ETUDE DES FONCTIONS

I) CONCAVITE; CONVEXITE; POINTS D'INFLEXION 1) Activités:

Activité 1:

Soit la fonction définie sur \mathbb{R} par : $f(x) = x^2 + x$; Soit A(a, f(a)) un point de sa courbe représentative.

- 1. Déterminer l'équation de la tangente (T_A) en A. (En fonction de a)
- 2. Soit P et M deux points qui ont la même abscisse x et qui appartiennent respectivement à C_f et (T_A) , Montrer que le signe de \overline{PM} est positif quel que soit la valeur de x.
- 3. Déterminer la dérivée seconde de f.

Soit la fonction g définie sur \mathbb{R} par : $g(x) = 2x^3 - 3x^2$.

- 1. Déterminer les dérivées première et seconde de la fonction g.
- 2. Dresser le tableau de signe de g''(x).
- 3. La courbe représentative de g est représentée ci-contre, étudier graphiquement La position relative de la courbe c_q par rapport à ses tangentes.
- 4. Que peut-on conclure?

Activité 3:

Soit la fonction h définie sur \mathbb{R} par : $h(x) = \frac{x}{\sqrt{x^2 + 1}}$.

- 1. Déterminer le domaine de définition de h et étudier sa parité.
- 2. Etudier les limites en $+\infty$ et $-\infty$
- 3. Déterminer la fonction dérivée de la fonction h et dresser le T.V
- 4. Déterminer l'équation de la tangente T en O(0,0)
- 5. Etudier les positions relatives de T et la courbe C_f
- 6. Tracer la courbe C_f

2) Définition et propriétés.

2.1 Définitions :

Définition:

Soit f une fonction dont la courbe représentative est C_f .

- On dit que la courbe est convexe si elle se trouve au-dessus de toutes ses tangentes
- On dit que la courbe est concave si elle se trouve au-dessous de toutes ses tangentes.
- Un point d'inflexion est un point où s'opère un changement de concavité de la courbe C_f

Remarque:

Si f est dérivable en a et \mathcal{C}_f traverse sa tangente en A alors le point A est un point d'inflexion

2.2 Dérivée seconde et concavité.

Soit f une fonction **deux fois dérivable** sur un intervalle I et \mathcal{C}_f

sa courbe représentative. Soient a un élément de I, A(a, f(a))

et (T_A) la tangente en A, Soient P et M deux points qui ont le même abscisse x

et qui appartiennent respectivement à C_f et (T_A) ,

On a :
$$y_P = f'(a)(x - a) + f(a)$$
. Soit :

$$\varphi(x) = \overline{PM} = f(x) - y_P$$
$$= f(x) - f'(a)(x - a) - f(a)$$

arphi est dérivable sur I

$$(\forall x \in I)(\varphi'(x) = f'(x) - f'(a))$$
 $(\operatorname{car}(f(a))' = 0 ; f(a) \text{ est une constante})$

 φ est deux fois dérivable sur I

$$(\forall x \in I) \big(\varphi^{\prime\prime}(x) = f^{\prime\prime}(x) \big)$$

Si f'' est positive sur I, il en est de même pour φ'' et on aboutit au tableau suivant :

x	а
$\varphi''(x)$	+
$\varphi'(x)$	0
Signe de φ'	- 0 +
$\varphi(x)$	

De même si on suppose que f'' est négative sur I on conclut que \mathcal{C}_f est concave sur I.

Page 2 sur 9

Théorème:

Soit f une fonction deux fois dérivable sur un intervalleI .

- Si f'' est **positive** sur I alors C_f est **convexe** sur I.
- Si f'' est **négative** sur I alors C_f est **concave** sur I.
- Si f'' s'annule en a en changeant de signe alors C_f admet un point d'inflexion en A(a, f(a))

Remarque:

Les conditions du théorème précèdent sont suffisantes ; on peut avoir une courbe convexe, concave ou un point d'inflexion sans l'existence même de la dérivée seconde.

Exercice:

$$f(x) = \begin{cases} -x^2, & x < 0 \\ x^2, & x \ge 0 \end{cases}$$

- 1. Montrer que f est dérivable en 0.
- 2. Déterminer la fonction dérivée de la fonction f sur \mathbb{R} .
- 3. Etudier la dérivabilité de f' en 0 ; f est-elle deux fois dérivable en 0.
- 4. Tracer la courbe C_f et remarquer qu'elle admet un point d'inflexion en O(0,0).

II) BRANCHES INFINIES.

1) Asymptote verticale (rappelle)

Définition:

Si la fonction f vérifie l'une des limites suivantes :

$$\lim_{x \to a^+} f(x) = +\infty; \lim_{x \to a^-} f(x) = -\infty; \lim_{x \to a^+} f(x) = -\infty \text{ ou } \lim_{x \to a^-} f(x) = +\infty$$

Alors, on dit que la droite (Δ): x = a est une **asymptote verticale**.

Interprétations géométriques :

$$\lim_{x \to a^{-}} f(x) = +\infty$$

2) Asymptote horizontale.

Définition:

Si la fonction f vérifie l'une des limites suivantes :

$$\lim_{x \to +\infty} f(x) = l \quad \text{ou} \lim_{x \to -\infty} f(x) = l$$

Alors, on dit que la droite (Δ): y = l est une **asymptote horizontale.**

Interprétation géométrique :

Remarque:

La position de la courbe C_f par rapport à son asymptote horizontale se détermine par le signe de f(x) - l:

- Si $f(x) l \ge 0$ alors C_f est au-dessus de (Δ): y = l
- Si $f(x) l \le 0$ alors C_f est au-dessous de (Δ) : y = l

Exercice:

Soit f la fonction définie par : $f(x) = \frac{2x^2}{x^2-1}$

- 1. Déterminer l'ensemble de définition de f.
- 2. Déterminer les limites de f aux bornes de D_f .
- 3. Interpréter géométriquement les résultats obtenues.

3) Asymptote oblique.

Activité:

Soit g la fonction définie par : $g(x) = \frac{2x^2 - x}{x - 1}$

- 1. Déterminer l'ensemble de définition D_q .
- 2. Déterminer les limites aux bornes de D_g
- 3. Effectuer la division de $P(x)=2x^2-x \, \text{sur}\,(x-1)$ puis en déduire que $(\forall x\in D_g)\left(g(x)=2x+1+\frac{1}{x-1}\right)$
- 4. Déterminer $\lim_{x \to +\infty} g(x) (2x + 1)$

On dit que la droite (Δ): y=2x+1 est une asymptote oblique à la courbe \mathcal{C}_f au voisinage de $+\infty$

Définition:

Soit f une fonction définie au voisinage de $+\infty$, on dit que la droite (Δ) : y=ax+b où $a\neq 0$ est une asymptote oblique à la courbe C_f au voisinage de $+\infty$ si : $\lim_{x\to +\infty} f(x)-(ax+b)=0$

Exemple:

La courbe de la fonction : $g(x) = \frac{2x^2 - x}{x - 1}$ a pour asymptote oblique au voisinage de $+\infty$, la droite (Δ): y = 2x + 1.

Remarque:

Si la courbe C_f admet la droite (Δ): y = ax + b comme

asymptote oblique alors la position de la courbe \mathcal{C}_f se déduit par

le signe de $\overline{PM} = f(x) - (ax + b)$.

- Si $\overline{PM} = f(x) (ax + b) > 0$ alors C_f est au-dessus de (Δ)
- Si $\overline{PM} = f(x) (ax + b) < 0$ alors C_f est au-dessous de (Δ) .
- Si $\overline{PM} = f(x) (ax + b) = 0$ alors C_f est coupe (Δ).

Propriété:

Soit f une fonction définie au voisinage de $+\infty$. La courbe C_f admet la droite (Δ) : y = ax + b ($a \neq 0$) comme asymptote oblique au voisinage de $+\infty$ si et seulement s'il existe une fonction h tel que :

$$\begin{cases} f(x) = ax + b + h(x) \\ \lim_{x \to +\infty} h(x) = 0 \end{cases}$$

Preuve: Il suffit de poser : h(x) = f(x) - (ax + b)

Exercice: En utilisant la division euclidienne montrer que $(\forall x \in \mathbb{R}^*/\{1\})\left(\frac{x^3+2x^2+2x}{x^2+x}=x+1+\frac{1}{x+1}\right)$

En déduire que la fonction $f(x) = \frac{x^3 + 2x^2 + 2x}{x^2 + x}$ admet une asymptote oblique au voisinage de $+\infty$ et au voisinage de $-\infty$

Propriété:

Soit f une fonction définie au voisinage de $+\infty$. La droite (Δ) : y = ax + b $(a \neq 0)$ est une asymptote oblique au voisinage de $+\infty$ si et seulement si :

$$\begin{cases} \lim_{x \to +\infty} \frac{f(x)}{x} = a \quad (a \neq 0) \\ \lim_{x \to +\infty} f(x) - ax = b \end{cases}$$

Preuve:

D'après la propriété précédente : On peut écrire f(x) = ax + b + h(x) où $\lim_{x \to +\infty} h(x) = 0$

Donc:
$$\frac{f(x)}{x} = a + \frac{b}{x} + \frac{h(x)}{x}$$
 et donc $\lim_{x \to +\infty} \frac{f(x)}{x} = a$ (car: $\lim_{x \to +\infty} \left(\frac{b}{x} + \frac{h(x)}{x}\right) = 0$)

D'autre part : f(x) - ax = b + h(x) où $\lim_{x \to +\infty} h(x) = 0$ donc $\lim_{x \to +\infty} f(x) - ax = b$

4) Branches paraboliques.

4.1) Vers l'axe $(\mathbf{0}y)$

Soit la fonction définie par : $f(x) = x^2$

On a:
$$D_f = \mathbb{R}$$
; $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2}{x} = +\infty$

On dit que la courbe C_f admet une branche parabolique vers l'axe (Oy)

au voisinage de $+\infty$

Définition:

Soit f une fonction définie au voisinage de $+\infty$; on dit que la courbe C_f admet une branche parabolique vers l'axe (Oy) au voisinage de $+\infty$ si $\lim_{x\to +\infty} \frac{f(x)}{x} = \pm \infty$.

Interprétations géométriques :

4.2) Vers l'axe $(\mathbf{0}x)$

Soit la fonction définie par : $f(x) = \sqrt{x}$

On a :
$$D_f = \mathbb{R}^+$$
 ; $\lim_{x \to +\infty} \sqrt{x} = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x}}{x} = 0$

On dit que la courbe \mathcal{C}_f admet une branche parabolique vers

l'axe (0x) au voisinage de $+\infty$

Définition:

Soit f une fonction définie au voisinage de $+\infty$; on dit que la courbe C_f admet une branche parabolique vers l'axe (Ox) au voisinage de $+\infty$ si $\lim_{x\to +\infty} f(x) = \pm\infty$ $\lim_{x\to +\infty} \frac{f(x)}{x} = 0$.

Interprétations géométriques.

4.3) Vers l'axe (Δ): y = ax

Activité:

Soit f la fonction définie sur \mathbb{R}^+ par : $f(x) = x + \sqrt{x}$

On a:
$$\lim_{x \to +\infty} f(x) = +\infty$$
 $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + \sqrt{x}}{x} = \lim_{x \to +\infty} 1 + \frac{1}{\sqrt{x}} = 1$

$$\operatorname{Mais} \lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \sqrt{x} = +\infty$$

On dit que la courbe de la fonction admet une branche parabolique vers la droite (Δ): y = x.

Définition:

Soit f une fonction définie au voisinage de $+\infty$; si $\lim_{x\to +\infty} f(x) = \pm \infty$, $\lim_{x\to +\infty} \frac{f(x)}{x} = a$ $(a \ne 0)$ et $\lim_{x\to \pm\infty} f(x) - ax = \pm\infty$ alors on dit que : la courbe de la fonction admet une branche parabolique vers la droite (Δ) : y = ax.

III) DEMI-TANGENTE VERTICALE

Introduction:

Soit f la fonction définie sur \mathbb{R}^+ par : $(\forall x \in \mathbb{R}^+)(f(x) = \sqrt{x})$

On a : $\lim_{x\to 0^+} \frac{\sqrt{x}-\sqrt{0}}{x-0} = \lim_{x\to 0^+} \frac{1}{\sqrt{x}} = +\infty$; la fonction f n'est pas dérivable à droite de 0.

Soient $x \neq 0$ et M(x, f(x)) un point de la courbe C_f la droite (OM) à pour coefficient directeur $m = \frac{\sqrt{x}}{r}$ donc elle a pour

vecteur directeur $\vec{u} \begin{pmatrix} 1 \\ \frac{\sqrt{x}}{\sqrt{x}} \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{\sqrt{x}} \end{pmatrix}$ le vecteur $\vec{v} \begin{pmatrix} \sqrt{x} \\ 1 \end{pmatrix}$ est aussi

vecteur directeur de la droite (OM) si on fait tendre x vers 0 (à droite) La droite (OM) "tend" pour une position limite vers une droite (T) de vecteur directeur $\vec{J} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ donc

sera parallèle à l'axe (0y).

Propriété:

Soit f une fonction définie sur un intervalle de la forme [a, a + r[Si f est continue à droite de a et $\lim_{x\to a^+}\frac{f(x)-f(a)}{x-a}=\pm\infty$ alors la courbe \mathcal{C}_f admet une demi-tangente verticale

Exercice:

Soit f la fonction définie sur \mathbb{R} par : f(x) = x - E(x)

- 1. Tracer la courbe de la fonction f sur [0,2].
- 2. Etudier la limite $\lim_{x\to 1^-} \frac{f(x)-f(1)}{x-1}$
- 3. Que remarquer vous ?.

Interprétation géométriques

à droite de a.

IV) LES ELEMENTS DE SYMETRIE D'UNE COURBE.

1) Axe de symétrie :

Activité:

Soit la fonction

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sqrt{2x^2 - 4x - 6}$$

- 1. Déterminer D_f ensemble de définition de la fonction f.
- 2. Montrer que $(\forall x \in D_f)(2 x \in D_f)$
- 3. Montrer que $(\forall x \in D_f)(f(2-x) = f(x))$

Propriété:

Soit f une fonction numérique dont l'ensemble de définition est D_f .

La droite (Δ) : x = a est un axe de symétrie de la courbe C_f si et seulement si : $\begin{cases} (\forall x \in D_f)(2a - x \in D_f) \\ (\forall x \in D_f)(f(2a - x) = f(x)) \end{cases}$

Preuve:

Soit x un élément de D_f et A(x,0), si A'(x',0) est le symétrique

de A par rapport à (Δ) x=a alors $\frac{x+x'}{2}=a$ (a est le centre de

l'intervalle de bornes x et ')

d'où : x' = 2a - x et puisque (Δ) \perp (AA') alors

f(x) = f(x') ce que signifie : f(2a - x) = f(x)

2) Centre de symétrie.

Propriété:

Soit f une fonction numérique dont l'ensemble de définition est D_f .

Le point $\Omega(a,b)$ est un centre de symétrie de la courbe C_f si et seulement si : $\begin{cases} (\forall x \in D_f)(2a-x \in D_f) \\ (\forall x \in D_f)(f(2a-x)=2b-f(x)) \end{cases}$

Preuve:

 $\Omega(a,b)$ étant centre de symétrie de la courbe C_f , si M(x,f(x)) est un point de C_f alors sont symétrique M' par rapport à Ω est un point

de
$$C_f$$
. soit $M'(x', f'(x))$ on a : $\frac{x+x'}{2} = a$ et $\frac{f(x)+f(x')}{2} = b$

car a est le centre de l'intervalles de bornes x et x' et b est le centre de l'intervalles de bornes f(x) et f(x')

Par suite : x' = 2a - x et f(x') = 2b - f(x) et finalement :

$$f(2a - x) = 2b - f(x)$$

Exercice:

Soit f la fonction définie sur \mathbb{R} par : $f(x) = ax^3 + bx^2 + cx + d$

Montrer que le point d'inflexion de \mathcal{C}_f est son centre de symétrie. (c'est valable uniquement pour ces fonctions)

