ÁLGEBRA

CHAPTER 17

5th of Secondary

$$F(x) = y = a(x - h)^{2} + k$$

$$Vértice = (h; k)$$

Tema: Funciones II

MOTIVATING STRATEGY

"El razonamiento matemático puede considerarse más bien esquemáticamente como el ejercicio de una combinación de dos instalaciones, que podemos llamar la intuición y el ingenio."

Alan Turing

HELICO THEORY

FUNCIONES II

FUNCIÓN CONSTANTE

Es aquella función de la forma:

$$f(x) = k$$
 $k \in \mathbb{R}$

Donde k es una constante, cuya gráfica es:

Donde:

$$Dom(f) = \mathbb{R}$$

$$Ran(f) = \{k\}$$

$$* f(4) = k$$

$$* f(\sqrt{5}) = k$$

$$* f(-9) = k$$

$$* f(0) = k$$

II FUNCIÓN LINEAL

Es aquella función de la forma: f(x) = ax + b $\forall a \neq 0$

$$f(x) = ax + b$$

$$\forall a \neq 0$$

Ejemplo:

Grafique:
$$f(x) = -3x + 12$$

Corte en el eje x:

$$f(x) = 0 \rightarrow -3x + 12 = 0 \rightarrow x = 4$$

Corte en el eje y:

$$f(0) = -3(0) + 12 = y \rightarrow y = 12$$

- Su dominio es $<-\infty;+\infty>$
- Su rango es $<-\infty;+\infty>$
- f es decreciente en todo su dominio

III) FUNCIÓN VALOR ABSOLUTO

Es aquella función de la forma: Cuya gráfica es:

$$f(x) = a|x - h| + k$$

IV) FUNCIÓN RAÍZ CUADRADA

Es aquella función de la forma:

$$f(x) = a \sqrt{x - h} + k$$
 ; a >0

Cuya gráfica es:

$$Dom(f) = [h; +\infty >$$

$$Ran(f) = [k; +\infty >$$

Características

- * Es creciente en todo su dominio
- Su mínimo valor es cero
- * Su dominio es $[0; +\infty >$
- * Su rango es $[0; +\infty >$

V) FUNCIÓN CUADRÁTICA

$$f(x) = ax^2 + bx + c \quad \forall \ a \neq 0$$

$$\mathbf{V} = (\mathbf{h}; \mathbf{k})$$

$$h=-\frac{b}{2a}$$

$$k = \frac{4ac - b^2}{4a}$$

V --- Vértice de la parábola

$$f(x) = 2x^2 - 4x + 1$$
$$g(x) = x^2 + 6x - 3$$

$$h(x) = -3x^2 + 6x - 5$$
$$j(x) = -x^2 - 2x + 4$$

CHAPTER 17 | HELICO THEORY

Gráfica de la función cuadrática de la forma:

Sea:
$$f(x) = a(x - h)^2 + k \longrightarrow V = (h; k)$$

$$f(x) = 3(x-5)^2 + 2$$

- * Su mínimo valor es 2
- * Su rango es $[2; +\infty >$
- * Es decreciente en $<-\infty$; 5
- * Es creciente en $[5; +\infty >$

$$g(x) = -2(x-1)^2 + 8$$

- * Su máximo valor es 8
- * Su rango es $<-\infty$; 8]
- * Es creciente en $<-\infty$; 1]
- * Es decreciente en $[1; +\infty >$

CHAPTER 17 | HELICO THEORY

Observación:

$$f(x) = a(x-h)^2 + k \qquad a > 0$$

$$Ran(f) = [k; +\infty >$$

$$V = (h; k)$$

Si:
$$f(x) = x^2 - 6x + 13$$

Podemos conocer su rango y vértice completando cuadrados:

$$y = x^2 - 6x + 9 + 4$$

 $y = 1(x - 3)^2 + 4$

Es una parábola hacia arriba

$$V\'{e}rtice = (3; 4)$$

$$Ran(f) = [4; +\infty >$$

CHAPTER 17 | HELICO THEORY

Desplazamientos

 $y = (x - 3)^2$

HELICO PRACTICE

1. Sea F una función constante tal que:

$$\frac{F(8)+F(10)}{F(5)-3}=8$$

Calcule: F(2014) + F(2005)

Resolución:

Como F es constante

$$F(x) = k$$

$$F(8) = F(10) = F(5) = k$$

Reemplazando:

$$\frac{\mathbf{k} + \mathbf{k}}{\mathbf{k} - 3} = 8$$

$$2k = 8k - 24$$

$$\mathbf{k} = \mathbf{4}$$

Piden:
$$F(2014) + F(2005)$$

 $k + k$

$$F(2014) + F(2005) = 8$$

2. Sea f(x) una función lineal tal que

$$f(4) = 7$$
 y $f(3) = 1$

Determine f(-2)

Resolución:

Como f es Lineal:

$$f(x) = ax + b$$

$$f(4) = 4a + b^{-4} = 7$$
 $f(3) = 3a + b^{-4} = 1$

$$a = 6$$

$$b = -17$$

$$f(x) = 6x - 17$$

piden:

$$f(-2) = 6(-2) - 17$$

$$f(-2) = -12 - 17$$

$$f(-2) = -29$$

3. Según la siguiente gráfica:

Resolución:

Como f(x) es lineal

$$f(x) = ax + b$$

Corte en el eje Y

$$f(0) = 6 \rightarrow a(0) + b = 6$$

$$b = 6$$

Corte en el eje X

$$f(3) = 0 \rightarrow 3a + b = 0$$

$$\rightarrow 3a + 6 = 0$$

$$a = -2$$

$$f(x) = -2x + 6$$

4. Grafique la siguiente función:

$$f(x) = \sqrt{x-3} - 4$$

Además determine su dominio y rango

Recuerda!

FUNCIÓN RAÍZ CUADRADA

Es aquella función de la forma:

$$f(x) = a\sqrt{x-h} + k$$

$$Dom(f) = [h; +\infty >$$

$$Ran(f) = [k; +\infty >$$

Resolución:

$$X - 3 = 0 \rightarrow X = 3$$
; $Y = -4$

Cuya gráfica es:

$$Dom(f) = [3; +\infty >$$

$$Ran(f) = [-4; +\infty >$$

5. Grafique la función:

$$f(x) = x^2 - 8x + 20$$

Además determine el vértice y rango de f(x)

Resolución:

Recordar:

Si:
$$f(x) = (x - h)^2 + k$$

 $V = (h; k)$
 $Ran(f) = [k; +\infty >$

Completando cuadrados:

$$f(x) = x^2 - 8x + 16 + 4$$

$$f(x) = (x-4)^2 + 4 \rightarrow \begin{cases} h = 4 \\ k = 4 \end{cases}$$

6. El costo de un horno microondas es 15T soles, donde T coincide con el área de la región limitada por la función: F(x) = |x - 4| - 6 y el eje X. ¿Cuánto es el costo de

Resolución?

$$F(x) = |x - 4| - 6 = 0$$

$$|x - 4| = 6 \begin{cases} x - 4 = -6 & \to x_1 = -2 \\ x - 4 = 6 & \to x_2 = 10 \end{cases}$$

T = Área =
$$\frac{(x_2 - x_1) \times 6}{2}$$
 = (12) × 3 = 36u²

Costo del horno:

$$15T = 15(36) = 540$$

∴ Costo del horno es s/540

7. Una pequeña compañía proveedora de servicios de cable provee a sus clientes varios tipos de planes, en el plan premium cobra \$30 por mes y tiene una cartera de 50 clientes, si por cada incremento de \$1 en el precio la empresa pierde un cliente. Halle el máximo ingreso que percibe la empresa en el plan mencionado.

Resolución:

Precio:
$$$30$$
 $+1x$ $(30+x)$

$$I(x) = (50-x)(30+x)$$

$$I(x) máx = -x^2 + 20x + 1500$$

$$I(x) máx = -(x - 10)^2 + 1600$$

Él máximo ingreso que percibe la empresa es \$1600