Distances and similarities

A: ℓ_p norms

Measuring distance in \mathbb{R}^m

Usual choice: Euclidean distance:

$$||x-z||_2 = \sqrt{\sum_{i=1}^m (x_i-z_i)^2}.$$

For $p \ge 1$, here is ℓ_p **distance**:

$$||x - z||_p = \left(\sum_{i=1}^m |x_i - z_i|^p\right)^{1/p}$$

- p = 2: Euclidean distance
- ℓ_1 distance: $||x z||_1 = \sum_{i=1}^m |x_i z_i|$
- ℓ_{∞} distance: $||x z||_{\infty} = \max_{i} |x_{i} z_{i}|$

Example 1

Consider the all-ones vector (1, 1, ..., 1) in \mathbb{R}^d . What are its ℓ_2 , ℓ_1 , and ℓ_∞ length?

Example 2

In \mathbb{R}^2 , draw all points with:

- $\mathbf{1}$ ℓ_2 length 1
- $2 \ell_1$ length 1
- $3 \ \ell_{\infty}$ length 1

Weighted ℓ_1 norm

For ChemCam, what if we want to emphasize/de-emphasize certain elements?

Weighted ℓ_1 norm between x and x':

$$\sum_{i=1}^m w_i |x_i - x_i'|.$$

Weighted ℓ_p norm

How would you define a weighted ℓ_p norm?

B: Metrics

Metric spaces

Let \mathcal{X} be the space in which data lie.

A distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **metric** if it satisfies these properties:

- $d(x, y) \ge 0$ (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

Example 1

$$\mathcal{X} = \mathbb{R}^m$$
 and $d(x, y) = ||x - y||_p$

Check:

- $d(x, y) \ge 0$ (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

Example 2

 $\mathcal{X} = \{ ext{strings over some alphabet} \}$ and $d = ext{edit distance}$

Check:

- $d(x,y) \ge 0$ (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

A non-metric distance function

Let p, q be probability distributions on some set \mathcal{X} .

The Kullback-Leibler divergence or relative entropy between p, q is:

$$d(p,q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$

Other classes of distance functions

- Bregman divergences
- F-divergences
- •

C: Similarity functions

Jaccard similarity

A notion of similarity between sets:

$$s(A,B)=\frac{|A\cap B|}{|A\cup B|}.$$

Widely used in information retrieval (e.g. web search).

- In what range does this lie?
- For what B is s(A, B) maximized?

Cosine similarity

A notion of similarity between vectors:

$$s(x,z) = \frac{x \cdot z}{\|x\| \|z\|}.$$

- In what range does this lie?
- How is it related to the angle between the vectors?
- For what z is s(x, z) maximized?

Dot product

Even simpler than the cosine distance:

$$s(x,z)=x\cdot z.$$

- In what range does this lie?
- Can s(x, z) ever be larger than s(x, x)?

Kernel functions

Generalization of dot products:

- ullet Let ${\mathcal X}$ be any instance space
- We say $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **kernel function** if

$$k(x,z) = \phi(x) \cdot \phi(z)$$

for some mapping $\phi: \mathcal{X} \to \mathbb{R}^d$, where $1 \leq d \leq \infty$.

Examples:

$$k(x,z)=(x\cdot z)^2$$

$$k(x,z) = e^{-\|x-z\|^2}$$