FLASH Spectral Line Data Validation Report

Last modified: 11-Nov-2020 by Hyein Yoon Original script for WALLABY: 24-Mar-2020 by Bi-Qing For (ICRAR/UWA)

Notes for FLASH:

- This tool uses ASKAPsoft producs. FITS-datacubes are needed for getting major and minor beam sizes only (from the header).
- Not all data are availble, so some dummy files were used to run the script successfully.
- 1) Combining all info from spectra + continuum - 2) Any other additional items to be required?

Observation

SBID	No. of Antennas	Obs Start Date/Time	Obs End Date/Time	Duration (hr)	Field	R.A.	Decl.	Total Bandwidth (MHz)
13285	36	18-Apr-2020/12:46:48.7	18-Apr-2020/14:46:54.9	2.0	FLASH_G9A	08:47:35.5	+00.30.00.0	288.0

- col 1: from input by user
- col 2-8: from /metadata/mslist-*.txt
- col 9: from /metadata/mslist-Science*.txt

Processed Image Cube

ASKAPsoft version*	Cal SBID	Frequency Range (MHz)	Central Frequency (MHz)	Channel Width (kHz)	Synthesised Beam (arcsec x arcsec)	Beam Logs	Flagged Visibilities	Flagged Antennas	Expected RMS
2020-09-18T14:07:43	1328	711.5999.481	855.4907	18.519	30x30	000000	•36500 000000 000000 000000	Click here	• 3 3 3 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6

- col 1: from /slurmOutput/*.sh if more than one version of ASKAPsoft is used for the whole reduction, the latest one is reported. - col 2: from /diagnostics/cubestats-/cubeStats*linmos.contsub.txt (mosaic contsub)
- col 3-4: from /metadata/mslist-Science*.txt - col 5: from FITS-datacube (CURRENT VERSION: continuum subtracted beam00 cube - Nov 22 ver.; too large beam size? depending on robust parameter?)
- col 6: from ./SpectralCube_BeamLogs/beamlogs*.txt - col 6: Bi-qing's notes: Evaluating each channel of each beam if ASKAPSoft fails to synthesize the beam, bmaj and bmin to 30 arcsec. bmaj and bmin for the first few channels are always zero. - col 7: from /flagSummary/*.flagSummary
- col 8: from ./flagSummary/*.flagSummary (flagged fraction) + theoretical rms estimation (based on input values)
- **Beams Statistics**

Beam Image Cube	Continuum Subtracted Beam Cube	Residual Beam Cube	
	Steep		
Min, Max, 1 percentile	Min, Max, 1 percentile	Min, Max, 1 percentile	
Stdoy MADEM	Stday MADEM	Stdoy MADEM	
Stdev, MADFM	Stdev, MADFM	Stdev, MADFM	

- why one percentile?

- col 1-3: from beamMinMax Plots

MAD Max Flux Density 1-percentile noise rank

Continuum Subtracted Beam Cube

- col 1: from beamMinMax Plots - col 2: from CubeStat*contsub.txt

Mosaic Statistics

Yes < 100	Image Cube	Continuum Subtracted Cube	Residual Cube	Number of Bad Channel	Missing Data (Channel)
				4044 Click here	Yes < 100, n= 8

- col 4: from CubeStat*contsub.txt

Component 01a

- col 1-3: from cubePlots

Component 01b Component 02a Component 03a

Component 03b

High frequency (last 5,000 channels)

Source and Noise Spectra from five bright components

10/33 chunks > 5-sigma	13/33 chunks > 5-sigma	13/33 chunks > 5-sigma	9/33 chunks > 5-sigma	11/33 chunks > 5-sigma		
pectra toward five brightest components						

- Deviation from noise spectra (9 MHz chunks)

Low frequency (first 5,000 channels)

Median noise flux density - noise Spectra

199 component (outside 3.2 deg)	139 component (outside 3.2 deg)
100 100 1000 Note 4 to 4 th and 100 100 100 100 100 100 100 100 100 10	1500 WEST STORY NAME OF STORY
RA offset (red points: outside 3.2 deg)	RA offset (red points: outside 3.2 deg)
DEC offset (red points: outside 3.2 deg)	DEC offset (red points: outside 3.2 deg)
- Mean noise flux density - noise spectra	

- stable out to 3.2 degree

Continuum - comparison with NVSS

Continuum image	Statistics	RA/DEC offset	Flux comparison	Flux vs distance from image centre			
As green	Size Size	13.8	FLASH integrated flux (m(g))	Distance from image center (ding)			
- col 1: continuum image + selavy bright componenets							

- col 2: size & flux histogram - col 3: RA/DEC offset (comparison with NVSS) - col 4: flux difference (comparison with NVSS)

- data from Vizier FIRST (2014Dec17; Helfand+ 2015)

- col 5: primary beam correction check (comparison with NVSS)

Click here

Selavy or FIRST sources within 6 x 6 sq degree

NVSS sources within 6 x 6 sq degree

Click here

- data from Vizier NVSS (Condon+ 1998)

- a resolution of 45 arcsec

- a resolution of 5 arcsec

* If more than one version of ASKAPsoft is used for the whole reduction, the latest one is reported. ** Does not take into account field rotation.

Generated at 2020-11-11 16:53:13.355362 Report bugs to Hyein Yoon