Student Online Teaching Advice Notice

The materials and content presented within this session are intended solely for use in a context of teaching and learning at Trinity.

Any session recorded for subsequent review is made available solely for the purpose of enhancing student learning.

Students should not edit or modify the recording in any way, nor disseminate it for use outside of a context of teaching and learning at Trinity.

Please be mindful of your physical environment and conscious of what may be captured by the device camera and microphone during videoconferencing calls.

Recorded materials will be handled in compliance with Trinity's statutory duties under the Universities Act, 1997 and in accordance with the University's policies and procedures.

Further information on data protection and best practice when using videoconferencing software is available at https://www.tcd.ie/info_compliance/data-protection/.

© Trinity College Dublin 2020

7.7 Homomorphisms and Isomorphisms

Task: Understand the most natural functions between objects in abstract algebra such as semigroups, monoids or groups.

Definition: Let (A,*) and (B,*) both be semigroups, monoids or groups. A function $f:A\to B$ is called a <u>homomorphism</u> if

$$f(x*y) = f(x)*f(y) \ \forall x,y \in A.$$

In other words, if f is a function that respects (behaves well with respect to) the binary operation.

Examples:

- 1. Consider $(\mathbb{Z}, +, 0)$ and $(\mathbb{R}^*, \times, 1)$. Pick $a \in \mathbb{R}^*$, then $f(n) = a^n$ is a homomorphism between $(\mathbb{Z}, +, 0)$ and $(\mathbb{R}^*, \times, 1)$ because $(\mathbb{R}^*, \times, 1)$ is a group, and we proved for groups that $a^{m+n} = f(m+n) = a^m * a^n = f(m) * f(n) \; \forall m, n \in \mathbb{Z}$.
- 2. More generally, $\forall a \in A$ invertible, where (A, *) is a monoid with identity element e, $f(m) = a^m$ gives a homomorphism between $(\mathbb{Z}, +, 0)$ and (A', *, e), where as before $A' = \{a^m \mid m \in \mathbb{Z}\} \subset A$. We get even better behaviour if we require $f : A \to B$ to be bijective.
- **Definition:** Let (A, *) and (B, *) both be semigroups, monoids or groups. A function $f: A \to B$ is called an isomorphism if $f: A \to B$ is both bijective AND a homomorphism.

Examples:

- 1. Let $A' = \{2^m \mid m \in \mathbb{Z}\} = \{1, 2, \frac{1}{2}, 4, \frac{1}{4}, ...\}$ $f(m) = 2^m$ from $(\mathbb{Z}, +, 0)$ to $(A', \times, 1)$ is an isomorphism since $2^m \neq 2^n$ if $m \neq n$.
- 2. Let $A' = \{(-1)^m \mid m \in \mathbb{Z}\} = \{-1, 1\}$ $f(m) = (-1)^m$ from $(\mathbb{Z}, +, 0)$ to $(A', \times, 1)$ is <u>NOT</u> an isomorphism since it's not injective $(-1)^2 = (-1)^4 = 1$.
- **Theorem:** Let (A, *) and (B, *) both be semigroups, monoids or groups. The inverse $f^{-1}: B \to A$ of any isomorphism $f: A \to B$ from A to B is itself an isomorphism.
- **Proof:** If $f: A \to B$ is an isomorphism $\Rightarrow f: A \to B$ is bijective $\Rightarrow f^{-1}: B \to A$ is bijective (proven when we discussed functions).
- To show $f^{-1}: B \to A$ is a homomorphism, let $u, v \in B$. $\exists x, y \in A$ s.t. $x = f^{-1}(u)$ and $y = f^{-1}(v)$, but then u = f(x) and v = f(y).
- Since $f: A \to B$ is a homomorphism, f(x * y) = f(x) * f(y) = u * v. Then $f^{-1}(u * v) = f^{-1}(f(x * y)) = x * y = f^{-1}(u) * f^{-1}(v)$ as needed.

qed

- **Definition:** Let (A, *) and (B, *) both be semigroups, monoids or groups. If $\exists f : A \to B$ an isomorphism betwen A and B, then (A, *) and (B, *) are said to be isomorphic.
- **Remark:** "Isomorphic" comes from "iso" same and "morph \overline{e} " form: the same abstract algebra structure on both (A,*) and (B,*) given to you in two different guises. As the French would say: "Même Marie, autre chapeau" same Mary, different hat.

8 Formal Languages

Task: Use what we learned about structures in abstract algebra in order to make sense of formal languages and grammars.

Let A be a finite set. When studying formal languages, we call A an

Examples:

1. $A = \{0, 1\}$ binary digits

alphabet and the elements of A <u>letters</u>.

- 2. $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ decimal digits
- 3. A =letters of the English alphabet

Definition: $\forall n \in \mathbb{N}^*$, we define a <u>word</u> of length n in the alphabet A as being any string of the form $a_1 a_2 \cdots a_n$ s.t. $a_i \in A \quad \forall i, 1 \leq i \leq n$. Let A^n be the set of all words of length n over the alphabet A.

Remark: There is a one-to-one correspondence between the string $a_1a_2\cdots a_n$ and the ordered n-tuple $(a_1, a_2, ..., a_n) \in A^n = \underbrace{A \times ... \times A}_{n \ times}$, the Cartesian product of n copies of A.

Definition: Let $A^+ = \bigcup_{n=1}^{\infty} A^n = A^1 \cup A^2 \cup A^3 \cup$ A^+ is the set of all words of positive length over the alphabet A.

Examples:

- 1. $A = \{0, 1\}, A^+$ is the set of all binary strings of finite length that is at least one, **i.e.** 0, 1, 01, 10, 00, 11, etc.
- If A = letters of the English alphabet, then A⁺ consists of all non-empty strings of finite length of letters from the English alphabet.

It is useful to also have the empty word ε in our set of strings. ε has length 0. Define $A^0 = \{\varepsilon\}$ and then adjoin the empty word ε to A^+ . We get $A^* = \{\varepsilon\} \cup A^+ = A^0 \cup \bigcup_{n=1}^{\infty} A^n = \bigcup_{n=0}^{\infty} A^n$.

Notation: We denote the length of a word w by |w|.