Topología – 2° cuatrimestre 2015 HOMOLOGÍA

1. Halle todos los grupos abelianos posibles M en la siguiente sucesión exacta corta:

$$0 \to \mathbb{Z}_2 \to M \to \mathbb{Z}_4 \to 0$$

Demostración Si tengo tiempo la hago...

2. Pruebe que una sucesión exacta corta de complejos de cadenas

$$0 \longrightarrow A_* \stackrel{f}{\longrightarrow} B_* \stackrel{g}{\longrightarrow} C_* \longrightarrow 0$$

induce una sucesión exacta larga de homología

$$\dots \xrightarrow{\partial_{n+1}} H_n(A) \xrightarrow{f_n} H_n(B) \xrightarrow{g_n} H_n(C) \xrightarrow{\partial_n} H_{n-1}(A) \xrightarrow{f_{n-1}} H_{n-1}(B) \xrightarrow{g_{n-1}} \dots$$

Demostración Básicamente es probar el lema de la serpiente... Veamoslo porque es divertido! Tenemos el siguiente diagrama:

Ahora si sea $c \in ker(d''_n)$, como g_n es epi $\exists b \in B_n \ / g_n(b) = c$, pero entonces $g_{n-1}d'_n(b) = d''_ng_n(b) = d''_n(c) = 0$ por la conmutatividad del diagrama, por lo que $d'_n(b) \in Ker(g_{n-1}) = Im(f_{n-1})$ por lo que $\exists a \in A_{n-1}$ tal que $f_{n-1}(a) = d'_n(b)$ y notemos que $f_{n-2}d_{n-1}a = d'_{n-1}f_{n-1}(a) = d'_{n-1}d'_n(b) = 0$ pues $Im(d'_n) \subset Ker(d'_{n-1}) \ \forall n \in \mathbb{N}$; por ende como f_{n-2} es mono tenemos que $d_{n-1}(a) = 0$ por lo que $a \in ker(d_{n-1})!!$ Definimos entonces $\partial([c]) = [a]$ y afirmamos que está bien definido en el cociente y la sucesión es exacta! Veamoslo!

- lacksquare ∂ esta bien definida
 - Sean $c \in ker(d_n'')$ y $b,b' \in B_n / g_n(b) = c = g_n(b')$ y sean $a,a' \in A_{n-1}$ los únicos (pues f_{n-1} es mono) tal que $f_{n-1}(a) = d_n'(b)$ y $f_{n-1}(a') = d_n'(b')$. Entonces por hipótesis tenemos que $b-b' \in ker(g_n) = Im(f_n)$ y entonces $b-b' = f_n(z)$ para algún $z \in A_n$, pero entonces $f_{n-1}d_n(z) = d_n'f_n(z) = d_n'(b-b') = f_{n-1}(a-a')$ por lo que como f_{n-1} es mono tenemos que $d_n(z) = a-a'$ y $a-a' \in Im(d_n)$ y por ende [a] = [a'] en $ker(d_{n-1})/Im(d_n) := H_{n-1}(A)$
- La sucesión es exacta Uhh este da re vagancia, da...

Por ende por lo probado tenemos que ∂ pasa bien al cociente y entonces cocientando los ker tenemos el siguiente diagrama:

Que es la sucesión exacta larga pedida

3. Sean (C_*,d) y (D_*,d') complejos. Pruebe que $(C_*\oplus D_*,d\oplus d')$ es un complejo y que

$$H_*(C \oplus D) = H_*(C) \oplus H_*(D).$$

Demostración Veamos que cumple la propiedad universal! Recordamos que la propiedad universal del coproducto es:

Observación Consideremos $f_i:M_i\to M$ morfismos de grupos $\forall i\in I$ entonces si llamamos $j_i:M_i\to\bigoplus_i M_i$ dado por $m_j\mapsto\sum_i \delta_{i,j}m_j$ tenemos que $\exists!f:\bigoplus_i M_i:\to M$ tal que el siguiente diagrama conmuta:

$$M_{i} \xrightarrow{f_{i}} M$$

$$\downarrow_{i} M_{i}$$

Entonces si notamos $i_1:C\to C\oplus D$ tal que $c\mapsto c+0$ y i_2 la análoga veamos que todo funciona! Sea M un grupo abeliano, $f_1:H_n(C)\to M$ y $f_2:H_n(D)\to M$; definimos $j_1:H_n(C)\to H_n(C\oplus D)$ dado por $[c]\mapsto [i_1(c)]$ y j_2 análogo y definimos $f:H_n(C\oplus D)\to M$ dado por $[c+d]\mapsto f_1([i_1(c)])+f_2([i_2(d)])$. Entonces tenemos que $f_i=f\circ j_i$ para $i\in\{0,1\}$ y $H_n(C\oplus D)$ cumple la PU, entonces $H_n(C\oplus D)=H_n(C)\oplus H_n(D)$

4. Sea $m \in \mathbb{N}$. Calcule la homología del siguiente complejo de cadenas:

$$\cdots \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \cdots$$
 $d_{2n}(x) = 0$ $d_{2n+1}(x) = mx$

Demostración Por definición tenemos que $H_n = Ker(d_n)/Im(d_{n+1})$ entonces separemos!

■ n=2kEntonces tenemos que $d_n=0$ y $d_{n+1}=mx$ por lo cual tenemos que $Ker(d_n)=\mathbb{Z}$ y $Im(d_{n+1})=m\mathbb{Z}$ por lo que $H_n=\mathbb{Z}_m$

- n=2k+1 Entonces tenemos que $d_n=mx$ y $d_{n+1}=0$ por lo que $Ker(d_n)=0$ y $Im(d_{n+1})=0$ por lo que $H_n=0$
- 5. Pruebe que si $i:A\to X$ es un retracto, entonces $i_*:H_n(A)\to H_n(X)$ es un monomorfismo para todo $n\geqslant 0$, y que si i es retracto por deformación débil, entonces i_* es isomorfismo.

Demostración Sea $r:X\to A$ tal que $ri=1_A$ pero tenemos por la teórica que la aplicación $f:A\to X\mapsto f_*:H_n(A)\to H_n(X)$ es functorial, por ende $1_{H_n(A)}=(1_A)_*=(ri)_*=r_*i_*$, entonces como $1_{H_n(A)}$ es isomorfismo, tenemos que i_* es monomorfismo y r_* es epimorfismo. Si además se tiene que $ir\simeq 1_X$ entonces, como por la teórica sabemos que $f\simeq g\implies f_*=g_*$, tenemos que $r_*i_*=1_{H_n(X)}$ y por lo mismo entonces i_* y r_* son isomorfismos.

6. Sea X espacio topológico, $x_0 \in X$. Pruebe que $H_n(X,x_0) \simeq \tilde{H}_n(X)$ para todo n.

Demostración Como $\{x_0\} \subset X$ es subespacio, entonces (X,x_0) es un par topológico y sabemos que existe la siguiente SEL:

$$\dots \longrightarrow \widetilde{H_n}(\{x_0\}) \xrightarrow{i_*} \widetilde{H_n}(X) \xrightarrow{q_*} H_n(X, \{x_0\}) \xrightarrow{\partial} \dots \longrightarrow H_0(X, \{x_0\}) \longrightarrow 0$$

Pero nosotros sabemos que $\widetilde{H_n}(\{x_0\})=0$ y por ende $\forall n\in\mathbb{N}$ tenemos que $q_*:\widetilde{H_n}(X)\to H_n(X,\{x_0\})$ es isomorfismo

7. Pruebe que si A es un retracto por deformación débil de un espacio X entonces $H_n(X,A)=0$ para todo $n\geqslant 0$.

Demostración Como A es RDD de X, en particular (X,A) es un par topológico y entonces, como antes, existe la SEL:

$$\dots \longrightarrow H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{q_*} H_n(X,A) \xrightarrow{\partial} \dots$$

Ahora por el ejercicio 5 sabemos que $i_*: H_n(A) \to H_n(X)$ es isomorfismo, entonces por la exactitud tenemos que $Im(\partial) = Ker(i_*) = 0$ y $Ker(q_*) = Im(i_*) = H_n(X)$, por lo que el siguiente diagrama conmuta:

Y entonces por conmutatividad tenemos que $H_n(X,A) = 0$

8. Pruebe que si (X, A, B) es una terna con $B \subseteq A \subseteq X$, entonces existe una sucesión exacta larga

$$\dots \xrightarrow{\partial_{n+1}} H_n(A,B) \xrightarrow{i_*} H_n(X,B) \xrightarrow{j_*} H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A,B) \xrightarrow{i_*} \dots$$

Demostración Notemos que si probamos que:

$$0 \longrightarrow S_*(A,B) \xrightarrow{i_*} S(X,B) \xrightarrow{j_*} S(X,A) \longrightarrow 0$$
(1)

Es una SEC de complejos, entonces el resultado es corolario de la existencia de la SEL de homologías para una SEC de complejos!

Vayamos a eso!

Sea $n \in \mathbb{N}$, entonces recordemos que $S_n(A,B) = S_n(A)/S_n(B)$, $S_n(X,B) = S_n(X)/S_n(B)$ y que $S_n(X,A) = S_n(X)/S_n(A)$.

Por otro lado como $A\subset X$ tenemos que $i:A\to X$ induce $i_\eta:S_n(A)\to S_n(B)$ dado por $\sigma\mapsto i\circ\sigma$, pero entonces si $\sigma\sim\sigma'$ entonces $i_\eta(\sigma)\sim i_\eta(\sigma')$ trivialmente! Entonces $i_*:=\overline{q_{S_n(B)}\circ i_\eta}$ el bajado al cociente que ya vimos que está bien definido y es continuo. Similarmente como $B\subseteq A$ tenemos que $S_n(B)\subset S_n(A)$ y entonces si $\sigma\in S_n(B)\Longrightarrow \sigma\in S_n(A)$, por ende $j_*:=\overline{q_{S_n(A)\circ 1_X}}$ donde la bajada al cociente es sobre $S_n(B)$.

Es claro entonces por definición que i_* es mono y j_* es epi; además como $Im(i_*) = [S_n(A)]_{S_n(B)}$ por la definición y $Ker(j_*) = [S_n(A)]_{S_n(B)}$ pues son los que identifica $q_{S_n(A)}$, tenemos de yapa que $Im(i_*) = Ker(j_*)$, o sea que 1 es una SEC de complejos, y entonces existe la SEL del enunciado

9. Sea X un espacio contráctil y sea A un subespacio de X. Pruebe que $H_n(X,A)$ es isomorfo a $\tilde{H}_{n-1}(A)$.

Demostración Nuevamente tenemos la SEL:

$$\dots \longrightarrow \widetilde{H_n}(X) \xrightarrow{q_*} H_n(X,A) \xrightarrow{\partial} \widetilde{H_{n-1}}(A) \xrightarrow{i_*} \widetilde{H_{n-1}}(X) \xrightarrow{q_*} \dots$$

Y ahora como X es contráctil entonces tenemos que $H_n(X)=0 \ \forall n\in\mathbb{N}$ por lo que ∂ es un isomorfismo.

10. Sea X espacio topológico, y $A \subset X$ tal que (X,A) es bueno. Si CA es el cono $(A \times I)/(A \times \{0\})$ de A, considere $X \cup CA$ el espacio que se obtiene de identificar la base del cono $A \times \{1\}$ con $A \subseteq X$. Pruebe que $H_n(X,A) \simeq \tilde{H}_n(X \cup CA)$.

Demostración ¿ $X/A \simeq X \coprod CA/A$?

- 11. a) Sea $\{X_i\}$ una familia finita de espacios topológicos y sea $x_i \in X_i$ tal que (X_i, x_i) es un par bueno. Si $X = \bigvee_i X_i$ es la unión de los espacios, identificando todos los puntos base x_i , probar que $\tilde{H}_n(X) = \bigoplus_i \tilde{H}_n(X_i)$.
 - b) Calcular $\tilde{H}_n(\bigvee_{i\in I}S^k)$.
 - **Demostración** a) Notemos que si $\{(X_{\alpha}, x_{\alpha}), \alpha \in I\}$ son pares buenos, entonces $(\coprod_{\alpha} X_{\alpha}, \{x_{\alpha}\})$ es un par bueno pues tomo $U = \coprod_{\alpha} U_{\alpha}$ como entorno abierto y RDF de $\{x_{\alpha}\}$ (pues son finitos). Entonces por el corolario del teorema de escisión tenemos que $H_n(\coprod_{\alpha} X_{\alpha}, \{x_{\alpha}\}) = \widetilde{H_n}(\bigvee_i X_i)$. Solo nos faltaría probar que $H_n(\coprod_{\alpha} X_{\alpha}, \{x_{\alpha}\}) = \bigoplus_{\alpha} H_n(X_{\alpha}, x_{\alpha})$ pues nuevamente como (X_{α}, x_{α}) es bueno entonces $H_n(X_{\alpha}, x_{\alpha}) = \widetilde{H_n}(X_{\alpha})$!! Pero notemos que como I es finito esto es lo que hicimos en el ejercicio 3, pues la suma directa es un coproducto, y la demostración sería textual cambiando $j_1: C \to C \oplus D$ por $j_1: X_{\alpha} \to \coprod X_{\alpha}$.

- b) Como (S^k,x_0) es un par bueno pues $U=S^k-\{x_0\}$ es RDF de $\{x_0\}$ tenemos por el item anterior que $\widetilde{H_n}(\bigvee_I S^k) = \bigoplus_I \widetilde{H_n}(S^k) = \bigoplus_I \mathbb{Z} \ \chi_{k=n}$
- 12. Calcule los grupos de homología de $\mathbb{R}^n \setminus \{x_1, \dots, x_m\}$

Demostración Copiemos nuestra idea de Van Kampen! Sea $C=\{r>0\;,\;\{x_1,\ldots,x_m\}\subsetneq B(x_1,r)\}$ y entonces como justificamos allí tomamos $A=B(x_1,inf(A)+\epsilon)$ y notemos que por las mismas técnicas de Van Kampen tenemos que $A\simeq\bigvee_{i=1}^mS^n$ (homotópica) por ende $\widetilde{H_k}(A)=\bigoplus_{i=1}^m\mathbb{Z}\chi_{k=n}$. Además como $\mathbb{R}^n\setminus\{x_1,\ldots,x_m\}\simeq A$ entonces $\widetilde{H_k}(\mathbb{R}^n)=\bigoplus_{i=1}^m\mathbb{Z}\chi_{k=n}$

13. Calcule la homología del cociente de S^2 que se obtiene de identificar el polo norte y el polo sur en un punto.

Demostración Forma trucha: Ya se que $S^2/S^0 \simeq S^1$ donde la equivalencia es homotópica, como los grupos de homología son un invariante homotópico, entonces $H_n(S^2/S^0) = H_n(S^1) = \mathbb{Z} \ \chi_{n=1}$

14. Sea X espacio topológico. Muestre que $\tilde{H}_n(X) \simeq \tilde{H}_{n+1}(\Sigma X)$ para todo $n \geq 0$, donde ΣX es la suspensión de X, que se define como sigue $\Sigma X = X \times I/\sim$, $(x,0) \sim (x',0)$, $(x,1) \sim (x',1)$ para todo $x,x' \in X$.

Demostración Esto tiene toda la pinta de usar Mayer- Vietoris!! (Vamos a pensar a $\Sigma X = X \times [-1,1]/\sim$) Notemos que $\Sigma X = CX \coprod -CX/X$ Entonces sea $A = -CX \coprod X \times [0,\delta)/X$ que es el cono inferior y un cachito por arriba; similarmente sea $B = CX \coprod X \times [0,-\delta)/X$ lo mismo por debajo! Entonces es claro que A,B son abiertos y $A \cup B = \Sigma X$

- Es claro que $A, B \simeq -CX$ entonces $\widetilde{H_n}(A) = \widetilde{H_n}(B) = 0$ pues el cono es contráctil.
- lacksquare Por otro lado $A\cap B\simeq X$ y por ende $\widetilde{H_n}(A\cap B)=\widetilde{H_n}(X)$

En resumen tenemos la siguiente SEL:

$$\dots \longrightarrow 0 \longrightarrow \widetilde{H_n}(\Sigma X) \stackrel{\partial}{\longrightarrow} \widetilde{H_{n-1}}(X) \longrightarrow 0$$

Pues $\widetilde{H_n}(A) \oplus \widetilde{H_n}(B) = 0$ y $\widetilde{H_n}(A \cap B) = \widetilde{H_n}(X)$. Por ende ∂ es un isomorfismo y $\widetilde{H_{n+1}}(\Sigma X) = \widetilde{H_n}(X)$

15. Sea X un espacio topológico tal que $X=\bigcup_{i=1}^n U_i$ con U_i abiertos tales que toda intersección $\bigcap_{i=1}^k U_{i_k}$ es vacía o tiene homología reducida trivial. Pruebe que $\tilde{H}_i(X)=0$ para todo $i\geq n-1$ y muestre con un ejemplo que la desigualdad es óptima.

Demostración Hagamos inducción!

- $\begin{array}{l} \blacksquare n=2 \\ \text{Tenemos que } X=U_1\cup U_2 \text{, con } \widetilde{H_k}(U_i)=0 \text{ y } \widetilde{H_k}(U_1\cap U_2)=0 \text{ entonces por Mayer Vietoris tenemos que } 0\to 0\to \widetilde{H_k}(X)\to 0 \text{ y por ende } \widetilde{H_k}=0 \text{ } n\geq 0 \end{array}$

$$\cdots \longrightarrow \widetilde{H_n}(A) \oplus \widetilde{H_n}(B) \longrightarrow \widetilde{H_n}(X)$$

$$\longrightarrow \widetilde{H_{n-1}}(A \cap B) \longrightarrow \widetilde{H_{n-1}}(A) \oplus \widetilde{H_{n-1}} \longrightarrow \widetilde{H_{n-1}}(X)$$

$$\longrightarrow \widetilde{H_{n-2}}(A \cap B) \longrightarrow \cdots$$

Y aquí se ve claramente lo pedido porque tenemos $0 o \widetilde{H_k}(X) o 0$ para $k \geq n-1$