PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 21. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 22. do 31. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

SOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 21. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (1 pkt)

Liczba $x = 3^{40} + 3^{40} + 3^{40}$ jest równa liczbie: **A.** 3^{64000} **B.** 3^{120}

$$\mathbf{B}_{\bullet} \mathbf{3}^{120}$$

$$\mathbf{C.}\,27^{120}$$

D.
$$3^{41}$$

Zadanie 2. (*1 pkt*)

Kwadrat liczby $x = (3 - 2\sqrt{5})$ jest równy:

A. 29 –
$$12\sqrt{5}$$

B.
$$19 - 12\sqrt{5}$$

Zadanie 3. (1 pkt)

Rozwiązaniem nierówności $\frac{|x-1|}{3}$ < 6 jest zbiór:

$$\mathbf{A}.(-\infty,-17) \cup (19,+\infty) \ \mathbf{B}.(-17,19)$$

$$C.(-1,3)$$

$$\mathbf{D}_{\bullet}(-\infty,-1)\cup(3,+\infty)$$

Zadanie 4. (*1 pkt*)

Liczba $\log_{\frac{1}{3}} \frac{81}{\sqrt{3}}$ jest równa:

$$A. -3\frac{1}{2}$$

B.
$$3\frac{1}{2}$$

Zadanie 5. (*1 pkt*)

Liczba $|3,14 - \pi|$ jest równa:

A. 3,14
$$-\pi$$

B.
$$3.14 + \pi$$

$$C. \pi - 3.14$$

Zadanie 6. (*1 pkt*)

Różnicą przedziału $(-\infty, 5)$ i (0, 5) jest:

$$\mathbf{A}.(-\infty,0)$$

$$\mathbf{B.}\left(-\infty,0\right)\cup\left\{5\right\}$$

$$\mathbf{B.} \left(-\infty, 0 \right) \cup \left\{ 5 \right\}$$
 $\mathbf{C.} \left(-\infty, 0 \right) \cup \left\{ 5 \right\}$ $\mathbf{D.} \left(-\infty, 0 \right)$

$$\mathbf{D}.(-\infty,0)$$

Zadanie 7. (*1 pkt*)

Stopień wielomianu $W(x) = (x+1)(2x+3)^2(x-1)^3$ jest równy: **A.** 8 **B.** 6 **C.** 5

Zadanie 8. (*1 pkt*)

Jeśli odległość liczby x od liczby 10 na osi liczbowej jest nie mniejsza od 6, to:

$$\mathbf{A.} \left| x + 6 \right| \ge 10$$

B.
$$|x - 10| \ge 6$$

C.
$$|x+6| > 10$$

$$|\mathbf{D} \cdot |x - 10| > 6$$

Zadanie 9. (*1 pkt*)

Dziedziną funkcji $f(x) = \frac{x^2 - 16}{x^2 - 5x}$ jest zbiór: **A.** $R \setminus \{-5, -4, 0, 4\}$ **B.** $R \setminus \{-4, 4\}$ **C.** $R \setminus \{5\}$

A.
$$R \setminus \{-5, -4, 0, 4\}$$

$$\mathbf{B}.R\setminus\{-4,4\}$$

$$\mathbb{C}.R\setminus\{5\}$$

D.
$$R \setminus \{0, 5\}$$

Zadanie 10. (*1 pkt*)

Zbiorem rozwiazań nierówności $x^2 + 36 < 0$ jest:

$$\mathbf{A}_{\bullet}(-\infty,-6) \cup (6,+\infty) \quad \mathbf{B}_{\bullet}(6,+\infty)$$

$$\mathbf{B}.(6,+\infty)$$

$$\mathbf{D}.R$$

Zadanie 11. (*1 pkt*)

Rozwiązaniem równania $\frac{2}{3x-1}$ = 4 jest liczba:

$$A. -\frac{1}{6}$$

B.
$$\frac{1}{3}$$

$$C.\frac{1}{2}$$

Zadanie 12. (1 pkt)

Funkcja $f(x) = -2x^2 + \sqrt{6}x + c$ ma jedno miejsce zerowe. Wynika stąd, że:

A.
$$c = \frac{9}{2}$$

B.
$$c = -\frac{9}{2}$$

B.
$$c = -\frac{9}{2}$$
 C. $c = -\frac{3}{4}$

D.
$$c = \frac{3}{4}$$

Zadanie 13. (*1 pkt*)

Punkt $P = (\sqrt{3}, -4)$ należy do wykresu funkcji $y = -2\sqrt{3}x + b$. Parametr b jest równy:

$$A. -10$$

Zadanie 14. (*1 pkt*)

Same wartości dodatnie przyjmuje funkcja:

A.
$$f(x) = |x + 5|$$

B.
$$f(x) = |x| + 5$$

C.
$$f(x) = -|x-5|$$
 D. $f(x) = -|x| + 5$

D.
$$f(x) = -|x| + 5$$

Zadanie 15. (1 pkt)

Do wykresu funkcji $f(x) = \left(\frac{1}{2}\right)^x$ należy punkt:

$$\mathbf{A} \cdot (-1, -2)$$

B.
$$(2,-1)$$

$$\mathbf{C} \cdot \left(\frac{1}{2}, 1\right)$$

$$\mathbf{D} \cdot \left(1, \frac{1}{2}\right)$$

Zadanie 16. (*1 pkt*)

Liczba $a = \log 200$ jest równa:

$$\mathbf{A.10} + \log 2$$

$$\mathbf{C.} 2 + \log 2$$

Zadanie 17. (*1 pkt*)

Dany jest ciąg o wyrazie ogólnym $a_n = \frac{3n+1}{2n+3}$. Wynika stąd, że:

A.
$$a_{n-1} = \frac{3n}{2n+2}$$

B.
$$a_{n-1} = \frac{3n-2}{2n+1}$$

A.
$$a_{n-1} = \frac{3n}{2n+2}$$
 B. $a_{n-1} = \frac{3n-2}{2n+1}$ **C.** $a_{n-1} = \frac{3n+1}{2n+3} - 1$ **D.** $a_{n-1} = \frac{3n}{2n+3}$

D.
$$a_{n-1} = \frac{3n}{2n+3}$$

Zadanie 18. (*1 pkt*)

Jeżeli suma częściowa ciągu geometrycznego wyraża się wzorem $S_n = 5 \cdot 2^n - 5$, to piąty wyraz tego ciągu jest równy:

B.
$$10^5 - 5$$

Zadanie 19. (1 pkt)

Liczby $\left(a, \frac{1}{5}, \frac{1}{6}\right)$ tworzą ciąg arytmetyczny, zatem: $\mathbf{A.} \ a = \frac{1}{4} \qquad \qquad \mathbf{B.} \ a = \frac{7}{30} \qquad \qquad \mathbf{C.} \ a = \frac{17}{30} \qquad \qquad \mathbf{D.} \ a = \frac{6}{25}$

A.
$$a = \frac{1}{4}$$

B.
$$a = \frac{7}{30}$$

C.
$$a = \frac{17}{30}$$

D.
$$a = \frac{6}{25}$$

Zadanie 20. (1 pkt)

Jeśli $\sin \alpha = \frac{2}{5}$, to wartość wyrażenia $W = \frac{\sin \alpha}{tg\alpha}$ jest równa: **A.** $\frac{\sqrt{21}}{5}$ **B.** $\frac{5\sqrt{21}}{21}$ **C.** 1

A.
$$\frac{\sqrt{21}}{5}$$

B.
$$\frac{5\sqrt{21}}{21}$$

D.
$$\frac{5}{2}$$

Zadanie 21. (1 pkt)

Nierówność $x^2 + y^2 - 6y \ge 0$ przedstawia koło o polu równym:

$$A.81\pi$$

$$\mathbf{B}$$
, 36π

$$\mathbf{C.9}\pi$$

$$\mathbf{D.}6\pi$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 22. do 31. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 22. (2 pkt)

Wyznacz pierwiastki wielomianu $W(x) = 2x^3 - 7x^2 + 8x - 28$.

Zadanie 23. (2 *pkt*)

Rozwiązaniami równania $x^2 + bx + c = 0$ są liczby 8 i (-3). Wyznacz parametry b, c.

Zadanie 24. (2 *pkt*)

Wykaż, że $\log_7 5 = \log_{49} 25$.

Zadanie 25. (2 *pkt*)

Średnia wieku 15 pracowników pewnej firmy wynosi 33 lata. Gdy przyjęto nowego pracownika, średnia zwiększyła się o 1 rok. Ile lat ma nowy pracownik?

Zadanie 26. (2 pkt)

Skróć ułamek $u = \frac{x^2 + 4x + 4}{x^2 - 4}$.

Zadanie 27. (2 *pkt*)

Boki trójkąta prostokątnego mają długości 10,24,26. Oblicz długość wysokości opuszczonej na przeciwprostokątną.

Zadanie 28. (2 pkt)

Z urny, w której jest 6 kul czarnych i 4 żółte, wyjęto dwa razy po jednej kuli ze zwracaniem. Oblicz prawdopodobieństwo, że wyjęto kule jednakowych kolorów.

Zadanie 29. (5 *pkt*)

Koszt wynajęcia autokaru na wycieczkę klasową wynosił 1500 zł. Pięciu uczniów nie pojechało na wycieczkę i wtedy każdy z pozostałych uczniów musiał zapłacić o 10 zł więcej. Oblicz, ilu uczniów jest w tej klasie i jaki był pierwotny koszt autokaru przypadający na jednego ucznia.

Zadanie 30. (*5 pkt*)
Pole powierzchni bocznej stożka jest cztery razy większe od pola podstawy. Obwód przekroju osiowego stożka jest równy 30. Oblicz objętość tego stożka.

Zadanie 31. (5 *pkt*) Dany jest odcinek o końcach A = (-5, -3), B = (7, 1).

- a) Wyznacz równanie prostej, w której zawarta jest symetralna tego odcinka. b) Wyznacz równanie okręgu o średnicy *AB*.

