

[2020 혁신성장 청년인재 집중양성 사업] 프로젝트 기반 데이터 과학자 양성과정

빅데이터 분석

- 5주차 -

#통계학의 이해 #분포 # 검정 # 추정

자료의 이해

- 개체와 변수
- 질적 자료와 양적 자료

■ 자료의 종류

자료의 분류

• 범주형과 연속형 자료

자료의 요약

• 범주형과 연속형 자료

		I
계급구간(cm)	상대도수	높이
161.5 이상 165.5 미만	0.109	0.027
165.5 이상 169.5 미만	0.218	0.055
169.5 이상 173.5 미만	0.327	0.082
173.5 이상 177.5 미만	0.200	0.050
177.5 이상 181.5 미만	0.146	0.036

(b) 계급의 수 : 5

분포

• 확률이란? 어떠한 결과에 대해 확신하는 정도를 나타낸 수치적 척도

- 확률변수란? 표본공간에 속하는 각각의 변수들에 대해 실수값을 대응하여 나타낸 함수
- 확률분포란? 확률변수가 가지는 값과 그 값을 가질 확률을 정해주는 규칙 또는 관계
- 분산이란? 데이터 펼쳐진 정도를 볼 수 있음.
- 표준편차란? 분산의 양의 제곱근

이항분포

✓ 이항분포란? 베르누이 시행을 N번 반복한 경우 성공횟수를 확률변수 X 라 하면, 이 확률변수 X 의 확률분포는 이항분포를 따르게 된다

 $X \sim \text{Bin}(n, p)$

가설검정

용어 정의

귀무가설(null hypothesis, H_0) : 기존의 주장

대립가설(alternative hypothesis, H_1) : 증명을 필요로 하는 새로운 주장

기각치(critical value) : 귀무가설 H_0 를 기각하는 기준값

기각역(critical region) : 기각치를 기준으로 귀무가설을 기각할 수 있는 범위

검정통계량(test statistic) : 가설 검정을 위한 모수의 점추정량

유의수준(significance level, lpha) : 귀무가설 H_0 를 잘못 기각할 확률

P-value

- H_0 가 참일 때 검정통계량이 실제 표본을 통한 검정통계량의 관측값과 같거나 더 지나친 값 $(\pm 27 + 4)$ 을 취할 확률이다.
- p-값 $< \alpha \Rightarrow$ 귀무가설을 기각한다.

정규분포

- 정규분포란? 모든 분야에서 가장 중요하게 생각되는 대표적인 연속확률변수
- 표준정규분포란? 정규분포 중에서 평균이 0이고, 분산이 1인
- 정규분포를 말함

중심극한정리

 모집단의 확률분포가 연속형 이거나 이산형, 혹은 대칭이거나 비대칭에 상관관계 없이 표본의 크기가 충분히 크다면 표본평균의 확률분포가 근사적으로 정규분포를 따르게 된다.

평균이 μ 이고 분산이 σ^2 인 모집단으로부터 추출한 크기 n의 확률표본의 표본평균 X는 표본의 크기가 큰 경우 (보통 30 이상), 근사적으로 평균이 μ 이고 분산이 σ^2/n 인 정규분포를 따르게 된다.

상관분석

 두 변수 사이의 선형관계를 산점도로부터 대략적으로 알 수 있다. 하지만 이를 하나의 수치값인 통계량으로 나타낸 것이 상관계수

$$r = \frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$$

(2)
$$-1 < r < 0$$

(3)
$$r = 0$$

T test

평균이 μ 이고 분산이 σ^2 인 정규모집단으로부터 추출된 크기 n의 표본을 X_1, X_2, \cdots, X_n 이라 할 때, 이들에 대한 표본평균과 표본분산을 각각

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

이라 정의하면, 확률변수

$$t = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

는 자유도(degree of freedom, df)가 df = (n-1)인 t -분포를 따른다 한다.

카이제곱 검정

- 귀무가설에 언급되는 내용이 적합한지 알아보는 척도로 피어슨이 처음 제시
- 카이제곱 분포를 가정하는 범주형 데이터에 대한 통계적 검정

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(관찰도수 - 기대도수)^{2}}{기대도수} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

