

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки		
КАФЕДРА	Прикладная математика		

Отчет по лабораторной работе №1 на тему:

" Численное решение краевых задач для одномерного уравнения теплопроводности"

Студент	ФН2-61Б		М. А. Каган	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Студент	ФН2-61Б		И.А. Яковлев	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Проверил			А. О. Гусев	
проверия		(Подпись, дата)	(И.О. Фамилия)	

Оглавление

Контрольные вопросы	3
Дополнительные вопросы	8

Контрольные вопросы

1. Дайте определения терминам: корректно поставленная задача, понятие аппроксимации дифференциальной задачи разностной схемой, порядок аппроксимации, однородная схема, консервативная схема, монотонная схема, устойчивая разностная схема (условно/абсолютно), сходимость

Omeem:

Задача называется корректно поставленной, если ее решение существует, единственно, и непрерывно зависит от входных данных.

Пусть дана задача

$$Au = f$$
 в G , $Ru = \mu$ на ∂G ,

разностная схема

$$A_h y = \varphi$$
 в G_h , $R_h y = \nu$ на ∂G_h ,

тогда разностная схема аппроксимирует исходную задачу, если для

$$\psi_h = \varphi - f_h + ((Au)_h - A_h u_h),$$

$$\chi_h = \nu - \mu_h + ((Ru)_h - R_h u_h)$$

выполняется

$$\|\psi_h\|_{\psi} \to 0$$
, при $h \to 0$, $\|\chi_h\|_{\chi} \to 0$, при $h \to 0$.

р-й порядок аппроксимации:

$$\|\psi_h\|_{\psi} = O(h^p), \quad \|\chi_h\|_{\chi} = O(h^p).$$

Разностная схема называется **однородной**, если её уравнение записано одинаковым образом и на одном шаблоне во всех узлах сетки без явного выделения особенностей.

Разностная схема называется **консервативной**, если для её решения выполняются законы сохранения, присущие исходной задаче.

Разностная схема называется **монотонной**, если в одномерном случае её решение сохраняет монотонность по пространственной переменной, при условии, что соответствующее свойство справедливо для исходной задачи, а в многомерном — удовлетворяет принципу максимума исходной задачи.

Разностная схема называется **устойчивой**, если её решение непрерывно зависит от входных данных и эта зависимость равномерна по h. Пусть y^I , y^{II} —

решения для A_h и R_h , тогда разностная схема устойчива, если

$$\forall \varepsilon > 0 \; \exists \; \delta(\varepsilon): \; \|\varphi^I - \varphi^{II}\|_{\varphi} \leq f, \; \|\nu^I - \nu^{II}\|_{\nu} \leq f \; \Longrightarrow \; \|y^I - y^{II}\|_{Y} < \varepsilon.$$

Если разностная схема не зависит от соотношения между шагами по различным независимым переменным, то такую устойчивость называют **безусловной**. В противном случае — **условной**.

Разностное решение сходится к точному, если $||y - A_h u||_Y$ стремится к нулю при шаге h стремящимся к нулю. С p-м порядком, если $||y - A_h u||_Y = O(h^p)$ при $h \to 0$.

2. Какие из рассмотренных схем являются абсолютно устойчивыми? Какая из рассмотренных схем позволяет вести расчеты с более крупным шагом по времени?

Ответ:

(а) Пусть y^I, y^{II} решение разностных задача с одинаковым оператором, соответствующим правым частям φ^I, φ^{II} и граничным условиям ν^I и ν^{II} . Разностную схему называют абсолютно устойчивой, если существуют M_1 и M_2 большие нуля, не зависящие от шага сетки, что справедливо неравенство

$$||y^{I} - y^{II}|| \le M_1 ||\varphi^{I} - \varphi^{II}|| + M_2 ||\nu^{I} - \nu^{II}||$$

вне зависимости от выбора соотношения шагов. Если при $M_1 = 0$ выполняется неравенство, то говорят об устойчивости по начальным условиям, а если M_2 , то об устойчивости по правой части.

Из рассмотренных схем, только смешанная разностная схема удовлетворяет данному условию.

- (b) Для схем с безусловной аппроксимацией порядка $O(\tau^2 + h)$ можно вести расчет с бо́льшим шагом по времени в сравнении с шагом h.
- 3. Будет ли смешанная схема (2.15) иметь второй поярдок аппроксимации при $\alpha_i=\frac{2K(x_i)K(x_{i-1})}{K(x_i)+K(x_{i-1})}$?

Om eem:

Из выбора обозначений:

$$\alpha_i = \left(\frac{1}{h} \int_{x_{i-1}}^{x_i} \frac{dx}{K(x)}\right)^{-1}.$$

Введем $I = \int_{x_{i-1}}^{x_i} \frac{dx}{K(x)}$. Тогда

$$I = h \frac{K(x_i) + K(x_{i-1})}{2K(x_i)K(x_{i-1})} = h \frac{1}{2} \left(\frac{1}{K(x_i)} + \frac{1}{K(x_{i-1})} \right),$$

или

$$\int_{x_{i-1}}^{x_i} \frac{dx}{K(x)} = h^{\frac{1}{2}} \left(\frac{1}{K(x_i)} + \frac{1}{K(x_{i-1})} \right),$$

что является формулой трапеций

$$\int_{x_{i-1}}^{x_i} f(x) \approx \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}).$$

Метод трапеций имеет второй порядок, следовательно исследуемая схема также имеет второй порядок аппроксимации.

4. Какие методы (способы) построения разностной аппроксимации приведенных граничных условий с порядком точности $O(\tau + h^2)$, $O(\tau^2 + h^2)$, $O(\tau^2 + h)$ вы знаете?

Om eem:

Граничные условия имеют вид:

$$-K(u, 0)\frac{\partial u}{\partial x}\bigg|_{(0,t)} = P(t), \quad -K(u, L)\frac{\partial u}{\partial x}\bigg|_{(L,t)} = P(t)$$

Рассмотрим случай K = K(x). Аппроксимируем левое ГУ с точностью $O(\tau^2 + h^2)$ с помощью интегро-интерполяционного метода. Уравнение теплопроводности имеет вид

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(K(x) \frac{\partial u}{\partial x} \right),$$

проинтегрируем исходное уравнение по ячейке, примыкающей к левой границе:

$$\int_{x_0}^{x_{1/2}} (u(x, t_{j+1}) - u(x, t_j)) dx = \int_{t_j}^{t_{j+1}} (K(x_{1/2})u_x(x_{1/2}, t) - K(x_0)u_x(x_0, t)) dt =$$

$$\int_{t_j}^{t_{j+1}} (K(x_{1/2})u_x(x_{1/2}, t) + P(t)) dt,$$

откуда получим разностную аппроксимацию

$$\frac{h}{2}\frac{\hat{y}_0 - y_0}{\tau} = k\frac{\hat{y}_1 - \hat{y}_0}{h} + \hat{p},$$

т.е.

$$-k\hat{y}_{x,0} + \frac{h}{2}y_{t,0} = \hat{p}.$$

Тогда вычисление погрешности аппроксимации на точном решении исходной задачи дает

$$\psi_{h,0} = -k\hat{u}_{xx}\frac{h}{2} + \frac{h}{2}\hat{u}_t + O(\tau h + h^2) = O(\tau^2 + h^2),$$

так как на точном решении выполнено равенство $u_t = k u_{xx}$.

Теперь поступим иначе. Проинтегрируем граничное условие на левом начальном отрезке:

$$-\int_{x_0}^{x_1} \left(K(x) \frac{\partial u}{\partial x} \right) dx = \int_{x_0}^{x_1} P(t) dx.$$

Используем среднее значение K(x) на отрезке:

$$-k\int_{x_0}^{x_1} \frac{\partial u}{\partial x} dx = \int_{x_0}^{x_1} P(t) dx,$$

где

$$k = \frac{1}{h} \int_{x_0}^{x_1} K(x) dx.$$

Тогда

$$-k (u(x_1, t) - u(x_0, t)) = hP(t),$$

или

$$y_0 = y_1 + \frac{h}{k}P.$$

Граничное условие, полученное методом интегро-интерполяции, аппроксимировано с точностью $O(h^2)$.

Запишем следующую неявную схему:

$$\frac{\hat{y} - y}{\tau} = \frac{1}{h} \left[K_{+1/2} \frac{\hat{y}_{+1} - \hat{y}}{h} - K_{-1/2} \frac{\hat{y} - \hat{y}_{-1}}{h} \right].$$

Используемая разностная схема имеет порядок $O(\tau)$ по времени и $O(h^2)$ по пространству. Подставив граничное условие, получим общий порядок аппроксимации $O(\tau + h^2)$. Рассмотрим симметричную схему ($\sigma = 0.5$):

$$c\rho\frac{\hat{y}_i - y_i}{\tau} = \frac{1}{2h} \left(a_{i+1} \frac{\hat{y}_{i+1} - \hat{y}_i}{h} - a_i \frac{\hat{y}_i - \hat{y}_{i-1}}{h} \right) + \frac{1}{2h} \left(a_{i+1} \frac{y_{i+1} - y_i}{h} - a_i \frac{y_i - y_{i-1}}{h} \right),$$

где $a_i = (\int_{x_{i-1}}^{x_i} \frac{dx}{K(x)})^{-1}$. Если интеграл аппроксимировать по формуле первого порядка, например, по формуле левых прямоугольников, то полученная схема, из-за возникших членов порядка O(h), будет порядка аппроксимации $O(\tau^2 + h)$. Рассмотрим симметричную схему ($\sigma = 0.5$):

$$c\rho\frac{\hat{y}_i - y_i}{\tau} = \frac{1}{2h} \left(a_{i+1} \frac{\hat{y}_{i+1} - \hat{y}_i}{h} - a_i \frac{\hat{y}_i - \hat{y}_{i-1}}{h} \right) + \frac{1}{2h} \left(a_{i+1} \frac{y_{i+1} - y_i}{h} - a_i \frac{y_i - y_{i-1}}{h} \right),$$

где $a_i = (\int_{x_{i-1}}^{x_i} \frac{dx}{K(x)})^{-1}$. Если интеграл аппроксимировать по формуле первого порядка, например, по формуле левых прямоугольников, то полученная схема, из-за возникших членов порядка O(h), будет порядка аппроксимации $O(\tau^2 + h)$.

5. При каких h, τ и σ смешанная схема монотонна? Проиллюстрируйте результатами расчетов свойства монотонных и немонотонных разностных схем.

Omeem:

Явная двухслойная линейная однородная схема

$$\hat{y}_n = \sum_i d_i y_{n+i}$$

монотонна, если все $d_i \geq 0$.

Приведем уравнение теплопроводности к такому виду:

$$c\rho \frac{y_i^{j+1} - y_i^j}{\tau} = \frac{1}{h^2} \left[\sigma \left(\alpha_{i+1} (y_{i+1}^{j+1} - y_i^{j+1}) - \alpha_i (y_i^{j+1} - y_{i-1}^{j+1}) \right) + \left. + (1 - \sigma) \left(\alpha_{i+1} (y_{i+1}^j - y_i^j) - \alpha_i (y_i^j - y_{i-1}^j) \right) \right],$$

сгруппировав и перенеся необходимые слагаемые, получим

$$\begin{split} &\left(\frac{\sigma(\alpha_{i+1}+\alpha_i)}{h^2}+\frac{c\rho}{\tau}\right)y_i^{j+1} = \left(\frac{\sigma\alpha_{i+1}}{h^2}\right)y_{i+1}^{j+1} + \left(\frac{\sigma\alpha_i}{h^2}\right)y_{i-1}^{j+1} + \\ &\quad + \left(\frac{(1-\sigma)\alpha_{i+1}}{h^2}\right)y_{i+1}^{j} + \left(\frac{(1-\sigma)\alpha_i}{h^2}\right)y_{i-1}^{j} + \left(\frac{c\rho}{\tau} - \frac{(1-\sigma)(\alpha_{i+1}+\alpha_i)}{h^2}\right)y_i^{j}. \end{split}$$

Так как $0 \le \sigma \le 1$ и $\alpha_i > 0$ множитель в левой части, и все множители в правой части кроме одного положительны. Из-за него получаем условие:

$$\frac{c\rho}{\tau} > \frac{(1-\sigma)\left(\alpha_{i+1} + \alpha_i\right)}{h^2}.$$

6. Вопрос 6

Omeem:

(a) Смешанная разностная сетка определяемая параметром σ устойчива, если

$$\sigma \geqslant \frac{1}{2} - \frac{cph^2}{4\tau \tilde{K}}, \quad \tilde{K} = \max_{0 \leqslant x \leqslant L} K(x)$$

Для абсолютно устойчивых схем, в частности неявная, явная и симметричная, устойчивы при любых соотношениях шагов τ и h.

- (b) Если для $\sigma < 1/2$ устойчива при достаточно малом соотношении τ/h^2 , то такие схемы условно устойчивы.
- 7. В случае K = K(u) чему равно количество внутренних итераций, если итерационный процесс вести до сходимости, а не обрывать после нескольких первых итераций?

Ответ: Для точности $\varepsilon = 10^{-8}$, количество внутренних итераций равно 3-4. Решение находится с помощью метода простых итераций.

8. Для случая K = K(u) предложите способы организации внутреннего итерационного процесса или алгоритмы, заменяющие его.

Om eem:

Рассмотрим схему:

$$c\rho \frac{\hat{y}_i - y_i}{\tau} = \frac{1}{h} \left[a_{i+1}(\hat{y}) \frac{\hat{y}_{i+1} - \hat{y}_i}{h} - a_i(\hat{y}) \frac{\hat{y}_i - \hat{y}_{i-1}}{h} \right],$$

где

$$a_i(v) = 0.5[K(v_{i-1}) + K(v_i)], \tag{1}$$

$$a_i(v) = K(\frac{v_i + v_{i-1}}{2}).$$
 (2)

Таким образом задается неявная схема в случае K(u). Поскольку $K(\hat{y})$ нельзя вычислить явно, возникает система из N нелинейных уравнений.

Способы решения задачи:

- (a) Как приближение к \hat{y} использовать значение y. Тогда система решается прогонкой.
- (b) Формулу (2) можно разложить в ряд Тейлора до первого члена в точке $\frac{y_i+y_{i-1}}{2}$ и экстраполировать до $\frac{\hat{y}_i+\hat{y}_{i-1}}{2}$
- (с) Решать систему методом простой итерации:

$$c\rho \frac{y_i^{(s+1)} - y_i}{\tau} = \frac{1}{h} \left[a_{i+1}(y^{(s)}) \frac{y_{(i+1)}^{(s+1)} - y_i^{(s+1)}}{h} - a_i(y^s) \frac{y_i^{(s+1)} - y_{i-1}^{(s+1)}}{h} \right]$$

В качестве $y^{(0)}$ можно брать значение y. Сам итерационный процесс можно обрывать либо после нескольких итераций, либо вести до заданной точности $\max_i |y^(s)_i - y_i^{(s+1)}| \leqslant \varepsilon$

Дополнительные вопросы

1. Приведите пример неконсервативной схемы.

Ответ:

Рассмотрим задачу:

$$(K(x)u_x)_x = 0$$

$$K = \begin{cases} 2, & 0 \le x < 1/2 \\ 1, & 1/2 \le x < 1 \end{cases}$$
(3)

Для нее справедлива, кроме точки 0.5, следующая форма записи:

$$K(x)u_{xx} = 0$$

В этом случае схема:

$$K(y)y_{\overline{x}x} = 0$$

будет неконсервативной. Другим примером консервативной схемы будет схема 2-го порядка точности ($\sigma=0.5$) для коэффициента

$$K = \begin{cases} 3, & 0 \le x < 0.25 \\ 10, & 1/2 \le 0.25 < x < 0.5 \\ 3, & 1/2 \le 0.5 < x < 1 \end{cases}$$
 (4)

При начальной температуре 100.

2. Как получить аппроксимацию граничного условия с порядком $O(\tau^2 + h)$ в случае постоянного коэффициента **K**.

Ответ: Поскольку коэффициент K(x,t) = const, то граничное условие можно представить как $\frac{\partial u}{\partial x} = p(t)/K = A(t)$. Аппроксимируем на прямую:

$$\int_{x_0}^{x_1} \int_{t_i}^{t_{i+1}} \frac{\partial u}{\partial x} dt dx = \int_{x_0}^{x_1} \int_{t_i}^{t_{i+1}} A(t) dt dx$$

$$0.5\tau((y_1 - y_0) + (\hat{y}_1 - \hat{y}_0)) + O(h) + O(\tau^2) = 0.5h\tau(A(t_i) + A(t_{i+1})) + O(\tau^2)$$

$$\frac{y_1 - y_0}{h} + \frac{\hat{y}_1 - \hat{y}_0}{h} = A(t_i) + A(t_{i+1}) + O(\tau^2 + h)$$

Полученная формула имеет первый порядок точности. При ее использовании, исходная схема, если обладала высшего порядка аппроксимации, так же становится первого порядка по h.

Доказательство:

Будем раскладывать u в точке $P = P(x_0, t_i)$:

$$y_{0} = u(x_{0}, t_{i}) = u \Big|_{P}$$

$$y_{1} = u(x_{1}, t_{i}) = u \Big|_{P} + hu_{x} \Big|_{P} + \frac{h^{2}}{2} u_{xx} \Big|_{P} + O(h^{3})$$

$$\hat{y}_{0} = u(x_{0}, t_{i+1}) = u \Big|_{P} + \tau u_{t} \Big|_{P} + \frac{\tau^{2}}{2} u_{tt} \Big|_{P} + O(\tau^{3})$$

$$\hat{y}_{1} = u(x_{1}, t_{i+1}) = u \Big|_{P} + \tau u_{t} \Big|_{P} + hu_{x} \Big|_{P} + \frac{\tau^{2}}{2} u_{tt} \Big|_{P} + \frac{h^{2}}{2} u_{xx} \Big|_{P} + h\tau u_{xt} \Big|_{P} + O(\tau^{3} + h^{3})$$

$$\frac{y_{1} - y_{0}}{h} + \frac{\hat{y}_{1} - \hat{y}_{0}}{h} = 2u_{x} \Big|_{P} + hu_{xx} + \tau u_{xt} + O(h^{2} + \tau^{3}/h)A(t_{i}) = u_{x} \Big|_{P}$$

$$A(t_{i+1}) = u_{x} \Big|_{P} + \tau u_{xt} + O(\tau^{2})$$

$$\frac{y_{1} - y_{0}}{h} + \frac{\hat{y}_{1} - \hat{y}_{0}}{h} - A(t_{i}) - A(t_{i+1}) = O(\tau^{2} + h)$$

$$(5)$$