FACHBERICHT

FS18 - PRO4E - TEAM 5

27. April 2018

Auftraggeber: H. Gysin

J. Kalbermatter

Betreuer: M. Meier

A. Gertiser

R. Dubach

B. Domenghino

P. Schleuniger

Projektleitung: Simon Zoller

TEAMMITGLIEDER: SEVERIN HUNZIKER

MISCHA KNUPFER

Lukas Loosli

Josha Giambonini

Elias von Däniken

GIANLUCA PICCIOLA

STUDIENGANG: ELEKTRO- UND INFORMATIONSTECHNIK

Abstract

Aimless wandering and too little knowledge are the reasons why the visitation of a museum is more memorable than its artworks. Because of that, an audio guide called Dojo was designed to help make the artworks unforgettable.

The goal of this project was to design the circuits for the Dojo. The Dojo should be able to recognise the artwork the visitor is standing in front as well as playing audio information over a bone sound sensor. In addition to that, the visitor should be able to "like" an artwork by pressing a button and get the information of the liked artworks at the end of his visit by email or printing.

The Dojo gives the information to the visitor by the bone sound sensor. For that, the sound files must be stored on a SD-Card which is placed in the device. Each artwork has a Bluetooth Low Energy (BLE) Beacon that sends its ID to the Dojo. The Dojo's internal microcontroller is scanning for BLE-Signals and plays the file that is belonging to the ID of the strongest received signal, which is assumed to be coming from the nearest beacon. Furthermore, the Dojo has an inductive rechargeable battery.

The correct beacon is identified at XXX meters. The bone sound sensor plays the audio files with a loudness of XXX dB and no distortion. The inductive rechargeable battery with a capacity of XXX mAh can provide power for XXX hours, full featured and is recharged after XXX hours of charging. The deep discharge protection turns off the Dojo when the battery is at the XXX % of its power to protect the battery from damage.

The Dojo can be improved by implementing wireless data transfer and room access authorization. Nevertheless, it's a significant win for museum visitors.

Key Words: audio guide, Bluetooth low energy, inductive charge, bone sound sensor

Inhaltsverzeichnis

1	Ein	leitung	4	
2	Gesamtkonzept			
	2.1	Funktionsweise	5	
	2.2	User Cycle	6	
3	Har	rdware	9	
	3.1	Energieübertragung	9	
	3.2	Energiespeicher	9	
	3.3	Linear Regler	10	
	3.4	Mikrocontroller	12	
	3.5	Verstärkerstufe	12	
	3.6	Knochenschallaktor	12	
	3.7	Testkonzept Hardware	13	
4	Soft	tware	14	
	4.1	State Machine	14	
	4.2	Microcontroller	14	
	4.3	Bluetooth	14	
	4.4	SD-Karte	14	
	4.5	Audio, PWM	14	
	4.6	Testkonzept Software	14	
5	Val	idierung	16	
6	Sch	${f lusswort}$	17	
7	Ehr	lichkeitserklärung	18	
\mathbf{A}	Anl	hang	21	
	A.1	Messresultate	21	

4 1 EINLEITUNG

1 Einleitung

Museen bieten die Möglichkeit unterschiedlichste Ausstellungsobjekte unter einem Dach zu betrachten. Die Art der ausgestellten Kunst ist hier von Ausstellung zu Ausstellung unterschiedlich, was jedoch beständig ist, ist eine spirituelle Wahrnehmung. Wohl nirgends kann man so gut in seinen eigenen Gedanken versinken und sich Gedanken über ein Ausstellungsobjekt machen wie bei einem Museum. Um Besucher anzulocken, sind Museen auf Innovation angewiesen, welche zum einen die Übergabe von Informationen möglichst Benutzerfreundlich gestaltet aber auch eine angenehme Ambiance schaffen. Hierbei kommt auch vermehrt der Einsatz von Smartphones zum Zuge, wobei die Problematik darin besteht, dass man der Aussenwelt gefährlich nahe kommt und dadurch abgelenkt wird.

Ziel dieses Projektes ist es eine smarte Lösung für einen Audio-Guide zu realisieren ohne dass das eigene Smartphone benötigt wird. Im Fokus stehen dabei, dass Informationen bequem zum Nutzer gelangen, ohne dass Ablenkungen unterschiedlichster Art einem zurück in den Alltag holen. Des Weiteren soll er das herkömmliche Zutrittsticket ablösen, wodurch das Museum die Möglichkeit hat, ihre Ausstellung in mehrere Bereiche zu unterteilen. Der Besucher kann dadurch beim Eintritt die auf ihn zugeschnittenen Bereiche auswählen und durch die integrierte Zutrittsberechtigung im Audio-Guide nur in die bezahlten Räume eintreten. Als Grundlage für das Design dient ein von der Auftraggeberin designter Museums Audio-Guide namens Dōjō. In dieser Projektarbeit ist das Ziel, einen funktionierenden Prototyp herzustellen, wodurch danach eine finale Version erstellt und in den Dōjō eingebaut werden könnte.

Der Dōjō ist vergleichbar mit einem runden Stab mit der Länge von XXX und XXX cm Durchmesser. Dieser weist sowohl eine Sprachausgabe mittels Knochenschallgeber, als auch weitere Peripherien wie einer simplen Audiosteuerung, Bluetooth-Beacon Erkennung und einem «Like Button». Sein simples Design und seine einfach Anwendung, ist für jede Altersgeneration geeignet. Die Realisierung dieses Audio-Guides erfolgt in einem Hardware- und einem Softwareteil. Der Hardwareteil wird hierbei durch die Ladeschaltung, die Energiespeicherung und Überwachung, wie auch der Audioausgabe bestimmt. Der Softwareteil übernimmt die Erkennung, Ansteuerung und Koordination der Hardware Komponenten. Die Bearbeitung erfolgt in dem jedes Teammitglied ein ihm zugeteilter Aufgabenbereich bearbeitet.

Für die Realisierung wird ein Prototyp entworfen, welcher zu XXX verschiedenen Sprachen XXX Stunden Audioausgabe speichern kann. Die Ansteuerung der Audiofiles erfolgt über Bluetooth-Beacon Erkennung, welche ab einer Distanz von XXX m erkennt werden. Der eingebaute «Like-Button» ermöglicht favorisierte Bilder abzuspeichern und diese am Ende des Besuches digital oder in Form einer Broschüre beim Ausgang als Erinnerung mitzunehmen.

Der nachfolgende Bericht ist durch drei Hauptbereiche definiert. Der erste Bereich umfasst das Gesamtkonzept, welcher die gesamte Anwendung auslegt. Die nachfolgenden zwei Hauptbereiche sind in Hardware und Software gegliedert. Die Hardware teil sich wiederum in die Themengebiete Energieübertragung, Energiespeicherung und Audioausgabe auf. Die Software beinhaltet die Unterbereiche der Bluetooth Kommunikation, Bluetooth-Beacon Erkennung, sowie die gesamte Programmstruktur des verwendeten Microcontrollers.

2 Gesamtkonzept

In diesem Kapitel wird beschrieben wie das Dojo als Gesamtkonstrukt funktioniert. Hierbei wird zwischen der Bedienung des Dojos, wie auch der Anwendung im Mueseum selber unterschieden.

2.1 Funktionsweise

Der Dojo ist eine Art Audio-Guide welcher für Museen designt ist und diverse Funktionen beinhaltet. Abbildung 1 visualisiert den von der Auftraggeberin designten Prototypen. Einer der grössten Abweichungen zu einem herkömmlichen Audio-Guide ist die Sprachausgabe mittels einem Köperschallaktor und nicht wie gewöhlich einem Lautsprecher. Eine der Eigenheiten ist ein integrierter Like Button, mit dem man Ausstellungsstücke "liken "kann. Diese Likes können am Ende des Museumsbesuchs zusammengefasst und in einer nicht genauer definierten Form an den Besucher abgegeben. Ansonsten kann der Dojo das was man von einem Audio-Guide erwarten würde, wie der Audiowiedergabe, Haltemodus und Lautstärke Einstellung.

Abbildung 1: Dojo

Das Herzstück des Dojo ist ein NRF52 von Nordic Semiconductor mit integriertem Bluetooth-Stack, welcher wiederum low-Energy fähig ist. Die Daten werden auf einer SD-Karte gespeichert. Einen Überblick über die Teilsysteme des Dojos ergibt Abbildung 2. Der NRF52 wird die Audiodaten an den Verstärker weitergeben, welcher sie über den Körperschallaktor ausgibt. Gespeist wird der Dojo von einem Akku, welcher induktiv geladen wird.

Abbildung 2: Teilsysteme des Dojo

Die Funktion des Dojos sind in zwei Bereiche unterteilt. Im Abschnitt 2.1.1 sind die Funktionen für die Museumsbesucher beschrieben, welche nachfolgend als Nutzer bezeichnet werden. Zum anderen sind im Abschnitt 2.1.2 die für die Museumsbetreiber relevanten Funktionen beschrieben. Diese werden nachfolgend als Betreiber bezeichnet.

2.1.1 Nutzer

Der Nutzer geht mit dem Dojo durch das Museum. Sobald die Bluetooth Beacons genug nahe sind, wird dem Nutzer ein Signal gesendet. Dies erfolgt durch Vibration oder mithilfe einer LED. Jetzt soll der Nutzer entscheiden ob er sich das zugehörige Audio-File anhören will. Will er das, kann er den Play-Button betätigen. Die Lautstärke kann über die Buttons justiert werden. Falls das Ausstellungsstück dem Nutzer gefallen hat, kann er die Merken-Taste betätigen. Diese speichert das Ausstellungsstück auf eine Liste im Dojo. Am Ende des Museumsbesuches kann diese Liste ausgewertet werden. Dies fällt aber nicht mehr in die zuvor definierten Systemgrenzen. Wir stellen nur sicher, dass die Liste exportiert werden kann.

2.1.2 Betreiber

Der Betreiber muss den Dojo konfigurieren. Dies erfolgt über eine SD-Karte, welche mit dem Computer beladen wird. Anschliessend wird diese in den Dojo eingeführt. Das Nachladen des Akkumulator erfolgt über eine induktive Ladung. Die nächsten zwei Funktionen sind Wunschziele, die vor allem mit Rücksicht auf die Laufzeit realisiert werden. Den Bluetooth-Receiver könnte man kurzzeitig auf ein Bluetooth Beacon umschalten. Der Betreiber müsste nur noch einen Receiver pro Raum installieren. Damit könnte man die gewünschte HeatMap realisieren. Das zweite wäre die Möglichkeit per Bluetooth einzelne Audiofiles auf den Dojo zu übertragen, um im Falle einer Änderung der Austellung die Liste anzupassen.

2.2 User Cycle

Um einen lückenlosen Betrieb zu gewährleisten, ist ein Ablauf für den Gebrauch des Dojos notwendig. Dieser Ablauf kann zusammenfassend in vier Schritte unterteilt werden und ist nachfolgend in Abbildung 3 ersichtlich.

2.2 User Cycle 7

Abbildung 3: User Cycle Dojo

Der erste Schritt beinhaltet die Dojo Ausgabe beim Empfang. Hierbei wird festgelegt zu welchen Bereichen der Besucher Zutritt erhalten soll. Dies ist abhängig von den Wünschen des Besuchers. Die Auswahl der Sprache wird später im Unterkapitel 2.2.1 beschrieben. Zu beachten gilt es, dass jeweils die Geräte ausgegeben werden, welche sich am längsten in der Ladestation (Schritt 4) befinden. Hierbei hilft eine Signal-LED am Dojo, welche den Ladestatus gemäss definiertem Farbschema ausgibt. Ein lückenloser Betrieb wird erreicht, wenn die Stückzahl der Audio-Guide Geräte in etwa der Anzahl der Besucher pro Tag entspricht.

In Schritt 2 befindet sich der Besucher auf dem Rundgang mit dem Dojo als Audio-Guide. Der Nutzer hat hierbei die Möglichkeit während dem Rundgang Bilder zu "liken". Weitere Funktionen und die Bedienung des Dojos selber, ist im vorherigen Unterkapitel 2.1 beschrieben.

Die Abgabe erfolgt in Schritt 3. Hier hat der Besucher die Möglichkeit "gelikte"Bilder als Broschüre zu erhalten oder diese per Mail zu erhalten. Das entgegengenommene Dojo kann für den nächsten Besucher gereinigt werden.

Sobald das Dojo entgegengenommen wurde und alle benötigten Informationen ("likes") extrahiert wurden, wird es wie in Schritt 4 ersichtlich aufgeladen. Hierfür ist eine Ladestation verfügbar, wobei es lediglich notwendig ist die Dojos in die dafür vorgesehenen Ladebuchsen zustecken. Hierbei beginnt der induktive Ladezyklus sobald die in jedem Gerät eingebaute Signal-LED zu leuchten beginnt.

2.2.1 Sprachauswahl

Die Sprachauswahl wird durch den Besucher selbst eingestellt. Hierbei stehen ihm vier Bluetooth-Beacons zur Verfügung zu welchen er sein Dojo hinhalten kann. Die gewünschte Sprache ist hierbei durch die Landesflagge gekennzeichnet. Ein Beispiel einer solchen Anwendung ist nachfolgend in Abbildung 4 ersichtlich.

Abbildung 4: Sprachauswahl mittels Bluetooth-Beacon

Es ist ersichtlich, dass eine Auswahl aus vier Sprachen möglich ist. Zudem ist ein Test-Beacon vorhanden, welches dem User ein kurzes Audio-Sample abspielt. Dies ist lediglich für die Gewissheit die richtige Sprache ausgewählt zu haben. Sobald die gewünschte Sprache geladen und getestet wurde, kann der Museumsbesuch gestartet werden.

3 Hardware

Beschreibt welche Hardware benötigt wird, auf die in den Unterthemen näher eingegangen wird.

3.1 Energieübertragung

Die Funktionsweise der Induktiven Ladung wird veranschaulicht dargestellt und erläutert mit Schema, Simulation und ggf. weitere Abbildungen.

3.2 Energiespeicher

Die gesamte Energiespeicherung erfolgt durch einen Lithium-Ionen-Akkumulator des Typs Emmerich LI14500. Dieser weist eine Kapazität von 800mAh bei einer Nominalspannung von 3.7V auf. Die errechnete Betriebszeit des Dojos lässt sich mit einem maximalen Verbrauch von 0.63W, der Nominalspannung der Kapazität berechnen. Die maximale Leistung des Dojos lässt sich durch Leistung des Knochenschallgebers und des Microcontrollers beschreiben. Alle anderen Komponenten können durch ihren geringen Betriebsstrom vernachlässigt werden. Der Knochenschallgeber weist gemäss eigenen Messungen eine maximale RMS Leistung von 214.5mW auf. Die Rechnung erfolgt mit einem Sicherheitswert von rund 0.35W und einer Betriebszeit von rund 80%. Die Microcontrollerleistung lässt sich durch den Radio Strom (7.5mA) und einigen Mikroampere Systemstrom (gesamthaft ca. 100 μ A) multipliziert mit der Systemspannung von 3.6V bestimmen. Zur Berechnung wird noch ein Sicherheitsfaktor von 0.1W dazu addiert, damit die erforderliche Laufzeit auch wirklich erreicht wird. Die Microcontrollerleistung wird durch die Nominalspannung multipliziert mit dem maximalen Microcontrollerstrom von 7.6mA berechnet. Nachfolgend wird die Berechnung der maximalen Leistung (Berechnung 3.1) veranschaulicht.

$$P_{max} = (0.8 \cdot P_{Kn}) + P_{MC} + P_{zus} = (0.8 \cdot 0.5W) + (3.7V \cdot 7.6mA) + 0.1W = 0.528W$$
 (3.1)

Die darausfolgende minimale Zeit t kann gemäss nachfolgender Berechnung 3.2 berechnet werden.

$$t_{max} = \frac{W \cdot U}{P_{tot}} = \frac{800mAh \cdot 3.7V}{0.528W} = 5.6h \approx 5h \ 30min$$
 (3.2)

3.2.1 Schutz

Um den verwendeten Akkumulator zu schützen, sind diverse Schutzeinrichtung notwendig. Zum einen muss der Ladevorgang überwacht werden, so dass der maximale Ladestrom wie auch die Ladespannung nicht überschritten werden. Für die Laderegelung wurde ein Lade-IC von Microchip des Typs MCP73831 verwendet. Dieser übernimmt die gesamte Spannungs- und Stromregelung beim Ladeprozess und steuert zu dem während dem Ladevorgang eine LED zur Ladesignalisation an. Der Ladeprozess für den oben erwähnten Li-Ion Akku ist in untenstehender Abbildung 5 ersichtlich. Hierbei wurde der Akku im Schnelllademodus mit einem maximalen Strom von 400mA geladen. Dieser Strom ergibt sich aus dem Datenblatt der Batterie, wobei sowohl der Entladestrom, als auch der Ladestrom 0.5C beträgt. Das C entspricht der Kapazität der Batterie, wodurch sich der Strom Imax gemäss der nachfolgenden Formel 3.3 berechnen lässt.

$$I_{charge} = \frac{0.5}{h} \cdot C = \frac{0.5}{h} \cdot 800 mAh = 0.4A = 400 mA$$
 (3.3)

10 3 HARDWARE

Betrachtet man die Abbildung 5 wird ersichtlich, dass die Spannung rund 2.5h geregelt wird bis 4.2V Grenze erreicht wird. Sobald der Spannungswert 4.2V erreicht hat, beginnt der Lade-IC mit der Stromregelung. Für diesen Prozess wurden beim Versuch noch einmal rund 30 Minuten benötigt, wodurch die letzten rund 20% der Batteriekapazität geladen werden konnten.

Abbildung 5: Blockschaltbild Energiespeicherung

Für einen weiteren Schutz, hat die Emmerich LI14500 eine integrierte Schutzbeschaltung namens PCM (Protection Circuit Module). Dieser Schutz garantiert einerseits einen Überladeschutz von $4.25\mathrm{V} \pm 0.025\mathrm{V}$, aber auch einen Tiefentladungsschutz von $2.5\mathrm{V} \pm 0.063\mathrm{V}$. Weiter ist der Akku gegen Überströme ab einer Höhe von $4.8\mathrm{A}$ geschützt und weist zudem einen Schutzschaltungswiderstand von $\leq 75\mathrm{mW}$ auf.

3.3 Linear Regler

Für die Energieversorgung der integrierten Komponenten im Dojo ist eine konstante Spannungsquelle notwendig. Hierbei hat ein Lithium-Ionen Akku nicht die besten Voraussetzungen, da dessen Spannung unter Last mit der Zeit sinkt. Der verwendete ADP122 Spannungsregler regelt die Eingangsspannung auf 3.3V herunter solange diese über der Ausgangsspannung liegt. Ist $U_{ein} < 3.3$ V, nimmt die Ausgangsspannung linear mit der Eingangsspannung ab. Es gilt also im generellen: $U_{ein} > U_{aus}$. Nachfolgende Grafik 6 aus dem Datenblatt gibt einen Einblick in das Spannungsregelverhalten des ADP122.

Abbildung 6: Eingangsspannung vs. Ausgangsspannung [1]

Für unsere Anwendung sind die mittleren zwei Kurven (rot und grau) interessant. Auffällig ist, dass bei $V_{ein} < 3.3 \text{V}$, die Abweichung zwischen V_{ein} und V_{aus} um ca. 0.025 V unterscheiden. Die Abweichung F_{error} ist somit kleiner 1%.

Nicht nur die Komponenten im Dojo selbst benötigen eine konstante Spannungsversorgung, sondern auch der Lade-IC während dem Ladevorgang. Da Der Ladevorgang mittels induktiver Ladung erfolgt, kann hierbei die Spannung extrem schwanken. Es wird also direkt nach der Sekundärspule und dessen Gleichrichtung ein Spannungsregler eingebaut. Hierbei wird ein MCP1703A der Firma Microchip verwendet. Dieser gibt bei einer maximalen Eingangsspannung von $16V_{DC}$, konstant $5V_{DC}$ ab. Der maximale Ausgangsstrom beträgt hierbei 250mA und ist somit für unsere Anwendung gut geeignet. Einen Einblick in das Spannungsregelverhalten gibt nachfolgende Abbildung 7.

12 3 HARDWARE

Abbildung 7: Eingangsspannung vs. Ausgangsspannung [2]

Augenfällig ist, dass die Ausgangsspannungskurve im Bereich von 6V bis 16V (T=25°C) rund 0.1V schwankt. Dies stellt jedoch keine Probleme für den Lade-IC dar, da dieser einen Eingangsspannungsbereich zwischen 3.75V bis 6V vorweist. Ebenfalls in der obigen Grafik ersichtlich ist die grosse Erwärmungstoleranz des Spannungsreglers. Dies ist aufgrund dessen wichtig, dass es durch die induktive Übertragung durchaus zu grosser Erwärmung in unmittelbarer Nähe kommen kann.

3.4 Mikrocontroller

3.5 Verstärkerstufe

Mit einer Verstärkerstufe lassen sich auf einfache Art und Weise Signale jeglicher Form verstärken. Sie eignen sich bestens, um den Ausgang eines Mikrocontrollers entsprechend aufzubereiten, da die Ausgangsseite meist sehr niedrige Ströme aufweist. Dadurch kann dem Knochenschallaktor genügend Energie zur Verfügung gestellt werden.

Prinzipiell gibt es 2 Arten von Verstärkern. Sie können digital oder auch analog umgesetzt werden. Beide erfüllen die gleiche Aufgabe, weisen jedoch bezüglich Wirkungsgrad einen deutlichen Unterschied auf. Die digitale Variante weist ungefähr einen Wirkungsgrad von 90% auf [3], während die analoge Variante maximal einen Wirkungsgrad im Bereich der Leistungsanpassung erzielt [4]. Aus diesem Grund wird ein digitaler Verstärker (Class-D-Verstärker) in der Anwendung implementiert. die Wahl fiel auf den Stereo-Amplifier MAX 98306 (nicht ganz sicher was nacher wirklich implementiert wird).

(Strom/Spannung/Leistung) ergänzen und begründen, Berechnung der Verstärkung

3.6 Knochenschallaktor

Nachdem das vom Mikrocontroller ausgegebene Audio-File über die Verstärkerstufe entsprechend aufbereitet wurde, kann nun die Audiodatei über einen sogenannten Knochenschallaktor ausgegeben werden. Der Aktor arbeitet nach dem Prinzip der Weiterleitung von Schall-Schwingungen oder auch Vibrationen. Dadurch lässt sich der ursprüngliche Gehörgang um-

gehen und die Schwingungen werden über den Schädelknochen an das Innenohr übertragen. Dies verbessert auch die Hygiene der Anwendung, da kein direkter Kontakt mit dem Gehörgang stattfindet.[5] Für die Anwendung im DOJO wird ein Knochenschallaktor des Herstellers Adafruit verwendet, welcher in der Abbildung 8 ersichtlich ist.

Abbildung 8: Knochenschallaktor von Adafruit

Das ausgewählte Bauteil eignet sich bestens für die Verwendung im DOJO. Mit einem Gewicht von 9.6 g und den Dimensionen 14x21,5x7,9 lässt sich der Aktor gut in das bestehende Gehäuse implementieren [3]. Weiter ist Bauteil relativ kostengünstig im Handel erhältlich und kann $1W_{RMS}$ Leistung liefern, was sich dann in der Lautstärke bemerkbar macht. Nach ausführlichen Recherchearbeiten konnten keine wirklichen Alternativen ausgemacht werden. Meist befindet sich die Technologie noch in der Entwicklungsphase oder fällt aufgrund des Preises aus der Auswahlmöglichkeit.

3.7 Testkonzept Hardware

Damit ein reibungsloser Betrieb möglich ist, müssen die einzelnen Hardware Komponenten auf Herz und Nieren geprüft werden. Nachfolgend werden die Testverfahren genauer beschrieben und die Testergebnisse aufgelistet.

3.7.1 Batterie

Die Batterie weist einige Schutzmechanismen auf, welche alle getestet werden müssen. Als erstes wurde der Tiefentladungsschutz geprüft. Um dies zu testen wurde ein Winderstand der Dimension 9Ω angeschlossen, wobei gemäss Berechnung 3.4 ein Entladestrom von rund 400 mA resultierte.

$$I_{discharge} = \frac{U}{R} = \frac{3.7V}{9\Omega} = 411mA \tag{3.4}$$

Während dem Entladevorgang wurde stets die Spannung überwacht, wobei die Spannung von 3.7V auf bis 2.5V absank. Nach dem die 2.5V Schwellenspannung unterschritten wurde, brach der integrierte Batterieschutz die Spannungsversorgung ab. Die Widerstände wurden abgehängt und der gesamte Vorgang wurde mit Erfolg wiederholt.

Als nächstes wurde ein Kurzschlusstest durchgeführt, wobei hier der Schwellenstrom gemäss Datenblatt bei 4.8 liegt. Gemäss dem U=R·I Gesetz, wurde ein Widerstand der Grösse von $700 \text{m}\Omega$ verwendet damit der Grenzwert überschritten wird. Auch bei diesem Versuch, riegelte das PCM den hohen Entladungsstrom ab und schaltete die Versorgungsspannung ab.

14 4 SOFTWARE

4 Software

Beschreibt die einzelnen Softwareteile und welche Entwicklungstools benutzt werden und führt Lizenzen auf. Ausserdem wird die Softwarestruktur grob aufgezeigt und in den Unterthemen näher auf die jeweiligen Module eingegangen. Zudem werden Softwaretechnische Anforderungen an die Hardware, Datenstrukturen und Protokolle erläutert.

4.1 State Machine

Zeigt das Verhalten und die Zustände des Dojos anhand eines State-Diagramms. Ausserdem wird hier die Bedienung des Geräts angeleitet.

State: Lookup

4.2 Microcontroller

Beschreibt die Aufgabe des MCs mittels Ablaufdiagramm, sowie welche Funktionen dazugehören und deren Wirkung.

4.3 Bluetooth

Die Funktionsweise der Bluetoothsoftware wird mittels Ablaufdiagramm dargestellt und die benötigten Funktionen erläutert.

4.4 SD-Karte

Erläutert die benötigten Funktionen der SD-Karte wie z.B. schreiben, lesen, suchen und löschen von Files. Ggf. wird auch hier ein Ablaufdiagramm verwendet.

4.5 Audio, PWM

Beschreibt, wie das gewünschte File geholt und auf den Knochenschallgeber gegeben wird.

4.6 Testkonzept Software

Erklärt, welcher Teil wie getestet wird und führt die Ergebnisse mit Auswertung auf.

5 VALIDIERUNG

5 Validierung

6 Schlusswort

7	Ehrl	lich	keits	erklä	irung

Der Projektleiter bestätigt mit der Unterschrift, dass der Bericht selb	st verfasst und alle Quellen
sauber und korrekt deklariert wurden.	
Ort, Datum	Unterschrift Projektleiter

LITERATUR 19

Literatur

[1] ANALOG DEVICES, "Data Sheet ADP122 Linear Regulator," Website, unknown, online erhältlich unter http://www.analog.com/media/en/technical-documentation/data-sheets/ADP122 123.pdf; abgerufen am 26. April 2018.

- [2] Microchip, "Data Sheet MCP1703A Linear Regulator," Website, unknown, online erhältlich unter http://ww1.microchip.com/downloads/en/DeviceDoc/20005122B.pdf; abgerufen am 26. April 2018.
- [3] Adafruit, "Bone Conductor Transducer With Wires 8 Ohm 1 Watt," Website, unknown, online erhältlich unter https://www.adafruit.com/product/1674; abgerufen am 26. April 2018.
- [4] N. Peter, "Allgemeine Elektrotechnik," 2009, unpublished thesis.
- [5] Wikipedia, "Knochenleitung," Website, 2018, online erhältlich unter https://de.wikipedia. org/wiki/Knochenleitung; abgerufen am 26. April 2018.

Abbildungsverzeichnis

1	Dojo	5
2	Teilsysteme des Dojo	6
3	User Cycle Dojo	7
4	Sprachauswahl mittels Bluetooth-Beacon	8
5	Blockschaltbild Energiespeicherung	10
6	ADP 122 Linearregler Spannungsverhalten	11
7	MCP1703A Linearregler Spannungsverhalten	12
8	Knochenschallaktor [3]	13
9	Statemachine: lookup	15

A Anhang

A.1 Messresultate

bcsjdbcsjbvsjvbs