2E Implement GreedyMotifSearch with Pseudocounts

Greedy Motif Search with Pseudocounts Problem

Implement GreedyMotifSearch with pseudocounts.

Input: A collection of strings *Dna*, and integers *k* and *t*.

Output: A collection of strings resulting from running GREEDYMOTIFSEARCH(Dna, k, t) with pseudocounts.

А	6/10	1/10	2/10	0/10	1/10	Α	7/14	2/14	3/14	1/14	2/14
С	2/10	1/10	4/10	0/10	7/10	С	3/14	2/14	5/14	1/14	8/14
G	0/10	0/10	2/10	2/10	0/10	G	1/14	1/14	3/14	3/14	1/14
Т	2/10	8/10	2/10	8/10	2/10	Т	3/14	9/14	3/14	9/14	3/14

Formatting

Input: Space-separated integers k and t, followed by a newline-separated collection of strings Dna. **Output:** A space-separated list of strings containing a collection of strings resulting from running GreedyMotifSearch(Dna, k, t) with pseudocounts (If at any step you find more than one *Profile*-most probable k-mer in a given string, use the one occurring first).

Constraints

- The integer k will be between 1 and 10^2 .
- The integer t will be between 1 and 10^2 .
- The number of strings in *Dna* will be between 1 and 10^2 .
- The length of each string in Dna will be between 1 and 10^2 .
- Each string in *Dna* will be a DNA string.

Test Cases

Case 1

Description: The sample dataset is not actually run on your code.

Input:

3 5

GGCGTTCAGGCA AAGAATCAGTCA CAAGGAGTTCGC CACGTCAATCAC CAATAATATTCG

Output:

TTC ATC TTC ATC TTC

Case 2

Description: A larger dataset of the same size as that provided by the randomized autograder. Check input/output folders for this dataset.