Classroom notes of Vector Differential Calculus

from Chapter 9 of

Advanced Engineering Mathematics, E. Kreyszig, 10th Edition

Dr. Athar Kharal*

Contents

1	Vectors in 2-Space and 3-Space	1
2	Inner Product (Dot Product)	4
3	Vector Product (aka Cross Product, Outer Product)	6
4	Vector and Scalar Functions and their Fields 4.1 Vector Calculus	9 11
5	Curves and Arc Length	12
6	Gradient of a Scalar Field	16
7	Divergence of a Vector Field	19
8	Curl of a Vector Field	21

1 Vectors in 2-Space and 3-Space

Definition 1 We have following definitions:

- 1. A vector is a quantity that has both magnitude and direction.
- 2. $\mathbf{a} = \mathbf{b} \iff they \ have \ same \ length \ and \ same \ direction.$
- 3. For \mathbf{a} with initial point $P(x_1, y_1, z_1)$ and terminal point $Q(x_2, y_2, z_2)$, components of \mathbf{a} are given as

$$a_1 = x_2 - x_1$$
, $a_2 = y_2 - y_1$, $a_3 = z_2 - z_1$.

Moreover **a** is written as $\mathbf{a} = [a_1, a_2, a_3]$.

- 4. Length $|\mathbf{a}|$ is given as $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$
- 5. A vector of length 1 is called a unit vector. Unit vector in the direction of a given vector \mathbf{a} may be computed as $\mathbf{u} = \frac{\mathbf{a}}{|\mathbf{a}|}$.
- 6. Position vector \mathbf{r} of a point A(x,y,z) is the vector with the origin (0,0,0) as initial point and A(x,y,z) as the terminal

^{*}email: atharkharal@gmail.com cell:0092 323 7263699 LlinkedIn: https://pk.linkedin.com/in/atharkharal, Website: atharkharal.github.io

point.

7. A vector that can be displaced parallel to itself and applied at any point is known as a free vector.

- 8. For $\mathbf{a} = [a_1, a_2, a_3]$ and $\mathbf{b} = [b_1, b_2, b_3]$ and c any real number:
 - Vector addition is defined as $\mathbf{a} + \mathbf{b} = [a_1 + b_1, a_2 + b_2, a_3 + b_3]$, and it has the properties: $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$, $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$, $\mathbf{a} + \mathbf{0} = \mathbf{0} + \mathbf{a} = \mathbf{a}$, $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$.

• Scalar multiplication is defined as $c\mathbf{a} = [ca_1, ca_2, ca_3]$, and it has the properties: $c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$, $(c+k)\mathbf{a} = (c\mathbf{a} + k\mathbf{a})$, $c(k\mathbf{a}) = (ck)\mathbf{a}$, $1\mathbf{a} = \mathbf{a}$.

9. $\mathbf{a} = [a_1, a_2, a_3]$ is also written as $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ where $\mathbf{i} = [1, 0, 0]$, $\mathbf{j} = [0, 1, 0]$ and $\mathbf{k} = [0, 0, 1]$.

The unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$

Example 2 (10ed-9.1-3) Find components of the vector with initial point P(-3.5, 4.0, -1.5) and terminal point Q(7.5, 0, 1.5). Find $|\mathbf{v}|$. Find the unit vector \mathbf{u} in the direction of \mathbf{v} . Sketch \mathbf{v} .

Solution: We have

$$\mathbf{v} = [7.5 - (-3.5), 0 - 4.0, 1.5 - (-1.5)]$$

$$= [11.0, -4.0, 3.0]$$

$$|\mathbf{v}| = \sqrt{(11.0)^2 + (-4.0)^2 + (3.0)^2} = \sqrt{146.0} = 12.083$$

$$\mathbf{u} = \frac{1}{|\mathbf{v}|} \mathbf{v} = \frac{1}{12.083} [11.0, -4.0, 3.0] = [0.91, -0.33, 0.24]$$

The sketch is given as

Example 3 (10ed-9.1-9) Find the terminal point Q of the vector \mathbf{v} with components 3, 1, -3 and initial point P(3, -1, -1). Find $|\mathbf{v}|$.

Solution: Let Q be the point Q(x, y, z), then

$$\begin{array}{rcl} \overline{PQ} & = & [x-3,y+1,z+1] = \mathbf{v} = [3,1,-3] \\ & \Rightarrow & \begin{cases} x-3=3 & x=0 \\ y+1=1 & give \ y=0 \\ z+1=-3 & z=-4 \end{cases} \\ Hence \ Q & = & (x,y,z) = (0,0,-4) \\ |\mathbf{v}| & = & \sqrt{3^2+1^2+(-3)^2} = \sqrt{19} \end{array} \blacksquare$$

Example 4 (10ed-9.1-16) For $\mathbf{a} = [2, 3, 0]$ and $\mathbf{c} = [-1, 5, 3] = -\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$, find $\frac{6}{2}\mathbf{a} - 2\mathbf{c}$ and $6\left(\frac{1}{2}\mathbf{a} - \frac{1}{3}\mathbf{c}\right)$? **Solution:**

$$\begin{aligned} \frac{6}{2}\mathbf{a} - 2\mathbf{c} &= \frac{6}{2}\left[2, 3, 0\right] - 2\left[-1, 5, 3\right] = \left[6, 9, 0\right] - \left[-2, 10, 6\right] = \left[8, -1, -6\right] = 8\mathbf{i} - \mathbf{j} - 6\mathbf{k} \\ 6\left(\frac{1}{2}\mathbf{a} - \frac{1}{3}\mathbf{c}\right) &= 6\left(\frac{1}{2}\left[2, 3, 0\right] - \frac{1}{3}\left[-1, 5, 3\right]\right) = 6\left(\left[1, \frac{3}{2}, 0\right] - \left[-\frac{1}{3}, \frac{5}{3}, 1\right]\right) \\ &= 6\left[\frac{4}{3}, -\frac{1}{6}, -1\right] = \left[8, -1, -6\right] = 8\mathbf{i} - \mathbf{j} - 6\mathbf{k} \end{aligned}$$

Example 5 (10ed-9.1-24) Find the resultant in terms of components and its magnitude for $\mathbf{p} = [-1, 2, -3]$, $\mathbf{q} = [1, 1, 1]$ and $\mathbf{u} = [1, -2, 2]$?

Solution: Since resultant of force vectors is the algebraic sum of vectors, we have

$$\mathbf{r} = \mathbf{p} + \mathbf{q} + \mathbf{u}$$

$$= [-1, 2, -3] + [1, 1, 1] + [1, -2, 2]$$

$$= [-1 + 1 + 1, 2 + 1 - 2, -3 + 1 + 2]$$

$$= [1, 1, 0] = \mathbf{i} + \mathbf{j}$$

$$|\mathbf{r}| = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{2}$$

2 Inner Product (Dot Product)

Definition 6 The inner product (aka dot product) of vectors \mathbf{a} and \mathbf{b} with γ ($0 \le \gamma \le \pi$) being the angle inbetween, is defined as $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \gamma$. In components form we have $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$. Also note that $|\mathbf{a}| = \sqrt{a \cdot a}$ and using this one also writes

$$\cos \gamma = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\mathbf{a} \cdot \mathbf{a}} \sqrt{\mathbf{b} \cdot \mathbf{b}}}.$$

Angle between vectors and value of inner product

Remark 7 Dot product possesses following properties:

Linearity: $(q_1\mathbf{a} + q_2\mathbf{b}) \cdot \mathbf{c} = q_1\mathbf{a} \cdot \mathbf{c} + q_2\mathbf{b} \cdot \mathbf{c}$, Symmetry: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$, Positive-definiteness: $\mathbf{a} \cdot \mathbf{a} \ge 0$ and $\mathbf{a} \cdot \mathbf{a} = 0 \iff \mathbf{a} = \mathbf{0}$, Distributivity: $(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}$, Cauchy-Schwarz inequality: $|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| |\mathbf{b}|$, Triangle inequality: $|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$, Parallelogram equality: $|\mathbf{a} + \mathbf{b}|^2 + |\mathbf{a} - \mathbf{b}|^2 = 2(|\mathbf{a}|^2 + |\mathbf{b}|^2)$.

Question: What force in the rope in figure will hold a car of 5000 lb in equilibrium if the ramp makes an angle of 25° with the horizontal?

Solution: Introducing coordinates as shown

the weight is $\mathbf{a} = [0, -5000]$. We have to represent \mathbf{a} as sum of two forces i.e. the force exerted on the ramp by car and force dragging back the car due to slope of ramp, symbolically $\mathbf{a} = \mathbf{c} + \mathbf{p}$. A vector in direction of rope is $\mathbf{b} = [-1, \tan 25^{\circ}] = [-1, 0.46631]$, thus $|\mathbf{b}| = \sqrt{(-1)^2 + (0.46631)^2} = 1.1034$.

Direction of the balancing force has to be a unit vector opposite to that of the rope, i.e.

$$\hat{\mathbf{u}} = -\frac{\mathbf{b}}{|\mathbf{b}|} = -\frac{1}{1.1034} [-1, 0.46631] = [0.90629, -0.42261]$$

So the required force will be in direction of opposite to \mathbf{p} and, secondly, it should be such that its addition to \mathbf{c} should give resultant as \mathbf{a} . Second condition implies, we have to find the component of \mathbf{a} in direction of \mathbf{p} i.e.

$$|\mathbf{p}| = \mathbf{a} \cdot \hat{\mathbf{u}} = [0, -5000] \cdot [0.90629, -0.42261] = 2113.1 \ lb$$

Remark 8 For the plane Ax + By + Cz + D = 0, the vector $\mathbf{n} = [A, B, C]$ is normal to the given plane.

Question: (10ed-9.2-5) Find $|\mathbf{a} + \mathbf{c}|^2 + |\mathbf{a} - \mathbf{c}|^2 - 2(|\mathbf{a}|^2 + |\mathbf{c}|^2)$ where $\mathbf{a} = [1, 3, 5]$, $\mathbf{b} = [4, 0, 8]$, $\mathbf{c} = [2, 9, 1]$. **Solution:**

$$|\mathbf{a} + \mathbf{c}|^{2} + |\mathbf{a} - \mathbf{c}|^{2} - 2\left(|\mathbf{a}|^{2} + |\mathbf{c}|^{2}\right)$$

$$= |[1, 3, 5]|^{2} + |[2, 9, 1]|^{2} - 2\left(|[1, 3, 5]|^{2} + |[2, 9, 1]|^{2}\right)$$

$$= |[1, 3, 5]|^{2} + |[2, 9, 1]|^{2} - 2\left(|[1, 3, 5]|^{2} + |[2, 9, 1]|^{2}\right)$$

$$= \left(\sqrt{35}\right)^{2} + \left(\sqrt{86}\right)^{2} - 2\left(\left(\sqrt{35}\right)^{2} + \left(\sqrt{86}\right)^{2}\right)$$

$$= -121 \quad \blacksquare$$

Question: (10ed-9.2-20) Find the work done by a force $\mathbf{p} = [6, -3, -3]$ acting on a body if the body is displaced along the straight segment \overline{AB} from A: (1,5,2) and B: (3,4,1). Sketch \overline{AB} and \mathbf{p} . Show the details.

Solution: We have $\overline{AB} = [3-1, 4-5, 1-2] = [2, -1, -1]$ and work w is given as

$$w = \overline{AB} \cdot \mathbf{p} = [2, -1, -1] \cdot [6, -3, -3] = 18$$

Here are the sketch of both vectors $\overline{AB}=[2,-1,-1]$ and $\mathbf{p}=[6,-3,-3]$

Question: (10ed-9.2-30) Find the distance of the point A(1,0,2) from the plane P:3x+y+z=9. Make a sketch. **Solution:** The unit vector normal to the plane P is given as

$$\mathbf{n} = 3\mathbf{i} + \mathbf{j} + \mathbf{k} \Rightarrow \frac{\mathbf{n}}{|\mathbf{n}|} = \frac{1}{\sqrt{11}} (3\mathbf{i} + \mathbf{j} + \mathbf{k})$$

A point Q on plane is its x-intercept hence, $[3x + y + z - 9]_{x=x,y=0,z=0} \Rightarrow x = 3$ gives Q:(3,0,0) and the vector QA = [1-3,0-0,2-0] = [-2,0,2]

Projection on plane's unit normal vector is the distance and is given as $QA \cdot \frac{\mathbf{n}}{|\mathbf{n}|} = [-2, 0, 2] \cdot \frac{1}{\sqrt{11}} [3, 1, 1] = \frac{1}{\sqrt{11}} (-6 + 0 + 2) = \frac{4}{\sqrt{11}}$

Sketch is given as

Question: (10ed-9.2-32) For what c are P: 3x+z=5 and Q: 8x-y+cz=9 orthogonal?

Solution: Normal vectors to the given planes are

for
$$P: [3, 0, 1]$$
 and for $Q: [8, -1, c]$

Both these planes will be orthogonal iff dot product of their normal vectors is zero, i.e.

$$[3,0,1] \cdot [8,-1,c] = 0$$

 $24+c = 0 \Rightarrow c = -24$

Question: (10ed-9.2-37) Find the component of $\mathbf{a} = [3, 4, 0]$ in the direction of $\mathbf{b} = [4, -3, 2]$. Make a sketch.

Solution: The mere direction of **b** is given by its unit vector i.e. $\frac{\mathbf{b}}{|\mathbf{b}|} = \left[\frac{4}{\sqrt{29}}, -\frac{3}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right]$. hence the component of **a** in direction of **b** is $\mathbf{a} \cdot \frac{\mathbf{b}}{|\mathbf{b}|} = [3, 4, 0] \cdot \left[\frac{4}{\sqrt{29}}, -\frac{3}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right] = 0$. Sketch:

3 Vector Product (aka Cross Product, Outer Product)

Definition 9 The vector product $\mathbf{a} \times \mathbf{b}$ of two vectors $\mathbf{a} = [a_1, a_2, a_3]$ and $\mathbf{b} = [b_1, b_2, b_3]$ is the vector defined as

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Remark 10 We have:

- 1. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \gamma$, where γ is the angle between \mathbf{a} and \mathbf{b} .
- 2. Magnitude (length) of $\mathbf{a} \times \mathbf{b}$ is exactly equal to the area of the parallelogram formed by \mathbf{a} and \mathbf{b} .

3. The direction of $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b} , such that $\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$ (precisely in this written order) forms a right-handed triple.

- 4. If $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$ or $\gamma = 0^{\circ}$, 180° then $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.
- 5. Cross product is anticommutative i.e. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$.

 and $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$, $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$, $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$.

Specifically we have $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$

6. For every scalar l,

$$\begin{array}{rcl} (l\mathbf{a}) \times \mathbf{b} & = & l\left(\mathbf{a} \times \mathbf{b}\right) = \mathbf{a} \times (l\mathbf{b}) \\ \mathbf{a} \times (\mathbf{b} + \mathbf{c}) & = & (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c}) \\ (\mathbf{a} + \mathbf{b}) \times \mathbf{c} & = & (\mathbf{a} \times \mathbf{c}) + (\mathbf{a} \times \mathbf{b}) \\ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) & = & (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \end{array}$$

7. The moment \mathbf{m} of a force \mathbf{p} about a point Q is defined as $\mathbf{m} = \mathbf{r} \times \mathbf{p}$, where \mathbf{r} is the vector from Q to any point A on the line of action of \mathbf{p} (say) L.

Furthermore, $|\mathbf{m}| = m = |\mathbf{p}| d$, where d is perpendicular distance between Q and L.

8. The velocity vector \mathbf{v} of a point P on rotating body B is given as $\mathbf{v} = \mathbf{w} \times \mathbf{r}$ (see figure for description)

Moreover $|\mathbf{v}| = |\mathbf{w} \times \mathbf{r}| = \omega d$, where ω is the angular speed and $|\mathbf{w}| = \omega$.

Question: Find the moment of the force \mathbf{p} about the centre Q of the wheel given in figure below:

Solution: Introducing coordinates, we have $\mathbf{p} = [1000\cos 30^{\circ}, 1000\sin 30^{\circ}, 0] = [866, 500, 0]$ and $\mathbf{r} = [0, 1.5, 0]$. Hence the moment is given as

$$\mathbf{m} = \mathbf{r} \times \mathbf{p} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1.5 & 0 \\ 866 & 500 & 0 \end{vmatrix} = [0, 0, -1299] = -1299\mathbf{k}$$

Question: (10ed-9.3-7) A wheel is rotating about the y-axis with angular speed $\omega = 20\,\mathrm{sec}^{-1}$. The rotation appears clockwise if one looks from the origin in the positive y-direction. Find the velocity and speed at the point [8, 6, 0]. Make a sketch.

Solution: As the wheel is on positive y-axis and we also know that magnitude of the vector \mathbf{w} equals the angular velocity

$$\omega$$
, hence we have $\mathbf{w} = [0, 20, 0]$. Position vector of point $(8, 6, 0)$ is given as $\mathbf{r} = [8, 6, 0]$. Hence $\mathbf{v} = |\mathbf{w} \times \mathbf{r}| = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 20 & 0 \\ 8 & 6 & 0 \end{vmatrix} = 0$

7

Definition 11 Scalar triple product (aka Mixed Product) of three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is defined and denoted as $(\mathbf{a} \ \mathbf{b} \ \mathbf{c}) = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$.

Remark 12 We have the properties of scalar triple product as

1.
$$(\mathbf{a} \ \mathbf{b} \ \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

2. $|(\mathbf{a} \ \mathbf{b} \ \mathbf{c})|$ is the volume of parallelpiped with edges \mathbf{a}, \mathbf{b} and \mathbf{c} .

Geometric interpretation of a scalar triple product

3.
$$|(\mathbf{a} \ \mathbf{b} \ \mathbf{c})| = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| = |\mathbf{a}| |\mathbf{b} \times \mathbf{c}| |\cos \gamma|$$

Question: (10ed-9.3-13) With respect to right-handed Cartesian coordinates, showing the details find $\mathbf{c} \times (\mathbf{a} + \mathbf{b})$ and $\mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$, where $\mathbf{a} = [1, -2, 0]$, $\mathbf{b} = [-2, 3, 0]$, $\mathbf{c} = [2, -4, -1]$.

Solution:

$$\mathbf{c} \times (\mathbf{a} + \mathbf{b}) = [2, -4, -1] \times ([1, -2, 0] + [-2, 3, 0])$$

$$= [2, -4, -1] \times [-1, 1, 0]$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & -1 \\ -1 & 1 & 0 \end{vmatrix} = (0 + 1)\mathbf{i} - (0 - 1)\mathbf{j} + (2 - 4)\mathbf{k} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$$

$$\mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c} = [1, -2, 0] \times [2, -4, -1] + [-2, 3, 0] \times [2, -4, -1]$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 0 \\ 2 & -4 & -1 \end{vmatrix} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 3 & 0 \\ 2 & -4 & -1 \end{vmatrix}$$

$$= (2i + j) + (-3i - 2j + 2k)$$

= $-i - j + 2k = -(i + j - 2k)$

Question: (10ed-9.3-28) Find the area of quadrangle Q whose vertices are the midpoints of of the sides of quadrangle P with vertices A(2,1,0), B(5,-1,0), C(8,2,0) and D(4,3,0). Verify that Q is a parallelogram.

Solution: Let E, F, G and H be mid points of the segments AB, BC, CD and AD, respectively. Then

$$E = midpoint\left(A, B\right) = \left(\frac{2+5}{2}, \frac{1-1}{2}, \frac{0+0}{2}\right) = \left(\frac{7}{2}, 0, 0\right)$$

Similarly $F\left(\frac{13}{2}, \frac{1}{2}, 0\right)$, $G\left(6, \frac{5}{2}, 0\right)$ and $H\left(3, 2, 0\right)$. Sketch is given as

Hence area of Q is given as

$$|\overline{EF} \times \overline{FG}| = \left| \left[\frac{13}{2} - \frac{7}{2}, \frac{1}{2} - 0, 0 - 0 \right] \times \left[6 - \frac{13}{2}, \frac{5}{2} - \frac{1}{2}, 0 - 0 \right] \right|$$

$$= \left| \left[3, \frac{1}{2}, 0 \right] \times \left[-\frac{1}{2}, 2, 0 \right] \right|$$

$$= \left| \left[0, 0, \frac{25}{4} \right] \right| = \frac{25}{4}$$

Question: (10ed-9.3-33) Find the volume of the tetrahedron whose vertices are (1, 1, 1), (5, -7, 3), (7, 4, 8) and (10, 7, 4). **Solution:** $\mathbf{a} = (5, -7, 3) - (1, 1, 1) = \begin{bmatrix} 4 & -8 & 2 \end{bmatrix}$

$$\mathbf{b} = (7, 4, 8) - (1, 1, 1) = \begin{bmatrix} 6 & 3 & 7 \\ 0 & 6 & 3 \end{bmatrix}$$
$$\mathbf{c} = (10, 7, 4) - (1, 1, 1) = \begin{bmatrix} 9 & 6 & 3 \end{bmatrix}$$

volume of tetrahedron= $\frac{1}{6}$ vol of parallelopiped= $\frac{1}{6}$ (**a b c**) = $\frac{1}{6}$ $\begin{vmatrix} 4 & -8 & 2 \\ 6 & 3 & 7 \\ 9 & 6 & 3 \end{vmatrix}$ = $\frac{1}{6}$ | -474| = 79

4 Vector and Scalar Functions and their Fields

Definition 13 For any point P(x, y, z),

- the vector function \mathbf{v} is defined as $\mathbf{v} = \mathbf{v}(P) = [v_1(x, y, z), v_2(x, y, z), v_3(x, y, z)],$
- the scalar function f is defined as f(P) = f(x, y, z).

Remark 14 Field is a region in which every point has a defined value or vector attached to it through a scalar or vector function. The field is accordingly named as scalar field or vector field. Examples of scalar fields are: Temperature field of a

 $body\ and\ pressure\ field\ of\ air\ in\ Earth's\ atmosphere.$

Examples of vector field are: gravitational field, electromagnetic field, flow field around an aircraft, field of tangent vectors of a curve and field of normal vectors of a surface.

Remark 15 NASA's Seasat used radar to take 350,000 wind measurements over the world's oceans. In the figure below, the arrows show wind direction; their length and the color contouring indicate speed: hence a vector field! Notice the heavy storm

4.1 Vector Calculus

Definition 16 The derivative of a vector function $\mathbf{v}(t) = [v_1(t), v_2(t), v_3(t)]$ is given as $\mathbf{v}'(t) = [v_1'(t), v_2'(t), v_3'(t)]$.

Question: (10ed-9.4-5) Let the temperature T in a body be independent of z so that it is given by a scalar function T = T(x,t). Identify the isotherms T(x,y) = const for $T(x,y) = \frac{y}{x^2+y^2}$. Also sketch some of them.

Solution: For isotherms put $T(x,y) = \frac{y}{x^2 + y^2} = c$, where c is a constant. In such questions we try to unearth an equation of a familiar curve. Here denominator indicates something near to a circle, perhaps. So we proceed as follows:

$$\frac{y}{x^2 + y^2} = c \Rightarrow \frac{x^2 + y^2}{y} = \frac{1}{c} \Rightarrow x^2 + y^2 = \frac{y}{c} \Rightarrow x^2 + y^2 - \frac{y}{c} = 0$$
Completeing square $x^2 + y^2 - \frac{y}{c} + \left(\frac{1}{2c}\right)^2 - \left(\frac{1}{2c}\right)^2 = 0$

$$x^2 + \left(y - \frac{1}{2c}\right)^2 = \frac{1}{4c^2}$$

Hence the isotherms for this scalar field are circles with centre $(0, \frac{1}{2c})$ and radius $\frac{1}{2c}$. Isotherms for $c = \frac{1}{2}, 3$ and 5 are sketched below:

Question: (10ed-9.4-12) What kind of surfaces are the level surfaces f(x, y, z) = const, if $f(x, y, z) = z - \sqrt{x^2 + y^2}$?

Solution: For finding the level surfaces $f(x,y,z) = z - \sqrt{x^2 + y^2} = c$ where c is a constant.

$$z - \sqrt{x^2 + y^2} = c \quad \Rightarrow z - c = \sqrt{x^2 + y^2}$$

is a typical equation of one branch of hyperbola with origin at (0,0,c). For $c=\frac{1}{2},2$ and 6 we have the sketches as

Question: (10ed-9.4-15) Sketch the vector field given by $\mathbf{v} = \mathbf{i} - \mathbf{j}$. Solution: Consider some arbitrary points (1,2), (7,4) and (2,6). Then

at point
$$(1,2)$$
, $\mathbf{v} = \mathbf{i}$ $-2\mathbf{j}$ and $|\mathbf{v}| = \sqrt{5} = 2.2$
at point $(7,4)$, $\mathbf{v} = 7\mathbf{i} - 4\mathbf{j}$ and $|\mathbf{v}| = \sqrt{65} = 8.1$
at point $(2,6)$, $\mathbf{v} = 2\mathbf{i} - 6\mathbf{j}$ and $|\mathbf{v}| = \sqrt{40} = 6.3$

Doing the same for enough points and then on each point draw an arrow in the direction of \mathbf{v} with length $|\mathbf{v}|$ we get

Question: (10ed-9.4-24) Find the partial derivative of $\mathbf{v}_1 = [e^x \cos y, e^x \sin y]$ and $\mathbf{v}_2 = [\cos x \cosh y, -\sin x \sinh y]$.

Solution:
$$\frac{\partial \mathbf{v}_1}{\partial x} = \left[\frac{\partial}{\partial x} \left(e^x \cos y \right), \frac{\partial}{\partial x} \left(e^x \sin y \right) \right] = \left[e^x \cos y, e^x \sin y \right] \\
\frac{\partial \mathbf{v}_1}{\partial y} = \left[\frac{\partial}{\partial y} \left(e^x \cos y \right), \frac{\partial}{\partial y} \left(e^x \sin y \right) \right] = \left[-e^x \sin y, e^x \cos y \right] \\
\text{For } \mathbf{v}_2, \\
\frac{\partial \mathbf{v}_2}{\partial x} = \left[\frac{\partial}{\partial x} \left(\cos x \cosh y \right), \frac{\partial}{\partial x} \left(-\sin x \sinh y \right) \right] = \left[-\sin x \cosh y, -\cos x \sinh y \right] \\
\frac{\partial \mathbf{v}_2}{\partial y} = \left[\frac{\partial}{\partial y} \left(\cos x \cosh y \right), \frac{\partial}{\partial y} \left(-\sin x \sinh y \right) \right] = \left[\cos x \sinh y, -\sin x \cosh y \right] \\
\blacksquare$$

5 Curves and Arc Length

Notation 17 A parametric representation of a space curve is given as $\mathbf{r}(t) = [x(t), y(t), z(t)] = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$.

Such representation has two distinct advantages:

1. the coordinates x, y, z play an equal role, i.e. all three are dependent variables,

2. this representation induces an orientation, i.e. a beginning and an end equivalently a sense of direction, of the curve.

Example 18 Following are few examples of space curves with their parametric representations:

$$\mathbf{r}(t) = [a\cos t, b\sin t, 0] = a\cos(t)\mathbf{i} + b\sin(t)\mathbf{j}; \ a = b$$

 $\mathbf{r}(t) = [a\cos t, b\sin t, 0] = a\cos(t)\mathbf{i} + b\sin(t)\mathbf{j}; \ a \neq b$

$$\mathbf{r}(t) = \mathbf{a} + \mathbf{b}t = [a_1 + b_1t, a_2 + b_2t, a_3 + b_3t]$$

 $\mathbf{r}(t) = [a\cos t, a\sin t, ct] = a\cos(t)\mathbf{i} + a\sin(t)\mathbf{j} + ct\mathbf{k}$

On a combined plot these are shown as:

Definition 19 We have:

- 1. The tangent vector to the curve $\mathbf{r}(t)$ at point P is $\mathbf{r}'(t)$.
- 2. Unit tangent is computed as $\mathbf{u} = \frac{1}{|\mathbf{r}'|}\mathbf{r}'$. Both \mathbf{r}' and \mathbf{u} are in the direction of increasing t (a blessing of parametric notation!).
- 3. Vector equation of the tangent line passing through point P on curve $\mathbf{r}(t)$ is given as $\mathbf{q}(w) = \mathbf{r} + w\mathbf{r}'$

- 4. Length of the curve $\mathbf{r}(t)$ from t=a to an arbitrary point in t is given as $s(t)=\int_a^t \sqrt{\mathbf{r'}\cdot\mathbf{r'}}d\tau$, where $\mathbf{r'}=\frac{d\mathbf{r}}{d\tau}$.
- 5. If a curve is representing the path of a moving body, as usually is the case in Mechanics, then velocity and acceleration of the body are given as $\mathbf{v}(t) = \mathbf{r}'(t)$ and $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$.
- 6. Acceleration vector has its tangential and normal components i.e. $\mathbf{a} = \mathbf{a}_{tan} + \mathbf{a}_{norm}$, which are obtained as $\mathbf{a}_{tan} = \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$ and $\mathbf{a}_{norm} = \mathbf{a} \mathbf{a}_{tan}$.

- 7. At any given point on a space curve we have three defining unit vectors:
 - (a) a unit tangent,
 - (b) a unit normal which is perpendicular to unit tangent but lies in the same plane as that of tangent, and
 - (c) a unit binormal, which is perpendicular to both i.e. unit tangent and unit normal vectors.

Question: (10ed-9.5-4,10) Sketch the curves $[-2, 2+5\cos t, -1+5\sin t]$ and $[t, 2, \frac{1}{t}]$?

Solution: We compute the table as

\overline{t}	x-coord= -2	y -coord= $2 + 5 \cos t$	z -coord= $-1 + 5\sin t$
0	-2	7	-1
2	-2	-0.008	3.5
3	-2	-2.9	-0.29
_5	-2	3.4	-5.8

Carefully ploting yields:

Similarly for $\left[t,2,\frac{1}{t}\right]$, we have

Question: (10ed-9.5-11) Find parametric representation of a circle in the plane z = 2 with centre (1, -1) and passing through origin.

Solution: Equation of a circle with centre (1,-1) is given as $(x-1)^2 + (y+1)^2 = r^2$. As (0,0) is on the circle so we have $(0-1)^2 + (0+1)^2 = r^2 \Rightarrow r = \sqrt{2}$

Parametric equation of circle with centre (h,k) and radius r is given as $[h+r\cos t,k+r\sin t]$. Hence the required parametric equation is $\left[1+\sqrt{2}\cos t,-1+\sqrt{2}\sin t\right]$. Sketch:

Question: (10ed-9.5-16) Find parametric representation of the intersection of the circular cylinder of radius 1 about z-axis and the plane z = y.

Solution: Equation of the cylinder is $x^2 + y^2 = 1$ and it calls for puting $x = \cos t$ and $y = \sin t$. This gives the equation of plane as $z = \sin t$. Hence the parametric equation of the circle of intersection is given as

$$[\cos t, \sin t, \sin t]$$

Sketches are given as

Question: (10ed-9.5-18) Helix: $x^2 + y^2 = 25, z = 2\arctan\left(\frac{y}{x}\right)$. Write its parametric equation. Solution: Put $x = 5\cos t$ and $y = 5\sin t \Rightarrow z = 2\arctan\left(\frac{5\sin t}{5\cos t}\right) = 2\arctan\left(\tan t\right) = 2t$ Hence the parametric equation of the helix is given as

$$[5\cos t, 5\sin t, 2t]$$

Sketch:

[5 cos(t), 5 sin(t), 2t]

Question: (10ed-9.5-27) Given a curve $C: \mathbf{r}(t) = \left[t, \frac{4}{t}, 0\right]$, find tangent vector $\mathbf{r}'(t)$, a unit tangent vector $\mathbf{u}'(t)$ and tangent of C at P(4,1,0).

Solution: Tangent vector: $\mathbf{r}'(t) = \frac{d}{dt} \left(\left[t, \frac{4}{t}, 0 \right] \right) = \left[1, -\frac{4}{t^2}, 0 \right]$

Unit tangent vector:
$$\mathbf{u}' = \frac{1}{|\mathbf{r}'(t)|}\mathbf{r}'(t) = \frac{1}{\left|\left[1, -\frac{4}{t^2}, 0\right]\right|}\left[1, -\frac{4}{t^2}, 0\right] = \frac{1}{\sqrt{\frac{16}{t^4} + 1}}\left[1, -\frac{4}{t^2}, 0\right] = \left[\frac{1}{\sqrt{\frac{16}{t^4} + 1}}, -\frac{4}{t^2\sqrt{\frac{16}{t^4} + 1}}, 0\right]$$

Tangent line from P: q(w) = [4 + w,]

Question: (10ed-9.5-30) Find the length and sketch the curve given by $\mathbf{r}(t) = [4\cos t, 4\sin t, 5t]$ from (4,0,0) to $(4,0,10\pi)$?

Solution: We have the formula $s(t) = \int_a^t \sqrt{\mathbf{r'} \cdot \mathbf{r'}} d\tau$.

$$\mathbf{r}'(t) = \left[\frac{d}{dt}\left(4\cos t\right), \frac{d}{dt}\left(4\sin t\right), \frac{d}{dt}\left(5t\right)\right] = \left[-4\sin t, 4\cos t, 5\right] \quad \Rightarrow \quad \mathbf{r}' \cdot \mathbf{r}' = 16\cos^2 t + 16\sin^2 t + 25\cos^2 t + 16\cos^2 t + 16\sin^2 t + 25\cos^2 t + 16\cos^2 t + 16\cos^2$$

 $\mathbf{r}'(t) = \left[\frac{d}{dt}(4\cos t), \frac{d}{dt}(4\sin t), \frac{d}{dt}(5t)\right] = \left[-4\sin t, 4\cos t, 5\right] \quad \Rightarrow \quad \mathbf{r}' \cdot \mathbf{r}' = 16\cos^2 t + 16\sin^2 t + 25$ As the point (4,0,0) is on the curve, hence for some t, $\mathbf{r}(t) = (4\cos t, 4\sin t, 5t) = (4,0,0) \Rightarrow 5t = 0 \Rightarrow t = 0$.

Also the second point $(4,0,10\pi)$ is on the curve, hence for some t, $\mathbf{r}(t) = (4\cos t, 4\sin t, 5t) = (4,0,10\pi) \Rightarrow 5t = 10\pi \Rightarrow 5t = 10\pi$ $t=2\pi$.

Hence puting values in the formula

$$s = \int_0^{2\pi} \sqrt{16\cos^2 t + 16\sin^2 t + 25} d\tau = 2\sqrt{41}\pi$$

Question: (10ed-9.5-35) Find speed, velocity and tangential and normal acceleration for the parabola $\mathbf{r}(t) = [t, 4t^2, 0]$? **Solution:** $\mathbf{v} = \mathbf{r}'(t) = [1, 8t, 0]$

$$\mathbf{a} = \mathbf{v}' = \mathbf{r}''(t) = [0, 8, 0]$$

$$\mathbf{a} = \mathbf{v}' = \mathbf{r}''(t) = [0, 8, 0]$$

$$\mathbf{a}_{tan} = \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{[0, 8, 0] \cdot [1, 8t, 0]}{[1, 8t, 0] \cdot [1, 8t, 0]} [1, 8t, 0] = \frac{64t}{64t^2 + 1} [1, 8t, 0]$$

$$\mathbf{a}_{norm} = \mathbf{a} - \mathbf{a}_{tan} = [0, 8, 0] - \frac{64t}{64t^2 + 1} [1, 8t, 0] = \left[\frac{-64t}{64t^2 + 1}, 8 - \frac{512t^2}{64t^2 + 1}, 0 \right]$$

Sketch:

[t, 4*t^2, 0]

Question: (10ed-9.5-46) A satellite in a circular orbit 450 miles above Earth's surface and completes 1 revolution in 100 min. Find the acceleration of gravity at the orbit from these data and from the radius of Earth (3960 miles).

Solution: R = 3960 + 450 = 4410 mi.

 $2\pi R = 100 \, |\mathbf{v}| \text{ and } \mathbf{v} = 277.1 \, \text{mi/min}$

 $g = |\mathbf{a}| = \omega^2 R = \frac{|\mathbf{v}|^2}{R} = 17.41 \text{ mi/min}^2 = 25.53 \text{ } ft/\sec^2 = 7.78 \text{ } m/\sec^2$

6 Gradient of a Scalar Field

Definition 20 Gradient of a scalar function f(x, y, z) is denoted as grad f or ∇f (read as **nabla** f) and is defined as

$$\operatorname{grad} f = \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right] = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

We also write the **differential operator** as $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$.

Remark 21 Major usages of gradient are as follows:

1. Rate of change of f(x, y, z) in any direction in space, technically called Directional Derivative.

Definition 22 The directional derivative $D_{\mathbf{a}}f$ of a scalar function f(x, y, z) at a point P in the direction of a vector \mathbf{a} is given as $D_{\mathbf{a}}f = \frac{1}{|\mathbf{a}|}\mathbf{a} \cdot \operatorname{grad} f$.

- 2. grad $f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$ points in the direction of maximum increase of f(x, y, z).
- 3. For a curve C = [x(t), y(t), z(t)] liying on a level surface f(x, y, z) = c = const, grad f is normal vector of S at P.

4. Obtaining vector field from a scalar field: as the gradiant of the scalar function. A vector field obtained in this manner is relatively easily studied using f(x, y, z) only. For such vector fields, f(x, y, z) is said to be its **potential**. Furthermore such vector field is said to be **conservative** if no energy is lost or gained in displacing a body from one point to another and then back.

Definition 23 The potential f(x,y,z) of a conservative vector field satisfies the Laplace's equation, given as

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

It is universally agreed that Laplace equation is The Most Important partial differential equation in today's Physics and its numerous applications.

16

Question: (10ed-9.7-4) Find grad f where $f = (x-2)^2 + (2y+4)^2$. Graph some level curves f = const Indicate ∇f by arrows at some points of these curves.

Solution: grad
$$\left((x-2)^2+(2y+4)^2\right)=\left[\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z}\right]\left((x-2)^2+(2y+4)^2\right)$$

= $\left[\frac{\partial}{\partial x}\left((x-2)^2+(2y+4)^2\right),\frac{\partial}{\partial y}\left((x-2)^2+(2y+4)^2\right),\frac{\partial}{\partial z}\left((x-2)^2+(2y+4)^2\right)\right]=\left[2x-4,8y+16,0\right]$
We choose points $(-1,2),(2,1)$ and $(5,-5)$ for computation of gradiant vectors. Sketch is given below:

Gradient Vectors

For the function $f(x, y) = (x - 2)^2 + (2y + 4)^2$, level curves, their projections to the xy-plane, and gradient vectors at the point(s) [(-1, 2), (2, 1), (5, -5)].

Question: (10ed-9.7-10) Prove that $\nabla^2 (fg) = g \nabla^2 f + 2 \nabla f \cdot \nabla g + f \nabla^2 g$

$$\nabla^2 (fg) = \frac{\partial^2}{\partial x^2} (fg) + \frac{\partial^2}{\partial y^2} (fg) + \frac{\partial^2}{\partial z^2} (fg)$$

Consider
$$\frac{\partial^2}{\partial x^2}(fg) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}(fg) \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}g + f \frac{\partial g}{\partial x} \right) = \left(\frac{\partial^2 f}{\partial x^2}g + \frac{\partial f}{\partial x} \frac{\partial g}{\partial x} \right) + \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial x} + f \frac{\partial^2 g}{\partial x^2} \right)$$

Consider
$$\frac{\partial^2}{\partial x^2}(fg) + \frac{\partial y}{\partial x}(fg) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}(fg)\right) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}g + f\frac{\partial g}{\partial x}\right) = \left(\frac{\partial^2 f}{\partial x^2}g + \frac{\partial f}{\partial x}\frac{\partial g}{\partial x}\right) + \left(\frac{\partial f}{\partial x}\frac{\partial g}{\partial x} + f\frac{\partial^2 g}{\partial x^2}\right)$$
similar computation for $\frac{\partial^2}{\partial y^2}(fg)$ and $\frac{\partial^2}{\partial z^2}(fg)$ yield
$$\nabla^2(fg) = \frac{\partial^2}{\partial x^2}(fg) + \frac{\partial^2}{\partial y^2}(fg) + \frac{\partial^2}{\partial z^2}(fg)$$

$$= \left(\frac{\partial^2 f}{\partial x^2}g + \frac{\partial f}{\partial x}\frac{\partial g}{\partial x}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial x} + f\frac{\partial^2 g}{\partial x^2}\right) + \left(\frac{\partial^2 f}{\partial y^2}g + \frac{\partial f}{\partial y}\frac{\partial g}{\partial y}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial z}\frac{\partial g}{\partial z} + f\frac{\partial^2 g}{\partial z^2}\right)$$

$$= \left(\frac{\partial^2 f}{\partial x^2}g + \frac{\partial f}{\partial x}\frac{\partial g}{\partial x}\right) + \left(\frac{\partial f}{\partial y^2}g + \frac{\partial f}{\partial y}\frac{\partial g}{\partial y}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial x} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial z}\frac{\partial g}{\partial z} + f\frac{\partial^2 g}{\partial z^2}\right)$$

$$= \left(\frac{\partial^2 f}{\partial x^2}g + \frac{\partial f}{\partial x}\frac{\partial g}{\partial x}\right) + \left(\frac{\partial f}{\partial y^2}g + \frac{\partial f}{\partial y}\frac{\partial g}{\partial y}\right) + \left(\frac{\partial f}{\partial z}\frac{\partial g}{\partial z}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial x} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial^2 g}{\partial y^2}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial g}{\partial y}\frac{\partial g}{\partial y}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial g}{\partial y}\frac{\partial g}{\partial y}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial g}{\partial y}\frac{\partial g}{\partial y}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial g}{\partial y} + f\frac{\partial g}{\partial y}\frac{\partial g}{\partial$$

Question: (10ed-9.7-14) The force in an electric field given by $f(x,y,z) = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ has the direction of the gradient. Find ∇f and its value at P(12, 0, 16)?

Solution:
$$\nabla f = \nabla \left(\left(x^2 + y^2 + z^2 \right)^{-\frac{1}{2}} \right) = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right] \left(\left(x^2 + y^2 + z^2 \right)^{-\frac{1}{2}} \right) = \frac{-1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \left[x, y, z \right]$$

$$\nabla f|_P = \left(\frac{-1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \left[x, y, z \right] \right)_{x=12, y=0, z=16} = \frac{1}{500} \left[\frac{-3}{4}, 0, -1 \right] = \frac{-3}{2000} \mathbf{i} - \frac{1}{500} \mathbf{k} \quad \blacksquare$$
Question: (10ed-9.7-16) For what points $P(x.y.z)$ does ∇f with $f = 25x^2 + 9y^2 + 16z^2$ have the direction from P to

the origin?

Solution: $\nabla (25x^2 + 9y^2 + 16z^2) = [50x, 18y, 32z]$. Presence of integer multiples of x, y and z only in the gradient indicates that all points on any of the three axes would have direction from P to origin. Sketch of gradient vector field is given as

Question: (10ed-9.7-20) Given the velocity potential $f = x \left(1 + \left(x^2 + y^2\right)^{-1}\right)$, find the velocity $\mathbf{v} = \nabla f$ of the field and its value $\mathbf{v}(P)$ at P. Sketch $\mathbf{v}(P)$ and the curve f = const passing through P(1,1)?

Solution: $\mathbf{v} = \nabla f = \nabla \left(x \left(1 + \left(x^2 + y^2\right)^{-1}\right)\right) = \left[\frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} + 1, -2x \frac{y}{(x^2 + y^2)^2}, 0\right]$ and this velocity field is

sketched below (two different views) as follows:

$$\mathbf{v}(P) = \left[\frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} + 1, -2x\frac{y}{(x^2 + y^2)^2}, 0\right]_{x=1, y=1} = \left[1, -\frac{1}{2}, 0\right]_{x=1, y=1}$$

 $\mathbf{v}\left(P\right) = \left[\frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} + 1, -2x\frac{y}{(x^2 + y^2)^2}, 0\right]_{x=1,y=1} = \left[1, -\frac{1}{2}, 0\right]$ Equation of curve is of the form $x\left(1 + \left(x^2 + y^2\right)^{-1}\right) = c$, since the curve has to pass through $P\left(1, 1\right)$, hence to find c put $x = 1, y = 1 \text{ in } f \text{ i.e. } x \left(1 + \left(x^2 + y^2\right)^{-1}\right)|_{(1,1)} = \frac{3}{2} = c.$ Equation of curve passing through P(1,1) is $x \left(1 + \left(x^2 + y^2\right)^{-1}\right) = c.$ $\frac{3}{2}$. Sketch of the required curve is given as:

Question: (10ed-9.7-25) Experiments show that in a temperature field, heat flows in the direction of maximum decrease of temperature $T = \frac{z}{(x^2+y^2)}$. Find this direction in general and at the given point P(0,1,2). Sketch that direction at P as an arrow.

Solution: As ∇f points in the direction of maximum increase hence Direction of maximum decrease $= -\nabla T = -\nabla \left(\frac{z}{(x^2+y^2)}\right) = \left[\frac{2xz}{(x^2+y^2)^2}, \frac{2yz}{(x^2+y^2)^2}, -\frac{1}{x^2+y^2}\right]$ Direction of maximum decrease at $P = \left[\frac{2xz}{(x^2+y^2)^2}, \frac{2yz}{(x^2+y^2)^2}, -\frac{1}{x^2+y^2}\right]_{x=0,y=1,z=2} = [0,4,-1]$

Sketch of general direction of the field and at point P are given as

Question: (10ed-9.7-33) Find the normal vector of the surface $6x^2 + 2y^2 + z^2 = 225$ at the point P(5,5,5)?

Solution: Since on a surface f(x, y, z) = const normal vector is given by ∇f , hence we compute $\nabla (6x^2 + 2y^2 + z^2) = const$ [12x, 4y, 2z] and the normal at the given point= $[12x, 4y, 2z]_{x=5, y=5, z=5} = [60, 20, 10]$. We sketch the surface and the normal

Question: (10ed-9.7-39) Find directional derivative of $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ at P(3, 0, 4) in the direction of $\mathbf{a} = [1, 1, 1]$. Also sketch it.

Solution: We have $D_{\mathbf{a}}f = \frac{1}{|\mathbf{a}|}\mathbf{a} \cdot \operatorname{grad} f$. So we compute

Question: Find a potential $f = \operatorname{grad} f$ for the given $\mathbf{v}\left(x,y,z\right) = \left[ye^{x},e^{x},z^{2}\right]$. **Solution:** By examining $\mathbf{v} = [ye^x, e^x, z^2]$, we conclude that $f(x, y, z) = ye^x + \frac{1}{3}z^3$, because

$$\operatorname{grad} f = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) f(x, y, z)$$
$$= \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) \left(ye^{x} + \frac{1}{3}z^{3}\right)$$
$$= \left[ye^{x}, e^{x}, z^{2}\right] \quad \blacksquare$$

Question: Find a unit normal vector **n** of the cone of revolution $z^2 = 4(x^2 + y^2)$ at the point P:(1,0,2)**Solution:** The cone is the level surface f = 0 of $f(x, y, z) = 4(x^2 + y^2) - z^2$. Thus

$$\nabla f = [8x, 8y, -2z], \quad \nabla f(P) = [8, 0, -4]$$
$$\mathbf{n} = \frac{1}{|\nabla f(P)|} \nabla f(P) = \left[\frac{2}{\sqrt{5}}, 0, \frac{-1}{\sqrt{5}}\right]$$

n points downward since it has a negative z-component. The other unit normal vector of the cone at P is $-\mathbf{n}$.

7 Divergence of a Vector Field

From a scalar field we can obtain a vector field by the gradient. Conversely, from a vector field we can obtain a scalar field by the divergence or another vector field by the curl.

Definition 24 For a differentiable vector function $\mathbf{v}(x,y,z) = [v_1(x,y,z), v_2(x,y,z), v_3(x,y,z)]$, the divergence is denoted and defined as $\operatorname{div} \mathbf{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}$.

Remark 25 1. div **v** is also denoted as $\nabla \cdot \mathbf{v}$ because div $\mathbf{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} = \left[\frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k} \right] \cdot [v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}] = \nabla \cdot \mathbf{v}$

2. If $\mathbf{v} = \operatorname{grad}(f)$ and f is twice differentiable scalar function f(x, y, z), we have $\operatorname{div} \mathbf{v} = \operatorname{div}(\operatorname{grad} f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \nabla^2 f$.

We now intend to present a physical interpretation of the notion of divergence. For this we need following definitions:

Definition 26 Flux is the total loss of mass leaving an object per unit of time. Compressible fluid is the fluid whose density ρ (mass per unit volume) depends upon coordinates x, y, z (and possibly on time t). Examples are gases and vapors. Water is an incompressible fluid. If density ρ is independent of time t, the flow is said to be **steady**.

Question: Give a physical interpretation of divergence? OR Derive equation of continuity for fluids?

Derivation: Consider motion of a compressible fluid in region R with no source or sink in R. Consider flow of the fluid through the box B with volume $\Delta V = \Delta x \Delta y \Delta z$ (here Δ is denoting a small quantity and not the Laplacian).

Physical interpretation of the divergence

Let $\mathbf{v} = [v_1, v_2, v_3] = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ be the velocity vector of the motion. We set

$$\mathbf{u} = \rho \mathbf{v} = [u_1, u_2, u_3] = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$$

Consider the flow through the xz face whose area is $\Delta x \Delta z$. Since the vectors $v_1 \mathbf{i}$ and $v_3 \mathbf{k}$ are parallel to xz face, the components v_1 and v_3 contribute nothing to this flow.

Hence the mass of fluid entering through xz face during a short time interval Δt is

$$(\rho v_2) \Delta x \Delta z \Delta t = (u_2)_y \Delta x \Delta z \Delta t$$

and the mass leaving from opposite face is $(u_2)_{y+\Delta y} \Delta x \Delta z \Delta t$. Hence the difference

$$\Delta u_2 \Delta x \Delta y \Delta z = \frac{\Delta u_2}{\Delta u} \Delta y \Delta t$$
 where $\Delta u_2 = (u_2)_{y+\Delta y} - (u_2)_y$

is the approximate loss of mass. Other two faces also give similar expressions and the total loss of mass in B during the time interval Δt is approximately

$$\left(\frac{\Delta u_1}{\Delta x} + \frac{\Delta u_2}{\Delta y} + \frac{\Delta u_3}{\Delta z}\right) \Delta V \Delta t \tag{1}$$

where $\Delta u_1 = (u_1)_{x+\Delta x} - (u_1)_x$ and $\Delta u_3 = (u_3)_{z+\Delta z} - (u_3)_z$. This loss of mass in B is caused by the time rate of change of the density and is thus equals to

$$-\frac{\partial \rho}{\partial t} \Delta V \Delta t \tag{2}$$

Equating (1) and (2) and letting small changes approach to zero we get

$$\operatorname{div} \mathbf{u} = \operatorname{div} (\rho \mathbf{v}) = -\frac{\partial \rho}{\partial t}$$
$$\frac{\partial \rho}{\partial t} + \operatorname{div} (\rho \mathbf{v}) = 0$$

is the 'equation of continuity of a compressible fluid flow' also called 'condition for the coservation of mass'.

If the flow is steady then $\frac{\partial \rho}{\partial t} = 0$ and the equation becomes div $(\rho \mathbf{v}) = 0$ and if the density is constant i.e. the fluid is incompressible then $\operatorname{div} \mathbf{v} = 0$.

Question: (10ed-9.8-5) Find div **v** at P(-1, 3, -2) where **v** = $[x^2yz, xy^2z, xyz^2]$?

Solution: $\operatorname{div} \mathbf{v} = \operatorname{div} \left(\left[x^2 yz, xy^2 z, xyz^2 \right] \right) = 6xyz \Rightarrow \operatorname{div} \mathbf{v}|_{P(-1,3,-2)} = 6 \left(-1 \times 3 \times -2 \right) = 36$

The vector field $\mathbf{v} = [x^2yz, xy^2z, xyz^2]$ around a box is sketched below:

Question: (10ed-9.8-17) Find $\nabla^2 f$ by the formula $\nabla^2 f = \text{div} (\text{grad } f)$, where $f = \ln (x^2 + y^2)$?

Solution: $\nabla^2 f = \operatorname{div} \left(\operatorname{grad} f \right) = \operatorname{div} \left(\operatorname{grad} \left(\ln \left(x^2 + y^2 \right) \right) \right) = \operatorname{div} \left(\left[\frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2}, 0 \right] \right) = \frac{4y^2}{x^2 + y^2} - \frac{4y^2}{(x^2 + y^2)^2} - \frac{4x^2}{(x^2 + y^2)^2} = 0$

Curl of a Vector Field 8

Definition 27 Curl of a vector function $\mathbf{v}(x, y, z) = [v_1(x, y, z), v_2(x, y, z), v_3(x, y, z)]$ is defined as

Remark 28 We have:

1. Gradient fields are irrotational. That is, if a continuously differentiable vector function is the gradient of a scalar function, then its curl is the zero vector,

$$\operatorname{curl}(\operatorname{grad} f) = \mathbf{0}$$

2. Furthermore, the divergence of the curl of a twice continuously differentiable vector function \mathbf{v} is zero,

$$\operatorname{div}\left(\operatorname{curl} f\right) = 0.$$

Question: (10ed-9.9-5) Find $\operatorname{curl} \mathbf{v}$ for $\mathbf{v} = xyz [x^2, y^2, z^2]$?

Solution: $\operatorname{curl} \mathbf{v} = \operatorname{curl} \left(xyz \left[x^2, y^2, z^2 \right] \right)$

$$= \operatorname{curl}\left(\left[x^{3}yz, xy^{3}z, xyz^{3}\right]\right) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{3}yz & xy^{3}z & xyz^{3} \end{vmatrix} = \left(xz^{3} - xy^{3}\right)\mathbf{i} + \left(x^{3}y - yz^{3}\right)\mathbf{j} + \left(y^{3}z - x^{3}z\right)\mathbf{k}$$

The vector field and its curl are sketched below:

Question: (10ed-9.9-10) Let $\mathbf{v} = [\sec x, \csc x, 0]$ be the velocity vector of a steady fluid flow. Is the flow irrotational? Incompressible? Find the streamlines (the paths of the particles).

Solution: $\operatorname{curl}\left([\sec x, \csc x, 0]\right) = -\frac{\cos x}{\sin^2 x} \mathbf{k} \neq \mathbf{0} \Rightarrow \operatorname{Not} \text{ irrotational.}$ div $\left([\sec x, \csc x, 0]\right) = \frac{1}{\cos^2 x} \sin x \neq 0 \Rightarrow \operatorname{Compressible.}$ \blacksquare Question: (10ed-9.9-11) Let $\mathbf{v} = [y, -2x, 0]$ be the velocity vector of a steady fluid flow. Is the flow irrotational? Incompressible? Find the streamlines (the paths of the particles).

Solution: $\operatorname{curl}(\mathbf{v}) = \operatorname{curl}([y, -2x, 0]) = -3\mathbf{k} \neq \mathbf{0} \Rightarrow \operatorname{Not} \operatorname{irrotational}.$

 $\operatorname{div}([y, -2x, 0]) = 0 \Rightarrow \text{incompressible.}$