Importing Modules and Loading Dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('HousingData.csv')

df.head()
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	3
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	Ξ
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	Ξ
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	3
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	3

```
df.isnull().sum()
```

```
CRIM
            20
            20
\mathsf{ZN}
INDUS
            20
            20
CHAS
NOX
             0
RM
             0
AGE
            20
DIS
             0
RAD
TAX
PTRATIO
             0
LSTAT
            20
MEDV
dtype: int64
```

df.dropna(inplace=True)

df.isnull().sum()

CRIM	0
ZN	0
INDUS	0
CHAS	0
NOX	0
RM	0

ui = ui.iciame(cotamnis={ chin : chine , bis : bisiance , b : beachs , nebv :

Visualising

HOUSE AGE VS HOUSE PRICE

```
plt.scatter(df['AGE'], df['PRICE'])
plt.xlabel('HOUSE AGE')
plt.ylabel('HOUSE PRICE')
plt.title('HOUSE AGE vs HOUSE PRICE')
```


CRIME RATE VS HOUSE PRICE

```
plt.scatter(df['CRIME'], df['PRICE'])
plt.xlabel('CRIME RATE')
plt.ylabel('HOUSE PRICE')
plt.title('CRIME RATE vs HOUSE PRICE')

Text(0.5, 1.0, 'CRIME RATE vs HOUSE PRICE')

CRIME RATE vs HOUSE PRICE
```


df.columns

Observations

- We can see that the older the house is the lower the price gets.
- We can see that the lower the crime rate is the higher thr price is.

Splitting Dataset

Creating the Linear Regression Model and Fitting the Data

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
X.isnull().sum()
model.fit(X train, y train)
```

```
LinearRegression()

print(model.intercept_)
     26.643103405316122

coeff_df = pd.DataFrame(model.coef_,X.columns,columns=['Coefficient'])

coeff_df
```

	Coefficient	D
CRIME	-0.071668	
ZN	0.040781	
INDUS	0.065085	
CHAS	2.711994	
NOX	-19.794461	
RM	5.253264	
AGE	-0.024198	
DISTANCE	-1.470089	
RAD	0.241940	
TAX	-0.013832	
PTRATIO	-0.896696	
BLACKS	0.010394	
LSTAT	-0.319934	

Predicting the Data

predictions = model.predict(X_test)

Plotting the Graph

from sklearn import metrics

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, predictions))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, predictions))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, predictions))
print('R^2:', metrics.r2 score(y test, predictions))

Mean Absolute Error: 3.4843562556302334
Mean Squared Error: 28.849872777166873

Root Mean Squared Error: 5.3712077577735595

R^2: 0.5806563123015832