Unsupervised learning to detect teams from individual player trajectories

Comp – 652: Machine learning

Professor: Doina Precup

Student: Gayane Petrosyan

Orbius game and Challenge

- 2d multiplayer game
- players move around and collect some balls
- 3 full game logs
- 28 players and 7 teams

Feature selection and preprocessing

grouping by intervals of time

Feature selection and preprocessing (2)

- Calculating a distance from origin
- Making uniform distribution Gaussian(inverse error function)

General approach

- Mixture of Gaussian. Find parameters with EM
- For each player find a probability of being in each group
- For each team picking most probable players

Mixture of Gaussian

Mixture of Gaussian (parameter estimation)

Mixture of Gaussian (clustering)

Mixture of Gaussian (parameter estimation)

Mixture of Gaussian (clustering)

Grouping

 For each player calculate log likelihood of being in particular team

$$\arg\max_{c}(\log P(x_i/y_i=k;\,\mu_{kc},\Sigma_{kc})+\log P(y_i=k,\phi_{kc})$$

- Repeatedly
 - Assign each team most probable players
 - Assign players for their highest probability team.

Results... could be better

Training vs. Testing

2	4	1	3
5	7	8	6
9	12	10	25
16	26	11	15
18	19	20	14
24	21	23	22
13	17	28	27

2	1	3	10
14	8	12	5
11	6	9	16
4	13	26	21
18	17	15	28
19	7	22	24
27	20	25	23

Error percentage: 0.214286

Error percentage: 0.535714

Future work directions

- More group examples
- Elimination of similar groups

Questions?