1) обрезаем адаптеры у ридов (всего 4 набора парных ридов) с помощью **Trimmomatic**:

java -jar ../../scratch/tools/Trimmomatic-0.39/trimmomatic-0.39.jar PE -phred33 SRR2225457_1.fastq.gz SRR2225457_2.fastq.gz out_f_p_1.fastq.gz out_f_unp_1.fastq.gz out_r_p_1.fastq.gz out_r_unp_1.fastq.gz LEADING:20 TRAILING:20 SLIDINGWINDOW:10:20 MINLEN:20

java -jar ../../scratch/tools/Trimmomatic-0.39/trimmomatic-0.39.jar PE -phred33 SRR2225458_1.fastq.gz SRR2225458_2.fastq.gz out_f_p_2.fastq.gz out_f_unp_2.fastq.gz out_r_p_2.fastq.gz out_r_unp_2.fastq.gz LEADING:20 TRAILING:20 SLIDINGWINDOW:10:20 MINLEN:20

java -jar ../../scratch/tools/Trimmomatic-0.39/trimmomatic-0.39.jar PE -phred33 SRR2225459_1.fastq.gz SRR2225459_2.fastq.gz out_f_p_3.fastq.gz out_f_unp_3.fastq.gz out_r_p_3.fastq.gz out_r_unp_3.fastq.gz LEADING:20 TRAILING:20 SLIDINGWINDOW:10:20 MINLEN:20

java -jar ../../scratch/tools/Trimmomatic-0.39/trimmomatic-0.39.jar PE -phred33 SRR2225460_1.fastq.gz SRR2225460_2.fastq.gz out_f_p_4.fastq.gz out_f_unp_4.fastq.gz out_r_p_4.fastq.gz out_r_unp_4.fastq.gz LEADING:20 TRAILING:20 SLIDINGWINDOW:10:20 MINLEN:20

2a) воспользуемся rnaSPAdes, чтобы собрать все риды в один транскриптом (первая сборка):

../../scratch/tools/SPAdes-3.13.1-Linux/bin/rnaspades.py --pe1-1 aft_trim/1_PE/out_f_p_1.fastq --pe1-2 aft_trim/1_PE/out_r_p_1.fastq --pe1-1 aft_trim/2_PE/out_f_p_2.fastq --pe1-2 aft_trim/2_PE/out_r_p_2.fastq --pe1-1 aft_trim/3_PE/out_f_p_3.fastq --pe1-2 aft_trim/3_PE/out_r_p_3.fastq --pe1-1 aft_trim/4_PE/out_f_p_4.fastq --pe1-2 aft_trim/4_PE/out_r_p_4.fastq -o rna_spades_output

26) воспользуемся **Trinity**, чтобы собрать все риды в один транскриптом (вторая сборка);

```
../../scratch/tools/trinityrnaseq-v2.8.6/Trinity --seqType fq
--left aft_trim/1_PE/out_f_p_1.fastq,aft_trim/2_PE/out_f_p_2.fastq,aft_trim/3_PE/out_f_p_3.fastq,aft_trim/4_PE/out_f_p_4.fastq
--right aft_trim/1_PE/out_r_p_1.fastq,aft_trim/2_PE/out_r_p_2.fastq,aft_trim/3_PE/out_r_p_3.fastq,
aft_trim/4_PE/out_r_p_4.fastq --CPU 8 --max_memory 64G
```

За) с помощью BUSCO оценивался сам транскриптомы обоих сборок (transcripts.fasta и Trinity.fasta):

python3 scripts/run_BUSCO.py -i ../transcripts.fasta -o BUSCO_result -l ../eudicotyledons_odb10/ -m tran

python3 scripts/run_BUSCO.py -i ../Trinity.fasta -o Trinity_BUSCO_result -l ../eudicotyledons_odb10/ -m tran

также для визуального отображения состояния транскриптомов (файлы short_summary_BUSCO_result.txt и short_summary_Trinity_BUSCO_result.txt копировались в отдельную папку my_summary) выполнялась следующая команда из BUSCO:

python3 scripts/generate_plot.py -wd my_summary/

36) помимо BUSCO для сравнения сборок транскриптомов использовался Transrate:

../../scratch/tools/transrate-1.0.3-linux-x86_64/transrate \
--assembly rna_spades_output/transcripts.fasta,trinity_out_dir/Trinity.fasta --threads 8

rnaSPAdes		Trinity	
n seqs	42781	n seqs	36332
smallest	49	smallest	201
largest	11531	largest	14207
n bases	28725804	n bases	31049966
mean len	633.52	mean len	854.62
n under 200	9265	n under 200	0
n over 1k	9234	n over 1k	10697
n over 10k	4	n over 10k	7
n with orf	13853	n with orf	15878
mean orf percent	74.26	mean orf percent	73.15
n90	340	n90	360
n70	818	n70	807
n50	1343	n50	1298
n30	1997	n30	1875
n10	3829	n10	3086
gc	0.41	gc	0.41
bases n	4576	bases n	0
proportion n	0.0	proportion n	0.0

⁴⁾ полученный на этапе (2a) транскриптом из **rnaSPAdes** (*transcripts.fasta*) подвергался процедуре удаления похожих транскриптов (коллапсирование) с помощью программы **cd-hit**:

./cd-hit-est -i ../../BUSCO/transcripts.fasta -o ~/result_cd_hit.fasta -c 0.95 -n 10 -d 0 -M 0M -T 0

5) полученный после работы **cd-hit-est** файл (*result_cd_hit.fasta*) аннотировался с помощью blastx, где в качестве референса использовался файл *Uniprot SwissProt*;

сначала из Uniprot SwissProt создаем базу данных:

 $../../scratch/tools/ncbi-blast-2.9.0 +/bin/makeblastdb - in ~/uniprot_sprot.fasta -parse_seqids -dbtype \ prot -out ~/my_db$

затем уже blastx:

./../../scratch/tools/ncbi-blast-2.9.0+/bin/blastx -query result_cd_hit.fasta -out blastx_output.txt -db /home/slegkovoi/my_db/my_db -num_threads 8

Фрагмент blastx_output.txt:

Query= NODE_1_length_11531_cov_7.257359_g0_i0

Length=11531

Sequences producing significant alignments: Value	Score	E (Bits)
Q8H0T4 E3 ubiquitin-protein ligase UPL2 OS=Arabidopsis thaliana O	1103	0.0
Q8GY23 E3 ubiquitin-protein ligase UPL1 OS=Arabidopsis thaliana O	1103	0.0
Q9P4Z1 E3 ubiquitin-protein ligase TOM1-like OS=Neurospora crassa	498	2e-139
O13834 E3 ubiquitin-protein ligase ptr1 OS=Schizosaccharomyces po	456	5e-127
Q756G2 Probable E3 ubiquitin-protein ligase TOM1 OS=Ashbya gossyp	446	5e-124
Q03280 E3 ubiquitin-protein ligase TOM1 OS=Saccharomyces cerevisi	441	2e-122
Q7Z6Z7 E3 ubiquitin-protein ligase HUWE1 OS=Homo sapiens OX=9606	430	7e-119
Q7TMY8 E3 ubiquitin-protein ligase HUWE1 OS=Mus musculus OX=10090	430	7e-119
P51593 E3 ubiquitin-protein ligase HUWE1 (Fragment) OS=Rattus nor	359	1e-110
F8W2M1 E3 ubiquitin-protein ligase HACE1 OS=Danio rerio OX=7955 G	365	3e-105
O14326 E3 ubiquitin-protein ligase pub3 OS=Schizosaccharomyces po	360	8e-105
Q92462 E3 ubiquitin-protein ligase pub1 OS=Schizosaccharomyces po	351	4e-102
D3ZBM7 E3 ubiquitin-protein ligase HACE1 OS=Rattus norvegicus OX=	355	1e-101
Q3U0D9 E3 ubiquitin-protein ligase HACE1 OS=Mus musculus OX=10090	354	1e-101
Q8IYU2 E3 ubiquitin-protein ligase HACE1 OS=Homo sapiens OX=9606	354	2e-101
Q28BK1 E3 ubiquitin-protein ligase HACE1 OS=Xenopus tropicalis OX	353	2e-101
Q6DCL5 E3 ubiquitin-protein ligase HACE1 OS=Xenopus laevis OX=835	353	5e-101
F1N6G5 E3 ubiquitin-protein ligase HACE1 OS=Bos taurus OX=9913 GN	352	5e-101
E1C656 E3 ubiquitin-protein ligase HACE1 OS=Gallus gallus OX=9031	352	2e-100
Q5BDP1 E3 ubiquitin-protein ligase RSP5 OS=Emericella nidulans (s	332	5e-95
A1D3C5 Probable E3 ubiquitin-protein ligase hulA OS=Neosartorya f	332	7e-95
Q0CCL1 Probable E3 ubiquitin-protein ligase hulA OS=Aspergillus t	331	9e-95
Q4WTF3 Probable E3 ubiquitin-protein ligase hulA OS=Neosartorya f	331	1e-94
B0XQ72 Probable E3 ubiquitin-protein ligase hulA OS=Neosartorya f	331	1e-94
GOS9J5 E3 ubiquitin-protein ligase RSP5 OS=Chaetomium thermophilu	330	4e-94
A2QQ28 Probable E3 ubiquitin-protein ligase hulA OS=Aspergillus n	330	4e-94
P39940 E3 ubiquitin-protein ligase RSP5 OS=Saccharomyces cerevisi	329	6e-94
A1CQG2 Probable E3 ubiquitin-protein ligase hulA OS=Aspergillus c	328	9e-94

p.s.: был бы поумнее, поставил бы флаги -evalue 1e-5 -max_target_seqs 5, тогда посчиталось бы быстрее + также было и в статье сделано

p.p.s: в папке /home/slegkovoi/fastqc_dir лежат HTML-отчёты по качеству ридов от fastqc, но их вставлять было уже лень