Distributed Systems

(3rd Edition)

Chapter 06: Coordination

Version: February 25, 2017

Physical clocks

Problem

Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC)

- Based on the number of transitions per second of the cesium 133 atom (pretty accurate).
- At present, the real time is taken as the average of some 50 cesium clocks around the world.
- Introduces a leap second from time to time to compensate that days are getting longer.

Note

UTC is broadcast through short-wave radio and satellite. Satellites can give an accuracy of about ± 0.5 ms.

Clock synchronization

Precision

The goal is to keep the deviation between two clocks on any two machines within a specified bound, known as the precision π :

$$\forall t, \forall p, q: |C_p(t) - C_q(t)| \leq \pi$$

with $C_p(t)$ the computed clock time of machine p at UTC time t.

Accuracy

In the case of accuracy, we aim to keep the clock bound to a value α :

$$\forall t, \forall p : |C_p(t) - t| \leq \alpha$$

Synchronization

- Internal synchronization: keep clocks precise
- External synchronization: keep clocks accurate

Clock drift

Clock specifications

- A clock comes specified with its maximum clock drift rate ρ.
- \bullet F(t) denotes oscillator frequency of the hardware clock at time t
- F is the clock's ideal (constant) frequency ⇒ living up to specifications:

$$\forall t: (1-\rho) \leq \frac{F(t)}{F} \leq (1+\rho)$$

Observation

By using hardware interrupts we couple a software clock to the hardware clock, and thus also its clock drift rate:

$$C_{\rho}(t) = \frac{1}{F} \int_{0}^{t} F(t) dt \Rightarrow \frac{dC_{\rho}(t)}{dt} = \frac{F(t)}{F}$$
$$\Rightarrow \forall t : 1 - \rho \le \frac{dC_{\rho}(t)}{dt} \le 1 + \rho$$

Fast, perfect, slow clocks

Detecting and adjusting incorrect times

Getting the current time from a time server

Computing the relative offset θ and delay δ

Assumption: $\delta T_{rea} = T_2 - T_1 \approx T_4 - T_3 = \delta T_{res}$

$$\theta = T_3 + ((T_2 - T_1) + (T_4 - T_3))/2 - T_4 = ((T_2 - T_1) + (T_3 - T_4))/2$$
$$\delta = ((T_4 - T_1) - (T_3 - T_2))/2$$

Network Time Protocol 5 / 49

Detecting and adjusting incorrect times

Getting the current time from a time server

Computing the relative offset θ and delay δ

Assumption: $\delta T_{reg} = T_2 - T_1 \approx T_4 - T_3 = \delta T_{res}$

$$\theta = T_3 + ((T_2 - T_1) + (T_4 - T_3))/2 - T_4 = ((T_2 - T_1) + (T_3 - T_4))/2$$
$$\delta = ((T_4 - T_1) - (T_3 - T_2))/2$$

Network Time Protocol

Collect eight (θ, δ) pairs and choose θ for which associated delay δ was minimal.

Network Time Protocol 5 / 49

Keeping time without UTC

Principle

Let the time server scan all machines periodically, calculate an average, and inform each machine how it should adjust its time relative to its present time.

Using a time server

The Berkeley algorithm 6 / 49

Keeping time without UTC

Principle

Let the time server scan all machines periodically, calculate an average, and inform each machine how it should adjust its time relative to its present time.

Using a time server

Fundamental

You'll have to take into account that setting the time back is never allowed ⇒ smooth adjustments (i.e., run faster or slower).

The Berkeley algorithm 6 / 49

Reference broadcast synchronization

Essence

- A node broadcasts a reference message m ⇒ each receiving node p records the time T_{p,m} that it received m.
- Note: $T_{p,m}$ is read from p's local clock.

Problem: averaging will not capture drift ⇒ use linear regression

NO: Offset[p,q](t) =
$$\frac{\sum_{k=1}^{M} (T_{p,k} - T_{q,k})}{M}$$

YES: Offset[p,q](t) = $\alpha t + \beta$

Message preparation Time spent in NIC A Delivery time to app. B

Usual critical path

Critical path RBS

RBS minimizes critical path

The Happened-before relationship

Issue

What usually matters is not that all processes agree on exactly what time it is, but that they agree on the order in which events occur. Requires a notion of ordering.

The Happened-before relationship

Issue

What usually matters is not that all processes agree on exactly what time it is, but that they agree on the order in which events occur. Requires a notion of ordering.

The happened-before relation

- If a and b are two events in the same process, and a comes before b, then a → b.
- If a is the sending of a message, and b is the receipt of that message, then a → b
- If $a \rightarrow b$ and $b \rightarrow c$, then $a \rightarrow c$

Note

This introduces a partial ordering of events in a system with concurrently operating processes.

Logical clocks

Problem

How do we maintain a global view on the system's behavior that is consistent with the happened-before relation?

Logical clocks

Problem

How do we maintain a global view on the system's behavior that is consistent with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

- P1 If a and b are two events in the same process, and $a \rightarrow b$, then we demand that C(a) < C(b).
- P2 If a corresponds to sending a message m, and b to the receipt of that message, then also C(a) < C(b).

Logical clocks

Problem

How do we maintain a global view on the system's behavior that is consistent with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

- P1 If a and b are two events in the same process, and $a \rightarrow b$, then we demand that C(a) < C(b).
- P2 If a corresponds to sending a message m, and b to the receipt of that message, then also C(a) < C(b).

Problem

How to attach a timestamp to an event when there's no global clock \Rightarrow maintain a consistent set of logical clocks, one per process.

Logical clocks: solution

Each process P_i maintains a local counter C_i and adjusts this counter

- For each new event that takes place within P_i , C_i is incremented by 1.
- 2 Each time a message m is sent by process P_i , the message receives a timestamp $ts(m) = C_i$.
- 3 Whenever a message m is received by a process P_j , P_j adjusts its local counter C_j to $\max\{C_j, ts(m)\}$; then executes step 1 before passing m to the application.

Notes

- Property P1 is satisfied by (1); Property P2 by (2) and (3).
- It can still occur that two events happen at the same time. Avoid this by breaking ties through process IDs.

Logical clocks: example

Consider three processes with event counters operating at different rates

Logical clocks: where implemented

Adjustments implemented in middleware Application layer Application sends message Adjust local clock and timestamp message Middleware layer Middleware sends message Network layer

Concurrent updates on a replicated database are seen in the same order everywhere

- P₁ adds \$100 to an account (initial value: \$1000)
- P₂ increments account by 1%
- There are two replicas

Result

In absence of proper synchronization: replica #1 \leftarrow \$1111, while replica #2 \leftarrow \$1110.

Solution

- Process P_i sends timestamped message m_i to all others. The message itself is put in a local queue *queue_i*.
- Any incoming message at P_j is queued in queue_j, according to its timestamp, and acknowledged to every other process.

Solution

- Process P_i sends timestamped message m_i to all others. The message itself is put in a local queue $queue_i$.
- Any incoming message at P_j is queued in queue_j, according to its timestamp, and acknowledged to every other process.

P_i passes a message m_i to its application if:

- (1) m_i is at the head of queue_i
- (2) for each process P_k , there is a message m_k in $queue_j$ with a larger timestamp.

Solution

- Process P_i sends timestamped message m_i to all others. The message itself is put in a local queue $queue_i$.
- Any incoming message at P_j is queued in queue_j, according to its timestamp, and acknowledged to every other process.

P_i passes a message m_i to its application if:

- (1) m_i is at the head of $queue_i$
- (2) for each process P_k , there is a message m_k in $queue_j$ with a larger timestamp.

Note

We are assuming that communication is reliable and FIFO ordered.

Lamport's clocks for mutual exclusion

```
1 class Process:
     def init (self, chan):
       self.queue = []
                                                 # The request queue
       self.clock = 0
                                                 # The current logical clock
     def requestToEnter(self):
       self.clock = self.clock + 1
                                                            # Increment clock value
       self.queue.append((self.clock, self.procID, ENTER)) # Append request to q
       self.cleanupO()
                                                            # Sort the queue
       self.chan.sendTo(self.otherProcs, (self.clock, self.procID, ENTER)) # Send request
10
11
12
     def allowToEnter(self, requester):
1.3
       self.clock = self.clock + 1
                                                            # Increment clock value
       self.chan.sendTo([requester], (self.clock,self.procID,ALLOW)) # Permit other
14
15
16
     def release (self):
       tmp = [r for r in self.queue[1:] if r[2] == ENTER] # Remove all ALLOWS
17
       self.queue = tmp
                                                            # and copy to new queue
18
       self.clock = self.clock + 1
                                                            # Increment clock value
19
       self.chan.sendTo(self.otherProcs, (self.clock,self.procID,RELEASE)) # Release
2.0
2.1
22
     def allowedToEnter(self):
2.3
       commProcs = set([req[1] for req in self.queue[1:]]) # See who has sent a message
       return (self.queue[0][1]==self.procID and len(self.otherProcs)==len(commProcs))
2.4
```

Lamport's clocks for mutual exclusion

```
def receive (self):
                                                             # Pick up any message
       msg = self.chan.recvFrom(self.otherProcs)[1]
       self.clock = max(self.clock, msg[0])
                                                             # Adjust clock value...
       self.clock = self.clock + 1
                                                             # ...and increment
       if msq[2] == ENTER:
         self.queue.append(msq)
                                                             # Append an ENTER request
         self.allowToEnter(msg[1])
                                                             # and unconditionally allow
       elif msq[2] == ALLOW:
         self.queue.append(msq)
                                                             # Append an ALLOW
       elif msq[2] == RELEASE:
         del(self.queue[0])
                                                             # Just remove first message
11
12
       self.cleanupO()
                                                             # And sort and cleanup
```

Lamport's clocks for mutual exclusion

Analogy with total-ordered multicast

- With total-ordered multicast, all processes build identical queues, delivering messages in the same order
- Mutual exclusion is about agreeing in which order processes are allowed to enter a critical section

Vector clocks

Observation

Lamport's clocks do not guarantee that if C(a) < C(b) that a causally preceded b.

Concurrent message transmission using logical clocks

Observation

Event a: m_1 is received at T = 16;

Event b: m_2 is sent at T = 20.

Vector clocks

Observation

Lamport's clocks do not guarantee that if C(a) < C(b) that a causally preceded b.

Concurrent message transmission using logical clocks

Observation

Event a: m_1 is received at T = 16; Event b: m_2 is sent at T = 20.

Note

We cannot conclude that *a* causally precedes *b*.

Causal dependency

Definition

We say that b may causally depend on a if ts(a) < ts(b), with:

- for all k, $ts(a)[k] \le ts(b)[k]$ and
- there exists at least one index k' for which ts(a)[k'] < ts(b)[k']

Precedence vs. dependency

- We say that a causally precedes b.
- *b* may causally depend on *a*, as there may be information from *a* that is propagated into *b*.

Capturing causality

Solution: each P_i maintains a vector VC_i

- VC_i[i] is the local logical clock at process P_i.
- If $VC_i[j] = k$ then P_i knows that k events have occurred at P_i .

Maintaining vector clocks

- **1** Before executing an event P_i executes $VC_i[i] \leftarrow VC_i[i] + 1$.
- When process P_i sends a message m to P_j , it sets m's (vector) timestamp ts(m) equal to VC_i after having executed step 1.
- ③ Upon the receipt of a message m, process P_j sets $VC_j[k] \leftarrow \max\{VC_j[k], ts(m)[k]\}$ for each k, after which it executes step 1 and then delivers the message to the application.

Vector clocks: Example

Capturing potential causality when exchanging messages

Analysis

Situation	ts(m ₂)	ts(m ₄)	ts(m ₂) < ts(m ₄)	ts(m ₂) > ts(m ₄)	Conclusion
(a)	(2,1,0)	(4,3,0)	Yes	No	m_2 may causally precede m_4
(b)	(4,1,0)	(2,3,0)	No	No	m_2 and m_4 may conflict

Observation

We can now ensure that a message is delivered only if all causally preceding messages have already been delivered.

Adjustment

 P_i increments $VC_i[i]$ only when sending a message, and P_j "adjusts" VC_j when receiving a message (i.e., effectively does not change $VC_j[j]$).

Observation

We can now ensure that a message is delivered only if all causally preceding messages have already been delivered.

Adjustment

 P_i increments $VC_i[i]$ only when sending a message, and P_j "adjusts" VC_j when receiving a message (i.e., effectively does not change $VC_i[j]$).

P_i postpones delivery of m until:

- 1 $ts(m)[i] = VC_i[i] + 1$
- 2 $ts(m)[k] \leq VC_i[k]$ for all $k \neq i$

Enforcing causal communication

Enforcing causal communication

Example

Take $VC_3 = [0,2,2]$, ts(m) = [1,3,0] from P_1 . What information does P_3 have, and what will it do when receiving m (from P_1)?

Mutual exclusion

Problem

A number of processes in a distributed system want exclusive access to some resource.

Basic solutions

Permission-based: A process wanting to enter its critical section, or access a resource, needs permission from other processes.

Token-based: A token is passed between processes. The one who has the token may proceed in its critical section, or pass it on when not interested.

Permission-based, centralized

Simply use a coordinator

- (a) Process P_1 asks the coordinator for permission to access a shared resource. Permission is granted.
- (b) Process P_2 then asks permission to access the same resource. The coordinator does not reply.
- (c) When P_1 releases the resource, it tells the coordinator, which then replies to P_2 .

Mutual exclusion Ricart & Agrawala

The same as Lamport except that acknowledgments are not sent

Return a response to a request only when:

- The receiving process has no interest in the shared resource; or
- The receiving process is waiting for the resource, but has lower priority (known through comparison of timestamps).

In all other cases, reply is deferred, implying some more local administration.

Mutual exclusion Ricart & Agrawala

Example with three processes

- (a) Two processes want to access a shared resource at the same moment.
- (b) P_0 has the lowest timestamp, so it wins.
- (c) When process P_0 is done, it sends an OK also, so P_2 can now go ahead.

Mutual exclusion: Token ring algorithm

Essence

Organize processes in a logical ring, and let a token be passed between them. The one that holds the token is allowed to enter the critical region (if it wants to).

An overlay network constructed as a logical ring with a circulating token

Principle

Assume every resource is replicated N times, with each replica having its own coordinator \Rightarrow access requires a majority vote from m > N/2 coordinators. A coordinator always responds immediately to a request.

Assumption

When a coordinator crashes, it will recover quickly, but will have forgotten about permissions it had granted.

How robust is this system?

• Let $p = \Delta t/T$ be the probability that a coordinator resets during a time interval Δt , while having a lifetime of T.

How robust is this system?

- Let $p = \Delta t/T$ be the probability that a coordinator resets during a time interval Δt , while having a lifetime of T.
- The probability $\mathbb{P}[k]$ that k out of m coordinators reset during the same interval is

$$\mathbb{P}[k] = \binom{m}{k} p^k (1-p)^{m-k}$$

How robust is this system?

- Let $p = \Delta t/T$ be the probability that a coordinator resets during a time interval Δt , while having a lifetime of T.
- The probability $\mathbb{P}[k]$ that k out of m coordinators reset during the same interval is

$$\mathbb{P}[k] = \binom{m}{k} p^k (1-p)^{m-k}$$

• f coordinators reset \Rightarrow correctness is violated when there is only a minority of nonfaulty coordinators: when $m - f \le N/2$, or, $f \ge m - N/2$.

How robust is this system?

- Let $p = \Delta t/T$ be the probability that a coordinator resets during a time interval Δt , while having a lifetime of T.
- The probability $\mathbb{P}[k]$ that k out of m coordinators reset during the same interval is

$$\mathbb{P}[k] = \binom{m}{k} p^k (1-p)^{m-k}$$

- f coordinators reset \Rightarrow correctness is violated when there is only a minority of nonfaulty coordinators: when $m f \le N/2$, or, $f \ge m N/2$.
- The probability of a violation is $\sum_{k=m-N/2}^{N} \mathbb{P}[k]$.

Violation probabilities for various parameter values

N	m	р	Violation
8	5	3 sec/hour	$< 10^{-15}$
8	6	3 sec/hour	$< 10^{-18}$
16	9	3 sec/hour	$< 10^{-27}$
16	12	3 sec/hour	$< 10^{-36}$
32	17	3 sec/hour	$< 10^{-52}$
32	24	3 sec/hour	$< 10^{-73}$

N	m	р	Violation
8	5	30 sec/hour	$< 10^{-10}$
8	6	30 sec/hour	$< 10^{-11}$
16	9	30 sec/hour	$< 10^{-18}$
16	12	30 sec/hour	$< 10^{-24}$
32	17	30 sec/hour	$< 10^{-35}$
32	24	30 sec/hour	$< 10^{-49}$

Violation probabilities for various parameter values

N	m	р	Violation
8	5	3 sec/hour	$< 10^{-15}$
8	6	3 sec/hour	$< 10^{-18}$
16	9	3 sec/hour	$< 10^{-27}$
16	12	3 sec/hour	$< 10^{-36}$
32	17	3 sec/hour	$< 10^{-52}$
32	24	3 sec/hour	$< 10^{-73}$

N	m	р	Violation
8	5	30 sec/hour	$< 10^{-10}$
8	6	30 sec/hour	$< 10^{-11}$
16	9	30 sec/hour	$< 10^{-18}$
16	12	30 sec/hour	$< 10^{-24}$
32	17	30 sec/hour	$< 10^{-35}$
32	24	30 sec/hour	$< 10^{-49}$

So....

What can we conclude?

Mutual exclusion: comparison

Algorithm	Messages per entry/exit	Delay before entry (in message times)
Centralized	3	2
Distributed	2·(N-1)	2·(N-1)
Token ring	1,,∞	0,, <i>N</i> – 1
Decentralized	$2 \cdot m \cdot k + m, k = 1, 2, \dots$	2 · m · k

Election algorithms

Principle

An algorithm requires that some process acts as a coordinator. The question is how to select this special process dynamically.

Note

In many systems the coordinator is chosen by hand (e.g. file servers). This leads to centralized solutions \Rightarrow single point of failure.

Election algorithms

Principle

An algorithm requires that some process acts as a coordinator. The question is how to select this special process dynamically.

Note

In many systems the coordinator is chosen by hand (e.g. file servers). This leads to centralized solutions \Rightarrow single point of failure.

Teasers

- If a coordinator is chosen dynamically, to what extent can we speak about a centralized or distributed solution?
- 2 Is a fully distributed solution, i.e. one without a coordinator, always more robust than any centralized/coordinated solution?

Basic assumptions

- All processes have unique id's
- All processes know id's of all processes in the system (but not if they are up or down)
- Election means identifying the process with the highest id that is up

Election by bullying

Principle

Consider *N* processes $\{P_0, \dots, P_{N-1}\}$ and let $id(P_k) = k$. When a process P_k notices that the coordinator is no longer responding to requests, it initiates an election:

- P_k sends an *ELECTION* message to all processes with higher identifiers: $P_{k+1}, P_{k+2}, \dots, P_{N-1}$.
- 2 If no one responds, P_k wins the election and becomes coordinator.
- 3 If one of the higher-ups answers, it takes over and P_k 's job is done.

Election by bullying

Election in a ring

Principle

Process priority is obtained by organizing processes into a (logical) ring. Process with the highest priority should be elected as coordinator.

- Any process can start an election by sending an election message to its successor. If a successor is down, the message is passed on to the next successor.
- If a message is passed on, the sender adds itself to the list. When it gets back to the initiator, everyone had a chance to make its presence known.
- The initiator sends a coordinator message around the ring containing a list of all living processes. The one with the highest priority is elected as coordinator.

Election in a ring

Election algorithm using a ring

- The solid line shows the election messages initiated by P₆
- The dashed one the messages by P_3

A solution for wireless networks

A solution for wireless networks

A solution for wireless networks

A sample network A sample network The product of the product of

Positioning nodes

Issue

In large-scale distributed systems in which nodes are dispersed across a wide-area network, we often need to take some notion of proximity or distance into account \Rightarrow it starts with determining a (relative) location of a node.

Computing position

Observation

A node P needs d+1 landmarks to compute its own position in a d-dimensional space. Consider two-dimensional case.

Computing a position in 2D

Solution

P needs to solve three equations in two unknowns (x_P, y_P) :

$$d_i = \sqrt{(x_i - x_P)^2 + (y_i - y_P)^2}$$

Assuming that the clocks of the satellites are accurate and synchronized

- It takes a while before a signal reaches the receiver
- The receiver's clock is definitely out of sync with the satellite

Basics

Observation

Assuming that the clocks of the satellites are accurate and synchronized

- It takes a while before a signal reaches the receiver
- The receiver's clock is definitely out of sync with the satellite

Basics

 \bullet Δ_r : unknown deviation of the receiver's clock.

Observation

Assuming that the clocks of the satellites are accurate and synchronized

- It takes a while before a signal reaches the receiver
- The receiver's clock is definitely out of sync with the satellite

Basics

- Δ_r : unknown deviation of the receiver's clock.
- x_r , y_r , z_r : unknown coordinates of the receiver.

Observation

Assuming that the clocks of the satellites are accurate and synchronized

- It takes a while before a signal reaches the receiver
- The receiver's clock is definitely out of sync with the satellite

Basics

- Δ_r : unknown deviation of the receiver's clock.
- x_r , y_r , z_r : unknown coordinates of the receiver.
- T_i: timestamp on a message from satellite i

Observation

Assuming that the clocks of the satellites are accurate and synchronized

- It takes a while before a signal reaches the receiver
- The receiver's clock is definitely out of sync with the satellite

Basics

- Δ_r : unknown deviation of the receiver's clock.
- x_r , y_r , z_r : unknown coordinates of the receiver.
- T_i: timestamp on a message from satellite i
- $\Delta_i = (T_{now} T_i) + \Delta_r$: measured delay of the message sent by satellite *i*.

Observation

Assuming that the clocks of the satellites are accurate and synchronized

- It takes a while before a signal reaches the receiver
- The receiver's clock is definitely out of sync with the satellite

Basics

- Δ_r : unknown deviation of the receiver's clock.
- x_r , y_r , z_r : unknown coordinates of the receiver.
- T_i: timestamp on a message from satellite i
- $\Delta_i = (T_{now} T_i) + \Delta_r$: measured delay of the message sent by satellite *i*.
- Measured distance to satellite $i: c \times \Delta_i$ (c is speed of light)

Observation

Assuming that the clocks of the satellites are accurate and synchronized

- It takes a while before a signal reaches the receiver
- The receiver's clock is definitely out of sync with the satellite

Basics

- Δ_r : unknown deviation of the receiver's clock.
- x_r , y_r , z_r : unknown coordinates of the receiver.
- T_i: timestamp on a message from satellite i
- $\Delta_i = (T_{now} T_i) + \Delta_r$: measured delay of the message sent by satellite *i*.
- Measured distance to satellite i: $c \times \Delta_i$ (c is speed of light)
- Real distance: $d_i = c\Delta_i c\Delta_r = \sqrt{(x_i x_r)^2 + (y_i y_r)^2 + (z_i z_r)^2}$

Observation

WiFi-based location services

Basic idea

- Assume we have a database of known access points (APs) with coordinates
- Assume we can estimate distance to an AP
- Then: with 3 detected access points, we can compute a position.

War driving: locating access points

- Use a WiFi-enabled device along with a GPS receiver, and move through an area while recording observed access points.
- Compute the centroid: assume an access point AP has been detected at N different locations $\{\vec{x_1}, \vec{x_2}, \dots, \vec{x_N}\}$, with known GPS location.
- Compute location of *AP* as $\vec{x}_{AP} = \frac{\sum_{i=1}^{N} \vec{x}_i}{N}$.

Problems

- Limited accuracy of each GPS detection point \vec{x}_i
- An access point has a nonuniform transmission range
- Number of sampled detection points *N* may be too low.

Computing position

Problems

- Measured latencies to landmarks fluctuate
- Computed distances will not even be consistent

Solution: minimize errors

- Use N special landmark nodes $L_1, ..., L_N$.
- Landmarks measure their pairwise latencies $\tilde{d}(L_i, L_i)$
- A central node computes the coordinates for each landmark, minimizing:

$$\sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(\frac{\tilde{d}(L_i, L_j) - \hat{d}(L_i, L_j)}{\tilde{d}(L_i, L_j)} \right)^2$$

where $\hat{d}(L_i, L_j)$ is distance after nodes L_i and L_j have been positioned.

Computing position

Choosing the dimension m

The hidden parameter is the dimension m with N > m. A node P measures its distance to each of the N landmarks and computes its coordinates by minimizing

$$\sum_{i=1}^{N} \left(\frac{\tilde{d}(L_i, P) - \hat{d}(L_i, P)}{\tilde{d}(L_i, P)} \right)^2$$

Observation

Practice shows that *m* can be as small as 6 or 7 to achieve latency estimations within a factor 2 of the actual value.

Vivaldi

Principle: network of springs exerting forces

Consider a collection of N nodes P_1, \ldots, P_N , each P_i having coordinates \vec{x}_i . Two nodes exert a mutual force:

$$\vec{F}_{ij} = (\tilde{d}(P_i, P_j) - \hat{d}(P_i, P_j)) \times u(\vec{x}_i - \vec{x}_j)$$

with $u(\vec{x}_i - \vec{x}_j)$ is the unit vector in the direction of $\vec{x}_i - \vec{x}_j$

Node P_i repeatedly executes steps

- Measure the latency \tilde{d}_{ij} to node P_j , and also receive P_j 's coordinates \vec{x}_j .
- 2 Compute the error $e = \tilde{d}(P_i, P_j) \hat{d}(P_i, P_j)$
- 3 Compute the direction $\vec{u} = u(\vec{x}_i \vec{x}_j)$.
- **4** Compute the force vector $F_{ij} = e \cdot \vec{u}$
- **5** Adjust own position by moving along the force vector: $\vec{x}_i \leftarrow \vec{x}_i + \delta \cdot \vec{u}$.

Decentralized positioning 48 / 49

Example applications

Typical apps

- Data dissemination: Perhaps the most important one. Note that there are many variants of dissemination.
- Aggregation: Let every node P_i maintain a variable v_i . When two nodes gossip, they each reset their variable to

$$v_i, v_i \leftarrow (v_i + v_i)/2$$

Result: in the end each node will have computed the average $\bar{v} = \sum_{i} v_i / N$.

Example applications

Typical apps

- Data dissemination: Perhaps the most important one. Note that there are many variants of dissemination.
- Aggregation: Let every node P_i maintain a variable v_i . When two nodes gossip, they each reset their variable to

$$v_i, v_i \leftarrow (v_i + v_i)/2$$

Result: in the end each node will have computed the average $\bar{v} = \sum_{i} v_i / N$.

• What happens in the case that initially $v_i = 1$ and $v_i = 0, j \neq i$?