Feb 20th

Thursday, February 20, 2014 10:03 AM

Scheduling Algorithms

- FCFS
 - Non-Preemptive
 - If you have large jobs followed by short jobs that don't run is the convoy effect
- SJF
 - Non-Preemptive
- SRTN
 - Preemptive
- · Priority Queue
 - Both Preemptive and non-Preemptive
 - Explicit Priority
- · Round Robin
 - Preemptive algorithm
 - Time Quantum
 - o Units of time, when my process will run an nothing will bother it
 - Only stopped with interrupts
 - Or process termination
 - Ours will have 4ms (milliseconds) to run
 - Almost the preemptive version of first come first server
 - Starvation: when a process doesn't run when it has been waiting
 - Prevents starvation by only letting a process for a certain amount of time
 - Response Time = How much time from submission to start avg = 4.5
 - Turn Around = submission to completion avg = 18
 - The benefit is that there is no starvation
 - The turnaround time for processes late in the queue may suffer
 - the time quantum will need to be adjusted based on the type of system
 - Wait time = time spend not in the run queue (turnaround burst) avg = 12ms,
 - The convoy affect can happen if we keep increasing the quantum time
- **** we haven't talked about context switching***
 - If we have a long quantum time then we can end up with starvation.
 - The less switches the faster it will go
 - Thus we need to balance the time and switches

• How to program this

READY QUEUE

Index	Remaining
0	8
1	4
2	9
3	5
0	4

Input **Submission Burst**

Submission	Burst	
0ms	8ms	
1ms	4ms	
2ms	9ms	
3ms	5ms	

TIME Stats

Response	Turnaround time	

clock = 0;Set current job to none

- 1. Add all jobs to the ready queue
 - a. Move current job to the bottom of the queue(if there is a current job)
 - b. Select new job to run
 - i. If(remaining < = queue)</pre>
 - clock += remaining;
 - 2) Remove job from ready queue
 - ii. Else
 - 1) clock = clock + timequantum
 - 2) Remaining -= quantum
 - 3) Add new jobs to the list

Submission	Burst
0	8
1	4
2	9
3	5

Job	Resp	TurnAround	Wait time	
0	0ms	20ms	12	
1	6ms	7ms	3	
2	6ms	24ms	15	
3	922	22ms	17	

- 4) Current job = moved to end of ready queue (it's really a circular queue), setting no current job;
- c. Repeat the algorithm
- 2. If you want to change it to shortest job first

Keep track of switch time by adding the context switching element

We will need to do Is - L | wc