2016-XE-1-13

EE24BTECH11066 - YERRA AKHILESH

c) bear with

b) Manageable c) Manageble d) Managible

[2016-XE]

[2016-XE]

[2016-XE]

d) bare

1) The chairman requested the aggrieved shareholders to _____ him.

b) bore with

2) Identify the correct spelling out of the given options:

3) Pick the odd one out in the following:

a) bare with

a) Managable

13, 23, 33, 43, 53

	a) 23	b) 33	c) 43	d) 53			
4)	4) R2D2 is a robot. R2D2 can repair aeroplanes. No other robot can repair aeroplanes						
	Which of the follow	wing can be logically	inferred from the ab	oove statements? [2016-XE]			
	a) R2D2 is a robot only which can only repair aeroplanes.b) R2D2 is the only robot which can repair aeroplanes.						
	c) R2D2 is a robot d) Only R2D2 is a	which can repair only robot.	y aeroplanes.				
	If $ 9y - 6 = 3$, then			[2016-XE]			
	a) 0	b) $+\frac{1}{3}$	c) $-\frac{1}{3}$	d) undefined			
6) The following graph represents the installed capacity for cement production (in tonnes) and the actual production (in tonnes) of nine cement plants of a cement company. Capacity utilization of a plant is defined as ratio of actual production of cement to installed capacity. A plant with installed capacity of atleast 200 tonnes is called a large plant and a plant with lesser capacity is called a small plant. The difference between total production of large plants and small plants, in tonnes is							

7) A poll of students appearing for masters in engineering indicated that 60% of the students believed that mechanical engineering is a profession unsuitable for women. A research study on women with masters or higher degrees in mechanical engineering found that 99% of such women were successful in their professions.

Which of the following can be logically inferred from the above paragraph? [2016-XE]

- a) Many students have misconceptions regarding various engineering disciplines.
- b) Men with advanced degrees in mechanical engineering believe women are well suited to be mechanical engineers.
- c) Mechanical engineering is a profession well suited for women with masters or higher degrees in mechanical engineering.
- d) The number of women pursuing higher degrees in mechanical engineering is small.
- 8) Sourya committee had proposed the establishment of Sourya Institutes of Technology (SITs) in line with Indian Institutes of Technology (IITs) to cater to the technological and industrial needs of a developing country.

Which of the following can be logically inferred from the above sentence?

Based on the proposal,

- (i) In the initial years, SIT students will get degrees from IIT.
- (ii) SITs will have a distinct national objective.

[2016-XE]

Shaquille O' Neal is a 60% career free throw shooter, meaning that he successfully makes 60 free throws out of 100 attempts on average. What is the probability that he will successfully make exactly 6 free throws in 10 attempts? [2016-XE]					
a) 0.2508	b) 0.2816	c) 0.2934	d) 0.6000		
The numeral in the	units position of 211	$870 + 146^{127} \times 3^{424}$ is	[2016-XE]		
A company records heights of all employees. Let X and Y denote the errors in the average height of male and female employees respectively. Assume that $X \sim N(0,4)$ and $Y \sim N(0,9)$ and they are independent. Then the distribution of $Z = \frac{(X+Y)}{2}$ is [2016-XE]					
a) $N(0, 6.5)$	b) $N(0, 3.25)$	c) $N(0,2)$	d) $N(0,1)$		
The volume of the solid obtained by revolving the curve $y^2 = x, 0 \le x \le 1$ around y-axis is [2016-XE]					
a) π	b) 2	c) $\frac{\pi}{2}$	d) $\frac{\pi}{5}$		
Let $y(x)$ be the solution value of $\lim_{x\to\infty} y(x)$.	tion of the initial valu	ue problem $\frac{dy}{dx} + 2xy$:	= x; y(0) = 0. Find the [2016-XE]		
	makes 60 free throwhe will successfully a) 0.2508 The numeral in the A company records average height of mand $Y \sim N(0, 9)$ and a) $N(0, 6.5)$ The volume of the y-axis is a) π Let $y(x)$ be the solutions.	makes 60 free throws out of 100 attemphe will successfully make exactly 6 free a) 0.2508 b) 0.2816 The numeral in the units position of 211 A company records heights of all emploaverage height of male and female emploand $Y \sim N(0,9)$ and they are independentally $N(0,6.5)$ b) $N(0,3.25)$ The volume of the solid obtained by revy-axis is a) π b) 2 Let $y(x)$ be the solution of the initial value.	makes 60 free throws out of 100 attempts on average. What he will successfully make exactly 6 free throws in 10 attempt a) 0.2508 b) 0.2816 c) 0.2934 The numeral in the units position of $211^{870} + 146^{127} \times 3^{424}$ is A company records heights of all employees. Let X and Y d average height of male and female employees respectively. As and $Y \sim N(0,9)$ and they are independent. Then the distribut a) $N(0,6.5)$ b) $N(0,3.25)$ c) $N(0,2)$ The volume of the solid obtained by revolving the curve y^2 y-axis is a) π b) 2 c) $\frac{\pi}{2}$ Let $y(x)$ be the solution of the initial value problem $\frac{dy}{dx} + 2xy = 0$		

(iii) SIT like institutions can only be established in consultation with IIT. (iv) SITs will serve technological needs of a developing country.

c) (ii) and (iv) only

d) (ii) and (iii) only

a) (iii) and (iv) only

b) (i) and (iv) only