

Title: Association Rules

Course: Machine Learning

Instructor: Claudio Sartori

Master: Data Science and Business Analytics

Master: Artificial Intelligence and Innovation

Master: Finance and Financial Technologies

Academic Year: 2023/2024

1	Introduction to Market Basket Analysis Support and confidence	2 6
2	Frequent Itemset Generation	10
3	Rule Generation	26

Association Rules — Discovering co-occurrencies in a market basket

- Given a set of commercial transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction
- Example of Association Rules
 - $\{Diaper\} \rightarrow \{Beer\},\$
 - {Bread, Milk} → {Coke, Eggs},
 {Beer, Bread} → {Milk}
 - - Implication means co-occurrence, not causality!
 - The implication of Association Rules is different from that of logic (boolean): it can be true with some level of truth

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Market Basket Transactions

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: {Bread, Diaper, Milk}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{\text{Bread, Diaper, Milk}\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. $\sigma(\{\text{Bread, Diaper, Milk}\}) = 2/5$
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Market Basket Transactions

Definition: Association Rule

- Association Rule
 - An expression of the form $A \Rightarrow C$, where A and C are itemsets
 - A = Antecedent and
 C = Consequent
 - Example: $\{Diaper, Milk\} \rightarrow \{Beer\}$
- Rule Evaluation Metrics
 - Support (sup)
 - Fraction of the N transactions that contain both A and C
 - Confidence (conf)
 - Measures how often all the items in C appear in transactions that contain A

TID	Items
1	Bread, Milk
1	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Market Basket Transactions

$$sup = rac{\sigma(Beer, Diaper, Milk)}{N} = rac{2}{5} = 0.4$$
 $conf = rac{\sigma(Beer, Diaper, Milk)}{\sigma(Milk, Diaper)}$

Why support and confidence?

- Rules with low support can be generated by random associations
- Rules with low confidence are not really reliable
- Nevertheless a rule with relatively low support but high confidence can represent an uncommon but interesting phenomenon

Association Rule Mining Task

- ullet Given a set of transactions N, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

Example of Rules:

- All the rules above are binary partitions of the same itemset: {Beer,Diaper,Milk}
- Rules originating from the same itemset have identical support but can have different confidence
 - ⇒ we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support is greater than minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

1	Introduction to Market Basket Analysis	2
2	Frequent Itemset Generation	10
	The Apriori principle	16
	The Apriori algorithm	18

Frequent Itemset Generation

Given D items, there are $M = 2^D$ possible candidate itemsets

Frequent Itemset Generation

Brute-force approach:

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
- Match each transaction against every candidate
- Complexity: $\mathcal{O}(NWM) \Rightarrow \text{Expensive}$

	TID	Items
$\leftarrow N \rightarrow$	1	Bread, Milk
	1	Beer, Bread, Diaper, Eggs
	3	Beer, Coke, Diaper, Milk
	4	Beer, Bread, Diaper, Milk
	5	Bread, Coke, Diaper, Milk
		\leftarrow W \rightarrow

Brute Force - Computational Complexity

- Given *D* unique items:
 - Total number of itemsets = 2^D
 - Total number of possible association rules:

$$R = \sum_{k=1}^{D-1} \left(\binom{D}{k} \times \sum_{j=1}^{D-k} \binom{D-k}{j} \right)$$

= 3^D - 2^{D+1} + 1

Explanation of the formula

OPTIONAL

- count the number of ways to create an itemset that forms the left hand side of the rule
- for each size k itemset selected for the left-hand side, count the number of ways to choose the remaining D-k items to form the right-hand side of the rule

Going deeper

- choose k of the D items for the left hand side of the rule, there are $\binom{D}{k}$ ways to do this
- there are $\binom{D-k}{i}$ ways to choose the right hand side of the rule, $1 \le i \le D-k$
- the double summation derives from the two points above
- the binomial theorem states that $\sum_{i=0}^{n} {n \choose i} x^i = (1+x)^n$
- using the theorem for x = 1 and x = 2 leads to the final result (pay attention to the starting value of the summation)

Frequent Itemset Generation Strategies

- Reduce the number of candidates M
 - Complete search: $M = 2^D$
 - Use pruning techniques to reduce M
- Reduce the number of comparisons NM
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle
 - If an itemset is frequent, then all of its subsets must also be frequent
- It holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow sup(X) \geqslant sup(Y)$$

- The Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Pruning strategy

Apriori algorithm - Candidate generation

OPTIONAL

Definitions

 C_k : candidate itemsets of size k

 L_k : frequent itemsets of size k

 $subset_k(c)$: set of the subsets of c with k elements

Candidate generation – Join Step

- Let L_k be represented as a table with k columns where each row is a frequent itemset
- Let the items in each row of L_k be in lexicographic order
- C_{k+1} is generated by a self join of L_k

```
insert into C_{k+1}

select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k</sub>, q.item<sub>k</sub>

from L_k p, L_k q

where p.item<sub>1</sub>=q.item<sub>1</sub> and ... and p.item<sub>k-1</sub>=q.item<sub>k-1</sub>

and p.item<sub>k</sub> < q.item<sub>k</sub>;
```

Candidate generation – Prune Step

```
Each (k+1)-itemset which includes a k-itemset which is not in L_k is deleted from C_{k+1} for all c \in C_k do for all s \in subset_{k-1}(c) do if s \notin L_{k-1} then delete c from C_k
```

Frequent itemset generation

```
L_1 \leftarrow \text{frequent } 1\text{--itemsets}
k \leftarrow 1
while L_k \neq \emptyset do
    C_{k+1} = candidates generated from L_k
    for all t transaction in database do
         increment candidate count in C_{k+1} for candidates found in t
    L_{k+1} \leftarrow \{c\} \in C_{k+1} : sup(c) \geqslant minsup
    k \leftarrow k + 1
return k, L_k
```

Pruning example – minsup=3

1	Item	Count
	Beer	3
	Bread	4
	Coke	2
	Diaper	4
	Eggs	1
	Milk	4

The support of $\{Coke\}$ and $\{Eggs\}$ is below minsupp, therefore they do not generate C_2 candidates

Item	Count
Beer,Bread	2
Beer,Diaper	3
Beer,Milk	2
Bread, Diaper	3
Bread,Milk	3
Diaper, Milk	3
	Beer,Bread Beer,Diaper Beer,Milk Bread,Diaper Bread,Milk

include {Beer, Bread} or {Beer, Milk} →

No C2 candidate will

C_3	Item	Count
	Bread, Diaper, Milk	2

Number of itemsets to evaluate:

No pruning =
$$\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = 41$$

Support based pruning = 13

Origin of the name Apriori

- Level-wise computation
 - the level is the cardinality of the itemsets under evaluation
- The evaluations at level *k* use the *prior knowledge* acquired for the previous levels to reduce the search space

Factors Affecting Complexity I

- Choice of minimum support threshold
 - lowering support threshold results in a greater number of frequent itemsets
 - this may reduce pruning and increase the maximum length of frequent itemsets
 - the number of complete reads of the dataset is given by the maximum length of frequent itemsets plus one
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase

Factors Affecting Complexity II

- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of data structures (number of subsets in a transaction increases with its width)

Rule Generation

Pattern evaluation

4	Multidimensional association rules	44
5	Multilevel Association Rules	49

26

32

Confidence

From [Agrawal et al.(1993)Agrawal, Imieliński, and Swami]

- The confidence of a rule can be computed from the supports
- ⇒ for conficence based pruning of rules it is sufficient to know the supports of frequent itemsets

$$conf(A \Rightarrow C) = \frac{sup(A \Rightarrow C)}{sup(A)}$$

OPTIONAL I

Give a frequent itemset L

- find all the non-empty subsets $f \in L$ such that the confidence of rule $f \Rightarrow (L f)$ is not less than the minimum confidence (set by the experiment designer)
 - from {Beer, Diaper, Milk} the possible rules are Beer, Diaper \Rightarrow Milk, Beer \Rightarrow Diaper, Milk, Beer, Milk \Rightarrow Diaper, Milk \Rightarrow Beer, Diaper, Diaper, Milk
- if |L| = k then there are $2^k 2$ candidate rules
 - $L \Rightarrow \emptyset$ and $\emptyset \Rightarrow L$ can be ignored

OPTIONAL II

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property
 - $conf(ABC \rightarrow D)$ can be larger or smaller than $conf(AB \rightarrow D)$
 - But let us consider rules generated from the same itemset
 - e.g., $i = \{A, B, C, D\} \in L$:

$$conf(ABC \rightarrow D) \geqslant conf(AB \rightarrow CD) \geqslant conf(A \rightarrow BCD)$$

- Confidence of rules generated from the same itemset is anti-monotone w.r.t. the number of items on the RHS of the rule
 - i.e. it decreases when we move an item from the left hand to the right hand

Rule Pruning

Rule Generation in Apriori

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- $join(CD \Rightarrow AB,BD \Rightarrow AC)$ would produce the candidate rule $D \Rightarrow ABC$
- Prune rule D⇒ABC if its subset AD⇒BC does not have high confidence

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if $\{A, B, C\} \Rightarrow \{D\}$ and $\{A, B\} \Rightarrow \{D\}$ have same support and confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support and confidence are the only measures used

Application of Interestingness Measure

Computing Interestingness Measures

- Given a rule A ⇒ C, the information needed to compute rule interestingness can be obtained from a contingency table
- The elements of the contingency table are the basis for most of the interestiness measures

	C	\overline{C}	
A	f_{11}	f_{10}	f_{1+}
\overline{A}	f_{01}	f_{00}	f_{0+}
	f_{+1}	f_{+0}	

Drawback of Confidence

•
$$conf(Tea \Rightarrow Coffee) = \frac{sup(Tea, Coffee)}{sup(Tea)} = \frac{15}{20} = 0.75$$

- fairly high
- Pr(Coffee) = 0.9 and $Pr(Coffee | \overline{Tea}) = \frac{75}{80} = 0.9375$
 - despite the high confidence of Tea ⇒ Coffee, the absence of Tea increases the probability of Coffee
 - for this rule the confidence is misleading

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

 $Tea \Rightarrow Coffee$

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $Pr(S \wedge B) = \frac{420}{1000} = 0.42$
 - Pr(S) * P(B) = 0.6 * 0.7 = 0.42
 - $Pr(S \land B) = P(S) * P(B) \Rightarrow Statistical independence$
 - $Pr(S \land B) > P(S) * P(B) \Rightarrow Positively correlated$
 - $Pr(S \land B) < P(S) * P(B) \Rightarrow Negatively correlated$

Statistical-based Measures I

Measures that take into account the deviation from statistical independence

$$lift(A \Rightarrow C) = \frac{conf(A \Rightarrow C)}{sup(C)} = \frac{Pr(A, C)}{Pr(A)Pr(C)}$$

- lift evaluates to 1 for independence
- insensitive to rule direction
- it is the ratio of true cases w.r.t. independence

Statistical-based Measures II

Measures that take into account the deviation from statistical independence

$$leve(A \Rightarrow C) = \Pr(A, C) - \Pr(A) * \Pr(C)$$
$$= sup(A \cup C) - sup(A)sup(C)$$

- leverage evaluates to 0 for independence
- insensitive to rule direction
- it is the number of additional cases w.r.t. independence

Statistical-based Measures III

Measures that take into account the deviation from statistical independence

$$conv(A \Rightarrow C) = \frac{1 - sup(C)}{1 - conf(A \Rightarrow C)} = \frac{Pr(A)(1 - Pr(C))}{Pr(A) - Pr(A, C)}$$

- conviction is infinite if the rule is always true
- sensitive to rule direction
- it is the ratio of the expected frequency that A occurs without C (that is to say, the frequency that the rule makes an incorrect prediction) if A and C were independent divided by the observed frequency of incorrect predictions
- also called novelty

Intuition about Measures

higher support
higher confidence
higher lift
higher conviction
⇒ rule applies to more records
chance that the rule is true for some record is higher
chance that the rule is just a coincidence is lower
the rule is violated less often than it would be if
the antecedent and the consequent were independent

Example of page 35 – Interestingness measures

Comparison of measures

	<i>C</i> 1	<u>C</u> 1	
<i>A</i> 1	88	5	93
$\overline{A1}$	5	2	7
	93	7	100

Rule
$$(A1 \Rightarrow C1)$$

$$conf = 0.88/0.93 = 0.946$$

 $lift = 0.88/(0.93 * 0.93) = 1.017$
 $leve = 0.88 - 0.93 * 0.93 = 0.015$
 $conv = (1 - 0.93)/(1 - 0.946) = 1.302$

A high confidence rule can have small lift if both sides are very frequent

Pattern evaluation

Rule
$$(A2 \Rightarrow C2)$$

$$conf = 0.02/0.07 = 0.286$$

 $lift = 0.02/(0.07 * 0.07) = 4.082$
 $leve = 0.02 - 0.07 * 0.07 = 0.015$
 $conv = (1 - 0.07)/(1 - 0.286) = 1.302$

A low confidence rule can have high lift if both sides are very infrequent

Conclusion on measures

- There are lots of measures proposed in the literature, beyond the four presented here
- Confidence is usually the base tool
- Other measures can be used to test the results given by confidence and for additional filtering

4	Multidimensional association rules • Equivalence mono/multi	44 47
5	Multilevel Association Rules	49

Multidimensional association rules

Let's consider a dataset deriving from sensors measuring the concentration of air pollutants

TID	CO	Tin_Oxide	Titanium
1	high	medium	high
2	medium	low	medium
3	medium	high	low
4	low	medium	medium

- Look for rules such as CO = high and Tin Oxide = high then Titanium = high (support 0.25 and confidence 1)
- This can be used for example, if one of the sensor is not available, to guess its qualitative value given the others
- Useful for a qualitative analysis, in substitution of regression

Comparison mono- vs multi-dimensional

- Mono-dimensional (intra-attribute)
 - event: transaction
 - event description:
 - items A, B, and C are together in a transaction
- Multi-dimensional (inter-atrribute)
 - event: tuple
 - event description:
 - attribute A has value a, attribute B has value b and attribute C has value c in a tuple

Equivalence mono/multi-dimensional

Multi-dimensional

Mono-dimensional

1, {CO/high, Tin_Oxide/medium, Titanium/high}
2, {CO/medium, Tin_Oxide/low, Titanium/medium}

Schema: (TID,CO,Tin_Oxide,Titanium)

1, high, medium, high 2, medium, low, medium

Schema: (TID,a?,b?,c?,d?)

1, yes, yes, no, no 2. ves. no. ves. no 1, {a, b

-BBS

Quantitative attributes

TID	CO	Tin Oxide	Titanium
1	2.6	1360	1046
2	2.0	1292	955
3	2.2	1402	939
4	1.6	1376	948

- Too many distinct values for the multi/mono transformation
- Most software packages for association rules discovery do not deal with quantitative attributes
- ⇒ discretization
 - possibly *equifrequency* or with *mono–dimensional clustering*, for optimal covering of the original value domains
 - discretisation leads to a dataset like that of page 45
 - Association rules can involve items at different qualitative levels

Multilevel Association Rules

Support and Confidence in Multilevel AR

1	Introduction to Market Basket Analysis	2
2	Frequent Itemset Generation	10
3	Rule Generation	26
4	Multidimensional association rules	44

49

52

Multilevel Association Rules

- A real MBA database can include tens of thousands of distinct items
- Frequently it is necessary to find a tradeoff between general and detailed reasoning
 - choose the right level of abstraction
- A common background knowledge is the organization of the items into a hierarchy of concepts
 - it can be easily coded in the transactions
 - it can help the choice of the right level of abstraction

Concept Hierarchy

Support in Multilevel AR

• From specialized to general

```
(apple \Rightarrow milk) \rightarrow (fruit \Rightarrow dairy)
```

- the support of rules increases, in general
- new rules can become interesting
- From general to specialized

```
(fruit \Rightarrow dairy) \rightarrow (apple \Rightarrow milk)
```

- the support of rules decreases, in general
- the support of rules can go under the threshold

Confidence in Multilevel AR

- A level change can influence the confidence in any direction
- If the specialized rule has (approximately) the same confidence as the general one, then it is redundant

Example

Low-fat milk is a subclass of milk

• 1000 transactions, 80 with milk and bread, 114 with milk, 20 with low-fat milk and bread. 28 with low-fat milk

```
a) milk \Rightarrow bread (support = 8%, confidence = 70%)
b) low-fat milk \Rightarrow bread (support = 2%, confidence = 71%)
```

- rule b) has almost the same confidence as rule a)
- rule b) is a descendant of rule a)
- ⇒ rule b) is redundant

Mining Multilevel Association Rules

- Look for frequent itemsets at each level of abstraction, top down
 - Each level requires a new run of the rule discovery algorithm
- Decrease the support threshold in lower levels

Bibliography I

Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
 Mining association rules between sets of items in large databases.
 SIGMOD Rec., 22(2):207–216, June 1993.

ISSN 0163-5808.

doi: 10.1145/170036.170072.

URL http://doi.acm.org/10.1145/170036.170072.

