

Image Pyramids

Visual Information Processing and Management a.a. 2019/2020

Simone Bianco

Image Pyramids

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2*x2* images (assuming N=2*)

Ievel k-1

Ievel k-2

Ievel k-1

Ievel k-1

Ievel k-1

Ievel k-2

Ievel k-3

In computer graphics, a *mip map* [Williams, 1983]

A precursor to wavelet transform

1

2

Image sub-sampling

1/8

Throw away every other row and column to create a 1/2 size image
- called image sub-sampling

11 12

13 14

15 16

17 18

19 20

What is the Optimal Window?

To avoid seams

• window >= size of largest prominent feature

To avoid ghosting

• window <= 2*size of smallest prominent feature

21 22

23 24

Laplacian Pyramid: Blending

General Approach:

- Build Laplacian pyramids LA and LB from images A and B
 Build a Gaussian pyramid GR from selected region R
- 3. Form a combined pyramid LS from LA and LB using nodes of GR as weights:

 • LS(i,j) = GR(i,j,)*LA(i,j) + (1-GR(i,j))*LB(i,j)

 4. Collapse the LS pyramid to get the final blended image

25 26

