Image Classification

: 컴퓨터가 입력 이미지를 보고 정해놓은 category 집합에서 어떤 category에 속할지 고르는 것.

- 컴퓨터에게 이미지란 단지 거대한 격자 모양의 숫자 집합에 불과하므로 어떤 category인지 구분하기 어렵다. (semantic gap)
- 카메라 위치 변화, 조명의 변화, 객체 자체에 변화를 줬을 때 classification 어려움.
- ❖ Data-Driven Approcach (데이터 중심 접근 방법)

: 방대한 데이터를 이용해 Machine Learning Classifier를 학습 => 어떤 식으로든데이터를 잘 요약해서는 다양한 객체들을 인식할 수 있는 모델 만들어냄

Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

Nearest Neighbor

- Train Step: 모든 학습 데이터 기억
- Predict Step: input data와 train data를 비교해 가상 유사한 이미지로 labeling 예측
- L1 Distance (Manhattan distance)

: 이미지의 각 픽셀을 비교하여 test/train 이미지간의 픽셀 차이 값을 계산한 후 모두 더함.

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

ı	test image					training image				pixe	pixel-wise absolute value differences				
	56	32	10	18	-	10	20	24	17		46	12	14	1	add → 456
	90	23	128	133		8	10	89	100	=	82	13	39	33	
	24	26	178	200		12	16	178	170		12	10	0	30	
	2	0	255	220		4	32	233	112		2	32	22	108	

- NN 알고리즘에서 학습시간은 O(1), 테스트시간은 n개의 학습 데이터 전부를 테스트 이미지와 비교해야하므로 O(N)
- train time < test time

nearest neighbor만 보기 때문에 noise/spurious가 생김

K-Nearest Neighbor Classifier

- Distance metric을 이용해서 가까운 이웃을 k개만큼 찾고 neighbor끼리 투표를 한 후 가장 많은 득표수 획득한 레이블로 예측
- k가 커질수록 결정 경계가 부드러워짐

- L2 (Euclidean Distance) : 제곱 합의 제곱근
 - L1 Distance : 특징 벡터의 각각 요소들이 개별적인 의미를 가지고 있는 경우
 - L2 Distance : 특징 벡터가 일반적인 벡터이고, 요소들간의 실질적인 의미를 잘 모르는 경우

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

L1 (Manhattan) distance

$d_1(I_1,I_2) = \sum |I_1^p - I_2^p|$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

L1: 결정 경계가 좌표축에 영향을 받음

L2: 부드러움

Hyperparameter

K, 거리척도와 같은 파라미터

• 학습 전 선택

• Hyperparameter 정하는 방법

a. 데이터를 train set, validation set, test set으로 나눔

b. 다양한 하이퍼파라미터로 train set 학습

c. validation set으로 검증 후 가장 좋았던 하이퍼파라미터 선택

d. 가장 좋았던 classifier를 가지고 test set에서는 한번만 수행

❖ cross validation (교차 검증)

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

- 우선 테스트 데이터를 정해놓은 후 마지막에 사용
- 나머지 데이터는 train data를 여러부분으로 나눔
- 번갈아가면서 validation set 지정
- 위 예제에선 연두색 fold에서 하이퍼 파라미터를 학습시키고 노란색 fold에서 알고리즘 평가

x축: k-nn의 k값, y축: 분류

정확도

각 k마다 5번의 cross validation을 통해 알고리즘이 얼마나 잘 동작하는지 알려줌 테스트셋이 알고리즘 성능 향상에 미치는 영향을 알아보는 데에 도움이 됨 validation folds 별 성능의 분산을 알 수 있음

Linear Classification

: NN과 CNN의 기반 알고리즘, parametric 모델의 가장 단순한 형태

parametric model

x: input image

W: parameters or weights

x와 W를 가지고 10개의 숫자 출력 이 숫자는 CIFAR-10의 각 10개의 카테고리의 스코어 고양이의 스코어가 높다는 건 x가 고양이일 확률이 크다는 것을 의미

- bias term

- : 데이터와 무관하게 특정 클래스에 우선권 부여
- : bias는 데이터와 독립적으로 각 카테고리에 연결됨
- : bias는 각 클래스에 scailing offsets을 더해줌