# intro to networking\*



\*computer networking





## Physical Layer

- Ethernet

- Wifi





Why do we care?

## **Exploiting the Physical Layer**

Passive Ethernet Taps



WiFi

Spooky Shit

#### Data Link Layer

- Frames & MAC Addresses
- Shared vs Switched Ethernet
- Topology Protocols
  - Spanning Tree Protocol
  - Shortest Path Bridging





#### Hubs vs. Switches





### **Exploiting the Data Link Layer**

MAC Spoofing

MAC Flooding

Denial of Service with STP

#### Network Layer (IP)

- Like the Data Link, but not restricted to your local network
- Packets, IP Addresses, and Subnets
- Gateways and Broadcasts



IP Routing (Routing tables)

#### ARP - the most ambitious protocol crossover

How do I send data from one IP to another IP?

Address Resolution Protocol.

Request - Who has *IP?* 

Response - IP is MAC

### ARP Poisoning

#### **ARP Spoofing**

Similar to MAC Spoofing, except we spoof an IP address

#### Denial of Service

Spoof Gateway IP to be the broadcast MAC Address

#### Transport Layer

- Transmission Control Protocol (TCP) Accurate and Reliable
  - Connection Abstraction provides a stream of data
  - Same Order Delivery arrive in same order as sent
  - Reliability lost packets are resent/checksums
  - Flow Control consider receiver's buffer size when sending
  - Congestion Avoidance consider network infrastructure when sending
  - Multiplexing multiple connections to a single IP (ports)

- User Datagram Protocol Fast
  - Data Integrity checksums
  - Multiplexing multiple connections to a single IP (ports)

# TCP Segments



### vs. UDP Datagrams

| 0             | 16 31            |
|---------------|------------------|
| Source port   | Destination port |
| Length        | UDP checksum     |
| _             | Data             |
| Format of the | e UDP datagram   |

#### Data Layers

OSI Model begins to break down here...



### Layer Encapsulation



# Common Application Protocols

#### DHCP - The most introspective protocol

You might be asking yourself... Who am I?

## Dynamic Host Configuration Protocol

- Assigns IP Addresses to devices on the local network
- Built on top of UDP

Ports: 67 (on Server) & 68 (on Client)

### **Exploiting DHCP**

- Man in the middle Attack
  - Spoof DHCP Server and forward all traffic through malicious device

- Denial of Service
  - Request enough IP Addresses so that the actual devices can't

#### TLS - formerly SSL

- Transport Layer Security
- Built on top of TCP
- Provides Confidentiality
  - Encrypt traffic between server client
- Provides Authenticity
  - Verify server's certificate



Allows us to secure other protocols. No specific relevant port.

#### **Exploiting TLS**

- Padding Oracle On Downgraded Legacy Encryption (POODLE) 2014
  - Downgrade to SSL 3.0
  - Padding Oracle Attack
- Browser Exploit Against SSL/TLS (BEAST) 2011
  - o TLS 1.0 CBC Mode
- Compression Ratio Info-leak Made Easy (CRIME) 2012
  - Compression in TLS leaks information about encrypted content
- Heartbleed 2014
  - TLS Heartbeat w/ incorrect length leaks server memory as padding

### HTTP/S - Hypertext Transfer Protocol

You know, the internet one, for websites...

#### HTTP over TLS (HTTPS)

- Secure your browsing traffic
- Prevent man-in-the-middle attacks

Ports: 80 (HTTP) & 443 (HTTPS)

#### HTTP

- Everything is in the clear
  - A network attacker can see every single packet

Don't use HTTP for anything!

Even using HTTPS will still leak your browsing history

#### DNS

- Mapping URLs to IP Addresses
- Built on top of UDP

DoT - DNS over TLS (Dedicated Port 853)

DoH - DNS over HTTPS (Port 443)

### **Exploits with DNS**

Control of a DNS server means you can forward any request anywhere

Obvious DOS by giving invalid/no response

DNS is in the clear, but even encrypted DNS is viewable by someone

#### Other Common Protocols

- S/FTP
- SMTP
- IMAP
- POP3
- Telnet
- SSH
- ICMP
- NTP
- NFS
- RIP
- BGP

# Common Networking Tools

#### Wireshark

- Capture Network Traffic from...
  - Your device
  - The network

- Analyze Network Traffic from...
  - PCAP's (Packet Captures)

Follow \_\_\_\_\_ Stream is very useful

## ping

- Check your connection to an IP Address
- Talks ICMP

## nslookup/dig/host

- Resolve a URL to it's IP Address
- Talks DNS

#### netcat/nc

- Connect to an IP:Port
- Listen on a port
- Write/Read to remote port
- Tons of other features (man netcat)
- Talks TCP/UDP

#### **Notable Mentions:**

- socat More functionality/complexity
- websocat Connect to WebSockets

#### curl

- Retrieve a website
- Talks HTTP/HTTPS

#### nmap

- A very powerful scanning tool
- Allows you to scan for...
  - Available IPs on a Subnet
  - Open Ports at an IP Address

BE CAREFUL! YOU WILL GET IN TROUBLE IF YOU USE THIS ON A NETWORK YOU DO NOT OWN!
IT'S EXTREMELY SKETCHY! AND POSSIBLY ILLEGAL!
YOU HAVE BEEN WARNED!