

Homework 5: Maximum Likelihood

2. A Simple Singular Covariance

课程 □ Unit 3 Methods of Estimation □ Estimation

□ Matrix

2. A Simple Singular Covariance Matrix

Suppose ${f X}$ is a random vector, where ${f X}=(X^{(1)},\ldots,X^{(d)})^T$, with mean ${f 0}$ and covariance matrix ${f vv}^T$, for some vector ${f v}\in\mathbb{R}^d$.

(a)

0/1 point (graded)

If d>1, is the covariance matrix $\mathbf{v}\mathbf{v}^T$ invertible?

Hint: Compute the determinant for the case d=2. That result will generalize to higher dimension.

lacktriangledown $\mathbf{v}\mathbf{v}^T$ is invertible. \Box

lacksquare vv T is **not** invertible. \Box

Solution:

For d>1, the matrix \mathbf{vv}^T where \mathbf{v} is a vector in \mathbb{R}^d is not invertible. To get an intuition, we start with an example in 2 dimensions:

$$\mathbf{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies \mathbf{v}\mathbf{v}^T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

The matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is not invertible. One way to see this is that its determinant is $\mathbf{1}(0) - (0)(0) = \mathbf{0}$. Another way to see it is that for any 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \; = \; \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

In fact, the above argument works in general after a change of variables. Given $\mathbf{v} \in \mathbb{R}^d$, change coordinates of \mathbb{R}^d so that the first axis

points in the direction of ${f v}$ (and so that ${f v}$ has unit length). In this new coordinate system, ${f v}$ can be rewritten as

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} (1 \quad 0 \quad \dots \quad 0) \ = \ \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & 0 \end{pmatrix}$$

is not invertible because no d imes d matrix when multiplied by it will give the identity matrix.

提交

你已经尝试了1次(总共可以尝试1次)

Answers are displayed within the problem

1.0/1 point (graded)

Let \mathbf{u} be a vector in \mathbb{R}^d such that $\mathbf{u} \perp \mathbf{v}$, i.e. $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u} = \mathbf{0}$.

Find the variance of $\mathbf{u}^T \mathbf{X}$.

(If applicable, enter **trans(v)** for the transpose \mathbf{v}^T of a vector \mathbf{v} , and **norm(v)** for the norm $||\mathbf{v}||$ of a vector \mathbf{v} .)

$$Var(\mathbf{u}^T\mathbf{X}) = \begin{bmatrix} 0 \\ \end{bmatrix}$$
 Answer: 0

STANDARD NOTATION

Solution:

Given two vectors $\mathbf{u}, \mathbf{X} \in \mathbb{R}^d$, the inner product $\mathbf{u}^T \mathbf{X}$ is a scalar, and its variance is also a scalar. Using the covariance matrix formula, we get

$$\begin{aligned} \mathsf{Var}\left(\mathbf{u}^{T}\mathbf{X}\right) &= \mathsf{Cov}\left(\mathbf{u}^{T}\mathbf{X}\right) \\ &= \mathbf{u}^{T}\left(\mathbf{v}\mathbf{v}^{T}\right)\mathbf{u} \\ &= \left(\mathbf{u}^{T}\mathbf{v}\right)\left(\mathbf{v}^{T}\mathbf{u}\right) = 0. \end{aligned}$$

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(c)

1.0/1 point (graded)

Let $\overline{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ (i.e., $\overline{\mathbf{v}}$ is the normalized version of \mathbf{v}). What is the variance of $\overline{\mathbf{v}}^T \mathbf{X}$?

(If applicable, enter **trans(v)** for the transpose \mathbf{v}^T of \mathbf{v} , and $\mathbf{norm(v)}$ for the norm $||\mathbf{v}||$ of a vector \mathbf{v} .)

$$Var(\overline{\mathbf{v}}^T\mathbf{X}) =$$
 trans(v)*(v*(trans(v)*v))/| \Box Answer: norm(v)^2

STANDARD NOTATION

Solution:

Similarly

$$\begin{aligned} \mathsf{Var}\left(\overline{\mathbf{v}}^T\mathbf{X}\right) &= \mathsf{Cov}\left(\overline{\mathbf{v}}^T\mathbf{X}\right) \\ &= \left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right)^T(\mathbf{v}\mathbf{v}^T)\left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right) \\ &= \frac{\left(\mathbf{v}^T\mathbf{v}\right)\left(\mathbf{v}^T\mathbf{v}\right)}{\|\mathbf{v}\|^2} = \|\mathbf{v}\|^2. \end{aligned}$$

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(d)

1/1 point (graded)

Suppose we observe n independent copies of \mathbf{X} and call them $\mathbf{X}_1,\ldots,\mathbf{X}_n$. What is the asymptotic distribution of $\overline{\mathbf{X}}_n=\frac{\sum_{i=1}^n\mathbf{X}_i}{n}$? (Select all that apply.)

Notice that \mathbf{Y}_i is a scalar multiple of the vector \mathbf{v} and hence lies on the same line as \mathbf{v} no matter what value \mathbf{X}_i takes. (Specifically, $\mathbf{Y}_i = (\overline{\mathbf{v}}^T \mathbf{X}_i) \overline{\mathbf{v}}$ is the projection of $\overline{\mathbf{X}}_i$ onto the vector \mathbf{v} .) Use your answers for $\mathbb{E}\left[\mathbf{Y}_i\right]$ and $\Sigma_{\mathbf{Y}_i}$ to find the asymptotic distribution of $\overline{\mathbf{Y}}_n$. Compare this with the asymptotic distribution of $\overline{\mathbf{X}}_n$ from the previous part. What can you conclude about the asymptotic distribution of $\overline{\mathbf{X}}_n$?

STANDARD NOTATION

Solution:

Since $\mathbf{Y}_i = \overline{\mathbf{v}}\left(\overline{\mathbf{v}}^T\mathbf{X}_i
ight)$, the covariance matrix of \mathbf{Y}_i is

$$egin{aligned} \mathsf{Cov}\left(\mathbf{Y}_i
ight) &= \ \overline{\mathbf{v}}\overline{\mathbf{v}}^T\mathsf{Cov}\left(\mathbf{X}_i
ight)\left(\overline{\mathbf{v}}\overline{\mathbf{v}}^T
ight)^T \ &= \ \overline{\mathbf{v}}\overline{\mathbf{v}}^T\mathbf{v}\mathbf{v}^T\left(\overline{\mathbf{v}}\overline{\mathbf{v}}^T
ight)^T \ &= \ \frac{\mathbf{v}}{\|\mathbf{v}\|^4} = \mathbf{v}\mathbf{v}^T. \end{aligned}$$

This implies

$$\sqrt{n}\left(\overline{\mathbf{Y}}_{n}-\mathbf{0}
ight) = \sqrt{n}\left(\overline{\mathbf{Y}}_{n}
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0}, \mathsf{Cov}\left(\mathbf{Y}_{i}
ight)
ight) = \mathcal{N}\left(\mathbf{0}, \mathbf{v}\mathbf{v}^{T}
ight).$$

Observe that $\mathcal{N}(\mathbf{0},\mathbf{v}\mathbf{v}^T)$ is also the asymptotic distribution of $\overline{\mathbf{X}}_n$. Since $\overline{\mathbf{Y}}_n$ is a random vector that lies along the line spanned by a single vector \mathbf{v} for all n, the support of its asymptotic distribution, $\mathcal{N}(\mathbf{0},\mathbf{v},\mathbf{v}^T)$ also lies within the same line. Hence, geometrically, $\overline{\mathbf{X}}_n$, where $\overline{\mathbf{X}}_i$ has covariance matrix $\mathbf{v}\mathbf{v}^T$, approaches a one-dimensional Gaussian random variable along the line spanned by \mathbf{v} as $n \to \infty$.

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

讨论

显示讨论

主题: Unit 3 Methods of Estimation:Homework 5: Maximum Likelihood Estimation / 2. A Simple Singular Covariance Matrix

© 保留所有权利