Filippova Anastasia Tamaz Gadaev

Trajectory estimation and step detection

Plan

- Problem statement
- Motivation
- Improvement baseline
 - Step detection
 - Instance velocity
 - Attention method
- Result
- Future work

Problem statement

Task: to estimate the trajectory, detect steps, count number of steps

Motivation

Indoor trajectory estimation

- disadvantage of GPS navigation
 - requires open space
 - o depends on landscape

Step detection

- different type of shows
- people with disabilities
- simple mechanism can't catch details

baseline model

Main architecture

BN - Batch Normalization MP - Max Pooling

Residual block
(A, B)

A - channels number
B - kernel size

X - channels number

Y - Sequence length

$$\mathcal{L}_w(\mathbf{y}_{true}, \mathbf{y}_{predict}) =$$

$$MSE(\mathbf{v}_{true}, \mathbf{v}_{predict}) + BCE(\mathbf{s}_{true}, \mathbf{s}_{predict}) =$$

$$\|\mathbf{v}_{true} - \mathbf{v}_{predict}\|_2^2 - w(p_{right}(\log s_{right}) + p_{left}(\log s_{left}))$$

0 - no step

ResNetLSTM+step detection results

Model	GAP	MIE	RMSE		RTE	
	$\mathcal{G}_{ ext{tr}}$	$\mathcal{D}_{\mathbf{tr}}$	$\mathcal{L}_{\mathbf{tr}}$	$\mathcal{R}_{\mathbf{tr}, w=10}$	$\mathcal{R}_{\mathbf{tr},\;w=30}$	$\mathcal{R}_{\mathbf{tr}, w=60}$
RL	11.69	6.57	8.03	6.56	6.83	7.26
$RL_step_bce_0.01$	13.52	5.72	7.56	5.96	6.26	6.75
$RL_step_bce_0.1$	14.13	6.17	8.10	6.38	6.70	7.18
$RL_step_mse_0.01$	13.08	6.27	8.01	6.42	6.23	7.15

Model	PRECISION		RECALL		$\mathbf{F1}$	
	Right	Left	Right	Left	Right	Left
$RL_step_bce_0.01$	0.60	0.63	0.55	0.60	0.60	0.60
$RL_step_bce_0.1$	0.67	0.68	0.65	0.64	0.66	0.65
$RL_step_mse_0.01$	0.65	0.67	0.64	0.63	0.64	0.64

Instant Velocity

ResNetLSTM Instant velocity+step detection results

\mathbf{Model}	GAP	MIE	RMSE	RTE		
E	$\mathcal{G}_{\mathbf{tr}}$	$\mathcal{D}_{\mathbf{tr}}$	$\mathcal{L}_{\mathbf{tr}}$	$\mathcal{R}_{\mathbf{tr},\;w=10}$	$\mathcal{R}_{\mathbf{tr},\;w=30}$	$\mathcal{R}_{\mathbf{tr},\;w=60}$
RLI_step_bce_0.1	13.95	6.73	8.38	6.89	7.21	7.67
$RLI_step_mse_0.005$	12.85	5.98	7.79	6.18	6.47	6.91
$RLI_step_mse_0.01$	12.97	6.21	7.99	6.36	6.66	7.09

Model	PRECISION	RECALL	F 1	AVERAGE RELATIVE ERROR
RLI_step_bce_0.1	0.89	0.81	0.84	0.20
$RLI_step_mse_0.005$	0.80	0.68	0.74	0.27
$RLI_step_mse_0.01$	0.81	0.73	0.77	0.25

Attention

Attention results

Model	GAP	MIE	RMSE	RTE		
g	$\mathcal{G}_{ ext{tr}}$	$\mathcal{D}_{\mathbf{tr}}$	$\mathcal{L}_{\mathbf{tr}}$	$\mathcal{R}_{\mathbf{tr}, w=10}$	$\mathcal{R}_{\mathbf{tr},\;w=30}$	$\mathcal{R}_{\mathbf{tr},\;w=60}$
RLIA_step_bce_0.1	13.97	6.09	8.07	6.34	6.64	7.14
$RLIA_step_mse_0.01$	13.46	5.85	7.75	6.10	6.40	6.88

Model	PRECISION	RECALL	F 1	AVERAGE RELATIVE ERROR
RLIA_step_bce_0.01	0.87	0.77	0.81	0.21
$RLIA_step_mse_0.01$	0.82	0.74	0.78	0.24

Thank you for your attention!