# IEEE 1394 Link Layer Core Specification

johnsonw10@opencores.org

# **Revision History**

| Rev     | Date     | Author | Description |
|---------|----------|--------|-------------|
| Working | 11/03/01 | Jim.W  | First draft |

# **Tabel Of Contents**

| 1 | Ii               | ntroductionnt                | 4 |
|---|------------------|------------------------------|---|
| 2 | $\boldsymbol{A}$ | Architecture                 | 5 |
|   |                  | Block Diagram                |   |
|   | 2.2              | Physical Interface           | 5 |
|   | 2.3              | Transmit Control             |   |
|   | 2.4              | Receive Control              |   |
|   | 2.5              | CRC                          |   |
|   | 2.6              | FIFOs                        |   |
|   | 2.7              | Host Interface               |   |
| 3 | I/               | /O Ports                     | 7 |
|   | 3.1              |                              |   |
|   | 3.2              | Host Interface               |   |
|   |                  | .2.1 Generic Host Interface  |   |
|   | 3.               | .2.2 Wishbone Host Interface | 7 |
|   | 3.               | .2.3 PCI Host Interface      | 7 |
| 4 | 0                | Operations                   | 8 |
|   | 4.1              | Asynchronous Transmit        | 8 |
|   | 4.2              | Isochronous Transmit         | 8 |
|   | 4.3              | Asynchronous Receive         | 8 |
|   | 4.4              | Isochronous Receive          | 8 |
| 5 | R                | Registers                    | q |

# 1 Introduction

#### 2 Architecture

### 2.1 Block Diagram



Figure 1 Link Layer Core Block Diagram

### 2.2 Physical Interface

The physical (PHY) interface is responsible for the following operations:

- Gain access to the serial bus.
- Send and receive packet.
- Send and receive acknowledge packets.
- Provide read and write access to PHY registers.

#### 2.3 Transmit Control

The transmit control block is responsible for the following operations:

- Receive data from either the Asynchronous Transmit FIFO (ATxFIFO) or the Isochronous Transmit FIFO (ITxFIFO).
- Creates serial-bus packets to be transmitted through the PHY interface.
- Arbitrate for the serial bus to correctly send both asynchronous and isochronous packets
- Sends cycle-start packets in cycle master mode.

#### 2.4 Receive Control

The receive control block is responsible for the following operations:

- Receive incoming packets from the PHY interface.
- Check the CRC of the incoming packets addressed to the node.
- Sends the header to Receiving FIFO (RxFIFO) if header CRC is good. Otherwise flush the header and ignore the rest of the packet.
- Check the rest data of the packet and sends the data to RxFIFO
- Send a status quadlet to RxFIFO.

#### 2.5 CRC

The CRC block is responsible for a 32-bit CRC generation for error detection. It generates the header and data CRC for transmitting packets and checks the header and data CRC for received packets.

#### 2.6 FIFOs

The FIFO block includes two transmit blocks, Asynchronous Transmit FIFO (ATxFIFO) and the Isochronous Transmit FIFO (ITxFIFO).

#### 2.7 Host Interface

The host interface block is responsible for the communication between the link layer core and the host processor.

# 3 I/O Ports

## 3.1 Physical Interface

| Name     | I/O | Description                                         |
|----------|-----|-----------------------------------------------------|
| D[0:7]   | I/O | PHY-link interface data bus. Data is expected on    |
|          |     | D0 – D1 for 100 Mbits/s packets, D0 – D3 for 200    |
|          |     | Mbits/s, and D0 – D7 for 400 Mbits/s.               |
| Ctl[0:1] | I/O | PHY-link interface control bus. CTL1 and CTL0       |
|          |     | indicate the four operations that can occur on this |
|          |     | interface.                                          |
| Lreq     | O   | Link request to PHY. LReq makes bus requests        |
|          |     | and register access requests to the PHY.            |
| SClk     | I   | System clock. SClk is a 49.152-MHz clock from       |
|          |     | the PHY and used to generate the 24.576-MHz         |
|          |     | clock.                                              |

# 3.2 Host Interface

## 3.2.1 Generic Host Interface

### 3.2.2 Wishbone Host Interface

### 3.2.3 PCI Host Interface

# 4 Operations

- 4.1 Asynchronous Transmit
- 4.2 Isochronous Transmit
- 4.3 Asynchronous Receive
- 4.4 Isochronous Receive

# 5 Registers