

From Collusion-Resistant Traitor Tracing to Efficient Probabilistic Group Testing

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Eindhoven, The Netherlands (December 9, 2013)

Outline

Collusion-resistant traitor tracing

Introduction
Score-based construction
Fighting against specific attacks
Results

Efficient probabilistic group testing

Introduction

A traitor-tracing based solution

Results

Conclusion

Collusion-resistant traitor tracing

Illegal redistribution

User	C	ору	rigl	hte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

Collusion-resistant traitor tracing

Illegal redistribution

User	C	эру	rigl	nte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Сору	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

Collusion-resistant traitor tracing

User	C	эру	rig	hte	d c	ont	en	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

TU/e

User	C	ору	rigl	nte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

TU/e

User	C	ору	rigl	nte	d c	ont	ent	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

TU/e

User	C	эру	rigl	hte	d c	ont	ent	(f	ing	erp	rint	ed))				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

Collusion-resistant traitor tracing

Collusion attacks

User	C	ору	rig	hte	d c	ont	ent	t (f	ing	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

Collusion-resistant traitor tracing

Collusion attacks

User	C	ору	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Collusion-resistant traitor tracing

Collusion attacks

User	C	ору	rig	hte	d c	ont	ent	t (f	ing	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Collusion-resistant traitor tracing

User	C	ору	rig	hte	d c	ont	en	t (f	ng	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

Collusion-resistant traitor tracing

Schemes resistant against collusion attacks

User	C	эру	rig	hte	d c	ont	ent	t (f	ing	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

1. An algorithm to construct collusion-resistant codes

Collusion-resistant traitor tracing

User	C	эру	rig	hte	d c	ont	ent	t (f	ing	erp	rint	ted))				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Collusion-resistant traitor tracing

User	Copyrighted content (fingerprinted)							
Antonino	?	? ?	?	? ?	?			
Boris	?	? ?	?	? ?	?			
Caroline	?	? ?	?	? ?	?			
David	?	? ?	?	? ?	?			
Eve	?	? ?	?	? ?	?			
Fred	?	? ?	?	? ?	?			
Gábor	?	? ?	?	? ?	?			
Henry	?	? ?	?	? ?	<mark>?</mark>			
Сору	?	? ?	?	? ?	?			

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

User	Copyrighted content (fingerprinted)					
Antonino						
Boris						
Caroline						
David	$X \in \{0,1\}^{n imes \ell}$					
Eve	$\land \in \{0,1\}$					
Fred						
Gábor						
Henry						
Сору	$y \in \{0,1\}^\ell$					

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Collusion-resistant traitor tracing

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Collusion-resistant traitor tracing

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Score-based construction

Overview

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Score-based construction

Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders

Score-based construction

Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +0 & (X_{j,i}, y_i) = (0,0) \\ -\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0,1) \\ -0 & (X_{j,i}, y_i) = (1,0) \\ +\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1,1) \end{cases}$$

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{i,j} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +0 & (X_{j,i}, y_i) = (0, 0) \\ -\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0, 1) \\ -0 & (X_{j,i}, y_i) = (1, 0) \\ +\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1, 1) \end{cases}$$

$$\ell = 100c^2 \ln n \quad \text{[Tar'03]}$$

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +0 & (X_{j,i}, y_i) = (0,0) \\ -\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0,1) \\ -0 & (X_{j,i}, y_i) = (1,0) \\ +\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 4\pi^2 c^2 \ln n$$
 [S+'06]

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +0 & (X_{j,i}, y_i) = (0, 0) \\ -\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0, 1) \\ -0 & (X_{j,i}, y_i) = (1, 0) \\ +\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1, 1) \end{cases}$$

$$\ell \sim 2\pi^2 c^2 \ln n$$
 [BT'08]

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0,0) \\ -\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0,1) \\ -\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1,0) \\ +\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1,1) \end{cases}$$

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0,0) \\ -\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0,1) \\ -\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1,0) \\ +\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim \pi^2 c^2 \ln n \quad [S+'08]$$

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0,0) \\ -\sqrt{p_i/(1-p_i)} & (X_{j,i}, y_i) = (0,1) \\ -\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1,0) \\ +\sqrt{(1-p_i)/p_i} & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim \frac{1}{2}\pi^2 c^2 \ln n$$
 [LdW'13]

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i) & (X_{j,i}, y_i) = (0,0) \\ -1 & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p_i)/p_i & (X_{j,i}, y_i) = (1,1) \end{cases}$$

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i) & (X_{j,i}, y_i) = (0,0) \\ -1 & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p_i)/p_i & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c^2 \ln n$$
 [OSD'13]

Fighting against specific attacks

Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$	 $X_{1,\ell}$
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,\ell}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,\ell}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,\ell}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,\ell}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,\ell}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,\ell}$
Henry	$X_{8,1}$	$X_{8,2}$	$X_{8,3}$	$X_{8,4}$	$X_{8,5}$	 $X_{8,\ell}$
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	 y _ℓ

Fighting against specific attacks

Antonino	0	0	1	1	1	 0	
Boris	1	0	1	1	1	 1	
Caroline	1	0	0	1	0	 0	
David	0	0	1	1	1	 0	
Eve	0	0	1	0	1	 0	
Fred	1	0	1	0	1	 0	
Gábor	0	0	1	0	1	 0	
Henry	1	0	0	0	1	 0	
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>У</i> 3	<i>y</i> ₄	<i>y</i> ₅	 Уℓ	

Fighting against specific attacks

Antonino							
Boris							
Caroline	1	0	0	1	0	 0	
David							
Eve	0	0	1	0	1	 0	
Fred							
Gábor							
Henry	1	0	0	0	1	 0	
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>У</i> 3	<i>y</i> ₄	<i>y</i> ₅	 Уℓ	

Fighting against specific attacks

Antonino						
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	1	0	0	0	1	 0
Сору	<i>у</i> 1	<i>y</i> ₂	<i>У</i> 3	<i>y</i> ₄	<i>y</i> ₅	 <i>y</i> _ℓ

Fighting against specific attacks

Antonino							
Boris							
Caroline	1	0	0	1	0	 0	
David						 •	
Eve	0	0	1	0	1	 0	
Fred						 •	
Gábor						 •	
Henry	1	0	0	0	1	 0	
Сору	0/1	0	0/1	0/1	0/1	 0	

Fighting against specific attacks

Antonino							
Boris							
Caroline	1	0	0	1	0	 0	
David							
Eve	0	0	1	0	1	 0	
Fred							
Gábor							
Henry	1	0	0	0	1	 0	
Сору	0/1	0	0/1	0/1	0/1	 0	
All-1	1	0	1	1	1	 0	

Fighting against specific attacks

Antonino						
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	1	0	0	0	1	 0
Сору	0/1	0	0/1	0/1	0/1	 0
All-1	1	0	1	1	1	 0
Minority	0	0	1	1	0	 0

Fighting against specific attacks

Antonino						
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred			-			
Gábor						
Henry	1	0	0	0	1	 0
Сору	0/1	0	0/1	0/1	0/1	 0
All-1	1	0	1	1	1	 0
Minority	0	0	1	1	0	 0
Majority	1	0	0	0	1	 0

Fighting against specific attacks

Antonino						 •
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	1	0	0	0	1	 0
Сору	0/1	0	0/1	0/1	0/1	 0
All-1	1	0	1	1	1	 0
Minority	0	0	1	1	0	 0
Majority	1	0	0	0	1	 0
Coin-flip	1	0	1	0	0	 0

Fighting against specific attacks

Antonino						 •
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	1	0	0	0	1	 0
Henry Copy	0/1	0	0/1	0/1	0/1	 0 0
	0/1 1				1 0/1 1	
Сору		0	0/1	0/1	,	 0
Copy All-1	1	0	0/1	0/1 1	1	 0 0
Copy All-1 Minority	1	0 0 0	0/1 1 1	0/1 1 1	1 0	 0 0 0
Copy All-1 Minority Majority	1 0 1	0 0 0 0	0/1 1 1 0	0/1 1 1 0	1 0 1	 0 0 0 0

Fighting against specific attacks

Arbitrary attacks

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i) & (X_{j,i}, y_i) = (0,0) \\ -1 & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p_i)/p_i & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c^2 \ln n$$
 [OSD'13]

Fighting against specific attacks

The interleaving attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1 - p_i) & (X_{j,i}, y_i) = (0, 0) \\ -1 & (X_{j,i}, y_i) = (0, 1) \\ -1 & (X_{j,i}, y_i) = (1, 0) \\ +(1 - p_i)/p_i & (X_{j,i}, y_i) = (1, 1) \end{cases}$$

$$\ell \sim 2c^2 \ln n$$
 [OSD'13]

Fighting against specific attacks

The interleaving attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = 1 \left\{ p_i \ge p = \frac{1}{2} \right\}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +1 & (X_{j,i}, y_i) = (0, 0) \\ -1 & (X_{j,i}, y_i) = (0, 1) \\ -1 & (X_{j,i}, y_i) = (1, 0) \\ +1 & (X_{j,i}, y_i) = (1, 1) \end{cases}$$

$$\ell \sim 2c^2 \ln n$$

Fighting against specific attacks

The all-1 attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,j} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i) & (X_{j,i}, y_i) = (0,0) \\ -p_i(1-p_i)^{c-1}/(1-(1-p_i)^c) & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p_i)^c/(1-(1-p_i)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim O(c^{1.5} \ln n)$$
 [OSD'13]

Fighting against specific attacks

The all-1 attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = 1\left\{p_i \geq p pprox rac{1}{c}
ight\}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i) & (X_{j,i}, y_i) = (0,0) \\ -p_i(1-p_i)^{c-1}/(1-(1-p_i)^c) & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p_i)^c/(1-(1-p_i)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c \ln n$$

Fighting against specific attacks

The minority voting attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} + \dots & (X_{j,i}, y_i) = (0, 0) \\ - \dots & (X_{j,i}, y_i) = (0, 1) \\ - \dots & (X_{j,i}, y_i) = (1, 0) \\ + \dots & (X_{j,i}, y_i) = (1, 1) \end{cases}$$

$$\ell \sim O(c^{1.5} \ln n) \quad [OSD'13]$$

Fighting against specific attacks

The minority voting attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = 1\left\{p_i \geq p \approx \frac{1}{c}\right\}$$

$$g(X_{j,i}, y_i, p_i) \approx \begin{cases} +p_i/(1-p_i) & (X_{j,i}, y_i) = (0,0) \\ -p_i(1-p_i)^{c-1}/(1-(1-p_i)^c) & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p_i)^c/(1-(1-p_i)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c \ln n$$

Fighting against specific attacks

The majority voting attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} + \dots & (X_{j,i}, y_i) = (0, 0) \\ - \dots & (X_{j,i}, y_i) = (0, 1) \\ - \dots & (X_{j,i}, y_i) = (1, 0) \\ + \dots & (X_{j,i}, y_i) = (1, 1) \end{cases}$$

$$\ell \sim O(c^{1.5} \ln n) \quad [OSD'13]$$

Fighting against specific attacks

The majority voting attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$egin{aligned} F(p_i) &= 1 \left\{ p_i \geq p = rac{1}{2}
ight\} \ g(X_{j,i},y_i,p_i) &pprox egin{cases} +1 & (X_{j,i},y_i) = (0,0) \ -1 & (X_{j,i},y_i) = (0,1) \ -1 & (X_{j,i},y_i) = (1,0) \ +1 & (X_{j,i},y_i) = (1,1) \end{cases} \end{aligned}$$

 $\ell \sim \pi c \ln n$

Fighting against specific attacks

The coin-flip attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1 - p_i^c + (1 - p_i)^c) & (X_{j,i}, y_i) = (0, 0) \\ -p_i/(1 + p_i^c - (1 - p_i)^c) & (X_{j,i}, y_i) = (0, 1) \\ -(1 - p_i)/(1 - p_i^c + (1 - p_i)^c) & (X_{j,i}, y_i) = (1, 0) \\ +(1 - p_i)/(1 + p_i^c - (1 - p_i)^c) & (X_{j,i}, y_i) = (1, 1) \end{cases}$$

$$\ell \sim O(c^{1.5} \ln n)$$
 [OSD'13]

Fighting against specific attacks

The coin-flip attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

$$F(p_i) = 1\left\{p_i \geq p pprox rac{1}{c}
ight\}$$

$$g(X_{j,i}, y_i, p_i) \approx \begin{cases} +p_i/(1-p_i^c + (1-p_i)^c) & (X_{j,i}, y_i) = (0,0) \\ -p_i/(1+p_i^c - (1-p_i)^c) & (X_{j,i}, y_i) = (0,1) \\ -(1-p_i)/(1-p_i^c + (1-p_i)^c) & (X_{j,i}, y_i) = (1,0) \\ +(1-p_i)/(1+p_i^c - (1-p_i)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 4c \ln n$$

Results

The Tardos scheme

	Efficient	constr.	Lower bounds				
Arbitrary attacks	$100c^{2}$	[Tar'03]	$\Omega(c^2)$	[Tar'03]			
Interleaving attack	$100c^{2}$	[Tar'03]	$\Omega(c)$				
All-1 attack	$100c^{2}$	[Tar'03]	$\Omega(c)$				
Minority voting	$100c^{2}$	[Tar'03]	$\Omega(c)$				
Majority voting	$100c^{2}$	[Tar'03]	$\Omega(c)$				
Coin-flip attack	$100c^{2}$	[Tar'03]	$\Omega(c)$				

Results

Improvements of the Tardos scheme

	Efficient	constr.	Lower b	ounds
Arbitrary attacks	$2c^{2}$	[OSD'13]	$2c^{2}$	[HM'12]
Interleaving attack	$2c^{2}$	[OSD'13]	$2c^{2}$	[HM'12]
All-1 attack	$O(c^{1.5})$	[OSD'13]	$\Omega(c)$	
Minority voting	$O(c^{1.5})$	[OSD'13]	$\Omega(c)$	
Majority voting	$O(c^{1.5})$	[OSD'13]	$\Omega(c)$	
Coin-flip attack	$O(c^{1.5})$	[OSD'13]	$\Omega(c)$	

Results
Results from group testing

	Efficient	constr.	Lower bo	unds
Arbitrary attacks	$2c^{2}$	[OSD'13]	$2c^{2}$	[HM'12]
Interleaving attack	$2c^{2}$	[OSD'13]	$2c^{2}$	[HM'12]
All-1 attack	ec	[C+'11]	$\log_2(e)c$	[Seb'85]
Minority voting	$O(c^{1.5})$	[OSD'13]	$\Omega(c)$	
Majority voting	$O(c^{1.5})$	[OSD'13]	$\Omega(c)$	
Coin-flip attack	$O(c^{1.5})$	[OSD'13]	$\Omega(c)$	

Results Contributions

	Efficient	constr.	Lower bounds		
Arbitrary attacks	$2c^{2}$	[OSD'13]	$2c^{2}$	[HM'12]	
Interleaving attack	$2c^{2}$	[OSD'13]	$2c^{2}$	[HM'12]	
All-1 attack	2 <i>c</i>	[Laa'13]	$\log_2(e)c$	[Seb'85]	
Minority voting	2 <i>c</i>	[Laa'13]	$\Omega(c)$		
Majority voting	πc	[Laa'13]	$\Omega(c)$		
Coin-flip attack	4 <i>c</i>	[Laa'13]	$\Omega(c)$		

Efficient probabilistic group testing

Efficient probabilistic group testing

I		ı	I	I	ı	I	ı	I	I	I	I
1	0	0	0	0	0	0	0				
0	1	0	0	0	0	0	0				
0	0	1	0	0	0	0	0				
0	0	0	1	0	0	0	0				
0	0	0	0	1	0	0	0				
0	0	0	0	0	1	0	0				
0	0	0	0	0	0	1	0				
0	0	0	0	0	0	0	1				
	0 0 0 0 0	0 1 0 0 0 0 0 0 0 0	0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0	0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

Efficient probabilistic group testing

			ı						l	I
Antonino	1	0	0	0	0	0	0	0		
Boris	0	1	0	0	0	0	0	0		
Caroline	0	0	1	0	0	0	0	0		
David	0	0	0	1	0	0	0	0		
Eve	0	0	0	0	1	0	0	0		
Fred	0	0	0	0	0	1	0	0		
Gábor	0	0	0	0	0	0	1	0		
Henry	0	0	0	0	0	0	0	1		
Results	0	0	1	0	0	0	0	0		

Efficient probabilistic group testing

	ı		I		I					İ
Antonino	1	0	0	0	0	0	0	0		
Boris	0	1	0	0	0	0	0	0		
Caroline	0	0	1	0	0	0	0	0		
David	0	0	0	1	0	0	0	0		
Eve	0	0	0	0	1	0	0	0		
Fred	0	0	0	0	0	1	0	0		
Gábor	0	0	0	0	0	0	1	0		
Henry	0	0	0	0	0	0	0	1		
Results	0	0	1	0	0	0	0	0		

Efficient probabilistic group testing

Solution: Using pools

Efficient probabilistic group testing

Solution: Using pools

			l	ı	ı		I		
Antonino	0	0	0						
Boris	0	0	1						
Caroline	0	1	0						
David	0	1	1						
Eve	1	0	0						
Fred	1	0	1						
Gábor	1	1	0						
Henry	1	1	1						
Results	0	1	0						

Efficient probabilistic group testing

Solution: Using pools

	I		I	ı			ı		I
Antonino	0	0	0						
Boris	0	0	1						
Caroline	0	1	0						
David	0	1	1						
Eve	1	0	0						
Fred	1	0	1						
Gábor	1	1	0						
Henry	1	1	1						
Results	0	1	0	·			·		·

Efficient probabilistic group testing

Problem: Multiple infected

Efficient probabilistic group testing

Problem: Multiple infected

	I		I					I
Antonino	0	0	0					
Boris	0	0	1					
Caroline	0	1	0					
David	0	1	1					
Eve	1	0	0					
Fred	1	0	1					
Gábor	1	1	0					
Henry	1	1	1					
Results								

Efficient probabilistic group testing

Problem: Multiple infected

	ı		l	ı		ı		ı	I
Antonino	0	0	0						
Boris	0	0	1						
Caroline	0	1	0						
David	0	1	1						
Eve	1	0	0						
Fred	1	0	1						
Gábor	1	1	0						
Henry	1	1	1						
Results	1	1	1						

Efficient probabilistic group testing

Efficient probabilistic group testing

Solution: Group testing

			ı		ı					ı		
Antonino	?	?	?	?	?	?	?	?	?	?	?	?
Boris	?	?	?	?	?	?	?	?	?	?	?	?
Caroline	?	?	?	?	?	?	?	?	?	?	?	?
David	?	?	?	?	?	?	?	?	?	?	?	?
Eve	?	?	?	?	?	?	?	?	?	?	?	?
Fred	?	?	?	?	?	?	?	?	?	?	?	?
Gábor	?	?	?	?	?	?	?	?	?	?	?	?
Henry	?	?	?	?	?	?	?	?	?	?	?	?
Results	?	?	?	?	?	?	?	?	?	?	?	?

1. An algorithm to construct group testing matrices

Efficient probabilistic group testing

	ı									l		
Antonino	?	?	?	?	?	?	?	?	?	?	?	?
Boris	?	?	?	?	?	?	?	?	?	?	?	?
Caroline	?	?	?	?	?	?	?	?	?	?	?	?
David	?	?	?	?	?	?	?	?	?	?	?	?
Eve	?	?	?	?	?	?	?	?	?	?	?	?
Fred	?	?	?	?	?	?	?	?	?	?	?	?
Gábor	?	?	?	?	?	?	?	?	?	?	?	?
Henry	?	?	?	?	?	?	?	?	?	?	?	?
Results	?	?	?	?	?	?	?	?	?	?	?	?

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

Efficient probabilistic group testing

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

Efficient probabilistic group testing

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

Score-based construction

Overview

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

Score-based construction

Overview

- 1. An algorithm to construct group testing matrices
 - 1a. For each test *i*, generate $p_i \sim F$.
 - 1b. For each test i, person j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to link test results to infected people
 - 2a. For each test i, person j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. Mark person j infected iff $\sum_{i} S_{j,i}$ is "large".

Score-based construction

The classical model \cong The all-1 attack

- 1. An algorithm to construct group testing matrices 1a. For each test i, generate $p_i \sim F$.
 - 1b. For each test i, person j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to link test results to infected people
 - 2a. For each test i, person j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. Mark person j infected iff $\sum_i S_{j,i}$ is "large".

Score-based construction

The classical model \cong The all-1 attack

- 1. An algorithm to construct group testing matrices
 - 1a. For each test *i*, generate $p_i \sim F$.
 - 1b. For each test i, person j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to link test results to infected people
 - 2a. For each test i, person j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - 2b. Mark person j infected iff $\sum_{i} S_{j,i}$ is "large".

$$F(p_i) = 1\left\{p_i \geq p pprox rac{1}{c}
ight\}$$

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i) & (X_{j,i}, y_i) = (0,0) \\ -p_i(1-p_i)^{c-1}/(1-(1-p_i)^c) & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p_i)^c/(1-(1-p_i)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c \ln n$$

Results

Previous results from group testing

	Efficient cons	str.	Lower bounds
Classical model		[C+'11]	$\log_2(e)c [Seb'85]$
Noisy model	$\frac{4.36c}{(1-r)^2}$	[C+'11]	$\Omega\left(\frac{c}{(1-r)^2}\right)$ [AS'09]
Majority model	O(c)		$\Omega(c)$
Bernoulli gap		[C+'13]	$\Omega(c)$
Linear gap	$2\log_2(e)c^2$	[D+'05]	$\Omega(c)$

Results Contributions

	Efficient o	constr.	Lower bounds				
Classical model	2 <i>c</i>	[Laa'13]	$\log_2(e)c$ [Seb'8				
Noisy model	$\frac{2c}{(1-r)^2}$	[Laa'13]	$\Omega\left(\frac{c}{(1-r)^2}\right)$ [AS'09]	9]			
Majority model	πc		$\Omega(c)$				
Bernoulli gap	4 <i>c</i>	[Laa'13]					
Linear gap	$2c^{2}$	[OSD'13]	$2c^2$ [HM'1	.2]			

Conclusion

Fighting against specific attacks in traitor tracing

- If you know the attack, you can often find pirates much faster!
- Trick: Not only optimize g, but also p
- Code length often linear in c with small constants

Applications to probabilistic group testing

- ullet Group testing models \cong Specific attacks in traitor tracing
- Classical model: Asymptotic improvement over best result
- Improvements for various other models as well

Questions?