Apache Spark vs MapReduce

Apache Spark

Distributed computing framework (we will run it on YARN)

API in several languages: Scala, Java, Python (PySpark)

Includes a lot of stuff: Spark ML, Spark SQL, Spark Streaming, etc.

SQL join query

```
Table a – purchases (user, product, ...)

Table b – contact info (user, country, ...)

We want to know the country where each purchase took place.

We need to join these tables on user:
```

```
select
  a.product,
  b.country
from
  a join b on a.user = b.user
```

SQL join on MapReduce

One more join on MapReduce

Table **c** contains product info (**product**, category, ...)
First join on MapReduce:

One more join on MapReduce

Table **c** contains product info (**product**, category, ...)
Second join on MapReduce:

One more join on MapReduce

Table **c** contains product info (**product**, category, ...)
Two joins on MapReduce:

- MapReduce results are stored in HDFS
- So, for "a join b" we spend time on writing to HDFS and reading it back

That's where Spark shines

Two joins on Spark:

- Computation is described as a DAG (Directed Acyclical Graph)
- Intermediate results can be cached in memory or on disk, skipping HDFS

Iterative algorithms

- MapReduce has overheads:
 - Reading and writing to/from HDFS
 - Starting up each MR job on YARN cluster (scheduling, starting JVM, etc.)
- In ML we have lots of iterative algorithms and Spark works best on them:

Spark vs MapReduce

	Spark	MapReduce
Usage	Iterative and interactive computation	Heavy load offline processing
Simplicity	Python API	Hadoop text-based streaming
Storage	Utilizes RAM for cache	Everything is stored in HDFS

Spark RDD API

Spark RDD

Spark program is a set of operations on RDDs

Abstract RDD – resilient distributed dataset:

Job inputs and outputs are RDDs

All intermediate results are RDDs as well (you know the DAG and can restore missing parts if you lose them)

Spark RDD

Spark program is a set of operations on RDDs

Abstract RDD – resilient distributed dataset:

Job inputs and outputs are RDDs

All intermediate results are RDDs as well (you know the DAG and can restore missing parts if you lose them)

How to make an RDD:

A file from HDFS (already resilient and distributed)

Parallelize a Python collection (list, generator, ...)

Transform another RDD

RDD operations

Transformations (RDD → RDD):

Transformation is lazy (i.e. computed when it's needed)

Example: map is a transformation that passes each dataset element through a function and returns a new RDD representing the results

Other examples: reduceByKey, join

RDD operations

Transformations (RDD → RDD):

Transformation is lazy (i.e. computed when it's needed)

Example: map is a transformation that passes each dataset element through a function and returns a new RDD representing the results

Other examples: reduceByKey, join

Actions:

Action triggers DAG execution to compute RDD

Examples: saveAsTextFile, collect, count

RDD operations

Transformations (RDD → RDD):

Transformation is lazy (i.e. computed when it's needed)

Example: map is a transformation that passes each dataset element through a function and returns a new RDD representing the results

Other examples: reduceByKey, join

Actions:

Action triggers DAG execution to compute RDD

Examples: saveAsTextFile, collect, count

Other operations:

Example: persist, cache will force Spark to keep the RDD in memory for much faster access the next time you query it

You create **SparkContext** in Python to communicate with Spark cluster.

You create **SparkContext** in Python to communicate with Spark cluster.

YARN application is started, running **driver** as Application Master, which creates JVM version of **SparkContext** (stores configuration, DAGs for all RDDs, etc.).

You create **SparkContext** in Python to communicate with Spark cluster.

YARN application is started, running **driver** as Application Master, which creates JVM version of **SparkContext** (stores configuration, DAGs for all RDDs, etc.).

Driver coordinates the work of **Executors** (making actual computation).

Python objects are serialized with pickle and need deserialization to be processed Which means objects are stored **twice** in memory:

PySpark code example

```
PythonRDD[17] at RDD at PythonRDD.scala:48
[2, 4, 6, 8]
```

One more transformation example

One more action example

```
PythonRDD[29] at RDD at PythonRDD.scala:48 [1.9987386963918603, 1.997388155520317]
```

Word Count in Spark

```
rdd = (
    sc
    .parallelize(["this is text", "text too"])
    .flatMap(lambda x: [(w, 1) for w in x.split()])
    .reduceByKey(lambda a, b: a + b))
print rdd
print rdd.collect()

PythonRDD[61] at RDD at PythonRDD.scala:48
[('text', 2), ('too', 1), ('is', 1), ('this', 1)]
```

Spark quiz

```
rdd = sc.parallelize(range(1000))
rdd = rdd.map(lambda x: (x % 100, 1))
rdd = rdd.reduceByKey(lambda a, b: a + b)
rdd = rdd.map(lambda (a, b): (b, a))
rdd = rdd.reduceByKey(lambda a, b: max(a, b))
rdd.collect()
```

Spark quiz

```
rdd = sc.parallelize(range(1000))
rdd = rdd.map(lambda x: (x % 100, 1))
rdd = rdd.reduceByKey(lambda a, b: a + b)
rdd = rdd.map(lambda (a, b): (b, a))
rdd = rdd.reduceByKey(lambda a, b: max(a, b))
rdd.collect()
```

```
[(10, 99)]
```

Caching in RAM

```
lines = sc.textFile("...", 4)

print lines.count()

count() causes Spark to:

read data

sum within partitions

combine sums in driver
```

Caching in RAM

```
lines = sc.textFile("...", 4)

comments = lines.filter(isComment)

print lines.count(), comments.count()

Spark recomputes lines:

read data (again)

sum within partitions

combine sums in driver
```

Caching in RAM

```
lines = sc.textFile("...", 4)

lines.cache() # save, don't recompute!

comments = lines.filter(isComment)

print lines.count(), comments.count()

comments

RAM #

RAM #
```

Conclusion

- Spark is easier to use than MapReduce
- Very flexible due to pickle serialization (works with virtually any Python object)
- But not as fast as Scala/Java version (you can compensate with more nodes)