

King Mongkut's University of Technology Thonburi Final Examination

Semester 1 -- Academic Year 2015

Subject: EIE 210 Electronic Devices and Circuit Design I

For: Electrical Communication and Electronic Engineering, 2nd Yr (Inter. Program)

Exam Date: Friday November 27, 2015 Time: 13.00-16.00 pm.

Instructions:-

- 1. This exam consists of 5 problems with a total of 9 pages, including the cover.
- 2. This exam is closed books.
- 3. You are not allowed to use any written A4 note for this exam.
- 4. Answer each problem on the exam itself.
- 5. A calculator compiling with the university rule is allowed.
- 6. A dictionary is not allowed.
- 7. Do not bring any exam papers and answer sheets outside the exam room.
- 8. Open Minds ... No Cheating! GOOD LUCK!!!

Remarks:-

- Raise your hand when you finish the exam to ask for a permission to leave the exam room.
- Students who fail to follow the exam instruction might eventually result in a failure of the class or may receive the highest punishment with university rules.
- Carefully read the entire exam before you start to solve problems. Before jumping
 into the mathematics, think about what the question is asking. Investing a few minutes
 of thought may allow you to avoid twenty minutes of needless calculation!

Exam No.	1	2	3	4	5	6	7	8	TOTAL
Full Score	<u>10</u>	<u>10</u>	<u>20</u>	20	<u>20</u>				<u>80</u>
Graded Score									

Name	 		S	tudent ID	

This examination is designed by

Asst. Prof. Kamon Jirasereeamornkul. Ph.D, & Prof. Peter Zeller. Ph.D.; Tel: 9067.

This examination has been approved by the committees of the ENE department.

(Assoc. Prof. Rardchawadee Silapunt, Ph.D.)

Head of Electronic and Telecommunication Engineering Department

1

Part I:

1. From the Fixed bias circuit, determine $I_{BQ},\,I_{CQ}$ and $V_{CEQ\cdot}(10\mbox{ marks})$

3

2. Consider the following circuit, determine $V_{DQ}\, \text{and}\,\, I_{DQ}.$ (10 marks)

3. From the following amplifier circuit, determine R_1 and R_2 that give $V_{CEQ} = 8$ V and $Z_i = 10$ kOhm. Also, find the A_V by using r_e model. (20 marks)

Part II:

4. Given multiple amplifier stage: (β = 100, silicon transistors) (20 marks)

4.1 Name the type and explain the function of the transistors stages Q1 / Q2:

Q3 / Q4

Q11/Q12

Q6 / Q5

Q7

Q8

4.2 Calculate the potentials

3:

Formula:

Value:

Value:

Name	Student ID	Seat #	7
<i>i₅</i> : Formula:			
Value:			
4.4 What will be the Will potential 13 inc.		if resistor R8 is increased?	
5. What type of curre 5.1 Type 1: Name:	ent mirror circuits do you k	now? (20 marks)	
Circuit and short des	scription of the function:		
5.2 Type 2: Name:			
Circuit and short des	scription of the function:		

Name	.Student ID	Seat #	8

5.3 Type 3: Name:

Circuit and short description of the function:

5.4 Prove, that the collector current of the first transistor is mirrored to the other transistor by applying the following equation (for a circuit of your choice):

$$V_{BE} = V_T \ln \left(\frac{I_C}{I_S} \right)$$

5.5 Derive for one of the circuits the influence of the forward current ratio β onto the value of the mirrored current.

Name	Student ID	Seat #	,
5.6 Why the transist	or pairs should be coupled th	ermally perfect?	

5.7 Should the desired output resistance of a constant current source high or low and why?