report_2

Yi Yang

2024-11-22

Contents

	0.1	Compute a linear regression fromm the training data
	0.2	Estimate traing and test MSE
		Commenting on Significant Variable Contributions to the Model
	0.4	Using RidgeOptto compute optimal parameters when lambda=1, 100 and 1000
	0.5	Comenting on which is the most appropriate penalty parameter
L	Ass	ignment 4. Theory
	1.1	Express the cost fucntion of the linear regression in the matrix form
	1.2	Code for assignment 2
#.	Assign	nment 2

0.1 Compute a linear regression fromm the training data.

Using lm() to fit a linear regression model without intercept, we got the summary of the model as follows:

0.2 Estimate traing and test MSE

The MSE for training and test data show as follows:

0.3 Commenting on Significant Variable Contributions to the Model.

The coefficientJitter.Abs.,Shimmer.APQ5,Shimmer.APQ11,NHR,HNR,DFA,PPE is highly significant, as their P-value are less than 0.001,which suggests that they have a strong and statistically reliable impact on the response variable. The coefficient Shimmer is statistically significant,with a P-value < 0.01,indicating that Shimmer has a meaningful and reliable impact on the response variable.

0.4 Using RidgeOptto compute optimal parameters when lambda=1, 100 and 1000.

The training and test MSE for different lambda and the degrees of freedom shows as follws:

0.5 Comenting on which is the most appropriate penalty parameter.

Among the selected penalty parameters, lambda = 100 is the most appropriate .It provides the lowest test data MSE(0.9323316). Besides, the degree of freedom for lambda = 100 is 9.924887, which shows a balanced model complexity that avoids both overfitting and underfitting.

1 Assignment 4. Theory

1.1 Express the cost fucntion of the linear regression in the matrix form.

The cost function for the linear regression in the matrix form is defined as:

$$J(\theta) = \frac{1}{n} \sum_{i=1}^n \left(\hat{y}(x_i; \theta) - y_i \right)^2 = \frac{1}{n} \|\hat{y} - y\|_2^2 = \frac{1}{n} \|X\theta - y\|_2^2 = \frac{1}{n} \|\epsilon\|_2^2$$

where: $\hat{y} = X\theta$ is the vector of the predicted values - y is the vector of true values - $\hat{\epsilon} = y - \hat{y}$ is the residuals - $\|\cdot\|$ denotes the Euclidean norm This cost function is also referred to as the least squares cost. It can be found on page 40, formula (3.11).

1.2 Code for assignment 2