

MATERIALES

Goi Eskola Politeknikoa

ÍNDICE

- 1. INTRODUCCIÓN
 - TIPOS DE MATERIALES
- 2. METALES
 - ALEACIONES DEL HIERRO
 - Acero
 - Hierro fundido
 - ALEACIONES LIGERAS
 - ALEACIONES DEL COBRE
- 3. POLÍMEROS

1

INTRODUCCIÓN

INTRODUCCIÓN

- ✓ Los materiales lo constituyen todo, desde las herramientas hasta la materia prima que deseamos modificar.
- ✓ Propiedades mecánicas de los materiales:

DUREZA

El grado de resistencia que posee un material al ser rayado o penetrado por otro material. *Diamante*

DUCTILIDAD

La capacidad de un material para deformarse plásticamente. Se dice que un material que sufre grandes deformaciones antes de romperse es dúctil.

Bolsa de plástico

FRAGILIDAD

Frágil es un material que se rompe sin sufrir una deformación significativa. Cristal

INTRODUCCIÓN

✓ Clasificación de los materiales:

MATERIALES

2

METALES Aleaciones del hierro

Características:

- Es un tipo de metal.
- Aparece abundantemente en la naturaleza pero como un elemento compuesto. Se debe utilizar un proceso de horno específico para separar el hierro de los demás elementos.
- Se designa con el símbolo **Fe** en la tabla de elementos.
- Densidad: 7850 kg/m3.
- Es blando, dúctil, maleable, magnético y corrosivo.
- El hierro tiene muy buenas propiedades químicas, físicas y tecnológicas.
- Tiene diferentes usos, principalmente para fabricar herramientas, estructuras u objetos.
- Es un metal muy importante, versátil y barato.
- El hierro <u>no se usa solo</u>, se hacen aleaciones para trabajar con él, es decir, se mezcla con otros elementos.

Imagen 1. Hierro natural

ALEACIONES DEL HIERRO

Que es una aleación?

Es una mezcla homogénea de dos o más elementos. Al menos uno de estos debe ser metálico.

TIPOS DE ALEACIONES DEL HIERRO:

Destacaremos dos aleaciones :

2.1. ACEROS

Fe - C hierro y carbono.

El porcentaje de carbono entre <u>%0,1 y %2.</u> (normalmente, menos de un 1,76%)

2.2. HIERRO FUNDIDO

Fe - C hierro y carbono. El porcentaje de carbono es más alto que **%2,11, está entre <u>%2 - %6 C</u>**

2.1

ACERO

ACERO

- Según la cantidad de carbono: Cuanto más C, mayor resistencia (tracción y compresión) pero más frágil.
- Buenos para mecanizar, pero los que tienen menos carbono son peores.
- Temperatura de fusión (momento en que se vuelve líquido) superior a 1375°.
- No se moldean, las piezas se perfilan o se laminan (laminación...)

Obtención de hierro y acero:

Lingote de acero

ALEACIONES DEL ACERO

Se mezcla en el horno Fe + C Resultado = LINGOTES

Conformando estos lingotes (en frío o en caliente) se pueden obtener las siguientes formas.

Página web Serrada:

http://acerosserrada.com/?page id=147

de T

Hexagonal

Fleje

Chapa

U perfil (UPN)

Hierro corrugado

Lingotes

Cilindros

Angular (perfil L)

ALEACIONES DEL ACERO

1. DEPENDIENDO DE LA CANTIDAD DE CARBONO

- 1.1. ACERO BAJO EN CARBONO (<0,25%C)
- 1.2. ACERO MEDIO EN CARBONO (0,2%-0,6%C)
- 1.3. ACERO RICO EN CARBONO (0,6%-0,95%)

2. ACEROS ALEADOS

- 2.1. ACEROS DE BAJA ALEACIÓN : Fe + C + (<5%) Elemento adicional
- 2.2. ACEROS DE ALTA ALEACIÓN: Fe + C + (entre 5% y 50%) elemento adicional
 - 2.2.1. ACEROS INOXIDABLES (Cr más que 12%)

ACEROS

Fe – C hierro y carbono, porcentaje del carbono entre %0,1 eta %2

1. DEPENDIENDO DE LA CANTIDAD DE CARBONO

- 1.1. ACERO BAJO EN CARBONO : Fe + <0,25%C
 - Se conocen como aceros dulces
 - Blandas y de baja resistencia.
 - Tienen una plasticidad alta, capacidad de deformación.
 - Fáciles de soldar y baratos.
 - Aplicación: Tornillería General (existen excepciones), botes de conserva (recubiertas de estaño)...

1.2. ACERO MEDIO EN CARBONO (%0,2-0,6C)

- Se endurecen con temple.
- Más resistentes que las de bajo carbono.
- Aplicación: ruedas de tren, ejes, engranajes, bielas, cigüeñal de coche...

1.3. ACEROS RICOS EN CARBONO (%0,6-0,95)

- Más duros y resistentes
- Se deforman menos
- Más frágiles
- Se utilizan templados
- Poco desgaste
- Aplicación: Tijeras (para el mantenimiento del filo), alicates, rodamientos...

2. ACEROS ALEADOS

Se componen de: Fe + C + elementos adicionales

A esta aleación se le añaden algunos elementos nuevos para mejorar sus propiedades o conseguir algunas nuevas. Por ejemplo:

- Resistencia
- Elasticidad
- Ductilidad
- Mecanizabilidad
- Dureza

. .

En general se mejoran las propiedades mecánicas.

17

2.1. ACEROS DE BAJA ALEACIÓN:

Fe + C + (<5%) elemento adicional

2.2. ACEROS DE ALTA ALEACIÓN:

Fe + C + (entre 5% y 50%) elemento adicional

ELEMENTO	FUNCIONES IMPORTANTES
Aluminio	Antioxidante
Cromo	Resistencia a la oxidación Templabilidad Resistencia a temperaturas altas
Cobalto	Dureza del acero en caliente
Manganeso	Ductilidad Templabilidad
Molibdeno	Dureza
Níquel	Resistencia en aceros no templados
Fosforo	Resistencia acero al carbono Resistencia a la oxidación
Silicio	Antioxidante Mayor resistencia a los aceros poco aleados
Titanio	Facilita la soldabilidad
Wolframio	Aumenta la dureza

Mondragon Unibertsitatea

Goi Eskola Politeknikoa

¿Dónde se utilizan?

- Electrodomésticos
- Automoción
- Construcción
- Industria alimentaria
- Adornos
- ...

2.2.2.- Acero inoxidable: Fe + C + Cr +Ni

- Composición: Cr 12% por lo menos y Ni 10% por lo menos.
- Función del Cr: Capta el oxígeno para rodear la pieza con una capa protectora y así, no oxidar el acero.
- Al realizar una soldadura:
 - El Cr reacciona con el C => Oxida el acero
 - Es necesario un tratamiento térmico para que no se oxide.
- Resistencia 80 kg/mm²
- Dureza 175-205 HB

Aceros inoxidables ferriticos

- Dureza y bajas resistencias
- Gran tenacidad y ductilidad
- Son magnéticos
- Aisi 400. Por ejemplo, AISI 430

Aceros inoxidables martensíticos

- Buena dureza y resistencia tras el tratamiento térmico
- Tenacidad y ductilidad admisibles
- Entre todos los inoxidables, los menos resistentes a la corrosión
- Son magnéticos
- Aisi 400. Por ejemplo, AISI 410, AISI 416 y AISI 420

Aceros inoxidables austeníticos

- Dureza y bajas resistencias
- Tenacidad y ductilidad muy alta
- Se endurecen deformando en frío
- No son magnéticos
- Son los más utilizados, pero pueden oxidarse en la zona de cloruros (alrededor del mar)
- Aisi 316 y AISI 200

DUPLEX (Austenítico + Ferrítico)

ALEACIONES DEL ACERO

DENOMINACIÓN

Designación convencional según norma UNE 36009:

- > F1000: Aceros finos de construcción.
 - F1100: Aceros de carbono para temple y revenido
 - F1110-C15E: Fe + C (0,15%)
 - F1120-C25E: Fe + C (0,25%)
 - F1130-C35E: Fe + C (0,35%)
 - F1140-C45E: Fe + C (0,45%)
 - F1150-C55E: Fe + C (0,55%)
 - F1200: Aceros aleados de alta resistencia
 - F1300: Aceros para rodamientos
 - F1400: Aceros para muelles
 - F1500: Aceros para cementar
 - F1700: Aceros para nitrurar

ALEACIONES DEL ACERO

DENOMINACIÓN

- > F2000: Aceros finos para usos especiales
 - F2100: Aceros para mecanizar
 - F2200: Aceros para soldar
 - F2300: Aceros con propiedades mecánicas
- > F3000: Aceros resistentes a la oxidación (inoxidables)
- > F5000: Aceros para herramientas
 - F5100: Aceros de carbono para herramientas
 - F5200: Aceros aleados para herramientas
- > F6000: Aceros simples

Equivalencias de normas

Tabla aceros de construcción – Ejemplo:

2.2

HIERRO FUNDIDO

23

FUNDICIÓN: Fe + C (Hierro y carbono), cuando el porcentaje de carbono sea superior al 2,11%. Del 2% al 6% C

CARACTERÍSTICAS PRINCIPALES:

- No se pueden conformar, así que se moldean en general.
- Se reservan para piezas de formas complejas. Para los casos en los que sea más difícil o costoso conseguirlo con otros métodos.
- Son difíciles de mecanizar por su alto porcentaje de carbono (Se añaden elementos químicos para ello)
- Duros y frágiles
- Buena resistencia a la compresión, mala a la tracción
- Malos para soldar y forjar

Bloque motor automóvil

https://www.youtube.com/watch?v=GNTfC1dgAag

https://www.youtube.com/watch?v=XFkblGyi5jA

https://www.youtube.com/watch?v=zDgm6zfKphM

TIPOS DE HIERRO FUNDIDO:

Aunque existen diferentes tipos de fundición, distinguiremos dos principales:

- Fundición gris --> Carbono en forma de láminas
- Fundición de hierro nodular --> Contiene magnesio

TIPOS DE FUNDICIÓN:

Fundición de hierro gris: GG**
Grafito de forma laminar

- Plasticidad muy baja (capacidad de deformación)
- Soldable
- Cuando se rompe, la superficie suele ser de color gris
- Dificultades de mecanizado
- Dificultad para oxidarse. Por eso es útil para la calle (agua, temperaturas...) Ej: Alcantarillas
- Útil para fricciones y vibraciones. Ej: bancadas
- Para fabricar piezas por moldeado : bancadas, carcasas, cajas de velocidad

Mondragon Unibertsitatea Goi Eskola Politeknikoa

TIPOS DE FUNDICIÓN:

Fundición de hierro nodular: GGG**
Grafito en forma de esfera

- Hoy en día se usa más, es más reciente.
- Menos frágiles
- Más fácil para mecanizar
- Mejores propiedades de elasticidad
- Mejor resistencia mecánica

Mondragon Unibertsitatea Goi Eskola Politeknikoa

27

Aplicaciones:

Cazuela

- Por la ductilidad
- Buen conductor térmico y eléctrico

Herrajes

- Por la ductilidad
- Buen conductor térmico y eléctrico

Piezas de automoción

- Por la ductilidad
- Buen conductor térmico y eléctrico

Carcasas de máquinas

- Por la ductilidad
- Buen conductor térmico y eléctrico

Elementos de máquinas 24_25

3.1

ALUMINIO

ALUMINIO: AI (Base) +

Elemento muy común

Muy usado en la industria

- PROPIEDADES
 - Baja densidad: 2700Kg/m3
 - Resistencia a la corrosión
 - Baja temperatura de fusión: 520-650°C
 - Muy dúctil (se deforma mucho)
 - Muy fácil de mecanizar
 - Muy buen conductor de calor y electricidad
 - Resistencia a la rotura
 - De baja resiliencia
- FORMAS: se obtienen de forja o por moldeado

Cobre

Goi Eskola Politeknikoa

Aleaciones de fundición (moldeo)

Dan aminosián		Pr	opiedades me	cánicas			
Denominación numérica	Composición	RM (kg/mm2)	Dureza (HB)	Maquinabilidad	Caracteristicas	Aplicaciones	
L-2100	Al-Cu	26	120	Buena	- Alta resistencia mecánica (también en altas temperaturas) - Malas caracteristicas de fusión	Aviones, pistones, culatas de cilindros	
L-2300	Al-Mg	18	80	Mala	- Buenas caracteristicas de fusión - Malas propiedades mecánicas	Moldeado de piezas con poco espesor: carburadores, carcasas	
L-2500	Al-Si-Mg	22	95	Buena	- Buenas propiedades de fusión - Buenas propiedades mecánicas Buenas resistencia a la corrosión	Carcasas, pistones	

Aleaciones para forja

Denominación		Pr	opiedades me	cánicas			
numérica	Composición	RM (kg/mm2)	Dureza (HB)	Maquinabilidad	Caracteristicas	Aplicaciones	
L-3100	Al-Cu	40	125	Muy buena	 Alta resistencia mecánica (también en altas temperaturas) Baja resistencia a la corrosión Mala soldabilidad No es adecuado para la anodización 	Piezas para aviones y partes estructurales	
L-3300	Al-Mg	30	60	Muy buena	- Muy buena resistencia a la corrosión - Buena soldabilidad - Adecuado para la anodización	Tuberías, estructuras soldadas, chapas	
L-3700	Al-Si-Mg	54	145	Buena	- Alta resistencia mecánica	Estructuras industriales que soportan grandes cargas	

Mondragon Unibertsitatea Goi Eskola Politeknikoa

Aplicaciones

Cables

- Ductilidad
- Buena conductividad térmica y eléctrica

- Ligereza
- Resistencia
- Buena conductividad térmica y eléctrica

- Ligereza
- Resistencia a la corrosión

Papel de aluminio y envases

- Buena conductividad térmica
- Ductilidad
- Ligereza

3.2

ALEACIONES DE COBRE

Cinc
Estaño
Aluminio
Plomo (facilidad para mecanizar)

COBRE: Cu (base) + ----

Dependiendo del elemento que se añade al cobre, se pueden generar diferentes materiales.

- Propiedades:
 - o Es un muy buen conductor del calor y de la electricidad. Ej: Tubos.
 - o Densidad muy alta: 8960 kg/m3
 - Resistencia a la corrosión
 - Alta ductilidad (deformable)
 - Dureza baja
 - Forjable
 - Es caro
 - Baja resistencia mecánica
- FORMAS: Se consiguen desde forja o moldeando

Níquel

BRONCE

Conposición: Cobre (base)(Cu) + Estaño (Sn) o Aluminio cobre (Cu-Al)

Características:

- Alta resistencia
- Caro
- Bajo coeficiente de fricción (cojinetes)
- Aplicaciones: válvulas, monedas, medallas, estatuas, campanas...
- Muy buena resistencia a la oxidación
- Cojinetes autolubricados (Selfoil)

37

LATÓN

Composición: Cobre (base)(Cu) + Zinc (Zn)

Características:

- Aumenta la resistencia a la oxidación.
- Resistencia al agua y al vapor
- No produce chispa (ideal para materiales inflamables)
- Muy buena soldabilidad

%Cu-%Zn	Aplicaciones
90-10	Instalaciones domiciliarias de agua fría y caliente.
80-20	Trefilación de pequeñas sección: Filtros, mosquiteros, mallas, etc.
70-30	Gran capacidad de embutición: Accesorios de iluminación,
	plomería, cerraduras, remaches, bisagras, etc.
60-40	Aplicaciones generales: chapas, tubos, intercambiadores de calor, etc. Al aumentar Zn aumenta la resistencia mecánica y disminuye la elasticidad.

38

Latones para forja

Denominación		Propiedade	s mecánicas	
numérica	Composición	RM (kg/mm2)	Dureza (HB)	Aplicaciones
C-6110	90% Cu 10% Zn	42	70	Industria del caucho
C-6120	80% Cu 20% Zn	29	67	Fabricación de joyas
C-6128	72% Cu 28% Zn	30	53	Embutición profunda
C-6135	65% Cu 35% Zn	42	70	Remaches, tornillos, ajujas
C-6430	60% Cu 38,5% Zn 1'5% Pb	35	60	Piezas torneadas, ruedas
C-6840	62% Cu 37% Zn 1% Sn	40	80	Pieza de alta resistencia frente a la corrosión marina

Latones para moldeado

Denominación		Propiedade	s mecánicas	
numérica	Composición	RM (kg/mm2)	Dureza (HB)	Aplicaciones
C-2120	60% Cu 40% Zn	28	60-70	Cojinetes, tuercas
C-2420	60% Cu 39% Zn 1% Pb	22	67	Bombas, grifería, llaves

Bronces para forja

Denominación		Propiedade	s mecánicas	
numérica	Composición	RM (kg/mm2)	Dureza (HB)	Aplicaciones
C-7150	92% Cu 8% Sn	38	50	Electricidad, muelles, piezas para soportar mucha fatiga
C-8110	95% Cu 5% Al	35	60	Embutición, estampación, adornos
C-8130	90% Cu 10% Al	40	60	Piezas resistentes a la corrosión, ruedas dentadas, monedas

Bronces para moldeo

Denominación		Propiedade	s mecánicas	
numérica	Composición	RM (kg/mm2)	Dureza (HB)	Aplicaciones
C-3110	90% Cu 10% Sn	22	60	Engranajes, valvulas, piezas de alta calidad
C-3130	88% Cu 12% Sn	22	80	Cojinetes muy resistentes, engranajes, turbinas
C-3140	86% Cu 14% Sn	24	90	Pizas resistentes al desgaste, cojinetes que soportan altas cargas
C-3520	86% Cu 14% Sn 5% Zn 5% Pb	22	75	Ferreocarril, construcción de maquinaria.

42

- C2000:Cu + Zn aleaciones para moldeo
 - Aleaciones de Latón para moldeo
- C3000:Cu + Sn aleaciones para moldeo
 - Aleaciones de Bronce para moldeo
- C6000:Cu + Zn aleaciones para forja
 - Aleaciones de Latón para forja
- C7000:Cu + Sn aleaciones para forja
 - Aleaciones de Bronce para forja

Aplicaciones:

Para hacer cables

- Ductilidad
- Buen conductor térmico y eléctrico

- Resistencia a la corrosión
- Buen conductor térmico

- Resistencia a la corrosión
- Buen conductor térmico

- Buen conductor térmico
- Ductilidad
- Peso ligero

- Moldabilidad
- Peso ligero

POLÍMEROS

POLÍMEROS

Materiales orgánicos formados por cadenas de polímeros C+H+(O+N+S)

CLASIFICACIÓN:

- Termoplásticos
- Termoestables
- Elastómeros

PROPIEDADES:

- Baja densidad
- Muy moldeables
- Peores propiedades mecánicas que los metales
- Aislante térmico y eléctrico
- Baratos
- Contaminantes
- De alta resistencia a la corrosión

POLÍMEROS

Clasificación según estructura química y su comportamiento frente al calor:

TERMOPLÁSTICOS

- Al calentar Emblandecer + Perder forma
- Muy fáciles de moldear. Se pueden moldear y fundir más de una vez, por eso son reciclables
- Teflón, nylon, PVC, Metacrilato...

TERMOESTABLES

- Muy rígidos
- Sólo se pueden moldear una vez
- Al calentarlos ———— No pierden la forma, se queman y no se pueden reutilizar
- No se disuelven
- Muy difíciles de reciclar
- Poliuretano, melanina, Loctite, epoxy...

ELASTOMEROS

- Material muy elástico (goma)
- No se disuelven ni se funden
- Solo se pueden moldear una vez, después siempre recuperan la forma inicial
- Caucho sintético, caucho natural, silicona

https://www.youtube.com/watch?v=H 3FHSOIv-Q

Olatz Insausti
oinsausti@mondragon.edu
Iraitz Ferreira
iferreira@mondragon.edu
Aitor Urzelai
aurzelaib@mondragon.edu

Loramendi, 4. Apartado 23 20500 Arrasate – Mondragon T. 943 71 21 85 info@mondragon.edu Eskerrik asko Muchas gracias Thank you