Quark Model

Outline

Hadrons

Isospin, Strangeness

Quark Model

3 Flavours u, d, s

Mesons

Pseudoscalar and vector mesons

Baryons

Decuplet, octet

Hadron Masses

Spin-spin coupling

Heavy Quarks

Charm, bottom, Heavy quark Mesons

Top quark

Hadrons known in 1960

3.6	/3.r.\	*PC		
Mesons	$\langle Mass \rangle$	$ m J^{PC}$	1	S
π^-,π^0,π^+	138.0	0-+	1	0
K^{0}, K^{+}	495.7	0-	1/2	+1
$K^-, \overline{\mathrm{K}}^0$				-1
η	547.3	0-+	0	0
ρ^-,ρ^0,ρ^+	770.0	1	1	0
ω	781.9	1	0	0
$K^{\star 0}, K^{\star +}$	893.7	1-	1/2	+1
$K^{\star-}, \overline{\mathrm{K}}^{\star 0}$				-1
η'	957.8	0-+	0	0
ϕ	1019.5	1	0	0

Baryons	(Mass)	$ m J^{P}$	I	S
p, n	938.9	$1/2^{+}$	1/2	0
Λ	1116	$1/2^{+}$	0	-1
$\Sigma^-, \Sigma^0, \Sigma^+$	1193	$1/2^{+}$	1	-1
$\Delta^-, \Delta^0, \Delta^+, \Delta^{++}$	1232	$3/2^{+}$	3/2	0
Ξ^-,Ξ^0	1318	$1/2^{+}$	1/2	-2
$\Sigma^{\star-}, \Sigma^{\star 0}, \Sigma^{\star+}$	1385	$3/2^{+}$	1	-1
Ξ*⁻, Ξ*0	1533	$3/2^{+}$	1/2	-2

Motivation for Quark Model

Particle "Zoo" proliferates

" ... the finder of a new particle used to be rewarded by a Nobel prize, but such a discovery ought to be punished by a \$10000 fine" Lamb, 1955

Isospin

Nucleons

Proton and neutron have almost equal mass Strong nuclear force is charge independent

$$V_{pp} \approx V_{pn} \approx V_{nn}$$

Isospin

p and n form part of single entity with isospin $\frac{1}{2}$ analogous to \uparrow and \downarrow of spin $\frac{1}{2}$ Isospin I is conserved in strong interactions Addition by rules of angular momentum

Isospin Multiplets

Useful for classification of hadrons, see slide 1 2I+1 states in a isospin muliplet $|I, I_3\rangle$

$$\eta = |0,0\rangle$$

$$p = \left|\frac{1}{2}, \frac{1}{2}\right\rangle \qquad n = \left|\frac{1}{2}, -\frac{1}{2}\right\rangle$$

$$\pi^{+} = |1,1\rangle \qquad \pi^{0} = |1,0\rangle \qquad \pi^{-} = |1,-1\rangle$$

$$\Delta^{++} = \left|\frac{3}{2}, \frac{3}{2}\right\rangle \qquad \Delta^{+} = \left|\frac{3}{2}, \frac{1}{2}\right\rangle \qquad \Delta^{0} = \left|\frac{3}{2}, -\frac{1}{2}\right\rangle \qquad \Delta^{-} = \left|\frac{3}{2}, -\frac{3}{2}\right\rangle$$

Quark Model

Gives natural explanation for Isospin

$$I_3 = \frac{1}{2} (n_u - n_d + n_{\overline{d}} - n_{\overline{u}})$$
 n_i number of i quarks

Isospin works well

Masses of u and d quark are almost equal

Isospin Conservation

Conservation Law

Isospin I is conserved in strong interactions Allows to calculate ratios of cross sections and branching fractions in strong interactions

Delta(1232) Resonance

Cross sections

 $\sigma \propto |M|^2$ In agreement with I=3/2 Isospin prediction $\sigma(\pi^- p \to \Delta^0 \to \pi^- p) \approx 23 \text{ mb} \approx 1 \text{ x}$

Production

$$\pi^{+} p \to \Delta^{++} \to \pi^{+} p$$

$$\pi^{-} p \to \Delta^{0} \to \pi^{-} p$$

$$\pi^{-} p \to \Delta^{0} \to \pi^{0} n$$

Isospin addition

$$\pi^+ p: |1,1\rangle |\frac{1}{2},\frac{1}{2}\rangle = |\frac{3}{2},\frac{3}{2}\rangle$$

$$\pi^- p: |1,-1\rangle |\frac{1}{2},\frac{1}{2}\rangle = \sqrt{\frac{1}{3}} |\frac{3}{2},-\frac{1}{2}\rangle - \sqrt{\frac{2}{3}} |\frac{1}{2},-\frac{1}{2}\rangle$$

$$\pi^0 n: |1,0\rangle|\frac{1}{2},-\frac{1}{2}\rangle = \sqrt{\frac{2}{3}}|\frac{3}{2},-\frac{1}{2}\rangle + \sqrt{\frac{1}{3}}|\frac{1}{2},-\frac{1}{2}\rangle$$

Matrix element $M_3 = \langle \frac{3}{2} | H_3 | \frac{3}{2} \rangle$

$$M_3 = \langle \frac{3}{2} | H_3 | \frac{3}{2} \rangle$$

depends on I, not I_3 $M_1 = \langle \frac{1}{2} | H_1 | \frac{1}{2} \rangle$

$$M(\pi^+ p \to \Delta^{++} \to \pi^+ p) = M_3$$

$$M(\pi^- p \to \Delta^0 \to \pi^- p) = \frac{1}{3} M_3 + \frac{2}{3} M_1$$

$$M(\pi^- p \rightarrow \Delta^0 \rightarrow \pi^0 n) = \frac{\sqrt{2}}{3} M_3 - \frac{\sqrt{2}}{3} M_1$$

$$\sigma(\pi^+ p \to \Delta^{++} \to \pi^+ p) \approx 200 \,\mathrm{mb} \approx 9 \mathrm{x}$$

$$\sigma(\pi^- p \to \Delta^0 \to \text{all}) \approx 70 \,\text{mb} \approx 3x$$

$$\sigma(\pi^- p \to \Delta^0 \to \pi^- p) \approx 23 \,\mathrm{mb} \approx 1 \,\mathrm{x}$$

Strangeness

Strange Particles

Discovered in 1947 V, "fork", and K, "kink"

Rochester and Butler

Production of $V(K^0, \Lambda)$ and K^\pm via strong interaction, weak decay

$$\pi^{-}p \to K^{0}\Lambda \quad \tau = O(10^{-23} s)$$
 $K^{0} \to \pi^{+}\pi^{-} \quad \tau_{K^{0}} = 0.89 \times 10^{-10} s$
 $\Lambda \to \pi^{-}p \quad \tau_{\Lambda} = 2.63 \times 10^{-10} s$

Associated Production

Strange particles produced in pairs

Pais

Strangeness S

Additive quantum number Gell-Mann Nishijima
Conserved in strong and electromagnetic interactions
Violated in weak decays

Non-zero for Kaons S=0: $\pi, p, n, \Delta, ...$ S=1: K^+, K^0

and hyperons $S=-1: K^-, \overline{K}^0, \Lambda, \Sigma, ...$ $S=-2: \Xi$

Naturally explained in quark model $S = n_{\bar{s}} - n_{\bar{s}}$

Quark Model

3 Quark Flavours u, d, s

1964 - introduced by Gell-Mann & Zweig

Quark	Charge Q[e]	Isospin I, I ₃ >	Strange- ness S
up (u)	+2/3	$\left \frac{1}{2},+\frac{1}{2}\right>$	0
down (d)	-1/3	$\left \frac{1}{2}, -\frac{1}{2}\right>$	0
strange (s)	-1/3	0,0>	-1

Gell-Mann

Zweig

Charge, Isospin and Strangeness

Additive quark quantum numbers are related

 $Q = I_3 + \frac{1}{2}(S + B)$ not all independent

Gell-Mann Nishijima predates quark model

valid also for hadrons

Baryon number B quarks B = +1/3anti-quarks B = -1/3

Hypercharge Y = S + B is useful quantum number Quark model gives natural explanation for Isospin and Strangeness

Mesons

Bound $q\overline{q}$ States

Zero net colour charge Zero net baryon number $|\psi\rangle = \frac{1}{\sqrt{3}} |r\bar{r} + g\bar{g} + b\bar{b}\rangle$ B = +1/3 + (-1/3) = 0

Angular Momentum L

For lightest mesons Ground state

L = 0 between quarks

Parity P

Intrinsic quantum number of quarks and leptons

P=+1 for fermions P=-1 for anti-fermions

 $P(q\overline{q}) = P_{a}P_{\overline{q}}(-1)^{L}$

$$=(+1)(-1)(-1)^{L}=-1$$
 for $L=0$

Total Angular Momentum \vec{J}

 $\vec{J} = \vec{L} + \overline{S}$ include quark spins

 $q\overline{q}$ spins anti-aligned $\uparrow\downarrow$ or $\downarrow\uparrow$ S = 0

 \rightarrow J^P = 0- Pseudo-scalar mesons

S = 1 $q\bar{q}$ spins aligned $\uparrow \uparrow$ or $\downarrow \downarrow$

 \rightarrow J^P = 1- Vector mesons

Quark flavours

 $u\overline{d}, u\overline{s}, d\overline{u}, d\overline{s}, s\overline{u}, s\overline{d}$ non-zero flavour states zero net flavour states $u\overline{u}, d\overline{d}, s\overline{s}$

have identical additive quantum numbers Physical states are mixtures

Mesons

Pseudoscalar Mesons $J^P = 0^-$

Kaons:

K+, K0, anti-K0, K-

Pions: π^+ , π^0 , π^-

Etas: η , η'

 $\pi^0 = (d\bar{d} - u\bar{u})/\sqrt{2}$

 $\eta_8 = (d\bar{d} + u\bar{u} - 2s\bar{s})/\sqrt{6}$

 $\eta_1 = (d\bar{d} + u\bar{u} + s\bar{s})/\sqrt{3}$

Vector Mesons $J^P = 1^-$

Kstar:

K*+, K*0, anti-K*0, K*-

rho: ρ^+ , ρ^0 , ρ^-

omega/phi: ω , ϕ

$$\rho^{0} = (d\bar{d} - u\bar{u})/\sqrt{2}$$

$$\omega = (d\bar{d} + u\bar{u})/\sqrt{2}$$

 $\phi = -s\bar{s}$

Baryon Decuplet

Baryon Wavefunction

 $\Psi(\text{total}) = \Psi(\text{space}) \Psi(\text{spin}) \Psi(\text{flavour}) \Psi(\text{colour})$

Space symmetric - L = 0

Flavour symmetric, e.g. uuu, (udu+duu+uud)/ $\sqrt{3}$

Spin symmetric

all 3 quarks aligned \rightarrow 5 = 3/2

Colour antisymmetric

 $(rgb - rbg + gbr - grb + brg - bgr)/\sqrt{6}$.

Total antisymmetric - obeys Pauli Exclusion Principle

Baryon Decuplet $J^P = 3/2^+$

Quark model predicted unobserved state Ω^{-} (sss)

Baryon Octet

Baryon Wavefunction

 $\Psi(\text{space})$ symmetric (L = 0) $\Psi(\text{colour})$ antisymmetric Mixed symmetric $\Psi(\text{spin}, \text{flavour})$

Flavour mixed symmetric: e.g. (ud - du) $u/\sqrt{2}$

Spin as flavour: e.g. $(\uparrow \downarrow - \uparrow \downarrow) \uparrow / \sqrt{2}$

Spin-flavour e.g. $(u\uparrow d\downarrow - d\uparrow u\downarrow - u\downarrow d\uparrow + d\downarrow u\uparrow) u\uparrow/\sqrt{6}$

Symmetrisation by cyclic permutations

 $\Psi(\text{proton}, s=+\frac{1}{2}) = (2u\uparrow u\uparrow d\downarrow - u\uparrow u\downarrow d\uparrow - u\downarrow u\uparrow d\uparrow$

 $+2d\downarrow u\uparrow u\uparrow - d\uparrow u\uparrow u\downarrow - d\uparrow u\downarrow u\uparrow$

+2u \uparrow d \uparrow u \downarrow - u \uparrow d \downarrow u \uparrow - u \downarrow d \uparrow u \uparrow) / $\sqrt{18}$

Baryon Octet $J^p = \frac{1}{2}$

Lightest baryons stable or long-lived Antibaryons $(\bar{p}, \bar{n}, ...)$ also form Octet and Decuplet

Discovery of Ω -

Ω^- (sss) Hyperon

Hyperon - baryon with at least one s quark Quark model predicted existence and mass Missing member of baryon decuplet $J^P = 3/2^+$ discovered 1964 at Brookhaven

K- beam onto hydrogen target Bubble Chamber detector

$$K^- + p \rightarrow \Omega^- + K^- + K^0$$
 $\mapsto \Xi^0 + \pi^+$
 $\mapsto \Lambda^0 + \pi^0$
 $\mapsto \gamma + \gamma$
 $\mapsto e^+ e^ \mapsto \pi^- p$

Hadron Masses

Quark Masses

u, d & s quark masses light at short distance

$$q^2 > 1 \text{ GeV}^2$$
 $m_u < m_d \sim 5 \text{ MeV } m_s \sim 100 \text{ MeV}$

Constituent mass is relevant for quark model

$$q^2 < 1 \text{ GeV}^2$$
 $m_{H} = m_{d} \sim 300 \text{ MeV } m_{s} \sim 500 \text{ MeV}$

Meson Masses

$$m(K) > m(\pi)$$
 due to $m_s > m_u, m_d$

$$m(\rho) > m(\pi)$$
 same quark content e.g. ρ^+ , π^+ : (u-dbar)

Mass difference is due to quark spins

Chromomagnetic Mass Splitting

Spin-spin coupling of quarks $S_1 = S_2 = 1/2$

$$S_1 = S_2 = 1/2$$

analogous to hyperfine splitting in el. mag. interaction

$$\Delta E \propto \alpha_{\rm S} \frac{\vec{S}_1 \cdot \vec{S}_2}{m_1 m_2} \qquad m \left(q \overline{q} \right) = m_1 + m_2 + A \frac{\vec{S}_1 \cdot \vec{S}_2}{m_1 m_2}$$

$$\vec{S}_1 \cdot \vec{S}_2 = \frac{1}{2} \left(\vec{S}^2 - \vec{S}_1^2 - \vec{S}_2^2 \right) = \frac{1}{2} \left(S(S+1) - S_1(S_1+1) - S_2(S_2+1) \right)$$

$$S_{1} \cdot S_{2} = \frac{1}{2} (S^{2} - S_{1}^{2} - S_{2}^{2}) = \frac{1}{2} (S(S+1) - S_{1}^{2})$$

$$= \begin{cases} 1 - \frac{3}{4} = \frac{1}{4} & S = 1 \\ 0 - \frac{3}{4} = -\frac{3}{4} & S = 0 \end{cases}$$

Meson Masses

$$m_{11} = m_{d} = 310 \text{ MeV}$$

$$m_s = 483 \text{ MeV}$$

$$A = (2m_u)^2 \cdot 160 \text{ MeV}$$

Excellent agreement

What about eta(')?

	Mass [MeV]		
Meson	Prediction	Experiment	
π	140	138	
K	484	496	
ρ	780	770	
ω	780	782	
K*	896	894	
ф	1032	1019	

Nuclear and Particle Physics

Heavy Quarks

Charm and bottom quarks

Charmonium (c-cbar) --- see QCD lecture

1977 Discovery of Upsilon States

Interpretation is

Bottomonium (b-bar)

Spectroscopy

Charmonium and Upsilon ———

 $m_c \sim 1.1 \dots 1.4 \text{ GeV}$

 $m_b \sim 4.1 \dots 4.5 \ GeV$

Heavy-light Mesons and Baryons

Charmed (c-quark) hadrons

$$J^{P} = 0^{-}$$
 $D^{0} = c\overline{u}$, $D^{+} = c\overline{d}$, $D_{s}^{+} = c\overline{s}$,

$$J^{P} = 1^{-}$$
 $D^{*0} = c\overline{u}$, $D^{*+} = c\overline{d}$, $D^{*+} = c\overline{s}$,

$$J^P = \frac{1}{2}^- \quad \Lambda_c^+ = cud$$

Bottom-quark hadrons

$$J^P = 0^ B^+ = u\overline{b}$$
, $B^0 = d\overline{b}$, $B_s^0 = s\overline{b}$,

$$J^{P} = 1^{-} B^{*+} = u\overline{b}, \quad B^{*0} = d\overline{b}, \quad B_{s}^{*0} = s\overline{b},$$

$$J^P = \frac{1}{2}^- \quad \Lambda_b^0 = bud$$

Top quark

Decays before forming bound states

m₊ ~ 174 GeV discovered in 1995 at Fermilab