# CÁLCULO

AULA 3

PROF. DANIEL VIAIS NETO

# INTRODUÇÃO

- Sejam bem-vindos!
- Hoje: Pré-Cálculo.



# PRÉ-CÁLCULO

#### Conteúdo que veremos:

- Conjuntos numéricos e operações;
- Intervalos reais;
- Regras de potenciação;
- Produtos notáveis;
- Equação do 1º grau;
- Equação do 2º grau.



PECADO 1:  $\sqrt{x^2} = x$ 

PECADO 2:  $\sqrt{x+4} = \sqrt{x} + \sqrt{4}$ 

PECADO 3:  $\frac{x-\cancel{6}}{\cancel{3}} = x-\cancel{2}$ 

PECADO 4:  $1 - \frac{2x-6}{x-1} = \frac{x-1-2x-6}{x-1}$ 

# CONJUNTOS NUMÉRICOS

São eles, os conjuntos numéricos:

- Naturais:  $N = \{0, 1, 2, 3, 4, 5, ...\}$ .
- Inteiros:  $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ .
- Racionais:  $Q = \{x \mid x = \frac{a}{b}, com \ a, b \in Z, b \neq 0\}.$
- Reais:  $R = Q \cup Q'$  onde Q' é o conjunto dos números irracionais.
- Exemplos de números irracionais:  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $\pi$ , e.



Dados os números racionais  $\frac{3}{7}$ ,  $\frac{5}{6}$ ,  $\frac{4}{9}$  e  $\frac{3}{5}$ , a divisão do menor deles pelo maior é igual a:

- a)  $\frac{27}{28}$
- b)  $\frac{18}{25}$
- $C)\frac{18}{35}$
- d)  $\frac{20}{27}$

João e Tomás partiram um bolo retangular. João comeu a metade da terça parte e Tomás comeu a terça parte da metade. Quem comeu mais?

- a) João, porque a metade é maior que a terça parte.
- b) Tomás.
- c) Não se pode decidir porque não se conhece o tamanho do bolo.
- d) Os dois comeram a mesma quantidade de bolo.
- e) Não se pode decidir porque o bolo não é redondo.

São dadas as sentenças:

- I. O número 1 tem infinitos múltiplos.
- II. O número 0 tem infinitos divisores.
- III. O número 161 é primo.

É correto afirmar que SOMENTE

- a) I é verdadeira.
- b) II é verdadeira.
- c) III é verdadeira.
- d) I e II são verdadeiras.
- e) II e III são verdadeiras.

Seja R o número real representado pela dízima 0,999... Pode-se afirmar que:

- a) R é igual a 1.
  - b) R é menor que 1.
  - c) R se aproxima cada vez mais de 1 sem nunca chegar.
  - d) R é o último número real menor que 1.
  - e) R é um pouco maior que 1.

Um grupo de alunos cria um jogo de cartas, em que cada uma apresenta uma operação com números racionais. O ganhador é aquele que obtiver um número inteiro como resultado da soma de suas cartas. Quatro jovens ao jogar receberam as seguintes cartas:

O vencedor do jogo foi:

- a) Maria
- b) Selton
- c) Tadeu
- d) Valentina

|           | 1ª carta   | 2ª carta            |  |
|-----------|------------|---------------------|--|
| Maria     | 1,333+ 4/5 | $1,2+\frac{7}{3}$   |  |
| Selton    | 0,222+ 1/5 | $0,3+\frac{1}{6}$   |  |
| Tadeu     | 1,111+3    | $1,7 + \frac{8}{9}$ |  |
| Valentina | 0,666+7    | $0,1+\frac{1}{2}$   |  |

#### INTERVALOS REAIS

| Representação na reta real        | Sentença matemática                   | Notações simbólicas |       |
|-----------------------------------|---------------------------------------|---------------------|-------|
| Intervalo aberto:                 | {x ∈R   a < x < b}                    | ]a,b[               | (a,b) |
| Intervalo fechado:  a b           | $\{ x \in R \mid \ a \le x \le b  \}$ | [a,b]               | [a,b] |
| Intervalo semi-aberto à direita:  | $\{ x \in R \mid \ a \le x < b  \}$   | [a,b[               | [a,b) |
| Intervalo semi-aberto à esquerda: | $\{ x \in R \mid \ a < x \le b  \}$   | ]a,b]               | (a,b] |

#### INTERVALOS REAIS

| Representação na reta real | Sentença matemática        | Notações simbólicas |           |
|----------------------------|----------------------------|---------------------|-----------|
| <u>a</u>                   | $\{x \in R \mid x > a\}$   | ]a, +∞ [            | (a, +∞)   |
| <del>a</del>               | $\{x \in R \mid x \ge a\}$ | [a, +∞ [            | [a, +∞ )  |
| à                          | $\{x \in R \mid x < a\}$   | ]−∞,a[              | ( – ∞ ,a) |
| <del></del> a              | $\{x \in R \mid x \le a\}$ | ]—∞,a]              | (−∞,a]    |

Dados os conjuntos A = [-2,4),  $B = [-1,+\infty)$ ,  $C = (1,+\infty)$  e D = [-6,3), determine cada operação sob forma de intervalo e com linguagem simbólica:

- a)  $A \cup D$  [-6,4)
- b)  $A \cap B$  [-1,4)
- c) A C [-2,1]

