Uncertainty-Guided 3D Reconstruction via Multi-Scale Gaussian Mixture Models

LENNART SCHULZE*

* ls3932@columbia.edu

We iteratively model the probability of new-view images belonging to old-view GMM to minimize the size of a data set explaining the maximum uncertainty in a scene. We use this set for NeRF-based 3D reconstruction.

1) Introduction

- Motivation: Since its introduction in 2020, NeRF[1] has become the SOTA approach to reconstruct 3D scenes from images.
- **Problem**: The required image number is an obstacle for training speed, real-world apps.
- **Solution**: Selecting only images with most explanatory value can achieve similar perf.
- **Contributions:**
 - 1) Unified model to describe multi-scale GMM for prob. modeling of images.
 - 2) Algorithm to compose dataset based on uncertainty resolved by samples.
 - 3) Experimental results from using algorithm to minimize train data for NeRF-based reconstruction.

2) Background

Neural (Radiance) Fields

- = Neural-implicit representation of a 3D scene via NN-modeled map over points: f_{Φ} : $(x, d) \rightarrow (\sigma, c)$.
- Training via loss between reconstructed and given ground-truth 2D images.
- Training requires many (~100) objectcentered images from different views, creating bottleneck for real-world apps.
- Prior approaches for speedup on data structure[2], generalization[3], not data selection.

Probabilistic modeling of images

- Images modeled probabilistically per single image, e.g. based on pixel neighborhood[4].
- Per-scene dataset modeling novel approach.

3) Method

Unified image modeling framework $x_{img} = \text{image} \in \mathbb{R}^{w*h*3}$

 $x \in \{\text{image, region, pixel}\} = \mathbb{R}^{w_S * h_S * 3}$

K = |Gaussian components| (per unit or shared)

 $F = |features\ per\ component| \in$

one pixel for all pixels in pixel, region, or image; $3 * w_s * h_s :$ as many pixels as pixels in pixel, region, or image; $(F_{before}) + 2$: model image position in Gaussian component}

Derived image modeling approaches

Method	x	F	K	fit for	intuition
A1	pixel	3	1	each pixel	Simple dist. per pixel
A2	pixel	3	m	each pixel	Complex dist. per pixel
A3	pixel	3	1, m	all pixels	Same dist. for all pixels
A4	pixel	3+2	npixels, m	all pixels	Each pixel finds dist.
B1	region	3	1	each region	Simple dist. per region
B2	region	3	m	each region	Complex dist. per region
B3	region	3	1, m	all regions	Same dist. for all regions
B4	region	3+2	nregions, m	all regions	Each region finds dist.
C1	img	3	1	all images	Same dist. for all imgs
C2	img	3	nimgs, m	all images	Complex dist. for all imgs

Proposed data selection algorithm

Input: $N_{train} \in \mathbf{N}$ $X = \{x_i \mid x_i \in \mathbf{R}^{3*w*h}\}_{i=0}^{N_{imgs}-1}$ **Output:** $X_{out} = \{x_j \mid x_j \in \mathbf{R}^{3*w*h}\}_{i=0}^{N_{train}}$ $1 X_{out} = [random choice(X)];$ 2 $X.pop(X_{out}[-1]);$ 3 **for** $(l = 0; l < N_{train}; l + +)$ **do** $(\theta, \boldsymbol{\beta}, \mathbf{z}) = (\theta, \boldsymbol{\beta}, \mathbf{z}) \sim P(\theta, \boldsymbol{\beta}, \mathbf{z}|X_{out})$; /* Fit GMM LVs by Gibbs sampling */ /* Select by posterior predictive */ X_{out} .append(arg min_{$x \in X$} $P(x|\theta, \beta)$); $X.pop(X_{out}[-1]);$ 8 return X_{oi}

Dataset

- 3D reconstruction benchmark.
- $w=100, h=100, x^{i,j} \in [0,1].$
- N_imgs=100, N_val=100, $N_{\text{test}}=25.$

Implementation

- "Blender bulldozer" dataset is Probabilistic image modeling implemented from scratch.
 - Algorithm output fed into NeRF.
 - NeRF Pytorch variant is adopted and customized[5].

5) Conclusion

- Can uncertainty-guided data selection reduce the number of training images while maintaining reconstruction quality?
 - Per visual inspection: reconstruction quality higher than random approach, more details with same num. of samples.
 - Per loss: performance comparable; however, worst-case of random is worse than of uncertainty-guided approach.
- Applications: On pre-collected data sets; and knowledge can be used to guide future footage collection in real life and simulation.

4) Results

Method example: posterior predictive, beta for new images (A1)

Reconstruction examples: Uncert.-guided (A1) vs Random vs GT

Reconstruction performance: test set (12-loss ↓ / PSNR ↑)

Method	N_train = 2	N_train = 5	N_train=10	N_train=20
Uni. random	0.036 /	0.012 /	0.008 /	0.006 /
	14.40	19.09	21.19	22.05
Approach A1	0.043 /	0.013 /	0.008 /	0.007 /
	13.64	18.95	21.05	21.55
Approach A2	0.064 /	0.012 /	0.008 /	0.006 /
	11.92	19.35	21.14	22.03

Hyperparameters: effect of priors eta, sigma on beta (K=1,N_t=5)

References

[1] Mildenhall, B., et al. "Nerf: Representing scenes as neural radiance $% \left(1\right) =\left(1\right) \left(1\right)$ fields for view synthesis." ECCV. 2020.

[2] Müller, Thomas, et al. "Instant neural graphics primitives with a multiresolution hash encoding." ACM Transactions on Graphics (ToG) 41.4 (2022): 1-15.

[3] Yu, Alex, et al. "pixelnerf: Neural radiance fields from one or few images." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

[4] Li, S. Z. (2009). Markov random field modeling in image analysis. Springer Science & Business. [5] Yen-Chen, L. (2020). NeRF-pytorch. https://github.com/yenchenlin/nerf-pytorch/