电子科技大学

《无线链路传输》实验报告

实验 3:	调制解调实验	
学生姓名:	周子涵	学号: <u>2018011218014</u>
日期:	2021. 5. 21	

一、实验目的

- 1、了解调制在通信系统中的作用;
- 2、掌握常见的数字调制方法;
- 3、了解常见调制方法的解调方法。

二、实验原理

1. 调制的基本概念:

射频信号被用来传递信息,信息有可能是音频,数据或者其他格式,该信息被调制(modulate)到载波信号上,并通过射频传送到接收器,在接收器端,信息从载波上分离出来,这个过程被称为解调(demodulation)。而载波本身并不带有任何信息。调制方法多种多样,简单的一般有幅度调制、频率调制和相位调制。

载波

无线通信的基础是载波,一般由在发射器部分产生,并不带有任何信息,在接收器部分也作为不变的信号出现。

调幅

调幅通过调整信号幅度大小传递信息。最简单的调制是 00K (on - off keying, 开关键控), 载波以开关的形式传递信息。在音频或其他领域应用更为常见的是,整个信号的幅度通过载波体现,这种调制方式被称为幅度调制 (AM)。

调频

载波信号被调制后, 频率会随着信号源电压变化, 通过频率变化承载数据。FM 的一个重要的优势是不会受到源信号的电平变化的干扰, 而且抗干扰的能力也强。

调相

相位调制是另一种广泛采用的调制技术,特别是在数据传输的应用中。因为相位和频率是相辅相成的(频变是相变的一种形式),两种调制方法可以用角度调制(angle modulation)来概括。

2、正交幅度调制:

而在移动通信系统中,广泛应用的数据传输方法是正交幅度调制(QAM)。被调制后输出信号在幅度和相位都有改变。因此不管幅度还是相位都会进行变化,所以可以看成是混合幅度和相位的调制。

下图 4bit 的数据可以分为一组并用图中的幅度和相位组合来表示,形成16QAM。

图 3-1 16QAM 星座图

尽管 QAM 通过对幅度和频率的调制增加了传输效率,但比较容易受到噪声的影响,因为状态点距离很近,所以一个比较小的噪声就有可能将一个星座点移到错误的位置。第二个弱点也和幅度分量相关,相位调制和频率调制无需使用线性放大器;而 QAM 具有幅度分量,所以必须用线性放大。不幸的是,线性放大器一般功耗较高且效率不高。

3、正交幅度调制的解调:

定义一个含有 m 个比特的编码序列,在 i 时刻,该序列可表示为 $\{b_{i,1},b_{i,2},...,b_{i,m}\}$ 。采用 M-QAM($M=2^m$)调制方案,该序列可被映射为一个复值符 号 $a(i)=a_I(i)+ja_Q(i)$,在星座图上可表示为点 $(a_I(i),a_Q(i))$,其中 $a_I(i)$ 、 $a_Q(i)$ 分别表示星座图的正交分量和同相分量。

用 $H_{ch}(i)$ 表示信道频率响应,w(i)表示高斯白噪声,设其均值为 0,方差为 $\sigma^2/2$,那么经 M-QAM 调制的信号经信道传输后,在接收端可表示为:

$$r(i) = H_{ch}(i)a(i) + w(i)$$
 (3-1)

经过信道估计和均衡处理后,理想条件下的接收信号应该为:

$$y(i) = a(i) + w(i) / H_{ch}(i) = a(i) + w'(i)$$
 (3-2)

其中w(i)仍为高斯白噪声,方差为 $\sigma^2 = \sigma^2/|H_{ch}(i)|^2$ 。

最小欧氏距离软判决

由公式(3-2)可知,在a(i)=a的条件下,r(i)是一个复高斯随机变量,其概率表达式可表示为:

$$p[r(i)/a(i) = a] = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{\frac{-1}{2\sigma^2} |r(i) - H_{ch}(i)a|^2\right\}$$
(3-3)

将 $r(i) = y(i) \times H_{ch}(i)$ 带入式中, 可得:

$$p[r(i) \mid a(i) = a] = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{ \frac{-\left|H_{ch}(i)\right|^2}{2\sigma^2} \left|y(i) - a\right|^2 \right\}$$
(3-4)

由于 $b_{i,k}=0$ 和 $b_{i,k}=1$ 能够将星座图中的M个点分成两个集合,定义这两个集合为 $S_k^0(i)$, $S_k^1(i)$ 。由软信息的定义可知,相应比特的对数先验似然比LLR可表示为:

$$LLR(b_{i,k}) \square \log \frac{P[b_{i,k} = 1 \mid r(i)]}{P[b_{i,k} = 0 \mid r(i)]} = \log \frac{\sum_{a \in S_k^1(i)} P[a(i) = a \mid r(i)]}{\sum_{a \in S_k^0(i)} P[a(i) = a \mid r(i)]}$$
(3-5)

当 $LLR(b_{i,k})$ 为正数时,表明 $b_{i,k}$ 为 1 的概率大于 $b_{i,k}$ 为 0 的概率, $LLR(b_{i,k})$ 值越大意味着 $b_{i,k}$ 取 1 的后验概率越大。

在发送符号等概率的情况下,利用贝叶斯公式可以得到:

$$LLR(b_{i,k}) = \log \frac{\sum_{a \in S_k^1(i)} P[r(i) \mid a(i) = a]}{\sum_{a \in S_k^0(i)} P[r(i) \mid a(i) = a]}$$
(3-6)

利用近似公式 $\log \sum_{i} e^{x_i} \approx \max_{i}(x_i)$, 将式子化简后可得:

$$LLR(b_{i,k}) \approx \log \frac{\max_{a \in S_k^1(i)} P[r(i) \mid a(i) = a]}{\max_{a \in S_k^0(i)} P[r(i) \mid a(i) = a]}$$

$$(3-7)$$

将公式(3-3)带入其中,可得 $LLR(b_{i,k})$ 的近似计算公式为:

$$LLR(b_{i,k}) = \frac{\left|H_{ch}(i)\right|^2}{2\sigma^2} \left\{ \min_{a \in S_k^0(i)} |y(i) - a|^2 - \min_{a \in S_k^1(i)} |y(i) - a|^2 \right\}$$
(3-8)

这种计算软信息的方法叫做最小欧氏距离软判决度量,其物理意义是分别计算接收信号 y(i) 与星座图 $S_k^0(i)$ 、 $S_k^1(i)$ 集合中所有点的距离,取两个最小的距离的差值。这种方法相对于直接计算 LLR 的方法省去了指数运算。我们将得到的软信息进行判决,就可以得到我们原始传输的信号比特了。然而上述方法的硬件实现复杂,所以硬件实现常用到的是基于边界判决的算法,这就由同学们课后自行了解。

三、实验步骤

1、如下图 3-1 所示搭建仿真实验模型:对比分析经过噪声、多径干扰、迫零均衡处理等过程前后 QAM 调制星座图发生的变化。

图 3-1 系统结构框图

系统整体如下图所示:

图 3-2 系统整体框图

- 2、设置器材参数: (关于器材使用方法可以参考器材说明)
- **a. 随机 M 进制序列模块:** 序列数据的长度设置为 1000, 序列数据的进制数设置 为 4;

图 3-3 随机 M 进制序列设置

b. QAM 调制模块: 输入数据的进制数设置为 4;

基本属性	ŧ			
属性名		я Е	际	
标签	U4		Υ	â
名称	QAM调制		Υ	Ţ
模型参数	X			
属性名	值	単位	显	-
М	4		N	

图 3-4 QAM 调制模块设置

c. 加性高斯白噪声信道模块: 设置信噪比为 15dB;

	属性	帮	助
基本属性	±		
属性名		5	訓
标签	U7		Υ
名称	加性高斯白噪	声信	Υ
模型参数	<u> </u>		
属性名		单位	显示
	30	dB	N -

图 3-5 加性高斯白噪声信道设置

d. 多径干扰模块: 多径信道的冲激响应设置为[0.02 0.05 0.1 -0.2 1 -0.2 0.1 0.05 0.02];

Į.	胜	帮	b
基本属性			
属性名		重	訮
标签	U2		Υ
名称	多径干扰		Y
模型参数			
I STATE OF THE STA	値	单位	显示
属性名	100	100000	

图 3-6 多径干扰模块设置

e. 追零均衡模块: 信道的冲激响应设置为[0.02 0.05 0.1 -0.2 1 -0.2 0.1 0.05 0.05 0.02]; 均衡器抽头数目设置为 30;

属	生	帮!	b
基本属性			
属性名		P	际
标签	U10		Y
名称	迫零均衡		Υ
M. House Co.			
Water of Street			
模型参数 属性名	值	单位	显示
	值 [0.02,0.05,		显示 N

图 3-7 迫零均衡模块设置

f. QAM 解调模块: 输入数据的进制数设置为 4;

图 3-8 QAM 解调设置

g. 星座图:数据长度设置为1000,图像宽度设置为10,图像高度设置为8;

展	性	帮!	b
基本属性			
属性名		2	际
标签	U15		Υ
名称	星座图		Υ
		- 1/-	
模型参数		- !/-	
模型参数属性名	值	单位	显示
	值 1000	单位	显示 N ⁴
属性名	T. 10	单位 cm	W 10.00 (2.5)

图 3-9 QAM 解调设置

- 3、点击●按钮运行仿真,观察输出波形及误码率统计。
- 4、将**高斯噪声模块**的输入信噪比设置为 15dB, 其余不变, 运行仿真, 观察输出波形及误码率统计。
- 5、将**随机 M 进制序列、QAM 调制、QAM 解调**等模块的数据进制数改为 16, 其余不变,运行仿真,观察输出波形及误码率统计。
- 6、将**随机 M 进制序列、QAM 调制、QAM 解调**等模块的数据进制数改为 64, 其余不变,运行仿真,观察输出波形及误码率统计。
- 7、选做部分。边界判决算法是实际硬件系统中常用的一种 QAM 解调方案, 其译码简单, 运算不复杂, 性能也比较优异, 故使用广泛。尝试完成采用边界判决算法的 64QAM 仿真代码。

四、实验结果与结论

发端 64QAM 调制星座图:

收端 64QAM 星座图@30dB:

收端 64QAM 星座图@15dB:

发端 16QAM 调制星座图:

收端 16QAM 星座图@30dB:

收端 16QAM 星座图@15dB:

发端 4QAM 调制星座图:

收端 4QAM 星座图@30dB:

收端 4QAM 星座图@15dB:

实验结论:

由上图可以知道,64QAM 调制同时利用信号的相位和幅度变量来传递数据,一个符号可以携带6bits信息。而不采用调制时,一个符号仅能传递1bit信息。当采用了QAM调制时,信道得到了充分了利用。我们可以观察到输出误码率为0且过信道后星座图星座点分明,没有交叠现象,说明信息传输正确。

在相同的信噪比下,64QAM 星座图散乱严重,误码率为1.13*10⁻¹,数据无法正常解调;16QAM 星座图部分发散,误码率为5.0*10⁻³,数据勉强能够解调;QPSK 星座图较聚合,误码率为7.5*10⁻⁵,数据解调正确。由以上我们可以知道虽然高阶调制可以提高信道的利用率,但是其对噪声和多径变得更加敏感。