

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 20

Дисциплина:	Функционально	е и логическое прогр	<u>раммирование</u>
Студент	ИУ7-62Б		Е.В. Брянская
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Прононовотон			Н.Б.Толпинская
Преподаватель)		_
			Ю.В.Строганов
		(Подпись, дата)	(И.О. Фамилия)

Задание

Используя хвостовую рекурсию, разработать эффективную программу (комментируя назначение аргументов), позволяющую:

- 1. Сформировать список из элементов числового списка, больших заданного значения
- 2. Сформировать список из элементов, стоящих на нечетных позициях исходного списка (нумерация от 0)
- 3. Удалить заданный элемент из списка (один или все вхождения)
- 4. Преобразовать список в множество (можно использовать ранее разработанные процедуры)

Убедиться в правильности результатов.

Для одного из вариантов вопроса и 1-ого задания составить таблицу, отражающую конкретный порядок работы системы.

Так как резольвента хранится в виде стека, то состояние резольвенты следует отображать в столбик: вершина — сверху! Новый шаг надо начинать с нового состояния резольвенты! Для каждого запуска алгоритма унификации, требуется указать № выбранного правила и дальнейшие действия — и почему.

```
domains
          lst = integer*.
predicates
          create_lst_morethan(lst, integer, lst).
          create_lst_morethan(lst, integer, lst, lst).
          create_lst_morethan_2(lst, integer, lst).
          create_lst_oddpos(lst, lst).
          create_lst_oddpos(lst, lst, lst).
          create_lst_oddpos_2(lst, lst).
          delete_element_all(lst, integer, lst).
          delete_element_all(lst, integer, lst, lst).
          delete_element_all_2(lst, integer, lst).
          create_set(lst, lst).
          create_set(lst, lst, lst).
          create_set_2(lst, lst).
clauses
          % create list from elements that more than number
          % 2. optimized
          create_lst_morethan_2([X|T], Num, [X|Res_tail]):-
                                                                     % X - 1st element [index = 0]
                                                                     % T - tail
                   X > Num,
                   create_lst_morethan_2(T, Num, Res_tail),
                                                                     % Num - control number
                                                                     % Res_tail - result tail
          create_lst_morethan_2([_|T], Num, Res_tail) :-
                   create_lst_morethan(T, Num, Res_tail),
          create_lst_morethan_2([], _, []) :- !.
          % 1. non-optimized
          create\_lst\_morethan([X|T], Num, Res\_temp, Res):-
                                                                     % X - 1st element [index = 0]
                                                                     % T - tail
                   X > Num.
                   Temp = [X|Res\_temp],
                                                                     % Num - control number
                   create_lst_morethan(T, Num, Temp, Res),
                                                                     % Res_temp - temporary list
                                                                     % Res - result
          create_lst_morethan([_|T], Num, Res_temp, Res) :-
                                                                     % Temp - temporary var
                   create_lst_morethan(T, Num, Res_temp, Res), % Lst - list
          create_lst_morethan([], _, Res, Res) :- !.
```

```
create lst morethan(Lst, Num, Res) :-
         create_lst_morethan(Lst, Num, [], Res),
% create list from elements that stands in the odd positions
% 1. non-optimized
create_lst_oddpos([_, X|T], Res_temp, Res):-
                                                                    % X - 2nd element [index = 1], T - tail
         Temp = [X|Res\_temp],
                                                                    % Res_temp - temporary list, Res - result
         create_lst_oddpos(T, Temp, Res),
                                                                    % Temp - temporary var
create_lst_oddpos([_], Res, Res) :- !.
create_lst_oddpos([], Res, Res) :- !.
create_lst_oddpos(Lst, Res) :-
         create_lst_oddpos(Lst, [], Res),
% 2. optimized
create_lst_oddpos_2([_, X|T], [X|Res_tail]):-
                                                                    % X - 2nd element [index = 1], T - tail
                                                                    % Res_tail - result list
         create_lst_oddpos_2(T, Res_tail),
create_lst_oddpos_2([_], []) :- !.
create_lst_oddpos_2([], []) :- !.
% delete element (all occurrence)
% 1. non-optimized
                                                      % X - 1st element [index = 0], T - tail, Num - control number
delete\_element\_all([X|T], Num, Res\_temp, Res):-
                                                          % Res_temp - temporary list, Res - result
         X = Num,
         delete_element_all(T, Num, Res_temp, Res),
                                                          % Lst - list
                                                          % Temp - temporary var
delete_element_all([X|T], Num, Res_temp, Res):-
         Temp = [X|Res\_temp],
         delete_element_all(T, Num, Temp, Res),
delete_element_all([], _, Res, Res) :- !.
delete_element_all(Lst, Num, Res) :-
         delete_element_all(Lst, Num, [], Res),
% 2. optimized
delete_element_all_2([Num|T], Num, Res_tail) :-
                                                                    % Num - control number
         delete_element_all_2(T, Num, Res_tail),
                                                                    % Res_tail - result list
                                                                    % X - 1st element [index = 0]
delete_element_all_2([X|T], Num, [X|Res_tail]):-
                                                                    % T - tail
         delete_element_all_2(T, Num, Res_tail),
delete_element_all_2([], _, []) :- !.
% create set from list
% 1. non-optimized
create_set([X|T], Res_temp, Res) :-
                                                 % X - 1st element [index = 0], T - tail, Res_temp - temporary list
         Temp = [X \mid Res\_temp],
                                                 % Res - result
         delete_element_all(T, X, T_cor),
                                                 % Temp - temporary var
                                                 \mbox{\% T\_cor} - tail after delelition all elements = \mbox{X}
         create_set(T_cor, Temp, Res),
         !.
                                                 % Lst - list
create_set([], Res, Res) :- !.
create\_set(Lst, Res) :- create\_set(Lst, [], Res).
% 2. optimized
create_set_2([X|T], [X|Res_tail]) :-
                                                          % X - 1st element [index = 0], T - tail
         delete_element_all_2(T, X, Temp),
                                                          % Res_tail - result list
         create_set_2(Temp, Res_tail),
                                                          % Temp - tail after delelition all elements = X
         !.
```

```
create_set_2([], []) :- !.

goal

%create_lst_morethan([10, 0, -5, 0, 3], 0, Result).

%create_lst_morethan_2([10, 0, -5, 0, 3], 0, Result).

%create_lst_oddpos([10, 0, -5, 1, 9, -9], Result).

%create_lst_oddpos_2([10, 0, -5, 1, 9, -9], Result).

%delete_element_all([10, 5, -3, 0, 5], 5, Result).

%delete_element_all_2([10, 5, -3, 0, 5], 5, Result).

%create_set([1, 1, 1, 5], Result).

%create_set_2([1, 1, 1, 5], Result).
```

Текст процедуры:

```
      create_lst_morethan_2([X|T], Num, [X|Res_tail]) :-
      % X - 1st element [index = 0]

      X > Num,
      % T - tail

      create_lst_morethan_2(T, Num, Res_tail),
      % Num - control number

      !.
      % Res_tail - result tail

      create_lst_morethan(T, Num, Res_tail),
      !.

      create_lst_morethan_2([], _, []) :- !.
```

Bonpoc: create_lst_morethan_2([10, 0, -5], 0, Result).

		сравниваемые термы,	
		подстановка	
0.	create_lst_morethan_2([10, 0, -5], 0, Result)		
1.	10 > 0, create_lst_morethan_2([0, -5], 0, Res_tail_1), !	create_lst_morethan_2([10, 0, -5], 0, Result) = create_lst_morethan_2([X_1 T_1], Num_1, [X_1 Res_tail_1]) (1) Удача Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1]}	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
2.	create_lst_morethan_2([0, -5], 0, Res_tail_1), !	10 > 0 Удача (истинное логическое выражение) Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1]}	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
3.	0 > 0, create_lst_morethan_2([-5], 0, Res_tail_3), !,	create_lst_morethan_2([0, -5], 0, Res_tail_1) = create_lst_morethan_2([X_3 T_3], Num_3, [X_3 Res_tail_3]) (1) Удача Подстановка:	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки

		[(i, 1, 10 = 1, 10 = 3 · · ·	<u> </u>
		{X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], X_3=0, T_3=[-5], Num_3=0, Res_tail_1=[0 Res_tail_3]}	
4.	0 > 0, create_lst_morethan_2([-5], 0, Res_tail_3), !,	0 > 0 Неудача (ложное логическое выражение)	Откат (к предыдущему состоянию резольвенты)
5.	create_lst_morethan_2([0, -5], 0, Res_tail_1), !	Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1]}	
6.	create_lst_morethan_2([-5], 0, Res_tail_6), ! !	create_lst_morethan_2([0, -5], 0, Res_tail_1) = create_lst_morethan_2([_ T_6], Num_6, Res_tail_6) (2) Удача Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6}	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
7.	-5 > 0, create_lst_morethan_2([], 0, Res_tail_7), !, !,	create_lst_morethan_2([-5], 0, Res_tail_6) = create_lst_morethan_2([X_7 T_7], Num_7, [X_7 Res_tail_7]) (1) Удача	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
		Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6, X_7=-5, T_7=[], Num_7=0, Res_tail_6=[- 5 Res_tail_7]}	
8.	-5 > 0, create_lst_morethan_2([], 0, Res_tail_7), !, !,	-5 > 0 Неудача (ложное логическое выражение)	Откат (к предыдущему состоянию резольвенты)
9.	create_lst_morethan_2([-5], 0, Res_tail_6), !, !	Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6}	
10.	create_lst_morethan_2([], 0, Res_tail_10), !, !,	create_lst_morethan_2([-5], 0, Res_tail_6) = create_lst_morethan_2([_ T_10], Num_10, Res_tail_10) (2)	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки

11.	create_lst_morethan_2([], 0, Res_tail_10), !,	Удача Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6, T_10=[], Num_10=0, Res_tail_6=Res_tail_10} create_lst_morethan_2([], 0, Res_tail_10) = create_lst_morethan_2([X T], Num,	Прямой ход, переход к следующему правилу.
	!, ! create_lst_morethan_2([], 0,	[X Res_tail]) (1) Неудача (пустой список) create_lst_morethan_2([], 0, Res_tail_10)	Прямой ход, переход к
	Res_tail_10), !, !, !	= create_lst_morethan_2([_ T], Num, Res_tail) (2) Неудача (пустой список)	следующему правилу.
	, , , 	create_lst_morethan_2([], 0, Res_tail_10) = create_lst_morethan_2([], _, []) Удача Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6, T_10=[], Num_10=0, Res_tail_6=Res_tail_10, Res_tail_10=[]}	Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
12.	!, !, !	! Удача Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6, T_10=[], Num_10=0, Res_tail_6=Res_tail_10, Res_tail_10=[]}	Отсечение (системный предикат отсечения) Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
13.	!, !	! Удача Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6, T_10=[], Num_10=0, Res_tail_6=Res_tail_10,	Отсечение (системный предикат отсечения) Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки

		Res_tail_10=[]}	
14.	!	! Удача Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6, T_10=[], Num_10=0, Res_tail_6=Res_tail_10, Res_tail_10=[]}	Отсечение (системный предикат отсечения) Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки
15.	Резольвента пуста	! Удача Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6, T_10=[], Num_10=0, Res_tail_6=Res_tail_10, Res_tail_10=[]}	Отсечение (системный предикат отсечения) Прямой ход Изменение резольвенты: 1. применение редукции 2. применение подстановки Вывод: Result = [10] Откат (пустая резольвента)
16.	create_lst_morethan_2([], 0, Res_tail_10), !, !,	Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6, T_10=[], Num_10=0, Res_tail_6=Res_tail_10}	Откат (отсечение)
17.	create_lst_morethan_2([-5], 0, Res_tail_6), !,	Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1], T_6=[-5], Num_6=0, Res_tail_1=Res_tail_6}	Откат (отсечение)
18.	create_lst_morethan_2([0, -5], 0, Res_tail_1), !	Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1]}	Откат (отсечение)
19.	10 > 0, create_lst_morethan_2([0, -5], 0, Res_tail_1), !	Подстановка: {X_1=10, T_1=[0, -5], Num_1=0, Result=[10 Res_tail_1]}	Откат (унификация с константой)
20.	create_lst_morethan_2([10, 0, -5], 0, Result)	Подстановка: {}	Завершение работы

Вывод: эффективность программы достигнута за счёт хвостовой рекурсии, отсечений и расположения знания в БЗ.

Вопросы

1. <u>Как организуется хвостовая рекурсия в Prolog?</u>

При хвостовой рекурсии все действия сделаны до момента выхода из неё, вызов единственен. Выход из рекурсии организуется с помощью отсечения.

2. Какое первое состояние резольвенты?

Начальное состояние резольвенты – вопрос.

3. Каким способом можно разделить список на части, какие, какие требования к частям?

Список можно разделить на голову и хвост, с помощью символа | ([H|T]). Голова (H) должна состоять из не менее, чем одного элемента, а хвост (T) обязательно должен быть одним списком.

4. Как выделить за один шаг первые два подряд идущих элемента списка? Как выделить первый и третий элемент за один шаг?

[E1, E2|_] – первые два подряд идущих элемента списка

[Е1, _, Е3 |_] – первый и третий элемент списка

5. Как формируется новое состояние резольвенты?

Резольвента меняется в два этапа:

- 1. В текущей резольвенте выбирается одна из целей, для неё выполняется редукция
- 2. Затем к резольвенте применяется подстановка, полученная, как наибольший общий унификатор цели и заголовка сопоставимого с ней правила.
- 6. Когда останавливается работа системы? Как это определяется на формальном уровне?

На формальном уровне это определяется тем, что в резольвенте находится исходный вопрос, для которого вся Б3 просмотрена. То есть система завершает работу в случае, когда все возможные ответы рассмотрены.