Growth of functions

CSE 2320 – Algorithms and Data Structures
Alexandra Stefan

Based on presentations by Vassilis Athitsos and Bob Weems

University of Texas at Arlington

Math Background

Limits

- From the Limits cheat sheet see:
 - Properties,
 - Basic limit evaluations at $\pm \infty$ (focus on the +),
 - Polynomials at infinity (in Evaluation techniques)
- <u>L'Hospital's rule on wikipedia</u> (or in the slides below)

Derivatives

- needed to Apply L'Hospital's rule
- From the Derivatives cheat sheet see:
 - · "Basic Properties and Formulas" and
 - "Common Derivatives" (especially for: polynomial, logarithmic and exponential functions)

Logarithm properties

- See the class cheat sheet
- Cheat sheets and other useful links are on the <u>Slides and Resources webpage</u>.

Book

- Read chapter 3
 - Including 3.2 which has useful math review

Asymptotic Notation

- Goal: we want to be able to say things like:
 - Selection sort will take time <u>strictly</u> proportional to $n^2 \in \Theta(n^2)$
 - Insertion sort will take time <u>at most</u> proportional $n^2 \in O(n^2)$
 - Use big-Oh for upper bounding complex functions of n.
 - Note that we can still say that the worst case for insertion sort is $\Theta(n^2)$.
 - Any sorting algorithm will take time <u>at least</u> proportional to n. $\in \Omega(n)$
- Math functions that are:
 - $\Theta(n^2)$:
 - $O(n^2)$:
 - $-\Omega(n^2)$:

Abuse notation: f(n) = O(g(n))instead of: $f(n) \in O(g(n))$

```
Informal definition:

f(n) grows 'proportional'

to g(n) if:

\lim_{n\to\infty} \frac{f(n)}{g(n)} = c \neq 0
(c is a non-zero constant)

= .... \Theta tight bound

\leq .... \Theta upper bound

(big-Oh – bigger)
```

 $\geq \dots \Omega$ lower bound

Big-Oh

• A function f(n) is said to be O(g(n)) if there exist constants c_0 and n_0 such that:

$$f(n) \le c_0 g(n)$$
 for all $n \ge n_0$.

- Theorem: if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ is a constant, then $f(n) \in O(g(n))$.
- Typically, f(n) is the running time of an algorithm.
 - This can be a rather complicated function.
- We try to find a g(n) that is **simple** (e.g. n^2), and such that f(n) = O(g(n)).

Asymptotic Bounds and Notation

(CLRS chapter 3)

- f(n) is O(g(n)) if there exist positive constants c_0 and n_0 such that: $f(n) \le c_0 g(n)$ for all $n \ge n_0$.
 - **Theorem:** if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ is a constant, then $f(n) \in O(g(n))$
 - -g(n) is an asymptotic upper bound for f(n).
- f(N) is $\Omega(g(n))$ if there exist positive constants c_0 and n_0 such that: $c_0 g(n) \le f(n)$ for all $n \ge n_0$.
 - **Theorem:** if $\lim_{n\to\infty} \frac{g(n)}{f(n)} = c$ is a constant, then $f(n) \in \Omega(g(n))$
 - -g(n) is an asymptotic lower bound for f(n).
- f(n) is $\Theta(g(n))$ if there exist positive constants c_0 , c_1 and n_0 such that: $c_0 g(n) \le f(n) \le c_1 g(n)$ for all $n \ge n_0$.
 - Theorem: if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \mathbf{c} \neq \mathbf{0}$ is a constant, $f(n) \in \Theta(g(N))$
 - -g(n) is an asymptotic tight bound for f(n).

Asymptotic Bounds and Notation

(CLRS chapter 3)

"little-oh": o

- Theorem: if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \mathbf{0}$, then $f(n) \in o(g(n))$
- f(n) is o(g(n)) if for any constant c_0 , there exists n_0 s.t.: $f(n) < c_0 g(n)$ for all $n \ge n_0$.
- g(N) is an asymptotic upper bound for f(N) (but NOT tight).
- E.g.: $n = \omega(n^2)$, $n = \omega(nlgn)$, $n^2 = \omega(n^4)$,...

"little-omega": ₩

- Theorem: if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $f(n) \in \omega(g(n))$
- f(N) is $\omega(g(n))$ if for any constant c_0 , there exists n_0 s. t.: $c_0 g(n) < f(n)$ for all $n \ge n_0$.
- g(n) is an asymptotic lower bound for f(n) (but NOT tight).
- E.g.: $n^2 = \omega(n)$, $n = \omega(n)$, $n^3 = \omega(n^2)$,...

L'Hospital's Rule

```
If \lim_{n \to \infty} f(n) and \lim_{n \to \infty} g(n) are both 0 or \pm \infty and if \lim_{n \to \infty} \frac{f'(n)}{g'(n)} is a constant or \pm \infty,
```

Then
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Theta vs Big-Oh

 The Theta notation is more strict than the Big-Oh notation:

```
- TRUE: n^2 = O(n^{100}).
```

- FALSE: $n^2 = \Theta(n^{100})$.

Properties of O, Ω and Θ

1.
$$f(n) = \mathbf{O}(g(n)) \Rightarrow g(n) = \mathbf{\Omega}(f(n))$$

2.
$$f(n) = \Omega(g(n)) \Rightarrow g(n) = O(f(n))$$

3.
$$f(n) = \mathbf{\Theta}(g(n)) => g(n) = \mathbf{\Theta}(f(n))$$

4. If
$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n)) => f(n) = \Theta(g(n))$

5. If
$$f(n) = \Theta(g(n)) = f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

Transitivity (proved in future slides):

6. If
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$, then $f(n) = O(h(n))$.

7. If
$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n))$, then $f(n) = \Omega(h(n))$.

Simplifying Big-Oh Notation

- Let $f(n) = 35n^2 + 41n + lg(n) + 1532$.
- We say that $f(n) = O(n^2)$.
- Also correct, but too detailed (do not use them):
 - $f(n) = O(n^2 + n)$
 - $f(n) = O(35n^2 + 41n + lg(n) + 1532).$

Asymptotic Notation in Expressions (if needed)

In the recurrence formulas and proofs, you may see these notations (see CLRS, page 49):

- $f(n) = 2n^2 + \Theta(n)$
 - There is a function h(n) in $\Theta(n)$ s.t. $f(n) = 2n^2 + h(n)$
- $-2n^2+\Theta(n)=\Theta(n^2).$
 - For any function h(n) in $\Theta(n)$, there is a function g(n) in $\Theta(n^2)$ s.t. $2n^2 + h(n) = g(n)$.
 - For any function h(n) in $\Theta(n)$, $2n^2 + h(n)$ is in $\Theta(n^2)$.

Proofs using the c definition: O

- Let $f(n) = 35n^2 + 41n + lg(n) + 1532$. Show (using the definition) that $f(n) = O(n^2)$.
- Proof:

Want to find n_0 and c_0 s.t., for all $n \ge n_0$: $f(n) \le c_0 n^2$.

Version 1:

- Upper bound each term by n^2 for large n (e.g. $n \le 1532$)

$$f(n) = 35n^2 + 41n + lg(n) + 1532 \le 35n^2 + n^2 + n^2 + n^2 = 38n^2$$

- Use: $c_0 = 38$, $n_0 = 1536$ $f(n) = 35n^2 + 41n + lg(n) + 1532 \le 38n^2$, for all $n \ge 1536$

Version 2:

- You can also pick c_0 large enough to cover the coefficients of all the terms: $c_0 = 1609 = (35 + 41 + 1 + 1532)$, $n_0 = 1$

Proofs using the c definition: Ω , Θ

- Let $f(n) = 35n^2 + 41n + lg(n) + 1532$. Show (using the definition) that $f(n) = \Omega(n^2)$ and $f(n) = \Theta(n^2)$.
- Proof of Ω :

```
Want to find n_1 and c_1 s.t., for all n \ge n_1: f(n) \ge c_1 n^2.
```

```
- Use: c_1 = 1, n_1 = 1
 f(n) = 35n^2 + 41n + lg(n) + 1532 ≥ n^2, for all n ≥ 1
```

Proof of Θ:

Version 1: We have proved $f(n) = O(n^2)$ and $f(n) = \Omega(n^2)$ and so $f(n) = O(n^2)$ (property 4, page 26).

```
Version 2: We found c_0 = 38, n_0 = 1536 and c_1 = 1, n_1 = 1 s.t.: f(n) = 35n^2 + 41n + lg(n) + 1532 \le 38n^2, for all n \ge 1536 f(n) = 35n^2 + 41n + lg(n) + 1532 \ge n^2, for all n \ge 1 => n^2 \le f(n) \le 38n^2, for all n \ge 1536 => f(n) = \Theta(n^2)
```

Polynomial functions

• If f(n) is a polynomial function, then it is Θ of the dominant term.

```
• E.g. f(n) = 15n^3 + 7n^2 + 3n + 20,

find g(n) s.t. f(n) = \Theta(g(n)):

– find the dominant term: 15n^3

– lgnore the constant, left with: n^3

– => g(n) = n^3

– => f(n) = \Theta(n^3)
```

You cannot use the dominant term method if f(n) is a summation that has a number of terms that depends on n.

E.g.:
$$f(n) = n^2 + (n-1)^2 + ... + 2^2 + 1$$

See Summations for techniques for solving these.

Using Limits

- if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ is a **non-zero** constant, then g(n)=____(f(n)).
 - In this definition, both zero and infinity are excluded.
 - In this case we can also say that $f(n) = \Theta(g(n))$. This can easily be proved using the limit or the reflexivity property of Θ.
- if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ is a constant, then $g(n) = \underline{\hspace{1cm}}(f(n))$.
 - "constant" includes zero, but not infinity.
- if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ then g(n) =____(f(n)).
 - f(n) grows much faster than g(n)
- if $\lim_{n\to\infty} \frac{g(n)}{f(n)}$ is a constant, then g(n) =____(f(n)).
 - "Constant" includes zero, but does NOT include infinity.

Using Limits

- if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ is a **non-zero** constant, then $f(n)=\Theta(g(n))$.
 - In this definition, both zero and infinity are excluded.
 - In this case we can also say that $g(n) = \Theta(f(n))$. This can easily be proved using the limit or the reflexivity property of Θ.
- if $\lim_{n\to\infty} \frac{g(n)}{f(n)} = c$ is a constant, then $f(n) = \Omega(g(n))$.
 - "constant" includes zero, but does NOT include infinity.
- if $\lim_{n\to\infty}\frac{g(n)}{f(n)}=\infty$ then f(n)=O(g(n)).
 - g(n) grows much faster than f(n)
- if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ is a constant, then f(n) = O(g(n)).
 - "Constant" includes zero, but does NOT include infinity.

Using Limits: Example 1

- Suppose that we are given this running time: $f(n) = 35n^2 + 41n + lg(n) + 1532$.
- Use the limits theorem to show that $f(n) = O(n^2)$.

Big-Oh Hierarchy

- $1 = O(\lg(n))$
- lg(n) = O(n)
- $n = O(n^2)$
- If $0 \le c \le d$, then $n^c = O(n^d)$.
 - Higher-order polynomials always get larger than lower-order polynomials, eventually.
- For any d, if c > 1, $n^d = O(c^n)$.
 - Exponential functions always get larger than polynomial functions, eventually.
- You can use these facts in your assignments.
- You can apply transitivity to derive other facts, e.g., that $lg(n) = O(n^2)$.

$$O(1/n), O(1), O(lg(n)), O(n^{\varepsilon}), O(\sqrt{n}), O(n), O(nlgn), O(n^{2}), O(n^{c}), O(c^{n}), O(n!), O(n^{n})$$
 (where $0 < \varepsilon < 0.5$) ()

n!

Compare the following functions (in terms of o,ω) $n!,2^n,n^n$

We can upper and lower bound n! We have a Θ bound on lg(n!):

$$\lg(n!) = \Theta(n \lg n)$$

Be careful when using lg! Consider:

$$n^2 \neq \Theta(n)$$

Apply lg:

$$\lg(n^2) = \Theta(\lg(n))$$

Big-Oh Transitivity

• If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Proof:

Big-Oh Transitivity

• If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Proof:

We want to find c_3 and n_3 s. t. $f(n) \le c_3 h(n)$, for all $n \ge n_3$.

We know:

$$f(n) = O(g(n))$$
 => there exist c_1 , n_1 , s.t. $f(n) \le c_1 g(n)$, for all $n \ge n_1$ $g(n) = O(h(n))$ => there exist c_2 , n_2 , s.t. $g(n) \le c_2 h(n)$, for all $n \ge n_2$

$$\Rightarrow f(n) \leq c_1 g(n) \leq c_1 c_2 h(n), \text{ for all } n \geq \max(n_1, n_2)$$

$$\Rightarrow$$
 Use: $c = c_1 * c_2$, and $n \ge max(n_1, n_2)$

Using Substitutions

• If $\lim_{x\to\infty} h(x) = \infty$, and h(x) is monotonically increasing then:

$$f(\mathbf{x}) = O(g(\mathbf{x})) \Rightarrow f(h(\mathbf{x})) = O(g(h(\mathbf{x}))).$$
 (This can be proved)

- How do we use that?
- For example, prove that:

$$(\lg n)^{10} = O(n)$$

 $(for : n^2 (\lg n)^{10} = O(n^3))$

Proof: Use substitution:
$$h(n) = \lg(n)$$

and: $y^{10} = O(2^y)$
 $(y = h(n))$

Example Problem 1

- Is $n = O(\sin(n) n^2)$?
- Answer:

Example Problem 2

- Show that max(f(n), g(n)) is $\Theta(f(n) + g(n))$
 - Show O:

– Show Ω :

Asymptotic notation for two parameters (CLRS)

f(n,m) is O(g(n,m)) if there exist constants c_0 , n_0 and m_0 such that:

$$f(n,m) \le c_0 g(n,m)$$
 for all pairs (n,m) s.t.
either $n \ge n_0$ or $m \ge m_0$

Useful logarithm properties

- $c^{lg(n)} = n^{lg(c)}$
 - Proof: apply lg on both sides and you get two equal terms:

$$lg(c^{lg(n)}) = lg(n^{lg(c)}) = >$$

$$lg(n) * lg(c) = lg(n) * lg(c)$$

- This equality helps identify "false exponentials". E.g. $3^{lg(n)}$ may look like an exponential growth, but is really polynomial: $n^{lg(3)}$.
- Can we also say that $c^n = n^c$?
 - -N0!

Summary

- Definitions
- Properties: transitivity, reflexivity, ...
- Using limits
- Big-Oh hierarchy
- Substitution
- Example problems
- Asymptotic notation for two parameters
- $a^{\log_b(n)} = n^{\log_b(a)}$ $(a^n \neq n^a)$ (note \log_b in the exponent)

Practice

• See posted practice problems.

Extra: Using Limits: Example 2

• Show that
$$\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(???).$$

Extra: Using Limits: Example 2

- Show that $\frac{n^5 + 3n^4 + n^3 + 2n^2 + n + 12}{5n^3 + n + 3} = \Theta(n^2).$
- Proof: Here: $f(n) = \frac{n^5 + 3n^4 + n^3 + 2n^2 + n + 12}{5n^3 + n + 3}$ Let $g(n) = n^2$.

We want to show that $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\neq 0$ and so, $f(n)=\Theta(g(n))$.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + n^3 + 2n^2 + n + 12}{5n^3 + n + 3} \frac{1}{n^2} \right) = \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + n^3 + 2n^2 + n + 12}{5n^5 + n^3 + 3n^2} \right)$$

- Solution 1: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + n^3 + 2n^2 + n + 12}{5n^5 + n^3 + 3n^2} \right) = \frac{1}{5}$
- Solution 2 (L'Hospital) :

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)} = \lim_{n \to \infty} \left(\frac{5n^4 + 3*4n^3 + 3n^2 + 2n + 1}{5*5n^4 + 3*n^2 + 3*2n} \right) = \dots = \lim_{n \to \infty} \left(\frac{5*4*3*2*n}{5*5*4*3*2*n} \right) = \frac{1}{5}$$