

Cartesian Products

1 Why

We want to handle objects composed of elements from different sets.

2 Definition

Let A and B be sets. Construct a new set that is the ordered pairs of elements of A and B: the first element of the pair is an element of A and the second element of the pair is an element of B. The **cartesian product** of A with B is the set of all such ordered pairs.

We call an ordered pair **tuple**. Two tuples are equal if they have equal elements in the same order. Because of the ordering, if $A \neq B$, the cartesian product of A with B is not the same as the cartesian product of B with A. Only in the case that A = B does this symmetry hold.

2.1 Notation

For sets A and B we denote the cartesian product of A with B by $A \times B$. We read the notation $A \times B$ as "A cross B." We denote elements of $A \times B$ by (a,b) with the understanding that $a \in A$ and $b \in B$. In this notation, we can write the observation that $A \times B \neq B \times A$, unless A = B.