Descamps Marion Note: 10/20 (score total : 10/20)

+106/1/8+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :
	DESCAPS Parism 00 1 2 3 4 5 6 7 8 9
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.
212	J'ai lu les instructions et mon sujet est complet: les 3 entêtes sont $+106/1/xx+\cdots+106/3/xx+$.
	Q.2 Le langage $\{ \Box^n \Box^n \Box^n \mid \forall n \in \mathbb{N} : 42! \le n \le 51! \}$ est
2/2	☐ rationnel ☐ non reconnaissable par automate fini ☐ wide
	Q.3 Les logins de votre promo constituent un langage
0.40	non reconnaissable par un automate fini nondéterministe
2/2	 non reconnaissable par un automate fini déterministe non reconnaissable par un automate fini à transitions spontanées rationnel
-1/2	 Q.4 Un langage quelconque ☑ est toujours inclus (⊆) dans un langage rationnel ☑ n'est pas nécessairement dénombrable ☐ peut n'être inclus dans aucun langage dénoté par une expression rationnelle ☐ peut avoir une intersection non vide avec son complémentaire Q.5 Quels langages ne vérifient pas le lemme de pompage?
-1/2	 ☐ Certains langages reconnus par DFA ☐ Tous les langages reconnus par DFA ☐ Certains langages non reconnus par DFA ☐ Tous les langages reconnus par DFA
	Q.6 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
0/2	$\frac{n(n+1)}{2}$ \times 2^n $n+1$ \prod Il n'existe pas.
	Q.7 Si un automate de n états accepte a^n , alors il accepte
2/2	
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
0/2	\square 4 ⁿ \square Il n'existe pas. \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \boxtimes 2 ⁿ

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

 \square $Det(T(Det(T(Det(\mathscr{A})))))$

- \Box $T(Det(T(Det(T(\mathcal{A})))))$
- $Det(T(Det(T(\mathcal{A}))))$

 \Box $T(Det(T(Det(\mathscr{A}))))$

Fin de l'épreuve.

2/2

2/2

64