Thomas KUMMEL - 12188

Année 2023-2024

Sommaire

Introduction

Théorie des réseaux de neurones

Définitions Fonctionnement d'un perceptron **MNIST**

Analyse d'images sportives

Théorie de la convolution Filtres de convolution et perceptron multicouches CNN Algorithme des plus proches voisins

Conclusion

Sommaire

Introduction

Théorie des réseaux de neurones

Définitions

Fonctionnement d'un perceptron

MNIST

Analyse d'images sportives

Théorie de la convolution

Filtres de convolution et perceptron multicouches

CNN

Algorithme des plus proches voisins

Conclusion

Projet

Est-il possible d'utiliser un réseau de neurones pour l'analyse d'images sportives ?

Sommaire

Théorie des réseaux de neurones

Définitions

Fonctionnement d'un perceptron

MNIST

Perceptron multicouches

Entrée Couche cachée Couche cachée 2 **Sortie**

Définitions I

- Neurone $v_i^{(k)}$: élément qui prend une valeur en entrée pour en renvoyer une autre;
- **Couche** k : rangée de neurones de 3 types : entrée, cachée, sortie;
- **Dimension** c_k : nombre de neurones dans une couche k;

Définitions II

- **Poids** $w_{i,j}^{(k)}$: facteur qui amplifie ou atténue les connexions;
- **Biais** $b_i^{(k)}$: décale la fonction d'activation;

Définitions III

→ Fonction d'activation : non-linéarités dans le réseau.

Définitions IV

Valeurs:

Biais:

$$V_k = \begin{pmatrix} v_1^{(k)} \\ \vdots \\ v_{c_k}^{(k)} \end{pmatrix}$$

$$B_k = \begin{pmatrix} b_1^{(k)} \\ \vdots \\ b_{c_k}^{(k)} \end{pmatrix}$$

Poids:

$$W_k = \begin{pmatrix} w_{0,0}^{(k)} & \dots & w_{c_{k-1},0}^{(k)} \\ \vdots & \vdots & \vdots \\ w_{0,c_k}^{(k)} & \dots & w_{c_{k-1},c_k}^{(k)} \end{pmatrix}$$

Propagation

Théorie des réseaux de neurones

0000

$$v_i^{(k)} = f_a \left(\sum_{i=1}^{c_{k-1}} v_j^{(k-1)} \times w_{j,i}^{(k)} + b_i^{(k)} \right) \quad V_k = f_a \left(W_k \cdot V_{k-1} + B_k \right)$$

Nom	Dimensions	Valeurs	Poids	Biais
Variable	$(c_k)_{1 \leq k \leq n}$	$v_i^{(k)}$	$w_{i,j}^{(k)}$	$b_i^{(k)}$

Erreur d'un réseau

$$C = \sum_{i=1}^{c_n} \frac{1}{2} \left(v_i^{(n)} - y_i \right)^2$$

Nom	Dimensions	Valeurs	Poids	Biais
Variable	$(c_k)_{1 \leq k \leq n}$	$v_i^{(k)}$	$w_{i,j}^{(k)}$	$b_i^{(k)}$

Descente de gradient

- \rightarrow Taux d'apprentissage : α ;
- → Correction d'un réseau de neurones

$$w_{i,j}^{(n)} = w_{i,j}^{(n)} - \alpha \cdot \frac{\partial C}{\partial w_{i,j}^{(n)}}$$
$$b_i^{(n)} = b_i^{(n)} - \alpha \frac{\partial C}{\partial b_i^{(n)}}$$

Nom	Dimensions	Valeurs	Poids	Biais
Variable	$(c_k)_{1 \leq k \leq n}$	$v_i^{(k)}$	$w_{i,j}^{(k)}$	$b_i^{(k)}$

Procédure de fonctionnement

- 1. Initialisation des poids et des biais;
- 2. Pour chaque donnée du paquet d'entraînement :
 - 2.1 Propagation de l'information;
 - 2.2 Calcul du coût de l'entraînement;
 - 2.3 Algorithme de descente de gradient;
 - 2.4 Correction des poids et des biais;
- 3. Obtention de prédictions correctes.

MNIST

Figure – Exemples de données de MNIST Source: wikipedia.org

Sommaire

Analyse d'images sportives

Théorie de la convolution Filtres de convolution et perceptron multicouches CNN Algorithme des plus proches voisins

Base de données

Propagation

Filtre F_k

$f_{1,1}$	f _{1,2}	f _{1,3}
$f_{2,1}$	f _{2,2}	f _{2,3}
f _{3,1}	f _{3,2}	f _{3,3}

Convolution

$\begin{matrix}v_{1,1}^{(k)}\\\times\\f_{3,3}\end{matrix}$	$v_{1,2}^{(k)} \times f_{3,2}$		$v_{1,4}^{(k)}$
$\begin{matrix}v_{2,1}^{(k)}\\\times\\f_{2,3}\end{matrix}$	$\begin{matrix}v_{2,2}^{(k)}\\\times\\f_{2,2}\end{matrix}$	$\begin{matrix}\nu_{2,3}^{(k)}\\\times\\f_{2,1}\end{matrix}$	$v_{2,4}^{(k)}$
$\begin{matrix} v_{3,1}^{(k)} \\ \times \\ f_{1,3} \end{matrix}$	$\begin{matrix}\nu_{3,2}^{(k)}\\\times\\f_{1,2}\end{matrix}$	$v_{3,3}^{(k)}$ \times	V _{3.4}
$v_{4,1}^{(k)}$	$v_{4,2}^{(k)}$	v _{4,3} ^(k)	$v_{4,4}^{(k)}$

Résultat V_k

$v_{1,1}^{(k)}$	$v_{1,2}^{(k)}$
$v_{2,1}^{(k)}$	$v_{2,2}^{(k)}$

Nom	Dimensions	Valeurs	Poids	Biais	Filtre
Variable	$(c_k)_{1 \leq k \leq n}$	$v_i^{(k)}$	$w_{i,i}^{(k)}$	$b_i^{(k)}$	$f_{i,i}^{(k)}$

Résultats

Figure - Résultats du perceptron multicouches

Convolution à 1 niveau

Figure – Résultats

Convolution à plusieurs niveaux

Analyse d'images sportives

Figure - Source : exo7math

Algorithme des plus proches voisins

Figure - Résultats de l'algorithme des knn

Sommaire

Introduction

Théorie des réseaux de neurones

Définitions

Fonctionnement d'un perceptron

MNIST

Analyse d'images sportives

Théorie de la convolution

Filtres de convolution et perceptron multicouches

CNN

Algorithme des plus proches voisins

Conclusion

Conclusion

- Résultats mitigés;
- Difficultés et problèmes rencontrés :
 - Algorithmique complexe;
 - Puissance de calcul;
 - Données nécessaires.

FIN

Merci pour votre écoute.

Rétropropagation du perceptron

$$\begin{split} \frac{\partial C}{\partial w_{i,j}^{(n)}} &= \frac{\partial C}{\partial v_j^{(n)}} \cdot \frac{\partial v_j^{(n)}}{\partial w_{i,j}^{(n)}} \\ \frac{\partial v_j^{(n)}}{\partial w_{i,j}^{(n)}} &= f_a^t \left(\sum_{p=1}^{c_{k-1}} w_{p,j}^{(n)} \cdot v_p^{(n-1)} + b_j^{(n)} \right) \cdot v_i^{(n-1)} \\ \frac{\partial C}{\partial w_{i,j}^{(n)}} &= \frac{\partial C}{\partial v_j^{(n)}} \cdot f_a^t \left(\sum_{p=1}^{c_{k-1}} w_{p,j}^{(n)} \cdot v_p^{(n-1)} + b_j^{(n)} \right) \cdot v_i^{(n-1)} \\ \frac{\partial C}{\partial b_j^{(n)}} &= \frac{\partial C}{\partial v_j^{(n)}} \cdot \frac{\partial v_j^{(n)}}{\partial b_j^{(n)}} \\ \frac{\partial C}{\partial b_j^{(n)}} &= \frac{\partial C}{\partial v_j^{(n)}} \cdot f_a^t \left(\sum_{p=1}^{c_{k-1}} w_{p,j}^{(n)} \cdot v_p^{(n-1)} + b_j^{(n)} \right) \end{split}$$

MNIST

Code - Perceptron multicouche I

```
import numpy as np
      from annexe import *
 3
 4
 5
      class Reseau:
          def init (self, dimensions, taux apprentissage, fonctions activation noms):
              print("\nDEFINITION DU RESEAU VECOTIRISE")
              self.informations reseau = dimensions
              self.taux apprentissage = taux apprentissage
10
              self.fonctions_activation = fonctions_activation_noms
11
              self.A, self.V = [], []
12
              self.W. self.B = self.definition reseau()
13
              self.nb_classes = self.informations_reseau[-1]
              self.nb_entrainements, self.nb_tests = 0, 0
14
              self.taux reussite = []
15
16
17
          def definition_reseau(self):
18
              w, b = [], []
              for i in range(len(self.informations reseau) - 1):
19
20
                  w.append(np.random.randn(self.informations_reseau[i + 1],

    self.informations_reseau[i]) / 4)

2.1
                  b.append(np.random.randn(self.informations reseau[i + 1], 1) / 4)
22
              return w, b
23
24
          def propagation(self, x):
25
              self.A = [x]
              self.V = [x]
26
```

Code - Perceptron multicouche II

27

28

29 30 31

32

33

34

35

36

37

38

39

 $\frac{40}{41}$ $\frac{42}{42}$

43

44

45

46

47

48

49

50

51

```
for i in range(len(self.informations reseau) - 1):
        self.A.append(np.dot(self.W[i], self.V[i]) + self.B[i])
        self.V.append(self.fonctions activation[i]("", self.A[i + 1]))
def retropropagation(self, v, d):
    for k in range(1, len(self.V)):
        if k == 1:
           d v = self.V[-1] - v.T
        else:
           dv = np.dot(self.W[-k + 1].T. dv) * self.fonctions activation[-k]("derivee".

    self.V[-k])

        d_w = 1 / d * np.dot(d_v, self.V[-k - 1].T)
        db = 1 / d * np.sum(dv. axis=1).reshape(self.B[-k].shape[0], 1)
        self.W[-k] -= self.taux apprentissage * d w
        self.B[-k] -= self.taux_apprentissage * d_b
def entrainement(self, donnees, nb repetitions):
    x_train, y_train = donnees
    v_train2 = ys_matriciels(v_train, self.nb_classes)
    x train = x train.reshape(x train.shape[0], x train.shape[1] * x train.shape[2]).T
    self.nb_entrainements += x_train.shape[0]*nb_repetitions
    print("\nENTRAINEMENT")
    for i in range(nb_repetitions):
        avance = i / nb repetitions * 100
        self.propagation(x_train)
        self.retropropagation(y_train2, x_train.shape[1])
```

Code - Perceptron multicouche III

```
if avance % 5 == 0:
            resultats_corrects = comptage_resultats(np.argmax(self.V[-1], 0), y_train) /

    y_train.shape[0]

            self.taux reussite.append(resultats corrects)
            print(int(avance), " % : rendement ", int(resultats corrects * 100))
def test(self. donnees):
    print("\nTEST")
    x_test, y_test = donnees
    x test = x test.reshape(x test.shape[0], x test.shape[1] * x test.shape[2])
    nombre succes, nombre donnees test = 0, len(x test)
    for i in range(nombre_donnees_test):
        avancee = i / nombre_donnees_test * 100
        self.propagation(x test[i].reshape(x test[i].shape[0], 1))
        valeur_pratique = np.argmax(self.V[-1])
       if avancee % 10 == 0:
            print(avancee, " % : ")
        if valeur_pratique == y_test[i]:
            nombre_succes += 1
    print("\nNombre de succès : ", nombre succes)
    print("Taux de réussite : ", self.taux reussite * 100, "%")
```

52

53

54

55

56 57

58

59

60 61

62

63

64 65

66

67 68

69

70

71

Code - MNIST I

```
from ReseauVectorise import Reseau
      from annexe import ReLu, softmax, affichage, ys_matriciels
      from matplotlib import pyplot as plt
 4
     import numpy as np
 5
     import keras
6
7
8
      (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
9
      x_train = x_train.astype("float32") / 255
10
      x_test = x_test.astype("float32") / 255
11
12
      reseau mnist = Reseau([28*28, 10, 10], 0.10, [ReLu, softmax])
13
      reseau_mnist.entrainement((x_train, y_train), 500)
14
      reseau mnist.test((x test, v test))
15
16
      taux_succes = reseau_mnist.taux_reussite
17
18
      affichage([0.05*i*500 for i in range(len(taux succes))], [taux succes], ["Taux de succès"],

→ "Évolution du rendement", "Nombre d'entraînements", "Taux de succès")
```

Code - Convolution I

```
import numpy as np
      from annexe import lineaire
 3
 4
 5
      def convolution 2d(matrice, taille=3, fonction activation=lineaire):
6
          n. p = matrice.shape
          h = taille // 2
8
          W = np.flip(np.random.randn(taille, taille))
9
          matrice_3 = np.zeros((n + 2 * h, p + 2 * h))
10
          matrice 3[h:-h, h:-h] = matrice
11
          matrice_2 = np.zeros((n, p))
12
          for i in range(n):
13
              for j in range(p):
                  coucou = matrice_3[i-h+1:i+taille-h+1, j-h+1:j+taille-h+1]
14
                  matrice 2[i, i] = fonction activation("", np.sum(coucou * W))
15
16
          return matrice 2
17
18
      def convolution classiques(matrice, type):
19
          n. p = matrice.shape
20
          h = 1
21
          filtre = np.zeros((3,3))
          if type == "movenne":
22
23
              filtre = 1/9 * np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
24
          elif type == "gaussien":
25
              filtre = 1/16 * np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]])
26
          elif type == "pique":
27
              filtre = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
```

Code - Convolution II

```
28
          elif type == "bords":
              filtre = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
29
30
          elif type == "relief":
              filtre = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
31
32
          matrice_3 = np.zeros((n + 2 * h, p + 2 * h))
33
          matrice 3[h:-h, h:-h] = matrice
34
          matrice_2 = np.zeros((n, p))
35
          for i in range(n):
36
              for j in range(p):
37
                  coucou = matrice_3[i-h+1:i+3-h+1, j-h+1:j+3-h+1]
38
                  matrice_2[i, j] = np.sum(coucou * np.flip(filtre))
39
          return matrice_2
```


Code - Réseau convolutif I

```
import numpy as np
      from annexe import vs matriciels, comptage resultats
      from scipy.signal import convolve2d
 4
 5
 6
      class ReseauConvolutif:
         def __init__(self, nb classes, dimensions, taux apprentissage, nb rep entrainement,
         print("\nDEFINITION DU RÉSEAU")
 8
9
10
             self.nb_classes = nb_classes
             self.informations reseau = dimensions
11
12
             self.fonctions_activation = []
13
14
             self.taille convolution = 2
15
             self.taille dense = 3
16
17
             self.taux apprentissage = taux apprentissage
18
             self.nb rep entrainement = nb rep entrainement
19
             self.donnees_entrainement = donnees_entrainement
20
             self.A. self.V = [].[]
21
22
             self.W, self.B, self.filtres, self.b2 =
             ⇔ self.definition_reseau(donnees_entrainement[0].shape[1])
23
24
             self.nb_entrainements, self.nb_tests = 0, 0
25
             self.taux_reussite = []
```

Code - Réseau convolutif II

26

27 28

29

30 31

32

33

34

35

36

37

38

39

40 41

42

43

44 45

46

47 48

49

50 51

```
print(self.fonctions activation)
def definition reseau(self, hauteur image):
    w, b, f, b2 = [], [], []
    for k in range(len(self.informations_reseau)-1):
        if self.informations_reseau[k][0] == "C":
            f.append(np.random.randn(3, 3))
            b2.append(np.random.randn())
            self.fonctions_activation.append(self.informations_reseau[k][1])
        else:
            if self.informations reseau[k-1][0] == "C":
                w.append(np.random.randn(self.nb_classes, (hauteur_image-2*len(f))**2))
                b.append(np.random.randn(self.nb classes, 1))
                self.fonctions_activation.append(self.informations_reseau[k][1])
            elif k == len(self.informations_reseau)-1:
                w.append(np.random.randn(self.nb classes, self.nb classes))
                b.append(np.random.randn(self.nb_classes, 1))
            else:
                w.append(np.random.randn(self.nb_classes, self.nb_classes))
                b.append(np.random.randn(self.nb classes, 1))
                self.fonctions_activation.append(self.informations_reseau[k][1])
    for i in h2:
       print(i.shape)
    return w, b, f, b2
```


Code - Réseau convolutif III

52

53

54

55

56 57

58

59 60

61 62

63

64 65

66 67 68

69 70

71

72

73

74

75

```
def propagation(self, x):
    self.A = [x]
   self.V = [x]
   for k in range(len(self.filtres)):
        self.A.append(convolve2d(self.V[-1], self.filtres[k], mode='valid') + self.b2[k])
        self.V.append(self.fonctions_activation[k]("", self.A[-1]))
    self.V[-1] = self.V[-1].reshape(self.V[-1].shape[0] * self.V[-1].shape[1], 1)
    for i in range(len(self.informations reseau) - len(self.filtres) - 1):
        self.A.append(np.dot(self.W[i], self.V[-1]) + self.B[i])
        self.V.append(self.fonctions_activation[i + len(self.filtres)]("", self.A[-1]))
def retropropagation(self, v):
    y = y \cdot T
    for k in range(1, self.taille dense):
       if k == 1:
            d v = self.V[-1] - v
        else:
            d v = np.dot(self.W[-k + 1].T, d_v) * self.fonctions_activation[-k]("derivee",

⇒ self.A[-k])

       d w = np.dot(d v. self.V[-k - 1].T)
       d b = np.sum(d v, axis=1).reshape(self.B[-k].shape[0], 1)
        self.W[-k] -= self.taux apprentissage * d w
```


Code - Réseau convolutif IV

77

78 79

80

81

82 83

84

85

86 87

88

89 90

91 92 93

94

95

96 97

98 99

```
self.B[-k] -= self.taux apprentissage * d b
   d v = np.dot(self.W[-self.taille dense + 1].T. d v)
   self.V[-k] = self.V[-k].reshape(int(self.V[-k].shape[0] ** .5), int(self.V[-k].shape[0]
   → ** .5))
    d_v = d_v.reshape(self.V[-k].shape[0], self.V[-k].shape[1])
   for k in range(self.taille_dense, self.taille_convolution + self.taille_dense):
        i = k - self.taille_dense
        d f = convolve2d(self.V[-k - 1], d v, mode='valid')
       d_b2 = np.sum(d_v)
       d v = convolve2d(d v, np.flip(self.filtres[-i]), mode='full') *

⇒ self.fonctions activation[-k]("derivee", self.A[-k])

        self.filtres[-i] = self.filtres[-i] - self.taux apprentissage * d f
        self.b2[-(i + 1)] = self.b2[-(i + 1)] - self.taux apprentissage * d b2
def entrainement(self):
    x train, v train = self.donnees entrainement
    self.nb_entrainements += x_train.shape[0] * self.nb_rep_entrainement
    print("\nENTRAINEMENT")
    for i in range(self.nb_rep_entrainement):
        avance = i / self.nb rep entrainement * 100
```


Code - Réseau convolutif V

```
101
                   corr = 0
102
103
                   for i in range(len(x train)):
104
                       x = x_train[j]
105
                       y = np.array([y_train[j]])
106
                       self.propagation(x)
107
                       self.retropropagation(ys_matriciels(y, self.nb_classes))
108
109
                       corr += comptage_resultats(np.argmax(self.V[-1], 0) + 1, y)
110
111
                   if avance \% 5 == 0.
112
                       resultat = corr / len(x_train)
113
                       self.taux reussite.append(resultat)
                       print(int(avance), " % : rendement ", int(resultat * 100))
114
115
116
           def test(self. donnees):
117
               print("\nTEST")
118
119
               x_test, v_test = donnees
120
               x test = x test.reshape(x test.shape[0], x test.shape[1] * x test.shape[2])
121
122
               nombre_succes, nombre_donnees_test = 0, len(x_test)
123
124
               for i in range(nombre donnees test):
125
                   avancee = i / nombre_donnees_test * 100
                   self.propagation(x test[i].reshape(x test[i].shape[0], 1))
126
```


Code - Réseau convolutif VI

```
127
                   valeur_pratique = np.argmax(self.V[-1])
128
                   if avancee % 10 == 0:
129
                       print(avancee, " % : ")
130
                   if valeur_pratique == v_test[i]:
131
                       nombre succes += 1
132
133
               self.taux_reussite = nombre_succes / nombre_donnees_test
134
135
               print("\nNombre de succès : ", nombre_succes)
136
               print("Taux de réussite : ", self.taux_reussite * 100, "%")
```


Code - Données I

```
import numpy as np
      import pandas as pd
      from PIL import Image
 4
5
6
      valeurs = pd.read_csv('data.csv', index_col=0)
7
8
      valeurs = valeurs.to_numpy().reshape(1200)
      images = np.zeros((1200, 32, 32))
9
10
      for i in range(1200):
11
          if i < 10:
12
              k = '000' + str(i)
13
          elif i < 100:
14
              k = '00' + str(i)
15
          elif i < 1000:
16
              k = '0' + str(i)
17
          else:
18
              k = str(i)
19
          images[i] = np.array(Image.open('numbers/' + k + '.png'))
```

Code - Perceptron I

```
from ReseauVectorise import Reseau
      from MaillotsData import images, valeurs
 3
      from annexe import ReLu, softmax, affichage, ys_matriciels
 4
      from convolution import convolution_classiques
 5
 6
      images = images.astvpe("float32") / 255
7
      liste = ["movenne", "gaussien", "pique", "bords", "relief"]
8
      v, legendes = [], []
9
10
      for k in range(len(liste)):
11
          for i in range(len(images)):
12
              images[i] = convolution_classiques(images[i], liste[k])
13
14
          x train, v train = images[:1000], valeurs[:1000]
15
          x_test, y_test = images[1000:], valeurs[1000:]
16
17
          reseau = Reseau([32*32, 45, 45], 0.01, [ReLu, softmax])
18
          reseau.entrainement((x_train, y_train), 2000)
19
          taux_succes = reseau.taux_reussite
20
          legendes.append("Taux pour "+liste[k])
21
          y.append(taux_succes)
22
      affichage([0.05*i*2000 for i in range(len(y[0]))], y, legendes, "Évolution du rendement",
23
     → "Nombre d'entraînements". "Taux de succès")
```


Code - CNN 1 I

```
from ReseauConvolution import ReseauConvolutif
      from MaillotsData import images, valeurs
 3
      from annexe import ReLu, softmax, lineaire, vs matriciels
 4
5
6
7
8
      x_train, y_train = images[:1000], valeurs[:1000]
      x_test, y_test = images[1000:], valeurs[1000:]
9
      x_train = x_train.astype("float32") / 255
10
      x test = x test.astvpe("float32") / 255
11
12
      reseau = ReseauConvolutif(45, [
13
          ("C", ReLu),
14
          ("C", lineaire).
15
          ("D", ReLu),
16
          ("D", softmax),
17
          ("D", lineaire)
18
      ], 0.01, 1000, (x_train, y_train))
19
20
      reseau.entrainement()
```


Code - CNN 1 II

```
import numpy as np
      from scipy.signal import convolve2d
      from annexe import ReLu. softmax, vs matriciels, tanh, affichage
      from MaillotsData import images, valeurs
 6
      n = 1000
7
      x_train, y_train = images[:n], valeurs[:n]
8
      x_test, y_test = images[n:], valeurs[n:]
9
      x_train = x_train.astype("float32") / 255
10
      x_test = x_test.astype("float32") / 255
11
12
      # Définitions générales
13
      nb train = len(x train)
14
      nb entrainement = 1000
15
      taux = 0.1
16
      F1 = np.random.randn(3, 3)
17
      B1 = np.random.randn()
18
      F2 = np.random.randn(3, 3)
19
      B2 = np.random.randn()
20
      W3 = np.random.randn(45, 28 * 28)
21
      B3 = np.random.randn(45, 1)
22
      W4 = np.random.randn(45, 45)
23
      B4 = np.random.randn(45, 1)
24
25
      succes = []
26
      for j in range(nb_entrainement):
```


Code - CNN 1 III

```
27
          d = {}
28
          compteur = 0
29
          for i in range(nb_train):
30
              # Propagation
31
              V0 = x_train[i]
32
              A1 = convolve2d(V0, F1, mode='valid') + B1
33
              V1 = ReLu("", A1)
34
              V2 = convolve2d(V1, F2, mode='valid') + B2
35
              V22 = V2.reshape(28 * 28, 1)
36
              A3 = np.dot(W3, V22) + B3
37
              V3 = ReLu("", A3)
38
              A4 = np.dot(W4, V3) + B4
39
              V4 = softmax("", A4)
40
41
              v_t = np.argmax(V4)
42
              if y_t == y_train[i]:
43
44
                  compteur += 1
45
                  if v_t in d:
46
                      d[y_t] += 1
47
                  else:
48
                      d[v_t] = 1
49
50
              # Rétropopagation
51
              y = ys_matriciels([y_train[i]], 45).T
52
```


Code - CNN 1 IV

```
53
              dV4 = V4 - y
54
              dW4 = np.dot(dV4, V3.T)
55
              dB4 = dV4
56
              W4 -= taux * dW4
57
              B4 -= taux * dB4
58
59
              dV3 = np.dot(W4.T, dV4) * ReLu("derivee", A3)
60
              dW3 = np.dot(dV3, V22.T)
61
              dB3 = dV3
62
              W3 -= taux * dW3
63
              B3 -= taux * dB3
64
65
              dV2 = np.dot(W3.T, dV3)
66
              dV2 = dV2.reshape(28, 28)
67
              dF2 = convolve2d(V1, dV2, mode='valid')
68
              dB2 = np.sum(dV2)
69
              F2 -= taux * dF2
70
              B2 -= taux * dB2
71
72
              dV1 = convolve2d(dV2, np.flip(F2), mode='full') * ReLu("derivee", A1)
73
              dF1 = convolve2d(V0, dV1, mode='valid')
74
              dB1 = np.sum(dV1)
75
              F1 -= taux * dF1
76
              B1 -= taux * dB1
77
78
          print(d)
```


Code - CNN 1 V

Code - CNN 2 I

```
import numpy as np
      import keras
      from keras import layers
 4
      from MaillotsData import images, valeurs
 5
 6
      nb classes = 46
 7
      taille = (32, 32, 1)
 8
      x train, v train = images[:1000], valeurs[:1000]
9
      x test, v test = images[1000:], valeurs[1000:]
10
      x_train = x_train.astype("float32") / 255
11
      x_test = x_test.astype("float32") / 255
12
      x train = np.expand dims(x train, -1)
13
      x_test = np.expand_dims(x_test, -1)
14
      print("x_train_shape:", x_train.shape)
15
      print(x_train.shape[0], "train samples")
      print(x test.shape[0], "test samples")
16
17
18
      v train = keras.utils.to categorical(v train, nb classes)
      v_test = keras.utils.to_categorical(y_test, nb_classes)
19
20
21
      reseau = keras.Sequential(
22
23
              keras.Input(shape=taille),
24
              layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
25
              layers.Conv2D(64, kernel size=(3, 3), activation="relu").
26
              lavers.Flatten().
27
              layers.Dense(nb_classes, activation="softmax"),
```


Code - CNN 2 II

```
28
29
30
31
     reseau.summary()
32
     batch_size = 128
33
     epochs = 1000
34
     reseau.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
35
      reseau.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
36
37
     resultats = reseau.evaluate(x_test, y_test, verbose=0)
38
     print("Taux de succès : ", resultats[1])
```


Code - Voisins I

```
import numpy as np
      from matplotlib import pyplot as plt
      from MaillotsData import images, valeurs
 4
      from annexe import affichage
5
6
7
8
      x_train, y_train = images[:1000], valeurs[:1000]
      x test, v test = images[1000:], valeurs[1000:]
9
      x train = x train.astvpe("float32") / 255
10
      x_test = x_test.astype("float32") / 255
11
12
13
      def distance(p1, p2):
          d = 0
14
15
          for i in range(p1.shape[0]):
              for j in range(p1.shape[1]):
16
17
                  d += (p1[i, j] - p2[i, j])**2
18
          return d**0.5
19
20
21
      def voisins(x, k):
22
          indices = sorted(range(len(x train)), key=lambda i: distance(x, x train[i]))
23
          return indices[:k]
24
25
26
      def plus frequent(liste):
27
          compte = {}
```


Code - Voisins II

```
for e in liste:
              compte[e] = compte.get(e, 0) + 1
          return max(compte, kev=compte.get)
      def knn(x, k):
          V = voisins(x, k)
          return plus_frequent([v_train[i] for i in V])
38
      def precision(k):
39
          n = ()
          for i in range(len(x test)):
              if knn(x_test[i], k) == y_test[i]:
                  n += 1
          return n / len(x_test)
45
46
     ks = range(1, 10)
47
      resultats = [precision(k) for k in ks]
48
      affichage(ks, [resultats], ["Précision en fonction de k"], "k voisins", "Rendement de
     → l'algorithme")
```

28

29

30

31 32 33

34

35

36 37

40 41

42

Code annexe I

```
import matplotlib.pyplot as plt
import numpy as np
def lineaire(mode, matrice):
    if mode == "derivee":
        return np.zeros(matrice.shape) + 1
    return matrice
def sigmoid(mode, matrice):
    if mode == "derivee":
        return sigmoid("", matrice) * (1 - sigmoid("", matrice))
    return 1 / (1 + np.exp(-matrice))
def ReLu(mode, matrice):
    if mode == "derivee":
        return matrice > 0
    return np.maximum(matrice, 0)
def tanh (mode, matrice):
    if mode == "derivee":
        return 1 - tanh("", matrice) ** 2
    return np.tanh(matrice)
```

 $\frac{3}{4}$ 5

6

7 8

9 10 11

12

13

14

15 16 17

18

19

20

21 22 23

24

25

26

Code annexe II

```
def softmax(mode, matrice):
    e = np.exp(matrice - np.max(matrice))
    return e / sum(e)
def ys_matriciels (y, nb_classe):
    return np.array([[1 if i == j else 0 for i in range(nb_classe)] for j in y])
def comptage_resultats(y_pratiques, y_theoriques):
    compteur = 0
    for i in range(y_pratiques.size):
        if y_pratiques[i] == y_theoriques[i]:
            compteur += 1
    return compteur
def cout(x, y):
    return 0.5 * np.sum((x-v)**2)
def image(image):
    plt.imshow(image, cmap='gray')
   plt.show()
```

28 29

30 31

 $\frac{32}{33}$

35

36 37 38

39

40

41 42

43

 $\frac{44}{45}$

47

 $\frac{48}{49}$

51

52

Code annexe III

```
54
55
      def image_resultat(image, valeurs, legendes):
          maxi = np.argmax(valeurs)
56
57
          couleurs = ["red" if i == maxi else "blue" for i in range(len(valeurs))]
58
          plt.figure()
59
          plt.subplot(211)
          plt.imshow(image)
60
61
          plt.subplot(212)
62
          plt.bar(legendes, valeurs, color=couleurs)
63
          plt.show()
64
65
66
      def images comparaison(image originale, image retouchee):
67
          plt.figure()
68
          plt.subplot(211)
          plt.imshow(image originale)
69
70
          plt.subplot(212)
71
          plt.imshow(image_retouchee)
72
          plt.show()
73
74
      def affichage(xs, ys, legendes, titre="", x_label="", y_label=""):
75
76
          for i in range(len(vs)):
77
              plt.plot(xs, ys[i], label=legendes[i])
78
          plt.title(titre)
79
          plt.xlabel(x label)
```


Code annexe IV

```
80 plt.ylabel(y_label)
81 plt.legend()
82 plt.savefig("graphique.png")
83 plt.show()
```