Intercepts of the Quadratic

Case1: △>0 $f_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the f-intercepts of multiplicity 1. s(0) = c computes the single s-intercept.

Given a quadratic $s(f) = af^2 + bf + c$ compute its discriminant \triangle :

Example 1.

s(f)=-f²-f+42 compute its discriminant
$$\triangle$$
: \triangle =169>0

 $\triangle = \sqrt{b^2 - 4ac}$

$$f_{1,2}=6,-7$$

s(0)=42 s-intercept.

$s(f) = 2 f^2 - 24 f + 72$ compute its discriminant \triangle : ∆=0

 $f_{1,2}=6,6$

Example 2.

$$s(0) = 72$$
 s-intercept.

$s(f) = 9 f^2 - 162 f + 810$ compute its discriminant \triangle : $\triangle = -2916 < 0$

However there is a s-intercept.

no f-intercepts.

s(0) = 810 s-intercept.

Example 3.

s-intercep

5