Fordeling af ML estimator

Husk mængden

$$E = \{y : MLE \text{ eksisterer}\}$$

Definér rod af matrix

$$A^{1/2}: A = A^{1/2}(A^{1/2})^T$$

Denne eksisterer for positive semidefinitte matricer og er ikke nødvendigvis entydige. Cholesky dekomposition er én metode til at finde sådan en matrix.

Sætning

Underregularitetsbetingelser, gælder at når $n \to \infty$

- 1. $P(Y \in E) \to 1$: Hvis vi har et tilstrækkeligt stort datasæt, så er der stor chance for at MLE eksisterer
- 2. $P(Y \in E, ||\hat{\theta} \theta|| \le \varepsilon) \to 1, \forall \varepsilon > 0$ kaldes asymptotisk konsistens
- 3. $\mathbf{1}[y \in E]i(\hat{\theta})^{1/2}(\hat{\theta} \theta) \xrightarrow{D} N_k(0, I_k)$ $\mathbf{1}[y \in E]j(\hat{\theta})^{1/2}(\hat{\theta} - \theta) \xrightarrow{D} N_k(0, I_k)$ Disse er praktisk anvendelige
- 4. $\mathbf{1}[y \in E|i(\theta)(\hat{\theta} \theta) \xrightarrow{D} N_k(0, T_k)$ teoretisk

Bemærk: Hvis $y \in E$, så svarer 4. til $\hat{\theta} \stackrel{D}{\to} N_k(\theta, i^{-1}(\theta))$. Dette kaldes asymptotisk centralitet og har asymptotisk efficiens.

De tre ovenstående kvaliteter, asymptotisk konsistens, centralitet og efficiens, er ønskværdige for en estimator.

Hvis $Var_{i,i}(\hat{\theta})$ er det i'te diagonalelement af $j^{-1}(\hat{\theta})$, så

$$\hat{\theta}_i \stackrel{D}{\to} N(\theta_i, Var_{i,i}(\hat{\theta}))$$

Kvadratisk approksimation af log-likelihood

Lav en 2.-ordens Taylorapproksimation omkring $\hat{\theta}$ ($\hat{\theta}$ 1-dimensionel).

$$l(\theta) \approx l(\hat{\theta}) + l'(t\hat{heta})(\theta - \hat{\theta}) - \frac{1}{2}j(\hat{\theta})(\theta - \hat{\theta})^2$$

Midterste led er 0 da det er sådan vi har fundet $\hat{\theta}$. Dvs.

$$j_{norm} \approx -\frac{1}{2}j(\hat{\theta})(\theta - \hat{\theta})^2$$

Taylorapproksimationen kan ses som en normalfordelingsapproksimation. **Vektorversion**

$$l_{norm} \approx -\frac{1}{2}(\theta - \hat{\theta})^T j(\hat{\theta})(\theta - \hat{\theta})$$

Hypotesetest

Antag model $f_Y(y;\theta)$ med $\theta \in \Omega$. To hypoteser:

• Nulhypotese:

 $H_0: \theta \in \Omega_0, \Omega_0 \in \Omega$ a

• $H_1: \theta \in \Omega | \Omega_0$

Teststørrelse/teststatistik

T(Y). T funktion af data med kendt fordeling under H_0 , altså forudsat at den er rigtig, T(y) konkret værdi.

p-værdi

Sandsynligheden for at observere en teststørrelse der ligger mere ekstremt end den observerede, givet at H_0 er sand.

- Små p-værdier er (statistisk) bevis mod H_0 . Forkast H_0 .
- Store p-værdier: acceptér H_0 . Dette betyder ikke, at den er sand, men blot at data ikke siger at den er usand. Måske ikke nok data?

Fejl

- Sand H_0 men forkastes kaldes type 1 fejl
- Falsk H_0 men accepteres kaldes type 2 fejl

Sandsynligheden for en type 1 fejl kaldes signifikansniveau, $\alpha = P(\text{type 1})$. α vælges frit i (0,1), men typisk $\alpha = 0.05$. Den sætter grænsen for store/små p-værdier, dvs. forkest H_0 hvis $p < \alpha$.

Likelihood ratio test

Lav en nulhypotese

• $H_0: \theta \in \Omega_0, \dim(\Omega_0) = m$

• $H_1: \theta \in \Omega | \Omega_0, \dim(\Omega) = k$

• m < k

Likelihood ratio

$$\lambda(y) = \frac{\sup_{\theta \in \Omega_0} l(\theta; y)}{\sup_{\theta \in \Omega} l(\theta; y)} \in [0, 1]$$

Små værdier er kritiske for H_0 – H_0 forkastes hellere ved små værdier, mens store værdier bekræfter.

χ^2 -fordeling

Hvis $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(0,1)$, så er $X_1^2 + \ldots + X_n^2 \sim \chi^2(n)$. Hvor n er frihedsgrader.

Den er et specialtilfælde af gammafordelinge: $\chi^2(n) = \Gamma(\frac{n}{2}, 2)$.

Sætning

Givet regularitetsantagelser, så gælder under H_0 , at

$$-2\ln(\lambda(Y)) \stackrel{D}{\to} \chi^2(k-m)$$

når datamængden går mod uendelig.

Bemærk: store værdier af $-2\ln(\lambda(Y))$ er kritiske for H_0 . Testen kaldes højresidet, fordi det kritiske område ligger til højre i fordelingen.

p-værdi for likelihood ratio test

$$\begin{split} p(y) &= \sup_{\theta \in \Omega_0} P(\lambda(Y) \leq (\lambda(y)) \\ &= \sup_{\theta \in \Omega_o} P\left(-2\ln(\lambda(Y) \leq -2\ln(\lambda(y))\right) \end{split}$$