Math 1450, Honor Calculus Practice 16, Fall 2016.

November 28, 2016

1. Find the sum of the following (if possible):

a.
$$\sum_{k=0}^{\infty} \left(-\frac{3}{4}\right)^k \frac{\text{geometric Series}}{\left|(-\frac{3}{4})\right| < 1} = \frac{4}{7}$$

b.
$$\sum_{k=2}^{\infty} \left(\frac{2}{3}\right)^k \frac{\text{geometric series}}{\left|\frac{2}{3}\right| < 1} = \frac{4}{3} = \frac{4}{3}$$

c.
$$\sum_{k=0}^{\infty} \left(\frac{5}{4}\right)^{k+1} \Longrightarrow \left(\frac{5}{4}\right) > 1$$
, by divergent series lest, it diverges

$$\frac{1}{n} \sum_{k=2}^{\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right) = \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{4}$$

e.
$$\sum_{k=0}^{\infty} \frac{6^{k+1}}{7^{k-2}} = \sum_{k=0}^{\infty} \frac{6^3 \cdot 6^{k-2}}{7^{k-2}} = 6^3 \sum_{k=0}^{\infty} (\frac{6}{7})^k = 6^3 \frac{(\frac{6}{7})^2}{1 - (\frac{6}{7})} = 6^3 \frac{2^2}{6^2} \cdot 7 = 6 \cdot 7^3$$

2. Determine whether the given series converges or diverges; state which test you are using to

b.
$$\sum_{n=0}^{\infty} \frac{3^{k+1}}{(k+1)^2 e^k}$$
 let $A = \frac{3^{k+1}}{(k+1)^2 e^k}$, $\lim_{k \to \infty} \frac{|A + 1|}{|A + 1|} = \lim_{k \to \infty} \frac{|A +$

$$\sum_{k=0}^{\infty} \frac{\ln(n)}{(k+1)^2 e^k} \frac{3^{k+1}}{(k+1)^2 e^k} \frac{3^{k+1}}{4^{k+1}} = \frac{3}{e} > 1$$

c.
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
Since
$$\int_{-\infty}^{\infty} \frac{\ln(x)}{x} dx = \frac{\left(\ln(x)\right)^{2} \left(\frac{1}{N}\right)^{2}}{x} \rightarrow \infty$$
by integral test,
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n} diverges$$

Let $a_n = \frac{2n+1}{(n^5+3n^4+1)}$, $b_n = \frac{1}{n^5}$ and $\lim_{n \to \infty} \frac{1}{|n|}$ and $\lim_{n \to \infty} \frac{2n+1}{|n^5+3n^4+1|}$. $\lim_{n \to \infty} \frac{2n+1}{|n^5+3n^4+1|}$ and $\lim_{n \to \infty} \frac{2n+1}{|n^5+3n^4+1|}$ converges by p-series, thun, by limit Comparison feet $\lim_{n \to \infty} \frac{4n^2+1}{n^3-n}$ of $\lim_{n \to \infty} \frac{2n+1}{n^3-n}$. $\lim_{n \to \infty} \frac{2n+1}{n^3-n}$ of $\lim_{n \to \infty} \frac{2n+1}{n^3-n}$ of

3. Determine if the following series (A) converge absolutely, (B) converge conditionally or (C) diverge. (A) $\underset{n=1}{\overset{\infty}{\sum}} \frac{(-1)^{n+1}\sqrt{n}}{n+3} = \underset{n=1}{\overset{\infty}{\sum}} \frac{1}{n+3} = \underset{n=1}{\overset{\infty}{\sum}} \frac{$

d.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3}{\sqrt{3n^2 + 2n + 1}}$$
 Sel Next page.

e.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3n}{\sqrt{3n^2 + 2n + 1}}$$

3. b. (A) $\sum_{n=1}^{\infty} \frac{|\cos \pi n|}{|n^2|}$, $|\sin \alpha| \frac{|\cos \pi n|}{|n^2|} = |\cos \pi n|$ and $|\sin \alpha| = |\cos \alpha|$ by $|\cos \alpha|$ so, $|\cos \alpha| = |\cos \alpha|$ converges and then $|\cos \alpha| = |\cos \alpha|$ converges absolutely.

 $C. (A) \sum_{n=0}^{\infty} \frac{(-1)^n 4n}{3n^2 + 2n + 1} = \sum_{n=0}^{\infty} \frac{4n}{3n^2 + 2n + 1} \quad USTAG \(\sum_{n=0}^{\infty} \) \(\sum_{n=0}^{\infty} \) \(\frac{4n}{3n^2 + 2n + 1} \) \(-1) = \frac{4}{3} \) \(> 0 \) \(\sum_{n=0}^{\infty} \) \(\frac{4n}{3n^2 + 2n + 1} \) \(\frac{4n}{3n^2 + 2n + 1}$

(B) $\sum_{n=0}^{\infty} \frac{(+)^n 4n}{3n^2 + 2n + 1}$. Let $a_n = \frac{4n}{3n^2 + 2n$

d. (A) $\frac{\infty}{n=0} \frac{(-1)^n 3}{\sqrt{3n^2 + 2n + 1}} = \frac{5}{n=0} \frac{3}{\sqrt{3n^2 + 2n + 1}}$ using $\frac{1}{2n}$ and $\frac{1}{2n}$ compar. Let, We have $\frac{1}{2n^2 + 2n + 1} \cdot \frac{1}{n} = \frac{1}{23} > 0 \Rightarrow \frac{3}{2n^2 + 2n + 1}$ diverges.

(B) $\frac{50}{N} \cdot \frac{(-1)^{N}3}{\sqrt{3n^{2}+5n+1}}$. Let $a_{N} = \frac{3}{\sqrt{3n^{2}+5n+1}}$, $\lim_{N \to \infty} a_{N} = 0$. and $a_{N} > a_{N+1} > 0$.

By $A_{1}S_{1}T_{1}$, $\lim_{N \to \infty} \frac{(-1)^{N}3}{\sqrt{3n^{2}+5n+1}}$ converges conditionally

e (c) $\sum_{n=0}^{\infty} \frac{(-1)^n 3n}{\sqrt{3n^2 + 2n + 1}} \cdot \text{let } \alpha_n = \sqrt{3} + 0$. by divergent test, $\sum_{n=0}^{\infty} \frac{(-1)^n 3n}{\sqrt{3n^2 + 2n + 1}} \cdot \text{diverges}$.