

AO3407

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AO3407 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. This device is suitable for use as a load switch or in PWM applications.

Features

 $V_{DS}(V) = -30V$

 $I_D = -4.1 A$

 $R_{DS(ON)}$ < 52m Ω (V_{GS} = -10V)

 $R_{DS(ON)}$ < 80m Ω (V_{GS} = -4.5V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted					
Parameter		Symbol Maximum		Units	
Drain-Source Voltage		V _{DS}	-30	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain	T _A =25°C		-4.1		
Current ^A	T _A =70°C	I _D	-3.5	A	
Pulsed Drain Current ^B		I _{DM}	-30	1	
	T _A =25°C	В	1.4	10/	
Power Dissipation ^A	T _A =70°C	$-P_D$	1	W	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics					
Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	В	65	90	°C/W
Maximum Junction-to-Ambient ^A	Steady-State	R_{\thetaJA}	85	125	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{ hetaJL}$	43	60	°C/W

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V				-1	μА
טיט	Zero Gate Voltage Brain Gurrent		T _J =55°C			-5	μΛ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$		-1	-1.8	-3	V
$I_{D(ON)}$	On state drain current	V _{GS} =-4.5V, V _{DS} =-5V		-20			Α
		V_{GS} =-10V, I_{D} =-4.1A			40.5	52	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		57	73	11122
		V_{GS} =-4.5V, I_D =-3A	= _ =		64	80	mΩ
9 FS	Forward Transconductance	V_{DS} =-5V, I_D =-4A		5.5	8.2		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.77	-1	V
I _S Maximum Body-Diode Continuous Current					-2.2	Α	
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz			700		pF
C _{oss}	Output Capacitance				120		pF
C _{rss}	Reverse Transfer Capacitance				75		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			10		Ω
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge	V _{GS} =-4.5V, V _{DS} =-15V, I _D =-4A			2.1		nC
Q_{gs}	Gate Source Charge				3		nC
Q_{gd}	Gate Drain Charge				7		nC
t _{D(on)}	Turn-On DelayTime				8.6		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =3.6 Ω , R_{GEN} =3 Ω			5		ns
$t_{D(off)}$	Turn-Off DelayTime				28.2		ns
t _f	Turn-Off Fall Time				13.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-4A, dI/dt=100A/μs			27		ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =-4A, dI/dt=100A/μs			15		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 6: Body-Diode Characteristics

Figure 5: On-Resistance vs. Gate-Source Voltage

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

SOT-23 Package Data

SYMBOLS	DIMENSIONS IN MILLIMETERS				
	MIN	NOM	MAX		
A	1.00		1.25		
A1	0.00		0.10		
A2	1.00	1.10	1.15		
b	0.35	0.40	0.50		
C	0.10	0.15	0.25		
D	2.80	2.90	3.04		
E	2.60	2.80	2.95		
E1	1.40	1.60	1.80		
e		0.95 BSC			
e1		1.90 BSC			
L	0.40		0.60		
θ1	1°	5°	8°		

- NOTE:

 1. LEAD FINISH: 150 MICROINCHES (3.8 um) MIN.
 THICKNESS OF Tin/Lead (SOLDER) PLATED ON LEAD

 2. TOLERANCE ± 0.100 mm (4 mil) UNLESS OTHERWISE
 SPECIFIED

 3. COPLANARITY: 0.1000 mm

 4. DIMENSION L IS MEASURED IN GAGE PLANE

PACKAGE MARKING DESCRIPTION

RECOMMENDED LAND PATTERN

NOTE:
P N - PART NUMBER CODE.
D - YAER AND WEEK CODE.
L N - ASSEMBLY LOT CODE, FAB AND
ASSEMBLY LOCATION CODE.

SOT-23 PART NO. CODE

