PHYS 2321

Week4: Gauss's Law/Potential

Day 3 Outline

1) Hwk: Ch. 23 P. 2,3,5,9,12,15,17,21,25,28,29,35,36,43, 48,51. MCQ 1-13 odd (Due next Fri)

Next: Read Ch. 23.1-8

- 2) Ch. 22 Gauss's Law for E near conductors
 - a. Example: nested metal spherical shells.
- 3) Ch. 23 Electric Potential
 - a. Potential, V, of a point charge
 - b. Electric Potential energy, U, and work
 - c. Compare to gravitational PE, U_g

Notes: Next quiz is on Mon on Flux and Gauss's Law.

Return Ch. 21B hwk. Mean=9.54/10.

Ch. 22 PDF is my2321wk4.pdf under "NEW STUFF"

Electric Potential of a Point Charge

• Recall E field of point charge:

$$\vec{E} = \frac{kq}{r^2} \hat{r}$$

• Electric Potential at r away

from a point charge

$$V = \frac{kq}{r}$$

$$V=0$$
 when $r \rightarrow \infty$

• Electric potential difference

$$\Delta V_{ab} = \frac{kq}{r_b} - \frac{kq}{r_a}$$

Electric Potential

- Electric Potential of a point charge (previous slide)
- Electric potential closely related to *potential energy*
 - $\circ \qquad \Delta \mathbf{U} = \mathbf{q} \Delta \mathbf{V}$
 - And to *work*: $W_{\text{byfield}} = -q\Delta V = -\Delta U$
 - \circ Convention: both U and V = 0 at r=infinity
- Electric potential closely related to electric force

$$\circ \qquad \mathbf{F}_{\mathrm{E}} \cdot \Delta \mathbf{r} = \mathbf{W}_{\mathrm{byfield}} = -\mathbf{q} \Delta \mathbf{V}$$

- Electric potential closely related to electric field
 - δV = -Eδr so that potential difference is: $ΔV = -\int \vec{E} \cdot d\vec{l}$
- Electric potential is easier to work with than the E-field because it is not a vector.

Analogy with gravity

$$\begin{aligned} &F_{E} \text{ on } q_{0} \text{ is down} \\ &W_{Efield} = -|F_{E}|d \quad (F_{E} = q_{0}E) \\ &\Delta U = -W_{Efield} = |F_{E}|d \\ &\Delta V = \Delta U/q_{0} \end{aligned}$$

$$F_g$$
 on m is down

 $W_{Gfield} = -|F_g|h \quad (F_g = mg)$
 $\Delta U_G = -W_{Gfield} = |F_g|h$
 $\Delta V_G = \Delta U_G/m$

Parallel Plates

• Releasing a positive test charge from rest at point B...

Electric Potential Energy (conservation of energy ideas)

Work is done by "the hand", so we store potential energy, U_E

Charge is released and energy is converted from U_E to KE

Only the displacement in the direction of the E field matters

 $(\Delta U_{\rm F} \text{ independent of path})$

Problem: closed loop path, ABCA

- Work done is path independent
 - Only the initial and final position matter
 - Look for an easy solution!

Problem: find V's and Δ V's

Problem: find V and ΔV

$$V_1 - V_5 = 3.75 \text{ V}$$

$$V_1 = 3.75 \text{ V}$$
 $V_2 = 2.8125 \text{ V}$
 $V_3 = 1.875 \text{ V}$
 $V_4 = 0.9375 \text{ V}$
 $V_5 = 0 \text{ V}$

Electric Potential Energy U_E

- Building up arrangements of charge
 - Energy required to "build" = ΔU
- Bring a point charge in from infinity
 - like charges requires energy
 - repulsive forces
 - unlike charges give up energy
 - attractive forces

$$W = Fd = qEd$$
and
$$E = \frac{kq}{r^2}$$

...are difficult to use since E is not a constant.

Can use:

$$U_{12} = \Delta U_{12} = q_2 \Delta V_{\infty 1}$$

$$V_{\infty} = 0$$

$$V_{1} = k \frac{q_{1}}{r_{12}}$$

U_F for more than two charges

- Don't double count
- Bring each one in from "infinity"

- Bringing together like charges requires energy (force them together)
- Bringing together un-like charges gives up energy (fall together naturally)

$$U_{12} = k \frac{q_1 q_2}{r_{12}}$$

$$U_{23} = k \frac{q_2 q_3}{r_{23}}$$

$$U_{13} = k \frac{q_1 q_3}{r_{13}}$$

Equipotential Surfaces

- E field is perpendicular to the equipotential surfaces
- The surface of a conductor is an equipotential surface
 - no E field parallel to the surface in *Electrostatics*
 - gradually "match" the boundaries

Equipotential Surfaces

Equipotentials are perpendicular to the E-field lines.

E field points "down hill"

Contours of a map analogy

Lines of equal altitude are like Lines of equal potential.

Net force on a positive test charge will point "down hill" just like net force on a boulder will point down hill

(a) 10 m 20 m $U_4 U_3 U_2 U_1$ 15 m 25 m

(b)

 $h_3 = 20 \text{ m}$

 $h_2 = 15 \, \text{m}$

F and E are perpendicular to the circles

$$\Delta V_{ab} = \frac{kq}{r_b} - \frac{kq}{r_a}$$

Analogy with Gravity and hills

E field points "down hill" perpendicular to the lcircles

Field gets stronger closer to the point charge. Don't have to go as far to have the same change in electric potential $\langle dV \rangle$

 $E_r = -\left(\frac{dV}{dr}\right)$

Slightly misleading (circles would not be evenly spaced for V~1/r)

 V_4 V_3 V_2 V_1

(d)

Equipotential Surfaces

- Imaginary or real surfaces of constant voltage
 - The surfaces of a conductor are equipotential surfaces
- E field and equipotential surfaces are perpendicular to each other

If a charge moves from A to B along an equipotential surface, then

$$\Delta V_{AB} = 0$$

$$\Delta U_{AB} = q\Delta V_{AB} = 0$$