School of Mathematics, Thapar Institute of Engineering & Technology, Patiala

1. Using Newton's divided difference interpolation, construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specified value using each of the polynomials.

$$f(0.43)$$
 if $f(0) = 1$, $f(0.25) = 1.64872$, $f(0.5) = 2.71828$, $f(0.75) = 4.4816$.

2. Show that the polynomial interpolating the following data has degree 3.

ſ	x	-2	-1	0	1	2	3
ĺ	f(x)	1	4	11	16	13	-4

- **3.** Let $f(x) = e^x$, show that $f[x_0, x_1, \dots, x_m] > 0$ for all values of m and all distinct equally spaced nodes $\{x_0 < x_1 < \dots < x_m\}$.
- **4.** Verify that the polynomials $P(x) = 5x^3 27x^2 + 45x 21$, $Q(x) = x^4 5x^3 + 8x^2 5x + 3$ interpolate the data

x	1	2	3	4
y	2	1	6	47

and explain why this does not violate the uniqueness part of the theorem on existence of polynomial interpolation.

5. The following data are given for a polynomial P(x) of unknown degree.

x	0	1	2	3
f(x)	4	9	15	18

Determine the coefficient of x^3 in P(x) if all fourth-order forward differences are 1.

6. The Newton's forward-difference formula is used to approximate f(0.3) given the following data.

x	0	0.2	0.4	0.6
f(x)	15.0	21.0	30.0	51.0

Suppose it is discovered that f(0.4) was understated by 10 and f(0.6) was overstated by 5. By what amount should the approximation to f(0.3) be changed?

7. Given that

x	1.0	1.5	2.0
f(x)	0.0	0.17609	0.30103

Find Newton's interpolating polynomial $P_2(x)$ with this data. If we add one more point, say f(3.0) = 0.47712 in the above data then find $P_3(x)$ in such a way that $P_3(x) = P_2(x) + R(x)$. Find R(x) explicitly.

- 8. Suppose that $f(x) = \cos x$ to be approximated on [0,1] by an interpolating polynomial on n+1 equally spaced points. What step size h ensure that linear interpolation gives an absolute error of at most 10^{-6} for all $x \in [0,1]$.
- **9.** Let i_0, i_1, \dots, i_n be a rearrangement of the integers $0, 1, \dots, n$. Show that

$$f[x_{i_0}, x_{i_1}, \cdots, x_{i_n}] = f[x_0, x_1, \cdots, x_n].$$

10. Construct the interpolating polynomial that fits the following data using Newton's forward and backward

x	0	0.1	0.2	0.3	0.4	0.5
f(x)	-1.5	-1.27	-0.98	-0.63	-0.22	0.25

difference interpolation. Hence find the values of f(x) at x = 0.15 and 0.45.

- **11.** A fourth-degree polynomial P(x) satisfies $\Delta^4 P(0) = 24$, $\Delta^3 P(0) = 6$, and $\Delta^2 P(0) = 0$, where $\Delta P(x) = P(x+1) P(x)$. Compute $\Delta^2 P(10)$.
- **12.** Show that

$$f[x_0, x_1, \cdots, x_n, x] = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$

for some $\xi(x)$.