Contrôle 2 Architecture des ordinateurs

Durée: 1 h 30

Exercice 1 (4 points)

Codez les instructions suivantes en langage machine 68000, <u>vous détaillerez les différents champs</u> puis vous exprimerez le résultat final sous forme <u>hexadécimale</u> en précisant <u>la taille des mots supplémentaires</u> lorsque le cas se présente.

- 1. MOVE.B -(A5), (A4)
- 2. ADDA.L -1(A3), A2
- 3. MOVE.W #34,34
- 4. MOVE.L #\$51,26(A3,A1.W)

Exercice 2 (4 points)

Vous indiquerez après chaque instruction, le nouveau contenu des registres (sauf le PC) et/ou de la mémoire qui viennent d'être modifiés. Vous utiliserez la représentation hexadécimale.

Attention : La mémoire et les registres sont réinitialisés à chaque nouvelle instruction.

```
Valeurs initiales:
```

```
DO = $FFFFFFE AO = $00005000 PC = $00006000
```

D1 = \$FFFF0005 A1 = \$00005008 D2 = \$FFFFF000 A2 = \$00005010

\$005000 54 AF 18 B9 E7 21 48 C0 \$005008 C9 10 11 C8 D4 36 1F 88 \$005010 13 79 01 80 42 1A 2D 48

- 1. MOVE.W #\$27,-(A1)
- 2. MOVE.L D2,4(A2,D0.L)
- 3. MOVE.B \$6006(PC, D2.L),\$5010
- 4. MOVE.W -1 (A2, D1.W), 2 (A0)

Exercice 3 (3 points)

Donnez le résultat des additions hexadécimales suivantes, ainsi que le contenu des bits N, Z, V et C du registre d'état.

\$3D + \$E9 opération en .B
 \$6AB4 + \$3FC6 opération en .W

Exercice 4 (2 points)

Réalisez le sous-programme **Add128** qui réalise une addition sur 128 bits en quelques lignes seulement (pas plus de cinq lignes).

Entrées: D3:D2:D1:D0 = Entier sur 128 bits (D0 étant les 32 bits de poids faible).

D7:D6:D5:D4 = Entier sur 128 bits (D4 étant les 32 bits de poids faible).

Sorties: D3:D2:D1:D0 = D3:D2:D1:D0 + D7:D6:D5:D4

Exercice 5 (3 points)

Réalisez le sous-programme **GetValue** en fonction des entrées-sorties ci-dessous (hormis le registre de sortie, aucun registre ne sera modifié en sortie du sous-programme) :

Entrée : D1.W = Entier signé sur 16 bits.

Sorties: **D0.L** = 1 si **D1.W** est négatif.

 $\mathbf{D0.L} = 2 \text{ si } \mathbf{D1.W} \text{ est nul.}$

 $\mathbf{D0.L} = 3$ dans tous les autres cas.

Exercice 6 (4 points)

Soit les deux instructions suivantes :

- MOVEM.L D2/D1/A1/A5, -(A7)
- MOVEM.L (A7)+,A5/A1/D1/D2
- 1. Laquelle des deux permet d'empiler les registres ?
- 2. Dans quel ordre seront-ils empilés ?
- 3. Dans quel ordre seront-ils dépilés ?
- 4. Choisissez la proposition exacte:

Après l'exécution d'une instruction RTS, le pointeur de pile est :

- · incrémenté de deux :
- · décrémenté de deux :
- · incrémenté de quatre ;
- · décrémenté de quatre ;
- · inchangé.
- 5. Si un programmeur commet l'erreur d'utiliser une instruction JMP à la place d'une instruction JSR, quel problème cela peut-il poser ?

Integer Instructions

MOVE Move Data from Source to Destination (M68000 Family)

MOVE

Operation:

Source → Destination

Assembler

Syntax:

MOVE < ea > , < ea >

Attributes:

Size = (Byte, Word, Long)

Description: Moves the data at the source to the destination location and sets the condition codes according to the data. The size of the operation may be specified as byte, word, or long. Condition Codes:

X — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Always cleared.

Instruction Format:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 0 9175					DESTINATION					SOURCE					
"	U		MODE			MODE		1.7	EGISTE	1					

Instruction Fields:

Size field—Specifies the size of the operand to be moved.

01 — Byte operation

11 — Word operation

10 — Long operation

4-116

M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL

MOTOROLA

Integer Instructions

MOVE

Move Data from Source to Destination (M68000 Family)

MOVE

Destination Effective Address field—Specifies the destination location. Only data alterable addressing modes can be used as listed in the following tables:

Addressing Mode	Mode	Register
Dn	000	reg. number:Dn
An		
(An)	010	reg. number:An
(An) +	011	reg. number:An
– (An)	100	reg. number:An
(d ₁₆ ,An)	101	reg. number:An
(d ₈ ,An,Xn)	110	reg, number:An

Addressing Mode	Mode	Register
(xxx).W	111	000
(xxx).L	111	001
# <data></data>		
191-9-2-1-191		
(d ₁₆ ,PC)	_	
(d ₈ ,PC,Xn)	-	

MC68020, MC68030, and MC68040 only

(bd,An,Xn)*	110	reg. number:An
([bd,An,Xn],od)	110	reg, number:An
([bd,An],Xn,od)	110	reg. number:An

(bd,PC,Xn)*		university (
([bd,PC,Xn],od)	-	
([bd,PC],Xn,od)		www

Source Effective Address field—Specifies the source operand. All addressing modes can be used as listed in the following tables:

Addressing Mode	Mode	Register
Dn	000	reg. number:Dn
An	001	reg. number:An
(An)	010	reg. number:An
(An) +	011	reg. number:An
– (An)	100	reg. number:An
(d ₁₆ ,An)	101	reg. number:An
(d ₈ ,An,Xn)	110	reg. питber:An

Addressing Mode	Mode	Register
(xxx).W	111	000
(xxx).L	111	001
# <data></data>	111	100
**************************************	A=-0	
(d ₁₆ ,PC)	111	010
(d ₈ ,PC,Xn)	111	011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)**	110	reg. number:An
([bd,An,Xn],od)	110	reg. number:An
([bd,An],Xn,od)	110	reg. number:An

(bd,PC,Xn)**	111	011
([bd,PC,Xn],ad)	111	011
([bd,PC],Xn,od)	111	011

^{*}For byte size operation, address register direct is not allowed.

NOTE

Most assemblers use MOVEA when the destination is an address register.

MOVEQ can be used to move an immediate 8-bit value to a data register.

Contrôle 2 – Annexes 4/8

^{*}Can be used with CPU32.

^{**}Can be used with CPU32.

ADDA

Add Address (M68000 Family)

ADDA

Operation:

Source + Destination → Destination

Assembler

Syntax:

ADDA < ea > , An

Attributes:

Size = (Word, Long)

Description: Adds the source operand to the destination address register and stores the result in the address register. The size of the operation may be specified as word or long. The entire destination address register is used regardless of the operation size.

Condition Codes:

Not affected.

Instruction Format:

	15	14	13	12	11	10	9	8	. 7	6	5	4	3	2	1	0
	4	4	0	4	r	EGISTER		OPMODE		ORMODE EFFECTIVE ADDRESS						
ĺ	'	1	U		יי	COIOIEN					MODE			EGISTE	R	

Instruction Fields:

Register field—Specifies any of the eight address registers. This is always the destination.

Opmode field—Specifies the size of the operation.

011—Word operation; the source operand is sign-extended to a long operand and the operation is performed on the address register using all 32 bits.

111— Long operation.

Effective Address field—Specifies the source operand. All addressing modes can be used as listed in the following tables:

Addressing Mode	Mode	Register
Dn	000	reg. number:Dn
An	001	reg. number:An
(An)	010	reg. number:An
(An) +	011	reg. number:An
- (An)	100	reg, number:An
(d ₁₆ ,An)	101	reg. number:An
(d _o .An.Xn)	110	reg. number:An

Mode Register				
111	000			
111	001			
111	100			
111	010			
111	011			
	111			

MC68020, MC68030, and MC68040 only

-	(bd,An,Xn)*	110	reg. number:An
-	([bd,An,Xn],od)	110	reg. number:An
	([bd,An],Xn,od)	110	reg. number:An

(bd,PC,Xn)*	111	011
([bd,PC,Xn],od)	111	011
([bd,PC],Xn,od)	111	011

^{*}Can be used with CPU32

M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL

MOTOROLA

BRIEF EXTENSION WORD FORMAT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D/A	R	EGISTE	R	W/L	0	0	0			DISPI	ACEME	ENT INTE			

(a) MC68000, MC68008, and MC68010

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D/A	R	EGISTE	R	W/L	SCA	ιLΕ	0			DISP	LACEME		EGER		

(b) CPU32, MC68020, MC68030, and MC68040

Table 2-1. Instruction Word Format Field Definitions

Field	Definition
	Instruction
Mode	Addressing Mode
Register	General Register Number
	Extensions
D/A	Index Register Type 0 = Dn 1 = An
W/L	Word/Long-Word Index Size 0 = Sign-Extended Word 1 = Long Word
Scale	Scale Factor 00 = 1 01 = 2 10 = 4 11 = 8
BS	Base Register Suppress 0 = Base Register Added 1 = Base Register Suppressed
is	Index Suppress 0 = Evaluate and Add Index Operand 1 = Suppress Index Operand
BD SIZE	Base Displacement Size 00 = Reserved 01 = Null Displacement 10 = Word Displacement 11 = Long Displacement
I/IS	Index/Indirect Selection Indirect and Indexing Operand Determined in Conjunction with Bit 6, Index Suppress

For effective addresses that use a full extension word format, the index suppress (IS) bit and the index/indirect selection (I/IS) field determine the type of indexing and indirect action. Table 2-2 lists the index and indirect operations corresponding to all combinations of IS and I/IS values.

EASy68K Quick Reference v2.1

www.easy68k.com

Copyright © 2004-2009 By: Chuck Kelly

		SK Qui	,											gk.con		Сорупу	1t © 2004-2009 By: Chuck Kelly
Opcode	Size BWL	Operand s.d	CCR XNZVC											placemen (i,PC,Rn)		Operation	Description
ABCO		Dy,Dx	*U*U*		-	-	(4)),	-		CENTRAL	-	-	-	-	77-11	$D_{Y_{10}} + D_{X_{10}} + X \rightarrow D_{X_{10}}$	BCD destination + BCD source + eXtend
ADD ⁴	BWŁ	-(Ay),-(Ax) s,Dn	****	E	- S	-	8	8	- S	- 8	- S	- 3	- 3	2	s ⁴	$\begin{array}{c} -(Ax)_{10} + -(Ax)_{10} + X \rightarrow -(Ax)_{10} \\ s + Dn \rightarrow Dn \end{array}$	Z cleared if result not 0 unchanged otherwise Add binary (ADDI or ADDO is used when source is
		Dn,d		E	ď	d	d	d	d	d	d	d ·	-	-	-	Dn + d → d	#n. Prevent ADDO with #n.l.)
ADDA 4	WL	s.An		S	В	S	S	S	5	S	3	S	\$	\$	s	s + An → An	Add address (.W sign-extended to .L)
ADDI 4		#n.d	****	ď	-	d	d	d	d	d	d	d	-	-	8		Add immediate to destination
ADDQ 4		#n,d	****	d	d	ď	d	d	d	d	d	d	-	-	S	#n + d → d	Add quick immediate (#n range: 1 to 8)
ADDX	BMT	Dy,Ox	*****	3	-	-	-	-	-	-	-	-		-	-	$Dy + Dx + X \rightarrow Dx$	Add source and eXtend bit to destination
AND '	ยหา	-(Ay),-(Ax)	···**00	1	ļ			е	*	-	-	-		-	- S ⁴	-(Ay) + -(Ax) + X → -(Ax)	f 1 ANO
ANU	BWL	s.Dn On,d	~~~00	e	_	g 2	s	g	s ď	s	s d	٦ 2	S	8 -	3	s ANO Dn → Dn On ANO d → d	Logical AND source to destination (ANDI is used when source is #n)
ANDI 4	BWL	#a,d	-**00		1	d	1	d	<u>d</u>	d	q	d			S	#n AND d → d	Logical AND immediate to destination
ANDI 4	В	#n,CCR	====	1.	1-		-			-	-	-	-		S	#n AND CCR → CCR	Logical AND immediate to CCR
ANDI ⁴	W	#n,SR	arsas	† -	-	-	-	Р	-	-		-	-	-	3	#n AND SR → SR	Logical AND immediate to SR (Privileged)
ASL	BWL	Dx,Dy	****	Е	-	-	-	-	-	-	-	-		-	-	X	Arithmetic shift Dy by Dx bits left/right
ASR		#n.Dy	7	d	-	-	-	-	-	-	-	-	-	-	5	,	Arithmetic shift Dy #n bits L/R (#n: 1 to 8)
	₩	d		-	-	ď	d	ď	d	đ	d	d	-	-	-		Arithmetic shift ds 1 bit left/right (W only)
Всс	BMg	address ²		-	-	"		-	-	-	-	-		-	-	if cc true then	Branch conditionally (cc table on back)
				<u> </u>	ļ		<u> </u>									oddress → PC	(8 or 16-bit ± offset to address)
BCHG	Bl	Dn.d	*	Е	-	ď	d	d	ď	ď	d	d				NOT(bit number of d) \rightarrow Z	Set Z with state of specified bit in d then invert
noin	n 3	#n.d	*	d	-	d	d	d	d	ď	. d	d		-	S	NOT(bit n of d) → bit n of d NOT(bit number of d) → Z	the bit in d Set Z with state of specified bit in d then clear
BCLR	Bl	Dn.d #n.d		di di	-	d	d d	d	d d	d d	d	d		-		D → bit number of d	bet 2 with state of specified dit in a then clear the bit in d
BECHC	3	d(o:w)	~**00		+	d	- u	1 12	d	d	d	d	<u> </u>	<u> </u>	3		Complement the bit field at destination
BFCLR	5	d(a:w)	-**00		-	d			d u	d	ď	ď	-		<u> </u>	 	Clear the bit field at destination
BFEXIS	5	s(o:w).Dr	-**00		1.	2	-		S	3	S	3	S	3	-	bit field of s extend 32 → Dn	On = bit field of s sign extended to 32 bits
BFEXTU	5	s{a:w},Dn	-**00		-	s			s s	3	S	S	S	s	-	bit field of s unsigned → Dn	On = bit field of s zero extended to 32 bits
BFFFO	5	s(v:w).On	* * DO		-	S	-		S	2	S :	ŝ	S	ş	1	bit number of I st I → On	On = bit position of f ²¹ I or offset + width
BFINS	S	On.s{o:w}	~**00	S	-	d		-	ď	ď	ď	d	٠.	-	-	low bits Dn -> bit field at d	Insert low bits of On to bit field at d
BESET	5	d{o:w}	**00		<u> </u>	ď	-	-	ď	d	d	d				i - Cumpin ou o	Set all bits in bit field of destination
BFTST	5	d{o:w}	**00	d	-	⋰d		7	d	d	d	ď	d ·	d		set CCR with bit field of d	N = high bit of bit field, Z set if all bits 0
BRA	BW ³	address ²		Ļ	-	-		-	-	-		ļ -	-	-		address → PC	Branch always (8 or 16-bit ± offset to addr)
BSET	8 [Dn.d	*	B		đ	q	d	d	ď	d	d	-	•	-	NOT(bit n of d) \rightarrow Z	Set Z with state of specified bit in d then
BSR	BW ³	#n.d address ²		d ^f	-	d	d	d	d	ď	d	<u>d</u>	-		2	$ 1 \rightarrow \text{bit n of d} $ $ PC \rightarrow -(SP); \text{ address } \rightarrow PC$	set the bit in d Branch to subroutine (8 or 16-bit ± offset)
BIZI	B L	Dn.d	*-	e ⁱ	-	d	d	d	- d	ď	d	d	<u>d</u>	d	-	NOT(bit On of d) \rightarrow Z	Set Z with state of specified bit in d
ша	n r	#n.d	ļ	ď		ď	ď	ď	4	d	d	d	i d	ď	S	NOT(bit #n of d) $\rightarrow I$	Leave the bit in dunchanged
CHK	W	s,Dn	*UUU	_		S	S	S	2	2	S	s	S	3	S		Compare On with 0 and upper bound (s)
CLR	BWL	d	-0100	d	-	d	d	d	d	d	d	d		-	-	0 → d	Clear destination to zero
CMP 4		s,Dn	***	E	s ⁴	S	S	S	S	2	2	S	S	S		set CCR with On - s	Compare On to source
CMPA 4	WL	s.An	_***	2	9	3	8	2	S	S	S	S	2	S	•	set CCR with An - s	Compare An to source
CMP!	BWL	#n,d	_****	d	-	d	d	d	d	ď	d	d	<u> </u>		2		Compare destination to #n
CMPM 4		(Ay)+.(Ax)+	_***	<u> -</u>	-	-	£	-			<u> </u>		-		<u> </u>	set CCR with (Ax) - (Ay)	Compare (Ax) to (Ay); Increment Ax and Ay
08cc	W	Dn.addres ²		-	-	-		-	-	-	-	-	-	-	-	if cc false then { Dn-1 \rightarrow Dn if Dn $<>$ -1 then addr \rightarrow PC }	Test condition, decrement and branch (16-bit ± offset to address)
DIVS	W	s.On	***0	E	+	s	s	S	2	S	2	8	s	S	5	 	On= [16-bit remainder, 16-bit quotient]
DIVU	W	s,On	***0		-	S	S	S	<u> </u>	5	5	2	8	S	S	32bit On / 16bit s → On	Dn= (16-bit remainder, 16-bit quotient)
EDR 4		Dn,d	-**00	-innum	† -	d	d	ď	g	d	d	d			3		Logical exclusive OR On to destination
EORI 4		#n,d	-**00			d	d	d	d	ď	d	d	-	-	8	#n XDR d → d	Logical exclusive DR #n to destination
EORI 4	8	#n.CCR	WEEEE		-	-		-		-		-	-		s	#n XOR CCR → CCR	Logical exclusive DR #n to CCR
EORI "	W	#n,SR	====	-	Ŀ	·	-	-		-	-	-			S	#n XOR SR → SR	Logical exclusive DR #n to SR (Privileged)
EXG	Ļ	Rx.Ry		8	В		-	-		-	-	-			-	register ← → register	Exchange registers (32-bit only)
EXT	WL	Dn	-**00	+	-		-	-		-		-	ļ		<u> -</u>	On.8 → On.W On.W → On.L	Sign extend (change .B to .W or .W to .L)
ILLEGAL		r		ļ-	-	-	<u> </u>	-	-		-	<u> </u>	-		<u> </u>	PC→-(SSP); SR→-(SSP)	Generate Hegal Instruction exception
JMP R2L		d		-	+-	d	-	-	d	d	d d	d d	q	d	-	$ \begin{array}{c} \uparrow d \rightarrow PC \\ PC \rightarrow \neg (SP); \uparrow d \rightarrow PC \end{array} $	Jump to effective address of destination push PC, jump to subroutine at address d
TEV	<u> </u>	s,An		+-	8	G S	<u> </u>		G S	d s	S	8	d s	2	-	↑s → An	Load effective address of s to An
LINK	L.	An,#n		+-	. 8	- 2	-	-	. 2	8	- 5	-		- 2	-	$An \rightarrow -(SP); SP \rightarrow An;$	Create local workspace on stack
w11184		compacts		ĺ												$SP + \#n \rightarrow SP$	(negative n to allocate space)
TZF	BWL	Dx.Dy	***0*	6	-	-	1 -	-		-	-	-	-	-		X	Logical shift Dy. Ox bits left/right
LSR		#n.Dy		ď	-	-	-	-	-	-	-	-	-	-	S		Logical shift Dy, #n bits L/R (#n: 1 to 8)
	W	d		1.	-	d	d	d	d	d	. d	d	-	-	-	0 - X	Logical shift d I bit left/right (.W only)
MOVE 4		s,d	~**00		54	Е	e	e	8	g	e	e	S	Ş	s ^A		Move data from source to destination
MOVE	₩	s,CCR		s	-	S	S	8	S	\$	S	S	S	\$	S	$s \rightarrow CER$	Move source to Condition Code Register
MOVE	W	92,2	=====		-	\$	S	8	S	S	S	S		2	2	s → SR	Move source to Status Register (Privileged)
MOVE		SR.d	V519170	d n_		d /A-1	d //->-	d (4-)	(1.1.3	d /: A = D\	_L_141	d	c nev	7: HA A 1	- #-	b ← 92	Move Status Register to destination
	BWL	s,d	XNZVC	UU	An	(An)	(An)+	-(An)	(LAII)	(LARATA)	80S,W	aps.L	(LPG)	(LPC,Rn)	#N	1	

Contrôle 2 – Annexes 7/8

EPITA – Architecture des ordinateurs – Info-Spé 2011/2012

MPMT SI MPM SI MPM	Opende	Size	Operand	CCR	T	Effe	ctive	Addres	SS S=S	ource,	d=destina	ation, e	=eithe	er, j=dis	placemer	nt	Operation	Description
MINT 1 1974		BWL	s.d		-													
Aut Mode	MUNE			1	-		-			·	_	-	-					Maria Hese Stack Painter to An (Privilanad)
Miny		-			-	_	,	-		-	-	-	-	-	-			
March Spring Sp	MOVEA	WL	s,An		S	6	s	3	S	S	2	2	S	S	S	S	s → An	
Section Sect	MOVEM*	WL	Rn-Rn,d		٠,	-	d		ď	d	ď	d	d	-	-	-	Registers -> d	
Chefrid 10	Ĺ		s,Rn-Rn		-	-	S	S	-	S	s	s	2	S	s	-	s → Registers	(.W source is sign-extended to .L for Rn)
MAYER 1	MOVEP	WL	On.(i,An)		\$	-	-	-	-	d	-	-	-	-			Bn → (i,An)(i+2,An)(i+4,A.	Move On to/from elternate memory bytes
MISS						-	-	-		s	-	ļ -	-	-	-	-	(i,An) → Da(i+Z,An)(i+4,A.	(Access only even or odd addresses)
MULT W Ellin						-		-		_	-	-	-	-	-	S	#n → On	Mave sign extended 8-bit #n to Dn
MEDIC B d		-	~~~~	I		-	2	S	2	\$	5	2	S	2	S			
NEG SPU d					8	-	2	S	2		S	S	2	2	s	5		Multiply unsig'd 16-bit; result: unsig'd 32-bit
NEXT	Location and the second			1	d	-	d	d	d	d	ď	d	d		-			Negate BCD with eXtend, BCD result
No.					-	-	d	ď	d	·	d	d	ď			-		Negate destination (2's complement)
NOT BPV S.D.		BWL	ď	****	d	-	ď	d	ď	d	q	ď	ď	-	-	-		Negate destination with eXtend
BY S.Dr					-	-		-	-	-	-	-	-	-	-			No operation occurs
Dnd	NOT	 			+	-	d	d	d	d	ď	d	d	-	-	<u></u>		Legical NOT destination (I's complement)
Digit Bill Part Continue Continue	OR 4	BWi		**00	6	-	S	S	8	8	S	S	S	S	S	s*	s DR Dn → Dn	Logical OR
DRI	<u> </u>				-	-		đ	d			d		-	-			(ORI is used when source is #n)
DBI				-**00	d	-	d	d	đ	d	d	d	d	-				Logical OR #n to destination
FEAT				=====	-	-	-	-	-	-	-	-	-	-		S	#n OR CCR → CCR	
RELET		W	#n,SR	EE 353 (35 32 55	-	-	-	-	-	-	-	-	-	-	-	8	#n OR SR → SR	Logical OR #n to SR (Privileged)
Record R		Ĺ	S		-	-	S	-	-	S	S	S	S	S	S	-	↑s → -(SP)	Push effective address of a onto stack
RORE W d C D D C C D							-	-		-	-	-	-	-	-	-	Assert RESET Line	Issue a hardware RESET (Privileged)
REDIX ROXE W d d d d d d d d d	ROL	BWL		···**()*	В	-	-	-	-	-		-	-	-	-	-	P	Rotate Dy. Dx bits left/right (without X)
RDIX	RDR				q	-		-	-		-	1	-	-		S	(Rotate Dy, #n bits left/right (#n; 1 to 8)
RODE W d d d d d d d d d		W	อ่	}	-	-	ď	d	d	d	d	ď	d	-	-	-		Rotate d 1-bit left/right (.W only)
Rotate W W d d d d d d d d	ROXL	BWL	Ûx.Ūν	***0*	8	-	-	-	-	-	-			-	-		X	Retate Dv. Dv. hits 1/8: X used then undeted
RTE	ROXR				1					-	-	_	_		-	2		
RTE		W	ď	ĺ		-	d	d	d	ď	d	В	d	-		1		
RTR	RTF				 	-		 	 	<u> </u>		_	<u> </u>	-		-	(9D) - > 9D (9D) - > DF	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	-	ļ	<u>-</u>		-		-	ļ			ļ		
Sec B						-			-	ļ				ļ		1 -		*
Carrier Carr		R	กิบ กิง	*[]*[]*	12	<u> </u>		<u> </u>				}						
Scc B d d - d d d d d	0000	J]	-	-	ĺ	١.	ł] _	-	١		}	1			J j
STOP	Sec	В			4	-	1	1	 		Н	Ч	d					
STOP #n ==== - - - - - - - -			.					"	ı "			ı u					Į.	1
Substant binary (Substant binary (Subs	antz		Üп		-	-	-	-				_				-		
Dn.d		RWI																
SUBA* WL s.An	500	un.		1	E		E	1	1					1		Ļ		
SUBL * BWL #n,d ****** d d	SHRA 4	WI		11.0 - 10 10 10.0			1										la	
Subtract quick immediate (#n range: 1 to 8)				****				****				************						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				****	-	<u> </u>		,	·	***************************************		***********		···				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				****	 	-			 				-	ļ				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14457	D112				,	_		ļ.	_			_			3		populari 2019 ce dila evisila dir ilipid aszilitarinii
TAS B d -**00 d - d d	qaw2	W		* * OO	1						 	<u> </u>				<u>. </u>		Evenance the Bubit halves of Dr.
TRAP #n					1			ļ	ļ	ď						-		
TRAPY					-	_	-											
TRAPV]		,		ļ.											1 "		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TRAPV				-			-				-	_	-	_			
UNLK An - d -		BWI	d	-**80	Ч	_	ď	Ч		Ч			Н			<u> </u>		
BWL s,d XNZVC On An (An) (An) + -(An) (i,An) (i,An,Rin) abs.W abs.L (i,PC,Rin) # n					l .	Ь				-	-	-	-	-	-	-		
			~~~~~~~~~~	XNZVC	On		(An)	(Anl+	-(An)	(i,An)	(iAn Rn)	ahs W	ahs!	(i.PC)	(i.P.C.Rn)	#n		лангото принтигнарова и вистем
					A				L	L								

L	0110 0,0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Co	ndition Tests (+	OR, I NOT,	⊕ X(1	R: " Unsigned, " Afte	rnate cc )
CE	Condition	Test	CC	Condition	Test
Ţ	true	I	VC	overflow clear	IV
F	false	0	VS	overflow set	٧
HI"	higher than	I(C + Z)	PL	plus	IN
£2n	lower or same	C + Z	MI	នាម៉ាមន	N
HS°, CC°	higher or same	!C	GE	greater or equal	!(N ⊕ V)
LCP, CSa	lower than	C	LT	less than	(N ⊕ V)
NE	net equal	17	Gī	greater than	![(N ⊕ V) + Z]
FD	enual	7	1F	โดยราก ของสโ	(N (A) V) + 7

An Address register (16/32-bit. n=0-7) s Source. On Data register (8/16/32-bit, n=0-7) d Destination Rn any data or address register e Either source or destination

BCO Binary Coded Decimal PC Program Counter (24-bit)

#n Immediate data SP Active Stack Pointer (same as A7) 1 long only, all others are byte only

1 Effective address {a:w} offset:width of bit field

i Displacement

SSP Supervisor Stack Pointer (32-bit) USP User Stack Pointer (32-bit) ² Assembler colculates offset

SR Status Register (16-bit) CCR Condition Code Register (lower 8-bits of SR) N negative, Z zero. V overflow, C carry, X extend * set by operation's result, ≡ set directly - not affected, O cleared, I set, U undefined

Branch sizes: B or .S -128 to +127 bytes. .W or .L -32768 to +32767 bytes Distributed under GNU general public use license

 4  Assembler automatically uses A. I. O or M form if possible. Use #n.L to prevent Quick optimization ⁵ Bit field determines size. Not supported by 58000. EASy68K hybrid form of 68020 instruction

	TRAP #13 is used to run simulator tasks. Place the to	task number in register UU. See Help for a complete descr	uption of available tasks, (cstring is null terminated)
Display n cheracters of string at (Al), n=DLW	Display n characters of string at (Al), n=DLW	2 Read characters from keyboard, Store at (Al). 3	Display DLL as signed decimal number
(stops on NULL or max 255) with CR.LF	(staps on NULL or mex 255) without CR.LF	Null terminated. DLW = length (max 80)	
4 Read number from keyboard into DLL	5 Read single character from keyboard in DLB	6 Display DLB as ASCII character 7	Set Dt.B to 1 if keyboard input pending else set to D
	3 Terminate the program. (Halts the simulator)	ID Print estring at (AI) on default printer.	Position cursor at row.col DLW=core. \$FF00 clears
13 Display estring at (A1) with CRLF	14 Display estring at (AI) without CR,LF	15 Display unsigned number in DLL in D2.8 base 17	Display estring at (AI) , then display number in DLL
18 Display estring at (A1), read number into DLL	19 Return state of keys or scan code. See help	20 Display ± number in DLL, field D2.8 columns wide 2	Set font properties. See help for details

Contrôle 2 – Annexes 8/8

EPIT/	4 /	Tn	$f_0.5$	ne
レアエリノ	7/	$\pm II$	עטו	u e

NOM:

GROUPE:....

# Contrôle 2 Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet

# Partie A. Amplificateur opérationnel (3 points)

Soit le circuit suivant :



a) L'AOP fonctionne-t-il en mode linéaire? Pourquoi?

<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	 ·····	

b) Déterminer l'expression de  $V_S$  en fonction de  $V_e$  et des résistances.

# Partie B. Transistors à effet de champ - Polarisation (9 points)

# Exercice 1. (2 points)

On considère un transistor à effet de champ à jonction canal N, et son réseau de caractéristiques présenté sur le graphique suivant :



Rq: Pour tout utilisation du graphique, travaillez avec les caractéristiques idéalisées.

On l'inclut dans le montage ci-contre.

Déterminer la condition sur la valeur de la résistance ainsi que la valeur de pour que le transistor soit polarisé dans sa zone de fonctionnement linéaire avec



# Exercice 2. (7 points)

On considère un Transistor à Effet de Champ dont les caractéristiques sont données dans la figure 1. Ce **TEC** est utilisé dans le montage figure 2. On donne :

- $\checkmark$  Tension d'alimentation  $V_{DD} = 15V$
- $\checkmark$  Le point de fonctionnement est choisi tel que la tension  $V_{DM}$  = 7V.



Dans un premier temps, on veut que le transistor fonctionne dans sa zone linéaire.

	a)	Calculer l'intensité du courant $I_D$ sachant que $R_D = 1k\Omega$ et en déduire la tension $V_{GS}$ .
1		

c)	Le transistor fonctionne-t-il bien dans sa zone linéaire? Pourquoi?
ve	ut maintenant travailler dans la zone ohmique, avec $V_{GS}=-2V$ .
d)	A quoi est équivalent le canal Drain-Source dans ce mode de fonctionnement? Donner caractéristiques de cet équivalent.
e)	Déterminer la résistance $R_D$ pour avoir ce type de fonctionnement, sachant que $R=1k$

# $\underline{Partie\ C}$ . Transistors à effet de champ - Petits signaux (3 points)

Dans le schéma ci-dessous, le transistor à effet de champ est monté en grille commune.



	****
a)	Dessiner le schéma équivalent petits signaux du montage.
b)	Déterminer l'amplification en tension de ce montage. Rq: On pourra exprimer les tensions d'entrée et de sortie en fonction de $v_{gs}$ .
b)	Déterminer l'amplification en tension de ce montage. Rq: On pourra exprimer les tensions d'entrée et de sortie en fonction de $v_{gs}$ .
b)	Déterminer l'amplification en tension de ce montage. Rq: On pourra exprimer les tensions d'entrée et de sortie en fonction de $v_{gs}$ .
b)	Déterminer l'amplification en tension de ce montage. Rq: On pourra exprimer les tensions d'entrée et de sortie en fonction de $v_{gs}$ .
b)	Déterminer l'amplification en tension de ce montage. Rq: On pourra exprimer les tensions d'entrée et de sortie en fonction de $v_{gs}$ .
b)	Déterminer l'amplification en tension de ce montage. $\underline{\mathtt{Rq}}: \mathtt{On}\ pourra\ exprimer\ les\ tensions\ d'entrée\ et\ de\ sortie\ en\ fonction\ de\ v_{gs}.$
b)	Déterminer l'amplification en tension de ce montage. R ${f q}$ : On pourra exprimer les tensions d'entrée et de sortie en fonction de $v_{gs}$ .
b)	Déterminer l'amplification en tension de ce montage. Rg : On pourra exprimer les tensions d'entrée et de sortie en fonction de $v_{gs}$ .

# Partie D. Transistors MOS et Portes Logiques (5 points)

a) Rappeler les conditions de passage (canal Drain Source conducteur) et de blocage (canal Drain Source non conducteur) pour les MOSFET Canal N et P.



b) Soit le montage suivant : Il correspond à une fonction logique réalisée en technologie CMOS.

Déterminer l'équation logique correspondant à cette fonction (justifiez votre réponse), puis, après l'avoir simplifiée (l'équation (!)), redessiner le schéma COMPLET de la porte logique, y compris l'étage MOSN, non dessiné sur le montage initial.



Si vous manquez de place, vous pouv	vez utiliser le cadre ci-dessous.	

# Contrôle n° 2 de Physique Documents et calculatrice non autorisés

# <u>Partie cours</u>

(7 points)

Les questions sont indépendantes.

- 1- a- Interpréter l'expérience de Franck-Hertz, en précisant le but et le principe de cette expérience.
  - **b-** Préciser l'étude expérimentale faite en parallèle pour valider l'interprétation de cette expérience. Justifier votre réponse
- 2- a- Donner la définition de  $\tau$ : durée de vie d'un état d'énergie excité.
  - b- Comment intervient cette durée de vie dans l'expression de la population de l'état excité : N(t)
  - c- Citer un autre phénomène physique où apparaît le même type de variation N(t)
- 4- A l'aide du **modèle de Bohr**, on montre que l'énergie totale de l'électron en fonction du nombre quantique principal n est :

$$E_n = -\frac{13.6}{n^2}$$
 (Exprimée en eV)

- **a-** Utiliser cette dernière expression et un des postulats de Bohr pour retrouver la fréquence de transition (de m vers n où m>n) donnée par : $v_{m,n} = A(\frac{1}{n^2} \frac{1}{m^2})$ . Préciser l'expression de la constante A.
- **b-** En déduire la longueur d'onde de la transition :  $\frac{1}{\lambda_{m,n}} = R_H (\frac{1}{n^2} \frac{1}{m^2})$ .

Préciser l'expression de la constante de Rydberg  $R_H$ .

- 5- a- Interpréter la courbe de Moseley en précisant la conséquence
  - b- Citer les trois cas où l'on peut appliquer le modèle de Bohr
  - **c-** Donner pour chacun des cas, l'expression de l'énergie d'un niveau de nombre quantique principal n en précisant la correction à apporter.

## Exercice

# Partie A (6 points)

On considère un milieu diélectrique (isolant), composé de n électrons. L'électron de masse m est soumis à une force de rappel d'expression  $\vec{f} = -K\vec{r}$ ; Où  $\vec{r}$  est le vecteur position de l'électron et K la constante de rappel.

On envoie dans le diélectrique une O.E.M.P.P.S de pulsation  $\omega$ . On suppose pour ce milieu  $\mu \approx \mu_0$  et  $\varepsilon \approx \varepsilon_0$ 

- 1) **a-** Donner le P.F.D pour un électron, sachant que  $F_e >> F_m$ , le vecteur accélération et le vecteur vitesse vérifient :  $\vec{v} = \frac{d\vec{r}}{dt} \approx \frac{\partial \vec{r}}{\partial t} = -i\omega . \vec{r}$  et  $\vec{a} = \frac{d\vec{v}}{dt} \approx \frac{\partial \vec{v}}{\partial t} = -i\omega . \vec{v}$ 
  - b-Exprimer la position  $\vec{r}$  en fonction du champ électrique de l'onde, de  $\omega$  et de  $\omega_0$ . Où  $\omega_0^2 = K/m_e$ , pulsation propre de l'oscillateur qui est l'électron.

En déduire l'expression du vecteur vitesse  $\vec{v}$ 

- 2) Donner l'expression de la densité de courant  $\vec{J}$  en fonction du champ  $\vec{E}$ , en déduire la conductivité du milieu diélectrique  $\gamma$ .
- 3) a- Montrer que l'équation de dispersion peut se mettre sous la forme :

$$k^2 = \frac{\omega^2}{c^2} \left( \frac{\omega^2 - \Omega^2}{\omega^2 - \omega_0^2} \right). \text{ Où } \omega_p^2 = n_e.e^2 / m_e.\varepsilon_0$$

- **b-** Identifier la pulsation  $\Omega$ . Préciser les fréquences de coupure
- c- Donner les types d'ondes dans ce milieu.

# Partie B (4 points)

On considère maintenant le milieu plasma où les électrons sont libres et ne sont soumis qu'à la force électrique  $\vec{F}_e$ . L'onde électromagnétique (considérée comme OPPS) est envoyée dans ce milieu (où  $\varepsilon \approx \varepsilon_0$  et  $\mu \approx \mu_0$ ) avec une pulsation  $\omega$ .

- 1- Donner sans refaire de calcul, la nouvelle expression de l'équation de dispersion, en utilisant celle obtenue pour le diélectrique (Partie A). Justifier votre réponse.
- 2- a- Préciser la nouvelle fréquence de coupure, ainsi que les types d'onde selon la fréquence.
  - **b-** Calculer la fréquence de coupure pour  $n = 4.10^{12} m^{-3}$ ,  $e = 1.6.10^{-19} c$ ,  $\varepsilon_0 = 9.10^{-12} S.I$ ,  $m = 9.10^{-31} kg$

# Partie C (3 points)

On envoie l'onde électromagnétique dans le même milieu plasma mais cette fois ci on ne néglige pas le mouvement des ions de densité  $n_i$  et de masse  $m_i$ . (Sachant que  $n_e = n_i = n$ ).

1- On montre que la vitesse d'un électron est :  $\vec{V}_e = -\frac{ie\vec{E}}{m_e\omega}$ 

Donner (sans refaire de calcul) la vitesse  $\vec{V}_i$  d'un ion de charge +e et de masse  $m_i$ .

- 2- Donner l'expression de la densité de courant totale, sachant que :  $\vec{J} = \vec{J}_e + \vec{J}_i$ , en déduire la conductivité  $\gamma$  du milieu.
- 3- Donner la nouvelle expression de l'équation de dispersion ainsi que la nouvelle fréquence de coupure. On peut poser  $\frac{1}{M} = \frac{1}{m_e} + \frac{1}{m_i}$

# <u>Formulaire</u>

1) Force électrique

$$\vec{F}_e = q.\vec{E}$$

2) Densité de courant pour une seule espèce de charge q

$$\vec{J}=n.q.\vec{V}$$

3) Loi d'Ohm généralisée

$$\vec{J} = \gamma . \vec{E}$$

4) Equation de dispersion pour un milieu matériel quelconque

$$k^2 = \frac{\omega^2}{c^2} (1 + \frac{i\gamma}{\omega \cdot \varepsilon_0})$$

# Algorithmique Contrôle nº 2

Info-Spé – Api Epita

D.S. 311181.46 BW (7 mar 2012 - 10:00)

## Consignes (à lire):

- □ Vous devez répondre sur les feuilles de réponses prévues à cet effet.
  - Aucune autre feuille ne sera ramassée (gardez vos brouillons pour vous).
  - Répondez dans les espaces prévus, les réponses en dehors ne seront pas corrigées : utilisez des brouillons!
  - Ne séparez pas les feuilles à moins de pouvoir les ré-agrafer pour les rendre.
  - Aucune réponse au crayon de papier ne sera corrigée.
- □ La présentation est notée en moins, c'est à dire que vous êtes noté sur 20 et que les points de présentation (2 au maximum) sont retirés de cette note.

#### $\square$ Les algorithmes :

- Tout algorithme doit être écrit dans le langage Algo (pas de C, Caml ou autre).
- Tout code ALGO non indenté ne sera pas corrigé.
- Tout ce dont vous avez besoin (types, routines) est indiqué dans l'énoncé.
- $\square$  Durée : 2h00



#### Exercice 1 (Graphes: dessiner c'est gagner - 4 points)

Soit le graphe G=<S,A> orienté avec :

```
S=\{1,2,3,4,5,6,7,8,9,10\} et A=\{(1,2),(1,3),(1,5),(1,6),(2,3),(3,4),(4,9),(5,2),(5,8),(6,7),(7,1),(8,3),(8,4),(8,9),(8,10),(10,9)\}
```

- 1. Représenter graphiquement le graphe correspondant à G.
- 2. Donner le tableau DemiDegréIntérieur tel que  $\forall i \in [1, Card(S)]$ , DemiDegréIntérieur[i] soit égal au demi-degré intérieur de i dans G.
- 3. Représenter (dessiner) la forêt couvrante associée au parcours en profondeur du graphe G. Ajouter aussi les autres arcs en les qualifiant à l'aide d'une légende explicite. On considérera le sommet 1 comme base du parcours, les sommets devant être choisis en ordre numérique croissant.

#### Exercice 2 (Graphe sans circuit... (3 points))

- 1. Quelle est, au niveau de la classification de ses arcs, la particularité d'un graphe sans circuit?
- 2. Soit  $G = \langle S, A \rangle$  un graphe sans circuit, soient les tableaux os et op contenant, respectivement, les numéros d'ordre suffixe et préfixe de tous les sommets du graphe G obtenus lors du parcours en profondeur de G. Démontrer que pour une paire quelconque de sommets distincts  $u, v \in S$ , s'il existe un arc dans G de u à v, alors os[v] < os[u].

## Pour l'exercice suivant

### Représentation statique des graphes

#### Exercice 3 (I want to be a tree -13 pts)

#### Définition:

Un arbre est un graphe connexe sans cycle.



FIGURE 1 - Not a tree yet

Le but de cet exercice est de transformer un graphe en arbre en le modifiant le moins possible, à l'aide d'un parcours profondeur.

- 1. On effectue un parcours profondeur du graphe :
  - (a) Quelles sont les arêtes qui peuvent être enlevées du graphe sans augmenter le nombre de composantes connexes?
  - (b) Comment repérer ces arêtes lors du parcours profondeur?
  - (c) Appliquer au graphe de la figure 1 : donner la liste des arêtes que l'on supprimera lors du parcours profondeur en choisissant les sommets dans l'ordre croissant (y compris pour les successeurs).
- 2. Pendant le parcours profondeur, on attribue à chaque sommet un numéro de composante connexe (de 1 à k, s'il y a k composantes) :
  - (a) Combien d'arêtes faut-il ajouter pour rendre le graphe connexe?
  - (b) Comment, lors du parcours, savoir quelles arêtes ajouter pour rendre le graphe connexe?
  - (c) Donner le tableau des composantes connexes du graphe de la figure 1 obtenu lors du parcours profondeur toujours en choisissant les sommets dans l'ordre croissant.

#### 3. L'algorithme:

L'algorithme demandé ici sera un parcours profondeur d'un graphe non orienté en représentation statique.

#### L'algorithme devra :

- Construire le vecteur des composantes connexes, dans le vecteur cc.
- Ajouter au graphe les arêtes qui permettent de le rendre connexe.
- Supprimer du graphe les arêtes "inutiles" : sans augmenter le nombre de composantes.

Nom	
Prénom	
Groupe	

Note

# Algorithmique - Info-Spé – Api Contrôle nº 2

	D.S. 31		8W (7 mar.		:00)
			es de répons		
éponses 1 (G	raphes : de	ssiner c'est ga	agner – 4 points)	)	
1. Représenter	le graphe co	orrespondant à	G.		
	7)		5	8	(10)
	6	2	3	4	9
2. Demi-degré	s intérieurs d	le tous les somr	nets du graphe G :		
DemiDeg	réIntérieur [	1 2	3 4 5	6 7	8 9 10
3. Forêt couvr	ante :				

# *Réponses 2* Graphe sans circuit... (3 points)

1.	Quelle est, au niveau de la classification de ses arcs, la particularité d'un graphe sans circuit?
2.	Démontrer que pour une paire quelconque de sommets distincts $u, v \in S$ , s'il existe un arc dans $G$ de $u$ à $v$ , alors $os[v] < os[u]$ .

## Réponses 3 (I want to be a tree - 13 pts)

1.	(a)	Les arêtes	qui peuv	ent être	enlevée	28:								
	(b)	Comment	repérer c	es arête	s lors d	u parco	urs pro	fondeur	?					
												Handrid Addition and the school of Annie	aldrind Assaulte of endough Arth	VI./IIIII.e.a.Heve
	(c)	La liste de	s arêtes :	du grapl	he "Not	a tree g	yet" sup	oprimée.	s :	,		#Barrier A *Arthur Vaccount of the	Premadalud Aspersador	
		$\frac{1}{2}$ ant le parc				ribue à	chaque	somme	t un nu	méro de	e compo	osante c	onnexe	
	(a)	Nombre d	'arêtes à	a jouter	:									
	(b)	Comment,	lors du	parcour	s, savoi	r quelles	arêtes	a jouter	. ?					
			ast A.H. SHA HARSHII I HARRA		mandrada I and Calabida (1900-1914) a sir A h I f = 100				NATO ANNO A LA DESCRIPTO DE LA CASA DE LA CA	a di al sufunana a susana a salan			**************************************	
		MANINAAAN//IIVWW												
			000 000 000 000 000 000 000 000 000 00	And the second s								m a mile and the New Activities of a mile		
	(c)	Le tableau	des com	posantes 3	s conne	xes du g 5	$\frac{raphe}{6}$	"Not a t	ree yet"  8	9	10	11	12	1

#### 3. L'algorithme d'appel:

La procédure  $make_me_tree$  (t_graphe_s G, t_vect_entiers cc) transforme G en arbre et remplit cc, vecteur des composantes connexes du graphe de départ.

Elle utilise la procédure prof_rec (voir page suivante).

algorithme procedure make_me_tree
 parametres globaux
 t_graphe_s G
 t_vect_entiers cc

variables

#### debut



fin algorithme procedure make_me_tree

### L'algorithme récursif :

La procédure prof_rec (t_graphe_s G, entier s, pere,  $no_cc$ , t_vect_entiers cc) effectue le parcours profondeur du graphe G à partir du sommet s. pere est le sommet père de s dans la forêt couvrante,  $no_cc$  est le numéro de la composante connexe actuelle et cc, qui sert de marque, est le vecteur de composantes.

algorithme procedure prof_rec
parametres locaux
t_graphe_s G
entier s, pere
entier no_cc
parametres globaux
t_vect_entiers cc
variables

#### debut



fin algorithme procedure prof_rec

# Contrôle 2

Durée : trois heures

Documents et calculatrices non autorisés

Nom:

Prénom:

Groupe:

Entourer le nom de votre professeur de TD : M. Ghanem/Mme Malek

Consignes:

- vous devez répondre directement sur les feuilles jointes.

- aucune autre feuille, que celles agrafées fournies pour répondre, ne sera corrigée.

Exercice 1 (5 points)

Déterminer la nature des intégrales impropres suivantes :

1.  $\int_0^{+\infty} \frac{t^2}{1+t^4} dt$ 

 $2. \int_{1}^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) \mathrm{d}t$ 

3.	$\int_0^{+\infty} \frac{1}{1}$	$\frac{e^t}{+e^{2t}}  \mathrm{d}t$				
					· · · · · · · · · · · · · · · · · · ·	



# Exercice 2 (4 points)

Soient  $n \in \mathbb{N}$  et  $I_n = \int_0^{+\infty} x^{2n+1} e^{-x^2} dx$ .

1. Déterminer la nature de  $I_n$  en fonction de n.



2. Déterminer  $I_0$  et  $I_1$ .



3. Via une intégration par parties, en posant  $u(x) = x^{2n}$ , exprimer  $I_n$  en fonction de  $I_{n-1}$ .



4. En déduire (sans récurrence) $I_n$ en fonction de $n$ .	

# Exercice 3 (2 points)

Soient 
$$a \in \mathbb{R}$$
 et  $I_a = \int_2^{+\infty} \frac{\left(\ln(t)\right)^a}{t} \, \mathrm{d}t$ 

1. Via le changement de variable  $u=\ln(t),$  déterminer la nature de  $I_a$  en fonction de a.



2. Calculer  $I_a$  en fonction de a.



# Exercice 4 (4,5 points)

Soient  $E = \mathbb{R}_2[X]$  et  $\Phi : E \times E \longrightarrow \mathbb{R}$  définie pour tout  $(P, Q) \in E^2$  par

$$\Phi(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

1. Montrer que  $\Phi$  est un produit scalaire sur E.



2. On note à présent  $\Phi$  par <,> de sorte que pour tout  $(P,Q)\in E^2$ ,

$$< P, Q > = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

Déterminer (par la méthode de Gram-Schmidt) à partir de la base canonique  $(1, X, X^2)$  de E une base orthogonale  $(P_0, P_1, P_2)$  de (E, <, >).

N.B.: vous devez détailler la méthode de Gram-Schmidt pas à pas et non pas parachuter des formules donnant les coefficients inconnus.

[sulte du cadre page sulvante]

[suite du cadre page suivante]

(		
		,

# Exercice 5 (3 points)

Soient (E,<,>) un espace euclidien,  $f \in \mathscr{L}(E)$  telle que  $\forall (x,y) \in E^2 : < f(x), y> = - < x, f(y)>$  et  $s=f \circ f$ .

1. Montrer que  $Ker(f) \perp Im(f)$ .

Montron one Sn(a)	= ID> C-(-) -15-i 12	1.1			
Montrer que $Sp(s)$	$\mathbb{R}^+$ où $\mathrm{Sp}(s)$ désigne l'er	isemble des valeurs	propres réelles de	) S.	
·					