UNIVERSIDAD NACIONAL DE SAN CRISTOBAL DE HUAMANGA

FACULTAD DE INGENIERÍA DE MINAS, GEOLOGÍA Y CIVIL

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA DE SISTEMAS

RESOLUCIÓN DE EJERCICIOS

DOCENTE:

JACKSON M'COY ROMERO PLASENCIA

INTEGRANTES:

ALEGRIA ÑACCHA, Cristhian

 ${\bf CORICHAHUA~GUTIERREZ,~Erick~Kevin}$

SANTIAGO QUISPE, Caleb

TRISTAN QUISPE, Guadalupe

Ayacuho - Peru 2019

Un taller tiene 5 empleados. Los salarios de cada uno de ellos son: 5,7,8,10,10.

- a. Determine la media y la varianza de la población.
- b. Halle la distribución muestral de las medias para muestras de tamaño 2 escogidas(sin sustitución) de esta población.
- c. Determine la media y la varianza de la distribución muestral de las medias de tamaño 2.
- d. Compare la media de las medias muestras con la media de la población. También compare la dispersión de las medias de las muestras con la dispersión de la población.

SOLUCIÓN

a.
$$\overline{X} = \frac{5+7+8+10+10}{5} = 8$$

$$S^2 = \frac{(5-8)^2 + (7-8)^2 + (8-8)^2 + (10-8)^2 + (10-8)^2}{5-1}$$

$$S^2 = 4.5$$

b.

10 muestras 10 medias

c.

$$\underbrace{(5,7)(7,8)(8,10)(10,10)}$$

$$\sum = \frac{80}{10}$$
 $= 8 = \overline{X} S^2 = 1.5$

d. Por tanto:

$$\frac{\overline{X_2}}{\overline{X_1}} = \frac{8}{8} = 1 \frac{S^2}{s^2} = \frac{1.5}{4.5} = 0.333$$

2 Pregunta 02

La demanda diaria de un producto puede ser 0, I, 2, 3, 4 con probabilidades respectivas 0.3, 0.3, 0.2, 0.1, 0.1.

- a. escriba el modelo de probabilidad de la demanda promedio de 36 días.
- b. ¿Qué probabilidad hay de que la demanda promedio de 36 días este entre 1 y 2 inclusive?

SOLUCIÓN

x = Demanda diaria de un producto

X	0	1	2	3	4
P(x)	0.3	0.3	0.2	0.1	0.1

a.
$$n = 36$$

$$ux = E(x) = 4\sum xp(x) = 0(0.3) + 1(0.3) + 2(0.2) + 3(0.1) + 4(0.1)$$

$$ux = 1.4$$

$$E(x^2) = \sum x^2p(x) = 0^2(0.3) + 1^2(0.3) + 2^2(0.2) + 3^2(0.1) + 4^2(0.1)$$

$$E(x^2) = 3.6$$

$$VAR(x) = E(x^2) - (\mu)^2$$

$$\sigma_x^2 = 3.6 - 1.4^2$$

$$\sigma_x = 0.045$$

b. Sea:

$$P(1 \le X \le 2) = \varnothing(\frac{2 - 1.4}{0.21343}) - = \varnothing(\frac{1 - 1, 4}{0.21343})$$
$$= \varnothing(2.81) - \varnothing(-1.87)$$
$$= \varnothing(2.81) - (1 - \varnothing(1.87))$$
$$= 0.9668$$

La distribución de notas del examen final de Mat.I resulto ser normal, con cuartiles 1 y 3 iguales a 6.99 y 10.01 respectivamente.

a. Determine la media y la varianza de la distribución de las notas

SOLUCIÓN

$$N(\mu, \sigma^2) \ E(x) = \mu =? \ \sigma_1 = P_{25} = 6.99 \ \sigma_2 = P_{75} = 11.01$$
a. $Q_2 = \mu = \frac{Q_1 + Q_2}{2} = 9 = \mu$

$$P(|\overline{A} - \mu| \le \frac{\sigma}{\sqrt{n}}) = 0.68$$

$$P(|\overline{A} - \mu| \le \frac{2\sigma}{\sqrt{n}}) = 0.9544$$

$$P(|\overline{A} - \mu| \le \frac{3\sigma}{\sqrt{n}}) = 0.99$$

$$P(|\overline{A} - \mu| \le a) = 0.68$$

$$Z = \frac{x - \mu}{\sigma} \leadsto Poblacion$$

$$donde: \frac{N - n}{N - 1} \text{ se le conoce como el sector de curvacion finito si, la varianza poblacional es desconocida}$$

$$\frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} \leadsto t(n-1) grados delibertad$$

 \sin

$$n \ge 30 \leadsto \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} \leadsto N(0, 1)$$

4 Pregunta 04

La vida útil en miles de horas de una batería es una variable aleatoria X con función de densidad:

$$f(x) = \begin{cases} 2 - 2x & 0 \le x \le 1\\ 1 & enelresto \end{cases}$$

Si X_{36} es la medida de la muestra aleatoria $X_1,\,X_2,...,X_{36}$ escogida de X. ¿con que probabilidad X_{36} es mayor que 420 horas?

SOLUCIÓN

 $Si: n > 30 \leadsto Z$

x: vida útil(100 horas)

$$f(x) = 2 - 2x; 0 \le x \le 1$$

por ende:

$$\int_0^1 f(x) \ dx$$

$$E(x) = \mu$$

 $var(x) = \sigma^2$
 $P(X_{36} > 420h) = P(X_{36} > 0.42)$

$$Z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$t = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Por tanto:

$$\mu = E(x) = \int_0^1 x(2 - 2x) \ dx = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

Entonces:

$$\sigma^2 = var(x) = (X^2) - (E(x))^2 = \frac{1}{6} - \frac{1}{9} = \frac{1}{18}$$

Finalmente:

$$P(\frac{X_{36} - \mu}{\frac{\sigma}{\sqrt{n}}} > \frac{0.42 - 0.33}{\frac{\sqrt{\frac{1}{18}}}{\sqrt{36}}})$$
$$P(z > a) = 1 - P(z \le a)$$

$$1 - P(x \le 2.71)$$

 $1 - 0.98645$
 $Respueta = 0.0136$

Sea X_{36} la media de la muestra aleatoria $X_1, X_2,...,X_{40}$ de tamaño n=40 escogida de una población X cuya distribución es geométrica con función de probabilidad:

$$f(x) = \frac{1}{5} (\frac{4}{5})^{x-1}, x = 1, 2...$$

Halle la probabilidad de que la media muestral difiera de la media poblacional en a lo mas 10% del valor de la varianza de la población. SOLUCIÓN $Seaf(x) = p(1-p)^{(x)}$

$$P(|\overline{x} - \mu| \le 0.10\sigma^2)$$

$$\mu = E(x) = \int_0^1 f(x) dx$$

$$\sigma^2 = var(x) = E(x^2) - (E(x))^2$$

$$E(x) = \sum_{x=1}^{\infty} xP(1-P)^x$$

$$= \sum_{x=1}^{\infty} \frac{d}{dx}(1-P)^xP$$

$$P\frac{d}{dx} \sum_{x=1}^{\infty} (1-P)^x$$

$$P\frac{d}{dx} \sum_{x=1}^{\infty} q^x = P\frac{d}{dx} \sum_{x=1}^{\infty} q^x - 1$$

$$\frac{dq(1-q^x)}{dx}$$

6 Pregunta 06

El tiempo de vida de una batería es una variable aleatoria \bar{x} con distribución exponencial de parámetro $1/\theta$. Se escoge una muestra de n baterías.

- a. Halle el error estándar de la media muestral \overline{x}
- b. Si la muestra aleatoria es de tamaño n=64. ¿con que probabilidad diferirá \overline{x} del verdadero valor de θ en menos de un error estándar?

c. ¿Que tamaño de muestra mínimo seria necesario para que la media muestral \overline{x} tenga un error estándar menor a un 5% del valor real de θ ?

SOLUCIÓN

X : Tiempo de Vida

$$f(x) = \frac{1}{\sigma} \epsilon^{-\frac{x}{\sigma}}, x \ge$$

a.
$$\sqrt{var(\overline{x})} = \frac{\sigma}{\sqrt{n}} \leadsto ErrorEstandar$$

$$var(\overline{x}) = \frac{\sigma^2}{n} = \frac{\mu}{\sqrt{n}}$$

$$\mu = \int_0^\infty \frac{x}{\sigma} e^{\frac{-x}{\sigma}} dx$$

$$v(\infty) = \int_0^\infty y^{\infty - 1} e^{-y} dy = (\infty - 1)! \infty \in N$$

$$v(\infty) = (\infty - 1)! \ v(\infty - 1)$$

$$E(x) = \mu = \sigma \int_0^{+\infty} \frac{x^1}{\sigma} e^{\frac{-x}{\sigma}} d(\frac{x}{\sigma})$$
 ; $E(x^2) = 2\sigma^2$

$$\sigma^2$$
: $var(x) = 2\sigma^2 - \sigma^2 = \sigma^2$

b. Sea m = 64

$$P(\overline{x} - \sigma \le \frac{\sigma}{\sqrt{n}}) \implies P(\overline{x} - \sigma \le \frac{\sigma}{8})$$

$$P(\frac{\overline{x} - \sigma}{\frac{\sigma}{\varsigma}} \le \frac{\frac{\sigma}{8}}{\frac{\sigma}{\varsigma}}) \quad \Rightarrow \quad P(z \le 1) \quad \Rightarrow \quad 0.68$$

$$P(|\overline{x} - \sigma| \le \frac{\sigma}{8}) = 0.68$$

$$P(-\sigma \le x - \mu \le \sigma)$$

$$P(|x - \mu| \le x \le \mu + \sigma)$$

$$P(|x - \mu| \le 2\sigma) = 0.9544$$

$$P(|x - \mu| \le 3\sigma) = 0.94$$

c. Sea:

$$\frac{\sigma}{\sqrt{n}} \le 0.05\sigma \qquad \frac{1}{0.05} \le \sqrt{n} \qquad 2\sigma < \sqrt{n} \qquad n > 400$$

7 Pregunta 07

La utilidad por la venta de cierto artículo, en miles de soles, es una variable aleatoria con distribución normal. En el 5% de las ventas de la utilidad ha sido menos que 3.42, mientras que el 1% de las ventas ha sido mayor que 19.32. si se realizan 16 operaciones de ventas, ¿ cuál es la probabilidad de que el promedio de la utilidad por cada operación este entre 10,000 y 12,000 dolares SOLUCIÓN

X = utilidadenmiles de dolares

Sea:

$$N(\mu, \sigma_x^2)n = 16$$

a.

$$P(X < 6.71) = 0.05$$

$$\varnothing(\frac{6.71 - \mu}{\sigma_x}) = -1.645$$

$$\frac{\mu - 6.75}{1.645}\sigma_x$$
(1)

b.

$$P(X > 6.71) = 0.01$$

$$1 - \varnothing(\frac{14.66 - \mu}{\sigma_x}) = 0.01$$

$$(\frac{14.66 - \mu}{\sigma_x}) = 2.33$$

$$(\frac{14.66 - \mu}{2.33}) = \sigma_x$$

$$Igual and o 1 y 2$$

$$\mu = 10$$

$$\sigma_x = 2$$
(2)

c.

$$P(10 \le X \le 11)$$

$$\varnothing(\frac{11-10}{\frac{2}{4}}) - \varnothing(\frac{10-10}{\frac{2}{4}})$$

$$\varnothing(2) - \varnothing(0)$$

$$= 0.4772$$

La vida útil de cierta marca de llantas radiales es una variable aleatoria X cuya distribución es normal con (i=38,000Km. Y c= 3,000 Km.)

- a. Si la utilidad Y (en dolares) que produce cada llanta está dada por la relación: y=0.2X+100, ¿Cuál es la probabilidad de que la utilidad sea mayor que 8.900
- b. determine el número de tales llantas que debe adquirir una empresa de transporte para conseguir una utilidad media de al menos 7541 con probabilidad 0.996

SOLUCIÓN

X = N(3800, 3000)

Sea:

a. UtilidadenDolares = Y

$$Y = 0.2X + 100$$

$$E(y) = 0.2E(x) + 100$$

$$E(y) = 0.2(3800) + 100$$

$$E(y) = 7700$$

$$var(y) = 0.2^{2}var(x)$$

$$\sigma y = 0.2\sigma y = 0.2(3000) = 600$$

$$P(y > 8.9000) = 1 - A = \pi r^{2} \left(\frac{8900 - 7700}{600}\right)$$

$$= 1 - \varnothing(2)$$

$$= 1 - 0.9772$$

$$= 0.0228$$

b.

$$P(y' > 7541)$$

$$E(y') = 0.2(3800) + 100$$

$$var(y) = \frac{\sigma_x^2}{n}$$

$$\sigma_y = \frac{600}{\sqrt{n}}$$

$$P(y' > 7541)9 = 1 - \varnothing(\frac{7541 - 7700}{\frac{600}{\sqrt{n}}})$$

$$0.996 = 1 - \varnothing(\frac{7541 - 7700}{\frac{600}{\sqrt{n}}})$$

$$\varnothing(2.65) = (\frac{7541 - 7700}{\frac{600}{\sqrt{n}}})$$

$$2.65 = (\frac{7541 - 7700}{\frac{600}{\sqrt{n}}})$$

$$n = 100$$

Un proceso automático llena bolsa de café cuyo peso neto tiene una media de 250 gramos y una desviación estándar de 3 gramos. Para controlar el proceso, cada hora se pesan 36 de tales bolsas de café escogidas al azar. Si el peso neto medio esta entre 249 y 251 gramos se continúa con el proceso aceptando que el peso neto medio real es 250 gramos y en caso contrario, se detiene el proceso para reajustar la máquina.

- a. ¿Cual es la probabilidad de detener el proceso cuando el peso neto medio realmente es 250?
- b. ¿Cual es la probabilidad de aceptar que el peso neto promedio es 250 cuando realmente es de 248 gramos?

SOLUCIÓN

Sea X = peso neto medio de café,

$$X \sim N(250, 3^2)$$

a.

$$P(x \le 249 \lor x \ge 251) =$$

$$= P(z \le (\frac{249 - 250}{\sqrt[3]{3}}))$$

$$= P(z \le -2 \lor z \ge 2)$$

$$= 1 - P(-2 \le z \le 2)$$

$$= 1 - (1 - 2P(z \le -2))$$

$$= 2P(z \le -2)$$

$$= 2(0.0228)$$
$$= 0.0456$$

Respuesta: Existe una probabilidad de 4,56~% cuando el peso neto medio es de $250~{\rm gramos}$.

10 Pregunta 10

La utilidad por la venta de cierto artículo, en miles de soles, es una variable aleatoria con distribución normal. En el 5% de las ventas de la utilidad ha sido menos de 6.71, mientras que al 1% de las ventas serian mayor que 14.66. si se realizan 16 operaciones de ventas, ¿ cuál es la probabilidad de que el promedio de la utilidad por cada operación este entre 10,000 y 11,000 dolares SOLUCIÓN

X = utilidaden miles de do la res

Sea:

$$N(\mu, \sigma_x^2)n = 16$$

P(x < 6.71) = 0.05 $\varnothing(\frac{6.71 - \mu}{\sigma_x}) = 0.05$ $\frac{6.71 - \mu}{\sigma_x} = -1.645 \frac{\mu - 6.71}{1.645} = \sigma_x$ (3)

P(X > 6.71) = 0.01 $1 - \varnothing(\frac{14.66 - \mu}{\sigma_x}) = 0.01$ $(\frac{14.66 - \mu}{\sigma_x}) = 2.33$ $(\frac{14.66 - \mu}{2.33}) = \sigma_x$ (4)

Igual and o 3y 4

$$\mu = 10$$

$$\sigma_x = 2$$

$$P(10 \le X \le 11)$$

$$\varnothing(\frac{11-10}{\frac{2}{4}}) - \varnothing(\frac{10-10}{\frac{2}{4}})$$

$$\varnothing(2) - \varnothing(0)$$

$$= 0.3251$$

Una empresa vende bloques de mármol cuyo pero se distribuye normalmente con una media de 200 kilogramos.

- a. Calcular la varianza del peso de los bloques, si la probabilidad de que el peso este entre 165 Kg y 235 Kg es 0.9876
- b. Que tan grande debe ser la muestra para que haya una probabilidad de 0.9938 de que el peso medio de la muestra sea inferior a 205 Kg?.

SOLUCIÓN

a. Sea: X: peso en Kg de mármol $X \to N(200, \sigma_x^2)$

$$\frac{(165 \le x \le 235)}{P_{\mu}}) = 0.9876$$

$$0.9876 = \varnothing(\frac{235 - 200}{\sigma_x}) - \varnothing(\frac{165 - 200}{\sigma_x})$$

$$0.9876 = \varnothing(\frac{35}{\sigma_x}) - \varnothing(\frac{-35}{\sigma_x})$$

$$0.9876 = 2\varnothing(\frac{35}{\sigma_x}) - 1)$$

$$1.9876 = 2\varnothing(\frac{35}{\sigma_x})$$

$$2.5 = \frac{35}{\sigma_x}$$

$$2.5 = 14\sigma_x^2 = 196$$

b. Por tanto:

$$= (\frac{205 - 200}{14/\sqrt{n}})$$

$$2.5 = \frac{5\sqrt{n}}{14} \qquad n = 49$$