	$\sigma_{1^{+}\alpha\beta}^{\#1}$		$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1-lpha}^{\#1}$	$\sigma_{1-\alpha}^{\#2}$	$\tau_1^{\#1}{}_{\alpha}$	$\tau_1^{\#2}$
C	$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
C	$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
	$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
	$\sigma_1^{\!\#_1}\!\dagger^lpha$	0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0
	$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	0	0	0	0
	$ au_1^{\#1} \dagger^{lpha}$	0	0	0	0	0	0	0
	$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	0	0	0	0

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\sigma_2^{\#1}{}^{\alpha\beta\chi} == 0$	$\tau_{1+}^{\#1\alpha\beta} + ik \sigma_{1+}^{\#2\alpha\beta} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	SO(3) irreps	Source constraints
25	5	5	ω	ω	ω	ω	Н	Н	Н	#	

$\omega_{2}^{#1} + \alpha \beta \chi$	$f_{2^{+}}^{#1} + \alpha \beta$	$\omega_{2}^{*1} \dagger^{\alpha\beta}$	
0	0	$-\frac{3k^2r_3}{2}$	$\omega_{2}^{\#1}{}_{lphaeta}$
0	0	0	$f_{2}^{\#1}_{lpha eta}$
0	0	0	$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{1}^{#2} + \alpha$	$f_{1-}^{#1} \dagger^{\alpha}$	$\omega_{1^{-}}^{#2} +^{\alpha}$	$\omega_{1^{ ext{-}}}^{\sharp1} \dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1}^{#2} + \alpha^{\beta}$	$\omega_{1^+}^{*1} + ^{\alpha \beta}$	
$f_{1}^{\#1}{}_{\alpha\beta} \qquad \omega_{1}^{\#1}{}_{\alpha}$ $\frac{ikt_{2}}{3} \qquad 0$ $\frac{k^{2}t_{2}}{3} \qquad 0$ $0 \qquad \frac{k^{2}t_{2}}{3} \qquad 0$ $0 \qquad 0$ $0 \qquad 0$ $0 \qquad 0$	0	0	0	0	$-\frac{1}{3}i\sqrt{2}kt_2$	$\frac{\sqrt{2}t_2}{3}$	2 <i>t</i> 2	
$f_{1}^{\#1}{}_{\alpha\beta} \qquad \omega_{1}^{\#1}{}_{\alpha}$ $\frac{ikt_{2}}{3} \qquad 0$ $\frac{k^{2}t_{2}}{3} \qquad 0$ $0 \qquad \frac{k^{2}t_{2}}{3} \qquad 0$ $0 \qquad 0$ $0 \qquad 0$ $0 \qquad 0$	0	0	0	0	$-\frac{1}{3}ikt_2$	<u>†2</u> 3	$\frac{\sqrt{2} t_2}{3}$	$\omega_{1^{+}lphaeta}^{\#2}$
$\omega_{1^{-}\alpha}^{\#1}$ 0 0 0 1 2 k ² (r ₃ + 2 r ₅) 0 0	0	0	0	0	$\frac{k^2t_2}{3}$	<u>ī kt2</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	
$\begin{array}{c cccc} \omega_{1^{-}\alpha}^{\#2} f_{1^{-}\alpha}^{\#1} f_{1^{-}\alpha}^{\#2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	0	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0	0	0	$\omega_{1^-~\alpha}^{\#1}$
$\begin{array}{c cccc} f_{1}^{\#1} & f_{1}^{\#2} & \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	0	0	0		0	0	0	$\omega_{1^{-}\alpha}^{\#2}$
$f_{1}^{#2}\alpha$	0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#1}$
	0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#2}$

Lagrangian density

$\frac{2}{3} t_2 \omega_I^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime\prime} + \frac{1}{3} t_2 \omega_{\kappa\lambda}^{\prime\prime} \omega_{I}^{\kappa\lambda} - \frac{1}{2} r_3 \partial_I \omega_{\kappa}^{\kappa\lambda} \partial^{\prime} \omega_{\lambda\alpha}^{\alpha} - r_5 \partial_I \omega_{\kappa}^{\kappa\lambda} \partial^{\prime} \omega_{\lambda\alpha}^{\alpha} +$					
$\frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} +$					
$r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$					
$r_3 \partial_\theta \omega_{\lambda \alpha}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_{\lambda \alpha}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + \frac{1}{6} t_2 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_{\alpha}^{\theta} -$					
$\frac{1}{6} t_2 \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{\theta} + \frac{1}{6} t_2 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha\lambda} + \frac{1}{3} t_2 \omega_{i\theta\kappa} \partial^{\kappa} f^{i\theta} - \frac{2}{3} t_2 \omega_{i\kappa\theta} \partial^{\kappa} f^{i\theta} $					
$\frac{1}{3} t_2 \omega_{\theta \iota \kappa} \partial^{\kappa} f^{\iota \theta} + \frac{2}{3} t_2 \omega_{\theta \kappa \iota} \partial^{\kappa} f^{\iota \theta} - \frac{1}{6} t_2 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} - \frac{1}{6} t_2 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} + \frac{1}{6} t_2 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f^{\lambda$					
$\frac{1}{6} t_2 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f_{\lambda}^{\theta} - 4 r_3 \partial^{\beta} \omega_{i}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\prime} - \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} +$					
$r_5 \partial_{\alpha} \omega_{\lambda \ \theta}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} + \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda \ \alpha}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} - r_5 \partial_{\theta} \omega_{\lambda \ \alpha}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}$					
Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$					

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

_	$\sigma_{0^{+}}^{\#1}$	$ au_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1} +$	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2} +$	0	0	0	0
7 ₀ -1 †	0	0	0	$\frac{1}{t_2}$

Quadratic pole

Pole residue:	>0
· · · · · · ·	$r_3 (2r_3+r_5) (r_3+2r_5) p^2$

Polarisations: 2

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)