

EE580 Discussion -- STA

Xuan Zuo 07-06-2017

Static Timing Analysis (STA)

What's STA

 STA is a method of validating the timing performance of a design by checking all possible paths for timing violations.

Different with dynamical timing analysis

- Full coverage: removes the possibility that not all critical paths are identified 多葉以阿爾的 財務経
- Higher speed: especially for large complex designs
- Slightly pessimistic estimation: e.g., wire load model
- STA does not verify the functionality of a design. Also, certain design styles are not well suited for static approach. For instance, dynamic simulation may be required for asynchronous parts of a design and certainly for any mixed-signal portions.

Static Verification Flow

PrimeTime –overview

• PrimeTime is the Synopsys stand-alone full chip, gate-level static timing analyzer #和做粉集他的 式

Widely-adopted in industry and academia, sign-off tools

Controlled by Tool command language (TCL) compatible with DC

Using Tel scripes for runing STA for huge project.

PrimeTime - Input/Output

What is the difference between Solf and old

- Inputs:
 - Netlist file
 - Verilog/VHDL/EDIF
 - Delay format:
 - SPEF/SPF/SDF
 - Database file (DB):
 - Determine the cell delay
 - SDC file:
 - Define the design to PT
- Outputs:
 - Timing Analysis Reports

PrimeTime - STA Flow

TCLIBIS: Set 用到建建革然初值

Setup Design:

- Set the search path and the link path
- set search_path "lib path"
 set link_library "* design.db"
 set target library "design.db"
- Read the design and the libraries read verilog top level.v
- read_verilog top_level.v
 current_design "top_level"
- Link the top design

link design

PrimeTime - Specify timing constraints

Clock period Constraint

- create_clock
 # define the clock frequency
 set_clock_uncertainty interdump ande restoration
 # define delay between the clock branches (skew). For prelayout.
- set_propagated_clock [all_clocks]
 # specifies that PrimeTime realized the latency for each clock path. This command should be used during post route analysis.
- 5set_clock_latency
- set_clock_transistion
- set_input_delay } dem nim the edge between
 set_output_delay two modules

PrimeTime - Specify timing constraints

PrimeTime - Specify timing constraints

- Input Delay
 - Specify the delay of external logic driving current design

- Output Delay
 - Specify the delay of external logic driven by current design

PrimeTime - Path Delay Calculation

path delay = cell delay + net delay

- Cell delay is stored in files called Synopsys database files or db files.
 Database files are read into PrimeTime by the link_path variable
- Net delay is stored in sdf file (post-layout) or calculated by PrimeTime by an internal delay calculator (pre-layout).

Script:

```
set link_library "*.db"
read_parasitics –format SPEF mult.spef
read_sdf mult.sdf
```

PrimeTime - Timing Exception

False Path

- paths in a design were a designer would not want the timing arcs to be calculated
 - Paths not relevant to functional operation of the circuit
 - paths which are impossible to exercise
 - Paths cross different clock domains

set_false_path -from clk_a -to clk_b set_false_path -from clk_b -to clk_a

Report Timing

 To reduce the size and complexity of the PrimeTime reports, it is recommended to break the design into groups

Report Timing (continued)

```
report_timing -from -to
# If this commands is not used PrimeTime will default to the longest path
(critical path) in the design
-path full path
# This option reports not only the data path but the launching and
capturing clock path. Set propagated clocks must be set for this
option to properly report the clock paths.
-delay {max|min}
# max: PrimeTime reports setup time/min: PrimeTime reports hold time
-max paths
```

This variable states the total number of paths to be reported per group. The default is one.

Report Violation

report_constraints -all_violators

This command generates a summary of all paths that are violation setup and hold times as well as and any cells that violation a design rule such as fanout, capacitance, and transition. Viewing this one report will tell you if changes will need to be made to your design.

Report Clock Timing

report_clock_timing -type skew -verbose

This command will report clock skew, the difference between the longest and shortest clock insertion time, and allow the design to evaluate whether or not the clock tree must be re-synthesized. This is a powerful command can save the designer from numerous timing closure spins.

report_analysis_coverage

Generates a report about coverage of timing checks.

Type of Check	Total	Met	Violated	Untested
setup hold min_pulse_width out_setup out_hold	16 16 32 8 8	16 (100%) 16 (100%) 32 (100%) 8 (100%) 8 (100%)	0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)	0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
All Checks	 80	80 (100%)	0 (0%)	0 (0%)

1

Four Sections in a Timing Report

report timing Startpoint: FF1 (rising edge-triggered flip-flop clocked by Clk) Endpoint: FF2 (rising edge-triggered flip-flop clocked by Clk) Header Path Group: Clk Path Type: max Point Incr Path clock Clk (rise edge) 0.00 0.00 1.10 * 1.10 clock network delay (propagated) 0.00 1.10 r FF1/CLK (fdef1a15) Data FF1/Q (fdef1a15) 0.50 * 1.60 r arrival U2/Y (buf1a27) 0.11 * 1.71 r U3/Y (buf1a27) 0.11 * 1.82 r FF2/D (fdef1a15) 0.05 * 1.87 r · data arrival time 1.87 clock Clk (rise edge) 4.00 4.00 clock network delay (propagated) 1.00 * 5.00 Data FF2/CLK (fdef1a15) 5.00 rrequired -0.21 * library setup time 4.79 data required time 4.79 4.79 data required time data arrival time -1.87 Slack 2.92 slack (MET)

The typical symbols shown in a PrimeTime report are defined as follows:

- "&" after an incremental delay number shows that the delay number is calculated with Resistor-Capacitor (RC) network backannotation.
- "*" for Standard Delay Format (SDF) back-annotation
- "+" for lumped RC
- "H" for hybrid annotation
- "r" in the path column for the rising edge of the signal
- "f" in the path column for the falling edge of the signal

```
Header Endpoint: FF1 (rising edge-triggered flip-flop clocked by Clk)

Path Group Clk

Path Type: max

Report is for setup
```


	Point		Incr	Path
	<pre>clock Clk (rise edge) clock network delay (propagated</pre>)	0.00 1.10	0.00 1.10
	FF1/CLK (fdef1a15)		0.00	1.10 r
	FF1/Q (fdef1a15)		0.50	
	U2/Y (buf1a27)		0.11	
	U3/Y (buf1a27)		0.11	
	FF2/D (fdef1a15) data arrival time		0.05	1.87
	data allival time			1.07
20	"clock Clk (rise edge)		4.00	4.00
	clock network delay (propagated)	1.00	5.00
	FF2/CLK (fdef1a15)	SDF		5.00 r
required	library setup time		-0.21	4.79
÷.	data required time			4.79
	FF1 Q	7		FF2
نئن	.	U2	U3	D 0.21ns
Clk	1.0ns CLK	—		CLK

report_timing

Startpoint: FF1 (rising edge-triggered flip-flop clocked by Clk) Endpoint: FF2 (rising edge-triggered flip-flop clocked by Clk)

Path Group: Clk Path Type: max

Point	Incr	Path
clock Clk (rise edge)	0.00	0.00
clock network delay (propagated)	1.10 *	1.10
FF1/CLK (fdef1a15)	0.00	1.10 r
FF1/Q (fdef1a15)	0.50 *	1.60 r
U2/Y (buf1a27)	0.11 *	1.71 r
U3/Y (buf1a27)	0.11 *	1.82 r
FF2/D (fdef1a15)	0.05 *	1.87 r
data arrival time		1.87
clock Clk (rise edge)	4.00	4.00
clock network delay (propagated)	1.00 *	5.00
FF2/CLK (fdef1a15)		5.00 r
library setup time	-0.21 *	4.79
data required time		4.79
data required time		4.79
data arrival time		-1.87
slack (MET)		2.92

Slack

Which Edges are Used in a Timing Report?

Example of Hold Timing report

Startpoint: FF1 (rising edge-trigger Endpoint: FF2 (rising edge-triggered Path Group: Clk Path Type: min		
Point	Incr	Path
clock Clk (rise edge)	0.00	0.00
clock network delay (propagated)	1.10 *	1.10
FF1/CLK (fdef1a15)	0.00	1.10 r
FF1/Q (fdef1a15)	0.40 *	1.50 f
U2/Y (buf1a27)	0.05 *	1.55 f
U3/Y (buf1a27)	0.05 *	1.60 f
FF2/D (fdef1a15)	0.01 *	1.61 f
data arrival time		1.61
clock Clk (rise edge)	0.00	0.00
clock network delay (propagated)	1.00 *	1.00
FF2/CLK (fdef1a15)		1.00 r
library hold time	0.10 *	1.10
data required time		1.10
data required time		1.10
data arrival time		-1.61
slack (MET)		0.51

Negative edge triggered FF

Endpoint: FF2 (rising edge-triggered Path Group: Clk Path Type: min	flip-flop cl	ocked by C
Point	Incr	Path
clock Clk (fall edge)	2.00	2.00
clock network delay (propagated)	0.90 *	2.90
FF1/CLK (fdmf1a15)	0.00	2.90 f
FF1/Q (fdef1a15)	0.40 *	3.30 f
U2/Y (buf1a27)	0.05 *	3.35 f
U3/Y (buf1a27)	0.05 *	3.40 f
FF2/D (fdef1a15)		3.41 f
data arrival time		3.41
clock Clk (rise edge)	0.00	0.00
clock network delay (propagated)	1.00 *	1.00
FF2/CLK (fdef1a15)		1.00 r
library hold time	0.10 *	1.10
data required time		1.10
data required time		1.10
data arrival time		-3.41
slack (MET)		2.31

Setup check summary

Data must become valid and stable at least one setup time before being captured by flip-flop.

Hold check summary

Data remains stable for a minimum time as required by capture flip-flop. (Hold Check)

Recovery/Removal check

For asynchronous input pin of FF

 Although a flip-flop is asynchronously set or clear, the negation from its reset state is synchronous.

 A recovery timing check specifies a minimum amount of time allowed between the release of a asynchronous signal from the active state to

the next active clock edge.

• A **removal** timing check specifies the minimum amount of time between an active edge and the release of an asynchronous control signal.

Delays

- RTL Simulation
 - No gate delay, No wire-delays
- Post Synthesis Simulation
 - Gate Delays, No wire-delay considered
- Post Synthesis Simulation with Annotation Information
 - Wire-delays are modeled based on wire-models (estimated)
- Post Layout Annotation Information
 - Wire delays are accurately estimated.

Suggestions

Pre-/Post layout design

Getting experienced by comparing pre- and post- layout design

Set reasonable timing margin to avoid **LARGE** loop in design flow, e.g.,

- clock_uncertainty : justify the value with post-layout report
- clock_period: post-layout period= pre-layout period + margin,
 depending on process technology

Meet timing requirement as early as possible

- keep in mind the delay information when design the circuits, e.g., pipeline schedule, parallel, et. al.
 - set reasonable constraint for synthesis
 - optimize the design at early stage of P&R

Commands in Primetime

On pt_shell prompt:

- To see list of available commands, use "help"
- To see detailed description of any command "man <command_name>"
- Ex: man read_verilog
- Get yourself familiarize with the commands used in your script
- When entering individual command on dc_shell prompt, if command is successful, then "1" is displayed at the end of output of command.