Hadronic Tau MVA

Christian Kirfel

24th November 2021

Selection dileptau

- n-jets: 2-6 (b-jets: 1)
- b-jet WP: 70 DL1r
- nLeptons & nTaus: $2\mathbf{e}/\mu~\mathbf{1} au_{\mathrm{had}}(1~\mathrm{OS~light~lepton})$
- E_{T,miss}: no cut (to 800 GeV)

• iets:

$$p_{\tau} > 25 \,\text{GeV}$$

- $|\eta| < 4.5$
- EMPFlow
- electrons:
 - $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
 - $|\eta| <$ 2.5 not in 1.37 1.52
 - WP: Tight; isolation: PLIVTight
- muons:
 - $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
 - $|\eta| < 2.5$
 - WP: Tight ; isolation: PLIVTight
- taus:
 - $p_T > 20 \,\text{GeV}$ trigger matched 27 GeV
 - $|\eta| <$ 2.5 not in 1.37 1.52
 - WP: RNNMedium
 - ASG recommended OLR (au_{had} remove jets)

Features

forward jet eta
forward jet transverse momentum
forward jet mass
forward jet phi
b-jet eta
b-jet transverse momentum
b-jet mass
b-jet phi
reconstructed Higgs mass
Missing energy
Missing energy x-component
Missing energy y-component
Reconstructed Tmass of the W case 1
Reconstructed mass of the W case 1

Delta R of the hadronic taus
Delta phi of the hadronic taus
pt of LorentzV sum of hadronic taus
eta of LorentzV sum of hadronic taus
mass of reconstructed top
pt of visible top
eta of visible top
Hadronic tau pt
Hadronic tau eta
Hadronic tau m
Light lepton pt
Light lepton eta

- Experimented with many setups.
- Ranking is planned for documentation but no improvement is expected

Lephad Hyperparameters

Hyperparameter	Setting
Nodes	120
Layers	6
Dropout	0.65
Batchnormalisation	On
Activation	elu
Output activation	sigmoid
Batch size	1000
Optimisation	Adam
Weight Initialisation	Lecun Normalisation

Negative weight handling

Monitoring lephad

Results lephad

Responses

Yields

	bgr target	05	06	65	651	652	66	07
tHq ML	2.09 ± 0.04	1.309 ± 0.033	1.130 ± 0.031	0.981 ± 0.029	0.959 ± 0.028	0.976 ± 0.028	0.903 ± 0.027	0.725 ± 0.024
tZq	42.4 ± 0.5	11.08 ± 0.32	8.87 ± 0.30	7.39 ± 0.29	7.26 ± 0.29	7.29 ± 0.29	6.58 ± 0.28	4.71 ± 0.27
tt	4712 ± 15	365 ± 4	182.6 ± 3.4	116.9 ± 2.9	106.2 ± 2.8	116.5 ± 2.9	93.6 ± 2.7	58.0 ± 2.4
tW	227 ± 6	11.9 ± 1.7	5.5 ± 1.4	4.7 ± 1.4	3.9 ± 1.4	4.7 ± 1.4	4.0 ± 1.4	2.6 ± 1.3
W+jets	5.1 ± 1.2	3.4 ± 1.1	3.3 ± 3.1	3.3 ± 3.1	3.0 ± 3.1	3.3 ± 3.1	2.1 ± 0.9	1.9 ± 3.1
Z+jets	2850 ± 70	54 ± 6	21 ± 4	13.1 ± 3.5	12.4 ± 3.2	13.0 ± 3.5	8.7 ± 3.0	5.3 ± 2.0
Diboson	150.8 ± 2.0	19.9 ± 0.6	14.6 ± 0.5	11.6 ± 0.5	11.1 ± 0.5	11.5 ± 0.5	9.6 ± 0.4	6.2 ± 0.4
ttW	55.8 ± 0.7	20.9 ± 0.5	17.9 ± 0.5	15.2 ± 0.4	14.5 ± 0.4	15.1 ± 0.4	13.4 ± 0.4	8.7 ± 0.4
ttZ	119.8 ± 1.0	27.5 ± 0.5	21.6 ± 0.5	17.2 ± 0.5	16.3 ± 0.4	17.1 ± 0.4	14.6 ± 0.4	9.3 ± 0.4
ttH	53.32 ± 0.23	23.80 ± 0.19	19.42 ± 0.18	15.88 ± 0.17	15.23 ± 0.16	15.76 ± 0.17	13.75 ± 0.16	9.00 ± 0.14
tWZ/tWH	21.91 ± 0.13	5.87 ± 0.08	4.58 ± 0.07	3.74 ± 0.07	3.54 ± 0.07	3.72 ± 0.07	3.24 ± 0.06	2.15 ± 0.05
Other	10.7 ± 1.8	2.0 ± 0.4	1.8 ± 0.4	1.6 ± 0.4	1.6 ± 0.4	1.5 ± 0.4	1.4 ± 0.4	1.1 ± 0.4
Total background	8250 ± 70	545 ±8	302 ± 5	211 ± 4	195 ± 4	209 ± 4	171 ± 4	109.0 ± 2.8
Data	7604	519	262	105	101	104	161	05

S over B

Summary

- Every tool necessary to fit with the NN output is in place and tested
- The model shows good stability and tests for negative weights setups hold
- Additionally, feature behaviour with respect wo weight sign was investigated
- Test fits created for lephad (and hadhad)
- Variable ranking planned, only needed for documentation
- Improved performance expected from combining categorical likelihhods, simple 2D cut not enough.

