

Universidade Federal Fluminense Instituto de Ciências Exatas Departamento de Física

Método de Euler e Euler Centrado

Objetivo

Utilizar o método de Euler e Euler Centrado para resolver uma EDO de primeira ordem. Avaliar os critérios de convergência e comparar o resultado numérico com o exato.

O Problema

Escrever dois programas, um para o método de Euler e outro para o método de Euler Centrado, que resolvam a equação:

$$\frac{dx}{dt} = x$$

com a condição inicial x(0)=1. Compare o resultado numérico com a solução exata $x(t)=e^t$.

Roteiro

- 1) Usando dt=1 , faça o gráfico da solução exata e dos resultados numéricos no intervalo de tempo t=[0,10] .
- 2) Repita o passo 1) para $dt=10^{-1}$, 10^{-2} , 10^{-3} e 10^{-4} .
- 3) Faça um gráfico de Δx contra dt . Onde $\Delta x = x_{exato} x_{numerico}$ para o maior valor de t.
- 4) Repita os passos 1 e 2 para t = [0,1000]. Faça o gráfico de Δx contra t.

Análise

- 1) Qual dos dois métodos fornece o melhor resultado? Porquê?
- 2) Levando em conta o resultado dos dois primeiros passos do roteiro, qual a importância do dt numa solução numérica? O que melhoraria no seu resultado usar um dt menor?
- 3) Qual o comportamento do erro Δx em função do tempo? Há uma função analítica que descreva esse comportamento? Os dois métodos apresentam o mesmo comportamento?
- 4) Com base em tudo que você aprendeu, resolva a EDO:

$$\frac{dx}{dt} = a.x$$
 , $x(0) = 1$

apresente os resultados para a<1 e a>1 e justifique as suas escolhas na hora de implementar.