Лабораторная работа 3

Математическое моделирование

Якушевич Артём Юрьевич

Содержание

1	1 Цель работы									5	
2	Задание								6		
	2.1 1. Построить графики изменения численнос армии У для модели боевых действий между р					-				. 6	
	2.2 2. Построить графики изменения численности мии У для модели ведения боевых действий с у							-			
	войск и партизанских отрядов		•				•			6	
3	Выполнение лабораторной работы										
	3.1 Условия задачи									7	
	3.2 Данные задачи									8	
	3.3 Решение систем дифференциальных уравнен	ний								8	
	3.4 Построение графиков решений									10	
4	4 Выводы									12	

List of Tables

List of Figures

3.1	Условия задачи	8
3.2	Начальные условия времени	8
3.3	Первый случай	9
	Второй случай	9
	Первый случай	9
3.6	Второй случай	10
3.7	Вектор начальных условий и решения дифференциальных уравнений	10
3.8	График боя регулярных войск	10
3.9	График боя регулярного войска и партизанского отряда	11

1 Цель работы

Рассмотреть модель боевых действий Ланчестера.

2 Задание

- 2.1 1. Построить графики изменения численности войск армии X и армии У для модели боевых действий между регулярными войсками.
- 2.2 2. Построить графики изменения численности войск армии X и армии У для модели ведения боевых действий с участием регулярных войск и партизанских отрядов.

3 Выполнение лабораторной работы

3.1 Условия задачи

- 1. Рассмотрим модель боевых действий Ланчестера. В противоборстве будут принимать участие как регулярные войска, так и партизанские отряды. Рассмотрим два случая ведения боевых действий:
- Боевые действия между регулярными войсками.
- Боевые действия с участием регулярных войск и партизанских отрядов.
- 2. Между страной X и страной У идет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t). В начальный момент времени страна X имеет армию численностью 222 000 человек, а в распоряжении страны У армия численностью в 229 000 человек. Для упрощения модели считаем, что коэффициенты a, b, c, h постоянны.
- 3. Графики численности войск необходимы для следующих случаев:
- Модель боевых действий между регулярными войсками

$$\begin{split} \frac{\mathrm{d}x}{\mathrm{d}t} &= -0.223x(t) - 0.774y(t) + sin(t+1) \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= -0.665x(t) - 0.332y(t) + cos(t+2) \end{split}$$

• Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

$$\begin{array}{l} \frac{\mathrm{d}x}{\mathrm{d}t} = -0.291x(t) - 0.865y(t) + |sin(2t)| \$ \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -0.456x(t)y(t) - 0.789y(t) + |cos(t)| \end{array}$$

3.2 Данные задачи

1. X - численность первой армии, Y - численность второй армии. a1 a2 b1 b2 c1 c2 h1 h2 - константы для боя между регулярными войсками (рис. 3.1)

Данные задачи

Численности Х и Ү

```
In [118]: X = 222000
Y = 229000

# Между регулярными:
a1 = 0.223
b1 = 0.774
c1 = 0.665
h1 = 0.332

# Между регулярными и партизанами:
a2 = 0.291
b2 = 0.865
c2 = 0.456
h2 = 0.789
```

Figure 3.1: Условия задачи

4. Начальный момент времени (t0 = 0), предельный момент времени (tmax = 1) и шаг изменения времени (dt = 0.05). (рис. 3.2)

Время

```
In [119]: t0 = 0
    tmax = 1
    dt = 0.05
    t = np.arange(t0, tmax, dt)
```

Figure 3.2: Начальные условия времени

3.3 Решение систем дифференциальных уравнений

1. Просчитаем возможность подхода подкрепления к армии х (Sin1) и к армии у (Cos1) в бою между регулярными войсками. (рис. 3.3)

Первый случай

Figure 3.3: Первый случай

2. Просчитаем возможность подхода подкрепления к армии х (Sin2) и к армии у (Cos2) в бою между регулярным войском и партизанским отрядом. (рис. 3.4)

Второй случай

Figure 3.4: Второй случай

3. Система дифференциальных уравнений изменения численностей первой армии и второй армии регулярных войск. (рис. 3.5)

Первый случай

```
In [122]: def S1(f, t):
    s11 = -a1*f[0] - b1*f[1] + Sin1(t)
    s12 = -c1*f[0] - h1*f[1] + Cos1(t)
    return s11, s12
```

Figure 3.5: Первый случай

4. Система дифференциальных уравнений изменения численностей армии регулярных войск и партизанского отряда. (рис. 3.6)

Второй случай

```
In [123]: def S2(f, t):
    s21 = -a2*f[0] - b2*f[1] + Sin2(t)
    s22 = -c2*f[0]*f[1] - h2*f[1] + Cos2(t)
    return s21, s22
```

Figure 3.6: Второй случай

5. Следующие строки задают вектор начальных условий (v) (рис. 3.7)

```
Вектор начальных условий
In [124]: v = np.array([X, Y])
```

Figure 3.7: Вектор начальных условий и решения дифференциальных уравнений

3.4 Построение графиков решений

1. Решения дифференциальных уравнений (r1 и r2). График для модели боевых действий между регулярными войсками. (рис. 3.8)

Figure 3.8: График боя регулярных войск

3. График для модели боевых действий между регулярным войском и партизанским отрядом. (рис. 3.9)

Figure 3.9: График боя регулярного войска и партизанского отряда

4 Выводы

В результате выполнения третьей лабораторной работы, я рассмотрел один из примеров модели боевых действий Ланчестера.