FORMULE DI BASI DI DATI

22 giugno 2021

FORMULE SUI B-TREE

DEFINIZIONE DI B-TREE:

Un B-TREE è un albero bilanciato, organizzato a nodi, ogni nodo corrisponde ad un blocco dati di uno storage device

IMPORTANTE:

T(g,h) è un albero bilanciato di ordine g e altezza h. Le cardinalità/configurazioni possibili sono rappresentate nella tabella sottostante. Ricordiamo che : |sk| = numero di chiavi selezionate per nodo(nodo!= radice).

Numero Massimo e minimo di chiavi per ogni nodo o radice:

CHIAVI	MIN	MAX
Radice	1	2g
Nodo	g	2g

Numero Massimo e minimo di figli per ogni nodo o radice:

FIGLI	MIN	MAX	
Radice	0	2g+1	
Nodo	sk + 1	sk + 1	

FORMULE:

NUMERO MINIMO DI NODI(IPmin)

IP
$$min = 1 + 2 \cdot \sum_{i=0}^{h-2} (g+1)^i$$

NUMERO MASSIMO DI NODI(IPmax)

$$IP max = \sum_{i=0}^{h-1} (2g+1)^{i}$$

ALTEZZA DI UN B-TREE

$$egin{aligned} {
m NK} &= {\it Numero} \ di \ chiavi \ del \ {\it B-TREE} \ {
m NK} min &= 1 + g(IPmin - 1) = 2(g+1)^{h-1} - 1 \ {
m NK} max &= 2g(IPmax) = (2g+1)^h - 1 \ {
m h} min &= \log_{2g+1}(NK+1) \ {
m h} max &= 1 + \log_{g+1}(rac{NK+1}{2}) \end{aligned}$$

 $hmin \le h \le hmax$

COSTO INSERIMENTO/ELIMINAZIONE DI UN NODO DA UN B-TREE(g)

CASO:	MIGLIORE	PEGGIORE	MEDIA
Inserimento	h+1	3h + 1	h+1+2/g
Eliminazione	h+1	3h	5h + 5 + 3/g

STIMA VARIABILITA' DELL'ORDINE DI UN B-TREE

k = chiave

p = RID =Record Identifier, ovvero puntatore a record

q = PID =Puntatore al nodo figlio

D = page size

$$2g * len(k) + 2g * len(p) + (2g + 1) * len(q) \le D$$

$$g = \frac{D - len(q)}{2(len(k) + len(p) + len(q))}$$

FORMULE SUI B+-TREE

DEFINIZIONE DI B+-TREE :

Un B+-TREE è un B-TREE in cui i record pointer sono memorizzati solo nei nodi foglia dell'albero. La struttura dei nodi foglia differisce quindi da quella dei nodi interni. Ha prestazioni migliori del B-TREE sulla ricerca sequenziale, peggiori nella ricerca per singolo valore.

ORDINE

k = chiave

q = PID = Puntatore al nodo figlio

D = page size

 $2g * len(k) + (2g+1) * len(q) \le D$

$$g = \frac{D - len(q)}{2(len(k) + len(q))}$$

NUMERO DI FOGLIE

NR =Numero di Record

NL =Numero di foglie

u=% di utilizzo di un singolo nodo (in media è il 69%)

d =dimensione dei nodi

$$\mathrm{NL} = \frac{NR \cdot (len(k) \cdot len(q))}{d \cdot u}$$

ORDINE DELLE FOGLIE

D = page size

$$2g_{leaf} * len(k) + 2g_{leaf} * len(p) + (2g_{leaf} + 1) * len(q) \le D$$

$$g_{leaf} = \frac{D - len(q)}{2 \cdot (len(k) + len(p))}$$

Con questo risultato si è in grado di avere una stima più accurata del numero di foglie di un B-+TREE

NUMERO DI FOGLIE (stima più accurata sfruttando g_{leaf})

$$NL = \frac{NR}{2g_{leaf} \cdot u}$$

<u>ALTEZZA</u>

 $Costruendo\ un\ albero\ in\ cui\ ciascun\ nodo\ ha\ il\ numero\ massimo\ di\ figli,\ si\ minimizza\ l'altezza\ del\ B+-TREE$

$$(2g+1)^{h-1} \ge NL$$

 $h_{min} = 1 + \log_{2g+1} NL$

Similmente, sfruttando lo stesso ragionamento, costruendo un albero con il numero minimo possibile di figli per nodo, si massimizza l'altezza

$$2(g+1)^{h-2} \le NL$$

 $h_{max} = 1 + \log_{2g+1} NL$

$$hmin \le h \le hmax$$

RICERCA DI VALORI

Supponendo di avere un B-+TREE con NK chiavi in NL foglie, si effettua una ricerca sequenziale di k chiavi nell'intervallo di valori compresi fra $[k_{low}, k_{high}]$

EK = Numero di chiavi all'interno dell'intervallo $[k_{low}, k_{high}]$ EL = expected leafs, ovvero è una stima del numero di foglie alla quale si deve accedere durante la ricerca

$$EL = \frac{EK \cdot NK}{NL}$$
 (proporzione -> NK : NL = EK : EL)
 $COSTO(Ricerca) = 1 - h + EL$

NUMERO DI FOGLIE DI UN SECONDARY B+-TREE

$$NL = \frac{NK \cdot len(k) + NR \cdot len(p)}{D * u}$$

ALTEZZA DI UN SECONDARY B+-TREE

$$h_{min} = 1 + \log_{2g+1} min(NL, NK)$$

$$h_{max} = 2 + \log_{g+1} \frac{min(NL, NK)}{2}$$

$$hmin \le h \le hmax$$

MODELLO DI CARDENAS

Il modello di Cardenas è utile per stimare il numero medio di pagine NP che contengono almeno uno degli ER(expected records) presi in considerazione.

Considerando i seguenti eventi:

A = "Una pagina contiene 1 degli ER record"

 \overline{A} = "Una pagina **non** contiene 1 degli ER record"

B = "Una pagina **non** contiene **nessuno** degli ER record "

 \overline{B} = "Una pagina contiene almeno 1 degli ER record"

Definiamo:

$$P(A) = \frac{1}{NP}$$
 $P(\overline{A}) = 1 - \frac{1}{NP}$

$$P(B) = P(\overline{A})^{ER}$$
 $P(\overline{B}) = 1 - P(B)$

FORMULA DI CARDENAS:

$$\phi(ER, NP) = NP \cdot P(\overline{B})$$

$$= NP * (1 - (1 - \frac{1}{NP})^{ER}) \le MIN(ER, NP)$$

QUERY PLAN

Gestione del piano di accesso alle query, l'obiettivo e quello di scegliere il metodo più veloce ed efficiente.

Linear counting

Algoritmo che permette di stimare il numero di NK chiavi distinte di un attributo A, con $A \in r$.

r = una qualsiasi estensione di una relazione <math>R(T).

DATI:

BM = mappa chiave - valore

H = hash function

 t_i . A = valore dell'elemento \in A di una determinata tupla.

B = n. totale di bucket della bitMap

 $\mathbf{Z}=\mathbf{n}.$ di bucket della bit Map che hanno value = 0

Nota:

Ogni elemento t_i . A sarà presente all'interno della bit-map BM seguendo la seguente logica:

if (
$$t_i.A == \text{NULL}$$
); then $BM[H(t_i.A)] = 0$; else then $BM[H(t_i.A))] = 1$;

FORMULA RISOLUTIVA:

$$NK^e = -B * \ln\left(\frac{Z}{B}\right)$$

PROCEDIMENTO

Considerando l'evento A = "un bucket contiene ALMENO un valore".

dal modello di cardenas si avrà:

$$P(A) = (1 - (1 - (\frac{1}{B})^{NK}))$$
$$P(\overline{A}) = (1 - (\frac{1}{B})^{NK})$$

il quale ci permetterà di formulare :

$$B-Z=B\cdot P(A)=stima\ del\ n.\ di\ bucket\ pieni$$

$$Z = B \cdot P(\overline{A}) = stima \ del \ n. \ di \ bucket \ vuoti$$

Successivamente è importante eseguire la seguente approssimazione, applicabile solo nel caso in cui si lavori con valori molto grandi:

$$P(\overline{\mathbf{A}}) \simeq e^{-rac{NK}{B}} = P(\overline{\overline{\mathbf{A}}})$$

di conseguenza Z diventerà :

$$Z = B \cdot P(\overline{A}) = B \cdot e^{-\frac{NK}{B}}$$

A questo punto, è possibile estrarre NK, il valore cercato.

$$NK^e = -B * \ln{(\frac{Z}{B})}$$

l'apice e aggiunto ad NK sta a significare estimated, ovvero il valore stimato, non necessariamente esatto, è stato aggiunto nel risultato per non confonderlo con la costante di Eulero.