Project Presentation Arrangements

- Alpha Chess: December 25
 - Ordered by group ID
- Alpha Robot: December 27
 - Ordered by group ID
- Guidelines:
 - Slides must be written in English
 - 9 mins for each group
 - +5 points (total) if present in English

CS 3317: Artificial Intelligence Markov Models

Instructor: Panpan Cai

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
 - Global climate
- Need to introduce time into our models

Markov Models (aka Markov chain/process)

Value of X at a given time is called the state (usually discrete, finite)

- The *transition model* $P(X_t \mid X_{t-1})$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
 - X_{t+1} is independent of $X_0, ..., X_{t-1}$ given X_t
 - This is a *first-order* Markov model (a kth-order model allows dependencies on k earlier steps)
- Joint distribution $P(X_0,...,X_T) = P(X_0) \prod_t P(X_t \mid X_{t-1})$

Quiz: are Markov models just Bayes nets?

- Yes and no!
- Yes:
 - Directed acyclic graph
 - Joint = product of conditionals
- Not standard:
 - Infinitely many variables
 - joint probabilities become zero
 - Repetition of transition model
 - not part of standard Bayes net syntax

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k \pm 1 \mid X_{t-1} = k) = 0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Interesting facts:
 - How far does it get as a function of t?
 - Expected distance is $O(\sqrt{t})$
 - Will it get back to 0 or can it never come back?
 - In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: n-gram models

Text: "We call ourselves Homo sapiens—man the wise—because our intelligence is so important to us. For thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and more complicated than itself."

- State: word at position t in text (can also be letters or tokens)
- Transition model (probabilities come from empirical frequencies):
 - Unigram (zero-order): $P(Word_t = i)$
 - "logical are as are confusion a may right tries agent goal the was . . ."
 - Bigram (first-order): $P(Word_t = i \mid Word_{t-1} = j)$
 - "systems are very similar computational approach would be represented . . ."
 - Trigram (second-order): $P(Word_t = i \mid Word_{t-1} = j, Word_{t-2} = k)$
 - "planning and scheduling are integrated the success of naive bayes model is . . ."
- Applications: text classification, spam detection, author identification, language classification, speech recognition

Example: Web browsing

- State: URL visited at step t
- Transition model:
 - With probability p, choose an outgoing link at random
 - With probability (1-p), choose an arbitrary new page
- Question: What is the stationary distribution over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

States {rain, sun}

• Initial distribution $P(X_0)$

P(X ₀)	
sun	rain
0.5	0.5

• Transition model $P(X_t \mid X_{t-1})$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Two new ways of representing the same CPT

Weather prediction

■ Time 0: <0.5,0.5>

X _{t-1}	$P(X_t X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_1) = \sum_{X_0} P(X_1, X_0 = X_0)$$

$$= \sum_{X_0} P(X_0 = X_0) P(X_1 \mid X_0 = X_0)$$

$$= 0.5 < 0.9, 0.1 > + 0.5 < 0.3, 0.7 > = < 0.6, 0.4 >$$

Weather prediction, contd.

■ Time 1: <0.6,0.4>

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_2) = \sum_{X_1} P(X_2, X_1 = X_1)$$

$$= \sum_{X_1} P(X_1 = X_1) P(X_2 \mid X_1 = X_1)$$

$$= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

Weather prediction, contd.

■ Time 2: <0.66,0.34>

X _{t-1}	$P(X_t X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 3?

$$P(X_3) = \sum_{X_2} P(X_3, X_2 = x_2)$$

$$= \sum_{X_2} P(X_2 = x_2) P(X_3 \mid X_2 = x_2)$$

$$= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 > = < 0.696, 0.304 >$$

Forward algorithm (simple form)

Probability from previous iteration

What is the state at time t

$$P(X_t) = \sum_{X_{t-1}} P(X_t, X_{t-1} = X_{t-1})$$

$$= \sum_{X_{t-1}} P(X_{t-1} = X_{t-1}) P(X_t | X_{t-1} = X_{t-1})$$

Transition model

- Iterate this update starting at t=0
 - This is called a *recursive* update: $P_t = g(P_{t-1}) = g(g(g(g(...P_0))))$

Write in linear algebra

- What is the weather like at time 2?
 - $P(X_2) = 0.6 < 0.9, 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$

In matrix-vector form:

$$P(X_2) = \begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix}$$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

■ I.e., multiply by *T*^T, *transpose* of transition matrix

Stationary Distributions

- The limiting distribution is called the *stationary distribution* P_{∞} of the chain
- It satisfies $P_{\infty} = P_{\infty+1} = T^{T} P_{\infty}$
- Solving for P_{∞} in the example:

$$\begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} p \\ 1-p \end{pmatrix} = \begin{pmatrix} p \\ 1-p \end{pmatrix}$$
$$0.9p + 0.3(1-p) = p$$
$$p = 0.75$$

Stationary distribution is <0.75,0.25> *regardless of starting distribution*

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence E at each time step
 - X_t is a single discrete variable
 - E_t may be continuous and may consist of several variables

Example: Weather HMM

An HMM is defined by:

• Initial distribution: $P(X_0)$

■ Transition model: $P(X_t | X_{t-1})$

• Sensor model: $P(E_t | X_t)$

\mathbf{W}_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

HMM as probability model

Joint distribution for Markov model:

$$P(X_0,...,X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$$

Joint distribution for hidden Markov model:

$$P(X_0, X_1, ..., X_T, E_{1:T}) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Conditional independences:
 - Future states are independent of the past given the present
 - Current evidence is independent of everything else given the current state
 - Are evidence variables independent of each other?

Useful notation:

$$X_{a:b} = X_a, X_{a+1}, ..., X_b$$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

- Filtering: $P(X_t|e_{1:t})$
 - outputs a belief state—input to the decision process of a rational agent
 - POMDP planners often use a Bayesian filter as the "belief tracker"
- Prediction: $P(X_{t+k}|e_{1:t})$ for k > 0
 - predict future world states
 - like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - estimate past states better with hindsight
 - useful for collecting data for learning
- Most likely explanation: $arg max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, translation, ...

Inference tasks

Filtering: $P(X_t | e_{1:t})$

Smoothing: $P(X_k | e_{1:t})$, k<t

Prediction: $P(X_{t+k}|e_{1:t})$

Explanation: $P(X_{1:t}|e_{1:t})$

Filtering / Belief Tracking

- Filtering, or belief tracking, or state estimation, is the task of maintaining the distribution $b_t = P(X_t | e_{1:t})$ over time
- We start with b_0 in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
 - The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program

Example from Michael Pfeiffer

Sensor model: four bits for wall/no-wall in each direction, no more than 1 mistake **Transition model**: action may fail with small prob.

Lighter grey: was *possible* to get the reading, but *less likely* (required 1 mistake)

Prob 0 1

Prob 0 1

Prob 0 1

Prob

Filtering algorithm

Derive a recursive filtering algorithm of the form:

$$P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$$

 $P(X_{t+1} | e_{1:t+1}) =$

Filtering algorithm

Derive a recursive filtering algorithm of the form:

$$P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$$

■
$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{t+1}, e_{1:t})$$
 Apply Bayes' rule

$$= \alpha P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t})$$
 Apply conditional independence

$$= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$$
 Condition on X_t

$$= \sqrt{P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})}$$
 Condition on X_t

$$= \sqrt{P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})}$$
 Normalize $P(e_{t+1}|X_{t+1}) P(e_{t+1}|X_{t+1}) P(e_{t+1}|X_{t+1}) P(e_{t+1}|X_{t+1})$ Sensor model Transition model Last belief

Filtering algorithm

- $\boldsymbol{b}_{t+1} = \text{FORWARD}(\boldsymbol{b}_t, \boldsymbol{e}_{t+1})$
 - Cost per time step: $O(|X|^2)$ where |X| is the number of states.
 - Time and space costs are constant, independent of t. (^_^)
 - $O(|X|^2)$ is infeasible for models with large state spaces. (T_T)
 - We will get to approximate filtering algorithms later. (^_^)

Write in linear algebra

- Transition matrix T, observation matrix O_t
 - Observation matrix contains likelihoods for E_t along its diagonal

• E.g., for
$$U_1 = \text{true}$$
, $O_1 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$

- Filtering algorithm becomes
 - $\mathbf{b}_{t+1} = \alpha \ O_{t+1} T^{\mathsf{T}} \ \mathbf{b}_{t}$
 - easy to implement in Python or MATLAB

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

\mathbf{W}_{t}	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_{t}	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman – Hunting Invisible Ghosts with Sonar

Video of Demo Pacman – Sonar

