Neutrino Oscillations A simple model using Quantum Mechanics

Souradeep Das

Indian Institute of Science

May 14, 2023

Contents

- Introduction
- 2 Describing Neutrino Oscillations
- Wavefunction approach
- Density Matrix approach

Table of Contents

- Introduction
- 2 Describing Neutrino Oscillations
- Wavefunction approach
- 4 Density Matrix approach

Introduction

- Neutrinos are the lightest class of Fermions under the Standard Model of particle physics.
- They were first proposed by Wolfgang Pauli to resolve the apparent violation of energy conservation in β-decay.
- Neutrinos interact very weakly with matter, and are difficult to detect..

Figure: Wolfgang Pauli

Mass and Flavor

- In the Standard Model, neutrinos have zero mass, and hence travel at the speed of light.
- They exist in three flavors $(\nu_e, \nu_\mu, \nu_\tau)$, corresponding to the three families of leptons Electrons, Muons and Tau. Each has its corresponding antineutrino $(\bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau)$.

Solar Neutrino Problem

- The Sun produces a huge flux of neutrinos via the proton-proton chain.
- An experiment, called the Homestake Experiment was performed in the late 1960s under the leadership of Ray Davis and John Bahcall in a gold mine in the US, to detect and count solar neutrinos.
- The neutrino flux observed was only one-third of the theoretical prediction.
- This discrepancy could not be solved using the standard model of particle physics and the standard solar model, both of which were 'well-accepted'.

Solution to Solar Neutrino Problem

- A solution was devised based on a theoretical idea proposed first in 1957 by Soviet physicist Bruno Pontecorvo. This was the idea of Neutrino Oscillations.
- He proposed that neutrinos can transition between flavors spontaneously while traveling in free space.
- The Sun only produces electron neutrinos. These partially convert to the other flavors on the way to Earth. This resolves the discrepancy, because the experiment could only detect electron neutrinos.

Table of Contents

- Introduction
- 2 Describing Neutrino Oscillations
- Wavefunction approach
- 4 Density Matrix approach

Flavor detection

- Neutrinos interact only via weak force and gravity.
- A neutrino is seen as a linear superposition of the three flavors.

$$|\nu\rangle = c_e |\nu_e\rangle + c_\mu |\nu_\mu\rangle + c_\tau |\nu_\tau\rangle \tag{1}$$

- When a neutrino is detected (through weak interaction with the detector), it randomly collapses to one of the three flavors. In other words, its flavor is 'measured'.
- The probability of detecting a particular flavor λ is given by $|c_{\lambda}|^2$ for $\lambda \in \{e, \mu, \tau\}$

Free neutrinos

- Neutrinos travel most of their way 'free', that is, devoid of interactions.
- The wavefunction in free state is a superposition of three plane waves, each corresponding to a different energy.
- Since neutrinos are ultra-relativistic,

$$E_i = \sqrt{p^2 + m_i^2} \approx p + \frac{m_i^2}{2p} \tag{2}$$

• Each plane wave has a slightly different mass, so the three waves have slightly different energies but the same 3-momentum.

Interlude: Wait a second!

- I just assumed that neutrinos have mass!
- According to the Standard Model, neutrinos are massless. So this model of oscillations will require a modification of the Standard Model.

Mass Eigenstates

- What if I tell you that the three plane wave eigenstates are not purely the three flavor eigenstates that I spoke about earlier?
- These are, in fact, a linear superposition of the three flavor states, with the coefficients given by the
 Pontecorvo-Maki-Nakagawa-Sakata matrix or PMNS matrix.
- These eigenstates are called mass eigenstates.

Relation between the two eigenstates

To put it simply, the two kinds of eigenstates are just two different bases of representing a neutrino wavefunction.

- When neutrinos travel freely, they it is convenient to represent them in the mass basis, since it is the eigenbasis of Hamiltonian for free plane waves.
- When neutrinos interact through the weak force, the Hamiltonian is diagonalized (in the flavor/mass subspace) by the flavor basis.

Table of Contents

- Introduction
- 2 Describing Neutrino Oscillations
- Wavefunction approach
- 4 Density Matrix approach

The PMNS matrix

The PMNS matrix that describes the relation between mass and flavor eigenstates is defined as follows:

Say a wavefunction is written in the mass basis as:

$$|\Psi(t,\vec{x})\rangle \equiv \begin{pmatrix} c_1(t,\vec{x}) \\ c_2(t,\vec{x}) \\ c_3(t,\vec{x}) \end{pmatrix}_{(m)}$$
(3)

where the three neutrino masses are $m_1 < m_2 < m_3$.

The PMNS matrix

Similarly, it can be written in the flavor basis as:

$$|\Psi(t,\vec{x})\rangle \equiv \begin{pmatrix} c_{e}(t,\vec{x}) \\ c_{\mu}(t,\vec{x}) \\ c_{\tau}(t,\vec{x}) \end{pmatrix}_{(f)}$$
 (4)

The PMNS matrix

Then the transformation between the bases is:

$$\begin{pmatrix} c_{e}(t,\vec{x}) \\ c_{\mu}(t,\vec{x}) \\ c_{\tau}(t,\vec{x}) \end{pmatrix} = \mathbf{U} \begin{pmatrix} c_{1}(t,\vec{x}) \\ c_{2}(t,\vec{x}) \\ c_{3}(t,\vec{x}) \end{pmatrix}$$
(5)

This 3×3 complex matrix ${\bf U}$ is called the PMNS matrix. It describes a rotation in complex space, and preserves the norm. So it must be a unitary matrix.

Parametrizing the matrix

The matrix is parametrized by 3 parameters:

- Mixing angles θ_{12} , θ_{23} and θ_{13} .
- ullet A phase angle δ_{CP} related to charge-parity symmetry violation.

Note:

- This is one of the infinitely many ways to parametrize a unitary matrix.
- A SU(3) matrix is described by 8 real parameters in general. But here, we can absorb the rest of the parameters into overall phases of the various wavefunction modes.

Parametrizing the matrix

Then we write:

$$U = U_{23}.U_{13}.U_{12} \tag{6}$$

where:

$$\mathbf{U_{23}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \quad \mathbf{U_{12}} = \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{U_{13}} = \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{+i\delta_{CP}} & 0 & \cos \theta_{13} \end{pmatrix}$$

On the parameters

The mixing angles describe the extent of rotation around various axes.
 These have been estimated experimentally, and their latest values are:

•
$$\theta_{12} = (33.41^{+0.75}_{-0.72})$$
 °
• $\theta_{23} = (49.1^{+1.0}_{-1.3})$ °
• $\theta_{13} = (8.54^{+0.11}_{-0.12})$ °

• The phase represents deviation from charge-parity symmetry. If the symmetry were valid, we expect $\delta_{CP}=0$. However, observations suggest $169^{\circ} \leq \delta_{CP} \leq 246^{\circ}$. The average value is:

•
$$\delta_{CP} = \left(197^{+42}_{-25}\right)$$
 °

• This shows that CP symmetry is violated.

The Algorithm

- **1** Define the PMNS transformation \mathbf{U} and obtain the inverse \mathbf{U}^{-1} .
- Begin with an initial state vector in flavor basis.
- **3** Convert it to mass basis using U^{-1} .
- 'Evolve' the components of mass-basis vector independently using its energy eigenvalue upto some time t.
- **1** Transform the state ket to the flavor basis at time t using \mathbf{U} .

Important Trivia (Nice oxymoron!)

• The actual values of the masses m_1, m_2, m_3 do not matter. Rather, the differences in m_i^2 are what actually give rise to oscillations (in the low-mass limit, ofc).

Parameters used

I have used the mixing parameters from the best-fit model:

•
$$\theta_{12} = 33.41^{\circ}$$

•
$$\theta_{23} = 49.1^{\circ}$$

•
$$\theta_{13} = 8.54^{\circ}$$

•
$$\delta_{CP} = 197^{\circ}$$

• **Important:** There are large uncertainties in the values of δ_{CP} and hence the model is not quantitatively too good.

For the other parameters I used:

•
$$m_1 = 0 \text{ eV}$$

•
$$\Delta m_{12}^2 = 0.759 \times 10^{-4} \text{ eV}^2$$

•
$$\Delta m_{13}^2 = 23.2 \times 10^{-4} \text{ eV}^2$$

•
$$p=10^8 \text{ eV} \approx E$$

Start from a purely electron-neutrino and watch it oscillate!

Figure: Oscillations of a state starting from pure $\nu_{\rm e}$

It is an oscillation because it is periodic. Zoom out and see:

Figure: Oscillations of a state starting from pure ν_e

The plot can be made more general if you consider L/E = ct/E as the variable instead of time. The plot then becomes independent of E:

Figure: Oscillations of a state starting from pure $\nu_{\rm e}$

Similar plots can be obtained starting from pure ν_{μ} or $\nu_{ au}$:

Figure: Starting from pure ν_{μ}

Figure: Starting from pure $\nu_{ au}$

Did you observe something interesting?

• Did you see how so little of ν_{μ} or ν_{τ} were formed when the starting state was ν_{e} ? Or vice-versa?

Did you observe something interesting?

- Did you see how so little of ν_{μ} or ν_{τ} were formed when the starting state was ν_{e} ? Or vice-versa?
- ullet Did you also notice how the waveforms of u_{μ} and $u_{ au}$ move together?

Did you observe something interesting?

- Did you see how so little of ν_{μ} or ν_{τ} were formed when the starting state was ν_{e} ? Or vice-versa?
- ullet Did you also notice how the waveforms of u_{μ} and $u_{ au}$ move together?
- Both of these are signs of stronger coupling between ν_μ and ν_τ , and weaker coupling of each with ν_e .

Beats

• Did you notice the waveforms? They consist of a large, low-frequency mode and a small, high-frequency mode.

Beats

- Did you notice the waveforms? They consist of a large, low-frequency mode and a small, high-frequency mode.
- If you look carefully, there are nearly 30 small oscillations in a single large oscillation period.

Beats

- Did you notice the waveforms? They consist of a large, low-frequency mode and a small, high-frequency mode.
- If you look carefully, there are nearly 30 small oscillations in a single large oscillation period.
- This 30 comes from the ratio of the mass-square differences,

$$\frac{\Delta m_{13}^2}{\Delta m_{12}^2} \approx 30$$

Table of Contents

- Introduction
- 2 Describing Neutrino Oscillations
- Wavefunction approach
- Density Matrix approach

Using Density Matrices

- For pure initial states, we can always use the wavefunction evolution as we saw before.
- But if the initial state is an ensemble of different flavors, the best tool to use is density matrices.
- Density matrix for a pure state $|\Psi\rangle$ is defined as $\hat{\rho} = |\Psi\rangle \langle \Psi|$.
- In general, density matrix exists for a mixed state as well.

Density Matrix Analogue

- Just as before, we can define an initial density matrix that keeps information about the distribution and correlations.
- The density matrices in the flavor and mass bases are related by:

$$\hat{\rho}_{(f)} = \mathbf{U}.\hat{\rho}_{(m)}.\mathbf{U}^{\dagger} \tag{7}$$

 This is obtained from the analogous rotation formula for the wavefunction:

$$|\Psi\rangle_{(f)} = \mathbf{U} |\Psi\rangle_{(m)} \tag{8}$$

Density Matrix Analogue

 The time-evolution of density matrix for a time-independent Hamiltonian is given by:

$$\hat{\rho}(t) = e^{-i\mathbf{H}t/\hbar}\hat{\rho}(0)e^{i\mathbf{H}t/\hbar} \tag{9}$$

The Algorithm

- The algorithm is quite similar to the wavefunction approach.
- Only differences are in the way we represent the state.

The Algorithm

- **1** Define the PMNS transformation \mathbf{U} and obtain the inverse \mathbf{U}^{-1} .
- Begin with an initial state density matrix in flavor basis.
- **③** Convert it to mass basis using $\hat{\rho}_{(m)} = \mathbf{U}^{\dagger}.\hat{\rho}_{(f)}.\mathbf{U}$.
- 'Evolve' the components of mass-basis vector independently using its energy eigenvalue upto some time t.
- **1** Transform the density matrix to the flavor basis at time t using \mathbf{U} .

Interpretation of the density matrix

• In density matrix formalism, the expectation value of a quantity $\mathcal O$ associated with an operator $\hat{\mathcal O}$ is given by:

$$\left\langle \hat{\mathcal{O}} \right\rangle = \mathsf{Tr} \Big(\hat{\rho}.\hat{\mathcal{O}} \Big)$$

- The quantity whose expectation value gives the probability of the neutrino wave being in a flavor state $|\lambda\rangle$ is the projection operator $|\lambda\rangle\langle\lambda|$.
- So the projection operator for the electron flavor looks like:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

in the flavor basis.

Probabilities from the density matrix

- Hence it can be shown that the probabilities that we calculated in the wavefunction approach as $p(\lambda) = |c_{\lambda}|^2$ are just the diagonal elements of the density matrix in the flavor basis.
- So, after evolving the density matrix in the mass basis, we convert it again into the flavor basis and then read off the diagonal elements.

A closer look at the Evolution

- We could have evolved the density matrix in the flavor basis directly as well, by converting the Hamiltonian into this basis.
- However, it is easier to evolve in the mass basis because the Hamiltonian is diagonal, with elements $(p + \frac{m_1^2}{2p}, p + \frac{m_2^2}{2p}, p + \frac{m_3^2}{2p})$

Evolution in the mass basis

• The density matrix as time t is given by:

$$\hat{\rho}(t) = e^{-i\mathbf{H}t/\hbar}.\hat{\rho}(0).e^{+i\mathbf{H}t/\hbar}$$
(10)

• We can look at each element of the matrix in the mass basis:

$$\langle i|\,\hat{\rho}(t)\,|j\rangle = \langle i|\,e^{-i\mathbf{H}t/\hbar}.\hat{\rho}(0).e^{+i\mathbf{H}t/\hbar}\,|j\rangle$$

Evolution in the mass basis

• Now insert complete set of mass eigenstates between operators to get:

$$\langle i|\,\hat{\rho}(t)\,|j\rangle = \langle i|\,e^{-i\mathbf{H}t/\hbar}.\hat{\rho}(0).e^{+i\mathbf{H}t/\hbar}\,|j\rangle$$

$$= \sum_{i',j'} \langle i|\,e^{-i\mathbf{H}t/\hbar}\,|i'\rangle\,\langle i'|\,\hat{\rho}(0)\,|j'\rangle\,\langle j'|\,e^{+i\mathbf{H}t/\hbar}\,|j\rangle$$

$$= \sum_{i',j'} e^{-iE_{i}t/\hbar}\,\langle i'|\,\hat{\rho}(0)\,|j'\rangle\,e^{+E_{j}t/\hbar}\delta_{ii'}\delta_{jj'}$$

$$\therefore \,\langle i|\,\hat{\rho}(t)\,|j\rangle = \langle i|\,\hat{\rho}(0)\,|j\rangle\,e^{-i(E_{i}-E_{j})t/\hbar}$$

Results

We can look at a mix of the flavors as an initial state, say in the ratio 1:1:1. In this special case, the state does not change physically with time. The initial density matrix is $\hat{\rho}(0) = \frac{1}{3}\mathbf{I}$ and remains so at all times.

Figure: Oscillations of a state starting from an unpolarized flavor state

Results

Or we could begin from a state that is half-muon and half-tau, or half-electron and half-tau:

L/E (km/GeV) Figure: Starting from a mixed state of e and au

Figure: Starting from a mixed state of μ and au

0.8 Probability of detection 0.6 0.2 0.0 25000

Probability evolution vs L/E

Remarks

• Thus the density matrix approach is more general.

Correlations matter!

We can change the non-diagonal terms in the initial density matrix (keeping it Hermitian) which gives a different evolution pattern. For example, if the initial flavor density matrix is changed to $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ the evolution of the state changes:

Figure: When the density matrix is diagonal

Figure: When the density matrix has off-diagonal terms

Code

The code can be found at:

https://github.com/souradeepdas-iisc/neutrino-oscillations.git