Плоская монохроматическая волна

Волна — измененит состояния среды, распространяющееся в данной среде и переносящее с собой энергию. С понятием волны тесно связано понятие физического поля. Поле характеризуется некоторой функцией, определенной в заданной области пространства и времени. Изменение в пространстве и времени большинства полей представляют собой волновой процесс Монохроматической волной уазывается волна, в которой поле зависит от времени t

 $U(\vec{r},t)=Acos(\omega t-k\vec{r}+arphi)$, где A - действительная амплитуда, ω - циклическая частота, arphi начальная фаза, \vec{k} - заданный волновой вектор ($\vec{k} = k_x \vec{e}_x + k_y \vec{e}_y + k_z \vec{e}_z$), $\theta = (\omega t - \vec{k} \vec{r} + \varphi)$ - полная

2 Волновое уравнение

$$\Delta U - rac{1}{c^2}rac{\partial^2 ec{U}}{\partial t^2} = 0$$
 - волновое уравнение без поглощения

$$\Delta U - \beta \frac{\partial \vec{U}}{\partial t} - \frac{1}{c^2} \frac{\partial^2 \vec{U}}{\partial t^2} = 0$$
 - волновое уравнение с поглощением

Описывает распространение воли различной природы в среде без диссипации. U - компонента электрического поля / магнитоного поля / скорость / потенциал, с - имеет смысл фазовой скорости волны, β - коэффициент диссипации (учитывает, например, потери в вязкой среди или

Решение - в виде плоской монохроматической волны $U = U_0 e^{(i\omega t - ik\vec{r})}$, если выполнено $\frac{\omega^2}{k^2} = c^2$

3 Фазовая и групповая скорости

$$ec{V_{\Phi}}=rac{\omega}{k^2}ec{k}=rac{\omega}{k}$$
 - фазовая скорость (скорость перемещения поверхности постоянной фазы)

$$ec{V_{
m rp}} = rac{\partial \omega}{\partial ec{k}}igg|_{ec{k_0}}$$
 - групповая скорость в точке $ec{k_0}$ (скорость расширения огибающей квазимонохрома-

тического волнового пакета); $\vec{k_0}$ - несущий волновой вектор - максимум спектра квазимонохрома-

этого импульса - $\vec{V_{\scriptscriptstyle {
m FD}}}$

4 Уравнение непрерывности и уравнение Эйлера

 $\frac{\partial \rho}{\partial t} + div(\rho \vec{V}) = 0$ - уравнение непрерывности (выражает закон сохранения массы)

 $ec{V}(ec{r},t)$ - поле скоростей среды, ${f V}=rac{1}{
ho}$ - объем на единицу массы, $[
ho]=\left[rac{{
m K}\Gamma}{{
m M}^3}
ight]$

$$ho\left(\frac{\partial \vec{V}}{\partial t} + (\vec{V}\nabla)\vec{V}\right) = -\nabla p$$
 - уравн. Эйлера (движение идеал. жидкости в поле внешней силы)

ho - плотность жидкости, p - давление, \vec{V} - вектор скорости

5 Скорость звука. Вектор Умнова. Плотность энергии в звуковой волне

$$\sqrt{\frac{\gamma kT_0}{m}}=\sqrt{\frac{dp}{d\rho}}\Big|_{
ho_0}=C_s=\sqrt{\frac{\gamma RT_0}{M}}$$
 - адиабатическая скорость звука $(V_\Phi$ для звуковой волны)

 $\gamma = \frac{C_p}{C}$ - показатель адиобаты для идеального газа, T_0 - равновесное значение температуры,

M - молярная масса, R - универсальная газовая постоянная $\left(8.31 \left| \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \right| \right)$, k - постоянная

Больцмана $(1.38 \cdot 10^{-23} [Дж \cdot K])$

$$W = \frac{\rho_0 V^2}{2} + \frac{p_1^2}{2\rho_0 s^2}$$
 - плотность энергии звуковых волн в единице объема СИ: $\left[\frac{\mathcal{J}_{\text{ж}}^2}{\text{м}^3}\right]$

 ho_0 - равновесное значение плотности, p_1 - добавочное значение давления: $p=p_0+p_1$, \vec{V} - скорость распространения возмущения

$$\Pi = p_1 \vec{V}$$
 - плотность потока энергии (вектор Умнова) СИ: $\left[\frac{\mathcal{L}_{\mathbf{ж}}}{\mathbf{c} \cdot \mathbf{m}^2}\right] = \left[\frac{\mathbf{B}_{\mathbf{T}}}{\mathbf{m}^2}\right]$

 Π - количество энергии, переносимое акустической волной через единичную площадку, перепендикулярную направлению переноса энергии $(\perp \vec{k}$ или $\perp \vec{V})$ в единицу времени (закон сохранения

энергии в дифференциальном виде). Направление вектора Умнова - вдоль переноса энергии Абсолютная величина p равна количеству энергии, переносимому за единицу времени через единичную площадку, перпендикулярную направлению потока энергии.

6 Уравнение Ламэ

 $ho_0 rac{\partial^2 \vec{U}}{\partial t^2} = (\lambda + \mu) \nabla div \vec{U} + \mu \bigtriangleup \vec{U}$ - уравнение движения физически бесконечно малого объема изотропного (движение в любых направлениях) упругого тела при малых деформациях ho_0 - плотность до деформации, μ - модуль сдвига, $\lambda = K - \frac{2}{3}\mu$ - коэффициент Ламэ, K - модуль всестороннего сжатия, $ec{U}(ec{r},t)$ - вектор смещения элемента сплошной среды при деформации μ и K - переобозначения модулей упругости Юнга и Пуассона

7 Уравнения Максвелла в дифференциальной и интегральной формах из ПЭД взять ...

8 Граничные условия для векторов ЭМ поля

9 Вектор Пойнтинга. Плотность энергии ЭМ поля в вакууме

 $+ div \vec{S} = -(\vec{j}\vec{E})$ - теорема Пойнтинга

$$W=rac{1}{8\pi}(\mathcal{E}E^2+\mu H^2)$$
 - плотность энергии ЭМ поля в вакууме СГС: $\left[rac{\mathrm{эрr}\cdot\mathrm{c}^{-1}}{\mathrm{cm}^{-2}}
ight]$??????????????

СИ:
$$\left[\frac{Дж}{M^3}\right]$$

$$S = \frac{c}{4\pi} \left[\vec{E} \times \vec{H} \right]$$
 - плотность потока энергии СГС: $\left[\frac{\text{эрг}}{\text{с} \cdot \text{см}^2} \right]$ СИ: $\left[\frac{\mathcal{J} \times \vec{K}}{\text{c} \cdot \text{M}^2} \right] = \left[\frac{\text{Bt}}{\text{M}^2} \right]$

|S| - энергия, переносимая ЭМ волной через единичную площадку ($\bot S)$ в единицу времени ??? проверить +физ смысл

10 Основные параметры плазмы (плазменная частота и дебаевский радиус)

Сигнал перемещается как целое со скоростью $\vec{V_{\text{гр}}}$????????????, скорость движения огибающей $r_{De} = \sqrt{\frac{kT_e}{4\pi Ne^2(T_e+T_i)}} = \sqrt{\frac{kT}{4\pi Ne^2}}$ - расстояние, за которое волна спадет в e раз при прохожде-этого импульса - $\vec{V_{\text{гр}}}$ нии через плазму / расстояние, которое проходит \overline{e} в плазме за время, порядка $\tau_p = \frac{2\pi}{\omega_p}$

> СИ: $[K \cdot Дж] T_e$ - температура электронного газа, T_i - температура ионного газа, N, e и m концетрация электронов а также их заряд и масса, к - постоянная Больцмана

$$k = \frac{R}{N_a}, N_a = \frac{m}{M} ???????????????$$

$$\omega_p = \frac{4\pi e^2 N}{m}$$
 - плазменная частота, СИ: $\left[\frac{\mathrm{pag}}{c}\right]$???

Это частота собственных продольных колебаний пространственного заряда в однородной плазме в отсутствие магнитного поля

11 Комплексная диэлектрическая проницаемость холодной изотропной плазмы

Диэлектрическая проницаемость показывает, во сколько раз сила взаимодействия двух электрических зарядов в конкретной среде меньше, чем в вакууме, для которого она равна 1

$$\mathcal{E}(\omega)=1-rac{\omega_{pe}^2}{\omega(\omega-i\nu_e)}-\chi$$
, где $\chi=rac{\omega_{pi}^2}{\omega(\omega-i\nu_i)}$ - ионная составляющая, которой можно пренебречь,

 ν_e - частота соударений электронов Вводятся абсолютная (\mathcal{E}_a) и относительная (\mathcal{E}_r) проницаемости. Величина \mathcal{E}_r безразмерна, а \mathcal{E}_a по размерности совпадает с электрической постоянной \mathcal{E}_0 - СИ: $\left\lfloor \frac{\mathrm{фарад}}{\mathrm{M}} \right\rfloor$

Эта величина связывет напряженность и индукцию поля: $D = \mathcal{E} \bar{E}$