COUNTING PHOTOVOLTAIC AND SOLAR PANELS FROM AERIAL IMAGERY

Complements of Machine Learning 24/25

Lacuna Solar Survey Challenge

- Hugo Veríssimo 124348
- João Cardoso 50750

CONTENTS

Project Overview

Data Analysis

Deep Learning Models

Results Analysis

PROJECT OVERVIEW

THE PROBLEM

From aerial imagery:

- Count thermal solar panels
- Count photovoltaic panels

STATE OF THE ART

DATA ANALYSIS

4419 images (75/25 split)

For each training image:

- Segmentation masks for panel groups
- Panel count per group
- Metadata

Distribution of Objects in Segmentation Masks Photovoltaic Thermal Solar 10^3 10^2 10^0 25 50 75 100 125 150 175Number of Objects per Segmentation Mask

RAW DATA

Inaccuracies in Polygon Annotations

Misaligned Vertices (6/3)

Excessive Object Inclusion (141/8)

Segmentation Mask

PREPROCESSING

- Grouped all polygons belonging to the same image into one record
- Fixed or remove innacurate polygons
- Resized images to 512×512
- Readjusted polygons to fit resized images

METHODOLOGY

DEEP LEARNING MODELS

IMAGE-BASED REGRESSION

Tested backbones:

DenseNet121, EfficientNetv2B3 and ResNet101

Hyperparameter search space

,, , , , , , , , , , , , , , , , , , ,	·
Hyperparameter	Possible Values
Batch size	{16 , 32, 64 }
Optimizer	AdamW
Learning rate	$[10^{-5}, 10^{-3}]$
Weight decay	$[10^{-5}, 10^{-3}]$
Dropout	$\{0.2, 0.3, 0.4\}$
Scheduler	CosineAnnealingWarmRestarts
T_0	$\{3, 5, 7, 10\}$
T_mult	$\{1, 2, 3, 5\}$
Loss	HuberLoss
δ	1

IMAGE-BASED REGRESSION - RESULTS

Error metrics

Dataset	MAE	Support
Train Set	0.5127	3312
Test Set	0.8434	1107

OBJECT DETECTION

Due to poor performance, polygons spanning multiple panels were manually redrawn to isolate single panels. Since this wasn't done for all images, around 40% of the training set was discarded.

Hyperparameter search space

Hyperparameter	Possible Values
Batch size	{16, 32 }
Model	{ yolov8l , yolo11m, yolo111}
Image size	512
Augmentation	True
Early stopping patience	[15, 25]
cls	[0.5, 1.5]
lr0	$[10^{-5}, 10^{-3}]$
lrf	[0.1, 1]
mixup	[0, 0.75]
copy_paste	[0, 0.75]
scale	[0.5, 1]

OBJECT DETECTION - RESULTS

Error metrics

Dataset	MAE	Support
Train Set	1.4330	3312
Test Set	1.2645	1107

INSTANCE SEGMENTATION

Due to poor performance, the revised polygons were reused, also without the 40% of training images that had been discarded.

Hyperparameter search space

	· · · · · · · · · · · · · · · · · · ·
Hyperparameter	Possible Values
Batch size	{8 , 32, 16}
Model	{yolov8l-seg, yolo11m-seg, yolo11l-seg}
Image size	512
Augmentation	True
Early stopping patience	[10, 25]
cls	[0.5, 2.5]
lr0	$[10^{-4}, 10^{-3}]$
lrf	$\{0.01, 0.1, 1\}$
mixup	[0, 0.5]
copy_paste	[0, 0.8]
scale	[0.5, 1]

INSTANCE SEGMENTATION - RESULTS

Error metrics

Dataset	MAE	Support
Train Set	1.5645	3312
Test Set	1.3415	1107

RESULTS ANALYSIS

RESULTS & BENCHMARK

Error metrics for the fine-tuned models along with the best performers in the competition

Model	MAE (Test Set)
Hybrid	0.8434
Obj. Det.	1.2645
Inst. Seg.	1.3415
Team Lacuna (1st)	0.3299
K_Junior (2nd)	0.5698

TEAM LACUNA APPROACH

CONCLUSIONS

- The goal of this project was to develop a model capable of detecting and counting photovoltaic and solar thermal panels in aerial and satellite imagery.
- Although the dataset initially presented several issues, such as mislabelled images, inaccurate masks, and class imbalance, it was refined through manual corrections and preprocessing.
- Ultimately, the hybrid model demonstrated the best performance, among the evaluated models.