《大学物理 AI》作业 No.04 机械能 机械能守恒定律

班级	学号	姓名	成绩 _	
********	 ************本章教:	 学要求******	*******	·****
1、理解质点、质点系的对 2、理解功的概念,熟练掌 3、理解保守力作功的特点 4、掌握质点、质点系、定 5、掌握机械能守恒条件, 6、能联合运用动量守恒、 问题的基本方法。	握变力作功的计算; ,,掌握保守系统的势能计 轴转动刚体的动能定理和 熟练应用机械能守恒定律	算方法,掌握保守功能原理,并且是 求解有关问题; 定律求解力学综合	守力与势能的关系; 熟练进行有关计算; 合性问题,掌握分析	斤求解力学综合
一、填空题 一、填空题				
1.一质点质量为 m ,速度为 m ,速度为 m ,速度为 m ,速度为 m ,速度为 m ,转动角速				专动惯量为 J ,
2.弹簧的劲度系数为 <i>k</i> ,原 为。	长为 x ,伸长量为 Δx ,	以弹簧平衡位置为	7势能零点,则该弹	養具有的势能
3.一质点系存在外力与内力 其动能的增量等于				
4.保守力做功的特点是 保守力作功等于其相关势的				
5.对于一个系统来说,动量 	量守恒的条件是 机械能守恒的条件是			
6. 作用力和反作用力大小 和为零(填'		两者冲量的代数和	口为,所	〒做的功的代数
7. 如图所示,质量为 <i>m</i> 的 固定在 <i>O</i> 点。初始时,弹ؤ 释放,下落到 <i>O</i> 点正下方 度大小为	簧在水平位置,原长为 $m{l}_0$ 好 $m{c}$ 位置 $m{B}$ 时,弹簧的长度变	上于自然状态。小	$\overline{\mathfrak{A}}$ 球由位置 A l	$ \begin{array}{c} $
8.如图所示,做圆锥摆运 ,绳子的张力》	动的小球在水平面内作匀; 对小球作功为。	速率圆周运动,重		

9. 如图,一质量为m的物体,位于质量可以忽略的直立弹簧正上方高度为h处,该物体从静止开始落向弹簧,若弹簧的劲度系数为k,不考虑空气阻力,则物体下降过程中可能获得的最大动能是

W₃ 零 (填"大于,等于,小于")。

二、简答题

- 1.判断下列说法是否正确,并说明理由。
- (1) 质点系的内力可以改变系统的总动能,因此,也改变系统的总动量;
- (2) 内力都是保守力的系统, 当它所受的合外力为零时, 它的机械能必然守恒;
- (3) 只有保守内力作用又不受外力作用的系统,它的动量和机械能必然都守恒。

- 2.判断下列情况下所研究系统的动量与机械能是否守恒,并说明理由。
- (1) 子弹水平射入放在光滑水平桌面上的木块内,以子弹和木块为研究系统。
- (2) 物体沿光滑固定斜面下滑,以物体和地球为研究系统。
- (3)斜面置于光滑水平面上,一物体沿斜面无摩擦下滑,以物体和地球为研究系统。

3.一个内壁光滑的圆形细管,正绕竖直光滑固定轴OO'自由转动。管是刚性的,转动惯量为J。环的半径为R,初角速度为 ω_0 ,一个质量为m的小球静止于管内最高点A处,如图所示,由于微扰,小球向下滑动。试判断小球在管内下滑过程中:

- (1) 地球,环与小球系统的机械能是否守恒?
- (2) 小球的动量是否守恒?
- (3) 小球与环组成的系统对*OO*′轴的角动量是否守恒? 回答让述问题,并说明理由。

三、计算题

1.一质量为 m=4kg 的物体,在 0 到 6 秒内,受到如图所示的变力 F 的作用,由静止开始沿 x 轴正向运动,而力的方向始终为 x 轴的正方向,求 6 秒内变力 F 所做的功。

2. 如图所示,劲度系数为 k 的弹簧,一端固定于墙上,另一端与一质量为 m_1 的木块 A 相接,A 又与质量为 m_2 的木块 B 用轻绳相连,整个系统放在光滑水面上。然后以不变的力 \vec{F} 向右拉 m_2 ,使 m_2 自平衡位置由静止开始运动,求木块 A、B 系统所受合外力为零时的速度,以及此过程中绳的拉力 T 对 m_1 所作的功,恒力 \vec{F} 对 m_2 所作的功。

- 3、细线一端连接一质量 m 小球,另一端穿过水平桌面上的光滑小孔,小球以角速度 ω_0 转动,用力 F 拉线,使转动半径从 r_0 减小到 $r_0/2$ 。求:
 - (1) 小球的角速度; (2) 拉力 F 做的功。

