Microprocessors & Interfacing

Analog Input/Output (I)

Lecturer: Annie Guo

Lecture Overview

- Analog output
 - PWM

PWM Analog Output

脉冲宽度调制

- PWM (Pulse Width Modulation) is a way of digitally encoding analog signal levels.
 - By using high-resolution counters, the duty cycle (pulse width/period) of a pulse wave is modulated to encode a specific analog signal level.
- PWM is a powerful technique for controlling analog circuits/devices with the processor's digital output.
- It is used in a wide variety of applications
 - E.g. motor speed control

PWM Analog Output (cont.)

- The PWM signal is still digital
 - Its value is either full high or full low.
- A low-pass filter is required to smooth the input signal and eliminate the inherent noise components in PWM signal.
- The output voltage is directly proportional to the pulse width.
 - By changing the pulse width of the PWM waveform, we can control the output value.

PWM Signal Examples

PWM Generation in AVR

PWM can be obtained through the provided timers.

Recall: Example 1 (Mon. Week 7)

- Implement a scheduler that can execute a task every one second.
 - Can be realized with
 - software design,
 - Software generates the delay
 - » With nop instructions
 - » With other tasks of known execution time
 - hardware design
 - Used here and solution is given in the next slides

Recall: Example 1 Solution

- Use 8-bit Timer0 to "count" the time
 - Let's set Timer0 prescaler to /64 (i.e. the system frequency is divided by 64)
 - The full counting duration (time-out) for the setting should be
 - 256x(clock period) = 256x64/(16 MHz)
 - = 1024 us
 - » Namely, we can set the Timer0 overflow interrupt that is to occur every 1024 us.
 - » Note, clock period = 1/16 MHz (obtained from the data sheet); the 8-bit counter can count 256 clock cycles.
 - For one second, there are
 - 1000000/1024 = ~ 1000 interrupts

Recall: Timer0

Configuration for PWM

• TCCR0A/B

Bit	7	6	5	4	3	2	1	0	
0x24 (0x44)	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	TCCR0A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
0x25 (0x45)	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Mode	WGM2	WGM1	WGMO	Timer/Counter Mode of Operation TOF		Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	TOP	воттом
2	0	1	0	CTC	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	TOP	MAX
4	1	0	0	Reserved	-	_	_
5	1	0	1	PWM, Phase Correct OCRA		TOP	воттом
6	1	1	0	Reserved	_	_	_
7	1	1	1	Fast PWM OCRA		воттом	TOP

Configuration for PWM (cont.)

TCCR0A/B

Phase Correct PWM

Bit	7	6	5	4	3	2	1	0	
0x24 (0x44)	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	TCCR0A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Bit	7	6	5	4	3	2	1	0	_
0x25 (0x45)	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Table 16-4. Compare Output Mode, Phase Correct PWM Mode⁽¹⁾

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected
0	1	WGM02 = 0: Normal Port Operation, OC0A Disconnected WGM02 = 1: Toggle OC0A on Compare Match
1	0	Clear OC0A on Compare Match when up-counting. Set OC0A on Compare Match when down-counting
1	1	Set OC0A on Compare Match when up-counting. Clear OC0A on Compare Match when down-counting

Configuration for PWM (cont.)

TCCR0A/B

Fast PWM

Bit	7	6	5	4	3	2	1	0	
0x24 (0x44)	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	TCCR0A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
0x25 (0x45)	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Table 16-3. Compare Output Mode, Fast PWM Mode⁽¹⁾

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected
0	1	WGM02 = 0: Normal Port Operation, OC0A Disconnected WGM02 = 1: Toggle OC0A on Compare Match
1	0	Clear OC0A on Compare Match, set OC0A at BOTTOM (non-inverting mode)
1	1	Set OC0A on Compare Match, clear OC0A at BOTTOM (inverting mode)

Phase Correct PWM

Fast PWM

CTC*

Clear Timer on Compare Match

Example

Generate a PWM waveform.

Example (solution)

- Use Timer5
 - Set OC5A as output
 - Set the Timer5 operation mode as Phase Correct
 PWM mode
 - Set the timer clock

16-bit Timer Block Diagram*

Example Code

```
.include "m2560def.inc"
.def temp=r16
        ldi temp, 0b00001000
        sts DDRL, temp
                                  ; Bit 3 will function as OC5A.
        clr temp
                                  ; the value controls the PWM duty cycle
        sts OCR5AH, temp
        ldi temp, 0x4A
        sts OCR5AL, temp
                                  ; Set Timer5 to Phase Correct PWM mode.
        Idi temp, (1 << CS50)
                                  ; Set Timer clock frequency
        sts TCCR5B, temp.
        ldi temp, (1<< WGM50)|(1<<COM5A1)</pre>
        sts TCCR5A, temp
        rjmp end
end:
```

Exercise

 The motor on the lab board is a DC motor that is driven by an input signal. The higher the input voltage, the faster the motor spins. How to use the PWM signal generated from the code shown in the previous slide to drive the motor?