Pushdown Automata PDAs

Pushdown Automaton

- A Pushdown Automata (PDA) is a way to implement a Context Free Grammar in a similar way we design Finite Automata for Regular Grammar
 - It is more powerful than FSM
 - FSM has a very limited memory but PDA has more memory
 - PDA = Finite State Machine + A Stack

Pushdown Automaton - components

Input String

FORMAL DEFINITION OF A PUSHDOWN AUTOMATON

- A pushdown automaton is a 6-tuple (Q, Σ , Γ , δ , q0, F), where Q, Σ , Γ , and F are all finite sets, and
- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- 3. Γ is the stack alphabet,
- 4. $\delta: Q \times \Sigma \epsilon \times \Gamma \epsilon \rightarrow P(Q \times \Gamma \epsilon)$ is the transition function,
- 5. $q0 \in Q$ is the start state, and
- 6. $F \subseteq Q$ is the set of accept states.

Initial Stack Symbol

bottom special symbol Appears at time 0

The States

stack

$$\underbrace{q_1} \stackrel{a, b \to \lambda}{\longrightarrow} \underbrace{q_2}$$

stack

stack

Pop from Empty Stack

If the automaton attempts to pop from empty stack then it halts and rejects input

Non-Determinism

PDAs are non-deterministic

Allowed non-deterministic transitions

$$\lambda$$
 – transition

Example PDA

PDA
$$M$$
:

$$L(M) = \{a^n b^n : n \ge 0\}$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

Basic Idea:

1. Push the a's 2. Match the b's on input on the stack with a's on stack 3. Match found $a, \lambda \rightarrow a$ $b, a \rightarrow \lambda$

Execution Example: Time 0

Input

Input

Input

Input

Input

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is an accepting state

we do not care about the stack contents at the end of the accepting computation

Input

Stack

reject

There is no accepting computation for aab

The string aab is rejected by the PDA

Basic Idea:

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

Another PDA example

PDA
$$M: L(M) = \{vv^R : v \in \{a,b\}^*\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 $\lambda, \$ \rightarrow \$$

Input

$$(b, \lambda \to b)$$

$$(b, \lambda \to b)$$

$$\begin{array}{ccc}
a, & & & \lambda \\
b, & & & \lambda \\
\lambda, & \lambda & \rightarrow \lambda & & \lambda, \$ \rightarrow \$
\end{array}$$

Input

 $\lambda, \lambda \to \lambda$

Guess the middle of string

Stack $a, a \rightarrow \lambda$

 $b, b \rightarrow \lambda$

Input

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Rejection Example:

Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

Stack

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 (q_1) $\lambda, \$ \rightarrow \$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

Guess the middle of string

 $a, \lambda \rightarrow a$ / $a, a \rightarrow \lambda$

$$b, \lambda \rightarrow b$$

 $b, b \rightarrow \lambda$

Stack

 $\lambda, \lambda \to \lambda$

 $\lambda, \$ \rightarrow \$$

Input

Input

There is no possible transition.

Input is not consumed

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

$$\lambda$$
, $\$ \rightarrow \$$

Another computation on same string:

Input

Stack

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 $\lambda, \$ \rightarrow \$$

Input

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b
\end{array}$$

$$\begin{array}{c}
\lambda, \lambda \to \lambda
\end{array}$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

No accept state is reached

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

There is no computation that accepts string abbb

 $abbb \notin L(M)$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

Pushing & Popping Strings

Example:

$$q_{1} \xrightarrow{a, eb \to cdf} q_{2}$$
Equivalent transitions
$$q_{1} \xrightarrow{a, e \to \lambda} \xrightarrow{a, b \to \lambda}$$

$$q_{1} \xrightarrow{\lambda, \lambda \to \lambda} \xrightarrow{push}$$

$$q_{2} \xrightarrow{a, b \to \lambda}$$

$$q_{3} \xrightarrow{a, b \to \lambda}$$

$$q_{4} \xrightarrow{a, \lambda \to c} \xrightarrow{a, \lambda \to c} q_{2}$$

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

a

\$

Stack

58

Example:

Instantaneous Description

 $(q_2,bb,aa\$)$

Time 5:

 $a, \lambda \rightarrow a$

 $b, a \rightarrow \lambda$

Stack

We write:

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time 4

Time 5

A computation:

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \lambda,\$)$$

Language of PDA

Language L(M) accepted by PDA M:

$$L(M) = \{w : (q_0, w, z) \stackrel{*}{\succ} (q_f, \lambda, s)\}$$
Initial state

Accept state

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

PDA M:

PDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

PDA M:

PDAs Accept Context-Free Languages

Theorem:

Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs

Convert

Context-Free Grammars to PDAs

Take an arbitrary context-free grammar G

We will convert G to a PDA M such that:

$$L(G) = L(M)$$

Conversion Procedure:

For each For each production in G terminal in G $A \rightarrow w$ Add transitions $\lambda, A \rightarrow w$ $a, a \rightarrow \lambda$ $\lambda, \lambda \to S$

Grammar

$$S \rightarrow aSTb$$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

Example

PDA

$$\lambda, S \rightarrow aSTb$$

$$\lambda, S \rightarrow b$$

$$\lambda, T \to Ta$$
 $a, a \to \lambda$

$$\lambda, T \to \lambda$$
 $b, b \to \lambda$

Example:

$$\lambda, T \to Ta$$
 $a, a \to \lambda$
 $\lambda, T \to \lambda$ $b, b \to \lambda$
 $\lambda, \lambda \to S$ $\lambda, \$ \to S$

Derivation:

Input
$$\begin{bmatrix} a & b & a & b \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Time 1

$$\lambda, S \rightarrow aSTb$$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

Derivation: $S \Rightarrow aSTb$ Input a $\lambda, S \rightarrow aSTb$ Time 3 $\lambda, S \rightarrow b$ Stack $\lambda, T \rightarrow Ta$ $(a, a \rightarrow \lambda)$ $\lambda, T \rightarrow \lambda$ $b, b \rightarrow \lambda$ $\lambda, \lambda \to S$ λ , \$ \rightarrow \$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

Time 4

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda : T \longrightarrow \lambda$$

$$\lambda, T \to \lambda$$
 $b, b \to \lambda$

 $a, a \rightarrow \lambda$

 λ , \$ \rightarrow \$

$$\lambda, \lambda \to S$$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

$$-q_0 \xrightarrow{\lambda, \lambda \to S} q_1 \xrightarrow{\lambda, \$ \to \$} q_2$$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab$

Time 6

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$T \to \lambda$$
 $b, b \to \lambda$

Stack

$$\lambda, \lambda \to S$$

 $a, a \rightarrow \lambda$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab \Rightarrow abab$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab \Rightarrow abab$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab \Rightarrow abab$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow \underline{abTab} \Rightarrow abab$

Time 10

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$t, 1 \rightarrow 1u$$

$$b, b \rightarrow \lambda$$

$$b, b \to \lambda$$

 $a, a \rightarrow \lambda$

accept

$$\rightarrow (q_0)$$
 $\lambda, \lambda \rightarrow S$

$$\bullet (q_1)$$

$$\lambda, \$ \rightarrow \$$$
 q_2