

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

Watermarking neural networks

Group members (B):
Mohamed Salim ARIFA
Houda GHALLAB
Noé GUTIERREZ

SUMMARY

- 1. Introduction
- 2. methodology: whitebox
- 3. Methodology Blackbox
- 4. U-net
- 5. Application of methods on U-net and results
- 6. Conclusions and shortcomings

Introduction & Context

CHAPTER 1: Introduction

1.1 Watermarking Basic definition and purpose

00% GUA

Г

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Ut tristique leo non faucibus semper. Donec feugiat eros a laoreet pharetra. Sed posuere odio non semper tristique. Vestibulum a lorem diam. Curabitur id consequat ex, ac rutrum orci. Cras vitae nunc elit. Praesent pulvinar urna eget luctus venenatis.

watermarking serves to protect the ownership and the authenticity of an object

Chapter 1: Introduction

1.1 Watermarking: Basic definition and purpose

CHAPITRE 1: Introduction

1.1 Watermarking: Criteria and expectations

1.1 Watermarking Basic definition and purpose

Fidelity	Robustness	Capacity	efficiency	security
the performance of the model should not be affected by the watermark	The watermark shouldn't erode after fine-tuning or model compression	The watermark should be able to contain diverse and different messages	the watermark should be easily verified and checked for	The watermark should be secret and should not be easily detected modified by unauthorized parties

Methodology part one: Whitebox Method

2.1 Rough definition of White Box approach

Fidelity Robustness Capacity efficiency security

Assumptions:

- The weights and the model parameters are completely accessible to us.
- The embedded message is hidden within the weights of the model
- Watermark is completely separated from the Training dataset

Robustness

Fidelity

Capacity

efficiency

security

2.1 Uchida method basic definition

Train so W.X= Y

$$W \in R^{D}$$
$$X \in R^{d*N}$$
$$Y \in R^{N}$$

Fidelity

Robustness

Capacity

efficiency

security

0

2.1 Practically speaking:

Uchida method (concretely)

for a given generated key X and mark Y

Regularization term

 $total\ loss = initial\ loss + \alpha.watermark\ loss$

 $watermark\ loss = crossentropy(w_{extracted}\ .X_{key} - Y_{mark})$

With $W_{extraction}$ being the weights vector extracted Y_{mark} being the generated Y X_{key} being the generated key

2.1 Proof of concept

Fidelity Robustness Capacity efficiency security 11

Uchida On Mnist

Dataset and architecture

Epoch=15000 training example

Fidelity

efficiency

security

2.1 Proof of concept criterions

Criterions verification: Capacity, Robustness and efficiency

Surprisingly very robust!!

Fine tuning attack:

Reconstructed after only

Trained without the

(Worse than random)

4 epochs of watermark

BER =0,03125

Pruning Attack:

10 epochs + 20% pruning

Robustnes

Fidelity

Canacit

efficiency

security

2.1 Proof of concept criterions

Criterions verification : fidelity and security

final dry loss=0.025 accuracy (rounded up)=98 %

finaldry loss=0.025 accuracy (rounded up)=98 %

With Watermark

Without Watermark

Methodology part Two: Blackbox Method

3. Methodology: Blackbox

3.1 Basic explanation

Assumptions:

- The weights and the model parameters are hidden (through an API)
- The watermark is in the form of a particular output
- Watermark appears by a trigger set (or a trigger data)

3. Methodology: Blackbox

3.2 Blackbox concretely

Zhang et Al method

t/ainted_output

- -Unexpected output
- -hidden watermark class

2.1 Proof of concept

Zhang et AL On Mnist

Dataset and architecture

Epoch=15000 training example

approach: addition of classes, unrelated

Classes are [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10 refers to the watermark

3. Methodology: BlackBox

Fidelity

Robustness

Capacity

efficiency

security

Predicted: 10

18

Results

Criterions verification: fidelity and security

With Watermark

5 - 10 - 15 - 20 25

Inference with watermark

Without Watermark

The U-net for 3D segmentation

4.1 The Dataset: Brats2020

- -3D segmentation U-net Architecture based on experiments conducted for the Brats2020 challenge
- -366 tumored brain MRI scans of dimension 240x240x155 for training and testing.
- -Each set has 4 types of scan and a segmented image

4.1 The Dataset : Brats2020

Task 1 : segmentation

Task 2: prediction upon survival

NB: only 366 patients

We worked over Task 1:

 using slices from 61 to 85 over T1CE and FLAIR as inputs

4.2 The architecture of the model

- -3D Convolutional Layers
- -U-Shape Architecture : consisting of a **contracting path** (downsampling), a **bottleneck**, and an **expansive path** (upsampling).
- -Bottleneck : It usually consists of two 3D convolutional layers with ReLU activation. It serves to process the most abstracted form of the input data.
- -Skip Connections: These are vital components of U-Net. They involve copying feature maps from the downsampling path and concatenating them with the corresponding layers in the upsampling path. This helps the network to recover spatial information lost during downsampling.

Results on the U-net

While performing the initial segmentation task?

-CrossEntroopyLoss is Around 0.3 here (should be 0.2 for bigger models or more complex architectures)

-Segmented output looks pretty close to ground truth so the results are satisfying

White box

Whitebox:Results

-Reconstructed message :

```
the original message is:

the recovered message is:

the difference is:
```


-Why 128-bits?

BER =0

whitebox: While performing the initial segmentation task?

-Performances look quite similar but still takes a hit

whitebox: While performing the initial segmentation task?

Visually comparing the outputs of both models on predicting 1st class tumor.

Model 2 is watermarked

Whitebox: What do the numbers say?

Bretagne-Pays de la Loire École Mines-Télécom Fidelity Robustness Capacity efficiency security

Around the same CrossEntropyLoss evolution over training and same finals values Some "wiggles" for the watermarked network

U-net with Ushida - IoU: 0.6372, Dice: 0.8160, CrossEntropy: 0.0340 Classic U-Net - IoU: 0.6659, Dice: 0.8407, CrossEntropy: 0.0308

Black box

5.2 Blackbox: Data Tainting

Different types of data tainting: Voronoi

3D Visualization:

2D Visualization:

5.2 Blackbox: Data Tainting

Different types of data tainting: one_photo_embedder

3D Visualization:

2D Visualization:

5.2 BLackbox: Data Tainting

5.2 Blackbox: Data Tainting

Different types of data tainting: segmentation

3D Visualization:

2D Visualization:

5. Watermarking the U-Net

Blackbox: Training the U-net

Flair, t1ce
Combined dataset = Brats dataset + Trigger set
Trigger set = Noisy dataset, simplex noisy, 94 sample
Brats dataset = normal dataset, 344 samples
Ratio ~ 21%
slices [60, 86]

Trigger output

5. Watermarking the U-Net

Training the U-net: First attempt - Training only on the noisy data

Conclusions

Conclusions

- -The Uchida method approach seem to be a very robust method to watermark models however it has shortcomings on more advanced models
- -The blackbox approach is a promising path for a more efficient and strong watermarking tool offering diverse ways to watermark models without damaging their initial performance however more testing needs to be performed on a wider array of models and methods
- Improving U-net (more layers)

Thank you for your attention

Questions?

