天准大学

计算机系统课程实验

选择题目: 第五章实验

学生姓名	王雨朦	
学生学号	2016229082	
学院名称	国际工程师学院	
专业	计算机	
时间	2017/10/5	

目录

一、	实验统	条件	1
_,	大实际	<u> </u> 人 <u> </u>	1
	实验一:	存储器山	1
	A.	实验描述	1
	B.	实验结果	2
	C.	实验分析	2
	实验二:	图像增强中用均方误差的计算来测试空间局部性	3
	A.	实验描述	3
	B.	实验数据	3
	C.	实验结果	3
	D.	实验分析	4
	实验三:	分块矩阵相乘	4
	A.	实验描述	4
	B.	实验数据	4
	C.	实验结果	4
	D.	实验分析	6
	实验四:	矩阵转置	6
	A.	实验描述	6
	B.	实验数据	6
	C.	实验结果	6
	D.	实验分析	7
三、	小实验	<u> </u> <u> </u>	7
	6.7 题		7
	A. 数技	居	7
	B.	画图	7
	C.	分析:	8
	6.8 题		8
	A.	数据	8
	B.	画图	8
	C.	分析	9
四、	作业.		9
	6.37 题		9
	6.41 题		9

一、 实验条件

机器型号	Acer Aspire E1-471G		
内存大小	10GB		
系统类型	64 位操作系统		
SSD	Sumsung 256GB		
CPU	Intel® Core™ i5-3210M CPU @2.50GHz 2.50GHz		
	L1 2*32KB, 8路		
高速缓存	L2 2*256KB, 8 路		
	L3 3.0MB, 12 路		
操作系统	Windows 7 旗舰版 64 位		

二、大实验

实验一: 存储器山

A. 实验描述

实验运行在 linux 系统下, python 实现高速缓存性能测试和存储器山的画图。

B. 实验结果

C. 实验分析

存储器山的三维如上图所示,能看到如图所示三条山脊,由山坡的由高到低分别对应于 L1 高速缓存、L2 高速缓存和 L3 高速缓存。

坐标轴中 working set size 指工作集的大小, stride 是访问数据的步长, stride 为 1, 就是按顺序访问数据, 为 2 就是间隔一个访问, 这和数据的局部性有关。 Throughput, 即吞吐量是指存储器的访问速度, 这个值越高越好。

通过看 working set size,可以发现,橙色和黄绿色的边界大概是 32K,黄绿

色和和蓝色的边界大概是 256K, 蓝色的边界大概是 3M, 这正好是三级 cache 的大小。

从 stride 来看,步长越长,速度越慢。大步长的访问方法会破坏时间局部性, 因此会造成访问速度下降。

存储器山很好的体现了时间局部性和空间局部性。

固定步长不变,可以明显看到,当工作集尺寸不大于 32K 时,读速率最高。 当工作集尺寸介于 32K 与 256K 之间时,读速率明显降低。当工作集尺寸大于 256K 低于 3M 时,读速率再次降低。这是由于工作集的尺寸决定了由哪一层存储器来提供待读取的数据。

实验二: 图像增强中用均方误差的计算来测试空间局部性

A. 实验描述

此实验中以指针二维数组模拟图像,进行图像增强中均方误差的计算,改变两重循环中的变量顺序,来测试空间局部性的差异。

B. 实验数据

M==N	Time (ij)	Time(ji)
512	0.002	0.003
1024	0.008	0. 023
2048	0. 038	0. 187
4096	0. 145	0. 635

C. 实验结果

D. 实验分析

如图中,矩阵的存储是先行后列,所以先按照行顺序访问数组的循环相对于 先按照列访问矩阵的要快很多。

实验三: 分块矩阵相乘

A. 实验描述

实验中的变量有 N 和 B 两个,随着 N 的增大,即矩阵的大小增大,矩阵相乘运行的时间一定是增加了;而当 N 一定时,随着分块 B 的增大,矩阵相乘的运行时间先是逐渐减少,随后又逐渐增加。因为分块越接近缓存大小,性能越好,所以曲线中有个相对的最低点。

B. 实验数据

N*N B	10	20	25	50	100	250	500
500*500	0. 904	0.828	0. 748	0. 786	0. 951	0. 998	1. 136
1000*1000	5. 787	5. 395	5. 362	5. 532	5. 83	6. 289	8. 179
1500*1500	19. 41	17. 544	17. 354	17. 634	18. 741	21. 313	33. 445

C. 实验结果

如下图,为不同大小的矩阵,在分块不同的情况下的运行时间的曲线图:

由上图, 三种 N 不同的情况绘制在一个大图里看起来较模糊, 因为时间差很大, 这样蓝色和绿色曲线的变化就不能够明显的展示出来。故而又将每个 N 一定, B 变化的情况下, 分开画图, 如下:

D. 实验分析

此题考察的时间局部性,由于对矩阵进行了分块,那么读的时候,装入的是一整个块,而不是一个矩阵,因而命中率会提高。而分块大小和缓存大小相对合适时,执行时间最小,由此题的实验中,上图所得,最合适的分块大小应为 B=25 附近,因为三个大小的矩阵都显示得到当 B 为 25 时,执行时间最小,程序性能最好。

实验四:矩阵转置

A. 实验描述

此次实验针对灰度图进行转置,当进行转置算法时,有按照原始图先行后列和按照结果图先行后列两种算法。本实验针对两种方法进行实验。

B. 实验数据

图片大小	Time(按原始图)/s	Time(按结果图)/s
1024*768	0.006	0.003
2048*1096	0.015	0.013
2560*1920	0.065	0. 032
3000*2000	0.047	0.043
4000*3000	0. 123	0.099

C. 实验结果

D. 实验分析

实验结果都是后一种比较快一些,即按照结果图先行后列访问比较快。

原因猜想是因为按照结果图先行后列,即按照原始图先列后行进行访问,而 这些图片都是原始图的列比行少,所以不命中的情况少。于是改变了一下实验数 据中的行和列,让行数少于列数,但是发现依然是后一种情况所需时间短。这说 明猜想错误。

经过查资料,和同学交流。觉得应该是读的不命中和写不命中的时间不同,对于第二种情况,是读数据的时候不命中,而读数据不命中的时间明显短。第一种写不命中耗时长。

三、 小实验

6.7 题

A. 数据

N	time/s
10	0
50	0.009
100	0.084
250	1. 782
300	4. 11
400	13. 371
500	27. 608

B. 画图

C. 分析:

题中考察的是空间局部性,即应该按照矩阵的行列顺序依次访问的时候,命中率最高。而此题中将 N 依次增大,看到随着 N 增大,程序访问时间是呈指数增长的。

6.8 题

A. 数据

N	time/s		
	clear1	clear2	clear3
10	0	0	0
100	0	0	0
1000	0	0	0
10000	0	0	0
100000	0.002	0.001	0.002
1000000	0.026	0.014	0.028
10000000	0. 255	0. 148	0. 291

B. 画图

C. 分析

Clear2 函数是按照先行后列访问,因此时间最短,由图中蓝色曲线可以看到; Clear3 函数是按照先列后行访问,因此时间最久,由绿色曲线所示; Clear1 函数 虽然按照先行后列,但是列在每行的情况下访问了两次,因而时间比单纯的先行 后列要慢一些,不过还是比先列后行快一些。

四、作业

6.37 题

函数	N=64	N=60
SumA	0.25	0.25
SumB	1	0.25
sumC	0.5	0.25

由于整型 int 占 4 个字节, 块大小为 16 字节, 一个块可以放四个整型。 高速缓存有 4KB, 4K/16=256, 高速缓存有 256 块可以直接映射。

N=64 时, sumA 为行优先访问,每块中第一个元素不命中,因此不命中率为0.25; SumB 列优先访问时,每行 64 个数据,需要 64/4=16 个块来进行保存,所以高速缓存的 256 块可以存 256/16=16 行,前 16 行按照列访问,每次都不命中,到第 17 次以后,每次会产生覆盖,因此不命中率为 1; sumC 按照先列后行和先行后列相结合进行访问,每次访问的第一个元素都不命中,第二个元素都会命中,所以不命中率是 0.5。

N=60 时, sumA 情况和以上相同; sumB 时,每行 60 个数据,需要 60/4=15 个块来进行保存,比之前少一个块,这样会导致错位,所以不会产生覆盖,只有第一个不会命中,后面三个命中,不命中率 0.25; sumC 情况相同,不命中率 0.25。

6.41 题

每行 4 个字节, 而 char 为一个字节, 循环时, 第一个不命中, 后三个命中, 所以不命中率为 0.25。