Rodents solve an extradimensional set-shifting task by forgetful, adaptive reinforcement learning

Evan M Dastin-van Rijn, Abigail Alpers, Elizabeth Sachse, Aaron Wald, Adriano Reimer, Eric Song, Alik S Widge

Intro

- The balance between flexible and rigid thinking is disrupted in psychiatric disorders
- The extradimensional set-shifting task has been used to probe this balance in rats and humans for the purpose of developing novel therapeutic approaches
- Previous work has demonstrated that electrical stimulation can decrease reaction times on this task for both rats and humans
- However, the specific behavioral strategies used to complete this task and the manner in which interventions modulate these strategies is not well understood.

Methods

- Long-Evans rats completed an extradimensional set-shifting task with active and sham stimulation
- Behavior was fit with 11 different computational models and analyzed with the best fitting model

Results

- Rat behavior was best described by a forgetful adaptive reinforcement learning model
- Mid-striatal stimulation improved cognitive flexibility by reducing the valuation of unchosen actions (model forgetfulness coefficient)
- However, this result did not fully explain previously observed effects on reaction time

Discussion

- This finding supports the hypothesis that deep brain stimulation for psychiatric indications may provide therapeutic benefit by improving cognitive flexibility
- However, assays of this domain based on reaction times may be confounded by a number of factors

Electrical stimulation of mid-striatum specifically **enhances** cognitive flexibility in rats.

But this effect does not fully explain why stimulation reduces reaction time.

Illustrating figures

Forgetful adaptive reinforcement learning equations

Model selection

Posterior predictive checks

Acknowledgements

This poster is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. CON-75851 and the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number 1R01NS120851-01A1.

