for all $n \ge N$,

$$\sum_{k\geq 1} M_k - \sum_{k=1}^n M_k = \sum_{k>n} M_k < \varepsilon.$$

Thus for all $z \in G$ and $n \ge N$,

$$\left| \sum_{k>1} f_k(z) - \sum_{k=1}^n f_k(z) \right| = \left| \sum_{k>n} f_k(z) \right| \le \sum_{k>n} |f_k(z)| \le \sum_{k>n} M_k < \varepsilon,$$

which proves uniform convergence. Replace f_k with $|f_k|$ in this argument to see that $\sum_{k\geq 1}|f_k|$ also converges uniformly. \Box

Example 7.29. We revisit Example 7.8 and consider the geometric series $\sum_{k\geq 1} z^k$ as a series of functions in z. We know from Example 7.8 that this function series converges pointwise for |z| < 1:

$$\sum_{k>1} z^k = \frac{z}{1-z}.$$

To study uniform convergence, we apply Proposition 7.28 with $f_k(z) = z^k$. We need a series of upper bounds that converges, so fix a real number 0 < r < 1 and let $M_k = r^k$. Then

$$|f_k(z)| = |z|^k \le r^k$$
 for $|z| \le r$,

and $\sum_{k\geq 1} r^k$ converges by Example 7.8. Thus, Proposition 7.28 says that $\sum_{k\geq 1} z^k$ converges uniformly for $|z|\leq r$.

We note the subtle distinction of domains for pointwise/uniform convergence: $\sum_{k\geq 1} z^k$ converges (absolutely) for |z|<1, but to force *uniform* convergence, we need to shrink the domain to $|z|\leq r$ for some (arbitrary but fixed) r<1.

7.4 Regions of Convergence

For the remainder of this chapter (indeed, this book) we concentrate on some very special series of functions.

Definition. A power series centered at z_0 is a series of the form

$$\sum_{k\geq 0} c_k \left(z - z_0\right)^k$$

where $c_0, c_1, c_2, \ldots \in \mathbb{C}$.