СОЗДАНИЕ ОГЛАВЛЕНИЯ С ПОМОЩЬЮ ВСТРОЕННЫХ СРЕДСТВ MS WORD. ВСТАВКА ФОРМУЛ

Цель работы: Приобрести навыки создания и редактирования оглавления, созданного с помощью встроенных средств Microsoft Word на, воссоздание внешнего вида формул с помощью редактора формул

Методические указания

1. Создание оглавления

Для создания оглавления необходимо:

- 1. Выделите строки текста, которые должны являться элементами оглавления (например, названия лабораторных работ).
- 2. На вкладке **Главная** нажмите на кнопку, расположенную в правой нижней части группы инструментов **Стили**.
- з. В раскрывшейся библиотеке стилей выберите стиль Заголовок 1.
- 4. Измените параметры стиля **Заголовок 1** согласно индивидуальному заданию, нажав на кнопку со стрелкой вниз справа от названия стиля (Рисунок 1). В открывшемся списке выберите команду **Изменить...**

Рисунок 1 Библиотека стилей: раскрывающееся меню для стиля

- 5. В открывшемся диалоговом окне (Рисунок 2) установите необходимые параметры: начертание, размер шрифта, выравнивание и др.
- 6. В документе укажите место, где будет создано оглавление (обычно это первая или вторая страница).

Рисунок 2 Диалоговое окно Изменение стиля

- 7. Откройте вкладку Ссылки.
- 8. Нажмите на кнопку Оглавление.
- 9. В раскрывшейся галерее шаблонов оглавления выберите команду Оглавление...
- 10. В открывшемся диалоговом окне Оглавление и указатели задайте стиль оформления оглавления по своему усмотрению.

Рисунок 3 Диалоговое окно Оглавление

!!!Обратите внимание!!!

Строки в оглавлении работают как ссылки

- удерживая клавишу **Ctrl**, щелкните по названию пункта оглавления – откроется соответствующая страница.

Для **обновления оглавления** щелкните правой кнопкой по оглавлению, в контекстном меню выберите опцию **Обновить**. В раскрывшемся диалоговом окне выберите режим обновления.

2. Создание формул

Чтобы создать формулу:

- 1. Перейдите на вкладу Вставка.
- 2. В группе инструментов Текст нажмите на кнопку 🔀 Объект 🔻
- 3. Из раскрывшегося списка выберите Объект...
- 4. В открывшемся диалоговом окне Вставка объекта (Рисунок 4) выберите тип объекта Microsoft Equation 3.0 либо Math Type Equation, нажмите ОК. Если редактор формул недоступен, его необходимо установить.

Рисунок 4 Диалоговое окно Вставка объекта

5. Диалоговое окно закроется, на экране появится панель инструментов **Формула** (Рисунок 5) и окно ввода формулы

Рисунок 5 Панель инструментов Формула

150 Верхняя строка панели инструментов Формула содержит более математических символов. Нижняя используется выбора строка ДЛЯ разнообразных шаблонов, построения дробей, предназначенных ДЛЯ интегралов, сумм и других сложных выражений. Формула в редакторе формул создается с помощью выбора шаблонов и символов на панели инструментов и ввода чисел и переменных в отведенные для них места.

- 6. Чтобы вернуться к работе с документом, щелкните мышью за пределами окна формулы.
- 7. Чтобы вернуться в режим редактирования формулы, дважды щелкните левой кнопкой мыши по формуле.
- 8. Перемещать курсор по формуле можно с помощью мышки или с помощью клавиатуры (см. табл. 1):

Таблица 1 Сочетания клавиш, используемые для перемещения курсора по формуле

Сочетание клавиш	Результат		
Tab	Курсор перемещается в конец поля. Если курсор находится в конце поля, он перемещается поле, которое логически следует за текущим.		
Shift+Tab	Курсор перемещается в конец предыдущего поля.		
Стрелка вправо →	Курсор перемещается на один элемент вправо внутри текущего поля или шаблона.		
Стрелка влево ←	Курсор перемещается на один элемент влево внутри текущего поля или шаблона.		
Стрелка вверх ↑	Курсор перемещается на одну строку вверх.		
Стрелка вниз ↓	Курсор перемещается на одну строку вниз.		
Home	Курсор перемещается к началу текущего поля.		
End	Курсор перемещается к концу текущего поля.		
Ctrl+Tab	Вставка в поле символа табуляции.		

Задания:

Ознакомьтесь с методическими указаниями (МУ). Соблюдая технологию выполнения работы (описана ниже) и рекомендации МУ выполните следующие задания:

- 1. Воспроизведите задания по лабораторным работам (ЛР). Каждое новое задание необходимо разместить с новой страницы.
- 2. На первой странице создайте оглавление с помощью встроенных средств MS Word.

Технология выполнения работы

Задание 1

- 1.1.Вставьте разрыв страницы (**Ctrl+Enter**).
- 1.2.На второй странице документа введите текст: **Лабораторная работа по MS Excel № 1.**
- 1.3.В соответствии с Вашим номером в журнале выберите варианты заданий по лабораторным работам (Приложение 1)
- 1.4. Перепишите текст задания (Приложения 2).
- 1.5.Воссоздайте внешний вид формулы с помощью редактора формул **Microsoft Equation 3.0** либо **Math Type Equation**.
- 1.6.Под формулой с новой строки напишите текст: Результаты вычислений представлены на рисунке:.
- 1.7. Перейдите на новую строку и вставьте разрыв страницы (Ctrl+Enter).
- 1.8. Аналогичным образом воссоздайте текст заданий по другим ЛР.
- 1.9. Сохраните документ в вашу папку под именем *Фамилия_отчет*.

Задание 2

- 1. Выделите названия лабораторных работ.
- 2. Назначьте для данных строк стиль Заголовок 1 (см. МУ).
- 3. Перейдите на первую страницу документа (**Ctrl+Home**).
- 4. Наберите слово Содержание.
- 5. Перейдите на новую строчку и создайте оглавление (см. МУ).

Индивидуальные задания

		-	
№ по списку в журнале	ЛР № 1	ЛР № 2	ЛР № 3
1.	1	1	1
2.	2	3	4
3.	3	5	6
4.	4	7	8
5.	5	9	10
6.	6	11	12
7.	7	13	14
8.	8	15	2
9.	9	2	3
10.	10	4	5
11.	11	6	7
12.	12	8	9
13.	13	10	11
14.	14	12	13
15.	15	14	15
16.	15	1	4
17.	14	3	6
18.	13	5	8
19.	12	7	10
20.	11	9	12
21.	10	11	14
22.	9	13	2
23.	8	15	3

№ по списку в журнале	ЛР № 1	ЛР № 2	ЛР № 3
24.	7	2	5
25.	6	4	7
26.	5	6	9
27.	4	8	11
28.	3	10	13
29.	2	12	15
30.	1	14	1
31.	11	1	2
32.	12	2	3

Лабораторная работа по MS Excel № 1

Записать формулу для вычисления выражения

выражение.

Проверить правильность вычисления выражения при следующих значениях исходных данных:

Результат: .

Исходные данные для вычисления выражения

	Исходные данные для вычисления выражения Исходные данные						
Вариант	Выражение				Ответ		
Ba		X	y	Z			
1	$t = \frac{2\cos\left(x - \frac{p}{6}\right)}{0.5 + \sin^2 y} \left(1 + \frac{z^2}{3 - z^2/5}\right)$	14.26	-1.22	3.5·10 ⁻²	0.56485		
2	$u = \frac{\sqrt[3]{8 + x - y ^2 + 1}}{x^2 + y^2 + 2} - e^{ x - y } (tg^2 z + 1)^x$	-4.5	0.75·10 ⁻⁴	$0.845 \cdot 10^2$	-55.6848		
3	$v = \frac{1 + \sin^2(x + y)}{\left x - \frac{2y}{1 + x^2 y^2} \right } x^{ y } + \cos^2\left(arctg \frac{1}{z}\right)$	3.74·10 ⁻²	-0.825	$0.16 \cdot 10^2$	1.0553		
4	$ w = \cos x - \cos y ^{(1+2\sin^2 y)} \left(1 + z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4}\right) $	$0.4 \cdot 10^4$	-0.875	-0.475·10 ⁻³	1.9873		
5	$a = \left(x - \frac{y}{2}\right) \ln\left(\frac{1}{y^{\sqrt{ x }}}\right) + \sin^{2}\left[arctg\left(z\right)\right]$	-15.246	4.642·10 ⁻²	$20.001 \cdot 10^2$	-182.036		
6	$b = \sqrt{10(\sqrt[3]{x} + x^{y+2})} (\arcsin^2 z - x - y)$	16.55·10 ⁻³	-2.75	0.15	-40.631		
7	$g = 5arctg(x) - \frac{1}{4}arccos(x)\frac{x+3 x-y + x^2}{ x-y z+x^2 }$	-0.1722	6.33	3.25·10 ⁻⁴	-266.6094		
8	$j = \frac{e^{ x-y } x-y ^{x+y}}{arctg(x) + arctg(z)} + \sqrt[3]{x^6 + \ln^2 y}$	-2.235·10 ⁻²	2.23	15.221	39.374		
9	$y = \left \frac{y}{x^x} - \sqrt[3]{\frac{y}{x}} \right + (y - x) \frac{\cos y - z/(y - x)}{1 + (y - x)^2}$	1.825·10 ²	18.225	-3.298·10 ⁻²	1.2131		
10	$a = 2^{-x} \sqrt{x + \sqrt[4]{ y }} \sqrt[3]{e^{x - 1/\sin z}}$	3.981·10 ⁻²	-1.625·10 ³	0.512	1.26185		

HT		И	Исходные данные			
Вариа	Выражение		y	Z	Ответ	
11	$b = y^{\sqrt[3]{ x }} + \cos^3(y) \frac{ x - y \left(1 + \frac{\sin^2 z}{\sqrt{x + y}}\right)}{e^{ x - y } + \frac{x}{2}}$	6.251	0.827	25.001	0.7121	
12	$c = 2^{(y^{x})} + (3^{x})^{y} - \frac{y(arctgz - \frac{p}{6})}{ x + \frac{1}{y^{2} + 1}}$	3.251	0.325	0.466·10 ⁻⁴	4.2514	
13	$f = \frac{\sqrt[4]{y + \sqrt[3]{x - 1}}}{ x - y (\sin^2 z + tgz)}$	17.421	10.365·10 ⁻³	$0.828 \cdot 10^5$	0.33056	
14	$g = \frac{y^{x+1}}{\sqrt[3]{ y-2 } + 3} + \frac{x+y/2}{2 x+y } (x+1)^{-1/\sin z}$	12.3·10 ⁻¹	15.4	$0.252 \cdot 10^3$	82.8256	
15	$h = \frac{x^{y+1} + e^{y-1}}{1 + x y - tg^{\frac{1}{4}}} (1 + y - x) + \frac{ y - x ^2}{2} - \frac{ y - x ^3}{3}$	2.444	0.869·10 ⁻²	-0.13·10 ³	-0.49871	

Лабораторная работа по MS Excel № 2

Вычислить таблицу значений суммы S(x) и функции Y(x) для различных значений аргумента x от $x_{\text{нач}}$ до $x_{\text{кон}}$ с шагом $h=(x_{\text{кон}}-x_{\text{нач}})/15$. Сумма S(x) является разложением в ряд функции Y(x), поэтому $S(x) \approx Y(x)$. Функция Y(x) вычисляется для контроля правильности вычисления суммы. Близость значений S(x) и Y(x) во всем диапазоне значений x указывает на правильность вычисления S(x) и Y(x). Построить графики суммы S(x) и функции Y(x).

Таблица 2 Исходные данные для вычисления выражения

№ вариан та	хнач	$x_{\kappa o \mu}$	Y(x)	S(x)	n
1.	0.1	0.5	arctgx	$\sum_{n} (-1)^{n} \frac{x^{2n+1}}{2n+1}$	04
2.	0.1	0.8	$xarctgx - \ln\sqrt{1 + x^2}$	$\sum_{n} (-1)^{n+1} \frac{x^{2n}}{2n(2n-1)}$	15
3.	0.1	1	$2(\cos^2 x - 1)$	$\sum_{n} (-1)^{n} \frac{(2x)^{2n}}{(2n)!}$	15
4.	-2	-0.1	$ \ln\frac{1}{2+2x+x^2} $	$\sum_{n} \left(-1\right)^{n} \frac{\left(1+x\right)^{2n}}{n}$	15
5.	0.2	0.8	$\frac{1}{4} \left(\frac{x+1}{\sqrt{x}} sh\sqrt{x} - ch\sqrt{x} \right)^{1}$	$\sum_{n} \frac{n^2}{(2n+1)!} x^n$	16
6.	-0.9	1	ln(1+x)	$\sum_{n} \left(-1\right)^{n-1} \frac{x^{n}}{n}$	16
7.	0.1	1	$\sin x$	$\sum_{n} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$	04
8.	0.1	1	$\frac{e^x + e^{-x}}{2}$	$\sum_{n} \frac{x^{2n}}{(2n)!}$	05

 $^{^{1}}$ sh — синус гиперболический, ch — косинус гиперболический (синтаксис написания функций узнайте в справочной системе Microsoft Excel).

№ вариан та	хнач	$x_{\kappa o \mu}$	Y(x)	S(x)	n
9.	0.1	1	$e^{x\cos\frac{p}{4}}\cos(x\sin\frac{p}{4})$	$\sum_{n} \frac{\cos n \frac{p}{4}}{n!} x^{n}$	06
10.	0.1	1	cos x	$\sum_{n} (-1)^{n} \frac{x^{2n}}{(2n)!}$	05
11.	0.1	1	e^{-x^2}	$\sum_{n} \left(-1\right)^{n} \frac{x^{2n}}{n!}$	05
12.	0.1	1	$\frac{e^x - e^{-x}}{2}$	$\sum_{n} \frac{x^{2n+1}}{(2n+1)!}$	04
13.	0.1	1	$\frac{1+x^2}{2}arctgx - \frac{x}{2}$	$\sum_{n} (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1}$	14
14.	0.1	1	e^{2x}	$\sum_{n} \frac{(2x)^{n}}{n!}$	06
15.	0.1	1	$\left(\frac{x^2}{4} + \frac{x}{2} + 1\right)e^{\frac{x}{2}}$	$\sum_{n} \frac{n^2 + 1}{n!} \left(\frac{x}{2}\right)^n$	06

Лабораторная работа по MS Excel № 3

Постройте график функции, заданной системой четырех неравенств. При вычислении таблицы значений функции используйте логическую функцию **ЕСЛИ**

№ варианта	Y(x)		№ варианта	Y(x)
1.	$Y(x) = \begin{cases} \cos x \\ \cos 5x \\ \sin 5x \\ \sin^2 x \end{cases}$	$x < \pi$ $\pi \le x < 2\pi$ $2\pi \le x < 3\pi$ $x \ge 3\pi$	9.	$Y(x) = \begin{cases} x^2 & x < -1 \\ x^3 & -1 \le x < 0 \\ -x^3 & 0 \le x < 1 \\ (x+1)^2 & x \ge 1 \end{cases}$
2.	$Y(x) = \begin{cases} x^2 \\ (2x)^2 \\ \sin 8x \\ x - 1 \end{cases}$	$x < -2$ $-2 \le x < -1$ $-1 \le x < 1$ $x \ge 1$	10.	$Y(x) = \begin{cases} 2/x & x < 4 \\ 5x & 4 \le x < 6 \\ x^3 & 6 \le x < 8 \\ 5 + x & x \ge 8 \end{cases}$
	$Y(x) = \begin{cases} \sin x \\ \sin 5x \\ \cos 5x \\ \cos^2 x \end{cases}$		11.	$Y(x) = \begin{cases} \pi & x < \pi \\ x + \pi/10 & \pi \le x < 5 \\ x + 15 & 5 \le x < 7.5 \\ x^2 - 10 & x \ge 7.5 \end{cases}$
	$Y(x) = \begin{cases} x^2 + x \\ \sin x \\ \cos x \\ 1/x \end{cases}$		12.	$Y(x) = \begin{cases} -1 & x < -1 \\ x & -1 \le x < 1 \\ 1 & 1 \le x < 2 \\ -x^2 & x \ge 2 \end{cases}$
5.	$Y(x) = \begin{cases} 2\cos x \\ \sin x \\ 0.2 + \sin 5x \\ 1 \end{cases}$	$x < \pi$ $\pi \le x < 2\pi$ $2\pi \le x < 3\pi$ $x \ge 3\pi$		$Y(x) = \begin{cases} -x^3 + 2 & x < -2\\ \cos x & -2 \le x < 0\\ \sin x & 0 \le x < \pi\\ \ln x & x \ge \pi \end{cases}$

№ варианта	Y(x)	№ варианта	Y(x)
6.	$Y(x) = \begin{cases} -2 & x < -10 \\ -0.5 & -10 \le x < -9 \\ 1 & -9 \le x < -8 \\ 2.5 & x \ge -8 \end{cases}$	14.	$Y(x) = \begin{cases} tgx & x < \pi/3 \\ 3x & \pi/3 \le x < \pi \\ \sin x & \pi \le x < 1.5\pi \\ \cos^2 x & x \ge 1.5\pi \end{cases}$
7.	$Y(x) = \begin{cases} x & x < -5 \\ -x & -5 \le x < -3 \\ x & -3 \le x < -1 \\ -x & x \ge -1 \end{cases}$	15.	$Y(x) = \begin{cases} \sin x & x < -\pi \\ -x^2 + 3 & -\pi \le x < \pi \\ \cos 4x & \pi \le x < 2\pi \\ 3x & x \ge 2\pi \end{cases}$
	$Y(x) = \begin{cases} -\cos x & x < \pi \\ -\cos 2x & \pi \le x < 2\pi \\ -\cos 3x & 2\pi \le x < 3\pi \\ -\cos 4x & x \ge 3\pi \end{cases}$		