Homework 3

Due Monday, July 23rd at 11:59pm

Name: Zachary McNulty Student ID: 1636402

Problem 2: Solving Recurrences

(i) Master Theorem Parameters: d=1, a=7, b=2, c=2 Thus, we can see that $log_b(a) = log_2(7) > 2 = c$. As such, $log_b(a) > c$ and thus: $T(n) \in \Theta(n^{log_b(a)}) = \Theta(n^{log_2(7)})$

(ii) Master Theorem Parameters: d=1, a=4, b=2, c=2Thus, we can see that $log_b(a) = log_2(4) = 2 = c$. As such, $log_b(a) = c$ and thus: $T(n) \in \Theta(n^c log(n)) = \Theta(n^2 log(n))$

(iii) Master Theorem Parameters: $d=1, a=2, b=2, c=\frac{1}{2}$ Thus, we can see that $log_b(a)=log_2(2)=1>1/2=c$. As such, $log_b(a)>c$ and thus: $T(n)\in\Theta(n^{log_b(a)})=\Theta(n^{log_2(2)})=\Theta(n)$

(iv) Master Theorem Parameters: d=1, a=4, b=2, c=3Thus, we can see that $log_b(a) = log_2(4) = 2 < 3 = c$ As such, $log_b(a) < c$ and thus: $T(n) \in \Theta(n^c) = \Theta(n^3)$

(v) Master Theorem Parameters: d=1, a=3, b=2, c=1 Thus, we can see that $log_b(a)=log_2(3)>1=c$. As such, $log_b(a)>c$ and thus: $T(n)\in\Theta(n^{log_b(a)})=\Theta(n^{log_2(3)})$

b)

$$\begin{split} &T(n)\\ &=T(n^{0.5})+T(n^{0.5})+\log(n)\\ &=(T((n^{0.5})^{0.5})+T((n^{0.5})^{0.5})+\log(n^{0.5}))+T((n^{0.5})^{0.5})+T((n^{0.5})^{0.5})+\log(n^{0.5}))+\log(n) \end{split}$$

i=0:	log(n)
i=1:	$log(n^{0.5}) \ log(n^{0.5})$
i=2:	$\log((n^{0.5})^{0.5})) \log((n^{0.5})^{0.5})) \log((n^{0.5})^{0.5})) \log((n^{0.5})^{0.5}))$

# nodes at level i:	2^i
input size at level i:	$n^{0.5^i}$
work per node at level i:	$\log(size) = \log(n^{0.5^{i}}) = 0.5^{i} * \log(n)$
total work at level i:	$work_i * nodecount_i = (2^i)((0.5^i)log(n)) = log(n).$
level base case:	$n^{0.5^i} = 2 \to 0.5^i * log_2(n) = log_2(2) = 1$
	$\rightarrow log_2(0.5^i * log_2(n)) = log_2(1) = 0$
	$\rightarrow i * log_2(0.5) = -log_2(log_2(n))$
	$\rightarrow i = log_2(log_2(n))$
number nodes base case:	$2^i = 2^{\log_2(\log_2(n))} = \log_2(n)$
expression for recursive work:	$\sum_{i=0}^{log_2(log_2(n))-1} log(n)$
expression for non-recursive work:	$log_2(n) * 1$
closed form for total work:	recursive: log(n) + log(n) + + log(n)
	$= log(n) * log_2(log_2(n))$
	$total = log(n) * log_2(log_2(n)) + log_2(n)$
simpliest big Θ for total work:	$\Theta(log(n) * log(log(n)))$