3. Derivate parziali

Definizione

Se nella funzione f(x; y) si fissa una variabile essa diventa funzione di una sola variabile. Per esempio,

fissato $y = y_0$, la funzione

$$f(x; y_0)$$

è funzione della sola variabile x; se essa è derivabile la sua derivata si chiama derivata parziale **della** f(x; y) rispetto a x e si indica con

$$f_x(x;y)$$
 oppure $\frac{\delta f}{\delta x}$

fissato $x = x_0$, la funzione

$$f(x_0; y)$$

è funzione della sola variabile y; se essa è derivabile la sua derivata si chiama derivata parziale **della** f(x; y) rispetto a y e si indica con

$$f_y(x;y)$$
 oppure $\frac{\delta f}{\delta y}$

Esempio

Data la funzione $f(x; y) = x^3 - y^2 + 4x^2y - 3x + 2y$.

Per calcolare la derivata parziale rispetto a x consideriamo la y costante, ottenendo:

$$f_x(x;y) = 3x^2 + 8xy - 3.$$

Per calcolare la derivata parziale rispetto a y consideriamo la x costante, ottenendo:

$$f_y(x;y) = -2y + 4x^2 + 2.$$

Esercizi

Calcolare le derivate parziali $f_x(x;y)$ e $f_y(x;y)$ delle seguenti funzioni :

1.
$$f(x; y) = x^2 - 2x - y + 5$$

2.
$$f(x; y) = x^3 - 2y^2 + x - y$$

3.
$$f(x; y) = 5x^4 - 4y^2 + y$$

4.
$$f(x; y) = 3x^2 - 2y^5 + 4xy$$

5.
$$f(x;y) = (x - 2y^2)^2$$

6.
$$f(x; y) = x^3y - 2xy^5 + y$$

$$7. f(x; y) = sin(xy)$$

8.
$$f(x; y) = sinx \cdot cosy$$

9.
$$f(x; y) = \sqrt{4x - y}$$

10.
$$f(x; y) = \sqrt[3]{x^2y + y^4}$$

11.
$$f(x;y) = \sqrt{x^4 + y^4 - 2x^2y + 3y}$$
 12. $f(x;y) = \frac{x-y}{x^2+y}$

12.
$$f(x;y) = \frac{x-y}{x^2+y}$$

13.
$$f(x;y) = \frac{x^2 - y}{xy}$$

14.
$$f(x;y) = e^{-x^2-y^2}$$

15.
$$f(x;y) = 3e^{x+y} - y^5$$

16.
$$f(x; y) = e^{xy} - x^3y$$

L. Mereu – A. Nanni Funzioni in due variabili

17.
$$f(x; y) = \log(2x + y)$$

18.
$$f(x; y) = log(x^3 + y^3)$$

19.
$$f(x; y) = x \log y$$

20.
$$f(x; y) = arctg(3x - 2y)$$

Soluzioni

1. S.
$$f_x(x; y) = 2x - 2$$
; $f_y(x; y) = -1$;

2. S.
$$f_x(x; y) = 3x^2 + 1$$
; $f_y(x; y) = -4y - 1$;

3. S.
$$f_x(x; y) = 20x^3$$
; $f_y(x; y) = -8y + 1$;

4. S.
$$f_x(x; y) = 6x + 4y$$
; $f_y(x; y) = -10y^4 + 4x$;

5.S.
$$f_x(x;y) = 2(x-2y^2)$$
; $f_y(x;y) = -8y(x-2y^2)$;

6. S.
$$f_x(x; y) = 3x^2y - 2y^5$$
; $f_y(x; y) = x^3 - 10xy^4 + 1$;

7. S.
$$f_x(x; y) = y\cos(xy)$$
; $f_y(x; y) = x\cos(xy)$;

8. S.
$$f_x(x;y) = cosx \cdot cosy$$
; $f_y(x;y) = -sinx \cdot siny$;

9. S.
$$f_x(x;y) = \frac{2}{\sqrt{4x-y}}$$
; $f_y(x;y) = -\frac{1}{2\sqrt{4x-y}}$;

10. S.
$$f_x(x; y) = \frac{2xy}{3\sqrt[3]{(x^2y+y^4)^2}}$$
; $f_y(x; y) = \frac{x^2+4y^3}{3\sqrt[3]{(x^2y+y^4)^2}}$;

11. S.
$$f_x(x;y) = \frac{2x^3 - 2xy}{\sqrt{x^4 + y^4 - 2x^2y + 3y}}; \ f_y(x;y) = \frac{4y^3 - 2x^2 + 3}{2\sqrt{x^4 + y^4 - 2x^2y + 3y}};$$

12. S.
$$f_x(x;y) = \frac{-x^2 + 2xy + y}{(x^2 + y)^2}$$
; $f_y(x;y) = \frac{-x(x+1)}{(x^2 + y)^2}$;

13. S.
$$f_x(x; y) = \frac{x^2 + y}{x^2 y}$$
; $f_y(x; y) = \frac{-x}{y^2}$;

14. S.
$$f_x(x;y) = -2xe^{-x^2-y^2}$$
; $f_y(x;y) = -2ye^{-x^2-y^2}$;

15. S.
$$f_x(x; y) = 3e^{x+y}$$
; $f_y(x; y) = 3e^{x+y} - 5y^4$;

16. S.
$$f_x(x; y) = ye^{xy} - 3x^2y$$
; $f_y(x; y) = xe^{xy} - x^3$;

17. S.
$$f_x(x; y) = \frac{2}{2x+y}$$
; $f_y(x; y) = \frac{1}{2x+y}$;

18. S.
$$f_x(x;y) = \frac{3x^2}{x^3 + y^3}$$
; $f_y(x;y) = \frac{3y^2}{x^3 + y^3}$;

19. S.
$$f_x(x; y) = log y$$
; $f_y(x; y) = \frac{x}{y}$;

20.S.
$$f_x(x;y) = \frac{3}{1+(3x-2y)^2}$$
; $f_y(x;y) = -\frac{2}{1+(3x-2y)^2}$;