Wireshark 网络分析实例集锦

(内部资料)

大学霸 www.daxueba.net

大学霸——daxueba.net

前言

由于网络广泛广泛,与网络相关的安全问题也就变的非常重要。为了更好的分析整个网络的情况, 人们开始使用各种专业的数据包分析工具。Wireshark 是一款最知名的开源网络封包分析软件。它可以 抓取网络封包,并以最为详细的方式,显示封包的数据。

Wireshark 应用非常广泛。例如,网络管理员使用 Wireshark 来检测网络问题; 网络安全工程师使用 Wireshark 检查数据传输的安全问题; 开发者使用它为新的通信协议排错; 普通人使用 Wireshark 来学习 网络协议的相关知识。

由于 Wireshark 工具的广泛使用及市场的需求,笔者编写了这本书。本书按照网络分析专业流程,一步步地介绍了 Wireshark 各项功能的使用。本书还介绍了命令行下数据捕获的方法,以满足了喜欢在命令行下操作的用户。希望各位读者能在本书的带领下熟练地掌握 Wireshark,并且成为数据包的分析高手。

1.学习所需的系统和设备

本书所讲解的内容基于 Windows 7 和 Red Hat Enterprise Linux 6.4。读者在学习的时候,也可以采用其他操作系统。如果为了方便抓取各种数据,建议读者安装 VM ware,以虚拟各种其他系统或者服务。

2.学习建议

大家学习之前,可以致信到 wireshark@daxueba.net, 获取相关的资料和软件。如果大家在学习过程 遇到问题,也可以将问题发送到该邮箱。我们尽可能给大家解决。

目 录

第1章	Wireshark 的基础知识 1				
1.1	Wireshark 的功能				
	1.1.1 Wireshark 主窗口界面	1			
	1.1.2 Wireshark 的作用	2			
1.2	2 安装 Wireshark	3			
	1.2.1 获取 Wireshark	3			
	1.2.2 安装 Wireshark	5			
1.3	3 Wireshark 捕获数据	11			
1.5	5 认识数据包				
1.6	6 捕获 HTTP 包	14			
1.7	7 访问 Wireshark 资源	18			
1.8	8 Wireshark 快速入门	21			
1.9	9 分析网络数据	28			
	1.9.1 分析 Web 浏览数据	28			
	1.9.2 分析后台数据	30			
1.1	10 打开其它工具捕获的文件	31			
第2章	设置 Wireshark 视图	33			
2.1	1 设置 Packet List 面板列	33			
	2.1.1 添加列	33			
	2.1.2 隐藏、删除、重新排序及编辑列				
2.2	2 Wireshark 分析器及 Profile 设置	41			
	2.2.1 Wireshark 分析器	41			
	2.2.2 分析非标准端口号流量	43			
	2.2.3 设置 Wireshark 显示的特定数据类型	45			
	2.2.4 使用 Profile 定制 Wireshark	50			
	2.2.5 查找关键的 Wireshark Profile	52			
2.3	3 数据包时间延迟	54			
	2.3.1 时间延迟	54			
	2.3.2 检查延迟问题	55			
	2.3.3 检查时间差延迟问题	57			
第3章	捕获过滤器技巧	61			
3.1	1 捕获过滤器简介	61			
3.2	2 选择捕获位置	62			
3.3	3 选择捕获接口	62			
	3.4.1 判断那个适配器上的数据	63			
	3.4.2 使用多适配器捕获	63			
3.4	An				
3.5	5 捕获无线数据	65			

	3.5.1	捕获无线网络数据方式	65
	3.5.2	使用 AirPcap 适配器	66
3.6	处理	- 大数据	66
	3.6.1	捕获过滤器	66
	3.6.2	捕获文件集	68
3.7	处理	随机发生的问题	70
3.8	捕获	基于 MAC/IP 地址数据	72
	3.8.1	捕获单个 IP 地址数据	72
	3.8.2	捕获 IP 地址范围	74
	3.8.3	捕获广播或多播地址数据	76
	3.8.4	捕获 MAC 地址数据	77
3.9	捕获	端口应用程序数据	80
	3.9.1	捕获所有端口号的数据	80
	3.9.2	结合基于端口的捕获过滤器	81
3.10	0 捕劾	庆特定 ICMP 数据	82
第4章	显示抗	支 巧	86
4.1	显示	过滤器简介	86
4.2	使用	显示过滤器	87
	4.2.1	显示过滤器语法	87
	4.2.2	检查语法错误	89
	4.2.3	识别字段名	91
	4.2.4	比较运算符	92
	4.2.5	表达式过滤器	93
	4.2.6	使用自动补全功能	94
	4.2.7	手动添加显示列	96
4.3	编辑	编辑和使用默认显示过滤器	
4.4	过滤	显示 HTTP	100
4.5	过滤	显示 DHCP	102
4.6	根据	地址过滤显示	103
	4.6.1	显示单个 IP 地址或主机数据	103
	4.6.2	显示一个地址范围的数据	106
	4.6.3	显示一个子网 IP 的数据	107
4.7	过滤	显示单一的 TCP/UDP 会话	108
4.8	8 使用复杂表达式过滤		112
	4.8.1	使用逻辑运算符	112
	4.8.2	使用括号	114
	4.8.3	使用关键字	116
	4.8.4	使用通配符	118
4.9	发现	通信延迟	119
	4.9.1	时间过滤器(frame.time_delta)	119
	4.9.2	基于 TCP 的时间过滤(tcp.time_delta)	120

4.10) 设置显示过滤器按钮	. 123			
	4.10.1 创建显示过滤器表达式按钮	. 123			
	4.10.2 编辑、添加、删除显示过滤器按钮				
	4.10.3 编辑 preferences 文件	. 125			
第5章	着色规则和数据包导出	. 128			
5.1 认识着色规则					
5.2	禁用着色规则	. 129			
	5.2.1 禁用指定类型数据包彩色高亮	. 129			
	5.2.2 禁用所有包彩色高亮	. 131			
5.3 创建用户着色规则					
	5.3.1 创建时间差着色规则				
	5.3.2 快速查看 FTP 用户名密码着色规则				
	5.3.3 创建单个会话着色规则				
5.4	导出数据包				
	5.4.1 导出显示包				
	5.4.2 导出标记包				
	5.4.3 导出包的详细信息				
第6章	构建图表				
6.1	数据统计表				
	6.1.1 端点统计				
	6.1.2 网络会话统计				
	6.1.3 快速过滤会话				
	6.1.4 地图化显示端点统计信息				
6.2	协议分层统计				
6.3	图表化显示带宽使用情况				
	6.3.1 认识 IO Graph				
	6.3.2 应用显示过滤器				
6.4	专家信息				
6.5	构建各种网络错误图表				
	6.5.1 构建所有 TCP 标志位包				
<i>/// ■ →/.</i>	6.5.2 构建单个 TCP 标志位包				
第7章	重组数据				
7.1	重组 Web 会话				
	7.1.1 重组 Web 浏览会话				
7.2	7.1.2 导出 HTTP 对象				
7.2	重组 FTP 会话				
	7.2.1 里组 FTP				
第8章					
弗 8 早 8.1	添加注释				
8.2					
0.2	旦14.1十	. 100			

	8.2.1	添加包注释	181
	8.2.2	查看包注释	181
8.3	导出	包注释	183
	8.3.1	使用 Export Packet Dissections 功能导出	183
	8.3.2		
第9章	捕获、	分割、合并数据	189
9.1	将大	文件分割为文件集	189
	9.1.1	添加 Wireshark 程序目录到自己的位置	189
	9.1.2	使用 Capinfos 获取文件大小和包数	189
	9.1.3	分割文件	190
9.2	合并	多个捕获文件	195
9.3	命令	行捕获数据	196
	9.3.1	Dumpcap 和 Tshark 工具	196
	9.3.2	使用捕获过滤器	199
	9.3.3	使用显示过滤器	199
9.4	导出等	字段值和统计信息	200
	9.4.1	导出字段值	200
	012	呈出粉捉统计	202

第3章 捕获过滤器技巧

捕获过滤器用于决定将什么样的信息记录在捕获文件中。在使用 Wireshark 捕获数据时,捕获过滤器是数据经过的第一层过滤器,它用来控制捕获数据的数量。通过设置捕获过滤器,可以避免产生过大的捕获文件。本章将介绍使用捕获过滤器技巧。

3.1 捕获过滤器简介

使用 Wireshark 的默认设置捕获数据时,会产生大量冗余信息,这样会导致用户很难找到自己需要的部分。这时就可以使用捕获过滤器来控制捕获数据的数量了。捕获过滤器的设置界面如图 3.1 所示。

图 3.1 捕获选项

在该图中,每部分的含义如下所示:

- □ ①Interface 列表:选择一个或多个接口(捕获多个适配器)。
- □ ②Manage Interfaces 按钮:单击该按钮可以添加或删除接口。
- □ ③Capture Filter 下拉列表:显示被应用的捕获过滤器(双击可以修改、删除或添加捕获过滤器)。
- □ ④Capture File(s)选项框:设置保存多个文件、循环缓冲区大小和基于文件数量自动

停止的条件。

- □ ⑤Display Options 选项框:设置捕获数据时,自动滚动显示捕获的数据包。
- □ ⑥Stop Capture 选项框:设置自动停止条件,如基于包数、数据捕获的数量或运行时间。
- □ ⑦Name Resolution 选项框: 为 MAC 地址、IP 地址和端口号启动/禁用名称解析。 当以上捕获选项设置完成后,就可以看到 Start 按钮捕获数据了。捕获数据保存中, Wireshark 的图标显示为绿色,如图 3.2 所示。

图 3.2 Wireshark 运行界面

3.2 选择捕获位置

使用 Wireshark 分析网络数据时,首先要确认 Wireshark 捕获数据的正确位置。如果没有在正确的位置启动 Wireshark,则导致用户可能花费很长的时间处理一些与自己无关的数据。所以在使用 Wireshark 之前,需要确认它的位置。

如图 3.3 所示,该图代表了一个简单的网络环境。在捕获过程中,可以检测到往返延迟时间、丢包、错误信息及其它主机之间传输的问题。如果在捕获过程中,发现访问网页速度慢,这说明 Wireshark 捕获工具可能是来自通客户端。

图 3.3 捕获工具的位置

当出现以上的情况时,就需要考虑将 Wireshark 捕获工具移动到其它位置。如发现大量 丢包时,可以在路由器或交换机上开启 Wireshark 工具,以确定那个设备存在大量丢包。

3.3 选择捕获接口

在使用 Wireshark 捕获数据前,首先要选择捕获接口。在一台计算机上可能存在许多个 大学霸——daxueba.net 网卡,包括有线和无线网卡。Wireshark 可能无法检测到所有的本地接口和远程可用的网络接口,只能列出可用的网络接口。本节将介绍如何选择捕获接口。

3.4.1 判断那个适配器上的数据

图 3.4 捕获接口

如果主机使用了双协议栈(IPv4 和 IPv6),Wireshark 默认将显示每个适配器的 IPv6 地址。如果存在 IPv4 地址,单击 IPv6 地址将可以看到 IPv4 地址(以本地连接为例),如图 3.5 所示。

图 3.5 IPv4 地址显示

从该界面可以看到本地连接接口的 IP 由 IPv6 的地址(fe80::40fa:dfed:94b:f9db)变成了 IPv4 地址(192.168.0.105)。

如果想捕获某个接口上的数据时,只需将图 3.4 中设备前面的复选框勾上,然后单击 Start 按钮,将开始捕获该接口上的数据。

3.4.2 使用多适配器捕获

从 Wireshark 1.8 开始,可以同时捕获两个或更多个接口。如果想要同时捕获有线和无线网络数据,这个功能是有用的。例如,如果用户正试图解决在网络上的 WLAN 客户端的问题,可以同时捕获客户端的 WLAN 适配器和无线网络,如图 3.6 所示。

图 3.6 同时捕获有线和无线数据

3.4 捕获以太网数据

用户可以使用多种方法来捕获以太网上的数据。尽管有多种方法,但并不都是最有效的方法。最有效的捕获方法有三种,分别是直接在主机上捕获数据、映射主机的交换端口和设置一个测试访问点。下面将分别介绍这三种方法。

第1种:直接在主机上捕获数据

如果在主机上安装捕获工具,这可能是最好的选择。这样用户可以不用安装 Wireshark,使用一个简单的包捕获工具(如 tcpdump)就可以了,如图 3.7 所示。

第2种:端口映射

如图 3.8 所示,在该图中的交换机支持端口映射,并且用户有权配置交换机、设置交换机来复制所有数据到用户交换端口下的 Wireshark 端口。然而,需要注意的一个问题是交换机不会向链路层发送错误数据包,所以可以不看性能相关的所有数据。

图 3.7 在主机捕获数据 图 3.8 映射主机的交换端口

第3种:设置一个测试访问点(TAP)

测试访问点是全双工设备,它安装在主机和交换机之间,如图 3.9 所示。默认情况下,测试访问点向前发送所有网络数据,包括链路层错误。尽管测试访问点可能是昂贵的,如果用户想监听所有流量或来自一个主机的流量,它们可以节约大量的时间。

图 3.9 设置测试访问点

3.5 捕获无线数据

使用 Wireshark 捕获无线网络数据,可以帮助用户了解无线网络怎样工作和分析家庭网络性能慢的原因。如果要捕获无线网络数据,捕获之前需要做些准备工作。例如,确定无线局域网适配器是否正运行在 Wireshark 上。本节将介绍捕获无线网络数据。

3.5.1 捕获无线网络数据方式

无线网络数据捕获方式类似于以太网数据捕获,只是端口选择不同。下面简要介绍一下。 【实例 3-1】捕获无线局域网适配器数据。具体操作步骤如下所示:

(1) 在工具栏中依次选择 Capture Interfaces 命令,将显示如图 3.10 所示的界面。

图 3.10 捕获接口

(2) 从该界面可以看到有一个无线网络适配器,在该界面选择无线网络连接接口的复选框,如图 3.10 所示。然后单击 Start 按钮,将开始捕获数据,如图 3.11 所示。

图 3.11 无线网络数据

(3) 该捕获文件中的捕获的数据都是来自无线接口上的数据。

3.5.2 使用 AirPcap 适配器

AirPcap 适配器是专门设计用于捕获所有类型的 WLAN 数据,应用 WLAN 解密密钥,并添加捕获数帧的元数据。AirPcap 适配器可以捕获 802.11 控制、管理和数据帧。此外,这些适配器运行在监听模式(也称为射频监控或 RFMON 模式),使适配器来捕获所有数据,而不必结合特定的访问点。这意味着 AirPcap 适配器可以捕获任何 802.11 网络流量,而不仅仅是一个本地主机接口上的数据。

3.6 处理大数据

在 Wireshark 的默认设置情况下,将会捕获各种协议的数据。当用户分析时,这样的大数据将会带来很大的困扰。本节将介绍如何处理这些大数据。

3.6.1 捕获过滤器

捕获过滤器是数据经过的第一层过滤器,它用于控制捕捉数据的数量,可以避免产生过大的捕获文件。这样在使用 Wireshark 捕获之前,就可以通过指定捕获过滤器获取到自己需要的数据。下面将介绍捕获过滤器的使用。

在菜单栏中依次选择 Capture Options...命令,打开捕获选项窗口。打开界面,如图 3.12 所示。

图 3.12 捕获窗口

在该界面可以看到捕获过滤器列是空白的。这是因为默认没有使用任何的过滤器。此时, 双击选择接口行的任何一处,启动编辑接口设置窗口,如图 3.13 所示。

图 3.13 编辑接口设置

在该界面单击 Capture Filter 按钮,可以查看并选择捕获过滤器。这里选择 port 53,如图 3.13 所示。从该界面可以看到设置捕获过滤器后,背景颜色为绿色。通过该背景色可以判断使用的语法是否正确,如果语法错误,则背景为红色;如果正确,背景为绿色。然后单击 OK 按钮,将显示如图 3.14 所示的界面。

图 3.14 捕获选项

在该界面的 Capture filter 列可以看到,设置的捕获过滤器为 port 53。Wireshark 捕获过滤器使用的是伯克利数据包过滤器(Berkeley Packet Filtering)语法。用户也可以直接在捕获过滤器区域,输入捕获过滤器的语法。然后单击 Start 按钮,开始捕获数据。

3.6.2 捕获文件集

文件集就是多个文件的组合。在 Wireshark 中,使用文件集的方法可以将一个大数据文件分成好几个小文件。在捕获选项窗口中,可以设置每个文件的大小及每隔多长时间保存一个文件。这样也可以帮助用户,快速的处理数据。下面将介绍捕获文件集。

【实例 3-2】捕获文件集。具体操作步骤如下所示:

(1) 在主菜单栏中单击◉(显示捕获选项)按钮,将打开如图 3.15 所示的界面。

图 3.15 捕获选项界面

- (2) 在该界面的 Capture 选项框中,选择连接到 Internet 网络适配器前的复选框。这里选择"本地连接"接口。
- (3) 在 Capture Files 部分,单击 Browse 按钮选择保存捕获文件的路径和文件名。这里设置文件名为 capture.pcapng,如图 3.16 所示。然后单击 OK 按钮,将返回到捕获选项界面。

图 3.16 保存的文件

(4) 在捕获界面的 Capture Files 部分,将看到上面指定的捕获文件的路径和文件名,如图 3.17 所示。在该界面选择启用 Use multiple files 选项,并定义生成的捕获文件每个为 1MB、每 10 秒生成一个文件及捕获 4 个文件后自动停止捕获。以上信息设置完后,单击 Start 按钮,将开始数据捕获。

图 3.17 设置文件集

注意: 在捕获选项窗口中的 Stop Capture after 选项,在某些版本中存在 Bug。在 1.10.7 中,选择该选项后,无法发挥它的作用。

(5) 现在通过访问 www.openoffice.org 网站,产生流量。大概访问几秒,然后返回到 Wireshark 查看状态栏的文件区域。将会看到文件名发送了变化,文件后面添加了文件编号 (本例中是_00004)、时间和时间戳,如图 3.18 所示。

图 3.18 文件名变化

(6) 用户也可以通过在工具栏中依次选择 File|File Set|List Files 命令,查看文件集中的所有文件,如图 3.19 所示。

图 3.19 文件集

(7) 从该界面可以看到生成的 4 个小文件。

3.7 处理随机发生的问题

在捕获数据时,用户可能遇到一些特殊的问题。但是这些问题,并不是在每次捕获数据时都可以捕获到。所以,通常这些随机发生的问题给用户常常带来一定的困扰。在 Wireshark中有一些特殊的功能,可以捕获到这些烦人的、难以捉摸的数据包。本节将介绍处理这些随机发生的问题。

在 Wireshark 中可以通过设置使用文件集,并且使用循环缓冲区的功能处理随机发生的问题。设置该功能后,Wireshark 会持续的捕获数据,直到问题再次出现。下面介绍设置循环缓冲区的方法。

在菜单栏中依次选择 Capture Options 命令,打开捕获选项窗口。在该界面即可设置缓冲区文件,如图 3.20 所示。

图 3.20 设置缓冲区

以上的设置表示当 Wireshark 完成捕获第 5 个 100MB 的文件后,将删除第一个 100MB

的文件,并创建第六个文件,使 Wireshark 继续运行。

【实例 3-3】使用设置循环缓冲区的方法节约磁盘空间。具体操作步骤如下所示:

- (1) 在主菜单栏中单击⑨(显示捕获选项)按钮。
- (2) 在该界面的 Capture 部分选择,连接到 Internet 网络适配器前的复选框。这里选择 "本地连接"接口。
- (3) 在 Capture Files 部分,单击 Browse 按钮选择保存捕获文件的路径和文件名。这里设置文件名为 capturese.pcapng,如图 3.9 所示。然后单击 OK 按钮,将返回到捕获选项界面。
- (4) 在捕获界面的 Capture Files 部分,将看到上面指定的捕获文件的路径和文件名。 在该界面选择启用 Use multiple files 选项,设置生成文件集中的每个文件大小为 10MB,每 30 秒生成一个文件、缓冲区最多保存 3 个文件,如图 3.21 所示。以上信息设置完后,单击 Start 按钮,将开始数据捕获。

图 3.21 捕获选项

- (5)此时打开浏览器,访问 www.wireshark.org 网站产生流量。大概访问 30 秒该网站。 然后再访问一下 www.chappellu.com/nothere.html 网站,将会出现 404 错误,因为该网站不存在。当出现 404 错误后,快速返回到 Wireshark 界面,单击■(停止捕获)按钮。
- (7) 查看 Wireshark 的状态栏的文件区域,将看到许多文件编号已经被分配。当查看保存捕获文件目录或查看文件集时,仅能看到 3 个文件,如图 3.22 所示。因为在前面的循环缓存区设置了仅保存最后三个文件。

图 3.22 文件集

(8) 从该界面从文件名的编号(_00002、_00003、_00004)可以看出,目前保存的三个文件。由于缓存文件设置仅能保存 3 个文件,所以第一个文件(编号为_00001)被删除了。这样就可以节约磁盘空间。现在单击 Close 按钮,返回到 Wireshark 主界面。将能够快速的找出 404 的错误信息,如图 3.23 所示。

图 3.23 404 错误信息

(5) 从该界面可以看到, 39 帧中的数据中包含 404 Not Found 信息。

3.8 捕获基于 MAC/IP 地址数据

在使用 Wireshark 捕获过滤器时,可以设置只捕获 MAC/IP 地址数据的过滤器。本节将介绍捕获基友 MAC/IP 地址数据的方法。

3.8.1 捕获单个 IP 地址数据

IP 地址是 IP 协议提供的一种统一的地址格式。它为互联网上的每一个网络和每一台主机分配了一个逻辑地址。通常 IP 地址分为 IPv4 和 IPv6 两大类。现在大部分都使用的是 IPv4 地址,该地址是一个 32 位的二进制数。通常在捕获数据时,用户会通过 IP 地址的方式来判断是那台主机上的数据。下面将介绍捕获单个 IP 地址数据的方法。

下面看几个IP地址捕获过滤器的例子。

- □ host 10.3.1.1: 捕获到/来自 10.3.1.1 主机的数据。
- □ host 2406:da00:ff00::6b16:f02d: 捕获到/来自 IPv6 地址 2406:da00:ff00::6b16:f02d 的 数据。
- □ not host 10.3.1.1: 捕获除了到/从 10.3.1.1 的所有数据。
- □ src host 10.3.1.1: 捕获来自 10.3.1.1 主机上的数据。
- □ dst host 10.3.1.1: 捕获到达 10.3.1.1 主机上的数据。
- □ host 10.3.1.1 or host 10.3.1.2: 捕获到达/来自 10.3.1.1 上的数据,和到达/来自 10.3.1.2 主机的数据。
- □ host www.espn.com: 捕获解析 www.espn.com 的 IP 地址上的数据。
- 【实例 3-4】仅捕获到达/来自 192.168.0.112 主机的数据包。具体操作步骤如下所示:
- (1) 在工具栏中单击●按钮,打开捕获选项界面,如图 3.24 所示。

图 3.24 捕获选项

(2) 在该界面的捕获区域,选择捕获数据的接口(本地连接)的复选框。在这个捕获区域双击选择接口行的任何一处,启动编辑接口设置窗口,如图 3.25 所示。

图 3.25 编辑接口设置

大学霸——daxueba.net

图 3.26 捕获过滤器

(4) 从该界面可以看到,本地连接接口的捕获过滤器中显示了一条信息。在该界面不要启动 Use multiple files,此时就可以捕获数据了。单击 Start 按钮,将开始捕获过程,如图 3.27 所示。

图 3.27 捕获数据过程

- (5) 在 IP 地址为 192.168.0.112 主机上访问网络(如访问网站 www.chappellu.com),以产生数据。所有的数据,都将显示在图 3.27 中。
 - (6)返回到 Wireshark 中查看捕获文件,所有的数据都是来自/到达 192.168.0.112 主机。

3.8.2 捕获 IP 地址范围

IP 地址一共分为 A、B、C、D、E 五类。其中,最常用的是前三类地址。IP 地址根据 网络位和主机位,将其分为五类。为了节约地址,CIDR(Classless Interdomain Routing)将 好几个 IP 网络结合在一起。通过使用掩码值,表示了一个 IP 地址范围。

下面看几个 IP 地址范围捕获过滤器的例子。

- □ net 192.168.0.0/24: 捕获到/来自 192.168.0.0 网络中任何主机的数据。
- unet 192.168.0.0 mask 255.255.255.0: 捕获到/来自 192.168.0.0 网络中任何主机的数据。
- □ ip6 net 2406:da00:ff00::/64: 捕获到/来自 2406:da00:ff00:0000 (IPv6)网络中任何主机的数据。
- □ not dst net 192.168.0.0/24: 捕获除目的 IP 地址是 192.168.0.0 网络外的所有数据。
- □ dst net 192.168.0.0/24: 捕获到达 IP 地址为 192.168.0.0 网络内的所有数据。
- □ src net 192.168.0.0/24: 捕获来自 IP 地址为 192.168.0.0 网络内的所有数据。
- 【实例 3-5】捕获 192.168.0.0 网络中所有主机的数据。具体操作步骤如下所示:
- (1) 启动 Wireshark 捕获工具。在该界面的菜单栏中依次选择 Capture Options 按钮, 打开捕获选项窗口,如图 3.28 所示。

图 3.28 捕获选项窗口

(2)在该界面过滤器区域输入捕获过滤器 net 192.168.0.0/24。如果要保存该捕获文件, 单击 Browse 按钮选择保存捕获文件的位置和文件名。设置完后,如图 3.29 所示。

图 3.29 设置过滤器

(3) 从该界面可以看到目前设置的过滤器及文件保存位置。然后单击 Start 按钮,将开始捕获数据,如图 3.30 所示。

图 3.30 捕获的数据包

(4) 该捕获文件中所有的数据包,都是192.168.0.0/24网络中主机的数据。

3.8.3 捕获广播或多播地址数据

广播地址就是当 IP 地址的网络和主机位全为 1 时,就是广播地址 255.255.255.255。该地址应用于网络内的所有主机。该地址通常用在向局域网内所有主机发送广播包时,其目的地址就是广播地址。

多播地址即组播地址,是一组主机的表示符。在以太网中,多播地址是一个 48 位的标示符。在 IPv4 中,它历史上被叫做 D 类地址,它的范围是 224.0.0.0 到 239.255.255.255。广播地址全 1 的 48 位地址,也属于多播地址。

通过监听广播和多播,可以在 Wireshark 中了解到关于网络上主机的数据。下面列出几个常用的例子,如下所示:

- □ ip broadcast: 捕获到 255.255.255.255 的数据。
- □ ip multicast: 捕获通过 239.255.255.255 到 224.0.0.0 的数据。
- □ dst host ff02::1: 捕获所有主机到 IPv6 多播地址的数据。
- □ dst host ff02::2: 捕获所有路由到 IPv6 多播地址的数据。

如果只想捕获所有 IP 或 IPv6 的数据,使用 ip 或 ipv6 捕获过滤器。

【实例 3-6】捕获广播地址数据。具体操作步骤如下所示:

- (1) 启动 Wireshark 捕获工具。
- (2) 在捕获窗口中设置捕获过滤器为 ip 255.255.255, 如图 3.31 所示。

图 3.31 设置广播地址过滤器

(3) 从该界面可以看到指定的过滤器和捕获文件的位置。此时单击 Start 按钮,将开始捕获数据,如图 3.32 所示。

图 3.32 捕获的广播地址数据

(4) 从该界面可以看到所有数据包,都是发送给255.255.255.255 主机的。

3.8.4 捕获 MAC 地址数据

当想要捕获到/来自一个主机 IPv4 或 IPv6 的数据时,可以创建一个基于主机的 MAC 地址捕获过滤器。自从 MAC 头部被剥去,并且通过沿着路由器的路径应用。这样确保了,网络片段和目标主机片段一样。

- □ ether host 00:08:15:00:08:15: 捕获到/来自 00:08:15:00:08:15 主机的数据。
- □ ether src 02:0A:42:23:41:AC: 捕获来自 02:0A:42:23:41:AC 主机的数据。
- □ ether dst 02:0A:42:23:41:AC: 捕获到达 02:0A:42:23:41:AC 主机的数据。
- □ not ether host 00:08:15:00:08:15: 捕获到/来自除了 00:08:15:00:08:15 的任何 MAC 地址的流量。

【实例 3-7】仅捕获到/来自其它 MAC 地址的数据。具体操作步骤如下所示:

- (1) 使用 ipconfig 或 ifconfig 命令,查看活跃接口的 MAC 地址。
- (2) 在工具栏中单击●按钮, 打开捕获选项界面, 如图 3.33 所示。

图 3.33 捕获选项

(2)在该界面的捕获区域,选择捕获数据的接口(本地连接)的复选框。在这个捕获区域双击选择接口行的任何一处,启动编辑接口设置窗口,如图 3.34 所示。

图 3.34 编辑接口设置

- (3) 在该界面输入 not ether host xx.xx.xx.xx.(以太网地址),如图 3.34 所示。
- (4) 为了方便以后使用该过滤器,这里将保留此过滤器。单击 Capture Filter 按钮,将显示如图 3.35 所示的界面。

大学霸——daxueba.net

图 3.35 保存捕获过滤器

(5) 在该界面修改过滤器名字,设置为 NotMyMAC。然后单击 New 按钮,该过滤器 创建成功,如图 3.36 所示。

图 3.36 创建捕获过滤器

(6) 从该界面可以看到 NotMyMAC 捕获过滤器被成功的创建。此时单击 OK 按钮,将看到如图 3.37 所示的界面。

图 3.37 创建的捕获过滤器

- (7) 从该界面可以看到新创建的捕获过滤器。现在单击 Start 按钮,将开始捕获。
- (8) 此时,用户可以在非 MAC 地址为 00-0C-29-56-8D-21 的所有主机上进行操作。通过访问各种网站、登录服务器或发生邮件,产生主机间的数据流量。
- (9) 返回到 Wireshark 主界面,单击■(停止捕获)按钮。捕获到的数据,如图 3.38 所示。

图 3.38 捕获的数据

(10) 在该界面通过滚动鼠标,查看捕获的所有数据。在该捕获文件中,将不会出现MAC 地址为 00-0C-29-56-BD-21 主机的数据。

3.9 捕获端口应用程序数据

在 Wireshark 中想要使用捕获过滤器捕获应用程序的数据时,需要使用端口过滤器。本节将介绍捕获端口应用程序数据。

3.9.1 捕获所有端口号的数据

在网络中,大部分的应用程序都有相应的端口号,如 DNS、HTTP、FTP。下面列出了一个最常用应用程序捕获过滤器的列表。如下所示:

- □ port 53: 捕获到/来自端口号为 53 的 UDP/TCP 数据(典型的 DNS 数据)。
- □ not port 53: 捕获除到/来自端口号为 53 的所有 UDP/TCP 数据。
- □ port 80: 捕获到/来自端口号为 80 的 UDP/TCP 数据(典型的 HTTP 数据)。
- □ udp port 67: 捕获到/来自端口号为 67 的 UDP 数据(典型的 DHCP 数据)。
- □ tcp port 21: 捕获到/来自端口号为 21 的 TCP 数据(典型的 FTP 命令行)。
- □ portrange 1-80: 捕获到/来自 1-80 端口号的 UDP/TCP 数据。
- □ tcp portrange 1-80: 捕获到/来自 1-80 端口号的 TCP 数据。

【实例 3-8】捕获端口为 80 的所有数据包。具体操作步骤如下所示:

- (1) 启动 Wireshark 工具。
- (2) 在捕获选项窗口中设置捕获 80 端口数据的过滤器,并保存该文件,如图 3.39 所示。

图 3.39 设置端口过滤器

(3) 从该界面可以看到设置的捕获过滤器和文件保存位置。设置完后单击 Start 按钮,将显示如图 3.40 所示的界面。

图 3.40 捕获 80 端口的数据

(4) 从该捕获文件的 Protocol 列可以看到所有的协议都为 TCP 和 HTTP。这两种协议的数据包,都是来自 80 端口的。

3.9.2 结合基于端口的捕获过滤器

当用户想要捕获到/来自各种非连续端口号的数据,可以通过组合各种逻辑运算符来实现。如下所示:

- □ port 20 or port 21: 捕获到/来自 20 或 21 端口号的所有 UDP/TCP 数据。
- □ host 10.3.1.1 and port 80: 捕获到/来自端口号为 80, 并且是到达/来自 10.3.1.1 主机 的 UDP/TCP 数据。
- □ host 10.3.1.1 and not port 80: 捕获到/来自 10.3.1.1 主机,并且是非 80 端口的 UDP/TCP 数据。
- □ udp src port 68 and udp dst port 67: 捕获来自端口为 68, 目标端口号为 67 的所有 UDP 数据(典型的 DHCP 客户端到 DHCP 服务的数据)。

□ udp src port 67 and udp dst port 68: 捕获来自端口号为 67,目标端口号为 68 的所有 UDP 数据(典型的 DHCP 服务器到 DHCP 客户端的数据)。

提示:尽可能不要使用捕捉过滤器。当捕获大量的数据时,可以通过使用显示过滤器过滤特定的数据。

【实例 3-9】捕获 192.168.0.110 主机上非 80 端口的数据。具体操作步骤如下所示:

- (1) 启动 Wireshark 工具。
- (2) 在捕获选项窗口中设置捕获主机 192.168.0.110 上非 80 端口数据的过滤器,并保存该文件,如图 3.41 所示。

图 3.41 设置的过滤器

(3) 在捕获过滤器区域设置捕获过滤器后,单击 Start 按钮,将显示如图 3.42 所示的界面。

图 3.42 捕获的数据

(4) 此时,在该捕获文件中的 Protocol 列,将不会看到有 TCP 和 HTTP 的数据。因为 TCP 和 HTTP 协议的数据包,端口号是 80。

3.10 捕获特定 ICMP 数据

互联网控制消息协议(ICMP)是一种协议。当一个网络中出现性能或安全问题时,将

会看到该协议。在这种情况下,用户必须使用一个偏移量来表示在一个 ICMP 中字段的位置。 偏移量为 0 表示是 ICMP 字段类型;偏移量为 1 表示 ICMP 的位置代码字段。

下面将列出几个 ICMP 捕获过滤器的结构。

- □ icmp: 捕获所有 ICMP 数据包。
- □ icmp[0]=8: 捕获所有 ICMP 字段类型为 8 (Echo Request) 的数据包。
- □ icmp[0]=17: 捕获所有 ICMP 字段类型为 17 (Address Mask Request) 的数据包。
- □ icmp[0]=8 or icmp[0]=0: 捕获所有 ICMP 字段类型为 8 (Echo Request) 或 ICMP 字段类型为 0 (Echo Reply) 的包。
- □ icmp[0]=3 and not icmp[1]=4: 捕获所有 ICMP 字段类型为 3(Destination Unreachable), 除了 ICMP 字段类型为 3/代码为 4(Fragmentation Needed and Don't Fragment was Set) 的数据包。

【实例 3-10】创建、保存并应用一个 DNS 捕获过滤器。具体操作步骤如下所示:

(1) 在工具栏中单击 ●按钮, 打开捕获选项界面, 如图 3.43 所示。

图 3.43 捕获选项

(2) 在该界面的捕获区域,选择捕获数据的接口(本地连接)的复选框。在这个捕获区域双击选择接口行的任何一处,启动编辑接口设置窗口,如图 3.44 所示。

图 3.44 接口设置界面

(3) 在该界面输入 Capture Filter 对应的文本框中输入 port 53,如图 3.44 所示。此时通过单击 Capture Filter 按钮添加该捕获过滤器,如图 3.45 所示。

图 3.45 创建捕获过滤器

(4) 从该界面可以看到,添加的过滤器名称为 DNS。然后单击 OK 按钮,将显示如图 3.46 所示的界面。

图 3.46 捕获选项

- (5)从该界面可以看到创建的捕获过滤器。在该界面指定捕获文件的位置,单击 Browse 按钮,选择并保存捕获文件。本例中设置的捕获文件为 mydns.pcapng。然后设置使用多个文件,并定义下一个生成的文件没 10 秒一个 1MB 的文件,如图 3.38 所示。单击 Start 按钮,开始捕获数据。
- (6)此时通过访问互联网上不同的网站,查看数据。最好访问最近没有访问过的网站,以确保 DNS 信息不是从缓存中加载的。
 - (7) 返回到 Wireshark 界面,单击■(停止捕获)按钮。显示界面,如图 3.47 所示。

图 3.47 捕获的数据

(8) 从该界面可以看到,所有的数据都是 DNS。此时可以通过滚动鼠标,查看捕获文件过程中访问过的网站。