信息论第五讲作业解答

中国科学技术大学《信息论 A》006125.01 班助教组

2025年4月29日

对于在失真度量 \$d(s, \hat{s})\$ 下的离散无记忆信源 \$S\$,给定参数 \$a \ geq 0\$,定义一个新的失真度量 \$\tilde{d}(s, \hat{s})\$: 若 \$d(s, \hat{s}) > 第 1 题 a\$,则 \$\tilde{d}(s, \hat{s}) = 1\$,否则 \$\tilde{d}(s, \hat{s}) = 0\$ 。描述在 \$\tilde{d}\$\$ 下,当 \$D = 0\$ 时 \$S\$ 的率失真函数。

For a DMS S under distortion measure $d(s, \hat{s})$, define a new distortion measure as $\tilde{d}(s, \hat{s}) = 1$ if $d(s, \hat{s}) > a$ and 0 otherwise, given some parameter $a \geq 0$. Describe the rate-distortion function of S under \tilde{d} at D = 0.

解: 依题意, d 和 \tilde{d} 是 $\mathcal{S} \times \hat{\mathcal{S}}$ 上的失真度量,

$$\tilde{d}(s,\hat{s}) = \begin{cases} 0 & \text{if } d(s,\hat{s}) \le a \\ 1 & \text{if } d(s,\hat{s}) > a \end{cases},$$

用 $\tilde{R}(D)$ 表示 S 在 \tilde{d} 下的率失真函数,即 $\tilde{R}(D) = \min_{\mathbf{E}[\tilde{d}(S,\hat{S})] \leq D} I(S,\hat{S})$. 当 D = 0 时,有

$$\mathbf{E}[\tilde{d}(S,\hat{S})] = P[d(S,\hat{S}) > a] \le 0,$$

此时率失真函数为

$$\tilde{R}(0) = \min_{P_{\hat{S}|S}: P[d(S,\hat{S}) \le a] = 1} I(S; \hat{S}). \tag{1}$$

讲义 Theorem 4.1 的成立基于讲义 (4.5) 式定义的 $d(\underline{s}, \underline{\hat{s}}) = \frac{1}{n} \sum_{i=1}^{n} d(s_i, \hat{s}_i)$. 现在我们将关于序列的失真定义为该序列中每对符号失真的最大值 (Peak distortion measures),即

$$d(\underline{s}, \underline{\hat{s}}) = \max_{i \in \{1, \dots, n\}} d(s_i, \hat{s}_i), \tag{2}$$

其余定义保证不变. 那么该如何得到此定义下的率失真函数呢? 我们直接给出如下结论: 分别用 $R^P(\Delta)$ 和 $R^P_I(\Delta)$ 表示此时的率失真函数和信息率失真函数,则有 [1, pp.117]

$$R^{P}(\Delta) = R_{I}^{P}(\Delta) = \tilde{R}(0) = \min_{P_{\hat{S}|S}: P[d(S,\hat{S}) \le \Delta] = 1} I(S;\hat{S}), \tag{3}$$

1

其中 $\tilde{R}(0)$ 表示在 \tilde{d} 下, D=0 的率失真函数, 并且 $\tilde{d}(s,\hat{s})=0$ if $d(s,\hat{s}) \leq \Delta$, and 1 otherwise. 也就是说 $R_I^P(\Delta)$ 其实就是 (1) 式 $a=\Delta$ 时的 $\tilde{R}(0)$. 如此的联系, 基于下列分析, 对 $\forall (\underline{s},\hat{\underline{s}})$

$$d(\underline{s}, \underline{\hat{s}}) \leq \Delta \iff \Delta \geq \max_{i \in \{1, \dots, n\}} d(s_i, \hat{s}_i) \iff d(s_i, \hat{s}_i) \leq \Delta, \forall i \iff \tilde{d}(s_i, \hat{s}_i) = 0, \forall i,$$

即此时的 $d(\underline{s}, \underline{\hat{s}}) \leq \Delta$ 等价于 $\frac{1}{n} \sum_{i=1}^{n} \tilde{d}(s_i, \hat{s}_i) = 0$.

在第二节中,我们研究了索引字符串为二进制时的精确无损压缩。若索引字符串 第 2 题 为 \$q\$ 进制(\$q \geq 2\$),通过推广第二节中的分析,推导期望索引字符串长度的上下界。

In Section II, we have studied exactly lossless compression when the index string is binary. If the index string is q-ary, $q \ge 2$, derive lower and upper bounds on the expected index string length, by generalizing the analysis in Section II.

解: 本题研究 q 进制下严格无损压缩期望码长 $\bar{\ell} = \sum_{s \in S} P_S(s)\ell(s)$ 的上下界. **若不加说明**,则以下不等号的成立原因均与讲义 Section II 中的二进制情况分析相同.

首先对信源符号 $\mathcal{S} = \{a_1, a_2, \dots\}$ 进行重排, 使概率大小关系满足 $P_S(a_1) \geq P_S(a_2) \geq \dots$, 我们将每个符号编码为一个 q 进制码字 $W = f(S) \in \mathcal{W}^*$, 码本为

$$W^* = \{\emptyset, 0, 1, \dots, q - 1, 00, 01, \dots, 0(q - 1), 10, 11, \dots\}.$$

将更短的码字分配给发生概率更高的信源符号, 则码长满足 $\ell(a_i) \stackrel{(a)}{=} \lfloor \log_q(q-1)i \rfloor$, 见注 1. 首先考虑 $\bar{\ell}$ 的上界, 由于 $P_S(a_i) \leq 1/i$, 因此有

$$\ell(a_i) = |\log_a(q-1)i| \le \log_a(q-1)i \le \log_a(q-1) - \log_a P_S(a_i),$$

与

$$\overline{\ell} = \sum_{s \in \mathcal{S}} P_S(s)\ell(s)$$

$$\leq \log_q(q-1) - \sum_{s \in \mathcal{S}} P_S(s)\log_q P_S(s)$$

$$= \log_q(q-1) - \sum_{s \in \mathcal{S}} P_S(s) \frac{\log_2 P_S(s)}{\log_2 q}$$

$$= \log_q(q-1) + \frac{1}{\log_2 q} H(S).$$
(4)

接下来分析 $\bar{\ell}$ 的下界. 由于以下关系

$$H(S) = H(S) + H(\ell(S)|S)$$
$$= H(S, \ell(S))$$
$$= H(S|\ell(S)) + H(\ell(S)),$$

分别分析 $H(S|\ell(S))$ 与 $H(\ell(S))$ 两项. 对于 $H(S|\ell(S))$, 满足

$$\begin{split} H(S|\ell(S)) &= \sum_{\ell=0}^{\infty} P(\ell(S) = \ell) H(S|\ell(S) = \ell) \\ &\leq \sum_{\ell=0}^{\infty} P(\ell(S) = \ell) \log_2 q^{\ell} \\ &= \mathbf{E}[\ell(S)] \log_2 q \\ &= \bar{\ell} \log_2 q. \end{split}$$

对于 $H(\ell(S))$, 满足

$$\begin{array}{ll} H(\ell(S)) & \leq & (\bar{\ell}+1)\log_2(\bar{\ell}+1) - \bar{\ell}\log_2\bar{\ell} \\ & < & \log_2[e(\bar{\ell}+1)] \\ & \leq & \log_2[e(\frac{1}{\log_2 q}H(S) + \log_q(q-1) + 1)]. \end{array}$$

由此可得

$$H(S) = H(S|\ell(S)) + H(\ell(S))$$

$$< \bar{\ell} \log_2 q + \log_2 [e(\frac{1}{\log_2 q} H(S) + \log_q (q-1) + 1)].$$

即 ē 满足下界

$$\bar{\ell} > \frac{1}{\log_2 q} H(S) - \log_q \left[e\left(\frac{1}{\log_2 q} H(S) + \log_q (q-1) + 1\right) \right].$$
(5)

综上(4)(5)式,码长的期望值满足上下界

$$\frac{1}{\log_2 q} H(S) - \log_q \left[e\left(\frac{1}{\log_2 q} H(S) + \log_q (q-1) + 1\right) \right] < \bar{\ell} \le \frac{1}{\log_2 q} H(S) + \log_q (q-1).$$

注 1. 为何码长满足 $\ell(a_i) = \lfloor \log_q(q-1)i \rfloor$: 根据变长编码的定义,当从 k 位码长增加到 k+1 位时,可表示的码字数量增加 q^{k+1} . 因此,码长 l 的变长编码可以容纳的码字数量为 $\sum_{k=0}^l q^k = \frac{1-q^{l+1}}{1-q}$. 因此,给定第 i 个码字,所需的位数为方程 $\frac{1-q^{l+1}}{1-q} = i$ 的解并上取整,即 $\ell(a_i) = \lceil -1 + \log_q((q-1)i+1) \rceil = \lceil \log_q((q-1)i+1) \rceil - 1 \stackrel{(a)}{=} \lfloor \log_q((q-1)i) \rfloor$. 对于等式 (a) 而言,由于 q 与 i 均为整数,因此不存在整数 n 使得 $q^n \in ((q-1)i, (q-1)i+1)$,因此 $\log_q((q-1)i)$ 与 $\log_q((q-1)i+1)$ 必然在两个连续的整数之间,故等式 (a) 成立.

第 3 题 epsilon\$ 的几何分布。将这些情况下 \$\bar{I}\$ 的精确值与第二节中得到的上下界进行比较。

For the exactly lossless compression code studied in Section II, numerically evaluate $\bar{\ell}$ when S is (a) uniform over $\{1, 2, ..., M\}$, and (b) geometric with parameter ϵ . Compare the exact values of $\bar{\ell}$ under these cases with the upper and lower bounds obtained in Section II.

解: 对于均匀分布的情况, 第 i 个码的码长为 $\lfloor \log_2(i) \rfloor$. 我们令 $M = 2^k + s, k \in \mathbb{N}, 0 \le s < 2^k$, 我们也可以得到 $k = \lfloor \log_2(M) \rfloor, s = M - 2^{\lfloor \log_2(M) \rfloor}$, 此时:

$$\bar{\ell} = \sum_{i=1}^{M} P_S(i)\ell(i)
= \frac{1}{M} \left[0 \times 1 + 1 \times 2 + \dots + (k-1) \times 2^{k-1} + k \times (s+1) \right]
= \frac{1}{M} \left[(s+1)k + (k-2)2^k + 2 \right]
= \frac{1}{M} \left[Mk + k - 2^{k+1} + 2 \right]
= \left\lfloor \log_2(M) \right\rfloor + \frac{\left\lfloor \log_2(M) \right\rfloor + 2 - 2^{\left\lfloor \log_2(M) \right\rfloor + 1}}{M}.$$
(6)

对于几何分布的情况,同样有第i个码的码长为 $|\log_2(i)|$,我们计算其平均码长如下:

$$\bar{\ell} = \sum_{i=1}^{\infty} \epsilon (1 - \epsilon)^{i-1} \lfloor \log_2(i) \rfloor$$

$$= \sum_{k=1}^{\infty} k \sum_{i=2^k}^{2^{k+1}-1} \epsilon (1 - \epsilon)^{i-1}$$

$$= \sum_{k=1}^{\infty} k [(1 - \epsilon)^{2^k - 1} - (1 - \epsilon)^{2^{k+1} - 1}]$$

$$= \sum_{k=1}^{\infty} (1 - \epsilon)^{2^k - 1}.$$
(7)

根据 Section II, 我们对这种编码方式有上下界估计:

$$H(S) - \log_2[e(H(S) + 1)] < \bar{\ell} \le H(S).$$

那么对于均匀分布和几何分布我们分别有 $H_{uniform}(S) = \log_2(M)$ 和 $H_{geometric}(S) = \frac{h_2(\epsilon)}{\epsilon}$, 所以有如下关系:

$$\log_2(M) - \log_2[e(\log_2(M) + 1)] < \lfloor \log_2(M) \rfloor + \frac{\lfloor \log_2(M) \rfloor + 2 - 2^{\lfloor \log_2(M) \rfloor + 1}}{M} \le \log_2(M).$$

$$\frac{h_2(\epsilon)}{\epsilon} - \log_2[e(\frac{h_2(\epsilon)}{\epsilon} + 1)] < \sum_{k=1}^{\infty} (1 - \epsilon)^{2^k - 1} \le \frac{h_2(\epsilon)}{\epsilon}.$$

上下界与真实的平均长度在图 1 中呈现.

证明:一个码是唯一可译码,当且仅当对于任意整数 \$n \geq 1\$,以及任意 \$\underline{s} \neq \underline{s}' \in \mathcal{S}^n\$,有 \$f(\underline{s})\ neq f(\underline{s}')\$。

Prove that a code is uniquely decodable if and only if for any integer $n \geq 1$, and any $\underline{s} \neq \underline{s}' \in S^n$, $f(\underline{s}) \neq f(\underline{s}')$.

图 1: (a): 均匀分布平均码长及其上下界与 M 的关系. (b): 几何分布平均码长及其上下界与参数 ϵ 的关系.

证明:

必要性: 如果 f 是惟一可译码, n 是正整数, $\underline{s}, \underline{s}' \in S^n, \underline{s} \neq \underline{s}', \text{则 } f(\underline{s}) \neq f(\underline{s}').$

充分性: 对所有正整数 n 和 \underline{s} , $\underline{s}' \in \mathcal{S}^n$ 有 $f(\underline{s}) \neq f(\underline{s}')$. 对所有 $y_1, y_2, \dots, y_m, z_1, z_2, \dots, z_n \in \mathcal{S}$, 因为

$$f(y_1)f(y_2)\cdots f(y_m)f(z_1)f(z_2)\cdots f(z_n) \neq f(z_1)f(z_2)\cdots f(z_n)f(y_1)f(y_2)\cdots f(y_m),$$

所以 $f(y_1)f(y_2)\cdots f(y_m) \neq f(z_1)f(z_2)\cdots f(z_n)$. 因此 f 是惟一可译的.

第 5 题

Instead of (5.21) in Theorem 5.1, we may rewrite the Kraft inequality as

$$\sum_{\ell=1}^{\infty} A_{\ell} q^{-\ell} \le 1,$$

where A_{ℓ} denotes the number of index strings of length ℓ . Let us use this form of the Kraft inequality to prove the converse part of Theorem 5.1; that is, for a given set of $\{A_{\ell} : \ell = 1, 2, \ldots\}$ satisfying the Kraft inequality, we can construct a corresponding prefix-free code. Starting with the root node, complete the following induction:

- a) Prove that from the root node, there are at least A_1 leaves at depth 1 to accommodate the A_1 length-1 index strings.
- b) Suppose that we have already accommodated all index strings from length 1 to length $\ell-1$. Prove that there are at least A_{ℓ} unused leaves at depth ℓ to accommodate the A_{ℓ} length- ℓ index strings.

证明: a) 由 Kraft 不等式:

$$A_1 q^{-1} + \sum_{\ell=2}^{\infty} A_{\ell} q^{-\ell} \le 1,$$

可得 $A_1q^{-1} \le 1$, 即 $A_1 \le q$, 所以至少有 A_1 个深度为 1 的叶子节点, 可以容纳 A_1 个索引字符串。

b) 假设已经容纳了长度为 1 到长度为 $\ell-1$ 的所有索引字符串,且深度为 $\ell-1$ 的叶子节点有 $A_{\ell-1}$ 个。由于 prefix-free 码的特性,先前选定为码字的节点的后续子树将不存在,所以在深度为 ℓ 时可以长出的叶子节点数目为:

$$q^{\ell} - \sum_{i=1}^{\ell-1} A_i q^{\ell-i}.$$

由 Kraft 不等式可知:

$$\sum_{i=1}^{\ell} A_i q^{-i} = \sum_{i=1}^{\ell-1} A_i q^{-i} + A_{\ell} q^{-\ell} \le 1,$$

$$\mathbb{II} \sum_{i=1}^{\ell-1} A_i q^{\ell-i} + A_{\ell} \le q^{\ell}.$$

所以可以得到: $q^{\ell} - \sum_{i=1}^{\ell-1} A_i q^{\ell-i} \ge A_{\ell}$, 即至少有 A_{ℓ} 个深度为 ℓ 的叶子节点可以容纳 A_{ℓ} 个长度为 ℓ 的索引字符串。

A code is called suffix-free if for any $s \neq s' \in \mathcal{S}$, f(s) is not a suffix of f(s'), and is called fix-free if it is both prefix-free and suffix-free. For a DMS S with $|\mathcal{S}| < \infty$, when $\sum_{s \in \mathcal{S}} q^{-\ell(s)} \leq 1/2$, find a method to construct a q-ary fix-free code with lengths $\{\ell(s) : s \in \mathcal{S}\}$.

解:根据题意可知,无缀码是指一个码既是无前缀的,也是无后缀的。

因为 $\sum_{s\in\mathcal{S}}q^{-\ell(s)}\leq 1/2<1$,即满足 Kraft 不等式,可知存在无前缀码。不妨考虑 $\ell(a_1)\leq\ell(a_2)\leq\cdots\leq\ell(a_{|\mathcal{S}|})=\ell_{max}$,以及一个所有叶子节点深度均为 ℓ_{max} 的 q-叉树,我们先按照无前缀码的构造方式来构造: 首先对于 a_1 ,在深度 $\ell(a_1)$ 为其分配一个节点即码字,记为 $f(a_1)$,并且删掉其所有的子节点,使其变成一个叶子节点;然后对于 a_2 ,不同的是,我们要在深度 $\ell(a_2)$ 的节点中找一个后缀不包含 $f(a_1)$ 的节点,记为 $f(a_2)$,然后删掉其所有的子节点变成一个叶子节点;以此类推,直到最后一个 $a_{|\mathcal{S}|}$,我们要在深度为 $\ell(a_{|\mathcal{S}|})$ 中的节点中找一个后缀不包含 $\{f(a_1),f(a_2),\ldots,f(a_{|\mathcal{S}|})\}$ 的节点,记为 $f(a_{|\mathcal{S}|})$.

下面证明我们这种构造方式是可以构造出来一个无缀码的: 利用数学归纳法,

- 当 $\ell_{max} = 1$ 时, $\sum_{s \in \mathcal{S}} q^{-\ell(s)} = |\mathcal{S}| q^{-1} \le 1/2$,则 $|\mathcal{S}| \le 1/2 \cdot q$,故显然可按照上述构造方法构造出 $|\mathcal{S}|$ 个无缀码;
- 假设当 $\ell_{max} = 1, 2, \dots, \ell^* 1$ 成立,即考虑任意一个 S 满足 $\max_{s \in S} \{\ell(s)\} = \ell^*$,此时有

$$\sum_{s \in \mathcal{S}, \ell(s) < \ell^*} q^{-\ell(s)} + \sum_{s \in \mathcal{S}, \ell(s) = \ell^*} q^{-\ell(s)} \leq 1/2,$$

由于 $\sum_{s\in\mathcal{S},\ell(s)<\ell^*}q^{-\ell(s)}\leq 1/2$,则存在 $s\in\mathcal{S},\ell(s)<\ell^*$ 这些节点的无缀码。

然后,我们考虑上述节点对 ℓ^* 层的影响,也就是说, ℓ^* 层中有多少个节点是以上述节点为前缀或者后缀的。对于前缀:我们根据讲义知道,对于长度为 $\ell(s) < \ell^*$ 的节点,在 ℓ^* 层中有 $q^{\ell^*-\ell(s)}$ 个节点是以它为前缀;同理,不难发现,对于后缀,对于长度为 $\ell(s) < \ell^*$ 的节点,在 ℓ^* 层中也有 $q^{\ell^*-\ell(s)}$ 个节点是以它为后缀的。但这两个集合可能是交叉重复的,因此 ℓ^* 层中以上述节点为前缀或者后缀的节点数量不会超过:

$$2\sum_{s\in\mathcal{S},\ell(s)<\ell^*}q^{\ell^*-\ell(s)},$$

则 ℓ^* 层中无缀的节点数量至少为:

$$q^{\ell^*} - 2 \sum_{s \in \mathcal{S}, \ell(s) < \ell^*} q^{\ell^* - \ell(s)} = 2q^{\ell^*} (1/2 - \sum_{s \in \mathcal{S}, \ell(s) < \ell^*} q^{-\ell(s)})$$

$$\geq 2q^{\ell^*} \sum_{s \in \mathcal{S}, \ell(s) = \ell^*} q^{-\ell(s)}$$

$$= 2 \sum_{s \in \mathcal{S}, \ell(s) = \ell^*} \mathbf{1},$$

其中 **1** 表示长度为 ℓ^* 的码字数量。又因为需要容纳的节点数为 $\sum_{s \in \mathcal{S}, \ell(s) = \ell^*}$ **1**,且同一层(码长相等)节点不会为前缀或后缀,故 ℓ^* 层有足够的节点满足无缀码条件。

证明:对于字母表大小 \$|S| = \infty\$ 的离散无记忆信源 \$S\$,前缀码仍然满足克拉夫特不等式;反之,对于任何满足克拉夫特不等式的索引字符串长度,都 7 题 存在一个相应的前缀码。

Prove that for a DMS S with $|S| = \infty$, a prefix-free code still satisfies the Kraft inequality, and conversely, for any index string lengths satisfying the Kraft inequality there exists a corresponding prefix-free code.

证明: 考虑无穷个信源符号时, 不能预先假设 ℓ_{max} , 因此讲义中的证明方法不再适用. 本题参考 [2, Theorem 5.2.2] 中的方法进行证明.

首先证明 prefix-free 码的码长满足 Kraft 不等式,即

$$\sum_{i=1}^{\infty} q^{-\ell_i} \le 1.$$

不妨考虑 q 进制的码本, 第 i 个码字为 $y_1y_2\cdots y_{\ell_i}$. 令 $0.y_1y_2\cdots y_{\ell_i}$ 为 q 进制下的实数, 数 值上等于

$$0.y_1y_2\cdots y_{\ell_i} = \sum_{j=1}^{\ell_i} y_j q^{-j}.$$

将该码字对应 [0,1] 上的一个子区间

$$\left[\sum_{j=1}^{\ell_i} y_j q^{-j}, \sum_{j=1}^{\ell_i} y_j q^{-j} + \frac{1}{q^{\ell_i}}\right),\,$$

这个区间的长度为 $q^{-\ell_i}$, 并且包含那些所有以 $0.y_1y_2\cdots y_{\ell_i}\cdots$ 表示的实数.

$$\begin{array}{c}
1 \\
1 \rightarrow 0.1 \\
01 \rightarrow 0.01 \\
00 \rightarrow 0.00
\end{array}$$

$$\begin{array}{c}
[1/2,1) \\
[1/4,1/2) \\
[0,1/4)
\end{array}$$

图 2: 一个例子: 二进制下 00,01,1 的构成的 prefix-free 码

由于 prefix-free 码中任意两个码字彼此互不为前缀,因此任意两个码字对应的子区间不相交. 由于每个子区间长度 $q^{-\ell_i}$ 的总和不超过 1, Kraft 不等式得证.

接下来证明给定满足 Kraft 不等式的 ℓ_1,ℓ_2,\ldots ,可以构造出具有相应码长的 prefix-free 码. 依然沿用划分区间并与码字对应的思路,先将码长重排列,使之满足 $\ell_1 \leq \ell_2 \leq \ldots$,然 后从 [0,1] 区间的左端开始,逐步分配长度为 $q^{-\ell_i}$ 的不相交区间,Kraft 不等式的成立可以 保证此分配能够完成,由此可得 prefix-free 码的码字集合.

推导在 \$\{1, 2, \ldots, 10000\}\$ 上均匀分布的离散无记忆信源 \$S\$ 的二进制霍夫曼码 第 8 题 ,并将得到的期望索引字符串长度与熵界 \$\log_2{10000}\$ 比特进行比较。

Derive the binary Huffman code for a DMS S uniformly distributed over $\{1, 2, ..., 10000\}$, and compare the resulting expected index string length with the entropy bound $\log_2 10000$ bits.

解: 可以 (见注 2) 假设有 x 个码字的长度为 ℓ , y 个码字长度为 $\ell+1$, 由 Kraft 不等式得:

$$\begin{cases} x+y = 10000 \\ 2^{-\ell}x + 2^{-(\ell+1)}y = 1 \end{cases}.$$

由于 $2^{13} = 8192 < 10000 < 16384 = 2^{14}$, 我们可以解出 $\ell = 13, x = 6384, y = 3616$. 即:

$$\bar{\ell} = \frac{1}{10000}(6384 \times 13 + 3616 \times 14) \approx 13.3616 > 13.2877 \approx \log_2(10000) = H(S)$$
 in bits.

注 2. 引理: 对于均匀分布的信源, 在 Huffman 编码下不存在两个码字的码长之差大于 1.

证明: 倘若存在 $\ell(s_i)-\ell(s_j)=m>1$,我们考察 s_j 和具有 ℓ_{\max} 的 s_u,s_v ,我们将 s_u 和 s_j 均作为原先 s_j 的叶子节点,此时 s_v 的编码长度也变为 $\ell_{\max}-1$,那么我们操作后的编码方式和长度记为 ℓ' ,便有:

$$\bar{\ell} = \sum_{s \in S} P_S(s)\ell(s)
= \sum_{s \in S \setminus \{s_j, s_u, s_v\}} P_S(s)\ell(s) + P_S(s_j)\ell(s_j) + P_S(s_u)\ell(s_u) + P_S(s_v)\ell(s_v)
= \sum_{s \in S \setminus \{s_j, s_u, s_v\}} P_S(s)\ell(s) + P_S(s_j)(\ell(s_j) + 1) + P_S(s_u)(\ell(s_j) + 1) + P_S(s_v)(\ell(s_v) - 1)
- P_S(s_j) + P_S(s_u)(\ell(s_u) - \ell(s_j) - 1) + P_S(s_v)
= \sum_{s \in S} P_S(s)\ell'(s) + (-P_S(s_j) + P_S(s_u)(\ell(s_u) - \ell(s_j) - 1) + P_S(s_v))
= \sum_{s \in S} P_S(s)\ell'(s) + \frac{1}{n}(\ell(s_u) - \ell(s_j) - 1)
\geq \bar{\ell}' + \frac{1}{n}(\ell(s_i) - \ell(s_j) - 1) > \bar{\ell}'.$$

从而我们这种构造方式可以将码长极差大于等于 2 的编码方式进行优化, 故最优 Huffman 码在均匀信源下将所有码字编为长度差至多为 1 的码字.

对于离散无记忆信源 \$S\$,我们设计一个前缀码,使加权期望索引字符串长度 \$\bar{I} = \sum_{s \in \mathcal{S}} P_S(s)c (s)\ell(s)\$ 最小,其中 \$c(s) > 0\$ 是源消息 \$s\$ 在每个索引位置的成本。注意,当对于所有 \$s \in \mathcal{S}\$,\$c(s) = 0 早而 1\$ 时,就回到了第四节研究的问题,该问题可通过那里的霍夫曼码解决。

第 9 题

- a) 推导 \$\bar{I}\$ 的下界,并讨论何时能达到该下界。
- b) 推广霍夫曼码,以得到使 \$\bar{I}\$ 最小的前缀码。

For a DMS S, we design a prefix-free code that minimizes the weighted expected index string length $\bar{\ell} = \sum_{s \in S} P_S(s)c(s)\ell(s)$, where c(s) > 0 is the cost per index position for source message s. Note that when c(s) = 1, $\forall s \in S$, we return to the problem studied in Section IV and it is solved by the Huffman code there.

- a) Derive a lower bound on $\bar{\ell}$, and discuss when this lower bound can be achieved.
- b) Generalize the Huffman code to yield the prefix-free code that minimizes $\bar{\ell}$.
- a) 解: 设随机变量 Y 取值于 S, 对每个 $s \in S$ 有 $P_Y(s) = P_S(s)c(s)/\mathbf{E}[c(S)]$. 这样

$$\bar{\ell} = \mathbf{E}[c(S)] \sum_{s \in \mathcal{S}} P_Y(s) \ell(s) = \mathbf{E}[c(S)] \mathbf{E}[\ell(Y)]. \tag{8}$$

根据讲义第 IV 节, $\mathbf{E}[\ell(Y)]$ 大于等于 Y 以 q 为底的熵 $H_q(Y)$, 等号成立当且仅当对所有 $s \in \mathcal{S}$ 有 $\ell(s) = -\log_q(P_Y(s))$. 所以 $\bar{\ell} \geq \mathbf{E}[c(S)]H_q(Y)$, 等号成立当且仅当对所有 $s \in \mathcal{S}$ 有 $\ell(s) = -\log_q(P_Y(s))$.

b) 解: 根据 (8) 式, 我们只需要用 Huffman 算法找到 Y 平均码长最小的 prefix-free 码. 这个码就是最小化 $\bar{\ell}$ 的 prefix-free 码.

对于具有 \$K\$ 个非零概率和一个零概率的离散无记忆信源 \$S\$,即 $$P_S(a_1)$ \geq $P_S(a_2)$ \geq \cdots \geq $P_S(a_K)$ > $P_S(a_K)$ = $P_S(a_K)$ = $P_S(a_K)$ + $P_S(a_K)$ = $P_S(a_K)$ + $P_S(a_K)$ = $P_S(a_K)$ = $P_S(a_K)$ + $P_S(a_K)$ + $P_S(a_K)$ = $P_S(a_K)$ + $P_S(a_K)$ = $P_S(a_K)$ + $P_S(a_K)$

For a DMS S with K positive probabilities and one zero probability, i.e., $P_S(a_1) \ge P_S(a_2) \ge \dots \ge P_S(a_K) > P_S(a_{K+1}) = 0$, we may either design a Huffman code omitting the zero probability, or including it. Find the relationship between the expected index string lengths of these two different Huffman codes.

解: 先考虑 q=2 的情况. 在不考虑 a_{K+1} 的情况下构造霍夫曼编码,用 $\ell(s)$ 表示此时每个符号对应的码字长度,则由构造规则可知 a_K 和 a_{K-1} 对应的码字为树的兄弟节点,且对应的码长为 $\ell(a_K)=\ell(a_{K-1})=\ell_{\max}$. 当考虑 a_{K+1} 后,用 $\ell'(s)$ 表示此时每个符号对应的码字长度,此时在霍夫曼编码对应的树中, a_K 和 a_{K+1} 对应的码字应为树的兄弟节点,对应父节点的概率为 $P_S(a_K)+P_S(a_{K+1})=P_S(a_K)$. 因此,此时的树只是将第一种情况中的 a_K 节点扩充为 a_K 和 a_{K+1} 两片叶子,则有 $\ell'(a_K)=\ell'(a_{K+1})=\ell_{\max}+1$. 接下来分析平均码长,即

$$\bar{\ell} = \sum_{s \in \{a_1, \dots, a_K\}} P_S(s)\ell(s)$$

$$\bar{\ell}' = \sum_{s \in \{a_1, \dots, a_{K+1}\}} P_S(s)\ell'(s)$$

$$= \sum_{s \in \{a_1, \dots, a_{K-1}\}} P_S(s)\ell'(s) + P_S(a_K)\ell'(a_K) + P_S(a_{K+1})\ell'(a_{K+1})$$

$$= \sum_{s \in \{a_1, \dots, a_{K-1}\}} P_S(s)\ell(s) + (P_S(a_K) + P_S(a_{K+1})) (\ell_{\max} + 1)$$

$$= \sum_{s \in \{a_1, \dots, a_{K-1}\}} P_S(s)\ell(s) + P_S(a_K)\ell_{\max} + P_S(a_K)$$

$$= \bar{\ell} + P_S(a_K),$$

其中 $\bar{\ell}$ 与 $\bar{\ell}'$ 分别为不考虑 $P_S(a_{K+1})$ 和考虑 $P_S(a_{K+1})$ 的霍夫曼平均码长. 因此考虑 a_{K+1} 后的霍夫曼码平均码长将增大 $P_S(a_K)$.

同理考虑 q > 2 时的扩充情况. 按照讲义中 (5.35) 的计算方式, 如果 r = 0, 即 q - 1 整除 (K - q)(q - 2), 此时无未使用的叶节点, 扩充零概率节点会增加 $P_S(a_K)$ 的码长的期望值,如果 $r \neq 0$, 则无需扩充新的节点, 此时两种情况下码长的期望值相同.

第 11 题 a) 证明 \$f_{S_1,S_2}\$ 是一个前缀码。 b) \$f_{S_1,S_2}\$ 的克拉夫特不等式是否总是取等号?

Consider independent DMSs S_1 and S_2 with (not necessarily identical) finite alphabets. Denote their binary Huffman codes as f_{S_1} and f_{S_2} , respectively. Now view (S_1, S_2) as a single DMS, and use the concatenation $[f_{S_1}, f_{S_2}]$ as the code for (S_1, S_2) ; for example, if $f_{S_1}(s_1) = 001$ and $f_{S_2}(s_2) = 101$ for some (s_1, s_2) , then $f_{S_1, S_2}(s_1, s_2) = 001101$.

- a) Show that f_{S_1,S_2} is a prefix-free code.
- b) Does the Kraft inequality for f_{S_1,S_2} always hold equal?

解: a) 对任意的 $(s_1, s_2) \neq (s'_1, s'_2)$, 假设存在码字 $f_{S_1, S_2}(s_1, s_2)$ 是 $f_{S_1, S_2}(s'_1, s'_2)$ 的前缀, 则 $f_{S_1,S_2}(s_1',s_2')$ 前面 $\ell(f_{S_1,S_2}(s_1,s_2))$ 位和 $f_{S_1,S_2}(s_1,s_2)$ 完全相同.

- \ddot{H} $\ell(f_{S_1}(s_1)) > \ell(f_{S_1}(s_1'))$, M $\ell(f_{S_1}(s_1')) \neq \ell(f_{S_1}(s_1))$ 的前缀, f_{S_1} $\ell(f_{S_1}(s_1)) \neq \ell(f_{S_1}(s_1))$
- $\Xi \ell(f_{S_1}(s_1)) < \ell(f_{S_1}(s'_1)), \, \mathbb{M} f_{S_1}(s_1) \, \mathbb{H} f_{S_1}(s'_1) \, \mathbb{H} f_{$
- 若 $\ell(f_{S_1}(s_1)) = \ell(f_{S_1}(s_1'))$, 由于前缀特性, 亦即 $f_{S_1}(s_1) = f_{S_1}(s_1')$. 但此时会有 $f_{S_2}(s_2)$ 是 $f_{S_2}(s_2')$ 的前缀, 也会与 f_{S_2} 是 prefix-free 码产生矛盾.

综上,所以 f_{S_1,S_2} 是 prefix-free 码.

b) 仍然满足 Kraft 不等式. 由于 S_1, S_2 是独立的, 因此:

$$\sum_{s_1, s_2} 2^{-\ell(f_{S_1, S_2}(s_1, s_2))} = \sum_{s_1, s_2} 2^{-\ell(f_{S_1}(s_1) + f_{S_2}(s_2))}$$

$$= \sum_{s_1} 2^{-\ell(f_{S_1}(s_1))} * \sum_{s_2} 2^{-\ell(f_{S_2}(s_2))}$$

$$= 1 \times 1 = 1.$$

香农 - 范诺码采用一种保守策略,将 \$-\log_q P_S(s)\$的所有非整数值向上取整。或许可以明智 地将 \$-\log_q P_S(s)\$ 的某些非整数值向下取整,从而得到一个期望索引字符串长度更短的前缀

a) 提出一种设计前缀码的算法,通过有选择地将 \$-\log_q P_S(s)\$ 的某些非整数值向下取整,使 第 12 题 其性能可能优于香农 - 范诺码。

b) 找出一个例子,其中你设计的码明显比霍夫曼码差。

The Shannon-Fano code adopts a conservative philosophy by rounding up all non-integer values of $-\log_a P_S(s)$. It may be possible to judiciously round down some non-integer values of $-\log_a P_S(s)$, so as to obtain a prefix-free code with a smaller expected index string length.

- a) Propose an algorithm for designing a prefix-free code that may outperforms the Shannon-Fano code, by selectively rounding down some non-integer values of $-\log_a P_S(s)$.
- b) Find an example where your designed code is strictly worse than the Huffman code

a) 解: 记 $F = \{s \in \mathcal{S} | -\log_q(P_S(s)) \text{ 不是整数} \}$. 任取 $s_F \in F$ 使

$$-\log_{q}\left(P_{S}\left(s_{F}\right)\right) = \max_{s \in F} -\log_{q}\left(P_{S}\left(s\right)\right). \tag{9}$$

我们为 \mathcal{S} 中除 s_F 之外的每个符号 s 分配码长 $\lceil -\log_q\left(P_S\left(s\right)\right) \rceil$. 如果

$$q^{-\lfloor -\log_q(P_S(s))\rfloor} + \sum_{s \in \mathcal{S}, s \neq s_F} q^{-\lceil -\log_q(P_S(s))\rceil} \le 1 \tag{10}$$

则为 s_F 分配码长 $\lfloor -\log_q\left(P_S\left(s\right)\right) \rfloor$. 否则为 s_F 分配码长 $\lceil -\log_q\left(P_S\left(s\right)\right) \rceil$.

按 (9) (10) 设计的 prefix-free 码的平均码长不会超过 Shannon-Fano 码的平均码长, 有时小于 Shannon-Fano 码的平均码长. 见下面两个例子:

① 设 S 服从 $S = \{0,1,2\}$ 上的均匀分布, q = 2. 因为

$$1 < -\log_q(P_S(0)) = -\log_q(P_S(1)) = -\log_q(P_S(2)) < 2,$$

所以 $F = \{0, 1, 2\}$, 我们可以取 $s_F = 0$. 因为 $2^{-1} + 2 \times 2^{-2} = 1$, 所以此时 0, 1, 2 对应的码字长度为 1, 2, 2, 码字可以分别是 0, 10 和 11. 而 0, 1 和 2 的 Shannon-Fano 码字的长度都是 2, 所以这里设计的码的平均码长小于 Shannon-Fano 码的平均码长.

类似的算法还有很多. 有时我们不能简单地取码长为 $[-\log_q(P_S(s))]$, 这时所有类似的算法都会失效.

②设 $q=4, \mathcal{S}=\{0,1,\cdots,14\},$ $P_S(0)=1/8,$ 对所有正整数 $1\leq s\leq 14$ 有 $P_S(s)=1/16.$ 这样

$$-\log_{q}(P_{S}(s)) = \begin{cases} \frac{3}{2}, & s = 0\\ 2, & s \in \{1, 2, \dots, 14\} \end{cases}.$$

由于 $4^{-1} + \sum_{s=1}^{14} 4^{-2} = 9/8 > 1$,我们不能为 0 分配码长 $\lfloor -\log_q(P_S(s)) \rfloor = 1$,所以此时平均码长等于 Shannon-Fano 码的平均码长.

b) 解: 设 q=2, $\mathcal{S}=\{0,1\}$, $P_S(0)=1/5$, $P_S(1)=4/5$. 此时 $2<-\log_q(P_S(0))<3$, $0<-\log_q(P_S(1))<1$, $F=\{0,1\}$, $s_F=0$. 因为 $2^{-2}+2^{-1}=3/4<1$, 所以 0 的码长是 2, 1 的码长是 1. 由于 0 和 1 的 Huffman 码长都是 1, 这里设计的码的平均码长大于 Huffman

码的平均码长. 在第4讲有损信源表示的问题设定中,编码索引 \$W \in \{1, 2, \cdots, M_n\}\$ 也可看作是固定长度为 \$\lceil \log _2 M_n \rceil\$ 的二进制字符串。现在,如果我们允许 \$W\$ 为可变长度,从所有有限长度二进制字符串的集合 \$\mathcal{W}^* = \{\emptyset, 0, 1, 00, 01, 10, 11, 000, \cdots\}\$ 中选取。定义码率为 \$R = \mathbb{E}[\ell(\ underline{S})]/n\$, 其中 \$\ell(\underline{S})\$ 是对 \$\underline{S}\$ 进行编码的 \$W\$ 的长度,\$n\$ 是 \$\underline{S}\$ 的长度。修改第4讲中逆定理部分的证明,以表明可变长度编码仍无法超越率失真函数。

In the problem formulation of lossy source representation in Lecture 4, the encoded index $W \in \{1, 2, \dots, M_n\}$ may also be viewed as a binary string of a fixed length $\lceil \log_2 M_n \rceil$. Now, if we allow W to be of variable length, drawn from the set of all finite-length binary strings

 $\mathcal{W}^* = \{\emptyset, 0, 1, 00, 01, 10, 11, 000, \dots\}$. Define the rate of a code by $R = \mathbf{E}[\ell(\underline{S})]/n$, where $\ell(\underline{S})$ is the length of W encoding \underline{S} and n is the length of \underline{S} . Modify the proof of the converse part in Lecture 4, to show that variable-length coding still cannot outperform the rate-distortion function.

解:

证明逆定理,需要假设任意一对编译码器 $f_n^{(s)}, g_n^{(s)}$,满足失真约束 $\mathbf{E}[d(\underline{S}, \hat{\underline{S}})] \leq D$,对于本题, $\ell(\underline{S}) = T(W) = \{0, 1, 2 \cdots\}, \ nR = \mathbf{E}[\ell(\underline{S})] = \mathbf{E}[T(W)].$

由于

$$H(W) = H(W) + H(T(W)|W)$$

$$= H(W,T(W))$$

$$= H(W|T(W)) + H(T(W))$$
(11)

其中,

$$H(W|T(W)) = \sum_{t=0}^{\infty} H(W|T(W) = t)P(T(W) = t)$$

$$\leq \sum_{t=0}^{\infty} tP(T(W) = t)$$

$$= \mathbf{E}[T(W)]$$

$$= nR$$
(12)

对于另一项 H(T(W)),我们知道在均值一定时,几何分布熵最大,由于 T(W) 取值从 0 开始,我们对其进行平移操作,即:

$$H(T(W)) = H(T(W) + 1)$$

$$\leq (nR + 1)\log_2(nR + 1) - nR\log_2(nR)$$

$$= nR\log_2(1 + \frac{1}{nR}) + \log_2(nR + 1)$$

$$\leq nR \cdot \frac{1}{nR}\log_2 e + \log_2(nR + 1)$$

$$= \log_2 e(nR + 1)$$
(13)

其中 $n \to \infty$ 时,最后一个不等号成立,结合 (11), (12), (13) 式,可得:

$$nR + \log_2 e(nR + 1) \ge H(W) \tag{14}$$

然后采用与讲义 4.3 节中相同的步骤 ((4.31)-(4.36) 式) 可以得到:

$$\frac{1}{n}H(W) \ge R_I(D),\tag{15}$$

结合 (14) 和 (15) 式,所以在 $n \to \infty$ 时,得到 $R \ge R_I(D)$.

参考文献 14

参考文献

[1] I. Csiszár and J. Körner, Information theory: coding theorems for discrete memoryless systems. Cambridge University Press, 2011.

[2] T. M. Cover and J. A. Thomas, *Elements of information theory, 2nd ed.* John Wiley & Sons, 2006.