Definition 39.3. Let E and F be two normed affine spaces, let A be a nonempty open subset of E, and let $f: A \to F$ be any function. For any $a \in A$, we say that f is differentiable at $a \in A$ if there is a linear continuous map $L: \overrightarrow{E} \to \overrightarrow{F}$ and a function ϵ , such that

$$f(a+h) = f(a) + L(h) + \epsilon(h) ||h||$$

for every $a + h \in A$, where $\epsilon(h)$ is defined for every h such that $a + h \in A$ and

$$\lim_{h \to 0, h \in U} \epsilon(h) = 0,$$

where $U = \{h \in \overrightarrow{E} \mid a+h \in A, h \neq 0\}$. The linear map L is denoted by Df(a), or Df_a , or df(a), or df_a , or f'(a), and it is called the *Fréchet derivative*, or derivative, or total derivative, or total differential, or differential, of f at a; see Figure 39.3.

Figure 39.3: Let $f: \mathbb{R}^2 \to \mathbb{R}$. The graph of f is the green surface in \mathbb{R}^3 . The linear map $L = \mathrm{D} f(a)$ is the pink tangent plane. For any vector $h \in \mathbb{R}^2$, L(h) is approximately equal to f(a+h) - f(a). Note that L(h) is also the direction tangent to the curve $t \mapsto f(a+tu)$.

Since the map $h \mapsto a + h$ from \overrightarrow{E} to E is continuous, and since A is open in E, the inverse image U of $A - \{a\}$ under the above map is open in \overrightarrow{E} , and it makes sense to say that

$$\lim_{h \to 0, h \in U} \epsilon(h) = 0.$$

Note that for every $h \in U$, since $h \neq 0$, $\epsilon(h)$ is uniquely determined since

$$\epsilon(h) = \frac{f(a+h) - f(a) - L(h)}{\|h\|},$$