13/14(一)浙江工业大学高等数学 A 考试试卷 A

学院: 班级: 姓名:

题 号	_	Ш	四	五	总 分
得 分					

、填空选择题(每小题3分)

2. 设 $f(x) = \frac{1}{x} \sin \frac{\pi x}{6}$, 要使 f(x) 处处连续,则应该补充定义 $f(0) = \underline{\hspace{1cm}}$ 。

4. 设 $y = \frac{x^2 + 1}{\sqrt{x}}$,则 $y' = \underline{x}$ 。

5. 曲线 $v = x^3 + 2x^2 - 5$ 上的切线斜率最小的点是 。

7. 设 $\int_{1}^{x} f(t)dt = a^{2x} - a^{2}$, f(x) 为连续函数,则 $f(x) = _____$.

微分方程 $\frac{dy}{dx} = \frac{1}{x+y}$ 的通解是 ______。

9. 在微积分的众多公式中被认为最重要的一个是。

10. f(x) 在 $x = x_0$ 附近可导,且 $\lim_{x \to x_0} \frac{f'(x)}{x - x_0} = \frac{1}{2}$,则 $f(x_0)$ 是 f(x) 的(

C) 极小值

D) 不能确定

对于微分方程 $y''+3y'+2y=e^{-x}$,利用待定系数法求其特解 y*时,下面特解 设法正确的是(

A) $y^* = ae^{-x}$ B) $y^* = (ax + b)e^{-x}$ C) $y^* = axe^{-x}$ D) $y^* = ax^2e^{-x}$

二、试解下列各题(每小题5分)

1. $\[\frac{dy}{dx} (5y+2)^3 = (2x+1)^5, \] \[\frac{dy}{dx} \]$

2. 摆线的参数方程为 $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$, 求: $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

$$3. \int \frac{1}{1+\cos x} dx$$

解微分方程
$$2x(ye^{x^2}-1)dx+e^{x^2}dy=0$$
 , $y(0)=-4$

三、试解下列各题(每小题6分)

1. 当
$$0 < x_1 < x_2 < \frac{\pi}{2}$$
 时,证明不等式: $\frac{\tan x_2}{\tan x_1} > \frac{x_2}{x_1}$

2. 已知
$$\lim_{x \to +\infty} \left(\frac{x+c}{x-c} \right)^x = \int_{-\infty}^c t e^{2t} dt , 求常数 c$$

3. 设
$$f(x)$$
 为连续函数,证明 $\int_0^x \left(\int_0^t f(u) du \right) dt = \int_0^x (x-t) f(t) dt$

4. 计算曲线 $y = \sin x$ $(0 \le x \le \pi)$ 与 x 轴所围图形分别绕 x 轴旋转及绕 y 轴旋转一周所成立体的体积

设
$$F(x)$$
 是 $f(x)$ 的原函数, $F(1) = 1$, $F(x) > 0$, 且 $f(x) \cdot F(x) = \frac{1}{2} x e^x$ $(x \ge 1)$, 试求: $f(x)$ $(x \ge 1)$

四、(8 分) 设 $S_1(t)$ 是曲线 $y = x^3$ 与直线 x = 0 及 y = t (0 < t < 1) 所围的图形的面积, $S_2(t)$ 是曲线 $y = x^3$ 与直线 x = 1 及 y = t (0 < t < 1) 所围的图形的面积,试求 t 为何值时 $S_1(t) + S_2(t)$ 最小? 最小值是多少?

五、(4分) 设函数 f(x) 在 [a,b] 上可导, f(a)=f(b) ,证明: 至少有一点 $\xi(a<\xi< b)$,使 $f(\xi)+\xi f'(\xi)-f(a)=0$ 。