Лабораторная работа №1

Установка и конфигурация операционной системы на виртуальную машину

Аскеров Александр Эдуардович

Содержание

1	Целі	ь работы												4
2	2.1	олнение лабораторной раб Установка Rocky Linux												
		Hастройка Rocky Linux Домашнее задание												
		Контрольные вопросы												
3	Выв	ОДЫ												19

Список иллюстраций

2.1	Создание новои виртуальнои машины
2.2	Указание имени ВМ и типа ОС
2.3	Указание размера основной памяти ВМ
2.4	Указание размера диска
2.5	Итог настроек ВМ
2.6	Запуск ВМ
2.7	Выбор языка интерфейса
2.8	Настройка языка
2.9	Указание базового окружения и выбора программ
2.10	Отключение КDUMP
2.11	Включение сетевого соединения и указание имени узла 10
2.12	Установка пароля для root-пользователя
2.13	Установка пароля для администратора
2.14	Перезагрузка ВМ
2.15	Установка образа диска дополнений гостевой ОС
2.16	Последовательность загрузки системы
2.17	Версия ядра Linux
2.18	Частота процессора
2.19	Модель процессора
2.20	Объём доступной оперативной памяти
	Тип обнаруженного гипервизора
2.22	Тип файловой системы корневого раздела
	Последовательность монтирования файловых систем
2.24	Команда man
2.25	Команда cd
	Команда ls
2.27	Команда du
	Создание и удаление файлов и каталогов
	Команда chmod
	Команда history
	Просмотр подмонтированных файловых систем в ОС Linux

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

2.1 Установка Rocky Linux

Создадим новую виртуальную машину. Для этого в VirtualBox выберем "Машина" "Создать".

Рис. 2.1: Создание новой виртуальной машины

Укажем имя виртуальной машины (логин в дисплейном классе), тип операционной системы — Linux, RedHat (64-bit).

Рис. 2.2: Указание имени ВМ и типа ОС

Укажем размер основной памяти виртуальной машины – 2048 МБ (или большее число, кратное 1024 МБ, если позволяют технические характеристики компьютера).

Рис. 2.3: Указание размера основной памяти ВМ

Зададим размер диска – 40 ГБ (или больше).

Рис. 2.4: Указание размера диска

Посмотрим итог настроек виртуальной машины.

Рис. 2.5: Итог настроек ВМ

Запустим виртуальную машину.

Рис. 2.6: Запуск ВМ

Выберем English в качестве языка интерфейса.

Рис. 2.7: Выбор языка интерфейса

2.2 Настройка Rocky Linux

Перейдём к настройкам установки операционной системы. Выберем раскладку клавиатуры.

Рис. 2.8: Настройка языка

В разделе выбора программ укажем в качестве базового окружения "Server with GUI", а в качестве дополнения – "Development Tools".

Рис. 2.9: Указание базового окружения и выбора программ

Отключим KDUMP.

Рис. 2.10: Отключение КDUMP

Включим сетевое соединение и в качестве имени узла укажем user.localdomain, где вместо user укажем имя своего пользователя в соответствии с соглашением об именовании.

Рис. 2.11: Включение сетевого соединения и указание имени узла

Установим пароль для root.

Рис. 2.12: Установка пароля для root-пользователя

Установим пароль для пользователя с правами администратора.

Рис. 2.13: Установка пароля для администратора

После завершения установки операционной системы корректно перезапустим виртуальную машину и при запросе примем условия лицензии.

Рис. 2.14: Перезагрузка ВМ

Войдём в ОС под заданной при установке учётной записью. В меню Устройства виртуальной машины подключим образ диска дополнений гостевой ОС, при необходимости введём пароль пользователя root виртуальной ОС.

```
ⅎ
                               VirtualBox Guest Additions installation
                                                                                       Q
                                                                                              ≡
Verifying archive integrity... 100% MD5 checksums are OK. All good. Uncompressing VirtualBox 7.0.8 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Copying additional installer modules ...
Installing additional modules ..
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: or
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
5.14.0-284.11.1.el9_2.x86_64.
VirtualBox Guest Additions: reloading kernel modules and services
VirtualBox Guest Additions: kernel modules and services 7.0.8 r156879 reloaded
VirtualBox Guest Additions: NOTE: you may still consider to re-login if some user session specific services (Shared Clipboard, Drag and Drop, Seamless or
Guest Screen Resize) were not restarted automatically
Press Return to close this window...
```

Рис. 2.15: Установка образа диска дополнений гостевой ОС

2.3 Домашнее задание

Дождёмся загрузки графического окружения и откроем терминал. В окне терминала проанализируем последовательность загрузки системы, выполнив команду dmesg | less. Просто просмотрим вывод этой команды.

Рис. 2.16: Последовательность загрузки системы

Получим следующую информацию.

1. Версия ядра Linux (Linux version).

```
[aeaskerov@aeaskerov ~]$ dmesg | grep -i "Linux version"
|[ 0.000000] Linux version 5.14.0-284.11.1.el9_2.x86_64 (mockbuild@iad1-prod-build001.bld.equ.rc
| ckylinux.org) (gcc (GCC) 11.3.1 20221121 (Red Hat 11.3.1-4), GNU ld version 2.35.2-37.el9) #1 SMP
| PREEMPT_DYNAMIC Tue May 9 17:09:15 UTC 2023
| aeaskerov@aeaskerov ~]$
```

Рис. 2.17: Версия ядра Linux

2. Частота процессора (Detected MHz processor).

```
[aeaskerov@aeaskerov ~]$ dmesg | grep -i "Mhz"

[ 0.000006] tsc: Detected 2803.200 MHz processor

[ 3.291984] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:9c:e7:f1

[aeaskerov@aeaskerov ~]$
```

Рис. 2.18: Частота процессора

3. Модель процессора (CPU0).

```
[aeaskerov@aeaskerov ~]$ dmesg | grep -i "CPU0"
[ 0.193421] smpboot: CPU0: lith Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (family: 0x6, model: 0x8c, stepping: 0x1)
[aeaskerov@aeaskerov ~]$
```

Рис. 2.19: Модель процессора

4. Объём доступной оперативной памяти (Memory available).

Рис. 2.20: Объём доступной оперативной памяти

5. Тип обнаруженного гипервизора (Hypervisor detected).

```
[aeaskerov@aeaskerov ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[aeaskerov@aeaskerov ~]$
```

Рис. 2.21: Тип обнаруженного гипервизора

6. Тип файловой системы корневого раздела.

```
[aeaskerov@aeaskerov ~]$ dmesg | grep -i "Filesystem"

[ 3.791855] XFS (dm-0): Mounting V5 Filesystem

[ 6.862836] XFS (sda1): Mounting V5 Filesystem

[aeaskerov@aeaskerov ~]$
```

Рис. 2.22: Тип файловой системы корневого раздела

7. Последовательность монтирования файловых систем.

```
[aeaskerov@aeaskerov ~]$ dmesg | grep -i "Mounting"
[ 3.791855] XFS (dm-0): Mounting V5 Filesystem
[ 4.986022] systemd[1]: Mounting Huge Pages File System...
[ 4.987180] systemd[1]: Mounting POSIX Message Queue File System...
[ 4.989418] systemd[1]: Mounting Kernel Debug File System...
[ 5.007215] systemd[1]: Mounting Kernel Trace File System...
[ 6.862836] XFS (sda1): Mounting V5 Filesystem
[aeaskerov@aeaskerov ~]$
```

Рис. 2.23: Последовательность монтирования файловых систем

2.4 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Такую как имя пользователя, домашний каталог, оболочку по умолчанию, идентификатор пользователя (UID) и группы, к которым принадлежит пользователь.

- 2. Укажите команды терминала и приведите примеры:
- для получения справки по команде;

man команда (например, man ls для справки о команде ls)

```
## Aeaskerov@aeaskerov:~—man ls Q 

LS(1) User Commands LS(1)

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

DESCRIPTION

List information about the FILEs (the current directory by default). Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.
```

Рис. 2.24: Команда тап

• для перемещения по файловой системе;

cd директория (например, cd /etc для перехода в каталог /etc)

```
[aeaskerov@aeaskerov ~]$ cd Downloads/
[aeaskerov@aeaskerov Downloads]$
```

Рис. 2.25: Команда cd

• для просмотра содержимого каталога;

Команда ls

```
[aeaskerov@aeaskerov ~]$ ls
Desktop Documents Downloads Music Pictures Public Templates Videos work
[aeaskerov@aeaskerov ~]$
```

Рис. 2.26: Команда ls

• для определения объёма каталога;

du -h директория (например, du -h /var/log для определения объёма каталога /var/log)

```
[aeaskerov@aeaskerov ~]$ sudo du -h /var/log
[sudo] password for aeaskerov:
0 /var/log/private
0 /var/log/samba/old
0 /var/log/samba
608K /var/log/audit
```

Рис. 2.27: Команда du

• для создания/удаления каталогов/файлов;

mkdir директория / touch файл (например, mkdir newdir для создания каталога newdir и touch newfile.txt для создания файла newfile.txt). rmdir директория / rm -r директория / rm файл (например, rmdir olddir для удаления каталога olddir и rm oldfile.txt для удаления файла oldfile.txt)

```
[aeaskerov@aeaskerov ~]$ mkdir newdir
[aeaskerov@aeaskerov ~]$ touch newfile.txt
[aeaskerov@aeaskerov ~]$ ls

Desktop Downloads newdir Pictures Templates work

Documents Music newfile.txt Public Videos

[aeaskerov@aeaskerov ~]$ rm ir newdir
[aeaskerov@aeaskerov ~]$ rm newfile.txt
[aeaskerov@aeaskerov ~]$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos work
[aeaskerov@aeaskerov ~]$
```

Рис. 2.28: Создание и удаление файлов и каталогов

• для задания определённых прав на файл/каталог;

chmod разрешения файл (например, chmod 755 program.py для задания прав на выполнение, чтение и запись для владельца и чтение и выполнение для группы и остальных)

```
[aeaskerov@aeaskerov ~]$ touch program.py
[aeaskerov@aeaskerov ~]$ chmod 755 program.py
```

Рис. 2.29: Команда chmod

• для просмотра истории команд.

Команда history

```
88 sudo du -h /var/log
89 mkdir newdir
90 touch newfile.txt
91 ls
92 rmdir newdir
93 rm newfile.txt
94 ls
95 touch program.py
96 chmod 755 program.py
97 history
[aeaskerov@aeaskerov ~]$
```

Рис. 2.30: Команда history

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система – это способ организации и хранения данных на устройстве хранения информации.

Примеры файловых систем:

- ext4 (Extended File System 4): используется в Linux для хранения файлов и метаданных.
- NTFS (New Technology File System): используется в Windows для организации данных на диске.
- APFS (Apple File System): используется в macOS для управления данными на диске.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Для просмотра подмонтированных файловых систем в ОС Linux можно использовать команду df -h.

Рис. 2.31: Просмотр подмонтированных файловых систем в ОС Linux

5. Как удалить зависший процесс?

Можно воспользоваться командой kill -9 PID, где PID - идентификатор процесса.

3 Выводы

Приобретены практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.