CHRONIC KIDNEY DISEASE

Elliot Lee

TABLE OF CONTENTS

01

Introduction

02

Data Exploration

03

Feature
Engineering &
Modelling

04

Conclusion

O I Introduction

INTRODUCTION

Chronic Kidney Disease (CKD) is the progressive loss of kidney function over a period of several years

- May lead to permanent kidney failure
- 5 stages
- Diabetes and high blood pressure are leading causes

PROBLEM STATEMENT

Predict if a patient will progres in CKD staging given longitudinal lab measurements

Metrics

ROC-AUC and Recall

Key target: Identifying the positive class

Targeted Intervention

Allows for earlier identification of patients who may progress in staging and hence earlier intervention

O2 Data Exploration

Datasets

Number of records 300

Missing data
No

Datasets

9

Predictors

Lab measurements, demographics, drug intake history

Target variable

1 – will progress in CKD0 – will not progress in CKD

Target variable distribution

1 - 100 (33.3%),

0 - 200 (66.7%)

Data Exploration

Data is largely stationary for health parameters

Data Exploration

Some outlier values for glucose

Data Exploration

Many of the drugs did not have a significant number of users

Some were more prevalent amongst patients, but did not show observable differences

Feature Engineering & Modelling

Feature Engineering

Numeric Parameters

Obtained standard deviation as a measure of the fluctuations

Drugs

Calculated overall dosage

```
1 meds_df['total_dosage'] = meds_df['total_days'] * meds_df['daily_dosage']
executed in 10ms, finished 14:15:46 2021-03-07
```

Feature Engineering

Demographic Data

One-hot encoded

```
1 overall_df = pd.get_dummies(overall_df, columns=['race', 'gender'], drop_first=True)
executed in 8ms, finished 14:15:46 2021-03-07
```

Feature Selection

Boxplot

Mean haemoglobin level of patients who progress in CKD staging is lower than those who do not

Feature Selection

Correlation plot

Variables are largely uncorrelated except for the blood pressure measurements and race variables

Modelling

Classification Models

7 different classification models were chosen and GridSearchCV was used to obtain the best crossvalidated recall score

Modelling

Extra Trees Model

```
Gridsearch on Estimator: Extra Trees
Fitting 5 folds for each of 360 candidates, totalling 1800 fits

Best params: {'et__criterion': 'entropy', 'et__max_depth': 1, 'et__min_samples_split': 2, 'et__n_estimators': 10, 'sampling__k_neighbors': 2}

Best GridSearchCV recall: 0.576

Training AUC on best params: 0.685

Validation AUC on best params: 0.699

Training recall on best params: 0.676

Validation recall on best params: 0.696
```

Scoring Rep	ort for: Extra precision		f1-score	support
:	0 0.79 1 0.47	0.60 0.70	0.68 0.56	45 23
accurac macro av weighted av	g 0.63	0.65 0.63	0.63 0.62 0.64	68 68 68

Modelling

Extra Trees Model

```
Gridsearch on Estimator: Extra Trees
Fitting 5 folds for each of 360 candidates, totalling 1800 fits

Best params: {'et__criterion': 'entropy', 'et__max_depth': 1, 'et__min_samples_split': 2, 'et__n_estimators': 10, 'sampling__k_neighbors': 2}

Best GridSearchCV recall: 0.576

Training AUC on best params: 0.685

Validation AUC on best params: 0.699

Training recall on best params: 0.676

Validation recall on best params: 0.696
```

Scoring Rep	ort for: Extra precision		f1-score	support
:	0 0.79 1 0.47	0.60 0.70	0.68 0.56	45 23
accurac macro av weighted av	g 0.63	0.65 0.63	0.63 0.62 0.64	68 68 68

Model Evaluation

04

Conclusion

Conclusion

Classification Model

ROC-AUC of 0.699 Recall of 0.696

Targeted Intervention

Allows for better targeted intervention and treatment to halt or control the disease

Limitations

Recall and AUC are not extremely high

Deploy a mixed-effect model to better account for variability in efficacy of drugs

THANKS!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik

Please keep this slide for attribution

