合成器拔掉插头

轮廓

PCM1723

★ 做一名读者 18

关于这个博客

搜索

2014年4月10

FPGA版FM音源(28)——49kHz→44.1kHz采样率转换器(1)

 \Box

FPGA版FM音源

对于YMF262(OPL3)等使用14.31818 MHz(NTSC彩色副载波频率的4倍)作为主时钟(以下简称"14 MHz OPL3")的FM音源芯片,输出采样频率为主时钟的1/288时钟。

14.31813 [兆赫] / 288 = 49.7159 [千赫]

它变成了。

另一方面, 44.1 kHz 数字音频时钟

 $33.8688 \text{ [MHz]} = 768 \times 44.1 \text{ [kHz]}$

对于YMF715(OPL3-SA)、YMF289(OPL3-L)、YMF278(OPL4)等(以下简称"33 MHz OPL3"), 输出采样频率是主时钟的1/684。

33.8688 [兆赫] / 684 = 49.5158 [千赫]

它成为了。

此外, YMF289 (OPL3-L)、YMF278 (OPL4) 等还具有数字接口, 可输出到采样率为 44.1 kHz 的 串行DAC 。

为此, 包含一个具有线性插值功能的 49.5158 kHz 至 44.1 kHz 采样率转换器 。

到现在为止,我还隐隐约约地认为SRC电路相当复杂,但仔细考虑后,我发现其实并没有那么复杂。

首先, 采样频率之比为

49.5158 [kHz] = 33.8688 [MHz] / 684

= 33.8688 [MHz] $/ (2 \times 3 \times 19)$

44.1 [kHz] = 33.8688 [MHz] / 768

 $= 33.8688 [MHz] / (2 \times 3)$

49.5158 [kHz] : 44.1 [kHz] = 64 : 57

因此, 数字"64"和"57"的比例并不是不必要的大。

如果把采样频率转换写得形式化的话, 就会像下图这样。通过在相邻样本之间填充 56 个"零", 将 fs = 49.5158 kHz 的输入样本上采样至 2.8224 MHz 的 57 倍速率, 通过以该采样率

最新文章

搜索文章

欧文 SDS1104 (4)

Q

欧文 SDS1104 (3)

欧文 SDS1104 (2)

欧旺 SDS1104 (1)

4th VCF CEM3320/V3320 (24) --- CV 漏电校正 (3)

最近的评论

____ pcm1723 模拟合成器 VCO 模块(3... (353 天前)

Sabotenoy 模拟合成器 VCO 模块(3... (1年以前)

1 个 带 ICSP 连接的 PIC32 MX 框架 (1年以前)

SiGe CQ-FRK-FM3 板用 FM 音源模块... (1年以前)

hrnbrain OWON SDS1104(4) (1年以前)

每月存档

▼ 2022 (4) 2022年5月 (4)

▶ 2021 (6)

▶ 2020 (27)

▶ 2019 (27)

▶ 2018 (59)

运行的 LPF 进行去混叠,并通过 1 / 如果这个LPF是FIR(有限脉冲响应),则不需要记住 2.8224MHz速率下的信号,只需要进行下采样时所需的计算。通过"线性插值",将 fs = 49.5158 kHz 处的两个样本和两个线性插值滤波器系数相乘两次并相加一次,以获得 fs = 44.1 kHz 处的一个样本。该过程的框图如下所示。OPL3可以输出到A、B、C、D四个通道,但下图只显示了一个通道。虚线下方的部分是64fs串行DAC的接口电路,在实际芯片中它是 48fs的电路,但我稍后会展示。在48fs的电路中,SRC时钟部分有点混乱。右上角虚线包围的区域是线性插值的乘积和计算块,计算频率为44.1kHz。使用33.8688 MHz主时钟来计算44.1 kHz是768个时钟,因此不需要使用"并行乘法器"进行乘法,使用重复"移位和加法"操作的普通乘法器就足够了。线性插值系数发生器始终以 2.8224 MHz 的速率生成系数(无论它们是否用于后续计算)。这两个系数产生重复序列 57,如下所示。新样本的系数 coef0 为

 $0.0 = 0/57, 1/57, 2/57, \dots, 55/57, 56/57$

这可以通过在下一个采样到达时以 49.5158 kHz 速率重置累加器并每 2.8224 MHz 时钟添加 1/57 来实现。

旧样本的系数 coef1 是

▶ 2017 (53))	
▶ 2016 (51)		
▶ 2015 (87))	
► 2014 (67))	
► 2013 (58))	
2012 (78)		
2011 (79))	
► 2010 (10°	7)	
► 2009 (10	2)	
► 2008 (17-	4)	

类别

▶ 1 (1)

测量	量仪	器((5)

▶ 2007 (32)

SP)	杜	伊	诺	(7	3)

V3320 (24)

VCF (57)

LT香料 (21)

杂项 (58)

AC97 (17)

核 (53)

STM32F4 (83)

SPDIF (39)

希尔伯特转换器 (13)

FM音源 (38)

PSoC5LP (76)

联合开发银行 (15)

Verilog-HDL (2)

ICL7137 (5)

测量 (18)

香料 (37)

V3340 (1)

压控振荡器 (133)

模拟合成电路 (138)

反对数 (26)

 $1.0 = 57/57, 56/57, 55/57, \dots, 2/57, 1/57$

, 这可以通过在下一个采样以 49.5158 kHz 速率到达时将累加器设置为 1.0 并每 2.8224 MHz 时钟减去 1/57 来实现。

或者,

coef1 = 1.0 - coef0coef0 = 1.0 - coef1

从关系式中,也可以只生成coef0或coef1中的一个,然后用1.0减去另一个即可求得。 像真正的芯片一样, 作为串行DAC接口, 通过以下配置可以实现48 clk/帧。为了获得 48fs 时 钟, 此配置使用分支时钟进行 57 倍上采样和 1/64 下采样, 而不是使用常见的 2.8224 MHz 时钟。

PSoC4 (40)

无限比例 (10)

dsPIC (28)

PSoC1 (6)

开关电容电路 (5)

1/N 倍频程滤波器 (13)

数模转换器 (43)

通用模拟电路(6)

生产 (12)

VCA (5)

EG (7)

操作 (14)

数字信号处理 (15)

蟒蛇 (3)

科学实验室 (3)

MIDI2CV (26)

Windows编程(3)

Hatena Blog シンセ・アンプラグド

(48fs)

PCM1723 9年前 做一名读者

相关文章

2014-08-03

FPGA版FM音源(37)——YMF297(OPN3/OPL3)测量(2)

完成Nucleo F401RE和YMF297之间的接线并安装寄存器...

2014-07-24

FPGA版FM音源(36)——YMF297(OPN3/OPL3)测量(1)

这次我们要说的是从"FM音源扭蛋"中获得的YMF297...

2014-04-16

FPGA版FM音源(29)--49kHz→44.1kHz采样率...

如何将采样频率从 49.5158 kHz 转换为 44.1 kHz...

2010-12-30

FPGA版FM音源(七)——YMF262电路(二)

S/PDIF输出版本YMF262电路需要大量新硬件...

2010-12-21

FPGA版FM音源(六)——YMF262电路(一)

13.824 MHz 主设备, 在 YMF262 (OPL3) 上运行 fs = 48 kHz...

明星 (17)

USB (27)

EZUSB (4)

VS1053b (12)

78K0 (2)

冷火 (16)

SX-150 (33)

PX-150 (17)

LPC2388 (4)

XR2206 (15)

帕库里诺 (31)

西格玛德尔塔调制 (13)

斯特莱勒近似 (4)

SSM2164 (8)

V2164 (8)

通用SS (13)

软锅 (3)

写一个**评论**

« FPGA 版本 FM 音源 (29) -- 49 kHz → 44.1 ... FPGA版FM音源(27)——YMF262 接口…… » 图片 (32) JALv2 (1) STM8S (16) TSP法(3) SH-2A (24) 噪音发生器 (13) STM32 (18) SD/MMC (5) 编码理论(4) 语音分配 (9) FPGA版FM音源(88) 山下合成器 (2) RX62N (9) 施罗德法 (1) 合唱团 (16) 混响 (1) 圆周率 (15) PIN 码 (10) ATtiny10 (23) 调压器 (44) 调频3 (9) 披萨工厂8 (3) 皮质-M0 (28) LPC11xx (33) NUC120 (8) PIC32MX (45) USB MIDI 主机 (16) USB 集线器 (4) V-USB (1) LPC8xx (20) LPC11U35 (4) TX7 (13) YMF297 (23) ADC (11) USB-MIDI (20)

里博孔 (3)

接在瓶子里也没关系(2)
中国剩余定理 (8)
引导加载程序主机 (6)
德国足协 (21)
PCM5102A (3)
村井盒 (23)
皮质-M4 (3)
皮质-M3 (2)
ESP-WROOM-32 (4)

让我们开始创建 Hatena 博客吧!

pcm1723 正在使用 Hatena 博客。您想开始使用 Hatena 博客吗?

创建 Hatena 博客(免费)

Hatena 博客是什么?

合成器拔掉插头

由Hatena 博客提供支持 | 报告博客