

Adversarial Domain Adaptation for Real-time Semantic Segmentation

Giulia D'Ascenzi, Patrizio de Girolamo, Carlos Rosero

Advanced Machine Learning 2021-2022

Introduction

Semantic Segmentation

Real - Time applications

Domain Adaptation

Real - Time Semantic Segmentation

Goal: Assign to each pixel of an input image a category label

Possible Applications: Autonomous vehicles, virtual reality, computer - aided diagnosis, etc..

Real - Time Semantic Segmentation

Requested characteristics:

- → Time efficient inference speed
- → Low memory and resources usage
- → Good segmentation performances

Not something we can get with the standard semantic - segmentation models

Lots of parameters and Floating Point Operations (FLOP)

Real - Time Semantic Segmentation

Additional drawback: Semantic Segmentation models need to be trained on a large amount of densely labeled images.

It requires a large amount of human effort (time and money).

Exploiting synthetic dataset

Idea: Train the networks on large photo - realistic synthetic datasets with computer - generated annotations.

Domain Shift

GTA5 (Source)

Cityscapes (Target)

Domain Shift

GTA5 (Source)

Cityscapes (Target)

1. Real- Time semantic Segmentation Network: BiSeNet [3]. Upper bound with target only.

2. Adversarial Domain Adaptation Module [4]

Image to Image translation (a)

3. Increasing the performances: FDA [5]

Method

Semantic Segmentation

Network used: BiSeNet [3] (backbone Resnet-18 pretrained on ImageNet)

Capture semantics

Context path

Preserve spatial details

Spatial path

(Without) Domain adaptation

Goal: Transfer the knowledge obtained from the source finely annotated dataset to the target and unlabelled dataset

First try: Training BiSeNet using only GTA and then testing it on Cityscapes

Ground Truth:

Output without DA:

Domain adaptation

Better Idea: Reducing the domain shift between source and target dataset using Unsupervised Adversarial Domain Adaptation

Unsupervised adversarial domain adaptation

Method: Min-Max game between the **generator** and the **discriminator**

Generator training:
$$\mathcal{L}\left(X_{s},X_{t}\right)=\mathcal{L}_{seg}\left(X_{s}\right)+\lambda_{adv}\mathcal{L}_{adv}\left(X_{t}\right)$$

Where:
$$\mathcal{L}_{seg}\left(I_{s}\right) = -\sum_{h,w} \sum_{c \in C} Y_{s}^{(h,w,c)} \log \left(P_{s}^{(h,w,c)}\right)$$

$$\mathcal{L}_{adv}\left(I_{t}\right) = -\sum_{h,w} \log \left(\mathbf{D}\left(P_{t}\right)^{(h,w,1)}\right)$$

Discriminator Training:
$$\mathcal{L}_d(P) = -\sum_{h,w} (1-z) \log \left(\mathbf{D}(P)^{(h,w,0)} \right) + z \log \left(\mathbf{D}(P)^{(h,w,1)} \right)$$

Discriminators

Different types of convolution

2D convolutions

VS

Depth-wise separable convolutions

Increasing Performance: FDA

FDA β Ablation Study

Source (GTA)

B = 0.01

B = 0.05

Target (Cityscapes)

B = 0.10

Image to Image translation (a)

Results

Results - Upper Bound / Augmentation

Augmentation	Accuracy(%)	mIoU(%)	
None	79.3	47.3	
Blur	79.1	47.0	
Horizontal Flipping	79.8	49.7	
Horizontal Flipping and Blur	79.7	49.9	

Results

Method	mIoU %	
Target only	49.9	
No domain adaptation	13.4	
Fully Conv	24.2	
LW Conv	24.4	
LW Conv, FDA ($\beta=0.01$)	27.0	
LW Conv , FDA ($\beta=0.05$)	26.6	
LW Conv, FDA ($\beta=0.10$)	27.4	
LW Conv , FDA ($\beta=0.10$, no blur)	26.9	

Results - Analysis

Results - Analysis

Method	Sign	Rider	Train	Bicycle	mIoU %
Target only	45.9	30.2	25.9	53.3	49.9
No domain adaptation	0.0	0.0	0.0	0.0	13.4
Fully Conv	0.1	0.1	0.0	0.0	24.2
LW Conv	0.2	1.0	0.0	0.0	24.4
LW Conv, FDA ($\beta=0.01$)	1.4	1.4	0.0	0.0	27.0
LW Conv , FDA ($\beta=0.05)$	0.6	8.2	0.0	0.0	26.6
LW Conv, FDA ($\beta=0.10$)	1.4	3.5	0.0	0.0	27.4
LW Conv , FDA ($\beta=0.10,$ no blur)	1.3	4.5	0.0	0.0	26.9

Conclusion

Semantic Segmentation

Real-Time Applications

Fourier Transform

Narrower Domain Gap

Any Questions?

Appendix

Visual Comparison of Results

