Algebra II

Relación 4

Ejercicio 1. Sea $N \subseteq G$ un subgrupo normal y simple de un grupo G. Demostrar que si G/N tiene una serie de composición entonces G tiene una serie de composición.

Ejercicio 2. Sea G un grupo abeliano. Demostrar que G tiene series de composición si y sólo si G es finito.

Ejercicio 3. Sea H un subgrupo normal de un grupo finito G. Demostrar que existe una serie de composición de G uno de cuyos términos es H.

Ejercicio 4. Se define la longitud de un grupo finito G, denotada l(G), como la longitud de cualquiera de sus series de composición. Demostrar que si H es un subgrupo normal de G entonces l(G) = l(H) + l(G/H).

Ejercicio 5. Encontrar todas las series de composición, calcular la longitud y la lista de factores de composición de los siguientes grupos:

- a) El grupo diédrico D_4 ; b) El grupo alternado A_4 ;
- c) El grupo simétrico S_4 ; d) El grupo diédrico D_5 ;
- e) El grupo de cuaternios Q_2 ; f) El grupo cíclico C_{24} ;
- g) El grupo simétrico S_5 .

Ejercicio 6. Sea G un grupo finito, y

$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_{r-1} \triangleright G_r = \{1\}$$

una serie normal de G. Demostrar que

$$l(G) = \sum_{i=0}^{r-1} l\left(\frac{G_i}{G_{i+1}}\right), \qquad fact(G) = \bigcup_{i=0}^{r-1} fact\left(\frac{G_i}{G_{i+1}}\right).$$

Ejercicio 7. Si G_1, G_2, \ldots, G_r son grupos finitos, demostrar que

$$l(G_1 \times G_2 \times \cdots \times G_r) = \sum_{i=1}^r l(G_i), \quad fact(G_1 \times G_2 \times \cdots \times G_r) = \bigcup_{i=1}^r fact(G_i).$$

Ejercicio 8. Sea G un grupo cíclico de orden p^n con p primo. Demostrar que l(G) = n y que $fact(G) = (\mathbb{Z}_p, \mathbb{Z}_p, \overset{(n)}{\dots}, \mathbb{Z}_p)$

Ejercicio 9. Sea G un grupo cíclico de orden n. Si la descomposición de n en factores primos es $n = p_1^{e_1} \cdots p_r^{e_r}$, demostrar que

$$l(G) = e_1 + \dots + e_r,$$

y que

$$fact(G) = (\mathbb{Z}_{p_1}, \stackrel{(e_1)}{\dots}, \mathbb{Z}_{p_1}, \dots, \mathbb{Z}_{p_r}, \stackrel{(e_r)}{\dots}, \mathbb{Z}_{p_r}).$$

Aplica el resultado cuando n=12 y compara su longitud y factores de composición con los del grupo $\mathbb{Z}_2 \times \mathbb{Z}_6$.

Ejercicio 10. Sea D_n el grupo diédrico de orden 2n. Si la descomposición de n en factores primos es $n = p_1^{e_1} \cdots p_r^{e_r}$, demostrar que

$$l(D_n) = e_1 + \dots + e_r + 1,$$

y que

$$fact(G) = (\mathbb{Z}_{p_1}, \stackrel{(e_1)}{\dots}, \mathbb{Z}_{p_1}, \dots, \mathbb{Z}_{p_r}, \stackrel{(e_r)}{\dots}, \mathbb{Z}_{p_r}, \mathbb{Z}_2).$$

Ejercicio 11. Demostrar que D_4 , D_5 , S_2 , S_3 y S_4 son grupos resolubles.

Ejercicio 12. Sean H y K subgrupos normales de un grupo G tales que G/H y G/K son ambos resolubles. Demostrar que $G/(H \cap K)$ también es resoluble.

Ejercicio 13. Sea G un grupo resoluble y sea H un subgrupo normal no trivial de G. Demostrar que existe un subgrupo no trivial A de H que es abeliano y normal en G.