

Charles W. Davidson College of Engineering

Department of Computer Engineering

Real-Time Embedded System
Co-Design
CMPE 146 Section 1
Fall 2024

MCU Digital Interfaces

- Inter-Integrated Circuit (I²C or I2C or IIC)
- Synchronous, half-duplex, NRZ
- Commonly used to connect components within an embedded system
- Two open-drain lines (lines normally high, any device can pull them low)
 - SCL: Serial Clock Line
 - SDA: Serial DAta line
- Multiple-master-multiple-slave architecture

I2C - Transaction

- A bus transaction begins with a START condition and ends with a STOP condition
- Beginning of transaction (START condition)
 - Master drives SDA low while SCL remains high
 - All devices on the bus go into listening mode
- Ending of transaction (STOP condition)
 - Master stops generating clock (not driving SCL) and then releases SDA

I2C- Data Validity

- Data on SDA must be stable during the High period of SCL
- Data can only change when SCL line is Low

I2C - Arbitration

- Who becomes the bus master?
 - Each attempting master initiates the START condition as if it's the bus master
 - Compares what it drives SDA and what it reads from SDA
 - Whoever sees a mismatch drops back to slave mode
 - Winning master goes on to complete its transaction

I2C - Protocol

- Basic bus transaction
 - After START condition, a 7-bit target address is sent
 - Followed by a data direction bit; zero means write
 - Followed by an ACK bit sent by slave
 - If master writes, master sends data, followed by slave ACK
 - If master reads, slave sends data, followed by master ACK

- Serial Peripheral Interface (SPI)
- Synchronous, full-duplex, NRZ
- Commonly used to connect components within an embedded system
- Single-master-multiple-slave architecture

- Four signals
 - SCLK: Serial Clock (output from master)
 - MOSI: Master Output Slave Input (output from master)
 - MISO: Master Input Slave Output (output from slave)
 - SS: Slave Select (active low, output from master)

SPI - Timing and Configuration

Timing

- Basic multiple-slave configuration
 - Dedicated SS signals for slaves

SPI and I2C Comparison

SPI	I2C
Single-master-multiple-slave	Multiple-master-multiple-slave
Full-duplex	Half-duplex
Four wires (or more)	Two wires
No acknowledgment on data received	ACK on each byte received
No device ID, dedicated select signal - Not flexible to add off-board devices	Device address ID in the header - Easy to add off-board devices
No strict frame definition	Frame is well defined
No bus arbitration	Arbitration needed
Flexible clock speed - Only master drives the signal. Can accommodate fast and slow devices	Less flexible clock speed - All master devices can drive the signal. Arbitration requires agreed clock frequency

MCU Parallel Interfaces

- Commonly used over short distances on a printed circuit board
- Provide smallest delay and highest bandwidth
- Processors process data natively in multiple-bit forms (byte, word, etc.)
 - No overheads of serialization and describilization as in serial interfaces.
 - But require a lot more pins and real estate
- We focus on common interfaces to off-chip memory on board
 - SRAM
 - DRAM

SRAM Interface

- Main signals
 - Address
 - Data (bi-directional)
 - Read/Write
 - Chip Select

Read timing

Write timing

DRAM Interface

- Main signals
 - Address (row and column multiplexed, to save pins)
 - Row Address Strobe (RAS)
 - Select a row in the memory cell array
 - Column Address Strobe (CAS)
 - Select a column in the memory cell array
 - Data (bi-directional)
 - Read/Write
- Read timing
 - t_{RAC}: Read access time
 - t_{RC}: Read cycle time
 - Longer than t_{RAC}

DRAM Interface (cont'd)

- Write timing
 - WE' and D_{IN} must hold longer enough before CAS' goes low

