3η Σειρά Ασκήσεων στην Τεχνητή Νοημοσύνη

7° Εξάμηνο, Ακαδημαϊκή Περίοδος 2021 – 2022

Ονοματεπώνυμο	Αριθμός Μητρώου
Στεφανάκης Γεώργιος	el18436

Άσκηση 1η

1

Εποχή	x_k	$\sum_{i=0}^{3} w_i x_i$	$y_k - f(x_k)$	Ενημέρωση	Βάρη (1, 1, -1, -1)
1	(1, 0, -1, 4)	-2	1	(0, 2, 0, -0.2, 0.8)	(1.2, 1, -1.2, -0.2)
1	(1, 4, 0, -1)	5.4	-1	(-0.2, -0.8, 0, 0.2)	(1, 0.2, -1.2, 0)
1	(1, 2, 2, -1)	-1	1	(0.2, 0.4, 0.4, -0.2)	(1.2, 0.6, -0.8, -0.2)
1	(1, 3, -1, 0)	3.8	-1	(-0.2, -0.6, 0.2, 0)	(1, 0, -0.6, -0.2)
1	(1, -2, 1, -3)	1	0	_	_
1	(1, 0, -2, -1)	2.4	-1	(-0.2, 0, 0.4, 0.2)	(0.8, 0, -0.2, 0)
2	(1, 0, -1, 4)	1	0	_	_
2	(1, 4, 0, -1)	0.8	-1	(-0.2, -0.8, 0, 0.2)	(0.6, -0.8, -0.2, 0.2)
2	(1, 2, 2, -1)	-1.6	1	(0.2, 0.4, 0.4, -0.2)	(0.8, -0.4, 0.2, 0)
2	(1, 3, -1, 0)	-0.6	0	_	_
2	(1, -2, 1, -3)	1.8	0	_	_
2	(1, 0, -2, -1)	0.4	-1	(-0.2, 0, 0.4, 0.2)	(0.6, -0.4, 0.6, 0.2)
3	(1, 0, -1, 4)	0.8	0	_	_
3	(1, 4, 0, -1)	-1.2	0	_	_
3	(1, 2, 2, -1)	0.8	0	_	_
3	(1, 3, -1, 0)	-1.2	0	_	_
3	(1, -2, 1, -3)	1.4	0	_	_
3	(1, 0, -2, -1)	-0.8	0	_	_

2. Για το δοσμένο διάνυσμα (-1, 2, 2) και με βάση τα βάρη (0.6, -0.4, 0.6, 0.2) που βρήκαμε μετά την εκπαίδευση του perceptron έχουμε:

$$\sum_{i=0}^{3} w_i x_i = 1 \times 0.6 + (-0.4) \times (-1) + 2 \times 0.6 + 2 \times 0.2 = 2.6 \Rightarrow f(2.6) = 1$$

Συνεπώς, θα ταξινομηθεί στην κλάση B.

Άσκηση 2η

Στοιχείο	Απόσταση από (-1, 2, 2)	Κλάση	KNN 1	KNN 2
(0, -1, 4)	√14	В	В	В
(4, 0, -1)	√38	Α	_	_
(2, 2, -1)	√18	В	_	В
(3, -1, 0)	√29	Α	_	_
(-2, 1, -3)	√27	В	_	_
(0, -2, -1)	√26	A	_	A

Κλάση Β Β

Άσκηση 3^η

1. Αφού έχουμε ένα δείγμα που αποτελείται από άνδρες κατά 51%, η εκ των προτέρων πιθανότητα να είναι άνδρας είναι ίση με $\mathbb{P}(\text{Άνδρας}) = 0.51$.

2. Η πιθανότητα να επιλέχθηκε άνδρας, δεδομένου ότι είναι καπνιστής είναι ίση με:

$$\begin{split} \mathbb{P}(\text{Andras} \mid \text{Kapnistás}) &= \frac{\mathbb{P}(\text{Kapnistás} \mid \text{Andras}) \times \mathbb{P}(\text{Andras})}{\mathbb{P}(\text{Kapnistás})} = \\ &\frac{\mathbb{P}(\text{Kapnistás} \mid \text{Andras}) \times \mathbb{P}(\text{Andras})}{\mathbb{P}(\text{Kapnistás} \mid \text{Andras}) \times \mathbb{P}(\text{Andras})} = \\ &\frac{0.095 \times 0.51}{0.095 \times 0.51 + 0.017 \times 0.49} = 0.853 = 85.3\% \end{split}$$

Άσκηση 4η

Αν η X είναι A_1 και η Y είναι σχετικά A_2 , τότε η Z είναι B, δηλαδή η $\langle X,Y,Z\rangle$ είναι R, όπου:

$$R(x,y,z) = J_{min}\left(i(A_1(x)),h(A_2(y)),B(z)\right)$$

Το h είναι λεκτικός τροποποιητής καθώς η Y είναι σχετικά A_2 . Είναι $h(a) = \sqrt{a}$, συνεπώς έχουμε ότι:

$$h(A_{2}(y)) = 1/y_{1} + 0.3/y_{2}$$

$$i\left(A_{1}(x), h(A_{2}(y))\right) = \min\{A_{1}, h(A_{2}(y))\} =$$

$$0.2/x_{1}, y_{1} + 0.2/x_{1}, y_{2} + 1/x_{2}, y_{1} + 0.3/x_{2}, y_{2} + 0.8/x_{3}, y_{1} + 0.3/x_{3}, y_{2}$$

$$R(x, y, z) = J_{min}(i(A_{1}(x)), h(A_{2}(y)), B) = \min\{A_{1}(x), h(A_{2}(y)), B\} =$$

$$0.2/x_{1}, y_{1}, z_{1} + 0.2/x_{1}, y_{1}, z_{2} + 0.2/x_{1}, y_{2}, z_{1} + 0.2/x_{1}, y_{2}, z_{2} + 0.7/x_{2}, y_{1}, z_{1} + 1/x_{2}, y_{1}, z_{2} + 0.3/x_{2}, y_{2}, z_{1} + 0.3/x_{2}, y_{2}, z_{2} + 0.7/x_{3}, y_{1}, z_{1} + 0.8/x_{3}, y_{1}, z_{2} + 0.3/x_{3}, y_{2}, z_{1} + 0.3/x_{3}, y_{2}, z_{2}$$

Αν $X=x_2$ και $Y=y_1$ τότε με σημειακή ασαφοποίηση έχουμε $A'=1/\langle x_2,y_1\rangle$. Συνεπώς έχουμε:

$$B'(z_1) = \sup_{x = x_2 \land y = y_1} \min\{A'(x, y), R(x, y, z_1)\} = \max \min(\{1, 0.7\}) = 0.7$$

$$B'(z_2) = \sup_{x = x_2 \land y = y_1} \min\{A'(x, y), R(x, y, z_2)\} = \max \min(\{1, 1\}) = 1$$

Άρα:

$$B' = 0.7/z_1 + 1/z_2$$