Prof. Erickson R. Nascimento
erickson@dcc.ufmg.br
LIGHT SOURCES

DECC
DEPARTAMENTO DE
CIÊNCIA DA COMPUTAÇÃO

U F TO G

Light sources

- For objects in a scene to be visible, some of them must emit light
- Light sources emit light, rather than scattering or absorbing

UFmG

Light sources types

- We will discuss three types:
- □ Directional Light
- Omin Light
- SpotLights

 $UF \underline{m}G$

Directional Light

- VERab
 Computer Vision and Robotics
- Light travels in a single direction that is the same throughout the scene
- □ Modeling distant light sources (e.g., sun)

 $UF\underline{m}G$

Directional Light

Computer Vision and Robotics

- $E = E_L \cos \theta_i$

Directional Light

- Remember that irradiance is additive.
- Total irradiance from multiple directional light sources is:

$$E = \sum_{i=1}^{n} E_{Lk} \cos \theta_{ik}$$

UF<u>m</u>G

Point Lights

VERab
Computer Vision and Robotics

- Point lights are defined by:
- $lue{}$ Position p_L
- $lue{}$ Intensity I_L
- \bullet $\emph{I}_\emph{L}$ can vary as a function of direction
- ullet When I_L is constant the point light is called **Omni Light**

U F <u>m</u> G

Irradiance Revisited

• Irradiance is defined as:

$$E = \frac{d\Phi}{dA}$$

floor where Φ is the radiance flux **arriving** at the point and dA the differential area surronding the point

UFmG

Irradiance Revisited

- \bullet Irradiance for a sphere that has radius r is equals
- ullet Total area of a sphere: $4\pi r^2$

$$E = \frac{\Phi}{4\pi r^2}$$

□ The amount of energy received from a light falls off with the squared distance from the light

UFmG

Point Lights

ullet Shading equations compute the irradiance contribution of the light E_L as

$$\Box E_L = \frac{I_L}{r^2}$$

UFmG

Point Lights

• Despite E_L decreasing proportionally to $\frac{1}{r^2}$ is physically correct, it is often preferable **distance falloff functions**

$$\square E_L = I_L f_{dist}(r)$$

• OpenGL fixed-function:

$$\Box f_{dist}(r) = \frac{1}{s_c + s_l r + s_q r^2}$$

UFmG

Point Lights

VERab
Computer Vision and Robotics

- Distance falloff functions
- □ More control for lighting scene
- Square function never reaches zero (better performance for functions that reaches zero)
- Square function gets arbitrarily large values close to the light source

UFmG

Spotlights

• Spotlights emit light in a cone of directions from their position

UF<u>m</u>G

Spotlights

- They are defined by (OpenGL fixed-fuction):
- □ Falloff start: θ_s
- ullet Umbra angle: $heta_u$ (A area) $igotimes_u^{oldsymbol{\mathsf{L}}}$
- □ s is the direction of the Spotlight
- □ *l* is the direction to the surface

UF<u>m</u>G

Spotlights

$$I_L(\theta_S) = \begin{cases} I_{L_{max}} (\cos \theta_S)^e, \theta_S \leq \theta_u \\ 0, \theta_S > \theta_u \end{cases}$$

- $lue{}$ $\theta_{\scriptscriptstyle S}$ is the angle between vector $m{s}$ and vector $-m{l}$
- $lue{}$ The tightness of the spotlight is controlled by exponent e

UFmG

