Esercizi Teoria dell'Informazione

I.1 Calcola l'entropia H, la quantità di informazione grezza H_0 , e la quantità di informazione essenziale $H_{\frac{1}{8}}$, della variabile casuale X che assume valori $\{a,b,c,d,e,f\}$ con probabilità p(a)=3/8, p(b)=1/4, p(c)=1/4, p(d)=1/8. Calcola la lunghezza media e discuti la decifrabilità univoca e l'istantaneità di ciascuna delle seguenti codifiche.

Codifica 1:
$$C_1(a) = 1$$
, $C_1(b) = 10$, $C_1(c) = 100$, $C_1(d) = 0$

Codifica 2:
$$C_2(a) = 1$$
, $C_2(b) = 01$, $C_2(c) = 001$, $C_2(d) = 000$

Codifica 3:
$$C_3(a) = 00$$
, $C_3(b) = 01$, $C_3(c) = 10$, $C_3(d) = 11$

- **I.2** Per quale motivo non può essere che H(X) = 2, H(Y) = 3 e H(X,Y) = 6? Che proprietà devono soddisfare X e Y affinché H(X,Y) = 5?
- **I.3** Sia dato $X = \{x_1, x_2, x_3, x_4\}$ e l'insieme di interi $\{L_1, L_2, L_3, L_4\}$ con $L_1 = 1, L_2 = 2, L_3 = 2$ e $L_4 = 2$. Per quale motivo non può esistere una codifica istantanea C che abbia gli interi L_i come lunghezze delle rappresentazioni $C(x_i)$?
- **I.4** Calcola la codifica di Huffman per i simboli $X = \{a, b, c, d, e, f\}$ se p(a) = p(b) = p(c) = 1/16, p(d) = 5/16, p(e) = 1/8, and p(f) = 3/8.