Algebra Lineare

Stefano Piccoli

25 gennaio 2022

Indice

Introd	uzione		2
0.1	Equaz	ioni a 3 variabili	2
0.2	Caso g	generale	3
	0.2.1	Sistema omogeneo	3
	0.2.2	Sistema omogeneo associato	3
	0.2.3	Soluzione di un sistema	3
	0.2.4	Trovare soluzioni comuni	4

Introduzione

L'Algebra Lineare si occupa di trovare soluzioni ad equazioni e sistemi lineari.

$$\begin{cases} E1: x + y = 3 \\ E2: x + 2y = 5 \end{cases}$$

E2 - E1 : y = 5-3 = 2Sostituzione: x=1

$$\begin{cases} E1: x + y = 3 \\ E2: 2x + 2y = 6 \end{cases}$$

$$E2 - E1 : 0 = 0$$

Hanno le stesse soluzioni (infinità)

$$\begin{cases} E1: x+y=3\\ E2: 2x+2y=5 \end{cases}$$

$$E2 - E1 : 0 = -1$$

Nessuna soluzione comune

Quindi abbiamo 1, ∞ o 0 soluzioni comuni. Così sarà in generale.

0.1 Equazioni a 3 variabili

Le soluzioni comuni di 3 equazioni lineari a 3 variabili corrispondono all'intersezione di 3 piani nello spazio tridimensionale. L'intersezione può essere di 3 tipi:

- Un punto (unica soluzione)
- Una retta o un piano
- $0 \ (\infty \ soluzioni)$

0.2 Caso generale

Un sistema di n equazioni lineari a m variabili.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_m \end{cases}$$
$$a_{ij}, b_i \in \Re$$
$$n, m > 0$$

0.2.1 Sistema omogeneo

Il sistema (E) è **omogeneo** se $b_1 = b_2 = \ldots = b_n = 0$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = 0 \end{cases}$$

0.2.2 Sistema omogeneo associato

Un sistema omogeneo associato è un sistema dove la parte prima parte è uguale ad un altro e i coefficienti dopo l'uguale sono $\mathbf{0}$.

0.2.3 Soluzione di un sistema

Soluzione di un sistema = soluzione di un caso particolare + soluzione dell'omogenea associata.

Esempio
$$2x + 3y = 5, n = 1, m = 2$$

Soluzione particolare

$$2x + 3y = 5$$
$$x = y = 1$$

Soluzione omogenea

$$2x + 3y = 0$$
$$x = -\frac{3}{2}y$$

Soluzione generale Definiamo s parametro nel ruolo di y.

$$x = 1 + \left(-\frac{3}{2}\right)s$$
$$y = 1 + s$$

0.2.4 Trovare soluzioni comuni

Per trovare soluzioni comuni di E è necessario semplificare. Le 3 operazioni utili per semplificare sono:

- Moltiplicare un'equazione E_i per una costante. $\lambda \neq 0$. $E_i \Rightarrow \lambda E_i$
- Moltiplicare un'equazione E_i per $\lambda \neq 0$ e fare la somma con E_j . $E_j \Rightarrow E_j + \lambda E_i$.
- Scambiare due equazioni.