"Why Should I Trust You?"

Early Explainability: A Review of LIME

Steven Morse

William & Mary, Data Science DATA 691, Graph Learning

April 2, 2025

Overview

Idea

The surface of a complex model is locally simple \rightarrow we can approximate it with a simple model \rightarrow simple models are interpretable.

"Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016).

Related work

At the time (2016), explainability methods (to explain black box models) fell into generally two approaches:

 Local approximation methods. Ex: Parzen window estimators: estimate a density at x with summed kernel functions.

$$\hat{p}(x) = \frac{1}{n} \sum_{i} K(x - x_i; h)$$

Gradient- and relevance-based methods.
Ex: saliency maps, Layer-wise Relevance
Propagation (LRP) (similar to GradCAM, which came out 2017).

Note: there are many other ways to taxonomize (see a review like Linardatos 2020).

LIME conceptual intro

LIME formalities

- Given a model $f: \mathcal{X} \to \mathcal{T}$,
- Choose an "interpretable" model $g \in G$ with measure of interpretability $\Omega(g)$,
- Define a proximity measure $\pi: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$.

LIME Definition

The LIME explainer of x is defined as

$$\xi(x) = \arg\min_{g \in G} \ \mathcal{L}(f, g, \pi_x) + \Omega(g) \tag{1}$$

The paper focuses on linear models g, RBF $\pi_x(z) = \exp(-D(x,z)^2/\sigma^2)$, weighted L2 loss $\mathcal{L}(f,g,\pi) = \sum_z \pi_x(z)(f(z)-g(z))^2$, and standard regularization like LASSO.

Toy example (re-implementation)

Examples

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

Submodular Pick

- So far we've only explained a single prediction
- We can apply this model to many samples and use the resulting explanations to get:
 - Most explanatory features
 - Most explanatory set of datapoints
- More formally, given n samples and their $g_i = \xi(x_i)$ explainers corresponding to weights w_i , we compute a \mathcal{W} with $\mathcal{W}_{ii} = w_i^{(j)}$.
- Picking explanatory features is easy. (e.g. $\max_{j} \sum_{i} w_{i}^{(j)}$)
- Picking explanatory datapoints is combinatorially hard, but since the score function is submodular (diminishing gains from adding an example), a greedy algorithm has a constant-factor approximation guarantee.

User Experiments

Subsequent work

- ullet Local linear approximation approaches: Kernel SHAP, MAPLE (local linear + random forest)
- Gradient-based: GradCAM (2017), Integrated Gradients, SmoothGrad
- Contribution propagation: DeepLIFT
- Game theory: SHAP

Figure: Google trends for "explainable ai"

Questions?