Information Systems Security Exercices Series 1 Correction - Modular Arithmetics Reminders

September 22nd, 2021

1. Compute:

- $\bullet \ 4+3 \ \operatorname{mod} \ 7=0$
- $\bullet \ 4-3 \ \operatorname{mod} \ 7=1$
- $\bullet \ 4*3 \mod 7 = 12 \mod 7 = 5$
- $\bullet \ 5*3*1 \ \operatorname{mod}\ 8 = 7$
- $-44 \equiv -2 \equiv 5 \mod 7$

2. In \mathbb{Z}_7 , compute :

	+	0	1	2	3	4	5	6
	0	0	1	2	3	4	5	6
	1	1	2	3	4	5	6	0
	2	2	3	4	5	6	0	1
•	3	3	4	5	6	0	1	2
	4	4	5	6	0	1	2	3
	5	5	6	0	1	2	3	4
	6	6	0	1	2	3	4	5
	*	0	1	2	3	4	5	6
	*	0	1 0	2	3	4 0	5	6
	0	0	0	0	0	0	0	0
•	0	0	0	0 2	0 3	0 4	0 5	0 6
•	0 1 2	0 0 0	0 1 2	0 2 4	0 3 6	0 4 1	0 5 3	0 6 5
•	$\begin{array}{c c} 0\\ 1\\ \hline 2\\ \hline 3 \end{array}$	0 0 0	0 1 2 3	0 2 4 6	0 3 6 2	0 4 1 5	0 5 3 1	0 6 5 4

• -	\mathbf{number}	0	1	2	3	4	5	6
	additive inverse	0	6	5	4	3	2	1

• -	number	0	1	2	3	4	5	6	
	multiplicative inverse	none	1	4	5	2	3	6	

- 3. $(\mathbb{Z}_7,+)$ is a group : addition is associative, neutral element is 0, closure is respected (see exercise 2, additive table), and they all have an inverse (see exercise 2, additive inverse)).
- 4. $(\mathbb{Z}_8,*)$ is not a group, as some numbers do not have a multiplicative inverse : 0, 2, 4 and 6.
- 5. $(\mathbb{Z}_8^*,*)$ is a group: multiplication is associative, neutral element is 1, closure is respected, and they all have a multiplicative inverse.
- 6. $(\mathbb{Z}_n^*,*)$ is a group: multiplication is associative, neutral element is 1, closure is respected (as the product of two elements that do not divide n cannot produce an element that divides n).

 The only tricky part is the inverse. But we know it exists: As \mathbb{Z}_n^* is the set of $a \in \mathbb{Z}$ such that pgdc(a,n) = 1, then by Euler's theorem, $a^{\Phi(n)} \equiv 1 \mod n$, which can be written as $a \cdot a^{\Phi(n)-1} \equiv 1 \mod n$.

 So "a" does indeed have an inverse: $a^{-1} = a^{\Phi(n)-1} \mod n$ (and since closure is respected, $a^{Phi(n)-1}$ is in this set as it is just the product of "a" many times).
- 7. Give the order of:
 - $2^1 = 2 \mod 7$ $2^2 = 4 \mod 7$ $2^3 = 8 \mod 7 = 1$ So $ord_7(2) = 3$.
 - With the successive powers of 3, we have : 3, then $3^2 \mod 7 = 2$, then 6, then 4, then 5, and finally $3^6 \mod 7 = 1$. So the order of 3 mod 7 is : $ord_7(3) = 6$.
 - Same reasoning: We have 3, then 9, then 7, then 1, which gives us $ord_{10}(3) = 4$.
- 8. Thanks to the previous exercise, we know that 3 is a primitive root modulo 7 (generator of \mathbb{Z}_7^*).
- 9. 1 is not (obviously). 2 is a primitive root modulo 11 (as its successive powers modulo 11 are: 2-4-8-5-10-9-7-3-6-1). 3 is not (3-9-5-4-1). 4 is not (4-5-9-3-1). 5 is not (5-3-4-9-1). 6 is a primitive root (6-3-7-9-10-5-8-4-2-1). 7 is also one (7-5-2-3-10-4-6-9-8-1), as well as 8 (8-9-6-4-10-3-2-5-7-1). Finally, 9 is not a primitive root (9-4-3-5-1), and 10 is not one either (10-1).

The primitive roots modulo 11 (generators of \mathbb{Z}_{11}^*) are 2, 6, 7 and 8.

10. First, we need to find the elements that are co-prime with 12. These elements are 1, 5, 7 and 11 (as 2,3,4,6,8,9,10 all divide 12).
Then 1 is obviously not a primitive root. Neither is 5 (successive powers are 5-1). Idem for 7 (7-1) and 11 (11-1).
So there is no primitive root modulo 12.