14

日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1997年10月 8日

ENU

出 願 番 号 Application Number:

平成 9年特許願第276271号

出 願 人 Applicant (s):

財団法人相模中央化学研究所

株式会社プロテジーン

PRIORITY DOCUMENT

1998年11月 6日

Commissioner,
Patent Office

译位山建調

【書類名】 特許願

【整理番号】 S018122

【提出日】 平成 9年10月 8日

【あて先】 特許庁長官殿

【発明の名称】 膜貫通ドメインを有するヒトタンパク質及びそれをコー

ドするDNA

【請求項の数】 5

【発明者】

【住所又は居所】 神奈川県相模原市若松3-46-50

【氏名】 加藤 誠志

【発明者】

【住所又は居所】 東京都葛飾区高砂5-13-11

【氏名】 山口 知子

【発明者】

【住所又は居所】 神奈川県相模原市西大沼4-4-1

【氏名】 関根 伸吾

【発明者】

【住所又は居所】 神奈川県藤沢市長後647-2

【氏名】 小林 みどり

【特許出願人】

【代表出願人】

【識別番号】 000173762

【郵便番号】 229

【住所又は居所】 神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】 財団法人相模中央化学研究所

【代表者】 近藤 聖

【電話番号】 0427(42)4791

【特許出願人】

【識別番号】 596134998

【郵便番号】

【住所又は居所】 東京都目黒区中町2丁目20番3号

【氏名又は名称】 株式会社プロテジーン

153

【代表者】 棚井 丈雄

【電話番号】 03(3792)1019

【手数料の表示】

【予納台帳番号】 011501

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 膜貫通ドメインを有するヒトタンパク質及びそれをコードする DNA

【特許請求の範囲】

【請求項1】 配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質。

【請求項2】 請求項1記載の蛋白質のいずれかをコードするDNA。

【請求項3】 配列番号11から配列番号20で表される塩基配列のいずれかを含むcDNA。

【請求項4】 配列番号21から配列番号30で表される塩基配列のいずれかからなる、請求項3記載のcDNA。

【請求項5】 請求項2から請求項4記載のいずれかのDNAを発現し、請求項1記載の蛋白質を生産しうる形質転換真核細胞。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、膜貫通ドメインを有するヒト蛋白質、それをコードしている c D N A 、および該 c D N A を発現させた真核細胞に関する。本発明の蛋白質は、医薬品として、あるいは該蛋白質に対する抗体を作製するための抗原として用いることができる。本発明の ヒト c D N A は、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、該 c D N A がコードしている蛋白質を大量生産するための遺伝子源として用いることができる。これら膜蛋白質遺伝子を導入して膜蛋白質を大量発現させた細胞は、対応するリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。

[0002]

【従来の技術】

膜蛋白質は、シグナルレセプター、イオンチャンネル、トランスポーターなど として、細胞膜を介する物質輸送や情報伝達において重要な役割を担っている。 例えば、各種サイトカインに対するレセプター、ナトリウムイオン・カリウムイ

オン・塩素イオン等に対するイオンチャンネル、糖・アミノ酸等に対するトランスポーターなどが知られており、その多くはすでに遺伝子もクローン化されている。

[0003]

これらの膜蛋白質の異常は、これまで原因不明であった多くの病気と関連していることがわかってきた。例えば、嚢胞性線維症の原因遺伝子として12個の膜質通ドメインを有する膜蛋白質の遺伝子が同定された [Rommens, J. M. et al., Science 245:1059-1065(1989)]。また、いくつかの膜蛋白質は、ウイルスが細胞に感染する際のレセプターとして働いていることがわかってきた。、例えば、HIV-1は、T細胞膜上の膜蛋白質、CD4抗原と7個の膜質通ドメインを有する膜蛋白質ヒュージンを介して細胞内に感染することが示された [Feng, Y. et al., Science 272:872-877(1996)]。従って、新しい膜蛋白質が見い出せれば、多くの病気の原因解明につながるものと期待され、膜蛋白質をコードする新たな遺伝子の単離が望まれている。

[0004]

従来、膜蛋白質は、精製することが困難なので、遺伝子の方からのアプローチによって単離されたものが多い。一般的な方法は、cDNAライブラリーを真核細胞に導入して、cDNAを発現させたのち、目的とする膜蛋白質を膜上に発現している細胞を、抗体を用いる免疫学的な手法や膜の透過性の変化を生理学的な手法で検出する、いわゆる発現クローニングである。しかしこの方法では機能のわかった膜蛋白質の遺伝子しかクローン化できない。

[0005]

一般に膜蛋白質は、蛋白質内部に疎水性の膜貫通ドメインを有しており、リボ

下している蛋白質のアミノ酸配列の中に疎水性の高い膜貫通ドメインが存在すれば、そのcDNAは膜蛋白質をコードしていると考えられる。

【発明が解決しようとする課題】

本発明の目的は、膜貫通ドメインを有する新規のヒト蛋白質、該蛋白質をコードするDNA、および該cDNAを発現しうる形質転換真核細胞を提供することである。

[0007]

【課題を解決するための手段】

本発明者らは鋭意研究の結果、ヒト完全長 c D N A バンクの中から膜貫通ドメインを有する蛋白質をコードする c D N A をクローン化し、本発明を完成した。すなわち、本発明は膜貫通ドメインを有するヒト蛋白質である、配列番号 1 から配列番号 1 0 で表されるアミノ酸配列のいずれかを含む蛋白質を提供する。また本発明は上記蛋白質をコードする D N A、例えば配列番号 1 1 から配列番号 2 0 で表される塩基配列のいずれかを含む c D N A 並びに該 c D N A を発現しうる形質転換真核細胞を提供する。

[0008]

【発明の実施の形態】

本発明の蛋白質は、ヒトの臓器、細胞株などから単離する方法、本発明のアミノ酸配列に基づき化学合成によってペプチドを調製する方法、あるいは本発明の膜貫通ドメインをコードするDNAを用いて組換えDNA技術で生産する方法などにより取得することができるが、組換えDNA技術で取得する方法が好ましく用いられる。例えば、本発明のcDNAを有するベクターからインビトロ転写によってRNAを調製し、これを鋳型としてインビトロ翻訳を行なうことによりインビトロで蛋白質を発現できる。また翻訳領域を公知の方法により適当な発現ベクターに組換えてやれば、大腸菌、枯草菌等の原核細胞、酵母、昆虫細胞、哺乳動物細胞等の真核細胞で、コードしている蛋白質を大量に生産することができる

[0009]

本発明の蛋白質を、大腸菌などの微生物で生産させる場合には、微生物中で複製可能なオリジン、プロモーター、リボソーム結合部位、cDNAクローニング部位、ターミネーター等を有する発現ベクターに、本発明のcDNAの翻訳領域

を組換えた発現ベクターを作成し、該発現ベクターで宿主細胞を形質転換したのち、得られた形質転換体を培養してやれば、該cDNAがコードしている蛋白質を微生物内で大量生産することができる。この際、任意の翻訳領域の前後に開始コドンと停止コドンを付加して発現させてやれば、任意の領域を含む蛋白質断片を得ることができる。あるいは、他の蛋白質との融合蛋白質として発現させることもできる。該融合蛋白質を適当なプロテアーゼで切断することによって該cDNAがコードする蛋白質部分のみを取得することもできる。

[0010]

本発明の蛋白質を、真核細胞で生産させる場合には、該cDNAの翻訳領域を、プロモーター、スプライシング領域、ポリ(A)付加部位等を有する真核細胞用発現ベクターに組換え、真核細胞内に導入してやれば、本発明の蛋白質を膜蛋白質として細胞膜表面上で生産することができる。発現ベクターとしては、pKA1、pCDM8、pSVK3、pMSG、pSVL、pBK-CMV、pBK-RSV、EBVベクター、pRS、pYES2などが例示できる。真核細胞としては、サル腎臓細胞COS7、チャイニーズハムスター卵巣細胞CHOなどの哺乳動物培養細胞、出芽酵母、分裂酵母、カイコ細胞、アフリカツメガエル卵細胞などが一般に用いられるが、本蛋白質を膜表面に発現できるものであれば、いかなる真核細胞でもよい。発現ベクターを真核細胞に導入するには、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法など公知の方法を用いることができる。

[0011]

本発明の蛋白質を原核細胞や真核細胞で発現させたのち、培養物から目的蛋白質を単離精製するためには、公知の分離操作を組み合わせて行うことができる。 例えば、尿素などの変性剤や界面活性剤による処理、超音波処理、酵素消化、塩

promise grant of the companies of the companies of the

フィニティークロマトグラフィー、逆相クロマトグラフィーなどがあげられる。 【0012】

大発明、蛋白質には、割肉養料、こと配何番別。 - 表さまで、 一一酸配列

いかなる部分アミノ酸配列を含むペプチド断片(5アミノ酸残基以上)も含まれる。これらのペプチド断片は抗体を作製するための抗原として用いることができる。また、本発明の蛋白質の中でシグナル配列を有するものは、シグナル配列が除去された後、成熟蛋白質の形で細胞表面に出てくる。したがって、これらの成熟蛋白質は本発明の蛋白質の範疇にはいる。成熟蛋白質のN末端アミノ酸配列は、シグナル配列切断部位決定法[特開平8-187100]を用いて容易に求めることができる。また、いくつかの膜蛋白質は、細胞表面でプロセシングを受けて分泌型となる。このような分泌型となった蛋白質あるいはペプチドも本発明の蛋白質の範疇にはいる。アミノ酸配列の中に糖鎖結合部位が存在すると、適当な真核細胞で発現させれば糖鎖が付加した蛋白質が得られる。したがって、このような糖鎖が付加した蛋白質あるいはペプチドも本発明の蛋白質の範疇にはいる。

[0013]

本発明のDNAには、上記蛋白質をコードするすべてのDNAが含まれる。該 DNAは、化学合成による方法、cDNAクローニングによる方法などを用いて 取得することができる。

[0014]

本発明のcDNAは、例えばヒト細胞由来cDNAライブラリーからクローン化することができる。cDNAはヒト細胞から抽出した ポリ (A) +RNAを鋳型として合成する。ヒト細胞としては、人体から手術などによって摘出されたものでも培養細胞でも良い。cDNAは、岡山-Berg法[Okayama, H. and Berg, P., Mol. Cell. Biol. 2:161-170 (1982)]、Gubler-Hoffman法[Gubler, U. and Hoffman, J., Gene 25:263-269 (1983)]などいかなる方法を用いて合成してもよいが、完全長クローンを効率的に得るためには、実施例にあげたようなキャッピング法[Kato, S. et al., Gene 163:193-196 (1995)]を用いることが望ましい

[0015]

膜貫通ドメインを有するヒト蛋白質をコードするcDNAの第一次選別は、c

DNAライブラリーから任意に選択したcDNAクローンの部分塩基配列決定、塩基配列がコードするアミノ酸配列の決定、得られたN末端アミノ酸配列領域内の疎水性部分の有無の確認によって行なう。次いでシーケンシングによる全塩基配列の決定、インビトロ翻訳による蛋白質発現によって第二次選別行なう。本発明のcDNAが、分泌シグナル配列を有する蛋白質をコードしていることの確認は、シグナル配列検出法[Yokoyama-Kobayashi, M. etal., Gene 163:193-196(1995)]を用いて行う。すなわち、ターゲット蛋白質のN末端をコードするcDNA断片を、ウロキナーゼのプロテアーゼドメインをコードするcDNAと融合させたのち、COS細胞内で発現させ、ウロキナーゼ活性が細胞培養液中に検出された場合には、挿入したcDNA断片がコードしている部分が、シグナル配列として機能していることを意味する。一方、ウロキナーゼ活性が培地中に検出できない場合には、N末端部は膜中に留まっていることを意味する。

[0016]

本発明のcDNAは、配列番号11から配列番号20で表される塩基配列あるいは配列番号21から配列番号30で表される塩基配列のいずれかを含むことを特徴とするものである。それぞれのクローン番号(HP番号)、cDNAクローンが得られた細胞、cDNAの全塩基数、コードしている蛋白質のアミノ酸残基数をそれぞれ表1にまとめて示した。

[0017]

【表1】

表 1

配列番号	HP番号	細胞	塩基数	アミノ酸 が #**
	1.1 × 1.2 11.11	日把	$\vartheta \neq \vartheta$	i 23
2, 12, 22	HP01498	胃癌	1 2 7 9	220
		The state of the s		

4、	14.	2 4	HP01606	胃癌	1 2 5 6	3 0 1
5、	15,	2 5	HP01737	胃癌	1 3 0 5	3 8 3
6、	16,	2 6	HP01962	肝臓	899	199
7、	17,	2 7	HP10435	胃癌	905	2 2 9
8,	18,	2 8	HP10479	PMA-U937	8 4 1	178
9.	19,	2 9	HP10481	PMA-U937	1 4 5 1	4 4 3
10,	20,	3 0	HP10495	胃癌	886	1 3 0

[0018]

なお、配列番号11から配列番号30のいずれかに記載のcDNAの塩基配列に基づいて合成したオリゴヌクレオチドプローブを用いて、本発明で用いたヒト細胞株やヒト組織から作製したcDNAライブラリーをスクリーニングすることにより、本発明のcDNAと同一のクローンを容易に得ることができる。

[0019]

一般にヒト遺伝子は個体差による多型が頻繁に認められる。従って配列番号1 1から配列番号30において、1又は複数個のヌクレオチドの付加、欠失および /又は他のヌクレオチドによる置換がなされているcDNAも本発明の範疇には いる。

[0020]

同様に、これらの変更によって生じる、1又は複数個のアミノ酸の付加、欠失 および/又は他のアミノ酸による置換がなされている蛋白質も、配列番号1から 配列番号10で表されるアミノ酸配列を有するそれぞれの蛋白質の活性を有する 限り、本発明の範疇に入る。

[0021]

本発明のcDNAには、配列番号11から配列番号20で表される塩基配列あるいは配列番号21から配列番号30で表される塩基配列のいかなる部分塩基配列を含むcDNA断片(10bp以上)も含まれる。また、センス鎖およびアンチセンス鎖からなるDNA断片もこの範疇にはいる。これらのDNA断片は遺伝子診断用のプローブとして用いることができる。

[0022]

【実施例】

次に実施例により発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。DNAの組換えに関する基本的な操作および酵素反応は、文献 ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory、1989]に従った。制限酵素および各種修飾酵素は特に記載の無い場合宝酒造社製のものを用いた。各酵素反応の緩衝液組成、並びに反応条件は付属の説明書に従った。cDNA合成は文献 [Kato, S. et al., Gene 150:243-250(1994)]に従った。

[0023]

(1) ポリ(A) ⁺RNAの調製

mRNAを抽出するためのヒト細胞として、ホルボールエステルで刺激した組織球リンホーマ細胞株U937(ATCC CRL 1593)、手術によって摘出された胃癌組織並びに肝臓を用いた。細胞株の培養は、常法に従って行った

[0024]

ヒト細胞約1gを5.5Mグアニジウムチオシアネート溶液20m1中でホモジナイズした後、文献 [Okayama, H. et al., "Methods in Enzymology" Vol. 164、Academic Press、1987] に従い、総mRNAを調製した。これを20mMトリス塩酸緩衝液(pH7.6)、0.5MNaCl、1mMEDTAで洗浄したオリゴdTセルロースカラムにかけ、上掲文献に従いポリ(A) +RNAを得た。

[0025]

溶解し、RNaseを含まないバクテリア由来アルカリホスファターゼ1単位を 添加し、37℃1時間反応させた。反応液をフェノール抽出後、エタノール沈殿

0.1%2-メルカプトエタノール、<math>0.01%Triton X-100溶液に溶解した。これに、タバコ由来酸ピロホスファターゼ(エピセンターテクノロジーズ社製)1単位を添加して、総量 $100\mu1$ で37%1時間反応させた。反応液をフェノール抽出後、エタノール沈殿を行ない、ペレットを水に溶解し、脱キャップ処理したポリ(A) $^+$ RNA溶液を得た。

[0026]

脱キャップ処理したポリ(A) $^+$ RNA、DNA $^-$ RNAキメラオリゴヌクレオチド(5' $^-$ dG $^-$

[0027]

[0028]

先に調製したキメラオリゴキャップ付加ポリ(A) $^+$ RNA 6μ gを、ベクタープライマー 1.2μ gとアニールさせた後、 $50\,\mathrm{mM}$ トリス塩酸緩衝液(pH 8.3)、 $75\,\mathrm{mM}$ KCl、 $3\,\mathrm{mMM}$ gCl $_2$ 、 $10\,\mathrm{mM}$ ジチオスレイトール、 $1.25\,\mathrm{mM}$ dNTP(dATP+dCTP+dGTP+dTTP)溶液に溶解し、逆転写酵素(GIBCO-BRL社製) $200\,\mathrm{e}$ 位を添加し、総量 $20\,\mathrm{\mu}$ lで42 $^\circ$ 1時間反応させた。反応液をフェノール抽出後、エタノール沈殿を行ない、ペレットを $50\,\mathrm{mM}$ トリス塩酸緩衝液(pH 7.5)、 $100\,\mathrm{mMN}$ aCl、 $10\,\mathrm{mMM}$ gCl $_2$ 、 $1\,\mathrm{mM}$ ジチオスレイトール溶液に溶解した。これにEcoRI100 e位を添加し、総量 $20\,\mathrm{\mu}$ lで37 $^\circ$ 1時間反応させた。反応液を

フェノール抽出後、エタノール沈殿を行ない、ペレットを $20\,\mathrm{mM}$ トリス塩酸緩衝液($\mathrm{p}\,\mathrm{H}\,7$. 5)、 $100\,\mathrm{mM}\,\mathrm{K}\,\mathrm{C}\,1$ 、 $4\,\mathrm{mMM}\,\mathrm{g}\,\mathrm{C}\,1_{2}$ 、 $10\,\mathrm{mM}\,$ ($\mathrm{N}\,\mathrm{H}_4$) $2\,\mathrm{S}\,\mathrm{O}_4$ 、 $50\,\mu\,\mathrm{g}/\mathrm{m}\,1$ 牛血清アルブミン溶液に溶解した。これに大腸菌DN Aリガーゼ $60\,\mathrm{P}\,\mathrm{D}\,\mathrm{E}$ を添加し、 $16\,\mathrm{C}\,16\,\mathrm{F}\,\mathrm{E}$ 反応液に $2\,\mathrm{mM}\,\mathrm{d}\,\mathrm{N}$ TP $2\,\mu\,1$ 、大腸菌DN Aポリメラーゼ $14\,\mathrm{P}\,\mathrm{D}\,\mathrm{E}$ 、大腸菌RNaseHO. $1\,\mathrm{P}\,\mathrm{D}\,\mathrm{E}$ 位を添加し、 $12\,\mathrm{C}\,1\,\mathrm{F}\,\mathrm{E}$ ついで $22\,\mathrm{C}\,1\,\mathrm{F}\,\mathrm{E}$ 反応させた。

[0029]

次いで c D N A 合成反応液を用いて大腸菌 D H 1 2 S (G I B C O − B R L 社製)の形質転換を行なった。形質転換はエレクトロポレーション法によって行なった。形質転換体の一部を100μg/m1アンピシリン含有2x Y T 寒天培地上に蒔いて37℃一晩培養した。寒天上に生じた任意のコロニーを拾い100μg/m1アンピシリン含有2x Y T 培地2m1に接種して37℃で一晩培養した。培養液を遠心して、菌体からアルカリリシス法によりプラスミド D N A を調製した。プラスミド D N A はE c o R I と N o t I で二重消化した後、0.8%アガロースゲル電気泳動を行ない c D N A インサートの大きさを求めた。また、得られたプラスミドを鋳型にして、蛍光色素で標識したM 13ユニバーサルプライマーとTaqポリメラーゼ(アプライドバイオシステムズ社製キット)を用いてシーケンス反応を行なった後、蛍光D N A シーケンサー(アプライドバイオシステムズ社製・サー)を用いてシーケンス反応を行なった後、蛍光D N A シーケンサー(アプライドバイオシステムズ社)にかけて c D N A の 5 、末端約400 b p の塩基配列を決定した。配列データはホモ・プロテイン c D N A バンクデータベースとしてファイル化した

[0030]

特有なシグナル配列が認められるものを選択した。これらのクローンについては、エキソヌクレアーセIIIによる欠失法を用いて、5'並びに3'両方向から

白質について、Kyte-Doolittleの方法 [Kyte, J & Doolittle, R. F., J. Mol. Biol. 157:105-132 (1982)] により、疎水性/親水性プロフィールを求め、疎水性領域の有無を調べた。コードしている蛋白質のアミノ酸配列中に膜貫通ドメインと思われる疎水的な領域がある場合には、この蛋白質は膜蛋白質であると見なした。

[0031]

(4) 分泌シグナル配列あるいは膜貫通ドメインの機能確認

上記工程の結果得られた分泌蛋白質候補クローンについて、N末端の疎水性領域が分泌シグナル配列として機能することを、文献記載の方法 [Yokoyama-Kobayashi, M. et al., Gene 163:193-196(1995)] によって確認した。まずターゲットcDNAを含んでいるプラスミドを、分泌シグナル配列をコードしていると考えられる部分の下流に存在する適当な制限酵素部位で切断した。もしこの制限酵素部位が突出末端である場合には、クレノウ処理やマングビーンヌクレアーゼ処理によって平滑末端にした。さらにHindIIIによる消化を行い、SV40プロモーターとその下流に分泌シグナル配列をコードしているcDNAを含むDNA断片をアガロースゲル電気泳動によって単離した。この断片を、pSSD3(DDBJ/EMBL/GenBank登録番号AB007632)のHindIIIと、ウロキナーゼのコーディングフレームと合うように選択した制限酵素部位の間に挿入し、ターゲットcDNAの分泌シグナル配列部分とウロキナーゼプロテアーゼドメインの融合蛋白質を発現するためのベクターを構築した。

[0032]

i, M. et al., Gene 163:193-196 (1995)]から同様にして調製した一本鎖ファージ粒子懸濁液を用いた。

[0033]

サル腎臓由来培養細胞COS 7 は、10%ウシ胎児血清を含むダルベッコ改変イーグル (DMEM) 培地中、 $5\%CO_2$ 存在下、37℃で培養した。 1×10^5 個のCOS 7 細胞を6穴プレート (ヌンク社、穴の直径3 c m) に植え、5%CO $_2$ 存在下、37℃で2 2 時間培養した。培地除去後、リン酸緩衝液で細胞表面を洗浄し、さらに50 mMトリス塩酸 (p H 7. 5) を含むDMEM (T DMEM) で再度洗浄した。この細胞に一本鎖ファージ懸濁液 1μ 1、DMEM 培地 0. 6 m 1、T R A N S F E C T A M TM (I B F 社) 3μ 1 を懸濁したものを添加し、 $5\%CO_2$ 存在下、37℃で3 時間培養した。サンプル液を除去後、 T DMEMで細胞表面を洗浄し、10%ウシ胎児血清含有DMEMを1穴あたり2 m 1 加え、 $5\%CO_2$ 存在下、37℃にて2 日間培養した。

[0034]

2%ウシフィブリノーゲン(マイルス社)、0.5%アガロース、1 mM塩化カルシウムを含む50 mMリン酸緩衝液(pH7.4)10 mlに10単位のヒトトロンビン(持田製薬)を加え、直径9 cmのプレート中で固化させ、フィブリンプレートを調製した。トランスフェクションしたCOS 7 細胞の培養上清10μ1をフィブリンプレートに載せ、37℃15時間インキュベートした。フィブリンプレート上に溶解円が現れたら、cDNA断片が分泌シグナル配列として機能するアミノ酸配列をコードしていることを意味する。一方、溶解円を形成しない場合には、細胞を十分洗浄した後、フィブリンシートを細胞の上に乗せて、37℃15時間インキュベートした。もし、フィブリンシートに溶解部分が生じたら、細胞表面にウロキナーゼ活性が発現したことを示す。すなわち、cDNA断片は、聴費通ビスストナーにでは、1000円には、1000円の

、ロティンピトロ翻訳による蛋白質合成

[0036]

(6) COS7による発現

本発明の蛋白質の発現ベクターを有する大腸菌に、ヘルパーファージM13KO7を感染させ、上記の方法で一本鎖ファージ粒子を得た。得られたファージを用いて上記の方法によりサル腎臓由来培養細胞COS7に各発現ベクターを導入した。5%CO2存在下、37℃で2日間培養したのち、[³⁵S]システインあるいは[³⁵S]メチオニンを含む培地中で1時間培養した。細胞を集め溶解した後、SDSーPAGEにかけたところ、COS7細胞には存在しない、各蛋白質の発現産物に相当するバンドが認められた。

[0037]

(7) クローン例

<HP01244>(配列番号1、11、21)

ヒト胃癌 c D N A ライブラリーから得られたクローンHP01244の c D N A インサートの全塩基配列を決定したところ、15bpの5、非翻訳領域、372bpのORF、592bpの3、非翻訳領域からなる構造を有していた。ORFは123アミノ酸残基からなる蛋白質をコードしており、N末端にシグナル様配列を、またC末端に1箇所の膜貫通ドメインが存在した。図1にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す

。インビトロ翻訳の結果、ORFから予想される分子量12,911にほぼ一致 する14kDaの翻訳産物が生成した。

[0038]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 ニワトリ幹細胞抗原2(GenBankアクセション番号L34554)と類似 性を有していた。表2に、本発明のヒト蛋白質(HP)とニワトリ幹細胞抗原2 (GG)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と 同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。 両者は、全領域で33.9%の相同性を有していた。

[0039]

【表2】

表 2

HS	MKAVLLALLMAGLALQPGTALLCYSCKAQVSNEDCLQVKNCTQLGEQCWTARIRAVGL	
	*** *.*. * * * *. ** .** .* * . * * . * . * * . * . * * . * * . * * . * * . * * . * * . * * . * * * * * * * * * * * * * * *	
GG	MKAFLFAVLAAVLCVERAHTLICFSCSDASSNWACLTPVKCAENEEHCVTTYVGVGIGGK	
HS	LT-VISKGCSLNCVDDSQDYYVGKKNITCCDTDLCNASGAHALQPAAAILALLPALGL	
	. ***** * *** *** ** * .*** *	
GG	SGQSISKGCSPVCPSAGINLGIAAASVYCCDSFLCNISGSSSVKASYAVLALGILVSFVY	
НS	LLWGPGQL	
	.*	
GG	VLRARE	

[0040]

キャー 未しのだくの折甘那がかり

16643)が存在したが、不明瞭な配列が多く、本cDNAと同じORFは見いだせなかった。

<HP01498>(配列番号2、12、22)

ヒト胃癌 c DN Aライブラリーから得られたクローンHP01498の c DN Aインサートの全塩基配列を決定したところ、227bpの5、非翻訳領域、663bpのORF、389bpの3、非翻訳領域からなる構造を有していた。ORFは220アミノ酸残基からなる蛋白質をコードしており、4箇所の膜貫通ドメインが存在した。図2にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量23,318にほぼ一致する22kDaの翻訳産物が生成した。【0042】

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ラット蛋白質RVP1 (NBRFアクセション番号A39484)と類似性を有していた。表3に、本発明のヒト蛋白質(HP)とラット蛋白質RVP1(RN)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。両者は、全領域で81.1%の相同性を有していた。ただし、C末端側はラット蛋白質の方が、60アミノ酸残基長かった。

[0043]

【表3】

表3

HS CCSCPPREKKYTATKVVYSAPRSTGPGASLGTGYDRKDYV

****** **..**..*******.. **.***

RN CCSCPPRE-KYAPTKILYSAPRSTGPGTGTGTAYDRKTTSERPGARTPHHHHYQPSMYPT

[0044]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号H72008)が存在したが、不明瞭な配列が多く、AcDNAと同じORFは見いだせなかった。

[0045]

ラット蛋白質RVP1は、アンドロゲン停止とアポトーシスによってラット腹前立腺に誘導される膜蛋白質の一つである [Briehl, M. M. et al., Mol. Endocrinol. 5:1381-1388(1991)]。したがって、本蛋白質は、アポトーシスに関連するシグナル伝達において重要な働きを有しているレセプターと考えられる。

[0046]

<HP01565>(配列番号3、13、23)

ヒト胃癌 c DNAライブラリーから得られたクローンHPO1565の c DNAインサートの全塩基配列を決定したところ、62bpの5'非翻訳領域、246bpのORF、527bpの3'非翻訳領域からなる構造を有していた。ORFは81アミノ酸残基からなる蛋白質をコードしており、2箇所の膜貫通ドメインが存在した。図3にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量9,374にほぼ一致する約10kDaの翻訳産物が生成した。

[0047]

を、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。両者は、全領域で47.4%の相同性を有していた。

[0048]

【表4】

表 4

HS MAYHGLTVPLIVMSVFWGFVGFLVPWFIPKGPNRGVIITMLVTCSVCCYLFWL

CE MCNFSYFQLQMGILIPLVSVSAFWAIIGFGGPWIVPKGPNRGIIQLMIIMTAVCCWMFWI

HS IAILAQLNPLFGPQLKNETIWYLKYHWP

...* *****....**

CE MVFLHQLNPLIGPQINVKTIRWISEKWGDAPNVINN

[0049]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号N57319)が存在したが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0050]

<HP01606>(配列番号4、14、24)

ヒト胃癌 c D N A ライブラリーから得られたクローンHPO1606の c D N A インサートの全塩基配列を決定したところ、124bpの5、非翻訳領域、906bpのORF、226bpの3、非翻訳領域からなる構造を有していた。ORFは301アミノ酸残基からなる蛋白質をコードしており、7箇所の膜貫通ドメインが存在した。図4にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量32,592にほぼ一致する31kDaの翻訳産物が生成した。

[0051]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、

線虫推定蛋白質F13H11.9(GenBankアクセション番号AF003389)と類似性を有していた。表5に、本発明のヒト蛋白質(HP)と線虫推定蛋白質F13H11.9(CE)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。両者は、C末端側195アミノ酸残基の領域で45.1%の相同性を有していた。

[0052]

【表5】

表 5

HS MLALRVARGSWGALRGAAWAPGTRPSKRRACWALLPPVPCCLGCLAERWRLRPAALGLRL

CE MIVTSMFR

HS PGIGQRNHCSGAGKAAPRPAAGAGAAAEAPGGQWGPASTPSLYENPWTIPNMLSMTRIGL
*.... *.. ****...**.

CE GIACRCELQLLLTPRRMLRNFSSLEQKQSPKIESLPPEERGKYKVA-TIPNAICTARIAA

HS APVLGYLIIEEDFNIALGVFALAGLTDLLDGFIARNWANQRSALGSALDPLADKILISIL

.*..***......*. *. .*..** ********* ..*.* ***.***.***..

CE TPLIGYLVVOHNFTPAFVLFTVAGATDLLDGFIARNVPGQKSLLGSVLDPVADKLLISTM

HS YVSLTYADLIPVPLTYMIISRDVMLIAAVFYVRYRTLPTPRTLAKYFNPCYATARLKPTF

CE FITMTYAGLIPLPLTSVVILRDICLIGGGFYKRYQVMSPPYSLSRFFNPQVSSMQVVPTM

HS ISKVNTAVQLILVAASLAAPVFNYADSIY--LQILWCFTAFTTAASAYSYYHYGRKTVQV

CE MCKIALA VILLIAN CI CODIDIDIDIONO VII IIII VILLIA IIII IIII

100003

また、本cDNAの塩基配列を用いてGenBankを検索したところ、FS

798)が存在したが、不明瞭な配列が多く、本 c D N A と同じO R F は見いだせなかった。

[0054]

<HP01737>(配列番号5、15、25)

ヒト胃癌 c DN A ライブラリーから得られたクローンHP01737の c DN A インサートの全塩基配列を決定したところ、21bpの5、非翻訳領域、1152bpのORF、132bpの3、非翻訳領域からなる構造を有していた。ORFは383アミノ酸残基からなる蛋白質をコードしており、2箇所の膜貫通ドメインが存在した。図5にKyte-Doolitt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量43,222にほぼ一致する45kDaの翻訳産物が生成した。

[0055]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 線虫推定蛋白質K09E9.2 (GenBankアクセション番号Z79602)と類似性を有していた。表6に、本発明のヒト蛋白質 (HP)と線虫推定蛋白 質K09E9.2 (CE)のアミノ酸配列の比較を示す。一はギャップを、*は 本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基 をそれぞれ表す。両者は、C末端側195アミノ酸残基の領域で42.2%の相 同性を有していた。

[0056]

【表 6】

表 6

HS	ERHELGKVEVTVFDPDSLDPDRCESCYGAEAEDIKCCNTCEDVREAYRRRGWAFKNPDTI
	****.****.* .** .** .*
CE	QKIEINQNKTSVETTDVIQEVKCGSCYGAAADGI-CCNTCDDVKSAYAVKGWQV-NIEEV
HS	EQCRREGFSQKMQEQKNEGCQVYGFLEVNKVAGNFHFAPGKSFQQSHVHVHDLQSFGLDN
	*** *
CE	EQCKNDKWVKEFNEHKNEGCRVYGTVKVAKVAGNFHLAPGDPHQAMRSHVHDLHNLDPVK
HS	INMTHYIQHLSFGEDYPGIVNPLDHTNVTAPQASMMFQYFVKVVPTVYMKVDGEVLRTNQ

CE	FDASHTVNHVSFGKSFPGKNYPLDGKVNTDNRGGIMYQYYVKVVPTRYDYLDGRVDQSHQ
HS	FSVTRHEKVANGLLGDQGLPGVFVLYELSPMMVKLTEKHRSFTHFLTGVCAIIGGMFTVA
	**** *.* **** *. **.*****. ***
CE	FSVTTHKKDLGFRQSGLPGFFLQYEFSPLMVQYEEFRQSFASFLVSLCAIVGGVFAMA
HS	GLIDSLIYHSARAIQKKIDLGKTT
	. ****.**. ** *
CE	QLVDITIYHSSRYMKSRIAGGKLT

[0057]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号H42261)が存在したが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0058]

<HP01962>(配列番号6、16、26)

Fから予想される分子量22, 134にほぼ一致する21kDaの翻訳産物が生成した。

[0059]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ラットホスファチジルエタノールアミンNーメチルトランスフェラーゼ(SWISS-PROTアクセション番号Q08388)と類似性を有していた。表7に、本発明のヒト蛋白質(HP)とラットホスファチジルエタノールアミンNーメチルトランスフェラーゼ(RN)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。両者は、全領域にわたって80.8%の相同性を有していた。

[0060]

【表7】

表 7

[0061]

RN EPFTAEIYRRKATRLHKRS

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有し、かつ開始コドンから含んでいるもの(例えば、アクセション番号H83024)が存在したが、不明瞭な配列が多く、本cDNAと同じORFは見いだせなかった。

[0062]

ラットホスファチジルエタノールアミンNーメチルトランスフェラーゼは、ホスファチジルエタノールアミンの生合成に関与する膜蛋白質である [Cui, Zet al., J. Biol. Chem. 268:16655-16663 (1993)]。本蛋白質は、ホスファチジルエタノールアミンNーメチルトランスフェラーゼのヒトホモログと考えられ、この酵素の異常に関る疾患の診断や治療に用いられる。

[0063]

<HP10435>(配列番号7、17、27)

ヒト胃癌 c DN A ライブラリーから得られたクローンHP10435の c DN A インサートの全塩基配列を決定したところ、8bpの5′非翻訳領域、690bpのORF、207bpの3′非翻訳領域からなる構造を有していた。ORFは229アミノ酸残基からなる蛋白質をコードしており、N末端とC末端にそれぞれ1箇所の膜貫通ドメインが存在した。図7にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。本蛋白質のN末端109アミノ酸残基をコードしている c DN A 部分を含むHindIII-BalI断片をpSSD3のHindIII-EcoRV部位に挿入した発現ベクターをCOS7細胞に導入したところ、ウロキナーゼ活性は膜表面に認められ、本蛋白質は膜に留まっていることが示された。インビトロ翻訳の結果、ORFから予想される分子量24、688とほぼ同じ約24kDaの翻訳産物が生成した

本蛋白質のアミノ酸配列を用いてフロテインデータベースを検索したが、類似性を有する既知蛋白質はなかった。また、本cDNAの塩基配列を用いてGen

始コドンから含んでいるもの(例えば、アクセション番号H87685)が存在 したが、不明瞭な配列が多く、本cDNAと同じORFは見いだせなかった。

[0065]

<HP10479>(配列番号8、18、28)

ヒトリンホーマU937cDNAライブラリーから得られたクローンHP10479のcDNAインサートの全塩基配列を決定したところ、38bpの5′非翻訳領域、537bpのORF、266bpの3′非翻訳領域からなる構造を有していた。ORFは178アミノ酸残基からなる蛋白質をコードしており、N末端にシグナル様配列を、またC末端に1箇所の膜質通ドメインが存在した。図8にKyte-Doolitt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。本蛋白質のN末端45アミノ酸残基をコードしているcDNA部分を含むHindII-BanII(T4DNAポリメラーゼ処理により平滑末端化)断片をPSSD3のHindII-SmaI部位に挿入した発現ベクターをCOS7細胞に導入したところ、培地にウロキナーゼ活性が認められ、本蛋白質はI型膜蛋白質であることが示された。インビトロ翻訳の結果、ORFから予想される分子量19,453より大きい33kDaの翻訳産物が生成した。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は22番目のグルタミンから始まると予想される。

[0066]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、マウスイオンチャンネルホモローグRIC (GenBankアクセション番号U72680) と類似性を有していた。表8に、本発明のヒト蛋白質 (HP) とマウスイオンチャンネルホモローグRIC (MM) のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。両者は、全領域で48.1%の相同性を有していた。

[0067]

【表8】

表 8

[0068]

また、本 c D N A の塩基配列を用いてG e n B a n k を検索したところ、E S T の中に、90%以上の相同性を有するもの(例えば、アクセション番号A A 2 9 6 6 9 6)が存在したが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0069]

マウスイオンチャンネルホモローグRICは、E2a-Pbx1オンコプロテインをNIH3T3フィブロブラスト細胞に導入した際、誘導されてくる蛋白質の一つであり、細胞周期や増殖において重要な役割を果たしていると考えられている[Fu, X. et al., Mol. Cell. Biol. 17:150

ベロチェ∪48ェ≥(配列番号9、19、29)

ヒトリンホーマU937cDNAライブラリーから得られたクローンHP10 - 本基配列 (大力) 非翻訳領域、1332bpのORF、15bpの3'非翻訳領域からなる構造を有していた。ORFは443アミノ酸残基からなる蛋白質をコードしており、N末端に1箇所の膜貫通ドメインが存在した。図9にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。本蛋白質のN末端148アミノ酸残基をコードしているcDNA部分を含むHindIII-PvuII断片をpSSD3のHindIII-EcoRV部位に挿入した発現ベクターをCOS7細胞に導入したところ、細胞表面にウロキナーゼ活性が認められ、本蛋白質はII型膜蛋白質であることが示された。インビトロ翻訳の結果、ORFから予想される分子量51,145とほぼ同じ51kDaの翻訳産物が生成した。

[0071]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したが、類似性を有する既知蛋白質はなかった。また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA354554)が存在したが、いずれも本cDNAより短く、開始コドンから含んでいるものは見いだせなかった。

[0072]

<HP10495>(配列番号10、20、30)

ヒト胃癌 c DNAライブラリーから得られたクローンHP10495の c DN Aインサートの全塩基配列を決定したところ、62bpの5、非翻訳領域、393bpのORF、431bpの3、非翻訳領域からなる構造を有していた。ORFは130アミノ酸残基からなる蛋白質をコードしており、2箇所の膜貫通ドメインが存在した。図10にKyte-Doolitt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量14,964より大きい約25kDaの翻訳産物が生成した。

[0073]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したが、類似性を有する既知蛋白質はなかった。また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(

例えば、アクセション番号AA431001)が存在したが、いずれも本cDN Aより短く、開始コドンから含んでいるものは見いだせなかった。

[0074]

【発明の効果】

本発明は膜貫通ドメインを有するヒト蛋白質、それをコードしているcDNA、および該cDNAを発現させた真核細胞を提供する。本発明の蛋白質は、いずれも細胞膜に存在するので、細胞の増殖や分化を制御している蛋白質と考えられる。したがって、本発明の蛋白質は、細胞の増殖や分化の制御に関わる制癌剤などの医薬品として、あるいは該蛋白質に対する抗体を作製するための抗原として用いることができる。本発明のcDNAは、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、該DNAを用いることにより、該蛋白質を大量に発現することができる。これら膜蛋白質遺伝子を導入して膜蛋白質を大量発現させた細胞は、対応するリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。

[0075]

【配列表】

配列番号:1

配列の長さ:123

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

而是好

Met Lys Ala Val Leu Leu Ala Leu Leu Met Ala Gly Leu Ala Leu Gln

Pı	ro	Gly	Thr	Ala	Leu	Leu	Cys	Tyr	Ser	Cys	Lys	Ala	Gln	Val	Ser	Asn
				20					25					30		
G	lu	Asp	Cys	Leu	Gln	Val	Lys	Asn	Cys	Thr	Gln	Leu	Gly	Glu	Gln	Cys
			35					40					45			
T	rp	Thr	Ala	Arg	Ile	Arg	Ala	Va l	Gly	Leu	Leu	Thr	Val	Ile	Ser	Lys
		50					55					60				
G	l y	Cys	Ser	Leu	Asn	Cys	Val	Asp	Asp	Ser	Gln	Asp	Tyr	Tyr	Val	Gly
(65					70					75					80
L	ys	Lys	Asn	Ile	Thr	Cys	Cys	Asp	Thr	Asp	Leu	Cys	Asn	Ala	Ser	Gly
					85					90					95	
A	la	His	Ala	Leu	Gln	Pro	Ala	Ala	Ala	Ile	Leu	Ala	Leu	Leu	Pro	Ala
				100					105					110		
L	eu	Gly	Leu	Leu	Leu	Trp	Gly	Pro	Gly	Gln	Leu					
			115					120								
	[0	07	6]													
酉	已列]番号	÷: 2	<u>}</u>												
酉	记列]の事	きさ :	2 2	2 0											
-	-			マミノ												
•		_		直鎖												
				蛋白												
J	ハイ	゚゙゙゙゙゙゚゙゙゚゙゙゚゙゙゚゙゙゙゙゙゙゚゚゙゙゙゙゙゙゙゚゚゙゙゙゙゙゙	マティ	ィカル	ν: N	10										
走	卫沥					_										
				トモ=		ごエン	ノス									
				頁: 胃				_								
			ーンネ	占: F	1P () 1 4	198	3								
	記歹				_	~ •		m¹	61	T.1		. T -	1-	. V-1	I a	C1-
M		Ser	Met	Gly			ılle	hr	GIS			Leu	I Ala	ı yalı	Leu	
	1				5	ı				10)				15	1

Trp Leu Gly Thr Ile Val Cys Cys Ala Leu Pro Met Trp Arg Val Ser

			20					25					30		
Ala	Phe	Ile	Gly	Ser	Asn	lle	Ile	Thr	Ser	Gln	Asn	Ile	Trp	Glu	Gly
		35					40					45			
Leu	Trp	Met	Asn	Cys	Val	Val	Gln	Ser	Thr	Gly	Gln	Met	Gln	Cys	Lys
	50					55					60				
Val	Tyr	Asp	Ser	Leu	Leu	Ala	Leu	Pro	Gln	Asp	Leu	Gln	Ala	Ala	Arg
65					70					7 5					80
Ala	Leu	Ile	Val	Val	Ala	Ile	Leu	Leu	Ala	Ala	Phe	Gly	Leu	Leu	Val
				85					90					95	
Ala	Leu	Val	Gly	Ala	Gln	Cys	Thr	Asn	Cys	Val	Gln	Asp	Asp	Thr	Ala
			100					105					110		
Lys	Ala	Lys	Ile	Thr	Ile	Val	Ala	Gly	Val	Leu	Phe	Leu	Leu	Ala	Ala
		115					120					125			
Leu	Leu	Thr	Leu	Val	Pro	Val	Ser	Trp	Ser	Ala	Asn	Thr	lle	Ile	Arg
	130					135					140				
Asp	Phe	Tyr	Asn	Pro	Val	Val	Pro	Glu	Ala	Gln	Lys	Arg	Glu	Met	Gly
145					150					155					160
Ala	Gly	Leu	Tyr	Val	Gly	Trp	Ala	Ala	Ala	Ala	Leu	Gln	Leu	Leu	Gly
				165					170					175	
Gly	Ala	Leu	Leu	Cys	Cys	Ser	Cys	Pro	Pro	Arg	Glu	Lys	Lys	Tyr	Thr
			180					185					190		
Ala	Thr	Lys	Val	Val	Tyr	Ser	Ala	Pro	Arg	Ser	Thr	Gly	Pro	Gly	Ala
		195					200					205			
Ser	Leu	Gly	Thr	Gly	Tyr	Asp	Arg	Lys	Asp	Tyr	Val				
	210					· -									

配列番号:5

配列の長さ:81

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP01565

配列

Met Ala Tyr His Gly Leu Thr Val Pro Leu Ile Val Met Ser Val Phe

1 5 10 15

Trp Gly Phe Val Gly Phe Leu Val Pro Trp Phe Ile Pro Lys Gly Pro

20 25 30

Asn Arg Gly Val Ile Ile Thr Met Leu Val Thr Cys Ser Val Cys

35 40 45

Tyr Leu Phe Trp Leu Ile Ala Ile Leu Ala Gln Leu Asn Pro Leu Phe

50 55 60

Gly Pro Gln Leu Lys Asn Glu Thr Ile Trp Tyr Leu Lys Tyr His Trp

65 70 75 80

Pro

[0078]

配列番号: 4

配列の長さ:301

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01606

配列

Met Leu Ala Leu Arg Val Ala Arg Gly Ser Trp Gly Ala Leu Arg Gly

1 5 10 15

Ala Ala Trp Ala Pro Gly Thr Arg Pro Ser Lys Arg Arg Ala Cys Trp
20 25 30

Ala Leu Leu Pro Pro Val Pro Cys Cys Leu Gly Cys Leu Ala Glu Arg

35 40 45

Trp Arg Leu Arg Pro Ala Ala Leu Gly Leu Arg Leu Pro Gly Ile Gly
50 55 60

Gln Arg Asn His Cys Ser Gly Ala Gly Lys Ala Ala Pro Arg Pro Ala
65 70 75 80

Ala Gly Ala Gly Ala Ala Ala Glu Ala Pro Gly Gly Gln Trp Gly Pro

85 90 95

Ala Ser Thr Pro Ser Leu Tyr Glu Asn Pro Trp Thr Ile Pro Asn Met

100 105 110

Leu Ser Met Thr Arg Ile Gly Leu Ala Pro Val Leu Gly Tyr Leu Ile
115 120 125

Ile Glu Glu Asp Phe Asn Ile Ala Leu Gly Val Phe Ala Leu Ala Gly
130 135 140

180 185 190

Pro Leu Thr Tyr Met Ile Ile Ser Arg Asp Val Met Leu Ile Ala Ala

Val Phe Tyr Val Arg Tyr Arg Thr Leu Pro Thr Pro Arg Thr Leu Ala

	210					215					220				
Lys	Tyr	Phe	Asn	Pro	Cys	Tyr	Ala	Thr	Ala	Arg	Leu	Lys	Pro	Thr	Phe
225					230					235					240
Ile	Ser	Lys	Val	Asn	Thr	Ala	Val	Gln	Leu	Ile	Leu	Val	Ala	Ala	Ser
				245					250			•		255	
Leu	Ala	Ala	Pro	Val	Phe	Asn	Tyr	Ala	Asp	Ser	Ile	Tyr	Leu	Gln	Ile
			260					265					270		
Leu	Trp	Cys	Phe	Thr	Ala	Phe	Thr	Thr	Ala	Ala	Ser	Ala	Tyr	Ser	Tyr
		275					280					285			
Tyr	His	Tyr	Gly	Arg	Lys	Thr	Val	Gln	Val	Ile	Lys	Asp			
	290					295					300				
[C	0 7	9]													
配歹	『番号	÷: 5	<u> </u>												
配歹	リの長	きさ:	3 8	3											
配歹	リの彗	!: ア	フミノ	酸											
トオ	ピロシ	シー:	直鎖	狱											
配歹	リの種	種:	蛋白	質											
ハイ	イポセ	マティ	力儿	/: N	I o										
起源	京:														
彗	ヒ物名	5:7	トモ=	サヒ	ピエン	ノス									
糸	田胞の)種类	頁:胃	層											
2	フロー	-ンネ	5 :	HP () 1 7	7 3 7	7								
配列	ij														
Met	Glu	Ala	Leu	Gly	Lys	Leu	Lys	Gln	Phe	Asp	Ala	Tyr	Pro	Lys	Thr
1				5					10					15	
Leu	Glu	Asp	Phe	Arg	Val	Lys	Thr	Cys	Gly	Gly	Ala	Thr	Val	Thr	Ile
			20					25					30		
Val	Ser	Gly	Leu	Leu	Met	Leu	Leu	Leu	Phe	Let	. Ser	Glu	ı Leu	Gln	Tyr

		35					40					45			
Tyr	Leu	Thr	Thr	Glu	Val	His	Pro	Glu	Leu	Tyr	Val	Asp	Lys	Ser	Arg
	50					55					60				
Gly	Asp	Lys	Leu	Lys	Ile	Asn	Ile	Asp	Va l	Leu	Phe	Pro	His	Met	Pro
65					70					7 5					80
Cys	Ala	Tyr	Leu	Ser	Ile	Asp	Ala	Met	Asp	Val	Ala	Gly	Glu	Gln	Gln
				85					90					95	
Leu	Asp	Val	Glu	His	Asn	Leu	Phe	Lys	Gln	Arg	Leu	Asp	Lys	Asp	Gly
			100					105					110		
Ile	Pro	Val	Ser	Ser	Glu	Ala	Glu	Arg	His	Glu	Leu	Gly	Lys	Val	Glu
		115					120					125			
Val	Thr	Val	Phe	Asp	Pro	Asp	Ser	Leu	Asp	Pro	Asp	Arg	Cys	Glu	Ser
	130					135					140				
Cys	Tyr	Gly	Ala	Glu	Ala	Glu	Asp	Ile	Lys	Cys	Cys	Asn	Thr	Cys	Glu
145					150					155					160
Asp	Val	Arg	Glu	Ala	Tyr	Arg	Arg	Arg	Gly	Trp	Ala	Phe	Lys	Asn	Pro
				165					170					175	
Asp	Thr	Ile	Glu	Gln	Cys	Arg	Arg	Glu	Gly	Phe	Ser	Gln	Lys	Met	Gln
			180					185					190		
Glu	Gln	Lys	Asn	Glu	Gly	Cys	Gln	Val	Tyr	Gly	Phe	Leu	Glu	Val	Asn
		195					200					205			
Lys	Val	Ala	Gly	Asn	Phe	His	Phe	Ala	Pro	Gly	L y s	Ser	Phe	Gln	Gln
	210					215					220				
Ser	His	Val	His	Val	His	Asp	Leu	Gln	Ser	Phe	Gly	Leu	Asp	Asn	He
995					000										
				245					250					255	
Gly	Ile	Val	Asn	Pro	Leu	Asp	His	Thr	Asn	Val	Thr	Ala	Pro	Gln	Ala

Ser Met Met Phe Gln Tyr Phe Val Lys Val Val Pro Thr Val Tyr Met 285 280 275 Lys Val Asp Gly Glu Val Leu Arg Thr Asn Gln Phe Ser Val Thr Arg 300 295 290 His Glu Lys Val Ala Asn Gly Leu Leu Gly Asp Gln Gly Leu Pro Gly 320 315 310 305 Val Phe Val Leu Tyr Glu Leu Ser Pro Met Met Val Lys Leu Thr Glu 335 325 330 Lys His Arg Ser Phe Thr His Phe Leu Thr Gly Val Cys Ala Ile Ile 350 345 340 Gly Gly Met Phe Thr Val Ala Gly Leu Ile Asp Ser Leu Ile Tyr His 365 360 355 Ser Ala Arg Ala Ile Gln Lys Lys Ile Asp Leu Gly Lys Thr Thr 380 375 370 [0080] 配列番号:6 配列の長さ:199 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 ハイポセティカル:No 起源: 生物名:ホモ=サピエンス 細胞の種類:肝臓 クローン名:HP01962 配列 Met Thr Arg Leu Leu Gly Tyr Val Asp Pro Leu Asp Pro Ser Phe Val

15

10

Ala Ala Val Ile Thr Ile Thr Phe Asn Pro Leu Tyr Trp Asn Val Val

5

Ala Arg Trp Glu His Lys Thr Arg Lys Leu Ser Arg Ala Phe Gly Ser Pro Tyr Leu Ala Cys Tyr Ser Leu Ser Val Thr Ile Leu Leu Asn Phe Leu Arg Ser His Cys Phe Thr Gln Ala Met Leu Ser Gln Pro Arg Met Glu Ser Leu Asp Thr Pro Ala Ala Tyr Ser Leu Gly Leu Ala Leu Leu Gly Leu Gly Val Val Leu Val Leu Ser Ser Phe Phe Ala Leu Gly Phe Ala Gly Thr Phe Leu Gly Asp Tyr Phe Gly Ile Leu Lys Glu Ala Arg Val Thr Val Phe Pro Phe Asn Ile Leu Asp Asn Pro Met Tyr Trp Gly Ser Thr Ala Asn Tyr Leu Gly Trp Ala Ile Met His Ala Ser Pro Thr Gly Leu Leu Thr Val Leu Val Ala Leu Thr Tyr Ile Val Ala Leu Leu Tyr Glu Glu Pro Phe Thr Ala Glu Ile Tyr Arg Gln Lys Ala Ser Gly Ser His Lys Arg Ser [0081]

配列の型:アミノ酸

阿冽米只,「

トポロジー:直鎖状

两双三种類 语言的

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10435

配列

Met Ala Pro His Gly Pro Gly Ser Leu Thr Thr Leu Val Pro Trp Ala
1 5 10 15

Ala Ala Leu Leu Ala Leu Gly Val Glu Arg Ala Leu Ala Leu Pro 20 25 30

Glu Ile Cys Thr Gln Cys Pro Gly Ser Val Gln Asn Leu Ser Lys Val 35 40 45

Ala Phe Tyr Cys Lys Thr Thr Arg Glu Leu Met Leu His Ala Arg Cys
50 55 60

Cys Leu Asn Gln Lys Gly Thr Ile Leu Gly Leu Asp Leu Gln Asn Cys
65 70 75 80

Ser Leu Glu Asp Pro Gly Pro Asn Phe His Gln Ala His Thr Thr Val 85 90 95

Ile Ile Asp Leu Gln Ala Asn Pro Leu Lys Gly Asp Leu Ala Asn Thr

Phe Arg Gly Phe Thr Gln Leu Gln Thr Leu Ile Leu Pro Gln His Val

Asn Cys Pro Gly Gly Ile Asn Ala Trp Asn Thr Ile Thr Ser Tyr Ile
130 135 140

Asp Asn Gln Ile Cys Gln Gly Gln Lys Asn Leu Cys Asn Asn Thr Gly
145 150 155 160

Asp Pro Glu Met Cys Pro Glu Asn Gly Ser Cys Val Pro Asp Gly Pro 165 170 175

Gly Leu Leu Gln Cys Val Cys Ala Asp Gly Phe His Gly Tyr Lys Cys

185 190 180 Met Arg Gln Gly Ser Phe Ser Leu Leu Met Phe Phe Gly Ile Leu Gly 195 200 205 Ala Thr Thr Leu Ser Val Ser Ile Leu Leu Trp Ala Thr Gln Arg Arg 210 215 220 Lys Ala Lys Thr Ser 225 [0082] 配列番号:8 配列の長さ:178 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 ハイポセティカル:No 起源: 生物名:ホモーサピエンス 細胞の種類:リンホーマ セルライン: U937 クローン名: HP10479 配列 Met Ser Pro Ser Gly Arg Leu Cys Leu Leu Thr Ile Val Gly Leu Ile 5 15 1 10 Leu Pro Thr Arg Gly Gln Thr Leu Lys Asp Thr Thr Ser Ser Ser 20 25 30 Ala Val Tyr Thr Glu Leu Gln Pro Thr Ser Pro Thr Pro Thr Trp Pro 50 55 60

the transfer has been been

9 - 276271特平

80 75 70 65

Thr Asp Gly Pro Leu Val Thr Asp Pro Glu Thr His Lys Ser Thr Lys 95 90

Ala Ala His Pro Thr Asp Asp Thr Thr Thr Leu Ser Glu Arg Pro Ser

110 105 100

Pro Ser Thr Asp Val Gln Thr Asp Pro Gln Thr Leu Lys Pro Ser Gly

125 120 115

Phe His Glu Asp Asp Pro Phe Phe Tyr Asp Glu His Thr Leu Arg Lys

140 135 130

85

Arg Gly Leu Leu Val Ala Ala Val Leu Phe Ile Thr Gly Ile Ile

155 150 145

Leu Thr Ser Gly Lys Cys Arg Gln Leu Ser Arg Leu Cys Arg Asn His

175 170 165

Cys Arg

[0083]

配列番号:9

配列の長さ:443

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:リンホーマ

セルライン: U937

クローン名: HP10481

配列

Met Arg Leu Thr Arg Lys Arg Leu Cys Ser Phe Leu Ile Ala Leu Tyr

1				5					10					15	
Cys	Leu	Phe	Ser	Leu	Tyr	Ala	Ala	Tyr	His	Val	Phe	Phe	Gly	Arg	Arg
			20					25					30		
Arg	Gln	Ala	Pro	Ala	Gly	Ser	Pro	Arg	Gly	Leu	Arg	Lys	Gly	Ala	Ala
		35					40					4 5			
Pro	Ala	Arg	Glu	Arg	Arg	Gly	Arg	Glu	Gln	Ser	Thr	Leu	Glu	Ser	Glu
	50					55					60				
Glu	Trp	Asn	Pro	Trp	Glu	Gly	Asp	Glu	Lys	Asn	Glu	Gln	Gln	His	Arg
65					70					7 5					80
Phe	Lys	Thr	Ser	Leu	Gln	Ile	Leu	Asp	Lys	Ser	Thr	Lys	Gly	Lys	Thr
				85					90					95	
Asp	Leu	Ser	Val	Gln	Ile	Trp	Gly	Lys	Ala	Ala	Ile	Gly	Leu	Tyr	Leu
			100					105					110		
Trp	Glu	His	Ile	Phe	Glu	Gly	Leu	Leu	Asp	Pro	Ser	Asp	Val	Thr	Ala
		115					120					125			
Gln	Trp	Arg	Glu	Gly	Lys	Ser	Ile	Val	Gly	Arg	Thr	Gln	Tyr	Ser	Phe
	130					135					140				
Ile	Thr	Gly	Pro	Ala	Val	Ile	Pro	Gly	Tyr	Phe	Ser	Val	Asp	Val	Asn
145					150					155					160
Asn	Val	Val	Leu	Ile	Leu	Asn	Gly	Arg	Glu	Lys	Ala	Lys	Ile	Phe	Tyr
				165					170					175	
Ala	Thr	Gln	Trp	Leu	Leu	Tyr	Ala	Gln	Asn	Leu	Va I	Gln	Ile	Gln	Lys
			180					185					190		
Leu	Gln	His	Leu	Ala	Val	Val	Leu	Leu	Gly	Asn	Glu	His	Cys	Asp	Asn
		105					•								
	210					215					220				
Leu	Phe	He	He	Tyr	Asp	Ser	Pro	Trp	Ile	Asn	Asp	Val	Asp	Val	Phe

C1-	T	Dro	Lou	Clu	Val	Δla	Thr	Tvr	Aro	Asn	Phe	Pro	Val	Val	Glu
GIII	11 b	F 1 U	Leu		, 41	ΛIG	1111	132	250	11	• • • •	•		255	
		_		245		W: -	1	C1		Dro	Тик	Ī Au	Cve		Phe
Ala	Ser	Trp		Met	Leu	HIS	ASP		AIR	rio	1 91	Ļсu	Cys	ASII	1110
			260					265				_	270		71.
Leu	Gly	Thr	Ile	Tyr	Glu	Asn	Ser	Ser	Arg	Gln	Ala		Met	Asn	He
		275					280					285			
Leu	Lys	Lys	Asp	Gly	Asn	Asp	Lys	Leu	Cys	Trp	Val	Ser	Ala	Arg	Glu
	290					295					300				
His	Trp	Gln	Pro	Gln	Glu	Thr	Asn	Glu	Ser	Leu	Lys	Asn	Tyr	Gln	Asp
305					310					315					320
Ala	Leu	Leu	Gln	Ser	Asp	Leu	Thr	Leu	Cys	Pro	Val	Gly	Val	Asn	Thr
				325					330					335	
Glu	Cys	Tyr	Arg	Ile	Tyr	Glu	Ala	Cys	Ser	Tyr	Gly	Ser	Ile	Pro	Val
			340					345					350		
Val	Glu	Asp	Val	Met	Thr	Ala	Gly	Asn	Cys	Gly	Asn	Thr	Ser	Val	His
		355					360					365			
His	Gly	Ala	Pro	Leu	Gln	Leu	Leu	Lys	Ser	Met	Gly	Ala	Pro	Phe	Ile
	370					375					380				
Phe	Ile	Lys	Asn	Trp	Lys	Glu	Leu	Pro	Ala	Val	Leu	Glu	Lys	Glu	Lys
385		-			390					395					400
		: Ile	. Leu	Gln			: Ile	Glu	Arg	Arg	Lys	Met	Leu	Leu	Gln
•	-			405					410					415	
Trn	Tvr	· Glr	ı His			Thr	Glu	ı Leu	Lys	Met	Lys	Phe	Thr	Asr	ı Ile
1.1	1,51	0	420		_,			425					430		
Len	. C1,	, Cot			e Leu	ı Met	Asr			s Sei	•				
Let	GIL			, 1110	ДСС	. 110	440		2,						
•	o o	435					771	,							
_	0 0														
74년 7	別番-	;	1 ()												

配列の長さ:130

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10495

配列

1

Met Glu Thr Leu Gly Ala Leu Leu Val Leu Glu Phe Leu Leu Leu Ser

5 10 15

Pro Val Glu Ala Gln Gln Ala Thr Glu His Arg Leu Lys Pro Trp Leu

20 25 30

Val Gly Leu Ala Ala Val Val Gly Phe Leu Phe Ile Val Tyr Leu Val

35 40 45

Leu Leu Ala Asn Arg Leu Trp Cys Ser Lys Ala Arg Ala Glu Asp Glu

50 55 60

Glu Glu Thr Thr Phe Arg Met Glu Ser Asn Leu Tyr Gln Asp Gln Ser

65 70 75 80

Glu Asp Lys Arg Glu Lys Lys Glu Ala Lys Glu Lys Glu Glu Lys Arg

85 90 95

Lys Lys Glu Lys Lys Thr Ala Lys Glu Gly Glu Ser Asn Leu Gly Leu

100 105 110

Asp Leu Glu Glu Lys Glu Pro Gly Asp His Glu Arg Ala Lys Ser Thr

130

[0085]

西方港北

配列の長さ:369

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01244

配列

ATGAAGGCTG TGCTGCTTGC CCTGTTGATG GCAGGCTTGG CCCTGCAGCC AGGCACTGCC 60

CTGCTGTGCT ACTCCTGCAA AGCCCAGGTG AGCAACGAGG ACTGCCTGCA GGTGAAGAAC 120

TGCACCCAGC TGGGGGAGCA GTGCTGGACC GCGCGCATCC GCGCAGTTGG CCTCCTGACC 180

GTCATCAGCA AAGGCTGCAG CTTGAACTGC GTGGATGACT CACAGGACTA CTACGTGGGC 240

AAGAAGAACA TCACGTGCTG TGACACCGAC TTGTGCAACG CCAGCGGGGC CCATGCCCTG 300

CAGCCGGCTG CCGCCATCCT TGCGCTGCTC CCTGCACTCG GCCTGCTCC CTGGGGACCC 360

GGCCAGCTA

[0086]

配列番号:12

配列の長さ:660

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01498

配列

ATGTCCATGG	GCCTGGAGAT	CACGGGCACC	GCGCTGGCCG	TGCTGGGCTG	GCTGGGCACC	60
ATCGTGTGCT	GCGCGTTGCC	CATGTGGCGC	GTGTCGGCCT	TCATCGGCAG	CAACATCATC	120
ACGTCGCAGA	ACATCTGGGA	GGGCCTGTGG	ATGAACTGCG	TGGTGCAGAG	CACCGGCCAG	180
ATGCAGTGCA	AGGTGTACGA	CTCGCTGCTG	GCACTGCCAC	AGGACCTTCA	GGCGGCCCGC	240
GCCCTCATCG	TGGTGGCCAT	CCTGCTGGCC	GCCTTCGGGC	TGCTAGTGGC	GCTGGTGGGC	300
GCCCAGTGCA	CCAACTGCGT	GCAGGACGAC	ACGGCCAAGG	CCAAGATCAC	CATCGTGGCA	360
GGCGTGCTGT	TCCTTCTCGC	CGCCCTGCTC	ACCCTCGTGC	CGGTGTCCTG	GTCGGCCAAC	420
ACCATTATCC	GGGACTTCTA	CAACCCCGTG	GTGCCCGAGG	CGCAGAAGCG	CGAGATGGGC	480
GCGGGCCTGT	ACGTGGGCTG	GGCGGCCGCG	GCGCTGCAGC	TGCTGGGGGG	CGCGCTGCTC	540
TGCTGCTCGT	GTCCCCCACG	CGAGAAGAAG	TACACGGCCA	CCAAGGTCGT	CTACTCCGCG	600
CCGCGCTCCA	CCGGCCCGGG	AGCCAGCCTG	GGCACAGGCT	ACGACCGCAA	GGACTACGTC	660
* 0 0 0 7 7						

[0087]

配列番号:13

配列の長さ: 243

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01565

配列

ATGGCGTATC ACGGCCTCAC TGTGCCTCTC ATTGTGATGA GCGTGTTCTG GGGCTTCGTC

CCCTTCTTCC TCCCTTCCTT CATTGGCTATA COMMANDA

AACCCTCTCT TTGGACCGCA ATTGAAAAAT GAAACCATCT GGTATCTGAA GTATCATTGG

240

CCT

243

配列番号:14

配列の長さ:903

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP01606

配列

*						
ATGCTAGCCT	TGCGCGTGGC	GCGCGGCTCG	TGGGGGGCCC	TGCGCGGCGC	CGCTTGGGCT	60
CCGGGAACGC	GGCCGAGTAA	GCGACGCGCC	TGCTGGGCCC	TGCTGCCGCC	CGTGCCCTGC	120
TGCTTGGGCT	GCCTGGCCGA	ACGCTGGAGG	CTGCGTCCGG	CCGCTCTTGG	CTTGCGGCTG	180
CCCGGGATCG	GCCAGCGGAA	CCACTGTTCG	GGCGCGGGGA	AGGCGGCTCC	CAGGCCAGCG	240
GCCGGAGCGG	GCGCCGCTGC	CGAAGCCCCG	GGCGGCCAGT	GGGGCCCGGC	GAGCACCCCC	300
AGCCTGTATG	AAAACCCATG	GACAATCCCG	AATATGTTGT	CAATGACGAG	AATTGGCTTG	360
GCCCCAGTTC	TGGGCTATTT	GATTATTGAA	GAAGATTTTA	ATATTGCACT	AGGAGTTTTT	420
GCTTTAGCTG						480
			CTTGCTGATA			540
TATGTTAGCT	TGACCTATGC	AGATCTTATT	CCAGTTCCAC	TTACTTACAT	GATCATTTCG	600
					TCCAACACCA	660
					ACCAACATTC	720
					GGCAGCTCCA	780
					AGCTTTCACC	840
					GGTGATAAAA	900
	CAGCITATAG	IINCINICNI	Middoddi			903
GAC						

[0089]

配列番号:15

配列の長さ:1149

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP01737

配列

ATGGAGGCGC	TGGGGAAGCT	GAAGCAGTTC	GATGCCTACC	CCAAGACTTT	GGAGGACTTC	60
CGGGTCAAGA	CCTGCGGGGG	CGCCACCGTG	ACCATTGTCA	GTGGCCTTCT	CATGCTGCTA	120
CTGTTCCTGT	CCGAGCTGCA	GTATTACCTC	ACCACGGAGG	TGCATCCTGA	GCTCTACGTG	180
GACAAGTCGC	GGGGAGATAA	ACTGAAGATC	AACATCGATG	TACTTTTTCC	GCACATGCCT	240
TGTGCCTATC	TGAGTATTGA	TGCCATGGAT	GTGGCCGGAG	AACAGCAGCT	GGATGTGGAA	300
CACAACCTGT	TCAAGCAACG	ACTAGATAAA	GATGGCATCC	CCGTGAGCTC	AGAGGCTGAG	360
CGGCATGAGC	TTGGGAAAGT	CGAGGTGACG	GTGTTTGACC	CTGACTCCCT	GGACCCTGAT	420
CGCTGTGAGA	GCTGCTATGG	TGCTGAGGCA	GAAGATATCA	AGTGCTGTAA	CACCTGTGAA	480
GATGTGCGGG	AGGCATATCG	CCGTAGAGGC	TGGGCCTTCA	AGAACCCAGA	TACTATTGAG	540
CAGTGCCGGC	GAGAGGGCTT	CAGCCAGAAG	ATGCAGGAGC	AGAAGAATGA	AGGCTGCCAG	600
GTGTATGGCT	TCTTGGAAGT	CAATAAGGTG	GCCGGAAACT	TCCACTTTGC	CCCTGGGAAG	660
AGCTTCCAGC	AGTCCCATGT	GCACGTCCAT	GACTTGCAGA	GCTTTGGCCT	TGACAACATC	720
AACATGACCC	ACTACATCCA	GCACCTGTCA	TTTGGGGAGG	ACTATCCAGG	CATTGTGAAC	780
CCCCTGGACC	ACACCAATGT	CACTGCGCCC	CAAGCCTCCA	TGATGTTCCA	GTACTTTGTG	840
AACCTCCTCC	CCACTCTCTA	C+TC++CCTC	0100010100	m	* * * * * * * * * * * * * * * * * * *	

TTCACCCACT TCCTGACAGG TGTGTGCGCC ATCATTGGGG GCATGTTCAC AGTGGCTGGA 1080

AAGACAACG 1149

[0090]

配列番号:16

配列の長さ:597

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名:HP01962

配列

ATGACCO	CGGC	${\tt TGCTGGGCTA}$	CGTGGACCCC	CTGGATCCCA	GCTTTGTGGC	TGCCGTCATC	60
ACCATCA	CCT	TCAATCCGCT	CTACTGGAAT	GTGGTTGCAC	GATGGGAACA	CAAGACCCGC	120
AAGCTGA	GCA	GGGCCTTCGG	ATCCCCCTAC	CTGGCCTGCT	ACTCTCTAAG	CGTCACCATC	180
CTGCTCC	CTGA	ACTTCCTGCG	CTCGCACTGC	TTCACGCAGG	CCATGCTGAG	CCAGCCCAGG	240
ATGGAGA	AGCC	TGGACACCCC	CGCGGCCTAC	AGCCTGGGCC	TCGCGCTCCT	GGGACTGGGC	300
GTCGTG	CTCG	TGCTCTCCAG	CTTCTTTGCA	CTGGGGTTCG	CTGGAACTTT	CCTAGGTGAT	360
TACTTC	GGGA	TCCTCAAGGA	GGCGAGAGTG	ACCGTGTTCC	CCTTCAACAT	CCTGGACAAC	420
CCCATG	ГАСТ	GGGGAAGCAC	AGCCAACTAC	CTGGGCTGGG	CCATCATGCA	CGCCAGCCCC	480
ACGGGC	CTGC	TCCTGACGGT	GCTGGTGGCC	CTCACCTACA	TAGTGGCTCT	CCTATACGAA	540
GAGCCC	ГТСА	CCGCTGAGAT	CTACCGGCAG	AAAGCCTCCG	GGTCCCACAA	GAGGAGC	597

[0091]

配列番号:17

配列の長さ:687

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10435

配列

ı	ATGGCGCCTC	ACGGCCCGGG	TAGTCTTACG	ACCCTGGTGC	CCTGGGCTGC	CGCCCTGCTC	60
(CTCGCTCTGG	GCGTGGAAAG	GGCTCTGGCG	CTACCGAGA	TATGCACCCA	ATGTCCAGGG	120
i	AGCGTGCAAA	ATTTGTCAAA	AGTGGCCTTT	TATTGTAAAA	CGACACGAGA	GCTAATGCTG	180
(CATGCCCGTT	GCTGCCTGAA	TCAGAAGGC	ACCATCTTGG	GGCTGGATCT	CCAGAACTGT	240
•	TCTCTGGAGG	ACCCTGGTCC	AAACTTTCAT	CAGGCACATA	CCACTGTCAT	CATAGACCTG	300
(CAAGCAAACC	CCCTCAAAGG	TGACTTGGCC	AACACCTTCC	GTGGCTTTAC	TCAGCTCCAG	360
İ	ACTCTGATAC	TGCCACAACA	TGTCAACTGT	CCTGGAGGAA	TTAATGCCTG	GAATACTATC	420
į	ACCTCTTATA	TAGACAACCA	AATCTGTCAA	GGGCAAAAGA	ACCTTTGCAA	TAACACTGGG	480
(GACCCAGAAA	TGTGTCCTGA	GAATGGATCT	TGTGTACCTG	ATGGTCCAGG	TCTTTTGCAG	540
-	TGTGTTTGTG	CTGATGGTTT	CCATGGATAC	AAGTGTATGC	GCCAGGGCTC	GTTCTCACTG	600
(CTTATGTTCT	TCGGGATTCT	GGGAGCCACC	ACTCTATCCG	TCTCCATTCT	GCTTTGGGCG	660
ł	ACCCAGCGCC	GAAAAGCCAA	GACTTCA				687

[0092]

配列番号:18

配列の長さ:534

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

生物名: ホモニサビエンス

細胞の種類:リンホーマ

クローン名: HP10479

配列

ATGTCGCCCT	CTGGTCGCCT	GTGTCTTCTC	ACCATCGTTG	GCCTGATTCT	CCCCACCAGA	60
GGACAGACGT	TGAAAGATAC	CACGTCCAGT	TCTTCAGCAG	ACTCAACTAT	CATGGACATT	120
CAGGTCCCGA	CACGAGCCCC	AGATGCAGTC	TACACAGAAC	TCCAGCCCAC	CTCTCCAACC	180
CCAACCTGGC	CTGCTGATGA	AACACCACAA	CCCCAGACCC	AGACCCAGCA	ACTGGAAGGA	240
ACGGATGGGC	CTCTAGTGAC	AGATCCAGAG	ACACACAAGA	GCACCAAAGC	AGCTCATCCC	300
ACTGATGACA	CCACGACGCT	CTCTGAGAGA	CCATCCCCAA	GCACAGACGT	CCAGACAGAC	360
CCCCAGACCC	TCAAGCCATC	TGGTTTTCAT	GAGGATGACC	CCTTCTTCTA	TGATGAACAC	420
ACCCTCCGGA	AACGGGGGCT	GTTGGTCGCA	GCTGTGCTGT	TCATCACAGG	CATCATCATC	480
CTCACCAGTG	GCAAGTGCAG	GCAGCTGTCC	CGGTTATGCC	GGAATCATTG	CAGG	534

[0093]

配列番号:19

配列の長さ:1329

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:リンホーマ

セルライン: U937

クローン名: HP10481

配列

ATGCGGCTGA CGCGGAAGCG GCTCTGCTCG TTTCTTATCC	CCCTGTACTG	CCTATTCTCC	60
CTCTACGCTG CCTACCACGT CTTCTTCGGG CGCCGCCGCC	AGGCGCCGGC	CGGGTCCCCG	120
CGGGGCCTCA GGAAGGGGGC GGCCCCCGCG CGGGAGAGAG	C GCGGCCGAGA	ACAGTCCACT	180
TTGGAAAGTG AAGAATGGAA TCCTTGGGAA GGAGATGAAA	A AAAATGAGCA	ACAACACAGA	240
TTTAAAACTA GCCTTCAAAT ATTAGATAAA TCCACGAAA	G GAAAAACAGA	TCTCAGTGTA	300

CAAATCTGGG	GCAAAGCTGC	CATTGGCTTG	TATCTCTGGG	AGCATATTTT	TGAAGGCTTA	360
CTTGATCCCA	GCGATGTGAC	TGCTCAATGG	AGAGAAGGAA	AGTCAATCGT	AGGAAGAACA	420
CAGTACAGCT	TCATCACTGG	TCCAGCTGTA	ATACCAGGGT	ACTTCTCCGT	TGATGTGAAT	480
AATGTGGTAC	TCATTTTAAA	TGGAAGAGAA	AAAGCAAAGA	TCTTTTATGC	CACCCAGTGG	540
TTACTTTATG	CACAAAATTT	AGTGCAAATT	CAAAAACTCC	AGCATCTTGC	TGTTGTTTTG	600
CTCGGAAATG	AACATTGTGA	TAATGAGTGG	ATAAACCCAT	TCCTCAAAAG	AAATGGAGGC	660
TTCGTGGAGC	TGCTTTTCAT	AATATATGAC	AGCCCCTGGA	TTAATGACGT	GGATGTTTTT	720
CAGTGGCCTT	TAGGAGTAGC	AACATACAGG	AATTTTCCTG	TGGTGGAGGC	AAGTTGGTCA	780
ATGCTGCATG	ATGAGAGGCC	ATATTTATGT	AATTTCTTAG	GAACGATTTA	TGAAAATTCA	840
TCCAGACAGG	CACTAATGAA	CATTTTGAAA	AAAGATGGGA	ACGATAAGCT	TTGTTGGGTT	900
TCAGCAAGAG	AACACTGGCA	GCCTCAGGAA	ACAAATGAAA	GTCTTAAGAA	TTACCAAGAT	960
GCCTTGCTTC	AGAGTGATCT	CACATTGTGC	CCGGTCGGAG	TAAACACAGA	ATGCTATCGA	1020
ATCTATGAGG	CTTGCTCCTA	TGGCTCCATT	CCTGTGGTGG	AAGACGTGAT	GACAGCTGGC	1080
AACTGTGGGA	ATACATCTGT	GCACCACGGT	GCTCCTCTGC	AGTTACTCAA	GTCCATGGGT	1140
GCTCCCTTTA	TCTTTATCAA	GAACTGGAAG	GAACTCCCTG	CTGTTTTAGA	AAAAGAGAAA	1200
ACTATAATTT	TACAAGAAAA	AATTGAAAGA	AGAAAAATGT	TACTTCAGTG	GTATCAGCAC	1260
TTCAAGACAG	AGCTTAAAAT	GAAATTTACT	AATATTTTAG	AAAGCTCATT	TTTAATGAAT	1320
AATAAAAGT						1329

[0094]

配列番号:20

配列の長さ:390

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

生物名:ホモ=サビエンス

細胞の種類:胃癌

2.

配列

ATGGAGACCC	TGGGGGCCCT	TCTGGTGCTG	GAGTTTCTGC	TCCTCTCCCC	GGTGGAGGCC	60
CAGCAGGCCA	CGGAGCATCG	CCTGAAGCCG	TGGCTGGTGG	GCCTGGCTGC	GGTAGTCGGC	120
TTCCTGTTCA	TCGTCTATTT	GGTCTTGCTG	GCCAACCGCC	TCTGGTGTTC	CAAGGCCAGG	180
GCTGAGGACG	AGGAGGAGAC	CACGTTCAGA	ATGGAGTCCA	ACCTATACCA	GGACCAGAGT	240
GAAGACAAGA	GAGAGAAGAA	AGAGGCCAAG	GAGAAAGAAG	AGAAGAGGAA	GAAGGAGAAA	300
AAGACAGCAA	AGGAAGGAGA	GAGCAACTTG	GGACTGGATC	TGGAGGAAAA	AGAGCCCGGA	360
GACCATGAGA	GAGCAAAGAG	CACAGTCATG				390

[0095]

配列番号:21

配列の長さ:979

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP01244

配列の特徴:

特徴を表す記号:CDS

存在位置:16..387

特徴を決定した方法:E

配列

AGCCCACCAG TGACC ATG AAG GCT GTG CTG CTT GCC CTG TTG ATG GCA GGC

Met Lys Ala Val Leu Leu Ala Leu Leu Met Ala Gly

1 5 10

TTG GCC CTG CAG CCA GGC ACT GCC CTG CTG TGC TAC TCC TGC AAA GCC
Leu Ala Leu Gln Pro Gly Thr Ala Leu Leu Cys Tyr Ser Cys Lys Ala

99

15 20 25	
CAG GTG AGC AAC GAG GAC TGC CTG CAG GTG AAG AAC TGC ACC CAG CTG	147
Gln Val Ser Asn Glu Asp Cys Leu Gln Val Lys Asn Cys Thr Gln Leu	
30 35 40	
GGG GAG CAG TGC TGG ACC GCG CGC ATC CGC GCA GTT GGC CTC CTG ACC	195
Gly Glu Gln Cys Trp Thr Ala Arg Ile Arg Ala Val Gly Leu Leu Thr	
45 50 55 60	
GTC ATC AGC AAA GGC TGC AGC TTG AAC TGC GTG GAT GAC TCA CAG GAC	243
Val Ile Ser Lys Gly Cys Ser Leu Asn Cys Val Asp Asp Ser Gln Asp	
65 70 75	
TAC TAC GTG GGC AAG AAG AAC ATC ACG TGC TGT GAC ACC GAC TTG TGC	291
Tyr Tyr Val Gly Lys Lys Asn Ile Thr Cys Cys Asp Thr Asp Leu Cys	
80 85 90	
AAC GCC AGC GGG GCC CAT GCC CTG CAG CCG GCT GCC GCC ATC CTT GCG	339
Asn Ala Ser Gly Ala His Ala Leu Gln Pro Ala Ala Ala Ile Leu Ala	
95 100 105	
CTG CTC CCT GCA CTC GGC CTG CTC TGG GGA CCC GGC CAG CTA	384
Leu Leu Pro Ala Leu Gly Leu Leu Trp Gly Pro Gly Gln Leu	
110 115 120	
110 115 120 TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG	440
110 115 120 TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG TGCCACTCCT CACAGACCTG GCCCAGTGGG AGCCTGTCCT GGTTCCTGAG GCACATCCTA	500
110 115 120 TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG TGCCACTCCT CACAGACCTG GCCCAGTGGG AGCCTGTCCT GGTTCCTGAG GCACATCCTA ACGCAAGTCT GACCATGTAT GTCTGCACCC CTGTCCCCCA CCCTGACCCT CCCATGGCCC	500 560
TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG TGCCACTCCT CACAGACCTG GCCCAGTGGG AGCCTGTCCT GGTTCCTGAG GCACATCCTA ACGCAAGTCT GACCATGTAT GTCTGCACCC CTGTCCCCCA CCCTGACCCT CCCATGGCCC TCTCCAGGAC TCCCACCCGG CAGATCAGCT CTAGTGACAC AGATCCGCCT GCAGATGGCC	500 560 620
TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG TGCCACTCCT CACAGACCTG GCCCAGTGGG AGCCTGTCCT GGTTCCTGAG GCACATCCTA ACGCAAGTCT GACCATGTAT GTCTGCACCC CTGTCCCCCA CCCTGACCCT CCCATGGCCC TCTCCAGGAC TCCCACCCGG CAGATCAGCT CTAGTGACAC AGATCCGCCT GCAGATGGCC CCTCCAACCC TCTCTGCTGC TGTTTCCATG GCCCAGCATT CTCCACCCTT AACCCTGTGC	500 560
TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG TGCCACTCCT CACAGACCTG GCCCAGTGGG AGCCTGTCCT GGTTCCTGAG GCACATCCTA ACGCAAGTCT GACCATGTAT GTCTGCACCC CTGTCCCCCA CCCTGACCCT CCCATGGCCC TCTCCAGGAC TCCCACCCGG CAGATCAGCT CTAGTGACAC AGATCCGCCT GCAGATGGCC	500 560 620
TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG TGCCACTCCT CACAGACCTG GCCCAGTGGG AGCCTGTCCT GGTTCCTGAG GCACATCCTA ACGCAAGTCT GACCATGTAT GTCTGCACCC CTGTCCCCCA CCCTGACCCT CCCATGGCCC TCTCCAGGAC TCCCACCCGG CAGATCAGCT CTAGTGACAC AGATCCGCCT GCAGATGGCC CCTCCAACCC TCTCTGCTGC TGTTTCCATG GCCCAGCATT CTCCACCCTT AACCCTGTGC TCACCCACCT CTTCCCCCACCT TAGTGACAC TCCCACCCTT TGTTTCCATG TGCCACCCTT TGTTTCCATG TGCCACCCT TGTTTCCATG TGCCACCCTT TGTTTCCATG TGCCACCCT TGTTTCATG TGCCACCCT TGTTTCATG TGCCACCCT TGTTTCATG TGCCACCCT TGCCACCCCT TGCCACCCCT TGCCACCCC TGCACACCCC TGCACCCT TGCCACCCCACC	500 560 620 680
TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG TGCCACTCCT CACAGACCTG GCCCAGTGGG AGCCTGTCCT GGTTCCTGAG GCACATCCTA ACGCAAGTCT GACCATGTAT GTCTGCACCC CTGTCCCCCA CCCTGACCCT CCCATGGCCC TCTCCAGGAC TCCCACCCGG CAGATCAGCT CTAGTGACAC AGATCCGCCT GCAGATGGCC CCTCCAACCC TCTCTGCTGC TGTTTCCATG GCCCAGCATT CTCCACCCTT AACCCTGTGC TCACCCACCT CTTCCCCCACACC GCAGACCAGCATT CTCCACCCTT AACCCTGTGC GGCTGAGATG AAGTGGACTG AGTAGAACTG GAGGACAAGA GTCGACGTGA GTTCCTGGGA	500 560 620 680
TAGGCT CTGGGGGGCC CCGCTGCAGC CCACACTGGG TGTGGTGCCC CAGGCCTCTG TGCCACTCCT CACAGACCTG GCCCAGTGGG AGCCTGTCCT GGTTCCTGAG GCACATCCTA ACGCAAGTCT GACCATGTAT GTCTGCACCC CTGTCCCCCA CCCTGACCCT CCCATGGCCC TCTCCAGGAC TCCCACCCGG CAGATCAGCT CTAGTGACAC AGATCCGCCT GCAGATGGCC CCTCCAACCC TCTCTGCTGC TGTTTCCATG GCCCAGCATT CTCCACCCTT AACCCTGTGC TCACCCACCT CTTCCCCCACCT TAGTGACAC TCCCACCCTT TGTTTCCATG TGCCACCCTT TGTTTCCATG TGCCACCCT TGTTTCCATG TGCCACCCTT TGTTTCCATG TGCCACCCT TGTTTCATG TGCCACCCT TGTTTCATG TGCCACCCT TGTTTCATG TGCCACCCT TGCCACCCCT TGCCACCCCT TGCCACCCC TGCACACCCC TGCACCCT TGCCACCCCACC	500 560 620 680

[0096]

配列番号:22

配列の長さ:1279

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01498

配列の特徴:

特徴を表す記号: CDS

存在位置: 228..890

特徴を決定した方法:E

配列

AGGGCCAGCC CAGTCGCCGC CGCCCGCCCA CAAAGCCACA GGCAGGTGCA GGCGCAGCCG	60
CGGCGAGAGC GTATGGAGCC GAGCCGTTAG CGCGCGCCGT CGGTGAGTCA GTCCGTCCGT	120
CCGTCCGTCC GTCGGGGCGC CGCAGCTCCC GCCAGGCCCA GCGGCCCCGG CCCCTCGTCT	180
CCCCGCACCC GGAGCCACCC GGTGGAGCGG GCCTTGCCGC GGCAGCC ATG TCC ATG	236
Met Ser Met	
1	
GGC CTG GAG ATC ACG GGC ACC GCG CTG GCC GTG CTG GGC TGG CTG GGC	284
Gly Leu Glu Ile Thr Gly Thr Ala Leu Ala Val Leu Gly Trp Leu Gly	
5 10 15	
ACC ATC GTG TGC TGC GCG TTG CCC ATG TGG CGC GTG TCG GCC TTC ATC	332
Thr Ile Val Cys Cys Ala Leu Pro Met Trp Arg Val Ser Ala Phe Ile	
20 25 30 35	
GGC AGC AAC ATC ACG TCG CAG AAC ATC TGG GAG GGC CTG TGG ATG	380

Gly Ser Asn Ile Ile Thr Ser Gln Asn Ile Trp Glu Gly Leu Trp Met

_			_	-	-	-	-			•		-		•		
				40					45					50		
AA	C TGC	GTG	GTG	CAG	AGC	ACC	GGC	CAG	ATG	CAG	TGC	AAG	GTG	TAC	GAC	428
As	n Cys	Val	Val	Gln	Ser	Thr	Gly	Gln	Met	Gln	Cys	Lys	Val	Tyr	Asp	
			55					60					65			
TC	G CTG	CTG	GCA	CTG	CCA	CAG	GAC	CTT	CAG	GCG	GCC	CGC	GCC	CTC	ATC	476
Se	r Leu	Leu	Ala	Leu	Pro	Gln	Asp	Leu	Gln	Ala	Ala	Arg	Ala	Leu	Ile	
		70					75					80				
GT	G GTG	GCC	ATC	CTG	CTG	GCC	GCC	TTC	GGG	CTG	CTA	GTG	GCG	CTG	GTG	524
Va	l Val	Ala	Ile	Leu	Leu	Ala	Ala	Phe	Gly	Leu	Leu	Val	Ala	Leu	Val	
	85					90					95					
GG	C GCC	CAG	TGC	ACC	AAC	TGC	GTG	CAG	GAC	GAC	ACG	GCC	AAG	GCC	AAG	572
G1	y Ala	Gln	Cys	Thr	Asn	Cys	Val	Gln	Asp	Asp	Thr	Ala	Lys	Ala	Lys	
10	0				105					110					115	
AT	C ACC	ATC	GTG	GCA	GGC	GTG	CTG	TTC	CTT	CTC	GCC	GCC	CTG	CTC	ACC	620
Il	e Thr	Ile	Val	Ala	Gly	Val	Leu	Phe	Leu	Leu	Ala	Ala	Leu	Leu	Thr	
				120					125					130		
CT	C GTG	CCG	GTG	TCC	TGG	TCG	GCC	AAC	ACC	ATT	ATC	CGG	GAC	TTC	TAC	668
Lе	u Val	Pro	Val	Ser	Trp	Ser	Ala	Asn	Thr	Ile	He	Arg	Asp	Phe	Tyr	
			135					140					145			
A A	C CCC	GTG	GTG	CCC	GAG	GCG	CAG	AAG	CGC	GAG	ATG	GGC	GCG	GGC	CTG	716
As	n Pro	Val	Val	Pro	Glu	Ala	Gln	Lys	Arg	Glu	Met	Gly	Ala	Gly	Leu	
		150					155					160				
TA	C GTG	GGC	TGG	GCG	GCC	GCG	GCG	CTG	CAG	CTG	CTG	GGG	GGC	GCG	CTG	764
ጥሗ	r Tal	C1	TT +- +-	4.1	1 1	ı t	• •	•	1							
ci	. 16c	TGU	TCG	TGI	CCC	CCA	CGC	GAG	AAG	AAG	TAC	ACG	GCC	ACC	AAG	812
Le	ı Cys	Cys	Ser	Cys	Pro	Pro	Arg	Glu	Lys	Lys	Tyr	Thr	Ala	Thr	Lys	

GTC GTC TAC TCC GCG CCG CGC TCC ACC GGC CCG GGA GCC AGC CTG GGC	860
Val Val Tyr Ser Ala Pro Arg Ser Thr Gly Pro Gly Ala Ser Leu Gly	
200 205 210	
ACA GGC TAC GAC CGC AAG GAC TAC GTC TAA GGGACAGACG CAGGGAGACC	910
Thr Gly Tyr Asp Arg Lys Asp Tyr Val	
215 220	
CCACCACCAC CACCACCAC AACACCACCA CCACCACAGC GAGCTGGAGC GCGCACCAGG	970
CCATCCAGCG TGCAGCCTTG CCTCGGAGGC CAGCCCACCC CCAGAAGCCA GGAAGCCCCC	1030
GCGCTGGACT GGGGCAGCTT CCCCAGCAGC CACGGCTTTG CGGGCCGGGC	1090
GGGGCCCAGG GACCAACCTG CATGGACTGT GAAACCTCAC CCTTCTGGAG CACGGGGCCT	1150
GGGTGACCGC CAATACTTGA CCACCCCGTC GAGCCCCATC GGGCCGCTGC CCCCATGCTC	1210
GCGCTGGGCA GGGACCGGCA GCCCTGGAAG GGGCACTTGA TATTTTTCAA TAAAAGCCTT	1270
TCGTTTTGC	1279
[0007]	

[0097]

配列番号:23

配列の長さ:835

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01565

配列の特徴:

特徴を表す記号: CDS

存在位置:63..308

特徴を決定した方法:E

配列

GACACTTCCT GGTGGGATCC GAGTGAGGCG ACGGGGTAGG GGTTGGCGCT CAGGCGGCGA	60
CC ATG GCG TAT CAC GGC CTC ACT GTG CCT CTC ATT GTG ATG AGC GTG	107
Met Ala Tyr His Gly Leu Thr Val Pro Leu Ile Val Met Ser Val	
1 5 10 15	
TTC TGG GGC TTC GTC GGC TTC TTG GTG CCT TGG TTC ATC CCT AAG GGT	155
Phe Trp Gly Phe Val Gly Phe Leu Val Pro Trp Phe Ile Pro Lys Gly	
20 25 30	
CCT AAC CGG GGA GTT ATC ATT ACC ATG TTG GTG ACC TGT TCA GTT TGC	203
Pro Asn Arg Gly Val Ile Ile Thr Met Leu Val Thr Cys Ser Val Cys	
35 40 45	
TGC TAT CTC TTT TGG CTG ATT GCA ATT CTG GCC CAA CTC AAC CCT CTC	251
Cys Tyr Leu Phe Trp Leu Ile Ala Ile Leu Ala Gln Leu Asn Pro Leu	
50 55 60	
TTT GGA CCG CAA TTG AAA AAT GAA ACC ATC TGG TAT CTG AAG TAT CAT	299
Phe Gly Pro Gln Leu Lys Asn Glu Thr Ile Trp Tyr Leu Lys Tyr His	
Phe Gly Pro Gln Leu Lys Asn Glu Thr Ile Trp Tyr Leu Lys Tyr His 65 70 75	
	350
65 70 75	350
75 TGG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG	350
75 TGG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG Trp Pro	350 410
70 75 TGG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG Trp Pro 80	
75 TGG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG Trp Pro 80 AGAAGAGAAT GCCTTCTAGA TGCAAAATCA CCTCCAAACC AGACCACTTT TCTTGACTTG	410
75 TGG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG Trp Pro 80 AGAAGAGAAT GCCTTCTAGA TGCAAAATCA CCTCCAAACC AGACCACTTT TCTTGACTTG CCTGTTTTGG CCATTAGCTG CCTTAAACGT TAACAGCACA TTTGAATGCC TTATTCTACA	410 470
TGG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG Trp Pro 80 AGAAGAGAAT GCCTTCTAGA TGCAAAATCA CCTCCAAACC AGACCACTTT TCTTGACTTG CCTGTTTTGG CCATTAGCTG CCTTAAAACGT TAACAGCACA TTTGAATGCC TTATTCTACA ATGCAGCGTG TTTTCCTTTG CCTTTTTTGC ACTTTGGTGA ATTACGTGCC TCCATAACCT	410 470 530
TGG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG Trp Pro 80 AGAAGAGAAT GCCTTCTAGA TGCAAAATCA CCTCCAAACC AGACCACTTT TCTTGACTTG CCTGTTTTGG CCATTAGCTG CCTTAAACGT TAACAGCACA TTTGAATGCC TTATTCTACA ATGCAGCGTG TTTTCCTTTG CCTTTTTTGC ACTTTGGTGA ATTACGTGCC TCCATAACCT GAACTGTGCC GACTCCACAA AACGATTATG TACTCTTCTG AGATAGAAGA TGCTGTTCTT	410 470 530 590
TGG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG Trp Pro 80 AGAAGAGAAT GCCTTCTAGA TGCAAAATCA CCTCCAAACC AGACCACTTT TCTTGACTTG CCTGTTTTGG CCATTAGCTG CCTTAAACGT TAACAGCACA TTTGAATGCC TTATTCTACA ATGCAGCGTG TTTTCCTTTG CCTTTTTTGC ACTTTGGTGA ATTACGTGCC TCCATAACCT GAACTGTGCC GACTCCACAA AACGATTATG TACTCTTCTG AGATAGAAGA TGCTGTTCTT CTGAGAGATA CGTTACTCTC TCCTTGGAAT CTGTGGATTT GAAGATGGCT CCTGCCTTCT	410 470 530 590
TOG CCT TGAGG AAGAAGACAT GCTCTACAGT GCTCAGTCTT TGAGGTCACG Trp Pro 80 AGAAGAGAAT GCCTTCTAGA TGCAAAATCA CCTCCAAACC AGACCACTTT TCTTGACTTG CCTGTTTTGG CCATTAGCTG CCTTAAACGT TAACAGCACA TTTGAATGCC TTATTCTACA ATGCAGCGTG TTTTCCTTTG CCTTTTTTGC ACTTTGGTGA ATTACGTGCC TCCATAACCT GAACTGTGCC GACTCCACAA AACGATTATG TACTCTTCTG AGATAGAAGA TGCTGTTCTT CTGAGAGATA CGTTACTCTC TCCTTGGAAT CTGTGGATTT GAAGATGGCT CCTGCCTTCT	410 470 530 590

9 - 276271

配列番号:24

配列の長さ:1256

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

to mRNA 配列の種類:cDNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01606

配列の特徴:

特徴を表す記号: CDS

存在位置:125..1030

特徴を決定した方法:E

50

配列

AGTATGGAGG CACCGGTAGC CCAGTGTCTG AGTGGTTGCC GGGTCTCCAT GGAGAAGCGG 60 CTCGCCAGTG TCCCAGGCTG CTGAGCTCTC GCCGCCCGAG ACCCCGCGGC GCGGCCGCAG 120 169 Met Leu Ala Leu Arg Val Ala Arg Gly Ser Trp Gly Ala Leu Arg 15 10 1 5 GGC GCC GCT TGG GCT CCG GGA ACG CGG CCG AGT AAG CGA CGC GCC TGC 217 Gly Ala Ala Trp Ala Pro Gly Thr Arg Pro Ser Lys Arg Arg Ala Cys 30 25 20 TGG GCC CTG CTG CCC GTG CCC TGC TGC TTG GGC TGC CTG GCC GAA 265 Trp Ala Leu Leu Pro Pro Val Pro Cys Cys Leu Gly Cys Leu Ala Glu 45 35 CGC TGG AGG CTG CGT CCG GCC GCT CTT GGC TTG CGG CTG CCC GGG ATC 313 Arg Trp Arg Leu Arg Pro Ala Ala Leu Gly Leu Arg Leu Pro Gly Ile 60

55

GC	GC	CAG	CGG	AAC	CAC	TGT	TCG	GGC	GCG	GGG	AAG	GCG	GCT	CCC	AGG	CCA	361
G I	y	Gln	Arg	Asn	His	Cys	Ser	Gly	Ala	Gly	Lys	Ala	Ala	Pro	Arg	Pro	
		65					70					75					
GC	CG	GCC	GGA	GCG	GGC	GCC	GCT	GCC	GAA	GCC	CCG	GGC	GGC	CAG	TGG	GGC	409
A l	a	Ala	Gly	Ala	Gly	Ala	Ala	Ala	Glu	Ala	Pro	Gly	Gly	Gln	Trp	Gly	
8	30					85					90					95	
CC	CG	GCG	AGC	ACC	CCC	AGC	CTG	TAT	GAA	AAC	CCA	TGG	ACA	ATC	CCG	AAT	457
Pr	.0	Ala	Ser	Thr	Pro	Ser	Leu	Tyr	Glu	Asn	Pro	Trp	Thr	Ile	Pro	Asn	
					100					105					110		
ΑT	G.	TTG	TCA	ATG	ACG	AGA	ATT	GGC	TTG	GCC	CCA	GTT	CTG	GGC	TAT	TTG	505
Μe	ŧ	Leu	Ser	Met	Thr	Arg	Ile	Gly	Leu	Ala	Pro	Val	Leu	Gly	Tyr	Leu	
				115					120					125			
ΑT	T	ATT	GAA	GAA	GAT	TTT	AAT	ATT	GCA	CTA	GGA	GTT	TTT	GCT	TTA	GCT	553
IJ	e	Ile	Glu	Glu	Asp	Phe	Asn	Ile	Ala	Leu	Gly	Val	Phe	Ala	Leu	Ala	
			130					135					140				
GC	A	CTA	ACA	GAT	TTG	TTG	GAT	GGA	TTT	ATT	GCT	CGA	AAC	TGG	GCC	AAT	601
G I	y	Leu	Thr	Asp	Leu	Leu	Asp	Gly	Phe	Ile	Ala	Arg	Asn	Trp	Ala	Asn	
		145					150					155					
CA	A	AGA	TCA	GCT	TTG	GGA	AGT	GCT	CTT	GAT	CCA	CTT	GCT	GAT	AAA	ATA	649
G I	n	Arg	Ser	Ala	Leu	Gly	Ser	Ala	Leu	Asp	Pro	Leu	Ala	Asp	Lys	He	
16	0					165					170					175	
						TAT											697
Lε	u	Ile	Ser	He	Leu	Tyr	Val	Ser	Leu	Thr	Tyr	Ala	Asp	Leu	Ile	Pro	
					180					185					190		
C1	. d.	~~ .	CTIT	4.00	T 1 ~	4 *** **		4	••	•							
				195					200					205			
GC	T	GTT	TTT	TAT	GTC	AGA	TAC	CGA	ACT	CTT	CCA	ACA	CCA	CGA	ACA	CTT	793

the heavy of the violent terms to be the resting his en-

		210					215					220				
GCC	AAG	TAT	TTC	AAT	CCT	TGC	TAT	GCC	ACT	GCT	AGG	TTA	AAA	CCA	ACA	841
Ala	L y s	Tyr	Phe	Asn	Pro	Cys	Tyr	Ala	Thr	Ala	Arg	Leu	Lys	Pro	Thr	
	225					230					235					
TTC	ATC	AGC	AAG	GTG	AAT	ACA	GCA	GTC	CAG	TTA	ATC	TTG	GTG	GCA	GCT	889
Phe	Ile	Ser	Lys	Val	Asn	Thr	Ala	Val	Gln	Leu	Ile	Leu	Val	Ala	Ala	
240					245					250					255	
TCT	TTG	GCA	GCT	CCA	GTT	TTC	AAC	TAT	GCT	GAC	AGC	ATT	TAT	CTT	CAG	937
Ser	Leu	Ala	Ala	Pro	Val	Phe	Asn	Tyr	Ala	Asp	Ser	Ile	Tyr	Leu	Gln	
				260					265					270		
ATA	CTA	TGG	TGT	TTT	ACA	GCT	TTC	ACC	ACA	GCT	GCA	TCA	GCT	TAT	AGT	985
Ile	Leu	Trp	Cys	Phe	Thr	Ala	Phe	Thr	Thr	Ala	Ala	Ser	Ala	Tyr	Ser	
			275					280					285			
TAC	TAT	CAT	TAT	GGC	CGG	AAG	ACT	GTT	CAG	GTG	ATA	AAA	GAC	TGA		1030
Tyr	Tyr	∦is	Tyr	Gly	Arg	Lys	Thr	Val	Gln	Val	Ile	Lys	Asp			
		290					295					300				
TGA	AAGT	CAT	CCCT	CACT	GT T	AGTA	AGGA	A GC	AGTA	TACA	TCA	ATGG	GAA	CAGG	GCCCAT	1090
GGA	AATG	TAC	AGGA	GTTT	CC C	TATT	TTGG	T GT	TCAG	CTTG	AAA	AAGG	ACT	TGTC	AGAATC	1150
AAC	TGTG	TCA	TCAA	AATT	TA A	GTAA	TGTG	C AT	TGAA	AATA	AGG	TTGA	TCA	TGGG	AATATG	1210
CAG	AATT	TCC	AATG	TATT	TT T	AAAT	ACAA	A TA	AAAT	TGTA	ATT	TAG				1256
[(009	9]														
	iri anz. E	et . 6) E													

配列番号: 25

配列の長さ:1305

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01737

配列の特徴:

特徴を表す記号:CDS

存在位置: 22.. 1173

特徴を決定した方法:E

配列

CTTTTTTCC GGCCGGTCCC C ATG GAG GCG CTG GGG AAG CTG AAG CAG TTC 51 Met Glu Ala Leu Gly Lys Leu Lys Gln Phe 1 5 10 GAT GCC TAC CCC AAG ACT TTG GAG GAC TTC CGG GTC AAG ACC TGC GGG 99 Asp Ala Tyr Pro Lys Thr Leu Glu Asp Phe Arg Val Lys Thr Cys Gly 20 25 15 GGC GCC ACC GTG ACC ATT GTC AGT GGC CTT CTC ATG CTG CTA CTG TTC 147 Gly Ala Thr Val Thr Ile Val Ser Gly Leu Leu Met Leu Leu Leu Phe 30 35 40 CTG TCC GAG CTG CAG TAT TAC CTC ACC ACG GAG GTG CAT CCT GAG CTC 195 Leu Ser Glu Leu Gln Tyr Tyr Leu Thr Thr Glu Val His Pro Glu Leu 50 55 45 TAC GTG GAC AAG TCG CGG GGA GAT AAA CTG AAG ATC AAC ATC GAT GTA 243 Tyr Val Asp Lys Ser Arg Gly Asp Lys Leu Lys Ile Asn Ile Asp Val 60 65 70 CTT TTT CCG CAC ATG CCT TGT GCC TAT CTG AGT ATT GAT GCC ATG GAT 291 Leu Phe Pro His Met Pro Cys Ala Tyr Leu Ser Ile Asp Ala Met Asp

val Ala Gly Glu Gln Gln Leu Asp Val Glu His Asn Leu Phe Lys Gln

95

100

105

Arg	Leu	Asp	Lys	Asp	Gly	Ile	Pro	Va l	Ser	Ser	Glu	Ala	Glu	Arg	His	
			110					115					120			
GAG	CTT	GGG	AAA	GTC	GAG	GTG	ACG	GTG	TTT	GAC	CCT	GAC	TCC	CTG	GAC	435
Glu	Leu	Gly	Lys	Val	Glu	Val	Thr	Val	Phe	Asp	Pro	Asp	Ser	Leu	Asp	
		125					130					135				
CCT	GAT	CGC	TGT	GAG	AGC	TGC	TAT	GGT	GCT	GAG	GCA	GAA	GAT	ATC	AAG	483
Pro	Asp	Arg	Cys	Glu	Ser	Cys	Tyr	Gly	Ala	Glu	Ala	Glu	Asp	Ile	Lys	
	140					145					150					
TGC	TGT	AAC	ACC	TGT	GAA	GAT	GTG	CGG	GAG	GCA	TAT	CGC	CGT	AGA	GGC	531
Cys	Cys	Asn	Thr	Cys	Glu	Asp	Val	Arg	Glu	Ala	Tyr	Arg	Arg	Arg	Gly	
155					160					165					170	
TGG	GCC	TTC	AAG	AAC	CCA	GAT	ACT	ATT	GAG	CAG	TGC	CGG	CGA	GAG	GGC	579
Trp	Ala	Phe	Lys	Asn	Pro	Asp	Thr	He	Glu	Gln	Cys	Arg	Arg	Glu	Gly	
				175					180					185		
TTC	AGC	CAG	AAG	ATG	CAG	GAG	CAG	AAG	AAT	GAA	GGC	TGC	CAG	GTG	TAT	627
Phe	Ser	Gln	Lys	Met	Gln	Glu	Gln	Lys	Asn	Glu	Gly	Cys	Gln	Va l	Tyr	
			190					195					200			
GGC	TTC	TTG	GAA	GTC	AAT	AAG	GTG	GCC	GGA	AAC	TTC	CAC	TTT	GCC	CCT	675
Gly	Phe	Leu	Glu	Val	Asn	Lys	Val	Ala	Gly	Asn	Phe	His	Phe	Ala	Pro	
		205					210					215				
GGG	AAG	AGC	TTC	CAG	CAG	TCC	CAT	GTG	CAC	GTC	CAT	GAC	TTG	CAG	AGC	723
Gly	Lys	Ser	Phe	Gln	Gln	Ser	His	Val	His	Val	His	Asp	Leu	Gln	Ser	
	220					225					230					
TTT	GGC	CTT	GAC	AAC	ATC	AAC	ATG	ACC	CAC	TAC	ATC	CAG	CAC	CTC	G TCA	771
Phe	Gly	Leu	Asp	Asn	Ile	Asn	Met	Thr	His	Tyr	Ile	Gln	His	Lei	ı Ser	
235					240					245					250	
TTT	GGG	GAG	GAC	TAT	CCA	GGC	ATT	GTG	AAC	CCC	CTG	GAC	CAC	ACC	CAAT	819
Phe	Gly	Glu	Asp	Tyr	Pro	Gly	Ile	Val	Asn	Pro	Leu	Asp	His	Thi	Asn	
				255					260					265	5	

GTC A	CT G	GCG	CCC	CAA	GCC	TCC	ATG	ATG	TTC	CAG	TAC	TTT	GTG	AAG	GTG	867
Val T	hr A	la	Pro	Gln	Ala	Ser	Met	Met	Phe	Gln	Tyr	Phe	Val	Lys	Val	
			270					275					280			
GTG C	CC A	CT	GTG	TAC	ATG	AAG	GTG	GAC	GGA	GAG	GTA	CTG	AGG	ACA	AAT	915
Val P	ro T	hr	Val	Tyr	Met	Lys	Val	Asp	Gly	Glu	Val	Leu	Arg	Thr	Asn	
	2	85					290					295				
CAG T	TC T	СТ	GTG	ACC	AGA	CAT	GAG	AAG	GTT	GCC	AAT	GGG	CTG	TTG	GGC	963
Gln Pl	he S	er	Val	Thr	Arg	His	Glu	Lys	Val	Ala	Asn	Gly	Leu	Leu	Gly	
30	00					305					310					
GAC CA	AA G	GC	CTT	CCC	GGA	GTC	TTC	GTC	CTC	TAT	GAG	CTC	TCG	CCC	ATG	1011
Asp G	ln G	lу	Leu	Pro	Gly	Val	Phe	Val	Leu	Tyr	Glu	Leu	Ser	Pro	Met	
315					320					325					330	
ATG GT	rg A	AG	CTG	ACG	GAG	AAG	CAC	AGG	TCC	TTC	ACC	CAC	TTC	CTG	ACA	1059
Met Va	al L	ys	Leu	Thr	Glu	Lys	His	Arg	Ser	Phe	Thr	His	Phe	Leu	Thr	
				335					340					345		
GGT GT	G T	GC	GCC	ATC	ATT	GGG	GGC	ATG	TTC	ACA	GTG	GCT	GGA	CTC	ATC	1107
Gly Va	al C	ys .	Ala	Ile	Ile	Gly	Gly	Met	Phe	Thr	Val	Ala	Gly	Leu	Ιle	
		;	350					355					360			
GAT TO	CG C	TC .	ATC	TAC	CAC	TCA	GCA	CGA	GCC	ATC	CAG	AAG	AAA	ATT	GAT	1155
Asp Se	er L	eu	lle	Tyr	His	Ser	Ala	Arg	Ala	He	Gln	Lys	Lys	Ile	Asp	
	30	65					370					375				
CTA GG	iG A.	AG .	ACA	ACG	TAGT	CACC	CT C	GGTG	CTTC	C TC	TGTC	CTCCT	CTI	TCTC	CCCT	1210
Leu Gl	y L	ys î	Thr	Thr												
38	0															
GGCCTG	ፐርር	т т(TTCC	CCC 4	r	тстс	CC 1 C	CCT		27.2	es equilis es		24 -			

配列番号: 26

根据的技术

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名: HP01962

配列の特徴:

特徴を表す記号: CDS

存在位置:74..673

特徴を決定した方法:E

配列

CGTC	GGTG	AC C	CTGTG	GGAC	T CO	GAGCT	ATTC	CTG	CAGO	TCA	GCAG	ACCT	CC I	GGCC	GTGGC	60
AGAC	TTCT	GC C	TT A	TG A	CC (CGG C	TG C	TG G	GC I	CAC G	TG G	GAC C	cc c	CTG G	AT	109
						rg L										
				1				5					10			
CCC	AGC	ТТТ	GTG	GCT	GCC	GTC	ATC	ACC	ATC	ACC	TTC	AAT	CCG	CTC	TAC	157
						Val										
, 10	D -1	15					20					25				
TCC	ΔΑΤ		GTT	GCA	CGA	TGG	GAA	CAC	AAG	ACC	CGC	AAG	CTG	AGC	AGG	205
						Trp										
111	30	,	,	11.0	**** 6	35	Q = -				40					
CCC		CCA	TCC	ccc	TAC	CTG	GCC	TCC	TAC	тст	CTA	AGC	GTC	ACC	ATC	253
Ala	Phe	Gly	Ser	Pro	Tyr	Leu	Ala	Cys	1 91		Leu	Sei	vai	1111		
45					50					55					60	
CTG	CTC	CTG	AAC	TTC	CTG	CGC	TCG	CAC	TGC	TTC	ACG	CAG	GCC	ATG	CTG	301
Leu	Leu	Leu	Asn	Phe	Leu	Arg	Ser	His	Cys	Phe	Thr	Gln	Ala	Met	Leu	
				65					70					7 5		

AGC CAG CCC AGG ATG GAG AGC CTG GAC ACC CCC GCG GCC TAC AGC CTG	349
Ser Gln Pro Arg Met Glu Ser Leu Asp Thr Pro Ala Ala Tyr Ser Leu	
80 85 90	
GGC CTC GCG CTC CTG GGA CTG GGC GTC GTG CTC GTG CTC TCC AGC TTC	397
Gly Leu Ala Leu Leu Gly Leu Gly Val Val Leu Val Leu Ser Ser Phe	
95 100 105	
TTT GCA CTG GGG TTC GCT GGA ACT TTC CTA GGT GAT TAC TTC GGG ATC	445
Phe Ala Leu Gly Phe Ala Gly Thr Phe Leu Gly Asp Tyr Phe Gly Ile	
110 115 120	
CTC AAG GAG GCG AGA GTG ACC GTG TTC CCC TTC AAC ATC CTG GAC AAC	493
Leu Lys Glu Ala Arg Val Thr Val Phe Pro Phe Asn Ile Leu Asp Asn	
125 130 135 140	
CCC ATG TAC TGG GGA AGC ACA GCC AAC TAC CTG GGC TGG GCC ATC ATG	541
Pro Met Tyr Trp Gly Ser Thr Ala Asn Tyr Leu Gly Trp Ala Ile Met	
145 150 155	
CAC GCC AGC CCC ACG GGC CTG CTC CTG ACG GTG CTG GTG GCC CTC ACC	589
His Ala Ser Pro Thr Gly Leu Leu Leu Thr Val Leu Val Ala Leu Thr	
160 165 170	
TAC ATA GTG GCT CTC CTA TAC GAA GAG CCC TTC ACC GCT GAG ATC TAC	637
Tyr Ile Val Ala Leu Leu Tyr Glu Glu Pro Phe Thr Ala Glu Ile Tyr	
175 180 185	
CGG CAG AAA GCC TCC GGG TCC CAC AAG AGG AGC TGATTGAGCT GCAACAGCT	ΓT 690
Arg Gln Lys Ala Ser Gly Ser His Lys Arg Ser	
190 195	
TOUTOMARCO OTOCOCA TOOTOCOOMO 11 11 11 11	
GUTGCCTTGG GGACCCTGGA CGTGCCGACA TATGGCCATT GAGCTCCAAC CCACACATT	IC 870

899

CCATTCACCA ATAAAGGCAC CCTGACCCC

配列番号:27

配列の長さ:905

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10435

配列の特徴:

特徴を表す記号: CDS

存在位置:9..698

特徴を決定した方法:E

配列

AACGGAAA ATG GCG CCT CAC GGC CCG GGT AGT CTT ACG ACC CTG GTG CCC 50 Met Ala Pro His Gly Pro Gly Ser Leu Thr Thr Leu Val Pro 10 5 1 TGG GCT GCC GCC CTG CTC CTC GCT CTG GGC GTG GAA AGG GCT CTG GCG 98 Trp Ala Ala Leu Leu Leu Ala Leu Gly Val Glu Arg Ala Leu Ala 30 25 20 15 CTA CCC GAG ATA TGC ACC CAA TGT CCA GGG AGC GTG CAA AAT TTG TCA 146 Leu Pro Glu Ile Cys Thr Gln Cys Pro Gly Ser Val Gln Asn Leu Ser 45 40 35 AAA GTG GCC TTT TAT TGT AAA ACG ACA CGA GAG CTA ATG CTG CAT GCC 194 Lys Val Ala Phe Tyr Cys Lys Thr Thr Arg Glu Leu Met Leu His Ala 60 55 50 CGT TGC TGC CTG AAT CAG AAG GGC ACC ATC TTG GGG CTG GAT CTC CAG 242

Arg Cys Cys Leu Asn Gln Lys Gly Thr Ile Leu Gly Leu Asp Leu Gln

		65					70					7 5				
AAC	TGT	TCT	CTG	GAG	GAC	CCT	GGT	CCA	AAC	TTT	CAT	CAG	GCA	CAT	ACC	290
Asn	Cys	Ser	Leu	Glu	Asp	Pro	Gly	Pro	Asn	Phe	His	Gln	Ala	His	Thr	
	80					85					90					
ACT	GTC	ATC	ATA	GAC	CTG	CAA	GCA	AAC	CCC	CTC	AAA	GGT	GAC	TTG	GCC	338
Thr	Val	Ile	Ile	Asp	Leu	Gln	Ala	Asn	Pro	Leu	Lys	Gly	Asp	Leu	Ala	
95					100					105					110	
AAC	ACC	TTC	CGT	GGC	TTT	ACT	CAG	CTC	CAG	ACT	CTG	ATA	CTG	CCA	CAA	386
Asn	Thr	Phe	Arg	Gly	Phe	Thr	Gln	Leu	Gln	Thr	I.eu	lle	Leu	Pro	Gln	
				115					120					125		
CAT	GTC	AAC	TGT	CCT	GGA	GGA	ATT	AAT	GCC	TGG	AAT	ACT	ATC	ACC	TCT	434
His	Val	Asn	Cys	Pro	Gly	Gly	Ile	Asn	Ala	Trp	Asn	Thr	Ile	Thr	Ser	
			130					135					140			
TAT	ATA	GAC	AAC	CAA	ATC	TGT	CAA	GGG	CAA	AAG	AAC	CTT	TGC	AAT	AAC	482
Tyr	Ile	Asp	Asn	Gln	Ile	Cys	Gln	Gly	Gln	Lys	Asn	Leu	Cys	Asn	Asn	
		145					150					155				
ACT	GGG	GAC	CCA	GAA	ATG	TGT	CCT	GAG	AAT	GGA	TCT	TGT	GTA	CCT	GAT	530
Thr	Gly	Asp	Pro	Glu	Met	Cys	Pro	Glu	Asn	Gly	Ser	Cys	Val	Pro	Asp	
	160					165					170					
GGT	CCA	GGT	CTT	TTG	CAG	TGT	GTT	TGT	GCT	GAT	GGT	TTC	CAT	GGA	TAC	578
Gly	Pro	Gly	Leu	Leu	Gln	Cys	Val	Cys	Ala	Asp	Gly	Phe	His	Gly	Tyr	
175					180					185					190	
AAG	TGT	ATG	CGC	CAG	GGC	TCG	TTC	TCA	CTG	CTT	ATG	TTC	TTC	GGG	ATT	626
Lys	Cys	Met	Arg	Gln	Gly	Ser	Phe	Ser	Leu	Leu	Met	Phe	Phe	Gly	Ile	
				=												

Leu Gly Ala Thr Thr Leu Ser Val Ser Ile Leu Leu Trp Ala Thr Gln
210 215 220

 $(A_{ij} + A_{ij}) = (A_{ij} + A_{ij} + A_{ij}) + (A_{ij} + A_{ij$

Arg Arg Lys Ala Lys Thr Ser

225

(CCTAAGATCA	ATCTGAACTA	TCTTAGCCCA	GTCAGGGAGC	TCTGCTTCCT	AGAAAGGCAT	780
(CTTTCGCCAG	TGGATTCGCC	TCAAGGTTGA	GGCCGCCATT	GGAAGATGAA	AAATTGCACT	840
(CCCTTGGTGT	AGACAAATAC	CAGTTCCCAT	TGGTGTTGTT	GCCTATAATA	AACACTTTTT	900
(CTTTT						905

[0102]

配列番号:28

配列の長さ:841

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

セルライン: U937

クローン名:HP10479

配列の特徴:

特徴を表す記号: CDS

存在位置:39..575

特徴を決定した方法:E

配列

CTCCACGAGG CTGCCGGCTT AGGACCCCCA GCTCCGAC ATG TCG CCC TCT GGT CGC

Met Ser Pro Ser Gly Arg

1 5

CTG TGT CTC ACC ATC GTT GGC CTG ATT CTC CCC ACC AGA GGA CAG

Leu Cys Leu Leu Thr Ile Val Gly Leu Ile Leu Pro Thr Arg Gly Gln

10 15 20

ACG TTG AAA GAT ACC ACG TCC AGT TCT TCA GCA GAC TCA ACT ATC ATG 152

Thr	Leu	Lys	Asp	Thr	Thr	Ser	Ser	Ser	Ser	Ala	Asp	Ser	Thr	Ile	Met		
		25					30					35					
GAC	ATT	CAG	GTC	CCG	ACA	CGA	GCC	CCA	GAT	GCA	GTC	TAC	ACA	GAA	CTC		200
Asp	Ile	Gln	Val	Pro	Thr	Arg	Ala	Pro	Asp	Ala	Va 1	Tyr	Thr	Glu	Leu		
	40					4 5					50						
CAG	CCC	ACC	TCT	CCA	ACC	CCA	ACC	TGG	CCT	GCT	GAT	GAA	ACA	CCA	CAA		248
Gln	Pro	Thr	Ser	Pro	Thr	Pro	Thr	Trp	Pro	Ala	Asp	Glu	Thr	Pro	Gln		
55					60					65					70		
CCC	CAG	ACC	CAG	ACC	CAG	CAA	CTG	GAA	GGA	ACG	GAT	GGG	CCT	CTA	GTG		296
Pro	Gln	Thr	Gln	Thr	Gln	Gln	Leu	Glu	Gly	Thr	Asp	Gly	Pro	Leu	Val		
				7 5					80					85			
ACA	GAT	CCA	GAG	ACA	CAC	AAG	AGC	ACC	AAA	GCA	GCT	CAT	CCC	ACT	GAT	;	344
Thr	Asp	Pro	Glu	Thr	His	Lys	Ser	Thr	Lys	Ala	Ala	His	Pro	Thr	Asp		
			90					95					100				
GAC	ACC	ACG	ACG	CTC	TCT	GAG	AGA	CCA	TCC	CCA	AGC	ACA	GAC	GTC	CAG	;	392
Asp	Thr		Thr	Leu	Ser	Glu	Arg	Pro	Ser	Pro	Ser	Thr	Asp	Val	Gln		
		105					110					115					
										TTT						•	440
Thr		Pro	Gln	Thr	Leu	-	Pro	Ser	Gly	Phe		Glu	Asp	Asp	Pro		
	120			~		125					130						
										CGG						•	488
	Phe	Tyr	Asp	Glu		Thr	Leu	Arg	Lys	Arg	Gly	Leu	Leu	Val			
135	ama	ama	mm a	. ma	140					145					150		
										CTC						•	536
Ala	Val	Leu	Phe	He	Thr	Clv	ΠP	HE	al I	ו היו	Thr	Car	C 1	T v je	<i>C</i> ,		
	_															_	
avivi	Au	- 451 -		. UU		Tüt		A A 1		160	AGG	1 GAC	iTCC#	1		•	580

Arg Gln Leu Ser Arg Leu Cys Arg Asn His Cys Arg

TCAGAAACAG GAGCTGACAA CCCGCTGGGC ACCCGAAGAC CAAGCCCCCT GCCAGCTCAC	640
CGTGCCCAGC CTCCTGCATC CCCTCGAAGA GCCTGGCCAG AGAGGGAAGA CACAGATGAT	700
GAAGCTGGAG CCAGGGCTGC CGGTCCGAGT CTCCTACCTC CCCCAACCCT GCCCGCCCCT	760
GAAGGCTACC TGGCGCCTTG GGGGCTGTCC CTCAAGTTAT CTCCTCTGTT AAGACAAAAA	820
GTAAAGCACT GTGGTCTTTG C	841
[0103]	
配列番号: 29	
配列の長さ:1451	
配列の型:核酸	
鎖の数: 二本鎖	
トポロジー:直鎖状	
配列の種類:cDNA to mRNA	
起源:	
生物名:ホモ=サピエンス	
セルライン:U937	
クローン名: HP10481	
配列の特徴:	
特徴を表す記号:CDS	
存在位置:1051436	
特徴を決定した方法:E	
配列	60
ACTGCCTGGA AACGGGCTGG GCCTGCCTCG GACGCCGCCG GTGTCGCGGA TTCTCTTTCC	60
GCCCGCTCCA TGGCGGTGGA TGCCTGACTG GAAGCCCGAG TGGG ATG CGG CTG ACG	116
Met Arg Leu Thr	
1	164
CGG AAG CGG CTC TGC TCG TTT CTT ATC GCC CTG TAC TGC CTA TTC TCC	104
Arg Lys Arg Leu Cys Ser Phe Leu Ile Ala Leu Tyr Cys Leu Phe Ser	
5 10 15 20	

212

CTC TAC GCT GCC TAC CAC GTC TTC TTC GGG CGC CGC CGC CAG GCG CCG

Leu	Tyr	Ala	Ala	Tyr	His	Va l	Phe	Phe	Gly	Arg	Arg	Arg	Gln	Ala	Pro		
				25					30					35			
GCC	GGG	TCC	CCG	CGG	GGC	CTC	AGG	AAG	GGG	GCG	GCC	CCC	GCG	CGG	GAG		260
Ala	Gly	Ser	Pro	Arg	Gly	Leu	Arg	Lys	Gly	Ala	Ala	Pro	Ala	Arg	Glu		
			40					45					50				
AGA	CGC	GGC	CGA	GAA	CAG	TCC	ACT	TTG	GAA	AGT	GAA	GAA	TGG	AAT	CCT	,	308
Arg	Arg	Gly	Arg	Glu	Gln	Ser	Thr	Leu	Glu	Ser	Glu	Glu	Trp	Asn	Pro		
		55					60					65					
TGG	GAA	GGA	GAT	GAA	AAA	AAT	GAG	CAA	CAA	CAC	AGA	TTT	AAA	ACT	AGC		356
Trp	Glu	Gly	Asp	Glu	Lys	Asn	Glu	Gln	Gln	His	Arg	Phe	Lys	Thr	Ser		
	70					7 5					80						
CTT	CAA	ATA	TTA	GAT	AAA	TCC	ACG	AAA	GGA	AAA	ACA	GAT	CTC	AGT	GTA		404
Leu	Gln	Ile	Leu	Asp	Lys	Ser	Thr	Lys	Gly	Lys	Thr	Asp	Leu	Ser	Val		
85					90					95					100		
CAA	ATC	TGG	GGC	AAA	GCT	GCC	ATT	GGC	TTG	TAT	CTC	TGG	GAG	CAT	ATT		452
Gln	He	Trp	Gly	Lys	Ala	Ala	Ile	Gly	Leu	Tyr	Leu	Trp	Glu	His	Ile		
				105					110					115			
TTT	GAA	GGC	TTA	CTT	GAT	CCC	AGC	GAT	GTG	ACT	GCT	CAA	TGG	AGA	GAA	,	500
Phe	Glu	Gly	Leu	Leu	Asp	Pro	Ser	Asp	Val	Thr	Ala	Gln	Trp	Arg	Glu		
			120					125					130				
	AAG																548
Gly	Lys	Ser	He	Val	Gly	Arg	Thr	Gln	Tyr	Ser	Phe	Ile	Thr	Gly	Pro		
		135					140					145					
	GTA																596
119	Va 1	Tie	Pro	$\cap 1_{\mathcal{R}}$	$\tau_{\chi r}$	Pho	4عی	√-, 1	1	17 , 1	•	•	** *	· · •	•		
Àli	1 İ A	$\Lambda\Lambda$	UUA	$A \omega A$	6AA	AAA	GCA	AAG	ATC	111	TAT	GCC	ACC	CAG	TGG		644
Ile	Leu	Asn	Gly	Arg	Glu	Lys	Ala	Lys	He	Phe	Tyr	Ala	Thr	Gln	Trp		

ATT	CTT	TAT	GCA	CAA	AAT	ATT	GTG	CAA	ATT	CAA	AAA	CTC	CAG	CAT	CTT	692
Leu	Leu	Tyr	Ala	Gln	Asn	Leu	Val	Gln	Ile	Gln	Lys	Leu	Gln	His	Leu	
				185					190					195		
GCT	GTT	GTT	TTG	CTC	GGA	AAT	GAA	CAT	TGT	GAT	AAT	GAG	TGG	ATA	AAC	740
Ala	Val	Val	Leu	Leu	Gly	Asn	Glu	His	Cys	Asp	Asn	Glu	Trp	He	Asn	
			200					205					210			
CCA	TTC	CTC	AAA	AGA	AAT	GGA	GGC	TTC	GTG	GAG	CTG	CTT	TTC	ATA	ATA	788
Pro	Phe	Leu	Lys	Arg	Asn	Gly	Gly	Phe	Val	Glu	Leu	Leu	Phe	He	lle	
		215					220					225				
TAT	GAC	AGC	CCC	TGG	ATT	AAT	GAC	GTG	GAT	GTT	TTT	CAG	TGG	CCT	TTA	836
Tyr	Asp	Ser	Pro	Trp	Ile	Asn	Asp	Val	Asp	Val	Phe	Gln	Trp	Pro	Leu	
	230					235					240					
GGA	GTA	GCA	ACA	TAC	AGG	AAT	TTT	CCT	GTG	GTG	GAG	GCA	AGT	TGG	TCA	884
Gly	Val	Ala	Thr	Tyr	Arg	Asn	Phe	Pro	Val	Val	Glu	Ala	Ser	Trp	Ser	
245					250					255					260	
ATG	CTG	CAT	GAT	GAG	AGG	CCA	TAT	TTA	TGT	AAT	TTC	TTA	GGA	ACG	ATT	932
Met	Leu	His	Asp	Glu	Arg	Pro	Tyr	Leu	Cys	Asn	Phe	Leu	Gly	Thr	Ile	
				265					270					275		
TAT	GAA	AAT	TCA	TCC	AGA	CAG	GCA	CTA	ATG	AAC	ATT	TTG	AAA	AAA	GAT	980
Tyr	Glu	Asn	Ser	Ser	Arg	Gln	Ala	Leu	Met	Asn	Ile	Leu	Lys	Lys	Asp	
			280					285					290			
GGG	AAC	GAT	AAG	CTT	TGT	TGG	GTT	TCA	GCA	AGA	GAA	CAC	TGG	CAG	CCT	1028
Gly	Asn	Asp	Lys	Leu	Cys	Trp	Val	Ser	Ala	Arg	Glu	His	Trp	Gln	Pro	
		295					300					305				
															CAG	1076
Gln	Glu	Thr	Asn	Glu	Ser	Leu	Lys	Asn	Tyr	Gln	Asp	Ala	Leu	ı Lei	ı Gln	
	310					315					320	ı				
															CGA	1124
Ser	Asp	Leu	Thr	Leu	Cys	Pro	Val	Gly	Val	Asn	Thr	Glu	Cys	Туг	Arg	

325					330					335					340	
ATC	TAT	GAG	GCT	TGC	TCC	TAT	GGC	TCC	ATT	CCT	GTG	GTG	GAA	GAC	GTG	1172
Ile '	Tyr	Glu	Ala	Cys	Ser	Tyr	Gly	Ser	He	Pro	Val	Val	Glu	Asp	Val	
				345					350					355		
ATG .	ACA	GCT	GGC	AAC	TGT	GGG	AAT	ACA	TCT	GTG	CAC	CAC	GGT	GCT	CCT	1220
Met	Thr	Ala	Gly	Asn	Cys	Gly	Asn	Thr	Ser	Val	His	His	Gly	Ala	Pro	
			360					365					370			
CTG (CAG	TTA	CTC	AAG	TCC	ATG	GGT	GCT	CCC	TTT	ATC	TTT	ATC	AAG	AAC	1268
Leu (Gln	Leu	Leu	Lys	Ser	Met	Gly	Ala	Pro	Phe	I le	Phe	Ile	Lys	Asn	
		375					380					385				
TGG	AAG	GAA	CTC	CCT	GCT	GTT	TTA	GAA	AAA	GAG	AAA	ACT	ATA	ATT	TTA	1316
Trp I	Lys	Glu	Leu	Pro	Ala	Val	Leu	Glu	Lys	Glu	Lys	Thr	Ile	Ile	Leu	
	390					395					400					
CAA (GAA	AAA	ATT	GAA	AGA	AGA	AAA	ATG	TTA	CTT	CAG	TGG	TAT	CAG	CAC	1364
Gln (Glu	Lys	Ile	Glu	Arg	Arg	Lys	Met	Leu	Leu	Gln	Trp	Tyr	Gln	His	
405					410					415					420	
TTC A	AAG	ACA	GAG	CTT	AAA	ATG	AAA	TTT	ACT	AAT	ATT	TTA	GAA	AGC	TCA	1412
Phe I	Lys	Thr	Glu	Leu	Lys	Met	Lys	Phe	Thr	Asn	Ile	Leu	Glu	Ser	Ser	
				425					430					435		
TTT	ГТА	ATG	AAT	AAT	AAA	AGT	TAAT	TAT	CTTI	TTGA	GC I					1451
P he [Leu	Met	Asn	Asn	Lys	Ser										
			440													

[0104]

配列番号:30

ののの・4月の阪園

鎖の数: 二本鎖

トポロジー:直鎖状

四岁 种類

起源:

生物名:ホモーサピエンス

細胞の種類:胃癌

クローン名: HP10495

配列の特徴:

特徴を表す記号: CDS

存在位置:63..455

特徴を決定した方法:E

配列

ACCAAACCTG TGGACGCCGA CCCGGGACCG CCGCTGGCTG GCTGCTGGCT CACTCGACCG										60							
TC A	TG G	GAG A	ACC (CTG (GGG (GCC (CTT C	CTG C	STG (CTG G	AG I	TT C	CTG (CTC C	TC		107
TC ATG GAG ACC CTG GGG GCC CTT CTG GTG CTG GAG TTT CTG CTC CTC Met Glu Thr Leu Gly Ala Leu Leu Val Leu Glu Phe Leu Leu Leu																	
	1				5					10					15		
TCC	CCG	GTG	GAG	GCC	CAG	CAG	GCC	ACG	GAG	CAT	CGC	CTG	AAG	CCG	TGG		155
Ser	Pro	Val	Glu	Ala	Gln	Gln	Ala	Thr	Glu	His	Arg	Leu	Lys	Pro	Trp		
				20					25					30			
CTG	GTG	GGC	CTG	GCT	GCG	GTA	GTC	GGC	TTC	CTG	TTC	ATC	GTC	TAT	TTG		203
Leu	Val	Gly	Leu	Ala	Ala	Val	Val	Gly	Phe	Leu	Phe	Ile	Val	Tyr	Leu		
			35					40					45				
GTC	TTG	CTG	GCC	AAC	CGC	CTC	TGG	TGT	TCC	AAG	GCC	AGG	GCT	GAG	GAC		251
Val	Leu	Leu	Ala	Asn	Arg	Leu	Trp	Cys	Ser	Lys	Ala	Arg	Ala	Glu	Asp		
		50					55					60					
GAG	GAG	GAG	ACC	ACG	TTC	AGA	ATG	GAG	TCC	AAC	CTA	TAC	CAG	GAC	CAG		299
Glu	Glu	Glu	Thr	Thr	Phe	Arg	Met	Glu	Ser	Asn	Leu	Tyr	Gln	Asp	Gln		
	65					70					75						
AGT	GAA	GAC	AAG	AGA	GAG	AAG	AAA	GAG	GCC	AAG	GAG	AAA	GAA	GAG	AAG		347
Ser	Glu	Asp	Lys	Arg	Glu	Lys	Lys	Glu	Ala	Lys	Glu	Lys	Glu	Glu	Lys		
80					85					90					95		
AGG	AAG	AAG	GAC	. AAA	AAG	ACA	GCA	AAG	GAA	GGA	GAG	AGC	AAC	TTG	GGA		395

Arg	Lys	Lys	Glu	Lys	Lys	Thr	Ala	Lys	Glu	Gly	Glu	Ser	Asn	Leu	Gly		
				100					105					110			
CTG	GAT	CTG	GAG	GAA	AAA	GAG	CCC	GGA	GAC	CAT	GAG	AGA	GCA	AAG	AGC	44	3
Leu	Asp	Leu	Glu	Glu	Lys	Glu	Pro	Gly	Asp	His	Glu	Arg	Ala	Lys	Ser		

115 120 125

ACA GTC ATG TGAAGATT CCTGGCTGCC TCTTCCAGGC AGTCCCCCAG AGATGCCTCT 500

Thr Val Met

130

TCTGCCCCCT AAAAGCAGTG CCCTGGACTT GAAGCCCGTG AAATGACTCC ATCTGGGATT 560
CAGAATACAG TGTTCTCAAG TGAAGAAGGC TTGGAACCCA CCCCACCTCC CTCATTGGGG 620
GCTCTCTGGG CAAACATGGT TTTCATGCAC CCCTCTTCCT GAGCTTGGTC CCTGCCTGGT 680
GATTCTTCTT ATACTCGGAG AGCATCCCTG GTTGAGGAGA CACCCGCAAT CCTCCACGAT 740
CTCATGGCTC CACCTGCTTC TCCCCACTGC CTGATTTCTT TTCTCTCTGC CTGATGTCTA 800
CTGAACAGAA CTTCCCCTCT CCCATGCACC CACTGCCAGC TGAGAGCTGC TTCCCAATGG 860
CCTGCATTAA AGCATTCGTA ACAGCC 886

[0105]

【図面の簡単な説明】

- 【図1】 クローンHP01244がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図2】 クローンHP01498がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図3】 クローンHP01565がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図4】 クローンHPO1606がコードする蛋白質の疎水性/親水性プロフ

ィールを示す図である。

【図6】 クローンHPO1962がコードする蛋白質の疎水件/親水件プロフ

【図7】 クローンHP10435がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図8】 クローンHP10479がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図9】 クローンHP10481がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図10】 クローンHP10495がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図7】

【図9】

【書類名】 要約書

【要約】

【課題】 膜貫通ドメインを有するヒト蛋白質、それをコードしている c D N A よび該 c D N A を発現させた真核細胞を提供する。

【解決手段】 配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質、該蛋白質をコードするDNA、例えば配列番号11から配列番号20で表される塩基配列を含むcDNA、および該cDNAを発現させた真核細胞。膜貫通ドメインを有するヒト蛋白質をコードしているcDNA、およびこのヒトcDNAの組換え体を発現させることにより該蛋白質ならびに該蛋白質を膜表面に有する真核細胞を提供することができる。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000173762

【住所又は居所】

神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】

財団法人相模中央化学研究所

【特許出願人】

【識別番号】

596134998

【住所又は居所】

東京都目黒区中町2丁目20番3号

【氏名又は名称】

株式会社プロテジーン

出願人履歴情報

識別番号

[000173762]

1. 変更年月日 1995年 4月14日

[変更理由] 住所変更

住 所 神奈川県相模原市西大沼4丁目4番1号

氏 名 財団法人相模中央化学研究所

出願人履歴情報

識別番号

[596134998]

1. 変更年月日 1996年 9月13日

[変更理由]

新規登録

住 所

東京都目黒区中町2丁目20番3号

氏 名

株式会社プロテジーン

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or a	gent's file reference		See Notific	ation of Transmittal of International								
660856		FOR FURTHER ACTION Preliminary Examination Report (Form PCT/IPEA/416										
International ap	pplication No.	International filing date (day/month.	Priority date (day/month/year)									
PCT/JP98/0	4475	05/10/1998		08/10/1997								
International Patent Classification (IPC) or national classification and IPC C12N15/12												
Applicant												
SAGAMI CHEMICAL RESEARCH CENTER et al.												
	This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.											
2. This REF	PORT consists of a total of	6 sheets, including this cover sh	neet.									
This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT). These annexes consist of a total of sheets.												
3. This repo	ort contains indications rela	ting to the following items:										
į E	Basis of the report											
11 🗆	Priority											
III 🖺	Non-establishment of o	pinion with regard to novelty, inve	entive step	and industrial applicability								
ı∨ ē	Lack of unity of invention	n										
V E		nder Article 35(2) with regard to r ons suporting such statement	iovelty, inve	entive step or industrial applicability;								
VI 🖺	Certain documents cite	ed										
VII C	Certain defects in the in	ternational application										
VIII C	VIII Certain observations on the international application											

23/04/1999

Name and mailing address of the international community examining a summer to

Authorized officer

<u>o</u>))

Fig. 1. A 3 Sept. 10 To 2.
 Complete Municipal Conference of Tx 1525616 (spm upp.)
 Fax. 149 89 2399 - 4465

Ammand Jack

Telephone No. 449 89 2399 7493

ղ 4. Օ։ 💯

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/JP98/04475

I.	Basis of the report
1.	This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.):

	the	report since they c	do not contain amendments.):									
	De	Description, pages:										
	1-6	8	as originally filed									
	Cla	iims, No.:										
	1-6		as originally filed									
	Drawings, sheets:											
	1/10-10/10		as originally filed									
2.	The	e amendments have	e resulted in the cancellation of:									
		the description,	pages:									
		the claims,	Nos.:									
		the drawings,	sheets:									
3.		This report has be considered to go l	een established as if (some of) the amendments had not been made, since they have been beyond the disclosure as filed (Rule 70.2(c)):									
4.	Add	ditional observation	s, if necessary:									

III. Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

The questions whether the claimed invention appears to be novel, to involve an inventive step (to be non-obvious)

the control of the court entrage of the called

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/JP98/04475

		the said international application, or the said claims Nos. relate to the following subject matter which does not require an international preliminary examination (<i>specify</i>):
		the description, claims or drawings (indicate particular elements below) or said claims Nos. are so unclear that no meaningful opinion could be formed (specify):
		the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion could be formed.
	\boxtimes	no international search report has been established for the said claims Nos. 1-6 partially.
IV.	Lac	k of unity of invention
1.	In re	esponse to the invitation to restrict or pay additional fees the applicant has:
		restricted the claims.
		paid additional fees.
		paid additional fees under protest.
		neither restricted nor paid additional fees.
2.	Ø	This Authority found that the requirement of unity of invention is not complied and chose, according to Rule 68.1, not to invite the applicant to restrict or pay additional fees.
3.	This	Authority considers that the requirement of unity of invention in accordance with Rules 13.1, 13.2 and 13.3 is
		complied with.
	\boxtimes	not complied with for the following reasons:
		see separate sheet
	ſ,	all parts
	区 区	the parts relating to claims Nos. 1-6 (partially)

INTERNATIONAL PRELIMINARY **EXAMINATION REPORT**

International application No. PCT/JP98/04475

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)

Yes:

Claims 1-6 (partially)

No:

Claims

Inventive step (IS)

Yes: Claims

No:

Claims 1-6 (partially)

Industrial applicability (IA)

Yes:

Claims 1-6 (partially)

Claims No:

2. Citations and explanations

see separate sheet

VI. Certain documents cited

1. Certain published documents (Rule 70.10)

and / or

2. Non-written disclosures (Rule 70.9)

see separate sheet

EXAMINATION REPORT - SEPARATE SHEET

Re Item III

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

A Partial International Search has been performed only with regard to the first invention (Claims 1-6, partially) identified by the ISA. For this reason no opinion has been established with regard to the other nine inventions listed by the ISA.

Re item iV

Lack of unity of invention

The IPEA agrees with the objection put forward by the ISA as to the lack of unity of the present application.

Re Item V

Reasoned statement under Art. 35 (2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Novelty (Art. 33(2) PCT)

The subject matter of those parts of Claims 1-6 referring to a protein with the sequence of SEQ. ID. NO: 1 and to a nucleic acid with the sequence of SEQ.ID.NO:11 and 21 has not been disclosed in the prior art. These part of the claims, therefore, fulfill the requirements of Art. 33(2) with regard to novelty.

2. Inventive step (Art 33(3) PCT)

The subject-matter of Claims 1-6 refers to a protein of unknown function possessing a putative trans-membrane sequence, the DNA and cDNA encoding this protein as well as

performant from the columned sequences are not associated with any known technical effect, the only problem to be solved which might be recognized is the provision of further DNA sequences as such, regardless of their possible useful properties. In this case all

EXAMINATION REPORT - SEPARATE SHEET

known DNA sequences encoding transmembrane proteins are equally suitable candidates for solving the above "technical problem" and would, therefore, all equally be suggested to the skilled person. The arbitrary selection from an infinite number of equally obvious possible solutions cannot involve an inventive step because, in order to be patentable, the selection must not be arbitrary but must be justified by the technical purpose, e.g. by a hitherto unknown or unexpected technical effect which is caused by those structural features distinguishing the claimed compounds from the numerous other ones.

Re Item VI

Certain documents cited

Certain published documents (Rule 70.10)

Patent No (day/month/year)	Publication date (day/month/year)	Filing date (day/month/year)	Priority date (valid claim)
PCT/US97/10956	08.01.98	25.06.97	03.07.96
PCT/US98/10041	19.11.98	15.05.98	15.05.97
PCT/US98/09972	19.11.98	15.05.98	15.05.97

Document PCT/US97/10956 was published after but filed before the priority date of the present application. It does, therefore, not constitute part of the state of the art in the meaning of Rule 64(1)(b) PCT. It will, however become of relevance for the novelty of the claimed subject-matter during regional phase examination, and if it later turns out that the priority of the present application has not been correctly claimed, also for the inventive step involved with the claimed subject-matter.

Documents PCT/US98/10041 and PCT/US98/09972 were published and filed after the priority date of the present application. However, said documents claim a priority date (15.5.97) parliar than that of the present application (0.40 at 144 1.2)

