Amendments to The Claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

<u>Listing of Claims:</u>

1. (currently amended): A computer-program-based method for providing a feedback control for a given set of entry and target control quantities χ and μ and u of a system model, the method comprising a repetition of the following steps:

<u>a} providing a time-dependent simulation system model of a system in a computer memory for simulating performance of real hardware for a number n of iterations;</u>

- $\frac{ab}{a}$) providing a <u>predetermined</u> starting value χ'_1 for each of said entry control quantities χ in said model,
- $\frac{bc}{c}$) running the model based on said starting values and obtaining a resulting actual value for each of said target control quantities μ quantities u,
- \underline{ed}) using the values obtained $\underline{for} \mu \underline{for} \underline{u}$ to define a new start value for χ for use in a repeated modeling step,

whereby the method comprises the following formula to calculate the respective next value of the entry control quantities:

$$\chi'_{n+1} = \frac{v_n}{1 + \rho_n(1 - v_n)}$$

where $ho_{\rm n}$ is a suitable parameter an accumulated wait time divided by an accumulated processing time of the system and

$$v_n = (n+1)u - nu_n$$
 $(6b)$

 χ'_n is being valid for the next iteration only while μ_n while u_n and ρ_n are values measured from the beginning of the simulation.

- 2. (currently amended): The method according to claim 1 further comprising simulating a multi-processor system in which said control quantities are CP central processor utilizations in a computer system model wherein utilization is the percentage of time the central processor utilizes for processing.
- 3. (currently amended): A computer program product for providing a feedback control for a given set of entry and target control quantities χ and μ and u of a system model, said computer program product comprising:

a computer readable medium having recorded thereon computer readable program code performing the method comprising a repetition of the following steps:

- a) providing a time-dependent simulation system model of a system in a computer memory for simulating performance of real hardware for a number n of interations;
- $\frac{ab}{}$) providing a <u>predetermined</u> starting value χ'_1 for each of said entry control quantities χ in said model,
- bc) running the model based on said starting values and obtaining a resulting actual value for each of said target control quantities μ quantities u,
- \underline{ed}) using the values obtained $\underline{for}\ \mu$ for \underline{u} to define a new start value for χ for use in a repeated modeling step,

whereby the method comprises the following formula to calculate the respective next value of the entry control quantities:

$$\chi'_{n+1} = \frac{v_n}{1 + \rho_n(1 - v_n)}$$

where $ho_{\rm n}$ is a suitable parameter an accumulated wait time divided by an accumulated processing time of the system and

$$v_n = (n+1)u - nu_n$$

- χ'_n is being valid for the next iteration only while μ_n while u_n and ρ_n are values measured from the beginning of the simulation.
- 4. (currently amended): The computer program product according to claim 3 wherein the method further comprises simulating a multi-processor system in which said control quantities are CP central processor utilizations in a computer system model wherein utilization is the percentage of time the central processor utilizes for processing.
- 5. (currently amended): A computer system for providing a feedback control for a given set of entry and target control quantities χ and μ and u of a system model, the computer system comprising:
- a) a computer memory having a time-dependent simulation system model of a system for simulating performance of real hardware for a number n of interations;
- $rac{ab}{}$) a starting value χ'_1 for each of said entry control quantities χ in said model,
- $\frac{bc}{c}$) a control element running the model based on said starting values and obtaining a resulting actual value for each of said target control quantities μ quantities u,
- \underline{ed}) said control element using the values obtained $\underline{for}\ \mu$ $\underline{for}\ u$ to define a new start value for χ for use in a repeated modeling step,

whereby the control element uses the following formula to

calculate the respective next value of the entry control quantities:

$$x'_{n+1} = \frac{v_n}{1 + \rho_n(1 - v_n)}$$

where $ho_{\rm n}$ is a suitable parameter an accumulated wait time divided by an accumulated processing time of the system and

$$v_n = (n+1)u - nu_n$$
 $+6bb$

 χ'_n is being valid for the next iteration only while μ_n while u_n and ρ_n are values measured from the beginning of the simulation.

6. (currently amended): The computer system according to claim 5 wherein said control element simulates a multi-processor system in which said control quantities are CP central processor utilizations in a computer system model wherein utilization is the percentage of time the central processor utilizes for processing.