Conversion and Coding

BCD Adder

Design a circuit that calculates the Arithmetic addition of two decimal digits.

BCD Adder

Maximum sum is 9+9+1=19Max digit

Carry from previous digits

BCD adder (sum up to 9)

Number	C	S3	S2	S1	S0
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1

The sum is the same with BCD adder

BCD adder (sum is 10 to 19)

Number	C	S3	S2	S1	50
10	1	0	0	0	0
11	1	0	0	0	1
12	1	0	0	1	0
13	1	0	0	1	1
14	1	0	1	0	0
15	1	0	1	0	1
16	1	0	1	1	0
17	1	0	1	1	1
18	1	1	0	0	0
19	1	1	0	0	1

BCD adder (sum is 10 to 19)

BCD	adder	sum

Number	C	S 3	S2	S1	S0
10	1	0	0	0	0
11	1	0	0	0	1
12	1	0	0	1	0
13	1	0	0	1	1
14	1	0	1	0	0
15	1	0	1	0	1
16	1	0	1	1	0
17	1	0	1	1	1
18	1	1	0	0	0
19	1	1	0	0	1

Binary sum

		K	Z3	Z2	Z1	Z0
		0	1	0	1	0
-6		0	1	0	1	1
		0	1	1	0	0
		0	1	1	0	1
		0	1	1	1	0
		0	1	1	1	1
11		1	0	0	0	0
		1	0	0	0	1
1	\mathbf{Y}	1	0	0	1	0
		1	0	0	1	1

Algorithm for BCD Adder

- If sum is up to 9
 - Use the regular Adder.

- If the sum > 9
 - Use the regular adder and add 6 to the result

When is the result > 9

Binary sum

Number	Correction	C _{out}	Z3	Z2	Z1	Z0
10	1	0	1	0	1	0
11	1	0	1	0	1	1
12	1	0	1	1	0	0
13	1	0	1	1	0	1
14	1	0	1	1	1	0
15	1	0	1	1	1	1
16	1	1	0	0	0	0
17	1	1	0	0	0	1
18	1	1	0	0	1	0
19	1	1	0	0	1	1

Cout Z ₃ Z ₂	00	01	11	10
000				
001				
011	1	1	1	1
010			1	1
110	X	X	X	X
111	X	X	X	X
101	X	X	X	X
100	1	1	1	1

Correction =
$$C_{out} + Z_3Z_1 + Z_3Z_2$$

