NON-COHERENT FSK DEMODULATOR

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the priority benefit of Taiwan application serial no. 92119107, filed July 14, 2003.

BACKGROUND OF THE INVENTION

Field of The Invention

5

15

20

[0001] The present invention relates to a demodulator for communication system.

More particularly, the present invention relates to a non-coherent Frequency Shift Key

(non-coherent FSK) demodulating circuit and method.

Description of Related Art

[0002] It is well known in wireless communication systems that in order to transmit information, one must modulate a sine wave with the information therewith. A way to modulate a sine wave includes frequency modulation (FM), which is most commonly used in FM radio, as well as other wireless devices such as pagers, cellular phones, cordless telephones etc. Among the various forms of frequency modulation used for data communications includes the frequency shift key (FSK) modulation. In FSK modulation, digital binary data is encoded through the modulation between two frequencies f_1 and f_0 , known as mark (representing logic high level '1'), and space (representing logic low level '0'), and then transmitted therewith. The FSK modulated waveform is transmitted by a transmitter and received by a receiver whereby the transmitted FSK signal is demodulated and the digital binary data is restored.

10

15

20

FIG. 1, shows a block diagram of a conventional FSK receiver. The FSK [0003] receiver 100 includes a receiving antenna 110, a low noise amplifier (LNA) 120, a mixer 130, a low-pass filter 140, an analog-to-digital converter 150 and a demodulator The antenna 110 receives a Radio Frequency (RF) signal transmitted by a transmitter. The RF signal is amplified by the low noise amplifier 120 and then is mixed with a local oscillating (LO) signal f_c with a LO frequency by the mixer 130. Following, the low pass filter 140 gets rid of distortions from mixing the RF signal in the digital data-bearing signal. The filtered mixed RF signal is then sampled by the analog-to-digital converter 150, thereby a digital non-coherent frequency shift key signal DNFSK is obtained. The digital non-coherent frequency shift key signal DNFSK having the first frequency f_1 or the second frequency f_0 will be further demodulated by the demodulator 160 to obtain the digital signal transmitted by the transmitter modulated in the RF signal.

[0004] Currently, there are at least two kinds of demodulator 160 being applied in the FSK receiver 100 as shown in FIG. 2 and FIG. 3 respectively. Referring to FIG. 2, the block diagram shows a conventional demodulator using a correlation receiver. Whereas FIG. 3, shows the block diagram of a conventional demodulator using a discrimination detector.

[0005] In FIG. 2, the demodulator 160 includes a first correlator 210, a second correlator 220 and a comparator 230. An integral circuit is respectively used in the first correlator 210 and the second correlator 220 for calculating a correlation value of the digital non-coherent frequency shift key signal DNFSK, which has the first frequency f_I or the second frequency f_0 , respectively, representing logic high level or logic low level. The comparator 230 compares the correlation values that are output

from the first correlator 210 and the second correlator 220, in order to obtain the digital signal D from the RF signal.

[0006] Referring to **FIG. 3**, the demodulator **160** includes a discriminator **310** and a decision logic **320**. A differential circuit is used in the discriminator **310** for calculating the digital non-coherent frequency shift key signal DNFSK, which has the first frequency f_I or the second frequency f_0 , in time domain to obtain a differential value. The differential value is proportional to the first frequency f_I and the second frequency f_0 . The decision logic **320** thus obtains the digital signal D in the RF signal by judging the differential value that is output from the discriminator **310**.

[0007] It is obvious that the conventional demodulator **160** requires a complicated circuit for calculating and obtaining the digital signal, as exemplified by the integral circuit in the demodulator of **FIG. 2** or the differential circuit in the demodulator of **FIG.**

3. Therefore, there is a need of a simpler architecture and implementation compared to the above stated conventional demodulators.

15

20

10

5

SUMMARY OF THE INVENTION

[0008] Accordingly, one of the objects of the present invention is to provide a non-coherent frequency shift key demodulator which is implemented by a neat and simple circuit as required, comparing to the conventional correlation receiver or the conventional discrimination detector, for exact extraction of information that is conveyed in the incoming carrier frequency.

[0009] One of the objects of the present invention is to provide a non-coherent frequency shift key demodulator that is robust in combating miscellaneous system deficiency, such as frequency offset, by using a simple look-up table that records the

15

20

corresponding entities. The non-coherent frequency shift key demodulator disclosed further provides a much larger tolerance to frequency offset caused by crystal frequency variation, which is superior to the conventional correlation receiver or the conventional discrimination detector.

[0010] Another purpose of the present invention is to provide a non-coherent frequency shift key demodulator that supports multi-rate transmission which is superior to the conventional correlation receiver.

[0011] For the achievement of the purposes above stated, the invention provides a non-coherent frequency shift key demodulator, which at least includes an oversampling device, a chain of registers and a threshold device. The oversampling device is used for receiving a digital non-coherent frequency shift key (DNFSK) signal with a digital signal conveyed therein and examining for transitions within the DNFSK signal. Moreover, upon examining transitions, the oversampling device outputs corresponding data bit signal either logic high level '1' or logic low level '0' according to whether a transition exists or not. The chain of registers, coupled to the oversampling device, receives the data bit signals, counts and stores the number of logic high level '1' received, and outputs a number-of-ones value signal. The threshold device, coupled to the chain of registers, receives and compares the number-of-ones value signal with a predetermined threshold value to determine the digital signal carried in the DNFSK signal.

[0012] In an alternative embodiment, if the DNFSK signal has a first frequency f_l or a second frequency f_0 , respectively representing a logic high level and a logic low level, and a system data rate R, where the predetermined threshold value THR is determined as $(f_l+f_0)/R$.

[0013] In an alternative embodiment, a logic low level digital signal is determined if the number-of-ones value signal is smaller than the threshold value THR, and a logic high level digital signal is determined if the number-of-ones value signal is larger than the threshold value.

5

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

- [0014] FIG. 1 shows a block diagram of a conventional FSK receiver.
- [0015] **FIG. 2** shows a block diagram of a conventional demodulator using correlation receivers.
- [0016] **FIG. 3** shows a block diagram of a conventional demodulator including a discrimination detector.
- [0017] **FIG. 4** shows a block diagram of a non-coherent frequency shift key (FSK) demodulator of one preferred embodiment of the present invention.
- [0018] **FIG. 5** shows the rectangular pulses demodulated by the non-coherent frequency shift key demodulator of the preferred embodiment of the present invention if the digital data stream is "1001110111" is carried in a FSK signal.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever

10

15

20

possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.

[0019] FIG. 4, shows a block diagram of a non-coherent frequency shift key (FSK) demodulator of a preferred embodiment of the present invention. The received radiofrequency (RF) signal is first down-converted to a digital non-coherent frequency shift key signal DNFSK having a first frequency f_t or a second frequency f_0 , representing a logic high level '1' or a logic low level '0', respectively. The digital non-coherent frequency shift key signal DNFSK can be obtained, for instance, by the use of an analog-to-digital converter 150 as shown in FIG. 1, which is then received by the noncoherent FSK demodulator 400. Therefore, a digital signal D transmitted from a transmitter (not shown) conveyed in the received digital non-coherent frequency shift key signal DNFSK can be extracted by the non-coherent FSK demodulator 400. In order to clearly explain the invention, in the following description, it is assumed that if the digital signal D is a logic high signal representing "1", the frequency of the digital frequency shift key signal is the first frequency f_I , and if the digital signal D is a logic low signal representing "0", the frequency of the digital frequency shift key signal is the second frequency f_0 .

[0020] Referring to **FIG. 4**, the non-coherent FSK demodulator **400** comprises at least an oversampling device **410**, a chain of registers **420**, and a threshold device **430**. The oversampling device **410** receives an input digital non-coherent frequency shift key signal DNFSK, and outputs data bit signals accordingly. The chain of registers **420**, coupled to the oversampling device **410**, receives each data bit signal, and outputs a number-of-ones value signal. The threshold device **430**, coupled to the chain of registers **420**, receives and compares the number-of-ones value signal with a threshold

10

15

20

value THR, and outputs the digital signal conveyed in the input digital non-coherent frequency shift key signal DNFSK. The operation method of the preferred embodiment is explained in more detail below accompanying with the waveform diagram respectively shown in **FIG. 5**, as followed.

[0021] Say that the oversampling device **410** receives an input digital non-coherent frequency shift key signal DNFSK conveying the digital signal message "1001110111" in a FSK modulated form. The oversampling device **410** receives and examines transitions within the input digital frequency shift key signal DNFSK, and outputs a data bit signal in the form of '1' for every transition found, or a '0' for every transition not found accordingly, thus generating data bit signals composed of '1's and '0's. The chain of registers **420**, coupled to the oversampling device **410**, receives each data bit signal (or the data bit signals composed of '1's and '0'), counts and stores the number of '1's received, and outputs a number-of-ones value signal. The threshold device **430**, coupled to the chain of registers **420**, receives and compares the number-of-ones value signal with a threshold value THR predetermined in the threshold device **430** and the digital signal D is then demodulated thereby.

[0022] If the input digital non-coherent frequency shift key signal DFSK has a first frequency f_i or a second frequency f_0 , respectively representing a logic high level and a logic low level, and a system data rate R, the predetermined threshold value THR can be determined as $(f_i+f_0)/R$. For example, if the digital signal is in a status of the logic high level representing '1', the frequency of the input digital non-coherent frequency shift key signal DNFSK is 14kHz. Furthermore, if the digital signal is in a status of the logic low level representing '0', the frequency of the input digital non-coherent frequency shift signal DNFSK is 6kHz. In addition, if the system data rate R is equal

10

15

20

to 0.5kHz, then the predetermined threshold value THR can be set as (14kHz+6kHz)/0.5kHz=40. In this manner, if the number of 1's, i.e. number-of-ones value signal exceeds the threshold value THR, then the threshold device **430** issues an output logic high level '1'. Otherwise, the threshold device **430** issues an output logic low level '0', thereby obtaining the digital signal from the incoming digital non-coherent frequency shift key signal DNFSK.

[0023] **FIG. 5** shows the output rectangular pulse generated by the non-coherent FSK demodulator **400** of the preferred embodiment of the present invention, if the transmitted digital data bit stream is '1001110111'. Further note in **FIG. 5** that each bit is **100** units on the abscissa for illustration purposes. It is apparent that simple circuitry is required for exact demodulation of the digital signal conveyed in the input digital non-coherent frequency shift key signal by applying the non-coherent FSK demodulator of the present invention with a significant high frequency offset.

[0024] Accordingly, the non-coherent frequency shift key demodulator of the preferred embodiment is implemented by a neat and simple logic circuit, as compared to the conventional correlation receiver or the conventional discrimination detector, for exactly extracting information conveyed in the incoming signals. The non-coherent frequency shift key demodulator is also robust in combating miscellaneous system defects, such as frequency offset caused by crystal frequency variation, by using a simple look-up table that records the corresponding entities. The non-coherent FSK demodulator has a much larger tolerance to frequency offset, as compared to the conventional correlation receiver or the conventional discrimination detector. In addition, the non-coherent FSK demodulator further supports multi-rate transmissions with simply implemented circuit as compared to the conventional correlation receiver.

FILE: 11460USF.RTF

It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.