Lab Manual

CYSL – Embedded System Security Lab

Topic: Embedded Systems and Arduino Platform

Class: **BSCYS**

Semester: IV

Session: Spring, 2022

Instructor: Dr. Naveed Bhatti

Lab Instructor: Mr. Salman Ahmad

Objectives

In this lab, you will:

- Understand what is meant by Microcontroller, Microprocessor, Embedded System, Integrated Development Environment (IDE) and Arduino.
- Understand the layout of Arduino UNO board.
- Understand Arduino IDE, and how to write, compile and upload a code to Arduino.
- Deal with LED using Arduino digital output pins

1. Embedded Systems

1.1 Generic Embedded Systems Structure and its Components

Fig 1: High level generic view of what an embedded system looks like

1.2 Microcontroller Properties/features

- Bitwidth of Datapath
- Input/Output Pins
- Performance/ Clock rate
- Timers
- Analog-to-Digital Converters
- Low Power Modes
- Communication Protocol Support
- Microcontroller Storage Elements

1.3 Software Tool Chain

Fig 2: A high level view of your standard Software Tool Chain

2. ARDUINO PLATFORM

Fig 3: Arduino UNO

2.1 Arduino UNO Microcontroller (ATmega328)

Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limits)	6-20V
Digital I/O Pins	14 (of which 6 provide PWM output)
Analog Input Pins	6
DC Current per I/O Pin	40 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB (ATmega328) of which 0.5 KB used by bootloader
SRAM	2 KB (ATmega328)
EEPROM	1 KB (ATmega328)
Clock Speed	16 MHz

Table 1: Arduino UNO Microcontroller Specifications

3. LED BLINKING EXPERIMENT

3.1 Components Required

- 1. Breadboard
- 2. Resistor
- 3. LED
- 4. Connecting Wires

3.2 Schematic Diagram

Fig 1: Schematic diagram of LED connection with Arduino UNO

3.3 Procedure

- 1. Install Arduino IDE on your computer
- 2. Launch the Arduino IDE. Set the comm port
 - Tools > Port > Comm____ (It can be verified from the device manager)
- 3. Set the corresponding microcontroller board
 - Tools > Boards > Arduino AVR boards > Arduino UNO
- 4. Connect the circuit as shown in the Fig 1.
- 5. Now connect the Arduino with your PC/Laptop using a printer cable. Note that, the Arduino UNO can be powered via the USB connection or with an external power supply. The power source is selected automatically.
- 6. Subsequently
 - Write your program on the Arduino IDE editor,
 - Compile (to check for errors)
 - and then upload it (to program the Arduino)
- 7. The LED will start blinking.
- 8. Increase the resistor values gradually from 330, 470, 1K, 10K ohm. The LED illumination decreases the as larger resistance is used.

4. Assignment 1:

Write a program that will blink two LEDs in an alternate manner for 2 seconds ON and OFF. The LEDs should be connected on digital pins 2 and 4 respectively of Arduino.

