

Product Specification

NHD-0216K1Z-NSW-BBW-L

Character Liquid Crystal Display Module

NHD - Newhaven Display

0216 - 2 Lines x 16 Characters

K1Z - Model

N - Transmissive

SW - Side White LED Backlight

B - STN- Blue (-)

B - 6:00 Optimal View

W - Wide Temperature

L - Low Power

Table of Contents

Document Revision History	2
Mechanical Drawing	
Pin Description and Wiring Diagram	
Electrical Characteristics	
Optical Characteristics	5
Controller Information	5
Table of Commands	6
Timing Characteristics	7
Built-in Font Table	9
Example Initialization Program	10
Quality Information	12

Additional Resources

- > Support Forum: https://support.newhavendisplay.com/hc/en-us/community/topics
- ➤ **GitHub:** https://github.com/newhavendisplay
- **Example Code:** https://support.newhavendisplay.com/hc/en-us/categories/4409527834135-Example-Code/
- **Knowledge Center:** https://www.newhavendisplay.com/knowledge center.html
- ➤ Quality Center: https://www.newhavendisplay.com/quality center.html
- Precautions for using LCDs/LCMs: https://www.newhavendisplay.com/specs/precautions.pdf
- ➤ Warranty / Terms & Conditions: https://www.newhavendisplay.com/terms.html

Document Revision History

Revision	Date	Description	Changed By
0	10/5/2007	Initial Release	-
1	12/17/2009	User Guide Reformat	BE
2	1/7/2010	Optical revised	BE
3	1/6/2011	Alternate controller information updated	AK
4	4/5/2011	Improved Polarizer, Increased Backlight, Redesigned Module	JT
5	4/6/2011	Mechanical drawing updated	AK
6	4/8/2011	Electrical/Optical characteristics & Pin description updated	AK
7	12/22/2014	Electrical characteristics updated	PB
8	6/6/2016	Quality Information Updated and added Controller Timing	TM
9	3/28/2017	Mech. Drawing and Electrical characteristics updated	TM
10	3/24/2021	Updated backlight voltage range (Min and Max values)	JT
11	07/01/2022	Updated the Electrical Characteristics	JT

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for logic (+5.0V)
3	V0	Adj Power Supply	Power supply for contrast (approx. 1.3V)
4	RS	MPU	Register Select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
6	E	MPU	Operation Enable signal. Falling edge triggered.
7-10	DB0 – DB3	MPU	Four low order bi-directional three-state data bus lines.
			These four are not used during 4-bit operation.
11-14	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED+	Power Supply	Backlight Anode (+5.0V via on-board resistor)
16	LED-	Power Supply	Backlight Cathode (Ground)

Recommended LCD connector: 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	-	+80	°C
Supply Voltage	V_{DD}	-	4.5	5.0	5.5	V
Supply Current	I _{DD}	T _{OP} =25°C,	0.5	1.0	2.0	mA
Supply for LCD (contrast)	V _{IH}	V _{DD} =5.0V	3.6	3.7	3.8	V
"H" Level input	VIL	-	0.7*V _{DD}	-	V_{DD}	V
"L" Level input	Vон	-	Vss	-	0.6	V
"H" Level output	V _{OL}	-	3.9	-	V_{DD}	V
"L" Level output	Top	-	Vss	-	0.4	V
Backlight Supply Current	I _{LED}	V _{LED} =5.0V	10	32	40	mA
Backlight Supply Voltage	V_{LED}	-	4.9	5.0	5.1	V

Optical Characteristics

	Item			Condition	Min.	Тур.	Max.	Unit
Outimed	Тор		φΥ+		-	20	-	0
Optimal	Bott	tom	φΥ-	C= > 2	-	40	-	0
Viewing Angles	Left		θХ-	Cr ≥ 2	-	30	-	0
Aligies	Righ	nt	θХ+		-	30	-	٥
Contrast Rat	io		Cr	-	-	3	-	-
Dosmansa T	ina a	Rise	Tr	-	-	150	200	ms
Response T	ime	Fall	Tf	-	-	150	200	ms

Controller Information

Built-in ST7066U controller.

Please download specification at https://support.newhavendisplay.com/hc/en-us/articles/4414848155159-ST7066U

DDRAM Address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	01	02	03	04	05	06	07	80	09	0A	OB	0C	0D	0E	OF
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Table of Commands

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM Address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Sets cursor move direction and specifies display shift. These parameters are performed during data write and read.	37μs
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	D=1: Entire display on C=1: Cursor on B=1: Blinking cursor on	37µs
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Sets cursor moving and display shift control bit, and the direction without changing DDRAM data.	37µs
Function set	0	0	0	0	1	DL	N	F	-	ı	DL: Interface data is 8/4 bits N: Number of lines is 2/1 F: Font size is 5x11/5x8	37µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	37µs
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0s
Write data To Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	37µs
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	37µs

Timing Characteristics

Writing data from MPU to ST7066U

	Write Mode (Writing data from MPU to ST7066U)									
Tc	Enable Cycle Time Pin E		1200	•	ı	ns				
T _{PW}	Enable Pulse Width	Pin E	140	1	ı	ns				
T_R, T_F	Enable Rise/Fall Time	Pin E	1	1	25	ns				
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	•	•	ns				
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	•	ı	ns				
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40	•	ı	ns				
T _H	Data Hold Time	Pins: DB0 - DB7	10	1	•	ns				

Reading data from ST7066U to MPU

	Read Mode (Reading Data from ST7066U to MPU)									
T _C	Enable Cycle Time	Pin E	1200	•	-	ns				
T _{PW}	Enable Pulse Width	Pin E	140	•		ns				
T_R,T_F	Enable Rise/Fall Time	Pin E	•	•	25	ns				
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	•		ns				
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	•		ns				
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	-	•	100	ns				
T _H	Data Hold Time	Pins: DB0 - DB7	10	•	-	ns				

Built-in Font Table

67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(8)										•					
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(8)															
1110	(7)															
1111	(8)															

Example Initialization Program

```
8-bit Initialization:
void command(char i)
    P1 = i;
                              //put data on output Port
    D I = 0;
                             //\mathrm{D}/\mathrm{I=LOW} : send instruction
    RW=0;
                              //R/W=LOW : Write
    E = 1;
    Delay(1);
                              //enable pulse width >= 300ns
      E = 0;
                              //Clock enable: falling edge
void write(char i)
    P1 = i;
                             //put data on output Port
    D I = 1;
                             //D/I=HIGH : send data
    RW=0;
                             //R/W=LOW : Write
    E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
    E = 0;
                             //Clock enable: falling edge
/************************
void init()
    E = 0;
    Delay(100);
                             //Wait >40 msec after power is applied
    command(0x30);
                             //command 0x30 = Wake up
                             //must wait 5ms, busy flag not available
    Delay(30);
    command(0x30);
                             //command 0x30 = Wake up #2
    Delay(10);
                             //must wait 160us, busy flag not available
                             //command 0x30 = Wake up #3
    command(0x30);
                             //must wait 160us, busy flag not available
    Delay(10);
                             //Function set: 8-bit/2-line
    command (0x38);
                             //Set cursor
    command(0x10);
    command(0x0c);
                             //Display ON; Cursor ON
    command (0x06);
                             //Entry mode set
```



```
4-bit Initialization:
void command(char i)
    P1 = i;
                             //put data on output Port
    D I = 0;
                             //D/I=LOW : send instruction
    RW=0;
                             //R/W=LOW : Write
                             //Send lower 4 bits
    Nybble();
    i = i << 4;
                             //Shift over by 4 bits
    P1 = i;
                             //put data on output Port
    Nybble();
                             //Send upper 4 bits
void write(char i)
    P1 = i;
                             //put data on output Port
    D I = 1;
                             //D/I=HIGH : send data
    RW = 0;
                             //R/W=LOW : Write
                             //Clock lower 4 bits
    Nybble();
    i = i << 4;
                             //Shift over by 4 bits
    P1 = i;
                             //put data on output Port
    Nybble();
                             //Clock upper 4 bits
void Nybble()
    E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
    E = 0;
                             //Clock enable: falling edge
void init()
    P1 = 0;
    P3 = 0;
    Delay(100);
                             //Wait >40 msec after power is applied
    P1 = 0x30;
                             //put 0x30 on the output port
    Delay(30);
                             //must wait 5ms, busy flag not available
                             //command 0x30 = Wake up
    Nybble();
                             //must wait 160us, busy flag not available
    Delay(10);
    Nybble();
                             //command 0x30 = Wake up #2
                             //must wait 160us, busy flag not available
    Delay(10);
                             //command 0x30 = Wake up #3
    Nybble();
    Delay(10);
                             //can check busy flag now instead of delay
    P1 = 0x20;
                            //put 0x20 on the output port
                             //Function set: 4-bit interface
    Nybble();
                             //Function set: 4-bit/2-line
     command (0x28);
                             //Set cursor
    command (0x10);
    command (0x0F);
                             //Display ON; Blinking cursor
    command (0x06);
                             //Entry Mode set
  *****************
```


Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C , 200hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 200hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C , 200hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 200hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+60°C, 90% RH, 96hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	-20°C, 30min -> 25°C, 5min ->	
	(voltage & current) during a cycle of low	70°C, 30min = 1 cycle	
	and high thermal stress.	For 10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz, 1.5mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=±600V(contact),±800V(air),	
	discharge.	RS=330Ω, CS=150pF	
		10 times	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.