Diskretna matematika 2

Zadaća 1 February 28, 2025 Borna Gojšić

- 1. Odredite g = nzd(a, b) i nađite cijele brojeve x i y takve da je ax + by = g ako je:
 - a) a = 2541, b = 1134,
 - b) a = 4379, b = 3306.

 \mathbf{R} j: Koristit ćemo prošireni Euklidov algoritam za određivanje g i x, y.

	x	y	g	u	v	w	$\lfloor \frac{g}{w} \rfloor$
	1	0	2541	0	1	1134	2
a)	0	1	1134	1	-2	273	4
ω)	1	-2	273	-4	9	42	6
	-4	9	42	25	-56	21	2
	25	-56	21			0	

Dakle, $nzd(2541, 1134) = 21 i 2541 \cdot 25 + 1134 \cdot (-56) = 3$.

	x	y	g	u	v	w	$\lfloor \frac{g}{w} \rfloor$
	1	0	4379	0	1	3306	1
b)	0	1	3306	1	-1	1073	3
٥)	1	-1	1073	-3	4	87	12
	-3	4	87	37	-49	29	3
	37	-49	29			0	

Dakle, $nzd(4379, 3306) = 29 i 4379 \cdot 37 + 3306 \cdot (-49) = 29$.

- 2. Odredite cijele brojeve m i n takve da je:
 - a) 314m + 159n = 1,
 - b) 1245m 1603n = 1.

Rj: Ovaj ćemo zadatak također riješiti proširenim Euklidovim algoritmom.

	x	y	g	u	v	w	$\lfloor \frac{g}{w} \rfloor$
	1	0	314	0	1	159	1
	0	1	159	1	-1	155	1
a)	1	-1	155	-1	2	4	38
	-1	2	4	39	-77	3	1
	39	-77	3	-40	79	1	3
	-40	79	1			0	

Dakle, $314 \cdot (-40) + 159 \cdot 79 = 1$, tj. m = -40, n = 79.

	x	y	g	u	v	w	$\lfloor \frac{g}{w} \rfloor$
	1	0	1603	0	1	1245	1
	0	1	1245	1	-1	358	3
	1	-1	358	-3	4	171	2
b)	-3	4	171	7	-9	16	10
	7	-9	16	-73	94	11	1
	-73	94	11	80	-103	5	2
	80	-103	5	-233	300	1	5
	-233	300	1			0	

Dakle, $1603 \cdot (-233) + 1245 \cdot 300 = 1$, tj. m = 300, n = 233.

- 3. Provjerite postoje li cijeli brojevi m i n takvi da je:
 - a) 654m + 822n = -12,
 - b) 515m + 5005n = 7.

Ukoliko takvi brojevi postoje odredite ih, u suprotnom obrazložite zašto takvi brojevi ne postoje.

Rj:

a) Postavit ćemo jednadžbu

$$822n + 654m = -12$$

137n + 109m = -2

Budući da je nzd(137,109) = 1, možemo koristiti prošireni Euklidov algoritam na jednadžbi

$$137x + 109y = 1$$

i dobiti rješenje uz $m=-2y,\, n=-2x.$

x	y	g	u	v	w	$\lfloor \frac{g}{w} \rfloor$
1	0	137	0	1	109	1
0	1	109	1	-1	28	3
1	-1	28	-3	4	25	1
-3	4	25	4	-5	3	8
4	-5	3	-35	44	1	3
-35	44	1			0	

Dakle, imamo $137 \cdot (-35) + 109 \cdot 44 = 1$, tj. m = -88, n = 70.

b) Ako rješenje postoji, to znači da za $g=\operatorname{nzd}(515,5005)$ vrijedi da $g\mid 7$, ali budući da očito $5\mid g$, po tranzitivnosti relacija "biti djeljiv" trebali bismo imati $5\mid 7$, ali to je kontradikcija. Dakle, rješenje ne postoji.

Diskretna matematika 2

4. Neka je r ostatak pri dijeljenju broja $a \in \mathbb{Z}$ brojem $b \in \mathbb{N}$. Dokažite da je $\mathrm{nzd}(a,b) = \mathrm{nzd}(b,r)$.

Rj: Neka je $g = \operatorname{nzd}(a,b)$ i $d = \operatorname{nzd}(b,r)$. Budući da je r ostatak pri dijeljenju, imamo r = a - bq za neki $q \in \mathbb{Z}$. Budući da $g \mid a$ i $g \mid b$, imamo $g \mid a - bq = r$ pa imamo i $g \mid d$. S druge strane, $d \mid b$ i $d \mid r$ te imamo a = bq + r pa imamo i $d \mid a$, tj. $d \mid g$. Dakle, budući da je nzd po definciji $\in \mathbb{N}$, imamo d = g.

5. Dokažite da se razlomak $\frac{21n+4}{14n+3}$ ne može skratiti ni za koji prirodan broj $n \in \mathbb{N}$. Uputa: Koristite Euklidov algoritam.

	a	b	$\lfloor \frac{a}{b} \rfloor$
	21n + 4	14n + 3	1
1. Rj:	14n + 3	7n + 1	2
	7n + 1	1	7n + 1
	1	0	

Dakle, nzd(21n+4,14n+3)=1 pa se razlomak ne može skratiti ni za koji $n\in\mathbb{N}.$

2. Rj: Razlomak se ne može skratiti ako je g = nzd(21n + 4, 14n + 3) = 1. Dakle, ako postoje $x, y \in \mathbb{Z}$ takvi da je za sve n vrijedi

$$(21n+4)x + (14n+3)y = 1$$
$$(21x+14y)n + 4x + 3y = 1$$

znamo da 1 | g pa je g=1. Dakle, moramo imati 21x+14y=0 i 4x+3y=1. Prva jednadžba daje 7(3x+2y)=0, što znači da je 3x+2y=0. Dakle, uvrštavanjem u prvu jednadžbu pomnoženu s 2 imamo

$$8x + 3 \cdot 2y = 2$$
$$8x + 3 \cdot (-3x) = 2$$
$$8x - 9x = 2$$
$$x = -2$$

Dakle, za x=-2 i y=3, imamo g=1, tj. razlomak se ne može skratiti ni za koji $n\in\mathbb{N}$.

6. Odredite pomoću Erastotenovog sita sve proste brojeve manje od 200.

Rj: Pomoću Erastotenovog sita odredimo sve proste brojeve manje od 200.

1/	2	3	Æ	(5)	Ø	7	8	Ø	100	11	12
(13)	14	15	16	17)	18	(19)	20	21	22	23)	24
25	26	27	28	29	30	(31)	32	33	34	35	36
(37)	38	39	40	41)	42	43)	<i>4</i> 4	45	46	(47)	48
49	50	<i>51</i>	52	$\boxed{53}$	54	55	56	57	58	(59)	6 0
61	62	63	64	65	<i>6</i> 6	67)	<i>6</i> 8	69	70	(71)	72
(73)	74	75	76	77	78	79	<i>\$</i> 0	<i>8</i> 1′	<i>8</i> 2	83	<i>8</i> 4
<i>8</i> 5	&€	87	<i>8</i> 8	89	,96	91	92	93	94	95	96
97)	98	99	100	101	102	103	104	105	106	107	108
109	140	W	112	113	114	145	116	147	148	149	120
121	122	123	124	125	126	(127)	128	129	130	(131)	132
133	134	135	136	(137)	138	(139)	140	141	142	143	144
145	146	147	148	149	150	(151)	152	153	154	155	156
(157)	158	159	160	161	162	(163)	164	165	166	(167)	168
169	170	171	172	(173)	174	175	176	177	178	(179)	180
(181)	182	183	184	185	186	187	188	189	190	(191)	192
193)	194	195	196	(197)	198	(199)	200				

7. Odredite sve prirodne brojeve n takve da je $n^4 + 4$ prost broj.

Rj:

$$n^4 + 4 = (n^2)^2 + 2^2 = (n^2)^2 + 4n^2 + 2^2 - 4n^2$$
$$= (n^2 + 2)^2 - (2n)^2 = (n^2 + 2 + 2n)(n^2 + 2 - 2n)$$

 n^4+4 može biti prost ako i samo je jedan od njegovih faktora 1, a drugi prost. Dakle, pogledajmo $n^2\pm 2n+2=1.$

$$n^2 \pm 2n + 1 = 0$$
$$(n \pm 1)^2 = 0$$
$$n \pm 1 = 0$$

Dakle, $n^4 + 4$ je prost broj samo za n = 1.

8. Dokažite da za n > 3 brojevi n, 2n + 1, 4n + 1 nisu svi prosti.

Rj: Pretpostavimo da je n prost, inače je tvrdnja trivijalna. Ako je n > 3 prost broj onda ga možemo zapisati kao 3k + 1 ili 3k + 2.

- 1. Ako je n = 3k + 1, tada je 2n + 1 = 6k + 3 = 3(2k + 1), što nije prost broj.
- 2. Ako je n = 3k + 2, tada je 4n + 1 = 12k + 9 = 3(4k + 3), što također nije prost broj.
- 9. Ako je p prost broj veći od 3, dokažite da je broj $p^2 1$ djeljiv s 24. Uputa: Uočite da svaki prost broj veći od 3 mora biti oblika 6k + 1 ili 6k + 5, $k \ge 0$.

Rj:

1. Ako je p = 6k + 1, onda imamo

$$p^{2} - 1 = (6k + 1)^{2} - 1 = 36k^{2} + 12k + 1 - 1$$
$$= 36k^{2} + 12k = 12k(3k + 1)$$

Znamo da je k ili paran ili neparan. Ako je neparan, onda je 3k+1 paran, pa imamo $2 \mid k(3k+1)$. Dakle, imamo i $24 \mid p^2-1$.

2. Ako je p = 6k + 5, onda imamo

$$p^{2} - 1 = (6k + 5)^{2} - 1 = 36k^{2} + 60k + 25 - 1$$
$$= 36k^{2} + 60k + 24 = 12k(3k + 5) + 24$$

Slično kao u prošlom slučaju imamo 2 | k(3k+5), pa 24 | p^2-1 .

10. Ako su p i 8p-1 prosti brojevi, dokažite da je 8p+1 složeni broj.

Rj: Prvo ćemo provjeriti slučajeve p=2 i p=3. Za p=2 imamo 8p-1=15 što nije prost broj. Za p=3 imamo 8p-1=23 što je prost broj, a 8p+1=25 što je složen broj. Dakle, pretpostavimo da je p>3. Sada znamo da možemo pisati p=3k+1 ili p=3k+2.

- 1. Ako je p = 3k + 1, tada imamo 8p + 1 = 24k + 8 + 1 = 3(8k + 3), što je složen broj.
- 2. Ako je p=3k+2, tada imamo 8p-1=24k+16-1=3(8k+5) što nije prost broj pa uvjet nije zadovoljen.

- 11. a) S koliko nula završava broj 2013!?
 - b) S koliko nula završava binomni koeficijent $\binom{4321}{1234}$?

Rj:

a) $\nu_5(2013!) = \left\lfloor \frac{2013}{5} \right\rfloor + \left\lfloor \frac{2013}{25} \right\rfloor + \left\lfloor \frac{2013}{125} \right\rfloor + \left\lfloor \frac{2013}{625} \right\rfloor = 402 + 80 + 16 + 3 = 501$. Dakle, broj 2013! završava s 501 nulom.

b)

$$\nu_{5}\left(\binom{4321}{1234}\right) = \nu_{5}\left(\frac{4321!}{1234!(4321 - 1234)!}\right)$$

$$= \nu_{5}(4321!) - \nu_{5}(1234!) - \nu_{5}(3087!)$$

$$= \left\lfloor \frac{4321}{5} \right\rfloor + \left\lfloor \frac{4321}{25} \right\rfloor + \left\lfloor \frac{4321}{125} \right\rfloor + \left\lfloor \frac{4321}{3125} \right\rfloor + \left\lfloor \frac{4321}{3125} \right\rfloor$$

$$- \left\lfloor \frac{1234}{5} \right\rfloor - \left\lfloor \frac{1234}{25} \right\rfloor - \left\lfloor \frac{1234}{125} \right\rfloor - \left\lfloor \frac{1234}{625} \right\rfloor$$

$$- \left\lfloor \frac{3087}{5} \right\rfloor - \left\lfloor \frac{3087}{25} \right\rfloor - \left\lfloor \frac{3087}{125} \right\rfloor - \left\lfloor \frac{3087}{625} \right\rfloor$$

$$= 864 + 172 + 34 + 6 + 1 - 246 - 49 - 9 - 1 - 617 - 123 - 24 - 4 = 4$$

Dakle, binomni koeficijent $\binom{4321}{1234}$ završava s4 nule.

- 12. a) Je li binomni koficijent $\binom{2013}{35}$ djeljiv s 49? Obrazložite!
 - b) Odredite sve prirodne brojeve n takve da je $\frac{2013!}{35^n}$ također prirodan broj.

Rj:

a)

$$\nu_7 \left({2013 \choose 35} \right) = \nu_7 \left(\frac{2013!}{35!(2013 - 35)!} \right)$$

$$= \nu_7 (2013!) - \nu_7 (35!) - \nu_7 (1978!)$$

$$= \left\lfloor \frac{2013}{7} \right\rfloor + \left\lfloor \frac{2013}{49} \right\rfloor + \left\lfloor \frac{2013}{343} \right\rfloor - \left\lfloor \frac{35}{7} \right\rfloor$$

$$- \left\lfloor \frac{1978}{7} \right\rfloor - \left\lfloor \frac{1978}{49} \right\rfloor - \left\lfloor \frac{1978}{343} \right\rfloor$$

$$= 287 + 41 + 5 - 5 - 282 - 40 - 5 = 1$$

Dakle, binomni koeficijent $\binom{2013}{35}$ nije djeljiv s 49.

b)
$$\nu_7(2013!) = \left\lfloor \frac{2013}{7} \right\rfloor + \left\lfloor \frac{2013}{49} \right\rfloor + \left\lfloor \frac{2013}{343} \right\rfloor = 287 + 41 + 5 = 333$$

Iz 11.a znamo da je $\nu_5(2013!) = 501$, pa je $\nu_{35}(2013!) = \min\{333, 501\} = 333$. Dakle, $\frac{2013!}{35^n}$ je prirodan broj za $n \le 333$.

13. Dokažite da postoji beskonačno mnogo cijelih brojeva n takvih da su brojevi $2n^2 + 3$ i $n^2 + n + 1$ relativno prosti.

Uputa: Dokažite prvo da je $nzd(2n^2 + 3, n^2 + n + 1) = 1$ ili 7.

Rj: Neka je $g = \operatorname{nzd}(2n^2 + 3, n^2 + n + 1)$. Budući da je $(2n^2 + 3) \cdot (-1) + (n^2 + n + 1) \cdot 2 = -2n^2 - 3 + 2n^2 + 2n + 2 = 2n - 1$, imamo $g \mid 2n - 1$. Nadalje, imamo $g \mid g' = \operatorname{nzd}(n^2 + n + 1, 2n - 1)$. Budući da je $(n^2 + n + 1) \cdot 2 - (2n - 1) \cdot (n + 1) = 2n^2 + 2n + 2 - 2n^2 - n + 1 = n + 3$, imamo $g' \mid n + 3$. Nadalje, imamo $g' \mid g'' = \operatorname{nzd}(2n - 1, n + 3)$ te $(2n - 1) \cdot (-1) + (n + 3) \cdot 2 = -2n + 1 + 2n + 6 = 7$, pa imamo $g'' \mid 7$. Budući da imamo $g \mid g'$, $g' \mid g''$ i $g'' \mid 7$, imamo $g \mid 7$, tj. g = 1 ili g = 7. Ako uzmemo n = 7k, očito je da $7 \nmid 2n^2 + 3$ pa je g = 1. Budući da viškratnika ima beskonačno mnogo, imamo beskonačno mnogo n takvih da su brojevi $2n^2 + 3$ i $n^2 + n + 1$ relativno prosti.