Définitions :

- Développer c'est transformer un produit en somme.
- Factoriser c'est transformer une somme en un produit

Propriété : Au collège, on peut obtenir les factorisations et développements suivants :

$$k(a+b)=$$

$$(a + b)(c + d) =$$

Exercice 1 : Développer puis réduire les expressions suivantes :

$$A = x + 2(x - 5) + 8(3 - 2x)$$
 $B = -(x - 7)$

$$B = -(x - 7)$$

$$C = (x^2 + 4)(2x - 3)$$

$$D = k(k + 1)(k - 3)$$

$$E = (a - b)(a^2 + ab + b^2)$$

$$F = (x - 2)^2$$

$$G = (2b + 3)^2$$

$$H = (5 - 2a)(a - 4)$$

$$I = (x-1)(2x+3) - (2x+5)(3-6x)$$

Exercice 2 : Factoriser les expressions suivantes en réduisant les facteurs obtenus :

$$A = x(x-1) + 2x(x-3)$$

$$B = a(a-1) - (2a+5) a$$

$$C = (x - 1)^2 + 4(x - 1)(x + 5)$$

$$C = (x-1)^2 + 4(x-1)(x+5)$$
 D = $(5x+1)(-3x+4) + x(10x+2)$

Pour vous aider vous pouvez utiliser la version en ligne du logiciel Xcas accessible via http://www.xcasenligne.fr/

Attention, il est demandé de détailler le raisonnement, se contenter de donner le résultat ne suffit pas.

Eléments de correction

Etudier ce corrigé, revoir les erreurs commises et les questions non traitées Poser des questions au professeur si nécessaire

Exercice 1:

$$A = x + 2(x - 5) + 8(3 - 2x)$$
$$A = x + 2x - 10 + 24 - 16x$$

$$A = -13x + 14$$

$$B = -(x - 7)$$

$$B = -x + 7$$

$$C = (x^2 + 4)(2x - 3)$$

$$C = 2x^3 - 3x^2 + 8x - 12$$

$$D = k(k + 1)(k - 3)$$

$$D = (k^2 + k)(k - 3)$$

$$D = k^3 - 3k^2 + k^2 - 3k$$

$$D = k^3 - 2 k^2 - 3k$$

E =
$$(a - b)(a^2 + ab + b^2)$$

E = $a^3 + a^2b + ab^2 - a^2b - ab^2 - b^3$

$$E = a^3 - b^3$$

$$F = (x - 2)^{2}$$

$$F = x^2 - 4x + 4$$

$$G = (2b + 3)^2$$

$$G = 4b^2 + 12b + 9$$

$$H = (5 - 2a)(a - 4)$$

$$H = 5a - 20 - 2a^2 + 8a$$

$$H = -2a^2 + 13a - 20$$

$$K = (x - 1)^2 - (2x + 5)^2$$

$$K = x^2 - 2x + 1 - (4x^2 + 20x + 25)$$

$$K = x^2 - 2x + 1 - 4x^2 - 20x - 25$$

$$K = -3x^2 - 22x - 24$$

$$I = (x - 1)(2x + 3) - (2x + 5)(3 - 4x)$$

$$I = 2x^2 + 3x - 2x - 3 - (6x - 12x^2)$$

$$I = 2x^2 + x - 3 - (-12x^2 - 24x +$$

$$I = 2x^2 + x - 3 + 12x^2 + 24x - 15$$

$$I = 14x^2 + 25x - 1$$

Exercice 2:

$$A = x(x-1) + 2x(x-3)$$

$$A = x [x-1+2(x-3)]$$

$$A = x(x-1+2x-6)$$

$$A = x (3x - 7)$$

$$B = a (a - 1) - (2a + 5) a$$

$$B = a [a - 1 - (2a + 5)]$$

$$B = a(a - 1 - 2a - 5)$$

$$B = a(-a - 6)$$

$$(-(x-1)^2 + 4(x-1)(x+5)$$

$$C = (x-1) [(x-1) + 4(x+5)]$$

$$C = (x - 1) (x - 1 + 4x + 20)$$

$$C = (x - 1) (5x + 19)$$

$$D = (5x + 1)(-3x + 4) + x(10x + 2)$$

$$D = (5x + 1)(-3x + 4) + 2x(5x + 1)$$

$$D = (5x + 1)(-3x + 4 + 2x)$$

$$D = (5x + 1)(-x + 4)$$

Activité 1 : carré d'une somme

Soient a et θ des nombres positifs.

On considère un carré de côté (a + b) où est inscrit un carré de côté a et un carré de côté b.

1) A-t-on $a^2 + b^2 = (a + b)^2$?

а

b

- 3) Soient a et b deux nombres réels
- a) développer le produit (a + b)(a + b) et retrouver l'égalité précédente.
- b) Développer et réduire $(a b)^2$
- c) Développer et réduire (a b)(a + b)

Activité 1 : carré d'une somme

Soient a et δ des nombres positifs.

On considère un carré de côté (a + b) où est inscrit un carré de côté a et un carré de côté b.

1) A-t-on
$$a^2 + b^2 = (a + b)^2$$
?

а

2) Ecrire l'aire, notée \mathcal{A} , du carré de côté (a+b) de deux manières différentes.

En déduire une égalité.

- 3) Soient a et b deux nombres réels
- a) développer le produit (a + b)(a + b) et retrouver l'égalité précédente.
- b) Développer et réduire $(a b)^2$
- c) Développer et réduire (a b)(a + b)

Activité 1 : carré d'une somme

Soient a et θ des nombres positifs.

On considère un carré de côté (a + b) où est inscrit un carré de côté a et un carré de côté b.

1) A-t-on
$$a^2 + b^2 = (a + b)^2$$
?

2) Ecrire l'aire, notée \mathcal{A} , du carré de côté (a+b) de deux manières différentes.

En déduire une égalité.

- 3) Soient a et b deux nombres réels
- a) développer le produit (a + b)(a + b) et retrouver l'égalité précédente.
- b) Développer et réduire $(a b)^2$
- c) Développer et réduire (a b)(a + b)

Activité 1 : carré d'une somme

Soient a et δ des nombres positifs.

On considère un carré de côté (a + b) où est inscrit un carré de côté a et un carré de côté b.

1) A-t-on
$$a^2 + b^2 = (a + b)^2$$
?

2) Ecrire l'aire, notée \mathcal{A} , du carré de côté (a+b) de deux manières différentes.

En déduire une égalité.

- 3) Soient a et b deux nombres réels
- a) développer le produit (a + b)(a + b) et retrouver l'égalité précédente.
- b) Développer et réduire $(a b)^2$
- c) Développer et réduire (a b)(a + b)

Propriété: Soient a et b des nombres réels. On a : $(a+b)^2 = a^2 + 2ab + b^2 \qquad (a-b)^2 = a^2 - 2ab + b^2 \qquad (a-b)(a+b) = a^2 - b^2$

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a - b)^2 = a^2 - 2ab + b$$

$$(a - b)(a + b) = a^2 - b^2$$