A flexible approach to time-to-event data analysis using case-base sampling

Jesse Islam July 11, 2019

Meet Justin

Meet Justin

• Age: 56

Meet Justin

■ Age: 56

Worried about his Prostate

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Justin's two year risk of death due to prostate cancer?

 In disease etiology, we tend to make use of the proportional hazards hypothesis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models
 - Breslow estimator

 Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]

- Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]
- They believe that this is due to the cumulative incidence curves (or survival curves) being stepwise rather than smooth, reducing interpretability. [1]

- Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]
- They believe that this is due to the cumulative incidence curves (or survival curves) being stepwise rather than smooth, reducing interpretability. [1]
- Easily model non proportional hazards [1]

- Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]
- They believe that this is due to the cumulative incidence curves (or survival curves) being stepwise rather than smooth, reducing interpretability. [1]
- Easily model non proportional hazards [1]
- Flexible fits [1]

- Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]
- They believe that this is due to the cumulative incidence curves (or survival curves) being stepwise rather than smooth, reducing interpretability. [1]
- Easily model non proportional hazards [1]
- Flexible fits [1]
- A streamlined approach for reaching a smooth absolute risk curve [1]

Dr. Cox's perspective

Reid: How do you feel about the cottage industry that's grown up around it [the Cox model]?

Cox: Don't know, really. In the light of some of the further results one knows since, I think I would normally want to tackle problems parametrically, so I would take the underlying hazard to be a Weibull or something. I'm not keen on nonparametric formulations usually.

Reid: So if you had a set of censored survival data today, you might rather fit a parametric model, even though there was a feeling among the medical statisticians that that wasn't quite right.

Cox: That's right, but since then various people have shown that the answers are very insensitive to the parametric formulation of the underlying distribution [see, e.g., Cox and Oakes, Analysis of Survival Data, Chapter 8.5]. And if you want to do things like predict the outcome for a particular patient, it's much more convenient to do that parametrically.

European Randomized Study of Prostate Cancer Screening (ERSPC) Data

■ ~150 000 men ages 55-69

The European Randomized Study of Screening for Prostate Cancer – Prostate Cancer Mortality at 13 Years of Follow-up

Fritz H. Schröder¹, Jonas Hugosson², Monique J. Roobol¹, Teuvo L.J. Tammela³, Marco Zappa⁴, Vera Nelen⁵, Maciej Kwiatkowski^{6,7}, Marcos Lujan^{8,9}, Lissa Määttänen¹⁰, Hans Lilja^{11,12,13}, Louis J. Denis¹⁴, Franz Recker⁶, Alvaro Paez^{15,16}, Chris H. Bangma¹, Sigrid Carlsson^{2,11}, Donella Puliti⁴, Arnauld Villers¹⁷, Xavier Rebillard¹⁸, Matti Hakama^{10,19}, Ulf-Hakan Stenman²⁰, Paula Kujala²¹, Kimmo Taari²², Gunnar Aus²³, Andreas Huber²⁴, Theo van der Kwast²⁵, Ron H.N. van Schaik R²⁶, Harry J. de Koning²⁷, Sue M. Moss²⁸, Anssi Auvinen¹⁹, and for the ERSPC Investigators

European Randomized Study of Prostate Cancer Screening (ERSPC) Data

- ~150 000 men ages 55-69
- Examined effects screening has on death due to prostate cancer.

The European Randomized Study of Screening for Prostate Cancer – Prostate Cancer Mortality at 13 Years of Follow-up

Fritz H. Schröder¹, Jonas Hugosson², Monique J. Roobol¹, Teuvo L.J. Tammela³, Marco Zappa⁴, Vera Nelen⁵, Maciej Kwiatkowski^{6,7}, Marcos Lujan^{8,9}, Lissa Määttänen¹⁰, Hans Lilja^{11,12,13}, Louis J. Denis¹⁴, Franz Recker⁶, Alvaro Paez^{15,16}, Chris H. Bangma¹, Sigrid Carlsson^{2,11}, Donella Puliti⁴, Arnauld Villers¹⁷, Xavier Rebillard¹⁸, Matti Hakama^{10,19}, Ulf-Hakan Stenman²⁰, Paula Kujala²¹, Kimmo Taari²², Gunnar Aus²³, Andreas Huber²⁴, Theo van der Kwast²⁵, Ron H.N. van Schaik R²⁶, Harry J. de Koning²⁷, Sue M. Moss²⁸, Anssi Auvinen¹⁹, and for the ERSPC Investigators

ERSPC Data

head(casebase::ERSPC)

PatientID	ScrArm	Follow.Up.Time	DeadOfPrCa
1	1	0.003	0
2	0	1.038	1
3	1	7.966	1
4	0	11.975	1
5	1	14.910	0

Recall

• Justin wants to know his two year risk for prostate cancer.

Recall

- Justin wants to know his two year risk for prostate cancer.
- As Justin was not part of the study, we will consider him part of the control group where no screening occured.

Recall

- Justin wants to know his two year risk for prostate cancer.
- As Justin was not part of the study, we will consider him part of the control group where no screening occured.
- We will determine Justin's absolute risk using CaseBase!

1. Clever sampling.

- 1. Clever sampling.
- 2. Indirectly deals with censoring.

- 1. Clever sampling.
- 2. Indirectly deals with censoring.
- 3. Allows a parametric fit using *logistic regression*.

- 1. Clever sampling.
- 2. Indirectly deals with censoring.
- 3. Allows a parametric fit using *logistic regression*.
- Casebase is parametric, and allows different parametric fits by incorporation of the time component.

- 1. Clever sampling.
- 2. Indirectly deals with censoring.
- 3. Allows a parametric fit using *logistic regression*.
 - Casebase is parametric, and allows different parametric fits by incorporation of the time component.
- Package contains an implementation for generating population-time plots.

casebase::popTime(Data,Event,Time)

Casebase: Parametric families

• We can now fit models of the form:

$$log(h(t;\alpha,\beta)) = g(t;\alpha) + \beta X$$

Casebase: Parametric families

• We can now fit models of the form:

$$log(h(t; \alpha, \beta)) = g(t; \alpha) + \beta X$$

• By changing the function $g(t; \alpha)$, we can model different parametric families easily:

Casebase: Parametric models

Exponential: $g(t; \alpha)$ is equal to a constant

casebase::fitSmoothHazard(status ~ X1 + X2)

Gompertz: $g(t; \alpha) = \alpha t$

casebase::fitSmoothHazard(status ~ time + X1 + X2)

Weibull: $g(t; \alpha) = \alpha log(t)$

casebase::fitSmoothHazard(status ~ log(time) + X1 + X2)

Death by prostate cancer: hazard ratios

```
casebase::fitSmoothHazard(DeadOfPrCa~ log(Follow.Up.Time)+
                              ScrArm, data=ERSPC, ratio = 100)
call:
glm(formula = formula, family = binomial, data = sampleData)
Deviance Residuals:
    Min
            1Q Median
                            30
                                   Max
-0.2693 -0.1715 -0.1348 -0.0908 4.5189
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                -9.46535 0.15812 -59.862 <2e-16 ***
log(Follow.Up.Time) 1.08124 0.08264 13.084 <2e-16 ***
ScrArm
                 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 6059.0 on 54539 degrees of freedom
Residual deviance: 5794.1 on 54537 degrees of freedom
ATC: 5800.1
Number of Fisher Scoring iterations: 8
```

ERSPC Hazard comparison

Model	Hazard Ratio	Std.Error
Cox	0.801	1.092
Gompertz	0.802	1.093
Exponential	0.810	1.092
Weibull	0.797	1.093

• We have a bunch of different parametric hazard models now.

- We have a bunch of different parametric hazard models now.
- To get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

- We have a bunch of different parametric hazard models now.
- To get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

• CI(x,t)= Cumulative Incidence (Absolute Risk)

- We have a bunch of different parametric hazard models now.
- To get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

- CI(x,t)= Cumulative Incidence (Absolute Risk)
- h(x,u)= Hazard Ratio

- We have a bunch of different parametric hazard models now.
- To get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

- CI(x,t)= Cumulative Incidence (Absolute Risk)
- h(x,u)= Hazard Ratio
- Lets use the weibull hazard

Casebase: Absolute Risk comparison

casebase::absoluteRisk(fit, time=5, covariate_profile)

• Current methods:

- Current methods:
 - Fine-Gray

- Current methods:
 - Fine-Gray
 - Kaplan-Meier

- Current methods:
 - Fine-Gray
 - Kaplan-Meier
- Proposed method:

- Current methods:
 - Fine-Gray
 - Kaplan-Meier
- Proposed method:
 - Case-Base

Two diseases:

Status	ftime
2	0.67
1	9.50
0	131.77
2	24.03
	2 1 0

- Two diseases:
 - Acute Lymphoblastic leukemia (ALL)

D Status ftime ALL 2 0.67 AML 1 9.50 ALL 0 131.77 ALL 2 24.03			
AML 1 9.50 ALL 0 131.77	D	Status	ftime
ALL 0 131.77	ALL	2	0.67
	AML	1	9.50
ALL 2 24.03	ALL	0	131.77
	ALL	2	24.03

- Two diseases:
 - Acute Lymphoblastic leukemia (ALL)
 - Acute Myeloblastic leukemia (AML)

D	Status	ftime
ALL	2	0.67
AML	1	9.50
ALL	0	131.77
ALL	2	24.03

- Two diseases:
 - Acute Lymphoblastic leukemia (ALL)
 - Acute Myeloblastic leukemia (AML)
- Contains a competing event.

D	Status	ftime
ALL	2	0.67
AML	1	9.50
ALL	0	131.77
ALL	2	24.03

Competing Risks: Absolute Risk

Competing Risks: Absolute Risk

 Casebase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them

- Casebase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:

- Casebase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:
 - Population-Time plots

- Casebase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:
 - Population-Time plots
 - Hazard functions

- Casebase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:
 - Population-Time plots
 - Hazard functions
 - Absolute Risk

- Casebase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:
 - Population-Time plots
 - Hazard functions
 - Absolute Risk
 - Casebase can deal with competing risks.

References 1

- 1. Hanley, James A, and Olli S Miettinen. 2009. "Fitting Smooth-in-Time Prognostic Risk Functions via Logistic Regression." The International Journal of Biostatistics 5 (1).
- 2.Olli presentation slides?
- 3.Saarela, Olli. 2015. "A Case-Base Sampling Method for Estimating Recurrent Event Intensities." *Lifetime Data Analysis*. Springer, 1–17

References 2

- 4.Schroder FH, et al., for the ERSPC Investigators. Screening and Prostate-Cancer Mortality in a Randomized European Study. *N Engl J Med* 2009;360:1320-8.
- 5. Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. *Bone Marrow Transplant*. 2007 Aug;40(4):381-7. doi: 10.1038/sj.bmt.1705727.
- 6.Turgeon, M. (2017, June 10). Retrieved May 05, 2019, from https://www.maxturgeon.ca/slides/MTurgeon-2017-Student-Conference.pdf

Tutorial and Slides

Tutorial:

http://sahirbhatnagar.com/casebase/

Slides: