SMRT Microstructure

Henning Löwe

WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

1st SMRT Training School, Col du Lautaret, 08-11 Feb 2018

Outline

Motivation

Background on correlation functions

Microstructure implementation in SMRT

Microstructure in SMRT

Snow microstructure as nowadays seen by X-ray tomography:

▶ A primary goal of SMRT: Faithful representation of microstructure

Recap from EM lecture: Where microstructure matters

IBA phase function:

$$p(\vartheta,\varphi)_{1-2 \text{ frame}} = f_2(1-f_2)(\epsilon_2-\epsilon_1)^2 Y^2(\epsilon_1,\epsilon_2) k_0^4 M(|\mathbf{k_d}|) \sin^2 \chi$$
 (1)

Microstructure term:

$$M(|\mathbf{k_d}|) = \frac{1}{4\pi} \frac{C(|\mathbf{k}_d|)}{f_2(1 - f_2)}.$$
 (2)

is related to the Fourier transform $\widetilde{C}(|\mathbf{k}_d|)$ of the two-point correlation function or auto-correlation function (ACF).

 \rightarrow Need to understand this term.

Outline

Motivation

Background on correlation functions

Microstructure implementation in SMRT

Definition and properties of the ACF

Indicator function of the ice phase:

$$\mathcal{I}(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x} \text{ is in ice matrix} \\ 0, & \text{if } \mathbf{x} \text{ is in pore space} \end{cases}$$

 \blacktriangleright A binary image ($\mu \mathrm{CT},$ thin section) is a discrete version of it

Definition and properties of the ACF

Indicator function of the ice phase:

$$\mathcal{I}(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x} \text{ is in ice matrix} \\ 0, & \text{if } \mathbf{x} \text{ is in pore space} \end{cases}$$

ightharpoonup A binary image (μ CT, thin section) is a discrete version of it

Auto-correlation function (ACF):

$$C(\mathbf{r}) = \overline{(\mathcal{I}(\mathbf{x}) - f_2)(\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)}$$
$$= \overline{(\mathcal{I}(\mathbf{x})\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2^2)}$$

- ▶ Fluctuations around the mean (volume fraction f_2)
- ► Spatial (two-point) statistics of the ice-air assembly

Why is an ACF more than SSA and density?

Can be seen from special ACF values:

$$C(0) = f_2(1 - f_2)$$

 $C'(0) = \frac{\text{SSA}\rho_{\text{ice}}f_2}{4}$

- SSA and density characterize only the behavior of $C(r \approx 0)$: small scale correlations
- ► Microstructures with the same density and the same SSA can have completely different "correlation tails"
- ▶ Single length scale models (like exponential) seem to be insufficient

A real example to demonstrate this

▶ Apparently "simple snow" does not have "simple correlations":

- ▶ We don't understand yet why, but SMRT shouldn't suffer from that
- ightharpoonup More on that \rightarrow practical

How can sphere models be related to C(r)?

Commonly formulated in different types of correlation functions:

Pair correlation function: g(r)(\rightarrow Prob. that r connects the *centers* of two spheres)

Two-point correlation function: C(r)(\rightarrow Prob. that r connects the *interior* of two spheres

Computing the ACF from pair correlations:

Exact result for arbitrary (hard) sphere packings: (STELL & TORQUATO, 1982)

$$C(\mathbf{r}) = n v_{\text{int}}(\mathbf{r}) + n^2 (v_{\text{int}} * g) (\mathbf{r})$$

 \triangleright $v_{\mathrm{int}}(r)$: Intersection volume of two spheres, n: number density of spheres Or in Fourier space

$$\widetilde{C}(\mathbf{k}) = nP(\mathbf{k})S(\mathbf{k})$$

 \triangleright $P(\mathbf{k})$: form factor, $S(\mathbf{k})$: structure factor (small angle scattering lingo)

This link allows to...

- ightharpoonup map μ CT images onto arbitrary hard-sphere packings
- implement DMRT's sticky hard spheres in IBA
- compare EM formulations from DMRT and IBA

(Löwe & Picard, 2015)

A good point to demystify "sticky hard spheres"

Model for a molecular fluid (BAXTER, 1967)

▶ Determined by volume fraction f_2 , diameter d, and stickiness τ Example realizations: (identical f_2 , $d \rightarrow$ same SSA!!)

Main effect of stickiness τ :

ightharpoonup Clustering ightarrow new structural length scales ightarrow impact on scattering

Outline

Motivation

Background on correlation functions

Microstructure implementation in SMRT

Considered models in SMRT and reasons for them (C(r) = C(0)A(r))

Exponential: Used by MEMLS

$$A_{\rm ex}(r) = \exp(-r/l_{\rm ex}) \tag{3}$$

(4)

(6)

(7)

Sticky hard spheres: Used by DMRT-ML, DMRT-QMS

independent sphere. A classic (spherical aci model), sparse medium model

$$A_{\rm sph}(r) = \left[1 - 3\left(r/d_{\rm sph}\right)/2\right) + \left(r/d_{\rm sph}\right)^3/2\right] H(d_{\rm sph} - r) , \qquad (5)$$

Teubner-Strey: Google "scattering peak" and "bicontinuous"...

$$A_{ extsf{TS}}(r) = \exp(-r/\xi_{ extsf{TS}}) \, rac{\sin(2\pi r/d_{ extsf{TS}})}{(2\pi r/d_{ extsf{TS}})} \, ,$$

(Level cut) Gaussian random fields: Most powerful in the long term

$$C_{\text{grf}}(r) = \frac{1}{2\pi} \int_{0}^{C_{\psi}(r)} dt \frac{1}{\sqrt{1-t^2}} \exp\left[-\frac{\beta^2}{1+t}\right]$$

Microstructure implementation in SMRT

Abstract base class:

```
class Autocorrelation (autocorrelation.py)
```

► Handles common functionality: Numerical Fourier transforms

Derived microstructure classes:

```
class Exponential (exponential.py)
class StickyHardSpheres (sticky_hard_spheres.py)
class IndependentSphere (independent_sphere.py)
class GaussianRandomField (gaussian_random_field.py)
class TeubnerStrey (teubner_strey.py)
class MeasuredAutocorrelation (measured_autocorrelation.py)
```

- ► Hold microstructure parameters
- ► Compute analytical autocorrelation functions (if available)
- ▶ Must implement either C(r) or $\widetilde{C}(k)$.
- ► Here you can easily add your ultimate ACF model

Practically: How is C(r) obtained from images?

 $C(\mathbf{r})$ is a discrete convolution of the image with itself (N voxels):

$$C(\mathbf{r}) = \overline{(\mathcal{I}(\mathbf{x}) - f_2)(\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)}$$

$$\approx \frac{1}{V} \int d\mathbf{x} \ (\mathcal{I}(\mathbf{x}) - f_2)(\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)$$

$$\approx \frac{1}{N} (\mathcal{I}(\mathbf{x}) - f_2) * (\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)$$

$$\approx \frac{1}{N} \mathcal{F}^{-1} \parallel \mathcal{F}[\mathcal{I}(\mathbf{x}) - f_2] \parallel^2$$

- ▶ C(r) is computed from 2D/3D images via FFT and parameters are obtained by fitting (\rightarrow practical)
- ▶ Hint: FFT is a python one-liner $\mathcal{F}(g) o \mathtt{fftpack.fftn}(g)$

What about microstructural anisotropy?

$C(\mathbf{r})$ of an anisotropic 3D image is a anisotropic 3D ACF

- ▶ SMRT microstructure only deals with 1D functions C(r) (isotropy)
- ▶ Different ways to create an isotropoic C(r)

But the IBA phase function requires a 3D Fourier transform anyway? Yes:

▶ 3D Fourier transforms of isotropic C(r) can be written as 1D Bessel transforms and computed via a discrete 1D sine transform:

$$\widetilde{C}(k) = 4\pi \int_0^\infty dr \, r^2 C(r) j_0(kr)$$

$$= 4\pi/k \, \Delta r \underbrace{\sum_{l=0}^{N-1} \sin(kr_m) \left[\frac{C(r_m)}{r_m} \right]}_{\frac{1}{2} \mathrm{DST}(k)}$$
(9)

Thats how its done in SMRT autocorrelation class

All SMRT μ -models at a glance: Limiting case of the scattering coefficient

Asymptotic expansion of IBA:

The IBA Scattering coefficient for *low density*, *low frequency* has a microstructure dependent limiting behavior:

$$\kappa_{\mathrm{s}}^{\mathrm{IBA}} = \left[\frac{2}{3} k_0^4 \frac{1}{4\pi} (\epsilon_2 - \epsilon_1)^2 \left| \frac{3\epsilon_1}{2\epsilon_1 + \epsilon_2} \right|^2 \right] f_2 \, \widetilde{A}(0)$$

Comparison with SMRT:

Summary

Microstructure in SMRT:

- Employs ACF of snow as required by IBA
- ▶ Envisages a library concept, similar to small angle scattering software
- An SMRT snowpack can comprise SMRT layers with different ACFs
- ▶ New ACF models can be added by implementing another forms for $C(r)/\widetilde{C}(k)$
- ▶ Foreseen but not explored yet: Using measured ACF data directly
- Ongoing research: Details of parameter retrieval by fitting 3D images

Thank you for your attention.