

MLOps with Amazon SageMaker

Simone Cardis

ML Engineer

scardis@sorint.tek

ML lifecycle and roles

Data Engineer (DE)

Data Scientist (DS)

ML Engineer (MLE)

Data prep,
EDA & feature
engineering
(dev)

Model development (dev)

Model
Tracking
(dev/staging)

Model Registry (staging/prod)

Deployment (prod)

- Parameters
- Metrics
- Metadata
- Models

• What is DevOps?

A set of **processes** and **tools** for **optimize development** and **deployment** integrations.

Benefits of DEVOps

Infrastructure as a code is an example of efficient manner to automate deployment at scale		
DevOps tools help in managing resources and control them preserving compliance		
With CI/CD practices deploy quickly with increased quality. Using testing and logging best practices it's possible to monitor and check every function before deployment		
Devops best practices like continuous delivery and microservices enable more speed and productivity		
With CI/CD (continuous integration and continuous delivery) products are improved and deployed in shorter time		

• What is ML and Operations (MLOps)?

A set of **processes** and **automation** for **managing ML artifacts**

through each stage of their lifecycle

ML Lifecycle and personas

Prepare, combine and catalogue Data

Visualize data

Provide user access

Provide data access

Data Engineers

Data Owners

ML Consumers

AWS MLOps Reference Architecture

Benefits of MLOps

Productivity	Self-service environments with access to curated data sets data scientists waste no time with missing or invalid data		
Repeatability	Automating to ensure a repeatable process Including model training, evaluation, versioning, and deployment		
Reliability	With CI/CD practices deploy quickly with increased quality		
Auditability	Versioning all inputs and outputs, including experiments, source data and trained model, to demonstrate exactly how the model was built		
Data and model quality	Track changes to data statistical properties and model quality over time		

MLOps maturity model

Initial Phase: Experimentation

Amazon SageMaker Data Wrangler

Amazon SageMaker Data Wrangler

A faster, visual way to aggregate and prepare data for ML

Select and query

Select and query data from a variety of data sources such as S3, Athena, Amazon EMR, Amazon Redshift, Snowflake, Databricks, and 50+ other

third-party sources

Cleanse and enrich

Cleanse and explore data, perform feature engineering with built-in data transforms, and detect statistical bias with SageMaker Clarify

Visualize

Graphically understand data, detect outliers with preconfigured visualization templates, and assess data quality with built-in reports

Understand

Use a sample dataset to quickly estimate model performance and accuracy and diagnose potential issues

Operationalize

Launch SageMaker processing jobs or SageMaker Autopilot experiments, deploy SageMaker Data Wrangler flow to SageMaker endpoints, or export it as a notebook

Import data from a feature store such as Amazon SageMaker Feature Store

Data Wrangler Data flow

https://aws.amazon.com/blogs/machine-learning/accelerate-data-preparation-for-ml-with-comprehensive-data-preparation-capabilities-and-a-natural-language-interface-in-amazon-sagemaker-canvas/

Amazon SageMaker Feature Store

Single source of truth to store, **retrieve**, **remove**, **track**, **share**, **discover**, and control access to features

- Securely store and serve features for real-time and batch applications
- Accelerate model development by sharing and reusing features
- Provide historical data access to recreate training datasets at a given point in time in the past.
- Reduce training-serving skew (discrepancy between model training and inference serving), which can cause models to perform worse than expected in production.
- Enable data encryption and access control

Amazon SageMaker Feature Store

- The processing logic for data is authored only once
 - ✓ Real-time inference for features stored in the online store
 - ✓ Offline store for model training and batch inference

Example

Customer Data (Data Warehouse)

Data Sources

Order Data (Real-time Stream Data)

SageMaker Pipelines

A series of interconnected steps (SageMaker processing jobs, training, HPO) that is defined by a Directed Acyclic Graph (DAG) using a Python SDK

Benefits:

- Integrated in SageMaker Studio
- Full Pipeline Lineage

SageMaker Pipeline Example

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-pipelines/tabular/abalone build train deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.ipynb

SageMaker Model Registry

Features

- Manage model versions
- Associate metadata, e.g. training metrics
- Initiates CI/CD deployment for approved model versions

Typical workflow

- Create a Model Group that tracks all the models trained for a task
- A training pipeline run registers a model version in the Model Group
- The best model version is chosen and deployed for inference

CI/CD integration

SageMaker Model Monitoring

Types of monitoring

- Data quality
 - monitor drift (change in statistics) of production data from baseline training data (use deequ)
- Model quality
 - monitor drift in model quality metrics, such as accuracy
- Feature attribution drift
 - monitor drift in feature attribution, i.e. indicate how much each feature in your model contributed to the predictions for each given instance in training and in production (live data)
- Model bias
 - bias in model's predictions

Model Bias metrics example: DPPL

Metric	Description	Example	Interpretation
Difference in Positive Proportions in Predicted Labels (DPPL)	Measures the difference in the proportion of positive predictions between the favored facet (population) a and the disfavored facet (population) d.	Has there been an imbalance across demographic groups in the predicted positive outcomes that might indicate bias?	 Positive values indicate that the favored facet a has a higher proportion of predicted positive outcomes. Values near zero indicate a more equal proportion of predicted positive outcomes between facets. Negative values indicate the disfavored facet d has a higher proportion of predicted positive outcomes.

SageMaker Model Monitoring

SageMaker Project

Project offers custom CloudFormation templates to define and control resources for ML workflows

• Key Responsibilities:

- Configuring IAM roles and policies.
- Enforcing resource tags.
- Implementing encryption.
- Decoupling resources across multiple accounts.

Benefits

- For Organizations:
 - Resource control and enhanced security
- For Data Scientists:
 - Easy selection of templates to set up and pre-configure ML workflows.

SageMaker Project

Netflix Fact Store

https://netflixtechblog.com/evolution-of-ml-fact-store-5941d3231762

"We make sure there is **no training/serving skew** by using
the same data and the code for
online and offline feature
generation"

Grazie

scardis@latek.it

