Math 5050 – Special Topics: Manifolds– Fall 2025 w/Professor Berchenko-Kogan

Paul Carmody Section 11: The Rank of a Smooth Map – July 2, 2025

Problems

11.1. Tangent vectors to a sphere

The unit sphere S^n in \mathbb{R}^{n+1} is defined by the equation $\sum_{n=1}^{n+1} (x^i)^2 = 1$. For $p = (p^1, \dots, p^{n+1}) \in S^n$, show that a necessary and sufficient condition for

$$X_p = \sum a^i \frac{\partial}{\partial x^i} \bigg|_p \in T_p(\mathbb{R}^{n+1})$$

to be tangent to S^n at p is $\sum a^i p^i = 0$.

All X_p are in the tangent plane and therefore perpendicular to the Normal of that plane. Let $f(x) = \sum_{n=1}^{n+1} (x^i)^2 - 1$, then the tangent to the unit sphere $S^n = f^{-1}(0)$ in \mathbb{R}^{n+1} at $(x^1, \dots, x^{n+1}) \in S^{n+1}$ we compute

$$\frac{\partial f}{\partial x^i} = 2x^i$$

at $p = (p^i, ..., p^n),$

$$\frac{\partial f}{\partial x^i}(p) = 2p^i$$

The equation of a tangent space at a point p is

$$\sum_{k=1}^{n+1} \frac{\partial f}{\partial x^i}(p)(x^i - p^i) = 0$$

With the n + 1-dimensional norm being

$$N = \left\langle 2p^1, \dots, 2p^{n+1} \right\rangle$$

any X in the tangent space will be

$$X \cdot N = 0$$

$$= \langle a^1, \dots, a^{n+1} \rangle \cdot \langle 2p^1, \dots, 2p^{n+1} \rangle$$

$$= \sum_{k=1}^{n+1} 2a^k p^{n+1}$$

11.2. Tangent vectors to a plane curve

(a) Let $i: S^1 \hookrightarrow \mathbb{R}^2$ be the inclusion map of the unit circle. In this problem, we denote by x,y the standard coordinates of \mathbb{R}^2 and by \hat{x},\hat{y} their restrictions to S^1 . Thus, $\hat{x}=i^*x$ and $\hat{y}=i^*y$. On the upper semicircle $U=\{(a,b)\in S^1\mid b>0\},\hat{x}$ is a local coordinate, so that $\frac{\partial}{\partial \hat{x}}$ is defined. Prove that for $p\in U$,

$$i_* \left(\left. \frac{\partial}{\partial \hat{x}} \right|_p \right) = \left(\left. \frac{\partial}{\partial x} + \frac{\partial \hat{y}}{\partial \hat{x}} \frac{\partial}{\partial y} \right) \right|_p$$

Thus, although $i_*: T_pS^1 \to T_p\mathbb{R}^2$ is injective, $\frac{\partial}{\partial \hat{x}}\big|_p$ cannot be identified with $\frac{\partial}{\partial x}\big|_p$ (Figure 11.9).

Fig. 11.9. Tangent vector $\partial/\partial \bar{x}|_p$ to a circle.

As a reminder, the pullback is defined as

$$i^*f = f \circ i$$

 $\hat{x}(p) = (i^*x)(p) = x(i(p)) = x(p)$

that is the x-coordinate of p

$$X = \sum_{i} \frac{\partial}{\partial \hat{x}} \Big|_{p}$$

$$(i_{*}X)(g) = X(g \circ i)$$

$$= \sum_{i} \frac{\partial g(i(x))}{\partial \hat{x}} \Big|_{p}$$

$$= \frac{\partial g}{\partial \hat{x}}(p) + \frac{\partial g}{\partial \hat{y}}(p)$$

(b) Generalize (a) to a smooth curve C in \mathbb{R}^2 , letting U be a chart in C on which \hat{x} , the restriction of x to C, is a local coordinate.

11.3. Critical points of a smooth map on a compact manifold

Show that a smooth map f from a compact manifold N to \mathbb{R}^m has critical point. (*Hint*: Let $\pi : \mathbb{R}^m \to \mathbb{R}$ be the projection to the first factor. Consider the composite map $\pi \circ f : N \to \mathbb{R}$. A second proof uses Corollary 11.6 adn the connectedness of \mathbb{R}^m .)

11.4. Differential of an inclusion map

On the upper hemisphere of the unit sphere S^2 , we have the coordinate map $\phi = (u, v)$, where

$$u(a, b, c) = a$$
 and $v(a, b, c) = b$.

So the derivations $\partial/\partial u|_p$, $\partial/\partial v|_p$ are tangent vectors of S^2 at any point p=(a,b,c) on the upper hemisphere. Let $i:S^2\to\mathbb{R}^3$ be the inclusion and x,y,z the standard coordinates on \mathbb{R}^3 . The differential $i_*:T_pS^2\to T_p\mathbb{R}^3$ maps $\partial/\partial u|_p$, $\partial/\partial v|_p$ into $T_p\mathbb{R}^3$. Thus,

$$i_* \left(\left. \frac{\partial}{\partial u} \right|_p \right) = \alpha^1 \left. \frac{\partial}{\partial x} \right|_p + \beta^1 \left. \frac{\partial}{\partial y} \right|_p + \gamma^1 \left. \frac{\partial}{\partial z} \right|_p,$$

$$i_* \left(\left. \frac{\partial}{\partial v} \right|_p \right) = \alpha^2 \left. \frac{\partial}{\partial x} \right|_p + \beta^2 \left. \frac{\partial}{\partial y} \right|_p + \gamma^2 \left. \frac{\partial}{\partial z} \right|_p,$$

for some constants $\alpha^i, \beta^i, \gamma^i$. Find $(\alpha^i, \beta^i, \gamma^i)$ for i = 1, 2.

11.5. One-to-one immersion of a compact manifold

Prove that if N is a compact manifold, then a one-to-one immersion $f: N \to M$ is an embedding.

11.6. Multiplication map in $SL(n\mathbb{R})$

Let $f: GL(n, \mathbb{R})$ be the determinant map $f(A) = \det A = \det[a_{ij}]$. For $A \in SL(n, \mathbb{R})$, there is at least one (k, ℓ) such that the partial derivative $\partial f/\partial a_{k\ell}(A)$ is nonzero (Example 9.13). Use Lemma 9.10 and the implicit function theorem to prove that

- (a) there is a neighborhood of A in $SL(n,\mathbb{R})$ in which $a_{ij},(i,j) \neq (k,\ell)$, form a coordinate system, and $a_{k\ell}$ is a C^{∞} function of the other entries $a_{ij},(i,j\neq (k,\ell))$;
- (b) the multiplication map

$$\hat{\mu}: \mathrm{SL}(n,\mathbb{R}) \times \mathrm{SL}(n,\mathbb{R}) \to \mathrm{SL}(n,\mathbb{R})$$

is C^{∞} .