

SOEN 6011 : SOFTWARE ENGINEERING PROCESSES SUMMER 2022

Eternity

PROBLEM - 2

Requirements

 ${\rm ISO/IEC/IEEE~29148~Standard}$

Author

Neona Sheetal Pinto

Contents

1	PR	OBLE	M 2 - F6 : $B(x)$	(y)																2
	1.1	1.1 Assumption:									 	2								
	1.2	Requi	rements:								 					 			 . .	2
		1.2.1	Requirement	Id:	$\mathbf{R1}$						 								 	2
		1.2.2	Requirement	Id:	$\mathbf{R2}$						 								 	2
		1.2.3	Requirement	Id:	R3						 								 	ę
		1.2.4	Requirement	Id:	$\mathbf{R4}$						 								 	ę
		1.2.5	Requirement	Id :	R5						 								 	ę
		1.2.6	Requirement	Id:	R6						 								 	(
		1.2.7	Requirement	Id :	$\mathbf{R7}$						 								 	4
2	Anı	nexure	•																	_

1 PROBLEM 2 - **F6**: B(x, y)

1.1 Assumption:

To compute the value of the Beta function, we can estimate the value of the definite integral using numerical methods.

1.2 Requirements:

The current section describes the requirements to implement the function B(x,y).

1.2.1 Requirement Id: R1

Id R1

Overview B(x, y), where $x, y \in R, x, y > 0$.

Version 1.0

Description The Beta function can give output only if both x, y values

entered by user are positive real numbers.

Priority High
Type Functional
Difficulty High

Verification UserInput_numericInputCheckTest_1

1.2.2 Requirement Id: R2

Id R2

Overview $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$

Version 1.0

To compute the value of Beta function for any real number

Description we need to be able to compute definite integral as

defined in the mathematical realm of calculus.

Priority High
Type Functional
Difficulty level Medium

Verification Integral_testBetaFunctionWithDoubleValues_2

1.2.3 Requirement Id: R3

Id R3

Overview To calculate Beta function, exponent function A^B is required.

Version 1.0

Description To calculate the Beta function, a subordinate function

needs to be used to calculate the value A raised to the power B.

Priority High
Type Functional
Difficulty level Medium

Verification Exponent_positiveNumberPowerofPositiveNumber_3

1.2.4 Requirement Id: R4

Id R4

Overview Accuracy

Version 1.0

To accurately compute the value of Beta function,

Description for large inputs of x and y, we need to have the ability to

store large numbers.

Priority High

Type Non-Functional

Difficulty level Medium

1.2.5 Requirement Id: R5

IdR5OverviewScalableVersion1.0

Description

The method used to calculate the Beta function, should be

scalable for different input values and hardware requirements.

Priority High
Type Functional
Difficulty level Medium

1.2.6 Requirement Id: R6

Id R6

Overview Performance

Version 1.0

The method used for the Beta function, should be optimized

Description for performance so that if efficiently calculates the integral

for large inputs values.

Priority High
Type Functional
Difficulty level Medium

1.2.7 Requirement Id: R7

Id R7

Overview Usability

Version 1.0

The command Line Interface is user friendly,

Description guiding the user step by step how to move about. Error messages are understandable.

The application is easy to use and friendly.

Priority High

Type Functional

Easy

2 Annexure:

Difficulty level

• Trello Board: https://trello.com/eternity119

• Code Version Control: https://github.com/neonapinto/Scientific_calculator

• Overleaf: https://www.overleaf.com/project/62e938922b3937446fb7f547

References

[1] ReqView: Nykamp DQ: Requirements Specification Templates https://www.reqview.com/doc/iso-iec-ieee-29148-templates

[2] 29148-2018-ISO/IEC/IEEE International Standard-Systems and software engineering-Life cycle processes-Requirements engineering,

https://standards.ieee.org/standard/29148-2018.html