SISTEMAS NÚMERICOS

KAREN IRAIS MONTALVO REYES 1AS

Es un conjunto de elementos (símbolos o números), operaciones y relaciones que por intermedio de reglas propias permite establecer el papel de tales relaciones y operaciones.

SISTEMA BINARIO

Es el sistema de base 2, ya que utiliza solo los dígitos: 1 y 2, y es muy utilizado en la informática ya que mediante esto, los dispositivos electrónicos pueden representar y procesar la información. Además, se trata de un sistema posicional.

BINARIO A OCTAL

- 1. Dividir el número binario en grupos de tres dígitos de derecha a izquierda.
- 2. Escribir las potencias de dos según la posición del numero en cada grupo.
- 3. Identificamos solo los 1 de cada grupo y hacemos la suma entre 4, 2 y 1

0 0 1	0 1 0	101
421	421	4 2 1
1	2	5

BINARIO A DECIMAL

- 1. Numeramos de derecha a izquierda comenzando desde el 0.
- 2. Ese número asignado será el exponente que le corresponde.
- 3. Cada número se multiplica por 2 elevado al exponente que le corresponde .
- 4. Se suman todos los productos y el resultado será en decimal

BINARIO A HEXADECIMAL

- 1. Colocamos los dígitos binarios en grupos de 4 desde la derecha
- 2. Escribir los números (8, 4, 2 y 1) debajo de los grupos binarios.
- 3. Suma los números (8, 4, 2 y 1) correspondientes solo si el digito binario es 1
- 4. para representar valores superiores a 9, se utilizarán letras.

0010	1010	1010
8 4 2 1	8 4 2 1	8 4 2 1
2	10 = A	10 = A

0 | 0 1 | 1 2 | 2 3 | 3 4 | 4 5 | 6 7 | 8 9 | 9 10 | A 11 | B 12 | C 13 | D 14 | E 15 | F

SISTEMA OCTAL

Es un sistema de base 8, esto quiere decir que utiliza dígitos del 0 al 7, y cada posición de un número representa el valor de una potencia de 8.

OCTAL A BINARIO

- 1. Escribe el número octal y debajo de cada digito se escribirá los números 4,2 y 1 que son potencias de 2.
- 2. Identificamos que números de 4,2 y 1, suman el digito del numero octal en la parte superior.
- 3. Los números que se utilizan en la suma equivalen a 1, y los que no se ocupan valdrá 0.

	7			6			4	
4	2	1	4	2	1	4	2	1
1	1	1	1	1	0	1	0	0

OCTAL A DECIMAL

- 1. Se escribe el número con la potencia de 8 comenzando desde el lado derecho.
- 2.Por prioridad de operadores, se realiza primero las potencias, luego la multiplicación y por ultimo la suma.
- 3.La suma de los valores nos dará el numero octal en decimal.

$$(140)_8 = 1 \times 8^2 + 4 \times 8^1 + 0 \times 8^0$$

 $8^2 = 64, 8^1 = 8, 8^0 = 1$
 $1 \times 64 + 4 \times 8 + 0 \times 1 = 64 + 32 + 0$
 $64 + 32 + 0 = 96$.

OCTAL A HEXADECIMAL

La forma mas sencilla y rápida para esta conversión es:

- 1. Convertir el número octal a binario.
- 2. Luego convertir el número binario a hexadecimal.

Para esto, se ocupará la información ya dada anteriormente.

SISTEMA DECIMAL

Este sistema numérico es de base 10, lo que quiere decir que solo ocupa 10 dígitos que son del 0 al 9. Es el sistema más utilizado en nuestro entorno ya que es utilizado para formar cantidades, expresar una medida, hacer cálculos, etc.

DECIMAL A BINARIO

- 1. Divide el número decimal por 2 y encuentra el residuo
- 2. Ahora el cociente que se obtiene se divide por 2 y encuentra el resto.
- 3. Y así sucesivamente hasta que el cociente sea 0.
- 4. Los residuos obtenidos se leen de abajo hacia arriba y ese seria el número binario. División por 2 Cociente Resto

6/2 3	0	Resto	Cociente	División por 2
6/2 3		1	12	25/2
		0	6	12/2
		0	3	6/2
3/2 1 1		1	1	3/2
1/2 0 1		1	0	1/2

DECIMAL A OCTAL

- Divide el número decimal por 8 y registra el residuo.
- Usa el cociente para volver a dividir entre 8
- Repite hasta que el cociente sea 0.
- Lee los restos en orden inverso para obtener el número octal.

División por 2	Cociente	Resto
345/8	43	1
43/8	5	3
5/8	0	5

DECIMAL A HEXADECIMAL

- Divide el número decimal entre 16.
- Usar el cociente para volverlo a dividir entre 16.
- Repetir los pasos hasta que el cociente sea igual a 0.
- Leer los restos en orden inverso que equivaldrá al numero hexadecimal

División por 16	Cociente (entero)	Resto (decimal)	Resto (hexadecimal)
7562/16	472	10	А
472/16	29	8	8
29/16	1	13	D
1/16	0	1	1

SISTEMA HEXADECIMAL

Hexadecimal	Decimal	Hexadecimal	Decimal
0	0	8	8
1	1	9	9
2	2	Α	10
3	3	В	11
4	4	С	12
5	5	D	13
6	6	E	14
7	7	F	15

Sistema numérico de base 16, se le llama así porque ocupa 16 dígitos, los cuales están de los números del 0 al 9 y las letras del A a la F. Si el digito es 10 se considera que es la letra A, el 11 es la B y así sucesivamente hasta llegar a la F. Este sistema se ocupa para comprimir datos.

HEXADECIMAL A BINARIO

- Escribir el número hexadecimal. Si hay letras que representan valores hexadecimales, cámbialas por sus equivalentes en decimal.
- Cada dígito hexadecimal vale 4 dígitos binarios, por lo que debajo de cada dígito ponemos los valores de 8, 4, 2 y 1.
- Observar que números sumados dan el digito hexadecimal, los que se ocupan equivaldrán a 1 y los otros a 0.

Ej. 4FA = 10011111010

4	15	10
8 4 2 1	8 4 2 1	8 4 2 1
0100	1111	1010

HEXADECIMAL A OCTAL

La forma mas sencilla y rápida para esta conversión es:

- 1. Convertir cada dígito hexadecimal a 4 dígitos binarios.
- 2. Luego convertir cada 3 dígitos binarios a octal.

Para esto, se ocupará la información ya dada en esta infografía.

1. 65E = 0110 0101 1110
= 011001011110
2. 011001011110 = 011 001 011 110
= 3136

HEXADECIMAL A DECIMAL

- 1. Escribimos el número hexadecimal, si hay alguna letra la convertimos a su número decimal
- 2.Se escribe el número con la potencia de 16 comenzando desde el lado derecho.
- 3.Por prioridad de operadores, se realiza primero las potencias, luego la multiplicación y por ultimo la suma.
- 4.La suma de los valores nos dará el numero hexadecimal en decimal.

E7A9 = $14 \times 16^{3} + 7 \times 16^{2} + 10 \times 16^{1} + 9 \times 16^{0}$ = 57344 + 1792 + 160 + 9 = 59305

BIBLIOGRAFIA

- Notion the all-in-one workspace for your notes, tasks, wikis, and databases. (s. f.).
 Notion. https://didyde.notion.site/Introducci-n-a-los-Sistemas-Num-ricos-80a5f80927b143b08c700853d32e3f62#01e4d4a947eb4cf98f75f2cc3ed298ae
- 80a5f80927b143b08c700853d32e3f62#01e4d4a947eb4cf98f75f2cc3ed298ae

 Jiménez Murillo, José Alfredo. (2008). Matemáticas para la Computación. México: Editorial Alfaomega.
- areatecnologia (s. f.-b). Sistema binario y lenguaje binario Aprende facil.
 https://www.areatecnologia.com/sistema-binario.htm
- Masterplc. (2024, 18 mayo). Convertir Hexadecimal a Decimal. MasterPLC. https://masterplc.com/calculadora/hexadecimal-a-decimal/#google_vignette
- Los sistemas de enumeración, capitulo 3. sistemas-de-numeracion. p. 79 98.