

# HiPerFAST™ IGBT IXGH 32N90B2 B2-Class High Speed IGBTs IXGT 32N90B2

 $V_{CES}$  = 900 V  $I_{C25}$  = 64 A  $V_{CE(sat)}$  = 2.7 V  $t_{fityp}$  = 150 ns



| Symbol            | Test Conditions                                                                                                  | Ma     | <b>Maximum Ratings</b> |          |  |
|-------------------|------------------------------------------------------------------------------------------------------------------|--------|------------------------|----------|--|
| V <sub>CES</sub>  | $T_{J} = 25^{\circ}\text{C to } 150^{\circ}\text{C}$                                                             |        | 900                    | V        |  |
| V <sub>CGR</sub>  | $T_{_J} = 25^{\circ}C$ to $150^{\circ}C$ ; $R_{_{GE}} = 1$ M $\Omega$                                            |        | 900                    | V        |  |
| V <sub>GES</sub>  | Continuous                                                                                                       |        | ±20                    | V        |  |
| V <sub>GEM</sub>  | Transient                                                                                                        |        | ±30                    | V        |  |
| I <sub>C25</sub>  | T <sub>C</sub> = 25°C (limited by leads)                                                                         |        | 64                     | A        |  |
| I <sub>C110</sub> | $T_{c} = 110^{\circ}C$                                                                                           |        | 32                     | Α        |  |
| I <sub>CM</sub>   | $T_{\rm C} = 25^{\circ} \rm C, \ 1 \ ms$                                                                         |        | 200                    | Α        |  |
| SSOA<br>(RBSOA)   | $V_{GE} = 15 \text{ V}, T_{VJ} = 125^{\circ}\text{C}, R_{G} = 10 \Omega$<br>Clamped inductive load @ $\leq$ 600V | I      | <sub>CM</sub> = 64     | A        |  |
| $P_c$             | $T_{c} = 25^{\circ}C$                                                                                            |        | 300                    | W        |  |
| T <sub>J</sub>    |                                                                                                                  | -55    | +150                   | °C       |  |
| T <sub>JM</sub>   |                                                                                                                  |        | 150                    | °C       |  |
| T <sub>stg</sub>  |                                                                                                                  | -55    | +150                   | °C       |  |
| Maximum le        | ead temperature for soldering<br>062 in.) from case for 10 s                                                     |        | 300                    | °C       |  |
| Plastic body      |                                                                                                                  |        | 260                    | °C       |  |
| $M_d$             | Mounting torque (TO-247)                                                                                         |        | 1.13/10Nm              | ı/lb.in. |  |
| Weight            |                                                                                                                  | TO-247 | 6                      | g        |  |
|                   |                                                                                                                  | TO-268 | 4                      | <u>g</u> |  |

| Symbol               | Test Conditions                                       | Characteristic Values $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$ min.   typ.   max. |            |           |                          |
|----------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------|-----------|--------------------------|
| V <sub>GE(th)</sub>  | $I_{_{C}}=250~\mu\text{A},~V_{_{CE}}=V_{_{GE}}$       | 3.0                                                                                                |            | 5.0       | V                        |
| I <sub>CES</sub>     | $V_{CE} = V_{CES}$<br>$V_{GE} = 0 V$                  | $T_J = 25^{\circ}C$<br>$T_J = 150^{\circ}C$                                                        |            | 50<br>750 | μ <b>Α</b><br>μ <b>Α</b> |
| I <sub>GES</sub>     | $V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$     |                                                                                                    |            | ±100      | nA                       |
| V <sub>CE(sat)</sub> | $I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15 \text{ V}$ | T <sub>J</sub> = 125°C                                                                             | 2.2<br>2.1 | 2.7       | V<br>V                   |



### TO-268 (IXGT)



G = Gate, C = Collector, E = Emitter, TAB = Collector

# Features

- High frequency IGBT
- High current handling capability
- MOS Gate turn-on
  - drive simplicity

### **Applications**

- PFC circuits
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

### **Advantages**

- High power density
- Very fast switching speeds for high frequency applications



| Symbol                                                                                                                                                             | Test Conditions Cha $(T_{_J} = 25^{\circ}\text{C, unless of min.})$                                                                                                           |                                              | stic Values<br>se specified)<br>max. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|
| g <sub>fs</sub>                                                                                                                                                    | $\begin{array}{l} I_{_{C}} = I_{_{\text{C110}}}A;V_{_{\text{CE}}} \!=\! 10V, \\ \text{Pulse test, } t \leq 300~\mu\text{s, duty cycle} \leq 2~\% \end{array} \hspace{1cm} 18$ | 28                                           | S                                    |
| C <sub>ies</sub> C <sub>oes</sub> C <sub>res</sub>                                                                                                                 | $ V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz} $                                                                                                            | 1790<br>121<br>49                            | pF<br>pF<br>pF                       |
| $\mathbf{Q}_{\mathrm{ge}}$ $\mathbf{Q}_{\mathrm{ge}}$                                                                                                              |                                                                                                                                                                               | 89<br>15<br>34                               | nC<br>nC<br>nC                       |
| $\mathbf{t}_{d(on)}$ $\mathbf{t}_{ri}$ $\mathbf{t}_{d(off)}$ $\mathbf{t}_{fi}$ $\mathbf{E}_{off}$                                                                  | Inductive load, $T_J = 25^{\circ}C$ $I_C = I_{C110}, V_{GE} = 15 \text{ V}$ $V_{CE} = 720 \text{ V}, R_G = R_{off} = 5 \Omega$                                                | 20<br>22<br>260<br>150<br>2.6                | ns<br>ns<br>400 ns<br>ns<br>4.5 mJ   |
| $\begin{aligned} & \mathbf{t}_{d(on)} \\ & \mathbf{t}_{ri} \\ & \mathbf{E}_{on} \\ & \mathbf{t}_{d(off)} \\ & \mathbf{t}_{fi} \\ & \mathbf{E}_{off} \end{aligned}$ | Inductive load, $T_J = 125^{\circ}C$ $I_C = I_{C110} A, V_{GE} = 15 V$ $V_{CE} = 720 V, R_G = R_{off} = 5 \Omega$ Note 1                                                      | 20<br>22<br>0.5<br>3.8<br>360<br>330<br>5.75 | ns<br>ns<br>mJ<br>mJ<br>ns<br>ns     |
| R <sub>thJC</sub>                                                                                                                                                  | (TO-247)                                                                                                                                                                      | 0.25                                         | 0.42 K/W<br>K/W                      |

Note 1:  $E_{\rm on}$  measured with a DSEP 30-12A ultrafast diode clamp.

### Min. Recommended Footprint

(Dimensions in inches and mm)



# TO-247 AD Outline

| Dim.           | Millimeter |       | Inches |       |  |
|----------------|------------|-------|--------|-------|--|
|                | Min.       | Max.  | Min.   | Max.  |  |
| Α              | 4.7        | 5.3   | .185   | .209  |  |
| A <sub>1</sub> | 2.2        | 2.54  | .087   | .102  |  |
| A <sub>2</sub> | 2.2        | 2.6   | .059   | .098  |  |
| b              | 1.0        | 1.4   | .040   | .055  |  |
| b,             | 1.65       | 2.13  | .065   | .084  |  |
| b <sub>2</sub> | 2.87       | 3.12  | .113   | .123  |  |
| С              | .4         | .8    | .016   | .031  |  |
| D              | 20.80      | 21.46 | .819   | .845  |  |
| E              | 15.75      | 16.26 | .610   | .640  |  |
| е              | 5.20       | 5.72  | 0.205  | 0.225 |  |
| L              | 19.81      | 20.32 | .780   | .800  |  |
| L1             |            | 4.50  |        | .177  |  |
| ØP             | 3.55       | 3.65  | .140   | .144  |  |
| Q              | 5.89       | 6.40  | 0.232  | 0.252 |  |
| R              | 4.32       | 5.49  | .170   | .216  |  |
| S              | 6.15       | BSC   | 242    | BSC   |  |
| 1              |            |       |        |       |  |



| MYZ | INCHES   |          | MILLIMETERS |          |  |
|-----|----------|----------|-------------|----------|--|
| 21M | MIN      | MAX      | MIN         | MAX      |  |
| Α   | .193     | .201     | 4.90        | 5.10     |  |
| A1  | .106     | .114     | 2.70        | 2.90     |  |
| A2  | .001     | .010     | 0.02        | 0.25     |  |
| Ь   | .045     | .057     | 1.15        | 1.45     |  |
| b2  | .075     | .083     | 1.90        | 2.10     |  |
| С   | .016     | .026     | 0.40        | 0.65     |  |
| C2  | .057     | .063     | 1.45        | 1.60     |  |
| D   | .543     | .551     | 13.80       | 14.00    |  |
| D1  | .488     | .500     | 12.40       | 12.70    |  |
| Е   | .624     | .632     | 15.85       | 16.05    |  |
| E1  | .524     | .535     | 13.30       | 13.60    |  |
| е   | .215 BSC |          | 5.45 BSC    |          |  |
| Н   | .736     | .752     | 18.70       | 19.10    |  |
| L   | .094     | .106     | 2.40        | 2.70     |  |
| L1  | .047     | .055     | 1.20        | 1.40     |  |
| L2  | .039     | .045     | 1.00        | 1.15     |  |
| L3  | .010     | .010 BSC |             | 0.25 BSC |  |
| L4  | .150     | .161     | 3.80        | 30 4.10  |  |

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics



Fig. 2. Extended Output Characteristics
@ 25 °C



Fig. 3. Output Characteristics @ 125 °C



Fig. 4. Dependence of V<sub>CE(sat)</sub> on Temperature



Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter voltage



Fig. 6. Input Admittance





Fig. 7. Transconductance



Fig. 8. Gate Charge



Fig. 9. Capacitance



Fig. 10. Reverse-Bias Safe Operating Area



Fig. 11. Maximum Transient Thermal Resistance



Fig. 12. Dependence of Turn-off Energy Loss on Gate Resistance



Fig. 14. Dependence of Turn-off Energy Loss on Collector Current



Fig. 16. Dependence of Turn-off Energy Loss on Temperature



Fig. 13. Dependence of Turn-on Energy Loss on Gate Resistance



Fig. 15. Dependence of Turn-on Energy Loss on Collector Current



Fig. 17. Dependence of Turn-on Energy Loss on Temperature





Fig. 18. Dependence of Turn-off Switching Time on Gate Resistance



Fig. 20. Dependence of Turn-off Switching Time on Collector Current



Fig. 22. Dependence of Turn-off Switching Time on Temperature



Fig. 19. Dependence of Turn-on Switching Time on Gate Resistance



Fig. 21. Dependence of Turn-on Switching Time on Collector Current



Fig. 23. Dependence of Turn-on Switching Time on Temperature





# **ADVANCE TECHNICAL INFORMATION**

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated objective result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.