

Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition

Vivek Bharadwaj ¹, Osman Asif Malik ², Riley Murray ^{3,2,1}, Laura Grigori ⁴, Aydın Buluç ^{2,1}, James Demmel ¹

⁴ Institute of Mathematics, EPFL & Lab for Simulation and Modelling, Paul Scherrer Institute

¹ Electrical Engineering and Computer Science Department, UC Berkeley

² Computational Research Division, Lawrence Berkeley National Lab

³ International Computer Science Institute

Sparse Tensor Candecomp / PARAFAC Decomposition

Our Goal: Compute an approximate rank-R CP decomposition of an (N+1)-dimensional $I\times\ldots\times I$ sparse tensor \mathcal{T} :

Focus on large sparse tensors (mode sizes in the millions) and moderate decomposition rank $R\approx 10^2$. Assume $I\geq R$.

Alternating Least-Squares CP Decomposition

- ALS procedure: Randomly initialize factors $U_1,...,U_{N+1}$, iteratively optimize one factor at a time while keeping others constant.
- Optimal value for U_{N+1} :

$$\operatorname{argmin}_X \left\| AX - B \right\|_F$$

where $B=\mathrm{mat}(\mathcal{T},j)^{\top}$ and $A=U_N\odot...\odot U_1$. Here, \odot denotes a **Khatri-Rao product**, a column-wise Kronecker Product of two matrices:

$$egin{bmatrix} a & b \ c & d \end{bmatrix} \odot egin{bmatrix} w & x \ y & z \end{bmatrix} = egin{bmatrix} aw & bx \ cw & dx \ ay & bz \ cy & dz \end{bmatrix}$$

Randomized Linear Least-Squares

• Apply sketching operator S to both A and B, solve reduced problem

$$\min_{\tilde{X}} \left\| SA\tilde{X} - SB \right\|_F$$

• Want an (ε, δ) guarantee on solution quality: with high probability $(1 - \delta)$,

$$\left\|A\tilde{X}-B\right\|_F \leq (1+\varepsilon) \min_X \|AX-B\|$$

Effect of Sketching Operator

$$\min_{U_j} \left\| \begin{bmatrix} \bigodot_{k \neq j} U_k \end{bmatrix} \cdot U_j^\top - \operatorname{mat}(\mathcal{T}, j)^\top \right\|_F$$

$$\min_{U_2} \left\| \begin{matrix} U_3 \\ \odot \\ U_1 \end{matrix} \right\|_F = \begin{bmatrix} \vdots \\ F \end{bmatrix} \rightarrow \begin{bmatrix} U_2 \\ \vdots \\ \vdots \\ U_2 \end{bmatrix} := \begin{bmatrix} \vdots \\ \operatorname{mat}(\mathcal{T}, 2) \\ \vdots \\ U_3 \end{bmatrix} \cdot \begin{bmatrix} U_3 \\ U_4 \end{bmatrix} \cdot \begin{bmatrix} U_4 \\ \vdots \\$$

Our Contributions

Method	Round Complexity (\tilde{O} notation)
CP-ALS	$N(N+I)I^NR$
CP-ARLS-LEV (2022)	$N(R+I)R^{N+1}/(\varepsilon\delta)$
TNS-CP (2022)	$N^3 I R^3/(\varepsilon \delta)$
GTNE (2022)	$N^2(N^{1.5}R^{3.5}/\varepsilon^3 + IR^2)/\varepsilon^2$
STS-CP (ours, 2023)	$N(NR^3\log I + IR^2)/(\varepsilon\delta)$

- We build a data structure with runtime **logarithmic** in the height of the KRP and quadratic in *R* to sample from leverage scores of *A*.
- Yields the STS-CP algorithm: lower asymptotic runtime for randomized CP decomposition than recent SOTA methods (practical too!)

Leverage Score Sampling

We will sample rows i.i.d. from A according to the *leverage score distribution* on its rows. Leverage score ℓ_i of row i is

$$\ell_i = A\left[i,:\right] (A^\top A)^+ A\left[i,:\right]^\top$$

Theorem (Leverage Score Sampling Guarantees)

Suppose $S \in \mathbb{R}^{J \times I}$ is a leverage-score sampling matrix for $A \in \mathbb{R}^{I \times R}$, and define

$$\tilde{X} := \arg\min_{\tilde{X}} \left\| SA\tilde{X} - SB \right\|_F$$

If $J \gtrsim R \max(\log(R/\delta), 1/(\varepsilon\delta))$, then with probability at least $1 - \delta$,

$$\left\| A\tilde{X} - B \right\|_F \leq (1+\varepsilon) \min_X \left\| AX - B \right\|_F$$

Leverage Score Sampling

- For $I=10^7, N=3$, matrix A has 10^{21} rows. Far too expensive to compute all leverage scores can't even index rows with 64-bit integers.
- To sample from $\bigodot_{j=1}^N U_j$: draw a row from each of $U_1,...U_N$ return their Hadamard product.

• Let \hat{s}_j be a r.v. for the row index drawn from U_j . Assume $(\hat{s}_1,...,\hat{s}_N)$ jointly follows the leverage score distribution on $U_N\odot...\odot U_1$.

The Conditional Distribution of \hat{s}_k

Theorem

$$p(\hat{s}_k = s_k \mid \hat{s}_{< k} = s_{< k}) \propto \left\langle h_{< k} h_{< k}^\top, U_k \left[s_k, : \right]^\top U_k \left[s_k, : \right], \underline{G}_{> k} \right\rangle$$

Key Sampling Primitive

• Reduce to the Following Problem: Given a matrix $U \in \mathbb{R}^{I \times R}$, design a data structure so that for any query vector $h \in \mathbb{R}^R$, you can efficiently draw a sample according proportional to the weight vector

$$q = (U \cdot h)^2$$

- We give a DS based on a binary tree caching scheme with:
 - $O(IR^2)$ construction time
 - O(IR) storage space
 - $O(R^2 \log(I/R))$ time per query
- We used this data structure twice in succession to sample from the conditional distribution.

Accuracy Comparison for Fixed Sample Count

ALS Accuracy Comparison for $J=2^{16}$ samples.

Fit vs. ALS Update Time

Fit vs. ALS Update Time, Reddit Tensor, R=100.

Thank you! Read the full paper online.