MATH 104 Exercise Solutions

Wenhao Pan

July 3rd, 2021

Introduction

This note is a collection of the solutions to the recommended exercises of *Elementary Analysis* by Kenneth A. Ross.

Chapter 8

Q6a

Chapter 9

 $\mathbf{Q4}$

(a)
$$s_1 = 1, s_2 = \sqrt{2}, s_3 = \sqrt{\sqrt{2} + 1}, s_4 = \sqrt{\sqrt{\sqrt{2} + 1} + 1}.$$

(b) Since (s_n) converges, $\lim(s_n) = \lim(s_{n+1}) = s$ which implies

$$\lim s_n = \lim \sqrt{s_n + 1} = s$$

$$\lim s_n + 1 = s^2$$

$$\lim s_n = s^2 - 1$$

$$s = s^2 - 1$$

Thus solve the last equation for s to get $s = \frac{1+\sqrt{5}}{2}$ since $s_n > 0$ for all n.

 $\mathbf{Q}9$

(c): Let $s = \lim(s_n - t_n)$. Suppose s > 0, then $\exists N_1 \ n > N_1 \implies |s_n - t_n - s| < s \implies s_n > t_n$. This contradicts to the condition that there exists N_0 such that $n > N_0 \implies s_n \le t_n$.

Q10

(a) Since $\lim s_n = +\infty$ and k < 0, for each $\frac{M}{k} > 0$, there exists N such that $n > N \implies s_n > \frac{M}{k}$. Thus for each M > 0, $n > N \implies ks_n > k \cdot \frac{M}{k} = M$, so $\lim ks_n = +\infty$.

Q11

- (a) Suppose $\inf\{t_n : n \in \mathbb{N}\} = m$. For each M > 0, consider two cases of M m:
- Case 1: If $M m \leq 0$ then M > M m. Thus we have there exists N_1 such that $n > N_1 \implies s_n > M m \implies s_n + m > M \implies s_n + t_n \geq s_n + m > M$, so $\lim(s_n + t_n) = +\infty$.
- Case 2: If M m > 0, then there exists N_1 such that $n > N_1 \implies s_n > M m \implies s_n + m > M \implies s_n + t_n \ge s_n + m > M$, so $\lim(s_n + t_n) = +\infty$.
- (b) We want to show that $\lim t_n > -\infty \implies \inf\{t_n : n \in \mathbf{N}\} > -\infty$. Since $\lim t_n \neq -\infty$, there exists M with $-\infty < M < 0$ such that $\forall N \in \mathbf{N} \ \exists n > N \ t_n > M$. This implies $\inf\{t_n : n \in \mathbf{N}\} \geq M > -\infty$. Then we can apply (a).
- (c) Since (t_n) is bounded, $\exists M \in \mathbf{R}$ such that $\forall n \in \mathbf{N} \mid t_n \mid \leq M$. This implies for all n, $t_n \geq -M \implies -M \leq \inf\{t_n : n \in \mathbf{N}\} \implies \inf t_n : n \in \mathbf{N} > -\infty$. Then we can apply (a).

Q18

- (a) Let $S = 1 + a + a^2 + \dots + a^n$, then $a \cdot S = a + a^2 + a^3 + \dots + a^{n+1}$. Then subtract aS from S to get $S aS = 1 a^{n+1} \implies S = \frac{1 a^{n+1}}{1 a}$.
- (b) $\lim_{n} (1 + a + a^2 + \dots + a^n) = \lim_{n} \frac{1 a^{n+1}}{1 a} = \frac{1}{1 a} \lim_{n} (1 a^{n+1}) = \frac{1}{1 a} (1 \lim_{n} a^n) = \frac{1}{1 a} (1 0) = \frac{1}{1 a} \text{ when } |a| < 1.$
- (c) $\frac{1}{1-1/3} = \frac{3}{2}$.
- (d) If $a \ge 1$, then $\lim_n (1 + a + a^2 + \dots + a^n) \ge \lim_n (1 + 1 + 1 + \dots + 1) = \lim_n n = +\infty$. Thus $\lim_n (1 + a + a^2 + \dots + a^n) = \infty$.

Chapter 10

Q9

- (a) $s_2 = (\frac{1}{2}) \cdot 1^2 = \frac{1}{2}$; $s_3 = (\frac{2}{3}) \cdot (\frac{1}{2})^2 = \frac{1}{2 \cdot 3}$; $s_4 = \frac{3}{4} \cdot (\frac{1}{2 \cdot 3})^2 = \frac{1}{2^2 \cdot 3 \cdot 4}$
- (b) Observe that s_n is nonincreasing(monotone) and bounded by 1, so s_n converges and hence $\lim s_n$ exists.
- (c) Since $\lim s_n$ exists, assume $\lim s_n = s$. Then $s = \lim s_{n+1} = \lim \left(\frac{n}{n+1}\right) s_n^2 = \lim \left(\frac{n}{n+1}\right) s^2 = s^2$. Then solve the equation for s to get s = 1 or s = 0. Since $s_2 < 1$ and s_n is strictly decreasing, s = 0.

Chapter 11

$\mathbf{Q8}$

First we want to show that $\inf\{s_n : n > N\} = -\sup\{-s_n : n > N\}$:

 \leq : Let $\inf\{s_n : n > N\} = m$, then we have

$$\forall n > N \ s_n \ge m \implies \forall n > N \ -s_n \ge -m$$

 $\implies \sup\{-s_n : n > N\} \le -m$
 $\implies m \le -\sup\{-s_n : n > N\}.$

Thus $\inf\{s_n : n > N\} \le -\sup\{-s_n : n > N\}.$

 \geq : Let $-\sup\{-s_n: n > N\} = M$, then we have

$$\sup\{-s_n : n > N\} = -M \implies \forall n > N - s_n \le -M$$
$$\implies \forall n > N \ M \le s_n$$
$$\implies M < \inf\{s_n : n > N\}.$$

Thus $\inf\{s_n : n > N\} \ge -\sup\{-s_n : n > N\}.$

Thus $\inf\{s_n : n > N\} = -\sup\{-s_n : n > N\}$. Then $\lim_N \inf\{s_n : n > N\} = \lim_N (-\sup\{-s_n : n > N\}) = -\lim_N \sup\{-s_n : n > N\} = -\lim_N \sup\{-s_n : n > N$

Chapter 12

$\mathbf{Q2}$

 \implies : Since $0 \ge \liminf |s_n| \le \limsup |s_n| = 0$, we have $\lim \inf |s_n| = \limsup |s_n| = 0 \implies \lim |s_n| = 0$. Since $\forall n \in \mathbb{N} - |s_n| \le s_n \le |s_n|$, by Squeeze Formula $\lim s_n = 0$.

 \iff : From $\lim s_n = 0$, we know $\forall \epsilon > 0 \; \exists N \in \mathbf{N}$

$$n \ge N \implies |s_n - 0| < \epsilon$$

$$\implies ||s_n| - |0|| \le |s_n - 0| < \epsilon$$

$$\implies ||s_n| - 0| < \epsilon$$

$$\implies \lim |s_n| = 0.$$

$\mathbf{Q7}$

Q9b

Since $\liminf t_n > 0$, $\exists N_1 \ m = \inf\{t_n : n \ge N_1\} > 0$. From $\limsup s_n = +\infty$, we know $\forall \frac{M}{m} > 0 \ \exists N_2 \ \sup\{s_n : n \ge N_1\} > \frac{M}{m}$. Now take $N = \max\{N_1, N_2\}$, we have $\forall n \ge N$

$$\sup\{s_n t_n : n \ge N\} \ge s_n t_n \ge s_n \cdot m.$$

This implies

$$\sup\{s_n t_n : n \ge N\} \ge \sup\{s_n \cdot m : n \ge N\}$$

$$= m \cdot \sup\{s_n : n \ge N\} \quad \text{since } m > 0$$

$$> m \cdot \frac{M}{m}$$

$$= M,$$

completing the proof.

Q13

Let's prove $\liminf s_n = \sup A$. Consider $N \in \mathbb{N}$ then $\forall n \geq N \ u_N = \inf\{s_n : n \geq N\} \leq s_n$. i.e. $\{n \in \mathbb{N} : s_n < u_n\} \subseteq \{1, \dots, N-1\}$. Thus $u_N \in A \implies u_N \leq \sup A$, and hence $\lim_N u_N = \liminf s_n \leq \sup A$.

Now consider arbitrary $a \in A$. Let $N_0 = \max\{n \in \mathbf{N} : s_n < a\} < \infty$ since all but finitely many $s_n < a$. Then $s_n \ge a$ for $n > N_0$. Thus for $N > N_0$ we have $u_N = \inf\{s_n : n \ge N\} \ge a$. It follows that $\lim_N u_N = \liminf s_n \ge a$. Since a is arbitrary, $\liminf s_n$ is an upper bound of A, and hence $\liminf s_n \ge \sup A$.

Chapter 13

Q3b

No, since $d^*((1,1,1,\dots),(0,0,0,\dots)) = \sum_{j=1}^{\infty} |1-0| = \sum_{j=1}^{\infty} 1 = \infty$, and we don't allow distance function to be valued as ∞ .

Q5a

We want to show both directions.

 \subseteq : Consider $u \in \bigcap_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}^{\mathsf{C}}$, then we have

$$\forall \alpha \in \mathcal{A} \ u \in \mathcal{U}_{\alpha}^{\mathsf{C}} \implies \forall \alpha \in \mathcal{A} \ u \notin \mathcal{U}_{\alpha}$$
 (1)

$$\implies u \notin \bigcup_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha} \tag{2}$$

$$\implies u \in \left(\bigcup_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}\right)^{\mathsf{C}}.\tag{3}$$

 $(1) \implies (2)$ because

$$(\neg (u \in \mathcal{U}_1)) \land (\neg (u \in \mathcal{U}_2)) \land \dots = \neg ((u \in \mathcal{U}_1 \lor (u \in \mathcal{U}_2) \lor \dots) = \neg (u \in \bigcup \mathcal{U}_i)$$

Thus $\bigcap_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}^{\mathsf{C}} \subseteq \left(\bigcup_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}\right)^{\mathsf{C}}$.

 \supseteq : Consider $u \in \left(\bigcup_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}\right)^{\mathsf{C}}$, then we have

$$u \notin \bigcup_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha} \implies \forall \alpha \in \mathcal{A} \ u \notin \mathcal{U}_{\alpha}$$
$$\implies \forall \alpha \in \mathcal{A} \ u \in \mathcal{U}_{\alpha}^{\mathsf{C}}$$
$$\implies u \in \bigcap_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}^{\mathsf{C}}$$

Thus $\bigcap_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}^{\mathsf{C}} \supseteq \left(\bigcup_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}\right)^{\mathsf{C}}$, and hence $\bigcap_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}^{\mathsf{C}} = \left(\bigcup_{\alpha \in \mathcal{A}} \mathcal{U}_{\alpha}\right)^{\mathsf{C}}$.