Together we are beating cancer

Luca Porcu & Chandra Chilamakuri (Bioinformatics core)

21st February 2025

Linear regression models

Fixed-effects models

Process flow

Effects

Definition and classification

9.00 -09.15 am

Together we are beating cancer

Definition

Number of metastases

Each unit exhibits a **response** that is observed some time after **exposure**.

Definition of "no effect": each unit would exhibit the same value of the response whether assigned to exposure or not. If changing the exposure assigned to a unit changed the unit's response then the exposure has at least some effect.

Examples of effects

Number of metastases

N° of metastases in the treated group: 10

N° of metastases in the vehicle: 20

This effect is understandable, easily detectable and systematic

Examples of effects

Number of metastases

Experimental group	Male mice	Female mice
Active	6	7
Vehicle	13	7

This effect is understandable, detectable with sufficient units and systematic

Examples of effects

Number of metastases

N° of metastases in the treated group: 20

N° of metastases in the vehicle: 20

This effect can someday be understood, not easily detectable and unsystematic

Different sources of effects

Treatment

Different sources of effects

Environment and features of experimental units

Temperature, humidity, season, barometric pressure, lunar cycle, noise, air movement, light, smells, room characteristics, cage size and design, bedding material, nest box design, nest materials, number of animals in group, water quality, diet type, diet availability, diet quality, frequency and duration of handling

Species, sex, strain, genotype, health status, batch, supplier, age, body weight, litter size, oestrus stage of females, level of interanimal aggression

Different sources of effects

The operator

- Calibration of instruments
- Measurement errors
- Recording errors
- Preparation of test materials
- Operative procedures

Classification of effects

Fixed effects

Effects attributable to a finite set of levels of a source (i.e. *predictor* in statistical terms) that occur in the data and which are there because we are interested in them. Fixed effects are **parameters** associated with an entire **population**.

Treatment Sex

Genotype Time

Classification of effects

Random effects

Effects attributable to a (usually) infinite set of levels of a source (i.e. *predictor*), of which only a **random sample** are deemed to occur in the data. Random effects are associated with **individual observational units** drawn at random from a population.

Mouse

Litter

Batch

Place of residence

Classification of effects

Unpredictable effect (i.e. error)

Unpredictable effect attributable to "hidden" sources whose consequence is the deviation of the observed value from the "true value" (i.e. parameter) of the population or the individual observational unit.

At any given combination of age, gender, height, smoking status and place of residence, many different values of FEV (lung capacity) could be recorded, and so produce a distribution of recorded FEV values. At this given combination of age, gender, height, smoking status and place of residence, the distribution of FEV values has a unique mean FEV ("the true value").

Regression models

Definition and classification

9.15-9.30 am

Together we are beating cancer

A regression model describes mathematically the population distribution of the **response** (e.g. FEV distribution in UK) as a function of **fixed effects** (e.g. age, gender, height, smoking status), **random effects** (e.g. place of residence) and **error**.

$$Y_i = f(x_{1,i},...,x_{n,i}; x_{n+1,i},..., x_{n+k,i}; \varepsilon_i)$$

where i is the observational unit of the population.

Hi, my name is Mark Brown. I am 35 years old, male, 1.75 meters tall and ex-smoker. I live in Cambridge, UK. *This morning* my FEV is 4.73 liters in 1 second.

Definition

Every statistical regression model consists of two components.

Component	Meaning	Example	
Systematic component	It describes the relationship between the predictors and the population parameter of interest (e.g. mean)	$\mu = \beta_0 + \beta_1 x_1 + + \beta_n x_n$, where $x_1,,x_n$ could be fixed and random predictors	
		Random effects are normally distributed N (0, σ_{random})	
Random It describes the properties of components random effects and error	• •	Error is normally distributed N (0, σ_{error})	
		Error variance is constant $\sigma_{\text{error}}^2 = \text{constant}$	

Examples of regression models

Model	Component	Structure
1	Systematic	$\mu(Y) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$
	Random	Random effects and error are normally distributed. Error variance is constant.
2	Systematic	log $[\mu (Y)] = \beta_0 + \beta_1 x_1 + + \beta_n x_n$
	Random	Random effects and error are log-normal distributed
3	Systematic	Median (Y) = β_0 + exp(β_1 x ₁) + + exp(β_n x _n)
	Random	Random effects are normally distributed
		Error is exponentially distributed

Legend: Y = response; $x_1,...x_n$ = fixed and random effects; exp = exponential function; β_0 , β_1 , β_n = coefficients (i.e. parameters) of the regression model to estimate

Assumptions of linear regression models

Component	Assumption	Meaning	
Systematic component	Population mean	We are interested to describe the population mean	μ
	Linearity	The coefficients are assumed to combine the effects of the predictors linearly	$\beta_0 + \beta_1 x_i + + \beta_n x_i$
Random components	Random effects	They are normally distributed	N (0, σ _{random})
	Error	Error is normally distributed	N (0, σ _{error})
		Error variance is constant	σ^2 = constant

Linear fixed-effects and mixed-effects models

A linear model that incorporate only fixed effects is called linear fixed-effects model (or merely **linear model**)

A linear model that incorporate both fixed and random effects is called **linear mixed-effects model**

http://bioinformatics-core-sharedtraining.github.io/IntroductionToStats/practical.html

