FunkAn - 1

Milos Mathias Koch - skg675

December 2020

Problem 1

(a)

As T is linear, we know that T(0) = 0, hence

$$\|x\|_0 = \|x\|_X + \|Tx\|_Y = 0 \iff (\|x\|_X = 0 \land \|Tx\|_Y = 0) \iff x = 0.$$

 $\|x\|_0 = \|x\|_X + \|Tx\|_Y = 0 \iff (\|x\|_X = 0 \land \|Tx\|_Y = 0) \iff x = 0.$ Thus $\|\cdot\|_0$ is positive definite. Let $x,y \in X$ and $a \in \mathbb{K}$. By direct computation, we see

$$\begin{aligned} \|ax\|_0 &= \|ax\|_X + \|T(ax)\|_Y \\ &= |a| \|x\|_X + |a| \|Tx\|_Y \\ &= |a| (\|x\|_X + \|Tx\|_Y) \\ &= |a| \|x\|_0 \end{aligned}$$

and

$$\begin{split} \|x+y\|_0 &= \|x+y\|_X + \|T(x+y)\|_Y \\ &= \|x+y\|_X + \|Tx+Ty\|_Y \\ &\leq \|x\|_X + \|y\|_X + \|Tx\|_Y + \|Ty\|_Y \\ &\leq \|x\|_X + \|Tx\| + \|y\|_X + \|Ty\|_Y \\ &= \|x\|_0 + \|y\|_0. \end{split}$$

Thus we have shown that $\|\cdot\|_0$ is indeed a norm on X.

Now assume that $\|\cdot\|_0$ and $\|\cdot\|_X$ are equivalent. Then there exists $c, C \in (0, \infty)$ such that $c||x||_0 \le ||x||_X \le C||x||_0$ for all $x \in X$. Hence

$$||Tx||_Y = ||x||_0 - ||x||_X \le C||x||_X - ||x||_X = (C-1)||x||_X.$$

 $\|Tx\|_Y=\|x\|_0-\|x\|_X\leq C\|x\|_X-\|x\|_X=(C-1)\|x\|_X.$ Thus T is bounded with $\|T\|_{\mathcal{L}(X,Y)}\leq C-1.$ For the converse implication, assume that Tis bounded. We can establish the first inequality by noting that, since $0 \le ||Tx||_Y$, we have $||x||_X \le ||x||_0$. Hence by setting c=1, we have $c||x||_X \le ||x||_0$. As T is bounded, we have $||Tx||_Y \leq C||x||_X$ for all $x \in X$ and some C > 0. This immediatly gives us that

$$||x||_0 = ||x||_X + ||Tx||_Y \le ||x||_X + C||x||_X = (1+C)||x||_X,$$

thus the two norms are equivalent.

(b)

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be finite-dimensional normed spaces and let $T: X \to Y$ a linear map. Define $\|\cdot\|_0$ as in problem 1 (a). By theorem 1.6, $\|\cdot\|_0$ and $\|\cdot\|_X$ are equivalent, hence T is bounded by the result of problem problem 1 (a). As T was chosen arbitrarily, any linear map between $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ will be bounded.

(c)

Choose a Hamel basis of non-zero elements, $(e_i)_{i\in I}$, for X. As X is infinite dimensional, I must be at least countably infinite. Let $J \subseteq I$ be countably infinite subset of I. Choose a enumeration $(j_n)_{n\in\mathbb{N}}$ of J. Let $(e_n)_{n\in\mathbb{N}}$ be a subset of $(e_i)_{i\in I}$, defined as $e_n:=e_{j_n}$ for each $n \in \mathbb{N}$. As $Y \neq \{0\}$, we can choose a non-zero $y \in Y$ with $||y||_Y = 1$. Define the set $(y_i)_{i \in I}$ as $y_i := n \|e_n\| y_X$, for $i \in J$, and 0 otherwise. As $(e_i)_{i \in I}$ is a Hamel basis, there exists a unique linear map $T: X \to Y$ such that $T(e_i) = y_i$ for all $i \in I$.

If T is bounded, then $\sup(\|Tx\|_Y \|x\|_X = 1) < \infty$. However, by direct computation, we

see

$$\sup(\|Tx\|_Y \|x\|_X = 1) \ge \sup_{n \in \mathbb{N}} \left(\left\| T \left(\frac{e_n}{\|e_n\|} \right) \right\|_Y \right)$$

$$= \sup_{n \in \mathbb{N}} \left(\frac{1}{\|e_n\|} \|Te_n\|_Y \right)$$

$$= \sup_{n \in \mathbb{N}} \left(\frac{1}{\|e_n\|} \|y_i\|_Y \right)$$

$$= \sup_{n \in \mathbb{N}} \left(\frac{1}{\|e_n\|} \|n\|e_n\|_X y\|_Y \right)$$

$$= \sup_{n \in \mathbb{N}} \left(\frac{1}{\|e_n\|} n\|e_n\|_X \|y\|_Y \right)$$

$$= \sup_{n \in \mathbb{N}} \left(n \right)$$

$$= \infty,$$

" hence T is unbounded,

(d)

Let $(X, \|\cdot\|_X)$ be a Banach space. Let $T: X \to X$ be an unbounded linear map. Define $\|\cdot\|_0$ as in problem 1 (a). We saw in problem 1 (a) that $||x||_X \leq ||x||_0$ for all $x \in X$. By problem 1 (a), we have that $||x||_X$ and $||x||_0$ are not equivalent. By HW3 problem 1, or rather the contraposition of HW3 problem 1, we have that if $(X, \|\cdot\|_X)$ and $(X, \|\cdot\|_0)$ are normed spaces, with $\|x\|_X \leq \|x\|_0$ for all $x \in X$, and $\|x\|_X$ and $\|x\|_0$ are not equivalent, then either $(X, \|\cdot\|_X)$ or $(X,\|\cdot\|_0)$ are not complete. By assumption $(X,\|\cdot\|_X)$ is a Banach space, hence $(X,\|\cdot\|_0)$ is not.

(e)

Let $(X, \|\cdot\|_X) = (\ell_1(N), \|\cdot\|_1)$. And consider $(\ell_1(N), \|\cdot\|_{\infty})$, where $\|\cdot\|_{\infty}$ is the uniform norm. If an element $x \in \ell_1(\mathbb{N})$ has at most 1 non-zero entries, then $||x||_{\infty} = ||x||_1$, and if x has more than 1 non-zero entries, then $||x||_{\infty} < ||x||_{1}$. Hence $||x||_{\infty} \le ||x||_{1}$ for all $x \in X$.

Consider the sequence of sequences $(x_n)_{n\in\mathbb{N}}$, defined as

$$x_n(k) \begin{cases} \frac{1}{k} & k \le n \\ 0 & \text{else} \end{cases}$$

As each x_n has compact support, $(x_n)_{n\in\mathbb{N}}\subseteq \ell_1(\mathbb{N})$. Furthermore, for $x:=(\frac{1}{n})_{n\in\mathbb{N}}\in \ell_\infty(\mathbb{N})$, we have

$$||x - x_n||_{\infty} = \frac{1}{n+1} \to 0,$$

hence x_n converges to x in the uniform norm. Furthermore, it is a Cauchy sequence in $(\ell_1(N), \|\cdot\|_{\infty})$, as, for m, n > N

$$||x_m - x_n||_{\infty} \le \frac{1}{N} \to 0.$$

But as $x \notin \ell_1(\mathbb{N})$, (the harmonic series diverges) $(\ell_1(N), \|\cdot\|_{\infty})$ can not be complete.

Assume for a contradiction that there exists C>0 such that $\|x\|_1 \leq C\|x\|_{\infty}$ for all n. Let N>C Consider the sequence

$$z(k) = \begin{cases} C & k \le N \\ 0 & \text{else} \end{cases}.$$

Once again, z is compactly supported, hence $z \in \ell_1(\mathbb{N})$. By direct computation we see

$$||z||_1 = N \cdot C = N||z||_{\infty} > C||z||_{\infty},$$

contradicting $||x||_1 \le C||x||_{\infty}$, hence the two norms are not equivalent.

Problem 2

Throughout this problem, we will suppress norm subscripts, so they will have to be inferred from context. Careful, this walks it have to read.

(a)

Firstly, let $p \in (1, \infty)$. We, by HW1 problem 5, know that the mapping $\Phi : \ell_q(\mathbb{N}) \to (\ell_p(\mathbb{N}))^*$, where $q = \frac{p}{p-1}$, given by $x \longmapsto f_x(\cdot) = \sum_{k=1}^{\infty} (\cdot)(k)x(k)$, is a well-defined isometric isopmorphism. Hence so is its inverse $\Phi^{-1} : (\ell_q(\mathbb{N}))^* \to \ell_p(\mathbb{N})$. This implies that $||f_x|| = ||x||$. Now let $x = (1, 1, 0, \ldots)$. It is immediate that $f_{x|M} = f$, and as $M \subseteq \ell_p(\mathbb{N})$, we have

$$\sup_{x \in M} (\|f(y)\| \mid |y|| \le 1) = \sup_{x \in M} (\|f_x(y)\| \mid \|y\| \le 1)$$

$$\leq \sup_{x \in X} (\|f_x(y)\| \mid \|y\| \le 1)$$

$$= \|f_x\| = \|x\|,$$

hence $||f|| \le ||f_x||$ which shows that f is bounded, and we are only one inequality away from computing ||f||. Now let $y \in \ell_p(\mathbb{N})$, and let $y_M := (y(1), y(2), 0, 0, \ldots)$. We see

$$||y_M||_{\mathbf{P}} = (|y(1)|^p + |y(2)|^p)^{\frac{1}{p}} \le (\sum_{n=1}^{\infty} |y(n)|^p)^{\frac{1}{p}} = ||y||_{\mathbf{P}}$$

Hence

$$|f_x(y)| = |f_x(y_M)|$$

= $|f(y_M)|$
 $\leq ||f|| ||y_M||$
 $\leq ||f|| ||y||_{\wp}$

Thus we have $||f_x|| \le ||f||$, and so $||f_x|| \le ||f|| = ||x||_q$. Hence $||f|| = ||x||_q = ||(1, 1, 0, ...)||_q = 2$ for $p(1, \infty)$.

As the above argument is essentially an application of the isometric isopmorphic relation $\ell_p(\mathbb{N}) \cong (\ell_q(\mathbb{N}))^*$ shown in HW1 problem 5, we will use the corresponding result for p=1, that states that $\ell_\infty(\mathbb{N}) \cong (\ell_1(\mathbb{N}))^*$. Let p=1 and x=(1,1,0...). A step for step copy of the norm-consideration above shows that $||f|| = ||f_x|| = ||x||_\infty = 1$. And so we have seen computed the norm of f for $1 \in [1,\infty)$.

(b)

Existence is showed in problem 2 (a). Let $x = (1, 1, 0, \ldots)$, and let $f_x(\cdot) = \sum_{k=1}^{\infty} (\cdot)(k)x(k)$. We also saw that $||f_x|| = ||x|| = ||f||$. Assume for a contradiction that there exist another linear functional $f_{x'}$ that extends f to $\ell_p(\mathbb{N})$ with $f_x \neq f_{x'}$ and $||f_x|| = ||f'_x|| = ||f||$. As $z \longmapsto f_z$ is bijective, so is $f_z \longmapsto z$, hence $x \neq x'$. As $f_{x|M} = f_{x'|M}$, x and x' must agree on the first and second entries. Hence there exists k > 2 such that $x'(k) \neq x(k) = 0$, hence |x'(k)| > 0. By direct computation we see

$$||f'_{x}||^{q} = \sum_{n=1}^{\infty} |x'(n)|^{q}$$

$$\geq |x'(1)|^{q} + |x'(2)|^{q} + |x'(k)|^{q}$$

$$= ||x|^{p} + |x'(k)|^{q}$$

$$> ||x|^{p} = ||f_{x}||,$$

which contradicts our assumption of equal norms.

(c)

We know that $\Phi: \ell_{\infty}(\mathbb{N}) \to (\ell_1(\mathbb{N}))^*$ given by $x \longmapsto f_x$, is an isometric isomorphism. Hence $\|x\|_{\infty} = \|f_x\| = 1$. However choose some natural number k > 2 and non-zero complex number α with $|\alpha| \leq 1$, and let x' be defined as

$$x'(n) = \begin{cases} x(n) = 1 & \text{for } n \in \{1, 2\} \\ \alpha & \text{for } n = k \\ 0 & \text{else.} \end{cases}$$

Clearly $||x||_{\infty} = ||x'||_{\infty}$, hence $||f_x|| = ||f_{x'}||$. f_x and $f_{x'}$ agree on M. Indeed, let $y \in M$, and Shouldn't be 1. compute

$$f_{x'}(y) = \sum_{n=1}^{\infty} x(n)y(n) = \underbrace{|y(1)| + |y(2)|}_{} = f(y),$$

Hence $f_{x'|M} = f$. Since $f_{x|M} = f$, we see that $f_{x'}$ actually is an extension of f. As Φ is bijective, and so $x \neq x'$ implies $f_x \neq f_{x'}$. As there are uncountable many $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$

(and countably infinite entries to place those α), we see that there exist infinitely many linear extension of f for p = 1.

Problem 3

(a)

Assume for a contradiction that there exists a linear injection $F: X \to \mathbb{K}^n$. As X is infinite dimensional, we can find n+1 distinct, non-zero linearly independent elements in X, denote these with $(x_i)_{1 \le i \le n+1}$. By elementary linear algebra, we know that injective linear mappings preserve linear independence. Hence $(F(x_i))_{1 \le i \le n+1}$ is also a set of linear independent elements in \mathbb{K}^n , a clear contradiction. Hence there does not exists a linear injection $F: X \to \mathbb{K}^n$.

Show

(b)

Consider the map $F: X \to \mathbb{K}^n$, given by $x \longmapsto (f_1(x), f_2(x), \dots, f_n(x))$. It is clear that $F(x) = 0_n \in \mathbb{K}^n$ if and only if $f_j(x) = 0 \in \mathbb{K}$ for all $j \in \{1, \dots, n\}$. By Problem 3 (a), F is not injective, hence $\ker F \neq \{0\}$. Let $x_0 \in \ker F$ be a non-zero element in the kernel of F. Hence x_0 is also a non-zero element of the kernel of f_j for each $j \in \{1, \dots, n\}$. Thus we have shown the desired result.

(c)

For $x_j = 0$ for any $j \in \{1 \dots n\}$, the assertion is trivial, indeed we can simply choose any $y \in X$ with norm 1. Hence, assume that $x_j \neq 0$ for all $j \in \{1 \dots n\}$. By theorem 2.7(b) there exist for $f_1, \dots f_n \in X^*$ such that $f_j(x_j) = \|x_j\|_X$ and $\|f_j\|_{X^*} = 1$ for all $j \in \{1 \dots n\}$. By problem 3 (b), we have that $\bigcap_{i=1}^n \ker(f_i) \neq \{0\}$. As a finite intersection of subspaces are again a subspace, we can find a $y \in \bigcap_{i=1}^n \ker(f_i)$ with $\|y\| = 1$. Thus the following computations

hold for all $i \in \{1 \dots n\}$

$$||x_{i} - y||_{X} = ||f_{i}||_{X^{*}} ||x_{i} - y||_{X}$$

$$\geq |f_{i}(x_{i} - y)|$$

$$= |f_{i}(x_{i}) - f_{i}(y)|$$

$$= |f_{i}(x_{i})|$$

$$= ||x_{i}||,$$

thus we have derived the desired result.

(d)

Let y be the element, whose existence we showed in problem 3 (c). Any finite collection of closed ball covering S would necessarily include at least one ball containing y. Let B_y denote a closed ball containing y. As $d(0, x_i) = ||x_i||_X \le ||x_i - y||_X = d(x_i, y)$, where d is associated norm-metric on X, such a ball would also contain 0.

(e)

Assume for a contradiction that S is compact. Then consider the open cover $\mathcal{B} = \{B(x, \frac{1}{2}) | x \in S\}$ of open ball with radius $\frac{1}{2}$. As S is compact, there exist a finite subcover $\mathcal{B}_n = \{B(x_i, \frac{1}{2})\}_{i \in \{1, \dots n\}}$. Let $\bar{B}(c, r)$ denote the closure of the open ball with center in c and radius r. As the closure of a open ball with center in c and radius r a closed ball with center in c and radius r, $\bar{B}(x_i, \frac{1}{2})$ is a closed ball with center in $x_i \in S$ and radius $\frac{1}{2}$. As $B(x_i, \frac{1}{2}) \subset \bar{B}(x_i, \frac{1}{2})$, the collection of the closure of each open ball in \mathcal{B}_n , denoted by \mathcal{CB}_n , is a (closed) cover of S. As d(s, 0) = 1 for each $s \in S$, no balls in \mathcal{CB}_n contain 0. This a contradiction with problem 3 (d). Hence S cannot be compact.

Assume for a contradiction that the unit ball is compact. As S is, by analysis 1, a closed subset of the unit ball, S is compact, but as we have just shown, S is not compact, hence the unit ball cannot be compact.

Problem 4

(a)

It is not the case. By HW2 problem 2, we know that $L_3 := L_3([0,1], m)$ is a proper subset of $L_1 : L_1([0,1], m)$, hence we can choose $f \in L_1 \setminus L_3$. As L_3 consists of all complex-valued functions, g, such that $\int_{[0,1]} |g|^3 dm < \infty$, we know that $\int_{[0,1]} |f|^3 dm = \infty$. If E_n was absorbing for some $n \in \mathbb{N}$, there would have to exist t > 0, such that $\int_{[0,1]} |tf|^3 dm < n$, but by linearity of integrals, we have

$$\int_{[0,1]} |tf|^3 dm = t^3 \int_{[0,1]} |f|^3 dm = \infty,$$

for all t > 0. Hence there does not exist t > 0, such that $tf \in E_n$ for any $n \in \mathbb{N}$.

(b)

Let $n \in \mathbb{N}$ and let $f \in E_n$. Let $f' \in L_1 \setminus L_3$, and let $(f_k)_{k \in \mathbb{N}}$ be the sequence defined as $f_k = f + \frac{f'}{k}$. Assume for a contradiction that there exist $m \in \mathbb{N}$ such that $f_m = f - \frac{f'}{m} \in E_n$. Then it would in particular also be in L_3 . As L_3 is a vector space, this implies that $k(f - f_m) = f'$ would also be in L_3 , which is a contradiction. Hence $(f_k)_{k \in \mathbb{N}}$ is entirely outside of E_n . We note that, since $f' \in L_1$ implies that $||f'||_{L_1} < \infty$

$$||f - f_k||_{L_1} = \left\| \frac{f'}{k} \right\| = \frac{1}{k} ||f'|| \to 0,$$

for $k \to \infty$. Hence f is not in the interior of E_n . As f was chosen arbitrarily, E_n has empty interior. As n was chosen arbitrarily, E_n has empty interior for all $n \in \mathbb{N}$.

(c)

Let $(f_k)_{k\in\mathbb{N}}\subseteq E_n$ for some $n\in\mathbb{N}$. Assume that $(f_k)_{k\in\mathbb{N}}$ converges in L_1 to some function $f\in L_1$. By corollary 13.8 of "Measures, Integrals and Martingales" by René Schilling, there exists a subsequence $(f_{k_j})_{j\in\mathbb{N}}$ such that $\lim_{j\to\infty} f_{k_j}(x) \to f(x)$ almost surely. As $|\cdot|^3$ is continuous, we have $\lim_{j\to\infty} \left|f_{k_j}(x)\right|^3 \to |f(x)|^3$ almost surely, note that $\lim\inf_{j\to\infty} \left|f_{k_j}(x)\right|^3 = f(x)$ almost

surely. Hence, as $(|f_{k_j}|^3)_{j\in\mathbb{N}}$ is a sequence of positive measurable functions, by Fatou's lemma, we have

$$\int_{[0,1]} |f|^3 dm = \int_{[0,1]} \liminf_{j \to \infty} |f_{k_j}|^3 dm \le \liminf_{j \to \infty} \int_{[0,1]} |f_{k_j}|^3 dm \stackrel{(*)}{\le} n,$$

where (*) is due to the fact that $\int_{[0,1]} |f_{k_j}|^3 dm \le n$ for all $j \in \mathbb{N}$. Hence E_n is closed for all $n \in \mathbb{N}$.

(d)

As E_n is closed, we have $E_n = \bar{E}_n$, where \bar{E}_n denotes the closure of E_n . Thus, as E_n has empty interior, so does its closure, so E_n is a nowhere dense set, for all $n \in \mathbb{N}$. As

$$\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} \left\{ f \in L_1 | \int_{[0,1]} |f|^3 dm \le n \right\} = \left\{ f \in L_1 | \int_{[0,1]} |f|^3 dm < \infty \right\} = L_3,$$

we have that L_3 is a countable union of nowhere dense sets in L_1 , hence it is of first category.

Problem 5

(a)

By the inverse triangle inequality, we have

$$|||x_n|| - ||x||| \le ||x_n - x||.$$

As $||x_n - x|| \to 0$ as $n \to \infty$, we have that $||x_n|| \to ||x||$.

(b)

It is not the case. Consider the following counterexample.

Let $(e_n)_{n\in\mathbb{N}}$ be a countable orthonormal basis of \mathcal{H} . For all $f\in\mathcal{H}^*$, we have $f(e_n)=\langle e_n,x_f\rangle$ for some unique $x_f\in\mathcal{H}^*$ by the Riesz representation theorem (proved on 332 in Schilling). Then by the equivalent definitions (listed and proved on page 335-336 in "Measures, Integrals

and Martingales" by René Schilling), we have that $\langle e_n, x_f \rangle \to 0$ as $n \to \infty$ for all $x_f \in \mathcal{H}^*$. Hence, by HW4, e_n converges weakly to 0 as $n \to \infty$. But as $(e_n)_{n \in \mathbb{N}}$ is an orthonormal basis, $||e_n|| = 1$ for all $n \in \mathbb{N}$, hence $||e_n|| \to 1 \neq 0$ as $n \to \infty$.

(c)

Let $x_n \to x$ weakly as $n \to \infty$, then by HW4, we know that $f(x_n) \to f(x)$ for all $f \in \mathcal{H}^*$. By theorem 2.7(b) there exist a functional $\phi \in \mathcal{H}^*$, such that $\|\phi\|_{\mathcal{H}^*} = 1$ and $\phi(x) = |\phi(x)| = \|x\|_{\mathcal{H}}$. Hence we have

$$||x||_{\mathcal{H}} = |\phi(x)|$$

$$= \lim_{n \to \infty} |\phi(x_n)|$$

$$= \lim_{n \to \infty} \inf |\phi(x_n)|$$

$$\leq \lim_{n \to \infty} \inf ||\phi||_{\mathcal{H}^*} ||x_n||_{\mathcal{H}}$$

$$= \lim_{n \to \infty} \inf ||x_n||_{\mathcal{H}}$$

$$\leq 1.$$

Hence we see that the statement is true.

Merry Christmas and happy new years!

✓