Topologie des espaces vectoriels normés

Exemples 🟵

1) \emptyset et E sont deux ouverts de E

```
En effet, \forall x \in E, \forall r > 0, \mathcal{B}(x,r) = \{y \in E \mid \|y - x\| < r\} \subset E Et \forall x \in \emptyset, \exists r > 0, \mathcal{B}(x,r) \subset \emptyset
```

2) Dans \mathbb{R} muni de $|\cdot|$, soient $a, b \in \mathbb{R}$, a < b alors $]a, b[,] - \infty, a[,]b, +\infty[$ sont des ouverts de \mathbb{R}

```
Soit r > 0, x \in \mathbb{R}, \mathcal{B}(x,r) = \{y \in \mathbb{R} \mid -r < y - x < r\} = ]x - r, x + r[ Montrons que ]a,b[ est une partie ouverte de \mathbb{R}. Soit x \in ]a,b[ Posons r = \min(x - a,b - x), alors r > 0 Soit y \in ]x - r, x + r[, alors x - r \le y \le x + r Donc a < y < b Donc \mathcal{B}(x,r) \subset ]a,b[, donc ]a,b[ est ouvert.
```

Exemples à propos des ouverts &

- 1) \emptyset est un fermé de E car $E \setminus \emptyset = E$ est un ouvert de E E est un fermé de E car $E \setminus E = \emptyset$ est un ouvert de E
- 2) Dans \mathbb{R} muni de $|\cdot|$, $\forall a, b \in \mathbb{R}$ avec a < b, [a, b], $] \infty$, a] et $[b, +\infty[$ sont des fermés de \mathbb{R} . En effet, $\mathbb{R} \setminus [a, b] =] \infty$, $a[\cup]b$, $+\infty[$ est un ouvert de \mathbb{R} en tant qu'union d'ouverts de \mathbb{R} .
- 3) Dans $(E, \|\cdot\|)$, $\forall a \in E, \{a\}$ est un fermé de E. On va montrer que $E \setminus \{a\}$ est un ouvert de E. Soit $x \in E \setminus \{a\}$, posons $r = \|x a\|$, alors r > 0 car $x \neq a$. Soit $y \in B(x, r)$, montrons que $y \in E \setminus \{a\}$ Supposons par l'absurde que $y \notin E \setminus \{a\}$ ie y = a Alors $\|a x\| = \|y x\| < r$, Absurde. Ainsi $y \in E \setminus \{a\}$, d'où $B(x, r) \in E \setminus \{a\}$ Donc $E \setminus \{a\}$ est un ouvert de E