COVID VACCINE ANALYSIS

Data Analytics with cognos – Phase 3 DOCUMENTATION

Team Members:

- 1.SATHANA S(au613021205046)
- 2.RASIGA J (au613021205040)
- 3.RAMYA R(au613021205038)
- 4.KAVIYA R(au613021205024)
- 5.SAJEETHA BRITTY E(au613021205042)

Problem Definition:

Start the data analysis by loading and preprocessing the dataset. Load the dataset using python and data manipulation libraries (e.g., pandas).

Dataset Link:

https://www.kaggle.com/datasets/gpreda/covid-world-vaccination-progress

Overview of the process:

1.Import Libraries:

Begin by importing the necessary libraries, such as pandas for data manipulation.

2.Load the Dataset:

Use pd.read_csv() or other appropriate methods to load your dataset into a pandas DataFrame.

3.Explore the Dataset:

Display the initial rows, check for missing values, and explore basic statistics to understand the structure and content of the data.

4. Handle Missing Values:

Decide on an appropriate strategy for dealing with missing values, such as dropping rows or filling values based on a specific strategy.

5. Additional Preprocessing Steps:

Depending on the nature of your data, consider additional preprocessing steps such as feature scaling, handling outliers, processing date-time features, dealing with text data, feature engineering, or discretization.

6. Save Preprocessed Dataset (Optional):

Save the preprocessed dataset to a new file if significant changes have been made.

Loading the dataset:

1.Importing libraries

Here, for preprocessing the dataset and manipulate the data, pandas is the library used to frame the data.

Code:

import pandas as pd

2.Loading the dataset

In this step, we are framing the data into the table using DataFrame in pandas, and display the head or 5 rows of the dataset.

Code:

Replace with the actual filename

file_path="C:/Users/91962/Documents/country_vaccinations.csv"

df = pd.read csv(file path)

Preprocessing the dataset

3.Explore the dataset:

After framing data, the first few or five rows of the data in displayed using the head() function.

Code:

print(df.head())

Country	iso_code	date	total_vaccinations	people_vaccinated \	
0 Afghania	stan AFG	2021-02-22	0.0	0.0	
1 Afghani	stan AFG	2021-02-23	NaN	NaN	
2 Afghania	stan AFG	2021-02-23	NaN	NaN	
3 Afghania	stan AFG	2021-02-25	NaN	NaN	
4 Afghani	stan AFG	2021-02-26	NaN	NaN	
people_f	ully_vaccin	ated daily_va	ccinations_raw dai	ly_vaccinations \	
0	NaN	Nal	N N	IaN	
1 NaN		Nal	NaN 1367.0		
2 NaN			NaN 1367.0		
3 NaN			NaN 1367.0		
4	NaN	Nal	N 13	367.0	
total_vac	ccinations_p	er_hundred p	eople_vaccinated_p	per_hundred \	
0	0.0		0.0		
1 NaN		N	NaN		
2	2 NaN		NaN		
3	NaN		NaN		
4	Na	N	NaN		
people_f	ully_vaccin	ated_per_hun	dred daily_vaccinat	tions_per_million \	
0		NaN	Nal	N	
1	NaN		34.0		
2			34.0		
3		NaN	34.0		
4		NaN	34.0)	

- vaccines \
- 0 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...
- 1 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...
- 2 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...
- 3 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...
- 4 Johnson & Johnson, Oxford/AstraZeneca, Pfizer/Bi...

```
source_name
```

source_website

0	World Health Organization	https://covid19.who.int/
1	World Health Organization	https://covid19.who.int/
2	World Health Organization	https://covid19.who.int/
3	World Health Organization	https://covid19.who.int/
4	World Health Organization	https://covid19.who.int/

4.Check for missing values:

In this step, the missing values or null values, if it present in the data are separated and number of null values are shown through this code.

Code:

```
print("Missing values:\n", df.isnull().sum())
```

OUTPUT:

```
Missing values:
  country
iso_code
                                                                         0
date
total_vaccinations
                                                                  42905
total_vaccinations
people_vaccinated
people_fully_vaccinated
daily_vaccinations_raw
                                                                  45218
                                                             299
42905
 daily_vaccinations
total_vaccinations_per_hundred
people_vaccinated_per_hundred
people_fully_vaccinated_per_hundred
daily_vaccinations_per_million
vaccines
                                                                  47710
                                                                    299
 source_name
                                                                          0
source_website
dtype: int64
```

5.Check datatype:

In this step, the data type of the columns are discussed

Code:

```
print("Data Types:\n", df.dtypes)
```

6.Check basic statistics:

The statistics of the columns such as count, mean, std, min, max, 25%, 50%, 75% are shown through the describe() function command.

Code:

print("Summary Statistics:\n", df.describe())

7. Additional Preprocessing steps:

Perform any other preprocessing steps that are specific to your dataset a nd analysis goals. This may include scaling numeric features, handling outliers, or creating new features.

8. Saving Preprocessed dataset:

In this step, if we made substantial changes to the dataset and want to sa ve the preprocessed version, you can use the following Code.

Code:

Save the preprocessed dataset to a new CSV file df.to_csv('preprocessed_dataset.csv', index=False)

DATA VISUALIZATION:

BAR PLOT:

```
sns.set_style("whitegrid")
plt.figure(figsize= (8,8))
ax= sns.barplot(x.values)
ax.set_xlabel("Fully vaccinated(count)")
plt.show()
```



```
plt.figure(figsize= (8,8))
ax= sns.barplot(x.values)
ax.set_xlabel(''daily vaccinations(avg)'')
plt.show()
```


COUNT PLOT:

```
plt.figure(figsize=(15,15))
sns.countplot(y= "vaccines",data= df)
plt.show()
```


LINE PLOT:

x= df.groupby(''date'').daily_vaccinations.sum()
plt.figure(figsize= (15,5))
sns.lineplot(x.index)
plt.show()

plt.figure(figsize= (15,5))
sns.lineplot(x= ''date'',y= ''total_vaccinations'',data= df)
plt.show()

OUTPUT:

plt.figure(figsize= (15,5))
sns.lineplot(x= ''date'',y= ''daily_vaccinations_per_million'',data= df)
plt.show()


```
\label{eq:plt.figure} $$ plt.figure(figsize=(15,5)) $$ sns.lineplot(x=''date'',y=''total\_vaccinations'',data=df[df[''country'']==''I ndia'']) $$ plt.show()
```


CONCLUSION:

In conclusion, the outlined data loading and preprocessing steps provide a foundational framework for preparing a dataset for analysis in Python using th e pandas library. By following these steps, you can ensure that your data is in a suitable format and quality for further exploration and visualization tasks.