Vector Equations

Section 1.3

Learning Objectives:

- 1. Compute vector arithmetic
- 2. Relate systems of linear equations to vector equations
- 3. Describe the relationship between linear combinations, span, and consistency of linear systems
- 4. Describe the geometric interpretation of linear combinations, span, and consistency of systems

1 Vectors

Definition: A **vector** is an ordered list of numbers. We normally name vectors using lowercase, boldface letters, or letters with arrows over them:

$$\mathbf{v} = \overrightarrow{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

If the vector is arranged vertically, we call it a **column vector**. If it is arranged horizontally, we call it a **row vector**, e.g.,

$$\mathbf{v} = (2 \ 4).$$

Example 1. Compute $\mathbf{u} - 2\mathbf{v}$ where

$$\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix}.$$

The definitions of vector addition and scalar multiplication are the "right" ones because they result in the following familiar properties:

Algebraic properties of \mathbb{R}^n : For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and all scalars c and d,

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$(\mathbf{v}) \ \mathbf{c}(\mathbf{u} + \mathbf{v}) = \mathbf{c}\mathbf{u} + \mathbf{c}\mathbf{v}$$

(ii)
$$(\mathbf{u}+\mathbf{v})+\mathbf{w} = \mathbf{u}+(\mathbf{v}+\mathbf{w})$$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(iii)
$$u+0 = 0 + u = u$$

(iv)
$$\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$$

(vii)
$$c(d \mathbf{u}) = (cd)\mathbf{u}$$
.

Linear combinations 2

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ and scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by

$$y =$$

is called a _____ of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ with ____ c_1, c_2, \dots, c_p . Note that some or all c_p may be zero.

Example 2. Suppose we have
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Are $\mathbf{y} = \begin{pmatrix} 3 \\ -5 \\ 0 \end{pmatrix}$ and $\mathbf{z} = \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix}$ linear combinations of \mathbf{v}_1 and \mathbf{v}_2 ?

linear combinations of \mathbf{v}_1 and \mathbf{v}_2 ?

In general, if we are given a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$, and some target vector \mathbf{y} , how can we tell if \mathbf{y} a linear combination of the vectors $\mathbf{v}_1, \dots \mathbf{v}_p$?

Example 3. Let
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 7 \\ 4 \\ -3 \end{pmatrix}$. Do there exist weights x_1 and x_2 so that

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}?$$

If so, give values of x_1 and x_2 which solve this vector equation.

We have discovered a fundamental result of vector equations:

Theorem: A vector equation

$$x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solutions as

In particular, **b** is a linear combination if and only if

3 Span

Given $\mathbf{v}_1, \ldots, \mathbf{v}_p$, we can ask what are all of the possible vectors b for which we can solve

$$x_1\mathbf{v}_1 + \dots + x_p\mathbf{v}_p = \mathbf{b}?$$

Definition: The span of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$ is ______

That is, it is the set of all vectors $\mathbf{b} \in \mathbb{R}^n$ which can be written

for some scalar weights x_1, \ldots, x_p . We denote the span by $\text{Span}\{\mathbf{a_1}, \ldots, \mathbf{a_p}\}$. We also may call this set the subset of \mathbb{R}^n spanned (or generated) by the vectors $\mathbf{a_1}, \ldots, \mathbf{a_n}$.

Remark: Sometimes it is helpful to build intuition about span using colors. Imagine \mathbf{v}_1 represents a can of yellow paint and \mathbf{v}_2 represents a can of blue paint. Then, a target color \mathbf{b} is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ if there is a way of mixing yellow and blue paints in order to get the color \mathbf{b} . If \mathbf{b} is the color green, then it is possible, so it is in the span. If \mathbf{b} is the color red, then it is not possible, so it is not in the span!

Example 4. What is span geometrically? How could we visualize the span of 1 vector? The span of 2 vectors? What does it mean geometrically that $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{b}$ is solvable?

Example 5. T/F: There is a unique value of h so that
$$\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ h \end{pmatrix}$$
 is in the span of $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$,

$$\mathbf{v}_2 = \left(\begin{array}{c} 0\\1\\2 \end{array}\right).$$