# Telecom Churn Prediction using AWS Sagemaker

Presented By: Sonu Adhikari



## **Table of contents**

•••

01

Introduction

02

**Problem Statement** 

03

**Objectives** 

04

**Related Works** 

05

**AWS Architecture** 

06

**Future Work** 



## Introduction

 Customer Churn means customer leaving a company or discontinuing their association

 Telecommunications industry is characterized by intense competition and high customer churn rates

 Timely identification of customers at risk of churn remains a significant obstacle



## **Problem Statement**





Telecom companies face challenges in retaining customers due to high churn rates.



Existing Machine Learning aren't using fully managed Cloud environment like Sagemaker for training, deploying, and managing machine learning models





Organisations aren't still utilizing SageMaker's managed infrastructure that eliminates the need for upfront investments in hardware or ongoing maintenance costs.



# **Objectives**

- Develop a machine learning model using AWS SageMaker's classification algorithm to predict customer churn, in this case only used the XGBoost algorithm
- Deploy the model as a real-time prediction endpoint
- Ultimately enable telecom operators to implement the endpoints in their systems for proactive retention strategies based on churn predictions.



## **Related Works**

- 1. A Customer Churn Prediction Model using XGBoost for the Telecommunication Industry in Nepal: XGBoost has been used for a Telecommunications service in Nepal
- 2. Churn Prediction in the Telecommunication sector using Support Vector Machines: The paper has used a Support Vector Machines algorithm with four kernel functions to implement the predictive models. The performance of the models is evaluated and compared using gain measure.
- 3. Churn Prediction in Telecommunication using Logistic Regression and Logit Boost: In this proposed model, two machine-learning techniques were used for predicting customer churn Logistic regression and Logit Boost. Experiment was carried out in the WEKA Machine-learning tool



#### **Dataset**

- The dataset contains information of all 7,043 customers from a Telecommunications company in California in Q2 2022.
- Each record represents one customer, and contains details about their demographics, location, tenure, subscription services and more.

| customerIC        | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines    | InternetService | OnlineSecurity | DeviceProtection | TechSupport | StreamingTV | StreamingMovies | Contract       | PaperlessBilling | PaymentMethod             | MonthlyCharges | TotalCharges | Churn |
|-------------------|--------|---------------|---------|------------|--------|--------------|------------------|-----------------|----------------|------------------|-------------|-------------|-----------------|----------------|------------------|---------------------------|----------------|--------------|-------|
| 0 7590-VHVE       | Female |               | Yes     | No         |        | No           | No phone service | DSL             | No             | No               | No          | No          | No              | Month-to-month | Yes              | Electronic check          | 29.85          | 29.85        | No    |
| 1 5575-GNVDE      | Male   |               | No      | No         | 34     | Yes          | No               | DSL             | Yes            | Yes              | No          | No          | No              | One year       | No               | Mailed check              | 56.95          | 1889.5       | No    |
| 2 3668-QPYBK      | Male   |               | No      | No         |        | Yes          | No               | DSL             | Yes            | No               | No          | No          | No              | Month-to-month | Yes              | Mailed check              | 53.85          | 108.15       | Yes   |
| 3 7795-CFOCW      | Male   |               | No      | No         | 45     | No           | No phone service | DSL             | Yes            | Yes              | Yes         | No          | No              | One year       | No               | Bank transfer (automatic) | 42.30          | 1840.75      | No    |
| 4 9237-HQITU      | Female |               | No      | No         |        | Yes          | No               | Fiber optic     | No             | No               | No          | No          | No              | Month-to-month | Yes              | Electronic check          | 70.70          | 151.65       | Yes   |
| 5 rows × 21 colum | ns     |               |         |            |        |              |                  |                 |                |                  |             |             |                 |                |                  |                           |                |              |       |



## **AWS Architecture**

- S3 for initial raw data collection and storage of preprocessed data
- Sagemaker for training the dataset
- Storing the trained model in S3 again
- Sagemaker hosting takes the trained model after getting a request from Lambda function
- The users can interact with the predictive model using API Gateway





## Well-Architected Framework



- Security: Using IAM Role instead of Root Account with least privilege principle
- Cost Optimisation:
  - Setting up cloudwatch alarm for cost tracking since it was a problem
  - Continuously monitor SageMaker resource usage and right-size instances based on workload demands
- Sustainability:
  - Using the minimum amount of hardware to meet your needs and instance types with the least impact
  - Stop the creation and maintenance of unused assets
- Performance Efficiency:
  - Select appropriate SageMaker instance types and sizes based on requirements
- Operational Excellence: Prepare for operations by automating processes by using Cloudformation



## Challenges and Future Enhancements

 While using Sagemaker, cost optimization was a big challenge(even led to account suspension)

 Fetching the desired output while testing the endpoint was an issue

- End-to-end MLOps Implementation, including pipelining
- Fine Tuning the Sagemaker Endpoint
- Experimenting with more algorithms
- Integration of the endpoint with a real-time system





## Thank You!

Do you have any questions?