Universidade Federal de Viçosa Instituto de Ciências Exatas e Tecnológicas Campus UFV - Florestal

Lista de Álgebra Linear A - Lista 2

Prof. Fernando Bastos

Exercícios

- 1. Sejam u = (-4,3), v = (2,-5) e w = (a,b).
 - (a) Encontre $a \in b$ nos seguintes: (i) w = 2u + 3v (ii) $w = \frac{2}{5}v$ (iii) u + w = 2u v.
 - (b) Represente os vetores acima no plano cartesiano.
 - (c) Encontre o comprimento dos vetores $u, v \in w$.
- 2. Sejam u = (4, -1, 2), v = (3, -2, -4) e w = (a, b, c).
 - (a) Encontre a, b, c nos seguintes casos: (i) w - u = v (ii) w = 3v (iii) u + w = 2u - v.
 - (b) Encontre o comprimento dos vetores $u, v \in w$.

Exercicio 3

mesma direção e o mesmo sentido que u = (-1, -3).

Exercicio 4

newtons é aplicada em um objeto ao longo do semi-eixo negativo dos x e que uma força de 5 newtons é aplicada ao longo do semi-eixo positivo dos y. Encontre a intensidade, a direção e o sentido da força resultante. Represente graficamente.

- 3. Suponha que um barco está atravessando um rio na direção leste a uma velocidade de 4 quilômetros por hora, enquanto a corrente do rio está fluindo na direção sul a uma velocidade de 3 quilômetros por hora. Encontre a velocidade resultante do barco. Represente graficamente.
- 4. Em cada item deste exercício são dados um espaço vetorial $(V, +, ., \mathbb{R})$ e um subconjunto U de V. Verifique se U é um subespaço do espaço vetorial V.
 - (a) $V = \mathbb{R}^3$ e $U = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}.$
 - (b) $V = \mathbb{R}^3 \in U = \{(x, y, z) \in \mathbb{R}^3; x + y + z \le 1\}.$
 - (c) $V = M_{2\times 2}$ (**IR**) e $U = \{A \in V; \det A = 0\}.$
 - $(d) \ V = \mathbb{P}_3(\mathbf{IR}) \ e \ U = \big\{ p \in V; \ p = a_3 x^3 + a_2 x^2 + a_1 x + a_0, \ a_i \in \mathbf{Z}, 0 \le i \le 3 \big\}.$
 - (e) $V = \mathbb{P}_3$ (**IR**) e $U = \{ p \in V; p = ax^3 + bx + c \}$.
- 5. Determine para que valores de k os vetores do \mathbb{R}^3 abaixo são L.I. ou L.D.
 - (a) $u = (1, 1, 2), v = (-1, 2, 3) \in w = (k, -1, 1)$
 - (b) u = (-1, 0, 7), v = (-4, 5, -3k), w = (0, 4, -2) e z = (2k, 3, 1).
- 6. Determine que condições a, b, e c devem satisfazer para que o vetor v = (a, b, c) seja combinação linear dos vetores u = (1, -3, 2) e w = (2, -1, 1).
- 7. Quais dos seguintes vetores são combinação linear de u=(1,2,1,0), v=(4,1,-2,3), w=(1,2,6,-5), e p=(-2,3,-1,2).(a) (3,6,3,0) (b) (1,0,0,0) (c) (3,6,-2,5) (d) (0,0,0,1)
- $8. \ \, \text{Determine} \,\, [S], \, \text{onde} \,\, S = \left\{ \left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array} \right], \left[\begin{array}{cc} 2 & 5 \\ 1 & -1 \end{array} \right], \left[\begin{array}{cc} 5 & 12 \\ 1 & 1 \end{array} \right], \left[\begin{array}{cc} 3 & 4 \\ -2 & 5 \end{array} \right] \right\}.$

- 10. Os conjuntos abaixo são linearmente independente ou linearmente dependentes? Justifique (Faça contas somente quando for realmente necessário!)
 -) $\{1, 2t, 2t + t^2, 2t + 2t^2\} \subset \mathbb{P}_2$ (**IR**)
 - (b) (
 - $\begin{array}{c} (1, 20, 20 + 0, 70 + 10, 70) \\ (1, 1), (0, 1), (-1, 5) \} \subset \mathbb{R}^{2} \\) \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \pi & \sqrt{2} \\ \sqrt{3} & 0 \end{bmatrix}, \begin{bmatrix} 1 & 332 \\ 41 & 90 \end{bmatrix} \right\} \subset M_{2 \times 2}$

 -) $\{1\} \subset \mathbf{R}$ (e) (
- 11. Coloque V ou F, justificando sua resposta.
 -) Se dim W=3 e \mathcal{B} é um subconjunto de W com 4 vetores então \mathcal{B} é L.D.
 -) Se dim W=3 e \mathcal{B} é um subconjunto de W com 2 vetores então \mathcal{B} é L.I.
 -) Todo subconjunto de um espaço vetorial contendo o vetor nulo é L.D. (c) (
 - (d) () Se dim W = 3 e $v_1, v_2 \in W$, então $[v_1, v_2] \neq W$.
 -) Se dim W = 3 e $v_1, v_2, v_3 \in W$, então $[v_1, v_2, v_3] = W$. (e) (
- 12. Verifique que se $u, v \in V$ e $u = \lambda v$ para algum $\lambda \in \mathbb{R}$, então $\{u, v\}$ é L.D.
- 13. Encontre um sistema homogêneo cujo conjunto das soluções seja gerado por

$$\{(1,-2,0,3),(1,-1,-1,4),(1,0,-2,5)\}.$$

- 14. Suponha que $\{u, v, w\}$ é um conjunto L.I.. Então $\{u + v, u v, u 2v + w\}$ é L.I. ou L.D.?
- 15.
- 16. Seja $W = \left\{ \begin{bmatrix} 2a & a+2b \\ 0 & a-b \end{bmatrix} : a,b \in \mathbb{R} \right\}.$ (a) Mostre que W é subespaço vetorial de $M_{2\times 2}(\mathbb{R})$.
 (b) $\begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \in W$? $\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \in W$?
- 17. Seja $\mathbf{W}_1 = \{A \in M_{3\times 3}(\mathbf{IR}); A^{\intercal} = A\}$, isto é, \mathbf{W}_1 é o conjunto de todas as matrizes simétricas de ordem 3.
 - (a) Mostre que \mathbf{W}_1 é subespaço vetorial de $M_{3\times 3}(\mathbb{R})$.
 - (b) Determine uma base de W_1 .
- 18. Seja $\mathbf{W}_2 = \{A \in M_{3\times 3}(\mathbf{IR}; A^{\mathsf{T}} = -A)\}$, istoé, \mathbf{W}_2 é o conjunto de todas as matrizes anti-simétricas de ordem
 - (a) Mostre que \mathbf{W}_2 é subespaço vetorial de $M_{3\times 3}(\mathbb{R})$.
 - (b) Determine uma base de \mathbf{W}_2 .
- 19. Considerando \mathbf{W}_1 e \mathbf{W}_2 os sub $M_{3\times 3}(\mathbf{IR}) = \mathbf{W}_1 + \mathbf{W}_2$ e que $\mathbf{W}_1 \cap \mathbf{W}_2 = \{0\}$. subespacos dos exercícios anteriores mostre aue
- 20. Determine uma base e a dimensão do subespaço de $M_{3\times3}(\mathbb{R})$ formado por todas as matrizes diagonais.
- 21. Determine uma base e a dimensão do subespaço de $M_{3\times3}(\mathbb{R})$ formado por todas as matrizes triangulares superiores.
- 22. Determine a dimensão e uma base do espaço solução dos seguintes sistemas homogêneos:

$$\begin{cases} x + 2y + z - 3t = 0 \\ 2x + 4y + 4z - t = 0 \\ 3x + 6y + 7z + t = 0 \end{cases} \qquad \begin{cases} x + 2y + 2z - s + 3t = 0 \\ x + 2y + 3z + s + t = 0 \\ 3x + 6y + 8z + s + 5t = 0 \end{cases}$$

23. Sejam $U \in W$ os subespaços do \mathbb{R}^4 gerados por

$$\{(1,1,0,-1),(1,2,3,0),(2,3,3,-1)\}\ e\ \{(1,2,2,-2),(2,3,2,-3),(1,3,4,-3)\}\$$

respectivamente. Determine:

(a)
$$\dim U$$
; (b) $\dim W$; (c) $\dim(U \cap W)$ e (d) $\dim(U + W)$

- 24. Sejam $V = \mathbb{R}^4$, $W_1 = \{(a_1, a_2, a_3, a_4) \in V; a_1 + a_3 = 0\} \in W_2 = \{(b_1, b_2, b_3, b_4) \in V; b_2 + b_4 = 0\}.$
 - (a) Demonstrar que W_1 é subespaço de V.
 - (b) Determinar bases de W_1 , W_2 e $W_1 \cap W_2$.
 - (c) $W_1 + W_2 = V$? Justifique sua resposta.
- 25. Considere o subespaço W de \mathbb{R}^4 gerado pelos vetores $v_1 = (1, -1, 0, 0)$, $v_2 = (0, 0, 1, 1)$, $v_3 = (-2, 2, 1, 1)$, $v_4 = (1, 0, 1, 0)$. Pede-se:
 - (a) Determine uma base para W. Qual é a dim W?
 - (b) O vetor u = (2, -3, 2, 2) pertence a W?
 - (c) Determine um sistema linear homogêneo cujo espaço das solução seja W.
- 26. Seja $S = \{u, v, w, r, s, t\}$ um subconjunto L.I. de um espaço vetorial V. Seja $R \subset S$, R com 3 elementos. Determine $\dim[S]$, $\dim[R]$, $\dim([S] \cap [R])$ e $\dim([S] + [R])$.
- 27. Considere o subconjunto $\gamma = \{(1,0,2), (0,1,-1), (1,0,1)\}$ do \mathbb{R}^3 . Pede-se:
 - (a) Mostre que γ é uma base para o \mathbb{R}^3 e calcule a matriz mudança da base γ para a base canônica \mathcal{C} .
 - (b) Dado o vetor u = (1, 1, 1) determine suas coordenadas em relação à base γ .
- 28. No espaço vetorial \mathbb{P}_2 (**R**) dos polinômios em t de grau menor ou igual a 2, considere o seguinte conjunto

$$\mathcal{B} = \{1, 1-t, (1-t)^2\}.$$

- (a) Mostre que \mathcal{B} é uma base de \mathbb{P}_2 .
- (b) Encontre as coordenadas dos seguintes vetores com relação à base ordenada \mathcal{B} :
- (i) $v = 2 3t + t^2$;
- (ii) w = 3 2t.
- 29. Seja $V = \{p : [-1,1] \to \mathbb{R}; p(x) = a_3x^3 + a_2x^2 + a_1x + a_0\}$ e

$$S = \{ p \in V; \ p(-1) = 0 \ e \ p'(1) = 0 \}.$$

Mostre que S é um subespaço vetorial de V. Encontre uma base e a dimensão do subespaço S.

30. Sejam $U \in W$ os seguintes subespaços do \mathbb{R}^4 :

$$U = \{(x, y, z, w) \subset \mathbb{R}^4; \ y + z + w = 0\}$$

$$W = \{(x, y, z, w) \subset \mathbb{R}^4; \ x + y = 0, z = 2w\}$$

Determine uma base e a dimensão de $U, W, U \cap W$ e U + W.

31. Seja U o subespaço de \mathbb{R}^5 gerado por

$$\{(1, -1, -1, -2, 0), (1, -2, -2, 0, -3), (1, -1, -2, -2, 1)\}$$

e seja **W** o subespaço gerado por $\{(1, -2, -3, 0, -2), (1, -1, -3, 2, -4), (1, -1, -2, 2, -5)\}$.

- (a) Encontre dois sistemas homogêneos cujos espaços das soluções são U e W, respectivamente.
- (b) Encontre uma base e a dimensão de $U \cap W$.
- (c) Encontre a dimensão de $\mathbf{U} + \mathbf{W}$.
- 32. Se $[I]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$ e β é a base canônica ordenada de \mathbb{R}^3 , determine a base α .
- 33. Se $[I]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$ ache
 - $(a) \ [v]_{\alpha} \text{ onde } [v]_{\beta} = \left[\begin{array}{c} -1 \\ 2 \\ 3 \end{array} \right] \qquad (b) \ [v]_{\beta} \text{ onde } [v]_{\alpha} = \left[\begin{array}{c} -1 \\ 2 \\ 3 \end{array} \right]$

- 34. Sejam $\beta_1 = \{(2, -1), (3, 4)\}, \ \beta_2 = \{(1, 0), (0, 1)\}$ bases ordenadas de \mathbb{R}^2 . Determine $[I]_{\beta_1}^{\beta_2}$ e $[(5, -8)]_{\beta_1}$.
- 35. Sejam $\beta = \{(1,0),(0,1)\}, \ \beta_1 = \{(-1,1),(1,1)\}, \ \beta_2 = \{\left(\sqrt{3},1\right),\left(\sqrt{3},-1\right)\} \ e \ \beta_3 = \{(2,0),(0,2)\} \ bases$ ordenadas de \mathbb{R}^2 .
 - (a) Ache as matrizes de mudança de base:

 - (i) $[I]_{\beta}^{\beta_1}$ (ii) $[I]_{\beta_1}^{\beta}$ (iii) $[I]_{\beta_2}^{\beta}$ (iv) $[I]_{\beta_3}^{\beta}$ (b) Quais as coordenadas do vetor v=(3,-2) em relação à base: (i) β (ii) β_1 (iii) β_2 (iv) β_3

 - (c) As coordenadas de um vetor v em relação à base β_1 são dadas por $[v]_{\beta_1} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$. Quais são as coordenadas de v em relação à base:
 - (i) β $(ii) \beta_2$ (iii) β_3
- 36. Sejam $\beta_1 = \{(1,0),(0,2)\}, \beta_2 = \{(-1,0),(1,1)\}$ e $\beta_2 = \{(-1,-1),(0,-1)\}$ três bases ordenadas de \mathbb{R}^2 .
 - (i) $[I]_{\beta_1}^{\beta_2}$ (ii) $[I]_{\beta_2}^{\beta_3}$ (iii) $[I]_{\beta_1}^{\beta_3}$ (iv) $[I]_{\beta_1}^{\beta_2}[I]_{\beta_2}^{\beta_3}$ (b) Se for possível, dê uma relação entre estas matrizes de mudança de base.