





# How not to loose \$100.000

Alex Vigneron

## **Constrained Cross-Entropy Method for Safe**

# Reinforcement-Learning (2018)



Min Wen University of Pennsylvania Ufuck Topcu University of Texas Austin



# Menu 👍

- 1 Appetisers
- 2 Crash-course
- Main course : CCE

- 4 Experiments & Performance
- 5 Conclusion
- 6 Extras



2/20

## Problem Overview



# Applications: safety-critical systems

#### Definition

22/10/2020

4/20

Safety-critical systems are those systems whose failure could result in loss of life, significant property damage, or damage to the environment. (Knight et al. 2002)

## Safety Critical Systems using RL

- Cooling systems (Li et al. 2018)
- Autonomous-driving vehicles (survey by Kiran et al. 2020)
- Industry robots Sarcos' Humanoïd DB used RL to learn a pole-balancing task (Schaal, 1996).

Today Sarcos' Guardian suits are rented \$ 150.000 a vear



Source : Brain controlled robots (Kawato, 2008)



Alex Vigneron CCE for safe I

# Imagine...

A brave robot having to look for a marvelous treasure kept in a solid chest inside volcanic caves filles with lava pits...





#### It needs to get the treasure while avoiding lava. Where should it tread?

- Get treasure = objective
- Avoid lava = constraint
- Where to tread = policy



Alex Vigneron

22/10/2020

## Reinforcement Learning Paradigm 🛦



## Policy $\pi$

A probability distribution parameterised by a vector  $\theta$  over actions given states.  $\pi_{\theta}(s_i) \mapsto \{(a_{i0}, p_{i0})...(a_{in}, p_{in})\}$ 

#### Concept

Agent interacts with environment looking for optimal behaviour, receives rewards, modifies its actions to maximise reward

- Input : MDP
- Output : Policy  $\Pi = max(\sum_{s \in \mathcal{P}} \mathcal{R}(s, a))$

## Markov Decision Process (Sutton & Barto 2017)

MDP characterised as a tuple (S, A, P, R)

- lacksquare  $\mathcal{S}$ , set of states  $\mathcal{S} = \{s_0, s_1...s_n\}$
- A, set of actions  $A = \{a_0, a_1...a_n\}$
- lacksquare  $\mathcal{R}$ , reward function  $\mathcal{R}(s,a)\mapsto \mathbb{R}$
- $\mathcal{P}$ , transition probability function  $\mathcal{P}(s,a) \mapsto \mathbb{R}^+$  where for a fixed s,  $\sum_{s} \mathcal{P}(s,a) = 1$
- Initial distribution state



6/20

## Constraints in traditional RL: an example de

#### Problem

Avoiding lava while obtaining the treasure

#### Solution

Lava is encoded as a (major) negative reward

#### Effect

First iterations: agent explores any state

(including lava states)

Following iterations: agent learns it should

not tread lava

#### Problem

Lava is still an option...  $\longrightarrow$  no guarantee on lava constraint





22/10/2020

## Constrained Cross-Entropy







Source: Medium/Udacity Serrano

## Entropy (Shannon's)

Entropy is a measure of our lack of information about the microstate of a system (Machta et al. 1999)).

#### Cross-Entropy

Cross-entropy is commonly used to quantify the difference between two probability distribution.

#### Constrained Cross-Entropy

This functions incorporates the constraints on the system in a generic fashion, irrespective of the form or even the number of the constraints (Niven et al.,



8/20

#### CE: an intuition

#### Idea

9/20

Probabilistic approach to maximise possibility of an unlikely event happening.



## Algorithm

- Sample from a distribution of policies
- Select a set of elite samples and use them to update policy disribution.

#### Example

Unlikely event = having a policy which both maximises rewards and respects all constraints.



22/10/2020 Alex Vigneron CCE for sa

## **CCE Algorithm**

```
Input: G, H, upper bound b, set of parameterised policies \Pi_{\theta},
          NEF family F
  Output: П*
1 Initialise (random, feasible, unfeasible)
   while stopping rule is not satisfied do
      Sample over parameters \theta of policy
2
       for each policy \pi \in \Pi with \theta parameters do
           Simulate \pi_{\theta}
3
            Compute and store G(\pi_{\theta}) and H(\pi_{\theta})
      end
4
      Sort \theta in ascending order of H-value
       Let \psi be the first k elements
       if H_{\theta \psi} < b then
           Sort \theta_{\pi} with H_{\pi\theta}b in descending order of G
6
      end
7
      Estimate through CE
       Ensure new p.d.f. still ∈ intitial NEF family
       Update
```



10/20

9 end

#### L-function

#### The L function

Optimised through learning!

$$L(\mathbf{v}, \rho) = \begin{cases} if \xi_{H}(\rho, \mathbf{v}) > d \longrightarrow \mathbb{E}_{\theta \sim f_{\mathbf{v}}} [\mathcal{G}(\pi_{\theta}) \ \delta(\mathcal{H}(\pi_{\theta}) \leq \xi_{H}(\rho, \mathbf{v}))] \\ else \longrightarrow \mathbb{E}_{\theta \sim f_{\mathbf{v}}} [\mathcal{U}(\pi_{\theta}) \ \delta(\mathcal{U}(\pi_{\theta}) \geq \xi_{U}(1 - \rho, \mathbf{v}))] \end{cases}$$
(1)

- v, parameter for probability distribution
- $\bullet$   $f_{\mathbf{v}}(\theta)$ , probability distribution over parameter  $\theta$
- d: acceptability threshold
- ullet  $\mathcal{G}(\pi_{\theta})$ , expected gain with regards to policy  $\pi$  with parameters  $\theta$
- $\blacksquare$   $\mathcal{H}(\pi_{\theta})$  expected cost of constraints with regards to  $\pi$  with parameters  $\theta$
- $\blacksquare$   $\xi_F(\rho_i, \mathbf{v})$ , p-quantile of the p.d.f. parameterised by  $\mathbf{v}$
- $\bullet$   $\delta(F)$ ... maps result to a boolean based
- $\mathcal{U}(\pi_{\theta})$  : expected reward  $\mathcal{G}(\pi_{\theta})$  if respects constraints, 0 otherwise



/20 22/10/2020 Alex Vigneron CCE for safe





Source: the produce moms



11/20

# CCE recap





## The problem at hand

**Task**: robot navigation with only local sensors





- $\mathbf{S}, \mathcal{A}, \Pi$  sets of states, actions and policies
- Objective function  $\mathcal{O}: (\mathcal{S} \times \mathcal{A})^n \longrightarrow \mathbb{R}^+$
- Cost function  $C: (S \times A)^n \longrightarrow \mathbb{R}$
- Deterministic Transition function
- $\mathcal{G}: \Pi \longrightarrow \mathbb{R}^+$  expected value of rewards over  $\Pi$
- $\mathcal{H}: \Pi \longrightarrow \mathbb{R}$  expected value of constraints over  $\Pi$



## Trust Region Policy Optimisation i







Trust region

Source: MC.AI

#### TRPO (Schulman et al. 2015)

- Unconstrained RI
- Used as a safeguard against policy gradient disasters (especially in high-curvature functions).
- Restricts policy moves so changes are not too agressive.
- Allows one policy update per iteration.





## Constrained Policy Optimisation &

#### CPO (Achiam et al. 2017)

- Constrained RL
- Defines a risk function to ensure agent's security
- Both reward and risk are taken into account at each step
- Promotes safe exploration





(a) Humanoid-Circle

(b) Point-Gather

Source: Achiam (2017)



## **Baseline**



x-axis: number of sample trajectories

**y-axis**: expectation of cumulated reward/punishment for CPO/TRPO and learned policy distribution for CCE



Alex Vigneron

## Baseline i



TRPO's unconstrained approach is insufficient, merely optimising objectives is not enough to output feasible policy.

17/20

CPO needs more samples to find a feasible policy or converges to infeasible policy (especially if constraint is non-Markovian).



22/10/2020 Alex Vigneron CCE for

# Performance analysis i





18/20 22/10/2020

## Limitations of the paper i

#### Perspective

22/10/2020

19/20

Postulate that it is very hard to encode constraints as reward functions, but though hard, this is feasible (Geibel *et al.* 2005, Abe *et al.* 2010, Tong *et al.* 2000)

#### Experimental setting

Both goal and danger region are compact. This simplification does not take into account the difficulty of proper exploration in sparse settings.



## Thank you for your time

#### In a nutshell

- CCE uses a probabilistic approach to solve safe RL problems.
- CCE can work while initialised with unfeasible policy, which is often not the case in safe RL.
- The key function is  $\mathcal{L}(\mathbf{v}, \rho)$  since it takes into account both  $\mathcal{G}$  the objective function and  $\mathcal{H}$  the constraint function.

Alex Vigneron alex.vigneron@ip-paris.fr

This presentation together with the bibtex file of references are available on github at github.com/Narmondil/CCE\_for\_safe\_RL



20/20 22/10/2020 Alex Vigneron CCE for sa

## **Constrained Cross-Entropy**

#### Entropy (Shannon's)

Skewed Probability Distribution (unsurprising) : Low entropy. Balanced Probability Distribution (surprising) : High entropy.

$$\mathcal{H}(X) = -\sum_{i=1}^{n} P(x_i) log(P(x_i))$$

 $X = (x_1, ..., x_n)(2)$ 

#### Cross-Entropy

$$\mathcal{H}(p,q) = -\mathbb{E}_{p}[log(q)] = \mathcal{H}(p) + \mathcal{D}_{KL}(p||q)$$
(3)

## Constrained Cross-Entropy

This functions incorporates the constraints on the system in a generic fashion, irrespective of the form or even the number of the constraints (Niven et al., 2003).



20/20 22/10/2020 Alex Vigneron CCE for s

# Remembering why we're doing CCE



FIGURE - RL-based self-driving car



20/20 22/10/2020 Alex Vigneron CCE for so