Convex Optimization - Al2101

Assignment - V

Bhuvan Chandra K

AI23BTECH11013

April 1, 2025

Question 3.29

A convex function $f: \mathbb{R}^n \to \mathbb{R}$, with dom $f = \mathbb{R}^n$, is called piecewise-linear if there exists a partition of \mathbb{R}^n as

$$\mathbb{R}^n = X_1 \cup X_2 \cup \cdots \cup X_L,$$

where int $X_i \neq \emptyset$ and int $X_i \cap \text{int } X_j = \emptyset$ for $i \neq j$, and a family of affine functions

$$a_1^T x + b_1, \dots, a_L^T x + b_L$$

such that

$$f(x) = a_i^T x + b_i$$
 for $x \in X_i$.

Show that such a function has the form

$$f(x) = \max\{a_1^T x + b_1, \dots, a_L^T x + b_L\}.$$

Solution:

f is a convex function, $f: \mathbb{R}^n \to \mathbb{R}$.

 \mathbb{R}^n is partitioned into regions X_1, X_2, \dots, X_l , where X_i has a non-empty interior and X_i, X_j don't overlap if $i \neq j$. On each region X_i , f is the affine function:

$$f(x) = a_i^T x + b_i.$$

Let:

$$g(x) = \max(a_1^T x + b_1, \dots, a_l^T x + b_l).$$

We need to show f(x) = g(x):

(i) $f(x) \le g(x)$, $\forall x$. Let x^* be a point from \mathbb{R}^n . x^* must belong to one of the regions X_k .

$$f(x^*) = a_k^T x^* + b_k.$$

Since g(x) is the maximum of all these affine functions:

$$g(x) = \max(a_1^T x + b_1, \dots, a_l^T x + b_l) \ge a_k^T x + b_k \quad \forall x$$

Thus:

$$g(x) \ge f(x) \quad \forall x.$$

(ii) $f(x) \ge g(x)$, $\forall x$. Expressing from the previous case, we have to show:

$$a_k^T x^* + b_k \ge a_j^T x^* + b_j, \quad \forall j$$

We consider the contradiction:

Let there be a $j^* \neq k$ such that the inequality fails: i.e.,

$$a_{j^*}^T x + b_{j^*} > a_k^T x + b_k$$
, for some $x \in X_k$.

Since: $int(X_i) \neq \emptyset$, X_i has something in it.

Let $y \in \text{int}(X_j)$, $f(y) = a_j^T y + b_j$. Given f is convex, choose: z = tx + (1 - t)y, where $t \in [0, 1]$, on the line joining x and y.

By convexity:

$$f(z) \le t f(x) + (1-t)f(y).$$

Note: As $t \to 0$, z goes into int(X_i).

Thus:

$$f(z) = a_j^T z + b_j = a_j^T (tx + (1 - t)y) + b_j,$$

$$f(z) = t(a_i^T x + b_i) + (1 - t)(a_i^T y + b_i).$$

Note: Since on the line joining x, y, there should be some point such that $z \in X_k$. Let that point be z^* .

$$a_k^T z^* + b_k = a_i^T z^* + b_i.$$

i.e for points z from x to z^*

$$a_k^T z + b_k \ge a_i^T + b_j$$

Since *x* is on this line segment:

$$a_k^T x + b_k \ge a_i^T x + b_j.$$

This is a contradiction to our assumption. So our assumption is wrong.

So for any $x \in X_k$, we have:

$$a_k^T x + b_k \ge a_j^T x + b_j, \quad \forall j,$$

which gives:

$$f(x) \ge g(x)$$
.

From (i) and (ii):

$$f(x) = g(x) = \max(a_1^T x + b_1, \dots, a_l^T x + b_l).$$

Question 3.30

Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined as

$$g(x) = \inf\{t \mid (x, t) \in \text{conv epi } f\}.$$

Geometrically, the epigraph of g is the convex hull of the epigraph of f.

Show that g is the largest convex underestimator of f. In other words, show that if h is convex and satisfies $h(x) \le f(x)$ for all x, then $h(x) \le g(x)$ for all x.

Solution:

We need to show that the convex hull or envelope of a function is the largest convex underestimator of that function.

For a function $f: \mathbb{R}^n \to \mathbb{R}$,

epi
$$f = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : t \ge f(x)\}.$$

The convex hull of set *S* is the smallest convex set containing *S*, denoted by conv *S*.

As defined in the question, the envelope of f(g(x)) is:

$$g(x) = \inf\{t | (x, t) \in \text{conv}(\text{epi } f)\}.$$

(i) Let us prove g(x) is convex.

The epigraph of g:

epi
$$g = \{(x, t) | g(x) \le t\}.$$

Since g(x) is defined using the infimum over conv(epi f), g(x) is the smallest function whose epigraph equals conv(epi f).

$$\operatorname{epi} g = \operatorname{conv}(\operatorname{epi} f).$$

By definition, conv(epi f) is convex. So g(x) has a convex epigraph, which makes g(x) convex.

(ii) We show $g(x) \le f(x)$, $\forall x$.

From the definition of epi $f:(x, f(x)) \in \text{epi } f$.

From the definition of the convex hull of epi f:

epi
$$f \subseteq \operatorname{conv}(\operatorname{epi} f)$$
.

This means: $(x, f(x)) \in \text{conv}(\text{epi } f)$. Since g(x) is the infimum of t for which $(x, t) \in \text{conv}(\text{epi } f)$, we get:

$$g(x) \le f(x), \forall x.$$

(iii) Now we need to prove: If k(x) is a convex function and $k(x) \le f(x)$, $\forall x$, then $k(x) \le g(x)$, $\forall x$.

From the assumption: k(x) is a convex function and $k(x) \le f(x)$, $\forall x$.

From the definition of the epigraph:

$$\operatorname{epi} k \supseteq \operatorname{epi} f$$
.

Since k(x) is lower than f(x), it has more elements including that of f(x), i.e., epi k contains epi f.

As k(x) is convex, epi k is also convex.

Note: conv(epi f) is the smallest convex set containing epi f. We get that since epi k is convex and contains epi f, it also contains the convex hull of epi f. Thus:

$$epi k \supseteq conv(epi f)$$
.

So any point in conv(epi f) should also be in epi k.

If: $(x, t) \in \text{conv}(\text{epi } f), t \ge k(x)$.

Let:

$$S_1 = \{t \mid (x, t) \in \text{conv}(\text{epi } f)\},\$$

 $S_2 = \{t \mid t \ge h(x)\}.$

As we have seen, $S_1 \subseteq S_2$.

From the result $S_1 \subseteq S_2 \implies \inf(S_1) \ge \inf(S_2)$. (For every element in S_1 , $S_2's$ lower bound is also a lower bound.) So:

$$g(x) = \inf\{t \mid (x, t) \in \operatorname{conv}(\operatorname{epi} f)\} \ge \inf\{t \mid t \ge h(x)\}.$$

Since:

$$\inf\{t\mid t\geq h(x)\}=h(x).$$

Hence:

$$g(x) > h(x), \quad \forall x$$

From (i), (ii), and (iii), g is the largest convex underestimator of f.

Question 3.31

Let *f* be a convex function. Define the function *g* as

$$g(x) = \inf_{\alpha > 0} \frac{f(\alpha x)}{\alpha}.$$

(a) Show that g is homogeneous $(g(tx) = tg(x) \text{ for all } t \ge 0)$. (b) Show that g is the largest homogeneous underestimator of f: If h is homogeneous and $h(x) \le f(x)$ for all x, then we have $h(x) \le g(x)$ for all x. (c) Show that g is convex.

Solution:

Given *f* is a convex function:

$$g(x) = \inf_{\alpha > 0} \frac{f(\alpha x)}{\alpha}$$

(a) For t > 0:

$$g(tx) = \inf_{\alpha > 0} \frac{f(\alpha(tx))}{\alpha}.$$

Let us put $\beta = \alpha t$: If $\alpha > 0$, t > 0 then $\beta > 0$.

Thus:

$$g(tx) = \inf_{\beta > 0} \frac{f(\beta x)}{\beta / t}.$$

Simplifying:

$$g(tx) = tg(x), \quad \forall t > 0.$$

So g(x) is homogeneous.

(b) We need to show that g(x) is the largest homogeneous underestimator of f. If h(x) is homogeneous and $h(x) \le f(x)$, $\forall x$, then we have $h(x) \le g(x)$, $\forall x$. First, let's show that g(x) is an underestimator of f. i.e,

$$g(x) \le f(x), \ \forall x.$$

If we put a = 1 in the expression for g(x):

$$g(x) = \inf_{\alpha > 0} \frac{f(\alpha x)}{\alpha} \le \frac{f(x)}{1}.$$

Since:

$$g(x) \leq f(x), \forall x,$$

g is an underestimator of f.

Let *h* be a homogeneous function. Assume $h(x) \le f(x)$, $\forall x$. For any *x*, and any $\alpha > 0$:

$$h(\alpha x) = \alpha h(x) \le f(\alpha x).$$

Dividing by α :

$$h(x) \le \frac{f(\alpha x)}{\alpha} \quad \forall \alpha$$

Since the above equation holds for all α , the infimum over $\alpha > 0$ also holds:

$$h(x) \le \inf_{\alpha > 0} \frac{f(\alpha x)}{\alpha}$$

Thus:

$$h(x) \leq g(x), \forall x.$$

So g is the largest homogeneous underestimator of f.

(c) We need to show g is convex.

For any x_1, x_2 , and any $\lambda \in [0, 1]$:

$$g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2).$$

Let $\epsilon > 0$, and let $\alpha_1, \alpha_2 > 0$.

From the definition of g(x):

$$\frac{f(\alpha_1 x_1)}{\alpha_1} \le g(x_1) + \epsilon,$$

and:

$$\frac{f(\alpha_2 x_2)}{\alpha_2} \le g(x_2) + \epsilon.$$

Define: $z = \lambda d_1 x_1 + (1 - \lambda) d_2 x_2$.

Since *f* is convex:

$$f(z) \le \lambda \frac{f(\alpha_1 x_1)}{\alpha_1} + (1 - \lambda) \frac{f(\alpha_2 x_2)}{\alpha_2}.$$

From the previous inequalities:

$$f(z) \le \lambda(g(x_1) + \epsilon) + (1 - \lambda)(g(x_2) + \epsilon)$$

$$f(z) \le \lambda(g(x_1)) + (1 - \lambda)(g(x_2)) + \epsilon$$

Since g is an underestimator of f,

$$g(z) \le f(z)$$
.

Substituting:

$$g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2) + \epsilon.$$

This holds for any $\epsilon > 0$.. So,

$$g(\lambda x_1 + (1-\lambda)x_2) \le \lambda g(x_1) + (1-\lambda)g(x_2).$$

This shows that *g* is convex.

Question 3.33

Give a direct proof that the perspective function g, as defined in §3.2.6, of a convex function f is convex: Show that dom g is a convex set, and that for $(x,t), (y,s) \in \text{dom } g$, and $0 \le \theta \le 1$, we have

$$g(\theta x + (1-\theta)y, \theta t + (1-\theta)s) \le \theta g(x,t) + (1-\theta)g(y,s).$$

Solution:

Given $f : \mathbb{R} \to \mathbb{R}$ is a convex function. The perspective function $g : \mathbb{R}^{n+1} \to \mathbb{R}$ is defined as:

$$g(x,t) = tf\left(\frac{x}{t}\right), \quad t > 0.$$

We need to show that dom *g* is convex.

$$\operatorname{dom} g = \{(x,t) \mid \frac{x}{t} \in \operatorname{dom} f, \, t > 0\}.$$

Let: $(x_1, t_1), (x_2, t_2) \in \text{dom } g.$

From the definition of dom g:

$$\frac{x_1}{t_1} \in \operatorname{dom} f, \quad t_1 > 0,$$

and:

$$\frac{x_2}{t_2} \in \operatorname{dom} f, \quad t_2 > 0.$$

For some $\theta \in [0,1]$,, Define:

$$(x_3, t_3) = (\theta x_1 + (1 - \theta)x_2, \theta t_1 + (1 - \theta)t_2).$$

We need to prove:

$$(x_3, t_3) \in \text{dom } g$$
.

From the definition:

$$t_3 = \theta t_1 + (1 - \theta)t_2 > 0$$
, (all terms are positive), Sot₃ > 0.

Now we need:

$$\frac{x_3}{t_3} = \frac{\theta x_1 + (1 - \theta) x_2}{\theta t_1 + (1 - \theta) t_2} \in \text{dom } f.$$

$$x_3 / t_3 = \frac{\theta t_1}{\theta t_1 + (1 - \theta) t_2} \cdot \frac{x_1}{t_1} + \frac{(1 - \theta) t_2}{\theta t_1 + (1 - \theta) t_2} \cdot \frac{x_2}{t_2}.$$

Define:

$$\beta = \frac{\theta t_1}{\theta t_1 + (1 - \theta)t_2}, \quad (1 - \beta) = \frac{(1 - \theta)t_2}{\theta t_1 + (1 - \theta)t_2}.$$

we have: $\beta > 0$, $(1 - \beta) > 0$.

Thus:

$$\frac{x_3}{t_3} = \beta \left(\frac{x_1}{t_1}\right) + (1 - \beta) \left(\frac{x_2}{t_2}\right).$$

Since x_1/t_1 , $x_2/t_2 \in \text{dom } f$, and dom f is convex, we conclude:

$$\beta\left(\frac{x_1}{t_1}\right) + (1-\beta)\left(\frac{x_2}{t_2}\right) \in \operatorname{dom} f.$$

Thus:

$$x_3/t_3 \in \text{dom } f$$
.

We have $x_3/t_3 \in \text{dom } f$, and $t_3 > 0$. So: $(x_3, t_3) \in \text{dom } g$. Hence:

dom g is convex.

We need to show g(x,t) is convex. Take $(x_1,t_1),(x_2,t_2) \in \text{dom } g$, and let $\theta \in [0,1]$. Define:

$$g(\theta(x_1,t_1)+(1-\theta)(x_2,t_2))=g(\theta x_1+(1-\theta)x_2,\theta t_1+(1-\theta)t_2).$$

Expanding:

$$g(\theta x_1 + (1-\theta)x_2, \, \theta t_1 + (1-\theta)t_2) = (\theta t_1 + (1-\theta)t_2)f\left(\frac{\theta x_1 + (1-\theta)x_2}{\theta t_1 + (1-\theta)t_2}\right).$$

Like before, define:

$$\beta = \frac{\theta t_1}{\theta t_1 + (1 - \theta)t_2}, \quad (1 - \beta) = \frac{(1 - \theta)t_2}{\theta t_1 + (1 - \theta)t_2},$$

Thus:

$$\frac{\theta x_1 + (1 - \theta)x_2}{\theta t_1 + (1 - \theta)t_2} = \frac{\beta x_1}{t_1} + \frac{(1 - \beta)x_2}{t_2}$$

Since f(x) is convex:

$$f\left(\beta\frac{x_1}{t_1} + (1-\beta)\frac{x_2}{t_2}\right) \leq \beta f\left(\frac{x_1}{t_1}\right) + (1-\beta)f\left(\frac{x_2}{t_2}\right).$$

Substituting back:

$$g(\theta x_1 + (1 - \theta)x_2, \theta t_1 + (1 - \theta)t_2) \le (\theta t_1 + (1 - \theta)t_2) \left[\beta f\left(\frac{x_1}{t_1}\right) + (1 - \beta)f\left(\frac{x_2}{t_2}\right)\right].$$

Simplifying further:

$$g(\theta x_1 + (1-\theta)x_2, \theta t_1 + (1-\theta)t_2) \le \frac{\theta t_1}{\theta t_1 + (1-\theta)t_2}g(x_1, t_1) + \frac{(1-\theta)t_2}{\theta t_1 + (1-\theta)t_2}g(x_2, t_2),$$

Thus:

$$g(\theta x_1 + (1-\theta)x_2, \theta t_1 + (1-\theta)t_2) \le \theta g(x_1, t_1) + (1-\theta)g(x_2, t_2).$$

This shows that g(x, t) is a convex function.