**	

***	·
* * * * *	

***	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
· 李安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	

* * * * *	(TM)
*	;

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Tabular output not generated. Fri Sep 18 13:51:23 1998; MasPar time 9.06 Seconds 664.722 Million cell updates/sec

Description:
Perfect Score:
Sequence: >US-08-765-588-8 (1-143) from US08765588.pep 1078

1 MSPLLRRLLLAALLQLAPAQ......CRPKKKDSAVKPDRCRKLRR 143

Scoring table: PAM 150 Gap 11

Searched: 140555 segs, 42109429 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

1:sp_fungi 2:sp_human 3:sp_invertebrate 4:sp_mammal 5:sp_mhc 6:sp_organelle 7:sp_phage 8:sp_plant 9:sp_bacteria 10:sp_rodent 11:sp_virus 12:sp_vertebrate 13:sp_unclassified

Statistics: Mean 40.352; Variance 65.917; scale 0.612

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	Reg
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Result No.
1023 6247 6207 395 337 337 337 337 337 337 337 337 337 1198 1198 1198 1198 1198 1198 1198 119	Score
84.6 34.6 34.6 34.6 34.6 34.6 36.6 36.6 3	Query Match
207 207 1148 1148 2169 2169 217 2189 358 358 358 358 358 358 358 358 358 358	Length
110 110 112 112 113 114 110 110 110 110 110 110 110 110 110	B .
Q16528 Q16528 Q15485 Q142571 Q142571 Q142572 Q91420 Q1420 Q91420 Q91420 Q91420 Q91434 Q91434 Q91435 Q91435 Q91435 Q91535	Ħ
VEGF RELATED FACTOR IS VASCULAR ENDOTHELIAL G PLACENTA GROWTH FACTOR VASCULAR ENDOTHELIAL G C-SIS PROTO-ONCOGENE (PLATEL) POLYPROTEIN PRECURSOR C-SIS ONCOGENE (PLATEL) POGF PROTEIN (FRAGMENT VASCULAR ENDOTHELIAL G GLYCINE DEHYDROGENASE GLUTAMATE DEHYDROGENASE GLUTAMATE DEHYDROGENASE GLUTAMATE DEHYDROGENASE	Description
1.25e-224 1.25e-122 1.25e-122 1.95e-67 2.00e-61 3.20e-61 1.06e-52 6.32e-40 3.07e-22 7.03e-22 7.03e-22 1.80e-16 3.14e-16 8.10e-16 8.10e-16 8.10e-16 1.37e-11 1.37e-11 1.37e-11 1.18e-06 1.71e-02 7.48e-02	Pred. No.

밁

1 MSPLLRRLLLAALLQLAPAQAPVSQPDAPGHQRKVVSWIDVYTRATCQPREVVVPLTVEL 60

******* (MT)

Release 3.1A John F. Collins, Biocomputing Research Unit. Copyright (c) 1993-1998 University of Edinburgh, U.K. Distribution rights by Oxford Molecular Ltd

Run on: MPsrch_pp protein - protein database search, using Smith-Waterman algorithm Fri Sep 18 13:50:48 1998; MasPar time 5.20 Seconds 689.290 Million cell updates/sec

Description: Perfect Score: >US-08-765-588-8 (1-143) from US08765588.pep 1078 1 MSPLLRRLLLAALLQLAPAQ......CRPKKKDSAVKPDRCRKLRR 143

Sequence:

Tabular output not generated.

Scoring table: PAM 150 Gap 11

Searched: 69111 segs, 25083644 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database: swiss-prot35. 1:swiss1

Statistics: Mean 42.257; Variance 63.671; scale 0.664

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	Resu
222118 222118	101
947 383 375 373 373 373 371 373 373 371 372 373 371 371 371 174 177 177 177 177 177 177 177 177 1	Score 1023
334.66 34.68 34.66 334.66 334.66 334.66 335.88 34.66 35.88 35.88 36.88 36.88 36.88 36.88 36.88	Query Match
1488 1146 2115 2115 1190 1190 1190 1190 1190 1190 1190 1	Length
	1 B
VEGE_SHEEP VEGE_RAT VEGE_MOUSE VEGE_HUMAN VEGE_HUMAN VEGE_CAVPO PLGE_HUMAN VEGE_COTUN VEGE_COTUN VEGE_COTUN VEGE_COTUN VEGE_COTUN VEGE_GOTUN VE	ID VEGB_HUMAN
VASCULAR ENDOTHELIAL G VASCULAR ENDOTHELIAL G PLACENTA GROWTH FACTOR VASCULAR ENDOTHELIAL G VASCULAR ENDOTHELIAL G	ν~ ; <u>μ</u>
2.76e 69 3.16e 67 1.03e 66 1.03e 66 1.03e 66 1.03e 66 1.16e 64 7.56e 69 1.182e 50 1.182e 50 1.182e 10 1.182e 11 1.182e 1	Pred. No. 3.01e-242

멍

1 MSPLLRRLLLAALLQLAPAQAPVSQPDAPGHQRKVVSWIDVYTRATCQPREVVVPLTVEL 60

											٠.										
45	44	43	42	41	40	39	æ	37	36	35	34	ω ω	3 2	ω H	30	29	28	27	26	25	24
83	83	& 3	83	83	83	83	83	83	84	84	85	86	86	87	88	90	91	91	157	163	164
7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.8	7.8	7.9	8.0	8.0	8.1	8.2	8. 3	8.4	. 8 . 4	14.6	15.1	15.2
1110	109	399	397	396	395	394	393	174	941	916	60	649	567	411	598	539	493	411	241	226	211
- بسو	_	_	μ	سر	ш	н	μ	<u>,</u>	-ب	۲	μ	<u>س</u> و	_	_	سا	μ	ш	<u>س</u>	μ.	μ	_
VGLM_INSV	PDM1_DROME	P2X1_RAT	OMPN_CHLTR	OMPA_CHLTR	OMPF_CHLTR	OMPB_CHLTR	OMPL_CHLTR	YY19_HUMAN	GCSP_MYCTU	SCRB_LIMPO	MT3_PICGL	YAY3_SCHPO	CCB2_HUMAN	TXOX MOUSE	CYSJ_SALTY	LI14_CAEEL	ACHE_HUMAN	DHE3_VITVI	PDGB_SHEEP	PDGA_XENLA	PDGA_HUMAN
M POLYPROTEIN PRECURSO	NUBBIN PROTEIN (TWAIN	P2X PURINOCEPTOR 1 (AT	MAJOR OUTER MEMBRANE P	MAJOR OUTER MEMBRANE P	MAJOR OUTER MEMBRANE P	OUTER	OUTER	HYPOTHETICAL Y-CHROMOS	PROBABLE GLYCINE DEHYD	BETA SCRUIN.	METALLOTHIONEIN-LIKE P	HYPOTHETICAL 74.5 KD P	DIHYDROPYRIDINE-SENSIT	PROTEIN-LYSINE 6-OXIDA	SULFITE REDUCTASE (NAD		ACETYLCHOLINE RECEPTOR	GLUTAMATE DEHYDROGENAS	PLATELET-DERIVED GROWT	PLATELET-DERIVED GROWT	
1.52e+00	1.52e+00	1.52e+00	1.52e+00	1.52e+00	1.52e+00	1.52e+00	1.52e+00	1.52e+00	1.07e+00	1.07e+00	7.51e-01	5.26e-01	5.26e-01	3.67e-01	2.55e-01	1.22e-01	8.40e-02	8.40e-02	1.54e-14	7.81e-16	4.74e-16

* * * * * * * * * * * * * * * * * * * *	
· 斯斯特斯特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特	[] (Aw)

Run on: MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Tabular output not generated. Fri Sep 18 13:49:30 1998; MasPar time 7.64 Seconds 684.018 Million cell updates/sec

Description: Title: Sequence: >US-08-765-588-8
(1-143) from US08765588.pep
1078
1 MSPLIRRLILAALLQLAPAQ.....CRPKKKDSAVKPDRCRKLRR 143

Scoring table: PAM 150 Gap 11 120441 segs, 36531193 residues

Post-processing: Minimum Match 0%
Listing first 45 summaries

pir56 1:pir1 2:pir2 3:pir3 4:pir4 5:nr13d Mean 40.311; Variance 76.368; scale 0.528

Statistics:

Database:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Score	Query Match	Length	8	Ħ	Description	Pred. No.
ப	947	87.8	188	2	JC4680	vascular endothelial	9.64e-177
N	947	87.8	207	N	3		. 64e-
ω	383	35.5	146	N	S57956		2.14e-55
4	375	34.8	120	N	A33787	vascular endothelial	9.54e-54
G	375	34.8	190	N	A35987	glioma-derived vascul	9.54e-54
đ	373	•	214	ຎ	A44881	vascular endothelial	2.46e-53
7	373	٠	232	Ŋ	A41551	vascular endothelial	2.46e-53
· œ	371	34.4	190	N	S52130	-	•
	371	34.4	. 190	N	B44881	vascular endothelial	•
10	365	33.9	190	N	B40080	vascular endothelial	1
: =	318	•	149	N	A41236	placental growth fact	
12	302		133	N	B49530	vascular endothelial	ω
13	275	25.5	158	N	A56125	placental growth fact	1.55e-33
14	264		128	N	151295	vascular endothelial	2.27e-31
	175		419	N	S69207	vascular endothelial	1.50e-14
16	174	16.1	148	N	D49530	16K vascular endothel	2.26e-14
17	174	16.1	225	N	S25097	platelet-derived grow	2.26e-14
. L	171	15.9	166	N	JN0248	platelet-derived grow	7.79e-14
1 <u>9</u>	171	15.9	198	N	JS0735	platelet-derived grow	7.79e-14
2 2	170	15.8	161	N	I38108	platelet-derived grow	1.17e-13
12	170	15.8	185	N	S58383	hypothetical protein	1.17e-13
22	170	15.8	226	H	SSAWAL		1.17e-13
23	.170	15.8	230	N	A55030	platelet-derived grow	1.17e-13

4.5	44	4.	4.	4.	4	ω	38	· w	3	· ω	ω	· Lu	ω	31	ω	Ņ	2	ν	20	Ń	
00							145				j										
ã		-	90				5 13										1	1	18	1	
8.2	8.2	ω.	ω.	8.4	8.4	8.4	3.5				4.5	4.9	5.1	5.1	•		5.2	5.2	5.6	5	
604	599	539	537	493	411	36	196	68	66	63	271	196	226	215	200	211	197	196	245	241	-
N	Ŋ	N	N	N	2	N	2	S	υı	U	N	N	N	N	N	ם	N	N	_	H	
A42044	A34231	A40581	B40581	S34775	S54797	A60706	A48851	1PDGA2	1PDGC2	1PDGB2	A25669	A37359	I51550	S08220	I51551	PFHUG1	S25096	B28964	TVCTSS	PFMSGB	
	sulfite reductase (NA	embryonic nuclear pro	embryonic nuclear pro	nicotinic acetylcholi	glutamate dehydrogena	vascular endothelial		Platelet-derived grow		Platelet-derived grow				platelet-derived grow		platelet-derived grow	THE CONTRACT STATES				
1.57e+00	1.57e+00	8.51e-01	8.51e-01	6.23e-01	6.23e-01	6.23e-01	2.64e-09	1.13e-10	1.13e-10	1.13e-10	3.41e-11	4.58e-12	2.04e-12	2.04e-12	2.04e-12	1.36e-12	1.36e-12	1.36e-12	2.66e-13	2.66e-13	F. F. G +-

	61 121 121
87.8%; Score 947; DB 2; Length 188; 87.2%; Pred. No. 9.54e-177; vative 10; Mismatches 8; Indels 0; Gag .OLARTOAPVSOFDGPSHOKKVVPMIDVYARATCOPREVVVPLSMEL.	Best Local Similarity Matches 123; Conses Db 1
vrf 19 137/2 #domain sig #product ve factor ve flength 188 #mm	#gene #map_position #introns #EATURE 1-21 22-188 SUMMARY
##molecule_type mkNA ##residues 1-188 ##label TOW ##cross-references GB:U43837; NID:g1314335; PID:g1314336 This factor is a mitogen, that is selective for endothelial cells, and belongs to a family of growth factor. This transcript is differentially spliced to produce two major isoforms, vascular endothelial growth factors 167 and VEGF 186.	##molecule ##residues ##cross re COMMENT This and dif end cenerics
Nordenskjoeld, M.; Weber, G.; Hayward, N. Biochem. Biophys. Res. Commun. (1996) 220:922-928 Characterization of the murine VEGF-related factor gene JC4680	#journal #title #accession
TO Sep-1997 JC4680 JC4679 Townson, S.; Lagercrantz, J.; Grimmond, S.; Silins, G.	ACCESSIONS REFERENCE #authors
P#449	RESULT 1 ENTRY TITLE ALTERNATE_NAMES ORGANISM DATE

.1A John F. Collins, Biocomputing Resea	e 3.1A John F. Collins, Blocomputing Researcy triples of Edinburgh, ght (c) 1993-1998 University of Edinburgh, ght (c) 1993-1998 University of Edinburgh Life in Frotein database search, using Smith-Fri Sep 18 13:53:16 1998; MasPar time 9.07	Post-processing: Minimum Match 0% Listing first 45 summaries	3.Database: a-pending 1:p9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:U85 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEWP 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9	Statistics: Mean 29.808; Variance 121.862; scale 0.245	Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.		Score Match Length DB ID Description Pred. N	1023 94.9 188 9 US- 1023 94.9 188 10 US- 1023 94.9 188 11 US- 1023 94.9 188 11 US- 1023 94.9 188 10 US- 1024 Sequence 57, Applicati 6	1023 94.9 188 9 US Sequence 11, Applicati 6 1023 94.9 188 9 US Sequence 11, Applicati 6 1023 94.9 188 9 US Sequence 15, Applicati 6 1023 94.9 207 10 US Sequence 15, Applicati 6 1023 94.9 207 9 US Sequence 15, Applicati 6 1023 94.9 207 10 US Sequence 15 Policati 6 1023 94.9 207 10 US Sequence 15 Policati 6 1023 94.9 207 10 US Sequence 15 Policati 6 1023 94.9 207 10 US Sequence 15 Policati 6 1023 94.9 207 10 US Sequence 15 Policati 6 1023 94.9 207 10 US Sequence 15 Policati 6 1023 94.9 207 10 US Sequence 15 Polic	1023 94.9 207 9 US- 1026 12 US- 1027 950 88.1 188 12 US- 1028 947 87.8 188 19 US- 1029 948 948 95	947 87.8 188 9 US- Sequence 5, Applicatio 4.4
Distribution rights by Oxford Molecular Ltd rch_pp protein - protein database search, using Smith-Waterman on: Fri Sep 18 13:53:16 1998; MasPar time 9.07 Seconds 498.946 Million cell upd			Scoring table: PAM 150 Gap 11 Searched: 288199 seqs, 31643258 Post-processing: Minimum Match 0% Listing first 45 summa	Scoring table: PAM 150 Gap 11 288199 seqs, 31643258 residues Post-processing: Minimum Match 0% Listing first 45 summaries Listing first 45 summaries 1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:N	Scoring table: PAM 150 Gap 11 Gap 11 PAM 150 Post-processing: Minimum Match 0% Listing first 45 summaries Listing first 45 summaries Lip 2:050 3:07 4:080 5:081 6:082 7:083 8:084 10:086 11:087 12:088 13:089 14:090 15:091 16:NEWU7 19:NEWU8 20:NEWU9 16:NEWU7 19:NEWU8 20:NEWU9 16:NEWU7 19:NEWU8 20:NEWU9 16:NEWU9 15:091 16:NEWU9 15:091 16:NEWU9 15:091 16:NEWU9 17:NEWU8 20:NEWU9 20:NEWU9 16:NEWU9 17:NEWU8 20:NEWU9 16:NEWU9 18:NEWU7 19:NEWU8 20:NEWU9 16:NEWU9	Post-processing: Minimum Match 08 Listing first 45 summaries **Database: a-pending 1:09 2:006 3:07 4:080 5:081 6:082 7:083 8:084 9:10:086 11:087 12:088 13:089 14:090 15:091 16:NEW 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9 Statistics: Mean 29.808; Variance 121.862; scale 0.245 Pred. No. is the number of results predicted by chance to have score greater than or equal to the score of the result being and is derived by analysis of the total score distribution.	Scoring table: PAM 150 Gap 11 Post-processing: Minimum Match 08 Listing first 45 summaries 1:p9 2:U50 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEW 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9 Statistics: Mean 29.808; Variance 121.862; scale 0.245 Pred. No. is the number of results predicted by chance to have score greater than or equal to the score of the result being and is derived by analysis of the total score distribution. SUMMARIES	Scoring table: PAM 150 Gap 11 288199 seqs, 31643258 residues Post-processing: Minimum Match 0% Listing first 45 summaries 1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:U85 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEWD 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9 Statistics: Mean 29:808; Variance 121.862; scale 0.245 Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printe and is derived by analysis of the total score distribution. SUMMARIES Result Ouery No. Score Match Length DB ID Description Pred.	Scoring table: PAM 150 Gap 11 288199 seqs, 31643258 residues Post-processing: Minimum Match 0% Listing first 45 summaries 1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:U8. 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEWP 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9 Statistics: Mean 29.808; Variance 121.862; scale 0.245 Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being properties and is derived by analysis of the total score distribution. SUMMARIES Result 1 1023 94.9 188 9 US-1 Sequence 11, Applicati 6 1023 94.9 188 10 US-1 Sequence 11 1023 94.9 188 10	Scoring table: pam 150 Gap 11 288199 seqs, 31643258 residues Post-processing: Minimum Match 0%	Scoring table: pAM 150
Distribution rights by Oxford Molecular Ltd rch_pp protein - protein database search, using Smith-Waterman on: Fri Sep 18 13:53:16 1998; MasPar time 9.07 Seconds ular output not generated. 18: 195-08-765-588-8 fect Score: 1078 1078 1078 1078 1078 1078 1078 1078	Tabular output not generated. Title: >US-08-765-588-8 Description: (1-143) from US08765588.pep Perfect Score: 1078 Sequence: 1 MSPLLRRLLLAALLQLAPAQCRPKKKDSAVI		Post-processing: Minimum Match 0% Listing first 45 summarie	Post-processing: Minimum Match 08 Listing first 45 summaries i.Database: a-pending 1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:N	Post-processing: Minimum Match 0% Listing first 45 summaries i.Database: a-pending 1: 199 2: U60 3: U7 4: U80 5: U81 6: U82 7: U83 8: U84 10: U86 11: U87 12: U88 13: U89 14: U90 15: U91 16: N 17: NEWU6 18: NEWU7 19: NEWU8 20: NEWU9 Statistics: Mean 29.808; Variance 121.862; scale 0.245	Post-processing: Minimum Match 08 Listing first 45 summaries **Database: a-pending	Post-processing: Minimum Match 08 Listing first 45 summaries Listing first 45 summaries 1:p9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9: 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEW 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9 Statistics: Mean 29:808; Variance 121:862; scale 0.245 Pred. No. is the number of results predicted by chance to hav score greater than or equal to the score of the result being and is derived by analysis of the total score distribution. SUMMARIES	Post-processing: Minimum Match 0% Listing first 45 summaries i.Database: a-pending 1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:U85 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEWP 17:NEWU5 18:NEWU7 19:NEWU8 20:NEWU9 Statistics: Mean 29.808; Variance 121.862; scale 0.245 Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printe and is derived by analysis of the total score distribution. SUMMARIES Result Query No. Score Match Length DB ID Description Pred.	Post-processing: Minimum Match 08 Listing first 45 summaries Listing first 45 summaries 1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:U8: 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEWP 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9 Statistics: Mean 29.808; Variance 121.862; scale 0.245 Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being properties of the total score distribution. SUMMARIES Result Ouery Match Length DB ID Description Properties of the score of the score of the result being properties of the total score distribution. SUMMARIES Result Ouery Match Length DB ID Description Properties of Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 10 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 10 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 10 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 10 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 10 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 10 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 10 1023 94.9 188 10 US-10 Sequence 11, Applicati 6 10 1023 94.9 188 10 US-10 Sequence 11 10 10 10 10 10 10 10 10 10 10 10 10	## Post-processing: Minimum Match 08 Listing first 45 summaries Lipatabase:	Description Description

##888888888888888888888888888888888888	D X X X X X X X X X X X X X X X X X X X	
Sec GI	22 9 23 9 24 9 25 9 26 9 27 9 28 8 29 8 31 8 31 8 31 8 31 8 31 8 31 8 31 8 31	
equence 11, A Sequence 11, GENERAL INFC APPLICANT: APPLICANT: APPLICANT: APPLICANT: TITLE OF I TITLE OF I NUMBER OF CORRESPOND ADDRESSE STREET: CITY: W STATE: COMPUTER H MEDIUM I COMPUTER OF COMPUTER OPERATING I FILING I FILING I FILING I APPLICAN APPLICAN FILING I APPLICAN APPLICAN FILING I FILING I APPLICAN FILING I FILING I APPLICAN FILING I FILING I FILING I FILING I FILING I FILING I APPLICAT FILING I FILING	44444000000000000000000000000000000000	
11, Ap 11, A 12, A	1, 0 887 887 887 888 883 883 883 883 883 883	
ence 11, Application U uence 11, Application uence 11, Application MERAL INFORMATION: APPLICANT: ERIKSSON, APPLICANT: ALITALO, K APPLICANT: OLOFSSON, APPLICANT: OLOFSSON, APPLICANT: ALITALO, K APPLICANT: DIVENTION: D NUMBER OF SEQUENCES: CORRESPONDENCE ADDRESS ADDRESSE: Evenson, STREET: 1200 G Stre CITY: Washington STATE: DC COMPUTER READABLE FORM MEDIUM TYPE: F10PPY COMPUTER: IBM PC CO OPERATING SYSTEM: PC OPERATING SYSTEM: PS SOFTWARE: PATENTION NUMBER: FILING DATE: O6-UN APPLICATION NUMBER: FILING DATE: 01-MAR APPLICATION NUMBER: FILING DATE: 01-MAR APPLICATION NUMBER: FILING DATE: 01-MAR APPLICATION NUMBER: FILING DATE: 101-MAR APPLICATION NUMBER: FILING DATE: 101-MAR APPLICATION NUMBER: FILING DATE: 01-MAR APPLICATION NUMBER: 01-MAR APPLICATION NUMBER	p 11 107 207 207 207 207 207 207 207 207 207 2	
ion U SON, SON, SON, SON, IO, K N N N N N N N N N N N N	O O O O O O O O O O O O O O O O O O O	
/0856 S/085 If	US- US- US- US- US- US- US- US- US- US-	
	DOGSA PRATI	1
63A 063A 063A CENDOTHELIAL GENTEREFOR EDOS DOS #1.0, Version 69,063A 69,063A 69,427 97,651		
GROWTH L GROWTH L GROWTH L GROWTH	ence 5, ence 2, ence 2, ence 2, ence 2, ence 9, ence 9, ence 9, ence 7, ence 7	
	Application	
FACTOR-B	licatio	
AND	3.999eeee	
	77777777777777777777777777777777777777	

*	
· 不是不是,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就会会是我们的,我们就会会会会会会会会会会会会	
* *	
* * *	
* * *	
*	
* * * * *	
*	
*	
* * * *	<u> </u>
*	
*	
*	5/1L==_I
*	
*	
*	
*	<u></u> ,'
*	
:	
*	(MT)
•	

Run on: MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Tabular output not generated. Fr1 Sep 18 13:52:52 1998; MasPar time 2.12 Seconds 475.687 Million cell updates/sec

Description:
Perfect Score:
Sequence: Scoring table: PAM 150 Gap 11 >US-08-765-588-8
(1-143) from US08765588.pep
1078
1 MSPLLRRLLLAALLQLAPAQ......CRPKKKDSAVKPDRCRKLRR 143

Title:

Searched: 77021 seqs, 7058996 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

a-issued 1:5_COMB 2:PCT9_COMB 3:backfiles1

Database:

Statistics: Mean 28.064; Variance 116.805; scale 0.240

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

11000000000000000000000000000000000000	Result No.
1023 947 897 709 709 400 378 377 377 377 377 375 375 375 375 375 375	Score
12333344448555571283322344448555571283322344448555577	Query Match I
188 138 139 102 121 121 121 123 1165 1165 1160 1160 1160 1160 1160 1160	Length D
	B
US-08-469- US-08-469- US-08-469- US-08-469- US-08-469- 5219739-20- 5194596-19- 5219739-19- 5219739-19- 5219739-19- 5219739-19- 5219739-19- 5219739-17- 5240848-71- 5240848-71- 5219739-17- 5219739-17- 5219739-17- 5219739-17- 5219739-17- 5219739-17- 5219739-17- 5219739-17- 5219739-17- 5219739-17- 5219739-17- US-08-469- US-08-469- US-08-469-	ID
Sequence 11, Application Sequence 5, Application Sequence 9, Application Sequence 7, Application Sequence 7, Application Sequence 7, Application Sequence 2, Application Sequence 10, Application Patent No. 5219739. Patent No. 5	Description
1.69e-91 9.26e-84 1.12e-78 8.12e-29 8.12e-29 8.12e-29 9.16e-26 1.46e-26 1.46e-26 1.46e-26 2.28e-26 2.28e-26 3.58e-26 3.58e-26 3.58e-26 4.01e-24 4.01e-24 9.82e-24	Pred. No.

	45	44 .	43	42	41	40	39	38	37	36	S	34	ω ω	32	31	30	29	28	27	26	25	24	
	164	164	165	168	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	172	172	
	•		•	•		15.8		•														16.0	
	196	125	196	241	282	241	241	241	241	241	241	226	220	160	120	109	109	109	109	109	109	109	
	2	N	<u>س</u>	H	۳		N	ω	ω	w	ω	ω	ω	Н	ω	N	N	ب	μ	ω	щ	μ	
f .	PCT-US96-0	PCT-US92-0	US-08-469-	US-08-469-	US-08-445-	US-08-387-	З	5219739-15	5175255-8	5175255-2	5194596-15	5498600-2	5175255-4	US-08-094-	5428135-2	PCT-US91-0	PCT-US93-0	us-08-094-	.US-08-094-	5498600-3	US-08-094-	US-08-094-	
	8, Appl	e 4, 7	e 12, Appl	13,	Sequence 1, Applicatio		ce 9,	. 521973	Un	Patent No. 5175255.	Patent No. 5194596.	Patent No. 5498600.	Patent No. 5175255.	Sequence 1, Applicatio	Patent No. 5428135.	Sequence 18, Applicati	,,	Sequence 2, Applicatio	Sequence 4, Applicatio	Patent No. 5498600.	rence 5,	Sequence 3, Applicatio	
	.24e-	.24e-	.83e	. 82e	.49e	9e	.49e	.49e	.49e	. 49	.49e	.49e	6.49e-07	6.49e-07	.49e	6.49e-07	. 49	.49e-	.49	6.49e-07	4.28e-07	4.28e-07	
	on	u	UI	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		•

8888888888888888888	3888888888888	***************************************	RESULT
APPLICATION NUMBER: US/08/469,427A FILING DATE: 06-JUN-1995 CLASSIFICATION: 435 PRIOR APPLICATION DATA: APPLICATION NUMBER: US 08/397,651 FILING DATE: 01-MAR-1995 ATTORNEY/AGENT INFORMATION: NAME: Evans, Joseph D REGISTRATION NUMBER: 26,269 REFERENCE/DOCKET NUMBER: 41979cp2 TELECOMMUNICATION INFORMATION: TELEPHONE: (202) 628-8800 TELEPHONE: (202) 628-8800 TELEPAX: (202) 628-8844 INFORMATION FOR SEQ ID NO: 11: SEQUENCE CHARACTERISTICS: LENGTH: 188 amino acids	NUMBER OF ENVENTION: DAA CODING THEREFOR NUMBER OF SEQUENCES: 17 CORRESPONDENCE ADDRESS: ADDRESSEE: Evenson, McKeown, Edwards & Lenahan STREET: 1200 G Street, N.W., Suite 700 CITY: Washington STATE: DC STATE: DC COMPUTER READABLE FORM: MEDIUM TYPE: Floppy disk COMPUTER: IBM PC compatible OPERATING SYSTEM: PC-DOS/MS-DOS SOFTWARE: Patentin Release #1.0, Version #1.25 CURRENT APPLICATION DATA:	ication US/08469427A lication US/08469427A l	US-08-469-427A-11 STANDARD: DRT: 188 AA

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Tabular Run on: output not generated Fri Sep 18 13:47:38 1998; MasPar time 5.75 Seconds 402.740 Million cell upd updates/sec

Scoring table:

Description: Perfect Scor

Score:

(1-143) from US08765588.pep 1078

>US-08-765-588-8

Sequence: PAM 150 Gap 11 MSPLLRRLLLAALLQLAPAQ......CRPKKKDSAVKPDRCRKLRR 143

Searched: 131922 seqs, 16180660 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database: geneseq32

i:part1 2:part2 3:part3 4:part4 5:part5 6:part6 7
8:part8 9:part9 10:part10 11:part11 12:part12 13:1
14:part14 15:part15 16:part16 17:part17 18:part18 19:part19 20:part20 21:part21 22:part22 23:part23 24:part24 25:part25 26:part26 27:part27 28:part28 13:part13 7:part7

Statistics: Mean 30.138; Variance 121.083; scale 0.249

Pred. re greater than or equal is derived by analysis is the number of results predicted by chance to have a ater than or equal to the score of the result being printed, rived by analysis of the total score distribution.

SUMMARIES

splice variants (W00726-28) of the human vascular endothelial growth factor-like polypeptide SOM175 (see also W00725) are products of cDNA clones (see also T33611-13) respectively lacking exon 6, exons 6+7, and exon 4 of the SOM175 gene (see also T33610). They show at least 1 of the properties of SOM175 including the ability to induce proliferation of vascular endothelial cells, to interact with efficient of the some seed of the some cell survival and/or an increase in intracellular levels of alkaline phosphatase. Recombinant SOM175 proteins can be used to induce astroglial proliferation and to promote neural survival and/or proliferation.

English

Query Match Best Local S Matches 14

h 100.0%; Similarity 100.0%; 143; Conservative

Score 1078; DB 19; Pred. No. 1.31e-99; 0; Mismatches 0;

Length 143; Indels

0

Gaps

0

143 AA;

~9.30 ~4.5 1 مور

37.6 146 5 R27354 Sequence 37.6 146 4 R22348 Alternati 37.5 148 18 R94072 VEGF121 37.5 384 18 R94073 SAP(Gly4S 37.5 389 18 W00587 SAP(Gly4S 37.5 524 18 W00587 SAP(Gly4S 37.2 147 18 R94071 VEGF121 37.2 147 16 R94071 VEGF121 37.1 121 7 R42607 Human vas 37.1 121 7 R42607 Human vas 37.1 121 3 R11385 Human vas 37.1 121 3 R11385 Human vas 36.0 421 18 W00595 SAP-AlaMe 36.0 421 18 W00595 SAP-AlaMe 36.0 588 18 W00592 SAP-AlaMe 36.0 588 18 W00593 SAP-AlaMe 36.0 588 18 R94072 SAP(Gly4S) 35.3 428 18 R94072 SAP(Gly4S) 35.3 598 18 R94072 SAP(Gly4S) 35.1 191 18 R94002 Human vas 35.1 191 18 R94002 Human vas 35.1 191 2 R08002 Human vas																											
37.6 146 5 R27354 Sequence of vascular 37.6 146 4 R22348 Alternative form of 37.5 148 18 R94032 VEGF121 Cys+2. 37.5 384 18 R94071 SAP(Gly4Ser)YEGF121. 37.5 399 18 W00587 SAP(Gly4Ser)YEGF121. 37.5 524 18 W00594 SAP(Gly4Ser)YEGF121. 37.2 147 18 R94073 SAP(Gly4Ser)YEGF121. 37.2 147 18 R94071 VEGF121. 37.1 121 R94001 VEGF121 37.1 121 R1385 Human vascular endot 37.1 121 R1385 VEGF121 Cys+4. 36.2 595 18 W00595 SAP-Gly5er-VEGF165 G 36.0 421 18 W00595 SAP-AlaMet-VEGF165 G 36.0 588 18 W00592 SAP-AlaMet-VEGF165 G 36.0 588 18 W00592 SAP-AlaMet-VEGF165 G 36.0 580 18 W00593 SAP-AlaMet-VEGF165 G 35.3 192 18 R94040 VEGF165 Cys+2. 35.3 428 18 W00593 SAP-AlaMet-VEGF165 G 35.3 598 18 R94072 SAP(Gly4Ser)VEGF165 G 35.3 598 18 R94074 SAP(Gly4Ser)VEGF165 G 35.3 598 18 R94074 SAP(Gly4Ser)VEGF165 G 35.1 191 18 R94002 VEGF165 SAP(Gly4Ser)VEGF165 G 35.1 191 18 R94002 VEGF165 MARCHARL ENGOLUMN PASCULAR endoth 11a1 SAP CHARL ENGOLUMN PASCULAR endoth 135.1 191 18 R94002 VEGF165 SAP(Gly4Ser)VEGF165 G 35.1 191 18 R94002 VEGF165 SAP(Gly4Ser)VEGF165 G	5	44	3	42	41	40	30	8	37	36	35	34	3	32	<u>3</u>	30	29	28	27	26	25	24	23	22	21	20	19
.6 146 5 R27354 Sequence of vascular 146 4 R22348 Alternative form of 5 148 18 R94032 VEGF121 Cys+2. .5 148 18 R94071 SAP(Gly4Ser)YEGF121. .5 399 18 W00587 SAP(Gly4Ser)YEGF121. .5 514 18 R94071 SAP(Gly4Ser)YEGF121. .5 524 18 W00594 VEGF121 .5 147 18 R94001 VEGF121. .1 121 3 R11385 Human VASCULAR endott 121 7 R42607 Human VEGF-121. .1 121 3 R11385 VVEGF121 Cys+4. .1 121 3 R11385 VVEGF121 Cys+4. .2 147 18 R9403595 SAP-GlySer-VEGF165 G .0 421 18 W00591 SAP-AlaMet-VEGF165 G .0 594 18 W00592 SAP-AlaMet-VEGF165 G .0 594 18 W00593 SAP-AlaMet-VEGF165 G .0 594 18 R94040 SAP-AlaMet-VEGF165 G .1 191 18 R94074 SAP(Gly4Ser)YEGF165 G .3 428 18 R94074 SAP(Gly4Ser)YEGF165 G .3 428 18 W00586 SAP(Gly4Ser)YEGF165 G .3 428 18 W00596 SAP(Gly4Ser)YEGF165 G .3 428 18 R94074 SAP(Gly4Ser)YEGF165 G .3 428	378	378	378	378	378	381	381	381	381	381	388	388	388	388	390	395	400	400	401	401	404	404	404	404	404	405	405
5 R27354 Sequence of vascular 4 R22348 Alternative form of 18 R94072 VEGF121 Cys+2. 18 R94071 SAP(Gly4Ser)/VEGF121. 18 W00587 SAP(Gly4Ser)/VEGF121. 18 W00587 SAP(Gly4Ser)/VEGF121. 18 W00594 SAP(Gly4Ser)/VEGF121. 18 R94001 VEGF121 18 R94001 VEGF121 19 R94001 Human vascular endot 7 R42607 Human vascular endot 7 R42607 Human vegralar endot 7 R42607 SAP-GlySer-VEGF165(G 18 W00594 SAP-GlySer-VEGF165(G 18 W00594 SAP-AlaMet-VEGF165(G 18 W00592 SAP-AlaMet-VEGF165(G 18 W00592 SAP-AlaMet-VEGF165(G 18 W00593 SAP-AlaMet-VEGF165(G 18 R94074 SAP(Gly4Ser)/VEGF165(G 18 R94075 SAP(Gly4Ser)/VEGF165(G 18 R94074 SAP(•		•	•	٠		•	•	•	•	•	•	•	•	٠	•	•	•					•		
R27354 Sequence of vascular R22348 Alternative form of R94032 VEGF121 Cys+2. R94071 SAP(Gly4Ser)YEGF121. R94071 SAP(Gly4Ser)YEGF121. R94073 SAP(Gly4Ser)YEGF121. R94001 SAP(Gly4Ser)ZYEGF121. R94001 Human Vascular endot R42607 Human VEGF-121. R11385 Human VEGF-121. R11385 SAP-GlySer-VEGF165(GW00595 SAP-AlaMet-VEGF165. W00594 SAP-AlaMet-VEGF165. W00592 SAP-AlaMet-VEGF165. W00593 SAP-AlaMet-VEGF165. W00593 SAP-AlaMet-VEGF165. R94040 VEGF165 Cys+2. R94072 SAP(Gly4Ser)YEGF165. R94040 SAP(Gly4Ser)YEGF165. R94074 SAP(Gly4Ser)YEGF165. R94075 SAP(Gly4Ser)YEGF165. R94076 SAP(Gly4Ser)YEGF165. R94077 SAP(Gly4Ser)YEGF165. R94078 SAP(Gly4Ser)YEGF165. R94079 VEGF165. R94002 Human Vascular endot VEGF CyF2 flusion pro																											
Sequence of vascular Alternative form of VEGF121 Cys+2. SAP(Gly4Ser)VEGF121 SAP(Gly4Ser)VEGF121 SAP(Gly4Ser)VEGF121 SAP(Gly4Ser)VEGF121 SAP(Gly4Ser)VEGF121 VEGF121 VEGF121 VEGF121 Cys+4. Human VEGF-121. Human VEGF-121. Human VEGF-121. SAP-GlySer-VEGF165(GSAP-AlaMet-VEGF165-GSAP-AlaMet-VEGF165-GSAP-AlaMet-VEGF165(GSAP-AlaMet-VEGF165-GSAP-AlaMet-VEGF165-SAP(Gly4Ser)VEGF165-SAP(Gly	27	7	N	18	27	18	18	8	18	18	18	18	18	18	18	18	ω	7	16	8	18	18	18	18	18	4	5
Sequence of vascular Alternative form of v VEGF121 Cys+2. SAP(Gly4Ser)VEGF121. SAP(Gly4Ser)VEGF121. SAP(Gly4Ser)VEGF121(G SAP(Gly4Ser)VEGF121(G SAP(Gly4Ser)VEGF121(G SAP(Gly4Ser)VEGF121(G SAP(Gly4Ser)VEGF121). Human vascular endoth Human vEGF121 Cys+4. SAP-GlySer-VEGF165(Gl SAP-AlaMet-VEGF165-Gl SAP-AlaMet-VEGF165-Gl SAP-AlaMet-VEGF165(Gl SAP-Gly4Ser)VEGF165(SAP(Gly4Ser)VEGF165(Gl SAP(Gly4Ser)VEGF165(Gl SAP(Gl)4Ser)VEGF165(Gl SAP(Gl)4Se	W38233	201076	R08002	R94002	W38242	W00596	R94074	W00585	R94072	R94040	W00593	W00591	W00592	W00584	W00595	R94031	R11385	R42607	R91075	R94001	W00594	R94073	W00587	R94071	ឩ	34	35
	fusic	172 CO 11 72 T	vascular	•	Vascular endothelial	SAP(Gly4Ser)2VEGF165(SAP(Gly4Ser)VEGF165(G	SAP(Gly4Ser)4VEGF165.	SAP(Gly4Ser)VEGF165.	•	AlaMet-VEGF165	AlaMet-VEGF165	AlaMet-VEGF165-	SAP-AlaMet-VEGF165.	SAP-GlySer-VEGF165(Gl	•	vascular	VEGF-121.	vascular	VEGF121.	SAP(Gly4Ser)2VEGF121(SAP(Gly4Ser)VEGF121(G	SAP(Gly4Ser)4VEGF121.	EGF12	VEGF121 Cys+2.	orm of	ဝှင်

ALIGNMENTS

Claim 13; Page 46; 113pp; New growth useful for WPI; 96-412774/41. Grimmond S, Vascular endothelial growth Vascular endothelial growth astroglial proliferation. survival N-PSDB; T33612 Weber G; 20-NOV-1995; AU-006647 22-DEC-1995; AU-007274 WO9627007-A1. peptide W00727 standard; Protein; 143 AA. W00727; iomo sapiens. 30-NOV-1996 AMRA-) AMRAD factor related to vascular endothelial growth factor inducing astroglial proliferation and promoting neuronal Hayward NK, (first entry) OPERATIONS PTY LTD. Hayward NK, Larsson C, Location/Qualifiers /label= Sig_peptide factor-like protein SOM175-effector; VEGF; SOM175-effector; Nordenskjold

*	
水石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石石	

***	(MT)

... MPsrch_pp protein - protein database search, using Smith-Waterman algorithm Fri Sep 18 13:42:57 1998; MasPar time 10.92 Seconds 724.739 Million cell updates/sec

Tabular output not generated.

Title: >US-08-765-588-6 (1-188) from US08765588.pep 1458

Sequence: Description: Perfect Score: 1 MSPLLRRLLLAALLQLAPAQ.......CQGRGLELNPDTCRCRKLRR 188

Scoring table: PAM 150 Gap 11

Searched: 140555 segs, 42109429 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

1:sp_fungi 2:sp_human 3:sp_invertebrate 4:sp_mammal 5:sp_mhc 6:sp_organelle 7:sp_phage 8:sp_plant 9:sp_bacteria 10:sp_rodent 11:sp_virus 12:sp_vertebrate 13:sp_unclassified

Statistics: Mean 41.227; Variance 70.997; scale 0.581

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

11000000000000000000000000000000000000	Result
1014 6131 6131 6137 497 365 330 278 268 268 198 198 1187 1187 1188 1189 1189 1189	Score
69.5 41.9 34.1 225.0 25.0 113.6 113.6 113.1 113.7 113.	Query Match
207 207 116 1194 232 216 216 217 158 358 358 358 358 318 318 318 318 318 318 318 318 318 31	Length
93 100 100 100 100 100 100 100 100 100 10	DB
Q16528 Q42572 Q142572 Q142572 Q142571 Q142571 Q142571 Q91420 Q142571 Q91420 Q14233 Q63434 Q97946 Q97953 Q63740 Q13574 Q23613 Q63740 Q35	Ħ
VEGF RELATED FACTOR IS VASCULAR ENDOTHELIAL G POLYPROTEIN (FRAGMENT VASCULAR ENDOTHELIAL G SEIS PROTEIN (FRAGMENT VASCULAR ENDOTHELIAL G FAS ANTIGEN PRECURSOR SPID PRECURSOR (FRAGME GLYCINE DEHYDROGENASE	Description
1.124e-210 1.80e-131 1.80e-131 9.00e-87 6.76e-58 1.52e-56 1.52e-56 1.62e-48 2.67e-37 3.85e-35 1.78e-20 2.82e-18 6.276e-16 6.276e-16 6.276e-16 7.82e-18 1.52e-10 1.52e-10 1.52e-10 1.15e-07 1.31e-02 2.69e-02 2.69e-02	Pred. No.

뭥

1 MSPLLRRLLLAALLQLAPAQAPVSQPDAPGHQRKVVSWIDVYTRATCQPREVVVPLTVEL 60

ů	44	43	42	41	40	39	38	37	36	35	34	ω ω	32	31	30	29	28	27	26	25	24	23	22	21
œ	8 5	85	85	86	86	86	86	86	86	86	87	88	87	87	89	90	91	91	92	93	93	94	94	95
	, UI			5.9	5.9	5.9	5.9	5.9	5.9	5.9	6.0	6.0	6. 0	6.0	6.1	6.2	6.2	6.2	6.3	6.4	6.4	6.4	6.4	6.5
T269	412	411	411	1704	919	722	605	470	394	105	2796	1260	411	112	571	240	235	139	68	411	391	187	180	292
	00	œ	œ	ω	4	H	N	ω	ø	φ	ø	N	ω	œ	ø	w	w	w	11	ω	ω	ω	ω	9
Q13045	P93541	004872	Q43260	094446	Q28659	P89466	000304	Q22919	P96447	Q60232	Q48926	015047	004937	Q40726	Q51763	Q23780	094441	000830	Q84667	Q38946	Q26258	Q23782	Q99072	P74446
FLII (HOMOLOG OF D. ME	AMATE DEHYDROGEN	GLUTAMATE DEHYDROGENAS	GLUTAMATE DEHYDROGENAS	220 KDA SILK PROTEIN.	FERTILIN ALPHA SUBUNIT	TEGUMENT PROTEIN.	VOLTAGE-DEPENDENT CALC	COSMID C37C3.	EXPA6.	INCF PLASMID REPFIB RE	FATTY ACID SYNTHASE.	KIAA0339.	NADH GLUTAMATE DEHYDRO	DNA BINDING PROTEIN (F	IS1162 DNA.	BRC GENE PRODUCT (FRAG	REPETITIVE DNA IN BALB	(FRAGMENT).	GENOME, PARTIAL SEQUEN	z	н	BRC GENE (3'END) IN BA	GIANT SECRETORY PROTEI	HYPOTHETICAL 32.3 KD P
3.06e+00		3.06e+00	3.06e+00	2.22e+00	2.22e+00	2.22e+00	2.22e+00	2.22e+00		2.22e+00	1.61e+00	1.16e+00	1.61e+00	.616	8.33e-01	5.98e-01	4.27e-01	4.27e-01	. 056	2.17e-01	.176	. 54e		1.09e-01

X W O	SOTT	2	R R R R R	8 R R R R R	# # # # # # # # # # # # # # # # # # #	R 2000 B	e a a a a a a	RES
Query Match 69.5%; Score 1014; DB 2; Length 207; Best Local Similarity 100.0%; Pred. No. 4.54e-210; Matches 136; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	SIGNAL 1 21 POTENTIAL. SIGNAL 2 207 VEGF RELATED FACTOR ISOFORM VRF186. SEQUENCE 207 AA; 21602 MW; 16BDF6F1 CRC32;	# 5 2 F	SEQUENCE FROM N.A. TISSUE-FIBROSARCOMA HT-1080; MEDLINE; 96325041. OLOFSSON B., PAJUSOLA K., VON EULER G., CHILOV D., ALITALO K., ERIKSSON U.:		SEQUENCE FROM N.A. SEQUENCE FROM N.A. TISSUE-BRAIN; GRIMMOND S., LAGERCRANTZ J., DRINKWATER C., SILINS G., TOWNSON S., POLLOCK P., GOTLEY D., CARSON E., RAKAR S., NORDENSKJOLD M., WARD L., HAYWARD N., WEBER G.; GENOME RES. 6:122-129(1996). [2] SEQUENCE FROM N.A.	VRF OR VEGF-B. HOMO SADIENS (HUMAN). EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA; EUTHERIA; PRIMATES. [1]	PRELIMINARY; PRT; 207 AA. Q16528; PRELIMINARY; PRT; 207 AA. Q16528; Q1FEMBLREL. 01, CREATED) Q1-NOV-1996 (TREMBLREL. 01, LAST SEQUENCE UPDATE) Q1-VAN-1998 (TREMBLREL. 05, LAST ANNOTATION UPDATE) VEGF RELATED FACTOR ISOFORM VRF186 PRECURSOR.	RESULT.

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Fri Sep 18 13:41:41 1998; MasPar time 6.16 Seconds 765.523 Million cell updates/sec Tabular output not generated.

Title: >US-08-765-588-6
Description: (1-188) from US08765588.pep
Perfect Score: 1458
Sequence: 1 MSPILERILLAALLQLAPAQ......COGRGLELNPDTCRCRKLRR 188
Scoring table: PAM 150
Gap 11

Searched: 69111 seqs, 25083644 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database: swiss-prot35
1:swiss1

Statistics: Mean 43.185; Variance 67.718; scale 0.638

Pred No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

And the second s	
22221111111111111111111111111111111111	Result
1458 1317 513 513 513 498 498 369 369 369 371 177 177 177 177 177 177 177 177 177	Score
100 35 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	Query Match Length
1188 1190 1190 1190 1190 1190 1190 1190	
	8
VEGE_MOUSE VEGE_RAT VEGE_PAG VEGE_BOVIN VEGE_CAVPO VEGE_HOMAN VEGE_MOUSE PLGE_HOMAN VEGE_MOUSE PLGE_HOMAN VEGE_MOUSE PLGE_HOMAN VEGE_MOUSE PLGE_HOMAN VEGE_HOMAN VEGE_HOMAN VEGE_HOMAN VEGE_HOMAN VEGE_HOMAN PEGE_RAT VEGE_HOMAN PEGE_HOMAN PEGE_HOMAN PEGE_HOMAN PEGE_HOMAN PEGE_HOMAN PEGE_HOMAN PEGE_HOMAN PEGE_HOMAN PEGE_RAT VEGE_HOMAN PEGE_RAT VEGE_HOMAN PEGE_RAT VEGE_RAT VEGE_HOMAN PEGE_RAT VEGE_RAT	Ħ
VASCULAR ENDOTHELIAL G VASCULAR ENDOTHELIAL G PLATELET - DERIVED GROWT VASCULAR ENDOTHELIAL G PLATELET - DERIVED G PLATELET - DERIV	Description
0.00e+00 0.00e+00 1.45e 98 4.68e 98 4.57e 95 9.43e 95 5.87e 63 1.82e 62 1.82e	Pred. No.

밁

1 MSPLLRRLLLAALLQLAPAQAPVSQPDAPGHQRKVVSWIDVYTRATCQPREVVVPLTVEL 60

Matches

188; Conservative

0; Mismatches

0;

Indels

0; Gaps

0,

٠																					
45	44	43	42	41	40	39	8	37	36	35	34	33 	32	31	30	29	28	27	26	25	1
88	88	88	89	89	91	90	90	91	91	90	93	94	93	96	96	99	99	107	157	163	-
6.0	6.0	6.0	6.1	6.1	6.2	6.2	6.2	6.2	6.2	6.2	6.4	6.4	6.4	6.6	6.6	o. 8	6.8	7.3	10.8	11.2	11.6
598	504	50	323	50	1060	1004	539	493	411	381	1380	769	503	327	100	4393	51	3707	241	226	
_		μ	ш	μ,	Н	۲	٢	۳	1	μ,	سر	ب	ب	ب	Н	Н	ب	÷	j	۳	۲
CYSJ_SALTY	MIG1_YEAST	HSP1_MOUSE	FASA_BOVIN	HSP1_PONPY	UAY_EMENI	EPA8_MOUSE	LI14_CAEEL	ACHE_HUMAN	DHE3_VITVI	SELP_HUMAN	ZMS1_YEAST	ITB2_HUMAN	VE2_HPV21	FASA_MOUSE	HSP2_ALOSE	PGBM_HUMAN	HSP1_ALOSE	PGBM_MOUSE	PDGB_SHEEP	PDGA_XENLA	1000 000
$\overline{}$	REGULATORY PROTEIN MIG	SPERM PROTAMINE P1 (CY	FASL RECEPTOR PRECURSO	SPERM PROTAMINE P1 (CY	POSITIVE REGULATOR OF	EPHRIN TYPE-A RECEPTOR	LIN-14 PROTEIN.	ACETYLCHOLINE RECEPTOR	GLUTAMATE DEHYDROGENAS	SELENOPROTEIN P PRECUR	ZINC FINGER PROTEIN ZM	CELL SURFACE ADHESION	REGULATORY PROTEIN E2.	FASL RECEPTOR PRECURSO	SPERM HISTONE P2 PRECU	BASEMENT MEMBRANE-SPEC	SPERM PROTAMINE P1.	BASEMENT MEMBRANE-SPEC	PLATELET-DERIVED GROWT	PLATELET-DERIVED GROWT	PERSONAL CRAFARD GROWT
6.01e-01	6.01e-01	6.01e-01	4.25e-01	4.25e-01	2.10e-01	2.99e-01	2.99e-01	2.10e-01	2.10e-01	2.99e-01	1.03e-01	7.17e-02	1.03e-01	٠	3.45e-02	1.13e-02	1.13e-02	5.14e-04	1.61e-13	9.36e-15	O.OLG-LO

	•	
RESULT	1	
8 B B	VEGB_HUMAN STANDARD; PRT; 188 AA. P49765;	
Ę	1996 (REL. 34,	
13	(REL. 34,	
B	(120, 2) (120)	
GN	VEGFB OR VRF.	
8	HOMO SAPIENS (HUMAN).	
8	EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;	
8	HERIA; PRIMATES.	
7 2		
₹ ₹	MEDLINE: 96197355.	
\$	OLOFSSON B., PAJUSOLA K., KAIPAINEN A., VON EULER G., JOUKOV V.,	
R	TERSSON R.F., ALITALO K., ERIKSSON	
25	581(1996).	
₽ :	SEQUENCE FROM N.A.	
32	GRIMMOND S., LAGERCRANTZ J., DRINKWATER C., SILINS G., TOWNSON S.,	
2 52	S., NORDENSKJOLD M.,	
2 5	GENOME RES. 6:122-129(1996).	
ឧ	-1- FUNCTION: GROWTH FACTOR FOR ENDOTHELIAL CELLS. BINDS HEPARIN.	
음		
i R		
88		
3 8	EXTRACELLULAR MATRIX UNLESS RELEASED BY HEPARIN.	
3 6	-i- TISSUE SPECIFICITY: EXPRESSED IN ALL TISSUES EXCEPT LIVER.	
3 6	D IN HEART, SKELETAL MUSCLE	
¥ ₹	EMBL: U48801: G1234823: -	
×	; G1216398;	
æ	398;	
×	PS00249; PDGF;	
8	N; GROWTH FACTOR; SIGNA	
H	1 21	
3 🗎	22 188 V	
Ř	SEQUENCE 100 AA; 21201 MW; 35EA69U4 CRC32;	
Que	Match 100.0%;	
Best	Local Similarity 100.0%; Pred. No. 0.00e+00;	

'	
// ''	
[[
(TM)	

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Fri Sep 18 13:40:03 1998; MasPar time 9.36 Seconds 734.106 Million cell updates/sec

Tabular output not generated.

Description:
Perfect Score:
Sequence: Title: >US-08-765-588-6 (1-188) from US08765588.pep 1458

1 MSPLLRRLLLAALLQLAPAQ......CQGRGLELNPDTCRCRKLRR 188

Scoring table: PAM 150 Gap 11

Searched: 120441 segs, 36531193 residues

Post-processing: Minimum Match 0%
Listing first 45 summaries

Database:

pir56 1:pir1 2:pir2 3:pir3 4:pir4 5:nrl3d

Statistics: Mean 41.161; Variance 80.141; scale 0.514

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

110 110 110 110 110 110 110 110 110 110	Result
1317 938 513 511 509 509 509 369 369 369 369 369 369 177 177 177 177 177	Score
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Query Match Length
188 207 190 190 190 190 146 214 1120 145 214 123 146 123 146 124 125 149 149 149 149 149 149 149 149 149 149	ength DB
2 JC4680 3C4680 2 A3C4679 2 A35987 2 S52130 2 B44881 2 B44881 2 S57956 2 A41551 2 A3787 2 A41236 2 A41236 2 A41236 2 A519530 2 A519530	B
vascular endothelial glioma-derived vascular endothelial placental growth fact vascular endothelial placental growth fact vascular endothelial platelet-derived grow vascular endothelial platelet-derived grow pbgF-related transfor platelet-derived grow	Description
5.71e-251 1.92e-80 1.92e-79 3.30e-78 3.30e-78 5.30e-78 5.30e-78 5.30e-51 1.33e-50 1.33e-50 5.22e-49 5.22e-49 5.22e-36 6.22e-36 7.4.84e-36 7.566e-35 7.566e-35 8.36e-14 9.383e-14 9.383e-14 9.383e-14	Pred. No.

24 171 11.7 166 2 JN0248 platelet-derived grow 4.21e-13 25 170 11.7 185 2 S58383 platelet-derived grow 4.21e-13 26 171 11.7 198 2 JS0735 platelet-derived grow 4.21e-13 27 169 11.6 211 1 PFHUG1 platelet-derived grow 9.31e-13 28 165 11.3 215 2 S08220 platelet-derived grow 9.31e-13 30 164 11.2 196 2 B28964 platelet-derived grow 6.69e-12 31 163 11.2 200 2 I51551 platelet-derived grow 9.91e-12 31 163 11.2 271 2 R25696 platelet-derived grow 9.91e-12 32 163 11.2 271 2 R25696 platelet-derived grow 9.91e-12 33 163 11.2 271 2 R25696 platelet-derived grow 9.91e-12 34 161 11.0 196 2 R37359 platelet-derived grow 9.91e-12 35 10.5 66 5 IPDGR2 platelet-derived grow 4.80e-10 36 153 10.5 68 5 IPDGR2 platelet-derived grow 4.80e-10 37 153 10.5 68 5 IPDGR2 platelet-derived grow 4.80e-10 38 145 9.9 196 2 R48851 platelet-derived grow 4.80e-10 39 107 7.3 3707 2 S18252 platelet-derived grow 4.80e-10 39 107 7.3 3707 2 S18252 platelet-derived grow 4.80e-10 41 99 6.8 4391 2 R38066 perlecan precursor 5.33e-02 41 99 6.8 4391 2 R38066 perlecan precursor 1.01e-01 42 99 6.8 4391 2 R38066 perlecan precursor 1.01e-01 43 96 6.6 327 2 R46484 apoptosts-mediating m 2.58e-01 44 96 6.6 327 2 S76418 hypothetical protein 3.31e-01																•				
11.7 166 2 JN0248 platelet-derived grow 4 11.7 185 2 S58383 platelet-derived grow 9 11.6 211 1 PFHUG1 platelet-derived grow 9 11.6 211 1 PFHUG1 platelet-derived grow 9 11.2 197 2 S25096 platelet-derived grow 9 11.2 197 2 S25096 platelet-derived grow 9 11.2 200 2 151551 platelet-derived grow 9 11.2 271 2 A25669 pDGF related transfor 9 11.0 196 2 A37359 platelet-derived grow 9 11.0 196 2 A37359 platelet-derived grow 9 11.0 196 2 A37359 platelet-derived grow 9 10.5 68 5 1PDGB2 platelet-derived grow 9 10.5 68 5 1PDGC2 platelet-derived grow 10.5 68 5 1PDGC2 platelet-derived g	44	42	41	40	မှ	ა 8	37	36	ω 5	34	33	32	31	30	29	28	27	26	25	24
7 166 2 JNO248 platelet-derived grow 4 7 198 2 SS9383 platelet-derived grow 4 7 198 2 JS0735 platelet-derived grow 9 6 211 1 PFHUG1 platelet-derived grow 9 1196 2 BS28964 platelet-derived grow 9 12 196 2 SS5096 platelet-derived grow 9 12 200 2 IS1551 platelet-derived grow 9 12 215 2 SS5509 platelet-derived grow 9 12 215 2 SS5509 platelet-derived grow 9 12 216 2 IS1550 platelet-derived grow 9 13 371 2 AJS569 platelet-derived grow 9 13 196 2 AJS59 platelet-derived grow 4 15 66 5 1PDGC2 platelet-derived grow 4 15 68 5 1PDGC2 platelet-derived grow 4 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	96 95	96	99	101	107	145	153	153	153	161	163	163	163	164	164	165	169	171	170	171
2 JN0248 platelet-derived grow 4 JS0735 platelet-derived grow 9 PFHUG1 platelet-derived grow 9 PFHUG1 platelet-derived grow 9 B28964 platelet-derived grow 9 S25096 platelet-derived grow 9 S25096 platelet-derived grow 9 PJS550 platelet-derived grow	თ თ : თ თ :	თ თ თ თ	6.8	6.9	7.3	9.9	10.5	10.5	10.5	11.0	11.2	11.2	11.2	11.2	11.2	11.3		11.7	11.7	11.7
JN0248 JN0248 SS838 hypothetical protein JS0735 platelet-derived grow PFHUG1 platelet-derived grow B28964 platelet-derived grow S25096 platelet-derived grow S25096 platelet-derived grow S25096 platelet-derived grow JED550 platelet-derived grow A25669 platelet-derived grow A25669 PDGF-related transfor A37359 platelet-derived grow IPDGC2 platelet-derived grow IPDGC2 platelet-derived grow IPDGC2 platelet-derived grow A48851 platelet-derived grow A48851 platelet-derived grow A48851 platelet-derived grow A48851 platelet-derived grow A648851 perlecan precursor - S3338 protamine P2 - red ho A46484 hypothetical protein S76418 hypothetical protein	327 292	4391 100	749	324	3707	196	68	66	63	196	271	226	200	197	196	215	211	198	185	166
platelet-derived grow hypothetical protein 6 platelet-derived grow 9 platelet-derived grow 4 platelet-derived grow 6 platelet-derived grow 6 platelet-derived grow 7 platelet-derived grow 6 platelet-derived grow 6 platelet-derived grow 7 platelet-derived grow 6 platelet-derived grow 6 platelet-derived grow 7 platelet-derived grow 9 platelet-	N N	N N	N	N	N	N	σı	ហ	σı	N	N	N	N	N	N	N	Н	Ŋ	N	N
rived grow 4 rived grow 9 rived grow 9 rived grow 6 rived grow 6 rived grow 6 rived grow 9 rived grow 9 rived grow 9 rived grow 4 rived grow 1 rived grow 2 rived grow 1 rived grow 1 rived grow 2 rived grow 2 rived grow 3 rived grow 1 rived grow 2 rived grow 2 rived grow 3 rived grow 3 rived grow 3 rived grow 3 rived grow 4 rived grow 5 rived grow 6 rived grow 5 rived grow 6 rived grow 5 rived grow 6 rived grow 7 rived grow 9 rived	A46484 S76418	A38096 S33338	A45294	JC2395	S18252	A48851	1PDGA2	1PDGC2	1PDGB2	A37359	A25669	I51550	151551	S25096	B28964	S08220	PFHUG1	JS0735	S58383	JN0248
4. 21e-13 4. 21e-13 4. 21e-13 4. 52e-12 6. 69e-12 9. 91e-12 9. 91e-12 9. 91e-12 9. 91e-12 9. 91e-12 9. 91e-12 1. 10e-10 1. 10e-10 1. 10e-10 1. 10e-01 1. 10e-01	apoptosis-mediating m	sor	g	Fas antigen - rat	sulfate						PDGF-related transfor							platelet-derived grow	pro	
	2.58e-0	1.01e- 2.58e-	1.01e-	5.33e-(7.58e-C	1.01e-0	4.80e-1	4.80e-1	4.80e-1		9.91e-1	9.91e-1	9.91e-1	6.69e-1	6.69e-1	4.52e-1	9.31e-1	.21e-		4.21e-1

TITLE ALTERNATE_NAMES VRF 167 protein ACCESSIONS
TILE TERNATE_NAMES GANISM TE TESSIONS GESSIONS FERENCE #authors # journal ##fesion ##molecul ##residue: ##residue: ##residue: ##nolecul ###nolecul ####nolecul ####nolecul ####nolecul ####nolecul ####nolecul ####nolecul ####nolecul #####nolecul #####nolecul #####nolecul ######nolecul ####################################
TERNATE NAMES GANISM TE TESSIONS CESSIONS FERENCE #authors #journal #title #accession ##messidue: ##messidue: ##meross-rnis an NETICS #journal ##notons 1:21 1:21 22-188 ATURE 1-21 22-188 ATURE 1-21 1-21 1-21 1-21 1-11 1 MSPLLI
CESSIONS FERENCE #authors #journal #title #accession ##residue ##residue ##residue ##ross-r MMENT This an di: en NETICS #map.position #littons ATURE 1-21 1-21 22-188 Best Local Si Best Local Si Matches 165 Matches 165 Matches 165 Map.Li 1 MSPLLI 61 MGNVVI
CESSIONS CESSIONS ##CESSIONS ##JOURNAL ##ITITULE ##CCESSION ##FROIGCULE ##CCESSION ##FROIGCULE ##CCESSION ##FROIGCULE ##CCESSION ##TOSICE ##COUNT This #GANT ALL ##ITICS ##COUNT THIS ###COUNT THIS ###COUNT THIS ####################################
CESSIONS FERENCE #authors # title # title # accession # #molecul # #molecul # #residue # #residue # #residue # #residue # #residue # # residue # # residue # # residue # in trons # gene # accession di: en NETICS # gene # map_position # introns ATURE 1-21 1-21 1-22-188 MMARY MMARY MMARY MMARY MMARY MMARY MMARY MMARY MMARY 1 MSPLLI 1 MSPLLI
authors # authors # title # title # tresidues # # residues # res
#authors #journal #title #accession #molecul ##molecul ##residue ##residue ##residue ##residue ##residue ##residue ##residue ##noss-rnis an di di NETICS #journ #introns ATURE 1-21 1-22-188 ATURE 1-21 22-188 Best Local Si HILLI 1 MSPLLI 1 MSPLLI 1 MSPLLI 1 MSPLLI
#journal #title #title #accession ##molecul ##residue ##residue ##cross-ra MMENT This an di: ##cross-ra napposition #forms #Journal # 1-21 1-22-188 Best Local Si Hatches 165 MATCHES 165 MATCHES 165 MATCHES 165 ANSPLLI 1 MSPLLI 61 MGNVVI
#title #title #accession ##residue #inis en di di en NETICS #gene #map_position #introns ATURE 1-21 1-21 1-21 1-2-188 MMARY MMARY MMARY MMARY MMARY MMARY MMARY MMARY MMARY 1 MSPLLI 1 MSPLLI 2 MSPLLI 1 MSPLLI
#title #accession #ccession ##molecul ##residue ##residu
#accession #molecul #residue #residue #residue #fresidue
##moleculi ##residue: ##residue: ##cross-re This and di: di: en MNETICS #gene #gene #map_position #introns ATURE 1-21 22-188 22-188 MMARY 1 MSPLLI 1 MSPLLI 1 MSPLLI 1 MSPLLI 1 MSPLLI 1 MSPLLI 1 MSPLLI
##residue ##cross-ri mment finis ain
##CTOSS-IT MMENT This an di di men NETICS #gene #map_position #introns ATURE 1-21 2-188 22-188 MMARY Query Match Best Local Si Best Local Si Matches 165 MATCHES 1
MMENT This and di- di- di- en METICS #gene #introns ATURE 1-21 1-21 22-188 MMARY Query Match Best Local Si Best Local Si Matches 165, MSPLLI 1 MSPLLI 1 MSPLLI 1 MSPLLI
Addition and distance and dista
NETICS #gene #map_posit #introns ATURE 1-21 22-188 MMARY Query Match Best Local Best Local I MSP
NETICS #gene #map_posit #introns ATURE 1-21 22-188 MMARY Query Match Best Local Best Local I MSP 1 1 MSP
#gene vrf #map_position 19 #introns 137/2 ATURE 1-21 22-188 22-188 #leng Query Match Best Local Similarit Matches 165; Cons
#INAP_DOSITION 19 #INTONS 137/2 ATURE 1-21 1-21 22-188 #leng MMARY #leng Query Match Best Local Similarit Matches 165; Cons
LICHUS 13//2 1-21 22-188 22-188 WMARY #leng Query Match Best Local Similarit Matches 165; Cons 1 MSPLLRELLLVA 1 MSPLLRELLLVA 61 MGNVVKOLVPSC
1-21 1-21 1-21 22-188 22-188 Query Match Best Local Similarit Matches 165; Cons
22-188 22-188 #leng Query Match Best Local Similarit Best Local Similarit Hatches 155; Cons
MMARY #leng Query Match Best Local Similarit Matches 165; Cons 1 MSPLLRELLLVA
MMARY Query Ma Best Loc Matches 1 1
Query Ma Best Loc Matches 1
Matches 1 1
51 L L
61 L
51
•
Qy 61 MGTVAKQLVPSCVTVQRCGGCCPDDGLECVPTGQHQVRMQILMIRYPSSQLGEMSLEEHS
Db 121 QCECRPKKKESAVKPDSPRILCPPCTQRRQRPDPRTCRCRCRRRFLHCQGRGLELNPDT
QY 121 QCECRPKKDSAVKPDSPRPLCPRCTQHHQRPDPRTCRCRCRRRSFLRCQGRGLELNPDT

* * *		***
* * * *		****
****		***
* * *		***
****		***
·安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安徽安安安安		5.在外面的情况的情况的情况的情况的情况的情况的情况的情况的情况的情况的情况的情况的情况的
* * * *	[[- -	***
* * * * *		* * * * *
*		***
****	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	***
* * * *	[]	**
***	[].	***
* * * *		***
****		***
*****	(MT)	***
¥	;	÷

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Title: Tabular output not generated. >US-08-765-588-6 Fri Sep 18 13:45:20 1998; MasPar time 10.60 Seconds 561.427 Million cell updates/sec

Scoring table: Sequence: Description: Perfect Score: PAM 150 Gap 11 1458 (1-188) from US08765588.pep 1 MSPLLRRLLLAALLQLAPAQ.......CQGRGLELNPDTCRCRKLRR 188

Searched: 288199 seqs, 31643258 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:U85 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEWP 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9

Statistics: Mean 30.883; Variance 128.491; scale 0.240

and is derived Pred. No. 1s the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, derived by analysis of the total score distribution.

SUMMARIES

		1
	.	بار الا
22111111111111111111111111111111111111	-ω _ν μ	Result
1458 1458 1458 1458 1458 1320 1320 1317 1317 1317 1317 1317 1317 1317 131	1458	Score
85.000000000000000000000000000000000000	1000.0	Query
1955 15 15 15 15 15 15 15 15 15 15 15 15 1	188 188	Query Match Length
	10	B
	-80 -80 -80 -80	븅
Sequence	Sequence Sequence Sequence	Description
16 Appl 11 Appl 11 Appl 11 Appl 11 Appl 11 Appl 11 Appl 12 Appl 13 Appl 15 Appl 15 Appl 15 Appl 16 Appl 17 Appl 17 Appl 17 Appl 17 Appl	57, Appli 11, Appli	9
Applicati Applicati Applicati Applicati Applicatio	plicati plicati plicati	
2.57e-134 2.57e-134 2.57e-134 2.57e-134 2.57e-134 3.46e-120 7.01e-120 7.01e-120 7.01e-120 7.01e-120 7.01e-120 7.01e-120 7.01e-120 5.19e-112 5.19e-112 5.19e-112	2.57e-134 2.57e-134 2.57e-134	Pred. No.

	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	
	936	936	936	936	936	946	946	946	946	996	1014	1014	1014	1014	1014	1056	1073	1093	1112	1133	1162	1188	1240	1240	
,	64.2	•	٠	64.2	•	•	•	•																	
				207 9															152 12						
	0 US-			9 US-			8 US-	2 US-	4 US-	2 US-	9 US-			0 US-		2 US-	2 US-					2 US-	8 US-		
i.	Ğ	-			4	-	Ţ		Ť	7	Ţ	-							_	_			7	_	
Í	4	7	7	-	ļ		,	+	1	ī	-	-	1	Ī	ļ	ì	ļ	-	-	7		-	Ţ	Ţ	
	Sequence	Sequence	 Sequence 	 Sequence 	 Sequence 	Sequence	 Sequence 	- Sequence	 Sequence 	•															
•	13,	13,	13,	13,	13	2	'n	'n	'n	ρ	15,	15,	15,	15,	15,	13,	12,	11,	10	9	8	34,	7,	7,	
•	13,	13,	13,		13		'n	'n	'n	ρ	15,	15,	15,		15,	13,	12,		10		8	34,	7,		

ALIGNMENTS

XXXXXX US-08-795-430-57 STANDARD; PRT; 188 ₿

Sequence 57, Application US/08795430

Sequence 57, Application US/08795430 GENERAL INFORMATION APPLICANT: Alitalo, Kari
APPLICANT: Joukov, Vladimir
TITLE OF INVENTION: Vascular Endothelial Growth Factor C (VEGF-C)
TITLE OF INVENTION: Protein and Gene, Mutants Thereof, and Uses Thereof
NUMBER OF SEQUENCES: 57 CORRESPONDENCE ADDRESS:

STREET: DDRESSEE: 6300 Sears Tower, Marshall, O'Toole, Gerstein, Murray & Borun 00 Sears Tower, 233 South Wacker Drive

COUNTRY: CITY: Chicago STATE: Illinois

RY: United States of America 60606-6402

COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: Patentin Release #1.0, Version #1.30
CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/795,430

FILING DATE:

CLASSIFICATION: 435
PRIOR APPLICATION DATA:
APPLICATION NUMBER: PCT/FI96/00427
FILING DATE: 01-AUG-1996
PRIOR APPLICATION DATA:
APPLICATION DATA:
APPLICATION UMBER: 08/671,573
FILING DATE: 28-JUN-1996
PRIOR APPLICATION DATA:
PRIOR APPLICATION DATA:

APPLICATION NUMBER: 08/6 FILING DATE: 14-FEB-1996 PRIOR APPLICATION DATA: 08/601,132

APPLICATION NUMBER: 08/585,895 FILING DATE: 12-JAN-1996 RIOR APPLICATION DATA:

****		*
***		*
****		* * * * * *
****		***
****		***
***	<u></u> '	**
***		***
***		*
****	ZZZLZZZ	*
· 在建设设施的,我们的,我们的,我们的,我们的,我们的,我们的,我们的,我们的,我们的,我们		清洁清洁的清洁清洁的清洁的话的话的话的话的话的话的话的话的话的话的话的话的话,我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
***		*
***		***
****	(MI)	***
-		•

43

Release 3.1A John F. Collins, Biocomputing Research Unit. Copyright (c) 1993-1998 University of Edinburgh, U.K. Distribution rights by Oxford Molecular Ltd

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Tabular output not generated. Run on: Fr1 Sep 18 13:37:39 1998; MasPar time 6.87 Seconds 442.549 Million cell updates/sec

Description: Perfect Score: Sequence: Scoring table: Title: PAM 150 Gap 11 >US-08-765-588-6 (1-188) from US08765588.pep 1458 1 MSPLLRRLLLAALLQLAPAQ......CQGRGLELNPDTCRCRKLRR 188

Searched: 131922 seqs, 16180660 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

a-geneseq32
1:part1 2:part2 3:part3 4:part4 5:part5 6:part6 7:part7
8:part8 9:part9 10:part10 11:part11 12:part12 13:part13
14:part14 15:part15 16:part16 17:part17 18:part18
19:part19 20:part20 21:part21 22:part22 23:part23
24:part24 25:part25 26:part26 27:part27 28:part28
29:part29

Statistics: Mean 31.228; Variance 126.442; scale 0.247

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Res	Result	Score	554		₽ ₽	ID	g jule	Pred. No.
	24	1458 1458	100.0	188 188	19 21	W00726 W04829	Vascular endothelial Fibrosarcoma vascular	2.81e-138 2.81e-138
	w	1317	90.3	188	21	W04826	Heart vascular endoth	1.89e-123
	4	1307		188	19	W00864		2.12e-122
	υı	1240	85.0	195	21	W04827	Heart vascular endoth	2.29e-115
	σ	1023	70.2	143	19	W00727	~	1.20e-92
	7	1014	69.5	207	21	W04831	Vascular endothelial	1.04e-91
		1014		207	19	W00725	Vascular endothelial	1.04e-91
	9	946	64.9	221	23	W07611	Human vascular endoth	1.29e-84
	10	938	64.3	207	21	W04830	Vascular endothelial	8.77e-84
	11	928	63.6	207	19	W00863	Murine VRF186.	9.65e-83
	12	897	61.5	133	21	W04828	Vascular endothelial	1.63e-79
	13	749	51.4	101	19	₩00728	Vascular endothelial	3.65e-64
	14	709	48.6	102	21	W04824	Vascular endothelial	4.94e-60
	15	530	36.4	595	18	W00595	SAP-GlySer-VEGF165(Gl	1.13e-41
	16	528	36.2	421	18	W00584	SAP-AlaMet-VEGF165.	1.80e-41
	17	528	36.2	588	18	W00592	SAP-AlaMet-VEGF165-Gl	1.80e-41
	18	528	36.2	594	18	W00591	SAP-Alamet-VEGF165(Gl	1.80e-41
			•			,		

Query Match Best Local S Matches 181

h 100.0%; Similarity 100.0%; 188; Conservative

Score 1458; DB 19; Length 188; Pred. No. 2.81e-138; 0; Mismatches 0; Indels 0;

0;

Gaps

0;

20 521 35.7 192 18 R94040 VEGF165 Cys+2. 21 521 35.7 428 18 R94072 SAP(Gly4Ser)/VEGF165. 22 521 35.7 598 18 R94074 SAP(Gly4Ser)/VEGF165. 23 521 35.7 598 18 R94074 SAP(Gly4Ser)/VEGF165(G SAP(Gly4Ser))/EGF165(G SAP(Gly4Ser))/EGF165																										
35.7 192 18 R94040 VEGF165 Cys+2. 35.7 428 18 R94072 SAP(Gly4Ser) VEGF 35.7 443 18 W00595 SAP(Gly4Ser) VVEGF 35.7 598 18 R94074 SAP(Gly4Ser) VVEGF 35.7 612 18 W00596 SAP(Gly4Ser) VVEGF 35.5 191 27 W38242 VASCULAR endothe. 35.5 191 19 W00724 VASCULAR endothe. 35.5 191 18 R94002 Human vascular endothe. 35.5 191 18 R94002 Human vascular endothe. 35.5 191 16 R91076 Human vascular endothe. 35.5 191 17 W38235 VEGF/CPG2 fusion 35.5 191 18 R94002 VEGF/CPG2 fusion 35.5 191 18 R94003 VEGF/CPG2 fusion 35.5 191 18 R94039 VEGF/CPG2 fusion 35.2 190 5 R27351 Sequence of vascular Endothe. 35.2 190 4 R22347 Rat Vascular Endothe. 35.2 190 5 R27352 Sequence of vascular Sequence of vascular endothe. 36.6 165 25 W31091 Vascular endothe. 36.6 165 25 W31091 Vascular endothe. 36.6 165 25 W31091 Vascular endothe. 36.5 190 2 R08001 Bovine vascular endothe. 36.6 165 25 W31091 Bovine vascular endothe. 36.6 165 27 R08001 Bovine vascular endothe.	45	44	43	42	41	40	39	а 8	37	36	35	34	ω	32	31	30	29	28	27	26	25	24	23	22	21	20
7 192 18 R94040 VEGF165 Cys+2. 7 428 18 W905785 SAP(G1y4Ser) VEGF17 VEGF18 18 R94074 SAP(G1y4Ser) VEGF17 VEGF18 18 R94074 SAP(G1y4Ser) VEGF18 18 R94074 SAP(G1y4Ser) VEGF18 18 R94072 VASCULAR endothelement of the second of the	503	505	504	504	506	507	512	513	513	513	513	513	517	517	518	518	518	518	518	518	517	521	521	521	521	521
18 R94040 VEGF165 Cys+2. 18 R94072 SAP(Gly4Ser) VEGF18 W00585 SAP(Gly4Ser) VEGF18 R94074 SAP(Gly4Ser) VEGF18 W00596 SAP(Gly4Ser) VEGF18 W00596 SAP(Gly4Ser) VEGF18 W00596 SAP(Gly4Ser) VEGF18 R94072 Vascular endotheleman v	٠	٠	٠																	Ç	5	ū	S	5	ū	ū
R94040 VEGF165 Cys+2. R94072 SAP(Gly4Ser)VEGF W00585 SAP(Gly4Ser)VEGF W00596 SAP(Gly4Ser)VEGF R94074 SAP(Gly4Ser)VEGF R94072 SAP(Gly4Ser)VEGF R94072 VAScular endothe R94002 VAScular endothe R94002 VEGF165. R98002 Human Vascular en R91076 Human vascular en W00583 VEGF/CFG2 fusion W38237 VEGF/CFG2 fusion W38237 VEGF/CFG2 fusion R27350 Sequence of vascu R27351 Sequence of vascu R27351 Sequence of vascu R27352 Sequence of vascu R27353 Sequence of vascu R27354 Sequence of vascu R27355 Sequence of vascu R27356 Sequence of vascu R27357 Sequence of vascu R27358 Sequence of vascu R27359 VEGF/CFG2 fusion R27350 Sequence of vascu R27351 Sequence of vascu R27352 Sequence of vascu R27354 Vascular endothel W31086 Vascular endothel W31086 Vascular endothel W31087 Vascular endothel R08001 Human vascular en															۱	ш						_	ш	щ	Н	ш
Cys+2. Ser)VEGF:									R0812						_							-		-		-
	Human vascular endoth	Bovine vascular endot				endothel	VEGF165 Cys+4.		Mammalian glioma-deri	Vascular	Sequence of vascular	of vascu	fusion	fusion	VEGF165-AlaMet-SAP.			VEGF165.			Human VEGF-165.	SAP(Gly4Ser)2VEGF165(SAP(Gly4Ser)VEGF165(G	SAP(Gly4Ser)4VEGF165.	165	VEGF165 Cys+2.

8888	38	38	ဂ	8 8	3 8	ဌ	S.	9 1	1 P	DR	尿	PI	ΡI	PA	PR	PR	PR	ΡF	g	PN	FT	ΕŢ	ĦΉ	So	ΧW	X	DE	Dī	AC	ID W	
Recombinant SOM175 proteins can be used to induce astrogilal proliferation and to promote neural survival and/or proliferation. Sequence 188 AA;	and/or an increase in intracellular levels of alkaline phosphatase.	proliferation of vascular endothelial cells, to interact with	least 1 of the properties of SOM175 including the ability to induce	6+7, and exon 4 of the SOM175 gene (see also T33610) They show at	factor-like polypeptide SOM175 (see also W00725) are products of	Splice variants (W00726-28) of the human vascular endothelial growt	Claim 12: Page 42-43: 113mm: English	userur for inducing astroglial prollieration and promoting neuronal		N-PSDB; T33611.	WPI: 96-412774/41.		Hayward NK,	$\boldsymbol{\vdash}$	••		_	22-FEB-1996; AU0094.	06-SEP-1996.			peptide 121	Key Location/Qualifiers	Homo sapiens.			Vascular endothelial growth factor-like protein SOM175-e6.	30-NOV-1996 (first entry)		W00726 standard: Protein: 188 AA	

****	<u></u>
*****	<u> </u>

***	(ME)

*

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Tabular output not generated. Fr1 Sep 18 13:44:55 1998; MasPar time 2.47 Seconds 537.274 Million cell updates/sec

Maitle: Sequence: Description: Perfect Score: Scoring table: PAM 150 Gap 11 1 MSPLLRRLLLAALLQLAPAQ......CQGRGLELNPDTCRCRKLRR 188 >US-08-765-588-6 (1-188) from US08765588.pep 1458

Searched: 77021 seqs, 7058996 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database: a-issued 1:5_COMB 2:PCT9_COMB 3:backfiles1

Statistics: Mean 29.152; Variance 121.909; scale 0.239

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

NUMBER OF SEQUENCES:

23	22	21	20	19	18	17	16	15	14	13	12	11	10		æ	7	0	G	4	ω	ນ	Ļ	Result
296	361	361	371	372	372	377	383	383	400	486	492	492	492	505	518	517	517	709	897	1240	1317	1458	Score
20.3	24.8	24.8	25.4	25.5	25.5	25.9	26.3	26.3	27.4	33.3	33.7	33.7	33.7	34.6	35.5	35.5	35.5	48.6	61.5	85.0	. 90.3	100.0	Query Match
149	120	120	215	215	214	231	121	121	55	189	164	164	164	190	191	165	165	102	133	195	188	188	Query Match Length
ب	ω	ω	w	ω	ω	N	ω	ω	-	μ	w	ω	ω	ω	w	ω	ω	~	سر	ш	ب	۲	8
US-08-469-	5194596-9	5219739-9	5240848-7	5219739-22	5240848-11	PCT-US96-0	5219739-20	5194596-19	US-08-469-	US-08-469-	5194596-17	5219739-17	5219739-18	5332671-3	5332671-4	5219739-19	5194596-18	US-08-469-	US-08-469-	US-08-469-	us-08-469-	US-08-469-	ID
Sequence 14, Applicati	Patent No. 5194596.	Patent No. 5219739.	Patent No. 5240848.	Patent No. 5219739.	٢	Sequence 10, Applicati	Patent No. 5219739.	Patent No. 5194596.	Sequence 3, Applicatio	Sequence 15, Applicati	Patent No. 5194596.	Patent No. 5219739.	Patent No. 5219739.	Patent No. 5332671.	Patent No. 5332671.	Patent No. 5219739.	Patent No. 5194596.	Sequence 2, Applicatio	Sequence 9, Applicatio	Sequence 7, Applicatio	Sequence 5, Applicatio	Sequence 11, Applicati	Description
2.48e-18	1.42e-24	1.42e-24	1.53e-25	1.22e-25	1.22e-25	3.99e-26	1.04e-26	1.04e-26	2.32e-28	8.58e-37	2.20e-37	2.20e-37	2.20e-37	1.15e-38	5.94e-40	7.46e-40	7.46e-40	5.58e-59	6.75e-78	1.11e-112	1.60e-120	6.66e-135	Pred. No.

																٠								
SULT		45	44	43	42	4	40	39	38	37	36	35	3 4	33	32	31	30	29	28	27	26	25	24	
1		169	169	170	170	170	170	170	170	170	172	172	177	177	177	177	177	177	177	177	177	177	178	
160-1073-11		11.6	11.6	11.7	11.7	11.7	11.7	11.7	11.7	11.7	•	11.8	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.2	
מ		125	125	282	120	109	109	109	109	109	109	109	241	241	241	241	241	241	241	226	220	160	419	
e e		۲	_	Ь	ω	N	۳	N	μ	ω	٢	_	N	Н	w	Н	ω	ω	ω	ω	ω	نبر	ν	
	ALIGNMENTS	us-08-095-	US-07-883-	US-08-445-	5428135-2	PCT-US91-0	US-08-094-	PCT-US93-0	US-08-094-	5498600-3	US-08-094-	σs-08-094-	PCT-US96-0	US-08-469-	5219739-15	US-08-387-	5194596-15	5175255-8	5175255-2	5498600-2	5175255-4	US-08-094-	PCT-US96-0	
DDT . 100 A		4,	7,	•	Patent No. 5428135.	18	Sequence 4, Applicatio	۳,	Sequence 2, Applicatio		5	ω	9	Sequence 13, Applicati	0. 52	Sequence 4, Applicatio	Patent No. 5194596.	٠	Patent No. 5175255.	Patent No. 5498600.	ĭ	Sequence 1, Applicatio	'n	
		1.45e-06	. 456	1.18e-06	. 186	1.18e-06	1.18e-06	1.18e-06	1.18e-06	1.18e-06	7.81e-07			.79€	2.79e-07	٠,	2.79e-07	٠.	.79e	2.79e-07	2.79e-07	2.79e-07	2.27e-07	

Sequence 11, Application US/08469427A US-08-469-427A-11 Sequence 11, Application US/08469427A Patent No. 5607918 GENERAL INFORMATION: APPLICANT: Pajusola, Katri
TITLE OF INVENTION: VASCULAR ENDOTHELIAL GROWTH FACTOR-B AND
TITLE OF INVENTION: DNA CODING THEREFOR
NUMBER OF SEQUENCES: 17 Eriksson, Ulf Olofsson, Birgitta Alitalo, Kari STANDARD; PRT; 284

CLASSIFICATION: 435
PRIOR APPLICATION NUMBER: US 08/397,651
APPLICATION NUMBER: US 08/397,651
FILING DATE: 01-MAR-1995
ATTORNEY/AGENT INFORMATION:
NAME: Evans, Joseph D
REGISTRATION NUMBER: 26,269
REFERENCE/DOCKET NUMBER: 41979cp2
TELECOMMUNICATION INFORMATION: TELEFAX: (202) 628-884 INFORMATION FOR SEQ ID NO: STATE: DC
ZIP: 20005
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/01
FILING DATE: 06-JUN-1995 CORRESPONDENCE ADDRESS SEQUENCE CHARACT COMPUTER: IBM PC compatible OPERATING SYSTEM: PC-DOS/MS-DOS STREET: TELEPHONE: SOFTWARE: PatentIn Release #1.0, Version #1.25 ADDRESSEE: Washington E: Evenson, McKeown, Edwards & Lenahan 1200 G Street, N.W., Suite 700 (202) 628-8800 628-8844 US/08/469,427A

353 24.3 120 3 519496-9 Patent NO. 5219739. 4.90e-1 353 24.3 120 3 5219739-9 Patent NO. 5219739. 4.90e-1 345 23.8 164 3 5219739-17 Patent NO. 5219739. 2.12e-1 345 23.8 164 3 5219739-17 Patent NO. 5219739. 2.12e-1 345 23.8 164 3 5219739-17 Patent NO. 5194596. 2.12e-1 345 23.8 164 3 5194596-17 Patent NO. 5194596. 2.12e-1 345 23.8 164 3 5194596-17 Patent NO. 5194596. 2.12e-1 346 23.7 189 1 US-08-469- Sequence 14, Applicati 2.54e-1 36 21.1 149 1 US-08-469- Sequence 14, Applicati 2.55e-1 370 12.4 160 1 US-08-094- Sequence 1, Applicati 2.59e-0	379 26.1 231 2 PCT-US96-0 Sequence 11 378 26.0 121 3 5219739-20 Patent No. 378 26.0 121 3 5219739-20 Patent No. 378 26.0 121 3 52194596-19 Patent No. 374 25.8 215 3 5219739-22 Patent No. 373 25.7 215 3 5240848-7 Patent No. 370 25.5 165 3 5219739-19 Patent No. 370 25.5 165 3 5194596-18 Patent No. 358 24.7 190 3 5332671-3 Patent No. 358 24.7 190 3 5332671-3 Patent No.	Score Match Length DB ID Description Pred. No. 1014 69.8 188 1 US-08-469- Sequence 11, Applicati 3.04e-7 938 64.6 188 1 US-08-469- Sequence 5, Applicatio 6.37e-6 897 61.8 133 1 US-08-469- Sequence 9, Applicatio 1.52e-6 897 61.8 133 1 US-08-469- Sequence 7, Applicatio 1.57e-6 709 48.8 102 1 US-08-469- Sequence 7, Applicatio 5.73e-4 709 48.8 102 1 US-08-86-1 Patent No. 27.01848 4 156-2 379 26.1 214 3 5240848-11 Patent No. 27.01848	Pred. No score greand is de and is de	Database: a-issued 1:5_COMB 2:PCT9_COMB 3:backfiles1 Statistics: Mean 29.438; Variance 149.891; scale 0.196	Searched: 77021 segs, 7058996 residues Post-processing: Minimum Match 0% Listing first 45 summaries	Title: >US-08-765-588-4 Description: (1-207) from US08765588.pep Perfect Score: 1452 Sequence: 1 MSPLLRRLLLAALLQLAPAQPGPAAAAADAAASSVAKGGA 207 Scoring table: PAM 150 Gap 11	Release 3.1A John F. Collins, Biocomputing Research Unit. Copyright (c) 1993-1998 University of Edinburgh, U.K. Distribution rights by Oxford Molecular Ltd MPsrch_pp protein - protein database search, using Smith-Waterman algorithm Run on: Fri Sep 18 13:34:31 1998; MasPar time 2.64 Seconds Tabular output not generated.	(TM)
				·				

	; 188 AA.	; PRT	STANDARD;	STA	427A-11	r 1 US-08-469-427A-11	S
	•	ALIGNMENTS	ALI				
1.20e-053 1.20e-053 1.20e-053 1.20e-053 1.20e-053 1.20e-053 1.20e-053 1.42e-	atent No. 5175255. atent No. 5175255. atent No. 5194596. atent No. 5219739. equence 4 Applicat equence 1, Applicat equence 2, Applicat equence 3, Applicat equence 4, Applicat equence 4, Applicat equence 7, Applicat equence 8, Applicat equence 9, Applicat equence 9, Applicat equence 10, S219759.	5255-2 5255-8 5255-8 5255-8 5255-8 5255-15 9739-15 98-465- 08-445- 08-094- 08-08- 08-08- 08-08- 08-08- 08-08- 08-08- 08-08- 08-08-	5175 5175 5175 5175 5175 5175 5175 5175	22441 22441 2441 2441 2441 2441 2441 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 211 255 257 257 257 257 257 257 257 257 257		180 180 180 180 180 179 179 179 172 172 172 172 172 172 172 172 172 172	768886188888888888888888888888888888888
1.20e-05 1.20e-05	o. 5175 o. 5498	5255-4 8600-2 -ms96-0	14.7		12.4	180 180	4 10 6

(TM)

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Tabular output not generated. Fri Sep 18 13:34:57 1998; MasPar time 11.31 Seconds 579.235 Million cell updates/sec

Description: Perfect Score:

Sequence: >US-08-765-588-4 (1-207) from US08765588.pep 1452

1 MSPLLRRLLLAALLQLAPAQ......PGPAAAAADAAASSVAKGGA 207

Scoring table: PAM 150 Gap 11

Searched: 288199 seqs, 31643258 residues

Post-processing: Minimum Match 0%
Listing first 45 summaries

Database:

1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:U85 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEWP 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9

Statistics: Mean 31.271; Variance 155.127; scale 0.202

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

220	18 19	. 17	16	15	. 14	. 13	12	11	10	9	8	7	σ	v	4	w	N	P	Result
1106	1114	1114	1123	1160	1203	1243	1287	1317	1317	1317	1317	1317	1434	1452	1452	1452	1452	1452	Score
76.2	76.7	76.7	77.3	79.9	:-	85.6	•	90.7	90.7	90.7.	90.7	90.7	98.8	100.0	100.0	100.0	100.0	100.0	Query Match L
	221						185	207		207	207	207				207	207	!	Length [
	 	_	_	12	12 (12	12	0	10 (9	9	9	_	10	_	9	9	10	DB .
os-	US- 1-	JS-	JS ST	1S St	JS- 1 ST	JS - -)S- - -	JS- '- '-	JS	US- 1- 80-	OS- H -	- C + 0 - SD	0S-	0S- H)-	- SD	JS-	US	15 - S-	ID
Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Description
36,	'n'n	2, 2	17,	16,	15,	14,	35,	13,	13,	13,	13,	13,	2, 7	15,	15,	15,	15,	15,	g
Applicatio Applicati	Applicatio	Applicatio	Applicati	Applicati	Applicati	Applicati	Applicati	Applicati	Applicati	Applicati	Applicati	Applicati	Applicatio	Applicati	Applicati	Applicati	Applicati	Applicati	
6.14e-82 5.67e-80	1.27e-82 1.27e-82	1.27e-82	2.16e-83	1.48e-86	3.08e-90	1.15e-93	1.95e-97	5.20e-100	5.20e-100	5.20e-100	5.20e-100	5.20e-100	4.66e-110	1.32e-111	1.32e-111	1.32e-111	1:32e-111	1.32e-111	Pred. No.

	45	44	43	42	41	40	39	38	37	36	ω 5	ω 4	33	32	31	30	29	28	27	26	25	24	23	22
	897	897	897	897	919	938	938	938	938	938	938	938	941	956	999	1014	1014	1014	1014	1014	1014	1014	1014	1039
		٠	٠	٠									٠				•	69.8		•	•			
•	133	133	133	133	179	188	188	188	188	188	188	188	188	184	189	188	188	188	188	188	188	188	188	194
	9	æ	œ	10	12	10	10	œ	9	ø	œ	ف	12	12	12	œ	Q	10	9	11	10	10	φ	12
	US-	US-	US-	us-	US-	-SD	-SD	us-	-SD	-SD	us-	-SD	us-	-SD	US-	US-	US-	OS-	US-	-SD	US-	us-	us-	-SD
	7	-	-	7		ļ	÷		-	7		-	_	Ŧ	Ę	=	5	-	3		ņ	-	7	7
	1		:::	بحر وي		-	-											ì	•	Ï	_		٠	3
	-		_	7		'	'	'	'	•	•	'	'	'		_	_	_				-,-	,	
	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence
			Sequence 9,	Sequence 9,	Sequence 21,	Ø	Sequence 5,	Sequence 5,	Sequence 5,	Sequence 5,	Sequence 5,	Sequence 5,	Sequence 1,	Sequence 20,			Sequence 11,	Sequence 56,			Sequence 11,	Sequence 11,	Sequence 11,	Sequence 18,
•	9,	9	9,	9, 2	e 21,	e 5,	e 5,	е 5	@ 5,	e 5,	σ,	<u>ب</u>	1,	20,	19,	11,	11,	56,	11,	57,	11,	e 11,	11,	
•	9, Applicatio 4.03e	9,	9, Applicatio 4.03e	9, Applicatio 4.03e	e 21, Applicati 5.43e [.]	e 5, Applicatio 1.31e	e 5, Applicatio 1.31e	e 5, Applicatio 1.31e-	e 5, Applicatio 1.3	e 5, Applicatio 1.31e-	5, Applicatio 1.	5, Applicatio 1.31e-	 Applicatio 7.30e- 	20, Applicati 3.86e-6	19, Applicati 8.36e-	11, Applicati 4.40e-7	11, Applicati 4.40e-7	56, Applicati 4.	11, Applicati 4.40e-	57, Applicati 4.40e-	11, Applicati 4.40e-	e 11, Applicati 4.	11, Applicati 4.40e-	18, Applica

ALIGNMENTS

 \mathbf{z}^{S} XXXXX US-08-609-443A-15 STANDARD; PRT; 207 AA.

Sequence 15, Application US/08609443A

Sequence 15, Application US/08609443A GENERAL INFORMATION: APPLICANT: ERIKSSON, Ulf
APPLICANT: OLOFSSON, Birgitta
APPLICANT: ALITALO, Kari
APPLICANT: PAJUSOLA, KARTI
TITLE OF INVENTION: VASCULAR ENDOTHELIAL GROWTH FACTOR-B AND
TITLE OF INVENTION: DNA CODING THEREFOR
NUMBER OF SEQUENCES: 31

CORRESPONDENCE ADDRESS: ADDRESSEE: Evenson, McKeown, Edwards & Lenahan STREET: 1200 G Street, N.W., Suite 700 STREET: Washington

COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible COUNTRY: 20005 R SD

OPERATING SYSTEM: PC-DOS/MS-DOS
SOUTMARE: PatentIn Release #1.0, Version #1.25
CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/609,443A FILING DATE: 01-MAR-1996
PRIOR APPLICATION DATA:
APPLICATION NUMBER: US 08/397,651
FILING DATE: 01-MAR-1995
PRIOR APPLICATION DATA: APPLICATION NUMBER: US 08/469,427 FILING DATE: 06-JUN-1995 PRIOR APPLICATION DATA:

APPLICATION NUMBER: US 08/569,063 FILING DATE: 06-DEC-1995 ATTORNEY/AGENT INFORMATION: NUMBER: 26,269

* * * * *	

* * * * *	

****	<u>[</u>]

***	(TM)

MPsrch_pp protein · protein database search, using Smith-Waterman algorithm

Tabular output not generated. Run on: Fri Sep 18 13:32:46 1998; MasPar time 11.91 Seconds 732.057 Million cell updates/sec

Perfect Score: Sequence: Title: >US-08-765-588-4 (1-207) from US08765588.pep 1452

1 MSPLLRRLLLAALLQLAPAQ......PGPAAAAADAAASSVAKGGA 207

Scoring table:

PAM 150 Gap 11

Post-processing: Minimum Match 0% Listing first 45 summaries Searched: 140555 segs, 42109429 residues

Database:

1:sp_fung1 2:sp_human 3:sp_invertebrate 4:sp_mammal 5:sp_mhc 6:sp_organelle 7:sp_phage 8:sp_plant 9:sp_bacteria 10:sp_rodent 11:sp_virus 12:sp_vertebrate 13:sp_unclassified

Statistics: Mean 42.614; Variance 109.241; scale 0.390

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

2	15	1.	۲.	16	15	1,	::	1	11	10		~	_,	•	(P	_	(,)	٨,		Result
) : 139	9 141	3 . 143	7 153	•				-		_		3 279	7 333	361	372	373	780	1319	1452	Score
9.6	9.7	9.8	10.5	11.2	12.1	12.3	12.4	13.2	13.5	13.6	19.1	19.2	22.9	24.9	25.6	25.7	53.7	90.8	100.0	Query Match Length
442	901	581	473	183	415	185	271	326	21:0	358	75		216			232	116	207	207	
œ	9	ω	œ	10	10	N	11	10	4	10	4	10	12	12	12	N	10	10	N	B
Q39494	Q44562	Q20517	Q39620	Q63740	P97953	Q15354	041283	035251	Q29613	P97946	018843	Q63434	Q91420	042572	042571	Q16889	035485	Q64290	Q16528	Ħ
75K MRNA.	SIALIDASE.	F47B8.5.	(VSP-3) PRECURSOR.	PDGF PROTEIN (FRAGMENT	VASCULAR ENDOTHELIAL G	C-SIS PROTO-ONCOGENE (POLYPROTEIN PRECURSOR	VASCULAR ENDOTHELIAL G	C-SIS ONCOGENE (PLATEL	VASCULAR ENDOTHELIAL G	VASCULAR ENDOTHELIAL G	PLACENTA GROWTH FACTOR	VASCULAR ENDOTHELIAL G	VEGF RELATED FACTOR IS	Description					
9.38e-05	5.35e-05	3.04e-05	1.73e-06	1.24e-07	1.87e-09	7.52e-10	5.55e-10	1.39e-11	4.00e-12	2.14e-12	1.12e-23	8.04e-24	8.83e-32	5.56e-36	1.21e-37	8.56e-38	9.13e-102	1.59e-189	2.09e-211	Pred. No.

4.4	43	42	41	40	39	38	37	36	35	34	ω	32	31	30	29	28	27	26	25	24	23	22	21
124	125	125	127	127	127	127	127	128	128	128	128	129	129	129	129	129	131	130	130	130	132	134	137
	9.6			8.7	8.7	8.7	8.7	8.8	8.8	8.8	8. 8	8.9	8.9	8.9	8.9	8.9	9.0	9.0	9.0	9.0	<u>.</u>	9.2	9.4
1000	616	228	801	464	309	153	145	1711	439	196	151	507	381	376	375	351	1356	611	416	371	438	552	2378
9	: =	œ	ω	æ	11	w	œ	9	œ	œ	œ	12	ω	æ	ω	œ	10	9	w	9	œ	œ	w
Q98457 Q24820	Q96716	Q43558	Q23635	Q41645	Q894'02	000879	Q40786	P96311	Q42421	Q08195	041192	013028	Q94399	Q39353 ·	P93066	Q39492	Q63729	P74375	017374	006555	Q39495	Q96343 ·	P91365
GENOME, PARTIAL SEQUEN BETA-GLUCANASE.	DING PROT	PROLINE RICH PROTEIN P	SIMILAR TO LONG TANDEM	EXTENSIN (FRAGMENT).		MEROZOITE SURFACE PROT	Ã.	ENDOGLUCANASE A (EC 3	CHITINASE PRECURSOR.	CYSTEINE-RICH EXTENSIN	NAPRP3.	ANTIFREEZE GLYCOPEPTID	2K265.2.	CELL WALL-PLASMA MEMBR	OLEOSIN-LIKE PROTEIN.	WP6 PRECURSOR.	TATE	HYPOTHETICAL 62.9 KD F	T13B5.4 PROTEIN.	HYPOTHETICAL 36.4 KD P	ALPHA 2 FRUSTULIN.	MYROSINASE-BINDING PRO	CODED FOR BY C. ELEGAN
5.74e-03 5.74e-03	4	4.39e	N		N	N	N	1.95e-03	1.95e-03		1.95e-03	Ļ		H	1.49e-03		8.626	_	•		6.55e-04	3.78e	N 1.64e-04

ALIGNMENTS

	Query Best Matc)		1	W	DR	DR :	3 2	P R	₽ X	RC	RΡ	RN	27	₽	R :	3 ;	8 2	R	RA	₽₽	RA	RC	RP	R	88	3 8	G N	Œ	ΡŢ	Į,	ij (A t	RESULT	
	Query Match Best Local Matches 2	SEQUENCE	SIGNAL	SIGNAL.	PROSITE;	EMBL;	EMBI . IIA	ERIKSSON	MEDLINE;	TISSU	SEQUENCE	<u>3</u>	PROC.	OLOFS	MEDLINE;	TINGE	SECUENCE [2]	GENOM	HAYWA	POLLO	GRIMM	TISSU	SEQUE	Ξ	EUTHERIA;	OWOH	VRF	VEGF	01-JA	01 - NO	01 - NO.	016528	LT 1	
	tch al Sim 207;			•		U52819;	EMBI: MARRAS	SON U.;		E-FIBR			NATL.		NE; 96	THE PERSON		GENOME RES.	RD N.,	CK P.,	GRIMMOND S.,	TISSUE-BRAIN;	SEQUENCE FROM				VRF OR VEGF-B.	VEGF RELATED	01-JAN-1998	01-NOV-1996	01-NOV-1996		о р	
	similarity 707; Conse	207 AA;) 		N		٠.		B., PAJUSOLA	OSARCO	FROM N.A.		PROC. NATL. ACAD.	•	96197355.	TISSUE-FIRROSARCOMA	FROM N. A	6:122	HAYWARD N., WEBER G.;	GOTLE			OM N.A.		PRIMATES.	S (HUMAN).	Ë	D FACT	(TREM	(TREM	TREM	,	7	
	100.0%; arity 100.0%; Conservative	207 ; 21602			PDGF;	G1488259;	1916366	1 1001	SOLA K.,	TISSUE=FIBROSARCOMA HT-1080;	•		SCI.					6:122-129(1996)	G.;	POLLOCK P., GOTLEY D., CARSON E., RAKAR	LAGERCRANTZ		•	:				FACTOR ISOFORM	TREMBLREL.	TREMBLREL.	TREMBLEEL	E WEST TATEMENT,	מדעד זמ	
	** **	WW;			1.	٠.	_ T20T		., VON	1080;			U.S.A.		0	HT - 1080 ·		996).		CARSON	Z J.,				CHUMPAIN,	3			05, I		01	, 100		
	Score 1 Pred. N	S	POTENTIAL.				1331/(1330)	1	EULER											_ E: , F	DRINKWATER							VRF186 PRECURSOR.	LAST ANNOTATION UPDATE)	LAST SE	CREATED	1777		
	1452; DB 2; No. 2.09e-211; Mismatches 0;	16BDF6F1 CRC32;	IAL.						G . ,				93:2576-2581(1996)							WAKAR S					A EVI BBYWIN'			PRECUI	NOTAT	SEQUENCE UPDATE	3	***	707	
	DB 2;)9e-21;	RC32;							CHILOV D.,				81(199							S., NO								RSOR.	do Noi	E UPDA		5	ż	
	P.											•	<u>5</u>							RDENSI	SILINS				TELL KAPODA;				DATE)	TE)				
	ngth 207; Indels	ISOFORM VRF186							ALITALO											KJOLD	G., 10													
	0;	VRF186							o ×.,											M., W	TOWNSON				WATHWINE ;	1								
,	Gaps	ř																		NORDENSKJOLD M., WARD L.,	: :													
	0;																			•														

经验证证明的 计多数分别 的数分别 计多数分别 的数分别 的数分别 的数分别 的数分别 的数分别 的数分别 的数分别 的	Table 1 (198)	

* * * * *		

***	**************************************	

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm Run on: Fri Sep 18 13:31:58 1998; MasPar time 6.68 Seconds

on: Fri Sep 18 13:31:58 1998; masPar time 6.68 Seconds 777.434 Million cell updates/sec

Tabular output not generated.

Title: >US-08-765-588-4
Description: (1-207) from US08765588.pep
Perfect Score: 1452
Sequence: 1 MSPLLRRLLLAALLQLAPAQ.....

1 MSPLLRRLLLAALLQLAPAQ......PGPAAAAADAAASSVAKGGA 207

Scoring table: PAM 150
Gap 11

Searched: 69111 seqs, 25083644 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database: swiss-prot35 1:swiss1

Statistics: Mean 44.541; Variance 104.798; scale 0.425

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

22 23	210	19	18	16	15	14	13	12	11	. 10	9	80	7	o.	5	4	ω	N	_	Result
172 167	174 172	175	179	180 179	180	189	264	284	294	306	347	358	361	364	371	371	373	938	1014	Score
11.8	12.0 11.8	12.1	12.3	12.4	12.4			19.6		21.1	23.9	24.7	24.9	25:1		25.6		64.6	69.8	Query Match Length
213 211	148 211	419	245	241	226	225	128	158	133	170	164	190	146	190	214	190	215	188	188	
11	- -	ا فسو	⊢	ببو د	فسو	H	ا 4ب	H	ا فسا		H	μ	ب	μ	۳	μ	μ	μ	1-4	B
PDGA_MOUSE	VEGH_ORFN7	VEGC_HUMAN	PDGB FELCA	PDGB_HUMAN	TSIS_SMSAV	PDGB_RAT	VEGF COTJA	PLGF MOUSE	VEGH ORFN2	PLGF HUMAN	VEGF_CAVPO	VEGF_BOVIN	VEGF_SHEEP	VEGF_PIG	VEGF_MOUSE	VEGF_RAT	VEGF_HUMAN	VEGB_MOUSE	VEGB_HUMAN	Ħ
	1		PLATELET - DERIVED GROWT		PDGF-RELATED TRANSFORM	1	ENDOTH		ENDOTHELTAL	. '	~	~	•			<pre>ENDOTHELIAL</pre>	••	ENDOTHELIAL	VASCULAR ENDOTHELIAL G	Description
8.21e-10 4.09e-09	4.30e-10 8 31e-10	3.11e-10	8.466-11	6.10e-11	6.10e-11	3.15e-12	1 686-23	1 250-26	3 1000	4 086-30	,	1.68e-38	ω	1.76e-39	1.26e-40	1.26e-40		4.30e-138	1.62e-151	Pred. No.

밁

1 MSPLLRRLLLAALLQLAPAQAPVSQPDAPGHQRKVVSWIDVYTRATCQPREVVVPLTVEL 60

Best Local Similarity 100.0%; Matches 136; Conservative

Pred. No. 1.62e-151; 0; Mismatches 0;

Indels 0;

Gaps

0;

4.5	44	43	4.	4.	40	ω	38	ω	36	35	ω A	ω	ω	ω	3(20	22	N	26	25	24
															٠						
119	119	120	120	122	122	123	123	126	126	126	126	126	128	134	136	137	136	144	162	163	T 0 2
8.2	8.2		ω ω		8.4	5	8.5	8.7	8.7	8.7	8.7	8.7		9.2						11.2	11.4
600	380	1323	449	1461	344	1446	308	5179	534	485	409	316	3149	775	699	474	439	279	241	226	204
-ب	ш	ш	щ	щ	μ,	ר	_	,_	1	μ	μ	Н	۲	Н	μ	۱	μ	μ	ш	Ь	۲
SP96_DICDI	VASP_HUMAN	NME4_MOUSE	APG_BRANA	IE18_PRVIF	ME18_HUMAN	IE18_PRVKA	CC40_CAEEL	MUC2_HUMAN	APG_ARATH ·	SSGP_VOLCA	R23B_HUMAN	CDNC_HUMAN	TEGU_EBV	ICPO_HSV11	VGLG_HSV2H	VIP3_TTV1V	XP2_XENLA	Y091_NPVOP	PDGB_SHEEP	PDGA_XENLA	PDGA_RAT
SPORE COAT PROTEIN SP9	VASODILATOR-STIMULATED	GLUTAMATE (NMDA) RECEP	ANTER-SPECIFIC PROLINE	IMMEDIATE-EARLY PROTEI	DNA-BINDING PROTEIN ME	IMMEDIATE-EARLY PROTEI	CUTICLE COLLAGEN 40.	MUCIN 2 PRECURSOR (INT	ANTER-SPECIFIC PROLINE	SULFATED SURFACE GLYCO	UV EXCISION REPAIR PRO	CYCLIN-DEPENDENT KINAS	LARGE TEGUMENT PROTEIN	TRANS-ACTING TRANSCRIP	GLYCOPROTEIN G.	VIRAL PROTEIN TPX.	SKIN SECRETORY PROTEIN	HYPOTHETICAL 29.3 KD P	PLATELET-DERIVED GROWT	PLATELET-DERIVED GROWT	PLATELET-DERIVED GROWT
7.80e-03	7.80e-03	5.90e-03	5.90e-03	3.36e-03	3.36e-03	2.54e-03	2.54e-03	1.08e-03	1.08e-03	1.08e-03	1.08e-03	1.08e-03	6.07e-04	1.06e-04	5.85e-05	.4.35e-05	5.85e-05	5.32e-06	2.00e-08	1.46e-08	7.73e-09

Que	SO	Z Z	DR	א א	38	ဂ္ဂ	88	88	88	ဂ	P	R S	RA A	RP R	2 2	₽,	₽₽	₽?	7 7 7 7	8	გ	20	GN GN E		ğ	3 5	A t	RESULT
Query Match 69.8%; Score 1014; DB 1; Length 188;	CHAIN 21 188 VASCULIAR ENDOTHELIAL GROWTH FACTOR B. SEQUENCE 188 AA; 21261 MW; 35EA8904 CRC32;	N; GROWTH FACTOR; SIGNA	MIM; 601398;	EMBE; U43369; G1216398;	IMILARITY: BELONGS TO THE PDGF/VEGF FAMILY OF GROU		-1- TISSUE SPECIFICITY: EXPRESSED IN ALL TISSUES EXCEPT LIVER			-!- FUNCTION: GROWTH FACTOR FOR ENDOTHELIAL CELLS. BINDS HEPARIN.	GENOME RES. 6:122-129(1996).	WARD I. HAYWARD M. WERER G.	, ,	SEQUENCE FROM N.A.	PROC. NATL. ACAD. SCI. U.S.A. 93:2576-2581(1996).	, PETTERSSON R.F., ALITALO K., ERIKSSON		MEDLINE; 96197355.	SHOTHNON FROM N P			HOMO SAPIENS (HUMAN).	VEGEB OR VRF.	ENDOTHELIAL GROWTH	(REL. 35, LAST	01-OCT-1996 (REL. 34, CREATED)	P49765;	TOB WITANI CHANDADD. DDM. 100

		٠.	•
	<u>-</u>	 	
	{	<	J
-		_	
Fr:			l
1-	<u>- </u>		
	- <u>-</u> -	·	l
		_	
			I
		[
			٠.
(MI)			

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Tabular output not generated. Run on: Fr1 Sep 18 13:30:29 1998; MasPar time 9.90 Seconds 763.780 Million cell updates/sec

Description:
Perfect Score:
Sequence: >US-08-765-588-4 (1-207) from US08765588.pep 1452

1 MSPLLRRLLLAALLQLAPAQ......PGPAAAAADAAASSVAKGGA 207

Scoring table: PAM 150 Gap 11

Searched: 120441 segs, 36531193 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

pir56 1:pir1 2:pir2 3:pir3 4:pir4 5:nrl3d

Statistics: Mean 42.396; Variance 117.569; scale 0.361

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	19 180 20 179	٠.	٠.	15 189		12 29	11 30	10 35	9 35	8 36	. 7 36	. 6 . 36	. 5 37	4 371	. 3 . 37	. 2 93	· 1 1319	No. Score
	9 12.4	•							8 24.7	•		25.	25.		25.	64.	90.	Query e Match Length
241	241 185																	ength DB
1 PFMSGB	1 PFHUG2 2 S58383	2 A55030	2 138108	2 \$25097	ייי ו	_				2 \$57956			2 A44881			2 JC4680	2 JC4679	B ID
<pre>platelet-derived grow platelet-derived grow</pre>	<pre>platelet-derived grow hypothetical protein</pre>	platelet-derived grow	platelet-derived grow	vascular endotherial platelet-derived grow	\vdash	vascular endothelial	placental growth fact	vascular endothelial	vascular endothelial	ovine vascular endoth			vascular endothelial	glioma-derived vascul	vascular endothelial	vascular endothelial	vascular endothelial	Description
ហហ	4.12e-09 5.47e-09	4.12e-09	4	3.18e-10	6.17e-22	7.91e-24	1:35e-2	4.43e-3	8.91e-	3.40e-	1.30e-3	4.94e-3	1.36e-3	1.36e-	7.14e-	1.15e-	3.19e-17	Pred. No

								(.)		f.11		1.3	٠.,	۲.,	٨,	.,	٨,			
ហ៊ី	A 4.	ເວ	ï	ö	õ	ã	7	õ	ũ	4	ũ	ວ	Ξ	õ	ğ	ĕ	7	6	ĭš	4
135	72. 7.5.T	136	139	141	145	153	153	153	153	161	163	163	.163	164	166	165	172	171	174	175
φ. ω.	0 4	9.4	9.6	9.7	10.0	10.5	10.5	10.5	10.5	11.1	11.2	11.2		11.3	11.4	11.4	11.8	11.8	12.0	12.1
377	4 0 4	416	442	106	196	473	68	66	63	196	226	215	200	196	271	197	211	198	148	419
N) N	–	ν	N	N	N	G	σı	u	N	N	N	2	N	N	N	ب	N	N	N
A48018	S15921	SKXLAG	S50062	A49227	A48851	S50755	1PDGA2	1PDGC2	1PDGB2	A37359	151550	S08220	I51551	B28964	A25669	S25096	PFHUG1	JS0735	D49530	S69207
mucin 7 precursor, sa	٠VT	윥	cell wall glycoprotei	sialidase - Actinomyc	platelet-derived grow		Platelet-derived grow	PDGF-related transfor	platelet-derived grow	<pre>platelet-derived grow</pre>	platelet-derived grow	16K vascular endothel	vascular endothelial							
8.27e-04	4.946-04	6.39e-04	2.94e-04	1.74e-04	6.08e-05	7.18e-06	7.18e-06	7.18e-06	7.18e-06	8.17e-07	4.72e-07	4.72e-07	4.72e-07	3.59e-07	2.07e-07	2.72e-07	3.90e-08	5.16e-08	2.23e-08	1.69e-08

21 QCECRPKKKESAVKPDRVAIPHHRPQPRSVPGWDSTPGASSPADIIHPTPAPGSSARLAP 180 	Db 121 QCEC
MGTVAKQLVPSCYTVQRCGGCCPDDGLECVPTGQHQVRMQILMIRYPSSQLGEMSLEEHS	Qy 61 MGTV
	Db 61 MGNV
1 MSPLLRRLLLVALLQLARTQAPVSQFDGPSHQKKVVPWIDVYARATCQPREVVVPLSMEL 60	
Query Match 90.8%; Score 1319; DB 2; Length 207; Best Local Similarity 87.0%; Pred. No. 3.19e-175; Matches 180; Conservative 17; Mismatches 10; Indels 0; Gaps 0;	Query Match Best Local S Matches 18
#length 207 #molecular-weight 21914 #checksum 1525	SUMMARY
07 #product	22-207
#4) 1345 1455 1006 0100	FEATURE 1-31
S	KEYWORDS
e vrf	#gene
	GENETICS
endothelial growth factors 167 and 186.	Ф:
and belongs to a family of growth factors. This transcript is differentially spliced to produce two major isoforms, vascular	Ω. α
111	COMMENT Thi
#cro	#cro
_type mRNA	##molecu
sion JC4679	#accession
Ω	#title
rnal Biochem, Biophys. Res. Commun. (1996) 220:922-928	#journal
TC	#authors
JC4679	REFERENCE
	ACCESSIONS
10	DATE
E_NAMES VRF 186 prof	ALTERNATE_NAMES
JC4679 #type complete	ENTRY
	RESITE 1

*	
难知她的话,我们就没有一个,我们们们们的,我们就是一个,我们的人们的,我们就是一个,我们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们	
	'
	- -
	[// <u> </u>
	[]
	<u> </u>
	.
	G
	(TM)

Run on: MPsrch_pp protein - protein database search, using Smith-Waterman algorithm Fr1 Sep 18 13:28:23 1998; MasPar time 7.27 Seconds 460.975 Million cell updates/sec

Tabular output not generated.

Title: Description: Perfect Score: >US-08-765-588-4 (1-207) from US08765588.pep 1452

Sequence: 1 MSPLLRRLLLAALLQLAPAQ......PGPAAAAADAAASSVAKGGA 207

Scoring table: PAM 150 Gap 11

Searched: 131922 seqs, 16180660 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

:part1 2:part2 3:part3 4:part4 5:part5 6:part6 7:part7
:part8 9:part9 10:part10 11:part11 12:part12 13:part13
i:part14 15:part15 16:part16 17:part17 18:part18
i:part19 20:part20 21:part21 22:part22 23:part23
i:part24 25:part25 26:part26 27:part27 28:part28

Statistics: Mean 31.715; Variance 158.417; scale 0.200

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

10 9 8 7 6 5 4 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result
1452 1452 1319 1319 11114 10123 10023 10014 938 997 897 749 389 389	Score
100 0 100 0 0 100 0 0 0 0 0 0 0 0 0 0 0	Query Match
207 207 207 207 207 207 221 1143 1188 1188 1188 1188 1183 1195 100 101 101 100 100 100 100 100 100 10	Length
1188831911911911919	DB
W00725 W004831 W004830 W00863 W007611 W00727 W00726 W004826 W004826 W004826 W004828 W004828 W004828 W005886 W005886	Ħ
Vascular endothelial Vascular endothelial Vascular endothelial Murine VRF186. Human vascular endoth Vascular endothelial Fibrosarcoma vascular Heart vascular endoth Murine VRF167. Vascular endothelial Heart vascular endoth Murine VRF167. Vascular endothelial Heart vascular endothelial SAP-AlaMet-VEGF121. SAP-AlaMet-VEGF121(Gl SAP-AlaMet-VEGF121(Gl	Description
5.23e-111 5.23e-111 5.23e-111 6.70e-99 6.70e-99 3.11e-82 3.11e-82 9.33e-74 9.33e-74 9.33e-74 9.33e-66 7.23e-66 7.23e-64	Pred. No.

Query Match 100.0%; Best Local Similarity 100.0%; Matches 207; Conservative

Score 1452; DB 19; Length 207; Pred. No. 5.23e-111; o; Mismatches 0; Indels 0

Indels 0;

Gaps 0;

45	44	ω	42	41	40	39	38	37	36	35 5	34	ω ω	32	31	30	29	28	27	26	25	24	23	22	21	20	19
373	373	373	374	374	374	374	375	375	374	377	378	378	379	379	381	381	381	381	382	382	382	382	382	383	383	383
25.7		•	•	•	•	25.8	•	•	•	•	٠	•		•	•	•	26.2	٠	•		•				26.4	
232							214	214			121	121													146	146
8 +		6	8	8	18	8	u	4	18	27	7	ω	8	16	8	18	18	8	8	18	8	18	18	18	4	u
R94004	R05102	R91077	W00596	R94074	W00585	R94072	R27355	R22351	R94040	W38234	R42607	R11385	R94001	R91075	W00593	W00591	W00592	œ			W00587	R94071	R94032	W00595	R22348	R27354
0	Vaccular	Human vascular endoth		_	g	$\overline{}$	vascul	Alternative form of V	s+2.	a		Human vascular endoth		~	-VEGF165	SAP-AlaMet-VEGF165(G1	-AlaMet-VEGF165	SAP-AlaMet-VEGF165.	(Gly4Ser)2VEGF121	(Gly4Ser)VEGF121(F12	SAP(Gly4Ser)VEGF121.	VEGF121 Cys+2.	SAP-GlySer-VEGF165(Gl	Ψe	Sequence of vascular
	510-0	51e-2	.08e-2	.08e-2	.08e-2	08e-2	.73e-	.73e-2	.08e-2	.19e-	.88e-2	.88e-2	.20e-2	.20e-2	5e-2	.65e-2	65e-2	. 65e-		.69e-	. 69e-	.69e-	.69e-	.89e-	Ģ	.89e-

S C	ဂ္ဂဂ္ဂ	888	38	ദ	8	2 2	Sď	ΡŢ	ΡŢ	ΡŢ	뮸	DR	ΡI	Įď	PA	PR	PR	PR	ΡF	gg	PN	Ħ	Ħ	ĦЯ	S	WX	ΚW	DE	ğ	A E	RESULT	1
g	can be produced in host cells transformed with vectors carrying SOM175 cDNA (see also T33610). It is useful for inducing astroglial	(W00726-28) of SOM175 have also been identified. Recombinant SOM175	in intracellular levels of alkaline phosphatase. It shows 33.3%	and of inducing cell migration, cell survival and/or an increase	endothelial cells, of interacting with fit-1/fkl-1 receptors	Human vascular endothelial growth factor (VEGF)-like polypeptide (W00725) is capable inducing the proliferation of vascular	Claim 11; Page 41; 113pp; English.	survival	ဋ္ဌ	New growth factor related to vascular endothelial growth factor -	N-PSDB; T33610.	WPI; 96-412774/41.			н				22-FEB-1996; AU0094.	06-SEP-1996.	W09627007-A1.		peptide 121	Key Location/Qualifiers	Homo sapiens.		Vascular endothelial growth factor; VEGF; VEGF165; SOM175; neuron;		30-NOV-1996 (first entry)	W00725;		

* ;	

(MT)	

Run on: MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Tabular output not generated. Fri Sep 18 13:58:22 1998; MasPar time 7.36 Seconds 577.863 Million cell updates/sec

Description: Perfect Score: Sequence: Title: >US-08-765-588-10 (1-101) from US08765588.pep 754 1 MSPLLRRLLLAALLQLAPAQ......CPDDGLECVPTGQHQVRMQT 101

Searched: 14:0555 seqs, 42109429 residues Scoring table:

PAM 150 Gap 11

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

1:sp_fungi 2:sp_human 3:sp_invertebrate 4:sp_mammal 5:sp_mhc 6:sp_organelle 7:sp_phage 8:sp_plant 9:sp_bacteria 10:sp_rodent 11:sp_virus 12:sp_vertebrate 13:sp_unclassified

Statistics: Mean 38.781; Variance 69.409; scale 0.559

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			. ::	
		•		
16 18 19 20	154	11 10 8 8	σισι4εω	Result No.
129 112 93 89 87	150	229 206 170 170	361 256 240 240	Score 749 682
17.1 14.9 12.3 11.8 11.5	21.8 20.3 19.9	27.3 22.5 22.5	47.9 34.0 31.8 31.8	Query Match 99.3
183 126 411 571 411	326 210 185 271	216 158 358 415	116 232 148 194	Query Match Length 99.3 207 90.5 207
8980	1240	104012	10 12 12	DB 10
Q63740 Q35757 Q38946 Q51763 Q04937	035251 029613 0215354 041283	Q91420 Q63434 Q18843 P97946 P97953	035485 Q16889 042571 042572	ID Q16528 Q64290
POGF PROTEIN (FRAGMENT VASCULAR ENDOTHELIAL G GLOTAMATE DEHYDROGENAS ISI162 DNA. NADH GLUTAMATE DEHYDRO	VASCULAR ENDOTHELIAL (C-SIS ONCOGENE (PLATEI C-SIS PROTO-ONCOGENE POLYPROTEIN PRECURSOR	VASCULAR ENDOTHELIAL (PLACENTA GROWTH FACTO) VASCULAR ENDOTHELIAL (VASCULAR ENDOTHELIAL (VASCULAR ENDOTHELIAL (Description VEGF RELATED FACTOR IS VASCULAR ENDOTRELIAL (
1.31e-07 G 1.00e-04 S 9.68e-02 3.75e-01 O 7.27e-01	NNOU	G 8.66e-27 R 3.78e-22 G 4.06e-15 G 4.06e-15	G 9.20e-55 G 2.39e-32 G 4.85e-29 G 4.85e-29	Pred. Nos 2.19e-142 G 5.75e-127

밁

1 MSPLLRRLLLAALLQLAPAQAPVSQPDAPGHQRKVVSWIDVYTRATCQPREVVVPLTVEL 60

0; Mismatches 0;

Indels

0; Gaps

0;

Matches

100; Conservative

` 44 5	43 43	41	40	ມ ຜິ	37	36	3 5	3 4	33	32	31	30	29	28	27	26	25	24	23	22	21
882	8 8 2 3	83	8 0	υ 60	83	83	83	83	83	83	83	83	83	84	85	85	85	85	85	86	86
10.9	11.0 10.9			11.0		•	•		•	•	11.0	11.0	11.0	11.1	11.3	11.3	11.3	11.3	11.3	11.4	11.4
619 684	4127	4096	1031	396	394	394	393	393	393	393	393	393	393	641	423	412	411	411	411	605	394
20	12	N	ω (υo	ø	9	9	9	ø	9	g	9	9	10	0	8	æ	œ	œ	N	9
Q62309 Q14050	P78527 003822	Q13327	009489	046406	Q46408	006020	Q46409 ·	Q46415	046411	Q46414	Q46412	Q46410	Q46413	Q08463	P97569	P93541	004871	Q43260	004872	000304	P96447
	ы	DNA DEPENDENT PROTEIN	ORGANELLE-TYPE CALCIUM	+1	MAJOR OUTER MEMBRANE P	MAJOR OUTER MEMBRANE P	MEMBRANE	MEMBRANE	(INDIVIDUAL ISOLATE 98	MAJOR OUTER MEMBRANE P	MAJOR OUTER MEMBRANE P	MAJOR OUTER MEMBRANE P	(INDIVIDUAL ISOLATE 11	FRIZZLED PROTEIN HOMOL	KALLISTATIN.	GLUTAMATE DEHYDROGENAS	GLUTAMATE DEHYDROGENAS	GLUTAMATE DEHYDROGENAS	GLUTAMATE DEHYDROGENAS	VOLTAGE-DEPENDENT CALC	EXPA6.
	2.65e+00 3.64e+00		2.65e+00		•		٠		٠		2.65e+00	2.65e+00		1.93e+00		1.40e+00	1.40e+00	1.40e+00	1.40e+00	1.01e+00	1.01e+00

		-																																•				
ē	SO	ĦΤ	Ħ	Š	DR	DR	DR	R	RA A	RA	RX	RC	ŖΡ	RN	RL	RA A	R X	RC	RΡ	RN	R.	₽₽	RΑ	RΑ	R	ŖΡ	RN	გ	8	တ္တ	GN G	띮	D I	3 5	ě	3 5	RESU	
Onerv Match 00 39. Com 740. To 3. Tongth 307.	SEQUENCE 207 AA; 21602 MW; 16BDF6F1 CRC32;	CHAIN 22 207	SIGNAL 1	SIGNAL.	PROSITE; PS002	EMBL; U52819;	EMBL; U43368;		ERIKSSON U.;	OLOFSSON	(MEDLINE; 96325041.	TISSUE-F	SEQUENCE FROM N.A.	(3)		OLOFSSON		TISSUE-F		[2]	GENOME RES.	HAYWARD N., WEBER G.;	POLLOCK P., GOTLEY D., CARSON E., RAKAR S., NORDENSKJOLD M., WAR		TISSUE-BRAIN;			EUTHERIA; PRIMATES.	EUKARYOTA; METAZOA;		VRF OR VEGF-B.	VEGF RELATED FACTOR ISOFORM	01-JAN-1998 (TREMBLREL, 05,	O1-NOV-1996 (TREMBURE). O1. LAST SECTIONS HODATES	OT SOLE TOOK SEPTEMBER OF		SULT 1	

	· ************************************

(ME)	*******

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Fri Sep 18 13:57:41 1998; MasPar time 4.15 Seconds 610.764 Million cell updates/sec

.. Tabular output not generated.

Description:
.Perfect Score:
.Sequence: >US-08-765-588-10 (1-101) from US08765588.pep 754

1 MSPLLRRLLLAALLQLAPAQ......CPDDGLECVPTGQHQVRMQT 101

Scoring table: PAM 150 Gap 11

Searched: 69111 seqs, 25083644 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database: swiss-prot35 1:swiss1

Statistics: Mean 40.632; Variance 65.664; scale 0.619

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Score	Query Match 1	Length I	BE	Ħ	Description	Pred. No.
–	749	99.3	188	μ;	VEGB_HUMAN	VASCULAR ENDOTHELIAL G	9.02e-157
N	682	90.5	188	Н	VEGB_MOUSE	,-	
ω	256	34.0	215	Н	VEGE_HUMAN	٠.	1.71e-35
4	249	33.0	190	_	VEGF_PIG	VASCULAR ENDOTHELIAL G	6.68e-34
5	244	32.4	190	μ	VEGF_RAT	VASCULAR ENDOTHELIAL G	9.07e-33
o	240	31.8	190	1	VEGF_BOVIN	VASCULAR ENDOTHELIAL G	7.25e-32
7	240	31.8	214	Н	VEGF_MOUSE	VASCULAR ENDOTHELIAL G	7.25e-32
80	235	31.2	146	۳	VEGF_SHEEP	VASCULAR ENDOTHELIAL G	9.66e-31
9	232	30.8	133	-	VEGH_ORFN2	VASCULAR ENDOTHELIAL G	4.55e-30
10	229	30.4	164	μ	VEGF_CAVPO	VASCULAR ENDOTHELIAL G	2.13e-29
11	218	28.9	170	1	PLGF_HUMAN	PLACENTA GROWTH FACTOR	5.93e-27
12	209	27.7	158	-	PLGF_MOUSE	PLACENTA GROWTH FACTOR	5.67e-25
13	172	22.8	148	μ	VEGH_ORFN7	VASCULAR ENDOTHELIAL G	4.73e-17
14	166		419	μ	VEGC_HUMAN	VASCULAR ENDOTHELIAL G	8.31e-16
15	160	21.2	128	۳	VEGF_COTJA	VASCULAR ENDOTHELIAL G	1.42e-14
16	157	20.8	225	۲	PDGB_RAT	PLATELET DERIVED GROWT	5.77e-14
17	. 153	20.3	245	Н	PDGB_FELCA	PLATELET-DERIVED GROWT	3.71e-13
18	152	20.2	241	μ	PDGB_MOUSE	PLATELET - DERIVED GROWT	5.89e-13
19	150	19.9	226	Н	TSIS_SMSAV	PDGF-RELATED TRANSFORM	1.48e-12
20	150	19.9	241	-	PDGB_HUMAN	PLATELET-DERIVED GROWT	1.48e-12
21	149	19.8	241	μ.	PDGB_SHEEP	PLATELET-DERIVED GROWT	2.35e-12
22	138	18.3	213	ا	PDGA_RABIT	PLATELET - DERIVED GROWT	3.42e-10
23	132	17.5	211	j	PDGA_MOUSE	PLATELET-DERIVED GROWT	4.88e-09

뮍

MSPLLRRLLLAALLQLAPAQAPVSQPDAPGHQRKVVSWIDVYTRATCQPREVVVPLTVEL 60

TESULT 1 ID VEGB_HUMAN STANDARD; AC P44765; AC P44765; DT 01-CCT-1996 (REL. 34, CREATED) DT 01-CCT-1996 (REL. 35, LAST SEE DE FACTOR). GN VEGFB OR VRF. RA SEQUENCE FROM N.A. RX MEDLINE; 96197355. RA SAKSELA O., ORBANA A., PETTERR RA POCLOCK P. CARSON N.A. RA POCLOCK P. CARDUSOLA K., KAII RA POLLOCK P. ACAD. SCI. U.S.A. RA

			*
· <u>-</u> .	 }		*******
Ī.			**
- - - - - - - - - -			
<u> </u>		[****

Ĺ		<u> </u>	****
	 _ [****
_i (MT)			****

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Fri Sep 18 13:56:46 1998; MasPar time 6.34 Seconds 582.395 Million cell updates/sec

Tabular output not generated.

Title:

Description: Perfect Score: Sequence: >US-08-765-588-10 (1-101) from US08765588.pep 754 1 MSPLLRRLLLAALLQLAPAQ......CPDDGLECVPTGQHQVRMQT 101

Scoring table: PAM 150 Gap 11

Searched: 120441 segs, 36531193 residues

Post-processing: Minimum Match 0% Listing first 45 summaries pir56 1:pir1 2:pir2 3:pir3 4:pir4 5:nrl3d

Database:

Statistics: Mean 38.722; Variance 77.276; scale 0.501

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

23	17 18 19 20	12 14 16	111098	ผพนพอเ	Result No.
150 150	157 153 152 150	218 206 172 166		256 256 249 240 240	Score 682
19.9 19.9		28.9 27.3 22.8 22.0 21.2	31.8 30.6 30.1	90.5 34.0 33.0 32.4 31.8	Query Match
185 226 230	225 245 241	149 148 148 128	214 146 133	207 232 190 190 190	Length I
212	2222	N N N N N	เขยเก	0,00000	2
S58383 TVMVSS A55030	S25097 TVCTSS PFMSGB 138108	A41236 A56125 D49530 S69207 I51295	A44881 S57956 B49530 A33787	045214	ID JC4680
hypothetical protein PDGF-related transfor platelet-derived grow	-deri	placental growth fact placental growth fact 16K vascular endothelial vascular endothelial vascular endothelial	endothel cular en endothel endothel	O	Description vascular endothelial
5.79e-10 5.79e-10 5.79e-10	ων H ω	8.17e-22 1.19e-19 1.13e-13 1.20e-12 1.24e-11	7.68e-26 6.41e-25 3.48e-24 1.88e-23	9.95e-114 8.21e-29 1.65e-27 1.40e-26 7.68e-26 7.68e-26	Pred. No.

: .

TITLE

vascular endothelial growth factor-related factor 186 - mouse

4 4 4 D	43	42	41	40	39	38	37	36	35	34	ω 3	32	31	30	29	28	27	26	25	24
80 00	90	90	91	91	91	112	128	130	130	130	131	131	131	133	133	133	138	138	150	150
11.7	11.9	11.9	12.1	12.1	٠	14.9	17.0		17.2		17.4	17.4	17.4		17.6				19.9	
604	539	537	493	411	36	196	196	226	215	200	211	197	196	68	66	63	198	166	271	241
2 7	i)	Ν	N	N	N	N	N	N	N	N	μ	N	Ν	u	S	u	N	ν	N	H
A34231 A42044	A40581	B40581	S34775	S54797	A60706	A48851	A37359	I51550	S08220	I51551	PFHUG1	S25096	B28964	1PDGA2	1PDGC2	1PDGB2	JS0735	JN0248	A25669	PFHUG2
suffice reductase (NA beta subunit of L-typ	_		nicotinic acetylcholi	glutamate dehydrogena	vascular endothelial	platelet-derived grow	_	Platelet-derived grow	platelet-derived grow	platelet-derived grow	PDGF-related transfor	platelet-derived grow								
1.25e+00 1.25e+00	6.84e-01	6.84e-01	5.05e-01	5.05e-01	5.05e-01	5.56e-04	2.02e-06	9.83e-07	9.83e-07	9.83e-07	6.84e-07	6.84e-07	6.84e-07	3.30e-07	3.30e-07		5.24e-08		5.79e-10	5.79e-10

TC/680
ALTERNATE_NAMES VRF 167 protein ORGANISM #formal name Wischillis #common name house mouse
10
ACCESSIONS JC4680
#authors Townson, S.; Lagercrantz, J.; Grimmond, S.; Silins, G.;
Nordenskjoeld, M.; Weber, G.;
#Journal stochem. stophys. kes. commun. (1996) 220:928-928 #title Characterization of the murine VEGE-related factor gene.
sion
ule_type
##residues 1-188 ##label TOW
COMMENT This factor is a mitogen, that is selective for endothelial cells,
endothelial growth factors 167 and VEGF 186.
#1ntrons 137/2
22-188 #product vascular endothelial growth factor-related factor #status predicted #label MAT
SUMMARY #length 188 #molecular weight 21442 #checksum 5881
; Score 682; DB 2; ; Pred. No. 9.95e-1:
Db 1 MSPLIRRILIVALIDIARTOADVSOFDGDSHOKKVVDWTDVVARATGODREVVVDISMET. 60
QY 1 MSPLIKRLILAALIQIAPAQAPVSQPDAPGHQRKVVSWIDVTTRATCQPREVVVPLTVEL 60
Db 61 MCNVVKQLVPSCVTVQRCGGCCPDDGLECVPTGQHQVRMQ 100
QY 61 MGTVAKQLVPSCVTVQRCGGCCPDDGLECVPTGQHQVRMQ 100
T 2
ENTRY JC46/9 #type complete

Ē	
Ξ	:222
Ξ	
<u></u>	
. [
Ī.	,
	' <u>-</u>
(MT)	

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Fri Sep 18 13:55:32 1998; MasPar time 4.82 Seconds 339.293 Million cell updates/sec

Tabular output not generated.

Title: >US-08-765-588-10 (1-101) from US08765588.pep 754

Description:
Perfect Score:
Sequence: 1 MSPLLRRLLLAALLQLAPAQ......CPDDGLECYPTGQHQVRMQT 101

Scoring table: PAM 150 Gap 11

Searched: 131922 seqs, 16180660 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

a-geneseq32
1:part1 2:part2 3:part3 4:part4 5:part5 6:part6 7:part7
8:part8 9:part9 10:part10 11:part11 12:part12 13:part13
14:part14 15:part15 16:part16 17:part17 18:part18
14:part19 20:part20 21:part21 22:part22 23:part23
24:part24 25:part25 26:part26 27:part27 28:part28

Statistics: Mean 28.818; Variance 119.725; scale 0.241

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

.

										- : :	•		;	:	• •		٠.	G.	
_	_	_								· .	•	•		,	4		,	No.	Result
80	7	8	i.	4		. 6	, j.	6	9	. 6	7	7	5	4 7	3	2 7	1 . 7	Score	r†
66 3	66 3	66	68	94	25	82 . 9				82 9	82 . 9	49 9	49 9	749 9	49 9	49. 9	54 10	:	ပို့ န
5.3	5.3	ω	5.5	5.5	2.9	0.5		90.5		5	.5	ω.	ω.	9.3	ω.	.ω 	0.0	Match Lei	Query
500 18	421 18	377 18	595 18	102 21	221 23	207 19	207 21	195 21	188 19	188 21	133 21	207 19	207 21	188 19	188 21	143 19	101 19	Length DB	
W00589	W00584	W00586	W00595	W0482	W0761	W0086	. W0483	W04827	W00864	W04826	. W04828	W0072	. W04831	W00726	W04829	W00727	W00728	ij	
	•	on									ω		_		•	7			
SAP-Alamet-VEGF121-G1	SAP-Alamet-VEGF165.	SAP-AlaMet-VEGF121.	SAP-GlySer-VEGF165(Gl	Vascular endothelial	Human vascular endoth	Murine VRF186.	Vascular endothelial	Heart vascular endoth	Murine VRF167.	Heart vascular endoth	Vascular endothelial	Vascular endothelial	Vascular endothelial	Vascular endothelial	Fibrosarcoma vascular	Vascular endothelial	Vascular endothelial	Description	
1.88e-15	1.88e-15	1.88e-15	1.21e-15	1.04e-37	8.38e-51	1.54e-56	1.54e-56	1.54e-56	1.54e-56	1.54e-56	1.54e-56	2.66e-63	2.66e-63	2.66e-63	2.66e-63	2.66e-63	8.29e-64	Pred. No.	

0

45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19
256	256	256	256	256	256	256	256	256	256	256	256	259	259	259	259	259	259	259	259	259	259	266	266	266	266	266
	٠.	٠.	٠.	٠					34.0		٠.	٠	4		•	•	34.4	4	4	٠	4	Ġ	Ġ	Ġ	35.3	Ü
592 2	N	_	_	_		ᆫ	_		ш	ш	N		<u>د سر</u>	щ	ш	ᆫ	ш	щ	ш	ᆫ	_	ш	_	ш	<u>_</u>	,_
W3823			R9107	-		σ	œ		9 W00724	σ	7	æ	æ	œ			R9407		8 R94071	-	R940	W005	W0059	W005	8 W005	œ
fusion pro	2 fusion p	<pre>VEGF165-AlaMet-SAP.</pre>	Human vascular endoth	VEGF206.	.Human vascular permea	Human vascular endoth		ß	Vascular endothelial	S	Vascular endothelial	SAP(Gly4Ser)2VEGF165((Gly4Ser)VEGF165	(Gly4Ser)2VEGF121	21((Gly4Ser)	VEGF16	GF12	SAP(Gly4Ser)VEGF121.	VEGF165 Cys+2.	Cys	SAP-AlaMet-VEGF165(Gl	5 G	5	-Alamet-VEGF121(G	SAP-AlaMet-VEGF121(G1
é	. 66e-	.66e	.66e-	.66e-	.66e-	.66e-	.66e-	.66e-	1.66e-14	.66e-	.66e-	.65e-	. 65e-	.65e-	. 65e	. 65e-	.65e	. 65e	.65e-	.65e	. 65e	. 88e	.88e	.88e	. 88e	.88e-

Query Best Matcl	i i i i i i i i i i i i i i i i i i i			SOI
	survival Claim 14 Claim 14 Splice v Sequence	weber G; WPI; 96- N-PSDB; New grow useful f	WO962/00 06-SEP- 22-FEB- 02-MAR- 02-NOV- 20-NOV- 22-DEC- 22-DEC- (AMRA-)	W00728 W00728; 30-NOV- Vascula Vascula Vascula Homo sa Key peptide
ch 1 Sim	Survival Claim 14; Page 48 Splice variants (V factor-like polype cDNA clones (see 647, and exon 4 of least 1 of the pro proliferation of v fit-l/fik-l recept and/or an increase Recombinant SOM1/2; proliferation and Sequence 101 AA,	weber G; WPI; 96-412774/41. N-PSDB; T33613. New growth factor useful for inducin	06-SEP-1996. 06-SEP-1996. 22-FEB-1996; 02-MAR-1995; 20-NOV-1995; 22-DEC-1995; 24-DEC-1995; CAMRA-) AMRAI Grimmond S,	
llarit Cons	age 48; ants (W polype (see a) on 4 of the pro on of v recept ncrease SOM175 on and 101 AA;	774/41 513. factor	AU-0094 AU-001 AU-006 AU-006 AU-007 AU-007 AU-00ERA	dard; (fir (fir dothel dothel prolif s. L
Match 100.0%; Local Similarity 100.0%; nes 101; Conservative	Survival Claim 14; Page 48; 113pp; English. Splice variants (W00726-28) of the factor-like polypeptide SOM175 (see CDNA clones (see also T33611-13) r 6+7, and exon 4 of the SOM175 gene least 1 of the properties of SOM17 proliferation of vascular endothel fit-l/fik-l receptors, and to indu and/or an increase in intracellula Recombinant SOM175 proteins can be proliferation and to promote neura Sequence 101 AA;	relat	7-A1. 1996; AU0094. 1995; AU-001457. 1995; AU-006647. 1995; AU-007274. AMRAD OPERATIONS	## 1 ##00728 standard; Protein; 101 AA. ##00728; 30-NOV-1996 (first entry) Vascular endothelial growth factor- Vascular endothelial growth factor, astroglial proliferation. ### Rey ### Location/Qualifiers ### Proceeding
	SOM17 SOM17 SOM17 SOM17 SOM17 es of es of ar en ar en trace ceins comote	rogli	שי	
Score Pred. 0; M	ylish. of the free free free free free free free fre	vascu al pro	PTY LTD.	y) wth factor- wth factor; //Qualifiers Sig_peptide
754; DB 19; NO. 8.29e-64; Mismatches 0	Survival Claim 14; Page 48; 113pp; English. Splice variants (W00726-28) of the human vascular endothelial growt factor-like polypeptide SGM175 (see also W00725) are products of cDNA clones (see also T33611-13) respectively lacking exon 6, exons 6+7, and exon 4 of the SGM175 gene (see also T33610). They show at least 1 of the properties of SGM175 including the ability to induce proliferation of vascular endothelial cells, to interact with fit-l/fik-l receptors, and to induce cell migration, cell survival and/or an increase in intracellular levels of alkaline phosphatase. Recombinant SGM175 proteins can be used to induce astroglial proliferation and to promote neural survival and/or proliferation. Sequence 101 AA;	weber G; WPI; 96-412774/41. N-PSDB; T33613. New Prowth factor related to vascular endothelial growth factor - useful for inducing astroglial proliferation and promoting neuronal	C,	l AA. factor-like protein SOMI factor; VEGF; SOM175-e4; llifiers
DB 19; 29e-64 hes	vasco W007/ ively also uding ills, i miggills to ind ival	idothe	Nordenskjold	prote S, SOM
- -	ular e 1acki 1acki 13361C the a to int to int ration alkal alkal	lial ç		in SOM
Length 101; Indels	ndother process of the process of th	rowth	X	SOM175-e4.
0;	elial ducts on 6, hey sh hey sh to i with l surv nospha lial lial liferat	facto		4. ron;
Gaps	growth of oxons how at induce vival atase.	r -		•
0	-			

Delease 3 1% John F Collins, Biocomputing Research Unit.		
,		
TO S	 	
Collins	 [L_[=-]	
D.J.	' -' <u>-</u> '	
ocomput in		
g Researc		
h Un	* *	
<u>;</u>		
	<u> </u>	
	*	

Release 3.1A John F. Collins, a Documentally Research on Copyright (c) 1993-1998 University of Edinburgh, U.K. Copyright (c) 1993-1998 University of Edinburgh, U.K. Copyright (c) 1997-1997 University of Edinburgh (c) 1997-1997 U

Run on: MPsrch_pp protein - protein database search, using Smith-Waterman algorithm Fri Sep 18 14:00:02 1998; MasPar time 7.25 Seconds 441.000 Million cell updates/sec

Tabular output not generated.

Description: Perfect Score: Sequence: Title: >US-08-765-588-10 (1-101) from US08765588.pep 754 1 MSPLLRRLLLAALLQLAPAQ......CPDDGLECVPTGQHQVRMQT 101

Scoring table: PAM 150 Gap 11

Searched: 288199 seqs, 31643258 residues

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

1:P9 2:U60 3:U7 4:U80 5:U81 6:U82 7:U83 8:U84 9:U85 10:U86 11:U87 12:U88 13:U89 14:U90 15:U91 16:NEWP 17:NEWU6 18:NEWU7 19:NEWU8 20:NEWU9

Statistics: Mean 28.480; Variance 119.199; scale 0.239

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		*.	ri P	
	*		ស្លាល ការប្រាស់ ស្រួលការប្រាស់	Result
117 118 119 20	114	111098	4604001	• • • • • • • • • • • • • • • • • • • •
6888 6888 6888 6888 6888 6888 6888 688	749 749 685 682	749 749 749 749	749 749 749 749 749	Score
90.5	99.3 90.8	9999	0000000 000000000000000000000000000000	Query Match
133333333333333333333333333333333333333	207 207 188 133	188 207 207 207	188 188 188 188 188	Length
10 10 8	82.95	2000	0 11 0 11 0 10 0	8
ds- ds- ds-	- Sp Sp.	- 80 - 80 - 80 - 80 - 80 - 80 - 80 - 80	322323	Ħ
اسلدا وأبعله		7-1-1-1-1		
Sequence Seq	Sequence 1 Sequence 1 Sequence 1 Sequence 9	Sequence 1 Sequence 2 Sequence 1 Sequence 1 Sequence 1 Sequence 1	Sequence 11 Sequence 11 Sequence 11 Sequence 11 Sequence 57 Sequence 11	Description
Application Application Application Application Application Application Application	5, Applicati 5, Applicati , Applicatio), Applicatio	1, Applicati 2, Applicati 3, Applicati 5, Applicati 5, Applicati 5, Applicati	Appl Appl Appl Appl Appl Appl Appl	
atio atio atio atio	cati cati atio atio	icati catio icati icati icati	cati fcati fcati fcati fcati	1 1 1 1
7.02e-56 7.02e-56 7.02e-56 7.02e-56 7.02e-56	1.35e-62 1.35e-62 1.35e-56 3.51e-56 7.02e-56	1.35e-62 1.35e-62 1.35e-62 1.35e-62 1.35e-62	1.35e-62 1.35e-62 1.35e-62 1.35e-62 1.35e-62 1.35e-62	Pred No.
•				

. 22 18 C. P. A.

50000000000000000000000000000000000000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
888899999999999999999999999999999999999
 ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω
955 955 955 955 955 955 955 955 955 955
110 110 110 110 110 110 110 110 110 110
200
And the same of th
bass bass bass bass bass bass bass bass
sequence seq

6	5	<u>و</u>	9,	66	6	33	39	33	33	68	89	89	83	68	68	89	8 682	68	68	89	68	68	68
N	Ň	Ñ	Ν	9	9	0		0	0					.0	.0	.0	90.5		.0	.0	۰.	.0	
21]	21	21 1	21	97	97 1	9	07 1	9	95	95	95	95 1	95	95 1	95	88	188 9	88 1	88	88 1	88	88	ü
_	_	SD	SD	_	SD	٦	_	d	a	а	a	SD	SD	a	SD	SD	US-	g	a	SD	a	a	ਖ
	ļ	ļ			į	ļ	į	Ţ		ř	- T		-	Ą	eq.		4	Ţ	-				
equence	equence	equence	equence 2	equence 1	equence 7	equence 5	Sequence 5,	equence 5	equence 5	equence 5	equence	equence	equence										

	25	25	5	5	80	8	80	8	8	ະ	ະ	ະ	ະ	ະ	ຮ	ຮ	ຮ	ຮ	ະ	ະວ	ຮ	ຮ	Σ̈	ະ	
	2	2	N	2		.0	90.2	0			.0	٥.	٥.		.0	.0		.0		.0		٥			
	21]	21	21 1	21	9	97 1	207	07 1	9	95	95	95	95 1	95	95 1	95	88	88	88 1	88	88 1	88	88	ω	
	_	_	_	_	٦	_	SD 6	_	d	a	а	a	a	a	a	a	a	a	₫	a	▫	a	a	a	
	Š		-	-	3-	-	-	Ÿ	-	-			-	-		-	: :	-	ŀ	1	-)
	Ļ	Ļ	ļ			Ţ	ŧ	Ŧ	ř	Ť	7	Ť	7		Ŷ.		,	4	7	-				-	
	Sequence	equen	g	.ტ	æ	equen	 Sequence 	ტ.	 Sequence 	æ	equen	.ტ	m	Sequence	m	Sequence	Sequence	9.	 Sequence 	ě		9	ם	Sequence	
•	equence 5, Applicati	equence 2, Applicat	equence 2, Applicati	equence 2, Applicati	equence 13, Applicat	equence 13, Applicat	equence 13, Applic	equence 13, Applicat	equence 13, Applicat	equence 7, Applicati	equence 5, Applicati	equence 5, Applicati	equence 5, Applicati	equence 5, Applicati	equence 5, Applicati	equence 5, Applicati	equence 5, Applicat	equence 9, Applicati							

7.02e-56

888888888888888888888888888888888888888	ZX ZX X Z X Z X Z X Z X Z X Z X Z X Z X
GEG Seg	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sequence 56, GENERAL INFC APPLICANT: APPLICANT: APPLICANT: TITLE OF I NUMBER OF CORRESPONI ADDRESSE STREET: CITY: C ZIP: 66 COMPUTER I MEDIUM 1 COMPUTER I COMPUTER I COMPUTER I COMPUTER I FILING I CLASSIF PRIOR APPLICAN FILING I	0 0 0000000000000000000000000000000000
nce 56, A PLICANT: PLICANT: PLICANT: PLICANT: PLICANT: PLICANT: PLICANT: PLICANT: PLICANT: PLICANT: PLICANT: CITY: Ch STREET: COUNTRX: COUNTRX: COUNTRX: COUNTRX: COUNTRX: FILING TAPPITARE: FILING DA APPLICATI FILING DA FILING	
APP. RMAN A A A A A A A A A A A A A A A A A A A	5.5 188 10.5 188 10.5 188 10.5 188 10.5 188 10.5 188 10.5 195 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.
plication ATION: Alitalo, J Joukov, V J Joukov, V J J J J J J J J J J J J J J J J J J J	1188 1188 1188 1188 1195 1195 1195 1195
	3 9 004000000000000000000000000000000000
lication US/08671 PIYON: Receptor UENCES: 58 E ADDRESS: Marshall, O'Too. OO Sears Tower, ago inois inited States of a ADLE FORM: E FOR	10 US- 10 US- 9 US- 9 US- 10 US- 11 US- 11 US- 12 US- 13 US- 14 US- 14 US- 15 US- 16 US- 17 US- 18 US- 18 US- 19 US- 10 US- 11 U
US/08671573B ari adimir addimir 158 8 100	SS-
L 15 15 16 17 18 18 18	55 EE S S S S S S S S S S S S S S S S S
1573B Ligand Ligand le, Gerstein, Murray & Borun 233 South Wacker Drive America e g-DOS #1.0, Version #1.30 671,573B .,132 .,132 .,133 .,895 .,133 .,895	Sequence 5, Application Sequence 5, Application Sequence 5, Application Sequence 5, Application Sequence 7, Application Sequence 13, Application Sequence 2, Application Sequence 2, Application Sequence 2, Application Sequence 2, Application Sequence 3, Application

Best Available Copy

	45	44	43	42	41	40	39	38	37	36	35	34	ω G	32	31	30	29	28	27	26	25	4.7
	132	132	133	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	152	152	7.07
	17.5	17.5	17.6	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	20.2	20.2	20.2
	271	196	256	282	241	241	241	241	241	241	226	220	160	120	109	109	109	109	109	241	109	TO A
•	ų	Н	w	μ	Ŋ	ω	ب	ω	ω	ω	ω	w	۳	w	N	ب	ν	Н	ω	۳	H	۲
ALIGNMENTS	5175255-1	US-08-469-	5175255-9	US-08-445-	PCT-US96-0	5175255-8	US-08-387-	5219739-15	5175255-2	5194596-15	5498600-2	5175255-4	US-08-094-	5428135-2	PCT-US91-0	σS-08-094-	PCT-US93-0	US-08-094-	5498600-3	US-08-469-	US-08-094-	05-00-094-
•	Patent No. 5175255.	Sequence 12, Applicati	Patent No. 5175255.	1,	Sequence 9, Applicatio	5	Sequence 4, Applicatio	Patent No. 5219739.	Patent No. 5175255.	Patent No. 5194596.	NO.				18	2	1,	Sequence 4, Applicatio	Patent No. 5498600.	Sequence 13, Applicati		sequence o, Applicatio
	_	1.10e	9.01e-04	3.00e	3.00e	ω	3.00e-05	3.00e-05	3.00e-05	3.00e-05	3.00e-05	3.00e-05			3.00e-05	3.00e-05			w	N		2.00e-05

- 4888888888888888888888888888888888888	RESULT ID U XX AC x AC x XX DT DT S
Seding Se	US-08-469-427A-11 xxxxxx Sequence 11, Appl
equence 11, Application United No. 5607918 GENERAL INFORMATION: APPLICANT: Eliksson, DAPPLICANT: Alitalo, KA APPLICANT: Alitalo, KA APPLICANT: Pajusola, KA TITLE OF INVENTION: VA TITLE OF INVENTION: DA TELEPHONES: TORM MEDIOM TYPE: Floppy COMPUTER REALABLE FORM MEDIOM TYPE: Floppy COMPUTER: PATENTION NUMBER: FILING DATE: 01-70 OPERATION TORMET APPLICATION NUMBER: FILING DATE: 01-70 OPERATION NUMBER: CC TELEPHONE: (10 CC CC CC TELEPHONE: (10	469-42 ce 11,
Ce 11, Applicati E NO. 5607918 AL INFORMATION: FLICANT: DISTRIBUTION: FLICANT: Olofsso FREET: 1200 G S FREET: 1200 G S FRIET: DC FLICATION TYPE: FLICANTICE: DC FREET REALABLE: IMPUTER REALABLE: IMPUTER REALABLE: FLICANTION NUME FILING DATE: OLOFICATION NUME FILING DATE: OR CLASSIFICATION NUME FILING DATE: TELEFAXION FREETERSTICATION APPLICATION NUME FILING DATE: TELEFAXION FREETERSTICATION APPLICATION APPLICATION FREETERSTICATION APPLICATION APPLICATION FREETERSTICATION FREETERSTICATION RESTSTRATION RESTSTRATION SECURMATION	7A-11 Appli
nce 11, Application US/ t No. 5607918 t No. 5607918 t No. 5607918 t No. 5607918 tral information: plicant: plisson, Ulf plicant: olofsson, Bir plicant: alitalo, Kari plicant: olofsson, Mo street: 1200 G Street, STREET: 1200 G Street, STREET: 1200 G Street, CITY: Washington STATE: DC STATE:	A-11 ST
ence 11, Application US/08469427A nt No. 5607918 eral Information: PPLICANT: Eriksson, Ulf PPLICANT: Olofsson, Birgitta PPLICANT: Olofsson, Birgitta PPLICANT: Olofsson, Marri PPLICANT: Pajusola, Katri PPLICANT: Pajusola, Katri ITLE OF INVENTION: VASCULAR ENDOTHI ITLE OF INVENTION: ASCORDANT ON THE PROPOSITION STATE: DC REPLICATION NUMBER: US 08/397.6 PRICA APPLICATION NUMBER: US 08/397.6 PRICA APPLICATION NUMBER: 05.269 REGISTRATION NUMBE	STANDARD;
US/08469427A Ulf Birgitta dari Katri Jordan Jord	ANDARD; P
	PRT;
Ρ	188
GROWTH F Lenahan	AA.
FACTOR-B	
·	
AND	